

BRAC UNIVERSITY

CSE250L

Dept. of Computer Science and Engineering

Circuits and Electronics Laboratory

Student ID:	22201373	Lab Section:	30
Name:	Pazwar Sajf	Lab Group:	1

Chowdhury Experiment No. 1

Introduction to Series and Parallel Circuit Connections

Objective

The aim of this experiment is to acquaint students with series and parallel circuit connections and to properly identify them on a breadboard or from a schematic diagram.

Theory

An electrical circuit is a continuous path through which electrical current flows. Amongst various circuit combinations, two prominent ones are called "Series" and "Parallel". For a connection to be called "Series", it must fulfil the following criteria:

- > All the components must be connected one after the other.
- > The same current must flow through all the components.

For instance, in the following circuit, we have N resistors: R_1 , R_2 , R_3 , ..., R_N connected one after another and the same current I is flowing through them. All of these series resistors can be combined into just one equivalent resistance,

Figure: A series connection

Similarly, in a "Parallel" connection,

- ➤ All the components must be connected between the same two nodes.
- The same potential (voltage) drop should exist across all the components.

For example, in the following figure, we have N resistors with resistances: R_1 , R_2 , R_3 , ..., R_N connected at the same two nodes a and b. And therefore, the voltage drop across all the resistors are, $\Delta V = V_a - V_b$. Hence, we conclude that the resistors are connected in parallel. The equivalent resistance of these resistors is R_{eq} where,

Figure: A parallel connection

In this experiment, we will learn how to connect circuits in breadboards and how to identify series and parallel connections,

Apparatus

- > Multimeter
- > Resistors
- > DC power supply
- > Breadboard
- > Jumper wires

Procedures

- > Measure the resistances of the provided resistors and fill up the data table.
- > Construct the following circuits on a breadboard. Try to use minimum number of jumper wires:

Circuit 1

Circuit 2

- Measure the equivalent resistance using a multimeter. To do this, disconnect the power supply (if any) and connect the multimeter across the open terminals.
- > Apply 6 V potential drop across the terminals a and b. Use the DC power supply to connect the positive terminal to node a and the negative terminal to terminal b.
- ➤ Measure the voltage and current across each resistors. Use Multimeter for measuring the voltage and use Ohm's law to calculate the current through each resistor. Fill up the data tables.

Data Tables

Signature of Lab Faculty:

Date:

29.01.24,

** For all the data tables, take data up to three decimal places, round to two, then enter into the table.

Table 1: Resistance Data

For all your future calculations, please use the observed values only (even for theoretical

calculations).

Notation	Expected Resistance	Observed Resistance (kΩ)				
R_{1}	1 kΩ	1.012				
R ₂	3.3 kΩ	3.265				
R_3	4.7 kΩ	4.68				
R_4	18 kΩ	17.87				

Table 2: Data from Circuit 1

In the following table, V_1 is the voltage drop across resistor R_1 and I_1 is the current through it. Similar syntax applies to remaining resistors. For theoretical calculations, please note that, in series connection, the supplied voltage will be divided proportionally to the resistances. The voltage supplied to the complete circuit is denoted by V_s and the current being supplied to the whole network is denoted as I_s . Also, calculate the percentage of error between experimental and theoretical values of R_{so} .

Obser- vation	R _{eq} (kΩ)	V _s (V) (from dc power supply)	V s (V) (using multim eter)	$I_s = \frac{V_s}{R_{eq}}$ (mA)	(1)	$I_1 = \frac{v_1}{R_1}$ (mA)	<i>V</i> ₂ (V)	$I_2 = \frac{v_2}{R_2}$ (mA)	V ₃ (V)	$I_3 = \frac{V_3}{R_3}$ (mA)	<i>V</i> ₄ (V)	$I_4 = \frac{V_4}{R_4}$ (mA)
Experi- mental	26.85	GV	6.03	0.224	0.2274	0.2247	0.755	ь·225	1.054	0.2252	4.01	0.224
Theo- retical	27			0.222	0.222	0.222	0.7346	0.222	18434	6.222	4000h	0.222

Percentage of error =
$$\left| \frac{Experimental - Theoretical}{Theoretical} \right| \times 100\%$$

Here, Percentage of error in
$$R_{eq}$$
 calculation = 0.556 %

Table 3: Data from Circuit 2

In a parallel connection, all the voltage drops are same across the components. Hence, we only need the supply voltage V_s . However, the current across each component is inversely

proportional to the resistance values.

Observation	R _{eq} (kΩ)	V _s (V) (from dc power supply)	V s (V) (using multimeter)	$I_s = \frac{V_s}{R_{eq}}$ (mA)	$I_1 = \frac{V_s}{R_1}$ (mA)	$I_2 = \frac{v_s}{R_2}$ (mA)	$I_3 = \frac{V_s}{R_3}$ (mA)	$I_4 = \frac{V_4}{R_4}$ (mA)
Experimental	0'642	61	602	9-376	594	1.84	1.58	0.336
Theoretical	0.636			9.434	. 6	1.8181	1.27	0.33

Here, Percentage of error in
$$R_{eq}$$
 calculation = 0.943%

Table 4: Data from Circuit 3

Collect the following data.

Observation	R _{ab} (kΩ)	V _s (V) (from dc power supply)	V s (V) (using multim eter)	$I_s = \frac{V_s}{R_{eq}}$ (mA)	V ₁ (V)	$I_1 = \frac{v_1}{R_1}$ (mA)	V ₂ (V)	$I_2 = \frac{V_2}{R_2}$ (mA)	ν ₃ (V)	$I_3 = \frac{V_3}{R_3}$ (mA)	V ₄ (V)	$I_4 = \frac{V_4}{R_4}$ (mA)
Experi- mental	1.742	61	603	3.46	×10 ⁻⁴	6.91 ×10-4	6.02	1.84	₹ 6.03	41.28	6'02	o33
Theo- retical	1.7502			3.428	0	0		1.81	40	-1.27	8	o·33

Here, Percentage of error in
$$R_{eq}$$
 calculation = 0.4685 %

How are the resistors in circuit 3 connected with each other? Justify your answer.

Here we see the Rs is short cicuited. Circuited and all the other resistors are connected between two points only. So, we calculate in in availed basis.

Questions

1.

- (a) After taking voltage and currents measurements in a laboratory for the circuit shown above, the currents through the R_4 and R_7 resistors are found to be equal. Are R_4 and R_7 in series?
 - ☐ Yes ☑ No

Justify your choice.

The modes of Ry does not match with Rz. For ago series connection, one nod should be common.

- (b) R_1 , R_2 , and, R_3 are connected in
 - ☐ Series ☐ Parallel ☐ None of the two ☑ Cannot be predicted Explain your choice.

R1, R2 and R3 to has a combination are named T combination. Bos Therefore, no certain guess can be made out of it its series or parallel.

2.

- (a) If the voltages v_x and v_y are equal, are R_1 and R_5 in parallel?
 - ☐ Yes ☑ No
 Justify your answer.

First of all, the voltage source is different here. So current won't flow the same.

Besides trank they are In different nodes

from each other. If the nodes were the same which means, if they were parallel, the would have the same value

3,

Draw a circuit diagram of the circuit shown on the breadboard above.

4. For the following circuit:

(a) How many nodes are there. Mark and label all the nodes in the circuit diagram.

There are three notes in the circuit

(b) Based on the node labels in (a), fill out the following table by entering the starting and ending nodes in each row that connect the corresponding circuit element.

Circuit Element	Starting/Ending Node	Ending/Starting Node
12 kΩ Resistor	Vo	٧o
4 kΩ Resistor	٧o	V ₂
18 kΩ Resistor	٧,	V2
9 kΩ Resistor	V ₂	V ₃
8 kΩ Resistor	٧o	V ₁
24 kΩ Resistor	V _o	√ 1
3.3 kΩ Resistor	V ₂	∨ ₁

(c) Based on the table in (b), draw a simplified version of the circuit using the labeled/identified nodes.

(d) Determine the equivalent resistance between terminals a and b from the reduced circuit drawn in (c).

$$\frac{1}{R!} = \frac{1}{8} + \frac{1}{24} = \frac{1}{6}$$

$$\frac{1}{R} = \frac{1}{6} + \frac{1}{10} = \frac{4}{16}$$

$$\frac{1}{R!} = \frac{1}{9} + \frac{1}{18} = \frac{1}{6}$$

$$\frac{1}{R!} = \frac{1}{10}$$

$$\frac{1}{R!} = \frac{1}{10}$$

5. For the following circuit, determine $R_{ab'}$, $R_{ad'}$, R_{bd} and R_{bc} . Use logical operators to indicate the series-parallel combinations. For exmple, the following equation of R_{xy} means, two 10 Ω resistors are in parallel, their combination is in series with a 5 Ω resistor, and the total is again parallel with a 20 Ω resistor.

$$R_{xy} = \{(10 || 10) + 5\} || 20$$

$R_{ab} = \left[\{ (s+2) (3+5) \}^{2} + 20 \right] 1 1 2$ $= 850$	= 8.887 56
Rbd = [{2011(3+5)]+12] 11 (6+2)	Rbc = [6+2] 11 (12+20)]+5] 113
= 5.51152	= 2.37552

Report

- 1. Fill up the theoretical parts of all the data tables.
- 2. Answer to the questions.
- 3. Discussion [your overall experience, accuracy of the measured data, difficulties experienced and your thoughts on those]. Add pages if necessary.

trom lab experiment 1, I have learned to make basic cicuits. It I also learned about the components, like bread board, resistors, anniteurs, mulimeter, wire etc. My theoritical data are very close to experimental dates. Errors were not more than I percent. Therefore, I can say my accuracy of measurement were right. Initial? I faced disficulties designing the cicuits. Eventually, I learned all of it. As it was experiment one 1, of the tasks were basics and I learned it properly.