Introdução Distribuições Resultados Conclusões Referências Bibliográficas

Comparação de estimadores pelo método Monte Carlo das distribuições: $\mathcal{G}_{\mathrm{I}}^{0}$, Uniforme, Binomial negativa, Gamma e Exponencial

Antônio Marcos Larangeiras Alisson Nascimento Paulo

Universidade Federal de Alagoas Instituto de Computação

Maceió-AL, Dezembro de 2013

Introdução

- Calcular o estimador por máxima verossimilhança;
- Calcular estimador pelo primeiro momento;
- Calcular estimador pelo segundo momento;
- Utilizar o Método Monte Carlo força bruta.

Método Monte Carlo

Qualquer método de uma classe de métodos estatísticos que se baseiam em amostragens aleatórias massivas para obter resultados numéricos.

- Método estatístico utilizado em simulações estocásticos
- Com ele se obtem aproximações numéricas de funções complexas
- Utilizado na computação numérica para avaliar integrais Esse nome surgiu durante a segunda guerra no projeto da construção da bomba atômica quando Ulam, Von Neuman e Ferni pensaram em utilizar o método.

Distribuição Uniforme

Admitimos que em um dado problema, números reais cobrem de forma uniforme um segmento de reta [a-b] de tal maneira que quando se observa qualquer subintervalo contenha o mesmo número de pontos, e portanto , equiprovável. Sua função de distribuição é dada por:

$$f(x) = \begin{cases} \frac{1}{a+b} & a \leqslant x \leqslant b \\ 0 & \text{caso contrário.} \end{cases}$$
 (1)

Distribuição Uniforme

Aplicando a função 1 a uma variável aleatória $X \sim U(x; 0, \theta)$, com $\theta > 0$.

Sua função de distribuição é esta:

$$f(x) = \begin{cases} \frac{1}{\theta} & 0 \leqslant x \leqslant \theta \\ 0 & \text{caso contrário.} \end{cases}$$

Distribuição $U(x; 0, \theta)$

A esperânça matemática da distribuição $U(x; 0, \theta)$:

$$E(X) = \frac{\theta}{2} \tag{2}$$

Distribuição $U(x; 0, \theta)$

A esperânça matemática da distribuição $U(x; 0, \theta)$:

$$E(X) = \frac{\theta}{2} \tag{2}$$

A variância da distribuição $U(x; 0, \theta)$:

$$Var(X) = \frac{\theta^2}{12} \tag{3}$$

Estimadores da Distribuição $U(x; 0, \theta)$

Pela Máxima Veressimilhança:

$$\hat{\theta} = \frac{1}{\theta^n} \mathbb{1}_{\max\{X_1, \dots, X_n\} \leqslant \theta}, \text{ portanto } \hat{\theta} = \max\{X_1, \dots, X_n\} \leqslant \theta \quad \text{(4)}$$

Estimadores da Distribuição $U(x; 0, \theta)$

Pela Máxima Veressimilhança:

$$\hat{\theta} = \frac{1}{\theta^n} \mathbb{1}_{\max\{X_1, \dots, X_n\} \leqslant \theta}, \text{ portanto } \hat{\theta} = \max\{X_1, \dots, X_n\} \leqslant \theta \quad (4)$$

Pelo momento primeiro momento:

$$\hat{\theta}_2 = 2\overline{X} \tag{5}$$

Estimadores da Distribuição $U(x; 0, \theta)$

Pelo segundo momento:

$$\hat{\theta}_3 = \sqrt{\frac{3}{n} \sum_{i=1}^n X_i^2} \tag{6}$$

Introdução **Distribuições** Resultados Conclusões Referências Bibliográficas Distribuição Uniforme Distribuição \mathcal{G}_1^0 Distribuição Binomial Negativa Distribuição $\Gamma(w;k,\theta)$ Distribuição Exponencial Distribuição T-Student

Gráficos da distribuição $U(x; 0, \theta)$

Distribuição $\mathcal{G}_{\mathrm{I}}^{0}$

Denotaremos esta distribuição por $Z\sim \mathcal{G}_{\rm I}^0(z;\alpha,1,1)$, com $-\alpha,z>0$. Sua densidade é

$$f_Z = (z; \alpha, 1, 1) = \frac{\Gamma(L - \alpha)}{\Gamma(-\alpha)(1 + z)^{1-\alpha}}, \text{com } -\alpha \text{ e } z > 0.$$

Distribuição $\mathcal{G}_{\mathrm{I}}^{0}$

A esperança matemática da distribuição $\mathcal{G}_{\mathrm{I}}^{0}$:

$$E(Z) = \frac{\gamma}{\alpha - 1} \tag{7}$$

Distribuição $\mathcal{G}_{\scriptscriptstyle m I}^0$

A esperança matemática da distribuição $\mathcal{G}_{\mathrm{I}}^{0}$:

$$E(Z) = \frac{\gamma}{\alpha - 1} \tag{7}$$

A variância da distribuição $\mathcal{G}_{\mathrm{I}}^{0}$:

$$Var(Z) = \frac{1}{(\alpha - 1)^2} + \frac{1}{(\alpha - 2)(\alpha - 1)^2} + \frac{1}{\alpha - 1}$$
 (8)

Estimadores da Distribuição \mathcal{G}_{Γ}^0

Pela Máxima Veressimilhança:

$$\hat{\alpha} = \frac{n}{\sum_{i=1}^{n} \ln(1+z_i)} \tag{9}$$

Estimadores da Distribuição \mathcal{G}_{Γ}^0

Pela Máxima Veressimilhança:

$$\hat{\alpha} = \frac{n}{\sum_{i=1}^{n} \ln(1+z_i)} \tag{9}$$

Pelo momento central de ordem 2:

$$\hat{\alpha}_2 = \overline{Z} \tag{10}$$

Estimadores da Distribuição $\mathcal{G}_{\mathrm{I}}^{0}$

Pelo segundo momento:

$$\hat{\alpha}_{3} = \frac{\frac{3}{k} \sum_{i=1}^{k} Z_{i}^{2} + 2 + \sqrt{\frac{1}{k^{2}} \sum_{i=1}^{k} Z_{i}^{4} + 4}}{\frac{2}{k} \sum_{i=1}^{k} Z_{i}^{2}}$$
(11)

Introdução **Distribuições** Resultados Conclusões Referências Bibliográficas Distribuição Uniforme Distribuição \mathcal{G}_{0}^{0} Distribuição \mathcal{G}_{0}^{0} Distribuição Binomial Negativa Distribuição $\Gamma(w; k, \theta)$ Distribuição Exponencial Distribuição T-Student

Gráficos da distribuição $\mathcal{G}_{\mathrm{I}}^{0}$

Introdução **Distribuições** Resultados Conclusões Referências Bibliográficas Distribuição Uniforme Distribuição \mathcal{G}_1^0 Distribuição Binomial Negativa Distribuição $\Gamma(w;k,\theta)$ Distribuição Exponencial Distribuição T-Student

Distribuição Binomial Negativa

Considere a situação de observar um evento dicotômico Y_i independentes e identicamente distribuídos segundo uma lei de Bernoulli de probabilidade p. Suponha que se registre Y, o número de ensaios até obter exatamente k sucessos.

Distribuição Binomial Negativa

Seja uma variável aleatória que fornece o numero de ensaios até o k-ésimo sucesso. Assim, Y tem uma distribuição binomial negativa com parâmetro $p \in (0,1)$, se sua função de probabilidade é dada por:

$$P_r(Y=y) = \begin{cases} \binom{y-1}{k-1} \cdot p^k \cdot (1-p)^{y-k} & \text{se y=k,k+1,} \\ 0 & , \text{ caso contrário} \end{cases}$$

Distribuição Uniforme Distribuição $\mathcal{G}_{\mathbf{I}}^0$ Distribuição $\mathcal{G}_{\mathbf{I}}^0$ Distribuição Binomial Negativa Distribuição $\Gamma(w;k,\theta)$ Distribuição Exponencial Distribuição T-Student

Distribuição BN(p, k)

Usualmente sua função de probabilidade denota-se: $Y \sim BN(p, k)$.

Distribuição BN(p, k)

Usualmente sua função de probabilidade denota-se:

$$Y \sim BN(p, k)$$
.

A esperança matemática da distribuição binomial negativa:

$$E(X) = \frac{k}{p} \tag{12}$$

Distribuição BN(p, k)

Usualmente sua função de probabilidade denota-se:

$$Y \sim BN(p, k)$$
.

A esperança matemática da distribuição binomial negativa:

$$E(X) = \frac{k}{p} \tag{12}$$

A variância da distribuição binomail negativa:

$$Var(X) = \frac{k(1-p)}{p^2} \tag{13}$$

Estimadores da Distribuição BN(p,k)

Pela Máxima Veressimilhança:

$$\hat{p} = \frac{nk}{\sum_{i=1}^{n} Y_i} \tag{14}$$

Estimadores da Distribuição BN(p, k)

Pela Máxima Veressimilhança:

$$\hat{p} = \frac{nk}{\sum_{i=1}^{n} Y_i} \tag{14}$$

Pelo momento central de ordem 2:

$$\hat{p}_2 = \frac{-k + \sqrt{k^2 + 4k Var(X_i)}}{2 Var(X_i)}$$
 (15)

Estimadores da Distribuição BN(p, k)

Pelo segundo momento:

$$\widehat{\rho}_3 = \frac{-k + \sqrt{k^2 + 4E(X_i^2)(k^2 + k)}}{2E(X_i^2)}$$
 (16)

Introdução **Distribuições** Resultados Conclusões Referências Bibliográficas Distribuição Uniforme Distribuição \mathcal{G}_{1}^{0} Distribuição \mathcal{G}_{1}^{0} Distribuição F(w; k, θ) Distribuição F(w; k, θ) Distribuição Exponencial Distribuição T-Student

Gráficos da distribuição BN(p, k)

Distribuição $\Gamma(w; k, \theta)$

A Distribuição Gamma é caracterizada por dois valores, denominados shape (k) e scale (θ) . Ela possui a seguinte função densidade probabilidade:

$$f(w; k, \theta) = \frac{w^{k-1}e^{-\frac{w}{\theta}}}{\theta^k\Gamma(w)}$$

para, w > 0 e $k, \theta > 0$

Distribuição $\Gamma(w; k, \theta)$

Esperança da distribuição $\Gamma(w; k, \theta)$:

$$E[W] = k\theta \tag{17}$$

Distribuição $\Gamma(w; k, \theta)$

Esperança da distribuição $\Gamma(w; k, \theta)$:

$$E[W] = k\theta \tag{17}$$

A variância da distribuição $\Gamma(w; k, \theta)$:

$$Var[W] = k\theta^2 \tag{18}$$

Em nosso estudo usaremos sempre $\theta=1$ para simplicidade dos cálculos.

Para estimar pela Máxima Verossimilhança é preciso encontrar o máximo da função log-verossimilhança de $\Gamma(w;k,1)$

$$log(p(W|k,1)) = n(k-1)\overline{log(x)} - nlog(\Gamma(k)) - nklog(\overline{x}) + nklog(a) - nk$$

Que podemos resolver numericamente iterando sobre k em:

$$\frac{1}{k} = \frac{1}{k_0} + \frac{\overline{log(x)} - log(\overline{x}) + log(k_0) - \psi(k_0)}{k_0^2(\frac{1}{k_0} - \psi'(k_0))}$$

Quando $k \approx k_0$ então encontramos o estimador \hat{k}

Como k inicial podemos usar a seguinte aproximação

$$\hat{k} = \frac{0.5}{\log(\overline{x}) - \overline{\log(x)}}$$

Estimador pelo primeiro momento:

$$E[W] = k\theta$$

$$\hat{k}_1 = \frac{1}{n} \sum_{i=1}^n w_i$$

Estimador pelo segundo momento central:

$$Var[W] = k\theta^2$$
 $\hat{k}_2^0 = Var(w)$

Introdução **Distribuições** Resultados Conclusões Referências Bibliográficas Distribuição Uniforme
Distribuição \mathcal{G}_0^0 Distribuição Binomial Negativa
Distribuição $\Gamma(w;k,\theta)$ Distribuição Exponencial
Distribuição T-Student

Gráficos da distribuição $U(x; 0, \theta)$

Distribuição Exponencial

A distribuição exponencial é frequentemente usada em estudos de confiabilidade como sendo um modelo para o tempo até a falha de um equipamento. Essa distribuição funciona como o inverso da distribuição Poisson. Enquanto a Poisson estima a quantidade de eventos em um intervalo, a exponencial analisa um intervalo ou espaço para a ocorrência de um evento. Sua função densidade é dada por:

$$F(v) = 1 - e^{-\lambda v}$$
, para $v \ge 0$. (19)

Distribuição $Exp(\lambda)$

A esperança matemática da distribuição $Exp(\lambda)$:

$$E(V) = 1/\lambda \tag{20}$$

Distribuição $Exp(\lambda)$

A esperança matemática da distribuição $Exp(\lambda)$:

$$E(V) = 1/\lambda \tag{20}$$

A variância da distribuição $Exp(\lambda)$:

$$Var(V) = 1/\lambda^2 \tag{21}$$

Estimadores da Distribuição $Exp(\lambda)$

Pela Máxima Veressimilhança:

$$\hat{\lambda} = 1/\bar{V} \tag{22}$$

Estimadores da Distribuição $Exp(\lambda)$

Pela Máxima Veressimilhança:

$$\hat{\lambda} = 1/\bar{V} \tag{22}$$

Pelo momento primeiro momento:

$$\hat{\lambda}_2 = 1/\lambda \tag{23}$$

Estimadores da Distribuição $Exp(\lambda)$

Pelo segundo momento:

$$\hat{\lambda}_3 = 2/\lambda^2 \tag{24}$$

Distribuição Uniforme Distribuição \mathcal{G}_1^0 Distribuição Binomial Negativa Distribuição $\Gamma(w;k,\theta)$ Distribuição Exponencial Distribuição T-Student

Gráficos da distribuição $Exp(\lambda)$

Distribuição T-Student

Seja Z uma v.a N(0,1) e Y uma v.a. $\chi^2(1)$, com Z e Y independentes. Então a v.a.

$$t=\frac{Z}{\sqrt{(Y/\nu)}},$$

tem densidade dada por

$$f(t;
u) = rac{\Gamma((
u+1)/2)}{\Gamma(
u/2)\sqrt(\pi
u)} (1+t^2/
u)^{-(
u+1)/2}, \ -\infty < t < \infty$$

Esta distribuição é denominada t-student, com ν grau de liberdade e possui as seguintes propriedades:

- $f(t; \nu)$ é simétrica em relação a t = 0;
- $f(t; \nu)$ é crescente no intervalo $(-\infty, 0)$ e decrescente en

Estimadores da distribuição T-Student

Seja X uma variável aleatória com distribuição t-student com n grau de liberdade. Mostra-se que

- $E(X^k)$ é indefinido se k é ímpar e k \geq n;
- $E(X^k) = \infty$ se k é par e k \geq n;
- $E(X^k) = 0$ k é ímpar e k \leq n;

Finalmente, se k é par e k \leq n então

$$E(X^k) = \frac{\Gamma[(k+1)/2] \Gamma^{k/2}[(n-k)/2]}{\sqrt{\pi} \Gamma(n/2)}$$

Distribuição Uniforme Distribuição \mathcal{G}_{1}^{0} Distribuição \mathcal{G}_{1}^{0} Distribuição finomial Negativa Distribuição $\Gamma(w;k,\theta)$ Distribuição Exponencial Distribuição T-Student

•
$$E(X) = 0$$
sen > 1 ;

•
$$Var(X) = \frac{n}{n-2} sen > 2;$$

Seja
$$f(t;\nu)=\frac{\Gamma((\nu+1)/2)}{\Gamma(\nu/2)\sqrt(\pi\nu)}(1+t^2/\nu)^{-(\nu+1)/2},$$
 $-\infty < t < \infty$, com ν grau de liberdade. Então a função verossimilhança de $f(t,\nu)$ é $L(t,\nu)=\prod_{i=1}^n f(t;\nu); \quad t=(t_1,t_2,\ldots,t_n)\in S, \ \nu\in\Theta$ Esta função não possui expressão analítica fechada para a máxima log-verossimilhança. Deste modo, é necessário recorrer a análise numérica para sua determinação.

Distribuição Uniforme Distribuição \mathcal{G}_1^0 Distribuição Binomial Negativa Distribuição $\Gamma(w;k,\theta)$ Distribuição Exponencial Distribuição T-Student

Gráficos da distribuição T-Student

Distribuição $\mathcal{G}_{\mathrm{I}}^{0}$

Table : Comparação dos viés e do erro quadrático médio dos Estimadores $\widehat{\alpha}_1$ e $\widetilde{\alpha}_1$

		10/0 11 . 10/0 11		
n	α	$ B(\widehat{\alpha}_1) > B(\widetilde{\alpha}_1) $	$ EQM(\widehat{\alpha}_1) > EQM(\widetilde{\alpha}_1) $	
50	-2.5	TRUE	TRUE	
100	-2.5	TRUE	TRUE	
150	-2.5	TRUE	TRUE	
100000	-2.5	TRUE	TRUE	
50	-3	TRUE	TRUE	
100	-3	TRUE	FALSE	
150	-3	TRUE	FALSE	
100000	-3	TRUE	TRUE	
50	-5	TRUE	FALSE	
100	-5	TRUE	FALSE	
150	-5	TRUE	FALSE	
100000	-5	TRUE	FALSE	

Distribuição $\mathcal{G}_{\mathrm{I}}^{0}$

Table : Comparação dos viés e do erro quadrático médio dos Estimadores $\widehat{\alpha}_2$ e $\widetilde{\alpha}_2$

n	α	$ B(\widehat{\alpha}_2) > B(\widetilde{\alpha}_2) $	$ EQM(\widehat{\alpha}_2) > EQM(\widetilde{\alpha}_2) $	
50	-2.5	FALSE	FALSE	
100	-2.5	TRUE	TRUE	
150	-2.5	TRUE	FALSE	
100000	-2.5	TRUE	TRUE	
50	-3	TRUE	TRUE	
100	-3	FALSE	FALSE	
150	-3	FALSE	FALSE	
100000	-3	TRUE	E TRUE	
50	-5	TRUE	TRUE	
100	-5	TRUE	TRUE	
150	-5	FALSE	FALSE	
100000	-5	TRUE	TRUE	

Distribuição $\mathcal{G}_{\mathrm{I}}^{0}$

Table : Comparação dos viés e do erro quadrático médio dos Estimadores $\widehat{\alpha}_3$ e $\widetilde{\alpha}_3$

n	α	$ B(\widehat{\alpha}_3) > B(\widetilde{\alpha}_3) $	$ EQM(\widehat{\alpha}_3) > EQM(\widetilde{\alpha}_3) $	
50	-2.5	TRUE	TRUE	
100	-2.5	FALSE	FALSE	
150	-2.5	FALSE	TRUE	
100000	-2.5	FALSE	FALSE	
50	-3	FALSE	FALSE	
100	-3	FALSE	FALSE	
150	-3	FALSE	TRUE	
100000	-3	FALSE	FALSE	
50	-5	FALSE	FALSE	
100	-5	FALSE	FALSE	
150	-5	FALSE	FALSE	
100000	-5	FALSE	FALSE	

Table : Viés dos estimadores $\hat{p_1}$ e $\tilde{p_1}$.

	n	Com <i>p</i>	paração dos viés $B(\hat{p_1})$	s dos Estimadore $B(ilde{p_1})$	es $\hat{p_1}$ e $\tilde{p_1}$ $ B(\hat{p_1}) > B(\tilde{p_1}) $
•	50 100	0.1 0.1	0.01158347 0.01147125	0.01108683 0.01124116	TRUE TRUE
	150 100000	0.1 0.1	0.01129354 0.01110255	0.01113929 0.01110307	TRUE FALSE
	50	0.2	0.05069611	0.04952346	TRUE
	100	0.2	0.05113692	0.05050091	TRUE
	150	0.2	0.05021439	0.04981072	TRUE
	100000	0.2	0.05000023	0.05000045	FALSE
	50	0.3	0.13303390	0.13062580	TRUE
	100	0.3	0.12839159	0.12709425	TRUE
	150	0.3	0.12910398	0.12821978	TRUE
	100000	0.3	0.12858837	0.12858547	TRUE

Table : EQM dos estimadores $\hat{p_1}$ e $\tilde{p_1}$.

Comparação dos EQM do Estimador $\hat{p_1}$ e $\tilde{p_1}$ n p $EQM(\hat{p_1})$ $EQM(\tilde{p_1})$ $EQM(\tilde{p_1})$ $EQM(\tilde{p_1})$					
50	0.1	0.0001897657	0.0001792158	TRUE	
100	0.1	0.0001601663	0.0001552416	TRUE	
150	0.1	0.0001461537	0.0001429903	TRUE	
100000	0.1	0.0001232947	0.0001233068	FALSE	
50	0.2	0.0028992563	0.0027791147	TRUE	
100	0.2	0.0027753925	0.0027122546	TRUE	
150	0.2	0.0026332882	0.0025933471	TRUE	
100000	0.2	0.0025001601	0.0025001831	FALSE	
50	0.3	0.0188113709	0.0181701887	TRUE	
100	0.3	0.0170132255	0.0166791609	TRUE	
150	0.3	0.0170230361	0.0167979328	TRUE	
100000	0.3	0.0165355188	0.0165347806	TRUE	

Table : Comparação dos estimadores $\hat{p_2}$ e $\tilde{p_2}$.

п	Co p	emparação dos Estimado $ B(\hat{p_2}) > B(ilde{p_2}) $	res $\hat{p_2}$ e $\tilde{p_2}$ $EQM(\hat{p_2}) > EQM(\tilde{p_2})$	
50	0.1	TRUE	FALSE	
100	0.1	TRUE	FALSE	
150	0.1	TRUE	FALSE	
100000	0.1	TRUE	FALSE	
50	0.2	TRUE	TRUE	
100	0.2	TRUE	FALSE	
150	0.2	FALSE	FALSE	
100000	0.2	TRUE	FALSE	
50	0.3	TRUE	FALSE	
100	0.3	TRUE	FALSE	
150	0.3	FALSE	FALSE	
100000	0.3	FALSE	FALSE	

Table : Comparação dos estimadores $\hat{p_3}$ e $\tilde{p_3}$.

n	Co p	emparação dos Estimado $ B(\hat{ ho_3}) > B(ilde{ ho_3}) $	res $\hat{p_3}$ e $\tilde{p_3}$ $EQM(\hat{p_3}) > EQM(\tilde{p_3})$	
50	0.1 TRUE		TRUE	
100	0.1 TRUE		TRUE	
150	0.1 TRUE		TRUE	
100000	0.1 TRUE		TRUE	
50 100 150 100000	100 0.2 TRUE 150 0.2 TRUE		TRUE TRUE TRUE TRUE	
50	0.3	TRUE	TRUE	
100	0.3	TRUE	TRUE	
150	0.3	TRUE	TRUE	
100000	0.3	TRUE	TRUE	

A primeira tabela refere-se ao viés do estimador por máximo verossimilhança - $1/\bar{x}$.

Table : Viés dos estimadores $\hat{\lambda_1}$ e $\tilde{\lambda_1}$.

Comparação dos viés do Estimador $\hat{\lambda_1}$				
n	λ	$B(\hat{\lambda_1})$	$B(\tilde{\lambda_1})$	$B(\hat{\lambda_1}) > B(\tilde{\lambda_1})$
50	0.3	8.563419e-03	2.540733e-03	TRUE
100	0.3	3.249035e-03	2.168678e-04	TRUE
150	0.3	2.728954e-03	7.411608e-04	TRUE
100000	0.3	1.972002e-05	1.913857e-05	TRUE
50	0.5	1.407817e-02	4.055892e-03	TRUE
100	0.5	2.494619e-03	-2.560141e-03	TRUE
150	0.5	4.027130e-03	8.587662e-04	TRUE
100000	0.5	-3.786119e-05	-4.269957e-05	TRUE
50	2	4.727426e-02	5.441983e-03	TRUE
100	2	2.435143e-02	4.153628e-03	TRUE
150	2	2.496612e-02	1.171509e-02	TRUE
100000	2	-5 638649e-05	-5 874376e-05	FALSE

A tabela a seguir trata-se dos valores do EQM em relação a máximo verossimilhança - $1/\hat{x}$.

Table : EQM dos estimadores $\hat{\lambda_1}$ e $\tilde{\lambda_1}$.

		Comparação dos EQM do Estimador $\hat{\lambda_1}$			
n	λ	$\textit{EQM}(\hat{\lambda_1})$	$\textit{EQM}(ilde{\lambda_1})$	$EQM(\hat{\lambda_1}) > EQM(\tilde{\lambda_1})$	
50	0.3	2.194808e-03	2.056801e-03	TRUE	
100	0.3	8.528248e-04	8.278781e-04	TRUE	
150	0.3	5.894819e-04	5.826339e-04	TRUE	
100000	0.3	8.415198e-07	8.443515e-07	FALSE	
50	0.5	6.094502e-03	5.732249e-03	TRUE	
100	0.5	2.729694e-03	2.662651e-03	TRUE	
150	0.5	1.750662e-03	1.727247e-03	TRUE	
100000	0.5	2.577277e-06	2.615424e-06	FALSE	
50	2	8.901878e-02	8.467163e-02	TRUE	
100	2	4.237920e-02	4.133330e-02	TRUE	
150	2	3.086910e-02	3.009429e-02	TRUE	
100000	2	3.996599e-05	4.038770e-05	FALSE	

A tabela abaixo apresenta a diferença entre o viés no momento amostra de ordem 1. $\sqrt{1/var(x)}$.

Table : Viés dos estimadores $\hat{\lambda_2}$ e $\tilde{\lambda_2}$.

	Comparação dos viés do Estimador $\hat{\lambda_2}$					
n	λ	$B(\hat{\lambda_2})$	$B(\tilde{\lambda_2})$	$B(\hat{\lambda_2}) > B(\tilde{\lambda_2})$		
50	0.3	2.000133e-02	3.046579e-03	TRUE		
100	0.3	8.539564e-03	-3.095717e-04	TRUE		
150	0.3	5.592596e-03	-4.209541e-04	TRUE		
100000	0.3	4.246102e-05	3.181654e-05	TRUE		
50	0.5	3.125010e-02	3.198028e-03	TRUE		
100	0.5	1.661312e-02	2.302152e-03	TRUE		
150	0.5	1.293862e-02	2.823622e-03	TRUE		
100000	0.5	1.875328e-05	-4.204228e-06	TRUE		
50	2	1.312796e-01	2.056332e-02	TRUE		
100	2	4.087539e-02	-1.814831e-02	TRUE		
150	2	5.083462e-02	9.218771e-03	TRUE		
100000	2	3.786189e-04	2.994606e-04	FALSE		

Tabela referente ao EQM do momento amostra de ordem 1.

Table : EQM dos estimadores $\hat{\lambda_2}$ e $\tilde{\lambda_2}$.

	Comparação dos EQM do Estimador $\hat{\lambda_2}$					
n	λ	$EQM(\hat{\lambda_2})$	$EQM(ilde{\lambda_2})$	$EQM(\hat{\lambda_2}) > EQM(\tilde{\lambda_2})$		
50	0.3	4.174063e-03	3.976735e-03	TRUE		
100	0.3	1.990066e-03	1.991264e-03	FALSE		
150	0.3	1.247754e-03	1.253155e-03	FALSE		
100000	0.3	1.783617e-06	1.808211e-06	FALSE		
50	0.5	1.201819e-02	1.144396e-02	TRUE		
100	0.5	5.240721e-03	5.232843e-03	TRUE		
150	0.5	3.648914e-03	3.671078e-03	FALSE		
100000	0.5	5.287958e-06	5.308073e-06	FALSE		
50	2	1.903238e-01	1.831975e-01	TRUE		
100	2	8.064018e-02	8.440508e-02	FALSE		
150	2	5.738582e-02	5.732075e-02	TRUE		
100000	2	9.050068e-05	9.245068e-05	FALSE		

Quadro de comparação do viés do momento amostral de oredem 2. $\sqrt{1/mean^2}$

Table : Viés dos estimadores $\hat{\lambda_3}$ e $\tilde{\lambda_3}$.

Comparação dos viés do Estimador $\hat{\lambda_3}$					
n	λ	$B(\hat{\lambda_3})$	$B(\tilde{\lambda_3})$	$B(\hat{\lambda_3}) > B(\tilde{\lambda_3})$	
50	0.3	-8.009634e-02	-8.679385e-02	TRUE	
100	0.3	-8.220733e-02	-8.578620e-02	TRUE	
150	0.3	-8.501436e-02	-8.756115e-02	TRUE	
100000	0.3	-8.784743e-02	-8.785105e-02	TRUE	
50	0.5	-1.360553e-01	-1.467689e-01	TRUE	
100	0.5	-1.360536e-01	-1.420749e-01	TRUE	
150	0.5	-1.424886e-01	-1.466395e-01	TRUE	
100000	0.5	-1.464497e-01	-1.464554e-01	TRUE	
50	2	-5.376391e-01	-5.817923e-01	TRUE	
100	2	-5.609116e-01	-5.853201e-01	TRUE	
150	2	-5.694220e-01	-5.854173e-01	TRUE	
100000	2	-5.856539e-01	-5.856595e-01	TRUE	

Quadro com a comparação do EQM do momento amostral de oredem 2.

Table : EQM dos estimadores $\hat{\lambda_3}$ e $\tilde{\lambda_3}$.

Comparação dos EQM do Estimador $\hat{\lambda_3}$				
n	λ	$EQM(\hat{\lambda_3})$	$EQM(\tilde{\lambda_3})$	$EQM(\hat{\lambda_3}) > EQM(\tilde{\lambda_3})$
50	0.3	7.650300e-03	8.777607e-03	FALSE
100	0.3	7.388421e-03	8.009593e-03	TRUE
150	0.3	7.594362e-03	8.044213e-03	TRUE
100000	0.3	7.717755e-03	7.718391e-03	FALSE
50	0.5	2.170059e-02	2.482344e-02	FALSE
100	0.5	2.018802e-02	2.192635e-02	FALSE
150	0.5	2.138781e-02	2.260983e-02	FALSE
100000	0.5	2.144894e-02	2.145065e-02	FALSE
50	2	3.442212e-01	3.937709e-01	FALSE
100	2	3.400614e-01	3.686495e-01	FALSE
150	2	3.420241e-01	3.608734e-01	FALSE
100000	2	3.430148e-01	3.430220e-01	FALSE

Conclusões

Referências Bibliográficas