

Analysis and Visualisation with NetworkX and Altair

Week 1: NetworkX

30 November 2020

WELCOME

REMEMBER TO MUTE YOURSELF IF YOU ARE NOT SPEAKING

Points to remember:

- Use the chat function on the right to ask questions.
- If you would prefer to ask a question aloud, click the 'raise hand' icon on the right before un-muting your mic.
- Headphones can also help to reduce background noise.
- If you are having difficulties with participating, you can email cdcs@ed.ac.uk to let us know.

Course Structure

Anticipate about ~7 hours/week

- 2 course meetings per week
 - 10:00 11:00 AM BST Mondays
 - 10:00 11:00 AM BST Fridays
- 1 assignment per week ~2 hours
- Office hours on Wednesdays for 30 minutes per participant
- Independent learning ~2 hours

Teams for introductions, meetings, office hours, questions, files

Course Topics

Week 1: NetworkX for network analysis and visualisation

Week 2: Altair for data visualisation

Instructor Introduction

- Pursuing a PhD in the School of Informatics ILCC
- AMSc Design Informatics, B.S. Information Systems
- Taught myself programming and data science skills outside courses using online resources
- Please share feedback on the course!

For Participants

- Introduce material for you to review in greater depth on your own
- I'll direct you to further resources if you'd like to go beyond material covered in each week's assignment
- Course meetings won't be recorded
 - Three strike policy
 - Please let me know in advance if you cannot attend!
- Office hours: questions about assignments, your own projects
 - Chat with me on Teams to schedule

For Participants

- During class meetings:
 - Take notes
 - Comment and ask questions
 - Don't worry about writing the code I demo!

- On your own:
 - Type your own code
 - Avoid copying and pasting!

Getting Set Up

You will need:

- A. Python 3
- B. Pip/pip3 or conda
- C. NetworkX (along with its complementary packages)
- D. Jupyter Notebooks

Getting Set Up: Python 3

If you use Anaconda or Miniconda to run Jupyter Notebooks, you already

Note: You can have both Python 2.x and Python 3.x installed!

Getting Set Up: Pip or Conda

We'll be using Jupyter Notebooks

If you haven't already, you'll need to install:

- A. Python 3
- B. Pip or pip3
- C. NetworkX (along with its complementary packages)
- D. [Optional] Jupyter Notebooks https://jupyter.org/install

Getting Set Up: NetworkX

If you're using Anaconda for Jupyter Notebooks: you already have NetworkX!

If you're using Miniconda for Jupyter Notebooks, in a Terminal/Shell run:

```
conda install networkx
```

Otherwise, in a Terminal/Shell run one of the following:

```
pip install networkx[all]
Pip3 install networkx[all]
```

Reference: https://networkx.org/documentation/stable/install.html

Getting Set Up: Jupyter Notebooks

We'll be using Jupyter Notebooks

3 options:

- A. MyBinder
- B. Using Miniconda or Anaconda
- C. Install to your computer: https://jupyter.org/install

Social relationships
Who knows who?
How do ideas travel?

SNA: social network analysis

Example:
Six Degrees of Francis
Bacon

Reference: http://www.sixdegreesoffrancisbacon.com/?ids=10000473&min_confidence=60&type=network

Transportation

How can I get from point A to point B?

Example:

New York City subway map

Reference: http://www.visualcomplexity.com/vc/project.cfm?id=266

Networks, or graphs, contain:

- 1. Nodes (vertices, actors): entities, such as people or places
- 2. **Edges** (ties, relations): relationships, such as friendships or roads

Networks represent data that are interdependent

Reference: http://www.scottbot.net/HIAL/index.html@p=6279.html

A graph's edges may have several characteristics:

- 1. Directed or undirected
- 2. Attributes
- 3. Weights

Reference: http://www.scottbot.net/HIAL/index.html@p=6279.html

hierarchical

It's best to keep it simple, with 1, or if you must, 2, types of nodes

bimodal or bipartite

NetworkX

NetworkX is a Python library for creating and analyzing networks

To create a network, you need two data files:

- 1. Edges file with 2 columns for source and target nodes
- 2. Nodes file with columns node names and any attributes of those nodes

Reference: https://programminghistorian.org/en/lessons/creating-network-diagrams-from-historical-sources

DEMO

NetworkX: Creating a Network

- 1. Create a list of node names
- 2. Create a **list** of edges, where each list item is a tuple of two related nodes
- 3. Create **dictionaries** of the attributes of the nodes (one dictionary per attribute type)
- 4. Add those attributes to the Graph

Reference: https://programminghistorian.org/en/lessons/creating-network-diagrams-from-historical-sources

DEMO

Assignment

Watch the videos in *Use Case 2: Discovering Collaboration*, in this LinkedIn Learning course:

https://www.linkedin.com/learning/applied-ai-for-human-resources/organization-design?u=50251009

Follow along in your own Jupyter Notebook!

Analyze the graph we created together in class, starting from the section *Metrics available in NetworkX* in this tutorial:

https://programminghistorian.org/en/lessons/exploring-and-analyzing-network-data-with-python#fn:pipinstall

You can use the Notebook we demoed today!

Thanks everyone!

Next course meeting: Friday, 10:00-11:00 AM BST

Office hours available on Wednesday (30 minutes)

To schedule, please message me on Teams!