

Collision theory, Energy of activation and Arrhenius equation

- A large increase in the rate of a reaction for a rise in temperature is due to
 - (a) The decrease in the number of collisions
 - (b) The increase in the number of activated molecules
 - (c) The shortening of the mean free path
 - (d) The lowering of the activation energy
- Which of the following statements is not true according to collision theory of reaction rates
 - (a) Collision of molecules is a precondition for any reaction to occur
 - (b) All collisions result in the formation of the products
 - (c) Only activated collisions result in lower the formation of the products (c) The e
 - (d) Molecules which have acquired the energy of activation can collide effectively
- According to the collision theory of chemical reactions
 - (a) A chemical reaction occurs with every molecular collision

- (b) Rate is directly proportional to the number of collisions per second
- (c) Reactions in the gas phase are always of zero order
- (d) Reaction rates are of the order of molecular speeds
- **4.** According to the collision theory of reaction rates, rate of reaction increases with temperature due to
 - (a) Greater number of collisions
 - (b) Greater velocity of the reacting molecules
 - (c) Greater number of molecules have activation energy
 - (d) None of the above
- **5.** The reaction rate at a given temperature becomes slower, then
 - (a) The free energy of activation is higher
 - (b) The free energy of activation is lower
 - (c) The entropy changes
 - (d) The initial concentration of the reactants remains constant
- 6. A rise in temperature increases the velocity of a reaction. It is because it results in
 - (a) An increased number of molecular collisions

- (b) An increased momentum of colliding molecules
- (c) An increase in the activation energy
- (d) A decrease in the activation energy
- **7.** The number of collisions depend upon
 - (a) Pressure
 - (b) Concentration
 - (c) Temperature
 - (d) All the above
- **8.** If E_f and E_r are the activation energies of forward and reverse reactions and the reaction is known to be exothermic, then
 - (a) $E_f > E_r$
 - (b) $E_f < E_r$
 - (c) $E_f = E_r$
 - (d) No relation can be given between E_f and E_r as data are not sufficient
- **9.** According to Arrhenius theory, the activation energy is
 - (a) The energy it should possess so that it can enter into an effective collision

- (b) The energy which the molecule should possess in order to undergo reaction
- (c) The energy it has to acquire further so that it can enter into a effective collison
- (d) The energy gained by the molecules on colliding with another molecule
- 10. The energy of activation is
 - (a) The energy associated with the activated molecules
 - (b) Threshold energy energy of normal molecules
 - (c) Threshold energy + energy of normal molecules
 - (d) Energy of products energy of reactants
- **11.** Which one of the following does not represent Arrhenius equation

(a)
$$k = Ae^{-E/RT}$$

(b)
$$log_e k = log_e A - \frac{E}{RT}$$

(c)
$$log_{10} k = log_{10} A - \frac{E}{2.303RT}$$

(d)
$$k = AE^{-RT}$$

12. On increasing the temperature, the rate of the reaction increases because of

IIT-JEE CHEMISTRY

- (a) Decrease in the number of collisions
- (b) Decrease in the energy of activation
- (c) Decrease in the number of activated molecules
- (d) Increase in the number of effective collisions
- **13.** Energy of activation of a reactant is reduced by
 - (a) Increased temperature
 - (b) Reduced temperature
 - (c) Reduced pressure
 - (d) Increased pressure
- **14.** The minimum energy a molecule should possess in order to enter into a fruitful collision is known as
 - (a) Reaction energy
 - (b) Collision energy
 - (c) Activation energy
 - (d) Threshold energy
- 15. Activation energy is
 - (a) The amount of energy to be added to the actual energy of a molecule so that the threshold energy is reached
 - (b) The amount of energy the molecule must contain so that it reacts

- (c) The energy which a molecule should have in order to enter into an effective collision
- (d) The average kinetic energy of the molecule
- **16.** The reason for almost doubling the rate of reaction on increasing the temperature of the reaction system by 10^{oC} is
 - (a) The value of threshold energy increases
 - (b) Collision frequency increases
 - (c) The fraction of the molecule having energy equal to threshold energy or more increases
 - (d) Activation energy decreases
- **17.** The activation energy for a simple chemical reaction $A \rightarrow B$ is E_a in forward direction. The activation energy for reverse reaction
 - (a) Is always double of E_a
 - (b) Is negative of E_a
 - (c) Is always less than E_a
 - (d) Can be less than or more than E_a
- 18. Arrhenius equation is

(a)
$$\frac{d \ln K}{dT} = \Delta E^* / RT$$

(b)
$$\frac{d \ln K}{dT} = \Delta E^* / RT^2$$

(c)
$$\frac{d \ln K}{dT} = -\Delta E^* / RT^2$$

(d)
$$\frac{d \ln K}{dT} = -\Delta E^* / RT$$

- 19. Activation energy of any reaction depends on
 - (a) Temperature
 - (b) Nature of reactants
 - (c) Number of collisions per unit time
 - (d) Concentration of reactants
- 20. Relation between rate constant and temperature by Arrhenius equation is

(a)
$$log_e A = log_e K + \frac{E_a}{RT}$$

(b)
$$log K = A \frac{E_a}{RT}$$

(c)
$$log_e K = log_e A - \frac{E_a}{RT^2}$$

(d)
$$log A = RT ln E_a - ln K$$

- **21.** An endothermic reaction $A \rightarrow B$ has an activation energy 15kcal/mole and energy of reaction 5kcal/mole. The activation energy of the reaction $B \rightarrow A$ is
 - (a) 20 kcal/mole
 - (b) 15 kcal/mole
 - (c) 10 kcal/mole
 - (d) None of these
- 22. Which of the following plots is in with accordance the Arrhenius equation

23. The Arrhenius equation expressing the effect of temperature on the rate constant of a reaction is

(a)
$$k = e^{-E_a/RT}$$

(b)
$$k = E_a/RT$$

(c)
$$k = log_e \frac{E_a}{RT}$$

(d) $k = Ae^{-E_a/RT}$

(d)
$$k = Ae^{-E_a/RT}$$

24. For a reaction, activation energy $(E_a) = 0$ and rate constant (K) = $3.2 \times 10^6 s^{-1}$ at 300 K. What is the value of the rate constant at 310 K

(a)
$$3.2 \times 10^{-12} s^{-1}$$
 (b) $3.2 \times 10^6 s^{-1}$

(b)
$$3.2 \times 10^6 s^{-1}$$

(c)
$$6.4 \times 10^{12} s^{-1}$$
 (d) $6.4 \times 10^6 s^{-1}$

(d)
$$6.4 \times 10^6 s^{-1}$$

25. Activation energy is given by the formula

(a)
$$log \frac{K_2}{K_1} = \frac{E_a}{2.303R} \left[\frac{T_2 - T_1}{T_1 T_2} \right]$$

(b)
$$log \frac{K_1}{K_2} = -\frac{E_a}{2.303R} \left[\frac{T_2 - T_1}{T_1 T_2} \right]$$

(c)
$$log \frac{K_1}{K_2} = -\frac{E_a}{2.303R} \left[\frac{T_1 - T_2}{T_1 T_2} \right]$$

(d) None of these

- **26.** A reaction having equal activation energies for forward and reverse reaction has
 - (a) $\Delta H = 0$
 - (b) $\Delta S = 0$
 - (c) Zero order
 - (d) None of these
- 27. Collision theory is applicable to
 - (a) First order reactions
 - (b) Zero order reactions
 - (c) Bimolecular reactions
 - (d) Intra molecular reactions
- **28.** A graph plotted between $\log K \text{ vs } 1/T$ for calculating activation energy is shown by

- **29.** The rate constant of a reaction at temperature 200K is 10 times less than the rate constant at 400 K. What is the activation energy (E_a) of the reaction (R = gas constant)
 - (a) 1842.4 R
- (b) 921.2 R
- (c) 460.6 R
- (d) 230.3 R

- **30.** In respect of the equation $k = Ae^{-E_a/RT}$ in chemical kinetics, which one of the following statement is correct
 - (a) k is equilibrium constant
 - (b) A is adsorption factor
 - (c) E_a is energy of activation
 - (d) R is Rydberg's constant
- **31.** The rate constant is doubled when temperature increases from 27°C to 37°C. Activation energy in kJ is
 - (a) 34
- (b) 54
- (c) 100
- (d) 50
- **32.** The activation energy of a reaction is zero. The rate constant of this reaction
 - (a) Increases with increase of temperature
 - (b) Decreases with an increase of temperature
 - (c) Decreases with decrease of temperature
 - (d) Is independent of temperature
- **33.** The rate constant is given by the equation $k = pze^{-E/RT}$. Which factor should register a decrease for the reaction to proceed more rapidly
 - (a) T

(b) Z

(c) E

(d) p

34. An endothermic reaction with high activation energy for the forward reaction is given by the diagram:

35. Consider an endothermic reaction $X \to Y$ with the activation energies E_b and E_f for the backward and forward reactions, respectively, in general

$$(a)E_b < E_f$$

(b)
$$E_b > E_f$$

$$(c) E_b = E_f$$

(d) There is no definite relation between E_b and E_f

36. Temperature dependent equation can be written as

(a)
$$ln k = ln A - e^{E_a/RT}$$

(b)
$$ln k = ln A + e^{E_a/RT}$$

(c)
$$ln k = ln A - e^{RT/E_a}$$

(d) All of these

