CO2-induced destabilization of pyrite-structured FeO2Hx in the lower mantle

RESEARCH ARTICLE

National Science Review
0: 1–8, 2018
doi: 10.1093/nsr/nwy032
Advance access publication 15 March 2018

GEOSCIENCES

CO₂-induced destabilization of pyrite-structured FeO₂Hx in the lower mantle

Eglantine Boulard^{1,2,*}, François Guyot², Nicolas Menguy², Alexandre Corgne³, Anne-Line Auzende⁴, Jean-Philippe Perrillat⁵ and Guillaume Figuet²

ABSTRACT

Volatiles, such as carbon and water, modulate the Earth's mantle rheology, partial melting and redox state, thereby playing a crucial role in the Earth's internal dynamics. We experimentally show the transformation of goethite FeOOH in the presence of CO_2 into a tetrahedral carbonate phase, $Fe_4C_3O_{12}$, at conditions above 107 GPa—2300 K. At temperatures below 2300 K, no interactions are evidenced between goethite and CO_2 , and instead a pyrite-structured FeO_2H_x is formed as recently reported by Hu *et al.* (2016; 2017) and Nishi *et al.* (2017). The interpretation is that, above a critical temperature, FeO_2H_x reacts with CO_2 and H_2 , yielding $Fe_4C_3O_{12}$ and H_2O . Our findings provide strong support for the stability of carbon-oxygen-bearing phases at lower-mantle conditions. In both subducting slabs and lower-mantle lithologies, the tetrahedral carbonate $Fe_4C_3O_{12}$ would replace the pyrite-structured FeO_2H_x through carbonation of these phases. This reaction provides a new mechanism for hydrogen release as H_2O within the deep lower mantle. Our study shows that the deep carbon and hydrogen cycles may be more complex than previously thought, as they strongly depend on the control exerted by local mineralogical and chemical environments on the CO_2 and H_2 thermodynamic activities.

Keywords: deep carbon cycle, FeOOH, high pressure

INTRODUCTION

Water (H_2O) and carbon dioxide (CO_2) both play an important role in the history of the Earth, as they strongly influence the chemical and physical properties of minerals, melts and fluids. Distribution and circulation of H2O and CO2 between the Earth's surface and the mantle have dominated the evolution of the crust, the oceans and the atmosphere, controlling several aspects of the Earth's habitability. It is therefore crucial to determine the stability and circulation of hydrous and CO₂-bearing minerals in the Earth's interior. Sedimentary material together with altered mafic and ultramafic rocks that constitute the subducted slabs represents the main source for recycling of H2O and CO2 as well as other volatiles at great depth, possibly down to the core—mantle boundary. The transport of H₂O and CO₂ via subducting slabs down to the transition zone and to the lower mantle has been the subject of many studies but is still under debate [1,2]. As for the carbon cycle, carbonates preserved during subduction are estimated to account for a flux of 3.6×10^{12} mol/year of carbon being returned into the deep mantle [3-5]. This quantity accounts for 10-30 wt % of the carbon reservoir in the deep mantle [6]. Regarding the water cycle, Van Keken et al. [2] suggested that $4-6 \times 10^{13}$ mol/year of H₂O are recycled into the mantle through slab subduction. Dehydration of the slab accounts for the loss of two-thirds of this amount of H2O, while onethird of the H₂O remains bounded to the slab (i.e. $\approx 1.5 \times 10^{13}$ mol/year) reaching depths exceeding 240 km. Although this amount of H₂O entering the deep mantle may not appear very large, it provides a mechanism for having significant amounts of water in the deep mantle. In addition, part of the CO₂ and H₂O present in the deep mantle may also originate from primitive mantle reservoirs [7], leading potentially to fairly large amounts of these volatiles in the deep mantle.

Because of its very low solubility in deep Earth's minerals [8,9], carbon is expected to be present

91192 St Aubin, France; ²Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, IRD.—IMPMC, 4 Place Jussieu, 75005 Paris, France; ³Instituto de Ciencias de la Tierra, Universidad Austral de Chile, 5090000 Valdivia, Chile; ⁴ISTerre, Université Grenoble Alpes, CNRS, F-38041 Grenoble. France and ⁵Laboratoire de Géologie de Lyon, UMR CNRS 5276, Université Claude Bernard Lyon 1-ENS de Lyon, 69622 Villeurbanne, France

¹Synchrotron SOLEIL,

*Corresponding author: E-mail: eglantine.boulard@upmc.fr

Received 17 September 2017; Revised 28 January 2018; Accepted 7 March 2018 2 | Natl Sci Rev, 2018, Vol. 0, No. 0 RESEARCH ARTICLE

as accessory phases in the mantle, either as oxidized phases such as carbonates or CO₂ and carbonated fluids or melts, or as reduced phases such as diamonds or Fe-C alloys [10]. It is commonly considered that the lower mantle is too reducing to host carbonates [11,12]. However, the relatively high oxygen fugacities prevailing in subducting slabs might contribute to preserve oxidized carbon-bearing phases in the deep mantle [13,14]. Moreover, it has recently been demonstrated that carbonates at lower-mantle conditions adopt oxidized iron-bearing structures based on CO₄ tetrahedra that are associated with reduced carbon phases [13,15–17]. Little is known about the stability of these new tetrahedral carbon-bearing phases but their systematic association with reduced carbon suggests the idea that the mineralogies of the lower mantle and D''region may be more complex than previously thought. Interestingly, carbonate-bearing inclusions have also been reported in diamonds formed in the lower mantle. This suggests again the presence of carbonates in the deep Earth and a possible coexistence of reduced and oxidized carbon species [15,18,19]. Decarbonation reactions of carbonates involving silicates (SiO₂ and MgSiO₃) were also reported to take place as shallow as \sim 600 km in depth (20 GPa) [20,21]. Such reactions could produce CO₂ in the lower mantle. Given the current uncertainties on the phase diagram of CO₂ at high pressures, CO₂ may be expressed as a solid CO₂-V phase [21] or rather dissociate as $C + O_2$ [22]. Carbonated fluids yet unknown at such conditions might also contribute to CO₂ transfer at large depth in the mantle. In any case, large thermodynamic activities of CO_2 are plausible in the lower mantle.

A significant amount of water can be dissolved in nominally anhydrous minerals such as olivine, garnet and stishovite [23], as well as in high-pressure silicates such as wadsleyite and ringwoodite [24,25]. In addition, diverse dense hydrous silicates are stable in mafic and ultramafic assemblages at upperand lower-mantle conditions, such as phase A, phase D, phase H and superhydrous phase B $\begin{bmatrix} 26-30 \end{bmatrix}$. Finally, δ -AlOOH, a high-pressure form of diaspore $(\alpha$ -AlOOH) with an orthorhombic symmetry very close to that of the CaCl2-type polymorph of SiO2, is stable throughout the mantle and may be present in suitably aluminous and hydrated lithologies [31,32]. The high-pressure polymorph ε -FeOOH that shares the same structure with δ -AlOOH [33] might also store water in the mantle. Iron oxyhydroxides, including FeOOH and its polymorphs, are common at the surface of the Earth, where they are abundant in soils and sediments. The incorporation of hydrogen atoms in newly discovered iron oxyhydroxides with a pyrite structure [34–36] may thus contribute to the transfer of H to the deep Earth. In their recent work, Hu *et al.* [34] suggested that a phase of FeO_2H_x composition might indeed deliver H_2 instead of water when heated above a threshold temperature—a particularity due to valence changes of oxygen in this compound (from $2O^{2-}$ to O_2^{2-}) [37].

After H_2O , CO_2 is the second most important volatile compound in the deep Earth. To get a more complete understanding of the H and C cycles in the deep Earth, it is necessary to know how deep subducted materials can transport both C and H and identify the distinct species involved. In the present study, we shed light on this crucial issue by constraining experimentally the interactions of CO_2 with potential carriers of H_2O or H_2 at great depths. We performed high-pressure and high-temperature diamond-anvil cell (DAC) experiments to investigate the effects of a CO_2 -rich medium on the transformations of FeOOH at pressures and temperatures of the lower mantle.

RESULTS

A natural sample of crystalline α -FeOOH (Supplementary Fig. 1) was loaded in CO2 and first pressurized up to 107 GPa in a DAC at ambient temperature. In situ X-Ray diffraction (XRD) patterns showed a significant broadening of α -FeOOH main diffraction reflections characteristic of incipient amorphization. After laser heating at 2000 K for a few minutes, several changes in the diffraction pattern were observed: the α -FeOOH phase disappeared and two distinct phases were identified (Fig. 1). The most intense diffraction peaks correspond to a cubic structure with extinctions of the two reflections 001 and 011 in agreement with a Pa-3 space group. Recently, Hu et al. [34] reported the transformation of FeOOH into a new Pa-3 cubic structure FeO₂H_x at similar pressure and temperature conditions. This phase is directly related to the newly discovered pyrite-structured FeO₂ peroxide but is characterized by a larger unit cell volume [34,37]. FeO₂H_x can be interpreted as a solid solution between pyrite-structure FeO₂ and FeOOH. In addition, a pyrite-structured FeOOH oxyhydroxide (i.e. FeO_2H_x with x = 1) was recently observed experimentally by Nishi et al. [35]. It presents a structure close to the pyrite-type structure of AlOOH predicted above 170 GPa by Tsuchiya and Tsuchiya [38]. Here, we measured a unit cell parameter of a = 4.367 Å at 107 GPa, which is significantly larger than that reported for FeO₂ (a = 4.363 Å at 76 GPa) by Hu et al. [37], but smaller than that reported for FeOOH (a = 4.386 Å at 109 GPa) in Nishi et al. [35] (Fig. 2). It is thus probable that FeOOH in our

RESEARCH ARTICLE

Boulard et al. | 3

Figure 1. XRD patterns collected at 2000 K and at 2300 K and LeBail unit cell refinement of the two phases FeO_2H_x (red markers, space group Pa-3, a = 4.365(1)) and $Fe_4C_3O_{12}$ (blue markers, space group P2, a = 9.697(2), b = 6.296(2), c = 5.726(1), beta = 92.94(2)). Red circles materialize the expected peak position of the cubic phase according the XRD collected at lower temperature.

Figure 2. (a) Rietveld refinement of the XRD pattern collected at 107 GPa and 300 K after laser heating with a FeO_2H pyrite-structured (right hand). (b) Unit cell volume of the pyrite-type structure measured experimentally as a function of pressure and temperature for FeO_2 [37], FeO_2Hx ([31], from both $Fe_2O_3+H_2O$ and FeOOH in Ar experiments and this study) and FeOOH [35]. All the data reported here were collected after quenching the temperature.

RESEARCH ARTICLE

Figure 3. Raman spectra collected after laser heating in the CO_2 area (in black) and sample area (in red).

study underwent partial dehydrogenation. A similar unit cell volume based on a FeO_2H_x formula was reported at the same P-T conditions by Hu *et al.* [34], for which, using their calibration, they deduced x = 0.66. Because this calibration is not only built using experimental data, but also incorporates theoretical results, which are known to either overestimate or underestimate unit cell volume, uncertainty on the exact amount of hydrogen 'x' present in FeO_2H_x may be high. To account for this, we simply refer to this phase as FeO_2H_x .

In the XRD pattern, the less intense diffraction peaks can be assigned to an already discovered carbon-rich phase stable at these P-T conditions: $Fe_4C_3O_{12}$ [15] (Fig. 1). Among the five structures proposed in literature [15,17,39,40], we found that only the monoclinic structure reported in [15] allowed us to assign all of the observed diffraction peaks. Although ex situ analyses of the hydrogen content of this phase would be necessary, the fact that we measured unit cell parameters in very good agreement with that reported in [15] for a hydrogenfree composition leads us to propose an Fe₄C₃O₁₂ stoichiometry. Upon heating at higher temperature, diffraction peaks of Fe₄C₃O₁₂ increase in intensity at the expense of the FeO₂H_x cubic phase, which fully disappears above 2300 K (Fig. 1). Neither iron oxides (e.g. Fe_3O_4 , Fe_2O_3 , Fe_4O_5 , $Fe_{13}O_{19}$) nor diamond were observed in these experiments. We note that Fe in Fe $_4$ C $_3$ O $_{12}$ is ferric iron Fe(III) as in FeOOH. After laser heating, we collected a profile of diffraction patterns across the heated spot (Supplementary Fig. 2). The FeO $_2$ H $_x$ cubic phase was observed at the edge of the 2300-K heated spot only. Although it is theoretically possible that the reaction is kinetically restricted at lower temperatures, the fact that a change occurred abruptly at around 2300 K (FeO $_2$ H $_x$ disappears within a few seconds) more probably pinpoints to a thermodynamic boundary. The pyrite-structured FeO $_2$ H $_x$ would be stable only at relatively low temperatures in the Fe-O-C-H system provided CO $_2$ thermodynamic activities are high enough. Further studies should verify this point.

Raman spectra were also collected at ambient temperature and high pressure in the 300–1300 cm⁻¹ range. As presented in Fig. 3, when collected in areas where the CO_2 loading gas was pure, the spectra reveal only one low intensity mode at \sim 1123 cm⁻¹, which corresponds to the most intense mode A_{1g} of CO_2 -VI [41]. In the solid sample area, an additional mode was detected at \sim 930 cm⁻¹ assigned to the T_{2g} mode from the high-pressure phase of H_2O ice-X [42,43]. No Raman active modes associated with $Fe_4C_3O_{12}$ could be observed, which may be due to high fluorescence background of the diamond from the DAC.

Transmission electron microscopy (TEM) analyses of a thin section extracted from the recovered sample are reported in Fig. 4. Semi-quantitative chemical analyses (XEDS) showed a homogenous composition with carbon, iron and oxygen with Fe-O atomic proportions consistently with Fe₄C₃O₁₂ (Fig. 4A). The sample was unstable under electron beam, and selective area electron diffraction (SAED) revealed the presence of two patterns (Fig. 4B): γ -Fe₂O₃ maghemite coexisting with a phase characterized by a 6-fold symmetry diffraction pattern that could not be indexed. It is probable that, under the electron beam, $Fe_4C_3O_{12}$ underwent carbon loss to form γ-Fe₂O₃ together with a second phase still containing carbon. Note that the observed texture, often observed in cases of irradiation damages, is in agreement with amorphization and devolatilization of the sample under the electron beam (Fig. 4C).

DISCUSSION

This study demonstrates that, at pressures of about 110 GPa and upon laser heating, a chemical reaction occurs between FeO_2H_x and CO_2 yielding a tetrahedral carbonate $Fe_4C_3O_{12}$. The transformation from the initial goethite FeOOH with increasing

RESEARCH ARTICLE Boulard et al. | s

Figure 4. (a) Semi-quantitative chemical analyses (EDX); (b) electron diffraction of Fe_2O_3 maghemite (white markers) together with an unknown phase (yellow markers); and (c) TEM picture of the sample after analyses.

temperature can be schematized as:

$$FeOOH = FeO_2H_x + 1/2(1-x)H_2$$
 (1)

$$4FeO_2H_x + 3CO_2 + 2(1 - x)H_2 => Fe_4C_3O_{12} + 2H_2O$$
 (2)

which can be summed up as:

$$4FeOOH + 3CO_2 => Fe_4C_3O_{12} + 2H_2O.$$
(3)

If the local thermodynamic activity of H_2 is too low for reaction (2) to proceed, other reactions are possible, such as:

$$4FeO_2H_x + 3CO_2 => Fe_4C_3O_{12} + 2xH_2O + (1-x)O_2,$$
 (4)

which might have interesting consequences for oxygen fugacity at large depth and by consequence at the Earth's surface.

The P-T conditions at which FeO₂H_x and Fe₄C₃O₁₂ have been observed are presented in Fig. 5 along with mantle geotherms and hypothetical slab geotherms [44,45]. The exact chemistry and stability of the high-pressure pyrite-structured FeO₂H_v are still controversial: Nishi et al. [35] propose a pyrite-structured oxyhydroxide FeOOH that is stable down to the core-mantle boundary and might undergo dehydration in the D"layer, whereas Hu et al. [34] and Liu et al. [46] suggest a pyrite-structured peroxide/hydride FeO₂H_x that would undergo progressive dehydrogenation from about 1800-km depth down to the core-mantle boundary. However, our present study demonstrates that the presence of CO₂, produced for example by decarbonation reactions involving silicate phases, could completely alter these interpretations. Indeed, the pyrite-structured FeO₂H_x would react with CO2 to form a high-pressure carbon-bearing phase Fe₄C₃O₁₂ at P-T conditions of the lower-mantle geotherm, as well as of those of a 'hot' slab path (such as Central America slabs [47]), and even on geotherms of cold slabs close to the core-mantle boundary. Unfortunately, we currently lack thermodynamic constraints to evaluate the activity of CO2 in the mantle and its stability relative to carbonates or C-reduced species. This should be addressed in the future to confirm that Fe₄C₃O₁₂-forming reaction actually takes place in the mantle. Although the thermodynamic stability of tetrahedral carbonates with respect to reduced carbon phases is still unknown, it appears that Fe₄C₃O₁₂ tetrahedral carbonate is an excellent candidate for a stable carbon host in the lower mantle [15,40]. The carbonation reaction (R3) is associated with release of H2O. Therefore, the carbonation reaction provides a new mechanism for releasing hydrogen into the deep mantle as H₂O. It adds up to dehydration reactions that take place at shallower depths in subduction settings and to the progressive dehydrogenation of FeOOH at about 1800-km depth [34,46]. Similarly to carbon [12,48], H₂ would be oxidized to produce OH or H₂O through the reduction of Fe³⁺ in silicate minerals during mantle upwelling. Such release of OH or H2O could trigger partial melting, since H₂O is much more soluble in silicate melts than H₂ [49,50]. In hot subducting slabs, the carbonation reaction from oxyhydroxide may take place as shallow as 1200 km [15], before any transformation of α -FeOOH into FeO₂H_x. In environments rich in iron oxides such as hematite Fe₂O₃ (e.g. in banded iron formation lithology), Fe₂O₃ may directly react 6 | Natl Sci Rev, 2018, Vol. 0, No. 0

Figure 5. P-T conditions at which the different phases have been observed experimentally: pyrite-structured FeO_2 from Hu *et al.* [37], pyrite-structured FeO_2H_x from this study as well as from Hu *et al.* [34] from both $Fe_2O_3+H_2O$ and FeOOH in Ar/Ne experiments, pyrite-structured FeOOH from Nishi *et al.* [35] and $Fe_4C_3O_{12}$ from the present study as well as from $FeO + CO_2$ experiments in Boulard *et al.* [15]. The mantle geotherms from [59] (O(08)) and [60] (A(82)), as well as hypothetical P-T paths for a 'very cold slab', 'cold slab' and a 'hot slab' [45,61] are also represented for comparison.

with CO₂ [15] without implication of FeOOH in the chemical reaction. In this latter scenario, carbon and hydrogen would be both transported in the deep mantle without dehydrogenation due to carbonation (although it is possible that slow dehydrogenation of FeO_2H_x takes place [34]). The degree of coupling between the deep carbon and hydrogen cycles is therefore strongly dependent on the local mineralogical and chemical environment. Because carbonates are also potential oxidized carbon carriers, additional studies on the interaction between carbonates and FeOOH should be carried out in order to provide a comprehensive model for the deep-mantle carbon and water cycles. Nevertheless, the transformation reported here would prevent the production of FeH_x, which is expected by the reaction of iron alloy from the core and hydrous phase at the core-mantle boundary [28,35,51]. This might have favored transfer of carbon to the core rather than of hydrogen during early Earth differentiation and therefore provide a mechanism for high amounts of C in an O-rich core [52].

MATERIALS AND METHODS

Experiments were conducted using symmetric Mao-Bell-type DAC equipped with 300/100- μ m beveled culet diamonds and rhenium gasket with 30- μ m starting diameter hole and 25- μ m starting thickness. Natural sample of crystalline goethite (α -FeOOH) from lateritic soil in Central African Republic was provided by the collection of University Pierre et Marie Curie. FeOOH was loaded in CO₂ together with a ruby ball (see Supplementary Fig. 1 for an XRD characterization before the experiment). The CO₂ gas was loaded using high-pressure gasloading apparatus at room temperature and 600 bars. FeOOH was isolated from diamonds by CO₂, preventing reactions with diamonds.

In situ angle-dispersive XRD measurements were performed on the high-pressure beamline ID-27 at the European Synchrotron Radiation Facility (ESRF) using a monochromatic incident X-ray beam of 0.3738-Å wavelength. Before the experiments, the X-ray spot, spectrometer entrance and the heating laser spot were carefully aligned. The sample was first pressurized to its target pressure (107 GPa) before laser heating. Pressure was measured using ruby fluorescence before and after laser heating at room temperature by the use of a blue laser [53]. XRD peaks from the Re-gasket collected across the diamond culet gave pressures between 101 and 107 GPa. Two YAG lasers with excellent power stability were aligned on both sides of the sample, which produce hot spots larger than 20- μ m (FWHM) diameter. Temperatures were obtained by fitting the sample thermal emission spectrum from the central 2 \times 2 μ m² of the hotspot to the Planck's function using the wavelength range 600-900 nm. Reflective lenses were used for measurement in order to prevent any chromatic aberration [54]. The monochromatic X-ray beam was focused to 3×3 micron. This is smaller than the laser heating spot in order to reduce both the radial and axial temperature gradients. Typical exposure time was 30 s at high pressures and high temperatures. The diffraction images were integrated with the Fit2d software [57]. The 1D diffraction patterns were treated with the General Structure Analysis System (GSAS) software package [58] using the Rietveld or Lebail methods to identify the different phases and refine lattice parameters. During heating and XRD acquisition, temperature was measured continuously. Temperature uncertainties are estimated to be of about 150 K [55]. At high temperatures, thermal pressure corrections are of the order of +10-15% of the initial pressure [56].

Raman spectra were collected at high pressure and ambient temperature after transformation of the

sample. We used a Jobin–Yvon [®] HR-460 spectrometer with monochromator with 1500 gratings/mm, equipped with an Andor [®] CCD camera. Raman signal was excited using the 514.5-nm wavelength of an Ar⁺ laser, delivering 300 mW focused into a $2-\mu m$ spot by a long-working distance Mitutoyo [®] x20 objective.

A focused ion beam (FIB) thin section was extracted from the recovered sample at the center of laser-heated spot and thinned to electron transparency (~100-nm thickness). FIB milling was performed using a FEI STRATA DB 235 at IEMN (Lille, France) with a focused Ga⁺ ion beam operating at 30 kV and currents from 20 nA down to 1 pA for final surfacing. Analytical transmission electron microscopy (ATEM) was carried out on the FIB thin section with a JEOL 2100-F operating at 200 keV, equipped with a field emission gun. Semi-quantitative chemical analyses on the individual phases was obtained by X-ray energy dispersive spectrometry (XEDS) and SAED patterns were used for phase identification.

SUPPLEMENTARY DATA

Supplementary data are available at NSR online.

ACKNOWLEDGEMENTS

We acknowledge the European Synchrotron Radiation Facility for the allocation of beam time. A.C. acknowledges a research sabbatical leave support from the French National Center for Scientific Research (CNRS). The transmission electron microscopy facility at Institut de Minéralogie, Physique des Matériaux et Cosmochimie is supported by Région Ile de France grant SESAME 2000 E 1435. The manuscript was significantly improved by the constructive comments from three anonymous reviewers.

REFERENCES

- Kelemen PB and Manning CE. Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up. *Proc Natl Acad Sci USA* 2015; **112**: E3997–4006.
- Van Keken PE, Hacker BR and Syracuse EM et al. Subduction factory: 4. Depth-dependent flux of H₂O from subducting slabs worldwide. J Geophys Res 2011; 116: B01401.
- Alt JC and Teagle DAH. The uptake of carbon during alteration of ocean crust. Geochim Cosmochim Acta 1999; 63: 1527–35.
- Sleep NH and Zahnle K. Carbon dioxide cycling and implications for climate on ancient Earth. J Geophys Res 2001; 106: 1373–99.
- Macpherson CG, Hilton DR and Hammerschmidt K. No slabderived CO₂ in Mariana Trough back-arc basalts: implications for carbon subduction and for temporary storage of CO₂ beneath slow spreading ridges. *Geochem Geophys Geosyst* 2010; 11: 1–25.

- Javoy M. The major volatile elements of the Earth: their origin, behavior, and fate. *Geophys Res Lett* 1997; 24: 177–80.
- Ohtani E. Hydrous minerals and the storage of water in the deep mantle. Chem Geol 2015; 418: 6–15.
- 8. Keppler H, Wiedenbeck M and Shcheka SS. Carbon solubility in olivine and the mode of carbon storage in the Earth's mantle. *Nature* 2003; **424**: 414–6.
- Shcheka SS, Wiedenbeck M and Frost DJ et al. Carbon solubility in mantle minerals. Earth Planet Sci Lett 2006; 245: 730–42.
- Dasgupta R and Hirschmann MM. The deep carbon cycle and melting in Earth's interior. Earth Planet Sci Lett 2010; 298: 1–13
- Frost DJ and McCammon CA. The redox state of Earth's mantle. *Annu Rev Earth Planet Sci* 2008; 36: 389–420.
- Rohrbach A and Schmidt MW. Redox freezing and melting in the Earth's deep mantle resulting from carbon-iron redox coupling. Nature 2011: 472: 209–12.
- Boulard E, Gloter A and Corgne A et al. New host for carbon in the deep Earth. Proc Natl Acad Sci USA 2011; 108: 5184–7.
- Dasgupta R, Hirschmann MM and Withers AC. Deep global cycling of carbon constrained by the solidus of anhydrous, carbonated eclogite under upper mantle conditions. *Earth Planet Sci Lett* 2004; 227: 73–85.
- Boulard E, Menguy N and Auzende A-L et al. Experimental investigation of the stability of Fe-rich carbonates in the lower mantle. J Geophys Res 2012; 117: B02208.
- Boulard E, Pan D and Galli G et al. Tetrahedrally coordinated carbonates in Earth's lower mantle. Nat Commun 2015; 6: 6311.
- 17. Merlini M, Hanfland M and Salamat A *et al.* The crystal structures of $Mg_2Fe_2C_4O_{13}$ with tetrahedrally coordinated carbon, and $Fe_{13}O_{19}$, synthesized at deep mantle conditions. *Ame Mineral* 2015; **100**: 2001–4.
- Stachel T, Harris W and Brey GP. Kankan diamonds (Guinea)
 Il: lower mantle inclusion parageneses. *Contrib Mineral Petrol* 2000; 140: 16–27.
- Brenker FE, Vollmer C and Vincze L et al. Carbonates from the lower part of transition zone or even the lower mantle. Earth Planet Sci Lett 2007; 260: 1–9.
- Takafuji N, Fujino K and Nagai T et al. Decarbonation reaction of magnesite in subducting slabs at the lower mantle. Phys Chem Minerals 2006; 33: 651–4.
- Seto Y, Hamane D and Nagai T et al. Fate of carbonates within oceanic plates subducted to the lower mantle, and a possible mechanism of diamond formation. Phys Chem Minerals 2008; 35: 223–9.
- Litasov KD, Goncharov AF and Hemley RJ. Crossover from melting to dissociation of CO₂ under pressure: implications for the lower mantle. *Earth Planet Sci Lett* 2011; 309: 318–23.
- 23. Bolfan-casanova N, Keppler H and Rubie DC. Water partitioning between nominally anhydrous minerals in the MgO-SiO₂-H₂O system up to 24 GPa: implications for the distribution of water in the Earth's mantle. *Earth Planet Sci Lett* 2000; **182**: 209–21.
- Jacobsen SD, Demouchy S and Frost DJ et al. A systematic study of OH in hydrous wadsleyite from polarized FTIR spectroscopy and single-crystal X-ray diffraction: oxygen sites for hydrogen storage in Earth's interior. Am Mineral 2005; 90: 61–70.

8 | Natl Sci Rev, 2018, Vol. 0, No. 0

 Pearson DG, Brenker FE and Nestola F et al. Hydrous mantle transition zone indicated by ringwoodite included within diamond. Nature 2014; 507: 221–4.

- 26. Ohtani E. Water in the mantle. *Elements* 2005: 1: 25–30.
- Nishi M, Irifune T and Tsuchiya J et al. Stability of hydrous silicate at high
 pressures and water transport to the deep lower mantle. Nat Geosci 2014; 7:
 2–5
- Ohira I, Ohtani E and Sakai T et al. Stability of a hydrous δ-phase, AlOOH-MgSiO₂(OH)₂, and a mechanism for water transport into the base of lower mantle. Earth Planet Sci Lett 2014; 401: 12–7.
- Pamato MG, Myhill R and Bo T et al. Lower-mantle water reservoir implied by the extreme stability of a hydrous aluminosilicate. Nature Geosci 2015; 8: 75–9
- Tsuchiya J. First principles prediction of a new high-pressure phase of dense hydrous magnesium silicates in the lower mantle. *Geophys Res Lett* 2013; 40: 4570–3
- Suzuki A, Ohtani E and Kamada T. A new hydrous phase d-AlOOH synthesized at 21 GPa and 1000°C. Phys Chem Miner 2000; 27: 689–93.
- 32. Tsuchiya J, Tsuchiya T and Tsuneyuki S *et al.* First principles calculation of a high-pressure hydrous phase, δ -AlOOH. *Geophys Res Lett* 2002; **29**: 15-1–15-4.
- Gleason AE, Jeanloz R and Kunz M. Pressure-temperature stability studies of FeOOH using X-ray diffraction. Am Mineral 2008; 93: 1882–5.
- Hu Q, Kim DY and Liu J et al. Dehydrogenation of goethite in Earth's deep lower mantle. Proc Natl Acad Sci USA 2017; 114: 1498–501.
- Nishi M, Kuwayama Y and Tsuchiya J et al. The pyrite-type high-pressure form of FeOOH. Nature 2017; 547: 205–8.
- 36. Mao H, Hu Q and Yang L *et al.* When water meets iron at Earth's core-mantle boundary. *Natl Sci Rev* 2017; **4**: 870–8.
- Hu Q, Kim DY and Yang W et al. FeO₂ and FeOOH under deep lowermantle conditions and Earth's oxygen-hydrogen cycles. Nature 2016; 534: 241-4.
- 38. Tsuchiya J and Tsuchiya T. First-principles prediction of a high-pressure hydrous phase of AlOOH. *Phys Rev B—Condens Matter Mater Phys* 2011; **83**: 2–5.
- Liu J, Lin J-F and Prakapenka VB. High-pressure orthorhombic ferromagnesite as a potential deep-mantle carbon carrier. Sci Rep 2015; 5: 7640.
- 40. Cerantola V, Bykova E and Kupenko I *et al.* Stability of iron-bearing carbonates in the deep Earth's interior. *Nat Comms* 2017; **8**: 15960.
- 41. Iota V, Yoo C-S and Klepeis J-H *et al.* Six-fold coordinated carbon dioxide VI. *Nature Mater* 2007; **6**: 34–8.
- Goncharov AF, Struzhkin V and Mao H et al. Raman spectroscopy of dense H₂O
 and the transition to symmetric hydrogen bonds. *Phys Rev Lett* 1999; 83: 1998
 2001.
- 43. Bove LE, Gaal R and Raza Z *et al.* Effect of salt on the H-bond symmetrization in ice. *Proc Natl Acad Sci USA* 2015; **112**: 8216–20.

- 44. Ohtani E and Maeda M. Density of basaltic melt at high pressure and stability of the melt at the base of the lower mantle. *Earth Planet Sci Lett* 2001; **193**: 69–75.
- Komabayashi T. Petrogenetic grid in the system Mg0-SiO₂-H₂O up to 30 GPa, 1600°C: applications to hydrous peridotite subducting into the Earth's deep interior. J Geophys Res 2004; 109: B03206.
- Liu J, Hu Q and Young Kim D et al. Hydrogen-bearing iron peroxide and the origin of ultralow-velocity zones. Nature 2017; 551: 494–7.
- 47. Syracuse EM, Keken PE Van and Abers GA *et al*. The global range of subduction zone thermal models. *Phys Earth Planet Inter* 2010; **183**: 73–90.
- Stagno V, Ojwang DO and McCammon CA et al. The oxidation state of the mantle and the extraction of carbon from Earth's interior. Nature 2013; 493: 84–8
- Yang X, Keppler H and Li Y. Molecular hydrogen in mantle minerals. Geochem Persp Let 2016; 2: 160–8.
- Hirschmann MM, Withers AC and Ardia P et al. Solubility of molecular hydrogen in silicate melts and consequences for volatile evolution of terrestrial planets. Earth Planet Sci Lett 2012; 345–348: 38–48.
- 51. Terasaki H, Ohtani E and Sakai T et al. Stability of Fe-Ni hydride after the reaction between Fe-Ni alloy and hydrous phase (δ-AlOOH) up to 1.2Mbar: possibility of H contribution to the core density deficit. Phys Earth Planet Inter 2012; 194–195: 18–24.
- Morard G, Andrault D and Antonangeli D et al. Fe—Fe0 and Fe—Fe₃C melting relations at Earth's core—mantle boundary conditions: implications for a volatilerich or oxygen-rich core. Earth Planet Sci Lett 2017; 473: 94–103.
- Mao HK, Xu J and Bell PM. Calibration of the Ruby Pressure Gauge to 800 kbar under quasi-hydrostatic conditions. J Geophys Res 1986; 91: 4673–6.
- Benedetti LR and Loubeyre P. Temperature gradients, wavelength-dependent emissivity, and accuracy of high and very-high temperatures measured in the laser-heated diamond cell. *High Press Res* 2004; 24: 423–45.
- 55. Morard G, Andrault D and Guignot N *et al.* In situ determination of Fe–Fe₃S phase diagram and liquid structural properties up to 65 GPa. *Earth Planet Sci Lett* 2008; **272**: 620–6.
- Fiquet G, Auzende AL and Siebert J et al. Melting of peridotite to 140 gigapascals. Science 2010; 329: 1516–8.
- Hammersley AP, Svensson SO and Hanfland M et al. Two-dimensional detector software: from real detector to idealised image or two-theta scan. High Pressure Res 1996; 14: 235–48.
- 58. Larson AC and Von Dreele RB. General Structure Analysis System (GSAS). *Los Alamos Natl Lab Rep LAUR* 2004, 86–748.
- Ono S. Experimental constraints on the temperature profile in the lower mantle. *Phys Earth Planet Inter* 2008; 170: 267–73.
- Anderson OL. The Earth's core and the phase diagram of iron. *Philos Trans R Soc A Math Phys Eng Sci* 1982; 306: 21–35.
- Maeda F, Ohtani E and Kamada S et al. Diamond formation in the deep lower mantle: a high-pressure reaction of MgCO₃ and SiO₂. Sci Rep 2017; 7: 40602.