南京大学最优化导论第一次作业题

- **1.** 设 $W = \{(x, y, z) \in \mathbb{R}^3 | x + y + z = 0\}$, 证明 W 是ℝ³的线性子空间。
- **2.** 判断向量组 $\{(1,2,1),(2,1,3),(3,3,4)\}$ 在 \mathbb{R}^3 中是否线性相关,并说明理由。
- **3.** 证明:如果 σ : $V \to V'$ 是线性映射,那么Ker(σ)是V的子空间,Im(σ)是V'的子空间。
- **4.** 给定线性映射 $T: \mathbb{R}^3 \to \mathbb{R}^2$, T(x,y,z) = (x+y,y+z), 求Ker(T)和Im(T)。
- **5.** 某工厂生产两种产品 A 和 B, 产品 A 每件利润 30 元, 产品 B 每件利润 50 元, 最大化利润。生产约束条件:
 - 生产 A 需要 2 小时加工时间,B 需要 4 小时,总加工时间不超过 100 小时
 - 生产 A 需要 1 单位原料, B 需要 2 单位原料, 总原料不超过 60 单位
 - 产品A至少牛产5件

请建立线性规划模型。

- 6. 某物流公司要在三个城市 A、B、C 之间分配运输任务,最小化运输成本。已知:
 - 从A到B的运输成本为5元/单位,从A到C为8元/单位
 - 从B到A为6元/单位、从B到C为4元/单位
 - 从C到A为7元/单位、从C到B为3元/单位
 - 城市 A 需求量 100 单位, B 需求量 150 单位, C 需求量 200 单位
 - 城市 A 供应量 120 单位. B 供应量 180 单位. C 供应量 150 单位

建立运输问题的线性规划模型。

- **7.** 两个平行的超平面 $\{x \in \mathbb{R}^n | a^T x = b_1\}$ 和 $\{x \in \mathbb{R}^n | a^T x = b_2\}$ 之间的距离是多少?
- **8. 证明:** 假设 V 和 V' 是线性空间,记所有从 V 到 V' 的线性映射组成集合为 $\mathcal{L}(V,V')$ 。则 $\mathcal{L}(V,V')$ 也是一个线性空间。其中,对于 $\forall \sigma,\tau \in \mathcal{L}(V,V')$,运算满足以下定义:

$$(\sigma + \tau)(x) = \sigma(x) + \tau(x), \quad \forall x \in V$$
$$(\alpha \sigma)(x) = \alpha \sigma(x), \quad \forall x \in V, \forall \alpha \in F$$

9. 设 $f: X \to Y$ 是从度量空间 X 到度量空间 Y 的连续函数。证明:如果 $A \subseteq X$ 是闭集,则 f(A) 在 Y 中也是闭集。

- **10.** 如果 $S, T \subset V(F)$ 是子空间,证明: S + T 是子空间,其中: $S + T := \{z | z = x + y, x \in S, y \in T\}$
- **11.** 设 V 是所有定义在 [0,1] 上的连续函数构成的线性空间, $W_1 = \{f \in V: f(0) = f(1)\}$, $W_2 = \{f \in V: \int_0^1 f(x) dx = 0\}$ 。
- (1) 证明 W_1 和 W_2 都是 V 的线性子空间。
- (2) 证明 $W_1 \cap W_2$ 是 V 的线性子空间。
- (3) 构造一个具体的函数 $f \in W_1 \cap W_2$ 且 $f \neq 0$ 。
- (4) 判断 $W_1 + W_2 = V$ 是否成立, 并证明你的结论。
- **12.** 设 V 是所有从 \mathbb{R} 到 \mathbb{R} 的连续函数构成的线性空间。定义子集:
 - $W_1 = \{ f \in V : f(-x) = f(x), \forall x \in \mathbb{R} \}$ (偶函数)
 - $W_2 = \{ f \in V : f(-x) = -f(x), \forall x \in \mathbb{R} \}$ (奇函数)
- (1) 证明 W_1 和 W_2 都是 V 的线性子空间。 (2) 证明 $W_1 \cap W_2 = 0$ 。
- **13.** 考虑 \mathbb{R}^2 中的序列 (x_n, y_n) ,其中 $x_n = \frac{n}{n+1}$, $y_n = \frac{(-1)^n}{n}$ 。
- (1) 证明该序列在欧几里得度量下收敛, 并求其极限。
- (2) 定义集合 $S = \{(x_n, y_n): n \in \mathbb{N}\} \cup (1,0)$ 。证明 (1,0) 是 S 的收敛点。
- (3) 判断 S 是否为闭集,并证明你的结论。