Hunting Echoes for Auditory Scene Analysis

Diego Di Carlo • 27.05.2019

Supervised by Nancy BERTIN, Antoine DELEFORGE

Outline

- 1. What are acoustic echoes?
- 2. If you know them, we can (1st year)
 - a. Sound Source Separation and SEPARAKE Presented at ICASSP18
 - b. Sound Source Localization and MIRAGE
 Presented at ICASSP19
- B. How to know them? (2nd year)
 - Continuous Dictionary and BRAIRE
 Work in Progress
 - b. Learning-based approach and MIRAGE Presented at ICASSP19
- 4. Applications
 - a. Honda Haru

ACOUSTIC ECHOES

(Room) Impulse Response: the linear filtering effect due to the propagation of sound from a source to a microphone in a room.

It accounts for ...

- ... the geometry of the audio scene:
 - Room shape and size
 - Source position
 - Microphone position
 - ... other objects (e.g. furnitures) sizes and shape.
- ... the acoustic properties of the audio scene:
 - Wall materials
 - o ... Type of other objects (e.g. furnitures materials)

ACOUSTIC ECHOES

RIR can be subdivided in:

- Direct (or anechoic) path
- Early reflections (Echoes)
- Late Reverberation

For some audio inverse problems, the sound propagation is typically...

- ... ignored [Le Roux et al. 2015, DC et al. 2017];
- ... assumed as a single anechoic path [Rickard 2007];
- ... modelled entirely [Ozerov et al. 2010, Nugraha et al. 2016];
- ... assumed as late reverberation [Leglaive et al. 2016].

If we know them?

Reverberation has a detrimentally affects typical **Audio Inverse Problem** algorithm.

Can Echoes help?

Recents **echo-aware** methods showed that the knowledge of early echoes increases their performances.

HP : Assume we know echo's coefficients and locations

Inverse Problems with Echo-aware methods

- Speech enhancement
 - Sound Source Localization
 - [Riberio et al. 2010, DC 2019, ...]
 - Sound Source Separation
 - [Scheibler et al. 18, Leglaive et al. 2016]
 - Beamforming
 - [Dockmanic et al. 2015]
- Microphone calibration
 - o [Salvati et al. 16, Dockmanic et al. 2013]
- Dereverberation and Room Equalization
 - o [Krishnan et al. 2018]
- Room Geometry Estimation
 - o [Crocco et al. 2016,Dockmanic et al. 2013, ...]

SEPARAKE

Sound source separation with a little help from echoes

Presented at ICASSP 2018

[Robin Scheibler, Diego Di Carlo, Antoine Deleforge, Ivan Dokmanic]

Use transfer function models taking into account early echoes in NMF-based sound source separation methods

Early echoes are assumed perfectly known in this work

MIRAGE

Microphones array augmentation with echoes

Accepted at ICASSP 2019

[Diego Di Carlo, Antoine Deleforge, Nancy Bertin]

The signal received at m_1 can be seen as the sum of anechoic signals received at m_1 and an image microphone m_1

Image source -> Image microphones

- More microphones... better audio signal processing!
- How to « access » image microphones?

- More microphones... better audio signal processing!
- How to « access » image microphones?

- More microphones... better audio signal processing!
- How to « access » image microphones?

- More microphones... better audio signal processing!
- How to « access » image microphones?

- More microphones... better audio signal processing!
- How to « access » image microphones?

 Each pair in the augmented array is associated to impulse response characteristics

• From real numbers to angular spectra

14

DNN prediction Local Angular Spectrum Global Angular Spectrum

- Aggregating (with MBSSLocate) time differences of arrival from multiple microphone pairs enables
 2D sound source localization
- The microphone and surface positions are assumed known
- Promising «impossible localization» results using clean signals and white noise sources
- Future work:
 - Aggregating multiple pairs
 - o Test on real data
 - Perfect symmetries breaks the model

Results on test set [ICASSP19]

DoA		ACCURACY < 10°		ACCURACY < 20°	
	Input	θ	ϕ	θ	ϕ
MIRAGE	wn	4.5 (59)	3.9 (71)	6.8 (79)	5.9 (88)
MIRAGE	wn+n	4.4 (18)	5.5 (26)	9.4 (35)	11.1 (66)
MIRAGE	sp	4.6 (45)	4.8 (59)	8.1 (71)	7.2 (83)
MIRAGE	sp+n	5.2 (17)	5.9 (12)	10.7 (38)	12.3 (43)

ROOM GEOMETRY

Plan for the Third Year

[Crocco2016,Dockmanic2013, Antonacci2010, Tervo2010]

How to know them?

In all the presented works, the echoes are assumed known.

How to estimate them?

An easy - yet common - scenario: the pic-nic

- One Source
- Two microphones
- Random shoe-box rooms
- Nearest surface is the most reflective

10'000 Auditory pic-nic scenes generated using [Schimmel et al. 2009] software

Specular reflection

Scattering

Why only two microphones?

• The relative transfer function can be computed

Why only two microphones?

- The contribution of multiple microphone pairs can be aggregated together
 - If the geometry of the microphone array is known a priori [MBSSLocate, DiBiase et al 2001]

Why only two microphones?

• The relative transfer function can be computed

$$\begin{cases} \tilde{m}_1[t] = h_1[t] * \tilde{s}[t] \\ \tilde{m}_2[t] = h_2[t] * \tilde{s}[t] \end{cases} \Rightarrow R[f,t] = \frac{m_2[f,t]}{m_1[f,t]} = \frac{h_2[f]s[f,t]}{h_1[f]s[f,t]} = \frac{h_2[f]}{h_1[f]}$$

- o Ideally it removes the dependency from the source signal
- o If there is no noise and filter shorter than the fft window

Blind Echo Estimation - Learning approach

Deep Neural Network Learning

22

Blind Echo Estimation - Learning approach

Deep Neural Network Learning

Results on test set [Submitted to ICASSP19]

	Input	TDOA	nRMSE iTDOA	TDOE
MIRAGE	wn	0.18	0.28	0.25
MIRAGE	wn+n	0.68	0.69	0.89
MIRAGE	sp	0.31	0.34	0.56
MIRAGE	sp+n	0.99	0.98	1.48
GCC-PHAT	wn	0.21	-	e—.
GCC-PHAT	wn+n	0.68	-	-
GCC-PHAT	sp	0.32	_	-
GCC-PHAT	sp+n	1.38	-	

Also tried with a Gaussian Locally-Linear Mapping (GLLiM) ⇒ It failed [ICASSP19]

BRAIRE

Blind and constrained acoustic room impulse response estimation

Collaboration with Clement Elvira:

- An application for the theory of Super Resolution / Continuous Dictionary
- Threat as off-grid spike-retrieval

The Hunt Continues...

Current research

1. State of the art DNN architectures

Ad-hoc loss functions for uncertentanetis

3. Extensions to microphone arrays

- 4. Test on real world data
 - a. Honda Haru

- What's next? What's now?
 - State of The Art DNN architecture: CNN [Chakrabarty et al 2017, Nguyen et al. 2018]

- What's next? What's now?
 - State of The Art DNN architecture: CNN
 - Gaussian and Student-T likelihood Loss Function for estimating both TDOA, iTDOA and TDOE and their uncertainties

$$\mathcal{L}(heta) = rac{1}{3} \sum_{n=1}^{N} \left| au_{a,n} - au_{\widetilde{a},n}
ight|^2 + \left| au_{i,n} - au_{\widetilde{i},n}
ight|^2 + \left| au_{e,n} - au_{\widetilde{e},n}
ight|^2$$

- What's next? What's now?
 - State of The Art DNN architecture: CNN
 - Gaussian and Student-T likelihood Loss Function for estimating both TDOA, iTDOA and TDOE and their uncertainties

$$egin{aligned} \mathcal{L}(heta) &= rac{1}{3} \sum_{n=1}^N | au_{a,n} - au_{ ilde{a},n}^{ ilde{*}}|^2 + | au_{i,n} - au_{ ilde{i},n}^{ ilde{*}}|^2 + | au_{e,n} - au_{ ilde{e},n}^{ ilde{*}}|^2 \ p(au_k|X; heta) &\sim \mathcal{N}(\mu_{ au_k}(x_n; heta), \sigma^2_{ au_k}(x_n; heta)) \quad k = a,i,e \ \mathcal{L}(heta) &= \sum_{n=1}^N \log \sigma^2_{ au_a}(x_n) + rac{| au_a - \mu_{ au_a}(x_n)|^2}{\sigma^2_{ au_a}(x_n)} + \ldots \end{aligned}$$

- What's next? What's now?
 - State of The Art DNN architecture: CNN
 - Gaussian and Student-T likelihood Loss Function for estimating both TDOA, iTDOA and TDOE and their uncertainties

- What's next? What's now?
 - State of The Art DNN architecture: CNN
 - Gaussian and Student-T likelihood Loss Function

Results on test set [Accepted at ICASSP19]

	Input	TDOA	nRMSE iTDOA	TDOE
MIRAGE MIRAGE MIRAGE MIRAGE GCC-PHAT GCC-PHAT GCC-PHAT	wn wn+n sp sp+n wn wn+n sp sp+n	0.18 0.68 0.31 0.99 0.21 0.68 0.32 1.38	0.28 0.69 0.34 0.98	0.25 0.89 0.56 1.48

Current Results on test set with noise

distr	snr	phase	test_signal	tdoa	itdoa	tdoe1
gaussian	0	Test	noise	0.103131	0.110806	0.248462
gaussian	15	Test	noise	0.102640	0.110342	0.280237
gaussian	30	Test	noise	0.101439	0.108265	0.323202
none	0	Test	noise	0.137354	0.145333	0.209920
none	15	Test	noise	0.192951	0.196020	0.284383
none	30	Test	noise	0.148980	0.151179	0.222592
student	0	Test	noise	0.099268	0.107615	0.237591
student	15	Test	noise	0.110567	0.111748	0.310297
student	30	Test	noise	0.106170	0.113793	0.294742

- What's next? What's now?
 - State of The Art DNN architecture: CNN
 - Gaussian and Student-T likelihood Loss Function
 - Test on real data and microphone array (HONDA HARU array)

HONDA HARU

An application for MIRAGE

Submitted to HONDA on March 2019

Phase II: passed Phase III: next year

Research project funded by HONDA

SPCUP2019: DREGON

Drone ego noise reduction for sound source localization

[ICASSP 2019]

IEEE Signal Processing Cup 2019

Search and Rescue via Drone-Embedded Sound
Source Localization

Student Competition

Organizing committee:

MIRA for DOLBY

Music Interference Reduction Algorithm

Submitted to DOLBY on December 2018 Project Accepted

Algorithm for microphone leakage removal on full-length audio recordings

No Echo model at All: Phase is considered Random

Tasks:

- Soundcheck dataset
 - Learning with sound-check
 - Removal on the actual song
- Gorillaz concert
 - Remove PA from Audience
- Football match
 - Commentator enhancement
 - Ball enhancement

BEATLESS

downbeat Detection by Learning on Synthetic Sources

Collaboration with Magdalena Fuentes Telecom ParisTech/CentraleSupelec

Virtually-Supervised Learning-based

Downbeat detection and micro-timing

Prof. GANNOT

Visiting Bar'Ilan University November 2019 - February 2020

Rap APP battLE

THANK YOU

Need for some answers?

