Context Awareness in Mobile Systems

CSE 162 – Mobile Computing
Hua Huang
Department of Computer Science and Engineering
University of California, Merced

Recap: What contexts can the mobile devices learn?

- Activities
- Locations

Many novel applications can be designed based on context awareness

What are contexts

- A context represents the state or situation in the environment of a system that affects that system's (application specific) behaviour
- There are many definitions of context
- There are several dimensions or properties to characterise contexts
- There are many definitions of how to make systems aware of changes in their context: context awareness
- Context-awareness is considered to be one of the fundamental properties of UbiComp systems and is a key property of smart environments.

Types of Contexts, a systematic view

- Physical Contexts
 - What
 - Where
 - When
- Computing System Contexts
 - How
- User Context
 - Who

Physical Contexts: What, Where, and When

- Physical environment or phenomena
 - Temperature, light intensity, or chemical
- Location
 - Absolute or logical locations
- Time
 - Absolute or logical time

System Context

- System Awareness
 - how any context is created and adapted over an Information and Computing infrastructure
 - E.g., Wireless connectivity
 - Charging status

User Context

- Personal Context
 - **Preference.** E.g., a referee at a sports activity may prefer to blow the whistle for minor versus major sports offences.
 - Identity. E.g., owner vs guest
 - Activity and Task. E.g., running vs standing
- Social Context
 - how the actions of someone may affect others
 - E.g., who blows the whistle? The referee, policeman, or spectator?

Static versus Dynamic CA

- Static context
 - describes those aspects of a pervasive system that are invariant
 - E.g., date of birth, User preference, home location, etc

- Dynamic context:
 - Information that changes change frequently
 - E.g., user activities, current locations, etc

Context Aware System Architecture

Application

Management

Preprocessing

Raw Data Retrieval

Sensors

First Layer: Sensors

- Both sensing hardware and other data source that provide usable context information
- Three groups
 - Physical sensors
 - Virtual sensors: source context data from software applications or services.
 - Logical sensors: combine physical and virtual sensors with various other sources in order to solve higher tasks

Context Determination

- Context determination: acquisition, accuracy particularly of user context can be complex
- Active versus passive context acquisition
- Single shot (static) versus dynamic acquisition
- Heterogeneous context representation (syntax) and semantics, interoperability
- Context distribution: Local context producer but remote context consumer

Context Determination Approaches

Combine several low-level sensor inputs

- Query user profile or model
 - abstraction that characterises the user, preferences the user expresses,
- Ask users to define their own context.
- Observing user interaction

Second Layer: Retrieval of Raw Sensor Data

- Software components which make low-level details of hardware access transparent by providing more abstract methods
 - E.g., getPosition()

Third Layer: Processing

- Interpreting contextual information
 - E.g., convert GPS position into the name of the room the person.
- Aggregate raw sensor data from multiple sources to obtain valuable data
 - E.g., Use temperature, light, noise level, and location to determine whether indoor or outdoor.

Fourth Layer: Management

- Organizes the gathered data and offers them via a public interface to the client.
 - Discovery: enable context sources, stores and users to be registered and discovered.
 - Storage
 - Sharing. Share environment and goal contexts so that they can be distributed and accessed.
 - Access control: protects the privacy

Fifth Layer: Application

 The actual reaction on different events and context-instances is implemented here.

Context Adaptation

What is it?

- A context adaptive system typically enables the user to maintain a certain application while roaming between different contexts.
 - E.g., wireless access technologies, locations, devices and even simultaneously executing everyday tasks like meetings, driving a car etc
- Example: a ubiquitous navigation system would offer navigation support in the situations at home, indoor, outdoor, and in car.

Context Adaptation Benefits

- Reduces information overload on users
- Lessen cognitive load on users
- Filter information to fit a mobile device's limited and physically moving display,
- Disabled people
- Improve Regulation & Control

Context Adaptation: Passive vs Active

- Passive context adaptation system
 - Context is presented to users
 - System is not active in terms of adapting
- Active context-adaptation system
 - Adaptation to context performed by the system, not human users.
- Hybrid context adaptive system
 - Human user guides or corrects the automatic adaptation

Context Adaptation Models

Event-based Models

 Context-awareness links context producer to a contextconsumer or context-adapter

Goal-based Models

- Use the user goal to limit the set of current contexts which are useful
- Relation of current context to goal context is fundamental

A Conditional Planning Model of Context-Awareness

Example: Goal-based context adaptation model

- Goal context: destination location
- Current context: current location
- Context path: a planned navigation path
- Constraints: not to deviate too far

Challenges in Modeling Contexts

- Challenge: context information exhibits a range of temporal characteristics
- The dynamic context information can be highly variable
 - E.g., locations, activities
- May be interested in not only the current state of the context, but the past and future states.
 - E.g., calendar app that uses future schedules

Solution

indirect means for context acquisition, such as through sensors.

 Challenge: Contexts may be incorrectly, incompletely, imprecisely defined, determined or predicted

Cause

- Delays
- Implicit observations of user contexts may be incorrect, incomplete or imprecise
- User contexts modelling from too little input data, over too small a time period

Solution

- Use context composition to improve context accuracy
- More accurate contexts require time to tune. Use machine learning, and simulation to improve the determination and prediction of user context over time

- Challenge: Multiple alternative context representations
 - There is usually a significant gap between sensor output and the level of information that is useful to applications
 - E.g., raw coordinates are obtained from sensors, whereas an application might be interested in the identity of the building or room a user is in.

Solution:

 Support multiple representations of context be able to mediate between them

- Challenge: Context information is highly interrelated.
 - Both evident and less obvious relationships between people, device, and communication
 - E.g., ownership of devices can be indicated by the proximity between users and their devices. Current location can indicated activities

Solution

 Partial contexts may need to reason about to predict the part that isn't readily accessible Challenge: Device resource constraints

Cause

 Context sources such as sensors are highly distributed, mass produced and embedded in cheap low cost, low resource mobile systems

Solution

 Consider the trade-off in the expressivity of context messaging against the resources needed to handle such messages Challenge: context-awareness may generate huge volumes of data

Cause

- Large complex environments may be studied, many sensors may be used
- Focus is on archiving context data rather than on applying the context

Solution

- Filter context information before storing
- Use appropriate search and archiving techniques for storage
- Use data mining techniques to analyse data

Challenge: Privacy

- Cause
 - Contexts are often naturally linked to humans to be of use
- Solution
 - Information Security is needed to protect context information

 Challenge: Awareness of context signals and shifts can overload users or distract users

Cause

- Many systems have the autonomy and status awareness, and they have the urge to self-maintain and upgrade
- If context-shifts cause automatic control, use can be disrupted

Solution

Ensure context shifts if automated occur safely and do not disrupt users