Степени младшего специалиста, присуждаемые в области музыки и танцев и Солнечная энергия, вырабатываемая на Коста-Рика

Корреляция r = 0.9876857 (коэффициент корреляции Пирсона).

Корреляция — это мера того, насколько переменные движутся вместе. Если оно равно 0,99, то когда одно растет, другое растет. Если оно равно 0,02, связь очень слабая или отсутствует. Если оно равно -0,99, то когда один растет, другой падает. Если оно равно 1,00, вы, вероятно, испортили свою корреляционную функцию.

 $r^2 = 0.9755230$ (Коэффициент детерминации)

. Это означает, что 97,6% изменения одной переменной (т. е. солнечной энергии, вырабатываемой в Коста-Рике) предсказуемо на основе изменения другой (т. е. степени младшего специалиста, присуждаемой в области музыки и танцев). за 11 лет с 2011 по 2021 год.

p < 0,01, что является статистически значимым (тест значимости нулевой гипотезы). Значение p составляет 1,5E-8. Показать Значение p является мерой того, насколько вероятно, что мы случайно найдем такой экстремальный результат. Примечание . В среднем вы обнаружите сильную корреляцию 0,99 в 1,5E-6% случайных случаев. Другими словами, если вы коррелируете 68 142 327 случайных величин c теми же 10 степенями свободы, обратите внимание , вы случайным образом ожидаете найти такую сильную корреляцию, как эта. [0,95, 1] 95% доверительный интервал корреляции (с использованием z-преобразования Фишера) Подробнее о доверительном интервале Все значения для лет, включенных выше:

	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021
Присуждение степеней младшего специалиста в области музыки и танцев (присуждение степеней)	1356	1683	1743	1715	1886	1989	1993	2309	2621	2647	2498
Солнечная энергия, вырабатываемая в Коста-Рике (млрд кВтч)	0,001	0,012	0,016	0,021	0,028	0,03	0,04	0,059	0,077	0,076	0,061

Почему это работает

- 1. Сбор данных: в моей базе данных 25 153 переменных. Я сравниваю все эти переменные друг с другом, чтобы найти те, которые случайно совпадают. Это 632 673 409 корреляционных вычислений! Это называется «извлечением данных». Вместо того, чтобы начать с гипотезы и проверить ее, я злоупотребил данными, чтобы увидеть, какие корреляции выявляются. Это опасный способ анализа, потому что любой достаточно большой набор данных совершенно случайным образом приведет к сильным корреляциям.
- 2. Отсутствие причинно-следственной связи: вероятно, ^{нет} прямой связи между этими переменными, несмотря на то, что говорит ИИ выше. Ситуация усугубляется тем, что я использовал «Годы» в качестве базовой переменной. За год происходит много событий, не связанных друг с другом! В большинстве исследований вместо «одного года» в качестве изучаемого объекта используется что-то вроде «один человек».
- 3. Наблюдения не являются независимыми. Для многих переменных последовательные годы не являются независимыми друг от друга. Если группа людей постоянно что-то делает каждый день, нет никаких оснований думать, что они внезапно изменят то, как они это делают 1 января. Простое вычисление значения р -примечания не учитывает это, поэтому математически это выглядит так: менее вероятно, чем это есть на самом деле.
- 4. Ось Y не начинается с нуля: я обрезал оси Y на графике выше. Я также использовал линейный график, который делает визуальную связь более заметной, чем она того заслуживает. Примечание. Математически то, что я показал, верно, но намеренно вводит в заблуждение. Ниже представлена та же диаграмма, но обе оси Y начинаются с нуля.

Популярность имени Стив и Цена акций Amazon.com (AMZN)

Корреляция r = 0,9958805 (коэффициент корреляции Пирсона).

Корреляция — это мера того, насколько переменные движутся вместе. Если оно равно 0,99, то когда одно растет, другое растет. Если оно равно 0,02, связь очень слабая или отсутствует. Если оно равно -0,99, то когда один растет, другой падает. Если оно равно 1,00, вы, вероятно, испортили свою корреляционную функцию.

 $r^2 = 0.9917779$ (Коэффициент детерминации)

. Это означает, что 99,2% изменения одной переменной (т. е. цены акций Amazon.com (AMZN)) можно предсказать на основе изменения другой (т. е. популярности имени Стиви).) в течение 21 года с 2002 по 2022 год.

р <0,01, что является статистически значимым (тест значимости нулевой гипотезы)

. Значение p составляет 2,8E-21. Показать Значение p является мерой того, насколько вероятно, что мы случайно найдем такой экстремальный результат. Примечание . В среднем вы обнаружите сильную корреляцию, равную 1, в 2,8–19% случайных случаев. Другими словами, если вы сопоставили 354 152 883 479 132 766 208 случайных величин с теми же 20 степенями свободы, обратите внимание, вы случайным образом ожидали бы найти такую сильную корреляцию, как эта. [0,99,1] 95% доверительный интервал корреляции (с использованием z-преобразования Фишера) Подробнее о доверительном интервале Все значения для лет, включенных выше:

All values for the years included above: Note

	201	201	201	2013	2014	201	2016	2017	201 8	2019	2020	2021	2022
Popularity of the first name Stevie (Babies born)	210	227	254	260	318	312	379	444	473	629	801	1147	1217
Amazon.com's stock price (AMZN) (Stock price)	6.81	9.07	8.79	12.8	19.9 4	15.6	32.8	37.9	58.6	73.26	93.75	163.5	167.55

Почему это работает

- 1. Сбор данных: в моей базе данных 25 153 переменных. Я сравниваю все эти переменные друг с другом, чтобы найти те, которые случайно совпадают. Это 632 673 409 корреляционных вычислений! Это называется «извлечением данных». Вместо того, чтобы начать с гипотезы и проверить ее, я злоупотребил данными, чтобы увидеть, какие корреляции выявляются. Это опасный способ анализа, потому что любой достаточно большой набор данных совершенно случайным образом приведет к сильным корреляциям.
- 2. Отсутствие причинно-следственной связи: вероятно, ^{нет} прямой связи между этими переменными, несмотря на то, что говорит ИИ выше. Ситуация усугубляется тем, что я использовал «Годы» в качестве базовой переменной. За год происходит много событий, не связанных друг с другом! В большинстве исследований вместо «одного года» в качестве изучаемого объекта используется что-то вроде «один человек».
- 3. Наблюдения не являются независимыми. Для многих переменных последовательные годы не являются независимыми друг от друга. Если группа людей постоянно что-то делает каждый день, нет никаких оснований думать, что они внезапно uзменяm то, как они это делают 1 января. Простое вычисление 3havehus p -примечания не учитывает это, поэтому математически это выглядит так: менее вероятно, чем это есть на самом деле.
- 4. Диковинные выбросы: в этих данных есть «выбросы». *Примечание*. Они выделяются на диаграмме рассеяния выше: обратите внимание на точки, которые находятся далеко от других точек. Я намеренно неправильно обработал выбросы, из-за чего корреляция выглядит очень сильной.