

$F = 2\pi I R \left(\frac{4}{4\pi r_3}, \frac{3}{3} M_1, \frac{r_2}{r_2} R^2, \frac{R}{r_3} \right)$ $= \frac{3}{2} \frac{\pi I R^2}{\pi} \frac{1}{40} M_1, \frac{r_2}{r_3} R^2 I$ $= \frac{3}{2} \frac{\pi I R^2}{\pi} \frac{1}{40} M_1, \frac{r_2}{r_3} R^2 I$ $= \frac{3}{2} \frac{\pi I R^2}{\pi} \frac{1}{40} M_1, \frac{r_2}{r_3} R^2 I$ $= \frac{3}{2} \frac{\pi I R^2}{\pi} \frac{1}{40} M_1, \frac{r_2}{r_3} R^2 I$ $= \frac{3}{2} \frac{\pi I R^2}{\pi} \frac{1}{40} M_2, \frac{r_3}{r_4} I$ $= \frac{3}{2} \frac{1}{40} \frac$	$= 2\pi I R \left(\frac{\mu_0}{4\pi i^3}, 3\mu, \sqrt{r^2 - R^2}, \frac{R}{r} \right)$ $= \frac{3}{2} \pi I R^2 \mu_0 M, \sqrt{r^2 - R^2}, \frac{R}{r}$
Since we is defined as $\pi R^2 \cdot T$. Howar, since the W_1' 's are not correct loops but rather are infinitessimal, one way take the limit when r>>R, when the loop radius is very small. A binomial expansion on $\sqrt{r^2 \cdot R^2}$ yields that $\sqrt{r^2 \cdot R^2} = r \sqrt{1 - R^2} \cdot x \cdot r \cdot \left(\sqrt{r} - \frac{R^2}{r^2} \cdot \frac{1}{2\sqrt{r}} - O\left(\frac{R^2}{r^2}\right)\right)$ if we only keep the first order expansion. Therefore $ T = \frac{3}{2} \frac{M_0}{r_1} \frac{M_0}{r_2} \frac{M_0}{r_3} \frac{M_0}{r_4} \frac{M_0}$	= 3 TIR NOM, VIZ-RZ
Since we is defined as $\pi R^2 \cdot T$. Howar, since the W_1' 's are not correct loops but rather are infinitessimal, one way take the limit when r>>R, when the loop radius is very small. A binomial expansion on $\sqrt{r^2 \cdot R^2}$ yields that $\sqrt{r^2 \cdot R^2} = r \sqrt{1 - R^2} \cdot x \cdot r \cdot \left(\sqrt{r} - \frac{R^2}{r^2} \cdot \frac{1}{2\sqrt{r}} - O\left(\frac{R^2}{r^2}\right)\right)$ if we only keep the first order expansion. Therefore $ T = \frac{3}{2} \frac{M_0}{r_1} \frac{M_0}{r_2} \frac{M_0}{r_3} \frac{M_0}{r_4} \frac{M_0}$	= 3 TIR NOM, VIZ-RZ
Since m_2 is defined 2s $m_2^2 \cdot I$. Howar, since the w_1' 's are not current loops but rather are infrnitessimal, one way take the limit when room, when the loop radius is very small. A binowial expansion on $\sqrt{r^2 - R^2}$ yields that $\sqrt{r^2 - R^2} = r \sqrt{1 - R^2} r^2 \times r \left(\sqrt{r} - \frac{R^2}{r^2} \cdot \frac{1}{2\sqrt{r}} - \mathcal{O}\left(\frac{R^2}{r^2}\right)\right)$ if we only keep the first order expansion. Therefore $ \hat{F} = \frac{3}{4} \frac{M_0}{r^4} = \frac{M_0}{r^4} \times \frac{M_0}{r^4} = \frac{M_0}{$	
Since m_2 is defined 2s $\pi R^2 \cdot \Sigma$. However, since the w_1' are not current loops but rather are infinitessimal, one way take the limit when room, when the loop radius is very small. A binowial expansion on $\sqrt{r^2 - R^2}$ violate that $\sqrt{r^2 - R^2} = r \sqrt{1 - R^2}r^2 \approx r \left(\sqrt{1 - R^2} \cdot \frac{1}{2} - O\left(\frac{R^2}{r^2}\right)\right)$ if we only keep the first order expansion. Therefore $\left[\frac{1}{r} = \frac{3}{4} \frac{M_0}{r^4} \cdot \frac{M_0}{r^2} \cdot \frac{1}{2} + O\left(\frac{R^2}{r^2}\right)\right]$ is the force of attraction between the two disputes. It can be in the $\pm x$ direction depending on which force acts on which dipote, but equivalently so since	2TT (5)
However, since the w_1 's are not current loops but rather are infinitessimal, one way take the limit when race, when the loop radius is very small. A binowial expansion on $\sqrt{r^2-R^2}$ yields that $\sqrt{r^2-R^2} = r\sqrt{1-R^2}r^2 \approx r\left(\sqrt{r}-\frac{R^2}{r^2},\frac{1}{2\sqrt{r}}-\mathcal{O}\left(\frac{r^2}{r^2}\right)\right)$ $= r$ if we only keep the first order expansion. Therefore $\left[\hat{F} = \frac{3}{4} \frac{m_0}{r^4} \frac{m_1}{r^2} \approx r^2\right]$ is the force of attraction between the two dispulses. It can be in the $\pm \hat{x}$ direction depending on which force acts on which dipole, but exvisitently so since	
However, since the w_1 's are not current loops but rather are infinitessimal, one way take the limit when race, when the loop radius is very small. A binowial expansion on $\sqrt{r^2-R^2}$ yields that $\sqrt{r^2-R^2} = r\sqrt{1-R^2}r^2 \approx r\left(\sqrt{r}-\frac{R^2}{r^2},\frac{1}{2\sqrt{r}}-\mathcal{O}\left(\frac{r^2}{r^2}\right)\right)$ $= r$ if we only keep the first order expansion. Therefore $\left[\hat{F} = \frac{3}{4} \frac{m_0}{r^4} \frac{m_1}{r^2} \approx r^2\right]$ is the force of attraction between the two dispulses. It can be in the $\pm \hat{x}$ direction depending on which force acts on which dipole, but exvisitently so since	Since M2 B defined 25 TIR2. I.
are infinitessimal, one way take the limit when room, when the loop radius is very small. A binomial expansion on $\sqrt{r^2-R^2}$ yields that $\sqrt{r^2-R^2} = r\sqrt{1-R^2}r^2 + r \left(\sqrt{r}-\frac{R^2}{r^2}, \frac{1}{2\sqrt{r}}-O\left(\frac{R^2}{r^4}\right)\right)$ = r if we only keep the first order expansion. Therefore $ \hat{\vec{r}} = \frac{3}{4} \frac{M_0}{r^4} + \frac{M_0}{r^4} + \frac{1}{4} \frac{M_0}{r^$	
when the loop realiss is very small. A binomial expansion on $\sqrt{r^2-R^2}$ yields that $\sqrt{r^2-R^2} = r\sqrt{1-R^2}/r^2 \approx r\left(\sqrt{r}-\frac{R^2}{r^2},\frac{1}{2\sqrt{r}}-\mathcal{O}\left(\frac{R^2}{r^4}\right)\right)$ = r if we only keep the first order expansion. Therefore $ \hat{\Gamma} = \frac{3}{4} \frac{M_0}{r^4} = $	
A binowist expansion on $\sqrt{r^2-R^2}$ yields that $\sqrt{r^2-R^2} = r\sqrt{1-R^2}r^2 & r\left(\sqrt{r}-\frac{R^2}{r^2},\frac{1}{2\sqrt{r}}-\mathcal{O}\left(\frac{r^2}{r^2}\right)\right)$ = r if we only keep the first order expansion. Therefore $ \vec{r} = \frac{3}{4} \text{ mo m m}^2 \hat{x} $ is the face of 2theories between the two disputes. It can be in the $\pm \hat{x}$ direction depending on which force $2cts$ on which dipok, but exhibitently so since	are infinitessimal, one way take the limit when r>>R,
$\sqrt{r^2-R^2} = r\sqrt{1-R^2}r^2 \approx r\left(\sqrt{1-R^2}, \frac{1}{r^2-2\sqrt{1}}-O\left(\frac{R^2}{r^2}\right)\right)$ = r if we only keep the first order expansion. Therefore $ \vec{r} = \frac{3}{4} \frac{M_0}{r^4} = \frac{M_0}{r^4}$	when the loop radius is very small.
$\sqrt{r^2-R^2} = r\sqrt{1-R^2}r^2 \approx r\left(\sqrt{1-R^2}, \frac{1}{r^2-2\sqrt{1}}-O\left(\frac{R^2}{r^2}\right)\right)$ = r if we only keep the first order expansion. Therefore $\vec{F} = \frac{3}{4} \frac{m_0}{r^4} \frac{m_1}{x^2} \frac{m_2}{x^2}$ is the force of 2Hizetian between the two dispules. It can be in the $\pm \hat{x}$ direction depending on which force 2cts on which dipole, but equivalently so since	A binomial expansion on $\sqrt{r^2-R^2}$ yields that
if we only keep the first order expansion. Therefore $ \begin{bmatrix} \vec{F} = 3 & m_0 & m_1 & m_2 \\ \vec{V} = 4 & m_1 & m_2 \end{bmatrix} $ is the force of 2H12ction between the two dispules. It can be in the $\pm x$ direction depending on which force 2cts on which dipole, but equivalently so since	
if we only keep the first order expansion. Therefore $ \begin{vmatrix} \hat{F} = \frac{3}{4} & \frac{M_0}{r^4} & \frac{M_0}{x} \\ r^4 & \frac{1}{r^4} & \frac{1}{r^4} \end{vmatrix} $ is the force of 2ttraction between the two dispules. It can be in the $\pm \hat{x}$ direction depending on which $ force 2cts on which dipole, but equivalently so since $	
is the force of 2ttizction between the two dipoles. It can be in the $\pm\hat{x}$ direction depending on which force 2cts on which dipole, but equivalently so since	
is the face of 2ttizction between the two dispules. It can be in the ±x direction depending on which force 2cts on which dipole, but equivalently so since	if we only keep the first order expansion. Therefore
is the face of 2ttizction between the two dispules. It can be in the ±x direction depending on which force 2cts on which dipole, but equivalently so since	1 = 3 Mo M, M2
It can be in the ±x direction depending on which force 2cts on which dipole, but equivalently so since	
force acts on which dipole, but equivalently so since	s the force of 2ttraction between the two dipules.
	t can be in the ±x direction depending on which
	ione 2cts on which dipok but equivalently so since
1 1 00 7 2 000 1 1	
	1002 ,5001,

6)	Cons	ider 1	Λιχ	the	Secon	d w	chod	of	finding	the	force,	
			F	= 7	(m, v	3).						
	The	Second						givan				
								SMO G				
	For	B.	Θ=0	6	enee	13, :	21	13 X				
	For	B2,	0=1	5, 5	0 13	2 = -	2TT1	2 X.				
	Than	the	force	77	F=	7(1	1 Ma	M2 X				
								1 M2				
						1 1		wa x				
					the	x	dire	ction.	Similar	1,		
	F2	041	- F	lou2	3 2	Mo W	, MZ	Ŷ.				
	Equa	lent	to	the	magn	itude	deter	mined	in pa	rt (5,),	

6.8) For this problem, we consider the bound volume and surface currents produced by the wagnetization. $\vec{j}_{s} = \vec{\nabla} \times \vec{n} = \frac{1}{5} \left(\frac{\partial M_{2}}{\partial q} - 5 \frac{\partial Z}{\partial z} \right) \hat{S} + \left(\frac{\partial Z}{\partial z} - \frac{\partial M_{2}}{\partial s} \right) \hat{\varphi}$ + } (3 (SM4) - 3M2) \$ = 2 3 (2K25) 5 = 3KS 2 Kb = Mxh = KR2 (9x5) = - KR2. We way now use Ampere's Law for a loop of enclosed current running grand the cylinder (the current runs through the loop) For points outside, Ienc = 5 3Ks. sdsdq + 52T (-KR2) Rdq = 2 TKR3 - 2TKR3 =0 => Box =0 2nd inside Mo Iere = Mo) 3Ks2 dsdy = M2TIKS3 = 2TISB which implies Bin = MOKS 2 | since B wast be parallel to M.

6,12) 2)	Consider the infinitely polarized cylinder with
	M = KS 2
	There is no free current in the system.
	Now, the bound currents are given by
	$\vec{J}_b = \vec{\nabla} \times \vec{M} = = -K\hat{\gamma}$
	$K_{s} = \hat{M} \times \hat{n} = = KR \hat{\varphi}$ at the boundary $s = R$.
	Now, we way proceed by finding the enclosed current of
	2 loop with the cereat runing through it.
	First note that, at side the cylinder,
	Ine = L 5 (-K) R dsdq + L 5 (KR2) de
	$= -2\pi K R^2 L + 2\pi K R^2 L = 0.$
	Inside the cylinder, however,
	Ien = L·KR + LK) · (-K) Ss ds'
	= L. KR - KL (R-S)
	= KLS,
	so, by Ampere's Lew,
	Box = 0, and BL = KLSMO, Bin = MOKS 2)
6	
	hence $\vec{H}=0$. This $0=\frac{1}{N_0}\vec{B}-\vec{M}$, or
	13in = Mo K = Mo K & 2] while But = U, 25
	destract.