Dynamic Programming

Technique used to solve

problems efficiently

* optimisation

$$\frac{1+2+3+2}{1+2+3+2+1} = 8$$

$$\frac{1+2+3+2+1}{8+1} = 0$$

Store the rout for future whe

Number of paths

mores
right ->
down I

Number of paths Start_

number of paths (K) = nop (G)+ nop (J)

A	B	C	D
	F	G-	H
I	ナー		→ <u> </u>
M	2	* 0	7

$$if(i=z_0)[j=z_0)$$

 $m[i][j]z[$

m[i][j] = m[i-i][j] + m[i][j-i] $\frac{1}{\sqrt{m \times n}} = 0 \left(\frac{m \times n}{m \times n} \right)$

 $S \cdot C = O(m \times n)$

Maximum Path Sum 6 8 3

sum = 17

down left down right

down

max Sum = 9 + 3 + 9 = 21

Maximum Path Sum

5	2	6
4	8	5
3	2_	\

Maximum Path Sum

$$\frac{1}{1-2} \longrightarrow \frac{5}{5} \stackrel{2}{=} 6$$

$$\frac{1}{2} \stackrel{1}{=} \frac{1}{1} \stackrel{1}$$

ways to reach ways to go down right down left down night

$$i-1$$
 $(i-1,j-1)$
 $(i-1,j)$
 $(i-1,j)$
 (i,j)

first column jzo (m(i-1)) m(i-1) GH

. L Last column if (j==n-1)

m[i][j] = max (m[i-1][j-i], m[i-1][j])

$$max$$
 (a, b, c) $max(5,7,8)$
= $max(5, max(7,8))$
= $max(5, max(7,8))$
= $max(5,8)$
= 8

 $\times | \times | \times$

 $mahn \times \rightarrow n \times n$

$$T = 0 \left(n^2 \right)$$

$$SC = O(v \times v)$$

Aux space = O(1)

 $matrix \rightarrow n \times n$

$$T = 0 \left(n^2 \right)$$

$$SC = O(v \times v)$$

Aux space = O(1)

House Robber

max = 1+3=4

2 options
2 options
2 obbed
2 robbed
not robbed

(hu n)

$$(n-2)$$
 $(n-2)$ $(n-2)$ $(n-2)$, final boot $(n-2)$, $(\pi u n)$ $(\pi u n)$

The last house is robbed finalloot [n-2] finalloot [n] = [loot [n] + finalloot [n-2]

If last house = finalboot[n-1]
is not robbed

am [i] = max (<u>loot[i]</u> + am[i-2] am [it vo bbe

nums $\frac{\text{ans} \left[0\right] = \text{nums}\left[0\right]}{\text{ans} \left[1\right] = \text{max}\left(\text{nums}\left[0\right],\text{nums}\left[1\right]\right)}$ mm/ and max (8+5,5

$\frac{\int \cdot C}{S \cdot C} = O(n)$