Резонансные процессы в активной среде

Д.А. Румянцев*, Д.М. Шленев** А.А. Ярков*** Ярославский государственный университет им. П.Г. Демидова, Россия

В работе рассмотрены различные квантовые процессы с учетом резонанса на виртуальном фермионе.

^{*}E-mail: rda@uniyar.ac.ru

^{**}E-mail: ultrasickdoom@gmail.com

 $^{^{***}\}mbox{E-mail: a12l@mail.ru}$

Введение

Нейтронные звёзды, обладая набором экстремальных характеристик, являются природными физическими лабораториями и одними из самых интересных объектов, известных в науке. Особое внимание учёных привлекают радиопульсары и магнитары, обладающие магнитными полями колоссальной напряжённости, к которой очень сложно приблизиться в земных условиях. У магнитного поля имеется характерное значение, называемое критическим, $B_e = m^2/e \simeq 4.41 \times 10^{13}~\Gamma c^{-1}$, при приближении к которому становится необходимым учитывать квантовые эффекты при движении в нём частиц. В радиопульсарах с магнитными полями порядка $10^{12}~\Gamma c$ и магнитарах – до $10^{16}~\Gamma c$ [1–3] такие условия выполняются.

Кроме сильных магнитных полей, в магнитосфере как радиопульсаров, так и магнитаров, присутствует достаточно горячая и плотная электронпозитронная плазма [1]. Магнитное поле и плазма составляют две компоненты внешней активной среды, присутствие которой значительно изменяет
характеристики протекающих в ней микропроцессов. Во-первых, активная
среда может изменять закон дисперсии находящихся в ней частиц, что приводит к изменению кинематики процессов и вследствие чего могут открываться реакции и каналы реакций, которые запрещены в вакууме. Во-вторых,
активная среда влияет на амплитуды процессов, в результате чего они могут приобретать резонансный характер. Именно эта составляющая влияния
внешней активной среды рассматривается в данном обзоре. Вследствие резонанса вклад микропроцессов в макроскопические характеристики астрофизических процессов, такие как светимость и скорость изменения количества
частиц, может многократно увеличиваться.

В сильном магнитном поле поперечная составляющая импульса фермиона квантуется. В таком случае энергия фермиона определяется так называемым

 $^{^{1}{\}rm B}$ работе используется естественная система единиц: $\hbar=c=k=1,\,m$ – масса электрона, e>0 – элементарный заряд.

уровнем Ландау n и проекцией импульса вдоль магнитного поля p_z :

$$E_n = \sqrt{m_f^2 + p_z^2 + 2|e_f|Bn},\tag{1}$$

где e_f и m_f - заряд и масса фермиона. Состояние с n=0, в котором фермион движется вдоль силовой линии магнитного поля, называется основным уровнем Ландау.

Можно выделить несколько ситуаций в иерархии параметров среды: магнитного поля, температуры T, химического потенциала μ и энергии фермионов и фотонов, участвующих в реакциях. Предел сильного поля, когда фермионы будут занимать основной уровень Ландау, осуществляется при выполнении условия [4]:

$$\frac{B^2}{8\pi} \gg \frac{\pi^2 (n_{e^-} - n_{e^+})^2}{eB} + \frac{eBT^2}{12}, \qquad (2)$$

где n_{e^-} и n_{e^+} – концентрации электронов и позитронов плазмы. Такие условия могут, в частности, реализовываться в модели вспышки источников мягких повтоярющихся гамма-всплесков (SGR) [1,5], которые, как показывают недавние наблюдения, можно отождествить с магнитарами [6–11].

Даже в магнитарных магнитных полях при значениях плотности плазмы $\rho \geqslant 10^8 \ {\rm r/cm^3}$, которые могут достигаться в границе между внешней и внутренней корой магнитара, условие 2, при котором магнитное поле является доминирующим параметром, перестаёт выполняться. В результате реакции, в которых имеются фермионы в промежуточном состоянии, могут приобретать резонансный характер. Это происходит вследствие того, что начинают возбуждаться высшие уровни Ландау виртуальных фермионов. Они становятся реальными с определённым законом дисперсии, садятся на массовую поверхность. В этом состоянии они являются нестабильными и распадаются за время, обратно пропорциональное вреоятности их перехода на низшие уровни Ландау. Эффективность реакции при этом заметно увеличивается, что может иметь наблюдаемые астрофизические следствия.

Резонанс на фотоне наблюдается аналогичным образом: в активной среде поляризационный оператор фотона имеет реальную часть, которую можно

рассматривать как эффективную массу фотона. В кинематической области, в которой квадрат 4-импульса виртуального фотона будет равен реальной части его поляризационного оператора, виртуальный фотон станет реальным и нестабильным.

Настоящая статья организована следующим образом. В Разделе 2 обсуждаются различные методы представления решения уравнения Дирака во внешнем магнитном поле. В разделе 3 рассматриваются радиационные поправки в магнитном поле к массовому оператору частиц в промежуточном состоянии и получается выражение для пропагатора. Раздел 4 посвящён различным двухвершинным процессам, в которых может реализовываться резонанс на виртуальном фермионе и/или фотоне. В Разделе 5 описываются сингулярности в фазовых объемах одновершинных процессов и методы их устранения.

1 Представление решений уравнения Дирака во внешнем магнитном поле.

Для определения волновых функций фермионов в присутствии внешнего магнитного поля, которые являются решением уравнения Дирака, существует несколько возможных подходов (см., например [12–20]). При этом, волновые функции, введенные Джонсоном и Липпманом [12] являются одним из наиболее широко используемых (см. например [21–26]). Эти волновые функции определены как собственные состояния обобщенного оператора импульса. Однако такой подход, будучи примененным к описанию волновых функций фермиона, не обладает необходимыми свойствами, например, симметрией между электронными и позитронными состояниями [27]. Кроме того, использование данных волновых функций, как было отмечено в работах [28,29], оказывается в некоторых случаях некорректным, особенно вблизи циклотронных резонансов, так как требуется правильное описание конечной ширины распада промежуточного состояния с учетом зависимости от спина. С другой стороны, волновые функции, используемые Соколовым и Терно-

вым [16] обладают необходимыми свойствами и корректно описывают сечение, полученное исходя из этих функций, вблизи циклотронных резонансов. Следует отметить, что физические величины, усредненные по спину, совпадают при любом из этих методов описания волновых функций. Поскольку дальнейшее изложение будет посвящено резонансам в квантовых процессах, то имеет смысл использовать именно эти волновые функции.

Кратко опишем вывод волновых функций фермиона $\Psi_{p,n}^s(X)$. Предполагается, что магнитное поле является постоянным и направленно вдоль оси z. В таком случае, собственные функции фермиона можно определить, как собственные функции проекции оператора магнитного момента [16] вдоль оси z:

$$\hat{\mu}_z = m_f \Sigma_z - i \gamma_0 \gamma_5 \left[\mathbf{\Sigma} \times \mathbf{P} \right]_z , \qquad (3)$$

где $\Sigma = \gamma_0 \gamma_5 \gamma$ — трехмерный оператор спина, а $\mathbf{P} = -i \Delta + e_f \mathbf{A}$ — обобщенный оператор спина. В свою очередь собственные функции оператора $\hat{\mu}_z$ удовлетворяют условию

$$\hat{\mu}_z \Psi_{p,n}^s(X) = s M_n \Psi_{p,n}^s(X) , \qquad (4)$$

где квантовое число $s=\pm 1$ определяет проекцию спина вдоль магнитного поля. Нетрудно показать, что оператор $\hat{\mu}_z$ коммутирует с Гамильтонианом, поэтому они имеют общие собственные функции, что позволяет разделить решения по спиновым состояниям относительно направления магнитного поля. Кроме того, анализ решения уравнения Дирака

$$(i\partial_{\mu}\gamma^{\mu} + e_f A_{\mu}\gamma^{\mu} - m_f)\Psi^s_{p,n}(X) = 0$$
(5)

показывает, что состояния фермиона квантуются по энергетическим состояниям, которые называются уровни Ландау

$$E_n = \sqrt{p_z^2 + M_n^2}, \quad n = 0, 1 \dots,$$
 (6)

где $M_n = \sqrt{2\beta + m_f}$, $\beta = |e_f|B$. Каждое состояние является бесконечно вырождено по p_z и дважды вырождено по s, кроме состояния n = 0, где возможно лишь состояние s = -1. Используя калибровку Ландау $A^{\mu} = (0, 0, xB, 0)$,

решения уравнения Дирака 5 могут быть представлены следующим образом

$$\Psi_{p,\ell}^{s}(X) = \frac{e^{-i(E_{\ell}X_{0} - p_{y}X_{2} - p_{z}X_{3})} U_{\ell}^{s}(\xi)}{\sqrt{4E_{\ell}M_{\ell}(E_{\ell} + M_{\ell})(M_{\ell} + m_{f})L_{y}L_{z}}},$$
(7)

где

$$\xi(X_1) = \sqrt{\beta} \left(X_1 - \eta \frac{p_y}{\beta} \right) . \tag{8}$$

Далее, используя обозначение для определения знака заряда фермиона $\eta = e_f/|e_f|$, становится удобным представить биспиноры $U_\ell^s(\xi)$ в виде отдельной суммы биспиноров соответствующих положительным и отрицательным зарядам $U_{\ell,\eta}^s(\xi)$:

$$U_{\ell}^{s}(\xi) = \frac{1-\eta}{2} U_{\ell,-}^{s}(\xi) + \frac{1+\eta}{2} U_{\ell,+}^{s}(\xi), \qquad (9)$$

где

$$U_{\ell,-}^{-}(\xi) = \begin{pmatrix} -i\sqrt{2\beta\ell} \, p_z V_{\ell-1}(\xi) \\ (E_{\ell} + M_{\ell})(M_{\ell} + m_f) V_{\ell}(\xi) \\ -i\sqrt{2\beta\ell} (E_{\ell} + M_{\ell}) V_{\ell-1}(\xi) \\ -p_z (M_{\ell} + m_f) V_{\ell}(\xi) \end{pmatrix}, \tag{10}$$

$$U_{\ell,-}^{+}(\xi) = \begin{pmatrix} (E_{\ell} + M_{\ell})(M_{\ell} + m_{f})V_{\ell-1}(\xi) \\ -i\sqrt{2\beta\ell} \, p_{z}V_{\ell}(\xi) \\ p_{z}(M_{\ell} + m_{f})V_{\ell-1}(\xi) \\ i\sqrt{2\beta\ell}(E_{\ell} + M_{\ell})V_{\ell}(\xi) \end{pmatrix}, \tag{11}$$

$$U_{\ell,+}^{-}(\xi) = \begin{pmatrix} i\sqrt{2\beta\ell} \, p_z V_{\ell}(\xi) \\ (E_{\ell} + M_{\ell})(M_{\ell} + m_f) V_{\ell-1}(\xi) \\ i\sqrt{2\beta\ell} (E_{\ell} + M_{\ell}) V_{\ell}(\xi) \\ -p_z (M_{\ell} + m_f) V_{\ell-1}(\xi) \end{pmatrix}, \tag{12}$$

$$U_{\ell,+}^{+}(\xi) = \begin{pmatrix} (E_{\ell} + M_{\ell})(M_{\ell} + m_{f})V_{\ell}(\xi) \\ i\sqrt{2\beta\ell} \, p_{z}V_{\ell-1}(\xi) \\ p_{z}(M_{\ell} + m_{f})V_{\ell}(\xi) \\ -i\sqrt{2\beta\ell}(E_{\ell} + M_{\ell})V_{\ell-1}(\xi) \end{pmatrix}, \tag{13}$$

 $V_{\ell}(\xi)$ — нормированные функции гармонического осциллятора, которые следующим образом выражаются через полиномы Эрмита $H_{\ell}(\xi)$ [30]:

$$V_{\ell}(\xi) = \frac{\beta^{1/4} e^{-\xi^2/2}}{\sqrt{2^{\ell} \ell! \sqrt{\pi}}} H_{\ell}(\xi).$$
 (14)

Таким образом, волновые функции, определенные выражением 7, позволяют корректно описывать резонансы в квантовых процессах, которые возникают в пропагаторах частиц.

2 Представление пропагаторов с учетом мнимой части.

Для вычисления различных физических величин в дальнейшем будет использоваться диаграммная техника Фейнмана. Начиная с двухвершинных процессов в диаграммах будут возникать внутренние фермионные и фотонные линии, которые являются виртуальными частицами и описываются соответствующими пропагаторами. Поэтому представляет интерес дать некоторое описание пропагаторов этих частиц, которые приводят к интересующим нас резонансам.

2.1 Пропагатор фермиона

Есть несколько вариантов представления пропагатора фермиона. Одно из них является точное определение в формализме собственного времени Фока [31]. В этом случае пропагатор фермиона является решением уравнения Дирака с δ -функцией в правой части или так называемой функцией Грина для уравнения Дирака:

$$(i\partial_{\mu}\gamma^{\mu} + e_f A_{\mu}\gamma^{\mu} - m_f)S(X, X') = \delta(X - X'). \tag{15}$$

Выражения для пропагатора являются точными и достаточно громоздкими для последующих вычислений. Поэтому удобно воспользоваться различными разложениями. Предел слабого магнитного поля, например, является актуальным для таких частиц, как W бозоны, так как их критическое поле

 $B_W = m_W^2/e \simeq 10^{24}~\Gamma$ с во много больше магнитных полей, существующих в природе. С другой стороны, существование магнитных полей порядка критического значения для электрона $B \simeq B_e$ является установленным фактом. В таком случае удобно рассматривать пропагатор в виде разложения по уровням Ландау:

$$S(X, X') = \sum_{n,s} S_n^s(X, X').$$
 (16)

Для дальнейшик вычислений удобно будет использовать следующие волновые функции

$$\phi_{p,\ell}^s(X_1) = \frac{U_\ell^s[\xi(X_1)]}{\sqrt{2M_\ell(E_\ell + M_\ell)(M_\ell + m_f)}}.$$
 (17)

Используя точные решения уравнения Дирака 7 пропагатор можно представить следующим образом:

$$\hat{S}_{n}^{s}(X, X') = \int \frac{\mathrm{d}p_{0} \mathrm{d}p_{y} \mathrm{d}p_{z}}{(2\pi)^{3}} \frac{\mathrm{e}^{-\mathrm{i}(p(X-X'))_{\parallel} + \mathrm{i}p_{y}(X_{2}-X'_{2})}}{p_{\parallel}^{2} - M_{n}^{2} - \mathcal{R}_{\Sigma}^{s}(p) + \mathrm{i}\mathcal{I}_{\Sigma}^{s}(p)} \phi_{p,n}^{s}(X_{1}) \bar{\phi}_{p,n}^{s}(X'_{1}).$$
(18)

- 2.2 Пропагатор фотона
- 3 Резонансные двухвершинные процессы
- 3.1 Резонанс на виртуальном фотоне.
- 3.2 Резонанс на виртуальном электроне (фермионе).
- 3.3 Резонанс на виртуальном электроне и виртуальном фотоне.
- 4 Сингулярности в фазовых объемах одновершинных процессов и методы их устранения.
- 5 Заключение

Список литературы

- [1] Thompson C., Duncan R. C. The soft gamma repeaters as very strongly magnetized neutron stars I. Radiative mechanism for outbursts // Mon. Not. Roy. Astron. Soc. 1995. Vol. 275. P. 255–300.
- [2] Thompson C., Duncan R. C. The soft gamma repeaters as very strongly magnetized neutron stars. II. Quiescent neutrino, X-Ray, and Alfven wave emission // Astrophys. J. 1996. Vol. 473. P. 322–342.
- [3] Thompson C., Lyutikov M., Kulkarni S. R. Electrodynamics of magnetars: implications for the persistent x-ray emission and spindown of the soft gamma repeaters and anomalous x-ray pulsars // Astrophys. J. 2002. Vol. 574, no. 1. P. 332–355.
- [4] Румянцев Д. А., Чистяков М. В. Влияние фотон-нейтринных процессов на остывание магнитара // ЖЭТФ. 2008. Т. 134, № 4. С. 627–636.
- [5] Бисноватый-Коган Г. С., Чечеткин В. М. Неравновесные оболочки нейтронных звезд, их роль в поддержании рентгеновского излучения и нуклеосинтезе // Усп. физ. наук. 1979. Т. 127, № 2. С. 263–296.
- [6] Kouveliotou C. et al. An X-ray pulsar with a superstrong magnetic field in the soft gamma-ray repeater SGR 1806-20. // Nature. 1998. Vol. 393. P. 235–237.
- [7] Kouveliotou C., Strohmayer T., Hurley K. et al. Discovery of a magnetar associated with the soft gamma repeater SGR 1900+14 // Astrophys. J. 1999. Vol. 510. P. L115–118.
- [8] Gavriil F. P., Kaspi V. M., Woods P. M. Magnetar like x-ray bursts from an anomalous x-ray pulsar // Nature. 2002. Vol. 419. P. 142–144.
- [9] Ibrahim A. I., Safi-Harb S., Swank J. H. et al. Discovery of cyclotron resonance features in the soft gamma repeater SGR 1806-20 // Astrophys. J. 2002. Vol. 574. P. L51–L55.

- [10] Ibrahim A. I., Swank J. H., Parke W. New evidence for proton cyclotron resonance in a magnetar strength field from SGR 1806-20 // Astrophys. J. 2003. Vol. 584. P. L17–L22.
- [11] Olausen S. A., Kaspi V. M. The McGill magnetar catalog // Astrophys. J. Suppl. 2014. Vol. 212, no. 1. P. 6.
- [12] Johnson M. H., Lippmann B. A. Motion in a constant magnetic field // Physical Review. 1949. Vol. 76, no. 6. P. 828–832.
- [13] Ахиезер А. И., Берестецкий В. Б. Квантовая электродинамика. Москва: Физматгиз, 1959. 656 с.
- [14] Соколов А. А., Тернов И. М. Синхротронное излучение. М.: Наука, 1966. 228 с.
- [15] Melrose D. B., Parle A. J. Quantum electrodynamics in strong magnetic fields. I Electron States // Aust. J. Phys. 1983. Vol. 36. P. 755–774.
- [16] Соколов А. А., Тернов И. М. Релятивистский электрон. Москва: Наука, 1983. 304 с.
- [17] Kuznetsov A. V., Mikheev N. V. Electroweak processes in external electromagnetic fields. New York: Springer-Verlag, 2003. 120 p.
- [18] Bhattacharya K., Pal P. B. Inverse beta decay of arbitrarily polarized neutrons in a magnetic field // Pramana J. Phys. 2004. Vol. 62. P. 1041–1058.
- [19] Balantsev I. A., Popov Yu. V., Studenikin A. I. On the problem of relativistic particles motion in strong magnetic field and dense matter // J. Phys. 2011. Vol. A44. P. 255301 (1–13).
- [20] Kuznetsov A., Mikheev N. Electroweak processes in external active media. 2013. Vol. 252. P. pp 1–271.

- [21] Canuto V. Quantum processes in strong magnetic fields // Ann. N. Y. Acad. Sci. 1975. Vol. 257, no. 1. P. 108–126.
- [22] Harding A. K., Daugherty J. K. Cyclotron Resonant Scattering and Absorption // Astrophys. J. 1991. Vol. 374. P. 687–699.
- [23] Suh I.-S., Mathews G. J. Weak reaction freeze-out constraints on primordial magnetic fields // Phys. rev. D. 1999. Vol. 59, no. 12. P. 123002.
- [24] Gonthier P. L., Harding A. K., Baring M. G. et al. Compton Scattering in Ultrastrong Magnetic Fields: Numerical and Analytical Behavior in the Relativistic Regime // Astrophys. J. 2000. Vol. 540, no. 2. P. 907–922.
- [25] Jones P. B. Electron-positron bremsstrahlung and pair creation in very high magnetic fields // Mon. Not. Roy. Astron. Soc. 2010. Vol. 409, no. 4. P. 1719– 1727.
- [26] Melrose D. B. Quantum kinetic theory for unmagnetized and magnetized plasmas // Rev. Mod. Plasma Phys. 2020. Vol. 4, no. 8.
- [27] Melrose D. B., Parle A. J. Quantum electrodynamics in strong magnetic fields. I Electron States // Aust. J. Phys. 1983. Vol. 36. P. 755–774.
- [28] Graziani C. Strong-Field Cyclotron Scattering. I. Scattering Amplitudes and Natural Line Width // Astrophys. J. 1993. Vol. 412. P. 351–362.
- [29] Gonthier P. L., Baring M. G., Eiles M. T. et al. Compton scattering in strong magnetic fields: Spin-dependent influences at the cyclotron resonance // Phys. Rev. 2014. Vol. D90, no. 4. P. 043014.
- [30] Градштейн И. С., Рыжик И. М. Таблицы интегралов, сумм, рядов и произведений. Москва: Гос. изд-во физ.-мат. лит., 1963. 1108 с.
- [31] Schwinger J. On Gauge Invariance and Vacuum Polarization // Phys. Rev. $1951.-\mathrm{Jun}.$ Vol. 82. P. 664-679.