ZHENYU WEI

Zhenyu_Wei@sjtu.edu.cn \$\infty\$ zhenyuwei2003 \$\infty\$ https://zhenyuwei2003.github.io/

EDUCATION

Shanghai Jiao Tong University (SJTU), China

B.E. in Computer Science (Zhixuan Honors Program of Engineering)

Sep. 2021 - Jun. 2025 (expected)

GPA: 4.01/4.3 (92.45/100)

PUBLICATIONS

- 1. $\mathcal{D}(\mathcal{R}, \mathcal{O})$ Grasp: A Unified Representation for Cross-Embodiment Dexterous Grasping [Web] Zhenyu Wei*, Zhixuan Xu*, Jingxiang Guo, Yiwen Hou, Chongkai Gao, Zhehao Cai, Jiayu Luo, Lin Shao In submission to IEEE International Conference on Robotics & Automation (ICRA) 2025. CoRL 2024 Workshop on Learning Robot Fine and Dexterous Manipulation. Oral Presentation CoRL 2024 Workshop on Morphology-Aware Policy and Design Learning. Oral Presentation
- 2. Auto-Pairing Positives through Implicit Relation Circulation for Discriminative Self-Learning Bo Pang, Zhenyu Wei, Jingli Lin, Cewu Lu In submission (Minor Revisions) to IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI).

RESEARCH EXPERIENCE

Research Intern, Machine Vision and Intelligence Group

Oct. 2022 - May 2024

Advisor: Prof. Cewu Lu

Shanghai Jiao Tong University, China

- We propose the Implicit Relation Circulation (IRC) framework, leveraging cycle consistency to automatically discover positive pairs from easily obtainable pairs within simpler tasks.
- We apply IRC to tasks such as learning pixel-level relations from image-level pairs, 3D temporal multi-modal point cloud relations, and image representation leveraging language without existing vision-language pairs.

Research Assistant, LinS Lab

Jun. 2024 - present

Advisor: Prof. Lin Shao

National University of Singapore, Singapore

- We propose a novel representation, $\mathcal{D}(\mathcal{R},\mathcal{O})$, tailored for dexterous grasping tasks. This interaction-centric formulation transcends conventional robot-centric and object-centric paradigms, facilitating robust generalization across diverse robots, objects, and environments.
- We propose a configuration-invariant pretraining approach that learns correspondences across different robot configurations, thereby enhancing the model's capability to capture motion constraints for robotic hands.
- We perform extensive experiments in both simulation environments and real-world settings, validating the efficacy of our proposed representation and framework in grasping novel objects with multiple robots.

AWARDS

• The Tung Foundation Scholarship (Top 5%) • Huawei Scholarship (Top 5%)

2022

Outstanding Scholarship of Computer Science Alumni Fund (Top 5%)

2023

2024

2021 & 2022 & 2023

SJTU Merit Student & Merit Scholarship (Top 10%)

2022 & 2023

MISCELLANEOUS

Chinese (Native), English (TOEFL: 104), Japanese (amateur) Language

Reviewer for ICRA 2025 Academic Service

• Zhiyuan Honors Scholarship (Top 5%)

Python, C/C++, HTML, CSS, ROS, Assembly Language, Verilog **Programming**

Tools ETFX, Linux, Vim, Isaac Gym, Arduino