Machine Learning for Precipitation Nowcasting from Radar Images

Shreya Agrawal • Luke Barrington • Carla Bromberg • John Burge • Cenk Gazen • Jason Hickey

Introduction:

- ·High-resolution precipitation nowcasting is the problem of forecasting precipitation in the near-future at high spatial resolution.
- ·Traditional methods: *optical flow* (OF) model or *numerical* model.
- •OF models attempt to identify how objects move through a sequence of images, but are unable to represent the dynamics of storm initiation or decay (which arguably drive most real-world decisions by those using weather forecasts).
- ·Numerical methods explicitly simulate the underlying atmospheric physics, and can provide reliable forecasts, but typically take hours to perform inferences, which limits their ability to be used in nowcasting.

Method and Data:

Treat as an image-to-image translation problem/a data-driven input&output problem, instead of modeling the complex physics involved in atmospheric evolution of precipitation.

Data:

- ·MRMS (multi-radar multi-sensor system):
- update every 2 minutes,
- 1km spatial resolution,
- within the continental United States (256km x 256km),
- based on data from NEXRAD (a network of 159 high-resolution weather radar stations operated by National Weather Service(NWS), an agency of the National Oceanic and Atmospheric Administration (NOAA)).

Methods:

- · U- Net CNN
- · Label images: [0, 0.1), [0.1, 1.0), [1.0, 2.5) and $[2.5, \infty)$
- · Training period: 2018 January-December
- · Testing period: 2017 July-December and 2019 January-July

33rd Conference on Neural Information Processing Systems(NeurIPS), Vancouver, Canada.
11 Dec 2019, 6pages

relevant elements

Results:

Conclusions:

Figure 1: Sample MRMS Image and Predicted Precipitation

Figure 2: Precision-Recall Curves For Rain Prediction

Parameter, concentration	Disease Yes/No	Y (sum)	N (sum)	Precision (PPV)	Recall (sensitivity)
33.63	Υ	1	0	1.00	0.013
10.63	Y	2	0	1.00	0.025
9.90	N	2	1	0.67	0.025
6.87	Υ	3	1	0.75	0.038
6.15	Y	4	1	0.80	0.050
6.15	Υ	5	1	0.83	0.063
5.53	Υ	6	1	0.86	0.075
5.08	Υ	7	1	0.88	0.088
0.0041	N	77	74	0.51	0.96
0.0039	Υ	78	74	0.51	0.98
0.0039	N	78	75	0.51	0.98
0.0039	Υ	79	75	0.51	0.99
0.0038	N	79	76	0.51	0.99
0.0038	Υ	80	76	0.51	1.00
0.0038	N	80	77	0.51	1.00
0.0038	N	80	78	0.51	1.00
0.0036	N	80	79	0.50	1.00
0.0036	N	80	90	0.50	1.00

The x-axis showing recall (= sensitivity = TP / (TP +

多考文献: https://acutecaretesting.org/en/articles/precision-recall-curves-what-are-they-and-how-are-they-used

- ·无论机器学习数据驱动方法 (Machine Learning data-driven approaches)如何调节,结果都超过了传统的数字方法,特别是在关于一小时预报上,HRRR方法由于需要两小时的计算时间,所以只能使用2小时前的3小时预报数据;
- ·然而,如果把预报窗口扩大到5h,那么HRRR方法将始终表现的比新方法好;
- ·不过,有可能最终,最好的预报方法是将两个方法适当结合。

How many relevant items are selected?

Recall

Report

2020.4.14 張慕琪

Methods

实验设计:

已完成图片记录: time series (Beijing, China); Maps_differences; taylor diagram (Beijing)

待完成绘图:

- 1. taylor diagram (*China*);
- 2. histgram(Beijing, China).

时间: Train & validation (=historical)

数据: CCSM, GMFD, ANN(before BC), ANN(after BC), Linear

变量:

·Temperature

```
Traceback (most recent call last):
  File "taylor_tmax_China.py", line 62, in <module>
    taylor_stats1 = sm.taylor_statistics(data['bigMax_ann_china'],
data['bigMax_ground'], 'data')
  File "/home2/muqi/.local/lib/python3.7/site-packages/skill metrics/
taylor_statistics.py", line 58, in taylor_statistics
    ccoef = np.corrcoef(p,r)
  File "<__array_function__ internals>", line 6, in corrcoef
  File "/opt/anaconda3/lib/python3.7/site-packages/numpy/lib/function_base.py", line
2526, in corrcoef
    c = cov(x, y, rowvar)
  File "<__array_function__ internals>", line 6, in cov
  File "/opt/anaconda3/lib/python3.7/site-packages/numpy/lib/function_base.py", line
2390, in cov
   X = np.concatenate((X, y), axis=0)
  File "<__array_function__ internals>", line 6, in concatenate
MemoryError: Unable to allocate array with shape (2, 915712000) and data type float64
```

Beijing

Tmin (Train)

Results

Histogram

Beijing

Tmax

Results

Histogram

Beijing

Tmin

Histogram of ANN after BC

0

Tmin (Celsius)

5 10 15 20 25 30 35

朗朗