

Universidad Politécnica de Madrid

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS INFORMÁTICOS

Basic Exercises - Theoretical exercises

Author: Sergio Marín Sánchez

Email: sergio.marins@alumnos.upm.es

Date: Friday $8^{\rm th}$ March, 2024

Contents

T	Exercise 2b	1
2	Exercise 9a	2

1 Exercise 2b

Estimate the number of operations of operations to process a $n \times n$ input image using: $\delta_B(I)$ or $\delta_C(\delta_D(I))$.

First of all, it is defined the function op(f) that counts the number of operations required to compute f. It is also defined that computing the maximum of two numbers $a, b \in \mathbb{Z}$ needs only 1 operation, thus, $op(\max\{a,b\}) = 1$.

Using these assumptions computing the maximum of n numbers (x_i) will require n-1 operations.

$$op(\underbrace{\max\{\cdots\max\{\max\{x_1,x_2\},x_3\},\cdots,x_n\}}) = n-1$$
max is repeated $n-1$ times

The number of operations required to compute $\delta_B(I)$ will be computed as the maximum among the structuring element B that has m^2 elements, so it will require $m^2 - 1$ operations. This is performed in each pixel of the image, that is n^2 times.

The number of operations required to compute $\delta_C(\delta_D(I))$ will be computed as the maximum among the structuring element C that has m elements, so it will require m-1 operations, plus computing the maximum among the other structuring element D that will also require m-1 operations because it has m elements too. This is performed in each pixel of the image, that is n^2 times.

In conclusion,

$$n^{2}(m^{2}-1) = op(\delta_{B}(I)) \ge op(\delta_{C}(\delta_{D}(I))) = n^{2}(m-1) + n^{2}(m-1) = 2n^{2}(m-1)$$

.

2 Exercise 9a

Proof the idempotence of the 'closing-opening' alternated filter.

To prove the idempotence of the closing-opening $(\gamma_B \varphi_B)$ we first need to assume some statements:

- Both γ_B (opening) and φ_B (closing) are increasing and idempotent.
- γ_B (opening) is antiextensive.
- φ_B (closing) is extensive.

Theorem 1. Idempotence of the 'closing-opening' alternated filter:

$$\gamma_B \varphi_B \gamma_B \varphi_B(I) = \gamma_B \varphi_B(I)$$

Proof. The proof is done showing that both of the inequalities are satisfied.

$$\gamma_B \varphi_B \gamma_B \varphi_B(I) \le \gamma_B \varphi_B(I)$$

$$\gamma_B \varphi_B(I) = \gamma_B \varphi_B(I) \Rightarrow
\gamma_B \varphi_B \varphi_B \varphi_B(I) = \gamma_B \varphi_B(I) \Rightarrow
\gamma_B \varphi_B \gamma_B \varphi_B(I) \le \gamma_B \varphi_B(I)$$
(1)

 $\gamma_B \varphi_B \gamma_B \varphi_B(I) \ge \gamma_B \varphi_B(I)$

$$\gamma_B \varphi_B(I) = \gamma_B \varphi_B(I) \Rightarrow
\gamma_B \gamma_B \gamma_B \varphi_B(I) = \gamma_B \varphi_B(I) \Rightarrow
\gamma_B \varphi_B \gamma_B \varphi_B(I) \ge \gamma_B \varphi_B(I)$$
(2)

By (1) and (2) it can be concluded that the equality $\gamma_B \varphi_B \gamma_B \varphi_B(I) = \gamma_B \varphi_B(I)$ holds.

_