Announcements

- Homework #3 will be posted today
 - The homework is due by 11:30 p.m. next week
- There is a quiz today!
 - 15 minutes at the end of the class
 - Materials from weeks 1, 2, and 3 lectures
 - Closed books and notes
 - No electronic devices (cell phones, laptops, etc.)

Matrix Multiplication

- Multiplying matrices
 - Suppose $A = (a_{ij})$ and $B = (b_{ij})$ are square $n \times n$ matrices
 - Then, if $C = A \cdot B$, $c_{ij} = \sum_{k=1}^{n} a_{ik} \cdot b_{kj}$
 - Must compute n^2 matrix entries, and each is the sum of n values

Matrix Multiplication

The pseudo-code for square matrix multiplication

```
\begin{array}{l} \text{squareMatrixMultiply(A, B)} \\ \text{n = A.rows} \\ \text{let C be a new n x n matrix} \\ \text{for i = 1 to n} \\ \text{for j = 1 to n} \\ c_{ij} = 0 \\ \text{for k = 1 to n} \\ c_{ij} = c_{ij} + (a_{ik} \cdot b_{kj}) \\ \text{return C} \end{array}
```

- The first for loop computes the entries of each row i
- The second **for** loop computes the entries of each column $\mathbf{j} \Rightarrow c_{ij}$

Matrix Multiplication

- What is the time complexity for this algorithm?
 - There are 3 nested for loops
 - Each loop gets iterated n times

$$T(n) = c * n * n * n = \Theta(n^3)$$

- Hence, matrix multiplication is increasingly costly as the value of n gets larger
- A better technique which uses Strassen's algorithm runs in $\Theta(n^{\log_2 7})$ time
 - $\log_2 7 \approx 2.81$ so the time complexity is about $\Theta(n^{2.81})$

Strassen's Algorithm Matrix Multiplication

• For the product C of two 2 x 2 matrices, A and B

$$\begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \times \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}$$

Strassen's algorithm says if

$$m_1 = (a_{11} + a_{22}) \cdot (b_{11} + b_{22})$$

$$m_2 = (a_{21} + a_{22}) \cdot b_{11}$$

$$m_3 = a_{11} \cdot (b_{12} - b_{22})$$

$$m_4 = a_{22} \cdot (b_{21} - b_{11})$$

$$m_5 = (a_{11} + a_{12}) \cdot b_{22}$$

$$m_6 = (a_{21} - a_{11}) \cdot (b_{11} + b_{12})$$

$$m_7 = (a_{12} - a_{22}) \cdot (b_{21} + b_{22})$$

Strassen's Algorithm Matrix Multiplication

- Analyzing the algorithm
 - The base case, when n = 1, $T(1) = \Theta(1)$
 - The recursive case, when n > 1, each sub-matrix of size $\frac{n}{2} \times \frac{n}{2}$ is used. Since the algorithm is called 7 times $(m_1 \text{ through } m_7)$,

$$T(n) = 7T\left(\frac{n}{2}\right) + \Theta(n^2)$$

Combining the 2 cases, we get

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1 \\ 7T\left(\frac{n}{2}\right) + \Theta(n^2) & \text{if } n > 1 \end{cases}$$

This is equivalent to

$$T(n) = n^{\log_2 7} \approx n^{2.81} \in \Theta(n^{2.81})$$

Strassen's Algorithm Matrix Multiplication

Then, the product C is given by

$$C = \begin{bmatrix} m_1 + m_4 - m_5 + m_7 & m_3 + m_5 \\ m_2 + m_4 & m_1 + m_3 - m_2 + m_6 \end{bmatrix}$$

• Strassen's algorithm partitions large matrices into submatrices, assuming that n is a power of 2 (i.e., $n = 2^k$)

$$\begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \times \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

- Each partition contains a sub-matrix of size $\frac{n}{2} \times \frac{n}{2}$
- Then, we compute $M_1 = (A_{11} + A_{22}) \cdot (B_{11} + B_{22})$ all the way to M_7 , as show earlier. Finally, determine the product C.

The Master Method

Provides method for solving recurrences of the form

$$T(n) = aT\left(\frac{n}{h}\right) + f(n)$$

where $a \ge 1$ and b > 1 are constants, and f(n) is an asymptotically positive function

- Divide a problem of size n into a subproblems, each of size n/b
- The a subproblems are solved recursively, each in $T(\frac{n}{b})$
- The function f(n) represents the costs of dividing the problem and combining the results of the subproblems

The Master Method

- The Master Theorem
 - Let $a \ge 1$ and b > 1 be constants, and f(n) be a function. Given

$$T(n) = aT(\frac{n}{b}) + f(n)$$

- Then T(n) has the following asymptotic bounds:
 - If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$
 - If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \cdot \log_2 n)$
 - If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af\left(\frac{n}{b}\right) \leq cf(n)$ for some constant c < 1, then $T(n) = \Theta(f(n))$

The Master Method

- The Master Theorem
 - In each case, f(n) is compared with $n^{\log_b a}$
 - The larger of the two determines the solution to the recurrence
 - In the first case, $n^{\log_b a}$ is larger, so the solution is

$$T(n) = \Theta(n^{\log_b a})$$

f(n) must be polynomially smaller than $n^{\log_b a}$; then, we can use case 1

The Master Method

- Using the Master Method
 - Simply determine which case (if any) of the master theorem applies
 - Example 1

$$T(n) = 9T\left(\frac{n}{3}\right) + n$$

Here a = 9, b = 3, and f(n) = n, so

 $n^{\log_b a} = n^{\log_3 9} = n^2$

 $T(n) = \Theta(n^{\log_3 9}) = \Theta(n^2)$

Since $f(n)=O(n^{\log_3 9-\epsilon})$, where $\epsilon=1$, is polynomially smaller, we can use case 1

The Master Method

- Using the Master Method
 - Example 2

$$T(n) = T\left(\frac{2n}{3}\right) + 1$$

Here
$$a = 1$$
, $b = \frac{3}{2}$, and $f(n) = 1$, so

$$n^{\log_b a} = n^{\log_{3/2} 1} = n^0 = 1$$

$$T(n) = \Theta(n^{\log_b a} \cdot \log_2 n) = \Theta(1 \cdot \log_2 n) = \Theta(\log_2 n)$$

Since
$$f(n) = \Theta(n^{\log_b a}) = \Theta(1)$$
, we can use case 2

The Master Method

- Using the Master Method
 - Apply this to the Merge Sort and the Max-Subarray algorithms

$$T(n)=2T\big(\frac{n}{2}\big)+\Theta(n)$$
 Here $a=2$, $b=2$, and $f(n)=\Theta(n)$, so
$$n^{\log_b a}=n^{\log_2 2}=n$$
 Since $f(n)=\Theta(n)$, we can use case 2
$$T(n)=\Theta\big(n^{\log_b a}\cdot\log_2 n\big)=\Theta(n\cdot\log_2 n)$$

The Master Method

- Using the Master Method
 - Apply this to the Strassen's algorithms

$$T(n)=7T\left(\frac{n}{2}\right)+\Theta(n^2)$$
 Here $a=7$, $b=2$, and $f(n)=\Theta(n^2)$, so
$$n^{\log_b a}=n^{\log_2 7}$$
 Since $f(n)=O(n^{\log_2 7-\epsilon})$, where $\epsilon=0.81$, is polynomially smaller, we can use case 1
$$T(n)=\Theta(n^{\log_2 7})\in\Theta(n^{2.81})$$

The Expected Value

- The expected value (average) example
 - Suppose there are 4 students with heights 67, 68, 72, and 74 inches

Average height =
$$\frac{67 + 68 + 72 + 74}{4}$$
 = 70.25 inches

Suppose there are 100 students with height distribution:

	% of Students	Height	% of Students	Height
	25	67	35	72
	30	68	10	74
Average height = $67(0.25) + 68(0.3) + 72(0.35) + 74(0.1)$ = 69.75 inches				
Also referred to as a weighted average value.				

The Expected Value

 Suppose we have a probability space with the sample space

$$\{e_1,e_2,e_3,...,e_n\}$$
 and each outcome e_i has a real number $f(e_i)$, random variable, associated with it.

• The **expected value**, or average, of $f(e_i)$ is given by

$$f(e_1)p(e_1) + f(e_2)p(e_2) + \cdots + f(e_n)p(e_n)$$

also called **chance variable** or **stochastic**
variable

The Hiring Problem

- Need to hire a new office assistant
- Interview 1 candidate each day
- Decide either to hire the person or not
- Have to pay employment agency some fee to interview an applicant
- To hire a new person, you must fire the current office assistant and pay large hiring fees to the agency
- Commit to hire the best possible person

The Hiring Problem

- The cost model is not the running time
- Focus on the cost for interviewing and hiring
 - Similar analytical techniques as for running time
 - Counting number of times certain basic operations are executed
 - c_i = cost of interviewing (low)
 - $c_h = \text{cost of hiring (high)}$
 - \mathbf{m} = number of people hired
 - Total cost = $O(c_i n + c_h m)$

The Hiring Problem

- Pseudocode for Hire Assistant
 - Candidates for the job are numbered 1 through n
 - After interviewing candidate i, determine whether he/she is the best so far
 - Initialize with a dummy candidate 0, that is least qualified

```
hireAssistant(n)
1  best = 0
2  for i = 1 to n
3   interview candidate i
4   if candidate i is better than best
5   best = i
6   hire candidate i
```

The Hiring Problem

- Represents a model for a common computational paradigm
- Often need to find the max or min value in a sequence
 - Examine each element of the sequence
 - Maintain a current "winner"
- Worst case → Hire every candidate
 - Occurs if all candidates come in strictly higher quality (hire n times) \rightarrow Total cost of $O(c_h n)$

Probabilistic Analysis

- The use of probability to analyze problems
- Most common → analyze the running time of an algorithm
- Sometimes → use to analyze hiring cost
- Use knowledge of the distribution of the inputs
 - Average running time over all possible inputs → average-case running time

Probabilistic Analysis

- For the hiring problem:
 - Assume that applicants come in random order
 - There is a total order on the candidates
 - Can rank each candidate with a unique number from 1 to through n
 - Use rank(i) to denote the rank of applicant i
 - Higher rank → Better qualified
 - Thus, the ordered list (rank(1), rank(2), ..., rank(n)) is a permutation of the list (1, 2, ..., n) of applicants
- Uniform random permutation each of the possible n! permutations has equal probability

Probabilistic Analysis

- Probabilistic analysis → Need to look at distribution of inputs
 - Usually know very little about this distribution
 - Also may not be able to model it computationally
- Making the behavior of part of the algorithm random allows you to use probability and randomness to design and analyze algorithm

Randomized Algorithms

- For the hiring problem, there is no way to know whether the candidates are sent randomly
 - So, implement control over the order for interview
 - Get the list of all candidates in advance
 - Randomly select an applicant for each day
 - This way, we ensure that the order is random

Randomized Algorithms

- Randomized Algorithm → Combine the input with values produced by a random-number generator (e.g., a random method)
 - Call random (a, b) gives a random integer between a and b, inclusive
 - random (2, 5) returns either 2, 3, 4, or 5 (each with probability of ¹/₄)
 - Subsequent number returned is independent of the previous calls
- Running time of a randomized algorithm is referred to as an expected running time
 - Here, the algorithm itself makes the random choices

Indicator Random Variables

- Indicator Random Variables provide a convenient method for probabilities → expectations conversion
 - For an event A in a sample space S_i such variable can be defined as

$$I\{A\} = \begin{cases} 1 & \text{if } A \text{ occurs} \\ 0 & \text{if } A \text{ does not occur} \end{cases}$$

- For example, flipping a coin
 - Sample space is S={H, T}
 - Probability: $pr\{H\} = pr\{T\} = \frac{1}{2}$

Indicator Random Variables

 Define an indicator random variable X_H for coin coming up head

$$X_{H} = I\{H\}$$

$$= \begin{cases} 1 & \text{if } H \text{ occurs} \\ 0 & \text{if } T \text{ occurs} \end{cases}$$

• The expected number of heads from one coin flip is

$$E[X_H] = E[I\{H\}]$$
= 1 \cdot pr\{H\} + 0 \cdot pr\{T\}
= 1 \cdot \left(\frac{1}{2}\right) + 0 \cdot \left(\frac{1}{2}\right)
= \frac{1}{2}

Indicator Random Variables

- Thus, the expected value of an indicator random variable associated with an event A is equal to the probability that A occurs
- If $X_A = I\{A\}$, then $E[X_A] = pr\{A\}$
- Let $X_i = I\{\text{the } i^{th} \text{ flip results in the event } H\}$, then

$$X$$
 = total number of heads in the n coin flips
$$= \sum_{i=1}^{n} X_i$$

$$E[X] = E[\sum_{i=1}^{n} X_i]$$

Indicator Random Variables

Computation of E[X] gives

$$E[X] = E[\sum_{i=1}^{n} X_i] = \sum_{i=1}^{n} E[X_i]$$
$$= \sum_{i=1}^{n} \frac{1}{2} = \frac{n}{2}$$

- Applying this to the hiring problem
 - Let X be the random variable = number of times we hire a new office assistant. Therefore,

$$E[X] = \sum_{x=1}^{n} x \cdot pr\{X = x\}$$

But this calculation would be cumbersome

Indicator Random Variables

- Use indicator random variable to simplify the calculation
- Let X_i be the indicator random variable where the i^{th} candidate is hired

$$X_i = I\{\text{candidate } i \text{ is hired}\}$$

$$= \begin{cases} 1 & \text{if candidate } i \text{ is hired} \\ 0 & \text{if candidate } i \text{ is not hired} \end{cases}$$

Thus,

$$E[X_i] = pr\{\text{candidate } i \text{ is hired}\}$$

 Compute the probability that lines 5 and 6 of the hireAssistant(n) algorithm are executed

The Hiring Problem

- Pseudocode for Hire Assistant
 - Candidates for the job are numbered 1 through n
 - After interviewing candidate i, determine whether he/she is the best so far
 - Initialize with a dummy candidate 0, that is least qualified

hireAssistant(n)
1 best = 0

2 for i = 1 to n

3 interview candidate i

4 if candidate i is better than best

5 best = i

6 hire candidate i

Indicator Random Variables

- Candidate i is hired exactly when he/she is better than each of the previous 1 through i-1 person
 - Since they arrive in random order, any one is equally likely to be the "best-qualified" so far
 - Candidate i has a probability of $\frac{1}{i}$ of being hired. Thus,

$$E[X_i] = pr\{\text{candidate } i \text{ is hired}\} = \frac{1}{i}$$

and we can compute E[X] as shown below:

$$E[X] = E[\sum_{i=1}^{n} X_i] = \sum_{i=1}^{n} E[X_i]$$

$$= \sum_{i=1}^{n} {\binom{1}{i}}$$

$$= \ln n + O(1) \quad \text{(why ln } n\text{?)}$$

Mathematics – Natural Log

Natural Logarithm (ln) is log of base $e \approx 2.71828$

 $\ln x = \log_e x$: is the area under the curve $f(x) = \frac{1}{x}$ that lies between 1 and x

Indicator Random Variables

- So, even though n people are interviewed, only about ln n candidates get hired on average
- The algorithm hireAssistant(n) has an average-case hiring cost of

 $O(c_h \ln n)$

 This is significantly better than the worst-case hiring cost of

 $O(c_h n)$

Probabilistic Analysis

- Probabilistic analysis → distribution of inputs
- The algorithm is deterministic
 - For any particular input, the number of times a new assistant is hired is always the same
 - The number of times differs for different inputs, depending on the ranks of the various candidates
 - For rank list A1 = $\langle 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 \rangle \rightarrow$ hire 10 times
 - For rank list A2 = $\langle 10, 9, 8, 7, 6, 5, 4, 3, 2, 1 \rangle \rightarrow$ hire only 1 time
 - For rank list A3 = $\langle 5, 2, 1, 8, 4, 7, 10, 9, 3, 6 \rangle \rightarrow$ hire 3 times
 - Total cost depends on the number of hires
 - A1 is expensive, A2 is cheapest, and A3 is moderate

Randomized Algorithms

- Use randomized algorithm to ensure randomness (imposing the distribution)
 - Before running the algorithm, we randomly permute the candidates
 - Does not rely on the input distribution
 - The new applicants are still expect to be hired ln n times

Randomized Algorithms

- The algorithm is non-deterministic
 - Given the same input, like in A₃ list, the result is different each time we run the algorithm
 - Each execution depends on the random choices made
 - Thus, no particular input elicits its worst-case behavior
 - Worst-case only happens when you get an "unlucky" permutation, which results in the A1 list

Randomized Algorithms

- Modified pseudocode for Hire Assistant
 - First randomize the list of applicants

```
randomizedHireAssistant(n)
1 randomly permute the list of candidates
2 best = 0
3 for i = 1 to n
4 interview candidate i
5 if candidate i is better than best
6 best = i
7 hire candidate i
```

 The algorithm randomizedHireAssistant(n) has an expected hiring cost of

 $O(c_h \ln n)$

Randomly Permuting Arrays

- How to randomly permute an array
- One common method permute by sorting
 - Assign each element A[i] of the array a random priority P[i]
 - Sort the elements according to these priorities
 - Original array: $A = \langle 1, 2, 3, 4 \rangle$
 - Random priorities: $P = \langle 8, 2, 12, 5 \rangle$
 - Permuted array: $B = \langle 2, 4, 1, 3 \rangle$
 - The procedure is called permute by sorting

Randomly Permuting Arrays

Pseudocode for permuteBysorting

```
permuteBySorting(A)
1  n = A.length
2  let P[1...n] be a new array
3  for i = 1 to n
4  P[i] = random(1,n³)
5  sort A, using P as sort keys
```

- This method produces a uniform random permutation
 - Equally likely to produce every permutation of the numbers 1 through n
 - The probability of obtaining identity permutation is $\frac{1}{n!}$

Randomly Permuting Arrays

- A better method *randomize in place*
 - Permute the given array in place (take O(n) time)
 - In the i^{th} iteration, it chooses the element A[i] randomly from among elements A[i] through A[n]
 - Pseudocode for randomizeInPlace

```
randomizeInPlace(A)
1  n = A.length
2  for i = 1 to n
3   swap A[i] with A[random(i,n)]
```

This method also computes a uniform random permutation

Sample Problem

Prove the following statement on the previous slide:

Just prior to the i^{th} iteration of the for loop, for each possible (i-1)-permutation of the n elements, the subarray $A[1 \dots i-1]$ contains this (i-1)-permutation with probability

$$\frac{(n-i+1)!}{n!}$$

Randomly Permuting Arrays

ullet Recall that a ${\it k-permutation}$ on a set of n elements is a non-repeating sequence containing k elements of the set

$$\frac{n!}{(n-k)!}$$

• Just prior to the i^{th} iteration of the for loop, for each possible (i-1)-permutation of the n elements, the subarray $A[1 \dots i-1]$ contains this (i-1)-permutation with probability

$$\frac{(n-i+1)!}{n!}$$

 A randomized algorithm is often the simplest and most efficient way to solve a problem