Chapter 11.4 A Weakly Informative Prior

Jim Albert and Monika Hu

Chapter 11 Simple Linear Regression

Priors: review

- What does prior distribution do?
- ► What is the relationship between the prior and the posterior?
- What kinds of prior distributions we have used before?
- ▶ What prior distribution do you have in mind for the parameters in the simple linear regression model: $(\beta_0, \beta_1, \sigma)$?

When limited prior information is known

- Limited prior information about: the location of the regression parameters or the standard deviation
- ➤ To implement the Bayesian approach, we need to assign a prior distribution
- When limited prior information is known, we can assign a prior that has little impact on the posterior distribution: a weakly informative prior

A weakly informative prior: jointly and marginally

▶ Assume independence among the parameters $(\beta_0, \beta_1, \sigma)$

$$\pi(\beta_0, \beta_1, \sigma) = \pi(\beta_0, \beta_1)\pi(\sigma) \tag{1}$$

► A weakly informative prior on each parameter

Prior on the intercept β_0 and slope β_1

▶ Assume independence between β_0 and β_1 :

$$\pi(\beta_0, \beta_1) = \pi(\beta_0)\pi(\beta_1) \tag{2}$$

▶ Use a normal prior for each

$$\beta_0 \sim \text{Normal}(\mu_0, s_0)$$
 (3)
 $\beta_1 \sim \text{Normal}(\mu_1, s_1)$ (4)

Prior on the intercept β_0 and slope β_1

▶ Assume independence between β_0 and β_1 :

$$\pi(\beta_0, \beta_1) = \pi(\beta_0)\pi(\beta_1) \tag{2}$$

Use a normal prior for each

$$\beta_0 \sim \text{Normal}(\mu_0, s_0)$$
 $\beta_1 \sim \text{Normal}(\mu_1, s_1)$
(3)

- ▶ The choice of the standard deviation s_j in the normal prior reflects how confident the person believes in a prior guess of β_j
- If we have little information about the location of a regression parameter: choose a large value for the prior standard deviation s_j , e.g. Normal(0, 100)

Prior on sampling standard deviation σ

$$Y_i \mid \mu_i, \sigma \stackrel{ind}{\sim} \text{Normal}(\mu_i, \sigma)$$
 (5)

- $ightharpoonup \sigma$ represents the variability of the house price about the regression line
- It is typically hard to specify informative beliefs about a standard deviation

Prior on sampling standard deviation σ

$$Y_i \mid \mu_i, \sigma \stackrel{ind}{\sim} \text{Normal}(\mu_i, \sigma)$$
 (5)

- \blacktriangleright σ represents the variability of the house price about the regression line
- It is typically hard to specify informative beliefs about a standard deviation
- In Chapter 9 and Chapter 10, we a weakly informative prior for the standard deviation σ
- Here, we can also do

$$\phi = 1/\sigma^2 \sim \text{Gamma}(1,1) \tag{6}$$