Exploratory Data Analysis

Submitted by: Reet

Index:

- 1. About Exploratory Data Analysis
- 2. Analysing csv files

i. a.csv

ii. b.csv

iii. c.csv

iv. ct.csv

V. S.CSV

vi. tp.csv

About exploratory data analysis

Steps for Exploratory data analysis

- 1. Variable Identification: Numerical/Categorical
- 2. Summary of Numerical Variables
- 3. Statistical Summary of dataset
- 4. Graphical analysis
- 5. Null values and unique variables
- 6. Summary or conclusion from the data

Analysing the csv files

A. a.csv

<u>Variable Identification:</u> log_time, phone, status, type, product, pay_mode, marker <u>Categorical:</u> status, product, pay_mode

Numerical: type, marker

Neither numerical or categorical: phone, log_time

❖ <u>Summary of Numerical Variables:</u> to create an efficient algorithm, we should try to convert all categorical data i.e. object data type. I converted log_time into date_time.

Customer Prioritisation for Marketing

```
log_time object
phone float64
status object
type int64
product object
pay_mode object
marker int64
dtype: object
```

Statistical summary of dataset:

`	otational curimary or databot.							
	(770022, 7)							
		phone	type	marker				
	count	998814.000000	998822.000000	998822.000000				
	mean	260397.183060	1244.267067	1.623012				
	std	187624.002369	457.458217	2.865491				
	min	0.000000	1001.000000	-99.000000				
	25%	89754.250000	1001.000000	1.000000				
	50%	244574.500000	1002.000000	1.000000				
	75%	423747.000000	1002.000000	1.000000				
	max	607732.000000	2209.000000	10.000000				

Customer Prioritisation for Marketing

```
data.nunique()
In [36]:
Out[36]: log time 559772
         phone
                   607732
                    23
         status
                    21
         type
                     125
         product
         pay mode
                       62
         marker
                      6
         dtype: int64
         data.isnull().sum()
In [37]:
Out[37]: log time
                      0
         phone
                      8
                     0
         status
         type
                     0
                   668696
         product
         pay mode
                     775819
         marker
                      0
         dtype: int64
```

null values and unique values

- Summary and conclusion from data:
 - 1. What exactly is in the pay_mode column?
 - 2. Not interested users can be removed from the database?
 - 3. Already purchased can also be a new product potential
 - 4. Type has no further requirements
 - 5. Status need some modifications to simplify the unique values
 - 6. Not interested customers should be dropped

B) b.csv

Variable Identification:

Numerical: uuid, beacon_value, status

Categorical

Neither of them: beacon_type, log_date

Summary of numeric variables:

Size and statistics of the data

Summary and conclusion from the data:

- 1. Status column has no null values, any point in keeping it?
- 2. There are many unique values in beacon_type, what does each of them signify?

C) c.csv

Variable Identification:

Numerical: id, profile_submit_count, submit_count

Neither numerical or categorical: email, primary_phone, secondary_phone

Many null values in phone numbers Null values

Statiscal analysis of data

	id	email	primary_phone	profile_submit_count
count	2.295101e+06	2.295101e+06	1.502089e+06	2.295101e+06
mean	2.594772e+06	3.393918e+06	2.920364e+06	2.927417e+00
std	1.435092e+06	1.281969e+06	1.560694e+06	1.084325e+01
min	1.000000e+00	0.000000e+00	2.000000e+00	1.000000e+00
25%	1.285110e+06	2.580305e+06	1.799900e+06	2.000000e+00
50%	2.830071e+06	3.156446e+06	3.497062e+06	2.000000e+00
75%	3.868155e+06	4.638336e+06	3.926352e+06	3.000000e+00
max	4.867881e+06	5.554894e+06	4.869391e+06	9.842000e+03

Customer Prioritisation for Marketing

D) ct.csv

Variable identification: Numerical: amount, id, cid

Categorical: status

Time and date: timestamp

We can simply drop the rows with non confirmed payment status and and then drop the status column itself.

We can also visualise this dataset better if we combine it with a.csv

The amount paid is also not relevant to our work, so we can also drop the column

id cid amount count 4.174013e+06 4.174013e+06 4.174013e+06 mean 2.087048e+06 1.767756e+06 3.592679e+01 std 1.204940e+06 1.375565e+06 3.090433e+02 min 4.000000e+00 1.000000e+00 0.000000e+00 25% 1.043544e+06 5.536010e+05 0.000000e+00 50% 2.087049e+06 1.517702e+06 0.000000e+00 75% 3.130556e+06 2.748210e+06 0.000000e+00 max 4.174059e+06 4.867896e+06 1.301137e+05

Statistical summary of the data

E) s.csv

Variable Identification:

Categorical: gender, language, report_type, device

Numerical: uuid, status

Neither: phone, dob, email, log_date

Size and variable type

Required to plot a histogram to identify whether male or female buys the product more. And which language is used the most

5

	uuid	phone	status	email
count	9.095602e+06	9.094625e+06	9095602.0	9.094869e+06
mean	6.474746e+06	1.415220e+06	1.0	1.240107e+06
std	4.422480e+06	1.215990e+06	0.0	9.714803e+05
min	0.000000e+00	0.000000e+00	1.0	0.000000e+00
25%	2.790156e+06	2.984330e+05	1.0	3.941350e+05
50%	6.237638e+06	1.125327e+06	1.0	1.030454e+06
75%	9.048801e+06	2.339591e+06	1.0	2.018648e+06
max	1.915375e+07	4.007730e+06	1.0	3.259793e+06

Statiscal analysis of data

υυid	9095602			
phone	3399997			
status	1			
gender	6			
dob	36934			
language	17			
email	3259793			
report_type	81			
device	5			
log_date	8285461			
dtype: int64				
υυid	0			
phone	977			
status	0			
gender	4765			
dob	20			
language	398			
email	733			
report_type	70			
device	187			
log_date	0			
dtype: int64				
Process finis	hed with e	xit cod	de 0	

Unique and null

values

e) tp.csv

Variable identification: Numerical: ctid, status

Categorical: variant, language

Need to plot a graph to check which variant is subscribed more

T and ct can be combined for better results

size and statistical analysis of data