AMENDMENTS TO THE CLAIMS:

Please add the following claims 81 to 83:

Claims 1 to 37. (canceled)

38. (previously presented) An X-ray opaque glass with a composition, in mol %, consisting of:

$$SiO_2$$
 75 – 98

$$Yb_2O_3$$
 0.1 – 25

$$ZrO_2$$
 0 - 24.9.

Claim 39. (canceled)

40. (previously presented) The X-ray opaque glass as defined in claim 38, wherein said Yb_2O_3 is present in an amount of from 0.5 to 15 mol % and said ZrO_2 is present in an amount of from 0.5 to 15 mol %.

41. (previously presented) The X-ray opaque glass as defined in claim 38, wherein said Yb_2O_3 is present in an amount of from 1 to 15 mol %, and said ZrO_2 is present in an amount of from 1 to 15 mol %.

42. (previously presented) A X-ray opaque glass with a composition, in mol %, consisting of:

$$\begin{array}{cccc} SiO_2 & 75-98 \\ Yb_2O_3 & 0.1-25 \\ ZrO_2 & 0-24.9 \\ WO_3 & 0-24.9 \\ La_2O_3 & 0-24.9 \\ Nb_2O_5 & 0-24.9 \\ HfO_2 & 0-24.9 \\ Ta_2O_5 & 0-24.9 \\ Gd_2O_3 & 0-24.9 \\ Lu_2O_3 & 0-24.9 \\ Sc_2O_3 & 0-24.9 \\ Y_2O_3 & 0-24.9 \\ F_2 & 0-5. \end{array}$$

43. (previously presented) A X-ray opaque glass with a composition, in mol %, consisting of:

$$SiO_2$$
 75 - 98
 Yb_2O_3 0.1 - 25
 ZrO_2 0 - 24.9
 Li_2O 0 - < 10
 Na_2O 0 - < 10
 K_2O 0 - < 10,

wherein $\Sigma \text{ Li}_2\text{O}+\text{Na}_2\text{O}+\text{K}_2\text{O}$ is from 0 to < 10 mol %.

44. (previously presented) A X-ray opaque glass with a composition, in mol %, consisting of:

$$SiO_2$$
 75 - 98
 Yb_2O_3 0.1 - 25

$$ZrO_2$$
 0 - 24.9 MgO 0 - 10 CaO 0 - 10 SrO 0 - 10 BaO 0 - 10 ZnO 0 - 10,

wherein Σ MgO+CaO+SrO+BaO is from 0 to < 10 mol %.

45. (previously presented) A X-ray opaque glass with a composition, in mol %, consisting of:

$$SiO_2$$
 75 - 98
 Yb_2O_3 0.1 - 25
 ZrO_2 0 - 24.9
 TiO_2 0 - 10
 GeO_2 0 - 10
 P_2O_5 0 - 10,

wherein $\Sigma \text{ TiO}_2 + \text{GeO}_2 + \text{P}_2\text{O}_5$ is from 0 to < 15 mol %.

- 46. (previously presented) The X-ray opaque glass as defined in claim 42, containing at most five oxide ingredients.
- 47. (previously presented) The X-ray opaque glass as defined in claim 42, containing at most four oxide ingredients.

Claim 48. (canceled)

49. (previously presented) A glass powder with a mean grain size of up to 20 μm and a composition, in mol %, consisting of:

$$SiO_2$$
 75 - 98
 Yb_2O_3 0.1 - 25
 ZrO_2 0 - 24.9.

50. (previously presented) The glass powder as defined in claim 49, and having a silanized surface.

51. (withdrawn) A process of making a glass with a composition as defined in claim 38, said process comprising the steps of:

- a) preparing a glass batch from raw material ingredients;
- b) charging the glass batch into a melting vessel; and
- c) melting the glass batch in the melting vessel at a melting temperature of at least 1500°C;

whereby said glass is formed with said composition as defined in claim 38.

52. (withdrawn) The process as defined in claim 51, wherein said melting temperature is at least 1600°C.

53. (withdrawn) The process as defined in claim 51, wherein said melting vessel comprises solid iridium and/or an alloy containing iridium.

- 54. (withdrawn) The process as defined in claim 51, further comprising introducing high-frequency electromagnetic radiation into said glass batch in order to aid the melting of the glass batch.
- 55. (withdrawn) The process as defined in claim 54, wherein said high-frequency electromagnetic radiation has frequencies from 50 kHz to 2 MHz.
- 56. (withdrawn) The process as defined in claim 51, wherein at least one of said raw material ingredients is present in the glass batch in the form of a nanoscale powder prior to the charging of the glass batch into the melting vessel.
- 57. (withdrawn) The process as defined in claim 51, wherein at least one of said raw material ingredients is present in the glass batch in the form of a nanoscale powder dispersed and/or dissolved in a solvent, and further comprising introducing said glass batch into a mold and drying said raw material ingredients to form a green body.
- 58. (withdrawn) The process as defined in claim 57, wherein said drying of said raw material ingredients that were dissolved and/or dispersed and introduced into said mold is carried out with the aid of microwave radiation.
- 59. (withdrawn) The process as defined in claim 58, wherein said mold

comprises a non-wetting material.

- 60. (withdrawn) The process as defined in claim 59, wherein said non-wetting material is a fluoropolymer.
- 61. (withdrawn) The process as defined in claim 57, wherein said green body is a single entity or in milled form.
- 62. (withdrawn) The process as defined in claim 57, further comprising sintering said green body.
- 63. (withdrawn) The process as defined in claim 62, further comprising at least partially using waste heat produced in said melting for said sintering
- 64. (withdrawn) The process as defined in claim 57, further comprising milling, dissolving and/or dispersing said green body and subsequently drying to form a compact body.
- 65. (withdrawn) The process as defined in claim 64, further comprising sintering said compact body.
- 66. (withdrawn) The process as defined in claim 65, further comprising at least partially using waste heat produced in said melting for said sintering

- 67. (withdrawn) The process as defined in claim 64, wherein said green body is dissolved and/or suspended in an alkali metal lye or aqueous ammonia.
- 68. (withdrawn) The process as defined in claim 57, wherein said solvent is an alkali metal lye or aqueous ammonia.
- 69. (withdrawn) A dental glass consisting of the glass as defined in claim 38.
- 70. (withdrawn) A filler for a composite used for dental restoration, consisting of the glass as defined in claim 38.
- 71. (withdrawn) A composite used for dental restoration, said composite consisting of an epoxy resin and the glass as defined in claim 38, wherein said glass acts as a filler in the composite.
- 72. (withdrawn) A dental composition comprising the X-ray opaque glass as defined in claim 38.
- 73. (withdrawn) A method of using the glass as defined in claim 38 for an optical application.
- 74. (withdrawn) A method of using the glass as defined in claim 38 in display

technology.

75. (withdrawn) A method of using the glass as defined in claim 38 for a biomedical application.

76. (withdrawn) A substrate glass for a photovoltaic device, said substrate glass consisting of the glass as defined in claim 38.

77. (withdrawn) A lamp glass consisting of the glass as defined in claim 38.

78. (withdrawn) A target material for a plasma vapor deposition process, consisting of the glass as defined in claim 38.

79. (withdrawn) A glass fiber comprising the glass as defined in claim 38.

80. (withdrawn) A glass fiber for reinforcing concrete, said glass fiber consisting of the glass as defined in claim 38.

81. (new) A X-ray opaque glass with a composition, in mol %, consisting of:

$$SiO_2$$
 75 - 98
 Yb_2O_3 0.1 - 25
 ZrO_2 0 - 24.9
 WO_3 0 - 24.9
 La_2O_3 0 - 24.9

Nb_2O_5	0 - 24.9
HfO ₂	0 - 24.9
Ta ₂ O ₅	0 - 24.9
Gd_2O_3	0 - 24.9
Lu_2O_3	0 - 24.9
Sc ₂ O ₃	0 - 24.9
Y_2O_3	0 - 24.9
TiO ₂	0 - 10
GeO ₂	0 - 10
P_2O_5	0 - 10
Li ₂ O	0 - <10
Na ₂ O	0 - <10
K ₂ O	0 - <10
MgO	0 - 10
CaO	0 - 10
SrO	0 - 10
ВаО	0 - 10
ZnO	0 - 10
F_2	0 - 5;

wherein Σ TiO₂+GeO₂+P₂O₅ is from 0 to < 15 mol %, Σ Li₂O+ Na₂O+ K₂O is from 0 to < 10 mol %, and Σ MgO+CaO+SrO+BaO is from 0 to < 10 mol %.

82. (new) The X-ray opaque glass as defined in claim 81, in the form of a glass powder with a mean grain size of 0.2 μm to 20 μm .

83. (new) The X-ray opaque glass as defined in claim 82, wherein said glass powder has a silanized surface.