Lecture Notes: Abstract Algebra — (Course By: Alvaro Lozano-Robledo)

Thobias K. Høivik

March 14, 2025

Example

 $\mathbb{Z}/_2\mathbb{Z} \times \mathbb{Z}/_2\mathbb{Z} = \{(a \mod 2, b \mod 2) | a, b \in \{0, 1\}\}$

Proposition 1. Let $\langle G, \star_G \rangle$, $\langle H, \star_H \rangle$ be groups. Define $\langle G \times H, \star \rangle = \{(g, h) | g \in G \wedge h \in H\}$ with $(g, h) \star (g', h') = (g \star_G g', h \star_H h')$. Then $\langle G \times H, \star \rangle$ is a group (external indirect product of G & H).

Proof.

• \star is closed:

Let $g, g' \in G \land h, h' \in H$.

$$(g,h) \star (g',h') = (g \star_G g', h \star_H h')$$
$$g,g' \in G \land h, h' \in H \Rightarrow g \star_G g' \in G \land h \star_H h' \in H$$
$$\Rightarrow (g \star_G g', h \star_H h') \in G \times H$$

meaning $G \times H$ is closed under \star .

• Identity:

 (e_G, e_H) is the identity as \star is applying the respective binary operations of G and H componentwise and we know

$$(e_G \star_G g, e_H \star_H h) = (g \star_G e_G, h \star_H e_H) = (g, h)$$

So there exists an identity element of $G \times H$.

• Inverses:

Since G and H are groups, every $g \in G$ has an inverse $g^{-1} \in G$, and every $h \in H$ has an inverse $h^{-1} \in H$. Define the inverse of $(g,h) \in G \times H$ as (g^{-1},h^{-1}) . Then:

$$(g,h) \star (g^{-1},h^{-1}) = (g \star_G g^{-1}, h \star_H h^{-1}) = (e_G, e_H)$$

 $(g^{-1},h^{-1}) \star (g,h) = (g^{-1} \star_G g, h^{-1} \star_H h) = (e_G, e_H)$

So every element in $G \times H$ has an inverse.

• Associativity:

Since \star_G and \star_H are associative, for all $g, g', g'' \in G$ and $h, h', h'' \in H$,

$$((g,h)\star(g',h'))\star(g'',h'') = (g\star_G g',h\star_H h')\star(g'',h'')$$

$$= ((g\star_G g')\star_G g'',(h\star_H h')\star_H h'')$$

$$= (g\star_G (g'\star_G g''),h\star_H (h'\star_H h'')) \quad \text{(since } \star_G \text{ and } \star_H \text{ are associative)}$$

$$= (g,h)\star(g'\star_G g'',h'\star_H h'') = (g,h)\star((g',h')\star(g'',h''))$$

Thus, \star is associative.

Since \star satisfies closure, identity, inverses, and associativity, $G \times H$ is a group.

The Order of Elements in $G \times H$

Theorem 1. Let G and H be groups, $g \in G, h \in H$ of finite orders |g| = r, |h| = s. Then, |(g,h)| = lcm(r,s).

Proof. Let n = |(g, h)|, m = lcm(r, s). Then,

$$(g,h)^m = (g^m, h^m)$$

note that

$$lcm(r,s) = m \Rightarrow m = rk = sj$$
 where $s, j \in \mathbb{Z}$

SO

$$(g^m, h^m) = ((g^r)^k, (h^s)^j) = ((e_G)^k, (e_H)^j) = (e_G, e_H)$$

thus

$$n \leq m$$

Also

$$(g,h)^n = e, g^n = e \wedge h^s = e \Rightarrow r \mid n \wedge s \mid n$$

$$\Rightarrow lcm(r,s) \mid n \to m \le n$$

Since $m \leq n \wedge n \leq m$ we have m = n, completing the proof.