

CSE420 Compiler Design

Lecture: 3 Lexical Analysis (Part 2)

Finite State Automata (FSAs)

- AKA "Finite State Machines", "Finite Automata", "FA"
- A recognizer for a language is a program that takes as input a string x and answers "yes" if x is a sentence of the language and "no" otherwise.
 - □ The regular expression is compiled into a recognizer by constructing a generalized transition diagram called a finite automaton.
- One start state
- Many final states
- Each state is labeled with a state name
- Directed edges, labeled with symbols
- Two types
 - □ Deterministic (DFA)
 - □ Non-deterministic (NFA)

Nondeterministic Finite Automata

A nondeterministic finite automaton (NFA) is a mathematical model that consists of

- 1. A set of states S
- 2. A set of input symbols Σ
- 3. A transition function that maps state/symbol pairs to a set of states
- 4. A special state s_0 called the start state
- 5. A set of states F (subset of S) of final states

INPUT: string

OUTPUT: yes or no

Example – NFA: (a|b)*abb

$$S = \{ 0, 1, 2, 3 \}$$
 $s_0 = 0$
 $F = \{ 3 \}$
 $\Sigma = \{ a, b \}$

		input		
~		\mathbf{a}	b	
S	0	$\begin{pmatrix} 1 & 1 \end{pmatrix}$	(
t		{ 0 , 1 }	{ 0 }	
a	1		(3)	
t			{ 2 }	
e	2		{ 3 }	

i j

Switch state but do not use any input symbol

∈ (null) moves possible

Transition Table

Deterministic Finite Automata

A DFA is an NFA with the following restrictions:

- ∈ moves are <u>not</u> allowed
- For every state $s \in S$, there is one and only one path from s for every input symbol $a \in \Sigma$.

Since transition tables don't have any alternative options, DFAs are easily simulated via an algorithm.

Example – DFA : (a|b)*abb

Recall the original NFA:

DFA vs NFA

- Both DFA and NFA are the recognizers of regular sets.
- But time-space trade space exists
- DFAs are faster recognizers
 - □ Can be much bigger too...

Converting Regular Expressions to NFAs

Thompson's Construction

Empty string ε is a regular expression denoting $\{\varepsilon\}$

$$\frac{\text{start}}{i}$$
 ϵ

a is a regular expression denoting $\{a\}$ for any a in Σ

$$\underbrace{\text{start}}_{i}$$
 \underbrace{i} \underbrace{a}

Converting Regular Expressions to NFAs

If P and Q are regular expressions with NFAs N_p, N_q:

P | Q (union)

PQ (concatenation)

Converting Regular Expressions to NFAs

If Q is a regular expression with NFA N_q :

Q* (closure)

NFA Construction

RE: (a|b)*abb

NFA Construction

RE: (a|b)*abb

H.W: Construct NFA for the following RE

(ab*c) | (a(b|c*))

NFA Construction

id \rightarrow letter (letter | digit)*

End of slide