Maurycy Borkowski

26.03.2020

5/5 (10 punktów)

Obliczmy $\int e^{\sqrt{x}} \sqrt{x} dx$:

$$\int e^{\sqrt{x}} \sqrt{x} dx = \int e^t t 2t dt = 2 \int e^t t^2 dt = 2t^2 e^t - 2 \int 2t e^t = 2t^2 e^t - 4 \left(t e^t - \int e^t dt \right)$$
$$= 2t^2 e^t - 4 \left(t e^t - e^t \right) + C = 2x e^{\sqrt{x}} - 4\sqrt{x} e^{\sqrt{x}} + 4e^{\sqrt{x}} + C$$

Dowód. Podstawmy: $u = 2x^2, du = 4xdx$

$$\int_{0}^{1} 4x^{2} e^{2x^{2}} dx$$

$$\int_{0}^{2} 2u e^{u} \frac{du}{\sqrt{8u}} = \frac{2}{\sqrt{8}} \left[\int_{0}^{2} \sqrt{u} e^{u} du \right]$$

Korzystamy z $x \leqslant \sqrt{x}$ dla $0 \leqslant x \leqslant 1$ oraz $x \geqslant \sqrt{x}$ dla $x \geqslant 1$:

$$\frac{2}{\sqrt{8}} \left[\int_0^2 \sqrt{u} e^u du \right] \geqslant \frac{2}{\sqrt{8}} \left[\int_0^1 u e^u du + \int_1^2 \sqrt{u} e^{\sqrt{u}} du \right]$$

Łatwo policzyć $\int_0^1 ue^u du = 1$:

$$\frac{2}{\sqrt{8}} \left[1 + \int_{1}^{2} \sqrt{u} e^{\sqrt{u}} du \right]$$

Z górnego mamy, że wartość szukana to:

$$\frac{2}{\sqrt{8}}[1+e^{\sqrt{2}}4(2-\sqrt{2})-2e]$$

Dalej szacując e:

$$\int_0^1 4x^2 e^{2x^2} dx = \frac{2}{\sqrt{8}} [1 + e^{\sqrt{2}} 4(2 - \sqrt{2}) - 2e] > \frac{2}{\sqrt{8}} [1 + (2.7)^{\sqrt{2}} 4(2 - \sqrt{2}) - 2(2.7)] > (1.8)^2 > (e - 1)^2$$