Master Thesis Second Progress Report

Alhasan Abdellatif

March 2019

1 Brief Overview

1.1 The Idea

- 1 Use Cholesky decomposition to decompose RBF sparse kernel K, such that $K = LL^T$, where L is an $m \times m$ lower triangular matrix. We then observe that $\phi(x) \in \mathbb{R}^m$.
- 2- Use L to solve the primal problem using **LibLinear**, which is faster than LibSVM with RBF Kernel, often $O(m \times n)$ vs $O(m^2 \times n)$ or $O(m^3 \times n)$.

1.2 Classifying unseen data

We observe that that a test point $x \in \mathbb{R}^n$, whereas the coefficients obtained $w \in \mathbb{R}^m$. Hence, we can not pass a test set directly to LibLinear to predict.

We have to use $x \mapsto sgn(w^T\phi(x) - b)$ but we don't have the explicit expression of $\phi(x)$, one idea is to compute the dual variables λ , using (1), and use them to classify new points, in a similar way the dual problem does:

$$(L^T D)\lambda = W \tag{1}$$

$$x \mapsto sgn(\sum_{i=1}^{m} \lambda_i y_i k(x_i, x) - b)$$
 (2)

where D is a diagonal matrix for labels, y_i is the label of point x_i and $k(x_i, x)$ is the kernel value between point x_i and test point x.

Two observation can be made:

- 1- The linear system in (1) is triangular and sparse which is fast to solve.
- 2- The kernel used in (2), $k(x_i, x)$, can be RBF kernel or the sparse kernel, I believe using RBF kernel here is better, since we have finish training using the sparse kernel, and also in terms of speed and not degrading information.

2 Results

Key Results: Accuracy, Training Time and Sparsity of both K and L.

Key parameters : σ , C, l and kernel used in (2), either RBF or sparse RBF.

The tests are done on 4 data sets with binary classes, with different σ values and C = 1 and kernel used in (2) was RBF. The accuracy and the Sparsity are reported below.

${\rm datasets} ({\rm train/test})$	σ	RBF	Sparse	Sparsity	Sparsity
		Kernel Accuracy	Kernel Accuracy	on K	on L
svmguide1(3,089/4,000)	15	0.96	0.93	0.88	0.73
	8	0.96	0.95	0.96	0.78
$Magic \ Gamma(11,411/\ 7,608)$	25	0.84	0.86	0.82	0.57
	8	0.73	0.788	0.99	0.81
Parabola(1000/ 10000)	0.07	0.97	0.97	0.88	0.51
	0.03	0.97	0.97	0.97	0.65
	0.02	0.96	0.96	0.99	0.81
Cancer $(525/174)$	2	0.97	0.99	0.66	0.66
	0.7	0.89	0.95	0.92	0.88

The parameter l in the sparse kernel is set to the minimum odd number satisfying $l \ge \lfloor n/2 \rfloor + 1$.

I implemented the prediction rule in (2) for binary classes only, that why the datsets are binary, I will further develop it to multiclasses using one-vs-all concept.

2.1 Time comparison

Time is not reported yet but the experiments were done using regular matrices without exploiting the sparsity of K and L yet. That's why, the RBF kernel was faster in all cases than the sparse kernel. I have been working on applying best practice and using sparsity to reduce the training time of very large datasets and soon I will report the training time too.

The training time for the sparse kernel will include the time of the following:

- Computation of the sparse RBF kernel
- Cholesky decomposition
- Solving Optimization problem, LibLinear
- Solving the Linear system (2) to obtain λ .

2.2 Results conclusion

The accuracy of the sparse RBF kernel seems to be matching with that of the RBF kernel and for the appropriate choice of σ , more than 90% of the kernel K is sparse while maintaining the accuracy.

L is less sparser than K, I have applied AMD-similar method from a python package and it results in a more sparser L but I did not check yet how this affects the accuracy.

I tried both kernels RBF and Sparse RBF in (2), and their accuracy sounds reasonable, however RBF kernels is faster in all cases, that is why I chose it .