SEMANTIC TITLE
GENERATION FOR SONG
LYRICS WITH AI
MODELS AND PROMPT
ENGINEERING

Problem Description

Dataset and Model

Methodology

Results and Evaluation

Conclusion

Future Work

PROBLEM DESCRIPTION

Problem:

Every song has a message, a meaning, a feeling, a story to be told. But how do we condense that story into just a few words?

Why is it important?

Titles provide the first impression and transmit a certain motion, hence making a good title crucial for the listeners experience (and therefore marketing)

Challenges

Songs are often abstract and include figures of speech (e.g. metaphors, similes, etc.) which are difficult to capture by Al

Balancing creativity and semantic relevance

THE GOAL

- 1. Predict song titles based on lyrics using AI and different prompts
- 2. Evaluate the performances of both in terms of semantic similarity
- 3. Compare and contrast the emotional resonance of the (predicted) title

RESEARCH QUESTION

What is the impact of prompt engineering on the semantic accuracy, emotional resonance, and strength of AI-generated song titles?

```
Post Malone, Circles, Hollywood's Bleeding, 2019-08-30, oh oh
Post Malone, Better Now, beerbongs & bentleys, 2018-04-27, you
Post Malone,Wow.,Hollywood's Bleeding,2018-12-24,said she t
Post Malone, Stay, beerbongs & bentleys, 2018-04-27, it's true
Post Malone,Go Flex,Stoney (Deluxe),2016-04-21,lighting stog
Post Malone, Candy Paint, beerbongs & bentleys, 2017-04-14, yeah
Post Malone,Goodbyes,Hollywood's Bleeding,2019-07-05,post mal
Post Malone,Deja Vu,Stoney (Deluxe),2016-09-09,post malone ohd
Post Malone, Hollywood's Bleeding, Hollywood's Bleeding, 2019-09-
Post Malone,Feeling Whitney,Stoney (Deluxe),2016-12-09,i've bee
Post Malone, Paranoid, beerbongs & bentleys, 2018-04-27, never know
Post Malone,Take What You Want,Hollywood's Bleeding,2019-09-06,p
Post Malone, Over Now, beerbongs & bentleys, 2018-04-27, ahahah yeah
Post Malone,Too Young,Stoney (Deluxe),2015-04-23,i don't wanna di
Post Malone,No Option,Stoney (Deluxe),2016-12-09,refrain ho i look
Post Malone,Die For Me,Hollywood's Bleeding,2019-09-06,future pos
Post Malone, Rich & Sad, beerbongs & bentleys, 2018-04-27, hunnid thous
Post Malone,92 Explorer, beerbongs & bentleys, 2018-04-27, oohooh wow
Post Malone,Ball For Me,beerbongs & bentleys,2018-04-27,post malone
Post Malone,Saint-Tropez,Hollywood's Bleeding,2019-09-06,ooh yeah ye
Post Malone, Spoil My Night, beerbongs & bentleys, 2018-04-27, swae lee
Post Malone,Feel,Stoney (Deluxe),2016-12-09,post malone yeah yeah yea
Post Malone,Otherside,beerbongs & bentleys,2018-04-27,i been waitin'
Post Malone,Zack and Codeine,beerbongs & bentleys,2018-04-27,man my li
Post Malone,Leave,Stoney (Deluxe),2016-12-01,ohohohoh                        she said love m
Post Malone,A Thousand Bad Times,Hollywood's Bleeding,2019-09-06,yeah o
Post Malone,Same Bitches,beerbongs & bentleys,2018-04-27,post malone yea
Post Malone, Sugar Wraith, beerbongs & bentleys, 2018-04-27, i started with
Post Malone,Enemies,Hollywood's Bleeding,2019-09-06,post malone used to h
Post Malone,Blame It On Me,beerbongs & bentleys,2018-04-27,i used to say
Post Malone,Patient,Stoney (Deluxe),2016-11-18,yeah yeah yeah yeah i kno
Post Malone,On the Road,Hollywood's Bleeding,2019-09-06,post malone mm mm m
Post Malone, Takin' Shots, beerbongs & bentleys, 2018-04-27, drinkin' all night
```

Post Malone, rockstar, beerbongs & bentleys, 2017-09-15, polypost Malone, White Iverson, Stoney (Deluxe), 2015-02-04, dou Post Malone, Congratulations, Stoney (Deluxe), 2016-11-04, polypost Malone, Psycho, beerbongs & bentleys, 2018-02-23, post malone, I Fall Apart, Stoney (Deluxe), 2016-12-09, ooh i

DATASET & MODEL

<u>DATA</u>

- 21 ARTISTS
- 12,054 TOTAL SONGS
- ARTIST, TITLE, ALBUM, DATE, LYRIC, YEAR
- SIZE: 22MB

MODEL: PEGASUS-7B-SLERP.Q4 K S.GGUF

- PARAMETERS: 7 BILLION
- TRANSFORMER BASED LM
- TRAINED ON WEB PAGES, BOOKS, ARTICLES, ETC.
- SIZE: 3.9GB
- SLERP (SPHERICAL LINEAR INTERPOLATION)

	Prompt	ldea
Prompt 1	"Analyze the following song lyrics and generate a concise title using only words or phrases that appear directly in the lyrics: {lyrics}"	Very detailed and instructive query
Prompt 2	"Find a title: {lyrics}"	Very vague
Prompt 3	"What would you name the following songs based on its lyrics: {lyrics}"	Instructive query giving it some freedom
Prompt 4	"Summarize the following lyrics in a few key words: {lyrics}"	Titles are often sort of summaries

Predicted Title Score Actual Title

OUTPUT 1

OUTPUT 2

OUTPUT 3

OUTPUT 4

METHODOLOGY: SEMANTIC SIMILARITY SCORE

	Semantic Similarity Score	
Why?	Allow for a measure of performance	
Step 1	Generate embeddings for the original title and predicted title using the SentenceTransformer model	
Step 2	Use cosine similarity to compute the similarity score:	
	$cosine similarity = \frac{A \cdot B}{\ A\ \cdot \ B\ }$	

- Entirely different words
- Not too different in terms of meaning

METHODOLOGY: EMOTIONAL RESONANCE

	Emotional Resonance Score	
Why?	To quantify the sentiment expressed by the title, allowing for an additional measure of performance.	
Step 1	Perform sentiment analysis on the title using nlptown/bert-base-multilingual-uncased-sentiment	
Step 2	Transform sentiment into continuous values in $[-1,1]$ $sentiment\ score = \frac{output\ -3}{2} \cdot confidence$	
	e.g.: $sentiment\ score = \frac{4-3}{2} \cdot 0.24 = 0.12$	

Artist	Title	Stars (score)	Emotional Resonance Score
Ed Sheeran	Homeless	1 (0.65)	-0.65
Coldplay	Glass of Water	4 (0.24)	0.12
BTS	First Love	5 (0.59)	0.59

RESULTS: SIMILARITY SCORE

RESULTS: EXAMPLES

Artist	Title	Predicted Title	Semantic Similarity
Ariana	my heart belongs to	Heart Belongs to	0.862453
Grande	daddy (live)	Daddy	

RESULTS: EMOTIONAL RESONANCE

RESULTS: EXAMPLES

Artist	Title	Predicted Title	Title Emotion Score	Predicted Title Emotion Score
Taylor Swift	Closest To A Cowboy	Cowboy Caviar	0.394301	0.320776

RESULTS

	Title Average Absolute Emotional Resonance Score	Predicted Title Average Absolute Emotional Resonance Score
Prompt 1	0.33	0.32
Prompt 2	0.35	0.33
Prompt 3	0.36	0.38
Prompt 4	0.36	0.35

CONCLUSION

- Small (7b parameter) models can achieve reasonable degree of semantic similarity when predicting titles
- Phrasing prompts can have significant impact on outcome: Queries that are more descriptive and clear, without much room of freedom, generally produce better outcomes.
- Humans remain better at expressing emotion: Al model struggles to express emotions even when explicitly told to do so.

FUTURE WORK

- Apply same approach to larger models (e.g.GPT4o)
- Explore adding audio features (intonation, tempo, instrumentation)

- Fine-tune model: Training on song data, integrate emotional resonance score
- Expand application to movies, books, research papers, advertisements, etc. based on perceived emotional resonance

