Disks

國立成功大學資訊工程系

Department of Computer Science and Information Engineering, NCKU

Handbook and Manual pages

- Official guide can be found at
 - Adding Disks
 https://docs.freebsd.org/en/books/handbook/disks/#disks-adding
 - Tuning Disks
 https://docs.freebsd.org/en/books/handbook/config/#configtuning-disk

Outline

- Interface
- Geometry
- Add new disks
 - Installation procedure
 - Filesystem check
 - o Add a disk
- RAID
 - o GEOM

Disk Interfaces & Protocols

- IDE (or ATA) (since 1986)
 - Integrated Device Electronics (or Advanced Technology Attachment)
 - Renamed to PATA (Parallel ATA) after SATA is out
- SCSI (since 1986)
 - Small Computer Systems Interface
- SATA (since 2003)
 - Serial ATA
 - AHCI, Advanced Host Controller Interface
- SAS (since 2004)
 - Serial Attached SCSI
- NVMe (Non-Volatile Memory Express) (since 2011)
 - Non-Volatile Memory Host Controller Interface Specification
- USB (Universal Serial Bus)
 - Mass Storage Class (MSC)
 - Bulk Transfer

Disk Interfaces - ATA & SATA

- ATA (AT Attachment)
 - \circ ATA2
 - PIO, DMA
 - LBA (Logical Block Addressing)
 - ATA3, Ultra DMA/33/66/100/133
 - ATAPI (ATA Packet Interface)
 - CDROM, TAPE
 - Only one device can be active at a time
 - SCSI support overlapping commands, command queuing, scatter-gather I/O
 - Master-Slave

Primary Master (0) / Slave (1)

- o 40-pin ribbon cable
- Secondary Master (2) / Slave (3)

- SATA
 - Serial ATA
 - o SATA-1 1.5Gbit/s, SATA-2 3Gbit/s, SATA-3 6Gbit/s
 - o SATA 3.1, SATA 3.2 16Gbit/s, SATA 3.3, eSATA, mSATA

Disk Interfaces - ATA & SATA Interfaces

• ATA interface and its cable

• SATA interface and its cable

Credit: Dsimic

Credit: User Smial on de.wikipedia

Disk Interfaces - USB

• IDE/SATA to USB converters

Disk Geometry (1)

- Sector
 - Individual data block
- Track
 - o circle
- Cylinder
 - o circle on all platters
- Position
 - o CHS:

Cylinder,

Head (0, 1, ...)

Sector

Disk Geometry (2)

40G HD

- o 4866 cylinders, 255 heads
- o 63 sectors per track, 512 bytes per sector

$$\circ$$
 512 * 63 * 4866 * 255 = $40,024,212,480$ bytes

- \circ 1KB = 1024 bytes
- \circ 1MB = 1024 KB = 1,048,576 bytes
- \circ 1GB = 1024 MB = 1,073,741,824 bytes

10³ vs. 2¹0...

CHS & LBA

- CHS: Cylinder-Head-Sector
 - Not useful for block device other than spinning disk
- LBA: Logical Block Addressing
 - First block -> LBA0, Second block -> LBA1, ...
- Conversion
 - HPC: Heads per Cylinder
 - SPT: Sectors per Track
 - LBA = $(C \times HPC + H) \times SPT + (S 1)$
 - $C = LBA \div (HPC \times SPT)$
 - $H = (LBA \div SPT) \mod HPC$
 - $S = (LBA \mod SPT) + 1$

Disk Installation Procedure (in FreeBSD...)

Disk Installation Procedure (1)

- The procedure involves the following steps:
 - Connecting the disk to the computer
 - IDE: master/slave
 - SATA
 - SCSI: ID, terminator
 - Power, hot-plug or not
 - Creating device files
 - Auto created by devfs(5)
 - Formatting the disk Format (metadata + data) vs. fast format (metadata only)
 - Low-level format
 - Manufacturer diagnostic utility
 - Kill all address information and timing marks on platters
 - Repair bad sectors -> mark the bad sectors and don't use them!

Disk Installation Procedure (2)

- Partitioning (and Labeling) the disk
 - Allow the disk to be treated as a group of independent data blocks
 - o e.g. partitions for root, home, swap
 - Former Suggestions:
 - /var, /tmp
 - Separated partition (for backup issue)
 - Make a copy of root filesystem for emergency
- Establishing logical volumes
 - Combine multiple partitions into a logical volume
 - Related to RAID
 - Software RAID technology
 - GEOM: $geom(4) \cdot geom(8)$
 - \blacksquare ZFS: $zpool(8) \cdot zfs(8) \cdot zdb(8)$

Disk Installation Procedure (3)

- Creating UNIX filesystems within disk partitions
 - Use "newfs(8)" to install a filesystem for a partition
 - Establish all filesystem components
 - A set of inode storage cells
 - A set of data blocks
 - A set of superblocks

Disk Installation Procedure (4)

- Superblock contents
 - The length of a disk block
 - Size and location of inode table
 - Disk block map
 - Usage information
 - Other filesystem's parameters
- sync
 - The *sync(2) system call* forces a write of dirty (modified) buffers in the block buffer cache out to disk.
 - The *sync(8) utility* can be called to ensure that all disk writes have been completed before the processor is halted in a way not suitably done by reboot(8) or halt(8).

Disk Installation Procedure (5)

- mount
 - O Bring the new partition (with a filesystem) to the filesystem tree (as a sub-tree)
 - mount point can be any directory (empty)
 - o \$ mount /dev/ad1s1e /home2
- Setting up automatic mounting
 - Automount at boot time
 - /etc/fstab
 - \$ mount -t ufs /dev/ad2s1a /backup
 - \$ mount -t cd9600 -o ro,noauto /dev/acd0 /cdrom

Mount CD Also for ISO image file

<pre>\$ cat /etc/fstab</pre>				dump(8)	· 🗶	fsck(8)
# Device	Mountpoint	Fstype	Options		Dump	Pass#
/dev/ad0s1b	none	swap	SW		0	0
/dev/ad2s1b	none	swap	SW		0	0
/dev/ad0s1a	/	ufs	rw		1	1
/dev/acd0	/cdrom	cd9660	ro,noaut	0	0	0
/dev/ad2s1a	/backup	ufs	rw,noaut	0	2	2
csduty:/bsdhome	/bsdhome	nfs	rw,noaut	0	0	0
						Usually: 2, 1 for root;
Mount from the network; will talk about it in "NFS"						0: No need to check

Disk Installation Procedure (6)

- Setting up swapping on swap partitions
 - o swapon(8), swapoff(8), swapctl(8)
 - \$ swapon -a
 - mount all partitions for swap usage
 - o swapinfo(8), pstat(8)

\$ swapinfo				
Device	1K-blocks	Used	Avail	Capacity
/dev/da0p2	2097152	42772	2054380	2%

fsck – check and repair filesystem (1)

- System crashes will cause
 - Inconsistency between memory image and disk contents
- fsck(8)
 - Examine filesystem listed in /etc/fstab with (pass > 0 & option in "rw", "rq", "ro")
 - Automatically correct the following damages:
 - Unreferenced inodes
 - Inexplicably large link counts
 - Unused data blocks not recorded in block maps
 - Data blocks listed as free but used in file
 - Incorrect summary information in the superblock
 - \blacksquare <u>fsck(8)</u> \cdot <u>fsck_ffs(8)</u>
 - ffsinfo(8): dump metadata1: clean (ro)0: dirty (rw)

fsck – check and repair filesystem (2)

- Run fsck in manual to fix serious damages
- There is no guarantee that fsck will fully recover your disk.

- Blocks claimed by more than one file
- Blocks claimed outside the range of the filesystem
- Link counts that are too small
- Blocks that are not accounted for
- Directories that refer to unallocated inodes
- Other errors
- fsck will suggest you the action to perform
 - o Delete, repair, ...

Adding a disk to FreeBSD (1)

- 1. Check disk connection
 - Look <u>system boot message</u>

```
ada3: 238475MB < Hitachi HDS722525VLAT80 V360A6MA > at ata1-slave UDMA100
```

Line, speed

- 1. Use gpart(8) to create a partition on the new HD
 - \$ gpart create -s GPT ada3
 - \$ gpart add -t freebsd-ufs -a 1M ada3
- 2. Use <u>newfs(8)</u> to construct new UFS file system
 - \$ newfs -U /dev/ada3p1
- 3. Make mount point and mount it
 - # mkdir /home2
 - # mount -t ufs /dev/ada3p1 /home2
 - `-t ufs` is omittable
 - \$ df
- 4. Edit /etc/fstab

Adding a disk to FreeBSD (2)

- If you forget to enable soft-update when you add the disk
 - \$ umount /home2
 - \$ tunefs -n enable /dev/ada3p1
 - \$ mount -t ufs /dev/ada3p1 /home2
 - o \$ mount

```
/dev/ada0p2 on / (ufs, local, soft-updates)
/dev/ada1p1 on /home (ufs, local, soft-updates)
procfs on /proc (procfs, local)
/dev/ada3p1 on /home2 (ufs, local, soft-updates)
```

Reference: NYCU CSCC SA Course

RAID - (1)

- Redundant Array of Inexpensive Disks
 - A method to combine several physical hard drives into one logical e.g. HD1, HD2 vs D:\ in windows
- Depending on the type of RAID, it has the following benefits:
 - Fault tolerance
 - Higher throughput
 - Real-time data recovery
- RAID Level
 - o RAID 0, 1, 0+1, 2, 3, 4, 5, 6
 - Hierarchical RAID

RAID - (2)

- Hardware RAID
 - There is a dedicate controller to take over the whole business
 - RAID Configuration Utility after BIOS
 - Create RAID array, build Array
- Software RAID
 - o GEOM
 - CACHE、CONCAT、ELI、JOURNAL、LABEL、MIRROR、
 MULTIPATH、NOP、PART、RAID3、SHSEC、STRIPE、VIRSTOR
 - o ZFS
 - JBOD、STRIPE
 - MIRROR
 - RAID-Z、RAID-Z2、RAID-Z3

RAID 0 (normally used)

(500GB+500GB=1TB)

- Minimum number of drives: 2 e.g. HD1 (500GB), HD2 (500GB) vs. D:\ in windows (1TB)
- Advantage
 - Performance increase is proportional to n theoretically
 - Simple to implement parallel file io from/to different HDs
- Disadvantage
 - No fault tolerance
- Recommended applications
 - Non-critical data storage
 - Application requiring high bandwidth (such as video editing)

RAID 1 (normally used)

(500GB+500GB=500GB)

- Mirror data into several disks
- Minimum number of drives: 2
- Advantage
 - 100% redundancy of data
- Disadvantage
 - 100% storage overage
 - Moderately slower write performance
- Recommended application Caused by double check mechanisms on data...
 - Application requiring very high availability (such as home)

RAID 0+1 (normally used)

([(500GB+500GB)+(500GB+500GB)=1TB)

- Combine RAID 0 and RAID 1
- Minimum number of drives: 4

RAID1, RAID1 Then RAID0 above it

- Hamming Code ECC Each bit of data word
- Advantage
 - o "On the fly" data error correction

Read, check if correct, then read

- Disadvantage
 - Inefficient
 - Very high ratio of ECC disks to data disks
- Recommended applications
 - No commercial implementations exist / not commercially viable

RAID1 if two HDs

- Parallel transfer with Parity
- Minimum number of drives: 3
- Advantage
 - Very high data transfer rate
- Disadvantage
 - Transaction rate equal to that of a single disk drive at best
- Recommended applications
 - Any application requiring high throughput

Save parity

- Similar to RAID3
- RAID 3 vs. RAID 4
 - Byte Level vs. Block Level
 - Block interleaving
 - Small files (e.g. 4k)

Block normally 512bytes (4k for WD HDs)

RAID 5 (normally used)

- Independent Disk with distributed parity blocks
- Minimum number of drives: 3

Origin from RAID3

- Advantage Parallel file I/O
 - Highest read data rate
 - Medium write data rate
- Disadvantage
 - Disk failure has a medium impact on throughput
 - Complex controller design
 - When one disk failed, you have to rebuild the RAID array

RAID 6 (normally used)

RAID 6 A Blocks B Blocks C Blocks D Blocks O parity BO A1 **B1** 1 parity A parity AZ D1 2 parity **B** parity D2 D3 3 parity C parity

- Similar to RAID5
- Minimum number of drives: 4
- 2 parity checks, 2 disk failures tolerable.

Slower than RAID5 because of storing 2 parities...

Appendix

國立成功大學資訊工程系

GEOM

Modular Disk Transformation Framework

國立成功大學資訊工程系

Reference: NYCU CSCC SA Course

Handbook and Manual pages

- Official guide can be found at
 - https://docs.freebsd.org/en/books/handbook/geom/

GEOM - (1)

Support

- ELI <u>geli(8)</u>: cryptographic GEOM class
- JOURNAL gjournal(8): journaled devices Journalize (logs) before write
- LABEL glabel(8): disk labelization
- MIRROR gmirror(8): mirrored devices Software RAID1
- STRIPE gstripe(8): striped devices Software RAID0
- \circ NOP gnop(8): for setting metadata and testing
- GATE ggatec(8), ggated(8), ggatel(8): share over network

GEOM - (2)

- GEOM framework in FreeBSD
 - Major RAID control utilities
 - Kernel modules (/boot/kernel/geom_*)

Logical /volumes

- "manual" or "automatic"
- Metadata in the <u>last sector of the providers</u>

- {glabel,gmirror,gstripe,g*} load/unload
 - device GEOM_* in kernel config
 - geom_*_load="YES" in /boot/loader.conf
 - (1) On demand load/unload kernel modules
 - · load automatically at booting
 - (2) Build-in kernel and recompile

GEOM - (3)

• LABEL Bundle by name instead of bundle by provider

Used for GEOM provider labelization

Kernel

device GEOM_LABEL

■ geom_label_load="YES"

o glabel (for new storage)

\$ glabel label -v usr da2

■ \$ newfs /dev/label/usr

\$ mount /dev/label/usr /usr

■ \$ glabel stop usr ← S

■ \$ glabel clear da2 ←

e.g. ad0s1d => usr

glabel label ... => Create permanent labels glabel create ... => Create transient labels

/dev/label/usr

Stop using the name

Clear metadata on provider

UFS label (for an using storage)

■ \$ tunefs -L data /dev/da4s1a

"data" is a name

■ \$ mount /dev/ufs/data /mnt/data

GEOM - (4)

MIRROR

- Kernel
 - device GEOM_MIRROR
 - geom_mirror_load="YES"
- o gmirror
 - \$ gmirror label -v -b round-robin data da0
 - \$ newfs /dev/mirror/data
 logical volume called "data", using HD: da0, ...
 - \$ mount /dev/mirror/data /mnt
 - \$ gmirror insert data da1 ← Add a HD into the volume
 - \$ gmirror forget data ← Remove non-existent HDs
 - \$ gmirror insert data da1
 - \$ gmirror stop data
 - \$ gmirror clear da0

GEOM - (5)

- STRIPE
 - Kernel
 - device GEOM_STRIPE
 - geom_stripe_load="YES"
 - o gstripe
 - \$ gstripe label -v -s 131072 data da0 da1 da2 da3
 - \$ newfs /dev/stripe/data
 - \$ mount /dev/stripe/data /mnt
 - \$ gstripe stop data
 - \$ gstripe clear da0

Create logical volume "data", which stripe da0~da3 HDs

GEOM - (6)

• ELI

Passphrase and keyfile on USB

```
# dd if=/dev/random of=/mnt/pendrive/da2.key bs=64 count=1
# geli init -s 4096 -K /mnt/pendrive/da2.key /dev/da2
Enter new passphrase:
Reenter new passphrase:
# geli attach -k /mnt/pendrive/da2.key /dev/da2
Enter passphrase:
# dd if=/dev/random of=/dev/da2.eli bs=1m
# newfs /dev/da2.eli
# mount /dev/da2.eli /mnt/secret
...
# umount /mnt/secret
# geli detach da2.eli
```

• Encrypt swap

```
# dd if=/dev/random of=/dev/ada0s1b bs=1m
# geli onetime —d ada0s1b
# swapon /dev/ada0s1b.eli
```