主管 审核 签字

## 哈尔滨工业大学(深圳) 2018 学年秋季学期

## 高等数学 A 试 颞

| 题号  | _ | = | Ш | 四 | 五 | 六 | 七 | 八 | 九 | + | 总分 |
|-----|---|---|---|---|---|---|---|---|---|---|----|
| 得分  |   |   |   |   |   |   |   |   |   |   |    |
| 阅卷人 |   |   |   |   |   |   |   |   |   |   |    |

注意行为规范 遵守考场纪律

一、填空题(每小题2分,共4小题,满分8分)

1. 曲线 
$$y = \frac{2x^3}{1+x^2}$$
 的渐近线方程是\_\_\_\_\_\_.

2. 曲线 
$$y = e^{2(x-1)} + x$$
 在点 (1,2) 处的曲率  $K =$ \_\_\_\_\_\_

3. 定积分 
$$\int_{-1}^{1} \left( x e^{\sqrt{1+x^4}(\sin x)^2} + x^2 \right) dx =$$
\_\_\_\_\_\_.

4. 设函数 
$$f(x)$$
 在区间  $[0,1]$  上连续,且满足  $f(x) = \frac{1}{1+x^2} + x \left( \int_0^1 f(x) \, dx \right)$ ,则

二、选择题(每小题 2 分,共 4 小题,满分 8 分,每小题中给出的四个选项中只 有一个是符合题目要求的,把所选项的字母填在题后的括号内)

1. 设
$$\alpha(x) = \int_0^{5x} \frac{\sin t}{t} dt$$
,  $\beta(x) = \int_0^{\sin x} (1+t)^{\frac{1}{t}} dt$ , 则当 $x \to 0$ 时, $\alpha(x)$ 是 $\beta(x)$ 的

- ). (A) 高阶无穷小;
- (A) 高阶无穷小; (B) 低阶无穷小; (C) 同阶但不等价无穷小; (D) 等价无穷小.

2. 设 f(x) 是连续函数,则曲线段  $y = \int_a^x f(t) dt$  ( $a \le x \le b$ )的弧长 s 的计算公式 为(

(A) 
$$s = \int_a^b \sqrt{x^2 + (f(x))^2} dx$$
; (B)  $s = \int_a^b \sqrt{x^2 + (f'(x))^2} dx$ ;

(B) 
$$s = \int_a^b \sqrt{x^2 + (f'(x))^2} dx$$
;

(C) 
$$s = \int_a^b \sqrt{1 + (f(x))^2} \, dx$$
; (D)  $s = \int_a^b \sqrt{1 + (f'(x))^2} \, dx$ .

(D) 
$$s = \int_a^b \sqrt{1 + (f'(x))^2} \, dx$$
.

3. 已知反常积分  $\int_0^1 \frac{1}{r^{\alpha-1}} dx + \int_1^{+\infty} \frac{1+\sqrt{x}}{r^{\alpha}} dx$  收敛,则常数 $\alpha$  的取值区间是(

- (A)  $1 < \alpha < 2$ ; (B)  $\frac{3}{2} < \alpha < 2$ ; (C)  $1 < \alpha < \frac{3}{2}$ ; (D)  $\frac{3}{2} \le \alpha \le 2$ .
- 4. 设 $F(x) = \int_0^x x f(x-t) dt$ ,f(x)为连续函数,f(0) = 0, f'(x) > 0,则y = F(x)在 $(0,+\infty)$ 内是(
  - (A) 单调减少且为向上凸的; (B) 单调增加且为向上凸的;
- - (C) 单调减少且为向下凸的; (D) 单调增加且为向下凸的.

(注: 向上凸又称为凸, 向下凸又称为凹)

- 三、解答下列各题(共五小题,满分18分)
  - 1. (4分) 求函数  $f(x) = xe^{x^2+3x+1}$  的单调区间与极值,并求出该函数在区间[-2,2]上的最 大值和最小值.

2. (5 分) 设  $f(x) = \begin{cases} x + x^2, x < 0, \\ xe^{x^2}, x \ge 0 \end{cases}$  计算定积分  $\int_1^3 f(x-2) dx$ , 并计算由曲线段 y = f(x)

 $(-1 \le x \le 0)$  与直线 y = x + 1 及 y 轴所围成图形的面积.

| ı         | : : : : : : : : : : : : : : : : : : : : | 3. (3 分)计算不定积分 $\int \frac{\sqrt{4x^2-1}}{x} dx$ .                                      |
|-----------|-----------------------------------------|-----------------------------------------------------------------------------------------|
| 授课教师      |                                         | 4. (3分) 求极限 $\lim_{n\to\infty}\sum_{i=1}^n\frac{i}{n^2}\ln\left(1+\frac{i}{n}\right)$ . |
| <b>左右</b> | 密                                       | $\frac{1}{n \to \infty} \sum_{i=1}^{n} n^2 \prod_{i=1}^{n-1} n^i$                       |
|           | :                                       | 5. (3分)设函数 $y = y(x)$ 满足微分方程 $xy' = xe^x - y$ ,且 $y(1) = 2$                             |
| 班号        | ·<br>:<br>封<br>:<br>:<br>:              |                                                                                         |
| 學院        |                                         |                                                                                         |

 $, \ \, \vec{\Re} \, y = y(x) \, .$ 

四、 (4分) 证明等式 
$$\int_0^a x^3 f(x^2) dx = \frac{1}{2} \int_0^{a^2} x f(x) dx$$
, 其中  $f(x)$  连续,  $a > 0$ , 并计算 
$$\int_0^{\sqrt{\frac{\pi}{2}}} x^3 \sin(x^2) dx$$
.

- 五、(5 分) 一容器的内侧是由曲线段  $x^2+y^2=a^2$  ( $x \ge 0, y \le \frac{a}{2}, a > 0$ ) 绕 y 轴旋转一周而成的曲面,
  - (1) 求容器的容积;
  - (2) 若将容器内盛满的水从容器中全部抽出,至少需要作多少功? (长度单位: m,重力加速度 g  $m/s^2$ ,水的密度  $\rho$   $kg/m^3$ )

