Lecture 1: Asymptotics, Recurrences, Elementary Sorting

Instructor: Saravanan Thirumuruganathan

Outline

- Introduction to Asymptotic Analysis
 - Rate of growth of functions
 - Comparing and bounding functions: O, Θ, Ω
 - Specifying running time through recurrences
 - Solving recurrences
- Elementary Sorting Algorithms
 - Bubble, Insertion and Selection sort
 - Stability of sorting algorithms

In-Class Quizzes

- URL: http://m.socrative.com/
- Room Name: 4f2bb99e

Analyzing Algorithms

Time Complexity:

 Quantifies amount of time an algorithm needs to complete as a function of input size

Space Complexity:

 Quantifies amount of space an algorithm needs to complete as a function of input size

Function: Input size Vs {Time, Space}

Analyzing Algorithms

Best Case Complexity:

 of an algorithm is the function that determines the minimum number of steps taken on any problem instance of size n

Worst Case Complexity:

• ... maximum ...

Average Case Complexity:

• ... average ...

Function: Input size Vs {Time, Space}

Rate of Growth of Functions

Growth Function T(n)

- Input is positive integers n = 1, 2, 3, ...
- Asymptotically positive (returns positive numbers for large n)
- How does T(n) grow when n grows?
- n is size of input
- T(n) is the amount of time it takes for an algorithm to solve some problem

Rate of Growth of Functions

Quiz!

Question:

- You have a machine that can do million operations per second.
- Your algorithm requires n^2 steps
- Suppose size of input is 1 million
- How long does the algorithm takes for this input?

Quiz!

Answer:

- Algorithm will take $(1M)^2$ operations
- Machine can do 1M operations per second
- Running time = $\frac{(1M)^2}{1M} = 1M$ seconds
- 1M seconds = $\frac{1}{60*60*24}$ = Approximately 12 days

Why does it matter?

Running time of different algorithms for various input sizes

	п	$n \log_2 n$	n^2	n^3	1.5 ⁿ	2^n
n = 10	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec
n = 30	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	18 min
n = 50	< 1 sec	< 1 sec	< 1 sec	< 1 sec	11 min	36 years
n = 100	< 1 sec	< 1 sec	< 1 sec	1 sec	12,892 years	10 ¹⁷ years
n = 1,000	< 1 sec	< 1 sec	1 sec	18 min	very long	very long
n = 10,000	< 1 sec	< 1 sec	2 min	12 days	very long	very long
n = 100,000	< 1 sec	2 sec	3 hours	32 years	very long	very long
n = 1,000,000	1 sec	20 sec	12 days	31,710 years	very long	very long

 $^{^1\}mbox{Table 2.1}$ from K&T Algorithm Design. Very long means it takes more than 10^{25} years.

Why does it matter?

- The "Big Data" era
- Can Google/Facebook/... use it?

Functions in Real World

This is how functions look in the real world!²

²Skiena Lecture notes

Solution: Analyze Asymptotic Behavior

- Analyze the asymptotic behavior of algorithms
- What happens to f(n) when $n \to \infty$?

	T(n)=1000n	$T(n) = n^2$
n = 10	10 <i>K</i>	100
n = 100	100 <i>K</i>	10 <i>K</i>
n = 1000	1 <i>M</i>	1 <i>M</i>
n=10K	10 <i>M</i>	100 <i>M</i>
n = 100K	100 <i>M</i>	10 <i>B</i>

Solution: Bound the functions

- Identify known functions (such as $n, n^2, n^3, 2^n, ...$) that can "bound" T(n)
- How to bound? asymptotic upper, lower and tight bounds
- Find a function f(n) such that T(n) is **proportional** to f(n)
- Why proportional (as against equal)?
- Ignore aspects such as programming language, programmer capability, compiler optimization, machine specification etc

O, Ω, Θ^3

³CLRS book

Big-O Notation

Upper bounds: T(n) is O(f(n)) if there exists **constants** c > 0 and $n_0 \ge 0$ such that $T(n) \le c \cdot f(n)$ for all $n \ge n_0$

⁴From K&T: Algorithm Design

Big-O Notation

Upper bounds: T(n) is O(f(n)) if there exists constants c > 0 and $n_0 \ge 0$ such that $T(n) \le c \cdot f(n)$ for all $n \ge n_0$

Example:
$$T(n) = 32n^2 + 17n + 1$$
. Is $T(n)$ in $O(n^2)$?

- Yes! Use c = 50, $n_0 = 1$
- Simple Proof:

$$T(n) \le 32n^2 + 17n + 1$$

 $\le 32n^2 + 17n^2 + 1n^2$
 $\le 50n^2$
 $\le cn^2$
 $c = 50$ and $n_0 = 1$

Note: Not necessary to find the smallest c or n_0

Quiz!

Example:
$$T(n) = 32n^2 - 17n + 1$$
. Is $T(n)$ in $O(n^2)$?

Big-O Notation

Example:
$$T(n) = 32n^2 - 17n + 1$$
. Is $T(n)$ in $O(n^2)$?

- Yes! Use c = 50, $n_0 = 1$
- Simple Proof:

$$T(n) \le 32n^2 - 17n + 1$$

 $\le 32n^2 + 17n + 1$
 $\le 32n^2 + 17n^2 + 1n^2$
 $\le 50n^2$
 $\le cn^2$
 $c = 50$ and $n_0 = 1$

Quiz!

Example:
$$T(n) = 32n^2 - 17n + 1$$
. Is $T(n)$ in $O(n^3)$?

Big-O Notation

Example: $T(n) = 32n^2 - 17n + 1$. Is T(n) in $O(n^3)$?

- Yes! Use c = 50, $n_0 = 1$
- Simple Proof:

$$T(n) \le 32n^2 - 17n + 1$$

 $\le 32n^2 + 17n + 1$
 $\le 32n^2 + 17n^2 + 1n^2$
 $\le 50n^2$
 $\le 50n^3$
 $\le cn^3$
 $c = 50$ and $n_0 = 1$

Quiz!

Example:
$$T(n) = 32n^2 + 17n + 1$$
. Is $T(n)$ in $O(n)$?

Big-O Notation

Example:
$$T(n) = 32n^2 + 17n + 1$$
. Is $T(n)$ in $O(n)$?

- No!
- Proof by contradiction

$$32n^2 + 17n + 1 \le c \cdot n$$

 $32n + 17 + \frac{1}{n} \le c$
 $32n \le c$ (ignore constants for now)
 $n \le c$ (ignore constants for now)

This inequality does not hold for n = c + 1!

Set Theoretic Perspective

- O(f(n)) is set of all functions T(n) where there exist positive constants c, n_0 such that $0 \le T(n) \le c \cdot f(n)$ for all $n \ge n_0$
- Example: $O(n^2) = \{ n^2, \dots, 32n^2 + 17n + 1, 32n^2 17n + 1, \dots, n, 2n, \dots \}$
- Notation: T(n) = O(f(n)) or $T(n) \in O(f(n))$

Limit based Perspective

- T(n) is O(f(n)) if $\limsup_{n\to\infty} \frac{T(n)}{f(n)} < \infty$
- Example: $32n^2 + 17n + 1$ is $O(n^2)$

$$\limsup_{n \to \infty} \frac{T(n)}{f(n)} = \frac{32n^2 + 17n + 1}{n^2}$$
$$= 32 + \frac{17}{n} + \frac{1}{n^2}$$
$$= 32 < \infty$$

Big-Omega Notation

Lower bounds: T(n) is $\Omega(f(n))$ if there exists constants c > 0 and $n_0 \ge 0$ such that $T(n) \ge c \cdot f(n)$ for all $n \ge n_0$

⁵From K&T: Algorithm Design

Big-Omega Notation

Lower bounds: T(n) is $\Omega(f(n))$ if there exists **constants** c > 0 and $n_0 \ge 0$ such that $T(n) \ge c \cdot f(n)$ for all $n \ge n_0$

Example:
$$T(n) = 32n^2 + 17n + 1$$
. Is $T(n)$ in $\Omega(n^2)$?

- Yes! Use c = 32, $n_0 = 1$
- Simple Proof:

$$T(n) \ge 32n^2 + 17n + 1$$
 $\ge 32n^2$
 $\ge cn^2$
 $c = 32$ and $n_0 = 1$

Big-Theta Notation

Tight bounds: T(n) is $\Theta(f(n))$ if there exists constants $c_1 > 0$, $c_2 > 0$ and $n_0 \ge 0$ such that $c_1 \cdot f(n) \le T(n) \le c_2 \cdot f(n)$ for all $n \ge n_0$

⁶From K&T: Algorithm Design

Big-Theta Notation

Tight bounds: T(n) is $\Theta(f(n))$ if there exists constants $c_1 > 0$, $c_2 > 0$ and $n_0 \ge 0$ such that $c_1 \cdot f(n) \le T(n) \le c_2 \cdot f(n)$ for all $n \ge n_0$

Example:
$$T(n) = 32n^2 + 17n + 1$$
. Is $T(n)$ in $\Omega(n^2)$?

- Yes! Use $c_1 = 32$, $c_2 = 50$ and $n_0 = 1$
- Combine proofs from before

Theorem: For any two functions f(n) and g(n), we have $f(n) = \Theta(g(n))$ if and only if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$

Limit based Definitions

Let
$$\limsup_{n\to\infty} \frac{T(n)}{f(n)} = c$$

- If $c < \infty$ then T(n) is O(f(n)) (typically c is zero)
- If c > 0 then T(n) is $\Theta(f(n))$ (also O(f(n)) and $\Omega(f(n))$)
- If $c = \infty$ then T(n) is $\Omega(f(n))$

Some Big-O tips

- Big-O is one of the most useful things you will learn in this class!
- Big-O ignores constant factors through c
 - Algorithm implemented in Python might need a larger c than one implemented in C++
- Big-O ignores small inputs through n_0
 - Simply set a large value of n_0
- Suppose T(n) is O(f(n)). Typically, T(n) is messy while f(n) is simple
 - $T(n) = 32n^2 + 17n + 1$, $f(n) = n^2$
- Big-O hides constant factors. Some times using an algorithm with worser Big-O might still be a good idea (e.g. sorting, finding medians)

Survey of Running Times

Complexity	Name	Example
O(1)	Constant time	Function that returns a constant
		(say 42)
$O(\log n)$	Logarithmic	Binary Search
O(n)	Linear	Finding Max of an array
$O(n \log n)$	Linearithmic	Sorting (for e.g. Mergesort)
$O(n^2)$	Quadratic	Selection sort
$O(n^3)$	Cubic	Floyd-Warshall
$O(n^k)$	Polynomial	Subset-sum with k elements
$O(2^n)$	Exponential	Subset-sum with no cardinality
		constraints

Dominance Rankings⁷

- $n! \gg 2^n \gg n^3 \gg n^2 \gg n \log n \gg n \gg \log n \gg 1$
- Exponential algorithms are useless even at n >= 50
- Quadratic algorithms at around $n \ge 1M$
- $O(n \log n)$ at around $n \ge 1B$

⁷Skiena lecture notes

Closer Look at T(n)

- So far we assumed someone gave us T(n)
- What is *n*? (Program Analysis)
- How do we get T(n)? (Recurrences)

Program Analysis

```
for i=1 to n
{
    constant time
    operations
}
```

```
for i=1 to n
{
    for j=1 to n
    {
        constant time
        operations
    }
}
```

Recurrences

- Typically programs are lot more complex than that
- Recurrences occur in recursion and divide and conquer paradigms
- Specify running time as a function of n and running time over inputs of smaller sizes
- Examples:
 - fibonacci(n) = fibonacci(n-1) + fibonacci(n-2)
 - $T(n) = 2T(\frac{n}{2}) + n$
 - T(n) = T(n-1) + n

Solving Recurrences

- Unrolling
- Guess and prove by induction (aka Substitution)
- Recursion tree
- Master method

Unrolling

Let
$$T(n) = T(n-1) + n$$
. Base case: $T(1) = 1$

$$T(n) = T(n-1) + n$$

$$= n + T(n-1)$$

$$= n + n - 1 + T(n-2)$$

$$= n + n - 1 + n - 2 + T(n-3)$$

$$= n + n - 1 + n - 2 + n - 3 + \dots + 4 + 3 + 2 + 1$$

$$= \frac{n(n-1)}{2}$$

$$= 0.5n^2 - 0.5n$$

$$= O(n^2)$$

Quiz!

Solve
$$T(n) = 2T(n-1)$$
. Base case: $T(1) = 1$

Quiz!

Solve
$$T(n) = 2T(n-1)$$
. Base case: $T(1) = 1$

$$T(n) = 2T(n-1)$$

$$= 2(2T(n-2))$$

$$= 2(2(2T(n-3)))$$

$$= 2^{3}T(n-3)$$

$$= 2^{i} \dots 2T(n-i)$$

$$= 2^{n}$$

$$= O(2^{n})$$

Recursion Tree

$$T(n) = T(\frac{2n}{3}) + T(\frac{n}{3}) + cn$$

8

⁸From CLRS

Logarithms⁹

- Logarithm is an inverse exponential function
- $b^x = n$ implies $x = \log_b n$
- If b = 2, logarithms reflect how many times we can double something until we get n or halve something till we get 1
- Example: $2^4 = 16$, $\log_2 16 = \lg 16 = 4$
- Example: You need $\lg 256 = 8$ bits to represent [0, 255]
- Identities:
 - $\bullet \log_b(xy) = \log_b(x) + \log_b(y)$
 - $\log_b a = \frac{\log_c a}{\log_c b}$
 - $\log_b b = 1$ and $\log_b 1 = 0$

⁹Skiena Lectures