

RA-SGG: Retrieval-Augmented Scene Graph Generation Framework via Multi-Prototype Learning

Kanghoon Yoon, Kibum Kim, Yeonjun In, Jaehyeong Jeon, Donghyun Kim, Chanyoung Park

Department of Industrial & Systems Engineering KAIST ykhoon08@kaist.ac.kr

Problem Statement

Scene Graph Generation

- Scene Graph Generation (SGG) aims to detecting objects within images and predicting relationships between them.
 - Each object including bounding box information represents a node of the scene graph
 - Each predicates represents an edge of the scene graph

Problem Statement

Scene Graph Generation

Scene Graph Generation (SGG) faces two major challenges:

It leads to training a SGG model that predicts majority classes

Model become confused with semantically ambiguous predicates

These lead to bias towards head predicates and poor fine-grained relationship detection!

Limitation of Existing SGG Works

Existing SGG works rely on single-label classification formulation of the problem

<cat, on, table> ?
<cat, lying on, table> ?
<cat, laying on, table> ?

- However,
 - it forces model to select just one predicate while suppressing others due to the semantic ambiguity.
 - Ignores the nature of natural language where multiple predicates can describe same relationship.

We argue that addressing the long-tailed problem and semantic ambiguity is difficult under the single-label classification formulation of SGG problem.

Main Idea of Our Work (RA-SGG)

RA-SGG reframes SGG as multi-label classification with partial annotation

Utilize semantically similar predicates in the visual semantic embedding space!

Identify potentially multi-labeled instances and augment the predicate labels

Our Formulation of the SGG Problem

We reframe SGG as multi-label classification with partial annotation

- Assume that we have only partial (single) annotations among multiple annotations.
 - i.e., the predicates from true unbiased data distribution is $y_i^* \in \{0,1\}^{N_p}$ $(\sum_i y_i \ge 1)$.
 - However, we only have the predicates of observed samples $y_i \in \{0,1\}^{N_p}$ $(\sum_i y_i = 1)$
- To obtain the unbiased model, we can minimize the following estimated loss called inverse propensity scored loss as follows:

$$\mathcal{L}_{ips} = -\sum_{i=1}^{N_p} \underbrace{P(\mathbf{y}_i = 1 | \mathbf{y}_i^* = 1)^{-1}}_{\text{inverse propensity score}} \mathbf{y}_i \log \mathbf{\hat{y}}_i$$

- Instead of directly minimizing this inverse propensity-scored loss, we will estimate this loss through retrieval-augmented framework.
 - We estimate the loss by finding and augmenting more samples based on inverse propensity.

Pipeline of RA-SGG

Retrieval Augmented Scene Graph Generation Framework

Phase 1. Train Prototype Embedding Network using GT Scene Graph

- Generates relation features through fusion layer, which is applied to the subject-object features.
- Minimize distance between relation features with their ground truth prototype

Pipeline of RA-SGG

Retrieval Augmented Scene Graph Generation Framework

Phase 2. Train Prototype Embedding Network using GT Scene Graph and Augmented Label

- Find semantically similar instances from the established relation memory bank.
- Minimize distance between relation features with their ground truth prototype and the prototype of the augmented label

RA-SGG

Relation memory bank

- Memory bank includes key-value pair, which consists of the relation embedding ${\bf r}$ and its GT predicate ${\bf p}$
 - i.e., memory bank = $\{(r_1, p_1), (r_2, p_2), ..., (r_i, p_i), ..., (r_M, p_M)\}$
- ullet Given an image, we obtains the relation embedding ullet between subject and object features using SGG models like PE-Net.
- Retrieve the top-K relevant relation instances from the memory bank using cosine similarity between relation embeddings
 - Given query embedding \mathbf{r} , obtain $(\mathbf{r}_1^{ret}, \mathbf{p}_1^{ret}), (\mathbf{r}_2^{ret}, \mathbf{p}_2^{ret}), \dots, (\mathbf{r}_K^{ret}, \mathbf{p}_K^{ret})$

RA-SGG

How can we obtain reliable multi-labeled instances?

- Given retrieved instances $(\mathbf{r}_1^{ret}, \mathbf{p}_1^{ret}), (\mathbf{r}_2^{ret}, \mathbf{p}_2^{ret}), \dots, (\mathbf{r}_K^{ret}, \mathbf{p}_K^{ret}), \dots$ we use label inconsistency score to identify potential multi-label instances.
- Label Inconsistency Score computes the Euclidean distance $d(\cdot)$ between \mathbf{p}^{gt} and $\overline{\mathbf{p}}^{ret}$.
 - It measures discrepancy between ground-truth and averaged retrieved predicates $\overline{\mathbf{p}}^{ret}$
 - It helps maintain reliability of pseudo-labels

• We finally define single-labeled instance and multi-labeled instance as follows:

$$\mathcal{D}_{\text{single}} \leftarrow \{(\mathbf{s}_i, \mathbf{p}_i, \mathbf{o}_i) | d(\mathbf{p}^q, \bar{\mathbf{p}}^{\text{ret}}) < \tau, \forall (\mathbf{s}_i, \mathbf{p}_i, \mathbf{o}_i) \in \mathcal{D}_{\text{Tr}} \}$$

$$\mathcal{D}_{\text{multi-}} \leftarrow \{(\mathbf{s}_i, \mathbf{p}_i, \mathbf{o}_i) | d(\mathbf{p}^q, \bar{\mathbf{p}}^{\text{ret}}) \geq \tau, \forall (\mathbf{s}_i, \mathbf{p}_i, \mathbf{o}_i) \in \mathcal{D}_{\text{Tr}} \}$$

RA-SGG

$\mathcal{L}_{ips} = -\sum_{i=1}^{N_p} \underbrace{P(\mathbf{y}_i = 1 | \mathbf{y}_i^* = 1)^{-1}}_{\text{inverse propensity score}} \mathbf{y}_i \log \mathbf{\hat{y}}_i$

Unbiased Augmentation

How can we select the augmented predicates?

- We compute averaged inverse propensity of retrieved instances
 - The propensity of each predicate is the frequency in the training data
 - The averaged inverse propensity of retrieved instances

$$w = \mathsf{Softmax}(\sum_{k=1}^{K} s_k^{\mathsf{ret}} \mathbf{p}_k^{\mathsf{ret}})$$

- This inverse propensity encourage RA-SGG to sample tail predicates rather than head predicates.
- Note that some predicates such as includes extremely small number of samples in the training data
 - E.g., "flying in" includes less than 10 samples in the training data.

• We argue that inverse propensity-based augmentation strategy is more effective compared to minimizing L_{ips} . 11

Experimental settings and datasets

Dataset

- Visual Genome (150 objects, 50 predicates)
- GQA (200 objects, 100 predicates)

Evaluation Protocol

- Predcls: Predict predicate class given GT object bounding boxes, and their GT object classes are given
- SGCls: Predict predicate class and object classes given GT object bounding boxes
- SGDet: Predict predicate classes, object classes, and bounding boxes

Backbone: ResNeXt-101-FPN with Faster R-CNN

Metric: Recall@K, meanRecall@K, and Harmonic mean of previous two metrics (F@K)

Result on Visual Genome Dataset

В	Methods	Predicate Classification			Scene Graph Classification			Scene Graph Detection		
В		R@50/100	mR@50/100	F@50/100	R@50/100	mR@50/100	F@50/100	R@50/100	mR@50/100	F@50/100
Specific	KERN(Chen et al. 2019)cvpr:19	65.8/67.6	17.7/19.2	27.9/29.9	36.7/37.4	9.4/10.0	15.0/15.8	27.1/29.8	6.4/7.3	10.4/11.7
	BGNN(Li et al. 2021)cvpr ² 1	59.2/61.3	30.4/32.9	40.2/42.8	37.4/38.5	14.3/16.5	20.7/23.1	31.0/35.8	10.7/12.6	15.9/18.6
	DT2ACBS(Desai et al. 2021)iccv ² 1	23.3/25.6	35.9/ 39.7	28.3/31.1	16.2/17.6	24.8/27.5	19.6/21.5	15.0/16.3	22.0/24.0	17.8/19.4
	HL-Net(Lin et al. 2022)cvpr ²²	67.0/68.9	- /22.8	- /34.3	42.6/43.5	-/13.5	- /20.6	33.7/38.1	- /9.2	- /14.8
	HetSGG(Yoon et al. 2023)AAAI'23	57.8/59.1	31.6/33.5	40.9/42.8	37.6/38.7	17.2/18.7	23.6/25.2	30.0/34.6	12.2/14.4	17.3/20.3
	SQUAT(Jung et al. 2023)cvpr ²³	55.7/57.9	30.9/33.4	39.7/42.4	33.1/34.4	17.5/18.8	22.9/24.3	24.5/28.9	14.1/16.5	17.9/21.0
Motif	Motif(Zellers et al. 2018)cvpr18	64.6/66.0	15.2/16.2	24.6/26.0	38.0/38.9	8.7/9.3	14.2/15.0	31.0/35.1	6.7/7.7	11.0/12.6
	TDE(Kaihua et al. 2020)cvpr ²⁰	46.2/51.4	25.5/29.1	32.9/37.2	27.7/29.9	13.1/14.9	17.8/19.9	16.9/20.3	8.2/9.8	11.0/13.2
	DLFE(Chiou et al. 2021) _{MM'21}	52.5/54.2	26.9/28.8	35.6/37.6	32.3/33.1	15.2/15.9	20.7/21.5	25.4/29.4	11.7/13.8	16.0/18.8
	NICE(Li et al. 2022)cvpr ²²	55.1/57.2	29.9/32.3	38.8/41.3	33.1/34.0	16.6/17.9	22.1/23.5	27.8/31.8	12.2/14.4	17.0/19.8
	GCL(Dong et al. 2022)cvpR ² 22	42.7/44.4	36.1/38.2	39.1/41.1	26.1/27.1	20.8/21.8	23.2/24.1	18.4/22.0	16.8/19.3	17.6/20.6
	IETrans(Zhang et al. 2022)ECCV'22	54.7/56.7	30.9/33.6	39.5/42.2	32.5/33.4	16.8/17.9	22.2/23.3	26.4/30.6	12.4/14.9	16.9/20.0
	CFA (Li et al. 2023)1CCV'23	54.1/56.6	35.7/38.2	43.0/45.6	34.9/36.1	17.0/18.4	22.9/24.4	27.4/31.8	13.2/15.5	17.8/20.8
	ST-SGG(Kim et al. 2024a)ICLR'24	53.9/57.7	28.1/31.5	36.9/40.8	33.4/34.9	16.9/18.0	22.4/23.8	26.7/30.7	11.6/14.2	16.2/19.4
PE-Net	PE-Net [†] (Zheng et al. 2023)cvpr ²³	64.9/67.2	31.5/33.8	42.4/45.0	39.4/40.7	17.8/18.9	24.5/25.8	30.7/35.2	12.4/14.5	17.7/20.4
	IETrans [†] (Zhang et al. 2022)ECCV'22	49.3/51.8	33.5/36.0	39.9/42.5	31.2/32.3	18.3/19.4	23.1/24.2	24.2/28.4	13.7/16.2	17.5/20.6
	CFA [†] (Li et al. 2023)iccv ²³	57.8/61.6	30.0/33.2	39.5/43.1	36.2/37.1	15.9/18.2	22.1/24.4	25.6/29.8	14.4/17.1	18.4/21.7
	RA-SGG	62.2/64.1	36.2 /39.1	45.7/48.6	38.2/39.1	20.9/22.5	27.0/28.6	26.0/30.3	14.4/17.1	18.5/21.9

Table 1: Performance (%) of state-of-the-art SGG models on Visual Genome (Krishna et al. 2017). F@K is the harmonic mean of mR@50/100 and R@50/100. † denotes the result produced by us using their official code.

Result on GQA 200 Dataset

Ablation Study of RA-SGG

Model	Pred	licate Classifica	tion	Scene Graph Classification			
1,10401	R@50/100	mR@50/100	F@50/100	R@50/100	mR@50/100	F@50/100	
Vanilla PE-Net	64.9/67.2	31.5/33.8	42.4/45.0	39.4/40.7	17.8/18.9	24.5/25.8	
RA-SGG w/o select.	64.4/66.4	33.4/36.4	44.0/47.0	38.5/39.4	19.6/20.9	26.0/27.3	
RA-SGG w/o IPSS	64.6/66.7	32.9/35.1	43.6/46.0	38.6/39.5	18.6/19.8	25.1/26.3	
RA-SGG	62.2/64.1	36.2/39.1	45.7/48.6	38.2/39.1	20.9/22.5	27.0/28.6	

Table 3: Ablation study of RA-SGG.

Conclusion

- The paper reformulates Scene Graph Generation (SGG) as a multi-label classification problem with partial annotation, offering a novel perspective that aligns with natural language's ability to describe the same relationship in multiple ways.
- RA-SGG successfully addresses core SGG challenges by using retrieval-augmentation to discover latent fine-grained predicates while maintaining performance on general predicates, avoiding the common trade-off in previous approaches.
- The framework demonstrates substantial improvements across all predicate types by leveraging retrieval-based multi-label discovery, showing the effectiveness of considering multiple valid predicate descriptions for a single relationship

Thank you for listening!