Det the K^{th} Betti number of a sp. cpx X i's $\beta_{K}(X) = d_{1}m \left(H_{K}(X) \right)$

for: $\beta_o(X) = \# \{path components of X\}$

(Note: a path component is a max'e path conected subset).

If let $C = \{\chi_1, \dots, \chi_m\}$ be the path components of χ . We will show that $H_o(\chi) = V_{\xi_2}(C)$.

Start by defining a linear map L: Zo(X) - V_{F2}(e) on basis vectors by

 $L(V) = X_j \quad \text{s.t.} \quad V \in X_j \quad \text{extend lihearly} \quad L \text{ is surj}.$ If we show $\text{Ker}(L) = B_0 = \text{Im}(\mathfrak{F}_i)$ we are done.

1. $\operatorname{im}(\partial_{i}) \subseteq \operatorname{ker}(L)$.

 \forall basis vector $\forall w \in C$, $L(\Im_1(\forall w)) = L(\forall) + L(w)$, but $L(\forall) = L(w)$ Since \forall is path conected to w by $\forall w$, so $L(\forall) + L(w) = 0$.

2. Ker(L) = Im(2,).

let VE Ker(L). Then V= V,+...+Ve where

V_j are refrices of X. $L(v) = L(v_1) + \cdots + L(v_k) = 0$.

So each path component is mapped to an even number of times. Feverite $V = V_1^{(1)} + \cdots + V_{2k_1}^{(1)} + V_1^{(2)} + \cdots + V_{2k_2}^{(n)} + \cdots + V_{2k_n}^{(m)} + \cdots + V_{2k_n}^{(m$

So $V_1^{(1)} + V_2^{(1)} \in Im(0,1)$. Induct.

B₁(X) count "independent 1-d loops".

(look up fundamental group of X).

B2(X) comps indp 2-d "Voids".