Зад. 1 Нека $n \in \mathbb{N} \setminus \{0,1,2\}$. Даден е алгоритъм ALG-1, чийто вход е масив $A[1,2,\ldots,n]$ от цели числа, две по две различни. Докажете, че алгоритъмът връща второто най-голямо число от масива.

```
ALG-1(A[1,2,...,n]:integers)
  1 \mathfrak{m} \leftarrow \max\{A[1], A[2]\}
      s \leftarrow \min\{A[1], A[2]\}
  3
      for i \leftarrow 3 to n
             if A[i] > m
  4
  5
                   s \leftarrow m
  6
                   \mathfrak{m} \leftarrow A[\mathfrak{i}]
  7
             else
                   if A[i] > s
 8
  9
                          s \leftarrow A[i]
10
      return s
```

Решение: Следното твърдение е инварианта за цикъла.

При всяко достигане на ред 3 променливата m съдържа стойността на максималния елемент от подмасива A[1...i-1], а променливата s съдържа стойността на втория по големина елемент от подмасива A[1...i-1].

База При първото достигане на ред 3 променливата i е 3. Имайки предвид, че по условие в масива няма еднакви числа, за i = 3 твърдението е "m = $\max\{A[1],A[2]\}$ и s = $\min\{A[1],A[2]\}$ ". Това е вярно заради присвояванията на ред 1 и 2. ✓

Поддръжка Да допуснем, че инвариантата е изпълнена при някое достигане на ред 3, което не е последното. От допускането и това, че в масива няма еднакви числа следва, че s < m. Следните три възможности са изчерпателни:

- 1. A[i] < s < m. В такъв случай е вярно, че m съдържа стойността на максималния елемент от $A[1 \dots i]$, а s, на втория по големина елемент от $A[1 \dots i]$, <u>преди</u> да започне изпълнението на тялото на цикъла. От друга страна, нито едно от условията на редове 4 и 8 не е изпълнено, следователно нито едно от присвояванията в цикъла не се извършва. Следователно, спрямо новата стойност на i при следващото достигане на ред 3, инвариантата остава в сила.
- 2. s < A[i] < m. В такъв случай е вярно, че m съдържа стойността на максималния елемент от A[1...i], а A[i] е вторият по големина елемент от A[1...i], преди да започне изпълнението на тялото на цикъла. В този случай условието на ред 4 не е изпълнено, но условието на ред 8 е изпълнено, така че присвояването на ред 9 се извършва. Спрямо новата стойност на i при следващото достигане на ред 3, инвариантата остава в сила.
- 3. s < m < A[i]. В такъв случай е вярно, че A[i] съдържа стойността на максималния елемент от A[1...i], а m, на втория по големина елемент от A[1...i], преди да започне изпълнението на тялото на цикъла. В този случай условието на ред 4 е изпълнено, така че присвояванията на редове 5 и 6 се извършват. Спрямо новата стойност на i при следващото достигане на ред 3, инвариантата остава в сила. ✓

Терминация При последното достигане на ред 3 очевидно i = n + 1. Замествайки тази стойност в инвариантата, получаваме твърдението "m съдържа стойността на максималния елемент от подмасива A[1...n], а променливата s съдържа стойността на втория по големина елемент от подмасива A[1...n]".

Зад. 2 Подредете по асимптотично нарастване следните шест функции на n:

$$\ln n, \quad \lg n, \quad \sum_{i=1}^{\lfloor \lg n \rfloor} i, \quad \sqrt[3]{n} - (\ln n)^2, \quad \sqrt[4]{n}, \quad n^{\lg n}$$

Решение: Да наречем шестте функции $f_1(n), \ldots, f_6(n)$ в реда на изписването им в условието. Първо забелязваме, че $\ln n = \log_e n = \frac{\log_2 n}{\log_2 e} = \frac{1}{\log_2 e} \lg n = \Theta(\lg n)$, следователно $f_1(n) \asymp f_2(n)$. Да разгледаме $f_3(n)$. Известно е, че $\sum_{k=1}^{\lg n} \frac{1}{k} \asymp \lg^2 n$. В сила е $f_3(n) \succ f_1(n) \asymp f_2(n)$.

Да разгледаме $f_5(n) = \sqrt[4]{n} = n^{\frac{1}{4}}$. Това е функция с полиномиално нарастване и, както сме показали, тя расте асимптотично по-бързо от всяка полилогаритмична функция, в частност $\lg^2 n$. Следователно $f_5(n) \succ f_3(n) \succ f_1(n) \asymp f_2(n)$.

Да разгледаме $f_4(n)=\sqrt[3]{n}-(\ln n)^2$. Тъй като

$$\lim_{n\to\infty}\frac{\sqrt[3]{n}-(\ln n)^2}{\sqrt[4]{n}}=\infty,$$

в сила е $f_4(n) \succ f_5(n) \succ f_3(n) \succ f_1(n) \asymp f_2(n)$.

Накрая да разгледаме $f_6(\mathfrak{n}) = \mathfrak{n}^{\lg \mathfrak{n}}$. Тъй като

$$\lim_{n\to\infty}\frac{n^{\lg n}}{\sqrt[3]{n}-(\ln n)^2}=\infty,$$

в сила е $f_6(n) \succ f_4(n) \succ f_5(n) \succ f_3(n) \succ f_1(n) \asymp f_2(n)$.

Зад. 3 Даден е алгоритъм ALG-2, чийто вход е цяло число n > 3. Намерете стойността, която връща алгоритъмът, като функция на п. Нека отговорът бъде затворена формула. Обосновете отговора си.

```
ALG-2(n)
  1 \quad s \leftarrow 0
 2
     for i \leftarrow 0 to n
 3
            if i \mod n = 0
 4
                  for j \leftarrow 0 to n
 5
                        s \leftarrow s + 1
      return s
```

Решение: Условието на ред 3 е истина за точно две стойности на i, а именно 0 и n. За всяка от тях, вътрешният цикъл се изпълнява точно n + 1 пъти. Следователно, общият брой изпълнения на ред 5 е 2n + 2.