Ph.D. Project: FCCM for Bayesian Network Structure Learning

Ryota Miyagi (2nd year of 3-year PhD), Hideki Takase, The University of Tokyo, Japan

Problem and Motivation

Bayesian network: probability model using a Directed Acyclic Graph (DAG)

$$p(\mathbf{V}) = \prod_{X \in \mathbf{V}} p(X \mid \mathbf{P}\mathbf{a}_X)$$

where, Pa_X is parent set of X. x3 \triangleright Compact representation of p(V)

- Structure learning: Identifying an appropriate DAG from data;
- © Complexity grows exponentially with variable count.
- Structure learning for a large Bayesian network is challenging.

We need FCCM for scalable acceleration

Achievement

- 1. FCCM acceleration for local score computation
- 2. Performance modeling of Streaming Computation in ESSPER FPGA Cluster

Ph.D. Projects

- 3. Scaling our accelerator using multiple FPGAs
- 4. Scalable acceleration of global structure learning
- Unified Software for scorebased structure learning

Contribution

Scalable Acceleration:

Establish a methodology for scorebased structure learning of large Bayesian networks

Unified Software:

- Easy Benchmarking
- Accelerate further research
- Direct Comparison vs. constraintbased structure learning

On a broader scale,

- Competitive with decision trees?
- Applications in AI/ML, robotics

Score-based Structure Learning

- Combinatorial optimization to identify DAGs that maximize scores
- NP-hard for datasets of discrete variables of sufficient size
- The score is decomposed into a product of **local scores** (LSs):

$$p(S \mid G) = \prod_{X \in V} LS(X, Pa_X)$$

where Pa_X is parent set of X.

- Local structure learning evaluates numerous local structures and filters out unpromising ones to narrow the pool of global structures.
- Global structure learning constructs the complete graph structure from these promising local structure candidates.

1. FCCM acceleration for local score computation [1]

- Local scores depend on numerous counting queries: (e.g. How many records have Smoker=T, LungCancer=F, others=*).
- **ADtree**: sophisticated recursive tree data structure
 - 💪 High data reusability; 🦻 Data dependence prevent parallelization
- Our method: scanning dataset for each query with FCCM accelerator
 - 🥍 Lower data reusability; 👍 No data dependency, high parallelism **Solution** Insight:

data reusability benefit << parallelization benefit?

Bitmap representation

- Bitmap both counting queries and data
- Simple, FPGA-friendly logic for multiple implementations.
- Flattened operation cycle, independent of query conditions.
- Uniform handling of different problem instances

Accelerator design

- Placing PEs of matching operation in parallel / series.
- => Spatial/Temporal Parallelism 1
- Data pre-cached; queries supplied in dataflow manner
 - => Occupancy ~100%

Evaluation

- computation time of all local score
- Up to 6.7x faster than ADtree

v.s. GPU

Results obtained, but unpublished

Partial Sum (PS)

2. Performance modeling of stream computing in ESSPER [2]

Model Setting:

P(n, m, M)

- 1D-ring of *M*-cascaded FPGAs, each with *n*-parallel *m*-cascaded PEs
- Back pressure to stall the pipeline under insufficient bandwidth

Performance Model:

Blue: utilization $= n \cdot m \cdot M \cdot F \cdot O_{\text{pipe}} \cdot \overline{}$

Model Validation

- ESSPER[3]: FPGA-cluster in RIKEN
- 1D-ring of 2-cascaded FPGA
- 16 parallel 4B floating-point add

Orange: pipeline overhead

3. Scaling our accelerator using multiple FPGAs

- Cascading the accelerators scales pipeline parallelism.
- Scalable according to the performance model
- When our computation kernel is embedded, inter-FPGA communication suffers, e.g., packet loss.
- Potential causes: Low Frequency (200MHz or lower)
 - **Concern**: How do we get high frequency? HLS to RTL?

4. Scalable acceleration of global structure learning

- Previous work has focused on algorithmic aspects (i.e., computational time, space, accuracy, etc.).
- We need FCCM to ensure scalable acceleration
- It has many computational factors hindering Parallelization (i.e., dynamic resource allocation, irregular memory access patterns, and recursive and pointer-based operations along graph structures)
 - **Concern**: How to make it suitable for parallelization?

5. Unified Software for score-based structure learning

- Not directly related to the FCCM, but as a necessary
- Previous software include only elementary heuristics (i.e., hill climbing, tabu search, exhaustive search)
- Difficult to benchmark new methods in a consistent environment
- Also, quantifying acceleration requires a baseline.
 - **Concern**: How to make time for the implementation?

Acknowledgments

A part of this work was supported by JST CREST (JPMJCR21D2), JST SPRING (JPMJSP2108) and Grant-in-Aid for JSPS Fellows (24KJ0578). Personal website

References

[1] R. Miyagi, R. Yasudo, K. Sano, and H. Takase, "Elastic Sample Filter: An FPGA-based Accelerator for Bayesian Network Structure Learning," FPT 2022.

[2] **R. Miyagi**, R. Yasudo, K. Sano, and H. Takase, "Performance Modeling and Scalability Analysis of Stream Computing in ESSPER FPGA Clusters." FPT 2023. [3] K. Sano, A. Koshiba, T. Miyajima, and T. Ueno, "ESSPER: Elastic and scalable FPGA-cluster system for