João Marcus R. da Silva Pablo Gabriel Lima Moreira

MI-Projeto de Circuitos Digitais Cofre

João Marcus R. da Silva Pablo Gabriel Lima Moreira

MI-Projeto de Circuitos Digitais Cofre

Relatório apresentado à disciplina de MI-Projeto de Circuitos Digitais, como parte dos requisitos para a obtenção de nota parcial no curso de Bacharelado em Engenharia de Computação da Universidade Estadual de Feira de Santana – UEFS.

Universidade Estadual de Feira de Santana – UEFS Bacharelado em Engenharia de Computação

Orientador: Anfranserai Morais Dias

Feira de Santana – BA 2025

0.1 Diagrama de Alto Nível do circuito

Figura 1 – Desenho diagrama de alto nível

O sistema foi implementado em Verilog Estrutural com quatro máquinas de estados finitos (MEFs), cada uma responsável por uma função específica: controle da porta, seleção de modo, abertura remota e abertura local. A divisão em submáquinas permitiu reduzir o número de entradas e simplificar a lógica, utilizando saídas de uma MEF como entradas para outra e um circuito combinacional externo para processar a senha.

0.2 Máquina de Moore - Local

0.2.0.1 Passo 01 - Diagrama de estados

Figura 2 – Diagrama de estados - MEF Local

			ao de Est		
Estado Atual		tradas	Saíd		Estado Próx.
Nome	\mathbf{CS}	Porta	SPN_L	Prog	Nome
ABL	0	0	0	0	ABL
ABL	0	1	0	0	PROG
ABL	1	0	0	0	ABL
ABL	1	1	0	0	PROG
PROG	0	0	0	1	ABL
PROG	0	1	0	1	PROG
PROG	1	0	0	1	PROG
PROG	1	1	0	1	FEL
FEL	0	0	1	0	FEL
FEL	0	1	1	0	T1
FEL	1	0	1	0	FEL
FEL	1	1	1	0	ABL
T1	0	0	1	0	T1
T1	0	1	1	0	Т2
T1	1	0	1	0	T1
T1	1	1	1	0	ABL
Т2	0	0	1	0	Т2
Т2	0	1	1	0	BLOQ
T2	1	0	1	0	Т2
T2	1	1	1	0	ABL
BLOQ	0	0	1	0	BLOQ
BLOQ	0	1	1	0	BLOQ
BLOQ	1	0	1	0	BLOQ
BLOQ	1	1	1	0	BLOQ

Tabela de Transição de Estados - MEF

0.2.1 Passo 03 - Minimização de estados

A minimização não foi utilizada.

0.2.2 Passo 04 - Codificação dos estados

Codificação dos Estados						
Nome	$\mathbf{Q2}$	Q1	Q0			
ABL	0	0	0			
PROG	0	0	1			
FEL	0	1	0			
T1	0	1	1			
T2	1	0	0			
BLOQ	1	0	1			

Tabela 1 – Modificação da tabela de transição de estados - MEF Local

Esta	ado A	tual	Ent	tradas	S	aída	as	Estad	do Pró	ximo
Q2	Q1	Q0	CS	Porta	SPN_	_L	Prog	Q2*	Q1*	Q0*
0	0	0	0	0	0		0	0	0	0
0	0	0	0	1	0		0	0	0	1
0	0	0	1	0	0		0	0	0	0
0	0	0	1	1	0		0	0	0	1
0	0	1	0	0	0		1	0	0	0
0	0	1	0	1	0		1	0	0	1
0	0	1	1	0	0		1	0	0	1
0	0	1	1	1	0		1	0	1	0
0	1	0	0	0	1		0	0	1	0
0	1	0	0	1	1		0	0	1	1
0	1	0	1	0	1		0	0	1	0
0	1	0	1	1	0		0	0	0	0
0	1	1	0	0	1		0	0	1	1
0	1	1	0	1	1		0	1	0	0
0	1	1	1	0	1		0	0	1	1
0	1	1	1	1	0		0	0	0	0
1	0	0	0	0	1		0	1	0	0
1	0	0	0	1	1		0	1	0	1
1	0	0	1	0	1		0	1	0	0
1	0	0	1	1	0		0	0	0	0
1	0	1	0	0	1		0	1	0	1
1	0	1	0	1	1		0	1	0	1
1	0	1	1	0	1		0	1	0	1
1	0	1	1	1	1		0	1	0	1

0.2.4 Passo 06 - Escolha dos elementos de memória

O elemento de memória escolhido foi o Flip-Flop tipo D, utilizando 3. Cada flip-flop pode representar 2 estados (2^3) . De forma geral, n flip-flops podem representar 2^n estados, neste caso até 8.

Tabela 2 – Tabela de excitação - MEF Local

Estad	lo Pró	oximo	Entrada FF (D)			
Q2*	Q1*	Q0*	D2	D1	D0	
0	0	0	0	0	0	
0	0	1	0	0	1	
0	0	0	0	0	0	
0	0	1	0	0	1	
0	0	0	0	0	0	
0	0	1	0	0	1	
0	0	1	0	0	1	
0	1	0	0	1	0	
0	1	0	0	1	0	
0	1	1	0	1	1	
0	1	0	0	1	0	
0	0	0	0	0	0	
0	1	1	0	1	1	
1	0	0	1	0	0	
0	1	1	0	1	1	
0	0	0	0	0	0	
1	0	0	1	0	0	
1	0	1	1	0	1	
1	0	0	1	0	0	
0	0	0	0	0	0	
1	0	1	1	0	1	
1	0	1	1	0	1	
1	0	1	1	0	1	
1	0	1	1	0	1	

0.2.6 Passo 08 - Obtenção das equações de excitação

CS Porta Q0 Q2 Q1	000	001	011	010	110	111	101	100
00	0	0	0	0	0	0	0	0
01	0	0	0	0	0	0	1	0
11	0	0	0	0	0	0	0	0
10	1	1	0	1	1	1	1	1

$$D2 = Q2\overline{Q1}Q0 + Q2\overline{Q1}\overline{Porta} + Q2\overline{Q1}\overline{CS} + \overline{Q2}Q1Q0\overline{CS}\,\overline{Porta}$$

$egin{array}{c} ext{Q0,CS,Porta} \ ext{Q2,Q1} \end{array}$	000	001	011	010	110	111	101	100
00	0	0	0	0	0	1	0	0
01	1	1	0	1	1	0	0	1
11	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0

$$D1 = \overline{Q2}Q1\overline{\text{Porta}} + \overline{Q2}Q1\overline{Q0CS} + \overline{Q2Q1}Q0CS \text{ Porta}$$

$egin{array}{c} ext{Q0,CS,Porta} \ ext{Q2,Q1} \end{array}$	000	001	011	010	110	111	101	100
00	0	1	1	0	1	0	1	0
01	0	1	0	0	1	0	0	1
11	0	0	0	0	0	0	0	0
10	0	1	0	0	1	1	1	1

 $D0 = Q2\overline{Q1}Q0 + \overline{Q1CS} \, \text{Porta} + \overline{Q2}Q1Q0\overline{\text{Porta}} + \overline{Q1}Q0CS \, \overline{\text{Porta}} + \overline{Q2Q0}CS \, \overline{\text{Porta}} + \overline{Q2Q1Q0}\overline{\text{Porta}}$

0.2.7 Passo 09 - Obtenção das equações de saída

$$SPN_L = Q2\overline{Q1Q0} + Q2\overline{Q1}Q0 + \overline{Q2}Q2\overline{Q0} + \overline{Q2}Q1Q0$$

Q0CSporta Q2Q1	000	001	011	010	110	111	101	100
00	0	0	0	0	1	1	1	1
01	0	0	0	0	0	0	0	0
11	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0

$$Prog = \overline{Q2Q1}Q0$$

0.2.8 Passo 10 - Desenho do circuito

Figura 3 – Desenho circuito MEF Local
- Parte 1

Figura 4 – Desenho circuito MEF Local- Parte 1

0.2.8.1 Descrição geral da MEF - Local

Estados (6):

- ABL (Aberto em Modo Local)
- FEL (Fechado em Modo Local)
- PROG (Programação)
- T1 (Tentativa 1)
- T2 (Tentativa 2)
- BLOQ (Bloqueado)

Entradas:

- B: Sinal de entrada em botão, utilizado como clock.
- Modo: Negação do sinal Modo, usado com o clock.
- SPN_R: Negação do sinal da MEF Remoto, usado como clock.
- Porta: Saída da MEF Porta.
- CS: Senha correta (saída de circuito combinacional externo).
- CH: Chave mestra, usada no estado BLOQ para resetar o cofre.

Saídas:

- Display de 7 segmentos: "Ab"(ABL, PROG), "FE"(FEL), "E1"(T1), "E2"(T2), "bL"(BLOQ).
- Prog: Nível lógico alto no estado PROG.
- SPN_L: Pino de fechamento local, ativo em estados específicos (FEL, T1, T2, BLOQ).

Funcionalidade: Gerencia a abertura local, incluindo tentativas de senha, programação e bloqueio, com reset via chave mestra somente quando bloqueado.

0.3 Máquina de Moore - Remoto

0.3.0.1 Passo 01 - Diagrama de estados

Figura 5 – Máquina de estados - Remoto

Tabela de Transição de Estados

Estado Atual		En	trada	Saída / Próximo Estado		
Nome	SAF	Porta	SPN_R	Nome		
(ABR)	0	0	0	(ABR)		
(ABR)	0	1	0	(ABR)		
(ABR)	1	0	0	(ABR)		
(ABR)	1	1	0	(FER)		
(FER)	0	0	1	(FER)		
(FER)	0	1	1	(ABR)		
(FER)	1	0	1	(FER)		
(FER)	1	1	1	(FER)		

0.3.1 Passo 03 - Minimização de estados

A minimização não foi utilizada.

0.3.2 Passo 04 - Codificação dos estados

Codificação dos Estados						
Nome Q						
ABR	0					
FER 1						

0.3.3 Passo 05 - Modificação da tabela de transição de estados

Modificação da tabela de Transição de Estados - MEF Remoto

Estado Atual	Entrada		Saída	Estado Próximo
Q	SAF	Porta	SPN_R	Q*
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	0	1
1	0	0	1	1
1	0	1	1	0
1	1	0	1	1
1	1	1	1	1

0.3.4 Passo 06 - Escolha dos elementos de memória

O elemento de memória escolhido foi o Flip-Flop tipo D, utilizando apenas um.ada flip-flop pode representar 2 estados (2^1). De forma geral, n flip-flops podem representar 2^n estados.

0.3.5 Passo 07 - Construção da tabela de excitação

Tabela de Excitação - MEF Remoto

Estado Próximo	Entrada FF (D)
Q*	D
0	0
0	0
0	0
1	1
1	1
0	0
1	1
1	1

0.3.6 Passo 08 - Obtenção das equações de excitação

SAF,Porta Q	00	01	11	10
0	0	0	1	0
1	1	1	0	1

$$D = Q.\overline{Porta} + SAF.Porta$$

0.3.7 Passo 09 - Obtenção das equações de saída

Q,SAF,Porta Q	00	01	11	10
0	0	0	0	0
1	1	1	1	1

0.3.8 Passo 10 - Desenho do circuito

Figura 6 – Desenho circuito - MEF Remoto

0.3.8.1 Descrição geral da MEF Remoto

Estados (2):

- ABR : Aberto em Modo Remoto
- FER: Fechado em Modo Remoto Entradas:
- Modo: Ativa a MEF quando Modo = 1 (com clock de 50 MHz).
- Porta: Saída da MEF Porta.
- SAF: Comando de abertura remota.

Saídas:

- Display de 7 segmentos: "AF"(ABR) ou "FE"(FER).
- SPN_R: Pino de fechamento remoto, ativo no estado FER.

Funcionalidade: Controla a abertura e o fechamento do cofre em modo remoto, com base no comando SAF e no estado da porta.

0.4 Máquina de Moore - Modo

0.4.0.1 Passo 01 - Diagrama de estados

Figura 7 — Máquina de estados - Modo

0.4.0.2 Passo 02 - Tabela de transições de estados

Estado Atual	Entrada		Saída	Estado Próx.
Nome	A	Mf_ds	Modo	Nome
(MN)	0	0	0	(MN)
(MN)	0	1	0	(MN)
(MN)	1	0	0	(MN)
(MN)	1	1	0	(MR)
(MR)	0	0	1	(MR)
(MR)	0	1	1	(MN)
(MR)	1	0	1	(MR)
(MR)	1	1	1	(MR)

Tabela de Transição de Estados

0.4.1 Passo 03 - Minimização de estados

A minimização não foi utilizada.

0.4.2 Passo 04 - Codificação dos estados

Codificação dos Estados				
Nome	Q			
MN	0			
MR	1			

0.4.3 Passo 05 - Modificação da tabela de transição de estados

Modificação da tabela de Transição de Estados

Estado Atual	Entrada		Saída	Estado Próximo
Q	A	Mf_ds	Modo	Q*
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	0	1
1	0	0	1	1
1	0	1	1	0
1	1	0	1	1
1	1	1	1	1

0.4.4 Passo 06 - Escolha dos elementos de memória

O elemento de memória escolhido foi o Flip-Flop tipo D, utilizando apenas um.ada flip-flop pode representar 2 estados (2^1). De forma geral, n flip-flops podem representar 2^n estados.

0.4.5 Passo 07 - Construção da tabela de excitação

Tabela de Excitação - MEF Modo

Estado Próximo	Entrada FF (D)
Q*	D
0	0
0	0
0	0
1	1
1	1
0	0
1	1
1	1

0.4.6 Passo 08 - Obtenção das equações de excitação

A,M_fs Q	00	01	11	10
0	0	0	1	0
1	1	1	0	1

$$D = Q.\overline{Mf_ds} + A.Mf_ds$$

0.4.7 Passo 09 - Obtenção das equações de saída

A,M_fs Q	00	01	11	10
0	0	0	0	0
1	1	1	1	1

Saída: MODO = Q

Figura 8 – Desenho do circuito - MEF Modo

0.4.8.1 Descrição geral da MEF Modo

Estados (2):

- MN: Modo Normal.
- MR: Modo Remoto. Entradas:
- clk: Clock de 50 MHz.
- Mf_ds: Sinal que indica a MEF Local desativada.

• A: Seleção de modo.

Saídas:

• Modo: Estado atual (0 = Normal, 1 = Remoto).

Display de 7 segmentos: "AL" (Modo Normal) ou "PF" (Modo Remoto). **Funcionalidade:** Alterna entre modos Normal e Remoto, ativando a MEF Local (Modo = 0) ou Remota (Modo = 1), com base no estado da porta.

0.5 Máquina de Moore - Porta

0.5.0.1 Passo 01 - Diagrama de estados

Figura 9 – Máquina de estados - Porta

0.5.0.2 Passo 02 - Tabela de transições de estados

Estado Atual	Entrada			Estado Próx.
Nome	SPA	LGD	Porta	Nome
(PA)	0	0	0	(PA)
(PA)	0	1	0	(PA)
(PA)	1	0	0	(PA)
(PA)	1	1	0	(PL)
(PL)	0	0	1	(PL)
(PL)	0	1	1	(PA)
(PL)	1	0	1	(PL)
(PL)	1	1	1	(PL)

Tabela de Transição de Estados

0.5.1 Passo 03 - Minimização de estados

A minimização não foi utilizada.

Codificação dos Estados			
Nome	Q		
PA	0		
PL	1		

0.5.3 Passo 05 - Modificação da tabela de transição de estados

Modificação da tabela de transição de Estados - MEF Porta

Estado Atual (Q)	Entradas			Estado Próximo
Nome	SPA	LGD	Porta	Nome
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	0	1
1	0	0	1	1
1	0	1	1	0
1	1	0	1	1
1	1	1	1	1

0.5.4 Passo 06 - Escolha dos elementos de memória

O elemento de memória escolhido foi o Flip-Flop tipo D, utilizando apenas um.ada flip-flop pode representar 2 estados (2^1) . De forma geral, n flip-flops podem representar 2^n estados.

0.5.5 Passo 07 - Construção da tabela de excitação

Tabela de Excitação - MEF Porta

Estado Próximo	Entrada FF (D)			
Q*	D			
0	0			
0	0			
0	0			
1	1			
1	1			
0	0			
1	1			
1	1			

0.5.6 Passo 08 - Obtenção das equações de excitação

SPA,LGD	00	01	11	10
Q				
0	0	0	1	0
1	1	1	0	1

$$D = Q\overline{LGD} + SPALGD$$

0.5.7 Passo 09 - Obtenção das equações de saída

$_{ m Q,SPA,LGD}$	00	01	11	10
Q				
0	0	0	0	0
1	1	1	1	1

Saída:

$$PORTA = Q$$

0.5.8 Passo 10 - Desenho do circuito

Figura 10 – Desenho circuito - MEF Porta

0.5.8.1 Descrição geral da MEF Porta

Estados (2):

- PA (Porta Aberta)
- PF (Porta Fechada)

Entradas:

- SPA: Sinal de abertura física da porta.
- LGD: Negação do pino de fechamento (SPN), usado para travar a porta automaticamente (permite que a MEF seja ativada).

Saídas: Porta: Estado atual (0 = Aberta, 1 = Fechada).

Funcionalidade: Controla o estado da porta, mudando apenas se SPN (junção de SPN_L e SPN_R) for baixo, garantindo segurança contra situações indesejadas.

0.6 Desenho dos circuitos implementados

Figura 11 – Desenho do circuito Registrador

Figura 12 – Desenho do circuito Registrador

Os circuitos acima foram implementados para registrar a senha, além de comparar a entrada atual com a senha registrada. Enviando um sinal para a MEF Local (CS) de confirmação de senha.

Figura 13 – Desenho do circuito Multiplexador

Os multiplexadores foram implementados para enviar os sinais selecionados para os displays de 7 segmentos das MEFs Remoto e Local. Além disso, foi utilizado para os exibir uma mensagem de emergência, acionada quando houver uma má interpretação dos sinais do sistema, ou uma condição de entrada não desejada.

Figura 14 – Desenho do selecionador de emergência