

# **PC Camera Controller**

### 1. General Description

The SN9C102 is a single-chip backend processor to pair with a CMOS image sensor. It reads a 9 or 8 bits input raw image data (RGB Bayer pattern) from an image capturing device and outputs through a USB port into the PC. This chip includes a simply color processing engine, an image compression engine, a dark calibration, a hardware image windowing with random image size selection, panning and scaling functions. The SN9C102 can directly transmit the compressed or un-compressed image data to the USB port without any extra memory support. Its multi-powerful functions and special designed architecture make this chip suitable for extra low cost USB PC camera application.

#### 2. Features

- 9-Bit CMOS image raw data input
- Up to 30fps @ CIF, 12fps @VGA for PC mode video
- Provide pre-color processing function to enhance and improve the image quality
- Individual R, G, and B gains control
- Provide snapshot function
- Support pixel offset compensation
- Support IC-media, ElecVision, TASC, Hynix, Pixart ...etc
- Embedded two modes of AE calculation and report
- Provide hardware windowing, 1/2, 1/4 scaling function and panning function
- Support operation mode in image quality/frame rate selection
- USB 1.1 compliance and support suspend mode
- USB 4 endpoints: control, isochronous read, bulk read, and bulk write endpoints
- Support video data transfer either in USB isochronous or bulk modes
- Up to 9 alternated setting for USB isochronous transfer
- Up to 64 various P\_ID in default mode and Random setting the P\_ID, V\_ID streaming
- 12MHz crystal and 3.3Volt only
- 48 pins LQFP package for normal function



# 3. Pin Description

| Number | NAME     | I/O | Description           |
|--------|----------|-----|-----------------------|
| 1      | NC       |     |                       |
| 2      | PID_SEL5 | I   | Product ID selection  |
| 3      | PID_SEL4 | I   | Product ID selection  |
| 4      | PID_SEL3 | I   | Product ID selection  |
| 5      | PID_SEL2 | I   | Product ID selection  |
| 6      | PID_SEL1 | I   | Product ID selection  |
| 7      | PID_SEL0 | I   | Product ID selection  |
| 8      | KEY      | I   | KEY input             |
| 9      | RST      | I   | chip reset            |
| 10     | NC       |     |                       |
| 11     | NC       |     |                       |
| 12     | AVDD     | P   | VDD for analog part   |
| 13     | AVSS     | P   | GND for analog part   |
| 14     | TAVSS    | P   | GND for USB part      |
| 15     | DN       | В   | D- for USB            |
| 16     | DP       | В   | D+ for USB            |
| 17     | TAVDD    | P   | VDD for USB part      |
| 18     | GPIO_0   | В   | General purpose I/O   |
| 19     | GPIO_1   | В   | General purpose I/O   |
| 20     | TEST     | I   | test mode             |
| 21     | S_PWR_DN | О   | Power down for sensor |
| 22     | LED      | О   | LED output            |
| 23     | VDD      | P   | VDD for core          |
| 24     | GND      | P   | GND for core          |
| 25     | SDA      | В   | I2C data              |
| 26     | SCL      | О   | I2C clock             |
| 27     | S_PCK    | В   | Sensor pixel clock    |
| 28     | VDD      | P   | VDD for core          |
| 29     | GND      | P   | GND for core          |
| 30     | SEN_CLK  | О   | Sensor clock          |
| 31     | S_VSYNC  | В   | Sensor vsync          |
| 32     | S_HSYNC  | В   | Sensor hsync          |
| 33     | S_IMG0   | В   | Sensor image data     |
| 34     | S_IMG1   | В   | Sensor image data     |
| 35     | S_IMG2   | В   | Sensor image data     |
| 36     | S_IMG3   | В   | Sensor image data     |



| 37 | VDD    | P | VDD for core      |
|----|--------|---|-------------------|
| 38 | GND    | P | GND for core      |
| 39 | S_IMG4 | В | Sensor image data |
| 40 | S_IMG5 | В | Sensor image data |
| 41 | S_IMG6 | В | Sensor image data |
| 42 | S_IMG7 | В | Sensor image data |
| 43 | S_IMG8 | В | Sensor image data |
| 44 | VDDAP  | P | VDD for PLL       |
| 45 | XIN    | I | OSC input         |
| 46 | XOUT   | В | OSC output        |
| 47 | VSSAP  | P | GND for PLL       |
| 48 | NC     |   |                   |

# I: input pin , O: output pin , B: bi\_direction pin , P: power pin .

3



## 4. Block Diagram





### **5. Electrical Characteristics**

# **5.1 DC Operating Condition**

## a. Absolute maximum ratings:

| Symbol | Parameter           | Rating          | Units |
|--------|---------------------|-----------------|-------|
| Vcc    | Power Supply        | -0.3 to 3.6     | V     |
| Vin    | Input Voltage       | -0.3 to Vcc+0.3 | V     |
| Vout   | Output Voltage      | -0.3 to Vcc+0.3 | V     |
| Tstg   | Storage Temperature | -55 to 150      | °C    |

# b. Recommended operating conditions:

| Symbol | Parameter             | Min | Тур | Max | Units |
|--------|-----------------------|-----|-----|-----|-------|
| Vcc    | Power Supply          | 3.0 | 3.3 | 3.6 | V     |
| Vin    | Input voltage         | 0   |     | Vcc | V     |
| Topr   | Operating Temperature | 0   |     | 70  | °C    |

### c. DC electrical characteristics:

(Under Recommended Operating Conditions and Vcc= $3.0 \sim 3.6 \text{V}$ , Tj= $0 \text{ to } +115 \text{ }^{\circ}\text{C}$ )

| Symbol | Parameter                            | Conditions              | Min    | Тур  | Max     | Units |
|--------|--------------------------------------|-------------------------|--------|------|---------|-------|
| Vil    | Input low voltage                    | CMOS                    | -0.3   |      | 0.3Vcc  | V     |
| Vih    | Input high voltage                   | CMOS                    | 0.7Vcc |      | Vcc+0.3 | V     |
| Vil    | Input low voltage                    | TTL                     | -0.3   |      | 0.8     | V     |
| Vih    | Input high voltage                   | TTL                     | 2.0    |      | 5.3     | V     |
| Iil    | Input low current                    | no pull-up or pull-down | -1     |      | 1       | uA    |
| Iih    | Input high current                   | no pull-up or pull-down | -1     |      | 1       | uA    |
| Ioz    | Tri-state leakage current            |                         | -1     |      | 1       | uA    |
| Vil    | Schmitt input low voltage            | CMOS                    |        | 1.20 |         | V     |
| Vih    | Schmitt input high voltage           | CMOS                    |        | 2.10 |         | V     |
| Vol    | Output Low voltage                   | Iol=4mA                 |        |      | 0.4     | V     |
| Voh    | Output high voltage                  | Ioh=4mA                 | 2.4    |      |         | V     |
| Cin    | Input capacitance                    |                         |        | 2.8  |         | pF    |
| Cout   | Output capacitance                   |                         | 2.7    |      | 4.9     | pF    |
| Cbid   | Bi-directional buffer<br>Capacitance |                         | 2.7    |      | 4.9     | pF    |

# **5.2 AC Operating Condition**

| Symbol  | Description         | <b>Max operation Frequency</b> | Notes |
|---------|---------------------|--------------------------------|-------|
| SEN_CLK | Sensor clock        | 48MHz                          |       |
| XIN     | Crystal input clock | 12 MHz                         |       |
| SCK     | I2C clock frequency | 400KHz                         |       |



## 6. USB interface

# **6.1 Endpoint description**

| Endpoint # | Function       | Transfer Type | MaxPsz (byte)                              |
|------------|----------------|---------------|--------------------------------------------|
| 0          | STD Commands   | Control       | 64                                         |
| 1          | ISO Read       | Isochronous   | 0, 128, 256, 384, 512, 680, 800, 900, 1023 |
| 2          | Bulk Read      | Bulk          | 64                                         |
| 3          | Interrupt Read | Interrupt     | 1                                          |

# **6.2 Descriptor Table Data**

| Device                | 12 01 <u>10 01</u> 00 00 00 40 VL VH PL PH <u>01 01</u> 00 01 00 01 |  |
|-----------------------|---------------------------------------------------------------------|--|
| Configuration         | 09 02 17 01 01 01 00 <b>80 fa</b>                                   |  |
| String                | 16 03 55 00 53 00 42 00 20 00 63 00 61 00 6d 00 65 00 72 00 61 00   |  |
|                       | Alternate Setting $= 0$                                             |  |
| Interface 0           | 09 04 00 00 03 <b>ff ff ff</b> 00                                   |  |
| Endpoint 1            | 07 05 81 01 00 00 01                                                |  |
| Endpoint 2            | 07 05 82 02 40 00 00                                                |  |
| Endpoint 3            | 07 05 83 03 01 00 <b>64</b>                                         |  |
|                       | Alternate Setting = 1                                               |  |
| Interface 0           | 09 04 00 01 03 <b>ff ff ff</b> 00                                   |  |
| Endpoint 1            | 07 05 81 01 80 00 01                                                |  |
| Endpoint 2            | 07 05 82 02 40 00 00                                                |  |
| Endpoint 3            | 07 05 83 03 01 00 <b>64</b>                                         |  |
|                       | Alternate Setting = 2                                               |  |
| Interface 0           | 09 04 00 02 03 <b>ff ff ff</b> 00                                   |  |
| Endpoint 1            | 07 05 81 01 00 01 01                                                |  |
| Endpoint 2            | 07 05 82 02 40 00 00                                                |  |
| Endpoint 3            | 07 05 83 03 01 00 <b>64</b>                                         |  |
|                       | Alternate Setting = 3                                               |  |
| Interface 0           | 09 04 00 03 <b>03 ff ff ff 0</b> 0                                  |  |
| Endpoint 1            | 07 05 81 01 80 01 01                                                |  |
| Endpoint 2            | 07 05 82 02 40 00 00                                                |  |
| Endpoint 3            | 07 05 83 03 01 00 <b>64</b>                                         |  |
|                       | Alternate Setting = 4                                               |  |
| Interface 0           | 09 04 00 04 <mark>03 <b>ff ff ff</b> 0</mark> 0                     |  |
| Endpoint 1            | 07 05 81 01 00 02 01                                                |  |
| Endpoint 2            | 07 05 82 02 40 00 00                                                |  |
| Endpoint 3            | 07 05 83 03 01 00 <b>64</b>                                         |  |
| Alternate Setting = 5 |                                                                     |  |
| Interface 0           | 09 04 00 05 <b>03 ff ff ff</b> 00                                   |  |
| Endpoint 1            | 07 05 81 01 a8 02 01                                                |  |
| Endpoint 2            | 07 05 82 02 40 00 00                                                |  |

6



| Endpoint 3  | 07 05 83 03 01 00 <b>64</b>       |
|-------------|-----------------------------------|
|             | Alternate Setting = 6             |
| Interface 0 | 09 04 00 06 <b>03 ff ff ff</b> 00 |
| Endpoint 1  | 07 05 81 01 20 03 01              |
| Endpoint 2  | 07 05 82 02 40 00 00              |
| Endpoint 3  | 07 05 83 03 01 00 <b>64</b>       |
|             | Alternate Setting = 7             |
| Interface 0 | 09 04 00 07 <b>03 ff ff ff</b> 00 |
| Endpoint 1  | 07 05 81 01 84 03 01              |
| Endpoint 2  | 07 05 82 02 40 00 00              |
| Endpoint 3  | 07 05 83 03 01 00 <b>64</b>       |
|             | Alternate Setting = 8             |
| Interface 0 | 09 04 00 08 <b>03 ff ff ff</b> 00 |
| Endpoint 1  | 07 05 81 01 ff 03 01              |
| Endpoint 2  | 07 05 82 02 40 00 00              |
| Endpoint 3  | 07 05 83 03 01 00 <b>64</b>       |



#### 7. Serial Control Interface

The SN9C102 supports I2C<sup>TM</sup>-bus transfer protocol and is acting as a master device. It supports receiving and transmitting speed of 100kHz and 400kHz (Note: Downloading from EEPROM when power on requires speed of 400kHz.)

#### 7.1 Serial Bus Overview

- § Only two wires SDA (serial data) and SCL (serial clock) are needed to carry information between the devices connected to the serial bus. Normally both SDA and SCL lines are open-collector structures and pulled high by external pull-up resistors.
- § Only the master can initiates a transfer (start), generates clock signals, and terminates a transfer (stop).
- § Start and stop condition: A high to low transition of the SDA line while SCL is high defines a start condition. A low to high transition of the SDA line while SCL is high defines a stop condition.
- § Valid data: The data on the SDA line must be stable during the high period of the SCL clock. Within each byte, MSB is always transferred first. read/write control bit is the LSB of the first byte.
- § Both the master and slave can transmit and receive data through the serial bus.
- § Acknowledge: The receiving device should pull down the SDA line during high period of the SCL clock line when a complete byte was transfer by transmitter. In the case of a master received data from a slave, the master does not generate an acknowledgment on the last byte to indicate the end of a master read cycle.

#### 7.2 Data Transfer Format

### § Master device transmits data to slave device (write cycle)

- §S: Start
- § A: Acknowledgement from slave device.
- §P: Stop
- § R/W: The LSB of 1<sup>st</sup> byte decides the current cycle is read or write. R/W=1 read; R/W=0 write.
- § Slave Address: serial slave device address.
- § Sub Address : The slave device control register address.



Master transmits and Slave receives(write)

During write cycle, the master device(SONIX'S PC CAMERA CONTROLLER) generates start condition and then place the 1<sup>st</sup> byte data which contains slave address (7 bits) and the



Read/Write control bit onto SDA line. After slave device issues an acknowledgment, the master places the 2<sup>nd</sup> byte (sub-address data) data onto SDA line. And then followed the slave acknowledgment, the master places the 8 bits data on SDA line and transmits to slave device control register (address was assigned by 2<sup>nd</sup> byte). After slave issues an acknowledgment, the SN9C102 can generate a stop condition to end this write cycle. This chip only supports 8 bytes multiple write function. *That is, master can write only 8 contineous address data into slave device*.

### § Slave device transmits data to master device (read cycle)

The read cycle of the SN9C102 has 2 phases, dummy write phase and read phase. *Note, this SN9C102 supports single read only.* That is, one dummy write phase plus one read phase can get only one byte data from slave device internal register.

## **a.** The 1<sup>st</sup> phase (dummy write phase):

The dummy write phase is the same as the general serial write. The only difference is the write data is the address of the register. The Sub-Address is the register address inside the slave device

## **b.** The 2<sup>nd</sup> phase (read phase):

The *SN9C102*generates start condition and then place the 1<sup>st</sup> byte data, which contains slave address (7 bits) and a Read/Write control bit onto SDA line. After salve device issues an acknowledgment, the 8 bits data coming from slave device internal register will be placed onto the SDA line serially. The address of the 8 bit data was assigned by previous dummy write cycle. *Note, there is no acknowledgement issued by master device*.





Master transmits and Slave receives (Dummy write cycle)



# 8. Application Circuit





# 9. Package Dimension

# I 48pin LQFP



(All dimensions are in Millimeters)