Committee Machine, Ensemble Learning Random Sampling LDA for Face Recognition

Tae-Kyun (T-K) Kim
KAIST, Imperial College London
https://sites.google.com/view/tkkim/

Overfitting

Ensemble of models

- The key aspect of the ensemble model is the fact that its component models are all <u>randomly</u> different from one another.
- This leads to decorrelation between the individual model predictions and, in turn, results in improved <u>generalization</u> and robustness.
- The combined model is characterized by the same components as the individual models.
- The amount of randomness influence the prediction/estimation properties of the models.

^{*} Dropout in deep neural networks ≈ randomisation

Randomness model

- Randomness is injected into the models during the two phases. Two techniques used together are:
 - random training set sampling (i.e. bagging), and
 - randomized model parameters.

Bagging (Bootstrap AGGregatING)

- randomizing the training set
 - Given a data set S_0 of size n, it generates T data subsets S_0^t , t=1,...,T.
 - Each subset has e.g. n_t =n, by sampling data from S_0 uniformly and with replacement.
 - Some data are repeated in S_0^t . If n_t =n and n is large, S_0^t is likely to have 63.2% of unique data.

Randomizing model parameters

- Given a data subset S_0^t , the t-th model is learnt.
- We may express the model learning as an optimisation problem:

$$\theta^* = \arg \max_{\theta \in T} F$$

where the full set of all possible parameters (or their values) is denoted by T.

- A small random subset $T_t \subset T$ of parameters is considered.
- The randomness parameter $\rho = |T_t|$.
- Thus under the randomness training a model is achieved by optimizing

$$\theta^* = \arg\max_{\theta \in T_t} F$$

Randomizing model parameters

- The randomness parameter $\rho = |T_t|$ controls not only the amount of randomness within each model but also the amount of correlation between different models in the ensemble.
- As illustrated, when $\rho = |T|$ all the models will be identical (if no bagging) and as ρ decreases the models become more decorrelated.

Model correlation vs strength

- Randomisation on data and model parameters increases diversity among component models.
- For the fixed data, the randomised model parameters decreases strength of each model.
- This compromising issue is further explained in the perspective of a generic committee machine.

Committee machine

- We consider multiple models or experts, $y_t(x)$, t = 1, ..., T.
- Output of each model is

$$y_t(x) = h(x) + \epsilon_t(x)$$

where h(x), $\epsilon_t(x)$ are the true value and error of each model.

• The average sum-of-squares error is

$$E[\{y_t(x) - h(x)\}^2] = E[\epsilon_t(x)^2]$$

• The average error by acting individually is $E_{av} = \frac{1}{T} \sum_{t=1}^{r} E[\epsilon_t(x)^2]$

Committee machine

The committee machine is

$$y_{com}(x) = \frac{1}{T} \sum_{t=1}^{T} y_t(x)$$

• The expected error of the committee machine is

$$E_{com} = E\left[\left\{\frac{1}{T}\sum_{t=1}^{T} y_t(x) - h(x)\right\}^2\right]$$

$$= E\left[\left\{\frac{1}{T}\sum_{t=1}^{T}\epsilon_t(x)\right\}^2\right] = E\left[\frac{1}{T^2}(\epsilon_1^2 + \epsilon_1\epsilon_2 + \epsilon_2^2 + \cdots)\right]$$

Committee machine

• If we assume

$$E[\epsilon_i(x)\epsilon_j(x)] = 0,$$
 for any $i, j \in \{1, ..., T\}$ and $i \neq j$

then we obtain

$$E_{com} = \frac{1}{T}E_{av}$$

• In practice, the errors are typically highly correlated, but we can still expect that

$$E_{com} \leq E_{av}$$

- In an ensemble with T models we use the variable $t \in \{1, ..., T\}$ to index each component model.
- All models are trained independently (and possibly in parallel).
- \bullet During testing, each test point **x** is simultaneously pushed through all models.
- Testing can also often be done in parallel, thus achieving high computational efficiency on modern parallel CPU or GPU hardware.
- Combining all model predictions into a single prediction is done by a simple averaging operation. <u>E.g. in classification</u>

$$P(c|\mathbf{x}) = \frac{1}{T} \sum_{t=1}^{T} P_t(c|\mathbf{x})$$

where $P_t(c|\mathbf{x})$ denotes the class posterior distribution obtained by the t-th model.

Ensemble of models: evaluation

• A data point is passed down all models, and the respective posterior distributions are collected.

$$P(c|\mathbf{x}) = \frac{1}{T} \sum_{t=1}^{T} P_t(c|\mathbf{x})$$

 Alternatively one could also multiply the model outputs together (though the models are not statistically independent)

$$P(c|\mathbf{x}) = \frac{1}{Z} \prod_{t=1}^{T} P_t(c|\mathbf{x})$$

with Z ensuring probabilistic normalization.

- Model output fusion is illustrated in the next slide, for a simple example where the attribute we want to predict is a continuous variable *y*.
- Imagine that we have trained an ensemble with T=4 models.
- For a test data point **x**, we get the corresponding posteriors $p_t(y|\mathbf{x})$, with $t = \{1, \dots, 4\}$.

- Some models produce peakier (more confident) predictions than others.
- Both the averaging and the product operations produce combined distributions (shown in black) which are heavily influenced by the most confident i.e. most informative models.
- Therefore, such simple operations have the effect of selecting (softly) the more confident models out of the ensemble.
- Averaging many posteriors also has the advantage of reducing the effect of possibly noisy model contributions.
- In general, the product based ensemble model may be less robust to noise.

 Alternative ensemble models are possible, where for instance one may choose to select individual models in a hard way, or may do majority voting.

- Min: $P(y|\mathbf{x}) = \min_{t} P_t(y|\mathbf{x})$
- Max: $P(y|\mathbf{x}) = \max_{t} P_t(y|\mathbf{x})$
- Majority voting (in classification):
 - each learned model votes for a class to assign to a query image.
 - Classification of the query image is by assigning the class has the highest number of 'votes'.

In our case, each single model can be

Random Sampling LDA for Face Recognition

Tae-Kyun (T-K) Kim
KAIST, Imperial College London
https://sites.google.com/view/tkkim/

A base model for ensemble learning is

Random sampling on training data

- In bagging, random bootstrap replicates are generated by sampling the training set, so each replicate has a smaller number of (unique) training samples.
- We first project the high dimensional image data to the N-1 dimension PCA subspace. For N training samples, there are at most N-1 eigenvectors with nonzero eigenvalues.
 - (1) Apply PCA to the face training set with N samples for c classes. Project all the face data to the N-1 eigenfaces $\mathbf{W} = [\mathbf{w_1}, \mathbf{w_2}, ..., \mathbf{w_{N-1}}]$.
 - (2) Generate T bootstrap replicates $\{S_t\}_{t=1}^T$.

Each replicate contains the training images of c1 individuals randomly selected from the c classes, or a random subset of images for each of the c classes.

(3) Construct a PCA-LDA classifier from each replicate and combine the multiple classifiers using a fusion rule.

Mpca and Mlda need to be chosen.

Random sampling in feature space

- We first project the high dimensional image data to the N−1 dimension PCA subspace before random sampling.
- In Fisherface, overfitting happens when the training set is relatively small compared to the high dimensionality of the feature vector.
- In order to construct a stable LDA classifier, we sample a small subset of features.
- By the random sampling, we construct multiple stable LDA classifiers.
- We then combine these classifiers to construct a more powerful classifier that covers the entire feature space without losing discriminant information.

Random sampling in feature space

At the training stage:

Consider N images $\{x_n\}$, n = 1,...,N and $x_n \in \mathbb{R}^D$ in an D-dimensional image space, and assume that each image belongs to one of c classes.

- (1) Apply PCA to the face training set: All the eigenfaces with zero eigenvalues are removed, and N-1 eigenfaces $\mathbf{W} = [\mathbf{w_1}, \mathbf{w_2}, ..., \mathbf{w_{N-1}}]$ are retained.
- (2) Generate T random subspaces $\{R_t\}_{t=1}^T$:
 Each random subspace R_t is spanned by M0 + M1 dimensions.
 The first M0 dimensions are fixed as the M0 largest eigenfaces in \mathbf{W} .
 The remaining M1 dimensions are randomly selected from the other N-1-M0 eigenfaces in \mathbf{W} .
- (3) T LDA classifiers $\{y_t^R(\mathbf{x})\}_{t=1}^T$ are constructed from the T random subspaces.

Mpca (=M0+M1) and Mlda need to be chosen.

Random sampling in feature space

At the testing stage:

- (1) The input face data is projected to *T* random subspaces and fed to *T* PCA-LDA classifiers in parallel.
- (2) The outputs of the *T* PCA-LDA classifiers are combined using a fusion scheme (e.g. sum, product, min, max, majority voting) to make the final decision.

Random sampling based PCA-LDA (Fisherface)

