Лекция 8. Разреженная таблица. Дерево отрезков.

#вшпи #аисд #теория

Автор конспекта: Гридчин Михаил

RMQ/RSQ

Def. RMQ - запрос поиска минимума на подотрезке

Def. RSQ - запрос поиска суммы на отрезке

Def. Online режим - если запросы поступают в режиме онлайн после ответов на предыдущие запросы

Def. Offline режим - если запросы известны заранее

Def. Satic задача - если нет запросов изменений

Def. Dynamic задача - если есть запросы изменений.

Мы уже умеем решать static RSQ в online/offline с помощью префиксных сумм. Также мы умеем решать static offline RMQ с помощью очереди на минимум и алгоритма Мо.

Def. Разреженная таблица (Sparse table) - двумерный массив st размера N на $\log N$, где

$$st[i][j] = f(a[i], a[i+1], \ldots, a[i+2^j-1]), \quad j = \{0, \ldots, \log_2 N\} \ st[i][j] = egin{cases} f(st[i][j-1], st[i+2^{j-1}][j-1]), & j > 0, \ a[i], & j = 0 \end{cases}$$

Заметим, что мы знаем ответ для всех подотрезков длины 2^{j} . Тогда пусть

$$fl_log[j] := floor(\log_2 j)$$

Тогда
$$f(a[l],a[l+1],\ldots,a[r])=f(st[l][j],st[r-2^j+1][j]), j=fl_log[r-l+1]$$

Потребляемые ресурсы $O(N\log N)$ по памяти и $O(N\log N)$ по времени построения и O(1) на запрос.

Sparse Table может решать задачу static online RMQ.

Def. Идемпотентность - свойство операции, согласно которому её повторное применение к одному и тому же объекту не меняет конечный результат после первого выполнения. $\forall a \implies f(a,a) = a$.

Дерево отрезков

Def. Дерево отрезков за $O(\log N)$ способна считать операцию на отрезке для ассоциативной, коммутативной операции с нейтральным элементом.

Построение

- будем считать, что $\log_2 N \in \mathbb{N}$ иначе дополним до степени двойки нейтральными элементами
- Заведём массив длины 2N-1, последние N элементов будут элементами исходного массива
- Первые N-1 элементов заполняем по формуле t[i]=F(t[2i+1],t[2i+2]). Наша цель получить результат на подотрезке [L,R]. Пусть мы находимся в вершине [l,r]. Возможны три случая
- 1. [l, r] \cap [L, R] = $\emptyset \Longrightarrow \text{optional}$
- 2. $[l, r] \in [L, R] \implies s[v]$
- 3. Возвращаем результат F(query(2v+1,L,R),query(2v+2,L,R)). То есть разбиваем наш подотрезок на дизъюнктные подотрезки длины степени двойки.

Время работы.

Заметим, что на каждом уровне раскрываются вниз могут не более двух узлов, так как только крайние могут порождать дочерние. Время работы $O(\log N)$.

Обновление в точке. Пусть необходимо обновить элемент с индексом i.

- ullet присвоим $t[i+N]=new_value$
- поднимаемся вверх по $\log N$ узлов и пересчитываем корректное значение функции на отрезке. Индекс родителя $\lfloor \frac{i-1}{2} \rfloor$.

Def. Операция группового обновления ch будем называть запрос, в ходе которого применяется на подотрезке операция $ch(\circ, val)$.

Пусть ch - операция изменения, op - операция запроса. Тогда

- $\exists e : ch(a, e) = e$
- ассоциативность
- дистрибутивность ch(op(a,b),c) = op(ch(a,c),b)

Def. *Несогласованность* - величина, с которой надо выполнить операцию op, чтобы получить корректный результат. В каждый момент времени в узле необязательно лежит

истинное значение $\it op$ на отрезке. Но к моменту запроса будем осуществлять $\it npomankue$ несогласованности.