Travail du 11/11/2024

Exercice 1

On pose $S_n = \sum_{k=1}^n \frac{1}{k}$ pour $n \ge 1$. Déterminer un équivalent de (S_n) en $+\infty$.

Exercice 2

Pour
$$t \ge 0$$
, on pose $f(t) = \frac{t^5 - t^4 + t^2 + \ln(t+1)}{t^3 + 2024t + \pi}$ et $g(t) = \frac{t^2}{t^2 + 56t + 4}e^{-t}$.

a) Parmi les 4 intégrales suivantes, lesquelles convergent (pour x > 0 fixé)?

$$F_1(x) = \int_0^x f(t) dt, \quad F_2(x) = \int_x^{+\infty} f(t) dt,$$

$$G_1(x) = \int_0^x g(t) dt, \quad G_2(x) = \int_x^{+\infty} g(t) dt.$$

b) Parmi les intégrales convergentes, il y en a deux pour lesquelles on peut trouver un équivalent quand x tend vers $+\infty$. Dites lesquelles et déterminer ces équivalents.

Exercice 3

g est une fonction de classe \mathcal{C}^1 de $[1,+\infty[$ dans \mathbb{R} qui est décroissante et telle que $\lim_{x\to +\infty}g(x)=0.$ $\alpha>0$

- a) Montrer que g' est une fonction intégrable sur $[1, +\infty[$.
- b) Vérifier que : $\forall b > 1$, $\int_{1}^{b} \sin(t)g(t) dt = g(1)\cos(1) g(b)\cos(b) + \int_{1}^{b} \cos(t)g'(t) dt$.
- c) Déduire de a) et b) que $\int_1^{+\infty} \sin(t)g(t) dt$ converge puis que $\int_1^{+\infty} \frac{\sin(t)}{t^{\alpha}} dt$ converge.

Exercice 4

$$\alpha > 0$$
. Pour $t > 0$, $f_{\alpha}(t) = \frac{\sin^2(t)}{t^{\alpha}}$.

- a) On suppose $\alpha > 1$. Étudier l'intégrabilité de f_{α} sur $[\pi, +\infty[$.
- b) On suppose $\alpha \leq 1$. En minorant $\int_{k\pi}^{(k+1)\pi} f_{\alpha}(t) dt$ [garder le $\sin^2(t)$], étudier l'intégrabilité de f_{α} sur $[\pi, +\infty[$.
- c) Déterminer une CNS sur α pour que f soit intégrable sur $]0, +\infty[$.

Problème : une amélioration de la comparaison série-intégrale.

Pour $x \in [0, 1]$, $B_2(x) = \frac{1}{2}(x^2 - x)$. Comme $B_2(0) = B_2(1)$, on peut appeler φ la fonction de \mathbb{R} dans \mathbb{R} , qui coïncide avec B_2 sur [0, 1] et qui est 1-périodique.

- 1) a) Calculer B_2' et B_2'' puis tracer schématiquement le graphe de φ sur [-1,2]
 - b) φ est elle de classe \mathcal{C}^1 sur \mathbb{R} ?
 - c) Déterminer $M_2 = \max_{x \in \mathbb{R}} |\varphi(x)|$.
- 2) Soit f de classe C^2 de [0,1] dans \mathbb{R} .

Montrer que
$$\int_0^1 f(t) dt = \frac{f(1) + f(0)}{2} + \int_0^1 B_2(t) f''(t) dt$$
.

3) Soit g de classe C^2 sur $[1, +\infty[$. Montrer que

$$\forall k \in \mathbb{N}^*, \int_{k}^{k+1} g(t) dt = \frac{g(k) + g(k+1)}{2} + \int_{k}^{k+1} g''(t)\varphi(t) dt.$$

Jusqu'à la question 7 , g est la fonction qui à $t \in [1, +\infty[$ associe $\frac{1}{t}$.

g est de classe \mathcal{C}^2 . Pour $k \in \mathbb{N}^*$, on pose $\varepsilon_k = \int_k^{k+1} g''(t) \varphi(t) dt$ et

pour
$$n \ge 2$$
, $H_n = \sum_{n=1}^{n} \frac{1}{n}$, $u_n = H_n - \ln(n)$

- 4) a) Vérifier que : $\forall k \ge 1$, $|\varepsilon_k| \le \frac{2M_2}{k^3}$ puis que $\sum \varepsilon_k$ converge.
 - b) Déterminer une constante K tel que $\forall n \ge 2$, $\left| \sum_{k=n}^{\infty} \varepsilon_k \right| \le \frac{K}{(n-1)^2}$.

Utiliser la méthode de comparaison série-intégrale

- 5) En utilisant la question 3, montrer que : $\forall n \geqslant 2$, $u_n = \frac{1}{2n} + \frac{1}{2} \sum_{k=1}^{n-1} \varepsilon_k$.
- 6) a) Montrer que : la suite (u_n) converge. On note γ sa limite.

b) Montrer que :
$$\forall n \ge 2$$
, $u_n - \gamma = \frac{1}{2n} + \sum_{k=n}^{\infty} \varepsilon_k$.

7) En déduire que
$$H_n = \ln(n) + \gamma + \frac{1}{2n} + O\left(\frac{1}{n^2}\right)$$

8) Question subsidiaire Montrer qu'il existe A dans $\mathbb R$ tel que :

$$\sum_{k=1}^{n} \frac{1}{\sqrt{k}} \underset{+\infty}{=} 2\sqrt{n} + A + \mathcal{O}\left(\frac{1}{\sqrt{n}}\right) \text{ [Changer de fonction } g \text{]}$$