

Analisi di serie temporali per il monitoraggio di bambini con emiplegia

Davide Marchi Giordano Scerra

Utilizzo dell'intelligenza
artificiale per creare una
diagnosi e una riabilitazione
personalizzata per i bambini
con emiplegia

Emiplegia e PCI

Introduzione

I soggetti dello studio sono bambini con Paralisi Cerebrale Infantile (PCI)

Nello specifico PCI a tipo emiplegia:

 Colpisce un solo emisfero cerebrale risultando in una parziale immobilità di un lato del corpo

I nostri obiettivi

Introduzione

Realizzazione di uno strumento di monitoraggio a partire da dati registrati (Activity Counts) da sensori indossabili non invasivi chiamati **attigrafi**

Datetime	x_D	y_D	z_D	x_ND	y_ND	z_ND
2017-05-06 18:31:04	15	12	6	8	0	0
2017-05-06 18:31:05	0	6	26	0	6	4
2017-05-06 18:31:06	0	1	14	0	10	4

Struttura della tesi

Introduzione

La tesi è strutturata secondo il seguente schema

Raccolta dati

Preprocessing

Allenamento di classificatori

Calcolo del CPI

Allenamento del regressore

Andamento dell'Home-AHA

Raccolta dati

Raccolta dati e preprocessing

Utilizzo di attigrafi durante:

Sessioni AHA		Sessioni WEEK		
•	20 minuti	•	6 giorni	
•	Semistrutturate	•	Non strutturate	
•	Personale clinico assegna Assisting Hand Assessment	•	Non supervisionate	

Preprocessing

Raccolta dati e preprocessing

Calcolando la magnitudo del vettore spostamento a partire dagli AC otteniamo:

- 60 serie temporali a due variabili delle sessioni AHA
- 60 serie temporali a due variabili delle sessioni WEEK

Dataset e preprocessing

- 1. Concatenazione
- 2. Differenza
- 3. Asimmetry Index

Dataset e preprocessing

- 1. Concatenazione
- 2. Differenza
- 3. Asimmetry Index

Dataset e preprocessing

- 1. Concatenazione
- 2. Differenza
- 3. Asimmetry Index

Dataset e preprocessing

- 1. Concatenazione
- 2. Differenza
- 3. Asimmetry Index

Suddivisione dei sample

Analisi

Approccio iniziale:

Lasciare che algoritmi non supervisionati provino a raggruppare le serie temporali in modo significativo

Cluster multipli

Analisi

Tentativo di suddividere le serie temporali delle sessioni AHA in **più cluster**

Esempio di clustering →

Cluster multipli

Analisi

Tentativo di suddividere le serie temporali delle sessioni AHA in **più cluster**

Elbow plot dell'inerzia →

Classificazione binaria

Analisi

Modelli **supervised** o **unsupervised** per decidere se un sample appartenga ad un soggetto con emiplegia o ad un soggetto del gruppo di controllo

Esploriamo:

- Dimensioni dei sample
 - o 300, 600, 900 secondi
- Tipi di elaborazioni delle serie temporali
 - o Concatenazione, Differenza, Asimmetry Index
- Algoritmi con diversi parametri
 - o KMeans, KMedoids, ShapeDTW, BOSSEnsemble

Model selection

Analisi

Grid search multiple per poter confrontare i vari approcci

MTS = Mean Test Score calcolato con f1 score

Analisi

La grid search ha prodotto i seguenti risultati per sample da **900 secondi**

Metodo	Modello	Parametri	MTS	STD
difference	TimeSeriesKMeans	mean, kmeans++, dtw, 2	1.0	0.0
ai	TimeSeriesKMeans	mean, kmeans++, euclidean, 2	1.0	0.0
difference	TimeSeriesKMedoids	forgy, dtw, 2	0.983	0.033
difference	ShapeDTW	paa	0.983	0.034
ai	TimeSeriesKMedoids	random, euclidean, 2	0.983	0.034
ai	ShapeDTW	paa	0.983	0.034
ai	BOSSEnsemble	none	0.95	0.041
concat	BOSSEnsemble	none	0.948	0.07
difference	BOSSEnsemble	chi2	0.934	0.062
concat	TimeSeriesKMedoids	forgy, dtw, 2	0.77	0.136

Analisi

La grid search ha prodotto i seguenti risultati per sample da **600 secondi**

Metodo	Modello	Parametri	MTS	STD
ai	TimeSeriesKMeans	mean, kmeans++, euclidean, 2	1.0	0.0
ai	TimeSeriesKMedoids	forgy, euclidean, 2	0.988	0.024
ai	BOSSEnsemble	none	0.976	0.029
difference	TimeSeriesKMeans	mean, kmeans++, euclidean, 2	0.976	0.03
difference	TimeSeriesKMedoids	forgy, dtw, 2	0.976	0.03
ai	ShapeDTW	paa	0.952	0.044
difference	ShapeDTW	raw	0.951	0.045
difference	BOSSEnsemble	none	0.947	0.08
concat	BOSSEnsemble	chi2	0.947	0.08
concat	TimeSeriesKMeans	mean, kmeans++, euclidean, 2	0.896	0.208

Analisi

La grid search ha prodotto i seguenti risultati per sample da **300 secondi**

Metodo	Modello	Parametri	MTS	STD
ai	TimeSeriesKMedoids	forgy, euclidean, 2	0.955	0.024
ai	TimeSeriesKMeans	mean, kmeans++, dtw, 2	0.95	0.023
concat	BOSSEnsemble	none	0.943	0.053
difference	TimeSeriesKMeans	mean, kmeans++, dtw, 2	0.94	0.043
difference	ShapeDTW	paa	0.939	0.047
ai	BOSSEnsemble	none	0.938	0.043
difference	TimeSeriesKMedoids	forgy, dtw, 2	0.933	0.037
ai	ShapeDTW	paa	0.933	0.026
difference	BOSSEnsemble	none	0.928	0.045
concat	ShapeDTW	paa	0.809	0.045

Analisi

La grid search ha prodotto i seguenti risultati per sample da **300 secondi**

Metodo	Modello	Parametri	MTS	STD
ai	TimeSeriesKMedoids	forgy, euclidean, 2	0.955	0.024
ai	TimeSeriesKMeans	mean, kmeans++, dtw, 2	0.95	0.023
concat	BOSSEnsemble	none	0.943	0.053
difference	TimeSeriesKMeans	mean, kmeans++, dtw, 2	0.94	0.043
difference	ShapeDTW	paa	0.939	0.047
ai	BOSSEnsemble	none	0.938	0.043
difference	TimeSeriesKMedoids	forgy, dtw, 2	0.933	0.037
ai	ShapeDTW	paa	0.933	0.026
difference	BOSSEnsemble	none	0.928	0.045
concat	ShapeDTW	paa	0.809	0.045

Continous Performance Indicator

Analisi

- Suddivisione della settimana in sample da 300 secondi
- Classificazione del sample tra:
 - Sample non valido
 - **Sample** di un soggetto con emiplegia (**SE**)
 - **Sample** di un soggetto del gruppo di controllo (**SC**)
- Calcolo del CPI

Modello

$$\qquad \qquad \Longrightarrow \qquad$$

$$\implies CPI = \frac{\#SC}{\#SC + \#SE} \cdot 100 = \frac{3}{3+2} \cdot 100 = 60$$

Valutazione del CPI

Analisi

La significatività del CPI è stata misurata calcolando la **correlazione di Pearson** (ρ) tra CPI e AHA

$$\rho_{CPI,AHA} = 0.826$$

Utilizzo del CPI

Dashboard

Necessità di:

- Visualizzare l'andamento delle prestazioni
- Avere una misura dell'affidabilità dell'indicatore
- Renderlo comprensibile al personale clinico

Soluzione:

Realizzazione di un dashboard →

Grafico delle predizioni

Finestre e significatività

Dashboard

Usiamo finestre da 6 ore (72 sample):

Per ognuna di loro teniamo conto di una soglia di significatività, che deve essere maggiore del **75**% per calcolare il CPI

Finestre sequenziali disgiunte

Dashboard

Finestra scorrevole

Dashboard

Grafico della significatività

Dashboard

Stimare l'AHA: Home-AHA

Dashboard

Abbiamo allenato un regressore lineare in grado di stimare l'AHA a partire dal CPI calcolato dai 5 migliori modelli, le cui prestazioni sono state misurate calcolando il **coefficiente di determinazione** ($\mathbb{R}^2 = 0.747$)

Andamento dell'Home-AHA

Dashboard \rightarrow AHA = 59

Andamento dell'Home-AHA

Dashboard → AHA = 100

Risultati ottenuti e contributi

Risultati

- CPI come feature
 - o Comprovato l'utilizzo del CPI come feature utile per il monitoraggio
- Grafico dell'Home-AHA
 - Andamento che stima il punteggio AHA durante i sei giorni del soggetto

Mediante l'implementazione della seguente pipeline

Conclusioni dell'analisi

Conclusioni

CPI e l'Home-AHA sono frutto dell'addestramento di modelli di ML, e dunque i risultati da loro prodotti sono strettamente dipendenti dal contenuto del dataset di partenza

Possibili sviluppi futuri potrebbero dunque essere:

- Aumento della quantità e qualità dei dati
- Esplorazione di ulteriori modelli e parametri
- Gestione e trasferimento dei dati

Ringraziamo per l'attenzione

