Khrystian Clark

Assignment 9, CS325

08MAR2022

Assignment: NP-Completeness and Heuristic Algorithms

Note: You will discuss Question 1 as part of the Group Assignment. (Check this week's Group Assignment on Canvas for details).

1. NP-Completeness: Consider the Travelling Salesperson (TSP) problem that was covered in te exploration.

Problem: Given a graph G with V vertices and E edges, determine if the graph has a TSP solution with a cost of at most k.

Prove that the above stated problem is NP-Complete.

- Group part:
 - o The steps I have:
 - A is NP
 - Find a similar NP-complete: shows B <=p A</p>
 - Solve B with algorithm to solve A
 - Proof the solution is correct for all instances.
- My developed answer:
 - We must prove: TSP is NP
 - The tour(G) contains each V once.
 - Minimum cost is the sum of edges, found in polynomial time, therefore TSP is NP.
 - Hamilton cycle(cycle that passes through all V in G once) \leq p TSP (this is an idea I learned during the group portion of this assignment)
 - Reduce the Hamilton Cycle to a known NP-hard problem.
 - Form a complete graph by adding edges connecting all vertices.
 - Give each added edge a value of 1
 - Original edges = 0
 - If we can find a Hamilton cycle in the updated graph that equals 0, then the graph has a Hamilton cycle.
 - Since the Hamilton cycle has been reduced to TSP, then it is shown that TSP is NP-hard. Since we've proven each step, then we can conclude that TSP is NP-Complete.

2. Implement Heuristic Algorithm:

a. Below matrix represents the distance of 5 cities from each other. Represent it in the form of a graph

А	В	С	D	E
---	---	---	---	---

Α	0	2	3	20	1
В	2	0	15	2	20
С	3	15	0	20	13
D	20	2	20	0	9
Е	1	20	13	9	0

- b. Apply Nearest-neighbour heuristic to this matrix and find the approximate solution for this matrix if it were for TSP problem.
 - i. $A(1) \rightarrow E(9) \rightarrow D(2) \rightarrow B(15) \rightarrow C(3 \text{ to } A)$
 - ii. 30 is the total cost
- c. What is the approximation ratio of your approximate solution?
 - i. Since the nearest neighbour and the optimal solutions are the same, then the approximation solution is 100%
- d. Implement the nearest neighbour heuristic for TSP problem. Consider the first node as the starting point. The input Graph is provided in the form of a 2-D matrix. Name your function solve_tsp(G). Name your file TSP.py

Sample input

G: [[0,1,3,7], [1,0,2,3],[3,2,0,1], [7,3,1,0]]

Output: 11

- Pseudo code
 - o Traverse all nodes
 - o Store the minimum weighted nodes
 - Store visited in order to avoid latency
- Update the total cost as you visit the smallest nodes
- Print the final cost of the traversal.

```
def solve tsp(G):
```