Методы оптимизации Лекция 7: Введение в условия оптимальности и сопряжённые функции

Александр Катруца

Физтех-школа прикладной математики и информатики Московский физико-технический институт

26 октября 2020 г.

▶ Субградиент и субдифференциал

- ▶ Субградиент и субдифференциал
- ▶ Субдифференциал и производная по направлению

- Субградиент и субдифференциал
- ▶ Субдифференциал и производная по направлению
- Опорная функция

- Субградиент и субдифференциал
- Субдифференциал и производная по направлению
- Опорная функция
- Способы вычисления субдифференциалов

Условия оптимальности

- Условия оптимальности
- ▶ Необходимое условие первого порядка

- Условия оптимальности
- ▶ Необходимое условие первого порядка
- ▶ Сопряжённые функции

- Условия оптимальности
- Необходимое условие первого порядка
- Сопряжённые функции
- Примеры и свойства

Теорема

Пусть f полунепрерывная снизу функция на компактном множестве. Тогда эта функция достигает своего минимального значения на этом компакте.

Теорема

Пусть f полунепрерывная снизу функция на компактном множестве. Тогда эта функция достигает своего минимального значения на этом компакте.

Теорема

Пусть f полунепрерывная снизу функция на компактном множестве. Тогда эта функция достигает своего минимального значения на этом компакте.

Доказательство

▶ По определению инфимума найдётся последовательность $\{\mathbf{x}_n\}\subset \mathcal{C}$ такая что $f(\mathbf{x}_n)\to f^*=\inf_{\mathbf{x}\in\mathcal{C}}f(\mathbf{x})$

Теорема

Пусть f полунепрерывная снизу функция на компактном множестве. Тогда эта функция достигает своего минимального значения на этом компакте.

- ▶ По определению инфимума найдётся последовательность $\{\mathbf{x}_n\}\subset \mathcal{C}$ такая что $f(\mathbf{x}_n)\to f^*=\inf_{\mathbf{x}\in \mathcal{C}}f(\mathbf{x})$
- ▶ Так как $\mathcal C$ компакт, то можно выделить сходящуюся подпоследовательность $\mathbf x_{n_k} \to \mathbf x^* \in \mathcal C$ в силу компактности множества $\mathcal C$

Теорема

Пусть f полунепрерывная снизу функция на компактном множестве. Тогда эта функция достигает своего минимального значения на этом компакте.

- ▶ По определению инфимума найдётся последовательность $\{\mathbf{x}_n\}\subset \mathcal{C}$ такая что $f(\mathbf{x}_n)\to f^*=\inf_{\mathbf{x}\in \mathcal{C}}f(\mathbf{x})$
- ▶ Так как $\mathcal C$ компакт, то можно выделить сходящуюся подпоследовательность $\mathbf x_{n_k} \to \mathbf x^* \in \mathcal C$ в силу компактности множества $\mathcal C$
- lacktriangled В силу полунепрерывности снизу $f(\mathbf{x}^*) \leq \lim_{k o \infty} f(\mathbf{x}_{n_k})$

Теорема

Пусть f полунепрерывная снизу функция на компактном множестве. Тогда эта функция достигает своего минимального значения на этом компакте.

- ▶ По определению инфимума найдётся последовательность $\{\mathbf{x}_n\}\subset \mathcal{C}$ такая что $f(\mathbf{x}_n)\to f^*=\inf_{\mathbf{x}\in \mathcal{C}}f(\mathbf{x})$
- ▶ Так как $\mathcal C$ компакт, то можно выделить сходящуюся подпоследовательность $\mathbf x_{n_k} \to \mathbf x^* \in \mathcal C$ в силу компактности множества $\mathcal C$
- lacktriangle В силу полунепрерывности снизу $f(\mathbf{x}^*) \leq \lim_{k o \infty} f(\mathbf{x}_{n_k})$
- lacktriangle Но мы знаем, что $f(\mathbf{x}_n) o f^*$, а значит и $\lim_{k o \infty} f(\mathbf{x}_{n_k}) = f^*$

Теорема

Пусть f полунепрерывная снизу функция на компактном множестве. Тогда эта функция достигает своего минимального значения на этом компакте.

- ▶ По определению инфимума найдётся последовательность $\{\mathbf{x}_n\}\subset \mathcal{C}$ такая что $f(\mathbf{x}_n)\to f^*=\inf_{\mathbf{x}\in \mathcal{C}}f(\mathbf{x})$
- ▶ Так как $\mathcal C$ компакт, то можно выделить сходящуюся подпоследовательность $\mathbf x_{n_k} \to \mathbf x^* \in \mathcal C$ в силу компактности множества $\mathcal C$
- lacktriangle В силу полунепрерывности снизу $f(\mathbf{x}^*) \leq \lim_{k o \infty} f(\mathbf{x}_{n_k})$
- lacktriangledown Но мы знаем, что $f(\mathbf{x}_n) o f^*$, а значит и $\lim_{k o \infty} f(\mathbf{x}_{n_k}) = f^*$
- ▶ Значит $f(\mathbf{x}^*) \le f^*$ и следовательно инфимум достигается в точке \mathbf{x}^*

Как это нам поможет?

> Замкнутая выпуклая функция полунепрерывна снизу

Как это нам поможет?

- Замкнутая выпуклая функция полунепрерывна снизу
- ▶ Задача минимизации замкнутой выпуклой функции на компакте всегда имеет решение

Как это нам поможет?

- Замкнутая выпуклая функция полунепрерывна снизу
- Задача минимизации замкнутой выпуклой функции на компакте всегда имеет решение
- ▶ Таким образом, решение большинства практически важных задач существует

Задача оптимизации в общем виде $f(\mathbf{x}) \to \min_{\mathbf{x} \in \mathcal{X}}$

Задача оптимизации в общем виде

$$f(\mathbf{x}) \to \min_{\mathbf{x} \in \mathcal{X}}$$

Условие оптимальности

Пусть f определена на множестве $\mathcal{X} \subset \mathbb{R}^n$. Тогда

Задача оптимизации в общем виде

$$f(\mathbf{x}) \to \min_{\mathbf{x} \in \mathcal{X}}$$

Условие оптимальности

Пусть f определена на множестве $\mathcal{X} \subset \mathbb{R}^n$. Тогда

1. Если \mathbf{x}^* точка минимума функции f на \mathcal{X} , тогда $0 \in \partial_{\mathcal{X}} f(\mathbf{x}^*)$

Задача оптимизации в общем виде

$$f(\mathbf{x}) \to \min_{\mathbf{x} \in \mathcal{X}}$$

Условие оптимальности

Пусть f определена на множестве $\mathcal{X} \subset \mathbb{R}^n$. Тогда

- 1. Если \mathbf{x}^* точка минимума функции f на \mathcal{X} , тогда $0 \in \partial_{\mathcal{X}} f(\mathbf{x}^*)$
- 2. Если в некоторой точке $\mathbf{x}^* \in \mathcal{X}$ существует субдифференциал $\partial_{\mathcal{X}} f(\mathbf{x}^*)$ и $0 \in \partial_{\mathcal{X}} f(\mathbf{x}^*)$, тогда \mathbf{x}^* точка минимума функции f на множестве \mathcal{X} .

Задача оптимизации в общем виде

$$f(\mathbf{x}) \to \min_{\mathbf{x} \in \mathcal{X}}$$

Условие оптимальности

Пусть f определена на множестве $\mathcal{X} \subset \mathbb{R}^n$. Тогда

- 1. Если \mathbf{x}^* точка минимума функции f на \mathcal{X} , тогда $0 \in \partial_{\mathcal{X}} f(\mathbf{x}^*)$
- 2. Если в некоторой точке $\mathbf{x}^* \in \mathcal{X}$ существует субдифференциал $\partial_{\mathcal{X}} f(\mathbf{x}^*)$ и $0 \in \partial_{\mathcal{X}} f(\mathbf{x}^*)$, тогда \mathbf{x}^* точка минимума функции f на множестве \mathcal{X} .

Q: какие недостатки у этого критерия?

1. Если \mathbf{x}^* точка минимума, тогда

- 1. Если \mathbf{x}^* точка минимума, тогда
 - ▶ для любого $\mathbf{x} \in \mathcal{X}$: $f(\mathbf{x}) \geq f(\mathbf{x}^*)$

- 1. Если x^* точка минимума, тогда
 - ▶ для любого $\mathbf{x} \in \mathcal{X}$: $f(\mathbf{x}) \geq f(\mathbf{x}^*)$
 - ▶ Это неравенство можно переписать в виде:

$$f(\mathbf{x}) \geq f(\mathbf{x}^*) + \langle 0, \mathbf{x} - \mathbf{x}^* \rangle$$

- 1. Если x^* точка минимума, тогда
 - ▶ для любого $\mathbf{x} \in \mathcal{X}$: $f(\mathbf{x}) \ge f(\mathbf{x}^*)$
 - ▶ Это неравенство можно переписать в виде: $f(\mathbf{x}) \ge f(\mathbf{x}^*) + \langle 0, \mathbf{x} \mathbf{x}^* \rangle$
 - lacktriangle Это означает, что $0\in\partial_{\mathcal{X}}f(\mathbf{x}^*)$ по определению

- 1. Если \mathbf{x}^* точка минимума, тогда
 - ▶ для любого $\mathbf{x} \in \mathcal{X}$: $f(\mathbf{x}) \geq f(\mathbf{x}^*)$
 - ▶ Это неравенство можно переписать в виде: $f(\mathbf{x}) \ge f(\mathbf{x}^*) + \langle 0, \mathbf{x} \mathbf{x}^* \rangle$
 - lacktriangle Это означает, что $0\in\partial_{\mathcal{X}}f(\mathbf{x}^*)$ по определению
- 2. Если $0 \in \partial_{\mathcal{X}} f(\mathbf{x}^*)$ в некоторрой точке \mathbf{x}^* , тогда

- 1. Если \mathbf{x}^* точка минимума, тогда
 - ▶ для любого $\mathbf{x} \in \mathcal{X}$: $f(\mathbf{x}) \ge f(\mathbf{x}^*)$
 - ▶ Это неравенство можно переписать в виде: $f(\mathbf{x}) \ge f(\mathbf{x}^*) + \langle 0, \mathbf{x} \mathbf{x}^* \rangle$
 - lacktriangle Это означает, что $0 \in \partial_{\mathcal{X}} f(\mathbf{x}^*)$ по определению
- 2. Если $0 \in \partial_{\mathcal{X}} f(\mathbf{x}^*)$ в некоторрой точке \mathbf{x}^* , тогда
 - $m{ ilde{r}}$ по определению субдифференциала $f(\mathbf{x}) \geq f(\mathbf{x}^*) + \langle \mathbf{a}, \mathbf{x} \mathbf{x}^*
 angle$

- 1. Если \mathbf{x}^* точка минимума, тогда
 - ▶ для любого $\mathbf{x} \in \mathcal{X}$: $f(\mathbf{x}) \geq f(\mathbf{x}^*)$
 - ▶ Это неравенство можно переписать в виде: $f(\mathbf{x}) > f(\mathbf{x}^*) + \langle 0, \mathbf{x} \mathbf{x}^* \rangle$
 - lacktriangle Это означает, что $0\in\partial_{\mathcal{X}}f(\mathbf{x}^*)$ по определению
- 2. Если $0 \in \partial_{\mathcal{X}} f(\mathbf{x}^*)$ в некоторрой точке \mathbf{x}^* , тогда
 - $m{r}$ по определению субдифференциала $f(\mathbf{x}) \geq f(\mathbf{x}^*) + \langle \mathbf{a}, \mathbf{x} \mathbf{x}^*
 angle$
 - ▶ Если $0 \in \partial_{\mathcal{X}} f(\mathbf{x}^*)$, тогда получим неравенство $f(\mathbf{x}) \geq f(\mathbf{x}^*)$ для любого $\mathbf{x} \in \mathcal{X}$

- 1. Если x^* точка минимума, тогда
 - ▶ для любого $\mathbf{x} \in \mathcal{X}$: $f(\mathbf{x}) \ge f(\mathbf{x}^*)$
 - ▶ Это неравенство можно переписать в виде: $f(\mathbf{x}) > f(\mathbf{x}^*) + \langle 0, \mathbf{x} \mathbf{x}^* \rangle$
 - lacktriangle Это означает, что $0 \in \partial_{\mathcal{X}} f(\mathbf{x}^*)$ по определению
- 2. Если $0 \in \partial_{\mathcal{X}} f(\mathbf{x}^*)$ в некоторрой точке \mathbf{x}^* , тогда
 - $m{r}$ по определению субдифференциала $f(\mathbf{x}) \geq f(\mathbf{x}^*) + \langle \mathbf{a}, \mathbf{x} \mathbf{x}^*
 angle$
 - ▶ Если $0 \in \partial_{\mathcal{X}} f(\mathbf{x}^*)$, тогда получим неравенство $f(\mathbf{x}) \geq f(\mathbf{x}^*)$ для любого $\mathbf{x} \in \mathcal{X}$
 - lacktriangle Это означает, что ${f x}^*$ точка минимума

Теорема

Если \mathbf{x}^* решение задачи (1), то $f'(\mathbf{x}^*) = 0$.

Теорема

Если \mathbf{x}^* решение задачи (1), то $f'(\mathbf{x}^*) = 0$.

Теорема

Если \mathbf{x}^* решение задачи (1), то $f'(\mathbf{x}^*) = 0$.

$$f(\mathbf{y}) = f(\mathbf{x}^*) + \langle f'(\mathbf{x}^*), \mathbf{y} - \mathbf{x}^* \rangle + r(\mathbf{x}^*, \mathbf{y}) \text{ u}$$

$$\lim_{\mathbf{y} \to \mathbf{x}^*} \frac{r(\mathbf{x}^*, \mathbf{y})}{\|\mathbf{x}^* - \mathbf{y}\|_2} = 0 \text{ (*)}$$

Теорема

Если \mathbf{x}^* решение задачи (1), то $f'(\mathbf{x}^*) = 0$.

- $f(\mathbf{y}) = f(\mathbf{x}^*) + \langle f'(\mathbf{x}^*), \mathbf{y} \mathbf{x}^* \rangle + r(\mathbf{x}^*, \mathbf{y}) \text{ in}$ $\lim_{\mathbf{y} \to \mathbf{x}^*} \frac{r(\mathbf{x}^*, \mathbf{y})}{\|\mathbf{x}^* \mathbf{y}\|_2} = 0 \ (*)$
- ▶ Если $f'(\mathbf{x}^*) \neq 0$, тогда рассмотрим $\mathbf{y}(\tau) = \mathbf{x}^* \tau f'(\mathbf{x}^*)$, $\tau > 0$

Условие оптимальности для задачи без ограничений $\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}) \tag{1}$

Теорема

Если \mathbf{x}^* решение задачи (1), то $f'(\mathbf{x}^*) = 0$.

- $f(\mathbf{y}) = f(\mathbf{x}^*) + \langle f'(\mathbf{x}^*), \mathbf{y} \mathbf{x}^* \rangle + r(\mathbf{x}^*, \mathbf{y}) \text{ in}$ $\lim_{\mathbf{y} \to \mathbf{x}^*} \frac{r(\mathbf{x}^*, \mathbf{y})}{\|\mathbf{x}^* \mathbf{y}\|_2} = 0 \ (*)$
- ▶ Если $f'(\mathbf{x}^*) \neq 0$, тогда рассмотрим $\mathbf{y}(\tau) = \mathbf{x}^* \tau f'(\mathbf{x}^*)$, $\tau > 0$
- $f(\mathbf{y}(\tau)) = f(\mathbf{x}^*) + \langle f'(\mathbf{x}^*), \mathbf{y}(\tau) \mathbf{x}^* \rangle + r(\mathbf{x}^*, \mathbf{y}(\tau)) = f(\mathbf{x}^*) \tau ||f'(\mathbf{x}^*)||_2^2 + r(\mathbf{x}^*, \mathbf{y}(\tau))$

Условие оптимальности для задачи без ограничений $\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}) \tag{1}$

Теорема

Если \mathbf{x}^* решение задачи (1), то $f'(\mathbf{x}^*) = 0$.

Доказательство

- $f(\mathbf{y}) = f(\mathbf{x}^*) + \langle f'(\mathbf{x}^*), \mathbf{y} \mathbf{x}^* \rangle + r(\mathbf{x}^*, \mathbf{y}) \text{ u}$ $\lim_{\mathbf{y} \to \mathbf{x}^*} \frac{r(\mathbf{x}^*, \mathbf{y})}{\|\mathbf{x}^* \mathbf{y}\|_2} = 0 \ (*)$
- ▶ Если $f'(\mathbf{x}^*) \neq 0$, тогда рассмотрим $\mathbf{y}(\tau) = \mathbf{x}^* \tau f'(\mathbf{x}^*)$, $\tau > 0$
- $f(\mathbf{y}(\tau)) = f(\mathbf{x}^*) + \langle f'(\mathbf{x}^*), \mathbf{y}(\tau) \mathbf{x}^* \rangle + r(\mathbf{x}^*, \mathbf{y}(\tau)) = f(\mathbf{x}^*) \tau \|f'(\mathbf{x}^*)\|_2^2 + r(\mathbf{x}^*, \mathbf{y}(\tau))$
- lacktriangle В силу (*) найдётся $ar{ au}$ такое что для всех $au\in(0,ar{ au})$ выполнено $f(\mathbf{y}(au))-f(\mathbf{x}^*)\leq -rac{ au}{2}\|f'(\mathbf{x}^*)\|_2^2<0$

Значит x^* не минимум, противоречие.

Замечания к предыдущей теореме

 Эта теорема частный случай первой теоремы для общей задачи оптимизации

Замечания к предыдущей теореме

- Эта теорема частный случай первой теоремы для общей задачи оптимизации
- lacktriangle Дополнительное доказательство приведено для демонстрации свойства убывания у направления $-f'(\mathbf{x})$

Замечания к предыдущей теореме

- Эта теорема частный случай первой теоремы для общей задачи оптимизации
- ightharpoonup Дополнительное доказательство приведено для демонстрации свойства убывания у направления $-f'(\mathbf{x})$
- Обратите внимание, что субградиент таким свойством НЕ обладает!

Если в задаче (1) функция f выпукла, то \mathbf{x}^* глобальный минимум тогда и только тогда $f'(\mathbf{x}^*)=0$

Теорема

Если в задаче (1) функция f выпукла, то \mathbf{x}^* глобальный минимум тогда и только тогда $f'(\mathbf{x}^*)=0$

Теорема

Если в задаче (1) функция f выпукла, то \mathbf{x}^* глобальный минимум тогда и только тогда $f'(\mathbf{x}^*)=0$

Доказательство

ightharpoonup Если ${f x}^*$ глобальный минимум, то ${f x}^*$ локальный минимум

Теорема

Если в задаче (1) функция f выпукла, то \mathbf{x}^* глобальный минимум тогда и только тогда $f'(\mathbf{x}^*)=0$

- lacktriangle Если ${f x}^*$ глобальный минимум, то ${f x}^*$ локальный минимум
- lacktriangle Значит $f'(\mathbf{x}^*) = 0$ по предыдущей теореме

Теорема

Если в задаче (1) функция f выпукла, то \mathbf{x}^* глобальный минимум тогда и только тогда $f'(\mathbf{x}^*)=0$

- lacktriangle Если ${f x}^*$ глобальный минимум, то ${f x}^*$ локальный минимум
- ▶ Значит $f'(\mathbf{x}^*) = 0$ по предыдущей теореме
- lacktriangle Пусть ${f x}^*$ такая точка, что $f'({f x}^*)=0$ и функция выпукла

Теорема

Если в задаче (1) функция f выпукла, то \mathbf{x}^* глобальный минимум тогда и только тогда $f'(\mathbf{x}^*)=0$

- lacktriangle Если ${f x}^*$ глобальный минимум, то ${f x}^*$ локальный минимум
- lacktriangle Значит $f'(\mathbf{x}^*) = 0$ по предыдущей теореме
- lacktriangle Пусть ${f x}^*$ такая точка, что $f'({f x}^*)=0$ и функция выпукла
- ▶ Тогда по критерию выпуклости

$$f(\mathbf{y}) \ge f(\mathbf{x}^*) + \langle f'(\mathbf{x}^*), \mathbf{y} - \mathbf{x}^* \rangle = f(\mathbf{x}^*)$$

Теорема

Если в задаче (1) функция f выпукла, то \mathbf{x}^* глобальный минимум тогда и только тогда $f'(\mathbf{x}^*) = 0$

Доказательство

- ightharpoonup Если ${f x}^*$ глобальный минимум, то ${f x}^*$ локальный минимум
- ▶ Значит $f'(\mathbf{x}^*) = 0$ по предыдущей теореме
- lacktriangle Пусть ${f x}^*$ такая точка, что $f'({f x}^*)=0$ и функция выпукла
- Тогда по критерию выпуклости

$$f(\mathbf{y}) \ge f(\mathbf{x}^*) + \langle f'(\mathbf{x}^*), \mathbf{y} - \mathbf{x}^* \rangle = f(\mathbf{x}^*)$$

Значит x* – глобальный минимум.

Теорема

Если в задаче (1) функция f выпукла, то \mathbf{x}^* глобальный минимум тогда и только тогда $f'(\mathbf{x}^*) = 0$

Доказательство

- ightharpoonup Если ${f x}^*$ глобальный минимум, то ${f x}^*$ локальный минимум
- lacktriangle Значит $f'(\mathbf{x}^*) = 0$ по предыдущей теореме
- lacktriangle Пусть ${f x}^*$ такая точка, что $f'({f x}^*)=0$ и функция выпукла
- Тогда по критерию выпуклости

$$f(\mathbf{y}) \ge f(\mathbf{x}^*) + \langle f'(\mathbf{x}^*), \mathbf{y} - \mathbf{x}^* \rangle = f(\mathbf{x}^*)$$

Значит x* – глобальный минимум.

Замечание

Также можно воспользоваться свойством существования субдифференциала для выпуклой функции и общим критерием оптимальности.

$$\min_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x}) \tag{2}$$

Теорема

Точка \mathbf{x}^* – решение задачи (2), где f – выпуклая функция, тогда и только тогда, когда $\mathbf{x}^* \in \mathcal{X}$ и $\langle f'(\mathbf{x}^*), \mathbf{y} - \mathbf{x}^* \rangle \geq 0$ для всех $\mathbf{y} \in \mathcal{X}$.

$$\min_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x}) \tag{2}$$

Теорема

Точка \mathbf{x}^* – решение задачи (2), где f – выпуклая функция, тогда и только тогда, когда $\mathbf{x}^* \in \mathcal{X}$ и $\langle f'(\mathbf{x}^*), \mathbf{y} - \mathbf{x}^* \rangle \geq 0$ для всех $\mathbf{y} \in \mathcal{X}$.

$$\min_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x}) \tag{2}$$

Теорема

Точка \mathbf{x}^* – решение задачи (2), где f – выпуклая функция, тогда и только тогда, когда $\mathbf{x}^* \in \mathcal{X}$ и $\langle f'(\mathbf{x}^*), \mathbf{y} - \mathbf{x}^* \rangle \geq 0$ для всех $\mathbf{y} \in \mathcal{X}$.

Доказательство

ightharpoonup Пусть $\mathbf{x}^* \in \mathcal{X}$ и выполнено неравенство. Тогда по критерию первого порядка для выпуклой функции $f(\mathbf{y}) \geq f(\mathbf{x}^*)$

$$\min_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x}) \tag{2}$$

Теорема

Точка \mathbf{x}^* – решение задачи (2), где f – выпуклая функция, тогда и только тогда, когда $\mathbf{x}^* \in \mathcal{X}$ и $\langle f'(\mathbf{x}^*), \mathbf{y} - \mathbf{x}^* \rangle \geq 0$ для всех $\mathbf{y} \in \mathcal{X}$.

- ▶ Пусть $\mathbf{x}^* \in \mathcal{X}$ и выполнено неравенство. Тогда по критерию первого порядка для выпуклой функции $f(\mathbf{y}) \geq f(\mathbf{x}^*)$
- lacktriangle Пусть ${f x}^*$ решение задачи (2), но найдётся $ilde{f y}$ такой что $\langle f'({f x}^*), ilde{f y} {f x}^*
 angle < 0$

$$\min_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x}) \tag{2}$$

Теорема

Точка \mathbf{x}^* – решение задачи (2), где f – выпуклая функция, тогда и только тогда, когда $\mathbf{x}^* \in \mathcal{X}$ и $\langle f'(\mathbf{x}^*), \mathbf{y} - \mathbf{x}^* \rangle \geq 0$ для всех $\mathbf{y} \in \mathcal{X}$.

- ▶ Пусть $\mathbf{x}^* \in \mathcal{X}$ и выполнено неравенство. Тогда по критерию первого порядка для выпуклой функции $f(\mathbf{y}) \geq f(\mathbf{x}^*)$
- lacktriangle Пусть ${f x}^*$ решение задачи (2), но найдётся $ilde{f y}$ такой что $\langle f'({f x}^*), ilde{f y} {f x}^*
 angle < 0$
- ▶ Рассмотрим точку $\mathbf{z}(t) = t\tilde{\mathbf{y}} + (1-t)\mathbf{x}^*$, $t \in [0,1]$

$$\min_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x}) \tag{2}$$

Теорема

Точка \mathbf{x}^* – решение задачи (2), где f – выпуклая функция, тогда и только тогда, когда $\mathbf{x}^* \in \mathcal{X}$ и $\langle f'(\mathbf{x}^*), \mathbf{y} - \mathbf{x}^* \rangle \geq 0$ для всех $\mathbf{y} \in \mathcal{X}$.

- ▶ Пусть $\mathbf{x}^* \in \mathcal{X}$ и выполнено неравенство. Тогда по критерию первого порядка для выпуклой функции $f(\mathbf{y}) \geq f(\mathbf{x}^*)$
- lacktriangle Пусть ${f x}^*$ решение задачи (2), но найдётся $ilde{f y}$ такой что $\langle f'({f x}^*), ilde{f y} {f x}^*
 angle < 0$
- ▶ Рассмотрим точку $\mathbf{z}(t) = t\tilde{\mathbf{y}} + (1-t)\mathbf{x}^*$, $t \in [0,1]$
- lacktriangle Тогда в силу $\left. rac{d}{dt} f(\mathbf{z}(t))
 ight|_{t=0} = \langle f'(\mathbf{x}^*), ilde{\mathbf{y}} \mathbf{x}^*
 angle < 0$

$$\min_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x}) \tag{2}$$

Теорема

Точка \mathbf{x}^* – решение задачи (2), где f – выпуклая функция, тогда и только тогда, когда $\mathbf{x}^* \in \mathcal{X}$ и $\langle f'(\mathbf{x}^*), \mathbf{y} - \mathbf{x}^* \rangle \geq 0$ для всех $\mathbf{y} \in \mathcal{X}$.

- ▶ Пусть $\mathbf{x}^* \in \mathcal{X}$ и выполнено неравенство. Тогда по критерию первого порядка для выпуклой функции $f(\mathbf{y}) \geq f(\mathbf{x}^*)$
- ▶ Пусть \mathbf{x}^* решение задачи (2), но найдётся $\tilde{\mathbf{y}}$ такой что $\langle f'(\mathbf{x}^*), \tilde{\mathbf{y}} \mathbf{x}^* \rangle < 0$
- ▶ Рассмотрим точку $\mathbf{z}(t) = t\tilde{\mathbf{y}} + (1-t)\mathbf{x}^*, t \in [0,1]$
- ▶ Тогда в силу $\frac{d}{dt}f(\mathbf{z}(t))\big|_{t=0} = \langle f'(\mathbf{x}^*), \tilde{\mathbf{y}} \mathbf{x}^* \rangle < 0$
- lacktriangle Значит для малого t выполнено $f(\mathbf{z}(t)) < f(\mathbf{x}^*)$. Противоречие.

Теорема

Пусть f дважды непрерывно дифференцируема. Точка \mathbf{x}^* удовлетворяет уравнению $f'(\mathbf{x}^*)=0$. Если $\mathbf{s}^\top f''(\mathbf{x}^*)\mathbf{s}>0$ для всех $\mathbf{s}\neq 0$, тогда \mathbf{x}^* точка локального минимума.

Теорема

Пусть f дважды непрерывно дифференцируема. Точка \mathbf{x}^* удовлетворяет уравнению $f'(\mathbf{x}^*)=0$. Если $\mathbf{s}^\top f''(\mathbf{x}^*)\mathbf{s}>0$ для всех $\mathbf{s}\neq 0$, тогда \mathbf{x}^* точка локального минимума.

Теорема

Пусть f дважды непрерывно дифференцируема. Точка \mathbf{x}^* удовлетворяет уравнению $f'(\mathbf{x}^*)=0$. Если $\mathbf{s}^\top f''(\mathbf{x}^*)\mathbf{s}>0$ для всех $\mathbf{s}\neq 0$, тогда \mathbf{x}^* точка локального минимума.

Доказательство от противного

lacktriangle Пусть найдётся точка f y близкая к ${f x}^*$, такая что $f({f y}) < f({f x}^*)$

Теорема

Пусть f дважды непрерывно дифференцируема. Точка \mathbf{x}^* удовлетворяет уравнению $f'(\mathbf{x}^*)=0$. Если $\mathbf{s}^\top f''(\mathbf{x}^*)\mathbf{s}>0$ для всех $\mathbf{s}\neq 0$, тогда \mathbf{x}^* точка локального минимума.

- lacktriangle Пусть найдётся точка ${f y}$ близкая к ${f x}^*$, такая что $f({f y}) < f({f x}^*)$
- ▶ Тогда рассмотрим разложение $f(\mathbf{y}) = f(\mathbf{x}^*) + \langle f'(\mathbf{x}^*), \mathbf{y} \mathbf{x} \rangle + \frac{1}{2} \langle \mathbf{y} \mathbf{x}, f''(\mathbf{x}^*)(\mathbf{y} \mathbf{x}) \rangle + o(\|\mathbf{y} \mathbf{x}\|_2^2)$

Теорема

Пусть f дважды непрерывно дифференцируема. Точка \mathbf{x}^* удовлетворяет уравнению $f'(\mathbf{x}^*)=0$. Если $\mathbf{s}^\top f''(\mathbf{x}^*)\mathbf{s}>0$ для всех $\mathbf{s}\neq 0$, тогда \mathbf{x}^* точка локального минимума.

- lacktriangle Пусть найдётся точка ${f y}$ близкая к ${f x}^*$, такая что $f({f y}) < f({f x}^*)$
- ▶ Тогда рассмотрим разложение $f(\mathbf{y}) = f(\mathbf{x}^*) + \langle f'(\mathbf{x}^*), \mathbf{y} \mathbf{x} \rangle + \frac{1}{2} \langle \mathbf{y} \mathbf{x}, f''(\mathbf{x}^*)(\mathbf{y} \mathbf{x}) \rangle + o(\|\mathbf{y} \mathbf{x}\|_2^2)$
- ▶ Из условия стационарности следует, что $f(\mathbf{y}) f(\mathbf{x}^*) = \frac{1}{2} \langle \mathbf{y} \mathbf{x}, f''(\mathbf{x}^*)(\mathbf{y} \mathbf{x}) \rangle + o(\|\mathbf{y} \mathbf{x}\|_2^2)$

Теорема

Пусть f дважды непрерывно дифференцируема. Точка \mathbf{x}^* удовлетворяет уравнению $f'(\mathbf{x}^*)=0$. Если $\mathbf{s}^\top f''(\mathbf{x}^*)\mathbf{s}>0$ для всех $\mathbf{s}\neq 0$, тогда \mathbf{x}^* точка локального минимума.

- lacktriangle Пусть найдётся точка ${f y}$ близкая к ${f x}^*$, такая что $f({f y}) < f({f x}^*)$
- ▶ Тогда рассмотрим разложение $f(\mathbf{y}) = f(\mathbf{x}^*) + \langle f'(\mathbf{x}^*), \mathbf{y} \mathbf{x} \rangle + \frac{1}{2} \langle \mathbf{y} \mathbf{x}, f''(\mathbf{x}^*)(\mathbf{y} \mathbf{x}) \rangle + o(\|\mathbf{y} \mathbf{x}\|_2^2)$
- ▶ Из условия стационарности следует, что $f(\mathbf{y}) f(\mathbf{x}^*) = \frac{1}{2} \langle \mathbf{y} \mathbf{x}, f''(\mathbf{x}^*)(\mathbf{y} \mathbf{x}) \rangle + o(\|\mathbf{y} \mathbf{x}\|_2^2)$
- ▶ Если $\mathbf{y} \to \mathbf{x}^*$, тогда у нас есть направление $\mathbf{z} \neq 0$ такое что $\mathbf{z}^\top f''(\mathbf{x}^*)\mathbf{z} \leq 0$, получили противоречие.

Определение

Пусть $f:\mathbb{R}^n \to \mathbb{R}$. Функция $f^*:\mathbb{R}^n \to \mathbb{R}$ называется сопряжённой функцией к функции f и определена как

$$f^*(\mathbf{y}) = \sup_{\mathbf{x} \in \text{dom } f} (\langle \mathbf{y}, \mathbf{x} \rangle - f(\mathbf{x})).$$

Область определения f^* — это множество таких ${f y}$, что супремум конечен.

Определение

Пусть $f:\mathbb{R}^n \to \mathbb{R}$. Функция $f^*:\mathbb{R}^n \to \mathbb{R}$ называется сопряжённой функцией к функции f и определена как

$$f^*(\mathbf{y}) = \sup_{\mathbf{x} \in \text{dom } f} (\langle \mathbf{y}, \mathbf{x} \rangle - f(\mathbf{x})).$$

Область определения f^* — это множество таких ${f y}$, что супремум конечен.

Свойства

Определение

Пусть $f:\mathbb{R}^n \to \mathbb{R}$. Функция $f^*:\mathbb{R}^n \to \mathbb{R}$ называется сопряжённой функцией к функции f и определена как

$$f^*(\mathbf{y}) = \sup_{\mathbf{x} \in \text{dom } f} (\langle \mathbf{y}, \mathbf{x} \rangle - f(\mathbf{x})).$$

Область определения f^* — это множество таких ${f y}$, что супремум конечен.

Свойства

 Выпуклая и замкнутая как супремум линейных функций, которые выпуклы и замкнуты

Определение

Пусть $f:\mathbb{R}^n \to \mathbb{R}$. Функция $f^*:\mathbb{R}^n \to \mathbb{R}$ называется сопряжённой функцией к функции f и определена как

$$f^*(\mathbf{y}) = \sup_{\mathbf{x} \in \text{dom } f} (\langle \mathbf{y}, \mathbf{x} \rangle - f(\mathbf{x})).$$

Область определения f^* — это множество таких ${f y}$, что супремум конечен.

Свойства

- ▶ Выпуклая и замкнутая как супремум линейных функций, которые выпуклы и замкнуты
- lacktriangle Неравенство Юнга-Фенхеля: $\langle \mathbf{y}, \mathbf{x}
 angle \leq f^*(\mathbf{y}) + f(\mathbf{x})$

Геометрический смысл

Индикаторная и опорная функции

Пример

Рассмотрим индикаторную функцию

$$\delta_{\mathcal{X}}(\mathbf{x}) = \begin{cases} 0, & \mathbf{x} \in \mathcal{X} \\ +\infty, & \mathbf{x} \notin \mathcal{X} \end{cases}$$

▶ Для неё сопряжённая функция $\delta_{\mathcal{X}}^*(\mathbf{y}) = \sup_{\mathbf{x}} \left\langle \langle \mathbf{y}, \mathbf{x} \rangle - \delta_{\mathcal{X}}(\mathbf{x}) \right\rangle = \sup_{\mathbf{x} \in \mathcal{X}} \langle \mathbf{y}, \mathbf{x} \rangle = \sigma_{\mathcal{X}}(\mathbf{y})$

Определение

Пусть f_1 и f_2 выпуклые функции. Тогда функция $f(\mathbf{x})=(f_1\Box f_2)(\mathbf{x})=\inf_{\mathbf{x}_1+\mathbf{x}_2=\mathbf{x}}(f_1(\mathbf{x}_1)+f_2(\mathbf{x}_2))$ называется инфимальной конволюцией функций f_1 и f_2

Определение

Пусть f_1 и f_2 выпуклые функции. Тогда функция $f(\mathbf{x})=(f_1\Box f_2)(\mathbf{x})=\inf_{\mathbf{x}_1+\mathbf{x}_2=\mathbf{x}}(f_1(\mathbf{x}_1)+f_2(\mathbf{x}_2))$ называется инфимальной конволюцией функций f_1 и f_2

Теорема

Инфимальная конволюция выпуклых функций есть выпуклая функция

Определение

Пусть f_1 и f_2 выпуклые функции. Тогда функция $f(\mathbf{x})=(f_1\Box f_2)(\mathbf{x})=\inf_{\mathbf{x}_1+\mathbf{x}_2=\mathbf{x}}(f_1(\mathbf{x}_1)+f_2(\mathbf{x}_2))$ называется инфимальной конволюцией функций f_1 и f_2

Теорема

Инфимальная конволюция выпуклых функций есть выпуклая функция

Определение

Пусть f_1 и f_2 выпуклые функции. Тогда функция $f(\mathbf{x})=(f_1\Box f_2)(\mathbf{x})=\inf_{\mathbf{x}_1+\mathbf{x}_2=\mathbf{x}}(f_1(\mathbf{x}_1)+f_2(\mathbf{x}_2))$ называется инфимальной конволюцией функций f_1 и f_2

Теорема

Инфимальная конволюция выпуклых функций есть выпуклая функция

Доказательство

Запишем инфимальную конволюцию в виде

$$(f_1 \square f_2)(\mathbf{x}) = \inf_{\mathbf{x}_2} (f_1(\mathbf{x} - \mathbf{x}_2) + f_2(\mathbf{x}_2))$$

Инфимальная конволюция

Определение

Пусть f_1 и f_2 выпуклые функции. Тогда функция $f(\mathbf{x})=(f_1\Box f_2)(\mathbf{x})=\inf_{\mathbf{x}_1+\mathbf{x}_2=\mathbf{x}}(f_1(\mathbf{x}_1)+f_2(\mathbf{x}_2))$ называется инфимальной конволюцией функций f_1 и f_2

Теорема

Инфимальная конволюция выпуклых функций есть выпуклая функция

- ▶ Запишем инфимальную конволюцию в виде $(f_1 \Box f_2)(\mathbf{x}) = \inf_{\mathbf{x}_2} (f_1(\mathbf{x} \mathbf{x}_2) + f_2(\mathbf{x}_2))$
- ▶ Рассмотрим функцию $g(\mathbf{x}, \mathbf{x}_2) = f_1(\mathbf{x} \mathbf{x}_2) + f_2(\mathbf{x}_2)$

Инфимальная конволюция

Определение

Пусть f_1 и f_2 выпуклые функции. Тогда функция $f(\mathbf{x})=(f_1\Box f_2)(\mathbf{x})=\inf_{\mathbf{x}_1+\mathbf{x}_2=\mathbf{x}}(f_1(\mathbf{x}_1)+f_2(\mathbf{x}_2))$ называется инфимальной конволюцией функций f_1 и f_2

Теорема

Инфимальная конволюция выпуклых функций есть выпуклая функция

- ▶ Запишем инфимальную конволюцию в виде $(f_1 \Box f_2)(\mathbf{x}) = \inf_{\mathbf{x}_2} (f_1(\mathbf{x} \mathbf{x}_2) + f_2(\mathbf{x}_2))$
- ▶ Рассмотрим функцию $g(\mathbf{x}, \mathbf{x}_2) = f_1(\mathbf{x} \mathbf{x}_2) + f_2(\mathbf{x}_2)$
- ightharpoonup Так как f_1 и f_2 выпуклы, то и g выпукла по обоим аргументам

Инфимальная конволюция

Определение

Пусть f_1 и f_2 выпуклые функции. Тогда функция $f(\mathbf{x})=(f_1\Box f_2)(\mathbf{x})=\inf_{\mathbf{x}_1+\mathbf{x}_2=\mathbf{x}}(f_1(\mathbf{x}_1)+f_2(\mathbf{x}_2))$ называется инфимальной конволюцией функций f_1 и f_2

Теорема

Инфимальная конволюция выпуклых функций есть выпуклая функция

- ▶ Запишем инфимальную конволюцию в виде $(f_1 \Box f_2)(\mathbf{x}) = \inf_{\mathbf{x}_2} (f_1(\mathbf{x} \mathbf{x}_2) + f_2(\mathbf{x}_2))$
- ▶ Рассмотрим функцию $g(\mathbf{x}, \mathbf{x}_2) = f_1(\mathbf{x} \mathbf{x}_2) + f_2(\mathbf{x}_2)$
- ightharpoonup Так как f_1 и f_2 выпуклы, то и g выпукла по обоим аргументам
- Значит инфимальная конволюция это операция частичной минимизации, которая сохраняет выпуклость

Сопряжённая функция к инфимальной конволюции

$$f^*(\mathbf{y}) = \sup_{\mathbf{x}} (\langle \mathbf{y}, \mathbf{x} \rangle - \inf_{\mathbf{x}_1} (f_1(\mathbf{x}_1) + f_2(\mathbf{x} - \mathbf{x}_1))) =$$

$$\sup_{\mathbf{x}} \sup_{\mathbf{x}_1} (\langle \mathbf{y}, \mathbf{x} \rangle - f_1(\mathbf{x}_1) - f_2(\mathbf{x} - \mathbf{x}_1)) =$$

$$\sup_{\mathbf{x}} \sup_{\mathbf{x}_1} (\langle \mathbf{y}, \mathbf{x} - \mathbf{x}_1 \rangle + \langle \mathbf{y}, \mathbf{x}_1 \rangle - f_1(\mathbf{x}_1) - f_2(\mathbf{x} - \mathbf{x}_1)) =$$

$$\sup_{\mathbf{x}_1} \sup_{\mathbf{x}_1} (\langle \mathbf{y}, \mathbf{x} - \mathbf{x}_1 \rangle + \langle \mathbf{y}, \mathbf{x}_1 \rangle - f_1(\mathbf{x}_1) - f_2(\mathbf{x} - \mathbf{x}_1)) =$$

$$\sup_{\mathbf{x}_1} (f_2^*(\mathbf{y}) + \langle \mathbf{y}, \mathbf{x}_1 \rangle - f_1(\mathbf{x}_1)) = f_2^*(\mathbf{y}) + f_1^*(\mathbf{y})$$

▶ Рассмотрим функцию $f(\mathbf{x}) = \frac{1}{2} \|\mathbf{x}\|^2$

- Рассмотрим функцию $f(\mathbf{x}) = \frac{1}{2} ||\mathbf{x}||^2$
- ▶ Тогда $f^*(\mathbf{y}) = \sup_{\mathbf{x}} (\langle \mathbf{y}, \mathbf{x} \rangle \frac{1}{2} \|\mathbf{x}\|^2)$

- ▶ Рассмотрим функцию $f(\mathbf{x}) = \frac{1}{2} \|\mathbf{x}\|^2$
- ▶ Тогда $f^*(\mathbf{y}) = \sup_{\mathbf{x}} (\langle \mathbf{y}, \mathbf{x} \rangle \frac{1}{2} \|\mathbf{x}\|^2)$
- ightharpoonup Вспомним определение сопряжённой нормы $\|\mathbf{z}\|_* = \sup_{\|\mathbf{x}\| \leq 1} \mathbf{z}^{ op} \mathbf{x}$

- ▶ Рассмотрим функцию $f(\mathbf{x}) = \frac{1}{2} \|\mathbf{x}\|^2$
- ▶ Тогда $f^*(\mathbf{y}) = \sup_{\mathbf{x}} (\langle \mathbf{y}, \mathbf{x} \rangle \frac{1}{2} \|\mathbf{x}\|^2)$
- ightharpoonup Вспомним определение сопряжённой нормы $\|\mathbf{z}\|_* = \sup_{\|\mathbf{x}\| \leq 1} \mathbf{z}^{ op} \mathbf{x}$

- ▶ Рассмотрим функцию $f(\mathbf{x}) = \frac{1}{2} \|\mathbf{x}\|^2$
- ▶ Тогда $f^*(\mathbf{y}) = \sup_{\mathbf{x}} (\langle \mathbf{y}, \mathbf{x} \rangle \frac{1}{2} \|\mathbf{x}\|^2)$
- ightharpoonup Вспомним определение сопряжённой нормы $\|\mathbf{z}\|_* = \sup_{\|\mathbf{x}\| < 1} \mathbf{z}^{ op} \mathbf{x}$
- ▶ Тогда

$$f^*(\mathbf{y}) \le \sup_{\mathbf{x}} (\|\mathbf{x}\| \|\mathbf{y}\|_* - \frac{1}{2} \|\mathbf{x}\|^2) = \sup_{x} (x \|\mathbf{y}\|_* - \frac{1}{2}x^2)$$

- ▶ Рассмотрим функцию $f(\mathbf{x}) = \frac{1}{2} \|\mathbf{x}\|^2$
- ▶ Тогда $f^*(\mathbf{y}) = \sup_{\mathbf{x}} (\langle \mathbf{y}, \mathbf{x} \rangle \frac{1}{2} \|\mathbf{x}\|^2)$
- ightharpoonup Вспомним определение сопряжённой нормы $\|\mathbf{z}\|_* = \sup_{\|\mathbf{x}\| < 1} \mathbf{z}^{ op} \mathbf{x}$
- $m{ ilda}$ Тогда $f^*(\mathbf{y}) \leq \sup_{\mathbf{x}} \left(\|\mathbf{x}\| \|\mathbf{y}\|_* rac{1}{2} \|\mathbf{x}\|^2
 ight) = \sup_{x} \left(x \|\mathbf{y}\|_* rac{1}{2} x^2
 ight)$
- lacktriangle Супремум достигается в точке $x^* = \|\mathbf{y}\|_*$

- lacktriangle Рассмотрим функцию $f(\mathbf{x}) = rac{1}{2} \|\mathbf{x}\|^2$
- ▶ Тогда $f^*(\mathbf{y}) = \sup_{\mathbf{x}} (\langle \mathbf{y}, \mathbf{x} \rangle \frac{1}{2} \|\mathbf{x}\|^2)$
- ightharpoonup Вспомним определение сопряжённой нормы $\|\mathbf{z}\|_* = \sup_{\|\mathbf{x}\| < 1} \mathbf{z}^{ op} \mathbf{x}$
- ▶ Тогда $f^*(\mathbf{y}) \le \sup_{\mathbf{x}} \left(\|\mathbf{x}\| \|\mathbf{y}\|_* \frac{1}{2} \|\mathbf{x}\|^2 \right) = \sup_{x} \left(x \|\mathbf{y}\|_* \frac{1}{2} x^2 \right)$
- lacktriangle Супремум достигается в точке $x^* = \|\mathbf{y}\|_*$
- $f^*(\mathbf{y}) \le \frac{1}{2} \|\mathbf{y}\|_*^2$

- lacktriangle Рассмотрим функцию $f(\mathbf{x}) = rac{1}{2} \|\mathbf{x}\|^2$
- ▶ Тогда $f^*(\mathbf{y}) = \sup_{\mathbf{x}} (\langle \mathbf{y}, \mathbf{x} \rangle \frac{1}{2} \|\mathbf{x}\|^2)$
- ▶ Вспомним определение сопряжённой нормы $\|\mathbf{z}\|_* = \sup_{\|\mathbf{x}\| < 1} \mathbf{z}^\top \mathbf{x}$
- ▶ Тогда $f^*(\mathbf{y}) \le \sup_{\mathbf{x}} \left(\|\mathbf{x}\| \|\mathbf{y}\|_* \frac{1}{2} \|\mathbf{x}\|^2 \right) = \sup_{x} \left(x \|\mathbf{y}\|_* \frac{1}{2} x^2 \right)$
- lacktriangle Супремум достигается в точке $x^* = \|\mathbf{y}\|_*$
- $f^*(\mathbf{y}) \le \frac{1}{2} ||\mathbf{y}||_*^2$
- Осталось предъявить вектор, на котором достигается равенство. Этот этап оставим в качестве упражнения

Сдвиг аргумента

Сдвиг аргумента

lacktriangle Пусть $g(\mathbf{x}) = f(\mathbf{x} - \mathbf{a})$. Найдём связь между f^* и g^*

Сдвиг аргумента

lacktriangle Пусть $g(\mathbf{x}) = f(\mathbf{x} - \mathbf{a})$. Найдём связь между f^* и g^*

$$g^*(\mathbf{y}) = \sup_{\mathbf{x}} (\langle \mathbf{y}, \mathbf{x} \rangle - f(\mathbf{x} - \mathbf{a})) \stackrel{\mathbf{z} = \mathbf{x} - \mathbf{a}}{=} \langle \mathbf{y}, \mathbf{a} \rangle + \sup_{\mathbf{z}} (\langle \mathbf{y}, \mathbf{z} \rangle - f(\mathbf{z})) = \langle \mathbf{y}, \mathbf{a} \rangle + f^*(\mathbf{y})$$

Сдвиг аргумента

- lacktriangle Пусть $g(\mathbf{x}) = f(\mathbf{x} \mathbf{a})$. Найдём связь между f^* и g^*
- $g^*(\mathbf{y}) = \sup_{\mathbf{x}} (\langle \mathbf{y}, \mathbf{x} \rangle f(\mathbf{x} \mathbf{a})) \stackrel{\mathbf{z} = \mathbf{x} \mathbf{a}}{=}$ $\langle \mathbf{y}, \mathbf{a} \rangle + \sup_{\mathbf{z}} (\langle \mathbf{y}, \mathbf{z} \rangle - f(\mathbf{z})) = \langle \mathbf{y}, \mathbf{a} \rangle + f^*(\mathbf{y})$

Сдвиг аргумента

- lacktriangle Пусть $g(\mathbf{x}) = f(\mathbf{x} \mathbf{a})$. Найдём связь между f^* и g^*
- $g^*(\mathbf{y}) = \sup_{\mathbf{x}} (\langle \mathbf{y}, \mathbf{x} \rangle f(\mathbf{x} \mathbf{a})) \stackrel{\mathbf{z} = \mathbf{x} \mathbf{a}}{=}$ $\langle \mathbf{y}, \mathbf{a} \rangle + \sup_{\mathbf{z}} (\langle \mathbf{y}, \mathbf{z} \rangle - f(\mathbf{z})) = \langle \mathbf{y}, \mathbf{a} \rangle + f^*(\mathbf{y})$

Умножение на константу

1. Пусть $g(\mathbf{x}) = \alpha f(\mathbf{x})$

Сдвиг аргумента

- lacktriangle Пусть $g(\mathbf{x}) = f(\mathbf{x} \mathbf{a})$. Найдём связь между f^* и g^*
- $g^*(\mathbf{y}) = \sup_{\mathbf{x}} (\langle \mathbf{y}, \mathbf{x} \rangle f(\mathbf{x} \mathbf{a})) \stackrel{\mathbf{z} = \mathbf{x} \mathbf{a}}{=}$ $\langle \mathbf{y}, \mathbf{a} \rangle + \sup_{\mathbf{z}} (\langle \mathbf{y}, \mathbf{z} \rangle - f(\mathbf{z})) = \langle \mathbf{y}, \mathbf{a} \rangle + f^*(\mathbf{y})$

- 1. Пусть $g(\mathbf{x}) = \alpha f(\mathbf{x})$
 - $g^*(\mathbf{y}) = \sup_{\mathbf{x}} (\langle \mathbf{y}, \mathbf{x} \rangle \alpha f(\mathbf{x})) = \alpha \sup_{\mathbf{x}} (\langle \mathbf{y} / \alpha, \mathbf{x} \rangle f(\mathbf{x})) = \alpha f^*(\mathbf{y} / \alpha)$

Сдвиг аргумента

- lacktriangle Пусть $g(\mathbf{x}) = f(\mathbf{x} \mathbf{a})$. Найдём связь между f^* и g^*
- $g^*(\mathbf{y}) = \sup_{\mathbf{x}} (\langle \mathbf{y}, \mathbf{x} \rangle f(\mathbf{x} \mathbf{a})) \stackrel{\mathbf{z} = \mathbf{x} \mathbf{a}}{=}$ $\langle \mathbf{y}, \mathbf{a} \rangle + \sup_{\mathbf{z}} (\langle \mathbf{y}, \mathbf{z} \rangle - f(\mathbf{z})) = \langle \mathbf{y}, \mathbf{a} \rangle + f^*(\mathbf{y})$

- 1. Пусть $g(\mathbf{x}) = \alpha f(\mathbf{x})$
 - $g^*(\mathbf{y}) = \sup_{\mathbf{x}} (\langle \mathbf{y}, \mathbf{x} \rangle \alpha f(\mathbf{x})) = \alpha \sup_{\mathbf{x}} (\langle \mathbf{y} / \alpha, \mathbf{x} \rangle f(\mathbf{x})) = \alpha f^*(\mathbf{y} / \alpha)$
- 2. Пусть $g(\mathbf{x}) = \alpha f(\mathbf{x}/\alpha)$

Сдвиг аргумента

- lacktriangle Пусть $g(\mathbf{x}) = f(\mathbf{x} \mathbf{a})$. Найдём связь между f^* и g^*
- $g^*(\mathbf{y}) = \sup_{\mathbf{x}} (\langle \mathbf{y}, \mathbf{x} \rangle f(\mathbf{x} \mathbf{a})) \stackrel{\mathbf{z} = \mathbf{x} \mathbf{a}}{=}$ $\langle \mathbf{y}, \mathbf{a} \rangle + \sup_{\mathbf{z}} (\langle \mathbf{y}, \mathbf{z} \rangle - f(\mathbf{z})) = \langle \mathbf{y}, \mathbf{a} \rangle + f^*(\mathbf{y})$

- 1. Пусть $g(\mathbf{x}) = \alpha f(\mathbf{x})$
 - $g^*(\mathbf{y}) = \sup_{\mathbf{x}} (\langle \mathbf{y}, \mathbf{x} \rangle \alpha f(\mathbf{x})) = \alpha \sup_{\mathbf{x}} (\langle \mathbf{y} / \alpha, \mathbf{x} \rangle f(\mathbf{x})) = \alpha f^*(\mathbf{y} / \alpha)$
- 2. Пусть $g(\mathbf{x}) = \alpha f(\mathbf{x}/\alpha)$
 - $g^*(\mathbf{y}) = \sup_{\mathbf{x}} (\langle \mathbf{y}, \mathbf{x} \rangle \alpha f(\mathbf{x}/\alpha)) \stackrel{\mathbf{z} = \mathbf{x}/\alpha}{=} \sup_{\mathbf{z}} (\alpha \langle \mathbf{y}, \mathbf{z} \rangle \alpha f(\mathbf{z})) = \alpha f^*(\mathbf{y})$

Теорема

Если
$$g(\mathbf{x}_1,\dots,\mathbf{x}_k)=\sum_{i=1}^k f_i(\mathbf{x}_i)$$
, тогда $g^*(\mathbf{y}_1,\dots,\mathbf{y}_k)=\sum_{i=1}^k f_i^*(\mathbf{y}_i)$

Теорема

Если
$$g(\mathbf{x}_1,\dots,\mathbf{x}_k)=\sum_{i=1}^k f_i(\mathbf{x}_i)$$
, тогда $g^*(\mathbf{y}_1,\dots,\mathbf{y}_k)=\sum_{i=1}^k f_i^*(\mathbf{y}_i)$

Теорема

Если
$$g(\mathbf{x}_1,\dots,\mathbf{x}_k)=\sum_{i=1}^k f_i(\mathbf{x}_i)$$
, тогда $g^*(\mathbf{y}_1,\dots,\mathbf{y}_k)=\sum_{i=1}^k f_i^*(\mathbf{y}_i)$

Доказательство

• Если вставить вид функции g в определение сопряжённой функции, то взятие супремума по ${\bf x}$ распадётся на решение k независимых задач для каждого k

Теорема

Если
$$g(\mathbf{x}_1,\dots,\mathbf{x}_k)=\sum_{i=1}^k f_i(\mathbf{x}_i)$$
, тогда $g^*(\mathbf{y}_1,\dots,\mathbf{y}_k)=\sum_{i=1}^k f_i^*(\mathbf{y}_i)$

- Если вставить вид функции g в определение сопряжённой функции, то взятие супремума по ${\bf x}$ распадётся на решение k независимых задач для каждого k
- ightharpoonup После разделения задач, результатом будет сумма супремумов, то есть сумма f_i^*

Теорема

Если
$$g(\mathbf{x}_1,\dots,\mathbf{x}_k)=\sum_{i=1}^k f_i(\mathbf{x}_i)$$
, тогда $g^*(\mathbf{y}_1,\dots,\mathbf{y}_k)=\sum_{i=1}^k f_i^*(\mathbf{y}_i)$

- Если вставить вид функции g в определение сопряжённой функции, то взятие супремума по ${\bf x}$ распадётся на решение k независимых задач для каждого k
- ightharpoonup После разделения задач, результатом будет сумма супремумов, то есть сумма f_i^*
- Формальные выкладки оставлены в качестве упражнения

Определение

Пусть $f:\mathbb{R}^n \to \mathbb{R}$. Функция $f^{**}:\mathbb{R}^n \to \mathbb{R}$ называется дважды сопряжённой функцией к функции f и определена как

$$f^{**}(\mathbf{y}) = \sup_{\mathbf{x} \in \text{dom } f} (\langle \mathbf{y}, \mathbf{x} \rangle - f^*(\mathbf{x})).$$

Определение

Пусть $f:\mathbb{R}^n \to \mathbb{R}$. Функция $f^{**}:\mathbb{R}^n \to \mathbb{R}$ называется дважды сопряжённой функцией к функции f и определена как

$$f^{**}(\mathbf{y}) = \sup_{\mathbf{x} \in \text{dom } f} (\langle \mathbf{y}, \mathbf{x} \rangle - f^*(\mathbf{x})).$$

Теорема

Для любой функции f выполнено $f^{**} \leq f$

Определение

Пусть $f:\mathbb{R}^n \to \mathbb{R}$. Функция $f^{**}:\mathbb{R}^n \to \mathbb{R}$ называется дважды сопряжённой функцией к функции f и определена как

$$f^{**}(\mathbf{y}) = \sup_{\mathbf{x} \in \text{dom } f} (\langle \mathbf{y}, \mathbf{x} \rangle - f^*(\mathbf{x})).$$

Теорема

Для любой функции f выполнено $f^{**} \leq f$

Определение

Пусть $f:\mathbb{R}^n \to \mathbb{R}$. Функция $f^{**}:\mathbb{R}^n \to \mathbb{R}$ называется дважды сопряжённой функцией к функции f и определена как

$$f^{**}(\mathbf{y}) = \sup_{\mathbf{x} \in \text{dom } f} (\langle \mathbf{y}, \mathbf{x} \rangle - f^*(\mathbf{x})).$$

Теорема

Для любой функции f выполнено $f^{**} \leq f$

Доказательство

ightharpoonup Из неравенства Юнга-Фенхеля следует, что $\langle {f y},{f x}
angle -f^*({f y}) \leq f({f x})$

Определение

Пусть $f:\mathbb{R}^n \to \mathbb{R}$. Функция $f^{**}:\mathbb{R}^n \to \mathbb{R}$ называется дважды сопряжённой функцией к функции f и определена как

$$f^{**}(\mathbf{y}) = \sup_{\mathbf{x} \in \text{dom } f} (\langle \mathbf{y}, \mathbf{x} \rangle - f^*(\mathbf{x})).$$

Теорема

Для любой функции f выполнено $f^{**} \leq f$

- ightharpoonup Из неравенства Юнга-Фенхеля следует, что $\langle {f y},{f x}
 angle -f^*({f y}) \leq f({f x})$
- ▶ Возьмём супремум по у и получим требуемое неравенство

Теорема

Пусть f, f^*, f^{**} определены на \mathbb{R}^n . Тогда $f = f^{**}$ iff f выпуклая функция.

Теорема

Пусть f, f^*, f^{**} определены на \mathbb{R}^n . Тогда $f = f^{**}$ iff f выпуклая функция.

Теорема

Пусть f, f^*, f^{**} определены на \mathbb{R}^n . Тогда $f = f^{**}$ iff f выпуклая функция.

Доказательство

 \blacktriangleright Пусть $f=f^{**}$, но сопряжённая функция выпукла, а значит и f выпукла

Теорема

Пусть f, f^*, f^{**} определены на \mathbb{R}^n . Тогда $f = f^{**}$ iff f выпуклая функция.

- lacktriangle Пусть $f=f^{**}$, но сопряжённая функция выпукла, а значит и f выпукла
- ightharpoonup Пусть f выпукла, тогда

Теорема

Пусть f, f^*, f^{**} определены на \mathbb{R}^n . Тогда $f = f^{**}$ iff f выпуклая функция.

- lacktriangle Пусть $f=f^{**}$, но сопряжённая функция выпукла, а значит и f выпукла
- ▶ Пусть f выпукла, тогда
 - Вапишем определение в виде $f^{**}(\mathbf{y}) = \sup_{\mathbf{x}} (\langle \mathbf{y}, \mathbf{x} \rangle f^*(\mathbf{x})) = \sup_{\mathbf{x}} \inf_{\mathbf{z}} (\langle \mathbf{y}, \mathbf{x} \rangle + f(\mathbf{z}) \langle \mathbf{z}, \mathbf{x} \rangle) = \sup_{\mathbf{x}} \inf_{\mathbf{z}} (f(\mathbf{z}) + \langle \mathbf{x}, \mathbf{y} \mathbf{z} \rangle)$

Теорема

Пусть f, f^*, f^{**} определены на \mathbb{R}^n . Тогда $f = f^{**}$ iff f выпуклая функция.

- lacktriangle Пусть $f=f^{**}$, но сопряжённая функция выпукла, а значит и f выпукла
- ▶ Пусть f выпукла, тогда
 - Вапишем определение в виде $f^{**}(\mathbf{y}) = \sup_{\mathbf{x}} (\langle \mathbf{y}, \mathbf{x} \rangle f^*(\mathbf{x})) = \sup_{\mathbf{x}} \inf_{\mathbf{z}} (\langle \mathbf{y}, \mathbf{x} \rangle + f(\mathbf{z}) \langle \mathbf{z}, \mathbf{x} \rangle) = \sup_{\mathbf{x}} \inf_{\mathbf{z}} (f(\mathbf{z}) + \langle \mathbf{x}, \mathbf{y} \mathbf{z} \rangle)$
 - lacktriangle В силу выпуклости выполнено $f(\mathbf{z}) \geq f(\mathbf{y}) + \langle \mathbf{a}, \mathbf{z} \mathbf{y}
 angle$, где $\mathbf{a} \in \partial f(\mathbf{y})$

Дважды сопряжённая функция для выпуклой функции

Теорема

Пусть f, f^*, f^{**} определены на \mathbb{R}^n . Тогда $f = f^{**}$ iff f выпуклая функция.

- lacktriangle Пусть $f=f^{**}$, но сопряжённая функция выпукла, а значит и f выпукла
- ▶ Пусть f выпукла, тогда
 - Вапишем определение в виде $f^{**}(\mathbf{y}) = \sup_{\mathbf{x}} (\langle \mathbf{y}, \mathbf{x} \rangle f^*(\mathbf{x})) = \sup_{\mathbf{x}} \inf_{\mathbf{z}} (\langle \mathbf{y}, \mathbf{x} \rangle + f(\mathbf{z}) \langle \mathbf{z}, \mathbf{x} \rangle) = \sup_{\mathbf{x}} \inf_{\mathbf{z}} (f(\mathbf{z}) + \langle \mathbf{x}, \mathbf{y} \mathbf{z} \rangle)$
 - lacktriangle В силу выпуклости выполнено $f(\mathbf{z}) \geq f(\mathbf{y}) + \langle \mathbf{a}, \mathbf{z} \mathbf{y}
 angle$, где $\mathbf{a} \in \partial f(\mathbf{y})$
 - lacktriangle Тогда получим $f^{**}(\mathbf{y}) \geq f(\mathbf{y}) + \sup_{\mathbf{x}} \inf_{\mathbf{z}} \langle \mathbf{a} \mathbf{x}, \mathbf{z} \mathbf{y}
 angle$

Дважды сопряжённая функция для выпуклой функции

Теорема

Пусть f, f^*, f^{**} определены на \mathbb{R}^n . Тогда $f = f^{**}$ iff f выпуклая функция.

- lacktriangle Пусть $f=f^{**}$, но сопряжённая функция выпукла, а значит и f выпукла
- ▶ Пусть f выпукла, тогда
 - Вапишем определение в виде $f^{**}(\mathbf{y}) = \sup_{\mathbf{x}} (\langle \mathbf{y}, \mathbf{x} \rangle f^*(\mathbf{x})) = \sup_{\mathbf{x}} \inf_{\mathbf{z}} (\langle \mathbf{y}, \mathbf{x} \rangle + f(\mathbf{z}) \langle \mathbf{z}, \mathbf{x} \rangle) = \sup_{\mathbf{x}} \inf_{\mathbf{z}} (f(\mathbf{z}) + \langle \mathbf{x}, \mathbf{y} \mathbf{z} \rangle)$
 - lacktriangle В силу выпуклости выполнено $f(\mathbf{z}) \geq f(\mathbf{y}) + \langle \mathbf{a}, \mathbf{z} \mathbf{y}
 angle$, где $\mathbf{a} \in \partial f(\mathbf{y})$
 - lacktriangle Тогда получим $f^{**}(\mathbf{y}) \geq f(\mathbf{y}) + \sup_{\mathbf{x}} \inf_{\mathbf{z}} \langle \mathbf{a} \mathbf{x}, \mathbf{z} \mathbf{y}
 angle$
 - ▶ Поскольку $\inf_{\mathbf{z}}\langle \mathbf{a}-\mathbf{x},\mathbf{z}-\mathbf{y}\rangle = \begin{cases} 0, & \mathbf{a}=\mathbf{x}\\ -\infty, & \text{иначе} \end{cases}$

Дважды сопряжённая функция для выпуклой функции

Теорема

Пусть f, f^*, f^{**} определены на \mathbb{R}^n . Тогда $f = f^{**}$ iff f выпуклая функция.

- ▶ Пусть $f = f^{**}$, но сопряжённая функция выпукла, а значит и f выпукла
- ▶ Пусть f выпукла, тогда
 - Вапишем определение в виде $f^{**}(\mathbf{y}) = \sup_{\mathbf{x}} \left(\langle \mathbf{y}, \mathbf{x} \rangle f^{*}(\mathbf{x}) \right) = \sup_{\mathbf{x}} \inf_{\mathbf{z}} \left(\langle \mathbf{y}, \mathbf{x} \rangle + f(\mathbf{z}) \langle \mathbf{z}, \mathbf{x} \rangle \right) = \sup_{\mathbf{x}} \inf_{\mathbf{z}} \left(f(\mathbf{z}) + \langle \mathbf{x}, \mathbf{y} \mathbf{z} \rangle \right)$
 - lacktriangle В силу выпуклости выполнено $f(\mathbf{z}) \geq f(\mathbf{y}) + \langle \mathbf{a}, \mathbf{z} \mathbf{y}
 angle$, где $\mathbf{a} \in \partial f(\mathbf{y})$
 - ▶ Тогда получим $f^{**}(\mathbf{y}) \geq f(\mathbf{y}) + \sup_{\mathbf{x}} \inf_{\mathbf{z}} \langle \mathbf{a} \mathbf{x}, \mathbf{z} \mathbf{y} \rangle$
 - ▶ Поскольку $\inf_{\mathbf{z}} \langle \mathbf{a} \mathbf{x}, \mathbf{z} \mathbf{y} \rangle = \begin{cases} 0, & \mathbf{a} = \mathbf{x} \\ -\infty, & \text{иначе} \end{cases}$
 - lacktriangle Значит $f^{**}(\mathbf{y}) \geq f(\mathbf{y})$, а также $\hat{f}^{**}(\mathbf{y}) \leq f(\mathbf{y})
 ightarrow f^{**} = f$

Теорема

Пусть f выпуклая функция на \mathbb{R}^n . Тогда следующие условия эквивалентны

- $\langle \mathbf{x}, \mathbf{y} \rangle = f(\mathbf{x}) + f^*(\mathbf{y})$
- $\mathbf{y} \in \partial f(\mathbf{x})$
- $\mathbf{x} \in \partial f^*(\mathbf{y})$

Теорема

Пусть f выпуклая функция на \mathbb{R}^n . Тогда следующие условия эквивалентны

- $\langle \mathbf{x}, \mathbf{y} \rangle = f(\mathbf{x}) + f^*(\mathbf{y})$
- $\mathbf{y} \in \partial f(\mathbf{x})$
- $\mathbf{x} \in \partial f^*(\mathbf{y})$

Теорема

Пусть f выпуклая функция на \mathbb{R}^n . Тогда следующие условия эквивалентны

- $\langle \mathbf{x}, \mathbf{y} \rangle = f(\mathbf{x}) + f^*(\mathbf{y})$
- $\mathbf{y} \in \partial f(\mathbf{x})$
- $\mathbf{x} \in \partial f^*(\mathbf{y})$

Доказательство

 ${f v} \ {f y} \in \partial f({f x}) \ {\sf iff} \ f({f z}) \geq f({f x}) + \langle {f y}, {f z} - {f x}
angle$ для всех ${f z}$

Теорема

Пусть f выпуклая функция на \mathbb{R}^n . Тогда следующие условия эквивалентны

- $\langle \mathbf{x}, \mathbf{y} \rangle = f(\mathbf{x}) + f^*(\mathbf{y})$
- $\mathbf{y} \in \partial f(\mathbf{x})$
- $\mathbf{x} \in \partial f^*(\mathbf{y})$

- ▶ $\mathbf{y} \in \partial f(\mathbf{x})$ iff $f(\mathbf{z}) \geq f(\mathbf{x}) + \langle \mathbf{y}, \mathbf{z} \mathbf{x} \rangle$ для всех \mathbf{z}
- ▶ Перепишем в виде $f(\mathbf{z}) \langle \mathbf{y}, \mathbf{z} \rangle \geq f(\mathbf{x}) \langle \mathbf{y}, \mathbf{x} \rangle$

Теорема

Пусть f выпуклая функция на \mathbb{R}^n . Тогда следующие условия эквивалентны

- $\langle \mathbf{x}, \mathbf{y} \rangle = f(\mathbf{x}) + f^*(\mathbf{y})$
- $\mathbf{y} \in \partial f(\mathbf{x})$
- $\mathbf{x} \in \partial f^*(\mathbf{y})$

- ▶ $\mathbf{y} \in \partial f(\mathbf{x})$ iff $f(\mathbf{z}) \geq f(\mathbf{x}) + \langle \mathbf{y}, \mathbf{z} \mathbf{x} \rangle$ для всех \mathbf{z}
- ▶ Перепишем в виде $f(\mathbf{z}) \langle \mathbf{y}, \mathbf{z} \rangle \ge f(\mathbf{x}) \langle \mathbf{y}, \mathbf{x} \rangle$
- ▶ Взяв супремум по ${f z}$ получим $f^*({f z}) \leq \langle {f y}, {f x} \rangle f({f x})$

Теорема

Пусть f выпуклая функция на \mathbb{R}^n . Тогда следующие условия эквивалентны

- $\langle \mathbf{x}, \mathbf{y} \rangle = f(\mathbf{x}) + f^*(\mathbf{y})$
- $\mathbf{y} \in \partial f(\mathbf{x})$
- $\mathbf{x} \in \partial f^*(\mathbf{y})$

- ▶ $\mathbf{y} \in \partial f(\mathbf{x})$ iff $f(\mathbf{z}) \geq f(\mathbf{x}) + \langle \mathbf{y}, \mathbf{z} \mathbf{x} \rangle$ для всех \mathbf{z}
- ▶ Перепишем в виде $f(\mathbf{z}) \langle \mathbf{y}, \mathbf{z} \rangle \ge f(\mathbf{x}) \langle \mathbf{y}, \mathbf{x} \rangle$
- ▶ Взяв супремум по \mathbf{z} получим $f^*(\mathbf{z}) \leq \langle \mathbf{y}, \mathbf{x} \rangle f(\mathbf{x})$
- lacktriangle C учётом неравенства Юнга-Фенхеля получим, что $\langle {f x},{f y}
 angle = f({f x})+f^*({f y})$

Теорема

Пусть f выпуклая функция на \mathbb{R}^n . Тогда следующие условия эквивалентны

- $\langle \mathbf{x}, \mathbf{y} \rangle = f(\mathbf{x}) + f^*(\mathbf{y})$
- $\mathbf{y} \in \partial f(\mathbf{x})$
- $\mathbf{x} \in \partial f^*(\mathbf{y})$

- $\mathbf{y} \in \partial f(\mathbf{x}) ext{ iff } f(\mathbf{z}) \geq f(\mathbf{x}) + \langle \mathbf{y}, \mathbf{z} \mathbf{x}
 angle$ для всех \mathbf{z}
- ▶ Перепишем в виде $f(\mathbf{z}) \langle \mathbf{y}, \mathbf{z} \rangle \geq f(\mathbf{x}) \langle \mathbf{y}, \mathbf{x} \rangle$
- ▶ Взяв супремум по \mathbf{z} получим $f^*(\mathbf{z}) \leq \langle \mathbf{y}, \mathbf{x} \rangle f(\mathbf{x})$
- lacktriangle C учётом неравенства Юнга-Фенхеля получим, что $\langle {f x},{f y}
 angle = f({f x})+f^*({f y})$
- ightharpoonup Так как f выпукла, то $f^{**}=f$. Значит $\langle \mathbf{x},\mathbf{y} \rangle = f^{**}(\mathbf{x}) + f^*(\mathbf{y})$ и $\mathbf{x} \in \partial f^*(\mathbf{y})$

Теорема

Пусть f_1 , f_2 выпуклые функции. Тогда $(f_1+f_2)^*=f_1^*\Box f_2^*$

Теорема

Пусть f_1 , f_2 выпуклые функции. Тогда $(f_1+f_2)^*=f_1^*\Box f_2^*$

Теорема

Пусть f_1 , f_2 выпуклые функции. Тогда $(f_1+f_2)^*=f_1^*\Box f_2^*$

Доказательство

▶ Ранее показали, что $(f_1 \Box f_2)^* = f_1^* + f_2^*$

Теорема

Пусть f_1 , f_2 выпуклые функции. Тогда $(f_1+f_2)^*=f_1^*\Box f_2^*$

- ▶ Ранее показали, что $(f_1 \Box f_2)^* = f_1^* + f_2^*$
- ▶ Тогда выполнено $(f_1^* \Box f_2^*)^* = f_1^{**} + f_2^{**} = f_1 + f_2$

Теорема

Пусть f_1 , f_2 выпуклые функции. Тогда $(f_1+f_2)^*=f_1^*\Box f_2^*$

- ▶ Ранее показали, что $(f_1 \Box f_2)^* = f_1^* + f_2^*$
- ▶ Тогда выполнено $(f_1^*\Box f_2^*)^* = f_1^{**} + f_2^{**} = f_1 + f_2$
- ▶ Так как инфимальная конволюция выпуклая функция, то $(f_1 \Box f_2)^{**} = f_1 \Box f_2$

Теорема

Пусть f_1 , f_2 выпуклые функции. Тогда $(f_1+f_2)^*=f_1^*\Box f_2^*$

- ▶ Ранее показали, что $(f_1 \Box f_2)^* = f_1^* + f_2^*$
- ▶ Тогда выполнено $(f_1^*\Box f_2^*)^* = f_1^{**} + f_2^{**} = f_1 + f_2$
- ▶ Так как инфимальная конволюция выпуклая функция, то $(f_1 \Box f_2)^{**} = f_1 \Box f_2$
- ▶ Тогда $f_1^* \Box f_2^* = (f_1 + f_2)^*$

Теорема

Если ${f x}^*$ точка минимума для сильно выпуклой функции f с константой m>0, то ${f x}^*$ единственная такая точка и

$$f(\mathbf{y}) \ge f(\mathbf{x}^*) + \frac{m}{2} ||\mathbf{x}^* - \mathbf{y}||_2^2, \quad \mathbf{y} \in \text{dom}(f)$$

Теорема

Если ${f x}^*$ точка минимума для сильно выпуклой функции f с константой m>0, то ${f x}^*$ единственная такая точка и

$$f(\mathbf{y}) \ge f(\mathbf{x}^*) + \frac{m}{2} \|\mathbf{x}^* - \mathbf{y}\|_2^2, \quad \mathbf{y} \in \text{dom}(f)$$

Теорема

Если ${f x}^*$ точка минимума для сильно выпуклой функции f с константой m>0, то ${f x}^*$ единственная такая точка и

$$f(\mathbf{y}) \ge f(\mathbf{x}^*) + \frac{m}{2} \|\mathbf{x}^* - \mathbf{y}\|_2^2, \quad \mathbf{y} \in \text{dom}(f)$$

Доказательство

ightharpoonup Воспользуемся фактом о том, что f сильно выпукла с константой m iff $g(\mathbf{x})=f(\mathbf{x})-rac{m}{2}\|\mathbf{x}\|_2^2$ выпукла

Теорема

Если ${f x}^*$ точка минимума для сильно выпуклой функции f с константой m>0, то ${f x}^*$ единственная такая точка и

$$f(\mathbf{y}) \ge f(\mathbf{x}^*) + \frac{m}{2} \|\mathbf{x}^* - \mathbf{y}\|_2^2, \quad \mathbf{y} \in \text{dom}(f)$$

- ightharpoonup Воспользуемся фактом о том, что f сильно выпукла с константой m iff $g(\mathbf{x})=f(\mathbf{x})-rac{m}{2}\|\mathbf{x}\|_2^2$ выпукла
- ▶ Запишем критерий выпуклости первого порядка для g: $f(\mathbf{y}) \frac{m}{2} \|\mathbf{y}\|_2^2 \ge f(\mathbf{x}) \frac{m}{2} \|\mathbf{x}\|_2^2 + \langle f'(\mathbf{x}) m\mathbf{x}, \mathbf{y} \mathbf{x} \rangle$

Теорема

Если ${f x}^*$ точка минимума для сильно выпуклой функции f с константой m>0, то ${f x}^*$ единственная такая точка и

$$f(\mathbf{y}) \ge f(\mathbf{x}^*) + \frac{m}{2} \|\mathbf{x}^* - \mathbf{y}\|_2^2, \quad \mathbf{y} \in \text{dom}(f)$$

- ightharpoonup Воспользуемся фактом о том, что f сильно выпукла с константой m iff $g(\mathbf{x})=f(\mathbf{x})-rac{m}{2}\|\mathbf{x}\|_2^2$ выпукла
- ightharpoonup Запишем критерий выпуклости первого порядка для g: $f(\mathbf{y}) \frac{m}{2} \|\mathbf{y}\|_2^2 \geq f(\mathbf{x}) \frac{m}{2} \|\mathbf{x}\|_2^2 + \langle f'(\mathbf{x}) m\mathbf{x}, \mathbf{y} \mathbf{x} \rangle$
- ▶ Неравенство перепишем в виде $f(\mathbf{y}) \geq f(\mathbf{x}) + \langle f'(\mathbf{x}), \mathbf{y} \mathbf{x} \rangle + \frac{m}{2} \left(\|\mathbf{y}\|_2^2 + \|\mathbf{x}\|_2^2 2\langle \mathbf{x}, \mathbf{y} \rangle \right)$

Теорема

Если ${f x}^*$ точка минимума для сильно выпуклой функции f с константой m>0, то ${f x}^*$ единственная такая точка и

$$f(\mathbf{y}) \ge f(\mathbf{x}^*) + \frac{m}{2} \|\mathbf{x}^* - \mathbf{y}\|_2^2, \quad \mathbf{y} \in \text{dom}(f)$$

- ightharpoonup Воспользуемся фактом о том, что f сильно выпукла с константой m iff $g(\mathbf{x})=f(\mathbf{x})-rac{m}{2}\|\mathbf{x}\|_2^2$ выпукла
- ▶ Запишем критерий выпуклости первого порядка для g: $f(\mathbf{y}) \frac{m}{2} \|\mathbf{y}\|_2^2 \ge f(\mathbf{x}) \frac{m}{2} \|\mathbf{x}\|_2^2 + \langle f'(\mathbf{x}) m\mathbf{x}, \mathbf{y} \mathbf{x} \rangle$
- ▶ Неравенство перепишем в виде $f(\mathbf{y}) \geq f(\mathbf{x}) + \langle f'(\mathbf{x}), \mathbf{y} \mathbf{x} \rangle + \frac{m}{2} \left(\|\mathbf{y}\|_2^2 + \|\mathbf{x}\|_2^2 2\langle \mathbf{x}, \mathbf{y} \rangle \right)$
- ▶ Или $f(\mathbf{y}) \geq f(\mathbf{x}) + \langle f'(\mathbf{x}), \mathbf{y} \mathbf{x} \rangle + \frac{m}{2} \|\mathbf{y} \mathbf{x}\|_2^2$

Теорема

Если ${f x}^*$ точка минимума для сильно выпуклой функции f с константой m>0, то ${f x}^*$ единственная такая точка и

$$f(\mathbf{y}) \ge f(\mathbf{x}^*) + \frac{m}{2} \|\mathbf{x}^* - \mathbf{y}\|_2^2, \quad \mathbf{y} \in \text{dom}(f)$$

- ightharpoonup Воспользуемся фактом о том, что f сильно выпукла с константой m iff $g(\mathbf{x})=f(\mathbf{x})-rac{m}{2}\|\mathbf{x}\|_2^2$ выпукла
- ▶ Запишем критерий выпуклости первого порядка для g: $f(\mathbf{y}) \frac{m}{2} \|\mathbf{y}\|_2^2 \ge f(\mathbf{x}) \frac{m}{2} \|\mathbf{x}\|_2^2 + \langle f'(\mathbf{x}) m\mathbf{x}, \mathbf{y} \mathbf{x} \rangle$
- ▶ Неравенство перепишем в виде $f(\mathbf{y}) \ge f(\mathbf{x}) + \langle f'(\mathbf{x}), \mathbf{y} \mathbf{x} \rangle + \frac{m}{2} (\|\mathbf{y}\|_2^2 + \|\mathbf{x}\|_2^2 2\langle \mathbf{x}, \mathbf{y} \rangle)$
- lacktriangle Или $f(\mathbf{y}) \geq f(\mathbf{x}) + \langle f'(\mathbf{x}), \mathbf{y} \mathbf{x}
 angle + rac{m}{2} \|\mathbf{y} \mathbf{x}\|_2^2$
- ▶ В точке минимума $f'(\mathbf{x}^*) = 0$, так что после подстановки получим требуемое неравенство

Сопряжённая функция от m-сильно выпуклой функции есть $\frac{1}{m}$ -гладкая функция

Теорема

Если f сильно выпуклая функция с константой m, сопряжённая к которой

$$f^*(\mathbf{y}) = \sup_{\mathbf{x}} (\mathbf{y}^\top \mathbf{x} - f(\mathbf{x}))$$

тогда

Сопряжённая функция от m-сильно выпуклой функции есть $\frac{1}{m}$ -гладкая функция

Теорема

Если f сильно выпуклая функция с константой m, сопряжённая к которой

$$f^*(\mathbf{y}) = \sup_{\mathbf{x}} (\mathbf{y}^\top \mathbf{x} - f(\mathbf{x}))$$

тогда

 $lacktriangleright f^*$ определена и дифференцируема для всех ${f y}$ и при этом

$$\nabla f^*(\mathbf{y}) = \arg\max_{\mathbf{x}} (\mathbf{y}^\top \mathbf{x} - f(\mathbf{x}))$$

Сопряжённая функция от m-сильно выпуклой функции есть $\frac{1}{m}$ -гладкая функция

Теорема

Если f сильно выпуклая функция с константой m, сопряжённая к которой

$$f^*(\mathbf{y}) = \sup_{\mathbf{x}} (\mathbf{y}^\top \mathbf{x} - f(\mathbf{x}))$$

тогда

 $lacktriangledown f^*$ определена и дифференцируема для всех ${f y}$ и при этом

$$\nabla f^*(\mathbf{y}) = \arg\max_{\mathbf{x}} (\mathbf{y}^\top \mathbf{x} - f(\mathbf{x}))$$

lacktriangledown $abla f^*(\mathbf{y})$ удовлетворяет условию Липшица с константой $rac{1}{m}$

▶ Так как $f(\mathbf{x})$ сильно выпуклая функция, то у функции $\mathbf{y}^{\top}\mathbf{x} - f(\mathbf{x})$ единственная точка максимума для каждого \mathbf{y} . Обозначим её \mathbf{x}_y

- lacktriangle Так как $f(\mathbf{x})$ сильно выпуклая функция, то у функции $\mathbf{y}^{\top}\mathbf{x}-f(\mathbf{x})$ единственная точка максимума для каждого \mathbf{y} . Обозначим её \mathbf{x}_y
- В силу условия оптимальности выполнено

$$\mathbf{y} = f'(\mathbf{x}_y) \quad f^*(\mathbf{y}) = \langle \mathbf{y}, \mathbf{x}_y \rangle - f(\mathbf{x}_y)$$

- lacktriangle Так как $f(\mathbf{x})$ сильно выпуклая функция, то у функции $\mathbf{y}^{\top}\mathbf{x}-f(\mathbf{x})$ единственная точка максимума для каждого \mathbf{y} . Обозначим её \mathbf{x}_y
- В силу условия оптимальности выполнено

$$\mathbf{y} = f'(\mathbf{x}_y) \quad f^*(\mathbf{y}) = \langle \mathbf{y}, \mathbf{x}_y \rangle - f(\mathbf{x}_y)$$

▶ Тогда для произвольного \mathbf{u} выполнено $f^*(\mathbf{u}) = \sup_{\mathbf{v}} (\mathbf{u}^\top \mathbf{v} - f(\mathbf{v})) \ge \mathbf{u}^\top \mathbf{x}_y - f(\mathbf{x}_y) = \mathbf{x}_y^\top (\mathbf{u} - \mathbf{y}) + \mathbf{x}_y^\top \mathbf{y} - f(\mathbf{x}_y) = \mathbf{x}_y^\top (\mathbf{u} - \mathbf{y}) + f^*(\mathbf{y})$

- lacktriangle Так как $f(\mathbf{x})$ сильно выпуклая функция, то у функции $\mathbf{y}^{\top}\mathbf{x}-f(\mathbf{x})$ единственная точка максимума для каждого \mathbf{y} . Обозначим её \mathbf{x}_y
- В силу условия оптимальности выполнено

$$\mathbf{y} = f'(\mathbf{x}_y) \quad f^*(\mathbf{y}) = \langle \mathbf{y}, \mathbf{x}_y \rangle - f(\mathbf{x}_y)$$

- $oldsymbol{ iny}$ Тогда для произвольного $oldsymbol{u}$ выполнено $f^*(oldsymbol{u}) = \sup_{oldsymbol{v}} (oldsymbol{u}^ op oldsymbol{v} f(oldsymbol{v})) \geq oldsymbol{u}^ op oldsymbol{x}_y f(oldsymbol{x}_y) = oldsymbol{x}_y^ op (oldsymbol{u} oldsymbol{y}) + f^*(oldsymbol{y})$
- ▶ То есть по определению субдифференциала $\mathbf{x}_y \in \partial f^*(\mathbf{y})$, но так как \mathbf{x}_y единственная точка максимума функции $\mathbf{y}^\top \mathbf{x} f(\mathbf{x})$, то $\partial f^*(\mathbf{y}) = \{\mathbf{x}_y\}$ и функция f^* дифференцируема

- lacktriangle Так как $f(\mathbf{x})$ сильно выпуклая функция, то у функции $\mathbf{y}^{ op}\mathbf{x}-f(\mathbf{x})$ единственная точка максимума для каждого \mathbf{y} . Обозначим её \mathbf{x}_y
- В силу условия оптимальности выполнено

$$\mathbf{y} = f'(\mathbf{x}_y) \quad f^*(\mathbf{y}) = \langle \mathbf{y}, \mathbf{x}_y \rangle - f(\mathbf{x}_y)$$

- Тогда для произвольного \mathbf{u} выполнено $f^*(\mathbf{u}) = \sup_{\mathbf{v}} (\mathbf{u}^\top \mathbf{v} f(\mathbf{v})) \ge \mathbf{u}^\top \mathbf{x}_y f(\mathbf{x}_y) = \mathbf{x}_y^\top (\mathbf{u} \mathbf{y}) + \mathbf{x}_y^\top \mathbf{y} f(\mathbf{x}_y) = \mathbf{x}_y^\top (\mathbf{u} \mathbf{y}) + f^*(\mathbf{y})$
- ▶ То есть по определению субдифференциала $\mathbf{x}_y \in \partial f^*(\mathbf{y})$, но так как \mathbf{x}_y единственная точка максимума функции $\mathbf{y}^\top \mathbf{x} f(\mathbf{x})$, то $\partial f^*(\mathbf{y}) = \{\mathbf{x}_y\}$ и функция f^* дифференцируема
- lacktriangle В итоге $abla f^*(\mathbf{y}) = \mathbf{x}_y$

ightharpoonup Рассмотрим две точки ${f u}$ и ${f v}$, в которых соответственно

$$\mathbf{x}_u = \nabla f^*(\mathbf{u}) \quad \mathbf{x}_v = \nabla f^*(\mathbf{v})$$

lacktriangle Рассмотрим две точки ${f u}$ и ${f v}$, в которых соответственно

$$\mathbf{x}_u = \nabla f^*(\mathbf{u}) \quad \mathbf{x}_v = \nabla f^*(\mathbf{v})$$

▶ Тогда по свойству сильно выпуклой функции, приведённому выше и применённому к сильно выпуклой функции $f(\mathbf{x}) - \mathbf{y}^{\top}\mathbf{x}$

$$f(\mathbf{x}_u) + \mathbf{v}^{\top} \mathbf{x}_u \ge f(\mathbf{x}_v) + \mathbf{v}^{\top} \mathbf{x}_v + \frac{m}{2} \|\mathbf{x}_v - \mathbf{x}_u\|_2^2$$
$$f(\mathbf{x}_v) + \mathbf{u}^{\top} \mathbf{x}_v \ge f(\mathbf{x}_u) + \mathbf{u}^{\top} \mathbf{x}_u + \frac{m}{2} \|\mathbf{x}_v - \mathbf{x}_u\|_2^2$$

lacktriangle Рассмотрим две точки ${f u}$ и ${f v}$, в которых соответственно

$$\mathbf{x}_u = \nabla f^*(\mathbf{u}) \quad \mathbf{x}_v = \nabla f^*(\mathbf{v})$$

▶ Тогда по свойству сильно выпуклой функции, приведённому выше и применённому к сильно выпуклой функции $f(\mathbf{x}) - \mathbf{y}^{\top}\mathbf{x}$

$$f(\mathbf{x}_u) + \mathbf{v}^{\top} \mathbf{x}_u \ge f(\mathbf{x}_v) + \mathbf{v}^{\top} \mathbf{x}_v + \frac{m}{2} \|\mathbf{x}_v - \mathbf{x}_u\|_2^2$$
$$f(\mathbf{x}_v) + \mathbf{u}^{\top} \mathbf{x}_v \ge f(\mathbf{x}_u) + \mathbf{u}^{\top} \mathbf{x}_u + \frac{m}{2} \|\mathbf{x}_v - \mathbf{x}_u\|_2^2$$

lacktriangle Сложим оба неравенства и получим $m\|\mathbf{x}_v-\mathbf{x}_u\|_2^2 \leq (\mathbf{x}_u-\mathbf{x}_v)^{ op}(\mathbf{u}-\mathbf{v}) \leq \|\mathbf{x}_u-\mathbf{x}_v\|_2\|\mathbf{u}-\mathbf{v}\|_2$ или $\|\nabla f^*(\mathbf{v})-\nabla f^*(\mathbf{u})\|_2 \leq rac{1}{m}\|\mathbf{u}-\mathbf{v}\|_2$

lacktriangle Рассмотрим две точки ${f u}$ и ${f v}$, в которых соответственно

$$\mathbf{x}_u = \nabla f^*(\mathbf{u}) \quad \mathbf{x}_v = \nabla f^*(\mathbf{v})$$

▶ Тогда по свойству сильно выпуклой функции, приведённому выше и применённому к сильно выпуклой функции $f(\mathbf{x}) - \mathbf{y}^{\top}\mathbf{x}$

$$f(\mathbf{x}_u) + \mathbf{v}^{\top} \mathbf{x}_u \ge f(\mathbf{x}_v) + \mathbf{v}^{\top} \mathbf{x}_v + \frac{m}{2} \|\mathbf{x}_v - \mathbf{x}_u\|_2^2$$
$$f(\mathbf{x}_v) + \mathbf{u}^{\top} \mathbf{x}_v \ge f(\mathbf{x}_u) + \mathbf{u}^{\top} \mathbf{x}_u + \frac{m}{2} \|\mathbf{x}_v - \mathbf{x}_u\|_2^2$$

▶ Сложим оба неравенства и получим $m\|\mathbf{x}_v - \mathbf{x}_u\|_2^2 \leq (\mathbf{x}_u - \mathbf{x}_v)^\top (\mathbf{u} - \mathbf{v}) \leq \|\mathbf{x}_u - \mathbf{x}_v\|_2 \|\mathbf{u} - \mathbf{v}\|_2$ или $\|\nabla f^*(\mathbf{v}) - \nabla f^*(\mathbf{u})\|_2 \leq \frac{1}{m} \|\mathbf{u} - \mathbf{v}\|_2$

▶ Таким образом, $\nabla f^*(\mathbf{u})$ Липшицев с константой Липшица $\frac{1}{m}$

Почему важна эта теорема?

- $lacktriangledown f(\mathbf{x})$ выпуклая, но *негладкая*
- ▶ Moreau-Yosida envelope $(\lambda > 0)$

$$M_{\lambda f}(\mathbf{x}) = \inf_{\mathbf{u}}(f(\mathbf{u}) + \frac{1}{2\lambda}\|\mathbf{x} - \mathbf{u}\|_2^2) = \left(f \Box \frac{1}{2\lambda}\|\cdot\|_2^2\right)(\mathbf{x})$$

- ▶ $M_{\lambda f}(\mathbf{x})$ выпукла
- $lacksquare M^*_{\lambda f}(\mathbf{y}) = f^*(\mathbf{y}) + rac{\lambda}{2} \|\mathbf{y}\|_2^2$ сильно выпукла с параметром λ
- $M_{\lambda f} = M_{\lambda f}^{**} = (f^* + \frac{\lambda}{2} \| \cdot \|_2^2)^*$
- Сопряжённая функция к сильно выпуклой функции является гладкой $\Rightarrow M_{\lambda f}$ гладкая функция и

$$M'_{\lambda f}(\mathbf{x}) = \frac{1}{\lambda}(\mathbf{x} - \mathbf{u}^*), \quad \mathbf{u}^* = \arg\min_{\mathbf{u}} \left(f(\mathbf{u}) + \frac{1}{2\lambda} \|\mathbf{x} - \mathbf{u}\|_2^2 \right)$$

Важное свойство

Множество точек минимума f и $M_{\lambda f}$ совпадает. Доказательство далее в курсе...

Пример

▶
$$f(x)=|x|$$

▶ $M_{\lambda f}(x)=egin{cases} \frac{x^2}{2\lambda} & |x|\leq \lambda \\ |x|-\lambda/2 & |x|\geq \lambda \end{cases}$ — получите это выражение!

Условия оптимальности для безусловных задач

- ▶ Условия оптимальности для безусловных задач
- Сопряжённое функция

- ▶ Условия оптимальности для безусловных задач
- ▶ Сопряжённое функция
- Свойства сопряжённых функций

- ▶ Условия оптимальности для безусловных задач
- Сопряжённое функция
- Свойства сопряжённых функций
- ightharpoonup L-гладкость и μ -сильная выпуклость в контексте вычисления сопряжённых функций