PATHOLOGY

1.) Aspiration/Foreign Body

• Inspiration of a foreign material into the airway

2.) Atelectasis

• A collapse of all or part of the lung

3.) Bronchiectasis

Chronic dilatation of the bronchi & bronchioles

4.) Bronchitis

• Inflammation of the bronchi

5.) Chronic Obstructive Pulmonary Disease

Chronic condition of persistent obstruction of bronchial airflow

6.) Cystic Fibrosis

- Widespread dysfunction of the exocrine glands
- Abnormal secretion of sweat & saliva & accumulation of thick mucus in the lungs

7.) Emphysema

 Enlargement of alveolar wall caused by alveolar wall destruction & loss of elasticity

8.) Epiglottitis

• Inflammation of the epiglottis

9.) Histoplasmosis

• Infection caused by the yeastlike organism Histoplasma capsulatum

10.) Sarcoidosis

 Condition of unknown origin often associate with pulmonary fibrosis

11.) Tubercolosis

• Chronic infection of the lungs due to the *tubercle bacillus*

12.) Hyaline Membrane Disease/Respiratory Distress Syndrome

 Underaeration of the lungs due to a lack of surfactant

13.) Metastases

Transfer of a cancerous lesion from one area to another

14.) Pleural Effusion/Hydrothorax

• Collection of fluid in the pleural cavity

15.) Pneumoconiosis

Lung diseases resulting from inhalation of industrial substances

Anthracosis

- Coal miner's lung or black lung
- Inflammation caused by inhalation of coal dust (anthracite)

Asbestosis

Inflammation caused by inhalation of asbestos

Silicosis

Inflammation caused by inhalation of silicon dioxide

16.) Pneumonia

Acute infection in the lung parenchyma

Aspiration

Pneumonia caused by inhalation of foreign particles

Interstitial/Viral/Pneumonitis

• Pneumonia caused by a virus & involving alveolar walls & interstitial structures

Lobar/Bacterial

• Pneumonia involving the alveoli of an entire lobe without involving the bronchi

Lobular/Bronchopneumonia

• Pneumonia involving the bronchi and scattered throughout the lung

17.) Pneumothorax

• Accumulation of air in the pleural cavity resulting in collapse of the lung

18.) Pulmonary Edema

• Replacement of air with fluid in the lung interstitium & alveoli

A.) TRACHEA

AP PROJECTION

PP: Supine/upright; neck slightly extended; MSP [⊥]

to IR; exposure during slow inspiration

RP: Manubrium

CR: [⊥]

SS: Air-filled trachea

LATERAL PROJECTION

PP: Seated/upright; hands clasped behind the body; shoulder rotated posteriorly (prevents superimposition of arms & superior mediastinum); neck extended slightly; exposure during slow inspiration

RP: Midway b/n jugular notch & midcoronal plane (for trachea); 4-5 in. lower (for superior mediastinum)

CR: [⊥]

SS: Air-filled trachea & superior mediastinum

ER: described by Eiselbeg & Sgalitzer

- Used to demonstrate restrosternal extensions of the thyroid gland
- Thymic enlargement in infants (recumbent position)
- Opacified larynx & upper esophagus
- Outline of trachea & bronchi

For foreign body localization

B.) CHEST

PA PROJECTION

PP: Upright/seated-upright (always); chin extended upward; dorsal aspect of hands against the hips (rotates scapulae laterally; depress shoulder; pull breast upward & laterally (female); exposure after second full inspiration (general) or end of full inspiration & expiration (for presence of pneumothorax & foreign body)

RP: T7 **CR:** ⊥

SS: Entire lung field

- Sharp outline of heart
- Sharp outline of diaphragm (expiration)
- Ten posterior ribs above diaphragm

Upright Position Rationale:

- Diaphragm at its lowest position
- Air-fluid levels are seen
- Avoid engorgement of the pulmonary vessels

AP PROJECTION

PP: Supine/upright; back against IR; place hands on

hips; elbow flexed; hand pronated **RP**: 3 in. inferior to jugular notch

CR: ⊥

SS: Somewhat similar to PA but magnified

- Magnified heart & great vessels
- Lung fields appear shorter
- Clavicle projected higher
- Ribs assume horizontal position

Resnick Recommendation:

- CR 30° caudad to midsternal region
- Rationale: to free basal portions of the lung fields from superimposition by anterior diaphragmatic, abdominal & cardiac structures

LINDBLOM METHOD AP AXIAL PROJECTION

PP: Upright; step 1 foot in front; lean backward in extreme lordosis; elbow flexed; pronate hands beside the hips; shoulder against IR;

RP: Midsternum

CR: [⊥] or 15-20° cephalad (no leaning backward)

SS: Lung apices inferior to shadow of clavicles

• Demonstrate interlobar effusions

ER: Used in preference to PA axial projection in hyperstenic patient & whose clavicles occupy a high position

PA AXIAL PROJECTION

PP: Upright; chin rested against the IR; elbow flexed; pronate hands on hips; depress shoulder & rotated forward; exposure at end of full inspiration

RP: T3

CR: 10-15° cephalad

SS: Lung apices superior to shadow of clavicles

LATERAL PROJECTION

PP: Upright/seated-upright; left side against the IR (for heart & left lung) or right side against the IR (for right lung); MSP // to IR; MCP ⊥ to IR; arms extended directly upward; elbow flexed; forearm resting on elbows

RP: T7 **CR:** ⊥

SS:

- Heart, aorta & left-sided pulmonary lesions (left lateral)
- Right-sided pulmonary lesions (right lateral)

ER:

- Employed to demonstrate the interlobar fissures
- To differentiate the lobes
- To localize pulmonary lesions

PA OBLIQUE PROJECTION

PP: Upright/seated-upright; LAO/RAO (affected side up); body rotated 45° toward unaffected side; 55-60° (for cardiac series;)10-20° (for study of pulmonary diseases); shoulder of unaffected side against IR

RP: T7 **CR:** ⊥

SS:

- LAO:
 - Maximum area of right lung
 - o Trachea & carina
 - o Entire right branch of bronchial tree
 - o Heart, descending aorta & aortic arch
 - o Esophagus (if barium filled)

• RAO:

- o Maximum area of left lung
- Trachea
- o Entire left branch of bronchial tree
- Best image of left atrium, anterior portion of apex of left ventricle & right retrocardiac space
- o Esophagus (if barium filled)
- Medial part of right middle lobe & lingula of the left upper lobe free from hilum (CR 10-20°)

AP OBLIQUE PROJECTION

PP: Upright/supine; LPO/RPO (affected side down); body rotated 45° toward affected side; shoulder of affected side against IR

RP: 3 in. inferior to jugular notch

CR: [⊥]

SS:

- LPO: maximum area of left lung; similar to RAO
- **RPO:** maximum area of right lung; similar to LAO

ER:

- Used when patient is too ill to be turned in prone position
- Supplementary position in investigation of specific lesions
- Used with recumbent patient in contrast studies of the heart & great vessels

AP/PA PROJECTION

R or L Lateral Decubitus

PP: Lateral decubitus; patient lie on affected side (for pleural effusion) or unaffected side (pneumothorax); body elevated 2-3 in.; arms well above the head; remain in position for 5 minutes before exposure

RP: 3 in. inferior to jugular notch (AP) or T7 (PA)

CR: Horizontal

ER:

- Used to demonstrate the change in fluid position (pleural effusion)
- Reveals any previously obscured pulmonary areas
- Demonstrate the presence of any free air (pneumothorax)

Ekimsky Recommendation:

- Patient leaning laterally 45°
- **Rationale:** for demonstration of small pleural effusions

LATERAL PROJECTION

R or L Position

Ventral/Dorsal decubitus Position

PP: Supine/prone; thorax elevated 2-3 in.; remain in position 5 minutes before the exposure; extend arms well above the head; affected side against the IR

RP: 3 in. inferior to jugular notch (ventral decubitus) or T7 (dorsal decubitus)

CR: Horizontal

ER:

- Used to demonstrate the change in fluid position
- Reveals pulmonary areas that obscured by fluid in standard projection

C.) STERNUM

PA OBLIQUE PROJECTION

PP: Prone or upright (trauma patient); RAO; body rotated 15-20° (prevents superimposition of sternum & vertebrae); long exposure time: slow, shallow breaths during exposure; short exposure time: suspend breathing at the end of expiration

RP: T7 of elevated side of posterior thorax & 1 in. lateral to MSP

CR:⊥

SS: Best projection to demonstrate sternum

• Sternum free of superimposition from vertebral column

• Sternum projected over the heart

AP Oblique Projection:

- LPO position
- For trauma patients in supine position

MOORE METHOD PA OBLIQUE PROJECTION

PP: Modified prone position; tube positioned over the patient's right side; patient stand at the side of table; bend at the waist; arms above shoulders; palms down on table

RP: level of T7 & 2 in. to the right of spine

CR: 25° toward MSP; large patient (less angulation); small patient (more angulation)

SS: Sternum free of superimposition from vertebral column

ER: Perform on an ambulatory patient who is having acute pain to provide comfort & to produce high-quality sternum image

• Sternum projected over the heart

LATERAL PROJECTION R or L Position

PP: Lateral recumbent/upright or dorsal decubitus (for patient with severe injury); patient in true lateral position; broad surface of sternum [⊥] to IR; suspended deep inspiration

RP: Lateral border of midsternum

CR: [⊥]

SS: Best demonstrate the entire length of sternum & its surrounding tissue

D.) STERNOCLAVICULAR JOINTS

PA PROJECTION

PP: Prone or upright (trauma patient); arms along the sides; palms facing upward; head turned facing the affected side for unilateral examination (rotates the spine slightly away from side of interest); head rested on chin for bilateral examination

RP: T3 **CR**: ⊥

SS: Sternoclavicular joints

KURZBAUER METHOD LATERAL PROJECTION

PP: Lateral recumbent; affected side against IR; hips & knee flexed; arm of affected grasp the end of table (for support); arm of unaffected side grasp the dorsal surface of hip (depressed shoulder); anterior surface of manubrium \(^{\preceq}\) to IR

RP: Lowermost sternoclavicular articulation

CR: 15° caudad

SS: Unobstructed sternoclavicular joint

PA OBLIQUE PROJECTION Body Rotation Method

PP: Prone or seated-upright (trauma patient); RAO/LAO; body rotated 10-15° toward affected side (projects vertebrae well behind the SC joint)

RP: Level of T2-T3 (3 in. distal to vertebral prominens) & 1-2 in. lateral from MSP

CR: [⊥]

• Entrance: right side (left SC joint); left side (right SC joint)

SS: Sternoclavicular joints

PA OBLIQUE PROJECTION Central Ray Angulation Method

PP: Prone or seated-upright (trauma patient); chin rested on table or rotated toward the side of interest

RP: Level of T2-T3 (3 in. distal to vertebral prominens) & 1-2 in. lateral from MSP

CR: 15° toward MSP

• **Entrance:** right side (left SC joint); left side (right SC joint)

SS: Sternoclavicular joints

D.) RIBS

PA PROJECTION

PP: Upright/prone; hands rested against hips; palms turned outward; chin rested on chin; suspend at full inspiration (depresses diaphragm)

RP: T7

CR: \perp or 10-15° caudad (to demonstrate 7th-9th ribs)

SS: Anterior ribs (1st-9th) above the diaphragm

AP PROJECTION

PP:

- **Upright:** to image ribs above diaphragm; IR top board 1.5 in. above shoulder; shoulder rotated forward; suspend at full inspiration (to depress diaphragm)
- **Supine:** to image ribs below diaphragm; shoulder in the same transverse plane; suspend at full expiration (to elevate diaphragm)

RP: T7 (upper ribs) or T10 (lower ribs)

CR: ⊥

SS: Posterior ribs above the diaphragm (1st-10th) & below the diaphragm (8th-12th)

AP OBLIQUE PROJECTION

PP: RPO/LPO; body rotated 45° (affected side down); arm of affected side abducted; opposite hand on hip

- **Upright:** to image ribs above diaphragm; hand rested on head; suspend at full inspiration (to depress diaphragm)
- **Supine:** to image ribs below diaphragm; hip elevated; suspend at full expiration (to elevate diaphragm)

RP: T7 (upper ribs) or T10 (lower ribs)

CR: ⊥

SS: Axilliary ribs closest from IR

PA OBLIQUE PROJECTION

PP: RAO/LAO; body rotated 45° (affected side up)

• **Upright:** to image ribs above diaphragm; forearm of affected side rested on grid device; suspend at full inspiration (to depress diaphragm)

• **Supine:** to image ribs below diaphragm; patient rested on forearm; knee of elevated side flexed; suspend at full expiration (to elevate diaphragm)

RP: T7 (upper ribs) or T10 (lower ribs)

 $CR: \bot$

SS: Axilliary ribs away from IR

AP AXIAL PROJECTION

PP: Supine; head rested directly on table (to avoid accentuating the dorsal kyphosis); arms along sides of the body

RP: 2 in. superior to xiphoid process

CR: 20° cephalad

• Increase 5-10° angle (patient w/ pronounced dorsal kyphosis)

SS: Costal joints

• Costovertebral & costotransverse joints

© THE END ©

"BOARD EXAM is a matter of PREPARATION. If you FAIL to prepare, you PREPARE to fail" 04/09/14