3. Let $a_0, a_1, a_2, ...$ be the sequence defined by the 2nd-order linear recursion relation

$$a_n = 6a_{n-1} - 5a_{n-2}$$
, for $n \ge 2$, with $a_0 = 0$, $a_1 = 4$.

Take P(n): $a_n = 5^n - 1$. Then $\forall n \in \mathbb{N}$, P(n) (use strong mathematical induction).

P_n; the claim that the formula $a_1 = 5^n - 1$ is closed from the nth ferm of the sequence solving our recurrence relation.

Base case: n = 2 $a_2 = 6(a_1) - 5(a_6)$ Strong induction: Assume P_2 , P_3 , ..., P_k hold for some $k \ge 2$.

Thus $a_{k+1} = 6(a_k) - 5(a_{k-1}) = 6(5^k - 1) - 5(5^{k-1} - 1)$ $= 6(5^k) - 6 - 5(5^{k-1}) + 5 = 6(5^k) - 5^k - 1 = 5^k(6-1) - 1$ $= 5^{k+1} - 1$ destination (hopel-for)

4. Use strong mathematical induction to show the product of n numbers requires n-1 multiplications, regardless of grouping.

plications, regardless of grouping.

To multiply Γ_1 Γ_2 Γ_3 ... Γ_n regulars n-1 multiplications

What domain for n? $n \ge 1$ Base step: list of 1 number regulares 0 multiplications

Suppose for inductive step that P_1 , P_2 , ..., P_k helds for some $k \ge 1$.

Now take a list of lett numbers $\left(\Gamma_1 / \Gamma_2 \Gamma_3 \ldots \Gamma_k \Gamma_{k+1}\right)$ [ast (final order set of perces) group

This final agraphing produces 2 sublists, one of size m, the other of size justices

There I \le m < k + 1 \ m + j = k + 1

1 \le j \le k + 1 \ 4

1 \le j - 1 \ multiplies

total # of onulty(ies:
$$(m-1)+(j-1)+1 = k \text{ multip(inc)}$$

5. A simple polygon with $n \ge 3$ sides can be triangulated into n-2 triangles (use strong mathematical induction, and the fact that every simple polygon with at least four sides has an interior diagonal).

Given a strictly decreasing sequence of positive integers r_1, r_2, r_3, \ldots (so $r_{i+1} < r_i$ for each i), for each i the sequence terminates (use the well-ordering principle).

5

Ex. n = 57, d = 5 $\Rightarrow q = 11, r = r$?

Ex. n = -33, J = 4 $\Rightarrow q = -9$, r = 3?

\(\lambda \dots, 47, 52, 57, 62, 67, \dots\)
MATH 251 Notes Division Algorithm 7. Given any integer n and any positive integer d, there exist integers q and r such that n = dq + r and $0 \le r < d$ (use the well-ordering principle) Given integers there exist unique integers of and r satisfying: d 73 $-\left(g,J\right)$ · n = q d + r prive using well-ordering principle: remain Log Consider the set $A = \{n - gd \mid g \in \mathbb{Z}\} \cap \mathbb{N}$ This A = IN, so by well-ordering principle, A has a smallest element, r = n-gd for some g E L. Now we have raid q. Note that, by construction, And r > 0 since r comes from A (containing only nations.) and either red or it isn't. But if r=1 (or d≤r), we'd have $d \leq r = n - qd$ So subtracting I from all these expressions $0 \leq r - d = n - (q + l) d$ which makes r-d another element inside A even smaller than r, and that's impossible since r is already smaller.