Dualitat Lagrangiana. Definicions

Definició de Punt de Sella: Donada una funció L(x,u) definida sobre dos grups de variables $x \in S \subseteq \mathbb{R}^n$, $u \in U \subseteq \mathbb{R}^n$; $L: S \times U \to \mathbb{R}$ llavors $(\bar{x}, \bar{u}) \in S \times U$ es diu punt de sella si

$$L(\bar{x}, u) \le L(\bar{x}, \bar{u}) \le L(x, \bar{u})$$

Considerem ara un problema d'optimització:

$$(P) \qquad \begin{cases} h(x) = 0 \\ g(x) \ge 0 \\ x \in X \end{cases} \leftarrow \text{L.M.} \qquad \begin{aligned} h: \mathbb{R}^n \to \mathbb{R}^p \\ g: \mathbb{R}^n \to \mathbb{R}^q \end{aligned}$$

on no suposen a priori condicions de regularitat (o qualificació de les contriccions) i X pot ser qualsevol tipus de conjunt:

 \blacksquare Es defineix per (P) la funció lagrangiana com:

$$L(x, \lambda, \mu) \stackrel{\triangle}{=} f(x) - \lambda^{\top} h(x) - \mu^{\top} g(x)$$

• Funció Dual Lagrangiana $w(\lambda, \mu)$ per (P)

$$w(\lambda,\mu) \stackrel{\triangle}{=} Inf_{x \in X} L(x,\lambda,\mu)$$

El domini de w es defineix com el dels punts (λ, μ) on w és finita.

$$D \stackrel{\triangle}{=} \{ (\lambda, \mu) \in \mathbb{R}^p \times \mathbb{R}^q_+ \mid w(\lambda, \mu) < +\infty \}$$

■ Definició de problema dual lagrangià de (P)

$$(LD) \quad \begin{array}{cc} Max & w(\lambda,\mu) \\ \\ (\lambda,\mu) \in D \end{array}$$

(fer observació de la conveniència de la dualització de segons quines constriccions)

Teoremes de Dualitat i Punt de Sella

Teorema Feble

Sigui x factible de (P), $(h(x) = 0, g(x) \ge 0, x \in X)$. Sigui (λ, μ) factibles de (LD), $(\mu \ge 0)$. Llavors $f(x) \ge w(\lambda, \mu)$

La diferència $g(x,\lambda,\mu)=f(x)-w(\lambda,\mu)\ (\geq 0)$ és diu gap de dualitat per (P) al punt (x,λ,μ) .

$\underline{\text{Demo}}$

$$w(\lambda,\mu) = \inf\{\; L(x,\lambda,\mu) \mid x \in X \;\} \leq f(x) - \lambda^\top h(x) - \mu^\top g(x) \leq f(x) \; (\mu \geq 0 \;,\; g(x) \geq 0)$$

(Observar que si x^* resol (D) $(\lambda, \mu), \ \mu \ge 0$ i es verifica $\mu^{\top} g(x^*) = 0 \implies w(\lambda, \mu) = f(x^*)$)

Corol·lari 1
$$f^* = Inf\{ f(x) \mid x \in F \} \ge Sup\{ w(\lambda, \mu) \mid \mu \ge 0 \} = w^*$$
gap de $(P) \stackrel{\triangle}{=} f^* - w^*$

Corol·lari 2 Si $f^* = w^*$ llavors $x^*(\lambda^*, \mu^*)$ resolen (P) i (LD) respectivament.

Corol·lari 3 si
$$f^* = -\infty \implies w(\lambda, \mu) = -\infty \ \forall (\lambda, \mu), \ \mu \ge 0$$

Corol·lari 4 si $w^* = \infty \Rightarrow (P)$ és infactible $(F = \emptyset)$

Teorema del punt de Sella

Condició necessària i suficient per que $L(x, \lambda, \mu)$ de (P) tingui punt de sella $(\bar{x}, \bar{\lambda}, \bar{\mu})$ és que:

a)
$$f^* = f(\bar{x}) = w(\bar{\lambda}, \bar{\mu}) = w^* \text{ (gap=\emptyset)}$$

b)
$$g(\bar{x}) \ge 0 \ h(\bar{x}) = 0 \ (\bar{x} \in F)$$

c)
$$\bar{\mu}^{\top} g(\bar{x}) = 0 \text{ (compl)}$$

Teorema. Verificació de les condicions Kuhn Tucker per punts de sella

Sigui $\bar{x} \in F$ satisfent K-T per (P)

$$\nabla f(\bar{x}) = \left(\frac{\partial g}{\partial x}\right)^{\top} \bar{\mu} + \left(\frac{\partial h}{\partial x}\right)^{\top} \bar{\lambda}$$
$$\bar{\mu} q^{\top}(\bar{x}) = 0 , \ \bar{\mu} > 0.$$

i suposem que (P) verifica :

a) f convexa. Sigui ara:

$$I(x) = \{ 1 \le i \le g \mid g(x) = 0 \}$$

b) g_i convexa localment a $\bar{x}, i \in I(\bar{x})$

c) si
$$\bar{\lambda}_{\ell} \neq 0 \Rightarrow h_{\ell}(\bar{x})$$
 afí

llavors $(\bar{x}, \bar{\lambda}, \bar{\mu})$ és punt de sella de L per (P).

En particular els problemes convexos verifiquen l'existència de Punts de Sella que són els que verifiquen K-T

Teorema de Dualitat Forta (Karlin) (Teo. 6.2.4)

Sigui X convex no buit f, g convexes, h afí.

Condicions de qualificació.

- a) $\exists \tilde{x} \in X \text{ t.q. } g(\tilde{x}) > 0 \text{ i } h(\tilde{x}) = 0$
- b) $0 \in int \ h(X); \ h(X) = \{ \ h(x) \mid x \in X \ \}$

Verificant-se tot això es cumplirà que:

- 1) $f^* = w^*$ (gap de dualitat nul)
- 2) si $f^* < +\infty$ llavors w^* s'assoleix a un punt $(\lambda^*, \mu^*), \ w^* = w^*(\lambda^*, \mu^*)$ i més a més $\mu^* \geq 0$.
- 3) si $f^* < +\infty$ per x^* , $f^* = f(x^*)$, hi ha complementarietat $g(x^*)^\top \mu^* = 0$

(per curiositat: què passa si no hi han constriccions h?) Són mes <u>condicions suficients</u> per l'existència d'un punt de sella