

DEEP LEARNING CNN & RNN

Lecture-6, Day-3
STTP on "Deep Learning, Computer Vision and Speech Processing"

By: Suprava, Patnaik, Professor, ExTC, XIE, Mumbai

PART I: DEEPLEARNING:

WEIGHT SHARING(CNN)

Why Convolution?

Translation invariance

- Object recognition:
 - Feed-forward NN has different weights everywhere and for every input location.
 - If we train it on left image, it wouldn't recognize the right image

Consider learning an image:

Some patterns are much smaller than the whole image

Can represent a small region with fewer parameters

What about training a lot of such "small" detectors and each detector must "move around".

A convolutional layer

A CNN is a neural network with some convolutional layers (and some other layers). A convolutional layer has a number of filters that does convolutional operation.

1	0	0	0	0	1
0	~	0	0	1	0
0	0	~	~	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6 x 6 image

These are the network parameters to be learned.

~	Υ_	1
-1	1	1
-1	-1	1

Filter 1

Filter 2

: :

Each filter detects a small pattern (3 x 3).

1	-1	-1
-1	1	-1
-1	-1	1

Filter 1

stride=1

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

Dot product 3 -1

6 x 6 image

1	-1	-1
-1	1	-1
-1	-1	1

Filter 1

If stride=2

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

3 -3

6 x 6 image

-1 -1 -1 -1 -1 \

Filter 1

stride=1

6 x 6 image

-2

-1

-2

-1	1	-1
-1	1	-1
-1	1	-1

Filter 2

stride=1

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6 x 6 image

Repeat this for each filter

Two 4 x 4 images
Forming 2 x 4 x 4 matrix

Color image: RGB 3 channels

Convolution v.s. Fully Connected

Fullyconnected

1	0	0	0	0	1
0	~	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0.
0	1	0	0	1	0:
0	0	1	0	1	0

The whole CNN

cat dog

Fully Connected Feedforward network

Flattened

Convolution

Max Pooling

Can repeat many times

Max Pooling

1	-1	-1
-1	1	-1
-1	-1	1

Filter 1

-1	1	-1
-1	1	-1
-1	1	-1

Filter 2

3 -1	-3 -1
-3 1	0 -3
-3 -3	0 1

-1 -1 -1 -1	-1 -1 -2 1
-1 -1	-2 1
-1 0	-4 3

Why Pooling

 Subsampling pixels will not change the object bird

We can subsample the pixels to make image smaller fewer parameters to characterize the image

A CNN compresses a fully connected network in two ways:

- Reducing number of connections
- Shared weights on the edges to recognize objects independent of location
- Max pooling further reduces the complexity

Max Pooling

is a channel

The whole CNN

A new image

Smaller than the original image

The number of channels is the number of filters

Can repeat many times

The whole CNN

cat dog

CNN in Keras

Only modified the *network structure* and *input format (vector -> 3-D tensor)*

CNN in Keras

Only modified the *network structure* and *input format (vector -> 3-D array)*

CNN in Keras

Only modified the *network structure* and *input format (vector -> 3-D array)*

Advantage of convolution

- Multiplies the same weight everywhere on the image
- Suppose the filter is a feature finder that identifies the car, ie. outputs a comparatively high +ve number, when input is a car. It will find a car no matter where it is on the image
- Layers of convolution behave the same. First layer will find small, simple features anywhere on the image(eg. A line or edge). Next layer will find more complex features, and so on.
- Weight sharing leads to better generalization

PART II: NEURAL NETWORK WITH MEMORY (RNN)

Construing from Memory

RNN are the NN architectures with feedback

An unrolled recurrent neural network

- Long memory vs Short memory
- Examples:

Clouds are in sky.

She grew up in France.....She speaks fluent French.

RNN

The same network is used again and again.

Output y^i depends on x^1 , x^2 , x^i

Neural Network needs Memory

- Name Entity Recognition
 - Detecting entities like name of people, locations, organization, etc. in a sentence.

DNN needs memory!

Recurrent Neural Network (RNN)

The output of hidden layer are stored in the memory. y_1 copy a_1 a_2 a_3 copy a_4 a_2 copy a_4 copy copy

- Memory can be considered as another input.
- Unfortunately, as that gap grows, RNNs become unable to learn to connect the information.

RNN How to train?

Find the network parameters to minimize the total cost:

Backpropagation through time (BPT)

Of course it can be deep ...

Bidirectional RNN

No size limitation

Vanishing or exploding gradient

Helpful Techniques

- Nesterov's Accelerated Gradient (NAG):
 - Advance momentum method
- RMS Prop
 - Advanced approach to give each parameter different learning rates
 - Considering the change of Second derivatives
- Long Short-term Memory (LSTM)
 - Can deal with gradient vanishing (not gradient explode)

LSTM: Long Short Term Memory

RNN

LSTM

Long Short-term Memory (LSTM)

Core concepts behind LSTM

- Cell state (like a conveyor belt)
- Ability to remove or add information to the cell state

Original Network:

➤ Simply replace the neurons with

LSTM

Extension: "peephole"

Other Simpler Alternatives

Gated Recurrent Unit (GRU)

Recurrent Network (SCRN)

[Cho, EMNLP'14]

Structurally Constrained

Vanilla RNN Initialized with Identity matrix + ReLU activation function [Quoc V. Le, arXiv'15]

Outperform or be comparable with LSTM in 4 different tasks

What is the next wave?

Already applied on speech recognition, caption generation, QA, visual QA

What is the next wave?

Attention-based Model

- End-To-End Memory Networks. S. Sukhbaatar, A. Szlam, J. Weston, R. Fergus. arXiv Pre-Print, 2015.
- Neural Turing Machines. Alex Graves, Greg Wayne, Ivo Danihelka. arXiv Pre-Print, 2014
- Ask Me Anything: Dynamic Memory Networks for Natural Language Processing. Kumar et al. arXiv Pre-Print, 2015
- Neural Machine Translation by Jointly Learning to Align and Translate. D. Bahdanau, K. Cho, Y. Bengio; International Conference on Representation Learning 2015.
- Show, Attend and Tell: Neural Image Caption Generation with Visual Attention. Kelvin Xu et. al., arXiv Pre-Print, 2015.
- Attention-Based Models for Speech Recognition. Jan Chorowski, Dzmitry Bahdanau, Dmitriy Serdyuk, Kyunghyun Cho, Yoshua Bengio. arXiv Pre-Print, 2015.
- Recurrent models of visual attention. V. Mnih, N. Hees, A. Graves and K. Kavukcuoglu. In NIPS, 2014.
- A Neural Attention Model for Abstractive Sentence Summarization. A. M. Rush, S. Chopra and J. Weston. EMNLP 2015.

AlexNet

VGG

GoogleNet

The Inception Architecture (GoogLeNet, 2014)

(b) Inception module with dimension reductions

ResNet

relu

H(x)

 Not just stacking layers on top of each other... "Normal" "Residual" \boldsymbol{x} x weight layer weight layer any two relu relu F(x)identity stacked layers x weight layer weight layer

 $H(x) = F(x) + x \oplus$

R-FCN

- Object Detection by Region based fully connected CNN
 - Regression to boundary box coordinates + object classification inside the bounding box
- Networks are rarely trained from scratch. Pre-trained weights are often available for popular networks. Proceed with fine tuning (transform learning)

THANK YOU FOR YOUR ATTENTION!

Maxout

ReLU is a special cases of

Maxout

ReLU is a special cases of

