Time Value of Money: Intuition and Discounting

Michael R. Roberts

William H. Lawrence Professor of Finance

The Wharton School, University of Pennsylvania

This Time Time Value of Money

· Intuition, tools, and discounting

Messages (Look up)

 Can't add/subtract different currencies

2. Must convert currencies to common (base) currency using exchange rate

Time Value of Money

Time Value of Money

- Money received/paid at different times is like different currencies
 - –Money has a time unit

- Must convert to common/base unit to aggregate
 - –Need exchange rate for time

THE TOOLS: TIME LINE & DISCOUNT FACTOR

Time Line

Time Line

Time Line

Lesson: Get in the habit of placing cash flows on a time line

Can we add/subtract cash flows in different time periods

Lesson: Never* add/subtract cash flows received at different times

Need exchange rate for time to convert to common time unit

Discount Factor

The discount factor is our exchange rate for time

$$(1+R)^t$$

t = time periods into future (t > 0) or past (t < 0) to move CFs

$$R = \dots$$

Definition: *R* is the rate of return offered by investment alternatives in the capital markets of equivalent risk.

Definition: *R* is the rate of return offered by investment alternatives in the capital markets of equivalent risk.

A.k.a., discount rate, hurdle rate, opportunity cost of capital

To determine R, consider the risk of the cash flows that you are discounting.

To determine R, consider the risk of the cash flows that you are discounting.

Investment	Average Annual Return, R
Treasury-Bills (30-Day)	3.49%
Treasury-Notes (10-Year)	5.81%
Corporate Bonds (Investment Grade)	6.60%
Large-Cap Stocks	11.23%
Mid-Cap Stocks	15.15%
Small-Cap Stocks	25.32%

To determine R, consider the risk of the cash flows that you are discounting.

Investment	Average Annual Return, R
Treasury-Bills (30-Day)	3.49%
Treasury-Notes (10-Year)	5.81%
Corporate Bonds (Investment Grade)	6.60%
Large-Cap Stocks	11.23%
Mid-Cap Stocks	15.15%
Small-Cap Stocks	25.32%

Riskier investment, higher return

USING THE TOOLS: DISCOUNTING

Discounting

Discounting CFs moves them back in time

Copyright © Michael R. Roberts

Discounting

Discounting CFs moves them back in time

Discounting

Discounting CFs moves them back in time

$$CF_2 \times (1+R)^{-2}$$

$$CF_3 \times (1+R)^{-3}$$

$$CF_4 \times (1+R)^{-4}$$

We can add/subtract these CFs because they are in the same time units (date 0)

Copyright © Michael R. Roberts

Present Value

Present value, PV_t(•) of CFs is discounted value of CFs as of t

$$CF_1 \times (1+R)^{-1} = PV_0(CF_1)$$

$$CF_2 \times (1+R)^{-2} = PV_0(CF_2)$$

$$CF_3 \times (1+R)^{-3} = PV_0(CF_3)$$

$$CF_4 \times (1+R)^{-4} = PV_0(CF_4)$$

These are present values of future CFs as of today (period 0)

Example – Savings

How much do you have to save today to withdraw \$100 at the end of each of the next four years if you can earn 5% per annum?

Example – Savings

Step 1: Put cash flows on a time line

Example – Savings

Step 2: Move CFs back in time to today

Copyright © Michael R. Roberts

Step 2: Move CFs back in time to today

Step 3: Add up CFs (all in time 0 units)

Interpretation 1: We need \$354.60 today in an account earning 5% each year so that we can withdraw \$100 at the end of each of the next four years

Interpretation 2: The present value of \$100 received at the end of each of the next four years is \$354.60 when the discount rate is 5%.

Interpretation 3: Today's price for a contract that pays \$100 at the end of each of the next four years is \$354.60 when the discount rate is 5%.

Comment: We are assuming that the discount rate, *R*, is constant over time.

Comment: We are assuming that the discount rate, *R*, is constant over time.

Comment: We are assuming that the discount rate, *R*, is constant over time.

Common assumption but still an assumption

Pre-Withdrawl Post-Withdrawl Year Interest Balance Withdrawal Balance 0 \$354.60

*Activity happens at end of the period

		Pre-		Post-
		Withdrawal		Withdrawal
Year	Interest	Balance	Withdrawal	Balance
0				\$354.60
1	\$17.73	\$372.32		
		=		
	3	354.60 + 17.73		

 PV_0 (\$372.32) = \$372.32 × (1+0.05)⁻¹ = \$354.60

				Post-
		Pre-Withdrawl		Withdrawal
Year	Interest	Balance	Withdrawal	Balance
0				\$354.60
1	\$17.73	\$372.32	\$100.00	

	Pre-Withdrawl			Post-Withdrawl	
Year	Interest	Balance	Withdrawal	Balance	
0				\$354.60	
1	\$17.73	\$372.32	\$100.00	\$272.32	
				=	
				372.32 – 100	

		Pre-		Post-	
		Withdrawal		Withdrawa	
Year	Interest	Balance	Withdrawal	Balance	
0				\$354.60	
1	\$17.73	\$372.32	\$100.00	\$272.32	
2	\$13.62	\$285.94	\$100.00	\$185.94	
3	\$9.30	\$195.24	\$100.00	\$95.24	
4	\$4.76	\$100.00	\$100.00	\$0.00	

Lessons

 Never add/subtract cash flows from different time periods

 Use (i.e., multiply by) discount factor to change cash flows' time units

$$(1+R)^t$$

t < 0 moves CF back in time (discounting)

t > 0 moves CF forward in time (compounding)

Lessons

 Use a time line to help formulate problems

Lessons

- Present value as of time s of a cash flow at time t > s is denoted, PV_s (CF_t)
 - -Tells us the value future cash flows
 - Tells us the price of a claim to those cash flows

Coming up next

Compounding