SOLUTIONS SHEET 1

YANNIS BÄHNI

Exercise 1. For reference, the topology in part a) is the so called *countable complement topology* (see [Lee11, p. 45]) and part b) can be found in [Mun00, p. 169] (of course, I did not take the proof from there).

- a) Let X be an arbitrary set. Clearly $\varnothing, X \in \mathcal{T}$ since $X^c = \varnothing$ is countable. Let $(U_t)_{t \in I}$ be a family of sets in \mathcal{T} . If $U_t = \varnothing$, then $\bigcup_{t \in I} U_\alpha = \varnothing \in \mathcal{T}$. So assume that $U_{t_0} \neq \varnothing$ for some $t_0 \in A$. But then $U_{t_0}^c$ is countable, and so is $(\bigcup_{t \in I} U_t)^c = \bigcap_{t \in I} U_\alpha^c \subseteq U_{t_0}^c$. Lastly, let $U_1, \ldots, U_n \in \mathcal{T}$ for $n \in \mathbb{Z}$, $n \geq 1$. If $U_t = \varnothing$ for some t, then $\bigcap_{t=1}^n U_t = \varnothing$ and thus $\bigcap_{t=1}^n U_t \in \mathcal{T}$. So assume that $U_t \neq \varnothing$ for $t = 1, \ldots, n$. Then $(\bigcap_{t=1}^n U_t)^c = \bigcup_{t=1}^n U_t^c$ which is a finite union of countable sets, which is countable. Hence \mathcal{T} is indeed a topology on X
- b) Assume that there is a family $(A_t)_{t \in I}$ of closed subsets of X having the finite intersection property such that $\cap_{t \in I} A_t = \emptyset$. Then since each A_t is closed and $\bigcup_{t \in I} A_t^c = (\bigcap_{t \in I} A_t)^c = X$ we have that $(A_t^c)_{t \in I}$ is a cover for X. Now for any $J \subseteq I$ finite, the intersection $\bigcap_{t \in J} Aa_t$ is nonempty. This implies, that $\bigcup_{t \in J} A_t^c \neq X$ and thus the cover $(A_t^c)_{t \in I}$ of X does not possess a finite subcover, hence X is not compact.

Conversly, suppose that there exists a cover $(A_t)_{t \in I}$ which does not posses a finite subcover. Thus we have for any $J \subseteq I$ finite, that $\bigcup_{t \in J} A_t \neq X$ or equivalently, $\bigcap_{t \in J} A_t^c \neq \emptyset$. Thus the family $(A_t^c)_{t \in I}$ has the finite intersection property and each A_t^c is closed since A_t is open. But since $(A_t)_{t \in I}$ is a cover for X, we have that $\bigcap_{t \in I} A_t^c = \emptyset$.

Exercise 2.

- a) Clearly, \emptyset , $X \in \mathcal{T}_d$. Let $(U_t)_{t \in I}$ be a family of elements in \mathcal{T}_d and let $x \in \bigcup_{t \in I} U_t$. Then there exists $t \in I$ such that $x \in U_t$. Thus there exists $t \in I$ such that $t \in U_t$. Thus there exists $t \in I$ such that $t \in U_t$. Hence $t \in I$ such that $t \in I$ such that $t \in I$ for $t \in I$ for $t \in I$, and $t \in I$ and $t \in I$. Hence there exist $t \in I$ such that $t \in I$ such that $t \in I$ and so $t \in I$ and so $t \in I$. Thus $t \in I$ is a topology on $t \in I$. Thus $t \in I$ is a topology on $t \in I$.
- b) Define $f:(0,\infty)\to\mathbb{R}$ by f(x):=1/x. Then clearly $d_2=\widetilde{d}_2|_M$, where

$$\widetilde{d}_2: (0,\infty) \times (0,\infty) \xrightarrow{f \times f} f\left((0,\infty)\right) \times f\left((0,\infty)\right) \xrightarrow{|\cdot,\cdot|} \mathbb{R}$$

(Yannis Bähni) University of Zurich, Rämistrasse 71, 8006 Zurich *E-mail address*: yannis.baehni@uzh.ch.

and

$$d_1: M \times M \xrightarrow{f \times f} f(M) \times f(M) \xrightarrow{\widetilde{d_2}} \mathbb{R}.$$

By [Lee11, p. 62] $f \times f$ is continuous and by [Eng89, p. 260] $|\cdot, \cdot|$ and \widetilde{d}_2 are continuous. Since two metrics induce the same topology if and only if they induce the same convergence (see [Eng89, p. 250]), we let $x \in M$ and $(x_n)_{n \in \mathbb{N}}$ be a sequence in M. Assume that $x_n \stackrel{d_1}{\longrightarrow} x$. Then

$$d_2(x, x_n) = d_1(f(x), f(x_n)) \to d_1(f(x), f(x)) = 0$$

and

$$d_1(x, x_n) = d_2(f(x), f(x_n)) \to d_2(f(x), f(x)) = 0$$

by [Eng89, p. 260].

Now consider the sequence $(n)_{n\in\mathbb{N}}$ in M. Clearly, it is a Cauchy sequence since $(1/n)_{n\in\mathbb{N}}$ is a Cauchy sequence regarding the standard Euclidean metric and it cannot converge, since then it would also converge with respect to d_1 which is not the case. The completeness of (M, d_1) directly follows from the fact that a closed subspace of a complete metric space is complete.

References

- [Eng89] Ryszard Engelking. *General Topology*. Revised and completed edition. Heldermann Verlag, 1989.
- [Lee11] John M. Lee. *Introduction to Topological Manifolds*. Second Edition. Springer Science+Business Media, 2011.
- [Mun00] James R. Munkres. *Topology*. Second edition. Prentice Hall, 2000.