Chapitre 20: Fractions rationnelles

Dans tout ce chapitre, on fixe un corps *K* des scalaires.

1 Généralités

Corps K(X)

Définition 1.1. Le corps K(X) des fractions rationnelles est le corps des fractions de l'anneau intègre K[X], K(X) = Frac K[X]

Définition 1.2. Soit $P, Q \in K[X]$, où $Q \neq 0$.

- * Si $P \perp Q$, on dit que la fraction rationnelle $\frac{P}{Q}$ est sous forme irréductible.
- * Si $P \perp Q$ et que Q est unitaire, la fraction rationnelle est dite sous forme irréductible unitaire.

Proposition 1.3. Si $F = \frac{P}{O}$ est sous forme irréductible, alors les autres formes de la fraction sont les $\frac{PD}{OD}$, où $D \in K[X]$

Définition 1.4. Soit $F = \frac{P}{Q} \in K(X)$. On définit son $\underline{\operatorname{degr\'e}} \operatorname{deg} F = \operatorname{deg} P - \operatorname{deg} Q \in \mathbb{Z} \cup \{-\infty\}$

Proposition 1.5. Soit $F_1, F_2 \in K(X)$

- * On a deg $(F_1 + F_2) \le \max(\deg F_1, \deg F_2)$
- * On a deg $(F_1F_2) = \deg F_1 + \deg F_2$

1.2 Racines et pôles

Définition 1.6. Soit $F = \frac{P}{Q} \in K(X)$ sous forme irréductible.

- * Une racine de *F* est une racine de *P*.
- * Une pôle de F est une racine de Q.

Définition 1.7. Soit $F = \frac{P}{Q} \in K$ sous forme irréductible dont les pôles forment l'ensemble Pôles(F). Alors la <u>fonction rationnelle associée</u> à F est : $\begin{cases} K \setminus \text{Pôles}(F) \to K \\ z \to \frac{P(z)}{O(z)} \end{cases}$

Proposition 1.8 (Ctirère radical de nullité). Une fraction rationnelle possédant une infinité de racines est nulle.

Corollaire 1.9. Si les fonctions rationnelles associées à F_1 et $F_2 \in K(X)$ coïncident sur un ensemble infini, alors $F_1 = F_2$

1.3 Autres opérations

On peut définir la dérivée d'une fonction rationnelle $F = \frac{P}{O} \in K(X)$ en posant : $F' = \frac{P'Q - PQ'}{O^2}$

Proposition 1.10. Si $G = \frac{P}{Q}$ et $F \in K(X)$ sont deux fractions rationnelles, on peut "évaluer" P et Q en F. Par exemple, si $Q = \sum_{k=0}^{n} q_k X^k$, on a $Q(F) = \sum_{k=0}^{n} q_k F^k \in K(X)$. Dès que $Q(F) \neq 0$, on peut considérer la composition

$$G \circ F = G(F) = \frac{P(F)}{Q(F)} \in K(X)$$

1

1.4 Partie entière

Proposition 1.11. Soit $F \in K(X)$.

Il existe un unique couple $(E, F_0) \in K[X] \times K(X)$ tel que : $\begin{cases} F = E + F_0 \\ \deg F_0 < 0 \end{cases}$

On dit que le polynôme *E* est la partie entière de *F*.

Décomposition en éléments simples 2

2.1 Le résultat

Théorème 2.1. Soit $F = \frac{P}{Q} \in K(X)$ sous forme irréductible unitaire. Soit $Q = Q_1^{\alpha_1}...Q_r^{\alpha_r}$ la décomposition en facteurs irréductibles de Q.

Il existe alors un unique $E \in K[X]$ et une unique famille $(R_{i,j})_{\substack{1 \leq i \leq r \\ 1 \leq j \leq \alpha_i}}$ de polynômes telles que

 $\forall i \in [1, \alpha_i], \deg R_{ij} < \deg Q_i$ et

$$F = E + \sum_{i=1}^{r} \sum_{j=1}^{\alpha_i} \frac{R_{ij}}{Q_i^j}$$

Cette écriture est la décomposition en éléments simples de *F*.

Corollaire 2.2 (DES sur C). Soit $F = \frac{P}{O} \in \mathbb{C}(X)$ sous forme irréductible unitaire et

$$Q = \prod_{i=1}^{r} (X - z_i)^{\alpha_i}$$

la DFI de Q.

Alors il existe un unique $E \in K[X]$ et une unique famille de complexes $(\lambda_{i,j})_{\substack{1 \le i \le r \\ 1 \le j \le \alpha_i}}$ telle que

$$F = E + \sum_{i=1}^{r} \sum_{j=1}^{\alpha_i} \frac{\lambda_{i,j}}{(X - z_i)^j}$$

Corollaire 2.3 (DES sur \mathbb{R}). Soit $F = \frac{P}{Q} \in \mathbb{R}(X)$ sous forme irréductible et $Q = \prod_{i=1}^{r} (X - t_i)^{\alpha_i} \prod_{k=1}^{s} Q_k^{\beta_k}$ la DFI de Q, où t_1 , ..., t_r sont les racines réelles de Q et Q_1 , ..., Q_s sont ses facteurs irréductibles de degré 2. Alors il existe:

- * Un unique $E \in K[X]$
- * Une unique famille de réels $(\lambda_{i,j})_{\substack{1 \leq i \leq r \\ 1 \leq j \leq \alpha_i}}$ * d'uniques familles $(\mu_{k,j})_{\substack{1 \leq k \leq s \\ 1 \leq j \leq \beta_k}}$ et $(\nu_{k,j})_{\substack{1 \leq k \leq s \\ 1 \leq j \leq \beta_k}}$

telles que

$$F = E + \sum_{i=1}^{r} \sum_{j=1}^{\alpha_i} \frac{\lambda_{i,j}}{(X - z_i)^j} + \sum_{k=1}^{s} \sum_{j=1}^{\beta_k} \frac{\mu_{k,j} X + \nu_{k,j}}{Q_k^j}$$

Techniques de calcul

Proposition 2.4. Soit $F = \frac{P}{O}$ sous forme irréductible et $z \in K$ un pôle simple de F, càd une racine simple de Q. On écrit $Q = (X - z)Q_0$

La partie polaire associée au pôle z est $\frac{\lambda}{X-z}$, où

$$\lambda = \frac{P(z)}{Q_0(z)} = \frac{P(z)}{Q'(z)}$$

Proposition 2.5. Si $F = \frac{p}{Q}$ (forme irréductible unitaire) et que z est un pôle d'ordre α , on écrit $Q = (X - z)^{\alpha}Q_0$ La partie polaire associée au pôle z est $\sum_{i=1}^{\alpha} \frac{\lambda_j}{(X-z)^j}$, où

$$\lambda_{\alpha} = \frac{P(z)}{Q_0(z)} = \frac{\alpha! P(z)}{Q^{(\alpha)}(z)}$$

2.3 Applications

Proposition 2.6. Soit
$$P \in K[X]$$
 scindé : $P = u \prod_{i=1}^{n} (X - z_i)^{\alpha_i}$ Alors

$$\frac{P'}{P} = \sum_{i=1}^{n} \frac{\alpha_i}{X - z_i}$$

Corollaire 2.7 (Théorème de Gauss-Lucas). Soit $P \in \mathbb{C}$ non constant. Alors les racines de P' sont <u>combinaisons</u> convexes de racines de P.