Maths - Modular Arithmetic

7.

Modulo

Agenda

- Modular Operator
- Modular Arithmetics
- Divisibility Rules
- Problems

Revision

Modulo Operator /. -> Remainder

Quiz 1 150 % 11

= EYI - 021

Quiz 2 100 % 7

100 - 97 =

Quiz 3 Pick the largest -76, -35, -43, -42

Quiz 4

-40 % 7

35 < -40? No

-80 % 9

Rem =
$$-80 - \frac{2}{9}$$
 greatest wiltiple 3

Quiz 5

-60 % 9

Rem =
$$-60 - 2$$
 greatest multiple 2

$$= -60 + 63$$

Java =
$$-6$$

 $2+9$
Hython = 3

Range

(-0,00)

N 7.10 1

Min = 0 Max = 9 \Rightarrow 0 9

Range

N= 100

100%10 > 0

N= 99

99%10 -> 9

N % 6

Min = 0

Max = 5

Range

 $\begin{bmatrix} 0 \\ 5 \end{bmatrix}$

NY. M

Min = 0

Max = M-1

Range [M-1]

Why modulo?

Modulo operator allows us to get the result in a specific range.

Usecases

- 1) Dave to Dream \rightarrow Consistent $\frac{long}{p \times 10^{18}}$ to
- 2) Harhmaps / Dictionary

 Washing
- 3) Cryptography
- 4) Sharding in OBMS

Modular Arithmetic

$$(a + b) % M = (a \% M + b \% M) \% M$$

Quiz 6 Range = [O, M-]

Example

Example

$$a = 6$$

$$M = 7$$

$$(a * b) % M = (a y.H * b y.H) % M$$
Range = [0, M-1]

Example

$$a=6 \qquad LHS = (6*7) \% 4 = 42\%4$$

$$b=7 \qquad = 2$$

$$RHS = (6\%4 + 7\%4) \% 4$$

$$= (2 * 3) \% 4$$

$$= 6 \% 4$$

$$= 2$$

Covered in the Advanced Batch

Problems

Q1. Given a, n, p. Compute a Np.

Note: No inbuilt functions allowed

Example

power(int a, int n, int p) {

}

How to handle the overflow problem?

p = 30

power(int a, int n, int p) {

ans 1.p = (a * a * a * a * a * a * *a) 1.p

Dry Run

$$a, n=5, p, ans=1$$

i	ans = (ans * a) % p	ans
1	ans: (1 * a) %.p	a y.p
2	ans = (a//p *a) /.p	α21.β
3	ans = (a2 1/1) *a) 1/1	a 3 7.p
Ч	ans = (a3 1.p *a) 1/p	a4 y-p
5	ans = (a4x, xa) /4	a >1.p

ans =
$$(a^{\gamma}, p \times a)^{\gamma}, p$$

= $(a^{\gamma}, p \times a^{\gamma}, p) \times p$
= $(a^{\gamma}, p \times a^{\gamma}, p) \times p$
= $(a^{\gamma}, p \times a^{\gamma}, p) \times p$

Divisible by 3

Quiz 7 Which of these numbers is divisible by 3?

$$\frac{4351}{13}$$
, $\frac{3521}{11}$, $\frac{7326}{18}$, $\frac{8236}{19}$

Why does this work?

Property:

$$(a * b) % m = (a%m * b%m) % m$$

 $(a + b) % m = (a%m + b%m) % m$

$$3458 = 3\times10^{3} + 4\times10^{2} + 3\times10^{6} + 8\times10^{6}$$

$$3458\times3 = 3\times10^{3} + 4\times10^{2} + 3\times10^{6} + 8\times10^{6}$$

$$= (3\times10^{3})\times3 + (4\times10^{2})\times3 + (3\times10^{6})\times3$$

$$= (3\times10^{3})\times3 + (4\times10^{2})\times3 + (3\times10^{6})\times3$$

$$= (3\times10^{3})\times3 + (4\times10^{2})\times3 + (3\times10^{6})\times3$$

$$= (3\times10^{3})\times3 + (3\times10^{2})\times3$$

$$= (3\times10^{3})\times3$$

$$= (3\times10$$

Divisible by 4

Last two digits are divisibles
by 4.

Ouiz 8

$$3294 = 3x10^3 + 2x10^4 + 9x10^1 + 4x10^8$$

$$= \frac{(3x10^{3})}{4} + \frac{(2x10^{2})}{4} + \frac{(9x10^{1})}{4}$$

$$= (0) + (0) + (0) / 4 + (4 \times 10) / 4$$

$$(3\times10^{3})$$
 $\times4$ = (3×4) × (3^{3}) $\times4$

Q. Given 1 number in arr[N], calculate number % p.

78962

Concraints

= 10 -1

$$\chi = 1\%$$
 $\chi = 1\%$
 $\chi = (\chi \times 10)\%$
 $\chi = 10\%$
 $\chi = (\chi \times 10)\%$
 $\chi = 10^{2}\%$
 $\chi = (\chi \times 10)\%$
 $\chi = 10^{3}\%$

Cusing power equation

Cans = (ans **a) % p

Put a=10

ans = x

Pseudocode

Doubts

Thank Competitive You -> Probability > Permutation / Combination - Motrices -> Inequality Already covered -> Logarithm -> Prime Siere - Advanced > Dota structures 2 olgorithms Thank Good Night

Monday