Смежные паросочетанию задачи и их решение для двудольных графов. Задачи для практики

 Π одготовил Cивухин Hикита. Π о вопросам пишите на почту sivukhin.work+teach@gmail.com

- 1. Покажите, что граф G=(V,E) является двудольным тогда и только тогда, когда $\alpha(H)\geq \frac{1}{2}|H|$ для любого подмножества вершин $H\subseteq V$.
- 2. (I) Обозначим за Δ максимальную степень вершины в графе G=(V,E). Покажите, что в любом двудольном графе существует паросочетание размера не менее $\frac{|E|}{\Delta}$
- 3. (I) Для двудольного графа G = (X, Y, E) постройте алгоритм нахождения множества $S \subseteq X$ такого, что H(S) = |S| |N(S)| максимально, где N(S) это множество всех соседей вершин из S. Чему равно максимальное значение H(S) для графа G?
- 4. (I) Постройте алгоритм классификации вершин (A принадлежит всем наименьшим вершинными покрытиям, N не принадлежит ни одному наименьшему вершинному покрытию, E иначе) в двудольном графе G = (X, Y, E) при заданном наибольшем паросочетании M за время O(V + E).
- 5. Постройте граф с максимально возможным отношением $\frac{\tau(G)}{\nu(G)} = \alpha$. Чему равно α ?
- 6. Таблица $n \times n$ заполнена **неотрицательными** числами так, что сумма в каждой строке и каждом столбце равна 1 (иными словами, таблица задает дважды стохастическую матрицу). Докажите, что можно выбрать n ячеет с **положительными** числами так, чтобы в каждой строке и в каждой колонке будет выбрано ровно одна ячейка

0.2	0.5	0.3	0
0.1	0.5	0	0.4
0	0	0.4	0.6
0.7	0	0.3	0

7. Докажите, что любую дважды стохастическую матрицу Q можно представить в виде суммы $Q=c_1P_1+c_2P_2+\cdots+c_kP_k$, где P_i — некоторая матрица перестановки, т.е. бинарная (0/1) матрица где в каждой строке и в каждом столбце находится ровно один единичный элемент.