Poisson process

Lemma

Definition $1 \implies Definition 2$

Proof on board.

Lemma

Definition $2 \implies Definition 1$

Self Study: Refer Sheldon Ross, Stochastic processes, Theorem 2.1.1

Poisson Processes Definition 3

A ctsp $\{N(t), t \geq 0\}$ is a Poisson process with rate $\lambda > 0$ if

- N(0) = 0
- N(t) is a counting process with stationary and independent increments
- ▶ X_i , the time interval between i-1th and ith event is exponentially distributed with parameter λ .

Lemma

Definition $1/2 \implies Definition 3$

Proof:

▶ What is $P(X_1 > t) = ?$

$$P(X_1 > t) = P(N(0, t) = 0) = e^{-\lambda t}$$

- ► This implies $F_{X_1}(t) = P(X_1 \le t) = 1 e^{-\lambda t}$ and hence X_1 has exponential distribution.
- What is $P(X_2 > t | X_1 = s)$?

$$P(X_2 > t | X_1 = s) = P(N(s, t + s] = 0 | X_1 = s)$$

= $P(N(s, t + s] = 0)$ (indep. increments)
= $e^{-\lambda t}$ (stat. increments)

▶ This implies X_2 is exponential.Repeating the arguments yields the lemma.

Definition $3 \implies \text{Definition } 1$

Lemma

i.i.d exponential interarrival time implies N(0, t) has Poisson distribution with rate λt .

- Let $S_0 = 0$ and $S_n = \sum_{i=1}^n X_i$
- ▶ If $S_n = t$, we say that the nth renewal happened at time t.

More on $F_{S_n}(t)$

$$F_{S_n}(t) = \int_0^t \lambda \left[\frac{(\lambda x)^{n-1} e^{-\lambda x}}{n-1!} \right] dx$$

▶ Integration by parts $(u(x) = e^{-\lambda x}, v'(x) = \lambda \left[\frac{(\lambda x)^{n-1}}{n-1!}\right])$

$$\int_a^b u(x)v'(x)dx = [u(x)v(x)]_a^b - \int_a^b u'(x)v(x)dx$$

$$F_{S_n}(t) = \left[\frac{(\lambda x)^n e^{-\lambda x}}{n!} \right]_0^t - \int_0^t \left[\frac{-\lambda e^{-\lambda x} (\lambda x)^n}{n!} \right] dx$$

$$F_{S_n}(t) = \frac{(\lambda t)^n e^{-\lambda t}}{n!} + F_{S_{n+1}}(t)$$

$$F_{S_n}(t) - F_{S_{n+1}}(t) = \frac{(\lambda t)^n e^{-\lambda t}}{n!}$$

Relation between S_n and N(t)

$$N(t) = \sup\{n : S_n \le t\}$$

$$N(t) \ge n \Leftrightarrow S_n \le t$$

- $P\{N(t) \ge n\} = P\{S_n \le t\}$
- ► $P{N(t) = n} = P{N(t) \ge n} P{N(t) \ge n + 1}.$
- ▶ $P{N(t) = n} = P{S_n \le t} P{S_{n+1} \le t}.$
- $ightharpoonup P\{N(t)=n\}=Poisson(\lambda t).$

Lemma

Exponential interarrival times imply N(t) has Poisson distribution with rate λt

Properties of Poisson Process (Self Study)

Merging: Merging two independent Poisson processes with rate λ_1 and λ_2 leads to a Poisson process with rate $\lambda_1 + \lambda_2$.

Splitting: If you label each event point of a $\operatorname{Poisson}(\lambda)$ process as type A or type B with probability p or 1-p respectively, then Events of type A form a $\operatorname{Poisson}(p\lambda)$ process. Similarly Events of type B form a $\operatorname{Poisson}((1-p)\lambda)$ process.

Conditional distribution of Arrival times

Lemma

Given that 1 event of $P.P.(\lambda)$ has happened by time t, it is equally likely to have happened anywhere in [0,t] i.e.,

$$P\{X_1 < s | N(t) = 1\} = \frac{s}{t}.$$

Proof.

$$\begin{split} P\{X_1 < s | \textit{N}(t) = 1\} &= \frac{P\{X_1 < s, \textit{N}(t) = 1\}}{P(\textit{N}(t) = 1)} \\ &= \frac{P\{\textit{N}[0, s) = 1, \textit{N}[s, t] = 0\}}{P(\textit{N}(t) = 1)} \\ &= \frac{P\{\textit{N}[0, s) = 1\}P\{\textit{N}[s, t] = 0\}}{P(\textit{N}(t) = 1)} \\ &= \frac{\lambda s e^{-\lambda s} e^{-\lambda (t - s)}}{\lambda t e^{-\lambda t}} = \frac{s}{t} \end{split}$$

Conditional distribution of Arrival times

Doubt

Theorem 2.3.1 from Sheldon Ross

Lemma

Given that N(t) = n, the joint distribution of the arrival times of these n jobs is $\frac{n!}{t^n}$.

Proof: Self Study