Föreläsning 1 - Hållfasthetslära

Grundläggande begrepp, enklare tillämpningar Kap. 1-3

Enaxliga tillstånd, stänger

En stång belastas i axiell riktning (inga transversella krafter)

Snitt:

Jämvikt:

$$N = P$$
 $N = -P$

N>0 => Dragkraft, N<0 => Tryckkraft

Normalspänning, σ

Påkänningen i materialet p.g.a. den pålagda kraften P beror på tvärsnittsarean A.

- Normalspänningen, σ [N/mm², MPa], används för att beskriva påkänningen i materialet.
 - Inre kraften N fördelad jämt över tvärsnittsarean A:

$$\sigma = \frac{N}{A}$$

Dragspänning: $\sigma = \frac{1}{4}$

$$\sigma = \frac{P}{A}$$

$$\sigma > 0 \rightarrow \text{Dragspänning}$$

Tryckspänning: $\sigma = -\frac{1}{4}$

$$\sigma = -\frac{P}{A}$$

$$\sigma < 0 \rightarrow \text{Tryckspänning}$$

Deformation av axialbelastad stång

- Vid belastning av stången kommer den att förlängas en sträcka, δ.
 - δ, förlängningen [mm]
 - *δ>0* då längden ökar
 - δ beror på längden L_o

• Töjning, ε, är ett längdoberoende mått på deformationen

$$\varepsilon = \frac{\delta}{L_0}$$
 (Dimensionslöst)

Materialbeskrivning, Hookes lag

- Reltionen mellan spänning och töjning bestäms av ett materialsamband
 - Tas fram genom dragprov
 - Video dragprov

Dragprovdata:

■ *E*: E-modul [GPa]

■ R_{eL} (σ_s): Sträckgräns [MPa]

■ $R_m(\sigma_b)$: Brottgräns [MPa]

Materialbeskrivning, Hookes lag

Spännings-töjningsdiagram för olika material

■ För det linjära området (elastiska) gäller Hookes lag (materialsamband, konstitutivt samband):

$$\sigma = E \cdot \varepsilon$$

■ E-modul för stål: 210 GPa, för aluminium: 70 GPa

Samband för axialbelastad stång

$$\sigma = \frac{N}{A}$$

$$N = P$$

$$\varepsilon = \frac{\delta}{L}$$

4. Konstitutivt samband:

$$\sigma = E \cdot \varepsilon$$

$$\frac{P}{\delta} = \frac{EA}{L}$$

 $\frac{EA}{L}$: Stångens fjäderstyvhe

Exempel 1

En stång belastas axiellt av en kraft *P*. Stången är 1 m lång och har en tvärsnittsarea på 10 mm². Materialets E-modul är 100 GPa och sträckgränsen är 100 MPa.

- a) Vid vilken last deformeras stången plastiskt?
- b) Vad blir förlängningen i fall a)?

Förskjutning, deformation

Förskjutning av en stång

- *u*, förskjutning [mm]
- $\delta = u_2 u_1$

Deformation (förlängning) [mm]

• $u_1 = u_2 = \delta = 0$

Stelkroppsrörelse

■ $u_1 \neq u_2 => \delta \neq 0$

Deformation

Vid konstant töjning gäller:

$$\varepsilon = \frac{\delta}{L}$$

(A, E, F -konstant)

Töjning i en punkt

- Då töjningen varierar i stången behövs ett annat samband
- Tas fram genom att studera töjningen i en punkt:

$$\varepsilon = \frac{du(x)}{dx} \qquad (\text{F.S 2.2})$$

• u(x), tvärsnittets förskjutning i punkten x.

Hookes lag, tvärkontraktion

 När stången dras ut i en riktning drar den ihop sig i andra riktningen (tvärkontraktion)

- v, Poissons tal (tvärkontraktionstalet)
- För metaller: v ≈ 0.3

Exempel 2

En cirkulär stång med radien, R, är utsatt för gravitation.

- Bestäm spänningen i stången, $\sigma(x)$
- Bestäm förlängningen, δ

Allmänna jämviktsekvationen för axialbelastad stång

■ Betrakta en stång med längden L och varierande tvärsnitt A(x) belastad med en volymskraft K_x [N/mm³] i axiell led. Studera jämvikten för ett litet utskuret element vid koordinaten x.

$$\frac{d}{dx}\left(EA\frac{du}{dx}\right) + K_x \cdot A = 0$$
 (F.S 3.1)

Exempel 3

En cirkulär stång med radien, R, är utsatt för gravitation.

- Bestäm spänningen i stången, $\sigma(x)$
- Bestäm förlängningen, δ

Lös med hjälp av allmänna jämviktskvationen

