

2016 VCAA Specialist Mathematics Sample Exam 1 (v2 April) Solutions © 2016 itute.com

Q1a Let $z = \sqrt{5} - i$, $(\sqrt{5} - i)^3 - (\sqrt{5} - i)(\sqrt{5} - i)^2 + 4(\sqrt{5} - i) - 4(\sqrt{5} - i) = 0$

 $\therefore \sqrt{5} - i$ is a solution.

Q1b $z^3 - (\sqrt{5} - i)z^2 + 4z - 4(\sqrt{5} - i) = (z - (\sqrt{5} - i))(z^2 + 4) = 0$

 $z^2 + 4 = 0$, $z = \pm 2i$ are the other solutions.

Q2 $3x^2 + 2xy + y^2 = 11$ and y > 0 (in the first quadrant) At $x = 1, -8 + 2y + y^2 = 0$, .: y = 2

Implicit differentiation: $\frac{d}{dx}(3x^2 + 2xy + y^2) = 0$,

 $6x + 2x\frac{dy}{dx} + 2y + 2y\frac{dy}{dx} = 0$, $\frac{dy}{dx} = -\frac{3x + y}{x + y}$

At (1, 2), $\frac{dy}{dx} = -\frac{5}{3}$, .: gradient of the normal $=\frac{3}{5}$

: equation of the normal: $y-2 = \frac{3}{5}(x-1)$, 3x-5y+7 = 0

Q3a
$$\overline{X+Y} = \overline{X} + \overline{Y} = 240 + 10 = 250 \text{ mL}$$

 $Var(X+Y) = Var(X) + Var(Y) = 8^2 + 2^2 = 68 \text{ (mL)}^2$

Q3bi Null hypothesis: The second machine is, on average, dispensing **not** less coffee than the first.

Alternative hypothesis: The second machine is, on average, dispensing less coffee than the first.

Q3bii
$$a = \frac{235 - 240}{8} = -0.625$$
, $p = \Pr(Z \le -0.625) \approx 0.266$

Since p > 0.05, the null hypothesis should not be rejected at the 0.05 level of significance.

Q4a
$$V = \int_0^a \pi (e^{-x})^2 dx = \int_0^a \pi e^{-2x} dx$$

Q4b
$$V(a) = \pi \left[\frac{e^{-2x}}{-2} \right]_0^a = \pi \left(\frac{1 - e^{-2a}}{2} \right)$$

Q4c
$$\pi \left(\frac{1 - e^{-2a}}{2} \right) = \frac{5\pi}{18}$$
, $9 - 9e^{-2a} = 5$, $e^{-2a} = \frac{4}{9}$, $e^{2a} = \frac{9}{4}$,

$$e^a = \frac{3}{2}, \ a = \log_e \left(\frac{3}{2}\right)$$

Q5a

$$\frac{T_2}{T_1} = \tan 30$$
, .: $T_2 = \frac{T_1}{\sqrt{3}}$

http://www.learning-with-meaning.com/

Q5b
$$\frac{T_2}{mg} = \sin 30$$
, let $T_2 = 98$

 $m = \frac{2 \times 98}{9.8} = 20$ is the maximum value.

Q6 $\int_{\frac{3\pi}{2}}^{3\pi} \cos^{2}(2x)\sin(2x)dx = \int_{\frac{\pi}{2}}^{\frac{3\pi}{4}} -\frac{1}{2}u^{2}\frac{du}{dx}dx$ $u = \cos(2x)$ $\frac{du}{dx} = -2\sin(2x)$ $= \int_{-1}^{0} -\frac{1}{2}u^{2}du = \left[-\frac{u^{3}}{6}\right]_{-1}^{0} = -\frac{1}{6}$ $-\frac{1}{2} \times \frac{du}{dx} = \sin(2x)$

Q7
$$\frac{dy}{dx} = \frac{y}{x^2}$$
, $\int \frac{1}{y} dy = \int \frac{1}{x^2} dx$, $\log_e |y| = -\frac{1}{x} + c$

Given
$$x=1$$
, $y=-1$, $\log_e \left|-1\right| = -\frac{1}{1} + c$, $c=1$

:
$$\log_e |y| = 1 - \frac{1}{x}$$
, $|y| = e^{\left(1 - \frac{1}{x}\right)}$, $y = \pm e^{\left(1 - \frac{1}{x}\right)}$

Q8a Arc length

$$= \int_{0}^{\pi} \sqrt{\left(\frac{dx}{d\theta}\right)^{2} + \left(\frac{dy}{d\theta}\right)^{2}} \ d\theta = \int_{0}^{\pi} \sqrt{\left(-2\sin(2\theta)\right)^{2} + \left(2\cos(2\theta)\right)^{2}} \ d\theta$$

Q8b Arc length =
$$2\int_{0}^{\pi} \sqrt{\sin^{2}(2\theta) + \cos^{2}(2\theta)} d\theta = 2\int_{0}^{\pi} d\theta = 2\pi$$

Q9a
$$\tilde{b} = \tilde{i} + 2\tilde{j} + m\tilde{k}$$
, $|\tilde{b}| = \sqrt{1^2 + 2^2 + m^2} = 2\sqrt{3}$

$$m^2 + 5 = 12, m = \pm \sqrt{7}$$

Q9b
$$\tilde{a}.\tilde{b} = 0$$
, $1 - 2 + 2m = 0$, $m = \frac{1}{2}$

O9ci
$$3\tilde{c} - \tilde{a} = 2\tilde{i} + 4\tilde{i} - 5\tilde{k}$$

Q9cii Since
$$3\tilde{c} - \tilde{a} = 2\tilde{i} + 4\tilde{j} - 5\tilde{k}$$
 .: $3\tilde{c} - \tilde{a} = 2\tilde{b}$ if $m = -\frac{5}{2}$

.: \tilde{a} , \tilde{b} and \tilde{c} are linearly dependent if $m = -\frac{5}{2}$

Q10a
$$\frac{1}{x^2} + \frac{3}{x} + \frac{2x-1}{x^2+4} = \frac{(x^2+4)+3x(x^2+4)+x^2(2x-1)}{x^2(x^2+4)}$$

= $\frac{5x^3+12x+4}{x^2(x^2+4)}$

Q10b
$$\int \frac{5x^3 + 12x + 4}{x^2(x^2 + 4)} dx = \int \frac{1}{x^2} + \frac{3}{x} + \frac{2x - 1}{x^2 + 4} dx$$
$$= \int \frac{1}{x^2} + \frac{3}{x} + \frac{2x}{x^2 + 4} - \frac{1}{x^2 + 4} dx$$
$$= -\frac{1}{x} + 3\log_e|x| + \log_e(x^2 + 4) - \tan^{-1}\left(\frac{x}{2}\right)$$
$$= -\frac{1}{x} + \log_e|x^3|(x^2 + 4) - \tan^{-1}\left(\frac{x}{2}\right)$$

Please inform mathline@itute.com re conceptual, mathematical and/or typing errors