Université libre de Bruxelles Autumn 2021

Mock Exam in Differential Geometry I

13th November 2021

Last name:											
First name:											
Please notice the following:											
♦ You may bring only a pen and a bottle of water (a drink) to the exam.											
♦ Please do not bring paper to the exam.											
♦ Please begin only after an invitation!											
Please fill in only above this line!											
1–10	11–20	21	22	23	24	25	26	Σ			
				1	II	1		1			

Mark:

Part A

Please write your answers in this part directly below each problem.
Problem 1 (1P). Formulate the definition of a topological manifold.
Problem 2 (1P). Formulate the definition of a smooth atlas on a topological manifold.
Problem 3 (1P). Formulate the definition of a smooth map between two smooth manifolds.

Problem 4 ((1P).	Complete	the fol	lowing	definition:
-------------	-------	----------	---------	--------	-------------

A smooth map $f: M \to N$ is said to be a diffeomorphism, if the following holds:

Problem 5 (1P). Complete the following definition:

A point $m \in M$ is said to be a critical point of a map $f \colon M \to N$, if . . .

Problem 6 (1P). Complete the following definition:

A point $n \in N$ is said to be a regular value of a map $f \colon M \to N$, if . . .

The tangent space of a manifold M at a point m consists of classes $[\gamma]$ of smooth curves in M through m, where

 $\gamma_1 \sim \gamma_2 \quad \Longleftrightarrow \quad$

Problem 8 (1P). Define the notion of a derivation on a smooth manifold M at a point m.

Problem 9 (1P). Formulate the theorem about preimages of regular values.

Problem 10 (1P). Formulate Whitney's embedding theorem.

Part B

In this part choose one answer from the list provided. You do not need to provide a solution or justification.

Problem 14 (1P). For a fixed point $m \in M$, the map $d: C^{\infty}(M) \to \mathbb{R}$, d(f) = f(m) is...

- [] a derivation.
- [] is not a derivation, since d is non-linear over \mathbb{R} .
- [] is not a derivation, since there exist some $f,g \in C^{\infty}$ such that $d(fg) \neq d(f) \cdot d(g)$.
- [] not a derivation for a reason not listed above.

Problem 15 (1P). The subset $M := \{(x, \sin \frac{1}{x}) \mid x > 0\} \subset \mathbb{R}^2$ is...

- [] a submanifold.
- [] not a submanifold, since M is non-compact.
- [] not a submanifold, since M does not admit adapted charts.
- [] not a submanifold for a reason not listed above.

The real exam will contain \sim 5 more multiple choice problems in this part totaling to approximately 10 problems.

Part C

Please write your solutions to the problems in Parts C and D on the blank sheets provided.

Problem 21 (10P). Construct a smooth atlas on \mathbb{RP}^2 .

Problem 22 (10P). Define $F: \mathbb{R}^3 \to \mathbb{R}$ by F(x, y, z) = x + y + z. Determine all critical points of $f: M \to \mathbb{R}$, where

$$M := \left\{ (x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 = z^2 + 1 \right\} \qquad \text{and} \qquad f = F \big|_M.$$

Problem 23 (10P). Let (U, φ) be a chart on a smooth manifold M, where $\varphi = (x_1, \dots, x_k)$. Show that for each $m \in U$ the k-tuple

$$(\partial_1(m), \dots, \partial_k(m))$$
 with $\partial_j(m)f = \frac{\partial}{\partial x_j}\Big|_{x=\varphi(m)} (f \circ \varphi^{-1}(x))$

is a basis of $Der_m M \cong T_m M$.

Part D

Problem 24 (10P). Let $\mathcal{U} = \{(U_{\alpha}, \varphi_a) \mid \alpha \in A\}$ be an atlas on a topological manifold M. Show that $V \subset M$ is open if an only if $\varphi_{\alpha}(V \cap U_{\alpha}) \subset \mathbb{R}^k$ is open.

Problem 25 (3+3+4 P). Show that each of the following maps is a diffeomorphism:

(i)
$$f: S^3 \to SU(2), \qquad f(z_1, z_2) = \begin{pmatrix} z_1 & z_2 \\ -\bar{z}_2 & \bar{z}_1 \end{pmatrix}.$$

(ii)
$$g \colon \mathcal{O}(n) \to \mathcal{O}(n), \qquad g(A) = A^{-1}.$$

(iii)
$$h \colon \mathrm{SL}(n) \to \mathrm{SL}(n), \qquad h(A) = A^{-1}.$$

Problem 26 (10P). Show that the image of the map

$$f: S^2 \to \mathbb{R}^6$$
, $f(x, y, z) = (x^2, y^2, z^2, \sqrt{2}yz, \sqrt{2}zx, \sqrt{2}xy)$

is a submanifold diffeomorphic to \mathbb{RP}^2 .