补充材料1: 卷积与图像去噪

鲁鹏 北京邮电大学 计算机学院 智能科学与技术中心

补充1: 卷积与图像去噪

- 图像去噪与卷积
- 高斯卷积核
- 图像噪声与中值滤波器

补充1: 卷积与图像去噪

- 图像去噪与卷积
- 高斯卷积核
- 图像噪声与中值滤波器

2020/4/21

北京邮电大学计算机学院 鲁鹏

2

噪声图像

噪声图像

2020/4/21

北京邮电大学计算机学院 鲁鹏

噪声图像

噪声图像

2020/4/21

北京邮电大学计算机学院 鲁鹏

4

图像去噪

去噪前

2020/4/21

北京邮电大学计算机学院 鲁鹏

图像去噪

2020/4/21

北京邮电大学计算机学院 鲁鹏

6

图像去噪

2020/4/21

北京邮电大学计算机学院 鲁鹏

卷积核

卷积核

2020/4/21

北京邮电大学计算机学院 鲁鹏

8

卷积的定义

卷积后图像

输入图像

2020/4/21

北京邮电大学计算机学院 鲁鹏

卷积的定义

令F为图像,H为卷积核,F与H的卷积记为R = F * H

$$R_{ij} = \sum_{u,v} H_{i-u,j-v} F_{u,v}$$

2020/4/21

北京邮电大学计算机学院 鲁鹏

10

卷积的定义

令F为图像,H为卷积核,F与H的卷积记为R = F * H

$$R_{ij} = \sum_{u,v} H_{i-u,j-v} F_{u,v}$$

2020/4/21

北京邮电大学计算机学院 鲁鹏

卷积的定义

令F为图像,H为卷积核,F与H的卷积记为R = F * H

$$R_{ij} = \sum_{u,v} H_{i-u,j-v} F_{u,v}$$

2020/4/21

北京邮电大学计算机学院 鲁鹏

12

卷积的定义

令F为图像,H为卷积核,F与H的卷积记为R = F * H

$$R_{ij} = \sum_{u.v} H_{i-u,j-v} F_{u,v}$$

使用H将F卷积到域R

2020/4/21

北京邮电大学计算机学院 鲁鹏

卷积性质

2020/4/21

北京邮电大学计算机学院 鲁鹏

14

卷积性质

- **叠加性:** filter(f_1+f_2)=filter(f_1)+filter(f_2)
- 平移不变性: filter(shift(f))=shift(filter(f))

2020/4/21

北京邮电大学计算机学院 鲁鹏

更多性质

- 交换律: *a* * *b* = *b* * *a*
- 结合律: a * (b * c) = (a * b) * c
- 分配律: a * (b + c) = (a * b) + (a * c)
- 标量: ka * b = a * kb = k(a * b)

2020/4/21

北京邮电大学计算机学院 鲁鹏

16

小结

在这一节中,我们学习了一种基础的图像操作,卷 积操作。希望大能够理解什么是卷积,能够掌握卷积的 关键性质,同时也知道如何利用卷积核来对图像进行卷 积。

2020/4/21

北京邮电大学计算机学院 鲁鹏

2020/4/21

北京邮电大学计算机学院 鲁鹏

18

边界填充

2020/4/21

北京邮电大学计算机学院 鲁鹏

需要有像素

需要有像素

需要有像素

需要有像素

2020/4/21

北京邮电大学计算机学院 鲁鹏

20

边界填充

2020/4/21

北京邮电大学计算机学院 鲁鹏

2020/4/21

北京邮电大学计算机学院 鲁鹏

22

边界填充

2020/4/21

北京邮电大学计算机学院 鲁鹏

拉伸

镜像

2020/4/21

北京邮电大学计算机学院 鲁鹏

24

小结

▶ 卷积操作后的图像要小于输入时图像,通过边界填充,我们可以实现卷积前后图像的尺寸不变;

2020/4/21

北京邮电大学计算机学院 鲁鹏

小结

- ▶ 卷积操作后的图像要小于输入时图像,通过边界填充,我们可以实现卷积前后图像的尺寸不变;
- ▶ 一种最常用的边界填充就是常数填充。

2020/4/21

北京邮电大学计算机学院 鲁鹏

26

卷积示例

2020/4/21

北京邮电大学计算机学院 鲁鹏

原图

单位脉冲核

?

2020/4/21

北京邮电大学计算机学院 鲁鹏

28

卷积示例

原图

L

无变化

2020/4/21

北京邮电大学计算机学院 鲁鹏

原图

?

2020/4/21

北京邮电大学计算机学院 鲁鹏

30

卷积示例

原图

向左平移一个像素

2020/4/21

北京邮电大学计算机学院 鲁鹏

原图

0	0	0
1	0	0
0	0	0

向左平移一个像素

向右平移一个像素

2020/4/21

北京邮电大学计算机学院 鲁鹏

31

卷积示例

原图

?

2020/4/21

北京邮电大学计算机学院 鲁鹏

原图

2020/4/21

北京邮电大学计算机学院 鲁鹏

34

卷积示例

原图

1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9

?

2020/4/21

北京邮电大学计算机学院 鲁鹏

锐化

北京邮电大学计算机学院 鲁鹏

36

锐化

2020/4/21

2020/4/21

北京邮电大学计算机学院 鲁鹏

锐化

$$= \left(\begin{array}{c|c} 0 & 0 & 0 \\ \hline 0 & 2 & 0 \\ \hline 0 & 0 & 0 \end{array}\right) - \frac{1}{9} \left(\begin{array}{c|c} 1 & 1 & 1 \\ \hline 1 & 1 & 1 \\ \hline 1 & 1 & 1 \end{array}\right) = \left(\begin{array}{c|c} 0 & 0 & 0 \\ \hline 0 & 0 & 0 \end{array}\right)$$

2020/4/21

北京邮电大学计算机学院 鲁鹏

38

小结

卷积是图像处理中的一个基础而又重要的图像操作,它可以实现:

- ▶ 平移
- ▶ 平滑
- ▶ 锐化
- > ...

2020/4/21

北京邮电大学计算机学院 鲁鹏

补充1: 卷积与图像去噪

- 图像去噪与卷积
- 高斯卷积核
- 图像噪声与中值滤波器

2020/4/21

北京邮电大学计算机学院 鲁鹏

40

平均卷积核存在的问题

• 解决方法:根据邻域像素与中心的远近程度分配权重

卷积后的图像产生了一些水平和竖直方向的条状

振铃!

2020/4/21

北京邮电大学计算机学院 鲁鹏

平均卷积核存在的问题

• 解决方法: 根据邻域像素与中心的远近程度分配权重

2020/4/21

北京邮电大学计算机学院 鲁鹏

42

高斯卷积核
$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2+y^2)}{2\sigma^2}}$$

高斯卷积核权重可视化

高斯卷积核

0.003 0.013 0.022 0.013 0.003	0.013	0.022	0.013	0.003
0.013	0.059	0.097	0.059	0.013
0.022	0.097	0.159	0.097	0.022
0.013	0.059	0.097	0.059	0.013
0.003	0.013	0.022	0.013	0.003

标准差: σ=1

2020/4/21

北京邮电大学计算机学院 鲁鹏

生成步骤:

2020/4/21

北京邮电大学计算机学院 鲁鹏

44

高斯卷积核

生成步骤:

1. 确定卷积核的尺寸,比如 5 × 5

2020/4/21

北京邮电大学计算机学院 鲁鹏

生成步骤:

- 1. 确定卷积核的尺寸,比如 5 × 5
- 2. 设置高斯函数的标准差,比如σ=1

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2+y^2)}{2\sigma^2}}$$

2020/4/21

北京邮电大学计算机学院 鲁鹏

46

高斯卷积核

生成步骤:

- 1. 确定卷积核的尺寸,比如 5 × 5
- 2. 设置高斯函数的标准差,比如σ=1

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{\left(x^2 + y^2\right)}{2\sigma^2}}$$

3. 计算卷积核各个位置权重值

2020/4/21

北京邮电大学计算机学院 鲁鹏

生成步骤:

- 1. 确定卷积核的尺寸, 比如 5 × 5
- 2. 设置高斯函数的标准差,比如σ=1

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{\left(x^2 + y^2\right)}{2\sigma^2}}$$

- 3. 计算卷积核各个位置权重值
- 4. 对权重值进行归一化

一个5 × 5的高斯卷积核

 0.003
 0.013
 0.022
 0.013
 0.003

 0.013
 0.059
 0.097
 0.059
 0.013

 0.022
 0.097
 0.159
 0.097
 0.022

 0.013
 0.059
 0.097
 0.059
 0.013

 0.003
 0.013
 0.022
 0.013
 0.003

标准差: σ=1

2020/4/21

北京邮电大学计算机学院 鲁鹏

48

高斯卷积核

如何设置下述参数:

- 1. 卷积核的尺寸
- 2. 高斯函数的标准差

2020/4/21

北京邮电大学计算机学院 鲁鹏

方差变化

方差越大, 平滑效果明显

2020/4/21

北京邮电大学计算机学院 鲁鹏

50

窗宽变化

模板尺寸越大, 平滑效果越强

2020/4/21

北京邮电大学计算机学院 鲁鹏

卷积核参数

- ▶ 大方差或者大尺寸卷积核平滑能力强;
- ▶ 小方差或者小尺寸卷积核平滑能力弱;
- ▶ 经验法则: 将卷积核的半窗宽度设置为 3σ ,最终卷积模板 尺寸为 $2 \times 3\sigma + 1$ 。

例子: 标准差设置成1, 卷积模板宽度=2*3*1+1=7

2020/4/21

北京邮电大学计算机学院 鲁鹏

50

高斯卷积核 vs. 平均卷积核

平均核卷积结果

高斯核卷积结果

2020/4/21

北京邮电大学计算机学院 鲁鹏

- 去除图像中的"高频"成分(低通滤波器)
- 两个高斯卷积核卷积后得到的还是高斯卷积核
 - ▶ 使用多次小方差卷积核连续卷积,可以得到与大方差卷积核相同的结果
 - ightharpoons 使用标准差为 σ 的高斯核进行两次卷积与使用标准差 $\sigma\sqrt{2}$ 的高斯核进行一次卷积相同
- 可分离
 - ▶ 可分解为两个一维高斯的乘积

2020/4/21

北京邮电大学计算机学院 鲁鹏

54

可分离性示例

2020/4/21

北京邮电大学计算机学院 鲁鹏

卷积操作运算量

1. 用尺寸为 $m \times m$ 的卷积核卷积一个尺寸为 $n \times n$ 的图像,其计算复杂度是多少?

答: $O(n^2 m^2)$

2. 如果核可分离呢?

答: O(n² m)

2020/4/21

北京邮电大学计算机学院 鲁鹏

56

小结

在这一节中,我们学习了一种新的卷积核,高斯卷积核,它能够有效地抑制噪声、实现图像平滑。同时,我们也介绍了高斯卷积核的堆叠以及分解,它们都可以用于减少卷积计算的复杂度。

2020/4/21

北京邮电大学计算机学院 鲁鹏

补充1: 卷积与图像去噪

- 图像去噪与卷积
- 高斯卷积核
- 图像噪声与中值滤波器

2020/4/21

北京邮电大学计算机学院 鲁鹏

58

噪声

原图

2020/4/21

北京邮电大学计算机学院 鲁鹏

高斯噪声

理想图像 随机噪声 $\hat{f}(x,y) = f(x,y) + \eta(x,y)$

噪声分布 $\eta(x,y) \sim \mathcal{N}(\mu,\sigma)$)

通常 $\mu = 0$, σ 很小。

2020/4/21

北京邮电大学计算机学院 鲁鹏

60

减少高斯噪声

σ =1

 $\sigma = 2$

2020/4/21

北京邮电大学计算机学院 鲁鹏

噪声

椒盐噪声

脉冲噪声

高斯噪声

椒盐噪声:黑色像素和白色像

素随机出现

脉冲噪声: 白色像素随机出现

高斯噪声:噪声强度变化服从

高斯分布(正态分布)

2020/4/21 北京邮电大学计算机学院 鲁鹏 62

椒盐噪声

高斯卷积核去噪结果

2020/4/21

北京邮电大学计算机学院 鲁鹏

中值滤波

2020/4/21

北京邮电大学计算机学院 鲁鹏

中值滤波

排序

2020/4/21

北京邮电大学计算机学院 鲁鹏

中值滤波

2020/4/21

北京邮电大学计算机学院 鲁鹏

66

中值滤波

2020/4/21

北京邮电大学计算机学院 鲁鹏

小结

在这一节中我们认识了三种类型的噪声,椒盐噪声、脉冲噪声及高斯噪声。对于前两者建议使用中值滤波器,对于高斯噪声可以使用高斯卷积核来进行去噪。

2020/4/21

北京邮电大学计算机学院 鲁鹏

68

卷积与图像去噪

- 图像去噪与卷积
- 高斯卷积核
- 图像噪声与中值滤波器(完)

2020/4/21

北京邮电大学计算机学院 鲁鹏

补充材料2: 卷积与边缘提取

鲁鹏 北京邮电大学 计算机学院 智能科学与技术中心

边缘提取

- 边缘:图像中亮度明显而急剧变化的点
- 为什么要研究边缘?
 - ▶ 编码图像中的语义与形状信息
 - ▶ 相对于像素表示,边缘表示显然更加紧凑

边缘的种类

2020/4/21

北京邮电大学计算机学院 鲁鹏

72

边缘检测

图像中亮度明显而急剧变化的地方

2020/4/21

北京邮电大学计算机学院 鲁鹏

图像求导

2D函数f(x,y)的偏导为:

$$\frac{\partial f(x,y)}{\partial x} = \lim_{\varepsilon \to 0} \frac{f(x+\varepsilon,y) - f(x,y)}{\varepsilon}$$

图像求导公式:

$$\frac{\partial f(x,y)}{\partial x} \approx \frac{f(x+1,y) - f(x,y)}{1}$$

 $\frac{\partial f(x,y)}{\partial x} \qquad \boxed{-1 \quad 1}$ $\frac{\partial f(x,y)}{\partial y} \qquad \boxed{\frac{1}{1}}$

2020/4/21

北京邮电大学计算机学院 鲁鹏

74

图像求导

2020/4/21

北京邮电大学计算机学院 鲁鹏

图像偏导

 $\frac{\partial f(x,y)}{\partial y}$

 $\frac{\partial f(x,y)}{\partial x}$

-1 or 1 -1

Source: K. Grauman

2020/4/21

北京邮电大学计算机学院 鲁鹏

图像梯度

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right]$$

图像梯度: $\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \end{bmatrix}$ 梯度指向灰度变换最快的方向

$$\nabla f = \left[\frac{\partial f}{\partial x}, 0 \right]$$

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right]$$

梯度方向:

$$\theta = \tan^{-1}(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x})$$

 $\theta = \tan^{-1}(\frac{\partial f}{\partial y}/\frac{\partial f}{\partial x})$ 梯度方向与边缘方向的关系?

梯度的模:

$$|\nabla f| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

2020/4/21

北京邮电大学计算机学院 鲁鹏

Gradient Magnitude

$$\frac{\partial f(x,y)}{\partial x}$$

$$\frac{\partial f(x,y)}{\partial y}$$

 $\left|\left|\nabla f\right|\right| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$

噪声的影响

噪声图像的某一行或列的灰度值随位置变换的情况

求导结果

 $\frac{d}{dx}f(x)$

边缘在什么位置?

2020/4/21

北京邮电大学计算机学院 鲁鹏

解决方法: 先平滑

2020/4/21

北京邮电大学计算机学院 鲁鹏

80

高斯一阶偏导

• 微分是卷积, 而卷积具有结合性:

$$\frac{d}{dx}(f*g) = f*\frac{d}{dx}g$$

节省了一次图像卷积操作!

2020/4/21

北京邮电大学计算机学院 鲁鹏

高斯一阶偏导卷积核

2020/4/21

北京邮电大学计算机学院 鲁鹏

82

高斯一阶偏导卷积核的方差变化

方差由小变大 →

2020/4/21

北京邮电大学计算机学院 鲁鹏

高斯核 vs. 高斯一阶偏导核

- 高斯核
 - ▶ 消除高频成分(低通滤波器)
 - ▶ 卷积核中的权值不可为负数
 - ▶ 权值总和为1(恒定区域不受卷积影响)

- ▶ 高斯的导数
- ▶ 卷积核中的权值可以为负
- ▶ 权值总和是0(恒定区域无响应)
- ▶ 高对比度点的响应值大

高斯核

高斯一阶偏导核

2020/4/21

北京邮电大学计算机学院 鲁鹏

84

边缘检测目标

原图

边缘图

2020/4/21

北京邮电大学计算机学院 鲁鹏

Canny边缘检测器

2020/4/21

北京邮电大学计算机学院 鲁鹏

86

Canny边缘检测器

原图

2020/4/21

北京邮电大学计算机学院 鲁鹏

Canny边缘检测器

2020/4/21

北京邮电大学计算机学院 鲁鹏

88

Canny边缘检测器

2020/4/21

北京邮电大学计算机学院 鲁鹏

如何得到更为准确的边 缘?

梯度强度

2020/4/21

北京邮电大学计算机学院 鲁鹏

90

非极大值抑制

梯度强度

2020/4/21

北京邮电大学计算机学院 鲁鹏

梯度强度

2020/4/21

北京邮电大学计算机学院 鲁鹏

92

非极大值抑制

梯度强度

如果 (p 点的梯度强度 > q 点的梯度强度 && p 点的梯度强度 > r 点的梯度强度) p 点保留;

2020/4/21

北京邮电大学计算机学院 鲁鹏

梯度强度

如果 (p 点的梯度强度 > q 点的梯度强度 && p 点的梯度强度 > r 点的梯度强度) p 点保留;

否则:

删除 p 点;

2020/4/21

北京邮电大学计算机学院 鲁鹏

94

非极大值抑制

梯度强度

非最大化抑制后

如果 (p 点的梯度强度 > q 点的梯度强度 && p 点的梯度强度 > r 点的梯度强度) p 点保留;

否则:

删除 p 点;

2020/4/21

北京邮电大学计算机学院 鲁鹏

梯度强度

非最大化抑制后

如果 (p 点的梯度强度 > q 点的梯度强度 && p 点的梯度强度 > r 点的梯度强度) p 点保留;

否则:

删除 p 点;

提示: q 点、r 点坐标通常不是整数,其对应的强度需要插值获得!!!

2020/4/21

北京邮电大学计算机学院 鲁鹏

96

Canny边缘检测器

非最大化抑制结果

2020/4/21

北京邮电大学计算机学院 鲁鹏

Canny边缘检测器

门限过滤

非最大化抑制结果

2020/4/21

北京邮电大学计算机学院 鲁鹏

98

Canny边缘检测器

非最大化抑制结果

门限过高

2020/4/21

北京邮电大学计算机学院 鲁鹏

门限过滤

Canny边缘检测器

非最大化抑制结果

门限过高

门限过低

2020/4/21

北京邮电大学计算机学院 鲁鹏

门限过滤

100

双阈值

2020/4/21

北京邮电大学计算机学院 鲁鹏

双阈值

2020/4/21

北京邮电大学计算机学院 鲁鹏

102

Canny边缘检测器

- 1. 用高斯一阶偏导核卷积图像
- 2. 计算每个点的梯度幅值和方向
- 3. 非极大值抑制:
 - 将宽的"边缘"细化至单个像素宽度
- 4. 连接与阈值(滞后):
 - 定义两个阈值: 低和高
 - 使用高阈值开始边缘曲线,使用低阈值继续边缘曲线

2020/4/21

北京邮电大学计算机学院 鲁鹏

补充材料3: 纹理表示

鲁鹏 北京邮电大学 计算机学院 智能科学与技术中心

纹理

规则纹理

2020/4/21

北京邮电大学计算机学院 鲁鹏

106

基于卷积核组的纹理表示方法

思路:

▶ 利用卷积核组提取图像中的纹理基;利用基元的统计信息来表示图像中的纹理

2020/4/21

北京邮电大学计算机学院 鲁鹏

卷积核组

2020/4/21

北京邮电大学计算机学院 鲁鹏

108

卷积核组

2020/4/21

北京邮电大学计算机学院 鲁鹏

卷积核组

2020/4/21

北京邮电大学计算机学院 鲁鹏

110

卷积核组

2020/4/21

北京邮电大学计算机学院 鲁鹏

基于卷积核组的图像表示

- 1. 设计卷积核组:
- 利用卷积核组对图像进行卷积操作获得对应的特征响应图组;
- 利用特征响应图的某种统计信息
 来表示图像中的纹理。

 r_1 表示第一个特征图展开的向量 $r_{1 \times n}$ 表示第1个特征图上第n个位置的响应值

2020/4/21

北京邮电大学计算机学院 鲁鹏

112

基于卷积核组的图像表示

- 1. 设计卷积核组;
- 利用卷积核组对图像进行卷积操作获得对应的特征响应图组;
- 利用特征响应图的某种统计信息
 来表示图像中的纹理。

 $m{r}_{
m i} = [r_{i1}, r_{i2}, \cdots r_{i imes n}]$ 第i个特征响应图展开的向量 $r_{i imes j}$ 反应了图像第j个位置,是否存在第i个卷积核记录的纹理结构

2020/4/21

北京邮电大学计算机学院 鲁鹏

纹理分类任务

> 忽略基元位置

规则纹理

随机纹理

2020/4/21

北京邮电大学计算机学院 鲁鹏

114

纹理分类任务

- > 忽略基元位置
- ▶ 关注出现了哪种基元对应的

纹理以及基元出现的频率

规则纹理

随机纹理

2020/4/21

北京邮电大学计算机学院 鲁鹏

基于卷积核组的图像表示

- 1. 设计卷积核组:
- 利用卷积核组对图像进行卷 积操作获得对应的特征响应 图组;
- 利用特征响应图的某种统计 信息来表示图像中的纹理。

2020/4/21

北京邮电大学计算机学院 鲁鹏

116

基于卷积核组的图像表示

- 1. 设计卷积核组;
- 利用卷积核组对图像进行卷 积操作获得对应的特征响应 图组;
- 利用特征响应图的某种统计信息来表示图像中的纹理。

2020/4/21

北京邮电大学计算机学院 鲁鹏

基于卷积核组的图像表示

- 1. 设计卷积核组:
- 利用卷积核组对图像进行卷 积操作获得对应的特征响应 图组;
- 利用特征响应图的某种统计 信息来表示图像中的纹理。

2020/4/21

北京邮电大学计算机学院 鲁鹏

118

基于卷积核组的图像表示

- 1. 设计卷积核组;
- 利用卷积核组对图像进行卷 积操作获得对应的特征响应
 图组:
- 利用特征响应图的某种统计 信息来表示图像中的纹理。

2020/4/21

北京邮电大学计算机学院 鲁鹏

小游戏

2020/4/21

北京邮电大学计算机学院 鲁鹏

120

卷积核组设计

设计重点:

- ▶ 卷积核类型(边缘、条形以及点状)
- ▶ 卷积核尺度(3-6个尺度)
- ▶ 卷积核方向(6个角度)

2020/4/21

北京邮电大学计算机学院 鲁鹏

实际的例子

卷积核组

2020/4/21

北京邮电大学计算机学院 鲁鹏

122

实际的例子

卷积核组

 \bar{r}_i 第i个特征 响应图的均值

卷积核组

• • •

 $\cdots \bar{r}_{48}$]

48个特征响应图

48维向量表示

2020/4/21

北京邮电大学计算机学院 鲁鹏

总结

- 1. 设计卷积核组;
- 2. 利用卷积核组对图像进行卷积操作获得对应的特征响应图组;
- 3. 利用特征响应图的某种统计信息来表示图像中的纹理。

2020/4/21

北京邮电大学计算机学院 鲁鹏