降雨系统和灰水系统的运作和设计研究

参赛队编号:___007____

赛题类型代码: ____B

降雨系统和灰水系统的运作和设计研究

摘要:

为解决目前水资源缺乏的问题,此次对降雨系统和灰水系统的运行和设计进行研究,通过模拟在可能的范围内找出最有效的节水方式。

针对问题一:

题目中给出了一月降雨量分布的三个参数 p_1, m_1 和 λ_1 的估计值,同时给出了许多的关系式,我们根据题目中估计值的步骤,对函数进行了逼近,估计出三月降雨量分布中的三个参数 p_3, m_3 和 λ_1 分别为 $p_3=0.30$, $m_3=0.18$, $\lambda_3=0.034$ 。

针对问题二:

根据问题二中现给出的模拟条件,按照题中给出的步骤代入数据,确定出年降雨量、灰水的总量以及使用量、节水情况,为直观表示各种情况,便于分析,我们用表格的形式表示运算结果。

关键字: 函数逼近,条件模拟

一 问题重述

为解决目前水资源缺乏的问题,此次对降雨系统和灰水系统的运行和设计进行研究,通过模拟在可能的范围内找出最有效的节水方式。

问题一:

在题目中给出了多个参数以及它们之间的关系式,在问题一中,给出了一月降雨量分布的三个参数 p_1, m_1 和 λ_1 的估计值,要求我们根据题目中估计值的步骤,估计出三月降雨量分布中的三个参数 p_3, m_3 和 λ_3

问题二:

在问题二中,给出了准确的数据,在各种因素作用下,模拟一个家庭在不变的条件下,确定出年降雨量、灰水的总量以及使用量、节水情况,以表格的形式表示出各种数值,便于分析。

问题三:

在问题二模拟的基础上,降雨系统、灰水系统分别安装水箱,水箱的容量有五种,分别是1000,2000,3000,5000和10,000升的,铺设管道(不计管道长度)的费用是1万元,装一个雨水箱增加2000元,装一个灰水箱增加5000元。在这样的条件下,需要年在节水量分别达到50000升和60000升时所花费的费用最少,研究此时对应安装水箱的方案是什么样的。

二 模型假设

- 1. 文中的所有数据都在误差允许的范围内准确。
- 2. 灰水的用处就只考虑冲洗厕所和灌溉花园,不考虑其他用途。
- 3. 降雨在收集后不会浪费,一直保持题目中的降雨量。

4. 在短时间的动态变化中,数据可以看为静态不变的。

三 符号说明

符号	符号说明	符号	符号说明
\boldsymbol{M}_i	第 i 月的平均降雨天数	Q_{i}	第i月的平均降雨量
n_{i}	第i月的天数	$p_i m_i \lambda_i$	第 i 月的参数
q_{i}	第 i 月日均降雨量	T_{i}	第 i 月平均最大温度
w_1	屋顶面积	W_2	花园面积
у	降雨箱收集的雨水容量	x	灰水箱收集的水容量
z_1	冲洗厕所的水量	z_2	花园的用水量
t_1	沐浴器的使用次数	t_2	洗衣房洗衣的次数
t_3	冲洗厕所的次数	$k_{_1}$	每次沐浴的用水量
k_2	每次洗衣物的用水量	k_3	每次冲洗器的用水量
h_i	第 i 月花园平均水深度		

4.1 确定 p3 的值

表格中给出三月平均下雨天数的数据 $M_3 = 9.4$,总天数是 $n_3 = 31$,

 $N_i = \sum_{j=1}^{n_i} A_{i,j} \sim \operatorname{binom}(n_i, p_i)$ 符合二项分布,而题设中说明平均下雨天 M_i 恰好是 N_i 的样本均值,则有

$$M_3 = n_3 p_3$$

带入数据得

$$p_3 = 0.30 \tag{1}$$

4.2 确定 λ_1 和 m_3 的关系式

题中有此式 $EY_i = n_i p_i m_i / \lambda_i$, $Q_3 = 50.4$,使用 EY_3 和平均降雨量 Q_3 可以得到 λ_3 和 m_3 的一个关系式,由

$$EY_3 = Q_3 = n_3 p_3 m_3 / \lambda_3$$

代入(1)可得

$$m_3 = 5.42\lambda_3 \tag{2}$$

4.3 确定 λ_1 和 m_2 的值

- 4.3.1 使用观测到的分位数,题中给的关系式以及上式(2)的内容可以将给出的损失函数转换为一个与 λ₃有关的函数。
- 4.3.2 先使 λ_3 在 1—10 内以 1 为公差大致确定得到最小值时 λ_3 的范围,再以 0.1 为公差重复上述操作,后以 0.01 为公差重复上述操作······这样逐次对 λ_3 的值进行函数逼近^[1],直到 λ_3 出现两位有效数字即可。

4.3.3 编写程序

```
syms lamuda m
syms p n EY
p=input('请输入平均下雨天数');
EY=input('请输入平均降雨量');
n=input('请输入该月天数');
m=(EY/n)*1amuda/p;
d1=input('请输入10%分位数');
d5=input('请输入 50%分位数');
d9=input('请输入90%分位数');
data1=zeros(10);
syms x;
for i=1:1:10
   lamuda=i;
   m = (EY/n) * lamuda/p;
   Fd1=int(((1amuda^m)/gamma(m))*x^(m-1)*exp(-1amuda*x), x, 0, d1);
   Fd5=int(((1amuda^m)/gamma(m))*x^(m-1)*exp(-1amuda*x), x, 0, d5);
   Fd9=int(((1amuda^m)/gamma(m))*x^(m-1)*exp(-1amuda*x), x, 0, d9);
```

```
data1(i)=((Fd1-0.1)^2)/0.09 + ((Fd5-0.5)^2)/0.25 +
((Fd9-0.9)^2)/0.09;
end
data1=data1(:,1);
data1=reshape (data1, 1, 10);
[M1, N1] = min(data1);
data2=zeros(20);
for i=10*(N1-1+0.1):1:10*(N1+1)
    1amuda=i/10;
    m = (EY/n) * lamuda/p;
    Fd1=int(((1amuda^m)/gamma(m))*x^(m-1)*exp(-1amuda*x),x,0,d1);
    Fd5=int(((1amuda^m)/gamma(m))*x^(m-1)*exp(-1amuda*x), x, 0, d5);
    Fd9=int(((1amuda^m)/gamma(m))*x^(m-1)*exp(-1amuda*x), x, 0, d9);
    t=i-(N1-1)*10;
    data2(t) = ((Fd1-0.1)^2)/0.09 + ((Fd5-0.5)^2)/0.25 +
((Fd9-0.9)^2)/0.09;
end
data2=data2(:,1);
data2=reshape (data2, 1, 20);
[M2, N2] = min(data2);
```

```
data3=zeros(20);
for i=100*((N2-1)/10 + 0.01) : 1 : 100*((N2+1)/10)
    1amuda=i/100;
    m = (EY/n) * 1amuda/p;
    Fd1=int(((1amuda^m)/gamma(m))*x^(m-1)*exp(-1amuda*x), x, 0, d1);
    Fd5=int(((1amuda^m)/gamma(m))*x^(m-1)*exp(-1amuda*x), x, 0, d5);
    Fd9=int(((1amuda^m)/gamma(m))*x^(m-1)*exp(-1amuda*x), x, 0, d9);
    t=i-(N2-1)*10;
    data3(t) = ((Fd1-0.1)^2)/0.09 + ((Fd5-0.5)^2)/0.25 +
((Fd9-0.9)^2)/0.09;
end
data3=data3(:,1);
data3=reshape (data3, 1, 20);
[M3, N3] = min(data3);
data4=zeros(20);
for i=1000*((N3-1)/100 + 0.001) : 1 : 1000*((N3+1)/100)
    1amuda=i/1000;
    m = (EY/n) * lamuda/p;
    Fd1=int(((1amuda^m)/gamma(m))*x^(m-1)*exp(-1amuda*x), x, 0, d1);
    Fd5=int(((1amuda^m)/gamma(m))*x^(m-1)*exp(-1amuda*x), x, 0, d5);
```

Fd9=int((((lamuda^m)/gamma(m))*x^(m-1)*exp(-lamuda*x), x, 0, d9);

t=i-(N3-1)*10;

t=int8(t);

data4(t)=((Fd1-0.1)^2)/0.09 + ((Fd5-0.5)^2)/0.25 +
((Fd9-0.9)^2)/0.09;

end

data4=data4(:,1);

data4=reshape(data4,1,20);

[M4,N4]=min(data4);

代入数据得到

$$\lambda_3 = 0.034 \tag{3}$$

4.3.4 由(2)和(3)可得到

$$m_3 = 0.18$$
 (4)

五 问题二的解答

5.1 已知第i月的平均降雨量 Q_i ,第i月的天数 n_i ,则第i月的日均降雨深度 q_i 为

$$q_i = \frac{Q_i}{n_i}$$

屋顶面积为 w_1 平方米,则降雨箱收集的雨水容量为y升,

$$y = w_1 q_i$$

经计算和统计有下表:

表1 降雨情况

月份	日降雨概率	月平均降雨量 (mm)	日均降雨深度 $q_i^{(\mathrm{mm})}$	日均收集雨水 容量 y (L)
1	0. 270968	47. 6	1. 535484	153. 548387
2	0. 267857	48	1.714286	171. 428571
3	0. 303226	50. 4	1.625806	162. 580645
4	0. 393333	57. 3	1.91	191
5	0. 470968	55.8	1.8	180
6	0. 513333	49	1. 633333	163. 333333
7	0. 519355	47. 5	1. 532258	153. 225806
8	0. 519355	50	1.612903	161. 290323
9	0. 496667	58. 1	1. 936667	193. 666667
10	0. 458065	66. 4	2. 141935	214. 193548
11	0. 393333	60. 4	2. 013333	201. 333333
12	0. 335484	59. 5	1. 919355	191. 935484

5.2 记沐浴器的使用次数为 t_1 ,洗衣房洗衣的次数为 t_2 ,每次沐浴的用水量为 k_1 升,每次洗衣物的用水量为 k_2 升,灰水箱收集的水容量为x升,则

$$x = k_1 t_1 + k_2 t_2$$

而洗衣房洗衣的次数是随机变量,服从binom(8,0.125)分布,则

$$t_2 = 8 \times 0.125 = 1$$

代入数据可得

$$x = 175$$

5.3 记冲洗厕所的水量为 z_1 升,冲洗的次数为 t_3 ,每次冲洗器的用水量为 k_3 升,则

$$z_1 = k_3 t_3$$

而每天冲洗厕所的次数是随机的, 服从 binom(15,0.8)分布,则

$$t_3 = 15 \times 0.8 = 12$$

代入数据可得

$$z_1 = 60$$

此时节约的水量为公儿升

$$\Delta z_1 = 60$$

5. 4 第i 月花园平均需水深度为 h_i ,第i 月平均最大温度为 T_i ,比例系数k=15,则

$$h_i = T_i/k$$

记花园面积为 w_2 ,花园的用水量为 z_2 ,则

$$z_2 = w_2 h_i$$

经计算和统计有下表:

表 2 花园用水情况

月份	花园日均需水深度(mm)	花园日均需水量(L)
1	1. 727	345. 4
2	1.72	344
3	1. 593	318.6
4	1. 353	270. 6
5	1. 113	222. 6
6	0.94	188
7	0.9	180
8	1	200
9	1. 147	229. 4
10	1. 313	262. 6
11	1. 467	293. 4
12	1.613	322. 6

5.5 上述都为日均情况,运行程序 E_1.cpp,绘制下表:

表 3 用水、节水情况

月份 .	用水明细				月节约水量(L)
	雨水收集量(L)	灰水收集量(L)	花园用水量(L)	冲厕用水量(L)	- 7.1 45.1 (四)
1	4760	5425	10707. 4	1860	10185
2	4800	4900	9632	1680	9700
3	5040	5425	9876. 6	1860	10465

4	5730	5250	8118	1800	9920
5	5580	5425	6900.6	1860	8760.6
6	4900	5250	5640	1800	7440
7	4750	5425	5580	1860	7440
8	5000	5425	6200	1860	8060
9	5810	5250	6882	1800	8680
10	6640	5425	8140.6	1860	10002.6
11	6040	5250	8802	1800	10600
12	5950	5425	10000.6	1860	11375
总计	65000	63875	96479.8	21900	112628. 2

六 问题三的解答

6.1 年均节约 50000 升水的最少费用

6.2 年均节约 60000 升水的最少费用

七 模型评价

7.1 模型优点

- (1)问题一中对 23 在一定范围内进行逼近,这样的方法在最小化函数时不仅 具有科学性的说服力,还在数据允许存在误差的条件下减小误差,使其结果更加 准确。
 - (2) 模型较为符合现实,易于应用。

7.2 模型缺点

- (1) 在问题一对 λ_3 进行逼近时,如果所给数据范围较大,运行时间过长。
- (2) 在编程中,没有对数据的小数位数进行约束,导致运算结果如果不能除尽,就会出现一系列的小数。最后,我们采用人工方法进行较好的弥补。

八 参考文献

[1] 莫国端、刘开第、《函数逼近论方法》,科学出版社,2013

附录:

```
程序 E_1. cpp:
#include <stdio.h>
                                                                                                                                     const char * argv[]) {
                            main(int argc,
                                                int i;
                                                double sum[13]=\{0\}, m[13]=\{0, 31, 28, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 30, 31, 
,31},r[13]={0},tem[13]={0},huishui[13],al1=0;
                                                for (i=1; i \le 12; i++)
                                                                                                 scanf("%lf",&r[i]);
                                                                                                 r[i]/=m[i];
                                                                                                 r[i]*=100;
                                                }
                                                for (i=1; i \le 12; i++)
                                                  {
                                                                                                 scanf("%1f", &tem[i]);
                                                                                                 tem[i]/=15;
                                                                                                  tem[i]*=200;
                                                }
                                                for (i=1; i \le 12; i++)
                                                                                                 tem[i]=r[i];
                                                                                                 tem[i]-=115;
                                                                                                 if(tem[i] >= 0)
                                                                                                                                                  sum[i]+=r[i]+175;
                                                                                                  }
```