KÉ HOẠCH KIỂM TRA GIỮA HỌC KÌ 2 NĂM HỌC 2019-2020 MÔN TOÁN - KHỐI 12

I. Thống nhất chương trình:

Đại: Hết Ứng dụng tính diện tích hình phẳng của tích phân.

Hình: Hết bài phương trình mặt phẳng.

II. Thống nhất ma trận đề:

MA TRẬN TỔNG QUÁT ĐỀ

			Mức độ kiến thức đánh giá				2
	STT	Các chủ đề	Nhận biết (M_1)	$\begin{array}{c} \textbf{Thông} \\ \textbf{hiểu} \\ \left(M_2\right) \end{array}$	Vận dụng (M_3)	$egin{array}{c} ext{V$\^{a}n dung} \\ ext{cao} \\ ext{} \left(M_4 ight) \end{array}$	Tổng số câu hỏi
HÌNH C3	1	Tọa độ vectơ, tọa độ điểm	1	1	1	0	3
	2	Tính S, V	0	1	1	0	2
	3	Cầu	1	1	1	0	3
	4	Mặt phẳng	2	1	0	0	3
	5	Tương giao giữa mặt phẳng và mặt cầu	0	0	1	0	1
	6	Dùng tọa độ giải toán HHKG	0	1	1	1	3
HÌNH C2	7	Nón (có kết hợp trụ - cầu)	0	0	1	1	2
ĐẠI C1	8	Úng dụng của đạo hàm	2	1	1	1	5
ĐẠI C2	9	Hàm số mũ - loga	2	2	1	0	5
	10	PT mũ - loga	0	1	1	0	2
	11	BPT mũ - loga	1	1	2	1	5
ĐẠI C3	12	Nguyên hàm	2	1	2	0	5
	13	Tích phân	2	2	1	1	6
	14	Úng dụng TP tính S hình phẳng	2	2	1	0	5
Tổng		Số câu	15	15	15	5	50
		Tỷ lệ	30%	30%	30%	10%	

CÁC ĐỀ ÔN TẬP

ĐỀ SỐ 1

Câu 1. Trong hệ trục tọa độ Oxyz, cho các điểm M(1;-1;1), N(2;0;-1), P(-1;2;1). Xét điểm Q sao cho tứ giác MNPQ là một hình bình hành. Tọa độ Q là:

A.
$$(-2;1;3)$$
.

B.
$$(-2;1;-3)$$
.

C.
$$(-2;1;3)$$
.

Câu 2. Biết tập nghiệm của bất phương trình $\left(\frac{1}{3}\right)^{x^2-4x-12} > 1$ là S = (a;b). Khi đó bất phương trình có bao nhiều nghiệm nguyên?

B. 7.

C. 6.

D. 8.

Câu 3. Trong hệ trục tọa độ Oxyz, cho bốn điểm A(0;-2;1); B(1;0;-2); C(3;1;-2); D(-2;-2;-1). Câu nào sau đây **sai**?

A. Tam giác ACD là tam giác vuông tại A.

B. Bốn điểm A, B, C, D không đồng phẳng.

C. Góc giữa hai véc tơ \overrightarrow{AD} và \overrightarrow{CD} là góc tù.

D. Tam giác ABD là tam giác cân tại B.

Câu 4. Trong hệ trục tọa độ Oxyz, cho bốn điểm A(1;-2;0), B(2;0;3), C(-2;1;3) và D(0;1;1). Thể tích khối tứ diện ABCD bằng:

B. 12.

C. 6.

D. 4.

Câu 5. Cho phương trình $7^{2x+1} - 8.7^x + 1 = 0$ có 2 nghiệm x_1 , x_2 $(x_1 < x_2)$. Khi đó $\frac{x_2}{x}$ có giá trị là:

 \mathbf{R} . -1

C. 4

D. 0.

Câu 6. Giải bất phương trình $\log_2(3x-2) > \log_2(6-5x)$ được tập nghiệm là (a;b). Hãy tính tổng S = a+b.

A.
$$S = \frac{8}{3}$$
.

D. $S = \frac{11}{5}$.

Câu 7. Cho hàm số $y = \ln(3+x^2)$ có đồ thị (C). Hệ số góc k của tiếp tuyến với (C) tại điểm có hoành độ $x_0 = -1$ bằng:

A.
$$k = 1$$
.

B. k = -1.

C. k = -2.

D. $k = -\frac{1}{2}$.

Câu 8. Trong hệ trục tọa độ Oxyz, mặt phẳng (P) đi qua điểm A(1;7;2) và cách M(-2;4;-1) một khoảng lớn nhất có phương trình là:

A.
$$(P)$$
: $x + y + z - 1 = 0$.

B.
$$(P)$$
: $3x + 3y + 3z - 10 = 0$.

C.
$$(P): x+y+z-10=0$$
.

D.
$$(P): x+y+z+10=0$$
.

Câu 9. Cho mặt cầu $(S): (x-1)^2 + (y-2)^2 + (z+4)^2 = 9$. Phương trình mặt phẳng (β) tiếp xúc với mặt cầu (S) tại điểm M(0;4;-2) là:

A.
$$x-2y-2z-4=0$$
.

B.
$$x+6y-6z+37=0$$

A.
$$x-2y-2z-4=0$$
. **B.** $x+6y-6z+37=0$. **C.** $x+6y-6z-37=0$. **D.** $x-2y-2z+4=0$.

D.
$$x-2y-2z+4=0$$
.

Câu 10. Phương trình nào sau đây là phương trình mặt cầu (S) tâm A(2;1;0), đi qua điểm B(0;1;2).

A.
$$(S)$$
: $(x+2)^2 + (y+1)^2 + z^2 = 64$.

B.
$$(S)$$
: $(x-2)^2 + (y-1)^2 + z^2 = 64$.

C.
$$(S)$$
: $(x-2)^2 + (y-1)^2 + z^2 = 8$.

D. (S):
$$(x+2)^2 + (y+1)^2 + z^2 = 8$$
.

Câu 11. Trong không gian với hệ toạ độ Oxyz, cho hình chóp S.ABCD, đáy ABCD là hình chữ nhật. Biết A(0;0;0), D(2;0;0), B(0;4;0), S(0;0;4). Gọi M là trung điểm của SB. Tính khoảng cách từ B đến mặt phẳng (CDM).

A.
$$d(B,(CDM)) = 2\sqrt{2}$$
. **B.** $d(B,(CDM)) = \sqrt{2}$. **C.** $d(B,(CDM)) = 2$. **D.** $d(B,(CDM)) = \frac{1}{\sqrt{2}}$.

C.
$$d(B,(CDM)) = 2$$
.

D.
$$d(B,(CDM)) = \frac{1}{\sqrt{2}}$$

Câu 12. Phương trình $\left(\frac{1}{9}\right)^{3} - m \cdot \left(\frac{1}{3}\right)^{3} + 2m + 1 = 0$ có nghiệm khi và chỉ khi m nhận giá trị:

A.
$$m < -\frac{1}{2}$$
.

B.
$$-\frac{1}{2} < m < 4 - 2\sqrt{5}$$
.

C.
$$m \ge 4 + 2\sqrt{5}$$
.

D.
$$m < -\frac{1}{2} \lor m \ge 4 + 2\sqrt{5}$$
.

Câu 13. Tính diện tích S hình phẳng giới hạn bởi các đường $y = x^2 + 1, x = -1, x = 2$ và trục hoành.

A.
$$S = \frac{13}{6}$$
.

B.
$$S = 16$$
.

C.
$$S = 13$$
.

D.
$$S = 6$$
.

Câu 14. Trong hệ trục tọa độ Oxyz, cho mặt phẳng (P) có phương trình 2x-3y+4z+5=0. Phương trình nào dưới đây là phương trình của mặt phẳng đi qua A(1,1,1) và song song với mặt phẳng (P)?

A.
$$-2x+3y-4z+3=0$$
. **B.** $2x-3y+4z-1=0$. **C.** $2x-3y+4z+3=0$. **D.** $2x-3y+4z=0$.

B.
$$2x-3y+4z-1=0$$
.

C.
$$2x-3y+4z+3=0$$
.

D.
$$2x-3y+4z=0$$

Câu 15. Cho hình nón N_1 đỉnh S đáy là đường tròn C(O;R), đường cao SO = 40cm. Người ta cắt nón bằng mặt phẳng vuông góc với trục để được nón nhỏ N_2 có đỉnh S và đáy là đường tròn C'(O';R'). Biết rằng tỷ số thể tích $\frac{V_{N_2}}{V_{N_1}} = \frac{1}{8}$. Tính độ dài đường cao nón N_2 .

A. 40*cm*.

B. 5*cm*.

C. 20*cm*.

D. 10*cm*.

Câu 16. Cho hàm số f(x) thỏa mãn $f'(x) = 2 - 5\sin x$ và f(0) = 10. Mệnh đề nào dưới đây **đúng**?

A.
$$f(x) = 2x + 5\cos x + 3$$
.

B.
$$f(x) = 2x + 5\cos x + 5$$
.

C.
$$f(x) = 2x - 5\cos x + 15$$

D.
$$f(x) = 2x - 5\cos x + 10$$
.

Câu 17. Giá trị của tham số m để hàm số $y = \log_{(m+1)^2} (x^3 + 1)$ nghịch biến là:

A.
$$m \in (-\infty; 0) \setminus \{-1\}$$

A.
$$m \in (-\infty; 0) \setminus \{-1\}$$
. **B.** $m \in (-\infty; 0) \setminus \{-2; -1\}$. **C.** $m \in (-2; 0) \setminus \{-1\}$. **D.** $m \in (-2; 0)$.

D.
$$m \in (-2;0)$$

Câu 18. Biết f(x) là hàm liên tục trên \mathbb{R} và $\int_{0}^{9} f(x) dx = 9$. Khi đó giá trị của $\int_{0}^{9} f(3x-3) dx$ là:

$$\mathbf{C}$$
. 0

Câu 19. Trong hệ trục tọa độ Oxyz, cho tứ diện ABCD biết A(3;-2;m), B(2;0;0), C(0;4;0), D(0;0;3). Tìm giá trị dương của tham số m để thể tích tứ diện ABCD bằng 8.

A.
$$m = 6$$
.

B.
$$m = 12$$
.

C.
$$m = 4$$
.

D.
$$m = 8$$
.

Câu 20. Biết a, b là các số thực thỏa mãn $\int \sqrt{2x+1} \, dx = a(2x+1)^b + C$. Tính P = a.b.

A.
$$P = -\frac{3}{2}$$
.

B.
$$P = -\frac{1}{2}$$
. **C.** $P = \frac{1}{2}$.

C.
$$P = \frac{1}{2}$$
.

D.
$$P = \frac{3}{2}$$
.

Câu 21. Cho hàm số F(x) là một nguyên hàm của hàm số $f(x) = \sin^3 x \cos x$. Tính $I = F\left(\frac{\pi}{2}\right) - F(0)$.

A.
$$I = \frac{3\pi}{2}$$
.

B.
$$I = \frac{1}{4}$$
.

C.
$$I = \frac{\pi}{2}$$
.

B.
$$I = \frac{1}{4}$$
. **C.** $I = \frac{\pi}{2}$. **D.** $I = \frac{3}{4}$.

Câu 22. Cho f(x) là hàm số liên tục trên \mathbb{R} và $\int_{0}^{2} f(x) dx = -2$, $\int_{1}^{3} f(2x) dx = 10$. Tính $I = \int_{0}^{2} f(3x) dx$.

A.
$$I = 2$$
.

B.
$$I = 4$$

C.
$$I = 6$$
.

D.
$$I = 8$$

Câu 23. Cho (H) là hình phẳng giới hạn bởi $y = \sqrt{x}, y = x - 2$ và trục hoành (hình vẽ). Diện tích của (H) bằng:

A.
$$\frac{16}{3}$$
.

B.
$$\frac{10}{3}$$
.

C.
$$\frac{8}{3}$$

D.
$$\frac{7}{3}$$
.

Câu 24. Phương trình các đường tiệm cận ngang của đồ thị hàm số $y = x - \sqrt{x^2 + 3x - 1}$ là:

A.
$$y = 1$$
.

B.
$$y = -\frac{3}{2}$$
.

C.
$$\begin{bmatrix} y = -3 \\ y = 0 \end{bmatrix}$$
. **D.** $y = -3$.

D.
$$y = -3$$

Câu 25. Tìm giá trị của tham số m để đồ thị hàm số $y = x^3 - 2mx^2 + (m^2 - 1)x + m(2 - m)$ cắt trục hoành tại ba

A.
$$m = \pm 2$$
.

B.
$$m = 1$$

C.
$$m = 0$$
.

D.
$$m = 2$$
.

Câu 26. Tìm họ nguyên hàm F(x) của hàm số $f(x) = x^{e+1}$.

A.
$$F(x) = \frac{x^{e+2}}{e+2} + C$$

A.
$$F(x) = \frac{x^{e+2}}{e+2} + C$$
. **B.** $F(x) = (e+1).x^e + C$. **C.** $F(x) = \frac{x^{e+1}}{\ln x} + C$.

D.
$$F(x) = x^{e+1} + C$$
.

Câu 27. Kí hiệu S(t) là diện tích của hình phẳng giới hạn bởi các đường y = 2x + 1, y = 0, x = 1, x = t (t > 1). Tìm t để S(t) = 10.

A.
$$t = 4$$
.

B.
$$t = 14$$
.

C.
$$t = 13$$
.

D.
$$t = 3$$
.

Câu 28. Đồ thị dưới đây là đồ thị của hàm số nào:

A.
$$y = \frac{2x-5}{x+2}$$
.

B.
$$y = \frac{2x+3}{x-1}$$
. **C.** $y = \frac{x-3}{2x-2}$. **D.** $y = \frac{2x-3}{x+1}$.

C.
$$y = \frac{x-3}{2x-2}$$

D.
$$y = \frac{2x-3}{x+1}$$

Câu 29. Giá trị nhỏ nhất và giá trị lớn nhất của hàm số $y = x^2 \cdot e^{2-x}$ trên [1;3] là m và M. Tính $P = M \cdot e + m$.

A.
$$P = e^2 + \frac{9}{e}$$
.

B.
$$P = 13$$
.

C.
$$P = e + 9$$
.

D.
$$P = 5e$$
.

Câu 30. Cho tam giác ABC vuông tại A, AB = 6cm, AC = 8cm. Gọi V_1 là thể tích khối nón tạo thành khi quay tam giác ABC quanh cạnh AB và V_2 là thể tích khối nón tạo thành khi quay tam giác ABC quanh cạnh AC. Khi đó, tỷ số $\frac{V_1}{V_1}$ bằng:

A.
$$\frac{4}{3}$$
.

B.
$$\frac{9}{16}$$
.

C.
$$\frac{16}{9}$$
.

D.
$$\frac{3}{4}$$
.

Câu 31. Tìm họ nguyên hàm F(x) của hàm số $f(x) = \cos \frac{x}{2}$.

A.
$$F(x) = -\frac{1}{2}\sin\frac{x}{2} + C$$
. **B.** $F(x) = -2\sin\frac{x}{2} + C$. **C.** $F(x) = 2\sin\frac{x}{2} + C$. **D.** $F(x) = \frac{1}{2}\sin\frac{x}{2} + C$.

B.
$$F(x) = -2\sin\frac{x}{2} + C$$
.

$$\mathbf{C.} \ F(x) = 2\sin\frac{x}{2} + C.$$

D.
$$F(x) = \frac{1}{2}\sin\frac{x}{2} + C$$
.

Câu 32. Tính diện tích S của hình phẳng giới hạn bởi đồ thị hàm số $y = x^3 - 1$ và tiếp tuyến của đồ thị này tại $\operatorname{di\acute{e}m}\left(-1;-2\right)$.

A.
$$S = \frac{17}{4}$$
.

B.
$$S = \frac{4}{17}$$
.

C.
$$S = \frac{27}{4}$$
.

D.
$$S = \frac{4}{27}$$
.

Câu 33. Trong hệ trục tọa độ Oxyz, phương trình mặt cầu tâm I(2;1;-2) bán kính R=2 là:

A.
$$x^2 + y^2 + z^2 - 4x - 2y + 4z + 5 = 0$$
.

B.
$$(x-2)^2 + (y-1)^2 + (z-2)^2 = 2^2$$
.

C.
$$(x-2)^2 + (y-1)^2 + (z+2)^2 = 2$$
.

D.
$$x^2 + y^2 + z^2 + 4x - 2y - 4z + 5 = 0$$
.

Câu 34. Biết tập nghiệm của bất phương trình $3^{2-\sqrt{x^2+5x-6}} \ge \frac{1}{3^x}$ là một đoạn [a;b] ta có a+b bằng:

A.
$$a+b=9$$
.

B.
$$a+b=12$$
.

C.
$$a+b=10$$
.

D.
$$a+b=11$$
.

Câu 35. Trong hệ trục tọa độ Oxyz, mặt cầu (S) qua bốn điểm A(3;3;0), B(3;0;3), C(0;3;3), D(3;3;3). Phương trình mặt cầu (S) là:

A.
$$\left(x-\frac{3}{2}\right)^2 + \left(y-\frac{3}{2}\right)^2 + \left(z-\frac{3}{2}\right)^2 = \frac{3\sqrt{3}}{2}$$
. **B.** $\left(x-\frac{3}{2}\right)^2 + \left(y+\frac{3}{2}\right)^2 + \left(z-\frac{3}{2}\right)^2 = \frac{27}{4}$.

B.
$$\left(x - \frac{3}{2}\right)^2 + \left(y + \frac{3}{2}\right)^2 + \left(z - \frac{3}{2}\right)^2 = \frac{27}{4}$$
.

C.
$$\left(x-\frac{3}{2}\right)^2 + \left(y-\frac{3}{2}\right)^2 + \left(z+\frac{3}{2}\right)^2 = \frac{27}{4}$$
.

D.
$$\left(x-\frac{3}{2}\right)^2 + \left(y-\frac{3}{2}\right)^2 + \left(z-\frac{3}{2}\right)^2 = \frac{27}{4}$$
.

Câu 36. Tìm tất cả các giá trị thực của m để hệ phương trình $\begin{cases} \log_4(x+y+12).\log_{x+y}2=1\\ xv=m \end{cases}$ có nghiệm:

A.
$$m = 4$$
.

B.
$$m \ge 4$$
.

C.
$$m \le 4$$
.

D.
$$0 \le m \le 4$$
.

Câu 37. Tập xác định của hàm số $y = \frac{\sqrt{x+1}}{\ln(5-x)}$ là:

A.
$$D = [-1;5)$$
.

B.
$$D = (-1;5)$$
.

C.
$$D = [-1,5) \setminus \{4\}$$
. **D.** $D = \mathbb{R}$

D.
$$D = \mathbb{R}$$

Câu 38. Cho hàm số $y = x^3 - 3(m^2 - m)x^2 + 12(m + 2)x - 3m - 9$. Giá trị của tham số m để hàm số đạt cực đại tại x = 2 là:

A.
$$m = -1$$
.

B.
$$m = 3$$
.

C.
$$m = 1$$
.

$$\mathbf{D.} \begin{bmatrix} m=3 \\ m=-1 \end{bmatrix}.$$

Câu 39. Cho hàm số y = f(x) thỏa mãn $f'(x) = (x+1)e^x$, f(0) = 0 và $\int f(x)dx = (ax+b)e^x + c$ với a,b,clà các hằng số. Khi đó:

A.
$$a+b=0$$
.

B.
$$a+b=2$$
.

C.
$$a+b=3$$
.

D.
$$a+b=1$$
.

Câu 40. Cho hình lập phương ABCD.A'B'C'D' có tâm O. Gọi I là tâm của hình vuông A'B'C'D' và M là điểm thuộc đoạn thẳng OI sao cho $OM = \frac{1}{2}MI$. Khi đó sin của góc tạo bởi hai mặt phẳng (MC'D') và (MAB) bằng:

A.
$$\frac{6\sqrt{85}}{85}$$
.

B.
$$\frac{7\sqrt{85}}{85}$$
.

C.
$$\frac{6\sqrt{13}}{65}$$
.

D.
$$\frac{17\sqrt{13}}{65}$$
.

Câu 41. Parabol $y = \frac{1}{2}$	$\frac{x^2}{2}$ chia hình tròn có tâm	là gốc tọa độ, bán kính bằng	$2\sqrt{2}$ thành hai phần có	diện tích S_1		
và S_2 , trong đó $S_1 < S_2$	S_2 . Tìm tỉ số $\frac{S_1}{S_2}$.					
A. $\frac{3\pi+2}{21\pi-2}$.	B. $\frac{3\pi+2}{12\pi}$.	C. $\frac{9\pi-2}{3\pi+2}$.	D. $\frac{3\pi+2}{9\pi-2}$.			
Câu 42. Gọi $M(a;b)$ là điểm thuộc góc phần tư thứ nhất và nằm trên đồ thị hàm số $y = \frac{2x+5}{x+1}$ mà có khoảng						
cách đến đường thẳng $d: x+y+6=0$ nhỏ nhất. Khi đó giá trị của hiệu $b-a$ là:						
A. $3-2\sqrt{3}$.	B. 1.	C. 3.	D. 2.			

Câu 43. Tìm tất cả các giá trị của tham số m để đồ thị của hàm số $y = m \log_2^2 x - 2 \log_2 x + 2m + 1$ cắt trục hoành tại một điểm duy nhất có hoành độ thuộc khoảng $[1;+\infty)$.

$$\mathbf{A.} \ m \in \left[-\frac{1}{2}; -\infty \right] \cup \left\{ \frac{1}{2} \right\}. \ \mathbf{B.} \ m \in \left(-\frac{1}{2}; 0 \right) \cup \left\{ \frac{1}{2} \right\}. \quad \mathbf{C.} \ m \in \left[-\frac{1}{2}; 0 \right] \cup \left\{ \frac{1}{2} \right\}. \quad \mathbf{D.} \ m \in \left(-\frac{1}{2}; -\infty \right) \cup \left\{ \frac{1}{2} \right\}.$$

Câu 44. Trong hệ trục tọa độ Oxyz, cho điểm H(2;1;1). Gọi các điểm A, B, C lần lượt ở trên các trục tọa độ Ox, Oy, Oz sao cho H là trực tâm của tam giác ABC. Khi đó hoành độ điểm A là:

B.
$$-3$$
.

Câu 45. Tìm tất cả các giá trị của tham số thực m để bất phương trình $\left(x\sqrt{x} + \sqrt{x+12}\right) \le m \cdot \log_{5-\sqrt{4-x}} 3$ có nghiệm.

A.
$$m > 2\sqrt{3}$$
.

B.
$$2\sqrt{3} \le m \le 12\log_3 5$$
. **C.** $m \ge 2\sqrt{3}$.

C.
$$m \ge 2\sqrt{3}$$

D.
$$m \ge 4$$
.

Câu 46. Cho bất phương trình: $9^x + (m-1) \cdot 3^x + m > 0$ (1). Tìm tất cả các giá trị của tham số m để bất phương trình (1) nghiệm đúng $\forall x \ge 1$.

A.
$$m \ge -\frac{3}{2}$$
.

B.
$$m > -2$$

B.
$$m > -2$$
. **C.** $m > -\frac{3}{2}$.

D.
$$m > 0$$
.

Câu 47. Biết $\int_{a}^{c} x \ln(x^2+9) dx = a \ln 5 + b \ln 3 + c$ trong đó a,b,c là các số nguyên. Giá trị của biểu thức T = a + b + c là:

A.
$$T = 9$$
.

B.
$$T = 11$$
.

C.
$$T = 8$$
.

D.
$$T = 10$$
.

Câu 48. Cho hình nón có đỉnh S, đáy là đường tròn tâm O sao cho $SO = 6\sqrt{5}$, một mặt phẳng (α) cắt mặt nón theo hai đường sinh SA, SB. Biết khoảng cách từ O đến mặt phẳng (α) bằng $2\sqrt{5}$ và diện tích tam giác ΔSAB bằng 360. Thể tích của khối nón bằng:

A.
$$1325\pi\sqrt{5}$$
.

B.
$$265\sqrt{5}$$
.

C.
$$1325\sqrt{5}$$
.

D.
$$265\pi\sqrt{5}$$
.

Câu 49. Cho f(x), f(-x) liên tục trên \mathbb{R} và thỏa mãn $2f(x)+3f(-x)=\frac{1}{x^2+4}$. Biết $I=\int_{-2}^2 f(x)dx=\frac{\pi}{m}$. Khi đó giá trị của m là:

A.
$$m = 10$$
.

B.
$$m = 20$$
.

C.
$$m = 5$$
.

D.
$$m = 2$$
.

Câu 50. Trong không gian, cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B với AB = BC = 1, AD = 2, cạnh bên SA = 1 và SA vuông góc với đáy. Gọi E là trung điểm của AD. Tính diện tích S_{mc} của mặt cầu ngoại tiếp hình chóp S.CDE.

A.
$$S_{mc} = 11\pi$$
.

B.
$$S_{mc} = 3\pi$$
.

C.
$$S_{mc} = 2\pi$$
.

D.
$$S_{mc} = 5\pi$$
.

(Đề thi giữa HK2 - trường THPT Việt Đức - năm học 2018-2019)

ĐỀ SỐ 2

A. $\int f(x)dx = e \cdot x^{e-1} + C$. **B.** $\int f(x)dx = \frac{x^e}{\ln x} + C$. **C.** $\int f(x)dx = x^e + C$. **D.** $\int f(x)dx = \frac{x^{e+1}}{e+1} + C$.

Câu 3. Trong hệ trục tọa độ Oxyz, phương trình mặt cầu đường kính AB biết A(1;-5;-2), B(2;1;-4) là:

C. m < 2.

B. $(x-2)^2 + (y-1)^2 + (z+4)^2 = 9$.

D. m > 2.

Câu 1. Phương trình $\log_2(-x^2-3x-m+10)=3$ có 2 nghiệm trái dấu khi và chỉ khi:

B. m < 4.

Câu 2. Tìm họ nguyên hàm của hàm số $f(x) = x^e$.

A. $x^2 + y^2 + z^2 - 3x + 4y + 6z + 5 = 0$.

A. m > 4.

C. $x^2 + y^2 + z^2 + 3x - 4y$	-6z+5=0.	D. $(x-1)^2 + (y+5)^2 + (z$	$(+2)^2 = 16$.	
Câu 4. Bất phương trình 4^{3} A. $S = [1;3]$.		có tập nghiệm là: C. $S = [2;3] \cup \{1\}$.	D. $S = \{1; 2\}$.	
Câu 5. Cho phương trình 4	$e^{2x-1} - 5.4^{x-1} + 1 = 0$ có 2 ngl	hiệm $x_1; x_2 (x_1 < x_2)$. Khi đ		
A. 2.	B. 0.	C. 4.	D. -1.	
Câu 6. Trong các tiếp tuyến trình là:	n của đồ thị hàm số $y = x^3$ -	$-3x^2 + 2x + 4$, tiếp tuyến có	ó hệ số góc nhỏ nhất có phương	
A. $y = -x + 4$.	B. $y = -x - 1$.	C. $y = x - 3$.	D. $y = -x + 5$.	
Câu 7. Trong bốn hàm số	$y = \frac{x^2 + 2x + 4}{x - 1}; \ \ y = \left(\frac{1}{2}\right)^x;$	$y = \log x$; $y = 1 - \sqrt{x^2 + x}$	 +1 . Có mấy hàm số mà đồ thị	
của nó có đường tiệm cận. A. 1.	B. 4.	C. 3.	D. 2.	
Câu 8. Biết $F(x)$ là một ng	guyên hàm của hàm số $f(z)$	$f(x) = \frac{1}{\sqrt{x}}$ và $F(1) = 3$. Tính	F(4).	
A. $F(4) = 5$.	B. $F(4) = 3$.	C. $F(4) = 3 + \ln 2$.	D. $F(4) = 4$.	
Câu 9. Bất phương trình lo	$g(x-41) + \log(61-x) < 2$	có bao nhiêu nghiệm nguy	vên?	
A. 19.	B. 20.	C. 21.	D. 18.	
Câu 10. Trong hệ trục tọa	độ Oxyz , cho mặt cầu (S)	$(x+2)^2 + (y-4)^2 + (z-1)^2$	$y^2 = 9$. Phương trình mặt phẳng	
(P) đi qua hai điểm $A(1;7)$;-8), B(-1;1;0) và tiếp xứ	ic với mặt cầu (S) là:		
A. $ (P): 2x + 2y - z - 4 = 0 $ $(P): 4x - 3z + 20 = 0 $ B. $ (P): 2x + y + 2z - 2 = 0 $ $(P): 3y + 4z - 7 = 0 $				

C.
$$\binom{(P): 2x-2y+z+4=0}{(P): 4x-3y-17=0}$$
.

D.
$$(P): -2x + 2y + z - 4 = 0$$

$$(P): 4y + 3z - 4 = 0$$
.

Câu 11. Trong hệ trục tọa độ O_{XYZ} , cho bốn điểm A(-2;0;0), B(1;4;2), C(0;1;-3), D(-1;2;1). Phương trình mặt phẳng đi qua A, B và song song với C, D là:

A.
$$2x-2y+z-4=0$$
. **B.** $2x-2y-z-4=0$.

B.
$$2x-2y-z-4=0$$
.

C.
$$2x + 2y - z + 4 = 0$$
.

C.
$$2x+2y-z+4=0$$
. **D.** $2x-2y+z+4=0$.

Câu 12. Trong không gian Oxyz, cho đường thẳng $d: \frac{x+8}{4} = \frac{5-y}{2} = \frac{-z}{-1}$. Khi đó vectơ chỉ phương của đường thắng d có tọa độ là:

B.
$$(4;-2;1)$$
.

C.
$$(4;2;-1)$$
.

D.
$$(4;-2;-1)$$
.

Câu 13. Chọn khẳng định đúng

A.
$$\int 3^{2x} dx = \frac{9^{x+1}}{\ln 9} + C$$

B.
$$\int 3^{2x} dx = \frac{3^{2x}}{\ln 3} + C$$

C.
$$\int 3^{2x} dx = \frac{3^{2x}}{\ln 9} + C$$

A.
$$\int 3^{2x} dx = \frac{9^{x+1}}{\ln 9} + C$$
. **B.** $\int 3^{2x} dx = \frac{3^{2x}}{\ln 3} + C$. **C.** $\int 3^{2x} dx = \frac{3^{2x}}{\ln 9} + C$. **D.** $\int 3^{2x} dx = \frac{3^{2x+1}}{2x+1} + C$.

Câu 14. Tìm tất cả các giá trị của m để hàm số $y = e^{\frac{mx+4}{x+m}}$ nghịch biến trên $(-\infty;1)$.

A.
$$m \in (-1,2)$$
.

B.
$$m \in (-2; -1]$$
.

C.
$$m \in [1;2)$$
.

D.
$$m \in [-2;1]$$
.

Câu 15. Cho $\int_{1}^{2} f(x) dx = 2.\text{Tính } I = \int_{1}^{4} \frac{f(\sqrt{x})}{\sqrt{x}} dx \text{ bằng:}$

A.
$$I = \frac{1}{2}$$
.

B.
$$I = 1$$

C.
$$I = 2$$
.

D.
$$I = 4$$
.

Câu 16. Số nghiệm nguyên của bất phương trình $\left(\frac{3}{5}\right)^{8x} \ge \left(\frac{5}{3}\right)^{x-9}$ là:

Câu 17. Tìm tất cả các giá trị thực của m để hệ phương trình sau có nghiệm: $\begin{cases} 3^{2(x+y)+5} = 3^{x+y+2} + 2 \\ \log(xy) = \log m \end{cases}$

A.
$$0 < m \le 1$$
.

B.
$$0 \le m \le 1$$
.

C.
$$m \le 1$$
.

D.
$$m = 1$$
.

Câu 18. Cho các điểm M(1;-1;2),N(2;0;-1),P(-1;2;1). Tìm điểm Q sao cho P là trọng tâm tứ diện OMNQ

A. (-6;7;2).

B. (0;5;4).

C. (-4;3;0).

D. (-7,9,3).

Câu 19. Tập xác định của hàm số $y = \log_{x+2} \left(-x^2 - 3x + 4 \right)$ là:

A.
$$D = (-4;1)$$
.

B.
$$D = (-1, 4)$$
.

C.
$$D = (-2;1) \setminus \{-1\}$$
. **D.** $D = (-2;1)$.

D.
$$D = (-2;1)$$

Câu 20. Tính diện tích hình phẳng giới hạn bởi (P): $y = x^2 - 4x + 5$ và các tiếp tuyến với (P) tại A(1;2), tại B(4;5).

B. $\frac{5}{2}$.

C. $\frac{9}{4}$.

Câu 21. Cho hình nón đỉnh S và đường tròn đáy có tâm O. Điểm A thuộc đường tròn đáy. Tính số đo góc SAO, biết tỉ số giữa diện tích xung quanh và diện tích đáy của hình nón là $\frac{2}{\sqrt{3}}$.

A. 45°.

B. 30°.

C. 120°.

D. 60°.

Câu 22. Hàm số nào dưới đây là một nguyên hàm của hàm số $y = 2^{\sin x} 2^{\cos x} (\cos x - \sin x)$

A.
$$y = -\frac{2^{\sin x + \cos x}}{\ln 2} + C$$
. **B.** $y = \frac{2^{\sin x} \cdot 2^{\cos x}}{\ln 2}$.

C. $y = \ln 2.2^{\sin x + \cos x}$. **D.** $y = 2^{\sin x + \cos x} + C$.

Câu 23. Hàm số nào trong các hàm số sau đồng biến trên \mathbb{R} ?

A.
$$y = \frac{2x-1}{x+3}$$
.

B. $y = x^4 + 2x^2 + 6$. **C.** $y = \frac{x^2 + 3x - 5}{x - 1}$. **D.** $y = x^3 + x - 4$.

Câu 24. Cho $F(x) = 4^x$ là một nguyên hàm của hàm số $2^x f(x)$. Tính $K = \int_0^1 \frac{f'(x)}{\ln^2 2} dx$.

A.
$$K = -\frac{2}{\ln 2}$$

A. $K = -\frac{2}{\ln 2}$. **B.** $K = \frac{2}{\ln 2}$. **C.** $K = -\frac{2^x}{\ln 2}$. **D.** $K = \frac{2^x}{\ln 2}$.

Câu 25. Trong không gian với hệ toạ độ Oxyz, cho hình chóp S.ABCD, đáy ABCD là hình chữ nhật. Biết D(0;0;0), A(a;0;0), C(0;2a;0), S(0;0;2a). Gọi M là trung điểm của SC. Tính khoảng cách từ C đến mặt phẳng (ABM).

A.
$$d(C,(MAB)) = \frac{a}{2}$$

A. $d(C,(MAB)) = \frac{a}{2}$. **B.** $d(C,(MAB)) = \frac{a}{\sqrt{2}}$. **C.** $d(C,(MAB)) = \frac{a}{\sqrt{2}}$. **D.** $d(C,(MAB)) = a\sqrt{2}$.

A.
$$(d)$$
:
$$\begin{cases} x = -t \\ y = 0 \\ z = t \end{cases}$$

A. $(d): \begin{cases} x = -t \\ y = 0 \\ z = t \end{cases}$ **B.** $(d): \begin{cases} x = t \\ y = 0 \\ z = 2 - t \end{cases}$ **C.** $(d): \begin{cases} x = 2 - t \\ y = 1 \\ z - t \end{cases}$ **D.** $(d): \begin{cases} x = 2 + t \\ y = 1 \\ z - t \end{cases}$

Câu 27. Hình phẳng giới hạn bởi đồ thị hàm số y = f(x) liên tục trên đoạn [b;a], trục hoành và hai đường thẳng $x = a, x = b, (b \le a)$ có diện tích S là:

$$\mathbf{A.} \ S = \int_{a}^{b} f(x) dx.$$

A. $S = \int_a^b f(x) dx$. **B.** $S = \int_b^a |f(x)| dx$. **C.** $S = \left| \int_a^b f(x) dx \right|$. **D.** $S = \int_a^b |f(x)| dx$.

Câu 28. Cho hàm f(x) có đạo hàm trên đoạn $[0;\pi]$, $f(0) = \pi$, $\int_0^{\pi} f'(x) dx = 3\pi$. Tính $f(\pi)$.

A.
$$f(\pi) = 4\pi$$

B.
$$f(\pi) = -\pi$$

A.
$$f(\pi) = 4\pi$$
. **B.** $f(\pi) = -\pi$. **C.** $f(\pi) = 2\pi$. **D.** $f(\pi) = 0$.

D.
$$f(\pi) = 0$$
.

Câu 29. Cho hình thang cong (H) giới hạn bởi các đường $y = 3^x, y = 0, x = 0, x = 2$. Đường thẳng

x = 1 (0 < t < 2) chia (H) thành hai phần có diện tích S_1 và S_2 (hình vẽ). Tìm t để $S_1 = 3S_2$.

- **A.** $t = \log_3 35$.
- **B.** $t = \log_3 5$.
- **C.** $t = \log_3 7$.
- **D.** $t = \log_3 2$.

Câu 30. Cho hàm số $y = x^4 - 2mx^2 + 3m - 1$. Tìm giá trị của tham số m để đồ thị hàm số có ba điểm cực trị lập thành một tam giác vuông cân.

A. m = 1.

- $\mathbf{B.} \begin{vmatrix} m=0\\ m=1 \end{vmatrix}.$
- **C.** m = -1.
- **D.** $m = \pm 1$.

Câu 31. Cho (H) là hình phẳng giới hạn bởi hai đường cong $y = x^3 - x$ và $y = x - x^2$ (hình vẽ). Diện tích của (H) bằng:

- **A.** $S = \frac{37}{12}$.
- **B.** $S = \frac{12}{27}$.
- C. $S = \frac{9}{4}$.
- **D.** $S = \frac{19}{6}$.

Câu 32. Trong hệ trục tọa độ Oxyz, cho ba điểm A(-3;-1;0), B(2;1;3), C(1;2;1). Diện tích tam giác ABCbằng:

- **A.** $S_{\triangle ABC} = \frac{7}{2}$.
- **B.** $S_{\triangle ABC} = \frac{7\sqrt{3}}{2}$. **C.** $S_{\triangle ABC} = \frac{7\sqrt{2}}{2}$. **D.** $S_{\triangle ABC} = \frac{7\sqrt{3}}{6}$.

Câu 33. Cho các số thực $a, b, c (0 < a, b, c \neq 1)$ thỏa $\log_a b = 2$; $\log_c a = 3$. Tính giá trị biểu thức $\log_a \left(\frac{\sqrt{a^3 b}}{ac^2} \right)$.

A. $\frac{19}{6}$.

B. $\frac{11}{6}$.

- $C.\frac{5}{6}$.
- **D.** $\frac{13}{6}$.

Câu 34. Trong hệ trục tọa độ Oxyz, cho bốn điểm A(0;-2;3), B(-1;0;2), C(2;-1;0), D(1;1;1). Tọa độ hình chiếu H của D trên mặt phẳng (ABC) là:

- **A.** $H\left(\frac{2}{3}; \frac{2}{3}; \frac{2}{3}\right)$. **B.** $H\left(\frac{1}{3}; \frac{1}{3}; \frac{1}{3}\right)$. **C.** $H\left(\frac{1}{3}; -\frac{1}{3}; \frac{2}{3}\right)$. **D.** $H\left(-\frac{1}{3}; -\frac{1}{3}; -\frac{1}{3}\right)$.

Câu 35. Trong hệ trục tọa độ Oxyz, cho ba điểm A(-1;2;2), B(2;1;1), C(2;-2;-1) và điểm $D \in Ox$ và có

1) . 1 40 1.1.0	T	å Kalaria de ADCD 1 Šua	A	
noann do knong dương	g. I im tọa độ điểm D để th	ể tích tứ diện ABCD bằng	4.	
A. $D(24;0;0)$.	B. $D(19;0;0)$.	C. $D(-19;0;0)$.	D. $D(-29;0;0)$.	
Câu 36. Cho khối nón khối nón là:	có bán kính đường tròn đáy	y bằng 9 và diện tích xung q	uanh bằng 108π . Chiều cao $\it h$	ı của
A. $3\sqrt{7}$.	B. $\frac{2\sqrt{7}}{2}$.	C. $2\sqrt{7}$.	D. $\frac{\sqrt{7}}{2}$.	

Câu 37. Trong hệ trục tọa độ Oxyz, cho mặt cầu (S) tâm A(1;-2;4) và tiếp xúc với mặt phẳng (P): 3x-6y-2z+7=0. Phương trình mặt cầu (S) là:

A.
$$(x+1)^2 + (y-2)^2 + (z+4)^2 = 4$$
. **B.** $(x-1)^2 + (y+2)^2 + (z-4)^2 = 4$.

C.
$$(x+1)^2 + (y-2)^2 + (z+4)^2 = 16$$
.
D. $(x-1)^2 + (y+2)^2 + (z-4)^2 = 9$.

Câu 38. Giá trị lớn nhất của hàm số $y = -x^3 + 3x^2 + 9x + 7$ trên [-2;0] là:

Câu 39. Cho hình nón có đỉnh S có đáy là đường tròn tâm O sao cho $SO = 6\sqrt{3}$, một mặt phẳng (α) cắt hình nón theo thiết diện là tam giác SAB để khoảng cách từ O đến mặt phẳng (α) bằng $2\sqrt{3}$ và diện tích tam giác ΔSAB bằng 216. Thể tích của khối nón bằng:

A.
$$265\pi\sqrt{3}$$
. **B.** $265\sqrt{3}$. **C.** $795\pi\sqrt{3}$. **D.** $795\sqrt{3}$.

Câu 40. Cho hàm số y = f(x) có đạo hàm liên tục trên đoạn [1;4], đồng biến trên đoạn [1;4] và thỏa mãn đẳng thức $x + 2x \cdot f(x) = \left[f'(x)\right]^2$, $\forall x \in [1;4]$. Biết rằng $f(1) = \frac{3}{2}$, tính $I = \int_{1}^{4} f(x) dx$.

A.
$$I = \frac{1174}{45}$$
. **B.** $I = \frac{1186}{45}$. **C.** $I = \frac{1201}{45}$. **D.** $I = \frac{1222}{45}$.

Câu 41. Tìm tất cả các giá trị của tham số m sao cho bất phương trình $m2^{x+1} + (2m+1)(3-\sqrt{5})^x + (3+\sqrt{5})^x < 0$ nghiệm đúng với mọi $x \in (-\infty; 0]$.

A.
$$m < \frac{1}{2}$$
. **B.** $m \le \frac{1}{2}$. **C.** $m < -\frac{1}{2}$. **D.** $m \le -\frac{1}{2}$.

Câu 42. Cho hàm số y = f(x) có đồ thị hàm số y = f'(x) (hình dưới). Hàm số y = 3 - 2x + f(1 - x) nghịch biến trong các khoảng:

A. (-1;1) và $(2;+\infty)$. **B.** $\left(-\infty;-\frac{3}{2}\right)$.

C. $\left(-\infty; -\frac{1}{2}\right)$ và $\left(\frac{3}{2}; +\infty\right)$. D. $\left(-\frac{1}{2}; 1\right)$.

Câu 43. Biết rằng $I = \int_{a}^{1} e^{\sqrt{3x+1}} dx = \frac{a}{b} e^2$ với a, b là các số thực thỏa mãn a-b=-2. Tính tổng S=a+b.

A. S = 7.

D. S = 10.

Câu 44. Tìm hàm số f(x) thỏa mãn $3x^2 \cdot f'(x) + x^3 \cdot f''(x) = -1$ với $x \neq 0$ và f(1) = 1, f(-2) = -1.

A. $f(x) = \frac{1}{r} + \frac{2}{3r^2} - \frac{2}{3}$. **B.** $f(x) = \frac{1}{r} + \frac{2}{3r^2} + \frac{2}{3}$. **C.** $f(x) = \frac{1}{r} - \frac{2}{3r^2} + \frac{2}{3}$ **D.** $f(x) = \frac{1}{r} - \frac{2}{3r^2} - \frac{2}{3}$.

Câu 45. Trong hệ trục tọa độ Oxyz, cho hình hộp chữ nhật ABCD.A'B'C'D' biết A(0;0;0), B(2;0;0), C(2;4;0), D'(0;4;3). Gọi điểm I(0;1;3), $J \in DD'$. Tìm tọa độ điểm J để diện tích tam giác BIJ đạt giá trị nhỏ nhất.

A. J(0;4;3).

B. J(0;4;0).

C. J(0;4;2).

D. J(0;4;1).

Câu 46. Bất phương trình $3^{2x+1} - (m+3)3^x - 2(m+3) \ge 0$ nghiệm đúng với mọi $x \in \mathbb{R}$ khi và chỉ khi:

A. $m \le -3$.

B. m = -3.

Câu 47. Cho hình lập phương ABCD.A'B'C'D' có tâm O. Gọi I là tâm của hình vuông ABCD và M là điểm thuộc OI sao cho $MO = \frac{1}{2}MI$. Khi đó, côsin góc tạo bởi hai mặt phẳng (MC'D') và (MAB) bằng:

A. $\frac{17\sqrt{13}}{65}$.

B. $\frac{6\sqrt{85}}{85}$.

C. $\frac{6\sqrt{13}}{65}$.

D. $\frac{7\sqrt{85}}{95}$.

Câu 48. Tìm $m \in (-\infty; -2)$ sao cho hình phẳng giới hạn bởi các đường $y = \frac{x^3}{3} + mx^2 - 2x - 2m - \frac{1}{3}$, x = 0, x = 1, y = 0có diện tích bằng 5.

A. $m = -\frac{9}{4}$. **B.** $m = \frac{9}{4}$.

C. $m = \frac{15}{4}$. D. $m = -\frac{15}{4}$.

Câu 49. Cho hình chóp S.ABCD có SA vuông góc với đáy, $SA = a\sqrt{6}$. Đáy ABCD là hình thang vuông tại Avà $B, AB = BC = \frac{1}{2}AD = a$. Gọi E là trung điểm AD. Tính bán kính mặt cầu ngoại tiếp hình chóp S.ECD.

A. $R = \frac{a\sqrt{30}}{2}$.

B. $R = \frac{\sqrt{114}}{\epsilon} a$. **C.** $R = a\sqrt{\frac{19}{\epsilon}}$.

D. $R = a\sqrt{6}$

Câu 50. Xét các số thực x, y (y > 0; 0 < x < 4) thỏa mãn $\log_2\left(\frac{4-x}{2x+y}\right) + 4 = 3x + y$. Tìm giá trị lớn nhất của biểu thức $P = 3\sqrt{x} + \sqrt{y}$.

A.
$$P_{\min} = 6$$
. **B.** $P_{\max} = 4$.

B.
$$P_{max} = 4$$

C.
$$P_{\text{max}} = 8$$
. **D.** $P_{\text{min}} = 2$.

D.
$$P_{\min} = 2$$
.

(Đề dự bị thi giữa HK2 - trường THPT Việt Đức - năm học 2018-2019)