Molecular Fingerprinting NH_2 Cheminformatics assignment Piyush R.Maharana

SMILES

!pip install rdkit-pypi

Displaying chemical structures in RDKit

mol = Chem.MolFromSmiles('clcccc1")

glvc =

Chem.MolFromSmiles("Cc1ccc(cc1Nc2nccc(n2)c3cc

cnc3) NC (=0) c4ccc (cc4) CN5CCN (CC5) C7

from rdkit.Chem import AllChem
from rdkit.Chem import rdMolDescriptors
from rdkit.Chem.Draw import IPythonConsole
from rdkit.Chem import Draw
from rdkit import DataStructs

Draw.MolsToGridImage(mols, molsPerRow= 4, useSVG=True)

Fingerprints

Molecular fingerprints are representations of molecular structures that encode information about their chemical properties and potential biological activity.

MACCS Keys Extended Connectivity Fingerprints

2. Path-Based Fingerprints Topological

Circular or Morgan **Atom Pair**

3. Machine Learning-Based Fingerprints

Fingerprint Type	Notes	Language
RDKit	a Daylight-like fingerprint based on hashing molecular subgraphs	C++
Atom Pairs	JCICS 25:64-73 (1985)	C++
Topological Torsions	JCICS 27:82-5 (1987)	C++
MACCS keys	Using the 166 public keys implemented as SMARTS	C++
Morgan/Circular	Fingerprints based on the Morgan algorithm, similar to the ECFP/FCFP fingerprints JCIM 50:742–54 (2010).	C++
2D Pharmacophore	Uses topological distances between pharmacophoric points.	C++
Pattern	a topological fingerprint optimized for substructure screening	C++
Extended Reduced Graphs	Derived from the ErG fingerprint published by Stiefl et al. in <i>JCIM</i> 46 :208-20 (2006). NOTE: these functions return an array of floats, not the usual fingerprint types	C++
MHFP and SECFP	Derived from the ErG fingerprint published by Probst et al. in <i>J Cheminformatics</i> 10 (2018). NOTE: these functions return different types of values	C++

Molecular Similarity

bit_asp = {} bit_sal = {}

aspirin_fp = AllChem.GetMorganFingerprintAsBitVect(aspirin, 2, nBits=2048, bitInfo=bit_asp)

salicylic_acid_fp = AllChem.GetMorganFingerprintAsBitVect(salicylic_acid, 2, nBits=2048, bitInfo=bit_sal)

Draw.DrawMorganBit(salicylic_acid, Draw.DrawMorganBit(aspirin, 456, 456, bit_asp)

*
HO

asp)		
	*	
*	//	_

aspirin

Measure	Expression	Range
Tanimoto/Jaccard coefficient	$\frac{c}{a+b-c}$	0 to 1
Euclidean distance	$\sqrt{a+b-2c}$	0 to N
City-block/Manhattan/Hamming distance	a+b-2c	0 to N
Dice coefficient	$\frac{2c}{a+b}$	0 to 1
Cosine similarity	$\frac{c}{\sqrt{ab}}$	0 to 1
Russell-RAO coefficient	c m	0 to 1
Forbes coefficient	cm ab	0 to 1
Soergel distance	$\frac{a+b-2c}{a+b-c}$	0 to 1

salicylic acid

print("TanimotoSimilarity", DataStructs.FingerprintSimilarity(aspirin_fp,
salicylic_acid_fp, metric=DataStructs.TanimotoSimilarity))

Tanimoto Similarity 0.44827586
Dice Similarity 0.619047619
Cosine Similarity 0.62546279

Comparing molecules

fig, maxweight =

SimilarityMaps.GetSimilarityMapForFingerprint(my_this_mol_obj, my that mol obj, SimilarityMaps.GetMorganFingerprint)

Descriptors similarity maps

from rdkit.Chem import rdMolDescriptors

contribs = rdMolDescriptors. CalcCrippenContribs(my this mol obj)

fig = SimilarityMaps.GetSimilarityMapFromWeights(my_this_mol_obj,[x for x,y in contribs], colorMap='jet',

contourLines=10)

Convolutional Networks on Graphs for Learning Molecular Fingerprints

Thank you

