Exercices d'analyse, feuille 4

Licence d'Informatique

2^{ème} année, semestre 3

1 Calcul de limites

Exercice 1. Déterminer les limites en $\pm \infty$ des fonctions cosh, sinh, tanh.

Exercice 2. Étudier les limites (au point indiqué) des fonctions usuelles définies par les formules ci-après.

1.
$$\exp(\arctan(X))$$
 en $-\infty$

5.
$$\frac{1 - \exp\left(\sqrt{1 + \sin\left(\frac{1}{X}\right)}\right)}{\exp\left(-\sqrt{X}\right)} \text{ en } +\infty$$

2.
$$\frac{X^2 + 2|X|}{X}$$
 en $-\infty$

6.
$$\frac{X^3 - 2X^2 + 3}{X \ln(X)}$$
 en $+\infty$

3.
$$\frac{X^2-2}{X^2-3X+2}$$
 en 2

7.
$$\frac{\ln(3X+1)}{2X}$$
 en 0

4.
$$\frac{X^2-4}{X^2-3X+2}$$
 en 2

8.
$$\frac{X^X-1}{\ln(X+1)}$$
 à droite en 0

Exercice 3. Démontrer que la fonction usuelle donnée par la formule $f(X) := \left(\sqrt{3}X + \sqrt{7}\right)\ln\left(X\right)\tan\left(\frac{1}{\ln(2X+1)}\right)$ admet une asymptote oblique en $+\infty$, dont on donnera une équation.

2 Approximations

Exercice 4. (Méthode de Héron d'Alexandrie) On définit la suite récurrente

$$u_0 := 4$$

$$u_{n+1} := u_n - \frac{u_n^2 - 17}{2u}.$$

On définit la fonction usuelle f par la formule $f(X) := \frac{X}{2} + \frac{17}{2X}$.

- 1. Vérifier que f est définie sur I := [4, 5] et prouver l'inclusion $f(I) \subset I$.
- 2. Établir que f admet un unique point fixe sur I, et que celui-ci vaut $\sqrt{17}$.
- 3. (Premier certificat)
 - (a) Justifier que f est dérivable sur I.
 - (b) En étudiant la fonction f' sur I, démontrer

$$\sup_{x\in I} \left| f'(x) \right| = \frac{4}{25}.$$

- (c) Énoncer les hypothèses et la conclusion de l'inégalité des accroissements finis.
- (d) En déduire que pour tous $x, y \in I$ on a

$$\left| f\left(x\right) -f\left(y\right) \right| \leq rac{4}{25}\left| x-y\right| .$$

(e) Conclure alors

$$\left|u_n - \sqrt{17}\right| \le \left(\frac{4}{25}\right)^n$$

et écrire un certificat de convergence $conv_1$ pour (u_n) basé sur cette inégalité.

- 4. Grâce à un code (par exemple en Python), calculer et afficher les 10 premiers termes de la suite (u_n) . Que dire de la précision de conv₁?
- 5. (Deuxième certificat) Le phénomène observé ci-dessus suggère que conv₁ n'a pas un ordre de grandeur de convergence optimal. Ceci s'explique par le fait qu'au niveau du point fixe de f, cette fonction admet un minimum local. Ainsi, plus u_n s'approche de $\sqrt{17}$, plus la constante dans l'inégalité des accroissements finis est petite. Soyons plus précis.
 - (a) Vérifier que $f'(\sqrt{17}) = 0$.
 - (b) Démontrer que pour tout $x \in I$ on a

$$\left| f'(x) \right| \le \frac{17}{64} \left| x - \sqrt{17} \right|.$$

(c) En déduire que pour $x \in I$ l'estimation suivante est en fait vérifiée :

$$\left| f(x) - \sqrt{17} \right| \le \frac{17}{64} \left| x - \sqrt{17} \right|^2.$$

(d) Conclure

$$\left|u_n - \sqrt{17}\right| \le \left(\frac{17}{64}\right)^{2^n - 1}.$$

(e) Écrire un certificat de convergence $conv_2$ meilleur que $conv_1$. Le comparer au calcul de $(u_n)_{n \le 10}$ effectué en 4.

Exercice 5. Soit f la fonction usuelle définie par la formule $f(X) = \frac{X^3}{6} + \frac{X}{3} + \frac{1}{3}$. On définit la suite (u_n) en posant $u_0 := 0$ et $u_{n+1} := f(u_n)$ pour $n \in \mathbb{N}$.

- 1. Montrer que la suite (u_n) est croissante. Montrer que f(3/4) < 3/4 et en déduire, pour tout $n \in \mathbb{N}$, l'inégalité $u_n < 3/4$.
- 2.
 - (a) Montrer que (u_n) converge.
 - (b) Expliquer pourquoi la limite de (u_n) est racine du polynôme $X^3 4X + 2$.
 - (c) Prouver que ce polynôme a une seule racine dans [0, 3/4].
- 3. On cherche à approximer ℓ de manière effective, c'est-à-dire expliciter un certificat de convergence pour (u_n) .
 - (a) Montrer que, pour tout $n \in \mathbb{N}$, on a $0 \le \ell u_{n+1} \le \frac{2}{3} (\ell u_n)$.
 - (b) En déduire l'encadrement $0 \le \ell u_n \le \left(\frac{2}{3}\right)^n$.
- 4. Étant donné $k \in \mathbb{N}$, comment peut-on choisir l'entier n pour que u_n soit une valeur approchée de ℓ à 10^{-k} près?

Exercice 6. Pour tout entier positif n fixé, on considère la fonction usuelle f_n définie par la formule

$$f_n(X) := \exp(-X) \sum_{k=0}^n \frac{X^k}{k!} = \exp(-X) \left(1 + \frac{X}{1} + \frac{X^2}{2} + \frac{X^3}{3!} + \dots + \frac{X^n}{n!} \right).$$

On fixe un entier M > 0.

- 1. Montrer que f_n est dérivable sur [0, M] et calculer sa dérivée.
 - (a) Justifier que f'_n est bornée sur [0, M].
 - (b) Déterminer un majorant de $|f'_n|$ sur cet intervalle.
- 2. On considère la suite définie par

$$u_n := \sum_{k=0}^n \frac{1}{k!}$$

- (a) Montrer que (u_n) converge vers une limite à déterminer. *Indication* : utiliser l'inégalité des accroissements finis.
- (b) Écrire un certificat de convergence pour cette suite.
- 3. Plus généralement, établir l'égalité

$$(\forall x \in [0, M])$$
 $\exp(x) = \sum_{k=0}^{+\infty} \frac{x^k}{k!} = \lim_{n \to +\infty} \sum_{k=0}^{n} \frac{x^k}{k!}$

en précisant un certificat de convergence $conv_M$ ne dépendant pas de x.

- 4. Étant donné $x \in \mathbb{R}_{\geq 0}$, expliquer comment construire un certificat de convergence basé sur la formule donnée en 3.
- 5. Expliquer ensuite comment obtenir un meilleur certificat de convergence pour n'importe quel $x \ge 0$ basé sur le certificat de convergence conv₁.

Exercice 7. À l'instar de l'exercice précédent, on admet que pour tout $x \in \mathbb{C}$ la suite $\left(\sum_{k=0}^n \frac{x^k}{k!}\right)_n$ converge vers $\exp(x)$. Nous allons néanmoins questionner cette affirmation lorsque x < 0. Étudions pour cela la suite donnée par

$$u_n := \sum_{k=0}^n \frac{(-10)^k}{k!}.$$

- 1. Écrire un code (par exemple en Python) qui prend en entrée un entier n et calcule la valeur de u_n .
- 2. Afficher la valeur de $(u_n)_{n < 20}$. Combien vaut u_{20} ? Des commentaires?
- 3. Quelle est la valeur de u_{60} retournée par le code? Quel est le maximum de $|u_n|$ lorsque $n \le 60$? Des commentaires?
- 4. Comparer la valeur de u_{60} , u_{100} , u_{200} , u_{1000} retournée par le code à la valeur certifiée à 16 chiffres significatifs :

$$\exp(-10) = 4,539992976248485 \times 10^{-5} \pm 10^{-21},$$

et expliquer la différence observée.