Group H - Assignment 4

This assignment was focused on predicting certain properties of a dataset with several wine characteristics. The dataset contained 13 different characteristics connected to the chemical composition of the wine and one column showing customer segment. Furthermore, linear regression, logistic regression, and principal component analysis are used to analyze the dataset. Afterward, the results of those different techniques are evaluated and compared.

1. Predicting the percentage of alcohol in wine with linear regression

Linear regression is a very effective tool to predict a certain characteristic on the basis of a set of other variables. In our case, the column containing a percentage volume of alcohol was used as a dependent variable and the other twelve chemical characteristics and customer segment were used as independent ones. Furthermore, Statsmodels package was used to execute the regressions and the standard output is added as Exhibit 1. The regression resulted in an adjusted R-squared of 58.7%, which indicates that the model explains 58.7% of the variability of the dependent variable. Since it exceeds the threshold of 20-30%, it is considered a well-fitted model. Moreover, the p-value for the F-statistic is far lower than 5%, which indicates that the regressors in the model are relevant to explain the dependent variable.

	OL	S Regress	ion Results				
Dep. Variable:	D						
	Alcohol		CO-3000			0.663	
Model:			Adj. R-squa			0.634	
Method:	Least Squares				22.89		
Date:	Wed, 12 Dec 2018			50000000000000000000000000000000000000	1.52e-31		
Time:	15:01:47		Log-Likelih	iood:	=	-118.20	
No. Observations:	178		AIC:			266.4	
Df Residuals:	163		BIC:			314.1	
Df Model:		14					
Covariance Type:	nonrobust						
	coef	std err	t	P> t	[0.025	0.975]	
Malic_Acid	0.0745	0.044	1.704	0.090	-0.012	0.161	
Ash	-0.2858	0.213	-1.342	0.181	-0.706	0.135	
Ash_Alcanity	0.0044	0.018	0.242	0.809	-0.031	0.040	
Magnesium	-0.0001	0.003	-0.033	0.974	-0.006	0.006	
Total_Phenols	0.0988	0.125	0.793	0.429	-0.147	0.345	
Flavanoids	-0.0505	0.115	-0.438	0.662	-0.278	0.177	
Nonflavanoid_Phenols	-0.0373	0.405	-0.092	0.927	-0.837	0.762	
Proanthocyanins	-0.0671	0.091	-0.736	0.463	-0.247	0.113	
Color_Intensity	0.1243	0.030	4.142	0.000	0.065	0.184	
Hue	0.3522	0.263	1.339	0.183	-0.167	0.872	
OD280	0.0308	0.109	0.282	0.778	-0.185	0.246	
Proline	0.0002	0.000	0.726	0.469	-0.000	0.001	
Customer_Segment_2	-1.1190	0.198	-5.657	0.000	-1.510	-0.728	
Customer_Segment_3	-0.7246	0.298	-2.434	0.016	-1.313	-0.137	
const	12.8898	0.652	19.767	0.000	11.602	14.177	

2. Logistic regression

Logistic regression is used in cases, where the predicted value is binary. In this case, the strength of the wine was predicted after setting an arbitrary line of using top 25% amounts of alcohol as "strong" wines. Logistic regression allows us to assume non-constant effects among independent variables of the regression as well as non-standard error terms. The results of the regression with all the covariates used can be seen in Exhibit 3 and 4.

	Coef.	Std.Err.	z	P> z	[0.025	0.975]
Malic_Acid	0.7963	0.3299	2.4139	0.0158	0.1497	1.4429
Ash	-0.4046	1.4830	-0.2728	0.7850	-3.3111	2.5020
Ash_Alcanity	-0.1211	0.1261	-0.9605	0.3368	-0.3683	0.1260
Magnesium	-0.0174	0.0246	-0.7090	0.4783	-0.0655	0.0307
Total_Phenols	1.7637	1.0456	1.6868	0.0916	-0.2856	3.8130
Flavanoids	0.1078	1.0286	0.1048	0.9165	-1.9081	2.1237
Nonflavanoid_Phenols	0.5048	3.2619	0.1548	0.8770	-5.8884	6.8980
Proanthocyanins	-1.2858	0.8099	-1.5876	0.1124	-2.8731	0.3016
Color_Intensity	0.7868	0.2686	2.9289	0.0034	0.2603	1.3133
Hue	8.5526	2.6106	3.2761	0.0011	3.4359	13.6692
OD280	1.1993	0.8031	1.4933	0.1354	-0.3748	2.7734
Proline	0.0006	0.0016	0.3521	0.7247	-0.0026	0.0037
intercept	-16.7840	5.5746	-3.0108	0.0026	-27.7099	-5.8580
Customer_Segment_2	-2.4306	1.5222	-1.5968	0.1103	-5.4141	0.5528
Customer Segment 3	1 6249	2 4489	0.6635	0.5070	-3 1749	6 4246

Exhibit 3 - Coefficients of the logistic regression with binary variable Strong as dependent

0.459	Pseudo R-squared:	Logit	Model:
143.3607	AIC:	Strength	Dependent Variable:
191.0875	BIC:	2018-12-12 14:02	Date:
-56.680	Log-Likelihood:	178	No. Observations:
-104.74	LL-Null:	14	Df Model:
2.6115e-14	LLR p-value:	163	Df Residuals:
1.0000	Scale:	1.0000	Converged:
		8.0000	No. Iterations:

Exhibit 4 - Statistics for Exhibit 3

3. Logistic regression with PCA component

The Principal Component Analysis was used to reduce the number of variables in our dataset to 4 components that together explained more than 75% of the variance of the dataset. Logistic regression was run with the new components but the results were less accurate when compared with the non-PCA version described in the previous point.

Model:		Logit		Pseudo	0.079		
D	Dependent Variable:		Strength			200.8556	
	Date:		2018-12-12 14:06			213.5827	
	No. Observations:		178		Log-Likelihood:		-96.428
	Df Model:			3	3 LL-1		-104.74
	Df Residuals:			174	LLR p-value:		0.00084224
	Converged:		1.0000			1.0000	
	No. Iterations:		6.0000				
	Coef.	Std.Err.	z	P> z	[0.025	0.975]	
0	-0.2583	0.0746	-3.4631	0.0005	-0.4045	-0.1121	
1	-0.6680	0.1163	-5.7448	0.0000	-0.8958	-0.4401	
2	-0.2012	0.1447	-1.3905	0.1644	-0.4849	0.0824	
3	-0.0598	0.1803	-0.3319	0.7400	-0.4132	0.2935	

Exhibit 6 - The outcomes of logistic regression with PCA components

4. Comparison logistic regression with vs. without PCA component

As the comparison of the two previously run models, gain and lift curves and confusion matrix are shown in this part of the text. As can be seen from Exhibit 7 regression with PCA gives an accurate prediction for the first 10%-20% of the sample but then the performance of the model drops significantly. Following, Gain curve in Exhibit 8 shows a steeper increase in prediction in the first 30% with which it is possible to predict almost 80% of cases of the strong wines. At last, Exhibit 9 gives clear evidence of the supreme accuracy of the model without the usage of PCA.

Exhibit 7 - Lift Curve for a logistic model without PCA (left) and with PCA (right)

Exhibit 8 - Gain Curve for a logistic model without PCA (left) and with PCA (right)

Exhibit 9 - Confusion Matrix for a logistic model without PCA (left) and with PCA (right)