Rafay Aamir Bsec 19047 ENA-Assignment #1

Q:-1

(a)
$$f(t) = 5u(t-1)$$
; evaluate at $t = -3,0,+3$.

solve
$$f(t)$$
 at $t = -3 = f(-3) = 5u(-3-1) = 5u(-4) = 5(0) \cdot f(-3) = 0$

$$f(0) = 5u(0-1) = 5u(-1) = 5(0)$$
; $f(0) = 0$.
 $f(3) = 5u(3-1) = 5u(2) = 5(1) = f(3) = 5 = f(3)$

(b) h(t) = 4u(1-t) + 2u(t+2); evaluate at t=0,+2

$$h(0) = 4u(1) + 2u(2)$$
 $h(0) = 4 + 2$ $h(0) = 6$

$$h(0) = 4 + 2$$

$$h(0) = 6$$

$$h(+2) = 2$$

$$h(+2) = 2$$
 $h(2) = 2$

(c) K(t) = 3u(t) - 2u(-t) + 0.8u(1-t)

Evaluate at t = 0.8

$$K(0.8) = 3u(0.8) - 2u(-0.8) + 0.8u(1-0.8)$$

= $3x1 - 2x(0) + 0.8x1$

$$K(0.8) = 3 + 0.8$$

Q:-2

(1)

$$W(0) = \frac{1}{2} CV_0^2$$
, $V_0 = \sqrt{\frac{2 \times W(0)}{C}} = \sqrt{\frac{2 \times 200 \text{ m}}{3 \cdot \text{lnF}}}$

$$V_0 = 11359 V$$
 0
 $V(t) = V_0 e^{t/T} = 11359 e^{-5.8t} V = V(t)$

(ii)
$$V(170ms) = 11359e^{-1}$$
, $V(170ms) = 4178V$

$$W(170ms) = \frac{1}{2}(V^2 = \frac{1}{2}(3.1n) \times (4178)^2$$
, $W(170ms) = 270mJ$

$$V(2T) = 11359e^{-2T/T}$$

(i)
$$V(t) = V_0 e^{-t/T}$$
, = $q e^{-t/22m}$

$$V(t) = 9e^{-45t}v$$

(ii)
$$t = 1/ms$$
, 33ms. $\omega(t) = ?$

$$W(1/ms) = 1 C V(1/ms) = \frac{1}{2} \times 22m \times 6.4$$
 $W(1/ms) = 594mJ$
 $W(33ms) = 9 - 45 \times 33m$

ŽR

$$V(33ms) = q e^{45 \times 33m}$$

$$V(33ms) = 1 (V(33m)) = 1$$

$$V(33ms) = 1$$

$$W(33ms) = LCV(33m) = L^{\times 22}m \times 2$$
 $W(33ms) = 220mJ$

$$W(33ms) = 220mJ$$

$$T = RC = 22n \times 100 K\Omega$$
, $T = 2.2 ms$

$$V(t) = 9e^{-456t}$$
 / $V(11m) = 60 \text{ mV}$, $V(33m) = 2.7 \text{ aV}$

$$\int \omega(11) = 39 \text{ mJ}$$

022 (111) 多R=152 100K2 \$ 1c so their wold be no the values. in w (33m) = 220 mJ

Scanned with CamScanner

Q2

(i)
$$t = 3$$
 $R = 1-2$
 $T = RC = 1 \times 10 \text{ mF}$
 $T = 10 \text{ ms}$

$$T = RC = 100 \times 10 \text{mF}$$
, $T = 1 \text{s}$

$$T=1s$$

$$V_{c}(o^{2}) = 73V$$

$$V_{0}(0^{-}) = V_{0}(0^{+}) = 100 \times 2$$

$$V_0V_c(0^{\dagger}) = 73V$$

$$V_{o}(o^{\dagger}) = \frac{73 \times 82}{9}, V_{o}(o^{\dagger}) = 65 \text{V}$$

$$V_{o}(o^{\dagger}) = 16.27$$

$$V_c(t) = 73e^{\varsigma_{00}t}$$

(b)
$$i_{x}(o') = i_{x}(o') = 0 \text{ if } v_{x}(o') = 0 \text{ if } v_{x$$

Scanned with CamScanner

$$V(t) = V_0 e^{-t/t}$$
 = 3.75 $e^{-277 \times 3m}$

(a) of
$$t \ge 2^+$$
, $v = 12V$

and before
$$t = 2$$
, $v = 0$ Hence,

$$i(t) = i(0) = i(0) = i(1) = 0 A - C$$

$$T = \frac{L}{R} = \frac{1}{640}$$
, $T = 166 \mu S$

$$\dot{z}(z^+) = DA.$$

$$i(t) = i_0 - i_0 e^{-t/T}$$
 : $i_0 = \frac{V_0}{R} = \frac{12}{6K} = 2mR$

$$\frac{20 = 10}{R} = \frac{12}{6K} = 2mR$$

$$\frac{1(t) - (2m^{2} - amc)}{2(t) - (2m^{2} - amc)} = \frac{2}{2}$$

$$i(4ms) = (2m - 2me^{24})(1)$$

 $i(4ms) = 2mA$

Q:-4 (b) For R = 10 sz 124(t)v(t T=4R, T=400ms for t = 0, i(t) = 0A, V(t) = 0V 124(t-1)v (+ V(t)= 12u(t)-12(t-1)v --- (at t = 0 $V(0^{+}) = 12V - 2$ for oct <! $i'(o^{\dagger}) = \frac{12}{10}, [i(o^{\dagger}) = 1.2A]$ $w(10.2) = 12i^2 = 1(4)(1.2)$ w(10.2) => 2.88JFor R = II T = 4sAs the time constant with R=152 is 4s and the

circuite only works for less then one second?

$$V(0^{+})=12V$$
, $\tilde{z}(0^{+})=\frac{1}{2}(4=\frac{12}{1}=12Amp$. then $w(1-2)=\frac{1}{2}(4)(12)^{2}$, $w(1-2)=288J$

The 1-2 resistor circuite will store 100 times more energy.

$$i(t) = (12e^{-2.5t})(u(t))(u(t-1))$$

$$i(t) = (12e^{-0.25t})(u(t))(u(t-1))$$

$$i_{1}(0^{+}) = \frac{12}{36} = 333 \,\text{mft}$$

$$V_L(0^+) = 0$$

Solve:

(i)
$$\forall (0) = 4 \times 5 = 20 \vee$$

(ii)
$$V(0^{\dagger}) = 4+5 = 20V$$

(iv) Req =
$$51110 = 3.33.52$$

 $T = 33.3 ms$

$$(V)$$
 $t = 5 \text{ om } s$

$$V_c(Soms) = 11 + [20 - 11]e^{\frac{50m}{33m}}$$

(a)
$$T = RC = 5 \times 10 \text{ m}$$

(i) $T = 50 \text{ m/s}$

(i)
$$V(0^{-}) = ?$$

(iv)
$$V(40^{\dagger}) = 15V$$

$$(v) \quad V(Soms) = ?$$

$$T = 33 \text{ ms}$$

 $T = 33 \text{ ms}$
 $V(t) = 15 - 15e$
 $V(50\text{m}) = 15 - 15e^{-1.5}v$

Q:-5
(b)
$$T = RC = 50m^{5}$$
(ii) $V(0') = 20V$
 $w(0') = \frac{1}{2}CV^{2}$
 $w(0') = \frac{10m}{20}$
 $w(0') = 2J$

(iii) $w(0') = 2J$

(iii) $w(0') = 2J$

(iii) $w(0') = 2J$

(iv) $w(200ms) = 20 - 20 e^{\frac{200m}{50m}}$
 $v(200ms) = 19.6V$
 $w(200ms) = 10mx(19.6)$
 $v(200ms) = \frac{10mx}{3.3}$
 $v(400ms) = 13.3 + (20-13.3)e^{\frac{1}{2}}$
 $v(400ms) = 13.3 + (20-13.3)e^{\frac{1}{2}}$
 $v(400ms) = 884mJ$

(v) $w(400ms) = 884mJ$

(vi) $v(700ms) = 10mx(33.3^{2})$
 $w(700ms) = 10mx(33.3^{2})$

$$(18+18)i_1 + 3i_1 = 3$$

 $33i_1 = 3$
 $i_1 = 3/33$, $\frac{1}{10} = 90.91$
 $(110) = 90.9mA$

Now using rodal analysis.

$$\frac{V_{\chi} + V_{\chi} - 3(90.9 \text{m}) - 1 = 0}{15}$$

$$\frac{2 \text{Vn}}{15} - 1.018 = 0$$

$$V_{\chi} = 7.636 \text{V}$$

$$V_{\chi} = 7.636 \text{V}$$

$$V_{\chi} = 7.636 \text{V}$$

$$T = 4R = \frac{5m}{7.636}$$
, $T = 0.65ms$

$$i_1(\infty) = 3/15 = 0.2A$$

$$i_0 = 90.9 \text{ mA} - 0.2, \quad i_0 = -0.1 \text{ A}$$