

## ¿Se puede predecir la calidad del vino?

Francisco Canet

#### INDICE DE CONTENIDOS



- Describir el tema
- Utilidad de un modelo de ML

- Describir la fuente y las variables
- Variables importantes

- Distintas aproximaciones
- Resultados
- Feature importance

#### INTRODUCCIÓN

- Alguna vez considerado como un bien de lujo, hoy en día el vino es esta presente en nuestras vidas...
  - Parte de la dieta mediterránea
  - Celebraciones
  - Comidas
- El consumo per cápita de vino en 2021 en España fue de 26.5 litros.
- Representan un sector económico importante
  - España es el 2do mayor productor a nivel mundial.

#### Mayores consumidores de vino en el mundo (per cápita)



https://es.statista.com/estadisticas/503596/paises-del-mundo-con-mayor-consumo-per-capita-de-vino/

#### ¿POR QUÉ ES IMPORTANTE EVALUAR LA CALIDAD DEL VINO?

- Mejorar la producción e identificar los factores más influyentes
- Para estratificar los vinos por ejemplo en marcas premium, útil para establecer precios
- Para obtener una certificación DOP y también evitar adulteraciones ilegales



# DURANTE LA EVALUACION DE CALIDAD...

- Se toman mediciones fisicoquímicas de rutina como cantidad de alcohol, pH, etc.
- Prueba sensorial realizada por expertos
- El sentido del gusto es complejo, por lo que clasificar a los vinos es un todo un reto.
- A esto hay que sumar que las relaciones entre las variables fisicoquímicas y el sabor que producen es muy compleja
- Un modelo de ML que ayude a predecir la calidad del vino es muy útil.



### DATOS – MUESTRAS Y VARIABLES

- Muestras de vino blanco con DOP ("Vinho Verde") (n = 5000)
- Datos sobre calificaciones sensoriales (variable dependiente). 1-10.
- Datos sobre 11 variables fisicoquímicas (variables independientes)
- Fuente de los datos: <u>http://www3.dsi.uminho.pt/pcortez/wine/</u>
- Publicación original: P. Cortez, A. Cerdeira, F. Almeida, T. Matos and J. Reis. Modeling wine preferences by data mining from physicochemical properties. In *Decision Support Systems*, Elsevier, 47(4):547-553, 2009



#### DATOS – VARIABLES INDEPENDIENTES

| Variable                                              | ¿Qué aporta?                            | ¿Inconvenientes?           |
|-------------------------------------------------------|-----------------------------------------|----------------------------|
| Acidez fija                                           | Sabor fresco                            |                            |
| Acidez volátil                                        |                                         | Sabor a vinagre            |
| Acido cítrico                                         | Sabor fresco                            | Microorganismos indeseados |
| рН                                                    | Sabor fresco                            |                            |
| Azucares residuales                                   | Sabor dulce                             |                            |
| Alcohol                                               | Equilibrio entre dulce y acido          |                            |
| Cloruros                                              | Sabor salado                            |                            |
| Dióxido de azufre libre Protección frente a oxidación |                                         | Alergias                   |
| Dióxido de azufre total                               | microorganismos indeseados              |                            |
| Densidad                                              | Relacionada con el contenido de alcohol |                            |
| Sulfatos                                              | Fertilizante                            |                            |

- La variable de respuesta esta desbalanceada.
- Los vinos muy buenos (9) y muy malos (3) están poco representados.
- Los vinos de 5 y 6 representan el 73%.



- Algunas variables fisicoquímicas se correlacionaban (de forma lineal) con la calidad del vino:
  - Contenido de alcohol (positiva)
  - Densidad (Negativa)
  - Cantidad de cloruros (Negativa)



- Discretizamos la calidad para ver si existía algún patrón.
- Intervalos:
  - 3-4: Malo
  - 5-6: Normal
  - 7-9: Bueno



 La cantidad de alcohol y cloruros y la densidad parecían afectar a la calidad del vino.



#### **CONCLUSION DEL EDA**

Sí seria posible predecir la calidad del vino en función de algunas variables fisicoquímicas usando modelos de ML



#### **FLUJO DE TRABAJO**

Dividir en train y test



Limpieza de train



Transformaciones y escalado



Modelos de ML



Optimización de modelos

20% para test

 3 vinos con cantidades de azúcar muy elevadas

- Yeo-Johnson
- Standard scaler

- Log Regression
- SVM
- Random Forest

- Grid Search
- Random Forest
- Cat boost

### ANALISIS: CALIDAD DISCRETIZADA

- Problema de clasificación en vinos malos, normales o buenos.
- Métrica: F1-score = 0.62
- Random Forest (Class weights = Balanced subsample)
- Problema con los vinos malos
- SMOTE no funcionó mejor que Class weights. F1-score = 0.56



### ANALISIS: SIN DISCRETIZAR CALIDAD

- Problema de clasificación: calidad de 4-8.
- Eliminé los vinos con calificaciones de 3 (n = 20) y 9 (n = 5).
- F1-score = 0.56
- Precisión = 0.63
- Random Forest fue el mejor
- Vemos como la mayoría de vinos se clasifican bien, o como mucho una categoría por arriba o por abajo.
- Los vinos de 4 y 8 son los que peor se clasifican



#### ANALISIS: SIN DISCRETIZAR CALIDAD





#### FEATURE IMPORTANCE

- El contenido de alcohol fue la variable más importante para predecir la calidad del vino.
- Ratio sulfur (variable creada a partir de otras dos) fue la segunda más importante.



#### CONCLUSIONES

- Aunque la puntuación del modelo con la calidad discretizada (F1-score = 0.62) fue mayor en comparación al modelo sin discretizar (F1-score = 0.56), el segundo es más informativo.
- El segundo modelo de ML es mas útil para ayudar al proceso de clasificación de los vinos ya que se equivoca ± 1 una clase, pero no más.

#### **ANEXOS**

|             | validation_metric_mean | validation_metric_std | training_metric_mean | training_metric_std |
|-------------|------------------------|-----------------------|----------------------|---------------------|
| log_reg     | 0.316502               | 0.011812              | 0.326225             | 0.007914            |
| lsvc        | 0.371761               | 0.017120              | 0.386485             | 0.006151            |
| rbf_svc     | 0.400877               | 0.013821              | 0.518122             | 0.005182            |
| sig_svc     | 0.196866               | 0.009376              | 0.188256             | 0.008430            |
| rand_forest | 0.492196               | 0.018095              | 0.734436             | 0.005272            |

|                | validation_metric_mean | validation_metric_std | training_metric_mean | training_metric_std |
|----------------|------------------------|-----------------------|----------------------|---------------------|
| ada_boost_tree | 0.319251               | 0.027519              | 0.337402             | 0.019691            |
| light_gbm      | 0.408732               | 0.021819              | 0.529236             | 0.016446            |
| xg_boost       | 0.406303               | 0.027796              | 0.614670             | 0.013146            |
| cat_boost      | 0.555003               | 0.036632              | 1.000000             | 0.000000            |
|                |                        |                       |                      |                     |

|                   | validation_metric_mean | validation_metric_std | training_metric_mean | training_metric_std |
|-------------------|------------------------|-----------------------|----------------------|---------------------|
| opt random forest | 0.575638               | 0.029664              | 0.939856             | 0.002372            |
| opt catboost      | 0.559060               | 0.036551              | 0.999202             | 0.000291            |

| Métrica/Calificación | 4    | 5    | 6    | 7    | 8    |
|----------------------|------|------|------|------|------|
| Precisión            | 0.45 | 0.67 | 0.66 | 0.59 | 0.78 |
| F1-score             | 0.34 | 0.68 | 0.67 | 0.63 | 0.53 |