

实例1: 报童的利润

大学数学实验)

报童每天购进报纸零售,晚上将卖不掉的报纸退回; 每份报纸购进价a,零售价b,退回价c: $b \ge a \ge c$; 为获得最大利润,该报童每天应购进多少份报纸?

159天报纸需求量的情况

需求	100	120	140	160	180	200	220	240	260	280
量	—	—	—	—	—	—	—	—	—	—
天数	3	9	13	22	32	35	20	15	8	2

设a=0.8元,b=1元,c=0.75元,为报童提供最佳决策

(大学数学实验)

实例1:报童的利润(续)

分析:每天报纸需求量随机,报童每天利润也随机: 以每天平均利润最大为目标,确定最佳决策。

数学模型近似:

每天需求为r的天数所占的百分比,记做f(r); 如200(-219)份所占的百分比为35/159=22%

决策变量:报童每天购进报纸的份数n

平均利润: V(n)

$$V(n) = \sum_{r=0}^{n-1} [(b-a)r - (a-c)(n-r)]f(r) + \sum_{r=n}^{\infty} [(b-a)n]f(r)$$

实例2:路灯更换策略

路政部门: 路灯维护

条件: 需要专用云梯车进行线路检测和更换灯泡; 向相应管理部门提出电力使用和道路管制申请;

向雇用的各类人员支付报酬等

更换策略:整批更换

管理部门: 不亮灯泡, 折合计时进行罚款。

路政部门的问题: 多长时间进行一次灯泡的全部更换?

- 换早了,很多灯泡还没有坏; 换晚了,要承受太多的罚款。
 - **() () ()**

二. 数据的整理和描述

- · 数据的收集和样本的概念
- · 数据的整理、频数表和直方图
- ・统计量
- MATLAB命令

(1) (2)

大学数学实验

大学数学实验)

数据的收集: 顾客感觉舒适时的柜台高度

- 银行随机选了50名顾客进行调查
- 测量每个顾客感觉舒适时的柜台高度(单位: 厘米)

100	110	136	97	104	100	95	120	119	99
126	113	115	108	93	116	102	122	121	122
118	117	114	106	110	119	127	119	125	119
105	95	117	109	140	121	122	131	108	120
115	112	130	116	119	134	124	128	115	110

• 银行怎样依据它确定柜台高度呢?

(大学数学实验)

样本: 统计研究的主要对象

- · 总体(population): 研究对象的全体(母体)
 - 如: 所有顾客感觉舒适的高度
- · 个体(individual): 总体中一个基本单位(总体单位)
 - 如: 一位顾客的舒适高度
- 样本(sample): 若干个体的集合(抽样,取样)
 - 如: 50位顾客的舒适高度
- 样本容量(sample size): 样本中个体数(样本数)
 - 如: 50

17 苯大

大学数学实验

总体和样本是随机变量,对吗?

总体的三层含义:

- 群体: 所有顾客
- 数据: 所有顾客----感觉舒适的高度(数据)
- 随机变量: 数据的特征,用随机变量描述
- 顾客群体的舒适高度~随机变量X,概率分布F(x)
- (简单随机抽样, sampling): 有放回, 随机抽样
 - → (简单随机) 样本: {x, i=1,...,n}

两层 • 一组独立的、同分布 (i.i.d.) 的随机变量 ($\sim F(x)$)

含义 · 抽样后,是一组具体数据(观测值, observations)

1 0 0

大学数学实验) 数据的整理 北京地区SARS患者的统计数据 (截至2003年5月5日) 51岁以 总数 10岁以 11-20 21-30 31-40 41-50 年龄 下 岩 岁 岁 Ł 岁 人数 24 145 677 382 332 337 1897 17.50 比例 1.27% 7.64% 35.69% 20.14% 17.77% 100

比较直观,比较清晰的结论

21—50岁的中青年患者大约占总发病人数的 3/4, 提醒民众中青年是易感人群。

() () () () ()

大学数学实验)

给定样本(数据,观测值):频数表

将数据的取值范围划分为若干个区间,统计这组数据在 每个区间中出现的次数,称为频数,得到一个频数表。

柜台高度频数表

区间长=(140-93)/10=4.7

中点	95.35	100.05	104.75	109.45	114.15	118.85	123.55	128.25	132.95	137.65
频数	4	4	3	6	8	12	5	4	2	2

作用:推测出总体的某些简单性质。

如上表表明选择柜台高度在107.10至125.90的有31人, 占总人数的62%,柜台高度设计在这个范围内,会得到 大多数顾客的满意。

() () ()

大学数学实验

频数表和直方图给出某个范围的状况, 无法直接给出具体值,如确定柜台具体高度

平均值 (mean, 简称样本均值)定义为

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

平均值

 $\bar{x} = 115.26$

可作为设计柜台高度的参考值

序号

甲班

[★] 例:两个班的一次考试成绩

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 92 88 85 92 95 79 84 87 88 65 93 73 88 87 94 80 84 83 82 85 82 81 82 90 84 78 75 83 78 85 84 79 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 69 86 88 78 79 68 88 87 55 93 79 85 90 53 99 81 85 73 90 77 81 82 82 80 86 83 77 78

现象1: 甲班平均值: 82.75分, 乙班平均值: 81.75分

结 论: 大致表明甲班的平均成绩稍高于乙班

现象2: 甲班90分以上7人,但有2人不及格,分数分散 乙班全在73分到90分之间,分数相对集中

MATLAB数据描述的常用命令								
命令	名称	输入	输出	注意事项				
[n,y]=hist(x,k)	频数表	x: 原始数据行向量 k: 等分区间数	n: 频数行向量 y: 区间中点行向量	[n,y]=hist(x)中 k取缺省值10				
hist(x,k)	直方图	同上	直方图	同上				
mean(x)	均值	x: 原始数据行向量						
median(x)	中位数	同上	中位数					
range(x)	极差	同上	极差					
std(x)	标准差	同上	标准差。	std(x,1): s ₁				
var(x)	方差	同上	方差s²	var(x,1): s ₁ ²				
skewness(x)	偏度	同上	偏度g1					
kurtosis(x)	峰度	同上	峰度g ₂					

