COS-D419 Factor Analysis and Structural Equation Models 2023, Assignment 4

Rong Guang

2023-02-18

Contents

1	1 Task description		1
	1.1 Exercise 5.1		1
2	2 Preparation		2
	2.1 Write functions		2
3	3 Inspect the data		4
	3.1 Distribution		4
4	4 Testing the factorial invariance of MBI inventory between elem- school teachers	· ·	10
	4.1 Define and estimate initial models for both subgroups $\dots \dots$		10
\mathbf{T}	The texts that reflect my understanding have been highlighted in re-	ed color.	

1 Task description

The first section is task description, which is copied from the assignment5.rmd. It is for communicating with future "me". Please skip it.

1.1 Exercise 5.1

Specify and estimate the initial baseline models for the two groups.

Present a brief summary of the model fit and make the first step of the modification by including (exceptionally, at the same time!) all the four parameters known to be required for improving the model fit of both models.

Fine-tune the models step by step following the guidelines given in the lecture material, i.e., implement the modifications (as usually, one change at a time) testing and studying each step.

Present the final baseline models of each group and draw the graphs

2 Preparation

##Read in the data set:

Start by downloading the two data files from Moodle to your Project folder!

```
#install the necessary pakages
if (!require("pacman")) install.packages("pacman")
pacman::p_load(here,
                expss,
               tidyverse,
                janitor,
               knitr,
                qualtRics,
                arules,
                arulesViz,
                sjlabelled,
               DT,
               stringr,
               labelled,
                ggstatsplot,
                ggcorplot)
library(tidyverse)
library(readr)
#This week's file name
latest.name1 <- "MBIELM1.CSV"</pre>
latest.name2 <- "MBISEC1.CSV"</pre>
#read in the data
mbi.elm <- #elementary school
  read_csv(
    file.path(
      here(),
      'data',
      latest.name1
    )
mbi.sec <- #secondary school
  read_csv(
    file.path(
      here(),
      'data',
      latest.name2
      )
```

2.1 Write functions

To control length of reports, codes already shown in the previous homework were not showing in the current report. Yet they are available in .rmd report.

2.1.1 To generate a function for calculating chi square difference was defined.

2.1.2 to generate CFA results with improved readability

##Write a function to generate aligned residual variance and co-variance tables

```
align.table <- function(data, num.no.header.col, title){</pre>
data |>
 kable(
    digits = 3,
    booktabs = T,
    #format = "markdown",
    caption = title,
    linesep = ""
    ) |>
  add_header_above(c(" " = num.no.header.col,
                      "Elementary level" = 5,
                      "Secondary level" = 5
                    ) |>
  kable_styling(
    latex_options = "striped"
  ) |>
  footnote(
           symbol = c(
             "Un-standardized estimates",
             "Standardized estimates"
                      )
           )
}
```

- 2.1.3 Write a function for correlation matrix with numbers
- 2.1.4 to generate a function for histogram overlapping with density plot
- 2.1.5 to generate a function for violin overlapping with box plot
- 2.1.6 To generate a function describing continuous data set
- 2.1.7 Write a function describing continuous data set
- 2.1.8 Write a function for histogram overlapping with density plot
- 2.1.9 Write a function to generate dot distribution plot

```
dot.dist <-
  function(data, type, title){
  data |>
    t() |>
    as.data.frame() %>%
    mutate(Item = rownames(.)) |>
```

```
rowwise() |>
mutate(Median = eval(parse(text = type))(V1:V580)) |>
ggstatsplot::ggdotplotstats(
   point.args = list(color = "red", size = 3, shape = 13),
   xlab = paste(type, "ratings"),
   title = title,
   x = Median,
   y = Item
)
}
```

2.1.10 Write a fuction to generate correlation matrix with statistical test

```
mycor <-
function(data, cols, title){
mbi.elm |>
    select(all_of(cols)) |>
    ggstatsplot::ggcorrmat(
        colors = c("#B2182B", "white", "#4D4D4D"),
        title = "(a) Items on emotional exhaustion,
        elementary school teacher",
        matrix.type = "lower"
    )
}
```

3 Inspect the data

3.1 Distribution

```
#generate the plots, by subgroup of teachers
p.dist.elm <-
    corr.density(
    mbi.elm,
    fig.num = "1(a)",
    group = "elementary school teacher"
    )
p.dist.sec <-
    corr.density(
    mbi.sec,
    fig.num = "1(b)",
    group = "secondary school teacher"
    )
#print the plot
library(patchwork); p.dist.elm/p.dist.sec</pre>
```

Figure 1(a) Distribution of selected items for elementary school teacher

Figure 1(b) Distribution of selected items for secondary school teacher


```
#generate plot by subgroups of teachers
p.dot.elm <-
  dot.dist(
    data = mbi.elm,
    type = "median",
    title = "(a) Elementary school teacher"
p.dot.sec <-
  dot.dist(
    data = mbi.sec,
    type = "median",
    title = "(b) Secondary school teacher"
#plot layout
patchwork <- p.dot.elm|p.dot.sec</pre>
#print the plot with a genral title
patchwork+plot_annotation(
    title =
      'Figure 2 Distributions of median rating for each item',
      theme(plot.title =
              element_text(
                size = 16,
                face = "bold",
                vjust = -1.5,
                hjust =0.5)
            )
    )
```

Figure 2 Distributions of median rating for each item

(a) Elementary school teacher

(b) Secondary school teacher

 $t_{\text{Student}}(21) = 4.74$, p = 1.11e-04, $\widehat{g}_{\text{Hedges}} = 0.97$, $\text{Cl}_{95\%}$ [0. $t_{\text{Student}}(21) = 7.06, p = 5.74e-07, \widehat{g}_{\text{Hedges}} = 1.45, \text{Cl}_{95\%} [0.8]$ $\widehat{\mu}_{mean} = 2.48$ $\widehat{\mu}_{mean} = 3.05$ ITEM9 -××××× - 100 ITEM7 - \boxtimes **-** 100 ITEM7 -ITEM4 -ITEM4 -ITEM17 -ITEM17 -ITEM21 - \boxtimes $\boxtimes \boxtimes \boxtimes$ ITEM21 -ITEM9 -ITEM19 -ITEM19 -**-** 75 **-** 75 ITEM18 -ITEM18 -ITEM12 -ITEM2 -ITEM2 - \boxtimes ITEM12 -ITEM1 -ITEM1 - \boxtimes ITEM13 -ITEM14 -- 50 - 50 ITEM16 -ITEM22 -ITEM13 -ITEM14 - $\bigotimes \bigotimes \bigotimes$ ITEM6 -ITEM8 -ITEM15 -ITEM5 -ITEM11 -ITEM3 -- 25 - 25 ITEM11 -ITEM10 -ITEM6 - 🔯 ITEM8 -ITEM20 - 💢 ITEM3 -ITEM16 - 💢 ITEM22 -ITEM15 - ⊠ ITEM20 -ITEM10 - 💢 - 0 ITEM5 - 💢 **-** 0 0 6 median ratings median ratings $log_{e}(BF_{01}) = -5.52$, $\widehat{\delta}_{difference}^{posterior} = 2.34$, $Cl_{95\%}^{ETI}$ [1.24, 3.44], $r_{Cauchy}^{JZS} = 0.71$ $\log_{e}(\mathrm{BF_{01}}) = -10.30, \, \delta_{difference}^{posterior} = 2.94, \, \mathrm{CI_{95\%}^{ETI}} \, [2.00, \, 3.86], \, r_{Cauchy}^{JZS} = 0.71$

```
fa.ee <- c("ITEM1", "ITEM3", "ITEM6", "ITEM8", "ITEM13", "ITEM14", "ITEM16", "ITEM20")</pre>
fa.dp <- c("ITEM5", "ITEM10", "ITEM11", "ITEM15", "ITEM22")
fa.pa <- c("ITEM4", "ITEM7", "ITEM9", "ITEM12", "ITEM17", "ITEM18", "ITEM19", "ITEM21")</pre>
#generate 6 plots, 3 factors X 2 subgroups of teachers
p.cor.elm.ee <-
       mycor(
         data= mbi.elm,
         cols = fa.ee,
         "(a) Items on emotional exhaustion,
         elementary school teacher"
p.cor.sec.ee <-
       mycor(
         data = mbi.sec,
         cols = fa.ee,
         "(b) Items on emotional exhaustion,
          secondary school teacher"
p.cor.elm.dp <-
       mycor(
         data = mbi.elm,
         cols = fa.dp,
         "(c) Items on depersonalization,
          elementary school teacher"
p.cor.sec.dp <-
       mycor(
         data = mbi.sec,
         cols = fa.dp,
         "(d) Items on depersonalization,
          secondary school teacher"
         )
p.cor.elm.pa <-
       mycor(
         data = mbi.elm,
         cols = fa.pa,
         "(e) Items on personal accomplishment,
         secondary school teacher"
p.cor.sec.pa <-
       mycor(
         data = mbi.sec ,
         cols = fa.pa,
         "(f) Items on personal accomplishment,
          secondary school teacher"
#plot sub-figure layout
patchwork <-
  p.cor.elm.ee/p.cor.elm.dp/p.cor.elm.pa|p.cor.sec.ee/p.cor.sec.dp/p.cor.sec.pa
#print the plot with a gernal title
patchwork+
  plot_annotation(
   title =
```

```
'Figure 3 Correlalogram for items on each factor for two groups of teachers',
theme =
    theme(plot.title =
        element_text(
            size = 16,
            face = "bold",
            vjust = -1.5,
            hjust = 0.5)
    )
)
```

Figure 3 Correlatogram for items on each factor for two groups of teachers

4 Testing the factorial invariance of MBI inventory between elementary and secondary school teachers

4.1 Define and estimate initial models for both subgroups

The model under test in this initial multi-group application is the same postulated three-factor structure of the MBI that was tested in the previous assignments.

4.1.1 Define the baseline model

```
library(lavaan)
# Define a CFA model using the lavaan (Latent Variable Analysis) syntax:
# see https://lavaan.ugent.be/tutorial/syntax1.html
BLmodel <- '
# CFA model for the burnout, the baseline model:
    EE =~ ITEM1 + ITEM2 + ITEM3 + ITEM6 + ITEM8 +
        ITEM13 + ITEM14 + ITEM16 + ITEM20
    DP =~ ITEM5 + ITEM10 + ITEM11 + ITEM15 +ITEM22
    PA =~ ITEM4 + ITEM7 + ITEM9 + ITEM12 +
        ITEM17 + ITEM18 + ITEM19 + ITEM21</pre>
```

It is important to note that measuring instruments are often group specific in the way they operate, and, thus, it is possible that baseline models may not be completely identical across groups

4.1.2 Estimate factorial validity

(1) Estimate factorial validity for the elementary teacher subgroup

```
cfa.elm <-
  cfa(
    BLmodel,
    data = mbi.elm,
    estimator = "MLM",
    mimic = "Mplus"
)</pre>
```

(2) Estimate factorial validity for the secondary teacher subgroup

```
cfa.sec <-
cfa(
   BLmodel,
   data = mbi.sec,
   estimator = "MLM",
   mimic = "Mplus"
)</pre>
```

4.1.3 Evaluate model

(1) Fit indices

```
library(knitr); library(kableExtra)
#combine fit indices of both levels
BL.elm.fit <- cfa.summary.mlm.a(cfa.elm) |> t() |> as.data.frame()
BL.sec.fit <- cfa.summary.mlm.a(cfa.sec) |> t() |> as.data.frame()
BL.both <- rbind(BL.elm.fit[2,], BL.sec.fit[2,])
names(BL.both) <- BL.elm.fit[1,]</pre>
rownames(BL.both) <- c("Elementary level",</pre>
                        "Secondary level")
#improve the readability of the combined table
BL.both <- BL.both |>
  rename(p = 'p value',
         p2 = 'RMSEA p value',
         chi = 'chi square') |>
 mutate(df = as.numeric(df) |> round(0),
         p = case_when(
           as.numeric(p) < 0.001 \sim "<0.001",
           as.numeric(p) \geq 0.001 \sim p
         p2 = case_when(
           as.numeric(p2) < 0.001 \sim "<0.001",
           as.numeric(p2) \geq= 0.001 ~ p2
           )
         ) |>
  mutate('Chi square (df, p)' =
           paste0(chi, "(", df,", ", p, ")"),
         'RMSEA(p)'
           paste0(RMSEA, "(", p2, ")"
                  )
         ) |>
  select('Chi square (df, p)',
         CFI, TLI,
         'RMSEA(p)',
         SRMR,
         'CSF*'= CSF
#print the combined table with adjustment of aesthetics
BL.both |>
 kable(booktabs = T,
        #format = "markdown",
        caption =
          "Fit indices for two subgroups, basline models",
        align = "r"
        ) |>
  kable_styling(full_width = T) |>
  footnote(symbol =
             "Chi square scaling factor"
  column_spec(1, width = "3cm") |>
  column spec(2, width = "4cm")|>
  column_spec(3, width = "1cm")|>
```

Table 1: Fit indices for two subgroups, basline models

	Chi square (df, p)	CFI	TLI	RMSEA(p)	SRMR	CSF*
Elementary level Secondary level	$\begin{array}{c} 826.573(206, < 0.001) \\ 999.359(206, < 0.001) \end{array}$	0.857 0.836	0.840 0.816	$0.072(<0.001) \\ 0.075(<0.001)$	$0.068 \\ 0.077$	1.225 1.284

^{*} Chi square scaling factor

```
column_spec(4, width = "1cm")|>
column_spec(5, width = "2.5cm")|>
column_spec(6, width = "1cm") |>
column_spec(7, width = "1cm")
```

See table 1. Goodness-of-fit statistics for this baseline model (three factor) reveals that the indices are less than optimal for both elementary (MLM Chi-square[206] = 826.573; CFI = 0.857; RMSEA = 0.072; SRMR = 0.068) and secondary (MLM Chi-square[206] = 999.359; CFI = 0.836; RMSEA = 0.075; SRMR = 0.077) levels.

(2) factor loading

Factor loading of elementary level were extracted.

```
fl.elm <- cfa.summary.b (cfa.elm) #fl is for factor loading)
colnames(fl.elm)[2] <- "Beta*"</pre>
```

Factor loading of secondary level were extracted.

Factor loading of both levels were merged in one table and printed.

Table 2: Factor loadings for both levels

		Elemen	tary level		Secondary level				
Parameter	Beta*	SE	Z	p-value	Beta*	SE	Z	p-value	
$EE \rightarrow ITEM1$	0.776	0.000	NA	NA	0.756	0.000	NA	NA	
$EE \rightarrow ITEM2$	0.754	0.032	28.561	< 0.001	0.736	0.031	30.236	< 0.001	
$EE \rightarrow ITEM3$	0.740	0.045	21.984	< 0.001	0.722	0.043	24.030	< 0.001	
$EE \rightarrow ITEM6$	0.631	0.051	16.064	< 0.001	0.626	0.046	18.669	< 0.001	
$EE \rightarrow ITEM8$	0.855	0.042	28.448	< 0.001	0.833	0.046	25.968	< 0.001	
$EE \rightarrow ITEM13$	0.754	0.045	22.474	< 0.001	0.762	0.045	23.619	< 0.001	
$EE \rightarrow ITEM14$	0.655	0.046	19.939	< 0.001	0.634	0.045	20.685	< 0.001	
$EE \rightarrow ITEM16$	0.640	0.047	15.992	< 0.001	0.596	0.047	15.261	< 0.001	
$EE \rightarrow ITEM20$	0.734	0.045	18.371	< 0.001	0.707	0.048	17.421	< 0.001	
$\mathrm{DP}{ ightarrow}\mathrm{ITEM5}$	0.576	0.000	NA	NA	0.453	0.000	NA	NA	
$DP \rightarrow ITEM10$	0.794	0.115	11.968	< 0.001	0.820	0.188	10.259	< 0.001	
$DP \rightarrow ITEM11$	0.793	0.122	11.588	< 0.001	0.808	0.197	9.666	< 0.001	
$DP \rightarrow ITEM15$	0.505	0.072	9.287	< 0.001	0.472	0.098	10.295	< 0.001	
$DP \rightarrow ITEM22$	0.351	0.091	6.997	< 0.001	0.447	0.131	8.226	< 0.001	
$PA \rightarrow ITEM4$	0.447	0.000	NA	NA	0.340	0.000	NA	NA	
$PA \rightarrow ITEM7$	0.516	0.148	7.308	< 0.001	0.545	0.221	7.495	< 0.001	
$PA \rightarrow ITEM9$	0.581	0.280	6.629	< 0.001	0.681	0.365	7.432	< 0.001	
$PA \rightarrow ITEM12$	0.611	0.303	6.214	< 0.001	0.586	0.283	7.398	< 0.001	
$PA \rightarrow ITEM17$	0.681	0.185	7.796	< 0.001	0.546	0.187	7.486	< 0.001	
$PA \rightarrow ITEM18$	0.628	0.276	6.628	< 0.001	0.698	0.294	7.431	< 0.001	
$PA \rightarrow ITEM19$	0.643	0.255	6.844	< 0.001	0.706	0.324	7.565	< 0.001	
$PA \rightarrow ITEM21$	0.425	0.187	7.018	< 0.001	0.410	0.242	6.808	< 0.001	

Note:

Rows with coeffcient estimates fixed to 1 are highligted in bold

the cross-loading involved the loading of Item 12 on Factor 1 (Emotional Exhaustion) in addition to its targeted Factor 3 (Personal Accomplishment)

(3) Variance

^{*} Standardized estimates

Variance of elementary level were extracted.

```
var.elm <- cfa.summary.c(cfa.elm, fa.num = 3, item.num = 22)
names(var.elm)[3] <- "Beta*"
names(var.elm)[4]<- "Beta†"</pre>
```

Variance of secondary level were extracted.

```
var.sec <- cfa.summary.c(cfa.sec, fa.num = 3, item.num = 22)
var.sec <- var.sec[,-1]
names(var.sec) <-
c("Indicator",
    "Beta* ",
    "Beta† ",
    "SE ",
    "Z ",
    "p-value "
)</pre>
```

Variance of both levels were merged in one table and printed.

(3) Co-variance

Co-variance of elementary level were extracted.

```
cov.elm <- cfa.summary.d(cfa.elm, fa.num = 3, item.num = 22)
colnames(cov.elm)[2:3] <- c("Beta*", "Beta†")</pre>
```

Co-variance of secondary level were extracted.

```
cov.sec <- cfa.summary.d(cfa.sec, fa.num = 3, item.num = 22)
colnames(cov.sec) <- c("Parameter", "Beta* ", "Beta† ", "SE ", "Z ", "p-value ")</pre>
```

Co-variance of both levels were merged in one table and printed.

Table 3: Residual variance for both levels

		Elementary level					Secondary level					
Parameter	Indicator	Beta*	Beta†	SE	Z	p-value	Beta*	Beta†	SE	Z	p-value	
Residual	ITEM1	1.095	0.398	0.062	17.641	< 0.001	1.078	0.429	0.056	19.329	< 0.001	
Residual	ITEM2	1.067	0.432	0.063	16.832	< 0.001	1.071	0.459	0.053	20.373	< 0.001	
Residual	ITEM3	1.322	0.452	0.089	14.773	< 0.001	1.383	0.479	0.083	16.704	< 0.001	
Residual	ITEM6	1.655	0.602	0.098	16.924	< 0.001	1.656	0.609	0.084	19.730	< 0.001	
Residual	ITEM8	0.886	0.269	0.068	13.044	< 0.001	0.890	0.306	0.061	14.560	< 0.001	
Residual	ITEM13	1.281	0.431	0.087	14.663	< 0.001	1.167	0.419	0.075	15.574	< 0.001	
Residual	ITEM14	1.897	0.571	0.113	16.728	< 0.001	1.883	0.599	0.110	17.084	< 0.001	
Residual	ITEM16	1.363	0.591	0.066	20.746	< 0.001	1.353	0.645	0.071	19.024	< 0.001	
Residual	ITEM20	0.954	0.461	0.093	10.210	< 0.001	0.983	0.500	0.057	17.125	< 0.001	
Residual	ITEM5	1.459	0.669	0.119	12.289	< 0.001	1.711	0.795	0.100	17.052	< 0.001	
Residual	ITEM10	0.806	0.370	0.094	8.530	< 0.001	0.803	0.328	0.090	8.944	< 0.001	
Residual	ITEM11	0.848	0.372	0.101	8.404	< 0.001	0.854	0.347	0.095	9.013	< 0.001	
Residual	ITEM15	0.934	0.745	0.119	7.870	< 0.001	1.562	0.778	0.112	13.964	< 0.001	
Residual	ITEM22	2.086	0.877	0.143	14.538	< 0.001	2.052	0.800	0.124	16.598	< 0.001	
Residual	ITEM4	0.696	0.800	0.066	10.568	< 0.001	1.074	0.884	0.104	10.372	< 0.001	
Residual	ITEM7	0.562	0.734	0.058	9.605	< 0.001	0.907	0.703	0.064	14.108	< 0.001	
Residual	ITEM9	1.176	0.662	0.115	10.247	< 0.001	1.194	0.536	0.097	12.297	< 0.001	
Residual	ITEM12	1.039	0.627	0.079	13.108	< 0.001	1.177	0.657	0.076	15.418	< 0.001	
Residual	ITEM17	0.418	0.536	0.048	8.653	< 0.001	0.649	0.701	0.063	10.319	< 0.001	
Residual	ITEM18	0.894	0.606	0.109	8.170	< 0.001	0.703	0.512	0.068	10.329	< 0.001	
Residual	ITEM19	0.753	0.587	0.062	12.153	< 0.001	0.847	0.501	0.080	10.595	< 0.001	
Residual	ITEM21	1.360	0.819	0.124	10.949	< 0.001	1.889	0.832	0.111	17.056	< 0.001	
Total	EE	1.657	1.000	0.114	14.585	< 0.001	1.436	1.000	0.097	14.854	< 0.001	
Total	DP	0.723	1.000	0.111	6.515	< 0.001	0.442	1.000	0.085	5.188	< 0.001	
Total	PA	0.174	1.000	0.046	3.814	< 0.001	0.141	1.000	0.034	4.108	< 0.001	

^{*} Un-standardized estimates

Table 4: Residual co-variance for both levels

	Elementary level						Sec	ondary	level	
Parameter	Beta*	Beta†	SE	Z	p-value	Beta*	Beta†	SE	Z	p-value
$\text{EE} \longleftrightarrow \text{DP}$	0.688	0.628	0.075	9.171	< 0.001	0.451	0.566	0.057	7.928	< 0.001
$\mathrm{EE} \longleftrightarrow \mathrm{PA}$	-0.254	-0.473	0.037	-6.952	< 0.001	-0.177	-0.393	0.029	-6.193	< 0.001

^{*} Un-standardized estimates

[†] Standardized estimates

 $^{^{\}dagger}$ Standardized estimates

4.1.4 Model re-specification

MIs of elementary level panel were calculated.

MIs of secondary level panel were calculated.

MI tables with 10 largest MI parameters was printed in descending order of MI. Potential mis-specification of most concerns were highlighted in red.

```
MI.both <- rbind(BL.MI.elm, BL.MI.sec)
MI.both
           |>
  mutate(Parameter =
           paste(rhs, "→", lhs)
         ) |>
  select(Parameter,
         MI = mi,
         EPC = epc,
         "std EPC" = sepc.all
         )|>
  kable(digits = 3,
        booktab = T,
        linesep = "",
        caption =
          "Selected modification indices for determining baseline model") |>
  kable_styling(
    latex_options = "striped"
    ) |>
  row_spec(
    1:4,
    color = "red"
    ) |>
  footnote(general =
             "Rows highlighted in red are of special concerns") |>
  pack_rows(index = c(
    "Elementary level" = 10,
    "Secondary level" = 10
    )
```

Table 5: Selected modification indices for determining baseline model

	Parameter	MI	EPC	std EPC
Elemen	ntary level			
183	$ITEM16 \rightarrow ITEM6$	180.298	0.893	0.595
120	$\mathrm{ITEM2} \rightarrow \mathrm{ITEM1}$	103.177	0.534	0.494
84	$\text{ITEM12} \rightarrow \text{EE}$	81.319	-0.400	-0.400
285	$\text{ITEM11} \rightarrow \text{ITEM10}$	67.743	0.688	0.832
348	$\text{ITEM19} \rightarrow \text{ITEM18}$	43.669	0.279	0.340
323	$\mathrm{ITEM7} \rightarrow \mathrm{ITEM4}$	42.833	0.184	0.294
175	$\mathrm{ITEM12} \rightarrow \mathrm{ITEM3}$	28.187	-0.287	-0.245
275	$\mathrm{ITEM15} \rightarrow \mathrm{ITEM5}$	25.815	0.273	0.234
96	$ITEM16 \rightarrow DP$	25.652	0.459	0.257
185	$ITEM5 \rightarrow ITEM6$	23.753	0.337	0.217
Second	ary level			
1201	$\mathrm{ITEM2} \rightarrow \mathrm{ITEM1}$	171.647	0.627	0.583
2851	$\mathrm{ITEM11} \rightarrow \mathrm{ITEM10}$	135.841	1.181	1.426
1831	$\mathrm{ITEM16} \rightarrow \mathrm{ITEM6}$	127.756	0.686	0.458
841	$\mathrm{ITEM12} \rightarrow \mathrm{EE}$	118.156	-0.468	-0.419
2751	$\mathrm{ITEM15} \rightarrow \mathrm{ITEM5}$	77.216	0.580	0.355
296	$\mathrm{ITEM15} \rightarrow \mathrm{ITEM11}$	60.947	-0.485	-0.420
147	$ITEM20 \rightarrow ITEM2$	53.024	-0.324	-0.316
274	$\mathrm{ITEM11} \rightarrow \mathrm{ITEM5}$	48.297	-0.446	-0.369
339	$\text{ITEM19} \rightarrow \text{ITEM9}$	46.617	0.360	0.358
77	$\mathrm{ITEM10} \rightarrow \mathrm{EE}$	45.623	-0.394	-0.302

Note:

Rows highlighted in red are of special concerns

Three exceptionally large residual co-variances and one cross-loading contributed to the misfit of the model for both teacher panels. The residual co-variances involved Items 1 and 2, Items 6 and 16, and Items 10 and 11; the cross-loading involved the loading of Item 12 on Factor 1 (Emotional Exhaustion) in addition to its targeted Factor 3 (Personal Accomplishment)

xie