Clculo Numrico (521230)

Examen – Forma B Fecha: 11-Dic-02; 11:00.

Nombre y apellidos	
Matrcula	
Profesor	

Pregunta	Alternativas			
1	a	b	c	d
2	a	b	c	d
3	a	b	С	d
4	a	b	С	d
5	a	b	С	d
6	a	b	С	d
7	a	b	С	d
8	a	b	c	d
9	a	b	c	d
10	a	b	С	d
11	a	b	С	d
12	a	b	С	d
13	a	b	c	d
14	a	b	c	d
15	a	b	c	d

Reservado para la correccin No rellenar				
В				
M				
NR				
Cal.				

- Marque slo una alternativa, en caso contrario la pregunta no ser evaluada.
- No intente adivinar. Por cada respuesta equivocada se descontar un tercio del valor de una respuesta correcta; es decir:

$$Calificacin = \frac{100}{15} \left(Buenas - \frac{Malas}{3} \right).$$

- Cualquier intento de copia ser castigado.
- Duracin de la prueba: 100 minutos.

RAD/MCP/RRS/MS

EXAMEN DE CALCULO NUMERICO 521230

Miércoles 11 de Diciembre de 2002

COMISION: DR. RODOLFO ARAYA

DR. MANUEL CAMPOS

DR. ROBERTO RIQUELME

Dr. Mauricio Seplveda

1. Por S(x) se denota una *spline* cbica de interpolacin definida sobre tres subintervalos que particionan el dominio [a,b]. Para obtener el *valor exacto* de:

$$I = \int_{a}^{b} S(x)dx$$

se proponen las alternativas:

- (i) integrar S(x), sobre cada subintervalo, usando la frmula de Simpson
- (ii) integrar S(x), sobre cada subintervalo, usando una frmula Gaussiana del tipo $A_0 f(x_0) + A_1 f(x_1)$ (dos puntos de Gauss).

El valor exacto de I se obtiene:

- a) con (i) y tambin con (ii)
- b) slo con (i)
- c) slo con (ii)
- d) ninguna de las anteriores.

2. La ecuacin f(x) = 0 tiene una raz α de multiplicidad p con p > 1. Para calcular α por el mtodo de Newton-Raphson se debe resolver la ecuacin h(x) = 0 donde $h(x) = f(x)^{\frac{1}{p}}$. Dado x_0 prximo de α , el esquema que se obtiene es:

a) $x_{k+1} = x_k - p \frac{f(x_k)}{f'(x_k)}, \quad k = 0, 1, \dots$

b) $x_{k+1} = x_k + \frac{f(x_k)}{f'(x_k)}, \quad k = 0, 1, \dots$

c) $x_{k+1} = x_k + p \frac{f(x_k)}{f'(x_k)}, \quad k = 0, 1, \dots$

- d) ninguno de los anteriores.
- 3. Los valores T_h y $T_{\frac{h}{2}}$ son aproximaciones para $ln(2) := \int\limits_{1}^{2} \frac{dt}{t}$ obtenidos con la fmula de trapecios general usando pasos h=0.02 y h=0.01, respectivamente. Con stos valores la aproximacin de Romberg $T_{\frac{h}{2}}^{1}$ para ln(2) es:
 - a) $T_h + (T_h + T_{\frac{h}{2}})/3$
 - b) $T_h (T_h T_{\frac{h}{2}})/3$
 - c) $T_{\frac{h}{2}} + (T_{\frac{h}{2}} T_h)/3$
 - d) ninguna de las anteriores.

4. Considere las matrices

$$A = \begin{pmatrix} \frac{1}{100} & 0 & 0 & 0\\ 0 & -1 & 0 & 0\\ 0 & -1 & 100 & -1\\ 0 & 0 & 0 & \pi \end{pmatrix} ; \qquad A^{-1} = \begin{pmatrix} 100 & 0 & 0 & 0\\ 0 & -1 & 0 & 0\\ 0 & \frac{-1}{100} & \frac{1}{100} & \frac{1}{100\pi}\\ 0 & 0 & 0 & \frac{1}{\pi} \end{pmatrix}$$

Al resolver el sistema Ax = b con $b = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$, en la solucin se comete un error en norma 1,

 $\|\delta x\|_1$ estrictamente mayor al 1% con respecto de $\|x\|_1$, debido a un error δb en el trmino del lado derecho. Suponga que no hay errores en los coeficientes de la matriz ni errores de redondeo. Entonces necesariamente,

- a) $\|\delta b\|_1 > 410^{-6}$
- b) $0 < \|\delta b\|_1 \le 410^{-6}$
- c) $\|\delta b\|_1 \leq 0$
- d) Ninguna de las anteriores.

5. De las afirmaciones que siguen, encuentre la que es verdadera

- a) Un sistema Ax = b se puede resolver por el mtodo de Jacobi ssi A es simtrica y definida positiva.
- b) La factorizacion de Choleski de una matriz A existe ssi A es de diagonal dominante.
- c) Un sistema Ax = b se puede resolver por el mtodo del gradiente conjugado ssi $|A| \neq 0$.
- d) Ninguna de las anteriores.

6. Considere el problema de resolver un P.V.I. de primer orden asociado a una ecuacin diferencial de tipo *stiff*. Para stos problemas se puede afirmar que:

- (i) no se pueden resolver usando los mtodos de Runge-Kutta
- (ii) exigen usar un paso h muy pequeo en los mtodos explcitos
- (iii) es recomendable resolverlos con algn mtodo implicito

Son verdaderas las afirmaciones dadas en:

- a) slo (iii)
- b) (i) y (iii)
- c) (ii) y (iii)
- d) ninguna de las anteriores.

7. En un modelo de Diseo de Riego por Surcos, un índice de calidad de riego X (medido en porcentaje) depende del caudal Q (en m^3/min), del largo L (en m) y del tiempo de corte T_0 (en min.) segn la ecuacin

$$X = C_1 Q^{-C_2} L^{C_3} T_0^{-C_4}$$

Suponiendo que para las siguientes mediciones experimentales se obtiene una calidad dada por la siguiente tabla:

Q	0.1	0.2	0.3	0.4	0.5
L	107	190	298	412	501
T_0	250	100	300	70	400
X	40	90	30	99	25

Entonces el sistema $A^tAx = A^tb$ que permite obtener los coeficientes C_1, C_2, C_3 y C_4 est dado por la matriz y el vector:

a)
$$A = \begin{pmatrix} 0.1 & 107 & 250 \\ 0.2 & 190 & 100 \\ 0.3 & 298 & 300 \\ 0.4 & 412 & 70 \\ 0.5 & 501 & 400 \end{pmatrix}$$
; $b = \begin{pmatrix} 40 \\ 90 \\ 30 \\ 99 \\ 25 \end{pmatrix}$

$$b) \quad A = \begin{pmatrix} 1 & 0.1 & 107 & 250 \\ 1 & 0.2 & 190 & 100 \\ 1 & 0.3 & 298 & 300 \\ 1 & 0.4 & 412 & 70 \\ 1 & 0.5 & 501 & 400 \end{pmatrix} \quad ; \quad b = \begin{pmatrix} 40 \\ 90 \\ 30 \\ 99 \\ 25 \end{pmatrix}$$

$$(0,5) \quad 501 \quad 400 \quad (25) \quad ($$

d) Ninguna de las anteriores

8. Considere el mtodo de Euler explcito

$$y_{i+1} = y_i + hf(x_i, y_i)$$

y el de Euler implcito (retrogrado o regresivo)

$$y_{i+1} = y_i + hf(x_{i+1}, y_{i+1})$$

El esquema predictor corrector formado por estos mtodos es:

a)

$$\begin{cases} y_{i+1}^p = y_i + hf(x_{i+1}, y_{i+1}^p) \\ y_{i+1}^c = y_i + hf(x_i, y_i) \end{cases}$$

b)

$$\begin{cases} y_{i+1}^p = y_i + hf(x_i, y_i) \\ y_{i+1}^c = y_{i+1} + hf(x_{i+1}, y_{i+1}^p) \end{cases}$$

c)

$$\begin{cases} y_{i+1}^p = y_i + hf(x_i, y_i) \\ y_{i+1}^c = y_i + hf(x_{i+1}, y_{i+1}^p) \end{cases}$$

- d) ninguno de los anteriores.
- 9. Se desea resolver el PVI

$$\begin{cases} \ddot{y} + \dot{y} + \operatorname{sen}(y) = \cos(y), & t \in [0, 5] \\ y(0) = 1 \\ \dot{y}(0) = 2 \\ \ddot{y}(0) = 0 \end{cases}$$

Para esto se usa el comando ode45, es decir,

El programa en ambiente Matlab F.m es:

- a) function Z=F(t,y)
 Z=[y(3);y(2);-y(2)-sin(y(1))+cos(y(1))];
- b) function Z=F(t,y)
 Z=[y(2);y(3);-y(2)-sin(y(1))+cos(y(1))];
- $\begin{array}{ll} c) & \text{function Z=F(t,y)} \\ & \text{Z=[y(2);y(3);-y(2)-sin(y(3))+cos(y(1))];} \end{array}$
- d) ninguna de las anteriores.

10. Considere la tabla

x	-2	-1	0	1	2
у	1	0	-5	-2	-3

El modelo que se ajustara mejor mediante mnimos cuadrados a los datos experimentales es:

- $a) \quad y = \frac{1}{\sqrt{ax^2 + b}}$
- $b) \quad y = e^{ax^2 + b}$
- (c) y = ax + b
- d) ninguna de las anteriores.
- 11. Considere la tabla de datos

x_0	x_1	x_2	x_3	x_4	x_5
y_0	y_1	y_2	y_3	y_4	y_5

El valor de

$$\frac{2l_0(x_1) + 4l_3(x_3) + 8l_5(x_5)}{2l_2(x_2)}$$

donde l_i son los polinomios de lagrange asociados a la tabla, es:

- a) 1
- b) 6
- c) 7
- d) ninguna de las anteriores.
- 12. Se dispone de un conjunto de datos $\{(x_i, y_i)\}_{i=0}^n$ (ordenados como vectores columnas) los cuales se quieren ajustar por mnimos cuadrados a una funcin del tipo

$$y = \frac{5}{\sqrt{ax^2 + b}}$$

Un programa en ambiente Matlab que permite encontrar las constantes a y b es:

- a) function A=ajuste(x,y)
 F=[x.^2 ones(length(x),1)];
 A=F\(25./y.^2);
- b) function A=ajuste(x,y)
 F=[x.^2 ones(length(x),1)];
 A=F\(5./y.^2);
- c) function A=ajuste(x,y)
 F=[sqrt(x) ones(length(x),1)];
 A=F\y;
- d) ninguna de las anteriores.

13. Se dispone de la siguiente tabla de puntos de Gauss

x_i	A_i		
0.861136311594053	0.347854845137455		
0.339981043584856	0.652145154862547		

Un programa en ambiente Matlab que permite encontrar

$$\int_a^b e^{-x^2+5} dx$$

usando la tabla de Gauss anterior es:

- a) function I=integral(a,b)
 g=[0.861136311594053 0.339981043584856];
 A=[0.347854845137455 0.652145154862547];
 x1=(b-a)*(1-g)/2+a;
 x2=(b-a)*(1+g)/2+a;
 I=(b-a)*(sum(A.*exp(-x1.^2+5))+sum(A.*exp(-x2.^2+5)))/2;
- b) function I=integral(a,b)
 g=[0.861136311594053 0.339981043584856];
 A=[0.347854845137455 0.652145154862547];
 x1=(b-a)*(1-g)/2+a;
 x2=(b-a)*(1+g)/2+a;
 I=sum(A.*exp(-x1.^2+5))+sum(A.*exp(-x2.^2+5));
- c) function I=integral(a,b)
 g=[0.861136311594053 0.339981043584856];
 A=[0.347854845137455 0.652145154862547];
 I=(b-a)*(sum(A.*exp(-g.^2+5)))+sum(A.*exp(-g.^2+5)))/2;
- d) ninguno de los anteriores.
- 14. Considere la spline cubica s definida por:

$$s(x) = \begin{cases} ax(x^2 + b), & 0 \le x \le 1\\ -ax^3 + 3x^2 - \frac{5}{2}x + 1, & 1 \le x \le 2 \end{cases}$$

Para que valor de a, s es una spline c
bica de interpolacin para $f(x)=x^2, x\in [0,2]$, respecto de los nodos $x_0=0, x_1=1, x_2=2$

- a) a=1
- b) $a = \frac{1}{2}$
- c) $a = -\frac{1}{2}$
- d) Ninguna de las anteriores.

15. Al aplicar diferencias finitas al P.V.C.:

$$\begin{cases} -y''(x) + cy(x) = sen(x), & x \in [0, 2] \\ y(0) = \alpha, & y(2) = \beta \end{cases}$$

donde c > 0, h = 2/n, $x_i = ih$ e $i = 0, \dots n$, se debe resolver el sistema:

a)

$$\begin{bmatrix} 2+ch^2 & -1 & 0 & \dots & 0 \\ -1 & 2+ch^2 & -1 & \dots & 0 \\ & \ddots & \ddots & \ddots & \\ \vdots & & -1 & 2+ch^2 & -1 \\ 0 & & \dots & 0 & -1 & 2+ch^2 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_{n-2} \\ y_{n-1} \end{bmatrix} = h^2 \begin{bmatrix} sen(x_1) \\ \vdots \\ \vdots \\ sen(x_{n-1}) \end{bmatrix} + \begin{bmatrix} \alpha \\ 0 \\ \vdots \\ 0 \\ \beta \end{bmatrix}$$

b)

$$\begin{bmatrix} 2+ch^2 & 1 & 0 & \dots & 0 \\ 1 & 2+ch^2 & 1 & \dots & 0 \\ & \ddots & \ddots & \ddots & & \\ \vdots & & 1 & 2+ch^2 & 1 \\ 0 & \dots & 0 & 1 & 2+ch^2 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_{n-2} \\ y_{n-1} \end{bmatrix} = h^2 \begin{bmatrix} sen(x_1) \\ \vdots \\ sen(x_{n-1}) \end{bmatrix} + \begin{bmatrix} \alpha \\ 0 \\ \vdots \\ \delta \\ sen(x_{n-1}) \end{bmatrix}$$

$$\begin{bmatrix} 2ch & -1 & 0 & \dots & 0 \\ -1 & 2ch & -1 & \dots & 0 \\ & \ddots & \ddots & \ddots & \\ \vdots & & -1 & 2ch & -1 \\ 0 & & & 0 & -1 & 2ch \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_{n-2} \\ y_{n-1} \end{bmatrix} = 2h \begin{bmatrix} sen(x_1) \\ \vdots \\ \vdots \\ sen(x_n) \end{bmatrix} + \begin{bmatrix} -\alpha \\ 0 \\ \vdots \\ 0 \\ gen(x_n) \end{bmatrix}$$

d) ninguno de los anteriores.