Chapter 7

- 7.1 Measures of predictive accuracy
- 7.2 Information criteria and cross-validation
 - Instead of 7.2, read:
 Vehtari, A., Gelman, A., Gabry, J. (2017). Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Statistics and Computing. 27(5):1413–1432. arXiv preprint.
- 7.3 Model comparison based on predictive performance
- 7.4 Model comparison using Bayes factors
- 7.5 Continuous model expansion / sensitivity analysis
- 7.5 Example (may be skipped)

Model assesment, selection and inference after selection

- Extra material at https://avehtari.github.io/modelselection/
 - Videos, Slides, Notebooks, References
 - The most relevant for the course is the first part of the talk "Model assessment, comparison and selection at Master class in Bayesian statistics, CIRM, Marseille"

Predicting concrete quality

Predicting cancer recurrence

- True predictive performance is found out by using it to make predictions and comparing predictions to true observations
 - external validation

- True predictive performance is found out by using it to make predictions and comparing predictions to true observations
 - external validation
- Expected predictive performance
 - approximates the external validation

- We need to choose the utility/cost function
- Application specific utility/cost functions are important
 - eg. money, life years, quality adjusted life years, etc.

- We need to choose the utility/cost function
- Application specific utility/cost functions are important
 - eg. money, life years, quality adjusted life years, etc.
- If are interested overall in the goodnes of the predictive distribution, or we don't know (yet) the application specific utility, then good information theoretically justified choice is log-score

$$\log p(y^{\text{rep}}|y, M),$$

Outline

- What is cross-validation
 - Leave-one-out cross-validation (elpd_loo, p_loo)
 - Uncertainty in LOO (SE)
- When is cross-validation applicable?
 - data generating mechanisms and prediction tasks
 - leave-many-out cross-validation
- Fast cross-validation
 - PSIS and diagnostics in loo package (Pareto k, n_eff, Monte Carlo SE)
 - K-fold cross-validation
- Related methods (WAIC, *IC, BF)
- Model comparison and selection (elpd_diff, se)
- Model averaging with Bayesian stacking

Stan and loo package

Computed from 4000 by 20 log-likelihood matrix

Monte Carlo SE of elpd_loo is 0.1.

Pareto k diagnostic values:

			Count	Pct.	Min.	n_eff
(-Inf, 0)	0.5]	(good)	18	90.0%	899	
(0.5, 0	0.7]	(ok)	2	10.0%	459	
(0.7,	1]	(bad)	0	0.0%	< NA >	
(1, I	nf)	(very bad)	0	0.0%	<NA $>$	

All Pareto k estimates are ok (k < 0.7). See help('pareto-k-diagnostic') for details.

Model comparison: (negative 'elpd_diff' favors 1st model, positive favors 2nd)

$$\begin{array}{ccc} \text{elpd_diff} & \text{se} \\ -0.2 & 0.1 \end{array}$$

Posterior mean, alternative data realisation

Posterior predictive distribution

$$p(\tilde{y}|\tilde{x}=18,x,y)=\int p(\tilde{y}|\tilde{x}=18,\theta)p(\theta|x,y)d\theta$$

Leave-one-out residual

$$y_{18} - E[p(\tilde{y}|\tilde{x} = 18, x_{-18}, y_{-18})]$$

Leave-one-out residual

$$y_{18} - E[p(\tilde{y}|\tilde{x}=18, x_{-18}, y_{-18})]$$

Can be use to compute, e.g., RMSE, R², 90% error

Leave-one-out residual

$$y_{18} - E[p(\tilde{y}|\tilde{x}=18, x_{-18}, y_{-18})]$$

Can be use to compute, e.g., RMSE, R², 90% error

See LOO-R² at avehtari.github.io/bayes_R2/bayes_R2.html

Leave-one-out predictive distribution

$$p(\tilde{y}|\tilde{x}=18, x_{-18}, y_{-18}) = \int p(\tilde{y}|\tilde{x}=18, \theta) p(\theta|x_{-18}, y_{-18}) d\theta$$

Posterior predictive density

$$p(\tilde{y} = y_{18} | \tilde{x} = 18, x, y) \approx 0.07$$

Leave-one-out predictive density

$$p(\tilde{y} = y_{18} | \tilde{x} = 18, x, y) \approx 0.07$$
$$p(\tilde{y} = y_{18} | \tilde{x} = 18, x_{-18}, y_{-18}) \approx 0.03$$

Leave-one-out predictive densities

$$p(y_i|x_i, x_{-i}, y_{-i}), \quad i = 1, \dots, 20$$

Leave-one-out log predictive densities

Leave–one–out log predictive densities

 $\sum_{i=1}^{20} \log p(y_i|x_i, x_{-i}, y_{-i}) \approx -29.5$

Leave–one–out log predictive densities

elpd_loo = $\sum_{i=1}^{20} \log p(y_i|x_i, x_{-i}, y_{-i}) \approx -29.5$

Leave-one-out log predictive densities

elpd_loo = $\sum_{i=1}^{20} \log p(y_i|x_i,x_{-i},y_{-i}) \approx -29.5$ unbiased estimate of log posterior pred. density for new data

Leave–one–out log predictive densities

elpd_loo =
$$\sum_{i=1}^{20} \log p(y_i|x_i, x_{-i}, y_{-i}) \approx -29.5$$

$$lpd = \sum_{i=1}^{20} \log p(y_i|x_i, x, y) \approx -26.8$$

Leave–one–out log predictive densities

elpd_loo =
$$\sum_{i=1}^{20} \log p(y_i|x_i, x_{-i}, y_{-i}) \approx -29.5$$

lpd =
$$\sum_{i=1}^{20} \log p(y_i|x_i,x,y) \approx -26.8$$

$$p_{loo} = lpd - elpd_{loo} \approx 2.7$$

Leave–one–out log predictive densities

elpd_loo =
$$\sum_{i=1}^{20} \log p(y_i|x_i, x_{-i}, y_{-i}) \approx -29.5$$

SE = sd(log $p(y_i|x_i, x_{-i}, y_{-i})) \cdot \sqrt{20} \approx 3.3$

Leave-one-out log predictive densities

elpd_loo =
$$\sum_{i=1}^{20} \log p(y_i|x_i, x_{-i}, y_{-i}) \approx -29.5$$

SE = sd(log $p(y_i|x_i, x_{-i}, y_{-i})) \cdot \sqrt{20} \approx 3.3$

see Vehtari, Gelman & Gabry (2017a) and Vehtari & Ojanen (2012) for more

LOO is ok for fixed / designed x. SE is uncertainty about y|x.

see Vehtari & Ojanen (2012) and andrewgelman.com/2018/08/03/loo-cross-validation-approaches-valid/

LOO is ok for random x. SE is uncertainty about y|x and x.

see Vehtari & Ojanen (2012) and andrewgelman.com/2018/08/03/loo-cross-validation-approaches-valid/

LOO is ok for random x. SE is uncertainty about y|x and x. Covariate shift can be handled with importance weighting or modelling see Vehtari & Ojanen (2012) and andrewgelman.com/2018/08/03/

loo-cross-validation-approaches-valid/

14/53

100 package

Computed from 4000 by 20 log-likelihood matrix

Monte Carlo SE of elpd_loo is 0.1.

Pareto k diagnostic values:

			Count	Pct.	Min.	n_eff
(-Inf,	0.5]	(good)	18	90.0%	899	
(0.5, 0.5)	0.7]	(ok)	2	10.0%	459	
(0.7	, 1]	(bad)	0	0.0%	<NA $>$	
(1,	Inf)	(very bad) 0	0.0%	<na></na>	

All Pareto k estimates are ok (k < 0.7). See help('pareto-k-diagnostic') for details.

Nonlinear model fit + new data

Nonlinear model fit + new data

Extrapolation is more difficult

Can LOO or other cross-validation be used with time series?

Leave-one-out cross-validation is ok for assessing conditional model

Leave-future-out cross-validation is better for predicting future

m-step-ahead cross-validation is better for predicting further future

m-step-ahead leave-a-block-out cross-validation

Can LOO or other cross-validation be used with hierarchical data?

Age

Summary of data generating mechanisms and prediction tasks

- You have to make some assumptions on data generating mechanism
- Use the knowledge of the prediction task if available
- Cross-validation can be used to analyse different parts, even if there is no clear prediction task

see Vehtari & Ojanen (2012) and andrewgelman.com/2018/08/03/loo-cross-validation-approaches-valid/

Fast cross-validation

- Pareto smoothed importance sampling LOO (PSIS-LOO)
- K-fold cross-validation

Posterior predictive distribution

$$\theta^{(s)} \sim p(\theta|x,y), \quad p(\tilde{y}|\tilde{x},x,y) \approx \frac{1}{S} \sum_{s=1}^{S} p(\tilde{y}|\tilde{x},\theta^{(s)})$$

Posterior predictive distribution

$$\theta^{(s)} \sim p(\theta|x,y), \quad p(\tilde{y}|\tilde{x},x,y) \approx \frac{1}{S} \sum_{s=1}^{S} p(\tilde{y}|\tilde{x},\theta^{(s)})$$

PSIS-LOO weighted draws

$$\theta^{(s)} \sim p(\theta|x, y)$$

$$r_i^{(s)} = p(\theta^{(s)}|x_{-i}, y_{-i})/p(\theta^{(s)}|x, y)$$

PSIS-LOO weighted draws

$$\begin{aligned} \theta^{(s)} &\sim p(\theta|x,y) \\ r_i^{(s)} &= p(\theta^{(s)}|x_{-i},y_{-i})/p(\theta^{(s)}|x,y) \propto 1/p(y_i|x_i,\theta^{(s)}) \end{aligned}$$

PSIS-LOO weighted draws

$$\theta^{(s)} \sim p(\theta|x, y)$$

$$r_i^{(s)} = p(\theta^{(s)}|x_{-i}, y_{-i})/p(\theta^{(s)}|x, y) \propto 1/p(y_i|x_i, \theta^{(s)})$$

$$\log(1/p(y_i|x_i, \theta^{(s)})) = -\log_{lik}[i]$$

PSIS-LOO weighted predictive distribution

$$\theta^{(s)} \sim p(\theta|x,y)$$

$$r_i^{(s)} = p(\theta^{(s)}|x_{-i},y_{-i})/p(\theta^{(s)}|x,y) \propto 1/p(y_i|x_i,\theta^{(s)})$$

PSIS-LOO weighted predictive distribution

$$\begin{aligned} &\theta^{(s)} \sim p(\theta|x,y) \\ &r_i^{(s)} = p(\theta^{(s)}|x_{-i},y_{-i})/p(\theta^{(s)}|x,y) \propto 1/p(y_i|x_i,\theta^{(s)}) \\ &p(y_i|x_i,x_{-i},y_{-i}) \approx \sum_{s=1}^{S} [w_i^{(s)}p(y_i|x_i,\theta^{(s)})] \end{aligned}$$

PSIS-LOO weighted predictive distribution

$$\begin{split} & \theta^{(s)} \sim p(\theta|x,y) \\ & r_i^{(s)} = p(\theta^{(s)}|x_{-i},y_{-i})/p(\theta^{(s)}|x,y) \propto 1/p(y_i|x_i,\theta^{(s)}) \\ & p(y_i|x_i,x_{-i},y_{-i}) \approx \sum_{s=1}^S [w_i^{(s)}p(y_i|x_i,\theta^{(s)})], \text{ where } w \leftarrow \text{PSIS}(r) \end{split}$$

400 importance weights for leave-18th-out

4000 importance weights for leave-18th-out

4000 importance weights for leave-18th-out

see Vehtari, Gelman & Gabry (2017b)

4000 importance weights for leave-18th-out

n_eπ ≈ 459 -

Pareto $\hat{k} \approx 0.52$

- Pareto \hat{k} estimates the tail shape which determines the convergence rate of PSIS. Less than 0.7 is ok.

see Vehtari, Gelman & Gabry (2017b)

PSIS-LOO diagnostics

Pareto k diagnostic values:

		Count	Pct.	Min.	n_ef
(-Inf, 0.5]	(good)	18	90.0%	899	
(0.5, 0.7]	(ok)	2	10.0%	459	
(0.7, 1]	(bad)	0	0.0%	<na></na>	
(1, Inf)	(very bad)	0	0.0%	<na></na>	

PSIS-LOO diagnostics

Pareto k diagnostic values:

		Count	Pct.	Min .	n_eft
(-Inf, 0.5]	(good)	18	90.0%	899	
(0.5, 0.7]	(ok)	2	10.0%	459	
(0.7, 1]	(bad)	0	0.0%	<NA $>$	
(1, Inf)	(very bad)	0	0.0%	<NA $>$	

100 package

Computed from 4000 by 20 log-likelihood matrix

Monte Carlo SE of elpd_loo is 0.1.

Pareto k diagnostic values:

All Pareto k estimates are ok (k < 0.7). See help('pareto-k-diagnostic') for details.

see more in Vehtari, Gelman & Gabry (2017b)

Stan code

$$\log(r_i^{(s)}) = \log(1/p(y_i|x_i,\theta^{(s)})) = -\log_{-}[ik[i]]$$

Stan code

```
\log(r_i^{(s)}) = \log(1/p(y_i|x_i, \theta^{(s)})) = -\log |\mathbf{lik}[i]|
model {
  alpha ~ normal(pmualpha, psalpha);
  beta ~ normal(pmubeta, psbeta);
  y ~ normal(mu, sigma);
generated quantities {
  vector[N] log lik;
  for (i in 1:N)
    log_lik[i] = normal_lpdf(y[i] | mu[i], sigma);
```

Stan code

```
\log(r_i^{(s)}) = \log(1/p(y_i|x_i,\theta^{(s)})) = -\log_{\mathbf{k}}[i]
model {
  alpha ~ normal(pmualpha, psalpha);
  beta ~ normal(pmubeta, psbeta);
  y ~ normal(mu, sigma);
generated quantities {
  vector[N] log lik;
  for (i in 1:N)
    log_lik[i] = normal_lpdf(y[i] | mu[i], sigma);
```

RStanARM and BRMS compute log_lik by default

Pareto smoothed importance sampling LOO

- PSIS-LOO for hierarchical models
 - leave-one-group out is challenging for PSIS-LOO see Merkel, Furr and Rabe-Hesketh (2018) for an approach using quadrature integration

Pareto smoothed importance sampling LOO

- PSIS-LOO for hierarchical models
 - leave-one-group out is challenging for PSIS-LOO see Merkel, Furr and Rabe-Hesketh (2018) for an approach using quadrature integration
- PSIS-LOO for non-factorizable models
 - mc-stan.org/loo/articles/loo2-non-factorizable.html

Pareto smoothed importance sampling LOO

- PSIS-LOO for hierarchical models
 - leave-one-group out is challenging for PSIS-LOO see Merkel, Furr and Rabe-Hesketh (2018) for an approach using quadrature integration
- PSIS-LOO for non-factorizable models
 - mc-stan.org/loo/articles/loo2-non-factorizable.html
- PSIS-LOO for time series
 - Approximate leave-future-out cross-validation mc-stan.org/loo/articles/loo2-lfo.html

AR-2 prediction with 95% interval

PSIS-1-step-ahead

PSIS-1-step-ahead with refits

K-fold cross-validation

- K-fold cross-validation can approximate LOO
 - all uses for LOO
- K-fold cross-validation can be used for hierarchical models
 - good for leave-one-group-out
- K-fold cross-validation can be used for time series
 - with leave-block-out

Balance k-fold approximation of LOO

Random k-fold approximation of LOO 582 -Tevel (feet) 24.00 (feet) 25.00 (feet) 25.00

1900

Year

1920

581

578

577

1880

kfold_split_random()
kfold_split_balanced()
kfold_split_stratified()

WAIC has same assumptions as LOO

- WAIC has same assumptions as LOO
- PSIS-LOO is more accurate

- WAIC has same assumptions as LOO
- PSIS-LOO is more accurate
- PSIS-LOO has much better diagnostics

- WAIC has same assumptions as LOO
- PSIS-LOO is more accurate
- PSIS-LOO has much better diagnostics
- LOO makes the prediction assumption more clear, which helps if K-fold-CV is needed instead

- WAIC has same assumptions as LOO
- PSIS-LOO is more accurate
- PSIS-LOO has much better diagnostics
- LOO makes the prediction assumption more clear, which helps if K-fold-CV is needed instead
- Multiplying by -2 doesn't give any benefit (Watanabe didn't multiply by -2)

*IC

- AIC uses maximum likelihood estimate for prediction
- DIC uses posterior mean for prediction
- BIC is an approximation for marginal likelihood
- TIC, NIC, RIC, PIC, BPIC, QIC, AICc, ...

 Like leave-future-out 1-step-ahead corss-validation but starting with 0 observations

 Like leave-future-out 1-step-ahead corss-validation but starting with 0 observations

- Like leave-future-out 1-step-ahead corss-validation but starting with 0 observations
 - which makes it very sensitive to prior

- Like leave-future-out 1-step-ahead corss-validation but starting with 0 observations
 - which makes it very sensitive to prior and
 - unstable in case of misspecified models

- Like leave-future-out 1-step-ahead corss-validation but starting with 0 observations
 - which makes it very sensitive to prior and
 - unstable in case of misspecified models also asymptotically

Cross-validation for model assessment

- CV is good for model assessment when application specific utility/cost functions are used
 - e.g. 90% absolute error

Cross-validation for model assessment

- CV is good for model assessment when application specific utility/cost functions are used
 - e.g. 90% absolute error
- Also useful in model checking in similar way as posterior predictive checking (PPC)
 - model misspecification diagnostics (e.g. Pareto-k and p_loo)
 - checking calibration of leave-one-out predictive posteriors (ppc_loo_pit in bayesplot)

see demos avehtari.github.io/modelselection/

Radon example

PSIS-LOO diagnostics

see Vehtari, Gelman & Gabry (2017a)

Posterior predictive checking is often sufficient

Predicting the yields of mesquite bushes.

Gelman, Hill & Vehtari (2019): Regression and Other Stories, Chapter 11.

Posterior predictive checking is often sufficient

Predicting the yields of mesquite bushes.

Gelman, Hill & Vehtari (2019): Regression and Other Stories, Chapter 11.

- BDA3, Chapter 6
- Gabry, Simpson, Vehtari, Betancourt, Gelman (2018). Visualization in Bayesian workflow. JRSS A, preprint arXiv:1709.01449
- mc-stan.org/bayesplot/articles/graphical-ppcs.html
- betanalpha.github.io/assets/case_studies/principled_bayesian_ workflow.html

Model comparison

- "A popular hypothesis has it that primates with larger brains produce more energetic milk, so that brains can grow quickly" (from Statistical Rethinking)
 - Model 1: formula = kcal.per.g ∼ neocortex
 - Model 2: formula = kcal.per.g ∼ neocortex + log(mass)

Pointwise comparison LOO models: Model 1

Pointwise comparison LOO models: Model 1

Model 1 elpd_loo \approx 3.7, SE=1.8 Model 2 elpd_loo \approx 8.4, SE=2.8

Pointwise comparison LOO models: Model 1

Model 1 elpd_loo \approx 3.7, SE=1.8 Model 2 elpd_loo \approx 8.4, SE=2.8

Model comparison: (negative 'elpd_diff' favors 1st model, positive favors 2nd)

Arsenic well example - Model comparison

An estimated difference in elpd_{loo} of 16.4 with SE of 4.4.

see Vehtari, Gelman & Gabry (2017a)

Posterior predictive checking is often sufficient

Predicting the yields of mesquite bushes.

Gelman, Hill & Vehtari (2019): Regression and Other Stories, Chapter 11.

- BDA3, Chapter 6
- Gabry, Simpson, Vehtari, Betancourt, Gelman (2018). Visualization in Bayesian workflow. JRSS A, preprint arXiv:1709.01449
- mc-stan.org/bayesplot/articles/graphical-ppcs.html
- betanalpha.github.io/assets/case_studies/principled_bayesian_ workflow.html

 For some very simple cases you may assume that true model is included in the list of models considered (M-closed)

- For some very simple cases you may assume that true model is included in the list of models considered (M-closed)
 - see predictive model selection in *M*-closed case by San Martini and Spezzaferri (1984)

- For some very simple cases you may assume that true model is included in the list of models considered (M-closed)
 - see predictive model selection in *M*-closed case by San Martini and Spezzaferri (1984)
 - but you should not force your design of experiment or analysis to stay in the simplified world

- For some very simple cases you may assume that true model is included in the list of models considered (M-closed)
 - see predictive model selection in *M*-closed case by San Martini and Spezzaferri (1984)
 - but you should not force your design of experiment or analysis to stay in the simplified world
- In nested case, often easier and more accurate to analyse posterior distribution of more complex model directly avehtari.github.io/modelselection/betablockers.html

Sometimes predictive model comparison can be useful

Marginal posterior intervals

Sometimes predictive model comparison can be useful

rstanarm + bayesplot

Sometimes predictive model comparison can be useful

rstanarm + bayesplot

- Continuous expansion including all models?
 - and then analyse the posterior distribution directly avehtari.github.io/modelselection/betablockers.html
 - sparse priors like regularized horseshoe prior instead of variable selection
 video, refs and demos at avehtari.github.io/modelselection/

- Continuous expansion including all models?
 - and then analyse the posterior distribution directly avehtari.github.io/modelselection/betablockers.html
 - sparse priors like regularized horseshoe prior instead of variable selection
 video, refs and demos at avehtari.github.io/modelselection/
- Model averaging with BMA or Bayesian stacking? mc-stan.org/loo/articles/loo2-example.html

- Continuous expansion including all models?
 - and then analyse the posterior distribution directly avehtari.github.io/modelselection/betablockers.html
 - sparse priors like regularized horseshoe prior instead of variable selection
 video, refs and demos at avehtari.github.io/modelselection/
- Model averaging with BMA or Bayesian stacking? mc-stan.org/loo/articles/loo2-example.html
- In a nested case choose simpler if assuming some cost for extra parts?
 andrewgelman.com/2018/07/26/
 parsimonious-principle-vs-integration-uncertainties/

- Continuous expansion including all models?
 - and then analyse the posterior distribution directly avehtari.github.io/modelselection/betablockers.html
 - sparse priors like regularized horseshoe prior instead of variable selection
 video, refs and demos at avehtari.github.io/modelselection/
- Model averaging with BMA or Bayesian stacking? mc-stan.org/loo/articles/loo2-example.html
- In a nested case choose simpler if assuming some cost for extra parts?
 andrewgelman.com/2018/07/26/
 parsimonious-principle-vs-integration-uncertainties/
- In a nested case choose more complex if you want to take into account all the uncertainties. andrewgelman.com/2018/07/26/ parsimonious-principle-vs-integration-uncertainties/

Model averaging

• Prefer continuous model expansion

Model averaging

- Prefer continuous model expansion
- If needed integrate over the model space = model averaging

Model averaging

- Prefer continuous model expansion
- If needed integrate over the model space = model averaging
- Bayesian stacking may work better than BMA
 - Yao, Vehtari, Simpson, & Gelman (2018)

Cross-validation and model selection

- · Cross-validation can be used for model selection if
 - small number of models
 - the difference between models is clear

Cross-validation and model selection

- Cross-validation can be used for model selection if
 - small number of models
 - the difference between models is clear
- Do not use cross-validation to choose from a large set of models
 - selection process leads to overfitting

Cross-validation and model selection

- Cross-validation can be used for model selection if
 - small number of models
 - the difference between models is clear
- Do not use cross-validation to choose from a large set of models
 - selection process leads to overfitting
- Overfitting in selection process is not unique for cross-validation

Selection induced bias and overfitting

- Selection induced bias in cross-validation
 - same data is used to assess the performance and make the selection
 - the selected model fits more to the data
 - the CV estimate for the selected model is biased
 - recognised already, e.g., by Stone (1974)

Selection induced bias and overfitting

- Selection induced bias in cross-validation
 - same data is used to assess the performance and make the selection
 - the selected model fits more to the data
 - the CV estimate for the selected model is biased
 - recognised already, e.g., by Stone (1974)
- Performance of the selection process itself can be assessed using two level cross-validation, but it does not help choosing better models

Selection induced bias and overfitting

- Selection induced bias in cross-validation
 - same data is used to assess the performance and make the selection
 - the selected model fits more to the data
 - the CV estimate for the selected model is biased
 - recognised already, e.g., by Stone (1974)
- Performance of the selection process itself can be assessed using two level cross-validation, but it does not help choosing better models
- Bigger problem if there is a large number of models as in covariate selection

Piironen & Vehtari (2017)

- It's good to think predictions of observables, because observables are the only ones we can observe
- Cross-validation can simulate predicting and observing new data
- Cross-validation is good if you don't trust your model
- Different variants of cross-validation are useful in different scenarios
- Cross-validation has high variance, and if you trust your model you can beat cross-validation in accuracy

- It's good to think predictions of observables, because observables are the only ones we can observe
- Cross-validation can simulate predicting and observing new data
- Cross-validation is good if you don't trust your model
- Different variants of cross-validation are useful in different scenarios
- Cross-validation has high variance, and if you trust your model you can beat cross-validation in accuracy

- It's good to think predictions of observables, because observables are the only ones we can observe
- Cross-validation can simulate predicting and observing new data
- Cross-validation is good if you don't trust your model
- Different variants of cross-validation are useful in different scenarios
- Cross-validation has high variance, and if you trust your model you can beat cross-validation in accuracy

- It's good to think predictions of observables, because observables are the only ones we can observe
- Cross-validation can simulate predicting and observing new data
- Cross-validation is good if you don't trust your model
- Different variants of cross-validation are useful in different scenarios
- Cross-validation has high variance, and if you trust your model you can beat cross-validation in accuracy

- It's good to think predictions of observables, because observables are the only ones we can observe
- Cross-validation can simulate predicting and observing new data
- Cross-validation is good if you don't trust your model
- Different variants of cross-validation are useful in different scenarios
- Cross-validation has high variance, and if you trust your model you can beat cross-validation in accuracy