Linguagens regulares

Uma linguagem é **regular** se existe algum autômato finito determinístico que a reconhece.

O nosso objetivo será investigar as linguagens regulares.

 M_1 **não** aceita ϵ : estado inicial **não** $\acute{\bf e}$ de aceitação M_2 aceita ϵ : estado inicial $\acute{\bf e}$ de aceitação

Strings com 6 símbolos **aceitas** por M_1 e **rejeitadas** por M_2 : 000001, 000010, 000100, 001000, 000111, 011111, 1011111, ...

Strings com 6 símbolos **rejeitas** por M_1 e **aceitas** por M_2 : 001111, 010111, 101101, 110110, 111111, . . .

Strings com 6 símbolos **aceitas** por M_1 e por M_2 : 000000, 110000, 101000, 100100, 100010, ...

Strings com 5 símbolos **rejeitas** por M_1 e por M_2 : 00111, 01110, 10101, 11010, 11100, ...

 $L(M_1) = \{w : w \text{ tem um ou pelo menos três 0's}\}$

 $L(M_2) = \{w : w \text{ tem um n\'umero par de 1's}\}$

Teorema. Se A_1 e A_2 são linguagem regulares, então $A_1 \cup A_2$ é regular.

União:
$$X \cup Y = \{w : w \in X \text{ ou } w \in Y\}$$

$$\sum_{} = \{0, 1, \dots, 9, a, b, c, \dots, z\}$$

$$A_1 = \{mac, mae, map, mat\}$$

$$A_2 = \{0121, 0323, 0338\}$$

$$A_1 \cup A_2 = \{mac, mae, map, mat, 0121, 0323, 0338\}$$

Teorema. Se A_1 e A_2 são linguagem regulares, então $A_1 \cup A_2$ é regular.

Usar

$$M_1 = (Q_1, \Sigma, \delta_1, s_1, F_1)$$
 e $A_1 = L(M_1)$
 $M_2 = (Q_2, \Sigma, \delta_2, s_2, F_2)$ e $A_2 = L(M_2)$

para construir

$$M = (Q, \Sigma, \delta, s, F)$$

tal que $A_1 \cup A_2 = L(M)$.

Teorema. Se A_1 e A_2 são linguagem regulares, então $A_1 \cup A_2$ é regular.

Teorema. Se A_1 e A_2 são linguagem regulares, então $A_1 \cup A_2$ é regular.

Ideia: Dada um string w, primeiro execute M_1 com w como entrada. Depois execute M_2 com w como entrada. Aceite w se M_1 aceitou w ou de M_2 aceitou w.

Opsss! A regra é clara! Depois de ler e simular M_1 com um símbolo de w esse símbolo se foi para sempre, . . . , não pode ser lido novamente.

Teorema. Se A_1 e A_2 são linguagem regulares, então $A_1 \cup A_2$ é regular.

Mais uma Ideia:

Apelar para paralelismo!

Exemplo $A_1 \cup A_2$?

 $A_1 = L(M_1) = \{w : w \text{ tem um número par de 1's}\}$ $A_2 = L(M_2) = \{w : w \text{ tem um número par de 0's}\}$

Exemplo $A_1 \cup A_2$?

w está em $A_1 \cup A_2$?

Rabiscos ...

Ideia: $^{\textcircled{\$}}$ anda em M_1 enquanto $^{\textcircled{\$}}$ cuida de M_2 .

	ϵ	1	0	0	1	1	0	1	0	1	
	q_0	q_1	q_1	q_1	q_0	q_1	q_1	q_0	q_0	q_1	
> (@	r_0	r_0	r_1	r_0	r_0	r_0	r_1	r_1	r_0	r_0	

Ao final, $^{\bigcirc}$ e $^{\bigcirc}$ se juntam, compartilham seus resultados e decidem **aceitar** w se **uma das duas aceitar**.

Teorema. Se A_1 e A_2 são linguagem regulares, então $A_1 \cup A_2$ é regular.

Rascunho de Demonstração: Considere o autômato $M = (Q, \Sigma, \delta, s, F)$ em que

$$Q = Q_1 \times Q_2 = \{(q_1, q_2) : q_1 \in Q_1 \in q_2 \in Q_2\}$$

$$s = (s_1, s_2)$$

$$F = (F_1 \times Q_2) \cup (Q_1 \times F_2)$$

$$= \{(q_1, q_2) : q_1 \in F_1 \text{ ou } q_2 \in F_2\}$$

Finalmente, para $(q_1, q_2) \in Q$ e $a \in \Sigma$

$$\delta((q_1, q_2), a) = (\delta_1(q_1, a), \delta_2(q_2, a)).$$

Exemplo $A_1 \cup A_2$

 $A_1 = L(M_1) = \{w : w \text{ tem um número par de 1's}\}$ $A_2 = L(M_2) = \{w : w \text{ tem um número par de 0's}\}$

Exemplo $A_1 \cup A_2$

M

Exemplo $A_1 \cup A_2$

Se o autômato está no estado:

```
(q_0,r_0): até agora, número de 0's e 1's é par
```

$$(q_0,r_1)$$
: até agora, número de 0's é par e 1's é ímpar

$$(q_1,r_0)$$
: até agora, número de 0's é ímpar e 1's é par

 (q_1,r_1) : até agora, número de 0's e 1's é ímpar

Se M_1 tem k_1 estados e M_2 tem k_2 estados, então M tem $k_1 \times k_2$ estados.

Interseção de linguagens regulares

Teorema. Se A_1 e A_2 são linguagem regulares, então $A_1 \cap A_2$ é regular.

$$M_1 = (Q_1, \Sigma, \delta_1, s_1, F_1)$$
 e $A_1 = L(M_1)$
 $M_2 = (Q_2, \Sigma, \delta_2, s_2, F_2)$ e $A_2 = L(M_1)$

para construir

$$M = (Q, \Sigma, \delta, s, F)$$

tal que $A_1 \cap A_2 = L(M)$.

Interseção de linguagens regulares

Teorema. Se A_1 e A_2 são linguagem regulares, então $A_1 \cap A_2$ é regular.

Rascunho de Demonstração: Considere o autômato $M = (Q, \Sigma, \delta, s, F)$ em que

$$Q = Q_1 \times Q_2 = \{(q_1, q_2) : q_1 \in Q_1 \in q_2 \in Q_2\}$$

$$s = (s_1, s_2)$$

$$F = (F_1 \cap F_2)$$

$$= \{(q_1, q_2) : q_1 \in F_1 \mathbf{e} \ q_2 \in F_2\}$$

Finalmente, para $(q_1, q_2) \in Q$ e $a \in \Sigma$

$$\delta((q_1, q_2), a) = (\delta_1(q_1, a), \delta_2(q_2, a)).$$

$$L(M) = A_1 \cap A_2$$

M

Teorema. Se A_1 e A_2 são linguagem regulares, então $A_1 \circ A_2$ é regular.

Concatenação:

$$XY = \{w : \text{existem } x \in X \text{ e } y \in Y \text{ tq } w = xy\}$$

$$\sum_{} = \{0, 1, \dots, 9, a, b, c, \dots, z\}$$

$$A_1 = \{mac, mae\}$$

$$A_2 = \{0121, 0323, 0338\}$$

$$A_1A_2 = \{mac0121, mac0323, mac0338, mae0121, mae0323, mae0338\}$$

Teorema. Se A_1 e A_2 são linguagem regulares, então $A_1 \circ A_2$ é regular.

Usar

$$M_1 = (Q_1, \Sigma, \delta_1, s_1, F_1)$$
 e $A_1 = L(M_1)$
 $M_2 = (Q_2, \Sigma, \delta_2, s_2, F_2)$ e $A_2 = L(M_1)$

para construir

$$M = (Q, \Sigma, \delta, s, F)$$

tal que $A_1 \circ A_2 = L(M)$.

Teorema. Se A_1 e A_2 são linguagem regulares, então $A_1 \circ A_2$ é regular.

Teorema. Se A_1 e A_2 são linguagem regulares, então $A_1 \circ A_2$ é regular.

 ${\it M}$ deve aceitar uma string ${\it w}$ se existem strings ${\it x}$ e ${\it y}$ tais que

- ightharpoonup w = xy;
- M_1 aceita x, e
- M_2 aceita y

Baita problema: não sabemos quando mudar da máquina M_1 para a M_2 .

Não sabemos onde quebrar w.

 $A_1 = L(M_1) = \{w : w \text{ tem um número par de 1's}\}$ $A_2 = L(M_2) = \{w : w \text{ tem um número par de 0's}\}$

w está em A_1A_2 ?

Rabiscos

 $w = 1 \ 0 \ 0 \ 1 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ \dots$

Ideia: Usar *threads*. É esse o nome?

	ϵ	1	0	0	1	1	0	1	0	1]
9 P	q_0	q_1	q_1	q_1	q_0	q_1	q_1	q_0	q_0	q_1	
(a)	r_0	r_0	r_1	r_0	r_0	r_0	r_1	r_1	r_0	r_0	
					r_0	r_0	r_1	r_1	r_0	r_0	
?								r_0	r_1	r_1	
									r_0	r_0	

Ao final, se

decide aceitar ou decide aceitar ou decide aceitar ou decide aceitar, então w é aceito como uma string em $A_1 \circ A_2$.

Notemos que além de M_1 andando nos estados de M_2 , já que M_2 tem dois estados.

Teorema. Se A_1 e A_2 são linguagem regulares, então $A_1 \circ A_2$ é regular.

Teorema. Se A_1 e A_2 são linguagem regulares, então $A_1 \circ A_2$ é regular.

Rascunho de Demonstração: Considere o autômato $M = (Q, \Sigma, \delta, s, F)$ em que

$$Q = Q_1 \times \mathcal{P}(Q_2) = \{(q, R) : q \in Q_1 \in R \subseteq Q_2\}$$

$$s = \begin{cases} (s_1, \{s_2\}), & \text{se } s_1 \in F_1 \\ (s_1, \emptyset) & \text{se } s_1 \notin F_1 \end{cases}$$

Teorema. Se A_1 e A_2 são linguagem regulares, então $A_1 \circ A_2$ é regular.

$$F = \{ (q, R) : q \in Q_1 \in R \cap F_2 \neq \emptyset \}$$

Em palavras, M aceita uma string se e somente se houver um estado na segunda coordenada R que seja um estado de aceitação de M_2 .

Então M aceita se e somente se uma das possíveis threads de concatenação terminar em um estado de aceitação de M_2 .

Teorema. Se A_1 e A_2 são linguagem regulares, então $A_1 \circ A_2$ é regular.

Finalmente, para $(q,R) \in Q$ e $a \in \Sigma$ temos que $\delta((q,R),a)$ é

$$\begin{cases} (\delta_1(q,a), \delta_2(R,a) \cup \{s_2\}), & \text{se } q \in F_1 \text{ (fork!)} \\ (\delta_1(q,a), \delta_2(R,a)), & \text{se } q \notin F_1 \end{cases}$$

em que

$$\delta_2(R, a) = \{\delta_2(r, a) : r \in R\}$$

 $A_1 = L(M_1) = \{w : w \text{ tem um número par de 1's}\}$ $A_2 = L(M_2) = \{w : w \text{ tem um número par de 0's}\}$

Se M_1 tem k_1 estados e M_2 tem k_2 estados, então M tem $k_1 \times 2^{k_2}$ estados.

Conclusão

Teorema. Se A_1 e A_2 são linguagem regulares, então $A_1 \circ A_2$ é regular.

Pausa ...

Observe que M com entrada w acompanha todos os threads possíveis e aceita w se e somente se um desses threads aceita w.

Agora é uma boa hora para fazermos uma pausa e pedirmos ajuda ao **não-determinismo**.

Apêndice: conjunto das partes

O conjunto das partes ou conjunto potência de A, denotado por $\mathcal{P}(A)$, é o conjunto

$$\{B:B\subseteq A\}.$$

Por exemplo, o conjunto das partes de $\{1,2,3\}$ é

$$\{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}$$

$$e \mathcal{P}(\emptyset) = \{\emptyset\}.$$

Quantos elementos tem $\mathcal{P}(\{1,2,3,4\})$?

Quantos elementos tem $\mathcal{P}(\{1,\ldots,n\})$?

O que é ... 🗳

- ▶ linguagem formal: linguagem em que as strings são formadas de acordo com um conjunto específico de regras.
- linguagem regular: linguagem que é reconhecida por um autômato finito determinístico.
- operador estrela: aplicado a um alfabeto resulta na linguagem de todas as strings sobre o alfabeto. Se ∑ é um alfabeto escrevemos ∑*
- operador estrela: aplicado a uma linguagem resulta na linguagem formada pela concatenação de zero ou mais strings da linguagem. Se L é uma linguagem escrevemos L*