

Geometría

Cuadriláteros

Intensivo UNI 2024 - III

- 1. Calcule el perímetro de una región trapecial ABCD, recta en $A \lor B$, si AB = 4, $BC = 10 \lor CD = 5$. (BC < AD)
 - A) 19
 - B) 32
 - C) 28
 - D) 35
 - E) 33
- En el gráfico, AB=BC y CD=DE. Si BD=6, calcule la distancia del punto medio M a la recta BD.

- A) 2
- D) 3,5
- B) 2,5
- C) 3 E) 6
- 3. En el trapezoide, m $\angle BAD = 75^{\circ}$, m $\angle ABC = 90^{\circ}$ y AB=BC=CD. Calcule la m $\triangleleft ADC$.

- A) 30°
- B) 37°
- C) 45°

D) 53°

E) 60°

- En un trapecio isósceles ABCD, se ubica el punto E en el lado lateral AB. Si EBCD es un trapezoide simétrico v la m∢EDC=3m∢EDA. calcule la m∢*EDA*.
 - A) 10°
- B) 30°
- C) 37°

D) 22°30'

- E) 20°
- En un trapecio de diagonales perpendiculares, la suma de cuadrados de sus diagonales es 100. Calcule la longitud de la base media.
 - A) 3
- B) 4
- C) 5 E) 8

D) 6

- En un cuadrilátero convexo ABCD, AB=BC=CD, la m $\angle ADC$ =50° y la m $\angle BCD$ =2m $\angle BAD$. Calcule la m∢BAD.
 - A) 20°
- B) 45°
- C) 60°

D) 70°

- E) 80°
- En el cuadrilátero ABCD, AB=CD=a y m∢BAD+m∢CDA=120°. Calcule la distancia entre los puntos medios de las diagonales.

- C) a

E) $a\sqrt{3}$

- En un trapecio ABCD, $\overline{BC}//\overline{AD}$, además, se ubica P en la diagonal \overline{BD} , de modo que la $m \not\prec BCP = 2m \not\prec PCD$, $m \not\prec A = m \not\prec CPD$, $m \not\prec A > 90^{\circ}$ v *AB=PD*. Calcule la m*∢PCD*.
 - A) 15°
- B) 30°
- C) 45°

D) 10°

- E) 37°
- Sea ABCD un paralelogramo. Si CQ=3 y QP=2, calcule la longitud de base media del trapecio AQCD.

- A) 6 D) 10
- B) 7
- C) 8
- E) 5.5
- 10. Según el gráfico, ABCD es un rombo, donde la $m \angle BAC = 24^{\circ}$ v MN=ND. Calcule θ.

- A) 40°
- B) 45°
- C) 30°

D) 60°

- E) 44°
- 11. Sea ABCD un cuadrado de centro O, en AB y \overline{AD} se ubican los puntos P y R, respectivamente, de modo que PQDR es un rombo. Si $O \in \overline{PQ}$, calcule la m∢QDR.
 - A) 53°
- B) $\frac{37^{\circ}}{2}$ C) $\frac{45^{\circ}}{2}$

E) 37°

- 12. Sean ABCD v OPOR paralelogramos, de modo que O es el centro de ABCD, $P \in \overline{BC}$, $O \in \overline{CD}$ v $R \in \overline{AD}$. Si $PC = 2 \vee RD = 5$, calcule AD.
 - A) 12
 - B) 14
 - C) 15
 - D) 16
 - E) 18
- 13. En un paralelogramo ABCD, de alturas 6 y 8. las bisectrices interiores en A y B se intersecan en P. Calcule la distancia de P hacia \overline{CD} .
 - A) 3
- B) 4
- C) 5

D) 6

- E) 7
- 14. En un paralelogramo ABCD, las bisectrices exteriores de los ángulos en C y D se intersecan en Q. Si la m $\angle ABQ = 90^\circ$, AB = 14 y BC = 18, calcule BO.
 - A) 25
- B) 30
- C) 32

D) 48

- E) 24
- **15.** En un trapecio PORS, $\overline{PS}//\overline{OR}$, el ángulo P es obtuso v M es punto medio de QS. Si PQ = QM, RM=4 u y m $\ll P=m \ll RMS$, entonces, la medida (en u) de la mediana del trapecio es
 - A) 8.
- B) 9.
- C) 10.

D) 11.

- E) 12.
- **16.** En un cuadrado *PQRS*, *F* es un punto interior. Si PQ = QF y m< PFS = 75, entonces, m< FQR es
 - A) 18°.
- B) 45°.
- C) 30°.

D) 40°.

- E) 32°.
- 17. En un cuadrilátero convexo ABCD, en donde AD = AB + BC, BC = CD, la $m \not\prec BCD = 100^{\circ}$ y la $m \angle CDA = 60^\circ$, calcule la $m \angle BAD$.
 - A) 80°
- B) 100°
- C) 90°

D) 60°

E) 120°

- **18.** En un trapezoide ABCD, la m∢ABC=90° y la m $\angle ABD$ = 45°. Si AB = 4 $\sqrt{2}$ y BC = 6 $\sqrt{2}$, calcule la distancia del punto medio de \overline{AC} hacia \overline{BD} .
 - A) 0.5
 - B) 1
 - C) 1,5
 - D) 2
 - E) $\sqrt{2}$
- **19.** En un trapecio isósceles *ABCD*, de bases \overline{BC} y \overline{AD} , se ubican los puntos medios M, N y P de \overline{AB} , \overline{CD} y \overline{AN} , respectivamente. Si la m $\angle PMC = 90^\circ$, calcule la m∢*BCM*.
 - A) 30°
- B) 60°
- C) 45°

D) $\frac{53^{\circ}}{2}$

- E) $\frac{37^{\circ}}{2}$
- 20. Según el gráfico, ABCD es un trapecio isósceles y PBCD, es un trapezoide simétrico. Calcule θ .

- A) 9°
- B) 10°
- C) 12°

D) 15°

- E) 18°
- 21. En el lado AD de un paralelogramo ABCD, se ubica el punto P y se construye el paralelogramo BPCQ, de modo que AQ interseca a BC en R. Si BR = K, calcule la distancia entre los puntos medios de \overline{BP} y \overline{RD} .
 - A) $\frac{K}{3}$
- B) $\frac{K}{2}$

D) 2K

E) $\frac{3K}{2}$

22. Sea *ABCD* un cuadrado v PO=RC. Calcule x.

A) $\frac{53^{\circ}}{2}$

- B) $\frac{37^{\circ}}{2}$

D) 30°

- E) $\frac{45^{\circ}}{2}$
- 23. Las bisectrices de los ángulos exteriores de un paralelogramo ABCD se intersecan formando un cuadrilátero PQRS. Si AB=a y BC=b, calcule PR.
 - A) a+b
- B) 2a+b
- C) 2a-b

D) a+2b

- E) $\frac{a+b}{2}$
- **24.** Según el gráfico, FQ = 2(BE). Calcule x si ABCD y DEFG son cuadrados.

- A) 37°
- B) $\frac{53^{\circ}}{2}$

D) 30°

E) 15°