Bevezetés

•000000

# Üzleti Elemzések Módszertana 2. Előadás: Osztályozás

Kuknyó Dániel Budapesti Gazdasági Egyetem

> 2023/24 2.félév

Bevezetés

Bevezetés

000000

- Osztályozás
- Osztályozás vagy regresszió?
- Osztályozás jósága
- 6 Logisztikus regresszió
- Modellezés
- Softmax regresszió

- Bevezetés
- Osztályozá:
- Osztályozás vagy regresszió
- Osztályozás jósága
- Logisztikus regresszió
- Modellezés
- Softmax regresszió

#### A determinisztikus szemléletmód

A hagyományos szoftverfejlesztési folyamatmodell eljárása:

- Az adott jelenség megfigyelése és adatok rögzítése
- A megfigyelésekre olyan szabályok kidolgozása, amelyek jól leírják azt
- A létrejött szabályrendszer kiértékelése
- Rendszer fejlesztése a hibák alapján
- Iteráció



Bevezetés 0000000

# A gépi tanulás szemléletmód

A gépi tanulás szemléletének folyamatmodellje:

- Adott jelenség megfigyelése és adatok rögzítése
- Gépi tanulási modell tanítása az adatokon a szakterületi tudás segítségével
- Modell kiértékelése
- Hibák elemzése és kiértékelése
- Iteráció



Bevezetés 00000€0

#### Tanítás automatizálása adatalapúan

Az gépi tanuló modellek tanítása és kiértékelése hosszú távon egy iteratív folyamat már létező keretrendszerekkel, mint az MLOps. Ennek számos területen vannak előnyei:

- Adaptáció az új adatokhoz
- Javuló modell teljesítmény
- Hibák és problémák azonosítása
- Új technológiai fejlődés integrálása
- Skálázhatóság és rugalmasság
- Szakterületi következtetések az elemzések által



Bevezetés

### Az adatok észszerűtlen hatékonysága

2001-es kutatásukban Michele Blanko és Eric Brill kimutatták, hogy a különböző ML algoritmusok hasonlóan jól teljesítenek a természetes nyelvfelismerés területén mint a hagyományos algoritmusok, ha elég sok adaton tanítják a modelleket. Ahogy ők fogalmaztak:

"Az eredmények azt mutatják, hogy újra kell gondolnunk, mire fordítjuk a pénzünket és erőforrásainkat: algoritmusok fejlesztésére, vagy adatgyűjtésre."



- Bevezetés
- Osztályozás
- Osztályozás vagy regresszió
- Osztályozás jósága
- Logisztikus regresszió
- Modellezés
- Softmax regresszió

#### Osztályozás

Az osztályozás a felügyelt gépi tanulás egyik alapvető feladata, amelynek célja, hogy megtanuljon egy modellt vagy szabályrendszert egy adott bemeneti adat alapján annak besorolására előre meghatározott kategóriákba vagy csoportokba.



Five Kingdom system classification

# Modellalapú osztályozás

Az osztályozó modell feladata, hogy a tanító adathalmaza alapján olyan szabályrendszert hozzon létre, ami **képes elszeparálni egymástól az egyedeket**.

Amennyiben érkezik egy új adatpont, a modell a saját szabályrendszere segítségével már képes lesz becslést adni annak osztályára vonatkozóan.



### Modellalapú osztályozás

#### Döntési határ

Olyan határérték, amelyet a modell állít be az adatpontok különböző osztályokba való besorolásához.

A határ lehet egy vonal, egy sík vagy akár egy sokdimenziós felület, attól függően, hogy milyen típusú osztályozó modellt használunk és milyen a bemeneti adatok dimenzionalitása.



#### Bináris osztályozás

A modell két lehetséges osztály közül valamelyikbe sorolja be az egyedeket. Minden egyedhez csakis 1 osztály tartozhat.



#### Multiosztályos osztályozás

Több, mint két lehetséges kategória létezik, amibe az egyedek besorolhatók, ezek közül az egyikbe fog sorolódni az egyed. Minden egyedhez legalább és legfeljebb 1 osztály tartozik.



#### Multicímkés osztályozás

Minden mintaegyedhez több bináris vagy multicímkés címkekategóriából tartozhat osztály.



#### Multioutput osztályozás

A multicímkés osztályozás generalizált változata. Egy egyedhez egy multicímkés halmazból több elem is tartozhat.



- Osztályozás vagy regresszió?
- 6 Logisztikus regresszió

#### Példa: a probléma bemutatása

Bevezetés

A következő kis adathalmaz három sakkjátszmának rögzítette az eredményét. Minden meccs esetén rögzítésre kerültek a következő rekordok:

| Különbség | Nyertes |
|-----------|---------|
| 200       | 0       |
| -200      | 1       |
| 300       | 0       |

Ebben az esetben az x változó, a **két** játékos rangjának különbsége a fehér és fekete játékos különbségét jelzi, az y célváltozó pedig egy azt a valószínűséget ielenti, hogy a fehér nyert-e.



### Példa: lineáris predikció

Az adathalmazra egy lineáris regresszor modellt illesztve az eredmény a következő:

| Különbség | Nyertes | Predikció |
|-----------|---------|-----------|
| 200       | 0       | 0.11      |
| -200      | 1       | 0.97      |
| 300       | 0       | -0.1      |

Ebben az estben a lineáris modell:

$$\hat{y} = \theta_0 + \theta_1 \cdot x$$

Ahol  $\hat{y}$  a modell predikciója a nyertesre vonatkozóan,  $\theta_0$  a konstans torzítás,  $\theta_1$  a függvény meredeksége és x a két játékos rangjának különbsége.

Az adatpontokra egy lineáris regressziós függvényt illesztve az illesztett modell a következő lesz:



#### Példa: következtetések

A lineáris modell nem minden esetben ad racionális predikciót az adathalmazra vonatkozóan.

# Negatív valószínűségeket nem értelmezettek!

Éppen ezért ha a modellezés célváltozója egy valószínűség, szükség van arra, hogy az illesztett modell szélsőértéke 0 legyen ha a hely  $-\infty$  és 1 ha a hely  $\infty$ .



- Bevezetés
- Osztályozá:
- Osztályozás vagy regresszió
- Osztályozás jósága
- 5 Logisztikus regresszió
- Modellezés
- Softmax regresszió

# Az osztályozás teljesítményének mérése

- Valós pozitív (TP): Pozitív egyed, és annak is van osztályozva
- Valós negatív (TN): Negatív egyed, és annak is van osztályozva
- Hamis pozitív (FP): Negatív egyed, de pozitívnak van osztályozva
- Hamis negatív (FN): Pozitív egyed, de negatívnak van osztályozva

Ennek alapján két fő mutatószám áll elő, amellyel egy osztályozó modellt lehetséges értékelni:



### Az osztályozás teljesítményének mérése

Ennek alapján két fő mutatószám áll elő, amellyel egy osztályozó modellt lehetséges értékelni:

#### Pontosság

Megadja, hogy a pozitívnak osztályozott egyedek közül mekkora hányad volt ténylegesen pozitív:

$$P = \frac{TP}{TP + FP}$$



### Az osztályozás teljesítményének mérése

Ennek alapján két fő mutatószám áll elő, amellyel egy osztályozó modellt lehetséges értékelni:

#### Visszahívás

Megadja, hogy az összes pozitív egyed mekkora hányadát osztályozta a modell pozitívnak:

$$R = \frac{TP}{TP + FN}$$



#### Konfúziós mátrix

A konfúziós mátrix vagy zavarmátrix a statisztikában és gépi tanulásban használatos egy gépi tanulási **algoritmus teljesítményének mérésére**.

A mátrix segít megérteni, hogy milyen hibákat követett el a modell és ezáltal segíti a modell finomhangolását és tovább tanítását.

A mátrix általánosítható tetszőleges címke számra.



Modellezés

- 6 Logisztikus regresszió

# Logisztikus regresszió

Gépi tanulási módszer kétosztályos (bináris) kimenetelek előrejelzésére, amely valószínűségek megbecslésére szolgál. A logisztikus regresszió eljárása:

- Adott mintaegvedre annak a valószínűségnek a megbecslése, hogy a modell a pozitív osztályba tartozik-e.
- 4 Ha a becsült valószínűség magasabb mint egy küszöbérték, a becsült osztály pozitív, egyébként negatív.

$$\hat{y} \begin{cases} 0 & ha \ \hat{p} > \theta \\ 1 & ha \ \hat{p} \le \theta \end{cases}$$

Ahol  $\hat{p}$  a modell által becsült valószínűség,  $\hat{y}$  a becsült osztály és  $\theta$  a küszöbérték.

# A logisztikus (szigmoid) függvény

A logisztikus függvény a valószínűségek megbecslésére használt modell típus. A predikció előállításához először az eljárás előállítja z lineáris predikciót:

$$z = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \ldots + \theta_r x_r$$

Majd ezt behelyettesíti a logisztikus függvénybe:

$$\sigma\left(z\right) = \frac{1}{1 + e^z}$$

Ahol  $\sigma$  a logisztikus függvény és e a természetes logaritmus értéke.



Bevezetés

Modellezés

A logisztikus regresszió célja, hogy magas valószínűséggel osztályozzon pozitív egyedeket és alacsony valószínűséggel osztályozzon negatív egyedeket.

A költségfüggvény egy mintaegyedre:

$$J(\theta) = \begin{cases} -log(\hat{p}) & ha \ \hat{y}=1\\ -log(1-\hat{p}) & ha \ \hat{y}=0 \end{cases}$$

Az összes mintaegyedre kiszámított költségfüggvény az egyedi költségfüggvények összege:

$$J(\theta) = -\frac{1}{n} \sum_{i=1}^{n} [y_i \cdot log(\hat{p}_i) + (1 - y_i) \cdot log(1 - \hat{p}_i)]$$

A költségfüggvény konvex, de nem létezik a minimum megtalálására zárt formájú számítás. Ennek megfelelően a minimum közelítése iteratív algoritmusokkal lehetséges.

•000

- 6 Logisztikus regresszió
- Modellezés

#### Írisz adathalmaz

A következő példában a minta adathalmaz Írisz virágokról tartalmaz információkat. Az adathalmazban található oszlopok a virág fajtája (Setosa, Versicolor, Virginica) a csészelevelek hossza és a sziromlevelek hossza.



# Logisztikus regresszió az Írisz adathalmazon

Bevezetés

A következő példában egy bináris osztályozás a feladat. A logisztikus regresszió eredménye egy 1D döntési határ.

Az Iris Virginica sziromszélességei 1.4-től 2.5cm-ig terjednek, míg a többi Iris virág szirmai 0.1 és 1.8cm közöttiek. A döntési határ 1.65cm körül húzódik. 2cm fölött a modell egészen biztos benne, hogy Virginicáról van szó, 1cm alatt szinte biztos benne, hogy nem tartozik az osztályba.



### Logisztikus regresszió több változóval

Ha több x változó alapján történik a modellezés, a döntési határ is több dimenziós lesz. Az alábbi példában a szirom szélesség és a szirom hossz alapján készült a becslés.

Ebben az esetben a becsült valószínűség a 3. dimenzió és a határ ott húzódik, ahol a becsült valószínűség megegyezik a küszöbértékkel, tehát  $\hat{p}=\theta$ .



- 6 Logisztikus regresszió
- Softmax regresszió

# Softmax regresszió

A logisztikus regresszió általánosítható tetszőleges számú (k) osztályra. Ebben az esetben a modell azt becsüli meg, hogy mekkora valószínűséggel tartozik az egyed az adott osztályokba.

Adott k osztályra számított beletartozási valószínűség:

$$\hat{p}_k = \sigma(s(x))_k = \frac{e^{x^T \theta_k}}{\sum_{j=1}^k e^{x^T \theta_j}}$$

Ahol  $\sigma$  a logisztikus függvény és  $\theta_k$  pedig k osztály tanítható paraméter vektora.

Miután a modell kiszámolta, hogy x mintaegyed mekkora valószínűséggel tartozik minden osztályba, kiválasztja ezek közül a legnagyobb becsült valószínűséghez tartozót, és ez lesz a becsült érték:

$$\hat{y} = \mathop{argmax}\limits_{k} \left(\sigma\left(s\left(x\right)\right)_{k}\right)$$

Az argmax operátor a változónak azt az értékét téríti vissza, amelyik maximalizálja az adott kritériumot. Ebben az esetben a kritérium a legnagyobb valószínűség.

# Softmax regresszió az Írisz adathalmazon

A kép a létrejövő döntési határokat mutatja. Érdemes megfigyelni, hogy az osztályok között létrejövő döntési határok lineárisak. A görbe vonal az ábrán a Versicolor osztályhoz tartozó valószínűség.

