STREAM CLASSIFICATIONS and WATER QUALITY STANDARDS

REG	ilon: 9	Desig	Classifications			NUMER	RIC STANDARDS			TEMPORARY
	SIN: ANIMAS AND FLORIDA RIVER			PHYSICAL and BIOLOGICAL	INORG	Jeff de		METALS ug/l		MODIFICATIONS AND QUALIFIERS
1.	am Segment Description All tributaries to the Animas River and Florida River, including all wetlands, which are within the Weminuche Wilderness Area.	ow	Aq Life Cold 1 Recreation E Water Supply Agriculture	T=TVS(CS-I) °C D.O. = 6.0 mg/l D.O. (sp)=7.0 mg/l pH = 6.5-9.0 E.Coli=126/100ml	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 CI=250 SO ₄ =WS	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS Crill(ac)=50(Trec) Crill(ch)=TVS CtVl(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ac/ch)=TVS Mn(ch)=WS(dis) Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS	
2.	Mainstem of the Animas River, including all tributaries and wetlands, from the outlet of Denver Lake to a point immediately above the confluence with Maggie Gulch, except for specific listings in Segment 6.	UP	Recreation E Agriculture	D.O. = 3.0 mg/l pH = 5.8-9.0 E.Coli=126/100ml	CN(ac)=0.2 NO ₂ (ac)=10	B(ch)=0.75 NO ₃ (ch)=100	As(ch)= 100(Trec) Be(ch)=100(Trec) Cd(ch)=10(Trec) Cr(ll(ch)=100(Trec) The concentration of diss lead,manganese, and zin achieving water quality si and 4b.	no that is directed toward	d maintaining and	
3a.	Mainstem of the Animas River, including wetlands, from a point immediately below the confluence with Maggie Gulch to immediately above the confluence with Cement Creek.		Ag Life Cold 1 Recreation E Agriculture	T=TVS(CS-I) °C D.O. = 6.0 mg/l D.O. (sp)=7.0 mg/l pH = 6.5-9.0 E.Coli=126/100ml	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₃ =100	Al(ac/ch)=750(Trec) As(ac)=340 As(ch)=100(Trec) Cd(ac)=TVS(tr) Crll(ac/ch)=TVS Crll(ch)=100(Trec) Standards for Cd, Mn and	CrVI(ac/ch)=TVS Cu(ac/ch)=TVS Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec) d Zn are listed on Table	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr)	Aquatic life indicator goal: Brook Trout.
3b.	Mainstem of the Animas River, including wetlands, from a point immediately above the confluence with Cement Creek to a point immediately above the confluence with Mineral Creek.	ÜP.	Sept. 11 to May 14 Recreation N May 15 to Sept. 10 Recreation E	D.O. = 3.0 mg/i pH = 6.0-9.0 Sept. 11 to May 14 E.Coli=630/100ml May 15 to Sept. 10 E.Coli=126/100ml			The concentration of diss manganese, and zinc tha achieving water quality st	it is directed toward mai	ntaining and	Temporary Modificatic Cd(ac/ch) = current condition Cu(ac/ch) = current condition Zn(ac/ch) = current condition Type B Expiration date 12/31/2017.
36.	Arrastra Gulch including all tributaries and wetlands from the source to the confluence with the Animas River.	UP	Aq Life Cold 2 Recreation E Agriculture	T=TVS(CS-I) °C D.O.=6.0 mg/l D.O.(sp)=7.0 mg/l pH = 6.5-9.0 E.Coli=126/100ml	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =100	As(ac)=340 As(ch)=100(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac/ch)=TVS CrIII(ch)=100(Trec) CrVI(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec) Ni(ac/ch)=TVS Se(ac/ch)=TVS	Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS	
4a.	Mainstem of the Animas River, including wetlands, from a point immediately above the confluence with Mineral Creek to a point immediately above the confluence with Deer Park Creek.	UP	Aq Life Cold 2 Recreation E Agriculture	T=TVS(CS-I) °C D.O. = 6.0 mg/l D.O.(sp)=7.0 mg/l E.Coll=126/100ml Standards for pH are listed on Table 1.	NH ₉ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₃ =100	As(ch)=100(Trec) As(ac)=340 Cu(ac/ch)=TVS Cd(ac)=TVS(tr) Cd(ch)=TVS Crlll(ac/ch)=TVS Crlll(ch)=100(Trec) CrVl(ac/ch)=TVS Standards for Al, Fe and	Se(ac/ch)=TVS Pb(ac/ch)=TVS Mn(ac/ch)=TVS Hg(ch)=0.01(tot) Mo(ch)=160(Trec) Ni(ac/ch)=TVS Zn are listed on Table 1	Ag(ac)=TVS Ag(ch)=TVS(tr)	Aquatic life indicator goal: Brook Trout
4b.	Mainstem of the Animas River, including wetlands, from a point immediately above the confluence with Deer Park Creek to Bakers Bridge.		Aq Life Cold 1 Recreation E Water Supply Agriculture	T=TVS(CS-I) °C D.O. = 6.0 mg/l D.O.(sp)=7.0 mg/l pH = 6.5-9.0 E.Coli=126/100ml	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS	Al(ac/ch)=TVS As(ch)=0.02(Trec) As(ac)=340 Cd(ac)=TVS(tr)	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ch)=WS(dis) Mn(ac/ch)=TVS	Hg(ch)=0.01(tot) Mo(ch)=160(Trec) Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS	Temporary modification As(ch)=hybrid Expiration date of 12/31/21.

STREAM CLASSIFICATIONS and WATER QUALITY STANDARDS

REG	ION: 9	Desig	Classifications			NUME	RIC STANDARDS	Targer Mediting in		TEMPORARY
-	SIN: ANIMAS AND FLORIDA RIVER			PHYSICAL and BIOLOGICAL	INORG			METALS ug/l		MODIFICATIONS AND QUALIFIERS
5a.	Mainsten of the Animas River, including wetlands, from Bakers Bridge to the Southern Ute Indian Reservation boundary.		Aq Life Cold 1 Recreation E Water Supply Agriculture	T=TVS(CS-II) °C D.O. = 6.0 mg/i D.O. (sp)=7.0 mg/i pH = 6.5-9.0 E.Coli=126/100ml	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS	Al(ac/ch)=TVS As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIII(ac)=50(Trec) CrIII(ch)=TVS CvII(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ac/ch)=TVS Mn(ch)=WS(dis) Hg(ch)=0.01(tot) Mo(ch)=160(Trec) Ni(ac/ch)=TVS	Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS	Temporary modification: As(ch)=hybrid Expiration date of 12/31/21.
5b.	Mainstem of the Animas River, including wetlands, from the Southern Ute Indian Reservation boundary to the Colorado/New Mexico border.		Aq Life Cold 1 Recreation E Water Supply Agriculture	T=TVS(CS-II) °C D.O. = 6.0 mg/I D.O. (sp)=7.0 mg/I pH = 6.5-9.0 E.Coli=126/100ml	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 CI=250 SO ₄ =WS	Al(ac/ch)=TVS As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS CrIll(ac)=50(Trec) CrIll(ch)=TVS CvU(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ac/ch)=TVS Mn(ch)=WS(dis) Hg(ch)=0.01(tot) Mo(ch)=180(Trec) Ni(ac/ch)=TVS	Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS	Southern Ute Indian Reservation. Temporary modification. As(ch)=hybrid Expiration date of 12/31/21.
6.	Mainstem of the Animas River from the source to the outlet of Denver Lake. Mainstem, including all tributaries and wetlands of Cinnamon Creek, Grouse Creek, Picayne Gulch, and Minnie Gulch. All tributaries and wetlands to the Animas River from immediately above Maggie Gulch to Elk Park except for those listed under segments 3c, 7, 8 and 9.		Aq Life Cold 1 Recreation E Water Supply Agriculture	T=TVS(CS-I) °C D.O. = 6.0 mg/l D.O. (sp)=7.0 mg/l pH = 6.5-9.0 E. Coli=126/100ml	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS Crlll(ac)=50(Trec) Crlll(ch)=TVS CrVl(ac/ch)=TVS Cu(ac/ch)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ac/ch)=TVS Mn(ch)=WS(dis) Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS (fr)=TVS(tr) Zn(ac/ch)=TVS	Temporary modification As(ch)=hybrid Expiration date of 12/31/21.
7.	Mainstem of Cement Creek, including all tributaries, and wetlands, from the source to the confluence with the Animas River.	UP	Recreation E Agriculture	D.O. = 3.0 mg/l pH = 3.7-9.0 E.Coli=126/100ml	CN(ac)=0.2 NO ₂ (ac)=10 NO ₃ (ac)=100	B(ch)=0.75	manganese, and zinc	CrVI(ch)=100(Trec) Cu(ch)=200(Trec) Pb(ch)=100(Trec) Mo(ch)=160(Trec) issolved aluminum, cadmi that is directed toward mai s established for segments	ntaining and achieving	
8.	Mainstem of Mineral Creek, including wetlands, from the source to a point immediately above the confluence with South Mineral Creek. All tributaries on the east side of this segment of Mineral Creek including wetlands, except for Big Horn Creek. Mainstem of the Middle Fork of Mineral Creek including all tributaries and wetlands from the source to the confluence with Mineral Creek except for Crystal Lake and its exiting tributary to confluence with Middle Fork of Mineral Creek.	UP	Recreation E Agriculture	D.O. = 3.0 mg/l pH = 4.5 - 9.0 E.Coli=126/100ml	CN(ac)=0.2 NO ₂ (ac)=10 NO ₃ (ac)=100	B(ch)=0.75	manganese, and zinc	CrVI(ch)=100(Trec) Cu(ch)=200(Trec) Pb(ch)=100(Trec) Mo(ch)=160(Trec) dissolved aluminum, cadmi that is directed toward mai is established for segment	intaining and achieving	
9.	Mainstem of Mineral Creek, including wetlands, from immediately above the confluence with South Mineral Creek to the confluence with the Animas River.	UP	Aq Life Cold 2 Recreation E Agriculture Water Supply	T=TVS(CS-I) °C D.O. = 6.0 mg/l D.O. (sp)=7.0 mg/l E.Coli=126/100ml Standards for pH are listed on Table 1.	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 CI=250 SO ₄ =WS	As(ch)= 0.02-10 ¹ (Tre As(ac)=340 Cd(ac/ch)=TVS(tr) Crill(ac/ch)=TVS Crill(ac)=50(Trec) CrVI(ac/ch)=TVS	c) Cu(ac)=TVS Fe(ch)=WS(dis) Pb(ac/ch)=TVS Mn(ac/ch)=TVS Mn(ch)=WS(dis) Hg(ch)=0.01(tot)	Mo(ch)=160(Trec) Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac)=TVS	Aquatic Life Indicator goal: Macroinvertebrates; Brook Trout corridor
7.7	and a second and a second of the second of t	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				Standards for Al, Cu,	Fe and Zn are listed on Ta	ble 1.	
10a.	Mainstem of the Florida River from the boundary of the Weminuche Wilderness Area to the inlet of Lemon Reservoir.		Aq Life Cold 1 Recreation E Water Supply Agriculture	T=TVS(CS-I) °C D.O.=6.0 mg/l D.O.=7.0 mg/l pH = 6.5-9.0 E.Coli=126/100ml	NH ₃ (ac/ch)=TVS Cl ₂ (ac)=0.019 Cl ₂ (ch)=0.011 CN=0.005	S=0.002 B=0.75 NO ₂ =0.05 NO ₃ =10 Cl=250 SO ₄ =WS	As(ac)=340 As(ch)=0.02(Trec) Cd(ac)=TVS(tr) Cd(ch)=TVS Crill(ac)=50(Trec) Crill(ch)=TVS Cv((ac/cu)=TVS	Fe(ch)=WS(dis) Fe(ch)=1000(Trec) Pb(ac/ch)=TVS Mn(ac/ch)=TVS Mn(ch)=WS(dis) Hg(ch)=0.01(tot) Mo(ch)=160(Trec)	Ni(ac/ch)=TVS Se(ac/ch)=TVS Ag(ac)=TVS Ag(ch)=TVS(tr) Zn(ac/ch)=TVS Zn (ch)=TVS(sc)	

TABIF 1

AQUATIC LIFE INDICATOR GOAL: BROOK TROUT

Segment 3a

JUNE JULY AUG SEPT	MAY		APR	MAR APR	FEB MAR APR
0 280 340 380	410	760	1200 760	-	

					Chro	Chronic Standards	ards					
	JAN	肥	MAR	APR	MAY	JUNE	JULY	AUG	SEPT	ОСТ	NOV	DEC
PO	TVS	TVS	TVS	3.5	2.2	TVS	TVS	TVS	TVS	TVS	TVS	TVS
Δn	TVS	TVS	2571	2179	TVS	TVS	TVS	TVS	TVS	TVS	TVS	TVS
Zu Zu	720	780	1060	1200	760	0	280	340	380	440	510	290

Segment 4a

Acute Standards

	JAN	FEB	MAR	APR	MAY	JUNE	JULY	AUG	SEPT	ОСТ	NOV	DEC
Al(Trec)	3100	3550	2800	2020	1010	740	700	1360	1490	1610	2280	2570
Zn	460	520	620	570	430	250	170	240	290	340	380	420

Chronic Standards

	JAN	FEB	MAR	APR	MAY	JUNE	JULY	AUG	SEPT	ОСТ	NOV	DEC
рН	5.9-9.0	5.7-9.0	6.2-9.0	6.5-9.0	6.5-9.0	6.5-9.0	6.5-9.0	6.5-9.0	6.5-9.0	6.5-9.0	6.5-9.0	5.9-9.0
Al(Trec)	3100	3550	2800	2020	1010	740	700	1360	1490	1610	2280	2570
Fe	3473	2961	3776	3404	2015	1220	1286	1830	1623	2258	2631	3511
Zn	460	520	620	570	430	250	170	240	290	340	380	420

34.6(4)

Segment 9

Acute Standards

DEC	4050
NOV	3450
ОСТ	2680
SEPT	2570
AUG	2040
JULY	1290
JUNE	1350
MAY	1390
APR	3800
MAR	4560
FEB	4950
JAN	4680
	Al(Trec)
	MAY JUNE JULY AUG SEPT OCT NOV

Chronic Standards

				The state of the s		The second secon	The state of the s					
	JAN	9	MAR	APR	MAY	JUNE	JULY	AUG	SEPT OCT	ОСТ	NOV	DEC
ᇹ	4.9-9.0	4.9-9.0 4.8-9.0 4.9-9.0	4.9-9.0	5.9-9.0	5.9-9.0 6.5-9.0 6.5-9.0		6.5-9.0	6.5-9.0 6.5-9.0 6.5-9.0 6.5-9.0 6.2-9.0	6.5-9.0	6.5-9.0		5.4-9.0
AI(Trec)	4680	4950	4560	3800	1390	1350	1290	2040	2570	2680	3450	4050
చె	TVS	TVS	TVS	18	20	TVS	TVS	TVS	TVS	TVS	TVS	TVS
e L	3420	3800	4370	3370	3150	2210	2275	2280	3020	3580	3620	3490
Zn	TVS	TVS	TVS	TVS	230	TVS	TVS	TVS	TVS	TVS	TVS	TVS