name: student id#: Score:

Guidelines for the exam:

- (1) Answer the following 10 questions. 10 points each. All items have the same weight.
- (2) Short answers are preferred.
- (3) You are allowed to use lecture videos, books, and notes. Use any theorem in the book.
- (4) Discussion is not allowed. If you get helped from a person, you will get F grade for the course.
- (5) It is online exame. If there is typo in the exam, point it out and fix it by yourself.
- (6) Exam ends at 11:20am. Scan your exam and upload (or email) it by 11:40am as you did in quizes.
- (1) Let $f: \mathbb{R}^n \to \mathbb{R}$, $\mathbf{c} = (c_1, \dots, c_n)$, and $g_1(t) = f(t, c_2, \dots, c_n)$. Prove the followings.
 - (a) If f is continuous at $\mathbf{x} = \mathbf{c}$, $g_1(t)$ is continuous at $t = c_1$.
 - (b) If $\lim_{k\to\infty} f(\mathbf{x}_k) = f(\mathbf{c})$ for any sequence \mathbf{x}_k that converges to \mathbf{c} , $f(\mathbf{x})$ is continuous at \mathbf{c} .
- (2) Let $f:[a,b] \to [a,b]$ be continuous. Prove or disprove the followings.
 - (a) There exists at least one $x \in [a, b]$ such that f(x) = x. (Fixed point theorem)
 - (b) The image f([a,b]) is closed.
 - (c) The inverse image $f^{-1}([c,d])$ is connected for any $[c,d] \subset [a,b]$.
- (3) Let $f:[a,b]\to\mathbb{R}$ be continuous. Prove or disprove the followings.
 - (a) For any $\epsilon > 0$, there exists a piecewise constant function $s : [a, b] \to \mathbb{R}$ such that $||f s||_{\infty} < \infty$.
 - (b) If f is uniformly continuous and strictly monotone, inverse function f^{-1} is also uniformly continuous.
- (4) (a) Let $f_k:(a,b)\to\mathbb{R}$ be a Cauchy sequence in $C_\infty((a,b))$, i.e., in continuous and bounded function space. Show that f_k converges to a continuous function (i.e., prove the theorem).
 - (b) Prove or disprove that the limit is uniformly continuous if f_k are all uniformly continuous.
- (5) (a) Prove or disprove that a set $A = \{f \in C_{\infty}(\mathbb{R}) : ||f||_{\infty} \le 1\}$ is closed.
 - (b) Prove or disprove that the set A always have a cluster point (i.e., A is compact).
- (6) The followings are all false. Find counterexamples.
 - (a) If $f: \mathbb{R} \to \mathbb{R}$ is continuous and $A \subset \mathbb{R}$ is closed, f(A) is closed.
 - (b) If $f: \mathbb{R} \to \mathbb{R}$ is continuous and $A \subset \mathbb{R}$ is open, f(A) is open.
 - (c) If A_i are open, $\bigcap_{i=1}^{\infty} A_i$ is open or the empty set.
 - (d) If $A_i \neq \emptyset$, are closed, and $A_1 \supset A_2 \supset \cdots$, then $\bigcap_{i=1}^{\infty} A_i \neq \emptyset$.
- (7) Let $\liminf x_k = a$ and $\limsup x_k = b$. Show the followings directly from definitions.
 - (a) Show that, if $a = b \in \mathbb{R}$, x_k is a Cauchy sequence.
 - (b) Prove or disprove that, if $b < \infty$ and $\epsilon > 0$, there is $k_0 \in \mathbb{N}$ such that $x_k > b \epsilon$ for all $k > k_0$.
 - (c) Prove or disprove that $a \leq b$.
- (8) Let $C_1, C_2 \subset \mathbb{R}^n$ be two disjoint and closed sets.
 - (a) Give the definition for the distance between the two sets.
 - (b) Find an example that the distance of the two disjoint and closed sets is zero.
 - (c) Show that, if C_1 is bounded, there exist two open sets U_1 and U_2 such that $C_1 \subseteq U_1$, $C_2 \subseteq U_2$, and $U_1 \cap U_2 = \emptyset$.
- (9) (a) Prove or disprove that $f(x,y) = \frac{x^2y}{x^2+y^2}$ is continuous at (x,y) = (0,0) if we set f(0,0) = 0.
 - (b) Show that $f:[0,\infty)\to\mathbb{R}$ given by $f(x)=\sqrt{x}$ is continuous, but not uniformly continuous.
- (10) (a) Let $X := \{f : N \to \{0,1\}\}$ be the collection of all functions defined on natural numbers which have values of 0 or 1. Prove or disprove that the set is uncountable.
 - (b) Prove that a sequence x_k has a cluster point if $x_k \in (0,1)$ for all k (Do not use Heine-Borel).