

Art of Problem Solving 2014 Germany Team Selection Test

Germany Team Selection Test 2014

_	VAIMO 1
1	In Sikinia we only pay with coins that have a value of either 11 or 12 Kulotnik. In a burglary in one of Sikinia's banks, 11 bandits cracked the safe and could get away with 5940 Kulotnik. They tried to split up the money equally - so that everyone gets the same amount - but it just doesn't worked. After a while their leader claimed that it actually isn't possible. Prove that they didn't get any coin with the value 12 Kulotnik.
2	Let $ABCD$ be a convex cyclic quadrilateral with $AD = BD$. The diagonals AC and BD intersect in E . Let the incenter of triangle $\triangle BCE$ be I . The circumcircle of triangle $\triangle BIE$ intersects side AE in N . Prove $AN \cdot NC = CD \cdot BN.$
3	Let $a_1 \leq a_2 \leq \cdots$ be a non-decreasing sequence of positive integers. A positive integer n is called $good$ if there is an index i such that $n = \frac{i}{a_i}$. Prove that if 2013 is $good$, then so is 20.
_	VAIMO 2
1	Let n be an positive integer. Find the smallest integer k with the following property; Given any real numbers a_1, \dots, a_d such that $a_1 + a_2 + \dots + a_d = n$ and $0 \le a_i \le 1$ for $i = 1, 2, \dots, d$, it is possible to partition these numbers into k groups (some of which may be empty) such that the sum of the numbers in each group is at most 1.
2	Let $\mathbb{Z}_{>0}$ be the set of positive integers. Find all functions $f:\mathbb{Z}_{>0}\to\mathbb{Z}_{>0}$ such that $m^2+f(n)\mid mf(m)+n$
	for all positive integers m and n .
3	In a triangle ABC , let D and E be the feet of the angle bisectors of angles A and B , respectively. A rhombus is inscribed into the quadrilateral $AEDB$

Contributors: Kezer, lyukhson

Art of Problem Solving

2014 Germany Team Selection Test

(all vertices of the rhombus lie on different sides of AEDB). Let φ be the non-obtuse angle of the rhombus. Prove that $\varphi \leq \max\{\angle BAC, \angle ABC\}$.

www.artofproblemsolving.com/community/c5075 Contributors: Kezer, lyukhson