Math 462 - Advanced Linear Algebra Homework 4

Trevor Klar

December 7, 2017

Exercises:

1. Let T be the \mathbb{R} -linear transformation given by

$$T: \mathbb{R}^3 \to \mathbb{R}^3: (x, y, z) \mapsto (y, x, 0).$$

Compute all the eigenvalues of T and the corresponding eigenspaces.

Answer: (We use the canonical basis for \mathbb{R}^3 .) Let A = M(T).

$$A = \left(\begin{array}{ccc} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right)$$

$$\det(A - \lambda I) = \begin{vmatrix} -\lambda & 1 & 0 \\ 1 & -\lambda & 0 \\ 0 & 0 & -\lambda \end{vmatrix}$$
$$= -\lambda^3 + \lambda$$
$$= \lambda(1 - \lambda^2)$$
$$= \lambda(1 - \lambda)(1 + \lambda)$$

So, the eigenvectors are $\lambda_1 = 0, \lambda_2 = 1, \lambda_3 = -1$. A quick mental calculation will find that the 0-eigenspace is span(0,0,1), the 1-eigenspace is span(1,1,0), and the -1-eigenspace is span(1,-1,0).

2. Given any nonzero vector $v \in \mathbb{C}^2$, show that there exist some nonzero $\lambda \in C$ and some \mathbb{C} -linear transformation $T : \mathbb{C}^2 \to \mathbb{C}^2$ such that v is a λ -eigenvector of T.

PROOF Let λ_0 be any complex number. Consider the dilation $^1T(v) := \lambda_0 v$ for all $v \in \mathbb{C}^2$. By definition, every element of \mathbb{C}^2 is a λ_0 -eigenvector of T. In case there is any doubt that T is a linear transformation, observe the matrix of T with respect to the following basis of \mathbb{C}^2 :

$$\mathcal{B} = \left\{ \begin{array}{c} \left(\begin{array}{c} 1 \\ 0 \end{array} \right) \left(\begin{array}{c} i \\ 0 \end{array} \right) \left(\begin{array}{c} 0 \\ 1 \end{array} \right) \left(\begin{array}{c} 0 \\ i \end{array} \right) \end{array} \right\}$$

$$M_{\mathscr{B}}(T) = \left(egin{array}{cccc} \lambda_0 & 0 & 0 & 0 \ 0 & \lambda_0 & 0 & 0 \ 0 & 0 & \lambda_0 & 0 \ 0 & 0 & 0 & \lambda_0 \end{array}
ight)$$

The are using the term dilation loosely here to mean 'uniformly multiplying every component by a scalar'. In \mathbb{C}^2 , this wouldn't quite appear as a dilation, as multiplication of complex numbers appears geometrically as a dilation composed with a rotation, and two complex dimensions would complicate matters even further.