Dati strutturati operazioni di I/o con vettori e matrici

Prof. Salvatore Venticinque Prof. Mario Magliulo

Matrici

- Un array bidimensionale
- Dichiarazione:
 - int mat[4][3];
- Accesso all'elemento:
 - mat[0][0] mat[0][1] mat[0][2]

•	Il nome	è l'ir	ndirizzo	del	nrimo	elemento
	II HOHIE	U I II	IUII IZZU	uei		elemento

• Occorre conoscere entrambe le dimensioni massime	,
(n_max,m_max) a tempo di compilazione	

2	3	1
3	0	4
10	9	2
-1	9	-5

Lettura Elementi Matrice

```
#define m 10
#define n 10
[...]
int r=5; int c=4;
for(i=0; i<r; i++)
    for(j=0; j<c; j++)
    {
        printf("Inserisci linea %d colonna %d val: ", i, j);
        scanf("%d", &mat[i][j]);
    }</pre>
```

Stampa elementi matrice

```
for(i=0; i<r; i++)
{
    printf("\n");
    for(j=0; j<c; j++)
        printf("%5d", mat[i][j]);
}</pre>
```

Gestione memoria

- C memorizza per riga
 - Int mat[3][4]
- Per conoscere l'indirizzo dell'elemento [i][j]:

mat+i*4*sizeof(int)+j*sizeof(int)

n[0][0]
n[0][1]
n[0][2]
n[0][3]
n[1][0]
n[1][1]
n[1][2]
n[1][3]
n[2][0]
n[2][1]
n[2][2]
n[2][3]

Dimensioni effettive

Come per i vettori anche in questo caso si è soliti leggere prima il numero effettivo di elementi

Sorgente: io_matrice.c

Linearizzazione per riga

- Come stampare una matrice per riga
- Come stampare una matrice per colonna

Somma degli elementi di una matrice?

• ????

Somma degli elementi di una matrice?

```
int a[10][10],r,c,somma;
//leggi c e r
somma=0;
for(int i=0;i<r;i++)
    for(int j=0;j<c;j++)
    somma += mat[i][j];</pre>
```

Somma degli elementi di una matrice?

```
int a[10][10],r,c,somma;
Somma=0;
//leggi c e r
for(int i=0;i<r*c;i++)
    somma =somma + mat[i/c][i%c];</pre>
```

Stampare la diagonale principale

- Quanti elementi stampare?
- Quale costrutto di ciclo usare?
- Quali elementi stampare?

1	2	3
4	5	6
7	8	9

Stampare la diagonale principale

```
for (int i=0;i<rc;i++)
printf ("%d\t",matr[i][i]);</pre>
```

Stampare la diagonale secondaria

- Quanti elementi stampare?
- Quale costrutto di ciclo usare?
- Quali elementi stampare?

1	2	3
4	5	6
7	8	9

i	j
?	?

Stampare la diagonale secondaria

```
for (int i=0;i<rc;i++)
printf ("%d",matr[i][rc-1-i]);
```

Stampa parentesi quadre

 Stampare delle parentesi quadre ai lati delle matrice utilizzando I caratteri '-' e '|'.

Esercizi con le matrici

- Confronto
- Somma delle righe
- Somma delle colonne
- Somma della cornice
- Somma matrici
- Prodotto riga colonna
- Colonna con somma massima
- Massimo della somma delle righe
- Determinante

•