2. Dimostrare che se $m \equiv 3 \mod 4$ è pseudo primo Euleriano in base a allora è anche pseudo primo forte in base a.

3. Sia q un numero primo tale che $q \equiv 2 \mod 3$. Dimostrare che, se $4^q \equiv 1 \mod (2q+1)$, allora 2q+1 è primo.

4. Sia m=65.

i. Determinare tutte le soluzioni di $x^2\equiv -1 \bmod m$;

ii. Determinare due basi a_1 e a_2 tali che 65 è uno pseudo primo forte in base a_1 , in base a_2 ma non in base a_1a_2 .

iii. Cosa possiamo dedurre sull'insieme delle basi forti S(65)

5. (Quickies): Scrivere solo la risposta delle seguenti domande:
i. Si scriva la successione di Miller Rabin modulo 49 delle seguenti basi: 2,7,25,13.
ii Determinare dei fattori non banali di 10002200057;
iii. Determinare dei fattori non banali di 30001600021;

i.

ii.

iii.