Please show all work. To get full credit for a problem you need to CLEARLY describe your calculations.

Problem 1 (25 pts) Compute the integrals

$$\int_0^{\pi} \left(\int_y^{\pi} \frac{\sin x}{x} \, dx \right) \, dy, \qquad \iint_{\Omega} \sqrt{x^2 + y^2 + 1} \, dx \, dy,$$

where $\Omega = \{(x, y): x \ge 0, y \ge 0, x^2 + y^2 \le 4\}.$

Problem 2 (20 pts) The cylinder $x^2 + y^2 = 4$ and the plane 2x + 2y + z = 2 intersect in an ellipse. Find the points on the ellipse that are nearest to and farthest from the origin.

Problem 3 (10 pts) Let $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$ and $r = |\vec{r}|$ (i.e., r is the length of the vector \vec{r}). Compute $\operatorname{curl}(r^3\vec{r})$. Simplify your answer.

Problem 4 (15 pts) Find the work done by the force

$$\vec{F} = x\vec{i} - y\vec{j} + (x + y + z)\vec{k}$$

on a particle that moves along the parabola $y = 3x^2$, z = 0 from the origin to the point (2, 12, 0).

Problem 5 (15 pts) Find the center of mass of a plate shaped like the region between $y = x^2$ and y = 2x, where the density $\rho(x, y)$ varies as $\rho(x, y) = x$.

Problem 6 (15 pts) Suppose that f is such that for any closed, oriented surface S

$$\iint\limits_{S} \frac{\partial f}{\partial n} \, dS = 0$$

(here $\partial f/\partial n$ is the normal derivative). Show that then

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} = 0.$$