

Topic 10 Content

This lecture covers:

- Binary numbers
 - Conversion from decimal to binary and vice versa
 - Simple binary arithmetic (addition and subtraction)
- Digital representations
- Digital logic
 - Truth table
- Digital gates
 - AND, OR, NOT
 - NAND, NOR,
 - XOR, XNOR
- Boolean algebra
 - DeMorgan's Theorem

This topic is not covered in the prescribed textbook for this course

Analog versus digital

- Analog signal is an electric signal whose value varies continuously with time.
 - A sinusoid voltage $v(t) = V_m \cos(\omega t)$ can take **any value** between $-V_m$ and V_m .
- Digital signals can take only a finite number of values. They are also called discrete-time signals as they vary between a finite set of digits.
 - Systems that work with digital signals are called digital systems.
 - To understand how digital systems work, we need to get familiar with binary numbers first.
 - The most common digital signals are binary signals.
 - A binary signal can take only two discrete values.
 - These two values are represented in binary format using 0 and 1 digits.

Decimal vs binary numbers

- Decimal numbers system is base 10 or radix 10.
 - In **decimal** system, there are **10 digits**, 0, 1, 2, ..., 9.
 - A decimal number is represented by the sum of the powers of 10.

$$372.5 = (3 \times 10^{2}) + (7 \times 10^{1}) + (2 \times 10^{0}) + (5 \times 10^{-1})$$

- Binary number system is base 2.
 - For any system that operates in two states (like on or off), binary number system
 is a natural choice.
 - In **binary** system, there are **2 digits**, 0 and 1.
 - A binary number is represented by the sum of the powers of 2.

$$10110 = (1 \times 2^4) + (0 \times 2^3) + (1 \times 2^2) + (1 \times 2^1) + (0 \times 2^0)$$

We can use subscript to denote numbers in different bases.

$$(10110)_2 = 16 + 0 + 4 + 2 + 0 = (22)_{10}$$

To convert a **binary** number to **decimal**, just **expand** the binary number as the **sum** of the **powers of 2**.

Binary numbers

- Binary digits are also called bits.
- The rightmost bit is called least significant bit (LSB).
- The leftmost bit is called most significate bit (MSB).

- Binary numbers require large number of bits to represent large numbers.
 - They are usually grouped in sets of 4, 8 or 16.
 - Nibble: group of 4/four bits.
 - Byte: group of 8/eight bits.
 - Word: group of 16/sixteen bits.
 - (11100110)₂ is an **8-bit** number.

Conversion from decimal to binary

- Conversion from a decimal number to its binary equivalent is performed by successive division of the decimal number by 2/two followed by the division of its quotients.
- The remainders constitute the binary number.
- This method is used to convert the integer part of decimal numbers only.

	Quotient	Remainder	
156 ÷ 2	78	0 ←	LSB
78 ÷ 2	39	0	
39 ÷ 2	19	1	
19 ÷ 2	9	1	$(156)_{10} = (10011100)_2$
9 ÷ 2	4	1	
4 ÷ 2	2	0	
2 ÷ 2	1	0	
1 ÷ 2	0	1 ←	MSB

Addition

To add binary numbers, the simple rule shown in the table is used:

Subtraction

- For **subtraction**, A B is replaced with A + (-B) so that only addition of a positive number to a negative one is applied.
- Three conventions are used to represent a negative number in binary system:
 - Sign-magnitude: Sign bit 1 means minus sign and Sign bit 0 means plus sign.
 - 1's complement: Replacing 0's with 1's and vice versa (inverting) in a binary number.
 - 2's complement: Adding 1 to the 1's complement in a binary number.

Sign-magnitude convention

Sign bit b ₇	b_6	b_5	b_4	b_3	b_2	b_1	b_0
0 (+) 1 (-)		Actu	ıal bi	nary	nur nur	nber	,

1's complement convention

Sign ho ha ha ha ha Sign ho

	1 (-)	1's	com	pleme	ent of	binary	/ numl	ber
	0 (+)		Ad	ctual b	oinary	numb	er	
ı								

2's complement convention

Sign bit b_7	b_6	b_5	b_4	b_3	b_2	b_1	b_0
0 (+)		Actual binary number					
1 (-)	2's	2's complement of binary number					

Subtraction

- 2's complement is the most commonly used method in many digital computers for subtraction.
- In performing A + (-B), -B is the **2's complement** of B with **sign bit 1**, and we simply **add** the two numbers with their **sign bits** to obtain the **subtraction**.
- We need to know beforehand that how many bits are required to represent the largest number in the calculations.

Decimal (+)	4-bit 2's complement	
1	0001	
2	0010	
3	0011	
4	0100	
5	0101	
6	0110	
7	0111	

Decimal (-)	4-bit 2's complement		
-1	1	111	
-2	1	110	
-3	1	101	
-4	1	100	
-5	1	011	
-6	1	010	
<u>-7</u>	1	001	

Note: To represent -8 using 2's complement, at least 5 bits are needed to accommodate sign bit.

Exercise

Perform the following subtraction in binary format:

$$(4)_{10} - (6)_{10} = (4)_{10} + (-6)_{10} = (-2)_{10}$$

Exercise

Perform the following subtraction in binary format:

$$(7)_{10} - (5)_{10} = (7)_{10} + (-5)_{10} = (2)_{10}$$

Digital systems

A typical digital system would consist of the following parts:

Note:

A/D or ADC: Analog to Digital Converter. D/A or DAC: Digital to Analog Converter.

Why use digital?

- Any physical quantity that is capable of switching between two values can be used to represent numerical quantities in the binary system.
- Numerical calculations can be used for manipulation of binary numbers.
- The benefits of using digital systems are numerous.
 - Benefits include: good noise rejection, high reliability, high accuracy, predictability, low power, ease of design.
 - There are some limitations too, such as noise generation and need for A/D & D/A interface.

- Binary digits can be represented with the use of a voltage signal:
 - Presence of voltage ("high") denotes the binary digit 1.
 - Absence of voltage ("low") denotes the binary digit 0.
- More specifically:
 - 5 V represents digit 1.
 - 0 V represents digit 0.

- In an "ideal" case:
 - The 'sender' of the digit outputs exactly either 5 V or 0 V as for 1 or 0.
 - The 'receiver' sees exactly the same voltages and translate 5 V to 1 and 0 V to 0.
- However, the world is not "ideal" or "perfect":
 - Circuits cannot generate voltages with high accuracy (exactly 5 V).
 - There are losses in the circuits (voltage drops).
 - There is noise!
- One way to address this issue is the use of a band of voltages to define binary bits.
 - For instance, any voltage between 2.5 V and 5 V is interpreted as 1, and below this range as 0, as shown in the figure.
- However, the noise can affect the voltages around the boundary and it causes uncertainty in the accuracy of the received voltages.

- To resolve the issue with the noise, a clear zone is introduced to separate the voltage range used for digit 1 and digit 0.
- This zone is called forbidden region.
- We have to introduce a tolerance on how much noise is acceptable to be present in a system.
- Based on the technology used in building a digital system (e.g. TTL or CMOS), different standards can be defined for the range of voltages to be used for digits 1 and 0.

In the forbidden region, the voltages received are considered as undefined or noise-affected.

TTL (Transistor - Transistor Logic) uses the following voltages levels from 0 V to 5 V:

Output signal levels

 CMOS (Complementary Metal Oxide Semiconductor) can uses higher voltages levels.

Logic circuits

- Digital logic can be implemented in digital circuits.
 That's why they are also called **Digital Logic** Circuits.
- There are two types of logic circuits:
 - 1. Combinational logic.
 - 2. Sequential logic.

Combinational:

- Output depends only on the current value of the input.
- No memory is needed.

Sequential:

- Output depends on both current and previous values of the input.
- It needs memory to keep the previous values.

Truth table and logic variables

- Truth table is a method of tabulating and describing the output of a logic operation for all possible combinations of inputs.
- For example, the following logic statements can be tabulated as shown in the truth table:

Phone rings (R = 1) if the power is on (P = 1) and there is an incoming call (C = 1).

- In this example, R, P, and C are called **logic** variables.
- *P* and *C* are inputs and *R* is the output.
- They can be either 0 or 1.
- There are $4 = 2^2$ combinations.

Truth Table

P	С	R
0	0	0
0	1	0
1	0	0
1	1	1

- In logic statements, assign a logic variable to each precise statement.
- If there are n inputs, there will be 2^n combinations.

Exercise

Create the truth table for the following example describing how David would make a purchase.

David buys if he wants an item **and** he has cash **or** if he needs the item **and** he has cash **or** EFTPOS card

Primitive logic gates

- A logic gate implements a combinational logic function.
- We can have 2^n possible functions of n variables.
- All these possible functions can be described using primitive gates:
 - AND
 - OR
 - NOT
 - NAND
 - NOR
 - XOR
 - XNOR

Logic AND gate

- AND gate is the binary multiplication.
- It can have multiple inputs.
- For a 2-input AND gate, the truth table is:

$$Z = A \text{ and } B$$

 $Z = A.B$
 $Z = AB$

AND Truth Table

A	В	Z
0	0	0
0	1	0
1	0	0
1	1	1

Z = 1 if both A and B are 1

Logic AND gate

For a 3-input AND gate, the truth table is:

$$Z = A.B.C$$

Z = 1 if all A and B and C are 1

AND Truth Table

A	В	С	Z
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Logic OR gate

- OR gate is the binary addition.
- It can have **multiple** inputs.
- For a 2-input OR gate, the truth table is:

$$Z = A \text{ or } B$$

 $Z = A + B$

OR Truth Table

A	В	Z
0	0	0
0	1	1
1	0	1
1	1	1

Z = 1 if either A or B is 1

Logic NOT gate

- NOT gate is the binary negation, complement or inversion.
- NOT gate simply inverts 1 to 0 and vice versa (similar to an amplifier with a negative unit gain). It is known as an inverter.
- The truth table of NOT is:

NOT Truth Table

A	Z
0	1
1	0

Logic NAND gate (NOT AND)

- NAND is the inverted of AND gate.
- It can have multiple inputs.
- For a 2-input NAND gate, the truth table is:

$$Z = \overline{A.B}$$

$$Z = \overline{AB}$$

$$Z = (AB)'$$

NAND Truth Table

A	В	Z
0	0	1
0	1	1
1	0	1
1	1	0

Z = 1 if either A or B is 0

Logic NOR gate (NOT OR)

- NOR is the inverted of OR gate.
- It can have multiple inputs.
- For a 2-input NOR gate, the truth table:

$$Z = \overline{A + B}$$
$$Z = (A + B)'$$

NOR Truth Table

A	В	Z
0	0	1
0	1	0
1	0	0
1	1	0

Z = 1 if both A and B are 0

Logic XOR (Exclusive OR)

- XOR gate is a circuit whose output is 1
 only if one of its inputs is 1 but not both.
- It can have **multiple** inputs.
- For a 2-input XOR gate, the truth table is:

$$Z = A xor B$$
$$Z = A \oplus B$$

XOR Truth Table

A	В	Z
0	0	0
0	1	1
1	0	1
1	1	0

Z = 1 if either A or B is 1 but **not both**

Logic XNOR (Exclusive NOR)

- XNOR gate is the inverted of XOR.
- It can have multiple inputs.
- For a 2-input XNOR gate, the truth table is:

$$Z = A \times nor B$$

$$Z = \overline{A \oplus B}$$

$$Z = (A \oplus B)'$$

XNOR Truth Table

A	В	Z
0	0	1
0	1	0
1	0	0
1	1	1

Z = 1 if A or B are the same

Logic gates with multiple inputs

3-input NOR gate

- As mentioned before, we can have gates with multiple inputs.
- The output still follows the same rule of the 2-input logical gate.

Drawing convention

 For the sake of simplicity, sometimes the NOT gates at the inputs can be combined to with gate in the form of small circle representing inverted input.

Logical gates summary

Physical implementation on ICs

- Since logic gates are built using transistors, they can be easily implemented on integrate circuits (ICs).
- For instance, 74LS00, known as Quad 2-input NAND gate, contains 4 NAND gates as seen below:

Connection Diagram

Function Table

Υ	=	Ā	В
•			

Inp	Output	
Α	В	Y
L	L	Н
L	Н	Н
Н	L	Н
Н	Н	L

H = HIGH Logic Level L = LOW Logic Level

Physical implementation on ICs

Combining primitive gates

- We can construct **truth table** for a digital circuit consisting of logical gates and find an **equivalent digital circuit** with **less** number of gates.
- Consider the following circuit:

Truth Table

A	В	A + B	$\overline{A.B}$	(A+B)	A.B	A	\oplus	<i>B</i>
0	0	0	1	0			0	
0	1	1	1	1			1	$A \longrightarrow A \oplus B$
1	0	1	1	1			1	$B \longrightarrow B$
1	1	1	0	0			0	

Using the logic given in the problem (and / or) write a logical expression describing the problem and draw the digital circuit.

David buys (B) if he wants an item (W) <u>and</u> he has cash (C) <u>or</u> if he needs the item (N) <u>and</u> he has cash (C) <u>or</u> EFTPOS card (E)

Truth Table

 $(2^4 = 16 \text{ combinations})$

N	W	С	E	В
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

For the following expression, draw the digital circuit using logical gates and construct the truth table.

$$Z = A + (B.\bar{C})$$

Boolean algebra

- In practice, we deal with **switching circuits** where signals can have two states. These are known as **switching signals**.
- These switching circuits can be easily implemented using digital logic gates once the output is obtained as a function of inputs in the form of a logic expression.
- Boolean algebra is a set of rules or laws that enable us to simplify the digital logic/Boolean expressions and reduce the number of gates needed to perform a particular logic operation in switching circuits.

In this circuit, **four** switches control the operation of the bulb. The bulb is switched on if the switches **S1** and **S2** are closed, and **S3** or **S4** is also closed, otherwise the bulb will not be switched on.

Boolean algebra – Single value theorems

- Variables in Boolean algebra only have two values, 0 or 1.
- **Single value theorems** are a set of rules regarding different operations on a **single variable**. They are also known as **Boolean identities**.

AND operations

$$A.0 = 0$$

$$A.1 = A$$

$$A.A = A$$

$$A.\bar{A}=0$$

OR operations

$$A + 0 = A$$

$$A + 1 = 1$$

$$A + A = A$$

$$A + \bar{A} = 1$$

NOT operations

$$\overline{(\bar{A})} = \bar{\bar{A}} = A$$

Double negation

Boolean algebra – Commutative laws

Commutative laws state that input order does not matter in AND/OR operations.

OR operation

$$A + B = B + A$$

Boolean algebra – Associative laws

Associative laws state that there is no precedence in multiple OR operations and in multiple AND operations.

AND operation:

$$A.(B.C) = (A.B).C = A.B.C$$

$$A + (B + C) = (A + B) + C = A + B + C$$

Boolean algebra – Distributive laws

 According to distributive laws, AND operation can be distributed over OR and vice versa.

$$A.(B + C) = (A.B) + (A.C)$$

$$A + (B.C) = (A + B).(A + C)$$

ABC	B + C	A.B	A. C	A.	(B +	- C)	(A.B)) +	(A.C)
0 0 0	0	0	0		0			0	
$\frac{0}{0}$	1	0	0		0			0	
$\frac{0.01}{0.10}$	1	0	0		0			0	
$\frac{0\ 1\ 1}{1\ 0\ 0}$	1	0	0		0			0	
1 0 0	0	0	0		0			0	
1 0 1	1	0	1		1			1	
1 1 0	1	1	0		1			1	
1 1 1	1	1	1		1			1	

A	В	С	В. С	A + B	A + C	A +	(B.	<i>C</i>)	(A+B)). (<i>A</i>	l + C)
0	0	0	0	0	0		0			0	
0	0	1	0	0	1		0			0	
0	1	0	0	1	0		0			0	
0	1	1	1	1	1		1			1	
1	0	0	0	1	1		1			1	
1	0	1	0	1	1		1			1	
1	1	0	0	1	1		1			1	
1	1	1	1	1	1		1			1	

NOTE: AND operation has precedence over OR operation.

Boolean algebra – Absorption laws

 Using single value theorems, some expressions can be reduced to a single variable. This is known as absorption laws.

$$A + (A.B) = A$$

Proof: Use the identity A = A. 1 and B + 1 = 1

$$A.1 + (A.B) = A(1 + B) = A.1 = A$$

$$A.\left(A+B\right) =A$$

Proof: Use distribution and first absorption law

$$A.A + (A.B) = A + (A.B) = A$$

$$A.B + A.\overline{B} = A$$

Proof: Factor out A and the identity $B + \overline{B} = 1$

$$A.(B + \bar{B}) = A.1 = A$$

$$(A+B).(A+\overline{B})=A$$

Proof: Use distribution, second absorption law, and the identities $B\bar{B}=0$, and $1+\bar{B}=1$ and factoring out (For your practice!)

Prove the equivalency of the following expressions:

1.
$$(A + B).(A + C) = A + B.C$$

2.
$$A + (\bar{A}.B) = A + B$$

Write a logical expression for the output Z given the following truth table.

A	В	Z
0	0	0
0	1	1
1	0	1
1	1	1

Boolean algebra – DeMorgan's Theorems

 The two famous DeMorgan's Theorems state the relationship in converting NAND operation into OR of negated inputs, and NOR operation into AND of negated inputs.

$$\overline{A+B} = \overline{A}.\overline{B}$$

$$A \longrightarrow \overline{A + B}$$
 same

$$\overline{A.B} = \overline{A} + \overline{B}$$

$$A \longrightarrow \overline{A \cdot B}$$

Boolean algebra – DeMorgan's Theorems

Truth Table

A	В	$\overline{A+B}$	$ar{A}.ar{B}$
0	0	1	1
0	1	0	0
1	0	0	0
1	1	0	0

Truth Table

$$\overline{A.B} = \overline{A} + \overline{B}$$

A	B	$\overline{A.B}$	$\bar{A} + \bar{B}$
0	0	1	1
0	1	1	1
1	0	1	1
1	1	0	0

Boolean algebra - DeMorgan's Theorems

- DeMorgan's Theorems describe the equivalent relationship between gates with inverted inputs and gates with inverted outputs.
- When "breaking" a complementation bar in a Boolean expression, the operation directly underneath the break (addition or multiplication) reverses, and the broken bar pieces remain over the respective terms.
 - A NAND gate is equivalent to a "Negative Input"-OR gate.
 - A NOR gate is equivalent to a "Negative Input"-AND gate.
- Other important points include:
 - It is often easier to approach a problem by breaking the longest (uppermost) bar before breaking any bars under it
 - Never attempt to break two bars in one step!
 - Complementation bars function as grouping symbols.
 - When a bar is broken, the terms underneath it must remain grouped.
 - Parentheses may be placed around these grouped terms as a help to avoid changing precedence.

Prove the equivalency of the following expressions:

1.
$$\overline{A + \overline{BC}}$$

2.
$$\overline{A\overline{B}} + \overline{A + BC}$$

Questions?

