Московский государственный университет имени М.В. Ломоносова Факультет вычислительной математики и кибернетики Кафедра математической статистики

Основные формулы комбинаторики Испытания Бернулли

к.ф.-м.н., доцент Захарова Т. В.

Москва

28 ноября

2020

Основные формулы комбинаторики

Комбинаторика — это область математики, изучающая комбинации, которые можно составить по определенным правилам из элементов некоторого конечного множества.

Основы комбинаторики очень важны для оценки вероятностей случайных событий, так как позволяют подсчитать возможное количество различных вариантов развития событий.

Комбинаторные объекты

Комбинаторный объект — это подмножество с определенными свойствами из элементов исходного множества.

Комбинаторное число (связанное с комбинаторным объектом) — это количество комбинаторных объектов с общим признаком.

Правило суммы

Часто при подсчете числа комбинаторных объектов применяют два основных приема: правило суммы и правило произведения.

Правило суммы опирается на идею разбить множество на непересекающиеся части, в каждой из которых подсчитать число элементов легче.

Правило суммы: если все комбинаторные объекты можно разбить на 2 непересекающихся множества, в которых в одном — \mathbf{n} элементов, в другом — \mathbf{m} элементов, то всего комбинаторных объектов будет $\mathbf{n} + \mathbf{m}$.

Задача. Из цифр 1, 2, 3, 4, 5 составляются числа, содержащие не менее 3 цифр. Сколько таких чисел можно составить, если цифры в числе не повторяются?

Правило произведения

Правило произведения:

пусть объект **a** можно выбрать **n** способами, после чего объект **b** можно выбрать **m** способами, тогда упорядоченную пару (**a**, **b**) можно выбрать **n** · **m** способами. То есть существует **n** · **m** различных упорядоченных пар (**a**, **b**).

Задача.

Пусть индекс і может принимать два значения: 10 и 20, а индекс ј — три значения: 3, 5 и 7. Сколько пар (i, j) с учетом порядка можно составить?

Задача.

10 участников финала разыгрывают одну золотую, одну серебряную и одну бронзовую медали. Сколькими способами эти награды могут быть распределены между спортсменами?

Основные формулы комбинаторики

Некоторые комбинаторные числа имеют собственные названия и обозначения.

Перестановки — это комбинации, составленные изо всех **n** элементов данного множества и отличающиеся только порядком их расположения.

Число всех возможных перестановок P(n) = n!

Задача.

Сколько всего списков, отличающихся порядком, можно составить из 7 различных фамилий?

Размещения

Размещения — это комбинации, составленные из **m** элементов множества, содержащего **n** различных элементов, отличающиеся либо составом элементов, либо их порядком.

Число всех возможных размещений $A_n^m = n (n-1) \cdot ... \cdot (n-m+1)$.

То есть это упорядоченная выборка **m** элементов из множества **n** различных элементов.

Из цифр **1, 2, 3, 4, 5** составляются числа, содержащие не менее **3** цифр. Сколько таких чисел можно составить, если цифры в числе не повторяются?

Сочетания

Сочетания — это неупорядоченные наборы, состоящие из **m** элементов множества, содержащего **n** различных элементов (то есть наборы, отличающиеся только составом элементов).

Число сочетаний
$$C_n^m = \frac{n!}{m! (n-m)!}$$
.

Задача.

Пусть множество состоит из трех элементов {1, 2, 3}. Сколько существует вариантов выбора подмножеств, состоящих из двух элементов и отличающихся только составом?

Задача.

В отборочных соревнованиях принимают участие **10** человек, из них трое выходят в финал. Сколько может быть различных троек финалистов?

Различные выборки

Число различных выборок m элементов из множества, содержащего n различных элементов

	Без возвращения	С возвращением
Порядок важен	A _n ^m	n ^m
Без учета порядка	C _n ^m	C _{m+n-1}

Перестановки с повторениями

Рассмотрим набор из трех шаров разного цвета. Сколько упорядоченных наборов можно составить?

Всего 3! различных вариантов. На первом месте может стоять любой из имеющихся: желтый, красный или зеленый. На втором возможны 2 варианта из оставшихся двух шаров, на третьем месте будет находиться оставшийся шар. По правилу умножения получаем 6 комбинаций размещений шаров.

А теперь?

Каждая уникальная комбинация шаров связана с 3!=6 неразличимыми по цвету выборками. 6 возможных вариантов расположений шаров определяют 1 цветовой вариант выборки шаров. В примере это **Желтый**, **Зеленый**, **Красный**, **Зеленый**, **Зеленый**.

Поэтому число различных перестановок шаров сократится в 6 раз и будет равно 5!/3! = 20. Отметим, для 5 различных шаров число перестановок = 120, в шесть раз больше.

Перестановки с повторениями

Конечно же в этом варианте можно переставлять между собой желтые шары и переставлять зеленые, цветовая последовательность шаров не изменится. Значит к каждой уникальной перестановке приводят в 2! раз больше выборок за счет перестановок желтых шаров в последовательности и в 2! раз больше выборок за счет перестановок между собой зеленых шаров. Поэтому число отличающихся перестановок шаров сократится в 2!*2! раз и будет равно 5!/(2!*2!) = 30.

Сколько здесь возможных различных перестановок?

Перестановки с повторениями

Определение. Последовательность длины n, составленная из m разных символов, первый из которых повторяется k_1 раз, второй — k_2 раз, . . . , m-й — k_m раз, где $k_1 + k_2 + ... + k_m = n$, называется **перестановкой с повторениями** из n элементов.

Число различных перестановок с повторениями из *m* различных элементов

 $\{a_1, a_2, ..., a_m\}$, в которых элементы $a_1, a_2, ..., a_m$ повторяются соответственно $k_1, k_2, ..., k_m$ раз и n — общее количество элементов, $k_1 + k_2 + ... + k_m = n$, равно

$$\frac{(k_1 + k_2 + \dots + k_m)!}{k_1! \cdot k_2! \cdots k_m!}$$

Сочетания с повторениями

Число различных выборок **m** элементов (с повторами) из множества, содержащего **n** различных элементов (ящики)

	Без возвращения	С возвращением	
Порядок важен	A _n ^m	n ^m	
Без учета порядка	C _n ^m	C _{m+n-1}	
Пример n=5 ящиков и m=8 шаров	1 1 2	4 4 5	

Размещения с повторениями

Определение. Размещение с повторениями или выборка с возвращением — это размещение элементов в предположении, что каждый элемент может участвовать в размещении несколько раз.

Число размещений с повторениями из n элементов по m выражается формулой n^m .

Задача. Сколько существует различных автомобильных номеров, которые состоят из **5** цифр, если первая из них не равна нулю?

Бином Ньютона

Бином Ньютона – это формула, представляющая выражение $(a+b)^n$ при положительном целом n в виде многочлена:

 $(a+b)^n = \sum_{k=0}^n C_n^k a^k b^{n-k}$

Докажем справедливость этой формулы.

При перемножении скобок (a+b)(a+b)...(a+b), из каждой скобки берется либо слагаемое a, либо b.

Чтобы получить выражение $a^k b^{n-k}$ при раскрытии скобок мы должны из k скобок взять слагаемое a, а из остальных (n-k) скобок -b. Поэтому коэффициент при $a^k b^{n-k}$ равен числу способов выбрать k скобок из n, то есть числу сочетаний C_n^k или числу перестановок с повторениями:

$$\frac{n!}{k! (n-k)!}$$

Свойство биномиальных коэффициентов:

Треугольник Паскаля

В верхней строчке треугольника располагается единица. В остальных строках каждое число является суммой двух своих соседей этажом выше — слева и справа. Если какой-то из соседей отсутствует, он считается равным нулю.

Треугольник Паскаля

В верхней строчке треугольника располагается единица. В остальных строках каждое число является суммой двух своих соседей этажом выше — слева и справа. Если какой-то из соседей отсутствует, он считается равным нулю.

Числа в n-ой строке треугольника являются биномиальными коэффициентами, то есть коэффициентами в разложении n-ой степени бинома Ньютона.

Каждое число в треугольнике равно количеству способов добраться до него из вершины, перемещаясь либо вправо-вниз, либо влево-вниз.

Треугольник Паскаля - это очень удобная таблица биномиальных коэффициентов.

Основные понятия теории вероятностей

Перейдем к строгим определениям основных понятий теории вероятностей.

Множество всех элементарных событий $\{\omega_1, \cdots, \omega_n\}$ называется пространством элементарных событий и обозначается заглавной буквой омега Ω , т.е. $\Omega = \{\omega_1, \cdots, \omega_n\}$.

Определение. Подмножество Ω , состоящее из некоторого (любого) числа ω_i , называется событием.

Событие, которое не содержит ни одного элементарного события, называется невозможным событием и обозначается символом Ø (пустое множество).

Событие, которое содержит все элементарные исходы, т.е. само Ω , называется достоверным событием.

Например, в эксперименте с одним подбрасыванием монеты возможны только два элементарных события:

 ω_1 ={выпал орел}, ω_2 ={выпала решка}.

Поэтому

 Ω ={выпал орел или решка} — достоверное событие, \emptyset ={не выпали ни орел, ни решка} — невозможное событие.

Вероятностное пространство. Дискретный случай

Тройка объектов $(\Omega, \mathcal{F}, \mathcal{P})$ называется вероятностным пространством или колмогоровской тройкой,

где Ω — пространство элементарных событий,

 \mathcal{F} — множество всевозможных подмножеств дискретного Ω , называемых событиями, \mathcal{P} — вероятность или вероятностная мера, вещественная функция заданная на событиях, а в дискретном частном случае на элементарных событиях ω , такая что

1.
$$P(\omega) \ge 0$$
, $\forall \omega \in \Omega$

$$2. \sum_{\omega \in \Omega} P(\omega) = 1.$$

Пример. Симметричный игральный кубик (игральную кость) подбрасывают один раз. В этом случае

$$\Omega = \{1,2,3,4,5,6\}, \qquad P(\omega) = \frac{1}{6}.$$

Случайные величины

Ранее мы познакомились с примерами, в которых вероятности вычислялись прямым подсчетом. Для дальнейшего развития теории нам понадобятся новые понятия.

Рассмотрим **конечное вероятностное пространство** (Ω, A, P) , где

 Ω — это конечное множество, состоящее из s элементарных исходов ω_1,\ldots,ω_n ,

A — класс всех подмножеств Ω , называемых событиями,

P — вероятность или распределение вероятностей на классе A.

 $\{p(\omega), \omega \in \Omega\}$ — конечный набор чисел, удовлетворяющих условиям

$$p(\omega) \ge 0, \omega \in \Omega, \sum_{\omega \in \Omega} p(\omega) = 1.$$

Вероятность события A определяется по формуле

$$P(A) = \sum_{\omega \in A} p(\omega).$$

Определение. Случайной величиной, заданной на конечном вероятностном пространстве, называется любая функция, зависящая от элементарного исхода ω и принимающая числовые значения.

Распределение вероятностей

Обозначать случайные величины будем заглавными буквами латинского алфавита $X=X(\omega)$, $Y=Y(\omega)$, $Z=Z(\omega)$, . . . или греческими буквами $\xi=\xi(\omega)$, $\eta=\eta(\omega)$, $\zeta=\zeta(\omega)$, . . .

Закон распределения вероятностей случайной величины $X = X(\omega)$, определяется формулой

$$P\{X=x_k\} = \sum_{\omega: X(\omega)=x_k} p(\omega).$$

Пример. Подбрасываем кубик. Пусть $\Omega = \{1, 2, 3, 4, 5, 6\}$ и две функции из Ω в R заданы так:

$$X(\omega) = \omega,$$
 $Y(\omega) = 6 - \omega.$

Распределение вероятностей дискретной конечной случайной величины удобно записать в виде таблицы:

X	1	2	3	4	5	6
P	1/6	1/6	1/6	1/6	1/6	1/6

Y	0	1	2	3	4	5
P	1/6	1/6	1/6	1/6	1/6	1/6

Испытания Бернулли

На дне глубокого сосуда Лежат спокойно n шаров. Поочередно их оттуда Таскают двое дураков. Сия работа им приятна, Они таскают t минут, И, вынув шар, его обратно Тотчас немедленно кладут. Ввиду занятия такого, Сколь вероятность велика, Что первый был глупей второго, Когда шаров он вынул k?

В. П. Скитович

Вероятностное пространство. Дискретный случай

Задача. В ящике имеется N шаров с номерами 1, 2, ..., N. Все шары с номерами 1, 2, ..., M окрашены в белый цвет, а остальные шары — в черный цвет. Из ящика наугад извлекается шар, затем возвращается назад. Исход n последовательных извлечений называется выборкой объема n с возвращением. Найдите вероятность того, что в выборке объема n окажется ровно m, $0 \le m \le n$, белых шаров.

Так как выбор осуществляется с возвращением, то имеем всего N^n элементарных исходов.

Выберем номера экспериментов, на которых будет извлекаться белый шар.

Это можно сделать C_n^m способами.

На выбранные места помещаем белые шары. Число способов M^m .

На оставшиеся места помещаем черные шары. Число способов $(N-M)^{n-m}$.

Число благоприятных исходов получаем по правилу умножения: $C_n^m \cdot M^m \cdot (N-M)^{n-m}$.

Через A_m обозначим событие: в выборке объема n окажется ровно m белых шаров.

$$P(A_m) = C_n^m \cdot M^m \cdot (N - M)^{n - m} / N^n.$$

$$P(A_m) = C_n^m \cdot p^m \cdot (1-p)^{n-m}$$
, где $p = \frac{M}{N}$.

Испытания Бернулли

Определение:

Схемой Бернулли называется последовательность независимых испытаний, в каждом из которых возможны **лишь два исхода** — «успех» и «неудача», при этом успех в каждом испытании происходит **с одной и той же** вероятностью $p \in (0,1)$, а неудача — с вероятностью q = 1 - p.

Распределение вероятностей

Закон распределения вероятностей случайной величины X — числа успехов в **n** испытаниях Бернулли определяется формулой

$$P(X=m)=C_n^m \cdot p^m \cdot (1-p)^{n-m}.$$

Вероятностное пространство. Дискретный случай

Задача. В ящике имеется N шаров с номерами 1, 2, ..., N. Все шары с номерами 1, 2, ..., M окрашены в белый цвет, а остальные шары — в черный цвет. Из ящика наугад извлекается шар и **не возвращается** обратно. Исход n последовательных извлечений называется выборкой объема n без возвращения. Найдите вероятность того, что в выборке объема n окажется ровно m, $0 \le m \le n$, белых шаров.

В этой задаче удобнее фиксировать результат без учета порядка. Тогда общее число элементарных исходов равно \mathcal{C}_N^n .

Для благоприятных исходов нужно набрать из M белых шаров m белых шаров. Число способов C_M^m . Остальные шары должны быть черными. Число способов C_{N-M}^{n-m} . Число благоприятных исходов получаем по правилу умножения: $C_M^m \cdot C_{N-M}^{n-m}$.

Через A_m обозначим событие: в выборке объема n окажется ровно m белых шаров.

$$P(A_m) = C_M^m \cdot C_{N-M}^{n-m} / C_N^n.$$

Расчет вероятностей

Задача 1. Проведено 20 независимых испытаний, каждое из которых заключается в одновременном подбрасывании трех монет. Найти вероятность того, что хотя бы в одном испытании появятся три «герба».

Задача 2. При передаче сообщения вероятность искажения одного знака равна 1/10. Каковы вероятности того, что сообщение из 10 знаков:

- а) не будет искажено,
- б) содержит ровно 3 искажения,
- в) содержит не более 3 искажений?

Задача 3. Испытание заключается в бросании трех игральных костей. Найти вероятность того, что в пяти независимых испытаниях ровно два раза выпадет по три единицы.

Задача 4. Найти вероятность того, что в 2n испытаниях схемы Бернулли с вероятностью успеха p и неудачи q=1- p появится m+n успехов и все испытания с четными номерами закончатся успехом.

Расчет вероятностей

Задача 5. Из множества $S = \{1, 2, ..., N\}$ случайно и независимо выбираются два подмножества: **A** и **B** так, что каждый элемент из **S** независимо от других элементов с вероятностью р включается в подмножество **A** и с вероятностью q = 1 — р не включается. Какова вероятность события { **A** и **B** не пересекаются}?

Задача 6. Из множества $S = \{1, 2, ..., N\}$ случайно и независимо выбираются r подмножеств: $A_1, ..., A_r$, по той же схеме выбора подмножеств, что и в задаче 5. Найти вероятность того, что выбранные подмножества попарно не пересекаются.

Задача 7. Из множества $S = \{1, 2, ..., N\}$ случайно и независимо выбираются r подмножеств: $A_1, ..., A_r$, по той же схеме выбора подмножеств, что и в задаче 5. Найти:

a)
$$P\{|A_1 \cap \cdots \cap A_r| = k\}$$
;

6)
$$P\{|A_1 \cup \dots \cup A_r| = k\}$$
.