Spectral Clustering for Unsupervised Learning

Numerical Methods for Deep Learning

Motivation: Data Mining

Assume we have data

$$\mathbf{Y} = [\mathbf{y}_1, \dots, \mathbf{y}_n]$$

The data can be

- Images
- Text
- Sound
- ► Set of numbers (climate, pressure ...)

We can think of (at least) three goals:

- Cluster the data (unsupervised)
- Give meaning to each cluster, label it (semisupervised)
- ► Find a functional relation between the cluster and its label (supervised)

Example: Un/Semi/Fully Supervised Learning

Example: $\mathbf{y} \in \mathbb{R}^2$ contains rock conductivity porosity

- How many types of rocks do we have? Unsupervised learning
- What are their names (Granite, Basalt)?
 Semisupervised learning
- ► Given σ , ϕ can we find a function $f(\sigma, \phi) = \text{rock type}$? Supervised learning

Discussion: Un/Semi/Fully Supervised Learning

- Supervised learning requires a large labeled data set
- ▶ Gives an "explanation" (a model) between data and label
- Un/Semisupervised is more modest
- ► No model, just label
- Can be followed by supervised learning

Learning Objective: Spectral Clustering

In this module we focus on spectral clustering algorithms for unsupervised and semisupervised learning.

Learning tasks:

- Given a data set cluster the data into a few groups
- Assuming that a few data are labeled, label the rest

Numerical methods:

- ▶ k-means algorithm (not discussed)
- spectral clustering (our focus)

Spectral Clustering: General Idea

Idea: Given the data set $\mathbf{Y} = [\mathbf{y}_1, \dots, \mathbf{y}_n]$, if \mathbf{y}_i is similar to \mathbf{y}_j then they belong to the same class.

Central question: How to measure and use similarity?

Literature: [1, 2, 3]

How to quantify the similarity of two data points?

A function $D: \mathbb{R}^{n_f} \times \mathbb{R}^{n_f} \to [0, \infty)$ is called a *metric*, if for all $\mathbf{x}, \mathbf{y}, \mathbf{z}$ it holds that

- $D(\mathbf{x},\mathbf{y}) \geq 0$
- \triangleright $D(\mathbf{x}, \mathbf{y}) = 0 \Rightarrow \mathbf{x} = \mathbf{y}$
- $D(\mathbf{x}, \mathbf{y}) = D(\mathbf{y}, \mathbf{x})$
- $\triangleright D(\mathbf{x}, \mathbf{z}) \leq D(\mathbf{x}, \mathbf{y}) + D(\mathbf{y}, \mathbf{z})$

A metric can be used to measure similarity.

Note: Not all properties are needed. E.g., sometimes we will drop the second one.

Most obvious metric is induced by a norm, e.g.,

$$D(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|_p = \left(\sum_{i=1}^{n_f} |\mathbf{x}_i - \mathbf{y}_i|^p\right)^{\frac{1}{p}}$$

- most used is the 2-norm (why?)
- ▶ $p = \infty$ is called the max norm (why?)

A simple modification: weighted norms

$$D(\mathbf{x}, \mathbf{y}) = \left(\sum_{i=1}^{n_f} \mathbf{w}_i | \mathbf{x}_i - \mathbf{y}_i|^p\right)^{\frac{1}{p}}$$

where $\mathbf{w} > 0$ is a vector of positive weights. Allows us to focus on some components and scale the metric.

Are these signals similar?

Can we find a translation-invariant metric?

Which of these image pairs are most similar?

(by Christmas w/a K)

(by Art Bromage)

(by P R Simões)

Many different definitions of distance based on the application

- normed distance
- ► Hamming distance for strings
- Wasserstein metric for probabilities (also applied to images)
- ▶ Riemannian metrics for data that "lives" on manifolds

Choosing the right similarity measure is the key for the application.

In many cases - chicken and egg. If we know the right distance then we know how to cluster.

We will use $\|\cdot\|_2$ for simplicity.

Undirected Graphs

The graph $G(\mathbf{Y}, \mathcal{E})$ is described by its vertices $\mathbf{y}_1, \dots, \mathbf{y}_n$ and an edge set \mathcal{E} .

Example:

$$Y = [-1 \ 0 \ .1 \ .5 \ -1.5; \ -1 \ 1 \ 0 \ 0 \ 1]$$

 $E = [1 \ 2;1 \ 2;2 \ 3;1 \ 3;3 \ 4;2 \ 4;2 \ 5]$

We will only use undirected graphs: $(i,j) \in \mathcal{E} \Rightarrow (j,i) \in \mathcal{E}$.

Adjacency Matrix of a Graph

The adjacency matrix of $G(\mathbf{Y}, \mathcal{E})$ is $\mathbf{A} \in \{0, 1\}^{n \times n}$ with

$$\mathbf{A}_{ij} = egin{cases} 1, & ext{if there is an edge between } \mathbf{y}_i ext{ and } \mathbf{y}_j \ 0, & ext{else.} \end{cases}$$

Note: **Y** and **A** fully describe the graph (no need to store \mathcal{E}).

Degree Matrix of a Graph

The degree matrix is

$$\mathbf{D}_{ii} = \operatorname{diag}\left(\sum_{j} \mathbf{A}_{ij}\right) \in \mathbb{R}^{n \times n}$$

.

$$\Rightarrow \mathbf{D} = \begin{pmatrix} 2 & 0 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 & 0 \\ 0 & 0 & 4 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

 \mathbf{D}_{ii} is the degree of node \mathbf{y}_i (\approx importance of \mathbf{y}_i).

Weighted Adjacency Matrix of a Graph

The weighted adjacency matrix of $G(\mathbf{Y}, \mathcal{E})$ is $\mathbf{W} \in \mathbb{R}^{n \times n}_+$ with

$$\mathbf{W}_{ij} egin{cases} > 0 & \text{if } \mathbf{A}_{ij} = 1 \\ = 0 & \text{otherwise.} \end{cases}$$

Use a similarity measure to compute the entries in \mathbf{W} , e.g.,

$$\mathbf{W}_{ij} = \exp\left(-rac{D(\mathbf{y}_i, \mathbf{y}_j)}{\sigma}\right).$$

As before, the degree matrix is

$$\mathbf{D}_{ii} = \operatorname{diag}\left(\sum_{i} \mathbf{W}_{ij}\right) \in \mathbb{R}^{n \times n}.$$

 \mathbf{D}_{ii} is the degree of node \mathbf{y}_i (\approx importance of \mathbf{y}_i).

k-Nearest Neighbor Graph

Given: Data \mathbf{Y} , $k \in \mathbb{N}$, and a distance function D. Idea: Set $\mathbf{A}_{ij} = \mathbf{A}_{ji} = 1$ if \mathbf{y}_i is among the k nearest neighbors of \mathbf{y}_j with respect to D or vice versa.

This is not the only option. Common alternatives:

- ▶ ϵ -neighborhood graph: add an edge between \mathbf{y}_i and \mathbf{y}_j if $D(\mathbf{y}_i, \mathbf{y}_j) < \epsilon$
- mutual k-nearest neighborhood graph: add an edge between y_i and y_j if y_i is among the k nearest neighbors of y_j and vice versa.
- fully-connected graph: add an edge between all examples.

In all these cases, we return the weighted adjacency matrix, whose entries depend on D.

The Graph Laplacian

The graph Laplacian of $G(\mathbf{Y}, \mathcal{E})$ is

$$L = D - A$$

For our example, we get

$$\mathbf{L} = \left(egin{array}{ccccc} 2 & -1 & -1 & 0 & 0 \ -1 & 4 & -1 & -1 & -1 \ -1 & -1 & 4 & -1 & 0 \ 0 & -1 & -1 & 2 & 0 \ 0 & -1 & 0 & 0 & 1 \end{array}
ight)$$

Note that for a vertex function $\mathbf{v} \in \mathbb{R}^n$

$$(\mathbf{L}\mathbf{v})_i = \sum_{j=1}^n \mathbf{A}_{ij} (\mathbf{v}_i - \mathbf{v}_j)$$
 and $\mathbf{v}^{ op} \mathbf{L} \mathbf{v} = \sum_{i,j=1}^n \mathbf{A}_{ij} (\mathbf{v}_i - \mathbf{v}_j)^2$

Weighted Graph Laplacian

Similar to the previous slide, we define the weighted graph Laplacian of $G(\mathbf{Y}, \mathcal{E})$ as

$$L = D - W$$

(**D** is the degree matrix of the weighted adjacency matrix **W**)

For a vertex function $\mathbf{v} \in \mathbb{R}^n$, we obtain

$$(\mathbf{L}\mathbf{v})_i = \sum_{j=1}^n \mathbf{W}_{ij} (\mathbf{v}_i - \mathbf{v}_j)$$
 and $\mathbf{v}^{ op} \mathbf{L} \mathbf{v} = \sum_{i,j=1}^n \mathbf{W}_{ij} (\mathbf{v}_i - \mathbf{v}_j)^2$

Eigenvalues of the Graph Laplacian

The first (i.e., smallest) eigenvalue is always 0 with eigenvector $\mathbf{v} = [1, \dots, 1]^{\top}$ (why?)

The multiplicity of the eigenvalue 0 equals the number of connected components in the graph.

The smallest non-zero eigenvalue is the Fiedler eigenvalue.

Fiedler Vector

Assume there is only one connected component. Then, the eigenvector associated with the second eigenvalue can be obtained by solving

$$\begin{aligned} \min_{\mathbf{u} \neq \gamma \mathbf{e}} & & \frac{1}{2} \mathbf{u}^\top \mathbf{L} \mathbf{u} \\ \text{subject to} & & \|\mathbf{u}\| = 1 \end{aligned}$$

Interpretation: Find the non-constant vector with the minimal energy (i.e., as smooth as possible)

It (approximately) holds that $\mathbf{u}_i > 0$ for examples in the first group and $\mathbf{u}_i < 0$ for examples in the second group.

Computing the Fiedler Vector

The Fiedler vector can be computed by solving the optimization problem

$$\begin{aligned} \min_{\mathbf{u} \neq \gamma \mathbf{e}} & & \frac{1}{2} \mathbf{u}^{\top} \mathbf{L} \mathbf{u} \\ \text{subject to} & & \|\mathbf{u}\| = 1 \end{aligned}$$

General idea:

- ▶ For small problems use eig solver of a dense matrix
- ► For large problem use iterative methods inverse iteration, Krylov methods, randomized linear algebra

Simple (but not very efficient) option is the power method:

$$\mathbf{v}_k = \mathbf{L}^\dagger \mathbf{u}_k \qquad \mathbf{u}_{k+1} = rac{\mathbf{v}_k}{\|\mathbf{v}_k\|}, \quad k = 1, \ldots$$

Algorithm: Normalized Spectral Clustering [1]

Input: Weighted adjacency matrix \mathbf{W} Hyperparameters: n_c (no. of clusters), n_v (number of eigenvectors), k, σ (for constructing \mathbf{W})

- 1. compute Laplacian $\mathbf{L} = \mathbf{D} \mathbf{W}$
- 2. normalize Laplacian $\mathbf{L}_{\mathrm{sym}} = \mathbf{D}^{-1/2} \mathbf{L} \mathbf{D}^{-1/2}$
- 3. compute $\mathbf{u}_1, \dots, \mathbf{u}_{n_v}$ the first n_v eigenvectors of \mathbf{L}_{sym}
- 4. define new feature matrix

$$\mathbf{U} = \left(egin{array}{c} \mathbf{u}_1^{ op} \\ \mathbf{u}_2^{ op} \\ dots \\ \mathbf{u}_{n_c}^{ op} \end{array}
ight) \in \mathbb{R}^{n_v imes n}$$

5. use k-means to cluster the columns of \mathbf{U} into n_v classes

Output: $\mathbf{C} \in \mathbb{R}^{n_c \times n}(\mathbf{C}_{ii} = 1 \text{ if example } j \text{ belongs to class } i)$

Graph Laplacians in Semisupervised Learning

Goal: Given $(\mathbf{y}_1, \mathbf{c}_1), (\mathbf{y}_2, \mathbf{c}_2), \dots, (\mathbf{y}_k, \mathbf{c}_k)$ obtained using

$$\mathbf{c} = f(\mathbf{y}) + \boldsymbol{\epsilon}$$
, (ϵ is some noise)

estimate $f(\mathbf{y}_{k+1}), f(\mathbf{y}_{k+2}), \dots, f(\mathbf{y}_n)$. Remarks:

- in most cases it is possible to obtain a few labeled data
- can work well if the unlabeled data is similar to the labeled one and f is smooth
- typically more robust than unsupervised learning

Example : Let $n_c=1$. Solve optimization problem for $\mathbf{f}\in\mathbb{R}^n$

$$\min_{\mathbf{f}} \frac{1}{2} \sum_{i=1}^{k} (\mathbf{f}_i - \mathbf{c}_i)^2 + \frac{\alpha}{2} \mathbf{f}^{\top} \mathbf{L} \mathbf{f}, \quad \alpha > 0$$

Σ: Spectral Clustering for Unsupervised Learning

- our focus: graph-based methods
- key idea: Given Y, create weighted undirected graph. Choices:
 - distance function (defines similarity)
 - criteria for edges (control sparsity)
 - weights for graph (usually based on distance)
- spectral clustering requires first few eigenvectors
 - ightharpoonup naive complexity n^3
 - use iterative/randomized linear algebra for large n
- semi-supervised learning
 - use graph Laplacian to obtain smooth mapping

References

- [1] A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral clustering: Analysis and an algorithm. *papers.nips.cc*, 2002.
- [2] A. Pothen, H. D. Simon, and K.-P. Paul Liu. Partitioning sparse matrices with eigenvectors of graphs. *SIAM Review*, 11(3):430–452, July 1990.
- [3] U. von Luxburg. A tutorial on spectral clustering. Statistics and Computing, 17(4):395–416, Aug. 2007.