

U.S. DEPARTMENT OF COMMERCE PATENT AND TRADEMARK OFFICE		ATTORNEY'S DOCKET NUMBER <u>TAMURA 5</u>
TRANSMITTAL LETTER TO THE UNITED STATES DESIGNATED/ELECTED OFFICE (DO/EO/US) CONCERNING A FILING UNDER 35 U.S.C. 371		U.S. APPLICATION NO (If known, see 37 CFR 1.5) 09/700879
INTERNATIONAL APPLICATION NO. PCT/JP99/02600	INTERNATIONAL FILING DATE 19 May 1999	PRIORITY CLAIMED 20 May 1998
TITLE OF INVENTION CONJUGATE OF THERAPEUTIC AGENT FOR JOINT DISEASE AND HYALURONIC ACID		
APPLICANT(S) FOR DO/EO/US Tatsuya TAMURA et al.		
<p>Applicant herewith submits to the United States Designated/Elected Office (DO/EO/US) the following items and other information:</p> <p>1. <input checked="" type="checkbox"/> This is a FIRST submission of items concerning a filing under 35 U.S.C. 371. 2. <input type="checkbox"/> This is a SECOND or SUBSEQUENT submission of items concerning a filing under 35 U.S.C. 371. 3. <input checked="" type="checkbox"/> This is an express request to begin national examination procedures (35 U.S.C. 371(f)) at any time rather than delay examination until the expiration of the applicable time limit set in 35 U.S.C. 371(b) and PCT Articles 22 and 39(1). 4. <input checked="" type="checkbox"/> The US has been elected by the expiration of 19 months from the priority date (PCT Article 31). 5. <input checked="" type="checkbox"/> A copy of the International Application as filed (35 U.S.C. 371(c)(2)) a. <input type="checkbox"/> is attached hereto (required only if not transmitted by the International Bureau). b. <input checked="" type="checkbox"/> has been communicated by the International Bureau. c. <input type="checkbox"/> is not required, as the application was filed in the United States Receiving Office (RO/US). 6. <input checked="" type="checkbox"/> An English language translation of the International Application as filed (35 U.S.C. 371(c)(2)). 7. <input checked="" type="checkbox"/> Amendments to the claims of the International Application under PCT Article 19 (35 U.S.C. 371(c)(3)) a. <input type="checkbox"/> are transmitted herewith (required only if not transmitted by the International Bureau). b. <input type="checkbox"/> have been communicated by the International Bureau. c. <input type="checkbox"/> have not been made; however, the time limit for making such amendments has NOT expired. d. <input checked="" type="checkbox"/> have not been made and will not be made. 8. <input type="checkbox"/> An English language translation of the amendments to the claims under PCT Article 19 (35 U.S.C. 371(c)(3)). 9. <input checked="" type="checkbox"/> An oath or declaration of the inventor(s) (35 U.S.C. 371(c)(4)). 10. <input type="checkbox"/> An English language translation of the annexes to the International Preliminary Examination Report under PCT Article 36 (35 U.S.C. 371(c)(5)).</p> <p>Items 11. to 16. below concern document(s) or information included:</p> <p>11. <input type="checkbox"/> An Information Disclosure Statement under 37 CFR 1.97 and 1.98. 12. <input type="checkbox"/> An Assignment document for recording. A separate cover sheet in compliance with 37 CFR 3.28 and 3.31 is included. 13. <input checked="" type="checkbox"/> A FIRST preliminary amendment. <input type="checkbox"/> A SECOND or SUBSEQUENT preliminary amendment. 14. <input type="checkbox"/> A substitute specification. 15. <input type="checkbox"/> A change of power of attorney and/or address letter. 16. <input type="checkbox"/> Other items or information: <input checked="" type="checkbox"/> Courtesy copy of the first page of the International Publication (WO 99/59603). <input checked="" type="checkbox"/> Formal drawings, 10 sheets, Figures 1-10. <input checked="" type="checkbox"/> Courtesy Copy of the International Search Report. <input checked="" type="checkbox"/> Courtesy copy of a translation of the IPER. Annexes are not attached hereto and are <u>not</u> to be used for initial examination in this case.</p>		

U.S. APPLICATION NO (If known, see 37 CFR 1.5) 09/700879	International Application No PCT/JP99/02600	Attorney's Docket No TAMURA 5	
17. [xx] The following fees are submitted: BASIC NATIONAL FEE (37 CFR 1.492 (a)(1) - (5): Neither international preliminary examination fee (37 CFR 1.482) nor international search fee (37 CFR 1.445(a)(2)) paid to USPTO and International Search Report not prepared by the EPO or JPO.....\$1000.00 International preliminary examination fee (37 CFR 1.482) not paid to USPTO but International Search Report prepared by the EPO or JPO.....\$860.00 International preliminary examination fee (37 CFR 1.482) not paid to USPTO but international search fee (37 CFR 1.445(a)(2)) paid to USPTO.....\$710.00 International preliminary examination fee paid to USPTO (37 CFR 1.482) but all claims did not satisfy provisions of PCT Article 33(1)-(4).....\$690.00 International preliminary examination fee paid to USPTO (37 CFR 1.482) and all claims satisfied provisions of PCT Article 33(1)-(4).....\$100.00		CALCULATIONS PTO USE ONLY	
ENTER APPROPRIATE BASIC FEE AMOUNT =		\$ 860.00	
Surcharge of \$130.00 for furnishing the oath or declaration later than [] 20 [] 30 months from the earliest claimed priority date (37 CFR 1.492(e)).		\$	
Claims as Originally Presented	Number Filed	Number Extra	Rate
Total Claims	17 - 20		X \$18.00 \$ 0
Independent Claims	1 - 3		X \$80.00 \$ 0
Multiple Dependent Claims (if applicable)			+\$270.00 \$ 0
TOTAL OF ABOVE CALCULATIONS =		\$ 860.00	
Claims After Post Filing Prel. Amend	Number Filed	Number Extra	Rate
Total Claims	- 20		X \$18.00 \$
Independent Claims	- 3		X \$78.00 \$
TOTAL OF ABOVE CALCULATIONS =		\$ 860.00	
Reduction of $\frac{1}{2}$ for filing by small entity, if applicable. Applicant claims small entity status. See 37 CFR 1.27.		\$	
SUBTOTAL =		\$ 860.00	
Processing fee of \$130.00 for furnishing the English translation later than [] 20 [] 30 months from the earliest claimed priority date (37 CFR 1.492(f)).		\$	
TOTAL NATIONAL FEE =		\$	
Fee for recording the enclosed assignment (37 CFR 1.21(h)). The assignment must be accompanied by an appropriate cover sheet (37 CFR 3.28, 3.31). \$40.00 per property +		\$	
TOTAL FEES ENCLOSED =		\$ 860.00	
		Amount to be: \$	
		refunded \$	
		charged \$	
a. [] A check in the amount of \$ _____ to cover the above fees is enclosed. b. [X] Credit Card Payment Form (PTO-2038), authorizing payment in the amount of \$ 860.00, is attached. c. [] Please charge my Deposit Account No. 02-4035 in the amount of \$ _____ to cover the above fees. A duplicate copy of this sheet is enclosed. d. [XX] The Commissioner is hereby authorized to charge any additional fees which may be required, or credit any overpayment to Deposit Account No. 02-4035 . A duplicate copy of this sheet is enclosed.			
NOTE: Where an appropriate time limit under 37 CFR 1.494 or 1.495 has not been met, a petition to revive (37 CFR 1.137(a) or (b)) must be filed and granted to restore the application to pending status.			
SEND ALL CORRESPONDENCE TO:			
BROWDY AND NEIMARK, P.L.L.C. 624 NINTH STREET, N.W., SUITE 300 WASHINGTON, D.C. 20001 TEL: (202) 628-5197 FAX: (202) 737-3528 Date of this submission: November 20, 2000			

SIGNATURE
Roger L. Browdy
NAME
25,618
REGISTRATION NUMBER

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of:)	Art Unit:
Tatsuya TAMURA et al.)	
)	
)	
)	
IA No.: PCT/JP99/02600)	
)	Washington, D.C.
IA Filed: May 19, 1999)	
)	
U.S. App. No.:)	
(Not Yet Assigned))	
)	November 20, 2000
National Filing Date:)	
(Not Yet Received))	
)	
For: CONJUGATE OF THERAPEUTIC...)	Docket No.: TAMURA 5

PRELIMINARY AMENDMENT

Honorable Commissioner of Patents and Trademarks
Washington, D.C. 20231

Sir:

Contemporaneous with the filing of this case and
prior to calculation of the filing fee, kindly amend as
follows:

IN THE SPECIFICATION

After the title please insert the following
paragraph:

The present application is the national stage under
35 U.S.C. 371 of PCT/JP99/02600, filed May 19, 1999

IN THE CLAIMS

Claim 3, line 1, delete "or 2".

Claim 4, line 1, delete "any one of claims 1 to 3",
and insert therefor --claim 1--.

Claim 5, line 1, delete "any one of claims 1 to 4",
and insert therefor --claim 1--.

Claim 6, line 1, delete "any one of claims 1 to 5",
and insert therefor --claim 1--.

Claim 7, line 1, delete "any one of claims 1 to 6",
and insert therefor --claim 1--.

Claim 8, line 1, delete "any one of claims 1 to 7",
and insert therefor --claim 1--.

Claim 9, line 1, delete "any one of claims 1 to 8",
and insert therefor --claim 1--.

Claim 10, line 1, delete "any one of claims 1 to 9",
and insert therefor --claim 1--.

Claim 11, lines 1 & 2, delete "any one of claims 1
to 10", and insert therefor --claim 1--.

Claim 12, line 2, delete "any one of claims 1 to
10", and insert therefor --claim 1--.

Claim 15, line 1, delete "any one of claims 1 to
10", and insert therefor --claim 1--.

Claim 16, line 1, delete "any one of claims 1 to 10", and insert therefor --claim 1--.

Claim 17, line 1, delete "any one of claims 1 to 10", and insert therefor --claim 1--.

REMARKS

The above amendment to the specification is being made to insert reference to the PCT application of which the present case is a U.S. national stage. The above amendments to the claims are being made in order to eliminate any properly multiply dependent claims, for the purpose of reducing the filing fee. Please enter this amendment prior to calculation of the filing fee in this case.

Favorable consideration is earnestly solicited.

Respectfully submitted,
BROWDY AND NEIMARK, P.L.L.C.
Attorneys for Applicant

By:
Roger L. Browdy
Registration No. 25,618

RLB:wr

Telephone No.: (202) 628-5197
Facsimile No.: (202) 737-3528

09/700879
20NOV2000

VERIFICATION OF A TRANSLATION

I, the below named translator, hereby declare that:

My name and post office address are as stated below;

That I am knowledgeable in the English language and in the language in which the below identified application was filed, and that I believe the English translation of International Application No. PCT/JP99/02600 is a true and complete translation of the above identified International Application as filed.

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

Dated this 13th day of November, 2000

Full name of the translator: Keiko KANEMOTO

Signature of the translator:

Post Office Address: c/o YUASA AND HARA, Section 206,
New Otemachi Bldg., 2-1,
Otemachi 2-chome, Chiyoda-ku,
Tokyo, JAPAN

09/700877

101 prot

20NOV2000

SPECIFICATION

CONJUGATE OF THERAPEUTIC AGENT FOR JOINT DISEASE AND HYALURONIC ACID

FIELD OF THE INVENTION

5 The present invention relates to a conjugate of hyaluronic acid, a derivative thereof or a salt thereof and a therapeutic agent for joint diseases. More specifically, the present invention relates to a conjugate obtained by chemically binding hyaluronic acid, a derivative or a salt thereof to a therapeutic agent for joint diseases which agent is effective for treating osteoarthritis, rheumatoid arthritis and the like, a method for preparing the conjugate, and a pharmaceutical composition containing the conjugate.

10

15

BACKGROUND OF THE INVENTION

Articular cartilage is composed of about 70% of water, chondrocytes and a cartilage matrix. The major components constituting the articular matrix are collagen and proteoglycan; the proteoglycan having good water retention characteristics is contained in the network of collagen having a reticulated structure. The articular matrix is rich in viscoelasticity and has an important role in reducing the stimulus and load imposed on the cartilage in order to maintain the normal morphology and function of the articular cartilage.

Osteoarthritis (OA) and rheumatoid arthritis (RA) are representative of the diseases accompanied by the

destruction of the cartilage matrix. It is thought that the destruction of the matrix in these diseases is triggered by mechanical stresses with aging in the case of OA and by excess proliferation of the surface layer cells of the synovial membrane, pannus formation and inflammatory cell infiltration in the case of RA, and both phenomena are caused through the induction of proteases. Since the degradation of articular cartilage is progressed in the extracellular region at a neutral pH, it is said that a matrix metalloprotease (hereinafter referred to as "MMP" or "MMPs" when used as the general term) whose optimal pH is in the neutral range plays a leading role in the degradation.

Up to now, as to humans, 16 types of proteases which belong to the MMP family have been reported; 4 types of endogenous proteins which bind to the proteases and inhibit their activities have been found and named tissue metalloprotease inhibitors (hereinafter referred to as "TIMP" or TIMPs" when used as the general term). MMPs exhibit various functions such as genesis, angiogenesis, estrous cycle, bone remodeling and tissue repair in physiological conditions. In order to appropriately exhibit these functions, each step of the production, the activation and the interaction with the substrate of MMPs is strictly controlled by TIMPs and other endogenous protease inhibitors. In other words, it is thought that the destruction of the matrix in diseased conditions is caused by some failures in the controlling mechanism,

resulting in excessive production and activation of MMPs.

Therefore, drugs inhibiting MMPs are extremely promising as the drugs inhibiting the destruction of cartilage matrix in joint diseases such as OA and RA.

5 Many drugs inhibiting MMPs have been reported; among them, hydroxamic acids are most noted because of their strong inhibiting activity and high specificity to MMPs. Hydroxamic acids capable of inhibiting MMP even by oral administration have been found and some of which have been
10 already applied to clinical trials on cancer patients and arthritis patients.

However, MMP inhibitors of this type more or less show inhibiting activity against all types of MMPs and inhibit even the MMPs taking part in physiological functions. In fact, in the clinical trials in progress of hydroxamic acids on patients of cancer, side effects such as transient skeletal muscle pains and tendinitis have been reported. Recently, improved products having heightened specificity to certain MMPs are under development, however
20 no MMPs involved in diseased conditions alone have been found yet. Furthermore, since novel MMPs are found one after another, there still remains a possibility that some physiological actions of MMPs are inhibited when an MMP inhibitor is systemically administered.

25 The local administration of a hydroxamic acid into a joint cavity may first be proposed as an effective way to solve the above-described problems. However, frequent administration is required in order to maintain the local

concentration of the hydroxamic acid; for the patients of OA and RA who unavoidably receive administration of the hydroxamic acid over a long time period, such frequent administration is very disadvantageous. The use of a so-called drug delivery system which restrictively localizes the hydroxamic acid at the target site may be proposed as alternative method. However, no methods for restrictively localizing or retaining the administered hydroxamic acid within the morbid joint have been established.

As mentioned above, although hydroxamic acids have excellent pharmacological properties, there still remain problems to be solved before they can be clinically applied as a therapeutic agent for chronic diseases such as OA and RA.

15 The intraarticular injection of hyaluronic acid
(hereinafter also referred to as "HA") and crosslinked
product thereof (hereinafter also referred to as "HA
formulation" as the general term for hyaluronic acid and
its crosslinked product) currently finds extensive clinical
20 application to joint diseases, especially OA and
scapulohumeral periarthritis.

Hyaluronic acid (HA) is an endogenous polysaccharide constituted by repeating units of N-acetylglucosamine and glucuronic acid and, as the major component constituting the synovial fluid, it plays an important role in retaining the visco-elasticity of the synovial fluid, the load absorption function and the lubrication function. Furthermore, in the cartilage matrix, HA binds to cartilage proteoglycan to

form a polymer called aglycan and plays a central role in maintaining the water retaining ability and viscoelasticity of the cartilage matrix.

It is said that as a lubricant and also by enhancing 5 the HA production in joints and the like, HA formulations ease the disorder of joint functions, although they do not inhibit MMPs. HA has a strong affinity to the extracellular matrix, since HA is inherently a constituent of the extracellular matrix, and in addition, HA has high visco- 10 elasticity in itself; accordingly, HA is characteristically localized within the joint cavity for a long time period after it is injected into the joint cavity. In fact, in an experiment using ¹⁴C labeled HA, it has been reported that the ¹⁴C labeled HA as administered into a rabbit knee joint 15 cavity is distributed to synovial fluid, synovial membrane tissue, the surface layer of articular cartilage and the like and it takes at least three days before the HA disappears from those tissues. Furthermore, it is said that HA does not undergo degradation in the synovial fluid 20 and is partially degraded in the synovial membrane tissue and the articular cartilage but most of the HA slowly transfers into blood through the synovial membrane and decomposes into lower molecular substances in the liver.

Therefore, if a drug bound to HA is administered to a 25 living body, it is expected that the drug is retained together with the HA at a specific site for a long period of time and the duration of the drug action at the specific site is remarkably prolonged as compared to the case of

administrating the drug alone. Furthermore, it is expected that by such an effect the dosage of the drug and the frequency of drug administration are remarkably reduced as compared to the conventional administrating method, 5 resulting in greatly relieved side effects.

As HA-drug conjugates there are known an interferon/hyaluronic acid conjugate as described in Japanese Patent Publication (Kokai) No. Hei 5-85942/1993, a 10 hyaluronic acid/anticancer agent conjugate as described in WO92/06714 Publication, a hyaluronic acid/corticosteroid conjugate as described in Japanese Patent Publication (Kokai) No. Sho 62-64802/1987, a hyaluronic acid/antibiotic conjugate as described in Japanese Patent No. 2701865 and the like.

15 However, in most of those cases, the effect of the drug is exhibited only after the drug is liberated from HA, typically by decomposition of HA into lower molecular substances or by hydrolysis of the bond between HA and the drug, and taken up by the target cells or tissues.

20

DISCLOSURE OF THE INVENTION

One object of the present invention is to provide a 25 conjugate of a therapeutic agent for joint diseases (for example, matrix metalloprotease inhibitors, particularly matrix metalloprotease inhibitors capable of retaining a hydroxamic acid in a joint cavity, other non-steroidal anti-inflammatory drugs, cyclooxygenase-2 inhibitors, disease-modifying anti-rheumatic agents and steroids) and

hyaluronic acid, a derivative thereof or a salt thereof.

Another object of the present invention is to provide a method for preparing the conjugate.

Still another object of the present invention is to
5 provide a pharmaceutical composition containing the
conjugate.

The present inventors have noted that there is a case (Moore W. M. & Spilburg C. A., Biochemistry 25, 5189-5195 (1986)) in which a hydroxamic acid having MMP inhibiting 10 activity has been proved to maintain the bindability to MMPs even when it is coupled to agarose which is one of artificial polysaccharides, and that all MMPs that have ever been discovered are exhibiting their enzymatic functions extracellularly or on the surface layer of cells. 15 As the result of strenuous investigations made to solve the above described problems, the present inventors have found that a conjugate (e.g., a covalent conjugate of hydroxamic acid and HA formulation) prepared by allowing a therapeutic agent for joint diseases (e.g., an MMP inhibitor or another 20 non-steroidal anti-inflammatory agent, a cyclooxygenase-2 inhibitor, a disease-modifying antirheumatic agent or a steroid) to chemically bind to HA, an HA derivative or an HA salt exhibits MMP inhibition even in the conjugate form. The present invention has been achieved on the basis of 25 this finding.

In addition, the present inventors have found that similar to HA formulations, the conjugate of a therapeutic agent for joint diseases and HA, a derivative or a salt

thereof remained in a joint cavity for a long period of time after being administered into the joint cavity, thereby reducing systemic side effects accompanying the MMP inhibitor and maintaining the medical effect of HA as the 5 therapeutic agent for joint diseases; in other words, the present inventors have found that since the synergistic medicinal efficacy of HA and the therapeutic agent for joint diseases can be expected to manifest in the local site, the conjugate can be used as a pharmaceutical 10 composition having improved biological utility. The present invention has been achieved on the basis of this finding.

According to a first aspect of the present invention, there is provided a conjugate of (1) at least one therapeutic agent for joint diseases and (2) hyaluronic acid, a hyaluronic acid derivative or a salt thereof. 15

In one mode of the present invention, the bond between the therapeutic agent for joint diseases and hyaluronic acid, the hyaluronic acid derivative or the salt thereof is a covalent bond.

20 In another mode of the present invention, the therapeutic agent for joint diseases is a matrix metalloprotease inhibitor.

In another mode of the present invention, the matrix metalloprotease inhibitor binds to hyaluronic acid, the 25 hyaluronic acid derivative or the salt thereof via a spacer.

In the conjugate of the present invention, the weight ratio of the matrix metalloprotease inhibitor to the entire conjugate is not particularly limited but is preferably

0.01 to 50%, more preferably 0.1 to 10%.

In the conjugate of the present invention, the matrix metalloprotease inhibitor is preferably a hydroxamic acid residue.

5 The matrix metalloprotease inhibitor is particularly preferably a hydroxamic acid residue represented by the general formula (1),

wherein

10 R_1 is a hydrogen atom, a hydroxyl group or a straight-chain or branched-chain alkyl group having 1 to 8 carbon atoms;

R_2 is a straight-chain or branched-chain alkyl group having 1 to 8 carbon atoms;

R_3 is a straight-chain or branched-chain alkyl group having 1 to 8 carbon atoms which may be substituted with a cycloalkyl group, an aryl group or a heterocyclic group; and

R_4 is a hydrogen atom or a straight-chain or branched-chain alkyl group having 1 to 4 carbon atoms.

20 In the conjugate of the present invention, if there exists a spacer between the matrix metalloprotease inhibitor and the hyaluronic acid component, the spacer is particularly preferably represented by the general

formula (2),

-R₅-R₆-R₇-R₈- (2)

wherein

R₅ is a straight-chain or branched-chain alkyl group

5 having 1 to 8 carbon atoms;

R₆ is a methylene group or an imino group, both of which may be substituted with a straight-chain or branched-chain alkyl group having 1 to 4 carbon atoms, or an oxygen atom;

10 R₇ is a straight-chain or branched-chain alkylene group having 1 to 10 carbon atoms into which one to three oxygen atoms may be inserted; and

R₈ is an oxygen atom, a sulfur atom or NR, wherein

R₉ is a hydrogen atom or a straight-chain or branched-chain alkyl group having 1 to 4 carbon atoms.

In the conjugate of the present invention, preferred examples of the conjugate of a matrix protease inhibitor and a spacer are represented by the general formula (3),

20 wherein

R₁₂ is a straight-chain or branched-chain alkylene group having 2 to 23 carbon atoms into which one imino group and/or one to four oxygen atoms may be inserted; and

5 R₁₃ is a hydrogen atom or a straight-chain or branched-chain alkyl group having 1 to 4 carbon atoms.

Furthermore, when the conjugate is administered to a living body, the matrix metalloprotease inhibitor, which is 10 in the form of the conjugate with hyaluronic acid, a hyaluronic acid derivative or a salt thereof, inhibits matrix metalloproteases.

According to a second aspect of the present invention, there is provided a method for preparing the 15 conjugate of the present invention which comprises binding a site of a therapeutic agent for joint diseases that does not affect the activity of the agent to a carboxylic group, a hydroxyl group or a functional group at the reducing end of hyaluronic acid, a hyaluronic acid derivative or a salt 20 thereof by direct chemical reaction or via a spacer. Thus, in the above described preparation method, a carboxylic group, a hydroxyl group or a functional group at the reducing end of hyaluronic acid, a hyaluronic acid derivative or a salt thereof is bound to a site of a 25 therapeutic agent for joint diseases (for example, a matrix metalloprotease inhibitor) that does not affect the activity of the therapeutic agent either by direct chemical reaction or via a spacer; binding via a spacer is

performed in expectation of the possibility that at the time of binding reaction, the spacer is allowed to react with HA, a hyaluronic acid derivative or a salt thereof without being sterically affected by the therapeutic agent 5 (e.g., MMP inhibitor) by virtue of the space to be created between the therapeutic agent and the reaction point at the distal end of the spacer and/or that in a conjugate, by virtue of the space to be created between the therapeutic agent for joint diseases (e.g., MMP inhibitor) and HA, a 10 hyaluronic acid derivative or a salt thereof, MMP will come sufficiently close to the therapeutic agent without being sterically effected by the HA, HA derivative or salts thereof that the MMP inhibiting activity of the therapeutic agent is maintained even in the conjugate form.

15 According to a third aspect of the present invention, there is provided a pharmaceutical composition comprising the conjugate of the present invention.

The pharmaceutical composition of the present invention is particularly a therapeutic agent for joint 20 diseases, more specifically, a therapeutic agent for osteoarthritis, rheumatoid arthritis or scapulo-humeral periarthritis.

BRIEF DESCRIPTION OF THE DRAWINGS

25 Fig. 1 includes graphs showing the inhibiting activity of a conjugate of the present invention against various MMPs (the upper graph shows the inhibiting activity against collagenase-1 and the lower graph shows the

inhibiting activity against stromelysin-1).

Fig. 2 includes graphs showing the inhibiting activity of the conjugate against various MMPs (the upper graph shows the inhibiting activity against gelatinase A and the lower graph shows the inhibiting activity against gelatinase B).

Fig. 3 is a graph showing the inhibiting activity of a conjugate of the present invention against the destruction of collagen films.

Fig. 4 is a graph showing the bound-stability of a conjugate of the present invention (the stability of conjugate 5 at 37°C in physiological saline).

Fig. 5 is a graph showing the bond-stability of a conjugate of the present invention (the permeability of conjugate 4 to a semipermeable membrane).

Fig. 6 is a graph showing the retainability of the conjugate in rat joint cavities.

Fig. 7 is a graph showing the retainability of the conjugate in rat joint cavities.

Fig. 8 includes graphs showing the inhibiting activity of a conjugate of the present invention against various MMPs (the upper graph shows the inhibiting activity against collagenase-1 and the lower graph shows the inhibiting activity against stromelysin-1).

Fig. 9 includes graphs showing the inhibiting activity of the conjugate against various MMPs (the upper graph shows the inhibiting activity against gelatinase A and the lower graph shows the inhibiting activity against

gelatinase B).

Fig. 10 is a graph showing the inhibiting activity of the conjugate on the destruction of articular cartilage collagen. In Fig. 10, mark * indicates a significant 5 difference from the group containing interleukin 1 and plasminogen [$p<0.05$, Dunnett multiple comparison test, mean value \pm standard error ($n=4$)].

PREFERRED MODE FOR CARRYING OUT THE INVENTION

10 In the present invention, therapeutic agents for joint diseases include, for example, (1) non-steroidal anti-inflammatory agents including, for example, salicylic acid based non-steroidal anti-inflammatory agents (such as sasapyrine, aspirin, diflunisal, and salicylamide); fenamic acid based non-steroidal anti-inflammatory agents (such as fulfenamic acid, aluminum fulfenamate, mefenamic acid, floctafenine, and tolfenamic acid); arylacetic acid based non-steroidal anti-inflammatory agents (such as dichlorofenac sodium salt, tolmetin sodium salt, sulindac, fenbufen, indomethacin, indomethacin farnesyl, acemetacin, proglumetacin maleate, amfenac sodium salt, nabumetone, mofezolac, etdolac, and alclofenac); propionic acid based non-steroidal anti-inflammatory agents (such as ibuprofen, flurbiprofen, ketoprofen, naproxen, pranoprofen, fenoprofen calcium salt, tiaprofenic acid, oxaprozin, loxoprofen sodium salt, aluminoprofen, zaltoprofen, and tiaprofenic acid); pyrazolone based non-steroidal anti-inflammatory agents

(such as ketophenylbutazone); oxicam based non-steroidal anti-inflammatory agents (such as piroxicam, tenoxicam and ampiloxicam; basic non-steroidal anti-inflammatory agents (such as tialamide hydrochloride, tinoridine hydrochloride, 5 benzydamine hydrochloride, epirizole and emorfazole); (2) cyclooxygenase-2 inhibitors (such as celecoxib, a product of Searle, MK-966, a product of Merck, and JTE 522, a product of Japan Tobacco Inc.); (3) antirheumatic agents including, for example, 10 penicillamine, disodium lobenzarit, auranofin, bucillamine, actarit, salazosulfapyridine, sodium aurothiomalate, chloroquine, TNF α receptors [for example, Enbrel (registered trademark, a product of American Home Products), mizoribine, cyclosporin, methotrexate, leflunomide (a 15 product of Hoechst Marion Roussel), azathioprine, FK-506 (a product of Fujisawa Pharmaceutical Co., Ltd.), VX-497 (a product of Vertex), TAK-603 (a product of Takeda Chemical Industries, Ltd.), anti-TFN α antibodies [for example, infliximab (a product of Centocor) and D2E7 (a product of 20 Knoll Chemische Fabriken AG)], anti-interleukin 6 receptor antibodies [for example, MRA (a product of Chugai Pharmaceutical Co., Ltd.)], T-614 (a product of Toyama Chemical Co., Ltd.), KE-298 (a product of Taisho Pharmaceutical Co., Ltd.), mynophenolate mofetil (a product 25 of Roche), thalidomide (a product of Celgen), anti-CD4 antibodies, interleukin 1 acceptor antagonists, anti-CD52 antibodies, p38MAP kinase inhibitors, ICE inhibitors, and TACE inhibitors;

602677 602677

(4) steroids (such as cortisone acetate, hydrocortisone, prednisolone, methylprednisolone, triamcinolone, triamcinolone acetonide, dexamethasone, dexamethasone palmitate, betamethasone, paramethasone acetate, 5 halopredone acetate, prednisolone farnesylate and tetracosactide acetate);

(5) local anesthetics including, for example, procaine hydrochloride, tetracaine hydrochloride, and lidocaine hydrochloride; and

10 (6) cartilage protective agents including, e.g., matrix metalloprotease inhibitor.

Among them, a matrix metalloprotease inhibitor is preferred.

In the present invention, a matrix metalloprotease 15 (MMP) means all substances that can inhibit the activity of any matrix metalloprotease derived from any living body (preferably mammals, particularly preferably humans) by, for example, binding thereto.

More specifically, matrix metalloprotease inhibitors 20 mean: compounds or proteins (including polypeptides) which inhibit the enzymatic activity of MMPs by binding to zinc, which is the active center of the MMPs, via a functional group such as a carboxylic acid, a phosphoric acid, a thiol and a hyroxamic acid; and those which inhibit expression of 25 the enzymatic activity of MMPs or proteolytic enzymes having both disintegrin and MMP-like domains in their molecules [for example, TNF α converting enzyme or a group of proteases belonging to a disintegrin/metalloprotease

family (ADAM)]. The activity of these MMP inhibitors can be measured, for example, as the inhibiting activity against the degradation by MMPs of labeled substrates (described in Cawston, T.E. & Barrett, A.J Anal. Biochem., 5 99, 340-345 (1979) and Baici, A et al. Anal. Biochem., 108, 230-232 (1980)) and synthetic substrates (Masui, Y et al. Biochm. Med., 17, 215-221(1997)); more conveniently, it can similarly be measured by using commercially available MMP activity measuring kits developed on the basis of the above 10 methods. The activity of these MMP inhibitors can also be measured as the inhibiting activity against the production and activation of MMPs and TNF α converting enzymes in an experimental system cited in Gavrilovic, J et al. (Cell. Biol. Int. Reports, 9, 1097-1107 (1985) and Br. J. 15 Pharmcol., 100, 631-635 (1990), in which system cells cultured on a film of a substrate such as collagen are stimulated by a cytokine so that the activity of MMPs thus produced and activated is measured using the liberation of the decomposed substrate into the culture medium as an 20 indicator or in another experimental system (DiMartino et al. (Inflam. Res., 46, 211-215 (1997)) in which peripheral leukocytes are stimulated by a lipopolysaccharide and the like so that the thus induced liberation of TNF α from the surface layer of cell membranes is evaluated as the 25 activity of the TNF α converting enzyme. The above described MMP inhibitors are characterized in that they exhibit 50% or more inhibition at any concentration of 10 mg/ml or less in at least one of those measuring systems.

MMPs inhibitors also include those inhibitors whose structural formulae are chemically modified, provided that such inhibitors exhibit an inhibiting activity of at least 45% of inhibition at any concentration of 10 mg/ml or less.

5 Non-limiting specific examples of MMP inhibitors include tetracycline compounds (such as tetracycline, doxycycline, minocycline and chemical modifications of tetracycline (for example, CMT 1 to 4, products of Collagenex)), TIMPs, and hydroxamic acids, and from the 10 standpoints of the strength of MMP inhibiting activity and high specificity to MMPs, hydroxamic acids are preferred.

Examples of such MMP inhibitors are described in, for example, Japanese Patent Publication (Kokai) No. Hei 9-80825/1997, Japanese Patent No. 2736285 and Drug 15 Discovery Today, 1, 16-26 (1996).

A hydroxamic acid means a compound having an N-hydroxyamide group, and non-limiting specific examples of hydroxamic acid include, for example, AG-3340 (a product of Agouron), CDP-845 (a product of Zeneca), CGS-27023A (a 20 product of Novartis), D5410 (a product of Chiro Science), L758354 (a product of Merck), CH-138 (a product of Chiro Science), Marimastat (registered trademark, a product of British Biotec), Galardin (registered trademark, a product of Glycomed), Ro31-9790 (a product of Roche), Bay 12-9566 25 (Bayer), and RS 130830 (Roche Bioscience). Further, non-limiting specific examples of the hydroxamic acid residues in the conjugates of the present invention include, for example, hydroxamic acid residues represented by the

general formula (1).

wherein

R₁ is a hydrogen atom, a hydroxyl group or a straight-chain or branched-chain alkyl group having 5 1 to 8 carbon atoms;

R₂ is a straight-chain or branched-chain alkyl group having 1 to 8 carbon atoms;

R₃ is a straight-chain or branched-chain alkyl group having 10 1 to 8 carbon atoms which may be substituted with a cycloalkyl group, an aryl group or a heterocyclic group; and

R₄ is a hydrogen atom or a straight-chain or branched-chain alkyl group having 15 1 to 4 carbon atoms.

In the definition of the hydroxamic acid residues of the MMP inhibitors represented by the general formula (1), non-limiting specific examples of R₁ include a hydrogen atom, a hydroxyl group, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a 20 sec-butyl group, an isobutyl group, a tert-butyl group, an n-pentyl group, an n-hexyl group, an n-heptyl group, and an n-octyl group, and a hydrogen atom is preferred.

Non-limiting specific examples of R₂ include a methyl group, an ethyl group, an n-propyl group, an isopropyl

group, an n-butyl group, a sec-butyl group, an isobutyl group, a tert-butyl group, an n-pentyl group, an n-hexyl group, an n-heptyl group, and an n-octyl group, and an isobutyl group is preferred.

5 Non-limiting specific examples of the alkyl group component in the straight-chain or branched-chain alkyl group having 1 to 8 carbon atoms which may be substituted with a cycloalkyl group, an aryl group or a heterocyclic group in R₃ include a methyl group, an ethyl group, an 10 n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, an isobutyl group, a tert-butyl group, an n-pentyl group, an n-hexyl group, an n-heptyl group, and an n-octyl group, and preferred are a methyl group, an isobutyl group and a tert-butyl group.

15 Further, non-limiting specific examples of the cycloalkyl group, the aryl group or the heterocyclic group which may be present on the above described alkyl groups include cycloalkyl groups having 3 to 10 carbon atoms, preferably 5 to 7 carbon atoms (such as a cyclopentyl group, 20 a cyclohexyl group, and a cycloheptyl group); aryl groups having 6 to 20 carbon atoms, preferably 6 to 14 carbon atoms (such as a phenyl group, a p-hydroxyphenyl group, and a naphthyl group) which may have a substituent such as a hydroxyl group and a methoxy group; and saturated or 25 unsaturated heterocyclic rings (such as a pyridyl group, a quinolyl group, and a 3-indolyl group, preferably a 3-indolyl group) having 5-20 atoms, preferably 5 to 10 atoms, particularly preferably of 5, 6, 9 or 10 atoms and

containing one or more hetero atoms which may be the same or different preferably 1 to 3 hetero atoms, particularly preferably one hetero atom, as selected from among a nitrogen atom, a sulfur atom and an oxygen atom.

5 To give typical examples, R_3 is preferably a straight chain alkyl group having 1 to 5 carbon atoms which may be substituted with an aryl group or a heterocyclic group and above all, particularly preferred are a benzyl group, a p-hydroxybenzyl group, and a 3-indolylmethyl group, and a 10 3-indolylmethyl group is the most preferred.

Non-limiting specific examples of R_4 include a hydrogen atom, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, an isobutyl group, and a tert-butyl group, and 15 preferred is a hydrogen atom.

The hydroxamic acid residues represented by the general formula (1) contain at least one asymmetric center and as to each asymmetric center, its absolute configuration may be the R-configuration or the S- 20 configuration in the present invention.

The weight ratio of the matrix metalloprotease inhibitor is preferably 0.01 to 50%, particularly preferably 0.1 to 10% based on the whole conjugate.

Further, in the conjugate of at least one therapeutic 25 agent for joint diseases and hyaluronic acid, a hyaluronic acid derivative or a salt thereof, MMP inhibitors as a preferred therapeutic agent for joint diseases might change their structures in the course of the synthesis of the

conjugate or after the synthesis; even if their structures change, such MMP inhibitors are included in the present invention if they have the inhibiting activity described in the present specification (at least one of MMP inhibition, 5 inhibition of collagen destruction, and inhibition of TNF α liberation).

In the present invention, "hyaluronic acid (HA)" means disaccharide polymers which have a weight average molecular weight of 100,000 to 10,000,000 and which are 10 composed of glucuronic acid and N-acetylglucosamine, and a mixture of those polymers. From the standpoint of the strength in viscoelasticity, hyaluronic acid having a weight average molecular weight of 700,000 to 10,000,000 is preferred and hyaluronic acid having a weight average 15 molecular weight of 1,000,000 to 10,000,000 is particularly preferred.

In the present invention, "a hyaluronic acid derivative" means all substances that are derived from hyaluronic acid and which have a hyaluronic acid skeleton. 20 Non-limiting specific examples of the hyaluronic acid derivative include:

- (1) hyaluronic acid derivatives in which glucuronic acid and/or N-acetylglucosamine which are the sugar component has a reducing end;
- 25 (2) acetylated hyaluronic acid in which at least one hydroxyl group in hyaluronic acid is acetylated;
- (3) derivatives of disaccharide polymers which have a weight average molecular weight of 100,000 to 10,000,000,

which are composed of glucuronic acid and N-acetylglucosamine and whose molecular weight is further increased by crosslinking with formaldehyde (an example of such derivatives is Synvisc (registered trademark, a product of Biomatrix)); and

(4) derivatives obtained by allowing hyaluronic acid or the hyaluronic acid derivatives as described above in the present specification to bind, via a spacer or without a spacer, to at least one pharmaceutically effective component such as an anticancer agent (for example, an alkylating agent, a metabolic antagonist, and an alkaloid), an immunosuppressive agent, an anti-inflammatory agent (such as a steroid, a non-steroidal anti-inflammatory agent), an antirheumatic agent or an antibacterial agent (such as a β -lactam antibiotic, an aminoglycoside antibiotic, a macrolide antibiotic, a tetracycline antibiotic, a new quinolone antibiotic, a polypeptide antibiotic, and a sulfa agent).

Non-limiting specific examples of salts of hyaluronic acid and the hyaluronic acid derivatives include a sodium salt, a potassium salt, a magnesium salt, a calcium salt and an aluminum salt.

Although there is no limitation in the origin of HA, HA originated from bacteria such as *Actinomyces*, humans, pigs, and chicks can be used.

Non-limiting specific examples of hyaluronic acid and salts thereof include, for example, Suvenyl (registered trademark, Japan Roussel), Artz (registered trademark,

Kaken Pharmaceutical Co., Ltd.), Opegan (registered trademark, Santen Pharmaceutical Co., Ltd.), Hyalgan (registered trademark, Fidia), Orthobisk (registered trademark, Anika Therapeutics), and Healon (registered 5 trademark, Pharmacia & Upjohn). Further, HA and the salts thereof as described in the catalogs of various reagent makers such as Wako Pure Chemical Industries, Ltd. can also be included.

In the conjugate of the present invention, a 10 therapeutic agent for joint diseases (for example, a matrix metalloprotease inhibitor) is bound to hyaluronic acid, a hyaluronic acid derivative or a salt thereof via a spacer(s) or without any spacer. As the mode of binding between the therapeutic agent for joint diseases (for 15 example, a matrix metalloprotease inhibitor) and hyaluronic acid, a hyaluronic acid derivative or a salt thereof, bonds such as an amide bond and an ether bond can be used in the absence of a spacer; or they are allowed to bind via a spacer(s). Preferably, the therapeutic agent for joint 20 diseases (for example, a matrix metalloprotease inhibitor) binds to hyaluronic acid, the hyaluronic acid derivative or the salt thereof via at least one spacer.

When the therapeutic agent for joint diseases (for example, a matrix metalloprotease inhibitor) binds to 25 hyaluronic acid, the hyaluronic acid derivative or the salt thereof without a spacer, they bind to each other at sites that do not adversely affect their activities. In the preferred mode of the present invention in which the

therapeutic agent for joint diseases (for example, a matrix metalloprotease inhibitor) binds to hyaluronic acid, the hyaluronic acid derivative or the salt thereof via a spacer(s), the spacer(s) and the therapeutic agent for 5 joint diseases or the spacer(s) and hyaluronic acid, the hyaluronic acid derivative or the salt thereof bind to each other at sites that do not adversely affect the activities of the therapeutic agent for joint diseases or hyaluronic acid, the hyaluronic acid derivative or the salt thereof.

10 As to the therapeutic agent for joint diseases, such sites that do not adversely affect their activities include, for example, an amino group, a carboxyl group, a hydroxyl group, and a thiol group. In a preferred mode of the present invention in which an MMP inhibitor which is a 15 therapeutic agent for joint diseases is the hydroxamic acid residue represented by the general formula (1), such sites include a primary or secondary amino group positioned at the terminal end of the residue. As to hyaluronic acid, the hyaluronic acid derivative or the salt thereof, such 20 sites include, for example, a hydroxyl group and a carboxyl group, preferably a carboxyl group.

The type of the bond between the therapeutic agent for joint diseases (for example, an MMP inhibitor) and the HA, the HA derivative or the salt thereof, the type of the bond between the spacer and the therapeutic agent for joint diseases (for example, an MMP inhibitor), and the type of the bond between the spacer and the HA, HA derivative or salt thereof are not particularly limited; for example, an 25

amide bond, an ether bond, an ester bond, and a sulfide bond can be used.

The therapeutic agent for joint diseases binding to HA, an HA derivative or a salt thereof is not necessarily limited to one type, and two or more different types of therapeutic agents for joint diseases may be used. Further, one conjugate may have both a binding site interrupted by a spacer(s) and a binding site not interrupted by a spacer(s). Furthermore, spacers present in one conjugate are not necessarily the same.

The type of the spacers is not limited unless the activities of the therapeutic agent for joint diseases (for example, an MMP inhibitor) and the HA, the HA derivative or the salt thereof are materially affected; non-limiting specific examples of the spacers include a spacer represented by the general formula (2),

wherein

R_5 is a straight-chain or branched-chain alkylene group having 1 to 8 carbon atoms;

R_6 is a methylene group or an imino group which may be substituted with a straight-chain or branched-chain alkyl group having 1 to 4 carbon atoms or an oxygen atom;

R_7 is a straight-chain or branched-chain alkylene group having 1 to 10 carbon atoms into which one to three oxygen atoms may be inserted; and

R_8 is an oxygen atom, a sulfur atom or NR_9 , (wherein

R₉ is a hydrogen atom or a straight-chain or branched-chain alkyl group having 1 to 4 carbon atoms.

The spacer represented by the above described general formula (2) binds to a therapeutic agent for joint diseases (for example, an MMP inhibitor) at the R₅-end thereof and binds to HA, an HA derivative or a salt thereof at the R₈-end thereof.

In the definition of the spacer represented by the above described general formula (2), non-limiting specific examples of R₅ include a methylene group, an ethane-1,2-diyl group, a propane-1,3-diyl, a butane-1,4-diyl group, a pentane-1,5-diyl group, a hexane-1,6-diyl group, a heptane-1,7-diyl group, an octane-1,8-diyl group, a 2-methylpentane-1,3-diyl group, 2-methylbutane-1,4-diyl group, a 3-methylbutane-1,4-diyl group, a 3-methylpentane-1,5-diyl group, a 3-ethylpentane-1,5-diyl group, a 3-methylhexane-1,6-diyl group, a 4-methylhexane-1,6-diyl group, and a 4-methylheptane-1,7-diyl group, and preferred are an ethane-1,2-diyl group, a propan-1,3-diyl group, and a butane-1,4-diyl group.

Examples of the straight-chain or branched-chain alkyl group having 1 to 3 carbon atoms in the methylene group or imino group which may be substituted with a straight-chain or branched-chain alkyl group having 1 to 4 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, and a tert-butyl group.

To give typical examples, R_6 is preferably a methylene group which may be substituted with a straight-chain or branched-chain alkyl group having 1 to 3 carbon atoms or an oxygen atom, and particularly preferred is a 5 methylene group or an oxygen atom.

Non-limiting specific examples of R_s include a methylene group, an ethane-1,2-diyl group, a propane-1,3-diyl group, a butane-1,4-diyl group, a pentane-1,5-diyl group, a hexane-1,6-diyl group, a heptane-1,7-diyl group, 10 an octane-1,8-diyl group, a nonane-1,9-diyl group, an octane-1,10-diyl group, a 2-methylpentane-1,3-diyl group, a 2-methylbutane-1,4-diyl group, a 3-methylbutane-1,4-diyl group, a 3-methylpentane-1,5-diyl group, a 3-ethylpentane-1,5-diyl group, a 3-methylhexane-1,6-diyl group, a 4- 15 methylhexane-1,6-diyl group, a 4-methylheptane-1,7-diyl group, a 1-oxapropane-1,3-diyl group, a 2-oxabutane-1,4-diyl group, a 3-oxapentane-1,5-diyl group, a 2-oxahexane-1,6-diyl group, a 3-oxahexane-1,6-diyl group, a 1,4-oxahexane-1,6-diyl group, a 3-oxaheptane-1,7-diyl group, a 20 2,5-dioxahepane-1,7-diyl group, a 4-oxaoctane-1,8-diyl group, a 2,6-dioxaoctane-1,8-diyl group, a 3,6-dioxanonane-1,9-diyl group, a 3,6-dioxa-4-methylnonane-1,9-diyl group, a 3,6-dioxa-5-ethylnonane-1,9-diyl group, and 1,4,7-trioxaoctane-1,10-diyl group, and preferred are an ethane- 25 1,2-diyl group, a propane-1,3-diyl group, a butane-1,4-diyl group, a 3,6-dioxanonane-1,9-diyl group, etc.

Non-limiting specific examples of R_8 include an oxygen atom, a sulfur atom, an imino group, a methylimino

group, an ethylimino group, an n-propylimino group, an isopropylimino group, an n-butyylimino group, a sec-butyylimino group, an isobutyylimino group, and a tert-butyylimino group, and preferred is an imino group or a 5 methylimino group, and particularly preferred is an imino group.

Preferred specific examples of the spacer include
- $(CH_2)_4-NH-$, - $(CH_2)_5-NH-$, - $(CH_2)_6-NH-$, - $(CH_2)_7-NH-$, - $(CH_2)_8-NH-$,
- $(CH_2)_9-NH-$, - $(CH_2)_{10}-NH-$, - $(CH_2)_{11}-NH-$, - $(CH_2)_{12}-NH-$, - $(CH_2)_2-$
10 $O-(CH_2)_2-NH-$, - $(CH_2)_3-O-(CH_2)_3-NH-$, - $(CH_2)_4-O-(CH_2)_4-NH-$, and
- $(CH_2)_3-O-(CH_2)_2-O-(CH_2)_2-O-(CH_2)_3-NH-$.

Furthermore, in the conjugate in which a therapeutic agent for joint diseases (for example, a matrix metalloprotease inhibitor) and hyaluronic acid, a 15 hyaluronic acid derivative or a salt thereof are bound to each other via at least one spacer, preferred non-limiting specific examples of the conjugate of a therapeutic agent for joint diseases (for example, a matrix metalloprotease inhibitor) to the spacer include conjugates represented by
20 the general formula (3),

wherein

R₁₂ is a straight-chain or branched-chain alkylene group having 2 to 23 carbon atoms into which one imino group and/or one to four oxygen atoms may be 5 inserted; and

R₁₃ is a hydrogen atom or a straight-chain or branched-chain alkyl group having 1 to 4 carbon atoms.

The hydroxamic acid residue moiety in the conjugates 10 represented by the general formula (3) is the same as the preferred example of the MMP inhibitor.

Further, non-limiting specific examples of R₁₂ include an ethane-1,2-diyl group, a propane-1,3-diyl group, a butane-1,4-diyl group, a pentane-1,5-diyl group, a 15 hexane-1,6-diyl group, a heptane-1,7-diyl group, an octane-1,8-diyl group, a nonane-1,9-diyl group, a decane-1,10-diyl group, an undecane-1,11-diyl group, a dodecane-1,12-diyl group, a 2-methylpentane-1,3-diyl group, a 2-methylbutan-1,4-diyl group, a 3-methyl-butane-1,4-diyl group, a 3-20 methylpentane-1,5-diyl group, a 3-ethylpentane-1,5-diyl group, a 3-methylhexane-1,6-diyl group, a 4-methylhexane-1,6-diyl group, a 4-methylheptane-1,7-diyl group, -(CH₂)₂-O-(CH₂)₂- , -(CH₂)₃-O-(CH₂)₃- , -(CH₂)₄-O-(CH₂)₄- , and -(CH₂)₃-O-(CH₂)₂-O-(CH₂)₃- , and preferred are a butane-1,4-25 diyl group, a pentane-1,5-diyl group, a hexane-1,6-diyl group, a heptane-1,7-diyl group, an octane-1,8-diyl group, a nonane-1,9-diyl group, a decane-1,10-diyl group, an undecane-1,11-diyl group, a dodecane-1,12-diyl group,

- $(\text{CH}_2)_2-\text{O}-(\text{CH}_2)_2-$, - $(\text{CH}_2)_3-\text{O}-(\text{CH}_2)_3-$, - $(\text{CH}_2)_4-\text{O}-(\text{CH}_2)_4-$, and - $(\text{CH}_2)_3-\text{O}-(\text{CH}_2)_2-\text{O}-(\text{CH}_2)_2-\text{O}-(\text{CH}_2)_3-$. Non-limiting specific examples of R_{13} include a hydrogen atom, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an 5 n-butyl group, a sec-butyl group, and a tert-butyl group, and preferred are a hydrogen atom and a methyl group, and particularly preferred is a hydrogen atom.

The spacer represented by the general formula (2) and the conjugate represented by the general formula (3) sometimes have an asymmetric carbon atom(s) in the molecule so that they include stereoisomers having an absolute configuration which is an R-configuration or an S-configuration; each of such stereoisomers or structural units (for the spacer or the conjugate) consisting of those stereoisomers in any proportions are included in the present invention.

Methods for preparing the conjugate of the present invention include, for example, binding by chemical reaction a site (for example, an amino group, a carboxyl group, a hydroxyl group, a thiol group or the like) which does not affect the activity of a therapeutic agent for joint diseases (for example, an MMP inhibitor) to a carboxyl group, a hydroxyl group or an aldehyde group originating from the reducing end of HA, an HA derivative or a salt thereof. This reaction can be carried out by known techniques (as described in "Shinseikagaku Jikken Koza (A New Course in Experimental Biochemistry)", Vol. 1, Proteins I" (Tokyo Kagakudojin), "Tanpaku Koso no Kiso

Jikken Hou (Basic Experimental Methods for Proteins and Enzymes)" (Nankodo) and the like).

Specific examples are as follows:

- (1) a method for activating a carboxyl group in a therapeutic agent for joint diseases (for example, an MMP inhibitor) or HA, an HA derivative or a salt thereof with the use of a dehydrative condensation agent to form an amide bond, an ester bond or a thioester bond;
- (2) a method for activating a hydroxyl group in a therapeutic agent for joint diseases (for example, an MMP inhibitor) with the use of cyanogen bromide and then binding the activated group to an amino group in HA, an HA derivative or a salt thereof, and a method for activating a hydroxyl group in HA, an HA derivative or a salt thereof with the use of cyanogen bromide and then binding the activated group to an amino group in a therapeutic agent for joint diseases (for example, an MMP inhibitor);
- (3) a method for activating a hydroxyl group in a therapeutic agent for joint diseases or HA, an HA derivative or a salt thereof with the use of a halohydrin such as epichlorohydrin or a diepoxide such as 1,4-butanediol diglycidyl ether or a sulfonyl chloride such as tosyl chloride and tresyl chloride to form an ether bond, an imino bond or a sulfide bond; and
- (4) a method for reducing the reducing end in HA, an HA derivative or a salt thereof to form a primary hydroxyl group, oxidizing the hydroxyl group to form an aldehyde group, and subjecting the resulting aldehyde to reductive

alkylation with an amine in a therapeutic agent for joint diseases (for example, an MMP inhibitor).

If desired, two or more of the above described methods (1) to (4) may be combined.

5 In the method for activating a carboxyl group in a therapeutic agent for joint diseases or HA, an HA derivative or a salt thereof with the use of a dehydrative condensation agent to form an amide bond, an ester bond or a thioester bond, condensation agents which are used in the general
10 organic synthesis can be employed, and preferably carbodiimides, phosphoniums, uroniums and the like are used. Carbodiimides include, for example, non-water soluble carbodiimides such as diisopropyl carbodiimide and dicyclohexyl carbodiimide, and water soluble carbodiimides
15 such as 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide; phosphoniums include, for example, benzotriazol-1-yl oxytris(dimethylamino)phosphonium hexafluorophosphate and 7-azabenzotriazol-1-yl oxytris(dimethylamino)phosphonium hexafluorophosphate; and uroniums include, for example,
20 O-benzotriazol-1-yl-N,N,N,N-tetramethyluronium hexafluorophosphate and O-7-azabenzotriazol-1-yl-N,N,N,N-tetramethyluronium hexafluorophosphate.

Further, a reaction accelerating additive may be added to those condensation agents. Examples of such an additive include N-hydroxysuccinimide, N-hydroxy-5-norbornene-2,3-dicarboximide, p-nitrophenol, pentafluorophenol, 1-hydroxybenzotriazole, and 1-hydroxy-7-azabenzotriazole.

Condensation by a water soluble carbodiimide is a non-limiting specific example of the method for activating carboxyl group in a therapeutic agent for joint diseases (for example, an MMP inhibitor) or HA, an HA derivative or 5 a salt thereof with the use of a dehydrative condensation agent to form an amide bond, an ester bond or a thioester bond. In this method, a carbodiimide is added to a 0.1 to 1% (weight/volume) HA aqueous solution, and subsequently a therapeutic agent for joint diseases (for example, an MMP 10 inhibitor) containing an amino group is added to the resulting solution and reaction is performed at 0°C to 35°C for 1 to 96 hours. During this reaction, an acid such as hydrochloric acid or phosphoric acid can be added to maintain the pH of the reaction solution at 4 to 6.

15 If the therapeutic agent for joint diseases (for example, an MMP inhibitor) to be used has low water solubility, an aqueous solution containing 1 to 50% of an organic solvent (for example, N,N-dimethylformamide, N-methylpyrrolidone, dioxane, ethanol, pyridine or the like) 20 can be used as the reaction solvent. In this case, the therapeutic agent for joint diseases (for example, an MMP inhibitor) may first be added to the reaction system and the carbodiimide may be added after confirming that the therapeutic agent has dissolved.

25 If desired, a reaction accelerating additive (for example, N-hydroxysuccinimide, N-hydroxy-5-norbornene-2,3-dicarboximide, p-nitrophenol, pentafluorophenol, 1-hydroxybenzotriazole, 1-hydroxy-7-azabenzotriazole or the

like) and HA may preliminarily be treated with a dehydrative condensation agent in order to convert a carboxyl group in HA to an active ester, which is isolated and then mixed with a therapeutic agent for joint diseases 5 (for example, an MMP inhibitor) for reaction.

The following are non-limiting specific examples of the method for activating a hydroxyl group in a therapeutic agent for joint diseases (for example, an MMP inhibitor) with the use of cyanogen bromide and then binding it to an 10 amino group in HA, an HA derivative or a salt thereof and the method for activating a hydroxyl group in HA, an HA derivative or a salt thereof with the use of cyanogen bromide and then binding it to an amino group in the therapeutic agent for joint diseases (for example, MMP 15 inhibitor):

To an aqueous solution of HA, an HA derivative or a salt thereof, cyanogen bromide is added and reaction is performed at 0°C to 10°C for 5 to 30 minutes. During the reaction, the pH can be maintained at 10 to 12 with sodium 20 hydroxide or a phosphate buffer solution. Acetonitrile is then added to the reaction mixture to form a precipitate and excess cyanogen bromide is removed; the precipitate is reconstituted into an aqueous solution, mixed with a therapeutic agent for joint diseases (for example, an MMP 25 inhibitor) having an amino group and subjected to reaction at 4°C to 25°C for 1 to 24 hours. During the reaction, the pH of the reaction mixture can be maintained at 8 to 10 with sodium bicarbonate, sodium hydroxide or the like.

PCT/EP2009/062000

The following are non-limiting specific examples of the method for reducing the reducing end of HA, an HA derivative or a salt thereof to form a primary hydroxyl group, oxidizing it to form an aldehyde group and 5 subjecting the resulting aldehyde group to reductive alkylation with an amine in a therapeutic agent for joint diseases (for example, an MMP inhibitor):

Treatment with a reducing agent such as sodium borohydride and subsequent treatment with an oxidizing 10 agent such as sodium periodate produces HA, an HA derivative or a salt thereof having an aldehyde group at the reducing end; to the obtained solution by treating the HA, the HA derivative or the salt thereof, a therapeutic agent for joint diseases (for example, an MMP inhibitor) 15 having an amino group is added; to the resulting mixture, sodium cyanoborohydride is added and reaction is performed at 15°C to 30°C for 1 to 24 hours. During the reaction, the pH of the reaction mixture may be maintained at 4 to 6 by adding acetic acid, hydrochloric acid, phosphoric acid or 20 the like.

In any of these condensation methods, the desired conjugate can be obtained by adding an organic solvent such as ethanol and acetone to the reaction mixture after the reaction to form a precipitate, which is then purified by a 25 suitable means such as alcohol precipitation, gel filtration, dialysis, or ion-exchange chromatography.

If the conjugate of the present invention which comprises a therapeutic agent for joint diseases bound to

HA, HA derivative or a salt thereof is to be used as a drug, it is preferably used after being formulated into a pharmaceutical preparation together with a pharmaceutically acceptable diluting agent, stabilizer and the like.

5 The mode of administration of the drug or pharmaceutical composition is not particularly limited and may be oral or parenteral and may be systemic or local. In general, the pharmaceutical composition of the present invention is preferably administrated parenterally and
10 locally, for example, intraarticularly, intraveneously, intramuscularly or intra-dermally as injection, or percutaneously as a spraying agent, a topical cream or an ointment.

15 The dosage of the pharmaceutical composition of the present invention can suitably be selected depending on the condition of the disease, age and, sex of the patient and the like; in the case of using it as injection, the amount of the conjugate (i.e., the effective ingredient) ranges from 0.01 mg/body weight in kg/day to 100 mg/ body weight
20 in /kg/day, preferably from 0.1 mg/body weight in kg /day to 10 mg/body weight in kg /day. The above described daily dosage per day may be administered in several divided portions a day or administered once a day or once in 2 to 28 days.

25

Example

Example 1: Synthesis of MMP Inhibitor

(a) N-Benzylloxycarbonyl-1,4-diaminobutane

1,4-Diaminobutane (10g, 113 mmol) was dissolved in water/ ethanol(100 ml : 300 ml), and with stirring under cooling with ice a solution of benzyloxycarbonyl chloride (19.35g, 113 mmol) in 1,2-dimethoxyethane (50 ml) was 5 added dropwise over about 30 minutes. After a 2N sodium hydroxide aqueous solution (2 ml) was added, the resulting solution as such was stirred under cooling with ice for three hours and then stirred at 4°C for 15 hours. After most of the solvent was distilled off under reduced 10 pressure, the residue was dissolved in water and acidified with concentrated hydrochloric acid. The resulting solution was washed with chloroform (100 ml x 2) and then the aqueous layer was alkalized with a 2N sodium hydroxide aqueous solution, followed by extraction with chloroform. 15 The resulting organic layer was washed with a saturated sodium chloride aqueous solution, dried over sodium sulfate and then the solvent was distilled off under reduced pressure to give 11.0 g of an oil. (Yield 44%)

20 $^1\text{H-NMR}$ (270 MHz, CDCl_3): δ 1.4-1.5(4H, m), 2.7(2H, t), 3.2(2H, t), 5.1(2H, s), 7.3-7.4(5H, m)

MS: 222 (M^+)

(b) N-9-Fluorenylmethyloxycarbonyl-L-tryptophan-N-(4-N-benzyloxycarbonylaminobutyl)amide

25 With stirring under cooling with ice, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride salt (EDC)(1.12 g, 5.85 mmol) was added to a solution (20 ml) of N-9-fluorenylmethyloxycarbonyltryptophan (2.22 g, 4.5 mmol) and 1-hydroxybenzotriazole (0.90 g, 5.85 mmol) in N,N -

dimethylformamide (DMF) and stirred for one hour. To the reaction solution, the above obtained N-benzyloxycarbonyl-1,4-diaminobutane (1g, 4.5 mmol) was added, the resulting mixture as such was stirred under cooling with ice and then 5 stirring was continued at 15°C to 30°C for 15 hours. After most of the solvent had been distilled off under reduced pressure, the residue was dissolved in chloroform (100 ml) and washed with a 0.5N hydrochloric acid aqueous solution (40 ml x 2), a saturated sodium bicarbonate aqueous 10 solution (50 ml) and a saturated sodium chloride aqueous solution (50 ml). The organic layer was dried over anhydrous sodium sulfate and then concentrated. The resulting residue was purified by silica gel column chromatography using chloroform/methanol as the eluting 15 solution to obtain 2.1 g of colorless powder. (Yield 74%)

¹H-NMR(270 MHz, CDCl₃): δ 2.2-3.4(10H, m), 4.2(1H, t), 4.3-4.5(3H, m), 5.1(2H, s), 7.0-8.0(18H, m)

(c) L-Tryptophan-N-(4-N-benzyloxycarbonylaminobutyl)amide

The condensation product (2.1 g) as obtained in (b) 20 was dissolved in DMF (50 ml), and piperidine (3 ml) was added to the solution; the resulting solution was stirred at 15°C - 30°C for 30 minutes. After most of the solvent was distilled off under reduced pressure, the residue was purified by silica gel column chromatography using 25 chloroform/methanol as the eluting solution to obtain 1.0 g of a transparent oil. (Yield 74%)

¹H-NMR(270 MHz, CDCl₃): δ 1.4(4H, m), 3.0-3.4(6H, m), 3.7(1H, m), 5.1(2H, s), 7.0-7.7(9H, m)

MS:408(M⁺)

(d) [4-(N-Benzyl oxyamino)-2-isobutylsuccinyl-L-tryptophan-N-(4-N-benzyl oxycarbonylaminobutyl)amide: (Compound 1a)

L-Tryptophan-N-(4-N-benzyl oxycarbonylaminobutyl)amide

5 (1.18 g, 2.9 mmol) was dissolved in DMF (30 ml), and with stirring under cooling with ice, 4-(N-benzyl oxyamino)-2-isobutylsuccinic acid (732 mg, 2.6 mmol) as synthesized according to a known method [Japanese Patent Publication (Kokai) No. Hei 6-145148/1994] and EDC (552 mg, 2.9 mmol) 10 were successively added; the reaction temperature was set between the temperature of cooling with ice and that of cooling with water, and stirring was continued for three days. The reaction solution was concentrated under reduced pressure and diluted with chloroform; the chloroform layer 15 was successively washed with 0.1N hydrochloric acid, water, a saturated sodium bicarbonate aqueous solution and a saturated sodium chloride aqueous solution, and dried over sodium sulfate. After filtration, the residue and the aqueous layer were re-extracted with ethyl acetate; the 20 ethyl acetate layer and the chloroform layer were combined and concentrated under reduced pressure. The obtained crude product was subjected to silica gel chromatography purification (WAKO, C-200, eluting solvents: chloroform and a 1 : 1 mixture of chloroform and acetone); the resulting 25 fractions were collected and concentrated under reduced pressure and dried to obtain 1.20 g (68%) of the title compound 1a.

MS: 670 (M+H⁺)

(e) [4-(N-hydroxyamino)-2(R)-isobutylsuccinyl]-L-trypto-
phan-N-(4-N-aminobutyl)amide:(Compound 2)

[4-(N-hydroxyamino)-2(S)-isobutylsuccinyl]-L-trypto-
phan-N-(4-N-aminobutyl)amide:(Compound 3)

5 [4-(N-Benzylamino)-2-isobutylsuccinyl]-L-
tryptophan-N-(4-N-benzylxycarbonylaminobutyl)amide
(Compound 1a) (1.20 g, 1.8 mmol) was dissolved in 50 ml of
methanol and catalytically reduced with 140 mg of 10% Pd/C
under an atmospheric pressure of hydrogen for 16 hours.

10 The reaction solution was filtered with celite and then
concentrated under reduced pressure. The obtained crude
product was subjected to reverse phase HPLC (column: YMC-
Pack, ODS, 250 mm x 20 mm I.D., eluting solvent: a 0.1%
trifluoroacetic acid (TFA)-containing water/acetonitrile
15 system, flow rate: 10 ml/min) and respective diastereomers
were recovered and purified and freeze-dried to obtain 283
mg of a TFA salt of the title compound 2 (peak at the
hydrophilic side) and 493 mg of a TFA salt of the title
compound 3 (peak at the hydrophobic side), respectively.

20 Compound 2:

¹H-NMR(270 MHz, CD₃OD): 0.70(3H, d, J=6Hz), 0.77(3H, d, J=6Hz),
1.02-1.53(7H, m), 2.12(1H, dd, J=14, 5Hz), 2.29(1H, dd, J=14, 9Hz),
2.59-2.68(1H, m), 2.80-2.85(2H, m), 3.10-3.36(4H, m),
4.49-4.58(1H, m), 6.96-7.09(3H, m), 7.30(1H, d, J=8Hz),
25 7.57(1H, d, J=8Hz), 7.95-8.04(2H, m)
MS: 446 (M+H⁺)

Compound 3:

¹H-NMR(270 MHz, CD₃OD): 0.51(3H, d, J=6Hz), 0.56(3H, d, J=6Hz),

0.63-0.92(2H,m), 1.11-1.21(1H,m), 1.56-1.58(4H,m),
2.02(1H,dd,J=15,2Hz), 2.31(1H,dd,J=15,11Hz), 2.48-2.60(1H,m),
2.86-3.45(6H,m), 4.64-4.72(1H,m), 6.91-7.04(3H,m),
7.27(1H,d,J=8Hz), 7.54(1H,d,J=8Hz), 7.97-8.08(2H,m)

5 MS:446(M+H⁺)

(f) N-Benzylloxycarbonyl-1,8-diaminoctane

In the same manner as in the synthesis of N-benzylloxycarbonyl-1,4-diaminobutane in (a), 1,8-diaminoctane instead of 1,4-diaminobutane as the starting 10 material was treated to obtain 6.8 g of the title compound as an oil (yield 58%).

¹H-NMR(270MHz,CDCl₃):δ 1.3(8H,s), 1.4-1.5(4H,m),

2.7(2H,t,J=7Hz), 3.2(2H,m), 5.1(2H,s), 7.3-7.4(5H,m)

MS:278(M⁺)

15 (g) N-9-Fluorenylmethyloxycarbonyl-L-tryptophan-N-(8-N-benzylloxycarbonylaminoctyl)amide

With stirring under cooling with ice, EDC (3.90 g, 20.5 mmol) was added to a solution of N-9-fluorenylmethyloxycarbonyl-L-tryptophan (7.8 g, 15.8 mmol) 20 and 1-hydroxybenzotriazole (3.15 g, 20.0 mmol) in DMF (100 ml) and stirred for one hour. To the reaction solution, the N-benzylloxycarbonyl-1,8-diaminoctane (4.4 g, 15.8 mmol) as obtained above was added, the resulting solution as such was stirred under cooling with ice and then 25 stirring was continued at 15°C - 30°C for 15 hours. Most of the solvent was distilled off under reduced pressure; the residue was dissolved in chloroform (200 ml) and washed with a 0.5N hydrochloric acid aqueous solution (50 ml x 3),

a saturated sodium bicarbonate aqueous solution (100 ml) and a saturated sodium chloride aqueous solution (50 ml). The organic layer was dried over anhydrous sodium sulfate and then concentrated and used as such in the next reaction.

5 (h) L-Tryptophan-N-(8-N-benzyloxycarbonylaminoctyl)amide

The condensation product as obtained in (g) was dissolved in DMF (150 ml) and then piperidine (10 ml) was added to the solution; the resulting solution was stirred at 15°C - 30°C for 30 minutes. After most of the solvent 10 was distilled off under reduced pressure, the residue was purified by silica gel column chromatography using chloroform/methanol as the eluting solution to obtain 6.1 g of a yellow oil. (Yield from N-benzyloxycarbonyl-1,8-diaminoctane: 74%)

15 $^1\text{H-NMR}$ (270 MHz, CDCl_3): δ 1.2-1.6(12H,m), 2.9-3.4(6H,m), 3.7(1H,m), 5.1(2H,s), 7.0-7.7(9H,m)
MS:465(M^+)

(i) [4-(N-Benzylamino)-2-isobutylsuccinyl]-L-tryptophan-N-(8-N-benzyloxycarbonylaminoctyl)amide: (Compound 4)

20 In the same manner as in the synthesis of compound 1a, L-tryptophan-N-(8-N-benzyloxycarbonylaminoctyl)amide (2.07 g, 4.5 mmol) instead of L-tryptophan-N-(4-N-benzyloxycarbonylaminobutyl)amide as the starting material was treated to obtain 2.5 g of the title compound (yield: 25 85%). The reaction medium used was 30 ml of DMF and the reaction time employed was 2 days. Further, the reaction residue concentrated under reduced pressure was diluted with ethyl acetate without re-extraction. For silica gel

chromatography purification, chloroform and a 1 : 1 mixture of chloroform and acetone were used as eluting solvents.

The obtained title compound as such was used in the next reaction.

5 (j) [4-(N-Hydroxyamino)-2(R)-isobutylsuccinyl]-L-tryptophan-N-(8-N-aminoctyl)amide:(Compound 5)

[4-(N-Hydroxyamino)-2(S)-isobutylsuccinyl]-L-tryptophan-N-(8-N-aminoctyl)amide:(Compound 6)

In the same manner as in the syntheses of compound 3 and compound 4, 1.7 g (yield 100%) of a diastereomer mixture (compound 7) of the title compound 5 and the title compound 6 were obtained by using [4-(N-benzyloxyamino)-2-isobutylsuccinyl]-L-tryptophan-N-(8-N-benzyloxycarbonylaminoctyl)amide (Compound 4) (2.5 g, 3.4 mmol) instead of [4-(N-benzyloxyamino)-2-isobutylsuccinyl]-L-tryptophan-N-(4-N-benzyloxycarbonylaminobutyl)amide (1) as the starting material. A portion (360 mg) of the diastereomer mixture was subjected to reverse phase HPLC, so that the respective diastereomers were recovered and purified; subsequent freeze-drying gave 151 mg of a TFA salt of the title compound 5 (peak at the hydrophilic side) and 147 mg of a TFA salt of the title compound 6 (peak at the hydrophobic side).

Compound 5:

25 ¹H-NMR(270MHz,DMSO-d₆):0.74(3H,d,J=6Hz), 0.79(3H,d,J=6Hz), 0.97-1.59(15H,m), 1.91(1H,dd,J=14,8Hz), 2.03(1H,dd,J=14,7Hz), 2.62-2.83(3H,m), 2.89-3.12(4H,m), 4.40-4.48(1H,m), 6.95(1H,dd,J=7,7Hz), 7.04(1H,dd,J=7,7Hz), 7.11(1H,d,J=2Hz),

7.30(1H,d,J=8Hz), 7.54(1H,d,J=8Hz), 7.58-7.81(4H,m),
8.01(1H,d,J=8Hz), 8.73(1H,s), 10.38(1H,s), 10.78(1H,s)
MS:502(M+H⁺)

Compound 6:

5 ¹H-NMR(270MHz,DMSO-d₆):0.55(3H,d,J=5Hz), 0.66(3H,d,J=5Hz),
0.75-1.59(15H,m), 1.94(1H,dd,J=15,5Hz), 2.14(1H,dd,J=15,9Hz),
2.57-3.38(7H,m), 4.32-4.44(1H,m), 6.95(1H,dd,J=7,7Hz),
7.04(1H,dd,J=7,7Hz), 7.10(1H,brs), 7.30(1H,d,J=8Hz),
7.53(1H,d,J=8Hz), 7.65(3H,brs), 7.90(1H,t,J=6Hz),
10 8.19(1H,d,J=8Hz), 8.73(1H,brs), 10.45(1H,s), 10.78(1H,s)
MS:502(M+H⁺)

(k) N-Benzylloxycarbonyl-4,7,10-trioxa-1,13-tridecanediamine

In the same manner as in the synthesis of N-benzylloxycarbonyl-1,4-diaminobutane in (a), the title compound was obtained as 5.0 g of an oil by using 4,7,10-trioxa-1,13-tridecanediamine instead of N-benzylloxycarbonyl-1,4-diaminobutane as the starting material. (Yield 39%)

15 ¹H-NMR(270MHz,CDCl₃):δ 1.6-1.7(4H,m), 2.8(2H,t,J=6.7Hz),
3.3(2H,m), 3.5-3.6(12H,m), 5.1(2H,s), 5.6(1H,brs),
7.3-7.4(5H,m)
MS:354(M⁺)

(l) N-9-Fluorenylmethyloxycarbonyl-L-tryptophan-N-(13-N-benzylloxycarbonylamino-4,7,10-trioxa-tridecanyl)amide

25 In the same manner as in the synthesis of N-9-fluorenylmethyloxycarbonyl-L-tryptophan-N-(4-N-benzylloxycarbonylaminobutyl)amide in (b), the title compound was obtained as 8.0 g of an oil by using N-

benzyloxycarbonyl-4,7,10-trioxa-1,13-tridecanediamine instead of N-benzyloxycarbonyl-1,4-diaminobutane as the starting material. (Yield 39%)

5 $^1\text{H-NMR}$ (270MHz, CDCl_3): δ 1.42-1.59(2H,m), 1.64-1.75(2H,m),
3.09-3.32(10H,m), 3.42-3.60(8H,m), 4.20(1H,t, $J=6.8\text{Hz}$),
4.31-4.50(3H,m), 5.06(2H,s), 5.24(1H,brs), 5.70(1H,brs),
6.08(1H,brs), 6.99(1H,s), 7.07-7.19(2H,m), 7.27-7.42(10H,m),
7.54-7.58(2H,m), 7.66(1H,d, $J=7.3\text{Hz}$), 7.76(2H,d, $J=7.6\text{Hz}$),
8.89(1H,brs)

10 MS: 785.6 ($\text{M}+\text{Na}^+$)

(m) L-Tryptophan-N-(13-N-benzyloxycarbonylamino-4,7,10-trioxa-tridecanyl)amide

In the same manner as in the synthesis of L-tryptophan-N-(4-N-benzyloxycarbonylaminobutyl)amide in (c),
15 the title compound was obtained as 4.2 g of an oil by using N-9-fluorenylmethyloxycarbonyl-L-tryptophan-N-(13-N-benzyloxycarbonylamino-4,7,10-trioxa-tridecanyl)amide instead of N-9-fluorenylmethyloxycarbonyl-L-tryptophan-N-(4-N-benzyloxycarbonylaminobutyl)amide as the starting material. (Yield 78%)

20 $^1\text{H-NMR}$ (270MHz, CDCl_3): δ 1.64-1.77(4H,m), 2.95-3.04(1H,m),
3.23-3.36(7H,m), 3.45-3.69(11H,m), 5.08(2H,s),
5.34(1H,brs), 7.05-7.21(3H,m), 7.26-7.38(6H,m),
7.66(1H,d, $J=7.6\text{Hz}$), 8.51(1H,brs)

25 MS: 541 (M^+)

(n) [4-(N-benzyloxyamino)-(2R)-isobutylsuccinyl]-L-tryptophan-N-(13-N-benzyloxycarbonylamino-4,7,10-trioxa-tridecanyl)amide: (Compound 8)

The title compound 8 was obtained as 1.15 g (yield 72%) of a colorless amorphous substance in the same manner as in the synthesis of compound 1a, except that L-tryptophan-N-(13-N-benzyloxycarbonylamino-4,7,10-tiropa-5 tridecanyl)amide (1.30 g, 2.4 mmol) instead of L-tryptophan-N-(4-N-benzyloxycarbonylaminobutyl)amide and 4-(N-benzyloxyamino)-(2R)-isobutylsuccinic acid (0.56 g, 2.0 mmol) synthesized by a known method [Japanese Patent Publication (Kokai) No. Hei 6-145148/1994] were used as the 10 starting materials. The reaction solvent used was 20 ml of DMF, the reaction temperature employed was 15°C - 30°C, and the reaction time used was 6 hours. Further, the reaction residue concentrated under reduced pressure was diluted with ethyl acetate; the chloroform layer was successively 15 washed with a potassium hydrogensulfate aqueous solution, water, a saturated potassium carbonate aqueous solution, and a saturated sodium chloride aqueous solution, and dried over magnesium sulfate. For silica gel chromatography purification, ethyl acetate and a 9 : 1 mixture of 20 dichloromethane and methanol were used as eluting solvents.

¹H-NMR(270MHz,DMSO-d₆):δ 0.74(3H,d,J=5.9Hz), 0.80(3H,d,J=6.5Hz), 0.93-1.05(1H,m), 1.29-1.41(2H,m), 1.51-1.58(2H,m), 1.60-1.67(2H,m), 1.94(1H,dd,J=14.0,7.3Hz), 2.08(1H,dd,J=14.3,7.3Hz), 2.65-2.78(1H,m), 2.92-3.14(6H,m), 25 3.26(2H,t,J=6.5Hz), 3.38-3.48(12H,m), 4.47(1H,dt,J=7.8,6.7Hz), 4.76(2H,s), 5.00(2H,s), 6.94(1H,dd,J=7.6,7.2Hz), 7.04(1H,dd,J=8.1,7.2Hz), 7.12(1H,s), 7.22(1H,t,J=5.7Hz), 7.29-7.34(11H,m),

7.55(1H,d,J=7.6Hz), 7.79(1H,t,J=5.4Hz), 8.05(1H,d,J=7.8Hz),
10.78(1H,s), 11.01(1H,s)

(o) [4-(N-hydroxyamino)-(2R)-isobutylsuccinyl]-L-tryptophan-N-(13-N-amino-4,7,10-trioxa-tridecanyl)amide:

5 (Compound 9)

[4-(N-benzyloxyamino)-(2R)-isobutylsuccinyl]-L-tryptophan-N-(13-N-benzyloxycarbonylamino-4,7,10-trioxa-tridecanyl)amide (Compound 8) (1.90 g, 2.4 mmol) was dissolved in 200 ml of methanol, added with 200 mg of sodium 10 bicarbonate, and catalytically reduced with 200 mg of 10% Pd/C at an atmospheric pressure of hydrogen for three hours. The reaction solution was filtered with celite and then concentrated under reduced pressure to obtain the title compound 9 as 1.50 g (yield 99%) of a colorless amorphous 15 substance.

¹H-NMR(270 MHz, CD₃OD):δ 0.84(3H,d,J=5.9Hz),
0.89(3H,d,J=6.2Hz), 1.17(1H,ddd,J=11.9,7.6,5.1Hz),
1.38-1.54(2H,m), 1.56-1.65(2H,m), 1.71-1.81(2H,m),
2.15(1H,dd,J=14.9,7.4Hz), 2.28(1H,dd,J=14.3,7.4Hz),
2.78(1H,t,J=6.8Hz), 2.80(1H,brs), 3.09-3.32(6H,m),
3.44-3.49(2H,m), 3.52-3.65(8H,m), 4.62(1H,t,J=7.3Hz),
7.04(1H,dd,J=7.6,7.0Hz), 7.12(1H,dd,J=8.0,7.0Hz),
7.15(1H,s), 7.37(1H,d,J=8.0Hz), 7.65(1H,d,J=7.6Hz)
MS:578(M+H⁺)

25

Example 2: Conjugate Synthesis Example 1

To 70 mg of an MMP inhibitor (compound 2), 0.49 ml of N-methylpyrrolidone and 0.01 ml of pyridine were added to

dissolve the inhibitor; the pH of the solution was adjusted to 4.7 with 0.045 ml of 1M hydrochloric acid and water and its whole volume was adjusted to 1 ml. To the resulting solution, 5 mg of sodium hyaluronate was added to form a 5 uniform solution. After reconfirming that the pH was 4.7, the reaction solution was added with 10 mg of EDC under cooling with ice and stirred for 30 minutes, and further stirred at 15°C - 30°C for 15 hours.

To the reaction solution, 1 ml of 0.1M sodium 10 bicarbonate and 6 ml of ethanol were added to form a precipitate which was then purified by repeating the alcohol precipitation method three times (the method comprising the steps of dissolving the precipitate in 1 ml of a 0.2M sodium chloride aqueous solution, effecting 15 precipitation with 3 ml of ethanol and centrifuging the precipitate), thus producing 4.3 mg of a conjugate ("conjugate 1").

The bonding ratio calculated from the UV absorption at 279 nm derived from an indole ring was 0.84% by weight. 20 This means that 0.76% of the carboxyl group reacted.

Example 3: Conjugate Synthesis Example 2

To 70 mg of an MMP inhibitor (compound 3), 0.49 ml of N-methylpyrrolidone and 0.01 ml of pyridine were added to 25 dissolve the inhibitor; the pH of the solution was adjusted to 4.7 with 0.05 ml of 1M hydrochloric acid and water and its whole volume was adjusted to 1 ml. To the resulting solution, 5 mg of sodium hyaluronate was added to form a

uniform solution. After reconfirming that the pH was 4.7, the reaction solution was added with 10 mg of EDC under cooling with ice and stirred for 30 minutes, and further stirred at 15°C - 30°C for 20 hours.

5 To the reaction solution, 1 ml of 0.1M sodium bicarbonate and 6 ml of ethanol were added to form a precipitate which was then purified by repeating the alcohol precipitation method three times (the method comprising the steps of dissolving the precipitate in 1 ml
10 of a 0.2M sodium chloride aqueous solution, effecting precipitation with 3 ml of ethanol and centrifuging the precipitate), thus producing 3.5 mg of a conjugate ("conjugate 2").

The bonding ratio calculated from the UV absorption
15 at 279 nm derived from an indole ring was 1.1% by weight. This means that 1.0% of the carboxyl group reacted.

Example 4: Conjugate Synthesis Example 3

To 77 mg of an MMP inhibitor (compound 7) 0.603 ml of
20 N-methylpyrrolidone and 0.012 ml of pyridine were added to dissolve the inhibitor; the pH of the solution was adjusted to 4.7 with 0.105 ml of 1M hydrochloric acid and water and its whole volume was adjusted to 1.23 ml. To the resulting solution, 6.2 mg of sodium hyaluronate was added to form a
25 uniform solution. After reconfirming that the pH was 4.7, the reaction solution was added with 24 mg of EDC under cooling with ice and stirred at 4°C for 3 days.

To the reaction solution, 0.123 ml of 1M NaOH and

0.5 ml of ethanol were added and stirred for 30 minutes under cooling with ice and then added with 3 ml of ethanol to form a precipitate which was then purified by repeating the alcohol precipitation method three times (the method 5 comprising the steps of dissolving the precipitate in 1 ml of a 0.2M sodium chloride aqueous solution, effecting precipitation with 3 ml of ethanol and centrifuging the precipitate) thus producing 6.0 mg of a conjugate ("conjugate 3").

10 The bonding ratio calculated from the UV absorption at 279 nm derived from an indole ring was 1.7% by weight. This means that 1.4% of the carboxyl group reacted.

Example 5: Conjugate Synthesis Example 4

15 To 189 mg of an MMP inhibitor (compound 7), 1.47 ml of N-methylpyrrolidone and 0.03 ml of pyridine were added to dissolve the inhibitor; the pH of the solution was adjusted to 4.7 with 0.24 ml of 1M hydrochloric acid and water and its whole volume was adjusted to 3 ml. To the 20 resulting solution, 15 mg of sodium hyaluronate was added to form a uniform solution. After reconfirming that the pH was 4.7, the reaction solution was added with 87 mg of EDC under cooling with ice and stirred at 4°C for 24 hours.

To the reaction solution, 1.5 ml of 0.1M sodium 25 bicarbonate and 1.5 ml of ethanol were added and stirred for 30 minutes under cooling with ice, and subsequently added with 9 ml of ethanol to form a precipitate which was then purified by repeating the alcohol precipitation method

three times (the method comprising the steps of dissolving the precipitate in 3 ml of a 0.2M sodium chloride aqueous solution, effecting precipitation with 9 ml of ethanol and centrifuging the precipitate) thus producing 13.9 mg of a 5 conjugate ("conjugate 4").

The bonding ratio calculated from the UV absorption at 279 nm derived from an indole ring was 4.9% by weight. This means that 3.9% of the carboxyl group reacted.

10 Example 6: Conjugate Synthesis Example 5

By repeating the same procedure using the same starting material and reagents as in Synthesis Example 3, 5.7 mg of "conjugate 5" was obtained.

15 The bonding ratio calculated from the UV absorption at 279 nm derived from an indole ring had good reproducibility as in Synthesis Example 3 and was 1.7% by weight. This means that 1.4% of the carboxyl group reacted.

Example 7: Conjugate Synthesis Example 6

20 To 145 mg of an MMP inhibitor (compound 9), 0.89 ml of N-methylpyrrolidone and 0.02 ml of pyridine were added to dissolve the inhibitor; the pH of the solution was adjusted to 4.7 with 0.09 ml of 6M hydrochloric acid and water and its whole volume was adjusted to 1.82 ml. To the 25 resulting solution, 9.1 mg of sodium hyaluronate was added to form a uniform solution. After reconfirming that the pH was 4.7, the reaction solution was added with 35 mg of EDC under cooling with ice and stirred at 4°C for 24 hours.

To the reaction solution, 0.375 ml of 0.1M sodium bicarbonate and 0.375 ml of ethanol were added and stirred for 30 minutes under cooling with ice, and subsequently added with 5 ml of ethanol to form a precipitate which was 5 then purified by repeating the alcohol precipitation method three times (the method comprising the steps of dissolving the precipitate in 2 ml of a 0.2M sodium chloride aqueous solution, effecting precipitation with 6 ml of ethanol and centrifuging the precipitate), thus producing 8.2 mg of a 10 conjugate ("conjugate 6").

The bonding ratio calculated from the UV absorption at 279 nm derived from an indole ring was 1.0% by weight. This means that 0.70% of the carboxyl group reacted.

15 Example 8: Conjugate Synthesis Example 7

N-Hydroxy-5-norbornene-2,3-dicarboximide (8.9 mg) was dissolved in water, added with 0.01 ml of pyridine, 0.07 ml of 1M hydrochloric acid and water to adjust the pH to 4.7, and the whole volume was adjusted to 1 ml. To this 20 solution, 5 mg of sodium hyaluronate was added to render it uniform. The resulting solution was added with 9.6 mg of EDC under cooling with ice and stirred for 17 hours at 4°C. Under cooling with ice, the resulting solution was added with a 2% sodium acetate buffer solution (pH 6) (0.5 ml) 25 and subsequently added with 4 ml of acetone to form a precipitate. The precipitate was centrifuged and dried under reduced pressure.

To 86 mg of a TFA salt (compound 10) of an MMP

inhibitor (compound 9)[as obtained by suspending the MMP inhibitor (compound 9) in distilled water containing 0.1% TFA and freeze-drying the resulting suspension], 0.49 ml of N-methylpyrrolidone and 0.01 ml of pyridine were added to
5 dissolve the TFA salt; the pH of the solution was adjusted to 8.0 with 0.035 ml of 1M hydrochloric acid and water, and its whole volume was adjusted to 1 ml. This solution was added to the above described precipitate, and the resulting mixture was stirred at 4°C for three days.

10 To the reaction solution, 0.2 ml of 2M sodium chloride aqueous solution and 3 ml of ethanol were added to form a precipitate which was then centrifuged. This precipitate was added with 1 ml of a 0.2M sodium chloride aqueous solution and 0.06 ml of a 1M sodium hydroxide aqueous solution, stirred for one hour under cooling with ice to solubilize the precipitate, and added with 3 ml of ethanol to form a precipitate which was then centrifuged. This precipitate was again added with 1 ml of a 0.2M sodium chloride aqueous solution and 0.06 ml of a 1M sodium hydroxide aqueous solution, stirred for three hours under cooling with ice to solubilize the precipitate, and added with 3 ml of ethanol to form a precipitate which was then centrifuged. Subsequently, the precipitate was dissolved in 1 ml of a 0.2M sodium chloride aqueous solution, and
20 added with 3 ml of ethanol to form a precipitate which was then centrifuged; the resulting precipitate was suspended in 90% ethanol/water, then centrifuged, subsequently dissolved in water and freeze-dried to obtain 6.0 mg of a
25

conjugate ("conjugate 7").

The bonding ratio calculated from the UV absorption at 279 nm derived from an indole ring was 1.1% by weight. This means that 0.78% of the carboxyl group reacted.

5

Experiment 1: Matrix Metalloprotease (MMP) Inhibiting Activity

The enzyme inhibiting activities of "conjugate 1", "conjugate 7" and HA against collagenase-1, stromelysin-1, 10 gelatinase A and gelatinase B were measured. The inhibiting activities against collagenase-1 and stromelysin-1 were measured by using a type I collagenase activity measuring kit and a stromelysin-1 measuring kit manufactured by Yagai Co., Ltd., and the inhibition activities against gelatinase 15 A and gelatinase B were measured by using a gelatinase activity measuring kit manufactured by Roche Diagnostics Co., Ltd. Results were expressed by average values (n=2) of enzymatic activity, with the enzymatic activity in the absence of conjugate or HA being taken as 100. As shown in 20 Figs. 1, 2, 8 and 9, "conjugate 1" and "conjugate 7" had inhibiting activity against any one of these four types of enzyme but HA exhibited no inhibiting activity.

From these experimental results it was found that "conjugate 1" and "conjugate 7" have an MMP inhibiting 25 activity which HA does not possess.

Experiment 2: Effect of Spacer on Matrix Metalloprotease (MMP) Inhibiting Activity

Four types of conjugate ("conjugate 1", "conjugate 3",

RECORDED IN THE U.S. PATENT AND TRADEMARK OFFICE

"conjugate 4", and "conjugate 6") in which the length of the spacer between the MMP inhibitor described in Patent No. 2736285 (N-[2-isobutyl-3-(N'-hydroxycarbonylamido)-propanoyl]-L-tryptophan methylamide: compound 1) and HA was 5 changed between C4 and C10 were compared in terms of the inhibiting activity against gelatinase A and gelatinase B. Results were expressed by the conjugate or HA concentration (IC_{50} value) necessary for inhibiting 50% of the enzymatic activity occurring in the absence of any conjugates or HA 10 (see Table 1 below). Although the inhibiting activity against gelatinase A tended to become a little stronger with the increasing spacer length, no large difference in the inhibiting activity was recognized between these four types of conjugate; from these results, it was concluded 15 that as for conjugates 1 - 4 which were prepared by the same synthetic method (of mixing HA with an MMP inhibitor and then adding a condensation agent), the effect of spacer length on the inhibiting activity was small.

Further, when "conjugate 6" was compared with 20 "conjugate 7" which was synthesized by a method in which HA was first converted to an active ester and then mixed with an MMP inhibitor to effect reaction, the gelatinase A inhibiting activity of the latter was about 10 times as 25 large as that of the former although both conjugates used the same spacer and had the inhibitor bound in almost the same amount. This fact suggested that depending on the synthesis method employed, the inhibiting activity of the MMP inhibitor in a bound form might change from that of the

MMP inhibitor in an unbound state.

Table 1
Effect of Spacer on MMP Inhibiting Activity

Conjugate	Spacer	Enzyme Inhibiting Activity (IC ₅₀ , mg/ml)	
		Gelatinase A	Gelatinase B
Conjugate 1	C ₄ H ₈ -NH-	1	0.03
Conjugate 3	C ₈ H ₁₆ -NH-	0.7	0.04
Conjugate 4	C ₈ H ₁₆ -NH-	0.2	0.02
Conjugate 6	C ₁₀ H ₂₀ O ₃ -NH-	0.2	NT
Conjugate 7	C ₁₀ H ₂₀ O ₃ -NH-	0.02	0.01

5 Experiment 3: Inhibiting Activity on Collagen Film

Destruction

The inhibiting activity on collagen-film destruction was measured according to the method of Gavriovic, J et al. [Cell. Biol. Int. Reports, 9, 1097-1107 (1985)]. Articular chondrocytes obtained from the knee joints of 3-6 week-old rabbits by treatment with collagenase were suspended in 500 μ l of Dulbecco's modified eagle's medium (DMEM) containing 0.2% of lactoalbumin, and 48-well culture plates each precoated with a guinea pig'skin-derived type I collagen film, which was prelabeled with ¹⁴C, were seeded with 500 μ l aliquots of the suspension. "Conjugate 3" or HA was cultured in the presence of interleukin 1 (1 ng/ml) and plasmin (100 μ g/ml) in a CO₂ incubator at 37°C for 72 hours. After completion of the culture, the supernatant of the culture and a digestive juice obtained by treating the

remaining collagen film with collagenase were recovered, and the respective radioactivity were measured with a liquid scintillation counter. Results were calculated as the mean value (n=2) of the percent destruction of the 5 destroyed collagen film according to the following formula.

$$\begin{aligned} \text{Percent Destruction of Collagen Film (\%)} &= \\ &[(\text{Radioactivity in Supernatant of} \\ &\text{Culture}) / (\text{Radioactivity in Supernatant of Culture} + \\ &\text{Remaining Radioactivity in Collagen Film})] \times 100 \end{aligned}$$

10 As shown in Fig. 3, "conjugate 3" inhibited the cellular collagen destruction induced by interleukin 1 and plasmin, however HA exhibited no inhibitory effect.

From these results, it is apparent that the conjugate of HA and an MMP inhibitor has an excellent inhibitory 15 effect on the collagen destruction by articular chondrocytes although it cannot be inhibited by HA.

Experiment 4: Bond-stability 1 of Conjugate

"Conjugate 5" was dissolved in a physiological saline 20 at a concentration of 1 mg/ml (to give pH=6.3), incubated at 37°C, and the change in the conjugate was analyzed by gel filtration chromatography.

The column was TSK gel G4000PW (7.5 mm I.D. x 30 cm, a product of Tosoh Corporation); a 50 mM phosphate buffer 25 solution (pH 6) containing 20% EtOH was used as an eluting solvent; the column temperature was 40°C (L-7300, manufactured by Hitachi Ltd.); the flow rate was 0.7 ml/min (L-7100, manufactured by Hitachi Ltd.); and a diode array

detector (L-7450H, manufactured by Hitachi Ltd.) was used for detection.

The peak area of the absorption at 279 nm due to an indole ring at voids upon injecting 40 μ l of the solution 5 was traced at 0 day, 2 days, and 5 days but no change was observed (Fig. 4). Further, during these 5 days, no new peaks in the lower-molecular region were observed on the HPLC.

From these results, excellent stability of the bond 10 between HA and MMP inhibitor was shown by "conjugate 5".

Experiment 5: Bond-stability 2 of Conjugate

In a diffusion cell (donor side: 1.5 ml, acceptor side: 8.0 ml) which was divided by a semipermeable membrane 15 (Type HC; Millipore) having a membrane pore diameter of 25 nm and which was filled with an isotonic phosphate buffer solution (pH 7.4), compound 1, a mixture of compound 1 and HA, and "conjugate 4" were placed in the amounts shown below; the breakthrough from the donor side to the acceptor 20 side was calculated from the intensity of fluorescence at a measuring wavelength of 350 nm and expressed as permeability (Fig. 5). Herein, 100% permeability means the concentration at which the whole volume of the agent diffuses to become uniform in the cell.

- 25 (1) 50 nmol of compound 1
- (2) a mixture of 50 nmol of compound 1 and 0.5 mg of HA
- (3) 0.5 mg of "conjugate 4" (having compound 1 bound

in an amount equivalent to 50 nmol)

In the case of compound 1 and the mixture of compound 1 and HA, compound 1 quickly permeated the membrane to diffuse toward the acceptor side, however "conjugate 4" did 5 not permeate until after 8 hours and only 2.8% and 3.6% of "conjugate 4" permeated in 24 hours and 48 hours, respectively.

From this result, excellent stability in the bond between HA and MMP inhibitor was shown by "conjugate 4".

10

Experiment 6: Intraarticular Retainability

The following agents (1 to 3) were administered into right knee joints of 9-10 week old rats (n=4 to 10) and the animals were sacrificed at time intervals; the joint 15 cavities were washed with a total 0.5 ml of a physiological saline to recover a synovial fluid.

Agent 1: 30 nmol of compound 1

Agent 2: a mixture of 30 nmol of compound 1 and 0.3 mg of HA

20 Agent 3: 0.3 mg of "conjugate 4" (having compound 1 bound in an amount equivalent to 30 nmol)

By using a kit for measuring gelatinase activity manufactured by Roche Diagnostics, the inhibiting activity of the synovial fluid against gelatinase B was calculated 25 according to the following formula.

Gelatinase B Inhibition Activity (%) = [(Enzymatic Activity in the Absence of Synovial Fluid - Enzymatic Activity in the Presence of Added Synovial Fluid)/

Enzymatic Activity in the Absence of Synovial Fluid]

x 100

On the basis of the dose/inhibition curves for compound 1 and "conjugate 4" against gelatinase B, the 5 amount of the agent remaining in the synovial fluid was calculated as the amount of compound 1 in the case of the groups administered compound 1 either alone or in admixture with HA and as the amount equivalent to compound 1 bound to "conjugate 4" in the case of the group 10 administered "conjugate 4". The results were shown in terms of mean values. As Fig. 6 shows, in the group administered compound 1 alone and the group administered the mixture of compound 1 and HA, the amount of the agent remaining in the joint decreased to approximately 1/3,000 15 of the initial dose (the amount of the agent at 0 hour in the Figure) two hours after administration and the amount decreased to 1/300,000 of the initial dose six hours after administration in the group administered compound 1 alone and 17 hours after administration in the group administered 20 the mixture of compound 1 and HA. Meanwhile, in the group administered "conjugate 4", 2/5 of the dosage remained two hours after administration and approximately 1/10 of the dosage remained 17 hours after administration.

Fig. 7 shows the gelatinase B inhibiting activity of 25 the synovial fluid recovered from each of the treated groups immediately after administration (at 0 hour in the Figure), two hours after administration and 17 hours after administration. The results were shown by a mean value ±

standard deviation. The gelatinase B inhibiting activity of the synovial fluid from the group administered compound 1 alone and the group administered the mixture of compound 1 and HA decreased to 20% two hours after administration 5 and to less than 5% 17 hours after administration while in the group administered "conjugate 4" about 50% of the gelatinase B inhibiting activity remained 17 hours after administration.

From these results it is apparent that the conjugate 10 of HA and an MMP inhibitor can be used as an extremely superior means for increasing the retainability of the MMP inhibitor in joint cavities. Further, the conjugate of HA and an MMP inhibitor retains the MMP inhibiting activity for a long time period in joint cavities and this suggests 15 the possibility of inhibiting the articular destruction over a long period of time even after a single intraarticular administration of the conjugate. In other words, it has been suggested that the conjugate of the present invention in which an MMP inhibitor is bound to HA 20 has better efficacy and retainability as a therapeutic agent for joint diseases than the MMP inhibitor or HA used alone or in combination.

Experiment 7: Inhibiting Activity on Articular Cartilage

25 Collagen Destruction

The inhibiting activity on articular cartilage collagen destruction was measured according to the method of Saito. S et al. [J. Biochem., 122, 49-54(1997)].

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1949
19

of 1 mg/ml significantly inhibited the destruction of cartilage collagen induced by interleukin 1 and plasminogen but HA did not significantly inhibit the destruction.

These results show that the conjugate of HA and MMP1
5 have a distinct inhibitory action on the destruction of the direct target tissue, articular cartilage.

Further, all contents of the disclosure in the specifications of Japanese Patent Application Nos. Hei 10-138329/1998, Hei 10-224187/1998 and Hei 11-43064/1999 on
10 the basis of which the present application priority claims are incorporated herein by reference.

INDUSTRIAL APPLICABILITY

The conjugate of the invention if administered into
15 articular cavities is retained for as long a period as known HA formulations and inhibits localized MMP by the hydroxamic acids which are bound to HA or an HA derivative or a salt thereof. With the existing technology, it has been impossible to localize and prolong the action of
20 therapeutics for joint disease (such as MMP inhibitor) at sites of administration (such as joints at the knee, shoulder and the like) and to reduce the frequency of their administration. These needs can be met by the conjugate of the invention which is expected to reduce the side effects
25 of therapeutics for joint diseases considerably as compared to the conventional method of systemic administration.

At the site of administration, either HA or an HA derivative or a salt thereof which are the active

ingredient of HA formulations or the therapeutic for joint disease exhibit their own efficacies to produce the desired synergism as they can show their activities without being dissociated or decomposed.

5 For these reasons, the conjugate of the invention features enhanced utility both as a therapeutic for joint disease (e.g. MMP inhibitor such as hydroxamic acid) and as HA or an HA derivative or a salt thereof and, hence, is useful as a drug with enhanced ability to suppress joint
10 destruction; the conjugate is therefore anticipated to be an effective drug for treating osteoarthritis, rheumatoid arthritis or scapulohumeral periarthritis.

CLAIMS

1. A conjugate of (1) at least one therapeutic agent for joint diseases and (2) hyaluroic acid, a hyaluroic acid derivative or a salt thereof.
2. The conjugate of claim 1, wherein the bond between at least one therapeutic agent for joint diseases and hyaluroic acid, a hyaluroic acid derivative or a salt thereof is a covalent bond.
3. The conjugate of claim 1 or 2, wherein the therapeutic agent for joint diseases is a matrix metalloprotease inhibitor.
4. The conjugate of any one of claims 1 to 3, wherein the matrix metalloprotease inhibitor binds to hyaluroic acid, a hyaluroic acid derivative or the salt thereof via a spacer.
5. The conjugate of any one of claims 1 to 4, wherein the weight ratio of the matrix metalloprotease inhibitor to the entire conjugate is 0.01 to 50%.
6. The conjugate of any one of claims 1 to 5, wherein the matrix metalloprotease inhibitor is a hydroxamic acid residue.
7. The conjugate of any one of claims 1 to 6, wherein the matrix metalloprotease inhibitor is a hydroxamic acid residue represented by the general formula (1):

wherein

R_1 is a hydrogen atom, a hydroxyl group or a straight-chain or branched-chain alkyl group having 1 to 8 carbon atoms;

R_2 is a straight-chain or branched-chain alkyl group having 1 to 8 carbon atoms;

R_3 is a straight chain or branched alkyl group having 1 to 8 carbon atoms which may be substituted with a cycloalkyl group, an aryl group or a heterocyclic group; and

R_4 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.

8. The conjugate of any one of claims 1 to 7, wherein the spacer is represented by the general formula (2):

wherein

R_5 is a straight-chain or branched-chain alkylene group having 1 to 8 carbon atoms;

R_6 is an oxygen atom or a methylene or imino group which may be substituted with a straight-chain or branched-chain alkyl group having 1 to 4 carbon atoms;

R_7 is a straight-chain or branched-chain alkylene group having 1 to 10 carbon atoms into which one to three oxygen atoms may be inserted; and

R_8 is an oxygen atom, a sulfur atom or NR_9 , wherein R_9 is a hydrogen atom or a straight-chain or branched-chain alkyl group having 1 to 4 carbon atoms.

9. The conjugate of any one of claims 1 to 8, wherein the conjugate of the matrix metalloprotease inhibitor and the spacer is represented by the general formula (3):

wherein

R_{12} is a straight-chain or branched-chain alkylene group having 2 to 23 carbon atoms into which one imino group and/or one to four oxygen atoms may be inserted; and

R_{13} is a hydrogen atom or a straight-chain or branched-chain alkyl group having 1 to 4 carbon atoms.

10. The conjugate of any one of claims 1 to 9, wherein the matrix metalloprotease inhibitor in the form of a conjugate with hyaluroic acid, a hyaluroic acid derivative or a salt thereof inhibits a matrix metalloprotease *in situ*.

11. A method for preparing the conjugate of any one of claims 1 to 10 comprising binding a site of the therapeutic agent for joint diseases that does not affect the activity of the agent to a carboxyl group, a hydroxyl group or a

functional group at the reducing end of hyaluroic acid, a hyaluroic acid derivative or a salt thereof by direct chemical reaction or via a spacer.

12. A pharmaceutical composition comprising the conjugate of any one of claims 1 to 10.

13. The pharmaceutical composition of claim 12 which is a therapeutic agent for joint disease.

14. The pharmaceutical composition of claim 13, wherein the joint disease is osteoarthritis, rheumatoid arthritis or scapulohumeral periarthritis.

15. The use of the conjugate of any one of claims 1 to 10 in the preparation of a pharmaceutical composition.

16. The use of the conjugate of any one of claims 1 to 10 in the preparation of a therapeutic agent for joint diseases.

17. A method for treating a patient having a joint disease comprising administering a pharmaceutical composition containing a pharmaceutically effective amount of the conjugate of any one of claims 1 to 10 as the effective ingredient to the patient.

ABSTRACT

The object of the present invention is to provide a conjugate of a therapeutic agent for joint diseases and hyaluronic acid, a hyaluronic acid derivative or a salt thereof which can retain the therapeutic agent for joint diseases in joint cavities. According to the present invention, there are provided a conjugate of at least one therapeutic agent for joint diseases and hyaluronic acid, a hyaluronic acid derivative or a salt thereof; a method for preparing the above described conjugate which conjugate comprises binding a site of the therapeutic agent for joint diseases (for example, a matrix protease inhibitor) which does not affect the activity of a therapeutic agent to a carboxyl group, a hydroxyl group or a functional group at the reducing end of hyaluronic acid, a hyaluronic acid derivative or a salt thereof by direct chemical reaction or via a spacer; and a pharmaceutical composition containing the above described conjugate.

Fig. 1

MMP Inhibiting Activity

Fig. 2

MMP Inhibiting Activity

Fig. 3

Fig. 4

Stability of Conjugate 5
in physiological saline at 37°C

Fig. 5

Permeability of Conjugate 4
against Semipermeable Membrane

Fig. 6

Fig. 7

Fig. 8

MMP Inhibiting Activity

Inhibiting Activity
against Collagenase-1Inhibiting Activity
against Stromelysin-1

Fig. 9

MMP Inhibiting Activity

Fig. 10

Inhibiting Activity against Articular
Cartilage Collagen Destruction

Interleukin-1 (ng/ml)	0	1	0	1
Plasminogen (μg/ml)	0	0	100	100
HA (mg/ml)	0	0	0	0
Conjugate 7 (mg/ml)	0	0	0	0.01 0.1 1

Combined Declaration for Patent Application and Power of Attorney

As a below-named inventor, I hereby declare that:

My residence, post office address and citizenship are as stated below next to my name; and that I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled **CONJUGATE OF THERAPEUTIC AGENT FOR JOINT DISEASE AND HYALURONIC ACID**

the specification of which (check one)

[] is attached hereto;

[] was filed in the United States under 35 U.S.C. §111 on _____, as U.S. Appln. No. _____ *; or

[x] was/will be filed in the U.S. under 35 U.S.C. §371 by entry into the U.S. national stage of an international (PCT) application, PCT/JP99/02609 filed May 19, 1999, entry requested on _____ *; national stage application received U.S. Appln. No. _____ *; §371/§102(e) date _____ * (* if known)

and was amended on September 17, 1999 (if applicable).

(include dates of amendments under PCT Art. 19 and 34 if PCT)

I have reviewed and understand the contents of the above-identified specification, including the claims, as amended by any amendment referred to above; and I acknowledge the duty to disclose to the Patent and Trademark Office (PTO) all information known by me to be material to patentability as defined in 37 C.F.R. §1.56.

I hereby claim foreign priority benefits under 35 U.S.C. §§ 119 and 365 of any prior foreign application(s) for patent or inventor's certificate, or prior PCT application(s) designating a country other than the U.S., listed below with the "Yes" box checked and have also identified below any such application having a filing date before that of the application on which priority is claimed:

<u>138329/1998</u> (Number)	<u>Japan</u> (Country)	<u>20/5/1998</u> (Day Month Year Filed)	<input checked="" type="checkbox"/> YES	<input type="checkbox"/> NO
<u>224187/1998</u> (Number)	<u>Japan</u> (Country)	<u>7/8/1998</u> (Day Month Year Filed)	<input checked="" type="checkbox"/> YES	<input type="checkbox"/> NO
<u>43064/1999</u> (Number)	<u>Japan</u> (Country)	<u>22/2/1999</u> (Day Month Year Filed)	<input checked="" type="checkbox"/> YES	<input type="checkbox"/> NO
			<input type="checkbox"/> YES	<input type="checkbox"/> NO
			<input type="checkbox"/> YES	<input type="checkbox"/> NO

I hereby claim the benefit under 35 U.S.C. §120 of any prior U.S. non-provisional application(s) or prior PCT application(s) designating the U.S. listed below, or under §119(e) of any prior U.S. provisional applications listed below, and, insofar as the subject matter of each of the claims of this application is not disclosed in such U.S. or PCT application in the manner provided by the first paragraph of 35 U.S.C. §112, I acknowledge the duty to disclose to the PTO all information as defined in 37 C.F.R. §1.56(a) which occurred between the filing date of the prior application and the national filing date of this application:

<u>(Application No.)</u>	<u>(Day Month Year Filed)</u>	<u>(Status: patented, pending, abandoned)</u>
<u>(Application No.)</u>	<u>(Day Month Year Filed)</u>	<u>(Status: patented, pending, abandoned)</u>
<u>(Application No.)</u>	<u>(Day Month Year Filed)</u>	<u>(Status: patented, pending, abandoned)</u>

As a named inventor, I hereby appoint the following registered practitioners to prosecute this application and to transact all business in the Patent and Trademark Office connected therewith:

All of the practitioners associated with Customer Number 001444

Direct all correspondence to the address associated with Customer Number 001444, i.e.,
BROWDY AND NEIMARK, P.L.L.C.
624 Ninth Street, N.W.
Washington, D.C. 20001-5303
(202) 628-5197

The undersigned hereby authorizes the U.S. Attorneys or Agents appointed herein to accept and follow instructions from YUASA AND HARA as to any action to be taken in the U.S. Patent and Trademark Office regarding this application without direct communication between the U.S. Attorneys or Agents and the undersigned. In the event of a change of the persons from whom instructions may be taken, the U.S. Attorneys or Agents appointed herein will be so notified by the undersigned.

I hereby further declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under 18 U.S.C. §1001 and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

1-00 1. FULL NAME OF FIRST INVENTOR <u>Tatsuya TAMURA</u>		INVENTOR'S SIGNATURE <i>Tatsuya Tamura</i>	DATE NOV 2000
RESIDENT <u>Shizuoka, Japan</u>		CITIZENSHIP Japanese <i>JPX</i>	
POST OFFICE ADDRESS <u>c/o Chugai Seiyaku Kabushiki Kaisha of 135, Komakado 1-chome, Gotenba-shi, Shizuoka 412-8513 Japan</u>			
2-00 2. FULL NAME OF SECOND JOINT INVENTOR <u>Akira OKAMACHI</u>		INVENTOR'S SIGNATURE <i>Akira Okamachi</i>	DATE NOV 10, 2000
RESIDENT <u>Shizuoka, Japan</u>		CITIZENSHIP Japanese <i>JPX</i>	
POST OFFICE ADDRESS <u>c/o Chugai Seiyaku Kabushiki Kaisha of 135, Komakado 1-chome, Gotenba-shi, Shizuoka 412-8513 Japan</u>			
3. FULL NAME OF THIRD JOINT INVENTOR		INVENTOR'S SIGNATURE	DATE
RESIDENT		CITIZENSHIP	
POST OFFICE ADDRESS			
4. FULL NAME OF FOURTH JOINT INVENTOR		INVENTOR'S SIGNATURE	DATE
RESIDENT		CITIZENSHIP	
POST OFFICE ADDRESS			
5. FULL NAME OF FIFTH JOINT INVENTOR		INVENTOR'S SIGNATURE	DATE
RESIDENT		CITIZENSHIP	
POST OFFICE ADDRESS			
6. FULL NAME OF SIXTH JOINT INVENTOR		INVENTOR'S SIGNATURE	DATE
RESIDENT		CITIZENSHIP	
POST OFFICE ADDRESS			
7. FULL NAME OF SEVENTH JOINT INVENTOR		INVENTOR'S SIGNATURE	DATE
RESIDENT		CITIZENSHIP	
POST OFFICE ADDRESS			