Equilíbrio Químico

Gabriel Braun

Colégio e Curso Pensi, Coordenação de Química

2G06

Nível I

PROBLEMA 1.1

2G02

Considere as proposições a respeito de uma reação reversível.

- 1. Uma reação para quando atinge o equilíbrio.
- **2.** Uma reação em equilíbrio não é afetada pelo aumento da concentração de produtos.
- **3.** Se a reação começa com maior pressão dos reagentes, a constante de equilíbrio será maior.
- Se a reação começa com concentrações maiores de reagentes, as concentrações de equilíbrio dos produtos serão maiores.

Assinale a alternativa que relaciona as proposições *corretas*.

Α :

B 4

C 1 e 4

D 2 e 4

E 3 e 4

Dados

PROBLEMA 1.3

• $S^{\circ}(CO, g) = 251 \, J \, K^{-1} \text{mol}^{-1}$

em que a reação é conduzida.

A 1150 K

1550 K 1950 K

A reação a seguir é conduzida sob 1 atm.

 $NiO\left(s\right)+CO\left(s\right) \Longleftrightarrow Ni\left(s\right)+CO_{2}(g) \quad K=500$ Para a manutenção da temperatura constante até a situação

de equilíbrio, devem ser retirados do meio reacional 16,10 kJ

de energia por mol de óxido de níquel reagido, na forma de

Assinale a alternativa que mais se aproxima da temperatura

B 1350 K

D 1750 K

- $S^{\circ}(CO_2, g) = 296 J K^{-1} mol^{-1}$
- $S^{\circ}(Ni, s) = 30 J K^{-1} mol^{-1}$
- $S^{\circ}(NiO, s) = 38 J K^{-1} mol^{-1}$

PROBLEMA 1.2

2G03

Considere as proposições a respeito de uma reação reversível.

- Em uma reação de equilíbrio, a reação inversa só ocorre quando todos os reagentes tiverem sido convertidos em produtos.
- As concentrações de equilíbrio serão as mesmas se começarmos uma reação com os reagentes puros ou com os produtos puros.
- **3.** As velocidades das reações direta e inversa são iguais no equilíbrio.
- **4.** Se a energia livre de Gibbs é maior do que a energia livre padrão de reação, a reação avança até o equilíbrio.

Assinale a alternativa que relaciona as proposições corretas.

A 2

B 3

C 2 e 3

- **D** 1, 2 e 3
- **E** 2, 3 e 4

PROBLEMA 1.4 2G08

Considere a reação a 25 °C.

$$\frac{1}{2}\,H_2(g) + \frac{1}{2}\,I_2(g) \Longrightarrow HI(g)$$

Assinale a alternativa que mais se aproxima da constante de equilíbrio dessa reação.

- \mathbf{B} 5×10^{-1}
- c 5×10^1

1

- D 5×10^3
- \mathbf{E} 5×10^5

Dados

• $\Delta G_f^{\circ}(HI, g) = 1.7 \, kJ \, mol^{-1}$

Considere a reação a 25 °C.

$$N_2O_4(g) \Longrightarrow 2NO_2(g)$$

Assinale a alternativa que mais se aproxima da constante de equilíbrio dessa reação.

A
$$1.5 \times 10^{-3}$$

B
$$1.5 \times 10^{-1}$$

c
$$1,5 \times 10^1$$

D
$$1.5 \times 10^3$$

E
$$1.5 \times 10^5$$

Dados

- $\Delta H_f^{\circ}(NO_2, g) = 33,2 \, kJ \, mol^{-1}$
- $\Delta H_f^{\circ}(N_2O_4, g) = 9,16 \text{ kJ mol}^{-1}$
- $\Delta S^{\circ}(NO_2, g) = 240 \, J \, K^{-1} \, mol^{-1}$
- $\bullet \Delta S^{\circ}(N_2O_4, g) = 304 J K^{-1} mol^{-1}$

PROBLEMA 1.6

2G04

Em um cilindro são adicionados 100 bar de SO_2 , O_2 e SO_3 , respectivamente. O sistema é mantido a 25 °C e ocorre a reação:

$$2\,SO_2(g) + O_2(g) \Longrightarrow SO_3(g)$$

Assinale a alternativa que mais se aproxima da energia livre da reação.

$$\mathbf{A}$$
 $-131 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$

$$\mathbf{B}$$
 $-142 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$

$$-153 \, \text{kJ mol}^{-1}$$

$$-164 \, \text{kJ mol}^{-1}$$

$$-175 \, \text{kJ} \, \text{mol}^{-1}$$

Dados

- $\Delta G_f^{\circ}(SO_2, g) = -300 \,\text{kJ mol}^{-1}$
- $\Delta G_f^{\circ}(SO_3, g) = -371 \,\text{kJ} \,\text{mol}^{-1}$

PROBLEMA 1.7

2G05

Em um cilindro são adicionados 4,2 bar, 1,8 bar e 20 bar de N_2 , H_2 e NH_3 , respectivamente. O sitema é mantido a 400 K e ocorre a reação:

$$N_2(g) + 3H_2(g) \Longrightarrow 2NH_3(g)$$
 $K = 40$

Assinale a alternativa que mais se aproxima da energia livre da reação.

$$-4,5 \text{ kJ mol}^{-1}$$

$$-3,6 \, \text{kJ} \, \text{mol}^{-1}$$

$$-2.7 \, \text{kJ} \, \text{mol}^{-1}$$

$$-1.8 \, \text{kJ} \, \text{mol}^{-1}$$

$$-0.9 \, \text{kJ} \, \text{mol}^{-1}$$

Considere as reações a 350 K.

PROBLEMA 1.8

$$\begin{split} N_2(g) + 3\,H_2(g) & \Longrightarrow 2\,NH_3(g) & \qquad K_1 = 36 \\ 4\,NH_3(g) & \Longrightarrow 2\,N_2(g) + 6\,H_2(g) & \qquad K_2 \end{split}$$

Assinale a alternativa que mais se aproxima da constante de equilíbrio K_2 .

PROBLEMA 1.9

2G10

Considere as reações a 350 K.

$$\begin{split} 2\,SO_2(g) + O_2(g) & \Longrightarrow 2\,SO_3(g) & \qquad \quad K_{c,1} = 1\times 10^{12} \\ SO_3(g) & \Longleftrightarrow SO_2(g) + \frac{1}{2}\,O_2(g) & \qquad K_{c,2} \end{split}$$

Assinale a alternativa que mais se aproxima da constante de equilíbrio $\mathsf{K}_{\mathsf{c},2}.$

A
$$1 \times 10^{-12}$$

B
$$1 \times 10^{-9}$$

$$1 \times 10^{-6}$$

$$1 \times 10^6$$

$$1 \times 10^{12}$$

PROBLEMA 1.10

2G11

Considere as reações a 300 K.

$$\begin{split} &H_2(g) + Cl_2(g) \Longrightarrow 2\,HCl(g) & \qquad K_1 = 4\times 10^{31} \\ &2\,BrCl(g) \Longrightarrow Br_2(g) + Cl_2(g) & \qquad K_2 = 400 \\ &2\,BrCl(g) + H_2(g) \Longrightarrow Br_2(g) + 2\,HCl(g) & \qquad K_3 \end{split}$$

Assinale a alternativa que mais se aproxima da constante de equilíbrio K_3 .

A
$$1,0 \times 10^{29}$$

B
$$1.6 \times 10^{29}$$

$$1.0 \times 10^{34}$$

D
$$1.6 \times 10^{34}$$

E
$$4.0 \times 10^{34}$$

Considere as reações a 500 K.

$$H_2(g) + I_2(g) \Longrightarrow 2 HI(g)$$

$$K_1 = 160$$

$$N_2(g) + 3\,H_2(g) \Longrightarrow 2\,NH_3(g)$$

$$K_2 = 3.6 \times 10^{-2}$$

2G12

$$2\,NH_3(g) + 3\,I_2(g) \Longrightarrow N_2(g) + 6\,HI(g) \quad \, \mathsf{K}_3$$

Assinale a alternativa que mais se aproxima da constante de equilíbrio K_3 .

- **A** 4.4×10^3
- **B** 7.1×10^5
- $1,1 \times 10^8$
- **D** 3.1×10^9
- **E** 8.8×10^{10}

PROBLEMA 1.12

2G13

Considere a reação a 500 K.

$$2 \operatorname{NOCl}(g) \Longrightarrow 2 \operatorname{NO}(g) + \operatorname{Cl}_2(g) \quad K = 1.8 \times 10^{-2}$$

Assinale a alternativa que mais se aproxima da constante de equilíbrio K_c para essa reação.

- **A** 3.2×10^{-5}
- **B** 4.3×10^{-4}
- c 5,4 × 10⁻³
- **D** 6.5×10^{-2}
- **E** 7.6×10^{-1}

PROBLEMA 1.13

2G14

Considere a reação a 1073 K.

$$CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$$
 $K = 167$

Assinale a alternativa que mais se aproxima da constante de equilíbrio K_c para essa reação.

- **A** 1.9×10^{-2}
- **B** 1.9×10^{-1}

c 1,9

- **D** $1,9 \times 10^{1}$
- **E** $1,9 \times 10^2$

Em um recipiente contendo NH_3 , N_2 , H_2 a $400\,K$ o equilíbrio é estabelecido:

$$N_2(g) + 3\,H_2(g) \Longrightarrow 2\,NH_3(g) \quad \, K = 40$$

No equilíbrio, as pressões de NH_3 e H_2 são 380 Torr e 190 Torr, respectivamente.

Assinale a alternativa que mais se aproxima da concentração molar de N_2 no equilíbrio.

- A 106 Torr
- B 205 Torr
- **c** 304 Torr
- **D** 403 Torr
- E 502 Torr

PROBLEMA 1.15

2G16

Em um recipiente contendo HI, H₂, I₂ a 500 K o equilíbrio é estabelecido:

$$H_2(g) + I_2(g) \Longrightarrow 2 HI(g)$$
 $K = 160$

No equilíbrio, as concentrações de HI e $\rm I_2$ são $40\,mmol\,L^{-1}$ e 5 mmol $\rm L^{-1}$, respectivamente.

Assinale a alternativa que mais se aproxima da concentração molar de H_2 no equilíbrio.

- \mathbf{A} 1 mmol \mathbf{L}^{-1}
- \mathbf{B} 2 mmol \mathbf{L}^{-1}
- \mathbf{C} 3 mmol L^{-1}
- \mathbf{D} 4 mmol \mathbf{L}^{-1}
- $E 5 \text{ mmol } L^{-1}$

2G17

As concentrações dos reagentes e produtos de uma reação foram monitoradas ao longo do tempo.

Assinale a alternativa que mais se aproxima da constante de equilíbrio dessa reação balanceada com os menores coeficientes inteiros.

- **A** 1,35
- **B** 1,64
- **c** 1,86

- **D** 2,03
- **E** 2,35

As pressões parciais dos reagentes e produtos de uma reação foram monitoradas ao longo do tempo.

Assinale a alternativa que mais se aproxima da constante de equilíbrio dessa reação balanceada com os menores coeficientes inteiros.

- **A** 0,016
- **B** 0,29
- **c** 0,46

- **D** 1,6
- **E** 29

PROBLEMA 1.18

2G19

Em um recipiente são adicionados 3,3 mbar de BrCl. O sistema é mantido a 500 K e o equilíbrio é estabelecido:

$$2\,BrCl\left(g\right) \Longrightarrow Br_{2}(g) + Cl_{2}(g) \quad \, K = 36$$

Assinale a alternativa que mais se aproxima da pressão parcial de Br_2 na mistura em equilíbrio.

- A 1,0 mbar
- **B** 1,5 mbar
- **c** 2,0 mbar
- **D** 2,5 mbar
- **E** 3,0 mbar

Uma amostra de 3,12 g de PCl $_5$, é adicionada em um recipiente de 500 mL. O sistema é mantido a 250 °C e o equilíbrio é estabelecido:

$$PCl_5(g) \Longrightarrow PCl_3(g) + Cl_2(g)$$
 $K = 80$

Assinale a alternativa que mais se aproxima da pressão parcial de PCl_5 na mistura em equilíbrio.

- A 10 mbar
- B 20 mbar
- c 30 mbar
- **D** 40 mbar
- E 50 mbar

PROBLEMA 1.20

2G21

2G20

Uma amostra de $25\,g$ de carbamato de amônio, $NH_4(NH_2CO_2)$, é adicionada em um recipiente de $250\,mL$. O sistema é mantido a $25\,^{\circ}C$ e o equilíbrio é estabelecido:

$$NH_4(NH_2CO_2)(s) \Longrightarrow 2NH_3(g) + CO_2(g)$$

No equilíbrio, a massa de dióxido de carbono é 17,4 mg. **Assinale** a alternativa que mais se aproxima da constante de equilíbrio da reação.

- **A** 1.6×10^{-8}
- **B** 2.3×10^{-8}
- C $1,6 \times 10^{-4}$
- **D** 2.3×10^{-4}
- \mathbf{E} 5,7 × 10⁻⁴

PROBLEMA 1.21

2G22

A um recipiente de 5 L são adicionados 2 mol de NH $_3$, H $_2$ S e de NH $_4$ HS. O sistema é mantido a 35 °C e o equilíbrio é estabelecido:

$$NH_3(g) + H_2S(g) \Longrightarrow NH_4HS(s)$$
 $K = 400$

Assinale a alternativa que mais se aproxima da massa de NH_4HS no equilíbrio.

- **A** 132 g
- **B** 152 g
- **c** 172 g

- **D** 192 g
- **E** 212 g

Quando NaHCO₃ sólido é colocado em um recipiente rígido de 2,5 L e aquecido a 160 °C o equilíbrio é estabelecido:

$$2 \text{ NaHCO}_3(s) \rightleftharpoons \text{Na}_2\text{CO}_3(s) + \text{CO}_2(g) + \text{H}_2\text{O}(g)$$

No equilíbrio, a pressão total é 8 bar. Em um segundo experimento, é adicionada a mesma massa de sólido em um recipiente de mesmo volume com 1 bar de CO_2 .

Assinale a alternativa que mais se aproxima da pressão de equilíbrio de CO₂ no segundo experimento.

- **A** 2,5 bar
- **B** 3,5 bar
- **c** 4,5 bar
- **D** 5,5 bar
- **E** 6,5 bar

PROBLEMA 1.23

2G24

Considere reação exotérmica em fase gasosa, inicialmente conduzida a 400 °C sob 200 atm.

$$2\mathbf{A}(g) + \mathbf{B}(g) \rightleftharpoons \mathbf{C}(g) + \mathbf{D}(g)$$

Considere as proposições.

- Conduzir a reação a 600 °C gera uma fração maior de C e D.
- 2. Conduzir a reação a 600 °C faz com que o equilíbrio seja alcançado em menos de 60 min.
- Conduzir a reação a uma pressão de 100 atm gera uma fração menor de C e D.
- Remover C e D do meio reacional após o equilíbrio e então retomar a reação permitem obter uma fração total maior de C e D.
- A 2 e 3

B 2 e 4

c 3 e 4

- D 2,3e4
- **E** 1, 2, 3 e 4

A amônia é produzida em escala industrial pelo processo Haber-Bosch. A reação de formação exotérmica a partir de hidrogênio e nitrogênio é conduzida a 450 °C sob 200 atm. Considere as proposições:

- 1. O aumento da pressão no reator, mediante adição de um gás inerte, aumenta o rendimento do processo.
- **2.** O uso de um catalisador mais eficiente aumenta o rendimento do processo.
- Uma vez atingido o equilíbrio, não ocorrem mais colisões efetivas entre moléculas de hidrogênio e nitrogênio.
- **4.** A redução da temperatura no reator diminui a velocidade da reação, mas favorece a formação de amônia.

Assinale a alternativa que relaciona as proprosições corretas.

Α :

- B
- **C** 1 e 4

D 2 e 4

E 3 e 4

PROBLEMA 1.25

2G26

2G25

Em um reator mantido à temperatura constante, PCl_5 encontrase em equilíbrio com 1 atm de Cl_2 e 2 atm de PCl_3 .

$$PCl_5 \Longrightarrow PCl_3 + Cl_2 \quad K = 4$$

Assinale a alternativa que apresenta a nova pressão de equilíbrio de PCl₅ após adição de mais 2 atm desse gás ao reator.

- **A** 1,0 atm
- **B** 1,5 atm
- **c** 2,0 atm
- **D** 2,5 atm
- **E** 3,0 atm

PROBLEMA 1.26

2G27

As pressões parciais de uma mistura de $N_2O_4(g)$ e $NO_2(g)$ em equilíbrio são 0,34 atm e 1,2 atm. O volume do recipiente é duplicado mantendo a temperatura constante.

Assinale a alternativa que mais se aproxima da pressão parcial de N_2O_4 na mistura em equilíbrio.

- **A** 0,06 atm
- **B** 0,12 atm
- **c** 0,18 atm
- **D** 0,24 atm
- **E** 0,30 atm

,

Considere a reação de síntese da amônia a 298 K:

$$N_2(g) + 3\,H_2(g) \Longrightarrow 2\,NH_3(g) \quad \, K_{298\,K} = 6.8 \times 10^5$$

Assinale a alternativa que mais se aproxima da constante de equilíbrio da reação a 400 K.

- A 5×10^1
- $\mathbf{B} \quad 5 \times 10^2$
- c 5×10^3

- D 5×10^4
- E 5×10^5

Dados

• $\Delta H_f^{\circ}(NH_3, g) = -46.1 \, \text{kJ mol}^{-1}$

PROBLEMA 1.28

2G29

Considere a reação:

$$2 SO_2(g) + O_2(g) \Longrightarrow 2 SO_3(g)$$

A constante de equilíbrio dessa reação é 4×10^{24} a 27 °C e 2,5 \times 10^{10} a 227 °C.

Assinale a alternativa que mais se aproxima da variação de entalpia da reacão.

- $-203 \, \text{kJ} \, \text{mol}^{-1}$
- $B -74 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$
- $-8 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$
- \mathbf{D} 8 kJ mol⁻¹
- \mathbf{E} 203 kJ mol⁻¹

$$N_2(g) + O_2(g) \Longrightarrow 2\,NO(g) \quad K_c = 1\times 10^{-5}$$

Assinale a alternativa que mais se aproxima da quantidade de NO no equilíbrio.

- A 2 mmol
- B 4 mmol
- c 6 mmol
- D 8 mmol
- E 10 mmol

PROBLEMA 2.2

2G32

Um balão é preenchido com amônia. O sistema é mantido a 25 °C e o equilíbrio é estabelecido quando 50% da amônia sofreu decomposição:

$$N_2(g) + 3 H_2(g) \Longrightarrow 2 NH_3(g)$$
 $K_c = 5.3 \times 10^{-5}$

Assinale a alternativa que mais se aproxima da pressão inicial de amônia.

- A 10 kPa
- **B** 20 kPa
- **c** 30 kPa
- **D** 40 kPa
- E 50 kPa

PROBLEMA 2.3

2G33

Sob 1 atm, 0,5% do pentóxido de nitrogênio em um cilindro está decomposto devido a reação:

$$2\,N_2O_5(g) \Longleftrightarrow 4\,NO_2(g) + O_2(g)$$

O volume do cilindro é aumentado em dez vezes.

 $\label{eq:Assinale} \textbf{Assinale} \ a \ alternativa \ que \ mais \ se \ aproxima \ da \ fração \ de \ N_2O_5 \\ que \ sofre \ decomposição \ devido \ ao \ aumento \ do \ volume.$

- A 2%
- **B** 8%
- **c** 14%

- **D** 20%
- **E** 26%

PROBLEMA 2.4

2G34

Um balão de 1 L é preenchido com 2 mol de NO e 1 mol de Cl_2 . O sistema é mantido a 35 °C e o equilíbrio é estabelecido:

$$2\,\text{NOCl}\,(g) \Longleftrightarrow 2\,\text{NO}\,(g) + \text{Cl}_2(g) \quad \, \text{K}_c = \text{1,6} \times 10^{-5}$$

Assinale a alternativa que mais se aproxima da quantidade de NO no equilíbrio.

- A 10 mmol L⁻¹
- \mathbf{B} 20 mmol \mathbf{L}^{-1}
- \mathbf{C} 50 mmol L^{-1}
- \mathbf{D} 70 mmol L⁻¹
- **E** 90 mmol L^{−1}

PROBLEMA 2.5

2G35

Um balão é preenchido com PCl_5 . O sistema é mantido a 556 K e o equilíbrio é estabelecido:

$$PCl_5(g) \Longrightarrow PCl_3(g) + Cl_2(g)$$
 $K = 5$

No equilíbrio a pressão total é 15 atm.

Assinale a alternativa que mais se aproxima do grau de decomposição do PCl₅ no equilíbrio.

- **A** 10%
- **B** 20%
- **c** 30%

- **D** 40%
- **E** 50%

PROBLEMA 2.6

2G36

Um balão de 1 L é preenchido com 0,64 bar de fosfina. O sistema é mantido a 25 °C e o equilíbrio é estabelecido:

$$2 PH_3(g) \Longrightarrow 2 P(s) + 3 H_2(g)$$

No equilíbrio a pressão total é 0,93 atm.

- a. **Determine** a massa de fósforo produzida no equilíbrio.
- b. **Determine** a constante de equilíbrio para essa reação.

PROBLEMA 2.7

2G37

Um balão é preenchido com $100\,\mathrm{Torr}$ de NO e $40\,\mathrm{Torr}$ de Br_2 . O sistema é mantido a $300\,\mathrm{K}$ e o equilíbrio é estabelecido:

$$2 \operatorname{NO}(g) + \operatorname{Br}_2(g) \Longrightarrow 2 \operatorname{NOBr}(g)$$

No equilíbrio a pressão total é 110 Torr.

Assinale a alternativa que mais se aproxima da constante de equilíbrio para essa reação.

- **A** 0,225
- **B** 17,1
- c 22,5

- **D** 171
- **E** 225

Um balão é preenchido com P_4 . O sistema é mantido a 1325 K e o equilíbrio é estabelecido:

$$P_4(g) \Longrightarrow 2\,P_2(g) \quad \, K=0,1$$

No equilíbrio a pressão total é 1 atm.

Assinale a alternativa que mais se aproxima do grau de dissociação de P_4 no equilíbrio.

- A 4%
- **B** 8%
- **c** 12%

- **D** 16%
- **E** 20%

PROBLEMA 2.9

2G39

2G38

A 5000 K e 1 atm, 83% das moléculas de oxigênio em uma amostra estão dissociadas em oxigênio atômico.

Assinale a alternativa que mais se aproxima da pressão em que 95% das moléculas de oxigênio estarão dissociadas a 5000 K.

- **A** 0,24 atm
- **B** 0,48 atm
- **c** 0,72 atm
- **D** 0,96 atm
- **E** 1,20 atm

PROBLEMA 2.10

2G40

Um balão é preenchido com tetracloreto de carbono. O sistema é mantido a $700\,^{\circ}\text{C}$ e o equilíbrio é estabelecido:

$$CCl_4(g) \rightleftharpoons C(s) + 2 Cl_2(g)$$
 $K = 0.8$

No equilíbrio a pressão total é 1,2 atm.

Assinale a alternativa que mais se aproxima da pressão inicial de tetracloreto de carbono.

- **A** 0,1 atm
- **B** 0,3 atm
- **c** 0,6 atm
- **D** 0,9 atm
- **E** 1,2 atm

PROBLEMA 2.11

2G41

Um balão de 1 L é preenchido com 4,8 g de metanol. O sistema é mantido a 250 °C e o equilíbrio é estabelecido:

$$CH_3OH(g) \Longrightarrow CO(g) + 2H_2(g)$$

Após o sistema atingir o equilíbrio, um frasco é preenchido por um pequeno orifício na lateral do balão. A quantidade de hidrogênio que efunde para o frasco é 32 vezes mais que a quantidade de metanol.

- a. **Determine** a razão entre a quantidade de hidrogênio e metanol na mistura em equilíbrio.
- b. **Determine** a constante de equilíbrio para essa reação.

Um reservatório de 6 L é preenchido com 79,2 g de gelo seco e 30 g de carvão mineral em pó. O sistema é mantido a $1000\,\mathrm{K}$ e o equilíbrio é estabelecido:

$$CO_{2}(g)+C\left(s\right) \Longleftrightarrow 2\,CO\left(g\right)$$

No equilíbrio a densidade da fase gasosa é $14\,\mathrm{g\,L^{-1}}$. A $1100\,\mathrm{K}$ a constante de equilíbrio da reação é 22.

- a. **Determine** a constante de equilíbrio da reação a 1000 K
- b. Classifique a reação como endotérmica ou exotérmica.

PROBLEMA 2.13

2G43

Um balão é preenchido com 88 g de SO₃. O sistema é mantido a 600 °C e o equilíbrio é estabelecido:

$$SO_3(g) \Longrightarrow SO_2(g) + \frac{1}{2} \, O_2(g)$$

No equilíbrio a densidade da fase gasosa é 1,6 g $\rm L^{-1}$ e a pressão total é 1,8 atm.

Determine a constante de equilíbrio dessa reação.

PROBLEMA 2.14

2G44

Um reator equipado com um pistão que se move livremente é preenchido com NOBr. A densidade da gás é $4,4\,\mathrm{g\,L^{-1}}$. O sistema é mantido a $25\,^\circ\mathrm{C}$ e o equilíbrio é estabelecido:

$$2 \operatorname{NOBr}(g) \Longrightarrow 2 \operatorname{NO}(g) + \operatorname{Br}_2(g)$$

No equilíbrio a densidade da fase gasosa é $4,0 \,\mathrm{g}\,\mathrm{L}^{-1}$.

- a. **Determine** a constante de equilíbrio dessa reação.
- b. **Explique** o efeito da adição de argônio ao reator

PROBLEMA 2.15

2G45

Em solução de tetracloreto de carbono, o tetracloreto de vanádio sofre dimerização formando $V_2 Cl_8$. Em um experimento, 6,76 g de VCl_4 foram dissolvidos em 100 g de tetracloreto de carbono a 0 °C. Após certo tempo a mistura alcançou o equilíbrio, sendo a densidade 1,78 g cm $^{-3}$. O ponto de fusão da solução é $-30\,^{\circ}\text{C}$

- a. Determine o grau de dimerização do tetracloreto de vanádio
- Determine a constante de equilíbrio de dimerização do cloreto de vanádio.

Dados

- $k_b(CCl_4) = 29.8 \, \text{K kg mol}^{-1}$
- $T_{\text{fus}}(\text{CCl}_4) = -23 \,^{\circ}\text{C}$

Um reator para a produção de metanol é preenchido com uma mistrura de CO e H_2 na proporção 1:2. O sistema é mantido a $600\,K$ e o equilíbrio é estabelecido:

$$CO\left(g\right)+2\,H_{2}(g) \Longrightarrow CH_{3}OH\left(g\right)$$

No equilíbrio a pressão total é 50 atm.

- a. **Determine** a constante de equilíbrio para essa reação.
- b. Determine o grau de conversão para a formação de metanol.

Dados

- Hf(CH3OH,g)
- S(CH3OH,g)
- $\Delta H_f^{\circ}(CO, g) = -111 \text{ kJ mol}^{-1}$
- $\Delta S^{\circ}(H_2, g) = 131 \, J \, K^{-1} \, mol^{-1}$
- $\Delta S^{\circ}(CO, g) = 198 \, J \, K^{-1} \, mol^{-1}$

PROBLEMA 2.17

2G47

Um reator para a produção de cementita é equipado com um pistão que se move livremente contra pressão de 1 atm. O reator é preenchido com ferro metálico e gás hidrogênio. O sistema é mantido a $25\,^{\circ}\text{C}$ e o equilíbrio é estabelecido:

$$CH_4(g) + 3 Fe(S) \Longrightarrow Fe_3C(s) + 2 H_2(g)$$

- a. **Determine** a constante de equilíbrio para essa reação.
- b. Determine a fração molar de hidrogênio na fase gasosa no equilíbrio.
- Avalie a viabilidade do processo para a produção de cementita.

Dados

- $S^{\circ}(Fe_3C, s) = 105 J K^{-1} mol^{-1}$
- $\Delta H_f^{\circ}(Fe_3C, s) = 25,1 \text{ kJ mol}^{-1}$
- Hf(CH4,g)
- S(CH4,g)
- $\Delta S^{\circ}(Fe, s) = 27.3 \, J \, K^{-1} \, mol^{-1}$
- $\Delta S^{\circ}(H_2, g) = 131 \, J \, K^{-1} \, mol^{-1}$

PROBLEMA 2.18

2G48

A constante de equilíbrio, K, para uma reação é 8,84 a 25 °C e 3,25 \times 10^{-2} a 75 °C.

- a. **Determine** a temperatura em que K = 1.
- b. **Determine** a entropia de reação.

Um reator contém uma mistura dos gases metilpropeno, *cis*-but-2-eno e *trans*-but-2-eno em equilíbrio.

Determine a fração de cada composto no equilíbrio.

Dados

- ΔG_f° (*cis*-but-2-eno) = 66 kJ mol⁻¹
- $\Delta G_f^{\circ}(trans\text{-but-2-eno}) = 63 \text{ kJ mol}^{-1}$
- ΔG_f° (metilpropeno) = 58 kJ mol⁻¹

PROBLEMA 2.20

2G50

Um reator de 1 L é preenchido com 10 g de bicarbonato de sódio. O sistema é mantido a 125 °C e o equilíbrio é estabelecido:

$$2 \text{ NaHCO}_3(s) \Longrightarrow \text{Na}_2\text{CO}_3(s) + \text{CO}_2(g) + \text{H}_2\text{O}(g)$$

- a. **Determine** a pressão parcial de CO₂ no equilíbrio.
- b. **Determine** a massa de bicarbonato de sódio no equilíbrio.
- c. **Determine** o volume mínimo necessário para a decomposição de todo o bicarbonato.

PROBLEMA 2.21

2G51

Quando o carbonato de prata hidratado é seco com uma corrente de ar quente, o ar deve ter uma concentração mínima de CO₂ para evitar a decomposição deste, conforme a reação:

$$Ag_2CO_3(s) \longrightarrow Ag_2O(s) + CO_2(g) \quad \Delta H = 80\,kJ\,mol^{-1}$$

A 25 °C, a pressão mínima de CO_2 para não haver decomposição é 6,2 \times 10^{-3} Torr.

Assinale a alternativa que mais se aproxima da pressão mínima de CO₂ para não haver decomposição a 110 °C.

- **A** 2,5 Torr
- **B** 5,0 Torr
- **c** 7,5 Torr
- **D** 10,0 Torr
- **E** 12,5 Torr

Gabarito

Nível I

- 1. B 2. C 3. A 4. B 5. B 6. C 7. C 8. B 9. C 10. D 11. D 12. B 13. C 14. C 15. B
- 16. B 17. A 18. D 19. D 20. D
- 21. D 22. C 23. D 24. B 25. B
- 26. B 27. D 28. A

Nível II

- 1. C
- 2. B
- 3. A
- 4. C
- 5. I
- **6.** a. 720 mg
 - b. 183
- 7. D
- 8. D
- 9. A
- 10. D
- **11.** a. 8
 - b. 423
- **12.** a. 6,76
 - b. Endotérmica.
- **13.** 0,86
- **14.** a. $2,33 \times 10^{-4}$
 - b. Não há efeito no equilíbrio.
- **15.** a. 85%
 - b. 33
- **16.** a. $2,5 \times 10^{-4}$
 - b. 28%
- **17.** a. $4,6 \times 10^{-13}$
 - b. 6.8×10^{-7}
 - c. O processo não é viável.
- **18.** a. 310 K
 - b. $310 \, \mathrm{J} \, \mathrm{mol}^{-1} \, \mathrm{K}^{-1}$
- **19.** 87% metilpropeno, 3% cis-but-2-eno e 10% trans-but-2-eno.
- **20.** a. 0,5 atm
 - b. 7,5 g
 - c. 3,9 L
- 21. C