Capítulo 12 | Regressão linear múltipla e alguns modelos de regressão não-linear

12.2 Estimação dos coeficientes

Modelo de regressão linear múltipla

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \cdots + \beta_k x_{ki} + \epsilon_i$$

ou

$$y_i = \hat{y}_i + e_i = b_0 + b_1 x_{1i} + b_2 x_{2i} + \cdots + b_k x_{ki} + e_i,$$

onde $\boldsymbol{\epsilon}_i$ e \boldsymbol{e}_i são o erro aleatório e o resíduo, respectivamente, associados com a resposta \boldsymbol{y}_i e com valor ajustado $\hat{\boldsymbol{y}}_i$.

Tabela 12.1 Dados para o Exemplo 12.1

Óxido Nitroso, y	Umidade,	Temperatura, x_2	Pressão,	Óxido Nitroso, <i>y</i>	Umidade,	Temperatura, x_2	Pressão,
0,90	72,4	76,3	29,18	1,07	23,2	76,8	29,38
0,91	41,6	70,3	29,35	0,94	47,4	86,6	29,35
0,96	34,3	77,1	29,24	1,10	31,5	76,9	29,63
0,89	35,1	68,0	29,27	1,10	10,6	86,3	29,56
1,00	10,7	79,0	29,78	1,10	11,2	86,0	29,48
1,10	12,9	67,4	29,39	0,91	73,3	76,3	29,40
1,15	8,3	66,8	29,69	0,87	75,4	77,9	29,28
1,03	20,1	76,9	29,48	0,78	96,6	78,7	29,29
0,77	72,2	77,7	29,09	0,82	107,4	86,8	29,03
1,07	24,0	67,7	29,60	0,95	54,9	70,9	29,37

Fonte: Charles T. Hare, "Light-Duty Diesel Emission Correction Factors for Ambient Conditions" (Fatores de correlação da emissão de diesel de cargas leves com as condições ambientais), EPA-600/2-77-116, Agência de Proteção Ambiental Norte-Americana.

12.3 Modelo de regressão linear usando matrizes (opcional)

Modelo linear geral

$$y = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon},$$

onde

$$y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}, \quad \mathbf{X} = \begin{bmatrix} 1 & x_{11} & x_{21} & \cdots & x_{k1} \\ 1 & x_{12} & x_{22} & \cdots & x_{k2} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_{1n} & x_{2n} & \cdots & x_{kn} \end{bmatrix},$$

$$eta = \left[egin{array}{c} eta_0 \ eta_1 \ dots \ eta_k \end{array}
ight], \quad oldsymbol{\epsilon} = \left[egin{array}{c} \epsilon_1 \ \epsilon_2 \ dots \ \epsilon_n \end{array}
ight].$$

Tabela 12.2 Dados para o Exemplo 12.3						
y (% de sobrevivência)	x ₁ (% de peso)	x ₂ (% de peso)	<i>x</i> ₃ (% de peso)			
25,5	1,74	5,30	10,80			
31,2	6,32	5,42	9,40			
25,9	6,22	8,41	7,20			
38,4	10,52	4,63	8,50			
18,4	1,19	11,60	9,40			
26,7	1,22	5,85	9,90			
26,4	4,10	6,62	8,00			
25,9	6,32	8,72	9,10			
32,0	4,08	4,42	8,70			
25,2	4,15	7,60	9,20			
39,7	10,15	4,83	9,40			
35,7	1,72	3,12	7,60			
26,5	1,70	5,30	8,20			

Tabela 12.3 Dados para o Exemplo 12.4

Tempo de esteriliza-	Tempe	ratura, x ₁	(°C)
ção, x_2 (min)	75	100	125
15	14,05	10,55	7,55
	14,93	9,48	6,59
20	16,56	13,63	9,23
	15,85	11,75	8,78
25	22,41	18,55	15,93
	21,66	17,98	16,44

12.4 Propriedades dos estimadores de quadrados mínimos

Teorema 12.1

Para a equação de regressão linear

$$y = X\beta + \epsilon$$
,

uma estimativa não viciada de σ^2 é dada pelo quadrado médio residual ou do erro

$$s^{2} = \frac{SQE}{n - k - 1}, \text{ onde}$$

$$SQE = \sum_{i=1}^{n} e_{i}^{2} = \sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}.$$

Fonte de variação		Graus de liberdade	Qua- drados médios	F
Regressão	SQR	k	$QMR = \frac{SQR}{k}$	$f = \frac{QMR}{QME}$
Erro	SQE	n - (k + 1)	$QME = \frac{SQE}{n - (k+1)}$	
Total	SQT	n-1	-	

12.5 Inferências na regressão linear múltipla

Intervalo de confiança para $\mu_{Y \mid x_{10}, x_{20}, ..., x_{k0}}$

Um intervalo de confiança de $100(1-\alpha)\%$ para a *resposta média* $\mu_{Y|x_{10}, x_{20},..., x_{k0}}$ é

$$\hat{y}_{0} - t_{\alpha/2} s \sqrt{\mathbf{x}_{0}'(\mathbf{X}'\mathbf{X})^{-1}\mathbf{x}_{0}} < \mu_{Y|x_{10}, x_{20}, \dots, x_{k0}}$$

$$< \hat{y}_{0} + t_{\alpha/2} s \sqrt{\mathbf{x}_{0}'(\mathbf{X}'\mathbf{X})^{-1}\mathbf{x}_{0}},$$

onde $t_{\alpha/2}$ é um valor da distribuição t com n-k-1 graus de liberdade.

Intervalo de predição para y_n

Um intervalo de predição $100(1-\alpha)\%$ para uma *resposta única y*₀ é dado por

$$\hat{y}_0 - t_{\alpha/2} s \sqrt{1 + \mathbf{x}_0'(\mathbf{X}'\mathbf{X})^{-1}\mathbf{x}_0} < y_0 < 0$$

$$\hat{y}_0 + t_{\alpha/2} s \sqrt{1 + \mathbf{x}_0'(\mathbf{X}'\mathbf{X})^{-1}\mathbf{x}_0},$$

onde $t_{\alpha/2}$ é o valor de uma distribuição t com n-k-1 graus de liberdade.

```
Sum of
                                     Mean
Source
                  DF
                       squares
                                    Square
                                           F Value Pr > F
Model
                   3 399,45437 133,15146
                                             30,98 <,0001
Error
                      38,67640
                                  4,29738
Corrected Total
                  12 438,13077
Root MSE
                 2,07301
                                         0,9117
                            R-Square
Dependent Mean 29,03846
                            Adj R-Sq
                                         0,8823
Coeff Var
                 7,13885
                   Parameter
                                   Standard
           DF
                    Estimate
                                               t Value
                                                          Pr > |t|
Variable
                                      Error
Intercept
             1
                    39,15735
                                    5,88706
                                                  6,65
                                                            <,0001
x1
             1
                     1,01610
                                    0,19090
                                                  5,32
                                                            0,0005
             1
                    -1,86165
                                    0,26733
                                                 -6,96
                                                            <,0001
x2
х3
             1
                    -0,34326
                                    0,61705
                                                 -0,56
                                                            0,5916
    Dependent Predicted
                           Std Error
    Variable
                  Value Mean Predict
                                                          95% CL Predict
                                        95% CL Mean
                                                                           Residual
     25,5000
                27,3514
                                                         21,6734
                                                                   33,0294 -1,8514
                             1,4152 24,1500
                                               30,5528
     31,2000
                32,2623
                             0,7846 30,4875
                                               34,0371
                                                         27,2482
                                                                   37,2764 -1,0623
     25,9000
                                                                   32,9566
                27,3495
                             1,3588 24,2757
                                               30,4234
                                                         21,7425
                                                                            -1,4495
                38,3096
                                               41,2093
                                                         32,7960
                                                                   43,8232
     38,4000
                             1,2818 35,4099
                                                                             0,0904
     18,4000
                15,5447
                             1,5789 11,9730
                                               19,1165
                                                          9,6499
                                                                   21,4395
                                                                             2,8553
     26,7000
                26,1081
                                               28,4512
                                                         20,8658
                                                                   31,3503
                             1,0358 23,7649
                                                                             0,5919
     26,4000
                28,2532
                             0,8094 26,4222
                                               30,0841
                                                         23,2189
                                                                   33,2874 -1,8532
     25,9000
                26,2219
                              0,9732 24,0204
                                               28,4233
                                                         21,0414
                                                                   31,4023 -0,3219
     32,0000
                32,0882
                              0,7828 30,3175
                                               33,8589
                                                         27,0755
                                                                   37,1008 -0,0882
  9
                                               27,6329
                                                         21,1238
                                                                   31,0114 -0,8676
 10
      25,2000
                26,0676
                              0,6919 24,5024
     39,7000
                             1,3070 34,2957
                                               40,2090
                                                         31,7086
                                                                   42,7961
 11
                37,2524
                                                                             2,4476
     35,7000
                32,4879
                             1,4648 29,1743
                                               35,8015
                                                         26,7459
                                                                   38,2300
 12
                                                                             3,2121
 13
     26,5000
                28,2032
                              0,9841 25,9771
                                               30,4294
                                                         23,0122
                                                                   33,3943 -1,7032
```

Figura 12.1 Impressão SAS para os dados do Exemplo 12.3.

Fonte de variação	Soma dos quadrados	g.l.
Regressão	$\sum_{i=1}^{n} \hat{y}_{i}^{2} = \mathbf{y}'\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$	k + 1
Erro	$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2$ = $\mathbf{y}'[\mathbf{I_n} - \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}']\mathbf{y}$	n - (k + 1)
Total	$\sum_{i=1}^{n} y_i^2 = \mathbf{y}'\mathbf{y}$	n

Fonte de	Soma dos	
variação	quadrados	g.l.
Regressão	$\sum_{i=1}^{n} (\hat{y}_{i} - \bar{y})^{2}$ $= y'[X(X'X)^{-1}X' - 1(1'1)^{-1}1]y$	k
Erro	$\sum_{i=1}^{n} (y_i - \hat{y_i})^2$ $= \mathbf{y}' [\mathbf{I_n} - \mathbf{X} (\mathbf{X}'\mathbf{X})^{-1} \mathbf{X}'] \mathbf{y}$	n - (k + 1)
Total	$\sum_{i=1}^{n} (y_i - \bar{y})^2$ $= \mathbf{y}' [\mathbf{I_n} - 1 (1'1)^{-1} 1'] \mathbf{y}$	n-1

12.6 Escolha de um modelo ajustado por meio de testes de hipóteses

R² ajustado

$$R_{\rm ajt}^2 = 1 - \frac{SQE/(n-k-1)}{SQT/(n-1)}.$$

12.7 Caso especial de ortogonalidade (opcional)

Tabela 12.4 Análise de variância para variáveis ortogonais							
Fonte da variação	Soma dos quadrados	Graus de liberdade	Quadrado médio	fcalculado			
$oldsymbol{eta}_{\scriptscriptstyle 1}$	$R(\beta_1) = b_1^2 \sum_{i=1}^n x_{1i}^2$	1	$R(\boldsymbol{\beta}_1)$	$\frac{R(\beta_1)}{s^2}$			
$oldsymbol{eta}_2$	$R(\beta_2) = b_2^2 \sum_{i=1}^n x_{2i}^2$	1	$R(\boldsymbol{\beta}_2)$	$\frac{R(\beta_2)}{s^2}$			
÷	÷	÷	:	:			
$oldsymbol{eta}_{_k}$	$R(\beta_k) = b_k^2 \sum_{i=1}^n x_{ki}^2$	1	$R(\boldsymbol{\beta}_k)$	$\frac{R(\beta_k)}{s^2}$			
Erro	SQE	n-k-1	$s^2 = \frac{SQE}{n-k-1}$				
Total	SQT = Syy	<i>n</i> – 1					

Tabela 12.5 Dados para o Exemplo 12.8						
Raio da partícula	Temperatu- ra do pó	Taxa de extrusão	Tempe- ratura de evaporação			
82	150 (-1)	12 (-1)	220 (-1)			
93	190 (+1)	12 (-1)	220 (-1)			
114	150 (-1)	24 (+1)	220 (-1)			
124	150 (-1)	12 (-1)	250 (+1)			
111	190 (+1)	24 (+1)	220 (-1)			
129	190 (+1)	12 (-1)	250 (+1)			
157	150 (-1)	24 (+1)	250 (+1)			
164	190 (+1)	24 (+1)	250 (+1)			

Tabela 12.6 Análise de variância para os dados do raio da partícula						
Fonte da variação	Soma dos quadrados	Graus de liberdade	Quadrado médio	fcalculado	Valor P	
$oldsymbol{eta}_{_1}$	$(2,5)^2(8) = 50$	1	50	2,16	0,2156	
$oldsymbol{eta}_2$	$(14,75)^2(8) = 1.740,50$	1	1.740,50	75,26	0,0010	
$oldsymbol{eta}_{\scriptscriptstyle k}$	$(21,75)^2(8) = 3.784,50$	1	3.784,50	163,65	0,0002	
Erro	92,5	4	23,1250			
Total	5.667,50	7				

12.8 Variáveis categóricas ou indicadoras

Três categorias

A estimação dos coeficientes pelo método dos mínimos quadrados continua a ser aplicada. No caso de três níveis ou categorias de uma única variável indicadora, o modelo incluirá *dois* regressores, digamos z_1 e z_2 , onde a atribuição (0, 1) é como se segue:

z_1	z_2
1	0
1	0
:	:
1	0
0	1
:	:
; 0	1
0	0
1:	:
0	0

Em outras palavras, se há ℓ categorias, o modelo inclui $\ell-1$ termos.

Tabela 12.7 Dados para o Exemplo 12.9 x(pH)y (Quantidade de Polímero sólidos suspensos) 6,5 292 6,9 329 7,8 352 8,4 378 8,8 392 9,2 410 6,7 198 2 6,9 227 2 2 7,5 277 2 297 7,9 8,7 364 2 9,2 375 2 167 6,5 3 3 7,0 225 7,2 247 3 7,6 268 3 8,7 288 9,2 342 3

$$y = \alpha + \beta_1 x + \beta_2 z_1 + \beta_3 z_2 + \varepsilon$$

$$z_1 = \begin{cases} 1 \text{ se polimero } 1 \\ 0 \text{ caso contrario} \end{cases}$$

$$z_2 = \begin{cases} 1 \text{ se polimero } 2 \\ 0 \text{ caso contrario} \end{cases}$$

Se polímero =1

$$y = \alpha + \beta_1 x + \beta_2 z_1 = (\alpha + \beta_2) + \beta_1 x + \varepsilon$$

Se polímero =2

$$y = \alpha + \beta_1 x + \beta_3 z_2 = (\alpha + \beta_3) + \beta_1 x + \varepsilon$$

Se polímero =3

$$y = \alpha + \beta_1 x = \alpha + \beta_1 x + \varepsilon$$

Com interações

$$y = \alpha + \beta_1 x + \beta_2 z_1 + \beta_3 z_2 + \beta_4 x z_1 + \beta_5 z_2 + \varepsilon$$

$$z_1 = \begin{cases} 1 \text{ se polimero 1} \\ 0 \text{ caso contrario} \end{cases}$$

$$z_2 = \begin{cases} 1 \text{ se polimero 2} \\ 0 \text{ caso contrario} \end{cases}$$

Se polímero =1

$$y = \alpha + \beta_1 x + \beta_2 z_1 + \beta_4 x z_1 = (\alpha + \beta_2) + (\beta_1 + \beta_4) x + \varepsilon$$

Se polímero =2

$$y = \alpha + \beta_1 x + \beta_3 z_2 + \beta_5 x z_2 = (\alpha + \beta_3) + (\beta_1 + \beta_5) x + \varepsilon$$

Se polímero =3

$$y = \alpha + \beta_1 x = \alpha + \beta_1 x + \varepsilon$$

-						
			Sum of			
	Source	DF	Squares	Mean Squa	re F Value	Pr > F
	Model	3	80181,73127	26727,243	76 73,68	<,0001
	Error	14	5078,71318	362,765	23	
Corrected	Total	17	85260,44444			
R-Square	Coef	f Var	Root MSE	У	Mean	
0,940433	6,3	16049	19,04640	301,	5556	
					Standard	
Parameter	Est	imate	Error	t Value	Pr > t	
Intercept	-161,89	73333	37,43315576	-4,32	0,0007	
х	54,29	40260	4,75541126	11,42	<,0001	
z1	89,99	80606	11,05228237	8,14	<,0001	
z2	27,16	56970	11,01042883	2,47	0,0271	

Figura 12.3 Impressão SAS para o Exemplo 12.9.

YCategoria 1 — inclinação = $(\beta_1 + \beta_3)$ Categoria 2 — inclinação = (β_1) β_2 $oldsymbol{eta}_0$ Figura 12.4 Não-paralelismo em variáveis categóricas.

12.9 Métodos seqüenciais para seleção de modelos

Tabela 12.8 Dados relacionados ao comprimento das crianças*						
Comprimento da criança, y (cm)	$\begin{array}{c} Idade, x_{_1} \\ (dias) \end{array}$	Comprimento ao nascimento, x_2 (cm)	Peso no nascimento, x_3 (kg)	Tamanho do peito no nascimento, x_4 (cm)		
57,5	78	48,2	2,75	29,5		
52,8	69	45,5	2,15	26,3		
61,3	77	46,3	4,41	32,2		
67,0	88	49,0	5,52	36,5		
53,5	67	43,0	3,21	27,2		
62,7	80	48,0	4,32	27,7		
56,2	74	48,0	2,31	28,3		
68,5	94	53,0	4,30	30,3		
69,2	102	58,0	3,71	28,7		

^{*}Dados analisados pelo Centro de Consultoria Estatística, do Instituto Politécnico e Universidade Estadual da Virgínia, em Blacksburg, Virgínia.

Tabela 12.9 Valores t para os dados de regressão da Tabela 12.8					
Variável x ₁	Variável x ₂	Variável x ₃	Variável x ₄		
$R(\boldsymbol{\beta}_1 \boldsymbol{\beta}_2,\boldsymbol{\beta}_3,\boldsymbol{\beta}_4)$	$R(\boldsymbol{\beta}_2 \boldsymbol{\beta}_1,\boldsymbol{\beta}_3,\boldsymbol{\beta}_4)$	$R(\boldsymbol{\beta}_3 \boldsymbol{\beta}_1,\boldsymbol{\beta}_2,\boldsymbol{\beta}_4)$	$R(\boldsymbol{\beta}_4 \boldsymbol{\beta}_1,\boldsymbol{\beta}_2,\boldsymbol{\beta}_3)$		
= 0,0644	= 0,6334	= 6,2523	= 0,0241		
t = 0.2947	t = 0,9243	t = 2,9040	t = 0,1805		

Tabela 12.10 Conjunto de dados para o Exemplo 12.12				
Observação	Captura com rede quadrada, y	Captura com rede de varredura, x_1	Altura das plantas, x ₂ (cm)	
1	18,0000	4,15476	52,705	
2	8,8750	2,02381	42,069	
3	2,0000	0,15909	34,766	
4	20,0000	2,32812	27,622	
5	2,3750	0,25521	45,879	
6	2,7500	0,57292	97,472	
7	3,3333	0,70139	102,062	
8	1,0000	0,13542	97,790	
9	1,3333	0,12121	88,265	
10	1,7500	0,10937	58,737	
11	4,1250	0,56250	42,386	
12	12,8750	2,45312	31,274	
13	5,3750	0,45312	31,750	
14	28,0000	6,68750	35,401	
15	4,7500	0,86979	64,516	
16	1,7500	0,14583	25,241	
17	0,1333	0,01562	36,354	