Clase 22 Adaptación de Impedancias

Sadiku, M. (2018). *Elements of Electromagnetics*. 7th Edition: pp. 585 – 591

Javier Silva Orellana

jisilva8@uc.cl

Contexto

- Hasta ahora hemos analizado las cargas y como generan efectos indeseados en la transmisión de ondas.
- Nos interesa saber cómo "arreglarlas" a modo de que podamos transmitir eficientemente en la línea de transmisión.

Objetivos de Aprendizaje involucrados:

• OA-16: Utilizar la carta de Smith para compensar líneas de transmisión sin perdidas y para determinar parámetros de impedancia, voltaje y corriente a lo largo de la línea.

Contenidos

- Adaptación de Impedancias
- Redes de parámetros concentrados
 - Red tipo L: caso serie-paralelo
 - Red tipo L: caso paralelo-serie
- Redes de parámetros distribuidos
 - Stubs en paralelo
 - Stubs en serie
- Adaptación de Impedancias y Carta de Smith

Adaptación de impedancias

- Consiste en un circuito que podemos posicionar entre la carga y la línea, de modo que:
 - Se reduzcan las reflexiones.
 - No genere pérdidas.
 - Maximice la potencia entregada a la carga.
 - Filtre componentes fuera de la frecuencia de operación (mejor SNR).

Adaptación de impedancias

• Existen 2 grandes categorías de redes de adaptación: las redes de **parámetros concentrados** y las de **parámetros distribuidos**.

Redes de Parámetros concentrados

- Se emplean componentes discretos: capacitores e inductores.
- Estos deben ser muy pequeños (SMD).
- Gran variedad de topologías.

 En particular, vamos a estudiar la topología tipo L.

Red Tipo L

- Es una de las redes de adaptación más sencillas.
- Se tienen 2 formas:

- Sea $Z_L = R_L + jX_L$
 - Si $R_L > Z_0$ se usa la configuración serie-paralelo.
 - Si $R_L < Z_0$ se usa la configuración paralelo-serie.

Red Tipo L: caso serie-paralelo $(R_L > Z_0)$

La adaptación tomará la forma:

$$Z_0 = jX + \left(\frac{1}{jB} \parallel Z_L\right) = jX + \frac{1}{jB + \frac{1}{Z_L}} = jX + \frac{Z_L}{jBZ_L + 1}$$

$$Z_0 = jX + \frac{R_L + jX_L}{jBR_L - BX_L + 1}$$

$$(Z_0 - jX) \cdot (jBR_L + (1 - BX_L)) = R_L + jX_L$$

Red Tipo L: caso serie-paralelo $(R_L > Z_0)$

• Separemos las componentes real e imaginaria:

$$B \cdot (XR_L - Z_0 X_L) = R_L - Z_0$$
 $X \cdot (1 - BX_L) = BZ_0 R_L - X_L$

 Si reemplazamos X a la izquierda y despejamos, tendremos la ecuación de 2do orden:

$$(R_L^2 + X_L^2)B^2 + (-2X_L)B + (1 - R_L/Z_0) = 0$$

Red Tipo L: caso serie-paralelo $(R_L > Z_0)$

Aplicando solución para B:

$$B = \frac{X_L \pm \sqrt{R_L/Z_0} \sqrt{R_L^2 + X_L^2 - R_L Z_0}}{R_L^2 + X_L^2}$$

- Si $R_L > Z_0$ entonces $R_L^2 > R_L Z_0$ y la dentro de la raíz <u>nunca será</u> <u>negativo</u>.
- Luego:

$$X = \frac{1}{B} + \frac{X_L Z_0}{R_L} - \frac{Z_0}{BR_L}$$

Red Tipo L: caso paralelo-serie $(R_L < Z_0)$

La adaptación tomará la forma:

$$Z_0 = \frac{1}{jB} \parallel (jX + Z_L) = \frac{1}{jB + \frac{1}{jX + Z_L}} = \frac{jX + Z_L}{jBZ_L - BX + 1}$$

$$Z_0 = \frac{R_L + j(X + X_L)}{jBR_L - B(X + X_L) + 1}$$

$$Z_0(jBR_L - B(X + X_L) + 1) = R_L + j(X + X_L)$$

Red Tipo L: caso paralelo-serie $(R_L < Z_0)$

• Separemos las componentes real e imaginaria:

$$B \cdot (X + X_L) = (Z_0 - R_L)/Z_0$$
 $B \cdot (R_L Z_0) = (X + X_L)$

• Si reemplazamos $(X + X_L)$ y despejamos, tendremos la ecuación de 2do orden:

$$(Z_0^2 R_L) B^2 + (R_L - Z_0) = 0$$

Red Tipo L: caso paralelo-serie $(R_L < Z_0)$

• Aplicando solución para *B*:

$$B = \frac{\pm \sqrt{(Z_0 - R_L)/R_L}}{Z_0}$$

• Luego, para *X*:

$$X = \pm \sqrt{R_L(Z_0 - R_L)} - X_L$$

• Notemos que si $R_L < Z_0$, $(Z_0 - R_L) > 0$ y dentro de la raíz <u>nunca será negativo.</u>

Red Tipo L

- De las ecuaciones se desprende que siempre habrá 2 soluciones.
- ¿Cómo elijo la más adecuada?

Red Tipo L

- De las ecuaciones se desprende que siempre habrá 2 soluciones.
- ¿Cómo elijo la más adecuada?

- Criterios de Diseño:
 - Valores de los componentes.
 - Respuesta espectral del sistema (que la secuencia sea muy selectiva).

Red Tipo L: Ejemplo

• Considere una línea de 100 $[\Omega]$ y una carga $Z_L=200-j100$ $[\Omega]$ a 500 [MHz].

Redes de Parámetros Condensados

• La variedad de este tipo de redes es amplia:

Balun (Balanced to Unbalanced)

Unun (**Un**balanced to **Un**balanced)

Redes de Parámetros Distribuidos

- Este tipo de adaptaciones se hace incorporando otros trozos de LT a determinadas distancias y con determinado largo.
- De este modo, se generan impedancias equivalentes que buscan ajustar la carga del sistema.
- El tipo más conocidos son los **stubs**. Estos corresponden a trozos de línea abiertos o cerrados, que pueden ser dispuestos en serie o paralelo.
- Como son trozos de LT, con una impedancia característica, podemos modificar la parte real de \mathbf{Z}_L .

Redes de Parámetros Distribuidos

- Necesitaremos reescribir la impedancia de entrada como $Y = \frac{1}{Z}$, dado que es más conveniente para trabajar paralelos.
- Alejémonos de Z_L una distancia d, sin haber colocado ningún stub.

$$Z = \frac{1}{Y} = \left[\frac{(R_L + jX_L) + jZ_0 \tan(\beta d)}{Z_0 + j(R_L + jX_L) \tan(\beta d)} \right] Z_0$$

$$G + jB = \left[\frac{Z_0 + j(R_L + jX_L)t}{(R_L + jX_L) + jZ_0t} \right] \frac{1}{Z_0}$$

$$G + jB = \left[\frac{(Z_0 - X_L t) + jR_L t}{R_L + j(X_L + Z_0 t)} \cdot \frac{R_L - j(X_L + Z_0 t)}{R_L - j(X_L + Z_0 t)} \right] \frac{1}{Z_0}$$

$$G + jB = \left[\frac{R_L Z_0 (1 + t^2) + j \left(R_L^2 t - (Z_0 - X_L t)(X_L + Z_0 t) \right)}{R_L^2 + (X_L + Z_0 t)^2} \right] \frac{1}{Z_0}$$

Separando las componentes conductiva y susceptiva:

$$G = \frac{R_L(1+t)}{R_L^2 + (X_L + Z_0 t)^2}$$

$$G = \frac{R_L(1+t)}{R_L^2 + (X_L + Z_0 t)^2} \qquad B = \frac{R_L^2 t - (Z_0 - X_L t)(X_L + Z_0 t)}{Z_0 (R_L^2 + (X_L + Z_0 t)^2)}$$

Nos interesa balancear la parte real.

• Para realizar el balance, imponemos: $G = \frac{1}{Z_0} = \frac{R_L(1+t^2)}{R_L^2 + (X_L + Z_0 t)^2}$

$$Z_0(R_L - Z_0)t^2 - 2X_L Z_0 t + (R_L Z_0 - R_L^2 - X_L^2) = 0$$

• Resolviendo *t*

Para
$$Z_0 \neq R_L$$
:

$$t = \frac{X_L \pm \sqrt{R_L[(Z_0 - R_L)^2 + X_L^2]/Z_0}}{R_L - Z_0}$$

Para
$$Z_0 = R_L$$
:

$$t = -\frac{X_L}{2Z_0}$$

• Teniendo el valor de t, podemos determinar d:

$$\frac{d}{\lambda} = \begin{cases} \frac{1}{2\pi} \tan^{-1} t & \text{para } t \ge 0\\ \frac{1}{2\pi} (\pi + \tan^{-1} t) & \text{para } t < 0 \end{cases}$$

Y también determinamos B:

$$B = \frac{R_L^2 t - (Z_0 - X_L t)(X_L + Z_0 t)}{Z_0 (R_L^2 + (X_L + Z_0 t)^2)}$$

• Hasta ahora solo hemos resuelto parte del problema:

Necesitamos compensar ese factor B susceptivo que introdujimos.

• Aquí entra en juego el stub paralelo:

• Forzaremos que sea una susceptancia pura, de valor $B_S = -B$.

Usando la ecuación de impedancia:

$$Z_{in} = \frac{1}{B_S} = Z_0 \frac{X_S + jZ_0 \tan \beta l}{Z_0 + jX_S \tan \beta l}$$

$$\frac{Y_0}{B_S} = \frac{X_S + jZ_0 \tan \beta l}{Z_0 + jX_S \tan \beta l}$$

• Dependiendo de si hacemos un stub en cortocircuito o circuitoabierto, X_S tomará valor 0 o ∞ , respectivamente. Luego:

$$\frac{l_o}{\lambda} = \frac{1}{2\pi} \tan^{-1} \left(\frac{B_s}{Y_0} \right) = \frac{-1}{2\pi} \tan^{-1} \left(\frac{B}{Y_0} \right)$$

Stub en circuito abierto

$$\frac{l_s}{\lambda} = \frac{-1}{2\pi} \tan^{-1} \left(\frac{Y_0}{B_s} \right) = \frac{1}{2\pi} \tan^{-1} \left(\frac{Y_0}{B} \right)$$

Stub en corto circuito

Largos negativos

- De las ecuaciones no es tan evidente, pero podría darse el caso que alguno de los valores necesarios de d o de l resulten negativos.
- En este caso no hay que entrar en pánico, y debemos recordar que la impedancia se repite cíclicamente cada $\lambda/2$.
- De este modo, la solución es sumar $\lambda/2$ tantas veces sea necesario, hasta tener una longitud positiva.
- De este modo, el largo necesario será: $n(\lambda/2) + l$

Stub en serie

- El desarrollo es idéntico para el largo d. Aunque en este caso resulta más conveniente expresar la impedancia de entrada como Z.
- De este modo, las expresiones que antes estaban en resistencias y reactancias en la carga, ahora estarán en conductancias y susceptancias, y viceversa.

$$R + jX = Z_0 \frac{\frac{1}{G_L + jB_L} + j\frac{1}{Y_0} \tan \beta d}{\frac{1}{Y_0} + j\frac{1}{G_L + jB_L} \tan \beta d}$$

Stub en serie

Desarrollando de manera análoga al caso paralelo:

Para
$$Y_0 \neq G_L$$
:

Para
$$Y_0 \neq G_L$$
:
$$t = \frac{B_L \pm \sqrt{G_L[(Y_0 - G_L)^2 + B_L^2]/Y_0}}{G_L - Y_0}$$

Para
$$Y_0 = G_L$$
:

$$t = -\frac{B_L}{2Y_0}$$

$$\frac{d}{\lambda} = \begin{cases} \frac{1}{2\pi} \tan^{-1} t & \text{para } t \ge 0\\ \frac{1}{2\pi} (\pi + \tan^{-1} t) & \text{para } t < 0 \end{cases}$$

• Aquí entra en juego el stub paralelo:

• Forzaremos que sea una Reactancia pura, de valor $X_s = -X$.

Stub en serie

Usando la ecuación de impedancia:

$$Z_{in} = X_{S} = Z_{0} \frac{\frac{1}{B_{S}} + j\frac{1}{Y_{0}} \tan \beta l}{\frac{1}{Y_{0}} + j\frac{1}{B_{S}} \tan \beta l} \rightarrow \frac{X_{S}}{Z_{0}} = \frac{\frac{1}{B_{S}} + j\frac{1}{Y_{0}} \tan \beta l}{\frac{1}{Y_{0}} + j\frac{1}{B_{S}} \tan \beta l}$$

 Dependiendo de si hacemos un stub en cortocircuito o circuitoabierto, B_S tomará valor 0 o ∞ , respectivamente. Luego:

$$\frac{l_o}{\lambda} = \frac{-1}{2\pi} \tan^{-1} \left(\frac{Z_0}{X_s}\right) = \frac{1}{2\pi} \tan^{-1} \left(\frac{Z_0}{X}\right)$$

$$\frac{l_s}{\lambda} = \frac{1}{2\pi} \tan^{-1} \left(\frac{X_s}{Z_0}\right) = \frac{-1}{2\pi} \tan^{-1} \left(\frac{X}{Z_0}\right)$$

Stub en circuito abierto

$$\frac{l_s}{\lambda} = \frac{1}{2\pi} \tan^{-1} \left(\frac{X_s}{Z_0} \right) = \frac{-1}{2\pi} \tan^{-1} \left(\frac{X}{Z_0} \right)$$

Stub en corto circuito

• Considere una línea de 50 $[\Omega]$ y una carga $Z_L=100+j80$ $[\Omega]$ a 2 $[\mathrm{GHz}]$.

• Considere una línea de 50 $[\Omega]$ y una carga $Z_L=100+j80$ $[\Omega]$ a 2 $[\mathrm{GHz}]$.

 Usemos stub en serie y en circuito abierto

• Marcamos el circulo donde la carga resistiva está balanceada:

$$\frac{R_L}{Z_0} = r = 1$$

• Marcamos el circulo de la ROE asociada a la carga.

• Marcamos las intersecciones entre círculos.

 Nos debemos mover hacia estos puntos, <u>siempre en</u> <u>sentido horario</u>. Estamos parados en la carga, solo nos podemos mover al generador.

• Para la solución 1: $d = 0.33\lambda - 0.21\lambda = 0.12\lambda$

• Para la solución 1: $d = 0.33\lambda - 0.21\lambda = 0.12\lambda$

• Para la solución 2: $d = 0.67\lambda - 0.21\lambda = 0.46\lambda$

Ahora debemos encontrar los largos l, eliminando la componente reactiva.

Dado que es un stub en circuito abierto, nos movemos desde el punto $r = \infty$ hasta el opuesto reactivo de la solución.

• Para la solución 1: $d = 0.33\lambda - 0.21\lambda = 0.12\lambda$

$$l = 0.25\lambda + 0.147\lambda = 0.397\lambda$$

• Para la solución 2: $d = 0.67\lambda - 0.21\lambda = 0.46\lambda$

• Para la solución 1: $d = 0.33\lambda - 0.21\lambda = 0.12\lambda$

$$l = 0.25\lambda + 0.147\lambda = 0.397\lambda$$

• Para la solución 2: $d = 0.67\lambda - 0.21\lambda = 0.46\lambda$

$$l = 0.353\lambda - 0.25\lambda = 0.103\lambda$$

Para la solución 1:

$$d = 0.33\lambda - 0.21\lambda = 0.12\lambda$$

$$l = 0.25\lambda + 0.147\lambda = 0.397\lambda$$

• Para la solución 2:

$$d = 0.67\lambda - 0.21\lambda = 0.46\lambda$$

$$l = 0.353\lambda - 0.25\lambda = 0.103\lambda$$

• Considere una línea de 50 $[\Omega]$ y una carga $Z_L=60-j80$ $[\Omega]$ a 2[GHz].

Usemos stub en paralelo y en cortocircuito

 Primero debemos trabajar en admitancia

- Marcamos los círculos de r=1 y ROE
- Notemos que la posición de las soluciones no cambia, pero esta vez están en **admitancia**.

• Para la solución 1: $d = 0.174\lambda - 0.064\lambda = 0.110\lambda$

• Para la solución 1: $d = 0.174\lambda - 0.064\lambda = 0.11\lambda$

• Para la solución 2: $d = 0.324\lambda - 0.064\lambda = 0.26\lambda$

Ahora medimos desde el cortocircuito...

• PERO!

• Estamos en admitancias, por lo que $y_{cc} = \infty$. Seguimos en el extremo derecho.

• Para la solución 1: $d = 0.174\lambda - 0.064\lambda = 0.11\lambda$

 $l = 0.346\lambda - 0.25\lambda = 0.096\lambda$

• Para la solución 2: $d = 0.324\lambda - 0.064\lambda = 0.26\lambda$

• Para la solución 1:

$$d = 0.174\lambda - 0.064\lambda = 0.11\lambda$$

$$l = 0.346\lambda - 0.25\lambda = 0.096\lambda$$

Para la solución 2:

$$d = 0.324\lambda - 0.064\lambda = 0.26\lambda$$

$$l = 0.25\lambda + 0.154\lambda = 0.404\lambda$$

Para la solución 1:

$$d = 0.174\lambda - 0.064\lambda = 0.11\lambda$$

$$l = 0.346\lambda - 0.25\lambda = 0.096\lambda$$

• Para la solución 2:

$$d = 0.324\lambda - 0.064\lambda = 0.26\lambda$$

$$l = 0.25\lambda + 0.154\lambda = 0.404\lambda$$

Red Tipo L: Carta de Smith

 Para el caso de estas redes se emplea una versión más "especial" de la carta de Smith.

Se incluyen las admitancias.

• MUY RECOMENDABLE VER ESTE VIDEO.

Red Tipo L: Carta de Smith

 Para el caso de estas redes se emplea una versión más "especial" de la carta de Smith.

Se incluyen las admitancias.

• MUY RECOMENDABLE VER ESTE VIDEO.

Resumen

- Revisamos dos estrategias de adaptación de impedancias: parámetros condensados y parámetros distribuidos.
- Dedujimos el proceso para estimar los parámetros de cada una de estas redes adaptación de impedancias.
- Presentamos un método alternativo para hacer el proceso, basado en el uso de la Carta de Smith.

Cerrando la clase de hoy

 Nos quedan un par de comentarios finales antes de cerrar este capítulo

Próxima Clase:

Líneas de Transmisión: Aplicaciones Adicionales.