TD 11: THÉORIE DES LANGAGES

Exercice 1. Construisez les automates correspondant aux expressions ci-après.

- a. 10*1*
- b. 0*(10+11)*
- c. 0(01)*1*
- d. 1*01(0+1)
- e. $(10)^*(11)^*$

Exercice 2. Construisez pour chacune des expressions suivantes, un automate fini qui la reconnaît. L'alphabet est $\Sigma = \{a, b, c\}$.

- 1. $b(aa)^*(bb)^*$
- 2. (ba)*babb
- 3. $(b+aa)(ab+a)b^*$
- 4. $a((ab)^*cb^*)^* + a((ba)^2cb^*)^*$

Exercice 3. Construisez un automate fini déterministe qui reconnaît le langage :

$$L = \{x \in \{0, 1\}^*, nb1(x) \equiv 0 [4]\}$$

nb1(x) représente le nombre de 1 dans x, \equiv la relation de congruence.

Exercice 4. Donnez les grammaires générées par les langages reconnus par les automates suivants :

Exercice 5. Donnez les grammaires générées par les langages reconnus par les automates suivants :

Exercice 6. Soit les grammaires G_1 et G_2 définies par :

a.
$$G_1 = (V_1, T_1, S_1, P_1)$$
 où $V_1 = \{a, b, S_1, A\}, T_1 = \{a, b\}, S_1$ symbole de départ et $P_1 = \{S_1 \to bS_1, S_1 \to aS_1, A \to aS_1, A \to bA, A \to a, S_1 \to b\}.$

b.
$$G_2=(V_2,T_2,S_2,P_2)$$
 où $V_2=\{0,1,S_2,A,B\},\,T_2=\{0,1\},\,S_2$ symbole de départ et $P_2=\{S_2\to 1A,\,S_2\to 0,\,S_2\to \lambda,\,A\to 0B,\,B\to 1,\,B\to 1B\}.$

- 1. Déterminez les types des grammaires G_1 et G_2 .
- 2. Construisez les automates finis reconnaisant les langages produits par les grammaires G_1, G_2 .

Exercice 7. Soit un alphabet Σ et $A \subseteq \Sigma^*$. Montrez que $(A^* = \Sigma^*) \iff \Sigma \subseteq A$.

Exercice 8. Prouvez que le langage $L = \{a^n b^n c^n; n \in \mathbb{N}\}$ n'est pas régulier.

Exercice 9. Montrez grâce au lemme de pompage que le langage L des mots dont la longueur est un nombre premier n'est pas un langage régulier.