UX Research Portfolio

Jisoo Lee

June 2022

Hello!

I am a UX design researcher, equipped with qualitative and quantitative research methods.

With evidence-based research competence and solid foundation on design thinking, I understand users in their broad and deep context, and produce ideas for desirable/viable solutions.

In industrial /applied research settings, I worked on a number of problem domains including: lifestyle improvements, learning of software tools, mobile communication, product design evaluation, etc.

I am currently working as a freelance researcher based on the Bay area, CA. I earned my Ph.D. in Human Computer Interaction at Arizona State University. Before I studied Industrial Design at KAIST, Korea.

Generative & Evaluative research

I conduct user research for all phases of the product development process: from open explorations to validation-oriented study.

Qualitative & Quantitative research methods

I carefully choose methods considering both efficacy and availability. I utilize a broad set of methods, from in-depth interview to statistical modeling.

- In-depth interviews
- Diary studies
- Ethnographic field studies
- · Competitive analysis
- Surveys
- Usability studies
- A/B testing

Case Study 1. Fitness Tracker Use by People with Multiple Sclerosis

Problem

People with multiple sclerosis (MS) are often inactive. In tackling this issue, a fitness tracker is considered promising. But, what challenges will patients have? What can lead to the most benefits from use of a tracker?

Process

Explore (in-depth interview) → Ideate (affinity diagram, brainstorming) → Prototype (proof of concept) → Test (field study)

Outcome

We proposed a tool for setting a daily goal, and confirmed demand for it. Our work was presented in a prestigious conference (CHI 2016 Conference on Human Factors in Computing Systems).

Funding: Agile Project Grant subaward funding received through the Health Data Exploration project (Robert Wood Johnson Foundation)

Team: It was a collaboration between Arizona State University¹ and PatientsLikeMe² (www.patientslikeme.com)

- Jisoo Lee¹: Creation of intervention / study protocol, data analysis, extraction of insights
- Erick Hekler^{1:} Research planning, key decision making
- Emil Chiauzzi²: Research planning, key decision making, data analysis
- Auriell Towner²: Conduction of interviews

Date: April, 2015 ~ Jun, 2015

Exploratory Interview Study

Method

We conducted a **1-hour semistructured interview** to understand how people with MS manage their physical activity and MS challenges.

For recruitment, we invited people with MS who used a fitness tracker at least one month prior to beginning of the study.

The interview data were analyzed as follows:

- The audio recordings were converted into notes →
- Two researchers individually found high-level recurring themes, and then reviewed together to resolve discrepancies →
- A report was made to share with the team, and identify challenges to focus on.

Results

7 participants completed the interview (female = 6, male = 1; age range 50 – 68). The length of time since diagnosis ranged from 9 to 37 years, with mild-to-moderate disability.

We noted that participants were suffering from worsening symptoms after "overdoing it", and also were worried about "underdoing it."

"Last week I weeded the garden for 3 hours and couldn't believe it. The next day I felt so crappy that I had to skip volunteering the next day."

Approach

What may resolve the **overdoing & underdoing challenge**?

We shaped an approach that helps people with MS generate rules to define their **daily "sweet spot"** of steps to take.

Example of user-generated rules

"With 3000 average daily steps, if pain is mild then stick with the average, if no pain then goal=3,500, if pain is severe goal=2,500"

Intervention

For testing of the approach, we implemented a course-based intervention, which consists of **three sessions over a three-week period**.

Field Study > Measures & Analysis

We evaluated the intervention with people with MS: 3 criteria, qualitative and quantitative measures

Evaluation Criteria	Measures	Analysis
Demand Practicality	(Qualitative data)Daily journal recordsExit interview*	Combination of deductive and inductive coding (i.e., grouping by topics of interest a priori & data-derived themes based on participant perspectives)
Efficacy	(Quantitative data)Target stepsTracked steps	Descriptive summary of tracked steps (mean, median, coefficient of variation) Daily match success or failure (concordance between daily goals with device measured activity within a +-20% range)

*The interview involved:

- understanding the patient's perception of what they felt they learned the past 2 weeks
- how the rule impacted them on a daily basis,
- if they felt they found their sweet spot
- a brief discussion related to their overall experience with the course (what worked and did not work).

Field Study > Results

19 participants started, and 12 completed the course (female = 11, male = 1; age range 44 - 64).

Demand

Participants appreicated the rules idea.

"I gained more insight into myself and what motivates me...what hinders me more than any other time in my life"

Practicality

Some commented on the burden of daily measurement, and difficulty to fully anticipate issues that would arise later in the day.

Efficacy

We found mixed results in the mating rating; 6 out of 12 participants achieved their "sweet spot" target 50% of the time or greater.

Participants	Days	Mean	CV ¹	Match	Match Rate
1	13	3589	47	9/13	69%
2	14	6978	12	12/14	86%
3	13	5117	33	3/12	25%
4	15	2019	40	4/13	31%
5	14	14,625	15	9/14	64%
6	13	2694	48	1/10	10%
7	14	5400	32	4/9	44%
8	14	3290	26	9/14	64%
9	20	4163	62	2/13	15%
10	14	2225	29	9/14	64%
11	14	13063	31	5/6	83%
12	13	3644	25	3/11	27%
Mean		5567	33	•	49%

¹CV (Coefficient of variation) = Standard deviation (SD)/mean a measure of variability in relation to the mean.

Design Considerations

There was a need for a rule-based adaptive goal-setting strategy for people with MS, and plausibly other patients with chronic pain.

There should be a tool that allows users to collect **data with less burden**, and find **meaningful aspects easily** to define/refine better goal-setting rules.

It may be necessary to devise rules that can be even more adaptive to fluctuations within the day. This could enable "half-successes", especially for people with higher variability in symptoms.

While pursuing scientific rigorousness for this so-called selfexperimentation, designers should not forget individuals' different capabilities / preferences in handling it.

Case Study 2. Will technology-augmented "self-nudging" be helpful?

Problem

We had developed tools to support people's creation of habit change solutions. Then, it was required to investigate effectiveness of them.

Method

7-week experiment comparing three conditions (one control, two treatments)

Outcome

We confirmed the effectiveness of our proposals, and obtained insights on how to improve them.

Our work was presented in a prestigious conference (CHI 2017 Conference on Human Factors in Computing Systems).

Funding: Google Research Faculty Award (Principal Investigator: Hekler).

Team: I took a key role working through from the whole process, under guidance of Eric Hekler.

Date: Mar, 2015 ~ Sep, 2015

Our Proposals

We established two levels of a behavior change solution, and developed a support for each: tutorial for behavioral plans and toolkit for just-in-time apps.

Tutorial for behavioral plans

Step-by-step planning with behavior change techniques presented with text and audio.

Toolkit for just-in-time (JIT) apps

Prototyping of simple rule and eventbased systems that include physical sensing, data storage, and media event components.

Experimental Conditions

We conducted a **comparative field test**. Improving sleep quality was chose as a study domain. Participants were randomly assigned to one of three conditions.

Participants

We recruited users with sleep complaints but no diagnosed sleep disorder.

Inclusion criteria:

- 1) Significant complaints with their sleep 1) Diagnosed sleep disorder
- 2) Smartphone (i.e,. Android or iPhone) 2) Co-sleeping with someone else in the to be used to gather self-tracking data
- 3) No plans to travel during the 7 weeks 3) of the study.

Exclusion criteria

- same bed/bedroom
- Disruptive and uncontrollable sleep schedules, such as night shift workers.

In total, 27 participants (14 male, 13 female) completed the study, 9 for each condition.

Procedure

The study For 7 weeks, pariticipants joined 5 sessions for setup / creation or revision of their solution to attainment of chosen habt targets.

Measures

Questions		Measures		
Outcome	Degree of sleep quality chage	PSQI score* measured in each session		
Process	Degree of target achievement	Participants' ratings to the question, Rate how well you achieved your goals on a 0 to 10 scale		
	Quality of planning / solutions	 Paticipants' ratings on 7-point scales to the questions: Overall, I am satisfied with my goal; 2) The plan fits my lifestyle well; and 3) The plan will be essential for me to achieve my goal. (Behavioral plan) Occureances of target changes (Behavioral plan) Occureances of plan adjustments (JIT apps) Components included 		
	Perceived benefits / difficulties in using JIT apps	Semi-structured Interview (usefulness, usableness)		

^{*} Pittsburgh Sleep Quality Index (PSQI) 0~21 score; the lower, the better sleep

Analysis

Survey data

PSQI scores measured in each session (blue line, mean for each session with 95% CI)

Ratings on target attainment, mean (SD)

	Condition 1	Condition 2	Condition 3
Session 5	6.4 (2.9)	6.8 (1.8)	8.4 (1.2)
Session 5-Session 3	.8 (1.2)	2.9 (2.4)	1.9 (2.0)

Content data

Frequency of habit target changes / plan adjustments

Types / quantity of components

P03

Results

Sleep quality change

A one way ANOVA on PSQI score change from session 2 to session 5 suggested there were no significant differences between condition means (F(2,24) = .84, p = .44).

Bayesian analysis indicated:

The treatments are better than the control? Fairly likely

Any difference between the treatments? Highly unlikely

Experience with JIT apps

Most participants found JIT apps beneficial, with two overall themes in their reports:

Remind

P31, 'Yeah, like if I was distracted, playing video game or working on the homework, it was nice to get that text message...and then I **realize it's late** [sic]...'

Inspire

P13 (music play to reminder her about prep for the next day, when she came home after work), 'Not necessarily about snack/lunch prep. Now you're are at home... **now [I am] relaxed**[sic]',

Design Considerations

It appeared that our tutorial resulted in **more realistic, specified and personalized plans**, which translated to better attainment of habit targets and improved sleep quality.

We found that future work on JIT interventions should focus more on better facilitating **people's creativity** (more use of sensors, greater iteration of designs).

In supporting people's creativity, we considered the following approaches promising:

- Provide a tool with simple functionality
- Prompt users to start small and continue building up
- Present ready-made **examples** for instant use

Thank you!

If you have any questions, please feel free to contact me:

Email: jisooworks@gmail.com

LinkedIn: linkedIn: linkedIn: linkedIn: linkedin.com/in/jisooworks/