

Materials and Current

Materials are classified as:

Conductors, Insulators and Semiconductors (Intrinsic and Extrinsic).

Drift and Diffusion Current:

When a conductor is subjected to an external voltage, free electrons move from (-)ve to (+)ve terminal with a steady velocity, constituting a current – Drift Current.

Diffusion Current- Due to diffusion phenomenon, due to flow of charge carriers from the region of higher concentration to the region of lower concentration.

P-N Junction Diode

Common practical diodes available in market

P-N Junction Diode- conti...

Used in numerous applications

- Switch,
- Rectifier,
- Regulator,
- Voltage multiplier,
- Clipping,
- Clamping, etc.

P-N Junction Diode- conti...

P-N junction (a) in contact (b) formation of depletion region

[http://www.imagesco.com/articles/photovoltaic/photovoltaic-pg3.html].

P-N Junction Diode under Zero bias condition

Unbias condition

Diode under zero bias condition

Biasing of P-N Junction Diode

Biasing:

Applying external voltage to any electronic device

there is no current flow in the un biased P-N junction diode

Biasing allows current flow only in one direction

Forward bias

- Positive of battery connected to p-type (anode)
- Negative of battery connected to n-type (cathode)

Forward bias

Forward Characteristics

Reverse bias

- Positive of battery connected to n-type material (cathode)
- Negative of battery connected to p-type material (anode)

Reverse bias

Reverse Characteristics

V-I characteristic of diode

V-I characteristic of diode

Silicon (vs) Germanium

V-I characteristic of silicon and germanium practical diode http://www.technologyuk.net/physics/electrical_principles/the_diode.shtml