Universidade de São Paulo

Trabalho de Formatura

Teoria dos Números e Computação: Uma abordagem utilizando problemas de competições de programação

Autor:

Supervisor: Antonio R. de Campos Junior Dr. Carlos Eduardo Ferreira

Tese apresentada em cumprimento dos requisitos para o curso Bacharel em Ciência da Computação

Instituto de Matemática e Estatística

18 de outubro de 2015

Resumo

Teoria do Números é um vasto ramo da matemática que estuda números inteiros. Números primos, fatorização de números inteiros, funções aritméticas, são alguns dos tópicos mais estudados e também importantes para resolução de problemas computacionais.

Hoje em dia a importância da Teoria do Números na Computação é inquestionável, e desse modo, esse trabalho vem ilustrar como a teoria pode ser aplicada na criação de algoritmos para resolução de problemas computacionais, em especial problemas de competições de programação.

Equações diofantinas, Congruência Modular, Números de Fibonacci, são alguns dos assuntos que serão abordados nesse trabalho. Após a devida demostração da teoria serão exibidos alguns problemas de competições de programação que aplicam essa teoria, seguido da implementação e análise do algoritmo que resolve o problema abordado.

Agradecimentos

I like to acknowledge ...

Sumário

1	Div	isibilidade	1
	1.1	Introdução	1
	1.2	Números Primos	1
	1.3	Máximo Divisor Comum	1
	1.4	Crivo de Erastóteles	2
	1.5	Problemas Propostos	2
		1.5.1 UVA-10407	2
2	Con	ngruência e e e e e e e e e e e e e e e e e e e	3
	2.1	Congruência	3
	2.2	Congruência Linear	3
	2.3	Teorema de Fermat, Euler e Wilson	3
	2.4	Teorema do Resto Chinês	3
	2.5	Problemas Propostos	3
3	Fun	ções Aritméticas	5
	3.1	φ de Euler	5
	3.2	Sequência de Fibonacci	5
	3.3	Problemas Propostos	5
		3.3.1 UVA-11424	5
		3.3.2 TJU-3506	6
4	Con	ıclusão	9
A	Cur	iosidades da ACM-ICPC	11
В	Juíz	zes Online (Online Judges)	13
Bi	bliog	grafia	15

Lista de Figuras

Lista de Tabelas

For/Dedicated to/To my...

Divisibilidade

1.1 Introdução

Nesse seção vamos descrever algumas definições e propriedades dos números inteiros que serão utilizados ao longo desse trabalho.

Definição 1

Corolário 1 Dado um subconjunto dos inteiros $S = \{S_1, S_2, S_3, ..., S_n\}$ ordenado crescentemente, e um número inteiro d, tal que, $d|(S_i - S_{i-1}), 2 \le i \le n$.

Nessas Condições temos que: $d|(S_i - S_j), \forall S_i, S_j \in S$.

Demonstração: Tome $S_i, S_j \in S$ quaisquer, e sem perda de generalidade assuma que $S_i \geq S_j$ (ie, $i \geq j$, pois S está ordenado crescentemente).

Como $i \geq j$, tome $r \in \mathbb{N}$ como sendo a diferença entre i e j : i = j + r.

Vamos agora provar por indução que $d|(S_{j+r} - S_j)$.

Para r = 0 ou r = 1 a demostração segue trivialmente.

Assuma que o corolário funciona para (r-1), ie, $d|(S_{j+r-1}-S_j)$.

Temos então que:

$$d|(S_{j+r} - S_{j+r-1}) \Rightarrow d|(S_{j+r} - S_{j+r-1}) + (S_{j+r-1} - S_j) \Rightarrow d|(S_{j+r} - S_j)$$

Corolário 2 O *Corolário 1* funciona mesmo se o conjunto S não estiver ordenado.

Demonstração: Deixaremos a demostração a cargo do leitor.

Teorema 1 Dados dois inteiros quaisquer a e b, com b > 0, então existe um único par q e r tal que:

$$a = qb + r$$
, com $0 \le r < b$

Demonstração: Deixaremos a demostração a cargo do leitor.

1.2 Números Primos

Definição 2 Todo número inteiro n (n > 1) que têm apenas dois divisores distintos (1 e n) é chamado de número primo. Se n (n > 1) não for primo, dizemos que n é número composto.

1.3 Máximo Divisor Comum

Definição 3 O Máximo Divisor Comum de dois inteiros quaisquer a e b (com a ou b diferente de zero), denotado por MDC(a,b), \acute{e} o maior inteiro que divide ambos a e b.

Algorithm 1 Máximo Divisor Comum

```
1: procedure MMC (A, B)
2: while b \neq 0 do
3: t \leftarrow b
4: b \leftarrow a \mod b
5: a \leftarrow t
6: return a
```

Pseudocódigo:

```
Corolário 3 MDC(a,b) = d \Rightarrow MDC(a/d,b/d) = 1
```

Demonstração:

Teorema 2 (Teorema de Bézout) $\forall a, b \in \mathbb{Z}, \exists x, y \in \mathbb{Z} \mid ax + by = mdc(a, b).$

Demonstração: De acordo com Teorema 2

1.4 Crivo de Erastóteles

1.5 Problemas Propostos

1.5.1 UVA-10407

10407 - Simple Division

Resumo: Tome $P(S) := \{x \in \mathbb{Z} \mid \forall a, b \in S, a \equiv b \pmod{x} \}$ em que $S \subset \mathbb{Z}$. O problema consiste em encontrar o valor máximo de P(S) dado um conjunto S.

Solução: Seja $S=\{S_1,S_2,S_3,...,S_n\}$, com n=|S|, o conjunto dado pelo problema (assumiremos que os valores de S estão ordenados crescentemente).

Tome um número qualquer $d \in P(S)$. Por definição temos que $\forall S_i, S_j \in S$, $S_i \equiv S_j \pmod{d} \Rightarrow (S_i - S_j) \equiv 0 \pmod{d} \Rightarrow d \mid (S_i - S_j)$.

Pelo **Corolário 1** sabemos que:

```
d|(S_i - S_{i-1}), \forall i \in \mathbb{N}, 2 \le i \le n \Rightarrow d|(S_i - S_i), \forall S_i, S_i \in S \Rightarrow d \in P(S).
```

E desse modo, para calcular o valor máximo de P(S) só precisamos calcular o Máximo Divisor Comum das diferenças $(S_i - S_{i-1})$ com i variando de 2 à $n \square$.

Pseudocódigo:

Algorithm 2 Simple Division

```
1: procedure GETMAXIMUMVALUE (S)
2: S \leftarrow sort(S) \triangleright sort(X) retorna o conjunto X ordenado.
3: maxValue \leftarrow 0
4: for i := 2 to |S| do
5: maxValue \leftarrow MDC(maxValue, S_i - S_{i-1})
6: return maxValue
```

Congruência

- 2.1 Congruência
- 2.2 Congruência Linear
- 2.3 Teorema de Fermat, Euler e Wilson
- 2.4 Teorema do Resto Chinês

Teorema 3 (Teorema do Resto Chinês) *Tome o sistema de congruências lineares:*

```
a_1x \equiv c_1 \pmod{m_1}
a_2x \equiv c_2 \pmod{m_2}
a_3x \equiv c_3 \pmod{m_3}
...
a_nx \equiv c_n \pmod{m_n}
```

Em que $c_i \in \mathbb{Z}$, $MDC(a_i, m_i) = 1$, e $MDC(m_i, m_j) = 1$ para $i \neq j$ Nessas condições o sistema acima tem solução única módulo M, em que $M = m_1 m_2 m_3 ... m_n$.

Demonstração: Deixaremos a demostração a cargo do leitor.

2.5 Problemas Propostos

Funções Aritméticas

3.1 φ de Euler

Definição 4 A Função Totiente de Euler, denotada por $\varphi(n)$, é a função aritmética que conta o número de inteiros positivos menores ou iguais a n que são primos entre si com n.

$$\varphi(n) := |\{x \in \mathbb{N}^* \mid MDC(x, n) = 1\}|$$

Teorema 4 $\varphi(n^k) = n^{k-1}\varphi(n)$, para inteiros positiovos quaisquer n e k. Em particular $\varphi(p^k) = (p^k - p^{k-1})$, para p primo.

Demonstração:

Teorema 5 $\varphi(n)$ é função multiplicativa, ie, $\varphi(mn) = \varphi(m)\varphi(n)$ para MDC(m,n) = 1.

Demonstração:

Teorema 6 (Fórmula Produto de Euler) $\varphi(n) = n \prod_{p|n} (1 - \frac{1}{p})$

Demonstração: Pelo Teorema X, Teorema 4, Teorema 5 segue as seguintes recorrências:

$$\begin{array}{l} \varphi(n) = \varphi(p_1^{a_1}p_2^{a_2}...p_k^{a_k}) \\ \varphi(n) = \varphi(p_1^{a_1})\varphi(p_2^{a_2})...\varphi(p_k^{a_k}) \\ \varphi(n) = (p_1^{a_1} - p_1^{a_1-1})(p_2^{a_2} - p_2^{a_2-1})...(p_k^{a_k} - p_k^{a_k-1}) \\ \varphi(n) = p_1^{a_1}p_2^{a_2}...p_k^{a_k}(1 - 1/p_1)(1 - 1/p_2)...(1 - 1/p_k) \\ \varphi(n) = n \prod_{p|n} (1 - \frac{1}{p}) \ \Box \end{array}$$

Sequência de Fibonacci 3.2

Definição 5

Problemas Propostos

3.3.1 UVA-11424

11424 - GCD - Extreme (I)

Resumo: É dado um inteiro positivo N (1 < N < 200001). O problema consiste em calcular o mais rápido possível a expressão: $G(N) = \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} MDC(i,j).$

$$G(N) = \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} MDC(i,j).$$

Solução: Trivialmente a expressão acima pode ser calculada em tempo proporcional à $O(n^2 log(N))$, porém essa solução consome muito tempo e não será aceita no Judge Online. Vamos então mostrar uma solução mais eficiente.

Primeiramente reescrevemos a expressão acima da seguinte maneira:

 $G(N) = \sum_{j=2}^{N} \sum_{i=1}^{j-1} MDC(i,j)$ (\triangleright Observe que as expressão são equivalentes).

Tome agora a função $F(M) = \sum_{i=1}^{M-1} MDC(i, M) \Rightarrow G(N) = \sum_{j=2}^{N} F(j)$.

Sabemos que todos os valores resultantes do método MDC(i,M) calculados em F(M) são divisores de M. Desse modo, podemos reescrever F(M) da seguinte maneira:

 $F(M) = \sum_{i=1}^{M-1} MDC(i, M) = \sum_{l=1}^{n} \lambda_l d_l$, em que, $d_1, d_2, ..., d_n$ são os divisores de M, λ_l é o número de vezes que o divisor d_l aparece na somatória $\sum_{i=1}^{M-1} MDC(i,N)$, e n é o número de divisores de M.

Pelo Corolario 3 temos que: $MDC(i,M) = d_l \Rightarrow MDC(i/d_l,M/d_l) = 1$. Logo o número de vezes que o divisor d_l aparece na somatória, será igual ao número de primos entre si com (M/d_l) , ie, $\lambda_l = \varphi(M/d_l)$.

Reescrevendo novamente F(M), temos:

Reescrevendo novamente
$$F(M)$$
, temos:
$$F(M) = \sum_{i=1}^{M-1} MDC(i, M) = \sum_{l=1}^{n} \lambda_l d_l = \sum_{l=1}^{n} \varphi(M/d_l) d_l.$$

$$G(N) = \sum_{j=2}^{N} \sum_{l=1}^{n} \varphi(j/d_l) d_l \square.$$

Pseudocódigo:

Algorithm 3 GCD - Etreme(I)

```
1: procedure G (N)
2:
       \varphi[] \leftarrow PHI(N)
       solution \leftarrow 0
3:
       for j := 2 to N do
4:
5:
            for each divisor d de j do
                solution \leftarrow solution + \varphi[j/d]d
6:
7:
       return solution
```

Análise: O método PHI(N) na linha 2 consome tempo proporcional à $O(N\sqrt{N})$.

O número de divisores de j é proporcional à $O(\sqrt{N})$, já que $j \leq N$.

Assim a complexidade das linhas 4, 5, 6 do algoritmo é $O(N\sqrt{N})$.

Complexidade final do algoritmo: $O(N\sqrt{N})$.

OBS.: Para resolver o problema no Judge Online será preciso armazenar as soluções usando Programação Dinâmica.

3.3.2 TJU-3506

3506 - Euler Function

Resumo: É dado dois números positivos n, m (1 < n < 10^7 , 1 < m < 10^9). O problenas consiste em calcular a expressão: $\varphi(n^m) \mod 201004$.

Solução: Pelo Teorema 4

Pseudocódigo:

Análise:

Algorithm 4 GCD - Etreme(I)

```
1: procedure G(N)

2: \varphi[] \leftarrow PHI(N)

3: solutuion \leftarrow 0

4: for j := 2 to N do

5: for each divisor d de j do

6: solution \leftarrow solution + \varphi[j/d]d

7: return solutuion
```

Conclusão

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aliquam ultricies lacinia euismod. Nam tempus risus in dolor rhoncus in interdum enim tincidunt. Donec vel nunc neque. In condimentum ullamcorper quam non consequat. Fusce sagittis tempor feugiat. Fusce magna erat, molestie eu convallis ut, tempus sed arcu. Quisque molestie, ante a tincidunt ullamcorper, sapien enim dignissim lacus, in semper nibh erat lobortis purus. Integer dapibus ligula ac risus convallis pellentesque.

Apêndice A

Curiosidades da ACM-ICPC

ACM-ICPC (International Collegiate Programming Contest) é uma competição de programação de várias etapas e baseada em equipe. O principal objetivo é encontrar algoritmos eficientes, que resolvem os problemas abordados pela competição, o mais rápido possível.

Nos últimos anos a ACM-ICPC teve um crescimento significativo. Se compararmos o número de competidores, temos que de 1997 (ano em que começou o patrocinio da IBM) até 2014 houve um aumento maior que 1500%, totalizando 38160 competidores de 2534 universidades em 101 países ao redor do mundo.

Para mais informações sobre as competições passadas acesse icpc.baylor.edu.

FIGURA A.1: Crescimento do número de participantes por ano.

Apêndice B

Juízes Online (Online Judges)

Write your Appendix content here.

Bibliografia

- Arnold, A. S. et al. (1998). "A Simple Extended-Cavity Diode Laser". Em: *Review of Scientific Instruments* 69.3, pp. 1236–1239. URL: http://link.aip.org/link/?RSI/69/1236/1.
- Hawthorn, C. J., K. P. Weber e R. E. Scholten (2001). "Littrow Configuration Tunable External Cavity Diode Laser with Fixed Direction Output Beam". Em: *Review of Scientific Instruments* 72.12, pp. 4477–4479. URL: http://link.aip.org/link/?RSI/72/4477/1.
- Wieman, Carl E. e Leo Hollberg (1991). "Using Diode Lasers for Atomic Physics". Em: Review of Scientific Instruments 62.1, pp. 1–20. URL: http://link.aip.org/link/?RSI/62/1/1.