BECA / Dr. Huson / Geometry Unit 4

Mathematics Class Slides Bronx Early College Academy

Chris Huson

26 November 2018

BECA / Dr. Huson / Geometry Unit 4

4.1 Project: Triangle congruence project, Monday 26 November

SSS Triangle congruence. Monday 26 November

SAS Triangle congruence. Tuesday 27 November

ASA Triangle congruence. Wednesday 28 November

SSA Triangle congruence. Thursday 29 November

Construction project: Triangle congruence

CCSS: HSG.CO.C.9 Prove geometric theorems

4.1

Four pages of \triangle duplication for your binder

- 1. Side-side (SSS $\triangle \cong$) $\triangle ABC \cong \triangle A'B'C'$ iff $\overline{AB} \cong \overline{A'B'}, \overline{BC} \cong \overline{B'C'}, \text{ and } \overline{AC} \cong \overline{A'C'}$
- 2. Side-angle-side (SAS)
- 3. Angle-side-angle (ASA)
- 4. Side-side-angle (SSA), false, "ambiguous case"

Function notation: $A \rightarrow A'$ is pronounced "A gets mapped to A prime," or "A corresponds to A prime."

BECA / Dr. Huson / Geometry Unit 4

SSS Triangle congruence ("side-side-side")

Given $\triangle ABC$, duplicate $\triangle ABC$ by duplicating each side.

- 1. Construct \overrightarrow{A}' .
- 2. Circle A' with radius AB. Intersection B'.
- 3. Circle A' with radius AC.
- 4. Circle B' with radius BC. Intersection C'.
- 5. $\triangle ABC \cong \triangle A'B'C'$ by the SSS $\triangle \cong$ Postulate.

SAS Triangle congruence ("side-angle-side")

- 1. Given $\triangle ABC$, construct a duplicate $\triangle A'B'C'$
- 2. Duplicate side \overline{AB} , duplicate $\angle A$, duplicate side \overline{AC}
- 3. Angle must be the *included* angle, between the two sides
- 4. $\triangle ABC \cong \triangle A'B'C'$ iff $\overline{AB} \cong \overline{A'B'}, \angle A \cong \angle A', \& \overline{AC} \cong \overline{A'C'}$

ASA Triangle congruence ("angle-side-angle")

- 1. Given $\triangle ABC$, construct a duplicate $\triangle A'B'C'$
- 2. Duplicate $\angle A$, duplicate side AB, duplicate $\angle B$
- 3. One side and any two angles ("AAS" is ok)
- 4. $\triangle ABC \cong \triangle A'B'C'$ iff $\angle A \cong \angle A', \overline{AB} \cong \overline{A'B'}, \& \angle B \cong \angle B'$

SSA false congruence (ASS or "jack ass theorem")

- 1. Given $\triangle ABC$, two $\triangle s$ may have two pairs of congruent sides and a *non-included* congruent angle.
- 2. This is called the "ambiguous case"

