# Mahler Discrete Residues and Summability for Rational Functions

#### Yi Zhang

Department of Foundational Mathematics Xi'an Jiaotong-Liverpool University, Suzhou, China

Joint work with Carlos E. Arreche



# **Linear Mahler equations**

Let  $\mathbb{K}$  be an algebraically closed field of char 0, x be an indeterminate, and  $p \in \mathbb{Z}_{\geq 2}$ .

Consider

$$\ell_r(x)y(x^{p^r}) + \ell_{r-1}(x)y(x^{p^{r-1}}) + \dots + \ell_0(x)y(x) = f(x),$$
 (1)

where  $\ell_i, f \in \mathbb{K}[x]$  are given, y(x) is unknown. A solution of (1) is called a Mahler function.

(Mahler 1929): study Mahler equations to prove the transcendence of values of some functions.

Fact: the generating series of any *p*-automatic sequence (such as the Baum–Sweet and the Rudin–Shapiro sequences) is a Mahler function.

# **Differential Galois Theory**

Using differential Galois theory, we can determine the differential-algebraic relations between solutions of Mahler equations.

Example (Roques 2018): A Galoisian proof that the generating series of the Baum-Sweet and Rudin-Shapiro sequences are algebraic independent over  $\overline{\mathbb{Q}}(x)$ .

Goal: Design effective algorithms for computing differential Galois groups of a given linear Mahler equations.

Endow  $\mathbb{K}(x)$  with one of the  $\sigma\delta$ -field structures:

(S) 
$$\sigma: f(x) \mapsto f(x+1)$$
 and  $\delta = \frac{d}{dx}$ ;

(Q) 
$$\sigma: f(x) \mapsto f(qx)$$
 with  $q \in \mathbb{K}^{\times}$  not root of unity and  $\delta = x \frac{d}{dx}$ .

Endow  $\mathbb{K}(x)$  with one of the  $\sigma\delta$ -field structures:

(S) 
$$\sigma: f(x) \mapsto f(x+1)$$
 and  $\delta = \frac{d}{dx}$ ;

(Q) 
$$\sigma: f(x) \mapsto f(qx)$$
 with  $q \in \mathbb{K}^{\times}$  not root of unity and  $\delta = x \frac{d}{dx}$ .

Let 
$$z_1,\ldots,z_n\in F$$
, a  $\sigma\delta$ -extension of  $\mathbb{K}(x)$  with  $F^\sigma=\mathbb{K}$ , satisfying

$$\sigma(z_i) = a_i z_i$$
 for some  $a_1, \ldots, a_n \in \mathbb{K}(x)^{\times}$ .

Endow  $\mathbb{K}(x)$  with one of the  $\sigma\delta$ -field structures:

(S) 
$$\sigma: f(x) \mapsto f(x+1)$$
 and  $\delta = \frac{d}{dx}$ ;

(Q)  $\sigma: f(x) \mapsto f(qx)$  with  $q \in \mathbb{K}^{\times}$  not root of unity and  $\delta = x \frac{d}{dx}$ . Let  $z_1, \ldots, z_n \in F$ , a  $\sigma \delta$ -extension of  $\mathbb{K}(x)$  with  $F^{\sigma} = \mathbb{K}$ , satisfying

$$\sigma(z_i) = a_i z_i$$
 for some  $a_1, \ldots, a_n \in \mathbb{K}(x)^{\times}$ .

Proposition (Hardouin-Singer 2008)  $z_1, \ldots, z_n$  are  $\delta$ -dependent over  $\mathbb{K}(x)$  iff  $\exists \mathcal{L}_1, \ldots, \mathcal{L}_n \in \mathbb{K}[\delta]$ , linear  $\delta$ -operators with coefficients in  $\mathbb{K}$ , not all 0, and  $g \in \mathbb{K}(x)$ :

$$\frac{\mathcal{L}_1\left(\frac{\delta(a_1)}{a_1}\right)+\cdots+\frac{\mathcal{L}_n}{a_n}\left(\frac{\delta(a_n)}{a_n}\right)=\sigma(g)-g.$$

Endow  $\mathbb{K}(x)$  with one of the  $\sigma\delta$ -field structures:

(S) 
$$\sigma: f(x) \mapsto f(x+1)$$
 and  $\delta = \frac{d}{dx}$ ;

(Q)  $\sigma: f(x) \mapsto f(qx)$  with  $q \in \mathbb{K}^{\times}$  not root of unity and  $\delta = x \frac{d}{dx}$ . Let  $z_1, \ldots, z_n \in F$ , a  $\sigma \delta$ -extension of  $\mathbb{K}(x)$  with  $F^{\sigma} = \mathbb{K}$ , satisfying

$$\sigma(z_i) = a_i z_i$$
 for some  $a_1, \ldots, a_n \in \mathbb{K}(x)^{\times}$ .

Proposition (Hardouin-Singer 2008)  $z_1, \ldots, z_n$  are  $\delta$ -dependent over  $\mathbb{K}(x)$  iff  $\exists \mathcal{L}_1, \ldots, \mathcal{L}_n \in \mathbb{K}[\delta]$ , linear  $\delta$ -operators with coefficients in  $\mathbb{K}$ , not all 0, and  $g \in \mathbb{K}(x)$ :

$$\mathcal{L}_1\left(\frac{\delta(a_1)}{a_1}\right)+\cdots+\mathcal{L}_n\left(\frac{\delta(a_n)}{a_n}\right)=\sigma(g)-g.$$

(Arreche 2017, Arreche-Z. 2022): Using (q-) discrete residues, there exist constants  $m_1, \ldots, m_n \in \mathbb{K}$ , not all 0, such that

$$m_1 \frac{\delta(a_1)}{a_1} + \cdots + m_n \frac{\delta(a_n)}{a_n} = \sigma(g) - g + c$$

for some  $g \in \mathbb{K}(x)$  and  $c \in \mathbb{K}$  (with c = 0 in case (S)).

#### **Motivation**

Proposition (Hardouin-Singer 2008)  $z_1, \ldots, z_n$  are  $\delta$ -dependent over  $\mathbb{K}(x)$  iff  $\exists \mathcal{L}_1, \ldots, \mathcal{L}_n \in \mathbb{K}[\delta]$ , linear  $\delta$ -operators with coefficients in  $\mathbb{K}$ , not all 0, and  $g \in \mathbb{K}(x)$ :

$$\frac{\mathcal{L}_1\left(\frac{\delta(a_1)}{a_1}\right)+\cdots+\mathcal{L}_n\left(\frac{\delta(a_n)}{a_n}\right)=\sigma(g)-g.$$

It also holds for the Mahler case. Question: How to derive the explicit formulae for  $\mathcal{L}_1, \ldots, \mathcal{L}_n$ ?

#### **Motivation**

Proposition (Hardouin-Singer 2008)  $z_1, \ldots, z_n$  are  $\delta$ -dependent over  $\mathbb{K}(x)$  iff  $\exists \mathcal{L}_1, \ldots, \mathcal{L}_n \in \mathbb{K}[\delta]$ , linear  $\delta$ -operators with coefficients in  $\mathbb{K}$ , not all 0, and  $g \in \mathbb{K}(x)$ :

$$\frac{\mathcal{L}_1\left(\frac{\delta(a_1)}{a_1}\right)+\cdots+\mathcal{L}_n\left(\frac{\delta(a_n)}{a_n}\right)=\sigma(g)-g.$$

It also holds for the Mahler case. Question: How to derive the explicit formulae for  $\mathcal{L}_1, \ldots, \mathcal{L}_n$ ?

Idea: Develop the notion of Mahler discrete residues and derive an effective version of Hardouin-Singer's Proposition in the Mahler case.

#### Continuous residues

Let  $\mathbb{K}$  be an algebraically closed field of char 0, and let  $f(x) \in \mathbb{K}(x)$ . Make the partial fraction decomposition

$$f(x) = r(x) + \sum_{\alpha \in \mathbb{K}} \sum_{k \ge 1} \frac{c_{\alpha}(k)}{(x - \alpha)^k},$$

where  $r(x) \in \mathbb{K}[x]$  and  $c_{\alpha}(k) \in \mathbb{K}$  (almost all 0).

#### Continuous residues

Let  $\mathbb{K}$  be an algebraically closed field of char 0, and let  $f(x) \in \mathbb{K}(x)$ . Make the partial fraction decomposition

$$f(x) = r(x) + \sum_{\alpha \in \mathbb{K}} \sum_{k \ge 1} \frac{c_{\alpha}(k)}{(x - \alpha)^k},$$

where  $r(x) \in \mathbb{K}[x]$  and  $c_{\alpha}(k) \in \mathbb{K}$  (almost all 0).

Then f(x) is rationally integrable, i.e., there exists  $g(x) \in \mathbb{K}(x)$  such that g'(x) = f(x), if and only if the (continuous first-order) residues

$$res(f, \alpha, 1) := c_{\alpha}(1) = 0$$
 for every  $\alpha \in \mathbb{K}$ .

### Continuous residues

Let  $\mathbb{K}$  be an algebraically closed field of char 0, and let  $f(x) \in \mathbb{K}(x)$ . Make the partial fraction decomposition

$$f(x) = r(x) + \sum_{\alpha \in \mathbb{K}} \sum_{k \ge 1} \frac{c_{\alpha}(k)}{(x - \alpha)^k},$$

where  $r(x) \in \mathbb{K}[x]$  and  $c_{\alpha}(k) \in \mathbb{K}$  (almost all 0).

Then f(x) is rationally integrable, i.e., there exists  $g(x) \in \mathbb{K}(x)$  such that g'(x) = f(x), if and only if the (continuous first-order) residues

$$res(f, \alpha, 1) := c_{\alpha}(1) = 0$$
 for every  $\alpha \in \mathbb{K}$ .

Chen and Singer (2012) created a notion of discrete residues that plays an analogous role (where integrability  $\mapsto$  summability) for the shift  $(x \mapsto x + 1)$  and q-dilation  $(x \mapsto qx)$  difference operators.

#### Discrete residues: shift case

Rewrite the partial fraction decomposition of  $f(x) \in \mathbb{K}(x)$ :

$$f(x) = r(x) + \sum_{k \ge 1} \sum_{[\alpha] \in \mathbb{K}/\mathbb{Z}} \sum_{n \in \mathbb{Z}} \frac{c_{\alpha}(k, n)}{(x - \alpha + n)^k}$$

where  $r(x) \in \mathbb{K}[x]$ ,  $\alpha \in \mathbb{K}$  is a coset representative for  $[\alpha] := \alpha + \mathbb{Z} \in \mathbb{K}/\mathbb{Z}$ , and  $c_{\alpha}(k, n) \in \mathbb{K}$ .

#### Discrete residues: shift case

Rewrite the partial fraction decomposition of  $f(x) \in \mathbb{K}(x)$ :

$$f(x) = r(x) + \sum_{k \ge 1} \sum_{[\alpha] \in \mathbb{K}/\mathbb{Z}} \sum_{n \in \mathbb{Z}} \frac{c_{\alpha}(k, n)}{(x - \alpha + n)^k}$$

where  $r(x) \in \mathbb{K}[x]$ ,  $\alpha \in \mathbb{K}$  is a coset representative for  $[\alpha] := \alpha + \mathbb{Z} \in \mathbb{K}/\mathbb{Z}$ , and  $c_{\alpha}(k, n) \in \mathbb{K}$ .

The discrete residue of  $f(x) \in \mathbb{K}(x)$  at the  $\mathbb{Z}$ -orbit  $[\alpha] \in \mathbb{K}/\mathbb{Z}$  of order k is defined as

$$\operatorname{dres}(f, [\alpha], k) := \sum_{n \in \mathbb{Z}} c_{\alpha}(k, n).$$

#### Discrete residues: shift case

Rewrite the partial fraction decomposition of  $f(x) \in \mathbb{K}(x)$ :

$$f(x) = r(x) + \sum_{k \ge 1} \sum_{[\alpha] \in \mathbb{K}/\mathbb{Z}} \sum_{n \in \mathbb{Z}} \frac{c_{\alpha}(k, n)}{(x - \alpha + n)^k}$$

where  $r(x) \in \mathbb{K}[x]$ ,  $\alpha \in \mathbb{K}$  is a coset representative for  $[\alpha] := \alpha + \mathbb{Z} \in \mathbb{K}/\mathbb{Z}$ , and  $c_{\alpha}(k, n) \in \mathbb{K}$ .

The discrete residue of  $f(x) \in \mathbb{K}(x)$  at the  $\mathbb{Z}$ -orbit  $[\alpha] \in \mathbb{K}/\mathbb{Z}$  of order k is defined as

$$\operatorname{dres}(f,[\alpha],k) := \sum_{n \in \mathbb{Z}} c_{\alpha}(k,n).$$

Proposition (Chen-Singer 2012) f(x) is rationally summable, *i.e.*, there exists  $g(x) \in \mathbb{K}(x)$  such that f(x) = g(x+1) - g(x), if and only if  $\operatorname{dres}(f, [\alpha], k) = 0$  for each  $[\alpha] \in \mathbb{K}/\mathbb{Z}$  and  $k \in \mathbb{N}$ .

# Discrete residues: q-dilation case

Fix  $q \in \mathbb{K}^{\times}$  not a root of unity, and write  $f(x) \in \mathbb{K}(x)$ :

$$f(x) = r(x) + \sum_{k \ge 1} \sum_{[\alpha]_q \in \mathbb{K}^{\times}/q^{\mathbb{Z}}} \sum_{n \in \mathbb{Z}} \frac{c_{\alpha}(k, n)}{(x - q^n \alpha)^k}$$

where  $r(x) = \sum_{j \in \mathbb{Z}} r_j x^j \in \mathbb{K}[x, x^{-1}]$  and  $\alpha \in \mathbb{K}^{\times}$  is a coset representative for  $[\alpha]_q := \alpha \cdot q^{\mathbb{Z}} \in \mathbb{K}^{\times}/q^{\mathbb{Z}}$ .

# Discrete residues: q-dilation case

Fix  $q \in \mathbb{K}^{\times}$  not a root of unity, and write  $f(x) \in \mathbb{K}(x)$ :

$$f(x) = r(x) + \sum_{k \ge 1} \sum_{[\alpha]_q \in \mathbb{K}^{\times}/q^{\mathbb{Z}}} \sum_{n \in \mathbb{Z}} \frac{c_{\alpha}(k, n)}{(x - q^n \alpha)^k}$$

where  $r(x) = \sum_{j \in \mathbb{Z}} r_j x^j \in \mathbb{K}[x, x^{-1}]$  and  $\alpha \in \mathbb{K}^{\times}$  is a coset representative for  $[\alpha]_q := \alpha \cdot q^{\mathbb{Z}} \in \mathbb{K}^{\times}/q^{\mathbb{Z}}$ .

The *q*-discrete residue of f(x) at the  $q^{\mathbb{Z}}$ -orbit  $[\alpha]_q \in \mathbb{K}^{\times}/q^{\mathbb{Z}}$  of order k (resp., at infinity) is defined as

$$q\text{-}\mathrm{dres}(f,[\alpha]_q,k):=\sum_{n\in\mathbb{Z}}q^{-kn}c_\alpha(k,n)\quad (\text{resp., }q\text{-}\mathrm{dres}(f,\infty):=r_0).$$

# Discrete residues: q-dilation case

Fix  $q \in \mathbb{K}^{\times}$  not a root of unity, and write  $f(x) \in \mathbb{K}(x)$ :

$$f(x) = r(x) + \sum_{k \ge 1} \sum_{[\alpha]_q \in \mathbb{K}^{\times}/q^{\mathbb{Z}}} \sum_{n \in \mathbb{Z}} \frac{c_{\alpha}(k, n)}{(x - q^n \alpha)^k}$$

where  $r(x) = \sum_{j \in \mathbb{Z}} r_j x^j \in \mathbb{K}[x, x^{-1}]$  and  $\alpha \in \mathbb{K}^{\times}$  is a coset representative for  $[\alpha]_q := \alpha \cdot q^{\mathbb{Z}} \in \mathbb{K}^{\times}/q^{\mathbb{Z}}$ .

The *q*-discrete residue of f(x) at the  $q^{\mathbb{Z}}$ -orbit  $[\alpha]_q \in \mathbb{K}^{\times}/q^{\mathbb{Z}}$  of order k (resp., at infinity) is defined as

$$q ext{-}\mathrm{dres}(f,[lpha]_q,k) := \sum_{n\in\mathbb{Z}} q^{-kn} c_lpha(k,n) \quad (\mathsf{resp.}, \ q ext{-}\mathrm{dres}(f,\infty) := r_0).$$

Proposition (Chen-Singer 2012) f(x) is rationally q-summable, i.e., there exists  $g(x) \in \mathbb{K}(x)$  such that f(x) = g(qx) - g(x), if and only if q-dres $(f, \infty) = 0$  and q-dres $(f, [\alpha]_q, k) = 0$  for each  $[\alpha]_q \in \mathbb{K}^\times/q^\mathbb{Z}$  and  $k \in \mathbb{N}$ .

## Why use residues?

An advantage of using residues is to answer whether (yes/no)  $f(x) \in \mathbb{K}(x)$  is

- rationally integrable: f(x) = g'(x); or
- rationally summable: f(x) = g(x+1) g(x); or
- rationally q-summable: f(x) = g(qx) g(x);

without computing the certificate  $g(x) \in \mathbb{K}(x)$ .

## Why use residues?

An advantage of using residues is to answer whether (yes/no)  $f(x) \in \mathbb{K}(x)$  is

- rationally integrable: f(x) = g'(x); or
- rationally summable: f(x) = g(x+1) g(x); or
- rationally q-summable: f(x) = g(qx) g(x);

without computing the certificate  $g(x) \in \mathbb{K}(x)$ .

Computing residues from the definition is impractical because it requires doing partial fraction decompositions.

## Why use residues?

An advantage of using residues is to answer whether (yes/no)  $f(x) \in \mathbb{K}(x)$  is

- rationally integrable: f(x) = g'(x); or
- rationally summable: f(x) = g(x+1) g(x); or
- rationally q-summable: f(x) = g(qx) g(x);

without computing the certificate  $g(x) \in \mathbb{K}(x)$ .

Computing residues from the definition is impractical because it requires doing partial fraction decompositions.

In the differential case, there is a better way: if  $f = \frac{a}{b}$  with  $a, b \in \mathbb{K}[x]$ ,  $\gcd(a, b) = 1$ ,  $\deg(a) < \deg(b)$ , and b squarefree, then the roots of the Rothstein-Trager resultant

$$RT(f) := \operatorname{Res}_{x}(a - z \cdot b', b) \in \mathbb{K}[z]$$

are precisely the first-order continuous residues of f(x), which implies f(x) is rationally integrable iff RT(f) is a monomial in z.

Fix  $p \in \mathbb{Z}_{\geq 2}$  and let the Mahler difference operator  $\sigma : g(x) \mapsto g(x^p)$  for  $g(x) \in \mathbb{K}(x)$ .

Fix  $p \in \mathbb{Z}_{\geq 2}$  and let the Mahler difference operator  $\sigma : g(x) \mapsto g(x^p)$  for  $g(x) \in \mathbb{K}(x)$ .

We say  $f(x) \in \mathbb{K}(x)$  is Mahler summable if there exists  $g(x) \in \mathbb{K}(x)$  such that  $f(x) = g(x^p) - g(x)$ .

Fix  $p \in \mathbb{Z}_{\geq 2}$  and let the Mahler difference operator  $\sigma : g(x) \mapsto g(x^p)$  for  $g(x) \in \mathbb{K}(x)$ .

We say  $f(x) \in \mathbb{K}(x)$  is Mahler summable if there exists  $g(x) \in \mathbb{K}(x)$  such that  $f(x) = g(x^p) - g(x)$ .

Mahler Summability Problem: given  $f(x) \in \mathbb{K}(x)$ , decide effectively whether f(x) is Mahler summable.

Done by Chyzak-Dreyfus-Dumas-Mezzarobba (2018).

Fix  $p \in \mathbb{Z}_{\geq 2}$  and let the Mahler difference operator  $\sigma : g(x) \mapsto g(x^p)$  for  $g(x) \in \mathbb{K}(x)$ .

We say  $f(x) \in \mathbb{K}(x)$  is Mahler summable if there exists  $g(x) \in \mathbb{K}(x)$  such that  $f(x) = g(x^p) - g(x)$ .

Mahler Summability Problem: given  $f(x) \in \mathbb{K}(x)$ , decide effectively whether f(x) is Mahler summable.

Done by Chyzak-Dreyfus-Dumas-Mezzarobba (2018).

Our Goal: Construct a ( $\mathbb{K}$ -linear) complete obstruction to the Mahler summability of  $f(x) \in \mathbb{K}(x)$ .

More precisely, for the  $\mathbb{K}$ -linear map  $\Delta: g(x) \mapsto g(x^p) - g(x)$ , we wish to construct explicitly a  $\mathbb{K}$ -linear map  $\nabla$  on  $\mathbb{K}(x)$  such that  $\operatorname{im}(\Delta) = \ker(\nabla)$ , bypassing computation of certificates.

We call  $\nabla$  the Mahler reduction operator. Given  $f \in \mathbb{K}(x)$ , set  $\overline{f} = \nabla(f)$ . Then f is Mahler summable if and only if  $\overline{f} = 0$ . The numerators in the partial fraction decomposition of  $\overline{f}$  are Mahler discrete residues of f.

## Mahler trajectories and Mahler trees

Let  $\mathcal{P} = \{p^n \mid n \in \mathbb{Z}_{\geq 0}\}$  denote the multiplicative monoid of non-negative powers of p.

## Mahler trajectories and Mahler trees

Let  $\mathcal{P} = \{p^n \mid n \in \mathbb{Z}_{\geq 0}\}$  denote the multiplicative monoid of non-negative powers of p.

We denote by  $\mathbb{Z}/\mathcal{P}$  the set of maximal trajectories for the action of  $\mathcal{P}$  on  $\mathbb{Z}$  by multiplication:

$$\mathbb{Z}/\mathcal{P} = \big\{\{0\}\big\} \cup \big\{\{ip^n \mid n \in \mathbb{Z}_{\geq 0}\} \mid i \in \mathbb{Z} \text{ such that } p \nmid i\big\}.$$

The elements  $\theta \in \mathbb{Z}/\mathcal{P}$  are pairwise disjoint subsets of  $\mathbb{Z}$  whose union is all of  $\mathbb{Z}$ .

## Mahler trajectories and Mahler trees

Let  $\mathcal{P} = \{p^n \mid n \in \mathbb{Z}_{\geq 0}\}$  denote the multiplicative monoid of non-negative powers of p.

We denote by  $\mathbb{Z}/\mathcal{P}$  the set of maximal trajectories for the action of  $\mathcal{P}$  on  $\mathbb{Z}$  by multiplication:

$$\mathbb{Z}/\mathcal{P} = \big\{\{0\}\big\} \cup \big\{\{ip^n \mid n \in \mathbb{Z}_{\geq 0}\} \mid i \in \mathbb{Z} \text{ such that } p \nmid i\big\}.$$

The elements  $\theta \in \mathbb{Z}/\mathcal{P}$  are pairwise disjoint subsets of  $\mathbb{Z}$  whose union is all of  $\mathbb{Z}$ .

We denote by  $\mathcal{T}_M$  the set of equivalence classes for the equivalence relation on  $\mathbb{K}^{\times}$  defined by  $\alpha \sim \gamma$  if and only if  $\alpha^{p^s} = \gamma^{p^r}$  for some  $r, s \in \mathbb{Z}_{>0}$ .

The elements  $\tau \in \mathcal{T}_M$ , called Mahler trees, are pairwise disjoint subsets of  $\mathbb{K}^{\times}$  whose union is all of  $\mathbb{K}^{\times}$ . We write  $\tau(\alpha)$  for the unique Mahler tree containing  $\alpha \in \mathbb{K}^{\times}$ .

## **Examples of Mahler trees**

We define a digraph on the vertex set  $\tau$  for each Mahler tree  $\tau \in \mathcal{T}_M$  with one directed edge  $\alpha \to \gamma$  whenever  $\alpha^p = \gamma$ .

# **Examples of Mahler trees**

We define a digraph on the vertex set  $\tau$  for each Mahler tree  $\tau \in \mathcal{T}_M$  with one directed edge  $\alpha \to \gamma$  whenever  $\alpha^p = \gamma$ .

With p=3, the vertices of au(2) near  $2\in\mathbb{K}^{ imes}$  are



# **Examples of Mahler trees**

We define a digraph on the vertex set  $\tau$  for each Mahler tree  $\tau \in \mathcal{T}_M$  with one directed edge  $\alpha \to \gamma$  whenever  $\alpha^p = \gamma$ .

With p=3, the vertices of au(2) near  $2\in\mathbb{K}^{ imes}$  are

$$\left\{ \sqrt[3]{2}, \zeta_3 \sqrt[3]{2}, \zeta_3^2 \sqrt[3]{2} \right\} \longrightarrow \sqrt[3]{2}$$

$$\left\{ \zeta_9 \sqrt[3]{2}, \zeta_9^4 \sqrt[3]{2}, \zeta_9^7 \sqrt[3]{2} \right\} \longrightarrow \sqrt[3]{3}$$

$$\left\{ \zeta_9^2 \sqrt[3]{2}, \zeta_9^5 \sqrt[3]{2}, \zeta_9^8 \sqrt[3]{2} \right\} \longrightarrow \sqrt[3]{3}$$

$$\left\{ \zeta_9^2 \sqrt[3]{2}, \zeta_9^5 \sqrt[3]{2}, \zeta_9^8 \sqrt[3]{2} \right\} \longrightarrow \sqrt[3]{3}$$

With p=3, the vertices of  $au(\zeta_4)$  near  $\zeta_4\in\mathbb{K}^{ imes}$  are



For  $f(x) \in \mathbb{K}(x)$ , we can decompose it uniquely as  $f(x) = f_L(x) + f_T(x)$ :

$$f_L(x) := \sum_{j \in \mathbb{Z}} r_j x^j$$
 and  $f_T(x) := \sum_{k \geq 1} \sum_{\alpha \in \mathbb{K}^\times} \frac{c_\alpha(k)}{(x - \alpha)^k},$ 

where  $r_j, c_{\alpha}(k) \in \mathbb{K}$ .

For  $f(x) \in \mathbb{K}(x)$ , we can decompose it uniquely as  $f(x) = f_L(x) + f_T(x)$ :

$$f_L(x) := \sum_{j \in \mathbb{Z}} r_j x^j$$
 and  $f_T(x) := \sum_{k \geq 1} \sum_{\alpha \in \mathbb{K}^\times} \frac{c_\alpha(k)}{(x - \alpha)^k},$ 

where  $r_i, c_{\alpha}(k) \in \mathbb{K}$ .

This yields a  $\sigma$ -stable  $\mathbb{K}$ -vector space decomposition of  $\mathbb{K}(x)$  as  $\mathbb{K}(x) \simeq \mathbb{K}[x,x^{-1}] \oplus \mathbb{K}(x)_{\mathcal{T}}.$ 

For  $f(x) \in \mathbb{K}(x)$ , we can decompose it uniquely as  $f(x) = f_L(x) + f_T(x)$ :

$$f_L(x) := \sum_{j \in \mathbb{Z}} r_j x^j$$
 and  $f_T(x) := \sum_{k \geq 1} \sum_{\alpha \in \mathbb{K}^\times} \frac{c_\alpha(k)}{(x - \alpha)^k},$ 

where  $r_i, c_{\alpha}(k) \in \mathbb{K}$ .

This yields a  $\sigma$ -stable  $\mathbb{K}$ -vector space decomposition of  $\mathbb{K}(x)$  as  $\mathbb{K}(x) \simeq \mathbb{K}[x, x^{-1}] \oplus \mathbb{K}(x)_{\mathcal{T}}.$ 

Then  $f \in \mathbb{K}(x)$  is Mahler summable if and only if  $f_L$  and  $f_T$  are both Mahler summable. We address each component separately.

For  $f(x) \in \mathbb{K}(x)$ , we can decompose it uniquely as  $f(x) = f_L(x) + f_T(x)$ :

$$f_L(x) := \sum_{j \in \mathbb{Z}} r_j x^j$$
 and  $f_T(x) := \sum_{k \geq 1} \sum_{\alpha \in \mathbb{K}^\times} \frac{c_\alpha(k)}{(x - \alpha)^k},$ 

where  $r_i, c_{\alpha}(k) \in \mathbb{K}$ .

This yields a  $\sigma$ -stable  $\mathbb{K}$ -vector space decomposition of  $\mathbb{K}(x)$  as

$$\mathbb{K}(x) \simeq \mathbb{K}[x, x^{-1}] \oplus \mathbb{K}(x)_{\mathcal{T}}.$$

Then  $f \in \mathbb{K}(x)$  is Mahler summable if and only if  $f_L$  and  $f_T$  are both Mahler summable. We address each component separately.

Moreover, the decompositions  $f_L = \sum_{\theta \in \mathbb{Z}/\mathcal{P}} f_{\theta}$  and  $f_T = \sum_{\tau \in \mathcal{T}_M} f_{\tau}$ :

$$f_{ heta} := \sum_{j \in heta} r_j x^j$$
 and  $f_{ au} := \sum_{k \geq 1} \sum_{lpha \in au} rac{c_lpha(k)}{(x - lpha)^k}$ 

are also  $\sigma$ -stable. Can decide summability of f by deciding for each  $f_{\theta}$  ( $\theta \in \mathbb{Z}/\mathcal{P}$ ) and each  $f_{\tau}$  ( $\tau \in \mathcal{T}_{M}$ ) individually.

#### Mahler residues at infinity

Definition (Arreche-Z. 2022) Let  $f(x) \in \mathbb{K}(x)$  and write  $f_L(x) = \sum_{j \in \mathbb{Z}} r_j x^j \in \mathbb{K}[x, x^{-1}]$ . The Mahler residue of f(x) at infinity is the vector

$$\mathrm{dres}(f,\infty) := \left(\sum_{j\in heta} r_j
ight)_{ heta\in\mathbb{Z}/\mathcal{P}} \in igoplus_{ heta\in\mathbb{Z}/\mathcal{P}} \mathbb{K}.$$

#### Mahler residues at infinity

Definition (Arreche-Z. 2022) Let  $f(x) \in \mathbb{K}(x)$  and write  $f_L(x) = \sum_{j \in \mathbb{Z}} r_j x^j \in \mathbb{K}[x, x^{-1}]$ . The Mahler residue of f(x) at infinity is the vector

$$\mathrm{dres}(f,\infty) := \left(\sum_{j\in heta} r_j
ight)_{ heta\in\mathbb{Z}/\mathcal{P}}\inigoplus_{ heta\in\mathbb{Z}/\mathcal{P}}\mathbb{K}.$$

Proposition (Arreche-Z. 2022) For  $f(x) \in \mathbb{K}(x)$  the component  $f_L(x) \in \mathbb{K}[x, x^{-1}]$  is Mahler summable if and only if  $\operatorname{dres}(f, \infty) = \mathbf{0}$  (the zero vector).

For  $\alpha \in \mathbb{K}^{\times}$ ,  $\zeta_p$  a primitive *p*-th root of unity, let  $V_k^m(\zeta_p^i\alpha) \in \mathbb{K}$ :

$$\sigma\left(\frac{1}{(x-\alpha^p)^m}\right) = \frac{1}{(x^p-\alpha^p)^m} = \sum_{k=1}^m \sum_{i=0}^{p-1} \frac{V_k^m(\zeta_p^i \alpha)}{(x-\zeta_p^i \alpha)^k}.$$

For  $\alpha \in \mathbb{K}^{\times}$ ,  $\zeta_p$  a primitive *p*-th root of unity, let  $V_k^m(\zeta_p^i\alpha) \in \mathbb{K}$ :

$$\sigma\left(\frac{1}{(x-\alpha^p)^m}\right) = \frac{1}{(x^p-\alpha^p)^m} = \sum_{k=1}^m \sum_{i=0}^{p-1} \frac{V_k^m(\zeta_p^i \alpha)}{(x-\zeta_p^i \alpha)^k}.$$

The definition of Mahler residues is more complicated because applying  $\sigma: f(x) \mapsto f(x^p)$  at poles of order m "leaks" into the poles of order  $k \leq m$ .

For  $\alpha \in \mathbb{K}^{\times}$ ,  $\zeta_p$  a primitive p-th root of unity, let  $V_k^m(\zeta_p^i\alpha) \in \mathbb{K}$ :

$$\sigma\left(\frac{1}{(x-\alpha^p)^m}\right) = \frac{1}{(x^p-\alpha^p)^m} = \sum_{k=1}^m \sum_{i=0}^{p-1} \frac{V_k^m(\zeta_p^i \alpha)}{(x-\zeta_p^i \alpha)^k}.$$

The definition of Mahler residues is more complicated because applying  $\sigma: f(x) \mapsto f(x^p)$  at poles of order m "leaks" into the poles of order  $k \leq m$ .

Lemma (Arreche-Z. 2022) 
$$V_k^m(\zeta_p^i\alpha) = \mathbb{V}_k^m \cdot \frac{(\zeta_p^i\alpha)^k}{\alpha^{pm}},$$

where  $\mathbb{V}_{k}^{m} \in \mathbb{Q}$  are obtained from the Taylor coefficients at x = 1:

$$(x^{p-1}+\cdots+x+1)^{-m}=\sum_{k=1}^m \mathbb{V}_k^m\cdot (x-1)^{m-k}+O((x-1)^m).$$

For  $\alpha \in \mathbb{K}^{\times}$ ,  $\zeta_p$  a primitive p-th root of unity, let  $V_k^m(\zeta_p^i\alpha) \in \mathbb{K}$ :

$$\sigma\left(\frac{1}{(x-\alpha^p)^m}\right) = \frac{1}{(x^p - \alpha^p)^m} = \sum_{k=1}^m \sum_{i=0}^{p-1} \frac{V_k^m(\zeta_p^i \alpha)}{(x - \zeta_p^i \alpha)^k}.$$

The definition of Mahler residues is more complicated because applying  $\sigma: f(x) \mapsto f(x^p)$  at poles of order m "leaks" into the poles of order  $k \leq m$ .

Lemma (Arreche-Z. 2022) 
$$V_k^m(\zeta_p^i\alpha) = \mathbb{V}_k^m \cdot \frac{(\zeta_p^i\alpha)^k}{\alpha^{pm}},$$

where  $\mathbb{V}_k^m \in \mathbb{Q}$  are obtained from the Taylor coefficients at x = 1:

$$(x^{p-1}+\cdots+x+1)^{-m}=\sum_{k=1}^m \mathbb{V}_k^m\cdot (x-1)^{m-k}+O((x-1)^m).$$

The "universal coefficients"  $\mathbb{V}_k^m$  can be computed directly (as a sum over partitions) using the Faà di Bruno's formula.

#### Small example of Mahler coefficients

Let p = 3, m = 2, and  $\alpha^3 = 1$ . Then

$$\sigma\left(\frac{1}{(x-1)^2}\right) = \frac{1}{(x^3-1)^2} = \sum_{k=1}^2 \sum_{i=0}^2 \frac{V_k^2(\zeta_3^i)}{(x-\zeta_3^i)^k},$$

By the previous Lemma,  $V_k^2(\zeta_3^i)=\mathbb{V}_k^2\cdot(\zeta_3^i)^{k-6}=\mathbb{V}_k^2\cdot\zeta_3^{ki}$  for k=1,2. We find that

$$\mathbb{V}_2^2 = (x^2 + x + 1)^{-2} \Big|_{x=1} = \frac{1}{9}$$
; and  $\mathbb{V}_1^2 = ((x^2 + x + 1)^{-2})' \Big|_{x=1} = -\frac{2}{9}$ .

Using a computer algebra system (or by hand!), one can very that the partial fraction decomposition of  $9 \cdot (x^3 - 1)^{-2}$  is indeed

$$\frac{1}{(x-1)^2} + \frac{\zeta_3^2}{(x-\zeta_3)^2} + \frac{\zeta_3}{(x-\zeta_3^2)^2} + \frac{-2}{x-1} + \frac{-2\zeta_3}{x-\zeta_3} + \frac{-2\zeta_3^2}{x-\zeta_3^2}.$$

Suppose  $\gamma \in \mathbb{K}^{\times}$  is not a root of unity,  $f \in \mathbb{K}(x)$ , and  $h \in \mathbb{Z}_{\geq 0}$  s.t.:

$$\operatorname{sing}(f) \cap \tau(\gamma) \subseteq \{\zeta_{p^n}^i \gamma^{p^{h-n}} \mid 0 \le n \le h, \ i \in \mathbb{Z}/p^n\mathbb{Z}\}.$$

Suppose  $\gamma \in \mathbb{K}^{\times}$  is not a root of unity,  $f \in \mathbb{K}(x)$ , and  $h \in \mathbb{Z}_{\geq 0}$  s.t.:

$$\operatorname{sing}(f) \cap \tau(\gamma) \subseteq \{\zeta_{p^n}^i \gamma^{p^{h-n}} \mid 0 \le n \le h, \ i \in \mathbb{Z}/p^n\mathbb{Z}\}.$$

Then we can write, for  $\tau = \tau(\gamma)$ ,

$$f_{\tau} = \sum_{k=1}^{m} \sum_{n=0}^{h} \sum_{i \in \mathbb{Z}/p^{n}\mathbb{Z}} \frac{c_{\gamma}(k, n, i)}{(x - \zeta_{p^{n}}^{i} \gamma^{p^{h-n}})^{k}}.$$

Suppose  $\gamma \in \mathbb{K}^{\times}$  is not a root of unity,  $f \in \mathbb{K}(x)$ , and  $h \in \mathbb{Z}_{\geq 0}$  s.t.:

$$\operatorname{sing}(f) \cap \tau(\gamma) \subseteq \{\zeta_{p^n}^i \gamma^{p^{h-n}} \mid 0 \le n \le h, \ i \in \mathbb{Z}/p^n\mathbb{Z}\}.$$

Then we can write, for  $\tau = \tau(\gamma)$ ,

$$f_{\tau} = \sum_{k=1}^{m} \sum_{n=0}^{h} \sum_{i \in \mathbb{Z}/p^{n}\mathbb{Z}} \frac{c_{\gamma}(k, n, i)}{(x - \zeta_{p^{n}}^{i} \gamma^{p^{h-n}})^{k}}.$$

Set recursively:  $\tilde{c}_{k,0,0} := c_{\gamma}(k,0,0)$ , and for  $1 \leq n \leq h$ ;  $i \in \mathbb{Z}/p^n\mathbb{Z}$ :

$$ilde{c}_{k,n,i}:=c_{\gamma}(k,n,i)+\sum_{i=k}^{m} ilde{c}_{j,n-1,\pi_{n-1}(i)}V_{k}^{j}(\zeta_{p^{n}}^{i}\gamma^{p^{h-n}}),$$

where  $\pi_{n-1}: \mathbb{Z}/p^n\mathbb{Z} \to \mathbb{Z}/p^{n-1}\mathbb{Z}$  is the canonical projection.

Suppose  $\gamma \in \mathbb{K}^{\times}$  is not a root of unity,  $f \in \mathbb{K}(x)$ , and  $h \in \mathbb{Z}_{\geq 0}$  s.t.:

$$\operatorname{sing}(f) \cap \tau(\gamma) \subseteq \{\zeta_{p^n}^i \gamma^{p^{h-n}} \mid 0 \le n \le h, \ i \in \mathbb{Z}/p^n\mathbb{Z}\}.$$

Then we can write, for  $\tau = \tau(\gamma)$ ,

$$f_{\tau} = \sum_{k=1}^{m} \sum_{n=0}^{h} \sum_{i \in \mathbb{Z}/p^{n}\mathbb{Z}} \frac{c_{\gamma}(k, n, i)}{(x - \zeta_{p^{n}}^{i} \gamma^{p^{h-n}})^{k}}.$$

Set recursively:  $\tilde{c}_{k,0,0} := c_{\gamma}(k,0,0)$ , and for  $1 \le n \le h$ ;  $i \in \mathbb{Z}/p^n\mathbb{Z}$ :

$$\widetilde{c}_{k,\mathbf{n},i} := c_{\gamma}(k,\mathbf{n},i) + \sum_{i=k}^{m} \widetilde{c}_{j,\mathbf{n-1},\pi_{n-1}(i)} V_{k}^{j}(\zeta_{p^{n}}^{i} \gamma^{p^{h-n}}),$$

where  $\pi_{n-1}: \mathbb{Z}/p^n\mathbb{Z} \to \mathbb{Z}/p^{n-1}\mathbb{Z}$  is the canonical projection.

Suppose  $\gamma \in \mathbb{K}^{\times}$  is not a root of unity,  $f \in \mathbb{K}(x)$ , and  $h \in \mathbb{Z}_{\geq 0}$  s.t.:

$$\operatorname{sing}(f) \cap \tau(\gamma) \subseteq \{\zeta_{p^n}^i \gamma^{p^{h-n}} \mid 0 \le n \le h, \ i \in \mathbb{Z}/p^n\mathbb{Z}\}.$$

Then we can write, for  $\tau = \tau(\gamma)$ ,

$$f_{\tau} = \sum_{k=1}^{m} \sum_{n=0}^{h} \sum_{i \in \mathbb{Z}/p^{n}\mathbb{Z}} \frac{c_{\gamma}(k, n, i)}{(x - \zeta_{p^{n}}^{i} \gamma^{p^{h-n}})^{k}}.$$

Set recursively:  $\tilde{c}_{k,0,0} := c_{\gamma}(k,0,0)$ , and for  $1 \leq n \leq h$ ;  $i \in \mathbb{Z}/p^n\mathbb{Z}$ :

$$ilde{c}_{k,n,i}:=c_{\gamma}(k,n,i)+\sum_{i=k}^{m} ilde{c}_{j,n-1,\pi_{n-1}(i)}V_{k}^{j}(\zeta_{p^{n}}^{i}\gamma^{p^{h-n}}),$$

where  $\pi_{n-1}: \mathbb{Z}/p^n\mathbb{Z} \to \mathbb{Z}/p^{n-1}\mathbb{Z}$  is the canonical projection. Definition (Arreche-Z. 2022) The Mahler discrete residue at  $\tau$  of order k is the vector  $\operatorname{dres}(f,\tau,k) \in \bigoplus_{\alpha \in \tau} \mathbb{K}$  with  $\alpha$ -component := 0 except possibly at  $\alpha = \zeta_{ph}^i \gamma$  for  $i \in \mathbb{Z}/p^h\mathbb{Z}$ , given by  $\tilde{c}_{k,h,i}$ .

#### Mahler residues at Mahler trees (3 of 3): proof

Proposition (Arreche-Z. 2022) For  $f \in \mathbb{K}(x)$  the component  $f_T$  is Mahler summable if and only if  $dres(f, \tau, k) = \mathbf{0}$  (the zero vector) for each  $\tau \in \mathcal{T}_M$  and  $k \in \mathbb{N}$ .

#### Mahler residues at Mahler trees (3 of 3): proof

Proposition (Arreche-Z. 2022) For  $f \in \mathbb{K}(x)$  the component  $f_T$  is Mahler summable if and only if  $dres(f, \tau, k) = \mathbf{0}$  (the zero vector) for each  $\tau \in \mathcal{T}_M$  and  $k \in \mathbb{N}$ .

#### Mahler residues at Mahler trees (3 of 3): proof

Proposition (Arreche-Z. 2022) For  $f \in \mathbb{K}(x)$  the component  $f_T$  is Mahler summable if and only if  $dres(f, \tau, k) = \mathbf{0}$  (the zero vector) for each  $\tau \in \mathcal{T}_M$  and  $k \in \mathbb{N}$ .

The definition (and proofs) for Mahler discrete residues at  $\tau(\zeta)$  for  $\zeta \in \mathbb{K}_t^{\times}$  a root of unity is similar in spirit, but more technical, due to the perverse (pre-)periodic behavior of roots of unity under the *p*-power map.

#### Main Result

Theorem (Arreche-Z. 2022) Given  $f \in \mathbb{K}(x)$ . Then f is Mahler summable if and only if  $\operatorname{dres}(f,\infty) = \mathbf{0}$  and  $\operatorname{dres}(f,\tau,k) = \mathbf{0}$  for all  $k \in \mathbb{N}$  and  $\tau \in \mathcal{T}_M$ .

Yi Zhang, XJTLU 20/21

### Thanks!