Roll	No.:	

National Institute of Technology, Delhi

Name of the Examination: B.Tech.

Branch

: EEE

Semester

: 3rd

Title of the Course

: Electro Magnetic Field Theory Course Code

: EEL 203

Time: 2 Hours

Maximum Marks: 25

Note: 1. All the 6 questions are compulsory. Make suitable assumptions wherever required.

2. All the symbols have their usual meaning.

Given that $\vec{U} = y\hat{a}_x + x\hat{a}_y + \frac{x^2}{\sqrt{x^2 + v^2}}\hat{a}_z$. Transform \vec{U} from Cartesian to cylindrical coordinates. Q1.

4 Marks

- Given that $\vec{D} = \frac{5r^2}{4} \hat{a}_r$ (C/m²) in spherical coordinates. Verify the divergence theorem for the Q2. volume enclosed by r = 4 m and $\theta = \frac{\pi}{4}$. 4 Marks
- Find the force on a point charge of 50 μ C at (0, 0, 5) m due to a charge of 500π μ C that is Q3. uniformly distributed over the circular disk $\rho \le 5$ m, z = 0 m. 4 Marks
- A charge of uniform density $\rho_s = 0.3 \text{ nC/m}^2$ covers the plane 2x 3y + z = 6 m. Find \vec{E} on the Q4. side of the plane containing the origin. 5 Marks
- Determine the flux crossing a 1 mm by 1 mm area on the surface of a cylindrical shell at $\rho = 10$ m, Q5. $z = 2 \text{ m}, \varphi = 53.2^{\circ} \text{ if}$ 4 Marks $\vec{D} = 2x\hat{a}_x + 2(1-y)\hat{a}_y + 4z\hat{a}_z \text{ (C/m}^2)$
- Prove that the vector field \vec{U} is conservative if the line integral of the tangential component of \vec{U} Q6. around any closed path is zero. 4 Marks