Prof. G. de Cesare Esame di Elettronica Ingegneria Informatica/Automatica 2013

1) Del circuito seguente, calcolare e tracciare la transcaratteristica $V_{OUT} = f(V_{IN})$, per $0V \le V_{in} \le 5V$, riportando sul grafico i punti significativi.

I = 1 mA; $R_1 = 2 \text{k}\Omega;$ $R_2 = 6 \text{k}\Omega$

Amplificatore Operazionale ideale con $L^+ = -L^- = 10$ V.

1) Del circuito seguente, calcolare il guadagno di transresistenza v_{out}/i_{sig} per piccoli segnali. Considerare le capacità dei cortocircuiti alla frequenza del segnale.

I = 2mA; $V_{DD} = 5\text{V};$

Q₁: $V_T = 2 \text{ V}; \qquad K = 0.5 \text{ mA/V}^2; \qquad \lambda = 0$

 $\mathbf{R}_{A} = 2k\Omega;$ $\mathbf{R}_{B} = 8k\Omega;$ $\mathbf{R}_{D} = 1k\Omega;$ $\mathbf{R}_{L} = 3k\Omega;$ $\mathbf{R}_{sig} = 100k\Omega$

1) Del circuito seguente determinare la tensione di uscita nel tempo con in ingresso il segnale ad onda quadra riportato in figura.

Amplificatore Operazionale ideale;

$$L^+ = -L^- = 5 \text{ V}$$

$$R_1 = 5k\Omega;$$

C = 100 nF

1) Dato il circuito seguente, in presenza del gradino di corrente riportato in figura, determinare e graficare l'andamento nel tempo delle tensioni di uscita V_{01} e V_{02} quando il commutatore S si trova in posizione 1 o 2 rispettivamente.

$$V_A = 2 \text{ V}$$
 $R_I = 3 \text{ k}\Omega$ $R_2 = 5 \text{ k}\Omega$ $C = 0.1 \text{ }\mu\text{F}$

Considerare l'amplificatore operazionale A_1 ideale con $L^+ = |L^-| = 12 \text{ V}$.

1) Del circuito seguente calcolare il valore della resistenza Rs per avere un guadagno di transconduttanza per piccoli segnali $i_L/v_{in}=-1~{\rm mA/V}$

$$\begin{aligned} &\mathbf{Q_1}\!\!=\!\!\{k=0,\!5\text{ mA/V}^2\!,\,V_t\!\!=\!1V\!,\,\lambda\!\!=\!\!0\}\\ &R_A\!\!=\!\!6k\Omega,\quad R_B\!\!=\!\!4k\Omega,\quad R_D\!\!=\!\!2,\!5k\Omega,\quad R_L\!\!=\!\!2,\!5k\Omega\\ &C\!\!\rightarrow\!\!+\infty,\,V_{DD}\!\!=\!\!5~V \end{aligned}$$

Dati un generatore di tensione di piccolo segnale v_{in} e un generatore di corrente di piccolo segnale i_{in} , determinare le resistenze R_F , R_I e R_2 del circuito in figura per avere una tensione di uscita v_{out} pari a v_{out} =0.25 v_{in} +500 i_{in} .

Del circuito seguente calcolare

- lo stato di polarizzazione del transistore Q_1 (V_{GS} ; I_D ; V_{DS})
- il valore della tensione di uscita in continua V_{OUT}
- l'amplificazione di tensione per piccoli segnali v_{out}/v_{in}

 $\mathbf{Q_1} = \{k = 0.5 \text{ mA/V}^2, V_t = 1V, \lambda = 0\}$ $\mathbf{A_I} = \text{Amplificatore Operazionale ideale con } |V_{SAT}| = 10V$

 $R_S=0.5\mathrm{k}\Omega$ R_1 =6k Ω , $R_D=1 \text{ k}\Omega$, $R_F = 2 \text{ k}\Omega$ R_2 =4k Ω , $C\rightarrow +\infty$, $V_{DD}=10 \text{ V}$

Dato il circuito seguente, in presenza del gradino di tensione riportato in figura, determinare e graficare l'andamento nel tempo della tensione di uscita V_{OUT} , determinando i punti significativi $V_{OUT}(\infty)$, $V_{OUT}(I^-)$ e τ .

Q₁: $V_T = 1 \text{ V}$; $K_1 = 0.5 \text{ mA/V}^2$; $\lambda = 0$ Amplificatore Operazionale ideale con $L^+ = -L^- = 10 \text{ V}$

C = 100 nF $V_{DD} = 10 \text{ V}$

 $R_1 = 1 \text{ k}\Omega$ $R_D = 2 \text{ k}\Omega$