NACA

RESEARCH MEMORANDUM

STATIC STABILITY AND CONTROL CHARACTERISTICS OF A
TRIANGULAR WING AND CANARD CONFIGURATION

AT MACH NUMBERS FROM 2.58 TO 3.53

By C. Ernest Hedstrom, James R. Blackaby, and Victor L. Peterson

Ames Aeronautical Laboratory Moffett Field, Calif.

Declassified March 15, 1962

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

WASHINGTON May 13, 1958

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

STATIC STABILITY AND CONTROL CHARACTERISTICS OF A
TRIANGULAR WING AND CANARD CONFIGURATION
AT MACH NUMBERS FROM 2.58 TO 3.53

By C. Ernest Hedstrom, James R. Blackaby, and Victor L. Peterson

SUMMARY

Results of an investigation of the static longitudinal stability and control characteristics of a canard airplane configuration are presented without analysis for the Mach number range of 2.58 to 3.53. The configuration consisted of a triangular wing and a triangular canard, both of aspect ratio 2.0, a low-aspect-ratio vertical tail, and a fineness ratio 12.5 Sears-Haack body. The hinge line of the canard was in the extended wing chord plane, 1.21 wing mean aerodynamic chords ahead of the reference center of moments. The ratio of the area of the exposed canard panels to the total area of the wing was 6.9 percent. Data are presented for various combinations of the body, canard, wing, and vertical tail at 0° and 5° sideslip for an angle-of-attack range of -10° to +15°. The canard deflection angles ranged from 0° to +20°.

INTRODUCTION

The possible gains to be realized at supersonic speeds in the form of reduced trim drag and increased maneuverability by the use of canards rather than conventional tail-aft controls have resulted in increased interest in these arrangements. Therefore, an extensive research program aimed at determining the static longitudinal and directional characteristics of a number of canard configurations has been undertaken by the NACA.

As a part of the program, tests were conducted on a canard configuration to determine its static stability and control characteristics in the Mach number range of 2.58 to 3.53. The configuration consisted of a triangular wing and triangular canard, both of aspect ratio 2.0, a Sears-Haack body of fineness ratio 12.5, and a low-aspect-ratio vertical tail.

This report presents without analysis the aerodynamic characteristics of the complete configuration and its component parts. The static stability and control characteristics of this and similar configurations in the Mach number range of 0.70 to 2.22 are given in references 1, 2, 3, and 4.

NOTATION

a.c.	aerodynamic center determined at $C_{L} = 0$, percent \bar{c}
р	wing span, ft
ē	mean aerodynamic chord of wing, ft
\bar{c}_c	mean aerodynamic chord of canard, ft
cc	canard root chord, ft
$\mathtt{C}_{\mathtt{D}}$	drag coefficient, drag qS
${\rm C_{D_{\rm O}}}$	drag coefficient at zero lift
\mathtt{C}_{L}	lift coefficient, $\frac{\text{lift}}{\text{qS}}$
$\mathtt{C}^{T^{C\!$	lift-curve slope taken through zero angle of attack, per deg
Cl	rolling-moment coefficient, rolling moment qSb
Cls	rolling-moment coefficient about stability axis, C $_l$ cos α + C $_n$ sin α
$C_{\mathbf{m}}$	pitching-moment coefficient, $\frac{\text{pitching moment}}{\text{qS}\overline{c}}$, referred to the projection of the 0.21 \overline{c} point on the fuselage reference line
C_n	yawing-moment coefficient, $\frac{\text{yawing moment}}{\text{qSb}}$, referred to the projection of the 0.21 $\bar{\text{c}}$ point on the fuselage reference line
C_{n_S}	yawing-moment coefficient about stability axis, C_n cos α - C_{\slash} sin α
$C_{\underline{Y}}$	side-force coefficient, side force qS
$\frac{\Delta C_{ls}}{\beta}$	difference between rolling-moment coefficients about stability axis at 5° and 0° sideslip divided by 5°, per deg

$\frac{\Delta C_{n_s}}{\beta}$	difference between yawing-moment coefficients about stability axis at 5° and 0° sideslip divided by 5°, per deg
$\frac{\Delta C_{Y}}{\beta}$	difference between side-force coefficients at 5° and 0° side-slip divided by 5° , per deg
C _{hc}	canard hinge-moment coefficient, $\frac{\text{canard hinge moment}}{\text{qS}_{\text{C}}(\text{c}_{\text{C}}/2)}$, referred to the projection of the 0.35 $\bar{\text{c}}_{\text{C}}$ point on the fuselage reference line
$^{\mathrm{C}_{\mathrm{Z}_{\mathbf{c}}}}$	force coefficient normal to the canard, canard normal force
$\left(\frac{L}{\overline{D}}\right)_{\max}$	maximum lift-drag ratio
M	free-stream Mach number
q	free-stream dynamic pressure, lb/sq ft
S	wing area, formed by extending the leading and trailing edges to the plane of symmetry, sq ft
s _c	exposed canard area, sq ft
α	angle of attack of wing root chord, deg
β	sideslip angle measured between the relative wind and vertical plane of symmetry, deg
δ	angle of deflection of the canard with respect to the extended wing chord plane, positive when trailing edge is down, deg
Configura	tions are denoted by the following letters used in combination:
В	body
С	canard
V	vertical tail
W	wing

APPARATUS AND MODEL

Test Facility

The experimental data were obtained in the 8- by 7-foot supersonic test section of the Ames Unitary Plan Wind Tunnel. This wind tunnel is capable of continuous variation of nominal Mach number from 2.5 to 3.5 and of stagnation pressure from 2 to 28 pounds per square inch absolute. A more detailed description of the wind tunnel may be found in reference 5.

Description of Model and Balances

The sting-mounted model (figs. 1(a) and (b)) consisted of an aspect ratio 2.0 triangular wing, an aspect ratio 2.0 all-movable triangular canard, and a low-aspect-ratio vertical tail all mounted on a fineness ratio 12.5 Sears-Haack body. A dimensional sketch of the configuration is shown in figure 1(c). The wing and vertical tail had NACA 0003-63 sections streamwise and the constant thickness canard, detailed in figure 1(d), had beveled leading and trailing edges. The canard, which was pivoted about the 0.35 canard mean aerodynamic chord, was mounted in the extended wing chord plane 1.21 wing mean aerodynamic chords ahead of the reference center of moments (0.21 \(\bar{c}\)). The exposed area of the canard panels was 6.9 percent of the total area of the wing, while the total area was 12.9 percent of the total area of the wing. The wing, canard, and vertical tail were of solid steel construction to minimize aeroelastic effects. The surfaces were polished to give a smooth surface and were further treated to prevent corrosion.

The fuselage was cut off as shown in figure 1(c) to accommodate the sting and the six-component strain-gage balance which measured forces and moments on the entire configuration. Canard normal forces and hinge moments were obtained from a two-component strain-gage balance mounted in the nose of the fuselage. The canard, wing, and vertical tail were removable, enabling data to be taken which would permit an evaluation of the effect of each of these components on the stability of the model.

TEST AND PROCEDURES

Range of Test Variables

The tests were conducted at Mach numbers of 2.58, 3.06, and 3.53 with a constant Reynolds number of 2.5 million per foot. Data were obtained for the body alone and for various combinations of the body and

the wing, canard, and vertical tail. The majority of the tests were made with the model at a constant angle of sideslip of 0° or 5° and with canard deflections from 0° to 20° while angle of attack was varied from -10° to $+15^{\circ}$. In addition, tests of the complete model with a canard deflection of 0° were made at each of the test Mach numbers with angle of attack constant at approximately 0° and 10° while sideslip angle was varied from -2° to $+10^{\circ}$. Table I is a summary of the configurations investigated.

Reduction of Data

The data presented herein have been reduced to standard NACA coefficient form. The pitching-moment coefficients were referred to the 0.21 point of the wing mean aerodynamic chord. This location was the same as that chosen in reference 1. The canard hinge moments were computed about a hinge line located at the 0.35 point of the canard mean aerodynamic chord. Transition was not fixed in the present tests because the large wire size required at the highest Mach number would have had excessive drag. Factors which affect the accuracy of the results are discussed in the following paragraphs.

Stream angle variations. - Surveys of the stream characteristics for the 8- by 7-foot supersonic test section of the Ames Unitary Plan Wind Tunnel showed that some stream curvature existed in both the pitch and sideslip planes. For the pitch plane a stream angle, which was less than 0.21° throughout the Mach number range, was found to exist in the vicinity of the model. In the sideslip plane the stream angle was less than 0.07°. The data presented herein have been corrected for these stream angles.

Buoyancy corrections. The static-pressure variations in the test section of the wind tunnel were also determined during the stream survey. The longitudinal-buoyancy corrections to the drag of this model due to the static-pressure variations have been included in all the drag data presented. For the complete model, these corrections amounted to less than 1.3 percent of the total drag.

Support interference.- The effects of model support interference on the aerodynamic characteristics were considered to consist primarily of a change in the pressure at the base of the model. However, the drag data presented herein contain no base drag component since the base pressure was measured and the drag was adjusted to correspond to a base pressure equal to the free-stream static pressure.

RESULTS

The results are presented in this report without analysis in order to expedite publication. Table I, which includes model configurations and test variables, serves as an index to tables II through VI in which all of the experimental data are tabulated. Selected portions of the data are presented in figures 2 through 7.

Figure 2 shows the lift, drag, and pitching-moment characteristics with the canard on and deflected, and with the canard off, for the three test Mach numbers. Variation of canard normal-force and hinge-moment coefficients as a function of angle of attack at constant canard deflection angles are presented in figure 3. Summarized in figure 4 are the maximum lift-drag ratios, lift-curve slopes, minimum drag coefficients, and aerodynamic centers as a function of Mach number with the canard at zero deflection and with the canard off. In figure 4 the curves shown in the Mach number range of 0.70 through 2.22 were obtained from reference 1.

Figure 5 shows the effect of configuration changes on the lateral and directional characteristics (rolling-moment, side-force, and yawing-moment coefficients) as a function of angle of attack at constant side-slip angles. The effects of canard deflection on the lateral and directional characteristics are presented in figure 6 as a function of angle of attack at constant angles of sideslip. Summarized in figure 7 are $\Delta C_{l_S}/\beta$, $\Delta C_Y/\beta$, and $\Delta C_{n_S}/\beta$ as functions of Mach number at constant angles of attack of 0° and 10° with the canard on at zero deflection and with the canard off.

Ames Aeronautical Laboratory
National Advisory Committee for Aeronautics
Moffett Field, Calif., Mar. 5, 1958

REFERENCES

- 1. Boyd, John W., and Peterson, Victor L.: Static Stability and Control of Canard Configurations at Mach Numbers From 0.70 to 2.22 Longitudinal Characteristics of a Triangular Wing and Canard. NACA RM A57J15, 1958.
- 2. Boyd, John W., and Peterson, Victor L.: Static Stability and Control of Canard Configurations at Mach Numbers From 0.70 to 2.22 Triangular Wing and Canard on an Extended Body. NACA RM A57Kl4, 1958.

- 3. Peterson, Victor L., and Menees, Gene P.: Static Stability and Control of Canard Configurations at Mach Numbers From 0.70 to 2.22 Longitudinal Characteristics of a Triangular Wing and Unswept Canard. NACA RM A57K26, 1958.
- 4. Peterson, Victor L., and Menees, Gene P.: Static Stability and Control of Canard Configurations at Mach Numbers From 0.70 to 2.22 Lateral-Directional Characteristics of a Triangular Wing and Canard. NACA RM A57L18, 1958.
- 5. Huntsberger, Ralph F., and Parsons, John F.: The Design of Large High Speed Wind Tunnels. NACA paper presented at the Fourth General Assembly of the AGARD wind tunnel panel, Schevenigen, Netherlands, AG15/P6, May 3-7, 1954.

TABLE I.- CONFIGURATIONS INVESTIGATED AND INDEX TO TABULATED DATA

Configuration	δ, deg	β, deg	Tabulated data, table no.
BVWC BVWC BVWC BVWC BVWC	0 2.6 4.6 10.0 19.4	0 and 5 0 0 0 0 and 5 0 and 5 variable	II(a), III(a) II(b) II(c) II(d), III(b) II(e), III(c) IV(a), IV(b)
BVW BWC BWC BWC	0 10.0 19.9	0 and 5 0 and 5 5 0 and 5	II(f), III(d) II(g), III(e) III(f) III(g) III(h), III(h)
BVC BVC BVC BVC BVC	0 2.5 4.8 10.2 20.0	0 and 5 0 0 0 and 5 0 and 5	V(a), VI(a) V(b) V(c) V(d), VI(b) V(e), VI(c)
BV BC BC BC	0 0 10.0 20.0	0 and 5 0 and 5 0 and 5 0 and 5	V(f), VI(d) V(g), VI(e) V(h), VI(f) V(1), VI(g)
В	0	0	V(j)

TABLE II.- AERODYNAMIC CHARACTERISTICS OF WING-ON CONFIGURATIONS AT $\beta=0^\circ$ (a) BVWC, $\delta=0^\circ$

М	α , deg	β, deg	CL	CD	$C_{\mathbf{m}}$	L/D	CY	Cls	C _{ns}	$c_{\mathrm{Z_c}}$	Chc
2.5 8	- 10.7 - 6.6 - 4.6 - 2.6 - 0.5 1.4 3.5 7.6 11.7 14.4	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	- 297 - 188 - 132 - 075 - 017 .040 .098 .214 .324 .395	.0674 .0333 .0222 .0150 .0119 .0125 .0173 .0394 .0776 .1118	.0344 .0233 .0172 .0105 .0029 0049 0117 0240 0350	- 4.4 0 - 5.6 3 - 5.9 3 - 4.9 7 - 1.4 0 3.2 1 5.7 0 5.4 3 4.1 8 3.5 4	002 002 002 002 001 001 002 003	.0 0 0 1 .0 0 0 1 .0 0 0 1 .0 0 0 1 .0 0 0 2 .0 0 0 2 .0 0 0 2 .0 0 0 2	.0 0 0 1 .0 0 0 0 0 0 0 1 0 0 0 2 0 0 0 3 0 0 0 3 0 0 0 3 0 0 0 3 0 0 0 3	0 2 3 5 0 1 4 8 0 1 0 1 0 0 5 4 0 0 0 7 .0 0 3 8 .0 0 8 8 .0 1 8 3 .0 2 6 9 .0 3 2 3	.0895 .0555 .0393 .0208 .0021 0158 0350 0707 1036 1257
3.0 5	- 1 0.7 - 6.6 - 4.6 - 2.6 - 0.5 1.4 7.6 11.6 1 4.3	0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0	258162114064014 .034 .083 .182 .281 .345	.0609 .0306 .0210 .0145 .0117 .0121 .0164 .0355 .0688	.0249 .0170 .0124 .0077 .0023 0029 0077 0166 0250	- 4.2 3 - 5.3 0 - 5.4 4 - 4.4 2 - 1.1 9 2.8 2 5.0 6 5.1 4 4.0 8 3.4 7	0 0 3 0 0 2 0 0 3 0 0 2 0 0 2 0 0 1 0 0 2 0 0 3 0 0 3	.0 0 0 0 .0 0 0 1 .0 0 0 1 .0 0 0 0	.0 0 0 5 .0 0 0 2 .0 0 0 2 .0 0 0 1 .0 0 0 0 .0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 2	0206 0131 0089 0048 0007 .0035 .0080 .0163 .0236	.0781 .0490 .0332 .0183 .0025 0140 0312 0640 0898 1100
3.5 3	- 1 0.7 - 6.6 - 4.6 - 2.6 - 0.6 1.4 3.4 7.5 1 1.5	0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0	2 2 3 1 3 9 0 9 6 0 5 2 0 1 0 .0 3 2 .0 7 5 .1 6 2 .2 5 1 .3 1 1	.0566 .0298 .0211 .0156 .0131 .0135 .0172 .0336 .0637	.0 1 7 5 .0 1 1 8 .0 0 8 6 .0 0 5 5 .0 0 1 9 0 0 2 0 0 0 5 3 0 1 1 4 0 1 7 5 0 2 1 3	- 3.9 4 - 4.6 8 - 4.5 2 - 3.3 5 - 0.7 7 2.4 0 4.3 8 4.8 2 3.9 5 3.4 0	0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 .0 0 0 0 0 1 0 0 1 0 0 1	.0 0 0 0 .0 0 0 0 .0 0 0 1 .0 0 0 1	.0 0 0 2 .0 0 0 1 .0 0 0 0 .0 0 0 0 .0 0 0 0 0 0 0 1 0 0 0 1	0186 0115 0080 0043 0003 .0032 .0070 .0145 .0216 .0257	.0690 .04290 .01552 .01231 02743 0813 08813

IACA RM A58CO5

						91	-				
М	α, deg	β, deg	C ^L	CD	$C_{ exttt{m}}$	L/D	CY	C _{ls}	C _{ns}	$^{\mathrm{C}_{\mathrm{Z}_{\mathrm{c}}}}$	c_{h_c}
2.58	- 1 0.7 - 6.6 - 4.6 - 2.5 - 0.5 1.4 3.5 7.6 1 1.6 1 4.4	0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0 0.0.0	- 28 9 - 18 0 - 12 3 06 6 01 0 .04 7 .10 5 .22 1 .33 2 .40 2	.0656 .0321 .0214 .0146 .0123 .0132 .0185 .0417 .0812 .1157	.0 4 1 1 .0 3 0 4 .0 2 4 1 .0 1 7 2 .0 0 9 6 .0 0 2 4 0 0 4 4 0 1 7 2 0 2 8 7 0 3 4 9	- 4.4 1 - 5.6 0 - 5.7 4 - 4.5 2 - 0.7 9 3.5 9 5.6 7 5.3 1 4.0 9 3.4 8	0 0 1 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 1 .0 0 0 0 0 1	.0 0 0 2 .0 0 0 1 .0 0 0 2 .0 0 0 1 .0 0 0 2 .0 0 0 3 .0 0 0 3 .0 0 0 3	0 0 0 1 0 0 0 2 0 0 0 3 0 0 0 3 0 0 0 3 0 0 0 4 0 0 0 4 0 0 0 4 0 0 0 4 0 0 0 3	0189 0100 0051 0004 .0039	.0745 .0393 .0203 .0017 0165
3.05	- 1 0.7 - 6.6 - 4.6 - 2.5 - 0.5 1.5 7.6 1 1.6 1 4.3	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	- 248 - 153 - 105 - 055 - 006 042 191 288 352	.0591 .0296 .0206 .0147 .0126 .0136 .0377 .0721 .1029	.0 3 1 2 .0 2 3 4 .0 1 9 0 .0 1 4 0 .0 0 8 5 .0 0 3 4 0 1 0 6 0 1 9 0 0 2 3 3	- 4.19 - 5.17 - 5.09 - 3.74 - 0.50 3.10 5.07 4.00 3.43	0 0 2 0 0 1 0 0 2 .0 0 0 .0 0 0 0 0 1 0 0 1 0 0 1	.0 0 0 0 .0 0 0 1 .0 0 0 1 .0 0 0 1	.0 0 0 4 .0 0 0 1 .0 0 0 0 0 0 0 1 0 0 0 2 0 0 0 2 0 0 0 3	0162 0082 0041 0001	.0627 .0320 .0156 .0006
3.5 3	- 10.7 - 6.6 - 4.6 - 2.6 - 0.6 1.4 3.4 7.5 11.6 14.2	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	218 135 090 047 005 .038 .080 .168 .256 .316	.0 5 5 8 .0 2 9 4 .0 2 0 8 .0 1 5 9 .0 1 3 5 9 .0 1 4 5 .0 1 8 8 .0 6 6 5 .0 9 4 8	.0239 .0181 .0152 .0118 .0080 .0042 .0009005401100148	- 3.9 1 - 4.5 8 - 4.3 2 - 2.9 4 - 0.3 4 2.6 3 4.4 0 4.7 0 3.8 5 3.3	0 0 1 0 0 1 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 1 .0 0 1 .0 0 0	.0 0 0 0 .0 0 0 1 .0 0 0 1 .0 0 0 1 .0 0 0 1 .0 0 0 2 .0 0 0 2 .0 0 0 2 .0 0 0 1	.0001 .00002 0002 0002 0003 0003 0003 0003	0141 0073 0034 .0000 .0037	.0551 .0282 .0133 0009 0151

TABLE II.- AERODYNAMIC CHARACTERISTICS OF WING-ON CONFIGURATIONS AT $\beta=0^{\circ}$ - Continued (b) BVWC. $\delta=2.6^{\circ}$

TABLE II.- AERODYNAMIC CHARACTERISTICS OF WING-ON CONFIGURATIONS AT $\beta = 0^{\circ}$ - Continued (c) BVWC, $\delta = 4.6^{\circ}$

М	α, deg	β, deg	CL	$^{\mathrm{C}}\mathrm{_{D}}$	$C_{\mathbf{m}}$	L/D	CY	Cls	Cns	$c_{Z_{\mathbf{C}}}$	$c_{\mathbf{h}_{\mathbf{C}}}$
2.58	- 10.7 - 6.6 - 4.6 - 2.6 - 0.5 1.5 3.5 7.6 11.7 14.4	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	- 28 6 - 17 6 - 12 1 - 06 4 - 00 8 .05 0 .10 8 .2 2 3 .3 3 3 .4 0 2	.0643 .0311 .0211 .0150 .0123 .0139 .0193 .0427 .0825 .1164	.0 4 6 6 .0 3 6 1 .0 2 9 8 .0 2 2 3 .0 1 4 9 .0 0 7 2 0 0 0 4 0 1 2 8 0 2 4 2 0 3 0 7	- 4.45 - 5.67 - 5.74 - 4.27 - 0.62 3.59 5.59 5.22 4.04 3.45	0 0 2 0 0 1 0 0 2 0 0 1 .0 0 0 0 0 1 .0 0 0 0 0 1 0 0 2 0 0 3	.0 0 0 2 .0 0 0 2 .0 0 0 2 .0 0 0 2 .0 0 0 3 .0 0 0 3 .0 0 0 3 .0 0 0 3	.0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0 5 0 0 0 4 0 0 0 4	0150 0057 0011 .0031 .0080 .0130 .0176 .0265 .0348	.0627 .0249 .0058 0096 0292 0487 0653 0993 1324 1532
3.05	- 1 0.6 - 6.6 - 4.6 - 2.5 - 0.5 1.5 3.5 7.5 11.6 1 4.3	0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0	2 4 4 1 4 9 1 0 1 0 5 2 0 0 5 .0 4 5 .0 9 4 .1 9 3 .2 9 0 .3 5	.0584 .0300 .0211 .0153 .0135 .0148 .0193 .0395 .0739	.0365 .0285 .0240 .0188 .0136 .0079 .0028 0069 0149	- 4.18 - 4.96 - 4.78 - 3.42 - 0.37 3.08 4.86 4.90 3.93 3.38	0 0 2 0 0 1 0 0 1 0 0 1 0 0 1 .0 0 0 0 0 1 .0 0 0 0 0 1 0 0 2	.0 0 0 1 .0 0 0 1 .0 0 0 1 .0 0 0 0 .0 0 0 1 .0 0 0 1 .0 0 0 2 .0 0 0 1 .0 0 0 1	.0 0 0 3 .0 0 0 1 .0 0 0 0 .0 0 0 0 .0 0 0 0 0 0 0 2 0 0 0 1 0 0 0 3 0 0 0 3	0124 0043 0003 .0034 .0075 .0118 .0159 .0236 .0314	.0521 .0192 .0033 0110 0268 0430 0578 0866 1167 1361
3.5 3	- 10.7 - 6.6 - 4.6 - 2.5 - 0.6 1.4 3.4 7.5 11.5 14.2	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	-	.0549 .0282 .0203 .0155 .0134 .0146 .0183 .0360 .0657	.0288 .0228 .0198 .0162 .0119 .0084 .0050002100770108	- 4.0 0 - 4.6 4 - 4.4 5 - 3.1 0 - 0.3 5 2.5 2 4.3 4 4.6 8 3.8 7 3.3 2	.0 0 0 0 0 1 0 0 1 .0 0 0 .0 0 0 .0 0 0 0 0 1 .0 0 0 0 0 1	.0 0 0 0 .0 0 0 2 .0 0 0 2 .0 0 0 1 .0 0 0 1	.0000 .0000 .0000 0002 0002 0002 0002 0003	0109 0033 0001 .0036 .0073 .0109 .0145 .0214 .0288	.0443 .0137 .0019 0133 0265 0397 0529 0778 1060 1256

TABLE II.- AERODYNAMIC CHARACTERISTICS OF WING-ON CONFIGURATIONS AT $\beta=0^{\circ}$ - Continued (d) BVWC, $\delta=10.0^{\circ}$

М	α , deg	β, deg	$^{\mathrm{C}}\mathrm{_{L}}$	CD	$C_{\mathbf{m}}$	L/D	CY	C _{ls}	C _{ns}	$\mathtt{c}_{\mathtt{Z}_{\mathtt{c}}}$	c_{h_C}
2.58	- 10.7 - 6.6 - 4.6 - 2.5 - 0.5 1.5 3.5 7.6 11.7 14.4	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	- 28 0 - 17 2 - 11 5 - 06 1 - 00 6 .05 1 .10 5 .2 2 3 .3 3 3 .4 0 0	.0630 .0323 .0222 .0165 .0151 .0168 .0225 .0470 .0871 .1213	.0619 .0506 .0435 .0363 .0280 .0189 .0104 0022 0139 0211	- 4.4 5 - 5.3 0 - 5.1 9 - 3.6 7 - 0.3 9 3.0 7 4.6 8 4.7 5 3.8 2 3.3 0	.0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 1 .0 0 0 0 0 1 0 0 2	.0 0 0 1 .0 0 0 1 .0 0 0 1 .0 0 0 1 .0 0 0 2 .0 0 0 2 .0 0 0 3 .0 0 0 1 .0 0 0 2	00001 0002 0003 0003 0004 0005 0005 0005	0046 .0042 .0086 .0132 .0176 .0221 .0263 .0347 .0430	.0 2 5 4 0 1 0 7 0 2 7 8 0 4 5 2 0 6 2 3 0 7 9 1 0 9 4 9 1 2 9 0 1 6 1 9 1 8 3 0
3.05	- 10.7 - 6.6 - 4.5 - 2.5 - 0.5 1.4 3.5 7.5 11.6 14.4	0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0	- 240 - 145 - 096 - 049 - 003 .046 .095 .196 .290 .351	.0 5 6 6 .0 2 9 4 .0 2 0 9 .0 1 6 6 .0 1 5 1 .0 1 6 6 .0 2 1 2 .0 4 2 8 .0 7 7 6 .1 0 8 4	.0 5 0 6 .0 4 1 9 .0 3 7 2 .0 3 1 7 .0 2 5 8 .0 1 9 4 .0 1 2 8 .0 0 3 9 0 0 4 3 0 0 8 1	- 4.25 - 4.92 - 4.61 - 2.96 - 0.20 2.75 4.49 4.57 3.74 3.24	0 0 1 0 0 1 0 0 1 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0	.0 0 0 0 .0 0 0 0 0 0 0 1 .0 0 0 0 .0 0 0 0 .0 0 0 1 .0 0 0 1 .0 0 0 0 .0 0 0 0	.0 0 0 2 .0 0 0 1 .0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 3 0 0 0 3 0 0 0 4 0 0 0 3	0027 .0050 .0086 .0125 .0166 .0191 .0241 .0320 .0396	.0195 0124 0261 0411 0567 0657 0845 1163 1478 1684
3.5 3	- 10.7 - 6.6 - 4.6 - 2.5 - 0.5 1.4 3.4 7.5 11.5 14.3	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	2 0 9 1 2 3 0 8 1 0 4 1 .0 0 1 .0 4 3 .0 8 5 .1 7 3 .2 6 1 .3 1 7	.0544 .0292 .0216 .0176 .0162 .0173 .0216 .0400 .0715	.0 4 2 5 .0 3 5 9 .0 3 2 0 .0 2 8 0 .0 2 3 8 .0 1 9 5 .0 1 5 0 .0 0 9 0 .0 0 3 7	- 3.8 4 - 4.2 3 - 3.7 3 - 2.3 6 0.0 9 2.4 9 3.9 5 4.3 1 3.6 4 3.1 8	0 0 1 0 0 1 .0 0 0 .0 0 0 .0 0 1 .0 0 1 .0 0 0 .0 0 1	.0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 1 .0 0 0 1 .0 0 0 1 .0 0 0 0	.0 0 0 0 .0 0 0 0 0 0 0 1 .0 0 0 0 0 0 0 1 0 0 0 3 0 0 0 2 0 0 0 4 0 0 0 4	0 0 1 4 .0 0 5 4 .0 0 8 6 .0 1 2 1 .0 1 5 2 .0 1 9 2 .0 2 2 8 .0 3 0 1 .0 3 7 6 .0 4 2 7	.0148 0129 0248 0381 0500 0654 0787 1065 1366 1595

TABLE II.- AERODYNAMIC CHARACTERISTICS OF WING-ON CONFIGURATIONS AT $\beta = 0^{\circ}$ - Continued (e) BVWC, $\delta = 19.4^{\circ}$

М	α, deg	β, deg	CL	$^{\mathrm{C}}\mathrm{D}$	C _m	L/D	CY	Cls	Cns	c_{Z_c}	C _{hc}
2.5 8	- 1 0.7 - 6.6 - 4.6 - 2.5 - 0.5 1.5 3.5 7.6 1 1.7 1 4.4	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	- 26 6 - 15 8 - 10 3 - 05 0 .00 4 .05 6 .10 9 .22 5 .32 9 .39 4	.0656 .0366 .0282 .0238 .0228 .0256 .0313 .0571 .0974 .1323	.0840 .0707 .0628 .0548 .0456 .0354 .0252 .0126 .0010	- 4.05 - 4.32 - 3.66 - 2.10 0.16 2.19 3.47 3.93 3.38 2.98	0 0 1 0 0 1 .0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 2 0 0 2	.0 0 0 1 .0 0 0 1 .0 0 0 1 .0 0 0 1 .0 0 0 2 .0 0 0 3 .0 0 0 3 .0 0 0 3	0001 0002 0004 0003 0003 0004 0005 0006 0009	.0124 .0202 .0238 .0278 .0319 .0361 .0402 .0485 .0569	0314 0659 0809 0981 1157 1341 1525 1878 2253
3.0 5	- 1 0.6 - 6.5 - 4.5 - 2.5 - 0.4 1.5 3.5 7.6 1 1.6 1 4.4	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	2 2 6 1 3 2 0 8 4 0 3 8 .0 1 1 .0 5 3 .1 0 0 .1 9 9 .2 8 8 .3 4 7	.0591 .0336 .0266 .0229 .0223 .0248 .0301 .0526 .0878 .1197	.0 7 0 2 .0 6 0 3 .0 5 4 5 .0 4 8 5 .0 4 1 8 .0 3 4 9 .0 2 8 1 .0 1 9 2 .0 1 3 3	- 3.8 3 - 3.9 2 - 3.1 4 - 1.6 4 0.4 7 2.1 3 3.3 3 3.7 8 3.2 8 2.9 0	0 0 2 0 0 1 0 0 2 0 0 2 0 0 2 0 0 2 0 0 1 0 0 1 0 0 2	.0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 1 .0 0 0 1 .0 0 0 1 .0 0 0 0	.0 0 0 2 .0 0 0 1 .0 0 0 1 .0 0 0 1 .0 0 0 0 0 0 0 2 0 0 0 4 0 0 0 5 0 0 0 6	.0131 .0194 .0230 .0264 .0301 .0341 .0382 .0462 .0547	0296 0576 0741 0890 1057 1233 1409 1757 2153 2461
3.5 3	- 1 0.6 - 6.6 - 4.5 - 2.5 - 0.5 1.4 3.4 7.5 1 1.6 1 4.3	0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0	19 4 11 2 07 0 02 8 .01 3 .05 2 .09 2 .17 9 .26 0 .31 5	.0 5 4 2 .0 3 2 3 .0 2 5 4 .0 2 2 8 .0 2 2 2 .0 2 4 3 .0 2 9 0 .0 5 0 1 .0 8 2 4 .1 1 1 1	.0603 .0528 .0487 .0441 .0394 .0343 .0301 .0247 .0216	- 3.5 9 - 3.4 8 - 2.7 5 - 1.2 5 0.6 16 3.1 8 3.5 8 3.1 6 2.8 3	002 001 001 000 001 001 002 002	0001 .0001 .0001 .0001 .0002 .0002 .0002 .0002	.00010002 .00000002 .00000001000200010002	.0135 .0193 .0224 .0257 .0292 .0336 .0449 .0531	0282 05444 0673 0825 0974 1140 1309 1667 2065 2383

TABLE II.- AERODYNAMIC CHARACTERISTICS OF WING-ON CONFIGURATIONS AT $\beta=0^{\circ}$ - Continued (f) BVW

М	α, deg	β, deg	$^{\mathrm{C}}\mathrm{_{L}}$	$^{\rm C}{}_{\rm D}$	C_{m}	L/D	CY	Cls	Cns	$c_{\mathrm{Z_c}}$	$c_{\mathbf{h}_{\mathbf{C}}}$
2.58	- 10.5 - 6.4 - 4.4 - 2.4 - 0.4 1.6 3.6 7.7 11.7 14.5	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	278 176 123 070 015 041 095 202 306	.0621 .0302 .0199 .0138 .0109 .0118 .0166 .0374 .0728 .1052	.0691 .0451 .0320 .0180 .0039 0102 0243 0505 0739 0873	- 4.48 - 5.82 - 6.19 - 5.09 - 1.38 3.44 5.68 5.40 4.20 3.55	0 0 1 0 0 0 .0 0 0 .0 0 1 .0 0 1 .0 0 1 .0 0 0 .0 0 0 .0 0 0	.0 0 0 3 .0 0 0 3 .0 0 0 2 .0 0 0 3 .0 0 0 3 .0 0 0 4 .0 0 0 4 .0 0 0 3	0 0 0 2 0 0 0 3 0 0 0 3 0 0 0 4 0 0 0 5 0 0 0 4 0 0 0 3 0 0 0 2 0 0 0 1		
3.05	- 1 0.5 - 6.4 - 4.4 - 2.4 - 0.4 1.6 3.6 7.7 1 1.7 1 4.4	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	- 239 - 150 - 104 059 012 .034 .080 .172 .264 .326	.0 5 5 2 .0 2 7 7 .0 1 9 1 .0 1 3 7 .0 1 1 2 .0 1 2 0 .0 1 6 0 .0 3 3 4 .0 6 4 7 .0 9 3 7	.0549 .0359 .0252 .0144 .0031 0083 0192 0400 0592 0713	- 4.3 3 - 5.4 1 - 5.4 4 - 4.3 0 - 1.0 4 2.8 1 5.0 3 5.1 3 4.0 8 3.4 8	0 0 1 0 0 1 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 1 .0 0 0	$\begin{array}{c} .0\ 0\ 0\ 1 \\ .0\ 0\ 0\ 1 \\ .0\ 0\ 0\ 2 \\ .0\ 0\ 0\ 1 \\ .0\ 0\ 0\ 2 \\ .0\ 0\ 0\ 2 \\ .0\ 0\ 0\ 2 \\ .0\ 0\ 0\ 2 \\ .0\ 0\ 0\ 2 \\ .0\ 0\ 0\ 2 \\ \end{array}$.0 0 0 10 0 0 10 0 0 10 0 0 10 0 0 20 0 0 30 0 0 20 0 0 30 0 0 2 .0 0 0 0		
3.5 3	- 10.5 - 6.4 - 4.4 - 2.4 - 0.4 1.5 3.5 7.6 11.6 14.4	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	- 208 - 127 - 087 - 048 - 007 032 072 153 235	.0507 .0263 .0182 .0139 .0117 .0124 .0160 .0315 .0599 .0863	.0 4 5 0 .0 2 8 9 .0 2 0 3 .0 1 1 7 .0 0 2 4 0 0 6 4 0 1 5 6 0 3 2 4 0 4 8 5 0 5 9 8	- 4.1 1 - 4.8 4 - 4.7 9 - 3.4 1 - 0.6 3 2.6 2 4.4 8 4.8 6 3.9 2 3.4 0	0 0 1 .0 0 1 .0 0 0 .0 0 0 .0 0 1 .0 0 0 .0 0 1 .0 0 0	.0 0 0 2 .0 0 0 1 .0 0 0 2 .0 0 0 2 .0 0 0 3 .0 0 0 3 .0 0 0 4 .0 0 0 3	0001 0002 0002 0002 0003 0002 0002 0001 0002		

TABLE II.- AERODYNAMIC CHARACTERISTICS OF WING-ON CONFIGURATIONS AT $\beta = 0^{\circ}$ - Continued (g) BWC, $\delta = 0^{\circ}$

М	α, deg	β, deg	CL	CD	Cm	L/D	CY	Cls	C _{ns}	c_{Z_c}	C _{hc}
2.58	- 1 0.7 - 6.6 - 4.5 - 0.5 1.5 7.6 1 1.7 1 4.4	0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0	294 183 127 070 011 .046 .104 .219 .328 .399	.0650 .0311 .0200 .0131 .0103 .0113 .0164 .0389 .0774 .1121	.0331 .0217 .0156 .0093 .0013 0062 0126 0251 0358 0425	- 4.5 2 - 5.8 9 - 6.3 6 - 5.3 1 - 1.0 3 4.0 6 6.3 3 5.6 2 4.2 3 3.5 6	002 002 002 001 002 001 002 001 002	0001 .0000 .0000 .0000 .0000 .0001 .0001 .0002 .0002	.0005 .0005 .0005 .0002 .0003 .0001 .0003 .0002	0235 0148 0100 0053 0005 .0040 .0091 .0185 .0273 .0327	.0908 .0567 .0383 .0199 .0008 0171 0367 0732 1073 1289
3.05	- 1 0.6 - 6.5 - 4.5 - 2.5 - 0.4 1.5 3.5 7.6 1 1.6 1 4.4	0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0	25 4 15 6 10 7 05 8 00 9 .04 0 .08 9 .18 7 .28 2 .3 4 8	.0601 .0301 .0208 .0145 .0118 .0125 .0170 .0364 .0691 .1003	.0 2 3 9 .0 1 5 4 .0 1 0 7 .0 0 6 2 .0 0 1 00 0 4 70 0 9 20 1 7 80 2 5 90 3 0 5	- 4.2 2 - 5.2 0 - 5.1 7 - 4.0 0 - 0.7 7 3.2 4 5.2 5 5.1 5 4.0 8 3.4 7	0 0 3 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 2 0 0 3	0 0 0 1 .0 0 0 0 0 0 0 1 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 1 .0 0 0 1	.0 0 0 5 .0 0 0 3 .0 0 0 2 .0 0 0 3 .0 0 0 2 .0 0 0 1 .0 0 0 0 .0 0 0 1	0207 0129 0088 0047 0006 .0036 .0077 .0157 .0239	.0779 .0478 .0323 .0165 .0018 0154 0300 0613 09330 1134
3.5 3	- 1 0.6 - 6.6 - 4.6 - 2.5 - 0.5 1.5 3.5 7.5 1 1.6 1 4.3	0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0	2 2 0 13 3 08 9 04 7 00 3 .03 9 .08 1 .16 7 .25 3 .31 0	.0543 .0282 .0199 .0145 .0122 .0130 .0173 .0341 .0637	.0 169 .0 111 .0 0 78 .0 0 45 .0 0 0 9 0 0 27 0 0 61 0 121 0 174 0 214	- 4.0 6 - 4.7 2 - 4.5 0 - 3.2 4 - 0.2 7 2.9 6 4.6 8 4.8 9 3.9 7 3.4 0	0 0 1 0 0 1 .0 0 0 .0 0 0 0 0 1 0 0 1 .0 0 0 0 0 1 0 0 1	0 0 0 1 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 1 .0 0 0 2 .0 0 0 2 .0 0 0 2	.0003 .0001 .0001 .0002 .0001 .0001 .0001 .0001	0186 0117 0081 0040 0003 .0034 .0071 .0146 .0219	.0692 .0434 .0294 .0140 .0005 0140 0275 0555 0841 1035

NACA RM A58CO5

											_
М	lpha, deg	β, deg	CL	CD	Cm	L/D	CA	C _{ls}	C _{ns}	c_{Z_c}	$^{\mathrm{C}}\mathrm{h}_{\mathrm{C}}$
2.58	- 1 0.5 - 6.4 - 4.4 - 2.4 - 0.4 1.6 3.6 7.7 1 1.7 1 4.5	0.00 0.00 0.00 0.00 0.00 0.00 0.00	278 173 120 065 010 .044 .099 .203 .307 .374	.0607 .0290 .0188 .0127 .0095 .0109 .0156 .0359 .0714 .1039	.0672 .0436 .0305 .0167 .0022 0118 0259 0514 0751 0882	- 4.5 8 - 5.9 5 - 6.3 9 - 5.1 3 - 1.0 4 4.0 7 6.3 5 5.6 7 4.3 6 3.6	002 001 001 001 001 001 001 002	.0 0 0 0 .0 0 0 1 .0 0 0 1 .0 0 0 2 .0 0 0 3	.0 0 0 3 .0 0 0 3 .0 0 0 3 .0 0 0 2 .0 0 0 2 .0 0 0 2 .0 0 0 3 .0 0 0 4		
3.05	- 1 0.5 - 6.4 - 4.4 - 2.4 - 0.3 1.6 3.6 7.7 1 4.4	0.00 0.00 0.00	2 3 8 1 4 7 1 0 0 0 5 5 0 0 8 .0 3 8 .0 8 3 .1 7 4 .3 2 7	.0545 .0266 .0178 .0122 .0100 .0109 .0149 .0325 .0922	.0541 .0347 .0236 .0132 .0017 0094 0206 0409 0723	- 4.37 - 5.5 4 - 5.6 5 - 4.5 5 - 0.8 2 3.47 5.6 1 5.37 3.5 4	002 001 002 002 001 001 001 002	.0 0 0 1 .0 0 0 0 .0 0 0 1	.0 0 0 2 .0 0 0 2 .0 0 0 3 .0 0 0 2 .0 0 0 2 .0 0 0 2 .0 0 0 1 .0 0 0 2		
3.5 3	- 1 0.5 - 6.4 - 4.4 - 2.4 - 0.4 1.6 3.6 7.6 1 1.6 1 4.4	0.00 0.00 0.00 0.00 0.00 0.00 0.00	048 008 .033 .073 .152	.0516 .0270 .0186 .0135 .0113 .0122 .0159 .0310 .0584	.0438 .0282 .0196 .0107 .0017 0075 0165 0331 0489	- 4.0 4 - 4.7 8 - 4.7 3 - 3.5 3 - 0.6 8 2.6 7 4.6 1 4.9 0 4.0 0 3.4 2	002 002 001 003 .000 001 001 001	.0000 .0000 .0000 .0000 .0001 .0001 .0002 .0002	.0002 .0003 .0002 .0005 .0001 .0002 .0002 .0003		

TABLE II.- AERODYNAMIC CHARACTERISTICS OF WING-ON CONFIGURATIONS AT β = 0° - Concluded (h) BW

TABLE III.- AERODYNAMIC CHARACTERISTICS OF WING-ON CONFIGURATIONS AT $\beta\approx5^{\circ}$ (a) BVWC, $\delta=0^{\circ}$

М	α, deg	β, deg	$^{\mathrm{C}}^{\mathrm{L}}$	$^{\mathrm{C}}\mathrm{D}$	C _m	L/D	$^{\mathrm{C}}\mathrm{_{Y}}$	Cls	Cns	$c_{Z_{\mathbf{C}}}$	C _{hc}
2.5 8	- 10.7 - 6.6 - 4.6 - 2.6 - 0.5 1.4 3.5 7.6 11.6 13.5	4.9 4.9 4.9 4.9 4.9 4.9 5.0	- 29 6 - 18 5 - 12 9 07 2 01 4 .03 9 .09 7 .21 4 .32 3 .37 1	.0684 .0338 .0229 .0158 .0130 .0135 .0183 .0406 .0784 .1007	.0 3 4 5 .0 2 3 1 .0 1 7 1 .0 1 0 7 .0 0 3 5 0 0 3 8 0 1 0 1 0 2 2 6 0 3 3 3 0 3 8 2	- 4.33 - 5.48 - 5.64 - 4.56 - 1.06 2.92 5.28 5.26 4.12 3.69	0 5 5 0 4 7 0 4 4 0 3 8 0 3 6 0 3 5 0 3 4 0 3 5	0041 0039 0042 0044 0045 0047 0052 0067 0078	.0 1 4 3 .0 1 1 5 .0 1 0 2 .0 0 9 1 .0 0 7 8 .0 0 6 8 .0 0 6 1 .0 0 4 7 .0 0 3 2 .0 0 2 6	0230 0144 0098 0049 0002 .0041 .0089 .0186 .0269 .0306	.0884 .0552 .0382 .0191 .0004 0172 0359 0731 1049 1195
3.05	- 1 0.6 - 6.6 - 4.6 - 2.5 - 0.5 1.4 3.5 7.5 1 1.6 1 3.4	4.9 4.9 4.9 4.9 4.9 4.9 4.9 5.0	2 5 6 1 5 9 1 1 2 0 6 1 0 1 2 .0 3 2 .0 8 3 .1 8 4 .2 8 1 .3 2 4	.0 6 0 6 .0 3 0 7 .0 2 1 1 .0 1 5 1 .0 1 2 7 .0 1 2 8 .0 1 6 8 .0 3 6 4 .0 6 9 2 .0 8 9 0	.0259 .0175 .0129 .0082 .003000240067015702390275	- 4.2 2 - 5.1 8 - 5.2 9 - 4.0 4 - 0.9 8 2.4 8 4.9 1 5.0 6 4.0 5 3.6 4	0 5 1 0 4 5 0 4 2 0 3 9 0 3 7 0 3 5 0 3 4 0 3 3 0 3 2 0 3 3	0 0 3 4 0 0 3 7 0 0 4 0 0 0 4 1 0 0 4 2 0 0 4 4 0 0 5 7 0 0 7 1 0 0 7 8	.0 1 1 6 .0 0 9 2 .0 0 8 0 .0 0 7 0 .0 0 5 8 .0 0 4 9 .0 0 4 2 .0 0 2 9 .0 0 1 2	0202 0125 0086 0044 0003 .0036 .0080 .0162 .0239	.0765 .0469 .0327 .0161 .0004 0147 0311 0621 0920 1056
3.5 3	- 1 0.7 - 6.6 - 4.6 - 2.6 - 0.5 1.4 7.5 1 1.5 1 3.4	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	224 137 096 054 011 .031 .075 .163 .249 .293	.0555 .0292 .0208 .0155 .0127 .0134 .0169 .0337 .0636	.0 1 8 4 .0 1 2 3 .0 0 9 6 .0 0 6 3 .0 0 2 5 0 0 0 9 0 0 4 4 0 1 0 3 0 1 6 0 0 1 9 4	- 4.0 4 - 4.6 9 - 4.6 2 - 3.4 5 - 0.8 4 2.3 1 4.4 3 4.8 2 3.9 6	0 4 9 0 4 3 0 4 0 0 3 8 0 3 7 0 3 5 0 3 4 0 3 3 0 3 1 0 3 2	0019002600300034003600380042005500710079	.0 0 9 9 .0 0 7 6 .0 0 6 7 .0 0 5 8 .0 0 5 0 .0 0 4 1 .0 0 3 5 .0 0 2 3 .0 0 0 6	0184 0116 0078 0039 0003 .0032 .0073 .0148 .0218	.0690 .0430 .0283 .0135 .0005 0126 0272 0561 0829 0948

TABLE III. - AERODYNAMIC CHARACTERISTICS OF WING-ON CONFIGURATIONS AT $~\beta~\approx~5^{\circ}$ - Continued (b) BVWC, $~\delta~=~10.0^{\circ}$

											_
М	α , deg	β, deg	CL	CD	$C_{ exttt{m}}$	L/D	CY	Cls	Cns	$c_{\mathrm{Z_c}}$	C _{hc}
2.58	- 1 0.7 - 6.6 - 4.6 - 2.5 - 0.5 1.4 3.5 7.6 1 1.6 1 3.5	4.9 4.9 4.9 4.9 4.9 4.9 5.0	- 28 2 - 171 - 116 - 061 - 007 .048 .105 .224 .331 .379	.0646 .0329 .0233 .0181 .0164 .0180 .0237 .0483 .0878 .1110	.0 6 3 3 .0 5 1 2 .0 4 4 9 .0 3 7 7 .0 2 9 8 .0 2 1 6 .0 1 3 5 0 0 0 0 0 1 1 3 0 1 6 5	- 4.37 - 5.18 - 4.99 - 3.37 - 0.40 2.65 4.45 4.63 3.77 3.41	0 5 6 0 4 7 0 4 3 0 4 1 0 3 7 0 3 6 0 3 4 0 3 2 0 3 2 0 3 1	005300540055005700580061006800840094	.0 1 3 1 .0 1 1 0 .0 0 9 6 .0 0 8 3 .0 0 6 7 .0 0 5 6 .0 0 4 7 .0 0 4 4 .0 0 3 2	0038 .0049 .0093 .0138 .0182 .0223 .0267 .0354 .0434	.0227012903000472064308000972130816301785
3.05	- 1 0.6 - 6.6 - 4.6 - 2.5 - 0.5 1.4 3.5 7.6 1 1.6 1 3.4	4.9 4.9 4.9 4.9 4.9 4.9 4.9 5.0	2 4 0 1 4 4 0 9 6 0 4 8 0 0 2 .0 4 6 .0 9 4 .1 9 6 .2 8 9 .3 3 3	.0567 .0297 .0216 .0170 .0155 .0167 .0218 .0433 .0779	.0 5 1 6 .0 4 2 6 .0 3 7 6 .0 3 2 1 .0 2 6 3 .0 2 0 1 .0 1 4 7 .0 0 5 0 0 0 2 6 0 0 6 4	- 4.2 3 - 4.8 4 - 4.4 2 - 2.8 4 - 0.1 1 2.7 3 4.2 9 4.5 4 3.7 1 3.3 7	0 5 4 0 4 6 0 4 2 0 4 0 0 3 6 0 3 4 0 3 2 0 3 0 0 3 0	0 0 4 5 0 0 4 8 0 0 5 0 0 0 5 1 0 0 5 1 0 0 5 2 0 0 5 6 0 0 6 9 0 0 8 2 0 0 9 0	.0 1 1 2 .0 0 9 3 .0 0 8 2 .0 0 7 0 .0 0 5 5 .0 0 4 5 .0 0 3 5 .0 0 2 8 .0 0 1 6 .0 0 1 7	0 0 2 0 .0 0 5 6 .0 0 9 2 .0 1 3 0 .0 1 6 8 .0 2 0 6 .0 2 4 5 .0 3 2 0 .0 3 9 6 .0 4 3 1	.0169 0133 0279 0422 0574 0718 0859 1157 1460
3.5 3	- 1 0.6 - 6.6 - 4.6 - 2.5 - 0.5 1.4 7.5 1 1.6 1 3.4	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	- 209 - 124 - 081 - 041 .001 .042 .085 .174 .258	.0524 .0284 .0213 .0171 .0156 .0169 .0211 .0401 .0713	.0 4 2 3 .0 3 5 9 .0 3 2 1 .0 2 8 3 .0 2 3 8 .0 2 0 0 .0 1 6 0 .0 1 0 0 .0 0 4 9 .0 0 2 6	- 3.9 9 - 4.3 5 - 3.8 1 - 2.3 8 0.0 9 2.5 1 4.0 1 4.3 4 3.6 2 3.3 1	0 5 2 0 4 5 0 4 2 0 4 0 0 3 7 0 3 5 0 3 2 0 3 1 0 3 0	0028 0037 0041 0045 0047 0049 0051 0063 0079	.0 0 9 6 .0 0 7 9 .0 0 7 1 .0 0 6 1 .0 0 5 1 .0 0 4 1 .0 0 3 4 .0 0 2 4 .0 0 1 3	0 0 0 8 .0 0 5 9 .0 0 9 1 .0 1 2 2 .0 1 6 1 .0 1 9 6 .0 2 3 2 .0 3 0 4 .0 3 7 7 .0 4 1 2	.0 1 4 1 0 1 3 6 0 2 6 1 0 3 7 9 0 5 2 7 0 6 5 4 0 7 9 4 1 0 7 5 1 3 6 3 1 5 1 0

TABLE III. - AERODYNAMIC CHARACTERISTICS OF WING-ON CONFIGURATIONS AT $\beta \approx 5^{\circ}$ - Continued (c) BVWC, $\delta = 19.4^{\circ}$

М	α, deg	β, deg	$^{\mathrm{C}}^{\mathrm{L}}$	CD	C _m	L/D	CY	Cls	Cns	c_{Z_c}	c_{h_c}
2.5 8	- 10.7 - 6.6 - 4.5 - 0.5 1.5 3.5 7.6 11.7 13.5	4.9 4.9 4.9 4.9 4.9 4.9 5.0	- 26 5 - 15 5 - 10 2 04 7 .00 6 .05 7 .10 9 .22 6 .33 1 .37 6	.0669 .0380 .0299 .0252 .0248 .0272 .0330 .0587 .0993 .1222	.0837 .0704 .0635 .0556 .0472 .0390 .0300 .0149 .0030	- 3.9 6 - 4.0 9 - 3.4 2 - 1.8 6 0.2 3 2.0 9 3.3 1 3.8 4 3.3 3 3.0 8	057 050 047 043 039 036 035 033	0055 0058 0062 0065 0070 0074 0076 0092 0101 0106	.0 1 3 4 .0 1 0 6 .0 0 9 1 .0 0 7 3 .0 0 6 0 .0 0 4 9 .0 0 4 5 .0 0 3 5 .0 0 3 7	.0133 .0209 .0248 .0287 .0329 .0370 .0409 .0493 .0575	0351 0686 0857 1021 1200 1378 1539 1902 2275 2457
3.0 5	- 10.6 - 6.5 - 4.5 - 2.5 - 0.4 1.5 3.5 7.6 11.6 13.5	4.9 4.9 4.9 4.9 4.9 4.9 4.9 5.0	224 129 082 035 .012 .056 .100 .199 .290 .329	.0598 .0343 .0268 .0236 .0234 .0250 .0309 .0540 .0896 .1102	.0694 .0595 .0540 .0485 .0426 .0365 .0304 .0203 .0136	- 3.7 4 - 3.7 5 - 3.0 6 - 1.4 7 0.5 1 2.2 2 3.2 2 3.6 9 3.2 4 2.9 9	0 5 6 0 4 8 0 4 6 0 4 2 0 3 9 0 3 6 0 3 4 0 3 1 0 3 2	0047 0050 0055 0056 0058 0061 0063 0076 0092	.0 1 1 3 .0 0 9 3 .0 0 8 3 .0 0 6 6 .0 0 5 1 .0 0 4 1 .0 0 3 5 .0 0 2 1 .0 0 2 3	.0135 .0203 .0238 .0272 .0308 .0344 .0383 .0465 .0544	0317 0617 0767 0916 1082 1238 1238 1746 2119 2293
3.5 3	- 1 0.6 - 6.6 - 4.6 - 2.5 - 0.5 1.4 7.5 11.5 13.4		068 026 .016 .052 .091 .177 .259	.0549 .0322 .0262 .0230 .0228 .0249 .0294 .0502 .0828 .1010	.0584 .0512 .0475 .0435 .0394 .0358 .0318 .0260	- 3.5 1 - 3.3 9 - 2.5 7 - 1.1 3 0.6 8 2.1 0 3.0 9 3.5 3 3.1 3 2.9 2	0 5 4 0 4 7 0 4 7 0 4 3 0 3 9 0 3 7 0 3 5 0 3 1 0 3 0	0032 0041 0045 0048 0051 0054 0056 0069 0088	.0 0 9 7 .0 0 7 9 .0 0 7 7 .0 0 6 3 .0 0 5 1 .0 0 4 1 .0 0 3 5 .0 0 2 3 .0 0 2 4	.0136 .0197 .0230 .0264 .0297 .0335 .0371 .0449 .0527	0315 0571 0714 0858 1000 1160 1306 1646 2001 2195

NACA RM A58CO5

						,					
М	α , deg	β, deg	$^{\mathrm{C}}$ L	$^{\mathrm{C}}\mathrm{_{D}}$	$C_{\mathtt{m}}$	L/D	$^{\mathrm{C}}\mathrm{_{Y}}$	C _{ls}	C _{ns}	$^{\mathrm{C}}\mathrm{Z}_{\mathrm{C}}$	$C_{h_{C}}$
2.5 8	- 1 0.5 - 6.5 - 4.4 - 2.4 - 0.4 1.6 3.6 7.6 1 1.7 1 3.5	4.9 4.9 4.9 4.9 4.9 4.9 5.0	- 277 - 174 - 122 - 068 - 012 .041 .094 .201 .305 .349	.0632 .0315 .0216 .0149 .0125 .0132 .0177 .0384 .0740	.0692 .0450 .0320 .0182 .0039 0039 0237 0501 0729 0817	- 4.3 9 - 5.5 2 - 5.6 5 - 4.5 3 - 1.0 0 5.3 0 5.3 0 5.2 4 4.1 3 3.7 1	056 046 043 039 037 034 035 037 039	0054 0050 0049 0047 0044 0042 0042 0050 0064 0073	.0125 .0106 .0097 .0087 .0077 .0068 .0061 .0042 .0015		
3.05	- 1 0.4 - 6.4 - 4.4 - 2.4 - 0.3 1.6 3.6 7.6 1 1.7 1 3.5	4.9 4.9 4.9 4.8 4.9 4.9 4.9	- 238 - 147 - 102 - 055 - 009 .035 .081 .173 .265 .304	.0557 .0283 .0198 .0141 .0122 .0127 .0167 .0345 .0662	.0551 .0357 .0253 .0143 .0033 0075 0181 0391 0576 0649	- 4.2 8 - 5.1 9 - 5.1 7 - 3.9 2 - 0.7 7 2.7 6 4.8 5 5.0 3 4.0 0 3.6 4	0 5 5 0 4 5 0 4 1 0 3 7 0 3 5 0 3 3 0 3 3 0 3 5 0 3 8	0 0 4 5 0 0 4 6 0 0 4 5 0 0 4 3 0 0 4 0 0 0 3 9 0 0 4 9 0 0 6 5 0 0 7 4	.0105 .0088 .0078 .0066 .0056 .0047 .0038 .0020		
3.5 3	- 1 0.5 - 6.4 - 4.4 - 2.4 - 0.4 1.5 3.6 7.6 1 1.6 1 3.4	5.0 4.9 4.9 4.9 4.9 4.9 5.0 5.0	- 207 - 126 - 086 - 047 - 006 031 .070 .152 .234 .269	.0507 .0264 .0191 .0145 .0123 .0130 .0165 .0322 .0600	.0 4 3 9 .0 2 8 4 .0 2 0 1 .0 1 1 6 .0 0 2 9 0 0 5 7 0 1 4 1 0 3 0 8 0 4 6 0 0 5 2 6	- 4.0 7 - 4.7 7 - 4.4 9 - 3.2 5 - 0.5 2 2.4 2 4.2 2 4.7 1 3.8 9 3.5 4	0 5 4 0 4 4 0 4 0 0 3 7 0 3 4 0 3 3 0 3 3 0 3 3 0 3 8	0028 0034 0036 0036 0035 0035 0037 0049 0068 0078	.0 0 9 2 .0 0 7 3 .0 0 6 5 .0 0 5 6 .0 0 4 4 .0 0 3 5 .0 0 2 9 .0 0 1 2 0 0 0 6		

TABLE III.- AERODYNAMIC CHARACTERISTICS OF WING-ON CONFIGURATIONS AT $~\beta~\approx~5^{\circ}$ - Continued (d) BVW

TABLE III.- AERODYNAMIC CHARACTERISTICS OF WING-ON CONFIGURATIONS AT β % 5° - Continued (e) BWC, δ = 0°

М	α , deg	β, deg	CL	CD	$C_{\mathbf{m}}$	L/D	$^{\mathrm{C}}\mathrm{_{Y}}$	Cls	C _{ns}	$c_{\mathrm{Z_c}}$	Chc
2.58	- 10.7 - 6.6 - 4.6 - 2.5 - 0.5 1.5 3.5 7.6 11.7 13.6	4.9 4.9 4.9 4.9 4.9 4.9 5.0	293 180 125 067 010 .044 .103 .217 .328 .376	.0656 .0312 .0206 .0135 .0109 .0118 .0169 .0394 .0786 .1013	.0318 .0204 .0142 .0083 .0013 0058 0121 0240 0348 0395	- 4.47 - 5.77 - 6.08 - 4.96 - 0.96 3.72 6.09 5.50 4.17 3.71	022 018 016 016 015 015 015 018 022 024	.0062 .0039 .0025 .0014 .0003 0007 0020 0045 0066	0045 0056 0059 0063 0064 0063 0062 0054 0054	0234 0144 0098 0049 0002 .0041 .0091 .0188 .0274 .0310	.0897 .0554 .0369 .0180 .0004 0168 0367 0743 1071 1222
3.05	- 1 0.6 - 6.5 - 4.5 - 2.5 - 0.4 1.5 3.5 7.6 1 1.7 1 3.5	4.9 4.9 4.8 4.8 4.9 4.9 4.9	- 250 - 152 - 102 - 054 - 006 041 .090 .186 .284 .328	.0572 .0277 .0182 .0129 .0106 .0114 .0159 .0353 .0689	.0 2 3 1 .0 1 4 8 .0 1 0 7 .0 0 5 8 .0 0 1 2 0 0 3 7 0 0 8 1 0 1 6 7 0 2 4 4	- 4.3 6 - 5.4 7 - 5.6 4 - 4.1 5 - 0.5 4 3.5 9 5.6 6 5.2 8 4.1 2 3.6 6	0 2 2 0 1 9 0 1 8 0 1 6 0 1 6 0 1 6 0 1 9 0 2 3 0 2 5	.0 0 5 4 .0 0 3 1 .0 0 2 0 .0 0 1 1 .0 0 0 2 0 0 0 7 0 0 1 6 0 0 3 8 0 0 6 0 0 0 6 9	0 0 4 6 0 0 5 7 0 0 6 0 0 0 6 6 0 0 6 5 0 0 6 3 0 0 5 5 0 0 4 7 0 0 4 2	0203 0125 0085 0044 0002 .0037 .0080 .0162 .0239	.0765 .0470 .0310 .0153 0004 0155 0312 0622 0913 1055
3.5 3	- 1 0.6 - 6.5 - 4.5 - 2.5 - 0.5 1.4 3.5 7.5 11.6 13.4	5.0 4.9 4.9 4.9 4.9 4.9 5.0 5.0	2 1 7 1 3 2 08 9 0 4 7 0 0 5 .0 3 7 .0 8 0 .1 6 8 .2 5 2 .2 9 2	.0531 .0269 .0184 .0131 .0115 .0120 .0158 .0338 .0632	.0 156 .0 102 .0 075 .0 043 .0 011 0 023 0 052 0 107 0 162 0 190	- 4.1 0 - 4.9 0 - 4.8 6 - 3.5 6 - 0.4 2 3.1 0 5.0 4 4.9 6 3.9 9 3.5 8	0 2 5 0 2 1 0 2 0 0 1 9 0 1 8 0 1 9 0 2 0 0 2 5 0 2 6	.0 0 5 6 .0 0 3 2 .0 0 2 1 .0 0 1 1 .0 0 0 2 0 0 0 6 0 0 1 6 0 0 3 8 0 0 6 2 0 0 7 2	0 0 4 3 0 0 5 3 0 0 5 7 0 0 6 1 0 0 6 1 0 0 5 9 0 0 5 1 0 0 4 3 0 0 4 0	0182 0114 0077 0040 0003 .0035 .0075 .0150 .0219 .0251	.0677 .0414 .0281 .0146 .0005 0135 0282 0567 0818 0948

TABLE III.- AERODYNAMIC CHARACTERISTICS OF WING-ON CONFIGURATIONS AT β \thickapprox 5° - Continued (f) BWC, δ = 10.0°

М	α, deg	β, deg	$^{\mathrm{C}}^{\mathrm{L}}$	$^{\mathrm{C}}\mathrm{D}$	C _m	L/D	CY	Cls	Cns	$c_{\mathrm{Z_c}}$	$c_{\mathbf{h_c}}$
2.58	- 1 0.5 - 6.4 - 4.4 - 2.4 - 0.3 3.6 7.7 1 1.8 1 3.7	4.9 4.9 4.9 4.9 4.9 4.9 5.0	2 7 8 1 6 7 1 1 1 0 5 6 0 0 3 .1 0 9 .2 2 6 .3 3 4 .3 8 1	.0600 .0293 .0202 .0149 .0138 .0219 .0473 .0879 .1111	.0599 .0486 .0422 .0352 .0277 .0120 0011 0124	- 4.6 4 - 5.7 1 - 5.5 2 - 3.7 8 - 0.1 9 4.9 9 4.7 8 3.8 0 3.4 2	023 019 017 016 015 016 017 021 023	.0051 .0026 .0013 .0000 0011 0036 0062 0080	0060 0062 0065 0069 0070 0066 0059 0041 0032	0042 .0047 .0090 .0135 .0179 .0265 .0351 .0431	.0241 0126 0294 0467 0632 0957 1300 1619 1765
3.06	- 1 0.5 - 6.4 - 4.4 - 2.3 - 0.3 1.6 3.7 7.7 1 1.8 1 3.6	4.9 4.9 4.9 4.9 4.9 4.9 4.9	2 3 6 1 4 0 0 9 3 0 4 5 .0 0 2 .0 4 9 .0 9 7 .1 9 8 .2 9 0 .3 3 3	.0535 .0271 .0193 .0150 .0142 .0155 .0211 .0430 .0779	.0 4 8 6 .0 3 9 8 .0 3 5 1 .0 2 9 9 .0 2 4 3 .0 1 8 6 .0 1 3 1 .0 0 4 1 0 0 3 6 0 0 6 8	- 4.4 2 - 5.1 8 - 4.8 3° - 2.9 7 0.1 5 3.1 4 4.5 9 4.6 0 3.7 2 3.3 6	0 2 4 0 2 0 0 1 9 0 1 7 0 1 6 0 1 7 0 1 9 0 2 2 0 2 5	.0 0 4 7 .0 0 2 3 .0 0 1 2 .0 0 0 2 0 0 1 7 0 0 2 7 0 0 5 0 0 0 7 0 0 0 8 0	0059 0063 0066 0068 0071 0067 0065 0057 0041 0032	0023 .0054 .0090 .0128 .0161 .0202 .0239 .0318 .0393	.0176 0131 0270 0415 0542 0702 0838 1144 1448 1606
3.5 3	- 1 0.5 - 6.4 - 4.4 - 2.4 - 0.4 1.6 3.6 7.6 11.7 13.5	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	2 0 8 1 2 0 0 7 9 0 3 6 .0 0 4 .0 4 5 .0 8 6 .1 7 3 .2 5 8 .2 9 6	.0504 .0265 .0202 .0157 .0147 .0164 .0210 .0402 .0722	.0394 .0329 .0297 .0259 .0221 .0182 .0147 .0092 .0042	- 4.13 - 4.54 - 3.91 - 2.28 0.27 2.75 4.08 4.31 3.58 3.26	027 023 021 020 020 019 018 020 024 025	.0051 .0025 .0014 .0003 0006 0015 0024 0046 0070	0053 0058 0061 0064 0064 0059 0059 0034 0026	0014 .0055 .0089 .0123 .0157 .0192 .0227 .0301 .0375	.0148 0118 0257 0390 0514 0639 0774 1059 1354 1480

TABLE III. - AERODYNAMIC CHARACTERISTICS OF WING-ON CONFIGURATIONS AT $\beta \approx 5^{\circ}$ - Continued (g) BWC, $\delta = 19.9^{\circ}$

М	α, deg	β, deg	CL	$^{\mathrm{C}}\mathrm{_{D}}$	C _m	L/D	CY	Cls	C _{ns}	c_{Z_C}	Chc
2.58	- 1 0.5 - 6.4 - 4.4 - 2.4 - 0.3 1.7 3.7 7.7 1 1.8 1 3.7	4.9 4.9 4.9 4.9 4.9 4.9 4.9 5.0	- 26 2 - 15 1 - 09 8 - 04 3 .00 9 .06 0 .11 2 .22 8 .33 2 .37 6	.0633 .0350 .0268 .0230 .0284 .0255 .0319 .0583 .0995 .1226	.0813 .0681 .0616 .0540 .0461 .0378 .0291 .0143 .0024	- 4.1 4 - 4.3 2 - 3.6 6 - 1.8 5 0.4 0 2.3 6 3.5 3 3.9 0 3.3 4 3.0 7	023 020 018 017 016 017 016 021 022	.0 0 5 0 .0 0 2 0 .0 0 0 4 0 0 1 0 0 0 2 5 0 0 3 8 0 0 4 8 0 0 7 3 0 0 8 9 0 0 9 8	0059 0067 0073 0077 0077 0073 0064 0065 0043	.0137 .0215 .0252 .0292 .0333 .0373 .0414 .0496 .0579	0365 0711 0870 1043 1222 1394 1573 1920 2302 2475
3.05	- 6.4 - 4.3 - 2.3 - 0.3 1.7 7.7 11.8 13.6	4.9 4.8 4.8 4.8 4.9 4.9 4.9	1 2 7 0 7 9 0 3 1 .0 1 4 .0 5 8 .1 0 1 .2 0 0 .2 9 0 .3 2 9	.0322 .0253 .0218 .0218 .0246 .0298 .0533 .0895 .1101	.0573 .0521 .0469 .0414 .0356 .0297 .0202 .0131	- 3.9 4 - 3.1 1 - 1.4 4 0.6 2 2.3 3 3.3 9 3.7 4 3.2 4 2.9 9	0 2 2 0 2 1 0 2 0 0 1 9 0 1 8 0 1 9 0 2 3 0 2 4	.0 0 2 1 .0 0 0 8 0 0 0 4 0 0 1 5 0 0 2 7 0 0 3 6 0 0 6 0 0 0 8 2 0 0 9 3	0063 0069 0072 0069 0063 0059 0035 0033	.0205 .0238 .0273 .0310 .0346 .0387 .0467 .0547	0622 0776 0927 1251 1419 1761 2122 2313
3.5 3	- 10.5 - 6.4 - 4.4 - 2.4 - 0.3 1.6 3.6 7.6 13.5	5.0 4.9 4.9 4.9 4.9 5.0	- 190 - 107 - 066 - 024 .017 .054 .092 .177 .293	.0538 .0322 .0264 .0231 .02531 .0253 .0303 .0512	.0559 .0487 .0456 .0420 .0383 .0348 .0313 .0258	- 3.5 3 - 3.3 2 - 2.5 1 - 1.0 3 0.7 4 2.1 3 3.0 4 3.4 7 2.8 6	0 2 7 0 2 4 0 2 1 0 2 0 0 1 9 0 2 0 0 2 1 0 2 5	.0 0 4 7 .0 0 2 2 .0 0 0 9 0 0 0 1 0 0 1 1 0 0 2 2 0 0 3 2 0 0 5 4 0 0 9 3	0 0 5 1 0 0 5 6 0 0 6 1 0 0 6 4 0 0 6 3 0 0 5 7 0 0 4 5 0 0 1 5	.01 38 .01 99 .02 30 .02 64 .03 02 .03 35 .04 53 .05 69	0329 0596 0725 0864 1029 11325 1667 2208

NACA RM A58CO5

 $C_{\mathbf{Y}}$ Cls C_{Z_C} C_{h_C} L/D Cns C_{D} C_{m} M α , deg B, deg C_{T} -.0066 -.274 .0613 .0664 - 4.47 -.024 .0048 258 - 10.5 4.9 -.018 .0026 -.0064 .0425 - 5.7 3 -.170 .0297 6.5 4.9 .0198 0290 - 5.9 1 -.017 .0016 -.0063 4.9 -117 4.4 -.0065 - 4.7 1 -.015 .0009 4.9 -.063 .0133 .0157 2.4 .0014 -0.79 -.015 .0002 -.0065 0.4 4.9 -.009 .0108 -.014 3.8 2 -.0004 -.0064 4.9 .044 .0116 -.0122 1.6 -.015 5.9 4 -.0011 -.0064 3.6 4.9 .099 .0166 -.0257 7.7 4.9 .205 .0372 -.0514 5.51 -.020 -.0031 -.0062 4.24 -.026 306 .0722 -.0740 -.0052 -.0066 4.9 11.7 3.77 -.030 -.0063 -.0065 13.6 4.9 .350 .0928 -.0825 -.236 - 4.34 -.027 .0046 -.0064 3.05 - 10.4 4.9 .0544 .0522 - 5.37 -.018 .0015 -.0065 4.4 4.9 -.098 .0183 .0227 - 4.09 -.0065 .0121 -.017 .0007 2.3 4.9 - .052 .0128 - 0.6 2 .0012 -.016 .0001 -.0066 0.4 4.9 - .007 .0106 3.37 -.0097 -.016 -.0004 -.0065 1.6 4.9 .039 .0115 5.43 -.017 -.0011 .0154 -.0199 -.0064 3.6 4.9 .083 5.29 -.021 -.0030 7.7 4.9 176 .0332 -.0405 -.0064 -.029 -.0053 4.9 265 .0642 -.0583 4.13 -.0063 11.7 .303 .0818 -.0657 3.70 -.033 -.0064 -.0060 1 3.5 5.0 - 10.5 5.0 -.205 .0501 .0411 - 4.10 -.029 .0051 -.0057 3.5 3 - 4.87 -.126 .0259 .0262 -.023 .0027 -.0060 6.4 5.0 - 4.79 .0179 -.021 .0017 -.0062 4.4 5.0 -.086 .0180 2.4 5.0 -.045 .0134 .0097 - 3.38 -.019 .0009 -.0063 - 0.48 -.018 .0001 -.0063 -.006 .0116 .0011 0.4 5.0 -.0075 2.77 -.019 -.0005 -.0061 .033 .0121 1.6 5.0 .073 .0156 -.0155 4.68 -.020 -.0013 -.0062 3.6 5.0 -.024 -.0033 4.91 -.0059 7.6 5.0 .151 .0308 -.0319

.231

266

5.0

5.0

11.7

1 3.4

.0583

-.0463

.0739 -.0525

-.031

-.034

3.96

3.59

-.0058

-.0069

-.0053

-.0050

TABLE III. - AERODYNAMIC CHARACTERISTICS OF WING-ON CONFIGURATIONS AT $\beta \approx 5^{\circ}$ - Concluded (h) BW

TABLE IV.- AERODYNAMIC CHARACTERISTICS OF WING-ON CONFIGURATION AT VARIABLE $\,\beta\,$ (a) BVWC, α \approx 0°, δ = 0°

М	α , deg	β, deg	CL	СД	C _m	L/D	CY	Cls	C _{ns}	$c_{\mathrm{Z_c}}$	$^{\mathrm{C}}\mathrm{h}_{\mathrm{C}}$
2.58	- 0.5 - 0.5 - 0.5 - 0.5	- 2.0 0.0 1.9 3.9 6.9	015 014 014 015 015	.0 1 2 4 .0 1 2 2 .0 1 2 5 .0 1 2 8 .0 1 3 4	.0 0 2 7 .0 0 2 5 .0 0 2 9 .0 0 3 1 .0 0 4 0	- 1.2 3 - 1.1 5 - 1.1 2 - 1.1 4 - 1.1 4	.0 1 3 0 0 2 0 1 6 0 3 1 0 5 5	.0 0 2 0 .0 0 0 2 0 0 1 8 0 0 3 7 0 0 6 1	0 0 3 4 0 0 0 2 .0 0 3 3 .0 0 6 5 .0 1 0 5	0004 0004 0004 0003 0004	.0009 .0009 .0009 .0002
3.05	- 0.5 - 0.5 - 0.5 - 0.5 - 0.5	- 2.0 0.0 1.9 3.9 6.9 9.8	0 1 2 0 1 1 0 1 1 0 1 2 0 1 2 0 1 3	.0 1 1 9 .0 1 1 5 .0 1 2 0 .0 1 2 3 .0 1 2 8 .0 1 3 2	.0 0 2 1 .0 0 2 1 .0 0 2 1 .0 0 2 8 .0 0 3 4 .0 0 4 3	- 0.98 - 0.95 - 0.92 - 0.95 - 0.91 - 0.99	.0 1 3 0 0 1 0 1 5 0 2 9 0 5 2 0 8 1	.0 0 1 7 .0 0 0 0 0 0 1 7 0 0 3 3 0 0 5 5 0 0 7 5	0 0 2 5 .0 0 0 0 .0 0 2 4 .0 0 4 6 .0 0 8 1 .0 1 1 2	0 0 0 3 0 0 0 3	.0012 .0012 .0012 .0004 .0004
3.5 3	- 0.6 - 0.6 - 0.6 - 0.5 - 0.5	0.0 2.0 3.9 7.0	0 1 1 0 1 0 0 1 1 0 1 1 0 1 1 0 1 1	.0 1 2 2 .0 1 1 8 .0 1 2 2 .0 1 2 6 .0 1 2 8 .0 1 3 1	.0 0 2 1 .0 0 1 8 .0 0 2 2 .0 0 2 5 .0 0 3 2 .0 0 3 6	- 0.9 4 - 0.8 3 - 0.8 7 - 0.9 0 - 0.8 9 - 0.8 6	.0 1 2 0 0 1 0 1 4 0 2 8 0 5 3 0 8 0	.0 0 1 6 .0 0 0 1 0 0 1 4 0 0 2 9 0 0 4 9 0 0 6 6	0 0 2 0 .0 0 0 0 .0 0 2 0 .0 0 4 0 .0 0 6 6 .0 0 8 2	0 0 0 5 0 0 0 3 0 0 0 3 0 0 0 3 0 0 0 1 0 0 0 1	.0 0 2 1 .0 0 1 4 .0 0 1 4 .0 0 1 4 0 0 0 2 0 0 0 2

TABLE IV.- AERODYNAMIC CHARACTERISTICS OF WING-ON CONFIGURATION AT VARIABLE $\,\beta$ - Concluded (b) BVWC, α \approx 10°, δ = 0°

М	α, deg	β, deg	C ^T	$^{\mathrm{C}}\mathrm{D}$	C _m	L/D	CY	Cls	Cns	$c_{\mathrm{Z_c}}$	$c_{\mathbf{h_c}}$
2.58	9.6 9.6 9.6 9.6 9.5	- 2.0 0.0 1.9 3.9 6.9 1 0.0	267 269 268 269 268 265	.0 5 6 4 .0 5 6 6 .0 5 6 7 .0 5 7 4 .0 5 7 9 .0 5 8 0	- 0 2 9 1 - 0 2 9 2 - 0 2 8 9 - 0 2 8 5 - 0 2 7 0 - 0 2 4 2	4.7 4 4.7 5 4.7 3 4.6 9 4.6 3 4.5 8	.0 1 0 0 0 2 0 1 5 0 2 9 0 4 9 0 7 6	.0 0 3 3 .0 0 0 3 0 0 2 9 0 0 5 9 0 0 9 9 0 1 3 7	0021 0002 .0018 .0036 .0049	.0227 .0229 .0229 .0229 .0231 .0232	0878 0884 0891 0892 0905 0920
3.05	9.6 9.6 9.6 9.6 9.5	- 2.1 0.0 1.9 3.9 6.9 9.9	235 235 235 234 234 2334	.0507 .0506 .0508 .0510 .0513	0209 0203	4.63 4.66 4.62 4.58 4.57	.0 1 0 0 0 2 0 1 4 0 2 6 0 4 6 0 7 4	.0 0 2 7 .0 0 0 1 0 0 2 6 0 0 5 1 0 0 8 9 0 1 2 7	0 0 1 1 0 0 0 1 .0 0 1 0 .0 0 1 8 .0 0 2 8	.0 2 0 0 .0 2 0 1 .0 2 0 0 .0 2 0 0 .0 2 0 3 .0 2 0 3	0759 0765 0767 0767 0782 0782
3.5 3	9.5 9.5 9.5 9.5 9.5	- 1.9 0.0 2.0 4.0 7.0 10.0	206 207 206 207 205 202	.0 4 6 0 .0 4 6 0 .0 4 6 4 .0 4 6 7 .0 4 6 9	0143 0139 0134 0125	4.47 4.50 4.45 4.44 4.36 4.35	.0 1 1 0 0 1 0 1 2 0 2 5 0 4 6 0 7 3	.0 0 2 7 .0 0 0 2 0 0 2 4 0 0 5 1 0 0 8 8 0 1 2 2	0010 0001 .0007 .0013 .0014 .0022	.0179 .0181 .0181 .0181 .0182	0673 0680 0680 0680 0690 0682

TABLE V.- AERODYNAMIC CHARACTERISTICS OF WING-OFF CONFIGURATIONS AT $\beta=0^{\circ}$ (a) BVC. $\delta=0^{\circ}$

М	α, deg	β, deg	CL	$^{\mathrm{C}}\mathrm{_{D}}$	C _m	L/D	$^{\mathrm{C}}\mathrm{_{Y}}$	C _{ls}	Cns	c_{Z_c}	c _{hc}
2.58	- 10.5 - 6.5 - 4.5 - 2.4 - 0.4 1.5 3.5 7.6 11.6 14.3	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	065 036 026 015 005 .003 .013 .037 .069	.0201 .0111 .0085 .0066 .0061 .0061 .0069 .0116 .0218	0519 0333 0222 0111 0001 .0106 .0217 .0430 .0607 .0725	- 3.2 3 - 3.2 6 - 3.0 5 - 2.3 2 - 0.8 6 0.5 4 1.8 9 3.2 2 3.1 8 2.9 8	001 001 001 001 001 001 001 002 002	.0000 .0001 .0001 .0001 .0001 .0001 .0001 .0001	.0 0 0 3 .0 0 0 1 .0 0 0 0 0 0 0 1 0 0 0 2 0 0 0 3 0 0 0 3 0 0 0 3 0 0 0 3	0230 0145 0099 0050 0004 .0041 .0089 .0183 .0268 .0321	.0883 .0561 .0383 .0202 .0017 0169 0353 0712 1033 1250
3.05	- 1 0.5 - 6.4 - 4.4 - 2.4 - 0.4 1.5 3.5 7.6 1 1.6 1 4.3	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	06 4 03 6 02 4 01 5 00 6 .00 4 .01 3 .03 7 .07 1	.0202 .0112 .0086 .0069 .0061 .0061 .0070 .0111 .0215	0465 0298 0201 0100 0001 .0101 .0201 .0376 .0550	- 3.16 - 3.21 - 2.83 - 2.23 - 0.97 0.60 1.87 3.30 3.28 3.02	0 0 1 0 0 2 0 0 1 0 0 1 0 0 1 0 0 1 0 0 2 0 0 2	.0 0 0 0 .0 0 0 1 .0 0 0 0	.0 0 0 3 .0 0 0 2 .0 0 0 2 .0 0 0 1 .0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1	0204 0126 0086 0044 0003 .0038 .0080 .0155 .0239 .0286	.0774 .0478 .0327 .0161 .0012 0145 0304 0590 0914 1097
3.5 3	- 1 0.5 - 6.5 - 4.4 - 2.4 - 0.4 1.5 3.5 7.5 11.6 14.3	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	06 2 03 4 02 3 01 2 00 4 .00 6 .01 5 .03 7 .07 2 .09 6	.0213 .0123 .0098 .0079 .0070 .0074 .0081 .0121 .0223	0427 0270 0184 0094 .0000 .0093 .0181 .0357 .0503 .0609	- 2.9 0 - 2.7 7 - 2.3 7 - 1.5 5 - 0.6 0 0.7 9 1.8 1 3.0 5 3.2 3 2.9 6	001 001 .000 001 .000 001 001 001	.0001 .0001 .0001 .0000 .0001 .0001 .0001 .0001	.0 0 0 0 .0 0 0 1 .0 0 0 0 .0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 2 0 0 0 1 0 0 0 2	0185 0115 0078 0040 0003 .0033 .0069 .0143 .0214	.0694 .0425 .0291 .0146 .0005 0128 0261 0536 0809 0959

TABLE V.- AERODYNAMIC CHARACTERISTICS OF WING-OFF CONFIGURATIONS AT $~\beta=0^{\circ}$ - Continued (b) BVC, $\delta=2.5^{\circ}$

М	α, deg	β, deg	CL	$^{\mathrm{C}}\mathrm{_{D}}$	C _m	L/D	CY	Cls	c_{n_s}	$^{\mathrm{C}}\mathrm{Z}_{\mathrm{C}}$	$^{\mathrm{C}}\mathrm{h}_{\mathrm{C}}$
2.58	- 1 0.5 - 6.4 - 4.4 - 2.4 - 0.4 1.5 3.5 7.6 1 1.7 1 4.3	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	060 031 019 009 .000 .009 .020 .042 .073 .100	.0190 .0105 .0082 .0069 .0069 .0072 .0084 .0137 .0241	0458 0266 0156 0049 .0060 .0173 .0285 .0493 .0669	- 3.1 8 - 2.9 4 - 2.3 8 - 1.2 7 0.0 3 1.3 0 2.4 0 3.0 6 3.0 1 2.8 2	.0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 0 0 1 0 0 1	.0 0 0 1 .0 0 0 1 .0 0 0 2 .0 0 0 2	.0 0 0 2 0 0 0 1 0 0 0 2 0 0 0 2 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0 4 0 0 0 5 0 0 0 2	0192 0103 0054 0008 .0036 .0085 .0134 .0222 .0306 .0362	.0762 .0415 .0227 .0043 0133 0322 0504 0838 1163 1389
3.05	- 1 0.5 - 6.4 - 4.4 - 2.4 - 0.4 - 1.6 3.6 7.6 1 1.6 1 4.3	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0 5 9 0 2 8 0 1 8 0 0 7 .0 0 1 .0 1 0 .0 1 9 .0 4 2 .0 7 4 .1 0 0	.0 2 1 8 .0 1 2 8 .0 1 0 6 .0 0 9 3 .0 0 8 8 .0 0 9 1 .0 1 0 2 .0 1 5 3 .0 2 5 6 .0 3 6 5	0 4 0 4 0 2 3 6 0 1 3 9 0 0 4 3 .0 0 5 9 .0 1 6 1 .0 2 6 4 .0 4 4 7 .0 6 0 6 .0 7 1 8	- 2.7 1 - 2.2 0 - 1.6 8 - 0.7 3 0.1 0 1.1 4 1.8 6 2.7 5 2.8 8 2.7 5	.0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 0 0 1	.0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 1 .0 0 0 1 .0 0 0 1 .0 0 0 1 .0 0 0 0 .0 0 0 0	.0 0 0 1 .0 0 0 0 .0 0 0 0 0 0 0 2 0 0 0 1 0 0 0 1 0 0 0 3 0 0 0 2 0 0 0 0	0164 0087 0044 0004 .0035 .0077 .0120 .0199 .0272	.0641 .0349 .0181 .0029 0122 0281 0438 0738 1015 1235
3.5 3	- 1 0.5 - 6.5 - 4.4 - 2.4 - 0.4 1.5 3.5 7.6 1 1.6 1 4.2	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0 6 2 0 3 1 0 2 0 0 0 9 .0 0 0 .0 0 8 .0 1 7 .0 4 0 .0 7 2 .0 9 6	.0 2 1 3 .0 1 2 6 .0 1 0 3 .0 0 8 9 .0 0 8 4 .0 0 8 4 .0 1 4 0 .0 2 4 3 .0 3 4 4	0 3 6 3 0 2 0 8 0 1 2 3 0 0 3 4 .0 0 5 7 .0 1 5 1 .0 2 4 3 .0 4 1 4 .0 5 6 2 .0 6 6 7	- 2.9 0 - 2.4 9 - 1.9 4 - 1.0 4 0.0 2 0.8 9 1.8 2 2.8 3 2.9 7 2.8 0	001 .000 001 .000 .000 001 001 001	.0 0 0 1 .0 0 0 1	0001 0001 0002 0002 0002 0002 0002 0002 0003	01 4 4 00 7 4 00 3 8 00 0 1 .00 3 5 .00 7 2 .01 1 0 .01 8 3 .02 5 4 .02 9 9	.0561 .0292 .0160 .0019 0122 0255 0393 0657 0930 1110

TABLE V.- AERODYNAMIC CHARACTERISTICS OF WING-OFF CONFIGURATIONS AT $\beta=0^{\rm O}$ - Continued (c) BVC. $\delta=4.8^{\rm O}$

М	α, deg	β, deg	CL	CD	$C_{\mathbf{m}}$	L/D	CY	Cls	Cns	c_{Z_c}	Che
2.58	- 1 0.5 - 6.4 - 4.4 - 2.4 - 0.4 3.5 7.6 1 1.6 1 4.3	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0 5 3 0 2 3 0 1 2 0 0 2 .0 0 8 .0 2 7 .0 4 9 .0 7 7 .1 0 5	.0165 .0089 .0073 .0064 .0065 .0094 .0151 .0260	0381 0188 0085 .0020 .0132 .0346 .0548 .0725 .0841	- 3.2 0 - 2.6 1 - 1.6 3 - 0.2 7 1.1 7 2.8 9 3.2 1 2.9 6 2.7 9	0 0 1 0 0 1 .0 0 0 .0 0 0 .0 0 0 .0 0 0 0 0 1 0 0 1	.0 0 0 1 .0 0 0 1	.0001 .0000 0001 0002 0002 0004 0004 0004	01 41 00 49 00 06 .00 37 .00 86 .01 79 .02 65 .03 48 .04 01	.0595 .0214 .0040 0126 0320 0662 0991 1324 1546
3.05	- 1 0.5 - 6.4 - 4.4 - 2.4 - 0.4 1.5 3.6 7.6 1 1.6	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0 5 2 0 2 3 0 1 2 0 0 2 .0 0 7 .0 1 7 .0 2 6 .0 4 8 .0 7 8	.0171 .0092 .0075 .0066 .0069 .0077 .0092 .0151	0 3 3 2 0 1 6 4 0 0 7 0 .0 0 2 5 .0 1 2 4 .0 2 2 8 .0 3 2 1 .0 5 0 3 .0 6 6 5	- 3.0 5 - 2.5 4 - 1.5 4 - 0.3 0 1.0 1 2.1 5 2.8 2 3.1 8 3.0 3	0 0 1 0 0 2	.0 0 0 0 .0 0 0 0 0 0 0 1 .0 0 0 0	.0 0 0 2 .0 0 0 1 .0 0 0 1 .0 0 0 0 .0 0 0 0 0 0 0 1 0 0 0 2	0118 0038 .0001 .0040 .0082 .0122 .0164 .0240	.0494 .0172 .0012 0133 0292 0445 0596 0879 1182
3.5 3	- 1 0.5 - 6.4 - 4.4 - 2.4 - 0.4 1.5 3.5 7.6 1 1.6 1 4.3	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0 5 3 0 2 3 0 1 0 0 0 1 .0 0 7 .0 1 8 .0 2 6 .0 4 6 .0 7 8 .1 0 3	.0197 .0118 .0093 .0089 .0087 .0092 .0106 .0158 .0266	029801440059 .0026 .0119 .0209 .0298 .0468 .0615 .0725	- 2.7 2 - 1.9 6 - 1.1 2 - 0.1 5 0.8 2 1.9 4 2.4 5 2.9 3 2.9 4 2.7 4	0 0 1 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 1 .0 0 0 0 0 1 0 0 1	.0 0 0 0 .0 0 0 1 .0 0 0 1	.00010001000100020003000200020003	0099 0030 .0007 .0042 .0077 .0114 .0150 .0221 .0294 .0342	.0414 .0146 0010 0139 0266 0400 0537 0795 1074 1274

TABLE V.- AERODYNAMIC CHARACTERISTICS OF WING-OFF CONFIGURATIONS AT $~\beta=0^{\circ}$ - Continued (d) BVC, $~\delta=10.2^{\circ}$

M	1								•		
IM.	α, deg	β, deg	CL	СД	C _m	L/D	CY	Cls	Cns	$^{\mathrm{C}}\mathrm{Z}_{\mathrm{C}}$	c _{hc}
2.58	- 1 0.5 - 6.4 - 4.4 - 2.4 - 0.4 1.6 3.6 7.6 11.7 1 4.3	0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0	049 019 007 .003 .012 .021 .029 .050 .077	.0160 .0095 .0082 .0081 .0091 .0105 .0125 .0192 .0303	0 2 3 6 0 0 5 1 .0 0 4 8 .0 1 4 8 .0 2 5 1 .0 3 5 5 .0 4 5 1 .0 6 4 2 .0 8 1 3 .0 9 3 1	- 3.0 7 - 2.0 1 - 0.8 2 0.3 1 1.3 5 1.9 6 2.3 4 2.6 0 2.5 3 2.4 2	0 0 3 0 0 3 0 0 3 0 0 3 0 0 2 0 0 2 0 0 3 0 0 3 0 0 4 0 0 4	.0 0 0 2 .0 0 0 1 .0 0 0 0	0002 0003 0004 0005 0007 0007 0007 0008 0009	0044 .0044 .0087 .0130 .0174 .0220 .0262 .0344 .0425	.0257 0111 0276 0439 0606 0776 0940 1262 1591 1811
3.05	- 1 0.4 - 6.4 - 4.4 - 2.4 - 0.4 1.6 3.6 7.6 1 1.6 1 4.4	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	048 016 006 .004 .012 .021 .029 .049 .077 .103	.0173 .0108 .0096 .0093 .0099 .0111 .0130 .0195 .0302	0204 0041 .0049 .0141 .0238 .0330 .0421 .0600 .0762	- 2.7 6 - 1.5 0 - 0.6 3 0.3 8 1.2 4 1.8 8 2.2 4 2.5 4 2.5 4 2.4 6	0 0 3 0 0 4 0 0 4 0 0 3 0 0 3 0 0 3 0 0 3 0 0 3 0 0 4 0 0 4	.0 0 0 1 .0 0 0 1 .0 0 0 0 .0 0 0 0 .0 0 0 1 .0 0 0 0 .0 0 0 1 .0 0 0 0 .0 0 0 1 .0 0 0 0	000300030003000300030004000400050006	0028 .0048 .0086 .0126 .0163 .0202 .0241 .0320 .0394 .0444	.0205 0111 0256 0399 0541 0683 0837 1157 1450 1663
3.5 3	- 1 0.5 - 6.4 - 4.4 - 2.4 - 0.4 1.5 3.5 7.5 11.6 1 4.3	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0 4 6 0 1 4 0 0 3 .0 0 6 .0 1 5 .0 2 2 .0 3 1 .0 5 1 .0 8 0 .1 0 4	.0195 .0121 .0107 .0103 .0109 .0120 .0138 .0199 .0311	0 18 0 0 0 3 5 .0 0 4 3 .0 13 1 .0 2 1 5 .0 3 0 6 .0 3 9 0 .0 5 5 7 .0 7 1 2 .0 8 2 4	- 2.3 4 - 1.17 - 0.2 6 0.5 5 1.3 5 1.8 3 2.2 6 2.5 5 2.5 7 2.4 4	001 .000 .000 .000 .001 .000 .000 .000	.0 0 0 0 .0 0 0 1 .0 0 0 0 .0 0 0 0	.0000 0001 0002 0002 0003 0001 0002 0003 0005 0005	0015 .0052 .0083 .0115 .0151 .0187 .0222 .0297 .0370	.0145 0131 0242 0369 0504 0637 0771 1057 1351 1574

TABLE V.- AERODYNAMIC CHARACTERISTICS OF WING-OFF CONFIGURATIONS AT $\beta=0^{\circ}$ - Continued (e) BVC, $\delta=20.0^{\circ}$

М	α, deg	β, deg	CL	CD	Cm	L/D	CY	Cls	Cns	$^{\mathrm{C}}\mathrm{Z_{c}}$	Chc
2.58	- 1 0.4 - 6.4 - 4.4 - 2.4 - 0.3 1.6 3.6 7.6 11.7 1 4.4	0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0	028 .000 .010 .019 .029 .037 .045 .059 .081	.0193 .0155 .0157 .0166 .0185 .0210 .0241 .0318 .0438	0022 .0156 .0249 .0339 .0436 .0525 .0612 .0784 .0949 .1077	- 1.4 5 - 0.0 3 0.6 4 1.1 5 1.5 5 1.7 4 1.8 7 1.8 5 1.8 6 1.8 6	002 002 001 001 001 001 002 003 002	.0 0 0 1 .0 0 0 1 .0 0 0 1 .0 0 0 2 .0 0 0 2 .0 0 0 2 .0 0 0 2 .0 0 0 1	.0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 0 0 0 3 0 0 0 4 0 0 0 3 0 0 0 7 0 0 0 1	.0130 .0202 .0242 .0279 .0319 .0358 .0395 .0470 .0546	0339 0671 0839 1001 1181 1359 1530 1894 2255 2553
3.05	- 1 0.4 - 6.4 - 4.4 - 2.3 - 0.3 - 1.6 - 7.6 1 1.7 1 4.4	0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0	030 001 .010 .021 .028 .037 .045 .061 .084	.02 11 .0169 .0165 .0172 .0190 .0212 .03242 .0321 .0443 .0572	0006 .0151 .0235 .0322 .0410 .0498 .0584 .0748 .0916 .1044	- 1.4 2 - 0.0 8 0.5 9 1.2 0 1.4 9 1.7 3 1.8 5 1.9 0 1.9 0 1.8 9	0 0 2 0 0 2 0 0 2 0 0 2 0 0 1 0 0 1 0 0 2 0 0 3 0 0 2	.0 0 0 0 .0 0 0 1 .0 0 0 1 .0 0 0 1	.0 0 0 0 .0 0 0 1 .0 0 0 1 .0 0 0 1 0 0 0 1 0 0 0 2 0 0 0 2 0 0 0 2	.01 33 .01 96 .02 31 .02 65 .03 02 .03 39 .03 77 .04 51 .05 31	0308 0603 0767 0924 1079 1253 1421 1770 2177 2484
3.5 3	- 1 0.4 - 6.4 - 4.4 - 2.4 - 0.4 1.5 3.6 7.6 11.6 14.3	0.00	.086	.02 0 9 .01 6 3 .01 5 7 .01 6 3 .01 7 8 .02 0 1 .02 3 0 .03 0 9 .04 3 6 .05 5 9	.0 0 0 2 .0 1 3 8 .0 2 1 9 .0 3 0 0 .0 3 8 3 .0 4 7 0 .0 5 5 0 .0 7 1 7 .0 8 8 7 .1 0 0 6	- 1.3 7 - 0.0 2 0.6 8 1.2 0 1.5 4 1.7 9 1.9 1 1.9 2 1.9 8 1.9 3	.000 .000 .000 .000 .000 001 001 002	.0 0 0 0 .0 0 0 1 .0 0 0 1 .0 0 0 0	000100020003000200020002000300030003	.01 39 .01 97 .02 29 .02 64 .02 99 .03 36 .03 74 .04 55 .05 38	0298 0552 0692 0849 1007 1169 1330 1699 2392

TABLE V.- AERODYNAMIC CHARACTERISTICS OF WING-OFF CONFIGURATIONS AT $\beta = 0^{\circ}$ - Continued (f) BV

М	α, deg	β, deg	$^{\mathrm{C}}^{\mathrm{L}}$	CD	C _m	L/D	$^{\mathrm{C}}\mathrm{_{Y}}$	Cls	Cns	$c_{\mathrm{Z_c}}$	$^{\mathrm{C}}\mathbf{h}_{\mathrm{C}}$
2.58	- 1 0.4 - 6.4 - 4.4 - 2.4 - 0.4 1.6 3.6 7.6 1 1.6 1 4.3	0 0	039 018 013 007 005 .000 .003 .018 .046 .069	.0142 .0083 .0068 .0059 .0054 .0056 .0060 .0083 .0157	0171 0112 0075 0036 .0008 .0048 .0090 .0163 .0221 .0282	- 2.7 2 - 2.2 1 - 1.8 5 - 1.2 3 - 0.8 5 - 0.0 1 0.5 2 2.1 6 2.9 5 2.9 0	.0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 1 .0 0 0 .0 0 0	.0000 .0001 .0001 .0001 .0001 .0001 .0001 .0001	.0000 0002 0002 0002 0003 0003 0004 0004 0002 0001		
3.05	- 1 0.4 - 6.3 - 4.4 - 2.3 - 0.3 1.6 3.6 7.6 1 1.7 1 4.3	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0 4 2 0 2 0 0 1 4 0 0 9 0 0 5 0 0 1 .0 0 4 .0 2 0 .0 4 9 .0 6 8	.0 1 5 3 .0 0 9 1 .0 0 7 5 .0 0 6 5 .0 0 5 6 .0 0 5 8 .0 0 6 4 .0 0 8 8 .0 1 6 2 .0 2 3 7	0160 0103 0071 0030 .0009 .0050 .0087 .0154 .0212	- 2.7 7 - 2.2 6 - 1.8 5 - 1.3 5 - 0.9 0 - 0.1 4 0.6 5 2.3 2 3.0 5 2.8 9	0 0 1 .0 0 0 0 0 1 0 0 1 .0 0 0 .0 0 0 .0 0 0 .0 0 0	0 0 0 1 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 0 0 0 0 .0 0 0 1 .0 0 0 0	.0 0 0 1 .0 0 0 0 .0 0 0 1 .0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 2 0 0 0 1 0 0 0 1		
3.5 3	- 1 0.4 - 6.4 - 4.4 - 2.4 - 0.4 1.5 3.5 7.6 1 1.6 1 4.3	0. 0 0 0. 0 0	0 4 1 0 2 0 0 1 2 0 0 7 0 0 3 .0 0 0 .0 0 5 .0 2 3 .0 5 0 .0 6 7	.0 1 6 2 .0 1 0 2 .0 0 8 3 .0 0 7 5 .0 0 6 5 .0 0 6 7 .0 0 7 0 .0 0 9 6 .0 1 6 8	0 158 0 099 0 067 0 032 .0 005 .0 045 .0 084 .0 143 .0 207 .0 264	- 2.5 1 - 1.9 4 - 1.5 0 - 0.9 9 - 0.5 0 - 0.0 1 0.7 9 2.3 9 2.9 6 2.7 8	.0 0 0 .0 0 0	0 0 0 1 .0 0 0 0 .0 0 0 0 .0 0 0 1 .0 0 0 1 .0 0 0 1 .0 0 0 1 .0 0 0 1	.0 0 0 0 .0 0 0 0 .0 0 0 0 0 0 0 1 0 0 0 1		

TABLE V.- AERODYNAMIC CHARACTERISTICS OF WING-OFF CONFIGURATIONS AT $~\beta=0^{\circ}$ - Continued (g) BC, $\delta=0^{\circ}$

М	α, deg	β, deg	$^{\mathrm{C}}^{\mathrm{L}}$	$^{\mathrm{C}}\mathrm{_{D}}$	C _m	L/D	CY	Cls	Cns	c_{Z_c}	$C_{\mathbf{h_C}}$
2.58	- 1 0.5 - 6.5 - 4.4 - 2.4 - 0.4 1.6 3.5 7.6 1 1.7 1 4.4	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	06 3 03 6 02 4 01 3 00 3 .00 5 .01 6 .04 0 .07 2 .1 0 0	.0177 .0093 .0068 .0051 .0048 .0050 .0064 .0114 .0219	0531 0340 0231 0121 0012 .0097 .0210 .0423 .0598 .0713	- 3.5 5 - 3.8 6 - 3.6 2 - 2.5 8 - 0.7 0 1.0 5 2.4 5 3.4 8 3.2 8 3.0 3	002 001 002 002 001 002 001 002 002	.0 0 0 0 .0 0 0 0	.0 0 0 6 .0 0 0 4 .0 0 0 3 .0 0 0 3 .0 0 0 2 .0 0 0 3 .0 0 0 3 .0 0 0 2	0231 0144 0097 0048 0003 .0042 .0090 .0184 .0270 .0324	.0897 .0564 .0387 .0186 .0011 0164 0352 0709 1038
3.05	- 1 0.4 - 6.4 - 4.4 - 2.4 - 0.4 1.6 3.6 7.6 1 1.6 1 4.3	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	063 034 024 013 004 .005 .016 .038 .073 .101	.0180 .0093 .0071 .0055 .0051 .0053 .0062 .0111 .0217	0 4 7 6 0 3 0 5 0 2 0 7 0 1 0 9 0 0 0 6 .0 0 9 4 .0 1 9 2 .0 3 8 2 .0 5 3 9 .0 6 4 1	- 3.5 0 - 3.6 5 - 3.3 7 - 2.3 8 - 0.7 2 0.9 7 2.5 4 3.4 4 3.3 4 3.0 6	0 0 2 0 0 2 0 0 2 0 0 2 0 0 1 0 0 2 0 0 2 0 0 2 0 0 3	.0 0 0 0 .0 0 0 0	.0 0 0 4 .0 0 0 2 .0 0 0 2 .0 0 0 1 .0 0 0 2 .0 0 0 2 .0 0 0 2 .0 0 0 2	0202 0124 0085 0044 0002 .0039 .0080 .0162 .0239 .0286	.0773 .0469 .0329 .0175 .0014 0149 0305 0616 0908 1092
3.5 3	- 1 0.5 - 6.5 - 4.4 - 2.4 - 0.4 1.5 3.5 7.5 1 1.6 1 4.3	0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0	061 033 021 011 002 .006 .016 .038 .072	.0208 .0122 .0097 .0080 .0072 .0074 .0084 .0129 .0230	0436 0280 0194 0101 0006 .0088 .0176 .0348 .0497 .0593	- 2.9 3 - 2.6 9 - 2.2 0 - 1.4 3 - 0.3 7 1.9 3 2.9 9 3.1 1 2.9 3	001001001001001001001002	.0 0 0 0 .0 0 0 0	.0002 .0002 .0002 .0002 .0002 .0003 .0003 .0001	0184 0112 0075 0039 0002 .0034 .0072 .0145 .0216	.0692 .0424 .0282 .0148 .0007 0133 0271 0544 0816 1001

TABLE V.- AERODYNAMIC CHARACTERISTICS OF WING-OFF CONFIGURATIONS AT $~\beta=0^{\circ}$ - Continued (h) BC, $\delta=10.0^{\circ}$

М	α , deg	β, deg	$^{\mathrm{C}}^{\mathrm{L}}$	$^{\mathrm{C}}\mathrm{D}$	C _m	L/D	$^{\mathrm{C}}\mathrm{_{Y}}$	Cls	C _{ns}	$c_{\mathrm{Z_{c}}}$	$c_{\mathbf{h}_{\mathbf{C}}}$
2.58	- 1 0.4 - 6.4 - 4.4 - 2.4 - 0.4 1.6 3.6 7.6 1 1.7 1 4.4	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0 4 2 0 1 2 0 0 2 .0 0 8 .0 1 7 .0 2 7 .0 3 5 .0 5 6 .0 8 4 .1 0 7	.0133 .0076 .0066 .0069 .0078 .0097 .0120 .0192 .0310	0 2 5 4 0 0 6 7 .0 0 3 4 .0 1 3 8 .0 2 4 1 .0 3 4 1 .0 6 2 9 .0 7 9 5 .0 9 1 3	- 3.18 - 1.55 - 0.23 1.21 2.23 2.80 2.92 2.91 2.70 2.54	0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 2 0 0 2 0 0 2	0 0 0 1 .0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 .0 0 0 0 .0 0 0 0 0 0 0 2	.0 0 0 2 .0 0 0 1 .0 0 0 1 .0 0 0 1 .0 0 0 2 .0 0 0 2 .0 0 0 1 .0 0 0 0 0 0 0 4	0044 .0044 .0085 .0129 .0174 .0219 .0261 .0345 .0424	.0 2 4 8 0 1 2 0 0 2 7 7 0 4 4 7 0 6 1 6 0 7 8 4 0 9 4 9 1 2 8 3 1 5 9 8 1 8 1 3
3.06	- 1 0.4 - 6.4 - 4.4 - 2.3 - 0.3 1.6 3.6 7.6 1 1.6 1 4.4	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0 4 3 0 1 2 .0 0 0 .0 0 9 .0 1 7 .0 2 6 .0 3 4 .0 5 6 .0 8 3 .1 0 9	.0 1 6 3 .0 0 9 7 .0 0 8 7 .0 0 8 7 .0 1 0 9 .0 1 3 1 .0 2 0 2 .0 3 1 5 .0 4 3 3	0 2 2 0 0 0 5 6 .0 0 3 3 .0 1 3 0 .0 2 2 5 .0 3 1 7 .0 4 0 8 .0 5 8 5 .0 7 4 5 .0 8 5 0	- 2.6 6 - 1.2 0 - 0.0 2 1.0 0 1.7 7 2.4 0 2.5 9 2.7 4 2.6 3 2.5 1	001 001 001 001 001 002 001 002 002	.0 0 0 0 .0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 .0 0 0 0 .0 0 0 0 0 0 0 1 0 0 0 1	.0 0 0 1 .0 0 0 0 .0 0 0 0 .0 0 0 1 .0 0 0 0 .0 0 0 1 .0 0 0 1 .0 0 0 1 .0 0 0 0	0025 .0050 .0085 .0123 .0163 .0202 .0241 .0319 .0393	.0185 0129 0262 0409 0562 0703 0849 1159 1462 1671
3.5 3	- 1 0.5 - 6.5 - 4.4 - 2.4 - 0.4 1.5 3.5 7.5 11.6 1 4.3	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0 4 5 0 1 4 0 0 4 .0 0 6 .0 1 6 .0 2 3 .0 3 1 .0 5 1 .0 8 2 .1 0 7	.0169 .0103 .0089 .0087 .0092 .0105 .0125 .0190 .0306	0 191 0 0 4 4 .0 0 4 1 .0 1 2 6 .0 2 1 0 .0 2 9 8 .0 3 8 7 .0 5 5 2 .0 7 0 2 .0 8 0 9	- 2.6 7 - 1.3 6 - 0.4 0 0.7 3 1.7 6 2.1 4 2.4 9 2.6 8 2.6 9 2.5 4	0 0 1 .0 0 0 .0 0 0 .0 0 0 0 0 1 .0 0 0 0 0 1 0 0 2 0 0 2	0001000100010001 .0000 .0000 .0000 .0000	.0001 .0001 .0001 .0002 .0002 .0002 .0002	0018 .0049 .0083 .0119 .0154 .0191 .0228 .0299 .0373 .0425	.0161 0114 0236 0398 0510 0650 0784 1057 1348 1580

TABLE V.- AERODYNAMIC CHARACTERISTICS OF WING-OFF CONFIGURATIONS AT $\beta=0^\circ$ - Continued (i) BC, $\delta=20.0^\circ$

М	α , deg	β, deg	$^{\mathrm{C}}\mathrm{_{L}}$	CD	$C_{\mathbf{m}}$	L/D	CY	Cls	C _{ns}	c_{Z_c}	$^{\mathrm{C}}\mathrm{h}_{\mathrm{C}}$
2.58	- 1 0.4 - 6.4 - 4.4 - 2.3 - 0.3 1.6 3.6 7.7 1 1.7 1 4.4	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	026 .003 .013 .023 .032 .040 .047 .064 .086 .109	.0161 .0125 .0131 .0145 .0164 .0192 .0224 .0309 .0434	0038 .0142 .0235 .0328 .0420 .0514 .0602 .0769 .0935 .1063	- 1.6 0 0.2 7 1.0 1 1.5 8 1.9 3 2.0 7 2.0 9 2.0 6 1.9 9 1.9 5	001 002 001 001 001 001 002 003 003	0 0 0 1 0 0 0 0 .0 0 0 0	.0 0 0 2 .0 0 0 2 .0 0 0 3 .0 0 0 2 .0 0 0 1 .0 0 0 2 .0 0 0 3 .0 0 0 1 .0 0 0 0	.0134 .0207 .0246 .0287 .0326 .0369 .0408 .0490 .0572	0348 0672 0843 1020 1191 1381 1544 1888 2265 2593
3.05	- 1 0.4 - 6.4 - 4.4 - 2.3 - 0.3 1.6 3.6 7.6 1 1.7	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0 2 8 .0 0 0 .0 1 2 .0 2 2 .0 3 1 .0 3 7 .0 4 6 .0 6 3 .0 8 7 .1 1 0	.0180 .0142 .0140 .0150 .0170 .0194 .0226 .0308 .0436	0025 .0131 .0221 .0307 .0397 .0484 .0569 .0733 .0896 .1024	- 1.5 4 0.0 4 0.8 9 1.4 6 1.8 0 1.9 4 2.0 5 2.0 4 2.0 0 1.9 5	0 0 1 0 0 2 0 0 1 0 0 1 0 0 1 0 0 2 0 0 2 0 0 3 0 0 2	0 0 0 0 0 0 0 0	.0 0 0 0 .0 0 0 2 .0 0 0 1 .0 0 0 2 .0 0 0 1 .0 0 0 2 .0 0 0 1 .0 0 0 0 0 0 0 1	.0138 .0202 .0237 .0272 .0310 .0348 .0386 .0468 .0552	0324 0609 0771 0930 1095 1266 1422 1784 2168
3.5 3	- 1 0.4 - 6.4 - 4.4 - 2.4 - 0.3 1.6 3.6 7.6 11.6 1 4.3	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0 2 5 .0 0 2 .0 1 2 .0 2 3 .0 3 1 .0 3 9 .0 4 7 .0 6 4 .0 9 0 .1 1 2	.0180 .0142 .0142 .0150 .0167 .0191 .0222 .0306 .0441	0011 .0130 .0211 .0292 .0377 .0462 .0545 .0707 .0877	- 1.4 1 0.17 0.8 6 1.5 2 1.8 3 2.0 5 2.1 0 2.0 9 2.0 5 1.9 8	001002001001001001002002003	0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0	0001 .0000 .0001 .0002 .0002 .0002 .0002 .0000	.01 4 2 .02 0 0 .02 3 2 .02 6 5 .03 0 8 .03 7 7 .04 5 8 .05 4 0 .05 9 5	0310 0565 0703 0856 1011 1178 1347 1701 2106 2384

TABLE V.- AERODYNAMIC CHARACTERISTICS OF WING-OFF CONFIGURATIONS AT $~\beta=0^{\circ}$ - Concluded (j) B

М	α, deg	β, deg	$^{\mathrm{C}}^{\mathrm{L}}$	СД	C_{m}	L/D	С	Cls	C _{ns}	c_{Z_c}	C _{hc}
2.58	- 1 0.4 - 6.4 - 4.3 - 2.4 - 0.4 1.6 3.6 7.6 1 1.6 1 4.3	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0 3 5 0 1 4 0 0 8 0 0 4 .0 0 1 .0 0 4 .0 0 8 .0 2 2 .0 4 9 .0 7 1	.0 1 2 4 .0 0 6 8 .0 0 5 3 .0 0 4 8 .0 0 4 5 .0 0 5 0 .0 0 5 8 .0 0 8 3 .0 1 6 2	0 182 0 121 0 084 0 045 0 002 .0 040 .0 080 .0 153 .0 212 .0 278	- 2.8 4 - 2.0 8 - 1.4 6 - 0.7 3 0.1 5 0.7 7 1.4 1 2.6 0 3.0 3 2.9 2	.0 0 0 0 0 1 0 0 1 .0 0 0 0 0 1 .0 0 0 .0 0 0 0 0 1 0 0 1 .0 0 0	.0 0 0 1 .0 0 0 1	.0 0 0 2 .0 0 0 3 .0 0 0 1		
3.06	- 1 0.4 - 6.4 - 4.4 - 2.3 - 0.3 1.6 3.6 7.6 1 1.6 1 4.3	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0 3 9 0 1 5 0 0 9 0 0 4 .0 0 0 .0 0 4 .0 0 9 .0 2 5 .0 5 2 .0 7 0	.0 1 5 2 .0 0 9 0 .0 0 7 9 .0 0 7 0 .0 0 6 3 .0 0 6 6 .0 0 7 4 .0 1 0 1 .0 1 8 1 .0 2 5 2	0 1 7 0 0 1 1 4 0 0 7 9 0 0 4 1 .0 0 0 0 .0 0 4 1 .0 0 8 0 .0 1 4 7 .0 2 0 6 .0 2 6 9	- 2.5 7 - 1.6 8 - 1.1 9 - 0.5 6 0.0 1 0.5 5 1.2 4 2.5 0 2.9 0 2.7 9	0 0 1 .0 0 0 0 0 1 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0	.0 0 0 0 .0 0 0 1 .0 0 0 1 .0 0 0 1	.0 0 0 1 .0 0 0 0 .0 0 0 1 .0 0 0 0 0 0 0 1 .0 0 0 2 .0 0 0 1 .0 0 0 1 .0 0 0 1		
3.5 3	- 1 0.4 - 6.4 - 4.4 - 2.4 - 0.4 1.5 3.5 7.6 1 1.6 1 4.3	0. 0 0 0. 0 0	0 4 2 0 1 9 0 1 1 0 0 7 0 0 2 .0 0 2 .0 0 7 .0 2 2 .0 4 8 .0 6 4	.0 1 6 7 .0 1 0 3 .0 0 9 0 .0 0 8 1 .0 0 7 0 .0 0 7 3 .0 0 7 7 .0 1 0 1 .0 1 7 5	0165 0110 0078 0040 0005 .0037 .0072 .0137 .0200 .0263	- 2.48 - 1.87 - 1.26 - 0.84 - 0.24 0.32 0.91 2.15 2.77 2.64	.0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0	.0000 .0000 .0000 .0000 .0000 .0000 .0001 .0001	.0 0 0 1 .0 0 0 2 .0 0 0 3 .0 0 0 2		

TABLE VI.- AERODYNAMIC CHARACTERISTICS OF WING-OFF CONFIGURATIONS AT $\beta \approx 5^{\circ}$ (a) BVC, $\delta = 0^{\circ}$

М	α, deg	β, deg	$^{\mathrm{C}}$ L	$^{\rm C}$ D	C _m	L/D	$^{\mathrm{C}}\mathrm{_{Y}}$	Cls	Cns	c_{Z_c}	C _{hc}
2.58	- 10.5 - 6.4 - 4.4 - 2.4 - 0.4 1.5 3.5 7.6 11.6 13.4	4.9 4.9 4.9 4.9 4.9 4.9 4.9 5.0	071 041 029 017 007 .003 .015 .041 .075	.0222 .0125 .0096 .0079 .0072 .0069 .0078 .0129 .0232	0489 0303 0199 0090 .0016 .0116 .0221 .0426 .0596 .0666	- 3.2 0 - 3.2 6 - 3.0 1 - 2.1 9 - 0.9 3 0.4 7 1.9 4 3.1 9 3.2 5 3.1 2	043 040 039 038 038 037 037 035 031	0062 0057 0054 0051 0048 0045 0043 0038 0029	.0086 .0079 .0078 .0079 .0078 .0076 .0075 .0058 .0032	0228 0139 0095 0046 0001 .0042 .0090 .0184 .0269 .0303	.0882 .0543 .0369 .0186 0001 0170 0356 0716 1047 1185
3.05	- 10.5 - 6.4 - 4.4 - 2.4 - 0.4 1.5 3.6 7.6 11.6 13.4	4.9 4.9 4.9 4.9 4.9 4.9 5.0	0 7 0 0 4 0 0 2 7 0 1 7 0 0 6 .0 0 4 .0 1 5 .0 4 1 .0 7 5 .0 9 2	.0213 .0120 .0091 .0074 .0068 .0067 .0123 .0225	0433 0267 0176 0080 .0012 .0105 .0199 .0376 .0530 .0599	- 3.3 0 - 3.3 5 - 2.2 8 - 0.8 6 0.5 4 1.9 9 3.3 5 3.1 7	0 4 1 0 3 8 0 3 6 0 3 5 0 3 5 0 3 5 0 3 5 0 3 5 0 3 5 0 3 5	0 0 5 0 0 0 4 6 0 0 4 4 0 0 4 1 0 0 3 9 0 0 3 7 0 0 3 2 0 0 2 7 0 0 2 6	.0 0 6 5 .0 0 5 9 .0 0 5 7 .0 0 5 8 .0 0 5 6 .0 0 5 4 .0 0 5 3 .0 0 4 4 .0 0 1 7	0201 0122 0084 0043 0001 .0036 .0078 .0160 .0236 .0270	.0768 .0465 .0320 .0163 .0006 0147 0305 0606 0905 1040
3.5 3	- 1 0.5 - 6.5 - 4.5 - 2.5 - 0.5 1.5 3.5 1 1.6 1 3.4	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	0 6 7 0 3 8 0 2 6 0 1 5 0 0 6 .0 0 4 .0 1 4 .0 7 2 .0 8 9	.0217 .0128 .0099 .0083 .0076 .0070 .0080 .0217	0402 0242 0160 0073 .0014 .0095 .0186 .0493 .0565	- 3.0 6 - 2.9 8 - 2.6 2 - 1.8 4 - 0.7 6 0.5 8 1.7 1 3.3 3 3.1 3	0 4 0 0 3 7 0 3 7 0 3 6 0 3 6 0 3 5 0 3 5 0 3 1 0 2 9	0 0 4 3 0 0 3 9 0 0 3 8 0 0 3 6 0 0 3 4 0 0 3 3 0 0 2 5 0 0 2 5	.0 0 5 1 .0 0 4 6 .0 0 4 5 .0 0 4 5 .0 0 4 5 .0 0 4 4 .0 0 4 5 .0 0 0 8	0184 0113 0074 0039 0001 .0032 .0069 .0215 .0247	.0690 .0426 .0269 .0145 .0007 0126 0258 0811 0941

TABLE VI.- AERODYNAMIC CHARACTERISTICS OF WING-OFF CONFIGURATIONS AT $\beta \approx 5^{\circ}$ - Continued (b) BVC, $\delta = 10.2^{\circ}$

М	α , deg	β, đeg	$^{\mathrm{C}}\mathrm{_{L}}$	CD	$C_{\mathtt{m}}$	L/D	CA	C _{ls}	C _{ns}	$c_{\mathrm{Z_c}}$	Chc
2.58	- 10.5 - 6.4 - 4.4 - 2.4 - 0.4 1.6 3.6 7.6 11.6 13.5	4.9 4.9 4.9 4.9 4.9 4.9 5.0	0 5 5 0 2 4 0 1 2 0 0 1 .0 1 0 .0 2 1 .0 3 2 .0 5 5 .0 8 6 .1 0 3	.0178 .0112 .0097 .0095 .0100 .0114 .0136 .0209 .0325	0 2 0 8 0 0 2 0 .0 0 7 9 .0 1 7 8 .0 2 7 6 .0 3 6 4 .0 4 5 4 .0 6 4 0 .0 7 9 6 .0 8 6 2	- 3.1 0 - 2.1 5 - 1.2 8 - 0.1 4 0.9 6 1.8 6 2.3 8 2.6 5 2.6 4 2.5 5	048 042 042 042 041 041 040 034 029	0 0 6 5 0 0 6 0 0 0 5 7 0 0 5 4 0 0 5 2 0 0 4 8 0 0 4 6 0 0 3 4 0 0 3 3	.0079 .0074 .0075 .0077 .0078 .0076 .0073 .0049 .0026	0 0 3 5 2 .0 0 5 2 4 .0 0 1 3 8 3 5 .0 0 1 2 2 6 5 9 .0 4 4 6 5 .0 4 6 5	.0221 0132 0296 0466 0642 0799 0951 1278 1606 1759
3.05	- 1 0.4 - 6.4 - 4.4 - 2.4 - 0.3 1.5 3.6 7.6 1 1.6 1 3.5	4.9 4.9 4.8 4.8 4.9 4.9 4.9	0 5 4 0 2 5 0 1 3 0 0 2 .0 0 9 .0 2 0 .0 3 2 .0 5 4 .0 8 6 .1 0 1	.0 1 7 8 .0 1 1 5 .0 1 0 1 .0 0 9 3 .0 0 9 8 .0 1 0 9 .0 1 3 1 .0 2 0 1 .0 3 1 7	0 18 0 0 0 1 0 .0 0 7 5 .0 1 6 1 .0 2 4 6 .0 3 3 0 .0 4 1 3 .0 5 8 2 .0 7 2 1 .0 7 9 4	- 3.0 4 - 2.1 3 - 1.3 1 - 0.1 7 0.9 4 1.8 0 2.4 1 2.7 0 2.7 2 2.6 2	0 4 6 0 4 1 0 4 0 0 3 9 0 3 9 0 3 8 0 3 4 0 3 0 0 2 9	0 0 5 4 0 0 5 0 0 0 4 9 0 0 4 7 0 0 4 4 0 0 4 2 0 0 3 6 0 0 3 0 0 0 2 9	.0 0 5 8 .0 0 5 4 .0 0 5 6 .0 0 5 6 .0 0 5 4 .0 0 5 4 .0 0 5 1 .0 0 3 6 .0 0 1 8	0019 .0055 .0093 .0128 .0167 .0206 .0242 .0319 .0393	.0178 0124 0275 0404 0558 0706 0834 1141 1434 1589
3.5 3	- 1 0.5 - 6.5 - 4.4 - 2.4 - 0.4 1.5 3.5 7.6 1 1.6 1 3.4	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	051024011 .001 .010 .021 .031 .055 .085 .100	.0182 .0122 .0103 .0099 .0102 .0114 .0131 .0200 .0313	0 165 0 0 0 5 .0 0 6 9 .0 1 4 6 .0 2 2 8 .0 3 0 4 .0 3 8 4 .0 5 4 3 .0 6 8 1	- 2.8 0 - 1.9 2 - 1.0 6 0.0 6 1.0 0 1.8 1 2.4 1 2.7 3 2.6 2	042 037 036 036 035 035 035 035 026	0050 0044 0043 0042 0041 0039 0036 00326 0026	.0 0 4 9 .0 0 4 5 .0 0 4 7 .0 0 4 7 .0 0 4 7 .0 0 4 7 .0 0 3 5 .0 0 1 0	0011 .0055 .0088 .0122 .0155 .0190 .0225 .0298 .0370	.0135 0130 0255 0386 0507 0640 0768 1047 1344 1474

TABLE VI.- AERODYNAMIC CHARACTERISTICS OF WING-OFF CONFIGURATIONS AT $\beta \approx 0^{\circ}$ - Continued (c) BVC, $\delta = 20.0^{\circ}$

М	α, deg	β, deg	$^{\mathrm{C}}_{\mathrm{L}}$	C _D	Cm	L/D	CY	Cls	C _{ns}	$c_{\mathrm{Z_c}}$	Chc
2.58	- 10.4 - 6.4 - 4.4 - 2.4 - 0.3 1.6 3.6 7.6 11.7 13.5	4.9 4.9 4.9 4.9 4.9 4.9 5.0	040 007 .007 .019 .030 .038 .048 .069 .095	.0216 .0168 .0161 .0170 .0187 .0213 .0244 .0336 .0469	.0 0 1 7 .0 1 8 1 .0 2 6 2 .0 3 5 0 .0 4 4 3 .0 5 3 4 .0 6 1 5 .0 7 8 7 .0 9 2 8 .1 0 0 0	- 1.8 4 - 0.4 1 0.4 6 1.1 1 1.5 9 1.7 7 1.9 9 2.0 6 2.0 3 2.0 2	0 4 2 0 4 3 0 4 5 0 4 6 0 4 4 0 4 3 0 4 1 0 3 3 0 2 7 0 2 4	0067 0063 0061 0058 0054 0050 0048 0042 0037	.0069 .0080 .0086 .0089 .0088 .0087 .0087 .0050 .0039	.01 41 .02 15 .02 50 .02 89 .03 29 .03 68 .04 03 .04 79 .05 51 .05 87	0388 0718 0869 1049 1217 1396 1556 15907 2273 2449
3.05	- 1 0.4 - 6.4 - 4.3 - 2.3 - 0.3 1.6 3.6 7.6 11.7 13.5	4.9 4.8 4.8 4.9 4.9	.0 4 7 .0 6 8 .0 9 6	.0218 .0170 .0162 .0166 .0182 .0205 .0236 .0326 .0461 .0541	.0 0 2 0 .0 1 7 4 .0 2 4 7 .0 3 3 1 .0 4 1 6 .0 4 9 7 .0 5 7 4 .0 7 3 3 .0 8 7 6	- 1.7 5 - 0.6 0 0.2 7 0.9 5 1.4 1 1.7 5 1.9 8 2.0 8 2.0 9 2.0 5	0 4 3 0 4 1 0 4 2 0 4 3 0 4 0 0 3 9 0 3 8 0 3 3 0 2 6 0 2 5	0056 0053 0052 0050 0047 0043 0041 0037 0031 0029	.0054 .0058 .0066 .0068 .0062 .0061 .0060 .0038 .0030	.01 4 0 .02 0 4 .02 4 0 .02 7 2 .03 0 4 6 .03 8 0 .04 5 5 .05 2 9	0336 0621 0789 0932 11062 1414 1763 2108 2287
3.5 3	- 1 0.4 - 6.4 - 4.4 - 2.4 - 0.4 1.5 3.5 7.6 1 1.6 1 3.4	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	010 .002 .014 .024 .035 .046 .068	.0206 .0161 .0155 .0160 .0172 .0191 .0224 .0315 .0450	.0 0 1 3 .0 1 6 2 .0 2 3 6 .0 3 1 0 .0 3 9 6 .0 4 6 9 .0 5 4 5 .0 7 0 0 .0 8 5 0	1.37 1.84 2.05 2.17 2.14	042 040 039 038 038 036 036	0052 0047 0046 0045 0040 0038 0038 0028	.0 0 4 5 .0 0 4 7 .0 0 4 9 .0 0 5 2 .0 0 4 9 .0 0 4 7 .0 0 3 5 .0 0 2 3	.0142 .0202 .0232 .0267 .0367 .0374 .0455 .0573	0336 05916 07169 1169 1316 2026

NACA RM A58CO5

 C_{Y} Cls Cns M α , deg B, deg $^{\rm C}{}_{
m D}$ C_{m} C_{h_C} L/D C_{Z_C} 2.58 - 10.4 4.9 -.045 .0163 -.0155 - 2.7 4 -.048 -.0066 .0080 -.0091 6.4 4.9 -.023 .0100 - 2.32 -.041 -.0060 .0081 4.4 4.9 -.017 .0082 -.0056 - 2.0 3 -.039 -.0056 .0081 2.4 4.9 -.012 .0070 -.0019 - 1.7 2 -.038 -.0052 .0081 0.4 4.9 -.007 .0064 .0022 -1.14 -.037 -.0048 .0078 1.6 4.9 - .0 0 1 - 0.23 -.036 .0063 .0057 -.0044 .0075 3.6 4.9 .004 .0066 0.56 -.037 .0091 -.0041 .0072 7.6 4.9 .021 .0092 .0161 2.30 -.037 -.0035 .0059 .050 11.6 5.0 .0168 .0219 3.01 -.037 -.0033 .0031 1 3.4 5.0 .065 .0221 .0256 2.95 -.038 -.0033 .0018 3.05 - 10.4 4.9 -.047 - 2.8 5 .0164 -.0151 -.046 -.0055 .0059 6.4 4.9 -.025 .0099 -.0087 - 2.56 -.040 -.0049 .0059 4.3 -.017 4.9 .0080 -.0050 - 2.17 -.037 -.0047 .0058 2.3 4.9 -.012 .0069 -.0016 - 1.6 9 -.036 -.0045 .0059 0.3 4.9 -.006 .0062 .0022 - 0.93 -.034 -.0042 .0056 1.6 4.9 .000 .0061 -.034 .0053 - 0.02 -.0038 .0052 3.6 4.9 .006 .0063 -.035 .0089 0.99 -.0036 .0050 7.6 4.9 .025 .0092 .0151 2.67 -.036 -.0031 .0041 11.6 4.9 .053 .0166 .0214 3.15 -.038 -.0029 .0017 1 3.4 5.0 .065 .0217 .0248 2.98 -.038 -.0029 .0009 3.53 - 10.4 5.0 -.047 .0168 -.0146 - 2.77 -.045 -.0048 .0045 6.4 5.0 -.025 .0105 -.0080 -2.39 -.039 -.0042 .0045 4.4 5.0 -.016 .0089 -.0050 - 1.8 3 -.036 -.0039 .0043 2.4 -.012 5.0 .0076 -.0014 - 1.6 0 -.035 -.0038 .0044 0.4 5.0 -.005 .0067 .0018 - 0.7 1 -.035 -.0036 .0044 1.5 5.0 .001 .0066 0.11 -.033 .0049 -.0033 .0040 3.5 5.0 .007 .0070 .0084 1.01 -.034 -.0032 .0040 7.5 5.0 .025 .0099 .0144 2.55 -.036 -.0028 .0033 11.6 5.0 .051 .0170 .0211 3.00 -.037 -.0027 .00131 3.4 5.0 .064 .0219 .0241 2.91 -.038 -.0026 .0006

TABLE VI.- AERODYNAMIC CHARACTERISTICS OF WING-OFF CONFIGURATIONS AT $\beta \approx 5^{\circ}$ - Continued (d) BV

TABLE VI.- AERODYNAMIC CHARACTERISTICS OF WING-OFF CONFIGURATIONS AT $\beta \approx 5^{\circ}$ - Continued (e) BC, $\delta = 0^{\circ}$

М	α , deg	β, deg	CL	CD	C _m	L/D	$C^{\mathbf{Y}}$	C _{ls}	C _{ns}	$c_{\mathrm{Z_{c}}}$	Chc
2.58	- 1 0.5 - 6.4 - 4.4 - 2.4 - 0.4 1.6 3.6 7.6 1 1.6 1 3.4	4.9 4.9 4.9 4.9 4.9 4.9 5.0	069 039 026 015 005 .005 .016 .043 .079 .096	.0194 .0101 .0075 .0059 .0055 .0065 .0120 .0232 .0301	0 5 0 9 0 3 2 5 0 2 2 2 0 1 1 1 0 0 0 4 .0 1 0 1 .0 2 0 5 .0 4 1 8 .0 5 7 9 .0 6 5 2	- 3.5 9 - 3.8 6 - 3.5 5 - 0.8 8 - 2.5 5 - 0.9 8 2.5 1 3.5 8 3.1 8	0 2 1 0 1 7 0 1 5 0 1 5 0 1 4 0 1 5 0 1 5 0 1 8 0 2 2 0 2 3	.0 0 1 2 .0 0 0 9 .0 0 0 7 .0 0 0 4 .0 0 0 1 0 0 0 2 0 0 0 5 0 0 0 9 0 0 1 1 0 0 1 3	0047 0063 0068 0070 0071 0069 0067 0059 0043	0229 0140 0092 0047 .0000 .0044 .0090 .0185 .0270 .0306	.0889 .0546 .0365 .0189 .0000 0179 0355 0720 1045 1192
3.05	- 1 0.4 - 6.4 - 4.4 - 2.4 - 0.4 1.5 3.5 7.6 1 1.6 1 3.4	4.9.9.4.8.8.4.9.9.4.9.9.4.9.9.4.9.9.4.9.9.4.9.9.4.9.9.4.9.9.4.9.9.4.9.9.4.9.9.4.9.9.4.9.9.4.9.9.4.9.9.4.9.9.4.9.9.4.9.9.4.9.9.9.4.9.9.4.9.9.4.9.9.4.9.9.4.9.9.4.9.9.4.9.9.4.9.9.4.9.9.4.9.9.4.9.9.4.9.9.4.9.9.4.9.9.4.9.9.4.9.9.4.9.9.4.9.9.4.9.9.9.4.9.9.9.4.9.9.9.4.9.9.9.4.9.9.9.4.9	0 6 7 0 3 7 0 2 5 0 1 4 0 0 3 .0 0 6 .0 1 7 .0 4 4 .0 7 9 .0 9 5	.0186 .0099 .0074 .0057 .0052 .0054 .0065 .0121 .0228	0 4 5 3 0 2 9 1 0 1 9 9 0 1 0 3 0 0 0 9 .0 0 9 1 .0 1 8 6 .0 3 6 4 .0 5 1 7 .0 5 8 9	- 3.6 0 - 3.7 1 - 3.4 0 - 2.3 8 - 0.5 4 1.1 1 2.6 7 3.6 5 3.4 6 3.2 2	0 2 2 0 1 9 0 1 7 0 1 6 0 1 6 0 1 6 0 1 6 0 2 0 0 2 2 0 2 2	.0 0 1 2 .0 0 0 9 .0 0 0 7 .0 0 0 3 .0 0 0 1 0 0 0 2 0 0 0 5 0 0 0 9 0 0 1 2 0 0 1 5	0046 0059 0066 0069 0070 0068 0066 0053 0047	0199 0121 0082 0041 .0000 .0039 .0082 .0162 .0238	.0768 .0465 .0317 .0162 .0000 0149 0319 0616 0910 1042
3.5 3	- 1 0.5 - 6.4 - 4.4 - 2.4 - 0.4 1.5 3.5 1 3.4	5.0 4.9 4.9 4.9 4.9 4.9 5.0	0 6 6 0 3 6 0 2 3 0 1 4 0 0 3 .0 0 7 .0 1 7 .0 9 0	.0 1 9 3 .0 1 0 8 .0 0 8 3 .0 0 6 9 .0 0 6 2 .0 0 6 5 .0 0 7 4 .0 2 8 9	0418 0261 0179 0093 0006 .0081 .0170	- 3.4 0 - 3.3 3 - 2.7 8 - 1.9 7 - 0.5 1 1.1 4 2.3 0 3.1 3	023 020 019 018 018 018 018	.0 0 1 2 .0 0 0 8 .0 0 0 6 .0 0 0 3 .0 0 0 1 0 0 0 2 0 0 0 4 0 0 1 6	0 0 4 8 0 0 5 4 0 0 5 9 0 0 6 3 0 0 6 4 0 0 6 3 0 0 5 9 0 0 5 4	0181 0109 0073 0035 .0000 .0035 .0073 .0248	.0679 .0412 .0274 .0129 .0000 0129 0265 0946

NACA RM A58CO5

М	α , deg	β, deg	CL	СД	C _m	L/D	CY	C _{ls}	C _{ns}	$c_{\mathrm{Z_c}}$	$^{\mathrm{C}}\mathrm{h}_{\mathrm{C}}$
2.58	- 1 0.5 - 6.4 - 4.4 - 2.4 - 0.4 1.6 3.6 7.6 1 1.7 1 3.5	4.9 4.9 4.9 4.9 4.9 4.9 5.0	048 016 005 .008 .018 .030 .040 .062 .094 .111	.0138 .0080 .0071 .0070 .0080 .0098 .0123 .0201 .0331	0 2 3 9 0 0 5 0 .0 0 4 6 .0 1 4 4 .0 2 4 1 .0 3 3 5 .0 4 3 3 .0 6 2 6 .0 7 8 0 .0 8 4 8	- 3.5 0 - 2.0 4 - 0.6 5 1.1 2 2.2 9 3.0 4 3.2 3 3.1 0 2.8 3 2.7 1	022 015 014 014 013 014 012 015 016	.0 0 1 0 .0 0 0 6 .0 0 0 3 .0 0 0 1 0 0 0 1 0 0 0 5 0 0 0 8 0 0 1 3 0 0 1 6 0 0 1 7	0057 0072 0075 0075 0077 0078 0078 0075 0061 0057	0038 .0049 .0092 .0135 .0179 .0222 .0264 .0349 .0427	.0219012802930464064007960954128516031765
3.06	- 1 0.4 - 6.4 - 4.4 - 2.3 - 0.4 1.6 3.6 7.6 1 1.7 1 3.5	4.9.9.4.9.9.4.9.9.9.9.0.0	0 4 9 0 1 7 0 0 7 .0 0 5 .0 1 5 .0 2 7 .0 3 8 .0 6 1 .0 9 4 .1 0 7	.0 1 5 0 .0 0 9 4 .0 0 8 3 .0 0 8 2 .0 0 8 8 .0 1 0 0 .0 1 2 6 .0 2 0 4 .0 3 2 9 .0 3 9 7	0 2 0 7 0 0 3 6 .0 0 4 7 .0 1 3 1 .0 2 2 0 .0 3 0 7 .0 3 9 2 .0 5 6 2 .0 7 0 5 .0 7 7 9	- 3.2 3 - 1.8 4 - 0.8 0 0.6 2 1.7 3 2.6 6 3.0 1 3.0 1 2.8 5 2.7 0	0 2 3 0 1 8 0 1 6 0 1 6 0 1 6 0 1 5 0 1 7 0 1 8 0 1 8	.0 0 1 0 .0 0 0 6 .0 0 0 3 .0 0 0 1 0 0 0 2 0 0 0 5 0 0 1 7 0 0 1 6 0 0 1 6	0057 0068 0072 0074 0074 0073 0072 0066 0058	0019 .0055 .0091 .0127 .0164 .0203 .0242 .0321 .0395	.0162 0144 0273 0419 0557 0708 0840 1159 1460 1595
3.5 3	- 1 0.4 - 6.5 - 4.4 - 2.4 - 0.4 1.5 3.5 7.5 1 1.6 1 3.4	5.0 4.9 4.9 4.9 4.9 5.0 5.0	049 021 009 .002 .014 .023 .034 .058 .087	.0151 .0098 .0086 .0083 .0087 .0100 .0123 .0193 .0309	0188 0026 .0051 .0132 .0208 .0290 .0373 .0530 .0675 .0747	- 3.2 2 - 2.1 2 - 1.0 5 0.2 8 1.5 6 2.3 1 2.7 8 3.0 0 2.8 0 2.6 7	0 2 5 0 2 0 0 1 9 0 1 7 0 1 7 0 1 8 0 1 9 0 1 8 0 1 7	.0009 .0005 .0002 .0000 0003 0005 0007 0011 0014	0056 0062 0065 0067 0065 0056 0051	0008 .0060 .0092 .0125 .0161 .0194 .0232 .0301 .0374	.0129 0141 0265 0389 05527 06550 0794 1058 1353 1496

TABLE VI.- AERODYNAMIC CHARACTERISTICS OF WING-OFF CONFIGURATIONS AT $~\beta~\approx~5^{\circ}$ - Continued (f) BC, $\delta~=~10.0^{\circ}$

TABLE VI.- AERODYNAMIC CHARACTERISTICS OF WING-OFF CONFIGURATIONS AT $\beta \approx 5^{\circ}$ - Concluded (g) BC, $\delta = 20.0^{\circ}$

M	α, deg	β, deg	CL	CD	C _m	L/D	CA	Cls	Cns	$c_{\mathrm{Z_c}}$	Chc
2.58	- 1 0.4 - 6.4 - 4.3 - 2.3 - 0.3 1.6 3.6 7.7 1 1.7 1 3.5	4.9 4.9 4.9 4.9 4.9 4.9 5.0	0 3 6 0 0 2 .0 1 3 .0 2 5 .0 3 5 .0 4 3 .0 5 4 .0 7 6 .0 9 9 .1 1 6	.0181 .0139 .0136 .0147 .0167 .0196 .0231 .0330 .0465	0016 .0149 .0226 .0314 .0408 .0505 .0592 .0767 .0916 .0988	-1.98 -0.16 0.98 1.70 2.10 2.20 2.33 2.29 2.14 2.10	017 017 018 018 016 015 014 011	.0 0 1 1 .0 0 0 6 .0 0 0 3 .0 0 0 1 0 0 0 2 0 0 0 5 0 0 0 7 0 0 1 8 0 0 1 8	0074 0075 0071 0073 0078 0078 0078 0078 0075	.01 4 0 .02 1 5 .02 5 4 .02 9 4 .03 3 2 .03 7 4 .04 1 5 .04 9 6 .05 7 6 .06 1 6	0378 0708 0872 1050 1213 1388 1565 1912 2278 2474
3.05	- 1 0.4 - 6.4 - 4.3 - 2.3 - 0.3 1.6 3.6 7.7 1 1.7 1 3.5	4.9.9.9.4.9.9.4.9.9.5.0.0	0 3 5 0 0 6 .0 0 9 .0 2 0 .0 3 0 .0 3 7 .0 5 0 .0 6 9 .1 0 0 .1 1 3	.0186 .0143 .0139 .0145 .0163 .0187 .0219 .0312 .0458	0010 .0144 .0215 .0299 .0388 .0472 .0554 .0715 .0861	- 1.8 9 - 0.4 5 0.6 3 1.4 0 1.8 1 1.9 9 2.2 6 2.2 2 2.1 8 2.1 1	0 2 2 0 1 9 0 1 9 0 1 7 0 1 7 0 1 6 0 1 5 0 1 4 0 1 3	.0009 .0005 .0002 .0000 0003 0005 0013 0016 0015	0 0 6 5 0 0 7 0 0 0 6 8 0 0 7 0 0 0 7 3 0 0 7 3 0 0 7 7 0 0 6 5 0 0 5 5	.01 43 .02 07 .02 43 .02 76 .03 12 .03 51 .03 88 .04 66 .05 47 .05 83	0 3 5 3 20 6 8 0 0 00 9 9 3 31 2 6 2 21 4 1 0 01 7 5 02 1 2 42 3 0 0
3.5 3	- 1 0.4 - 6.4 - 4.4 - 2.4 - 0.4 1.6 3.6 7.6 1 1.6 1 3.4	5.0 4.9 4.9 4.9 4.9 4.9 5.0 5.0	.100	.0178 .0141 .0137 .0143 .0160 .0185 .0219 .0314 .0456 .0540	0009 .0139 .0210 .0284 .0373 .0452 .0532 .0685 .0916	- 1.8 0 - 0.3 5 8 0.5 8 1.4 0 1.7 8 2.0 9 2.2 5 1 2.2 0 2.1 1	024 021 021 029 019 019 016	.0 0 0 7 .0 0 0 4 .0 0 0 2 0 0 0 1 0 0 0 3 0 0 0 5 0 0 0 7 0 0 1 1 0 0 1 4	0060 0062 0065 0067 0066 0065 0065 0054	.01 43 .02 02 .02 35 .02 68 .03 04 .03 42 .03 79 .04 56 .05 75	0334 0591 0725 0866 1021 1186 1335 1677 2046 2240

(a) Three-quarter front view of model.

(b) Three-quarter rear view of model.

Figure 1.- Model details and dimensions.

A-23378

(c) Dimensional sketch of complete model.

Figure 1.- Continued.

(d) Details of canard surface.

Figure 1.- Concluded.

Figure 2.- Lift, drag, and pitching-moment characteristics with the canard on at constant deflection angles and with the canard off.

(11) 11 3,000

Figure 2.- Continued.

Figure 2.- Concluded.

Figure 3.- Variation of canard normal-force and hinge-moment coefficients as a function of angle of attack at constant deflection angles.

Figure 3.- Continued.

(c) M = 3.53

Figure 3.- Concluded.

Figure 4.- Variation of maximum lift-drag ratios, lift-curve slope, minimum drag coefficients, and aerodynamic centers as a function of Mach number with the canard on and off. (Mach number 0.70 to 2.22 data obtained from ref. 1.)

Figure 5.- The effect of configuration change on the lateral-directional stability characteristics as a function of angle of attack at constant sideslip angles.

Figure 5.- Continued.

Figure 5.- Concluded.

Figure 6.- The effect of canard deflection on the lateral-directional characteristics with the vertical tail on and off as a function of angle of attack at constant sideslip angles.

Figure 6.- Continued.

Figure 6.- Concluded.

Figure 7.- Variation of $\Delta C_{l_S}/\beta$, $\Delta C_Y/\beta$, $\Delta C_{n_S}/\beta$ as a function of Mach number at constant angle of attack with the canard on and off, and with the vertical tail on.

Figure 7.- Concluded.