$10_{53} \ (K10a_{14})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle -1.00600 \times 10^{29} u^{38} + 2.48316 \times 10^{29} u^{37} + \dots + 8.64881 \times 10^{29} b + 3.57482 \times 10^{30}, \\ 1.23985 \times 10^{30} u^{38} + 2.03123 \times 10^{29} u^{37} + \dots + 3.45952 \times 10^{30} a - 6.27933 \times 10^{30}, \ u^{39} + u^{38} + \dots + 20u + 8u^{30} u^{30} + 2.03123 \times 10^{30} u^{30} + 2.03$$

$$I_1^v = \langle a, b-1, v^3 - v^2 + 1 \rangle$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 42 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I. \\ I_1^u = \langle -1.01 \times 10^{29} u^{38} + 2.48 \times 10^{29} u^{37} + \dots + 8.65 \times 10^{29} b + 3.57 \times 10^{30}, \ 1.24 \times 10^{30} u^{38} + 2.03 \times 10^{29} u^{37} + \dots + 3.46 \times 10^{30} a - 6.28 \times 10^{30}, \ u^{39} + u^{38} + \dots + 20u + 8 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -0.358388u^{38} - 0.0587140u^{37} + \dots - 1.78450u + 1.81508 \\ 0.116317u^{38} - 0.287110u^{37} + \dots - 9.31854u - 4.13331 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -0.242071u^{38} - 0.345824u^{37} + \dots - 11.1030u - 2.31823 \\ 0.116317u^{38} - 0.287110u^{37} + \dots - 9.31854u - 4.13331 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -0.241767u^{38} + 0.162227u^{37} + \dots + 4.40767u + 3.55101 \\ 0.116621u^{38} + 0.220941u^{37} + \dots + 6.19217u + 1.73592 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0.242918u^{38} - 0.232042u^{37} + \dots + 6.19217u + 1.73592 \\ 0.221145u^{38} - 0.326120u^{37} + \dots - 10.6121u - 5.05488 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -0.198873u^{38} - 0.0970595u^{37} + \dots + 1.83795u + 1.62354 \\ 0.233523u^{38} - 0.0483612u^{37} + \dots + 1.48213u - 1.84886 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -0.153182u^{38} - 0.312103u^{37} + \dots + 1.48213u - 1.84886 \\ 0.660384u^{38} + 0.789150u^{37} + \dots + 16.3791u + 4.59908 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-0.333316u^{38} 0.171100u^{37} + \cdots + 10.6866u 4.74934$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_4	$u^{39} - 4u^{38} + \dots + u + 1$
c_2, c_8	$u^{39} + u^{38} + \dots + 20u + 8$
<i>c</i> ₃	$u^{39} + 18u^{38} + \dots + 17u + 1$
<i>C</i> ₅	$u^{39} - 8u^{38} + \dots - 168u + 49$
c_6, c_9, c_{10}	$u^{39} - 2u^{38} + \dots - 4u^2 + 1$
c ₇	$u^{39} + 2u^{38} + \dots + 6u + 9$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_4	$y^{39} - 18y^{38} + \dots + 17y - 1$
c_2,c_8	$y^{39} + 21y^{38} + \dots - 304y - 64$
<i>c</i> 3	$y^{39} + 10y^{38} + \dots + 273y - 1$
<i>C</i> ₅	$y^{39} + 16y^{38} + \dots - 14896y - 2401$
c_6, c_9, c_{10}	$y^{39} + 36y^{38} + \dots + 8y - 1$
c ₇	$y^{39} + 4y^{38} + \dots - 648y - 81$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.017070 + 0.016485I		
a = 0.533352 + 0.181785I	4.66283 - 1.97475I	-5.44784 + 0.24565I
b = 0.679795 - 0.572535I		
u = 1.017070 - 0.016485I		
a = 0.533352 - 0.181785I	4.66283 + 1.97475I	-5.44784 - 0.24565I
b = 0.679795 + 0.572535I		
u = -0.231699 + 0.952667I		
a = 0.433679 - 0.020477I	2.67862 + 4.04441I	-5.85906 - 4.24790I
b = 1.300720 + 0.108633I		
u = -0.231699 - 0.952667I		
a = 0.433679 + 0.020477I	2.67862 - 4.04441I	-5.85906 + 4.24790I
b = 1.300720 - 0.108633I		
u = 0.956761 + 0.380033I		
a = 0.481763 + 0.120619I	-1.62662 + 3.39278I	-12.11270 - 5.92716I
b = 0.953268 - 0.489041I		
u = 0.956761 - 0.380033I		
a = 0.481763 - 0.120619I	-1.62662 - 3.39278I	-12.11270 + 5.92716I
b = 0.953268 + 0.489041I		
u = -0.446453 + 0.963476I		
a = 0.00685 - 2.03156I	1.05258 + 5.41055I	-8.42668 - 7.07273I
b = -0.998340 + 0.492226I		
u = -0.446453 - 0.963476I		
a = 0.00685 + 2.03156I	1.05258 - 5.41055I	-8.42668 + 7.07273I
b = -0.998340 - 0.492226I		
u = 0.313799 + 0.869843I		
a = 0.49321 + 2.23303I	-2.15141 - 1.70381I	-11.63741 + 3.75866I
b = -0.905691 - 0.426992I		
u = 0.313799 - 0.869843I		
a = 0.49321 - 2.23303I	-2.15141 + 1.70381I	-11.63741 - 3.75866I
b = -0.905691 + 0.426992I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.654305 + 0.610659I		
a = 0.464054 - 0.067479I	-0.106397 - 1.133730I	-10.95849 + 0.14045I
b = 1.110300 + 0.306863I		
u = -0.654305 - 0.610659I		
a = 0.464054 + 0.067479I	-0.106397 + 1.133730I	-10.95849 - 0.14045I
b = 1.110300 - 0.306863I		
u = -1.078760 + 0.377362I		
a = 0.470618 - 0.137655I	3.81328 - 6.57302I	-7.10620 + 5.57627I
b = 0.957399 + 0.572535I		
u = -1.078760 - 0.377362I		
a = 0.470618 + 0.137655I	3.81328 + 6.57302I	-7.10620 - 5.57627I
b = 0.957399 - 0.572535I		
u = 0.287457 + 0.756867I		
a = 0.451557 + 0.026551I	-2.53592 - 1.13990I	-11.07531 + 5.95720I
b = 1.206930 - 0.129766I		
u = 0.287457 - 0.756867I		
a = 0.451557 - 0.026551I	-2.53592 + 1.13990I	-11.07531 - 5.95720I
b = 1.206930 + 0.129766I		
u = -0.194269 + 0.773271I		
a = 1.21955 - 2.26240I	2.08468 - 1.94841I	-5.31413 - 1.52369I
b = -0.815381 + 0.342489I		
u = -0.194269 - 0.773271I		
a = 1.21955 + 2.26240I	2.08468 + 1.94841I	-5.31413 + 1.52369I
b = -0.815381 - 0.342489I		
u = -0.770646 + 0.144014I		
a = 0.545673 - 0.103341I	-0.798777 - 0.294565I	-9.95022 - 1.12683I
b = 0.769146 + 0.335047I		
u = -0.770646 - 0.144014I		
a = 0.545673 + 0.103341I	-0.798777 + 0.294565I	-9.95022 + 1.12683I
b = 0.769146 - 0.335047I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.243035 + 1.196980I		
a = 0.558338 - 0.947938I	3.77660 + 0.24936I	-5.00470 - 2.68648I
b = -0.538688 + 0.783208I		
u = 0.243035 - 1.196980I		
a = 0.558338 + 0.947938I	3.77660 - 0.24936I	-5.00470 + 2.68648I
b = -0.538688 - 0.783208I		
u = 0.541726 + 0.535219I		
a = 0.814600 - 0.384225I	3.03156 - 1.95518I	-5.07609 + 3.73688I
b = 0.004189 + 0.473649I		
u = 0.541726 - 0.535219I		
a = 0.814600 + 0.384225I	3.03156 + 1.95518I	-5.07609 - 3.73688I
b = 0.004189 - 0.473649I		
u = -0.406069 + 1.207170I		
a = 0.543323 + 0.815855I	3.06039 + 3.68428I	-6.85695 - 4.07509I
b = -0.434521 - 0.849125I		
u = -0.406069 - 1.207170I		
a = 0.543323 - 0.815855I	3.06039 - 3.68428I	-6.85695 + 4.07509I
b = -0.434521 + 0.849125I		
u = -0.523733 + 1.187360I		
a = -0.14870 - 1.57065I	2.20437 + 5.08722I	-7.54287 - 2.85265I
b = -1.059740 + 0.631021I		
u = -0.523733 - 1.187360I		
a = -0.14870 + 1.57065I	2.20437 - 5.08722I	-7.54287 + 2.85265I
b = -1.059740 - 0.631021I		
u = 0.625085 + 1.211420I		
a = -0.29116 + 1.51228I	0.99592 - 9.20929I	-10.00000 + 8.02113I
b = -1.122760 - 0.637619I		
u = 0.625085 - 1.211420I		
a = -0.29116 - 1.51228I	0.99592 + 9.20929I	-10.00000 - 8.02113I
b = -1.122760 + 0.637619I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.182143 + 1.351690I		
a = 0.418664 + 0.974374I	10.13810 - 2.62234I	-1.83668 + 2.51405I
b = -0.627750 - 0.866354I		
u = -0.182143 - 1.351690I		
a = 0.418664 - 0.974374I	10.13810 + 2.62234I	-1.83668 - 2.51405I
b = -0.627750 + 0.866354I		
u = 0.466572 + 1.289940I		
a = 0.484403 - 0.782733I	8.81943 - 7.07830I	-3.10210 + 4.00909I
b = -0.428310 + 0.923778I		
u = 0.466572 - 1.289940I		
a = 0.484403 + 0.782733I	8.81943 + 7.07830I	-3.10210 - 4.00909I
b = -0.428310 - 0.923778I		
u = 0.447724 + 1.316540I		
a = -0.050181 + 1.390930I	8.92932 - 3.22969I	-3.39800 + 2.79415I
b = -1.025900 - 0.718007I		
u = 0.447724 - 1.316540I		
a = -0.050181 - 1.390930I	8.92932 + 3.22969I	-3.39800 - 2.79415I
b = -1.025900 + 0.718007I		
u = -0.66765 + 1.25832I		
a = -0.32850 - 1.43602I	6.6219 + 12.8868I	-6.05446 - 8.07914I
b = -1.151380 + 0.661742I		
u = -0.66765 - 1.25832I		
a = -0.32850 + 1.43602I	6.6219 - 12.8868I	-6.05446 + 8.07914I
b = -1.151380 - 0.661742I		
u = -0.486980		
a = 0.797813	-0.735355	-13.2930
b = 0.253426		

II.
$$I_1^v = \langle a, \ b-1, \ v^3-v^2+1 \rangle$$

(i) Arc colorings

$$a_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} -v^2 \\ 1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} v \\ -v \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -v^{2} \\ 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} v \\ -v \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -v^{2} + v + 1 \\ v^{2} - 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $v^2 + 3v 13$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_3	$(u-1)^3$
c_2,c_8	u^3
c_4	$(u+1)^3$
c_5, c_7	$u^3 + u^2 - 1$
c ₆	$u^3 - u^2 + 2u - 1$
c_9, c_{10}	$u^3 + u^2 + 2u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_4	$(y-1)^3$
c_2, c_8	y^3
c_5, c_7	$y^3 - y^2 + 2y - 1$
c_6, c_9, c_{10}	$y^3 + 3y^2 + 2y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = 0.877439 + 0.744862I		
a = 0	1.37919 - 2.82812I	-10.15260 + 3.54173I
b = 1.00000		
v = 0.877439 - 0.744862I		
a = 0	1.37919 + 2.82812I	-10.15260 - 3.54173I
b = 1.00000		
v = -0.754878		
a = 0	-2.75839	-14.6950
b = 1.00000		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^3)(u^{39} - 4u^{38} + \dots + u + 1)$
c_2,c_8	$u^3(u^{39} + u^{38} + \dots + 20u + 8)$
c_3	$((u-1)^3)(u^{39}+18u^{38}+\cdots+17u+1)$
C4	$((u+1)^3)(u^{39}-4u^{38}+\cdots+u+1)$
<i>C</i> ₅	$(u^3 + u^2 - 1)(u^{39} - 8u^{38} + \dots - 168u + 49)$
<i>c</i> ₆	$(u^3 - u^2 + 2u - 1)(u^{39} - 2u^{38} + \dots - 4u^2 + 1)$
C ₇	$(u^3 + u^2 - 1)(u^{39} + 2u^{38} + \dots + 6u + 9)$
c_9, c_{10}	$(u^3 + u^2 + 2u + 1)(u^{39} - 2u^{38} + \dots - 4u^2 + 1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_4	$((y-1)^3)(y^{39} - 18y^{38} + \dots + 17y - 1)$
c_2,c_8	$y^3(y^{39} + 21y^{38} + \dots - 304y - 64)$
c_3	$((y-1)^3)(y^{39}+10y^{38}+\cdots+273y-1)$
<i>C</i> ₅	$(y^3 - y^2 + 2y - 1)(y^{39} + 16y^{38} + \dots - 14896y - 2401)$
c_6, c_9, c_{10}	$(y^3 + 3y^2 + 2y - 1)(y^{39} + 36y^{38} + \dots + 8y - 1)$
C ₇	$(y^3 - y^2 + 2y - 1)(y^{39} + 4y^{38} + \dots - 648y - 81)$