EXERCISE SHEET 3

Background

The first 13 stable homotopy groups of the 2-local sphere $\mathbb{S}_{(2)}$ can be computed using only the Serre spectral sequence. These groups (and the ring structure) are given in the table below:

stem	group	generator	relations
0	\mathbb{Z}	1	
1	$\mathbb{Z}/2$	η	
2	$\mathbb{Z}/2$	η^2	
3	$\mathbb{Z}/8$	ν	$\eta^3 = 4\nu$
4	0		
5	0		
6	$\mathbb{Z}/2$	ν^2	
7	$\mathbb{Z}/16$	σ	
8	$\mathbb{Z}/2 \oplus \mathbb{Z}/2$	$\eta \sigma$, ϵ	
9	$\mathbb{Z}/2 \oplus \mathbb{Z}/2 \oplus \mathbb{Z}/2$	$\eta^2 \sigma, \eta \epsilon, \mu_9$	$\nu^3 = \eta^2 \sigma + \eta \epsilon$
10	$\mathbb{Z}/2$	$\eta\mu_9$	
11	$\mathbb{Z}/8$	ζ	$\eta^2 \mu_9 = 4\zeta$
12	0		
13	0		

1. Exercise 1: Constructing finite spectra

In this exercise we will focus on constructing finite spectra. We begin with the general theory.

(a) Given a map $\alpha: \mathbb{S}^k \to \mathbb{S}^0$ when can we construct a finite spectrum with a cell structure as depicted below?

(b) Given a pair of classes $\alpha \in \pi_k \mathbb{S}$ and $\beta \in \pi_m \mathbb{S}$ when can we construct a finite spectrum with a cell structure as depicted below?

(c) Given a pair of classes $\alpha \in \pi_k \mathbb{S}$ and $\beta \in \pi_m \mathbb{S}$ when can we construct a finite spectrum with a cell structure as depicted below?

(d) Given three classes $\alpha \in \pi_k \mathbb{S}$, $\beta \in \pi_m \mathbb{S}$ and $\gamma \in \pi_n \mathbb{S}$ when can we construct a finite spectrum with a cell structure as depicted below?

What requirements are there on the dashed attaching map?

(e) Given three classes $\alpha \in \pi_k \mathbb{S}$, $\beta \in \pi_m \mathbb{S}$ and $\gamma \in \pi_n \mathbb{S}$ when can we construct a finite spectrum with a cell structure as depicted below?

For the remaining parts of this question determine whether finite spectra with the cell structures depicted below exist.

Hint: part (x) should be more difficult. Cross-reference this with Ex 3.b.

5

2. Exercise 2: Homotopy groups of finite spectra

(a) Determine π_*X for $* \leq 10$ where X is the spectrum depicted below.

(b) Determine $\pi_* X$ for $* \leq 10$ where X is the spectrum depicted below.

(c) Determine $\pi_* X$ for $* \leq 10$ where X is the spectrum depicted below.

(d) Determine π_*X for $* \leq 8$ where X is the spectrum depicted below.

- (e) Determine $\pi_* X$ for $* \leq 7$ where X is the spectrum from Ex. 1.æ.
- (f) Determine π_*X for $* \leq 7$ where X is the spectrum from Ex. 1.å.

3. Exercise 3: The homotopy of KO (cellular approach)

KO is an \mathbb{E}_{∞} -algebra in Sp whose associated cohomology theory classifies stable vector bundles. The ring spectrum $KO_{(2)}$ satisfies the following properties:

- (1) $KO_{(2)}$ is 8-periodic. This means that there is an invertible class β in $\pi_8 KU_{(2)}$.
- (2) The connective cover of $KO_{(2)}$ is typically called $ko_{(2)}$. The \mathbb{E}_{∞} -algebra $ko_{(2)}$ is finite type and its \mathbb{F}_2 -homology is

$$H_*(\mathrm{ku}_{(2)};\mathbb{F}_2) \coloneqq \pi_*(\mathbb{F}_2 \otimes \mathrm{ku}_{(2)}) \cong \mathbb{F}_2[\zeta_1^4,\zeta_2^2,\zeta_3,\zeta_4,\dots]$$

where $|\zeta_1^4|=4$, $|\zeta_2^2|=6$ and $|\zeta_i|=2^i-1$ for $i\geq 3$. (3) There are maps of \mathbb{E}_{∞} -algebras $\mathrm{ko}_{(2)}\to\mathrm{ku}_{(2)}\to\mathbb{Z}_{(2)}$ which induces the natural inclusions

$$\mathbb{F}_2[\zeta_1^4,\zeta_2^2,\zeta_3,\zeta_4,\dots] \to \mathbb{F}_2[\zeta_1^2,\zeta_2^2,\zeta_3,\zeta_4,\dots] \to \mathbb{F}_2[\zeta_1^2,\zeta_2,\dots]$$

on \mathbb{F}_2 -homology.

Using properties (1), (2) and (3) you will now calculate the homotopy groups of $ko_{(2)}$.

- (a) Show that the localization of $ko_{(2)}$ at β is $KO_{(2)}$.
- (b) Determine the cells and attaching maps of a minimal 8-skeleton of $ko_{(2)}$.
- (c) Compute $\pi_* ko_{(2)}$ for $* \leq 7$.

- (d) Determine the ring $\pi_* KO_{(2)}$.
- (e) Let α be a generator of $\pi_4 ko_{(2)}$. Describe α as a map into the 8-skeleton of $ko_{(2)}$.
- (f) Describe β as a map into the 8-skeleton of $ko_{(2)}$.

Hint: For part (b) you will want to start by thinking about a minimal 8-skeleton of $\mathbb{Z}_{(2)}$ and the map $ko_{(2)} \to \mathbb{Z}_{(2)}$.

4. Exercise 4: The Wood cofiber sequence

KO is an \mathbb{E}_{∞} -algebra in Sp whose associated cohomology theory classifies stable vector bundles. Complexification gives a map of \mathbb{E}_{∞} -algebras

$$\mathrm{KO} \to \mathrm{KU}.$$

(a) Prove that $ko_{(2)} \otimes Cof(\eta) \cong ku_{(2)}$.