

EMC²: Efficient MCMC Negative Sampling for Contrastive Learning with Global Convergence

science amazon

Chung-Yiu Yau¹, Hoi-To Wai¹, Parameswaran Raman², Soumajyoti Sarkar², Mingyi Hong³ ¹The Chinese University of Hong Kong ²Amazon Web Services ³University of Minnesota

Summary / TL;DR

Existing contrastive learning algorithms either

- 1) require large batch for high accuracy, or
- 2) is unstable.

We propose **EMC**² that

- 1) converges to high accuracy with small batch,
- 2) with theoretical convergence of $O(1/\sqrt{T})$.

Contrastive Learning - Definition

Contrastive learning finds the feature encoders ϕ^*, ψ^* that maximizes similarity $\phi^*(x)^T \psi^*(y)$ between positive data pair (x, y) and minimizes similarity $\phi^*(x)^T \psi^*(z)$ between negative data pair (x,z).

Contrastive Loss Function

❖ InfoNCE loss (e.g., CLIP [1], SimCLR [2]) with minibatch size *B*:

$$\mathcal{L}_{\text{NCE}}(\theta; B)$$

$$= \underset{(x,y) \sim \mathcal{D}_{\text{pos}} \mathbf{Z} \sim \mathcal{D}_{\text{neg}}(x; B)}{\mathbb{E}} \left[-\log \frac{\exp(\beta \phi(x; \theta)^{\mathsf{T}} \psi(y; \theta))}{\sum_{z \in \mathbf{Z}} \exp(\beta \phi(x; \theta)^{\mathsf{T}} \psi(z; \theta))} \right]$$

Global contrastive loss (e.g., SogCLR [3]):

 $\mathcal{L}(\theta)$

$$= \underset{(x,y) \sim \mathcal{D}_{pos}}{\mathbb{E}} \left[-\log \frac{\exp(\beta \phi(x;\theta)^{\mathsf{T}} \psi(y;\theta))}{\sum_{z \in \mathbf{D}_{neg}(x)} \exp(\beta \phi(x;\theta)^{\mathsf{T}} \psi(z;\theta))} \right]$$

Global loss is the limiting upper bound of InfoNCE:

$$\mathcal{L}_{NCE}(\theta; B) \leq \mathcal{L}(\theta) \quad \forall B > 0$$

$$\lim_{B \to |\mathbf{D}_{neg}|} \mathcal{L}_{NCE}(\theta; B) = \mathcal{L}(\theta)$$

 \clubsuit We propose to minimize $\mathcal{L}(\theta)$, which upper bounds the large batch objective used in CLIP for any batch size B > 0, at the cost of constant batch size using MCMC sampling.

Global Loss Gradient

$$\nabla \mathcal{L}(\theta) = \underset{(x,y) \sim \mathcal{D}_{pos}}{\mathbb{E}} \left[-\beta \nabla_{\theta} (\phi(x;\theta)^{\mathsf{T}} \psi(y;\theta)) \right]$$

$$+ \left[\underset{(x,y) \sim \mathcal{D}_{pos}}{\mathbb{E}} \left[\beta \sum_{z \in \mathbf{D}_{neg}(x)} p_{x,\theta}(z) \nabla_{\theta} (\phi(x;\theta)^{\mathsf{T}} \psi(z;\theta)) \right] \right]$$

with a softmax distribution:

th a softmax distribution:
$$p_{x,\theta}(z) = \frac{\exp(\beta \ \phi(x;\theta)^{\mathsf{T}} \psi(z;\theta))}{\sum_{z' \in \mathbf{D}_{\mathrm{neg}}(x)} \exp(\beta \ \phi(x;\theta)^{\mathsf{T}} \psi(z';\theta))}$$

 \clubsuit Negative pair gradient $\nabla \mathcal{L}_{neg}(\theta)$ admits a datadependent softmax distribution $p_{x,\theta}(z)$.

EMC²: MCMC Sampling on $\nabla \mathcal{L}_{neg}(\theta)$

- * We propose to apply **Metropolis-Hasting** algorithm for sampling $\nabla \mathcal{L}_{\text{neg}}(\theta)$.
- \diamondsuit Accept a random negative sample Z'_i with probability

$$Q_{x_i,\theta}(Z_i',Z_i) = \frac{p_{x_i,\theta}(Z_i')}{p_{x_i,\theta}(Z_i)} = \frac{\exp(\beta \phi(x_i;\theta)^{\mathsf{T}} \psi(Z_i';\theta))}{\exp(\beta \phi(x_i;\theta)^{\mathsf{T}} \psi(Z_i';\theta))}$$

(Hardness-aware negative sampling)

- $\circ \mathcal{O}(B^2)$ Computation Overhead: Only requires computing the acceptance probability $Q_{x_i,\theta}(Z_i',Z_i)$.
- $\circ \mathcal{O}(m)$ Memory Overhead: Only requires storing the exponential score of previously accepted negative sample, for each x_i in the dataset of size m.
- * MCMC with Warm Starting: Retain MC state from previous epoch and uses O(1) samples for each epoch, more efficient than $O(1/\tau_{\rm mix})$ samples in Cold Started MCMC.
- **Convergence**: We guaranteed EMC² converges at the rate of $\mathcal{O}(1/\sqrt{T})$.

Experiments

A EMC² shows competitive small batch performance.

Figure 1: Training ResNet-18 on STL-10 using Adam with batch size b = 32, compared on linear probe accuracy.

 \clubsuit EMC² converges accurately with batch size b=4.

Figure 2: Comparison on a subset of STL-10 using the first 500 images and pre-computed two augmentations for each image. Trained using SGD with batch size b = 4.

References

[1] Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J., et al. Learning transferable visual models from natural language supervision. In International Conference on Machine Learning, pp. 8748–8763. PMLR, 2021. [2] Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. A simple framework for contrastive learning of visual representations. In International Conference on Machine Learning, pp. 1597–1607. PMLR, 2020.

[3] Yuan, Z., Wu, Y., Qiu, Z.-H., Du, X., Zhang, L., Zhou, D., and Yang, T. Provable stochastic optimization for global contrastive learning: Small batch does not harm performance. In International Conference on Machine Learning, pp. 25760–25782. PMLR, 2022.