CS 112 – Display Considerations

Display

- Image generation
 - Generate digital images
 - Should take care to have non-aliased images
- Image Reconstruction
 - Generate a continuous image on the display

Image Reconstruction

- Each pixel is not a point but an area
- How is that area lighted?

Sampling Convolution $3f_{s}$ $2f_s$ $2f_s$ $\widehat{S}_{i}f_{e_{s}4}$ Aditi Mafumder, CS 112

Reconstruction (Narrower Kernel)

Aliasing artifacts (Right Width)

Wider Spots (Lost high frequencies)

Narrow Width (Jaggies, insufficient sampling)

Quantization

- Digitization of color
- Gray scale infinite grays between 0 and 1
 - 8 bit representation 256 levels
 - A range of grays represented by a single value
- Any value is assigned to one of k values
- Choose number of levels and range of each level

Quantization Error

Uniform Quantization

Maximum Error = ½ Step Size

Human Perception

- Use properties of human perception
- ResponseCompression
- ResponseExpansion

Steven's Power Law

$$P = KS^n$$

P = Perception

S = Stimulus Strength

n>1.0 (Expansion)

n<1.0 (Compression)

Steven's Power Law

$$P = KS^n$$

P = Perception

S = Stimulus Strength

n>1.0 (Expansion)

n<1.0 (Compression)

Gamma Function

- Inverse of human response curve for faithful representation of intensities
- Called the gamma function

$$O = I^{\gamma}$$

Gamma Correction

Capture devices (Camera)

- Usually have the inverse gamme
 - Similar to human eye
- So that images look good on display
- Current cameras give you RAW images which are linear

Non-Uniform Quantization

- Note how quantization changes
- Non-uniform step size
- Maximum Error
 - ½ of maximum step size
- # of levels is the color resolution
 - # of bits

Color Resolution

4 Steps

8 Steps

16 Steps

64 Steps

32 StepsSlide 19

Aditi Majumder, CS 112

Dithering

- What if the color resolution is low?
 - Newsprint Bi-level, only black and white
- Can we expand the # of colors?
 - Spatial integration of eye
- Trading off spatial resolution for intensity resolution

- Represented by a dither matrix $\begin{vmatrix} 0 & z \\ 1 & 3 \end{vmatrix}$
- nxn pixels, bi-level intensity, can produce n²+1 intensities
- If more than two levels k levels
 - n^2 . (k-1) +1
 - Used for increasing the color resolution

D

Dithering

- If more than two levels k levels
 - n^2 . (k-1) +1
 - For k = 4(0,1,2,3) and n=2

Examples

Loss of tone and details (Intensity and Spatial Resolution)

