

Spectral Clustering: Unlocking Complex Data

Welcome! Today, we'll explore spectral clustering, a powerful graph-based technique for uncovering hidden structures within your data. This method goes beyond traditional approaches and tackles the complexities of non-linearly separable data.

Data as a Network

Nodes as Data

Data points are visualized as nodes within a graph.

Edges as Similarity

Edges connecting these nodes indicate the degree of similarity between data points, with stronger edges representing greater resemblance.

The Algorithm Unveiled

Similarity Matrix

A matrix is constructed, with each entry representing the similarity between two data points.

Laplacian Matrix

The Laplacian matrix is derived from the similarity matrix, capturing the relationships between nodes.

Eigenvector Extraction

The eigenvectors corresponding to the smallest eigenvalues of the Laplacian matrix are calculated.

Clustering

A clustering algorithm, such as K-means, is applied to group the eigenvectors, forming clusters.

Advantages and Disadvantages

Advantages

- Handles non-linear data
- Arbitrary cluster shapes
- Noise and outlier resilience

Disadvantages

- High computational complexity
- Choosing the number of clusters
- Sensitivity to similarity matrix

