7-Esercitazione 23/05/2024

Esercizio 1)

Descrivere la traiettoria di una carica puntiforme di massa m=1g e carica $q=-1\mu C$ che viaggia con velocità iniziale $v_o=1cm/s$ parallela ad uno strato piano con densità superficiale costante $\sigma=100\,\mu C/m^2$. Se la carica inizialmente si trova ad una altezza h=2cm, dopo quanto tempo, a quale velocità e in quale posizione impatta sullo strato piano?

Esercizio 2)

Date tre cariche ai vertici di un triangolo equilatero di lato l, calcolare il campo elettrico ed il potenziale al centro del triangolo. Dare il valore numerico per l=5cm, $q_1=q_2=-q_3=1\mu C$. Calcolare l'energia configurazionale del sistema.

Esercizio 3)

Due lastre piane, parallele e di dimensioni infinite distano 20cm. La prima lastra è carica con una densità di superficie $\sigma_1=10^{-6}Cm^{-2}$ mentre la seconda ha densità $\sigma_2=-3\times 10^{-6}Cm^{-2}$. Una terza lastra, parallela alle prime due e sempre infinita, avente densità σ_3 , viene a sua volta inserita tra le prime due. Quali dovranno essere il valore di σ_3 e la distanza della terza lastra dalla prima affinché il campo elettrostatico all'esterno del sistema di lastre risulti nullo?

• Esercizio1

Descrivere la traiettoria di una carica puntiforme di massa m=1g e carica $q=-1\mu C$ che viaggia con velocità iniziale $v_o=1cm/s$ parallela ad uno strato piano con densità superficiale costante $\sigma=100\,\mu C/m^2$. Se la carica inizialmente si trova ad una altezza h=2cm, dopo quanto tempo, a quale velocità e in quale posizione impatta sullo strato piano?

$$\begin{cases}
A_{x} = 0 & \text{imtegrando} \\
A_{y} = -q & \text{o} \\
\hline
2mE_{0}
\end{cases}$$

$$\begin{cases}
N_{x} = N_{0} \\
N_{y} = -q & \text{o} \\
\hline
2mE_{0}
\end{cases}$$

$$\begin{cases}
x(t) = x_0 + N_0 t & x_0 = 0 \\
y(t) = y_0 - q & t^2 \\
\frac{1}{4m\epsilon_0} & \frac{1}{4m\epsilon_0} & \frac{1}{4m\epsilon_0} & \frac{1}{4m\epsilon_0}
\end{cases}$$

$$\theta - q \frac{\sigma}{4m\epsilon_0} t_1^2 = 0 \Rightarrow t_1^2 = \theta \cdot \frac{4m\epsilon_0}{q\sigma}$$

$$\Rightarrow t_1 = \sqrt{\frac{4m\epsilon_0 t_1}{q\sigma}} = 2.66 \text{ ms} \quad 2.66 \cdot 10^{-3} \text{ s}$$

=>
$$\times_1(t_1) = N_0 \sqrt{\frac{4m\epsilon_0\theta_1}{95}} = 26.6 \mu m 26.6 \cdot 10^{-6} m$$

Esercizio2)

Date tre cariche ai vertici di un triangolo equilatero di lato l, calcolare il campo elettrico ed il potenziale al centro del triangolo. Dare il valore numerico per l=5cm, $q_1=q_2=-q_3=1\mu C$. Calcolare l'energia configurazionale del sistema.

V Campi generati da ogni carcica:

> IL CAMPO ELETTRICO TOTALE NEL PUNTO O (somma retoriale):

$$d = 2 h$$
 (h altered del triangolo)
 $h = \sqrt{3} \ell$ \Rightarrow $d = \sqrt{3} \ell = \frac{\ell}{3}$

PIL POTENZIALE TOTALE im O:

$$V(0) = \frac{q}{4\pi\epsilon_0 d} + \frac{q}{4\pi\epsilon_0 d} - \frac{q}{4\pi\epsilon_0 d} = 3.12.10^5 V$$

$$d = \frac{q}{4\pi\epsilon_0 d} + \frac{q}{4\pi\epsilon_0 d} - \frac{q}{4\pi\epsilon_0 d} = 3.12.10^5 V$$

FENERO: A CONFICURATIONALE del SISTÈMA:

$$U = \frac{q_1 q_2}{4\pi \epsilon_0 \ell} + \frac{q_1 q_3}{4\pi \epsilon_0 \ell} + \frac{q_2 q_3}{4\pi \epsilon_0 \ell}$$

$$= \frac{q^2}{4\pi \epsilon_0 \ell} - \frac{q^2}{4\pi \epsilon_0 \ell} = -\frac{q^2}{4\pi \epsilon_0 \ell} = -0.48 J$$

Esercizio3)

Due lastre piane, parallele e di dimensioni infinite distano 20cm. La prima lastra è carica con una densità di superficie $\sigma_1=10^{-6}Cm^{-2}$ mentre la seconda ha densità $\sigma_2=-3\times 10^{-6}Cm^{-2}$. Una terza lastra, parallela alle prime due e sempre infinita, avente densità σ_3 , viene a sua volta inserita tra le prime due. Quali dovranno essere il valore di σ_3 e la distanza della terza lastra dalla prima affinché il campo elettrostatico all'esterno del sistema di lastre risulti nullo?

IL CAMPO ELEMPICO ESTERNO ALLE E LASTRE:

$$\left| E_{\text{Ext}} \right| = \frac{G_1}{2\varepsilon_0} + \frac{G_2}{2\varepsilon_0} = \frac{G_1 + G_2}{2\varepsilon_0}$$

Per sommullando:

* Campo unigorane -> la posizione della 34 lastra mon ingluisce