HOMEWORK 2

9.67 The op amp in the circuit seen in Fig. P9.67 is ideal. Find the steady-state expression for $v_o(t)$ when $v_g = 2\cos 10^6 t$ V.

Figure P9.67

9.69 The sinusoidal voltage source in the circuit shown in Fig. P9.69 is generating the voltage $v_g=4\cos 200t\,\mathrm{V}$. If the op amp is ideal, what is the steady-state expression for $v_o(t)$?

Figure P9.69

- 10.44 a) Determine the load impedance for the circuit shown in Fig. P10.44 that will result in maximum average power being transferred to the load if $\omega = 5$ krad/s.
 - b) Determine the maximum average power delivered to the load from part (a) if $v_g = 80 \cos 5000t$ V.
 - c) Repeat part (a) when Z_L consists of two components from Appendix H whose values yield a maximum average power closest to the value calculated in part (b).

Figure P10.44

- 10.46 The load impedance $Z_{\rm L}$ for the circuit shown in Fig. P10.46 is adjusted until maximum average power is delivered to $Z_{\rm L}$.
 - a) Find the maximum average power delivered to $Z_{\rm L}$.
 - b) What percentage of the total power developed in the circuit is delivered to Z_L ?

Figure P10.46

