MATH 222: Week 4

Sarah Randall

Last updated: May 23, 2017

Contents

1 §14.5 Chain Rule

1

1 §14.5 Chain Rule

The chain rule in 1-dimension is as follows:

For an equation y = f(x(t))

$$\frac{dy}{dt} = \frac{df}{dx}\frac{dx}{dt}$$

Example. If $y = (x(t))^2$ and $x(t) = \ln 1 + t$

$$\frac{dy}{dt} = \frac{dy}{dx}\frac{dx}{dt} = 2x\frac{1}{1+t} = \frac{2\ln 1 + t}{1+t}$$

Example. Suppose $f(x,y) = xy + x^2 + y$

$$x(t) = \ln 1 + t, \ y(t) = e^{t^2}$$

Turn f(x,y) into a function g(t) with only the time parameter.

$$g(t) = f(x(t), y(t)) = \ln 1 + te^{t^2} + (\ln 1 + t)^2 + e^{t^2}$$

$$\frac{dg}{dt} = \frac{df}{dt} = \frac{e^{t^2}}{1+t} + 2t\ln 1 + te^{t^2} + \frac{2\ln 1 + t}{1+t} + 2te^{t^2}$$

Wherever we can, replace the values of x(t), y(t) with x(t), y(t)

$$\frac{dg}{dt} = \frac{df}{dt} = \frac{y(t)}{1+t} + 2te^{t^2}x(t) + \frac{2}{1+t} + 2te^{t^2}$$