- The Dataset is generated such that $\mu_{ML} \in [0, 0.4) \cup (0.6, 1.0]$
- For the Prior (Beta Distribution): a = 2*k, b = 3*k, \Rightarrow Mean = 2/(2+3) = 0.4

A- Sequential Learning:

- 'Part_A_Code.py' generates plots of Prior vs μ for N = 160 data points and saves the data in the directory 'Image Data'
- 'Part_A_GIF_Maker.py' combines the plots generated in the previous step into a GIF.

Part- B:

Part- C:

• The formula used is:

$$p(\mu|m, l, a, b) = \frac{\Gamma(m+a+l+b)}{\Gamma(m+a)\Gamma(l+b)} \mu^{m+a-1} (1-\mu)^{l+b-1}.$$

- At the end of sequential learning (Part-A): l + m = N. Therefore, the graphs for Part-A become identical to the graph of Part-B as number of points sampled → 160.
- As the value of N is increased above 160, the Gamma Function increases and makes the value of the entire function $\rightarrow \infty$
- At $\mu_{ML} = 0.5$, the following plot is obtained-

