Introduction to Audio Content Analysis

Module 9.7: Music Structure Detection

alexander lerch

introduction overview

Georgia Center for Music Tech Technology

corresponding textbook section

Section 9.7

lecture content

- structure in music
- self similarity and self distance matrices
- structure detection approaches

learning objectives

- summarize basic difficulties in ground truth annotations of musical structure
- explain and interpret self similarity and self distance matrices
- summarize three domains for approaching music structure detection

introduction overview

corresponding textbook section

Section 9.7

lecture content

- structure in music
- self similarity and self distance matrices
- structure detection approaches

■ learning objectives

- summarize basic difficulties in ground truth annotations of musical structure
- explain and interpret self similarity and self distance matrices
- summarize three domains for approaching music structure detection

music structure introduction

- music is inherently formal/organized/structural
- various hierarchical structural levels
 - groups of notes build rhythmic/melodic/harmonic patterns
 - measures group multiple events
 - phrases group several measures
 - sections contain several phrases
 - several sections can comprise piece/movement
 - ...
- grouping of musical elements/patterns is influenced by
 - 1 contrasts & novelty
 - rhythmic, harmonic, melodic patterns
 - 2 similarity and repetitions
 - rhythmic, harmonic, melodic patterns
 - 3 homogeneity within a section
 - ▶ instrumentation, tempo, harmony

music structure introduction

- music is inherently formal/organized/structural
- various hierarchical structural levels
 - groups of notes build rhythmic/melodic/harmonic patterns
 - measures group multiple events
 - phrases group several measures
 - sections contain several phrases
 - several sections can comprise piece/movement
 - ...
- **grouping** of musical elements/patterns is influenced by
 - 1 contrasts & novelty
 - rhythmic, harmonic, melodic patterns
 - 2 similarity and repetitions
 - rhythmic, harmonic, melodic patterns
 - 3 homogeneity within a section
 - ▶ instrumentation, tempo, harmony

objective

- reveal structural properties and relationships
- generate a list of parts and repetitions

typical processing steps

- 1 feature extraction
- 2 Self Distance Matrix (SDM) or Self Similarity Matrix (SSM) computation
- 3 segment detection based on
 - novelty
 - homogeneity
 - repetition

Georgia Center for Music Tech Tech Technology

music structure analysis features 1/2

- features from all categories can have impact on structure
 - timbre
 - ▶ instrumentation, playing technique, effects, . . .
 - tonal content
 - ▶ melodic and harmonic patterns, range, ...
 - rhythm content
 - ▶ tempo, rhythmic patterns, ...
 - dynamics
 - ▶ loudness, range, . . .
- **■** feature aggregation
 - use texture window, or
 - aggregate features per beat or downbeat

music structure analysis self similarity matrix

Georgia Center for Music Tech Technology

$$S(n_{\mathrm{A}}, n_{\mathrm{B}}) = \mathrm{s}(v(n_{\mathrm{A}}), v(n_{\mathrm{B}}))$$

music structure analysis feature dependency of similarity

Georgia Center for Music Tech Tech Technology

Georgia Center for Music Tech Tech College of Design

music structure analysis novelty analysis

music structure analysis homogeneity analysis 1/2

music structure analysis homogeneity analysis 2/2

Georgia Center for Music Tech Tech College of Design

- can also be used as post-processing step after novelty-based approach, e.g.
 - 1 describe each segment with features
 - 2 cluster and see which segments are grouped together

music structure analysis repetition analysis 1/2

Georgia Center for Music Tech Tech Technology

- while in many cases it 'looks' easy, automatic extraction is error-prone
- ⇒ typical approaches for **enhancing** the distance/similarity/lag matrix
 - filtering (low pass smoothing, high pass edge detection)
 - use matrices with different time resolutions
 - image processing methods (e.g., erosion & dilation)
 - thresholding
 - "path search" through probability matrix

music structure analysis repetition analysis 2/2

- while in many cases it 'looks' easy, automatic extraction is **error-prone**
- ⇒ typical approaches for **enhancing** the distance/similarity/lag matrix
 - filtering (low pass smoothing, high pass edge detection)
 - use matrices with different time resolutions
 - image processing methods (e.g., erosion & dilation)
 - thresholding
 - "path search" through probability matrix

- evaluation of structure detection challenging
 - ground truth
 - structure itself may be ambiguous
 - depending on annotator, varying hierarchical level of labels, e.g.

ann 1	intro	A				A				outro
ann 2	intro	vei	rse	cho	orus ve		rse	cho	rus	outro
ann 3	intro	V_1	V_2	C_1	C ₂	V_1	V_2	C_1	C_2	outro

- method and metric
 - boundary matching
 - frame level, e.g., pairwise match
- typical range of results
 - F = 50...70%

Georgia Center for Music Tech Technology

College of Design

- evaluation of structure detection challenging
 - ground truth
 - ► structure itself may be ambiguous
 - depending on annotator, varying hierarchical level of labels, e.g.

ann 1	intro	A				A				outro
ann 2	intro	vei	rse	cho	orus ve		rse	cho	rus	outro
ann 3	intro	V_1	V_2	C_1	C ₂	V_1	V_2	C_1	C_2	outro

- method and metric
 - boundary matching
 - frame level, e.g., pairwise match
- typical range of results
 - F = 50...70%

- evaluation of structure detection challenging
 - ground truth
 - structure itself may be ambiguous
 - depending on annotator, varying hierarchical level of labels, e.g.

ann 1	intro	A				A				outro
ann 2	intro	vei	rse	cho	orus ver		rse cho		rus	outro
ann 3	intro	V_1	V_2	C_1	C_2	V_1	V_2	C_1	C_2	outro

- method and metric
 - boundary matching
 - frame level, e.g., pairwise match
- typical range of results
 - F = 50...70%

summary lecture content

Georgia Center for Music Tech Technology

College of Design

- self similarity/distance matrices
 - shows pairwise similarities/distances
 - depends on input features
- **■** structure detection
 - 1 novelty
 - 2 homogeneity
 - 3 repetitions

