Homework Assignment 3: Linear Algebra Due Oct. 10th

1. (NB) Consider the following matrices A, B, C, D, E and F.

$$A = \begin{bmatrix} 1 & 2 \\ 3 & -1 \end{bmatrix} \qquad B = \begin{bmatrix} 3 & -2 \\ 2 & 1 \end{bmatrix} \qquad C = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

$$D = \begin{bmatrix} 1 & 3 & 1 \\ -2 & 1 & -1 \end{bmatrix} \qquad E = \begin{bmatrix} 3 & 1 \\ 0 & 3 \\ -2 & 2 \end{bmatrix} \qquad F = \begin{bmatrix} 2 & 1 & 2 \\ -1 & 3 & -2 \end{bmatrix}$$

- A) What is the product of AB, CD, EF? B) Consider the products A^TB , BD^T , D^TF^T . Is the matrix product defined for any of these? If so calculate the result or explain why it does not work.
- 2. **(NB)** Find the inverse of the matrix M below. Demonstrate that the inverse satisfies the expected relation $(MM^-1 = I)$.

$$M = \begin{bmatrix} 1 & 0 & 1 \\ 2 & 2 & 3 \\ 1 & 2 & 4 \end{bmatrix}$$

3. (NB) An orthogonal matrix has the special property where it's transpose is also it's inverse. Consider the matrix P below. Find P^T , and demonstrate P is indeed an orthogonal matrix by showing $PP^T = I$ and $P^TP = I$.

$$P = \frac{1}{7} \begin{bmatrix} 3 & -2 & -6 \\ -6 & -3 & -2 \\ -2 & 6 & -3 \end{bmatrix}$$

4. (NB) Solve the following system of equations for x_1, x_2, x_3, x_4 . Additionally, show that the determinate of the system of equations in matrix form is nonzero.

$$-x_1 + 3x_2 + 5x_3 + 2x_4 = 10 \tag{1}$$

$$x_1 + 9x_2 + 8x_3 + 4x_4 = 15 (2)$$

$$x_2 + x_4 = 2 (3)$$

$$2x_1 + x_2 + x_3 - x_4 = -3 (4)$$

5. (NB) Following the example of the Gauss-Seidel method we discussed in class. Find the solution vector \vec{x} for $A\vec{x} = b$, where:

$$A = \begin{bmatrix} 4 & -1 & -1 & 0 \\ -1 & 4 & 0 & -1 \\ -1 & 0 & 4 & -1 \\ 0 & -1 & -1 & 4 \end{bmatrix} \qquad b = \begin{bmatrix} 1 \\ 2 \\ 0 \\ 1 \end{bmatrix}$$

How many iterations does it take for the solution to converge to to the point where the error terms are of order 10^{-5} or better? Repeat the process for the vector b = [4, 2, 10, -2].

 $^{^{1}}$ While this problem demonstrate the power of the Gauss-Seidel method, we are only guaranteed a convergent solution if the matrix A is diagonal dominate.

- 6. (Problem 4.12) Use LU composition to calculate the inverse of a matrix A as per equation 4.99, and the determinate as per equation 4.102. Test your answers by comparing the output of 'np.linalg.inv()' and np.linalg.det().
- 7. (NB) In this problem we will solve a matrix equation of the form $A\vec{x} = \vec{b}$, however, we will examine the possible pitfalls with 'black box' solvers to be aware of. Consider the matrices below:

$$A = \begin{bmatrix} 0.780 & 0.563 \\ 0.913 & 0.659 \end{bmatrix} \qquad b = \begin{bmatrix} 0.217 \\ 0.254 \end{bmatrix}$$

The exact solution is $\vec{x} = (1, -1)$. Consider two approximate solutions $\vec{x}_{\alpha} = (0.999, -1.001)$ and $\vec{x}_{\beta} = (0.341, -0.087)$.

- Compute residuals of the form $r = \vec{b} A\vec{x}$ for the approximate solutions \vec{x}_{α} and \vec{x}_{β} . Does the more accurate solution have a smaller residual?
- Calculate the determinate of the Matrix A, does this help us to understand the result of the residual analysis?
- Last, use the 'solve' function in np.linalg() to find the solution vector. What does this result tell us?
- 8. (Problem 4.26) We will now use QR decomposition to solve a linear system of equations $A\vec{x} = \vec{b}$. This equation can be re-written as $QR\vec{x} = \vec{b}$. We can take advantage of the orthogonality of Q to write this as: $R\vec{x} = Q^T\vec{b}$. But now the right-hand side equation contains only known quantities and the left-hand side has the upper-triangular matrix R, so a back substitution isn't all that needed. Implement this approach in python using classical Gram-Schmidt. (*Hint*: It will likely help to reference the code for qr_dec() function in the course notes and/or textbook).
- 9. (NB) Matrices need not be composed of real numbers, in fact the fact that complex matrices exist is an important feature in Quantum Mechanics. The description of spin 1 particles uses the matrix operators:

$$M_x = rac{1}{\sqrt{2}} egin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \qquad M_y = rac{1}{\sqrt{2}} egin{bmatrix} 0 & -i & 0 \\ i & 0 & -i \\ 0 & i & 0 \end{bmatrix} \qquad M_z = egin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

show the following:

- Test the commutation relation (that is $[M_x, M_y] = M_x M_y M_y M_x$) to show $[M_x, M_y] = i M_z$ and so on for cyclic permutations of indecies (i.e., $[M_i, M_j] = i M_k$ for $i \neq j \neq k$, which are the commutation relations of angular momentum
- $M^2 = M_x^2 + M_y^2 + M_z^2 = 2I$ where I is the identity matrix
- $[L^+, L^-] = 2M_z$ where $L^+ \equiv M_x + iM_y$ and $L^- \equiv M_x iM_y$
- 10. **(NB)** The L^+ and L^- operators from the last problem are the 'ladder' operators from Quantum Mechanics. The L^+ operating on a system of spin projection m will raise it to the state m+1 if m is below m_{max} . Note that applying L^+ on m_{max} results in zero. The L^- operator reduces the spin state from m to m-1 in a similar fashion. Dividing out the expressions by $\sqrt{2}$ we have:

$$L^{+} = egin{bmatrix} 0 & 1 & 0 \ 0 & 0 & 1 \ 0 & 0 & 0 \end{bmatrix} \qquad \qquad L^{-} = egin{bmatrix} 0 & 0 & 0 \ 1 & 0 & 0 \ 0 & 1 & 0 \end{bmatrix}$$

Show that $L^+|-1\rangle=|0\rangle$, $L^-|-1\rangle=$ Null vector, $L^+|0\rangle=|1\rangle$, $L^-|0\rangle=|-1\rangle$, $L^+|1\rangle=$ Null vector, $L^-|1\rangle=|0\rangle$

where vectors are represented as:

$$|-1\rangle = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \qquad |0\rangle = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \qquad |1\rangle = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$