Chapter 9: Classical Estimation: Estimates of μ and σ in the Form of Confidence Intervals

Confidence interval for u:

$\overline{x} - z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} < \mu < \overline{x} + z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$	·σ is known; if population is not normal, invoke CLT for large samples (n≥30)
$\overline{x} - t_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}} < \mu < \overline{x} + t_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}}$	$\cdot \sigma$ is unknown and population must be approximately normal, df = n-1
$\overline{x} - z_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}} < \mu < \overline{x} + z_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}}$	"Large-Sample Confidence Interval" ·σ is unknown; normality cannot be assumed, but (n≥30)

Confidence interval for $(\mu_1 - \mu_2)$:

N 1 (2)	
$(\overline{x}_1 - \overline{x}_2) \pm z_{\frac{\alpha}{2}} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$	·σ ₁ , σ ₂ known, if pop. is not normal, invoke CLT for n≥30
$(\overline{x}_1 - \overline{x}_2) \pm t_{\frac{\alpha}{2}} s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$	$\sigma_1 = \sigma_2 \text{ and unknown, populations are approx. normal, df} = n_1 + n_2 - 2 \text{ and}$ $s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$
$(\overline{x}_1 - \overline{x}_2) \pm t_{\frac{\alpha}{2}} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$	$\sigma_1 \neq \sigma_2$ and unknown, populations are approx. normal and $df = \frac{\left(s_1^2/n_1 + s_2^2/n_2\right)^2}{\left(s_1^2/n_1\right)^2/\left(n_1 - 1\right) + \left(s_2^2/n_2\right)^2/\left(n_2 - 1\right)}$
$\overline{d} - t_{\frac{\alpha}{2}} \frac{s_d}{\sqrt{n}} < \mu_D < \overline{d} + t_{\frac{\alpha}{2}} \frac{s_d}{\sqrt{n}}$	$\sigma_1 \neq \sigma_2$ and unknown, populations are normal, samples are not independent, $\mu_D = \mu_1 - \mu_2$, df = n-1

Confidence interval for σ :

$\frac{(n-1)s^2}{\chi_{\frac{\alpha}{2}}^2} < \sigma^2 < \frac{(n-1)s^2}{\chi_{1-\frac{\alpha}{2}}^2} \quad df = n-1$

Confidence interval for σ_1^2/σ_2^2 :

$$\frac{s_1^2}{s_2^2} \frac{1}{f_{\frac{\alpha}{2}}(df_1, df_2)} < \frac{\sigma_1^2}{\sigma_2^2} < \frac{s_1^2}{s_2^2} \frac{f_{\frac{\alpha}{2}}(df_2, df_1)}{\frac{1}{2}}, df_1 = n_1 - 1, df_2 = n_2 - 1$$

Confidence interval for proportion p:

$$\hat{p} - z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{p}\hat{q}}{n}} , with $\hat{q} = 1 - \hat{p}$$$

Errors/Sample Sizes

Thm 9.1: For \overline{x} as an estimate of μ , upper bound on error $(|\overline{x} - \mu|)$ is $e = z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$ with $(1-\alpha)100\%$ confidence; and Thm 9.2: $n = \left(\frac{z_{\alpha/2}\sigma}{e}\right)^2$ will give $(1-\alpha)100\%$ confidence that error will not exceed e.

Thm 9.3: For \hat{p} as an estimate of p, upper bound on error is $z_{\frac{\alpha}{2}}\sqrt{\hat{p}\hat{q}/n}$; and Thm 9.4: $n = \frac{z_{\alpha/2}^2\hat{p}\hat{q}}{e^2}$ at $(1-\alpha)100\%$ confidence, and at least $(1-\alpha)100\%$ confident when $n = \frac{Z_{\alpha/2}^2}{4e^2}$.