

Matrix Factorization

CE282: Linear Algebra

Computer Engineering Department Sharif University of Technology

Hamid R. Rabiee

Maryam Ramezani

Schur Triangularization

Theorem

Suppose $A \in M_n(\mathbb{C})$. There exists a unitary matrix $U \in M_n(\mathbb{C})$ and an upper triangular matrix $T \in M_n(\mathbb{C})$ such that

$$A = UTU^*$$
.

☐ Proof?

Example

Compute a Schur triangularization of the following matrices:

a)
$$A = \begin{bmatrix} 1 & 2 \\ 5 & 4 \end{bmatrix}$$

b)
$$B = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 3 & -3 & 4 \end{bmatrix}$$

Schur Triangularization

Important Note

matrix

$$A = \begin{bmatrix} 1 & -2 \\ 1 & -1 \end{bmatrix}$$

has no real eigenvalues and thus no real Schur triangularization (since the diagonal entries of its triangularization *T* necessarily have the same eigenvalues as *A*). However, it does have a complex Schur triangularization:

 $A = UTU^*$, where

$$U = \frac{1}{\sqrt{6}} \begin{bmatrix} \sqrt{2}(1+i) & 1+i \\ \sqrt{2} & -2 \end{bmatrix}$$
 and $T = \frac{1}{\sqrt{2}} \begin{bmatrix} i\sqrt{2} & 3-i \\ 0 & -i\sqrt{2} \end{bmatrix}$.

Determinant and Trace in Terms of Eigenvalues

Important

Let $A \in M_n(\mathbb{C})$ have eigenvalues $\lambda_1, \lambda_2, ..., \lambda_n$ (listed according to algebraic multiplicity). Then

$$\det(A) = \lambda_1, \lambda_2, ..., \lambda_n$$
 and $\operatorname{tr}(A) = \lambda_1, \lambda_2, ..., \lambda_n$

Spectral Decomposition (complex)

Theorem

Suppose $A \in M_n(\mathbb{C})$. Then there exists a unitary matrix $U \in M_n(\mathbb{C})$ and diagonal matrix $D \in M_n(\mathbb{C})$ such that

$$A = UDU^*$$
.

if and only if *A* is normal (i.e., $A^*A = AA^*$).

Theorem

Suppose $A \in M_n(\mathbb{C})$ is normal. If $\mathbf{v}, \mathbf{w} \in \mathbb{C}^n$ are eigenvectors of A corresponding to different eigenvalues then $\mathbf{v}.\mathbf{w} = 0$.

Spectral Decomposition (real)

Theorem

Suppose $A \in M_n(\mathbb{R})$. Then there exists a unitary matrix $U \in M_n(\mathbb{R})$ and diagonal matrix $D \in M_n(\mathbb{R})$ such that

$$A = UDU^T$$
.

if and only if A is symmetric (i.e., $A = A^T$).

LU-factorization

- ☐ Review: Gaussian Elimination, row operations are used to change the coefficient matrix to an upper triangular matrix.
- \square *LU* Decomposition is very useful when we have large matrices $n \times n$ and if we use gauss-jordan or the other methods, we can get errors.

Definition

A factorization of a square matrix *A* as

$$A = LU$$

where L is lower triangular and U is upper triangular, is called an LU – **decomposition** (or LU

– factorization) of A.

Method of LU Factorization

Important

- 1) Rewrite the system Ax = b as LUx = b
- 2) Define a new $\mathbf{n} \times \mathbf{1}$ matrix \mathbf{y} by $\mathbf{U}\mathbf{x} = \mathbf{y}$
- 3) Use Ux = y to rewrite LUx = b as Ly = b and solve the system for y
- 4) Substitute y in Ux = y and solve for x.

Constructing LU Factorization

Important

- 1) Reduce **A** to a REF form **U** by Gaussian elimination without row exchanges, keeping track of the multipliers used to introduce the leading **1s** and multipliers used to introduce the zeros below the leading **1s**
- 2) In each position along the main diagonal of *L* place the reciprocal of the multiplier that introduced the leading **1** in that position in *U*
- 3) In each position below the main diagonal of \boldsymbol{L} place negative of the multiplier used to introduce the zero in that position in \boldsymbol{U}
- 4) Form the decomposition A = LU

Constructing LU Factorization

Example

$$A = \begin{bmatrix} 6 & -2 & 0 \\ 9 & -1 & 1 \\ 3 & 7 & 5 \end{bmatrix}$$

$$A = \begin{bmatrix} 6 & -2 & 0 \\ 9 & -1 & 1 \\ 3 & 7 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -\frac{1}{3} & 0 \\ 9 & -1 & 1 \\ 3 & 7 & 5 \end{bmatrix} \leftarrow \text{multiplier} = \frac{1}{6}$$

$$\begin{bmatrix} 1 & -\frac{1}{3} & 0 \\ 0 & 2 & 1 \\ 0 & 8 & 5 \end{bmatrix} \leftarrow \text{multiplier} = -9$$

$$\leftarrow \text{multiplier} = -3$$

$$\begin{bmatrix} 1 & -\frac{1}{3} & 0 \\ 0 & 1 & \frac{1}{2} \\ 0 & 8 & 5 \end{bmatrix} \leftarrow \text{multiplier} = \frac{1}{2}$$

$$\begin{bmatrix} 6 & 0 \\ 9 & 2 \\ 3 & \bullet \end{bmatrix}$$

$$\begin{bmatrix}
1 & -\frac{1}{3} & 0 \\
0 & 1 & \frac{1}{2} \\
0 & 8 & 5
\end{bmatrix}$$
 \leftarrow multiplier = $\frac{1}{2}$

$$\begin{bmatrix}
6 & 0 & 0 \\
9 & 2 & 0 \\
3 & \bullet & \bullet
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -\frac{1}{3} & 0 \\
0 & 1 & \frac{1}{2} \\
0 & 0 & 1
\end{bmatrix}$$
 \leftarrow multiplier = -8

$$\begin{bmatrix}
6 & 0 & 0 \\
9 & 2 & 0 \\
3 & 8 & \bullet
\end{bmatrix}$$

$$= \begin{bmatrix}
1 & -\frac{1}{3} & 0 \\
0 & 1 & \frac{1}{2} \\
0 & 0 & 1
\end{bmatrix}$$
 \leftarrow multiplier = -8

$$L = \begin{bmatrix}
6 & 0 & 0 \\
9 & 2 & 0 \\
3 & 8 & \bullet
\end{bmatrix}$$

$$\begin{bmatrix} \bullet & 0 & 0 \\ \bullet & \bullet & 0 \\ \bullet & \bullet & \bullet \end{bmatrix} \quad \Box \quad \text{denotes an unknown} \quad \text{entry of } L.$$

$$\begin{bmatrix} 6 & 0 & 0 \\ 9 & \bullet & 0 \\ 3 & \bullet & \bullet \end{bmatrix}$$

No actual operation is performed here since there is already a leading 1 in the third row.

Thus, we have constructed
$$LU$$
 – decomposition: $A = LU = \begin{bmatrix} 6 & 0 & 0 \\ 9 & 2 & 0 \\ 3 & 8 & 1 \end{bmatrix} \begin{bmatrix} 1 & -\frac{1}{3} & 0 \\ 0 & 1 & \frac{1}{2} \\ 0 & 0 & 1 \end{bmatrix}$

LU Numerical notes

Note

The following operation counts apply to an $n \times n$ dense matrix A (with most entries nonzero) for n moderately large, say, $n \ge 30$.

- 1. Computing an LU factorization of A takes about $2n^3/3$ flops (about the same as row reducing $[A \ \mathbf{b}]$), whereas finding A^{-1} requires about $2n^3$ flops.
- 2. Solving $L\mathbf{y} = \mathbf{b}$ and $U\mathbf{x} = \mathbf{y}$ requires about $2n^2$ flops, because any $n \times n$ triangular system can be solved in about n^2 flops.
- 3. Multiplication of **b** by A^{-1} also requires about $2n^2$ flops, but the result may not be as accurate as that obtained from L and U (because of roundoff error when computing both A^{-1} and A^{-1} **b**).
- 4. If *A* is sparse (with mostly zero entries), then *L* and *U* may be sparse, too, whereas A^{-1} is likely to be dense. In this case, a solution of $A\mathbf{x} = \mathbf{b}$ with an *LU* factorization is *much* faster than using A^{-1} .

Some Notes

Note

- ☐ Sometimes it is impossible to write a matrix in the form "lower triangular"×"upper triangular".
- \square An invertible matrix *A* has an *LU* decomposition provided that all upper left determinants are non-zero.

PLU Factorization

Theorem

if A is $n \times n$ and nonsingular, then it can be factored as

$$A = PLU$$

P is a permutation matrix, L is unit lower triangular, U is upper triangular

- \square not unique; there may be several possible choices for *P*, *L*, *U*
- \Box interpretation: permute the rows of A and factor P^TA as $P^TA = LU$
- □ also known as Gaussian elimination with partial pivoting (GEPP)

Example

$$\begin{bmatrix} 0 & 5 & 5 \\ 2 & 9 & 0 \\ 6 & 8 & 8 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 1/3 & 1 & 0 \\ 0 & 15/19 & 1 \end{bmatrix} \begin{bmatrix} 6 & 8 & 8 \\ 0 & 19/3 & -8/3 \\ 0 & 0 & 135/19 \end{bmatrix}$$

 \square we will skip the details of calculating P, L, U

Cholesky Factorization

Important

every positive definite matrix $A \in \mathbb{R}^{n \times n}$ can be factored as

$$A = \mathbb{R}^T \mathbb{R}$$

where \mathbb{R} is upper triangular with positive diagonal elements

- \square complexity of computing \mathbb{R} is $(1/3)n^3$ flops
- \square \mathbb{R} is called the *Cholesky factor* of *A*
- ☐ can be interpreted as "square root" of a positive definite matrix
- ☐ gives a practical method for testing positive definiteness

Cholesky factorization algorithm

Example

$$\begin{bmatrix} A_{11} & A_{1,2:n} \\ A_{2:n,1} & A_{2:n,2:n} \end{bmatrix} = \begin{bmatrix} R_{11} & 0 \\ R_{1,2:n}^T & R_{2:n,2:n}^T \end{bmatrix} \begin{bmatrix} R_{11} & R_{1,2:n} \\ 0 & R_{2:n,2:n} \end{bmatrix}$$

$$=\begin{bmatrix} R_{11}^2 & R_{11}R_{1,2:n} \\ R_{11}R_{1,2:n}^T & R_{1,2:n}^TR_{1,2:n} + R_{2:n,2:n}^TR_{2:n,2:n} \end{bmatrix}$$

compute first row of *R*:

$$R_{11} = \sqrt{A_{11}}, \quad R_{1,2:n} = \frac{1}{R_{11}} A_{1,2:n} \qquad A_{11} > 0$$

compute 2, 2 block $R_{2:n,2:n}$ from

if *A* is positive definite

$$A_{2:n,2:n} - R_{1,2:n}^T R_{1,2:n} = R_{2:n,2:n}^T R_{2:n,2:n} = A_{2:n,2:n} - \frac{1}{A_{11}} A_{2:n,1} A_{2:n,1}^T$$

this is a Cholesky factorization of order n-1

Cholesky factorization algorithm

Example

$$\begin{bmatrix} 25 & 15 & -5 \\ 15 & 18 & 0 \\ -5 & 0 & 11 \end{bmatrix} = \begin{bmatrix} R_{11} & 0 & 0 \\ R_{12} & R_{22} & 0 \\ R_{13} & R_{23} & R_{33} \end{bmatrix} \begin{bmatrix} R_{11} & R_{12} & R_{13} \\ 0 & R_{22} & R_{23} \\ 0 & 0 & R_{33} \end{bmatrix}$$

 \Box first row of *R*

$$\begin{bmatrix} 25 & 15 & -5 \\ 15 & 18 & 0 \\ -5 & 0 & 11 \end{bmatrix} = \begin{bmatrix} 5 & 0 & 0 \\ 3 & R_{22} & 0 \\ -1 & R_{23} & R_{33} \end{bmatrix} \begin{bmatrix} 5 & 3 & -1 \\ 0 & R_{22} & R_{23} \\ 0 & 0 & R_{33} \end{bmatrix}$$

 \square second row of *R*

$$\begin{bmatrix} 18 & 0 \\ 0 & 11 \end{bmatrix} - \begin{bmatrix} 3 \\ -1 \end{bmatrix} \begin{bmatrix} 3 & -1 \end{bmatrix} = \begin{bmatrix} R_{22} & 0 \\ R_{23} & R_{33} \end{bmatrix} \begin{bmatrix} R_{22} & R_{23} \\ 0 & R_{33} \end{bmatrix}$$

$$\begin{bmatrix} 9 & 3 \\ 3 & 10 \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 1 & R_{33} \end{bmatrix} \begin{bmatrix} 3 & 1 \\ 0 & R_{33} \end{bmatrix}$$

 \Box third column of $R: 10 - 1 = R_{33}^2$, *i. e.*, $R_{33} = 3$

Rank and matrix factorizations

Example

Let $B = \{b_1, ..., b_r\} \subset \mathbb{R}^m$ with r = rank(A) be basis of range(A). Then each of the columns of $A = [a_1, a_2, ..., a_n]$ can be expressed as linear combination of B:

$$a_i = b_1 c_{i1} + b_2 c_{i2} + \dots + b_r c_{ir} = [b_1, \dots, b_r] \begin{bmatrix} c_{i1} \\ \vdots \\ c_{ir} \end{bmatrix},$$

for some coefficients $c_{ij} \in \mathbb{R}$ with i = 1, ..., n, j = 1, ..., r.

Stacking these relations column by column →

$$[a_1, \dots, a_n] = [b_1, \dots, b_r] \begin{bmatrix} c_{11} & \cdots & c_{n1} \\ \vdots & & \vdots \\ c_{1r} & \cdots & c_{nr} \end{bmatrix}$$

Rank and matrix factorizations

Lemma

A matrix $A \in \mathbb{R}^{m \times n}$ of rank r admits a factorization of the form

$$A = BC^T$$
, $B \in \mathbb{R}^{m \times r}$, $C \in \mathbb{R}^{n \times r}$.

We say that *A* has low rank if rank(*A*) $\ll m, n$.

Illustration of low-rank factorization:

- \square Generically (and in most applications), A has full rank, that is, $rank(A) = min\{m, n\}$.
- \square Aim instead at approximating *A* by a law-rank matrix.

Class Activity

Class Activity

Is the PLU-factorization of a matrix unique?

