Relativité générale

Rappels sur la relativité restrainte (vecteurs et tenseurs)

 * On prend comme exemple une espace euclidien de dimension 2 mais la théorie est générale

$$\mathbf{A} = A^1 \mathbf{e}_2 + A^2 \mathbf{e}_2 + A^3 \mathbf{e}_3 = A^i \mathbf{e}_i$$

les A^i sont les composantes contravariantes

Changement de base : $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$

$$\mathbf{e}_i = \Lambda_i^j \mathbf{e}_j' = \Lambda_i^1 \mathbf{e}_1' + A_i^2 \mathbf{e}_2' + A_i^3 \mathbf{e}_3'$$

$$\mathbf{e}_i' = (\Lambda^{-1})_i^j \mathbf{e}_j$$

$$\mathbf{A} = A^j \mathbf{e}_j = \underbrace{A^j \Lambda^i_j}_{A^{i\prime}} e_i^{\prime}$$

$$\boxed{A'i = \Lambda^i_j A^j}$$

Base duale

ayant une base B On peut définir une base duale $\tilde{B}=\left\{\mathbf{e}^1,\mathbf{e}^2,\mathbf{e}^3\right\}|\mathbf{e}^i\cdot\mathbf{e}^j=\delta^i_j$

$$\mathbf{A} = \underbrace{A^i}_{contravariante} \mathbf{e}_i = \underbrace{A_j}_{covariantes} \mathbf{e}^j$$

$$\mathbf{A} \cdot \mathbf{e}^i = A^i$$

$$\mathbf{A} \cdot \mathbf{e}_i = A_i$$

On veut démontrer que $\mathbf{e}'^i = A^i_j \mathbf{e}^j$

Tenseurs:

base : $\mathbf{e}_i \otimes \mathbf{e}_j$

$$\mathbf{T} = T^{ij}\mathbf{e}_j \otimes \mathbf{e}_j$$

Il y a des représentation covarientes contravarites et mixtes au tenseurs.

$$T'^{ij} = \Lambda_k^i \Lambda_l^j T^{kl}$$

$$T'^i_j = \Lambda_k^i (\Lambda^{-1})_j^l T_l^k$$

$$T_i^i = tr(T) = \cdot = tr(T')$$

Tenseur Métrique

 $\mathbf{e}_i = g_{ij}\mathbf{e}^j \iff \mathbf{e}_i \cdot \mathbf{e}_j = g_{ik}\underbrace{\mathbf{e}^k \cdot \mathbf{e}_j}_{\delta_j^k} = g_i j$

de même :

$$\mathbf{e}^i \cdot \mathbf{e}^j = g^{ij} \mathbf{e}^j$$

$$\mathbf{AB} = A^i \mathbf{e}_i B^j \mathbf{e}_j = g_{ij} A^i B^i$$

$$A^i = \mathbf{A}\mathbf{e}^i = \mathbf{A} \cdot (g^{ij}\mathbf{e}_j) = g^{ij}A_j$$

$$A^i = g^{ij}A_j$$

$$A_i = g_{iij}A^j$$

$$g_{ik}g^{kj} = \delta_i^j$$

Espace-Temps (1908)

Un concept définis par Minkowski après avoir lu les papier de Einstein de 1905. Ce dernier n'aimait pas du tout ce concept.

Quadrivecteur

$$x^i = (ct, x, y, z)$$

Transformation de Lorentz

$$x'^i = \Lambda^i_j x^j$$

Intervalle

$$S^2 = \cancel{Z}_t^1 - x^2 - y^2 - z^2$$

unitées Géométriques

$$G=1$$
 $c=1$

Transformation de Lorentz

$$\Lambda^T g \Lambda = g$$

On a 16 variables dans une matrice 4x4. On a une contrainte sur 10 d'entres elles. Il reste donc 6 degrés de libertés. Celles ci représente l'alignement des axes et la vitesse.

 $\underline{\text{Rapidit\'e}}$

$$\tanh \psi = v$$

$$\Lambda = \begin{pmatrix} -x \sinh \psi & t \cosh \psi & 0 & 0 \\ x \cosh \psi & -t \sinh \psi & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Quadrigradient

$$\partial_i = \frac{\partial}{\partial x^i}$$

$$\partial_{i'} = (\Lambda^{-1})_i^j \partial_j : q$$

Espace-temps

$$\mathrm{d}s^2 = g_{ij}\mathrm{d}x^i\mathrm{d}x^j = \mathrm{d}\tau^2$$

Temps propre

Temps qui s'écoule dans le référentielle de l'objet

$$\implies x(\tau)$$

Si on connais $x^{i}(t)$, alors que vaut le temps propre?

$$d\tau = \sqrt{g_{ij} dx^i dx^j}$$

$$= \sqrt{dt^2 - d\mathbf{r}^2}$$

$$= dt \sqrt{1 - \left(\frac{\partial \mathbf{r}}{\partial t}\right)^2}$$

$$= dt \sqrt{1 - \mathbf{v}^2}$$

$$= \frac{dt}{\gamma}$$

Action

$$S = -m \int_{A}^{B} d\tau = -m \int_{A}^{B} dt \sqrt{1 - \mathbf{v}^{2}}$$

$$\approx -m \int_{A}^{B} dt \left(1 - \frac{1}{2} \mathbf{v} \right)$$

$$= -m \int_{A}^{B} dt \frac{1}{2} m \mathbf{v}^{2}$$

Lagrangien:

$$L = -m\sqrt{1 - \mathbf{v}^2}$$

$$\mathbf{p} = \frac{\partial L}{\partial \mathbf{v}} = \frac{m\mathbf{v}}{\sqrt{1 - \mathbf{v}^2}}$$

 $Figure\ 1-Espace-temps$

FIGURE 2 – Minkowski 2D

Hamiltonien

$$\mathbf{p} \cdot \mathbf{v} = L = H$$

 $\underline{Hamiltonien}$

$$\begin{split} H &= \mathbf{p} \cdot \mathbf{v} - L = \mathbf{p} \cdot \mathbf{v} + m\sqrt{1 - \mathbf{v}^2} \\ &= \frac{m}{\sqrt{1 - \mathbf{v}^2}} \left\{ \mathbf{v}^2 + 1 - \mathbf{v}^2 \right\} \\ &= \frac{m}{\sqrt{1 - \mathbf{v}^2}} \\ &= \sqrt{\mathbf{p}^2 + m^2} \end{split}$$

$$H^2 = \frac{m^2}{1 - \mathbf{v}^2} \quad \mathbf{p}^2 = \frac{m^2 v^2}{1 - \mathbf{v}^2}$$

Éléctromagnétisme

4-vecteur potentiel:

$$A^i = (\Phi, \mathbf{A}), \quad A_i = (\Phi, -\mathbf{A})$$

$$S = \underbrace{S_0}_{-m \int d\tau} -e \int_A^B \underbrace{A_i dx^i}_{\text{invarient}} (\mathbf{E}^2 - \mathbf{B}^2)$$

Tensuer de Faraday

$$\begin{split} F_{ij} &=_i A_j - \partial_j A_i \\ F_i^i &= 0 \quad F_{ij} F^{ij} : \text{invarient} \\ \mathbf{E} &= -\mathbf{v} A_0 - \frac{\partial \mathbf{A}}{\partial t} \quad \mathbf{B} = \mathbf{\nabla} \times \mathbf{A} \end{split}$$

 \rightarrow principe de moindre action :

$$m\ddot{x}^i = eF_j^i \dot{x}^2$$

$$\boxed{m\dot{u}^i = eF^i_j u^j}$$

Chapitre 2 : géométrie différentielle

Théorème du plongement

Nash

Ne vaut que pour des espace euclidien (pas pour l'espace-temps donc) mais le théorème se généralise On définit un point $\mathbf{x} \in \mathbb{R}^3$ comme un point de la surface. Où \mathbb{R}^3 est l'espace $h\hat{o}te$

$$\mathbf{X}(x^i) \quad i \in \{1, \cdots, d\}$$

Par exemple, la sphère :

$$\mathbf{X} = (\sin\theta\cos\phi, \sin\theta\sin\phi, \cos\theta)$$

$$x^1 = \theta$$
 $x^2 = \phi$

Il n'existe pas de vecteur position

Il est impossible en général de représenter un variété différentiel avec une seule carte

Figure 3 – Atlas

Espace tangeant

$$\mathbf{e}_{i} = \frac{\partial \mathbf{X}}{\partial x^{i}} = \frac{\partial \mathbf{X}}{\partial x^{\prime j}} \frac{\partial x^{\prime j}}{\partial x^{i}} = \mathbf{e}_{j}^{\prime} \underbrace{\frac{\partial x^{\prime j}}{\partial x^{i}}}_{\Lambda^{j}}$$

Truc mémotechnique

Quand on divise par un indice inferieur il deviens suppérieur et inversement

tenseur métrique

$$g_{ij} = \mathbf{e}_i \cdot \mathbf{e}_j = \frac{\partial \mathbf{X}}{\partial x^i} \cdot \frac{\partial \mathbf{X}}{\partial x^j} = \partial_i \mathbf{X} \cdot \partial_j \mathbf{X}$$

$$ds^{2} = d\mathbf{X}d\mathbf{X} = (\partial_{i}\mathbf{X}dx^{i}) \cdot (\partial_{j}\mathbf{X}dx^{j}) = g_{ij}dx^{i}dx_{j} = g_{ij}(x)dx^{1}dx^{2}$$

fonction : $\phi(x)$

$$\partial_{i\phi} = \frac{\partial \phi}{\partial x^i}$$

$$\partial_i' = \frac{\partial \phi}{\partial x'^i} = \cdots$$

$$\partial_i \phi = \partial_j' \phi \frac{\partial x'^j}{\partial x^i}$$

(vecteur covarient)

Transport parallèle

Le concept de transport parallèle permet de comparer des vecteurs qui sont définis à des points différents (qui viennent de différents espaces tangents).

FIGURE 1 – transport parallèle

$$A_i(x) = \mathbf{A}(x) \cdot \mathbf{e}_i(x)$$

$$A_{i} + \partial A_{i} = \mathbf{A}(x) \cdot \mathbf{e}_{i}(x + dx)$$

$$= \mathbf{A}(x) \cdot \left(\mathbf{e}_{i}(x) + \partial_{j}\mathbf{e}_{i}(x)dx^{j}\right)$$

$$= A_{i}(x) + A_{k} \underbrace{\mathbf{e}^{k} \cdot \partial_{j}\mathbf{e}_{i}(x)}_{\Gamma_{ij}^{k}(x)} dx^{i}$$

$$\delta A_i = \Gamma^k_{ij} A_k \mathrm{d} x^i$$

$$\mathbf{e}_i = \partial_i \mathbf{X} \quad \mathbf{e}^k = \partial^k \mathbf{X} = g^{kj} \partial_j \mathbf{X}$$

$$\partial_j \mathbf{e}_i = \partial_j \partial_i \mathbf{X} = \partial_i \mathbf{e}_j$$
$$\Gamma_{ij}^k = \partial^k \mathbf{X} \cdot \partial_i \partial_j \mathbf{X} = \Gamma_{ji}^k$$

$$\partial A^i = -\Gamma^i_{kj} A^k \mathrm{d} x^j$$

$$\delta(A^iB_i) = 0 = \delta^iB_i + A^i\delta B_i = \left(\delta A^i + \Gamma^i_{kj}A^k\mathrm{d}x^j\right)B_i = 0$$

<u>Dérivé covariante</u>

$$\begin{split} DA^i &= \text{changement "r\'eel" du vecteur} \\ &= \mathrm{d}A^i - \partial A^i \\ &= \partial_j A^i \mathrm{d}x^j + \Gamma^i_{kj} A^k \mathrm{d}x^j \\ &= \underbrace{\nabla_j A^i}_{\partial_j A^i + \Gamma^i_{kj} A^k} \mathrm{d}x^i \end{split}$$

$$\underbrace{\nabla_j A_i = \partial_j A_i - \Gamma_{ij}^k A_k}_{\text{tenseur de rang 2}}$$

$$\nabla_i \mathbf{A} = \operatorname{proj} \partial_i \mathbf{A}$$

Les symbols de Christoffel semblent requérir \mathbf{X} et donc de travailler dans l'espace hôte. Ce n'est pas de cas. On peut tout ré-exprimer en fonction du tenseur métrique.

$$\Gamma_{ij}^{k} = \frac{1}{2}g^{kl} \left(\partial_{j}g_{il} + \partial_{i}g_{jl} - \partial_{l}g_{ij}\right)$$

$$\Gamma_{kij} = g_{kl} \Gamma_{ij}^l = \partial_k \mathbf{X} \cdot \partial_j \partial_j \mathbf{X}$$

$$\partial_k g_{ij} = \mathbf{e}_i \mathbf{e}_j = \partial_i \mathbf{X} \cdot \partial_j \mathbf{X}$$

$$\partial_i g_{jk} = \mathbf{e}_j \mathbf{e}_k = \partial_j \mathbf{X} \cdot \partial_k \mathbf{X}$$

$$\partial_j g_{ki} = \mathbf{e}_k \mathbf{e}_i = \partial_k \mathbf{X} \cdot \partial_i \mathbf{X}$$

On addition les deux derniers et on isole $\partial_k \mathbf{X} \cdot \partial_i \partial_i \mathbf{X}$

pour avoir

$$\Gamma_{ij}^{k} = \frac{1}{2}g^{kl} \left(\partial_{j}g_{il} + \partial_{i}g_{jl} - \partial_{l}g_{ij}\right)$$

Exemple: $S^2(\text{ rayon } a)$

Coordonnées sphériques θ, φ

$$[g_{ij}] = \begin{bmatrix} a^2 & 0 \\ 0 & a^2 \sin^2 \theta \end{bmatrix}$$

$$\Gamma^i_{jk} = \frac{1}{2} g^{il} \left(\partial_j g_{lk} + \partial_k g_{jl} - \partial_i g_{jk} \right)$$

$$[g^{ij}] = \begin{bmatrix} \frac{1}{a^2} & 0 \\ 0 & \frac{1}{a^2 \sin^2 \theta} \end{bmatrix}$$

$$\partial_\theta g_{\varphi\varphi} = \partial_1 g_{22} = 2a^2 \sin \theta \cos \theta$$

$$\Gamma^1_{22} = -\frac{1}{2} g^{11} \partial_1 g_{22} = -\sin \theta \cos \theta$$

$$\Gamma^2_{12} = \Gamma^2_{21} = \frac{1}{2} g^{22} \partial_1 g_{22} = \frac{\cos \theta}{\sin \theta} = \cot \theta$$

Dérivée covariante

$$\nabla_{\theta} A_{\theta} = \partial_{\theta} A^{\theta} + \Gamma^{\theta}_{\varphi\varphi} A^{\varphi} = \partial_{\theta} A^{\theta}$$

$$_{\varphi}A^{\theta}=\partial_{\varphi}A^{\theta}+\Gamma^{\theta}_{\varphi\varphi}A^{\varphi}=\partial_{\varphi}A^{\theta}-\sin\theta\cos\theta A^{\varphi}$$

. . .

Les géodésique

La géodésique est une courbe (trajectoire sur un variété) $x^{i}(\lambda)$

vecteur tangenant $\mathbf{u} = \frac{\mathrm{d}}{\mathrm{d}\lambda} \mathbf{X}(x(\lambda)) = \frac{\partial \mathbf{X}}{\partial x^i} \frac{\mathrm{d}x^i}{\mathrm{d}\lambda} = \mathbf{e}_i \dot{x}^i = \mathbf{e}_i u^i$

$$|\mathbf{u}| = \sqrt{g_{ij}u^iu^j} = \sqrt{g_{ij}\frac{\mathrm{d}x^i}{\mathrm{d}\lambda}\frac{\mathrm{d}dx^j}{\mathrm{d}\lambda}} = \sqrt{\frac{\mathrm{d}s^2}{\mathrm{d}\lambda^2}} = \left|\frac{\mathrm{d}s}{\mathrm{d}\lambda}\right|$$

$$\nabla_{\lambda}\phi = \frac{\mathrm{d}\phi}{\mathrm{d}\lambda} = \partial_{i}\varphi \frac{\partial x^{i}}{\partial\lambda} = u^{i}\partial_{i}\phi$$

$$\nabla_{\lambda}A^{j} = u_{i}^{i}A^{j} = u^{i}\partial_{i}A^{j} + \Gamma_{ki}^{j}A^{k}u^{i}$$

Géodésique

1) Minimise (rend stationaire) la distance entre deux points.

$$S_{AB} = \int_{A}^{B} \mathrm{d}s \quad \mathrm{d}s^{2} = g_{ij} \mathrm{d}x^{i} \mathrm{d}x^{j}$$

 $Figure \ 2-g\'{e}od\'{e}sique$

$$\delta S_{AB} = 0 \quad x^i(\lambda) + \delta x^i(\lambda)$$

2) courbe telle que ${\bf u}$ est transporté parallèlement

$$Du^i = du^i - \delta^i = du^i + \Gamma^i_{kj} u^k dx^k dx^j \propto u^i$$

$$\frac{\mathrm{d}}{\mathrm{d}\lambda}\left(u_{i}u^{i}\right) = 2u_{i}\dot{u}^{i}$$

où $\dot{}\equiv\frac{\mathrm{d}}{\mathrm{d}\lambda}$

$$=2u_iu^if(\lambda)-\Gamma^i_{jk}u^ku^ju_i$$

$$\Gamma_{ij}^{k\prime} = \frac{\partial x^{k\prime}}{\partial x^l} \frac{\partial x^m}{\partial x^{i\prime}} \frac{\partial x^n}{\partial x^{j\prime}} \Gamma_{mn}^l - \cdots$$

On va demander que $f(\lambda)=0 \implies |\mathbf{u}|=\mathrm{cst}$

$$\dot{u}^i + \Gamma^i_{kj} u^k u^i = 0$$