Linear Programming

Harder AMPL example
Dr Thomas Lidbetter
tlidbetter@business.rutgers.edu

Harder example: bits and bobs

- A company produces two products, bits and bobs.
- Bits take 7 hours to make and bobs take 16.25 hours to make.
- Monthly demand:

Demand	June	July
Bits	40	20
Bobs	24	56

Harder example: bits and bobs

- A company produces two products, bits and bobs.
- Bits take 7 hours to make and bobs take 16.25 hours to make.
- Monthly demand:

Demand	June	July
Bits	40	20
Bobs	24	56

- Products can be stored from month to month at a cost of \$20/bit, \$24/bob
- There are two different work-modes available: normal and overtime.
- Hours available and wage rate for the workmodes:

Work-mode	Hours available	Wage rate (\$ per hour)
Normal	1400	8
Overtime	440	12

Sets

P PRODS

T TIME

W MODES

Parameters

 $d_{p,t}$ demand

 a_m hrs_avail

 r_p hrs_req

 c_p store_cost

 k_m hrly_pay

Variables

 $x_{p,t}$ produce

 $s_{p,t}$ store

 $h_{m,t}$ hrs_paid

Declaring 2-dimensional parameters and variables

```
param demand{PRODS, TIME};
```

Writing the objective function

Writing the constraints

```
SatisfyDemand {t in TIME diff {1}, p in PRODS}:
produce [p, t] + store [p, t-1] - store [p, t] >= demand [p, t];
```

or...

```
SatisfyDemand: {t in TIME: t > 1, p in PROD}
produce [p, t] + store [p, t-1] - store [p, t] >= demand [p, t];
```

Set operations in AMPL

Union:

Intersection:

Complement:

Symmetric difference:

A union B

A inter B

A diff B

A symdiff B

Entering data for 2-dimensional parameters

```
param demand: 1 2 :=
bits 40 20
bobs 24 56;
```