CSC111 Lecture 22: Average-Case Running Time Analysis

Hisbaan Noorani

March 31, 2021

Contents

- 1 Exercise 1: Counting binary lists
- 2 Exercise 2: Partitioning \mathcal{I}_n 2

1

3

3 Additional exercises

Our worksheet exercises today will focus on analysing the average-case running time for the following implementation of the *linear search* algorithm:

```
def search(lst: list, x: Any) -> bool:
    """Return whether x is in lst."""

for item in lst:
    if item == x:
        return True

return False
```

1 Exercise 1: Counting binary lists

In lecture, we began an average-case running time analysis for search on binary lists, i.e., lists where each element is either 0 or 1. Let $n \in \mathbb{N}$. We define the set of inputs \mathcal{I}_n to be the set of binary lists of length n.

1. Suppose n = 3. Write down \mathcal{I}_3 , i.e., the set of binary lists of length 3. You should have **eight** lists in total.

```
{[0, 0, 0,], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1]}
```

- 2. Now suppose n is an arbitrary natural number. Find an expression (in terms of n) for $|\mathcal{I}_n|$, the size of \mathcal{I}_n . (You don't need to formally prove that this expression is correct, but try to briefly justify this expression for yourself.)
 - 2^n . Here we have n=3, and we were able to generate 8 lists. We cannot have done more than this.

$$\underbrace{0/1 \quad 0/1 \quad 0/1 \quad \dots \quad 0/1}_{n}$$

2 Exercise 2: Partitioning \mathcal{I}_n

Here is the definition of the partitions of \mathcal{I}_n from lecture.

- For each $n \in \mathbb{N}$ and each $i \in \{0, 1, ..., n-1\}$, let $S_{n,i}$ denote the set of all binary lists of length n where the first 0 occurs in index i. More precisely, every list 1st in $S_{n,i}$ satisfies the following two properties:
 - 1. lst[i] = 0=
 - 2. For all $j \in \{0, 1, \dots, i-1\}$, lst[j] = 1=
- For each $n \in \mathbb{N}$, let $S_{n,n}$ denote the set of binary lists of length n that do not contain a 0 at all.
- 1. To make sure you understand the definitions of these partitions, write down the corresponding set of binary lists for each of the following.
 - (a) $S_{3,0}$ {[0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1]}
 - (b) $S_{3,1}$ {[1, 0, 0], [1, 0, 1]}
 - (c) $S_{3,2}$ {[1, 1, 0]}
 - (d) $S_{3,3}$ {[1, 1, 1]}
- 2. Now find expressions for each of the following. Once again, make sure you can briefly justify your answers, but no need for formal proofs.
 - (a) $|S_{n,n}|$ $\underbrace{1 \quad 1 \quad 1 \quad \dots \quad 1}_{n} \implies 1$
 - (b) $|S_{n,i}|$, where $i \in \{0, 1, \dots, n-1\}$ (your expression should be in terms of i and n) $\underbrace{1 \quad 1 \quad \dots \quad 1 \quad 0}_{i+1} \quad \dots \quad \underbrace{0/1 \quad \dots \quad 0/1}_{n-i-1} \implies 2^{-i-1}$
- 3. Recall that the purpose of this partitioning is that all input lists 1st in the same partition have the same running time for search(1st, 0):

2

- Every input in $S_{n,i}$ (for $i \in \{0,1,\ldots,n-1\}$) takes i+1 steps
- Every in $S_{n,n}$ takes n+1 steps (technically this is compatible with the previous bullet point, setting i=n)

Using this and your answers to the previous question, simplify the expression below. Tips:

Use the formula $\sum_{i=0}^{m-1} i \cdot r^i = \frac{m \cdot r^m}{r-1} - \frac{r(r^m-1)}{(r-1)^2}$, valid for all $m \in \mathbb{Z}^+$ and $r \in \mathbb{R}$ where $r \neq 1$.

b. Use the change of variable i' = i + 1 to help see how to use the above formula.

Expression to simplify:

$$\sum_{i=0}^{n} |S_{n,i}| \times \text{(running time of search(lst, 0) when lst} \in S_{n,i}\text{)}$$

Let m = n + 1, $r = \frac{1}{2}$

$$= \sum_{i=0}^{n} |S_{n,i}| \times (i+1)$$

$$= \sum_{i=0}^{n-1} [2^{n-i-1} \times (i+1)] + 1 \times (n+1)$$

$$= \sum_{i'=1}^{n} [2^{n-i'} \times i'] + (n+1)$$

$$= 2^{n} \left(\sum_{i'=1}^{n} \left(\frac{1}{2} \right)^{i'} \times i' \right) + (n+1)$$

$$= 2^{n} \left[\sum_{i'=1}^{n} \frac{(n+1) \left(\frac{1}{2} \right)^{n+1}}{\frac{1}{2} - 1} - \frac{\frac{1}{2} \left(\left(\frac{1}{2} \right)^{n} + 1 \right) - 1}{\left(\frac{1}{2} - 1 \right)^{2}} \right] + (n+1)$$

$$= \dots$$

$$= 2^{n+1} - 1$$

This last expression gives you the total running time of search over all inputs in \mathcal{I}_n ! We'll continue lecture by using this to calculate the average-case running time of search for this input set, but if you still have time feel free to work it out yourself.

3 Additional exercises

- 1. Generalize our average-case running time analysis for search for the input set consisting of all lists of length n where every element is a 0, 1, or 2, and x = 0.
- 2. Let $m \in \mathbb{Z}^+$. Generalize our average-case running time analysis for search for the input set consisting of all lists of length n where every element is a number between 0 and m-1, inclusive, and $x = \emptyset$.
- 3. Analyse the average-case running time of search when the input set is the list of all **permutations** of the numbers $\{0, 1, \dots, n-1\}$ and $x = \emptyset$.
- 4. Consider the following algorithm for checking whether a string is a palindrome:

```
1  def is_palindrome(s: str) -> bool:
2    """Return whether s is a palindrome."""
3    mid = len(s) // 2
4    for i in range(0, mid):
5        if s[i] != s[len(s) - 1 - i]:
6            return False
7    return True
```

Analyse the average-case running time of is_palindrome on the input set \mathcal{I}_n consisting of all binary strings of length n (i.e., strings that contain only the characters '0' and '1').