Real Analysis II Notes

B. Math(Hons.) 1st years

Contents

	e 1, January 24 Partitions	2
2.2	Properties of Lower and Upper Riemann Sums	4

Lecture 1, January 24

[Note: \blacksquare marks the end of a proof. If used immediately after a statement to be proved, indicates that the proof is trivial and left as an exercise to the reader]

Assumptions:

- \mathbb{N} , the set of all natural numbers, is defined by $\mathbb{N} = \{0, 1, \dots\}$.
- \mathbb{Z} , the set of all integers, is defined the usual way.
- \mathbb{Z}_+ , the set of all non negative integers, is defined by $\mathbb{Z}_+ = \{0, \pm 1, \pm 2, \dots\}$.
- Any function $f \colon [a,b] \subset \mathbb{R} \to \mathbb{R}$ shall always be bounded.

1.1 Partitions

Definition 1.1.1. A partition P of $I=[a,b]\subset \mathbb{R}$ is a set of reals $\{x_0,x_1,\ldots,x_n\}$ for some $n\in \mathbb{N}$ such that

$$x_0 < x_1 < \dots < x_n$$

We shall denote the interval $[x_{j-1}, x_j]$ by the expression I_j .

Definition 1.1.2. If I = (a, b) or [a, b] or [a, b], we define

$$|I| = b - a$$

We shall informally refer to |I| as the *length* of I.

Claim 1.1.1. If $P = \{a = x_0, x_1, \dots, x_n = b\}$ is a partion of $I = [a, b] \subset \mathbb{R}$,

$$|I| = \sum_{i=1}^{n} |I_i|$$

Claim 1.1.2. If P and \tilde{P} are both partitions of an interval $[a,b]\subset\mathbb{R}$, so is $P\cup\tilde{P}$.

Definition 1.1.3.

- 1) We define $\mathbb{P}[a,b]$ to be the set of all partitions (not just those of a fixed cardinality) of [a,b]. If the interval is clear from the context, we shall suppress it, writing $\mathbb{P}[a,b]$ as \mathbb{P} .
- 2) Let $f\colon [a,b]\subset\mathbb{R}\to\mathbb{R}$ be a (bounded) function. Given a partition $P=\{a=x_0,x_1,\ldots,x_n=b\}$ of an interval $I=[a,b]\subset\mathbb{R}$, we define

$$M_j = \sup_{x \in I_j} f(x)$$
 and $m_j = \inf_{x \in I_j} f(x)$

for all $1 \le j \le n$. We also define

$$M = \sup_{x \in I} f(x) \qquad \text{and} \qquad m = \inf_{x \in I} f(x)$$

Claim 1.1.3. If $S_1 \subset S_2 \subset \mathbb{R}$,

$$\sup S_1 \le \sup S_2 \qquad \text{and} \qquad \inf S_1 \ge \inf S_2$$

Corollary 1.1.3.1. Using the notation of item 2 of definition 1.1.3,

$$m \le m_j \le M_j \le M$$

for all $1 \le j \le n$.

Proof. After choosing S_1 and S_2 to be the relevant images of f (see definition 1.1.3), the statement follows trivially.

Definition 1.1.4. Given an interval $[a,b]\subset\mathbb{R}$, we define $\mathbb{B}[a,b]$ to be the set of all bounded functions from [a,b] to \mathbb{R} .

Lecture 2, January 26

2.2 Properties of Lower and Upper Riemann Sums

Proposition 2.2.1. Let $f \in \mathcal{B}[a,b]$ and let $P, \tilde{P} \in \mathcal{P}[a,b]$, if $\tilde{P} \supset P$ then

$$L(f, P) \le L(f, \tilde{P}) \le U(f, \tilde{P}) \le U(f, P)$$

Proof. We prove it for the case $\tilde{P} = P \cup \{c\}$. Suppose $c \in [x_i, x_{i-1}]$ where $P = \{x_1, \dots, x_n\}$. Then we can write

$$U(f, \tilde{P}) = \sum_{\substack{k=1\\k \neq i}}^{n} M_k \Delta x_k + \tilde{M}_i(c - x_i) + \tilde{M}_{i+1}(x_{i+1} - c)$$
(2.1)

where $\tilde{M}_i = \sup\{f(x) : x \in [x_i, c]\}$ and $\tilde{M}_{i+1} = \sup\{f(x) : x \in [c, x_{i+1}]\}$. Now since

$$[x_i, c], [c, x_{i+1}] \subset [x_i, x_{i+1}]$$

its obvious that $\tilde{M}_i \leq M_i$ and $\tilde{M}_{i+1} \leq M_i$. But then from equation (2.1) we get that

$$U(f, \tilde{P}) \leq \sum_{\substack{k=1\\k\neq i}}^{n} M_k \Delta x_k + M_i(c - x_i) + M_i(x_{i+1} - c)$$

$$= \sum_{k=1}^{n} M_k \Delta x_k$$

$$= U(f, P)$$

Now by induction it easily follows that for any $\tilde{P}\supset P$, we have $U(f,\tilde{P})\leq U(f,P)$. The proof of the other part is similar, just that in place of \tilde{M}_i and \tilde{M}_{i+1} we will be working with \tilde{m}_i and \tilde{m}_{i+1} , where $\tilde{m}_i=\inf\{f(x):x\in[c,x_{i+1}]\}$, and we will use that fact that $\tilde{m}_i,\tilde{m}_{i+1}\geq m_i$.

Now since for any $P \in \mathcal{P}[a,b]$, we have $L(f,P) \leq U(f,P)$, we get that

$$L(f, P) \le L(f, \tilde{P}) \le U(f, \tilde{P}) \le U(f, P)$$

which completes the proof.

Corollary 2.2.1.1. Let $f \in \mathcal{B}[a,b]$ and $P,Q \in \mathcal{P}[a,b]$, then

$$L(f, P) \le U(f, Q)$$

Proof. We take $\tilde{P}=P\cup Q$, then we have $\tilde{P}\supset P$ and $\tilde{P}\supset Q$ then using **Proposition** 2.2.1, we get that

$$L(f, P) \le L(f, \tilde{P}) \le U(f, \tilde{P}) \le U(f, Q)$$

which completes the proof.

Corollary 2.2.1.2. Let $f \in \mathcal{B}[a,b]$, then

$$\int_{a}^{b} f \le \overline{\int_{a}^{b}} f$$

Proof. From **Corollary** 2.2.1.1, we know that for any $P,Q\in \mathscr{P}[a,b]$, we have $L(f,P)\leq U(f,Q)$. Now fix Q thus we get that U(f,Q) is an upper bound for L(f,P) for all $P\in \mathscr{P}[a,b]$, hence

$$\int_{\underline{a}}^{\underline{b}} f = \sup\{L(f, P) : P \in \mathcal{P}[a, b]\} \le U(f, Q)$$

But then we get that $\int_a^b f$ is an lower bound for U(f,Q) for all $Q\in \mathscr{P}[a,b]$, thus we get that

$$\int_a^b f \le \inf\{U(f,Q): Q \in \mathscr{P}[a,b]\} = \overline{\int_a^b} f$$

Now the question that arises is whether $\mathcal{B}[a,b]=\mathcal{R}[a,b]$, i.e., are all bounded functions Riemann integrable? And as it turns out this is not true, consider the following counter example.

Counter Example 2.2.2. Consider the Dirichlet function $f:[0,1]\to\mathbb{R}$ defined by

$$f(x) = \begin{cases} 1 & \text{if } x \in [0,1] \cap \mathbb{Q} \\ 0 & \text{if } x \in [0,1] \cap \mathbb{Q}^c \end{cases}$$

Clearly $f \in \mathcal{B}[0,1]$. But note that for any partition $P = \{x_1, \dots, x_n\} \in \mathcal{P}[0,1]$, we have

$$I_i \cap \mathbb{Q} \neq \emptyset$$
 and $I_i \cap \mathbb{Q}^c \neq \emptyset$, $\forall j = 1, \dots, n-1$

where $I_j = [x_j, x_{j+1}]$. And hence we trivially get that

$$L(f,P)=0$$
 and $U(f,P)=1, \ \forall P\in \mathcal{P}[0,1]$

and hence we get that

$$\int_0^1 f = 0 \neq 1 = \overline{\int_0^1} f$$

and thus we get that $f \notin \mathcal{R}[0,1]$.

We conclude this section with two examples.

Example 2.2.3. The set of Riemann integrable functions on [a,b] is non-empty. Consider $f:[a,b]\to\mathbb{R}$ defined by f(x)=c for all $x\in[a,b]$, where c is any real number. Then its trivial to show that

$$L(f, P) = U(f, P) = c(b - a), \ \forall P \in \mathcal{P}[a, b]$$

Thus, we obvious have $f \in \mathcal{R}[a,b]$, in particulat we get that $\int_a^b f = c(b-a)$.

Example 2.2.4. Can we find a function $f\in \mathcal{B}[a,b]$ such that $f\notin \mathcal{R}[a,b]$ but $|f|\in \mathcal{R}[a,b]$? Consider $f:[0,1]\to\mathbb{R}$ as follow

$$f(x) = \begin{cases} 1 & \text{if } x \in [0,1] \cap \mathbb{Q} \\ -1 & \text{if } x \in [0,1] \cap \mathbb{Q}^c \end{cases}$$

Then its trivial to show that $f \notin \mathcal{R}[0,1]$ (the proof is exactly same as the arguments given in **Counter Example** 2.2.2), whereas |f| is simply a constant function, and from **Example** 2.2.3, it follow that $|f| \in \mathcal{R}[0,1]$.