

Bayes Rule

probability rules

{rule of total probability}

the Bayesian interpretation

probability rules

Bayes Rule

If events A_1,A_2,\ldots,A_k constitute a partition of the sample space Ω and $P(A_i)\neq 0$ $\forall i$, then for any event B in Ω such that $P(B)\neq 0$

$$\begin{split} P(A_i | B) &= \frac{P(A_i)P(B | A_i)}{P(A_1)P(B | A_1) + P(A_2)P(B | A_2) + \dots + P(A_k)P(B | A_k)} \\ &= \frac{P(A_i)P(B | A_i)}{\sum_{j=1}^k P(A_j | B)P(A_j)} \text{ {rule of total probability}} \\ &= \frac{P(A_i)P(B | A_i)}{P(B)} \end{split}$$

This theorem is consistent with the Bayesian interpretation of probability theory

probability rules

exercise 5

In an experiment on human memory, participants have to memorize a set of words (B_1) , numbers (B_2) , and pictures (B_3) . These occur in the experiment with the probabilities $P(B_1) = 0.5$, $P(B_2) = 0.4$, $P(B_3) = 0.1$.

Then participants have to recall the items (where A is the recall event). The results show that $P(A \mid B_1) = 0.4, \ P(A \mid B_2) = 0.2, \ P(A \mid B_3) = 0.1.$

(a) Compute P(A), the probability of recalling an item.

(b) What is the probability that an item that is correctly recalled (A) is a picture (B_3) ?