

USE OF LEXICONS TO IMPROVE QUALITY OF SENTIMENT CLASSIFICATION

Rusnachenko N.L.

Bauman Moscow State University (BMSTU), Moscow

kolyarus@yandex.ru

1. Problem

- ➤ Building Machine Learning based model for **Twitter messages sentiment classification task**. (SentiRuEval competition)
- Sentiment class defines for whole message, and shows relationship between message and company mentioned in it.
- > For each domain this problem resolves separately:
 - ➤ **BANK** bank companies;
 - > TCC telecommunication companies.
- ➤ Each message could be labeled with one of the following scores: {1, 0, -1}

2. Solution

- Use lexicon based features:
 - Lexicon dictionary, which consist of pairs (t, v), where t term, $v \in \mathbb{R}$ sentiment score.
- Increasing volume of training collections:
 - Balancing sentiment classes;
 - Adding and labeling messages from external sources;

3. Used articles

- ➤ Building lexicons (the main idea):
 - ➤ **PMI** Pointwise mutual information;
 - ➤ **SO** Semantic orientation
 - > (Turney P., 2002)
- ➤ On the **Automatic Learning** of Sentiment Lexicons, Human Language Technologies (Severyn A., Moshitti A., 2015)
- NRC-Canada: Building the State-of-the-Art in Sentiment Analysis of Tweets (Saif. M. Kiritchenko S., Xiaodan Z., 2015)

4. Building Lexicons

Based on **pointwise mutual information** of terms t_1, t_2 :

PMI
$$(t_1, t_2) = \log_2 \frac{P(t_1 \wedge t_2)}{P(t_1) \cdot P(t_2)}$$

Introducing **marker** as a second parameter of *PMI* function. Possible marker values:

- Excellent;
- Poor.

Semantic orientation is a function:

SO(t) = PMI(t, Excellent) - PMI(t, Poor)

- sgn(SO(t)) determines the marker type of term t;
- |SO(t)| degree of belonging.

Building lexicon from messages of collection $K = K_{Excellent} \cup K_{Poor}$:

 $S: \{ \langle t, SO(t) \rangle \mid t \in K_{Excellent} \cup K_{Poor} \}$

- $K_{Excellent}$ -- messages labeled **Excellent**.
- K_{Poor} -- messages labeled **Poor**.

Making sentiment collections K from scratch (automatic labeling):

- Receive messages via Streaming *Twitter API*, *and* composing collection *K*.
- Split collection messages K with $K_{Excellent}$ and K_{Poor} by means of:

Message emoticons (:-), :-(, xD, ...);

5. Lexicons

- 1. Messages of Yu. Rubtsova short message corpus;
- 2. Twitter messages through the January, 2016;
- 3. Sentiment vocabulary RuSentiLex.

#	K _{Excellent} Terms count	K _{Poor} Terms count	Total Terms count
1	62 637 (56%)	50 177 (44%)	112 814
2	7 370 (3%)	228 721 (97%)	236 091
3	2 774 (26%)	7 148 (67%)	10 668

6. Approach

Support Vector Machine (SVM) as a classifier, linear classification kernel.

Message processing:

- 1. Lemmatization (Mystem, Yandex);
- 2. Removing 'RT' symbols, @users, URL (message metainformation contains only #hashtags). Weight measure: *TF-IDF*;
- 3. Applying list of stop words;
- 4. Replacing predefined lemmas with sentiment prefixes '+','-':

Сейчас хорошо работать не то что раньше Сейчас +работать –то что раньше.

Classification features:

- \checkmark Emoticons (\sum of positive and negative);
- ✓ Amount of UPPERCASE words;
- ✓ Amount of signs {'?', '...', '!'}.
- ✓ Calculating sum $x = \sum SO(t), t \in L$, of terms t composes message and exist in lexicon L.

7. Training Collections

- Imbalanced collections:
 - Provided by *SentiRuEval* organizers:

2015 (messages count)				
	③	(1)	②	Total
BANK	356	3 482	1 077	4 915
DAINK	(7%)	(71%)	(21%)	4 913
TCC	956	2 269	1 634	4 859
icc	(19%)	(47%)	(34%)	4 039
2016				
BANK	1 354	4 870	2 550	8 783
DAINK	(15%)	(55.4%)	(29%)	0 /03
TCC	704	6 756	1 741	9 102
ICC	(7%)	(74.22%)	(19%)	9 102

• Balanced collections:

• Balancing: filtering messages $m = \{t_i\}_{i=1}^N$ from Yu. Rubtsova corpus (by means of Lexicon, based on the same corpus) by formula:

$$\max_{i=1..N} |SO(t_i)| > Bound$$

Bound – bounding value, t_i – message terms.

- α balanced 2015 train collection.
- β united collections of 2015 and 2016 years, and then balanced.

Balanced collections (messages count)			
	α	$oldsymbol{eta}$	
BANK	10446	20268 (+94%)	
TCC	6888	14610 (+112%)	

8. Results

Features settings:

- No1- only Russian terms and hashtags;
- $N_{2} N_{2} + using sentiment prefixes ('+', '-'), all features (using lexicons only #1 and #2);$
- $N_{2}3 N_{2}2 + using lexicon #3$.

Quality measure: $F_1 macro_{(neg,pos)}$

	BANK (SentiRuEval-2016)			
#	α	β		
1	38.40	45.36 (+ 6.96)		
2	38.49	46.72 (+ 8.23)		
3	38.62	46.83 (+8.21)		

TCC (SentiRuEval-2016)			
#	2016	eta	
1	48.49	51.03 (+ 2.54)	
2	48.32	52.31 (+ 3.99)	
3	50.99	52.86 (+1.87)	

 \triangleright Using β as a train collection improves classification quality (right column).

9. Improvements

- b baseline.
- $\gt C$ SVM penalty function parameter value (affects the margin for hyperplane between classes). Default C=1:

$$C = 0.5$$

Use $C = 0.5$				
#	BANK	TCC		
b	45.36	51.03		
1	45.58 (+ 0.22)	52.35 (+ 1.32)		
2	47.95 (+2.59)	53.38 (+ 2.35)		
3	47.68 (+2.32)	54.52 (+3.49)		

Adding new lexicon based features y, z: for lexicon L, for each terms t_i in message m calculating min and max values $SO(t_i)$ (normalized values):

$$y = \min_{i=1..N} SO(t_i), \ t_i \in m, t_i \in L$$
$$z = \max_{i=1..N} SO(t_i), \ t_i \in m, t_i \in L$$

	C = 0.5, Adding new lexicon based features			
#	BANK	TCC		
b	47.95	54.52		
1	49.55 (+ 1.60)	52.59 (-1.93)		
2	50.12 (+ 2.17)	52.83 (-1.69)		
3	52.39 (+4.44)	54.53 (+0.01)		

Conclusion

• Classification quality stable improves after using balanced collection and lexicon based features.

Quality improvement	BANK	TCC
Total	+13.99	+6.03

Future possible improvements:

- Using hierarchy classification model;
- Calculating lexicon based features, depending on *TF-IDF* terms weights.