

Математическая статистика

Линейная регрессия

Ô

MOË XOFFU: ЭКСТРАПОЛИРОВАТЬ

Простая зависимость:

Пример

$$y = \theta_0 + \theta_1 x + \varepsilon,$$

x — рост песика,

у — вес песика,

 θ_0, θ_1 — неизвестные параметры,

 ε — случайная составляющая с нулевым средним.

Зависимость линейна по параметрам, линейна по аргументу.

Более сложная зависимость:

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_2^2 + \varepsilon,$$

 x_1 — рост песика,

 x_2 — обхват туловища песика,

у — вес песика,

 $\theta_0, \theta_1, \theta_2, \theta_3$ — неизвестные параметры,

arepsilon — случайная составляющая с нулевым средним.

Зависимость линейна по параметрам, квадратична по аргументам.

Модель линейной регрессии

Рассматриваем функциональную зависимость вида

$$y = y(x) = \theta_1 x_1 + \dots + \theta_d x_d$$

 $x_1, ..., x_d$ — признаки,

 $\theta = (\theta_1, ..., \theta_d)^T$ — вектор параметров.

Модель линейной регрессии

Рассматриваем функциональную зависимость вида

$$y = y(x) = \theta_1 x_1 + \dots + \theta_d x_d$$

 $x_1, ..., x_d$ — признаки,

 $\theta = (\theta_1, ..., \theta_d)^T$ — вектор параметров.

Для оценки θ производится n испытаний вида

$$Y_i = \theta_1 x_{i1} + ... + \theta_d x_{id} + \varepsilon_i, \quad i = 1, ..., n,$$

 $x_i = (x_{i1},...,x_{id})$ — признаковые описания объекта i (обычно неслучайные),

 ε_i — случайная ошибка измерений.

Модель линейной регрессии

Рассматриваем функциональную зависимость вида

$$y = y(x) = \theta_1 x_1 + \dots + \theta_d x_d$$

 $x_1, ..., x_d$ — признаки,

 $\theta = (\theta_1, ..., \theta_d)^T$ — вектор параметров.

Для оценки θ производится n испытаний вида

$$Y_i = \theta_1 x_{i1} + ... + \theta_d x_{id} + \varepsilon_i, \quad i = 1, ..., n,$$

 $x_i = (x_{i1},...,x_{id})$ — признаковые описания объекта i (обычно неслучайные),

 ε_i — случайная ошибка измерений.

Модель линейной регрессии

Введем обозначения

$$Y = \begin{pmatrix} Y_1 \\ \dots \\ Y_n \end{pmatrix}, \quad X = \begin{pmatrix} x_{11} & \dots & x_{1d} \\ \dots & & \\ x_{n1} & \dots & x_{nd} \end{pmatrix}, \quad \varepsilon = \begin{pmatrix} \varepsilon_1 \\ \dots \\ \varepsilon_n \end{pmatrix}.$$

Модель линейной регрессии

Введем обозначения

$$Y = \begin{pmatrix} Y_1 \\ \dots \\ Y_n \end{pmatrix}, \quad X = \begin{pmatrix} x_{11} & \dots & x_{1d} \\ \dots & & \\ x_{n1} & \dots & x_{nd} \end{pmatrix}, \quad \varepsilon = \begin{pmatrix} \varepsilon_1 \\ \dots \\ \varepsilon_n \end{pmatrix}.$$

Матричная форма записи проведенных испытаний

$$Y = X\theta + \varepsilon$$
.

 $X \in \mathbb{R}^{n imes d}$ — регрессоры (или матрица плана эксперимента), $Y \in \mathbb{R}^n$ — отклик.

Матричный вид зависимости: $y(x) = x^T \theta$.

Модель линейной регрессии

Введем обозначения

$$Y = \begin{pmatrix} Y_1 \\ \dots \\ Y_n \end{pmatrix}, \quad X = \begin{pmatrix} x_{11} & \dots & x_{1d} \\ \dots & & \\ x_{n1} & \dots & x_{nd} \end{pmatrix}, \quad \varepsilon = \begin{pmatrix} \varepsilon_1 \\ \dots \\ \varepsilon_n \end{pmatrix}.$$

Матричная форма записи проведенных испытаний

$$Y = X\theta + \varepsilon$$
.

 $X \in \mathbb{R}^{n imes d}$ — регрессоры (или матрица плана эксперимента), $Y \in \mathbb{R}^n$ — отклик.

Матричный вид зависимости: $y(x) = x^T \theta$.

Категориальные переменные

- x id должности сотрудника (натуральное число),
- *y* его зарплата.

Предположим, что должности занумерованы следующим образом:

- > x = 1 простой рабочий;
- x = 2 сисадмин, присваивающий id;
- x = 3 директор.

Сисадмин предложит рассмотреть модель $y = \theta_0 + \theta_1 x$:))

Категориальные переменные

- x id должности сотрудника (натуральное число),
- *у* его зарплата.

Предположим, что должности занумерованы следующим образом:

- > x = 1 простой рабочий;
- x = 2 сисадмин, присваивающий id;
- x = 3 директор.

Сисадмин предложит рассмотреть модель $y=\theta_0+\theta_1 x:))$

Если $x \in \{1,...,k\}$, то рассматриваются **dummy-переменные**:

$$x_j = I\{x = j\}, \quad j = 1,...,k-1,$$
модель $v = \theta_0 + \theta_1 x_1 + ... + \theta_{k-1} x_{k-1}.$

Категориальные переменные

- x id должности сотрудника (натуральное число),
- *у* его зарплата.

Предположим, что должности занумерованы следующим образом:

- > x = 1 простой рабочий;
- x = 2 сисадмин, присваивающий id;
- x = 3 директор.

Сисадмин предложит рассмотреть модель $y=\theta_0+\theta_1 x:))$

Если $x \in \{1,...,k\}$, то рассматриваются **dummy-переменные**:

$$x_j = I\{x = j\}, \quad j = 1,...,k-1,$$
модель $v = \theta_0 + \theta_1 x_1 + ... + \theta_{k-1} x_{k-1}.$

Ê

Метод наименьших квадратов

Задача:
$$RSS\left(heta
ight) = \left\|Y - X heta
ight\|_{2}^{2}
ightarrow \min_{ heta \in \mathbb{R}^{d}}.$$

ê

Метод наименьших квадратов

Задача: $RSS\left(heta
ight) = \left\|Y - X heta
ight\|_{2}^{2}
ightarrow \min_{ heta \in \mathbb{R}^{d}}.$

Решение: $\widehat{\theta} = (X^T X)^{-1} X^T Y$ если rank X = d.

Задача:
$$RSS\left(heta
ight) = \left\| Y - X heta
ight\|_{2}^{2}
ightarrow \min_{\theta \in \mathbb{R}^{d}}.$$

Решение:
$$\widehat{\theta} = \left(X^T X\right)^{-1} X^T Y$$
 если $rank \ X = d$.

Предположения и следствия:

1. $E\varepsilon = 0$ — несмещенность:

Задача:
$$RSS\left(heta
ight) = \left\| Y - X heta
ight\|_{2}^{2}
ightarrow \min_{\theta \in \mathbb{R}^{d}}.$$

Решение:
$$\widehat{\theta} = (X^T X)^{-1} X^T Y$$
 если $rank X = d$.

- 1. $\mathsf{E} \varepsilon = \mathsf{0} \mathsf{н}\mathsf{e}\mathsf{c}\mathsf{m}\mathsf{e}\mathsf{m}\mathsf{e}\mathsf{m}\mathsf{e}\mathsf{h}\mathsf{h}\mathsf{o}\mathsf{c}\mathsf{t}\mathsf{s}$:
 - $ightharpoonup \widehat{ heta}$ несмещенная оценка heta.

Метод наименьших квадратов

Задача:
$$RSS\left(heta
ight) = \left\| Y - X heta
ight\|_{2}^{2}
ightarrow \min_{\theta \in \mathbb{R}^{d}}.$$

Решение:
$$\widehat{\theta} = \left(X^T X\right)^{-1} X^T Y$$
 если $rank \ X = d$.

- 1. $\mathsf{E} \varepsilon = \mathsf{0}$ несмещенность:
 - $ightharpoonup \widehat{ heta}$ несмещенная оценка heta.
- 2. $\mathsf{E} arepsilon = \mathsf{0}$ и $\mathsf{D} arepsilon = \sigma^2 \mathit{I}_{\mathsf{n}}$ несмещенность и гомоскедастичность:

Задача:
$$RSS\left(heta
ight) = \left\|Y - X heta
ight\|_{2}^{2}
ightarrow \min_{ heta \in \mathbb{R}^{d}}.$$

Решение:
$$\widehat{\theta} = (X^T X)^{-1} X^T Y$$
 если $rank X = d$.

- 1. $\mathsf{E} \varepsilon = \mathsf{0} \mathsf{Hecme}$ щенность:
 - $ightharpoonup \widehat{ heta}$ несмещенная оценка heta.
- 2. $\mathsf{E} \varepsilon = \mathsf{0}$ и $\mathsf{D} \varepsilon = \sigma^2 I_n$ несмещенность и гомоскедастичность:

 - $ightharpoonup \widehat{ heta}$ оптимальная оценка heta среди линейных по y;
 - $ightharpoonup \widehat{\sigma}^2 = RSS(\widehat{ heta})/(n-d)$ несмещенная оценка σ^2 .

Задача:
$$RSS\left(heta
ight) = \left\| Y - X heta
ight\|_{2}^{2}
ightarrow \min_{\theta \in \mathbb{R}^{d}}.$$

Решение:
$$\widehat{\theta} = (X^T X)^{-1} X^T Y$$
 если $rank X = d$.

- 1. $\mathsf{E}\varepsilon=0$ несмещенность:
 - $ightharpoonup \widehat{ heta}$ несмещенная оценка heta.
- 2. $\mathsf{E} \varepsilon = \mathsf{0}$ и $\mathsf{D} \varepsilon = \sigma^2 I_n$ несмещенность и гомоскедастичность:

 - $ightharpoonup \widehat{ heta}$ оптимальная оценка heta среди линейных по y;
 - $ightharpoonup \widehat{\sigma}^2 = RSS(\widehat{ heta})/(n-d)$ несмещенная оценка σ^2 .
- 3. $\varepsilon \sim \mathcal{N}(0, \sigma^2 I_n)$ гауссовская линейная модель:

Задача:
$$RSS\left(heta
ight) = \left\|Y - X heta
ight\|_{2}^{2}
ightarrow \min_{ heta \in \mathbb{R}^{d}}.$$

Решение:
$$\widehat{\theta} = (X^T X)^{-1} X^T Y$$
 если $rank X = d$.

- 1. $\mathsf{E}\varepsilon=0$ несмещенность:
 - $ightharpoonup \widehat{ heta}$ несмещенная оценка heta.
- 2. $\mathsf{E} \varepsilon = \mathsf{0}$ и $\mathsf{D} \varepsilon = \sigma^2 I_n$ несмещенность и гомоскедастичность:

 - $ightharpoonup \widehat{ heta}$ оптимальная оценка heta среди линейных по y;
 - $ightharpoonup \widehat{\sigma}^2 = RSS(\widehat{ heta})/(n-d)$ несмещенная оценка σ^2 .
- 3. $\varepsilon \sim \mathcal{N}(0, \sigma^2 I_n)$ гауссовская линейная модель:
 - ▶ МНК совпадает с ОМП для θ ;
 - \triangleright $\hat{\theta}$ оптимальная оценка θ ;
 - $ightharpoonup RSS(\widehat{\theta})/\sigma^2 \sim \chi^2_{n-d}$.

Задача:
$$RSS\left(heta
ight) = \left\|Y - X heta
ight\|_{2}^{2}
ightarrow \min_{ heta \in \mathbb{R}^{d}}.$$

Решение:
$$\widehat{\theta} = (X^T X)^{-1} X^T Y$$
 если $rank X = d$.

- 1. $\mathsf{E}\varepsilon=0$ несмещенность:
 - $ightharpoonup \widehat{ heta}$ несмещенная оценка heta.
- 2. $\mathsf{E} \varepsilon = \mathsf{0}$ и $\mathsf{D} \varepsilon = \sigma^2 I_n$ несмещенность и гомоскедастичность:

 - $ightharpoonup \widehat{ heta}$ оптимальная оценка heta среди линейных по y;
 - $ightharpoonup \widehat{\sigma}^2 = RSS(\widehat{\theta})/(n-d)$ несмещенная оценка σ^2 .
- 3. $\varepsilon \sim \mathcal{N}(0, \sigma^2 I_n)$ гауссовская линейная модель:
 - ▶ МНК совпадает с ОМП для θ ;
 - \triangleright $\hat{\theta}$ оптимальная оценка θ ;
 - $ightharpoonup RSS(\widehat{\theta})/\sigma^2 \sim \chi^2_{n-d}$.

Реализация в sklearn

```
m = sklearn.linear_model.LinearRegression(fit_intercept=True)
   Обучение модели:
   m.fit(X, Y)
   Вектор коэффициентов:
   m.coef_
   Свободный коэффициент:
   m.intercept_
   Предсказания:
   m.predict(X)
```


E

Качество модели

$$R^2=1-rac{RSS(\widehat{ heta})}{\left\|Y-\overline{Y}
ight\|_2^2}$$
 — коэффициент детерминации.

 $R^2 pprox 1$ — хорошо, $R^2 pprox 0$ — плохо.

$$R^2=1-rac{RSS(\widehat{ heta})}{\left\|Y-\overline{Y}
ight\|_2^2}$$
 — коэффициент детерминации.

 $R^2 pprox 1$ — хорошо, $R^2 pprox 0$ — плохо.

Проблема: чем больше признаков, тем больше значение \mathbb{R}^2 .

$$R^2=1-rac{RSS(ilde{ heta})}{\left\|Y-\overline{Y}
ight\|_2^2}$$
 — коэффициент детерминации.

 $R^2 pprox 1$ — хорошо, $R^2 pprox 0$ — плохо.

Проблема: чем больше признаков, тем больше значение R^2 .

Для отбора признаков можно использовать подправленный R^2 :

$$R_{adj}^2 = 1 - (1 - R^2) \frac{n-1}{n-d}.$$

$$R^2=1-rac{RSS(\widehat{ heta})}{\left\|Y-\overline{Y}
ight\|_2^2}$$
 — коэффициент детерминации.

 $R^2 \approx 1$ — хорошо, $R^2 \approx 0$ — плохо.

Проблема: чем больше признаков, тем больше значение R^2 .

Для отбора признаков можно использовать подправленный R^2 :

$$R_{adj}^2 = 1 - (1 - R^2) \frac{n-1}{n-d}.$$

Информационные критерии: (чем меньше, тем лучше)

$$AIC = \frac{2d}{n} + \ln \frac{RSS(\widehat{\theta})}{n} -$$
Акаике, $BIC = \frac{d \ln n}{n} + \ln \frac{RSS(\widehat{\theta})}{n} -$ Шварца.

$$R^2=1-rac{RSS(\widehat{ heta})}{\left\|Y-\overline{Y}
ight\|_2^2}$$
 — коэффициент детерминации.

 $R^2 \approx 1$ — хорошо, $R^2 \approx 0$ — плохо.

Проблема: чем больше признаков, тем больше значение R^2 .

Для отбора признаков можно использовать подправленный R^2 :

$$R_{adj}^2 = 1 - (1 - R^2) \frac{n-1}{n-d}.$$

Информационные критерии: (чем меньше, тем лучше)

$$AIC = \frac{2d}{n} + \ln \frac{RSS(\widehat{\theta})}{n} -$$
Акаике, $BIC = \frac{d \ln n}{n} + \ln \frac{RSS(\widehat{\theta})}{n} -$ Шварца.

Качество модели

Качество модели обычно считают на тестовом множестве наблюдений, которые не участвовали в обучении.

 $X_{test} \in \mathbb{R}^{k imes d}, Y_{test} \in \mathbb{R}^k$ — тестовое множество

Качество модели обычно считают на тестовом множестве наблюдений, которые не участвовали в обучении.

 $X_{test} \in \mathbb{R}^{k imes d}, Y_{test} \in \mathbb{R}^k$ — тестовое множество

$$MSE = \frac{1}{k} \sum_{i=1}^{k} \left(Y_i^{test} - \widehat{y}(X_i^{test}) \right)^2$$

Качество модели обычно считают на тестовом множестве наблюдений, которые не участвовали в обучении.

 $X_{test} \in \mathbb{R}^{k imes d}, Y_{test} \in \mathbb{R}^k$ — тестовое множество

$$MSE = \frac{1}{k} \sum_{i=1}^{k} \left(Y_i^{test} - \widehat{y}(X_i^{test}) \right)^2$$

$$MAE = \frac{1}{k} \sum_{i=1}^{k} |Y_i^{test} - \widehat{y}(X_i^{test})|$$

Качество модели

Качество модели обычно считают на тестовом множестве наблюдений, которые не участвовали в обучении.

 $X_{test} \in \mathbb{R}^{k \times d}, Y_{test} \in \mathbb{R}^k$ — тестовое множество

$$MSE = \frac{1}{k} \sum_{i=1}^{k} \left(Y_i^{test} - \widehat{y}(X_i^{test}) \right)^2$$

$$MAE = \frac{1}{k} \sum_{i=1}^{k} |Y_i^{test} - \widehat{y}(X_i^{test})|$$

$$MAPE = \frac{100\%}{k} \sum_{i=1}^{k} \left| \frac{Y_i^{test} - \widehat{y}(X_i^{test})}{Y_i^{test}} \right|$$

Реализация метрик: sklearn.metrics

Качество модели

Качество модели обычно считают на тестовом множестве наблюдений, которые не участвовали в обучении.

 $X_{test} \in \mathbb{R}^{k \times d}, Y_{test} \in \mathbb{R}^k$ — тестовое множество

$$MSE = \frac{1}{k} \sum_{i=1}^{k} \left(Y_i^{test} - \widehat{y}(X_i^{test}) \right)^2$$

$$MAE = \frac{1}{k} \sum_{i=1}^{k} |Y_i^{test} - \widehat{y}(X_i^{test})|$$

$$MAPE = \frac{100\%}{k} \sum_{i=1}^{k} \left| \frac{Y_i^{test} - \widehat{y}(X_i^{test})}{Y_i^{test}} \right|$$

Реализация метрик: sklearn.metrics

Гауссовская линейная модель

Величина	Доверительный интервал		
σ	$\left(\sqrt{RSS(\widehat{\theta}) / \chi_{n-d,1-\alpha/2}^2}, \sqrt{RSS(\widehat{\theta}) / \chi_{n-d,\alpha/2}^2}\right)$		
Дов. интервал для размера шума в отклике			

Величина	Доверительный интервал	

$$\sigma = \left(\sqrt{\textit{RSS}(\widehat{\theta}) \left/ \chi_{n-d,1-\alpha/2}^2, \quad \sqrt{\textit{RSS}(\widehat{\theta}) \left/ \chi_{n-d,\alpha/2}^2 \right.} \right)$$

Дов. интервал для размера шума в отклике

$$\theta_j = \left(\widehat{\theta}_j \pm T_{n-d,1-\alpha/2} \cdot \widehat{\sigma} \sqrt{(X^T X)_{jj}^{-1}}\right)$$

Дов. интервал для коэффициента перед j-м признаком

$$\sigma = \left(\sqrt{RSS(\widehat{\theta}) / \chi_{n-d,1-\alpha/2}^2}, \sqrt{RSS(\widehat{\theta}) / \chi_{n-d,\alpha/2}^2}\right)$$

Дов. интервал для размера шума в отклике

$$\theta_j = \left(\widehat{\theta}_j \pm T_{n-d,1-\alpha/2} \cdot \widehat{\sigma} \sqrt{(X^T X)_{jj}^{-1}}\right)$$

Дов. интервал для коэффициента перед j-м признаком

$$X_0^T \theta$$
 $\left(x_0^T \widehat{\theta} \pm T_{n-d,1-\alpha/2} \cdot \widehat{\sigma} \sqrt{x_0^T (X^T X)^{-1} x_0}\right)$

Дов. интервал для **среднего** отклика на объекте x_0

 σ

$$\left(\sqrt{\mathrm{RSS}(\widehat{\boldsymbol{\theta}})\left/\chi_{n-d,1-\alpha/2}^{2}},\quad\sqrt{\mathrm{RSS}(\widehat{\boldsymbol{\theta}})\left/\chi_{n-d,\alpha/2}^{2}\right.\right)$$

Дов. интервал для размера шума в отклике

$$\theta_j$$

$$\left(\widehat{\theta}_{j} \pm T_{n-d,1-\alpha/2} \cdot \widehat{\sigma} \sqrt{(X^{T}X)_{jj}^{-1}}\right)$$

Дов. интервал для коэффициента перед j-м признаком

$$x_0^T \theta$$

$$\left(x_0^T \widehat{\theta} \pm T_{n-d,1-\alpha/2} \cdot \widehat{\sigma} \sqrt{x_0^T (X^T X)^{-1} x_0}\right)$$

Дов. интервал для **среднего** отклика на объекте x_0

$$x_0^T \theta + \varepsilon$$

$$\left(x_0^T \widehat{\theta} \pm T_{n-d,1-\alpha/2} \cdot \widehat{\sigma} \sqrt{1 + x_0^T (X^T X)^{-1} x_0}\right)$$

Предск. интервал для **наблюдаемого** отклика на объекте x_0

 σ

$$\left(\sqrt{\mathrm{RSS}(\widehat{\boldsymbol{\theta}})\left/\chi_{n-d,1-\alpha/2}^2},\quad \sqrt{\mathrm{RSS}(\widehat{\boldsymbol{\theta}})\left/\chi_{n-d,\alpha/2}^2\right.}\right)$$

Дов. интервал для размера шума в отклике

$$\theta_j = \left(\widehat{\theta}_j \pm T_{n-d,1-\alpha/2} \cdot \widehat{\sigma} \sqrt{(X^T X)_{jj}^{-1}}\right)$$

Дов. интервал для коэффициента перед j-м признаком

$$X_0^T \theta$$

$$\left(x_0^T \widehat{\theta} \pm T_{n-d,1-\alpha/2} \cdot \widehat{\sigma} \sqrt{x_0^T (X^T X)^{-1} x_0}\right)$$

Дов. интервал для **среднего** отклика на объекте x_0

$$x_0^T \theta + \varepsilon = \left(x_0^T \widehat{\theta} \pm T_{n-d,1-\alpha/2} \cdot \widehat{\sigma} \sqrt{1 + x_0^T (X^T X)^{-1} x_0} \right)$$

Предск. интервал для **наблюдаемого** отклика на объекте x_0

Примечание: если $\mathsf{P}_{\mathsf{a},b}$ — некоторое распределение с параметрами а и b, то $\mathsf{P}_{\mathsf{a},b,\alpha}$ — его α квантиль

 σ

$$\left(\sqrt{\mathrm{RSS}(\widehat{\boldsymbol{\theta}})\left/\chi_{n-d,1-\alpha/2}^2},\quad \sqrt{\mathrm{RSS}(\widehat{\boldsymbol{\theta}})\left/\chi_{n-d,\alpha/2}^2\right.}\right)$$

Дов. интервал для размера шума в отклике

$$\theta_j = \left(\widehat{\theta}_j \pm T_{n-d,1-\alpha/2} \cdot \widehat{\sigma} \sqrt{(X^T X)_{jj}^{-1}}\right)$$

Дов. интервал для коэффициента перед j-м признаком

$$X_0^T \theta$$

$$\left(x_0^T \widehat{\theta} \pm T_{n-d,1-\alpha/2} \cdot \widehat{\sigma} \sqrt{x_0^T (X^T X)^{-1} x_0}\right)$$

Дов. интервал для **среднего** отклика на объекте x_0

$$x_0^T \theta + \varepsilon = \left(x_0^T \widehat{\theta} \pm T_{n-d,1-\alpha/2} \cdot \widehat{\sigma} \sqrt{1 + x_0^T (X^T X)^{-1} x_0} \right)$$

Предск. интервал для **наблюдаемого** отклика на объекте x_0

Примечание: если $\mathsf{P}_{\mathsf{a},b}$ — некоторое распределение с параметрами а и b, то $\mathsf{P}_{\mathsf{a},b,\alpha}$ — его α квантиль

$$H_0$$
: $\theta_j = 0$

$$H_0$$
: $\theta_j = 0$

2. Значима ли регрессия вообще?

$$\mathsf{H_0} \colon \theta_2 = ... = \theta_d = \mathsf{0}$$
 если $x_1 = 1$

$$H_0$$
: $\theta_j = 0$

2. Значима ли регрессия вообще?

$$\mathsf{H_0} \colon \theta_2 = ... = \theta_d = \mathsf{0}$$
 если $x_1 = 1$

Гипотеза о незначимости коэффициента θ_i

$$H_0\colon \theta_j=0 \ \text{vs.} \ H_1\colon \theta_j\ \{<,\neq,>\}\ 0$$

0

1. Значим ли признак j?

Гипотеза о незначимости коэффициента $heta_j$

$$H_0\colon \theta_j=0 \ \textit{vs}. \ H_1\colon \theta_j\ \{<,\neq,>\}\ 0$$

Критерий Стьюдента

$$T_j^0(X,Y) = \frac{\widehat{\theta_j}}{\widehat{\sigma}\sqrt{(X^TX)_{jj}^{-1}}} \stackrel{\mathsf{H_0}}{\sim} T_{n-d}$$

$$T_j^0(X,Y)$$
 — Т-статистика критерия

1. Значим ли признак j?

Гипотеза о незначимости коэффициента θ_i

$$H_0\colon \theta_j=0 \ \textit{vs.} \ H_1\colon \theta_j\ \{<,\neq,>\}\ 0$$

Критерий Стьюдента

$$T_j^0(X,Y) = \frac{\widehat{\theta_j}}{\widehat{\sigma}\sqrt{(X^TX)_{jj}^{-1}}} \stackrel{\mathsf{H_0}}{\sim} T_{n-d}$$

$$T_j^0(X,Y)$$
 — Т-статистика критерия Для Н $_1$: $heta_j \neq 0$ критерий $\left\{\left|T_j^0(X,y)\right| > T_{n-d,1-lpha/2}
ight\}$, где $T_{n-d,1-lpha/2}-(1-lpha/2)$ квантиль распределения T_{n-d}

1. Значим ли признак j?

Гипотеза о незначимости коэффициента θ_i

$$H_0\colon \theta_j=0 \ \textit{vs.} \ H_1\colon \theta_j\ \{<,\neq,>\}\ 0$$

Критерий Стьюдента

$$T_j^0(X,Y) = \frac{\widehat{\theta}_j}{\widehat{\sigma}\sqrt{(X^TX)_{jj}^{-1}}} \stackrel{\mathsf{H_0}}{\sim} T_{n-d}$$

 $T_j^0(X,Y)$ — Т-статистика критерия Для Н $_1$: $heta_j
eq 0$ критерий $\left\{\left|T_j^0(X,y)\right| > T_{n-d,1-lpha/2}
ight\}$, где $T_{n-d,1-lpha/2}-(1-lpha/2)$ квантиль распределения T_{n-d}

Если H_0 не отвергается, то можно считать, что θ_j отклоняется от нуля статистически незначимо. Возможно, признак j стоит убрать.

1. Значим ли признак j?

Гипотеза о незначимости коэффициента θ_i

$$H_0\colon \theta_j=0 \ \textit{vs.} \ H_1\colon \theta_j\ \{<,\neq,>\}\ 0$$

Критерий Стьюдента

$$T_j^0(X,Y) = \frac{\widehat{\theta}_j}{\widehat{\sigma}\sqrt{(X^TX)_{jj}^{-1}}} \stackrel{\mathsf{H_0}}{\sim} T_{n-d}$$

 $T_j^0(X,Y)$ — Т-статистика критерия Для Н $_1$: $heta_j
eq 0$ критерий $\left\{\left|T_j^0(X,y)\right| > T_{n-d,1-lpha/2}
ight\}$, где $T_{n-d,1-lpha/2}-(1-lpha/2)$ квантиль распределения T_{n-d}

Если H_0 не отвергается, то можно считать, что θ_j отклоняется от нуля статистически незначимо. Возможно, признак j стоит убрать.

Гипотеза о незначимости регрессии

$$H_0$$
: $\theta_1=\theta_2=\cdots=\theta_d=0$ vs. H_1 : $\exists~\theta_j~\neq~0$

Гипотеза о незначимости регрессии

$$H_0$$
: $\theta_1 = \theta_2 = \cdots = \theta_d = 0$ vs. H_1 : $\exists \ \theta_j \neq 0$

Критерий Фишера

$$F(X,Y) = \frac{R^2/(d-1)}{(1-R^2)/(n-d)} \stackrel{\mathsf{H_0}}{\sim} F_{d-1,n-d},$$

где
$$R^2=1-rac{RSS(\widehat{ heta})}{\left\|Y-\overline{Y}
ight\|_2^2}$$
 — коэффициент детерминации. $F(X,Y)$ — F-статистика критерия

Гипотеза о незначимости регрессии

$$H_0$$
: $\theta_1 = \theta_2 = \cdots = \theta_d = 0$ vs. H_1 : $\exists \ \theta_j \neq 0$

Критерий Фишера

$$F(X,Y) = \frac{R^2/(d-1)}{(1-R^2)/(n-d)} \stackrel{\mathsf{H_0}}{\sim} F_{d-1,n-d},$$

где $R^2 = 1 - \frac{RSS(\theta)}{\|Y - \overline{Y}\|_2^2}$ — коэффициент детерминации.

F(X,Y) — F-статистика критерия

Для $\mathsf{H}_1\colon \exists \; \theta_j \;
eq \; 0 \;$ критерий $\left\{F_j^0(X,y) > F_{d-1,n-d,1-lpha} \right\}$,

где $F_{d-1,n-d,1-lpha}-(1-lpha)$ квантиль распределения $F_{d-1,n-d}$

Гипотеза о незначимости регрессии

$$H_0: \theta_1 = \theta_2 = \cdots = \theta_d = 0$$
 vs. $H_1: \exists \theta_j \neq 0$

Критерий Фишера

$$F(X,Y) = \frac{R^2/(d-1)}{(1-R^2)/(n-d)} \stackrel{\mathsf{H_0}}{\sim} F_{d-1,n-d},$$

где $R^2=1-rac{RSS(heta)}{\|Y-\overline{Y}\|_2^2}$ — коэффициент детерминации.

F(X,Y) — F-статистика критерия

Для $\mathsf{H}_1 \colon \exists \; \theta_j \;
eq \; 0$ критерий $\left\{ F_j^0(X,y) > F_{d-1,n-d,1-lpha}
ight\}$,

где $F_{d-1,n-d,1-lpha}-(1-lpha)$ квантиль распределения $F_{d-1,n-d}$

Если H_0 не отвергается, то можно считать, что регресия статистически незначимо отличается от приближения константой.

Гипотеза о незначимости регрессии

$$H_0: \theta_1 = \theta_2 = \cdots = \theta_d = 0$$
 vs. $H_1: \exists \theta_j \neq 0$

Критерий Фишера

$$F(X,Y) = \frac{R^2/(d-1)}{(1-R^2)/(n-d)} \stackrel{\mathsf{H_0}}{\sim} F_{d-1,n-d},$$

где $R^2=1-rac{RSS(heta)}{\|Y-\overline{Y}\|_2^2}$ — коэффициент детерминации.

F(X,Y) — F-статистика критерия

Для $\mathsf{H}_1 \colon \exists \; \theta_j \;
eq \; 0$ критерий $\left\{ F_j^0(X,y) > F_{d-1,n-d,1-lpha}
ight\}$,

где $F_{d-1,n-d,1-lpha}-(1-lpha)$ квантиль распределения $F_{d-1,n-d}$

Если H_0 не отвергается, то можно считать, что регресия статистически незначимо отличается от приближения константой.

Таблица в statsmodels

```
# Load data
In [4]: dat = sm.datasets.get rdataset("Guerry", "HistData").data
# Fit regression model (using the natural log of one of the regressors)
In [5]: results = smf.ols('Lottery ~ Literacy + np.log(Pop1831)', data=dat).fit()
# Inspect the results
In [6]: print(results.summary())
                           OLS Regression Results
Dep. Variable:
                             Lotterv
                                       R-squared:
                                                                        0.348
Model:
                                 0LS
                                     Adj. R-squared:
                                                                        0.333
Method:
                       Least Squares
                                     F-statistic:
                                                                       22.20
Date:
                    Mon, 14 May 2018 Prob (F-statistic):
                                                                    1.90e-08
Time:
                            21:48:09
                                     Log-Likelihood:
                                                                      -379.82
No. Observations:
                                  86
                                      AIC:
                                                                        765.6
Df Residuals:
                                       BIC:
                                                                        773.0
                                  83
Df Model:
Covariance Type:
                           nonrobust
                     coef
                             std err
                                                     P>|t|
                                                                [0.025
                                                                            0.9751
Intercept
                 246.4341
                              35.233
                                        6.995
                                                     0.000
                                                               176.358
                                                                          316.510
Literacy
                 -0.4889
                              0.128
                                        -3.832
                                                    0.000
                                                              -0.743
                                                                          -0.235
                                                     0.000
np.log(Pop1831)
                 -31.3114
                               5.977
                                         -5.239
                                                               -43.199
                                                                           -19.424
```

