36-789: Topics in High Dimensional Statistics II

Fall 2015

Lecture 7: Nov. 17

Lecturer: Alessandro Rinaldo Scribes: Lingxue Zhu

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

7.1 Assouad Method

Theorem 7.1 (Assouad) Suppose $\exists m \in \mathbb{N}$, a sub-family $\{P_v : v \in \{-1,1\}^m\} \subseteq \mathcal{P}$, and a function $V : \theta(\mathcal{P}) \to \{-1,1\}^m$, such that

$$w(d(\theta, \theta(P_v))) \ge 2\delta \sum_{j=1}^m I_{\{V(\theta)_j \ne v_j\}}, \ \forall v \in \{-1, 1\}^m.$$

That is, for $\forall v \in \{-1,1\}^m$, there exists $P_v \in \mathcal{P}$, such that $\forall v \neq v'$,

$$w(d(\theta(P_v), \theta(P_{v'}))) \ge 2\delta \sum_{j=1}^m I_{\{v_j \ne v'_j\}} = 2\delta d_H(v, v').$$

Then we have

$$\inf_{\hat{\theta}} \sup_{P \in \mathcal{P}} \mathbb{E}_P \left[w(d(\hat{\theta}, \theta(P))) \right] \ge m\delta \min_{\substack{v, v' \in \{-1,1\}^m \\ d_H(v, v') = 1}} \left\{ 1 - d_{TV}(P_v, P_{v'}) \right\}.$$

Proof: Let $V \sim \text{Unif}(\{-1,1\}^m)$ and $P_{\pm j}$ be the conditional distribution of (X,V) given $V_j = \pm 1$. Notice that

$$P_{\pm j} = \frac{1}{2^{m-1}} \sum_{v \in \{-1,1\}^m} P_{v,\pm j},$$

where $P_{v,\pm j}$ is P_v with $v_j = \pm 1$. Then $\forall \hat{\theta}$,

$$\begin{split} \sup_{P \in \mathcal{P}} \mathbb{E}_{P} \left[w(d(\hat{\theta}, \theta(P))) \right] &\geq \frac{1}{2^{m}} \sum_{v \in \{-1,1\}^{m}} E_{P_{v}} \left[w(d(\hat{\theta}, \theta(P_{v}))) \right] \\ &\geq \frac{1}{2^{m}} \sum_{v \in \{-1,1\}^{m}} 2\delta \sum_{j=1}^{m} P_{v} \left(V(\hat{\theta})_{j} \neq v_{j} \right) \\ &= 2\delta \sum_{j=1}^{m} \frac{1}{2^{m}} \left[\sum_{v \in \{-1,1\}^{m}} P_{v} \left(V(\hat{\theta})_{j} \neq v_{j} \right) + \sum_{v \in \{-1,1\}^{m}} P_{v} \left(V(\hat{\theta})_{j} \neq v_{j} \right) \right] \\ &= 2\delta \sum_{j=1}^{m} \frac{1}{2} \left[P_{+j} \left(V(\hat{\theta})_{j} \neq 1 \right) + P_{-j} \left(V(\hat{\theta})_{j} \neq -1 \right) \right] \\ &\geq 2\delta \sum_{j=1}^{m} \left[1 - d_{TV}(P_{+j}, P_{-j}) \right] \geq 2\delta m \min_{j} \left[1 - d_{TV}(P_{+j}, P_{-j}) \right] \end{split}$$

7-2 Lecture 7: Nov. 17

Finally, observe that

$$d_{TV}(P_{+j},P_{-j}) \leq \frac{1}{2^{m-1}} \sum_{v} d_{TV}(P_{v,+j},P_{v,-j}) \leq \max_{v,j} d_{TV}(P_{v,+j},P_{v,-j}) = \max_{\substack{v,v'\\d_H(v,v')=1}} d_{TV}(P_v,P_{v'}) \,.$$

As a consequence, if for all v, v' such that $d_H(v, v') = 1$, we have

- 1. $d_{TV}(P_v, P_{v'}) \le \alpha$, then the lower bound is $\delta \frac{m}{2} (1 \alpha)$.
- 2. $H^2(P_v, P_{v'}) \le \alpha < 2$, then the lower bound is $\delta \frac{m}{2} \left[1 \sqrt{\alpha(1 \alpha/4)} \right]$.
- 3. $KL(P_v, P_{v'}) \le \alpha$ or $\mathcal{X}^2(P_v, P_{v'}) \le \alpha$, then the lower bound is $\delta \frac{m}{2} \max \left\{ \frac{1}{2} e^{-\alpha}, 1 \sqrt{\frac{\alpha}{2}} \right\}$.

Remark The Assouad lower bound can also be written in the following form: for p > 0,

$$\sup_{v \in \{-1,1\}^m} \mathbb{E}_{P_v} \left[d^p(\hat{\theta}, \theta(P_v)) \right] \ge \min_{\substack{v,v' \in \{-1,1\}^m \\ d_H(v,v') \ge 1}} \frac{d^p(\theta(P_v), \theta(P_{v'}))}{d_H(v,v')} \cdot \frac{m}{2} \min_{\substack{v,v' \in \{-1,1\}^m \\ d_H(v,v') = 1}} \left[1 - d_{TV}(P_v, P_{v'}) \right].$$

Proof: Let $V(\hat{\theta}) \in \{-1,1\}^m$ such that

$$V(\hat{\theta}) = v^* \text{ if } d(\hat{\theta}, \theta(P_{v^*})) = \min_{v \in \{-1,1\}^m} d(\hat{\theta}, \theta(P_v)).$$

Then for any $v \in \{-1, 1\}^m$, by triangle inequality, we have

$$d\left(\theta\left(P_{V(\hat{\theta})}\right),\theta(P_v)\right) \leq 2 \cdot d(\hat{\theta},\theta(P_v)) \,.$$

Therefore,

$$2^{p}\mathbb{E}_{P_{v}}\left[d^{p}(\hat{\theta},\theta(P_{v}))\right] \geq \mathbb{E}_{P_{v}}\left[d^{p}\left(\theta\left(P_{V(\hat{\theta})}\right),\theta(P_{v})\right)\right] \geq 2\delta\,\mathbb{E}_{P_{v}}\left[d_{H}(V(\hat{\theta}),v)\right]$$

where $2\delta = \min_{v \neq v'} \frac{d^p(\theta(P_v), \theta(P_{v'}))}{d_H(v, v')}$. Then proceed as before to reach the desired result.

7.2 Minimax Confidence Ball

Suppose $X \sim N_n(\theta, \sigma_n^2 I_n)$, we want to construct a confidence ball $B_n(X)$ for θ , such that

$$\inf_{\theta \in \mathbb{R}^n} \mathbb{P}_{\theta}(\theta \in B_n) \ge 1 - \alpha.$$

Note that $\frac{||X-\theta||^2}{\sigma_n^2} \sim \mathcal{X}_n^2$, the simplest confidence ball is a \mathcal{X}^2 ball:

$$B_n = \left\{ \theta \in \mathbb{R}^n : ||X - \theta||^2 \le \sigma_n^2 \mathcal{X}_{n, 1 - \alpha}^2 \right\} ,$$

where $\mathcal{X}_{n,1-\alpha}^2$ is the $1-\alpha$ quantile of \mathcal{X}_n^2 . The radius is deterministic, which is in the order of $\sigma_n\sqrt{n}$.

Lepski proposed another way to construct the confidence ball B_n as follows. First, we test the hypothesis

$$H_0: \theta = 0 \ v.s. \ H_1: \theta \neq 0.$$

Lecture 7: Nov. 17

If we accept H_0 , then the ball is centered at 0, with radius $\sigma_n n^{1/4}$. Otherwise, if we reject H_0 , then we use the \mathcal{X}^2 ball with radius $\sigma_n \sqrt{n}$. This gives a valid $(1-\alpha)$ confidence ball with random radius.

In fact, in general, the rate of $\sigma_n \sqrt{n}$ is optimal; but in some specific scenario, it might be possible to attain $\sigma_n n^{1/4}$.

Claim Let S_n be the random radius of a ball B_n centered at any estimator $\hat{\theta}$ of θ that is a $(1-\alpha)$ confidence ball, then there exists a constant C, such that

- (i) $\mathbb{E}_{\theta}[S_n] \geq C\sigma_n n^{1/4}$, for any $\theta \in \mathbb{R}^n$.
- (ii) $\mathbb{E}_{\theta}[S_n] \geq C\sigma_n n^{1/2}$, for some $\theta \in \mathbb{R}^n$.

Now we prove the first claim.

Theorem 7.2 Let $\alpha \in (0, \frac{1}{2})$, $B_n = \{\theta \in \mathbb{R}^n : ||\hat{\theta} - \theta|| \le s_n\}$ for any estimator $\hat{\theta}$, such that B_n is an honest confidence ball:

$$\inf_{\theta \in \mathbb{R}^n} \mathbb{P}_{\theta}(\theta \in B_n) \ge 1 - \alpha.$$

Then $\forall \epsilon \in (0, \frac{1}{2} - \alpha),$

$$\inf_{\theta \in \mathbb{R}^n} \mathbb{E}_{\theta}[S_n] \ge \sigma_n n^{1/4} (1 - 2\alpha - 2\epsilon) \left(\log(1 + \epsilon^2) \right)^{1/4}.$$

Proof: Let $a_n = \frac{\sigma_n}{n^{1/4}} \left(\log(1 + \epsilon^2) \right)^{1/4}$, and define $\Omega = \{ \theta \in \mathbb{R}^n : |\theta_i| = a_n, i = 1, ..., n \}$, hence $|\Omega| = 2^n$. Let f_{θ} be the density of $N_n(\theta, \sigma_n^2 I_n)$, and $q = \frac{1}{2^n} \sum_{\theta \in \Omega} f_{\theta}$ be the density of a mixture distribution, then

$$\int |q - f_0| \le \sqrt{\int \frac{q^2}{f_0} - 1}.$$

In addition, let $E_1, \dots, E_n \stackrel{i.i.d.}{\sim}$ Rademacher, then

$$\int \frac{q^2}{f_0} = \left(\frac{1}{2^n}\right)^2 \sum_{\theta, \theta' \in \Omega} \int \frac{f_{\theta} f_{\theta'}}{f_0}$$

$$= \left(\frac{1}{2^n}\right)^2 \sum_{\theta, \theta' \in \Omega} \exp\left\{\frac{\langle \theta, \theta' \rangle}{\sigma_n^2}\right\}$$

$$= \mathbb{E}\left[\exp\left\{\frac{a_n^2 \sum_{i=1}^n E_i}{\sigma_n^2}\right\}\right]$$

$$= \prod_{i=1}^n \mathbb{E}\left[\exp\left\{\frac{a_n^2 E_i}{\sigma_n^2}\right\}\right] = \left[\cosh\left(\frac{a_n^2}{\sigma_n^2}\right)\right]^n$$

$$\leq \exp\left\{\frac{a_n^4}{\sigma_n^2}n\right\}$$

So $\int |f_0 - q| \le \sqrt{\exp\left\{\frac{a_n^4}{\sigma_n^2}n\right\}} - 1 := \epsilon_n$. For any event A, let Q, P_0 be the measure of q, f_0 , then

$$P_0(A) \ge Q(A) - \int_A |q - f_0| \ge Q(A) - \epsilon_n$$
.

7-4 Lecture 7: Nov. 17

Now let $A = \{0 \in B_n\}$, $D = \{\Omega \cap B_n \neq \emptyset\}$, and $c_n = ||\theta|| = a_n \sqrt{n}$ for $\theta \in \Omega$.

Note that $A \cap D \subseteq \{s_n \geq c_n\}$. In addition, since $P_{\theta}(\theta \in B_n) \geq 1 - \alpha$ for $\forall \theta$, we have $P_{\theta}(D) \geq 1 - \alpha$ for $\forall \theta \in \Omega$. Therefore, $Q(D) \geq 1 - \alpha$, and

$$\begin{split} P_0(s_n \geq c_n) \geq P_0(A \cap D) \geq Q(A \cap D) - \epsilon_n \\ &= Q(A) + Q(D) - Q(A \cup D) - \epsilon_n \\ &\geq Q(A) + Q(D) - 1 - \epsilon_n \\ &\geq Q(A) + (1 - \alpha) - 1 - \epsilon_n \\ &\geq (P_0(A) - \epsilon_n) + (1 - \alpha) - 1 - \epsilon_n \\ &\geq (1 - \alpha) - \epsilon_n + (1 - \alpha) - 1 - \epsilon_n \\ &= 1 - 2\alpha - 2\epsilon_n \end{split}$$

Finally, the same argument holds for any $\theta \in \mathbb{R}^n$ other than 0.

7.3 Equalizer Rule

The risk for $\hat{\theta}$ is $R(\theta, \hat{\theta}) = \mathbb{E}_{\theta}[d(\hat{\theta}, \theta)]$. Let Π be a distribution over Θ , then the Bayes risk of $\hat{\theta}$ is

$$R(\hat{\theta}, \Pi) = \int_{\Theta} R(\theta, \hat{\theta}) d\Pi(\theta) = \int_{\mathcal{X}} r(\hat{\theta}|x) d\mu_x(x)$$

where μ_x is the marginal distribution of X, and $r(\hat{\theta}|x)$ is the posterior risk of $\hat{\theta}$ given X = x. The Bayes rule $\hat{\theta}(\Pi)$ is the estimator $\hat{\theta}$ that minimizes $R(\hat{\theta}, \Pi)$, or equivalently, minimizes $r(\hat{\theta}|x)$ at every x.

Theorem 7.3 If a Bayes rule $\hat{\theta}(\Pi)$ has constant risk, that is, $R(\theta, \hat{\theta}(\Pi))$ is constant in θ , then $\hat{\theta}(\Pi)$ is a minimax estimator.

Proof: Let $\hat{\theta}$ be any estimator, then

$$\sup_{\theta} R(\theta, \hat{\theta}) \geq \int_{\Theta} R(\theta, \hat{\theta}) \, d \, \Pi(\theta) \geq \int_{\Theta} R(\theta, \hat{\theta}(\Pi)) \, d \, \Pi(\theta) = \sup_{\theta} R(\theta, \hat{\theta}(\Pi)) \, .$$