

CSE1003 - Digital Logic and Design

Course Code: CSE1003

Course Title: Digital Logic and Design Type: **Programme Core (PC) Credits:** 4 (3 (Theory) + 1 (Lab))

CSE1003 - DLD - Syllabus

Course code	Course title	L T P J C
CSE1003	Digital Logic and Design	3 0 2 0 4
Pre-requisite	None	Syllabus version

Course Objectives:

COB1: To acquaint students with basic concepts of number systems, base conversion, binary coding and using complements for subtraction.

COB2: To impart the knowledge of Boolean algebra and its properties and use simplification techniques for simplifying Boolean functions.

COB3: To teach students how to analyze and design combinational and sequential logic circuits and their building blocks for a typical digital system.

COB4: To make students understand the design of typical ALU and Accumulator Logic for computer design

COB5: Reinforce theory and techniques taught in the classroom through experiments in the laboratory and introduce them to the hardware design using hardware description languages.

Expected Course Outcome:

CO1: Understand number systems and base conversion. Differentiate binary coding. Illustrate complement for

CO2: Evaluate and simplify logic functions using Boolean Algebra and other techniques.

CO3: Analyze and design small scale integrated combinational logic circuits.

CO4: Analyze and design medium scale integrated combinational logic circuits.

CO5: Understand Flip-Flop design. Analyze and design finite state machines.

CO6: Analyze and design medium scale integrated sequential logic circuits.

CO7: Illustrate typical ALU design and Accumulator logic.

1,2,5,14 Student Learning Outcomes (SLO):

SLO 1: Ability to apply mathematics and science in engineering applications

SLO 2: Having a clear understanding of the subject related concepts and of contemporary issues

SLO 5: Having design thinking capability

SLO 14: Ability to design and conduct experiments, as well as to analyze and interpret data.

Module:1	Introduction	3 hours	SLO: 1
27 1 0	B G : B: G ! G ! (B:	10 ' 1	-

Number System - Base Conversion - Binary Codes - Complements(Binary and Decimal)

CO1: Understand number systems and base conversion. Differentiate binary coding. Illustrate complement for subtraction.

Module:2	Boolean Algebra	8 hours	SLO: 2

Boolean algebra - Properties of Boolean algebra - Boolean functions - Canonical and Standard forms - Logic gates -Universal gates - Karnaugh map - Don't care conditions - Tabulation Method.

CO2: Evaluate and simplify logic functions using Boolean Algebra and other techniques.

Module:3	COMBINATIONAL CIRCUIT - I	4 hours	SLO: 2,5	
Adder - Subt	tractor - Code Converter - Analyzing a Combinational Circuit		•	

CO3: Analyze and desipu small scale integrated colubinational logic circuits.					
si»a»:4 costamA4ioxw circum - u	s none	sro: zo			
Binary Parallel Adder- Look ahead carry - Magnitude Coniparator - Decoders — Encoders - Multiplexers — de-niultipleners.					
CO4: Analyze and design medium scale integrated co	mbinational l	logic circuits.			
module:5 SEQUENTIAL CIRCUITS — I	6 hours	SLO:1##			
Flip Flops - Sequential Circuit: Design and Analysis - and Mealy model - Sequence	Finite State	Machine: Moore			
COS: Understand Flip-Flop design. Analyze and design	n finite state	machines.			
Module:6 SEQUENTIAL CIRCUITS — O	7 hours	SLO: 2,S			
Registers - Shift Registers - Counters - Ripple and Sylcoimters - Rinp and Johnson counters.					
CO6: Analyze and design medium scale integrated seq	uential logic	circuits.			
Afodiile: ARITHMETIC LOGIC LV	9 bours	SLO:lQ#			
Bus Organization - ALU - Desipn of ALU - Statiis Reg Processor Unit					
- Design of specific Arithmetic Cécuits-Accumulator -	Design of A	ccumulator.			
CO7: Illustrate typical ALU design and Accimulator lo Module: RECENT TRENDS	2 hours	SLO: 2			
hitroduction to VLSI and FPGA	<u> </u>				
Total Lecture hours:	45 hours				
Text Book(s)	ı				
1. M. Morris Mario — Orbital Logic and Computer Desipn. Pearson E&ication India — 1° Edition-2016. ISBN: 9789332542525.					
Re rence Books					
Thomas L Floyd —Digital Fundanwtals —Pearson Edifion -11' Edition-2015-ISBN: 9780132737968					
A.P. Malvino. D.P. Leach and Goutain Saha—Digital Principles and Applications (SIE)—Tata McGraw Hill 8 Edition—2014. ISBN: 9789339203405.					
M. Morris Mario and Michael D. Ciletti—Digital Desipu: With an introduction to Verilog HDL-Pearson Education — 5' Edition- 2014. ISBN:9789332535763					
Mode of Evaluation:					
Students are assessed based on group activities. classro (design problems. performance analysis and evaluation and final assessment test.		•			

Assessment Methods

Assessment Type	Date	Weightage Marks	Remarks	Course outcomes
Quiz 1	Before Cat-1	10	Multiple choice questions will be given based on the portions covered before cat-1	CO1, CO2,CO3
Assignment	Before Cat-2	10	Assignment based on design problems will be given and the students should use any of the freely available simulation tool to solve the problem	CO4
Quiz-2	After Cat-2 Before Term end	10	Cat -2 portions and the remaining portion of the syllabus will be considered for this quiz	CO5,CO6,CO7
Cat-1	As per the	15	Schedule will be	CO1, CO2,CO3
Cat-2	announcement	15	announced by the	CO4,CO5,CO6
FAT	made by the university	40	University	All