

LITERATURA DEL TARGET

BI-RADS 1 (Negativo):

- Clase de anormalidad: NORM
- · Severidad: Sin valor, ya que son normales.

BI-RADS 2 (Benigno):

- Clase de anormalidad: CALC, CIRC, MISC, ARCH, ASYM
- Severidad: B (Beniano)

BI-RADS 3 (Probablemente Benigno):

 En MIAS, esta categoría no está explícitamente representada, pero casos de CALC y CIRC con B podrían requerir sequimiento en la práctica clínica.

BI-RADS 4 (Sospechoso):

- Clase de anormalidad: CALC, CIRC, MISC, SPIC, ARCH, ASYM
- Severidad: M (Maligno), ya que requieren mayor evaluación, como biopsia.

BI-RADS 5 (Altamente sospechoso de malignidad):

- Clase de anormalidad: SPIC, ARCH
- Severidad: M (Maligno)

BI-RADS 6 (Confirmado maligno):

 Casos en los que se ha confirmado la malignidad mediante estudios adicionales (no disponible directamente en MIAS, pero los casos M proximan a esta categoría en términos de sospecha).

CATEGORIZAR CARACTERÍSTICAS

```
current_entry = {
    "img id": None,
    "tipo tejido": None,
    "clase anomalia": None,
    "severidad": None,
    "x_coord": None,
    "y coord": None,
    "radio": None,
    "BI RADS": None,
    "dimension": None,
    "lado": None,
    "clase amomalia 2": None,
    "severidad 2": None,
    "x2": None,
    "y2": None,
    "radio 2": None,
    "clase amomalia_3": None,
    "severidad 3": None,
    "x3": None,
    "y3": None,
    "radio 3": None,
```

PROCESAMIENTO DE DATOS

Limpieza de datos

Imágenes cargada	s iniciales: (117, 224, 224, 3)
	as iniciales: (117,)
img_id	0
tipo_tejido	0
clase_anomalia	0
severidad	0
x_coord	8
y_coord	8
radio	3
BI_RADS	0
dimension	0
lado	0
dtype: int64	
img_id	0
tipo_tejido	0
clase_anomalia	0
severidad	0
x_coord	0
y_coord	0
radio	0
BI_RADS	0
dimension	0
lado	0
dtype: int64	

Э
1
2
В
4
Ι
B
ı
Э
1
2
2
9

Balanceo de datos

Aumento de datos

Se resalta la importancia del aumento de datos sin usar ni brillo, zoom y corte. Ya que estos 3 factores en dataset médicos afecta el rendimiento del modelo

NOMBRE DE LAS CAPAS Y NÚMERO DE CARACTERÍSTICAS EXTRAÍDAS

MODELOS	LAYERS	NÚMERO CARACTERÍSTICAS	UBICACIÓN
DenseNet121	avg_pool	1024	-2
EfficientNetV2B0	avg_pool	1280	-3
Inception_v4	flatten	1536	-4
MobileNetV3Large	flatten	1000	-2
resnext50_32x4d	flatten	2048	-2
VGG16	VGG16 flatten		-4
tumor_cerebral	flatten	200704/51889	-5

VGG16

Tumor_Cerebral

0.01

79%

78%

0.02

NÚMERO DE UMBRALES

0.05

0.06

0.1

20%

36%

7%

0.03

AC F1-score AC F1-score F1-score F1-score AC AC **MODELOS** AC AC F1-score F1-score DenseNet121 93% 93% 94% 93% 91% 91% 85% 84% 63% 63% 20% 7% EfficientNetV2B0 47% 47% 48% 48% 49% 48% 45% 45% 41% 41% 41% 41% Inception_v4 84% 84% 84% 84% 79% 79% 43% 43% 20% 7% 20% 7% MobileNetV3Larg 52% 52% 51% 51% 52% 53% 41% 40% 26% 25% 20% 7% е 90% 90% 89% 89% 85% 59% 32% 30% 20% 7% resnext50 32x4d 85% 60%

78%

77%

73%

72%

36%

3-2 1-3 2-1

77%

77%

CONJUNTO DE DATOS	TIPO CONCATEN ACIÓN	ANTES DE LA SELECCIÓN DE CARACTERÍ STICAS	DESPUÉS DE LA SELECCIÓN DE CARACTERÍ STICAS	# UMBRAL	ACCURACY	F1-SCORE	MODELO
MIAS	Total	31976		0.01	89%	89%	RidgeClasCV
MIAS	Seleccionado	31976	11507	0.01, 0.02 Y 0.03	90%	89%	LGBMCla RidgeClasCV
MIAS	Seleccionado c/u umbral	31976	2047	0.03	90%	89%	NuSVC LGBMcla
MIAS	dense+incep+ resnet+vgg		1414	0.03	92%	91%	NuSVC LGBMcla
MIAS	dense+incep+ resnet	2324	2043	0.01	95%	95%	NuSVC, SVC
MIAS							

Resumen:		Accuracy	Balanced Ad	curacy	ROC AUC	F1 Score	Time Take	en
 Se seleccionaron 7 modelos y se extrajeron las 	Model	710001 009	Dazaneza /ii			555. C	12	
características de la capa de aplanamiento de	NuSVC	0.95		0.95	None	0.95	4.9	93
cada uno. A continuación, se aplicó la métrica de	SVC	0.94		0.94	None	0.94	4.:	23
· •	CalibratedClassifierCV	0.91		0.91	None	0.91	35.0	03
Información Mutua a las características de cada	KNeighborsClassifier	0.90		0.90	None	0.89	0.	
modelo. Luego, se evaluaron una serie de	PassiveAggressiveClassifier	0.90		0.90	None	0.90	0.9	92
umbrales positivos		0.00						
[0.01,0.02,0.03,0.05,0.06,0.1] para determinar	=== Resultados para umbral:		Balanced Ad		DOC ALIC	E1 Coope	Time Tak	242
cuál proporcionaba los mejores resultados al ser	Model	Accuracy	balanceu Ad	ccuracy	RUC AUC	ri score	IIME IAK	en
, ,	SVC	0.95		0.95	None	0.95	4.:	17
probado con las imágenes ya procesadas. Para	NuSVC	0.94		0.94	None	0.94		
evaluar el desempeño, se utilizó LazyPredict, que	KNeighborsClassifier	0.91		0.91	None	0.90		
permitió observar cada modelo junto con su	CalibratedClassifierCV	0.90		0.90	None	0.90	12.9	95
métrica de evaluación aproximada. Finalmente,	PassiveAggressiveClassifier	0.89		0.89	None	0.89	1.4	44
se guardaron las características extraídas de	=== Resultados para umbral:	0.03 ===						
cada modelo.			ed Accuracy	ROC AUC	F1 Sco	re Time	Taken	
 Se probaron varias estrategias para optimizar las 	Model							
métricas. La estrategia más efectiva fue		.94	0.94	None	0.	93	1.11	
, ,		.93	0.93	None	0.	93	1.28	
seleccionar únicamente la información mutua	5	.90	0.90	None			0.12	
correspondiente a los umbrales que ofrecieron		.89	0.89	None			4.75	
los mejores resultados.	ExtraTreesClassifier 0	.89	0.89	None	0.	88	1.05	
 Se aplicó un filtro y se seleccionaron solo 3 de 	=== Resultados para umbral:	0.05 ===						
los 7 modelos, aquellos que ofrecieron		Accurac	y Balanced	Accurac	y ROC AU	C F1 Sco	re Time Ta	aken
resultados superiores al 80% en f1-score.	Model							
יבשונעמטש שעף ביוטובש מו סטאי בוו בי שכטוב.	KNeighborsClassifier	0.8	5	0.8	5 Non	e 0.	84	0.07

ExtraTreesClassifier

0.85

0.85

None

0.85

0.42

=== Resultados para umbral: 0.01 ===

Resumen.

DIVISIÓN DE DATOS

DATOS ENTRENAMIENTO

Valor: 0, Conteo: 350 Valor: 1, Conteo: 350 Valor: 2, Conteo: 350 Valor: 3, Conteo: 350 Valor: 4, Conteo: 350

DATOS TEMPO

Valor: 0, Conteo: 150 Valor: 1, Conteo: 150 Valor: 2, Conteo: 150 Valor: 3, Conteo: 150 Valor: 4, Conteo: 150

DATOS VALIDACION Y TEST

Valor: 0, Conteo: 75 Valor: 1, Conteo: 75 Valor: 2, Conteo: 75 Valor: 3, Conteo: 75 Valor: 4, Conteo: 75

CONSTRUCCIÓN MODELO

MÉTRICAS DE EVALUACIÓN

METRICAS DE EVALUACION MODELO:

Reporte de clasificacion test

reporte t	ac 01	abilitacion.			
		precision	recall	f1-score	support
	0	0.96	0.99	0.97	75
	1	0.99	0.99	0.99	75
	2	1.00	0.99	0.99	75
	3	0.99	0.97	0.98	75
	4	1.00	1.00	1.00	75
accur	racy			0.99	375
macro	avg	0.99	0.99	0.99	375
weighted	avg	0.99	0.99	0.99	375

METRICAS DE EVALUACION MODELO:

Reporte de clasificacion val

		Val	LITCACION	Kepor ce de cras
support	f1-score	recall	recision	р
75	0.90	0.88	0.93	0
75	0.94	0.95	0.93	1
75	0.99	1.00	0.97	2
75	0.98	0.99	0.97	3
75	0.99	0.99	0.99	4
375	0.96			accuracy
375	0.96	0.96	0.96	macro avg
375	0.96	0.96	0.96	weighted avg

METRICAS DE EVALUACION MODELO:

Reporte	de	cla	sificacion	temp		
		precision		recall	f1-score	support
		0	0.95	0.93	0.94	150
		1	0.96	0.97	0.96	150
		2	0.99	0.99	0.99	150
		3	0.98	0.98	0.98	150
		4	0.99	0.99	0.99	150
accu	rac	у			0.97	750
macro	a١	g	0.97	0.97	0.97	750
weighted	a١	/g	0.97	0.97	0.97	750

TES

VAL

TEMP

EVALUACIÓN DEL OVERFITTING


```
Tamaño conjunto de datos de entrenamiento: [ 30 97 165 232 3001
CURVA DE APRENDIZAJE DE ENTRENAMIENTO:
[[0.4
[1.
             0.86597938 0.78350515 0.78350515 0.78350515]
                       0.84329897 1.
Promedios: [0.08
CURVA DE APRENDIZAJE DE VALIDACION:
[[0.2
                                   0.18666667 0.2
[0.38666667 0.44
                                   0.46666667 0.293333331
 [0.54666667 0.53333333 0.49333333 0.70666667 0.52
 [0.65333333 0.65333333 0.53333333 0.77333333 0.70666667]
 T0.72
                        0.57333333 0.81333333 0.7066666711
Promedios: [0.19733333 0.39733333 0.56
                                                        0.706666671
                                             0.664
```

```
Tamaño conjunto de datos de entrenamiento: [ 30 97 165 232 300]
CURVA DE APRENDIZAJE DE ENTRENAMIENTO:
[[0.96666667 0.
                        0.83505155 0.83505155 0.83505155
 [1.
                                              1.
Promedios: [0.19333333 0.89072165 1.
CURVA DE APRENDIZAJE DE VALIDACION:
[[0.34666667 0.32
                        0.17333333 0.2
                                               0.28
 [0.46666667 0.46666667 0.37333333 0.37333333 0.46666667]
 [0.58666667 0.57333333 0.54666667 0.62666667 0.6
 [0.65333333 0.72
                                   0.73333333 0.6933333331
 [0.70666667 0.82666667 0.66666667 0.77333333 0.72
Promedios: [0.264
                       0.42933333 0.58666667 0.688
                                                        0.738666671
```

```
Tamaño conjunto de datos de entrenamiento: [ 60 195 330 465 600]
CURVA DE APRENDIZAJE DE ENTRENAMIENTO:
[[0.91666667 0.16666667 0.16666667 0.16666667 0.16666667
[1.
T1.
Promedios: [0.31666667 1.
CURVA DE APRENDIZAJE DE VALIDACION:
[[0.27333333 0.20666667 0.20666667 0.21333333 0.23333333]
                                              0.72
[0.62
                        0.67333333 0.68
[0.78
            0.72
                        0.78666667 0.78
                                              0.833333331
             0.78
                        0.86
                                   0.83333333 0.90666667
[0.86666667 0.83333333 0.88
                                   0.89333333 0.92
Promedios: [0.22666667 0.65466667 0.78
                                                         0.87866667]
```

EVALUACIÓN DEL ERROR LOGARÍTMICO

Tamaño conjunto de datos de entrenamiento: [30 97 165 232 300]

CURVA DE APRENDIZAJE DE ENTRENAMIENTO:

[1.6937394712719174, 0.7349629130745837, 0.19491028173295122, 0.17698438558960855, 0.16679297479556549]

CURVA DE APRENDIZAJE DE VALIDACION:

[1.6999750536432232, 1.2474683794206964, 0.7492084940550225, 0.4988076855286228, 0.3174925930997478]

CURVA DE APRENDIZAJE DE ENTRENAMIENTO:

Tamaño conjunto de datos de entrenamiento: [30 97 165 232 300]

[1.7007321622119422, 0.7863270811202374, 0.21553165595675444, 0.21166070763650027, 0.16851265389399936]

CURVA DE APRENDIZAJE DE VALIDACION:

[1.710038231131813, 1.2834641740022643, 0.7697479440166103, 0.5446496183544562, 0.3146820730867339]

CURVA DE APRENDIZAJE DE ENTRENAMIENTO:

Tamaño conjunto de datos de entrenamiento: [60 195 330 465 600]

 $[1.5684059325240838,\ 0.20590552412022836,\ 0.16495350178573123,\ 0.1530601777574224,\ 0.15140471874265052]$

CURVA DE APRENDIZAJE DE VALIDACION:

 $[1.6150994167998909,\ 0.8857398051585084,\ 0.5521531927860149,\ 0.34677078507226117,\ 0.23159366477484533]$

CONCLUSIONES

Para evaluar el sobreajuste en cada curva de aprendizaje, se utilizó tres fragmentos de datos. Se observó que, a medida que aumenta la cantidad de datos utilizados, los porcentajes de validación, prueba (test) y temp mejoran, acercándose cada vez más al rendimiento en entrenamiento.

Por último, al comparar los resultados finales, noto que el dataset con mayor cantidad de datos es el más cercano a los resultados del entrenamiento. Esto indica que mi modelo generaliza mejor cuando se utiliza un mayor número de datos.

FLUJO DEL MODELO

