Functions_in_MATLAB_II

December 19, 2018

1 Teoría de elementos finitos y su implementación (11/12/2018)

1.1 Funciones que realizan tareas

1.1.1 Programas usando archivos M-file

- Archivos de instrucciones
- Archivos de funciones

1.1.2 Archivos de instrucciones

Un archivo o *script* de instrucciones consisten de una sucesión de instrucciones normales de MAT-LAB.

Las variables en un archivo de instrucciones son globales y, por tanto, cambiarán los valores del espacio de trabajo.

Los archivos de instrucciones son utilizados a menudo para introducir datos en una matriz grande.

1.1.3 Archivos de funciones

Los archivos de funciones hacen que MATLAB tenga capacidad de crecimiento.

Se pueden crear funciones específicas para un problema concreto y a partir de su introducción, tendrán el mismo rango que las demás funciones del sistema.

Las variables en las funciones son locales.

También se puede declararse una variable como global.

1.2 Para direccionar una carpeta de trabajo

- Se puede utilizar las instrucciones: cd, dir.
- Se puede usar la instrucción path. Por ejemplo: /home/user/Projects/MATLAB.

1.3 Creando un archivo de variables inicializados

```
In [2]: % datos.m
        % Archivo de variables inicializadas
        a = [2 3; 4 5];
        b = [2 \ 3]';
```

1.4 Para cargar los datos

```
In [3]: % datos
        a
        b
a =
     2
           3
     4
           5
b =
     2
     3
```

1.5 Instrucciones de control

1.5.1 Instrucción for ... end

```
Sintáxis:
for NombVar = expresión
    instrucción_1
    instrucción_2
    {\tt instrucci\'on\_M}
end
   o
for NombVar = expresión, instrucción_1, instrucción_2, ..., instrucción_M end
   donde:
   NombVar: es el identificador de la variable.
   expresión:
                 usualmente tiene la siguiente forma: Val_Inic:incr:Val_Fin o
Val_Inic:Val_Fin.
   Val_Inic: valor inicial que a tomar la variable.
   incr: incremento
```

Val_Fin: valor final que va a tomar la variable.

si expresión tiene la forma Val_Inic:Val_Fin, el incremento (implícito) es uno.

A continuación, se muestra un ejemplo ilustrativo:

Ejemplo: Escriba una función comb(n,k) en MATLAB para calcular $\binom{n}{k} = \frac{n!}{k!(n-k)!}$.

```
function z = comb(n, k)
    z = 1;
    for i=0:(k-1);
       z = z * (n-i)/(k-i);
    end
end
```

Guardar en el directorio de trabajo con el nombre comb.m. Para ejecutar esta función, ingrese n=4 y k=3, ingrese:

```
comb(4,3)
```

```
In [4]: %%file comb.m
    function z = comb(n, k)
    z = 1;
    for i = 0:(k-1)
        z = z * (n-i)/(k-i);
    end
end
```

Created file '/home/carlosal1015/GitHub/Finite-element-method-FEM/2018/Notebooks/comb.m'.

Ejemplo: Escribir los cuadrados de los números naturales pares menores que 20.