Unit 7 Normalization (表格正規化)

PART II: 資料庫設計 (Database Design)

- □ 資料庫問題分析與架構規劃:
 - 若有一大量資料想利用DBMS建資料庫來管理。第一步要分析問題,找到使用者需求
 - 實體-關係模型(Entity-Relationship Model,簡稱E-R Model)是一套資料庫的設計工具。我們可以 利用E-R Model分析資料庫問題。它可以把真實世界中複雜的問題中的事物和關係轉化為資料 庫中的資料架構
 - 由於利用實體-關係模型設計資料庫時,並不會牽涉到資料庫的操作、儲存方式等複雜的電腦運作。所以,我們會把心力放在需求分析去規劃想要的資料庫,並以實體-關係圖(E-R Diagram)來呈現
- □ 資料庫的表格正規化:
 - 實體-關係圖很容易轉化為表格(Tables),而資料庫就是由許多表格(tables)組成的
 - 這些表格要正規化(Normalization)才能避免將來操作時的異常現象發生
- □ 設計介面增刪查改資料庫:
 - 如何方便、又有效率的管理存取資料庫是使用者最關心的二個要素
 - 良好的介面設計,可以讓使用者方便的查詢、方便的新增、方便的刪除、方便的修改的處理資料庫

Real-world vs. E-R Model vs. Tables

The real-world enterprise

Semantic Data Model:

Entity-Relationship (E-R) Data Model

1 branch 分公司

branch-name	branch-city	assets		
Brighton	Brooklyn	7100000		
Downtown	Brooklyn	9000000		
Mianus	Horseneck	400000		
North Town	Rye	3700000		
Perryridge	Horseneck	1700000		
Pownal	Bennington	300000		
Redwood	Palo Alto	2100000		
Round Hill	Horseneck	8000000		

2. customer 客戶(存款戶,貸款戶) 3. depositor 存款戶

customer-name	customer-street	customer-city
Adams	Spring	Pittsfield
Brooks	Senator	Brooklyn
Curry	North	Rye
Glenn	Sand Hill	Woodside
Green	Walnut	Stamford
Hayes	Main	Harrison
Johnson	Alma	Palo Alto
Jones	Main	Harrison
Lindsay	Park	Pittsfield
Smith	North	Rye
Turner	Putnam	Stamford
Williams	Nassau	Princeton

customer-name	account-number
Hayes	A-102
Johnson	A-101
Johnson	A-201
Jones	A-217
Lindsay	A-222
Smith	A-215
Turner	A-305

Contents

- □ 7.1 Introduction
- □ 7.2 Functional Dependency
- □ 7.3 First Normal Form (1NF)
- □ 7.4 Second Normal Form (2NF)
- □ 7.5 Third Normal Form (3NF)
- □ 7.6 Good and Bad Decomposition

7.1 Introduction

- □ Logical Database Design vs. Physical Database Design
- □ Problem of Normalization
- Normal Forms

Logical Database Design

- Logical Database Design
 - **Semantic Modeling,** eg. E-R model (UNIT 6)
 - Normalization
- Problem of Normalization
 - Given some body of data to be represented in a database, how to decide the suitable logical structure they should have?
 - what relations should exist?
 - what attributes should they have?

Problem of Normalization

<*e.g.*>

S1, Smith, 20, London, P1, Nut, Red, 12, London, 300 S1, Smith, 20, London, P2, Bolt, Green, 17, Paris, 200

S4, Clark, 20, London, P5, Cam, Blue, 12, Paris, 400

 \bigcirc

Normalization

S

CI

S#	SNAME	STATUS	CITY	
S1	Smith	20	London	ì
•	•	•	.	

P

P #	•••	•••	•••
•	•	•	•
•	•	•	•

SP

S#	P #	QTY
S1	P1	300
S1	P2	200

or

B				
S#	SNAME	STATUS		
S1	Smith	20		
S2	•	•		
•	•	•		

P

P #	•••	•••	•••
•	•	•	•
•	•	•	•

SP'

נט	L		
S#	CITY	P #	QTY
S1	London	P1	300
S1	London	P2	200
•	•	•	•

Redundancy

□>Update Anomalies! (異常)

Supplier-and-Parts Database

S1, Smith, 20, London, P1, Nut, Red, 12, London, 300 S1, Smith, 20, London, P2, Bolt, Green, 17, Paris, 200

S4, Clark, 20, London, P5, Cam, Blue, 12, Paris, 400

Normalization

SSP

S#	STATUS	CITY	(P#, QTY)
S1	20	London	{(P1, 300), (P2, 200),, (P6, 100)}
S2	10	Paris	{(P1, 300), (P2, 400)}
S3	10	Paris	{(P2, 200)}
S4	20	London	{(P2, 200), (P4, 300), (P5, 400)}

P#	PNAME	COLOR	WEIGHT	CITY
P1	Nut	Red	12	London
P2	Bolt	Green	17	Paris
Р3	Screw	Blue	17	Rome
P4	Screw	Red	14	London
P5	Cam	Blue	12	Paris
P6	Cog	Red	19	London

S	S#	SNAME	STATUS	CITY
	S1	Smith	20	London
	S2	Jones	10	Paris
	S3	Blake	30	Paris
	<u>S</u> 4	Clark	20	London

P	Р#	PNAME	COLOR	WEIGHT	CITY
	P1	Nut	Red	12	London
	P2	Bolt	Green	17	Paris
	Р3	Screw	Blue	17	Rome
	P4	Screw	Red	14	London
	P5	Cam	Blue	12	Paris
	P6	Cog	Red	19	London

9	S#	P #	QTY
	S1	P1	300
	S1	P2	200
	S1	P3	400
	S1	P4	200
	S1	P5	100
	S1	P6	100
	S2	P1	300
	S2	P2	400
	S3	P2	200
	S4	P2	200
	S4	P4	300
	S4	P5	400

Normal Forms

• A relation is said to be in a particular **normal form** if it satisfies a certain set of constraints.

<e.g.> 1NF: A relation is in First Normal Form (1NF) iff it contains only atomic values.

universe of relations (normalized and un-normalized)

elations (normalized relations) IF relations
BCNF relations 4NF relations 5NF relations

7.2 Functional Dependency

- □ Functional Dependency (FD)
- □ Fully Functional Dependency (FFD)

Functional Dependency

- Functional Dependency
 - Def: Given a relation *R*, *R.Y* is functionally dependent on *R.X* iff each *X*-value has associated with it precisely one *Y*-value (at any time).
 - Note: X, Y may be the composite attributes.

Notation:

 $R.X \longrightarrow R.Y$

R

	X	$\overline{\mathbf{Y}}$

read as "R.X functionally determines R.Y"

S#	SNAME	STATUS	CITY
S1	Smith	20	London
S2	Jones	10	Paris
S 3	Blake	30	Paris
S4	Clark	20	London
S5	Adams	30	Athens

Functional Dependency (cont.)

<**e.g.1>**

S $S.S\# \longrightarrow S.SNAME$ $S.S\# \longrightarrow S.STATUS$ $S.S\# \longrightarrow S.CITY$ $S.STATUS \longrightarrow S.CITY$

S	S#	SNAME	STATUS	CITY
	S1	Smith	20	London
	S2	Jones	10	Paris
	S 3	Blake	30	Paris
	S4	Clark	20	London
	S5	Adams	30	Athens

FD Diagram:

Note: Assume STATUS is some factor of Supplier and no any relationship with CITY.

Functional Dependency (cont.)

P

P#	PNAME	COLOR	WEIGHT	CITY
P1	Nut	Red	12	London
P2	Bolt	Green	17	Paris
Р3	Screw	Blue	17	Rome
P4	Screw	Red	14	London
P5	Cam	Blue	12	Paris
P6	Cog	Red	19	London

• If \underline{X} is a candidate key of \underline{R} , then all attributes \underline{Y} of \underline{R} are functionally dependent on \underline{X} . (i.e. $X \longrightarrow Y$)

SP	S#	P#	QTY
	S 1	P1	300
	S 1	P2	200
	S 1	P3	400
	S 1	P4	200
	S 1	P5	100
	S 1	P6	100
	S2	P1	300
	S2	P2	400
	S3	P2	200
	S4	P2	200
	S4	P4	300
	S4	P5	400

Fully Functional Dependency (FFD)

- Def: Y is <u>fully functionally</u> dependent on X iff
 - (1) *Y* is FD on *X*
 - (2) *Y* is not FD on any proper subset of *X*.

<e.g.> **SP'** (S#, CITY, P#, QTY)

FD		FD
	S #	
not FFD ———		'
	FD CITY	CITY S#

S#	city ₁	city ₂
S1	London	Taipei

SP'

OI .					
S#	CITY	P#	QTY		
S1	London	P1	300		
S 1	London	P2	200		
•••		•••			

CITY

S#	CITY

Fully Functional Dependency (cont.)

- <Note> 1. Normally, we take FD to mean FFD.
 - 2. FD is a semantic notion.

$$\langle e.g. \rangle$$
 S# \longrightarrow CITY (Ref P.10-9)

Means: each supplier is located in precisely one city.

3. FD is a special kind of integrity constraint.

CREATE INTEGRITY RULE SCFD

CHECK FORALL SX FORALL SY

(IF SX.S# = SY.S# THEN SX.CITY = SY.CITY);

4. FDs considered here applied within a single relation.

 $\langle e.g. \rangle$ SP.S# \longrightarrow S.S# is not considered!

7.3 First Normal Form (1NF)

Normal Forms: 1NF

• Def: A relation is in 1NF *iff* all underlying simple domains contain <u>atomic</u> <u>values</u> only.

Fact?

S#	STATUS	CITY	(P#, QTY)	
S1 S2 S3 S4	20 10 10 20	London Paris Paris London	{(P1, 300), (P2, 200),, (P6, 100)} {(P1, 300), (P2, 400)} {(P2, 200)} {(P2, 200), (P4, 300), (P5, 400)}	

Suppose 1. CITY is the main office of the supplier.

2. STATUS is some factor of CITY

FIRST

S#	STATUS	CITY	P#	QTY
S1	20	London	P1	300
S 1	20	London	P2	200
S 1	20	London	P3	400
S 1	20	London	P4	200
S 1	20	London	P5	100
S 1	20	London	P6	100
S2	10	Paris	P1	300
S2	10	Paris	P2	400
S 3	10	Paris	P2	200
S4	20	London	P2	200
S4	20	London	P4	300
S4	20	London	P5	400

Key:(S#,P#),

Normalized 1NF

1NF Problem: Update Anomalies!

<1> Update

If suppler S1 moves from London to Paris, then 6 tuples must be updated!

<2> Insertion

Cannot insert a supplier information if it doesn't supply any part, because that will cause a null key value.

FIRST

S#	STATUS	CITY	P#	QTY
s3	<u>ż</u> 0	Paris	P2	300
•	•			•
S5	30	Athens	NULL	NULL

<3> Deletion

Delete the information that "S3 supplies P2", then the fact "S3 is located in Paris" is also deleted.

FIRST

S#	STATUS	CITY	P#	QTY
S1	20	London	P1	300
S 1	20	London	P2	200
S 1	20	London	P3	400
S 1	20	London	P4	200
S 1	20	London	P5	100
S 1	20	London	P6	100
S2	10	Paris	P1	300
S2	10	Paris	P2	400
S3	10	Paris	P2	200
S4	20	London	P2	200
S4	20	London	P4	300
S4	20	London	P5	400

Key:(S#,P#), Normalized 1NF

1NF Problem: Update Anomalies! (cont.)

<e.g.> Suppose 1. CITY is the main office of the supplier.

2. STATUS is some factor of CITY (ref.p.7-10)

Primary key of **FIRST**: (S#, P#)

FIRST

S#	STATUS	CITY	P#	QTY
S1	20	London	P1	300
S 1	20	London	P2	200
S 1	20	London	P3	400
S 1	20	London	P4	200
S 1	20	London	P5	100
S 1	20	London	P6	100
S2	10	Paris	P1	300
S2	10	Paris	P2	400
S3	10	Paris	P2	200
S4	20	London	P2	200
S4	20	London	P4	300
S4	20	London	P5	400

Key:(S#,P#), Normalized 1NF

FD:

- $1. S\# \Rightarrow STATUS$
- 2. $S# \rightarrow CITY$
- 3. CITY \rightarrow STATUS
- 4. $(S\#, P\#) \rightarrow QTY$

primary key (S#, P#) / STATUS

primary key (S#, P#) CITY

7.4 Second Normal Form (2NF)

FIRST

S#	STATUS	CITY	P#	QTY
S1	20	London	P1	300
S 1	20	London	P2	200
S 1	20	London	P3	400
S 1	20	London	P4	200
S 1	20	London	P5	100
S 1	20	London	P6	100
S2	10	Paris	P1	300
S2	10	Paris	P2	400
S 3	10	Paris	P2	200
S4	20	London	P2	200
S4	20	London	P4	300
S4	20	London	P5	400

SECOND (in 2NF)

S#	STATUS	CITY
S1 S2 S3 S4 S5	20 10 10 20 30	London Paris Paris London Athens

SP (in 2NF)

S#	P#	QTY
S1	P1	300
S 1	P2	200
S 1	P3	400
S 1	P4	200
S 1	P5	100
S 1	P6	100
S2	P1	300
S2	P2	400
S 3	P2	200
S4	P2	200
S4	P4	300
S4	P5	400
•		

Normal Form: 2NF

- Def: A relation R is in 2NF iff
 - (1) R is in 1NF (i.e. atomic)
 - (2) Non-key attributes are FFD on primary key. (QTY, STATUS, CITY in FIRST)

<e.g.> FIRST is in 1NF, but not in 2NF

$$(S\#, P\#)$$
 fFD STATUS, and

SECOND (in 2NF)

CITY

London

Paris

Paris

London

S# STATUS

10

10

20

30

Decompose FIRST into:

<1> SECOND (S#, STATUS, CITY): primary key: S#

FD:

- 1. $S\# \rightarrow STATUS$
- 2. $S\# \rightarrow CITY$
- 3. CITY \rightarrow STATUS

FIRST

TINSI					
S#	STATUS	CITY	P #	QTY	
S1 S1 S1 S1	20 20 20 20 20 20	London London London London London	P1 P2 P3 P4 P5	300 200 400 200 100	
Š1	20	London	P6	100	
S2	10	Paris	P1	300	
S2	10	Paris	P2	400	
S3	10	Paris	P2	200	
S4	20	London	P2	200	
S4	20	London	P4	300	
S4	20	London	P5	400	

Key:(S#,P#),

Normalized 1NF

<2> SP (S#, P#, QTY):

Primary key: (S#, p#)

FD: 4. $(S#, P#) \rightarrow QTY$

SP	(in	2NF)
OI 1	ш	7111.)

51 (III 21 1 1)					
S#	P #	QTY			
S1	P1	300			
S1	P2	200			
S1	Р3	400			
S1	P4	200			
S1	P5	100			
S1	P6	100			
S2	P1	300			
S2	P2	400			
S3	P2	200			
S4	P2	200			
S4	P4	300			
S4	P5	400			

Normal Form: 2NF (cont.)

FIRST

	-			
S#	STATUS	CITY	P#	QTY
S 1	20	London	P1	300
S 1	20	London	P2	200
S 1	20	London	P3	400
S 1	20	London	P4	200
S 1	20	London	P5	100
S 1	20	London	P6	100
S2	10	Paris	P1	300
S2	10	Paris	P2	400
S 3	10	Paris	P2	200
S 4	20	London	P2	200
S 4	20	London	P4	300
S4	20	London	P5	400

<1> Update: S1 moves from London to Paris

<2> Insertion: (S5 30 Athens)

<3> Deletion

Delete "S3 supplies P2 200", then the fact "S3 is located in Paris" is also deleted.

SECOND (in 2NF)

S#	STATUS	CITY
\$1 \$2 \$3 \$4 \$5	20 10 10 20 30	London Paris Paris London Athens

SP (in 2NF)

S#	P#	QTY
S1	P1	300
S 1	P2	200
S 1	P3	400
S 1	P4	200
S 1	P5	100
S 1	P6	100
S2	P1	300
S2	P2	400
S3	P2	200
S4	P2	200
S4	P4	300
S4	P5	400

Normal Form: 2NF (cont.)

- A relation in 1NF can always be reduced to an equivalent collection of 2NF relations.
- The reduction process from 1NF to 2NF is *non-loss* decomposition.

• The collection of 2NF relations <u>may</u> contain "more" information than the equivalent 1NF relation.

<e.g.> (S5, 30, Athens)

Problem: Update Anomalies in SECOND!

• **Update Anomalies** in **SECOND**

- <1> UPDATE: if the status of London is changed from 20 to 60, then two tuples must be updated
- <2> DELETE: delete supplier S5, then the fact "the status of Athens is 30" is also deleted!
- <3>INSERT: cannot insert the fact "the status of Rome is 50"!

• Why:

SECOND (in 2NF)

S#	STATUS	CITY
\$1 \$2 \$3 \$4 \$5	20 10 10 20 30	London Paris Paris London Athens

FD:

3. CITY
$$\rightarrow$$
 STATUS

7.5 Third Normal Form (3NF)

SECOND

S#	STATUS	CITY
S1	20	London
S2	10	Paris
S3	10	Paris
S4	20	London
S5	30	Athens

SC (in 3NF)

S#	CITY
S1	London
S2	Paris
S3	Paris
S4	London
S5	Athens

CS (in 3NF)

CITY	STATUS
Athens	30
London	20
Paris	10
Rome	50

Normal Forms: 3NF

- Def : A relation R is in 3NF iff
 - (1) R is in 2NF
 - (2) Every non-key attribute is non-transitively dependent on the primary key. e.g. STATUS is transitively on S#

(i.e., non-key attributes are mutually independent)

<e.g.> **SP** is in 3NF, but **SECOND** is not!

SECOND (not 3NF)

S#	STATUS	CITY
S1 S2 S3 S4 S5	20 10 10 20 30	London Paris Paris London Athens

Normal Forms: 3NF (cont.)

Decompose SECOND into:

<1> **SC**(S#, CITY)

primary key: S#

FD diagram:

<2> **CS**(CITY, STATUS):

primary key: CITY

FD diagram:

SC (in 3NF)

S#	CITY
S1	London
S2	Paris
S3	Paris
S4	London
S5	Athens

CS (in 3NF)

CITY	STATUS
Athens	30
London	20
Paris	10
Rome	50

SECOND

S#	STATUS	CITY
S1	_20	London
S2	10	Paris
S3	10	Paris
S4	20	London
S5	30	Athens

Normal Forms: 3NF (cont.)

Consider P:

P	P#	PNAME	COLOR	WEIGHT	CITY
	P1	Nut	Red	12	London
	P2	Bolt	Green	17	Paris
	P3	Screw	Blue	17	Rome
	P4	Screw	Red	14	London
	P5	Cam	Blue	12	Paris
	P6	Cog	Red	19	London

- Def: A relation is in 1NF *iff* all underlying simple domains contain <u>atomic values</u> only.
- Def: A relation R is in 2NF iff
 - (1) R is in 1NF (i.e. atomic)
 - (2) Non-key attributes are FFD on primary key.
- Def : A relation R is in 3NF iff
 - (1) R is in 2NF
 - (2) Every non-key attribute is non-transitively dependent on the primary key. (i.e., non-key attributes are mutually independent)

Normal Forms: 3NF (cont.)

Note:

- (1) Any 2NF diagram can always be reduced to a collection of 3NF relations.
- (2) The reduction process from 2NF to 3NF is *non-loss* decomposition.
- (3) The collection of 3NF relations may contain "*more information*" than the equivalent 2NF relation.

SECOND

S#	STATUS	CITY
\$1	20	London
\$2	10	Paris
\$3	10	Paris
\$4	20	London
\$5	30	Athens

7.6 Good and Bad Decomposition

SC (in 3NF)

S#	CITY
S1	London
S2	Paris
S3	Paris
S4	London
S5	Athens

CS (in 3NF)

STATUS

CITY	STATUS
Athens	30
London	20
Paris	10
Rome	50

SC (in 3NF)

S#	CITY
S1	London
S2	Paris
S3	Paris
S4	London
S5	Athens

SS (in 3NF)

S#	STATUS
S1	20
S2	10
S3	10
S4	20
S5	30

Good and Bad Decomposition

Good and Bad Decomposition (cont.)

Independent Projection: (by Rissanen '77, ref[10.6])

Def: Projections R1 and R2 of R are **independent** iff

- (1) Any FD in R can be reduced from those in R1 and R2.
- (2) The common attribute of R1 and R2 forms a candidate key for at least one of R1 and R2.

- (2) Common attribute of SC and CS is CITY, which is the primary key of CS.
 - \therefore SC and CS are independent \rightarrow Decomposition **A** is good!

Good and Bad Decomposition (cont.)

<u>Decomposition B:</u>

$$SECOND(S\#, STATUS, CITY) \longrightarrow \begin{cases} SC (S\#, CITY) \\ SS (S\#, STATUS) \end{cases}$$

$$(1) FD \text{ in } SC \text{ and } SS: \\ S\# \longrightarrow CITY \\ S\# \longrightarrow STATUS \end{cases} \longrightarrow CITY \longrightarrow STATUS$$

∴ SC and SS are dependent → decomposition B is bad! though common attr. S# is primary key of both SC, SS.

Normal Forms

universe of relations (normalized and un-normalized)

Unit 18 More on Normalization

- □ 18.1 Introduction
- □ 18.2 Functional Dependency
- □ 18.3 First, Second, and Third Normal Forms (1NF, 2NF, 3NF)
- □ 18.4 Boyce/Codd Normal Form (BCNF)
- □ 18.5 Fourth Normal Form (4NF)
- □ 18.6 Fifth Normal Form (5NF)

EX.part2.2: Tables and SQL

Reduction E-R Model to Relational Tables

- Refer to UNIT 6, Sec. 7
- Transfer your E-R model to Tables

Check each Table to see if it is a

- 1NF.
- 2NF,
- 3NF

Design Query

- Using SQL to define and create Tables
- Design some queries to access your database
- Using SQL to query your database
- ...

end of unit 7