Note del corso di Geometria 1

Gabriel Antonio Videtta

27 marzo 2023

Proprietà e teoremi principali sul prodotto scalare

Nota. Nel corso del documento, per V si intenderà uno spazio vettoriale di dimensione finita n e per φ un suo prodotto scalare.

Proposizione. (formula delle dimensioni del prodotto scalare) Sia $W \subseteq V$ un sottospazio di V. Allora vale la seguente identità:

$$\dim W + \dim W^{\perp} = \dim V + \dim(W \cap V^{\perp}).$$

Dimostrazione. Si consideri l'applicazione lineare $f: V \to W^*$ tale che $f(\underline{v})$ è un funzionale di W^* tale che $f(\underline{v})(\underline{w}) = \varphi(\underline{v},\underline{w}) \ \forall \underline{w} \in W$. Si osserva che $W^{\perp} = \operatorname{Ker} f$, da cui, per la formula delle dimensioni, dim $V = \dim W^{\perp} + \operatorname{rg} f$. Inoltre, si osserva anche che $f = i^{\top} \circ a_{\varphi}$, dove $i: W \to V$ è tale che $i(\underline{w}) = \underline{w}$, infatti $f(\underline{v}) = a_{\varphi}(\underline{v}) \circ i$ è un funzionale di W^* tale che $f(\underline{v})(\underline{w}) = \varphi(\underline{v},\underline{w})$. Pertanto $\operatorname{rg} f = \operatorname{rg}(i^{\top} \circ a_{\varphi})$.

Si consideri ora l'applicazione $g = a_{\varphi} \circ i : W \to W^*$. Sia ora \mathcal{B}_W una base di W e \mathcal{B}_V una base di V. Allora le matrice associate di f e di g sono le seguenti:

(i)
$$M_{\mathcal{B}_{W}^{*}}^{\mathcal{B}_{V}}(f) = M_{\mathcal{B}_{W}^{*}}^{\mathcal{B}_{V}}(i^{\top} \circ a_{\varphi}) = \underbrace{M_{\mathcal{B}_{W}^{*}}^{\mathcal{B}_{V}^{*}}(i^{\top})}_{A} \underbrace{M_{\mathcal{B}_{V}^{*}}^{\mathcal{B}_{V}}(a_{\varphi})}_{B} = AB,$$

(ii)
$$M_{\mathcal{B}_{V}^{*}}^{\mathcal{B}_{W}}(g) = M_{\mathcal{B}_{V}^{*}}^{\mathcal{B}_{W}}(a_{\varphi} \circ i) = \underbrace{M_{\mathcal{B}_{V}^{*}}^{\mathcal{B}_{V}}(a_{\varphi})}_{B} \underbrace{M_{\mathcal{B}_{V}}^{\mathcal{B}_{W}}(i)}_{A^{\top}} = BA^{\top} \stackrel{\mathcal{B}^{\top} = B}{=} (AB)^{\top}.$$

Poiché $\operatorname{rg}(A) = \operatorname{rg}(A^{\top})$, si deduce che $\operatorname{rg}(f) = \operatorname{rg}(g) \implies \operatorname{rg}(i^{\top} \circ a_{\varphi}) = \operatorname{rg}(a_{\varphi} \circ i) = \operatorname{rg}(a_{\varphi}|_{W}) = \dim W - \dim \operatorname{Ker} a_{\varphi}|_{W} = \dim W - \dim(W \cap a_{\varphi})$

 $\underbrace{\operatorname{Ker} a_{\varphi}}_{V^{\perp}} = \dim W - \dim(W \cap V^{\perp})$. Si conclude allora, sostituendo quest'ultima identità nell'identità ricavata a inizio dimostrazione che dim $V = \dim W^{\top} + \dim W - \dim(W \cap V^{\perp})$, ossia la tesi.

Osservazione. Si possono fare alcune osservazioni sul radicale di un solo elemento \underline{w} e su quello del suo sottospazio generato $W = \operatorname{Span}(\underline{w})$:

▶
$$\underline{w}^{\perp} = W^{\perp}$$
,
▶ $\underline{w} \notin W^{\perp} \iff \operatorname{Rad}(\varphi|_{W}) = W \cap W^{\perp} \iff \underline{w} \text{ non è isotropo} = \{\underline{0}\} \iff V = W \oplus W^{\perp}.$

Definizione. Si definisce **base ortogonale** di V una base $\underline{v_1}, ..., \underline{v_n}$ tale per cui $\varphi(\underline{v_i}, v_j) = 0 \iff i \neq j$, ossia per cui la matrice associata del prodotto scalare è diagonale.

Proposizione. Se char $\mathbb{K} \neq 2$, un prodotto scalare è univocamente determinato dalla sua forma quadratica q.

Dimostrazione. Si nota infatti che
$$q(\underline{v} + \underline{w}) - q(\underline{v}) - q(\underline{w}) = 2\varphi(\underline{v}, \underline{w})$$
, e quindi, poiché 2 è invertibile per ipotesi, che $\varphi(\underline{v}, \underline{w}) = 2^{-1}(q(\underline{v} + \underline{w}) - q(\underline{v}) - q(\underline{w}))$.

Teorema. (di Lagrange) Ogni spazio vettoriale V su \mathbb{K} tale per cui char $\mathbb{K} \neq 2$ ammette una base ortogonale.

Dimostrazione. Sia dimostra il teorema per induzione su $n := \dim V$. Per $n \le 1$, la dimostrazione è triviale. Sia allora il teorema vero per $i \le n$. Se V ammette un vettore non isotropo \underline{w} , sia $W = \operatorname{Span}(\underline{w})$ e si consideri la decomposizione $V = W \oplus W^{\perp}$. Poiché W^{\perp} ha dimensione n-1, per ipotesi induttiva ammette una base ortogonale. Inoltre, tale base è anche ortogonale a W, e quindi l'aggiunta di \underline{w} a questa base ne fa una base ortogonale di V. Se invece V non ammette vettori non isotropi, ogni forma quadratica è nulla, e quindi il prodotto scalare è nullo per la proposizione precedente. \square