- Two most fundamental concerns of AI researchers
 - Knowledge Representation (capture K in a language)
 - capturing knowledge in a way suitable for computer manipulation
 - **Search** (problem-solving techniques)
 - systematically explores a space of problem states

Symbolic AI

- Problem states: initial knowledge and its inferences, e.g.,
 - intermediate steps in reasoning
 - different board configurations in a board game, such as chess and go
- State space: the collection of problem states
- *Inference rules*: inferring new knowledge from initial knowledge

Solving Problems with Search Algorithms

Input: a problem P

Preprocessing:

Define *states* and a *state space*Define *Operators*Define a *start* state and *goal* set of states.

Processing:

Activate a Search algorithm to find a *path* from **start** to one of the **goal** states.

Two Key Components of Heuristic Search

Each Heuristic Search consists of two parts

- A heuristic measure
- An algorithm that uses the heuristic measure to search the state space

Data, Information, Knowledge

Data: are any facts (words), numbers, or text that can be processed by a computer.

Information: The patterns, associations, or relationships among all this *data* can provide *information*.

Knowledge: Information can be converted into *knowledge* about historical patterns and future trends.

What Is Association Rule Mining?

- Association Rule Mining
- = Searches for **relationships** between **items** in a dataset.
 - * Finding frequent patterns, associations, correlations, or causal structures among sets of items or objects in information repositories.
 - * Frequent pattern: pattern (set of items, sequence, etc.) that occurs frequently in a database.
- Rule form: $X \rightarrow Y$

Two Tasks in ARM

- To reduce the computational complexity of mining association rules, we can divide the problem into two subtasks:
 - 1. Frequent Itemset Generation: Find all the itemsets that satisfy the *minsup* threshold. These itemsets are called frequent itemsets.
 - 2. Rule Generation: Extract all the high-confidence rules from the frequent itemsets. These rules are called strong rules.
- The computational requirements for frequent itemset generation are generally more expensive than those for rule generation.

Association Rule Generation

Given a **frequent itemset** Y, find all non-empty subsets $X \subset Y$ such that $X \to Y - X$ satisfies minimum confidence requirement.

If |Y| = k, then there are $2^k - 2$ candidate association rules (ignoring: $Y \to \emptyset$ and $\emptyset \to Y$)

```
For each frequent itemset, Y, generate all non-empty subsets X \subset Y
For every non-empty subset X of Y do
if (\sigma(Y)/\sigma(X)) >= minconf
output rule X \rightarrow (Y - X)
end
```

If Y is not a frequent pattern, we do not consider the rules derived from its subsets.

注意topic4里 association rule和association candidate的区别, 还有一个 $3^n-2^{n+1}+1$