MATH-F-427 students

Coxeter groups

Course notes

June 6, 2019

Contents

Part I Coxeter groups

Coxeter groups

Theorem 0.1. The application π , defined on the set of generators S of the coxeter system (W, S), extend uniquely to an injective homomorphism:

$$\pi : W \to S_T^B \tag{0.1}$$

Proof. First of all, we need to show that the extension of π is well defined. It was clear, due to the definition of π on S that for every $s \in S$, the application $\pi_s \in S_T^B$. Indeed, for every $t \in T$ we had that $\pi_s(t) \in T \cup \overline{T}$ and π_s defined a bijection on $T \cup \overline{T}$. In order to check that its extension on all of W is well defined we need to check 2 things. First, we need to check that $\forall w \in W$ the application $\pi_w \in S_T^B$. However, since we extended π from S to W to be a group morphism, we know that π_w is by definition the composition of π_s for some $s \in S$ and thus is an element of S_T^B . Secondly, we need to check that this application π_w does not depend on the writing of $w \in W$. In order to show this, let us take some element $t \in T$ and let $w = s_1 s_2 ... s_k$ for some $s_i \in S$ (this is the form of every element of W since $s_i = s_i^{-1}$ for all i). Since, we want π to be a homomorphism, we have that:

$$\pi_{w}(t) = \pi_{s_{1}} \circ \pi_{s_{2}} \circ \dots \circ \pi_{s_{k}}(t)$$

$$= \pi_{s_{1}} \circ \pi_{s_{2}} \circ \dots \circ \pi_{s_{k-1}}(\pm s_{k}ts_{k})$$

$$(\text{with } - \text{iff } s_{k}ts_{k} = s_{k} \iff t = s_{k})$$

$$= \pi_{s_{1}} \circ \pi_{s_{2}} \circ \dots \circ \pi_{s_{k-2}}(\pm \pm s_{k-1}s_{k}ts_{k}s_{k-1})$$

$$(\text{with } - \text{iff } s_{k-1}s_{k}ts_{k}s_{k-1} = s_{k-1} \iff t = s_{k}s_{k-1}s_{k})$$

$$= \pi_{s_{1}} \circ \pi_{s_{2}} \circ \dots \circ \pi_{s_{k-3}}(\pm \pm \pm s_{k-2}s_{k-1}s_{k}ts_{k}s_{k-1}s_{k-2})$$

$$(\text{with } - \text{iff } s_{k-1}s_{k}ts_{k}s_{k-1} = s_{k-1}s_{k-2} \iff t = s_{k}s_{k-1}s_{k-2}s_{k-1}s_{k})$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$= \pm \pm \dots \pm s_{1}s_{2}\dots s_{k}ts_{k}s_{k-1}\dots s_{1}$$

$$(\text{with } - \text{iff } s_{1}\dots s_{k-1}s_{k}ts_{k}s_{k-1}\dots s_{1} = s_{1} \iff t = s_{k}\dots s_{2}s_{1}s_{2}\dots s_{k})$$

$$= \operatorname{sgn}_{w}(t) \ wtw^{-1}$$

$$(0.2)$$

Where the function $\operatorname{sgn}_w(t)$ is a sign function counting the number of indices $l \in \{1, 2, ... k\}$ such that $t = s_k ... s_{l-1} s_l s_{l-1} ... s_k$. Namely:

$$\operatorname{sgn}_{w}(t) = (-1)^{\#\{1 \le l \le k : t = s_{k} \dots s_{l-1} s_{l} s_{l-1} \dots s_{k}\}}$$

$$(0.3)$$

As we will show just after this sign function does not depend on the writing of $w \in W$ in the coxeter system (W, S). But first, let us get some intuition about what this sign function is counting, by looking to the case of S_n : aaaaaaaaaaaa

We are now going to use equation 0.2 to prove that the sign function does not depend on the writing of $w \in W$ in the Coxeter system (W, S) and therefore that π is a well defined homomorphism. In order to show this, it

suffices to show that every relations we had in (W, S) are satisfied by their image in S_T^B . In other words, we want to show that taking two elements $s, s' \in S$ we have that :

$$(\pi_s \circ \pi_{s'})^{m(s,s')} = \operatorname{Id}_{S_T^B} \tag{0.4}$$

Since $(ss')^{-1} = s's$, equation 0.2 gives us for every $t \in T$:

$$(\pi_s \circ \pi_{s'})^{m(s,s')}(t) = \pm (ss')^{m(s,s')}t(s's)^{m(s,s')} = \pm ete = \pm t \quad (0.5)$$

The sign must be + as here, $w = (ss')^{m(s,s')}$ and therefore we look at :

$$\#\{1 \le l \le m(s, s') : t = \underbrace{s'ss'...s'ss'}_{2l-1 \text{ characters}}\}$$

$$(0.6)$$

which is even since for every $l \leq m(s, s')/2$ we have :

• if m(s, s') is even:

$$t = \underbrace{s'ss'...s'ss'}_{2l-1 \text{ characters}} = \underbrace{s'ss'...s'ss'}_{2l-1+m(s,s') \text{ characters}} = \underbrace{s'ss'...s'ss'}_{2(l+m(s,s')/2)-1 \text{ characters}}$$

$$(0.7)$$

• if m(s, s') is odd:

$$t = \underbrace{s'ss'...s'ss'}_{2l-1 \text{ characters}} = \underbrace{s'ss'...s'ss'}_{2l-1+m(s,s') \text{ characters}} = \underbrace{s'ss'...s'ss'}_{2((m(s,s')-1)/2+l)+1 \text{ characters}}$$

$$(0.8)$$

In particular, this implies that if one index is counted below m(s,s')/2 then there exists an other index counted strictly bigger than m(s,s')/2 and vis versa. Thus the set must be even and the sign must be +. In particular, this proves equation (0.4) and π is a well defined morphism.

It last to show that the extension of π is injective. Let $u, v \in W$ be such that $\pi_u = \pi_v$ then, we have that :

$$\pi_{uv^{-1}} = \pi_u \circ \pi_{v^{-1}} = \mathrm{Id}_{S_T^B} = \pi_e$$
 (0.9)

Thus, in order to prove the injectivity of π we just need to show that if $w \in W$ is such that $\pi_w = \pi_e$ then w = e. Now, let's take $w \in W$ such that $\pi_w = \pi_e$ and let us suppose absurdly that $w \neq e$ then, there exists $k \geq 1$ such that $w = s_1...s_k$ is the shorter way possible to write $w \in W$ (meaning that k is the smallest possible) then:

$$s_k = \pi_e(s_k) = \pi_w(s_k) = \operatorname{sgn}_w(s_k) s_1 ... s_{k-1} s_k s_k s_k s_{k-1} ... s_1$$

= $\operatorname{sgn}_w(s_k) s_1 ... s_{k-1} s_k s_{k-1} ... s_1$ (0.10)

On the other hand, $\operatorname{sgn}_w(s_k) = -1$ because :

$$\{1 \le l \le k : t = s_k \dots s_{l-1} s_l s_{l-1} \dots s_k\} = \{k\}$$
(0.11)

Indeed, for l = k we have $s_k = s_k$. But if $l \neq k$ and if we had:

$$s_k = s_k..s_l..s_k \tag{0.12}$$

Then we would have:

$$s_{l-1}...s_k s_k = s_l...s_k (0.13)$$

And therefore we would have a contradiction with the minimality of k since :

$$w = s_1...s_{l-1}s_{l-1}...s_k$$

$$= s_1...s_{l-1}s_{l-1}...s_ks_k$$

$$= s_1...s_{l-2}s_{l+1}...s_{k-1}$$

$$= s_1...s_{l-2}s_{l+1}...s_{k-1}$$
(0.14)

which is a shorter way to write w. Therefore, we have that $\operatorname{sgn}_w(s_k) = -1$ and thus equation 0.10 gives:

$$s_k = -s_1...s_{k-1}s_ks_{k-1}...s_1 (0.15)$$

Which is a contradiction due to the presence of a sign. \Box

We are now going to define the notions of **parity** and **length** of an element in a Coxeter group.

Definition 0.2. Let (W, S) be a Coxeter system, and let $w \in W$, then we say that $w = s_1...s_k$ $(s_l \in S)$ is:

- even when k is even.
- odd when k is odd.

This is what we call the **parity** of $w \in W$.

Remark 0.3. As every relations in a Coxeter group involve an even number of $s \in S$ we see that the parity of an element $w \in W$ does not depend on its writing in W.

The set of even elements of a Coxeter system (W, S) is a subgroup of W called the **alternating** subgroup.

Remark 0.4. When S_n is seen as a Coxeter group with $S = \{s_1...s_{n-1}\}$ and the Coxeter matrix $m(s_i, s_{i+1}) = 3$ and m(s, s') = 2 for every other couple of the type $(s, s') \neq (s, s)$, it is quite easy to remark that the two notions of alternating group does coincide and therefore that this appellation is well chosen.

Definition 0.5. Let (W, S) be a Coxeter system, the **length** l(w) of an element $w \in W$ is defined as the smallest integer $k \in \mathbb{N}$ such that there exists simple reflections $s_1, ..., s_k \in S$ satisfying $w = s_1...s_k$.

The purpose of what follows is to prove the following theorem:

Theorem 0.6. Let (W, S) be a Coxeter system, and let $w \in W$ then :

$$l(w) = \#\{t \in T : sgn_{w^{-1}}(t) = -1\}$$
 (0.16)

Example 0.7. In the case where $W = S_n$ with the common representation, l(w) is exactly the number of inversion of w^{-1} which is exactly the same as the number of inversion of w itself.

Before proving this thorem, we focus our attention on some lemma:

Lemma 0.8. Let (W, S) be a Coxeter system and let $w \in W$, $t \in T$ then :

$$sgn_{w^{-1}}(t) = -1 \quad \iff \quad l(tw) < l(w) \tag{0.17}$$

Proof. Let's suppose that $\operatorname{sgn}_{w^{-1}}(t) = -1$ and let $w = s_1...s_k$ with k = l(w) then $w^{-1} = s_k...s_1$. We know that there must exists some $1 \le l \le k$ such that $t = s_1...s_l..s_1$ but then:

$$tw = s_1 s_2 ... s_l ... s_1 s_1 s_2 ... s_l s_{l+1} ... s_k$$

= $s_1 s_2 ... s_{l-1} s_{l+1} ... s_k$ (0.18)
= $s_1 s_2 ... \hat{s_l} ... s_k$

From which we conclude that $l(tw) \leq k-1 < k = l(w)$ and the first implication is proved.

Conversely, let's suppose that l(tw) < l(w) then, as tt = e we have that:

$$l(tw) < l(ttw) \Rightarrow l(ttw) \not< l(tw)$$
 (0.19)

Therefore, using the first implication of the Lemma we obtain by taking $\tilde{w} = tw$ that :

$$\operatorname{sgn}_{\tilde{w}^{-1}}(t) = \operatorname{sgn}_{w^{-1}t}(t) = +1 \tag{0.20}$$

Thus,

$$\pi_{(tw)^{-1}}(t) = +1 (tw)^{-1} t (tw) = w^{-1}tw$$
 (0.21)

However, since π is a morphism we have that :

$$\pi_{(tw)-1} = \pi_{w^{-1}t} = \pi_{w^{-1}} \circ \pi_t \tag{0.22}$$

Now let's remark that $\forall t \in T$ we have that :

$$\pi_t(t) = \operatorname{sgn}_t(t) \ ttt = -t \tag{0.23}$$

Indeed, let us write $t = s_1...s_k s s_k...s_1$ for k minimal. Then it is clear that :

$$\{1 \le l \le 2k+1 : t = s_1...s_{l-1}s_ls_{l-1}...s_1\} = \{k+1\}$$
 (0.24)

as by the minimality, it can not be true for some index $l \leq k$ that $t = s_1...s_{l-1}s_ls_{l-1}...s_1$ and as if it was true for some index l = k+1+l' with l' > 0 we would have that:

$$t = s_1 s_2 \dots s_k s_k \dots s_{k-l'+1} s_{k-l'} s_{k-l'+1} \dots s_k s_k \dots s_2 s_1 \tag{0.25}$$

Therefore, by multiplying both sides by $s_1s_2...s_ks$ from the right and by $ss_k...s_2s_1$ from the left, we would obtain that:

$$s = s_k ... s_{k-l'+1} s_{k-l'} s_{k-l'+1} ... s_k (0.26)$$

Therefore, by replacing s in t we would have that :

$$t = s_1...s_k s s_k...s_1 = s_1...s_k s_k...s_{k-l'+1} s_{k-l'} s_{k-l'+1}...s_k s_k...s_1 = s_1...s_{k-l'}...s_1$$

$$(0.27)$$

which would contradict the minimality of k. In particular, this proves that the equality (0.24) is verified and we have that :

$$\pi_t(t) = -t \tag{0.28}$$

Further more, by computing equality (0.22) on t we obtain that :

$$\pi_{(tw)^{-1}}(t) = \pi_{w^{-1}}\pi_{t}(t)
= \pi_{w^{-1}}(-t)
= -\pi_{w^{-1}}(t)
= -\operatorname{sgn}_{w^{-1}}(t) w^{-1}tw$$
(0.29)

And we finally conclude that $\operatorname{sgn}_{w^{-1}}(t) = -1$. \square

As a Corollary we have the following lemma:

Lemma 0.9 (The exchange property). Let (W, S) be a Coxeter system, let $w = s_1 s_2 ... s_k \in W$ and $t \in T$, then, if l(tw) < l(w), there exists some $1 \le l \le k$ such that:

$$tw = s_1 s_2 ... \hat{s}_l ... s_k$$
 (0.30)

Proof. By the previous lemma, we know that $\operatorname{sgn}_{w^{-1}}(t) = -1$. Therefore, we know there exists an index $1 \leq l \leq k$ such that $tw = s_1 s_2 ... \hat{s_l} ... s_k$. \square

Lemma 0.10. Let (W,S) be a Coxeter system and let $w = s_1 s_2 ... s_k \in W$, with k = l(w) and let us take some $t \in T$. Then, the following are equivalent:

- 1. l(tw) < l(w)
- 2. $tw = s_1...\hat{s_l}...s_1$ for some $1 \le l \le k$
- 3. $t = s_1...s_l...s_1$ for some $1 \le l \le k$

Moreover, such an index l is uniquely determined.

Proof. By Lemma 0.8 we already know that (1) implies (2). Furthermore, the equivalence between (2) and (3) is a tautology. Let us prove that (2) implies (1). Indeed, if $tw = s_1...\hat{s_l}...s_1$ for some $1 \le l \le k$ then:

$$l(tw) \le k+1 < k = l(w)$$
 (0.31)

which is (1). It last to show that this l appearing in property (2) and (3) is unique under the hypothesis that k = l(w). Let us define $t_i = s_1 s_2 ... s_i ... s_1$ for all $1 \le i \le k$. Then, we want to show that $t_i \ne t_j$ for every $i \ne j$. Let us reason by contradiction and suppose the contrary. In other words, let us suppose that there exists some indices i < j such that $t_i = t_j$. Then,

$$w = t_i t_j w$$

$$= t_i s_1 ... \hat{s_j} ... s_k$$

$$= s_1 ... \hat{s_i} ... \hat{s_j} ... s_k$$

$$(0.32)$$

As i was less than j. But this is a contradiction with the exchange property applied to $t = t_i t_j$. Therefore we needed that $t_i \neq t_j$ for every $i \neq j$. In particular l must be unique. \square

We are now ready to prove theorem 0.6.

Proof. Let $w = s_1 s_2 ... s_k$ with k = l(w), then $w^{-1} = s_k ... s_1$ and due to the previous lemma, we know that :

$$\#\{t \in T : \operatorname{sgn}_{w^{-1}}(t) = -1\}$$

$$= \#\{t \in T : t = s_1...s_i...s_k \text{ for some } 1 \le i \le k\} = k = l(w)$$
 (0.33)

As every of the $t_i = s_1...s_i...s_1$ are different from each other. \square

The following theorem, describe the writing reduction of a word in a Coxeter group when this one is not written in a minimal way.

Theorem 0.11 (Deletion property). Let (W, S) be a Coxeter system and let $w = s_1 s_2 ... s_k$ for some k with l(w) < k then there exists two different indices $1 \le i < j \le k$ such that:

$$w = s_1 \dots \hat{s_i} \dots \hat{s_i} \dots s_k \tag{0.34}$$

As a simple consequence of this theorem, we obtain the following:

Proposition 0.12. Let (W, S) be a Coxeter system and let $w = s_1...s_k$ for some $s_i \in S$ then, if l(w) < k there exists a subword $s_{i_1}...s_{i_{l(w)}}$ of $s_1...s_k$ such that $w = s_{i_1}...s_{i_{l(w)}}$.

This proposition is used in the following:

Proposition 0.13. Let (W, S) be a Coxeter system, and let's suppose that $w = s_1 s_2 ... s_k = s'_1 s'_2 ... s'_k$ for some $s_i, s'_i \in S$ with k = l(w). Then,

$$\{s_1, s_2, ..., s_k\} = \{s'_1, s'_2, ..., s'_k\}$$
 (0.35)

Remark 0.14. To be precise, the upper equality is an equality of sets an not of multi-sets. Indeed, as a simple example that the multi-sets can be different, we take the Coxeter group S_3 and the permutation (2,3)(1,2)(2,3) = (1,3) = (1,2)(2,3)(1,2). In particular, in this example, even if the sets are equal, we have different multi-sets associated to (1,3). Namely:

$$\{(2,3),(1,2),(2,3)\}$$
 and $\{(1,2),(2,3),(1,2)\}$ (0.36)

Proof. Suppose that the two sets are not equal. Therefore, there exists an $1 \le i \le k$ minimal such that $s_i \notin \{s'_1, s'_2...s'_k\}$. Furthermore, by lemma 0.10 we know that:

$$\{s'_1...s'_j...s'_1 : j = 1, 2, ..., k\} = \{t \in T : l(tw) < l(w)\}
 = \{s_1...s_j...s_1 : j = 1, 2, ..., k\}$$
(0.37)

As those sets are equal, there must be an index $1 \le j \le k$ such that for our minimal index i we have :

$$s_1...s_i...s_1 = s_1'...s_i'...s_1'$$
 (0.38)

In particular, by previous proposition, there exists a subword of the right hand side which is of size 1 and which is equal to $s_i \in W$. Therefore, either s_i is one of the previous $s_1...s_{i-1}$ which would be a contradiction with the minimality of i, or s_i is one of the $s'_1, ..., s'_j$ which is a contradiction with our choice of i. Therefore, the two sets must be the same.