数字电路分析与设计

集成组合逻辑电路

 $(4.2.1 \sim 4.2.3)$

n集成组合逻辑电路

ü前章介绍了一些基本组合逻辑电路,要求能掌握它们的逻辑功能、逻辑符号描述、工作原理等。

□ 将这些基本组合逻辑电路,加上电源和某些控制端后,即可成为中规模 集成组合逻辑电路。

ü中规模集成组合逻辑电路的功能比较完善,连接和功能扩展也很方便。

n集成组合逻辑电路

- ü介绍几款常见的中规模集成组合逻辑电路芯片; 通过对它们基本功能的介绍,掌握其典型的应用。
- □ 在中规模集成组合逻辑电路中,通常给出其功能表、芯片管(引)脚 图或符号图,要求能看(读)懂;能依据芯片功能,应用芯片。 掌握
- ü 通过一些例题(分析),掌握常规应用方案。
- √ 编码器、译码器(4.2.1)
- ∨数据选择器(4.2.2)
- ∨加法器、数值比较器(4.2.3)

V 编码器

ü右图所示8线-3线优先编码器管(引)脚图。

ü怎么看管脚图?

V_{DD} / GND: 电源/地;

I: 输入;

Y:输出;

其它:控制等。

(常用的一些默认符号: A、B、X、Y、I、O、ES、CS、WR、RD、

CLK, CP, CLR, R, S...)

(掌握一些通用的图规范)

ü符号图

管脚图~符号图(区别,应用场合...)

∅编码器(功能表)

		;	编码	3器:	输入				代	码和]控	制箱	出
EI	I_7	I_6	I_5	I_4	I_3	I_2	I_1	I_0	Y_2	Y_1	Y_0	GS	EO
0	X	X	X	X	X	X	X	X	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	0	1
1	1	X	X	X	X	X	X	X	1	1	1	1	0
1	0	1	X	X	X	X	X	X	1	1	0	1	0
1	0	0	1	X	X	X	X	X	1	0	1	1	0
1	0	0	0	1	X	X	X	X	1	0	0	1	0
1	0	0	0	0	1	X	X	X	0	1	1	1	0
1	0	0	0	0	0	1	X	X	0	1	0	1	0
1	0	0	0	0	0	0	1	X	0	0	1	1	0
1	0	0	0	0	0	0	0	1	0	0	0	1	0

- ü 使能端 EI, 高电平使能有效。
- $\ddot{\mathbf{u}}$ 输入 $I_7 \sim I_0$, 8 位高电平有效,大数优先。
- $\ddot{\mathbf{u}}$ 输出 $Y_2 \sim Y_0$, 3 位原码。
- [□] 8 线 3 线优先编码器。

∅编码器(功能表)

		:	编码	3器	输入				代	码和]控制	制箱	出
EI	I_7	I_6	I_5	I_4	I_3	I_2	I_1	I_0	Y_2	Y_1	Y_0	GS	EO
0	X	X	X	X	X	X	X	X	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	0	1
1	1	X	X	X	X	X	X	X	1	1	1	1	0
1	0	1	X	X	×	×	X	X	1	1	0	1	0
1	0	0	1	X	X	X	X	X	1	0	1	1	0
1	0	0	0	1	X	X	X	X	1	0	0	1	0
1	0	0	0	0	1	X	X	X	0	1	1	1	0
1	0	0	0	0	0	1	X	X	0	1	0	1	0
1	0	0	0	0	0	0	1	X	0	0	1	1	0
1	0	0	0	0	0	0	0	1	0	0	0	1	0

1	I_4 \bigcup	$V_{ m DD}$	
2 —	I_5	EO	 15
3 —	I_6	GS	 14
4	Т	I_3	13
5 —	EI CD4532	I_2	12
6 —	Y_2	I_1	11
7 —	\mathbf{Y}_1	I_0	10
8 —	GND	Y_0	 9

可判断是否有效输入

可区分输出全0模式

- $\ddot{\mathbf{U}}$ 仅在 EI 使能有效,且无编码输入时,EO=1。 (可与相同编码器的 EI 相连,实现多芯片级联)
- $\ddot{\mathbf{U}}$ 仅在 EI 使能有效,且有编码输入时,GS=1。(可用于指示编码器是否处于正常编码工作模式)

∅编码器(芯片数据手册)

ü下表所示来源于芯片数据手册的功能表。

				INPUT							OUTPUT		
E1	D7	D6	D5	D4	D3	D2	D1	D0	GS	Q2	Q1	Q0	E0
0	Х	Х	Х	Х	Х	Х	Х	Х	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	0	1
1	1	Х	Х	Х	Х	Х	Х	Х	1	1	1	1	0
1	0	1	Х	Х	Х	Х	Х	Х	1	1	1	0	0
1	0	0	1	х	Х	Х	Х	Х	1	1	0	1	0
1	0	n	n	1	X	X	X	Х	1	1	n	0	0
1	0	0	0	0	1	Х	Х	Х	1	0	1	1	0
1	0	0	0	0	0	1	Х	Х	1	0	1	0	0
1	0	0	0	0	0	0	1	Х	1	0	0	1	0
1	0	0	0	0	0	0	0	1	1	0	0	0	0

X = Don't Care

Logic 1 = High

Logic 0 = Low

【例2.1】

右图所示电路。

求:此时 $Y_2 \sim Y_0$ 、GS、EO端口状态。

解:根据功能表 ...

可得: $Y_2 \sim Y_0 = 100$, GS = 1, EO = 0。

		;	编码	3器	输入				代	码利	1控	制箱	出
EI	I_7	I_6	I_5	I_4	I_3	I_2	I_1	I_0	Y_2	Y_1	Y_0	GS	EO
0	X	X	X	X	X	X	X	X	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	0	1
1	1	X	X	X	X	×	X	X	1	1	1	1	0
1	0	1	×	×	×	×	X	X	1	1	0	1	0
1	0	0	1	×	×	×	X	X	1	0	1	1	0
1	0	0	0	1	×	×	X	X	1	0	0	1	0
1	0	0	0	0	1	×	X	X	0	1	1	1	0
1	0	0	0	0	0	1	X	X	0	1	0	1	0
1	0	0	0	0	0	0	1	X	0	0	1	1	0
1	0	0	0	0	0	0	0	1	0	0	0	1	0

【例2.2】

用两片 CD4532 扩展成 16线-4线优先编码器。

解: 16线-4线优先编码器的基本结构如下图所示。

设计思路:

利用使能端 EI 和 EO、GS 端,将两片连接成分时工作制,输出采用门电路扩展。

- ü 若 A_{15} \sim A_8 有输入时,CD4532(2) 工作,CD4532(1) 禁止;输出 GS=1 , $L_3=1$, $L_2\sim L_0$ 由 CD4532(2) 的 $Y_2\sim Y_0$ 决定;
- ü 若 A_{15} \sim A_8 无输入(A_7 \sim A_0 有)时,CD4532(2) 无效,CD4532(1) 工作;输出 GS=1 , $L_3=0$, $L_2\sim L_0$ 由 CD4532(1) 的 $Y_2\sim Y_0$ 决定。

利用使能端 EI 和 EO、GS 端,将两片连接成分时工作制,输出采用门电路扩展。

- ü 若 A_{15} \sim A_8 有输入时,CD4532(2) 工作,CD4532(1) 禁止;输出 GS=1 , $L_3=1$, $L_2\sim L_0$ 由 CD4532(2) 的 $Y_2\sim Y_0$ 决定;
- ü 若 A_{15} \sim A_8 无输入(A_7 \sim A_0 有)时,CD4532(2) 无效,CD4532(1) 工作;输出 GS=1 , $L_3=0$, $L_2\sim L_0$ 由 CD4532(1) 的 $Y_2\sim Y_0$ 决定。

- 以 若 A_{15} \sim A_8 有输入, EO_1 = 0,CD4532(1) 被禁止编码,其 Y_2 ~ Y_0 = 000; 此时 L_3 = 1, L_2 ~ L_0 由 A_{15} \sim A_8 的输入情况决定。
- ü 若 A_{15} \sim A_8 无输入,CD4532(2) 无效,其 $Y_2 \sim Y_0 = 000$, $EO_1 = 1$; 此时 CD4532(1) 有效, $L_3 = 0$, $L_2 \sim L_0$ 由 $A_7 \sim A_0$ 的输入情况决定。
- $\ddot{\mathbf{U}}$ 只要 A_{15} $\sim A_0$ 有输入,GS = 1。 <u>芯片扩展</u>

 $A_{15}A_{14}A_{13}A_{12}A_{11}A_{10}A_{9}A_{8}$ $A_7 A_6 A_5 A_4 A_3 A_2 A_1 A_0$ I_7 I_6 I_5 I_4 I_3 I_2 I_1 I_0 EO_1 EI_0 EO_0 EI CD4532(1) EO $Y_2 \quad Y_1 \quad Y_0$ $Y_2 \quad Y_1 \quad Y_0$ ES ES GS_1 GS_0 G_3 G_2 G_1 G_0 GS

∨ 译码器

- ü右图所示3线-8线译码器符号图。
- ü怎么根据图,猜功能?

 $A_2 \sim A_0$: 输入;

 $\overline{Y}_7 \sim \overline{Y}_0$: 输出;

 ST_A 、 \overline{ST}_B 、 \overline{ST}_C : 使能控制端;

(掌握一些通用的图规范)

Ø 译码器(功能表)

	控制与代码	3输。	入				译	码岩	景输	出		
$ST_{\rm A}$	$\overline{ST}_{\mathrm{B}} + \overline{ST}_{\mathrm{C}}$	A_2	A_1	A_0	$\overline{\overline{Y}}_7$	\overline{Y}_6	\overline{Y}_5	\overline{Y}_4	\overline{Y}_3	\overline{Y}_2	\overline{Y}_1	\overline{Y}_0
0	×	X	X	X	1	1	1	1	1	1	1	1
X	1	X	X	X	1	1	1	1	1	1	1	1
1	0	0	0	0	1	1	1	1	1	1	1	0
1	0	0	0	1	1	1	1	1	1	1	0	1
1	0	0	1	0	1	1	1	1	1	0	1	1
1	0	0	1	1	1	1	1	1	0	1	1	1
1	0	1	0	0	1	1	1	0	1	1	1	1
1	0	1	0	1	1	1	0	1	1	1	1	1
1	0	1	1	0	1	0	1	1	1	1	1	1
1	0	1	1	1	0	1	1	1	1	1	1	1

❷译码器(芯片数据手册)

ü下表所示来源于芯片数据手册的功能表。

FUNCTION TABLE

		INP	UTS						OUT	PUTS			
E ₁	E ₂	E ₃	A ₀	A ₁	A ₂	\overline{Y}_0	\overline{Y}_1	\overline{Y}_2	\overline{Y}_3	\overline{Y}_4	\overline{Y}_5	₹e	<u>Y</u> 7
Н	X	X	Х	Х	Х	Н	Н	Н	Н	Н	Н	Н	Н
Х	Н	Х	Х	X	Х	Н	Н	Н	Н	Н	Н	Н	н
X	Х	L	Х	X	Х	Н	Н	Н	Н	Н	Н	Н	н
L	L	Н	L	L	L	L	Н	Н	Н	Н	Н	Н	Н
L	L	Н	Н	L	L	Н	L	Н	Н	Н	Н	Н	н
L	L	Н	L	Н	L	Н	Н	L	Н	Н	Н	Н	н
L	L	Н	Н	Н	L	Н	Н	Н	L	Н	Н	Н	н
L	L	Н	L	L	Н	Н	Н	Н	Н	L	Н	Н	н
L.	L	Н	Н	L	Н	Н	Н	Н	Н	Н	L	Н	Н
L,	L	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	L	Н
L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L

Notes

1. H = HIGH voltage level

L = LOW voltage level

X = don't care

【例2.3】

用两片 74LS138 扩展成 4 线 - 16 线译码器。

解: 4线-16线译码器的基本结构如下图所示。

设计思路:利用使能端控制端,将两片连接成分时工作制。

方案是多样化的

❷ 译码器(实现任意组合逻辑函数)

 $\ddot{\mathbf{u}}$ 针对一个二进制全译码器(n 位码输入时,有 2^n 个输出),每个输出函数就是一个输入代码变量的最小项。

ü以74LS138为例,当使能有效时,有:

$$\overline{Y}_{7} = \overline{A_{2}A_{1}A_{0}}, \overline{Y}_{6} = \overline{A_{2}A_{1}\overline{A_{0}}}, \overline{Y}_{5} = \overline{A_{2}\overline{A_{1}A_{0}}}, \overline{Y}_{4} = \overline{A_{2}\overline{A_{1}\overline{A_{0}}}}$$

$$\overline{Y}_{3} = \overline{\overline{A_{2}A_{1}A_{0}}}, \overline{Y}_{2} = \overline{\overline{A_{2}A_{1}\overline{A_{0}}}}, \overline{Y}_{1} = \overline{\overline{A_{2}\overline{A_{1}A_{0}}}}, \overline{Y}_{0} = \overline{\overline{A_{2}\overline{A_{1}\overline{A_{0}}}}}$$

$$\overline{\mathbb{R}}: \overline{Y}_{i} = \overline{m}_{i}$$

ü逻辑函数可以用最小项之和形式表示;

将译码器的某些输出"组合"在一起,即可实现逻辑功能。

【例2.4】

用74LS138 实现逻辑函数: $Z = \overline{ABC} + A\overline{BC} + AB\overline{C}$

解:将逻辑函数写成最小项之和形式: $Z = m_3 + m_5 + m_6$

由于 74LS138 芯片是反码输出,所以改写表达式为: $Z = m_3 \cdot m_5 \cdot m_6$

由此可得电路图。

<u>译码器 + 多输入与非门,可实现任意的组合逻辑函数。</u> <u>(注意输入与译码器地址端的对应)</u>

【例2.5】

用74LS138实现奇偶检验电路。

(输入为4位二进制码,检验其中1的个数是奇数还是偶数)

解: 定义输入为 $A_3 \sim A_0$;

由此可得电路图。

定义输出分别为 Y_{OD} (奇校验)、 Y_{E} (偶校验);

若输入中1的个数是奇数,则 $Y_{OD}=1$, $Y_{E}=0$ 。

通过真值表、卡诺图(略)等,得: $Y_{\text{OD}} = A_3(\overline{\overline{Y}_0 \overline{Y}_3 \overline{Y}_5 \overline{Y}_6}) + \overline{A}_3(\overline{\overline{Y}_1 \overline{Y}_2 \overline{Y}_4 \overline{Y}_7})$ $Y_{\text{E}} = A_3(\overline{\overline{Y}_1 \overline{Y}_2 \overline{Y}_4 \overline{Y}_7}) + \overline{A}_3(\overline{\overline{Y}_0 \overline{Y}_3 \overline{Y}_5 \overline{Y}_6})$

 $Y_{\rm OD}$

∨ 数据选择器

ü怎么根据图,猜功能?

ü功能表

	输	入		输	出
使能		地址		原码	反码
\overline{E}	A_2	A_1	A_0	Y	$\overline{\overline{Y}}$
1	X	×	X	0	1
0	0	0	0	D_0	\overline{D}_0
0	0	0	1	D_1	\overline{D}_1
0	0	1	0	D_2	\overline{D}_2
0	0	1	1	D_3	\overline{D}_3
0	1	0	0	D_4	\overline{D}_4
0	1	0	1	D_5	\overline{D}_5
0	1	1	0	D_6	\overline{D}_6
0	1	1	1	D_7	\overline{D}_7

∅数据选择器(芯片数据手册)

ü下表所示来源于芯片数据手册的功能表。

					INPL	JTS						OUT	PUTS
Ē	S ₂	S ₁	So	I ₀	I ₁	l ₂	l ₃	I ₄	I ₅	I ₆	I ₇	Y	Υ
Н	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Н	L
L	L	L	L	L	Х	Х	Х	Х	Х	Х	Х	Н	L
L	L	L	L	Н	X	X	X	X	X	X	X	L	Н
L	L	L	Н	Χ	L	X	X	X	X	X	X	Н	L
L	L	L	Н	Х	Н	X	X	X	X	X	X	L	н
L	L	Н	L	Х	Х	L	Х	Х	Х	Х	Х	Н	L
L	L	Н	L	Х	X	Н	X	X	X	X	X	L	H
L	L	Н	Н	Χ	X	Х	L	X	X	X	X	Н	L
L	L	Н	Н	Х	X	X	Н	X	X	X	X	L	Н
L	Н	L	L	Χ	X	Х	Х	L	Х	Х	Х	Н	L
L	H	L	L	X	X	X	X	H	X	X	X	L	H
L	Н	L	Н	Х	X	X	X	X	L	X	X	Н	L
L	Н	L	Н	X	X	X	X	X	Н	X	X	L	Н
L	Н	Н	L	Х	Х	Х	Х	Х	Х	L	Х	Н	L
L	Н	Н	L	X	X	X	X	X	X	Н	X	L	н
L	Н	Н	Н	Х	X	X	X	X	X	X	L	Н	L
L	Н	Н	Н	Х	Х	Х	Х	Х	Х	Х	Н	L	Н

(LSB)

(MSB)

设计思路: 首先需要 4 片74HC151,

完成 32 选 4;

再完成 4 选 1, 需要 1 片 74HC253。

- ∅ 数据选择器(实现任意组合逻辑函数)
- ü 用数据选择器可以实现: 任意的组合逻辑函数(组合逻辑电路)。
- ü实现流程:

选择适当的变量从数据选择器的地址端输入(剩余变量加在数据端);(当变量选得不同时,结果会不同)

根据地址输入方式,写出数据选择器的逻辑函数;

将函数书写成对应的最小项之和形式;

比对上述两式,即可得出数据输入端的逻辑定义;

画出逻辑电路图。

类似于译码器

【例2.7-1】

用一片 8 选 1 数据选择器实现函数: $Z = f(A, B, C) = \overline{AB} + \overline{BC} + AB\overline{C}$

解: (1)选择A、B、C分别从数据选择器的 A_2 、 A_1 、 A_0 地址端输入;

- (2) 根据地址输入方式,写出数据选择器的逻辑函数: $Z = \sum_{i=0}^{7} D_i m_i$
- (3) 将函数书写成对应的最小项之和形式:

$$Z = \overline{A} \, \overline{B} \, \overline{C} + \overline{A} \, \overline{B} \, C + \overline{A} \, \overline{B} \, C + A \overline{B} \, C + A \overline{B} \, \overline{C} = m_0 + m_1 + m_5 + m_6$$

(4) 对照上述两式,得:

$$D_0 = D_1 = D_5 = D_6 = 1$$

 $(D_2 = D_3 = D_4 = D_7 = 0)$

(5) 电路图

当变量选得不同时,结果会不同?

【例2.7-2】

用一片 4 选 1 数据选择器实现函数: $Z = f(A, B, C) = \overline{AB} + \overline{BC} + AB\overline{C}$

解: (1)选择A、B分别从数据选择器的 A_1 、 A_0 地址端输入;

- (2) 根据地址输入方式,写出数据选择器的逻辑函数: $Z = \sum_{i=0}^{3} D_i m_i$
- (3) 将函数书写成对应的最小项之和形式:

$$Z = \overline{A}\,\overline{B}\,\overline{C} + \overline{A}\,\overline{B}\,C + \overline{A}\,\overline{B}\,C + A\overline{B}\,C + AB\overline{C} = m_0 + m_2C + m_3\overline{C}$$

(4) 对照上述两式,得:

$$D_0=1$$
 , $D_1=0$, $D_2=C$, $D_3=\overline{C}$

(5) 电路图

剩余变量加在数据端

【例2.8】

用 74HC151 实现序列脉冲输出。

(序列脉冲:周期性的脉冲信号)

例:下图所示序列脉冲01011001。

设计思路:

将脉冲数据信息接入数据选择器的数据输入端;

数据选择器的输出端作为脉冲信号输出端;

在数据选择器的地址控制端依次(周期)加入地址,

...

只要是周期性的信息...

∨ 加法器

 ü 右图所示中规模集成二进制加法器符号图。

 S₃ S₂ S₁ S₀

 CO 74HC283 C₋₁

 A₃ A₂ A₁ A₀ B₃ B₂ B₁ B₀

∅加法器(芯片数据手册)

ü下表所示来源于芯片数据手册的功能表。

FUNCTION TABLE

PINS	CIN	A ₁	A ₂	\mathbf{A}_3	A ₄	B ₁	B ₂	B_3	B ₄	Σ1	Σ_2	Σ3	Σ_4	C _{OUT}	EXAMPLE(2)
logic levels	L	L	Н	L	Н	Н	L	L	Н	Н	Н	L	L	Н	
active HIGH	0	0	1	0	1	1	0	0	1	1	1	0	0	1	(3)
active LOW	1	1	0	1	0	0	1	1	0	0	0	1	1	0	(4)

Note

- H = HIGH voltage level
 L = LOW voltage level
- 2. example

1001

1010

10011

- 3. for active HIGH, example = (9 + 10 = 19)
- 4. for active LOW, example = (carry + 6 + 5 = 12)

- ∅加法器(实现减法运算)
- ü二进制的减法运算可以通过补码的加法来实现。
- じ步骤:减数求补;(被减数求补?)按需被减数+减数;(和求补?)
- ü补码运算规则:

补码=原数值的反码(按位求反)+1 补码+补码=补码 补码的补码=原码

【例2.9】

用 74HC283 实现减法。

【例2.10】

用 74HC283 实现多位二进制数加法。

两个8位二进制数加法

【例2.11-1】

用 74HC283 将 8421BCD 码转换成余三码。

解题思路:

74HC283 只能做加法,这一功能不能改变。 如果 8421BCD 码 + ? = 余 3 码,那么 ...

只要两组数据之间存在差值...

【例2.11-2】

用 74HC283 将 8421BCD 码转换成 2421BCD 码。

解题思路:找到8421BCD码和2421BCD码之间的差值。

列真值表

8421BCD 码	差值 B ₃ ~B ₀	2421BCD 码
0000	0000	0000
0001	0000	0001
0010	0000	0010
0011	0000	0011
0100	0000	0100
0101	0110	1011
0110	0110	1100
0111	0110	1101
1000	0110	1110
1001	0110	1111

$$B_2 = B_1 = \overline{D + C} + \overline{D + B + A}$$

任意数据之间...

8421 码输入

v 数值比较器

- ü右图所示中规模集成4位数值比较器。
- ü怎么根据图,猜功能?

∅数值比较器(芯片数据手册)

ü下表所示来源于芯片数据手册的功能表。

V_1	DD								
16		15	14	13	12	11	10	9	
	1	A_3	\mathbf{B}_2	A_2	A_1]	B_1 A	Λ_0 E	3 0	
)		74	4HC	85				
E	$B_3 1_a$	$<_b$ 1_a	a=b 1	a>b L	'A>B	$\mathcal{L}_{A=B}$	$L_{A<}$	B	
1	2	3	4	5	6	7	8	G	ND

FUNCTION TABLE

COMPARING INPUTS				CASCADING INPUTS			OUTPUTS		
A ₃ , B ₃	A ₂ , B ₂	A ₁ , B ₁	A ₀ , B ₀	I _{A>B}	I _{A<b< sub=""></b<>}	I _{A=B}	Q _{A>B}	Q _{A<b< sub=""></b<>}	Q _{A=B}
A ₃ >B ₃	Х	Х	Х	Х	Х	Χ	Н	L	L
A ₃ <b<sub>3</b<sub>	X	×	X	X	X	X	L	Н	L
A ₃ =B ₃	A ₂ >B ₂	X	X	X	X	X	Н	L	L
A ₃ =B ₃	A ₂ <b<sub>2</b<sub>	X	X	X	X	X	L	Н	L
A ₃ =B ₃	A ₂ =B ₂	A ₁ >B ₁	X	X	Х	X	Н	L	L
A ₃ =B ₃	A ₂ =B ₂	A ₁ <b<sub>1</b<sub>	X	X	X	X	L	Н	L
A ₃ =B ₃	A ₂ =B ₂	A ₁ =B ₁	A ₀ >B ₀	X	X	X	Н	L	L
A ₃ =B ₃	A ₂ =B ₂	A ₁ =B ₁	A ₀ <b<sub>0</b<sub>	X	X	X	L	Н	L
A ₃ =B ₃	A ₂ =B ₂	A ₁ =B ₁	A ₀ =B ₀	Н	L	L	Н	L	L
A ₃ =B ₃	A ₂ =B ₂	A ₁ =B ₁	A ₀ =B ₀	L	Н	L	L	Н	L
A ₃ =B ₃	A ₂ =B ₂	A ₁ =B ₁	A ₀ =B ₀	L	L	Н	L	L	Н
A ₃ =B ₃	A ₂ =B ₂	A ₁ =B ₁	A ₀ =B ₀	Х	Х	Н	L	L	Н
A ₃ =B ₃	A ₂ =B ₂	A ₁ =B ₁	A ₀ =B ₀	Н	Н	L	L	L	L
A ₃ =B ₃	A ₂ =B ₂	A ₁ =B ₁	A ₀ =B ₀	L	L	L	Н	Н	L

Notes

1. H = HIGH voltage level

L = LOW voltage level

X = don't care

【例2.12-1】

用 74HC85 实现多位数值比较。

【例2.12-2】

用 74HC85 实现多位数值比较。

10 位数值比较

用 74HC85 实现多位数值比较(并行比较法)

v 本节作业

ü 习题 4(P236) 21、23.1/2、29。

所有的题目,需要有解题过程(不是给一个答案即可)。