

Tarea Obligatoria III MMF II

Licenciatura en Física - 2020^1

Distribución de carga multipolar puntual situada en el origen

Se desea evaluar el potencial eléctrico $\varphi(\mathbf{r})$ en la posición \mathbf{r} debido a la siguiente distribución de carga eléctrica multipolar:

Utilizando la condición $|\mathbf{r}|=r>>d$ tal que la distribución sea percibida en \mathbf{r} como puntual, encuentre:

- 1. (25%) El potencial eléctrico φ (**r**). Obs.: Elimine la dependencia explícita del ángulo θ utilizando el vector $\mathbf{d} = d \hat{k}$ tal que $|\mathbf{d}| = d$.
- 2. (25%) El campo eléctrico $\mathbf{E}(\mathbf{r})$.

 $^{^{1}}$ INICIO: Sábado 11 de Julio/20:30 hrs. ENTREGA: Sábado 18 de Julio/20:30 hrs.

- 3. (25%) Un dipolo puntual de momento dipolar \mathbf{p} , se ubica en la posición \mathbf{r} . Determine la fuerza que experimenta este dipolo debido a la distribución multipolar puntual ubicada en el origen (la tratada anteriormente). Recuerde que la fuerza sobre el dipolo está dada por la expresión $\mathbf{F} = -\nabla U(\mathbf{r})$, siendo $U(\mathbf{r})$ la energía potencial del dipolo sometido a un campo eléctrico $\mathbf{E}(\mathbf{r})$. Obs.: $U(\mathbf{r}) = -\mathbf{p} \cdot \mathbf{E}(\mathbf{r})$.
- 4. (25%) Determine el torque $\tau = \mathbf{p} \times \mathbf{E}(\mathbf{r})$ que experimenta este dipolo debido al campo $\mathbf{E}(\mathbf{r})$.