COMP302: Programming Languages and Paradigms

Week 10: Introduction to Programming Language:

How to define your own language?

Prof. Brigitte Pientka < bpientka@cs.mcgill.ca>

School of Computer Science, McGill University

The four main goals of COMP 302

- Provide a thorough introduction to fundamental concepts in programming languages
 Higher-order functions, State-full vs state-free computation, Modelling objects and closures, Exceptions to defer control, Continuations to defer control, Polymorphism, Partial evaluation, Lazy programming, ...
- 2. Show different ways to reason about programs

 Type checking, Induction, Operational semantics, ...
- 3. Introduce fundamental principles in programming language design

 Grammars and parsing, Operational semantics and interpreters, Type checking,
 polymorphism, and subtyping
- 4. Expose students to a different way of thinking about problems It's like going to the gym; it's good for you!

Three key questions

What are the syntactically legal expressions?
 What expressions does the parser accept?

Grammar

What are well-typed expressions?
 What expressions does the type-checker accept?

Static semantics

How is an expression executed?

Dynamic semantics

What are the syntactically legal expressions?

Definition

The set of expressions is defined inductively by the following clauses

- A number *n* is an expression.
- The booleans true and false are expressions.
- If e_1 and e_2 are expressions, then e_1 op e_2 is an expression where op = $\{+, =, -, *, <\}$.
- If e, e_1 and e_2 are expressions, then if e then e_1 else e_2 is an expression.

Alternative – Backus-Naur Form (BNF):

Operations op ::= + |-| * | < | =Expressions e ::= $n | e_1$ op e_2 | true | false | if e then e_1 else e_2

What are the syntactically legal expressions? – Examples

Alternative – Backus-Naur Form (BNF):

Operations op ::=
$$+ |-| * | < | =$$

Expressions e ::= $n | e_1$ op e_2 | true | false | if e then e_1 else e_2

Syntactically Legal Expression (accepted by parser)

2+3
2+ true
2+ 2+ then true else 7
2+(3+4)

Not Syntactically Legal Expressions (not accepted by parser

if true then 3

How to implement expressions in OCaml?

Backus-Naur Form (BNF):

```
Operations op ::= + |-| * | < | =

Expressions e ::= n | e_1 op e_2 | true | false | if e then e_1 else e_2
```

Representation in OCaml

Expression on paper

Encoded in OCaml

| if 3 < 0 then 1 else 0 | If (Primop (LessThan, [Int 3; Int 0]), Int 1, Int 0)

How to evaluate an expression?

A better question ... How to describe evaluation of expressions?

We want to say:

"Expression e evaluates to a value v."

Hm ... what are values?

Values $v ::= n \mid \text{true} \mid \text{false}$

Expression e evaluates to a value v.

Definition

Evaluation of the expression e to a value v is defined inductively by the following clauses:

- A value v evaluates to itself.
- If expression e evaluates to the value true
 and expression e₁ evaluates to a value v,
 then if e then e₁ else e₂ evaluates to the value v.
- If expression e evaluates to the value false and expression e₂ evaluates to a value v, then if e then e₁ else e₂ evaluates to the value v.

Step 1: Turning an informal description into a formal one

Let's write

 $e \Downarrow v$

for

"Expression e evaluates to value v".

Definition

 $e \Downarrow v$ is defined inductively by the following clauses:

- \bullet $v \Downarrow v$
- If $e \Downarrow$ true and $e_1 \Downarrow v$, then if e then e_1 else $e_2 \Downarrow v$.
- If $e \Downarrow$ false and $e_2 \Downarrow v$, then if e then e_1 else $e_2 \Downarrow v$.

Step 2: Turning an informal description into a formal one

$$\frac{\mathsf{premise}_1 \ \dots \ \mathsf{premise}_n}{\mathsf{conclusion}}$$
 name

Read as:

If premise₁ and premise₂ and ... and premise_n then conclusion.

Step 2: Turning an informal description into a formal one

Definition

 $e \Downarrow v$ is defined inductively by the following clauses:

- $v \Downarrow v$
- If $e \downarrow true$ and $e_1 \downarrow v$, then if e then e_1 else $e_2 \downarrow v$.
- If $e \Downarrow$ false and $e_2 \Downarrow v$, then if e then e_1 else $e_2 \Downarrow v$.

$$\frac{e \Downarrow \text{true} \quad e_1 \Downarrow v}{\text{if } e \text{ then } e_1 \text{ else } e_2 \Downarrow v} \text{ B-IFTRUE}$$

$$\frac{e \Downarrow \text{false} \quad e_2 \Downarrow v}{\text{if } e \text{ then } e_1 \text{ else } e_2 \Downarrow v} \text{ B-IFFALSE}$$

Evaluation rules do not impose an order on the premises.

Extending it to primitive operators

Definition

 $e \Downarrow v$ is defined inductively by the following clauses:

- $v \Downarrow v$
- If $e \Downarrow$ true and $e_1 \Downarrow v$, then if e then e_1 else $e_2 \Downarrow v$.
- If $e \Downarrow$ false and $e_2 \Downarrow v$, then if e then e_1 else $e_2 \Downarrow v$.
- If $e_1 \Downarrow v_1$ and $e_2 \Downarrow v_2$, then e_1 op $e_2 \Downarrow v$ where $v = \overline{v_1}$ op $\overline{v_2}$.

$$\frac{e \Downarrow \text{true } e_1 \Downarrow v}{\text{if } e \text{ then } e_1 \text{ else } e_2 \Downarrow v} \text{ B-IFTRUE}$$

$$\frac{e_1 \Downarrow v_1 \quad e_2 \Downarrow v_2}{e_1 \text{ op } e_2 \Downarrow \overline{v_1 \text{ op } v_2}} \text{ B-OP} \quad \frac{e \Downarrow \text{ false } e_2 \Downarrow v}{\text{if } e \text{ then } e_1 \text{ else } e_2 \Downarrow v} \text{ B-IFFALSE}$$

Let's see what this means in practice!

What is the value that the expression if ((4-1) < 6) then 3+2 else 4 evaluates to?

Let's see what this means in practice!

Read it operationally:

Evaluating if
$$((4-1) < 6)$$
 then $3+2$ else 4 returns 5

• The derivation tree above essentially describes the execution of a recursive program which computes 5 from the input if ((4-1) < 6) then 3+2 else 4

Dynamic semantics as a recursive program

Dynamic semantics: $e \Downarrow v$

```
\frac{e \Downarrow \text{ true } e_1 \Downarrow v}{\text{if } e \text{ then } e_1 \text{ else } e_2 \Downarrow v} \text{ B-IFTRUE}
\frac{e_1 \Downarrow v_1 \quad e_2 \Downarrow v_2}{e_1 \text{ op } e_2 \Downarrow \overline{v_1 \text{ op } v_2}} \text{ B-OP} \quad \frac{e \Downarrow \text{ false } e_2 \Downarrow v}{\text{if } e \text{ then } e_1 \text{ else } e_2 \Downarrow v} \text{ B-IFFALSE}
```

```
let rec eval e = match e with

| Int _ -> @ |
| Bool _ -> @ |
| If (e, e1, e2) -> match (evale) with | Bool true => eval e1 |
| Bool take => eval e2 |
| Primop (po, args) -> | _ => raise | Error |
```

Advantages of a formal description ...

Establish properties and formal guarantees.

- Coverage: For all expressions *e* there exists an evaluation rule.
- Determinacy: If $e \Downarrow v_1$ and $e \Downarrow v_2$ then $v_1 = v_2$.
- Value Soundness: If $e \Downarrow v$ then v is a value.
- Termination: If e is well-typed, then $e \Downarrow v$.

How to describe well-typed expressions?

How can we *statically* check whether an expressions would potentially lead to a runtime error?

Static Type Checking

- Types approximate runtime behavior
- Lightweight tool for reasoning about programs
- Detect errors statically, early in the development cycle
- Great for code maintenance
- Precise error messages
- Checkable documentation of code

Basic Types

Types classify expressions according to the kinds of values they compute.

Hm ... what are values?

Values $v ::= n \mid \text{true} \mid \text{false}$

Hence, there are only two basic types.

Defining Typing

e: T expression e has type T

We define when an expression *e* is well-typed inductively.

Definition *e* : *T* is defined inductively by the following clauses:

- *n* : int
- true: bool and false: bool
- If e: bool and e_1 : T and e_2 : T, then if e then e_1 else e_2 : T.
- If e_1 : int and e_2 : int, then $e_1 + e_2$: int.
- If e_1 : int and e_2 : int, then $e_1 = e_2$: bool.

Defining Typing

Definition *e* : *T* is defined inductively by the following clauses:

- *n* : int
- true: bool and false: bool
- If e: bool and e_1 : T and e_2 : T, then if e then e_1 else e_2 : T.
- If e_1 : int and e_2 : int, then $e_1 + e_2$: int.
- If $e_1 : T$ and $e_2 : T$, then $e_1 = e_2 : bool$.

$$\frac{\text{T-T}}{\text{true:bool}} \xrightarrow{\text{T-T}} \frac{e_1 : T - e_2 : T}{e_1 = e_2 : \text{bool}} \xrightarrow{\text{T-EQ}}$$

$$\frac{e_1 : \text{int}}{e_1 = e_2 : \text{bool}} \xrightarrow{\text{T-EQ}}$$

$$\frac{e_1 : \text{int}}{e_1 + e_2 : \text{int}} \xrightarrow{\text{T-PLUS}} \frac{e : \text{bool}}{\text{if } e \text{ then } e_1 \text{ else } e_2 : T} \xrightarrow{\text{T-IF}}$$

Two readings of typing

Type Checking *e* : *T*

Given the expression e and the type T, we check that e does have type T.

Type Inference e:T

Given the expression e, we infer its type T.

Implementing type inference

```
type tp = Int | Bool

exception TypeError of string

let fail message = raise (TypeError message)
```

Wait ... Doesn't the constructor for Int for types clash with the constructor for expressions?

Modules to the rescue! – They provide name space management (and actually so much more...)

Type Checking – Implemented

```
\frac{\text{T-T}}{\text{true:bool}} \xrightarrow{\text{T-T}} \frac{e_1 : T - e_2 : T}{e_1 = e_2 : \text{bool}} \xrightarrow{\text{T-EQ}}
\frac{e_1 : \text{int}}{e_1 + e_2 : \text{int}} \xrightarrow{\text{T-PLUS}} \frac{e : \text{bool}}{\text{if } e \text{ then } e_1 \text{ else } e_2 : T} \xrightarrow{\text{T-IF}}
```

```
1 let rec check e t = match e with
2   | E.Int _ , Int -> true
3   | E.Bool _ , Bool -> true
4   | E.If (e, e1, e2) , t ->
5          check e Bool && check e1 t && check e2 t
```

Type inference – Implemented