It remains to show that μ - A is surjective for large real μ . Let $g \in C[0,1]$. Let $\lambda \geq 0$ and $k=1/2\lambda$ [e^{\lambda x} $\int_{-x}^{1} e^{-\lambda y} g(y) \, dy$ - $e^{-\lambda x} \int_{-x}^{1} e^{\lambda y} g(y) \, dy$] . Then $k \in C^2[0,1]$ and $\lambda^2 k - k'' = g$. Let $h = ae^{\lambda x} + be^{-\lambda x}$, where a,b $\in \mathbb{R}$. Then $h \in C^2[0,1]$ and $\lambda^2 h - h'' = 0$. Let f = k + h . Then $\lambda^2 f - f'' = g$. The condition that $f \in D(A)$ leads to two linear equations in a and b , and it is easy to see that they have a solution (a,b) $\in \mathbb{R}^2$ if $(\lambda + \alpha) (\beta - \lambda) + (\lambda - \alpha) (\lambda + \beta) \exp(\lambda^2) \neq 0$. Thus there exists a solution if λ is large enough, and $(\lambda^2 - A)$ is surjective.

2. Lattice Semigroups on C (X)

Throughout this section X denotes a locally compact space and $C_O(X,\mathbb{R})$ (resp., $C_O(X,\mathbb{C})$) the space of all real-valued (resp., complex-valued) continuous functions on X which vanish at infinity. If we do not want to specify the field we simply write $C_O(X)$. Recall from B-I,Sec.3 that a linear bounded operator T on $C_O(X)$ is positive if and only if

(2.1)
$$|Tf| \le T|f|$$
 for all $f \in C_O(X)$.

The operator T is a lattice homomorphism if and only if in (2.1) equality holds; i.e.,

(2.2)
$$|Tf| = T|f|$$
 for all $f \in C_0(X)$.

Remark 2.1. If T is a lattice homomorphism on $C_O(X,\mathbb{C})$, then T leaves $C_O(X,\mathbb{R})$ invariant and the restriction $T_\mathbb{R}$ of T to $C_O(X,\mathbb{R})$ is a lattice homomorphism. Conversely, the linear extension T of a lattice homomorphism $T_\mathbb{R}$ on $C_O(X,\mathbb{R})$ to $C_O(X,\mathbb{C})$ is a lattice homomorphism (see B-I,Sec.3).

A semigroup $(T(t))_{t\geq 0}$ is called <u>lattice semigroup</u> if T(t) is a lattice homomorphism for all $t\geq 0$. In Section 3 we will give a concrete representation of lattice-semigroups which shows that there is a large variety of examples. This section is devoted to the characterization of lattice semigroups in terms of their generators.