Università degli Studi Roma Tre - Corso di Laurea in Matematica

Tutorato di GE210

A.A. 2010-2011 - Docente: Prof. A. Verra Tutori: Simona Dimase e Annamaria Iezzi

> Soluzioni tutorato numero 1 (30 Settembre 2010) Forme bilineari

- 1. Stabilire quali delle seguenti sono forme bilineari su \mathbb{R}^2 :
 - (a) $F((x_1, x_2), (y_1, y_2)) = x_1y_1 + 2x_1y_2 x_2y_2$
 - (b) $G((x_1, x_2), (y_1, y_2)) = x_1x_2 + x_2y_2$
 - (c) $H((x_1, x_2), (y_1, y_2)) = x_1^2 y_1 + x_2 y_2^2$

Solutione:

(a) $F((x_1,x_2),(y_1,y_2)) = x_1y_1 + 2x_1y_2 - x_2y_2$ è una forma bilineare. Verifichiamo le tre proprietà delle forme bilineari.

$$\forall \overrightarrow{x} = (x_1, x_2), \overrightarrow{y} = (y_1, y_2), \overrightarrow{z} = (z_1, z_2) \in \mathbb{R}^2 \in \lambda \in \mathbb{R} \text{ si ha:}$$

- $F(\overrightarrow{x} + \overrightarrow{z}, \overrightarrow{y}) = F((x_1, x_2) + (z_1, z_2), (y_1, y_2)) = F((x_1 + z_1, x_2 + z_2), (y_1, y_2)) = (x_1 + z_1)y_1 + 2(x_1 + z_1)y_2 (x_2 + z_2)y_2 = x_1y_1 + z_1y_1 + 2x_1y_2 + 2z_1y_2 x_2y_2 z_2y_2 = x_1y_1 + 2x_1y_2 x_2y_2 + z_1y_1 + 2z_1y_2 z_2y_2 = F(\overrightarrow{x}, \overrightarrow{y}) + F(\overrightarrow{z}, \overrightarrow{y})$ $\Rightarrow F(\overrightarrow{x} + \overrightarrow{z}, \overrightarrow{y}) = F(\overrightarrow{x}, \overrightarrow{y}) + F(\overrightarrow{z}, \overrightarrow{y})$
- $F(\overrightarrow{x}, \overrightarrow{y} + \overrightarrow{z}) = F((x_1, x_2), (y_1, y_2) + (z_1, z_2)) = F((x_1, x_2), (y_1 + z_1, y_2 + z_2)) = x_1(y_1 + z_1) + 2x_1(y_2 + z_2) x_2(y_2 + z_2) = x_1y_1 + x_1z_1 + 2x_1y_2 + 2x_1z_2 x_2y_2 x_2z_2 = x_1y_1 + 2x_1y_2 x_2y_2 + x_1z_1 + 2x_1z_2 x_2z_2 = F(\overrightarrow{x}, \overrightarrow{y}) + F(\overrightarrow{x}, \overrightarrow{z})$ $\Rightarrow F(\overrightarrow{x}, \overrightarrow{y} + \overrightarrow{z}) = F(\overrightarrow{x}, \overrightarrow{y}) + F(\overrightarrow{x}, \overrightarrow{z})$
- $F(\lambda \overrightarrow{x}, \overrightarrow{y}) = F(\lambda(x_1, x_2), (y_1, y_2)) = F((\lambda x_1, \lambda x_2), (y_1, y_2)) = \lambda x_1 y_1 + 2\lambda x_1 y_2 \lambda x_2 y_2 = \lambda (x_1 y_1 + 2x_1 y_2 x_2 y_2) = \lambda F(\overrightarrow{x}, \overrightarrow{y})$

$$F(\overrightarrow{x}, \lambda \overrightarrow{y}) = F((x_1, x_2), \lambda(y_1, y_2)) = F((x_1, x_2), (\lambda y_1, \lambda y_2)) = x_1 \lambda y_1 + 2x_1 \lambda y_2 - x_2 \lambda y_2 = \lambda(x_1 y_1 + 2x_1 y_2 - x_2 y_2) = \lambda F(\overrightarrow{x}, \overrightarrow{y})$$

$$\Rightarrow F(\lambda \overrightarrow{x}, \overrightarrow{y}) = \lambda F(\overrightarrow{x}, \overrightarrow{y}) = F(\overrightarrow{x}, \lambda \overrightarrow{y})$$

- (b) $G((x_1, x_2), (y_1, y_2)) = x_1x_2 + x_2y_2$ non è una forma bilineare. Infatti prendendo ad esempio $\overrightarrow{x} = (1, 1), \ \overrightarrow{y} = (5, 1)$ e $\lambda = 2$ si ha: $G(\lambda \overrightarrow{x}, \overrightarrow{y}) = G(2(1, 1), (5, 1)) = G((2, 2), (5, 1)) = 6$ mentre: $\lambda G(\overrightarrow{x}, \overrightarrow{y}) = 2 \cdot G((1, 1), (5, 1)) = 2 \cdot (2) = 4$ $\Rightarrow G(\lambda \overrightarrow{x}, \overrightarrow{y}) \neq \lambda G(\overrightarrow{x}, \overrightarrow{y})$ contraddicendo la terza proprietà delle forme bilineari.
- (c) $H((x_1,x_2),(y_1,y_2)) = x_1^2y_1 + x_2y_2^2$ non è una forma bilineare. Infatti prendendo ad esempio $\overrightarrow{x} = (1,0), \ \overrightarrow{y} = (1,0)$ e $\lambda = 2$ si ha: $H(\lambda \overrightarrow{x}, \overrightarrow{y}) = H(2(1,0),(1,0)) = H((2,0),(1,0)) = 4$ mentre: $\lambda H(\overrightarrow{x}, \overrightarrow{y}) = 2 \cdot H((1,0),(1,0)) = 2 \cdot (1) = 2$ $\Rightarrow H(\lambda \overrightarrow{x}, \overrightarrow{y}) \neq \lambda H(\overrightarrow{x}, \overrightarrow{y})$ contraddicendo la terza proprietà delle forme bilineari.

1

2. Stabilire quali delle seguenti sono forme bilineari su \mathbb{R}^n :

(a)
$$F(\overrightarrow{x}, \overrightarrow{y}) = \sum_{j=1}^{n} (x_j)$$

(b)
$$F(\overrightarrow{x}, \overrightarrow{y}) = \left(\sum_{i=1}^{n} (x_i)\right) \left(\sum_{i=1}^{n} (y_i)\right)$$

(c)
$$F(\overrightarrow{x}, \overrightarrow{y}) = \sum_{j=1}^{n} (x_j + y_j)^2 - \sum_{j=1}^{n} (x_j)^2 - \sum_{j=1}^{n} (y_j)^2$$

(d)
$$F(\overrightarrow{x}, \overrightarrow{y}) = \big| \sum_{j=1}^{n} (x_j y_j) \big|$$

(e)
$$F(\overrightarrow{x}, \overrightarrow{y}) = \overrightarrow{x}^t A \overrightarrow{y}$$
, $A \in M_n(\mathbb{R})$

Solutione:

(a) $F(\overrightarrow{x}, \overrightarrow{y}) = \sum_{i=1}^{n} (x_j)$ non è una forma bilineare.

Mostriamo che la seconda proprietà delle forme bilineari non è verificata.

Siano
$$\overrightarrow{x} = (x_1, \dots, x_n), \overrightarrow{y} = (y_1, \dots, y_n), \overrightarrow{z} = (z_1, \dots, z_n) \in \mathbb{R}^n$$
; si ha:

$$\begin{cases} F(\overrightarrow{x}, \overrightarrow{y} + \overrightarrow{z}) = \sum_{i=1}^{n} (x_i) \\ F(\overrightarrow{x}, \overrightarrow{y}) + F(\overrightarrow{x}, \overrightarrow{z}) = \sum_{i=1}^{n} (x_i) + \sum_{i=1}^{n} (x_i) = 2 \sum_{i=1}^{n} (x_i) \end{cases}$$

Per cui se ad esempio $\overrightarrow{x}=(1,0,\ldots,0)$ si ottiene che $\forall \overrightarrow{y},\overrightarrow{z}\in\mathbb{R}^n$:

$$F(\overrightarrow{x}, \overrightarrow{y} + \overrightarrow{z}) = 1 \neq 2 = F(\overrightarrow{x}, \overrightarrow{y}) + F(\overrightarrow{x}, \overrightarrow{z})$$

contraddicendo la prima proprietà delle forme bilineari.

(b)
$$F(\overrightarrow{x}, \overrightarrow{y}) = \left(\sum_{i=1}^{n} (x_i)\right) \left(\sum_{j=1}^{n} (y_j)\right)$$
 è una forma bilineare. Verifichiamo le tre proprietà delle forme bilineari.

$$\forall \overrightarrow{x} = (x_1, ..., x_n), \overrightarrow{y} = (y_1, ..., y_n), \overrightarrow{z} = (z_1, ..., z_n) \in \mathbb{R}^n \in \lambda \in \mathbb{R} \text{ si ha:}$$

•
$$F(\overrightarrow{x} + \overrightarrow{z}, \overrightarrow{y}) = \left(\sum_{i=1}^{n} (x_i + z_i)\right) \left(\sum_{j=1}^{n} (y_j)\right) = \left(\sum_{i=1}^{n} (x_i) + \sum_{i=1}^{n} (z_i)\right) \left(\sum_{j=1}^{n} (y_j)\right) = \left(\sum_{i=1}^{n} (x_i)\right) \left(\sum_{j=1}^{n} (y_j)\right) + \left(\sum_{i=1}^{n} (z_i)\right) \left(\sum_{j=1}^{n} (y_j)\right) = F(\overrightarrow{x}, \overrightarrow{y}) + F(\overrightarrow{z}, \overrightarrow{y})$$

$$\bullet \ F(\overrightarrow{x}, \overrightarrow{y} + \overrightarrow{z}) = \left(\sum_{i=1}^{n} (x_i)\right) \left(\sum_{j=1}^{n} (y_j + z_i)\right) = \left(\sum_{i=1}^{n} (x_i)\right) \left(\sum_{j=1}^{n} (y_j) + \sum_{j=1}^{n} (z_j)\right) = \left(\sum_{i=1}^{n} (x_i)\right) \left(\sum_{j=1}^{n} (y_j)\right) + \left(\sum_{i=1}^{n} (x_i)\right) \left(\sum_{j=1}^{n} (z_j)\right) = F(\overrightarrow{x}, \overrightarrow{y}) + F(\overrightarrow{x}, \overrightarrow{z})$$

•
$$F(\lambda \overrightarrow{x}, \overrightarrow{y}) = \left(\sum_{i=1}^{n} (\lambda x_i)\right) \left(\sum_{j=1}^{n} (y_j)\right) = \left(\lambda \sum_{i=1}^{n} (x_i)\right) \left(\sum_{j=1}^{n} (y_j)\right) = \lambda \left(\sum_{i=1}^{n} (x_i)\right) \left(\sum_{j=1}^{n} (y_j)\right) = \lambda F(\overrightarrow{x}, \overrightarrow{y})$$

(c)
$$F(\overrightarrow{x}, \overrightarrow{y}) = \sum_{j=1}^{n} (x_j + y_j)^2 - \sum_{j=1}^{n} (x_j)^2 - \sum_{j=1}^{n} (y_j)^2$$
 è una forma bilineare.

Notiamo che:

$$\sum_{j=1}^{n} (x_j + y_j)^2 - \sum_{j=1}^{n} (x_j)^2 - \sum_{j=1}^{n} (y_j)^2 = \sum_{j=1}^{n} (2x_j y_j)$$

Verifichiamo le tre proprietà delle forme bilineari.

$$\forall \overrightarrow{x} = (x_1, ..., x_n), \overrightarrow{y} = (y_1, ..., y_n), \overrightarrow{z} = (z_1, ..., z_n) \in \mathbb{R}^n \text{ e } \lambda \in \mathbb{R} \text{ si ha:}$$

•
$$F(\overrightarrow{x} + \overrightarrow{z}, \overrightarrow{y}) = \sum_{j=1}^{n} 2(x_j + z_j)y_j = \sum_{j=1}^{n} 2x_jy_j + \sum_{j=1}^{n} 2z_jy_j = F(\overrightarrow{x}, \overrightarrow{y}) + F(\overrightarrow{z}, \overrightarrow{y})$$

•
$$F(\overrightarrow{x}, \overrightarrow{y} + \overrightarrow{z}) = \sum_{i=1}^{n} 2x_i(y_i + z_i) = \sum_{i=1}^{n} 2x_iy_i + \sum_{i=1}^{n} 2x_iz_i = F(\overrightarrow{x}, \overrightarrow{y}) + F(\overrightarrow{x}, \overrightarrow{z})$$

•
$$F(\lambda \overrightarrow{x}, \overrightarrow{y}) = \sum_{j=1}^{n} 2\lambda x_j y_j = \lambda \sum_{j=1}^{n} 2x_j y_j = \lambda F(\overrightarrow{x}, \overrightarrow{y})$$

(d)
$$F(\overrightarrow{x}, \overrightarrow{y}) = \left| \sum_{j=1}^{n} (x_j y_j) \right|$$
 non è una forma bilineare;

Mostriamo che la terza proprietà delle forme bilineari non è verificata. Infatti prendendo \overrightarrow{x} e \overrightarrow{y} tali che $\sum_{j=1}^{n} (x_j y_j) \neq 0$ (ad esempio $\overrightarrow{x} = \overrightarrow{y} = \overrightarrow{e_1}$) e $\lambda = -1$ si ha:

$$F(-\overrightarrow{x}, \overrightarrow{y}) = \left| \sum_{j=1}^{n} -(x_j y_j) \right| = \left| \sum_{j=1}^{n} (x_j y_j) \right| > 0$$
$$-F(\overrightarrow{x}, \overrightarrow{y}) = -\left| \sum_{j=1}^{n} (x_j y_j) \right| < 0$$
$$\} \Rightarrow F(-\overrightarrow{x}, \overrightarrow{y}) \neq -F(\overrightarrow{x}, \overrightarrow{y})$$

(e) $F(\overrightarrow{x}, \overrightarrow{y}) = {}^t\overrightarrow{x}A\overrightarrow{y}$, $A \in M_n(\mathbb{R})$ è una forma bilineare. Verifichiamo le tre proprietà delle forme bilineari.

$$\forall \overrightarrow{x} = (x_1, ..., x_n), \overrightarrow{y} = (y_1, ..., y_n), \overrightarrow{z} = (z_1, ..., z_n) \in \mathbb{R}^n \in \lambda \in \mathbb{R} \text{ si ha:}$$

•
$$F(\overrightarrow{x} + \overrightarrow{z}, \overrightarrow{y}) = {}^t(\overrightarrow{x} + \overrightarrow{z})A\overrightarrow{y} = ({}^t\overrightarrow{x} + {}^t\overrightarrow{z})A\overrightarrow{y} = {}^t\overrightarrow{x}A\overrightarrow{y} + {}^t\overrightarrow{z}A\overrightarrow{y} = F(\overrightarrow{x}, \overrightarrow{y}) + F(\overrightarrow{z}, \overrightarrow{y})$$

•
$$F(\overrightarrow{x}, \overrightarrow{y} + \overrightarrow{z}) = {}^t\overrightarrow{x}A(\overrightarrow{y} + \overrightarrow{z}) = {}^t\overrightarrow{x}A\overrightarrow{y} + {}^t\overrightarrow{x}A\overrightarrow{z} = F(\overrightarrow{x}, \overrightarrow{y}) + F(\overrightarrow{x}, \overrightarrow{z})$$

•
$$F(\lambda \overrightarrow{x}, \overrightarrow{y}) = (\lambda^t \overrightarrow{x}) A \overrightarrow{y} = \lambda(t \overrightarrow{x} A \overrightarrow{y}) = \lambda F(\overrightarrow{x}, \overrightarrow{y})$$

 $F(\overrightarrow{x}, \lambda \overrightarrow{y}) = t \overrightarrow{x} A(\lambda \overrightarrow{y}) = \lambda(t \overrightarrow{x} A \overrightarrow{y}) = \lambda F(\overrightarrow{x}, \overrightarrow{y})$
 $\Rightarrow F(\lambda \overrightarrow{x}, \overrightarrow{y}) = \lambda F(\overrightarrow{x}, \overrightarrow{y}) = F(\overrightarrow{x}, \lambda \overrightarrow{y})$

3. Sia F una forma bilineare simmetrica assegnata su uno spazio vettoriale V. Sia $S\subseteq V$ un sottoinsieme di V. Dimostrare che

$$S^{\perp} = \langle S \rangle^{\perp}$$
.

Solutione:

Ricordiamo innanzitutto che:

$$S^{\perp} := \left\{ \overrightarrow{v} \in V \middle| F(\overrightarrow{v}, \overrightarrow{s}) = 0 \,\forall \, \overrightarrow{s} \in S \right\}$$
$$\langle S \rangle := \left\{ \sum_{finite} a_i s_i \middle| a_i \in K, s_i \in S \right\}$$

Verifichiamo ora l'uguaglianza $S^{\perp} = \langle S \rangle^{\perp}$ procedendo per doppia inclusione:

$$(\supseteq) \colon \operatorname{Sia} \ \overrightarrow{x} \in \langle S \rangle^{\perp} \Rightarrow F(\overrightarrow{x}, \overrightarrow{s}) = 0 \ \forall \overrightarrow{s} \in \langle S \rangle \Rightarrow F(\overrightarrow{x}, \overrightarrow{s}) = 0 \ \forall \overrightarrow{s} \in S \ (\text{ poichè } S \subseteq \langle S \rangle) \Rightarrow \overrightarrow{x} \in S^{\perp}.$$

(
$$\subseteq$$
): Sia $\overrightarrow{x} \in S^{\perp} \Rightarrow F(\overrightarrow{x}, \overrightarrow{s}) = 0$, $\forall \overrightarrow{s} \in S$.
Sia $\overrightarrow{v} \in \langle S \rangle \Rightarrow \overrightarrow{v} = \sum a_i \overrightarrow{s_i}$, $a_i \in K$, $s_i \in S \Rightarrow F(\overrightarrow{x}, \overrightarrow{v}) = F(\overrightarrow{x}, \sum (a_i \overrightarrow{s_i})) = \sum a_i F(\overrightarrow{x}, \overrightarrow{s_i}) = 0 + \dots + 0 = 0 \Rightarrow F(\overrightarrow{x}, \overrightarrow{v}) = 0 \forall \overrightarrow{v} \langle S \rangle \Rightarrow \overrightarrow{x} \in \langle S \rangle^{\perp}$.

4. Data la forma bilineare $F: \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$ definita da:

$$F(\overrightarrow{x}, \overrightarrow{y}) = x_1y_2 + 2x_1y_3 + x_2y_1 + x_2y_2 + 2x_3y_1 - 2x_3y_3$$

$$\forall \overrightarrow{x}, \overrightarrow{y} \in \mathbb{R}^3, \quad \overrightarrow{x} = (x_1, x_2, x_3) \quad \overrightarrow{y} = (y_1, y_2, y_3).$$

- (a) Stabilire se F è simmetrica.
- (b) Scrivere la matrice A che rappresenta F rispetto alla base canonica di \mathbb{R}^3 .
- (c) Stabilire se F è degenere.

- (d) Verificare che i sottospazi $U = \langle (1,0,0) \rangle$ e $W = \langle (0,-2,1) \rangle$ sono ortogonali (*Nota*: due sottospazi U e W si dicono ortogonali se $U \subseteq W^{\perp}$ e $W \subseteq U^{\perp}$).
- (e) Dimostrare che non esistono vettori isotropi del tipo $(0, n, m) \neq (0, 0, 0), n, m \in \mathbb{Z}$.
- (f) Sia $I_F(\mathbb{R}^3) = \{ \overrightarrow{x} \in \mathbb{R}^3 \mid F(\overrightarrow{x}, \overrightarrow{x}) = 0 \}$ il cono isotropo di F. Verificare che $\langle (1, 0, 0), (2, 2, -1) \rangle^{\perp} \subseteq I_F(\mathbb{R}^3)$.

Solutione:

(a) $F(\overrightarrow{x}, \overrightarrow{y}) = x_1y_2 + 2x_1y_3 + x_2y_3 + 2x_3y_1 - 2x_3y_3$ $F(\overrightarrow{y}, \overrightarrow{x}) = y_1x_2 + 2y_1x_3 + y_2x_3 + 2y_3x_1 - 2y_3x_3$

Poichè \mathbb{R} è un campo, sfruttando la proprietà commutativa del prodotto e della somma, possiamo ricondurre la seconda espressione alla prima $\Rightarrow F(\overrightarrow{x}, \overrightarrow{y}) = F(\overrightarrow{y}, \overrightarrow{x}) \Rightarrow F$ è simmetrica.

(b) Sia $\mathbb{E} = (\overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3})$, la matrice $A = (a_{ij})$ che rappresenta F nella base \mathbb{E} è tale che $a_{ij} = F(e_i, e_j)$.

$$\begin{vmatrix} a_{11} = F(e_1, e_1) = 0 \\ a_{12} = F(e_1, e_2) = F(e_2, e_1) = 1 \\ a_{13} = F(e_1, e_3) = F(e_3, e_1) = 2 \\ a_{22} = F(e_2, e_2) = 1 \\ a_{23} = F(e_2, e_3) = F(e_2, e_3) = 0 \\ a_{33} = F(e_3, e_3) = -2 \end{vmatrix} \Rightarrow \mathbf{A} = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 1 & 0 \\ 2 & 0 & -2 \end{pmatrix}$$

(c) Ricordiamo che una forma bilineare F si dice degenere se non ha rango massimo, dove per rango di una forma bilineare si intende il rango della matrice che la rappresenta in una base qualsiasi, essendo quest'ultimo indipendente dalla particolare base scelta.

Nel nostro caso si ha $det(A) = -2 \neq 0$ da cui deduciamo che A ha rango massimo, per cui F è non degenere.

(d) Verifichiamo che
$$U \subseteq W^{\perp}$$
 e $W \subseteq U^{\perp}$. Poniamo $\overrightarrow{u} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ e $\overrightarrow{w} = \begin{pmatrix} 0 \\ -2 \\ 1 \end{pmatrix}$.

• $U \subseteq W^{\perp}$:

$$W^{\perp} = \langle \overrightarrow{w} \rangle^{\perp} \stackrel{es.3}{=} w^{\perp} = \{ \overrightarrow{v} \in \mathbb{R}^3 | F(\overrightarrow{w}, \overrightarrow{v}) = 0 \}.$$

$$F(\overrightarrow{w}, \overrightarrow{v}) = \begin{pmatrix} 0 & -2 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 2 \\ 1 & 1 & 0 \\ 2 & 0 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = -2y - z = 0 \Rightarrow$$
$$\Rightarrow W^{\perp} = \{ \overrightarrow{v} = (x, y, z) \in \mathbb{R}^3 : -2y - z = 0 \} = \langle (1, 0, 0), (0, 1, -2) \rangle \supseteq \langle (1, 0, 0) \rangle = U.$$

• $W \subset U^{\perp}$:

$$U^{\perp} = \langle \overrightarrow{u} \rangle^{\perp} \stackrel{es.3}{=} u^{\perp} = \{ \overrightarrow{v} \in \mathbb{R}^3 | F(\overrightarrow{u}, \overrightarrow{v}) = 0 \}.$$

$$F(\overrightarrow{u}, \overrightarrow{v}) = \begin{pmatrix} 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 2 \\ 1 & 1 & 0 \\ 2 & 0 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = y + 2z = 0 \Rightarrow$$

$$\Rightarrow U^{\perp} = \left\{ \overrightarrow{v} = (x, y, z) \in \mathbb{R}^3 : y + 2z = 0 \right\} = \left\langle (1, 0, 0), (0, -2, 1) \right\rangle \supseteq \left\langle (0, -2, 1) \right\rangle = W.$$

(e) Supponiamo per assurdo che F((0,m,n),(0,m,n))=0 con $(0,n,m)\neq (0,0,0),$ $n,m\in\mathbb{Z}.$ Allora:

$$F((0, m, n), (0, m, n)) = m^2 - 2n^2 = 0.$$

Se n=0 si ottiene $m^2=0 \Rightarrow m=0$: assurdo perchè $(0,n,m)\neq (0,0,0)$.

Se $n \neq 0 \Rightarrow 2 = \frac{m^2}{n^2} \Rightarrow \sqrt{2} = \left| \frac{m}{n} \right|$: assurdo in quanto questo negherebbe l'irrazionalità di $\sqrt{2}$.

4

(f) Poniamo
$$\overrightarrow{w_1} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
 e $\overrightarrow{w_2} = \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix}$.

Per quanto visto nell'esercizio 3 sappiamo che dato un insieme $S \subseteq \mathbb{R}^3$, si ha: $\langle S \rangle^\perp = S^\perp$. Nel nostro caso $S = \{\overrightarrow{w_1}, \overrightarrow{w_2}\} \Rightarrow \langle \overrightarrow{w_1}, \overrightarrow{w_2} \rangle^\perp = \{\overrightarrow{w_1}, \overrightarrow{w_2}\}^\perp$, dove $\{\overrightarrow{w_1}, \overrightarrow{w_2}\}^\perp = \{\overrightarrow{v} \in \mathbb{R}^3 : F(\overrightarrow{v}, \overrightarrow{w_1}) = 0 \text{ e } F(\overrightarrow{v}, \overrightarrow{w_2}) = 0\} = \{\overrightarrow{v} \in \mathbb{R}^3 : F(\overrightarrow{v}, \overrightarrow{w_1}) = 0\} \cap \{\overrightarrow{v} \in \mathbb{R}^3 : F(\overrightarrow{v}, \overrightarrow{w_2}) = 0\} = \overrightarrow{w_1}^\perp \cap \overrightarrow{w_2}^\perp$

$$\bullet \ \overrightarrow{w_1}^{\perp} = \left\{ \overrightarrow{v} = (x, y, z) \in \mathbb{R}^3 : F(\overrightarrow{w_1}, \overrightarrow{v}) = 0 \right\}$$

$$F(\overrightarrow{w_1},\overrightarrow{v}) = \begin{pmatrix} 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 2 \\ 1 & 1 & 0 \\ 2 & 0 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = y + 2z \Rightarrow \overrightarrow{w_1}^{\perp} = \{\overrightarrow{v} = (x, y, z) \in \mathbb{R}^3 : y + 2z = 0\}$$

•
$$\overrightarrow{w_2}^{\perp} = \{ \overrightarrow{v} = (x, y, z) \in \mathbb{R}^3 : F(\overrightarrow{w_2}, \overrightarrow{v}) = 0 \}$$

$$\begin{split} F(\overrightarrow{w_2},\overrightarrow{v}) &= \left(\begin{array}{ccc} 2 & 2 & -1 \end{array}\right) \left(\begin{array}{ccc} 0 & 1 & 2 \\ 1 & 1 & 0 \\ 2 & 0 & -2 \end{array}\right) \left(\begin{array}{c} x \\ y \\ z \end{array}\right) = \left(\begin{array}{ccc} 0 & 4 & 5 \end{array}\right) \left(\begin{array}{c} x \\ y \\ z \end{array}\right) = 4y + 5z \Rightarrow \\ \Rightarrow \overrightarrow{w_2}^\perp &= \left\{\overrightarrow{v} = (x,y,z) \in \mathbb{R}^3 : 4y + 5z = 0\right\} \end{split}$$

Pertanto $\{\overrightarrow{w_1},\overrightarrow{w_2}\}^{\perp}$ è l'insieme dei vettori $\overrightarrow{v}=(x,y,z)$ che verificano il seguente sistema:

$$\begin{cases} y + 2z = 0 \\ 4y + 5z = 0 \end{cases}$$

le cui soluzioni sono date dall'insieme $\{(t,0,0),t\in\mathbb{R}\}=\langle (1,0,0)\rangle$.

Facciamo quindi vedere che $\langle (1,0,0) \rangle \subseteq I_F(\mathbb{R}^3)$.

$$\begin{aligned} &\operatorname{Sia} \ \overrightarrow{v} \in \langle (1,0,0) \rangle \Rightarrow \overrightarrow{v} = (a,0,0), \, a \in \mathbb{R} \Rightarrow F(\overrightarrow{v},\overrightarrow{v}) = \left(\begin{array}{ccc} a & 0 & 0 \end{array} \right) \left(\begin{array}{ccc} 0 & 1 & 2 \\ 1 & 1 & 0 \\ 2 & 0 & -2 \end{array} \right) \left(\begin{array}{c} a \\ 0 \\ 0 \end{array} \right) = \\ & \left(\begin{array}{ccc} 0 & a & 2a \end{array} \right) \left(\begin{array}{c} a \\ 0 \\ 0 \end{array} \right) = 0 \Rightarrow \overrightarrow{v} \in I_F(\mathbb{R}^3). \end{aligned}$$

5. Data la matrice:

$$\mathbf{A} = \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 2 & -1 \\ 0 & 2 & 0 & 0 \\ 0 & -1 & 0 & -1 \end{array}\right)$$

- (a) Scrivere la forma bilineare G definita, rispetto alla base canonica $\mathbb{E} = (\overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3}, \overrightarrow{e_4})$, dalla matrice A.
- (b) Verificare che G è non degenere.
- (c) Sia W il sottospazio vettoriale di \mathbb{R}^4 generato dai vettori $\overrightarrow{e_3}$, $\overrightarrow{e_1} + \overrightarrow{e_2}$. Determinare equazioni cartesiane per W^{\perp} .
- (d) Verificare che $W \cap W^{\perp} = \langle 0 \rangle$.
- (e) Determinare i vettori G-isotropi in W^{\perp}
- (f) Scrivere la matrice di G rispetto alla base $b=\{\overrightarrow{b_1},\overrightarrow{b_2},\overrightarrow{b_3},\overrightarrow{b_4}\}$, dove

$$\overrightarrow{b_1} = \overrightarrow{e_4} \qquad \overrightarrow{b_2} = \overrightarrow{e_2} + 2\overrightarrow{e_3} \qquad \overrightarrow{b_3} = \overrightarrow{e_1} \qquad \overrightarrow{b_4} = \overrightarrow{e_3} - \overrightarrow{e_2}$$

Soluzione:

(a)
$$G(\overrightarrow{x}, \overrightarrow{y}) = {}^{t}\overrightarrow{x}A\overrightarrow{y} = \begin{pmatrix} x_{1} & x_{2} & x_{3} & x_{4} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 2 & -1 \\ 0 & 2 & 0 & 0 \\ 0 & -1 & 0 & -1 \end{pmatrix} \begin{pmatrix} y_{1} \\ y_{2} \\ y_{3} \\ y_{4} \end{pmatrix} =$$

$$= \begin{pmatrix} x_{1} & x_{2} + 2x_{3} - x_{4} & 2x_{2} & -x_{2} - x_{4} \end{pmatrix} \begin{pmatrix} y_{1} \\ y_{2} \\ y_{3} \\ y_{4} \end{pmatrix} = x_{1}y_{1} + x_{2}y_{2} + 2x_{2}y_{3} - x_{2}y_{4} + 2x_{3}y_{2} - x_{4}y_{2} - x_{4}y_{4}.$$

Risulta infatti $G(\overrightarrow{e_i}, \overrightarrow{e_j}) = a_{ij}$, dove a_{ij} è l'elemento della matrice A situato nella i-esima riga e j-esima colonna.

- (b) Si ha $det(A) = 4 \neq 0$ da cui deduciamo che A ha rango massimo, per cui G è non degenere.
- (c) $W = \langle \overrightarrow{e_3}, \overrightarrow{e_1} + \overrightarrow{e_2} \rangle$. Determiniamo le equazioni cartesiane per W^{\perp} .

$$W^{\perp} = \langle \overrightarrow{e_3}, \overrightarrow{e_1} + \overrightarrow{e_2} \rangle^{\perp} = \{ \overrightarrow{e_3}, \overrightarrow{e_1} + \overrightarrow{e_2} \}^{\perp} = \overrightarrow{e_3}^{\perp} \cap (\overrightarrow{e_1} + \overrightarrow{e_2})^{\perp}.$$

$$\bullet \ \overrightarrow{e_3}^{\perp} = \left\{ \overrightarrow{v} = (x,y,z,w) \in \mathbb{R}^4 : F(\overrightarrow{e_3},\overrightarrow{v}) = 0 \right\}$$

$$F(\overrightarrow{e_3}, \overrightarrow{v}) = \begin{pmatrix} 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 2 & -1 \\ 0 & 2 & 0 & 0 \\ 0 & -1 & 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} = \begin{pmatrix} 0 & 2 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} = y \Rightarrow$$

$$\Rightarrow \overrightarrow{e_3}^{\perp} = \{ \overrightarrow{v} = (x, y, z, w) \in \mathbb{R}^4 : y = 0 \}$$

•
$$\overrightarrow{e_1} + \overrightarrow{e_2}^{\perp} = \{ \overrightarrow{v} = (x, y, z, w) \in \mathbb{R}^4 : F(\overrightarrow{e_1} + \overrightarrow{e_2}, \overrightarrow{v}) = 0 \}$$

$$\begin{split} F(\overrightarrow{e_1} + \overrightarrow{e_2}, \overrightarrow{v}) &= \left(\begin{array}{cccc} 1 & 1 & 0 & 0 \end{array}\right) \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 2 & -1 \\ 0 & 2 & 0 & 0 \\ 0 & -1 & 0 & -1 \end{array}\right) \left(\begin{array}{c} x \\ y \\ z \\ w \end{array}\right) = \left(\begin{array}{cccc} 1 & 1 & 2 & -1 \end{array}\right) \left(\begin{array}{c} x \\ y \\ z \\ w \end{array}\right) = \left(\begin{array}{cccc} x & 1 & 2 & -1 \end{array}\right) \left(\begin{array}{c} x \\ y \\ z \\ w \end{array}\right) = \left(\begin{array}{cccc} x & 1 & 2 & -1 \end{array}\right) \left(\begin{array}{c} x \\ y \\ z \\ w \end{array}\right) = \left(\begin{array}{cccc} x & 1 & 2 & -1 \end{array}\right) \left(\begin{array}{c} x \\ y \\ z \\ w \end{array}\right) = \left(\begin{array}{cccc} x & 1 & 2 & -1 \end{array}\right) \left(\begin{array}{c} x \\ y \\ z \\ w \end{array}\right) = \left(\begin{array}{cccc} x & 1 & 2 & -1 \end{array}\right) \left(\begin{array}{c} x \\ y \\ z \\ w \end{array}\right) = \left(\begin{array}{cccc} x & 1 & 2 & -1 \end{array}\right) \left(\begin{array}{cccc} x \\ y \\ z \\ w \end{array}\right) = \left(\begin{array}{cccc} x & 1 & 2 & -1 \end{array}\right) \left(\begin{array}{cccc} x \\ y \\ z \\ w \end{array}\right) = \left(\begin{array}{cccc} x & 1 & 2 & -1 \end{array}\right) \left(\begin{array}{cccc} x \\ y \\ z \\ w \end{array}\right) = \left(\begin{array}{cccc} x & 1 & 2 & -1 \end{array}\right) \left(\begin{array}{cccc} x \\ y \\ z \\ w \end{array}\right) = \left(\begin{array}{cccc} x & 1 & 2 & -1 \end{array}\right) \left(\begin{array}{cccc} x \\ y \\ z \\ w \end{array}\right) = \left(\begin{array}{cccc} x & 1 & 2 & -1 \end{array}\right) \left(\begin{array}{cccc} x \\ y \\ z \\ w \end{array}\right) = \left(\begin{array}{cccc} x & 1 & 2 & -1 \end{array}\right) \left(\begin{array}{cccc} x \\ y \\ z \\ w \end{array}\right) = \left(\begin{array}{cccc} x & 1 & 2 & -1 \end{array}\right) \left(\begin{array}{cccc} x \\ y \\ z \\ w \end{array}\right) = \left(\begin{array}{cccc} x & 1 & 2 & -1 \end{array}\right) \left(\begin{array}{cccc} x \\ y \\ z \\ w \end{array}\right) = \left(\begin{array}{cccc} x & 1 & 2 & -1 \end{array}\right) \left(\begin{array}{cccc} x \\ y \\ z \\ w \end{array}\right) = \left(\begin{array}{cccc} x & 1 & 2 & -1 \end{array}\right) \left(\begin{array}{cccc} x \\ y \\ z \\ w \end{array}\right) = \left(\begin{array}{cccc} x & 1 & 2 & -1 \end{array}\right) \left(\begin{array}{cccc} x \\ y \\ z \\ w \end{array}\right) = \left(\begin{array}{cccc} x & 1 & 2 & -1 \end{array}\right) \left(\begin{array}{cccc} x \\ y \\ z \\ z \end{array}\right) = \left(\begin{array}{cccc} x & 1 & 2 & -1 \end{array}\right) \left(\begin{array}{cccc} x \\ y \\ z \end{array}\right) = \left(\begin{array}{cccc} x & 1 & 2 & -1 \end{array}\right) \left(\begin{array}{cccc} x \\ y \\ z \end{array}\right) = \left(\begin{array}{cccc} x & 1 & 2 & -1 \end{array}\right) \left(\begin{array}{cccc} x \\ y \\ z \end{array}\right) = \left(\begin{array}{cccc} x & 1 & 2 & -1 \end{array}\right) \left(\begin{array}{cccc} x \\ y \\ z \end{array}\right) = \left(\begin{array}{cccc} x & 1 & 2 & -1 \end{array}\right) \left(\begin{array}{cccc} x \\ y \\ z \end{array}\right) = \left(\begin{array}{cccc} x & 1 & 2 & -1 \end{array}\right) \left(\begin{array}{cccc} x \\ y \\ z \end{array}\right) = \left(\begin{array}{cccc} x & 1 & 2 & -1 \end{array}\right) \left(\begin{array}{cccc} x \\ y \\ z \end{array}\right) \left(\begin{array}{cccc} x \\ y \\ z \end{array}\right) = \left(\begin{array}{cccc} x \\ y \\ z \end{array}\right) \left(\begin{array}{ccccc} x \\ z \end{array}\right) \left(\begin{array}{cccc} x \\ z \end{array}\right) \left(\begin{array}{ccccc} x \\ z \end{array}\right) \left(\begin{array}{cccc} x \\ z \end{array}\right) \left(\begin{array}{ccccc} x \\ z \end{array}\right) \left(\begin{array}{cccc} x \\ z \end{array}\right) \left(\begin{array}{ccccc} x \\ z$$

Pertanto le equazioni cartesiane di W^{\perp} sono date dal seguente sistema:

$$\begin{cases} y = 0 \\ x + y + 2z - w = 0 \end{cases}$$

(d) Determiniamo innanzitutto le equazioni cartesiane di W, le quali si ottengono imponendo che, dato $\overrightarrow{v}=(x,y,z,w)\in\mathbb{R}^4$, l'insieme $\{\overrightarrow{v},\overrightarrow{e_3},\overrightarrow{e_1}+\overrightarrow{e_2}\}$ abbia rango (ovvero numero massimo di vettori linearmente indipendenti) 2.

Ciò si traduce formalmente nel modo seguente:

rg(M)=2, dove $\mathbf{M}=\begin{pmatrix}x&y&z&w\\0&0&1&0\\1&1&0&0\end{pmatrix}$, imponendo, cioè, che i due minori che si ottengono

orlando la sottomatrice $M(23|23) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ siano nulli:

$$\begin{vmatrix} x & y & z \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{vmatrix} = 0 \Rightarrow -x + y = 0 \qquad \begin{vmatrix} y & z & w \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{vmatrix} = 0 \Rightarrow -w = 0$$

Pertanto le equazioni cartesiane di W sono date dal seguente sistema:

$$\begin{cases} -x + y = 0 \\ -w = 0 \end{cases}$$

Ne segue che $W \cap W^{\perp}$ ha equazioni cartesiane:

$$\left\{\begin{array}{l} y=0\\ x+y+2z-w=0\\ -x+y=0\\ -w=0 \end{array}\right. \Rightarrow \left\{\begin{array}{l} x=0\\ y=0\\ z=0\\ w=0 \end{array}\right. \Rightarrow W\cap W^{\perp}=\{0\}$$

(e) Determiniamo $I_G(\mathbb{R}^4) \cap W^{\perp}$.

$$I_G(\mathbb{R}^4) = \{ \overrightarrow{v} = (x, y, z, w) \in \mathbb{R}^4 \mid G(\overrightarrow{v}, \overrightarrow{v}) = 0 \}.$$

$$= x^2 + y^2 + 4yz - 2yw - w^2 \Rightarrow I_G(\mathbb{R}^4) = \{ \overrightarrow{v} = (x, y, z, w) \in \mathbb{R}^4 : x^2 + y^2 + 4yz - 2yw - w^2 = 0 \}.$$

$$\text{Pertanto } \overrightarrow{v} = (x,y,z,w) \in I_G(\mathbb{R}^4) \cap W^\perp \Leftrightarrow \left\{ \begin{array}{l} y = 0 \\ x+y+2z-w = 0 \\ x^2+y^2+4yz-2yw-w^2 = 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} y = 0 \\ x+2z-w = 0 \\ x^2-w^2 = 0 \end{array} \right. \Leftrightarrow \left. \left\{ \begin{array}{l} y = 0 \\ x+2z-w = 0 \\ x^2-w^2 = 0 \end{array} \right. \Leftrightarrow \left. \left\{ \begin{array}{l} y = 0 \\ x+2z-w = 0 \\ x^2-w^2 = 0 \end{array} \right. \right. \Leftrightarrow \left. \left\{ \begin{array}{l} y = 0 \\ x+2z-w = 0 \\ x^2-w^2 = 0 \end{array} \right. \Leftrightarrow \left. \left\{ \begin{array}{l} y = 0 \\ x+2z-w = 0 \\ x^2-w^2 = 0 \end{array} \right. \right. \Leftrightarrow \left. \left\{ \begin{array}{l} y = 0 \\ x+2z-w = 0 \\ x^2-w^2 = 0 \end{array} \right. \Leftrightarrow \left. \left\{ \begin{array}{l} y = 0 \\ x+2z-w = 0 \\ x^2-w^2 = 0 \end{array} \right. \Leftrightarrow \left. \left\{ \begin{array}{l} y = 0 \\ x+2z-w = 0 \\ x^2-w^2 = 0 \end{array} \right. \Leftrightarrow \left. \left\{ \begin{array}{l} y = 0 \\ x+2z-w = 0 \\ x^2-w^2 = 0 \end{array} \right. \right. \Leftrightarrow \left. \left\{ \begin{array}{l} y = 0 \\ x+2z-w = 0 \\ x^2-w^2 = 0 \end{array} \right. \Leftrightarrow \left. \left\{ \begin{array}{l} y = 0 \\ x+2z-w = 0 \\ x^2-w^2 = 0 \end{array} \right. \Leftrightarrow \left. \left\{ \begin{array}{l} y = 0 \\ x+2z-w = 0 \\ x^2-w^2 = 0 \end{array} \right. \Leftrightarrow \left. \left\{ \begin{array}{l} y = 0 \\ x+2z-w = 0 \\ x^2-w^2 = 0 \end{array} \right. \Leftrightarrow \left. \left\{ \begin{array}{l} y = 0 \\ x+2z-w = 0 \\ x^2-w^2 = 0 \end{array} \right. \Leftrightarrow \left. \left\{ \begin{array}{l} y = 0 \\ x+2z-w = 0 \\ x^2-w^2 = 0 \end{array} \right. \Leftrightarrow \left. \left\{ \begin{array}{l} y = 0 \\ x+2z-w = 0 \\ x^2-w^2 = 0 \end{array} \right. \Leftrightarrow \left. \left\{ \begin{array}{l} y = 0 \\ x+2z-w = 0 \\ x^2-w^2 = 0 \end{array} \right. \Leftrightarrow \left. \left\{ \begin{array}{l} y = 0 \\ x+2z-w = 0 \\ x^2-w^2 = 0 \end{array} \right. \Leftrightarrow \left. \left\{ \begin{array}{l} y = 0 \\ x+2z-w = 0 \\ x^2-w^2 = 0 \end{array} \right. \Leftrightarrow \left. \left\{ \begin{array}{l} y = 0 \\ x+2z-w = 0 \\ x^2-w^2 = 0 \end{array} \right. \Leftrightarrow \left. \left\{ \begin{array}{l} y = 0 \\ x+2z-w = 0 \\ x^2-w^2 = 0 \end{array} \right. \Leftrightarrow \left. \left\{ \begin{array}{l} y = 0 \\ x+2z-w = 0 \\ x^2-w^2 = 0 \end{array} \right. \Leftrightarrow \left. \left\{ \begin{array}{l} y = 0 \\ x+2z-w = 0 \\ x+2z-w = 0 \end{array} \right. \Leftrightarrow \left. \left\{ \begin{array}{l} y = 0 \\ x+2z-w = 0 \\ x+2z-w = 0 \end{array} \right. \Leftrightarrow \left. \left\{ \begin{array}{l} y = 0 \\ x+2z-w = 0 \\ x+2z-w = 0 \end{array} \right. \Leftrightarrow \left. \left\{ \begin{array}{l} y = 0 \\ x+2z-w = 0 \\ x+2z-w = 0 \end{array} \right. \Leftrightarrow \left. \left\{ \begin{array}{l} y = 0 \\ x+2z-w = 0 \\ x+2z-w = 0 \end{array} \right. \Leftrightarrow \left. \left\{ \begin{array}{l} y = 0 \\ x+2z-w = 0 \\ x+2z-w = 0 \end{array} \right. \Leftrightarrow \left. \left\{ \begin{array}{l} y = 0 \\ x+2z-w = 0 \\ x+2z-w = 0 \end{array} \right. \Leftrightarrow \left. \left\{ \begin{array}{l} y = 0 \\ x+2z-w = 0 \end{array} \right. \end{cases} \right. \Leftrightarrow \left. \left\{ \begin{array}{l} y = 0 \\ x+2z-w = 0 \end{array} \right. \Leftrightarrow \left. \left\{ \begin{array}{l} y = 0 \\ x+2z-w = 0 \end{array} \right. \Leftrightarrow \left. \left\{ \begin{array}{l} y = 0 \\ x+2z-w = 0 \end{array} \right. \right. \end{cases} \right.$$

$$\Leftrightarrow \left\{ \begin{array}{l} y=0 \\ x+2z-w=0 \\ (x-w)(x+w)=0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} y=0 \\ x+2z-w=0 \\ x-w=0 \end{array} \right. \lor \left\{ \begin{array}{l} y=0 \\ x+2z-w=0 \\ x+w=0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} y=0 \\ z=0 \\ x=w \end{array} \right. \Rightarrow \left. \begin{array}{l} y=0 \\ z=w \\ x=-w \end{array} \right. \Rightarrow \left. \begin{array}{l} y=0 \\ z=w \\ x=-w \end{array} \right. \Rightarrow \left. \begin{array}{l} y=0 \\ z=w \\ x=-w \end{array} \right. \Rightarrow \left. \begin{array}{l} y=0 \\ z=w \\ x=-w \end{array} \right. \Rightarrow \left. \begin{array}{l} y=0 \\ z=w \\ x=-w \end{array} \right. \Rightarrow \left. \begin{array}{l} y=0 \\ z=w \\ x=-w \end{array} \right. \Rightarrow \left. \begin{array}{l} y=0 \\ z=w \\ x=-w \end{array} \right. \Rightarrow \left. \begin{array}{l} y=0 \\ z=w \\ x=-w \end{array} \right. \Rightarrow \left. \begin{array}{l} y=0 \\ z=w \\ x=-w \end{array} \right. \Rightarrow \left. \begin{array}{l} y=0 \\ z=w \\ x=-w \end{array} \right. \Rightarrow \left. \begin{array}{l} y=0 \\ z=w \\ x=-w \end{array} \right. \Rightarrow \left. \begin{array}{l} y=0 \\ z=w \\ x=-w \end{array} \right. \Rightarrow \left. \begin{array}{l} y=0 \\ z=w \\ x=-w \end{array} \right. \Rightarrow \left. \begin{array}{l} y=0 \\ z=w \\ x=-w \end{array} \right. \Rightarrow \left. \begin{array}{l} y=0 \\ z=w \\ x=-w \end{array} \right. \Rightarrow \left. \begin{array}{l} y=0 \\ z=w \\ x=-w \end{array} \right. \Rightarrow \left. \begin{array}{l} y=0 \\ z=w \\ x=-w \end{array} \right. \Rightarrow \left. \begin{array}{l} y=0 \\ z=w \\ x=-w \end{array} \right. \Rightarrow \left. \begin{array}{l} y=0 \\ z=w \\ x=-w \end{array} \right. \Rightarrow \left. \begin{array}{l} y=0 \\ z=w \\ x=-w \end{array} \right. \Rightarrow \left. \begin{array}{l} y=0 \\ z=w \\ x=-w \end{array} \right. \Rightarrow \left. \begin{array}{l} y=0 \\ z=w \\ x=-w \end{array} \right. \Rightarrow \left. \begin{array}{l} y=0 \\ z=w \\ x=-w \end{array} \right. \Rightarrow \left. \begin{array}{l} y=0 \\ z=w \\ x=-w \end{array} \right. \Rightarrow \left. \begin{array}{l} y=0 \\ z=w \\ x=-w \end{array} \right. \Rightarrow \left. \begin{array}{l} y=0 \\ z=w \\ x=-w \end{array} \right. \Rightarrow \left. \begin{array}{l} y=0 \\ z=w \\ x=-w \end{array} \right. \Rightarrow \left. \begin{array}{l} y=0 \\ z=w \\ x=-w \end{array} \right. \Rightarrow \left. \begin{array}{l} y=0 \\ z=w \\ x=-w \end{array} \right. \Rightarrow \left. \begin{array}{l} y=0 \\ z=w \\ x=-w \end{array} \right. \Rightarrow \left. \begin{array}{l} y=0 \\ z=w \\ x=-w \end{array} \right. \Rightarrow \left. \begin{array}{l} y=0 \\ z=w \\ x=-w \end{array} \right. \Rightarrow \left. \begin{array}{l} y=0 \\ z=w \\ x=-w \end{array} \right. \Rightarrow \left. \begin{array}{l} y=0 \\ z=w \\ x=-w \end{array} \right. \Rightarrow \left. \begin{array}{l} y=0 \\ z=w \\ x=-w \end{array} \right. \Rightarrow \left. \begin{array}{l} y=0 \\ z=w \\ x=-w \end{array} \right. \Rightarrow \left. \begin{array}{l} y=0 \\ z=w \\ x=-w \end{array} \right. \Rightarrow \left. \begin{array}{l} y=0 \\ z=w \\ x=-w \end{array} \right. \Rightarrow \left. \begin{array}{l} y=0 \\ z=w \\ x=-w \end{array} \right. \Rightarrow \left. \begin{array}{l} y=0 \\ z=w \\ x=-w \end{array} \right. \Rightarrow \left. \begin{array}{l} y=0 \\ z=w \\ x=-w \end{array} \right. \Rightarrow \left. \begin{array}{l} y=0 \\ z=w \\ x=-w \end{array} \right. \Rightarrow \left. \begin{array}{l} y=0 \\ z=w \\ x=-w \end{array} \right. \Rightarrow \left. \begin{array}{l} y=0 \\ z=w \\ x=-w \end{array} \right. \Rightarrow \left. \begin{array}{l} y=0 \\ z=w \\ x=-w \end{array} \right. \Rightarrow \left. \begin{array}{l} y=0 \\ z=w \\ x=-w \end{array} \right. \Rightarrow \left. \begin{array}{l} y=0 \\ z=w \\ x=-w \end{array} \right. \Rightarrow \left. \begin{array}{l} y=0 \\ z=w \\ x=-w \end{array} \right. \Rightarrow \left. \begin{array}{l} y=0 \\ z=w \\ x=-w \end{array} \right. \Rightarrow \left. \begin{array}{l} y=0 \\ z=w \\ x=-w \end{array} \right. \Rightarrow \left. \begin{array}{l} y=0 \\ z=w \\ x=-w \end{array} \right. \Rightarrow \left. \begin{array}{l} y=0 \\ z=w \\ x=-w \end{array} \right. \Rightarrow \left. \begin{array}{l} y=0 \\ z=w \\ x=-w \end{array} \right. \Rightarrow \left. \begin{array}{l} y=0 \\ z=w \\ x=-w \end{array} \right. \Rightarrow \left. \begin{array}{l} y=0 \\ z=w \\ x=-w \end{array} \right. \Rightarrow \left. \begin{array}{l} y=0 \\ z=w \\ x=-w \end{array} \right. \Rightarrow \left. \begin{array}{l} y=0 \\ z=w \\ x=-w \end{array} \right. \Rightarrow \left. \begin{array}{l} y=0 \\ z=w \\ x=-w \end{array} \right. \Rightarrow \left. \begin{array}{l} y=0 \\ z=w \\ x=-w \end{array} \right. \Rightarrow \left.$$

$$\Rightarrow I_G(\mathbb{R}^4) \cap W^{\perp} = \{(t,0,0,t), t \in \mathbb{R}\} \cup \{(-t,0,t,t), t \in \mathbb{R}\} = \langle (1,0,0,1), (-1,0,1,1) \rangle.$$

(f) Sia B la matrice che rappresenta la forma bilineare G rispetto alla base $b = \{\overrightarrow{b_1}, \overrightarrow{b_2}, \overrightarrow{b_3}, \overrightarrow{b_4}\}$. Si ha:

$$B = {}^{t}PAP,$$

dove $P = M_{e,b}$ è la matrice del cambiamento di coordinate dalla base b alla base e.

$$\begin{vmatrix} \overrightarrow{b_1} = \overrightarrow{e_4} = (0,0,0,1) \\ \overrightarrow{b_2} = \overrightarrow{e_2} + 2\overrightarrow{e_3} = (0,1,2,0) \\ \overrightarrow{b_3} = \overrightarrow{e_1} = (1,0,0,0) \\ \overrightarrow{b_4} = \overrightarrow{e_3} - \overrightarrow{e_2} = (0,-1,1,0) \end{vmatrix} \Rightarrow \mathbf{P} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 2 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix} \Rightarrow$$

$$\Rightarrow \mathbf{B} = {}^tPAP = \left(\begin{array}{cccc} 0 & 0 & 0 & 1 \\ 0 & 1 & 2 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 \end{array} \right) \left(\begin{array}{ccccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 2 & -1 \\ 0 & 2 & 0 & 0 \\ 0 & -1 & 0 & -1 \end{array} \right) \left(\begin{array}{ccccc} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 2 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{array} \right) = \left(\begin{array}{cccccc} -1 & -1 & 0 & 1 \\ -1 & 9 & 0 & -3 \\ 0 & 0 & 1 & 0 \\ 1 & -3 & 0 & -3 \end{array} \right)$$

6. Sia V lo spazio vettoriale delle matrice $n \times n$ su \mathbb{R} e sia $N \in M_n(\mathbb{R})$. Sia

$$F(A,B) = tr({}^{t}AMB) \quad A,B \in V$$

(Nota: Sia $C = (c_{ij}) \in M_n(\mathbb{R}), tr(C) = \sum_{j=1}^n (c_{jj})$).

- (a) Dimostrare che F è una forma bilineare su V.
- (b) Sia n=2 e $\mathbf{M}=\begin{pmatrix}3 & -2\\1 & 1\end{pmatrix}$ trovare la matrice di F nella base canonica dello spazio delle matrici 2×2 .
- (c) Scrivere la matrice di F rispetto alla base $b = \{\overrightarrow{b_1}, \overrightarrow{b_2}, \overrightarrow{b_3}, \overrightarrow{b_4}\}$, dove:

$$\overrightarrow{b_1} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \quad \overrightarrow{b_2} = \begin{pmatrix} 4 & 3 \\ 2 & 1 \end{pmatrix} \quad \overrightarrow{b_3} = \begin{pmatrix} -4 & 3 \\ -2 & 1 \end{pmatrix} \quad b_4 = \begin{pmatrix} 1 & -2 \\ 3 & -4 \end{pmatrix}$$

Solutione:

(a) Verifichiamo le tre proprietà delle forme bilineari.

 $\forall A, B, C \in M_n(\mathbb{R})$ si ha:

- $F(A+C,B) = tr({}^{t}(A+C)MB) \stackrel{*}{=} tr(({}^{t}A+{}^{t}C)MB) \stackrel{**}{=} tr({}^{t}AMB + {}^{t}CMB) = tr({}^{t}AMB) + tr({}^{t}CMB) = F(A,B) + F(C,B)$
- $F(A, B+C) = tr({}^tAM(B+C)) = tr({}^tAMB + {}^tAMC) \stackrel{***}{=} tr({}^tAMB) + tr({}^tAMC) = F(A, B) + F(A, C)$
- $F(\lambda A, B) = tr(t(\lambda A)MB) = tr(\lambda^t AMB) \stackrel{****}{=} \lambda(tr(tAMB)) = \lambda F(A, B)$
- $F(A, \lambda B) = tr({}^tAM(\lambda B)) = tr(\lambda {}^tAMB) = \lambda (tr({}^tAMB)) = \lambda F(A, B)$

dove si sono sfruttate le seguenti proprietà:

- * t(A + B) = tA + tB** proprietà distributiva dello spazio vettoriale $M_n(\mathbb{R})$ *** tr(A + B) = tr(A) + tr(B)**** $tr(k \cdot A) = k \cdot tr(A)$
- (b) Sia $\mathbb{E} = \left\{ E_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, E_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, E_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, E_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$ la base canonica dello spazio delle matrici 2×2 .

La matrice 4×4 $A = (a_{ij})$ che rappresenta F nella base \mathbb{E} è tale che $a_{ij} = F(E_i, E_j)$:

$$a_{11} = F(E_1, E_1) = tr(^tE_1ME_1) = tr\left(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 3 & -2 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}\right) = tr\left(\begin{pmatrix} 3 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 3 & -2 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 3 & -2 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 3 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 &$$

$$\Rightarrow \mathbf{A} = \begin{pmatrix} 3 & 0 & -2 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 3 & 0 & -2 \\ 0 & 1 & 0 & 1 \end{pmatrix}$$

(c) Sia B la matrice che rappresenta la forma bilineare F rispetto alla base $\mathbb{B} = \{B_1, B_2, B_3, B_4\}$. Si ha:

$$B = {}^{t}PAP,$$

dove $P=M_{\mathbb{E},\mathbb{B}}$ è la matrice del cambiamento di coordinate dalla base \mathbb{B} alla base \mathbb{E} .

$$B_1 = E_1 + 2E_2 + 3E_3 + 4E_4 = (1, 2, 3, 4) B_2 = 4E_1 + 3E_2 + 2E_3 + E_4 = (4, 3, 2, 1) B_3 = -4E_1 + 3E_2 - 2E_3 + E_4 = (-4, 3, -2, 1) B_4 = E_1 - 2E_2 + 3E_3 - 4E_4 = (1, -2, 3, -4)$$
 \Rightarrow $\mathbf{P} = \begin{pmatrix} 1 & 4 & -4 & 1 \\ 2 & 3 & 3 & -2 \\ 3 & 2 & -2 & 3 \\ 4 & 1 & 1 & -4 \end{pmatrix} \Rightarrow$

$$\Rightarrow \mathbf{B} = {}^{t}PAP = \begin{pmatrix}
1 & 2 & 3 & 4 \\
4 & 3 & 2 & 1 \\
-4 & 3 & -2 & 1 \\
1 & -2 & 3 & -4
\end{pmatrix} \begin{pmatrix}
3 & 0 & -2 & 0 \\
1 & 0 & 1 & 0 \\
0 & 3 & 0 & -2 \\
0 & 1 & 0 & 1
\end{pmatrix} \begin{pmatrix}
1 & 4 & -4 & 1 \\
2 & 3 & 3 & -2 \\
3 & 2 & -2 & 3 \\
4 & 1 & 1 & -4
\end{pmatrix} = \begin{pmatrix}
-3 & 18 & -2 & 29 \\
18 & 42 & -8 & -26 \\
-6 & -14 & -8 & 34 \\
29 & 26 & 42 & -51
\end{pmatrix}$$