CV 作业二报告

520030910342 柳纪宇

1. 概述

在本次作业中,我使用 bag-of-features 的方法,通过提取图片的 sift 特征,用 Kmeans 聚类和直方图统计的方式得到特征向量,并使用 SVM 作为分类器,完成了 Caltech-101 数据集的图片分类任务。

2. 实验流程

2.1. 数据集准备

通过给定的数据集接口读取 Caltech-101 数据集,得到数据集图片总数为 9144,图片 shape为 (200,200,3),训练集个数为 6400,测试集个数为 2744。

2.2. 提取 sift 特征

- 1. 构造字典 vec_dict 存储每一类图片的 sift 信息。
- 2. 遍历训练集, 提取标准化图片的 kp 向量与 des 向量, 遍历二者, 向 vec_dict 的当前图片标签值对应的项的'kp' 项和'des' 项分别添加 kp 和 des 值。

2.3. 统计最少特征值的类别

统计最少特征值的类别 bneck_value, 并将上一步得到的 kp 列表按照 response 大小进行逆序排序。

3. Kmeans 聚类

从每个类中提取 bneck_value 个特征点组成聚类数据,对这些数据进行 Kmeans 聚类,初始聚类中心点个数设置为 1000,最大迭代次数设置为 1000。

3.1. 直方图统计

遍历训练集数据,提取每张图片的 sift 特征, 遍历特征值列表,用之前训练好的 kmeans 聚类器 对每个特征点的 des 值进行类别预测,并将直方 图向量中该类别的对应值加一。

在完成该图片的直方图构造后对直方图向量进行归一化操作。

3.2. 构造 SVM 分类器

将直方图统计得到的直方图矩阵和训练集的标签进行 SVM 拟合,得到训练好的 SVM 分类器。

3.3. 模型测试

与前文直方图统计类似,在这里我们遍历测试集数据,提取每张图片的 sift 特征,以 kmeans 聚类器对每个特征点的 des 值进行类别预测并以此构建直方图向量。

通过 SVM 分类器对测试集的直方图向量进行预测,将预测结果与测试集标签进行比较,得到模型测试准确率。

使用不同的 N_cluster 进行 Kmeans 聚类时得到的测试准确率如下图所示:

表 1: 使用不同的 $N_{cluster}$ 进行聚类时模型准确率变化表

N_cluster	模型准确率
10	0.206
100	0.368
1000	0.357
3000	0.318
10000	0.299