## Particle spectrograph

## Wave operator and propagator

| SO(3) irreps                                                    | Fundamental fields                                                                                                                                                                                                                  | Multiplicities |
|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| τ <sub>0</sub> <sup>#2</sup> == 0                               | $\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta}==0$                                                                                                                                                                            | 1              |
| $\tau_0^{\#1} - 2  i  k  \sigma_0^{\#1} == 0$                   | $\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau^{\alpha}_{\alpha} + 2\partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha\beta}_{\alpha}$                                      | 1              |
| $\tau_1^{\#2}{}^\alpha + 2ik \ \sigma_1^{\#2}{}^\alpha == 0$    | $\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi}$ | 8              |
| $\tau_1^{\#1}{}^{\alpha} == 0$                                  | $\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$                                                                                              | 8              |
| $\tau_1^{\#1}\alpha\beta + ik \ \sigma_1^{\#2}\alpha\beta == 0$ | $\partial_{\chi}\partial^{\alpha}\tau^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} +$                                                                          | 8              |
|                                                                 | $2 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} = =$                                                           |                |
|                                                                 | $\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau^{\alpha\chi} +$                                                                                                                             |                |
|                                                                 | $\partial_{\chi}\partial^{\chi} \tau^{\beta\alpha} + 2  \partial_{\delta}\partial_{\chi}\partial^{\beta} \sigma^{\alpha\chi\delta}$                                                                                                 |                |
| $\tau_2^{\#1}\alpha\beta - 2ik \sigma_2^{\#1}\alpha\beta == 0$  | $t_{2+}^{\#1}\alpha\beta - 2ik \sigma_{2+}^{\#1}\alpha\beta == 0  -i(4\partial_{\delta}\partial_{\chi}\partial^{\beta}\partial^{\alpha}\tau^{\chi\delta} + 2\partial_{\delta}\partial^{\delta}\partial^{\alpha}\tau^{\chi})$        | 2              |
|                                                                 | $3 \partial_{\delta} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\beta \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\chi \beta} -$                                           |                |
|                                                                 | $3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} +$                                           |                |
|                                                                 | $3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\alpha\beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\beta\alpha} +$                                             |                |
|                                                                 | $4\ i \ k^{\chi} \ \partial_{\epsilon}\partial_{\chi}\partial^{eta}\partial^{lpha}\sigma^{\delta arepsilon}_{\ \delta}$ -                                                                                                           |                |
|                                                                 | $6$ i $k^{\chi}$ $\partial_{\epsilon}\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{eta\deltaarepsilon}$ -                                                                                                                |                |
|                                                                 | $6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} +$                                                                                                             |                |
|                                                                 | $2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} t^{\chi\delta} +$                                                                                                                   |                |
|                                                                 | $6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha \delta \beta} +$                                                                                                             |                |
|                                                                 | $6$ i $k^{X}$ $\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial_{\chi}\sigma^{eta\deltalpha}$ -                                                                                                                      |                |
|                                                                 | $2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau_{\chi}^{\chi}$ -                                                                                                             |                |
|                                                                 | $4  \mathbb{I}   \eta^{\alpha\beta}   k^{X}  \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta\epsilon}  ) == 0$                                                                                   |                |
| Total constraints/dalige generators:                            | ne denerators.                                                                                                                                                                                                                      | 16             |

| Quadratic (free) action                                                                                                                                                                                                                                                                  |                                                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| #S                                                                                                                                                                                                                                                                                       |                                                                                                                       |
| $\iiint (\frac{1}{6} (6t_1 \ \omega^{\alpha_{\prime}} \ \omega^{\theta}_{\prime \ \theta} + 6 \ f^{\alpha\beta} \ \tau_{\alpha\beta} + 6 \ \omega^{\alpha\beta\chi} \ \sigma_{\alpha\beta\chi} - 12t_1 \ \omega^{\theta}_{\alpha \ \theta} \ \partial_{\prime} f^{\alpha\prime} + 12t_1$ | $12t_1  \omega_{\alpha  \theta}^{ \theta}  \partial_{\scriptscriptstyle i} f^{\alpha\prime} + 12t_1$                  |
| $\omega_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$                                                                                                                                                                                                                                           | $12 r_1 \partial_{\beta} \omega_{,\ \theta}^{\ \theta} \partial' \omega^{\alpha \beta} +$                             |
| $12 r_1 \partial_{,} \omega_{\beta}^{\ \theta} \partial^{,} \omega^{\alpha\beta}_{\ \alpha} - 6 t_1 \partial_{,} f^{\alpha\prime} \partial_{\theta} f_{\alpha}^{\ \theta} +$                                                                                                             | $\partial_{	heta} f_{\alpha}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $                                                 |
| $12t_1\partial'f^{\alpha}_{}\partial_{\theta}f^{}_{}+12r_1\partial_{\alpha}\omega^{\alpha\beta'}\partial_{\theta}\omega^{\theta}_{}$ ,                                                                                                                                                   | $^{\prime}\partial_{\theta}\omega_{\beta}^{}$ ,-                                                                      |
| $24 r_1 \partial' \omega^{\alpha \beta}_{\alpha} \partial_{\theta} \omega^{\theta}_{\beta}$ , $-12 r_1 \partial_{\alpha} \omega^{\alpha \beta'} \partial_{\theta} \omega^{\theta}_{\beta} +$                                                                                             | $^{lphaeta'}\partial_{	heta}\omega_{,\;eta}^{\;eta}+$                                                                 |
| $24 r_1  \partial' \omega^{lpha eta}_{$                                                                                                                                                                                                                                                  | $\partial^{\theta}f^{\alpha\prime} + 4t_2 \omega_{\prime\theta\alpha} \partial^{\theta}f^{\alpha\prime} -$            |
| $4t_1\partial_\alpha f_{,\theta}\partial^\theta f^{\alpha\prime} + 2t_2\partial_\alpha f_{,\theta}\partial^\theta f^{\alpha\prime} - 4t_1\partial_\alpha f_{\theta\prime}\partial^\theta f^{\alpha\prime} -$                                                                             | $^{lpha\prime}$ - $4t_1\partial_{lpha}f_{	heta\prime}\partial^{	heta}f_{	heta\prime}$ -                               |
| $t_2  \partial_{\alpha} f_{ 	heta_I}  \partial^{	heta} f^{ lpha_I} + 2  t_1  \partial_{i} f_{ lpha 	heta}  \partial^{	heta} f^{ lpha_I} - t_2  \partial_{i} f_{ lpha 	heta}  \partial^{	heta} f^{ lpha_I} +$                                                                             | $-t_2  \partial_i f_{\alpha \theta}  \partial^{\theta} f^{\alpha i} +$                                                |
| $4t_1  \partial_\theta f_{\alpha\prime}  \partial^\theta f^{\alpha\prime} + t_2  \partial_\theta f_{\alpha\prime}  \partial^\theta f^{\alpha\prime} + 2t_1  \partial_\theta f_{\prime\alpha}  \partial^\theta f^{\alpha\prime} -$                                                        | $+2t_1\partial_\theta f_{,\alpha}\partial^\theta f^{\alpha\prime}$ -                                                  |
| $t_2  \partial_{\theta} f_{\prime\alpha}  \partial^{\theta} f^{\alpha\prime} + 2  (t_1 + t_2)  \omega_{\alpha\prime\theta}  ( \omega^{\alpha\prime\theta}  + 2  \partial^{\theta} f^{\alpha\prime})  +$                                                                                  | $(\omega^{\alpha\prime\theta} + 2\partial^{\theta}f^{\alpha\prime}) +$                                                |
| $2 \omega_{\alpha\theta'} ((t_1 - 2t_2) \omega^{\alpha'\theta} + 2(2t_1 - t_2) \partial^{\theta} f^{\alpha'})$                                                                                                                                                                           | $[-t_2)\partial^	heta f^{lpha\prime})$ -                                                                              |
| $8r_1\partial_\beta\omega_{\alpha\prime\theta}\partial^\theta\omega^{\alpha\beta\prime} + 4r_1\partial_\beta\omega_{\alpha\theta\prime}\partial^\theta\omega^{\alpha\beta\prime} - 16r_1\partial_\beta\omega_{\prime\theta\alpha}$                                                       | $^{\prime\prime}\partial^{\theta}\omega^{lphaeta\prime}$ -16 $^{\prime\prime}\partial_{eta}\omega_{^{\prime}etalpha}$ |
| $\partial^{\theta}\omega^{\alpha\beta'} - 4r_1\partial_{,}\omega_{\alpha\beta\theta}\partial^{\theta}\omega^{\alpha\beta'} + 4r_1\partial_{\theta}\omega_{\alpha\beta'}\partial^{\theta}\omega^{\alpha\beta'} +$                                                                         | $4 r_1 \partial_\theta \omega_{\alpha \beta'} \partial^\theta \omega^{\alpha \beta'} +$                               |
| $4 r_1 \partial_{\theta} \omega_{\alpha \beta} \partial^{\theta} \omega^{\alpha \beta}))[t, x, y, z] dz dy dx dt$                                                                                                                                                                        | dzdydxdt                                                                                                              |

0

0

0

0

0

 $\tau_1^{\#1} + \alpha \beta$ 

 $\sigma_{1}^{\#_1} +^{\alpha}$ 

0  $\sqrt{2}$   $+2 k^2 t_1$ 

0

 $\tau_{1}^{\#1}{}_{\alpha}$ 

| 21+2K-        | $\frac{i\sqrt{2} k(2k^2 r)}{(t_1 + 2k^2 t_1)}$ | 0   | $\frac{2k^2(2k^2r_1)}{(t_1+2k^2t_1)}$             |                                      |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                    |                      |                                                                           |                                           |                                                                                    |                                                         |                                                           | $\omega_{2}^{\#1}$                     | $_{4\beta}f_{2}^{\#1}$ | - αβ (                         | $\omega_2^{\#1}_{\alpha\beta}$ | X                |  |
|---------------|------------------------------------------------|-----|---------------------------------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------|---------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------|----------------------------------------|------------------------|--------------------------------|--------------------------------|------------------|--|
|               |                                                |     | 12                                                | $\sigma_{0}^{\#1}$                   | 0                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                  | $\frac{1}{t_2}$      | $\sigma_{2^{-}}^{\#1}{}_{lphaeta\chi}$                                    | 0                                         | 0                                                                                  | $\frac{2}{2 k^2 r_1 + t_1}$                             | $\omega_{2}^{#1} \dagger^{\alpha}$                        |                                        | $-\frac{ik}{v}$        |                                | 0                              |                  |  |
|               | 0                                              | 0   | <u>1)</u> 0                                       | $\tau_0^{\#2}$                       | 0                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                  | 0                    |                                                                           | <u></u>                                   | t <sub>1</sub> t <sub>1</sub>                                                      | 27                                                      | $f_{2+}^{#1} \dagger^{\alpha}$                            | $\beta \frac{i k t_1}{\sqrt{2}}$       | k <sup>2</sup>         |                                | 0                              |                  |  |
| c1 + < k - c1 | $\frac{2 k^2 r_1 + t_1}{(t_1 + 2 k^2 t_1)^2}$  | 0   | $\frac{i\sqrt{2}k(2k^2r_1+t_1)}{(t_1+2k^2t_1)^2}$ | $\tau_{0}^{\#1}$                     | $\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$                                                                                                                                                                                                                       | $\frac{2k^2}{(1+2k^2)^2t_1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                  | 0                    | $\tau_{2}^{\#1}{}_{\alpha\beta}$                                          | $-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$      | $\frac{4k^2}{(1+2k^2)^2t_1}$                                                       | 0                                                       | $\omega_2^{\#1} \dagger^{\alpha\beta}$                    | 0                                      | C                      |                                |                                | <u>1</u><br>2    |  |
| 2             | $\frac{2}{(t_1)}$                              |     | $-\frac{\bar{l}\sqrt{2}}{(t_1)}$                  |                                      |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                    |                      | $\alpha\beta$                                                             | $\frac{2}{2}$ $\frac{2}{2}$ $\frac{1}{2}$ | $\frac{2}{2}k$                                                                     |                                                         | ,,#1 <b>+</b> □                                           | $\omega_{0}^{#1}$                      |                        | $f_{0+}^{#1}$                  |                                | $\omega_0^{\#1}$ |  |
|               | $\frac{\sqrt{2}}{t_1 + 2k^2t_1}$               | 0   | $\frac{2ik}{t_1+2k^2t_1}$                         | $\sigma_{0}^{\#1}$                   | $\frac{1}{(1+2k^2)^2t_1}$                                                                                                                                                                                                                                | $\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                  | 0                    | $\sigma_{2}^{\#1}$                                                        | $\frac{2}{(1+2k^2)^2t_1}$                 |                                                                                    | 0                                                       | $\omega_{0^{+}}^{#1} \dagger$ $f_{0^{+}}^{#1} \dagger$ -  | $\frac{-t_1}{i\sqrt{2}ki}$             |                        | $\frac{2}{2} kt_1$ $2 k^2 t_1$ | 0 0                            | 0                |  |
|               | t <sub>1</sub> +                               |     |                                                   |                                      | ı                                                                                                                                                                                                                                                        | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +                                                                                                  | +                    |                                                                           | $\sigma_{2}^{\#1} + \alpha^{\beta}$       | $\tau_{2}^{\#1} + \alpha \beta$                                                    | $\sigma_{2^{-}}^{*1} +^{lphaeta\chi}$                   | $f_{0+}^{#2} \dagger$                                     | 0                                      |                        | 0                              | 0                              | 0                |  |
|               |                                                |     |                                                   |                                      | $\sigma_{0}^{\#1}$ †                                                                                                                                                                                                                                     | $	au_0^{\#1}$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\tau_0^{\#2}$                                                                                     | $\sigma_{0}^{\#1}$ † |                                                                           | $\sigma_2^*$                              | τ#<br>2                                                                            | $\sigma_{2}^{\#1}$                                      | $\omega_{0}^{#1}$ †                                       | 0                                      |                        | 0                              | 0                              | $t_2$            |  |
|               | _                                              | _   | _                                                 |                                      |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                    |                      |                                                                           |                                           |                                                                                    |                                                         |                                                           |                                        |                        |                                |                                |                  |  |
|               | 0                                              | 0   | 0                                                 |                                      |                                                                                                                                                                                                                                                          | $\omega_1^{\#_1^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1<br><sup>+</sup> αβ                                                                               |                      | $\omega_{1}^{\#2}$                                                        | β                                         | $f_{1}^{#1}$                                                                       |                                                         | $\omega_{1-\alpha}^{\#1}$                                 | $\omega_{1}^{\#2}{}_{\alpha}$          | $f_{1-\alpha}^{\#1}$   | $f_{1}^{#2}\alpha$             | <u>:</u>                       |                  |  |
|               | 0                                              | 0   | 0                                                 | $\omega_1^{\!\scriptscriptstyle \#}$ |                                                                                                                                                                                                                                                          | $\omega_1^{\#_2^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                    |                      | $\omega_{1+\alpha}^{\#2}$ $-\frac{t_1-2t_2}{3\sqrt{2}}$                   |                                           | $f_{1}^{#1}$                                                                       | αβ                                                      | $\omega_{1}^{\sharp 1}{}_{\alpha}$                        | $\omega_1^{\#2}\alpha$                 | $f_{1}^{\#1}_{\alpha}$ | $f_{1-\alpha}^{\#2}$           |                                |                  |  |
|               | 0 0                                            | 0 0 | 0 0                                               |                                      |                                                                                                                                                                                                                                                          | $\frac{1}{6}$ ( $t_1$ +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                    |                      |                                                                           | 2                                         |                                                                                    | αβ<br>-2 t <sub>2</sub> )<br>/2                         |                                                           |                                        |                        |                                | -<br>-                         |                  |  |
|               |                                                |     |                                                   | $\omega_1^{\!\scriptscriptstyle\#}$  | ‡1 † <sup>αβ</sup>                                                                                                                                                                                                                                       | $\frac{1}{6}$ ( $t_1$ +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $+4t_2$ $\frac{2t_2}{\sqrt{2}}$                                                                    | )                    | $-\frac{t_1-2t_2}{3\sqrt{2}}$ $\frac{t_1+t_2}{3}$                         | <u>2</u>                                  | _                                                                                  | $\frac{\alpha\beta}{\sqrt{2}} + t_2)$                   | 0                                                         | 0                                      | 0                      | 0                              |                                |                  |  |
|               | 0                                              | 0   | 0                                                 | $\omega_1^{\sharp}$ $f_1^{\sharp}$   | <sup>‡1</sup> † <sup>αβ</sup> † † <sup>αβ</sup> † † <sup>αβ</sup>                                                                                                                                                                                        | $\frac{1}{6}(t_1 + \frac{t_1 - t_2}{3})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} +4t_2 \\ \hline 2t_2 \\ \sqrt{2} \\ \hline -2t_2 \\ \hline \sqrt{2} \end{array}$ | )                    | $-\frac{t_1-2t_2}{3\sqrt{2}}$ $\frac{t_1+t_2}{3}$                         | <u>2</u>                                  | $-\frac{ik(t_1)}{3}\sqrt{\frac{1}{3}}ik(t_1)$                                      | $\frac{\alpha\beta}{\sqrt{2}} + t_2) + t_2)$            | 0                                                         | 0 0 0                                  | 0                      | 0                              |                                |                  |  |
|               |                                                |     |                                                   | $\omega_1^{\sharp}$ $f_1^{\sharp}$   | $^{\sharp 1}$ $^{\dagger \alpha \beta}$ $^{\sharp 2}$ $^{\dagger \alpha \beta}$ $^{\sharp 1}$ $^{\dagger \alpha \beta}$                                                                                                                                  | $\frac{1}{6} (t_1 + \frac{t_1}{3} + \frac{t_1}{3} + \frac{ik(t_1)}{3} + ik($                                                                                                                                                                                         | $+4t_{2}$ $\frac{2t_{2}}{\sqrt{2}}$ $\frac{-2t_{2}}{\sqrt{2}}$                                     | )                    | $-\frac{t_1-2t_2}{3\sqrt{2}}$ $\frac{t_1+t_2}{3}$ $\bar{t} k (t_1 + t_2)$ | <u>2</u>                                  | $-\frac{ik(t_1)}{3}\sqrt{\frac{1}{3}}ik(t_1)$ $\frac{1}{3}k^2(t_1)$                | $\alpha\beta$ $\frac{-2t_2)}{\sqrt{2}}$ $+t_2)$ $+t_2)$ | 0 0                                                       | 0 0 0                                  | 0 0 0                  | 0 0 0                          |                                |                  |  |
|               | 0 0                                            | 0 0 | 0 0                                               | ω <sub>1</sub> #  f 1                | $^{t_{1}}_{+} + ^{\alpha\beta}$ $^{t_{2}}_{+} + ^{\alpha\beta}$ $^{t_{1}}_{+} + ^{\alpha\beta}$ $^{t_{1}}_{-} + ^{\alpha}$                                                                                                                               | $\frac{1}{6} (t_1 + \frac{t_1}{3} + \frac{t_1}{3} + \frac{ik(t_1)}{3} + ik($                                                                                                                                                                                         | $+4t_{2}$ $\frac{2t_{2}}{\sqrt{2}}$ $\frac{-2t_{2}}{\sqrt{2}}$ )                                   | )                    | $-\frac{t_1-2t_1}{3\sqrt{2}}$ $\frac{t_1+t_2}{3}$ $\bar{t} k (t_1 - t_2)$ | <u>2</u>                                  | $-\frac{ik(t_{1})}{3} \times \frac{1}{3} ik(t_{1})$ $\frac{1}{3} k^{2}(t_{1})$ $0$ | $\frac{\alpha\beta}{\sqrt{2}} + t_2)$ $+ t_2)$          | $0$ $0$ $-k^2 r_1 - \frac{t_1}{2}$ $t_1$                  | $0$ $0$ $0$ $\frac{t_1}{\sqrt{2}}$     | 0 0 0                  | $0$ $0$ $ikt_1$                |                                |                  |  |
|               | 0                                              | 0   | 0                                                 | ω <sub>1</sub> #                     | $t^{\pm 1} + t^{\alpha \beta}$ $t^{\pm 2} + t^{\alpha \beta}$ $t^{\pm 1} + t^{\alpha \beta}$ $t^{\pm 1} + t^{\alpha \beta}$ $t^{\pm 1} + t^{\alpha}$ | $\frac{1}{6} (t_1 + t_1 + \frac{t_1 + t_1 + t_1 + \frac{t_1 + + \frac{t_1 + \frac{t_1 + t_1 +$ | $+4t_{2}$ $\frac{2t_{2}}{\sqrt{2}}$ $\frac{-2t_{2}}{\sqrt{2}}$ )                                   | )                    | $-\frac{t_1-2t_1}{3\sqrt{2}}$ $\frac{t_1+t_2}{3}$ $i k (t_1 - t_2)$ $0$   | <u>2</u>                                  | $-\frac{ik(t_{1})}{3} \times \frac{1}{3} ik(t_{1})$ $\frac{1}{3} k^{2}(t_{1})$ $0$ | $\frac{\alpha\beta}{\sqrt{2}} + t_2$ + $t_2$ )          | $0$ $0$ $-k^2 r_1 - \frac{t_1}{2}$ $\frac{t_1}{\sqrt{2}}$ | $0$ $0$ $0$ $\frac{t_1}{\sqrt{2}}$ $0$ | 0<br>0<br>0<br>0       | $0$ $0$ $0$ $ikt_1$ $0$        |                                |                  |  |

## Massive and massless spectra



(No massless particles)

## **Unitarity conditions**

 $r_1 < 0 \&\& t_1 > 0$