

Probability Distributions: Computations with Random Variables

Introduction to Data Science Algorithms

Dirk Grunwald

Overview

- Why?
- Transforming discrete and continuous R.V.'s
- Important case: Normal R.V. → Standard Normal R.V.
- Minimum and Maximum of R.V.'s

Why Compute About Random Variables?

Example

A car travels **one mile** at 40m/h and another **mile** at 60m/h.

Total time

$$\left(\frac{1}{40}h/m + \frac{1}{60}h/m\right)/2 = \frac{1}{48}h/m$$

or average speed 48m/h.

Why Compute About Random Variables?

Example

A car travels one mile at 40m/h and another mile at 60m/h.

Total time

$$(\frac{1}{40}h/m + \frac{1}{60}h/m)/2 = \frac{1}{48}h/m$$

or average speed 48m/h.

Example

A car travels 40 m/h for one **hour**, and 60 m/h for another **hour**.

The mean now is

$$\frac{40\times1+60\times1}{2}=50m/h$$

Why Compute About Random Variables?

Example

A car travels one mile at 40m/h and another mile at 60m/h.

Total time

$$\left(\frac{1}{40}h/m + \frac{1}{60}h/m\right)/2 = \frac{1}{48}h/m$$

or average speed 48m/h.

Example

A car travels 40 m/h for one hour, and 60 m/h for another hour.

The mean now is

$$\frac{40\times1+60\times1}{2}=50m/h$$

Wuh?

Computation on Random Variables

· This is an example of

$$E[g(x)] = \sum_{i} g(x_i) P(X = x_i)$$

.

Computation on Random Variables

• This is an example of

$$E[g(x)] = \sum_{i} g(x_i) P(X = x_i)$$

.

In this case

$$g(x) = 1/x$$

Computation on Random Variables

This is an example of

$$E[g(x)] = \sum_{i} g(x_i) P(X = x_i)$$

.

In this case

$$g(x) = 1/x$$

• When we use g(x) = rx + s, we have E[rX + s] = rE[X] + s, but this isn't true in general.

Jensen's Inequality

In general

$$g(E[X]) \le E[g(x)]$$

.

Jensen's Inequality

In general

$$g(E[X]) \le E[g(x)]$$

.

48 ≤ 50

Jensen's Inequality

In general

$$g(E[X]) \leq E[g(x)]$$

.

• This means that $Var[X] = E[X^2] - (E[X])^2$ will always be positive.

Transforming R.V.'s

Can usually be done directly on the PMF of the original R.V.

Example

R.V. X represents number of ticket sales for an airplane, assumed to be $X \sim U(0,200)$.

Can usually be done directly on the PMF of the original R.V.

Example

R.V. X represents number of ticket sales for an airplane, assumed to be $X \sim U(0,200)$.

 Plane only holds 150, transform X into R.V. Y that represents number of oversold tickets.

Can usually be done directly on the PMF of the original R.V.

Example

R.V. X represents number of ticket sales for an airplane, assumed to be $X \sim U(0,200)$.

 Plane only holds 150, transform X into R.V. Y that represents number of oversold tickets.

$$P(Y=0) = P(X \le 150) = \frac{150}{200} = 3/4$$

.

Can usually be done directly on the PMF of the original R.V.

Example

R.V. X represents number of ticket sales for an airplane, assumed to be $X \sim U(0,200)$.

 Plane only holds 150, transform X into R.V. Y that represents number of oversold tickets.

$$P(Y=0) = P(X \le 150) = \frac{150}{200} = 3/4$$

.

$$P(Y = k) = P(X = 150 + k) = 1/200$$

for all k > 0.

• In this case, g(x) = max(x-150,0).

- Transformation steps:
 - Transform the Cumulative Distribution Function (CDF), $F_X() \rightarrow F_Y()$.

- Transformation steps:
 - Transform the Cumulative Distribution Function (CDF), $F_X() \rightarrow F_Y()$.
 - Take the derivative of $F_Y()$ to produce the PDF.

- Transformation steps:
 - Transform the Cumulative Distribution Function (CDF), $F_X() \rightarrow F_Y()$.
 - Take the derivative of $F_{\gamma}()$ to produce the PDF.

Example

Example: *X* is R.V. of temperature in Celsius, transform to $Y = \frac{9}{5}X + 32$.

- Transformation steps:
 - Transform the Cumulative Distribution Function (CDF), $F_X() \rightarrow F_Y()$.
 - Take the derivative of $F_Y()$ to produce the PDF.

Example

Example: *X* is R.V. of temperature in Celsius, transform to $Y = \frac{9}{5}X + 32$.

$$F_Y(a) = P(Y \le a) = P(\frac{9}{5}X + 32 \le a)$$
$$= P(X \le \frac{5}{9}(a - 32)) = F_X(\frac{5}{9}(a - 32))$$

- Transformation steps:
 - Transform the Cumulative Distribution Function (CDF), $F_X() \rightarrow F_Y()$.
 - Take the derivative of $F_Y()$ to produce the PDF.

Example

Example: *X* is R.V. of temperature in Celsius, transform to $Y = \frac{9}{5}X + 32$.

$$F_Y(a) = P(Y \le a) = P(\frac{9}{5}X + 32 \le a)$$
$$= P(X \le \frac{5}{9}(a - 32)) = F_X(\frac{5}{9}(a - 32))$$

Leads to

$$f_Y(y) = \frac{5}{9} f_X(\frac{5}{9}(y-32))$$

Change of Units Transformations

• IF Y = rX + s for r, s > 0, then

Dirk Grunwald

Change of Units Transformations

- IF Y = rX + s for r, s > 0, then
- CDF transformation:

$$F_Y = F_X(\frac{y-s}{r})$$

PDF transformation:

$$f_y = \frac{1}{r} f_X \left(\frac{y - s}{r} \right)$$

Change of Units Transformations

- IF Y = rX + s for r, s > 0, then
- CDF transformation:

$$F_Y = F_X(\frac{y-s}{r})$$

PDF transformation:

$$f_{y} = \frac{1}{r} f_{X} \left(\frac{y - s}{r} \right)$$

• In temperature example, $r = \frac{9}{5}$, s = 32

Change of Units in Normal Distribution

• Let $X \sim N(\mu, \sigma^2)$ then $rX + s \sim N(r\mu + s, r^2\sigma^q)$.

Change of Units in Normal Distribution

- Let $X \sim N(\mu, \sigma^2)$ then $rX + s \sim N(r\mu + s, r^2\sigma^q)$.
- The important case of $r = 1/\sigma$, $s = -\mu/\sigma$ means

$$X = N(\mu, \sigma) \rightarrow Z = \frac{1}{\sigma}X + \left(-\frac{\mu}{\sigma}\right) = \frac{X - \mu}{\sigma}$$

• and $Z \sim Standard Normal e.g. N(0,1).$

Change of Units in Normal Distribution

- Let $X \sim N(\mu, \sigma^2)$ then $rX + s \sim N(r\mu + s, r^2\sigma^q)$.
- The important case of $r = 1/\sigma$, $s = -\mu/\sigma$ means

$$X = N(\mu, \sigma) \rightarrow Z = \frac{1}{\sigma}X + \left(-\frac{\mu}{\sigma}\right) = \frac{X - \mu}{\sigma}$$

- and Z ~Standard Normal e.g. N(0,1).
- Historical importance because of standard normal tables, but you'll encounter this transformation over and over in statistics and data science

Example of Standard Normal

Example

Assume $M \sim N(176, 7.47)$ is height of men in north america in cm.

$$Z=\frac{X-176}{7.47}$$

Example of Standard Normal

Example

Assume $M \sim N(176, 7.47)$ is height of men in north america in cm.

$$Z = \frac{X - 176}{7.47}$$

$$P(X < 190) = P(Z \le (190 - 176)/7.47) = P(Z \le 1.87)$$

• Use standard normal table or stats.norm.cdf(1.87) 96.7%

Example

Assume $M \sim N(176, 7.47)$ is height of men in north america in cm.

$$Z = \frac{X - 176}{7.47}$$

$$P(X < 190) = P(Z \le (190 - 176)/7.47) = P(Z \le 1.87)$$

• Use standard normal table or stats.norm.cdf(1.87) 96.7%

99% quantile of Z = 2.326. Thus 2.326*7.47 + 176 means 99% of men less than 193.4cm.

Minimum and Maximum

Application

• Given $X_i \sim$ some distribution, what is

$$Z_{max} = max(X_1, X_2, \dots, X_n)$$

1-of-many: I store n copies of data, each with lifetime X_i. I can recover
one copy with distribution Z_{max}.

Application

• Given $X_i \sim$ some distribution, what is

$$Z_{max} = max(X_1, X_2, ..., X_n)$$

- 1-of-many: I store n copies of data, each with lifetime X_i. I can recover
 one copy with distribution Z_{max}.
- Given $X_i \sim$ some distribution, what is

$$Z_{min} = min(X_1, X_2, \dots, X_n)$$

• **all-of-many:** I use *n* computers each with lifetime X_i . Because I need all of them to stay up finish my big data computation, my computation has failure probability Z_{min} .

If all X_i have same distribution:

$$P(Z_{max} \le a) = P(X_1 \le a, X_2 \le a, ..., X_n \le a)$$

= $P(X_1 \le a)P(X_2 \le a)...P(X_n \le a)$
= $F_X(x)^n$

It's easy to reduce Z_{min} to the same form if you realize that *any* failure means the same thing as 1-none failing.

$$P(Z_{min} \le a) = 1 - (1 - F(x))^n$$