Aufgabe	A13	A14	A15	A16	Σ
Punkte					

Aufgabe 13. (a) Beh.: \mathbb{P}^X ist ein Wahrscheinlichkeitsmaß auf $(\mathcal{X}, \mathcal{B})$.

Beweis. (i) Es ist $\mathbb{P}^X \geq 0$, da $\mathbb{P} \geq 0$.

- (ii) $\mathbb{P}^X(\mathcal{X}) = \mathbb{P}(X^{-1}(\mathcal{X})) = \mathbb{P}(\Omega) = 1$, da \mathbb{P} W-Maß.
- (iii) Zunächst ist für $A, B \subseteq \mathcal{X}$ mit $A \cap B = \emptyset$ auch $X^{-1}(A) \cap X^{-1}(B) = X^{-1}(A \cap B) = X^{-1}(\emptyset) = \emptyset$. Also bleiben disjunkte Vereinigungen unter Urbildbildung disjunkt (*). Seien nun $B_i \in \mathcal{B}$ für $i \in \mathbb{N}$ und paarweise verschieden. Dann folgt

$$\begin{split} \mathbb{P}^{X} \left(\bigcup_{i \in \mathbb{N}} B_{i} \right) &= \mathbb{P} \left(X^{-1} \left(\bigcup_{i \in \mathbb{N}} B_{i} \right) \right) \\ &\stackrel{(*)}{=} \mathbb{P} \left(\bigcup_{i \in \mathbb{N}} \underbrace{X^{-1} (B_{i})}_{\in \mathscr{A}} \right) \\ \mathbb{P} \overset{\text{Maß}}{=} \sum_{i \in \mathbb{N}} \mathbb{P} (X^{-1} (B_{i})) \\ &= \sum_{i \in \mathbb{N}} \mathbb{P}^{X} (B_{i}). \end{split}$$

(b) Beh.: $(\mathbb{P}^X)^Y = \mathbb{P}(Y \circ X)$.

Beweis. Sei $C \in \mathscr{C}$.

$$Y^{-1}(X^{-1}(C)) = \{x \in \Omega \mid X(x) \in \{y \in \mathcal{X} \mid Y(y) \in C\}\}\$$

= \{x \in \Omega \ | Y(X(x)) \in C\}
= \((Y \cdot X)^{-1}(C).\)

Damit folgt

$$(\mathbb{P}^X)^Y(C) = \mathbb{P}^X(Y^{-1}(C)) = \mathbb{P}(X^{-1}(Y^{-1}(C))) = \mathbb{P}((Y \circ X)^{-1}(C)) = \mathbb{P}^{(Y \circ X)}.$$

(c) Beh.: Es ist

$$\mathbb{P}^X(\{0\}) = \frac{4}{7} \qquad \mathbb{P}^X(\{1\}) = \frac{2}{7} \qquad \mathbb{P}^X(\{2\}) = \frac{1}{7}.$$

Damit ist \mathbb{P}^X eindeutig festgelegt.

Beweis. Es ist $\mathrm{Bild}(X)=\{0,1,2\}$. Damit ist $(\mathrm{Bild}(X),2^{\mathrm{Bild}(X)},\mathbb{P}^X)$ diskreter Wahrscheinlichkeitsraum. Es genügt also \mathbb{P}^X für alle Elementarereignisse zu bestimmen.

Damit folgt mit geometrischer Reihe

$$\mathbb{P}^{X}(\{0\}) = \mathbb{P}(X^{-1}(\{0\})) = \mathbb{P}(3\mathbb{N}_{0}) = \sum_{k \in \mathbb{N}_{0}} 2^{-3k-1} = \frac{1}{2} \sum_{k \in \mathbb{N}_{0}} \left(\frac{1}{8}\right)^{k} = \frac{1}{2} \frac{1}{1 - \frac{7}{8}} = \frac{4}{7}$$

$$\mathbb{P}^{X}(\{1\}) = \mathbb{P}(3\mathbb{N}_{0} + 1) = \sum_{k \in \mathbb{N}_{0}} 2^{-3k-1-1} = \frac{2}{7}$$

$$\mathbb{P}^{X}(\{2\}) = \mathbb{P}(3\mathbb{N}_{0} + 2) = \sum_{k \in \mathbb{N}_{0}} 2^{-3k-2-1} = \frac{1}{7}.$$

Aufgabe 14. (a) Wir benutzen den Dichtetransformationssatz. Es gilt Y = h(X) mit $h(x) = -2\log(x)$, also $h'(x) = -\frac{2}{x}$ und $h^{-1}(y) = e^{-\frac{1}{2}y}$. Wir benötigen noch die Identität

$$\mathbb{f}^X(e^{-\frac{1}{2}y}) = \begin{cases} 1 & 0 \leq e^{-\frac{1}{2}y} \leq 1 \\ 0 & \text{sonst} \end{cases} = \begin{cases} 1 & y \geq 0 \\ 0 & y < 0 \end{cases} = \mathbbm{1}_{\mathbb{R}_+}(y)$$

Daher erhalten wir

$$f^{Y}(y) = \frac{f^{X}(e^{-\frac{1}{2}y})}{\left| -\frac{2}{e^{-\frac{1}{2}y}} \right|} = \mathbb{1}_{\mathbb{R}_{+}}(y)\frac{1}{2}e^{-\frac{1}{2}y} = f_{\operatorname{Exp}_{\frac{1}{2}}}(y)$$

(b) Erneut können wir den Dichtetransformationssatz anwenden, da Y = h(X) mit $h(x) = \alpha x$, also $h'(x) = \alpha$ und $h^{-1}(y) = \frac{1}{\alpha}y$. Daher erhalten wir

$$\mathbb{f}^Y(y) = \frac{\mathbb{f}^X(\alpha^{-1}y)}{|h'(\alpha^{-1}y)|} = \frac{\mathbb{f}^X(\alpha^{-1}y)}{|\alpha|} = \mathbb{1}_{[0,\infty]}(y) \cdot \frac{\lambda}{\alpha} \cdot e^{-\lambda \frac{y}{\alpha}} = \mathbb{f}_{\exp_{\frac{\lambda}{\alpha}}}(y)$$

(c) Da x^2 nicht bijektiv ist, können wir den Dichtetransformationssatz nicht anwenden. Es gilt aber

$$\int_0^y f^Y(y') \, \mathrm{d}y' = \mathbb{P}^Y(y) = \mathbb{P}^Y([0,y]) = \mathbb{P}(Y^{-1}([0,y])) = \mathbb{P}([-\sqrt{y},\sqrt{y}]) = \int_{-\sqrt{y}}^{\sqrt{y}} f^X(x) \, \mathrm{d}x = \frac{1}{2}x \Big|_{-\sqrt{y}}^{\sqrt{y}} = \sqrt{y}.$$

Nach dem Haupsatz der Differenzial- und Integralrechnung gilt daher

$$f^{Y}(y) = \frac{\mathrm{d}}{\mathrm{d}y} \int_{0}^{y} f^{Y}(y') \,\mathrm{d}y' = \frac{\mathrm{d}}{\mathrm{d}y} \sqrt{y} = \frac{1}{2\sqrt{y}}$$

Aufgabe 15. (a) Beh.: $\forall y \in [0,1], z \in \mathbb{R} \text{ gilt } \mathbb{F}^*(y) \leq z \iff y \leq \mathbb{F}(z).$

Beweis. Sei $y \in [0,1]$ und $z \in \mathbb{R}$.

• " \Longrightarrow ". Sei also $\mathbb{F}^*(y) \leq z$. Da \mathbb{F} monoton wachsend, folgt direkt $\mathbb{F}(\mathbb{F}^*(y)) \leq \mathbb{F}(z)$. Also genügt es z.z.: $y \leq \mathbb{F}(\mathbb{F}^*(y))$. Betrachte dazu $x_n := \mathbb{F}^*(y) + \frac{1}{n}$ für $n \in \mathbb{N}$. Nach der Definition von $\mathbb{F}^*(y)$ folgt $\mathbb{F}(x_n) \geq y \ \forall n \in \mathbb{N}$. Außerdem gilt $x_n \downarrow \mathbb{F}^*(y)$ für $n \to \infty$. Mit der Rechtsstetigkeit von \mathbb{F} folgt damit $\mathbb{F}(x_n) \downarrow \mathbb{F}(\mathbb{F}^*(y))$.

Das heißt für $\epsilon > 0$ ex. ein $n_0 \in \mathbb{N}$, s.d. $\forall n \geq n_0$ gilt, dass $|\mathbb{F}(x_n) - \mathbb{F}(\mathbb{F}^*(y))| < \epsilon$. Da \mathbb{F} monoton wachsend und $x_n \geq \mathbb{F}^*(y)$ folgt

$$\mathbb{F}(x_n) = \mathbb{F}(\mathbb{F}^*(y)) + \epsilon$$

Also da $y \leq \mathbb{F}(x_n) \ \forall n \in \mathbb{N}$

$$y \leq \mathbb{F}(\mathbb{F}^*(y)) + \epsilon.$$

Mit $\epsilon \to \infty$ folgt $y \leq \mathbb{F}(\mathbb{F}^*(y))$ und damit die Behauptung.

• " \Leftarrow ": Sei also $y \leq \mathbb{F}(z)$. Dann folgt direkt

$$\mathbb{F}^*(y) = \inf\{x \in \mathbb{R} \mid \mathbb{F}(x) \ge y\} \le z.$$

(b) Beh.: Ist $Y \sim U[0,1]$ dann hat $\mathbb{F}^*(Y)$ dieselbe Verteilung wie X.

Beweis. Sei $Y \sim U[0,1]$. Dann ist $Y(\omega) \in [0,1] \ \forall \omega \in \Omega$ und es folgt für $z \in \mathbb{R}$ aus (a), dass $\mathbb{F}^*(Y(\omega)) \leq z \iff Y(\omega) \leq \mathbb{F}(z) \ \forall \omega \in \Omega$ und damit

$$\mathbb{F}^*(Y) < z \iff Y < \mathbb{F}(z) \quad (*).$$

Außerdem gilt für $y \in [0,1]$ da $Y \sim U[0,1]$

$$\mathbb{P}(Y \le y) = y \qquad (**).$$

Damit folgt für $x \in \mathbb{R}$:

$$\mathbb{P}(\mathbb{F}^*(Y) \le x) \stackrel{(*)}{=} \mathbb{P}(Y \le \mathbb{F}(x)) \stackrel{(**)}{=} \mathbb{F}(x).$$

Also sind $\mathbb{F}^*(Y)$ und \mathbb{F} identisch verteilt.

(c) Sei $\lambda > 0$. Beh.:

$$G(x) := \begin{cases} -\frac{1}{\lambda} \ln(1-x) & x \in [0,1) \\ \infty & x = 1 \end{cases}.$$

Beweis. Es ist $X \sim \operatorname{Exp}_{\lambda}$. Also definiere

$$\mathbb{F} \colon (0, \infty) \to [0, 1)$$
$$x \mapsto \mathbb{F}^X(x) = \mathbb{F}_{\text{Exp}_{\lambda}}(x) = 1 - \exp(-\lambda x).$$

Dann ist \mathbb{F} invertierbar und es gilt $\mathbb{F}^* = \mathbb{F}^{-1}$ auf (0,1). Weiter ist

$$\mathbb{F}^{-1}(x) = -\frac{1}{\lambda} \ln(1-x) \qquad x \in [0,1).$$

Wähle dann G wie in Beh. Dann ist $G = \mathbb{F}^*$ auf (0,1) und $G(0) = 0 = \inf\{x \in \mathbb{R}_0^+ \mid \mathbb{F}(x) \ge 0\} = \mathbb{F}^*(0)$. Außerdem gilt $\mathbb{F}^*(1) = \inf\{x \in \mathbb{R}_0^+ \mid \mathbb{F}(x) = 1\} = \infty = G(1)$. Damit folgt die Behauptung aus (b).

Aufgabe 16. (a) Aufgrund der Normierungsbedingung muss gelten

$$1 = \int_{Y} \int_{X} f^{X,Y}(x,y) \, \mathrm{d}x \, \mathrm{d}y$$

$$= \int_{Y} \int_{X} C_{\lambda} e^{-\lambda y} \mathbb{1}_{0 \le x \le y} \, \mathrm{d}x \, \mathrm{d}y$$

$$= \int_{Y} \int_{0}^{y} C_{\lambda} e^{-\lambda y} \mathbb{1}_{0 \le y} \, \mathrm{d}x \, \mathrm{d}y$$

$$= \int_{Y} C_{\lambda} \left[x \cdot e^{-\lambda y} \mathbb{1}_{0 \le y} \right]_{x=0}^{y} \, \mathrm{d}y$$

$$= \int_{0}^{\infty} C_{\lambda} y e^{-\lambda y} \, \mathrm{d}y$$

$$= \left[-C_{\lambda} \frac{y}{\lambda} e^{-\lambda y} \right]_{y=0}^{\infty} - \int_{0}^{i} n f t y - C_{\lambda} \frac{1}{\lambda} e^{-\lambda y} \, \mathrm{d}y$$

$$= 0 - 0 + \left[-C_{\lambda} \frac{1}{\lambda^{2}} e^{-\lambda y} \right]_{y=0}^{\infty}$$

$$= 0 - \left(-C_{\lambda} \frac{1}{\lambda^{2}} e^{0} \right)$$

$$= \frac{C_{\lambda}}{\lambda^{2}}$$

Also gilt $C_{\lambda} = \lambda^2$.

(b) Es gilt

$$\mathbb{f}^X(x) = \int_{\mathbb{R}} \mathbb{f}^{X,Y}(x,y) \, \mathrm{d}y \, = \int_{\mathbb{R}} \lambda^2 e^{-\lambda y} \, \mathbb{1}_{0 \le x \le y} \, \mathrm{d}y \, = \int_x^\infty \lambda^2 e^{-\lambda y} \, \mathrm{d}y \, = \left[-\lambda e^{-\lambda y} \right]_x^\infty = \lambda e^{-\lambda x}$$

und

$$f^{Y}(y) = \int_{\mathbb{R}} f^{X,Y}(x,y) dx = \int_{\mathbb{R}} \lambda^{2} e^{-\lambda y} \mathbb{1}_{0 \le x \le y} dx = \int_{0}^{y} \lambda^{2} e^{-\lambda y} dx = \left[\lambda^{2} e^{-\lambda y} x\right]_{0}^{y} = \lambda^{2} y e^{-\lambda x}$$

(c) Es gilt

$$\mathbb{P}(X \ge Y) = \int_0^\infty \int_y^\infty f^{X,Y}(x,y) \, \mathrm{d}x \, \mathrm{d}y = \int_0^\infty \int_y^\infty \lambda^2 e^{-\lambda y} \underbrace{\mathbb{1}_{0 \le x \le y}}_{=0} \, \mathrm{d}x \, \mathrm{d}y = 0$$

und

$$\mathbb{P}(2X \le Y) = \int_0^\infty \int_0^{\frac{y}{2}} \mathbb{f}^{X,Y}(x,y) \, \mathrm{d}x \, \mathrm{d}y \\ = \int_0^\infty \int_0^{\frac{y}{2}} \lambda^2 e^{-\lambda y} \underbrace{\mathbb{1}_{0 \le x \le y}}_{-1} \, \mathrm{d}x \, \mathrm{d}y \\ = \int_0^\infty \left[\lambda^2 e^{-\lambda y} x \right]_{x=0}^{\frac{y}{2}} \\ = \frac{1}{2} \int_0^\infty y \lambda^2 e^{-\lambda y} = \frac{1}{2} \int_0^\infty y \lambda^2 e^{-\lambda y} \underbrace{\mathbb{1}_{0 \le x \le y}}_{-1} \, \mathrm{d}x \, \mathrm{d}y \\ = \int_0^\infty \left[\lambda^2 e^{-\lambda y} x \right]_{x=0}^{\frac{y}{2}} \\ = \frac{1}{2} \int_0^\infty y \lambda^2 e^{-\lambda y} \, \mathrm{d}x \, \mathrm{d}y \\ = \int_0^\infty \left[\lambda^2 e^{-\lambda y} x \right]_{x=0}^{\frac{y}{2}} \\ = \frac{1}{2} \int_0^\infty y \lambda^2 e^{-\lambda y} \, \mathrm{d}x \, \mathrm{d}y \\ = \int_0^\infty \left[\lambda^2 e^{-\lambda y} x \right]_{x=0}^{\frac{y}{2}} \\ = \frac{1}{2} \int_0^\infty y \lambda^2 e^{-\lambda y} \, \mathrm{d}x \, \mathrm{d}y \\ = \int_0^\infty \left[\lambda^2 e^{-\lambda y} x \right]_{x=0}^{\frac{y}{2}} \\ = \frac{1}{2} \int_0^\infty y \lambda^2 e^{-\lambda y} \, \mathrm{d}x \, \mathrm{d}y \\ = \int_0^\infty \left[\lambda^2 e^{-\lambda y} x \right]_{x=0}^{\frac{y}{2}} \\ = \frac{1}{2} \int_0^\infty y \lambda^2 e^{-\lambda y} \, \mathrm{d}x \, \mathrm{d}y \\ = \int_0^\infty \left[\lambda^2 e^{-\lambda y} x \right]_{x=0}^{\frac{y}{2}} \\ = \frac{1}{2} \int_0^\infty y \lambda^2 e^{-\lambda y} \, \mathrm{d}x \, \mathrm{d}y \\ = \int_0^\infty \left[\lambda^2 e^{-\lambda y} x \right]_{x=0}^{\frac{y}{2}} \\ = \int_0^\infty \left[\lambda^2 e^{-\lambda y} x \right]_{x=0}^{\frac{y}{2}} \\ = \int_0^\infty \left[\lambda^2 e^{-\lambda y} x \right]_{x=0}^{\frac{y}{2}} \\ = \int_0^\infty \left[\lambda^2 e^{-\lambda y} x \right]_{x=0}^{\frac{y}{2}} \\ = \int_0^\infty \left[\lambda^2 e^{-\lambda y} x \right]_{x=0}^{\frac{y}{2}} \\ = \int_0^\infty \left[\lambda^2 e^{-\lambda y} x \right]_{x=0}^{\frac{y}{2}} \\ = \int_0^\infty \left[\lambda^2 e^{-\lambda y} x \right]_{x=0}^{\frac{y}{2}} \\ = \int_0^\infty \left[\lambda^2 e^{-\lambda y} x \right]_{x=0}^{\frac{y}{2}} \\ = \int_0^\infty \left[\lambda^2 e^{-\lambda y} x \right]_{x=0}^{\frac{y}{2}} \\ = \int_0^\infty \left[\lambda^2 e^{-\lambda y} x \right]_{x=0}^{\frac{y}{2}} \\ = \int_0^\infty \left[\lambda^2 e^{-\lambda y} x \right]_{x=0}^{\frac{y}{2}} \\ = \int_0^\infty \left[\lambda^2 e^{-\lambda y} x \right]_{x=0}^{\frac{y}{2}} \\ = \int_0^\infty \left[\lambda^2 e^{-\lambda y} x \right]_{x=0}^{\frac{y}{2}} \\ = \int_0^\infty \left[\lambda^2 e^{-\lambda y} x \right]_{x=0}^{\frac{y}{2}} \\ = \int_0^\infty \left[\lambda^2 e^{-\lambda y} x \right]_{x=0}^{\frac{y}{2}} \\ = \int_0^\infty \left[\lambda^2 e^{-\lambda y} x \right]_{x=0}^{\frac{y}{2}} \\ = \int_0^\infty \left[\lambda^2 e^{-\lambda y} x \right]_{x=0}^{\frac{y}{2}} \\ = \int_0^\infty \left[\lambda^2 e^{-\lambda y} x \right]_{x=0}^{\frac{y}{2}} \\ = \int_0^\infty \left[\lambda^2 e^{-\lambda y} x \right]_{x=0}^{\frac{y}{2}} \\ = \int_0^\infty \left[\lambda^2 e^{-\lambda y} x \right]_{x=0}^{\frac{y}{2}}$$