

04 Statistische Tests

Dominic Schmitz & Janina Esser

Statistische Tests

Einfachster Teil der inferenziellen Statistik:
 wir nehmen unsere Daten und leiten etwa aus ihnen ab

Geschieht meist anhand des "Null-Hypothesis Significance Testing"

Resultat ist oftmals der berühmte p-Wert (probability value)

Ziel	normalverteilte Daten	nicht normalverteile Daten	kategoriale Daten	
Beschreibung einer Gruppe	Durchschnitt, Standardabweichung	Median, Interquartial-Spannweite	Proportion	
Testen auf Normalverteilung	Shapiro-'	-		
Vergleich zweier unabhängiger Gruppen	t-Test independent samples	Wilcoxon-Mann-Whitney Test	Fisher's Test	
Vergleich zweier abhängiger Gruppen	t-Test dependent samples	Wilcoxon Signed-Rank Test	McNemar's Test	
Vergleich dreier oder mehr unabhängiger Gruppen	ANOVA	Kruskal-Wallis Test	Chi-Quadrat Test	
Vergleich dreier oder mehr abhängiger Gruppen	ANOVA	Friedman Test	Cochrane Q	
Korrelation	Pearson	Spearman		

Ziel	normalverteilte Daten	nicht normalverteile Daten	kategoriale Daten		
Beschreibung einer Gruppe	Durchschnitt, Standardabweichung	Median, Interquartial-Spannweite	Proportion		
Testen auf Normalverteilung	Shapiro-'	-			
Vergleich zweier unabhängiger Gruppen	t-Test independent samples	Wilcoxon-Mann-Whitney Test	Fisher's Test		
Vergleich zweier abhängiger Gruppen	t-Test dependent samples	Wilcoxon Signed-Rank Test	McNemar's Test		
Vergleich dreier oder mehr unabhängiger Gruppen	ANOVA	Kruskal-Wallis Test	Chi-Quadrat Test		
Vergleich dreier oder mehr abhängiger Gruppen	ANOVA	Friedman Test	Cochrane Q		
Korrelation	Pearson	Spearman			

Ziel	normalverteilte Daten	nicht normalverteile Daten	kategoriale Daten		
Beschreibung einer Gruppe	Durchschnitt, Standardabweichung	Median, Interquartial-Spannweite	Proportion		
Testen auf Normalverteilung	Shapiro-'	-			
Vergleich zweier unabhängiger Gruppen	t-Test independent samples	Wilcoxon-Mann-Whitney Test	Fisher's Test		
Vergleich zweier abhängiger Gruppen	t-Test dependent samples	Wilcoxon Signed-Rank Test	McNemar's Test		
Vergleich dreier oder mehr unabhängiger Gruppen	ANOVA	Kruskal-Wallis Test	Chi-Quadrat Test		
Vergleich dreier oder mehr abhängiger Gruppen	ANOVA	Friedman Test	Cochrane Q		
Korrelation	Pearson	Spearman			

Shapiro-Wilk Test

- mit einem Shapiro-Wilk Test kann man feststellen, ob eine Stichprobe normalverteilt ist
- diese Info ist wichtig, da verschiedene andere Tests nur dann funktionieren, wenn Daten (annähernd) normalverteilt sind
- Daten müssen voneinander unabhängig sein; die Datenmenge sollte zwischen 3 und 5000 liegen
- als Beispiel nutzen wir das "Vowel Shortening in German" Datenset aus dem SfL Package

Shapiro-Wilk Test

• Sind die Vokaldauern von /a/, /e/ und /i/ normalverteilt?

Shapiro-Wilk Test

- Sind die Vokaldauern von /a/, /e/ und /i/ normalverteilt?
- Der Shapiro-Wilk Test kommt zu folgenden Ergebnissen:

	p-Wert
/a/	p < 0.001
/e/	p < 0.001
/i/	p < 0.001

Da die p-Werte kleiner 0.05 sind, sind die Daten nicht normalverteilt

Ziel	normalverteilte Daten	nicht normalverteile Daten	kategoriale Daten	
Beschreibung einer Gruppe	Durchschnitt, Standardabweichung	Median, Interquartial-Spannweite	Proportion	
Testen auf Normalverteilung	Shapiro-	-		
Vergleich zweier unabhängiger Gruppen	t-Test independent samples	Wilcoxon-Mann-Whitney Test	Fisher's Test	
Vergleich zweier abhängiger Gruppen	t-Test dependent samples	Wilcoxon Signed-Rank Test	McNemar's Test	
Vergleich dreier oder mehr unabhängiger Gruppen	ANOVA	Kruskal-Wallis Test	Chi-Quadrat Test	
Vergleich dreier oder mehr abhängiger Gruppen	ANOVA	Friedman Test	Cochrane Q	
Korrelation	Pearson	Spearman		

t-Test

- Es gibt verschiedene Arten des t-Tests
- Wichtig dabei:
 Stammen meine Daten aus dem gleichen Sample?
- Ja z.B. falls zwei Experimente mit gleichen TN durchgeführt werden
 - → dependent samples t-test
- Nein z.B. falls zwei Experimente mit verschiedenen TN durchgeführt werden
 - → independent samples t-test

- ein Versuch wird n-mal durchgeführt
- ein Parameter wird geändert
- der Versuch wird mit den gleichen TN und dem geänderten Parameter erneut durchgeführt
- dann werden die Messergebnisse verglichen

unsere gemessene Variable sei in

Durchführung A: x

Durchführung B: *y*

- x und y wurden n-mal gemessen $x_1, ..., x_n$ und $y_1, ..., y_n$
- der t-Test geht davon aus, dass x und y (annähernd) normalverteilt sind (wichtig!)
- Frage: Sind die Werte von x und y signifikant verschieden oder sind sie nur zufällig verschieden?

• Schritt 1: Durchschnitt von z berechnen

$$\bar{z} = \bar{y} - \bar{x}$$

Schritt 2: Standardabweichung von z berechnen

$$s \coloneqq + \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (z_i - \bar{z})^2}$$

Schritt 3: t-Wert berechnen

$$t = \frac{\overline{z}}{s} * \sqrt{n}$$

- mithilfe des t-Wertes und der Freiheitsgrade kann nun in einer Tabelle die t-Verteilung nachgeschlagen werden
- die Freiheitsgrade sind df = n 1

f	90%	95%	97.5%	99%	99.5%	99.9%
1	3.078	6.314	12.706	31.821	63.657	318.309
2	1.886	2.920	4.303	6.965	9.925	22.327
3	1.638	2.353	3.182	4.541	5.841	10.215
4	1.533	2.132	2.776	3.747	4.604	7.173
5	1.476	2.015	2.571	3.365	4.032	5.893
6	1.440	1.943	2.447	3.143	3.707	5.208
7	1.415	1.895	2.365	2.998	3.499	4.785
8	1.397	1.860	2.306	2.896	3.355	4.501
9	1.383	1.833	2.262	2.821	3.250	4.297
10	1.372	1.812	2.228	2.764	3.169	4.144
11	1.363	1.796	2.201	2.718	3.106	4.025
12	1.356	1.782	2.179	2.681	3.055	3.930
13	1.350	1.771	2.160	2.650	3.012	3.852
14	1.345	1.761	2.145	2.624	2.977	3.787
15	1.341	1.753	2.131	2.602	2.947	3.733
16	1.337	1.746	2.120	2.583	2.921	3.686
17	1.333	1.740	2.110	2.567	2.898	3.646
18	1.330	1.734	2.101	2.552	2.878	3.610
19	1.328	1.729	2.093	2.539	2.861	3.579
20	1.325	1.725	2.086	2.528	2.845	3.552
21	1.323	1.721	2.080	2.518	2.831	3.527
22	1.321	1.717	2.074	2.508	2.819	3.505
∞	1.282	1.645	1.960	2.326	2.576	3.090

- t-Tests können einseitig oder zweiseitig sein
- es sind μ_1 und μ_2 die unbekannten wahren Erwartungswerte der beiden Stichproben
- bei zweiseitigen t-Tests ist die Nullhypothese von der Form

$$H_0 = \{\mu_1 \neq \mu_2\}$$

bei einseitigen t-Tests ist die Nullhypothese von der Form

$$H_0 = {\mu_1 > \mu_2}$$
 oder $H_0 = {\mu_1 < \mu_2}$

bei zweiseitigen t-Tests ist die Nullhypothese von der Form

$$H_0 = \{\mu_1 \neq \mu_2\}$$

- bei zweiseitigen t-Tests wissen wir nicht, ob x oder y im Durchschnitt größer ist; der Test ist ungerichtet
- bei einseitigen t-Tests ist die Nullhypothese von der Form

$$H_0 = \{\mu_1 > \mu_2\} \text{ oder } H_0 = \{\mu_1 < \mu_2\}$$

• bei einseitigen t-Tests wissen wir bereits, dass x größer/kleiner y ist; der Test ist gerichtet

- das Signifikanzniveau sei $\alpha = 0.05$
- mit t-Wert, Freiheitsgraden und Signifikanzniveau können wir nun berechnen
- für zweiseitige t-Tests: $t_{n-1,1-\frac{\alpha}{2}}$
- für einseitige t-Tests: $t_{n-1,1-\alpha}$ bzw. $-t_{n-1,1-\alpha}$

Beispiel: Blutdruck

df	=	10	 1

Blutdruck	1	2	3	4	5	6	7	8	9	10
Placebo x	168	184	172	173	150	155	163	164	151	146
Medikament y	176	145	150	163	136	168	164	139	145	112
Differenz z	8	-39	-22	-10	-14	13	1	-25	-6	-34

•
$$\bar{z} = -12.8$$

•
$$s = 17.36$$

•
$$t = -2.332$$

• für einseitige t-Tests:

$$t_{n-1,1-\alpha}$$
 bzw. $-t_{n-1,1-\alpha}$

die Nullhypothese wird abgelehnt, wenn

$$t < -t_{n-1,1-\alpha}$$

für unser Blutdruckbeispiel:

$$-t_{n-1,1-\alpha} = -t_{9,0.95}$$

f	90%	95%	97.5%	99%	99.5%	99.9%
1	3.078	6.314	12.706	31.821	63.657	318.309
2	1.886	2.920	4.303	6.965	9.925	22.327
3	1.638	2.353	3.182	4.541	5.841	10.215
4	1.533	2.132	2.776	3.747	4.604	7.173
5	1.476	2.015	2.571	3.365	4.032	5.893
6	1.440	1.943	2.447	3.143	3.707	5.208
7	1.415	1.895	2.365	2.998	3.499	4.785
8	1.397	1.860	2.306	2.896	3.355	4.501
9	1.383	1.833	2.262	2.821	3.250	4.297
10	1.372	1.812	2.228	2.764	3.169	4.144
11	1.363	1.796	2.201	2.718	3.106	4.025
12	1.356	1.782	2.179	2.681	3.055	3.930
13	1.350	1.771	2.160	2.650	3.012	3.852
14	1.345	1.761	2.145	2.624	2.977	3.787
15	1.341	1.753	2.131	2.602	2.947	3.733
16	1.337	1.746	2.120	2.583	2.921	3.686
17	1.333	1.740	2.110	2.567	2.898	3.646
18	1.330	1.734	2.101	2.552	2.878	3.610
19	1.328	1.729	2.093	2.539	2.861	3.579
20	1.325	1.725	2.086	2.528	2.845	3.552
21	1.323	1.721	2.080	2.518	2.831	3.527
22	1.321	1.717	2.074	2.508	2.819	3.505
∞	1.282	1.645	1.960	2.326	2.576	3.090

29.03. bis 02.04.2023

 $-t_{9,0.95}$

also, stimmt es nun, dass

$$t < -t_{n-1,1-\alpha}$$

ist?

• ja, denn

$$-2.332 < -1.833$$

• damit ist die Wirksamkeit des Medikaments zum Signifikanzniveau $\alpha=0.05$ nachgewiesen

- ein Versuch wird n-mal durchgeführt
- ein Parameter wird geändert
- der Versuch wird mit anderen TN und dem geänderten Parameter erneut durchgeführt
- da wir verschiedene Probandengruppen haben, kann $n_1 \neq n_2$ zutreffen
- dann werden die Messergebnisse verglichen

unsere gemessene Variable sei in

Durchführung A: x

Durchführung B: *y*

- x und y wurden n-mal gemessen $x_1, ..., x_n$ und $y_1, ..., y_n$
- der t-Test geht davon aus, dass x und y (annähernd) **normalverteilt** sind (wichtig!)
- Frage: Sind die Werte von x und y verschieden oder sind sie nur zufällig verschieden?

- Schritt 1: Durchschnitt von x und y berechnen
- Schritt 2: Standardabweichung von x und y berechnen
- Schritt 3: Standardabweichung von x + y berechnen

$$s_p = \sqrt{\frac{(n_y - 1) * s_x^2 + (n_x - 1) * s_y^2}{n_y + n_x - 2}}$$

Schritt 4: t-Wert berechnen

$$t = \frac{\overline{y} - \overline{x}}{s_p} * \sqrt{\frac{n_y * n_x}{n_y + n_x}}$$

- das Signifikanzniveau sei $\alpha = 0.05$
- mit t-Wert, Freiheitsgraden und Signifikanzniveau können wir nun berechnen
- für zweiseitige t-Tests: $t_{n_y+n_x-2,1-\frac{\alpha}{2}}$
- für einseitige t-Tests: $t_{n_y+n_x-2,1-\alpha}$ bzw. $-t_{n_y+n_x-2,1-\alpha}$

Beispiel: f0 bei Männern

f0	1	2	3	4	5	6	7	8	9	10
Gruppe 1 x	55	69	64	70	75	70	83	69	75	69
Gruppe 2 y	61	60	62	58	75	63	52	66	59	

•
$$n_y = 10, n_x = 9$$

•
$$\bar{x} = 69.00, \bar{y} = 61.78$$

•
$$s_x = 7.972, s_y = 6.280$$

$$s_p = 7.226$$

$$t = -2.175$$

also, stimmt es nun, dass

$$t < -t_{17,0.95}$$

ist?

• ja, denn

$$-2.175 < -1.740$$

• damit ist die f0 der zweiten Gruppe zum Signifikanzniveau $\alpha=0.05$ nachgewiesen tiefer

Ziel	normalverteilte Daten	nicht normalverteile Daten	kategoriale Daten		
Beschreibung einer Gruppe	Durchschnitt, Standardabweichung	Median, Interquartial-Spannweite	Proportion		
Testen auf Normalverteilung	Shapiro-	-			
Vergleich zweier unabhängiger Gruppen	t-Test independent samples	Wilcoxon-Mann-Whitney Test	Fisher's Test		
Vergleich zweier abhängiger Gruppen	t-Test dependent samples	Wilcoxon Signed-Rank Test	McNemar's Test		
Vergleich dreier oder mehr unabhängiger Gruppen	ANOVA	Kruskal-Wallis Test	Chi-Quadrat Test		
Vergleich dreier oder mehr abhängiger Gruppen	ANOVA	Friedman Test	Cochrane Q		
Korrelation	Pearson	Spearman			

Chi-Quadrat-Test

- mit Chi-Quadrat-Tests können wir bestimmen, ob zwei kategorische
 Variablen zusammenhängen
- als Beispiel nutzen wir das "Age and Looks" Datenset aus dem SfL Package

	blue	brown	green
blonde	3	7	3
brunette	5	15	2
red	1	3	1

Chi-Quadrat-Test

- nun können wir mit einem Chi-Quadrat-Test testen, ob Haar- und Augenfarbe in unserem Sample zusammenhängen
- Ergebnis: p = 0.84 > 0.05, d.h. nein, kein Zusammmenhang

	blue	brown	green
blonde	3	7	3
brunette	5	15	2
red	1	3	1

Ziel	normalverteilte Daten	nicht normalverteile Daten	kategoriale Daten
Beschreibung einer Gruppe	Durchschnitt, Standardabweichung	Median, Interquartial-Spannweite	Proportion
Testen auf Normalverteilung	Shapiro-Wilk Test		-
Vergleich zweier unabhängiger Gruppen	t-Test independent samples		
Vergleich zweier abhängiger Gruppen	t-Test dependent samples	Wilcoxon Signed-Rank Test	McNemar's Test
Vergleich dreier oder mehr unabhängiger Gruppen	ANOVA	Kruskal-Wallis Test	Chi-Quadrat Test
Vergleich dreier oder mehr abhängiger Gruppen	ANOVA	Friedman Test	Cochrane Q
Korrelation	Pearson	Spearman	

Wilcoxon-Mann-Whitney Test

- Reminder: t-Tests setzen eine (annähernde) Normalverteilung der Daten voraus
- der Wilcoxon-Mann-Whitney Test kann auch mit nicht-normalverteilten
 Daten umgehen
- als Beispiel nutzen wir das das "Vowel Shortening in German" Datenset aus dem SfL Package

Wilcoxon-Mann-Whitney Test

 die Vokaldauern von /a/, /e/ und /i/ sind nicht normalverteilt (siehe Shapiro-Wilk Test)

Wilcoxon-Mann-Whitney Test

Ergebnis:

ja, die Vokale haben unterschiedliche Dauern

	/a/ vs. /e/	/a/ vs. /i/	/e/ vs. /i/
t-Test	<0.001	<0.001	0.00568
WMW-Test	<0.001	<0.001	0.00241

Ziel	normalverteilte Daten	nicht normalverteile Daten	kategoriale Daten
Beschreibung einer Gruppe	Durchschnitt, Standardabweichung	Median, Interquartial-Spannweite	Proportion
Testen auf Normalverteilung	Shapiro-Wilk Test		-
Vergleich zweier unabhängiger Gruppen	t-Test independent samples	,	
Vergleich zweier abhängiger Gruppen	t-Test dependent samples	Wilcoxon Signed-Rank Test	McNemar's Test
Vergleich dreier oder mehr unabhängiger Gruppen	ANOVA	Kruskal-Wallis Test	Chi-Quadrat Test
Vergleich dreier oder mehr abhängiger Gruppen	ANOVA	Friedman Test	Cochrane Q
Korrelation	Pearson	Spearman	

- die Korrelation beschreibt eine Beziehung zwischen zwei oder mehr Variablen
- Korrelation bedeutet nicht Kausalität!
 - zwei Variablen können korreliert sein
 - ohne dabei in kausaler Verbindung zu stehen

Number of people who drowned by falling into a pool correlates with

Films Nicolas Cage appeared in

Per capita cheese consumption correlates with

Number of people who died by becoming tangled in their bedsheets

People who drowned after falling out of a fishing boat

correlates with

Marriage rate in Kentucky

tylervigen.com

- sind die zu vergleichenden Daten normalverteilt und numerisch, nutzen wir Pearson's r
- sind die zu vergleichenden Daten nicht normalverteilt und/oder nicht numerisch, nutzen wir Spearman's rho
- als Beispiel nutzen wir das "Duration of word-final /s/ in English" Datenset aus dem SfL Package

- Wann sprechen wir von Korrelation?
 - \rightarrow 4-stufige Version

Korrelationskoeffizient		Label	Richtung		
0.7	< r ≤	1.0	sehr hoch	positive Korrelation	
0.5	< r ≤	0.7	hoch		
0.2	< r ≤	0.5	mittel		
0.0	< r ≤	0.2	niedrig		
r≈0		keine Korrelation			
0.0	> r ≥	-0.2	niedrig		
-0.2	> r ≥	-0.5	mittel	nogativa Varralation	
-0.5	> r ≥	-0.7	hoch	negative Korrelation	
-0.7	> r ≥	-1.0	sehr hoch		

- Wann sprechen wir von Korrelation?
 - \rightarrow 3-stufige Version

Korrelationskoeffizient		Label	Richtung		
0.6	< r ≤	1.0	hoch	positive Korrelation	
0.3	< r ≤	0.6	mittel		
0.0	< r ≤	0.3	niedrig		
	r≈0		keine Korrelation		
0.0	> r ≥	-0.3	niedrig		
-0.3	> r ≥	-0.6	mittel	negative Korrelation	
-0.6	> r ≥	-1.0	hoch		

- Wann sprechen wir von Korrelation?
 - → 2-stufige Version

Korrelationskoeffizient		Label	Richtung		
0.6	< r ≤	1.0	hoch	positive Korrelation	
0.2	< r ≤	0.5	mittel		
$-0.2 \le r \le 0.2$		niedrig bis keine Korrelation			
-0.2	> r ≥	-0.5	mittel	negative Korrelation	
-0.5	> r ≥	-1.0	hoch		

• generell gilt: es gibt so viele Versionen wie wissenschaftliche Aufsätze

Frage: sind /s/-Dauer und base-Dauer korreliert?

Antwort: ja, da r = 0.47

Ziel	normalverteilte Daten	nicht normalverteile Daten	kategoriale Daten
Beschreibung einer Gruppe	Durchschnitt, Standardabweichung	Median, Interquartial-Spannweite	Proportion
Testen auf Normalverteilung	Shapiro-Wilk Test		-
Vergleich zweier unabhängiger Gruppen	t-Test Wilcoxon-Mann-Whitney independent samples Test		Fisher's Test
Vergleich zweier abhängiger Gruppen	t-Test dependent samples	Wilcoxon Signed-Rank Test	McNemar's Test
Vergleich dreier oder mehr unabhängiger Gruppen	ANOVA	Kruskal-Wallis Test	Chi-Quadrat Test
Vergleich dreier oder mehr abhängiger Gruppen	ANOVA	Friedman Test	Cochrane Q
Korrelation	Pearson	Spearman	