Advanced Macroeconomics Keynesianische Wachstumsmodelle

Termin 8

Claudius Gräbner University of Duisburg-Essen Institute for Socio-Economics &

Johannes Kepler University Linz
Institute for Comprehensive Analysis of the Economy (ICAE)

www.claudius-graebner.com | www.uni-due.de | www.jku.at/icae

Outline

- Im Folgenden wollen wir die bisher behandelten Theorien zum Arbeitsmarkt,
 Haushaltssektor und der Produktion zu Wachstumsmodelle kombinieren
- Wir unterscheiden dabei vier Ansätze
 - Klassische Wachstumsmodelle
 - Neoklassische Wachstumsmodelle
 - Keynesianische Wachstumsmodelle
 - Evolutorische Wachstumsmodelle
- Diese werden in den nächsten Terminen anhand von Beispielen eingeführt
- Unterschiede zeigen sich insbesondere bei...
 - ... Auswahl der Modellgleichungen und Theorie über zugrundeliegende Mechanismen
 - ... Wahl endogener und exogener Variablen
- Darüber tiefergehende epistemologische Unterschiede

Nachfrage, Angebot und potenzieller Output

- In den bisherigen Modellen war die Unterscheidung zwischen aggregiertem
 Angebot und aggregierter Nachfrage nicht zentral
- Im neoklassischen SSM und klassischen FEM wurde ökonomisches Wachstum durch das Wachstum der effektiven Arbeiterschaft beschränkt → komplett exogene Größe
- In Keynesianischen Modellen wird diese Unterscheidung zentral
 - Wachstum in diesen Modellen ist beschränkt durch die Nachfrageseite → demandconstrained growth models
- Zentrales Konzept: der Output-Gap
 - Potenzielles BIP: BIP bei hypothetischer Vollauslastung aller Produktionsfaktoren
 - Output Gap: Potenzielles tatsächliches BIP
 - Messung stark theoriegeladen und potenziell problematisch (vgl. T12)

Nachfrage, Angebot und potenzieller Output

- Aus der Perspektive von exogenen Wachstumsmodellen stellen sich Rezessionen mit vergrößertem Output-Gap als temporäre Phänomene dar
 - Kurzfristige Abweichung vom langfristigen Wachstumspfad
 - Diese Phänomene werden von Modellen für die kurze Frist erklärt, in denen es wiederum kein Wachstum gibt → vgl. DSGE oder ABM
- Was aber wenn ein Nachfrageschock das potenzielle GDP selbst ändert?

 In diesem Falle sprechen wir von Pfadabhängigkeit bzw. Hysteresis → langfristiges Wachstum nicht unabhängig von kurzfristigen Events

Nachfrage, Angebot und potenzieller Output

- In exogenen Wachstumsmodellen wie dem SSM gibt es keine Pfadabhängigkeiten
- Endogene Wachstumsmodelle können Pfadabhängigkeiten abbilden
 - Das wäre z.B. auch im klassischen CWSM möglich
- Beispiel: Anpassung des Potentialoutputs
 - Hier verwendetes Modell: SSM \rightarrow attribuiert Änderungen zu exogenen Änderungen in N oder $\mathcal T$
 - Was aber wenn es endogene Reaktionen auf die Krise sind? → In exogenen
 Wachstumsmodellen nicht zu behandeln

Quelle: Foley et al. (2019), S. 217

Große Politikrelevanz: exogene Modellen geben keinen Raum wipol. Stimuli

Wiederholungsfragen

- Was verstehen wir unter "Hysteresis"?
- Gebt ein Beispiel in dem Hysteresis plausiblerweise auftreten könnte.
- Was verstehen wir unter "potenziellem Output"?
- In welchem Zusammenhang wurden Potenzialoutput und Pfadabhängigkeit hier diskutiert?
- In welcher Art von Modellen endogene oder exogene Wachstumsmodelle können wir Pfadabhängigkeiten explizit untersuchen?
- Fasst die Interpretation des Graphen aus endogener und exogener Wachstumstheorie-Perspektive zusammen

Sparen und Investment aus keynesianischer Perspektive

- In den bisherigen Modellen gab es keine sinnvolle Unterscheidung zwischen Sparen und Investment
 - Homogenes Gut, Entrepreneure übersetzten Ersparnisse automatisch in Investments
- In keynesianischen Modellen wird nun explizit unterschieden zwischen der...
 - ...Entscheidung von Firmen zu investieren → Erwerb von Kapitalgütern
 - ...Entscheidung von Haushalten zu sparen → Teil des Einkommens wird nicht konsumiert
- Diese Unterscheidung gibt es in klassischen und neoklassischen
 Wachstumsmodellen nicht → alle Ersparnisse werden in reale Güter investiert!
- Das ist inkonsistent mit realen Ökonomien:
 - Sparer:innen erwarben finanzielle Assets, die Verbindlichkeiten für andere darstellen, aber nicht zu realen Gütern korrespondieren
 - Der Erwerb solcher finanzieller Assets i.d.R. keine Voraussetzung für Investitionen

Sparen und Investment aus keynesianischer Perspektive

- Nach Keynes wird Sparen und Investment in der kurzen Frist durch Änderungen im Output ins Gleichgewicht gebrach
 - Operiert über die Auslastung der Produktionsfaktoren → capacity utilization
- Keynsianisches Kreuz kennt ihr ja
 - Output ändert sich um Ersparnisse zu generieren, die für geplante Investments nötig sind

- ullet Keynesianische Modelle sehen N nicht als bindende Grenze für Wachstum
- Wenn Auslastung < 100% ist der K auch keine bindende Begrenzung

Sparen und Investment aus keynesianischer Perspektive

- Wenn K und N keine Begrenzung für das Wachstum darstellen, was dann?
- In Keynesianischen Modellen ist es die Bereitschaft der Entrepreneure zu investieren
 - Da Nachfrage nach Investments ein Nachfragefaktor ist, sprechen wir von demandconstrained growth
- Die Einführung einer eigenen Investmentfunktion zur Beschreibung von unternehmerischem Investitionsverhalten ist das Kernfeature der keynesianischen Wachstumsmodelle
 - Auseinanderfallen von Spar- und Investitionsentscheidungen als zentrale neue Herausforderung
 - Hier weiterhin noch recht rudimentär, aber zentrales Element der monetären Makroökonomik und in agentenbasierten Modellen

Grundstruktur eines keynesinischen Wachstumsmodell Sparen und Investieren

- Wir kehren zu der Unterscheidung von Kapitalist:innen und Arbeiter:innen aus den klassischen Modellen zurück
 - Kapitalist:innen sparen Anteil β aus ihrem Vermögen \rightarrow Cambridge-Gleichung:

- Anders als bislang erklärt das noch nicht das Investitionsverhalten der Entrepreneure → Investitionsfunktion
 - Gewünschtes Wachstum an Kapital: g_K^i
 - Erwartete Profitrate: $\mathbb{E}(v)$
- Grundidee: wenn $\mathbb{E}(v)$ steigt sind die Entrepreneure begeistert und wollen mehr investieren \rightarrow Relevanz der animal spirits

Grundstruktur eines keynesinischen Wachstumsmodell Sparen und Investieren

Die klassische Operationalisierung geht auf Joan Robinson zurück:

$$g_K^i + \delta = \eta v$$

- $g_K^i + \delta$ beschreibt die notwendigen Investments
- η ist ein Maß für die animal spirits \rightarrow Bereitschaft auf Basis von (erwarteten) Profiten zu investieren
- Robinson nimmt hier an, dass $\mathbb{E}(v) = v \rightarrow \text{gilt wohl nur in stabilen Zeiten}$
- Im Gleichgewicht gilt dann notwendigerweise:

$$g_K^i = g_K^s = g_K$$

- Somit haben wir zwei zusätzliche Mechanismen in unserem Modell
 - Ausgangspunkt ist das CWSM
 - Aber: jetzt haben wir 'zu viele' Gleichungen gegeben unserer endogenen Variablen!

Grundstruktur eines keynesinischen Wachstumsmodell Zwischenstand nach Einsetzen in klassisches CWSM

Modellgleichungen:

$$1. \ \ w = x \left(1 - \frac{v}{\rho} \right)$$

$$2. \ c = x \left(1 - \frac{g_K + \delta}{\rho} \right)$$

3.
$$g_K^s + \delta = \beta v - (1 - \beta)(1 - \delta)$$

$$g_K^s = \beta (1 + \nu - \delta) - (1 - \delta)$$

4.
$$w = (1 - \bar{\pi})x$$

$$5. \ g_K^i + \delta = \eta v$$

6.
$$g_K^s = g_K^i = g_K$$

- Endogene Variablen:
 - 1. v: Profitrate
 - 2. w: Reallohn
 - 3. g_K : Kapitalwachstum
 - 4. *c*: Konsum

- Exogene Variablen:
 - 1. ρ : Kapitalintensität
 - 2. *x*: Output
 - 3. δ : Abnutzung
 - 4. β : Sparneigung
 - 5. $\bar{\pi}$: Profitquote

Anzahl der endogenen Variablen ≠ Anzahl Modellgleichungen → Modell überdeterminiert

Unterscheidung von g_K^i und g_K^s nicht berücksichtigt \rightarrow eine endogene V. zu wenig!

Die Rolle der Auslastung im keynesianischen Modell

- Die Lösung liegt darin, den Grad der Auslastung u explizit zu modellieren
 - Anteil der tatsächlichen an der potenziellen Auslastung der Ökonomie
- Wie passen Entrepreneure u an die ökonomischen Umstände an?
 - Empirisch gesehen ist die Reaktion der Arbeitsproduktivität x auf Rezessionen deutlich geringer als die Reaktion der Kapitalproduktivität ρ :

ITASO institute for

Die Rolle der Auslastung im keynesianischen Modell Änderungen der Kapitalproduktivität

• In keynesianischen Modellen nimmt man i.d.R. an, dass sich ρ durch Änderungen in u verändert, x aber gleich bleibt

Die potenzielle Kapitalproduktivität ist ρ

Die tatsächliche Kapitalproduktivität ist $u\rho$

Daraus ergibt sich
$$k = \frac{x}{(u\rho)}$$

- Die Lohngleichung bleibt die gleiche wie vorher: $w = (1 \bar{\pi})$
 - Konsum hängt nun aber von der tatsächlichen Kapitalproduktivität ab
- Das hat Implikationen für den Wachstums-Verteilungsplan:

Aus
$$w = x(r + \delta) \cdot k$$
 ergibt sich nun $w = x - vk = x\left(1 - \frac{v}{u\rho}\right)$

Aus
$$c = x - (g_K + \delta) k$$
 ergibt sich nun $c = x \left(1 - \frac{g_K + \delta}{u\rho}\right)$

Die Rolle der Auslastung im keynesianischen Modell Der Wachstums-Verteilungs-Plan

Den Effekt einer geringeren Auslastung können wir auch grafisch betrachten:

- Die Situation mit u < 1 ermöglicht neue Optionen:
 - Anstieg der Profitrate ohne Änderungen des Lohns (A \rightarrow B)
 - Anstieg des Lohns ohne Änderungen der Profitrate (A → C)

Die Rolle der Auslastung im keynesianischen Modell Der Wachstums-Verteilungs-Plan

- Formal bedeutet das, dass die tatsächliche Profitrate jetzt auch von der Auslastung \boldsymbol{u} abhängt:
 - Alt: $v = \pi \rho$
 - Neu: $v = \pi \rho u$
- Daraus ergibt sich für die Robinson'sche Interpretation $\mathbb{E}(v) = v$, dass die Entrepreneure die Profitrate auf Basis aktueller Auslastung und der Profitquote (oder Lohnquote) vorhersagen
- Somit haben wir das Problem der Überdeterminierung gelöst!

Grundstruktur eines keynesinischen Wachstumsmodell Zusammenfassung

Damit haben wir 6 Gleichungen und 6 endogene Variablen:

Modellgleichungen:

$$1. \ w = x \left(1 - \frac{v}{u\rho} \right)$$

$$2. \ c = x \left(1 - \frac{g_K + \delta}{u\rho} \right)$$

3.
$$g_K^s + \delta = \beta v - (1 - \beta)(1 - \delta)$$

$$g_K^s = \beta (1 + \nu - \delta) - (1 - \delta)$$

4.
$$g_K^i + \delta = \eta v$$

5.
$$g_K^s = g_K^i = g_K$$

6.
$$w = (1 - \bar{\pi})x$$

Endogene Variablen:

1. *u*: Auslastungsrate

2. v: Profitrate

3. w: Reallohn

4. g_K^i : Gew. Kapitalwachstum

5. g_K^s : Wachstum Vermögen

6. *c*: Konsum

Exogene Variablen:

1. k: Kapitalintensität

2. x: Output

3. δ : Abnutzung

4. β : Sparneigung

5. $\bar{\pi}$: Profitquote

6. η : animal spirits

Im folgenden wollen wir das Gleichgewicht des Modells charakterisieren

Wiederholungsfragen

- Was ist das Kernfeature von Keynesianischen Wachstumsmodellen, das sie von klassischen und neoklassischen Wachstumsmodellen unterscheidet?
- Warum sprechen wir aus keynesianischer Perspektive von demand-constrained growth?
- Wie wurden Keynes' 'animal spirits' im vorliegenden Wachstumsmodell operationalisiert?
- Was sind die endogenen Variablen im Keynesianischen Modell? Handelt es sich um ein exogenes oder endogenes Wachstumsmodell?
- Welche wichtige Implikation hat die Einführung von \boldsymbol{u} für den Wachstums-Verteilungs-Plan?

Das Gleichgewicht im keynesianischen Modell Herleitung der Gleichgewichtswerte

Aus den ersten drei Gleichungen...

1.
$$g_K^s + \delta = \beta v - (1 - \beta)(1 - \delta)$$

$$2. g_K^i + \delta = \eta v$$

3.
$$g_K^s = g_K^i = g_K$$

• ...ergibt sich der Gleichgewichtswert für die Profitrate (Herleitung im Anhang):

$$v^* = \frac{\left(1 - \beta\right)(1 - \delta)}{\beta - \eta}$$

- Aus diesem Ausdruck ergibt sich übrigens auch, dass nur wenn $\beta>\eta$ negative Profitraten vermieden werden können dazu später mehr
- Jetzt können wir die Gleichgewichtswerte der anderen endogenen Variablen u, w, g_K^i, g_K^s und c bestimmten

Das Gleichgewicht im keynesianischen Modell Herleitung der Gleichgewichtswerte

• Als nächstes leiten wir und den Gleichgewichtswert für u her

• Aus
$$v^* = \frac{\left(1-\beta\right)(1-\delta)}{\beta-\eta}$$
 und $v=\pi\rho u$ ergibt sich:

$$u^* = \frac{\left(1 - \beta\right)(1 - \delta)}{\bar{\pi}\rho\left(\beta - \eta\right)}$$

Der Gleichgewichtslohn ergibt sich unmittelbar aus den Modellgleichungen:

$$w^* = (1 - \bar{\pi})x$$

Das Gleichgewicht im keynesianischen Modell Herleitung der Gleichgewichtswerte

Auch das Kapitalwachstum ergibt sich dementsprechend:

$$g_K^* = \eta v$$

Und zuletzt der Konsum:

$$c^* = x \left(1 - \frac{g_K^* + \delta}{u^* \rho} \right) = x \left(1 - \eta \pi - \frac{\delta}{u^* \rho} \right)$$

 Jetzt wo wir alle Gleichgewichtswerte haben können müssen wir uns noch mit der Stabilität des Gleichgewichts beschäftigen

Das Gleichgewicht im keynesianischen Modell Stabilität des Gleichgewichts

- . Bereits die Gleichung $v^*=\frac{\left(1-\beta\right)(1-\delta)}{\beta-\eta}$ deutet auf die Notwendigkeit von $\beta>\eta$ hin:
- Bilden wir die Investment- und Cambridge-Gleichung grafisch ab:

- Eindeutiges GG wenn $\beta > \eta$
- Gleichgewicht stabil:

Das Gleichgewicht im keynesianischen Modell Stabilität des Gleichgewichts

- Bereits die Gleichung $v^* = \frac{\left(1-\beta\right)(1-\delta)}{\beta-\eta}$ deutet auf die Notwendigkeit von $\beta>\eta$ hin:
- Bilden wir die Investment- und Cambridge-Gleichung grafisch ab:

- Wenn $\beta < \eta$ kommt es zu Problemen
 - Intercept bei der
 Investmentfunktion nötig
- Daher gilt $\beta > \eta$ als die Keynesianische Stabilitätsbedingung
- Ohne diese Bedingung gibt es kein stabiles GG → Solow's Kritik am HD-Modell

Komparativ-dynamische Analyse

- Aufgrund seines speziellen Fokus auf die Nachfrageseite unterscheiden sich die Implikationen des keynesianischen Wachstumsmodells teils fundamental von klassischen und neoklassischen Modellen
- Hier wollen wir drei dieser charakteristischen Ergebnisse diskutieren:
 - 1. Das Sparparadoxon
 - 2. Das Kostenparadoxon
 - 3. Der Krug der armen Witwe ('widow's cruse')
- Der Name von (3) geht übrigens auf eine Bibelgeschichte zurück

Komparativ-dynamische Analyse Das Sparparadoxon

- Ausgangspunkt: Anstieg der Sparquote β auf β'
- Wenn η konstant bleibt...
 - sinkt das Wachstum
 - sinken die Profite
 - sinkt die Auslastung

• Ursache: geringere Nachfrage $(1-\beta')(1-\delta)$ nach Konsumgütern $(1-\beta)(1-\delta)$

- In klassischen Wachstumsmodellen: mehr Sparen → mehr Wachstum
- Im neoklassischen Setting: mehr Sparen → mehr Wachstum in der kurzen Frist
- Hier: Investment-Entscheidung unabhängig von Sparentscheidung \rightarrow Nachfrageeffekt auf u
 - Entsprechend skeptisch sind Keynesianer bei Politikmaßnahmen, die das Sparen fördern

Komparativ-dynamische Analyse Das Kostenparadoxon

- Ausgangspunkt: Anstieg der Lohnquote $(1-\pi)$ erhöht die Auslastung u und damit potenziell das Wachstum
 - Unintuitiv, da Kapitalist:innen das zunächst als Kostenanstieg wahrnehmen
- Aber: höhere Löhne senken die Profitquote π , aber nicht v oder g_K :
 - $\pi = (1 w)$
 - $v^* = (1 \beta) (1\delta) / (\beta \eta)$
- Der Effekt auf *u* ist aber positiv:
 - $u = v/\pi\rho$

- Der Effekt operiert darüber, dass Arbeiter:innen ihr gesamtes Einkommen konsumieren →
 Umverteilung stärkt aggregierte Nachfrage → typisch-Keynesianische Politik
 - Aufgrund erhöhter Nachfrage kein negativer Effekt auf Ersparnisse

Komparativ-dynamische Analyse Der Krug der armen Witwe ('widow's cruse')

- ullet Ausgangspunkt: Anstieg in der Bereitschaft zu Investieren η
- In dem Moment wo Entrepreneure mehr investieren, steigen die Profite und damit die Ersparnisse entsprechend an
 - Investitionen setzen kein vorherigen Sparen voraus
 - Bedarf aber eines funktionierenden Finanzsystems mit Geldschöpfung
- Steigung von $g_K^i + \delta = \eta v$ steigt

•
$$v' > v$$
, da $v = (1 - \beta) (1\delta) / (\beta - \eta)$

•
$$u' > u$$
, da $u = v/\pi \rho$

•
$$g_K' > g_K$$
, da $g_K + \delta = \eta v$

Auch hier folgen die 'typischen'
 Keynesianischen Politikimplikationen

Wiederholungsfragen

- Ist das Gleichgewicht im Keynesianischen Modell stabil? Wenn ja, aufgrund welcher Prozesse? Wenn nein, warum nicht?
- Was verstehen wir unter der Keynesianischen Stabilitätsbedingung?
- Fasst das Sparparadox zusammen.
- Fasst das Kostenparadox zusammen.
- Die unterschiedlichen Modell-Designs von klassischen, neoklassischen und keynesianischen Modellen haben wichtige Politikmaßnahmen.
 - Welche Implikationen gibt es bzgl. Maßnahmen, die das Sparen zugunsten von höheren Wachstumsraten ankurbeln sollen?
 - Welche Implikationen ergeben sich für funktionale Einkommensumverteilung?
- Was hat es mit dem Krug der amen Witwe auf sich? Welche Voraussetzung hat der Effekt?

Die lange und die kurze Frist

- Wachstumsmodelle sind gemeinhin Modelle für die lange Frist
 - Abstraktion von kurzfristigen Schwankungen wie Rezessionen und Booms
 - Anpassungen an die Gleichgewichte dauern relativ lange
- Beim Keynesianischen Wachstumsmodell wird kontrovers über die Eignung als langfristiges Wachstumsmodell gestritten
 - Beispiel: Entrepreneure investieren selbst wenn u < 1 (oder einem anderen Zielwert)
 - In der langen Frist ist das unplausibel → warum investieren wenn man den aktuellen Kapitalstock noch nicht einmal voll verwendet?
 - In der kurzen Frist, wenn Entrepreneure sich noch nicht an das Gesamtgleichgewicht angepasst haben, kann das aber Sinn ergeben
- Will man das Modell aber auch für die lange Frist verwenden, muss man begründen warum Entrepreneure auch bei u < 1 den Kapitalstock ausbauen

Die lange und die kurze Frist

- Modelle mit beschränkt rationalen Firmen argumentieren, dass u < 1 eine unternehmerische Norm oder Heuristik darstellt
- Die meisten Ökonom:innen betrachten das Modell aber eher als Modell für die kurze Frist \rightarrow in der langen Frist ergibt sich dann u=1
- In diesem Fall kollabiert das KM in das CWSM
 - "Die Ökonomie ist keynesianisch in der kurzen und klassisch in der langen Frist."
- Die Arbeitsteilung zwischen kurzer und langer Frist ist bei Ökonom:innen über die Paradigmen hinweg weitgehend Konsens
 - Wo genau das Keynesinische Modell hinfällt ist weiterhin kontrovers
- Zentrale Elemente wie die Koordination von Sparen und Investieren in jedem Fall wichtig → Sowohl in der Post-Keynesiansichen Heterodoxie, als auch der Neu-Keynesianischen Orthodoxie (vgl. DSGE)

Zusammenfassung und Abschluss

- Grundmodell der Keynesianischen Wachstumstheorie als endogenes
 Wachstumsmodell mit Unterscheidung zw. agg. Angebot und Nachfrage
- Das Modell kann Pfadabhängigkeiten berücksichtigen und geht insofern mit teils fundamental anderen Politikimplikationen einher
- Kernfeature: Auseinanderfallen von Spar- und Investitionsentscheidungen
 - Damit einhergehend: Auslastung der Ökonomie als neue endogene Variable
 - Wenn u < 1 ergeben sich völlig neue Implikationen, z.B. Spar- oder Kostenparadoxon
- Erlaubt empirisch wichtige Unterscheidung zwischen Lohn- und Profitgetriebenem Wachstum → überhaupt viele spannende Erweiterungen
 - Theorie der Wachstumsmodelle
 - Strukturalistische Modelle
 - •

Zusammenfassung und Abschluss

- In vielerlei Hinsicht wichtige neue Perspektiven und Politikkontroversen:
 - In klassischen und neoklassischen Modellen gilt Say's Gesetz: Sparen führt automatisch zum Investieren und keine Diskrepanz zwischen Angebot und Nachfrage möglich
 - Sparen in diesen Modellen als zentraler Antrieb für Wirtschaftswachstum
- Ein Anstieg der Sparquote oder eine Umverteilung von Arbeit zu Kapital kann im keynesiansischen Framework das Wachstum schädigen - anders als bisher
 - Umverteilung zu Arbeiter:innen kann Gesamteinkommen sogar erhöhen
- Frage ob Keynesianische Theorie für die lange Frist geeignet ist bleibt offen
 - Wachstumstheorie ohnehin nicht das genuine Kernfeld der Keynesianischen Theorie
 - Fokus traditionell auf der kurzen Frist → monetäre Makroökonomik
 - Aber: neue Entwicklung mit 'Keynes meets Schumpeter' → ABM als Brücke und Ausgangspunkt für neue Wachstumsmodelle

Wiederholungsfragen

- Was verstehen wir unter "Hysteresis" bzw. Pfadabhängigkeit? In welchem Zusammenhang mit dem Potentialoutput wurde das Konzept hier diskutiert?
- In welcher Art von Modellen endogene oder exogene Wachstumsmodelle können wir Pfadabhängigkeiten explizit untersuchen? Warum?
- Was ist das Kernfeature von Keynesianischen Wachstumsmodellen, das sie von klassischen und neoklassischen Wachstumsmodellen unterscheidet?
- Warum sprechen wir beim aktuellen Modell von demand-constrained growth?
- Fasst das Sparparadoxon und Kostenparadoxon zusammen.
- Die unterschiedlichen Modell-Designs von klassischen, neoklassischen und keynesianischen Modellen haben wichtige Politikmaßnahmen. Nennt drei!
- Wieso tendieren viele Ökonom:innen dazu das Keynesianische Wachstumsmodell als Modell der kurzen Frist zu begreifen?

