Réduction #1

Feuille d'exercices #06

⊗ Partie A – Réduction matricielle

Exercice 1 — Réduire les matrices suivantes :

$$A = \begin{bmatrix} 3 & -1 & 1 \\ 0 & 2 & 0 \\ 1 & -1 & 3 \end{bmatrix}; \quad B = \begin{bmatrix} 7 & 1 & 7 \\ -1 & -7 & -7 \\ -6 & 6 & 0 \end{bmatrix}; \quad C = \begin{bmatrix} -2 & 0 & 2 \\ 3 & -3 & 0 \\ 8 & -6 & -2 \end{bmatrix}$$

Exercice 2 — Diagonaliser sans effort les matrices :

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}; \quad B = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}; \quad C = \begin{bmatrix} 1 & \cdots & 1 \\ \vdots & & \vdots \\ 1 & \cdots & 1 \end{bmatrix}$$

Exercice 3 — Soit $A = \begin{bmatrix} a-1 & -3 & a \\ a & -4 & a \\ 3 & -a & 2 \end{bmatrix}$ où a est un paramètre réel.

Trouver a pour que A ait une valeur propre double et soit diagonalisable.

Exercice 4 — Soient
$$A = \begin{bmatrix} 3 & 2 & 4 \\ -1 & 3 & -1 \\ -2 & -1 & -3 \end{bmatrix}$$
 et $B = \begin{bmatrix} a & 1 & 0 \\ 0 & a & 0 \\ 0 & 0 & b \end{bmatrix}$.

Déterminer les réels *a* et *b* pour que *A* et *B* soient semblables.

Exercice 5 — Soit
$$A \in \mathcal{M}_n(\mathbb{R})$$
. On pose $||A|| = \sup_{1 \le i \le n} \sum_{j=1}^n |a_{i,j}|$.

Montrer que $Sp(A) \subset [-\|A\|, \|A\|]$.

Exercice 6 — Soit $M \in \mathcal{M}_n(\mathbb{R})$ une matrice stochastique, i.e. qui vérifie :

$$\forall i, j \in [1, n], \quad m_{i,j} \ge 0 \quad \text{et} \quad \forall i \in [1, n], \quad \sum_{j=1}^{n} m_{i,j} = 1$$

- 1. Montrer que 1 est valeur propre de M.
- 2. Prouver que pour tout $\lambda \in \operatorname{Sp}(M)$, $|\lambda| \le 1$, et qu'en cas d'égalité, $\lambda = 1$.

Exercice 7 — Soient $a, b \in \mathbb{C}$. Diagonaliser la matrice $\begin{bmatrix} a & b & \cdots & b \\ b & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & b \\ b & \cdots & b & a \end{bmatrix} \in \mathcal{M}_n(\mathbb{C}).$

Exercice 8 — Soit
$$A = \begin{bmatrix} 1 & a & b & c \\ 0 & 1 & 0 & 0 \\ 0 & -1 & 2 & 0 \\ 0 & 1 & 0 & 2 \end{bmatrix}$$
.

- 1. Déterminer une condition nécessaire et suffisante portant sur $(a, b, c) \in \mathbb{R}^3$ pour que A soit diagonalisable.
- 2. Cette condition étant réalisée, montrer que pour tout $n \in \mathbb{N}$, il existe un unique couple $(\alpha_n, \beta_n) \in \mathbb{R}^2$ tel que $A^n = \alpha_n I_4 + \beta_n A$.

Exercice 9 — On pose pour tous réels *a*, *b* :

$$M(a,b) = \begin{bmatrix} a^2 & ab & ab & b^2 \\ ab & a^2 & b^2 & ab \\ ab & b^2 & a^2 & ab \\ b^2 & ab & ab & a^2 \end{bmatrix}$$

- 1. Montrer que les matrices M(a, b) sont simultanément diagonalisables.
- 2. Étudier puis représenter graphiquement la partie du plan :

$$\left\{ (a,b) \in \mathbb{R}^2 \mid M(a,b)^n \xrightarrow[n \to +\infty]{} 0 \right\}$$

Exercice 10 — Soient $A \in \mathcal{M}_n(\mathbb{K})$ et $B = \begin{bmatrix} A & I_n \\ I_n & A \end{bmatrix} \in \mathcal{M}_{2n}(\mathbb{K})$, avec $n \in \mathbb{N}^*$.

- 1. Montrer que $\chi_B(X) = \chi_A(X+1) \cdot \chi_A(X-1)$.
- 2. On suppose *A* diagonalisable. Montrer que *B* est diagonalisable.

Exercice 11 — Soient $A, B \in \mathcal{M}_n(\mathbb{C})$. Montrer que $\chi_{AB} = \chi_{BA}$.

On pourra utiliser les matrices par blocs $\begin{bmatrix} A & -I_n \\ -XI_n & A \end{bmatrix}$ et $\begin{bmatrix} B & I_n \\ XI_n & A \end{bmatrix}$.

Exercice 12 — Soient $A \in \mathcal{M}_{3,2}(\mathbb{R})$ et $B \in \mathcal{M}_{2,3}(\mathbb{R})$ telles que $AB = \begin{bmatrix} 1 & -1 & 0 \\ 1 & 2 & 1 \\ -1 & 1 & 0 \end{bmatrix}$. Montrer que $\chi_{AB} = X \cdot \chi_{BA}$ et en déduire que BA est diagonalisable.

Exercice 13 — Soient $A, B \in \mathcal{M}_n(\mathbb{C})$ telles que $B^2 = A$.

- 1. La proposition « A diagonalisable $\iff B$ diagonalisable » est-elle vraie?
- 2. Soit $A = \begin{bmatrix} 11 & -5 & -5 \\ -5 & 3 & 3 \\ -5 & 3 & 3 \end{bmatrix}$. On cherche $B \in \mathcal{M}_3(\mathbb{C})$ vérifiant $B^2 = A$.
 - a) Montrer que A est semblable à une matrice diagonale D.
 - b) Déterminer l'ensemble des matrices C telles que $C^2 = D$.
 - c) En déduire les matrices *B* qui conviennent.

Exercice 14 — Diagonalisation simultanée (première approche)

Soient $f,g\in\mathcal{L}(\mathbb{R}^n)$ tels que $f\circ g=g\circ f$ et f admet n valeurs propres distinctes.

- 1. Montrer que tout vecteur propre de f est vecteur propre de g et en déduire l'existence d'une base de \mathbb{R}^n formée de vecteurs propres communs à f et g.
- 2. Soit $A = \begin{bmatrix} 1 & 1 & -1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$. Résoudre l'équation matricielle $2M^2 + 5M = 3A$.
- M Exercice 15 Caractérisation des matrices nilpotentes

Soit \mathbb{K} un sous-corps de \mathbb{C} et $A \in \mathcal{M}_n(\mathbb{K})$.

- 1. On suppose que pour tout $k \in \mathbb{N}^*$, $\text{Tr}(A^k) = 0$. Montrer que A est nilpotente.
- 2. Établir l'équivalence :

$$\operatorname{Sp}(A) = \{1\} \iff \operatorname{Tr}(A) = \operatorname{Tr}(A^2) = \dots = \operatorname{Tr}(A^n) = n$$

3. Soit $B \in \mathcal{M}_n(\mathbb{K})$ telle que pour tout $k \in \mathbb{N}^*$, $\text{Tr}(A^k) = \text{Tr}(B^k)$. Prouver que A et B ont même polynôme caractéristique.

Exercice 16 — Soit $N \in \mathcal{M}_n(\mathbb{K})$ une matrice nilpotente.

- 1. Établir l'inversibilité de $I_n + N$ et $I_n N$ et exprimer leurs inverses.
- 2. Soit P_n l'unique polynôme de degré n vérifiant $\sqrt{1+x} = P_n(x) + o(x^n)$.
 - a) Montrer que $1 + x P_n^2(x)$ est divisible par x^{n+1} .
 - b) En déduire une matrice $M \in \mathcal{M}_n(\mathbb{C})$ telle que $M^2 = I_n + N$.
- 3. Peut-on généraliser pour une une puissance *p*-ième quelconque?

Exercice 17 — Soit $A \in \mathcal{M}_{3n}(\mathbb{C})$ telle que $\operatorname{rg}(A) = 2n$ et $A^3 = 0$.

- 1. Justifier que pour tout $f \in \mathcal{L}(E)$, où E est un \mathbb{K} -e.v. de dimension finie, $\dim(\operatorname{Ker}(f^2)) \leq 2\dim(\operatorname{Ker}(f))$.
- $\dim(\operatorname{Ker}(f^2)) \leq 2\dim(\operatorname{Ker}(f)).$ 2. En déduire que $\operatorname{rg}(A^2) = n$ puis que A est semblable à $\begin{bmatrix} 0 & 0 & 0 \\ I_n & 0 & 0 \\ 0 & I_n & 0 \end{bmatrix}.$

Exercice 18 — Soient $A \in \mathcal{M}_p(\mathbb{C})$ et $B \in \mathcal{M}_q(\mathbb{C})$.

- 1. Montrer que $M = \begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix} \in \mathcal{M}_{p+q}$ est diagonalisable ssi A et B le sont.
- 2. Montrer de même que M est trigonalisable ssi A et B le sont.

Exercice 19 — Soient trois suites u, v et w définies par $u_0 = -2$, $v_0 = 1$ et $w_0 = 5$ et, pour tout $n \in \mathbb{N}$:

$$\begin{cases} u_{n+1} = 4u_n - 3v_n - 3w_n \\ v_{n+1} = 3u_n - 2v_n - 3w_n \\ w_{n+1} = 3u_n - 3v_n - 2w_n \end{cases}$$

Exprimer u_n , v_n et w_n en fonction de n.

Exercice 20 — Résoudre les systèmes différentiels suivants :

$$\begin{cases} x' = 5x - 2y + t \\ y' = -x + 6y + 1 \end{cases} \begin{cases} x' = \frac{5}{2}x + \frac{1}{2}y - \frac{1}{2}z \\ y' = x + 2y - z \\ z' = \frac{1}{2}x - \frac{1}{2}y + \frac{3}{2}z \end{cases} \begin{cases} x' = x + z \\ y' = -y - z \\ z' = 2y + z \end{cases}$$

⊗ Partie B – Réduction d'endomorphismes

Exercice 21 — Soient E un \mathbb{K} -e.v. de dim. finie, $u \in \mathcal{L}(E)$ et $\alpha, \beta \in \mathbb{K}$ distincts.

- 1. On suppose que $(u \alpha id_E) \circ (u \beta id_E) = 0$. Montrer que u est diagonalisable.
- 2. Soit $v \in \mathcal{L}(E)$ tels que $u \circ v = v \circ u$ et $(u \alpha \mathrm{id}_E) \circ (v \beta \mathrm{id}_E) = 0$. Quelles sont les valeurs propres de u + v?

Exercice 22 — Soit $E = \mathbb{R}[X]$. Pour tout $P \in E$, on pose :

$$f(P) = (X+1)(X-3)P' - XP$$

Montrer que $f \in \mathcal{L}(E)$ et déterminer ses éléments propres.

Exercice 23 — On considère l'application f définie sur $\mathbb{R}_n[X]$ ($n \in \mathbb{N}^*$) par :

$$f(P) = nXP - (X^2 - 1)P'$$

Montrer que $f \in \mathcal{L}(\mathbb{R}_n[X])$ puis déterminer sa matrice représentative dans la base $(1, X-1, ..., (X-1)^n)$ de $\mathbb{R}_n[X]$. L'application f est-elle diagonalisable?

Exercice 24 — On considère l'application f définie sur $\mathbb{R}_n[X]$ $(n \in \mathbb{N}^*)$ par :

$$f(P) = X(1 - X)P' + nXP$$

Montrer que $f \in \mathcal{L}(E)$ et déterminer ses éléments propres à l'aide d'une équation différentielle. L'application f est-elle diagonalisable?

Exercice 25 — On considère l'application f définie sur $\mathbb{R}_n[X]$ $(n \in \mathbb{N}^*)$ par :

$$f(P) = a(b-X)P' - nP \quad (a,b) \in \mathbb{R}^2$$

Déterminer le spectre de f via la décomposition en éléments simples de P'/P.

Exercice 26 — Soit $\Phi: P \mapsto (X^4 - 1)P \mod X^4 - X$ définie sur $\mathbb{R}_3[X]$.

- 1. Montrer que Φ est un endomorphisme de $\mathbb{R}_3[X]$.
- 2. Déterminer son noyau, son image et ses sous-espaces propres.

Exercice 27 — Soit φ l'application définie sur $\mathcal{M}_n(\mathbb{R})$ par $\varphi(A) = A + \text{Tr}(A)I_n$.

- 1. Montrer que φ est un endomorphisme de $\mathcal{M}_n(\mathbb{R})$.
- 2. L'application φ est-elle diagonalisable?

Exercice 28 — Soit $A \in \mathcal{M}_n(\mathbb{C})$ où $n \ge 1$. Comparer les valeurs propres de M et celles de l'endomorphisme défini sur $\mathcal{M}_n(\mathbb{C})$ par $M \mapsto AM$.

Exercice 29 — Soient u et v deux endomorphismes d'un \mathbb{R} -espace vectoriel E.

- 1. Soit λ un réel non nul. Prouver que si $\lambda \in \operatorname{Sp}(u \circ v)$, alors $\lambda \in \operatorname{Sp}(v \circ u)$.
- 2. a) Soient $u: P \mapsto \int_1^X P$ et $v: P \mapsto P'$ définis sur $E = \mathbb{R}[X]$. Préciser $\operatorname{Ker}(u \circ v)$ et $\operatorname{Ker}(v \circ u)$. Le résultat de **1.** est-il vrai pour $\lambda = 0$? b) Si $\dim(E) < +\infty$, montrer que le résultat de **1.** reste vrai pour $\lambda = 0$.

Exercice 30 — Soit *E* l'espace vectoriel des fonctions de classe \mathcal{C}^1 sur \mathbb{R}^+ , à valeurs dans \mathbb{R} et s'annulant en 0. Pour tout $f \in E$, on définit la fonction g par :

$$\forall x \in \mathbb{R}_+, \quad g(x) = \int_0^x \frac{f(t)}{t} \, \mathrm{d}t$$

On note enfin T l'application définie sur E par $T: f \mapsto g$.

- 1. Montrer que T est un endomorphisme de E.
- 2. Déterminer les éléments propres de *T*.

Exercice 31 — Soit $u \in \mathcal{L}(E)$ où E est un \mathbb{K} -espace vectoriel de dimension finie n. Montrer que u est diagonalisable si et seulement si tout sous-espace de E admet un supplémentaire stable par u. On pourra raisonner par récurrence sur n.

Exercice 32 — Soient E un \mathbb{K} -e.v. de dimension 3 et $f \in \mathcal{L}(E)$ vérifiant $f^2 = f^3$ et $\dim(\operatorname{Ker}(f - \operatorname{id}_E)) = 1$. Montrer qu'il existe une base \mathcal{B} de E pour laquelle :

$$\operatorname{Mat}_{\mathscr{B}}(f) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & \alpha \\ 0 & 0 & 0 \end{bmatrix}$$
 où $\alpha \in \{0, 1\}$

Exercice 33 — Soient f et g deux endomorphismes d'un \mathbb{C} -espace vectoriel E de dimension finie $n \ge 1$ vérifiant $f \circ g - g \circ f = f$.

- 1. a) Montrer que pour tout $k \in \mathbb{N}$, $f^k \circ g g \circ f^k = kf^k$.
 - b) À l'aide de l'application $T: u \mapsto u \circ g g \circ u$, en déduire que f est un endomorphisme nilpotent.
- 2. On suppose ici que $f^{n-1} \neq 0_{\mathscr{L}(E)}$. Montrer qu'il existe une base \mathscr{B} de E et $\lambda \in \mathbb{C}$ tels que :

$$\operatorname{Mat}_{\mathscr{B}}(f) = \begin{bmatrix} 0 & 1 & & (0) \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ (0) & & & 0 \end{bmatrix}; \operatorname{Mat}_{\mathscr{B}}(g) = \operatorname{diag}(\lambda, \lambda + 1, \dots, \lambda + n - 1)$$

On considérera pour cela le vecteur $g \circ f^{n-1}(x)$ pour un x bien choisi.