MODELO DEL TRANSPORTE

HUGO EFRAÍN GARZÓN

PROBLEMA No 1

Obtén el modelo de transporte asociado con el siguiente problema.

Una empresa dedicada a la fabricación de automóviles tiene dos plantas armadoras, una en Guadalajara y otra en Oaxaca. La planta de Guadalajara dispone de 5.000 automóviles listos para su distribución, mientras que la de Oaxaca cuenta con 3.500. La empresa tiene tres centros de distribución, mismos que atienden a todas y cada una de las agencias comercializadoras de esta marca de automóviles. Uno de estos centros de distribución se encuentra en la Ciudad de México, otro en Monterrey y el tercero en Mérida. Por la experiencia de años anteriores, se estima que la demanda por autom ó viles de cada uno de estos centros es de 4.000, 3.000 y 1.500, respectivamente. Por otro lado, sabemos que los costos (en \$ dolares) de envío por cada unidad entre las plantas armadoras y las agencias distribuidoras son:

	Monterrey	C.Mexico	Mérida
Guadalajara	50	100	300
Oaxaca	200	120	180

El gerente de distribución de la compañía desea saber de qué armadora a qué distribuidora debe enviar los automóviles, de tal forma que los costos de envío sean mínimos.

Fuente: http://www.parentesis.com/autos/noticias/Conoce_los_autos_muy_mexicanos

1. REPRESENTACIÓN GRÁFICA

2. DEFINICIÓN DE VARIABLES

X11	Cantidad de automóviles producidos en la planta de Guadalajra y que se envían a Monterrey
x12	Cantidad de automóviles producidos en la planta de Guadalajra y que se envían a C. México
x13	Cantidad de automóviles producidos en la planta de Guadalajra y que se envían a Mérida
x21	Cantidad de automóviles producidos en la planta de Oaxca y que se envían a Monterrey
x22	Cantidad de automóviles producidos en la planta de Oaxca y que se envían a C. México
x23	Cantidad de automóviles producidos en la planta de Oaxca y que se envían a Merida
c11	Valor en \$ del envío de una unidad de automóvil producido en Guadalajra y que se envían a Monterrey
c12	Valor en \$ del envío de una unidad de automóvil producido en Guadalajra y que se envían a C. México
c13	Valor en \$ del envío de una unidad de automóvil producido en Guadalajra y que se envían a Mérida
c21	Valor en \$ del envío de una unidad de automóvil producido en Oaxaca y que se envían a Monterrey
c22	Valor en \$ del envío de una unidad de automóvil producido en Oaxaca y que se envían a C.México

Valor en \$ del envío de una unidad de automóvil producido en Oaxaca y que

c23

se envían a Merida

3. DEFINICIÓN DEL MODELO

Mín Z=
$$\sum_{i=1}^{2} \sum_{j=1}^{3} 50x11+100x12+300x13+200x21+120x22+180x23$$

S: A
$$\sum_{i=1}^{2} 5.000 + 3.500 = 8.500 \qquad \text{Máxima oferta}$$

$$\sum_{j=1}^{3} 4.000 + 3.000 + 1.500 = 8.500 \qquad \text{Máxima demanda}$$

$$\sum_{j=1}^{3} \text{x11} + \text{x12} + \text{x13} = 5000 \qquad \text{Producción en Guadalajara}$$

$$\sum_{j=1}^{3} \text{x21} + \text{x22} + \text{x23} = 3500 \qquad \text{Producción en Oaxaca}$$

$$\sum_{i=1}^{2} \text{x11} + \text{x21} = 4000 \qquad \text{Demanda de Monterrey}$$

$$\sum_{i=1}^{2} \text{x21} + \text{x22} = 3000 \qquad \text{Demanda de C. México}$$

$$\sum_{i=1}^{2} \text{x31} + \text{x33} = 1500 \qquad \text{Demanda de Mérida}$$

$$\text{xij} \ge 0 \qquad \text{i= 1, 2} \qquad \text{j= 1, 2, 3}$$

Este planteamiento debe tener las restricciones de la oferta, las restricciones de la demanda, y las de noi negatividad

Siempre debe tratarse de un problema balanceado es decir que las suma de la oferta sea igual a la suma de la demanda.

4. PRIMERA SOLUCIÓN ESQUINA NOROESTE

Paso No 1: Se organiza el tablón básico, con la información del planteamiento

	Monterrey	C. México	Mérida	Oferta
Guadalajara	50	100	300	5000
Oaxaca	200	120	180	3500
Demanda	4000	3000	1500	

Paso No 2: Método de la esquina Noroeste

- a. determine la celda del tablón más al norte y a la izquierda Noroeste y asigne el mayor número de unidades posible teniendo en cuenta la oferta y la demanda.
- b. actualice el tablón tanto en oferta como en demanda restando a estas la cantidad asignada.
- c. si la demanda o la oferta quedan en cero, la fila o columna correspondiente se anulan para el paso siguiente, para esto utilizamos el color amarillo.

	Monterrey	C. México	Mérida	Oferta
Guadalajara	50	100	300	5000
Guadalajala	4000			1000
Oaxaca	200	120	180	3500
Caxaca				
Demanda	4000	3000	1500	
Demanda	0	,		

La demanda de Monterrey fue cubierta en su totalidad por la planta de Guadalajara

	Monterrey	C. México	Mérida	Oferta
Guadalajara	50	100	300	5000
Guadalajala	4000	1000		1000 0
Oaxaca	200	120	180	3500
Caxaca				
Demanda	4000	3000	1500	
Demanda	0	2000		

La oferta de Guadalajara se agotó por tanto esta fila se anula

	Monterr	еу	C. México		Mérida		Oferta	
Guadalajara	50		100		300		5000	
Guadalajala		4000		1000			1000	0
Oayaca	200		120		180		3500	
Oaxaca				2000		1500		0
Demanda	4000		3000		1500			
Demanda		0	2000	0		0		

Finalmente las demandas de C. México y Mérida se cumplen con la producción de la planta de Oaxaca

PRIMERA SOLUCIÓN ESQUINA NOROESTE

Con base en el último tablón se tiene:

Celdas activas: en la que se realiz ó la asignación del mayor número de unidaes posibles, númreos en rojo.

Celdas inactivas: las que no tienen ninguna asignación x13, x21

Solución:

La primera solución factible la obtenemos multiplicando las cantidades asignadas por el costo de envío unitrio correspondiente, así:

x11 = 4000 x12 = 1000 x22 = 2000x23 = 1500

Recordamos que la función objetivo es:

Mín Z=
$$\sum_{i=1}^{2} \sum_{j=1}^{3} 50x11+100x12+300x13+200x21+120x22+180x23$$

Reemplazando valores y realizando las operaciones indicadas tenemos:

Así nuestra primera respuesta factibel es:

Para obtener un costo mínimo de transporte de \$ 810000, se debe enviar de la planta de Guadalajara 4000 vehículos a Monterrey y 1000 a C. de Mejico, mientras que de la planta de Oaxaca se deben enviar 2000 vehículos a C. de México y 1500 a Mérida.

5. PRIMERA SOLUCIÓN MÉTODO VOGEL

Para RINCON (2000) el Método de aproximaciones de Vogel, es un procedimiento heurístico que suele producir una primera solución mejor que el método de la esquina Noroeste; pues con frecuencia é sta resulta una solución ó ptima o cercana a la óptima. Los pasos del procedimiento son los siguientes:

- a) Paso 1. Se calcula una penalización para cada fila (y columna) restando el menor elemento de costo de la fila (columna) del elemento de costo menor siguiente en la misma fila (columna).
- (b) Paso 2 . Se identifica la fila o columna con la mayor penalización, los empates se rompen arbitrariamente. Se asigna el mayor valor posible en la fila o columna seleccionada con el costo unitario más bajo de la misma. Sucesivamente se procede de esta manera hasta asignar todo el flujo posible.

DESARROLLO DE PRIMERA SOLUCIÓN MÉTODO VOGEL

Partimos de I tablón original del punto 4

Realizamos el paso 1 calculamos la penalidad 1 (p1) restando en cada fila y columna los dos valores más pequeños

	Monterrey	C. México	Mérida	Oferta	p1
Guadalajara	50	100	300	5000	
Guadalajala	4000			1000	50
Oaxaca	200	120	180	3500	
Caxaca					60
Demanda	4000	3000	1500		
Demanda	0				
p1	150	20	120		

Paso 2 : seleccionamos de los valores de p1, el valor mayor y en la celda del menor costo en la fila o columna elegida, asignamos la mayor cantidad posible, teniendo en cuenta la oferta y la demanada. en este caso el valor es 150 y asignamos la mayor cantidad en la celda 11 ya que el costo es de 50 (el menor), el vaslor asignado es de 4000. Luego actualizamos oferta y demanda, si la fila o columna queda en cero se anula para continuar el proceso.

	Monterrey	C. México	Mérida	Oferta	р1	p2
Guadalajara	50	100	300	5000 0		
Guadalajala	4000	1000		1000	50	200
Oaxaca	200	120	180	3500		
Caxaca					60	60
Demanda	4000	3000	1500			
Demanda	0	2000				
p1	150	20	120			
p2		20	120			

En la segunda penalización el mayor valor es en 200 y en la fila correspondiente el costo menor está en la celda 12, por lo tanto asignamos el mayor número de unidades, de 1000. como la oferta es cero la fila se anula para seguir el proceso.

	Monterrey	C. Mé	xico	Mério	da	Ofer	ta	p1	p2
Guadalajara	50	100		300		5000	0	-	-
	4000		1000			100	0	50	200
Ooyooo	200	120		180		3500			
Oaxaca			2000		1500		0	60	60
Demanda	4000	3000		1500					
	0		0		0				
p1	150	20)	120)				
p2		20)	120)				

En este caso se asignan los valores restantes y se termina el proceso

PRIMERA SOLUCIÓN VOGEL

Con base en el último tablón se tiene:

Celdas activas: en la que se realizó la asignación del mayor número de unidaes posibles, númreos en rojo.

Celdas inactivas: las que no tienen ninguna asignación

x13, x21

Solución:

La primera soluci ó n factible la obtenemos multiplicando las cantidades asignadas por el costo de envío unitrio correspondiente, así:

x11 = 4000 x12 = 1000 x22 = 2000 x23 = 1500

Recordamos que la función objetivo es:

Mín Z=
$$\sum_{i=1}^{2} \sum_{j=1}^{3} 50x11+100x12+300x13+200x21+120x22+180x23$$

Reemplazando valores y realizando las operaciones indicadas tenemos:

Min
$$Z = 810000$$

Así nuestra primera respuesta factibel es:

planta de Guadalajara 4000 vehículos a Monterrey y 1000 a C. de Mejico, mientras que de la planta de Oaxaca se deben enviar 2000 vehículos a C. de México y 1500 a Mérida.

Vemos en este caso los dos métodos nos llevan a la misma respuesta

VERIFICAR LA OPTIMALIDAD DE LA SOLUCIÓN ENCONTRADA MÉTODO MODI

El método Modi calcula costos marginales y busca la trayectoria asociada a la variable no básica que va a entrar al sistema. Los pasos hacia la solución óptima se presentan a continuación.

Paso 1. Se calcula una solución inicial factible, por cualquiera de los métodos presentados anteriormente.

Paso 2. Calculamos los valores de los multiplicadores **Ui** y **Vj** . Asociamos los multiplicadores **Ui** y **Vj** con el renglón i y la columna j de la tabla de transporte. Para cada <u>variable básica</u> xij de la solución actual, los multiplicadores **Ui** y **Vj** deben satisfacer la ecuación siguiente:

$$Ui + Vi = Cii$$

De esta manera obtenemos m + n - 1 ecuaciones con m + n incógnitas. Los valores de los multiplicadores se pueden determinar a partir de estas ecuaciones suponiendo un valor arbitrario para cualquiera de los multiplicadores y resolviendo las m + n - 1 multiplicadores desconocidos restantes.

Paso 3. Calcular los costos marginales asociados con las variables no básicas. Esto lo hacemos utilizando la siguiente fórmula:

$$CM = Cij - Ui - Vj$$

Paso 4. Si todos los costos marginales no son negativos, entonces la solución actual es óptima, parar y salir. Si no, continuar.

Paso 5. Seleccionamos la celda con el mayor valor negativo en costo marginal, creamos un circuito y hacemos que esta variable no básica pase a ser básica, y que una básica pase a ser no básica. El circuito empieza y termina en la variable no básica designada. Éste consta de segmentos sucesivos horizontales y verticales cuyos puntos extremos deben ser variables básicas, salvo para los puntos extremos que están asociados con la variable que entra. Esto significa que todo elemento de esquina del ciclo debe ser una celda que contenga una variable básica.

Paso 6. Ajustamos el valor de las variables básicas para satisfacer las restricciones de oferta y demanda. Asignamos a la variable no básica la cantidad y moviéndonos sobre los vértices del circuito en el sentido de las manecillas del reloj, vamos restando y sumando (a la primera celda se le resta, a la segunda se le suma, a la tercera se le resta, etc.) la cantidad al valor asignado a cada una de las celdas, hasta regresar a la celda de la variable no básica. Para determinar el valor de debemos recordar que el valor de las variables x ij debe ser mayor o igual a cero, por lo tanto le asignamos a el máximo valor posible, de tal manera que ninguna de las variables x ij sea negativa. Regresamos al paso 2.

6. MÉTODO MODI

De la solución obtenida en el paso 5 sabemos:

Las celdas activas o básicas son: x11, x12, x22 y x23, por lo tanto a cada una de estas le asignamos una ecuación así:

U1 + V1 = 50	Ecuación celda X11
U1 + V2 = 100	Ecuación celda X12
U2 + V2 = 120	Ecuación celda X22
U2 + V3 = 180	Ecuación celda X23

Debemos obtener los valores numéricos de los multiplicadores así: Si damos el valor a U1=0, podemos despejar los demás valores:

0 + V1 = 50	por tanto	V1= 50	
0 + V2 = 100		V2 = 100	
U2 + 100 = 120	por tanto	U2 = 120-100	U2 = 20
20 + V3 = 180	por tanto	V3 = 180-20	V3 = 160

RESUMEN

Multiplicador	Valor
U1	0
U2	20
V1	50
V2	100
V3	160

Con estos valores calculamos los costos marginales asociados a las celdas no básicas, es decir las no asignadas, de la siguiente forma:

COSTOS MARGINALES

Celdas inactivas: las que no tienen ninguna asignación **x13**, **x21** En estas celdas calculamos los costos marginales de la siguiente forma:

CM13 = C13-U1-V3 costo marginal celda 13 CM21 = C21-U2-V1 costo marginal celda 21

Reemplazamos los valores obtenidos y resumidos en la tabla anterior:

CM13 = 300- 0 - 160 de donde CM13 = 140 Valor Positivo CM21 = 200- 20 - 50 de donde CM21 = 130 Valor Positivo

Conclusión

En este ejemplo Los dos Costos Marginales son positivos y estamos en el punto 4 del proceso descrito por lo tanto el proceso se detiene y la solución obtenida por los métodos de la equina Noroeste y Vogel es óptima.