$10_2 \ (K10a_{59})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{11} + u^{10} + 4u^9 + 3u^8 + 6u^7 + 4u^6 + 2u^5 + u^4 - 3u^3 - u^2 - 2u - 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 11 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I. $I_1^u = \langle u^{11} + u^{10} + 4u^9 + 3u^8 + 6u^7 + 4u^6 + 2u^5 + u^4 - 3u^3 - u^2 - 2u - 1 \rangle$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{6} - u^{4} + 1 \\ u^{8} + 2u^{6} + 2u^{4} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{3} \\ u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{3} \\ u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{6} - u^{4} + 1 \\ -u^{6} - 2u^{4} - u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{9} - 2u^{7} - u^{5} + 2u^{3} + u \\ -u^{9} - 3u^{7} - 3u^{5} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{10} + u^{9} + 3u^{8} + 2u^{7} + 4u^{6} + u^{5} + u^{4} - 2u^{3} - u^{2} - u - 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $4u^9 + 4u^8 + 12u^7 + 8u^6 + 12u^5 + 8u^4 4u^3 4u^2 8u 14u^3 + 8u^4 4u^3 4u^2 8u 14u^3 + 8u^4 4u^3 4u^3 8u 14u^3 4u^3 8u 14u^3 8u 1$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_4, c_5 c_6, c_8, c_9 c_{10}	$u^{11} - u^{10} + \dots - 2u - 1$
c_2, c_7	$u^{11} + u^{10} + 4u^9 + 3u^8 + 6u^7 + 4u^6 + 2u^5 + u^4 - 3u^3 - u^2 - 2u - 1$
c_3	$u^{11} + 7u^{10} + \dots + 2u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_4, c_5 c_6, c_8, c_9 c_{10}	$y^{11} - 17y^{10} + \dots + 2y - 1$
c_{2}, c_{7}	$y^{11} + 7y^{10} + \dots + 2y - 1$
<i>c</i> ₃	$y^{11} - 5y^{10} + \dots + 30y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.955154	-19.0832	-11.9080
u = -0.345235 + 1.061380I	-3.59441 - 3.12518I	-14.0547 + 5.4576I
u = -0.345235 - 1.061380I	-3.59441 + 3.12518I	-14.0547 - 5.4576I
u = 0.197351 + 0.826949I	-0.596970 + 1.107570I	-7.89422 - 5.61222I
u = 0.197351 - 0.826949I	-0.596970 - 1.107570I	-7.89422 + 5.61222I
u = 0.805680	-7.27447	-11.5740
u = 0.433313 + 1.213520I	-10.90050 + 4.42189I	-14.9599 - 3.5435I
u = 0.433313 - 1.213520I	-10.90050 - 4.42189I	-14.9599 + 3.5435I
u = -0.483698 + 1.296390I	16.3901 - 5.1148I	-15.0081 + 2.8305I
u = -0.483698 - 1.296390I	16.3901 + 5.1148I	-15.0081 - 2.8305I
u = -0.453988	-0.912673	-10.6840

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_4, c_5 c_6, c_8, c_9 c_{10}	$u^{11} - u^{10} + \dots - 2u - 1$
c_{2}, c_{7}	$u^{11} + u^{10} + 4u^9 + 3u^8 + 6u^7 + 4u^6 + 2u^5 + u^4 - 3u^3 - u^2 - 2u - 1$
<i>c</i> ₃	$u^{11} + 7u^{10} + \dots + 2u - 1$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_4, c_5 c_6, c_8, c_9 c_{10}	$y^{11} - 17y^{10} + \dots + 2y - 1$
c_2, c_7	$y^{11} + 7y^{10} + \dots + 2y - 1$
<i>c</i> ₃	$y^{11} - 5y^{10} + \dots + 30y - 1$