Name: _______MATH 308

Fall 2021 HW 12: Due 11/12 "People think that computer science is the art of geniuses but the actual reality is the opposite, just many people doing things that build on each other, like a wall of mini stones."

-Donald Knuth

Problem 1. (10pt) Define a relation \sim on $\mathbb{N} \times \mathbb{N}$ via $(x,y) \sim (a,b)$ if and only if x-y=a-b.

- (a) Is $(3,1) \sim (2,5)$? Explain.
- (b) Is $(7,3) \sim (5,1)$? Explain.
- (c) Show that \sim is an equivalence relation on X.
- (d) Find at least 3 elements in each of the equivalence classes [(1,1)] and [(3,5)].

Problem 2. (10pt) Define a relation on $\mathbb R$ via $x \sim y$ if and only if $x \leq y$. Prove or disprove whether \sim is an equivalence relation on $\mathbb R$.

Problem 3. (10pt) Define a relation on \mathbb{R}^2 via $(x,y) \sim (a,b)$ if and only if (x,y) and (a,b) are the same distance from the origin.

- (a) Prove that \sim is an equivalence relation.
- (b) Describe the equivalence classes graphically.
- (c) Describe graphically how the equivalence classes partition \mathbb{R}^2 .

Problem 4. (10pt) Define a relation on \mathbb{Z} via $a \sim b$ if and only if a and b have the same parity, i.e. a and b are either both even or they are both odd.

- (a) Show that \sim is an equivalence relation.
- (b) Describe all the equivalence classes, i.e. determine the set \mathbb{Z}/\sim .

Problem 5. (10pt) Prove that if X is a set and S is a nonempty subset of X, then $\{S, X \setminus S\}$ is a partition of X.

Problem 6. (10pt) Let X be a nonempty set. Every equivalence relation \sim on X gives rise to a partition on X. Moreover, every partition on X gives rise to an equivalence relation \sim on X. We proved the first statement in class. Suppose that $\{X_i\}_{i\in\mathcal{I}}$ is a partition of X. Show that this partition induces an equivalence relation X/\sim given by $a\sim b$ if and only if $a,b\in X_i$ for some $i\in\mathcal{I}$.