UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY

PRÍDAVNÁ INFORMÁCIA A ZLOŽITOSŤ NEDETERMINISTICKÝCH KONEČNÝCH AUTOMATOV DIPLOMOVÁ PRÁCA

2017

Bc. Šimon Sádovský

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY

PRÍDAVNÁ INFORMÁCIA A ZLOŽITOSŤ NEDETERMINISTICKÝCH KONEČNÝCH AUTOMATOV

DIPLOMOVÁ PRÁCA

Študijný program: Informatika

Študijný odbor: 2508 Informatika Školiace pracovisko: Katedra informatiky

Školiteľ: prof. RNDr. Branislav Rovan, PhD.

Bratislava, 2017

Bc. Šimon Sádovský

Univerzita Komenského v Bratislave Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta: Bc. Šimon Sádovský

Študijný program: informatika (Jednoodborové štúdium, magisterský II. st.,

denná forma)

Študijný odbor:informatikaTyp záverečnej práce:diplomováJazyk záverečnej práce:slovenskýSekundárny jazyk:anglický

Názov: Prídavná informácia a zložitosť nedeterministických konečných automatov

Supplementary Information and Complexity of Nondeterministic Finite

Automata

Ciel': Preskúmať užitočnosť prídavnej informácie o vstupnom slove pre zníženie

zložiosti nedeterminstických konečných automatov pre akceptáciu jazykov. Práca nadväzuje napredchádzajúce diplomové práce, v ktorých sa skúmal tento

problém pre deterministické automaty.

Vedúci:prof. RNDr. Branislav Rovan, PhD.Katedra:FMFI.KI - Katedra informatikyVedúci katedry:prof. RNDr. Martin Škoviera, PhD.

Spôsob sprístupnenia elektronickej verzie práce:

bez obmedzenia

Dátum zadania: 16.12.2015

Dátum schválenia: 16.12.2015 prof. RNDr. Rastislav Kráľovič, PhD.

garant študijného programu

študent	vedúci práce

Poďakovanie:

Abstrakt

V práci skúmame vplyv prídavnej informácie na zložitosť riešenia problému. Ako výpočtový model sme zvolili nedeterministické konečné automaty a mierou zložitosti je počet stavov. Formalizáciou nášho problému je rozklad nedeterministického konečného automatu na dvojicu nedeterministických konečných automatov takých, že jazyk pôvodného automatu je prienikom jazykov týchto dvoch automatov. Navyše očakávame, že oba tieto automaty budú jednoduchšie ako pôvodný automat. V práci dokazujeme rozložiteľnosť respektíve nerozložiteľnosť konkrétnych regulárnych jazykov. Dokazujeme uzáverové a iné vlastnosti tried nedeterministicky rozložiteľných a nedeterministicky nerozložiteľných regulárnych jazykov. Charakterizujeme vzhľadom na rozložiteľnosť triedu jazykov, ktoré sú tvorené práve jedným slovom. Skúmame jazyky, ktorých minimálny nedeterministický automat je tvorený práve jedným cyklom. Ukazujeme rozdiel medzi nedeterministickou a deterministickou rozložiteľnosťou regulárnych jazykov.

Kľúčové slová: nedeterministický konečný automat, rozklad nedeterministického konečného automatu, nedeterministická rozložiteľnosť, prídavná informácia, popisná zložitosť

Abstract

Abstract in the English language (translation of the abstract in the Slovak language).

Keywords:

Obsah

Ú	$ m \acute{U}vod$		1
1	Def	inície, potrebné výsledky, motivácia výskumu,	2
	1.1	Nedeterministický konečný automat	2
	1.2	Motivácie a definícia problému	3
	1.3	Techniky určovania dolnej hranice počtu stavov NKA	5
2	Roz	zložitelné a nerozložitelné jazyky	9
	2.1	Rozložitelné jazyky	9
	2.2	Nerozložiteľné jazyky	15
3	Vla	stnosti tried rozložitelných a nerozložitelných jazykov	19
	3.1	Uzáverové vlastnosti	19
	3.2	Iné vlastnosti	20
4	Iné	výsledky	23
	4.1	Porovnanie deterministickej a nedeterministickej rozložiteľ nosti regulár-	
		nych jazykov	23
	4.2	Automaty tvorené jediným cyklom	25
	4.3	Charakterizácia jazykov tvorených jedným slovom	29
Zá	iver		31

Zoznam obrázkov

1.1	NKA akceptujúci jazyk L	7
1.2	NKA akceptujúci jazyk L	7
2.1	automat A_n pre jazyk $\{a^kba^l (l+k)\equiv 0 \pmod{n}\}$	9
2.2	rozkład automatu A_n	10
2.3	automat A_Z	10
2.4	rozkład automatu A_Z na automaty $A_1^Z(\text{hore})$ a $A_2^Z(\text{dole})$	11
2.5	automat A_n pre jazyk $\{a^n\} \cup \{b\}^*$	12
2.6	netriviálny rozklad automatu A_n z Obr. 2.5 na automaty $A_1^n(\text{hore})$ a	
	A_2^n (dole)	12
2.7	automat A_n pre jazyk $\{b\}.\{w \in \{a,b\}^* \#_a(w) = n\}$	13
2.8	netriviálny rozklad automatu A_n pre jazyk $\{b\}.\{w\in\{a,b\}^* \#_a(w)=n\}$	
	na automaty $A_1^n(\text{hore})$ a $A_2^n(\text{dole})$	13
2.9	automat $A_{l,k}$ pre jazyk $\{a^lb^k\}$	14
2.10	rozkład automat $A_{l,k}$ na automaty A_l (hore) a A_k (dole)	15
2.11	automat A_{Σ^n}	15
2.12	automat A_{p^n}	16
2.13	automat A_L pre jazyk $L = (\{a\}\{a,b\}\{a\}\{a,b\})^*$	17
4.1	deterministický konečný automat A_L pre jazyk $L = (\{a\}\{a,b\}\{a\}\{a,b\})^*$	24
4.2	rozkład automatu A_L	24
4.3	automat A_u	26
4.4	rozkład automatu A_u^k na automaty $A_u(\text{hore})$ a $A_k(\text{dole})$	26
4.5	rozkład automatu A na automaty A_1 a A_2	27
4.6	rozkład automatu A na automaty $A_1(\text{hore})$ a $A_2(\text{dole})$	29
4.7	automat A_w	30

Úvod

Tu bude úvod. Zatiaľ je toto betaverzia diplomovky pre potreby komisie na ŠVK. Práca nijak neprešla pravopisnou korektúrou a niektoré formulácie sú ešte dosť neohrabané, no jednoducho je to na nečisto.

Kapitola 1

Definície, potrebné výsledky, motivácia výskumu,

V tejto kapitole sa pozrieme na motiváciu, ktorá nás viedla k nášmu výskumu a na základe nej zavedieme základné pojmy potrebné v našej práci.

1.1 Nedeterministický konečný automat

Nedeterministický konečný automat je dobre známy model, avšak existuje viac jeho ekvivalentných definícii, preto uvádzame tú, ktorú budeme používať v našom texte.

Definícia 1.1.1. Nedeterministický konečný automat je pätica $(K, \Sigma, \delta, q_0, F)$, kde:

- 1. K je konečná množina stavov
- 2. Σ je konečná vstupná abeceda
- 3. $q_0 \in K$ je počiatočný stav
- 4. $F \subseteq K$ je množina akceptačných stavov
- 5. $\delta: K \times (\Sigma \cup \{\varepsilon\}) \rightarrow 2^K$ je prechodová funkcia

Poznámka 1.1.1. Nedeterministický konečný automat sa skrátene označuje NKA.

Poznámka 1.1.2. Ak v texte hovoríme o nejakom automate A, štandardne berieme, že $A = (K_A, \Sigma_A, \delta_A, q_{0A}, F_A)$ a teda ak hovoríme o množine K_A , myslíme tým množinu stavov automatu A. Analogicky to platí aj pre Σ_A , δ_A , q_{0A} , F_A . Pokial je z kontextu jasné, o ktorý automat sa jedná, dolný index A vynechávame a píšeme skrátene $K, \Sigma, \delta, q_0, F$.

Definícia 1.1.2. Konfigurácia nedeterministického konečného automatu A je dvojica $(q,w) \in K \times \Sigma^*$, kde q je stav, v ktorom sa automat nachádza a w je ešte nedočítaná časť slova.

Definícia 1.1.3. Krok výpočtu nedeterministického konečného automatu A je relácia \vdash_A na konfiguráciách definovaná $(q, aw) \vdash_A (p, w) \Leftrightarrow p \in \delta(q, a), q, p \in K, w \in \Sigma^*, a \in \Sigma \cup \{\varepsilon\}$. Reflexívno-tranzitívny uzáver relácie \vdash_A označujeme \vdash_A^* . Ak je z kontextu jasné, o ktorý konečný automat sa jedná, index A vynechávame a píšeme iba \vdash .

Definícia 1.1.4. Jazyk akceptovaný (definovaný) nedeterministickým konečným automatom A je jazyk $L(A) = \{w \in \Sigma^* | \exists q_F \in F : (q_0, w) \vdash^* (q_F, \varepsilon)\}.$

Definícia 1.1.5. Stavovou zložitosťou nedeterministického konečného automatu A (označujeme $\#_S(A)$) rozumieme počet jeho stavov, t.j. $\#_S(A) = |K|$.

Definícia 1.1.6. Nedeterministickú stavovú zložitosť jazyka $L \in \mathcal{R}$ (označujeme nsc(L) - z anglického nondeterministic state complexity) definujeme $nsc(L) = min\{\#_S(A)|L(A) = L\}$.

Definícia 1.1.7. Nech $L \in \mathcal{R}$. Minimálnym nedeterministickým konečným automatom pre jazyk L rozumieme ľubovolný nedeterministický konečný automat A taký, že $\#_S(A) = nsc(L)$.

Označenie 1.1.1. Dĺžku slova w označujeme |w|.

1.2 Motivácie a definícia problému

Pred tým ako zadefinujeme skúmaný problém formálne, pozrime sa na motiváciu, ktorá nás k definícii viedla. Našou motiváciou je otázka užitočnosti prídavnej informácie pri akceptovaní jazyka. Volne povedané, ak automatu našepkám, že vstup, ktorý ide rozpoznávať patrí do nejakého poradného jazyka, viem tým zabezpečiť, že na rozpoznávanie pôvodného jazyka stačí automat menšej zložitosti? Uveďme jeden príklad. Uvažujme, že chceme rozpoznávať jazyk $\{w \in \{a\}^* \mid |w| \equiv 0 \pmod 6\}$ a chceme ho rozpoznávať deterministickým konečným automatom. Lahko vidno, že minimálny NKA pre tento jazyk má 6 stavov. Čo ak však automatu našepkám, že dĺžka vstupu je delitelná tromi? Vtedy nám stačí vziať NKA s dvomi stavmi.

Druhou úvahou, ktorá vedie k velmi podobnému problému je, či viem rozložiť automat rozpoznávajúci jazyk na dva, ktoré sú nejakým spôsobom jednoduchšie ako pôvodný automat, pričom prienik jazykov ktoré rozpoznávajú jednotlivé jednoduchšie automaty je pôvodný jazyk. Lahko vidno, že jazyk rozpoznávaný jedným z týchto dvoch automatov plní funkciu poradného jazyka.

Spomeňme ešte, že pod slovom automat teraz myslíme akýkolvek výpočtový model, nie nutne iba deterministický konečný automat, prípadne nedeterministický konečný automat. V našej práci však budeme tento problém skúmať výlučne pre nedeterministické konečné automaty. V minulosti bol tento problém už skúmaný na našej fakulte pre deterministické konečné automaty v práci [Gaži, 2006] a pre deterministické zásobníkové automaty v práci [Labath, 2010].

Uvedené úvahy nás teda vedú k nasledovnej definícii.

Definícia 1.2.1. Nech A je nedeterministický konečný automat. Potom dva nedeterministické konečné automaty A_1 , A_2 také, že $L(A) = L(A_1) \cap L(A_2)$ nazveme **rozklad** automatu A. Ak navyše platí $\#_S(A_1) < \#_S(A)$ a $\#_S(A_2) < \#_S(A)$, nazývame tento rozklad netriviálny. Ak existuje netriviálny rozklad automatu A, tak automat A nazývame **rozložitelný**.

Definícia 1.2.2. Nech $L \in \mathcal{R}$ a A je nejaký minimálny NKA pre jazyk L. **Jazyk** L nazývame **nedeterministicky rozložitelný** práve vtedy, keď je automat A rozložitelný.

Dôkaz. Podľa správnosti treba ukázať, že vlastnosť jazyka byť nedeterministicky rozložitelný je podľa definície 1.2.2 dobre zadefinovaná, teda nezávisí od výberu minimálneho automatu pre jazyk. Uvažujme teda ľubovolný jazyk $L \in \mathcal{R}$. Ak existuje pre daný jazyk unikátny minimálny NKA, tak niet čo dokazovať. Uvažujme teda, že pre jazyk L existuje viacero minimálnych NKA. Nech A_1^{min} a A_2^{min} sú rôzne minimálne NKA pre jazyk L. Dokážeme, že automat A_1^{min} je rozložiteľný práve vtedy, keď je rozložiteľný automat A_2^{min} . Nech teda existuje netriviálny rozklad automatu A_1^{min} . Teda existujú NKA B_1 a B_2 také, že $L(B_1) \cap L(B_2) = L(A_1^{min}) = L$ a $\#_S(B_1) < \#_S(A_1^{min})$, $\#_S(B_2) < \#_S(A_1^{min})$. Nakoľko A_1^{min} a A_2^{min} sú oba minimálne automaty pre jazyk L, tak platí $\#_S(A_1^{min}) = \#_S(A_2^{min})$ a $L(A_1^{min}) = L(A_2^{min}) = L$. Teda platí $\#_S(B_1) < L$ $\#_S(A_2^{min}), \#_S(B_2) < \#_S(A_2^{min})$ a taktiež $L(B_1) \cap L(B_2) = L(A_2^{min}) = L$, teda B_1 a B_2 tvoria zároveň netriviálny rozklad automatu A_2^{min} . Daná úvaha sa dá úplne analogicky spraviť aj opačným smerom a dokázať, že ak je rozložiteľný automat A_2^{min} , tak potom je rozložiteľný aj automat A_1^{min} . Týmto sme ukázali, že daná vlastnosť jazyka je dobre definovaná.

Poznámka 1.2.1. V našej práci budeme takmer vždy hovoriť o nedeterministickej rozložitelnosti jazyka, preto budeme písať skrátene o rozložitelnosti jazyka. Plný výraz nedeterministická rozložitelnosť jazyka budeme používať iba v prípadoch, ked bude treba zvýrazniť, že ide práve o nedeterministickú rozložitelnosť a nie deterministickú.

Lahko vidno, že rozklad NKA A existuje vždy a tvorí ho samotný automat A a NKA pre jazyk Σ_A^* . Samozrejme tento rozklad nie je netriviálny a rovnako nie je ani ničím zaujímavý. Preto nás bude v prípade automatov zaujímať, za akých podmienok existuje ich netriviálny rozklad. Pri jazykoch nás prirodzene bude zaujímať, či sú rozložitelné.

Lema 1.2.1 (o bezepsilonových NKA). Nech A je NKA. Potom platia nasledovné tvrdenia.

- 1. existuje NKA A' taký, že L(A') = L(A), $\#_S(A) = \#_S(A')$ a automat A' neobsahuje prechody na ε
- 2. ak je A rozložitelný, potom existuje netriviálny rozklad automatu A na NKA A_1^{ε} , A_2^{ε} taký, že A_1^{ε} a A_2^{ε} neobsahujú prechody na ε

 $D\hat{o}kaz$. Tvrdenie 1 vyplýva priamo zo štandardnej konštrukcie odepsilonovaného NKA k ľubovoľnému NKA.

Dokážeme tvrdenie 2. Automat A rozložitelný, to znamená, že existuje netriviálny rozklad automatu A na automaty A_1 a A_2 , čo znamená, že $L(A) = L(A_1) \cap L(A_2)$, $\#_S(A_1) < \#_S(A)$, $\#_S(A_2) < \#_S(A)$. Podľa 1 však existujú automaty A'_1 a A'_2 také, že $L(A'_1) = L(A_1)$, $\#_S(A_1) = \#_S(A'_1)$ a $L(A'_2) = L(A_2)$, $\#_S(A_2) = \#_S(A'_2)$ pričom navyše automaty A'_1 a A'_2 neobsahujú prechody na ε . To však znamená, že $L(A) = L(A'_1) \cap L(A'_2)$, $\#_S(A'_1) < \#_S(A)$, $\#_S(A'_2) < \#_S(A)$, teda A'_1 a A'_2 tvoria taktiež netriviálny rozklad automatu A. Teda stačí položiť $A_1^{\varepsilon} = A'_1$, $A_2^{\varepsilon} = A'_2$.

Poznámka 1.2.2. Zmysel Lemy 1.2.1 je v zjednodušení dôkazov niektorých tvrdení v našej práci, kde potrebujeme predpokladať existenciu rozkladu netriviálneho rozkladu nejakého automatu a následne dokázať niečo o výpočtoch NKA ktoré tvoria tento rozklad. Vďaka tejto Leme môžeme predpokladať, že dané výpočty v každom kroku spracujú nejaký znak zo vstupu, čo robí dôkazy prehľadnejšími.

1.3 Techniky určovania dolnej hranice počtu stavov NKA

Na skúmanie otázky rozložitelnosti jazyka musíme mať nástroje, pomocou ktorých vieme k jazykom hladať ich minimálne automaty. V nasledujúcej časti uvedieme techniky, pomocou ktorých budeme schopný určovať dolné hranice pre počet stavov nedeterministického konečného automatu pre daný jazyk. Pre deterministické konečné automaty máme k dispozícii Myhill-Nerodovú vetu, ktorá vždy dokáže určiť tesnú spodnú hranicu pre počet stavov potrebných pre deterministický konečný automat rozpoznávajúci daný jazyk. Pri nedeterministických konečných automatoch je situácia horšia. Takúto silnú techniku nemáme k dispozícii. Avšak máme k dispozícii techniky, ktoré nám poskytujú aspoň nejaké, nie nutne tesné, dolné hranice pre počet stavov potrebných pre nedeterministický konečný automat rozpoznávajúci daný jazyk. Uvádzame dve techniky - Techniku oblbovacích množín (z anglického Fooling set technique) a techniku rozšírených oblbovacích množín (z anglického Extended fooling set technique) z [Palioudakis, 2012] a [Glaister and Shallit, 1996].

Definícia 1.3.1 (Oblbovacia množina). Nech L je jazyk, $n \in \mathbb{N}$. Nech $P = \{(x_i, y_i) | 1 \le i \le n\}$ taká, že:

- (a) $x_i y_i \in L \text{ pre } 1 \leq i \leq n$
- (b) $x_i y_j \notin L$ pre $1 \le i, j \le n$ a $i \ne j$

Potom množinu P nazývame oblbovacia množina pre jazyk L.

Veta 1.3.1 (Technika oblbovacích množín). Nech L je regulárny jazyk a existuje oblbovacia množina P pre jazyk L. Potom každý NKA akceptujúci P má aspoň |P| stavov $(t.j. \ nsc(L) \ge |P|)$.

 $D\hat{o}kaz$. Aby sme nahliadli, čo je za touto technikou, uvedieme aj dôkaz. Označme |P|=n a postupujme sporom. Nech platia predpoklady tvrdenia a nech existuje NKA A ktorý má menej stavov ako n. Pozrime sa na výpočty automatu A na slovách x_iy_i pre $1 \leq i \leq n$. Podľa definície množiny P musí platiť $(q_{0_A}, x_iy_i) \vdash^* (p_i, y_i) \vdash^* (q_{i_F}, \varepsilon)$ kde $p_i \in K_A$ a $q_{i_F} \in F_A$. Pozrime sa teraz pozornejšie na stavy p_i . Nakolko platí, že automat A má menej stavov ako je n, musí platiť, že existujú také $k \neq l$, že $p_k = p_l$. Potom však platí, že $(q_{0_A}, x_ky_l) \vdash^* (p_l, y_l) \vdash^* (q_{i_F}, \varepsilon)$. Potom však $x_ky_l \in L$ čo je spor s definíciou množiny P. Teda A má aspoň n stavov.

Drobnou úpravou tejto vety dostaneme silnejšie tvrdenie.

Definícia 1.3.2 (Rozšírená oblbovacia množina). Nech L je jazyk. Nech $n \in \mathbb{N}$. Nech $P = \{(x_i, y_i) | 1 \le i \le n\}$ taká, že:

- (a) $x_i y_i \in L$ pre 1 < i < n
- (b) $x_i y_j \notin L$ alebo $x_j y_i \notin L$ pre $1 \le i, j \le n$ a $i \ne j$

Potom množinu P nazývame rozšírená oblbovacia množina pre jazyk L.

Veta 1.3.2 (Technika rozšírených oblbovacích množín). Nech L je regulárny jazyk a existuje rozšírená oblbovacia množina P pre jazyk L. Potom každý NKA akceptujúci P má aspoň |P| stavov $(t.j. \ nsc(L) \ge |P|)$.

Dôkaz je takmer identický ako dôkaz pre 1.3.1 a je triviálne ho rozšíriť tak, aby dokazoval toto tvrdenie, preto ho neuvádzame. Takisto je lahko vidno, že ak je množina oblbovacou množinou pre jazyk L, je aj rozšírenou oblbovacou množinou pre L.

Prirodzená otázka, ktorá sa ponúka, je: "Ako nájsť čo najväčšiu (rozšírenú) oblbovaciu množinu pre daný jazyk L? ". Algoritmus, pomocou ktorého by sa táto množina dala skonštruovať známy nie je, avšak v [Glaister and Shallit, 1996] autori ponúkajú

nasledujúcu heuristiku, ktorá, ako sa zdá, často zafunguje velmi dobre. Najprv skonštruujme NKA rozpoznávajúci jazyk L. Nech pre každý stav q tohto automatu je x_q najkratšie slovo také, že platí $(q_0, x_q) \vdash^* (q, \varepsilon)$ a nech w_q je najkratšie slovo také, že platí $(q, w_q) \vdash^* (q_F, \varepsilon)$, kde q_F je akceptačný stav. Potom zvol P ako nejakú vhodnú podmnožinu $\{(x_q, w_q) | q \in K\}$.

Príklad 1.3.1. Uvažujme jazyk $L = \{w \in \{a,b\}^* \mid \#_a(w) \equiv 0 \pmod{2} \land \#_b(w) \equiv 0 \pmod{2} \}$. NKA akceptujúci jazyk L uvádzame pomocou diagramu.

Obr. 1.1: NKA akceptujúci jazyk L

Teraz použijúc techniky uvedené v predošlom dokážeme, že tento NKA je mnimálnym NKA pre jazyk L. Uvažujme množinu dvojíc slov $F = \{(\varepsilon, \varepsilon), (a, a), (ab, ab), (b, b)\}$. Množina F je podla definície 1.3.1 oblbovacou množinou pre jazyk L. Nakolko |F| = 4, tak podla vety 1.3.1 platí $nsc(L) \geq 4$. Keďže sa nám podarilo zostrojiť NKA akceptujúci L, ktorý má práve 4 stavy, tak tento NKA je minimálnym automatom pre jazyk L, t.j. nsc(L) = 4.

Príklad 1.3.2. Uvažujme jazyk $L = \{w_1 abaw_2 \mid w_1, w_2 \in \{a, b\}^*\}$. NKA akceptujúci jazyk L uvádzame pomocou diagramu.

Obr. 1.2: NKA akceptujúci jazyk L

Použijúc techniky uvedené v predošlom dokážeme, že tento NKA je mnimálnym NKA pre jazyk L. Uvažujme množinu dvojíc slov $F = \{(\varepsilon, aba), (a, ba), (ab, a), (aba, \varepsilon)\}$. Množina F je podla definície 1.3.2 rozšírenou oblbovacou množinou pre jazyk L. Nakolko |F| = 4, tak podla vety 1.3.2 platí $nsc(L) \geq 4$. Kedže sa nám podarilo zostrojiť NKA akceptujúci L, ktorý má práve 4 stavy, tak tento NKA je minimálnym automatom pre jazyk L, t.j. nsc(L) = 4. Ešte spomeňme, že pri dokazovaní minimality

KAPITOLA 1. DEFINÍCIE, POTREBNÉ VÝSLEDKY, MOTIVÁCIA VÝSKUMU, 8

pomocou techniky obl
bovacích množín (nie rozšírených) by sme neuspeli, nakolko najväčšia možná obl
bovacia množina pre jazyk L obsahuje 2 prvky.

Kapitola 2

Rozložitelné a nerozložitelné jazyky

V tejto kapitole sa venujeme skúmaniu konkrétnych typov jazykov vzhladom na ich rozložitelnosť. Cieľom kapitoly je poskytnúť základný vhľad do problematiky a takisto vybudovať repertoár jazykov, ktoré budeme používať v ďalšom texte pri dôkazoch tvrdení.

2.1 Rozložitelné jazyky

Veta 2.1.1. Nech pre každé $n \ge 2$ je $L_n = \{a^k b a^l | (l+k) \equiv 0 \pmod{n}\}$. Potom je jazyk L_n rozložitelný.

 $D\hat{o}kaz$. Uvažujme $n \in \mathbb{N}, n \geq 2$. Aby sme dokázali, že jazyk je regulárny a teda má význam uvažovať o jeho rozklade, zostrojme NKA A_n taký, že $L(A_n) = L_n$. Hladaný NKA uvádzame pomocou diagramu.

Obr. 2.1: automat A_n pre jazyk $\{a^kba^l|(l+k)\equiv 0 \pmod{n}\}$

Uvažujme množinu dvojíc slov $F_n = \{(a^l, ba^{n-l}), (a^lb, a^{n-l}) \mid 0 \leq l \leq n-1\}$. Podla definície 1.3.2 je množina F_n rozšírenou oblbovacou množinou. $|F_n| = 2n$, teda podla Vety 1.3.2 $nsc(L_n) \geq 2n$. Kedže $L(A_n) = L_n$ a $\#_S(A_n) = n+2$, tak $nsc(L_n) = 2n$ a automat A_n je minimálny NKA pre jazyk L_n .

Teraz zostrojme netriviálny rozklad automatu A_n . Hladané NKA A_n^1 a A_n^2 uvádzame pomocou ich diagramov.

Obr. 2.2: rozklad automatu A_n

Lahko vidno, že uvedené NKA pre $n \geq 2$ tvoria netriviálny rozklad automatu A_n , teda že platí $\#_S(A_n^1) < 2n, \, \#_S(A_n^2) < 2n, \, L(A_n^1) \cap L(A_n^2) = L(A_n)$.

Veta 2.1.2. Nech pre $Z \in \mathbb{N}, Z > 0$ je $L_Z = \{a^{kZ} \mid k \in \mathbb{N}\}$. Potom ak Z nie je mocninou prvočísla, tak jazyk L_Z je rozložiteľný.

 $D\hat{o}kaz$. Podla prepokladu vety uvažujme $Z \in \mathbb{N}, Z > 0$, Z nie je mocninou prvočísla. Najprv ukážeme, že $nsc(L_Z) = Z$. Zostrojme NKA A_Z taký, že $L(A_Z) = L_Z$. Automat uvádzame pomocou diagramu.

Obr. 2.3: automat A_Z

Uvažujme množinu dvojíc slov $F_Z = \{(a^i, a^{Z-i}) \mid 0 \leq i \leq Z-1\}$. Podla definície 1.3.1 je množina F_Z oblbovacou množinou pre jazyk L_Z . Nakolko $|F_Z| = Z$, tak podľa Vety 1.3.1 $nsc(L_Z) \geq Z$. Nakoľko $L(A_Z) = L_Z$ a $\#_S(A_Z) = Z$, tak platí $nsc(L_Z) = Z$. Intuitívne je jasné, že automat "počíta zvyšok po delení Z".

Teraz nájdeme netriviálny rozklad automatu A_Z . Nech $p_1^{m_1}p_2^{m_2}...p_r^{m_r}$ je prvočíselný rozklad čísla Z. Podla predpokladov vety platí, že $r \geq 2$. Najprv načrtneme intuitívny pohlad vyplývajúci z vlastností zložených čísel a potom túto intuíciu sformalizujeme. Automaty v rozklade budú počítať zvyšok po delení $p_1^{m_1}$ a zvyšok po delení $p_2^{m_2}...p_r^{m_r}$ a budú akceptovať, ak nimi počítaný zvyšok vyjde 0. Ak oba zvyšky vyjdú 0, tak dostaneme slovo, v ktorom počet písmen a je delitelný $p_1^{m_1}$ a zároveň je delitelný $p_2^{m_2}...p_r^{m_r}$. Nakoľko $p_1, p_2, ..., p_r$ sú navzájom rôzne prvočísla, tak potom počet písmen a v zmienenom slove je delitelný $Z = p_1^{m_1}p_2^{m_2}...p_r^{m_r}$. Teraz uveďme hladané automaty, ktoré tvoria rozklad automatu A_Z . Automaty uvádzame pomocou diagramov. Pre prehladnosť diagramov zaveďme označenie $l_1 = p_1^{m_1}$ a $l_2 = p_2^{m_2}...p_r^{m_r}$

Obr. 2.4: rozkład automatu A_Z na automaty $A_1^Z(\text{hore})$ a $A_2^Z(\text{dole})$

Automaty v rozklade označme A_1^Z a A_2^Z a formálne dokážme, že $L(A_1^Z) \cap L(A_2^Z) = L(A_Z)$.

 \subseteq : Nech $w \in L(A_1^Z) \cap L(A_2^Z)$. Z konštrukcie automatov A_1 a A_2 vyplýva, že slovo w obsahuje iba znaky a a jeho dĺžka je delitelná $p_1^{m_1}$ a zároveň je delitelná $p_2^{m_2}...p_r^{m_r}$. Z toho vyplýva, že $\exists t \in \mathbb{N} : w = a^{tp_1^{m_1}p_2^{m_2}...p_r^{m_r}}$. A teda $w \in L(A_Z)$.

⊇: Nech $w \in L(A_Z)$. Teda ∃ $t \in \mathbb{N}$: $w = a^{tp_1^{m_1}p_2^{m_2}...p_r^{m_r}}$. Nakolko $L(A_1^Z) = \{a^{kp_1^{m_1}}|k \in \mathbb{N}\}$, tak $w \in L(A_1^Z)$. Nakolko $L(A_2^Z) = \{a^{kp_2^{m_2}...p_r^{m_r}}|k \in \mathbb{N}\}$, tak $w \in L(A_2^Z)$. Z toho $w \in L(A_1^Z) \cap L(A_2^Z)$.

Nakolko $\#_S(A_1^Z) < \#_S(A_Z)$ a $\#_S(A_2^Z) < \#_S(A_Z)$, tento rozklad je netriviálny, čím je tvrdenie dokázané.

Veta 2.1.3. Nech pre $n \ge 2$ je $L_n = \{a^n\} \cup \{b\}^*$. Potom je jazyk L_n rozložitelný.

 $D\hat{o}kaz$. Podla prepokladu uvažujme $n \geq 2$. Najprv dokážeme, že $nsc(L_n) = n + 2$. Najprv zostrojme NKA A_n akceptujúci jazyk L_n . Automat A_n uvádzame pomocou diagramu.

Obr. 2.5: automat A_n pre jazyk $\{a^n\} \cup \{b\}^*$

Uvažujme množinu dvojíc slov $F_n = \{(b,b)\} \cup \{(a^i,a^{n-1})|0 \le i \le n\}$. Táto množina je podľa definície 1.3.2 rozšírenou oblbovacou množinou pre jazyk L_n . Kedže $|F_n| = n+2$, tak podľa Vety 1.3.2 $nsc(L_n) \ge n+2$. Nakoľko automat $L(A_n)$ a $\#_S(A_n) = n+2$, tak $nsc(L_n) = n+2$ a automat A_n je minimálny NKA pre jazyk L_n .

Teraz zostrojíme netriviálny rozklad automatu A_n , čím skompletizujeme dôkaz. Rozklad uvádzame pomocou diagramu.

Obr. 2.6: netriviálny rozklad automatu A_n z Obr. 2.5 na automaty A_1^n (hore) a A_2^n (dole)

 $L(A_1^n) = \{b^k, b^k a^n | k \in \mathbb{N}\}, \ L(A_2^n) = \{a\}^* \cup \{b\}^*.$ Teda $L(A_1^n) \cap L(A_2^n) = L(A_n).$ Nakolko $\#_S(A_1^n) < \#_S(A_n)$ a $\#_S(A_2^n) < \#_S(A_n)$, automaty A_1^n a A_2^n tvoria netriviálny rozklad automatu A_n .

Veta 2.1.4. Nech pre $n \ge 1$ je $L_n = \{b\}.\{w \in \{a,b\}^* | \#_a(w) = n\}$. Potom je jazyk L_n rozložitelný.

 $D\hat{o}kaz$. Uvažujme $n \in \mathbb{N}, n \geq 1$. Ukážeme, že $nsc(L_n) = n+2$. Najprv zostrojíme NKA A_n pre jazyk L_n . Automat uvádzame pomocou diagramu.

Obr. 2.7: automat A_n pre jazyk $\{b\}.\{w \in \{a,b\}^* | \#_a(w) = n\}$

Uvažujme množinu dvojíc slov $F_n = \{(\varepsilon, ba^n)\} \cup \{(ba^k, a^{n-k}|0 \le k \le n)\}$. Množina F_n je podla definície 1.3.2 rozšírenou oblbovacou množinou pre jazyk L_n . Nakolko $|F_n| = n+2$, tak podľa Vety 1.3.2 $nsc(L_n) \ge n+2$. Nakolko $L(A_n) = L_n$ a $\#_S(A) = n+2$, tak $nsc(L_n) = n+2$ a automat A_n je minimálnym NKA pre jazyk L_n . Teraz zostrojíme netriviálny rozklad automatu A_n . Rozklad uvádzame pomocou diagramu.

Obr. 2.8: netriviálny rozklad automatu A_n pre jazyk $\{b\}.\{w \in \{a,b\}^* | \#_a(w) = n\}$ na automaty A_1^n (hore) a A_2^n (dole)

 $L(A_1^n) = \{w \in \{a,b\}^* | \#_a(w) = n\}, \ L(A_2^n) = \{b\}.\{a,b\}^*. \text{ Teda } L(A_1^n) \cap L(A_2^n) = L(A_n). \text{ Nakolko } \#_S(A_1^n) < \#_S(A_n) \text{ a } \#_S(A_2^n) < \#_S(A_n), \text{ tak automaty } A_1^n \text{ a } A_2^n \text{ tvoria netriviálny rozklad automatu } A_n.$

Veta 2.1.5. Nech pre $n, m \geq 2, 0 \leq z_n < n, 0 \leq z_m < m$ je $L[n, m, z_n, z_m] = \{w \in \{a, b\}^* | \#_a(w) \equiv z_n \pmod{n}, \#_b(w) \equiv z_m \pmod{m}\}$. Potom je jazyk $L[n, m, z_n, z_m]$ rozložiteľný.

 $D\hat{o}kaz$. Uvažujme $n,m\geq 2$. Najprv ukážeme, že $nsc(L[n,m,z_n,z_m])=nm$. Definujme NKA $A[n,m,z_n,z_m]=(K,\{a,b\},\delta,q[0,0],\{q[z_n,z_m]\})$, kde $K=\{q[i,j]\mid 0\leq i< n,\ 0\leq j< m\}$ a prechodová funkcia δ je pre $0\leq i< n,\ 0\leq j< m$ definovaná nasledovne: $\delta(q[i,j],a)=\{q[(i+1)\ mod\ n,j]\},\ \delta(q[i,j],b)=\{q[i,(j+1)\ mod\ m]\}$. Dá sa lahko nahliadnuť, že $L(A[n,m,z_n,z_m])=L[n,m,z_n,z_m]$. Teraz uvažujme množinu dvojíc slov $S=\{(a^lb^k,a^{z_n+n-l}b^{z_m+m-k})\mid 0\leq l< n,\ 0\leq k< m\}$. Množina S je podla definície 1.3.1 oblbovacou množinou pre jazyk $L[n,m,z_n,z_m]$. Keďže |S|=nm, tak podľa Vety 1.3.1 platí $nsc(L[n,m,z_n,z_m])\geq nm$. Nakoľko $L(A[n,m,z_n,z_m])=nm$

 $L[n,m,z_n,z_m]$ a $\#_S(A[n,m,z_n,z_m])=nm$, tak $nsc(L[n,m,z_n,z_m])=nm$ a automat $A[n,m,z_n,z_m]$ je minimálnym NKA pre jazyk $L[n,m,z_n,z_m]$.

Teraz zostrojíme netriviálny rozklad automatu $A[n,m,z_n,z_m]$, čím skompletizujeme dôkaz. Uvažujme NKA definované nasledovne:

- 1. $A[n, z_n] = (K[n, z_n], \{a, b\}, \delta[n, z_n], q[0], \{q[z_n]\}) \text{ kde } K[n, z_n] = \{q[i] | 0 \le i < n\} \text{ a}$ prechodová funkcia $\delta[n, z_n]$ je pre $0 \le i < n$ definovaná nasledovne: $\delta[n, z_n](q[i], a) = \{q[(i+1) \mod n]\}, \delta[n, z_n](q[i], b) = \{q[i]\}.$
- 2. $A[m, z_m] = (K[m, z_m], \{a, b\}, \delta[m, z_m], q[0], \{q[z_m]\})$ kde $K[m, z_m] = \{q[i] | 0 \le i < m\}$ a prechodová funkcia $\delta[m, z_m]$ je pre $0 \le i < m$ definovaná nasledovne: $\delta[m, z_m](q_i, b) = \{q[(i+1) \mod m]\}, \delta[m, z_m](q_i, a) = \{q[i]\}.$

L'ahko vidno, že $L(A[n,z_n]) = \{w \in \{a,b\}^* | \#_a(w) \equiv z_n(mod\ n)\}, L(A[m,z_m]) = \{w \in \{a,b\}^* | \#_b(w) \equiv z_m(mod\ m)\}, \text{ teda } L(A[n,z_n]) \cap L(A[m,z_m]) = L(A[n,m,z_n,z_m]). \text{ Nakoľko navyše } \#_S(A[n,z_n]) < \#_S(A[n,m,z_n,z_m]) \text{ a } \#_S(A[m,z_m]) < \#_S(A[n,m,z_n,z_m]), \text{ tak automaty } A[n,z_n] \text{ a } A[m,z_m] \text{ tvoria netriviálny rozklad automatu } A[n,m,z_n,z_m].$

Veta 2.1.6. Nech pre $l, k \geq 1$ je $L_{l,k} = \{a^l b^k\}$. Potom je jazyk $L_{l,k}$ rozložitelný.

 $D\hat{o}kaz$. Uvažujme $l, k \geq 1$. Ukážeme, že $nsc(L_{l,k}) = l + k + 1$. Najprv zostrojíme NKA $A_{l,k}$ pre jazyk $L_{l,k}$. Automat uvádzame pomocou diagramu.

Obr. 2.9: automat $A_{l,k}$ pre jazyk $\{a^lb^k\}$

Teraz uvažujmne množinu dvojíc slov $F = \{(a^i, a^{l-i}b^k), (a^lb^j, b^{k-j})|0 \le i \le l, 1 \le j \le k\}$. Množina F je podľa definície 1.3.1 oblbovacou množinou pre jazyk $L_{l,k}$. Kedže |F| = l + k + 1, tak podľa Vety 1.3.1 platí $nsc(L_{l,k}) \ge l + k + 1$. Nakoľko $L(A_{l,k}) = L_{l,k}$ a $\#_S(A_{l,k}) = l + k + 1$, tak $nsc(L_{l,k}) = l + k + 1$ a automat $A_{l,k}$ je minimálnym NKA pre jazyk $L_{l,k}$.

Teraz zostrojíme netriviálny rozklad automatu $A_{l,k}$. Hladané automaty A_l a A_k uvádzame pomocou diagramov.

Obr. 2.10: rozklad automat $A_{l,k}$ na automaty A_l (hore) a A_k (dole)

Ľahko vidno, že $L(A_l) = \{a^l b^i | i \in \mathbb{N}\}$ a $L(A_k) = \{a^i b^k | i \in \mathbb{N}\}$. Teda $L(A_l) \cap L(A_k) = L(A_{l,k})$. Navyše $\#_S(A_l) < \#_S(A_{l,k})$ a $\#_S(A_k) < \#_S(A_{l,k})$, teda automaty A_l a A_k tvoria netriviálny rozklad automatu $A_{l,k}$.

Dôsledok 2.1.1. Existuje konečný jazyk, ktorý je rozložitelný.

2.2 Nerozložiteľné jazyky

Veta 2.2.1. Pre lubovolnú abecedu Σ a každé $n \in \mathbb{N}$ je jazyk Σ^n nerozložitelný.

 $D\hat{o}kaz$. Uvažujeme $n \in \mathbb{N}$. Najprv ukážeme, že $nsc(\Sigma^n) = n+1$. Najprv zostrojme NKA A_{Σ^n} taký, že $L(A_{\Sigma^n}) = \Sigma^n$. Automat uvádzame pomocou diagramu.

start
$$\rightarrow q_0$$
 $a \in \Sigma$ q_1 $a \in \Sigma$ \cdots $a \in \Sigma$ q_n

Obr. 2.11: automat A_{Σ^n}

Vezmime ľubovolné $a \in \Sigma$ a uvažujme množinu $F = \{(a^i, a^{n-i}) \mid 0 \leq i \leq n\}$. Množina F je podľa definície 1.3.1 oblbovacou množinou pre jazyk Σ^n , teda podľa Vety 1.3.1 platí $nsc(\Sigma^n) \geq n+1$. Nakoľko sme zostrojili NKA akceptujúci jazyk Σ^n , ktorý má práve n+1 stavov, tak $nsc(\Sigma^n) = n+1$ a NKA A_{Σ^n} je minimálnym automatom pre jazyk Σ^n .

Pre n=0 a n=1 vyplýva platnosť tvrdenia z Vety 3.2.1. Pre $n\geq 2$ postupujme sporom. Nech je jazyk Σ^n rozložitelný, teda existuje netriviálny rozklad automatu A_{Σ^n} . To znamená, že existujú NKA $A_1^{\Sigma^n}$ a $A_2^{\Sigma^n}$ také, že $L(A_1^{\Sigma^n})\cap L(A_2^{\Sigma^n})=\Sigma^n$ a $\#_S(A_1^{\Sigma^n})< n+1$, $\#_S(A_2^{\Sigma^n})< n+1$. Navyše vďaka Leme 1.2.1 môžeme predpokladať, že automaty $A_1^{\Sigma^n}$ a $A_2^{\Sigma^n}$ neobsahujú prechody na ε .

Vezmime ľubovoľné $a \in \Sigma$ a uvažujme výpočet automatu $A_1^{\Sigma^n}$ na slove a^n . Podľa predcházajúceho automat $A_1^{\Sigma^n}$ slovo a^n akceptuje. Výpočet vyzerá nasledovne: $(p_0, a^n) \vdash$

 $(p_1, a^{n-1}) \vdash \ldots \vdash (p_{n-1}, a) \vdash (p_n, \varepsilon)$ kde $p_0 = q_0, A_1^{\Sigma^n}, p_n \in F_{A_1^{\Sigma^n}}$ a pre $1 \leq i < n$ $p_i \in K_{A_1^{\Sigma^n}}$. Nakoľko $\#_S(A_1^{\Sigma^n}) < n+1$, tak $\exists i, j \in \mathbb{N} : 0 \leq i \leq ni \neq j, p_i = p_j$ (vo výpočte sa nejaký stav zopadkuje). Z toho vyplýva, že v akceptovanom slove môžem nejakú jeho časť pumpovať, t.j. $\exists r_1 \in \mathbb{N}, 1 \leq r_1 \leq n \ \forall k \in \mathbb{N} : a^{n+kr_1} \in L(A_1^{\Sigma^n})$.

Analogicky, uvažujúc výpočet automatu $A_2^{\Sigma^n}$ na slove a^n , platí $\exists r_2 \in \mathbb{N}, 1 \leq r_2 \leq n \ \forall k \in \mathbb{N} : a^{n+kr_2} \in L(A_2^{\Sigma^n}).$

Teraz uvažujme slovo $a^{n+r_1r_2}$. Podľa predchádzajúceho platí $a^{n+r_1r_2} \in L(A_1^{\Sigma^n}) \cap L(A_2^{\Sigma^n})$. Avšak $a^{n+r_1r_2} \notin \Sigma^n$ čo je v spore s tým, že automaty $A_1^{\Sigma^n}$ a $A_2^{\Sigma^n}$ tvoria netriviálny rozklad automatu A_{Σ^n} .

Veta 2.2.2. Pre $n \ge 1$ a p je prvočíslo definujeme $L_{p^n} = \{a^{kp^n} | k \in \mathbb{N}\}$. Potom je jazyk L_{p^n} nerozložitelný.

 $D\hat{o}kaz$. Najprv ukážeme, že $nsc(L_{p^n})=p^n$. Zostrojme NKA A_{p^n} taký, že $L(A_{p^n})=L_{p^n}$. Automat uvádzame pomocou diagramu.

Obr. 2.12: automat A_{n^n}

Uvažujme množinu dvojíc slov $F = \{(a^l, a^{p^n-l}) \mid 0 \leq l \leq p^n - 1\}$. Množina F je podľa definície 1.3.1 oblbovacou množinou pre jazyk L_{p^n} . Nakoľko $|F| = p^n$, tak podľa Vety 1.3.1 platí $nsc(L_{p^n}) \geq p^n$. Kedže sa nám podarilo zostrojiť automat akceptujúci L_{p^n} , ktorý má práve p^n stavov, tak platí $nsc(L_{p^n}) = p^n$. Intuitívne je jasné, že automat "počíta zvyšok po delení p^{n} ".

Ďalej postupujme sporom. Uvažujme, že jazyk L_{p^n} je rozložitelný, teda že existuje netriviálny rozklad automatu A_{p^n} . To znamená, že existujú NKA $A_1^{p^n}, A_2^{p^n}$, také, že platí $\#_S(A_1^{p^n}) < p^n, \, \#_S(A_2^{p^n}) < p^n, \, L(A_1^{p^n}) \cap L(A_2^{p^n}) = L_{p^n}$. Navyše podľa Lemy 1.2.1 môžeme predpokladať, že automaty $A_1^{p^n}$ a $A_2^{p^n}$ neobsahujú prechody na ε .

Z predchádzajúceho vyplýva, že $a^{p^n} \in L(A_1^{p^n}), a^{p^n} \in L(A_2^{p^n})$. Teraz sa pozrime na výpočet automatu $A_1^{p^n}$ na slove a^{p^n} . Nech tento výpočet vyzerá nasledovne $(q_0, a^{p^n}) \vdash (q_1, a^{p^n-1}) \vdash \cdots \vdash (q_{p^n-1}, a) \vdash (q_{p^n}, \varepsilon)$, kde q_0 je počiatočný stav automatu $A_1^{p^n}, q_{p^n}$ je nejaký akceptačný stav automatu $A_1^{p^n}$ a pre $1 \le i < p^n \ q_i \in K_{A_1^{p^n}}$. Nakolko $\#_S(A_1^{p^n}) < p^n$, tak nutne $\exists i, j \in \mathbb{N}, 0 \le i, j < p^n, i \ne j : q_i = q_j$ (počas výpočtu sa v časti "od začatiatku po predposledný stav" nejaký stav zopakuje). Z toho vyplýva, že v akceptovanom slove môžem pumpovať časť, ktorá je kratšia ako p^n , t.j. $\exists r_1 \in \mathbb{N}, 1 \le r_1 < p^n \ \forall k \in \mathbb{N} : a^{p^n+kr_1} \in L(A_1^{p^n})$.

Analogicky, uvažujúc výpočet automatu $A_2^{p^n}$ na slove a^{p^n} , platí $\exists r_2 \in \mathbb{N}, 1 \leq r_2 < p^n \ \forall k \in \mathbb{N} : a^{p^n + kr_2} \in L(A_2^{p^n}).$

Čísla r_1 a r_2 zapíšme nasledovne. $r_1 = p^{l_1} f_1, 0 \leq l_1 < n, p \nmid f_1.$ $r_2 = p^{l_2} f_2, 0 \leq l_2 < n, p \nmid f_2$. Z uvedeného v predošlom vyplýva, že $a^{p^n + p^{max(l_1, l_2)} f_1 f_2} \in L(A_1^{p^n}) \cap L(A_2^{p^n})$. Nakolko však $p^n \nmid p^{max(l_1, l_2)} f_1 f_2$, tak $a^{p^n + p^{max(l_1, l_2)} f_1 f_2} \notin L_{p^n}$, čo je však v spore s predpokladom, že automaty $A_1^{p^n}$ a $A_2^{p^n}$ tvoria netriviálny rozklad automatu A_{p^n} . \square

Veta 2.2.3. $Jazyk L = (\{a\}\{a,b\}\{a\}\{a,b\})^* je nerozložiteľný.$

 $D\hat{o}kaz.$ Najprv ukážeme, že nsc(L)=4. Zostrojme NKA A_L taký, že $L(A_L)=L.$ Automat uvádzame pomocou diagramu.

Obr. 2.13: automat A_L pre jazyk $L = (\{a\}\{a,b\}\{a\}\{a,b\})^*$

Uvažujme množinu $F = \{(\varepsilon, aaaa), (a, aaa), (aa, aa), (aaa, a)\}$. Množina F je podľa definície 1.3.1 oblbovacou množinou pre jazyk L, teda podľa Vety 1.3.1 platí $nsc(L) \geq 4$. Nakoľko sme zostrojili NKA akceptujúci jazyk L, ktorý má práve 4 stavy, tak nsc(L) = 4 a NKA A_L je minimálnym automatom pre jazyk L.

Nech je jazyk L rozložitelný, teda existuje netriviálny rozklad automatu A_L . To znamená, že existujú NKA A_1^L a A_2^L také, že $L(A_1^L) \cap L(A_2^L) = L$ a $\#_S(A_1^L) < 4$, $\#_S(A_2^L) < 4$. Navyše vďaka Leme 1.2.1 môžeme predpokladať, že automaty A_1^L a A_2^L neobsahujú prechody na ε .

Uvažujme výpočet automatu A_1^L na slove aaaa. Podľa predcházajúceho automat A_1^L slovo aaaa akceptuje. Výpočet vyzerá nasledovne: $(p_0, aaaa) \vdash (p_1, aaa) \vdash (p_2, aa) \vdash (p_3, a) \vdash (p_4, \varepsilon)$ kde p_0 je počiatočný stav A_1^L , $p_4 \in F_{A_1^L}$ a pre $1 \leq i < 4$ $p_i \in K_{A_1^L}$. Nakoľko $\#_S(A_1^L) < 4$, tak $\exists i, j \in \{0, 1, 2, 3\}, i \neq j, p_i = p_j$ (vo výpočte sa nejaký stav zopakuje ešte pred tým ako bude slovo akceptované). Z toho vyplýva, že v akceptovanom slove môžem nejakú jeho časť pumpovať, t.j. $\exists r_1 \in \{1, 2, 3\} \ \forall k \in \mathbb{N} : a^{4+kr_1} \in L(A_1^L)$.

Analogicky, uvažujúc výpočet automatu A_2^L na slove aaaa, platí $\exists r_2 \in \{1,2,3\} \ \forall k \in \mathbb{N} : a^{n+kr_2} \in L(A_2^L)$.

Môžu nastať nasledovné prípady:

- 1. $r_1=1, r_2=3$ respektíve $r_1=3, r_2=1$. V tom prípade podľa predchádzajúceho platí $a^{4+3}\in L(A_1^L)\cap L(A_2^L)$. Avšak $a^{4+3}\notin L$ čo je v spore s tým, že automaty A_1^L a A_2^L tvoria netriviálny rozklad automatu A_L .
- 2. $r_1=2, r_2=2$. V tom prípade podľa predchádzajúceho platí $a^{4+2}\in L(A_1^L)\cap L(A_2^L)$. Avšak $a^{4+2}\notin L$ čo je v spore s tým, že automaty A_1^L a A_2^L tvoria netriviálny rozklad automatu A_L .

Nakoľko iné prípady nastať nemôžu, našli sme hľadaný spor čo kompletizuje dôkaz. $\ \square$

Kapitola 3

Vlastnosti tried rozložitelných a nerozložitelných jazykov

V tejto kapitole sa venujeme skúmaniu uzáverových a iných vlastností tried rozložiteľných a nerozložiteľných jazykov.

3.1 Uzáverové vlastnosti

Veta 3.1.1. Trieda rozložiteľných jazykov nie je uzavretá na prienik.

 $D\hat{o}kaz$. Uvažujme jazyky $L_1=\{a^{92}\}\cup\{b\}^*, L_2=\{a^{92}\}\cup\{c\}^*$. L_1 a L_2 sú podla Vety 2.1.3 rozložiteľné. Avšak jazyk $L_1\cap L_2=\{a^{92}\}$ je podľa Vety 2.2.1 nerozložiteľný. \square

Veta 3.1.2. Trieda nerozložiteľných jazykov nie je uzavretá na prienik.

 $D\hat{o}kaz$. Uvažujme jazyky $L_1=\{a^{2017k}|k\in\mathbb{N}\}, L_2=\{a^{29k}|k\in\mathbb{N}\}$. L_1 a L_2 sú podla Vety 2.2.2 nerozložiteľné. Avšak jazyk $L_1\cap L_2=\{a^{58493k}|k\in\mathbb{N}\}$ je podľa Vety 2.1.2 rozložiteľný.

Veta 3.1.3. Trieda rozložiteľných jazykov nie je uzavretá na zjednotenie.

 $D\hat{o}kaz$. Uvažujme jazyky $L_1 = \{w \in \{a,b\}^* | \#_a(w) \equiv 0 \pmod{2}, \ \#_b(w) \equiv 0 \pmod{3}\}, L_2 = \{w \in \{a,b\}^* | \#_a(w) \equiv 1 \pmod{2}, \ \#_b(w) \equiv 0 \pmod{3}\}.$ L_1 a L_2 sú podľa Vety 2.1.5 rozložiteľné. Avšak jazyk $L_1 \cup L_2 = \{a^{3k} | k \in \mathbb{N}\}$ je podľa Vety 2.2.2 nerozložiteľný. \square

Veta 3.1.4. Trieda nerozložiteľných jazykov nie je uzavretá na zjednotenie.

 $D\hat{o}kaz$. Uvažujme jazyky $L_1=\{a^{2829}\}, L_2=\{b\}^*$. L_1 je podľa Vety 2.2.1 nerozložiteľný a L_2 je podľa Vety 3.2.1 nerozložiteľný. Avšak jazyk $L_1\cup L_2$ je podľa Vety 2.1.3 rozložiteľný.

Veta 3.1.5. Trieda rozložiteľných jazykov nie je uzavretá na homomorfizmus.

Veta 3.1.6. Trieda nerozložiteľných jazykov nie je uzavretá na homomorfizmus.

 $D\hat{o}kaz$. Uvažujme jazyk $L = \{a^{2k}|k \in \mathbb{N}\}$ a homomorfizmus $h : \{a\} \to \{\mathbb{J}\}$ definovaný nasledovne - $h(a) = \mathbb{J}\mathbb{J}$. Jazyk L je podľa Vety 2.2.2 nerozloziteľný. Avšak jazyk $h(L) = \{\mathbb{J}^{6k}|k \in \mathbb{N}\}$ je podľa Vety 2.1.2 rozložiteľný.

Veta 3.1.7. Trieda rozložiteľných jazykov nie je uzavretá na inverzný homomorfizmus.

 $D\hat{o}kaz$. Uvažujme jazyk $L = \{a^{39}\} \cup \{b\}^*$ a homomorfizmus $h : \{b\} \to \{b\}$ definovaný nasledovne - h(b) = b. Jazyk L je podľa Vety 2.1.3 rozloziteľný. Avšak jazyk $h^{-1}(L) = \{b\}^*$ je podľa Vety 3.2.1 nerozložiteľný.

Veta 3.1.8. Trieda nerozložiteľných jazykov nie je uzavretá zreťazenie.

 $D\hat{o}kaz$. Uvažujme jazyky $L_1 = \{b\}, L_2 = \{w \in \{a,b\}^* | \#_a(w) = 81\}$. L_1 je podľa Vety 3.2.1 nerozložiteľný a L_2 je v dôsledku Vety 2.2.1 a Vety 3.2.2 ...tuto vetu treba dokopat a domyslet alebo prerobit dokaz... zatim nehavam tak...

3.2 Iné vlastnosti

Veta 3.2.1. Nech L je jazyk, pričom $nsc(L) \leq 2$. Potom L je nerozložiteľný.

 $D\hat{o}kaz$. Pre nsc(L)=1 je tvrdenie zrejmé. Uvažujme nsc(L)=2 a postupujme sporom. Nech je L rozložiteľný, t.j. existujú NKA A_1 a A_2 také, že $L(A_1)\cap L(A_2)=L$, $\#_S(A_1)=1$, $\#_S(A_2)=1$. Pozrime sa však lepšie na to, čo dokážu jednostavové NKA. Dá sa ľahko nahliadnuť, že jednostavový NKA môže akceptovať iba jeden z nasledovných troch typov jazykov: \emptyset , $\{\varepsilon\}$, Σ^* , kde Σ je ľubovoľná abeceda. Taktiež platí $\emptyset \subset \{\varepsilon\} \subset \Sigma^*$. Z toho vyplýva, že $L(A_1)\cap L(A_2)\in \{\emptyset, \{\varepsilon\}, \Sigma^*\}$. Platí $nsc(\emptyset)=nsc(\{\varepsilon\})=nsc(\Sigma^*)=1$, teda $nsc(L(A_1)\cap L(A_2))=1$. Avšak $L(A_1)\cap L(A_2)=L$ a podľa predpokladu nsc(L)=2, čo je hľadaný spor.

Nasledujúca veta formalizuje fakt, že ak máme regulárny jazyk a z neho vytvoríme nový jazyk takým štýlom, že vezmeme nový symbol, ktorý slová z pôvodného jazyka neobsahujú a tento symbol "vopcháme" do slov pôvodného jazyka, tak na rozložiteľ nosti pôvodného jazyka to nič nezmení.

Veta 3.2.2. Nech $L \in \mathcal{R}$ a $b \notin \Sigma_L$. Definujeme homomorfizmus $h_b : \Sigma_L \cup \{b\} \to \Sigma_L$ nasledovne - $h_b(b) = \varepsilon$, $\forall a \in \Sigma_L : h_b(a) = a$. Potom platia nasledovné tvrdenia:

(a)
$$nsc(L) = nsc(h_b^{-1}(L))$$

(b) L je rozložiteľný $\Leftrightarrow h_h^{-1}(L)$ je rozložiteľný

 $D\hat{o}kaz$. Najprv dokážeme (a). Nech $A_{min}^L = (K_L, \Sigma_L, \delta_L, q_L, F_L)$ je minimálny NKA pre L. Definujeme NKA $A_{min}^b = (K_L, \Sigma_L \cup \{b\}, \delta_b, q_L, F_L)$ kde δ_b je definovaná nasledovne - $\forall a \in \Sigma_L \ \forall q \in K_L : \delta_b(q, a) = \delta_L(q, a), \ \forall q \in K_L : \delta_b(q, b) = \{q\}$. Ako možno ľahko vidieť, do NKA pre L sme iba pridali slučku na b v každom stave a preto platí $L(A_{min}^b) = h_b^{-1}(L)$.

Tvrdíme, že A^b_{min} je minimálny NKA pre $h_b^{-1}(L)$. Toto tvrdenie dokážeme sporom. Nech existuje NKA $A^b_{\downarrow} = (K^b_{\downarrow}, \Sigma^b_{\downarrow}, \delta^b_{\downarrow}, q^b_{\downarrow}, F^b_{\downarrow})$ taký, že $L(A^b_{\downarrow}) = h_b^{-1}(L), \#_S(A^b_{\downarrow}) < \#_S(A^b_{min})$. Na základe A^b_{\downarrow} definujeme NKA $A^L_{\downarrow} = (K^b_{\downarrow}, \Sigma^b_{\downarrow} - \{b\}, \delta^L_{\downarrow}, q^b_{\downarrow}, F^b_{\downarrow})$ kde prechodová funkcia δ^L_{\downarrow} je definovaná nasledovne - $\forall q \in K^b_{\downarrow} \ \forall a \in \Sigma^b_{\downarrow} - \{b\} : \delta^L_{\downarrow}(q, a) = \delta^b_{\downarrow}(q, a)$. Dokážeme, že $L(A^L_{\downarrow}) = L$.

 \subseteq : Nech $w \in L(A^L_{\downarrow})$. Potom existuje akceptačný výpočet na w v automate A^L_{\downarrow} . Vďaka tomu, ako je A^L_{\downarrow} definovaný je tento výpočet taktiež akceptačným výpočtom v automate A^b_{\downarrow} a teda $w \in h_b^{-1}(L)$, z čoho plynie $h_b(w) \in L$. Avšak z toho ako je A^L_{\downarrow} definovaný vyplýva, že w neobsahuje symbol b a teda $h_b(w) = w$ z čoho plynie $w \in L$

 \supseteq : Nech $w \in L$. Z toho ľahko vidno, že $w \in h_b^{-1}(L)$. Teda existuje akceptačný výpočet na slove w v automate A_{\downarrow}^b . Nakoľko w neobsahuje symbol b a automat A_{\downarrow}^L obsahuje všetky prechody automatu A_{\downarrow}^b okrem prechodov na b, tak zmienený výpočet je taktiež akceptačným výpočtom na slove w v automate A_{\downarrow}^L , čo kompletizuje dôkaz tvrdenia $L(A_{\downarrow}^L) = L$.

Z predošlého vyplýva $\#_S(A^L_{\downarrow}) = \#_S(A^b_{\downarrow}) < \#_S(A^b_{min}) = \#_S(A^L_{min})$, čo je v spore s predpokladom, že automat A^L_{min} je minimálny NKA pre jazyk L. Teda automat A^b_{\downarrow} s uvedenými vlastnosťami nemôže existovať a teda A^b_{min} je minimálny NKA pre $h_b^{-1}(L)$. Z konštrukcie automatu A^b_{min} plynie, že $\#_S(A^b_{min}) = \#_S(A^L_{min})$, čo kompletizuje dôkaz (a).

Dokážeme tvrdenie (b).

 \Rightarrow : Nech je L rozložiteľný. Teda ak A_{min}^L je minimálny NKA pre L, tak existuje jeho netriviálny rozklad na NKA $A_1^L = (K_1, \Sigma_1, \delta_1, q_1, F_1)$ a $A_2^L = (K_2, \Sigma_2, \delta_2, q_2, F_2)$. BUNV môžeme predpokladať, že $b \notin \Sigma_1, b \notin \Sigma_2$. Definujeme NKA $A_1^b = (K_1, \Sigma_1 \cup \{b\}, \delta_1^b, q_1, F_1)$ kde prechodová funkcia δ_1^b je definovaná nasledovne - $\forall q \in K_1 \ \forall a \in \Sigma_1 : \delta_1^b(q, a) = \delta_1(q, a), \ \forall q \in K_1 : \delta_1^b(q, b) = \{q\}$. Ako si možno všimnúť, automat A_1^b sme zostrojili z automatu A_1^L tak, že sme v každom stave pridali slučku na b a teda ľahko vidno, že $L(A_1^b) = h_b^{-1}(L(A_1^L))$. Analogicky vieme definovať na základe A_2^L NKA A_2^b o ktorom analogicky platí $L(A_2^b) = h_b^{-1}(L(A_2^L))$. Označme minimálny NKA pre jazyk $h_b^{-1}(L)$ A_{min}^b . Podľa (a) platí $\#_S(A_{min}^b) = \#_S(A_{min}^L)$. Nakoľko $\#_S(A_1^L) = \#_S(A_1^b)$ a $\#_S(A_2^L) = \#_S(A_2^b)$, tak na to, aby sme dokázali, že A_1^b a A_2^b tvoria netriviálny rozklad automatu A_{min}^b stačí dokázať $L(A_1^b) \cap L(A_2^b) = h_b^{-1}(L)$. To dokážeme nasledujúcou argumentáciou, ktorá vyplýva z vlastností inverzných homo-

morfizmov a konštrukcie automatov, ktoré v dôkaze používame - $w \in L(A_1^b) \cap L(A_2^b) \Leftrightarrow w \in h_b^{-1}(L(A_1^L)) \cap h_b^{-1}(L(A_2^L)) \Leftrightarrow w \in h_b^{-1}(L(A_1^L)) \cap L(A_2^L) \Leftrightarrow w \in h_b^{-1}(L)$. Teda $h_b^{-1}(L)$ je rozložiteľný.

 \Leftarrow : Nech $h_b^{-1}(L)$ je rozložiteľný. Nech A_{min}^b je minimálny NKA pre $h_b^{-1}(L)$. Teda existuje netriviálny rozklad automatu A_{min}^b . Nech NKA tvoriace tento rozklad sú $A_1^b = (K_1^b, \Sigma_1^b, \delta_1^b, q_1^b, F_1^b)$ a $A_2^b = (K_2^b, \Sigma_2^b, \delta_2^b, q_2^b, F_2^b)$. Nech A_{min}^L je minimálny NKA pre jazyk L. Chceme skonštruovať netriviálny rozklad automatu A_{min}^L . Na základe A_1^b definujeme NKA $A_1^L = (K_1^b, \Sigma_1^b - \{b\}, \delta_1^L, q_1^b, F_1^b)$ kde prechodová funkcia δ_1^L je definovaná nasledovne - $\forall q \in K_1^b \forall a \in \Sigma_1^b - \{b\} : \delta_1^L(q, a) = \delta_1^b(q, a)$. Hlavnou myšlienkou je, že z automatu A_1^b sme vynechali prechody na b, pretože ich v rozklade, ktorý chceme vytvoriť, aj tak nepotrebujeme. Analogicky, na základe A_2^b , definujeme NKA A_2^L . Dokážeme, že $L = L(A_1^L) \cap L(A_2^L)$.

 \subseteq : Nech $w \in L$. Potom aj $w \in h_b^{-1}(L)$. Teda $w \in L(A_1^b) \cap L(A_2^b)$. Nakoľko však w neobsahuje symbol b, tak z konštrukcie A_1^L plynie $w \in L(A_1^L)$ (pretože A_1^L obsahuje všetky prechody z A_1^b okrem prechodov na b, ktoré ale pri výpočte na w nepotrebujeme). Analogicky $w \in L(A_2^L)$. Teda $w \in L(A_1^L) \cap L(A_2^L)$.

 \supseteq : Nech $w \in L(A_1^L) \cap L(A_2^L)$. Nakoľko automat A_1^b respektíve A_2^b obsahuje všetky prechody, ktoré obsahuje automat A_1^L respektíve A_2^L , tak $w \in L(A_1^b) \cap L(A_2^b)$. Teda $w \in h_b^{-1}(L)$, teda $h_b(w) \in L$. Nakoľko w neobsahuje symbol b, tak $h_b(w) = w$, z čoho plynie $w \in L$. Takže $L = L(A_1^L) \cap L(A_2^L)$.

Kedže $L = L(A_{min}^L)$, tak platí $L(A_{min}^L) = L(A_1^L) \cap L(A_2^L)$. Z (a) vyplýva $\#_S(A_{min}^L) = \#_S(A_{min}^b)$. Z konštrukcie A_1^L respektíve A_2^L vyplýva $\#_S(A_1^L) = \#_S(A_1^b)$ respektíve $\#_S(A_2^L) = \#_S(A_2^b)$. Nakoľko A_1^b a A_2^b tvoria netriviálny rozklad automatu A_{min}^b , tak platí $\#_S(A_1^b) < \#_S(A_{min}^b)$ a $\#_S(A_2^b) < \#_S(A_{min}^b)$. Z toho vyplýva $\#_S(A_1^L) < \#_S(A_{min}^L)$ a $\#_S(A_2^L) < \#_S(A_{min}^L)$. Teda automaty A_1^L a A_2^L tvoria netriviálny rozklad automatu A_{min}^L . Teda jazyk L je rozložiteľný.

Kapitola 4

Iné výsledky

Uvidíme čo kde ešte dať tak zatial sem

4.1 Porovnanie deterministickej a nedeterministickej rozložiteľ nosti regulárnych jazykov

Zaujímavou otázkou je, či existuje regulárny jazyk taký, že je deterministicky nerozložiteľný a súčasne nedeterminiticky rozložiteľný respektíve deterministicky rozložiteľný a súčasne nedeterminiticky nerozložiteľný. Pred tým, ako uvedieme dosiahnuté výsledky zavedieme definícu deterministického konečného automatu, ktorú budeme používať, nakoľko existuje viacero prístupov k definovaniu deterministických konečných automatov.

Definicia 4.1.1. Deterministický konečný automat je pätica $(K, \Sigma, \delta, q_0, F)$, kde:

- 1. K je konečná množina stavov
- 2. Σ je konečná vstupná abeceda
- 3. $q_0 \in K$ je počiatočný stav
- 4. $F \subseteq K$ je množina akceptačných stavov
- 5. $\delta: K \times \Sigma \to K$ je prechodová funkcia

Poznámka 4.1.1. Deterministický konečný automat sa skrátene označuje DKA.

Poznajúc ako v našom texte definujeme deterministický konečný automat je pre čitateľa so základnými znalosťami v oblasti jasné, ako by boli definované ostatné potrebné pojmy, preto ich definície neuvádzame.

Veta 4.1.1. Existuje nedeterministicky nerozložiteľný deterministicky rozložiteľný regulárny jazyk.

 $D\hat{o}kaz$. Hľadaným jazykom je jazyk $L = (\{a\}\{a,b\}\{a\}\{a,b\})^*$. Ukážeme, že jazyk L je deterministicky rozložiteľný. Najprv zostrojíme minimálny DKA A_L akceptujúci L. Automat uvádzame pomocou diagramu.

Obr. 4.1: deterministický konečný automat A_L pre jazyk $L = (\{a\}\{a,b\}\{a\}\{a,b\})^*$

Ľahko vidno, že A_L akceptuje práve L. Minimalita A_L sa dá dokázať pomocou všeobecne známej Myhill-Nerodeovej vety. Zostrojíme netriviálny rozklad automatu A_L . Hľadané DKA A_1^L a A_2^L uvádzame pomocou ich diagramov.

Obr. 4.2: rozklad automatu A_L

Možno nahliadnuť, že jeden z automatov v rozklade počíta zvyšok po delení 4 a druhý kontroluje, či symboly na nepárnych pozíciách v slove sú a. Teda vidno, že $L(A_1^L) = \{w \in \{a,b\}^* \mid |w| \equiv 0 \pmod{4}\}$ a $L(A_2^L) = (\{a\}\{a,b\})^*$. Teda $L(A_1^L) \cap L(A_2^L) = L$. Navyše $\#_S(A_1^L) < \#_S(A_L)$ a $\#_S(A_2^L) < \#_S(A_L)$, teda automaty A_1^L a A_2^L tvoria netriviálny rozklad automatu A_L . Z predchádzajúceho vyplýva, že jazyk $L = (\{a\}\{a,b\}\{a\}\{a,b\})^*$ je deterministicky rozložiteľný. Avšak tento jazyk je podľa Vety 2.2.3 nedeterministicky nerozložiteľný.

Uvedená Veta síce ukazuje rozdiel medzi deterministickou a nedeterministickou rozložiteľnosťou, avšak jej dôkaz veľmi závisí od faktu, že DKA v definícii nútime k úplnej

prechodovej funkcii a vďaka čomu DKA použitý v dôkaze musí mať odpadový stav. Bez tohto odpadového stavu by náš dôkaz neprešiel. Nasledujúca Veta ukazuje, že existujú prípady, kde rozdiel medzi deterministickou a nedeterministickou rozložiteľnosťou nie sú spôsobené iba nutnosťou úplnej prechodovej funkcie DKA.

Veta 4.1.2. Existuje postupnosť jazykov $(L_i)_{i=2}^{\infty}$, taká, že platí:

- (a) Jazyk L_i je nedeterministicky nerozložiteľný a súčasne deterministicky rozložiteľný pre ľubovolné $i \in \mathbb{N}, i \geq 2$.
- (b) Nech pre ľubovolné $i \in \mathbb{N}, i \geq 2$ je A_i minimálny DKA akceptujúci L_i . Potom existuje taký rozklad A_i na A_1^i a A_2^i , že platí $\#_S(A_1^i) = \#_S(A_2^i) = \frac{\#_S(A_i) + 3}{2}$.

 $D\hat{o}kaz$ to be done...

4.2 Automaty tvorené jediným cyklom

Typickou schopnosťou konečných automatov je počítať v cykle zvyšok po delení dĺžky slova. Tieto automaty sa vyznačujú tým, že sú tvorené jediným cyklom, pričom nijak nezohľadňujú štruktúru slova. Podstatu otázok spojených s takýmito automatmi riešia Vety 2.2.2 a 2.1.2. Nakoľko v konečných automatoch sú práve cykly veľmi dôležitou štruktúrou, v našej práci sme túto otázku rozšírili a študovali sme otázku rozložiteľnosti jazykov, ktorých minimálne nedeterministické konečné automaty sú tvorené jediným cyklom, pričom v ňom zohľadňujú aj štruktrúru akceptovaného slova. Podstatou týchto automatov je, neformálne povedané, pumpovanie nejakého slova.

Pre lepšiu čitateľnosť dôkazov zavedieme nasledujúce označenia.

Označenie 4.2.1. Nech u je ľubovolné slovo, $k \in \mathbb{N}$. Potom pref(u, k) označujeme prefix slova u dĺžky k a suff(u, k) označujeme suffix slova u dĺžky k.

Označenie 4.2.2. Nech $u=u_1u_2\ldots u_n$ je ľubovolné slovo. Ak v diagrame NKA A použijeme nasledujúce označenie:

Myslíme tým, že v automate A sa dá zo stavu q dostať do stavu p na slovo u pričom zo stavov, v ktorých sa automat A nachádza počas čítania slova u sa nedá už nikam inam dostať. Formálne existujú $q_0, q_1, \ldots, q_n \in K_A$ také, že $q_0 = q, q_n = p, \delta_A(q, u_1) \ni q_1$ a pre 0 < i < n platí $\delta_A(q_i, u_{i+1}) = \{q_{i+1}\}, q_i \notin F_A$. Treba si uvedomiť, že pokiaľ $u = \varepsilon$, tak platí q = p, ak navyše v tom prípade aspoň jeden zo stavov je označený v diagrame ako akceptačný, tak sa tým myslí, že stav je akceptačný.

Lema 4.2.1. Nech Σ je ľubovolná abeceda, nech $u \in \Sigma^*$, nech $L_u = \{u\}^*$. Potom $nsc(L_u) = |u|$.

 $D\hat{o}kaz$. Zostrojíme NKA A_u pre jazyk L_u . Automat uvádzame pomocou diagramu.

Obr. 4.3: automat A_u

Ľahko vidno, že $L(A_u) = L_u$. Uvažujme množinu dvojíc slov $F = \{(pref(u, i), suff(|u| - i)) \mid 0 \le i < |u|\}$. Množina F je podľa definície 1.3.1 oblbovacou množinou pre jazyk L_u . Nakoľko |F| = |u|, tak podľa Vety 1.3.1 $nsc(L_u) \ge |u|$. Kedže $L(A_u) = L_u$ a $\#_S(A_u) = |u|$, tak $nsc(L_u) = |u|$ a automat A_u je minimálny NKA pre jazyk L_u . \square

Veta 4.2.1. Nech Σ je ľubovolná abeceda taká, že $|\Sigma| \geq 2$. Nech pre $u \in \Sigma^*$, $k \geq 2$ je $L_u^k = \{u^k\}^*$. Ak u obsahuje aspoň dva rôzne symboly, potom je L_u^k rozložiteľný.

 $D\hat{o}kaz$. Nech $n \geq 1, \Sigma = \{a, b_1, \dots, b_n\}, u \in \Sigma^*, u$ obsahuje symbol a a minimálne ešte jeden symbol zo Σ . Podľa Lemy 4.2.1 platí $nsc(L_u^k) = k|u|$. Teda existuje NKA A_u^k taký, že $L(A_u^k) = L_u^k$ a $\#_S(A_u^k) = k|u|$. Automat A_u^k je teda minimálny NKA pre L_u^k . Zostrojíme netriviálny rozklad automatu A_u^k . Označme $l = k.\#_a(u)$. Rozklad uvádzame pomocou diagramu.

Obr. 4.4: rozklad automatu A_u^k na automaty $A_u(\mathsf{hore})$ a $A_k(\mathsf{dole})$

Myšlienkou tohto rozkladu je, že jeden z automatov kontroluje štruktúru slova, či je práve niekoľkonásobným zreťazením slova u a druhý automat kontroluje, či je slov u správne veľa. To však robí tak, že iba počíta počet nejakého jedného symbolu (v našom prípade ho označujeme a), ktorý u obsahuje, pričom kontroluje, či slovo

obsahuje práve $m.k.\#_a(u)$ pre nejaké $m \in \mathbb{N}$. Formálne $L(A_u) = \{u\}^*$ a $L(A_k) = \{w \in \Sigma^* \mid \#_a(w) \equiv 0 \pmod{k.\#_a(u)}\}$. Teda $L(A_u) \cap L(A_k) = L(A_u^k)$. Navyše $\#_S(A_u) < \#_S(A_u^k)$ a $\#_S(A_k) < \#_S(A_u^k)$. Je dobré si uvedomiť, že kvôli prvej nerovnosti potrebujeme predpoklad $k \geq 2$ a kvôli druhej nerovnosti potrebujeme predpoklad o veľkosti abecedy Σ . Teda automaty A_u a A_k tvoria netriviálny rozklad automatu A_u^k .

Veta 4.2.2. Nech Σ je ľubovolná abeceda, nech $k_1, k_2 \in \{0, 1\}$, nech $w_1, w_2, w_3, w_4, w_5, w_6 \in \Sigma^*$. Definujeme $L = \{w_1 a^{k_1} w_2 b w_3 a w_4 b w_5 a^{k_2} w_6\}^*$. Ak $k_1 = 1$ alebo $k_2 = 1$, potom je L rozložiteľný.

 $D\hat{o}kaz$. Zaveď me označenia $u = w_1 a^{k_1} w_2 b w_3 a w_4 b w_5 a^{k_2} w_6$ a $\Sigma_{ab} = \Sigma \cup \{a,b\}$. Podľa Lemy 4.2.1 platí nsc(L) = |u|. Teda existuje NKA A taký, že L(A) = L s $\#_S(A) = |u|$. Automat A je teda minimálny NKA pre L. Zostrojíme netriviálny rozklad automatu A. Rozoberieme nasledujúce dva prípady, podľa toho akého tvaru je slovo u. Podľa predpokladov je u práve jedého z nasledujúcich tvarov:

1. Existujú dve rôzne podslová v slove u také, že symbol b je nasledovaný symbolom rôznym od b. Formálne existujú $v_1, v_2, v_3 \in \Sigma_{ab}^*$ a $\bar{b}_1, \bar{b}_2 \in \Sigma_{ab} - \{b\}$ také, že $u = v_1 b \bar{b}_1 v_2 \bar{b}_2 v_3$. Na základe tohto poznatku zostrojíme netriviálny rozklad automatu A. Rozklad uvádzame pomocou diagramu.

Obr. 4.5: rozkład automatu A na automaty A_1 a A_2

Možno nahliadnuť, že $L(A_1) = \{v_1 b^l \overline{b}_1 v_2 b \overline{b}_2 v_3 \mid l \in \mathbb{N}\}^*$ a $L(A_2) = \{v_1 b \overline{b}_1 v_2 b^l \overline{b}_2 v_3 \mid l \in \mathbb{N}\}^*$.

Dokážeme, že $L(A_1) \cap L(A_2) = L$.

⊇: Táto inklúzia je triviálna, nebudeme ju formálne dokazovať.

\subseteq: Uvažujme $w \in L(A_1) \cap L(A_2)$. Potom existuje $n, m, l_1, \ldots, l_n, o_1, \ldots, o_m \in \mathbb{N}$ také, že $w = v_1 b^{l_1} \bar{b}_1 v_2 b \bar{b}_2 v_3 \ldots v_1 b^{l_n} \bar{b}_1 v_2 b \bar{b}_2 v_3 = v_1 b \bar{b}_1 v_2 b^{o_1} \bar{b}_2 v_3 \ldots v_1 b \bar{b}_1 v_2 b^{o_m} \bar{b}_2 v_3$. Indukciou na n dokážeme, že m = n, pre $0 \le i \le n$: $l_i = 1$ a pre $0 \le i \le m$: $o_i = 1$.

 1^0 : Ak n=0, tak $w=\varepsilon$ a tvrdenie triviálne platí.

20 : Platí $v_1b^{l_1}\bar{b}_1v_2b\bar{b}_2v_3\dots v_1b^{l_n}\bar{b}_1v_2b\bar{b}_2v_3=v_1b\bar{b}_1v_2b^{o_1}\bar{b}_2v_3\dots v_1b\bar{b}_1v_2b^{o_m}\bar{b}_2v_3$. Pozrime sa pozornejšie na prvé úseky v tomto slove, t.j. na časti $v_1b^{l_1}\bar{b}_1v_2b\bar{b}_2v_3$ a $v_1b\bar{b}_1v_2b^{o_1}\bar{b}_2v_3$. Oba úseky sú prefixom toho istého slova a na prvých $|v_1|$ symboloch sa evidentne zhodujú. Musí platiť $l_1\geq 1$, aby sa zhodovali aj na symoble b, ktorý nasleduje za v_1 . Avšak nakoľko v tomto prefixe po zmienenom b nasleduje znak \bar{b}_1 , tak nutne $l_1=1$. Teda platí $v_1b^{l_1}\bar{b}_1v_2=v_1b\bar{b}_1v_2$. Z toho plynie $o_1\geq 1$, nakoľko po v_2 musí nasledovať symbol b. Ďalším sybmobolom je však \bar{b}_2 , teda nutne $o_1=1$. Teda platí $v_1b^{l_1}\bar{b}_1v_2b\bar{b}_2v_3=v_1b\bar{b}_1v_2b\bar{b}_2v_3=v_1b\bar{b}_1v_2b\bar{b}_2v_3$. Navyše, oba automaty, A_1 aj A_2 sa po dočítaní tohto prefixu dostanú práve do ich počiatočného (a zároveň jediného akceptačného) stavu q_0 . V prípade, že n=1, tak niet čo ďalej dokazovať. Ak $n\geq 2$ tak z predchádzajúceho vyplýva, že $v_1b^{l_2}\bar{b}_1v_2b\bar{b}_2v_3\dots v_1b^{l_n}\bar{b}_1v_2b\bar{b}_2v_3=v_1b\bar{b}_1v_2b^{o_2}\bar{b}_2v_3\dots v_1b\bar{b}_1v_2b^{o_m}\bar{b}_2v_3$ a navyše toto slovo akceptujú oba automaty, A_1 aj A_2 . Teda podľa indukčného predpokladu môžeme tvrdiť, že n=m, pre $2\leq i\leq n$ platí $l_i=o_i=1$, čo dokazuje tvrdenie.

Z predošlého vyplýva, že $w \in L$, čo kompletizuje dôkaz tejto inklúzie.

Teda $L(A_1) \cap L(A_2) = L = L(A)$. Navyše $\#_S(A_1) < \#_S(A)$ a $\#_S(A_2) < \#_S(A)$, teda automaty A_1 a A_2 tvoria netriviálny rozklad automatu A.

2. Existujú $\bar{b}_1, \bar{b}_2 \in \Sigma_{ab} - \{b\}, v_1, v_2 \in \Sigma_{ab} - \{b\}, c_1, c_2 \ge 1$ také, že $u = \bar{b}_1 v_1 b^{c_1} \bar{b}_2 v_2 b^{c_2}$. Na základe tohto poznatku zostrojíme netriviálny rozklad automatu A. Rozklad uvádzame pomocou diagramu.

Obr. 4.6: rozklad automatu A na automaty A_1 (hore) a A_2 (dole)

Možno nahliadnuť, že $L(A_1) = \{\bar{b}_1v_1b^l\bar{b}_2v_2b \mid l \in \mathbb{N}\}^*$ a $L(A_2) = \{b^l\bar{b}_1v_1b\bar{b}_2v_2 \mid l \in \mathbb{N}\}^*\{b\}^*$. Platí $L(A_1) \cap L(A_2) = L$, čo sa dá dokázať veľmi podobne a rovnako veľmi technicky ako v predošlom prípade, preto dôkaz neuvádzame. Navyše $\#_S(A_1) < \#_S(A)$ a $\#_S(A_2) < \#_S(A)$, teda automaty A_1 a A_2 tvoria netriviálny rozklad automatu A.

Záverom ešte spomeňme, že hlavnou myšlienkou rozkladu bola akási synchronizácia výpočtov automatov v rozklade na symboloch rôznych od b, ktoré nasledovali hneď za b.

4.3 Charakterizácia jazykov tvorených jedným slovom

Uvádzame úplnú charakterizáciu triedy jazykov tvorených práve jedným slovom vzhľadom na rozložiteľnosť.

Veta 4.3.1. Nech $L = \{w\}$. Potom je L nedeterministicky rozložiteľný práve vtedy, keď w obsahuje aspoň dva rôzne symboly.

 $D\hat{o}kaz. \Rightarrow$: Dokážeme obmenu tvrdenia. Ak w obsahuje nanajvýš jeden znak, tak existuje nejaké $n \in \mathbb{N}$ také, že $L = \{a^n\}$. Potom podľa Vety 2.2.1 je jazyk L nerozložiteľný. \Leftarrow : Nech $w = w_1 abw_2$ pre nejaké slová w_1, w_2 . Zostrojíme NKA A_w pre jazyk $L = \{w\}$. Automat uvádzame pomocou diagramu.

Obr. 4.7: automat A_w

Uvažujme množinu dvojíc slov $F = \{(pref(w,i), suff(w,|w|-i)) \mid 0 \leq i \leq |u|\}$. Množina F je podľa definície 1.3.1 oblbovacou množinou pre jazyk L. Nakoľko |F| = |w| + 1, tak podľa Vety 1.3.1 $nsc(L) \geq |w| + 1$. Kedže $L(A_w) = L$ a $\#_S(A_w) = |w| + 1$, tak nsc(L) = |w| + 1 a automat A_w je minimálny NKA pre jazyk L.

Zostrojíme netriviálny rozklad automatu A_w . Hľadané automaty A_w^a a A_w^b uvádzame pomocou diagramov.

A ešte dokážeme že je to netriviálny rozklad a super.

Záver

Stručne zhrniem tieto prevratné výsledky :)

Literatúra

- [Gaži, 2006] Gaži, P. (2006). Parallel decomposition of finite automata. Diplomová práca pod vedením prof. Branislava Rovana.
- [Glaister and Shallit, 1996] Glaister, I. and Shallit, J. (1996). A lower bound technique for the size of nondeterministic finite automata. *Information Processing Letters*, (59):75–77.
- [Gruber and Holzer, 2006] Gruber, H. and Holzer, M. (2006). Finding lower bounds for nondeterministic state complexity is hard. Technical report, Institut fur Informatik, Technische Universitat Munchen, Boltzmannstraße 3, D-85748 Garching bei Munchen, Germany.
- [Labath, 2010] Labath, P. (2010). Zjednodušenie výpočtov prídavnou informáciou. Diplomová práca pod vedením prof. Branislava Rovana.
- [Palioudakis, 2012] Palioudakis, A. (October 2012). Nondeterministic state complexity and quantifying non-determinism in finite automata. Technical Report Technical Report 2012-596, School of Computing, Queen's University, Kingston, ON, Canada.