

Speaker identification

Vasileios Papadopoulos Dimitrios Delikonstantis

Motivation

- Speaker identification is the process of determining from which of the registered speakers a given utterance comes
- Speaker identification (in conjunction with speaker verification) is widely used in security systems
- The task of identifying a person by his voice becomes increasingly crucial with the development of IoT and technology
- Many applications require speaker identification
 - Biometrics authentication
 - Voice mail
 - Smart home

Dataset

VoxCeleb audio dataset

- Contains over 100,000 human speech utterances for 1,251 celebrities
- Spanning a wide range of different ethnicities, accents, professions and ages
- We focused only on 39 speakers with total of 4837 audio clips(computational issues)

Train/Test/Split

- For each speaker:
 - 70% audio clips kept for training
 - o 30% testing
- Training set:
 - o 70% train
 - o 30% validation

Duration distribution

- Majority of clips have duration up to 10s.
- Sampling rate is 16KHz

- Majority of clips have duration up to 10s.
- Sampling rate is 16KHz

Shortest clip: 3.9(s)

We use the first **2s** of each clip. **Assumption**: no silence at the beginning.

Feature extraction

- Mel-frequency cepstral coefficients (MFCCs)
 - Short-term representation power spectrum of a sound
- Zero-crossing rate (ZCR)
 - Rate at which a signal changes its sign from positive to negative or vice versa
- Linear Prediction Coefficients (LPC)
 - Future values of a discrete-time signal are estimated as a linear function of previous samples

Models

- "Deep" Neural Network (113K parameters)
 - 5 Dense layers
 - o 0.3 dropout
 - Softmax
 - Categorical_crossentropy
 - Adam optimizer
 - Early stopping
- Gaussian Mixture Models
 - \circ For each speaker $\Sigma(\langle mfcc, zcr, lpc \rangle)$ (cluster) model as Gaussian Distribution
 - Not just by their mean(K-means)
 - Gives probability model of X
 - Perform statistical inference
 - Assign data to cluster with some probability

Practically, a multi-class problem with 39 classes(speakers)

Results

- Model underfits.
- Too simple.
- Deeper architecture required

['gmm_id10023.sav', 'gmm_id10022.sav', 'gmm_id10036.sav', 'gmm_id10020.sav', 'gmm_id10034.sav', 'gmm_id10008.sav', 'gmm_id10009.sav', 'gmm_id10035.sav', 'gmm_id10021.sav', 'gmm_id10019.sav', 'gmm_id10025.sav', 'gmm_id10031.sav', 'gmm_id10030.sav', 'gmm_id10024.sav', 'gmm_id10018.sav', 'gmm_id10032.sav', 'gmm_id10026.sav', 'gmm_id10027.sav', 'gmm_id10033.sav', 'gmm_id10040.sav', 'gmm_id10016.sav', 'gmm_id10002.sav', 'gmm_id10003.sav', 'gmm_id10017.sav', 'gmm_id100018.sav', 'gmm_id10014.sav', 'gmm_id10018.sav', 'gmm_id10014.sav', 'gmm_id10014.sav', 'gmm_id10018.sav', 'gmm_id1001

The Accuracy with (MFCC + DELTA + ZCR + LPC) and GMM is: 98.21305841924398

Conclusions

- We combined 3 widely used features for speaker identification.
 - GMM performed well on tiny dataset
 - NN-tuning required
- The combination of features seem to work for identification tasks but it is unclear(to us) whether could be useful for 'similarity' tasks.

Future work

- Work with entire vox celeb dataset
- Measure euclidean distance of features in hyperspace
 - Assumption: similar speakers will be closer
- Measure cosine similarity of features in hyperspace
- Type of Auto-encoder
- Combination of different feature extraction methods