Agents are connected by a social network G=(N,E), which is a directed graph. An edge from i to j indicates that agent i pays attention to agent j. Agent i's (out-)neighborhood N(i) is the set of agents that i pays attention to:

There is a set $N=\{1,2,\ldots,n\}$ of agents. Each agent i has an opinion, or belief, $x_i\in[0,1]$. The opinions are meant to track

 $\sum_{j \in N(i)} w_{ij} = 1,$

Time goes by in discrete steps $t \in \{0, 1, 2, \dots\}$. Agent i's opinion at time t is x_i^t .

Each agent i distributes a total weight of 1 across the agents in N(i):

a true state $\mu \in (0,1)$.

 $N(i) = \{ j \in N \mid (i, j) \in E \}.$

where $w_{ij}>0$ is the weight that agent i places on agent j's opinion.

At each new time step, agents *update* their opinions to a weighted average of the opinions of agents they pay attention to:

 $x_i^{t+1} = \sum w_{ij} x_j^t.$