# Forecasting The Cumulative Cases of COVID-19 In Four Large Brazilian Cities Using Machine Learning Approaches

Ramon Gomes da Silva<sup>1</sup>
Matheus Henrique Dal Molin Ribeiro<sup>1,2</sup>
José Henrique Kleinübing Larcher<sup>3</sup>
Viviana Cocco Mariani<sup>3, 4</sup>
Leandro dos Santos Coelho<sup>1, 4</sup>

gomes.ramon@pucpr.edu.br, mribeiro@utfpr.edu.br, jose.kleinubing@pucpr.edu.br, viviana.mariani@pucpr.br, leandro.coelho@pucpr.br

<sup>&</sup>lt;sup>4</sup>Department of Electrical Engineering, Federal University of Parana (UFPR). 100, Avenida Coronel Francisco Heraclito dos Santos, Curitiba, PR, Brazil.









<sup>&</sup>lt;sup>1</sup>Industrial and Systems Engineering Graduate Program (PPGEPS), Pontifical Catholic University of Parana (PUCPR), 1155, Rua Imaculada Conceicao. Curitiba, PR, Brazil.

<sup>&</sup>lt;sup>2</sup>Department of Mathematics, Federal Technological University of Parana (UTFPR). Via do Conhecimento, KM 01 - Fraron, Pato Branco, PR, Brazil.

<sup>&</sup>lt;sup>3</sup> Mechanical Engineering Graduate Program (PPGEM), Pontifical Catholic University of Parana (PUCPR). 1155, Rua Imaculada Conceicao, Curitiba, PR, Brazil.

#### **Overview**

- 1 Introduction
- 2 Objective
- 3 Dataset
- 4 Proposed forecasting framework
- 5 Findings
- 6 Conclusion

- Introduction
- 2 Objective
- 3 Dataset
- 4 Proposed forecasting framework
- 5 Findings
- 6 Conclusion



BBC Sign in Home News Sport Reel Worklife Travel

NEVS

Home | US Election | Coronavirus | Video | World | US & Canada | UK | Business | Tech | Science | Stories

World | Africa | Asia | Australia | Europe | Latin America | Middle East

## Covid: Brazil's coronavirus cases pass five million

③ 8 October



#### Country Exceeds Covid-19 157,000 Deaths

Daily average of deaths in the last seven days, however, was 468, according to the consortium



## Brazil reaches 150,000 deaths from COVID-19 milestone

Brazil's count of COVID-19 deaths has surpassed 150,000, despite signs the pandemic is slowly retreating in Latin America's largest nation

By MARCELO DE SOUSA and TATIANA POLASTRI 10 October 2020, 22:29 • 4 min read



New coronavirus identified, currently named Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2), causing the coronavirus disease 2019 (COVID-19).

Brazil has more than 5 million cases and 150 thousand deaths.

#### **Problems:**

- Overcrowding of hospital beds;
- Lack of medical supplies to treat patients affected more severely;

#### Short-term forecast allows to:

- Reallocate patients;
- Reapportion resources and staff;
- Alert residents of a determined region in case of a spike;

#### Models:

- Autoregressive Integrated Moving Average (ARIMA)
- k-Nearest Neighbor (kNN)
- Support Vector Regression (SVR)
- Cubist Regression (CUBIST)
- Stacked Generalization (STACK)

- 1 Introduction
- 2 Objective
- 3 Dataset
- 4 Proposed forecasting framework
- 5 Findings
- 6 Conclusion

## **Objective**

Present a time series forecasting framework based on the use of machine learning to predict cumulative cases of COVID-19 achieving accurate predictions, being possibly useful for decision making authorities.

Use forecasting models (CUBIST, kNN, and SVR) cooperatively in the form of a **Stacked Generalization** to bring the accuracy level up.

- 1 Introduction
- 2 Objective
- 3 Dataset
- 4 Proposed forecasting framework
- 5 Findings
- 6 Conclusion

#### **Dataset**

Aggregated data from Brazilian State Health Offices from March 13th until August 14th, 2020.

The data is gathered in a collaborative project with various contributors and made available with an API or direct download.

Brasil.IO

**Cities**: Brasília (DF); Rio de Janeiro (RJ); Salvador (BA); and São Paulo (SP).

#### **Dataset**



- 1 Introduction
- 2 Objective
- 3 Dataset
- 4 Proposed forecasting framework
- 5 Findings
- 6 Conclusion



#### Step 1

- Train-test split
- Normalization
- Past 5 days as features
- Recursive one-day-ahead model

#### Step 2

- Base-learners (kNN and SVR) are trained and its predictions used as input for CUBIST meta-learner.
- Leave-one-out cross-validation is used for training.
- Machine learning models use caret R package.
- ARIMA uses auto.arima function from forecast R package.
- All computations are made in R software environment.

#### Step 3

- Out-of-sample metrics are computed:
  - Improved percentage index (IP)
  - Mean absolute error (MAE)
  - Root-mean-square error (RMSE)
  - Symmetric mean absolute percentage error (sMAPE)

- 1 Introduction
- 2 Objective
- 3 Dataset
- 4 Proposed forecasting framework
- 5 Findings
- 6 Conclusion

## Findings - Brasília

STACK approach could be considered to forecast COVID-19 cases, once the model outperformed others in all performance criteria.

Regarding MAE the performance improved in the ranges of 38.59% – 96.58%.

#### Ranking

- STACK
- ARIMA
- SVR
- kNN

## Findings - Brasília



## Findings - Rio de Janeiro

For Rio de Janeiro's cases, the SVR model achieved better accuracy than other models

The improvement in MAE ranged in 9.14% – 61.98%.

#### Ranking

- SVR
- ARIMA
- STACK
- kNN

## Findings - Rio de Janeiro



## Findings - Salvador

STACK approach outperformed the other models in Salvador's cases.

MAE improvement ranged between 36.78% – 88.71%.

#### Ranking

- STACK
- ARIMA
- SVR
- kNN

## Findings - Salvador



## Findings - São Paulo

STACK approach achieved better accuracy than other models.

The improvement in MAE ranged in 20.30% – 78.01%.

#### Ranking

- STACK
- ARIMA
- SVR
- kNN

## Findings - São Paulo



## **Findings - Overview**

Table: Performance measures of the models

| City           | Criteria | ARIMA   | kNN      | STACK   | SVR     |
|----------------|----------|---------|----------|---------|---------|
| Brasília       | MAE      | 501.83  | 9020.17  | 308.17  | 3982.00 |
|                | RMSE     | 528.16  | 9471.26  | 394.21  | 4196.15 |
|                | sMAPE    | 0.44%   | 8.27%    | 0.28%   | 3.56%   |
| Rio de Janeiro | MAE      | 1374.83 | 3285.83  | 2120.83 | 1249.17 |
|                | RRMSE    | 1700.76 | 3838.18  | 2734.95 | 1502.23 |
|                | sMAPE    | 1.78%   | 4.33%    | 2.76%   | 1.62%   |
| São Paulo      | MAE      | 673.33  | 3769.67  | 425.67  | 2346.83 |
|                | RMSE     | 766.89  | 4064.64  | 500.17  | 2429.35 |
|                | sMAPE    | 1.05%   | 6.02%    | 0.66%   | 3.57%   |
| Salvador       | MAE      | 3784.83 | 13716.50 | 3016.50 | 5277.33 |
|                | RRMSE    | 4242.16 | 15833.98 | 3324.96 | 7355.84 |
|                | sMAPE    | 1.69%   | 6.30%    | 1.36%   | 2.35%   |

- 1 Introduction
- 2 Objective
- 3 Dataset
- 4 Proposed forecasting framework
- 5 Findings
- 6 Conclusion

#### Conclusion

**Stacking-ensemble** learning and **SVR** models are suitable tools to forecast COVID-19 cases for most of the adopted cities.

These approaches were able to learn the **nonlinearities** inherent to the evaluated **epidemiological time series**.

**ARIMA** also showed good consistent results for a six-days-ahead time window.

#### Conclusion

The ranking of models in Rio de Janeiro's scenarios is:

- SVR
- 2 ARIMA
- **3** STACK
- 4 KNN

#### For all the other cities:

- **STACK**
- 2 ARIMA
- 3 SVR
- 4 KNN

#### Conclusion

#### Remark

- Even though the models discussed in this paper presented accurate forecasting capabilities, they should be used cautiously.
- The dynamics of the analyzed data, as well as the diversity of exogenous factors that can affect the daily notifications of COVID-19

## **Acknowledgments**







# Thank you!