PROBLEM SET 1

NO DUE DATE

Problem 1. Exercises 1.2.1, 1.2.2, 1.2.3 on p. 3.

Problem 2. Exercises 1.3.4, 1.3.5, 1.3.6, 1.3.7, 1.3.8, 1.4.1 on pp. 5–6.

Problem 3. Let C be the code of all words of length 3. Can this code detect any errors?

Problem 4. Let C be code

$$C = \{00000, 00100, 00101, 10010, 00110\}.$$

Determine whether C detects the error patterns: (a) 01000, (b) 00001, and (c) 10001.

Problem 5. For any $n \in \mathbb{N}$, let C be the code obtained by adding a parity-check digit to K^n . Which types of error patterns can C detect? As in the textbook, $K = \{0, 1\}$.

Problem 6. Let C be the code of all words of length 4 having an even number of ones.

- (a) If the word 0010 is received, what codeword(s) was(were) most likely sent?
- (b) If the word 0110 is received, what codeword(s) was(were) most likely sent?

Problem 7. Exercises 1.6.2 and 1.6.5—1.6.9 on pp. 8–10.

Problem 8. Let $u, v \in K^n$. Prove that $\operatorname{wt}(u+v) \leq \operatorname{wt}(u) + \operatorname{wt}(v)$. Hint: Use the triangle inequality.

Problem 9.

(a) Let $u=(u_1,\ldots,u_n)$ and $v=(v_1,\ldots,v_n)$ be vectors in K^n . Define $u*v:=(u_1v_1,\ldots,u_nv_n),$

and then prove that

$$\operatorname{wt}(u+v) = \operatorname{wt}(u) + \operatorname{wt}(v) - 2 \cdot \operatorname{wt}(u * v).$$

Hint: By direct inspection, prove the assertion assuming n=1. Then carefully generalize it for any n.

(b) Conclude that $\operatorname{wt}(u+v)$ is even if and only if either both $\operatorname{wt}(u)$ and $\operatorname{wt}(v)$ are even or both $\operatorname{wt}(u)$ and $\operatorname{wt}(v)$ are odd.

Problem 10. Read Exercises 1.7.1–1.7.3 on p. 11.

Problem 11. Exercises 1.8.1–1.8.2 on p. 12.