D'épartement de Mathématiques

M41 - Devoir Surveillé No 1

16 mars 2020 - Durée 2 heure

Documents, calculettes et téléphones portables ne sont pas autorisés.

Exercice 1. Soit $f_n(x) = \frac{\sin(nx)}{1+n^2x^2}, n \ge 0.$ $x \in \mathbb{R}$.

- (1) Etudier la convergence simple de la suite $(f_n)_n$.
- (2) (i) Soit a > 0. Etudier la convergence uniforme de la suite $(f_n)_n$ sur $[a, +\infty[$.
 - (ii) Etudier la convergence uniforme de la la suite $(f_n)_n$ sur $]0, +\infty[$.

(On pourra considérer la suite $x_n = \frac{\pi}{2n} \ n \ge 1$).

(3) Calculer

$$\lim_{n \to +\infty} \int_1^2 \frac{\sin(nx)}{1 + n^2 x^2} \, dx.$$

Exercice 2. Soit

$$u_n(x) = \frac{1}{n^2 x + n^3}, \ n \ge 1$$
 et $f(x) = \sum_{n \ge 1} u_n(x).$

- (1) Etudier la convergence de cette série et la continuité de f sur \mathbb{R}^+ .
- (2) (a) Montrer que pour tout $k \geq 0$,

$$u_n^{(k)}(x) = \frac{(-1)^k k!}{n^2 (x+n)^{k+1}} \quad x \ge 0 \text{ et } n \ge 1.$$

(b) En déduire que f est de classe $C^{\infty}(\mathbb{R}^+)$.

Exercice 3. Soit la série entière $f(x) = \sum_{n \ge 1} \frac{1}{n^2} x^n$.

- (1) Déterminer le rayon de convergence R de cette série et étudier la convergence en x=-R et x=R. En déduire que f est continue sur [-R,R].
- (2) (a) Calculer $\lim_{t\to 0} \frac{\ln(1-t)}{t}$.
 - (b) Montrer que pour |x| < 1,

$$f(x) = \int_0^x -\ln(1-t)\frac{dt}{t}.$$

- (3) (a) Calculer $\lim_{t\to 0^+} \ln(t) \ln(1-t)$.
 - (b) Montrer que si 0 < x < 1, alors on a

$$f(x) + f(1-x) = f(1) - \ln(x) \ln(1-x).$$

(On pourra, utiliser une intégration par partie, puis un changement de variable).

(4) En déduire que

$$\sum_{n>1} \frac{1-2^{1-n}}{n^2} = (\ln(2))^2.$$

1