Национальный исследовательский Университет ИТМО Мегафакультет информационных и трансляционных технологий Факультет инфокоммуникационных технологий

Математический анализ

Лабораторная работа"Пределы"

Работу выполнил:

Г.А. Белисов Группа: К3121 **Преподаватель:**

В.А. Кочевадов

 $ext{Caнкт-} \Pi$ етербург 2022

Содержание

Bı	Введение		
1.	Функции, непрерывные в области. Теоремы Больцано-Коши. Теоремы вейерштрасса	4	
	1.1. Функции, непрерывные в области	4	
	1.2. Теоремы Больцано-Коши	4	
	1.3. Теоремы вейерштрасса	Ę	
2.	Таблица первообразных	7	
Зғ	аключение	7	
Cı	тисок использованных источников	8	

Введение

Данная работа содержит математический текст[1] с формулами. Моя цель, заключается в том, чтобы в ходе работы понять тему пределов.

1. Функции, непрерывные в области. Теоремы Больцано-Коши. Теоремы вейерштрасса

1.1. Функции, непрерывные в области

Мы будем говорить, что функция $f(x_1, ..., x_n)$ непрерывная в некотором множестве M представляет собой открытую или замкнутую область, наподобие того, как непрерывные функции одной переменной рассматривали в промежутке.

Обращаемся теперь к изучению свойств функции нескольких переменных, непрерывной в некоторой области п-мерного пространства. Они вполне аналогичны свойствам функции одной переменной, непрерывной в промежутке.

При изложении мы лишь для краткости ограничимся случаем двух независимых переменных. Перенесение на общий случай производится непосредственно и не представляет труда. Впрочем, некоторые замечания по этому поводу будут сделаны попутно.

1.2. Теоремы Больцано-Коши

Сформулируем теперь теорему, аналогичную первой теореме Больцано-Коши для функции одной переменной.

Теорема. Пусть функция f(x,y) определена и непрерывна в некоторой связной области D. Если в двух точках $M_0(x_0,y_0)$ и $M_1(x_1,y_1)$ этой области функция принимает значения разных знаков:

$$f(x_0, y_0) < 0, f(x_1, y_1) > 0,$$

то в этой области найдется и точка M'(x',y') , в которой функция обращается в нуль: f(x',y')=0.

Доказательство мы построим на сведении к случаю функции одной независимой переменной.

Рисунок 1.1. Область D

Ввиду связности области D, точки M_0 и M_1 можно соединить ломаной, всеми точками лежащей в D (рисунок 1). Если последовательно перебирать вершины ломаной, то либо окажется, что в какой-либо из них функция обращяется в 0 - и тогда теорема доказана, либо этого не будет. В последнем случае найдется такая сторона ломаной, на концах которой функция принимает значения разных знаков. Изменив обозначения точек, будем

считать, что M_0 и M_1 как раз и являются концами этой стороны. Её уравнения имеют вид:

$$x = x_0 + t(x_1 - x_0), \quad y = y_0 + t(y_1 - y_0) \quad (0 \le t \le 1).$$

Если точка M(x,y) передвигается именно вдоль этой стороны, то наша первоначальная функция f(x,y) превращается в сложную функцию одной переменной t:

$$F(t) = f(x_0 + t(x_1 - x_0), y_0 + t(y_1 - y_0))$$
 (0 < t < 1),

очевидно, непрерывную (по теореме предшествующего n°), ввиду непрерывности как функции f(x,y), так и линейных функций от t, подставленных вместо ее аргументов. Но для F(t) имеем:

$$F(0) = f(x_0, y_0) < 0, F(1) = f(x_1, y_1) > 0$$

Применяя к функции F(t) одной переменной уже доказанную в n°80 теорему, заключаем, что F(t')=0 при некотором значении t' между 0 и 1. Вспоминая определение функции F(t), имеем таким образом

$$f(x_0 + t'(x_1 - x_0), y_0 + t'(y_1 - y_0)) = 0.$$

Точка M'(x',y'), где $x'=x_0+t'(x_1-x_0)$, $y'=y_0+t'(y_1-y_0)$ и является искомой. Отсюда вытекает, 2-я теорема Больцано-Коши, которая, впрочем, могла бы быть получена и сразу.

Читатель видит, что переход к пространству п измерений (при n > 2) не создает никаких затруднений, ибо в п-мерной связной области точки также могут быть соединены "ломаной" и вопрос сведется к рассмотрению ее стороны, вдоль которой функция будет зависеть от одного параметра, и т.д.

1.3. Теоремы вейерштрасса

1-я теорема Вейерштрасса. Если функция f(x,y) определена и непрерывна в ограниченной замкнутой области D, то функция ограничена, т.е. все ее значения содержатся между двумя конечными границами:

$$m < f(x, y) < M$$
.

Доказательство. Пусть функция f(x,y) при изменении (x,y) в D оказывается неограниченной. Тогда для любого n найдется в D такая точка $M_n(x_n,y_n)$, что

$$|f(x_n, y_n| > n. (7)$$

Из ограниченной последовательности $\{M_n\}$ можно извлечь частичную последовательность $\{M_{n_k}\}$, сходящуюся к предельной точке $\overline{M}(\overline{x},\overline{y})$.

Отметим, что эта точка \overline{M} необходимо принадлежит области D. Действительно, в противном случае точки M_{n_k} все были бы от нее отличны, и точка \overline{M} была бы точкой сгущения области D, ей не принадлежащей, что невозможно ввиду замкнутости области D.

Вследствие непрерывности функции в точке \overline{M} должно быть

$$f(M_{n_k}) = f(x_{n_k}, y_{n_k}) \to f(\overline{M}) = f(\overline{x}, \overline{y})$$

а это находится в противоречии с (7).

2-я теорема Вейерштрасса. Обе теоремы Вейерштрасса переносятся и на случай, когда функция непрерывна в любом ограниченном замкнутом мжножестве M (хотя бы и не представляющем собой области).

Как и в случае функции одной переменной, для функции f(x,y), определенной и ограниченной в множестве M, разность между точными верхней и нижней границами значений функции в M называется ее колебанием в этом множестве. Если M ограничено и замкнуто (в частности, если M есть ограниченная замкнутая область), и функция f в нем непрерывна, то колебание есть попросту разность между наибольшим и наименьшим ее значениями.[1]

2. Таблица первообразных

Таблица 2.1

Φ ункция $\{f(x)\}$	Первообразная {F(x)}
k	kx + C
$x^n, (n \in Z, n \neq -1)$	$\frac{x^{(n+1)}}{n+1} + C$
$\frac{1}{\sqrt{x}}$	$2\sqrt{x} + C$
sinx	-cosx + C
cosx	sinx + C
$\frac{1}{\cos^2 x}$	tgx + C
$\frac{1}{\sin^2 x}$	-ctgx + C
$\frac{1}{x}$	ln x + C
e^x	$e^x + C$
a^x	$\frac{a^x}{lna} + C$

Заключение

В данной лабороторной работе была разобрана тема пределов, а также построена таблица первообразных.

Список использованных источников

1. Курс дифференциального и интегрального исчисле- ния. В 3 томах. Том 1./ Пред. и прим. А.А. Флоринского. 8-е изд.-М. ФИЗМАТЛИТ, 2003.-680с. — URL: https://is.gd/ifeFIb.