163 HWK 5

James Gillbrand

April 2024

Question 1

Proof. Let (a_n) be a sequence of real numbers.. Assume that the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent. Define,

$$s_n = \sum_{k=1}^n a_k$$

$$t_n = \sum_{k=1}^n |a_k|$$

By the definition of absolutely convergent, there exists $l \in \mathbb{R}$

$$\lim_{n \to \infty} s_n = l$$

Because, $\sum_{n=1}^{\infty} a_n$ is absolutely convergent, it is also convergent, hence there exists a $m \in \mathbb{R}$ such that,

$$\lim_{n \to \infty} t_n = m$$

Because $a_k \leq |a_k|, \ s_n \leq t_n$, and consequently, $l \leq m$. We know that $m \geq 0$ since each $a_k \geq 0$. Then,

$$|l| \le |m| = m$$

Thus,

$$|\sum_{n=1}^{\infty} a_n| \le \sum_{n=1}^{\infty} |a_n|$$

(a)

Proof. Let (a_n) be a sequence of real numbers. Assume that $\sum_{n=1}^{\infty} a_n$ is absolutely convergent. Take arbitrary subsequence (a_{n_k}) . Then, for each $n \in \mathbb{N}$, define,

$$b_n = \begin{cases} a_{n_k} & \text{if } n = n_k \\ 0 & \text{if } n \neq n_k \end{cases}$$

Then, by construction,

$$\sum_{n=1}^{n_k} a_n = \sum_{i=1}^k a_{n_i}$$

Also,

$$0 \le b_n \le |a_n|$$

Hence, by the comparison test, since $\sum_{n=1}^{\infty} a_n$ converges, so too does $\sum_{n=1}^{\infty} b_n$. Consequently, $\sum_{i=1}^{\infty} a_{n_i}$ converges as well.

(b)

Proof. Consider the series

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$$

It has been shown in class that this series is convergent and yet $\left|\frac{(-1)^n}{n}\right| = \frac{1}{n}$ which is divergent as a series. Define

$$n_k = 2k - 1$$

Then the subsequence (a_{n_k}) contains only the negative terms of $(\frac{(-1)^n}{n})$. Define,

$$t_k = 2k$$

This subsequence contains only the positive terms. By contradiction that each of the series $\sum_{n=1}^{\infty} a_{n_k}$ and $\sum_{n=1}^{\infty} a_{t_k}$ are convergent. Consequently,

$$\sum_{n=1}^{\infty} |\frac{(-1)^n}{n}| = \sum_{k=1}^{\infty} a_{t_k} - \sum_{k=1}^{\infty} a_{n_k}$$

By the algebraic limit theorem, $\sum_{n=1}^{\infty} |\frac{(-1)^n}{n}|$ must converge. However this is a contradiction. Hence, one of these subsequences has to diverge.

Proof. Let (a_n) be a sequence of real numbers. Assume that $\sum_{n=1}^{\infty} a_n$ is absolutely convergent. Define,

$$s_n = \sum_{k=1}^n |a_k|$$

By the definition of absolutely convergent we know that there exists some $l \in \mathbb{R}$ such that for each $\epsilon > 0$ there exists a $N_0 \in \mathbb{N}$ such that for each $n \in \mathbb{N}$, if n > N, then,

$$|s_n - l| < \epsilon$$

Because $\sum_{n=1}^{\infty} |a_n|$ is convergent, we know that $\lim_{n\to\infty} |a_n| = 0$. Hence, there exists some $N \in \mathbb{N}$ such that for each $n \in \mathbb{N}$ if n > N, then,

$$|a_n| < 1$$

Consequently,

$$|a_n^2| < |a_n|$$

and

$$|a_n^3| < |a_n^2|$$

Hence,

$$|a_n^3| < |a_n|$$

Because $\sum_{n=1}^{\infty} |a_n|$ is convergent, by the stronger convergence test proved in assignment $4, \sum_{n=1}^{\infty} |a_n^3|$ is convergent. Thus, $\sum_{n=1}^{\infty} a_n^3$ is absolutely convergent.

Proof. Let (a_n) be sequence of real numbers such that $(\sqrt[n]{a_n})$ is convergent. Define

$$\lim_{n\to\infty} \sqrt[n]{a_n} \stackrel{\text{def}}{=} l$$

(i)

Assume that l < 1. Then, there exists some $r \in \mathbb{R}$ such that l < r < 1 by the density of real numbers. By the convergence of $(\sqrt[p]{a_n})$ to l, there exists an $N \in \mathbb{N}$ such that for each $n \in \mathbb{N}$, if $n \geq N$ then

$$\sqrt[n]{a_n} - l \le |\sqrt[n]{a_n} - l| < r - l$$

So that

$$\sqrt[n]{a_n} < r$$
$$0 < a_n < r^n$$

Thus, since r < 1, by the ratio test, $\sum_{n=1}^{\infty} r_n$ converges. Consequently, by the comparison test $\sum_{n=1}^{\infty} a_n$ converges

(ii)

Assume l > 1. Then there exists some $r \in \mathbb{R}$ such that 1 < r < l by the density of real numbers. By the convergence of $(\sqrt[n]{a_n})$ to l, there exists an $N \in \mathbb{N}$ such that for each $n \in \mathbb{N}$, if $n \ge N$ then

$$|l - \sqrt[n]{a_n} \le |\sqrt[n]{a_n} - l| < l - r$$

Hence,

$$\sqrt[n]{a_n} > r$$
$$a_n > r^n$$

Then $\sum_{n=1}^{\infty} r^n$ is a geometric series with r > 1. By the geometric series test, this series diverges. Because $r^n < a_n$ for each $n \ge N$, by the strengthened comparison test, $\sum_{n=1}^{\infty} a_n$ diverges as well.

Let (s_n) and (b_n) . Define $s_0 \stackrel{\text{def}}{=} 0$.

(a)

Proof. For each natural number n,

$$\begin{split} \sum_{k=1}^n b_k (s_k - s_{k-1}) \\ &= (b_1 s_1 - b_2 s_1) + (b_2 s_2 - b_3 s_2) + (b_3 s_3 - b_4 s_3) + \ldots + b_n s_n \\ &= s_1 (b_1 - b_2) + s_2 (b_2 - b_3) + s_3 (b_3 - b_4) + \ldots + b_n s_n \\ &= \sum_{k=1}^{n-1} s_k (b_k - b_{k+1}) + b_n s_n \\ &= s_n b_n - \sum_{k=1}^{n-1} s_k (b_{k+1} - b_k) \end{split}$$

(b)

Proof. Let m and n be natural numbers such that m > n. Then,

$$\sum_{k=n+1}^{m} b_k (s_k - s_{k-1})$$

$$\begin{split} &=b_{n+1}s_{n+1}-b_{n+1}s_n+b_{n+2}s_{n+2}-b_{n+2}s_{n+1}+b_{n+3}s_{n+3}-b_{n+3}s_{n+2}+\ldots+b_ms_m-b_ms_{m-1}\\ &=-b_ns_n+(b_ns_n-b_{n+1}s_n)+\ldots+b_ms_m\\ &=-b_ns_n-\sum_{k=n+1}^ms_{k-1}(b_k-b_{k-1})+b_ms_m \end{split}$$

Proof. Let m and n be natural numbers such that m > n. Let $(a_n) = 1$ and let (b_n) be a monotone sequence of real numbers. Then,

$$\sum_{k=n+1}^{m} |b_k - b_{k-1}| = \sum_{k=n+1}^{m} a_n |b_k - b_{k-1}|$$

Assume that (b_n) is nondecreasing, then $|b_k - b_{k-1}| = |b_k| - |b_{k-1}|$. By question 5.b,

$$\sum_{k=n+1}^{m} |b_k| - |b_{k-1}| = |b_m| - b_n| - \sum_{k=n+1}^{m} |b_{k-1}| (1-1) = |b_m - b_n|$$

Assume that (b_n) is nonincreasing, then $|b_k - b_{k-1}| = -|b_k| + |b_{k-1}|$. Hence,

$$\sum_{k=n+1}^{m} |b_k - b_{k-1}| = \sum_{k=n+1}^{m} -|b_k| + |b_{k-1}|$$

$$= -|b_m| + |b_n| + \sum_{k=n+1}^{m} |b_{k-1}| (1-1) = |b_m - b_n|$$

Proof. Let (a_n) be a sequence of real numbers and let (b_n) be a convergent, monotone sequence of real numbers such that $\lim_{n\to\infty}b_n=0$. Define

$$s_n \stackrel{\text{def}}{=} \sum_{k=1}^n a_k$$

Assume that (s_n) is bounded. We also know that since (b_n) is monotone and convergent to 0, it is also bounded. Also, this implies that (b_n) is nonegative. Hence, there exists and L, M > 0 such that

$$|b_n| < M$$
$$|s_n| < L$$

Define,

$$t_n \stackrel{\text{def}}{=} \sum_{k=1}^n a_k b_k$$

Since $a_n = s_n - s_{n-1}$, by the summation by parts formula, for $m, n \in \mathbb{N}$

$$|t_m - t_n| = |\sum_{k=n+1}^m b_k (s_k - s_{k-1})| = |s_m b_m - s_n b_n - \sum_{k=n+1}^m s_{k-1} (b_k - b_{k-1})|$$

$$\leq |b_m (s_m - s_n) - L \sum_{k=n+1}^m (b_k - b_{k-1})|$$

$$= |b_m (s_m - s_n) - L |b_m - b_n||$$

Since (b_n) is convergent, we can choose an $N \in \mathbb{N}$ sufficiently large so that $b_m(s_m - s_n) < \epsilon$ and $|b_m - b_n| < \epsilon/2$. Consequently,

$$|t_m - t_n| < |\epsilon - \frac{\epsilon}{2}| < \frac{\epsilon}{2} < \epsilon$$

Hence, $\sum_{k=1}^{\infty} a_k b_k$ is convergent.

Proof. Let (a_n) be a sequence of real numbers such that $\sum_{n=1}^{\infty} a_n$ is convergent. Let (b_n) be a bounded monotone sequence of real numbers. Then we know that there exists some $l \in \mathbb{R}$ so that for each $\epsilon > 0$, there exists an $N \in \mathbb{N}$ such that if $n \geq N$, then $|b_n - l| < \epsilon$. Without loss of generality assume (b_n) is nondecreasing. Define,

$$c_n \stackrel{\text{def}}{=} l - b_n$$

Then,

$$\sum_{n=1}^{\infty} a_n b_n = \sum_{n=1}^{\infty} l(a_n) - \sum_{n=1}^{\infty} a_n c_n$$

The first part is convergent since the series $\sum_{n=1}^{\infty} a_n$ is convergent and the second part is convergent by question 7. Consequently,

$$\sum_{n=1}^{\infty} a_n b_n$$

is convergent.