Fully Character-Level Machine Translation

Kyunghyun Cho

New York University

Courant Institute (Computer Science) and Center for Data Science Facebook AI Research

Jason Lee, Kyunghyun Cho, Thomas Hoffman.

Fully Character-Level Neural Machine Translation without Explicit Segmentation. TACL 2017.

Junyoung Chung, Kyunghyun Cho, Yoshua Bengio.

Character-Level Decoding for Neural Machine Translation without Explicit Segmentation. ACL 2016.

What is a sentence?

• To a neural network, a sentence is just a sequence of one-hot vectors:

$$\left(\left[egin{array}{c} 0 \ 0 \ 1 \ dots \ 0 \end{array}
ight], \left[egin{array}{c} 0 \ 0 \ dots \ 1 \ 0 \ 0 \end{array}
ight], \left[egin{array}{c} 0 \ dots \ 1 \ 0 \ 0 \end{array}
ight], \ldots
ight)$$

- See Lecture 2.
- What is the level of tokens with the minimal preprocessing?

What is a sentence?

- A sequence of words?
 - (Welcome, to, Montreal, !)
- A sequence of subwords?
 - (Wel, come, to, Mont, real, !)
- A sequence of sequences of letters?
 - ((W,e,l,c,o,m,e),(t,o),(M,o,n,t,r,e,al),(!))
- A sequence of characters?
 - (W,e,l,c,o,m,e, ,t,o, ,M,o,n,t,r,e,a,l,!)
- A sequence of bits...?

• Research focus

- Subword-level translation (Sennrich et al., 2015)
- Hybrid char/word translation (Luong et al., 2016)

What is a sentence to a neural network?

- A sentence is a sequence of one-hot vectors
- Underlying symbols are not visible to a neural network

What is a sentence to a neural network?

- A sequence of words?
 - (Welcome, to, Montreal, !)
- A sequence of subwords?
 - (Wel, come, to, Mont, real, !)
- A sequence of sequences of letters?
 - ((W,e,l,c,o,m,e),(t,o),(M,o,n,t,r,e,al),(!))
- A sequence of characters?
 - (W,e,l,c,o,m,e, ,t,o, ,M,o,n,t,r,e,a,l,!)
- A sequence of bits...?

• They are all just a sequence of one-hot vectors to a neural network...

$$\left(\left[\begin{array}{c} 0 \\ 0 \\ 1 \\ \vdots \\ 0 \end{array} \right], \left[\begin{array}{c} 0 \\ 0 \\ \vdots \\ 1 \\ 0 \end{array} \right], \left[\begin{array}{c} 0 \\ \vdots \\ 1 \\ 0 \\ 0 \end{array} \right], \dots \right)$$

Why not (sub)word-level modelling?

- Difficult to handle morphology
 - Morphologically rich languages → exploding vocabulary
 - Rare morphological variants: 과학/기술/정보/통신/부
- Difficult to handle misspelling
 - Especially serious with user-generated content (social media, reviews, blogs...)
 - Patterns of misspelling cannot be captured: could \rightarrow cld, would \rightarrow ?
- Modelling inefficiency
 - "kolmi/vaihe/kilo/watti/tunti/mittari": one vector?
 - "kolme": one vector???

Problems with character-level modelling

- 1. Can a neural network generate a long, coherent sequence?
- 2. Can a neural network capture highly nonlinear orthography?
- 3. Can character-level modelling be done efficiently?

Generating a long, coherent sequence

- Source: subword (BPE) sequence → Target: character sequence
- Language pairs: En \rightarrow Cz, En \rightarrow De, En \rightarrow Fi, En \rightarrow Ru
- Training sets: WMT'15
- Evaluation sets: newstest 2015
- Evaluation metric: BLEU
- BPE \rightarrow Char \cong BPE \rightarrow BPE
- Yes, a recurrent network can generate a long (100~300), coherent sequence

Going fully character-level

- Orthography is highly arbitrary without clear patterns
 - 1. Start: "quit"
 - 2. Insert "e" at the end: "quite"
 - 3. Swap the last two letters: "quiet"
- Complexity of attention grows quadratically w.r.t. the length
 - For each target symbol, all the source symbols must be considered
 - BPE-to-BPE: 30 x 30
 - BPE-to-Char: 30 x 120
 - Char-to-Char: 120 x 120

Going fully character-level

Going fully character-level

(a) Spelling mistakes

DE ori	Warum sollten wir nicht Freunde sei ?
DE src	Warum solltne wir nich Freunde sei ?
EN ref	Why should not we be friends?
bpe2char	Why are we to be friends?
char2char	Why should we not be friends?

(b) Rare words

DE src	Siebentausendzweihundertvierundfünfzig.	
EN ref	Seven thousand two hundred fifty four.	
bpe2char	Fifty-five Decline of the Seventy.	
char2char	Seven thousand hundred thousand fifties.	

(c) Morphology

DE src	Die Zufahrtsstraßen wurden gesperrt, wodurch sich laut CNN lange Rückstaus bildeten.		
EN ref	The access roads were blocked off, which, according to CNN, caused long tailbacks.		
bpe2char	The access roads were locked, which, according to CNN, was long back.		
char2char	The access roads were blocked, which looked long backwards, according to CNN.		

(d) Nonce words

DE src	Der Test ist nun über, aber ich habe keine gute Note. Es ist wie eine Verschlimmbesserung.	
EN ref	The test is now over, but i don't have any good grade. it is like a worsened improvement.	
bpe2char	The test is now over, but i do not have a good note.	
char2char	The test is now, but i have no good note, it is like a worsening improvement.	e et al., 20 ¹² 7 TACL]

Going fully character-level: Analysis

system	2014	2015	2016	
(test set and size \rightarrow)	3003	2169	2999	
BPE-to-BPE	20.1 (21.0)	23.2 (23.0)	26.7 (26.5)	
BPE-to-char	19.4 (20.5)	22.7 (22.6)	26.0 (25.9)	
char-to-char	19.7 (20.7)	22.9 (22.7)	26.2 (26.1)	
(Sennrich et al., 2016a)	25.4 (26.5)	28.1 (28.3)	34.2 (34.2)	

- Language pair/direction: En→De
- Similarly performing models (BLEU)
- Different properties:
 - Better transliteration with char-level modelling
 - Better syntactic properties with BPE-level

	agreement			polarity (negation)		
system	noun phrase	subject-verb	verb particle	insertion	deletion	transliteration
(category and size \rightarrow)	21813	35105	2450	22760	4043	3490
BPE-to-BPE	95.6	93.4	91.1	97.9	91.5	96.1
BPE-to-char	93.9	91.2	88.0	98.5	88.4	98.6
char-to-char	93.9	91.5	86.7	98.5	89.3	98.3
(Sennrich et al., 2016a)	98.7	96.6	96.1	98.7	92.7	96.4
human	99.4	99.8	99.8	99.9	98.5	99.0

What does NMT do?

Continuous space representation of a sentence

$$\left(\begin{bmatrix} 0.32 \\ \vdots \\ 0.80 \end{bmatrix}, \begin{bmatrix} 0.82 \\ \vdots \\ -0.22 \end{bmatrix}, \begin{bmatrix} -0.87 \\ \vdots \\ 1.36 \end{bmatrix}, \dots \right)$$

Encoder

分

(177, 737, 62, 153, 4)

(he, walk, ed, out, .)

Decoder

(그,는,밖,으로,나갔,다,.)

What does NMT do?

- Sequence of "discrete" symbols → Set of "continuous" vectors
- Continuous vectors encode semantics of discrete symbols
- Continuous vectors are stripped of hard, linguistic symbols
- Can we map multiple languages on a single continuous space?

Multilingual Neural Machine Translation

• Can this continuous vector space be shared across multiple languages?

Character-Level, Multilingual Translation

- Characters are often shared across many languages
 - Latin alphabets for most of European languages
 - A sentence is given as a sequence of characters (inc alphabets, punctuation marks and blank spaces)
- $\{De, Cs, Fi, Ru\} => En$
- No language ID

[Lee et al., 2017 TACL] for character-level modelling [John et al., 2016; Ha et al., 2016] for subword-level modelling

Character-Level, Multilingual Translation

- Robust to intra-sentence code switching
- Huge saving in parameters: 4x less parameters without loss in BLEU

(e) Multilingual

Multi src	Bei der Metropolitního výboru pro dopravu für das Gebiet der San Francisco Bay erklärten Beamte, der Kon-
	gress könne das Problem банкротство доверительного Фонда строительства шоссейных дорог einfach
	durch Erhöhung der Kraftstoffsteuer lösen .
EN ref	At the Metropolitan Transportation Commission in the San Francisco Bay Area, officials say Congress could
	very simply deal with the bankrupt Highway Trust Fund by raising gas taxes.
bpe2char	During the Metropolitan Committee on Transport for San Francisco Bay, officials declared that Congress could
	solve the problem of bankruptcy by increasing the fuel tax bankrupt.
char2char	At the Metropolitan Committee on Transport for the territory of San Francisco Bay, officials explained that the
	Congress could simply solve the problem of the bankruptcy of the Road Construction Fund by increasing the fuel
	tax.

[Lee et al., 2017 TACL] for character-level modelling [John et al., 2016; Ha et al. ,2016] for subword-level modelling

Character-level, Multilingual Translation

- Prevents overfitting with low-resource language pairs
- Perhaps, a way to build a MT system for all the languages in the world?

