Statements, rules, formulas and theorems:

L4P3

• Multiplication Rule

$$P(A_1 \cap A_2 \cap ... \cap A_n) =$$

= $P(A_1) * P(A_2 | A_1) * P(A_3 | A_1 \cap A_2) *... * P(A_n | A_1 \cap A_2 \cap ... \cap A_{(n-1)})$

L5P2

- Multiplication Rule for a pair of independent events: $P(A \cap B) = P(A) * P(B)$.
- Multiplication Rule for mutually independent events:

$$P(A_1 \cap A_2 \cap ... \cap A_n) = P(A_1) * P(A_2) * ... * P(A_n)$$

L5P3

• Total Probability Formula/формула полной вероятности

Let a sample space be partitioned: Ω = $\cup_{n\in[0..m]}H_n$; then for every event A $\subseteq\Omega$

$$\begin{split} P(A) &= P(\bigcup_{n \in [0..m]} (A \cap H_n)) = \\ &= \sum_{n \in [0..m]} P(A \cap H_n) = \sum_{n \in [0..m]} P(A \mid H_n) * P(H_n). \end{split}$$

• Bayes' Formula/формула Байеса

Let a sample space be partitioned: $\Omega = \bigcup_{n \in [0..m]} H_n$; then for every event A and hypothesis Hk the **posterior probability/апостериорная вероятность** can be computed using **prior probabilities/априорные вероятности** as follows:

$$P(H_k|A) = P(A|H_k)^* P(H_k)/P(A) = = P(A|H_k)^* P(H_k)/(\sum_{n \in [0..m]} P(A|H_n)^* P(H_n)).$$

L7P3

• Total Expectation Formula/формула полного мат. ожидания

If
$$H_1$$
, ... H_n is a partition then $P(A) = \sum_{k \in [1..n]} P(A \mid H_k) * P(H_k)$

and hence
$$P_X(x) = \sum_{k \in [1..n]} P_{X|Hk}(x) P(H_k)$$
, then

$$M(X) = \sum_{k \in [1..n]} M(X \mid H_k) * P(H_k)$$

L9P1

• Poisson Limit Theorem (law of rare events)/meopema Пуассона

Assume we are given an infinite series of trials X_1 , ... X_n , ... where $X_n = B(n,p_n)$; $p_n = \mu/n$ (where μ is a constant).

For every n>0 let $P_n(m)$ be the probability of m positive outcomes in the n-th trial; then this sequence converges to $e^{-\mu} * (\mu^m/m!)$

L9P2

Local Moivre-Laplace theorem/локальная теорема Муавра-

Лапласа

Assume we are given an infinite series of trials X_1 , ... X_n , where X_n = binomial(n, p) and 0 , <math>q = 1 - p.

For every n>0 let $P_n(m)$ be the probability of m positive outcomes in the n^{th} trial; then

$$\begin{aligned} \mathbf{P_n}(\mathbf{m}) &= \frac{\varphi_0(t_n)}{\sqrt{npq}} \left(1 + \alpha_n\right) \\ \text{where} \quad \varphi_0(t_n) &= \frac{1}{\sqrt{2\pi}} e^{-t_n^2/2} \quad , \ t_n &= \frac{m-np}{\sqrt{npq}} \\ \text{and} \quad |\alpha_n| &< \frac{c}{\sqrt{n}} \end{aligned}$$

• De Moivre-Laplace theorem/meopema Муавра-Лапласа

Assume we are given an infinite series of trials X_1 , ... X_n , ... where X_n = binomial(n, p) and 0<p<1, q = 1-p.

For every n>0 let $P_n(m)$ be the probability of m positive outcomes in the n^{th} trial and $P_n(m_1, m_2) = P_n(m_1 \le m \le m_2)$; then

$$P_n(m_1, m_2) \approx \phi_0(x_{m_2}) - \phi_0(x_{m_1}),$$

 $x_{m_1} = \frac{m_1 - np}{\sqrt{npq}}, \quad x_{m_2} = \frac{m_2 - np}{\sqrt{npq}}$

L10P1

• Bernoulli' law/meopema Бернулли

Assume we are given an infinite series of trials X_1 , ... X_n , ..., where X_n = B(n,p), 0<p<1. Then for every ε >0: $\lim_{n\to\infty} P(|m/n-p|\leq \varepsilon)=1$

• Chebyshev's inequality/неравенство Чебышёва

Let X be a random variable with a finite expectation μ and finite non-zero deviation $\sigma.$ Then for any real number k>0

$$P(|X - \mu| \ge k \sigma) \le 1/k^2.$$

• Khintchin's (weak) law/слабый закон больших чисел

Let X_1 , X_2 , ... be an infinite sequence of *independent and identically distributed* (i.i.d. or IID) random variables with same sets of outcomes, finite expectation μ and finite non-zero deviation σ .

Let $\underline{\mathbf{X}}_n$ be $(X_1 + ... + X_n)/n$ Then for every $\varepsilon > 0$ the probability $P(|\underline{\mathbf{X}}_n - \mu| > \varepsilon) \to 0$ (as $n \to \infty$)

L11P3

• Central Limit Theorem/центральная предельная теорема

Let X_1 , X_2 , ... be an infinite sequence of IID (i.e. independent and identically distributed) random variables with a finite expectation μ and finite non-zero deviation σ , $S_n = X_1 + ... + X_n$.

Then
$$\frac{S_n - n\mu}{\sigma\sqrt{n}}$$
 converges in distribution to N(0,1) (as n $\to \infty$).

• 68-95-99.7 rule/правило одного-двух-трёх сигм is a shorthand to remember the percentage of values that lie within a band around the mean in a normal distribution:

–68.27%, 95.45% and 99.73% of the values lie within distance σ , 2σ and 3σ of the mean μ .