Reflexive Relations on Lattices

John Snow – Concordia University, Seward, NE Kaale Kaarli – University of Tartu, Estonia

October 6, 2013

Algebras of Compatible Binary Relations

If **A** is any algebra, then

$$\mathcal{R}_2(\mathbf{A}) = \langle \operatorname{Sub}(\mathbf{A}^2), \cap, \circ, \cdot^{\cup}, \Delta, \nabla \rangle$$

 \cap - intersection

o - composition

 \cdot^{\cup} - converse

 Δ - identity relation

abla - universal relation

 $\mathbf{Ref}(\mathbf{A})=$ the subalgebra of $\mathcal{R}_2(\mathbf{A})$ consisting of reflexive relations

Theorem (C. Bergman 1998)

Any finite algebra **A** with a majority term is determined up to categorical equivalence by $\mathcal{R}_2(\mathbf{A})$.

Problem

Characterize those algebras \mathbf{R} which are isomorphic to $\mathcal{R}_2(\mathbf{A})$ for some finite algebra \mathbf{A} with a majority term.

Theorem (1998 - "The Subalgebra Theorem")

Suppose that ${\bf A}$ is a finite algebra with a majority term and that ${\bf R}$ is a subalgebra of $\mathcal{R}_2({\bf A})$. There is an algebra ${\bf B}$ with the same universe as ${\bf A}$ so that ${\bf R}=\mathcal{R}_2({\bf B})$.

- The set of algebras isomorphic to $\mathcal{R}_2(\mathbf{A})$ for some finite \mathbf{A} with a majority term is closed under subalgebras.
- This set is also closed under finite products.
- What about homomorphisms?

Tools: primitive positive formulas and results of G. Bergman on subalgebras of finite powers of majority algebras

Theorem (2009)

The following are equivalent for a finite algebra $\mathbf{R} = \langle R, \cap, \circ, \cdot^{\cup}, \Delta, \nabla \rangle$.

- There is a finite algebra **B** with a Boolean lattice reduct so that $R \cong Ref(B)$.
- $\langle R, \cap, \circ, \Delta, \nabla \rangle$ is a bounded distributive lattice with involution \cdot^{\cup} .

Tools: Subalgebra Theorem and localization via idempotent unary polynomials. Not extendable to arbitrary lattices.

Theorem (K. Kaarle 2012)

The following are equivalent for a finite algebra

$$\mathbf{R} = \langle R, \cap, \circ, \cdot^{\cup}, \Delta, \nabla \rangle.$$

- **1** There is a finite algebra **A** with a lattice reduct so that $R \cong Ref(A)$.
- 2 The following hold:
 - $lackbox{} \langle R, \cap \rangle$ is a semilattice with least element Δ and greatest ∇ ,
 - $(x^{\cup})^{\cup} = x$
 - $(x \cap y)^{\cup} = x^{\cup} \cap y^{\cup}$
 - $\langle R, \circ, \Delta \rangle$ is a monoid with 0-element ∇ .
 - $(x \circ y)^{\cup} = y^{\cup} \circ x^{\cup}.$
 - \bullet o distributes over \cap .

There is a finite algebra **A** with a majority term so that $R \cong Ref(A)$.

Tools: Subalgebra Theorem and the construction on the next slide.

Kaarle's Construction

- 1 Note that there is a join operation \vee associated with \mathbf{R} .
- **2** For each $s \in R$, define this binary relation on R

$$\theta_s = \{ \langle x, y \rangle : x \circ s \ge y \text{ and } y \circ s^{\cup} \ge x \}.$$

- 3 Prove that $s \to \theta_s$ is an injective homomorphism from **R** to $\text{Ref}(\langle R, \cap, \vee \rangle)$.
- 4 Apply the Subalgebra Theorem.

Actually, this is a special case of a much more sophisticated construction.

An infinite extension.

Only need to extend the Subalgebra Theorem and apply Kaarle's Construction.

Primitive Positive Definitions

Theorem (Finite – Bodnarchuk, Kalužnin, Kotov, Romov – 1969)

Suppose that R is a set of binary relations on a finite set A. There is an algebra \mathbf{A} with universe A so that $\mathrm{Sub}(\mathbf{A}^2) = R$ if and only if R is closed under primitive positive definitions.

Theorem (Infinite)

Suppose that R is a set of binary relations on a (possibly infinite) set A. There is an algebra $\bf A$ with universe A so that ${\rm Sub}({\bf A}^2)=R$ if and only if

- R is closed under primitive positive definitions allowing infinite quantification and conjunction and
- As a lattice R is algebraic.

Theorem (G. Bergman 1977)

Suppose A is an algebra with a majority term.

- The subalgebras of finite powers of **A** are uniquely determined by their binary projections.
- The systems of binary projections of subalgebras of finite powers of A are easily recognizable.

Theorem (G. Bergman 1977)

Suppose L is a complete lattice.

- The complete sublattices of arbitrary powers of **L** are uniquely determined by their binary projections.
- The systems of binary projections of complete sublattices of arbitrary powers of L are easily recognizable.

Theorem (Subalgebra Theorem)

Suppose that ${\bf A}$ is a finite algebra with a majority term and that ${\bf R}$ is a subalgebra of $\mathcal{R}_2({\bf A})$. There is an algebra ${\bf B}$ with the same universe as ${\bf A}$ so that ${\bf R}=\mathcal{R}_2({\bf B})$.

Theorem (Infinite Variant for Lattices)

Suppose that ${\bf L}$ is a complete lattice and that ${\bf R}$ is a subalgebra of ${\cal R}_2({\bf L}).$ If

- Every member of R is a complete sublattice of L^2 and
- As a lattice **R** is algebraic

then there is an algebra B with the same universe as L so that $R = \mathcal{R}_2(B)$.

Theorem

The following are equivalent for a countable algebra

$$\mathbf{R} = \langle R, \cap, \circ, \cdot^{\cup}, \Delta, \nabla \rangle.$$

- There is an algebra **A** with a complete lattice reduct **L** so that $\mathbf{R} \cong \mathbf{Ref}(\mathbf{A})$ and so that every relation in $\mathbf{Ref}(\mathbf{A})$ is a complete sublattice of \mathbf{L}^2 .
- The following hold:
 - $\langle R, \cap \rangle$ is a semilattice with least element Δ and greatest ∇ ,

$$(x^{\cup})^{\cup} = x$$

$$(\wedge x_i)^{\cup} = \wedge (x_i^{\cup})$$

$$lackbox{\ }\langle R,\circ,\Delta \rangle$$
 is a monoid with 0-element ∇ .

$$(x \circ y)^{\cup} = y^{\cup} \circ x^{\cup}.$$

$$lue{}$$
 \circ distributes over **arbitrary** \cap .

Thanks