Programming Project: COVID-19 Vaccinations

By: Elizabeth Cermak, Rysa Khan, Dana Leach, Khady Ndoye, & Lowry West

Problems Addressed

- 1. Which countries are projected to reach herd immunity from COVID-19 earliest as a result of vaccinating their populations?
 - Herd immunity: about 80% of a general population of individuals over the age of 16 have been vaccinated
 - Gathered data on individual country populations focusing on age & vaccination distributions across the countries
- 2. Which countries are efficiently distributing COVID-19 vaccinations to their populations and which are not?
 - Based on the number of days & the number of weeks it will take a country to vaccinate 80% & 100% of its population at the current rate of vaccine distribution in that country

Datasets Used

- COVID Vaccination Dataset 2021 (Kaggle)
 - Important columns:
 - location: 90 countries, from Albania through Wales
 - date: from December 12th, 2020 through January 25th, 2021
 - total_vaccinations, people_fully_vaccinated, daily_vaccinations, people_fully_vaccinated_per_hundred, etc.
- COVID-19 Worldometer Dataset (Kaggle)
 - Important columns:
 - Country
 - Total Cases, New Cases
 - Total Deaths, New Deaths
 - Total Recovered, Active Cases, etc.
- Combined the .csv files in Excel & in Python

COVID Vaccination Dataset

A location	=	A iso_code	=	 date	=	# total_vaccinations =	# people_vaccinated =	# people_fully_vacci =	# daily_vaccinations =	# daily_vaccinations =
Canada	3%	[null]	13%							
Northern Ireland	3%	CAN	3%							
Other (1574)	95%	Other (1409)	85%	12Dec20	25Jan21	0 71.1m	0 64.4m	1 6.56m	0 7.43m	1 3.88m
Northern Ireland				2020-12-13		3623	3623			
Scotland				2020-12-13		18858	18858			
Wales				2020-12-13		8181	8181			
Canada		CAN		2020-12-14		297	297			
Northern Ireland				2020-12-14						1778
Scotland				2020-12-14						5821
Wales				2020-12-14						2198
World		OWID_WRL		2020-12-14		297	297			
Canada		CAN		2020-12-15		1163	1163		866	866
China		CHN		2020-12-15		1500000	1500000			
Northern Ireland				2020-12-15						1778
Russia		RUS		2020-12-15		28500	28500			

Worldometer Dataset

	**				· Car	lasce
▲ Country	F	# Total Cases	₽	# New Cases	=	# Total Deaths
List of countries a by covid-19	ffected	Cumulative numbe confirmed cases ti		New confirmed case	es	Cumulative number deaths till date

= er of

New Deaths =New death cases each day

Total Recovered Cumulative number of recovered cases till date

Active Cases

212

USA

Spain

Italy France

Germany China

UK

Iran

Turkey

unique values

503k

5,02,876

1,58,273

1,47,577

1,24,869

1,22,171

81,907

73,758

68,192

47,029

1

33,752

5,051

3,951

7,120

3,936

8,681

1,972

4,747

42

33.8k

18,747

16,081

18,849

13,197

2,736

3,336

8,958

4,232

1,006

18.8k

634

570

987

129

1

980

122

98

2.04k 2,035

27,314 55,668

30,455

24,932

53,913

77,455

35,465

2,423

344

77.5k

0 457k 4,56,815 86,524

98,273

86,740

65,522

1,116

64,456

28,495

43,600

Python Packages Used for Analysis

1. Pandas

- Provides easy-to-use data structures & tools to analyze & filter through data
- Key functionality offered: data visualization, cleaning, accessibility, etc.

2. NumPy

- Enables numerical computing within Python
- Key functionality: mathematical operations, sorting, selecting, basic linear algebra, basic statistical operations, random simulation, etc.

3. Matplotlib

Provides tools for creating static, animated, & interactive visualizations in Python

4. Scikit-Learn

- Provides simple & efficient tools for predictive data analysis
- Built on NumPy, SciPy, & matplotlib

- Imports pandas package for data analysis
- **Reads** the .csv file
- **Displays** dataframe to user
- Converts date column into format Python can recognize using .to_datetime() function
- Makes it easier to get most recent vaccination data for each country

import pandas as pd vaccineData = pd.read_csv('country_vaccinations.csv') vaccineData country iso code date total vaccinations people vaccinated people fully vaccinated daily vaccinations raw daily vaccinations ALB 1/10/2021 0 0 0 O Albania 0 0 0 ALB 1/11/2021 64 Albania 2 Albania ALB 1/12/2021 128 128 0 0 64 188 0 60 3 Albania ALB 1/13/2021 188 63 4 Albania ALB 1/14/2021 266 266 0 78 66 vaccineData['date'] = pd.to_datetime(vaccineData['date']) vaccineData

accı	лерата					
	country	iso_code	date	total_vaccinations	people_vaccinated	people_fully_vaccinated
0	Albania	ALB	2021- 01-10	0	0	0
1	Albania	ALB	2021- 01-11	0	0	0
2	Albania	ALB	2021- 01-12	128	128	0
3	Albania	ALB	2021- 01-13	188	188	C
4	Albania	ALB	2021- 01-14	266	266	0
3203	Wales	NaN	2021- 02-10	687892	684097	3795

- Creates dataframe (groupedData) with only most recent data for each country
 - o .groupby() function: groups data by country
 - o .idxmax() function: gets most recent date from the data
 - o .loc() function: gets 1 row of data with most recent date for each country
- Uses groupedData to create final data frame to project future COVID-19 vaccinations
 - Puts data used in calculations into **lists** (people fully vaccinated, daily vaccinations, population by country)
 - Determines how many people in each country are left to be vaccinated by using a **for loop** to subtract people vaccinated from total population of each country; appends to list

	<pre>roupedData =vaccineData.loc[vaccineData.groupby(["country"])["date"].idxmax()] roupedData</pre>							
	country	iso_code	date	total_vaccinations	people_vaccinated	people_fully_vaccinated	daily_vaccinations_raw	
30	Albania	ALB	2021- 02-09	1127	689	438	0	
32	Algeria	DZA	2021- 01-30	30	0	0	30	
49	Andorra	AND	2021- 02-10	1291	1291	0	0	
59	Anguilla	AIA	2021- 02-13	1341	1341	0	0	
108	Argentina	ARG	2021- 02-15	609791	372181	237610	186	

```
finalData = groupedData[['country','date','people_fully_vaccinated','daily_vaccinations','population']].copy()

peopleVacc= finalData['people_fully_vaccinated'].tolist()
dailyVacc = finalData['daily_vaccinations'].tolist()

pop = finalData['population'].tolist()

leftToVacc=[]
for i in range(len(pop)):
    leftToVacc.append((pop[i]-peopleVacc[i]))
leftToVacc.
[2877032.0,
43926079.0,
77278.0,
32956300.0,
44999274.0,
```

- Calculates # of days until each country reaches 80% vaccination (herd immunity):
 - Calculates 80% of population left to vaccinate in each country, appends to list
 - Loops through list & calculates # of days it would take for 80% of the population to be vaccinated, appends to new list
 - Checks to see if the country has started daily vaccinations to avoid errors from dividing by zero

221183.0, 3207.0,

 Similar calculation to determine # of days until each country reaches 100% vaccination

```
davsTo80PercentVac=[]
pop80Percent=[]
for i in range(len(pop)):
    pop80Percent.append(round(((leftToVacc[i])*.8),0))
for i in range(len(pop80Percent)):
    if dailyVacc[i]==0.0:
        daysTo80PercentVac.append(0.0)
    else:
        daysTo80PercentVac.append(round((pop80Percent[i]/dailyVacc[i]),0))
[28069.0.
 1171362.0.
 2208.0,
 176947.0.
 2566.0.
davsTillFullVacc=[]
for i in range(len(pop)):
    if dailvVacc[i]==0.0:
        daysTillFullVacc.append(0.0)
    else:
         daysTillFullVacc.append(round((leftToVacc[i]/dailyVacc[i]),0))
daysTillFullVacc
[35086.0,
 1464203.0,
 2760.0.
```

- Calculates # of weeks until each country reaches 100% vaccination &
 80% vaccination
 - Loops through lists
 - Divides # of days left by 7
 - Adds results to new list
- Adds created lists to dataframe so all data & projections are in 1 place
- Saves final dataframe as a .csv file for easier data analysis & visualization

```
weeksTillFullVacc=[]
weeksTill80PercentVacc=[]
for i in range(len(pop)):
    weeksTillFullVacc.append(round(((daysTillFullVacc[i])/7),2))
    weeksTill80PercentVacc.append(round(((daysTo80PercentVac[i])/7),2))
```

```
finalData["people left to vaccinate"]=leftToVacc
finalData["days till full vaccination"]= daysTillFullVacc
finalData["weeks till full vacccination"]= weeksTillFullVacc
finalData["Days till 80 percent vaccination"]= daysTo80PercentVac
finalData["weeks till 80 percent Vaccination"]= weeksTill80PercentVacc
finalData
```

	country	date	people_fully_vaccinated	daily_vaccinations	population	people left to vaccinate	days till full vaccination	Days till 80 percent vaccination	weeks till full vacccination	weeks till 80 percent Vaccination
30	Albania	2021- 02-09	438	82	2877470.0	2877032.0	35086.0	28069.0	5012.29	4009.86
32	Algeria	2021- 01-30	0	30	43926079.0	43926079.0	1464203.0	1171362.0	209171.86	167337.43
49	Andorra	2021- 02-10	0	28	77278.0	77278.0	2760.0	2208.0	394.29	315.43
59	Anguilla	2021- 02-13	0	149	32956300.0	32956300.0	221183.0	176947.0	31597.57	25278.14
108	Argentina	2021- 02-15	237610	14030	45236884.0	44999274.0	3207.0	2566.0	458.14	366.57
						•••				
2980	Turks and Caicos Islands	2021- 02-08	0	222	38768.0	38768.0	175.0	140.0	25.00	20.00
3022	United Arab Emirates	2021- 02-15	0	96169	43705858.0	43705858.0	454.0	364.0	64.86	52.00
3086	United Kingdom	2021- 02-14	539630	433313	67922029.0	67382399.0	156.0	124.0	22.29	17.71
3143	United States	2021- 02-14	14077440	1667631	331198130.0	317120690.0	190.0	152.0	27.14	21.71

90 rows x 10 columns

finalData.to_csv("GroupProjectData.csv")

- To determine the overall % of population that could be vaccinated per country based on the total vaccines available
 - Opens country vaccination & world cases/population datasets obtained from Kaggle in Jupyter Notebook
 - Creates dataframes for each file, renames columns, merges 2 files into 1 dataset, & fills in null values with 0
 - Converts file into a dictionary of dictionaries called "my_dict" so each column & data value are recorded as keys & values in a list with other data from that country

```
import pandas as pd

vaccination_file = pd.read_csv('country_vaccinations.csv')

vaccination_file
```

```
frame1 = pd.DataFrame(vaccination file)
 frame2 = pd.DataFrame(worldmeter)
 frame1.columns
Index(['Country', 'Sum of total vaccinations',
       'Sum of people vaccinated per hundred'],
      dtype='object')
frame2.columns
Index(['country', 'Population', 'Sum of TotalCases', 'Sum of TotalDeaths',
        'Sum of ActiveCases'1.
      dtype='object')
 frame2 = frame2.rename(columns = {'country' : 'Country'})
 frame2.columns
Index(['Country', ' Population', 'Sum of TotalCases', 'Sum of TotalDeaths',
        Sum of ActiveCases'],
      dtype='object')
 dataset = pd.merge(left = frame2, right = frame1, left on='Country', right on='Country')
```

```
my_dict = dataset.to_dict('records')
my_dict
```

- To determine the overall % of population that could be vaccinated per country based on total vaccines available
 - Uses **for loop** to determine data type for each key in dictionary using **if statements** that match keys with respective fields
 - Calculates % of population vaccinated:
 - ((total vaccines / 2) / population for each country) X 100
 - Values added to dictionary called "percentage_country" with respective keys (countries)
 - Uses dataframe that displays output as a table with countries & corresponding percentages
 - Sorts % values in descending order by using .sort_values() function
 Uses .head() & .tail() functions to display top & bottom 10 results

```
percentage country = {}
for i in my dict:
   population = 0
   country = ''
   total_vaccines = 0
   percentage = 0
   for k, v in i.items():
        if(k == 'Country'):
           country = v
   for k, v in i.items():
       if(k == ' Population'):
           population = int(v)
   for k, v in i.items():
       if(k == 'Sum of total_vaccinations'):
           total vaccines = int(v)
       percentage = ((total vaccines/2)/population)*100
   percentage country[country] = percentage
```

```
Result = df.sort_values(by= 'Percentage', ascending = False)

Result.head(10)
```

| Percentage | 966.455653 | Gibraltar | 659.348471 | Seychelles | 299.679396 | Bahrain | 190.548226 | Isle of Man | 108.378782 | Malta | 97.631905 | Denmark | 84.043614 | Slovenia | 67.792554 | Italy | 59.111290 | Romania | 57.504259 |

```
Result.tail(10)
```


- Serves a similar function as the 1st & 2nd algorithms, but utilizes different Python packages
 - Imports packages to be utilized
 - NumPy, pandas, matplotlib, & scikit-learn
 - Reads dataset into Jupyter Notebook

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
from sklearn import datasets

vaccination=pd.read_csv('country_vaccinations.csv')
```

- Uses the pivot_table() function to create a pivot table, determine countries with the top 5
 vaccination rates
 - Outputs a graph & a list of the top 5 countries

The Countries with the Top 5 Vaccination Rates Are: people fully vaccinated per hundred

```
    country

    Israel
    30.17

    Gibraltar
    29.84

    Seychelles
    14.42

    Cayman Islands
    9.69

    United States
    4.21
```

```
top5=vaccination.pivot_table(index=['country'],values=['people_fully_vaccinated_per_hundred'],aggfunc='max').nlargest(5,'people_fully_vaccinated_per_hundred')
top5.plot(kind='bar')
plt.show()

new_list=top5
print('The Countries with the Top 5 Vaccination Rates Are:')
print(new_list)
```

• Attempted to calculate when the U.S. would reach herd immunity of 70% by using daily vaccination updates and

linear regressions functions from Scikit-learn

```
timeseries df=vaccination[['country', 'date', 'people fully vaccinated per hundred']]
timeseries=timeseries df[timeseries df['country']=='United States'].copy()
#Convert date string to timedate format
series = timeseries
from datetime import datetime
con=series['date']
series['date']=pd.to datetime(series['date'])
series.set index('date',inplace=True)
#Copy new dataset to a separate file
series.to csv('top5countries.csv')
#step3 - graph the US to see if there appears to be a pattern
vacdata=pd.read csv('top5countries.csv')
vacdatamodel=vacdata['people fully vaccinated per hundred']
```

```
plt.plot(vacdatamodel)
#model ts.plot(x='date',y='people fully vaccinated per hundred')
#plt.title('Number of fully vacinted per hundred per day')
#plt.xlabel('Date')
#plt.ylabel('%Fully Vaccinated')
plt.show()
#step4 - Perform linear regression with Scikit Learn
#separate training and testing data
X=vacdatamodel.values
v=vacdatamodel.values
from sklearn.model selection import train test split
X train, X test, y train, y test=train test split(X, y, test size=.3, random state=0)
vacdatamodel=LinearRegression()
vacdatamodel.fit(X train,y train)
vacdatamodel.score(X test,y test)
print(vacdatamodel.intercept )
print(vacdatamodel.coef )
y pred=vacdatamodel.predict(X test)
```


Country

Back to report

PEOPLE LEFT TO VACCINATE, BY COUNTRY

People Left To Vaccinate, by Country **United States** 317M People Left To Vaccinate Country Peru Poland Portugal Qatar Romania Russia Saint Helena Saudi Arabia Scotland Serbia Seychelles Singapore Slovakia Slovenia Spain Sri Lanka Sweden Switzerland Turkey Turks and Caicos Islands **United Arab Emirates** United Kingdom United States

Country	Weeks Until 80% Vaccination ▼	Weeks Until 100% Vacccination
Algeria	167,337.43	209,171.86
Egypt	53,498.57	66,873.14
Anguilla	25,278.14	31,597.57
Jersey	16,401.14	20,501.43
Guernsey	8,139.14	10,174.00
Pakistan	7,429.71	9,287.29
Saudi Arabia	7,365.43	9,206.71
Mauritius	4,845.71	6,057.14
Ecuador	4,351.86	5,439.86
Albania	4,009.86	5,012.29
Mexico	3,238.29	4,047.86
Iran	3,203.71	4,004.71
Bolivia	1,617.29	2,021.57
Cambodia	1,282.43	1,603.00
Sri Lanka	621.57	777.00
India	448.86	561.14
Kuwait	436.00	545.00
Wales	424.86	531.00
Myanmar	422.29	527.86
Indonesia	368.86	461.00
Argentina	366.57	458.14
Azerbaijan	356.86	446.14
Andorra	315.43	394.29
Latvia	310.29	387.86
Bulgaria	298.57	373.14
Peru	283.86	354.86
Qatar	237.57	296.86
Total	317,115.15	396,394.75

167.34K

Max # of weeks until 80% vaccination (based on current vaccination rates per country)

209.17K

Max # of weeks until 100% vacccination

1M

Max # of days until 80% vaccination

1M

Max # of days until 100% vaccination

Country

Max # of Days Until 80% Vaccination and Max # of Days Until 100% Vaccination by Country

Country

Country	Weeks Until 80% Vaccination	Weeks Until 100% Vacccination
England	2.00	2.57
Gibraltar	2.71	3.43
Seychelles	4.00	5.00
Israel	6.29	7.86
Cayman Islands	11.86	14.86
Chile	11.86	14.86
Bermuda	14.71	18.43
Maldives	15.00	18.71
Serbia	16.71	20.86
Northern Ireland	17.29	21.57
United Kingdom	17.71	22.29
Turks and Caicos Islands	20.00	25.00
United States	21.71	27.14
Morocco	25.57	32.00
Isle of Man	26.29	32.86
Bahrain	27.43	34.29
Malta	27.43	34.29
Monaco	35.57	44.57
Cyprus	39.86	49.86
Faeroe Islands	40.29	50.43
Turkey	44.14	55.29
United Arab Emirates	52.00	64.86
Norway	53.71	67.00
Romania	57.86	72.29
Greece	59.71	74.71
Portugal	60.14	75.14
Switzerland	61.29	76.57
Slovakia	61.71	77.14
Poland	63.86	79.86
France	66.57	83.29

People left to vaccinate and People fully vaccinated by Country

Country	Weeks Until 80% Vaccination	Weeks Until 100% Vacccination
Greenland	0.00	0.00
Panama	0.00	0.00
Saint Helena	0.00	0.00
England	2.00	2.57
Gibraltar	2.71	3.43
Seychelles	4.00	5.00
Israel	6.29	7.86
Cayman Islands	11.86	14.86
Chile	11.86	14.86
Bermuda	14.71	18.43
Maldives	15.00	18.71
Serbia	16.71	20.86
Northern Ireland	17.29	21.57
United Kingdom	17.71	22.29
Turks and Caicos Islands	20.00	25.00
United States	21.71	27.14
Morocco	25.57	32.00
Isle of Man	26.29	32.86
Bahrain	27.43	34.29
Malta	27.43	34.29
Monaco	35.57	44.57
Cyprus	39.86	49.86
Faeroe Islands	40.29	50.43
Turkey	44.14	55.29
United Arab Emirates	52.00	64.86
Norway	53.71	67.00
Romania	57.86	72.29
Total	317,115.15	396,394.75

people left to vaccinate by country

country	population	people left to vaccinate
Greenland	56780	56780
Panama	4321282	4321282
Saint Helena	51273732	51273732
Liechtenstein	38139	38139
Andorra	77278	77278
Algeria	43926079	43926079
Mauritius	1271985	1271985
Albania	2877470	2877032
Monaco	39270	39270
Faeroe Islands	48882	47661
Anguilla	32956300	32956300
Egypt	102516525	102516525
Turks and Caicos Islands	38768	38768
Total	5728910235	5700186810

people_fully_vaccinated by country

daily_vaccinations by country

6bn

6bn population people left to vaccinate

29M people_fully_vaccinated **7M**

daily_vaccinations

Albania

First country

Major Results & Findings: Part 1

- 10 countries that will take the longest to distribute vaccines to their populations (based on rates of vaccination when data was collected)
 - Numerous countries could take hundreds, even thousands of weeks to reach herd immunity
 - Includes countries that have not begun vaccination distribution or whose complete data was not available within the dataset

country	weeks till 80 percent Vaccination	weeks till full vacccination
Algeria	167,337.43	209,171.86
Egypt	53,498.57	66,873.14
Anguilla	25,278.14	31,597.57
Jersey	16,401.14	20,501.43
Guernsey	8,139.14	10,174.00
Pakistan	7,429.71	9,287.29
Saudi Arabia	7,365.43	9,206.71
Mauritius	4,845.71	6,057.14
Ecuador	4,351.86	5,439.86
Albania	4,009.86	5,012.29

- 10 countries that will lead the world in herd immunity
 - Some countries with zero weeks left are likely to have not started their vaccination process.
 - Others likely in final weeks of vaccine distribution before reaching herd immunity

country	weeks till 80 percent Vaccination	weeks till full vacccination
Greenland	0.00	0.00
Panama	0.00	0.00
Saint Helena	0.00	0.00
England	2.00	2.57
Gibraltar	2.71	3.43
Seychelles	4.00	5.00
Israel	6.29	7.86
Cayman Islands	11.86	14.86
Chile	11.86	14.86
Bermuda	14.71	18.43

Major Results & Findings: Part 2

- Countries leading vaccine availability (< 100%):
 - o Malta: 97.63%
 - o Denmark 84.04%
 - Slovenia 67.79%
- Countries with 0% total vaccination availability:
 - Cambodia, Iran, Egypt, & Algeria
- Countries on the lower end of the spectrum (with at least .01% vaccination availability):
 - o Pakistan, Mauritius, & Ecuador

- Multiple countries with percentages > 100%
 - This means the amount of vaccines available outnumbered theses countries' populations
 - Israel: 966.46% (this means that the number of vaccines available would allow the nation to vaccinate its entire population 9 times)
 - o Gibraltar: 659.35%
 - o Seychelles: 299.68%
 - o Bahrain: 190.55%
 - o Isle of Man: 108.38%.

Major Results & Findings: Part 3

- Countries with the most people fully vaccinated per hundred
 - o **Israel:** 30.17% of its population is fully vaccinated
 - Gibraltar: 29.84%
 - Seychelles: 14.42%
 - o Cayman Islands: 9.69%
 - United States: 4.21%

Major Results & Findings: Overall

- Interesting how our algorithms all came together to form an analysis of worldwide vaccination distribution
 - o Countries like Israel, Gibraltar, & Seychelles
 - have more vaccines than their total populations
 - yet still have less than half of their populations fully vaccinated
 - Those nations with the largest populations will also require a longer time until recovery due to lack of vaccinations available

Limitations

• Some vaccines require multiple doses

 Important to consider that countries may have only distributed the 1st dose to those that have been vaccinated so far, contributing to smaller population of fully vaccinated individuals

• Dataset only contains data from December 12th, 2020 through January 25th, 2021

- Data may not realistically align w/ current vaccine distribution rates
- Rates of vaccine distribution may have shifted in some countries since the data was collected
- Some countries' data is not included in the dataset, so our analyses might be slightly skewed as a result

Questions?

References

- Buggaveeti, P. (2021, January 27). COVID VACCINATION DATASET 2021. Retrieved from https://www.kaggle.com/padmajabuggaveeti/covid-vaccination-dataset-2021#
- D'Souza, G., & Dowdy, D. (2020, April 10). What is Herd Immunity and How Can We Achieve It With COVID-19?

 Retrieved from https://www.jhsph.edu/covid-19/articles/achieving-herd-immunity-with-covid19.html
- Panchal, V. (2020, April 11). Covid-19 Worldometer Dataset. Retrieved from https://www.kaggle.com/pvaibhav1995/covid19-worldometer-dataset?select=WorldometerDataset.csv
- Matplotlib: Visualization with Python. (2021, January 28). Retrieved March 17, 2021, from https://matplotlib.org
- NumPy user guide. (2021, January 31). Retrieved March 17, 2021, from https://numpy.org/doc/stable/user/index.html
- Pandas documentation. (2021, March 2). Retrieved March 17, 2021, from https://pandas.pydata.org/docs/index.html
- Scikit-learn. (n.d.). Retrieved March 17, 2021, from https://scikit-learn.org/stable/