Понятие множества в анализе, подобно понятию npsmoù в геометрии, определяется не конструктивно, а «как объект, удовлетворяющий аксиомам» (этот список аксиом теории множеств мы пока не будем уточнять). Множество целиком определяется элементами, из которых оно состоит. Если элемент a принадлежит множеству A, пишут $a \in A$. Множество иногда записывают, перечисляя в фигурных скобках через запятую его элементы, например, $\{2,5\}$ — множество, состоящее из элементов 2 и 5. Для многих множеств есть стандартные обозначения, например, \mathbb{N} — множество натуральных чисел, \mathbb{Z} — множество целых чисел, \mathbb{Q} — множество рациональных чисел, \mathbb{R} — множество действительных чисел (числовая прямая). Множество можно задавать каким-нибудь свойством, которому должны удовлетворять его элементы, например, $\{x \in \mathbb{Z} \mid x$ делится на $2\}$ — множество чётных чисел. Количество элементов в множестве A обычно обозначается как |A| или #A.

Определение 1. Множества A и B называются paвными, если они состоят из одних и тех же элементов. Обозначение: A=B. Множество A называется nodмножеством множества B, если каждый элемент множества A содержится в множестве B. Обозначение: $A\subseteq B$. Существует обозначение $A\subsetneq B$ — является подмножеством, но не совпадает. Часто пишут просто « $A\subset B$ » имея в виду « $A\subseteq B$ ».

Задача 1. Для каждых двух из следующих множеств укажите, является ли одно из них подмножеством другого: $\{1,2\}, \{\{1,2\},3\}, \{3,2,1\}, \{\{2,1\}\}.$

Задача 2. Докажите для произвольных множеств A, B, C: **a)** $A \subseteq A$; **6)** если $A \subseteq B$ и $B \subseteq C$, то $A \subseteq C$; **в)** A = B тогда и только тогда, когда $A \subseteq B$ и $B \subseteq A$.

Определение 2. Множество, не содержащее ни одного элемента, называется nycmum. Обозначение: \varnothing .

Задача 3. Совпадают ли множество целых чисел, которые делятся и на 5 и на 7, но не делятся на 35, и множество прямоугольных треугольников с длиной гипотенузы 6 см и площадью 10 см 2 ?

Задача 4. Сколько всего различных подмножеств в множестве из n элементов?

Определение 3. Объединением множеств A и B называют множество, состоящее из всех таких x, которые принадлежат хотя бы одному из множеств A или B (т. е. $x \in A$ или $x \in B$). Обозначение: $A \cup B$.

Пересечением множеств A и B называют множество, состоящее из всех таких x, что $x \in A$ и $x \in B$. Обозначение: $A \cap B$.

Pазностью множеств A и B называют множество, состоящее из всех таких x, что $x \in A$ и $x \notin B$. Обозначение: $A \setminus B$.

Изображать объединение, пересечение и разность удобно с помощью $\kappa pyros$ Эйлера (см. рис.)

Задача 5. Верно ли, что **a)** $A \cup B = B \cup A$; **6)** $A \cap B = B \cap A$; **в)** $A \setminus B = B \setminus A$?

Задача 6. Пусть A — множество всех нечётных чисел, B — множество всех чисел, делящихся на 3 ($A = \{2k+1 \mid k \in \mathbb{Z}\}$), $B = \{3k \mid k \in \mathbb{Z}\}$). Найдите $A \cap B$ и $B \setminus A$.

Задача 7. Верно ли, что для любых множеств A, B и C

- а) $A \setminus (A \setminus B) = A \cap B$; б) $A \cap B = A$ тогда и только тогда, когда $A \subseteq B$;
- в) $A \setminus B = C$ тогда и только тогда, когда $A = B \cup C$?

Задача 8. Докажите тождества для любых множеств A, B и C:

- **a)** $A \cap (B \cap C) = (A \cap B) \cap C$; **6)** $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.
- Задача 9. а) В НИИ работают 67 человек. Из них 47 знают английский язык, 35 немецкий, и 23 оба языка. Сколько человек в НИИ не знают ни английского, ни немецкого языков? б) Пусть кроме этого польский знают 20 человек, английский и польский 12, немецкий и польский 11, все три языка 5. Сколько человек не знают ни одного из этих языков? в) (Формула включений и исключений) Решите задачу в общем случае: имеется m языков L_1, L_2, \ldots, L_m , и для каждого набора языков $L_{i_1}, L_{i_2}, \ldots, L_{i_k}$ известно, что ровно $N_{i_1 i_2 \ldots i_k}$ человек знают все языки из этого набора.

B

 $A \cup \widehat{B}$

Определение 4. Декартовым произведением множеств A и B называется множество всевозможных упорядоченных пар (a,b), где $a \in A, b \in B$. Обозначение: $A \times B = \{(a,b) \mid a \in A, b \in B\}$. Множество всех подмножеств множества A обозначается 2^A .

Задача 10. Пусть #A = m, #B = n. Найдите: a) $\#(A \times B)$; б) $\#2^A$.

Задача 11. Верно ли что **a)** $2^{A \times B} = 2^A \times 2^B$; **б)** $2^{A \cap B} = 2^A \cap 2^B$?

1	2 a	2 6	2 B	3	4	5 a	5 6	5 в	6	7 a	7 б	7 в	8 a	8 6	9 a	9 6	9 B	10 a	10 б	11 a	11 б