AS.2

```
Q1:
```

```
1:
     # normalize variables with min-max and z-score and decimal normalization method
    #min-max
    mydata<- read.table('Sediment.csv',header = T,sep = ',')
    min_max<-function(x){
    y<-(x-min(x,na.rm = T))/(max(x,na.rm = T)-min(x,na.rm = T))
    return(y)
    }
    mydata_morm1<- as.data.frame(lapply(mydata,min_max))
    View(mydata_morm1)
    #z-score
    z_score<-function(x){</pre>
    y<- (x-mean(x,na.rm=T))/sd(x,na.rm=T)
    return(y)
    mydata_zscore<- as.data.frame(lapply(mydata,z_score))
    #decimal
    roundup<- function(x) 10^ceiling(log10(x))</pre>
    decimal<- function(x){</pre>
    y<- x/roundup(max(x))
    return(y)
    }
    mydata_decimal<- as.data.frame(lapply(mydata,decimal))
    norm<-summary(mydata_morm1)</pre>
    write.table(norm,file = 'summary of norm.txt')
    deci<-summary(mydata_decimal)
    write.table(deci,file = 'summary of decimal.txt')
    zso<-summary(mydata_zscore)</pre>
    write.table(zso,file = 'summary of z_score.txt')
```

Tab.1 summary of min-max normalization

	theta	theta_p	nu	uf	uf_p	ws	d50	cb	bnch
Min	0	0	0	0	0	0	0	0	0
1 st Qu.	0.08538	0.08635	0.1328	0.1764	0.1719	0.1465	0.1371	0.02202	0.04433
Median	0.13654	0.18951	0.1577	0.2747	0.3419	0.2514	0.3053	0.10870	0.15973
Mean	0.17744	0.29229	0.1917	0.3024	0.3913	0.3087	0.3163	0.18855	0.30247
3 rd .Qu	0.21391	0.45907	0.2116	0.4178	0.6009	0.4144	0.3998	0.31789	0.53107
Max.	1	1	1	1	1	1	1	1	1

Tab.2 summary of z-score normalization

	theta	theta_p	nu	uf	uf_p	ws	d50	cb	bnch
Min	-1.2082	-1.1678	-1.4461	-1.7212	-1.6061	-1.5794	-1.3175	-0.9210	-1.0161
1 st Qu.	-0.6268	-0.8228	-0.4443	-0.7173	-0.9006	-0.8297	-0.7465	-0.8135	-0.8672
							3		

Median	-0.2785	-0.4106	-0.2563	-0.1575	-0.2025	-0.2933	-0.0460	-0.3901	-0.4795
							2		
Mean	0	0	0	0	0	0	0	0	0
3 rd .Qu	0.2484	0.6663	0.1504	0.6567	0.8603	0.5407	0.34742	0.6318	0.7680
Max.	5.6011	2.8275	6.0988	3.9704	2.4987	3.5364	2.84719	3.9639	2.3433

Tab.3 summary of decimal normalization

	theta	theta_p	nu	uf	uf_p	ws	d50	cb	bnch
Min	0.00614	0.00463	0.07339	0.02907	0.01802	0.1451	0.01710	0.00014	0.00000
									3
1 st Qu.	0.05751	0.02133	0.10312	0.05886	0.03545	0.2481	0.02900	0.01210	0.01418
									6
Median	0.08829	0.04128	0.10870	0.07547	0.05270	0.3218	0.04360	0.05918	0.05110
									9
Mean	0.11289	0.06116	0.11631	0.08014	0.05770	0.3621	0.04456	0.10255	0.09678
									2
3 rd .Qu	0.13484	0.09341	0.12077	0.09963	0.07896	0.4364	0.05180	0.17280	0.16992
									2
Max.	0.60779	0.19802	0.29729	0.19796	0.11944	0.8480	0.10390	0.54329	0.31995
									9

2.

library(ggplot2)

data_com<-as.data.frame(c(mydata_decimal,mydata_morm1))
ggplot(data_com,aes(theta,theta.1))+geom_point()+ggtitle('scatter plot')</pre>

Fig.1

```
library(reshape2)
long_mydata<-melt(mydata_morm1)
str(long_mydata)
ggplot(long_mydata,aes(x=variable,y=value))+geom_boxplot()+ggtitle('all variables of nomalization')</pre>
```

all variables of normalization

Fig.2

```
##list all outliers
outliers<- function(x){
    y<- boxplot.stats(x)$out
    return(y)
}</pre>
```

out<-lapply(mydata_morm1,outliers)</pre>

Tab.3 outliers of all variables

х	theta	nu	uf	ws	D50	cb
1	0.428737638	0.394185719	0.809935460	0.863138426	0.955069124	0.866040688
1	161722	326297	950915	518708	423963	5759
2	0.631962104	0.377615600	1	0.854460093	0.817972350	0.762312436
	213413	030371	1	896714	230415	711774
3	0.491731072	0.473016610	0.792113209	0.941812491	0.862903225	0.827782380
3	882905	316351	781515	108266	806452	557857
4	0.410388099	0.672215349	0.878323168	0.950917626	0.908986175	1
4	393335	022095	92652	973965	115207	1
5	0.446605169	0.908708021		1	1	
٥	118258	992256		1	1	

	0.587750353		0.919354838	
6	195379	0	709677	
	0.430333250	0.751046240	0.989631336	
7	228538	012148	40553	
	0.461015540	012140	0.852534562	
8	596692	1	211982	
	0.539034322	0.473016610	0.944700460	
9	280396	316351	829493	
1	0.411352115	0.614108273	0.884792626	
0	0.411332113	0.014108273	728111	
1	0.420094739	0.917015413	0.862903225	
1	466467	337383	806452	
1	0.618681957	0.514508903	0.933179723	
2	948974	64766	502304	
1	0.407014044	0.377615600	0.915898617	
3	71038	030371	511521	
1	0.476323443	0.634876751	0.849078341	
4	862711	36335	013825	
1	0.577395495	0.414954197	0.908986175	
5	720103	689116	115207	
1	0.480744618	0.008298458	0.884792626	
6	964514	66626174	728111	
1	0.441668744	0.008298458	0.955069124	
7	286545	66626174	423963	
1	0.454932269	0.004149229	0.862903225	
8	591956	33313087	806452	
1	0.892595362	0.614108273	0.862903225	
9	752431	000532	806452	
2	0.427973074	0.692939163	0.884792626	
0	046372	990585	728111	
2	0.444195130	0.485477697	0.828341013	
1	059004	334042	824885	
2	0.562137455		0.979262672	
2	331173		81106	
2	0.445026178		0.862903225	
3	010471		806452	
2	0.535593783		0.881336405	
4	761323		529954	
2	1.000000000			
5	000000			
2	0.541677054			
6	76606			
	No outliers in th			

No outliers in theta_p.

ggplot(mydata_morm1,aes(theta,theta_p))+geom_point()+geom_smooth(method 'loess')+ggtitle('theta versus theta_p in nomalization')+xlab('theta')+ylab('theta_p')

Fig.3

```
Q2:
```

```
1.
mydata2<-read.csv('Global monthly mean temperature anomaly.csv')
attach(mydata2)
GCAG_data<-mydata2[Source=='GCAG',]
GIS_data<-mydata2[Source=='GISTEMP',]
library(zoo)
GCAG_data_new<-GCAG_data[order(GCAG_data$Date),]
GCAG_data_Jan<-
subset(GCAG data new,format(as.yearmon(GCAG data new$Date),"%b")=='1 月')
GIS_data_Jan<-subset(GIS_data,format(as.yearmon(GIS_data$Date),"%b")=='1 月')
new_data<-rbind(GIS_data_Jan,GCAG_data_Jan)</pre>
ggplot(new_data,aes(x=as.yearmon(new_data$Date),y=Mean))+
  scale_x_yearmon(breaks=waiver(),labels=date_format("%b %Y"))+
  geom_line(aes(color=Source,group=Source))+xlab('Date')+ylab('Mean')+ggtitle('Time series
of different source in Jan')
```


##detrend

of different source in Jan after detrending')

```
GCAG_detrend<- as.list(diff(GCAG_data_Jan$Mean),colnames('Mean'))

GIS_detrend<- as.list(diff(GIS_data_Jan$Mean),colnames('Mean'))

detrend<- rbind(GCAG_detrend,GIS_detrend)

GIS_data_Jan$Mean[2:137]<- GIS_detrend

GIS_new<-GIS_data_Jan[2:137,]

GCAG_data_Jan$Mean[2:137]<-GCAG_detrend

GCAG_new<-GCAG_data_Jan[2:137,]

last_data<-rbind(GCAG_new,GIS_new)

last_data$Mean<- as.numeric(last_data$Mean)

ggplot(last_data,aes(x=as.yearmon(last_data$Date),y=Mean))+

scale_x_yearmon(breaks=waiver(),labels=date_format("%b %Y"))+

geom_line(aes(color=Source,group=Source))+xlab('Date')+ylab('Mean')+ggtitle('Time_series)
```

Time series of different source in Jan after detrending

Fig.5

```
2.
   ### delete 2016
  Year_1<-format(as.yearmon(GCAG_data_new$Date),'%Y')
  Year_1<- as.numeric(Year_1)
  GCAG_data_new$Date<-Year_1
  GCAG data new<-GCAG data new[GCAG data new$Date<2016,]
  #calculate anual temperature.
  GCAG_data$Date<-as.yearmon(GCAG_data$Date)
  GIS_data$Date<-as.yearmon(GIS_data$Date)
  mean_anual_GCAG<-vector('numeric',137)
  mean_anual_GIS<-vector('numeric',137)
    for(i in 1:137){
      GCAG s<-GCAG data[year(GCAG data$Date)==1879+i,]
      GIS_s<-GIS_data[year(GIS_data$Date)==1879+i,]
    mean_anual_GCAG[i]<-mean(GCAG_s$Mean)
    mean_anual_GIS[i]<-mean(GIS_s$Mean)
    }
  mean anual GCAG<-as.data.frame(mean anual GCAG,col.names='mean')
  mean_anual_GIS<-as.data.frame(mean_anual_GIS,col.names='mean')
  GIS<-rep('GIS',length(mean_anual_GCAG$mean))
  GCAG<-rep('GCAG',length(mean_anual_GCAG$mean))
  colnames(mean_anual_GCAG)<-c('mean','Source')
  colnames(mean_anual_GIS)<-c('mean','Source')
  mean_anual_GCAG$Source<-GCAG
  mean_anual_GIS$Source<-GIS
```

```
#plot time series in one figure
library(reshape2)
library(ggplot2)
mean_GCAG_GIS<-rbind(mean_anual_GIS,mean_anual_GCAG)
new_data$Mean<-mean_GCAG_GIS$mean
ggplot(new_data,aes(x=Date,y=Mean))+geom_line(aes(color=Source,group=Source))+
    scale_x_yearmon(breaks=waiver(),labels=date_format("%Y"))+ggtitle('Time_series_of_anual_mean')+</pre>
```


mean_anual_GCAG_detrend<- as.data.frame(diff(mean_anual_GCAG\$mean_anual_GCAG\$))
mean_anual_GIS_detrend<-as.data.frame(diff(mean_anual_GIS\$mean_anual_GIS\$))
mean_anual_GCAG_detrend\$Date<-GCAG_data_Jan\$Date[2:137]
mean_anual_GCAG_detrend\$Source<-GCAG_data_Jan\$Source[2:137]
colnames(mean_anual_GCAG_detrend)<-c('mean','date','source')
mean_anual_GIS_detrend\$Date<-GCAG_data_Jan\$Date[2:137]
mean_anual_GIS_detrend\$Source<-GIS_data\$Source[1:136]
colnames(mean_anual_GIS_detrend)<- c('mean','date','source')
mean_anual_all<-rbind(mean_anual_GIS_detrend,mean_anual_GCAG_detrend)
ggplot(mean_anual_all,aes(x=date,y=mean))+geom_line(aes(color=source,group=source))+
scale_x_yearmon(breaks=waiver())+ggtitle('Time series of anual mean after detrending')

Fig.7