Solving linear system

Francesco Sanfilippo

Istituto Nazionale di Fisica Nucleare - Sezione Roma Tre

27 - 31 March 2017

Introduction of the problem

- **1** Direct solution of linear system Ax = b
- Quadratic functional minimization

Iterative solver

- Advantages
- 2 Comparison of efficiency

Checking the solution

- Limits, stability and efficiency of various algorithms
- 2 Convergence criterions

Accelerating the convergence

- Mixed precision algorithms
- Choosing a starting guess
- Preconditioning the problem

Solving similar problems at the same time

- **1** Shifted problems $A + \sigma Id$
- ② Deflating the problem

Review of Parallelisation

- Distributed memory
- Shared memory
- Vectors

Gather/scatter approaches

 \rightarrow 1+2 different examples of gathering of non-local data

More specifically on parallelisation

- Communication/computation overlap
- Multithreading
- Vectorization

An example of a physical application

 $\to \mathsf{Lattice}\;\mathsf{QCD}$

Clear deals, long friendship

Please

- Pay attention during lectures
- Work alone
- Ask questions!!!!!!

The assignment

Write a parallel conjugate gradient solver for the Laplace problem

The assignment

Write a parallel conjugate gradient solver for the Laplace problem

Day 1: implement direct and iterative solvers

Day 2: add features and implement the Laplace problem

Day 3-4: parallelize

The assignment

Write a parallel conjugate gradient solver for the Laplace problem

Day 1: implement direct and iterative solvers

Day 2: add features and implement the Laplace problem

Day 3-4: parallelize

Remarks

- Write a single report per day
- Write in the language you prefer, I suggest C without too many frills
- Well commented code will be appreciated
- Specify how to compile/run your code (makefile, script, command...)
- Optional parts count as a bonus

Let's start...

Discretisation of Differential equations

$$A(i,j) \times (j) = b(i) \rightarrow \mathbf{A}_{ij} \times_j = b_i$$

Example:
$$\nabla^2 \phi = \psi \quad \rightarrow \quad \underbrace{\left[\delta_{ij} - \frac{\delta_{i,j+\hat{1}} + \delta_{i,j-\hat{1}}}{2} \right]}_{\chi} \underbrace{\phi_j}_{\chi} = \underbrace{\psi_i}_{b}$$

Discretisation of Differential equations

$$A(i,j) \times (j) = b(i) \rightarrow \mathbf{A}_{ij} \times_j = b_i$$

Example: $\nabla^2 \phi = \psi \quad \rightarrow \quad \underbrace{\left[\delta_{ij} - \frac{\delta_{i,j+\hat{1}} + \delta_{i,j-\hat{1}}}{2}\right]}_{} \underbrace{\phi_j} = \underbrace{\psi}_{}$

Optimization

- Minimization of a functional: find x such that the functional F(x) is minimum.
- ullet The problem of minimizing F is strictly connected with solving linear system

Discretisation of Differential equations

$$A(i,j) \times (j) = b(i) \rightarrow \mathbf{A}_{ij} \times_j = b_i$$

Example:

$$\nabla^2 \phi = \psi \quad \rightarrow \quad \underbrace{\left[\delta_{ij} - \frac{\delta_{i,j+\hat{1}} + \delta_{i,j-\hat{1}}}{2}\right]}_{\mathbf{A}_{ii}} \underbrace{\phi_j}_{\times} = \underbrace{\psi_i}_{b}$$

Optimization

- Minimization of a functional: find x such that the functional F(x) is minimum.
- \bullet The problem of minimizing F is strictly connected with solving linear system

Focus: how to solve

$$\mathbf{A} x = b$$

Discretisation of Differential equations

$$A(i,j) \times (j) = b(i) \rightarrow \mathbf{A}_{ij} \times_j = b_i$$

Example: $\nabla^2 \phi = \psi \quad \rightarrow \quad \underbrace{\left[\delta_{ij} - \frac{\delta_{i,j+\hat{1}} + \delta_{i,j-\hat{1}}}{2}\right]}_{x} \underbrace{\phi_j}_{x} = \underbrace{\psi_i}_{b}$

Optimization

- Minimization of a functional: find x such that the functional F(x) is minimum.
- \bullet The problem of minimizing F is strictly connected with solving linear system

Focus: how to solve

$$\mathbf{A} x = b$$

Big problem

- We aim at solving BIG linear systems
- Look at way to speed-up solution splitting the problem across multiple computers

Direct solution of linear system LU decomposition

Triangular decomposition $A = L \cdot U$

Decompose A in the product of a lower triangular (\boldsymbol{L}) and an upper triangular matrix (\boldsymbol{U})

For example:
$$\underbrace{\begin{pmatrix} 3 & 2 & 7 \\ 5 & 4 & 2 \\ 5 & 1 & 7 \end{pmatrix}}_{A} = \underbrace{\begin{pmatrix} 1 \\ 5/3 & 1 \\ 5/3 & -7/2 & 1 \end{pmatrix}}_{L} \cdot \underbrace{\begin{pmatrix} 3 & 2 & 7 \\ 2/3 & -29/3 \\ -77/2 \end{pmatrix}}_{U}$$

Direct solution of linear system LU decomposition

Triangular decomposition $A = L \cdot U$

Decompose A in the product of a lower triangular (\boldsymbol{L}) and an upper triangular matrix (\boldsymbol{U})

For example:
$$\underbrace{\begin{pmatrix} 3 & 2 & 7 \\ 5 & 4 & 2 \\ 5 & 1 & 7 \end{pmatrix}}_{A} = \underbrace{\begin{pmatrix} 1 \\ 5/3 & 1 \\ 5/3 & -7/2 & 1 \end{pmatrix}}_{L} \cdot \underbrace{\begin{pmatrix} 3 & 2 & 7 \\ 2/3 & -29/3 \\ -77/2 \end{pmatrix}}_{U}$$

Solution

• Calling y = Ux rewrite and solve the system: Ly = b

In our example:
$$\underbrace{\begin{pmatrix} 1 \\ 5/3 & 1 \\ 5/3 & -7/2 & 1 \end{pmatrix}}_{L} \underbrace{\begin{pmatrix} y_0 \\ y_1 \\ y_2 \end{pmatrix}}_{y} = \underbrace{\begin{pmatrix} 3 \\ 2 \\ -1 \end{pmatrix}}_{b} \rightarrow \begin{cases} y_0 = 3 \\ y_1 = -3 \\ y_2 = 9/2 \end{cases}$$

• Repeat for: $\mathbf{U}x = y$ with the y just computed and obtain finally \mathbf{x}

Direct solution of linear system LU decomposition

Triangular decomposition $A = L \cdot U$

Decompose A in the product of a lower triangular (\boldsymbol{L}) and an upper triangular matrix (\boldsymbol{U})

For example:
$$\underbrace{\begin{pmatrix} 3 & 2 & 7 \\ 5 & 4 & 2 \\ 5 & 1 & 7 \end{pmatrix}}_{A} = \underbrace{\begin{pmatrix} 1 \\ 5/3 & 1 \\ 5/3 & -7/2 & 1 \end{pmatrix}}_{L} \cdot \underbrace{\begin{pmatrix} 3 & 2 & 7 \\ 2/3 & -29/3 \\ -77/2 \end{pmatrix}}_{U}$$

Solution

• Calling y = Ux rewrite and solve the system: Ly = b

In our example:
$$\underbrace{\begin{pmatrix} 1 & & \\ 5/3 & 1 & \\ 5/3 & -7/2 & 1 \end{pmatrix}}_{L} \underbrace{\begin{pmatrix} y_0 \\ y_1 \\ y_2 \end{pmatrix}}_{y} = \underbrace{\begin{pmatrix} 3 \\ 2 \\ -1 \end{pmatrix}}_{b} \to \begin{cases} y_0 & = 3 \\ y_1 & = -3 \\ y_2 & = 9/2 \end{cases}$$

• Repeat for: $\mathbf{U}x = y$ with the y just computed and obtain finally \mathbf{x}

Central point: How to perform the *LU* decomposition?

First step

Consider the matrix \boldsymbol{A} and its element $a_{i,j}$, at first iteration one <u>build</u> the helping matrix:

$$m{L_1} = \left(egin{array}{ccc} 1 & & & \ -a_{21}/a_{11} & 1 & \ -a_{31}/a_{11} & 0 & 1 \end{array}
ight)$$

and rewrite:

$$A = L_1^{-1} L_1 A = L_1^{-1} B$$

First step

Consider the matrix \mathbf{A} and its element $a_{i,j}$, at first iteration one <u>build</u> the helping matrix:

$$L_1 = \left(egin{array}{ccc} 1 & & & \ -a_{21}/a_{11} & 1 & \ -a_{31}/a_{11} & 0 & 1 \end{array}
ight)$$

and rewrite:

$$A = L_1^{-1} L_1 A = L_1^{-1} B$$

In our example

$$\mathbf{A} = \begin{pmatrix} 3 & 2 & 7 \\ 5 & 4 & 2 \\ 5 & 1 & 7 \end{pmatrix}$$
, $\mathbf{L_1} = \begin{pmatrix} 1 & 0 & 0 \\ -5/3 & 1 & 0 \\ -5/3 & 0 & 1 \end{pmatrix}$ so that

$$\mathbf{A} = \underbrace{\begin{pmatrix} 1 & 0 & 0 \\ 5/3 & 1 & 0 \\ 5/3 & 0 & 1 \end{pmatrix}}_{\mathbf{L}_{1}^{-1}} \cdot \underbrace{\begin{pmatrix} 3 & 2 & 7 \\ 0 & 2/3 & -29/3 \\ 0 & -7/3 & -14/3 \end{pmatrix}}_{\mathbf{A}_{1}}$$

First step

Consider the matrix \mathbf{A} and its element $a_{i,j}$, at first iteration one <u>build</u> the helping matrix:

$$\mathbf{L_1} = \left(\begin{array}{ccc} 1 & & \\ -a_{21}/a_{11} & 1 & \\ -a_{31}/a_{11} & 0 & 1 \end{array}\right)$$

and rewrite:

$$A = L_1^{-1} L_1 A = L_1^{-1} B$$

In our example

$$\mathbf{A} = \begin{pmatrix} 3 & 2 & 7 \\ 5 & 4 & 2 \\ 5 & 1 & 7 \end{pmatrix}$$
, $\mathbf{L_1} = \begin{pmatrix} 1 & 0 & 0 \\ -5/3 & 1 & 0 \\ -5/3 & 0 & 1 \end{pmatrix}$ so that

$$\mathbf{A} = \underbrace{\begin{pmatrix} 1 & 0 & 0 \\ 5/3 & 1 & 0 \\ 5/3 & 0 & 1 \end{pmatrix}}_{\mathbf{L}_{1}^{-1}} \cdot \underbrace{\begin{pmatrix} 3 & 2 & 7 \\ 0 & 2/3 & -29/3 \\ 0 & -7/3 & -14/3 \end{pmatrix}}_{\mathbf{A}_{1}}$$

This way we eliminated <u>all</u> elements of **A** below a_{11} , now consider how to progress

Generic step n

Starting from the matrix: $\mathbf{A}_{\mathbf{n}} = \begin{pmatrix} \mathbb{U}_{n \times n} & \mathbb{R}_{n \times (N-n)} \\ \mathbb{O}_{(N-n) \times n} & \mathbb{S}_{(N-n) \times (N-n)} \end{pmatrix}$ we define

$$\boldsymbol{L_{n+1}} = \begin{pmatrix} \mathbb{I}_{n \times n} \\ 0 & 1 \\ 0_{(N-n-1) \times n} & -a_{[n+1:N],n}^{n}/a_{n,n}^{n} & \mathbb{I}_{(N-n) \times (N-n)} \end{pmatrix}$$

and rewrite:
$$A = L_1^{-1} \dots L_{n+1}^{-1} L_{n+1} \dots L_1 A = L_1^{-1} \dots L_{n+1}^{-1} A_{n+1}$$

Generic step n

Starting from the matrix: $\mathbf{A_n} = \begin{pmatrix} \mathbb{U}_{n \times n} & \mathbb{R}_{n \times (N-n)} \\ \mathbf{0}_{(N-n) \times n} & \mathbb{S}_{(N-n) \times (N-n)} \end{pmatrix}$ we define

$$\boldsymbol{L_{n+1}} = \begin{pmatrix} \mathbb{I}_{n \times n} \\ 0 & 1 \\ 0_{(N-n-1) \times n} & -a_{[n+1:N],n}^{n}/a_{n,n}^{n} & \mathbb{I}_{(N-n) \times (N-n)} \end{pmatrix}$$

and rewrite: $A = L_1^{-1} \dots L_{n+1}^{-1} L_{n+1} \dots L_1 A = L_1^{-1} \dots L_{n+1}^{-1} A_{n+1}$

In our example

$$\mathbf{A} = \underbrace{\begin{pmatrix} 1 & 0 & 0 \\ 5/3 & 1 & 0 \\ 5/3 & 0 & 1 \end{pmatrix}}_{\mathbf{L}_{1}^{-1}} \cdot \underbrace{\begin{pmatrix} 1 \\ 0 & 1 \\ 0 & -7/2 & 1 \end{pmatrix}}_{\mathbf{L}_{2}^{-1}} \cdot \underbrace{\begin{pmatrix} 1 \\ 0 & 1 \\ 0 & 7/2 & 1 \end{pmatrix}}_{\mathbf{L}_{2}} \cdot \underbrace{\begin{pmatrix} 3 & 2 & 7 \\ 0 & 2/3 & -29/3 \\ 0 & 0 & -14/3 \end{pmatrix}}_{\mathbf{B}}$$

$$= \underbrace{\begin{pmatrix} 1 \\ 5/3 & 1 \\ 5/3 & -7/2 & 1 \end{pmatrix}}_{\mathbf{S}/3} \cdot \underbrace{\begin{pmatrix} 3 & 2 & 7 \\ 2/3 & -29/3 \\ -77/2 \end{pmatrix}}_{\mathbf{C}/3}$$

A generic $N \times N$ matrix decomposes as $\mathbf{A} = \mathbf{L}_1^{-1} \dots \mathbf{L}_N^{-1} \mathbf{L}_N \dots \mathbf{L}_1 \mathbf{A}$

Doolittle algorithm for $N \times \overline{N}$ matrix

A generic $N \times N$ matrix decomposes as $\mathbf{A} = \mathbf{L}_1^{-1} \dots \mathbf{L}_N^{-1} \mathbf{L}_N \dots \mathbf{L}_1 \mathbf{A}$

Proof

• By construction, L_nX is upper Hessenberg (has the first n column empty below diagonal), so that

$$U=L_N\ldots L_1A$$

is an upper-triangular matrix

• By construction, L_n^{-1} is lower-triangular, and the product of two lower-triangular matrix is triangular as well, so that

$$L=L_1^{-1}\dots L_N^{-1}$$

is lower triangular

A generic $N \times N$ matrix decomposes as $\mathbf{A} = \mathbf{L}_1^{-1} \dots \mathbf{L}_N^{-1} \mathbf{L}_N \dots \mathbf{L}_1 \mathbf{A}$

Proof

• By construction, L_nX is upper Hessenberg (has the first n column empty below diagonal), so that

$$U = L_N \dots L_1 A$$

is an upper-triangular matrix

• By construction, L_n^{-1} is lower-triangular, and the product of two lower-triangular matrix is triangular as well, so that $L = L_1^{-1} \dots L_N^{-1}$

is lower triangular

Special case: an element of the diagonal is zero

$$\mathbf{A} = \begin{pmatrix} 0 & 2 & 7 \\ 5 & 4 & 2 \\ 5 & 1 & 7 \end{pmatrix} \rightarrow \mathbf{P}\mathbf{A} = \begin{pmatrix} 5 & 4 & 2 \\ 0 & 2 & 7 \\ 5 & 1 & 7 \end{pmatrix}$$
 and solve $\mathbf{P}\mathbf{A}x = \mathbf{P}b$

$$\boldsymbol{P}$$
 is a permutation matrix $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$

Complication

- ullet Ignoring sub-dominant scaling: $cost \propto N^3$
- Computation cost increases fast with matrix size!

Complication

- Ignoring sub-dominant scaling: $cost \propto N^3$
- Computation cost increases fast with matrix size!

Full-solution oriented

- The whole factorization must be carried out to the end
- No simple way to obtain just an approximated solution

Complication

- Ignoring sub-dominant scaling: $cost \propto N^3$
- Computation cost increases fast with matrix size!

Full-solution oriented

- The whole factorization must be carried out to the end
- No simple way to obtain just an approximated solution

Storing: Even if the matrix \boldsymbol{A} is sparse, \boldsymbol{U} will not be \rightarrow potential memory problem

Complication

- Ignoring sub-dominant scaling: $cost \propto N^3$
- Computation cost increases fast with matrix size!

Full-solution oriented

- The whole factorization must be carried out to the end
- No simple way to obtain just an approximated solution

Storing: Even if the matrix ${m A}$ is sparse, ${m U}$ will not be o potential memory problem

Remarks on Parallelisation

• Can be parallelised splitting column of the matrix across different nodes

$$\begin{pmatrix}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34} \\
a_{41} & a_{42} & a_{43} & a_{44}
\end{pmatrix}$$

• However the workload is not fully balanced (more and more nodes sleeps toward the end)

Cayley-Hamilton theorem

Cayley-Hamilton theorem

Any function $f(\mathbf{A})$ of a $N \times N$ matrix \mathbf{A} is a linear combination of its first N powers

$$f(\mathbf{A}) = \sum_{i=0}^{N} c_i \mathbf{A}^i$$

Implication:

$$f(\mathbf{A})b = \sum_{i=0}^{N} c_i \mathbf{A}^i b$$

Cayley-Hamilton theorem

Cayley-Hamilton theorem

Any function $f(\mathbf{A})$ of a $N \times N$ matrix \mathbf{A} is a <u>linear combination</u> of its first N powers

$$f(\mathbf{A}) = \sum_{i=0}^{N} c_i \mathbf{A}^i$$

Implication:

$$f(\mathbf{A})b = \sum_{i=0}^{N} c_i \mathbf{A}^i b$$

Observation

Solving $\mathbf{A}x = b$ is equivalent to compute $x = \mathbf{A}^{-1}b$, indeed: $\mathbf{A}\mathbf{A}^{-1}b = b$

Cayley-Hamilton theorem

Cayley-Hamilton theorem

Any function $f(\mathbf{A})$ of a $N \times N$ matrix \mathbf{A} is a <u>linear combination</u> of its first N powers

$$f(\mathbf{A}) = \sum_{i=0}^{N} c_i \mathbf{A}^i$$

Implication:

$$f(\mathbf{A})b = \sum_{i=0}^{N} c_i \mathbf{A}^i b$$

Observation

Solving $\mathbf{A}x = b$ is equivalent to compute $x = \mathbf{A}^{-1}b$, indeed: $\mathbf{A}\mathbf{A}^{-1}b = b$

Idea

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

Advantages: If A is a sparse matrix, $A^{j}b$ can be computed quickly

Solving in the Krylov basis

Krylov space

• For an $N \times N$ matrix **A** and vector b, the Krylov space of size k is given by:

$$\mathcal{K}^k(\mathbf{A}, b) = \operatorname{span}\{b, \mathbf{A}b, \mathbf{A}^2b, \dots \mathbf{A}^{k-1}b\}$$

- The solution $x = \mathbf{A}^{-1}b$ is contained in $\mathcal{K}^{N+1}(\mathbf{A}, b)$
- For k < N+1 the space \mathcal{K}^k (\boldsymbol{A}, b) contains approximated solutions

Solving in the Krylov basis

Krylov space

• For an $N \times N$ matrix **A** and vector b, the Krylov space of size k is given by:

$$\mathcal{K}^k(\mathbf{A}, b) = \operatorname{span}\{b, \mathbf{A}b, \mathbf{A}^2b, \dots \mathbf{A}^{k-1}b\}$$

- The solution $x = \mathbf{A}^{-1}b$ is contained in $\mathcal{K}^{N+1}(\mathbf{A}, b)$
- For k < N+1 the space $\mathcal{K}^k(\mathbf{A}, b)$ contains approximated solutions

Building the solution in Krylov space of size k

- Build the Krylov space $\mathcal{K}^k(\mathbf{A}, b)$ by applying k times A to b
- In such space the "most accurate" solution x_k will be given by

$$\mathbf{x}_k = d_0 b + d_1 \mathbf{A} b + d_2 \mathbf{A} (\mathbf{A} b) + \dots + d_k \mathbf{A} (\mathbf{A}^{k-1} b)$$

for some particular set of d_i . When k = N + 1 we find the full solution.

Solving in the Krylov basis

Krylov space

• For an $N \times N$ matrix **A** and vector b, the Krylov space of size k is given by:

$$\mathcal{K}^k\left(\mathbf{A},\ b\right) = \operatorname{span}\{b,\ \mathbf{A}b,\ \mathbf{A}^2b,\dots\mathbf{A}^{k-1}b\}$$

- The solution $x = \mathbf{A}^{-1}b$ is contained in $\mathcal{K}^{N+1}(\mathbf{A}, b)$
- For k < N + 1 the space $\mathcal{K}^k(\boldsymbol{A}, b)$ contains approximated solutions

Building the solution in Krylov space of size k

- Build the Krylov space $\mathcal{K}^k(\mathbf{A}, b)$ by applying k times A to b
- In such space the "most accurate" solution x_k will be given by

$$x_k = d_0 b + d_1 \mathbf{A} b + d_2 \mathbf{A} (\mathbf{A} b) + \dots + d_k \mathbf{A} (\mathbf{A}^{k-1} b)$$

for some particular set of d_i . When k = N + 1 we find the full solution.

Problems

- What does "most accurate" means?
 - How do we find the coefficients d_i ?
 - Keeping in memory the whole basis $\{b, Ab, A^2b, \dots A^{k-1}b\}$ might be impossible

Iterative solver

Summarising

Having a possibility to find the best solution in the Krylov space $\mathcal{K}^k(\mathbf{A},b)$:

$$x_k = d_0b + d_1\mathbf{A}b + d_2\mathbf{A}(\mathbf{A}b) + \cdots + d_k\mathbf{A}(\mathbf{A}^{k-1}b)$$

is attractive, because involve only matrix multiplication $\boldsymbol{A}v$:

- quick operations if A is a sparse matrix
- easily parallelisable (we will see)
- $m{\bullet}$ $\mathcal{K}^{k+1} \in \mathcal{K}^k$ so we can extend/improve the approximated solution progressively

Iterative solver

Summarising

Having a possibility to find the best solution in the Krylov space $\mathcal{K}^k(\mathbf{A},b)$:

$$x_k = d_0b + d_1\mathbf{A}b + d_2\mathbf{A}(\mathbf{A}b) + \cdots + d_k\mathbf{A}(\mathbf{A}^{k-1}b)$$

is attractive, because involve only matrix multiplication $\mathbf{A}v$:

- quick operations if A is a sparse matrix
- easily parallelisable (we will see)
- $m{\bullet}$ $\mathcal{K}^{k+1} \in \mathcal{K}^k$ so we can extend/improve the approximated solution progressively

Drawbacks

- ullet Keeping in memory the Krylov space basis $\{b, {\it A}b, {\it A}^2b, \dots {\it A}^{k-1}b\}$ can be impossible
- Determining d coefficients looks as difficult as the original problem

Iterative solver

Summarising

Having a possibility to find the best solution in the Krylov space $\mathcal{K}^k(\mathbf{A},b)$:

$$x_k = d_0b + d_1\mathbf{A}b + d_2\mathbf{A}(\mathbf{A}b) + \cdots + d_k\mathbf{A}(\mathbf{A}^{k-1}b)$$

is attractive, because involve only matrix multiplication $\mathbf{A}v$:

- quick operations if A is a sparse matrix
- easily parallelisable (we will see)
- $m{\bullet}$ $\mathcal{K}^{k+1} \in \mathcal{K}^k$ so we can extend/improve the approximated solution progressively

Drawbacks

- Keeping in memory the Krylov space basis $\{b, Ab, A^2b, \dots A^{k-1}b\}$ can be impossible
- Determining d coefficients looks as difficult as the original problem

Iterative algorithms

We need to design an algorithm that finds the <u>best solution</u> in the space \mathcal{K}^{k+1} starting from the best solution of the space \mathcal{K}^k without the need to hold the whole basis of \mathcal{K}^k

Iterative solver

Summarising

Having a possibility to find the best solution in the Krylov space $\mathcal{K}^k(\mathbf{A},b)$:

$$\mathbf{x}_k = d_0 b + d_1 \mathbf{A} b + d_2 \mathbf{A} (\mathbf{A} b) + \dots + d_k \mathbf{A} (\mathbf{A}^{k-1} b)$$

is attractive, because involve only matrix multiplication $\mathbf{A}v$:

- quick operations if **A** is a sparse matrix
- easily parallelisable (we will see)
- $m{\bullet}$ $\mathcal{K}^{k+1} \in \mathcal{K}^k$ so we can extend/improve the approximated solution progressively

Drawbacks

- Keeping in memory the Krylov space basis $\{b, Ab, A^2b, \dots A^{k-1}b\}$ can be impossible
- Determining d coefficients looks as difficult as the original problem

Iterative algorithms

We need to design an algorithm that finds the <u>best solution</u> in the space \mathcal{K}^{k+1} starting from the best solution of the space \mathcal{K}^k without the need to hold the whole basis of \mathcal{K}^k

To do this, let's look at the problem from another point of view...

Functional minimization

Remark

IF A is hermitian and definite positive, the functional

$$F(x) = \frac{1}{2}x^T \mathbf{A}x - bx$$

is minimized when $\mathbf{A}x = b$

Functional minimization

Remark

IF A is hermitian and definite positive, the functional

$$F(x) = \frac{1}{2}x^T \mathbf{A}x - bx$$

is minimized when $\mathbf{A}x = b$

Check

• The gradient G of F is:

$$G(x) = \frac{\partial}{\partial x} F(x) = \mathbf{A}x - b$$

- Where G(x) = 0 the functional F is minimum (and not a maximum: A is hermitian and definite positive by assumption)
- Therefore

$$G(x) = 0 \rightarrow \mathbf{A}x = b$$

Functional minimization

Remark

IF A is hermitian and definite positive, the functional

$$F(x) = \frac{1}{2}x^T \mathbf{A}x - bx$$

is minimized when $\mathbf{A}x = b$

Check

• The gradient G of F is:

$$G(x) = \frac{\partial}{\partial x} F(x) = \mathbf{A}x - b$$

- Where G(x) = 0 the functional F is minimum (and not a maximum: \mathbf{A} is hermitian and definite positive by assumption)
- Therefore

$$G(x) = 0 \rightarrow Ax = b$$

Idea

Minimize F(x) to solve the linear system

Minimize F by following the negative of gradient:

- Define $r_k(x_k) = b \mathbf{A}x_k = -G(x_k)$ (this is the "residual" of the problem)
- Find the optimal step $x_{k+1} = x_k + \alpha_k r_k$ minimizing $F(x_{k+1})$

$$F(x_{k+1}) = \frac{1}{2} (x_k + \alpha_k r_k)^T \mathbf{A} (x_k + \alpha_k r_k) - b (x_k + \alpha_k r_k) =$$

$$= F(x_k) + -\alpha_k (r_k, r_k) + \frac{1}{2} \alpha_k^2 (r_k, \mathbf{A} r_k)$$

w.r.t α_k :

$$0 = \frac{\partial F(x_{k+1})}{\partial \alpha_k} = -(r_k, r_k) + \alpha_k (r_k, \mathbf{A} r_k) \rightarrow \alpha_k = \frac{(r_k, r_k)}{(r_k, \mathbf{A} r_k)}$$

Minimize F by following the negative of gradient:

- Define $r_k(x_k) = b \mathbf{A}x_k = -G(x_k)$ (this is the "residual" of the problem)
- Find the optimal step $x_{k+1} = x_k + \alpha_k r_k$ minimizing $F(x_{k+1})$

$$F(x_{k+1}) = \frac{1}{2} (x_k + \alpha_k r_k)^T \mathbf{A} (x_k + \alpha_k r_k) - b(x_k + \alpha_k r_k) =$$

$$= F(x_k) + -\alpha_k (r_k, r_k) + \frac{1}{2} \alpha_k^2 (r_k, \mathbf{A} r_k)$$

 $0 = \frac{\partial F(x_{k+1})}{\partial \alpha_k} = -(r_k, r_k) + \alpha_k(r_k, \mathbf{A}r_k) \rightarrow \alpha_k = \frac{(r_k, r_k)}{(r_k, \mathbf{A}r_k)}$

w.r.t α_k :

Remark: apparently two applications of
$$A$$
 per iteration are required, but

- At the first iteration $x_0 = 0$ so $r_0 = b$
 - At k iteration $r_{k+1} = b \mathbf{A}x_{k+1} = b \mathbf{A}(x_k + \alpha_k r_k) = r_k \alpha_k \mathbf{A}r_k$
 - But $p_k = \mathbf{A}r_k$ is what was used to compute α_k :

$$\alpha_k = \frac{(r_k, r_k)}{(r_k, p_k)}$$

at each step we can compute the residue for following step

Algorithm

- At first step $x_0 = 0$, $r_0 = b$
- At each step
 - compute $p_k = \mathbf{A} r_k$
 - compute $\alpha_k = \frac{(r_k, r_k)}{(r_k, p_k)}$
 - update $x: x_{k+1} = x_k + \alpha_k r_k$
 - update $r: r_{k+1} = r_k \alpha_k p_k$

Algorithm

- At first step $x_0 = 0$, $r_0 = b$
- At each step
 - compute $p_k = \mathbf{A} r_k$
 - compute $\alpha_k = \frac{(r_k, r_k)}{(r_k, p_k)}$
 - update $x: x_{k+1} = x_k + \alpha_k r_k$
 - update $r: r_{k+1} = r_k \alpha_k p_k$

Remarks

Little computation: At each step we only have to apply once the matrix

Low memory usage: Only last solution and last vector r must be stored

Algorithm

- At first step $x_0 = 0$, $r_0 = b$
- At each step
 - compute $p_k = \mathbf{A} r_k$
 - compute $\alpha_k = \frac{(r_k, r_k)}{(r_k, p_k)}$
 - update $x: x_{k+1} = x_k + \alpha_k r_k$
 - update $r: r_{k+1} = r_k \alpha_k p_k$

Remarks

Little computation: At each step we only have to apply once the matrix

Low memory usage: Only last solution and last vector r must be stored

When we do stop?

- We have no way to compute the true error $e_k = x x_k$ (would require to know x!)
- Minimum $\rightarrow |r| = 0$, r is named residue (image of e_k : $\mathbf{A}e_k = \mathbf{A}(x x_k) = r_k$)
- ullet Converging iteratively to the solution o choose a target residue $|r|_{targ}$
- Absolute residue of little meaning, better to choose: $\hat{r}_{targ} = |r|/|b|$
- Also δF_k can give information on the convergence (but we don't know the absolute minimum F(x)

Produced chain of solutions

- At step 0: $x_0 = 0$
- At step 1: $x_1 = \underbrace{\frac{(b,b)}{(b,\mathbf{A}b)}}_{d_0} b$

• At step 2:
$$x_2 = \underbrace{\left[\frac{(b,b)}{(b,\mathbf{A}b)} + \frac{(b,b)^2}{(b,\mathbf{A}b)^2}(b,\mathbf{A}^2b)\right]}_{d_0} b - \underbrace{\left[\frac{(b,b)^3}{(b,\mathbf{A}b)^3}(b,\mathbf{A}^2b)\right]}_{d_1} \mathbf{A}b$$

Produced chain of solutions

- At step 0: $x_0 = 0$
- At step 1: $x_1 = \underbrace{\frac{(b,b)}{(b,\mathbf{A}b)}}_{d_0} b$
- At step 2: $x_2 = \underbrace{\left[\frac{(b,b)}{(b,\mathbf{A}b)} + \frac{(b,b)^2}{(b,\mathbf{A}b)^2}(b,\mathbf{A}^2b)\right]}_{d_0} b \underbrace{\left[\frac{(b,b)^3}{(b,\mathbf{A}b)^3}(b,\mathbf{A}^2b)\right]}_{d_1} \mathbf{A}b$

Remarks

- Coefficients d gets more and more complicated at each iterations
- This is not a problem: at each iteration they are automatically updated

$$x_{k+1} = x_k + \alpha_k r_k, \quad r_{k+1} = r_k - \alpha_k p_k$$

Produced chain of solutions

- At step 0: $x_0 = 0$
- At step 1: $x_1 = \underbrace{\frac{(b,b)}{(b,\mathbf{A}b)}}_{} b$
 - At step 2: $x_2 = \underbrace{\left[\frac{(b,b)}{(b,\mathbf{A}b)} + \frac{(b,b)^2}{(b,\mathbf{A}b)^2}(b,\mathbf{A}^2b)\right]}_{d_0} b \underbrace{\left[\frac{(b,b)^3}{(b,\mathbf{A}b)^3}(b,\mathbf{A}^2b)\right]}_{d_1} \mathbf{A}b$

Remarks

- Coefficients d gets more and more complicated at each iterations
- This is not a problem: at each iteration they are automatically updated

$$x_{k+1} = x_k + \alpha_k r_k, \quad r_{k+1} = r_k - \alpha_k p_k$$

Is this the best we can do?

• We have not proved that the solution at iteration k we minimized the functional, that is it's not clear that

$$F(x_k) < \min[F(x)] \forall x \in \mathcal{K}^k$$

• Indeed it turns out not to be the case at all!!!

Graphical representation

- The quadratic form $F(v) = \frac{1}{2}v^T A v bv$ is a paraboloid in an N dimension space
- Let's look at minimization in a 2D example

Graphical representation

- The quadratic form $F(v) = \frac{1}{2}v^T A v bv$ is a paraboloid in an N dimension space
- Let's look at minimization in a 2D example

Example

$$A = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right)$$

$$b = \left(\begin{array}{c} 0 \\ 0 \end{array}\right)$$

$$x_0 = -\left(\begin{array}{c}\sqrt{2}\\\sqrt{2}\end{array}\right)$$

Graphical representation

- The quadratic form $F(v) = \frac{1}{2}v^T Av bv$ is a paraboloid in an N dimension space
- Let's look at minimization in a 2D example

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
$$b = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$x_0 = -\left(\begin{array}{c}\sqrt{2}\\\sqrt{2}\end{array}\right)$$

In this case A's eigenvalues are all equals, convergence is very fast

Graphical representation

- The quadratic form $F(v) = \frac{1}{2}v^T A v bv$ is a paraboloid in an N dimension space
- Let's look at minimization in a 2D example

Graphical representation

- The quadratic form $F(v) = \frac{1}{2}v^T Av bv$ is a paraboloid in an N dimension space
- Let's look at minimization in a 2D example

Another Example

$$A = \begin{pmatrix} 0.5 & 0 \\ 0 & 1.5 \end{pmatrix}$$
$$b = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
$$x_0 = -\begin{pmatrix} \sqrt{2} \\ \sqrt{2} \end{pmatrix}$$

In this case A's eigenvalues are not the same, convergence is slow!

Problem

- As the contours of F looks less ellipsoidal, the gradient of F points further and further away from the true minimum
- Minimization is forced to proceed through <u>orthogonal</u> zig-zag steps
- ullet In typical problem the eigenvalues of $oldsymbol{A}$ will be scattered over several order of magnitude
- The problem is more and more severe as the dimension of the matrix increases
- Immediate convergence if we chose initial guess such that $r_0 \parallel e_0$, but this would need to know x in advance

Problem

- As the contours of F looks less ellipsoidal, the gradient of F points further and further away from the <u>true minimum</u>
- Minimization is forced to proceed through orthogonal zig-zag steps
- \bullet In typical problem the eigenvalues of $\textbf{\textit{A}}$ will be scattered over several order of magnitude
- The problem is more and more severe as the dimension of the matrix increases
- Immediate convergence if we chose initial guess such that $r_0 \parallel e_0$, but this would need to know x in advance

Comments

- ullet We forced to move along the direction of the gradient and to minimize F
- Not necessarily this is the best choice

Problem

- As the contours of F looks less ellipsoidal, the gradient of F points further and further away from the true minimum
- Minimization is forced to proceed through orthogonal zig-zag steps
- ullet In typical problem the eigenvalues of $oldsymbol{\emph{A}}$ will be scattered over several order of magnitude
- The problem is more and more severe as the dimension of the matrix increases
- Immediate convergence if we chose initial guess such that $r_0 \parallel e_0$, but this would need to know x in advance

Comments

- ullet We forced to move along the direction of the gradient and to minimize F
- Not necessarily this is the best choice

Can we to better staying inside the Krylov space K^{k} ?

Yes: We can impose to arrive to the solution in N + 1 steps, by allowing to make use of last iteration to improve the step

How to arrive to the solution in N+1 steps $p_{0...}p_N$

- decompose $x = \sum_{j=0}^{N} \alpha_j p_j$ where p_j are independent vectors and α_j scalars
- this way $x_k = x_{k-1} + \alpha_k p_k$

How to arrive to the solution in N+1 steps $p_{0...}p_N$

- decompose $x = \sum_{j=0}^{N} \alpha_j p_j$ where p_j are independent vectors and α_j scalars
- this way $x_k = x_{k-1} + \alpha_k p_k$

How to compute p_k ?

• we can build it in term of residue and of previous step p_{k-1} :

$$p_k = r_k + \beta_k p_{k-1}$$

• if we impose $(p_i, \mathbf{A}p_j) = 0 \quad \forall j \neq k$ (conjugation), and choose $p_0 = b$:

$$\beta_k = \frac{(r_k, r_k)}{(r_{k-1}, r_{k-1})}$$

How to arrive to the solution in N + 1 steps $p_{0...}p_N$

- decompose $x = \sum_{j=0}^{N} \alpha_j p_j$ where p_j are independent vectors and α_j scalars
- this way $x_k = x_{k-1} + \alpha_k p_k$

How to compute p_k ?

• we can build it in term of residue and of previous step p_{k-1} :

$$p_k = r_k + \beta_k p_{k-1}$$

• if we impose $(p_i, \mathbf{A}p_j) = 0 \quad \forall j \neq k$ (conjugation), and choose $p_0 = b$:

$$\beta_k = \frac{(r_k, r_k)}{(r_{k-1}, r_{k-1})}$$

How to compute α_j ?

- by minimizing F along p_k : $\alpha_j = \frac{(r_{k-1}, r_{k-1})}{(p_i, Ap_i)}$
- *r* update is achieved as before:

$$r_{k+1} = r_k - \alpha_k p_k$$

Why is it better?

- At step k we are building a base for \mathcal{K}^k
- By construction the method converges in at most N iterations
- It can be proved that this way we minimize F on the k-size Krylov space \mathcal{K}^k :
 - at every step k we just have to optimize F in the new direction p_k
 - we never have to go back optimizing past direction again

Convergence to $|r|_{targ}=10^{-3}$ with a 140 imes140 matrix

The functional F approach its (unknown) minimum monotonically

Convergence to $|r|_{targ}=10^{-3}$ with a 140 imes140 matrix

Conjugate gradient - convergence rate

Conjugate gradient - convergence rate

