

Formal Verification of **Quantum Cryptography**

(Overview of our project)

Dominique Unruh University of Tartu

Why verify security?

 Crypto protocols – ubiquitous, and potentially high cost of failure

 Bugs "want" to be exploited (attacker intentionally tries to exploit)

Conclusion:Security proofs!

The trouble with security proofs

In theory:

Once a protocol is proven secure, it is secure

• In practice:

- Implementation is broken
- Proof is wrong

Computer-aided verification to the rescue!

Example: Proof in the cryptographic model

 $f:D \rightarrow D$ one-way permutation

$$g(x) := f(f(x))$$

Is g one-way permutation?

$$B(y) := f(A(y))$$

g is one-way permutation

Crypto proofs – more formally

"Sequences of Games"

(established approach for crypto proofs)

sequence of games?

Important insight

Crypto verification boils down to reasoning about programs

(E.g., Hoare logics and similar)

Relational Hoare Logic (RHL)

- Describes relation of two programs
- How do the variables of the two programs relate?

$$\{x = y\}$$
 $x := x + 1 \sim z := y \ \{x = z + 1\}$

 Used, e.g., in EasyCrypt for classical verification (using a probabilistic variant)

Our vision & research

Computer-aided verification

- of post-quantum crypto
- of quantum protocols

Design of interactive tools, automation where possible

Why not the same logics?

- Many proofs similar in class/quantum setting
- But: Some classical proofs use quantumunsound techniques:
 - Copying state
 - Fixing coins
- Generally, EasyCrypt is not sound for quantum!

qrhl-tool

Quantum Relational Hoare Logic (qRHL)

Where are the subspaces in the example???

Definition of qRHL

 Without "separable", cannot prove "frame rule" (for modular reasoning)

Quantum Equality

Equal rule:
$$\{X_1 \equiv X_2\} \ c \sim c \ \{X_1 \equiv X_2\}$$

- What does " $X \equiv Y$ " mean?
- Quantum variables have no individual content (due to entanglement)
- Need definition that is subspace

$$|\Psi\rangle$$
 satisfies $X_1\equiv X_2$ iff $|\Psi\rangle$ invariant under swapping $X_1\leftrightarrow X_2$

Case study: Fujisaki-Okamoto

- Assuming passively secure encryption
- Make actively secure encryption (KEM)

```
 \begin{array}{ll} \underline{\mathsf{Encaps}}(pk) & \underline{\mathsf{Decaps}}(sk,c) \\ \underline{\mathsf{01}} \ m \leftarrow_{\$} \mathcal{M} & \underline{\mathsf{05}} \ m' := \mathsf{Dec}(sk,c) \\ \underline{\mathsf{02}} \ c := \mathsf{Enc}(pk,m;\mathsf{G}(m)) & \underline{\mathsf{06}} \ \mathbf{if} \ m' = \bot \ \mathbf{or} \ \mathsf{Enc}(pk,m';\mathsf{G}(m')) \neq c \\ \underline{\mathsf{03}} \ K := \mathsf{H}(m) & \underline{\mathsf{07}} \ \mathbf{return} \ K := \mathsf{H}_{\mathsf{r}}(c) \\ \underline{\mathsf{04}} \ \mathbf{return} \ (K,c) & \underline{\mathsf{08}} \ \mathbf{else} \ \mathbf{return} \ K := \mathsf{H}(m') \\ \end{array}
```

 Many variants... This one proven by Hövelmanns, Kiltz, Schäge, Unruh

Challenges

- Verification conditions:
 - Products of operators on different subsystems
 - E.g., $CNOT_{XY} \cdot CNOT_{YZ}$
 - Very cumbersome to reason about formally
- Quantum equality:
 - $-X_1Y_1 \equiv X_2Y_2$ is not $X_1 \equiv X_2 \land Y_1 \equiv Y_2$
- No automation for common tasks
- Lots of copy&paste

Solutions

- Cumbersome reasoning about VCs:
 - "Register formalism"
 - Treats quantum registers as mathematical objects

- I believe this will make things work considerably better (in progress)
- Copy & paste
 - Module system for programs (not started)

Register formalism

- What is a quantum register?
- "Pointer" to a location in quantum memory
 - E.g., index, name
- Too narrow for convenience
 (If x, y are registers, xy is not.)
- Solution: Abstract notion of a register
 - -xy is register
 - -x.z is a register (z inside x)

How are registers defined?

- Register X from $\mathcal{H}_{reg} \to \mathcal{H}_{mem}$
- Described by a unital *-homomorphism $L(\mathcal{H}_{reg}) \to L(\mathcal{H}_{mem})$
 - (Extra subtleties for infinite-dimensional case)
- Given an operation U on \mathcal{H}_{reg} , X(U) is corresponding op. on \mathcal{H}_{mem}
- Everything else can be constructed from this

Isabelle/HOL backend

- Allows free reasoning about VCs (not constrained by the qRHL rules in the tool)
- Long-term goal:
 - Have everything fully formalized in Isabelle/HOL (no trusted axioms)

Isabelle/HOL formalization

- Complex bounded operator formalization
- Registers
 - Finite-dimensional
 - Infinite: WIP
 - Integration in qrhl-tool: WIP
- Tensor products
 - Finite-dimensional
 - Infinite: WIP
- qRHL semantics and logic: missing

Crypto proofs in qrhl-tool

- Small examples
- Fujisaki-Okamoto
- WIP: Compressed quantum oracles

- Want:
 - NIST candidates
 - Actual quantum protocols (QKD?)

Further missing things

- Automation / decision procedures?
- Module system?
- Connection to EasyCrypt?

Postdoc/phd at University of Tartu:

Verification of Quantum Cryptography

http://tinyurl.com/postdoc-vqc

European Research Council

Established by the European Commission

- Quantum logic?
- Thm proving?
- Q info-theo/crypto?

