목표

- : 사용자가 촬영한 밤하늘의 이미지에서 천체를 분류하는 프로그램 개발
- "망원경의 역할을 대신하는 휴대폰 카메라"
- -> 천체관측 도구를 사용하지 않아도 궁금한 천체의 정보를 손쉽게 확인 가능

배경

- : 최근 여러 매체에서 천문학 관련 내용을 다루거나 누리호 등의 발사로 인해 천문학에 대한 대중의 관심이 전보다 높아진 상황
- -> 국민 10명 중 8명은 "우주개발 예산 늘려야" 국가우주정책연구센터 대국민인식 조사

'우주가 우리나라의 미래 국가 발전에 얼마나 중요하다고 생각하느냐'는 질문에는 응답자의 89.6%가 중요하다고 답했다. 매우 중요하다고 답한 응답자도 45.6%로 절반에 근접했다. 국가 발전에 중요하다고 생각하는 가장 큰 이유로는 우주는 산업발전 및 국가경제에 기여(45.2%), 인류의 지식 확장에 기여(18.9%) 순으로 나타났다.

'국내 우주개발 예산이 늘어나야 한다고 생각하느냐'에 대한 질문에는 응답자의 81.9%가 늘어나야 한다고 생각했다. 크게 늘어나야 한다고 생각한다는 응답자가 35.1%, 조금 늘어나야 한다고 생각한다는 응답자가 46.8%였다.

https://www.dongascience.com/news.php?idx=51236&utm_source=chatgpt.com

-> "국민 과학기술 관심·이해도 지속 상승…누리호 성공 등 영향"

과학에 대한 이해도 역시 성인이 37.6점, 청소년이 52.4점으로 2020년 성인 36.5점, 청소년 44.6점보다 높았다. 관심도와 이해도 모두 2016년부터 올해까지 지속 상승하는 추세를 보였다.

과기정통부는 "누리호·다누리호 발사 성공 등 국내 대형 과학 이슈, 탄소중립·디지털 사회에 대한 관심, 과학 유튜버 등 뉴미디어를 통한 과학정보 확산 등의 영향인 것으로 보인다"고 분석했다.

조사항목	조사대상	2016	2018	2020	2022
과학에 대한	성인	37.6	39.2	46.9	47.5
관심도	청소년	45.6	47.2	57.1	68.9
과학에 대한	성인	27.3	34.4	36.5	37.6
이해도	청소년	33.6	41.3	44.6	52.4

https://www.yna.co.kr/view/AKR20221213027800017

그러나 당장 머리 위 밤하늘에서 천체를 구분하는 것은 쉽지 않다. 전문가가 아닌 사람들은 다양한 이유로 천체 관측이 어려움을 겪기 때문이다.

- 1. 장비 사용의 복잡성: 망원경이나 쌍안경 같은 관측 장비는 사용법이 복잡할 수 있음. 적절한 조정 및 초점 맞추기, 그리고 관측 대상의 위치 찾기가 어려워 관측을 포기하는 경우가 많음.
- 2. 관측 장소 선정: 도시 지역에서는 및 공해로 인해 별이나 천체를 잘 관측하기 어려운 경우가 많음. 적절한 관측 장소를 찾는 것이 어려울 수 있음.
- 3. 천체의 위치와 시간: 특정 천체는 계절이나 시간에 따라 잘 보이지 않기 때문에, 적절한 관측 시기를 아는 것이 중요함. 이를 위해 천문학적 지식이 필요함.
- 4. 날씨 조건: 구름, 안개, 대기 오염 등 날씨의 영향을 받기 때문에 예기치 못한 기상 변화로 인해 관측이 어려울 수 있음.
- 5. 기본적인 천문학 지식 부족: 별자리나 천체의 이름, 위치 등을 이해하는 데 필요한 기본적 인 지식이 부족할 경우, 관측 경험이 저하될 수 있음.
- 6. 정보의 접근성: 천체 관측 관련 정보나 자료가 부족하거나 찾기 어려울 수 있음. 특히 초보자에게는 유용한 자료가 필요함.

위와 같은 어려움은 천체 관측의 접근성을 낮추고, 많은 사람들이 관측을 시도하지 않게 만드는 요인으로 작용할 수 있다. 이에 위의 요소들을 해소 및 개선할 수 있는 프로그램&서비스를 만들고자 한다.

개요

목적: 사용자가 촬영한 밤하늘 이미지를 분석하여 천체를 인식하고 정보를 제공하여 천문 관측 데이터에 대한 일반 사용자의 접근성을 높임.

사용 대상(소비자층)

메인 타겟: 교육 및 연구 보조 자료가 필요한 학생(초등학생 이상)

- : 현재 시장에 출시된 교육용 천체 어플 혹은 학습 도구로 사용되는 어플의 종류가 많지 않을 뿐더러, 위에 초록색으로 표시한 부분을 보면 알 수 있듯이 데이터에서도 성인보다는 초등학생들이 훨씬 천체 관측에 큰 흥미를 보이는 것을 확인할 수 있습니다. 실제로 초등학생 시기부터 호기심이 급격하게 증폭되는 나이인만큼, 다양한 경진대회나 관련한 학원 및 교육 프로그램을 하는 경우가 많습니다. 이에 천체 관측은 큰 부분을 차지하고 있으며, 청소년 중에서도 초등학생이 가장 큰 관심을 보인다는 것을 확인할 수 있습니다.
- " 국청소년정책연구원의 조사에 따르면, 천문야외활동에 대한 학생들의 참여도가 높으며, 특히 초등학생들의 참여도가 모든 영역에서 높게 나타났습니다."

유지성,이지은;이진희. (2022). 천문야외 활동을 중심으로 살펴 본 초중고 학생들의 참여도 성차 분석. 학습자중심교과교육연구, 22(7), 101-117. 10.22251/jlcci.2022.22.7.101

: 천문학에 관심이 있는 대중 별자리나 천체의 위치를 알고자 하는 사용자

시장 분석(경쟁사 파악)

1. Stellarium Mobile

주요 기능:

- 스마트폰을 하늘에 비추면 현재 위치에서 보이는 별, 행성, 별자리 등을 실시간으로 식별함.
- 국제 우주 정거장(ISS) 등 인공위성의 위치 추적이 가능함.
- 다양한 하늘 문화에 따른 별자리 모양과 일러스트를 제공함.
- 일출, 일몰, 대기 굴절 등을 현실감 있게 시뮬레이션함.
- 야간 모드를 지원하여 어두운 환경에서도 눈의 피로를 줄여줌.

추가 기능 (Stellarium Plus 업그레이드 시):

- 16억 개 이상의 별 데이터를 포함한 방대한 천체 데이터베이스를 제공함.

망원경 제어 기능을 통해 NexStar, SynScan 등과 호환됨.

고해상도 이미지로 심원 천체 및 행성 표면을 상세히 관찰할 수 있음.

2. Star Walk 2

주요 기능:

- 스마트폰을 하늘로 향하면 현재 위치에서 보이는 별, 행성, 별자리 등을 실시간으로 표시함.
- 증강 현실(AR) 모드를 통해 실제 하늘과 디지털 정보를 겹쳐서 볼 수 있음.
- 별, 행성, 별자리 등에 대한 상세한 정보를 제공함.
- 시간 여행 기능을 통해 과거 또는 미래의 하늘 모습을 시뮬레이션할 수 있음.

3. Sky Map

주요 기능:

- 스마트폰을 하늘에 비추면 현재 위치에서 보이는 별, 행성, 별자리 등을 표시함.
- 사용자 친화적인 인터페이스로 손쉽게 별자리와 행성 등을 확인할 수 있음.
- 무료로 제공되며, 기본적인 천체 관측에 적합함.

4. Mobile Observatory

주요 기능:

- 하늘의 별지도를 제공하며, 약 9,000개의 별을 표시함.
- 태양계 행성들의 위치와 정보를 확인할 수 있음.
- 일출, 일몰 시간 등 천문 현상에 대한 정보를 제공함.
- 위성, 혜성 등의 위치와 정보를 추적할 수 있음.

[교육용]

1. Star Walk Kids: 아이들을 위한 천문학

설명: 어린이들을 대상으로 개발된 이 앱은 방대한 천문 데이터를 재미있고 교육적인 방식으로 제공함. 아이들이 별과 행성에 대한 지식을 쉽게 습득할 수 있도록 도움.

2. Star Walk 2 Ads+: 실시간으로 하늘의 별 찾기

설명: 성인과 어린이, 우주 아마추어 및 진지한 천체 관찰자가 스스로 천문학을 배우는 데 사용할 수 있는 별자리, 별 및 행성 찾기 앱. 교사들이 교육 도구로 활용하기에도 적합.

- => 현재 출시된 교육용 천체관측 어플과의 차별성
- * 위의 어플들은 모두 가상현실 속에서 별자리를 확인할 수 있게 하거나 실제 사용자가 보고 있는 하늘과 무관한 별자리 소개 어플임.

다만, 해당 어플은 실제 하늘 사진을 찍어 내가 실제로 바라보고 있는 위치의 천체 정보를 확 인할 수 있도록 합니다.

기존 프로그램의 문제

: 기존 프로그램인 Stellarium, Star Walk 등은 실시간 천체 정보를 제공하나 사용자의 상황에 맞는 정보를 제공하는 것이 상대적으로 어려움. (사용자의 현재 위치, 시선 등을 판단해야함.)

1. 정확성의 제한

- 위치 및 시간 동기화 문제: GPS 신호와 스마트폰의 시간 설정이 정확하지 않으면, 어플리케이션이 제공하는 별자리 및 천체 위치가 실제와 다를 수 있음.
- 대기 상태 미반영: 구름, 미세먼지, 광공해 등 환경적 요인을 반영하지 못하는 경우가 많아 관측 가능한 천체와 어플에서 표시되는 천체가 일치하지 않을 수 있음.
- 천문 데이터 업데이트 지연: 천문 데이터가 자주 갱신되지 않는 일부 앱은 혜성, 소행성, 인공위성 등의 최신 위치 정보를 반영하지 못할 수 있음.

2. 사용자 경험의 문제

- 과도한 광고: 일부 무료 앱은 광고가 많아 사용 경험을 저하시킴.
- 복잡한 인터페이스: 초보 사용자에게 직관적이지 않은 UI는 어플리케이션 사용을 어렵게 만들 수 있음.

번역의 부정확성: 다국어 지원이 잘못된 경우 천문학 용어가 부정확하게 번역되어 혼란을 줄수 있음.

3. 기술적 한계

- 증강현실(AR) 기능의 정확도: AR 기술을 사용하는 앱의 경우, 자이로스코프 및 가속도계 센서의 오차로 인해 하늘에서 잘못된 위치를 가리킬 수 있음.
- 낮은 데이터베이스 범위: 일부 앱은 별과 천체에 대한 데이터베이스가 제한적이어서 특정 천체나 희귀 현상을 탐지하지 못함.
- 망원경 통합 부족: 고급 관측 장비(망원경, 카메라 등)와의 연결 및 동기화 기능이 제한적이 거나 지원되지 않는 경우가 많음.

4. 현실적 문제

- 광공해 고려 부족: 대부분의 앱은 광공해로 인해 실제 관측이 어려운 환경에서의 문제를 고려하지 않음. 도시와 같은 환경에서 사용할 때 표시되는 천체와 실제 관측 가능한 천체가 차이가 날 수 있음.

- 5. 교육적 한계
- 심층 정보 부족: 대중적인 앱은 주로 간단한 정보를 제공하며, 심층적인 천문학 지식이나 전문적 데이터(예: 천체 물리학적 설명, 천문학 계산 도구 등)를 다루지 않는 경우가 많음.
- 학습 기능 미흡: 초보자가 천문학을 체계적으로 배울 수 있는 교육 모드나 가이드를 제공하지 않는 경우가 대부분임.

시장 규모

: 대학마다 천체 관측 동아리가 흔하게 보이며 큰 천체 이벤트가 발생할 경우 아파트 등에서 하늘을 관찰하는 시민들을 흔히 찾아볼 수 있음. 따라서 잠재적 사용자가 있을 것으로 추정 됨.

프로그램 개념 및 주요 기능

기능 설명: 컴퓨터 비전 기술과 천문학 데이터를 활용하여 사용자가 촬영한 밤하늘 이미지를 분석하고 해당 천체의 정보를 제공.

핵심 기능

- 1. 이미지 분석
 - 1. 사용자가 업로드한 이미지를 CNN 기반 알고리즘을 통해 분석
- -> 사용자가 업로드한 이미지를 ResNet을 이용하여 분석하는 걸로 갑니다. 제 경험상 CNN 보다는 ResNet이라는 모델이 더 효과가 좋았습니다. ResNet은 CNN과 RNN을 합친 구조입니다.

2. 천체 식별

- 1. 패턴 인식 및 밝기 분포를 비교하여 이미지상의 천체 식별
- -> 사실 휴대폰 카메라와 같이, 화질 자체는 좋을 수 있으나, 관측용 카메라가 아니기에 식별에 어려움이 있을 수 있음. 이에 대한 해결 방안은 무엇일지 관련 논문이 있으면 찾아보기

3. 정보 제공

1. 식별된 천체의 위치, 이름 등의 정보를 표시

해당 천체 주변에 색을 주고, 그 천체를 누르면 정보를 표시하는 식으로 수정해도 좋을 것 같습니다.

휴대폰 화면이 작다는 것을 고려했을때, 모든 정보를 담으면 문제가 반드시 생길 것입니다. 추가로, 해당 정보들은 DB로 연결하는 방식으로 사용하면 될 것 같습니다.

4. 위치 기반 최적화

- 1. 사용자의 경도와 위도 정보를 활용하여 정확도 향상(예정)
- -> 당연히 카메라만으로 확인할 수 없는 정보들이 많을 것. 위치 기반과 카메라 각도 등을 식별해서 확인하는 방식으로 진행하면 좋을 것 같습니다.

1. 광공해 지도 및 추천 관측지 안내

기능 설명:

- 사용자의 위치와 주변 광공해 수준을 분석하여 관측하기 좋은 장소를 지도 형태로 제공.
- 추천 장소까지의 길찾기 기능과 예상 소요 시간 포함.
- 지역별 날씨, 구름 커버율, 대기 투명도 등의 정보를 함께 제공하여 관측 성공 가능성을 예측.

이점:

도시에서 생활하는 사용자가 더 좋은 관측 환경을 찾아갈 수 있음.

2. 관측 일정 및 천문 이벤트 알림 시스템

기능 설명:

- 사용자가 선택한 지역에 따라 일출, 일몰, 월출, 월몰 시간을 자동으로 계산.
- 유성우, 월식, 일식, 행성 근접 등의 주요 천문 현상 일정을 사용자에게 푸시 알림으로 제공.
- 이벤트 관찰 시점과 조건에 대한 간단한 설명 포함.

이점:

초보자도 천문학적 이벤트를 놓치지 않고 참여 가능.

3. 천체 관측 가이드 (초보자용 학습 모드)

기능 설명:

- 초보자도 쉽게 따라 할 수 있는 별자리 및 천체 찾기 가이드를 단계별로 제공.
- 예: "북극성을 찾는 방법", "여름철 대표 별자리 관찰하기".
- 증강현실(AR)을 사용하여 별자리의 모양과 별의 위치를 연결하며 학습 가능. 이점:
- 천문학에 익숙하지 않은 사용자도 손쉽게 별자리와 천체를 탐구 가능.

4. 가상 관측 모드 (날씨와 상관없이 하늘 관찰)

기능 설명:

- 사용자가 원하는 위치와 시간을 선택하면 해당 시간의 가상 하늘을 보여주는 기능. 예: "지난 밤 구름 때문에 놓친 유성우를 가상으로 재현하기".
- 대기 조건과 관계없이 관측 연습을 할 수 있는 학습용 도구로도 활용. 이점:
- 날씨에 영향을 받지 않고 천문학적 지식을 탐구할 기회 제공.

5. 관측 기록 관리 및 공유

기능 설명:

- 관찰한 천체와 시간, 장소 등을 기록할 수 있는 기능.
- 관측한 천체의 이미지를 추가하거나, 짧은 메모를 남길 수 있는 개인 관찰 일지 제공.
- 관측 기록을 소셜 미디어나 앱 커뮤니티에 공유하여 다른 사용자와 소통.
- 이점:
- 사용자 경험을 기록하고 천문학적 관심을 공유하며 커뮤니티 형성.

6. 별자리 이야기 및 신화 콘텐츠 제공

기능 설명:

- 관찰한 별자리와 관련된 신화나 전설, 과학적 배경 정보를 제공.
- 텍스트, 오디오, 애니메이션 등 다양한 형태로 학습 가능.

이점:

- 관찰 경험을 단순 시각적 탐색에서 문화적, 역사적 학습으로 확장.

8. 다양한 난이도의 관측 챌린지

기능 설명:

- 사용자의 관측 경험 수준에 따라 도전 과제를 제공.

예: "10분 안에 오리온자리를 찾아보세요", "달의 크레이터를 망원경으로 관찰하고 사진 찍기". 성공 시 가상 뱃지나 포인트를 제공하여 동기부여. 이점:

- 재미 요소를 더하고 관찰에 대한 성취감을 제공.

9. 실시간 사용자 커뮤니티

기능 설명:

- 근처의 다른 천문학 애호가들과 실시간으로 소통할 수 있는 커뮤니티 채팅 기능.
- 전문 천문학자와의 Q&A 세션 제공.

이점:

- 경험 공유와 상호 학습이 가능하며, 천문학적 문제에 대한 실시간 해결 가능.

10. 천체 촬영 도우미 기능

기능 설명:

- 스마트폰 카메라를 사용해 천체를 촬영할 때 노출, 셔터 속도, ISO 등을 자동으로 설정.
- 촬영된 사진을 보정하여 별자리와 천체를 더 명확하게 보여줌.

이점:

- 고급 장비 없이도 멋진 천체 사진을 찍을 수 있음.

기대 효과

1. 천문학 교육의 접근성 향상

기대효과:

이 프로그램은 초보자부터 전문가까지 천문학에 관심 있는 사람들이 쉽게 천체를 식별하고 학습할 수 있게 도움. 예를 들어, 사용자가 밤하늘을 촬영하고 해당 이미지를 분석하여 별자리, 행성, 혜성 등을 식별하는 과정을 통해 천문학에 대한 이해가 깊어짐.

- 교과서적인 지식의 확장:

천체를 실시간으로 확인하고, 각 천체의 특성, 역사적 배경, 신화적 의미 등 다양한 정보를 제공함으로써 천문학 교육이 실용적이고 재미있는 방식으로 이루어짐.

- 인터랙티브 학습 도구:

실제 밤하늘에서 촬영한 사진을 분석하는 과정을 통해 학생들이 학습을 실시간으로 경험하고, 질문에 대한 즉각적인 답을 받을 수 있어 교육적 효과가 높음.

2. 관측 기록 및 데이터 관리 용이성

기대효과:

사용자가 찍은 이미지를 분류하고 기록함으로써 천체 관측 기록을 체계적으로 관리할 수 있음. 이러한 데이터 관리 시스템은 향후 관측 패턴을 분석하거나, 특정 천체에 대한 지속적인 관찰을 가능하게 함.

- 관측 기록:

사용자가 천체를 촬영할 때마다 날짜, 시간, 위치 정보가 자동으로 기록되어, 나중에 이를 분석하거나 다른 사용자와 공유할 수 있음.

- 데이터 기반 연구:

관측 기록은 향후 연구 목적에 활용될 수 있음. 예를 들어, 유성우의 활동 정도나 별자리 이동 경로 등의 패턴을 연구할 때 유용한 데이터가 될 수 있음.

3. 천체 탐지 및 관측 정확도 향상

기대효과:

사용자가 찍은 이미지를 자동으로 분석하고 분류하는 기술은 천체 관측의 정확도를 크게 향상 시킬 수 있음. 특히, 인공지능(AI)을 활용한 분석 기술을 적용하면, 망원경이나 육안 관측만으 로는 놓치기 쉬운 천체를 식별할 수 있음.

- 인공지능 및 머신러닝 적용:

AI 모델은 많은 데이터를 학습하여 다양한 천체의 패턴을 인식하고 분류할 수 있음. 예를 들어, 주기적인 행성의 위치를 추적하거나, 드물게 나타나는 천체의 움직임을 포착하는 데 유용함.

- 자동화된 천체 식별:

여러 천체를 자동으로 분류하고, 이를 실시간으로 식별할 수 있어 관측자가 빠르고 정확하게 원하는 천체를 찾아낼 수 있음.

4. 천체 관측에 대한 흥미 유발 및 참여 유도

기대효과:

일반 사용자들, 특히 청소년과 어린이들이 천체관측에 더 적극적으로 참여할 수 있는 계기가 됨. 사용자가 촬영한 이미지를 즉시 분석하고, 결과를 제공하는 프로그램은 사용자에게 흥미로운 경험을 선사하며, 천문학에 대한 관심을 자연스럽게 유도할 수 있음.

- 게임화 요소:

관측을 통한 미션을 제공하거나, 특정 천체를 발견하면 점수나 배지를 부여하는 등 게임화 요소를 추가하면 관측이 더욱 재미있고 동기 부여가 됨.

- 사회적 공유 및 커뮤니티 활성화:

사용자가 촬영한 사진과 분석 결과를 소셜 미디어에서 공유하거나, 다른 사용자와 비교하며 소통할 수 있는 기능이 추가되면 천체 관측에 대한 사회적 관심이 높아질 수 있음.

5. 천체 관측 및 촬영 기술 향상

기대효과:

사용자들이 촬영한 이미지를 분석하는 과정에서, 천체 관측 및 촬영 기술을 자연스럽게 향상 시킬 수 있음. 예를 들어, 촬영 방법, 노출 시간, 초점 맞추기 등의 기술적 요소에 대해 피드

백을 받을 수 있음.

- 교육적 피드백:

잘못된 촬영 방식이나 설정을 실시간으로 알림으로써, 사용자는 천체 촬영 기술을 더 빠르게 익히고 개선할 수 있음.

- 고급 촬영 기술 제시:

고급 사용자에게는 고급 촬영 기법이나 장비 사용법에 대한 추천을 제공하여, 천체 촬영의 수준을 한 단계 끌어올릴 수 있음.

6. 환경 분석 및 관측 최적화

기대효과:

환경 조건(예: 날씨, 대기 투명도, 광공해 등)에 따라 최적의 촬영 시간과 장소를 추천하는 기능이 포함된다면, 사용자는 더 나은 결과를 얻을 수 있음.

- 자동 환경 분석:

촬영 당시의 날씨 조건을 분석하여 더 나은 관측 환경을 추천하고, 이로 인해 효율적인 천체 촬영이 이루어짐.

- 광공해 지도와의 통합:

사용자가 촬영한 지역의 광공해 수준을 고려하여, 다음 관측을 위한 최적의 장소를 추천해줄 수 있음.

7. 기술 발전에 따른 스케일 확장

기대효과:

이 프로그램은 점차적으로 인공지능 및 데이터 분석 기술이 발전함에 따라 더 많은 천체와 우주 현상을 식별할 수 있게 될 것임. 미래에는 더 많은 천체를 식별하고, 더 정교한 분석을 제공할 수 있게 되며, 이는 천체 관측의 범위와 깊이를 확장시킬 수 있음.

- 계속 발전하는 데이터베이스:

더 많은 천체와 우주 현상에 대한 데이터베이스가 쌓이고, 사용자에게 보다 정확하고 상세한 정보를 제공할 수 있음.

개발 계획

: {추가 예정}

개발 일정

:

개발 과정에서 필요한 요소

:

CNN 모델 학습 과정

모델은 CNN기반과 함께 좀 더 향상된 모델인 ResNet과 AlexNet 이렇게 3가지로 비교를 통해, 정확성을 분석한 후 제일 좋은 모델로 채택하는 방식으로 진행하도록 합니다.

비교군으로 사용할 관측 데이터 셋

(추가 예정.)

개발 언어 : 딥러닝에서는 Python, 웹/앱에서는 Java와 Python 그리고 html, css, Js, React 등