Functional Analysis

Alex Rutar* University of Waterloo

Fall 2019[†]

^{*}arutar@uwaterloo.ca

[†]Last updated: September 4, 2019

Contents

Chapter	I REPLA	CE								
1	Banach Spaces .		 	 	 	 				1

I. REPLACE

1 Banach Spaces

Throughout, we denote by \mathbb{F} either the field \mathbb{R} or the field \mathbb{C} .

Definition. Let X be a vector space over \mathbb{F} . A **norm** is a functional $\|\cdot\|: X \to \mathbb{R}$ such that it is

- (non-negative) $||x|| \ge 0$ for any $x \in X$
- (non-degenerate) ||x|| = 0 if and only if x = 0
- (subadditivity) $||x+y|| \le ||x|| + ||y||$ for $x, y \in X$
- $(|\cdot| homogeneity) ||\alpha x|| = |\alpha| ||x|| \text{ for } \alpha \in \mathbb{F}, x \in X.$

We call the pair $(X, \|\cdot\|)$ a **normed vector space**. Furthermore, we say that $(X, \|\cdot\|)$ is a **Banach space** provided that X is complete with respect to the metric $\rho(x, y) = \|x - y\|$.

Example. (i) $(\mathbb{F}, |\cdot|)$ is a Banach space.

(ii) $(\mathbb{F}^b, ||\cdot||_p), x = (x_j)_{i=1}^n,$

$$||x||_p = \begin{cases} \left(\sum_{i=1}^n |x_j|^p\right)^{1/p} & 1 \le p < \infty \\ \max_{j=1,\dots,n} |x_j| & p = \infty \end{cases}$$

(iii) Consider the space

$$L_p^{\mathbb{F}} = \left\{ f : [0,1] \to \mathbb{F} \mid f \text{ is Lebesgue measurable,} \left(\int_0^1 |f|^p \right)^{1/p} < \infty \right\} \Big|_{\sim_{\text{a.e.}}}$$

where $1 \le p < \infty$.

- (iv) $L_{\infty}^{\mathbb{F}}[0,1]$, $||f||_{\infty} = \operatorname{ess\,sup}_{t \in [0,1]} |f(t)|$.
- (v) Let (X, d) be a metric space. Then

$$C_b^{\mathbb{F}}(x) = \{ f : X \to \mathbb{F} \mid f \text{ is continuous and bounded } \}, \quad ||f||_{\infty} = \sup_{x \in X} |f(x)|$$

is a Banach space.

Here is a more interesting example:

Example. Let (X,d) be a metric space. We define the space of Lipschitz functions

$$\operatorname{Lip}^{\mathbb{F}}(X,d) = \left\{ f: X \to \mathbb{F} \middle| f \text{ is bounded, } L(f) = \sup_{\substack{x,y \in X \\ x \neq y}} \frac{|f(x) - f(y)|}{d(x,y)} < \infty \right\}$$

We note that for $f: X \to \mathbb{F}$ that

$$f \in \operatorname{Lip}^{\mathbb{F}}(X, d) \Leftrightarrow \text{there is } L \ge 0 \text{ s.t. } |f(x) - f(x)| \le Ld(x, y) \text{ for all } x, y \in X$$
 (1.1)

It is easy to verify that $L(f) = \min\{L \ge 0 : (1.1) \text{ holds for } f\}$. It is an easy exercise to see that $\operatorname{Lip}^{\mathbb{F}}$ is a vector space, and that $L : \operatorname{Lip}^F(X,d) \to \mathbb{R}$ is a **semi-norm** (non-negative, subadditive, $|\cdot|$ –homogeneous). However, we do not have non-degeneracy (for example, constants are taken to 0). We define the Lipschitz norm

$$||f||_{\text{Lip}} = ||f||_{\infty} + L(f)$$

1.1 Proposition. (Lip^{\mathbb{F}}(X,d), $\|\cdot\|_{\text{Lip}}$) is a Banach space.

PROOF Let $(f_n)_{n=1}^{\infty}$ be a Cauchy sequence in $(\operatorname{Lip}^{\mathbb{F}}(X,d),\|\cdot\|_{\operatorname{Lip}})$. Since $\|\cdot\|_{\infty} \leq \|\cdot\|_{\operatorname{Lip}}$ on $\operatorname{Lip}^F(X,d)$, we see that $(f_n)_{n=1}^{\infty}$ is uniformly Cauchy (and bounded), and hence there is $f=\lim_{n\to\infty} f_n$ in $C_b^{\mathbb{F}}(X)$, where the limit is taken with respect to $\|\cdot\|_{\infty}$, since $(C_b^{\mathbb{F}}(X),\|\cdot\|_{\infty})$ is a Banach space. If $x,y\in X$, then

$$|f(x) - f(x)| = \lim_{n \to \infty} |f_n(x) - f_n(y)| \le \sup_{n \in \mathbb{N}} |f_n(x) - f_n(y)|$$

$$\le \sup_{n \in \mathbb{N}} L(f_n) d(x, y) \le \sup_{n \in \mathbb{N}} ||f_n||_{\text{Lip}} d(x, y)$$

Since Cauchy sequences are bounded, we see that $|f(x) - f(y)| \le Ld(x,y)$, where $L = \sup_{n \in \mathbb{N}} ||f_n||_{\text{Lip}} < \infty$. Thus by (1.1), $f \in \text{Lip}^{\mathbb{F}}(X,d)$. Exercise: one may verify that $||f - f_n||_{\text{Lip}} \to 0$.

Another collection of basic examples are given by the sequence spaces. We can define

$$\ell_1^{\mathbb{F}} = \left\{ x = (x_j)_{j=1}^{\infty} \in \mathbb{F}^{\mathbb{N}} \middle| ||x||_1 = \sum_{j=1}^{\infty} |x_j| < \infty \right\}$$

It is easy to see that $(\ell_1, ||\cdot||_1)$ is a normed vector space.

For 1 , and write

$$\mathcal{\ell}_p^{\mathbb{F}} = \left\{ \left. x \in \mathbb{F}^{\mathbb{N}} \; \middle| \; ||x||_p = \left(\sum_{j=1}^{\infty} |x_j|^p \right)^{1/p} < \infty \right. \right\}$$

Note that $0 \in \ell_p$, $\alpha \in \mathbb{F}$, $\alpha x \in \ell_p$ if $x \in \ell_p$. Let q = p/(p-1) so that 1/p + 1/q = 1. Then q is called the **conjugate index**. We have

1.2 Proposition. (Young's Inequality) If $a, b \ge 0$ in \mathbb{R} , then $ab \le a^p/p + b^q/q$, with equality only if $a^p = b^q$.

and

1.3 Proposition. (Hölder's Inequality) If $x \in \ell_p$ and $y \in \ell_q$, then $xy = (x_i y_i)_{i=1}^{\infty} \in \ell_1$, with

$$\left| \sum_{i=1}^{\infty} x_i y_i \right| \le \|x\|_p \|y\|_q$$

with equality exactly when $\operatorname{sgn}(x_i y_i) = \operatorname{sgn}(x_k y_k)$ for all $j,k \in \mathbb{N}$ where $x_i y_i \neq 0 \neq x_k y_k$, and $|x|^p = (|x_j|^p)_{j=1}^{\infty}$ and $|y|^q$ are linearly dependent in ℓ_1 .

and finally

1.4 Proposition. (Minkowski's Inequality) If $x, y \in \ell_p$, then $||x + y||_p \le ||x||_p + ||y||_p$ with equality exactly when one of x or y is a non-negative scalar combination of the other.