COMP3308 Assignment 2 Bayesian Networks

Woo Hyun Jung 310250811 Khanh Cao Quoc Nguyen 311253865

1 Aim

The aim of this assignment is to build Bayesian networks for diagnostic problems and verify the independence statements by using existing tools such as JavaBayes and implementing an inference algorithm to compute posterior probabilities.

2 Methods

2.1 Bayesian Networks

Bayesian networks are simple, probabilistic graphical models that represent sets of random variables and their conditional dependencies.

2.2 Variable Elimination

2.3 Likelihood Weighting

3 Results and Discussion

3.1 Question 1

Metastatic cancer is a possible cause of a brain tumour and is also an explanation for increased total serum calcium. In turn, either of these could explain a patient falling into a coma. Severe headache is also possibly associated with a brain tumour.

- The prior probability of metastatic cancer P(m) is 0.2.
- The conditional probability of increased total serum calcium P(I|M) is: P(i|m) = 0.8 and $P(i|\neg m) = 0.2$
- The conditional probability of brain tumor P(B|M) is: P(b|m) = 0.2 and $P(b|\neg m) = 0.05$
- The conditional probability of coma P(C|I,B) is: P(c|i,b) = 0.8, $P(c|\neg i,b) = 0.8$, $P(c|i,\neg b) = 0.8$ and $P(c|\neg i,\neg b) = 0.05$.
- The conditional probability of severe headache P(S|B) is P(s|b) = 0.8 and P(s|b) = 0.6.
- a) Construct and show the equivalent graphical model.

Figure 1: Equivalent graphical model created using JavaBayes

b) What is the prior probability of coma P(C)?

Figure 2: Probability of coma query output using JavaBayes

Using the Query function in JavaBayes, P(C) = 0.32.

c) What is the probability of metastatic cancer given the patient has severe headaches and has not fallen into coma?

Figure 3: $P(M|S, \neg C)$ query output using JavaBayes

Using the Observe and Query functions in JavaBayes, $P(M|S, \neg C) = 0.12087912087912088$.

d) What is the Markov blanket of coma?

In a Bayesian network, the Markov blanket of node A includes its parents, children and the other parents of all of its children.

Therefore the Markov blanket of coma are brain tumor and increased total serum calcium.

e) Are increased total serum calcium and brain tumor independent given coma? Explain.

No, because of explaining away otherwise known as Berkson's Paradox.

Normally, total serum calcium and brain tumor are independent, but if we are given coma they become dependent since they share the same child.

f) What is the probability of fallen into coma given the patient has metastatic cancer?

Figure 4: P(C|M) query output using JavaBayes

Using the Observe and Query functions in JavaBayes, P(C|M) = 0.68.

3.2 Question 2

Figure 5: Naive Bayes Classifer

a)
$$P(C|X_1,...,X_n) = \frac{P(C)P(X_1,...,X_n|C)}{P(X_1,...,X_n)}$$

Bayes' Theorem

$$P(C|X_1,...,X_n) = \frac{P(C,X_1,...,X_n)}{P(X_1,...,X_n)}$$

Conditional Probability

$$P(C|X_1,...,X_n)P(X_1,...,X_n) = P(C,X_1,...,X_n)$$

$$P(C, X_1, ..., X_n) = P(X_1, ..., X_n) \frac{P(C)P(X_1, ..., X_n | C)}{P(X_1, ..., X_n)}$$
$$P(C, X_1, ..., X_n) = P(C)P(X_1, ..., X_n | C)$$

$$P(X_1, ..., X_n | C) = \prod_{i=1}^n P(X_i | C)$$

which is the distribution for $X_1, ..., X_n$ which can be given by the product of each node's probability given it's parent which is C.

Therefore,

$$P(C, x_1, ..., x_n) = P(C) \prod_{i=1}^{n} P(x_i|C)$$

3.3 Question 3

Figure 6: Heart disease diagnosis Bayes net

3.3.1 Random Variables

- Age (A): Age of the patient. We will divide this up into four ranges. Under 18, 18-30, 30-50, above 50.
- Gender (G): Male or female.
- Family history (F): If anyone in their family has suffered from heart disease. True or False.
- Depression (D): If the patient has suffered from depression. True or False.
- Physically active (P): If the patient is physically active. True or False.
- Smokes (S): If the patient smokes. True or False.
- Overweight (O): If the patient is currently overweight. True or False.
- High cholesterol (HC): If the patient has high cholesterol. True of False.
- High blood pressure (HBP): If the patient has high blood pressure. True or False.
- Diabetes (DI): If the patient has diabetes. Type1, Type2 or None.
- Heart disease (HD): If the patient has heart disease. True or False.

3.3.2 Probability Distributions

3.3.3 Method

3.4 Question 4

3.4.1 Likelihood Weighting

We implemented the likelihood weighting in Python 2.7.5 to calculate the probability of P(cloudy|sprinkler, wetgrass).

Our program takes in the number of samples used to construct the estimate (N) as input and then runs M times which is set to 1000 by default. It then returns the mean, variance and standard deviation of the probability calculated using the likelihood weighting algorithm.

Below in Table 1, are the results for N=10, 100, 1000, 5000.

N	Mean	Variance	Standard Deviation
10	0.5069	0.02524239	0.158878538513
100	0.50004	0.0025593984	0.0505904971314
1000	0.499573	0.000222700671	0.0149231588814
5000	0.5001358	4.979223836e-05	0.00705636155253

Table 1: Accuracy results for likelihood weighting

3.4.2 Exact Inference using JavaBayes

Figure 7: Equivalent graphical model created using JavaBayes. Sprinkler and Wet Grass set to true.

Figure 8: P(Cloudy|Sprinkler, WetGrass) query output using JavaBayes

4 Conclusions

5 Reflection

6 Code

Our implementation of Likelihood Weighting was written in Python 2.7.5.

This implementation was designed to work with any Bayesian network and not just the Cloudy-Rain-Sprinkler-WetGrass network.

6.1 XML Format

The program reads an XML file which has the structure of the network and probability values and makes the appropriate data structures.

The XML of the Cloudy-Rain-Sprinkler-WetGrass network can seen in the figure below.

```
<network>
        <node>
                <id>C</id>
                <name>Cloudy</name>
                cprobability>0.5</probability>
        </node>
        < node >
                <id>S</id>
                <name>Sprinkler</name>
                <parent>C</parent>
                <probability given="C">0.1</probability>
                <probability given="-C">0.5</probability>
        </node>
        <node>
                <id>R</id>
                <name>Rain</name>
                <parent>C</parent>
                <probability given="C">0.8</probability>
                <probability given="-C">0.2</probability>
        </node>
        <node>
                <id>W</id>
                <name>Wet Grass</name>
                <parent>S</parent>
                <parent>R</parent>
                <probability given="S,R">0.99</probability>
                <probability given="S,-R">0.9</probability>
                <probability given="-S,R">0.9</probability>
                <probability given="-S,-R">0.00</probability>
        </node>
</network>
```

Figure 9: Cloudy-Rain-Sprinkler-WetGrass-Network.xml

6.2 Instructions

To run our implementation, change directory to the where the code is. Make sure that Cloudy-Rain-Sprinkler-WetGrass-Network.xml file is present.

```
Then run:  python \ \ likelihood.py < \! N \! >  where N is the number of samples used.
```

6.2.1 Example

N: 1000 M: 1000

 $Mean: \ 0.499573$

Variance: 0.000222700671

Standard Deviation: 0.0149231588814