Problemas de derivabilidad de funciones. Teoremas de derivabilidad

1. Consideremos el polinomio de grado 4, $p_4(x) = x^4 - a^2x^2 + b$ donde a y b son valores reales. Demostrar que $p_4(x)$ tiene tres extremos relativos, dos mínimos y un máximo.

Solución

Para hallar los extremos hallemos la derivada de $p_4(x)$ y calculemos los valores que la anulan:

$$p_4'(x) = 4x^3 - 2a^2x = 0, \Rightarrow 2x \cdot (2x^2 - a^2) = 0, \Rightarrow x = -\frac{|a|}{\sqrt{2}}, 0, \frac{|a|}{\sqrt{2}}.$$

Para saber si son máximos o mínimos, miramos el signo de $p_4''(x)$:

$$p_4''(x) = 12x^2 - 2a^2.$$

Para $x = -\frac{|a|}{\sqrt{2}}, p_4''\left(-\frac{|a|}{\sqrt{2}}\right) = 12 \cdot \frac{a^2}{2} - 2a^2 = 4a^2 > 0$. Se trataría de un mínimo. Para $x = 0, p_4''(0) = -2a^2 < 0$. Se trataría de un máximo. Para $x = \frac{|a|}{\sqrt{2}}, p_4''\left(\frac{|a|}{\sqrt{2}}\right) = 12 \cdot \frac{a^2}{2} - 2a^2 = 4a^2 > 0$. Se trataría de un mínimo.

Por tanto, $p_4(x)$ tiene dos mínimos y un máximo.

2. Demostrar que para todo valor $x, y \in \mathbb{R}$, $\cos x - \cos y | \le |x - y|$.

Solución

Sea $f(x) = \cos x$. Supongamos para fijar ideas que x < y. Como f(x) es derivable y continua en \mathbb{R} , podemos aplicar el Teorema del Valor Medio a la función f(x) en el intervalo (x, y) y obtener:

$$f(x) - f(y) = f'(c) \cdot (x - y), \Rightarrow \cos x - \cos y = -\sin c \cdot (x - y), \Rightarrow |\cos x - \cos y| = |\sin c| \cdot |x - y| \le |x - y|,$$

tal como queríamos ver.

- 3. Dar los extremos relativos y los intervalos de crecimiento y decrecimiento de las funciones siguientes:
 - a) $f(x) = x^2 3x + 5$,
 - b) $h(x) = x^3 3x 4$,
 - c) $k(x) = x^4 + 2x^2 4$.

Solución

a) Para hallar los extremos de $f(x) = x^2 - 3x + 5$, primero tenemos que derivar e igualar la derivada a cero:

$$f'(x) = 2x - 3 = 0, \Rightarrow x = \frac{3}{2}.$$

Miremos los intervalos de crecimiento y decrecimiento a partir de la tabla siguiente:

\overline{x}	$-\infty$		$\frac{3}{2}$		∞
f'		_		+	
f		\searrow		7	

Para comprobar los signos de la tabla anterior, hemos de hacer lo siguiente:

- Signo de y' en el intervalo $\left(-\infty, \frac{3}{2}\right)$. Consideremos un valor en dicho intervalo, por ejemplo x = 0, el valor de f'(0) vale $f'(0) = 2 \cdot 0 3 = -3 < 0$.
- Signo de y' en el intervalo $\left(\frac{3}{2},\infty\right)$. Consideremos un valor en dicho intervalo, por ejemplo x=2, el valor de f'(2) vale $f'(2)=2\cdot 2-3=1>0$. La función f(x) crece en el intervalo $\left(\frac{3}{2},\infty\right)$, decrece en el intervalo $\left(-\infty,\frac{3}{2}\right)$ y tiene un mínimo en el punto $\left(\frac{3}{2},\left(\frac{3}{2}\right)^2-3\cdot\frac{3}{2}+5\right)=(1.5,2.75)$.

b) Hagamos lo mismo para la función $h(x) = x^3 - 3x - 4$:

$$h'(x) = 3x^2 - 3 = 0, \Rightarrow x = \pm 1.$$

Tabla:

\overline{x}	$-\infty$		-1		1		∞
$\overline{h'}$		+		_		+	
h		7		V		7	

Para comprobar los signos de la tabla anterior, hemos de hacer lo siguiente:

- Signo de y' en el intervalo $(-\infty, -1)$. Consideremos un valor en dicho intervalo, por ejemplo x = -2, el valor de h'(-2) vale $h'(-2) = 3 \cdot (-2)^2 3 = 9 > 0$.
- Signo de y' en el intervalo (-1,1). Consideremos un valor en dicho intervalo, por ejemplo x=0, el valor de h'(0) vale $h'(0)=3\cdot(0)^2-3=-3<0$.
- Signo de y' en el intervalo $(1, \infty)$. Consideremos un valor en dicho intervalo, por ejemplo x = 2, el valor de h'(2) vale $h'(2) = 3 \cdot (2)^2 3 = 9 > 0$. La función h(x) crece en la región $(-\infty, -1) \cup (1, \infty)$, decrece en el intervalo (-1, 1), tiene un máximo en (-1, -2) y un mínimo en (1, -6).
- c) Función $k(x) = x^4 + 2x^2 4$:

$$k'(x) = 4x^3 + 4x = 0, \Rightarrow 4x(x^2 + 1) = 0, \Rightarrow x = 0.$$

Tabla:

$$\begin{array}{c|cccc}
x & -\infty & 0 & \infty \\
\hline
k' & - & + \\
k & \searrow & \nearrow
\end{array}$$

La función k(x) crece en el intervalo $(0, \infty)$, decrece en el intervalo $(-\infty, 0)$ y tiene un mínimo en el punto (0, -4).

4. Dar los extremos relativos y los intervalos de crecimiento y decrecimiento de las funciones siguientes:

- a) $f(x) = x + \frac{1}{x} \text{ para } x \neq 0$,
- b) $h(x) = \sqrt{x} 2\sqrt{x+1}$ para x > 0, c) $g(x) = \frac{x}{x^2+1}$ para $x \in \mathbb{R}$.

Solución

a) Para hallar los extremos relativos de la función $f(x) = x + \frac{1}{x}$ para $x \neq 0$ hay que derivar e igualar a cero la función derivada:

$$f'(x) = 1 - \frac{1}{x^2} = 0, \Rightarrow x = \pm 1.$$

Miremos los intervalos de crecimiento y decrecimiento a partir de la tabla siguiente:

\overline{x}	$-\infty$		-1		0		1		∞
f'		+		_		_		+	
f		7		\searrow		\searrow		7	

La función f(x) crece en la región $(-\infty, -1) \cup (1, \infty)$, decrece en la región $(-1, 0) \cup (0, 1)$, tiene un máximo en el punto (-1, -2) y un mínimo en el punto (1, 2).

b) Estudio para la función $h(x) = \sqrt{x} - 2\sqrt{x+1}$ para x > 0. La derivada y los ceros de la misma son:

$$h'(x) = \frac{1}{2\sqrt{x}} - \frac{1}{\sqrt{x+1}}, \Rightarrow \sqrt{x+1} = 2\sqrt{x}, \Rightarrow x+1 = 4x, \Rightarrow x = \frac{1}{3}.$$

Como hemos elevado al cuadrado, tenemos que comprobar que la solución hallada es efectivamente una solución de h'(x) = 0:

$$h'\left(\frac{1}{3}\right) = \frac{1}{2\sqrt{\frac{1}{3}}} - \frac{1}{\sqrt{\frac{1}{3}+1}} = \frac{\sqrt{3}}{2} - \frac{1}{\sqrt{\frac{4}{3}}} = \frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{2} = 0.$$

Miremos los intervalos de crecimiento y decrecimiento a partir de la tabla siguiente:

\overline{x}	0		$\frac{1}{3}$		∞
h'		+		_	
h		7		\searrow	

La función h(x) crece en el intervalo $\left(0,\frac{1}{3}\right)$, decrece en el intervalo $\left(\frac{1}{3},\infty\right)$ y tiene un máximo en el punto $\left(\frac{1}{3}, \sqrt{\frac{1}{3}} - 2\sqrt{\frac{1}{3}} + 1\right) = \left(\frac{1}{3}, -\sqrt{3}\right).$

c) Èstudio para la función $g(x) = \frac{x}{x^2+1}$. La derivada y los ceros de la misma son:

$$g'(x) = \frac{x^2 + 1 - 2x \cdot x}{(x^2 + 1)^2} = \frac{-x^2 + 1}{(x^2 + 1)^2} = 0, \Rightarrow x = \pm 1.$$

Miremos los intervalos de crecimiento y decrecimiento a partir de la tabla siguiente:

\overline{x}	$-\infty$		-1		1		∞
$\overline{g'}$		_		+		_	
g		\searrow		7		\searrow	

La función g(x) crece en el intervalo (-1,1), decrece en la región $(-\infty,-1)\cup(1,\infty)$, tiene un mínimo en el punto $(-1, -\frac{1}{2})$ y un máximo en el punto $(1, \frac{1}{2})$.

4

5. Sean a > b > 0 números reales y $n \in \mathbb{N}$ un entero positivo con $n \ge 2$. Demostrar que $a^{\frac{1}{n}} - b^{\frac{1}{n}} < (a-b)^{\frac{1}{n}}$. Indicación: demostrar que la función $f(x) = x^{\frac{1}{n}} - (x-1)^{\frac{1}{n}}$ es decreciente para $x \ge 1$ y evaluarla en x = 1 y $x = \frac{a}{b}$.

Solución

Veamos que la función $f(x) = x^{\frac{1}{n}} - (x-1)^{\frac{1}{n}}$ es decreciente para $x \ge 1$. Si hacemos su derivada obtenemos:

$$f'(x) = \frac{1}{n} \cdot x^{\frac{1}{n} - 1} - \frac{1}{n} \cdot (x - 1)^{\frac{1}{n} - 1} = \frac{1}{n} \left(x^{\frac{1}{n} - 1} - (x - 1)^{\frac{1}{n} - 1} \right).$$

Como $\frac{1}{n}-1<0$ si $n\geq 2$ y como $x\geq x-1$, si $x\geq 1$, tenemos que $x^{\frac{1}{n}-1}<(x-1)^{\frac{1}{n}-1}$. Por tanto, f'(x)<0 y f(x) será decreciente para $x\geq 1$.

Como a > b, $\frac{a}{b} > 1$ y, como f(x) es decreciente,

$$f\left(\frac{a}{b}\right) < f(1), \ \Rightarrow \left(\frac{a}{b}\right)^{\frac{1}{n}} - \left(\frac{a}{b} - 1\right)^{\frac{1}{n}} < 1, \ \Rightarrow \left(\frac{a}{b}\right)^{\frac{1}{n}} - \left(\frac{a-b}{b}\right)^{\frac{1}{n}} < 1, \ \Rightarrow a^{\frac{1}{n}} - (a-b)^{\frac{1}{n}} < b^{\frac{1}{n}}, \ \Rightarrow a^{\frac{1}{n}} - b^{\frac{1}{n}} < (a-b)^{\frac{1}{n}}.$$

- 6. Sea $f:[0,2] \longrightarrow \mathbb{R}$, continua en [0,2] y derivable en (0,2). Supongamos que f(0)=0, f(1)=f(2)=1.
 - a) Demostrar que existe un valor $c_1 \in (0,1)$ tal que $f'(c_1) = 1$.
 - b) Demostrar que existe un valor $c_2 \in (1,2)$ tal que $f'(c_2) = 0$.
 - c) Demostrar que existe un valor $c_3 \in (0,2)$ tal que $f'(c_3) = \frac{1}{2}$.

Solución

a) Aplicando el Teorema del valor medio en el intervalo [0,1] tenemos que existe un valor $c_1 \in (0,1)$ tal que

$$f'(c_1) = \frac{f(1) - f(0)}{1 - 0} = \frac{1 - 0}{1} = 1.$$

b) Aplicando el Teorema del valor medio en el intervalo [1,2] tenemos que existe un valor $c_2 \in (1,2)$ tal que

$$f'(c_2) = \frac{f(2) - f(1)}{2 - 1} = \frac{1 - 1}{1} = 0.$$

c) Aplicando el Teorema del valor medio en el intervalo [0,2] tenemos que existe un valor $c_3 \in (0,2)$ tal que

$$f'(c_3) = \frac{f(2) - f(0)}{2 - 0} = \frac{1 - 0}{2} = \frac{1}{2}.$$

7. Usando la regla de L'Hôpital calcular los límites siguientes:

a)
$$\lim_{x \to 0} \frac{e^x + e^{-x} - 2}{1 - \cos x}$$
,

b)
$$\lim_{x\to 0} \frac{x^2 - \sin^2 x}{x^4}$$

a)
$$\lim_{x\to 0} \frac{\mathrm{e}^x + \mathrm{e}^{-x} - 2}{1 - \cos x}$$
,
b) $\lim_{x\to 0} \frac{x^2 - \sin^2 x}{x^4}$,
c) $\lim_{x\to \infty} \frac{x^n}{\mathrm{e}^x}$, con n valor entero, $n \ge 1$,
d) $\lim_{x\to \frac{\pi}{2}^-} (\sec x - \tan x)$.

d)
$$\lim_{x \to \frac{\pi}{2}^-} (\sec x - \tan x)$$
.

Solución

a) El valor del límite será:

$$\lim_{x \to 0} \frac{e^x + e^{-x} - 2}{1 - \cos x} = \lim_{x \to 0} \frac{e^x - e^{-x}}{\sin x} = \lim_{x \to 0} \frac{e^x + e^{-x}}{\cos x} = \frac{2}{1} = 2.$$

b) El valor del límite será:

$$\lim_{x \to 0} \frac{x^2 - \sin^2 x}{x^4} = \lim_{x \to 0} \frac{2x - 2\sin x \cos x}{4x^3} = \lim_{x \to 0} \frac{2 - 2(\cos^2 x - \sin^2 x)}{12x^2} = \lim_{x \to 0} \frac{-4(-\cos x \sin x - \sin x \cos x)}{24x}$$
$$= \lim_{x \to 0} \frac{8\cos x \sin x}{24x} = \lim_{x \to 0} \frac{-8(\sin^2 x - \cos^2 x)}{24} = \frac{8}{24} = \frac{1}{3}.$$

c) El valor del límite será:

$$\lim_{x \to \infty} \frac{x^n}{\mathrm{e}^x} = \lim_{x \to \infty} \frac{n \cdot x^{n-1}}{\mathrm{e}^x} = \dots = \lim_{x \to \infty} \frac{n!}{\mathrm{e}^x} = 0.$$

d) El valor del límite será:

$$\lim_{x \to \frac{\pi}{2}^{-}} (\sec x - \tan x) = \lim_{x \to \frac{\pi}{2}^{-}} \frac{1 - \sin x}{\cos x} = \lim_{x \to \frac{\pi}{2}^{-}} \frac{-\cos x}{-\sin x} = 0.$$

8. Descomponer un número a en dos sumandos x e y tal que el valor de $x^2 + y^2$ sea mínimo.

Solución

Se tiene que verificar que x+y=a y hay que minimizar la función x^2+y^2 .

Escribiendo dicha función sólo en función de x, obtenemos $f(x) = x^2 + (a-x)^2$.

Para hallar el mínimo, tenemos que derivar e igualar a cero:

$$f'(x) = 2x - 2(a - x) = 0, \Rightarrow x = \frac{a}{2}.$$

Los valores x e y pedidos son: $x = \frac{a}{2}, \ y = a - x = a - \frac{a}{2} = \frac{a}{2}.$

Comprobemos que es un mínimo:

$$f''(x) = 2 + 2 = 4 > 0.$$

9. Determinar las dimensiones que ha de tener un bote cilíndrico de 2 litros de capacidad para que se construya con la cantidad mínima de material.

Solución

Sea r el radio de la base del bote y h la altura del mismo. La superficie lateral del bote será $2\pi rh$ y la superficie de las dos tapas, $2\pi r^2$. Por tanto, hay que minimizar la función $2\pi rh + 2\pi r^2$.

Sabemos que la capacidad del bote vale $\pi r^2 h = \frac{2}{1000}$ (2 litros son $\frac{2}{1000}$ m³). Por tanto $h = \frac{2}{1000\pi r^2}$.

La función a minimizar será:

$$f(r) = 2\pi r \frac{2}{1000\pi r^2} + 2\pi r^2 = \frac{4}{1000r} + 2\pi r^2.$$

Para hallar el mínimo, tenemos que derivar e igualar a cero:

$$f'(r) = -\frac{4}{1000r^2} + 4\pi r = 0, \Rightarrow r^3 = \frac{1}{1000\pi}, \Rightarrow r = \sqrt[3]{\frac{1}{1000\pi}} \approx 0.068 \text{ m}.$$

El valor de h será: $h = \frac{2}{1000\pi r^2} = \frac{2}{1000\pi \left(\frac{1}{1000\pi}\right)^{\frac{2}{3}}} = \frac{2}{\sqrt[3]{1000\pi}} \approx 0.137$ m.

Comprobemos que es un mínimo:

$$f''(r) = \frac{8}{1000r^3} + 4\pi > 0.$$

10. De todos los rectángulos de igual perímetro, ¿cuál es el que tiene área mayor?

Solución

Sean a y b las dimensiones del rectángulo y P el perímetro. Nos dicen que 2a + 2b = P o, si se quiere $a + b = \frac{P}{2}$. La función a maximizar es el área $a \cdot b$. Si la escribimos en función de a, obtenemos:

$$f(a) = a \cdot \left(\frac{P}{2} - a\right).$$

Para hallar el máximo, tenemos que derivar e igualar a cero:

$$f'(a) = \frac{P}{2} - a - a = 0, \Rightarrow a = \frac{P}{4}.$$

Las dimensiones del rectángulo serán: $a=\frac{P}{4}$ y $b=\frac{P}{2}-a=\frac{P}{2}-\frac{P}{4}=\frac{P}{4}.$

Comprobemos que es un máximo:

$$f''(a) = -2 < 0.$$