1. NOTES ON valuations.lean

We define linear_ordered_comm_group and linear_ordered_comm_monoid to be a commutative group / monoid with a linear order satisfying $a \le b \implies ca \le cb$. Within the namespace linear_ordered_comm_group we prove some basic lemmas.

We then define is_convex, a property of subgroups of a linearly ordered commutative group. A subgroup H is convex if whenever $x \leq z \leq y$ and $x,y \in H$ we have $z \in H$. An example to keep in mind is that if \mathbb{R}^2 has the lexicographic order $(a,b) < (c,d) \iff a < c \lor (a = c \land b < d)$ then the subgroup

$$\{0\} \times \mathbb{R}$$

is convex. The kernel of an order-preserving group homomorphism is shown to be convex (an example would be the projection onto the first factor in the \mathbb{R}^2 example above).

The height of a linearly ordered commutative group is the number of proper convex subgroups. For example one can check that \mathbb{R}^2 above has height 2.

The construction of a totally ordered monoid $\Gamma \cup \{0\}$ from a totally ordered group Γ is done using the option function – the "extra" element none is identified with zero. It is proved that this extension of a linearly ordered group is a linearly ordered monoid. All of this happens within the linear_ordered_comm_group namespace.

We then define a valuation on a commutative ring, taking values in the monoid associated to a linearly ordered commutative group. Within the <code>is_valuation</code> namespace we prove some basic results about valuations. For some reason <code>is_valuation</code> is a typeclass. Some basic lemmas about valuations are proved, including the fact that the support of a valuation is a prime ideal.

1