Trees, Recursion, and Natural Language

John DeNero

Source code: http://denero.org/content/misc/parse.zip

Ambiguity

Programs must be written for people to read¹

¹Preface of Structure and Interpretation of Computer Programs by Harold Abelson and Gerald Sussman with Julie Sussman

_____Sentence

Programs must be written for people to read¹

¹Preface of Structure and Interpretation of Computer Programs by Harold Abelson and Gerald Sussman with Julie Sussman

Programs must be written for people to read¹

A program must first be written for it to crash

¹Preface of Structure and Interpretation of Computer Programs by Harold Abelson and Gerald Sussman with Julie Sussman

Programs must be written for people to read¹

Programs must be written for people to be useful

¹Preface of Structure and Interpretation of Computer Programs by Harold Abelson and Gerald Sussman with Julie Sussman

Programs must be written for people to read

```
pro•gram (noun)
  a series of coded software instructions.

pro•gram (verb)
  provide a computer with coded instructions.
```

Programs must be written for people to read

```
pro•gram (noun)
  a series of coded software instructions.

pro•gram (verb)
  provide a computer with coded instructions.
```

Programs must be written for people to read

```
must (verb)
  be obliged to.

must (noun)
  dampness or mold.
```

Definitions from the New Oxford American Dictionary

Syntax Trees

Buffalo

Photo by <u>Vince O'Sullivan</u> licensed under http://creativecommons.org/licenses/by-nc-nd/2.0/

Photo by <u>Vince O'Sullivan</u> licensed under http://creativecommons.org/licenses/by-nc-nd/2.0/

Photo by <u>Vince O'Sullivan</u> licensed under http://creativecommons.org/licenses/by-nc-nd/2.0/

Photo by <u>Vince O'Sullivan</u> licensed under http://creativecommons.org/licenses/by-nc-nd/2.0/

-Sentence -

Photo by <u>Vince O'Sullivan</u> licensed under http://creativecommons.org/licenses/by-nc-nd/2.0/

Photo by <u>Vince O'Sullivan</u> licensed under http://creativecommons.org/licenses/by-nc-nd/2.0/

Photo by <u>Vince O'Sullivan</u> licensed under http://creativecommons.org/licenses/by-nc-nd/2.0/

A Tree represents a phrase:

A Tree represents a phrase:

A Tree represents a phrase:

- tagWhat kind of phrase (e.g., S, NP, VP)
- branches -- Sequence of Tree or Leaf components

A Tree represents a phrase:

- tagWhat kind of phrase (e.g., S, NP, VP)
- branches -- Sequence of Tree or Leaf components

A Tree represents a phrase:

- tagWhat kind of phrase (e.g., S, NP, VP)
- branches -- Sequence of Tree or Leaf components

A Leaf represents a single word:

tag -- What kind of word (e.g., N, V)

A Tree represents a phrase:

http://creativecommons.org/licenses/by-nc-nd/2.0/

- tagWhat kind of phrase (e.g., S, NP, VP)
- branches -- Sequence of Tree or Leaf components

- tag -- What kind of word (e.g., N, V)
- word The word

A Tree represents a phrase:

- tagWhat kind of phrase (e.g., S, NP, VP)
- branches -- Sequence of Tree or Leaf components

- tag -- What kind of word (e.g., N, V)
- word The word

A Tree represents a phrase:

- tagWhat kind of phrase (e.g., S, NP, VP)
- branches -- Sequence of Tree or Leaf components

- tag -- What kind of word (e.g., N, V)
- word The word

A Tree represents a phrase:

- tagWhat kind of phrase (e.g., S, NP, VP)
- branches -- Sequence of Tree or Leaf components

- tag -- What kind of word (e.g., N, V)
- word The word

A Tree represents a phrase:

- tagWhat kind of phrase (e.g., S, NP, VP)
- branches -- Sequence of Tree or Leaf components

- tag -- What kind of word (e.g., N, V)
- word The word

A Tree represents a phrase:

- tag— What kind of phrase (e.g., S, NP, VP)
- branches -- Sequence of Tree or Leaf components

- tag -- What kind of word (e.g., N, V)
- word The word

A Tree represents a phrase:

- tagWhat kind of phrase (e.g., S, NP, VP)
- branches -- Sequence of Tree or Leaf components

- tag -- What kind of word (e.g., N, V)
- word The word

A Tree represents a phrase:

- tag— What kind of phrase (e.g., S, NP, VP)
- branches -- Sequence of Tree or Leaf components

- tag -- What kind of word (e.g., N, V)
- word The word

A Tree represents a phrase:

- tagWhat kind of phrase (e.g., S, NP, VP)
- branches -- Sequence of Tree or Leaf components

- tag -- What kind of word (e.g., N, V)
- word The word (Demo)

$$S \rightarrow NP VP$$

A grammar rule describes how a tag can be expanded.

 $S \rightarrow NP VP$

A Sentence ...

```
A Sentence ... can be expanded as ...
```

A grammar rule describes how a tag can be expanded.

 $S \rightarrow NP VP$

A Sentence ...

... can be expanded as ...

... a Noun Phrase then a Verb Phrase.

A grammar rule describes how a tag can be expanded.

 $S \rightarrow NP VP$

A Sentence ...

... can be expanded as ...

... a Noun Phrase then a Verb Phrase.

 $S \rightarrow NP VP$

V → buffalo

A grammar rule describes how a tag can be expanded.

buffalo

 $V \rightarrow buffalo$

A grammar rule describes how a tag can be expanded.

(Demo)

Parsing

Recursively expand, but force words to match input.

Recursively expand, but force words to match input.

Recursively expand, but force words to match input.

S —

Recursively expand, but force words to match input.

______S____

buffalo buffalo buffalo buffalo

Learning

(Demo)

Not all syntactic structures are equally common.

teacher strikes idle kids

Not all syntactic structures are equally common.

S —

teacher strikes idle kids

$$S \rightarrow NP \ VP$$
 $NN \rightarrow teacher$ $NP \rightarrow NN \ NNS$ $NNS \rightarrow strikes$ $VP \rightarrow VB \ NP$ $VB \rightarrow idle$ $NP \rightarrow NNS$ $NNS \rightarrow kids$

Not all syntactic structures are equally common.

$$S \rightarrow NP \ VP$$
 $NN \rightarrow teacher$ $NP \rightarrow NN \ NNS$ $NNS \rightarrow strikes$ $VP \rightarrow VB \ NP$ $VB \rightarrow idle$ $NP \rightarrow NNS$ $NNS \rightarrow kids$

Not all syntactic structures are equally common.

$$S \rightarrow NP \ VP \ 25372 \ NN \rightarrow teacher$$
 NP $\rightarrow NN \ NNS \ NNS \rightarrow strikes$ VP $\rightarrow \ VB \ NP \ VB \ NNS \ NNS \rightarrow kids$

Not all syntactic structures are equally common.

$$S \rightarrow NP \ VP \ 25372 \ NN \rightarrow teacher$$
 $NP \rightarrow NN \ NNS \ 1335 \ NNS \rightarrow strikes$
 $VP \rightarrow VB \ NP \ VB \rightarrow idle$
 $NP \rightarrow NNS \ NNS \rightarrow kids$

Not all syntactic structures are equally common.

$S \rightarrow NP VP$	25372	NN → teacher
$NP \rightarrow NN NNS$	1335	NNS → strikes
$VP \rightarrow VB NP$	6679	VB → idle
$NP \rightarrow NNS$		NNS → kids

Not all syntactic structures are equally common.

$S \rightarrow NP VP$	25372	NN → teacher
$NP \rightarrow NN NNS$	1335	NNS → strikes
$VP \rightarrow VB NP$	6679	VB → idle
$NP \rightarrow NNS$	4282	NNS → kids

Not all syntactic structures are equally common.

$S \rightarrow NP VP$	25372	$NN \rightarrow teacher$ 5
$NP \rightarrow NN NNS$	1335	NNS → strikes
$VP \rightarrow VB NP$	6679	VB → idle
$NP \rightarrow NNS$	4282	NNS → kids

Not all syntactic structures are equally common.

$S \rightarrow NP VP$	25372	NN → teacher	5
$NP \rightarrow NN NNS$	1335	NNS → strikes	25
$VP \rightarrow VB NP$	6679	VB → idle	
$NP \rightarrow NNS$	4282	NNS → kids	

Not all syntactic structures are equally common.

$S \rightarrow NP VP$	25372	NN → teacher	5
$NP \rightarrow NN NNS$	1335	NNS → strikes	25
$VP \rightarrow VB NP$	6679	VB → idle	26
$NP \rightarrow NNS$	4282	NNS → kids	

Not all syntactic structures are equally common.

$S \rightarrow NP VP$	25372	NN → teacher	5
$NP \rightarrow NN NNS$	1335	NNS → strikes	25
$VP \rightarrow VB NP$	6679	VB → idle	26
$NP \rightarrow NNS$	4282	NNS → kids	32

Not all syntactic structures are equally common.

$S \rightarrow NP VP$	25372	NN → teacher	5
$NP \rightarrow NN$	1335 4358	VBZ → strikes	25 19
$VP \longrightarrow VBZ NP$	6679 3160	JJ → idle	26 18
$NP \rightarrow JJ NNS$	4282 2526	NNS → kids	32

Not all syntactic structures are equally common.


```
S \rightarrow NP VP 25372 NN \rightarrow teacher 5 NP \rightarrow NN \frac{1335}{4358} 4358 VBZ \rightarrow strikes 25 19 VP \rightarrow VBZ NP \frac{6679}{3160} 3160 JJ \rightarrow idle \frac{26}{18} 18 NP \rightarrow JJ NNS \frac{4282}{526} 2526 NNS \rightarrow kids 32 (Demo)
```