CISC455/851 - Evolutionary Optimization and Learning

11: Evolution Strategies 2

- ES recombination
- Parent selection
- Survivor selection
- Example application
- Textbook Chapter 6.2, 4.4.2

Self-adaption in ES

constant variance for all dimensions

different variance for each dimension

covariance matrix adaptation (CMA)

n_{σ}	n_{α}	Structure of individuals	Remark
1	0	$\langle x_1, \ldots, x_n, \sigma \rangle$	Standard mutation
n	0	$\langle x_1, \ldots, x_n, \sigma_1, \ldots, \sigma_n \rangle$	Standard mutations
n	$n \cdot (n-1)/2$	$\langle x_1,\ldots,x_n,\sigma_1,\ldots,\sigma_n,\alpha_1,\ldots,\alpha_{n\cdot(n-1)/2}\rangle$	Correlated mutations

ES technical sketch

Representation	Real-valued vectors
Recombination	Discrete or intermediary
Mutation	Gaussian perturbation
Parent selection	Uniform random
Survivor selection	Deterministic elitist replacement by (μ, λ) or $(\mu + \lambda)$
Speciality	Self-adaptation of mutation step sizes

Recombination

- Create one child per recombination
- How to create an allele for one child
 - discrete recombination
 - intermediary recombination
- How to choose parents
 - global recombination: select two parents for each position

Recombination

- ES typically uses global recombination
- Discrete recombination for object variables
 - preserves diversity within the phenotype (solution) space
 - allows the trial of very different combinations of variables
- Intermediary recombination for strategy parameters (mutation step size)
 - assures a more cautious adaptation of strategy parameters

Parent selection

- Parents are selected by uniform random distribution whenever an operator needs one/some
- Thus: ES parent selection is unbiased every individual has the same probability to be selected
- Note that in ES, "parent" means a population member (in GA, a population member selected to undergo variation)

Survivor selection

- Applied after creating χ children from the μ parents by recombination and mutation
- Deterministically picks the best ones
- Basis of selection is either:
 - the set of children only: (μ,λ)
 - the set of parents and children: $(\mu + \lambda)$

Survivor selection

- $(\mu + \lambda)$ selection is an elitist strategy, monotonic progression
- (μ, λ) selection can "forget" and more fair, punctuated
- Often (μ, λ) selection is preferred by most users:
 - better in leaving local optima, especially working with a small μ
 - better in following moving optima
 - using the + strategy bad σ values can survive in $< x, \sigma >$ too long if their host x is very fit
- Selective pressure in ES is high ($\lambda pprox 7 imes \mu$ is the common setting)

Prerequisites for self-adaptation

- $\mu > 1$ to carry different strategies (individuals)
- $\lambda > \mu$ to generate offspring surplus
- Strong selection, e.g. $\lambda \approx 7 \times \mu$
- (μ, λ) selection to get rid of mis-adapted σ
- Intermediate recombination for strategy parameters while discrete recombination for object variables

Example application (ES₁)

• Task is to minimize the Ackley function with n = 30 (optimal 0 at x = (0,0,...,0))

$$f(x) = -20 \cdot \exp\left(-0.2\sqrt{\frac{1}{n}} \cdot \sum_{i=1}^{n} x_i^2\right) - \exp\left(\frac{1}{n} \sum_{i=1}^{n} \cos(2\pi x_i)\right) + 20 + e$$

- Representation: $< x_1, x_2, ..., x_{30}, \sigma > , -30 < x_i < 30$
- Selection: (30, 200)
- Termination: after 100k fitness evaluations
- Initial standard deviations: $\sigma = 3.0$

Example application (ES₃₀)

• Task is to minimize the Ackley function with n = 30 (optimal 0 at x = (0,0,...,0))

$$f(x) = -20 \cdot \exp\left(-0.2\sqrt{\frac{1}{n}} \cdot \sum_{i=1}^{n} x_i^2\right) - \exp\left(\frac{1}{n} \sum_{i=1}^{n} \cos(2\pi x_i)\right) + 20 + e$$

- Representation: $< x_1, x_2, ..., x_{30}, \sigma_1, \sigma_2, ..., \sigma_{30} > , -30 < x_i < 30$
- Selection: (30, 200)
- Termination: after 100k fitness evaluations
- Initial standard deviations: $\sigma_i = 3.0$

Result comparison

