Evaluate testing data (survival) - lasso

EVE W.

2020-05-07

Contents

U. Load Data	1
1. Scores	2
2. Important Features	4
## user input	
<pre>project_home <- "~/EVE/examples"</pre>	
<pre>project_name <- "lasso_survival_outCV_test"</pre>	

0. Load Data

```
300 of samples were used 100 of full features 4 runs, each run contains 3 CVs. run with lasso.r with alpha = 1.
```

1. Scores

Prevalidation scores during RFE

Note for the **HR plot**: A HR value (per seed) is calculated by comparing the survival time between 'long' and 'short' survivors. These two group is defined by splitting samples based on *median* predicted risk score; group_0 is predicted risk scores > median, which can be viewed as 'short survivors'. On the other hand, group_1 can be viewed as 'long survivors'. If the prediction is reasonable, the hazard ratio of group_1/group_0 should be < 1. The actual function used in calculating HR is coxph(Surv(time, status) ~ group.binary, df).

The following plot is to quickly see how well the prediction can separate long and short survivor.

prediction under seed 1001

2. Important Features

distribution across 3 seed x 3 CV

of times a feature is selected by lasso (alpha= 1)

```
## [1] "there are 14 unique features used from the 100 feature set"
```

```
##
      Min. 1st Qu. Median
                              Mean 3rd Qu.
##
             1.000
                     2.000
                              2.222
                                      3.000
                                              6.000
```

[1] "there are 6 NA values in vimp before summation within seeds; they are imputed with the smallest

[1] "there are 23 NA values in vimp after summation within seeds; they are imputed with the smallest

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

^{## [1] &}quot;summary of number of features used in each run under 3 seeds and 3 CVs"

Distribution across all 14 features

from NextDoor analysis (summed across all CVs per seed)

Top feature, by the worsen statistic from NextDoor analysis

[1] "there are 6 NA values in vimp before summation within seeds; they are imputed with the smallest ## [1] "there are 23 NA values in vimp after summation within seeds; they are imputed with the smallest

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Distribution across all 14 features

Frequency (summed across CVs/seeds)