Solutions to Continuous Dynamical Systems Numerical Methods for Dynamical Systems

Ratthaprom PROMKAM, Dr. rer. nat.

Department of Mathematics and Computer Science, RMUTT

Outline

- Introduction to Continuous Dynamical Systems
- 2 Lipschitz Continuity
- Jacobian Matrices
- 4 Existence and Uniqueness of Solution
- Workshop

Continuous Dynamical Systems

Definition

A continuous dynamical system is a set of ordinary differential equations (ODEs)

$$\dot{x}(t) = f(t, x(t)),$$

where $x(t) \in \mathbb{R}^n$ and $f : \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$.

Note:

- $\hat{x}(t)$ denotes the derivative $\frac{\mathrm{d}x}{\mathrm{d}t}(t).$
- $\$ We often consider autonomous systems: $\dot{x} = f(x)$.

Continuous Dynamical Systems

Example (The Logistic equation)

Model Form:

$$\dot{x}(t) = r x(t) \left(1 - \frac{x(t)}{K}\right),$$

where:

- x(t) represents the population (or concentration) at time t.
- > 0 is the intrinsic growth rate.

Continuous Dynamical Systems

Example (The Lotka-Volterra Equations)

Model Form:

$$\begin{cases} \dot{x}(t) = a \, x(t) - b \, x(t) \, y(t), \\ \dot{y}(t) = c \, x(t) \, y(t) - d \, y(t), \end{cases}$$

where:

- x(t) is the **prey population**.
- y(t) is the **predator population**.
- > 0 is the **predation rate coefficient**.

Solutions

Definition

To a continuous dynamical system

$$\dot{x}(t) = f(t, x(t)), \quad t \in I \subseteq \mathbb{R}, \quad x(t_0) = x_0.$$

- a function $\varphi: I \to \mathbb{R}^n$ is called a *solution* if:
 - 1. φ is continuously differentiable on I,
 - 2. For every $t \in I$, $\varphi(t)$ satisfies $\dot{\varphi}(t) = f(t, \varphi(t))$,
 - 3. φ satisfies the initial condition $\varphi(t_0) = x_0$.

Solutions

Example

Consider the following continuous dynamical system:

$$\dot{x}(t) = \alpha x(t), \quad x(t_0) = x_0.$$

Show that $x(t) = x_0 e^{\alpha(t-t_0)}$ is a solution.

Solutions

Example (Logistic Equation)

For the logistic model

$$\dot{x}(t) = r x(t) \left(1 - \frac{x(t)}{K}\right), \quad x(t_0) = x_0,$$

the solution (for $x_0 > 0$ and $x_0 < K$) can be written as

$$x(t) = \frac{K}{1 + \left(\frac{K}{x_0} - 1\right)e^{-r(t-t_0)}}.$$

Definition (Lipschitz continuity)

A function $f:D\subseteq\mathbb{R}^n\to\mathbb{R}^m$ is said to be **Lipschitz continuous** on D if there exists a constant $L\geq 0$ such that

$$\|f(x) - f(y)\| \le L \|x - y\| \quad \text{for all} \quad x, y \in D.$$

Remarks:

- The smallest such L is called the **Lipschitz constant** of f.
- $\$ If L < 1, f is said to be a contraction.
- \bigcirc If f is Lipschitz continuous, it is also uniformly continuous, but not necessarily differentiable.

Example (Constant Function is Lipschitz)

Let $f:\mathbb{R}\to\mathbb{R}$ be given by f(x)=c for some constant $c\in\mathbb{R}.$ Show that f is Lipschitz continuous.

Proof: For any $x, y \in \mathbb{R}$,

$$|f(x) - f(y)| = |c - c| = 0 \le 0 \cdot |x - y|.$$

Hence f is Lipschitz continuous with Lipschitz constant L=0.

Example (Linear Function is Lipschitz)

Let $f: \mathbb{R} \to \mathbb{R}$ be given by

$$f(x) = ax + b,$$

where $a, b \in \mathbb{R}$. Show that f is Lipschitz continuous.

Proof: For any $x, y \in \mathbb{R}$,

$$|f(x) - f(y)| = |(ax + b) - (ay + b)| = |a(x - y)| = |a| \cdot |x - y|.$$

Thus,

$$|f(x) - f(y)| \le |a||x - y|.$$

Hence f is Lipschitz continuous with constant L = |a|.

Department of Mathematics and Computer

Example (Square Function is not Lipschitz on \mathbb{R})

Let $f: \mathbb{R} \to \mathbb{R}$ be given by

$$f(x) = x^2.$$

Show that f is *not* Lipschitz continuous on \mathbb{R} .

Proof (By Contradiction): Suppose there exists a constant $L \geq 0$ such that

$$|x^2 - y^2| \le L|x - y|$$
 for all $x, y \in \mathbb{R}$.

Observe that

$$|x^2 - y^2| = |(x - y)(x + y)| = |x - y| |x + y|.$$

Example (Square Function is not Lipschitz on \mathbb{R})

Let $f: \mathbb{R} \to \mathbb{R}$ be given by

$$f(x) = x^2.$$

Show that f is not Lipschitz continuous on \mathbb{R} .

Proof (By Contradiction): Hence the supposed Lipschitz condition becomes

$$|x+y| \leq L$$
 for all $x, y \in \mathbb{R}$ with $x \neq y$.

But if we set x = t and y = t for large t,

$$|x+y| = |2t|.$$

This must be bounded by L for all t, which is impossible as $t \to \infty$. Therefore, f is not Lipschitz on \mathbb{R} .

Example (Square Function is not Lipschitz on \mathbb{R})

Let $f: \mathbb{R} \to \mathbb{R}$ be given by

$$f(x) = x^2.$$

Show that f is *not* Lipschitz continuous on \mathbb{R} .

Note: $f(x) = x^2$ is Lipschitz on any bounded interval [-M, M].

Definition (Jacobian Matrix)

Let $f: \mathbb{R}^n \to \mathbb{R}^m$ have components

$$f(x) = (f_1(x), f_2(x), \dots, f_m(x)).$$

If all partial derivatives exist and are continuous in an open region $D \subset \mathbb{R}^n$, then the **Jacobian matrix** of f at $x = (x_1, x_2, \dots, x_n) \in D$ is

$$\nabla f(x) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \frac{\partial f_m}{\partial x_2} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}.$$

Department of Mathematics and Computer

Example (Scalar Function $f: \mathbb{R}^2 \to \mathbb{R}$)

Consider

$$f(x,y) = x^2 + 3xy.$$

All partial derivatives exist, so the Jacobian (which in this case is just the gradient as a row vector) is

$$\nabla f(x,y) = \left[\frac{\partial}{\partial x} (x^2 + 3xy) \quad \frac{\partial}{\partial y} (x^2 + 3xy) \right] = \left[2x + 3y \quad 3x \right].$$

Example (Vector Function $f: \mathbb{R}^2 \to \mathbb{R}^2$)

Define

$$f(x,y) = (x^2 + y^2, x + y^3).$$

Then $f_1(x,y) = x^2 + y^2$ and $f_2(x,y) = x + y^3$. The Jacobian is:

$$\nabla f(x,y) = \begin{bmatrix} \frac{\partial f_1}{\partial x} & \frac{\partial f_1}{\partial y} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} \end{bmatrix} = \begin{bmatrix} 2x & 2y \\ 1 & 3y^2 \end{bmatrix}.$$

Example (Vector Function $f: \mathbb{R}^3 \to \mathbb{R}^2$)

Let

$$f(x, y, z) = (e^x + yz, x^2 - y^3 + \sin z).$$

Then:

$$f_1(x, y, z) = e^x + yz$$
, $f_2(x, y, z) = x^2 - y^3 + \sin z$.

Hence, the Jacobian is a 2×3 matrix:

$$\nabla f(x,y,z) = \begin{pmatrix} \frac{\partial f_1}{\partial x} & \frac{\partial f_1}{\partial y} & \frac{\partial f_1}{\partial z} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} & \frac{\partial f_2}{\partial z} \end{pmatrix} = \begin{pmatrix} e^x & z & y \\ 2x & -3y^2 & \cos z \end{pmatrix}.$$

Department of Mathematics and Computer

Theorem (Bounded Gradient Implies Lipschitz Continuity)

Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be a differentiable function on an open, convex set $D \subseteq \mathbb{R}^n$. If there exists a constant $M \ge 0$ such that

$$\|\nabla f(x)\| \le M \quad \text{for all } x \in D,$$

then f is Lipschitz continuous on D with Lipschitz constant M.

Sketch of proof:

Let $x,y\in D$ and consider the straight line segment $\gamma(t)=y+t\,(x-y)$, with $t\in[0,1]$. By the convexity of $D,\,\gamma(t)\in D$ for all t. Using the fundamental theorem of calculus, we have

$$f(x) - f(y) = \int_0^1 \nabla f(\gamma(t)) (x - y) dt,$$

$$||f(x) - f(y)|| \le \int_0^1 ||\nabla f(\gamma(t))|| ||x - y|| dt \le M ||x - y||.$$

Department of Mathematics and Computer

Theorem (Picard-Lindelöf Existence and Uniqueness)

Let $I=[a,b]\subset\mathbb{R}$ be an interval and $f:I\times\mathbb{R}^n\to\mathbb{R}^n$ be a continuous function. If f is **Lipschitz continuous** in the state variable x, then for any $t_0\in I$ and any initial condition $x_0\in\mathbb{R}^n$, the initial value problem

$$\dot{x}(t) = f(t, x(t)), \qquad x(t_0) = x_0,$$

has a unique solution x(t) on some subinterval $[t_0 - \delta, t_0 + \delta] \subset I$.

Example

Show that there exists a solution to the following continuous dynamical system:

$$\dot{x}(t) = f(x(t)) = 2x(t) - 3\sin(x(t)), \quad x(t) \in \mathbb{R}.$$

Example

Show that there exists a solution to the following continuous dynamical system:

$$\dot{x}(t) = f(x(t)) = 2x(t) - 3\sin(x(t)), \quad x(t) \in \mathbb{R}.$$

Check Continuity: The function $f(x) = 2x - 3\sin(x)$ is composed of polynomials and sine, which are continuous for all $x \in \mathbb{R}$.

Example

Show that there exists a solution to the following continuous dynamical system:

$$\dot{x}(t) = f(x(t)) = 2x(t) - 3\sin(x(t)), \quad x(t) \in \mathbb{R}.$$

Check Lipschitz Continuity:

$$f'(x) = 2 - 3\cos(x).$$

Since cos(x) is bounded between -1 and 1, we have

$$|2 - 3\cos(x)| \le 2 + 3 = 5$$
 for all $x \in \mathbb{R}$.

Hence $|f'(x)| \leq 5$, implying f is globally Lipschitz on \mathbb{R} with Lipschitz constant L=5.

Example

Show that there exists a solution to the following continuous dynamical system:

$$\dot{x}(t) = f(x(t)) = 2x(t) - 3\sin(x(t)), \quad x(t) \in \mathbb{R}.$$

Conclusion: By Picard–Lindelöf theorem, for any initial condition $x(0) = x_0 \in \mathbb{R}$, there is a unique local solution x(t) that satisfies $\dot{x} = f(x)$.

In fact, because f is globally Lipschitz, the solution extends (uniquely) for all time t.

Problem 1: Checking a Solution to a Dynamical System

Consider the system

$$\dot{x}(t) = -2x(t),$$

with the initial condition x(0) = 3. The proposed solution is

$$x(t) = 3e^{-2t}.$$

- 1. Verify that x(t) satisfies the ODE by computing $\dot{x}(t)$ and substituting into the equation.
- 2. Check that the initial condition x(0) = 3 is satisfied.
- 3. Sketch the solution x(t) and describe its behavior as $t \to \infty$.

Problem 2: Verifying Lipschitz Continuity

Let
$$f(x) = x^2$$
 and $g(x) = \sin(x)$.

- 1. Prove that g(x) is Lipschitz continuous on $\mathbb R$. Find its Lipschitz constant.
- 2. Show that f(x) is not Lipschitz continuous on \mathbb{R} , but is Lipschitz on any bounded interval [-M,M].

Problem 3: Applying Picard-Lindelöf

Consider the system

$$\dot{x}(t) = \ln(1+x^2), \quad x(0) = x_0 \in \mathbb{R}.$$

- 1. Show that $f(x) = \ln(1 + x^2)$ is differentiable for all $x \in \mathbb{R}$, and compute its derivative f'(x).
- 2. Prove that $|f'(x)| \leq M$ for some constant M on \mathbb{R} , thus showing f(x) satisfies the bounded gradient condition.
- 3. Use the Picard–Lindelöf theorem to prove that the given system has a unique solution for all $t \in \mathbb{R}$.