Homework 7 Solutions

Section 14:

2. Find the order of $(\mathbb{Z}_4 \times \mathbb{Z}_{12})/(\langle 2 \rangle \times \langle 2 \rangle)$.

Solution. In \mathbb{Z}_4 , $\langle 2 \rangle = \{2,0\}$, so $|\langle 2 \rangle| = 2$. In \mathbb{Z}_{12} , $\langle 2 \rangle = \{2,4,6,8,10,0\}$, so $|\langle 2 \rangle| = 6$. Hence

$$|(\mathbb{Z}_4 \times \mathbb{Z}_{12})/(\langle 2 \rangle \times \langle 2 \rangle)| = \frac{|\mathbb{Z}_4 \times \mathbb{Z}_{12}|}{|\langle 2 \rangle \times \langle 2 \rangle|} = \frac{|\mathbb{Z}_4| \cdot |\mathbb{Z}_{12}|}{|\langle 2 \rangle| \cdot |\langle 2 \rangle|} = \frac{4 \cdot 12}{2 \cdot 6} = 4.$$

6. Find the order of $(\mathbb{Z}_{12} \times \mathbb{Z}_{18})/\langle (4,3) \rangle$.

Solution. In $\mathbb{Z}_{12} \times \mathbb{Z}_{18}$, $\langle (4,3) \rangle = \{(4,3),(8,6),(0,9),(4,12),(8,15),(0,0)\}$, so

$$|(\mathbb{Z}_{12} \times \mathbb{Z}_{18})/\langle (4,3)\rangle| = \frac{|\mathbb{Z}_{12} \times \mathbb{Z}_{18}|}{|\langle (4,3)\rangle|} = \frac{|\mathbb{Z}_{12}| \cdot |\mathbb{Z}_{18}|}{6} = \frac{12 \cdot 18}{6} = 36.$$

10. Find the order of $26 + \langle 12 \rangle$ in $\mathbb{Z}_{60} / \langle 12 \rangle$.

Solution. We must find the smallest integer n such that $n(26 + \langle 12 \rangle) = \langle 12 \rangle$. $\langle 12 \rangle = \{12, 24, 36, 48, 0\}$ in \mathbb{Z}_{60} , so $26 + \langle 12 \rangle = \{38, 50, 2, 14, 26\} = 2 + \langle 12 \rangle$ (this makes computations easier). We now compute:

$$1 \cdot (2 + \langle 12 \rangle) = 2 + \langle 12 \rangle \neq \langle 12 \rangle$$

$$2 \cdot (2 + \langle 12 \rangle) = 4 + \langle 12 \rangle \neq \langle 12 \rangle$$

$$3 \cdot (2 + \langle 12 \rangle) = 6 + \langle 12 \rangle \neq \langle 12 \rangle$$

$$4 \cdot (2 + \langle 12 \rangle) = 8 + \langle 12 \rangle \neq \langle 12 \rangle$$

$$5 \cdot (2 + \langle 12 \rangle) = 10 + \langle 12 \rangle \neq \langle 12 \rangle$$

$$6 \cdot (2 + \langle 12 \rangle) = 12 + \langle 12 \rangle = \langle 12 \rangle.$$

Hence $|26 + \langle 12 \rangle| = 6$ in $\mathbb{Z}_{60} / \langle 12 \rangle$.

14. Find the order of $(3,3) + \langle (1,2) \rangle$ in $(\mathbb{Z}_4 \times \mathbb{Z}_8)/\langle (1,2) \rangle$.

Solution. $\langle (1,2) \rangle = \{(1,2), (2,4), (3,6), (0,0)\}$ in $\mathbb{Z}_4 \times \mathbb{Z}_8$.

$$1 \cdot ((3,3) + \langle (1,2) \rangle) = (3,3) + \langle (1,2) \rangle \neq \langle (1,2) \rangle$$

$$2 \cdot ((3,3) + \langle (1,2) \rangle) = (2,6) + \langle (1,2) \rangle \neq \langle (1,2) \rangle$$

$$3\cdot ((3,3)+\langle (1,2)\rangle)=(1,1)+\langle (1,2)\rangle\neq \langle (1,2)\rangle$$

$$4 \cdot ((3,3) + \langle (1,2) \rangle) = (0,4) + \langle (1,2) \rangle \neq \langle (1,2) \rangle$$

$$5 \cdot ((3,3) + \langle (1,2) \rangle) = (3,7) + \langle (1,2) \rangle \neq \langle (1,2) \rangle$$

$$6 \cdot ((3,3) + \langle (1,2) \rangle) = (2,2) + \langle (1,2) \rangle \neq \langle (1,2) \rangle 7 \cdot ((3,3) + \langle (1,2) \rangle) = (1,5) + \langle (1,2) \rangle \neq \langle (1,2) \rangle$$

$$8\cdot ((3,3)+\langle (1,2)\rangle)=(0,0)+\langle (1,2)\rangle=\langle (1,2)\rangle$$

Hence $|(3,3) + \langle (1,2) \rangle| = 8$ in $(\mathbb{Z}_4 \times \mathbb{Z}_8)/\langle (1,2) \rangle$.

16. Compute $i_{(1,2,3)}[H]$ for the subgroup $H = \{\iota, (2,3)\}$ of the group S_3 .

Solution.
$$(1,2,3)^{-1} = (1,3,2)$$
, so

$$i_{(1,2,3)}(\iota) = \iota$$
 and $i_{(1,2,3)}((2,3)) = (1,2,3)(2,3)(1,3,2) = (1,3).$

Thus $i_{(1,2,3)}[H] = {\iota, (1,3)}.$

24. Show that A_n is a normal subgroup of S_n and compute S_n/A_n ; that is, find a known group to which S_n/A_n is isomorphic.

Proof. Consider the map $\operatorname{sgn}: S_n \to \{-1,1\}$, which we "showed" in class is a group homomorphism (where $\{-1,1\}$ is a group under multiplication). Now sgn was defined such that $\operatorname{sgn}(\sigma) = 1$ if and only if σ is even, i.e. $\sigma \in A_n$. Hence $\operatorname{Ker}(\operatorname{sgn}) = A_n$. It follows that A_n is normal in S_n .

Solution. We consider the case when n=1 separately. $S_1=A_1=\{\iota\}$, so S_1/A_1 is the trivial group. For $n\geq 2$, we have previously shown that $(S_n:A_n)=2$, so $|S_n/A_n|=2$. There is only one group, up to isomorphism, of order 2, so it must be that $S_n/A_n\simeq \mathbb{Z}_2$.

26. Prove that the torsion subgroup T of an abelian group G is a normal subgroup of G and that G/T is torsion free.

[Note: The **torsion subgroup** of an abelian group is the set of all elements of finite order. A group is **torsion free** if its only element of finite order is the identity element.]

Proof. T was already shown on a previous homework to be a subgroup of G and it is normal due to the fact that G is abelian. We therefore simply show that G/T is torsion free. Suppose $gT \in G/T$ satisfies $(gT)^n = T$ for some $n \in \mathbb{Z}^+$. Then $g^nT = T$, i.e. $g^n \in T$. But then g^n has finite order, so there exists some $m \in \mathbb{Z}^+$ such that $(g^n)^m = e$. Hence $g^{mn} = e$ and so g is of finite order, i.e. $g \in T$. Therefore gT = T. We have shown that the identity element of G/T is the only element of finite order in G/T and so G/T is torsion free.

28. Characterize the normal subgroups of a group G in terms of the cells where they appear in the partition given by the conjugacy relation in the Exercise 27.

[Exercise 27: A subgroup H is **conjugate to a subgroup** K of a group G if there exists an inner automorphism i_g of G such that $i_g[H] = K$. Show that conjugacy is an equivalence relation on the collection of subgroups of G.]

Solution. The normal subgroups are exactly the subgroups in the singleton cells of the partition given by the conjugacy relation.

30. Let H be a normal subgroup of a group G and let m = (G : H). Show that $a^m \in H$ for every $a \in G$.

Proof. Note that |G/H| = (G:H) = m. We previously showed that any group element raised to the order of the group yields the identity element. Thus $a^m H = (aH)^m = H$ for all $a \in G$ and so $a^m \in H$ for all $a \in G$.

32. Given any subset S, of a group G, show that it makes sense to speak of the smallest normal subgroup that contains S.

[Hint: Use the fact that any intersection of normal subgroups of G is again a normal subgroup of G.]

Proof. Let G be a group and $S \subset G$. Set

$$H := \bigcap_{\substack{S \subseteq K \leq G \\ K \text{ normal}}} K.$$

According to the fact in the hint, H is normal. And since S is contained in every subgroup being intersected, it is also contained in the intersection H itself. Furthermore, if K is any normal subgroup of G containing S, then K is one of the subgroups being intersected and so $H \leq K$. In this sense, H is the smallest normal subgroup of G containing S.

33. Let G be a group. An element that can be expressed in the form $aba^{-1}b^{-1}$ for some $a, b \in G$ is a **commutator** in G. The preceding exercise shows that there is a smallest normal subgroup G of a group G containing all commutators in G. the subgroup G is the **commutator subgroup** of G. Show that G/G is an abelian group.

Proof. Let $gC, hC \in G/C$. Then $hgh^{-1}g^{-1} \in C$ and so $hgh^{-1}g^{-1}C = C$. Therefore $(gC)(hC) = C(gC)(hC) = (hgh^{-1}g^{-1}C)(gC)(hC) = (hgh^{-1}g^{-1}gh)C = (hg)C = (hC)(gC)$. Hence G/C is abelian.

34. Show that if a finite group G has exactly one subgroup H of a given order, then H is a normal subgroup of G.

Proof. Let G be a group of finite order and suppose $H \leq G$ is the only subgroup of G with order |H|. Given $g \in G$, $i_g[H]$ is a subgroup of G and since i_g is a bijection, $i_g[H]$ has the same order as H. But since H was assumed to be the only subgroup of G with order |H|, this implies that $gHg^{-1} = i_g[H] = H$. Since g was arbitrary, this shows that $gHg^{-1} = H$ for all $g \in G$ and so H is a normal subgroup of G.

Section 15:

4. Classify $(\mathbb{Z}_4 \times \mathbb{Z}_8)/\langle (1,2) \rangle$ according to the fundamental theorem of finitely generated abelian groups.

Solution. $(\mathbb{Z}_4 \times \mathbb{Z}_8)/\langle (1,2) \rangle \simeq \mathbb{Z}_8$

Proof. $\langle (1,2) \rangle = \{(1,2), (2,4), (3,6), (0,0)\} \text{ in } \mathbb{Z}_4 \times \mathbb{Z}_8, \text{ so}$ $|(\mathbb{Z}_4 \times \mathbb{Z}_8)/\langle (1,2) \rangle| = \frac{|\mathbb{Z}_4 \times \mathbb{Z}_8|}{|\langle (1,2) \rangle|} = \frac{|\mathbb{Z}_4| \cdot |\mathbb{Z}_8|}{4} = \frac{4 \cdot 8}{4} = 8.$

Since $(0,1) + \langle (1,2) \rangle$ must be added to itself 8 times to obtain $\langle (1,2) \rangle$ and $|(\mathbb{Z}_4 \times \mathbb{Z}_8)/\langle (1,2) \rangle| = 8$, it must be that $(\mathbb{Z}_4 \times \mathbb{Z}_8)/\langle (1,2) \rangle$ is cyclic of order 8, i.e. it is isomorphic to \mathbb{Z}_8 .

8. Classify $(\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z})/\langle (1,1,1) \rangle$ according to the fundamental theorem of finitely generated abelian groups.

Solution. $(\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z})/\langle (1,1,1) \rangle \simeq \mathbb{Z} \times \mathbb{Z}$

Proof. We define a map $\phi : \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ by $\phi(\ell, m, n) = (\ell - m, m - n)$. ϕ is easily shown to be a homomorphism and $\phi(1, 0, 0) = (1, 0)$ and $\phi(0, 0, -1) = (0, 1)$, so ϕ is surjective.

Now $\phi(1,1,1) = (0,0)$, so $\langle (1,1,1) \rangle \subseteq \operatorname{Ker}(\phi)$. If $(\ell,m,n) \in \operatorname{Ker}(\phi)$, then $\ell-m=0$ and m-n=0, i.e. $\ell=m=n$. Hence $(\ell,m,n)=\ell \cdot (1,1,1) \in \langle (1,1,1) \rangle$. We have show that $\operatorname{Ker}(\phi) \subseteq \langle (1,1,1) \rangle$ and conclude that $\operatorname{Ker}(\phi) = \langle (1,1,1) \rangle$.

Therefore, by the first isomorphism theorem, $(\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z})/\langle (1,1,1) \rangle \simeq \mathbb{Z} \times \mathbb{Z}$.

10. Classify $(\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}_8)/\langle (0,4,0) \rangle$ according to the fundamental theorem of finitely generated abelian groups.

Solution. $(\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}_8)/\langle (0,4,0) \rangle \simeq \mathbb{Z} \times \mathbb{Z}_4 \times \mathbb{Z}_8$

Proof. The map $\phi: \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}_8 \to \mathbb{Z} \times \mathbb{Z}_4 \times \mathbb{Z}_8$ defined by $\phi(\ell, m, n) \mapsto (\ell, m \cdot 1, n)$ is readily shown to be a surjective homomorphism with kernel $\langle (0, 4, 0) \rangle$. By the first isomorphism theorem, $(\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}_8)/\langle (0, 4, 0) \rangle \simeq \mathbb{Z} \times \mathbb{Z}_4 \times \mathbb{Z}_8$.

35. Let $\phi: G \to G'$ be a group homomorphism, and let N be a normal subgroup of G. Show that $\phi[N]$ is a normal subgroup of $\phi[G]$.

Proof. Given $x \in \phi[N]$ and $y \in \phi[G]$, there are some $n \in N$ and $g \in G$ such that $x = \phi(n)$ and $y = \phi(g)$. Then

$$yxy^{-1} = \phi(g)\phi(n)\phi(g)^{-1} = \phi(g)\phi(n)\phi(g^{-1}) = \phi(gng^{-1}).$$

Since N is normal in G, $gng^{-1} \in N$ and so $yxy^{-1} = \phi(gng^{-1}) \in \phi[N]$. It follows that $\phi[N]$ is normal in $\phi[G]$.

36. Let $\phi: G \to G'$ be a group homomorphism and let N' be a normal subgroup of G'. Show that $\phi^{-1}[N']$ is a normal subgroup of G.

Proof. Given $n \in \phi^{-1}[N']$ and $g \in G$, we have $\phi(n) \in N'$ and $\phi(gng^{-1}) = \phi(g)\phi(n)\phi(g)^{-1}$. Since N' is normal in G' and $\phi(n) \in N'$, it follows that $\phi(gng^{-1}) = \phi(g)\phi(n)\phi(g)^{-1} \in N'$. Thus $gng^{-1} \in \phi^{-1}[N']$. It follows that $\phi^{-1}[N']$ is normal in G.

Additional Exercises:

1. You showed on the last homework assignment that, for any $n \in \mathbb{Z}^+$, $SL_n(\mathbb{R})$ is a normal subgroup of $GL_n(\mathbb{R})$. To what group that we've seen in this class is $GL_n(\mathbb{R})/SL_n(\mathbb{R})$ isomorphic? Prove your claim. [Note: Your answer shouldn't depend on n.] Solution. $GL_n(\mathbb{R})/SL_n(\mathbb{R}) \simeq \mathbb{R}^*$ (under multiplication).

Proof. We've seen that det : $GL_n(\mathbb{R}) \to \mathbb{R}^*$ is a homomorphism with kernel $SL_n(\mathbb{R})$. Since det is obviously surjective, the first isomorphism theorem implies that $GL_n(\mathbb{R})/SL_n(\mathbb{R}) \simeq \mathbb{R}^*$.

2. Let G be a simple group and suppose $\phi: G \to G'$ is a homomorphism. Prove that ϕ is either the trivial homomorphism or a one-to-one map.

Proof. First, note that $\operatorname{Ker}(\phi)$ is a normal subgroup of G. Since G is assumed to be simple, it must be that $\operatorname{Ker}(\phi) = \{e\}$ or $\operatorname{Ker}(\phi) = G$. Hence either ϕ is one-to-one or the trivial homomorphism, respectively.

3. Let G be a group and N a normal subgroup of G. Provide a bijection between the set of subgroups of G/N and the set of subgroups of G that contain N (i.e. all $H \leq G$ such that $N \subseteq H$). Prove that it is indeed a bijection.

Solution. Define

$$\phi: \{H \le G \mid N \subseteq H\} \to \{X \le G/N\}$$

by $\phi(H) = \pi[H]$, where $\pi: G \to G/N$ is the natural homomorphism defined by $\pi(g) = gN$. (Pay careful attention to the distinction between parentheses and brackets!)

Proof. First note that ϕ is indeed well-defined, since the image of a subgroup under a homomorphism was shown to be a subgroup of the codomain.

To see that ϕ is injective, suppose $\phi(H) = \phi(H')$ for some $H \leq G$ and $H' \leq G$ such that $N \subseteq H$ and $N \subseteq H'$. Then $\pi[H] = \pi[H']$ and so, given $h \in H$, there is some $h' \in H'$ such that hN = h'N. But then $(h(h')^{-1})N = (hN)(h'N)^{-1} = N$, so $h(h')^{-1} \in N \subseteq H'$. But then, since $h', h(h')^{-1} \in H'$, we have $h = (h(h')^{-1})h' \in H'$. It follows that $H \subseteq H'$. The argument is symmetric in H and H', so we also have $H' \subseteq H$ and therefore H = H'. Hence ϕ is injective.

To see that ϕ is surjective, let $X \leq G/N$. We claim that $\pi^{-1}[X]$ is a subgroup of G containing N. First, note that $N \in X$ since N is the identity element of G/N and X is a subgroup of G/N. Second, note that $\pi(n) = nN = N \in X$ for all $n \in N$. Therefore $N \subseteq \pi^{-1}[X]$. Finally, since the preimage of a subgroup under a homomorphism is a

subgroup of the domain, $\pi^{-1}[X]$ is a subgroup of G (again, containing N). It remains to
observe that $\pi[\pi^{-1}[X]] = X$ (since π is surjective), so $\phi(\pi^{-1}[X]) = X$ and we have shown
that ϕ is surjective.

We conclude that ϕ is a well-defined bijection.