Datový tok

- Jde o přenášení dat, vyjadřuje množství přenesených dat za časovou jednotku
- Znázorňuje přesun informací
- Měl by obsahovat informace o tom, jaká data jsou přesunuta
- Dá se sestavovat diagram datových toků

Zdroj dat

Zasády:

- Minimalizovat vztupy
- Maximalizovat výstupy
- Vkládat pouze primární údaje

Normální formy

- Je to soubor doporučení (metodika) pro návrh datové struktury databáze
- Přestože existuje řada normálních forem, v praxi se za normalizovanou databázi považuje taková, která splňuje alespoň první tři normální formy
 - o Nultá
 - Tabulky bez normalizace
 - Normalizace soubor pravidel popisující postup transformace struktury entyt a relací

Cílem normalizace: odstranění redundatních dat

o První

- všechny atributy obsahují pouze atomické hodnoty
- neexistence primárních klíčů
- Klasické porušení:
 - O Klasickým příkladem tabulky porušující první normální formu bývá nejčastěji problém s telefonními čísly, kdy naším cílem je umožnit evidovat pro každou osobu dvě různá telefonní čísla, jak lze vidět v tabulce níže:

Tabulka Osoba

Jméno	Telefonní číslo		
Petr Novák	+420 111 222 333		
Jarmil Hnízdo	+420 123 123 123, +420 123 123 124		

o Druhá

- tabulka musí splnovat první normální formu (1NF)
- každý neklíčový atribut musí být plně závislý na primárním klíči
- ID zaměstnance
- Třetí
 - tabulka splnuje druhou normální formu (2NF)
 - Všechny neklíčové atributy musí být vzájemně nezávislé
 - Ostranění redundantního PSČ
- BCNF (také 3,5)
 - I atributy, které jsou součástí primárního klíče musí být vzájemně nezávislé
- Čtvrtá
 - Relace popisuje pouze příčinnou souvislost mezi klíčem a atributy
 - Člověk má nějaké osobní údaje, pracovní údaje atd. a to všechno odkazuje na jeho ID
- o Pátá
 - Relaci již nejde bezeztrátově rozložit
 - Tabulka číselníku
 - Výhoda rychlost zpracovávání dotazů
 - Nevýhoda nepředstavitelná složitost, databáze v této normální formě již netvoří člověk

Konstrukty relační databáze (včetně příkladů a jejich vlastností, definujte pojmy a použití číselníků a klíčů)

- Entita
 - O Objekt reálného světa schopný nezávislé existence
 - Člověk, pes, stůl, židle
- Vztahy
 - O Vazba mezi minimálně dvěma entitami

- Např. relace mezi tabulkami
- Metadata
 - Data o datech
 - O Např. katalogizační lístek v knihovně, obsahující data o původu a umístění knihy
- Integritní omezení
 - O Tvrzení říkající co má platit o objektech v daném výseku světa a časovém okamžiku
 - Příklady
 - Doménové integritní omezení
 - Zajištuje dodržení datových typů
 - Entitně integritní omezení
 - Zajištuje úplnost a jedinečnost ID
 - Referenční integritní omezení
 - Zajištuje návaznosti mezi primárním a cizím klíčem
 - Aktivní referenční integrita
 - "Co se stane když"
 - Činnost, kterou databázový stroj provede při porušení integritních omezení
- Klíče
 - Primární
 - Jednoznačná identifikaci entity
 - o Cizí
 - Odkaz na primární klíč v jiné tabulce
 - Kandidátní
 - Klíč, který by mohl být v roli primárního, ale existuje nějaký vhodnější
 - Částečný
 - Část primárního klíče, který v kombinaci s jiným vytvoří primární klíč
 - Např. máme léky. Máme několik antibiotik a několik antimikotik. Každý lék má v rámci své skupiny nějaké označení, např. "L". Lék L se pak může vyskytovat jak mezi antibiotiky, tak mezi antimikotiky. Ve své skupině je ale vždy pouze jednou.
 - V tuhle chvíli je označení léku a jeho skupina částečný klíč, protože máme-li lék L a víme že jde o
 antibiotikum, je lék jednoznačné definován
- Číselník
 - O Tabulka primárních kličů s popiskem
 - O V praxi si pak u Franty napíšeme v číselníků lidí kde bydlí a nikde jinde už pak nezapisujeme jeho adresu, pouze se odkazujeme do tabulky lidí na Frantu

Datové typy

- Int
- Float
- Boolean
- Date
- OLE
- String
- Char
- Hypertext
- Memo poznámka, libovolně dlouhý text
- Enum

Doba odezvy

- Čas od vzniku potřeby do jejího uspokojení
- Např. uživatel vyžádá data => request na backend => zpracování na BE => vrácení dat => zobrazení dat
 - O A jak dlouho to trvalo je doba odezvy

Dobré znát

Data

- vyjádření stavu v objektu v daném čase
- Objekt je popsán fyzikální veličinou nebo pouhým zadáním
- Rozdělení:
 - Tvrdá data
 - Pevně dané, jasně definované, vyčíslitelné
 - Měkká data
 - Vyjadřují názory, postoje
 - Primární
 - Základní odečitatelný údaj
 - Sekundární (odvozená)
 - Agregovaná, vypočítaná, agregace

Informace

- data, která nás na základě předchozích zkušeností ovlivní
- Rozdělení:
 - Syntaktická
 - Strukturální vztahy mezi symboly (syntaxe)
 - o Sémantická
 - Sématika = nauka o významu slov
 - Zabývá pouze sémantickým významem slov
 - Pragmatická
 - Vztahy mezi symboly a okolním světem

Zásady práce s daty

- Minimalizovat vstupy
- Maximalizovat výstupy
- Každý údaj jen 1
- Vkládat pouze primární data

Model - idealizovaný obraz skutečnosti, zjednodušený originál

Kopie - nezávislý otisk originálu

Replika - závislá na originálu, mění se originál, mění se replika

Reprodukce - přiblížení se originálu, OCR programy

Reprografie - věda o kopiích

Abeceda - ustálený soubor znaků

Kódování - převod mezi abecedami, např. Latinka do azbuky

Šifrování

- Jednosměrný
 - O Hash SHA256, md5
- Dvousměrné/asymetrické
 - o převod v rámci jedné abecedy. Např. Ceaserova šifra, AES