Содержание

1. Теорема Больцано-Вейерштрасса и критерий Коши сходимости ловой последовательности 1.1. Теорема Больцано-Вейерштрасса 1.2. Критерий Коши	3
2. Ограниченность функции, непрерывной на отрезке, достиже точных верхней и нижней граней	 6
3. Теорема о промежуточных значениях непрерывной функции	7
4. Теоремы о среднем Ролля, Лагранжа и Коши для дифференциемых функций. 4.1. Теорема Ролля 4.2. Теоремы Лагранжа и Коши 5. Формула Тейлора с остаточным членом в форме Пеано Лагранжа	7 7 8 или
5.1. Член в форме Лагранжа 5.2. Член в форме Пеано	9 10
6. Исследование функций одной переменной при помощи первовторой производных на монотонность, локальные экстремумы, вы	
лость. Необходимые условия, достаточные условия. 6.1. Необходимые и достаточные условия монотонности функции	11 11 12 й на 13
8. Достаточные условия дифференцируемости функции несколь переменных	
9. Теорема о неявной функции, заданной одним уравнением	
10. Экстремумы функций многих переменных. Необходимые у вия, достаточные условия	сло- 17 17
11. Свойства интеграла с переменным верхним пределом (непрерность, дифференцируемость). Формула Ньютона-Лейбница	р ыв- 19 19
12. Равномерная сходимость функциональных последовательнос	
и рядов. Непрерывность, интегрируемость и дифференцируемость	
мы функционального ряда	21
таю. дифферепцируемость суммы функционального ряда	44

ГОС по матану

Disclaymer: доверять этому конспекту или нет выбирайте сами

Экзамен - это тропа

Коновалов Сергей Петрович

1. Теорема Больцано-Вейерштрасса и критерий Коши сходимости числовой последовательности

1.1. Теорема Больцано-Вейерштрасса

Определение 1.1.1: Если $E \subset \mathbb{R}$ – ограниченное сверху (снизу) множество, то $M(m) \in \mathbb{R}$ такое, что

 $\forall x \in E : x < M(x > m)$

называется **верхней (нижней) гранью** множества E.

Определение 1.1.2: Наименьшая из верхних граней множества E называется точной верхней гранью: $\sup E$.

Наибольшая из нижних граней множества E называется **точной нижней гранью**: $\inf E$.

Теорема 1.1.1 (О существовании точной верхней (нижней) грани): Любое ограниченное сверху (снизу) непустое множество $E \subset \mathbb{R}$ имеет точную верхнюю (нижнюю) грань.

Доказательство: Пусть B – множество верхних граней множества E. Введём обозначение $A := \mathbb{R} \setminus B$.

Тогда если произвольное число a меньше какого-то $x \in E$, то оно точно не верхняя грань $E \Rightarrow a \in A$.

Заметим также свойство множества B:

$$\forall b \in B : \forall x > b : x \in B$$

Тогда по одной из аксиом действительных чисел

$$\exists c \in R : \forall a \in A : \forall b \in B : a \le c \le b$$

Пусть $\sup E := c$. Проверим свойства точной верхней грани:

1. c является верхней гранью

От противного. Пусть $c \notin B$, тогда $\exists x \in B : x > c$, причём $c < \frac{x+c}{2} < x$. Но тогда заметим, что $\frac{x+c}{2} \in A$, что противоречит выбору c как числа больше либо равного любого элемента A

 $2.\ c$ является наименьшей из верхних граней

От противного. Пусть $\exists M \in B: M < c$. Но тогда $M < \frac{M+c}{2} < c$, причём $\frac{M+c}{2} \in B$, что противоречит выбору c как числа меньше либо равного любого элемента B.

Теорема 1.1.2 (Вейерштрасса): Каждая ограниченная сверху (снизу) неубывающая (невозрастающая) последовательность сходится, причём её предел равен точной верхней (нижней) грани.

Доказательство: $\left\{x_n\right\}_{n=1}^{\infty}$ ограничена сверху $\Rightarrow \exists \sup \left\{x_n\right\}_{n=1}^{\infty} = l$ Отсюда:

- $1. \ \forall n \in \mathbb{N} : x_n \leq l < l + \varepsilon$
- 2. $\forall \varepsilon > 0: \exists N \in \mathbb{N}: l-\varepsilon < x_N$ (по определению супремума)

Заметим, что получилось в точности определение предела.

Теорема 1.1.3 (Принцип Кантора вложенных отрезков): Всякая последовательность вложенных отрезков $\{[a_n,b_n]\}_{n=1}^{\infty}$, то есть

$$\forall n \in \mathbb{N}: [a_n,b_n] \supset [a_{n+1},b_{n+1}]$$

имеет непустое пересечение, то есть

$${\textstyle\bigcap_{n=1}^{\infty}}[a_n,b_n]\neq\emptyset$$

Доказательство: Из вложенности очевидно следует

$$\forall n \in \mathbb{N}: a_{n+1} \geq a_n, \ b_{n+1} \leq b_n$$

Тогда заметим, что

$$\forall n \in \mathbb{N}: a_n \leq b_1, b_n \geq a_1$$

Тогда по теореме Вейерштрасса:

$$\lim_{n\to\infty} a_n = \sup \left\{ a_n \right\}_{n=1}^{\infty} = a$$

$$\lim_{n\to\infty}b_n=\inf\left\{b_n\right\}_{n=1}^\infty=b$$

А значит отрезок [a,b] (возможно вырожденный) включён в пересечение всех отрезков. \square

Теорема 1.1.4 (Больцано-Вейерштрасса): Из каждой ограниченной последовательности можно выделить сходящуюся подпоследовательность.

Доказательство: Пусть $\left\{x_n\right\}_{n=1}^{\infty}$ — рассматриваемая ограниченная последовательность, то есть

 $\exists a_1,b_1 \in \mathbb{R} : \forall n \in \mathbb{N} : a_1 \leq x_n \leq b_1 \\ \text{Заметим, что один из отрезков } \left[a_1,\frac{a_1+b_1}{2}\right], \left[\frac{a_1+b_1}{2},b_1\right] \text{ содержит бесконечно много элементов последовательности.}$

Пусть $[a_2,b_2]$ – тот из отрезков, который содержит бесконечно много элементов.

Продолжая данный трюк счётное количество раз получим последовательность вложенных отрезков $\{[a_n,b_n]\}_{n=1}^{\infty}$. Также заметим, что данные отрезки стягиваются:

$$0 < b_n - a_n = \tfrac{b_1 - a_1}{2^n}$$

Тогда по принципу Кантора:

$$\bigcap_{n=1}^{\infty} [a_n, b_n] = \{c\}$$

 $\bigcap_{n=1}^\infty [a_n,b_n]=\{c\}$ Осталось построить подпоследовательность, будем брать $x_{n_k}\in [a_k,b_k],$ причём так, чтобы $n_k > n_{k-1}$. Очевидно, $n_1 = 1$. Существование предела также очевидно:

$$0 \leq \left| c - x_{n_k} \right| \leq b_k - a_k = \frac{b_1 - a_1}{2^k} \underset{k \to \infty}{\rightarrow} 0$$

1.2. Критерий Коши

Определение 1.2.1: Последовательность $\left\{x_{n}\right\}_{n=1}^{\infty}$ называется фундаментальной, если

$$\forall \varepsilon > 0: \exists N \in \mathbb{N}: \forall n > N: \forall p \in \mathbb{N}: \ \left| x_{n+p} - x_n \right| < \varepsilon$$

Теорема 1.2.1 (Критерий Коши сходимости числовой последовательности): Числовая последовательность сходится ⇔ она фундаментальна.

$$\exists l \in \mathbb{R} : \forall \varepsilon > 0 : \exists N \in \mathbb{N} : \forall n > N : |x_n - l| < \frac{\varepsilon}{2}$$

Тогда по неравенству треугольника в условиях предела:

$$|x_{n+p} - x_n| = |x_{n+p} - l + l - x_n| \le |x_{n+p} - l| + |x_n - l| < \varepsilon$$

 $|x_{n+p}-x_n|=|x_{n+p}-l+l-x_n|\leq |x_{n+p}-l|+|x_n-l|<arepsilon$ \Leftarrow Вначале докажем, что из фундаментальности следует ограниченность:

$$\varepsilon \coloneqq 1: \exists N \in \mathbb{N}: \forall n > N: \forall p \in \mathbb{N}: \ |x_{n+p} - x_n| < 1$$

Тогда заметим, что

$$\forall n \in \mathbb{N} : \min(x_1, ..., x_N, x_{N+1} + 1) \le x_n \le \max(x_1, ..., x_N, x_{N+1} + 1)$$

 $\forall n \in \mathbb{N}: \min(x_1,...,x_N,x_{N+1}+1) \leq x_n \leq \max(x_1,...,x_N,x_{N+1}+1)$ Тогда из ограниченной последовательности $\{x_n\}_{n=1}^\infty$ по теореме Больца-

но-Вейерштрасса достанем сходящуюся подпоследовательность:
$$\exists \left\{ x_{n_k} \right\}_{k=1}^{\infty} : \exists l : \forall \varepsilon > 0 : \exists K(\varepsilon) \in \mathbb{N} : \forall k > K(\varepsilon) : \ \left| x_{n_k} - l \right| < \frac{\varepsilon}{2}$$

Также по определению фундаментальности:

$$\forall \varepsilon > 0: \exists N(\varepsilon) \in \mathbb{N}: \forall n > N(\varepsilon): \forall p \in \mathbb{N}: \ \left|x_{n+p} - x_n\right| < \varepsilon$$

Объединим эти два условия и получим требуемое:

$$\forall \varepsilon > 0: \exists N_0 = \max \left(N(\varepsilon), n_{K(\varepsilon)+1}\right): \forall n > N_0:$$

$$|x_n-l| = \left|x_n - x_{n_{K(\varepsilon)+1}} + x_{n_{K(\varepsilon)+1}} - l\right| \leq \left|x_n - x_{n_{K(\varepsilon)+1}}\right| + \left|x_{n_{K(\varepsilon)+1}} - l\right| < \varepsilon$$

5

2. Ограниченность функции, непрерывной на отрезке, достижение точных верхней и нижней граней

2.1. Ограниченность функции, непрерывной на отрезке

Определение 2.1.1: Пусть f определена в некоторой окрестности $U_{\delta_0}(x_0)$, где $x_0 \in \mathbb{R}$. Если $\lim_{x \to x_0} f(x) = f(x_0)$, то функция называется **непрерывной** в точке x_0 .

Определение 2.1.2: f называется непрерывной на множестве $X \subset \mathbb{R}$, если

$$\forall x_0 \in X: \forall \varepsilon > 0: \exists \delta > 0: \forall x \in X, |x - x_0| < \delta: \ |f(x) - f(x_0)| < \varepsilon$$

Теорема 2.1.1 (Первая теорема Вейшерштрасса о непрерывной на отрезке функции): Если f непрерывна на [a,b], то f ограничена на [a,b].

Доказательство: От противного, пусть f неограничена сверху. Тогда $\sup_{x \in [a,b]} f(x) = +\infty$

То есть

$$\forall n \in \mathbb{N} : \exists x_n \in [a, b] : f(x_n) > n$$

 $\forall n\in\mathbb{N}:\exists x_n\in[a,b]:\ f(x_n)>n$ Причём $\forall n\in\mathbb{N}:a\leq x_n\leq b,$ то есть $\left\{x_n\right\}_{n=1}^\infty$ — ограниченная, тогда по

теореме Больцано-Вейерштрасса
$$\exists \left\{ x_{n_k} \right\}_{k=1}^{\infty} : \ \lim_{k \to \infty} x_{n_k} = x_0 \Rightarrow \lim_{k \to \infty} f \Big(x_{n_k} \Big) = f(x_0)$$
 Однако из $f(x_n) > n$ следует, что $f(x_0) = \infty$. Противоречие. \square

2.2. Достижение точных верхних и нижних граней

Теорема 2.2.1 (Вторая теорема Вейерштрасса о непрерывных на отрезке функциях): Если f непрерывна на [a,b], то

$$\exists x', x'' \in [a,b]: \ f(x') = \sup_{x \in [a,b]} f(x); \quad f(x'') = \inf_{x \in [a,b]} f(x)$$

Доказательство: Пусть $M = \sup_{x \in [a,b]} f(x)$. Тогда по определению супремума

$$\forall \varepsilon > 0 : \exists x \in [a, b] : M - \varepsilon < f(x) \le M$$

$$\forall \varepsilon>0:\exists x\in[a,b]:\ M-\varepsilon< f(x)\leq M$$
 В том числе для $\{\varepsilon_n\}_{n=1}^\infty=\left\{\frac{1}{n}\right\}_{n=1}^\infty:$
$$\exists \{x_n\}_{n=1}^\infty\subset[a,b]:\forall n\in\mathbb{N}:\ M-\frac{1}{n}< f(x_n)\leq M$$
 Тогда по теореме Больцано-Вейерштрасса:

$$\exists \left\{ x_{n_k} \right\}_{k=1}^{\infty} : \ \lim_{k \to \infty} x_{n_k} = x_0 \Rightarrow \lim_{k \to \infty} f \Big(x_{n_k} \Big) = f(x_0) = M$$

Последнее равенство было получено устремлением $k \to \infty$ в неравенстве $M - \frac{1}{n_k} < f(x_{n_k}) \le M$.

Таким образом, M действительно достижим функцией f в точке x_0 . Для инфимума аналогично.

3. Теорема о промежуточных значениях непрерывной функции

Теорема 3.1 (Больцано-Коши о промежуточных значениях): Пусть f непрерывна на [a,b]. Тогда

$$\forall x_1, x_2 \in [a,b] : c \coloneqq f(x_1) < d \coloneqq f(x_2) : \ \forall e \in (c,d) : \exists \gamma \in [a,b] : f(\gamma) = e$$

Доказательство: Рассмотрим частный случай c < e = 0 < d.

Построим последовательность отрезков $\{[a_n,b_n]\}_{n=1}^{\infty},$ где $[a_1,b_1]=\{x_1,x_2\}$ (мы не знаем в каком порядке идут иксы).

- Заметим, что $f(a_1) \cdot f(b_1) < 0$. Рассмотрим $f\left(\frac{a_1+b_1}{2}\right)$. Какие могут быть случаи? Если $f\left(\frac{a_1+b_1}{2}\right) = 0$, то мы победили и останавливаемся. Если $f\left(\frac{a_1+b_1}{2}\right) > 0$, то $a_2 := a_1, b_2 := \frac{a_1+b_1}{2}$. Если $f\left(\frac{a_1+b_1}{2}\right) < 0$, то $a_2 := \frac{a_1+b_1}{2}$, $b_2 := b_1$.

Либо после конечного числа шагов мы найдём требуемую точку, либо построим последовательность стягивающихся отрезков:

 $b_n-a_n=rac{|x_2-x_1|}{2^{n-1}}$ Тогда по принципу Кантора $\{\gamma\}=igcap_{n=1}^\infty[a_n,b_n]$, причём $\lim_{n o\infty}a_n=\lim_{n o\infty}b_n=\gamma\in[a,b]$

$$\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n=\gamma\in[a,b]$$

Тогда в силу непрерывности f:

$$f(\gamma) = \lim\nolimits_{n \to \infty} f(a_n) = \lim\nolimits_{n \to \infty} f(b_n)$$

Заметим, что после кажой итерации алгоритма изначальное свойство сохраняется:

$$f(a_n)\cdot f(b_n)<0$$

Совершив предельный переход в неравенстве, получим

$$f^2(\gamma) \leq 0$$

Из чего следует $f(\gamma) = 0$.

В общем случае рассматривается вспомогательная функция F(x) =f(x) - e.

4. Теоремы о среднем Ролля, Лагранжа и Коши для дифференцируемых функций.

4.1. Теорема Ролля

Определение 4.1.1: Пусть f определена в некоторой δ_0 окрестности точки x_0 . Если

$$\exists \delta \in (0,\delta_0): \forall x \in U_{\delta(x_0)}: \ f(x) \leq f(x_0)$$

то x_0 – точка локального максимума.

Также аналогично вводятся определения локального минимума, а также строгие экстремумы, в которых неравенство строгое.

Теорема 4.1.1 (Ферма о необходимом условии локального экстремума): Если x_0 – точка локального экстремума функции y=f(x), дифференцируемой в x_0 , то $f'(x_0) = 0$.

Доказательство: БОО x_0 – точка локального максимума.

$$\lim_{\Delta x \to +0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} \le 0; \quad \lim_{\Delta x \to -0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} \ge 0$$

Заметим, что тогда $\lim_{\Delta x \to +0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} \leq 0; \quad \lim_{\Delta x \to -0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} \geq 0$ А при существовании производной оба этих предела совпадают, поэтому производной в x_0 остаётся лишь быть равной нулю.

Теорема 4.1.2 (Ролля): Если f непрерывна на [a,b], дифференцируема на (a, b), причём f(a) = f(b), то

$$\exists c \in (a,b) : f'(c) = 0$$

Доказательство: Заметим, что если $f \equiv \text{const}$, то утверждение тривиально. Иначе, f непрерывна на $[a, b] \Rightarrow$

$$\exists m < M: \ m = \min_{x \in [a,b]} f(x); \quad M = \max_{x \in [a,b]} f(x)$$

Заметим, что либо $m \neq f(a)$, либо $M \neq f(a)$.

Это значит, что существует локальный минимум или максимум в некоторой точке $c \in (a,b)$, а по теореме Ферма мы знаем, что f'(c) = 0.

4.2. Теоремы Лагранжа и Коши

Теорема 4.2.1 (Обобщённая теорема о среднем): Если f, g непрерывны на [a,b], дифференцируемы на (a,b), то

$$\exists c \in (a,b): (f(b)-f(a))g'(c) = (g(b)-g(a))f'(c)$$

Доказательство: Рассмотрим

$$h(x) = (f(b) - f(a))g(x) - (g(b) - g(a))f(x)$$

Заметим, что h всё ещё непрерывна на отрезке и дифференцируема на интервале, причём

$$h(b) = (f(b) - f(a))g(b) - (g(b) - g(a))f(b) = g(a)f(b) - f(a)g(b) = h(a)$$

	Теорема 4.2.2 (Лагранжа о среднем): Если f непрерывна на $[a,b]$, дифференцируема на (a,b) , то $\exists c \in (a,b): \ \frac{f(b)-f(a)}{b-a} = f'(c)$
	Доказательство: В обобщённой теореме о среднем возьмём $g(x)=x.$ \square
	Теорема 4.2.3 (Коши о среднем): Если f,g непрерывны на $[a,b]$, дифференцируемы на (a,b) и $\forall x \in (a,b): g'(x) \neq 0$, то $\exists c \in (a,b): \frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f'(c)}{g'(c)}$
	Доказательство: Очевидная интерпретация обобщённой теоремы о среднем. Необходимо уточнить лишь, почему $g(b)-g(a)\neq 0$, чтобы мы смогли поделить на него. Если бы $g(b)=g(a)$, то по теореме Ролля $\exists c:\ g'(c)=0$, что противоречит с условием текущей теоремы.
]	5. Формула Тейлора с остаточным членом в форме Пеано или Лагранжа 5.1. Член в форме Лагранжа
	Лемма 5.1.1 : Если f n раз дифференцируема в точке x_0 , то $\exists !$ многочлен степени $\leq n$ такой, что $f(x_0) = P_n(f,x_0); f'(x_0) = P'(f,x_0);; f^{(n)}(x_0) = P_n^{(n)}(f,x_0)$ Этот многочлен имеет вид $P_{n(f,x)} = f(x_0) + \frac{f'(x_0)}{1!}(x-x_0) + \frac{f''(x_0)}{2!}(x-x_0)^2 + + \frac{f^{(n)}(x_0)}{n!}(x-x_0)^n$ и называется многочленом Тейлора степени n относительно точки x_0 .

То есть h удовлетворяет всем условиям теоремы Ролля. Требуемое дока-

зано.

Доказательство: Очевидно проверяем каждую производную

Лемма 5.1.2 (Об отношении): Если φ, ψ (n+1) раз дифференцируемы в $U_{\delta}(x_0)$, причём

$$\forall k=\overline{0,\,\mathbf{n}}:\ \varphi^{(k)}(x_0)=\psi^{(k)}(x_0)=0$$

но

$$\forall k = \overline{0, \mathbf{n}} : \forall x \in \dot{U}_{\delta}(x_0) : \ \psi^{(k)}(x) \neq 0$$

TO

$$\forall x \in U_\delta(x_0): \exists \xi \in (x_0,x): \ \frac{\varphi(x)}{\psi(x)} = \frac{\varphi^{(n+1)}(\xi)}{\psi^{(n+1)}(\xi)}$$

Доказательство: Заметим, что φ, ψ удовлетворяют условиям теоремы Коши

$$\exists \xi_1 \in (x_0, x): \ \frac{\varphi(x) - \underbrace{\varphi(x_0)}_0}{\psi(x) - \underbrace{\psi(x_0)}_0} = \frac{\varphi'(\xi_1)}{\psi'(\xi_1)} = \frac{\varphi'(\xi_1) - \underbrace{\varphi'(x_0)}_0}{\psi'(\xi_1) - \underbrace{\psi'(x_0)}_0} = \frac{\varphi''(\xi_2)}{\psi''(\xi_2)} = \dots = \frac{\varphi^{(n+1)}(\xi_{n+1})}{\psi^{(n+1)}(\xi_{n+1})}$$

Теорема 5.1.1 (Формула Тейлора с остаточным членом в форме Лагранжа):

Если f (n+1) раз дифференцируема в $U_{\delta}(x_0), \delta>0$, то $\forall x\in \dot{U}_{\delta}(x_0): \exists \xi\in (x_0,x): \ f(x)-P_n(f,x)=\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1}$

Доказательство: Сведём к предыдущей лемме об отношении:

$$\varphi(x) := f(x) - P_n(f, x); \quad \psi(x) := (x - x_0)^{n+1}$$

Все требуемые свойства проверяются очевидно.

5.2. Член в форме Пеано

Теорема 5.2.1 (Формула Тейлора с остаточным членом в форме Пеано): Если f n раз дифференцируема в точке x_0 , то

$$f(x) - P_n(f, x) = o((x - x_0)^n), x \to x_0$$

где $P_{n(f,x)}$ – многочлен Тейлора степени n функции f относительно x_0 .

Доказательство: По определению, если f n раз дифференцируема в точке, то она n-1 раз дифференцируема в окрестности.

Снова используем лемму об отношении, но для случая n-1:

$$\varphi(x)\coloneqq f(x)-P_{n(f,x)};\quad \psi(x)=\left(x-x_0\right)^n$$

Получим, что

$$\exists \xi \in (x_0,x): \ \frac{f(x) - P_{n(f,x)}}{\left(x - x_0\right)^n} = \frac{f^{(n-1)}(\xi) - P_n^{(n-1)}(f,\xi)}{n!(\xi - x_0)}$$

Получим, что
$$\exists \xi \in (x_0,x): \ \frac{f(x)-P_{n(f,x)}}{(x-x_0)^n} = \frac{f^{(n-1)}(\xi)-P_n^{(n-1)}(f,\xi)}{n!(\xi-x_0)}$$
 Заметим, что при $x \to x_0 \Rightarrow \xi \to x_0$:
$$\lim_{x \to x_0} \frac{f(x)-P_{n(f,x)}}{(x-x_0)^n} = \lim_{\xi \to x_0} \frac{f^{(n-1)}(\xi)-P_n^{(n-1)}(f,\xi)}{n!(\xi-x_0)} = \frac{1}{n!}(f(x_0)-P_n(f,x_0))^{(n)} = 0$$

- 6. Исследование функций одной переменной при помощи первой и второй производных на монотонность, локальные экстремумы, выпуклость. Необходимые условия, достаточные условия.
- 6.1. Необходимые и достаточные условия монотонности функции

```
Теорема 6.1.1: Пусть f дифференцируема на (a,b). Тогда 1. \forall x \in (a,b): f'(x) \geq 0 \Leftrightarrow f — неубывающая на (a,b) 2. \forall x \in (a,b): f'(x) \leq 0 \Leftrightarrow f — невозрастающая на (a,b) 3. \forall x \in (a,b): f'(x) > 0 \Rightarrow f — возрастающая на (a,b) 4. \forall x \in (a,b): f'(x) < 0 \Rightarrow f — убывающая на (a,b)
```

Доказательство:

1. $f'(x) \geq 0 \Rightarrow$ По теореме Лагранжа: $\forall x_1, x_2 : a < x_1 < x_2 < b : \exists \xi \in (x_1, x_2) : f(x_2) - f(x_1) = f'(\xi)(x_2 - x_1) \geq 0$ То есть для произвольных $x_1 < x_2 : f(x_1) \leq f(x_2)$. Обратно, пусть f(x) неубывающая. Тогда $\forall x_0 \in (a,b) : \forall \Delta x : \mathrm{sign} \ (f(x_0 + \Delta x) - f(x_0)) = \mathrm{sign} \ \Delta x$ Ну и тогда при $|\Delta x| < \min(x_0 - a, b - x_0)$: $\frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} \geq 0$

Совершим предельный переход в неравенстве и получим требуемое.

- 2. Аналогично предыдущему пункту
- 3. Контрпримером для \Leftarrow является $f(x) = x^3$ в точке 0
- 4. Контрпримером для \Leftarrow является $f(x) = -x^3$ в точке 0

6.2. Достаточные условия локальных экстремумов

Теорема 6.2.1 (Первое достаточное условие экстремума функции): Пусть f непрерывна в $U_{\delta_0}(x_0)$ и дифференцируема в $\dot{U}_{\delta_0}(x_0), \delta_0 > 0$:

1. Если $\exists \delta > 0: \forall x \in (x_0 - \delta, x_0): f'(x) > 0$ и $\forall x \in (x_0, x_0 + \delta): f'(x) < 0$, то x_0 — точка строгого локального максимума f2. Если $\exists \delta > 0: \forall x \in (x_0 - \delta, x_0): f'(x) < 0$ и $\forall x \in (x_0, x_0 + \delta): f'(x) > 0$, то x_0 — точка строгого локального минимума f

Доказательство: По сути просто заменили в определении локального экстремума монотонность на достаточное условие знакопостоянности производной из предыдущей теоремы. □

Теорема 6.2.2 (Второе достаточное условие локального экстремума): Если f n раз дифференцируема в точке $x_0, f^{(n)}(x_0) \neq 0, \forall k = \overline{1, \text{ n-1}}: f^{(k)}(x_0) = 0,$ то

- 1. Если n чётно, то f имеет в точке x_0 локальный минимум при $f^{(n)}(x_0)>0$ и локальный максимум при $f^{(n)}(x_0)<0$.
- 2. Если n нечётное, то f не имеет локального экстремума в точке x_0 .

Доказательство:

1. Воспользуемся разложением в Тейлора с остаточным членом в форме Пеано (учитывая факт нулевых производных):

$$f(x) = f(x_0) + \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n + o((x - x_0)^n), x \to x_0$$
 Так как n чётно, то $n = 2m$:
$$\frac{f(x) - f(x_0)}{(x - x_0)^{2m}} = \frac{f^{(n)}(x_0)}{n!} + o(1), x \to x_0$$

Левая часть в некоторой окрестности точки x_0 имеет тот же знак, что и правая. Тогда в силу чётной степени в знаменателе левой части получаем, что разность $f(x)-f(x_0)$ одного знака с n-ой производной.

2. Рассмотрим $f(x) = x^3$.

6.3. Необходимые и достаточные условия выпуклости

Определение 6.3.1: f называется выпуклой (вниз) (вогнутой вверх) на (a,b), если её график лежит не выше хорды, стягивающей любые две точки этого графика над (a,b).

f называется выпуклой (вверх) (вогнутой вниз) на (a,b), если её график лежит не ниже хорды, стягивающей любые две точки этого графика над (a,b).

Теорема 6.3.1: Пусть f дважды дифференцируема на (a,b):

- 1. f выпукла вниз на $(a,b) \Leftrightarrow \forall x \in (a,b) : f''(x) \geq 0$.
- 2. f выпукла вверх на $(a,b) \Leftrightarrow \forall x \in (a,b): f''(x) \leq 0$
- 3. f строго выпукла вниз на $(a,b) \Leftrightarrow \forall x \in (a,b): f''(x) > 0$.
- 4. f строго выпукла вверх на $(a,b) \Leftrightarrow \forall x \in (a,b): f''(x) < 0$

Доказательство:

1. \Leftarrow Рассмотрим эквивалентное определение выпуклости:

$$\begin{split} \forall x_0, x_1 : a < x_0 < x_1 < b : \forall t \in [0,1]: \\ x_t \coloneqq tx_0 + (1-t)x_1: \ f(x_t) \leq tf(x_0) + (1-t)f(x_1) \end{split}$$

Разложим f в формулу Тейлора с остаточным членом в форме Лагранжа с центром в точке x_t :

$$\begin{split} \exists \xi_1 \in (x_0, x_t) : f(x_0) = f(x_t) + f'(x_t)(x_0 - x_t) + \frac{f''(\xi_1)}{2!}(x_0 - x_t)^2 \\ \exists \xi_2 \in (x_1, x_t) : f(x_1) = f(x_t) + f'(x_t)(x_1 - x_t) + \frac{f''(\xi_2)}{2!}(x_1 - x_t)^2 \end{split}$$

Из-за знакопостоянности второй производной из этих равенств следуют следующие неравенства:

$$f(x_0) \ge f(x_t) + f'(x_t)(x_0 - x_t)$$

$$f(x_1) \ge f(x_t) + f'(x_t)(x_1 - x_t)$$

Умножим первое на t, второе на 1-t и сложим их:

$$tf(x_0)+(1-t)f(x_1)\geq f(x_t)+\underbrace{f'(x_t)(tx_0+(1-t)x_1-x_t)}^0$$
 \Rightarrow Рассмотрим произвольную точку $x_0\in(a,b)$ и достаточно малую

окрестность $\delta \coloneqq \min(x_0 - a, b - x_0)$. Тогда

$$\forall u \in (-\delta, \delta): x_0 = \frac{1}{2}(x_0 - u) + \frac{1}{2}(x_0 + u): \ f(x_0) \leq \frac{1}{2}f(x_0 - u) + \frac{1}{2}f(x_0 + u)$$
 Применим формулу Тейлора с остаточным членом в форме Пеано:
$$f(x_0 \pm u) = f(x_0) \pm f'(x_0)u + \frac{f''(x_0)}{2}u^2 + o(u^2), u \to 0$$

$$f(x_0 \pm u) = f(x_0) \pm f'(x_0)u + \frac{f''(x_0)}{2}u^2 + o(u^2), u \to 0$$

В прошлой строчке мы записали сразу два равенства благодаря \pm , да-

$$\frac{1}{2}f(x_0 - u) + \frac{1}{2}f(x_0^2 + u) = f(x_0) + \frac{f''(x_0)}{2}u^2 + o(u^2), u \to 0$$

вайте умножим каждое на $\frac{1}{2}$ и сложим их: $\frac{1}{2}f(x_0-u)+\frac{1}{2}f(x_0+u)=f(x_0)+\frac{f''(x_0)}{2}u^2+o(u^2), u\to 0$ Тогда при достаточно малых $u\frac{f''(x_0)}{2}u^2$ обязано будет стать такого же знака, как и $\frac{1}{2}f(x_0-u)+\frac{1}{2}f(x_0+u)-f(x_0)\geq 0$

- 2. Аналогично
- 3. \Leftarrow аналогично только со строгими неравенствами, а \Rightarrow вообще говоря не верно, например, для $f(x) = x^4$
- 4. \Leftarrow аналогично только со строгими неравенствами, а \Rightarrow вообще говоря не верно, например, для $f(x) = -x^4$

7. Теорема о равномерной непрерывности функции, непрерывной на компакте

Определение 7.1: Компактным множеством в метрическом пространстве X называется такое множество K, что из любого его открытого покрытия можно выделить конечное подпокрытие.

Определение 7.2: Функция $f: X \to \mathbb{R}$, где X – метрическое пространство, называется равномерно непрерывной на множестве $X' \subset X$, если

$$\forall \varepsilon > 0: \exists \delta > 0: \forall x_1, x_2 \in X': \rho(x_1, x_2) < \delta: |f(x_1) - f(x_2)| < \varepsilon$$

Теорема 7.1 (Кантора о равномерной непрерывности): Если $f: K \to \mathbb{R}$ непрерывна на компактном множестве $K \subset \mathbb{R}^n$, то она равномерно непрерывна на K.

Доказательство: От противного, выпишем отрицание равномерной непрерывности:

$$\exists \varepsilon > 0: \forall \delta > 0: \exists x_1, x_2 \in K: \|x_1 - x_2\| < \delta: \ |f(x_1) - f(x_2)| \geq \varepsilon$$

 $\exists \varepsilon > 0: \forall \delta > 0: \exists x_1, x_2 \in K: \|x_1 - x_2\| < \delta: \ |f(x_1) - f(x_2)| \geq \varepsilon$ Выбирая $\delta \coloneqq 1, \frac{1}{2}, \frac{1}{3}, ..., \frac{1}{m}, ...$ построим последовательность пар из отрицания непрерывности: $\left\{\left(x_{1,m}, x_{2,m}\right)\right\}_{m=1}^{\infty} \subset K^2.$

Причём

$$\forall m \in \mathbb{N} : ||x_{1,m} - x_{2,m}|| < \frac{1}{m} : |f(x_{1,m}) - f(x_{2,m})| \ge \varepsilon$$

 $\forall m \in \mathbb{N}: \|x_{1,m}-x_{2,m}\|<rac{1}{m}: |f(x_{1,m})-f(x_{2,m})|\geq arepsilon$ По одному из определений компактности выделим из последовательности пар подпоследовательность, у которой сходятся первые координаты: $\exists \left\{\left(x_{1,m_k},x_{2,m_k}\right)\right\}_{k=1}^\infty : \lim_{k\to\infty} x_{1,m_k} = x_0 \in K$

$$\exists \left\{ \left(x_{1,m_k}, x_{2,m_k} \right) \right\}_{k=1}^{\infty} : \lim_{k \to \infty} x_{1,m_k} = x_0 \in K$$

Причём заметим, что (комбинируем то, как мы строили последовательность пар и сходимости первых координат подпоследовательности):

$$\forall \varepsilon > 0 : \exists K \in \mathbb{N} : \forall k > 0 : \left\| x_{2, m_k} - x_0 \right\| \le$$

$$\left\|x_{1,m_k}-x_0\right\|+\left\|x_{1,m_k}-x_{2,m_k}\right\|<2\varepsilon$$

То есть

$$\begin{split} \lim_{k \to \infty} x_{1,m_k} &= \lim_{k \to \infty} x_{2,m_k} = x_0 \overset{\text{непрерывность } f}{\Rightarrow} \\ \lim_{k \to \infty} \Bigl(f\Bigl(x_{1,m_k}\Bigr) - f\Bigl(x_{2,m_k}\Bigr) \Bigr) &= 0 \end{split}$$

Противоречие!

8. Достаточные условия дифференцируемости функции нескольких переменных

Определение 8.1: Пусть f определена в некоторой окрестности $x_0 \in \mathbb{R}^n$. **Полным приращением** f в точке x_0 называется

$$\Delta f(x_0) = f(x_0 + \Delta x) - f(x_0) = fig(x_{0,1} + \Delta x_1, ..., x_{0,n} + \Delta x_nig) - fig(x_{0,1}, ..., x_{0,n}ig)$$
 называется дифференцируемой в x_0 , если

$$\Delta f(x_0) = (A, \Delta x) + o(\|\Delta x\|), \Delta x \to 0$$

где $A \in \mathbb{R}^n$ называется **градиентом**: grad $f(x_0) = A$

Определение 8.2: Дифференциалом дифференцируемой в x_0 функции f назовём выражение $(A, \Delta x)$ из определения дифференцируемости.

Определение 8.3: **Частной производной** в точке x_0 называется предел (если он существует):

$$\frac{\partial f}{\partial x_i}(x_0) = \lim_{\Delta x \to 0} \frac{f(x_{0,1},\dots,x_{0,j} + \Delta x,\dots,x_{0,n}) - f(x_{0,1},\dots,x_{0,j},\dots,x_{0,n})}{\Delta x}$$

Теорема 8.1 (Необходимое условие дифференцируемости): Если f дифференцируема в точке $x_0 \in \mathbb{R}$, то существуют частные производные $\forall j=\overline{1,n},$ причём

grad
$$f(x) = \left(\frac{\partial f}{\partial x_1}(x_0), ..., \frac{\partial f}{\partial x_n}(x_0)\right)$$

Доказательство: Сразу следует из определения - есть предел по всем многомерным приращениям, а значит и по однокоординатным в том числе. □

Теорема 8.2 (Достаточное условие дифференцируемости): Если f определена в некоторой окрестности точки x_0 , вместе со своими частными производными, причём они непрерывны в x_0 , то f дифференцируема в x_0 .

$$\begin{split} f\big(x_{0,1} + \Delta x_1, ..., x_{0,n} + \Delta x_n\big) - f\big(x_{0,1} + \Delta x_1, ..., x_{0,n-1} + \Delta x_{n-1}, x_{0,n}\big) + \\ f\big(x_{0,1} + \Delta x_1, ..., x_{0,n-1} + \Delta x_{n-1}, x_{0,n}\big) - f\big(x_{0,1} + \Delta x_1, ..., x_{0,n-1}, x_{0,n}\big) + \\ + ... + \\ f\big(x_{0,1} + \Delta x_1, x_{0,2}, ..., x_{0,n}\big) - f\big(x_{0,1}, ..., x_{0,n}\big) = \\ \frac{\partial f}{\partial x_n} \Big(x_{0,1} + \Delta x_1, ..., x_{0,n-1} + \Delta x_{n-1}, \xi_n\Big) \Delta x_n + \\ \frac{\partial f}{\partial x_{n-1}} \Big(x_{0,1} + \Delta x_1, ..., x_{0,n-2} + \Delta x_{n-2}, \xi_{n-1}, x_{0,n}\Big) \Delta x_{n-1} \\ + ... + \\ + \frac{\partial f}{\partial x_1} \Big(\xi_1, x_{0,2}, ..., x_{0,n}\Big) \Delta x_1 = \\ \sum_{i=1}^n \frac{\partial f}{\partial x_i} (x_0) \Delta x_i + o(\|\Delta x\|), \Delta x \to 0 \end{split}$$

9. Теорема о неявной функции, заданной одним уравнением

Определение 9.1: Кубом радиуса δ вокруг точки $x_0 \in \mathbb{R}^n$ назовём $K_{\delta,x_0} = \bigvee_{k=1}^n \left(x_0^k - \delta, x_0^k + \delta\right)$

где под × подразумевается декартово произведение.

Теорема 9.1: Пусть $F(x,y) = F(x_1,...,x_n,y)$ дифференцируема в окрестно-

сти точки $(x_0,y_0)=(x_0^1,...,x_0^n,y_0).$ Её производная $\frac{\partial F}{\partial y}$ непрерывна в этой окрестности, причём $F(x_0,y_0)=$ $0, \tfrac{\partial F}{\partial y}(x_0, y_0) \neq 0.$

Тогда для любого достаточно малого $\varepsilon>0$ найдётся $\delta>0$: $\forall x\in K_{\delta,x_0}:\exists !y=\varphi(x):\forall (x,y)\in K_{\delta,x_0} imes (y_0-\varepsilon,y_0+\varepsilon):$ $F(x,y) = 0 \Leftrightarrow y = \varphi(x) \land \exists \varphi'(x_0)$

По непрерывности частной производной, \exists окрестность точки (x_0,y_0) , в которой $\frac{\partial F}{\partial y}(x,y) > 0.$

Tогда из непрерывности F по y и знакоопределённости производной следует

$$\exists \varepsilon_0 : \forall \varepsilon \in (0, \varepsilon_0) : F(x_0, y_0 + \varepsilon) > 0 \land F(x_0, y_0 - \varepsilon) < 0$$

Расширяем территорию дальше, из непрерывности F по x следут

$$\exists \delta > 0: \forall x \in K_{\delta, x_0}: F(x, y_0 + \varepsilon) > 0 \land F(x, y_0 - \varepsilon) < 0$$

Из теоремы о промежуточных значениях непрерывной функции берём существование, а из знакоопределённости производной единственность:

$$\exists ! \varphi(x) \in (y_0 - \varepsilon, y_0 + \varepsilon) : F(x, \varphi(x)) = 0$$

3аметим, что arphi непрерывна по построению в (x_0,y_0) : мы брали x из 2δ окрестности точки x_0 , а значение лежало в 2ε окрестности точки y_0 .

Теперь докажем дифференцируемость φ , для этого распишем дифференцируемость F:

$$F(x,y) - \underbrace{F(x_0,y_0)}_{0} = \sum_{k=1}^{n} \frac{\partial F}{\partial x_k}(x_0,y_0) \cdot \left(x_k - x_0^k\right) + \frac{\partial F}{\partial y}(x_0,y_0) \cdot (y - y_0) + \underbrace{\frac{\partial F}{\partial y}(x_0,y_0)}_{0} = \underbrace{\frac{\partial F}{\partial x_k}(x_0,y_0)}_{0} \cdot \underbrace{\frac{\partial F$$

$$\alpha(x,y)$$

где $\alpha = o(\|(x,y) - (x_0,y_0)\|), (x,y) \to (x_0,y_0).$

Воспользуемся умножением на «умную единицу»:
$$\alpha(x,y) = \sum_{i=1}^n \frac{\alpha(x,y)\cdot \left(x_i-x_0^i\right)^2}{\left\|(x,y)-(x_0,y_0)\right\|_2^2} + \frac{\alpha(x,y)\cdot \left(y-y_0\right)^2}{\left\|(x,y)-(x_0,y_0)\right\|_2^2}$$

Введём новые обозначения:
$$\alpha_i(x,y)\coloneqq \frac{\alpha(x,y)\cdot(x_i-x_0^i)}{\|(x,y)-(x_0,y_0)\|_2^2};\quad \beta(x,y)\coloneqq \frac{\alpha(x,y)\cdot(y-y_0)}{\|(x,y)-(x_0,y_0)\|_2^2}$$

Тогда

$$\begin{split} F(x,y) &= \textstyle \sum_{k=1}^n \Bigl(\frac{\partial F}{\partial x_k}(x_0,y_0) + \alpha_k(x,y) \Bigr) \bigl(x_k - x_0^k \bigr) + \\ & \Bigl(\frac{\partial F}{\partial y}(x_0,y_0) + \beta(x,y) \Bigr) (y-y_0) \end{split}$$

Подставляя $y = \varphi(x)$ в выражение выше, будем использовать новые обозначения:

$$\tilde{\alpha}_k(x) := \alpha_k(x, \varphi(x)); \quad \tilde{\beta}(x) := \beta(x, \varphi(x))$$

$$\underbrace{F(x,\varphi(x))}_{0} = \textstyle\sum_{k=1}^{n} \Bigl(\frac{\partial F}{\partial x_{k}}(x_{0},\varphi(x_{0})) + \tilde{\alpha}_{k}(x)\Bigr) \bigl(x_{k} - x_{0}^{k}\bigr) + \sum_{k=1}^{n} \Bigl(\frac{\partial F}{\partial x_{k}}(x_{0},\varphi(x_{0})) + \tilde{\alpha}_{k}(x)\Bigr) \bigl(x_{k} - x_{0}^{k}\bigr) + \sum_{k=1}^{n} \left(\frac{\partial F}{\partial x_{k}}(x_{0},\varphi(x_{0})) + \tilde{\alpha}_{k}(x)\right) \bigl(x_{k} - x_{0}^{k}\bigr) + \sum_{k=1}^{n} \left(\frac{\partial F}{\partial x_{k}}(x_{0},\varphi(x_{0})) + \tilde{\alpha}_{k}(x)\right) \bigl(x_{k} - x_{0}^{k}\bigr) + \sum_{k=1}^{n} \left(\frac{\partial F}{\partial x_{k}}(x_{0},\varphi(x_{0})) + \tilde{\alpha}_{k}(x)\right) \bigl(x_{k} - x_{0}^{k}\bigr) + \sum_{k=1}^{n} \left(\frac{\partial F}{\partial x_{k}}(x_{0},\varphi(x_{0})) + \tilde{\alpha}_{k}(x)\right) \bigl(x_{k} - x_{0}^{k}\bigr) + \sum_{k=1}^{n} \left(\frac{\partial F}{\partial x_{k}}(x_{0},\varphi(x_{0})) + \tilde{\alpha}_{k}(x)\right) \bigl(x_{k} - x_{0}^{k}\bigr) + \sum_{k=1}^{n} \left(\frac{\partial F}{\partial x_{k}}(x_{0},\varphi(x_{0})) + \tilde{\alpha}_{k}(x)\right) \bigl(x_{k} - x_{0}^{k}\bigr) + \sum_{k=1}^{n} \left(\frac{\partial F}{\partial x_{k}}(x_{0},\varphi(x_{0})) + \tilde{\alpha}_{k}(x)\right) \bigl(x_{k} - x_{0}^{k}\bigr) + \sum_{k=1}^{n} \left(\frac{\partial F}{\partial x_{k}}(x_{0},\varphi(x_{0})) + \tilde{\alpha}_{k}(x)\right) \bigr(x_{k} - x_{0}^{k}\bigr) + \sum_{k=1}^{n} \left(\frac{\partial F}{\partial x_{k}}(x_{0},\varphi(x_{0})) + \tilde{\alpha}_{k}(x)\right) \bigr(x_{k} - x_{0}^{k}\bigr) + \sum_{k=1}^{n} \left(\frac{\partial F}{\partial x_{k}}(x_{0},\varphi(x_{0})) + \tilde{\alpha}_{k}(x)\right) \bigr(x_{k} - x_{0}^{k}\bigr) + \sum_{k=1}^{n} \left(\frac{\partial F}{\partial x_{k}}(x_{0},\varphi(x_{0})) + \tilde{\alpha}_{k}(x)\right) \bigr(x_{k} - x_{0}^{k}\bigr) + \sum_{k=1}^{n} \left(\frac{\partial F}{\partial x_{k}}(x_{0},\varphi(x_{0})) + \tilde{\alpha}_{k}(x)\right) \bigr(x_{k} - x_{0}^{k}\bigr) + \sum_{k=1}^{n} \left(\frac{\partial F}{\partial x_{k}}(x_{0},\varphi(x_{0})) + \tilde{\alpha}_{k}(x)\right) \bigr(x_{k} - x_{0}^{k}\bigr) + \sum_{k=1}^{n} \left(\frac{\partial F}{\partial x_{k}}(x_{0},\varphi(x_{0})) + \tilde{\alpha}_{k}(x)\right) \bigr(x_{k} - x_{0}^{k}\bigr) + \sum_{k=1}^{n} \left(\frac{\partial F}{\partial x_{k}}(x_{0},\varphi(x_{0})) + \tilde{\alpha}_{k}(x)\right) + \sum_{k=1}^{n} \left(\frac{\partial F}{\partial x_{k}}(x_{0},\varphi(x_{0})) + \tilde{\alpha}_{k}(x)\right) + \sum_{k=1}^{n} \left(\frac{\partial F}{\partial x_{k}}(x_{0},\varphi(x_{0})) + \tilde{\alpha}_{k}(x_{0},\varphi(x_{0})\right) + \sum_{k=1}^{n} \left(\frac{\partial F}{\partial x_{k}}(x_{0},\varphi(x_{0})) + \tilde{\alpha}_{k}(x_{0},\varphi(x_{0})) + \tilde{\alpha}_{k}(x_{0},\varphi(x_{0})\right) + \sum_{k=1}^{n} \left(\frac{\partial F}{\partial x_{k}}(x_{0},\varphi(x_{0})) + \tilde{\alpha}_{k}(x_{0},\varphi(x_{0})\right) + \tilde{\alpha}_{k}(x_{0},\varphi(x_{0})) + \tilde{\alpha}_{k}(x_{0},\varphi(x_{0}$$

$$\Big(\tfrac{\partial F}{\partial y}(x_0,\varphi(x_0)) + \tilde{\beta}(x)\Big)(\varphi(x) - \varphi(x_0))$$

Выразим приращение φ :

$$\begin{array}{l} \varphi(x)-\varphi(x_0)=-\sum_{k=1}^n \left(\frac{\frac{\partial F}{\partial x_k}(x_0,\varphi(x_0))}{\frac{\partial F}{\partial y}(x_0,\varphi(x_0))}+\gamma_k(x)\right)\!\left(x_k-x_0^k\right) \end{array}$$

где

$$\gamma_k(x) := -\frac{\frac{\partial F}{\partial x_k}(x_0, \varphi(x_0))}{\frac{\partial F}{\partial y}(x_0, \varphi(x_0))} + \frac{\frac{\partial F}{\partial x_k}(x_0, \varphi(x_0)) + \tilde{\alpha}_k(x_0)}{\frac{\partial F}{\partial y}(x_0, \varphi(x_0)) + \tilde{\beta}(x_0)}$$

где
$$\gamma_k(x) := -\frac{\frac{\partial F}{\partial x_k}(x_0,\varphi(x_0))}{\frac{\partial F}{\partial y}(x_0,\varphi(x_0))} + \frac{\frac{\partial F}{\partial x_k}(x_0,\varphi(x_0)) + \tilde{\alpha}_k(x)}{\frac{\partial F}{\partial y}(x_0,\varphi(x_0)) + \tilde{\beta}(x)}$$
 Остаётся заметить, что $\tilde{\alpha}_k(x) \underset{x \to x_0}{\to} 0$; $\tilde{\beta}(x) \underset{x \to x_0}{\to} 0$, а это значит, что
$$\varphi(x) - \varphi(x_0) = \sum_{k=1}^n A_k \big(x_k - x_0^k \big) + \gamma(x); \quad \gamma(x) = o(\|x - x_0\|), x \to x_0$$
 Что и является требуемой дифференцируемостью φ в x_0 .

10. Экстремумы функций многих переменных. Необходимые условия, достаточные условия.

10.1. Необходимые условия

Определение 10.1.1: Точка $x_0 \in \mathbb{R}^n$ называется точкой локального мак**симума** функции f(x), если

$$\exists \delta > 0: \forall x \in U_{\delta}(x_0): \ f(x) \leq f(x_0)$$

Определение 10.1.2: Точка $x_0 \in \mathbb{R}^n$ называется точкой локального ми**нимума** функции f(x), если

$$\exists \delta > 0: \forall x \in U_\delta(x_0): \ f(x) \geq f(x_0)$$

Определение 10.1.3: Точка $x_0 \in \mathbb{R}^n$ называется точкой строгого локаль**ного максимума** функции f(x), если

$$\exists \delta > 0 : \forall x \in U_{\delta}(x_0) : \ f(x) < f(x_0)$$

Определение 10.1.4: Точка $x_0 \in \mathbb{R}^n$ называется точкой строгого локаль**ного минимума** функции f(x), если

$$\exists \delta>0: \forall x\in U_\delta(x_0):\ f(x)>f(x_0)$$

Теорема 10.1.1 (Необходимые условия локального экстремума): Если x_0 – точка локального экстремума функции f(x), дифференцируемой в окрестности точки x_0 , то $\mathrm{d}f(x) \equiv 0$.

$$\psi(x_k)=fig(x_0^1,...,x_0^{k-1},x_k,x_0^{k+1},...,x_0^nig),$$
 где $x_0=(x_0^1,...,x_0^n)$

 \mathcal{A} оказательство: Рассмотрим для каждого $k=\overline{1,\,\mathbf{n}}$: $\psi(x_k)=f\Big(x_0^1,...,x_0^{k-1},x_k,x_0^{k+1},...,x_0^n\Big),\;\;$ где $x_0=(x_0^1,...,x_0^n)$ Тогда заметим, что ψ дифференцируема в окрестности $x_0^k,\;$ применяя теорему о необходимом условии экстремума функции одного переменного, получим

$$\psi'\big(x_0^k\big)=0\Rightarrow \frac{\partial f}{\partial x_k}(x_0)=0$$

В силу произвольности k и того, что дифференциал – это вектор частных производных, получим требуемое.

10.2. Достаточные условия

Определение 10.2.1: Если f дифференцируема в окрестности точки x_0 и $\mathrm{d}f(x_0)\equiv 0$, то x_0 называется **стационарной точкой** функции f.

Теорема 10.2.1 (Достаточные условия локального экстремума): Если x_0 – стационарная точка функции f, дважды дифференцируемой в точке x_0 , то

- 1. Если $d^2f(x_0)$ положительно определённая квадратичная форма, то x_0 точка строгого локального минимума функции f
- 2. Если $d^2 f(x_0)$ отрицательно определённая квадратичная форма, то x_0 точка строгого локального максимума функции f
- 3. Если $d^2 f(x_0)$ неопределённая квадратичная форма, то x_0 не является точкой локального экстремума

Доказательство:

1. По формуле Тейлора с остаточным членом в форме Пеано:

$$f(x) = f(x_0) + df(x_0) + \frac{1}{2}d^2f(x_0) + o(\rho^2), \rho \to 0$$

где
$$\mathrm{d}x_k = x_k - x_0^k, k = \overline{1,\mathrm{n}}; \quad \rho = \sqrt{\sum_{k=1}^n \left(x_k - x_0^k\right)^2} = \left\|\mathrm{d}x\right\|_2$$
 Тогда (в условиях $\mathrm{d}f(x_0) \equiv 0$ и $\xi_k \coloneqq \frac{\mathrm{d}x_k}{\left\|\mathrm{d}x\right\|}$) :
$$f(x) - f(x_0) = \frac{1}{2}d^2f(x_0) + o(\rho^2) =$$

$$f(x) - f(x_0) = \frac{1}{2} d^2 f(x_0) + o(\rho^2) =$$

$$\frac{1}{2}\rho^2 \Biggl(\underbrace{\sum_{i,j=1}^n \frac{\partial^2 f}{\partial x_i \partial x_j}(x_0) \xi_i \xi_j}_{F(\xi_1,\dots,\xi_n)} + o(1), \Biggr) \rho \to 0$$

В следствие нормировки, очевидно, $\sum_{i=1}^{n} \xi_i^2 = 1$.

Таким образом, минимум введённого функционала F на сфере (компактной в \mathbb{R}^n) будет достигаться:

$$\min_{\xi_1^2+...+\xi_n^2=1}F(\xi_1,...,\xi_n)=:C>0$$
 Таким образом, для достаточно маленьких ρ :

$$f(x) - f(x_0) \ge \tfrac{C}{4}\rho^2 > 0$$

- 2. Аналогично
- 3. Вводим $F(\xi_1,...,\xi_n)$ аналогично предыдущим пунктам, из-за того что $\mathrm{d}^2 f$ – неопределённая, то

$$\exists \xi_1(x_1), \xi_2(x_2): \ F\big(\xi_1^1,...,\xi_1^n\big)>0 \land F\big(\xi_2^1,...,\xi_2^n\big)<0$$
 Тогда при достаточно малых ρ : sign $(f(x_1)-f(x_0))=$ sign $F(\xi_1)>0;$ sign $(f(x_2)-f(x_0))=$ sign $F(\xi_2)<0$ Что и требовалось.

11. Свойства интеграла с переменным верхним пределом (непрерывность, дифференцируемость). Формула Ньютона-Лейбница.

11.1. Свойства интеграла с переменным верхним пределом

Определение 11.1.1: **Разбиением** P отрезка [a,b] называется конечное множество точек отрезка [a,b]:

$$P: a = x_0 < x_1 < \ldots < x_n = b; \quad \Delta x_k \coloneqq x_k - x_{k-1}; k = \overline{1, \, \mathbf{n}}$$

Определение 11.1.2: Диаметром разбиения P называется $\Delta(P) = \max\nolimits_{1 \leq i \leq n} \Delta x_i$

Определение 11.1.3: **Верхней суммой Дарбу** разбиения P функции fназывается

$$U(P,f) = \sum_{k=1}^n \sup_{x \in [x_{k-1},x_k]} f(x) \cdot \Delta x_k$$

Определение 11.1.4: **Нижней суммой Дарбу** разбиения P функции fназывается

$$U(P,f) = \sum_{k=1}^n \inf_{x \in [x_{k-1},x_k]} f(x) \cdot \Delta x_k$$

Определение 11.1.5: Функция f называется интегрируемой по Риману на [a,b] $(f \in \mathcal{R}[a,b])$, если

$$\forall \varepsilon > 0: \exists P: \ U(P,f) - L(P,f) < \varepsilon$$

Определение 11.1.6: Интегралом Римана интегрируемой по Риману на [a,b] функции f называется $\int_a^b f(x) \, \mathrm{d}x = \inf_P U(P,f) = \sup_P L(P,f)$

$$\int_a^b f(x) \, \mathrm{d}x = \inf_P U(P, f) = \sup_P L(P, f)$$

Теорема 11.1.1 (Основные свойства интеграла Римана):

- 1. (Линейность) Если $f_1, f_2 \in \mathcal{R}[a,b]$, то $f_1 + f_2 \in \mathcal{R}[a,b]$, причём $\int_a^b (f_1 + f_2)(x) \, \mathrm{d}x = \int f_1(x) \, \mathrm{d}x + \int f_2(x) \, \mathrm{d}x$ Кроме того, $\forall c \in \mathbb{R}$ выполняется, что $cf_1 \in \mathcal{R}[a,b]$, причём $\int_a^b cf_1(x) \, \mathrm{d}x = c \int_a^b f_1(x) \, \mathrm{d}x$
- 2. (Монотонность) Если $f_1, f_2 \in \mathcal{R}[a,b]$ и $\forall x \in [a,b]: f_1(x) \leq f_2(x)$, то $\int_a^b f_1(x) \, \mathrm{d}x \leq \int_a^b f_2(x) \, \mathrm{d}x$
- 3. (Аддитивность):

$$f \in \mathcal{R}[a,b] \Leftrightarrow \forall c \in (a,b): \ f \in \mathcal{R}[a,c] \land f \in \mathcal{R}[c,b]$$

 $f \in \mathcal{R}[a,b] \Leftrightarrow \forall c \in (a,b): \ f \in \mathcal{R}[a,c] \land f \in \mathcal{R}[c,b]$ Причём $\int_a^b f(x) \, \mathrm{d}x = \int_a^c f(x) \, \mathrm{d}x + \int_c^b f(x) \, \mathrm{d}x$ 4. (Оценка) Если $f \in \mathcal{R}[a,b]$ и $\forall x \in [a,b]: \ |f(x)| \leq M$, то $\left|\int_a^b f(x) \, \mathrm{d}x\right| \leq M(b-a)$

Определение 11.1.7: Пусть $\forall b' \in (a,b): f \in \mathcal{R}[a,b']$. Тогда $F(b') = \int_a^{b'} f(x) \, \mathrm{d}x$ называется **интегралом с переменным верхним пределом**.

Будем считать, что
$$F(a)=0,$$
 а для $\alpha>\beta$:
$$\int_{\alpha}^{\beta}f(x)\,\mathrm{d}x=-\int_{\beta}^{\alpha}f(x)\,\mathrm{d}x$$

Теорема 11.1.2 (Основные свойства интеграла с переменным верхним пределом): Если $f \in \mathcal{R}[a,b]$, то интеграл с перменным верхним пределом F(x)непрерывен на [a,b].

Если, кроме того, f непрерывна в $x_0 \in [a,b]$, то F(x) дифференцируема в x_0 , причём $F'(x_0) = f(x_0)$.

Доказательство: Непрерывность следует из комбинирования свойств аддитивности и оценки:

$$\forall x_1, x_2 \in [a,b] : x_1 < x_2 \wedge x_2 - x_1 < \frac{\varepsilon}{M} : \ |F(x_2) - F(x_1)| = \left| \int_{x_1}^{x_2} f(x) \, \mathrm{d}x \right| \leq \\ \int_{x_1}^{x_2} |f(x)| \, \mathrm{d}x \leq M(x_2 - x_1) < \varepsilon$$

В условиях непрерывности f, докажем, что производная интеграла действительно равна $f(x_0)$:

$$\left| \frac{F(x) - F(x_0)}{x - x_0} - f(x_0) \right| = \left| \frac{1}{x - x_0} \int_{x_0}^x (f(t) - f(x_0)) \, \mathrm{d}t \right| \le \sup_{t \in [x_0, x]} |f(t) - f(x_0)|$$

Благодаря непрерывности f мы знаем, что при $x \to x_0$ сможем оценить итоговый супремум сверху ε .

11.2. Формула Ньютона-Лейбница

Определение 11.2.1: **Первообразной** функции f на [a,b] называется такая дифференцируемая на [a,b] функция F, что $\forall t \in [a,b]: F'(t) = f(t)$

Определение 11.2.2: Интегральной суммой $S\!\left(P,f,\left\{t_i\right\}_{i=1}^n\right)$ называется где $P: a=x_0 < ... < x_n=b, \forall i=\overline{1,\,\mathbf{n}}: t_i \in [x_{i-1},x_i].$

Теорема 11.2.1 (Интеграл как предел интегральных сумм): $f \in \mathcal{R}[a,b] \Leftrightarrow \exists \lim_{\Delta(P) \to 0} S\!\left(P,f,\left\{t_i\right\}_{i=1}^n\right)$ При этом $\int_a^b f(x) \,\mathrm{d}x = \lim_{\Delta(P) \to 0} S\!\left(P,f,\left\{t_i\right\}_{i=1}^n\right)$

Теорема 11.2.2 (Основная теорема интегрального исчисления): Если $f \in \mathcal{R}[a,b]$ имеет первообразную F на [a,b], то $\int_a^b f(x) \, \mathrm{d}x = F(b) - F(a) = F(x)|_a^b$

Доказательство: Для любого разбиения P: $F(b) - F(a) \stackrel{\text{телескопическая сумма}}{=} \sum_{k=1}^n (F(x_k) - F(x_{k-1})) \stackrel{\text{теорема Лагранжа}}{=} \sum_{k=1}^n F'(\xi_k) \Delta x_k = \sum_{k=1}^n f(\xi_k) \Delta x_k$

Устремляя $\Delta(P) \to 0$ получим, что F(b) - F(a) равно требуемому интегралу по эквивалентному определению. \Box

- 12. Равномерная сходимость функциональных последовательностей и рядов. Непрерывность, интегрируемость и дифференцируемость суммы функционального ряда.
- 12.1. Непрерывность суммы функционального ряда

Определение 12.1.1: Функциональная последовательность $\left\{f_n\right\}_{n=1}^\infty$ сходится равномерно на E к функции f(x) $(f_n \rightrightarrows f)$, если $\forall \varepsilon > 0: \exists N \in \mathbb{N}: \forall n > N: \forall x \in E: |f_n(x) - f(x)| < \varepsilon$

Определение 12.1.2: Функциональная последовательность $\{f_n\}_{n=1}^{\infty}$ схо**дится поточечно** на E к функции f(x), если

$$\forall x \in E : \forall \varepsilon > 0 : \exists N \in \mathbb{N} : \forall n > N : |f_n(x) - f(x)| < \varepsilon$$

Теорема 12.1.1 (Критерий Коши равномерной сходимости функциональной последовательности):

$$f_n \underset{E}{\Longrightarrow} f \Leftrightarrow \forall \varepsilon > 0: \exists N \in \mathbb{N}: \forall n > N: \forall p \in \mathbb{N}: \forall x \in E: \ \left|f_{n+p}(x) - f_n(x)\right| < \varepsilon$$

Определение 12.1.3: Фукнциональный ряд $\sum_{n=1}^{\infty} f_n(x)$ равномерно сходится на E, если равномерно сходится на E функциональная последовательность $S_n(x) = \sum_{k=1}^n f_k(x)$

Теорема 12.1.2 (Критерий Коши равномерной сходимости функциональных рядов):

$$\sum_{n=1}^{\infty} f_n$$
 равномерно сходится на $E \Leftrightarrow$

$$\textstyle \forall \varepsilon > 0: \exists N \in \mathbb{N}: \forall n > N: \forall p \in \mathbb{N}: \forall x \in E: \ \left| \sum_{k=n}^{n+p} f_k(x) \right| < \varepsilon$$

Теорема 12.1.3 (Предельный переход в равномерно сходящихся последовательностях): Если $\{f_n\}_{n=1}^\infty$ равномерно сходится к f на множестве E метрического пространства, x_0 – предельная точка E, причём

$$\forall n \in \mathbb{N} : \lim_{x \to x_0, x \in E} f_n(x) = a_n$$

Тогда

$$\lim\nolimits_{x\to x_0,x\in E}f(x)=\lim\nolimits_{n\to\infty}a_n$$

То есть оба предела существуют и равны.

Доказательство: Воспользуемся критерием Коши равномерной сходимости:

$$\forall \varepsilon > 0 : \exists N \in \mathbb{N} : \forall n > N : \forall p \in \mathbb{N} : \forall x \in E : \ \left| f_{n+p}(x) - f_n(x) \right| < \varepsilon$$

Совершим предельный переход $x \to x_0$:

$$\forall \varepsilon > 0: \exists N \in \mathbb{N}: \forall n > N: \forall p \in \mathbb{N}: \ \left|a_{n+p} - a_{n}\right| \leq \varepsilon$$

 $\forall \varepsilon>0: \exists N\in\mathbb{N}: \forall n>N: \forall p\in\mathbb{N}: \left|a_{n+p}-a_{n}\right|\leq \varepsilon$ То есть числовая последовательность $\left\{a_{n}\right\}_{n=1}^{\infty}$ имеет какой-то предел a,теперь нужно установить, что он равен пределу предельной функции:

$$|f(x) - a| = |f(x) - f_n(x)| + |f_n(x) - a_n| + |a_n - a|$$

Стоит упомянуть про кванторы:

- Берём номер N больший N_1 для равномерного предела функций и N_2 для числового предела $a_n \underset{n \to \infty}{\rightarrow} a$
- δ -окрестность x_0 меньшую требуемой для фиксированного $f_N(x) \underset{x \to x_0}{\longrightarrow} a_N$

Следствие 12.1.3.1: Если $f_n(x)$ непрерывна на $E, f_n \rightrightarrows f$ на E, то f непрерывна на E.

Теорема 12.1.4 (Предельный переход в функциональных рядах): Если $\sum_{n=1}^{\infty} f_n(x)$ сходится равномерно на $E,\ x_0$ – предельная точка $E,\ \forall n\in\mathbb{N}$: $\lim_{x \to x_0, x \in E} f_n(x) = a_n, \text{ To } \sum_{n=1}^{\infty}$ $_{n=1}^{\infty} a_n = \lim_{x \to x_0, x \in E} \sum_{n=1}^{\infty} f_n(x)$

Доказательство: Доказывается очевидно применением предыдущей теоремы для последовательности частичных сумм.

12.2. Интегрируемость суммы функционального ряда

Теорема 12.2.1 (Интегрирование равномерно сходящейся функциональной последовательности): Если $\forall n \in \mathbb{N}: f_n$ интегрируема по Риману на [a,b] и $f_n \rightrightarrows f$ на [a,b], то f интегрируема по Риману на [a,b] и $\int_a^b f(x) \, \mathrm{d}x = \lim_{n \to \infty} \int_a^b f_n(x) \, \mathrm{d}x$

Доказательство: Воспользуемся тем, что каждый элемент функциональной последовательности интегрируем:

$$\forall n \in \mathbb{N} : \forall \varepsilon > 0 : \exists P : U(P, f_n) - L(P, f_n) < \frac{\varepsilon}{3(h-a)}$$

Далее определение равномерной сходимости:

$$\forall \varepsilon > 0 : \exists N \in \mathbb{N} : \forall x \in [a, b] : |f_n(x) - f(x)| < \frac{\varepsilon}{3(b-a)}$$

Итак, оценим верхнюю сумму Дарбу предела:
$$U(P,f)=\sum_{k=1}^n\sup_{x\in[x_{k-1},x_k]}f(x)\Delta x_k\leq$$

$$\textstyle \sum_{k=1}^n \Bigl(\sup_{x \in [x_{k-1},x_k]} f_n(x) + \frac{\varepsilon}{3(b-a)}\Bigr) \Delta x_k = U(P,f_n) + \frac{\varepsilon}{3}$$

Аналогично для нижней:

$$L(P,f) \geq L(P,f_n) - \tfrac{\varepsilon}{3}$$

Таким образом,

$$U(P,f) - L(P,f) \le U(P,f_n) - L(P,f_n) + \frac{2\varepsilon}{3} < \varepsilon$$

 $U(P,f)-L(P,f)\leq U(P,f_n)-L(P,f_n)+rac{2arepsilon}{3}<arepsilon$ Мы доказали интегрируемость f, осталось доказать, что интеграл равен тому, что надо:

$$\left| \int_a^b f_n(x) \, \mathrm{d}x - \int_a^b f(x) \, \mathrm{d}x \right| \leq \int_a^b |f_n(x) - f(x)| \, \mathrm{d}x \leq \frac{\varepsilon}{3(b-a)} \cdot (b-a) < \varepsilon$$

Теорема 12.2.2 (Интегрирование функциональных рядов): Если $f_n \in \mathcal{R}[a,b], \sum_{n=1}^\infty f_n(x)$ равномерно сходится на [a,b], то $\sum_{n=1}^\infty f_n(x) \in \mathcal{R}[a,b]$ и $\int_a^b \sum_{n=1}^\infty f_n(x) \, \mathrm{d}x = \sum_{n=1}^\infty \int_a^b f_n(x) \, \mathrm{d}x$

Доказательство: Доказывается очевидно применением предыдущей теоремы для последовательности частичных сумм.

12.3. Дифференцируемость суммы функционального ряда

Теорема 12.3.1 (Дифференцирование функциональных последовательностей): Если

- 1. f_n дифференцируемы на (a,b)
- 2. $f'_n \rightrightarrows$ на (a,b)
- 3. $\exists x_0 \in (a,b): f_n(x_0) \to 0$

To

- 1. $f_n \rightrightarrows f$ на (a,b)
- 2. f дифференцируема на (a,b)
- 3. $f_n' \to f'$ на (a,b)

Доказательство: Используем равномерную сходимость производных:

$$\forall \varepsilon > 0: \exists N \in \mathbb{N}: \forall n > N: \forall p \in \mathbb{N}: \forall x \in (a,b): \ \left|f'_{n+p}(x) - f'_{n}(x)\right| < \frac{\varepsilon}{2(b-a)}$$

А также сходимость самих функций в точке x_0 :

$$\forall \varepsilon > 0: \exists N \in \mathbb{N}: \forall n > N: \forall p \in \mathbb{N}: \ \left| f_{n+p}(x_0) - f_n(x_0) \right| < \frac{\varepsilon}{2}$$

Применим теорему Лагранжа для непрерывных f_n между произвольной точкой x и фиксированной x_0 :

$$\exists \xi \in \{x, x_0\} : \ \left| \left(f_{n+p}(x) - f_n(x) \right) - \left(f_{n+p}(x_0) - f_n(x_0) \right) \right| = \left| f_{n+p}'(\xi) - f_n'(\xi) \right| |x - x_0|$$

Тогда мы можем доказать фундаментальность самой последовательнсоти:

$$\begin{split} \left|f_{n+p}(x)-f_n(x)\right| \leq \left|f_{n+p}(x_0)-f_n(x_0)\right| + \left|f'_{n+p}(\xi)-f'_n(\xi)\right| |x-x_0| < \\ \frac{\varepsilon}{2} + \frac{\varepsilon}{2(b-a)}|x-x_0| < \varepsilon \end{split}$$

Значит по критерию Коши $f_n \rightrightarrows f$ на (a,b).

Остаётся доказать дифференцируемость f в произвольной точке $x \in$

$$arphi_n(t) \coloneqq rac{f_n(t) - f_n(x)}{t - x}; \quad arphi(t) \coloneqq rac{f(t) - f(x)}{t - x}$$

$$(a,b)$$
, для этого введём вспомогательные функции:
$$\varphi_n(t) \coloneqq \frac{f_n(t) - f_n(x)}{t - x}; \quad \varphi(t) \coloneqq \frac{f(t) - f(x)}{t - x}$$
 Докажем фундаментальность $\{\varphi_n\}_{n=1}^{\infty}$:
$$\left| \varphi_{n+p}(t) - \varphi_n(t) \right| = \frac{\left| (f_{n+p}(t) - f_n(t)) - (f_{n+p}(x) - f_n(x)) \right|}{t - x} \stackrel{\text{теорема Лагранжа}}{=}$$

$$\left|f_{n+p}'(\xi) - f_n'(\xi)\right| < \frac{\varepsilon}{2(b-a)}$$

Получили, что $\varphi_n \rightrightarrows \varphi$ на $A := (a, b) \setminus \{x\}$.

Заметим, что x – предельная точка A, тогда применим теорему о непрерывном поточечном пределе:

$$\lim\nolimits_{n\to\infty}f'_n(x)=\lim\nolimits_{n\to\infty}\lim\nolimits_{t\to x,t\in A}\varphi_n(t)=\lim\nolimits_{t\to x,t\in A}\varphi(t)=f'(x)$$

Заметим, что этими равенствами мы доказываем как существование, так и равенство пределов.

13. Степенные ряды. Радиус сходимости. Бесконечная дифференцируемость суммы степенного ряда. Ряд Тейлора.

13.1. Бесконечная дифференцируемость суммы степенного ряда

Определение 13.1.1: Ряд $\sum_{n=0}^{\infty} c_n (z-z_0)^n$, где $\{c_n\}_{n=0}^{\infty} \subset \mathbb{C}$ называется степенным рядом с центром в точке z_0 и коэффициентами $\{c_n\}_{n=0}^{\infty}$.

Радиусом сходимости степенного Определение 13.1.2: ряда Определение $\sum_{n=0}^{\infty}c_n(z-z_0)^n$ называется $R=rac{1}{\overline{\lim}_{n o\infty}\sqrt[n]{|c_n|}}; \quad 0\leq R\leq +\infty$

$$R = \frac{1}{\overline{\lim}_{n \to \infty} \sqrt[n]{|c_n|}}; \quad 0 \le R \le +\infty$$

Теорема 13.1.1 (Коши-Адамара): Если $R \in [0, +\infty]$ – радиус сходимости ряда $\sum_{n=0}^{\infty} c_n (z-z_0)^n$, то 1. $\forall z, |z-z_0| < R$ ряд $\sum_{n=0}^{\infty} c_n (z-z_0)^n$ сходится, притом абсолютно 2. $\forall z, |z-z_0| > R$ ряд $\sum_{n=0}^{\infty} c_n (z-z_0)^n$ расходится

Доказательство:

1. Пусть $|z - z_0| =: r < R$.

Возьмём произвольный $\rho \in (r,R) \Rightarrow \frac{1}{R} < \frac{1}{\rho} < \frac{1}{r}$. По определению верхнего предела:

$$\exists N \in \mathbb{N} : \forall n > N : \sqrt[n]{|c_n|} < \frac{1}{\rho}$$

Тогда:

$$\exists N \in \mathbb{N}: \, \forall n > N: \, \left| c_n (z-z_0)^n \right| \leq \left(\tfrac{r}{\rho} \right)^n; \quad \tfrac{r}{\rho} < 1$$

По теореме Вейерштрасса мы можем ограничить рассматриваемый ряд сходящимя числовым (геометрическая прогрессия) и всё доказано.

2. Пусть $|z-z_0| > R$, то есть $\frac{1}{|z-z_0|} < \frac{1}{R}$. Значит по плотности действительных чисел:

$$\exists \varepsilon > 0: \ \tfrac{1}{|z-z_0|} \leq \tfrac{1}{R} - \varepsilon \Rightarrow |z-z_0| \geq \tfrac{1}{\frac{1}{R} - \varepsilon}$$

По определению верхнего предела:

$$\exists \{n_k\}_{k=1}^{\infty} : \forall k \in \mathbb{N} : \sqrt[n_k]{\left|a_{n_k}\right|} > \tfrac{1}{R} - \varepsilon \Rightarrow$$

$$\left|a_{n_k}z^{n_k}\right| \geq \left(\tfrac{1}{R} - \varepsilon\right)^{n_k} \cdot \left(\tfrac{1}{\frac{1}{R} - \varepsilon}\right)^{n_k} \geq 1$$

Получили, что не выполнено необходимое условие сходимости ряда.

Теорема 13.1.2 (Равномерная сходимость степенного ряда): Если ряд $\sum_{n=0}^{\infty} c_n (z-z_0)^n$ имеет радиус сходимости R>0, то он сходится равномерно в любом круге $|z - z_0| \le R$, где 0 < r < R

Доказательство: $|z-z_0|=r < R \Rightarrow$ по теореме Коши-Ада $\sum_{n=0}^{\infty} c_n (z-z_0)^n$ сходится абсолютно, то есть $\sum_{n=0}^{\infty} |c_n| r^n$ Тогда для любого z из рассматриваемого круга справедлива оценка Коши-Адамара

$$\left|c_n(z-z_0)^n\right| \le |c_n|r^n$$

А значит по теореме Вейерштрасса имеется равномерная сходимость.

Теорема 13.1.3 (Почленное дифференцирование и интегрирование степенных рядов): Пусть $f(x) = \sum_{n=0}^{\infty} a_n (x-x_0)^n$, где $|x-x_0| < R, R > 0$. Тогда

$$f^{(k)}(x) = \sum_{n=k}^{\infty} a_n n(n-1)...(n-k+1)(x-x_0)^{n-k}$$

1. f(x) бесконечно дифференцируема $\forall x, |x-x_0| < R$, причём $f^{(k)}(x) = \sum_{n=k}^{\infty} a_n n(n-1)...(n-k+1)(x-x_0)^{n-k}$ 2. f(x) интегрируема по Риману $\forall x, |x-x_0| < R$ на отрезке с концами x_0, x, x_0 причём

$$\int_{x_0}^{x} f(t) dt = \sum_{n=0}^{\infty} a_n \frac{(x - x_0)^{n+1}}{n+1}$$

- 3. Все степенные ряды, упомянутые в пунктах 1, 2 имеют радиус сходимости
- 4. $\forall n \in \mathbb{N} \cup \{0\}: \ a_n = \frac{f^{(n)}(x_0)}{n!}$

 Доказательство: Если мы возьмём $x:|x-x_0|=r < R,$ то на отрезке $[x_0,x]$ ряд для f(x) сходится равеномерно, а значит мы можем его почленно интегрировать по теореме об интегрировании равномерно сходящихся функциональных рядов.

Радиус сходимости дифференцированного (и, вообще говоря, интегрированного) ряда не меняется, так как $\lim_{n\to\infty} \sqrt[n]{n} = 1$. А значит он также равномерно сходится на $[x_0, x]$, поэтому мы можем применить теорему о дифференцировании функционального ряда.

Заметим, что $f^{(k)}(x_0) = k! \cdot a_k$, что и требовалось.

13.2. Ряд Тейлора

Определение 13.2.1: Если f бесконечно дифференцируема в точке x_0 , то ряд

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

 $\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x-x_0)^n$ называется её **рядом Тейлора** с центром в точке x_0 .

Если $x_0 = 0$, то ряд Тейлора называется **рядом Маклорена**.

Теорема 13.2.1 (Достаточное условие представимости функции рядом Тейлора): Если f бесконечно дифференцируема на $(x_0 - h, x_0 + h)$, причём $\exists M: \forall n \in \mathbb{N}: \forall x \in (x_0-h,x_0+h): \ \left|f^{(n)}(x)\right| \leq M$

То f(x) представима своим рядом Тейлора в точке x_0 при всех $x \in (x_0 (h, x_0 + h)$

Доказательство: По теореме о формуле Тейлора с остаточным членом в форме Лагранжа:

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}; \quad \xi \in (x_0, x)$$

$$\left| f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k \right| \le M \frac{|x - x_0|^{n+1}}{(n+1)!} \underset{n \to \infty}{\longrightarrow} 0$$

Следовательно $\left|f(x)-\sum_{k=0}^n\frac{f^{(k)}(x_0)}{k!}(x-x_0)^k\right|\leq M\frac{|x-x_0|^{n+1}}{(n+1)!}\underset{n\to\infty}{\to}0$ Почему $\lim_{n\to\infty}\frac{x^n}{n!}=0$? Заметим, что n-ый элемент разложения экспоненты (имеющий бесконечный радиус сходимости, поэтому для неё априори он существует) в ряд Маклорена – это $\frac{x^n}{n!}$, а по необходимому условию сходимости ряда, он стремится к 0 равномерно.

14. Теорема об ограниченной сходимости для интеграла Лебега

Определение 14.1: Пусть f – ограниченная измеримая функция, определённая на измеримом по Лебегу множестве E. И Q – разбиение области значений функции f.

Тогда **интегральной суммой Лебега** назовём
$$S\big(Q,f,\left\{t_i\right\}_{i=1}^n\big) = \sum_{i=1}^N f(t_i)\mu(E_i)$$
 где $E_i = \{x \in E \mid f(x) \in [y_{i-1},y_i)\}$

Теорема 14.1 (Критерий/определение интеграла Лебега для ограниченных функций): Если f – ограниченная измеримая на измеримом по Лебегу множестве $E \subset \mathbb{R}^n$, то она интегрируема по Лебегу на E, причём

$$\int_E f \,\mathrm{d}\mu(x) = \lim_{\Delta(Q) \to 0} S\!\left(Q, f, \left\{t_i\right\}_{i=1}^n\right)$$

Определение 14.2: Назовём **срезкой** неотрицательной функции f для $N \in$ \mathbb{N} :

$$f_{[N]}(x) = \begin{cases} f(x), f(x) \le N \\ N, f(x) > N \end{cases}$$

Теорема 14.2 (Критерий/определение интеграла Лебега для измеримых неотрицательных функций): Если f – измеримая неотрицательная функция, определённая на измеримом множестве E конечной меры, то

$$\lim_{N\to\infty} \int_E f_{[N]} \,\mathrm{d}\mu(x) = f_E f(x) \,\mathrm{d}\mu(x)$$

Теорема 14.3 (Лебега о предельном переходе под знаком интеграла): Пусть

- $\{f_n\}_{n,n=1}^\infty$ измеримые на множестве $E\subset\mathbb{R}^n$ конечной меры
- $f_m \stackrel{\text{n.H.}}{\to} f$ на E
- $\forall n \in \mathbb{N}: |f_n(x)| \leq F(x)$ при почти всех $x \in E$, где F произвольная суммируемая функция на E

Тогда f суммируема на E, причём

$$\int_{E} f \, \mathrm{d}\mu(x) = \lim_{n \to \infty} \int_{E} f_n \, \mathrm{d}\mu(x)$$

Доказательство: Совершив предельный переход $n \to \infty$ мы можем утверждать, что $|f(x)| \le F(x)$ при почти всех $x \in E$ – значит f суммируемая на E.

Осталось доказать равенство интеграла и предела интегралов.

Как мы знаем, из сходимости почти всюду следует сходимость по мере:

$$\forall \varepsilon > 0: \lim\nolimits_{n \to \infty} \mu(E_m(\varepsilon) \coloneqq \{x \in E \mid \|f_m - f\| \ge \varepsilon\}) = 0$$

Другими словами

$$\forall \varepsilon > 0 : \forall \delta > 0 : \exists M \in \mathbb{N} : \forall m > M : \mu(E_m(\varepsilon)) < \delta$$

Оценим разность интеграла и предела интегралов:

$$\begin{split} \left| \int_{E} (f - f_m) \, \mathrm{d}\mu(x) \right| &\leq \int_{E_m} |f_m - f| \, \mathrm{d}\mu(x) + \int_{E \setminus E_m} |f_m - f| \, \mathrm{d}\mu(x) \leq \\ &2 \int_{E_m} F \, \mathrm{d}\mu(x) + \varepsilon \mu(E \setminus E_m) < \varepsilon(\mu(E) + 2) \end{split}$$

Что и требовалось.

15. Дифференциальные формы на открытых подмножествах евклидова пространства, оператор внешнего дифференцирования d и его независимость от криволинейной замены координат

15.1. Дифференциальные формы, оператор внешнего дифференцирования

В этом и других билетов, связанных с дифференциальными формами введём понятия $E = \mathbb{R}^n$ – евклидово пространство.

 E^* — сопряжённое к нему, ака пространство линейных функционалов ака линейных форм ака ковекторов.

Если мы будем употреблять $p \in \mathbb{N},$ то мы имеем ввиду количество векторов $x_1,...,x_p \in E$

Если мы будем употреблять $q \in \mathbb{N}$, то мы имеем ввиду количество ковекторов $y^1,...,y^q \in E^*$

Обратите внимание на индексы, это важно.

Определение 15.1.1: Полилинейной формой валентности (p,q) называется функция $U: E^p \times (E^*)^q \to \mathbb{R}$, линейная по каждому из аргументов.

Утверждение 15.1.1: Полилинейная форму однозначно определяется значениями на базисных элементах E и E^* , то есть числами

лями на базисных элементах
$$E$$
 и E , то есть числами
$$\omega_{\pmb i}^{\pmb j} := \omega_{i_1,...,i_p}^{j_1,...,j_q} = U\big(e_{i_1},...,e_{i_p},e^{j_1},...,e^{j_q}\big)$$
 где $\{e_i\}_{i=1}^n$ — базис E , а $\{e^j\}_{j=1}^q$ — двойственный базис E^* .

Доказательство: Очевидно из линейности.

Определение 15.1.2: Набор чисел $\left\{\omega_{i}^{j} \mid i \in \left(\overline{1,\,\mathbf{n}}\right)^{p}, j \in \left(\overline{1,\,\mathbf{n}}\right)^{q}\right\}$ (то есть мы рассматриваем значения на всех комбинациях базисных векторов и ковекторов) называется **тензором**

Утверждение 15.1.2: Множество полилинейных форм валентности (p,q) образует **линейное пространство** Ω_p^q .

Определение 15.1.3: Тензорным произведением форм $U\in\Omega^{q_1}_{p_1}; V\in\Omega^{q_2}_{p_2}$ называется форма $U\otimes V\in\Omega^{q_1+q_2}_{p_1+p_2},$ задаваемая формулой.

$$\begin{split} \forall \pmb{x} \in E^{p_1+p_2} : \forall \pmb{y} \in E^{q_1+q_2} : \\ U \otimes V \Big(x_1,...,x_{p_1},x_{p_1+1},...,x_{p_1+p_2},y^1,...,y^{q_1},y^{q_1+1},...,y^{q_1+q_2} \Big) = \\ U \Big(x_1,...,x_{p_1},y^1,...,y^{q_1} \Big) \cdot V \Big(x_{p_1+1},...,x_{p_1+p_2},y^{q_1+1},...,y^{q_1+q_2} \Big) \end{split}$$

Определение 15.1.4: $W \in \Omega^0_p$ называется **симметрической**, если она не изменяется при любой перестановке её аргументов.

Определение 15.1.5: $W \in \Omega_p^0$ называется антисимметрической (кососимметрической), если при любой перестановке пары её аргументов она меняет знак.

Введём линейное пространство антисимметрических форм:

$$\Lambda_p \coloneqq \left\{ W \in \Omega_p^0 \mid W - \text{антисимметрическая} \right\}$$

Определение 15.1.6: Пусть $\pi_p = (i_1,...,i_p)$ – перестановка индексов $\{1,...,p\}$. Тогда $\forall W \in \Omega^0_p: \forall x \in E^p: \left(\pi_p W\right)\!\left(x_1,...,x_p\right) \coloneqq W\!\left(x_{i_1},...,x_{i_p}\right)$

Определение 15.1.7: Симметризацией формы $W \in \Omega^0_p$ называется форма

sym
$$W := \frac{1}{p!} \sum_{\pi_p \in S_p} \pi_p W$$

Определение 15.1.8: Антисимметризацией формы $W\in\Omega^0_p$ называется форма

asym
$$W\coloneqq \frac{1}{p!}\sum_{\pi_p\in S_p}\operatorname{sgn}\,\pi_p\cdot\pi_pW$$

Определение 15.1.9: Если $U\in\Lambda_p, V\in\Lambda_q,$ то их внешним произведением называется

$$U \wedge V := \frac{(p+q)!}{p!q!}$$
 asym $(U \otimes V)$

Теорема 15.1.1 (Основные свойства внешнего произведения):

- 1. Линейность
 - $(\alpha_1 U_1 + \alpha_2 U_2) \wedge V = \alpha_1 (U_1 \wedge V) + \alpha_2 (U_2 \wedge V)$
 - $\bullet \ \ U \wedge (\alpha_1 V_1 + \alpha_2 V_2) = \alpha_1 (U \wedge V_1) + \alpha_2 (U \wedge V_2)$
- 2. Ассоциативность
 - $(U \wedge V) \wedge W = U \wedge (V \wedge W)$
- 3. Антикоммутативность
 - $\bullet \ \forall U \in \Lambda_p : \forall V \in \Lambda_q : \ U \wedge V = (-1)^{pq} (V \wedge U)$

Утверждение 15.1.3: Базисом в пространстве Λ_p является система $\left\{f^{i_1}\wedge...\wedge f^{i_p}\mid 1\leq i_1<...< i_p\leq n\right\}$ где $\left\{f_i\right\}_{i=1}^n$ – базис в $E^*=\Lambda_1$. (Принято брать базис проекторов)

Определение 15.1.10: p-формой (дифференциальной формой валентности (степени) p) на множестве $U\subset E$ называется отображение $\Omega:U\to \Lambda_p$.

В силу линейности пространства Λ_p , нам достаточно задать поведение получаемой формы лишь на базисе, поэтому

$$\forall x \in U: \ \Omega(x) \coloneqq \sum_{1 \leq i_1 < \ldots < i_p \leq n} \omega_{i_1,\ldots,i_p}(x) f^{i_1} \wedge \ldots \wedge f^{i_p}$$

Таким образом, дифференциальная форма однозначно задаётся наобором действительнозначных функций

$$\left\{ \omega_{i_1,\dots,i_n} \mid 1 \leq i_1 < \dots < i_p \leq n \right\}$$

Определение 15.1.11: Внешнее дифференцирование p-формы определяется как (p+1)-форма

$$d\Omega: U \to \Lambda_{p+1}$$

По правилу

$$\forall x \in U : d\Omega(x) := (p+1) \text{ asym } (\Omega'(x))$$

где под производной подразумевается производная по Фреше.

Стоит заметить, что, формально $\Omega': U \to U \to \Lambda_p$, однако мы считаем, что $U \to \Lambda_p \subset \Omega^0_{p+1}$ (Действительно, линейно по p+1 вектору получаем число).

Также стоит упомянуть, что для любого базиса $(e_1,...,e_n)$ из E и двойственного к нему базиса $(e^1,...,e^n)$ существует соглащение, что

$$\forall i = \overline{1, \, \mathbf{n}}: \ e^i = \mathrm{d} e_i$$

Которое не лишено смысла, ведь e_i – это 0-форма. А e^i – это функционал, то есть 1-форма.

Теорема 15.1.2 (Основные свойства операции внешнего дифференцирования):

- 1. $d(\Omega \wedge \Pi) = (d\Omega \wedge \Pi) + (-1)^p (\Omega \wedge d\Pi)$, где Ωp -форма, а Πq -форма.
- 2. $d(d\Omega) = 0$

Доказательство:

1. Для простоты считаем, что форма – одночлен, по линейности всё очевидно доказывается для произвольной формы.

Фиксируем базис, в котором

$$\Omega(x) = \omega(x) \, \mathrm{d} x^{i_1} \wedge \ldots \wedge \mathrm{d} x^{i_p}; \quad \Pi(x) = \pi(x) \, \mathrm{d} x^{j_1} \wedge \ldots \wedge \mathrm{d} x^{j_q}$$

Тогда

$$\begin{split} \mathrm{d}(\Omega \wedge \Pi) &= \mathrm{d}\big(\omega(x)\pi(x)\,\mathrm{d}x^{i_1} \wedge \ldots \wedge \mathrm{d}x^{i_p} \wedge \mathrm{d}x^{j_1} \wedge \ldots \wedge \mathrm{d}x^{j_q}\big) = \\ \mathrm{d}(\omega(x)\pi(x)) \wedge \mathrm{d}x^{i_1} \wedge \ldots \wedge \mathrm{d}x^{i_p} \wedge \mathrm{d}x^{j_1} \wedge \ldots \wedge \mathrm{d}x^{j_q} = \\ \pi(x) \sum_{i=1}^n \frac{\partial \omega}{\partial x_i}(x)\,\mathrm{d}x^{i_1} \wedge \ldots \wedge \mathrm{d}x^{i_p} \wedge \mathrm{d}x^{j_1} \wedge \ldots \wedge \mathrm{d}x^{j_q} + \\ \omega(x) \sum_{i=1}^n \frac{\partial \pi}{\partial x_i}(x)\,\mathrm{d}x^{i_1} \wedge \ldots \wedge \mathrm{d}x^{i_p} \wedge \mathrm{d}x^{j_1} \wedge \ldots \wedge \mathrm{d}x^{j_q} = \\ d\Omega \wedge \Pi(x) + (-1)^p (\Omega \wedge \mathrm{d}\Pi) \end{split}$$

В последнем переходе мы воспользовались свойством антикоммутативности внешнего произведения для перестановки всех $\mathrm{d} x^{j_{\cdots}}$ перед всеми $\mathrm{d} x^{i_{\cdots}}$, остальное свернули по определению

2. Распишем двойной дифференциал:

$$\mathrm{d}(\mathrm{d}\Omega) = \mathrm{d}\left(\sum_{j,\forall k:j\neq i_k} \frac{\partial \omega}{\partial x_j} \, \mathrm{d}x^j \wedge \mathrm{d}x^{i_1} \wedge \ldots \wedge \mathrm{d}x^{i_p}\right) =$$

$$\sum_{l,l\neq j,\forall k:l\neq l_k} \sum_{j,\forall k:j\neq i_k} \frac{\partial^2 \omega}{\partial x_l \partial x_j} \, \mathrm{d}x^l \wedge \mathrm{d}x^j \wedge \mathrm{d}x^{i_1} \wedge \ldots \wedge \mathrm{d}x^{i_p} =$$

$$\sum_{j,l,j< l,\forall k:j\neq i_k \wedge l\neq i_k} \left(\frac{\partial^2 \omega}{\partial x_l \partial x_j} - \frac{\partial^2 \omega}{\partial x_j \partial x_l}\right) \mathrm{d}x^l \wedge \mathrm{d}x^j \wedge \mathrm{d}x^{i_1} \wedge \ldots \wedge \mathrm{d}x^{i_p} = 0$$

15.2. Независимость внешнего дифференцирования от замены координат

Определение 15.2.1: Пусть

- Ω дифференциальная p-форма в области $U \subset \mathbb{R}^n$
- $\varphi: V \to U$ диффеоморфизм области $V \subset \mathbb{R}^n$ на U

Тогда $\varphi^*\Omega$ – дифференциальная p-форма в области V, определяемая как $\forall \boldsymbol{b} \in \mathbb{R}^n: (\varphi^*\Omega)(y)(\boldsymbol{b}) \coloneqq \Omega(\varphi(y))(\varphi'(y)b_1,...,\varphi'(y)b_n)$

Утверждение 15.2.1 (Правило подсчёта): Мы можем выразить форму после замены координат через упомянутое выше базисное представление:

$$(\varphi^*\Omega)(y) = \sum_{1 \leq i_1 < \ldots < i_p \leq n} \omega_{i_1,\ldots,i_p}(\varphi(y)) \,\mathrm{d}\varphi^{i_1}(y) \wedge \ldots \wedge \mathrm{d}\varphi^{i_p}(y)$$

Доказательство: Заметим, что для произвольного вектора $b \in \mathbb{R}^n$ верно $\mathrm{d}\varphi^i(y)(b) = \sum_{l=1}^n \frac{\partial \varphi^i}{\partial y^l}(y) \, \mathrm{d}f^l(b) = \sum_{l=1}^n \frac{\partial \varphi^i}{\partial y^l}(y) b^l = (\varphi'(y)b)^i = \mathrm{d}f^i(\varphi'(y)b)$ Не забывайте, что в качестве $\mathrm{d}f^i$ мы берём проекцию на i-ую координату. Что и требовалось.

Лемма 15.2.1 (Независимость внешнего дифференцирования от замены координат):

$$\varphi^*(\mathrm{d}\Omega) = \mathrm{d}(\varphi^*\Omega)$$

Доказательство: БОО считаем, что Ω – это одночлен, для многочленов обобщается очевидно по линейности.

Зафиксируем $\Omega = \omega(x) \wedge dx^{i_1} \wedge ... \wedge dx^{i_p}$

Тогда по свойствам внешнего дифференцирования:

$$d\Omega = d\omega(x) \wedge dx^{i_1} \wedge \dots \wedge dx^{i_p}$$

Тогда по правилу подсчёта

$$\varphi^*(\mathrm{d}\Omega) = \mathrm{d}\omega(\varphi(y)) \wedge \mathrm{d}\varphi^{i_1}(y) \wedge \ldots \wedge \mathrm{d}\varphi^{i_p}(y)$$

С другой стороны, по определению замены координат

$$\varphi^*(\Omega) = \omega(\varphi(y)) \,\mathrm{d}\varphi^{i_1}(y) \wedge \dots \wedge \mathrm{d}\varphi^{i_p}(y)$$

Применим оба свойства внешнего дифференцирования (двойной дифференциал нулевой и псевдодистрибутивность):

$$d(\varphi^*\Omega) = d\omega(\varphi(y)) \wedge d\varphi^{i_1}(y) \wedge \dots \wedge d\varphi^{i_p}(y)$$

16. Интегрирование дифференциальной формы с компактным носителем. Зависимость интеграла от замены координат.

Из Утверждение 15.1.3 Пространство Λ_n одномерно. Иными словами, если $(f^1,...,f^n)$ – базис E^* , то

$$\{cf^1 \wedge \dots \wedge f^n \mid c \in \mathbb{R}\} = \Lambda_n$$

 $\{cf^1\wedge...\wedge f^n\mid c\in\mathbb{R}\}=\Lambda_n$ Тогда если $(e^1_0,...,e^n_0)$ — ортонормированный базис в E^* сопряжённый к $(e_1^0,...,e_n^0)$ – ортонормированному базису в E^* .

Введём форму ориентированного объёма

$$V_{e^0} = e^1_0 \wedge ... \wedge e^n_0 \overset{\text{соглашение}}{=} \mathrm{d} e^0_1 \wedge ... \, \mathrm{d} e^0_n$$

Возьмём произвольный базис $(e_1^0,...,e_n^*)$ в E, связанный с исходным матрицей перехода T:

$$\forall j: e_i = t_i^i e_i^0$$

Рассмотрим действие:

$$V_{e_0}(e_1,...,e_n) = \det^0_1 \wedge ... \det^0_n(e_1,...,e_n) = \det \left(\det^0_i \left(e_j \right) \right)_{i,j=1}^n = \det T$$

Причём ∀ базиса форма ориентированного объёма на нём самом равна 1:

$$V_{e_0} = \det T \cdot V_e$$

В начале определим интеграл от форм из Λ_n

Определение 16.1: Интегралом от формы $\Omega(x)=\alpha(x)V_{e_0}$ по области $D\subset$ E называется

$$\int_{D} \Omega = \int_{D} \alpha(x) \, \mathrm{d}\mu(x)$$

Определение 16.2: Если Ω – гладкая n-1 форма, заданная на замыкании куба $K \subset \mathbb{R}$, то

$$\textstyle\int_{\partial K}\Omega\coloneqq\int_K\mathrm{d}\Omega$$

Определение 16.3: Клеткой называется диффеоморфный образ куба

Определение 16.4: Для формы Ω и диффеоморфизма $\varphi:U\to V,\,M\subset U$ – клетки, $K\subset V$ – куба:

$$\int_M \Omega = \int_K \varphi^* \Omega$$

17. Общая формула Стокса

Определение 17.1: Границей клетки $M=\varphi(K)$ называется $\partial M:=\varphi(\partial K)$

Теорема 17.1 (Теорема Стокса для клетки): Если Ω – гладкая m-1 форма, заданная в окрестности m-мерной клетки, то

$$\int_{\partial M} \Omega = \int_M \mathrm{d}\Omega$$

Доказательство: Используя Теорему Стокса для куба (ака определение интеграла по формам меньших размерностей) и свойство инвариантности внешнего дифференцирования от замены координат:

$$\int_{\partial M} \Omega = \int_{\partial K} \varphi^* \Omega = \int_K \mathrm{d}(\varphi^* \Omega) = \int_K \varphi^* (\mathrm{d}\Omega) = \int_M \mathrm{d}\Omega$$

18. Достаточные условия равномерной сходимости тригонометрического ряда Фурье в точке

В доказательствах некоторых теорем этого конспекта используется интересный трюк: если у нас есть цепочка равенств a=b, то мы с лёгкостью сможем продолжить её, написав $a=b=\frac{a+b}{2}$. Если вы понимаете, что в доказательстве теоремы с интегралами происходит какая-то дичь, то вспоминайте этот трюк!

Определение 18.1:

$$L_{2\pi} \coloneqq \{ f \in L_1[-\pi,\pi] \ | \ f-2\pi \ \text{периодическая} \}$$

Определение 18.2: Ядром Дирихле $D_n(u)$ называется выражение $D_n(u)=\frac{1}{2}+\sum_{k=1}^n\cos(ku)=\frac{\sin((n+\frac{1}{2})u)}{2\sin(\frac{u}{2})}$

Определение 18.3: Пусть $f \in L_{2\pi}$, тогда частичной суммой тригонометрического ряда Фурье называется $S_n(f,x)\coloneqq \tfrac{a_0}{2}+\textstyle\sum_{k=1}^n(a_k\cos(kx)+b_k\sin(kx))$

$$S_n(f,x) := \frac{a_0}{2} + \sum_{k=1}^n (a_k \cos(kx) + b_k \sin(kx))$$

где

$$a_k \coloneqq \tfrac{1}{\pi} \int_{-\pi}^\pi f(t) \cos(kt) \,\mathrm{d}\mu(t); \quad b_k = \tfrac{1}{\pi} \int_{-\pi}^\pi f(t) \sin(kt) \,\mathrm{d}\mu(t)$$

Лемма 18.1 (О представлении частичной суммы): Если $f \in L_{2\pi}$, то n-я частичная сумма тригонометрического ряда Фурье может быть представлена

$$S_n(f,x) = \frac{1}{\pi} \int_{-\pi}^\pi f(t) D_n(x-t) \,\mathrm{d}\mu(t) = \frac{1}{\pi} \int_{-\pi}^\pi f(x+u) D_n(u) \,\mathrm{d}\mu(u)$$

Теорема 18.1 (Теорема Римана об осцилляции): Если $f \in L_1(I)$, где I – конечный или бесконечный промежуток, то

$$\lim_{\lambda \to \infty} \int_I f(x) \cos(\lambda x) \, \mathrm{d}\mu(x) = \lim_{\lambda \to \infty} \int_I f(x) \sin(\lambda x) \, \mathrm{d}\mu(x) = 0$$

Теорема 18.2 (Признак Дини): Если
$$f\in L_{2\pi}$$
 и $\varphi_{x_0}\in L_1(0,\delta), \delta>0$, где
$$\varphi_{x_0}(t):=\frac{f(x_0+t)+f(x_0-t)-2S(x_0)}{t}$$

то тригонометрический ряд Фурье функции f(x) сходится к $S(x_0)$

Доказательство: Рассмотрим разность $S_n(f,x_0) - S(x_0)$, пользуясь леммой

о представлении, можем записать её как
$$S_n(f,x_0)-S(x_0)\stackrel{\text{трюк}}{=} \tfrac{1}{\pi} \int_0^\pi (f(x+u)+f(x-u)-2S(x_0))D_n(u)\,\mathrm{d}\mu(u)$$

В данном переходе мы воспользовались сразу несколькими фактами:

- Подынтегральная функция чётная относительно u
- Интеграл по $[-\pi,\pi]$ от ядра Дирихле равен π
- \bullet Если заменить в представлении частичной суммы t на -t, то ничего не изменится.

Продолжим цепочку преобразований, раскрыв в формуле ядра Дирихле

$$\sin\left(\left(n + \frac{1}{2}\right)t\right) = \sin(nt)\cos\left(\frac{t}{2}\right) + \cos(nt)\sin\left(\frac{t}{2}\right)$$

А также добавим и вычтем интеграл
$$\frac{1}{\pi} \int_0^\delta \frac{f(x+t)+f(x-t)-2S(x_0)}{t} \sin(nt) \, \mathrm{d}\mu(t)$$

Итак, приступим

$$\begin{split} S_n(f,x_0) - S(x_0) &= \\ \frac{1}{\pi} \int_0^\delta \frac{f(x+t) + f(x-t) - 2S(x_0)}{t} \sin(nt) \, \mathrm{d}\mu(t) + \\ \frac{1}{\pi} \int_0^\pi (f(x+t) + f(x-t) - 2S(x_0)) \frac{\cos(nt)}{2} \, \mathrm{d}\mu(t) + \\ \frac{1}{\pi} \int_\delta^\pi (f(x+t) + f(x-t) - 2S(x_0)) \frac{\sin(nt) \cos(\frac{t}{2})}{2 \sin(\frac{t}{2})} \, \mathrm{d}\mu(t) + \\ \frac{1}{\pi} \int_0^\delta (f(x+t) + f(x-t) - 2S(x_0)) \sin(nt) \left(\frac{\cos(\frac{t}{2})}{2 \sin(\frac{t}{2})} - \frac{1}{t} \right) \mathrm{d}\mu(t) \end{split}$$

 По условию φ_{x_0} сумирумая, значит по теореме Римана об осцилляции первое слагаемое стремится к нулю.

 $f(x+t) + f(x-t) - 2S(x_0)$ суммируема как сумма суммируемых и константы, значит по теореме Римана об осцилляции второе слагаемое стремится к нулю.

В третьем слагаемом $(f(x+t)+f(x-t)-2S(x_0))\frac{\cos(\frac{t}{2})}{2\sin(\frac{t}{2})}\in L_1[\delta,\pi]$, так как мы отделились от нуля и по теореме Римана об осцилляции третье слагаемое стремится к нулю.

Для четвёртого слагаемого рассмотрим разность:
$$\frac{\cos(\frac{t}{2})}{2\sin(\frac{t}{2})} - \frac{1}{t} \overset{t \to 0}{\sim} \frac{1 - \frac{t^2}{8}}{2\left(\frac{t}{2} - \frac{t^3}{48}\right)}) - \frac{1}{t} = \frac{t - \frac{t^3}{8} - t + \frac{t^3}{24}}{t^2} = 0$$

Значит мы умножили суммируемую функцию $f(x+t)+f(x-t)-2S(x_0)$

на другую, имеющую устранимый разрыв в нуле, а значит
$$(f(x+t)+f(x-t)-2S(x_0))\left(\frac{\cos(\frac{t}{2})}{2\sin(\frac{t}{2})}-\frac{1}{t}\right)\in L_1[0,\delta]$$

И опять применяем теоремы об осцилляции

Определение 18.4: Будем говорить, что функция f удовлетворяет **усло**вию Гёльдера порядка $\alpha \in (0,1]$ в точке x_0 , если существуют конечные односторонние пределы $f(x_0 \pm 0)$ и константы $C > 0, \delta > 0$ такие, что

$$\forall t, 0 < t < \delta: \ |f(x_0 + t) - f(x_0 + 0)| \leq Ct^{\alpha} \wedge |f(x_0 - t) - f(x_0 - 0)| \leq Ct^{\alpha}$$

Теорема 18.3 (Признак Липшица): Если $f \in L_{2\pi}$ удовлетворяет условию Гёльдера порядка α в точке x_0 , то тригонометрический ряд Фурье функции f(x) сходится в точке x_0 к $\frac{f(x_0+0)+f(x_0-0)}{2}$

Доказательство: По условию теоремы,

$$S(x_0) = \frac{f(x_0+0) + f(x_0-0)}{2}$$

 $S(x_0) = rac{f(x_0+0)+f(x_0-0)}{2}$ Значит функция $arphi_{x_0}$ из признака Дини будет иметь вид

$$\varphi_{x_0}(t) = \tfrac{f(x_0+t) - f(x_0+0) + (f(x_0-t) - f(x_0-0))}{t}$$

 ${
m To}$ что arphi измерима – очевидно. Осталось доказать ограниченность инте-

$$\begin{split} \left| \int_0^\delta \varphi_{x_0}(t) \, \mathrm{d}\mu(t) \right| & \leq \int_0^\delta \frac{|f(x_0+t)-f(x_0+0)|}{t} \, \mathrm{d}\mu(t) + \int_0^\delta \frac{|f(x_0-t)-f(x_0-0)|}{t} \, \mathrm{d}\mu(t) \leq \\ & 2C \int_0^\delta t^{\alpha-1} \, \mathrm{d}\mu(t) = 2C \frac{\delta^\alpha}{\alpha} \end{split}$$

Значит мы можем применить признак Дини и всё доказано.