

The Impact of Demographics, Service Quality, and Travel Experience on Airline Passenger Satisfaction

Joseph Ogunlade Adriana Ortega Amir Khan Samanth Madhesh

Marketing Analytics Group Project

Table of contents

Problem	Statement
	Problem

- Hypothesis
- Objectives
- Data
- Exploratory Data Analysis
- Statistical Analysis/ML Workflow

"All models are wrong, but some are useful"

—George E. P. Box

O1 Problem Statement

Problem Statement

- What are the key factors affecting passenger satisfaction?
 1.1 How do these factors vary by demographics, travel purpose, and flight experience?
- 2. Can we use these factors to predict whether a customer is satisfied or not?

Hypothesis 02

Hypothesis

H₁: Passengers' satisfaction levels significantly vary by age, with younger passengers placing higher importance on flight experience.

H₂: Passengers' satisfaction levels significantly vary by gender, with potential differences in preferences for service aspects.

H₃: Business-class passengers report significantly higher satisfaction compared to economy-class passengers due to better service experiences.

H₄: Business travelers report significantly higher satisfaction compared to personal travelers due to the prioritization of convenience and efficiency.

H₅: Loyal customers are more likely to report higher satisfaction than disloyal customers.

H₆: Higher ratings in inflight service factors, such as Wi-Fi quality, ease of online booking, cleanliness, and flight punctuality, significantly predict overall passenger satisfaction.

Objectives 03

Objectives

- Conduct **Exploratory Data Analysis (EDA)** to uncover patterns, trends, and insights within the data.
- Perform **Customer Segmentation Analysis** to identify distinct customer groups based on behavioral and demographic factors.
- Utilize **Logistic Regression Analysis** to examine the relationships between independent variables and the target variable, satisfaction.
- Develop and evaluate **Logistic Regression** and **Random Forest Models** for predicting customer satisfaction with a focus on accuracy and interpretability.

Data

Here is how we grouped our data:

- Demographic Attributes: Gender, Age, Customer Type.
- Flight Experience Factors: Travel purpose, class, flight distance.
- Service Satisfaction Ratings: Wi-Fi, online booking, boarding, seat comfort, food, and cleanliness.
- Logistics: Delays on departure and arrival.

Data (Summary Statistics)

	Age	Flight Distance	Inflight wifi service	Departur e/Arrival time convenie nt	Ease of Online booking	Gate location	Food and drink	Online boarding	Seat comfort
count	129487	129487	129487	129487	129487	129487	129487	129487	129487
mean	39.43	1190.21	2.73	3.06	2.76	2.98	3.2	3.25	3.44
std	15.12	997.56	1.33	1.53	1.4	1.28	1.33	1.35	1.32
min	7	31	0	0	0	0	0	0	0
25%	27	414	2	2	2	2	2	2	2
50%	40	844	3	3	3	3	3	3	4
75%	51	1744	4	4	4	4	4	4	5
max	85	4983	5	5	5	5	5	5	5

Data (Summary Statistics)

	Inflight	On-	Leg	Baggage	Checkin	Inflight	Cleanlin	Departur	Arrival
	entertain ment	board service	room service	handling	service	service	ess	e Delay in Minutes	Delay in Minutes
count	129487	129487	129487	129487	129487	129487	129487	129487	129487
mean	3.36	3.38	3.35	3.63	3.31	3.64	3.29	14.64	15.09
std	1.33	1.29	1.32	1.18	1.27	1.18	1.31	37.93	38.47
min	0	0	0	1	0	0	0	0	0
25%	2	2	2	3	3	3	2	0	0
50%	4	4	4	4	3	4	3	0	0
75%	4	4	4	5	4	5	4	12	13
max	5	5	5	5	5	5	5		

Data (Categorical Summaries)

Data (Dataset Split)

Exploratory Data O5 Analysis

EDA (Factor analysis)

After the factor analysis, this is our new group

- Flight Experience: Seat Comfort, Inflight Entertainment, Food and Drink, Cleanliness
- **Service satisfaction:** On-Board Service, Leg Room Service, Baggage Handling
- Digital and Accessibility Features: Inflight Wi-Fi Service, Ease of Online Booking, Gate Location, Online Boarding, Departure/Arrival Time Convenience
- **Logistics:** Departure Delay in Minutes, Arrival Delay in Minutes
- **Demography & other factors:** Age, Flight Distance, Gender, Customer Type, Type of travel, Class

Avg flight distance (miles) Avg Depart. Delay(min) Avg Arriv. Delay(min)

age gr	oup			
Adult	20-64	1230.683534	14.610271	15.045807
Child	0-12	905.119262	15.287990	15.865437
Senior	+65	958.301374	14.060677	14.377305
Teen	13-19	950.844776	15.198236	15.852646

Statistical Analysis/ML Workflow 66

Customer Segmentation Analysis

Objective:

To segment customers based on flight data (e.g., flight distance, delays, satisfaction) and provide actionable insights for improving customer satisfaction and operational efficiency.

Methodology Overview:

- Data Preprocessing and Feature Selection
- Determining the Optimal Number of Clusters (Elbow Method)
- Customer Segmentation using K-Means
- Validation with Linear Discriminant Analysis (LDA)

Determining the Optimal Number of Clusters

Finding the Elbow Point

- Method: Calculated WSS for clusters ranging from 1 to 10.
- Result: The elbow was identified at k=5, suggesting 5 clusters.

Using 5 clusters balances compactness within clusters and simplicity of the model.

Cluster descriptions

Characteristics of Each Segment

Cluster Statistics:

Segment	Mean Flight Distance	Mean Departure Delay (mins)	Mean Arrival Delay (mins)	Size
0	664.69	3.92	4.23	81,778
1	1218.76	145.57	148.06	3,671
2	2648.03	6.15	6.41	31,818
3	1323.22	347.30	350.58	551
4	882.85	56.03	57.19	11,669

Key observations:

- Cluster 0 represents the majority of customers with short flight distances and minimal delays.
- Cluster 3 highlights a smaller group experiencing significant delays.
- Cluster 2 includes long-haul travelers with minimal delays.

Visualizing segments

Key differences across clusters.

satisfaction segment	neutral or dissatisfied	satisfied	Total
0	52466	29312	81778
1	2336	1335	3671
2	10088	21730	31818
3	341	210	551
4	7994	3675	11669
Total	73225	56262	129487

Validation with LDA

Accuracy of Clustering Model

Used Linear Discriminant Analysis (LDA) to validate cluster assignments.

Result: Achieved an accuracy of **85.52%**, confirming that the segmentation model effectively captures the distinctions between clusters.

Regression 1 (Satisfaction vs factors)

	Coef.	Std.Err.	z	P> z
Intercept	-4.3494195	0.04533219	-95.945491	0
Age	-0.004486	0.00058562	-7.6602772	1.86E-14
Male	0.03341484	0.01612745	2.07192343	0.03827258
Flight Distance	-4.69E-05	9.36E-06	-5.0117471	5.39E-07
Loyal customer	1.96424532	0.02363811	83.0965386	0
Business Travel	2.78820846	0.02492033	111.884886	0
Business Class	1.00592934	0.03340027	30.117405	2.87E-199
Economy Class	0.11628564	0.03270224	3.55589256	0.0003767
Flight Experience	0.82616304	0.00974665	84.7637606	C
Service satisfaction	0.89324244	0.01035149	86.291157	C
Digital and Accessibility Features	0.3563286	0.00860015	41.432822	C
Logistics	-0.1503217	0.0084415	-17.807461	6.19E-71

Pseudo R Squared = 0.4448

Regression 1 (Key insights)

Main Predictors of Satisfaction

• Flight Experience (e.g., seat comfort, food, cleanliness) and Service Satisfaction (e.g., on-board service, baggage handling) are strong positive drivers of passenger satisfaction.

Customer Demographics

- Older passengers and females tend to have slightly lower satisfaction levels.
- Loyal customers and business travelers are much more likely to be satisfied compared to disloyal customers and those traveling for personal reasons.
- Business class passengers are the most satisfied, followed by economy class passengers.
- Economy plus passengers show a slight increase in satisfaction compared to economy plus.

Other Factors

- Delays (departure and arrival) significantly reduce passenger satisfaction, with higher delays leading to lower satisfaction levels.
- Digital and accessibility features (e.g., Wi-Fi, ease of online booking) have a positive but moderate impact on satisfaction.

Regression 2

- We created a highly detailed logistic regression model, with many predictors as the previous one.
- We included interaction terms between age, gender, class, flight distance, customer type, type of travel and all four factors of Flight Experience, Service satisfaction, Digital and Accessibility Features, and Logistics.
- The intent is to capture nuanced relationships in the data.
- Pseudo R Squared = 0.5477

Regression 2 (Extra insights)

- Older passengers show higher satisfaction with flight experience and lower satisfaction with service satisfaction factor.
- Women report lower satisfaction with service satisfaction factors but higher satisfaction with other service aspects.
- Business class passengers are most satisfied, with service factors related to flight experience and logistics.
- **Economy plus** passengers show slightly higher satisfaction for flight experiences like seating and comfort.
- Frequent flyers (loyal customers) report higher satisfaction, especially with flight experience.
- Business travelers have higher satisfaction compared to personal travelers, especially with flight experience and digital & accessibility features.
- Longer flight distances impact satisfaction, particularly with flight experience, making service quality more critical on long flights.

Regression (Diagnostics)

feature	VIF
Const	31.2
Age	1.123
Male	1.003
Flight distance	1.362
Loyal customers	1.478
Business Travel	1.868
Business Class	4.682
Economy Class	4.048
Flight Experience	1.166
Service Satisfaction	1.153
Digital & Accessibility Features	1.034
Logistics	1.002

Overall, the VIFs suggest that your features are well-behaved in terms of multicollinearity and our model seems reliable.

ML (Logistics Regression vs Random Forest)

- Random Forest demonstrates higher accuracy (94.4%) compared to Logistic Regression (93.3%).
- Overall, Random Forest performs slightly better because it is capable of capturing non-linear relationships and interactions between features, which Logistic Regression often misses

Conclusion & 07 Recommendation

Conclusion & Recommendation

- Enhance Flight Experience and Service Quality
- Address Delays Proactively
- Cater to Demographic Preferences
- Leverage Loyalty Programs and Business Travel Insights
- Optimize Service for Long Flights (loyalty programs)
- Strengthen Digital and Accessibility Features
- Focus efforts on reducing significant departure and arrival delays
- Enhance satisfaction through tailored offers or in-flight experiences

Thank you!

Do you have any questions?