Вариант 31

Эта задача для всех потоков, кроме ФПМИ (ФИВТ), ВШПИ.

1. a) (3)
$$\frac{x^2 + 2}{(x+1)(x^2 - 2x + 3)} = \frac{1}{2(x+1)} + \frac{x+1}{2(x^2 - 2x + 3)};$$
$$\int \frac{x^2 + 2}{(x+1)(x^2 - 2x + 3)} dx = \frac{1}{2} \ln|x+1| + \frac{1}{4} \ln(x^2 - 2x + 3) + \frac{1}{\sqrt{2}} \arctan \frac{x-1}{\sqrt{2}} + C.$$

Эта задача для всех потоков, кроме ЛФИ, ФПМИ (ФИВТ), ВШПИ.

1. б) ② Замена $t = \sqrt{e^x - 1}$ и интегрирование по частям:

$$\int \frac{xe^x}{\sqrt{e^x - 1}} dx = \int 2\ln(t^2 + 1) dt = 2t\ln(t^2 + 1) - 4\int \frac{t^2}{t^2 + 1} dt = 2t\ln(t^2 + 1) - 4t + 4\arctan t + C = 2x\sqrt{e^x - 1} - 4\sqrt{e^x - 1} + 4\arctan t - C.$$

Эта задача для потоков ФПМИ (ФИВТ), ВШПИ.

1. ② Нет. Пусть $E = \left[0, \frac{1}{2}\right] \cup \left(\left[\frac{1}{2}, 1\right] \cap \mathbb{Q}\right)$, тогда $F \supset \bar{E} = [0, 1]$ и, значит, $\mu(F) \geqslant 1$.

Эта задача для всех потоков, кроме ФПМИ (ФУПМ).

2. (4)
$$df(M) = 2 dx$$
; $d^2 f(M) = 4 dx^2 + \pi dy^2$.

$$f(x,y) = 1 + 2\left(x - \frac{\pi}{4}\right) + \frac{1}{2}\left(4\left(x - \frac{\pi}{4}\right)^2 + \pi y^2\right) + o\left(\left(x - \frac{\pi}{4}\right)^2 + y^2\right).$$

Эта задача для потока ФПМИ (ФУПМ).

2. ④ Функция Лагранжа: $L(x, y) = 3x - 2y - \lambda(5x^2 - 5y^2 - 1)$.

При $\lambda=-\frac{1}{2}$ в точке $(-\frac{3}{5},-\frac{2}{5})$ имеется локальный условный максимум, так как на касательном пространстве -6dx+4dy=0 квадратичная форма $d^2L=5dx^2-5dy^2$ определена отрицательно.

При $\lambda=\frac{1}{2}$ в точке $(\frac{3}{5},\frac{2}{5})$ имеется локальный условный минимум, так как на касательном пространстве 6dx-4dy=0 квадратичная форма $d^2L=-5dx^2+5dy^2$ определена положительно.

3. ②
$$L = \int_{0}^{\pi} \frac{3}{2} \cos \frac{t}{2} dt = 3.$$

$$\frac{\mathbf{4. } \ \mathbf{5} \ f_x'(0,0) = 0, \quad f_y'(0,0) = \left(y^2 \sin \frac{1}{3}\right)_{y=0}' = 0; \quad 3x^2 - 4xy + 3y^2 \geqslant x^2 + y^2;}{\left|\frac{f(x,y)}{\sqrt{x^2 + y^2}}\right| \leqslant \frac{\left|y^3(x+y)\right|}{\sqrt{x^2 + y^2}(3x^2 - 4xy + 3y^2)} \leqslant 2\sqrt{x^2 + y^2} \implies f(x,y) = o\left(\sqrt{x^2 + y^2}\right) \quad \begin{pmatrix} x \to 0 \\ y \to 0 \end{pmatrix}.}$$

Ответ: f дифференцируема в точке (0, 0).

5. (4)
$$f(x) > 0$$
 при $x > 0$; $I = \int_{0}^{\infty} f(x) dx = \int_{0}^{1} f(x) dx + \int_{1}^{\infty} f(x) dx = I_1 + I_2$;

 I_1 : при $x \to 0$ выполняется $f(x) \sim \frac{C_1}{x^{2-3\alpha} \ln^2 x}$; поэтому I_1 сходится при $\alpha \geqslant \frac{1}{3}$.

 I_2 : при $x \to +\infty$ выполняется $f(x) \sim \frac{C_2}{x^{3-2\alpha}}$; поэтому I_2 сходится при $\alpha < 1$.

Ответ: интеграл сходится при $\alpha \in \left[\frac{1}{3}; 1\right)$.

6. ③ Если
$$a_n$$
 — общий член ряда, то $\frac{a_{n+1}}{a_n} = \frac{(3n+3)(3n+2)(3n+1)}{7n(2n+2)(2n+1)} \sim \frac{27}{28} < 1.$

Ответ: ряд сходится по признаку Даламбера.

7. a) **4**
$$f(x) = \lim_{n \to \infty} f_n(x) = x, \ x \in E_1 \cup E_2;$$

$$g_n(x) = |f_n(x) - f(x)| = \frac{n}{x} \left| \sin \frac{x^2}{n} - \frac{x^2}{n} \right|;$$

<u>На E_1 :</u> по формуле Тейлора $\sin t = t - \frac{t^2 \sin \xi}{2}$ при $0 < \xi < t$, откуда $|\sin t - t| \leqslant \frac{t^2}{2}$ при t > 0.

Следовательно, $g_n(x) \leqslant \frac{x^3}{2n} < \frac{1}{2n} \to 0$ при $n \to \infty$. На E_1 есть равномерная сходимость.

<u>На E_2 :</u> пусть $x_n = \sqrt{n} \in E_2$ при n > 1. Тогда $g_n(x_n) = \sqrt{n} |\sin 1 - 1| \geqslant |\sin 1 - 1| = \varepsilon > 0$. На E_2 нет равномерной сходимости.

7. б) ④ Пусть $f_n(x)$ — общий член ряда.

 $f_n(x_0) \sim \frac{1}{(nx_0)^{\frac{3}{2}}}$ при $n \to \infty$ и $x_0 > 0 \Rightarrow$ ряд сходится поточечно на $E_1 \cup E_2$ (признак сравнения в предельной форме).

<u>На</u> E_1 : пусть $x_n = \frac{1}{n} \in E_1$ при n > 1. Тогда $|f_n(x_n)| = n \arctan \sqrt{\frac{n}{n^3 + 1}} \to 1$ при $n \to \infty$, т.е. $\exists N_1 \colon \forall n \geqslant N_1 \mid |f_n(x_n)| > \frac{1}{2} = \varepsilon_0 > 0$. Следовательно, $\forall N \exists n = \max\{N_1, N\} \exists x = x_n \colon |f_n(x)| > \varepsilon_0$. На E_1 ряд не сходится равномерно (отрицание необходимого условия равномерной сходимости ряда).

 $\underline{\text{Ha }E_2}$: $|f_n(x)| \leqslant \frac{1}{(nx)^{\frac{3}{2}}} \leqslant \frac{1}{n^{\frac{3}{2}}}$ при $n \in \mathbb{N}$ и $x \in E_2$ (оценка $|\arctan t| \leqslant |t|$). На E_2 ряд сходится равномерно (признак Вейерштрасса).

8. (3)
$$f(x) = x^2 \cdot g(x)$$
, $g'(x) = -\frac{1}{4} \left(1 - \frac{x^2}{4} \right)^{-\frac{1}{2}} = \sum_{n=0}^{\infty} \frac{(-1)^{n+1} C_{-\frac{1}{2}}^n}{4^{n+1}} x^{2n}$; $f(x) = \frac{\pi}{4} x^2 + \sum_{n=0}^{\infty} \frac{(-1)^{n+1} C_{-\frac{1}{2}}^n}{4^{n+1} (2n+1)} x^{2n+3}$, $R = 2$.

Эта задача для потоков ЛФИ, ФПМИ (ФИВТ), ВШПИ.

9. ② Заметим, что $g_n(x) \to 2$ для п.в. x и $|g_n| \leqslant 2$ на [0,1]. Тогда по теореме Лебега $\lim_{n \to \infty} \int_0^1 g_n(x) dx = \int_0^1 2 \ dx = 2$.