INFO 2950: Intro to Data Science

Lecture 26 2023-11-29

Join us for an exciting showcase of Cornell Data Journal's semester-long projects. **Food will be provided!**

Friday, December 1st | 6:30 - 8:30 PM
Biotechnology Building G10

Funded by SAFC

Agenda

1. Python Review

Midterm Review(Part 1)

When to use what languages?

Python

- Data manipulation
- ML models

When to use what languages?

Python

- Data manipulation
- ML models

SQL

Merging data, group by's

In Python, (with documentation/Googling) you should now be able to do the following with dataframes:

In Python, (with documentation/Googling) you should now be able to do the following with dataframes:

- select rows, columns
- do arithmetic transforms of a column
- generate new rows / columns
- merges, sorting, data transformations
- aggregate statistics / group by
- run linear and logistic regressions
- run hypothesis tests / generate distributions
- run advanced models: NB, SVD, neural nets...

Python refresher / R intro

- We'll review basic syntax from the first few lectures
- ...and introduce how to do the same things in R!

Python refresher / R intro

You won't need to know R for the final exam, but we want to show you that much of what you learned is transferable knowledge!

R

- Designed by statisticians, not CS
- Harder to use as general-purpose programming language, but easier for stats-oriented work
- Lagging Python for recent NNs
- Base R is ok, "tidyverse" packages are

Python: Loading libraries

```
import numpy as __
import pandas as __
import seaborn
```

Python vs R: Loading libraries

```
import numpy as np
import pandas as pd
import seaborn
```

library(tidyverse)

```
— Attaching packages — tidyverse 1.3.1 —

✓ ggplot2 3.3.6 ✓ purrr 0.3.4

✓ tibble 3.1.7 ✓ dplyr 1.0.9

✓ tidyr 1.2.0 ✓ stringr 1.4.0

✓ readr 2.1.2 ✓ forcats 0.5.1

— Conflicts — tidyverse_conflicts() —

ズ dplyr::filter() masks stats::filter()

ズ dplyr::lag() masks stats::lag()
```

Python: Reading a file

```
countries =
    pd.____("countries.tsv",
    delimiter="__")
```

Python vs R: Reading a file

```
countries =
    pd.read_csv("countries.tsv",
    delimiter="\t")
```

countries <- read_tsv("countries.tsv")</pre>

Rows: 230 Columns: 63

— Column specification—

Delimiter: "\t"

chr (34): Country, Continent, Region, Location, Highest

Point, Langua...

dbl (28): Area, Borders, Length, Coastline, Height,

Temperature, Popu...

i Use `spec()` to retrieve the full column specification for this data.

i Specify the column types or set `show_col_types = FALSE` to quiet this message.

Python vs R: Reading a file

```
countries = countries <- read_tsv("countries.tsv")
    pd.read_csv("countries.tsv",
        delimiter="\t")</pre>
```

RStudio keeps track of defined variables and their sizes

Python: Show the first 3 rows

countries.___(3)

Python vs R: Show the first rows

Python vs R: Show the first rows

```
countries.head(3)
                                     head(countries, 3)
                                         or
                                     countries %>% head(3)
                                             "pipe" operator
                                             value on the left becomes
                                             input to the right
```

Python: Show two columns

Python vs R: Show two columns

Python vs R: Show two columns

R can figure out that "Population" is a column name, so it doesn't need quotes

Python: Select rows by condition

```
countries.___
countries["Population"] >
    100000000 _
```

Python vs R: Select rows by condition

Research Question: do more urbanized countries have larger populations?

Python: Sort rows by a column

Python vs R: Sort rows by a column

Pipes allow us to combine multiple operations

Python vs R: Sort rows by a column

	Country	Urban
227	Wallis and Futuna (France)	0.0
226	Tokelau (New Zealand)	0.0
224	Montserrat (United Kingdom)	9.1
68	Papua New Guinea	13.3
202	Burundi	13.7
•••		•••
175	Macau (China)	100.0
182	Sint Maarten (Netherlands)	100.0
7	Singapore	100.0
229	Holy See	100.0
194	Kosovo	NaN

230 rows × 2 columns

Python: plot data as points

Python vs R: plot data as points


```
ggplot(data=countries,
    aes(Population, Urban)) +
    geom_point()
```


Python: Add a "LogPopulation" column

```
countries[____] =
    np.___(___[])
```

Python vs R: Add a "LogPopulation" column

```
countries["LogPopulation"] =
        np.log(countries["Populat
        ion"])
  100
  80
Urban
  20
           10
                        16
                            18
                                20
                 LogPopulation
```

countries <- countries %>%
 mutate(LogPopulation =
 log(Population))

Python vs R: Add a "LogPopulation" column

countries <- countries %>% mutate

```
countries["LogPopulation"] =
    np.log(countries["Populat
    ion"])
```

```
countries <- countries %>%
    mutate(LogPopulation =
    log(Population))
```

mutate_if

RStudio helps with
API hints (also Google

Colab and VSCode for

Python)

Files mutate(.data, ...) mutate Create, modify, and delete cold {dplyr} mutate_ mutate() adds new variables ar mutate_all {dplyr} transmute() adds new variable {dplyr} mutate_at variables overwrite existing variables mutate_each {dplyr} can be removed by setting their mutate each {dplyr} Press F1 for additional help

{dplyr}

Python: Predict population from Urban%

```
urban_pop_model = LinearRegression()
    .__(countries[["Urban"]], countries["LogPopulation"])
urban_pop_model.____, urban_pop_model.____
(array([-0.0051409]), 16.475302332927527)
```

Python: Predict population from Urban%

```
urban_pop_model = LinearRegression()
    .fit(countries[["Urban"]], countries["LogPopulation"])
urban_pop_model.coef_, urban_pop_model.intercept_
    (array([-0.0051409]), 16.475302332927527)
```

R: Predict population from Urban%

```
urban pop model <- lm(LogPopulation ~ Urban, data=countries)
summary(urban pop model)
Residuals:
   Min
           10 Median 30
                               Max
-6.8100 -0.9732 0.1155 1.2519 4.8958
Coefficients:
               Estimate Std. Error t value Pr(>|t|)
    (Intercept) 16.475302  0.479951  34.327  <2e-16 ***
    Urban -0.005141 0.007324 -0.702 0.484
    Signif. codes: 0 (***, 0.001 (**, 0.05 (., 0.1 (), 1
    Residual standard error: 1.97 on 142 degrees of freedom
    Multiple R-squared: 0.003458, Adjusted R-squared: -0.00356
    F-statistic: 0.4927 on 1 and 142 DF, p-value: 0.4839
```

R: Predict population from Urban%

```
urban_pop_model <- lm(LogPopulation ~ Urban, data=countries)</pre>
summary(urban pop mode<del>l)</del>
                                               R uses "~" to build a
Residuals:
   Min
           10 Median
                                Max
                                               formula for linear models
-6.8100 -0.9732 0.1155 1.2519 4.8958
Coefficients:
               Estimate Std. Error t value Pr(>|t|)
     (Intercept) 16.475302  0.479951  34.327  <2e-16 ***
    Urban
               -0.005141 0.007324 -0.702 0.484
     Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
     Residual standard error: 1.97 on 142 degrees of freedom
    Multiple R-squared: 0.003458, Adjusted R-squared: -0.00356
     F-statistic: 0.4927 on 1 and 142 DF, p-value: 0.4839
```

R: Predict population from Urban%

```
urban_pop_model <- lm(LogPopulation ~ Urban, data=countries)</pre>
summary(urban pop model)
Residuals:
   Min
           10 Median 30
                               Max
-6.8100 -0.9732 0.1155 1.2519 4.8958
Coefficients:
                                                         Is our coefficient >
               Estimate Std. Error t value Pr(>|t|)
    (Intercept) 16.475302 0.479951 34.327 <2e-16 ***
                                                         or < 0?
    Urban -0.005141 0.007324 -0.702 0.484
    Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
    Residual standard error: 1.97 on 142 degrees of freedom
    Multiple R-squared: 0.003458, Adjusted R-squared: -0.00356
    F-statistic: 0.4927 on 1 and 142 DF, p-value: 0.4839
```

```
urban_pop_model <- lm(LogPopulation ~ Urban, data=countries)</pre>
summary(urban pop model)
Residuals:
   Min
           10 Median 30
                               Max
-6.8100 -0.9732 0.1155 1.2519 4.8958
Coefficients:
                                                         Urban coefficient
               Estimate Std. Error t value Pr(>|t|)
    (Intercept) 16.475302 0.479951 34.327 <2e-16 ***
                                                         slightly < 0
    Urban -0.005141 0.007324 -0.702 0.484
    Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
    Residual standard error: 1.97 on 142 degrees of freedom
    Multiple R-squared: 0.003458, Adjusted R-squared: -0.00356
    F-statistic: 0.4927 on 1 and 142 DF, p-value: 0.4839
```

```
urban_pop_model <- lm(LogPopulation ~ Urban, data=countries)</pre>
summary(urban pop model)
Residuals:
   Min
                         3Q
           10 Median
                                Max
-6.8100 -0.9732 0.1155 1.2519 4.8958
                                                        Is our coefficient
Coefficients:
               Estimate Std. Error t value Pr(>|t|)
                                                        "statistically
     (Intercept) 16.475302 0.479951 34.327 <2e-16 ***
                                                        significant"?
    Urban
               -0.005141 0.007324 -0.702
                                            0.484
    Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
     Residual standard error: 1.97 on 142 degrees of freedom
    Multiple R-squared: 0.003458, Adjusted R-squared: -0.00356
     F-statistic: 0.4927 on 1 and 142 DF, p-value: 0.4839
```

```
urban_pop_model <- lm(LogPopulation ~ Urban, data=countries)</pre>
summary(urban pop model)
Residuals:
   Min
           10 Median
                         3Q
                               Max
                                                       Nope!
-6.8100 -0.9732 0.1155 1.2519 4.8958
                                                       The intercept is
                                                       definitely not zero.
Coefficients:
               Estimate Std. Error t value Pr(>|t|)
                                                       but Urban% looks
     (Intercept) 16.475302 0.479951 34.327
                                         <2e-16 ***
                                                       random
    Urban
               -0.005141 0.007324 -0.702
                                           0.484
    Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
     Residual standard error: 1.97 on 142 degrees of freedom
    Multiple R-squared: 0.003458, Adjusted R-squared: -0.00356
     F-statistic: 0.4927 on 1 and 142 DF, p-value: 0.4839
```

```
ur_ar_pop_model <- lm(LogPopulation ~ Urban + Area, data=countries)</pre>
summary(ur ar pop model)
Residuals:
   Min
           10 Median
                         30
                               Max
                                                       Include multiple
-6.4715 -0.9001 0.2607 1.1208 3.6736
                                                       predictors with +
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.644e+01 4.378e-01 37.544 < 2e-16 ***
Urban
          -9.844e-03 6.736e-03 -1.462
                                       0.146
Area
           3.765e-07 6.911e-08 5.448 2.21e-07 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 1.797 on 141 degrees of freedom
Multiple R-squared: 0.1768, Adjusted R-squared: 0.1651

F-statistic: 15.14 on 2 and 141 DF, p-value: 1.108e-06

40

ur_ar_pop_model <- lm(LogPopulation ~ Urban + Area, data=countries)
summary(ur_ar_pop_model)</pre>

Residuals:

```
Min 1Q Median 3Q Max -6.4715 -0.9001 0.2607 1.1208 3.6736
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.644e+01 4.378e-01 37.544 < 2e-16 ***
Urban -9.844e-03 6.736e-03 -1.462 0.146
Area 3.765e-07 6.911e-08 5.448 2.21e-07 ***
```

- 1. Is Urban coefficient statistically significant at the 0.001 level?
- 2. Is Area coefficient statistically significant at the 0.001 level?

Residual standard error: 1.797 on 141 degrees of freedom

Multiple R-squared: 0.1768, Adjusted R-squared: 0.1651

Signif. codes: 0 (***, 0.001 (**, 0.05 (., 0.1 (), 1

```
ur_ar_pop_model <- lm(LogPopulation ~ Urban + Area, data=countries)</pre>
summary(ur ar pop model)
Residuals:
```

```
Min
            10 Median
-6.4715 -0.9001 0.2607 1.1208 3.6736
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.644e+01 4.378e-01 37.544 < 2e-16 ***
Urban
           -9.844e-03 6.736e-03 -1.462
                                         0.146
           3.765e-07 6.911e-08
                                5.448 2.21e-07 ***
Area
```

Max

1. No 2. Yes

Urban% is still not significant, but lower p value. Land area is highly significant! Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1

Residual standard error: 1.797 on 141 degrees of freedom

Multiple R-squared: 0.1768, Adjusted R-squared: 0.1651

```
ur_ar_pop_model <- lm(LogPopulation ~ Urban + Area, data=countries)
summary(ur_ar_pop_model)</pre>
```

Residuals:

```
Min 1Q Median 3Q Max -6.4715 -0.9001 0.2607 1.1208 3.6736
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.644e+01 4.378e-01 37.544 < 2e-16 ***
Urban -9.844e-03 6.736e-03 -1.462 0.146
Area 3.765e-07 6.911e-08 5.448 2.21e-07 ***
```

Which coefficient has larger magnitude, Urban or Area?

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.797 on 141 degrees of freedom

Multiple R-squared: 0.1768, Adjusted R-squared: 0.1651

```
ur_ar_pop_model <- lm(LogPopulation ~ Urban + Area, data=countries)
summary(ur_ar_pop_model)</pre>
```

Residuals:

```
Min 1Q Median 3Q Max -6.4715 -0.9001 0.2607 1.1208 3.6736
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.644e+01 4.378e-01 37.544 < 2e-16 ***
Urban -9.844e-03 6.736e-03 -1.462 0.146
Area 3.765e-07 6.911e-08 5.448 2.21e-07 ***
```

Magnitude means absolute value; <u>Urban</u>'s is bigger: 0.009844 > 0.000003765

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.797 on 141 degrees of freedom

Multiple R-squared: 0.1768, Adjusted R-squared: 0.1651

ur_ar_pop_model <- lm(LogPopulation ~ Urban + Area, data=countries)
summary(ur_ar_pop_model)</pre>

Residuals:

```
Min 1Q Median 3Q Max -6.4715 -0.9001 0.2607 1.1208 3.6736
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.644e+01 4.378e-01 37.544 < 2e-16 ***
Urban -9.844e-03 6.736e-03 -1.462 0.146
Area 3.765e-07 6.911e-08 5.448 2.21e-07 ***
```

```
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

1 unit (percentage point) increase in Urban% corresponds to a _____ [increase/decrease] in log population.

1 unit (square miles) increase in Area corresponds to a _____ [increase/decrease] in log population.

Residual standard error: 1.797 on 141 degrees of freedom

Multiple R-squared: 0.1768, Adjusted R-squared: 0.1651

ur_ar_pop_model <- lm(LogPopulation ~ Urban + Area, data=countries)
summary(ur_ar_pop_model)</pre>

Residuals:

```
Min 1Q Median 3Q Max -6.4715 -0.9001 0.2607 1.1208 3.6736
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.644e+01 4.378e-01 37.544 < 2e-16 ***
Urban -9.844e-03 6.736e-03 -1.462 0.146
Area 3.765e-07 6.911e-08 5.448 2.21e-07 ***
```

```
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '
```

1 unit (percentage point) increase in Urban% corresponds to a .0098 decrease in log population.

1 unit (square miles) increase in Area corresponds to a 0.0000003765 increase in log population. Small but significant!

Residual standard error: 1.797 on 141 degrees of freedom

Multiple R-squared: 0.1768, Adjusted R-squared: 0.1651

OLS Regression Resu	JILS		
Dep. Variable:	LogPopulation	R-squared:	0.003
Model:	OLS	Adj. R-squared:	-0.004
Method:	Least Squares	F-statistic:	0.4927
Date:	Wed, 30 Nov 2022	Prob (F-statistic):	0.484
Time:	10:56:43	Log-Likelihood:	-300.98
No. Observations:	144	AIC:	606.0
Df Residuals:	142	BIC:	611.9
Df Model:	1		
Covariance Type:	nonrobust		

OLS Pagrassian Posulte

	coef	std er	r t	P> t	[0.025	0.975]
Intercept	16.4753	0.48	0 34.327	0.000	15.527	17.424
Urban	-0.0051	0.00	7 -0.702	0.484	-0.020	0.009
Omr Prob(Omn		6.672 0.000	Durbin-V Jarque-Be		1.70	
	035 03 4 3	0.684	•	ob(JB):	2.05e-0	_
Kur	tosis:	4.315	Co	nd. No.	192	2.

Using statsmodels
package

Notes:

^[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Dep. Variable:		LogP	opulation	1	R-squa	red:	0.003
Model:			OLS	Adj	. R-squa	red:	-0.004
	Method:	Leas	t Squares		F-statis	stic:	0.4927
	Date:	Wed, 30	Nov 2022	Prob	(F-statis	tic):	0.484
	Time:		10:56:43	Log	g-Likeliho	ood:	-300.98
No. Obser	vations:		144	l.		AIC:	606.0
Df Re	siduals:		142	!	ı	BIC:	611.9
D	f Model:		1				
Covarian	се Туре:	r	nonrobus	t			
	coef	std err	t	P> t	[0.025	0.97	75]
Intercept	16.4753	0.480	34.327	0.000	15.527	17.4	24
Urban	-0.0051	0.007	-0.702	0.484	-0.020	0.0	109

OLS Regression Results

dmatrices uses the same formula syntax as R

Dep. V	Dep. Variable:		opulation	li.	R-squa	red:	C	0.003
	Model:		OLS	Ad	j. R-squa	red:	-0	0.004
	Method:	Leas	t Squares	ares F-stat		stic:	0.	4927
	Date:	Wed, 30	Nov 2022	Prob	Prob (F-statistic):		c): 0.48	
	Time:		10:56:43	Log	g-Likelih	ood:	-30	0.98
No. Obser	vations:		144	l,	6	AIC:	6	06.0
Df Re	siduals:		142			BIC:	6	11.9
Di	f Model:		1					
Covariand	ce Type:	r	nonrobus	t				
	coef	std err	t	P> t	[0.025	0.97	751	
	0001	sta en	•	1 / 14	[0.020	0.57	٥,	
Intercept	16.4753	0.480	34.327	0.000	15.527	17.4	24	
Urban	-0.0051	0.007	-0.702	0.484	-0.020	0.0	09	

OLS Regression Results

statsmodels does not include intercept by default, dmatrices function adds an intercept

sm_urban_pop_model.summary()
OLS Regression Results

OLO Hegression Hesi	arto		
Dep. Variable:	LogPopulation	R-squared:	0.003
Model:	OLS	Adj. R-squared:	-0.004
Method:	Least Squares	F-statistic:	0.4927
Date:	Wed, 30 Nov 2022	Prob (F-statistic):	0.484
Time:	10:56:43	Log-Likelihood:	-300.98
No. Observations:	144	AIC:	606.0
Df Residuals:	142	BIC:	611.9
Df Model:	1		
Covariance Type:	nonrobust		

	coef	std e	err		t	P> t	[0.025	0.975]
Intercept	16.4753	0.4	80	34.32	7	0.000	15.527	17.424
Urban	-0.0051	0.0	07	-0.70	2	0.484	-0.020	0.009
					Ь			
Omr	nibus: 1	6.672		Durbin	-V	/atson:	1.70	9
Prob(Omni	ibus):	0.000	Ja	rque-l	Зе	ra (JB):	21.58	9
S	Skew: -	0.684			Pr	ob(JB):	2.05e-0	5
Kur	tosis:	4.315		(Co	nd. No.	192	2.

Notes:

Same output!

^[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Python & R: data reshaping

	Python	SQL	R
Wide to long	melt(), stack(),	CROSS APPLY(), UNPIVOT()	melt(), pivot_longer(), gather(),
Long to wide	pivot(), pivot_table(), unstack(),	PIVOT()	pivot_wider(), dcast(), spread(),

1 minute break & attendance!

tinyurl.com/ey7w79k5

Python: inner join of df1 and df2 (on column 'id')

(Using Pandas merge!)

```
___.merge(___, how=___, on=___)
```

Python: inner join of df1 and df2 (on column 'id')

SQL: inner join of df1 and df2 (on column 'id')

SQL: inner join of df1 and df2 (on column 'id')

Python & SQL & R: inner join of df1 and df2 (on column 'id')

Python : get average 'price' grouped by 'product' from dataframe 'df'

(Using Pandas!)
___groupby(_____)[____].___()

Python: get average 'price' grouped by 'product' from dataframe 'df'

```
(Using Pandas!)

df.groupby('product')['price'].mean()
```

SQL : get average 'price' grouped by 'product' from dataframe 'df'

```
(Using Pandas!)

df.groupby('product')['price'].mean()

(Using SQL!)

SELECT _____
df
```

SQL : get average 'price' grouped by 'product' from dataframe 'df'

```
(Using Pandas!)

df.groupby('product')['price'].mean()

(Using SQL!)
   SELECT AVG(price)
   FROM df
   GROUP BY product
```

Python & SQL & R: get average 'price' grouped by 'product' from dataframe 'df'

```
(Using Pandas!)
                                           (Using R tidyverse)
 df.groupby('product')['price'].
                                           df %>% group by(product)
        mean()
                                              %>% summarise(mean(price))
(Using SQL!)
 SELECT AVG(price)
  FROM df
 GROUP BY product
```

Numpy stats in 1-D

```
>>> a = np.array([[1, 2], [3, 4]])
>>> __.___ (2,2)
>>> np.mean(a, axis=0) ?
>>> np.median(a, axis=1) ?
```

Numpy stats in 1-D

Numpy stats in 1-D

```
>>> a = np.array([[1, 2], [3, 4]])
>>> __.___
(2,2)
>>> np.mean(a, axis=0) array([2., 3.])
>>> np.median(a, axis=1) array([1.5, 3.5])
```

Remember: median minimizes sum of "absolute distances" but the Python default is the midpoint!

Swedish ages at death

- Is mean meaningful?
- Is median meaningful?

Swedish ages at death

Nope & nope, consider using a metric like average adult age of death for bimodal data →

What are these called?

$$\frac{\sum_{i} (X_{i} - \overline{X})^{2}}{N}$$

$$\frac{\sum_{i} (X_{i} - \bar{X})(Y_{i} - \bar{Y})}{N}$$

1. 2

What are these called?

$$\frac{\sum_{i} (X_{i} - \overline{X})^{2}}{N}$$

$$\frac{\sum_{i} (X_{i} - \bar{X})(Y_{i} - \bar{Y})}{N}$$

1. Variance

2. Covariance

Covariance

$$\frac{\sum_{i} (X_{i} - \bar{X})(Y_{i} - \bar{Y})}{N}$$

What signs will covariance take in each quadrant?

(Assume mean X and mean Y = 0)

Covariance

$$\frac{\sum_{i} (X_{i} - \bar{X})(Y_{i} - \bar{Y})}{N}$$

What signs will covariance take in each quadrant?

most positive covariance: close to the diagonal, in the positive quadrants

Covariance

$$\frac{\sum_{i} (X_{i} - \bar{X})(Y_{i} - \bar{Y})}{N}$$

What is the covariance of x with itself?

Covariance

$$\frac{\sum_{i} (X_{i} - \bar{X})(Y_{i} - \bar{Y})}{N}$$

What is the covariance of x with itself? Variance!

$$\frac{\sum_{i} (X_{i} - \overline{X})^{2}}{N}$$

Normalization

What is this called?
$$(X_i - X)/\sigma_x$$

Normalization

What is this called? $(X_i - X)/\sigma_x$ "z-score"

$$\frac{\sum_{i} (X_{i} - \bar{X})(Y_{i} - \bar{Y})}{N}$$

Covariance calculated with z-scores?

$$(X_i - X)/\sigma_X$$

What is this called?

$$\Sigma_{\underline{i}}(X_{\underline{i}} - X)(Y_{\underline{i}} - \overline{Y})/(\sigma_{x}\sigma_{y})$$

$$\frac{\sum_{i} (X_{i} - \bar{X})(Y_{i} - \bar{Y})}{N}$$

Covariance calculated with z-scores?

$$(X_i - X)/\sigma_X$$

(Pearson) Correlation:

$$\sigma_x \sigma_y$$

What is correlation of X with itself?

$$\frac{\sum_{i}(X_{i} - X)(Y_{i} - \bar{Y})/(\sigma_{x}\sigma_{y})}{N}$$

What is correlation of X with itself?

$$\frac{\sum_{i}(X_{i} - X)(X_{i} - X)/(\sigma_{x}\sigma_{x})}{N}$$

$$= \operatorname{Var}(X) / (\sigma_{X} \sigma_{X})$$

$$= 1$$

Covariance, Correlation

- Correlation is normalized and measures both strength and direction of linear relationship between X and Y
- Covariance just measures direction of linear relationship between X and Y

When is it useful to look at correlation matrices?

When is it useful to look at correlation matrices?

- Make a visual summary of lots of data to understand patterns
- Check for multicollinearity when deciding on regression inputs

Why is multicollinearity bad?

- Do you get similar coefficients on ad if you run...
 - sales ~ price + ad + loc + volume
 - sales ~ price + ad + loc

	sales	price	ad	loc	volume
sales	1.00	-0.70	0.12	0.01	0.39
price	-0.70	1.00	0.00	0.00	-0.18
ad	0.12	0.00	1.00	0.00	-0.74
loc	0.01	0.00	0.00	1.00	-0.04
volume	0.39	-0.18	-0.74	-0.04	1.00

Why is multicollinearity bad?

 Collinear inputs can make the regression coefficients very unstable

```
(Intercept) 125.931
price -11.836
ad 131.283
loc 7.768
volume 11.870
```

```
(Intercept) 662.733
price -15.100
ad 20.500
loc 1.833
```

Rank (spearman) correlations

- Used to understand x and y monotonicity instead of linearity
- Which is/are non-monotone?

Rank (spearman) correlations

D is non-monotone

Time Series

- Data where one column denotes time (datetime format)
- Most meaningful when data is aggregated so that each "time step":
 - Is regularly spaced (e.g. daily, monthly, quarterly data)
 chronologically
 - Has corresponding data per time step
 - Is unique
 - Deals with missing values

Time Series: why is this happening?

Time Series: why is this happening?

Missing data (has NaNs)!

- 1. Make predictions
- 2. Summarize relationship between variables
- 3. Inspect outliers and other oddities

Input

Output

- 1. Make predictions
- 2. Summarize relationship between variables
- 3. Inspect outliers and other oddities

•
$$y = a + \beta \cdot x$$

Does this regression equation $y = \alpha + \beta \cdot x$ pass through all input data?

No, need error term (residual) corresponding to each input *i* to represent each individual dot: $y_i = \alpha + \beta x_i + \varepsilon_i$

Regression (OLS)

Does this regression equation $y = \alpha + \beta \cdot x$ pass through all input data?

No, need error term (residual) corresponding to each input *i* to represent each individual

dot:
$$y_i = \alpha + \beta x_i + \epsilon_i$$

KEY INSIGHT: we want to minimize this error across all of our points i

Is y = a a linear regression model?

Is y = a a linear regression model? YES!

Is y = a a linear regression model? YES!

Draw the line for this model if $\alpha = \bar{y}$:

Draw the line for $y = a = \bar{y}$:

What statistic is the sum of squared residuals ε_i for $y = \alpha = \bar{y}$ equal to?

What statistic is the sum of squared residuals ε_i for $y = \alpha$ equal to? N*Var(Y)

Regression (OLS)

Does this regression equation $y = \alpha + \beta \cdot x$ pass through all input data?

No, need error term (residual) corresponding to each input *i* to represent each individual

$$dot: y_i = \alpha + \beta x_i + \epsilon_i$$

KEY INSIGHT: we want to minimize this error across all of our points i

How to get a, β ?

- Calculus (minimize sum of squared error)
- Stochastic gradient descent (need this method for complicated models)
- Use Python
 - Fit linear regression
 - Call intercept_ and coef_

How to get a, β ?

- Calculus (minimize sum of squared error)
- Stochastic gradient descent (need this method for complicated models)
- Use Python
 - Fit linear regression
 - Call intercept_ and coef_

Linear Regression β formula

$$\widehat{eta} = rac{\sum_{i=1}^{n} (x_i - ar{x})(y_i - ar{y})}{\sum_{i=1}^{n} (x_i - ar{x})^2}$$

Linear Regression β formula

Linear Regression β formula

Which is tall, which is wide?

input_x	is_high	output_y
2022-09-19	high	77
2022-09-19	low	58
2022-09-20	high	73
2022-09-20	low	55
2022-09-21	high	80
2022-09-21	low	57

input_x	high	low
2022-09-19	77	58
2022-09-20	73	55
2022-09-21	80	57

input_x	is_high	output_y
2022-09-19	high	77
2022-09-19	low	58
2022-09-20	high	73
2022-09-20	low	55
2022-09-21	high	80
2022-09-21	low	57

Wide

input_x	high	low
2022-09-19	77	58
2022-09-20	73	55
2022-09-21	80	57

- Which df would you use to run a regression?
- Write the model with ~ and variable names.

input_x	is_high	output_y
2022-09-19	high	77
2022-09-19	low	58
2022-09-20	high	73
2022-09-20	low	55
2022-09-21	high	80
2022-09-21	low	57

Wide

input_x	high	low
2022-09-19	77	58
2022-09-20	73	55
2022-09-21	80	57

- Tall
- output_y ~ input_x + is_high

input_x	is_high	output_y
2022-09-19	high	77
2022-09-19	low	58
2022-09-20	high	73
2022-09-20	low	55
2022-09-21	high	80
2022-09-21	low	57

Wide

input_x	high	low
2022-09-19	77	58
2022-09-20	73	55
2022-09-21	80	57

What keyword do you use to go from tall to wide?

input_x	is_high	output_y
2022-09-19	high	77
2022-09-19	low	58
2022-09-20	high	73
2022-09-20	low	55
2022-09-21	high	80
2022-09-21	low	57

Wide

 What keyword do you use to go from tall to wide? Pivot

Logistic regression

• How do we "smoosh" $\alpha + \beta \cdot x$ predictions into a [0,1] probability range?

Logistic regression

• How do we "smoosh" $\alpha + \beta \cdot x$ predictions into a [0,1] probability range?

Logistic (sigmoid) function

Logistic regression

 This allows us to predict the probability that y=TRUE

$$p(x)=rac{1}{1+e^{-(lpha+eta\cdot x))}}$$

 So, interpret logistic regression differently than linear regression

What is this called?

$$p(x)=rac{1}{1+e^{-(lpha+eta\cdot x))}}$$

$$1 - p(x)$$

Pr(Magnus win) / Pr (Magnus lose) = p(x) / (1-p(x))

The Odds Ratio

$$p(x)=rac{1}{1+e^{-(lpha+eta\cdot x))}}$$

$$1 - p(x)$$

Pr(Magnus win) / Pr (Magnus lose) = p(x) / (1-p(x))

Log odds	Probability	Odds
0.0	0.5	1:1
1.38	0.8	4:1
-1.38	0.2	1:4
-2.94	0.05	?
-4.59	0.01	?

Log odds	Probability	Odds
0.0	0.5	1:1
1.38	0.8	4:1
-1.38	0.2	1:4
-2.94	0.05	1:19
-4.59	0.01	1:99

Interpreting regressions: prediction (first line), summary (next lines)

Midterm Fall 2023 - Review Topics.pdf

Download Midterm Fall 2023 - Review Topics.pdf (76.7 KB) | ▲ Alternative formats

Canvas > Modules > 2. Regression and Linear Models

Review how to apply in examples & derive the things in this table!

Model	Regression Interpretation
Linear	If $x=0$, $y=\alpha$
$y = \alpha + \beta x$	1 unit change in x is associated with a β unit change in y
Linear-log	If x=1, y = a
$y = \alpha + \beta \ln(x)$	If x is multiplied by e, we expect a β unit change in y
	1% change in x is associated with a 0.01*β unit change in y
Log-linear	If x=0, y = e ^a
$ln(y) = \alpha + \beta x$	For a 1 unit change in x, we expect y to be multiplied by e^{β}
	1 unit change in x is associated with a 100*(exp(β)-1)% change in y
Log-log	If x=1, y = e ^a

Admin

• Phase 5 due Dec 4th

- Final exam on Dec 10th at 2pm
 - You may bring one double-sided 8x11" cheat sheet
 - No calculators will be allowed

Admin

- Canvas > Modules
 - Discussion 13: Final exam from Fall 2022 for practice
 - 4. Real World Applications: List of topics in the 2nd half of the class to review
 - (in conjunction with the midterm review list, posted in 2. Regression and Linear Models)

Goodbye from Instructor Thalken!

- Used 2950 skills to get a new paper published
- Will be on a free trip to Singapore to go to a conference during next lecture!

Next Class

• Final exam review, continued!