SIN 251 – Organização de Computadores (PER-3 2021-1)

Aula 12 – Aritmética do Computador

Prof. João Fernando Mari joaof.mari@ufv.br

Referências

- STALLINGS, W. Arquitetura e Organização de Computadores, 8. Ed., Pearson, 2010.
 - Capitulo 9

Roteiro

- Unidade Aritmética e Lógica
- Representação de inteiros
 - Sinal-magnitude
 - Complemento de dois
 - Negação especial caso 1
 - Negação especial caso 2
 - Intervalo de números
 - Conversão entre tamanhos
- Adição e subtração
 - Hardware para adição e subtração
- Multiplicação
 - Exemplo de multiplicação
 - Multiplicação binária sem sinal
 - Execução do exemplo
 - Fluxograma Multiplicação Binária Sem Sinal
 - Multiplicando números negativos
 - Algoritmo de Booth
 - Exemplo do algoritmo de Booth
- Divisão
 - Divisão de inteiros binários sem sinal
 - Fluxograma para divisão binária sem sinal
 - Tratando números negativos
 - EXEMPLO: 7/3; (-7)/3; 7/(-3) e (-7)/(-3)

UFV – Campus Rio Paranaíba – Prof. João Fernando Mari – joaof.mari@ufv.br – SIN 251

_

Unidade Aritmética e Lógica

- Responsável por realizar os cálculos.
- Tudo mais no computador existe para atender a essa unidade.
- Trata números inteiros.
- Pode tratar números de ponto flutuante (reais).

UFV – Campus Rio Paranaíba – Prof. João Fernando Mari – joaof.mari@ufv.br – SIN 251

4

Representação de inteiros

- Somente 0's e 1's para representar tudo.
 - Números positivos armazenados em binário.
 - Ex: 41 = 00101001
 - Sem sinal de menos.
 - Sem ponto.
- Representações de números inteiros
 - Sinal-magnitude.
 - Complemento a dois.

UFV – Campus Rio Paranaíba – Prof. João Fernando Mari – joaof.mari@ufv.br – SIN 251

Sinal-magnitude

- Bit mais à esquerda é bit de sinal.
 - 0 significa positivo.
 - 1 significa negativo.
 - +18 = 00010010.
 - -18 = **1**0010010.
- Problemas:
 - Precisa considerar sinal e magnitude na aritmética.
 - Possui duas representações de zero (+0 e -0).
 - +0 = 00000000
 - -1 = **1**0000000

Complemento de dois

- +3 = 00000011
- +2 = 00000010
- +1 = 00000001
- +0 = 00000000
- -1 = 11111111
- -2 = 111111110
- -3 = 11111101

UFV – Campus Rio Paranaíba – Prof. João Fernando Mari – joaof.mari@ufv.br – SIN 251

Complemento de dois

- Uma representação única do zero.
- Aritmética funciona com facilidade
 - Veremos mais adiante.
- A negação é muito fácil.
 - Ex.: 3 = 00000011
 - · Complemento booleano gera
 - **-** 11111100
 - Somar 1 ao LSB (bit menos significativo)
 - **-** 11111101
 - Ex.: -3 = 111111101
 - · Complemento booleano gera
 - -00000010
 - Somar 1 ao LSB
 - 00000011

Representação geométrica dos inteiros de complemento a dois

UFV – Campus Rio Paranaíba – Prof. João Fernando Mari – joaof.mari@ufv.br – SIN 251

Complemento de dois – Negação especial – caso 1

- 0 = 00000000
 - Not bit a bit:
 - 11111111
 - Some 1 ao LSB:
 - +1
 - Resultado:
 - 1 00000000
 - O estouro (overflow) é ignorado, portanto:
 - $-0 = +0 \rightarrow CERTO!$

Complemento de dois – Negação especial – caso 2

- 128 = 10000000
 - Not bit-a-bit:
 - 01111111
 - Some 1 ao LSB:
 - +1
 - Resultado:
 - 10000000
 - Portanto:
 - -(-128) = -128 → ERRADO!
 - Monitorar o MSB (bit de sinal).
 - Ele deve mudar durante a negação.
- Quando somamos um valor negativo com um valor positivo é impossível ocorrer overflow.
 - O resultado tende a se aproximar de 0.
- Quando somamos dois valores com o mesmo sinal, devemos verificar se o bit de sinal muda:
 - EX: Somar dois números positivos (MSB=0) DEVE resultar em um número positivo (MSB=0).
 - EX: Somar dois números negativos (MSB=1) DEVE resultar em um número negativo (MSB=1).

UFV – Campus Rio Paranaíba – Prof. João Fernando Mari – joaof.mari@ufv.br – SIN 251

Complemento de dois - Intervalo de números

- -2^{n-1} até $+2^{n-1}-1$
- Complemento a 2 com 8 bits:
 - +127 = 01111111 = 2^7 -1
 - -128 = 10000000 = -2⁷
- Complemento a 2 com 16 bits:
 - +32767 = 011111111 11111111 = 2^{15} -1
 - -32768 = 100000000 00000000 = -2¹⁵

Complemento de dois - Conversão entre tamanhos

- Pacote de número positivo com zeros iniciais.
 - 8 bits
 - +18 = 00010010
 - 16 bits
 - +18 = 00000000 00010010
- Pacote de números negativos com uns iniciais.
 - 8 bits
 - -18 = 10010010
 - 16 bits
 - -18 = 11111111 10010010
- Ou seja, pacote com o MSB (bit de sinal).
 - MSB bit mais significativo.

UFV – Campus Rio Paranaíba – Prof. João Fernando Mari – joaof.mari@ufv.br – SIN 251

1

ADIÇÃO E SUBTRAÇÃO

Adição e subtração

- Adição binária normal.
 - Monitore estouro no bit de sinal.
- Subtração
 - Pegue o complemento a dois do subtraendo e some ao minuendo.
 - Ou seja, a b = a + (-b).
 - Assim, só precisamos de circuitos de adição e complemento.

UFV – Campus Rio Paranaíba – Prof. João Fernando Mari – joaof.mari@ufv.br – SIN 251

11

Hardware para adição e subtração

add \$A, \$B

OF = bit de overflow (do inglés overflow bit)

SW = seletor - multiplexador (seleciona adição ou subtração)

MULTIPLICAÇÃO

UFV – Campus Rio Paranaíba – Prof. João Fernando Mari – joaof.mari@ufv.br – SIN 251

Multiplicação

- Complexa.
- Calcule produto parcial para cada dígito.
- Cuidado com o valor da casa (coluna).
- Some produtos parciais.

Exemplo: Multiplicação

				1	0	1	1
×				1	1	0	1
				1	0	1	1
			0	0	0	0	
		1	0	1	1		
+	1	0	1	1			
1	0	0	0	1	1	1	1

Multiplicando (1110) M

Multiplicador (1310) Q

Produtos parciais

Produtos parciais

Produtos parciais

Produtos parciais

Produto (14310)

- Nota: Se o bit multiplicador for:
 - Copiar o multiplicando.
 - Caso contrário, zero.
- Nota: precisa de resultado com tamanho duplo.

UFV – Campus Rio Paranaíba – Prof. João Fernando Mari – joaof.mari@ufv.br – SIN 251

19

Multiplicação binária sem sinal

Fluxograma - Multiplicação Binária Sem Sinal

UFV – Campus Rio Paranaíba – Prof. João Fernando Mari – joaof.mari@ufv.br – SIN 251

21

Execução do exemplo

				1	0	1	1	М
×				1	1	0	1	Q
1	0	0	0	1	1	1	1	A Q

С	A	Q	M	
0	0000	1101	1011	Valores iniciais
0	1011	1101	1011	Adição) Primeiro
0	0101	1110	1011	Desl. 5 ciclo
0	0010	111 <u>1</u>	1011	Des1. } Segundo
0	1101	1111	1011	Adição; Terceiro
0	0110	1111	1011	Desl. } ciclo
1	0001	1111	1011	Adição Quarto
0	1000	1111	1011	Desl. 5 ciclo

Multiplicando números negativos

- Solução 1:
 - Converta para positivo, se for preciso.
 - Multiplique como antes.
 - Se sinais diferentes, negue a resposta.
 - Exemplo:

$$-3 \times 7 = 21;$$

 $-(-3) \times 7 = -21;$
 $-3 \times (-7) = -21;$
 $-(-3) \times (-7) = 21;$

- Menos eficiente.
- Solução 2:
 - Algoritmo de Booth.

UFV – Campus Rio Paranaíba – Prof. João Fernando Mari – joaof.mari@ufv.br – SIN 251

Algoritmo de Booth

- Funciona com números inteiros em complemento a dois.
 - Deslocamento aritmético a direita.
 - O valor da posição mais a esquerda é mantido após o deslocamento.
 - Ver conversão entre tamanhos para complemento de dois.
 - Produto em A,Q

Exemplo: Algoritmo de Booth

				0	1	1	1	M
×				0	0	1	1	Q
0	0	0	1	0	1	0	1	ΑQ

Valores iniciais	M 0111	Q_1	Q 0011	A 0000
A ← A - M ¿Primeir	0111	0	0011	1001
Deslocamento ciclo	0111	1	1001	1100
Deslocamento Segundo	0111	1	0100	1110
A ← A + M ?Terceir	0111	1	0100	0101
Deslocamento∫ ciclo	0111	0	1010	0010
Deslocamento Quarto	0111	0	010 <u>1</u>	0001

UFV – Campus Rio Paranaíba – Prof. João Fernando Mari – joaof.mari@ufv.br – SIN 251

25

DIVISÃO

Divisão

- Mais complexa que a multiplicação.
- Números negativos são realmente maus!
- Baseada na divisão longa.

UFV – Campus Rio Paranaíba – Prof. João Fernando Mari – joaof.mari@ufv.br – SIN 251

Divisão de inteiros binários sem sinal

• 248/11 = 13 e restam 4

Fluxograma para divisão binária sem sinal

UFV – Campus Rio Paranaíba – Prof. João Fernando Mari – joaof.mari@ufv.br – SIN 251

20

Fluxograma para divisão binária sem sinal

UFV – Campus Rio Paranaíba – Prof. João Fernando Mari – joaof.mari@ufv.br – SIN 251

30

Tratando números negativos

- D = Q * V + R;
- Suponha todas as combinações possíveis de sinais de D e V:
 - D = 7
- V = 3
- Q = 2
- R = 1

- D = 7
- V = -3
- Q = -2
- R = 1

- D = -7 V = 3 \rightarrow

- Q = -2
- R = -1

- D = -7
- V = -3 →
- Q = 2
- R = -1

JFV – Campus Rio Paranaíba – Prof. João Fernando Mari – joaof.mari@ufv.br – SIN 251

Exemplo: 7/3; (-7)/3; 7/(-3) e (-7)/(-3)

•	Para realizar a divisão com operandos com sinal

(complemento a dois):

Algoritmo de divisão por restauração:

- 1. Converta os operandos em valores sem sinal.
 - Para isso tome o complemento de 2 dos números negativos.
- 2. Realize a divisão utilizando o algoritmo de divisão para números sem sinal.
- 3. Derive o sinal de Q e de R a partir dos sinais de D e V.

A	Q	M = 0011
0000	0111	Valor inicial
0000	1110	Deslocar
1101		Subtrair
0000	1110	Restaurar
0001	1100	Deslocar
1110		Subtrair
0001	1100	Restaurar
0011	1000	Deslocar
0000		Subtrair
0000	1001	Fazer $Q_0 = 1$
0001	0010	Deslocar
1110		Subtrair
0001	0010	Restaurar

 $(a)(7) \div (3)$

FIM — Aula 12 UEV—Campus Rio Paranaiba—Prof. João Fernando Mari — josof.mari@ufv.br—SIN 251 33