Foundation

October 14, 2017

1 量子力学的假定

- [1] 对一个物理体系的经典描述可归结如下
 - (i) 体系在确定时刻 t_0 的态,决定于 N 个广义坐标 $q_i(t_0)$ 和 N 个共轭动量 $p_i(t_0)$ 的数值;
 - (ii) 如果知道了体系在指定时刻的态,各物理量在该时刻的值便完全确定。即知道了体系在时刻 t_0 的态,就可以确切地预言在该时刻进行的任何一种测量的结果;
- (iii) 体系的态随时间演变由 Hamilton-Jacobi 方程组来确定。只要给定在指定时刻 t_0 的函数 值 $\{q_i(t_0), p_i(t_0)\}$,此方程组的解 $\{q_i(t), p_i(t)\}$ 就是唯一的。只要知道了体系的初态,便可以确定它在任意时刻的态。

1. 体系的态的描述

用一个平方可积波函数来描述粒子在指定时刻的态。用态空间 \mathcal{E}_r 中的一个右矢和每一个波函数联系起来。给出 \mathcal{E}_r 空间中的右矢 $|\psi\rangle$ 等价于给出对应的波函数 $\psi(\mathbf{r}) = \langle \mathbf{r} | \psi \rangle$ 。一个粒子在确定时刻的量子态可由 \mathcal{E}_r 空间中的一个右矢来描述。

假定一:在确定的时刻 t_0 ,一个物理体系的态由态空间 $\mathscr E$ 中一个特定的右矢 $|\psi(t_0)\rangle$ 来确定。

由于 ℰ 是一个矢量空间,该假定隐含着叠加原理:若干态矢量的线性组合也是一个态矢量。

2. 物理量的描述

A 应当是观察算符。

与经典力学对比,量子力学是以不同的方式来描述体系的态及有关物理量的: <mark>态用矢量</mark>来表示,物理量用**算符**表示。

- 3. 物理量的测量
- a. 可能的结果

A 是厄密算符, 所以测量 \mathscr{A} 所得的结果总是实数。

若 A 的谱是分立的,测量 \mathcal{A} 可能得到的结果是量子化的。

b. 谱分解原理

考虑一个体系,它在指定时刻的态由右矢 $|\psi\rangle$ 描述,假设这个右矢已归一化为 1:

$$\langle \psi | \psi \rangle = 1 \tag{1}$$

想要预言在该时刻测量体系的物理量 \mathscr{A} (它与观察算符 A 相联系) 所得的结果。

α. 分立谱的情况

假设 A 的谱是分立谱。若 A 的全体本征值 a_n 都是非简并的,与一个本征值相联系的本征矢只有一个 (除相位因子以外),即 $|u_n\rangle$

$$A|u_n\rangle = a_n|u_n\rangle \tag{2}$$

由于 A 是观察算符,故已归一化的 $|u_n\rangle$ 的集合构成 $\mathscr E$ 中的一个正交归一基,态矢量 $|\psi\rangle$ 写作

$$|\psi\rangle = \sum_{n} c_n |u_n\rangle \tag{3}$$

假定: 测量 \mathscr{A} 时得到结果 a_n 的几率 $\mathscr{P}(a_n)$ 是

$$\mathscr{P}(a_n) = |c_n|^2 = |\langle u_n | \psi \rangle|^2 \tag{4}$$

假定四: (非简并的离散谱) 若体系处于已归一化的态 $|\psi\rangle$ 中,则测量物理量 $\mathscr A$ 得到的结果为对应观察算符 A 的非简并本征值 a_n 的概率 $\mathscr P(a_n)$ 是

$$\mathscr{P}(a_n) = |\langle u_n | \psi \rangle|^2$$

 $|u_n\rangle$ 是的已归一化的本征矢,属于本征值 a_n 。

若某些本征值 a_n 是简并的,与之对应的正交归一本征矢 $|u_n\rangle$ 就有若干个:

$$A|u_n^i\rangle = a_n|u_n^i\rangle , \quad i = 1, 2, \cdots, g_n \tag{5}$$

 $|\psi\rangle$ 仍然可以按正交归一基 $\{|u_n^i\rangle\}$ 展开,

$$|\psi\rangle = \sum_{n} \sum_{i=1}^{g_n} c_n^i |u_n^i\rangle \tag{6}$$

几率 $\mathcal{P}(a_n)$

$$\mathscr{P}(a_n) = \sum_{i=1}^{g_n} |c_n^i|^2 = \sum_{i=1}^{g_n} |\langle u_n^i | \psi \rangle|^2$$
 (7)

假定四:(离散谱)若体系处于已归一化的态 $|\psi\rangle$ 中,则测量物理量 $\mathscr A$ 得到的结果为对应观察算符 A 的本征值 a_n 的概率 $\mathscr P(a_n)$ 是

$$\mathscr{P}(a_n) = \sum_{i=1}^{g_n} |\langle u_n^i | \psi \rangle|^2$$

 g_n 是 a_n 的简并度, $\{|u_n^i\rangle\}(i=1,2,\cdots,g_n)$ 是一组正交归一矢量,它们在对应于 A 的本征值 a_n 的本征子空间空间 \mathcal{E}_n 中构成一个基。

该假定要有意义,在 a_n 有简并时,几率 $\mathcal{P}(a_n)$ 必须与 \mathscr{E} 中基 $\{|u_n^i\rangle\}$ 的选择无关。

β. 连续谱的情况

假定 A 的谱是连续的,且假设并没有简并。A 的广义上已正交归一化的本征矢集 $|v_a\rangle$

$$A|v_a\rangle = a|v_a\rangle \tag{8}$$

构成 \mathscr{E} 空间中的一个连续基。在这个基中可将任意右矢 $|\psi\rangle$ 分解为

$$|\psi\rangle = \int da \ c(a)|v_a\rangle \tag{9}$$

由于测量 $\mathscr A$ 的可能结果构成一个连续集合定义几率密度: 测量 $\mathscr A$ 的值介于 a 和 a+da 之间的几率是

$$d\mathscr{P}(a_n) = \rho(a)da$$

其中

$$\rho(a) = |c(a)|^2 = |\langle v_a | \psi \rangle|^2$$

假定四: (非简并连续谱) 测量处于已归一化的态 $|\psi\rangle$ 的体系的物理量 $\mathscr A$ 时,得到介于 a 和 $a+\mathrm{d}a$ 之间结果的概率 $\mathrm{d}\mathscr P(a)$ 是

$$d\mathscr{P}(a) = |\langle v_a | \psi \rangle|^2 da$$

 $|v_a
angle$ 是与 $\mathscr A$ 相联系的观察算符 A 的本征矢,属于本征值 a。

γ . 重要后果

考虑两个右矢 $|\psi\rangle$ 和 $|\psi'\rangle$

$$|\psi'\rangle = e^{i\theta}|\psi\rangle \tag{10}$$

 θ 为实数。若 $|\psi\rangle$ 是归一化的,则 $|\psi'\rangle$ 也是归一化的

$$\langle \psi' | \psi' \rangle = \langle \psi | e^{-i\theta} e^{i\theta} | \psi \rangle = \langle \psi | \psi \rangle \tag{11}$$

互成比例的两个态矢量表示同一个物理状态。

总的相位因子对于物理预言没有影响,但展开式中各系数的相对相位则是有影响的。

c. 波包的收缩

假定五: 如果处于态 $|\psi\rangle$ 的体系测量物理量 $\mathscr A$ 得到的结果是 a_n ,则刚测量之后体系的态是 $|\psi\rangle$ 在属于 a_n 的本征子空间上的归一化的投影 $\frac{P_n|\psi\rangle}{\sqrt{\langle\psi|P_n|\psi\rangle}}$ 。

4. 体系随时间的演变

假定六: 态矢量 $|\psi(t)\rangle$ 随时间的演变遵从薛定谔方程

$$i\hbar \frac{\mathrm{d}}{\mathrm{d}t} |\psi(t)\rangle = H(t)|\psi(t)\rangle$$

H(t) 是与体系的总能量相联系的观察算符。H 叫做体系的哈密顿算符。

5. 量子化规则

对于经典力学中已定义的物理量 \mathcal{A} ,怎样构成在量子力学中描述该物理量的算符 A。

a. 规则的陈述

考虑处在标量势场中的一个无自旋粒子构成的体系,

与粒子的位置 r(x, y, z) 相联系的是观察算符 R(X, Y, Z)。

与粒子的动量 $p(p_x, p_y, p_z)$ 相联系的是观察算符 $P(P_x, P_y, P_z)$ 。

R 和 P 的诸分量满足正则对易关系:

$$[R_i, R_j] = [P_i, P_j] = 0 (12)$$

$$[R_i, P_j] = i\hbar \delta_{ij} \tag{13}$$

粒子的任何一个物理量 $\mathscr A$ 都可以表示为基本力学量 r 和 p 的函数: $\mathscr A(r,p,t)$ 。要得到对应的观察算符 A,在 $\mathscr A(r,p,t)$ 的表达式中,将变量 r 和 p 换成观察算符 R 和 P:

$$A(t) = \mathscr{A}(\mathbf{R}, \mathbf{P}, t) . \tag{14}$$

$$\mathbf{r} \cdot \mathbf{p} = xp_x + yp_y + zp_z = \mathbf{p} \cdot \mathbf{r} = p_x x + p_y y + p_z z \tag{15}$$

在经典力学中标量积 $r \cdot p$ 是可以对易的。但是若将 r 和 p 换成对应的观察算符 R 和 P,

$$\mathbf{R} \cdot \mathbf{P} \neq \mathbf{P} \cdot \mathbf{R} \tag{16}$$

此外, $\mathbf{R} \cdot \mathbf{P}$ 和 $\mathbf{P} \cdot \mathbf{R}$ 都不是厄密算符

对称化规则。和 $r \cdot p$ 相联系的观察算符是

$$\frac{1}{2}(\boldsymbol{R}\cdot\boldsymbol{P}+\boldsymbol{P}\cdot\boldsymbol{R})\tag{17}$$

References

[1] C. Cohen-Tannoudji, B. Diu, and F. Laloe. Quantum Mechanics, Volume 1. June 1986.