Theorems from Brezis' Functional Analysis, Sobolev Spaces and Partial Differential Equations (first edition)

Gustaf Bjurstam bjurstam@kth.se

1 The Hahn-Banach Theorems. Introduction to Conjugate Convex Functions

Theorem 1.1 (Hahn-Banach). Let E be a vector space over \mathbb{R} , and let $p: E \to \mathbb{R}$ be a Minkowski functional. Let G be a linear subspace of E and let $g: G \to \mathbb{R}$ be a linear functional such that $g(x) \leq p(x)$ for all $x \in G$. There exists a linear functional $f: E \to \mathbb{R}$ such that

$$f(x) = g(x), \forall x \in G,$$

and

$$f(x) \le p(x), \, \forall x \in E.$$

Lemma 1.1 (Zorn). Every nonempty ordered set that is inductive has a maximal element.

Corollary 1.2. Let G be a linear subspace of the real vector space E. If $g \in G^*$, then there exists $f \in E^*$ that extends g and such that $||f||_{E^*} = ||g||_{G^*}$.

Corollary 1.3. Let E be a normed real vector space. For every $x \in E$ there is $f \in E^*$ such that ||f|| = ||x|| and $\langle f, x \rangle = ||x||^2$.

Corollary 1.4. For every x in the real normed vector space E we have

$$||x|| = \sup_{\substack{f \in E^{\star} \\ ||f|| \le 1}} |\langle f, x \rangle| = \max_{\substack{f \in E^{\star} \\ ||f|| \le 1}} |\langle f, x \rangle|.$$

Proposition 1.5. Let E be a real normed vector space, and let $H = [f = \alpha] \subset E$ be an affine hyperplane. Then H is closed if and only f is continuous.