Комментарии к задачам из лекций А.А. Васильевой по ВИиОУ

список которых мне прислал 15.10.23 Всеволод Заостровский (409 группа)

Задача 4. Геодезические на плоскости Лобачевского. См. решение задачи в прошлогодних лекциях А.А. Васильевой на стр. 84-85, которые я высылал ранее и прилагаю вновь.

Задача 5. Брахистохрона. По поводу этой задачи см.,например, на стр. 4-5 высланного ранее файла lect-09-09-14.pdf, который высылаю вновь.

Задача 6 Поверхность вращения с минимальной площадью боковой поверхности. Могу порекомендовать посмотреть в высланном ранее файле TU.pdf (который вновь прилагаю) на стр. 26 верхние первые 8 строк со ссылкой на формулу (1.13) о первом интеграле, а также более детальное рассмотрение этой задачи на стр. 39. Все это я планирую подробно изложить на ближайших занятиях, приллюстрировав применение необходимых и достаточных условий слабого и сильного минимума в простейшей задаче вариационного исчисления (условия Лежандра, Якоби, Вейерштрасса). Кроме того, планирую рассказать дополнительные, не вполне ожидаемые результаты по этой задаче. а также ее обобщению, связаннному с оптимальным управление. Но для более легкого восприятия желательно предварительно просмотреть обозначенные здесь страницы файла TU.pdf

Задача 10. Привести пример функции $f: \mathbb{R} \to \mathbb{R}$, всюду дифференцированной по Фреше, но не строго дифференцируемой в нуле.

Моя точка зрения: понятие строгой дифференцируемости в точке = фальшивая красота формулировок утверждений, связанных с точкой, априори не заданной (искомой). Тем не менее, это понятие существует в курсе ВИиОУ и потому надо его осознать. Напомню, что отображение $f: X \to Y$ банаховых пространств называют строго дифференцируемым в точке c, если для любого $\varepsilon > 0$ существует $\delta > 0$, такое, что производная этого отображения f'(c) в точке c удовлетворяет условию

$$||f(a) - f(b) - f'(c)(a - b)|| \le \varepsilon ||a - b||,$$
 если $||a - c|| \le \delta,$ $||b - c|| \le \delta.$ (1)

Условие (1) появилось, но НИКАК не называлось, предполагаю (но не гарантирую) впервые у бурбакиста Дьедонне (см. его учебник "Основы современного анализа" 1962г.), при вычленении тех моментов, которые использовались в доказательстве в 40х годах теоремы об обратной функции $F: X_1 \times X_2 \to Y$ в банаховых пространствах методом последовательных приближений. (Замечу в скобках, что более общая теорема была доказана иначе Люстерником в 30х годах, для отображения $F: X \to Y$ без неверного для бесконечномерного банахового пространства X предположения, что любое его замкнутое подпростраство X_1 дополняемо замкнутым X_2 до прямой суммы. Эта теорема Люстерника об обратном отображении в курсе ВИиОУ под названием теорема об обратной функции доказывается модификацией метода Ньютона. Она связанна с его леммой о касательном пространстве к нулевому уровню дифференцируемого по Фреше отображения. Кстати, выясните имеются ли ненулевые касательные вектора к множествам

$$\mathcal{M}_k = \{ x \in X + \mathbb{R} \, | \, x^2 f_k(x) = 0 \, \},$$

где k=1,2, а $f_k(0)=0$ и $f_1(x)\sin\frac{1}{x}$, $f_2(x)=\sin\frac{1}{\ln x}$ при $x\neq 0$.

Вернемся к задаче 10. Но сначала проверьте непосредственно (проанализировав соответствующий график), что отображение

$$f: \mathbb{R} \ni x \mapsto y = f(x) \in \mathbb{R}$$
,

где $f(x)=ax+x^2\sin\frac{1}{x}$ при $x\neq 0$ и f(0)=0, обратимо в нуле, если и только если $|A|>2/\pi$. Отсюда, в силу доказываемой в курсе ВИиОУ теоремы об обратной функции, отображение $g(x)=x^2\sin\frac{1}{x}$ не является строго дифференцирумым в нуле. Проверьте это непосредственно, исходя из определения. С другой стороны, отображение g очевидно дифференцируемо всюду по Фреше.

Задача 13. Пусть $T: L^2(0,1) \to L^2(0,1)$, $Tx(t) = \sin x(t)$. Показать, что T дифференцируемо по Гато в каждой точке, но нигде не дифференцируемо по Фреше.

Сначала зафиксируем вектор $h \in L^2(0,1)$. Пусть $\lambda \in \mathbb{R}$. Имеем

$$\sin\left[x(t) + \lambda h(t)\right] - \sin x(t) = \sin x(t) \cos\left[\lambda h(t)\right] + \cos x(t) \sin\left[\lambda h(t)\right] - \sin x(t) =$$

 $= \sin x(t) \left[1 - O(\lambda^2 h^2(t)) \right] + \cos x(t) \left[\lambda h(t) + O(\lambda^3 h^3(t)) \right] - \sin x(t) = \lambda \cos x(t) \cdot h(t) + r(\lambda h(t)),$

где

$$r(\lambda h(t)) = \lambda^2 \left[O(h^2(t)) \right] + \lambda^3 \cos x(t) \left[O(h^3(t)) \right].$$

Поэтому

$$rac{\sin \left[x(t) + \lambda h(t)
ight] - \sin x(t)}{\lambda} o 0 \,, \qquad ext{ecли} \quad \lambda o 0 \,.$$

При этом отображение $L^2(0,1) \ni h \mapsto \cos x[h] \in L^2(0,1)$ линейно и очевидно непрерывно. Тем самым, T дифференцируемо по Гато.

Далее, для любого $h \in L^2(0,1)$ $\sin [x(t) + h(t)] - \sin x(t) = \cos x(t) \cdot h(t) + r(h(t))$, но

$$||r(h(t))||_{L^2} \simeq \frac{\sqrt{\int_0^1 h^2(t) dt}}{||h||_{L_2}} = \frac{||h||_{L_2}}{||h||_{L_2}} = 1.$$

Это означает, что T не дифференцируемо по Фреше.

Задача 18. Привести пример такой задачи выпуклого программирования, что допустимая \hat{x} — не есть точка минимума, но существует ненулевой набор $(\lambda_0, \dots, \lambda_m)$, удовлетворяющий условиям a)-c) теоремы Куна–Таккера.

У меня нет лекций этого года А.А. Васильевой, но предполагаю, что приведнные там условия а)-с) теоремы Куна-Таккера стандартны. В частности, если \hat{x} — решение задачи на минимум $f_0(x)$ при условии $f_1(x)=0$, $f_1(x)=0$, где функционалы выпуклы, то для функции Лагранжа $\mathcal{L}(x)=\sum_{j>0}\lambda_j f_j(x)$ справедливы условия

- а) минимум функции Лагранжа достигается на решении;
- b) $\lambda_j f_j(\hat{x}) = 0 , \ j \ge 1 ;$
- c) $\lambda_j \geq 0$, $j \geq 0$.

Пусть $x=(x_1,x_2)\in\mathbb{R}^2$, $f_1(x)=x_1$, $f_2(x)=x_2$, а $f_0(x)=x_1^2+(x_2-1)^2$. Тогда для функции Лагранжа $\mathcal{L}(x)=f_1(x)+f_2(x)$ имеем: точка $\hat{x}=(0,0)$ — допустимая, условия а)-с) выполнены, но минимум $f_0(x)$ достигается в точке (0,1).