

4 Branca de neve e os *n* anões

(++)

Branca de Neve e os *n* anões vivem na floresta. Todas as manhãs, os anões formam uma longa fila indiana e vão assobiando para a mina. Branca de Neve corre ao redor deles e faz um monte de fotografias digitais – ela é uma menina tecnológica, que acessa e atualiza diariamente as suas redes sociais – para fazer o *upload* para a sua rede social favorita.

Quando os anões entram na mina, Branca de Neve volta para casa e passa a selecionar as fotos mais bonitas. Cada anão tem uma touca colorida, e há c cores diferentes disponíveis pela eles. Ela tem um gosto pitoresco: para ela, uma "foto bonita" é aquela em que mais da metade das toucas dos anões são da mesma cor. Explica-se: se houver k anões numa foto, ela é uma "foto bonita" se estritamente mais que k/2 anões usam toucas de mesma cor. Os anões não sabem disso e, por isso, não são capazes de escolher as suas toucas com a intenção de, deliberadamente, agradar Branca de Neve. Cada um faz sua escolha de maneira totalmente pessoal e desconhecida dos demais.

Você, um discípulo de Malba Tahan⁶, quer verificar, para um conjunto de m fotos, quantas são "fotos bonitas" e qual a cor predominante nas toucas.

Como você não quer fazer isto manualmente, resolveu escrever um programa de computador em $\mathbb C$ para cumprir a tarefa.

Entrada

A primeira linha da entrada conterá um inteiro t, o número de casos de teste, que virão na sequência, sabendo que $1 \le t \le 1000$ e que cada caso de teste possui (3+m) linhas.

A primeira linha de cada caso de teste conterá os dois inteiros n e c, conforme anteriormente especificado e sabendo-se que $(3 \le n \le 3 \times 10000)$. A linha seguinte conterá n inteiros: $c_1, c_2, c_3, \ldots, c_n$, cada um correspondendo à cor da touca do respectivo anão, ordenados segundo a fila que eles formaram naquela manhã. É claro que $1 \le c_i \le c \le n$.

A terceira linha de cada caso de teste conterá o valor de m, com $(1 \le m \le 1000)$.

As m linhas seguintes conterão, cada uma, dois inteiros a e b, de tal maneira que $(1 \le a \le b \le n)$. Cada uma destas linhas descreve uma foto, a qual contém todos os anões a partir do a-ésimo até b-ésimo, ou seja, não é obrigatório que todos os anões apareçam em todas as fotos registradas pela manhã.

⁶Veja em https://pt.wikipedia.org/wiki/Malba_Tahan.

Saída

A saída deverá conter, para cada um dos t casos de teste, m mensagens (uma por foto registrada para aquele caso de teste).

Se Branca de Neve a considerou a foto uma "foto bonita", a mensagem deve ser "bonita X", onde X é a cor predominante nas toucas dos anões naquela foto. Lembre-se que, em nosso caso, a cor é representada por um número inteiro estritamente positivo. Do contrário, a mensagem deve ser "feia".

Exemplos

Entrada	Saída
1	feia
10 3	bonita 1
1 2 1 2 1 2 3 2 3 3	feia
8	bonita 1
1 2	feia
1 3	bonita 2
1 4	feia
1 5	bonita 3
2 5	
2 6	
6 9	
7 10	

Entrada	Saída
2	feia
10 3	bonita 1
1 2 1 2 1 2 3 2 3 3	feia
8	bonita 1
1 2	feia
1 3	bonita 2
1 4	feia
1 5	bonita 3
2 5	feia
2 6	feia
6 9	feia
7 10	feia
12 5	feia
1 5 2 3 2 4 2 5 3 4 2 4	feia
6	
1 5	
2 7	
9 12	
3 12	
4 9	
1 12	