La question **6.** n'est pas à traiter dans ce devoir libre. Les fonctions à plusieurs variables seront étudiées ultérieurement. Les questions posées dans ce sujet ne figurent pas au programme actuel de la filière D2.

Exercice 1. On notera e^x la fonction exponentielle. On rappelle que $e = e^1$ vaut environ 2,7.

1. Déterminer sur \mathbb{R} le tableau de variation de la fonction :

$$f_1(x) = e^x - x - 1.$$

En déduire que pour tout x de \mathbb{R} , $e^x \ge 1 + x$.

- **2.** On considère la fonction g définie de \mathbb{R} dans \mathbb{R} par $g(x) = \int_0^1 e^{xu} du$.
 - a) Justifier que la fonction est bien définie sur \mathbb{R} .
 - **b)** Montrer que g est croissante au sens large sur \mathbb{R} .
 - c) Montrer que si $x \ge 0$, $1 \le g(x) \le e^x$.
 - **d)** Montrer que si $x \leq 0$, $e^x \leq g(x) \leq 1$.
 - e) En déduire que g est continue en 0.
- 3. Montrer que

$$g(x) = \begin{cases} 1 & \text{si } x = 0, \\ \frac{e^x - 1}{x} & \text{si } x \in \mathbb{R}^* =] - \infty, 0[\cup]0, +\infty[. \end{cases}$$

4. Déterminer sur [-1,1] le tableau de variation de la fonction :

$$f_2(x) = e^x - x^2 - x - 1.$$

En déduire que pour tout x de [-1,1], $e^x \le 1 + x + x^2$.

- ${\bf 5.\,a}$) Montrer que si x est non nul, la fonction g est dérivable au point x et calculer sa dérivée.
 - **b)** Montrer que pour tout $x \in [-1, 1]$,

$$1 + \frac{1}{2}x \le g(x) \le 1 + \frac{1}{2}x + \frac{1}{3}x^2.$$

En déduire que g est dérivable au point 0 et que $g'(0) = \frac{1}{2}$.

6. On considère la fonction H de \mathbb{R}^2 dans \mathbb{R} définie par

$$H(x,y) = \begin{cases} 1 & \text{si } x = y, \\ \frac{e^{(x-y)} - 1}{x-y} & \text{si } x \neq y. \end{cases}$$

- a) Montrer que H est continue sur \mathbb{R}^2 .
- b) Déterminer après avoir justifié leur existence, les dérivées partielles

$$\frac{\partial H}{\partial x}(1,0), \frac{\partial H}{\partial y}(1,0).$$

c) Déterminer après avoir justifié leur existence, les dérivées partielles

$$\frac{\partial H}{\partial x}(0,0), \frac{\partial H}{\partial y}(0,0).$$