Knight Ch2 *

velocity = slope of position vs time.

- a) slope for A is larger =D A has larger Speed
- b) yes slopes we approx same at t=3s
 =0 s peads are same at t=3s.

velocity = slope x vs to speed = magnitude velocity.

- a) steepest slope at C =0 fastest at C
- b) left when x decreases or slope negative = D | left at F.
- c) Speeding up =0 slope increases = speeding up at B
- d) turning around =0 x starts to decrease =0 [turning around at E

Knight Ch2 Conc. Q 8

- a) Yes, the dots coincide at t=3 and t=6 as labeled below
 1 2 3 4 5 6
- b) They need to travel the same distance in a time interval. A travels the same distance in every interval. B only travels this distance between 4 and 5 YES

a) from C-DIS slope =
$$\frac{\Delta x}{\Delta t} = \frac{10m}{1s} = 10 \text{ m/s}$$

from
$$3s-0.4s$$
 slope = $\frac{10m}{18}$ = $10m/s$

b) No it stops from 1-03s but resumes moving right after

- a) Yes when v=0. This occurs at t=15.
- b) $X_f = X_i + area$ under curve from t_i to t_f let $t_i = C_s$

Xf = 10m + area under curve from Os to 6f.

For tf=2s area = Om = D Xf=10m

tf = 3s area = 11/2 blocks = 1.5 x 4 M area of one block

= 6M

=0 Xf=16m

tf = 4s area = 4 blades = 4 x 4 m = 16 m.

=0 Xf = 26M.

t

2 10m

3 16M

4 26m

Kright Ch2 ted Prob8

The key concept is $\Delta x = cvea \quad mder \quad graph \quad over \quad time \quad interval$

tine	number blacks	orea	Δχ	× at end of time period.
0-725	1/2	5.0m	5.0m	5.0m
0 -7 45	2	20m	20m	20M
0 -7 65	3.5	35m	35m	35m 3-
0 -7 88	4	40m	40 m	40 m
O -710s	4-0.5 =3.5	35m	35M	35M A
	į			

We see that at the object is at 35m after 6s and cos

Man
$$t_1 = cs$$
 $x_1 = cm$ bicycle $t_2 = 200s$ $x_2 = soom$ -400m om soom

$$V_{av} = \frac{x_z - x_1}{t_z - t_1} = \frac{500m - 0m}{200s - 0s} = 2.5mls$$

Dog
$$t_1=0s$$
 $X_1=0m$

Inslant 2 $t_2=50s+150s$ $X_2=500m$

reactor ball $=200s$

$$V_{av} = \frac{X_2 - X_1}{t_2 - t_1} = \frac{500m - 0m}{200s} = 2.5m/s$$

SAME

a)
$$\frac{t \text{ in s}}{0}$$
 $\frac{x \text{ in m}}{0}$ $\frac{0.5}{0.5}$ $\frac{-1.75}{-1.75}$ $\frac{-2}{1.5}$ $\frac{-1.75}{2}$ $\frac{-1}{2.5}$ $\frac{2}{3.5}$ $\frac{2}{4.25}$ $\frac{3.5}{4}$ $\frac{4.25}{7}$

b) slope =
$$\frac{\text{rise}}{\text{rw}} = \frac{6.2\text{m}}{1.48} = 4.4\text{mls}$$

c) of
$$t_i = 3.0s$$
 $x_i = 2m$ =0 $V_{aug} = \frac{\Delta x}{\Delta t} = \frac{2.41m - 2m}{0.1 s} = 4.1m/s$ $t_i = 3.1s$ $x_i = 2m$

d)
$$tf=3.01s$$
 $xf=2.040lm$ =0 $V_{aug}=\frac{\Delta x}{\Delta t}=\frac{2.040lm-2m}{0.01s}=4.0lm/s$

e) deiv
$$\partial_0 x = \frac{\text{deiv } \partial_0 t^2 - \text{deiv } \partial_0 2t - \text{deiv } efi^{=t^{\circ}}}{2t!}$$

$$= 0 V = 2t - 2$$

at 3.0s
$$V = 2 \times 3.0 = 2 = 4.0 \text{ m/s}$$

g) .. V=0=0 0=2t-2=0 t=1.0s