

ASSIGNMENT 4

GROUP 5 SECTION 03 - SEM 1, 2024/2025 SECI1013 (DISCRETE STRUCTURE)

LECTURER : DR. MUHAMMAD ALIIF BIN AHMAD

DATE SUBMITTED: 12th JANUARY 2025

GROUP MEMBERS: (GROUP 5)

NAME	MATRICS NO.
1. MUHAMMAD ADAM ASHRAFF BIN ZAMRI	A24CS0119
2. MIKAEL HAQIMI BIN NAHAR JUNAIDI	A24CS0111
3. HENG ZHI QIANG	A24CS0081
4. SITI NUR IMAN NADHIRAH BINTI MOHD FAIZAL	A24CS0192

ANSWER

CHAPTER 4 (4.7): SHORTEST PATH PROBLEM

Shortest Path: Ipoh -> Putrajaya -> Serambon -> Melaku = 6479

0)11	. Alor	Solr	1	Melaka
-		0-141	TU	Melaka

Iteration	S	N	L (Alor Setar)	LCIpoh)	L(Johor Bohru)	L(KL)	L (Putrajaya)	L(Serembon)	L (Melaka)
0	{}	(Alor Setor, Ipoh, Johor Bahru, KL, Putrajaya, Seemba Melaka?	0	60	M	00	∞	8	00
1	[Alm Setar]	{Ipoh, Johor Bahru, KL, Putrajaya, Samul Melaka?	0	1768	3256	60	∞	∞	ø
2	falor Setur, Ipolis	(Johor Bahrs, W., Putrajaya, Forenda, Melaka?	0	1768/	3256	4755	5667	00	00
3	[Alor Seter, Ipoh, Johor Bohry?	Ek, Putrajoya, Secomban, Melaka	0	1768	3256	4755	5667	75257	00
4	[Alor Setar, Ipoh, John Bahru, KL]	Eputrajoua,		1768	3256	4755	5667	5257	00
5	(Alor Setor, Ipon, Johor Bahn, UL, Seremban)	{Putrojaya, Nelaka}	0	1768	3256	4755	5667	5257	6483
6	(Alor Setar, Ipoh, Johor Baha, KL, Sæemban, Pahajaja		0	1768	3256	4755	2667	52.57	6483

Shortest Path: Alor Setar -> Johor Bahru -> Seremban -> Melaka = 6483

b) Find the cheapest way using an Aeroplane if we consider the shortest time travelling and distance between i) Ipoh to Melaka

Cheapest way = 1500+500+500

= 2500

= RM 2500

ii) Alor Scter to Melaka

Cheapest way = 1400 + 2000 + 500

= 3900

=RM 3900

c) Find the cheapest way using the car if we consider the shorkest way time travelling and distance between.

i) Ipon to Melaka

Cheopest way = 700+100+100 = 900 = RM 900

ii) Alor Setor to Melaka

Cheapest way = 700+1000+ 100 = 1800

= RM (800)

CHAPTER 4 (4.8): TREE

QUESTION 1

1. Answer the following questions based on the rooted tree shown below:

- a. List the children of vertexj.
- b. List the ancestors of vertex s. a, b, d, i, m, 9.
- c. List the siblings of vertex q. r, s, t.
- d. Find the number of leaves in this rooted tree.

- e. List all fevel 3 vertices in this rooted tree.

 h, i, j, k, l
- f. Find the least m for which this tree is a rooted m-any tree.
- g. Find the height of this rooted tree.
- h. Find the order that which you would visit the vertices of this tree if you use postorder traversal to visit the vertices.

h,q,r,9,t,m,i,d,e,b,n,o,p,j,f,k,l,g,c,a.

i. Find the order that which you would visit the vertices of this tree if you use preorder traversal to visit the vertices.

a,b,d,h,i,m,q,r,s,t,e,c,f,j,n,o,p,g,k,l.

j. Find the order that which you would visit the vertices of this tree it you use in-order traversal to visit the vertices.

h,d,q,m,r,s,t,i,b,e,q,n,j,o,p,f,c,k,q,l.

CHAPTER 5 (5.1 AND 5.2): FINITE AUTOMATA

QUESTION 2

State graph, G1

 Draw the State transition table and the output function for machine M based on the state graph G1. [4 Marks]

	fs q	Ь	f₀ q	Ь
9.	90	9,	0	0
9,	92	9,3	1	1
9,2	90	9,	0	1
9,3	9,2	9,3	1	0

Output function: $f_0(q_0, q) = 0$ $f_0(q_0, b) = 0$ $f_0(q_0, a) = 1$ $f_0(q_0, a) = 0$ $f_0(q_0, a) = 0$ $f_0(q_0, a) = 1$ $f_0(q_0, a) = 0$ $f_0(q_0, a) = 0$

- ii. Write the output sequence of the input string and determine whether it will be accepted by the machine or not.
 - q. abbaaab [4 Marks]

$$q_0 \xrightarrow{q} q_0 \xrightarrow{b} q_1 \xrightarrow{b} q_2 \xrightarrow{q} q_2 \xrightarrow{q} q_0 \xrightarrow{q} q_0 \xrightarrow{b} q_1$$

Output string = 0011000 Output = 0, not accepted.

b. bbbaababb [4Marks]

$$q_0 \xrightarrow{b} q_1 \xrightarrow{b} q_3 \xrightarrow{b} q_3 \xrightarrow{q} q_2 \xrightarrow{q} q_0 \xrightarrow{b} q_1 \xrightarrow{q} q_2 \xrightarrow{b} q_1 \xrightarrow{b} q_3$$

Output string = 010100111 Output = 1, accepted.

3. i.
$$M=\{S,I,q_0,f_0,F_0\}$$

$$S=\{q_0,q_1,q_2\} \quad f_S(q_0,a)=q_1$$

$$I=\{a\} \quad f_S(q_1,a)=q_2$$

$$F=\{q_0\} \quad f_S(q_2,a)=q_2$$
ii. Transition
$$Table : \frac{q_0}{q_1} \frac{q_1}{q_2}$$

$$Table : \frac{q_0}{q_2} \frac{q_0}{q_2}$$
iii. Transition
$$Diagram : \rightarrow q_0 \xrightarrow{q_0} q_0 \xrightarrow{q_0} q_0$$

QUESTION 5

Question 5 A machine M is written as M = { {so,s,}, {a,b}, {o,2}, so, for followith the state transition function and output function as follows: $f_s(s_0,q)=s,$ fo (so,9) = 1 $f_s(s_0, b) = S,$ $f_0(s_0, b) = 1$ $f_s(s_0, a) = S_0$ $f_0(s_0, a) = 0$ $f_s(s, b) = s, \qquad f_o(s, b) = 1$ i. Draw a transition table of machine, M. [3m]

S = { so, s, } So = initial state I = {a,b} 0 = {0,1}

ii. Shows the transition diagram that for machine, m. [sm]

iii. Shows the output sequence for the input and determine whether the output is accepted by machine m or not. b. bbaa [4m]

a. abbab [4m] $s_0 \xrightarrow{\alpha} s_1 \xrightarrow{b} s_2 \xrightarrow{b} s_3 \xrightarrow{q} s_0 \xrightarrow{b} s_1$ $s_0 \xrightarrow{\alpha} s_1 \xrightarrow{b} s_2 \xrightarrow{q} s_0 \xrightarrow{q} s_0 \xrightarrow{q} s_0 \xrightarrow{q} s_0 \xrightarrow{q} s_1$ output: 1, accepted

output: 1, accepted c. baaba [4m] $s_0 \xrightarrow{b} s_1 \xrightarrow{q} s_0 \xrightarrow{q} s_1 \xrightarrow{b} s_1 \xrightarrow{q} s_0$ output: 0, not accepted

