HMMT February 2015

Saturday 21 February 2015

Team

For any geometry problem (e.g. Problem 2, 4, or 5), your team's solution should include diagrams as appropriate (sufficiently large, in-scale, clearly labeled, etc.). Failure to meet any of these requirements will result in a 2-point automatic deduction. Thanks in advance for your effort and understanding, and we hope you enjoy the problems!

1. [5] The complex numbers x, y, z satisfy

$$xyz = -4$$
$$(x+1)(y+1)(z+1) = 7$$
$$(x+2)(y+2)(z+2) = -3.$$

Find, with proof, the value of (x+3)(y+3)(z+3).

- 2. [10] Let P be a (non-self-intersecting) polygon in the plane. Let C_1, \ldots, C_n be circles in the plane whose interiors cover the interior of P. For $1 \le i \le n$, let r_i be the radius of C_i . Prove that there is a single circle of radius $r_1 + \cdots + r_n$ whose interior covers the interior of P.
- 3. [15] Let z = a + bi be a complex number with integer real and imaginary parts $a, b \in \mathbb{Z}$, where $i = \sqrt{-1}$ (i.e. z is a Gaussian integer). If p is an odd prime number, show that the real part of $z^p z$ is an integer divisible by p.
- 4. [15] (Convex) quadrilateral ABCD with BC = CD is inscribed in circle Ω ; the diagonals of ABCD meet at X. Suppose AD < AB, the circumcircle of triangle BCX intersects segment AB at a point $Y \neq B$, and ray \overrightarrow{CY} meets Ω again at a point $Z \neq C$. Prove that ray \overrightarrow{DY} bisects angle ZDB.

(We have only included the conditions AD < AB and that Z lies on **ray** \overrightarrow{CY} for everyone's convenience. With slight modifications, the problem holds in general. But we will only grade your team's solution in this special case.)

- 5. [20] For a convex quadrilateral P, let D denote the sum of the lengths of its diagonals and let S denote its perimeter. Determine, with proof, all possible values of $\frac{S}{D}$.
- 6. [30] \$indy has \$100 in pennies (worth \$0.01 each), nickels (worth \$0.05 each), dimes (worth \$0.10 each), and quarters (worth \$0.25 each). Prove that she can split her coins into two piles, each with total value exactly \$50.
- 7. [35] Let $f:[0,1] \to \mathbb{C}$ be a nonconstant complex-valued function on the real interval [0,1]. Prove that there exists $\epsilon > 0$ (possibly depending on f) such that for any polynomial P with complex coefficients, there exists a complex number z with $|z| \le 1$ such that $|f(|z|) P(z)| \ge \epsilon$.
- 8. [40] Let π be a permutation of $\{1, 2, \dots, 2015\}$. With proof, determine the maximum possible number of ordered pairs $(i, j) \in \{1, 2, \dots, 2015\}^2$ with i < j such that $\pi(i) \cdot \pi(j) > i \cdot j$.
- 9. [40] Let $z = e^{\frac{2\pi i}{101}}$ and let $\omega = e^{\frac{2\pi i}{10}}$. Prove that

$$\prod_{a=0}^{9} \prod_{b=0}^{100} \prod_{c=0}^{100} (\omega^a + z^b + z^c)$$

is an integer and find (with proof) its remainder upon division by 101.

10. [40] The sequences of real numbers $\{a_i\}_{i=1}^{\infty}$ and $\{b_i\}_{i=1}^{\infty}$ satisfy $a_{n+1}=(a_{n-1}-1)(b_n+1)$ and $b_{n+1}=a_nb_{n-1}-1$ for $n\geq 2$, with $a_1=a_2=2015$ and $b_1=b_2=2013$. Evaluate, with proof, the infinite sum

$$\sum_{n=1}^{\infty} b_n \left(\frac{1}{a_{n+1}} - \frac{1}{a_{n+3}} \right).$$