TSA

Yuxiang Ren

```
\#packges
library(readxl)
#library(xlsx) #this package doesn't work on Macs very well
library(tidyr)
library(lubridate)
##
## Attaching package: 'lubridate'
## The following objects are masked from 'package:base':
##
      date, intersect, setdiff, union
library(ggplot2)
library(forecast)
## Registered S3 method overwritten by 'quantmod':
##
    method
    as.zoo.data.frame zoo
library(Kendall)
library(tseries)
library(outliers)
library(tidyverse)
## -- Attaching packages ------ tidyverse 1.3.2
## --
## v tibble 3.1.8 v dplyr 1.1.0
## v readr 2.1.4 v stringr 1.5.0
## v purrr 1.0.1 v forcats 1.0.0
## -- Conflicts ----- tidyverse_conflicts() --
## x lubridate::as.difftime() masks base::as.difftime()
## x lubridate::date() masks base::date()
                         masks stats::filter()
## x dplyr::filter()
## x lubridate::intersect() masks base::intersect()
```

```
library(smooth)
## Loading required package: greybox
## Package "greybox", v1.0.7 loaded.
##
## Attaching package: 'greybox'
##
## The following object is masked from 'package:lubridate':
##
##
##
## The following object is masked from 'package:tidyr':
##
##
       spread
##
## This is package "smooth", v3.2.0
library(zoo)
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
##
       as.Date, as.Date.numeric
library(kableExtra)
##
## Attaching package: 'kableExtra'
## The following object is masked from 'package:dplyr':
##
##
       group_rows
library(dplyr)
library(smooth)
#data
raw <- read.csv("./Data/Processed/PM2.5_daily_city_2000_2021.csv")</pre>
Table_raw <- raw[c(1:20),]</pre>
kable(Table_raw, caption = "Raw data")
raw_wider <- raw %>% pivot_wider(names_from = city_id, values_from = meanpm) %>%
  mutate(date = as.Date(paste(year, month, day, sep = "-"))) %>%
  select(date, everything())
```

Table 1: Raw data

year	month	day	$\operatorname{city_id}$	meanpm
2000	1	1	1100	130.86416
2000	1	1	1200	148.09160
2000	1	1	1301	144.00916
2000	1	1	1302	148.45776
2000	1	1	1303	130.70928
2000	1	1	1304	143.41543
2000	1	1	1305	144.08262
2000	1	1	1306	118.38928
2000	1	1	1307	66.89358
2000	1	1	1308	92.74160
2000	1	1	1309	134.39611
2000	1	1	1310	147.80079
2000	1	1	1311	142.80690
2000	1	1	1401	64.93789
2000	1	1	1402	54.55570
2000	1	1	1403	75.32231
2000	1	1	1404	90.57612
2000	1	1	1405	95.47729
2000	1	1	1406	48.40086
2000	1	1	1407	78.33466

```
Beijing <- raw_wider[,c('date', 'year', 'month', 'day', '1100')] %>% rename(pm2.5 = '1100') %>% group_b
## 'summarise()' has grouped output by 'year'. You can override using the
## '.groups' argument.
```

```
\#\#Model 1: Arithmetic mean
```

```
AM_Beijing <- meanf(y = ts_Beijing_train, h = 12)
checkresiduals(AM_Beijing)</pre>
```

Residuals from Mean


```
##
## Ljung-Box test
##
## data: Residuals from Mean
## Q* = 534.57, df = 23, p-value < 2.2e-16
##
## Model df: 1. Total lags used: 24</pre>
```

plot(AM_Beijing)

Forecasts from Mean

SNAIVE_Beijing <- snaive(ts_Beijing_train, h=12, holdout=FALSE)</pre> checkresiduals(SNAIVE_Beijing)

Residuals from Seasonal naive method

##

```
## Ljung-Box test
##
## data: Residuals from Seasonal naive method
## Q* = 92.915, df = 24, p-value = 4.72e-10
##
## Model df: 0. Total lags used: 24
```

plot(SNAIVE_Beijing)

Forecasts from Seasonal naive method

SARIMA_Beijing_fit <- auto.arima(ts_Beijing_train)
checkresiduals(SARIMA_Beijing_fit)</pre>

Residuals from ARIMA(1,1,1)(0,0,2)[12]


```
##
## Ljung-Box test
##
## data: Residuals from ARIMA(1,1,1)(0,0,2)[12]
## Q* = 87.011, df = 20, p-value = 2.458e-10
##
## Model df: 4. Total lags used: 24
```

```
#Generating forecasts
#remember auto.arima does not call the forecast() internally so we need one more step
SARIMA_Beijing <- forecast(SARIMA_Beijing_fit,h=12)
plot(SARIMA_Beijing)</pre>
```

Forecasts from ARIMA(1,1,1)(0,0,2)[12]

SSES_Beijing <- es(ts_Beijing_train,model="ZZZ",h=12,holdout=FALSE)
plot(SSES_Beijing)</pre>

Actuals vs Fitted

Standardised Residuals vs Fitted

QQ plot of Normal distribution

checkresiduals(SSES_Beijing)

Warning in modeldf.default(object): Could not find appropriate degrees of
freedom for this model.

Table 2: Forecast Accuracy for Seasonal Data

	ME	RMSE	MAE	MPE	MAPE
MEAN	-28.1059	31.6898	29.2560	-119.0707	120.7650
SNAIVE	-2.4987	13.4377	9.3796	-17.3618	28.6924
SARIMA	-4.3333	14.5863	12.2154	-32.3573	45.6127
SSES	4.8008	12.3008	7.7936	5.2446	19.6416

Residuals

##accuacy

```
best_model_index <- which.min(Beijing_scores[,"RMSE"])
cat("The best model by RMSE is:", row.names(Beijing_scores[best_model_index,]))

## The best model by RMSE is: SSES

##Final result-2023 ###SSES model, two year result are same

for_Beijing_result <- es(ts_Beijing_all,model="ZZZ",h=24,holdout=FALSE)
plot(SSES_Beijing)</pre>
```

Actuals vs Fitted

Standardised Residuals vs Fitted

QQ plot of Normal distribution

forecast_Beijing <- for_Beijing_result\$forecast</pre>

 $\#\#\#\mathrm{SNAIVE}$ same two years

for_Beijing_result2 <- snaive(ts_Beijing_all, h=24, holdout=FALSE)
plot(for_Beijing_result2)</pre>

Forecasts from Seasonal naive method

for_Beijing_result2\$mean

```
##
                     Feb
            Jan
                              Mar
                                       Apr
                                                May
                                                         Jun
                                                                  Jul
                                                                           Aug
## 2022 42.68474 51.23041 67.88502 34.56747 27.54109 20.13027 17.76858 20.40289
## 2023 42.68474 51.23041 67.88502 34.56747 27.54109 20.13027 17.76858 20.40289
##
            Sep
                     Oct
                              Nov
                                       Dec
## 2022 19.11793 24.37159 40.29166 28.54776
## 2023 19.11793 24.37159 40.29166 28.54776
```