ಮಾಡ್ಯೂಲ್ 1 ನರಮಂಡಲದ ಪರಿಚಯ

ಮಹ್ಯೂಲ್ 1: ನರಮಂಡಲದ ಪರೆಚಯ: ಈ ಮಹ್ಯೂಯೂಲ್ ಅದರ ರಚನೆ ಮತ್ತು ಕಪ್ ಯಗಳನ್ ನು ಒಳಗೊಂಡಂತೆ ನರಮಂಡಲದ ಅವಲೋಕನವನ್ ನು ಒದಗಿಸುತ್ ತದೆ. ಇದು ನರಮಂಡಲದ ಮೂಲಭೂತ ಅಂಶಗಳನ್ ನು ಮತ್ತು ದೇಹದ ಹಯ್ಯಂತ ಸಂಕೇತಗಳನ್ ನು ರವಾನೆಸುವಲ್ ಅಮಗಳ ಪತ್ ರಗಳನ್ ನು ಒಳಗೊಂಡೆದೆ.

ಮಾಡ್ಯೂಲ್ 2: ನರಕೋಶಗಳು ಮತ್ತು ನರಪ್ ಕ್ಷ್ಣೀಪ್ಟ್ ಈ ಮಾಡ್ಯೂಲ್ ನಲ್ಲೇ, ವಿದ್ಯಾಪ್ಟ್ ಗಳು ನರಮಂಡಲದ ಬಿಲ್ ಡಿಂಗ್ ಬ್ಲ್ ಹ್ - ನ್ಯೂರಾನ್ ಗಳು ಮತ್ತು ನರಪ್ ಕ್ಷ್ಣೀಪ್ಟ್ ಬಗ್ ಗೆ ಕಲಿಯುತ್ತವೆ.

ನ್ಯೂರಾನ್

ಗಳ ರಚನೆ ಮತ್ತು ಕಾರ್ಯವನ್ ನು ಅರ್ಥಮಾಪ್ ಕೊಳ್ಳುತ್ ತಾರೆ, ಜೊತೆಗೆ ನರಕೋಶಗಳ ನಡುವೆ ಸಂಕೇತಗಳನ್ ನು ರವಾನೆ ಸುವಲ್ ನರಪ್ ಕೇಷಕಗಳ ಪತ್ ರವನ್ ನು ಅರ್ಥಮಾಪ್ ಕೊಳ್ಳುತ್ತವೆ.

ಮಾಡ್ಯೂಲ್ 4: ಮೆದುಳು ಮತ್ತು ಬೆನ್ನೆ ಹುರು: ವಿದ್ಯಾರ್ಥಿಗಳು ಕೇಂದ್ರ ನರಮಂಡಲದ ಎರಡು ಮುಖ್ಯ ಅಂಶಗಳನ್ನನು ಅನ್ ಪ್ಷಪ್ಪಪತ್ತವೆ – ಮೆದುಳು ಮತ್ತು ಬೆನ್ನ ಹುರು: ಅವರು ತಮ್ಮ ರಚನೆ ಮತ್ತು ಕಪ್ ಯಗಳ ಬಗ್ಗೆ ಕಲೆಯುತ್ತವೆ, ಜೊತೆಗೆ ಅವರು ದೈಹಿಕ ಚಟುವಟಿಕೆ ಗಳನ್ ಹು ಹೇಗೆ ಸಂಯೋಜಿಸುತ್ತವೆ ಮತ್ತು ನೆಯಂತ್ರಿಸುತ್ತವೆ.

ಮಾಡ್ಯೂಲ್ 5: ಇಂದ್ ಯಗಳು ಮತ್ತು ಸಂವೇದನಾ ಗ್ ಹಿಕ್ಕೆ: ಈ ಮಾಡ್ಯೂಲ್ ಸಂವೇದನಾ ಅಂಗಗಳನ್ ನು ಮತ್ತು ನರಮಂಡಲದಲ್ಲು ಅಮಗಳ ಪಾತ್ರವನ್ ನು ಒಳಗೊಳ್ಳುತ್ತದೆ. ದೃಷ್ಟ, ಶ್ರವಣ, ರುಚಿ ಮತ್ತು ವಾಸನೆಯಂತಹ ವೆಭೆನ್ ಇಂದ್ ಯುಗಳ ಬಗ್ಗೆ ವೆದ್ಯಯಾರ್ಥೆಗಳು ಕಲೆಯುತ್ತವೆ ಮತ್ತು

ನರಮಂಡಲದೆಂದ ಸಂವೇದನಾ ಮಾಹಿತಿಯನ್ ನು ಹೇಗೆ ಸಂಸ್ಕರಿಸಲಾಗುತ್ತದೆ. ಪ್ ರತಿಫಲಿತಗಳು ಮೋಟಹ್ ಕಹ್ಯಗಳು: ಮಾಡ್ಯೂಲ್ 6: ಮತ್ತು ಈ ಮಾಡ್ಯೂಲ್ ನಲ್ಲಿ, ವಿದ್ಯಾರ್ಥಿಗಳು ನರಮಂಡಲದೆಂದ ನಿಯಂತ್ಿಸಲ್ಪಡುವ ಪ್ರತಿಫಲಿತ ಕ್ರುಯೆಗಳು ಮತ್ತು ಮೋಟರ್ ಕರ್ಯುಗಳನ್ ಕು ಅಧ್ಯಯನ ಮಾಡುತ್ ಕರ್ ಅವರು ಪ್ ಕತಿಫಲಿತ ಕರಿಯೆಗಳ ಹಿಂದಿನ ಕಾರ್ಯವಿಧಾನಗಳನ್ನನು ಅರ್ಥಮಾಡ್ ಕೊಳ್ಳುತ್ ತಾರ್ ಮತ್ತು ನರಮಂಡಲಮ ಸ್ವಯಂಪ್ ರೇರತ ಮತ್ತು ಅನ್ನೆ ಚ್ಛಿಕ ಚಲನೆಯನ್ನು ಹೇಗೆ ಸಂಯೋಜಿಸುತ್ತದೆ. _____: ನರ ಜಾಲಗಳ ಮೂಲ ಪರಿಕಲ್ ಪನೆಗಳು ನ್ಯೂರಲ್ ನೆಟ್ ವರ*ಕ್ ಗಳ ಅಡೆಪಾಯವನ್ನು ಅರ್ಥಮಾಡಿಕೊಳ್ಳುಮದು ನರಗಳ ಜಾಲಗಳು ಕೃತಕ ಬುದ್ ಧಿಮತ್ ಮತ್ತು ಯಂತರ ಕಲಕೆಯ ಕ್ಷೇತರದಲ್ಲ ಮೂಲಭೂತ ಪರಿಕಲ್ಪನೆಯಾಗಿದೆ. ಅಮ ಮಾದರಿಗಳನ್ನು ಗುರುತಿಸಲು ವಿನ್ಯಯಾಸಗೊಳಿಸಲಾದ ಮಾನವ ಮೆದುಳಿನ ಸಡಿಲವಾಗಿ ರೂಪಿಸಲಾದ ನಂತರ ಅಲ್ಗೆ ಹಿದಮ್ ಗಳ ಗುಂಪಾಗಿದೆ. ನ್ಯೂರಲ್ ನೆಟ್

ವರ್*

ಗಳು ಸಂವೇದನಾ ಡೇಟಾವನ್ ನು ಒಂದು ರೀತೆಯ ಯಂತರ ಗರಹೆಕೆ, ಲೇಬಲಿಂಗ್ ಅಥವಾ ಕ್ ಬ್ ಟರಿಂಗ್ ಕಚ್ಚು

ಇನ್

ಪುಟ್ ಮೂಲಕ ಅರ್ಥೈಸಿಕೊಳ್ಳುತ್ತವೆ. ಅವರು ಗುರುತಿಸುವ ನಮೂನೆಗಳು ಸಂಖ್ಯಾತುಕವಾಗಿದ್ದರು, ವೆಕ್ಟರ್

ಗಳಲ್ ಒಳಗೊಂಡೆರುತ್ತವೆ, ಅದರಲ್ ಎಲ್ ನೈಜ–ಜಗತ್ತನ ಡೇಟಾ, ಅದು ಚಿತ್ರಗಳು, ಧ್ವನೆ, ಪರ್ಯ ಅಥವಾಸಮಯ ಸರಣಿಯಾಗೆರಬಹುದು, ಅನುವಾದಿಸಬೇಕು.

ಪ್ ರಕರಣಗಳು ಮತ್ತು

ಅಪ್ಲಿಕ್ಕಿಶನ್

ಗಳನ್ ಬಳಸೆ: ಚಿತ್ ಮತ್ ಭಾಷಣ ಗುರುತಿಸುವೆಕೆ, ನೈಸರ್ಗಿಕ ಭಾಷಾ ಸಂಸ್ಥೆ ಕರಣಿ, ವೈದ್ ಯಕೀಯ ರೋಗನೆರ್ ಇಯ, ಆರ್ ಥಿಕ ಮುನ್ ಸೂಚನೆ ಮತ್ತು ಸ್ ಪಾಯತ್ ತಮ್ ನಹನಗಳನ್ ಒಳಗೊಂಡಂತೆ ನರಗಳ ಜಾಲಗಳು ವ್ಯಯಪಕ ತ್ಯಾನೆಗಳನ್ ಪ್ರತಿ ಪ್ರಾರಂಭ ಪ್ರಕ್ಷಣಿಯ

ಅಪ್ಲಿಕೇಶನ್

ಗಳನ್ ಹೊಂದಿವೆ. ವಂಚನೆ ಪತ್ತೆ, ಶಿಫ್ರಪ್ ವ್ಯವಸ್ಥೆಗಳು ಮತ್ತು ಮುನ್ಸೂಚಕ ನೆರ್ವಹಣೆಯಂತಹ ಕಪ್ ಯಗಳಿಗಾಗ ವಿವಿಧ ಕೈಗಪ್ ಕೆಗಳಲ್ ಅಮಗಳನ್ ನು ಬಳಸಲಾಗುತ್ತದೆ.

ಪ್ರಕರಣಗಳು ಮತ್ತು

ಅಪ್ಲಿಕೇಶನ್

ಗಳನ್ ಬಳಸೆ: ಚಿತ್ರ ಮತ್ತು ಭಾಷಣ ಗುರುತಿಸುವೆಕೆ, ನೈಸರ್ಗೆಕ ಭಾಷಾ ಸಂಸ್ಕರಣೆ, ವೈದ್ಯಕೀಯ ರೋಗನೆರ್ ಇಯ, ಆರ್ ಭಿಕ ಮುನ್ ಸೂಚನೆ ಮತ್ತು ಸ್ ವಾಯತ್ತ ವಾಹನಗಳನ್ ನು ಒಳಗೊಂಡಂತೆ ನರಗಳ

್ ಗಳ ವಿಧಗಳ ಸಮಗಳ ಅವಲೋಕನ

ವರ್*

ನರಗಳ ಜಾಲಗಳು ಕೃತಕ ಬುದ್ದಾದವುತ್ತೂ ಮತ್ತಿತು ಯಂತರ ಕಲ್ಪಕ್ಷಯ ಕರ್ಷೇತ್ರದಲ್ಲ ಮೂಲಭೂತ
ಪರಿಕಲ್ಪನೆಯಾಗೆದೆ. ಅಮ ಮಾನವನ ಮೆದುಳಿನ ರಚನೆಯೆಂದ ಪ್ರೇರಿತವಾದ ಅಂತರ್ಸಂಪರ್ಕಿತ
ನ ೀ ಡ್
ಗಳಿಂದ ಕೂಡಿದೆ ಮತ್ತು ಡೇಟಾದಿಂದ ಮಾದರಿಗಳನ್ನು ಕಲಿಯಲು ಮತ್ತು ಗುರುತಿಸಲು ಸಮರ್ಥವಾಗಿವೆ.
ಹಲವಾರು ವಿಧದ ನರ
ನ [ೆ] ಟ್
J.
ವ ರ ಕ ್
ಗಳಿವೆ, ಪ್ರತಿಯೊಂದೂ ನೆರ್ಬಿಷ್ಟ ಉದ್ದೇಶಗಳಿಗಾಗಿ ವೆನ್ಯಾಸಗೊಳಿಸಲಾಗಿದೆ ಮತ್ತು ವೆವೆಧ
ಅಪ್°ಲಿಕ°ೇಶನ್
ಗಳಲ್ಲ ಅಮಗಳನ್ ಮ ಪರ ಣಾಮಕಪ್ ಯಾಗಿ ಕಪ್ ಯಗತಗೊಳಿಸಲು ಅಮಗಳ ವ್ಯಯತ್ ಯಾಸಗಳನ್ ಸು
ಅರ್ಥಮಾಡಿಕೊಳ್ಳುಮದು ನಿರ್ಣಾಯಕವಾಗಿದೆ.
ಉತ್ಪಾದಕ ವೆರೋಧೆ ಜಾಲಗಳು: ಜನರೇಟಿವ್ ಅಡ್ವರ್ಸರೆಯಲ್
ನೆಟ್
ವರ ್ ಕ್
ಗಳು (□□□ ಗಳು) ಎರಡು ನರ ಜಾಲಗಳನ್ನು ಒಳಗೊಂಡೆರುತ್ತವೆ, ಜನರೇಟರ್ ಮತ್ತು ತಾರತಮ್ಯಕಾರಕ,
ಇಮಗಳನ್ ಸು ಸು ಸ್ಟರ್ ಧಾತ್ ಮಕ ರೀತಿಯಲ್ ಒಟ್ಟಿಗೆ ತರಬೇತಿ ನೀಡಲಾಗುತ್ ತದೆ. □□□ ಗಳು ಚಿತ್ರಗಳು,
ಆಡೆಯೕೊ ಮತ್ತು ಪಠ್ಯದಂತಹ ವಾಸ್ತವಿಕ ಸಿಂಥೆಟಿಕ್ ಡೇಟಾವನ್ನು ಉತ್ಪಾದಿಸುವಲ್ಲ
ಉತ್ಕೃಷ್೪ಟವಾಗಿವೆ ಮತ್ತು ಕಲೆ ಉತ್ಪಾದನ್, ಡ್ಆಾ ವರ್ಧನೆ ಮತ್ತು

ಫೇಕ್		ಪತ'ತೆ'ಯಂತಹ		ಕ್ಷೇತ್	ರಗಳಲ್ ಲ ಿ
ಅಪ್ಆಿಕೇಶನ್					
ಗಳನ್ನು ಹೊಂದಿ:	ವ ೆ . □□□ ಗಳು ಸೃ	ಜನತ್ಮಕ ಕೈಗಾರಿಕ	ಕೆ ಗಳನ್ನು ಕರಾಂತಿಗ	ೊಳೆಸುವ ಸಾಮರ	ರ್ಥೆಯವನ್ನ
ಹೊಂದಿವೆ		ಮತ್ ತು		ವೕ	ರ್ಚುವಲ್
ಸೆಮ್ಯುಲೇಶನ್	5				
ಗಳ ನೃೆಜತೆಯನ್	ನು ಹೆಚಚಿಸುತ್ತ	ವೆ.			
ಉತ್ಪವಕ	ವೆರೋಧಿ	ಜಾಲಗಳು:	ಜನರೇಟಿವ್	<u>ಅಡ್</u> ವರ್	ಸರ <u>ೆ</u> ಯಲ್
ನೆಟ್					
[
ವರ ್ಕ ್					
1					
ಗಳು (□□□ ಗಳು)	ಎರಡು ನರ ಜಾಲ	ಗಳನ್ _{ನು ಒಳಗ} ೊಂಡ	[ಿ] ರುತ್ ^{ಕ್ಷ} ವೆ, ಜನರೇಟ	ರ್ ಮತ್ತು ತಪ	ತಮ್ಯಕಾರಕ,
ಇಮಗಳನ್ ನು ಸ್ಟರ	ಗ್ಧಾತ್ಮಕ ರೀತೆ	ಯಲ್ಲಿ ಒಟ್ಟಿಗೆ	ತರಬೇತೆ ನೀಡಲಾಗು	ತ್ತದೆ. □□□ r	lಳು ಚಿತ ರ ಗಳು,
ಆಡಿಯಾೇ ಮತ	್ತು ಪಠ್ಯದಂತ	ಹ ವಾಸ್ತವೆಕ ಸೆಂ	ಥೆ ಟಿಕ್ ಡೇಟಾವನ್	್ ನು ಉತ್ಪಪ್ಪ	ಸುವಲ್ಲಿ
ಉತ್ಕೃಷ್೪ವಾಗಿವ	ೆ ಮತ್ತು	ಕಲೆ ಉತ'ಪಾ	ಯನೆ, ಡೇಟಾ	ವರ್¢ಧನ ೆ	ಮತ್ತು
ಡೀಪ್					
ಫೇಕ್		ಪತ್ತೆಯಂತಹ		ಕ್ ಷ ೇತೇ	ರಗಳಲ್ ಲ ಿ
<u>ಅಪ್</u> ಲಿಕೇಶನ್					
[
ಗಳನ್ನು ಹೊಂದಿಂ	ವ ೆ . □□□ ಗಳು ಸೃ	ಜನತ್ಮಕ ಕೈಗಾರೀ	ಕೆ ಗಳನ್ನು ಕರಾಂತಿಗ	ೊಳಿಸುವ ಸಾಮೕ	ರ್ಥೆಯವನ್ನ
ಹೊಂದಿವೆ		ಮತ್ತು		ವೕ	ರ್ಚುವಲ್
ಸೆಮ್ಯುಲೇಶನ್	5				

```
ಗಳ ನೈಜತೆಯನ್ನು ಹೆಚ್ಚಿಸುತ್ತವೆ.
ಉತ್ಪುದಕ
             ವೆರೋಧೆ ಜಾಲಗಳು:
                                        ಜನರೇಟಿವ್
                                                       ಅಡ್ವರ್ಸರೆಯಲ್
ನೆಟ್
ವರ ಕ್
ಗಳು (□□□ ಗಳು) ಎರಡು ನರ ಜಾಲಗಳನ್ ನು ಒಳಗೊಂಡಿರುತ್ ತವೆ, ಜನರೇಟರ್ ಮತ್ ತು ತಪತಮ್ ಯಕಪಕ,
ಇಮಗಳನ್ ನು ಸ್ಟರ್ ಧಾತ್ ಮಕ ರೀತಿಯಲ್ ಒಟ್ ಟಿಗೆ ತರಬೇತಿ ನೀಡಲಾಗುತ್ ತದೆ. □□□ ಗಳು ಚಿತ್ರಗಳು,
ಆಡೆಯರ್ ಮತ್ತು ಪಠ್ಯದಂತಹ ವಾಸ್ತವೆಕ ಸಿಂಥೆಟಿಕ್ ಡೇಟಾವನ್ನು ಉತ್ಪಾದಿಸುವಲ್ಲ
ಉತ್ಕೃಷ್ ಟವಾಗಿವೆ ಮತ್ತು ಕಲೆ ಉತ್ಪಾದನೆ, ಡೇಟಾ ವರ್ಧನೆ
                                                              ಮತ್ತು
ಡೀಪ್
ಫೇಕ್
                        ಪತ್ ೆಯಂತಹ
                                                       ಕಷ್ೇತರಗಳಲ್ಲಿ
ಅಪ್ಲಿಕೇಶನ್
ಗಳನ್ನು ಹೊಂದಿವೆ. □□□ ಗಳು ಸೃಜನಾತ್ಮಕ ಕೈಗಾರಿಕೆ ಗಳನ್ನು ಕ್ರಾಂತಿಗೊಳಿಸುವ ಸಾಮರ್ಥ್ಯುಮನ್ನು
ಹೊಂದಿವೆ
                               ಮತ್ತು
                                                            ವರ್ಚುವಲ್
ಸೆಮ್ಯುಲೇಶನ್
ಗಳ ನೈಜತೆಯನ್ನು ಹೆಚ್ಚಿಸುತ್ತವೆ.
            ವಿರೋಧಿ ಜಾಲಗಳು:
ಉತ್ಪವದಕ
                                        ಜನರೇಟಿವ್
                                                       ಅಡ್ ವರ್ ಸರಿಯಲ್
ನೆಟ್
ವರ ಕ್
```

ಗಳು (□□□ ಗಳು)	ಎರಡು ನರ ಜಾ	ಲಗಳನ್ ನು ಒ	ಳಗೊಂಡಿರುತ್ತವ	ී, ಜನರ ೇ ಟ್	ರ್ ಮತ್ತು ತಾ	ರತಮ್ಯಕಾರಕ,	
ಇಮಗಳ	ಶನ್ ನು ಸ್ಟರ	್ಧಡ್ಮಕ ರೀಣ	ತಿಯಲ್ಲಿ ಒ	ಟ್ಟಿಗೆ ತರಬೇತ	ಿ ನೀಡಲಾಗು	ತ್ತದೆ. □□□	ಗಳು ಚಿತರಗಳು,	
ಆಡಿಯ	ುೋ ಮತ್	ತು ಪಠ್ಯದ	ತಹ ವಷ್	ವೆಕ ಸಿಂಥೆಟಿಕ್	ಡ ೇ ಟಾವನ್	ನು ಉತ್ಪಾದ	ಿಸುವಲ್೪	
ಉತ್	ಷ್ಟವಾಗಿವ	' ಮತ್ತು	ಕಲೆ	ಉತ'ಪಾದನೆ',	ಡೇಟಾ	ವರ್ಧನ	ಮತ್ತು	
ಡೀಪ್								
ಫೇಕ್		ಪತ್ ತೆಯಂತಹ				ಕ್ಷೇತರಗಳಲ್		
ಅಪ•್ಲ	ಕೇಶನ್							
ಗಳನ್	ು ಹೊಂದಿವ	3°. □□□ ಗಳು	ಸೃಜನಾತ್ಮಕ	ಕೈಗಾರಿಕೆ ಗಳನ್	ನು ಕರಾಂತೆಗ	ೊಳಿಸುವ ಸಾಮ	ರ್ಥ್ಯುವನ್ ನು	
ಹೊಂಡ	ೆವ ೆ			ಮತ್ತು		۵	ಸರ್ ಚುವಲ್	
ಸೆಮ್	ಯುಲೇಶನ್							
ಗಳ ನ _ೈ	ಜತೆಯನ್ನ	ು ಹೆಚ್ಚಿಸುತ	ತವ ೆ .					
	//nnn							
	IU://UUU			1.000/0 - 000				
	10://000	.000.000/1		0000/00000	10-0000			
ನ್ಯೂರೇ	ರ್ ನೆ ಟ್ವ	ರ ್ ಕ್ ಆರ್ಕೌಟ	ೆಕ್ ಚ ರ್					
ನ್ಯೂರಲ್								
ನೆಟ್								
ವರ ್ಕ ್								
ಗಳ ರಚನೆ ಇ	ುತ್ತು ಕಪ್	ಯವನ್ನು ಅರ್	ಥಮಾಡಿಕೊಳ	ಳ್ ಳುಮದು				
ನ್ಯೂರಲ್								

```
ನೆಟ್
ವರ್ಈ ಆರ್ ಆರ್ ಆರ್ ಕರ್ಚರ್ ನರಮಂಡಲದ ೊಳಗೆ ನ ವಿವಿಧ ಅಂತರ್ ಸಂಪರ್ ಆತ ಅಂಶಗಳ ವಿನ್ಯಾಸ ಮತ್ತು
ಸಂಘಟನೆಯನ್ನು
                                      ಸೂಚಿಸುತ್ಆದೆ.
                                                                          ಇದು
ನ್ಯೂರಾನ್
ಗಳು,
ಲೇಯರ್
ಗಳು
              ಮತ್ತು
                              ಸಂಪರ ಕಗಳ
                                                   ವ್ಯವಸ್ಥೆ
                                                                        ಮತ್ತು
ನೆಟ್
ವರ*ಕ್
ನ
          ಒಟ್ಟಾರೆ
                         ವೆನ್ಯಾಪವನ್ ನು
                                                ಒಳಗೊಂಡಿದೆೆ.
                                                                     ನ್ಯೂರಲ್
ನೆಟ್
ವರ್*ಕ್
ನ ವಾಸ್ ಕುಶಿಲ್ ಪವನ್ ನು ಅರ್ಥಮಾಡಿಕೊಳ್ಳುಮದು ಅದರ ಕಾರ್ಯಕ್ಷಮತೆಯನ್ ನು ಉತ್ತಮಗೊಳಿಸಲು
             ಯಂತ್
                            ಕಲಿಕೆ
                                                       ಕೃತಕ
ಮತ್ತು
                                         ಮತ್ತು
                                                                  ಬುದ್ಧಿದುತ್ತೆ
ಅಪ್ಲಿಕೇಶನ್
ಗಳಲ್ಲ ಅಪ್ ಕ್ಷತಿತ ಫಲಿತಾಶಗಳನ್ ನು ಸಾಧಿಸಲು ನೆರ್ ಬಾಯಕವಾಗಿದೆ.
```


ಪ್ರಮುಖ ಘಟಕಗಳು ಮತ್ತು ವೆನ್ಯಾಪ ಪರಿಗಣನೆಗಳು: ನ್ಯೂರಲ್ ನೆಟ್ ವರ್ಕ್ ಆರ್ಕೆಟೆ ಕ್ ಚರ್

```
ಕಾರ್ಯರೂಪಕ್ಕೆ ಬರುತ್ತವೆ. ಇಮಗಳಲ್ಲಿ ಸೂಕ್ತವಾದ ಸಂಖ್ಯೆಯೆಯ ಪದರಗಳು ಮತ್ತು
ನ್ಯೂರಾನ್
ಗಳನ್ನು
                                                       ನೆರ್ಧರಿಸುಮದು,
ನ್ಯೂರಾನ್
ಗಳಿಗೆ ಸಕರಿಯಗೊಳಿಸುವ ಕಾರ್ಯಗಳನ್ನನು ಆಯ್ ಮಾಡುಮದು, ತರಬ್ ತಿಗಾಗಿ ಸೂಕ್ ನಷ್ಟುದ
ಕಾರ್ಯವನ್ನು ಆರೌಸುಮದು ಮತ್ತು ಮತ್ತಿಮೀರೆದ ತಡೆಗಟ್ ಟಲು ಕರಮಬದ್ ಧಗೊಳಿಸುವ
                             ಅಳವಡಿಸುಮದು
                                                            ಸೇರಿವೆ.
ತಂತ್ ರಗಳನ್ ನು
ಆರ್ಕೆಟೆಕ್ಚರ್
         ಆಯ್ಕೆಯು
ನ
                           ನೆರ'ದಿ'ಷ್ಟ
                                             ಸಮಸ್ಯೆ
                                                             ಮತ್ತು
ಇನ್
ಪುಟ್ ಡೇಟಾದ ಸ್ವವರೂಪವನ್ನು ಅವಲಂಬಿಸಿರುತ್ತದೆ. ಉದಾಹರಣೆಗೆ, ಸಂಕೇರ್ಣ ಕಾರ್ಯುಗಳಿಗೆ
ಅನೇಕ
ಲೇಯರ್
ಗಳೊಂದಿಗೆ
                                                             ಆಳವಾದ
ಆರ್ಕೆಟೆಕ್ಚರ್
ಗಳು ಬೇಕಾಗಬಹುದು, ಆದರೆ
                                ಸರಳವಾದ
                                          ಕಾರ್ಯಗಳನ್ ನು
                                                          ಆಳವೆಲ್ಲದ
ಆರ್ಕೆಟೆಕ್ಚರ್
ಗಳೆಂದ ಪರೆಣಾಮಕಾರೆಯಾಗೆ ಪರೆಹರೆಸಬಹುದು.
```

ಅಂಶಗಳು ಮತ್ತು ಪರೆಗಣನೆಗಳು

ಅನ್ ನು ವೆನ್ಯಾಸಗೊಳಿಸುವಾಗ, ಹಲವಾರು ಪ್ರಮುಖ

ಪ್ರಮುಖ ಘಟಕಗಳು ಮತ್ತು ವೆನ್ಯಾಪ ಪರಿಗಣನೆಗಳು: ನ್ಯೂರಲ್ ನೆಟ್ ವರ್ ಆರ್ ಆರ್ಟಿಕ್ ಚರ್ ಅನ್ ನು ವೆನ್ ಯಾಸಗೊಳಿಸುವಾಗ, ಹಲವಾರು ಪ್ ರಮುಖ ಅಂಶಗಳು ಮತ್ ತು ಪರಿಗಣನೆಗಳು ಕಾರ್ಯರೂಪಕ್ಕೆ ಬರುತ್ತವೆ. ಇಮಗಳಲ್ಲಿ ಸೂಕ್ತವಾದ ಸಂಖ್ಯೆಯೆಯ ಪದರಗಳು ಮತ್ತು ನ್ಯೂರಾನ್ ಗಳನ್ನು ನೆರ್ಧರಿಸುಮದು, ನ್ಯೂರಾನ್ ಗಳಿಗೆ ಸಕರಿಯಗೊಳಿಸುವ ಕಾರ್ಯಗಳನ್ನು ಆಯ್ ಮಾಡುಮದು, ತರಬ್ ತಿಗಾಗಿ ಸೂಕ್ ನಷ್ಟದ ಕಾರ್ಯವನ್ನು ಆರೌಸುಮದು ಮತ್ತು ಮತ್ತಿಮೀರೆದ ತಡೆಗಟ್ ಟಲು ಕ್ರಮಬದ್ಧಗಗೊಳಿಸುವ ಅಳವಡಿಸುಮದು ಸೇರೆವೆ. ತಂತ್ ರಗಳನ್ ನು ಆರ್ಕೆಟೆಕ್ಚರ್ ಮತ್ತು ಆಯಕೆಯು ನೆರ'ದಿ'ಷ್ಟ ಸಮಸ್ಯೆ ನ ಇನ್ ಪುಟ್ ಡೇಟಾದ ಸ್ವವರೂಪವನ್ನು ಅವಲಂಬಿಸಿರುತ್ತದೆ. ಉದಾಹರಣೆಗೆ, ಸಂಕೇರ್ಣ ಕಾರ್ಯುಗಳಿಗೆ ಅನೇಕ ಲೇಯರ್ ಗಳೊಂದಿಗೆ ಆಳವಾದ ಆರ್ಕೆಟೆಕ್ಚರ್ ಆಳವೆಿಲ್ಲದ ಗಳು ಬ್ೕಕಾಗಬಹುದು, ಆದರೆ ಸರಳವಾದ ಕಾರ್ಯಗಳನ್ ನು ಆರ್ಕೆಟೆಕ್ಚರ್

ಗಳಿಂದ ಪರಿಣಾಮಕಾರಿಯಾಗಿ ಪರಿಹರಿಸಬಹುದು.

ಪ್ರಮುಖ ಘಟಕಗಳು ಮತ್ತು ವೆನ್ಯಾಪ ಪರಿಗಣನೆಗಳು: ನ್ಯೂರಲ್ ನೆಟ್ ವರ್ ಆರ್ ಆರ್ಟಿಕ್ ಚರ್ ಅನ್ ನು ವೆನ್ ಯಾಸಗೊಳಿಸುವಾಗ, ಹಲವಾರು ಪ್ ರಮುಖ ಅಂಶಗಳು ಮತ್ ತು ಪರಿಗಣನೆಗಳು ಕಾರ್ಯರೂಪಕ್ಕೆ ಬರುತ್ತವೆ. ಇಮಗಳಲ್ಲಿ ಸೂಕ್ತವಾದ ಸಂಖ್ಯೆಯೆಯ ಪದರಗಳು ಮತ್ತು ನ್ಯೂರಾನ್ ಗಳನ್ನು ನೆರ್ಧರಿಸುಮದು, ನ್ಯೂರಾನ್ ಗಳಿಗೆ ಸಕರಿಯಗೊಳಿಸುವ ಕಾರ್ಯಗಳನ್ನು ಆಯ್ ಮಾಡುಮದು, ತರಬ್ ತಿಗಾಗಿ ಸೂಕ್ ನಷ್ಟದ ಕಾರ್ಯವನ್ನು ಆರೌಸುಮದು ಮತ್ತು ಮತ್ತಿಮೀರೆದ ತಡೆಗಟ್ ಟಲು ಕ್ರಮಬದ್ಧಗಗೊಳಿಸುವ ಅಳವಡಿಸುಮದು ಸೇರೆವೆ. ತಂತ್ ರಗಳನ್ ನು ಆರ್ಕೆಟೆಕ್ಚರ್ ಮತ್ತು ಆಯಕೆಯು ನೆರ'ದಿ'ಷ್ಟ ಸಮಸ್ಯೆ ನ ಇನ್ ಪುಟ್ ಡೇಟಾದ ಸ್ವವರೂಪವನ್ನು ಅವಲಂಬಿಸಿರುತ್ತದೆ. ಉದಾಹರಣೆಗೆ, ಸಂಕೇರ್ಣ ಕಾರ್ಯುಗಳಿಗೆ ಅನೇಕ ಲೇಯರ್ ಗಳೊಂದಿಗೆ ಆಳವಾದ ಆರ್ಕೆಟೆಕ್ಚರ್ ಆಳವೆಿಲ್ಲದ ಗಳು ಬ್ೕಕಾಗಬಹುದು, ಆದರೆ ಸರಳವಾದ ಕಾರ್ಯಗಳನ್ ನು ಆರ್ಕೆಟೆಕ್ಚರ್

ಗಳಿಂದ ಪರಿಣಾಮಕಾರಿಯಾಗಿ ಪರಿಹರಿಸಬಹುದು.

```
ನ್ಯೂರಲ್
ನೆಟ್
ವರ್ಕ್ ತರಬೇತೆ
ನ್ಯೂರಲ್
ನೆಟ್
ವರ್*
ಗಳ ತರಬೇತೆ ಪ್ರಕ್ರಿಕೆಯೆಯನ್ನು ಅರ್ಥಮಾಡೆಕೊಳ್ಳುಮದು
ನರಮಂಡಲದ ತರಬ್ ತಿಯು ಆಳವಾದ ಕಲಿಕೆ ಮತ್ತು ಕೃತಕ ಬುದ್ ಧಿಮತ್ತೆಯ ನೆರ್ಣಾಯಕ ಅಂಶವಾಗಿದೆ.
ಊಹಿಸಲಾದ
ಔಟ್
ಪುಟ್
                        ಮತ್ತು
                                                 ನೆಜವಾದ
ಔಟ್
ಪುಟ್ ನಡುವೆನ ವ್ಯವಕ್ಯುಪವನ್ನು ಕಡೆಮೆ ಮಾಡಲು ನರಮಂಡಲದ ತೂಕ ಮತ್ತು ಪಕ್ಷಪಾತಗಳನ್ನು
               ಪ್ ಕ್ ಕ್ ಯೆ ಯನ್ ನು
ಸರೌಹೊಂದಿಸುವ
                                          ಒಳಗೊಂಡಿರುತ್ತದೆ.
                                 ಇದು
ಬ್ಯಾಕ್
ಪರ್ೊಪಗ್ ಕನ್ ಎಂಬ ಪರಕರೆಯೆಯ ಮೂಲಕ ಇದನ್ ಸುಮಾನ್ಯವಾಗಿ ಸಾಧಿಸಲಾಗುತ್ತದೆ, ಅಲ್ಲಿ
```



```
ಸುಧಾರಿತ ತಂತರಗಳು: ತರಬೇತೆ ನರಮಂಡಲದ ಜಾಲಗಳು ಸಾಮಾನ್ಯಯವಾಗೆ ಮೆನೆ–ಬ್ಯಾಚ್
ಗರೇಡಿಯಂಟ್ ಡಿಸೆಂಟ್, ರೆಗ್ಯುಲಲ್ಟಿಸೇಶನ್ ವಿಧಾನಗಳು
                                                         ಮತ್ತು
ಹೃಪರ್
ಪ್ಯಾರಾಮೀ ಟರ್
ಟ್ಯೂನೆಂಗ್
                         ತಂತ್ರಗಳನ್ ಒಳಗೊಂಡಿರುತ್ತದೆ. ನ್ಯೂರಲ್
ನಂತಹ
      ಹಲವಾರು
                ಸುಧಾರಿತ
ನೆಟ್
ವರ್ಕ್ ತರಬೇತೆಯ ನಿಖರತೆ ಮತ್ತು ದಕ್ಷತೆಯನ್ನು ಸುಧಾರಿಸಲು ಈ ತಂತ್ರಗಳು ಅತ್ಯಗತ್ಯ,
ಮತ್ತು ಆಳವಾದ ಕಲಿಕೆಯ ಮಾದರಿಗಳ ಯಶಸ್ಸೆ ನಲ್ಲಿ ಅಮ ಮಹತ್ವದ ಪ್ರಾತ್ ವನ್ನನ್ನು ವಹಸುತ್ತವೆ.
ಸುಧಾರಿತ ತಂತ್ರಗಳು: ತರಬೇತೆ ನರಮಂಡಲದ ಜಾಲಗಳು ಸಾಮಾನ್ ಯವಾಗಿ ಮೆನೆ-ಬ್ಯಾಚ್
ಗರೇಡಿಯಂಟ್ ಡಿಸೆಂಟ್, ರೆಗ್ಯುಲಲ್ಟ್ ಸೇಶನ್ ವಿಧಾನಗಳು ಮತ್ತು
ಹೃಪರ್
ಪ್ಯಾರಾಮೀ ಟರ್
ಟ್ಯೂನೆಂಗ್
ನಂತಹ ಹಲವಾರು ಸುಧಾರಿತ ತಂತ್ರಗಳನ್ ಒಳಗೊಂಡಿರುತ್ತದೆ. ನ್ಯಾಂರಲ್
ನೆಟ್
```

ವರ್ಕ್ ತರಬೇತೆಯ ನೆಖರತೆ ಮತ್ತು ದಕ್ಷತೆಯನ್ನು ಸುಧಾರಿಸಲು ಈ ತಂತ್ರಗಳು ಅತ್ಯಗತ್ಯ,

```
ಮತ್ತು ಆಳವಾದ ಕಲಿಕೆಯ ಮಾದರಿಗಳ ಯಶಸ್ಸೆ ನಲ್ಲಿ ಅಮ ಮಹತ್ವದ ಪ್ರಾತ್ ವನ್ನನ್ನು ವಹಸುತ್ತವೆ.
   ಸುಧಾರಿತ ತಂತರಗಳು: ತರಬೇತೆ ನರಮಂಡಲದ ಜಾಲಗಳು ಸಾಮಾನ್ ಯವಾಗೆ ಮೆನೆ–ಬ್ಯಾಚ್
   ಗರೇಡಿಯಂಟ್ ಡಿಸೆಂಟ್, ರೆಗ್ಯುಲಲ್ಪೆಸೇಶನ್
                                          ವೆಧಾನಗಳು ಮತ್ತು
  ಹೃೆಪರ್
  ಪ್ಯಯಾರಾಮೀಟರ್
   ಟ್ಯೂನೆಂಗ್
   ನಂತಹ ಹಲವಾರು
                 ಸುಧಾರಿತ ತಂತ್ರಗಳನ್ನನು ಒಳಗೊಂಡಿರುತ್ತದೆ. ನ್ಯಾಂರಲ್
   ನೆಟ್
   ವರ್ಕ್ ತರಬೇತೆಯ ನೆಖರತೆ ಮತ್ತು ದಕ್ಷತೆಯನ್ನು ಸುಧವುಸಲು ಈ ತಂತ್ರಗಳು ಅತ್ಯುಗತ್ಯ,
   ಮತ್ತು ಆಳವಾದ ಕಲಿಕೆಯ ಮಾದರೆಗಳ ಯಶಸ್ಸೆ ನಲ್ಲಿ ಅಮ ಮಹತ್ವದ ಪಾತ್ರರವನ್ನು ವಹಸುತ್ತವೆ.
ನ್ಯೂರಲ್
ನೆಟ್
ವರ ಕ್
ಗಳ
ಅಪ್ಲಿಕ್ಕಿಶನ್
ಗಳು
```

```
ನ್ಯೂರಲ್
ನೆಟ್
ವರ*ಕ್
                        ಶಕ್
                                                        ಬಳಸೆಕೊಳ್ಳುಮದು:
ಗಳ
ಅಪ್ಲಿಕೇಶನ್
ಗಳು ಮತ್ತು ಬಳಕೆಯ ಪ್ರಕರಣಗಳು
ನ್ಯೂರಲ್
ನೆಟ್
ವರ್*
ಗಳು, ಕೃತಕ ಬುದ್Çಿದುತ್ತ್ಯಯ ಉಪವಿಭಾಗ, ಡ್ಫ್ಟ್ ಟಾದಿಂದ ಕಲಿಯುವ ಮತ್ತು ಹೊಂದಿಕೊಳ್ಳುವ
                  ವೆವೆಧ
                                      ಕೈ ಗಾರಿಕೆ ಗಳಲ್ಲಿ
ಸಾಮರ್ಥ್ಯಯದಿಂದಾಗಿ
                                                            ವ್ಯಾಕವಾದ
ಅಪ್ಲಿಕ್ಆನ್
ಗಳನ್ನು ಕಂಡುಕೊಂಡಿದೆ. ಮಾನವ ಮೆದುಳಿನ ನರಕೋಶದ ರಚನೆಯನ್ನು ಹೋಲುವ ಈ ಅಂತರ್ಸಂಪರ್ಕಿತ
ನೋಡ್
ಗಳು ಸಂಕೀರ್ಣ ಡ್ ಟಾವನ್ ನು ಪ್ ರಕ್ ರಿಯೆಗೊಳಿಸಲು ಮತ್ತು ಮಾದರಿಗಳನ್ ನು ಗುರುತಿಸಲು
ಸಮರ್ಥವಾಗಿವೆ. ಈ ಲೇಖನಮ ನರಮಂಡಲಗಳ ವ್ಯಯಾಖ್ಯಾನ, ವಿವರಣಿ ಮತ್ತು ನೈಜ–ಪ್ರಪಂಚದ
ಅನ್ ವಯಗಳನ್ ನು ಪರೆ ಶೀಲಿ ಸುತ್ ತದೆ, ವೈವಿಧ್ ಯಮಯ ಕ್ಷೇತ್ರಗಳಲ್ ಅಮಗಳ ಪ್ರಾಯೋಗಿಕ
ಉಪಯುಕ್ತತೆಯ ಮೇಲೆ ಬೆಳಕು ಚೆಲ್ಲುತ್ತದೆ.
```

_____:

ಪ್ ರಕರಣಗಳು ಮತ್ತು

ಅಪ್ಲಿಕ್ಆನ್

ಗಳನ್ ಬಳಸೆ: ಹಣಕಾಸು, ಆರೋಗ್ಯ, ಮಾರ್ಕೆಟಿಂಗ್, ರೊಬೊಟಿಕ್ಸ್ ಮತ್ತು ಹೆಚ್ಚುನಮಗಳನ್ನು ಒಳಗೊಂಡಂತೆ ವೆವೆಧ ಕ್ಷೇತ್ರಗಳಲ್ ನ್ಯೂರಲ್ ನೆಟ್

ವರ*ಕ್

ಗಳು ಅಮೂಲ್ಯವೆಂದು ಸಹುೀತಾಗೆದೆ. ಹಣಕಾಸೆನಲ್ಲಿ, ಅಮಗಳನ್ ಮವಂಚನೆ ಪತ್ತೆ, ಅಪಾಯದ ಮೌಲ್ಯಮಪನ ಮತ್ತು ಅಲ್ ಗಪ್ಟದಮಿಕ್ ಪ್ ಮಾಪ್ಪಪಕ್ಕಾಗೆ ಬಳಸಲಾಗುತ್ತದೆ. ಆರೋಗ್ಯಯ ರಕ್ಷಣೆಯಲ್ಲಿ, ಪ್ರದ್ಯೆಯಕ್ ಯ ಚಿತ್ರರಣ ಪ್ರಶ್ಲೇಷಣೆ, ರೋಗ ರೋಗನೆರ್ಣಯ ಮತ್ತು ಪ್ರಯಕ್ ಕರಿಸಿದ ಔಷಧದಲ್ ನರಮಂಡಲಗಳು ಸಹಾಯ ಮಾಡುತ್ತವೆ. ಮಾರ್ಕ್ ಟಿಂಗ್ ವೃತ್ತಪ್ಪವರು ಗಳುಹಕರ ಪ್ರಭಾಗ, ಶಿಫಾಪ್ ಪ್ ಪ್ಯಯವಸ್ಥೆಗಳು ಮತ್ತು ಭಾವನೆ ಪ್ರಶ್ಲೇಷಣೆಗಾಗೆ ಅವರನ್ ನುಯಂತ್ರಿಸುತ್ತವೆ. ಹೆಚ್ಚುವರಿಯಾಗೆ, ಸ್ಮಾಯಕ್ತು ನೆಯೂರಲ್

ನೆಟ್

ವರ ಕ್

I

ಗಳು ಸ್

ವಾಹನಗಳಲ್ಲಿ

ಅಪ್ಲಿಕ್ಡಿಕ್

ಗಳನ್ ಕುಡುಕೊಳ್ಳುತ್ತವೆ, ನೈಸರ್ಗಿಕ ಭಾಷಾ ಸಂಸ್ಥರಣ ಮತ್ತು ಉತ್ಪಾದನಾ ಉದ್ಯಮದಲ್ಲಿ ಮುನ್ ಸೂಚಕ ನೆರ್ವಹಣೆ.

ಪ್ ರಕರಣಗಳು ಮತ್ತು

ಅಪ್ಲಿಕ್ಕಿತನ್

```
ಗಳನ್ ಬಳಸೆ: ಹಣಕಾಸು, ಆರೋಗ್ಯ, ಮಾರ್ಕೆಟಿಂಗ್, ರೊಬೊಟಿಕ್ಸ್ ಮತ್ತು
   ಹೆ ಚ್ ಚಿನಮಗಳನ್ ನು ಒಳಗೊಂಡಂತೆ ವಿವಿಧ ಕ್ಷೇತ್ ಕಗಳಲ್ ನೆಯೂರಲ್
   ನೆಟ್
   ವರ*ಕ್
   ಗಳು ಅಮೂಲ್ಯವೆಂದು ಸಾಬೀತಾಗಿದೆ. ಹಣಕಾಸಿನಲ್ಲಿ, ಅಮಗಳನ್ ನು ವಂಚನೆ ಪತ್ತೆ, ಅಪಾಯದ
   ಮೌಲ್ಯಮಾಪನ ಮತ್ತು ಅಲ್ಗಾರುದಮಕ್ ವ್ಯಯಪ್ರಪಕ್ಷಕ್ಕಾಗೆ ಬಳಸಲಾಗುತ್ತದೆ. ಆರೋಗ್ಯಯ
   ರಕ್ಷಣೆಯಲ್ಲಿ, ವೈದ್ಯಕೀಯ ಚಿತ್ರಣ ವಿಶ್ಲೇಷಣೆ, ರೋಗ ರೋಗನೆರ್ಣಯ ಮತ್ತು
   ವೈಯಕ್ಆೇಕರೆಸಿದ ಔಷಧದಲ್ಲು ನರಮಂಡಲಗಳು ಸಹಾಯ ಮಾಡುತ್ತವೆ. ಮಾರ್ಕೆಟಿಂಗ್ ವೃತ್ತಪರರು
   ಗಳಾಹಕರ ವಿಭಾಗ, ಶಿಫಾರಸು ವ್ಯವಸ್ಥೆಗಳು ಮತ್ತು ಭಾವನೆ ವಿಶ್ಲೇಷಣೆಗಾಗಿ ಅವರನ್ ನು
   ನಿಯಂತರಿಸುತ್ತವೆ.
                           ಹೆಚ್ಚುವರೆಯಾಗೆ,
                                                   ನ್ಯೂರಲ್
   ನೆಟ್
   ವರ*ಕ್
   ಗಳು
                        ಸ್ಮಯತ್
                                                  ವಾಹನಗಳಲ್ಲಿ
   ಅಪ್ಲಿಕೇಶನ್
   ಗಳನ್ ನು ಕಂಡುಕೊಳ್ಳುತ್ ತವೆ, ನೈಸರ್ಗೆಕ ಭಾಷಾ ಸಂಸ್ಕರಣೆ ಮತ್ತು ಉತ್ಪಾದನಾ ಉದ್ ಯಮದಲ್ಲಿ
   ಮುನ್ಸೂಚಕ ನೆರ್ವಹಣೆ.
```