Problem J. Permutations

Input file: permutations.in
Output file: permutations.out

Time limit: 1 second

Memory limit: 256 megabytes

Let's take two permutations: $A = (a_1, a_2, ...a_N)$ and $B = (b_1, b_2, ...b_N)$. We can define their product as permutation $C = A \times B = (c_1, c_2, ...c_N)$, where $c_i = a_{b_i}$. For example, for A = (3, 5, 1, 2, 4) and B = (2, 3, 5, 4, 1), their product is C = (5, 1, 4, 2, 3).

It is well-known that in common case multiplication of permutations is not commutative (i.e. $A \times B \neq B \times A$). Example:

$$(3,5,1,2,4) \times (2,3,5,4,1) = (5,1,4,2,3)$$

$$(2,3,5,4,1) \times (3,5,1,2,4) = (5,1,2,3,4)$$

But there are some pairs, multiplication of which is commutative. Example:

$$(3,4,2,5,1) \times (4,1,5,3,2) = (5,3,1,2,4)$$

$$(4,1,5,3,2) \times (3,4,2,5,1) = (5,3,1,2,4)$$

You are given permutation A. Count number of such permutations B that $A \times B = B \times A$, and output it modulo P.

Input

First line of input file contains 2 integer numbers: N and P ($1 \le N \le 10^5$, $2 \le P \le 10^9$). On the second line there are N different integer numbers: $a_1, a_2, ... a_N$ — permutation A ($1 \le a_i \le N$). All numbers in lines are separated by spaces.

Output

Output file must contain one integer number K — answer for the task $(0 \le K \le P - 1)$.

Example

permutations.in	permutations.out
5 100	5
3 4 2 5 1	

Permutations for example:

 $1\ 2\ 3\ 4\ 5$

25413

3 4 2 5 1

4 1 5 3 2

5 3 1 2 4