

Virtualizing Spark on VMware vSphere

Justin Murray, VMware

Why Virtualize Spark?

Use Cases: Virtualization of Big Data

- IT wants to provide Spark clusters as a service on-demand for its end users
- Enterprises have development, test, pre-prod staging and production clusters that are required to be separated from each other and provisioned independently
- Organizations need different versions of Spark to be available to different teams - with possibly different services available
- Enterprises do not wish to dedicate a specific set of hardware to each different requirement above, and want to reduce overall costs

The Traditional Hadoop Architecture

Hadoop – in Virtual Machines

ResourceManager Namenode Job Input File Worker Node 1 Worker Node 2 Worker Node 3 Split 1-64MB Nodemanager Nodemanager Node manager Split 2-64MB Split 3 -64MB AppMaster - 1 Container - 2 Container - 3 Datanode Datanode Datanode Block 1-64MB Block 2-64MB Block 3-64MB

The Spark Architecture - Standalone

The Spark Architecture (on YARN)

Reference Architectures

Combined Model: Two Virtual Machines on a Host

#1 Kererence Architecture from Cloudera

CLOUDERA REFERENCE
ARCHITECTURE FOR VIMWARE
VSPHERE WITH LOCALLY ATTACHED
STORAGE
VERSION CDH 5.3

Performance

Workloads - Spark

- Two standard analytic programs from the Spark MLLib (Machine Learning Library)
- Driven using SparkBench (https://github.com/SparkTC/spark-bench)
 - Support Vector Machine
 - Logistic Regression

13

Spark Support Vector Machine Performance

Spark Logistic Regression Performance

Results - Spark

- Support Vector Machines workload, which stayed in memory, ran about 10% faster in virtualized form than on bare metal
- Logistic Regression workload, which was written to disk at the larger dataset sizes, showed a slight advantage to bare metal
 - part of the dataset was cached to disk,
 - ·larger memory of the bare metal Spark executors may help
 - Both workloads showed linear scaling from 5 to 10 hosts and as dataset size increased

CONFIDENTIAL 16

Conclusions

- Spark workloads work very well on VMware vSphere
 - Various performance studies have shown that any difference between virtualized performance and native performance is minimal
 - Follow the general best practice guidelines that VMware has published
 - Design patterns such as data-compute separation can be used to provide elasticity of your Spark cluster.

Thank You.

Contact jmurray@vmware.com or

bigdata@vmware.com

Add Slides as Necessary

Supporting points go here.

