CS 480/680 Introduction to Machine Learning

Lecture 0: Logistics & Introduction

Kathryn Simone 5 September 2024

About Me

Postdoctoral Fellow

- Cheriton School of Computer Science and Center for Theoretical Neuroscience
- Principal Investigators:
 - Prof. Jeff Orchard (Faculty of Math)
 - Terrence C. Stewart (National Research Council of Canada
- Investigate the algorithms underlying natural intelligence, develop biologically-plausible algorithms, evaluate them for Al applications and on neuromorphic hardware

History

- Undergraduate: Electrical Engineering at Memorial University of Newfoundland
- Masters: Biomedical Engineering at the University of Calgary (Signal Processing)
- PhD: Computational and Systems Neuroscience (Stress)

Neuromorphic engineering community

Lecture Outline

l. Logistics

How will the course run?

II. Aims and Outcomes

What can I expect to be able to do?

III. Definitions and Concepts

What is machine learning, anyways? What will we cover, and when?

IV. Summary

What's next?

Lecture Outline

Logistics

How will the course run?

II. Aims and Outcomes

What can I expect to be able to do?

III. Definitions and Concepts

What is machine learning, anyways? What will we cover, and when?

IV. Summary

What's next?

Course information

- Times and Locations
 - Section 001: TR 1:00pm 2:20pm, MC 4021
 - Section 002: TR 8:30am 9:50am, MC 2017
 - In-person attendance required. Class time will not be recorded.
- Homepage: github.com/kpc-simone/cs480-f24
 - Syllabus, slides, readings/resources, assignments
- Piazza: https://piazza.com/uwaterloo.ca/fall2024/cs480680
 - Announcements, questions, discussion
 - Approx 40 signed already -- go register now!
- LEARN/Crowdmark: https://learn.uwaterloo.ca/d2l/home/1046818
 - Assignment submission and grades

Learning Community

- Students: 159 enrolled
 - 126 undergraduate (CS 480)
 - 33 graduate (CS 680)
 - 15 waitlisted/auditing
- Instructor: Kathryn Simone (<u>kpsimone@uwaterloo.ca</u>)
 - Office Hours: by e-mail appointment
- Instructional Team:
 - Saber Malekmohammadi (<u>s3malekm@uwaterloo.ca</u>; A1)
 - Matina Mahdizadeh Sani (<u>m3mahdiz@uwaterloo.ca</u>; A2)
 - Carter Blair (<u>cblair@uwaterloo.ca</u>; A3, A4)
 - Evelien Riddell (<u>eeboerst@uwaterloo.ca</u>; Project + Piazza Czar)
 - Each TA will have their own office hours

There is no required textbook

Materials will be linked on the course home page

- An Introduction to Statistical Learning
 - Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani.
- Elements of Statistical Learning
 - Trevor Hastie, Robert Tibshirani and Jerome Friedman.
- Understanding Machine Learning: From Theory to Algorithms
 - Shai Shalev-Shwartz and Shai Ben-David.
- Deep Learning
 - Ian Goodfellow, Yoshua Bengio and Aaron Courville.
- Dive into Deep Learning
 - Aston Zhang, Zack C. Lipton, Mu Li and Alex J. Smola.

Required and Useful Knowledge

Official Course Prerequisites

- Algorithms: CS 341
- Statistics: STAT 206 or STAT 231 or STAT 241

Useful

- Linear algebra: inner products, norms, matrix properties, etc.
- Calculus: partial derivatives
- Python

Work Load and Grading Scheme

able 2: Grading Sche	eme						
Assessment	Assessment Date	Weighting (CS480) 7.5% 7.5% 7.5% 7.5% 30% 40% N/A N/A	Weighting (CS680) 7.5% 7.5% 7.5% 7.5% 15% 2% 8% 15%				
Assignment 1 Assignment 2 Assignment 3 Assignment 4 Exams Midterm Final Project (CS 680 on Pitch Proposal Report	September 27 October 14 November 8 November 22						
				October 29 TBD nly) September 19 October 8 December 3			
					Total		100%

Policies

- You must do your own assignments
 - Copying others' code is not permitted
 - Using Generative AI is not permitted
- Office hours
 - By email appointment. Please refer to my calendar linked in the syllabus.
 - Office hours for assignments will be announced on the posting date
- Late work
 - Two 48-hour extensions for assignments per student, no questions asked
 - Email the TA 48 hours before the deadline
 - Further extensions require justification and documentation
- Regrade requests
 - Considered within 1 week of grades released
- Communication
 - Piazza for all course content and conceptual discussions with other students
 - Email for all logistical matters: extension request, meeting request
 - Email: expect a response within 8 working hours

Questions?

Lecture Outline

Logistics

How will the course run?

II. Aims and Outcomes

What can I expect to be able to do?

III. Definitions and Concepts

What is machine learning, anyways? What will we cover, and when?

IV. Summary

What's next?

Machine learning is everywhere

Machine learning is everywhere

Goal: Demystify ML

This course attracts learners with different backgrounds

Practical Experience →

Approach: Understand ML algorithms, from equations to code

Practical Experience →

Intended Learning Outcomes

- Recognize and formulate a task as a ML problem;
- Identify and recommend suitable algorithms to tackle different ML problems;
- Implement foundational ML algorithms;
- Apply and evaluate ML algorithms on real datasets;
- Justify and critique choices in terms of ML principles;
- Describe ethical and safety issues of ML on society.

Lecture Outline

Logistics

How will the course run?

II. Aims and Outcomes

What can I expect to be able to do?

III. Definitions and Concepts

What is machine learning, anyways? What will we cover, and when?

IV. Summary

What's next?

What is machine learning (ML)?

ML is a field within Artificial Intelligence (AI)

Thanks to machine-learning algorithms, the robot apocalypse was short-lived.

Deep learning (DL) is a subtopic of ML

Clockwise from top:

- 1. Skalski, Piotr. "Deep Dive Into Math Behind Deep Networks Towards Data Science." Medium, 16 Feb. 2020, towardsdatascience.com/https-medium-com-piotr-skalski92-deep-dive-into-deep-networks-math-17660bc376ba.
- 2. Banino, Andrea, et al. "Vector-based navigation using grid-like representations in artificial agents." *Nature* 557.7705 (2018): 429-433.

What kinds of functions?

Tasks: Classification

Tasks: Regression

Tasks: Clustering

	Lecture	Date	Topics
	0	05/09/2024	Introduction + Administrative Remarks
/Tarakakirra\ a ala a ala d	1	10/09/2024	Halfspaces the Perceptron Algorithm
(Tentative) schedule		12/09/2024	Linear Regression and Convexity
	3	17/09/2024	Maximum Likelihood Estimation
	4	19/09/2024	k-means Clustering
	5	24/09/2024	k-NN Classification and Logistic Regression
Mathematical Foundations	6	26/09/2024	Hard-margin SVM
Mathematical Foundations	7	01/10/2024	Soft-margin SVM
	8	03/10/2024	Kernel methods
	9	08/10/2024	Decision Trees
Classical ML Algorithms	10	10/10/2024	Bagging and Boosting
		15/10/2024	NO LECTURE - MIDTERM BREAK
		17/10/2024	NO LECTURE- MIDTERM BREAK
AL INC.	11	22/10/2024	Expectation Maximization Algorithm
Neural Networks	12	24/10/2024	MLPs and Fully-Connected NNs
		29/10/2024	NO LECTURE - MIDTERM EXAM
	13	31/10/2024	Convolutional Neural Networks
Modern Trends		05/11/2024	Recurrent Neural Networks
		07/11/2024	Attention and Transformers
	16	12/11/2024	Graph Neural Networks (Time permitting)
	17	14/11/2024	VAEs and GANs
Ethics	18	19/11/2024	Flows
	19	21/11/2024	Contrastive Learning (Time permitting)
	20	26/11/2024	Robustness
	21	28/11/2024	Privacy (Saber Malekmohammadi)
	22	03/12/2024	Fairness

If a picture is worth a thousand words, then ...

Mathematical Foundations

"Learn functions from data."

Classical ML

"Learn functions from designed features of data."

Neural Networks:

"Learn the features and the function."

Modern Trends:

"Function?"

Ethics:

"This isn't necessarily reliable, safe, or good for society."

Classification Example: Fall detection from accelerometer data

0.0

100

150

Time (s)

200

250

Clockwise from top:

Yu, Xiaoqun, Jaehyuk Jang, and Shuping Xiong. Frontiers in Aging Neuroscience 13 (2021): 692865.

Voelker, Aaron, Ivana Kajić, and Chris Eliasmith. *Advances in neural information processing systems* 32 (2019).

Barkley and Simone 2023, Unpublished

Regression Example: Identifying representations in the mammalian hypothalamus

Unsupervised learning example: Distribution learning

Generation example: Biologically-plausible cognitive-inspired sampling

Furlong, P. Michael, et al. "Biologically-plausible Markov Chain Monte Carlo Sampling from Vector Symbolic Algebra-encoded Distributions."

For some topics, I'm at the edge of my expertise

0	05/09/2024	Introduction + Administrative Remarks
1	10/09/2024	Halfspaces the Perceptron Algorithm
2	12/09/2024	Linear Regression and Convexity
3	17/09/2024	Maximum Likelihood Estimation
4	19/09/2024	k-means Clustering
5	24/09/2024	k-NN Classification and Logistic Regression
6	26/09/2024	Hard-margin SVM
7	01/10/2024	Soft-margin SVM
8	03/10/2024	Kernel methods
9	08/10/2024	Decision Trees
10	10/10/2024	Bagging and Boosting
	15/10/2024	NO LECTURE - MIDTERM BREAK
	17/10/2024	NO LECTURE- MIDTERM BREAK
11	22/10/2024	Expectation Maximization Algorithm
12	24/10/2024	MLPs and Fully-Connected NNs
	29/10/2024	NO LECTURE - MIDTERM EXAM
13	31/10/2024	Convolutional Neural Networks
14	05/11/2024	Recurrent Neural Networks
15	07/11/2024	Attention and Transformers
16	12/11/2024	Graph Neural Networks (Time permitting)
17	14/11/2024	VAEs and GANs
18	19/11/2024	Flows
19	21/11/2024	Contrastive Learning (Time permitting)
20	26/11/2024	Robustness
21	28/11/2024	Privacy (Saber Malekmohammadi)
22	03/12/2024	Fairness

Topics

Lecture

Date

Lecture Outline

Logistics

How will the course run?

II. Aims and Outcomes

What can I expect to be able to do?

III. Definitions and Concepts

What is machine learning, anyways? What will we cover, and when?

IV. Summary

What's next?

The syllabus affirms everything said today

CS 480/680:

Introduction to Machine Learning Fall 2024

Time and Location

480/680 Sec. 001: TR 1:00 - 2:20 PM MC 4021 480/680 Sec. 002: TR 8:30 - 9:50 AM MC 2017

Links

Homepage: github.com/kpc-simone/cs480680-f24
Submissions (LEARN/CrowdMark): learn.uwaterloo.ca/d2l/home/1046818
Discussions (Piazza): piazza.com/uwaterloo.ca/fall2024/cs480680

Syllabus

Instructional Team

Instructor: Kathryn Simone

Office: DC 2126

Office Hours: See Policies. Email: kpsimone@uwaterloo.ca

T.A. Carter Blair Matina Mahdizadeh Sani Saber Malekmohammadi Evelien Riddell Email (@uwaterloo.ca) cblair m3mahdiz s3malekm eeboerst

Course Information

Course Description

Introduction to modeling and algorithmic techniques for machines to learn concepts from data. Generalization: underfitting overfitting, cross-validation. Tasks: classification, regression, clustering. Optimization-based learning: loss minimization. regularization. Statistical learning: maximum likelihood, Bayesian learning. Algorithms: nearest neighbour, (generalized) linear regression, mixtures of Gaussians, Gaussian phocesses, kernel methods, support vector machines, deep learning, sequence learning, ensemble techniques. Large scale learning: distributed learning and stream learning. Applications:

Natural language processing, computer vision, data mining, human computer interaction, information retrieval. [Note: Lab is not scheduled and students are expected to find time in open hours to complete their work.]

Links

- Course Materials
 - github.com/kpc-simone/cs480680-f24
 - Syllabus, slides, video lectures, assignments
- Submissions: Waterloo LEARN (D2L)
 - https://learn.uwaterloo.ca/d2l/home/1046818
- Questions, discussion, announcements
 - https://piazza.com/uwaterloo.ca/fall2024/cs480680

Next Lecture

FIG. 1 — Organization of a biological brain. (Red areas indicate active cells, responding to the letter X.)

On the horizon

Table 2: Grading Sche	eme	Weighting (CS480) 7.5% 7.5% 7.5% 7.5% 30% 40% N/A N/A	Weighting (CS680) 7.5% 7.5% 7.5% 7.5% 15% 30%				
Assessment	Assessment Date September 27 October 14 November 8 November 22 October 29 TBD nly) September 19 October 8 December 3						
Assignment 1							
Assignment 2 Assignment 3 Assignment 4 Exams Midterm Final Project (CS 680 or Pitch Proposal Report							
				Total		100%	100%

Questions?

