Statistiques descriptives Cours L1 – 2021-2022

Nouhoum Toure

Chapitre 2 Notions fondamentales pour l'analyse du changement économique (grandeurs complexes)

Sommaire du chapitre

Chapitre sur les indices synthétiques : évolution d'une variable composée de deux grandeurs.

- 1. Effet de structure
- 2. Les indices de Paasche et de Laspeyres
- 3. L'Indice des Prix à la consommation
- 4. Les propriétés des indices synthétiques

- Evolution d'une **grandeur simple** : indices élémentaires → une source de variation.
 - Ex: le prix d'un produit, la production d'une entreprise donnée, le cours de l'action d'une société particulière
- Evolution d'une **grandeur complexe** : indices Paasche et Laspeyres -> plusieurs sources de variation.
 - Ex : masse salariale (nombre de salariés et salaires), le niveau général des prix (plusieurs prix), le cour des actions (composé de plusieurs actions)
- L'effet de structure permet de distinguer entre ces deux sources de variation.

	Entrep	rise A	Entreprise B		
	Structure des	•		Salaires mensuels nets, en euros	
Employés	50%	1481	20%	1300	
Techniciens	30%	2104	30%	1800	
Cadres	20% moyen =	3851 2142	50%	3500 2550	

• Pour quelle entreprise préférez-vous travailler ? A ou B ? Pourquoi ?

	Entrep	rise A	Entreprise B		
		Salaires		Salaires	
		mensuels		mensuels	
	Structure des	nets, en	Structure des	nets, en	
	effectifs	euros	effectifs	euros	
Employés	50%	1481	20%	1300	
Techniciens	30%	2104	30%	1800	
Cadres	20%	3851	50%	3500	
Salaire moyen =		2142		2550	

- Les salaires dans chaque catégorie de salarié sont plus élevés dans l'entreprise A que dans l'entreprise B...
- Mais le salaire moyen est plus élevé dans l'entreprise B que dans la A...
- Fonction SOMMEPROD dans Excel pour faire la moyenne.
- Comment expliquer cela ? Structure des effectifs différente dans les deux entreprises =>Pondération différente.

	Entrep	rise A	Entreprise B		
		Salaires		Salaires	
		mensuels		mensuels	
	Structure des			nets, en	
	effectifs	euros	des effectifs	euros	
Employés	50%	1481	20%	1300	
Techniciens	30%	2104	30%	1800	
Cadres	20%	3851	50%	3500	
Salaire moyen =		2142		2550	

 $\overline{w}_A = \overline{w}(str.A; sal.A)$ et $\overline{w}_B = \overline{w}(str.B; sal.B)$. Fonction SOMMEPROD.

• Comparaison des salaires moyens de A et B?

$$\frac{\overline{w}_B}{\overline{w}_A} = \frac{2550}{2142} = 1,191$$

On en déduit que le salaire moyen est 19,1% plus élevé dans l'entreprise B.

• Quel est l'effet lié aux différences de structure ? Aux différences de salaires ?

• Pour identifier l'effet des **différences de structure** entre A et B, on raisonne à salaires donnés. Ici, on fixe les salaires de A :

	Entrep	rise A	Entreprise B		
	Salaires			Salaires	
		mensuels		mensuels	
	Structure	nets, en	Structure	nets, en	
	des effectifs	euros	des effectifs	euros	
Employés	50%	1481	20%	1300	
Techniciens	30%	2104	30%	1800	
Cadres	20%	3851	50%	3500	
Salaire moyen =		2142		2550	

• On calcule :
$$\frac{\overline{w}(str.B;sal.A)}{\overline{w}(str.A;sal.A)} = \frac{0.2 \times 1481 + 0.3 \times 2104 + 0.5 \times 3851}{0.5 \times 1481 + 0.3 \times 2104 + 0.2 \times 3851} = \frac{2853}{2142} = 1,332.$$

• L'incidence de l'effet de structure des effectifs sur le salaire moyen dans A est de 33,2%. Si B pratiquait les mêmes salaires par catégorie que A, le taux de variation du salaire moyen B/A serait de 33,2%.

9

• Mesure de l'effet des **différences de salaires** : à l'inverse, on raisonne ici à structure donnée (structure de B).

	Entrep	rise A	Entreprise B		
		Salaires mensuels		Salaires mensuels	
	Structure des	nets, en	Structure des	nets, en	
	effectifs	euros	effectifs	euros	
Employés	50%	1481	20%	1300	
Techniciens	30%	2104	30%	1800	
Cadres	20%	3851	50%	3500	
Salaire moyen =		2142		2550	

• On calcule :
$$\frac{\overline{w}(str.B;sal.B)}{\overline{w}(str.B;sal.A)} = \frac{0.2 \times 1300 + 0.3 \times 1800 + 0.5 \times 3500}{0.2 \times 1481 + 0.3 \times 2104 + 0.5 \times 3851} = \frac{2550}{2853} = 0.894.$$

→ Si l'entreprise A avait la même structure des effectifs que B, le taux de variation du salaire moyen de B/A serait de -10,6%.

• On a donc:

$$\frac{\overline{w}_B}{\overline{w}_A} = \frac{\overline{w}(str.B; sal.A)}{\overline{w}_A} \times \frac{\overline{w}_B}{\overline{w}(str.B; sal.A)} = 0,894 \times 1,332 = 1,191$$

Effet de structure

Effet des différences de salaires

• Mais une autre décomposition est possible :

$$\frac{\bar{w}_B}{\bar{w}_A} = \frac{\bar{w}_B}{\bar{w}(str.A;sal.B)} \times \frac{\bar{w}(str.A;sal.B)}{\bar{w}_A} = \frac{2550}{1890} \times \frac{1890}{2142} = 1,349 \times 0,882 = 1,191$$

Effet de structure

Effet des différences de salaires

Remarque : pas une décomposition mieux que l'autre.

Quiz

- Deux lycées : Lycée A et Lycée B.
- Dans le lycée A : 76% des filles ont eu leur bac et 74% des garçons.
- Dans le lycée B : 93% des filles ont eu leur bac et 91% des garçons.
- Dans le lycée A, il y a 400 filles et 100 garçons.
- Dans le lycée B, il y a 200 filles et 300 garçons.

Quel pourcentage de l'ensemble des filles de Terminale ont eu le bac ? Pour les garçons ?

Contenu intéressant : Science étonnante

https://www.youtube.com/watch?v=vs Zzf vL2I

Effet de structure, parfois appelé Paradoxe de Simpson.

- Un exemple sur le taux de guérison des cancers
- Deux types de cancers : petites tumeurs et grosses tumeurs
- Deux types de traitements : chimiothérapie ou chirurgie
- L'effet de structure fait qu'on a l'impression que c'est la chimiothérapie qui est plus efficace alors que c'est la chirurgie qui est plus efficace que ce soit contre les petites ou grosses tumeurs

Le paradoxe de Simpson — Science étonnante #7

Le paradoxe de Simpson — Science étonnante #7

Indices de Laspeyres et de Paasche

Ex de grandeur complexe : la consommation des ménages.

2.2	01 Consommation	finale effective	des ménages	s par fonction	à prix courants
-----	-----------------	------------------	-------------	----------------	-----------------

Milliards d'euros

	Intitulés	2009	2010	2011	2012	2013	2014	2015
	mutules	2009	2010	2011	2012	2013	2014	2013
01	Produits alimentaires et boissons non alcoolisées	136,3	140,6	144,5	149,8	153,4	152,5	154,9
02	Boissons alcoolisées, tabac et stupéfiants	34,9	36,5	38,2	39,3	40,2	40,4	41,1
03	Articles d'habillement et chaussures	45,0	45,1	44,8	44,7	44,8	44,9	45,0
04	Logement, eau, gaz, électricité et autres combustibles	266,9	276,8	281,2	293,6	301,7	301,4	306,9
05	Meubles, articles de ménage et entretien courant du foyer	54,6	56,0	57,2	57,2	56,5	56,9	57,3
06	Santé	43,5	44,6	46,4	47,3	47,8	48,3	49,0
07	Transports	143,0	146,7	154,1	152,4	149,9	150,9	152,1
08	Communications	34,3	34,4	33,4	31,5	30,6	30,4	30,5
09	Loisirs et culture	96,3	97,5	98,0	97,0	95,3	96,0	97,1
10	Enseignement	9,0	9,4	9,5	9,9	10,4	10,5	10,8
11	Restaurants et hôtels	68,1	69,6	71,9	73,4	74,1	76,5	79,1
12	Biens et services divers	127,9	131,4	134,6	133,9	137,5	138,7	137,8
Total	Consommation finale effective des ménages	1 388,2	1 429,8	1 461,7	1 482,2	1 502,4	1 519,5	1 540,7

Source: Comptes nationaux - Base 2010, Insee

• On considère une grandeur complexe X (consommation des ménages) constituée de k grandeurs simples (chaque type de biens) : $X = \frac{1}{2}$

$$\{x_1, x_2, ..., x_k\}.$$

- On s'intéresse à 2 caractéristiques des x_i :
 - Leurs prix $\{p_1, p_2, ..., p_k\}$
 - Les quantités achetées $\{q_1, q_2, ..., q_k\}$

- Deux dates : 0 et n.
- On note p_{i0} le prix du bien i à la date $\mathbf{0}$, p_{in} son prix à la date \mathbf{n} , q_{i0} la quantité achetée en $\mathbf{0}$ et q_{in} la quantité achetée en \mathbf{n} .

- Pour calculer les variations, on peut raisonner sur la dépense globale :
 - On calcule l'indice de valeur (IV ou IVA) en n, base 100 en 0.

$$IVA_{n/0} = I_{n/0}(pq) = 100 \times \frac{p_{1n}q_{1n} + p_{2n}q_{2n} + \dots + p_{kn}q_{kn}}{p_{10}q_{10} + p_{20}q_{20} + \dots + p_{k0}q_{k0}} = 100 \times \frac{\sum_{i=1}^{k} p_{in}q_{in}}{\sum_{i=1}^{k} p_{i0}q_{i0}}$$

Coefficient multiplicateur de la dépense globale

Mais en faisant cela, on ne connait pas les causes de cette variation. Estce dû à une variation des prix ? Des quantités ? Des deux? Dans quelle mesure ?

- Si l'on s'intéresse à la variation des prix entre 0 et n, on raisonne à structure de consommation donnée, i.e. quantités consommées à une certaine date t.
- Variation des prix entre 0 et n mesurée par l'indice :

$$IP_{n/0} = 100 \times \frac{p_{1n}q_{1t} + p_{2n}q_{2t} + \dots + p_{kn}q_{kt}}{p_{10}q_{1t} + p_{20}q_{2t} + \dots + p_{k0}q_{kt}} = 100 \frac{\sum_{i=1}^{k} p_{in}q_{it}}{\sum_{i=1}^{k} p_{i0}q_{it}}$$

Comme on l'a fait quand on calculait « l'effet salaire ».

- Si l'on s'intéresse à la variation des quantités consommées entre 0 et n, on raisonne à structure de prix donnée, i.e. prix fixés à une certaine date t.
- Variation des quantités entre 0 et n mesurée par l'indice :

$$IQ_{n/0} = 100 \times \frac{p_{1t}q_{1n} + p_{2t}q_{2n} + \dots + p_{kt}q_{kn}}{p_{1t}q_{10} + p_{2t}q_{20} + \dots + p_{kt}q_{k0}} = 100 \frac{\sum_{i=1}^{k} p_{it}q_{in}}{\sum_{i=1}^{k} p_{it}q_{i0}}$$

Comme on l'a fait quand on calculait « l'effet structure ».

- L'indice de
 - Laspeyres -> choix de la date de départ : t = 0, c'est un indice rétrospectif.
 - Paasche choix de la date d'arrivée : t = n, c'est un indice prospectif.
- Pour chaque indice, nous allons voir l'indice des prix et l'indice des quantités :
 - Indice des prix de Laspeyres
 - Indice des quantités de Laspeyres
 - Indice des prix de Paasche
 - Indice des quantités de Paasche

Indice des prix de Laspeyres

Ce qu'auraient couté en n les quantités consommées en 0

$$Ln_{/0}(p) = 100 \times \frac{p_{1n}q_{10} + p_{2n}q_{20} + \dots + p_{kn}q_{k0}}{p_{10}q_{10} + p_{20}q_{20} + \dots + p_{k0}q_{k0}} = 100 \times \frac{\sum_{i=1}^{k} p_{in}q_{i0}}{\sum_{i=1}^{k} p_{i0}q_{i0}}$$

Ce qu'ont couté en 0 les quantités consommées en 0

Exemple

		Quar	ntité	Prix		
Dates		Croissants	Brioches	Croissants	Brioches	
	0	60	24	0,8	2	
	1	99	30	1	2,2	
	2	120	30	1,2	2,4	

• Indice des prix de Laspeyres 1/0

$$L_{1/0}(p) = 100.(1*60 + 2.2*24)/(0.8*60 + 2*24) = 117.5$$

	Quar	ntité	Pr	ix	
Dates	Croissants	Brioches	Croissants	Brioches	
0	60	24	0,8	2	
1	99	30	1	2,2	
2	120	30	1,2	2,4	

Structure/quantités fixe en 0

• Indice des prix de Laspeyres 2/0

$$L_{2/0}(p) = 100.(1.2 * 60 + 2.4 * 24)/(0.8 * 60 + 2 * 24) = 135$$

	Quar	ntité	Prix		
Dates	Croissants	Brioches	Croissants Brioches		
0	60	24	0,8	2	
1	99	30	1	2,2	
2	120	30	1,2	2,4	

Autre possibilité de calcul

- Possibilité de calculer l'indice des prix de Laspeyres grâce
 - aux indices de prix élémentaires (indices base 100 en 0) :

$$I_{n/0} = 100. \frac{prix du bien i en n}{prix du bien i en 0} = 100. \frac{p_{in}}{p_{i0}}$$

Comment ont évolué les prix.

• et aux coefficients budgétaires :

$$\alpha_{i0} = \frac{d\acute{e}pense\ en\ bien\ i\ en\ 0}{d\acute{e}pende\ totale\ en\ 0} = \frac{p_{i0}q_{i0}}{\sum_{i=1}^{k}p_{i0}q_{i0}}$$

Part du bien i dans le panier

Autre possibilité de calcul

$$Ln_{0}(p) = \alpha_{10}.In_{0}(p_{1}) + \dots + \alpha_{k0}.In_{0}(p_{k}) = \sum_{i=1}^{k} \alpha_{i0}.In_{0}(p_{i})$$

- Les α_{it} = quelle est la part de chaque produit du panier à la date t.
- $I_{n/0}$ = comment ont évolué les prix entre 0 et n.

Autre possibilité de calcul

• Indice des prix de Laspeyres 1/0

$$L_{1/0}(p) = 0.5 * 125 + 0.5 * 110 = 117.5$$

	Indices élémentaires, base 100 en 0 et coef budgétaires									
	Ind. de q	uantité	Ind. de	es prix	Coef. Budgétaires					
Dates	Croissants	Brioches	Croissants	Brioches	Croissants	Brioches				
0	100	100	100	100	50,0%	50,0%				
1	165	125	125	110	60,0%	40,0%				
2	200	125	150	120	66,7%	33,3%				

• Indice des prix de Laspeyres 2/0

$$L_{2/0}(p) = 0.5 * 150 + 0.5 * 120 = 135$$

Indices élémentaires, base 100 en 0 et coef budgétaires									
	Ind. de quantité Ind. des prix			es prix	Coef. Bu	dgétaires			
Dates	Croissants	Brioches	Croissants	Brioches	Croissants	Brioches			
0	100	100	100	100	50,0%	50,0%			
1	165	125	125	110	60,0%	40,0%			
2	200	125	150	120	66,7%	33,3%			

Indice des quantités de Laspeyres

Ce qu'auraient couté en 0 les quantités consommées en n

$$Ln_{/0}(q) = 100 \times \frac{p_{10}q_{1n} + p_{20}q_{2n} + \dots + p_{k0}q_{kn}}{p_{10}q_{10} + p_{20}q_{20} + \dots + p_{k0}q_{k0}} = 100 \times \frac{\sum_{i=1}^{k} p_{i0}^{*} q_{in}}{\sum_{i=1}^{k} p_{i0}q_{i0}}$$

Ce qu'ont couté en 0 les quantités consommées en 0

• On peut aussi l'écrire $L_{n/0}(q) = \sum_{i=1}^k \alpha_{i0} . I_{n/0}(q_i)$. (moyenne arithmétique des indices élémentaires de quantité en n, base 100 en 0, pondérée par les coefficients budgétaires à la date 0.)

Indice des quantités de Laspeyres

	Quar	ntité	Prix		
Dates	Croissants Brioches (Croissants	Brioches	
0	60	24	0,8	2	
1	99	30	1	2,2	
2	120	30	1,2	2,4	

Indice des quantités de Laspeyres 1/0

$$L_{1/0}(q) = 100. \frac{0.8 * 99 + 2 * 30}{0.8 * 60 + 2 * 24} = 145$$

$$L_{2/0}(q) = 100. \frac{0.8 * 120 + 2 * 30}{0.8 * 60 + 2 * 24} = 162.5$$

Indices élémentaires, base 100 en 0 et coef budgétaires

	Ind. de d	Ind. de quantité		Ind. des prix		Coef. Budgétaires	
Dates	Croissants	Brioches	Croissants	Brioches	Croissants	Brioches	
0	100	100	100	100	50,0%	50,0%	
1	165	125	125	110	60,0%	40,0%	
2	200	125	150	120	66,7%	33,3%	

Ou

$$L_{1/0}(q) = 0.5 * 165 + 0.5 * 125 = 145$$

 $L_{2/0}(q) = 0.5 * 200 + 0.5 * 125 = 162.5$

Indice des prix de Paasche (indice prospectif)

Ce qu'ont couté en n les quantités consommées en n

$$Pn_{/0}(p) = 100 \times \frac{p_{1n}q_{1n} + p_{2n}q_{2n} + \dots + p_{kn}q_{kn}}{p_{1t}q_{1n} + p_{20}q_{2n} + \dots + p_{k0}q_{kn}} = 100 \times \frac{\sum_{i=1}^{k} p_{in}q_{in}}{\sum_{i=1}^{k} p_{i0}q_{in}}$$

Ce qu'auraient couté en 0 les quantités consommées en n

Autre manière de calculer

 On peut aussi calculer l'indice des prix de Paasche à partir des indices de prix élémentaires et des coefficients budgétaires :

$$Pn_{/_{0}}(p) = \frac{1}{\alpha_{1n} \cdot \frac{1}{In_{/_{0}}(p_{1})} + \alpha_{2n} \frac{1}{In_{/_{0}}(p_{2})} \dots + \alpha_{kn} \cdot \frac{1}{In_{/_{0}}(p_{k})}} = \frac{1}{\sum_{i=1}^{k} \frac{\alpha_{in}}{In_{/_{0}}(p_{i})}}$$

- Cad, la moyenne harmonique des indices élémentaires de prix en n, base 100 en 0, pondérée par les coefficients budgétaires à la date n.
- On prend les coefficients budgétaires à la date n (quantités et prix à la date n) qu'on divise par les indices de prix entre 0 et n

Indices des prix de Paasche

	Quar	ntité	Prix		
Dates	Croissants Brioches C		Croissants	Brioches	
0	60	24	0,8	2	
1	99	30	1	2,2	
2	120	30	1,2	2,4	

Indice des prix de Paasches

$$P_{1/0}(p) = 100. \frac{1*99 + 2.2*30}{0.8*99 + 2*30} = 118.5$$

$$P_{2/0}(p) = 100. \frac{1,2 * 120 + 2,4 * 30}{0,8 * 120 + 2 * 30} = 138,5$$

Indices élémentaires, base 100 en 0 et coef budgétaires

	Ind. de quantité		Ind. des prix		Coef. Budgétaires	
Dates	Croissants	Brioches	Croissants	Brioches	Croissants	Brioches
0	100	100	100	100	50,0%	50,0%
1	165	125	125	110	60,0%	40,0%
2	200	125	150	120	66,7%	33,3%

Ou

$$P_{1/0}(p) = \frac{1}{\frac{0.6}{12.5} + \frac{0.4}{110}} = 118.5$$

$$P_{2/0}(p) = \frac{1}{\frac{0,667}{150} + \frac{0,333}{120}} = 138,5$$

Indice des quantités de Paasche (indice prospectif)

Ce qu'ont couté en n les quantités consommées en n

$$Pn_{/0}(q) = 100 \times \frac{p_{1n}q_{1n} + p_{2n}q_{2n} + \dots + p_{kn}q_{kn}}{p_{1n}q_{10} + p_{2n}q_{20} + \dots + p_{kn}q_{k0}} = 100 \times \frac{\sum_{i=1}^{k} p_{in}q_{in}}{\sum_{i=1}^{k} p_{in}q_{i0}}$$

Ce qu'auraient couté en n les quantités consommées en 0

Autre manière de calculer

• On peut aussi calculer l'indice des quantités de Paasche à partir des indices de prix élémentaires et des coefficients budgétaires :

$$P_{n_{/0}}(q) = \frac{1}{\alpha_{1n} \cdot \frac{1}{I_{n_{/0}}(q_1)} + \alpha_{2n} \frac{1}{I_{n_{/0}}(q_2)} \dots + \alpha_{kn} \cdot \frac{1}{I_{n_{/0}}(q_k)}} = \frac{1}{\sum_{i=1}^{k} \frac{\alpha_{in}}{I_{n_{/0}}(q_i)}}$$

 Cad, la moyenne harmonique des indices élémentaires de quantités en n, base 100 en 0, pondérée par les coefficients budgétaires à la date n.

Indices des quantités de Paasche

	Quar	ntité	Prix		
Dates	Croissants Brioches		Croissants	Brioches	
0	60	24	0,8	2	
1	. 99	30	1	2,2	
2	120	30	1,2	2,4	

Indice des quantités de Paasches

$$P_{1/0}(q) = 100. \frac{1*99 + 2.2*30}{1*60 + 2.2*24} = 146.3$$

$$P_{2/0}(q) = 100. \frac{1,2 * 120 + 2,4 * 30}{1.2 * 60 + 2,4 * 24} = 166,7$$

Indices élémentaires, base 100 en 0 et coef budgétaires

	Ind. de quantité		Ind. des prix		Coef. Budgétaires	
Dates	Croissants	Brioches	Croissants	Brioches	Croissants	Brioches
0	100	100	100	100	50,0%	50,0%
1	165	125	125	110	60,0%	40,0%
2	200	125	150	120	66,7%	33,3%

Ou

$$P_{1/0}(q) = \frac{1}{\frac{0.6}{165} + \frac{0.4}{125}} = 146.3$$

$$P_{2/0}(q) = \frac{1}{\frac{0,667}{200} + \frac{0,333}{125}} = 166,7$$

Tableau récapitulatif

	Indices de prix	Indices de quantité
Indices de Laspeyres (date 0)	$100 \times \frac{\sum_{i=1}^{k} p_{in} q_{i0}}{\sum_{i=1}^{k} p_{i0} q_{i0}}$	$100 \times \frac{\sum_{i=1}^{k} p_{i0} q_{in}}{\sum_{i=1}^{k} p_{i0} q_{i0}}$
	$\sum_{i=1}^k \alpha_{i0}. \operatorname{In}_{/0}(p_i)$	$\sum_{i=1}^k \alpha_{i0}. \operatorname{In}_{/0}(q_i)$
Indices de Paasche (date 0)	$100 \times \frac{\sum_{i=1}^{k} p_{i0} q_{i0}}{\sum_{i=1}^{k} p_{in} q_{i0}}$	$100 \times \frac{\sum_{i=1}^{k} p_{in} q_{in}}{\sum_{i=1}^{k} p_{in} q_{i0}}$
	$\frac{1}{\sum_{i=1}^{k} \frac{\alpha_{in}}{In_{/0}(p_i)}}$	$\frac{1}{\sum_{i=1}^{k} \frac{\alpha_{in}}{In_{/0}(q_i)}}$

Comparaison des indices de Laspeyres et de Paasche

Indices de Laspeyres et de Paasche

	Indices de prix		Indice de quantité		
Laspeyres 1/0		117,5		145	
Laspeyres 2/0		135		1 62,5	
Paasche 1/0		118,5		146,3	
Paasche 2/0		138,5		166,7	

Les indices de Paasche et de Laspeyres donnent des valeurs différentes pour une même évolution (valeur Laspeyres généralement < à valeur Paasche), car :

- Ils n'utilisent pas le même type de moyenne (moyenne arithmétique vs moyenne harmonique)
- Différente situation de référence (date 0 ou date n) choisie

Comparaison des indices de Laspeyres et de Paasche

- Chaque indice a ses avantages et ses inconvénients.
- Avec Laspeyres, on prend comme référence la date 0. Plus la date courante est éloignée de la date initiale, plus il est possible que le panier de biens ait évolué.
 - Laspeyres surestime l'effet de l'évolution des prix sur le pouvoir d'achat (il ne prend pas en compte les potentielles substitutions de biens)
- Avec **Paasche**, on prend comme **référence la date n** (date courante) et on regarde l'évolution des prix ou des quantités par rapport à cette date courante. Il faut donc disposer des donnés relatives aux prix et aux quantités à chaque date considérée.
 - (on a très rarement pu « fixer » avec le dollar dans Excel avec Paasche).
 - Paasche est donc moins souvent utilisé et, par symétrie, sous-estime l'effet de l'évolution des prix sur le pouvoir d'achat.

L'Indice des Prix à la Consommation

3- Exemple: IPC

- Pour déterminer l'évolution du prix du panier d'une date à une autre. On utilise l'indice de Laspeyres (utiliser la structure initiale du panier)
- Ceci pose la question de savoir quel panier de biens choisir ?

• Quels biens et services ? L'INSEE sélection des produits dont l'évolution des prix est suivi mois après mois dans les mêmes points de vente (Même

modèle, marque, conditionnement, etc.)

Quelle structure ?

• L'INSEE publie plusieurs indices selon le « profil » du ménage.

Comparaison des indices des Paasche et Laspeyres.

- Pour l'Indice des Prix à la Consommation (IPC) :
 - Si on utilise **Laspeyres**, on a tendance à **surestimer** l'inflation (on ne considère pas les possibilités de substitution)
 - Si on utilise **Paasche**, on a tendance à **sous-estimer** l'inflation.
 - En France, on utilise l'indice de Laspeyres pour mesurer l'inflation mais les pondérations sont actualisées tous les ans par l'INSEE.
- Enjeu socio-économique: l'IPC sert à indexer le SMIC. En effet, le SMIC est revalorisé en fonction de l'IPC des ménages.

IPC personnalisé

https://www.insee.fr/fr/statistiques/2418131

- Les indices synthétiques n'ont pas les propriétés «commodes» des indices élémentaires.
- 1. Les indices de L. et de P. ne sont PAS transitifs (ou cumulables, transférables).
- 2. Les indices de L. et de P. ne sont PAS réversibles.

1- Non transitivité des indices de P. et de L.

Exemple avec le Laspeyres des prix, mais vrai pour tous.

$$L_{2/1}(\boldsymbol{p}).L_{1/0}(\boldsymbol{p}) = 100.\frac{\sum_{i} p_{i2} q_{i1}}{\sum_{i} p_{i1} q_{i1}}.100.\frac{\sum_{i} p_{i1} q_{i0}}{\sum_{i} p_{i0} q_{i0}}$$

$$\neq L_{2/0}(p) * 100 = 100. \frac{\sum_{i} p_{i2} q_{i0}}{\sum_{i} p_{i0} q_{i0}} * 100$$

Cette non transitivité pose un problème en cas de changement de base.

- Non transitivité et l'IPC.
- Depuis 1970, l'INSEE actualise les pondérations tous les ans.
- Les indices de prix sont publiés dans une base commune, actuellement la base 2015.
- Mais comment exprimer les indices successifs dans une même base ?
- Comme les indices de Laspeyres ne sont pas transférables, $L_{17/16} \times L_{16/15}$ ne donne pas $L_{17/15} \times 100$
- L'INSEE fait « comme si » les indices étaient transférables \Rightarrow Indices de Laspeyres chainés ou chaines de Laspeyres. $IPC_{t/0} = IPC_{t/(t-1)} \times IPC_{t-1/(t-2)} \times \cdots \times IPC_{1/0} \times \frac{1}{100^{t-1}}$
 - Inconvénients des indices chaines : conservent les éventuelles erreurs de calcul et s'interprètent difficilement.
 - Intérêts : atténuent le biais de substitution et sont par construction transférables.

4- Propriétés des indices

2- Non réversibilité des indices de L. et P.

$$L_{0/n}(p) \neq \frac{100^2}{L_{n/0}(p)}$$

$$L_{0/n}(p) = 100. \frac{\sum_{i} p_{i0} q_{in}}{\sum_{i} p_{in} q_{in}} = \frac{100}{\frac{\sum_{i} p_{in} q_{in}}{\sum_{i} p_{i0} q_{in}}} \neq \frac{100^{2}}{L_{n/0}(p)} = \frac{100}{\frac{\sum_{i} p_{in} q_{i0}}{\sum_{i} p_{i0} q_{i0}}}$$
 Mais, cette partie là correspond à l'indice de Paasche $P_{n/0}(p)/100$.

On a la relation suivante:

$$L_{0/n} = \frac{100^2}{P_{n/0}} \text{ et } P_{0/n} = \frac{100^2}{L_{n/0}}$$

Inverser un Laspeyres revient à calculer un Paasche en sens inverse du temps et vice-versa.

4- Propriétés des indices

- Mais si on multiplie un indice de L. par un indice de P., on obtient un l'indice de Fisher au carré.
- L'indice de Fisher est la moyenne géométrique des indices de L. et P.

•
$$F_{n/0}(p) = \sqrt{L_{n/0}(p) \cdot P_{n/0}(p)}$$
 et $F_{n/0}(q) = \sqrt{L_{n/0}(q) \cdot P_{n/0}(q)}$

• Indice complexe et peu utilisé.

3- Indice de prix, de quantité et de valeur

Avec les indices élémentaires:

Indice de valeur = indice de prix * indice de quantité

- Ce n'est pas le cas pour les indices synthétiques de Laspeyres. et Paasche.
- Par ex:

$$I_{t/0}(pq) = \frac{\sum_{i=1}^{n} p_{it} q_{it}}{\sum_{i=1}^{n} p_{i0} q_{i0}} \times 100 \neq L_{t/0}(p).L_{t/0}(q) \times \frac{1}{100}$$

- Le produit des Laspeyres de prix et de quantité n'est pas égal à l'indice élémentaire des valeurs (IV ou IVA).
- Ne marche pas non plus pour un Paasche

• Par contre, propriété remarquable:

$$I_{n/0}(pq) = L_{n/0}(p).P_{n/0}(q).\frac{1}{100} = P_{n/0}(p).L_{n/0}(q).\frac{1}{100}$$

- L'indice de valeur peut s'écrire comme le produit croisé d'indices de L. et de P.
- Comment on trouve t'on ce résultat?

$$I_{n/0}(pq) = \frac{\sum_i p_{in}q_{in}}{\sum_i p_{i0}q_{i0}} \times 100 = \frac{\sum_i p_{in}q_{in}}{\sum_i p_{i0}q_{in}} \times \frac{\sum_i p_{i0}q_{in}}{\sum_i p_{i0}q_{i0}} \times 100$$

the partie là correspond

Cette partie là correspond à l'indice de Paasche $P_{n/0}(p)/100$.

Et cette partie correspond à l'indice de Laspeyres $L_{n/0}(q)/100$.

	Indices de prix	Indice de quantité
Laspeyres 1/0	117,5	145
Laspeyres 2/0	135	162,5
Paasche 1/0	118,5	146,3
Paasche 2/0	138,5	166,7

$$L_{2/0}(p).P_{2/0}(q) * \frac{1}{100} = \frac{135 * 166,7}{100} = 225$$

L'augmentation en valeur de 125% se décompose en une augmentation des prix (L.) de 35% et une augmentation des quantités (P.) de 66,7%.

$$L_{2/0}(q).P_{2/0}(p) * \frac{1}{100} = \frac{162,5 * 138,5}{100} = 225$$

L'augmentation en valeur de 125% se décompose en une augmentation des prix (P.) de 38,5% et une augmentation des quantités (L.) de 62,5%.

Pas tout à fait la même décomposition, mais les deux sont correctes.

Notions chapitre 2

- Identifier un effet de structure et savoir le mesurer
- Distinguer un indice élémentaire d'un indice synthétique
- Calculer un indice synthétique
- Définir indice de Paasche, de Laspeyres (quantité et de prix)
- Connaitre les (non)-propriétés des indices synthétiques.
- Décomposer l'évolution d'une consommation entre évolution en prix et évolution en volume (quantité).
- Définir l'indice servant à mesurer l'inflation en France