Link State routing protocol

CE 352, Computer Networks
Salem Al-Agtash

Lecture 15

Slides are adapted from Computer Networking: A Top Down Approach, 7th Edition © J.F Kurose and K.W. Ross

Recall (Network-layer functions)

- Data plane forwarding: move packets from router's input to appropriate router output
- Control plane routing: determine route taken by packets from source to destination:
 - per-router control (traditional)
 - routers exchange information between each other
 - Individual router creates a forwarding table
 - logically centralized control (software defined networking SDN)

E1: 172.31.16.1

Network 172.31.16.0/24

E0: 172.31.32.1

Network 172.31.32.0/24

E2: 172.31.48.1

Network 192.32.8.0/24

E0: 192.32.8.1

Network layer control plane

Control plane

- Traditional routing algorithms: Link state and distance vector
- SDN controllers

Implementation in the Internet:

- OSPF: Open Shortest Path First
- BGP: Border Gateway Protocol
- ICMP: The Internet Control Message Protocol
- SNMP: Simple Network Management Protocol
- SDN OpenFlow and ONOS controllers

Internet routing protocols are responsible for constructing and updating the forwarding tables at routers

Inside router

Router processor

- Loopback interface: IP address of the CPU on the router for internal testing and diagnosis
- Administrator interface: Command line interface for configuration and monitory
- Implementing routing protocols
- Setting up forwarding tables

Interfaces

- Ethernet (Twisted Pair): 10BaseT → 10Mbps
- Fast Ethernet (Twisted Pair): 100BaseT → 100 Mbps
- Gigabit Ethernet (Twisted Pair): 1000BaseT → 1Gbps
- Gigabit Ethernet (Fiber SFP): 1000Base-SX (Multimode) LX(Single mode)
- Serial: T1, T2
- FDDI: Fiber Distributed Data Interface 100 Mbps
- Token Ring: 4Mbps 16 Mbps

1000Base-T RJ45

40GBase-SR4 SFP

Forwarding tables

- · Computed forwarding tables: Map IP prefix (network ID) to outgoing links
- Statistically configured: "map 172.31.48.0/24 to FastEtherneto/1"

Routing protocols

Routing protocols implement the core function of a network

 determine "good" paths (equivalently, routes), from sending hosts to receiving host, through a network of routers

Network modeled as a graph

- graph: G = (N,E)
- N = set of nodes (routers) = { u, v, w, x, y, z }
- E = set of edges (links) ={ (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) }
- Edges have costs (distance, bandwidth, congestion)

Path: sequence of routers packets will traverse in going from given initial source host to given final destination host

"good" path: least "cost", "fastest", "least congested" routing

Internet routing

Autonomous System (AS) Network under single administrative entity Institutional network Home network Border Routers Mobile network

Routers

- Need to know which router to use to reach a destination prefix (network ID)
- Need to know with outgoing interface to use to reach that router

Intra-domain

- Each "Autonomous System AS" network (e.g. ISP) runs Intra-domain routing protocol to setup routes within its domain
 - Link State: e.g. Open Shortest Path First (OSPF)
 - Distance Vector: e.g. Routing Information Protocol (RIP)

Inter-domain

- AS networks run inter-domain routing protocols to setup routes between domains
 - Path Vector: Border Gateway Protocol (BGP)

Graph abstraction: costs

c(x,x') = cost of link (x,x'), e.g., c(w,z) = 5

cost could always be 1, or inversely related to bandwidth, and/or to congestion

cost of path
$$(x_1, x_2, x_3, ..., x_p) = c(x_1, x_2) + c(x_2, x_3) + ... + c(x_{p-1}, x_p)$$

key question: what is the least-cost path between u and z? routing algorithm: algorithm that finds that least cost path

Routing algorithm classification

Global:

 All routers have complete topology, link cost info "link state" algorithms

Decentralized:

- Router knows physically-connected neighbors, link costs to neighbors
- iterative process of computation, exchange of info with neighbors "distance vector" algorithms

static:

routes change slowly over time

dynamic:

routes change quickly periodic, update in response to cost changes

Link-state routing

- Each node maintains local link state
 - List of directly attached links and costs (Echo packet), sequence #, and Age
 - Construct LS packet
- Each node floods its local link state
 - When a router receives a new LS, it forwards the message to all its neighbors (excluding sending router)
- Each node learns the network topology
- Each node uses Dijkstra to compute the shortest paths between nodes

Sequence number (32 bits) is used to label LS packets

Age (Time-to-Live) is used and when becomes 0, packet is discarded

Dijkstra algorithm

Shortest path algorithm

- Input
 - Net topology, link costs known to all nodes
 - "link state broadcast" → all nodes have same info
- Output
 - Least cost paths from one node ('source") to all other nodes
 - gives *forwarding table* for that node
- •Iterative:
 - after k iterations, a node knows least cost path to its k closest neighbor

Notation

- c(x,y): link cost from node x to y; = ∞ if not direct neighbors
- D(v): current value of cost of path from source to dest. V
- p(v): predecessor node along path from source to v
- N': set of nodes whose least cost path definitively known

Dijkstra algorithm

1 Initialization:

- 2 $N' = \{U\}$
- 3 for all nodes **v**
- 4 if **v** adjacent to **u**
- 5 then D(v) = c(u,v)
- 6 else $D(v) = \infty$

- c(x,y): link cost from node x to y; = ∞ if not direct neighbors
- D(v): current value of cost of path from source to dest. V
- p(v): predecessor node along path from source to v
- N': set of nodes whose least cost path definitively known

7 Loop

- 8 find **node** not in **N'** such that D(node) is a minimum
- 9 add node to N'
- 10 update D(v) for all v adjacent to node and not in N':
- D(v) = min(D(v), D(node) + c(node, v))
 - /* new cost to **v** is either old cost to **v** or known
- shortest path cost to **node** plus cost from **node** to **v** */

13 until all nodes in N'

1 Initialization:

- 2 N' = {U}
- 3 for all nodes v
- 4 if v adjacent to u
- 5 then D(v) = c(u,v)
- 6 else $D(v) = \infty$

7 Loop

- 8 find **node** not in **N'** such that D(node) is a minimum
- 9 add **node** to **N'**
- 10 update D(v) for all v adjacent to **node** and not in N':
- D(v) = min(D(v), D(node) + c(node,v))

/* new cost to ${\bf v}$ is either old cost to ${\bf v}$ or known

shortest path cost to **node** plus cost from **node** to **v** */

13 until all nodes in N'

1 Initialization:

- 2 $N' = \{u\}$
- 3 for all nodes v
- 4 if v adjacent to u
- then D(v) = c(u,v)
- 6 else $D(v) = \infty$

7 Loop

- 8 find **node** not in **N'** such that D(node) is a minimum
- 9 add **node** to **N'**
- 10 update D(v) for all v adjacent to node and not in N':
- 11 D(v) = min(D(v), D(node) + c(node,v)) /* new cost to v is either old cost to v or known
- shortest path cost to **node** plus cost from **node** to **v** */
- 13 until all nodes in N'

1 Initialization:

- 2 $N' = \{u\}$
- 3 for all nodes v
- 4 if v adjacent to u
- then D(v) = c(u,v)
- 6 else $D(v) = \infty$

7 Loop

- 8 find **node** not in **N'** such that D(node) is a minimum
- 9 add **node** to **N'**
- 10 update D(v) for all v adjacent to node and not in N':
- D(v) = min(D(v), D(node) + c(node,v))

/* new cost to ${\bf v}$ is either old cost to ${\bf v}$ or known

shortest path cost to **node** plus cost from **node** to **v** */

13 until all nodes in N'

1 Initialization:

- 2 $N' = \{u\}$
- 3 for all nodes v
- if **v** adjacent to **u**
- 5 then D(v) = c(u,v)
- 6 else $D(v) = \infty$

7 Loop

- 8 find **node** not in **N'** such that D(node) is a minimum
- 9 add **node** to **N'**
- 10 update D(v) for all v adjacent to node and not in N':
- 11 D(v) = min(D(v), D(node) + c(node, v))

/* new cost to \mathbf{v} is either old cost to \mathbf{v} or known

- shortest path cost to **node** plus cost from **node** to **v** */
- 13 until all nodes in N'

1 Initialization:

- 2 $N' = \{u\}$
- 3 for all nodes v
- 4 if **v** adjacent to **u**
- 5 then D(v) = c(u,v)
- 6 else $D(v) = \infty$

7 Loop

- 8 find **node** not in **N'** such that D(node) is a minimum
- 9 add node to N'
- 10 update D(v) for all v adjacent to node and not in N':
- D(v) = min(D(v), D(node) + c(node, v))

/* new cost to ${\bf v}$ is either old cost to ${\bf v}$ or known

- shortest path cost to **node** plus cost from **node** to **v** */
- 13 until all nodes in N'

1 Initialization:

- 2 $N' = \{u\}$
- 3 for all nodes v
- 4 if v adjacent to u
- 5 then D(v) = c(u,v)
- 6 else $D(v) = \infty$

7 Loop

- 8 find **node** not in **N'** such that D(node) is a minimum
- 9 add **node** to **N'**
- 10 update D(v) for all v adjacent to node and not in N':
- 11 D(v) = min(D(v), D(node) + c(<u>node,v</u>))

/* new cost to \mathbf{v} is either old cost to \mathbf{v} or known

- shortest path cost to **node** plus cost from **node** to **v** */
- 13 until all nodes in N'

1 Initialization:

- 2 $N' = \{u\}$
- 3 for all nodes v
- 4 if v adjacent to u
- 5 then D(v) = c(u,v)
- 6 else $D(v) = \infty$

7 Loop

- 8 find **node** not in **N'** such that D(node) is a minimum
- 9 add node to N'
- 10 update D(v) for all v adjacent to node and not in N':
- D(v) = min(D(v), D(node) + c(node, v))

/* new cost to ${\bf v}$ is either old cost to ${\bf v}$ or known

- shortest path cost to **node** plus cost from **node** to **v** */
- 13 until all nodes in N'

1 Initialization:

- 2 $N' = \{u\}$
- 3 for all nodes v
- 4 if v adjacent to u
- 5 then D(v) = c(u,v)
- 6 else $D(v) = \infty$

7 Loop

- 8 find **node** not in **N'** such that D(node) is a minimum
- 9 add **node** to **N'**
- 10 update D(v) for all v adjacent to node and not in N':
- D(v) = min(D(v), D(node) + c(node, v))

/* new cost to ${\bf v}$ is either old cost to ${\bf v}$ or known

- shortest path cost to **node** plus cost from **node** to **v** */
- 13 until all nodes in N'

1 Initialization:

- 2 $N' = \{u\}$
- 3 for all nodes v
- 4 if v adjacent to u
- 5 then D(v) = c(u,v)
- 6 else $D(v) = \infty$

7 Loop

- 8 find **node** not in **N'** such that D(node) is a minimum
- 9 add node to N'
- 10 update D(v) for all v adjacent to node and not in N':
- 11 D(v) = min(D(v), D(node) + c(node, v))

/* new cost to \mathbf{v} is either old cost to \mathbf{v} or known

- shortest path cost to **node** plus cost from **node** to **v** */
- 13 until all nodes in N'

notes:

- construct shortest path tree by tracing predecessor nodes
- ties can exist (can be broken arbitrarily)

1 Initialization:

- $2 N' = \{U\}$
- 3 for all nodes v
- 4 if **v** adjacent to **u**
- 5 then D(v) = c(u,v)
- 6 else $D(v) = \infty$

7 Loop

- 8 find **node** not in **N'** such that D(node) is a minimum
- 9 add **node** to **N'**
- 10 update D(v) for all v adjacent to **node** and not in N':
- 11 D(v) = min(D(v), D(node) + c(node, v))

/* new cost to ${f v}$ is either old cost to ${f v}$ or known

shortest path cost to **node** plus cost from **node** to **v** */

13 until all nodes in N'

notes:

- construct shortest path tree by tracing predecessor nodes
- ties can exist (can be broken arbitrarily)

1 Initialization:

- $2 N' = \{u\}$
- 3 for all nodes v
- 4 if v adjacent to u
- 5 then D(v) = c(u,v)
- 6 else $D(v) = \infty$

7 Loop

- 8 find **node** not in **N'** such that D(node) is a minimum
- 9 add node to N'
- 10 update D(v) for all v adjacent to **node** and not in N':
- 11 D(v) = min(D(v), D(node) + c(node, v))

/* new cost to \mathbf{v} is either old cost to \mathbf{v} or known

- shortest path cost to **node** plus cost from **node** to **v** */
- 13 until all nodes in N'

Forwarding table @ node u

Running Dijkstra at node U gives the following shortest path tree from u to all destinations

The forwarding table is constructed at u:

destination	link
V	
X	?
У	?
W	?
Z	?

Forwarding table @ node u

Running Dijkstra at node U gives the following shortest path tree from u to all destinations

The forwarding table is constructed at u:

destination	link
V	(u,w)
X	(u,x)
У	(u,w)
W	(u,w)
Z	(u,w)

1 Initialization:

- 2 $N' = \{u\}$
- 3 for all nodes v
- 4 if **v** adjacent to **u**
- 5 then D(v) = c(u,v)
- 6 else $D(v) = \infty$

7 Loop

- 8 find **node** not in **N'** such that D(node) is a minimum
- 9 add **node** to **N'**
- 10 update D(v) for all v adjacent to **node** and not in N':
- D(v) = min(D(v), D(node) + c(node, v))

/* new cost to ${\bf v}$ is either old cost to ${\bf v}$ or known

shortest path cost to **node** plus cost from **node** to **v** */

13 until all nodes in N'

		D(v)	D(x)	D(w)	D(y)	D(z)
Ste) N'	p(v)	p(x)	p(w)	p(y)	p(z)
0	u	(6,u)	8,u	7,u	∞	∞
1	uv		8,u	7,u) ∞	∞
2	UVW		8,u)	16,W	10,W
3	uvwx				14,X	10,W
4	uvwxz				14,X	
5	uwxvyz					

notes:

- construct shortest path tree by tracing predecessor nodes
- ties can exist (can be broken arbitrarily)

1 Initialization:

- 2 N' = {U}
- 3 for all nodes v
- 4 if v adjacent to u
- 5 then D(v) = c(u,v)
- 6 else D(v) = ∞

7 Loop

- 8 find **node** not in **N'** such that D(node) is a minimum
- 9 add **node** to **N'**
- 10 update D(v) for all v adjacent to node and not in N':
- 11 D(v) = min(D(v), D(node) + c(node,v)) /* new cost to v is either old cost to v or known
- shortest path cost to **node** plus cost from **node** to **v** */
- 13 until all nodes in N'

Ζ

		D(v)	D(x)	D(w)	D(y)	D(z)
Ste) N'	p(v)	p(x)	p(w)	p(y)	p(z)
0	U	6,u	8,u	7,u	∞	∞
1	uv		8,u	7,u) ∞	∞
2	uvw		8,u)	16,W	10,W
3	UVWX				14,X	10,W
4	UVWXZ				(14,X)	
5	UWXVYZ					

1	Initialization:
	2 N' = {11}

- {U}
- for all nodes v
- if v adjacent to u
- then D(v) = c(u,v)
- else $D(v) = \infty$

7 Loop

- 8 find **node** not in **N'** such that D(node) is a minimum
- add node to N'
- 10 update D(v) for all v adjacent to node and not in N':
- D(v) = min(D(v), D(node) + c(node, v))

/* new cost to **v** is either old cost to **v** or known

- shortest path cost to **node** plus cost from **node** to **v** */
- 13 until all nodes in N'

Result: u-to-v, u-to-w, u-to-x, x-to-y, w-to-z

Step

Forwarding table @ u?

Page 30 CE 352: Computer Networks

```
1 Initialization:
2 N' = {U}
```

3 for all nodes **v**

4 if **v** adjacent to **u** 5 then D(v) = c(u,v)

6 else D(v) = ∞

7 Loop 8 find node not in N' such that D(node) is a minimum

9 add **node** to **N'**

10 update D(v) for all v adjacent to **node** and not in N':

11 D(v) = min(D(v), D(node) + c(node, v))

/* new cost to \mathbf{v} is either old cost to \mathbf{v} or known

shortest path cost to **node** plus cost from **node** to **v** */

13 until all nodes in N'

S	tep	N	'	D(v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z),p(z)
	0	Į	J	,u	,u	,u	∞	∞
	1							
	2							
	3							
	4							
	5							


```
1 Initialization:
2 N' = {u}
3 for all nodes v
4 if v adjacent to u
5 then D(v) = c(u,v)
6 else D(v) = ∞
```

5

```
8 find node not in N' such that D(node) is a minimum
9 add node to N'
10 update D(v) for all v adjacent to node and not in N':
11 D(v) = min( D(v), D(node) + c(node,v))
/* new cost to v is either old cost to v or known
12 shortest path cost to node plus cost from node to v */
13 until all nodes in N'
```

St	ер	N'	D(v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z),p(z)
	0	u	,u	,u	,U	∞	∞
	1						
	2						
	3						
	4						

7 Loop

Result: u-to-v, u-to-w, u-to-x, x-to-y, y-to-z

Step	N'	D(v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z),p(z)
0	U	,u	,u	,u	∞	∞
1						
2						
3						
4						
5						

Step	N'	D(v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z),p(z)
0	u	2,u	5,u	1,u	∞	∞
1	ux ←	2,u	4,x		2,x	∞
2	uxy <mark>←</mark>	2,u	3,y			4,y
3	uxyv 🕶		3,y			4,y
4	uxyvw 🗲					4,y
5	uxyvwz 🗲					

		V	W	X	\bigcirc	Z
Step	N'	D(y), p(y)	D(w), $p(w)$	D(x), p(x)	D(y), p(y)	D(z)p(z)
0	u	2,4	5,u	(1,u)	× ×	00
1	uX 🕶	24	4,x		2,x	00
2	ux y	2,u	3,v			4 y
3	uxyv		3 ,y			4 y
4	uxyvw					<u>4,y</u>
5	uxvvwz					

Initialization (step 0): For all a: if a adjacent to then $D(a) = c_{u,a}$ find a not in N' such that D(a) is a minimum add a to N' update D(b) for all b adjacent to a and not in N':

 $D(b) = \min (D(b), D(a) + c_{a,b})$

Summary: Link-state routing

- Each router keeps track of its adjacent links (cost and operational status)
- Each router broadcasts the link state to give every router a complete view of the graph
 - Periodically every 30 minutes (e.g.), or topology change (Link/node failure or recovery)
 - Sequence number (32 bits) is used to label LS packets and keep flooding in check, when a new one arrives the older is discarded
 - Age (Time-to-Live) is used and when becomes o, packet is discarded
- Each router runs Dijkstra's algorithm to compute the shortest path and construct the forwarding table

Widely used protocol: OSPF

Dijkstra's algorithm complexity

algorithm complexity for a network (graph) with n nodes and e edges:

- each iteration: need to check all nodes not in N'
- n(n+1)/2 comparisons: O(n²)
- Flood link state messages: O(nxe)
- Entries in the forwarding table: O(n)
- Entries in the LS topology data bases: O(e)

Oscillation is possible

oscillations possible: Inconsistent link state database, leading to transient forwarding loops

- Link cost is equal to the load carried on the link
- z send 1 packet to w, y sends e packet to w, and x sends 1 packet to w
- Paths to w from x and y are favorable clockwise, and so generate new paths (figure b)
- When LS runs again detects o cost paths to w in the counterclockwise routes (figure c)
- Figure d
- Oscillation
 - Solution 1 not to measure link based on traffic
 - Solution 2- ensure not all routers run LS same time

2 + e 0 x -1

a. Initial routing

b. x, y detect better path to w. clockwise

x, y, z detect better path to w, counterclockwise

d. x, y, z, detect better path to w, clockwise

Summary

Today:

- Routing protocols
- Link state

Canvas discussion:

- Reflection
- Exit ticket

Next time:

- read 5.2.2 (DV) of K&R
- follow on Canvas! material and announcements

Any questions?