Lambda-calculus: fundamentos de Programação Funcional

Mário Florido

17 de outubro de 2022

Lambda-calculus

- Modelo computação universal (i.e., equipotente à máquina de Turing)
- Ao contrário da MT, o cálculo-λ é também um modelo para linguagens de programação:
 - âmbito de variáveis
 - ordem de computaçãoo
 - estruturas de dados
 - recursão
- As linguagens funcionais são implementações computacionais do cálculo-λ (Landin, 1964).

Bibliografia

- Foundations of Functional Programming, notas de um curso de Lawrence C. Paulson, Computer Laboratory, University of Cambrige.
- 2. Lambda Calculi: a guide for computer scientists, Chris Hankin, Graduate Texts in Computer Science, Oxford University Press.

Plano

Sintaxe

Reduções

Computação

Plano

Sintaxe

Reduções

Computação

Termos do cálculo- λ

 x, y, z, \ldots uma variável é um termo; $(\lambda x M)$ é um termo se x é variável e M é um termo; (M N) é um termo se M e N são termos.

exemplos de termos	não são termos
<u> </u>	()
$(\lambda x y)$	$x\lambda y$
$((\lambda x y)(\lambda x(\lambda x y)))$	X(y)
$(\lambda y (\lambda x (y (y x))))$	$(\lambda x (\lambda y y))$

Interpretação do cálculo- λ

```
(\lambda x M) função com parâmetro x e corpo M. (M N) aplicação de M ao argumento N.
```

Exemplos:

```
(\lambda x \, x) função identidade: a x faz corresponder x (\lambda x \, (\lambda y \, x))
```

- Não há distinção entre dados e programas;
- Não há constantes (e.g. números).
- Tudo são λ-termos!

Convenção de parêntesis

Abreviaturas:

$$\lambda x_1 x_2 \dots x_n. M \equiv (\lambda x_1 (\lambda x_2 \dots (\lambda x_n M) \dots))$$

$$(M_1 M_2 \dots M_n) \equiv (\dots (M_1 M_2) \dots M_n)$$

Exemplos:

$$\lambda xy. x \equiv (\lambda x (\lambda y x))$$

$$\lambda xyz. xz(yz) \equiv (\lambda x (\lambda y (\lambda z ((x z) (y z)))))$$

Substituição

M[N/x] o termo resultante da substituição de x em M por N.

$$(\lambda x y)[(z z)/y] \equiv (\lambda x (z z))$$
$$(\lambda x y)[(z z)/x] \equiv (\lambda x y)$$

Plano

Sintaxe

Reduções

Computação

Conversão- β

$$((\lambda x M) N) \rightarrow_{\beta} M[N/x]$$
 se $BV(M) \cap FV(N) = \emptyset$

Exemplo:

$$((\lambda x \underbrace{(x x)}_{M}) \underbrace{(y z)}_{N}) \rightarrow_{\beta} (x x)[(y z)/x] \equiv ((y z)(y z))$$

Conversão- β

$$((\lambda x M) N) \rightarrow_{\beta} M[N/x]$$
 se $BV(M) \cap FV(N) = \emptyset$

Exemplo:

$$((\lambda x \underbrace{(x x)}_{M}) \underbrace{(y z)}_{N}) \rightarrow_{\beta} (x x)[(y z)/x] \equiv ((y z) (y z))$$

Corresponde à invocaçãoo de uma função:

- x o parâmetro;
- M o corpo da função;
- N o argumento.

Currying

Não necessitamos de abstracções de duas ou mais variáveis:

$$\lambda xy. M \equiv (\lambda x (\lambda y M))$$

Substituimos os argumentos um de cada vez:

$$((\lambda xy. M) P Q) \equiv (((\lambda x (\lambda y M)) P) Q)$$

$$\rightarrow_{\beta} ((\lambda y M)[P/x] Q)$$

$$\rightarrow_{\beta} M[P/x][Q/y]$$

Esta codificação chama-se "currying" em homenagem a Haskell Curry.

Reduções

Escrevemos $M \rightarrow N$ se M reduz num passo a N usando conversão β .

Escrevemos M woheadrightarrow N para a redução em múltiplos passos (o^*) .

Forma normal

Se não existir N tal que $M \rightarrow N$, então M está em formal normal.

M admite forma normal N se M woheadrightarrow N e N está em forma normal.

Exemplo:

$$(\lambda x.\,a\,x)\,((\lambda y.\,by)\,c)
ightarrow a((\lambda y.\,by)\,c)
ightarrow a(bc)
eq$$

Logo: $(\lambda x. ax)((\lambda y. by) c)$ admite forma normal a(bc).

Analogia: resultado de uma computação.

Termos sem forma normal

Nem todos os termos admitem forma normal:

$$\Omega \equiv ((\lambda x. x x) (\lambda x. x x))$$

$$\rightarrow_{\beta} (x x)[(\lambda x. x x)/x]$$

$$\equiv ((\lambda x. x x) (\lambda x. x x)) \equiv \Omega$$

Logo:

$$\Omega \to \Omega \to \Omega \to \cdots$$

Analogia: uma computação que não termina.

Confluência

Podemos efectuar reduções por ordens diferentes.

Exemplo:

$$\frac{(\lambda x.\,a\,x)\,((\lambda y.\,by)\,c)}{(\lambda x.\,a\,x)\,((\lambda y.\,by)\,c)} \rightarrow a(\underline{b}\underline{c}) \rightarrow a(\underline{b}\underline{c}) \not\rightarrow \underline{(\lambda x.\,a\,x)\,(\underline{b}\underline{c})} \rightarrow a(\underline{b}\underline{c}) \not\rightarrow \underline{(\lambda x.\,a\,x)\,(\underline{b}\underline{c})} \rightarrow a(\underline{b}\underline{c}) \not\rightarrow \underline{(\lambda x.\,a\,x)\,(\underline{b}\underline{c})} \rightarrow \underline{a}(\underline{b}\underline{c}) \not\rightarrow \underline{a}(\underline{b}\underline{c$$

P: Será que chegamos sempre à mesma forma normal?

Confluência

Podemos efectuar reduções por ordens diferentes.

Exemplo:

$$\frac{(\lambda x.\,a\,x)\,((\lambda y.\,by)\,c)}{(\lambda x.\,a\,x)\,((\lambda y.\,by)\,c)} \to a(\underline{(\lambda y.\,by)\,c}) \to a(\underline{bc}) \not\to a(\underline{bc}) \to a(\underline{bc}) \not\to a(\underline{bc}) \to a$$

- P: Será que chegamos sempre à mesma forma normal?
- R: Sim (Teorema de Church-Rosser)

Estratégias de redução

Como reduzir $(MN) \rightarrow P$?

ordem normal: reduzir *M* e substituir *N* sem reduzir.

- 1. $M \rightarrow (\lambda x M')$
- 2. $M'[N/x] \rightarrow P$

ordem aplicativa: reduzir *M* e *N* antes de fazer a substituição da variável.

- 1. $M \rightarrow (\lambda x M')$
- 2. $N \rightarrow N'$
- 3. $M'[N'/x] \rightarrow P$

Alguns factos sobre reduções

- 1. Se a redução por ambas as estratégias termina, então chegam à mesma forma normal
- 2. Se um termo admite forma normal, esta pode sempre obtida pela redução em ordem normal
- A redução em ordem aplicativa pode não terminar mesmo quando existe forma normal
- A redução em ordem normal pode reduzir o mesmo termo várias vezes

Ordem aplicativa: não terminação

Seja
$$\Omega \equiv ((\lambda x. x x) (\lambda x. x x));$$
 vamos reduzir
$$(\lambda x. y) \Omega$$

Redução em ordem normal

$$\underline{((\lambda x. y) \Omega)} \rightarrow_{\beta} y$$
 forma normal

Redução em ordem aplicativa

$$((\lambda x. y) \underline{\Omega}) \rightarrow_{\beta} ((\lambda x. y) \underline{\Omega}) \rightarrow_{\beta} \cdots$$
 não termina

Ordem normal: computação redudante

Supondo mult um termo tal que

mult
$$N M \rightarrow N \times M$$

para codificações N, M de números naturais (veremos como mais à frente).

Definindo

$$\operatorname{sqr} \equiv \lambda x$$
. $\operatorname{mult} x x$

vamos reduzir

sqr(sqr N)

Ordem normal: computação redudante

Redução em ordem aplicativa:

$$\text{sqr}\,(\text{sqr}\,\textit{N}) \rightarrow \text{sqr}\,(\text{mult}\,\textit{N}\,\textit{N}) \rightarrow \text{sqr}\,\textit{N}^2 \rightarrow \text{mul}\,\textit{N}^2\,\textit{N}^2$$

Redução em ordem normal:

$$\begin{array}{c} \operatorname{sqr}\left(\operatorname{sqr}N\right) \to \operatorname{mult}\left(\operatorname{sqr}N\right)\left(\operatorname{sqr}N\right) \\ \to \operatorname{mult}\left(\underbrace{\left(\operatorname{mult}NN\right)\left(\operatorname{mult}NN\right)}_{\operatorname{duplicação}}\right) \end{array}$$

Plano

Sintaxe

Reduções

Computação

Computação usando cálculo- λ

O cálculo- λ é um modelo de computação universal: qualquer função recursiva (computável por uma máquina de Turing) pode ser codificada no cálculo- λ .

Computação usando cálculo- λ

Estruturas de dados como boleanos, inteiros, listas, etc. não são primitivas do cálculo- λ .

Estas estruturas podem ser definidas usando apenas o cálculo puro.

Contudo: implementações de linguagens funcionais usam representações optimizadas por razões de eficiência.

Valores boleanos

Definimos:

$$\mathbf{true} \equiv \lambda xy. \ x$$
$$\mathbf{false} \equiv \lambda xy. \ y$$
$$\mathbf{if} \equiv \lambda pxy. \ pxy$$

Então:

if true $M N \rightarrow M$ if false $M N \rightarrow N$

Exercício: verificar as reduções acima.

Pares ordenados

Um constructor e dois selectores:

$$\begin{aligned} \mathbf{pair} &\equiv \lambda xyf.\, fxy \\ \mathbf{fst} &\equiv \lambda p.\, p\, \mathbf{frue} \\ \mathbf{snd} &\equiv \lambda p.\, p\, \mathbf{false} \end{aligned}$$

Temos:

$$\begin{array}{c} \mathbf{fst} \, (\mathbf{pair} \, M \, N) \, \twoheadrightarrow \, \mathbf{fst} \, (\lambda f. \, f \, M \, N) \\ \qquad \to \, (\lambda f. \, f \, M \, N) \, \mathbf{true} \\ \qquad \to \, \mathbf{true} \, M \, N \\ \qquad \to \, M \end{array}$$

Analogamente: $\operatorname{snd}(\operatorname{pair} M N) \rightarrow N$.

Codificar números naturais

Usando numerais de Church:

$$\underline{0} \equiv \lambda f x. x
\underline{1} \equiv \lambda f x. f x
\underline{2} \equiv \lambda f x. f (f x)
\vdots
\underline{n} \equiv \lambda f x. \underbrace{f (\dots (f x) \dots)}_{n \text{ vezes}}$$

Intuição: <u>n</u> itera uma função *n* vezes.

Aritmética

$$\mathbf{succ} \equiv \lambda n f x. f (n f x)$$

$$\mathbf{iszero} \equiv \lambda n. n (\lambda x. \mathbf{false}) \mathbf{true}$$

$$\mathbf{add} \equiv \lambda m n f x. m f (n f x)$$

Verificar:

$$\begin{array}{c} \operatorname{succ} \underline{n} \twoheadrightarrow \underline{n+1} \\ \operatorname{iszero} \underline{0} \twoheadrightarrow \operatorname{true} \\ \operatorname{iszero} (\underline{n+1}) \twoheadrightarrow \operatorname{false} \\ \operatorname{add} \underline{n} \underline{m} \twoheadrightarrow \underline{n+m} \end{array}$$

Analogamente: subtração, multiplicação, expoente, etc.

Listas

```
[x_1, x_2, \ldots, x_n] \simeq \cos x_1 (\cos x_2 (\ldots (\cos x_n \operatorname{nil}) \ldots))
```

Dois constructores, teste da lista vazia e dois selectores:

```
\begin{aligned} & \text{nil} \equiv \lambda z. \, z \\ & \text{cons} \equiv \lambda xy. \, \text{pair false} \, (\text{pair} \, x \, y) \\ & \text{null} \equiv \text{fst} \\ & \text{hd} \equiv \lambda z. \, \text{fst} \, (\text{snd} \, z) \\ & \text{tl} \equiv \lambda z. \, \text{snd} \, (\text{snd} \, z) \end{aligned}
```

Listas

Verificar:

null nil
$$\rightarrow$$
 true (1)
null (cons MN) \rightarrow false (2)
hd (cons MN) \rightarrow M (3)
tl (cons MN) \rightarrow N (4)

NB: (2), (3), (4) resultam das propriedades de pares, mas (1) não.

Variáveis locais

let
$$x = M$$
 in N

Exemplo:

let
$$f = \lambda x$$
. add $x x$
in λx . $f(f x)$

Tradução para o cálculo- λ

Definimos:

let
$$x = M$$
 in $N \equiv (\lambda x. N) M$

Então:

let
$$x = M$$
 in $N \rightarrow N[M/x]$

Declarações imbricadas

Não necessitamos de sintaxe extra:

$$let \{x = M; y = N\} in P$$

$$\equiv let x = M in (let y = N in P)$$

Declarações recursivas

Tentativa:

```
let f = \lambda x. if (iszero x) \underline{1} (mult x (f (sub x \underline{1}))) in f \underline{5}
```

Declarações recursivas

Tentativa:

```
let f = \lambda x. if (iszero x) \underline{1} (mult x (f (sub x \underline{1}))) in f 5
```

Tradução:

$$(\lambda f. f \underline{5}) (\lambda x. if (iszero x) \underline{1} (mult x (f (sub x \underline{1}))))$$

Não define uma função recursiva porque *f* ocorre livre no corpo da definição.

Declarações recursivas: combinadores ponto-fixo

Soluçãoo: usar um combinador ponto-fixo i.e. um termo **Y** tal que

$$\mathbf{Y} F = F(\mathbf{Y} F)$$
 para qualquer termo F

Definimos o factorial recursivo como:

let
$$f = \mathbf{Y}(\lambda g x$$
. if (iszero x) $\underline{1}$ (mult x (g (sub x $\underline{1}$)))) in f $\underline{5}$

Note que *g* ocorre ligada no corpo da funçãoo.

Definições recursivas: combinador ponto-fixo

Seja:

$$\mathbf{Y} F = F (\mathbf{Y} F)$$
 para qualquer M fact $\equiv \mathbf{Y} (\lambda g x. \mathbf{if} (\mathbf{iszero} x) \mathbf{1} (\mathbf{mult} x (g (\mathbf{sub} x \mathbf{1}))))$

Calculemos:

fact
$$\underline{5} \equiv \mathbf{Y} (\lambda g x...) \underline{5}$$

$$= (\lambda g x...) \underbrace{(\mathbf{Y} (\lambda g x...))}_{\text{fact}} \underline{5}$$

$$\Rightarrow \text{ if (iszero } \underline{5}) \underline{1} (\text{mult } \underline{5} (\text{fact } (\text{sub } \underline{5} \underline{1})))$$

$$\Rightarrow \text{ if false } \underline{1} (\text{mult } \underline{5} (\text{fact } \underline{4}))$$

$$\Rightarrow \text{ mult } \underline{5} (\text{fact } \underline{4})$$

$$\Rightarrow \text{ mult } 5 (\text{mult } 4 (... (\text{mult } 1 1)...)) \equiv 120$$

Combinadores ponto-fixo

Y pode ser definido no cálculo- λ puro (Haskell B. Curry):

$$\mathbf{Y} \equiv \lambda f. (\lambda x. f(x x)) (\lambda x. f(x x))$$

Verificação:

$$\mathbf{Y} F \to (\lambda x. F(xx)) (\lambda x. F(xx))$$

$$\to F((\lambda x. F(xx)) (\lambda x. F(xx)))$$

$$\leftarrow F(\mathbf{Y} F)$$

Logo

$$\mathbf{Y} F = F(\mathbf{Y} F)$$

Há uma infinidade de outros combinadores ponto-fixo (ver a bibliografia).