SILABUS

I. IDENTITAS MATA KULIAH

Program Studi : Ilmu Komputer

Mata Kuliah : Desain dan Analisis Algoritma

Kode : KOMS120403

Semester : IV

SKS : 3 (Teori)

Prasyarat : Matematika Dasar, Matematika Diskrit, Struktur Data

Dosen Pengampu: Ni Luh Dewi Sintiari, Ph.D.

II. DESKRIPSI MATA KULIAH

Mata kuliah ini mempelajari tentang perancangan dan analisis algoritma, yang mencakup pembahasan mengenai jenis-jenis permasalahan algoritmik pada dunia komputer, analisis efisiensi yaitu kompleksitas waktu dan ruang algoritma, strategi-strategi perancangan algoritma, dan keterbatasan setiap strategi algoritma. Strategi-strategi perancangan algoritma yang dibahas mencakup strategi Brute Force, teknik Rekursif, Divide-and-Conquer, Decrease-and-Conquer, Transform-and-Conquer, Greedy, Backtracking, Branch and Bound, Dynamic Programming, serta kelas kompleksitas algoritma (Teori P, NP, dan NP-Complete). Setelah mengikuti mata kuliah ini, mahasiswa diharapkan berbagai memahami macam strategi perancangan algoritma, serta mampu mengaplikasikan teknik perancangan algoritma untuk menyelesaikan masalah dalam kehidupan nyata.

III. CP MATA KULIAH

- 1. CP Sikap
 - S1. Bertakwa kepada Tuhan Yang Maha Esa dan mampu menunjukkan sikap religius.
 - S2. Menjunjung tinggi nilai kemanusiaan dalam menjalankan tugas berdasarkan agama, moral, dan etika.
 - S8. Menginternalisasi nilai, norma dan etika akademik.
 - S9. Menunjukkan sikap bertanggung jawab atas pekerjaan di bidang keahliannya secara mandiri.

S10. Menginternalisasi semangat kemandirian, kejuangan, dan kewirausahaan.

2. CP Pengetahuan

- P1. Mampu memahami dan menguasai konsep dasar ilmu komputer secara umum seperti matematika, algoritma, pemrograman, dan basis data.
- P2. Mampu memahami dan menguasai konsep pengembangan perangkat lunak, mulai dari analisis kebutuhan, perancangan, pengembangan, dan implementasi perangkat lunak.

3. CP Keterampilan Umum

- KU1. Mampu menerapkan pemikiran logis, kritis, sistematis, dan inovatif dalam konteks pengembangan atau implementasi ilmu pengetahuan dan teknologi yang memperhatikan dan menerapkan nilai humaniora yang sesuai dengan bidang ilmu Komputer.
- KU2. Mampu menunjukkan kinerja mandiri, bermutu, dan terukur.

4. CP Keterampilan Khusus

KK1. Terampil dalam menganalisis kebutuhan, merancang, dan mengimplementasikan rancangan, dan menguji perangkat lunak.

IV. METODE PEMBELAJARAN

Metode pembelajaran yang digunakan adalah metode ceramah, diskusi kelompok, presentasi, dan kelompok kerja.

V. BAHAN BACAAN

- 1. Introduction to The Design & Analysis of Algorithms, Anany Levitin, Pearson Education, Inc.
- 2. Slide Kuliah Strategi Algoritma, oleh Rinaldi Munir, Institut Teknologi Bandung.
- 3. Slide Analysis of Algorithms, Robert Sedgewick.
- 4. Modul Kuliah DAA, Made Windu Antara Kesiman, Universitas Pendidikan Ganesha.

VI. GARIS BESAR RENCANA PEMBELAJARAN

No	Capaian	Sub-CPMK	Bahan Kajian/Materi
•	Pembelajaran (CP)		Pembelajaran
1	S1, S2, S8, S9,	Mahasiswa mampu menjelaskan	Pengenalan Desain dan
	S10, P1, P2,	tahapan desain dan analisis algoritma	Analisis Algoritma
	KU2	dengan baik	0
2	S1, S2, S8, S9,	Mahasiswa mampu menghitung	Teori Kompleksitas
	S10, P1, P2,	kompleksitas waktu algoritma (worst-	Waktu
	KU1, KK1	case, best-case, average-case),	
		menggunakan notasi Big-O, Big-	
		Omega, dan Big-Theta, dan	
		mengklasifikasikan algoritma	
		berdasarkan kompleksitas waktunya	
		dengan benar	
3	S1, S2, S8, S9,	Mahasiswa mampu menjelaskan	Strategi Brute-Force
	S10, P1, P2,	tentang konsep strategi	
	KU1, KU2,	brute-force/exhaustive search dan	
4	KK1	teknik heuristik dengan baik,	Donovonon stratagi
4	S1, S2, S8, S9,	menganalisis kebenaran dan	Penerapan strategi
	S10, P1, P2,	kompleksitas waktu algoritma brute-	Brute-Force pada
	KU1, KU2, KK1	force, serta mengaplikasikan strategi	Sorting
	KKI	tersebut dalam pemecahan masalah	
5	S1, S2, S8, S9,	dengan baik dan benar Mahasiswa mampu menjelaskan	Strategi rekursif
	S10, P1, P2,	konsep algoritma rekursif, menuliskan	Strategi renaisii
	KU1, KU2,	pseudocode, menganalisis kebenaran,	
	KK1	memformulasikan bentuk rekursif dari	
		fungsi kompleksitas waktunya dan	
		menghitung rumus eksplisit fungsi	
		tersebut, serta mengaplikasikan	
		metode rekursif dalam pemecahan	
		masalah dan	
		mengimplementasikannya dalam	
		program komputer dengan baik dan	
		benar	
6	S1, S2, S8, S9,	Mahasiswa mampu menjelaskan	Strategi Divide-and-
	S10, P1, P2,	strategi Divide-and-Conquer,	Conquer
	KU1, KU2,	Decrease-and-Conquer, dan	
7	KK1	Transform-and-Conquer, menuliskan	Ctuator: D
7	S1, S2, S8, S9,	pseudocode, menganalisis kebenaran	Strategi Decrease-and-
	S10, P1, P2,	dan menghitung fungsi kompleksitas	Conquer dan
	KU1, KU2,		Transform-and-

	KK1	waktu algoritma, serta	Conquer
		mengaplikasikan ketiga strategi	Conquer
		tersebut dalam pemecahan masalah	
		dengan baik dan benar	
8		UJIAN TENGAH SEMESTER	
9	S1, S2, S8, S9,	Mahasiswa mampu menjelaskan	Strategi Greedy
	S10, P1, P2,	konsep algoritma Greedy,	
	KU1, KU2,	membuktikan optimalitas atau	
	KK1	menunjukkan ketak-optimalan	
10	S1, S2, S8, S9,	algoritma Greedy, mengaplikasikan	Penerapan dan analisis
	S10, P1, P2,	metode Greedy dalam pemecahan	strategi Greedy
	KU1, KU2,	masalah dan	, , , , , , , , , , , , , , , , , , ,
	KK1	mengimplementasikannya dalam	
11	S1, S2, S8, S9,	program komputer dengan baik dan	Penerapan strategi
	S10, P1, P2,	benar	Greedy pada Graf
	KU1, KU2,	bendi	V 1
	KK1		
12	S1, S2, S8, S9,	Mahasiswa mampu menjelaskan	Strategi BFS dan DFS
	S10, P1, P2,	metode BFS dan DFS dengan baik,	
	KU1, KU2,	menganalisis kompleksitas waktu dan	
	KK1	ruang melalui contoh riil, dan	
		mengaplikasikan metode BFS dan	
		DFS dalam pembentukan pohon ruang	
		status pada algoritma graf dinamis	
		dengan baik dan benar	
13	S1, S2, S8, S9,	Mahasiswa mampu menjelaskan	Strategi Backtracking
	S10, P1, P2,	konsep algoritma Backtracking dan	dan Branch-and-Bound
	KU1, KU2,	Branch-and-Bound, serta	
	KK1	mengaplikasikannya dalam	
		pemecahan masalah algoritmik dengan	
		baik dan benar	
14	S1, S2, S8, S9,	Mahasiswa mampu menjelaskan	Pemrograman Dinamis
	S10, P1, P2,	konsep pemrograman dinamis,	
	KU1, KU2,	melakukan analisis kompleksitas	
	KK1	waktu, dan mengaplikasikan	
		pemrograman dinamis dalam	
		pemecahan masalah algortimik dengan	
		baik dan benar	
15	S1, S2, S8, S9,	Mahasiswa mampu menjelaskan jenis-	Pengantar Teori P, NP,
	S10, P1, P2,	jenis permasalahan algoritmik dalam	dan NP-Complete
	KU1, KU2,	Ilmu Komputer, mengklasifikasikan	
	KK1	masalah dalam kelas kompleksitas (P,	
		NP, NP-Complete, dan NP-Hard),	
		serta menentukan strategi algoritma	

	yang tepat dalam pemecahan masalah	
	algoritmik dengan baik dan benar	
16	UJIAN AKHIR SEMESTER	

Mengetahui,

Koordinator Program Studi,

Dosen Pengampu Mata Kuliah,

A.A. Gede Yudhi Paramartha, S.Kom., M.Kom.

NIP. 198806222015041003

Ni Luh Dewi Sintiari, Ph.D.

NIR. 2022.5.434