EN2550 Homework 1 on Python and NumPy

Ranga Rodrigo

February 1, 2022

1. Write a program to display the squares of numbers form 1 to 5 as seen below.

1 : 1

2:4

3: 9

4 : 16

5 : 25

- 2. Alter the code in 14 to print the square only of non-prime numbers. Use the isprime function in the sympy package for testing if a number is a prime.
- 3. Use a comprehension to do 14.
- 4. Use a comprehension to do 11.
- 5. Using NumPy carry out the following computations.
 - (a) Matric multiplication

$$C = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \times \begin{bmatrix} 7 & 8 & 9 & 1 \\ 1 & 2 & 3 & 4 \end{bmatrix}.$$

(b) Element-wise multiply

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \text{ and } B = \begin{bmatrix} 3 & 2 \\ 5 & 4 \\ 3 & 1 \end{bmatrix}.$$

- 6. Generate a 5×7 array of random integers in the interval [0, 10] and extract the sub array consisting rows 2 to 4 and columns 1 and first two columns. What is the size of the resulting array?
- 7. Show three examples of broadcasting.
- 8. Consider the following code snippet

```
\begin{array}{l} m,\ c=2\,,\ -4\\ N=10\\ x=np.linspace(0\,,\ N-1,\ N).reshape(N,1)\\ sigma=10\\ y=m*x+c+np.random.normal(0\,,\ sigma\,,\ (N,1)) \end{array}
```

- (a) Append a column of ones to x to create X.
- (b) Compute $[\mathbf{X}^{\mathsf{T}}\mathbf{X}]^{-1}\mathbf{X}^{\mathsf{T}}\gamma$
- 9. (Advanced, optional) Write a function that computes the square root of a given number by
 - (a) Computing the hyperbolic estimate of the square root as the initial guess. I.e., for $S = a \times 10^{2n}$ where $a \in [1, 100]^1$

$$\sqrt{S} \approx \left(\frac{-190}{a+20} + 10\right) \times 10^n.$$

- (b) Using this initial estimate as s_0 use Newton-Raphson method² to find the square root with a given precision (e.g., 10^{-5}
- (c) Compute the square root of 64, 75, 100, and 1600.
- 10. Use Gaussian smoothing to filter the noise in the image gal_gaussian.png shown in Fig. 1³.

Figure 1: Image corrupted with Gaussian noise

- 11. Use median filtering to filter the salt and pepper noise in the image gal_sandp.png shown in Fig. 2.
- 12. Create a 40×60 grayscale image and change the color of the top-right quarter to 125.
- 13. Create a 40×60 color image and change the color of the bottom-left quarter to "Barbie Pink"⁴.
- 14. Increase the brightness of the image tom_dark.jpg shown in Fig. 3.

 $^{^{1}} https://en.wikipedia.org/wiki/Methods_of_computing_square_roots$

²https://en.wikipedia.org/wiki/Newton's_method

³See Moodle for the original image files.

⁴https://en.wikipedia.org/wiki/List_of_colors:_A%E2%80%93F

Figure 2: Image corrupted with salt and pepper noise $\,$

Figure 3: A dark image