ГЛАВА 5

ЭКОНОМИЧЕСКАЯ ЧАСТЬ

5.1. Организация производственного процесса

5.1.1 Описание технологического процесса

Таблица 5.1 – Варианты технологических процессов

Наименование операции технологического процесса	Длительность операции, мин	Марка оборудования	Краткая характеристика оборудования (производительность, грузоподъемность, емкость оборудования)
	Базовый т	ехнологический	процесс
Завалка бадьи для металлозавалки	25	Кран Бадья	Грузоподъёмность 180 тонн Емкость 60 тонн
Транспортировка бадьи к печи	5	Кран Бадья	Грузоподъёмность 180 тонн Емкость 60 тонн
Выплавка металла	56	дсп	Производительность 120 тонн в час Емкость 100 тонн
Слив металла	5	ДСП Стальковш	Производительность 120 тонн в час Емкость 100 тонн
Транспортировка стальковша на ВОС	2	Стальковш Кран	Емкость 100 тонн Грузоподъёмность 180 тонн
Обработка стали на ПК	35	Стальковш ПК	Емкость 100 тонн Производительность 70 тонн в час
Транспортировка стальковша к МНЛЗ	2	Стальковш Кран	Емкость 100 тонн Грузоподъёмность 180 тонн
Разливка стали на МНЛЗ	40	МНЛЗ	Производительность 120 тонн в час
Итого	170		

					HH 2121 05 00 000 HP				
					ДП 2121.05.00.000 ПЗ				
Изм.	Лист	№ докум.	Подпись	Дата	, · ·				
Разраб	5.	Плех А.В.			Разработка комплекса	Лит.	Лист	Листов	
Прове	p.	Ридецкая И.Н.			реконструкционных мероприятий		85	117	
Рук. І	Троек.	Жаранов В.А.			для ДСП-1 ОАО «БМЗ» с целью	ГГТУ	им. П.	О. Сухого	
Н. Ко	нтр.	Жаранов В.А.			повышения энергоэффективности		гр. МЛ	-51	
Утвер,	д.	Бобарикин Ю.Л.			и производительности плавки		1 p. 1v131	-31	

Технолог	ический проце	есс после внедрени	ия проектного решения
Завалка бадьи для	25	Кран	Грузоподъёмность 180 тонн
металлозавалки	23	Бадья	Емкость 60 тонн
Транспортировка	5	Кран	Грузоподъёмность 180 тонн
бадьи к печи	3	Бадья	Емкость 60 тонн
			Производительность 120 тонн в
Выплавка металла	50	ДСП	час
			Емкость 100 тонн
		ДСП	Производительность 120 тонн в
Слив металла	5	Стальковш	час
		Стальковш	Емкость 100 тонн
Транспортировка	2	Стальковш	Емкость 100 тонн
стальковша на ВОС	<u> </u>	Кран	Грузоподъёмность 180 тонн
			Емкость 100 тонн
Обработка стали на	35	Стальковш	Производительность 70 тонн в
ПК	33	ПК	час
Транспортировка		Стальковш	Емкость 100 тонн
стальковша к	2	Кран	Грузоподъёмность 180 тонн
МНЛ3		терип	
Разливка стали на	40	МНЛЗ	Производительность 120 тонн в
МНЛ3		1,111,115	час
Итого	164		

Таблица 5.2 — Структурный баланс 1 т жидкого металла для базового и проектного вариантов

	Ба	іза	Проект	
Структуры элементов	кг	%	КГ	%
Металлозавалка	1360	100	1360	100
ЖД лом	495	36,4	495	36,4
Лом СЗ	255	18,8	255	18,8
Чугун П2	150	11	150	11
Известь	55	4	55	4
Науглераживатель тип «С»	15	1,1	15	1,1
FeSi 65	15	1,1	15	1,1
FeMn 78	15	1,1	15	1,1
Безвозвратные потери и угар	140	10,3	90	6,6
Шлак	220	16,2	150	11
Выход жидкого	1000	73,5	1120	82,4
Брак	41	3	20	1,5
Выход годного	959	70,5	1100	80,9

Изм.	Лист	№ докум.	Подпись	Дата

5.1.2 Расчет производственной мощности и пропускной способности агрегатов и участков

1. Определяем ведущую операцию процесса. Ведущей операцией процесса является плавка, следовательно, часовая производительность будет равна:

$$P_{B}=E*60/T$$
 (5.1)

где Е- емкость орудия труда, т

Т – продолжительность процесса.

 $P_{\rm B}(6a3a)=120*60/56=128\text{T/yac}$

 $P_{\rm B}$ (проектное) =120*60/50=144 т/час

2. Определяем часовую производительность последующих операций используя формулу:

$$P_{i}=60Q_{II}k_{H}/\tau$$
, (5.2)

где τ — период или такт процесса;

 $Q_{\rm u}$ – количество продукции, получаемой за один цикл;

- $k_{\text{н}}$ коэффициент непрерывности процесса, т. е. отношение времени обработки к сумме времени обработки и необходимого вспомогательного времени на единицу предмета труда.
 - 3. Определяем загрузку операций относительно ведущей по формуле

$$K_{3i} = P_B / P_i. \tag{5.3}$$

4. Результаты расчетов сводим в таблицу 5.3.

Таблица 5.3 — Результаты расчета производительности и загрузки операций базового и проектного вариантов

Наукамарамуа адарамуу	База		
Наименование операции	Pi	K_{3i}	
Бадья	(60*60*1)/25=144	109/144=0,75	
Кран	(60*180*1)/5=2160	109/2160=0,050	
ДСП	(60*109*1)/56=116	109/116=0,94	
Стальковш	(60*100*1)/5=1200	109/1200=0,090	
Кран	(60*180*1)/2=5400	109/5400=0,020	
ПК и RH	(60*70*1)/35=120	109/120=0,90	

					l
Изм.	Лист	№ докум.	Подпись	Дата	

Кран	(60*180*1)/2=5400	109/5400=0,020
МНЛЗ	(60*120*	1)/40=180
Наименование операции	Проект	
паименование операции	Pi	K_{3i}
Бадья	(60*60*1)/25=144	115/144=0,79
Кран	(60*180*1)/5=2160	115/2160=0,053
ДСП	(60*115*1)/50=138	115/138=0,83
Стальковш	(60*100*1)/5=1200	115/1200=0,095
Кран	(60*180*1)/2=5400	115/5400=0,021
ПК и RH	(60*70*1)/35=120	115/120=0,95
Кран	(60*180*1)/2=5400	115/5400=0,021
МНЛЗ	(60*120*1)/40=180	115/180=0,63

5.2. Годовой объём производства продукции

Баланс работы сталеплавильного цеха представлен в таблице 5.4

Таблица 5.4 - Баланс времени работы сталеплавильного цеха

Показатели	Используемые значения, дни
Календарная продолжительность года	365
Капитальный ремонт	20
Календарное время	365
Холодные простои	13
В том числе:	
Смена футеровки	9
В резерве	4
Номинальное время	352
Горячие простои	40
В том числе ремонт оборудования	12
Фактическое время	312

Определив фактическое время работы плавильных агрегатов находим годовое количество плавок по формуле:

$$\Pi = T_{\phi}/T_{\mu n}, \tag{5.4}$$

где T_{φ} – годовой фонд времени работы плавильных агрегатов, ч.;

 $T_{\mbox{\tiny цп}} -$ длительность цикла плавки, часов.

312*24=7488 часов;

Базовый вариант

 Π =7488/0,94 =7965 плавок.

Проектный вариант

 Π =7488/0,83 =9021 плавок.

Изм.	Лист	№ докум.	Подпись	Дата

5.2.2 Расчет годового объема производства

На основе таблице 5.3 и расчетов п. 5.2 определяем годовой объём производства. Результаты расчетов представлены в таблице 5.5

Таблица 5.5 – Годовой объем производства продукции

Показатели	База	Проект
Металлозавалка, т	7965*136,5=1087222	9021*136,5=1231366
Жидкий металл, т	1087222*0,732=795846	1231366*0,805=991249
Годный металл, т	1087222*0,703=764317	1231366*0,78=960465

5. 3. Организация труда рабочих

5.3.1 Расчет численности рабочих

Штаты рабочих определяются в соответствии с принятыми формами организации труда раздельно по каждой группе работников. Каждая из групп рабочих в случае применения различных систем оплаты труда и различных графиков выходов (различный баланс рабочего времени) делится на соответствующие подгруппы.

Исходя из специфики металлургического производства, первоначально определяем норму численности рабочих определенной профессии.

Далее определяем численность рабочих по формуле:

$$\mathbf{Y}_{\mathrm{p}i} = \mathbf{K}_{\mathrm{a}i} \times H_{\mathrm{cM}} \times K_{\mathrm{cM}},\tag{5.5}$$

где: K_{ai} – количество і-ых агрегатов;

 $H_{\rm cm}$ — норма численности для і-го агрегата, чел/агрегат;

 K_{cm} – коэффициент сменности.

$$K_{\rm CM} = F_{\rm arp}/F_{\rm pa6}, \tag{5.6}$$

где $F_{\rm arp}$ — действительный годовой фонд времени работы агрегата, ч; $F_{\rm pa6}$ - действительный годовой фонд времени работы рабочего, ч Принимаем 2025 ч.

$$K_{CM} = 7488/2025 = 3,69$$

						Лист
					ДП 2121.05.00.000 ПЗ	80
Изм.	Лист	№ докум.	Подпись	Дата	, ,	0,9

Результаты расчетов численности рабочих цеха представлены в таблицу 5.6.

Таблица 5.6 – Численность рабочих цеха, чел. Базовый и проектный вариант.

Группы рабочих	Средний тарифный разряд	Формула для вычисления	Полный расстановочный штат
Производственные рабочие электросталеплавильного цеха:			
- сталевар H _{см} = 32 челч\см.	6	K _{cm} *H _{cm} *K _a \12	3,69*32*1\12= 9,8 чел Принимаем 10 чел.
- пультовщик Н _{см} = 8 челч\см.	5	K _{см} *H _{см} *K _а \12	3,69*8*1/12=2,46 чел Принимаем 3 чел.
-разливщики ковшевые $H_{cm} = 10$ чел.\см.	5	К _{см} *Н _{см}	3,69*10=36,9чел Принимаем 37 чел
- шлаковщики Н _{см} = 2 чел.\сут.	5	Нсм	2 чел
- бригадир каменьщиков Нсм = 1 чел.\см.	6	Ксм*Нсм	3,69*1=3,69 чел Принимаем 4 чел.
- каменьщик огнеупорщик Нсм = 8 чел.\см.	5	Ксм*Нсм	3,69*8=29,5 чел Принимаем 30 чел
- наборщик скользящих затворов Нсм = 0,96 чел.\см.	5	Ксм*Нсм	3,69*0,96= 3,54 чел Принимаем 4 чел.
Производственные рабочие отделений непрерывной разливки стали:			•
- разливщик стали Нсм = 1+м чел.\см., где м – кол-во ручьев МНЛЗ Принимаем 4, тогда Нсм = 1+4=5 чел.\см.	5	Ксм*Нсм	3,69*5=18,45 чел Принимаем 19 чел.
- ковшевой Нсм= 2,5*В+3 чел.\сут. где В – годовой объем производства, млн.т - по базе Нсм=2,5*0,509886+3=4,27 чел.\сут. - по проекту Нсм=2,5*0,693742+3=4,47 чел.\сут.	5	Нсм	- по базе Принимаем 5 чел. - по проекту Принимаем 5чел.
- огнеупорщик Нсм= 7,5*В+1,43 чел.\сут по базе Нсм=7,5*0,509886+1,43= = 5,25 чел.\сут по проекту Нсм= 7,5*0, 693742+1,43= = 6,6 чел.\сут.	5	Нсм	- по базе Принимаем 6 чел - по проекту Принимаем 7 чел

Изм.	Лист	№ докум.	Подпись	Дата

- оператор МНЛЗ		Ксм*Нсм	3,69*8=29,52чел.
- оператор МНЛЗ Нсм= 4+4*М чел.\см.		NCM TICM	
			Принимаем 30 чел.
где М – кол-во МНЛЗ	5		
установленных в цеху.			
Принимаем 1.			
Нсм= 4+4*1= 8 чел.\см.			
- наборщик стопоров		Нсм	- по базе и проекту
Hcm = (0.04*K*m) (C*1000)			Принимаем 2 чел
чел.\сут.			
где К – кол-во ковшей			
разлитых			
Принимаем 8320 для			
базового и 8706 проектного			
варианта);			
С – средняя стойкость одного			
-	4		
стопора. Принимаем 1.			
Тогда			
Hcm=			
(0,04*8320*4)\(1*1000)=			
=1,33 чел.\сут.			
Нсм=			
(0,04*8706*4)\(1*1000)=			
=1,39 чел.\сут.			
- оператор системы		Ксм*Нсм	3,69*1 = 3,69 чел
охлаждения	4		Принимаем 4 чел.
Нсм = 1 чел.\см.			
- оператор газовой резки	4	Ксм*Нсм	3,69*0,5= 1,84 чел
Hсм = 0,5 чел.\см.	4		Принимаем 2 чел.
- оператор уборочных		Ксм*Нсм	3,69*1 = 3,69чел
механизмов	4		Принимаем 4 чел.
Нсм = 1 чел.\см.	·		F
- оператор гидросистемы		Ксм*Нсм	3,69*1 = 3,69 чел
Нсм = 1 чел.\см.	5	TOW TIOM	Принимаем 4 чел.
'		Ксм*Нсм	3,69*1= 3,69 чел
- машинист крана		ксм і псм	
металлургического	4		Принимаем 4 чел.
производства			Итого с 2 кранов 8
Нсм = 1 чел.\см.			человек.

5.4 Капитальные вложения

5.4.1 Капитальные вложения при модернизации оборудования

Капитальные вложения при модернизации оборудования могут складываться из следующих элементов:

5.4.2 Затраты на комплектующие и узлы, необходимые для модернизации оборудования целесообразно определять прямым счетом.

						Лист
					ДП 2121.05.00.000 ПЗ	01
Изм.	Лист	№ докум.	Подпись	Дата	, ,	71

Результаты оформлены в таблице 5.7

Таблица 5.7 — Затраты на комплектующие и узлы, необходимые для модернизации оборудования

Наименования	Требуемое	Цена	Затраты на
комплектющего	количество	комлектующего	комплектующие
узла	комплектующих	узла, руб.	узлы, руб.
	узлов, шт.		
Кислородная	4	21206	84824
горелка			
Углеродно-	3	10671	32013
инжекторная			
установка			
Итого	7	31877	116837

5.4.3 Затраты на энергию, необходимую для модернизации оборудования определяется по формуле:

$$K_{9} = K_{9\pi} + K_{9H},$$
 (5.7)

где К_{эл} – затраты на электроэнергию, руб.;

 ${\rm K_{\rm 9H}-}$ затраты на энергоносители, руб. (Кислород, газоулеродная смесь и тд.) Принимаем 1200 руб.

$$K_{\mathfrak{I}_{\mathfrak{I}_{\mathfrak{I}}}} = \sum \frac{N_{\mathcal{I}_{\mathfrak{I}_{\mathfrak{I}}}} k_{\mathsf{B}\mathsf{P}} k_{\mathsf{W}}}{n} T_{\mathsf{M}} \mathbf{I}_{\mathfrak{I}_{\mathfrak{I}}}, \tag{5.8}$$

 N_y - суммарная установленная мощность оборудования, используемого при проведении модернизации, кВт; Принимаем мощность необходимых сварочных аппаратов для установки оборудования $200~{\rm kBt}$.

 $k_N k_{\rm Bp}$ - коэффициент загрузки оборудования по мощности и времени (в зависимости от вида, используемого оборудования значение принимается в пределах 0,35-0,7); Принимаем 0, 5 и 0,5.

 k_w -коэффициент, учитывающий потери электроэнергии в сети предприятия (в зависимости от вида, используемого оборудования значение принимается в пределах 1,05-1,08); Принимаем 1,05.

 η -среднее значение коэффициента полезного действия электродвигателя (в зависимости от вида, используемого оборудования значение принимается в пределах 0,65-0,95). Принимаем 0,7.

 $T_{\rm M}$ -длительность проведения работ, связанных с модернизацией, ч; Принимаем 15 часов.

Изм.	Лист	№ докум.	Подпись	Дата

Ц_э-стоимость 1 кВт-ч электроэнергии. Принимаем равную 0,15 руб.

$$K_{\text{эл}} = \frac{200 * 0.5 * 0.5 * 1.05}{0.7} 15 * 0.15 = 168,75 \text{ руб.}$$

Следовательно

 $K_9 = 168,75 + 1200 = 1368,75 \text{ py6}.$

5.4.4 Затраты на оплату труда рабочих

Таблица 5.8 - Затраты на оплату труда рабочих, выполняющих работы по модернизации

Профессия	Количество	Разряд	Часовая тарифная ставка соответствующего разряда	Продолжительность работ, ч
Инженер	1	14	3,622*2,17=7,85	32
Сварщик	4	6	1,827*1,38=2,52	15
Каменьщик	2	5	1,503*1,29=1,93	10
Механик	4	7	1,672*1,47=2,45	20
Газовщик	2	6	1,827*1,38=2,52	10

$$3\Pi_{\text{cory}} = \sum T_{yi} \cdot T_{pi} \cdot (1 + 0.34) \tag{5.9}$$

где T_{yi} – часовая тарифная ставка і-го разряда, руб./ч;

 T_{pi} — продолжительность выполнения определенного вида работ по модернизации работником і-го разряда, ч;

0,34 – размер отчислений на социальное страхование.

 $3\Pi_{\text{сотч}}$ (Инженер)=1*7,85*32*1,34= 336,6 руб.

 $3\Pi_{\text{сотч}}$ (Сварщик)=4*2,52*15*1,34=202,6 руб.

 $3\Pi_{\text{сотч}}$ (Каменьщик)=2*1,93*10*1,34=51,7 руб.

 $3\Pi_{\text{сотч}}(\text{Механик})=4*2,45*20*1,34=262,6 руб.$

 $3\Pi_{\text{сотч}}$ (Газовщик)=2*2,52*10*1,34=67,5 руб.

Общая сумма затрат:

 $3\Pi_{\text{сотч}} = 336,6+202,6+51,7+262,6+67,5=921$ py6.

5.4.5 Накладные затраты.

Расчет ведется укрупнено по формуле:

$$K_{\text{HaK}} = \frac{3\Pi_{\text{COTY}} \times 150}{100} \tag{5.10}$$

						Лист
					ДП 2121.05.00.000 ПЗ	03
Изм.	Лист	№ докум.	Подпись	Дата	, '	93

где 150 – средний % накладных затрат при проведении модернизации оборудования в металлургических цехах.

$$K_{\text{нак}} = \frac{921 \times 150}{100} = 1381,5$$
 руб.

Таблица 5.9 - Смета затрат на модернизацию оборудования

Элементы затрат	Сумма, руб.
1. Комплектующие и узлы	116837
2. Энергия	168,75
3. Оплата труда рабочих (с отчислениями на социальное	921
страхование)	
4. Накладные затраты	1381,5
Итого	119308,2

5.5 Затраты на производство продукции

Таблица 5.10. Затраты на сырье и материалы

	База		База				Проект			
Структура металлозавалки	норма расход а, кг на 1 т годног о	цена 1кг, руб.	сумма, руб.	Структура металлозавалки	норма расхода, кг на 1 т годного	цена 1 кг, руб.	сумма , руб.			
ЖД лом	495	1,55	767,25	ЖД лом	495	1,55	767,25			
Лом С3	255	0,45	114,75	Лом С3	255	0,45	114,75			
Чугун П2	150	0,60	93	Чугун П2	150	0,60	93			
Известь	55	0,30	16,50	Известь	55	0,30	16,50			
Наугл. тип «С»	15	0,18	2,70	Наугл. тип«С»	15	0,18	2,70			
FeSi 65	15	2,23	33,45	FeSi 65	15	2,23	33,45			
FeMn 78	15	2,45	36,75	FeMn 78	15	2,45	36,75			
Итого	1000	7,76	1064,4	Итого	1000	7,76	1064,4			

Изм.	Лист	№ докум.	Подпись	Дата

2. Брак определяются прямым счетом.

Таблица 5.11 - Брак при производстве

	База					
	норма					
Наименование	брака, кг	цена 1	сумма,			
	на 1 т	кг, руб.	руб.			
	годного					
Брак	41	0,50	20,5			
		Проект				
	норма					
Наименование	брака, кг	цена 1	сумма,			
	на 1 т	кг, руб.	сумма, руб.			
	годного					
Брак	20	0,50	10			

3. Отходы определяются прямым счетом.

Таблица 5.12- Отходы производства

		База		
	норма			
Наименование	отходов,	цена 1 кг,	сумма,	
	кг на 1 т	руб.	сумма, руб.	
	годного			
Шлак	220	0,25	55	
	Проект			
	норма			
Наименование	отходов,	цена 1 кг,	сумма,	
	кг на 1 т	руб.	сумма, руб.	
	годного			
Шлак	150	0,25	37,5	

4. Энергетические затраты.

Фактический расход электроэнергии на 1 т металла W, кВт. ч/т, в предположении, что потери тепла при простое компенсируются в период расплавления, будет равен:

$$W_1 = \frac{q_1 \cdot \tau_1}{\eta_{3,1} \cdot G} + \frac{S \cdot \cos \phi \cdot \tau_2}{G} + \frac{q_3 \cdot \tau_3 + Q_3}{G}$$
 (5.11)

где q_1 и q_3 - тепловые потери печи в час за время простоев и восстановления;

 Q_3^{\cdot} - тепло, затраченное на эндотермические реакции и подогрев металла в период восстановления;

G - ёмкости печи, т;

					ДП 2121.05.00.000 П
Изм.	Лист	№ докум.	Подпись	Дата	, ,

 τ_1 - время простоев печи за плавку, ч;

 τ_2 - время расплавления металла, ч;

 au_3 - время окислительного и восстановительного периодов, ч.

Время же расплавления металла au_2 , зависит от мощности печного трансформатора:

$$\tau_2 = \frac{Q \cdot G}{(S \cdot \cos \varphi \cdot \eta_{\scriptscriptstyle \mathfrak{I}, \Pi} - q_2)},\tag{5.12}$$

где Q - теоретический удельный расход электроэнергии на расплавление металла (для стали равный около 340 кВт-ч/т).

S - мощность печного трансформатора, кВ-А;

 $\cos \phi$ — средневзвешенный коэффициент мощности печного агрегата (0,87);

 $\eta_{\text{эл}}$ - его электрический к. п. д. (0,65-0,95);

 q_2 — мощность тепловых потерь печи, кВт (все — за время расплавления)

$$3_{\mathfrak{I}_{\mathfrak{I}}} = W \cdot \coprod_{\mathfrak{I}_{\mathfrak{I}}} \cdot K_{\mathsf{B}\mathsf{\Gamma}},\tag{5.13}$$

где $\ \, \coprod_{\mathfrak{I}_{\mathsf{B}\Gamma}}$ – стоимость 1 кВт-ч электроэнергии. Принимаем 0,15 руб. $\ \, K_{\mathsf{B}\Gamma}$ – коэффициент, учитывающий выход годного металла.

Базовый вариант

$$au_2 = \frac{340 \cdot 120}{90000 \cdot 0.87 \cdot 0.8 - 9000} = 0.76 \,\mathrm{ч} = 46 \,\mathrm{мин}$$

$$W_1 = \frac{4500 \cdot 0,067}{0,8 \cdot 100} + \frac{90000 \cdot 0,87 \cdot 0,76}{120} + \frac{4800 \cdot 0,12 + 2282}{120} = 523,48 \text{ kBt-y/T}$$

$$3_{\rm эл} = 523,48 \cdot 0,15 = 78,52/(\frac{764317}{7965}) = 0,81$$
 руб

Проектный вариант

$$au_2 = \frac{340 \cdot 120}{90000 \cdot 0,87 \cdot 0,8 - 9000} = 0,76 \,\mathrm{ч} = 46 \,\mathrm{мин}$$

$$W_1 = \frac{4500 \cdot 0,033}{0,8 \cdot 100} + \frac{90000 \cdot 0,87 \cdot 0,76}{120} + \frac{4800 \cdot 0,05 + 2282}{120} = 523,48 \text{ кВт·ч/т}$$
 $3_{9Л} = 523,48 \cdot 0,15 = 78,52/(\frac{960465}{9021}) = 0,73 \text{ руб}.$

Изм.	Лист	№ докум.	Подпись	Дата

Энергетические затраты остального оборудования определяем по формуле:

$$3_{\mathfrak{I}_{\mathfrak{I}}} = \sum \frac{N_{\mathcal{Y}} \cdot k_{\mathcal{N}} \cdot k_{\mathfrak{B}\mathfrak{P}} \cdot k_{\mathcal{W}}}{q_{\mathfrak{I}_{\mathfrak{I}}}} \cdot \coprod_{\mathfrak{I}_{\mathfrak{I}}} \tag{5.14}$$

где N_y – суммарная установленная мощность оборудования, кВт;

 k_N и $k_{\rm Bp}$ — коэффициент загрузки оборудования по мощности и времени (принимается в пределах 0,35-0,7);

 k_w — коэффициент, учитывающий потери электроэнергии в сети предприятия (в зависимости от вида, используемого оборудования значение принимается в пределах 1,05-1,08);

 $q_{\rm ч}$ – часовая производительность оборудования, т годного/ч;

Базовый вариант

$$3_{\rm эл} = \frac{2000000 \cdot 0,66 \cdot 0,66 \cdot 1,07}{764317/7488} \cdot 0,15 = 136,99$$
 руб

Проектный вариант

$$3_{\rm эл} = \frac{200000 \cdot 0,7 \cdot 0,7 \cdot 1,08}{960465/7488} \cdot 0,15 = 123,78 \ {\rm руб}$$

5. Затраты на оплату труда. Величина заработной платы рабочих-повременщиков, занятых на технологических операциях по формуле:

$$C_{33} = \left(F_{9\phi} \cdot P_d \sum_{i=1}^n J_{4i} \cdot n_i\right) / Q_{\Gamma} \tag{5.15}$$

где $F_{\ni \varphi}$ – эффективный фонд времени рабочего), ч;

 P_d - коэффициент, учитывающий премии и доплаты к тарифному фонду (1,7);

 $J_{{
m u}i}$ — часовая тарифная ставка рабочего соответствующего разряда, руб./ч;

 n_i – количество рабочих і-го разряда, чел;

 Q_{Γ} – годовой объем производства в тоннах годного металла

Для базового варианта:

 $C_{33} = (2025 \cdot 1, 7((2,25 \cdot 1,9 \cdot 14) + (2,5 \cdot 1,73 \cdot 140) + 2,5 \cdot 1,57 \cdot 20)))/764317 = 3,38 \text{ py6}.$

Для проектного варианта:

					ДП
Изм.	Лист	№ докум.	Подпись	Лата	, ,

$$C_{33} = (2025 \cdot 1, 7((2,5 \cdot 1,9 \cdot 14) + (2,5 \cdot 1,73 \cdot 141) + 2,5 \cdot 1,57 \cdot 20)))/960465 = 2,70 \text{ py6}.$$

Отчисления на социальное страхование определяются в размере 34% от фонда оплаты труда работников цеха

Соц.ст (база)=3,38*34%=3,88 руб.

Соц.ст (проект)=2,70*34%=0,91 руб

6. Амортизация оборудования. Величина амортизационных отчислений на 1 т годного металла определяется по формуле:

$$A = (\sum_{j=1}^{m} \coprod_{6j} \cdot H_{aj}) / Q_{\Gamma}$$
 (5.16)

где \coprod_{6j} – балансовая стоимость оборудования j-го вида, руб.

 H_{aj} – норма амортизационных отчислений j-го вида основных средств;

т количество видов оборудования.

Для базового 532500 руб.

Для проектного 532500,00+432910=965410 руб.

Базовый вариант

$$A = \frac{532500 \cdot 0,1}{764317} = 0,069 \text{ py6},$$

Проектный вариант

A =
$$\frac{965410 \cdot 0,1}{960465}$$
 = 0,10 py6.

Результаты расчетов приведены в таблице 5.13

Таблица 5.13 - Основные технологические затраты на производство 1т годного металла, руб.

Наименование затрат	База	Проект
Затраты на сырье и материалы	1064,4	1064,4
Отходы	55	37,5
Брак	20,5	10
Энергетические затраты		
- затраты на электроэнергию печи	0,81	0,73
- затраты на электроэнергию остального обор.	136,99	123,78
Расходы на оплату труда	3,38	2,70
Отчисления на социальное страхование	3,88	0,91
Амортизация оборудования	0,069	0,10
Итого	1285,03	1240,12

Изм.	Лист	№ докум.	Подпись	Дата

5.6 Оценка экономической эффективности проектных решений

Дополнительная прибыль определяется по формуле

$$\Delta\Pi_O = (3_6 - 3_{\Pi})Q_{\Pi} - (3_6 - 3_{\Pi})Q_{G}$$
 (5.17)

где 3_6 и 3_n — соответственно затраты по базовому и проектному варианту на 1 т годного металла

 Q_n — годовой объем производства по проектному варианту, т годного металла; Q_6 - годовой объем производства по базовому варианту, т годного металла. $\Delta\Pi_Q=(1285,03-1240,12)96465-(1285,03-1240,12)76317=904846,68$ - за счет снижения затрат на эл. энергии

$$\Delta\Pi_{3\pi} = 3_{3\pi}^6 Q_6 - 3_{3\pi}^M Q_M \tag{5.18}$$

где $3^{\delta}_{_{9,n}}$ и $3^{n}_{_{9,n}}$ - соответственно затраты на электроэнергию в базовом и проектном вариантах на 1 т годного металла

 $\Delta\Pi_{\rm эл}=0.81*904846,68-0.73*904846,68=72387,73$ руб - за счет снижения затрат на энергоносители

$$\Delta\Pi_{3\pi} = 3_{3\pi}^6 Q_6 - 3_{3\pi}^{M} Q_{M} \tag{5.19}$$

где $3^{6}_{_{9HOC}}$ и $3^{n}_{_{9HOC}}$ - соответственно затраты на энергоносители в базовом и проектном вариантах на 1 т годного металла

$$\Delta\Pi_{\scriptscriptstyle 9Л} = 136,99*764317 - 123,79*764317 = 1088984,6$$
 руб

-за счет снижения зарплаты

$$\Delta\Pi_{3\Pi} = 3_{3\Pi}^6 Q_6 - 3_{3\Pi}^{\Pi} Q_{\Pi} \tag{5.20}$$

$$\Delta\Pi_{\scriptscriptstyle 3\Pi} = 3,\!38*764317 - 2,\!70*764317 = 519735,\!56$$
 руб

-за счет снижения амортизации

Изм.	Лист	№ докум.	Подпись	Дата

$$\Delta\Pi_{a} = 3_{a}^{6} Q_{6} - 3_{a}^{\pi} Q_{\pi} \tag{5.21}$$

$$\Delta\Pi_a = 0.069 * 764317 - 0.10 * 960465 = -23693.83$$
 py6

5.7 Расчет статических показателей эффективности реализации проектного решения

1. Материалоемкость определяется по базовому и проектному вариантам по формуле:

$$M_e = 3_{_M}, py6./m \tag{5.22}$$

Для базового и проектного варианта: $M_e = 594,46$ руб/т.

2. Энергоемкость определяется по базовому и проектному вариантам по формуле:

 $M_9=3_9$ руб/т.

Для базового: M_3 =136,99 руб/т

Для проектного: M_9 =123,78 руб/т

3. Производительность труда рассчитывается по базовому и проектному вариантам по формуле:

$$\Pi T = \frac{Q}{q}$$
, т годного металла/чел (5.23)

Для базового:
$$\Pi T = \frac{764317}{174} = 4392,6 \text{ т/чел}$$

Для проектного: $\Pi T = \frac{960465}{175} = 5488,3 \text{ т/чел}$

4. Срок окупаемости капитальных вложений в проектный вариант определяется по формуле:

$$T = \frac{K}{\Delta \Pi}, \text{лет.}$$
 (5.24)

$$T = \frac{119308,2}{54106,9} = 2,2$$

5. Рентабельность капитальных вложений в проектный вариант определяется по формуле:

Изм.	Лист	№ докум.	Подпись	Дата

$$P_{\kappa} = \frac{\Delta\Pi \cdot 100}{\kappa}, \% \tag{5.25}$$

$$P_{\kappa} = \frac{54106,9 \cdot 100}{119308,2} = 45,3\%$$

5.8 Расчет динамических показателей эффективности реализации проектного решения

1. Величина ежегодных денежных потоков.

Таблица 5.14 - Расчет величины ежегодных денежных потоков при r=0,15

	Проект						
	Денежный поток, р. (ДП=Пч+А)		Коэффициент дисконтирования	Дисконтирован потог			
Годы	в год	нарастающим итогом	(Кдt) при r = 0	в год	нарастающим итогом		
0	-119308,2	-119308,2	1	-119308,2	-119308,2		
1	54104,6	-65203,6	0,9	48307,6	-71000,5		
2	54104,6	-11099	0,8	43131,8	-27868,7		
3	54104,6	43005,6	0,7	38510,6	10641,9		
	43005,6			10641,9			

Таблица 5.15 - Расчет величины ежегодных денежных потоков при r = 0

	Проект						
Готи	Денежный поток, р. (ДП=Пч+А)		Коэффициент дисконтирования	Дисконтирован пото			
Годы	в год	нарастающим итогом	(Кдt) при r = 0	в год	нарастающим итогом		
0	-119308,2	-119308,2	1	-119308,2	-119308,2		
1	54104,6	-65203,6	1	54104,6	-65203,6		
2	54104,6	-11099	1	54104,6	-11099		
3	54104,6	43005,6	1	54104,6	43005,6		
	43005,6			43005,6			

2. Динамический коэффициент рентабельности инвестиций (индекс доходности):

$$PU_{\underline{\mathcal{I}}} = \left(\frac{\Delta \Pi_1}{(1 + H\underline{\mathcal{I}})^t} + \frac{\Delta \Pi_2}{(1 + H\underline{\mathcal{I}})^t} + \dots + \frac{\Delta \Pi_n}{(1 + H\underline{\mathcal{I}})^n}\right) / K$$
 (5.26)

Изм.	Лист	№ докум.	Подпись	Дата

$$PH_{\text{Д}} = \frac{129950,1}{119308,2} = 1,08$$

3. Внутренняя норма рентабельности:

$$IRR = r_1 - \frac{4C \mathcal{I}_{r_1} \cdot (r_2 - r_1)}{4\mathcal{I}_{r_2} - 4\mathcal{I}_{r_1} C_{r_1}}$$
(5.27)

$$IRR = 15 - \frac{10641,9 \cdot (0-15)}{43005,6-10641,9} = 19,9\%$$

4. Динамический срок окупаемости инвестиций (Тд):

$$T_{A} = t - \frac{YAC_{t}}{YAC_{t+1} - YAC_{t}}$$
 (5.28)

$$T_{_{\rm I\!I}} = 2 - \frac{-27868,7}{10641,9 - (-27868,7)} = 2,72$$

5.9 Основные технико-экономические показатели проекта

Итоги расчетов сводятся в таблицу 5.16, которая помещается в расчетно-пояснительной записке курсового проекта.

Таблица 5.16 - Основные технико-экономические показатели проекта

№ п/п	Наименование показателей	Значения показателей по вариантам		
		базовый	проектный	
1	Технические показатели:			
	Время одной плавки, мин	56	50	
	Количество плавок в год, раз	7965	9021	
	Годовой объем выпуска продукции, т годного металла	764317	960465	
	т металлозавалки	1087222	1231366	
	т жидкого металла	795846	991249	
2	Экономические показатели:			
	Капиталовложения, руб.	X	119308,2	
	Дополнительная годовая прибыль, руб.	X	54106,9	
	в том числе за счет	X		
	- снижения затрат на электроэнергию	X	61145,36	
	- снижения затрат на энергоносители	X	1088984,6	
	- снижения затрат на оплату труда	X	519735,56	

Изм.	Лист	№ докум.	Подпись	Дата

- на амортизацию	X	-23693,83
Материалоемкость, руб./т годного	594,46	
Энергоемкость, руб./т годного	26,23	25,66
Производительности труда, т годного металла/чел	4392,6	5488,3
Срок окупаемости капитальных вложений, лет	X	2,2
Рентабельность капитальных вложений, %	X	45,3
Динамические показатели эффективности	X	
-коэффициент рентабельности инвестиций	X	1,08
- внутренняя норма рентабельности, %	X	19,9
-динамический срок окупаемости инвестиций, лет	X	2,72

Технико-экономические показатели данного проекта показали, что реконструктивные мероприятия в ЭСПЦ-1 имеют положительный эффект. Средняя длительность плавки сократилась на 6 минут, а количество плавок в год увеличилось на 1056 плавки, что позволит увеличить производительность.

Рентабельность капитальных вложений составляет 45,3 %, что является хорошим результатом внедрения предложенной системы интенсификации процесса плавки. Прогнозируемый срок окупаемости инвестиций 2,2 года.

Изм.	Лист	№ докум.	Подпись	Дата