CURS 12

Complement la cursul precedent

Lectoma lui Peterson

G= (V,E) graf cubic fata punti => G continue un cupiaj perfed (1- factor)

Ci conex e=xy EE

e punte => G-e necenex ex: într-un arboro, V muchie este punte

Cr conex, + muchie e punte => G arbor.

Dem:

Armintella TA- factorilor (TUTTE)

G=(V, E) admite 1-factor (cupl. perfect) €

(=) + S & V: T(G-S) ≤ 1S

Fie S C V

|Vi|= 1 1(2) 1≤i≤p 0(2) p+1 ≤i≤p+g

 $\Theta(G-S)^{\frac{3}{2}}p \leq |S|$

Zgr. vý din vi

Avem $\forall i \in h_{1,-} - p + g_3: 2|Ei| + |[Vi,S]| = 3 \cdot |Vi|(1)$ $\forall i \in h_{1,-} - p_3: |[Vi,S]| = 1(2)$ (2) E(0), |Vi| = 1(2) $\forall i \in h_{1,-} - p_3: |[Vi,S]| \ge 3$ (3) E(2) Gomeoupyli Am $3|S| = 2|E(G[S])| + \sum |[Vi,S]| + \sum |[Vi,S]| \ge 1$ $|E(i \in p)| = 2|E(G[S])| = 3|E(G[S])| = 3 \cdot |Vi|(1)$

exerc: Y G cubic cu cel mult o punte contine 1-factor.
Y G cubic cu cel mult 2 punti contine 1-factor.

1 S/>p = o(G-S)_

G nu cont. 1 -factor

Polinoame cromatice

1. G = (V, E) graf simplu $K \in \mathbb{N} \gg 1$.

C: V-> 11,2,3, _ K3 K-colorate.

CK-coloraro proprince C(x) + C(y) +xiyEE

$$P_{K}(G) = |f|_{C}|_{C} |V| \rightarrow \{1, ..., K\}, C |K|_{C} - cdorano proprise \}$$
2. P1 a) $P_{k}(K_{M}) = \frac{1}{k^{2}}$
b) $P_{k}(K_{M}) = \frac{1}{k^{2}}(k_{-1})(k_{-2}) - (k_{-2}n_{+1})$
c) $P_{k}(P_{m}) = k_{2}(k_{-1})^{m-1}$
d) $P_{k}(T_{M}) = k_{2}(k_{-1})^{m-1}$
e) $P_{k}(C_{m}) = (k_{-1})^{m} + (-1)^{m}(k_{-1})$

2. Pm a) $P_{k}(C_{m}) = (k_{-1})^{m} + (-1)^{m}(k_{-1})$

2. Pm a) $P_{k}(C_{m}) = (k_{-1})^{m-1}$
b) $P_{k}(C_{m}) = (k_{-1})^{m-1}$
c) $P_{k}(C_{m}) = P_{k}(K_{3}) = P_{k}(K_{-1})(K_{-2}) = (K_{-1})^{3} + (-1)^{3}(K_{-1})$

2. Pull $P_{k}(C_{m}) = P_{k}(C_{m}) = P_{k}(K_{-1}) + (K_{-1})^{m-1} + (K_{-1$

P2 a)
$$G = \{V, E\}$$
 $e = XY \in E$ $K \geqslant L$
 $P_{k}(G) = P_{k}(G - e) - P_{k}(G * e)$
b) $G = \{V, E\}, e = XY \in V^{(2)} - E k \geqslant L$
 $P_{k}(G) = P_{k}(G + e) + P_{k}(G * e)$

Dem.

a) veri e)P1.

Dem: GI [VI OV2]: a ~ K2

GI [VI OV2]. ex: G, H= G1 [V1 NV2] = G[V1 NV2] H~ KIVANVZI = Km m = |V1 NV2 Pk(H) = k(k-1)(k-2)- (k-m+1) (2) Fie P& (G1) = k(k-1) - (k-m+1). + 1 (3) Pk (G2) = k(k-1) - (k-m+1)t2 (4) Pk(G, UG2) = K(K+)- (K-m+1) titz (5) (2), (3), (4), (5) = (4)T4: G=(V,E) graf sumplu m= |V| R 31. Pk (G) polinour de gr. n în k. cu coof. întregi de semine alternante cu coef lui ku egal cu 1 si termenul liber egal cu sero. Pk (G) = km-an-1 km-1 + an-2 km-2 - + (-1) - a, k2 +

81

+ (-1)" aik

$$\begin{array}{lll} & & & \\ \hline J_{(0)} \ adev & & & \\ \hline F_{K} (K_{M}) = k^{n} (v.P_{A} a) \\ \hline J_{(0)} \ adev & & \\ \hline F_{K} (K_{M}) = k^{n} (v.P_{A} a) \\ \hline J_{(0)} \ adev & & \\ \hline F_{K} (K_{M}) = k^{n} (v.P_{A} a) \\ \hline J_{(0)} \ adev & & \\ \hline F_{K} (K_{M}) = k^{n} (v.P_{A} a) \\ \hline J_{(0)} \ adev & & \\ \hline F_{K} (K_{M}) = k^{n} (v.P_{A} a) \\ \hline F_{K} (K_{M}) = k^{n} (v.P_{A} a) \\ \hline F_{K} (K_{M}) = k^{n} (K_{M} a) \\ \hline F_{K} (K_{M}) = k^{n} (k_{$$

- (0 - 0) |