Reconnaissance des formes et méthodes neuronales (RCP208)

Classification automatique par densité

Nicolas Audebert (prenom.nom@cnam.fr)

http://cedric.cnam.fr/vertigo/Cours/ml/

Département Informatique Conservatoire National des Arts & Métiers, Paris, France

28 octobre 2022

Plan du cours

- 1 Motivation
- 2 DBSCAN
- 3 Paramétrage
- 4 Pour aller plus loir

Quand k-means ne suffit plus...

Considérons un jeu de données $\mathcal{X} = \{x_1, x_2, \dots, x_n\}$ de n observations bi-dimensionnelles.

Comment partitionner ce jeu de données?

Motivation

Quand k-means ne suffit plus...

Considérons un jeu de données $\mathcal{X} = \{x_1, x_2, \dots, x_n\}$ de *n* observations bi-dimensionnelles.

Comment partitionner ce jeu de données?

Une proposition "naturelle".

Motivation

Quand k-means ne suffit plus...

Considérons un jeu de données $\mathcal{X} = \{x_1, x_2, \dots, x_n\}$ de *n* observations bi-dimensionnelles.

Comment partitionner ce jeu de données?

Une proposition "naturelle". 1.25 1.25 1.00 1.00 0.75 0.75 0.50 0.50 0.25 0.00 0.00 -0.25 -0.50 -0.50 -0.75-0.75 -1.0 -1.0

Le partitionnement proposé ci-dessus semble être évident mais peut-on l'obtenir automatiquement?

Hypothèses de k-means

■ Clusters symétriques = il n'y pas de direction privilégiée dans un groupe

Jeu de données $\mathcal{X} \subset \mathbb{R}^2$

- Clusters symétriques = il n'y pas de direction privilégiée dans un groupe
- Compacts = les observations sont proches du centre de leur groupe

Jeu de données $\mathcal{X} \subset \mathbb{R}^2$

- Clusters symétriques = il n'y pas de direction privilégiée dans un groupe
- Compacts = les observations sont proches du centre de leur groupe
- Convexes = il n'y a pas de "trou" dans les groupes

Jeu de données $\mathcal{X}\subset\mathbb{R}^2$

- Clusters symétriques = il n'y pas de direction privilégiée dans un groupe
- Compacts = les observations sont proches du centre de leur groupe
- Convexes = il n'y a pas de "trou" dans les groupes
- Linéairement séparables (deux à deux)

Jeu de données $\mathcal{X} \subset \mathbb{R}^2$

- Clusters symétriques = il n'y pas de direction privilégiée dans un groupe
- Compacts = les observations sont proches du centre de leur groupe
- Convexes = il n'y a pas de "trou" dans les groupes
- Linéairement séparables (deux à deux)

Hypothèses de k-means

- Clusters symétriques = il n'y pas de direction privilégiée dans un groupe
- Compacts = les observations sont proches du centre de leur groupe
- Convexes = il n'y a pas de "trou" dans les groupes
- Linéairement séparables (deux à deux)

Échec...

Motivation 4 / 22

Comment faire mieux?

Ce qui pose problème :

■ la non-convexité,

Comment faire mieux?

Ce qui pose problème :

- la non-convexité,
- la non-linéarité.

Comment faire mieux?

Ce qui pose problème :

- la non-convexité,
- la non-linéarité.

Comment sait-on que deux points appartiennent au même groupe dans ces exemples?

DBSCAN 4/22

Plan du cours

1 Motivation

2 DBSCAN

3 Paramétrage

4 Pour aller plus loir

DBSCAN 5 / 22

Density-Based Spatial Clustering of Applications with Noise (DBSCAN)

DBSCAN est un algorithme de classification automatique (ou *partitionnement*) par densité introduit par [3].

Hypothèses de travail

- les groupes sont des îlots à forte densité,
 - beaucoup d'observations dans un petit espace
- séparés par des océans à faible densité
 - peu de points dans un grand espace

Les données aberrantes

Les observations dans les zones à faible densité sont accidentelles (données aberrantes ou outliers).

DBSCAN 5/22

Density-Based Spatial Clustering of Applications with Noise (DBSCAN)

DBSCAN est un algorithme de classification automatique (ou *partitionnement*) par densité introduit par [3].

Hypothèses de travail

- les groupes sont des îlots à forte densité,
 - beaucoup d'observations dans un petit espace
- séparés par des océans à faible densité.
 - peu de points dans un grand espace

Les données aberrantes

Les observations dans les zones à faible densité sont accidentelles (données aberrantes ou *outliers*).

DBSCAN 5 / 22

Density-Based Spatial Clustering of Applications with Noise (DBSCAN)

DBSCAN est un algorithme de classification automatique (ou *partitionnement*) par densité introduit par [3].

Hypothèses de travail

- les groupes sont des îlots à forte densité,
 - beaucoup d'observations dans un petit espace
- séparés par des océans à faible densité.
 - peu de points dans un grand espace

Les données aberrantes

Les observations dans les zones à faible densité sont accidentelles (données aberrantes ou *outliers*).

DBSCAN 6/22

Exemple-jouet

DBSCAN 7/22

Taxonomie des observations selon DBSCAN

DBSCAN considère trois types de points selon les propriétés de leur voisinage.

Les points centraux (core points)

- ce sont les points qui se trouve au cœur d'un groupe
- leur voisinage doit contenir plus que m points

Les points frontière (border points)

- ce sont les points qui bordent un groupe
- ils sont voisins d'un point central mais ne sont pas centraux eux-mêmes

Les points aberrants (*noise points*)

- ce sont les points isolés
- Ils ne sont ni centraux, ni frontière

DBSCAN 7/22

Taxonomie des observations selon DBSCAN

DBSCAN considère trois types de points selon les propriétés de leur voisinage.

Les points centraux (core points)

- ce sont les points qui se trouve au cœur d'un groupe
- leur voisinage doit contenir plus que m points

Les points frontière (border points)

- ce sont les points qui bordent un groupe
- ils sont voisins d'un point central mais ne sont pas centraux eux-mêmes

Les points aberrants (*noise points*)

- ce sont les points isolés
- ils ne sont ni centraux, ni frontière

DBSCAN 7 / 22

Taxonomie des observations selon DBSCAN

DBSCAN considère trois types de points selon les propriétés de leur voisinage.

Les points centraux (core points)

- ce sont les points qui se trouve au cœur d'un groupe
- leur voisinage doit contenir plus que m points

Les points frontière (border points)

- ce sont les points qui bordent un groupe
- ils sont voisins d'un point central mais ne sont pas centraux eux-mêmes

Les points aberrants (noise points)

- ce sont les points isolés
- ils ne sont ni centraux, ni frontière

DBSCAN 8/22

Illustration des différents types de points

DBSCAN 9 / 22

Algorithme

- \blacksquare Choisir un point $x \in X$ pas encore visité
- Marquer x comme visité
- \blacksquare Calculer le ε -voisinage de X
- Si le voisinage est dense (si le nombre de voisins est supérieur à un seuil) :
 - on assigne x à un nouveau cluster
 - \blacksquare pour chaque voisin x' de x
 - \blacksquare si le voisinage de x' est dense, on ajoute ses voisins à la liste
 - \blacksquare si x' n'a pas encore de groupe, on l'ajoute au cluster
- Sinon, on marque x comme aberrant
- Retour à 1 tant que tous les points n'ont pas été visités

DBSCAN 10 / 22

Aspects théoriques

Quelles sont les propriétés mathématiques qui permettent à cette algorithme de réaliser un partitionnement par densité?

Considérons un (E, d) un espace métrique, par exemple un espace vectoriel muni de la distance euclidienne. Soit $\mathcal{X} = \{x_1, \dots, x_n\} \subset E$ un jeu de données de n d'observations.

Définition

On appelle ε -voisinage de x le sous-ensemble $V_{\varepsilon}(x)\subset \mathcal{X}$ tel que :

$$V_{\varepsilon}(x) = \{x' \in X | d(x, x') < \varepsilon\}$$

c'est-à-dire l'ensemble des observations qui sont à distance inférieure à ε de x.

Autrement dit, il s'agit des observations du jeu de données contenues dans la boule (ouverte) de rayon ε centrée sur x.

m-densité

Ce voisinage est m-dense s'il contient au moins m points.

DBSCAN 11 / 22

Exemple

L' ε -voisinage ci-dessous est 4-dense : l'observation x (en rouge) possède 4 voisins (en vert) à distance inférieure à ε .

DBSCAN 12 / 22

Accessibilité par densité

Accessibilité et accessibilité directe

Soient x et x' deux observations d'un jeu de données $\mathcal{X} \subset \mathbb{R}^p$.

x' est dit **directement accessible** par ε -densité depuis x si :

■ le voisinage de x est dense $(|V_{\varepsilon}(x)| \ge m)$,

• x' est dans le voisinage de x ($x' \in V_{\varepsilon}(x)$).

En généralisant, x' est accessible par ε -densité depuis x si il existe une suite (y_1, \ldots, y_n)

telle que :

 $v_1 = x \text{ et } v_n = x'.$

■ pour tout i, y_{i+1} est directement accessible depuis y_i .

DBSCAN 13 / 22

DBSCAN et le graphe d'accessibilité

Graphe d'accessibilité

Construction du graphe d'accessibilité :

- \blacksquare les nœuds du graphe sont les points $x \in X$,
- \mathbf{Z} x et x' sont reliés par une arête orientée si x' est directement accessible depuis x.

x' est accessible depuis x s'il existe un chemin permettant d'aller de x à x' dans le graphe d'accessibilité.

Algorithme version graphe :

- Identifier les points centraux
- Calculer les composantes connectées du graphe réduit aux points centraux
- Assigner chaque point frontière au cluster de son voisin le plus proche

Plan du cours

- 1 Motivation
- 2 DBSCAN
- 3 Paramétrage
- 4 Pour aller plus loir

Paramétrage 14 / 22

Quels paramètres pour DBSCAN?

L'exécution de l'algorithme DBSCAN nécessite de régler deux paramètres :

- ullet arepsilon, la taille du voisinage et donc le rayon de la boule dans laquelle on peut passer d'un point à un autre sans changer de groupe,
- m, le nombre minimum de voisins pour qu'un voisinage soit qualifié de dense.

ε

- lacksquare Si arepsilon est trop faible, alors aucune observation n'est voisine d'aucune autre \Longrightarrow que des points aberrants.
- Si ε est trop grand, tous les points sont voisins entre eux \implies un seul groupe qui recouvre toutes les observations.

m (ou minVoisins)

- Si *m* est faible, tous les voisinages sont denses : il suffit d'un seul voisin en commun pour relier deux groupes.
- Si *m* est grand, peu de voisinages sont denses : beaucoup de points seront frontière ou aberrants.

Paramétrage 15 / 22

m (ou minVoisins)

Quel nombre de voisins minimum pour définir un voisinage dense?

Heuristique pour le réglage de m

- lacksquare m=2
 ightarrow classification ascendante hiérarchique
- \blacksquare par défaut, $\emph{m}=4$ ou $\emph{m}=5$ dans la plupart des implémentations...
- [3, 5] recommandent $m = 2 \cdot k$ avec k la dimensionalité des données

Paramétrage 16 /

arepsilon : la taille du voisinage

- $\ \blacksquare \ \varepsilon$ trop faible : nombreux groupes de petite taille
- lacksquare trop élevé : un unique groupe
- \implies peut-on régler (semi-)automatiquement une valeur raisonnable pour ε ?

Paramétrage 17 / 22

ε : choix heuristique

Graphe des k-distances [6, 4]

- pour chaque point, quelle la distance à son k^{e} voisin?
- tracer le graphe des k-distances par ordre décroissant

Heuristique : ε est à choisir de sorte à ne considérer que le sous-ensemble des voisins réels

ordonnée du point de rupture de pente

Plan du cours

1 Motivation

2 DBSCAN

- 3 Paramétrage
- 4 Pour aller plus loin

Intérêts de DBSCAN

■ Robustesse aux donnés aberrantes

- DBSCAN identifie automatiquement et retire les données aberrrantes durant le partitionnement. Cela permet de détecter les outliers mais également de ne pas contaminer la classification automatique (k-means est particulièrement sensible aux données aberrantes).
- Les groupes obtenus par DBSCAN ne sont pas nécessairement linéairement séparables
 - Réduit la contrainte sur la forme des groupes obtenus. Les groupes non convexes plus sur-partitionnés comme c'est le cas avec k-means.
- DBSCAN ne nécessite pas de préciser a priori le nombre de groupes cherchés.
 - Le nombre de groupes est estimé automatiquement à partir du nombre de composantes connectées par le graphe de l'accessibilité par densité.

Intérêts de DBSCAN

Robustesse aux donnés aberrantes

- DBSCAN identifie automatiquement et retire les données aberrrantes durant le partitionnement. Cela permet de détecter les outliers mais également de ne pas contaminer la classification automatique (k-means est particulièrement sensible aux données aberrantes).
- Les groupes obtenus par DBSCAN ne sont pas nécessairement linéairement séparables
 - Réduit la contrainte sur la forme des groupes obtenus. Les groupes non convexes plus sur-partitionnés comme c'est le cas avec k-means.
- DBSCAN ne nécessite pas de préciser a priori le nombre de groupes cherchés
 - Le nombre de groupes est estimé automatiquement à partir du nombre de composantes connectées par le graphe de l'accessibilité par densité.

- Robustesse aux donnés aberrantes
 - DBSCAN identifie automatiquement et retire les données aberrrantes durant le partitionnement. Cela permet de détecter les outliers mais également de ne pas contaminer la classification automatique (k-means est particulièrement sensible aux données aberrantes).
- Les groupes obtenus par DBSCAN ne sont pas nécessairement linéairement séparables
 - Réduit la contrainte sur la forme des groupes obtenus. Les groupes non convexes plus sur-partitionnés comme c'est le cas avec k-means.
- DBSCAN ne nécessite pas de préciser a priori le nombre de groupes cherchés
 - Le nombre de groupes est estimé automatiquement à partir du nombre de composantes connectées par le graphe de l'accessibilité par densité.

- Robustesse aux donnés aberrantes
 - DBSCAN identifie automatiquement et retire les données aberrrantes durant le partitionnement. Cela permet de détecter les outliers mais également de ne pas contaminer la classification automatique (k-means est particulièrement sensible aux données aberrantes).
- Les groupes obtenus par DBSCAN ne sont pas nécessairement linéairement séparables
 - Réduit la contrainte sur la forme des groupes obtenus. Les groupes non convexes plus sur-partitionnés comme c'est le cas avec k-means.
- DBSCAN ne nécessite pas de préciser a priori le nombre de groupes cherchés
- Le nombre de groupes est estimé automatiquement à partir du nombre de composantes

- Robustesse aux donnés aberrantes
 - DBSCAN identifie automatiquement et retire les données aberrrantes durant le partitionnement. Cela permet de détecter les outliers mais également de ne pas contaminer la classification automatique (k-means est particulièrement sensible aux données aberrantes).
- Les groupes obtenus par DBSCAN ne sont pas nécessairement linéairement séparables
 - Réduit la contrainte sur la forme des groupes obtenus. Les groupes non convexes plus sur-partitionnés comme c'est le cas avec *k-means*.
- DBSCAN ne nécessite pas de préciser a priori le nombre de groupes cherchés.
 - Le nombre de groupes est estimé automatiquement à partir du nombre de composantes connectées par le graphe de l'accessibilité par densité.

- Robustesse aux donnés aberrantes
 - DBSCAN identifie automatiquement et retire les données aberrrantes durant le partitionnement. Cela permet de détecter les outliers mais également de ne pas contaminer la classification automatique (k-means est particulièrement sensible aux données aberrantes).
- Les groupes obtenus par DBSCAN ne sont pas nécessairement linéairement séparables
 - Réduit la contrainte sur la forme des groupes obtenus. Les groupes non convexes plus sur-partitionnés comme c'est le cas avec k-means.
- DBSCAN ne nécessite pas de préciser a priori le nombre de groupes cherchés.
 - Le nombre de groupes est estimé automatiquement à partir du nombre de composantes connectées par le graphe de l'accessibilité par densité.

Limites de DBSCAN

- DBSCAN considère que la densité est identique pour tous les groupes ⇒ impossible de trouver un unique seuil ε qui définit un voisinage adapté en cas de densité variable
- les données dans des régions à faible densité sont automatiquement éliminées en tant que données aberrantes ⇒ ce n'est pas toujours le cas...
 - DBSCAN est une méthode transductive : le partitionnement est construit à partir du jeu de données et il n'est pas possible de classer un nouveau point sans refaire la classification entière.

Limites de DBSCAN

- DBSCAN considère que la densité est identique pour tous les groupes \implies impossible de trouver un unique seuil ε qui définit un voisinage adapté en cas de densité variable
- les données dans des régions à faible densité sont automatiquement éliminées en tant que données aberrantes ⇒ ce n'est pas toujours le cas...
 - DBSCAN est une méthode transductive : le partitionnement est construit à partir du jeu de données et il n'est pas possible de classer un nouveau point sans refaire la classification entière.

Pour aller plus Ioin 20 / 22

Pour aller plus loin

OPTICS [1]

- \blacksquare Variante de DBSCAN qui considère une plage de valeurs possibles pour ε
- Permet de détecter des groupes de densités différentes
- Partitionnement hiérarchique
- Disponible dans scikit-learn

HDBSCAN [2]

- Variante proche d'OPTICS mais diffère dans son choix de sélection des groupes
- Autorise la classification de points nouveaux
- \blacksquare pip install hdbscan

Références I

M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander.

OPTICS: ordering points to identify the clustering structure.

28(2):49-60.

R. J. G. B. Campello, D. Moulavi, and J. Sander.

Density-based clustering based on hierarchical density estimates.

In J. Pei, V. S. Tseng, L. Cao, H. Motoda, and G. Xu, editors, *Advances in Knowledge Discovery and Data Mining*, Lecture Notes in Computer Science, pages 160–172. Springer.

M. Ester. H.-P. Kriegel. J. Sander. and X. Xu.

A density-based algorithm for discovering clusters in large spatial databases with noise.

In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, KDD'96, pages 226–231. AAAI Press.

H.-P. Kriegel, P. Kröger, J. Sander, and A. Zimek.

Density-based clustering.

1(3):231-240.

J. Sander, M. Ester, H.-P. Kriegel, and X. Xu.

Density-based clustering in spatial databases : The algorithm GDBSCAN and its applications.

2(2):169-194.

Références II

E. Schubert, J. Sander, M. Ester, H. P. Kriegel, and X. Xu.

DBSCAN revisited, revisited : Why and how you should (still) use DBSCAN.

42(3):19:1–19:21.