

H350 LGA Serials Module Hardware User Manual

Version: V1.0.3

Date: 2014-02-22

Confidential Material

This document contains information highly confidential to Fibocom Wireless Inc. (Fibocom). Fibocom offers this information as a service to its customers, to support application and engineering efforts that use the products designed by Fibocom. The information provided is based upon requirements specifically provided to Fibocom by the customers. All specifications supplied herein are subject to change. Disclosure of this information to other parties is prohibited without the written consent of Fibocom.

Copyright

Copy, Reproduce, Distribute and/or Edit of this document or part of it as well as utilization of its contents and communication thereof to others without express authorization are prohibited. Offenders will be held liable for payment of damages. All rights created by patent grant or registration of a utility model or design patent are reserved. Copyright ©2013 Fibocom Wireless Inc. All rights reserved.

Trademarks Notice

The FIBOCOM Logo is registered by Fibocom Wireless Inc. All other product or service names or logos are the property of their respective owners. Copyright ©2013 Fibocom Wireless Inc. All rights reserved.

Federal Communication Commission Interference Statement

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1)This device may not cause harmful interference.

(2) This device must accept any interference received, including interference that may cause undesired operation.

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

FCC Caution: Any changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate this equipment.

This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter.

RF Exposure Compliance:

This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. The antenna(s) used for this transmitter must be installed to provide a separation distance of at least 20 conform all persons and must not be co-located or operating in conjunction with any other antenna or transmitter.

This device is intended only for OEM integrators under the following conditions:

- 1) The antenna must be installed such that 20 cm is maintained between the antenna and users.
- 2) The transmitter module may not be co-located with any other transmitter or antenna.

As long as 2 conditions above are met, further transmitter test will not be required. However, the OEM integrator is still responsible for testing their end-product for any additional compliance requirements required with this module installed

IMPORTANT NOTE:

In the event that these conditions can not be met (for example certain laptop configurations or co-location with another transmitter), then the FCC authorization is no longer considered valid and the FCC ID can not be used on the final product. In these circumstances, the OEM integrator will be responsible for re-evaluating the end product(including the transmitter) and obtaining a separate FCC authorization.

End Product Labeling:

This transmitter module is authorized only for use in device where the antenna may be installed such that 20 cm may be maintained between the antenna and users. The final end product must be labeled in a visible area with the following contains:

FCC ID:**ZMOH35F** . The grantee's FCC ID can be used only when all FCC compliance requirements

are met.

Manual Information To the End User:

The OEM integrator has to be aware not to provide information to the end user regarding how to install or remove this RF module in the user's manual of the end product which integrates this module.

The end user manual shall include all required regulatory information/warning as show in this manual.

Revision History

Version	Date	Remarks	
V1.0.0	2014-01-09	Initial Version	
V1.0.1	2014-01-15	Modified PIN description table	
V1.0.2	2014-01-16	Modified tunable antenna level	
V1.0.3	2014-02-22	Add H350-B50-10 description	

Applicability Table

No.	Туре	Note
1	H350-A50-10	
2	H350-A30-10	
3	H350-B50-10	
4	H350-B30-10	

Here are the module comparisons:

Model No.	GSM/GPRS/EDGE Band(MHz)	WCDMA Band(MHz)	HSDPA (Mbps)	HSUPA (Mbps)
H350-A50-10	900/1800	900/2100	21	5.76
H350-A30-10	900/1800	900/2100	7.2	5.76
H350-B50-10	850/1900	850/1900	21	5.76
H350-B30-10	850/1900	850/1900	7.2	5.76

Contents

1 Preface	8
1.1 Scope	8
1.2 Standards	8
2 Introduction	10
2.1 Description	10
2.2 Specifications	10
2.3 Appearance	12
3 Mechanical	15
3.1 Dimensions	15
3.2 PCB Layout Design	16
4 Hardware Overview	17
4.1 Block Diagram	17
4.2 Pin Definition	18
4.2.1 Pin Map	18
4.2.2 Pin Description	19
5 Hardware Interface	24
5.1 Power Interface	24
5.1.1 VBAT	24
5.1.2 Power Consumption	25
5.1.3 VIO	27
5.1.4 VRTC	27
5.2 ON/OFF and Reset	28
5.2.1 Pin Definition	28
5.2.2 Power ON Signal	28
5.2.3 Power off Signal	29
5.2.4 Reset Signal	30
5.3 Indicator Signal	31
5.3.1 Pin Description	31
5.3.2 Indicator Description	31
5.4 USB Interface	32
5.4.1 USB Interface Description	32
5.4.2 USB Interface Application	33

	5.5 UART Interrace	33
	5.5.1 UART Interface Description	33
	5.5.2 UART Design	35
	5.5.3 Ring Indicator	35
	5.6 USIM	36
	5.6.1 USIM Interface	36
	5.6.2 USIM	36
	5.6.3 USIM Design Notice	38
	5.6.4 USIM Hot Plug	39
	5.7 Digital Audio	40
	5.7.1 I2S	40
	5.7.2 I2C	40
	5.7.3 PCM Mode Interface	41
	5.8 ADC Interface	41
	5.9 GPS_BLANKING	41
	5.10 BODY_SAR	42
	5.11 Clock	42
	5.12 Others	42
6 E	Electrical and Environmental Features	43
	6.1 Electrical Features	43
	6.2 Environmental Features	43
7 F	RF Interface	44
	7.1 Operation Frequency Band	44
	7.1.1 Main Antenna	44
	7.2 RF PCB Design	44
	7.2.1 Layout Guideline	44
	7.2.2 Impedance	44
	7.3 Antenna Design	45
	7.3.1 Main Antenna Design Requirements	45

1 Preface

1.1 Scope

This manual provides the electrical, mechanical and environmental requirements for properly integrating the H350 serials wireless communications module. This manual gives a complete set of hardware features and functions that may be provided by H350, ensures the users can quickly and conveniently develop wireless communications using H350 Module.

1.2 Standards

- 3GPP TS 27.007 -v6.9.0: AT command set for User Equipment (UE)
- 3GPP TS 27.005 -v6.0.1: Use of Data Terminal Equipment -Data Circuit terminating Equipment (DTE-DCE) interface for Short Message Service (SMS) and Cell Broadcast Service (CBS)
- 3GPP TS 23.040 -v6.9.0: Technical realization of Short Message Service (SMS)
- 3GPP TS 24.011 -v6.1.0: Point- to Point (PP) Short Message Service (SMS) support on mobile radio interface
- 3GPP TS 27.010 -v6.0.0: Terminal Equipment to User Equipment (TE-UE) multiplexer protocol
- 3GPP TS 27.060 -v6.0.0: Packet domain; Mobile Station (MS) supporting Packet Switched services
- 3GPP TS 25.304-v6.10.0: User Equipment (UE) procedures in idle mode and procedures for cell reselection in connected mode
- 3GPP TS 25.308 -v6.4.0: High Speed Downlink Packet Access (HSDPA); Overall description;
 Stage 2
- 3GPP TS 25.309 -v6.6.0: FDD enhanced uplink; Overall description; Stage 2
- 3GPP TS 23.038 -v6.1.0: Alphabets and language specific information
- 3GPP TS 21.111 -v6.3.0: USIM and IC card requirements
- 3GPP TS 31.111 -v6.11.0 "USIM Application Toolkit (USAT)"
- 3GPP TS 45.002 -v6.12.0: Multiplexing and multiple access on the radio path
- 3GPP TS 51.014 -v4.5.0: Specification of the SIM Application Toolkit for the Subscriber Identity
 Module Mobile Equipment (SIM-ME) interface
- 3GPP TS 51.010 -1 -v6.7.0: Mobile Station (MS) conformance specification; Part 1: Conformance specification
- 3GPP TS 22.004 -v6.0.0: General on supplementary services
- 3GPP TS 23.090 -v6.1.0: Unstructured Supplementary Service Data (USSD); Stage 2

• 3GPP TS 24.008 v6.19, Mobile radio interface Layer 3 specification;

2 Introduction

2.1 Description

H350 serials are highly integrated 3G wireless communication modules, support GSM / GPRS / EDGE and UMTS / HSDPA / HSDPA

2.2 Specifications

Specifications						
	H350-Axx-10	H350-Bxx-10				
Bands	UMTS (WCDMA/FDD): 900/2100MHz	UMTS (WCDMA/FDD): 850/1900MHz				
	GSM/GPRS/EDGE: 900/1800MHz	GSM/GPRS/EDGE: 850/1900MHz				
	UMTS/HSDPA/HSUPA 3GPP releas	se 7				
	HSUPA 5.76Mbps (Cat 6)					
Data	HSDPA 21Mbps (Cat 14) or 7.2Mbp	s (Cat 8)				
Data	GSM 3GPP release 7					
	EDGE (E-GPRS) multi-slot class 33	(296kbps DL, 236.8kbps UL)				
	GPRS multi-slot class 33(107kbps D	DL, 85.6kbps UL)				
	Dimension: 29.8mm x 17.8mm x 2.00mm					
Physical	Interface: LGA					
	Weight: 2.5 grams					
Environment	Operating Temperature: -30 °C ~ +85 °C					
Environment	Storage Temperature: -40 °C ~ +85 °C					
Performance						
Operating Voltage	Voltage: 3.3V ~ 4.5V Normal: 3.8V					
	2mA (Sleep Mode)					
Operating Current (Typical	3G Idle: 13mA					
Value)	3G Talk: 500mA					
	2G Talk: 260mA (GSM PCL5)					
T. D	Class 4 (2W): 850/900 MHz, GSM	1				
Tx Power	Class 1 (1W): 1800/1900 MHz, GS	M				
(Typical Value)	Class E2 (0.5W): 850/900 MHz, EDGE					

	Class E2 (0.4W): 1800/1900 MHz, EDGE					
	Class 3 (0.2W): 900/850/1900/2100 MHz, WCDMA					
Rx Sensitivity	UMTS/HSPA: -109dBm					
(Typical Value)	GSM: -108dBm					
Interfaces						
RF Interface	Antenna					
	1 x USB 2.0					
	2 x UART					
	MUX Over UART1					
Connectivity	Multiple Profiles over USB					
Connectivity	SPI Support					
	I2C Support					
	I2S Support					
	PCM, HSIC, GPIO, A/D, RTC					
Data Features						
Protocol Stack	Embedded TCP/IP and UDP/IP protocol stack					
EDGE	Multi-slot class 33(5 Down; 4 Up; 6 Total)					
	Coding Scheme MCS1~9					
GPRS	Multi-slot class 33(5 Down; 4 Up; 6 Total)					
	Coding Scheme CS1~4					
CSD	UMTS(14.4kbps), GSM(9.6kbps)					
USSD	Support					
SMS	MO / MT Text and PDU modes					
Sivio	Cell broadcast					
Voice Features	Digital Audio					
voice i catales	Voice coders: EFR/HR/FR/AMR					
Audio Control	Gain Control					
	IRA					
Character Set	GSM					
Character Set	UCS2					
	HEX					
AT Commands	FIBOCOM proprietary AT commands					

	GSM 07.05
	GSM 07.07
	Firmware Loader Tool over USB/UART
Accessories	User Manual
	Developer Kit

2.3 Appearance

The following picture shows the H350 Wireless Communication Module.

Top view:

Figure 2-1 Top View

Bottom view:

Figure 2-2 Bottom View

3 Mechanical

3.1 Dimensions

Figure 3-1 Mechanical Specifications

3.2 PCB Layout Design

H350 RECOMMENDED LAND PATTERN (Unit: mm)

Figure 3-2 Recommended PCB Layout

4 Hardware Overview

4.1 Block Diagram

Figure 4-1 Block Diagram

4.2 Pin Definition

4.2.1 Pin Map

GND

Figure 4-2 Pin Definition

4.2.2 Pin Description

The logic electrical lever of H350 is 1.8V. The following table shows H350 pin description:

Pin#	Pin Name	I/O	Reset Value	Idle Value	Description		
Power	Power Supply						
61	VBAT	I					
62	VBAT	I					
63	VBAT	1			Module main power input, voltage		
64	VBAT	I			range: 3.3V ~ 4.2V		
65	VBAT	I					
66	VBAT	I					
59	VIO	0			1.8V output		
44	VRTC	I/O			Backup battery power input.		
Power	ON/OFF Signal				,		
45	POWER_OFF	I	PU	PU	Power off signal, 200K resistor pulled up inside the module		
47	POWER_ON	I	PU	PU	Power on signal, 200K resistor pulled up inside the module		
Reset	Signal						
46	RESET_ALL_N	I	PU	PU	External reset signal		
USIM							
27	USIM_CD	I	PU	PU	USIM card insert detected. 390K resistor pulled up inside the module		
26	USIM_VCC	0			USIM card power supply, 1.8V or 3.3V		
25	USIM_RST	0	PP	PP	USIM card reset		
24	USIM_CLK	0	PP	PP	USIM card clock		
23	USIM_DATA	I/O	PU	PU	USIM card data, 4.7K resistor pulled up inside the module		
High S	High Speed SIM						

22	USIM_D+				High speed SIM card USB+(not support)
21	USIM_D-				High speed SIM card USB- (not supported)
I ² S				_	
18	I2S2_CLK0	0	Т	Т	I2S2 I Clock SCLK0
14	I2S2_WA0	0	Т	Т	I2S2 word alignment select
15	I2S2_TX	0	Т	Т	I2S2 transmit line
16	I2S2_RX	I	Т	Т	I2S2 receive line
USB					
31	USB_DP	I/O			USB+
32	USB_DM	I/O			USB-
33	VBAT	I			USB Power supply
I ² C					
20	I2C_SDA	I/O	PU	PU	I2C data line, 4.7K resistor pulled up inside the module
19	I2C_SCL	0	PU	PU	I2C clock line 4.7K resistor pulled up inside the module
UART	1				
12	UART1_RI	0	L	L	UART1 Ring Indicator
56	UART1_DSR	I	Т	Т	UART1 DTE, DTE Ready
55	UART1_DTR	0	Н	Н	UART1 DCE, Module Ready Indicator,
57	UART1_DCD	0	L	L	UART1Carrier Detect
10	UART1_CTS	I	PU	PU	UART1 Clear To Send
11	UART1_RTS	0	L	L	UART1 Request To Send
8	UART1_TXD	0	PP	PP	UART1 Transmitted Data

9	UART1_RXD	I	PU	PU	UART1 Received Data		
UART	UART2						
51	UART2_TXD	0	PP	PP	UART2 Transmitted Data(MUX as SPI_MTSR)		
50	UART2_RXD	I	PU	PU	UART2 Received Data(MUX as SPI_MRST)		
ADC							
44	AD04				Analog digital converter 1		
41	ADC1	I			Input voltage: 0∼1.2V		
EINT							
49	WAKE_UP	I	PU	PU	External wake-up interrupt, active low		
48	EINT2	I	PU	PU	External interrupt, active low		
29	EINT3	1	PU	PU	External interrupt, active low		
USB H	ISIC						
35	HSIC_USB_DAT A				HSIC USB data(not supported)		
34	HSIC_USB_STR B				HSIC USB pulse(not supported)		
Clock							
3	FSYS1_26M	0	L	L	26M clock output		
38	CLKOUT0	0	PP	PP	Digital audio clock output		
30	CLK32K	0			32kclock output signal		
Tunab	le ANT(In the d	evelop	ing stage, n	ot suppurt)			
4	ANTCTL3	0	L	L	Tunable antenna control signal, bit3.		
5	ANTCTL2	0	L	L	Tunable antenna control signal, bit2. 2.5V		
6	ANTCTL1	0	L	L	Tunable antenna control signal, bit1. 1.8V		
7	ANTCTL0	0	L	L	Tunable antenna control signal, bit0. 1.8V		

RF					
73	ANT	I/O			Antenna interface, impedance is 50ohm
other	s				
43	SMI	0	L		Sleep Mode Indicator
17	CDI	0	PD	PD	Core Dump Indicator
54	W_DISABLE#	O/I			Network control signal(can be used as LPG or SPI_MRDY)
52	USIF3_SCLK	I/O			reserve for SPI_CLK
53	SRDY	0			reserve for SPI_SRDY
13	GPIO13	0			GPIO13(reserve for HSIC wake up signal)
36	GPS_Blanking	0	L	L	Peripheral GPS device control signal
37	BODY_SAR	I	PU	PU	BODY_SAR detection signal
Not c	onnect				
1	NC				
2	NC				
39	NC				
40	NC				
42	NC				
58	NC				
GND					
28	GND				
60	GND				
67	GND				
68	GND				
69	GND				
70	GND				
71	GND				

72	GND		
74	GND		
75	GND		
76	GND		
77	GND		
78	GND		
79	GND		
80	GND		
81	GND		
82	GND		
83	GND		
84	GND		
85	GND		
86	GND		
87	GND		
88	GND		
89	GND		
90	GND		
91	GND		
92	GND		
93	GND		
94	GND		
95	GND		
96	GND		
97	GND		
98	GND		
99	GND		

100	GND		
101	GND		
102	GND		
103	GND		
104	GND		
105	GND		
106	GND		
107	GND		
108	GND		
109	GND		
110	GND		

H: High Voltage Level

L: Low Voltage Level

PD: Pull-Down

PU: Pull-Up

T: Tristate

OD: Open Drain

PP: Push-Pull

5 Hardware Interface

5.1 Power Interface

5.1.1 VBAT

H350 module requires a 3.3 V \sim 4.2V DC power supply to provide 2A as GSM transmitter maximum current.

Input power supply requirements:

Parameter	Minimum Value	Recommended Value	Maximum Value	Unit
VBAT	3.3	3.8	4.5	V

Note:

- 1. Supply voltage fluctuations need to be lower than 300mV.
- 2. Supply voltage drop minimum value needs to be higher than 3.3V.

Filter capacitor description:

Recommended capacitor	Application	Description
1000uF	GSM Transmit current serge	Minimizes power supply losses during transmit bursts. Use high capacitance value as possible as you can.
10nF, 100nF	Digital signal noise	Filtering interference from clock and data sources
8.2pF, 10pF	1800/1900/2100 MHz bands	Filters transmission EMI.
33pF, 39pF	850/900 MHz bands	Filters transmission EMI.

5.1.2 Power Consumption

Parameter	Description	Condition		Typical Value	Unit	
I OFF	RTC mode			68	uA	
Libie	Idle mode(GSM)	MFRMS	5	12.1	I IDLE	
IDLE	WCDMA	DRX	8	12.5		
			2	1.9		
	Low power mode (GSM)	DRX	5	1.5	I SLEEP	
I SLEEP	(COM)		9	1.5		
	Low power mode (WCDMA)	DRX	6	1.8		
			8	1.8		
			9	1.7		
			5	239.00		
I GSM-RMS	GSM voice - 1 TX slot	GSM850 PCL	10	81.80		
	1 RX slot Peak		15	50.10	GSM-RM S	
	current During TX slot		19	46.30		
		EGSM900	5	246.7		

		PCL	10	91.9	
			15	61.2	
			19	57.2	
			0	172.2	
		DCS1800 PCL	5	82.1	
		DCS 1800 FCL	10	60.3	
			15	57.9	
			0	168.80	
		PCS1900 PCL	5	70.70	
		1 0013001 OL	10	48.80	
			15	46.10	
		0014050 DOI	5	1799.90	
		GSM850 PCL	10	421.10	
	EGSM900 PCL=10	GSM voice - 1Rx slot TX slot	15	143.60	I GSM-MAX
Loovery			19	116.40	
I GSM-MAX	DCS1800 PCL=0	EGSM900 PCL	5	1738.8	
			10	415.9	
	DCS1800 PCL10	GSM voice - 1Rx slot TX slot	15	135.3	
			19	124.2	
		DCS1800 PCL	0	1012.9	
		DCS 1800 PCL	5	348.7	
	EGSM900	GSM voice - 1Rx slot TX slot	10	141.5	
	PCL=15		15	110.3	
	DCS1800	PCS1900 PCL	0	1162.10	
	PCL=2		5	343.80	
	DCS1800	GSM voice - 1Rx slot	10	139.50	
	PCL=10	TX slot	15	116.20	
	GSM850 PCL=5		1	223.90	
I GPRS	GSM850 PCL=10	GSM voice - 1RX slot	4	364.20	I GPRS
IGFNO	EGSM900	TX slot	1	85.00	I Grko
	PCL=5		4	214.70	

EGSM900 PCL=10		1	247.9	
PGL=10	Band8	4	373.7	
	Dalluo	1	89	
		4	220.3	

5.1.3 VIO

VIO is power supply for the digital portion of the circuit inside of the module; it can be used for indicating signal of the module. VIO can be used as a reference level of the module digital signal.

Parameter	Minimum Value	Recommended Value	Maximum Value	Unit
VIO @working	1.773	1.8	1.827	V

5.1.4 VRTC

VRTC supplies power for RTC clock inside the module, can be connected to external RTC battery.

Parameter	Minimum Value	Recommended Value	Maximum Value	Unit
VRTC output voltage	1.71	1.8	1.89	V
VRTC input voltage (RTC is working)	0.5	1.8	1.89	V
VRTC input current (RTC is working)			1.0	uA

VRTC Reference design:

Figure 5-1 VRTC Reference Design

Note:

- R8 is the current-limiting resistance in order to ensure VRTC working normally. R8 ≥1kohm
- VRTC Current consumption < 2uA;
- C9 value can affect RTC hold time
- You can refer to the following formula to calculate the RTC hold time: T= (1.8-0.5)*C/1=1.3C,
 unit: s

For example: If C9 use 100uF capacitance, the RTC can hold about 130s.

Just don't connect pin VRTC if no need RTC function.

5.2 ON/OFF and Reset

5.2.1 Pin Definition

H350 wireless communication module has three control signals: power on, off and reset the module.

Pin Definition:

Pin#	Pin Name	Electrical Level	Description
45	POWER_OFF	CMOS 1.8V	Power off signal
47	POWER_ON	CMOS 1.8V	Power on signal
46	RESET_ALL_N	CMOS 1.8V	External reset signal input

5.2.2 Power ON Signal

After the module is powered on, users can lower down the POWER_ON signal, then module boots up.

The following table shows the burst timing:

Parameter	Condition	Minimum Value	Typical Value	Maximum Value	Unit
Pulse Width		100	300	3000	ms

Timing control:

Figure 5-2 Timing Control

Reference design:

Figure 5-3 POWER_ON Reference Design

5.2.3 Power off Signal

After lower down POWER_OFF signal, the power manage unit (PMU) of module is reset, module changes to shutdown status.

Parameter	Condition	Minimum Value	Typical Value	Maximum Value	Unit
Pulse Width		100	300	3000	ms

Timing control:

Figure 5-4 Timing Control

Reference design:

Figure 5-5 POWER_OFF Reference Design

5.2.4 Reset Signal

H350 wireless communication module supports external reset; it can restore the module to default settings through Reset signal.

When Reset signal is Active Low by 100ms, the module will reset and restart. When users reset the module, PMU inside the module is still on.

Note: Reset signal is sensitive, when PCB layout, please keep it away from radio frequency interference, add debouncing capacitor near the module end is recommended. Don't trace the Reset signal in PCB edge or surface, it may reset ESD.

Pulse Timing requirements:

Parameters	Condition	Minimum Value	Typical Value	Maximum Value	Unit
Pulse Width		100	300	3000	ms

Recommended design:

Figure 5-6 Reset Recommended Design

5.3 Indicator Signal

5.3.1 Pin Description

Pin#	Pin Name	Description
54	W_DISABLE1#/LPG	Open/close network/state indication
43	SMI	Sleep Mode Indicator
17	CDI	Core Dump Indicator
49	WAKE_UP	Wake up module

5.3.2 Indicator Description

5.3.2.1 LPG Signal

LPG signal description:

Status	Mode	
idle(unregistered)	high level: about 2.5s, low level: about 100ms	
idle(registered)	75ms high level, 3S low level	
Call	low level	
Data communicating	75ms high level, 75ms low level	
Sleep	high level	

Note: High level voltage is 1.8V.

5.3.2.2 SMI

Module M	ode	Mode
Sleep Mod	de	2.5S High level; 100ms Low level alternate change
Other Mod	le	low level

5.3.2.3 CDI Indicator

Used for Core dump indicator.

Module Mode	Mode
Normal mode	low level
Core Dump	High level

5.3.2.4 WAKE_UP

Module Mode	WAKE_UP Signal	Description
Sleep	Low level	Wake up module, switch from Sleep to Idle
Оісор	High level	Stay in Sleep mode
Idle/Call	Low level	Keep mode, no affect
	High level	Module cannot set to Sleep mode

5.4 USB Interface

5.4.1 USB Interface Description

Pin#	Pin Name	I/O	Description
31	USB_DP	I/O	USB+
32	USB_DM	I/O	USB-
33	VBAT	I	USB power supply

H350 wireless communication module supports USB 2.0. Install the corresponding USB driver before use on PC. After H350 wireless communication module plugged into the PC, the USB can map seven ports:

- One 3G Modem/AT port for data operation
- Three ports for sending AT Command
- One port for trace
- · Two ports are reserved

5.4.2 USB Interface Application

Reference Design:

Figure 5-7 USB Interface Reference Design

T101 and T102 should be low capacitor TVS, it is below 1pF. No special requirement for T103.

VUSB is USB power supply, Recommend power supply range is $3.3V \sim 4.5V$. Please don't float pin VUSB, or USB can't be detected.

USB_DP and USB_DM are high speed differential lines, the highest transmit speed is 480 Mbps.

PCB Layout note:

- USB_DP and USB_DM lines need equal length, parallel, as short as possible.
- The input and output need GND isolation.
- The layout design of this circuit on the AP board should comply with the USB 2.0 high speed protocol,
- With differential lining and impedance control to 90 ohm.

5.5 UART Interface

5.5.1 UART Interface Description

H350 wireless communication module provides two UART, one is 8 wire serial bus interface, and the other is a 2 wire serial bus interface.

8 wire serial bus interface (UART1) supports flow control; users can download software or send/receive AT through UART1. 2 wire serial bus interface (UART2) supports a few AT Commands.

Note:

- UART2 only supports some common query functions.
- UART2 doesn't support hardware flow control, no CTS, RTS, DTR, DSR, DCD, RI pin.

UART2 support MUX as SPI interface.

UART1 and UART2 signal description:

UART1	UART1			
Pin#	Pin Name	I/O	Description	
12	UART1_RI	0	UART1 Ring Indicator	
56	UART1_DSR	1	UART1 DTE Ready	
55	UART1_DTR	0	UART1 DCE Ready	
57	UART1_DCD	0	UART1 Carrier Detect	
10	UART1_CTS	I	UART1 Clear to send	
11	UART1_RTS	0	UART1 Request to send	
8	UART1_TXD	0	UART1 Transmitted Data	
9	UART1_RXD	I	UART1 Received Data	
UART2	UART2			
Pin#	Pin Name	I/O	Description	
50	UART2_RXD	I	UART2 Transmitted Data	
51	UART2_TXD	0	UART2 Received Data	

5.5.2 UART Design

The following table show the signal direction when H350 wireless communication module (DCE) UART1 connects to PC (DTE):

Application MCU(DTE)	Signal Direction	H350 Module (DCE)
RXD	-	UART1_TXD
TXD		UART1_RXD
RTS		UART1_CTS
CTS	←	UART1_RTS
DSR	-	UART1_DTR
DTR		UART1_DSR

RI	—	UART1_RI
DCD	—	UART1_DCD

The following table shows the signal direction when H350 wireless communication module (DCE) UART2 connects to PC (DTE):

Application MCU(DTE)	Signal Direction	H350 Module (DCE)
RXD	←	UART2_TXD
TXD		UART2_RXD

Note: Module UART high level is 1.8V, please use external level shifter if connect to 2.8V or 3.3V IO interface.

When you design:

Level shift from 1.8V to 3.3V, SN74LVC2G07 is recommended.

When UART1 communicating with PC, first translates from 1.8V to 3.3V, and then uses SP3238 to translate.

When UART2 communicating with PC, first translates from 1.8V to 3.3V, and then uses SPIEX3232EEA to translate level. Notice the signal direction when translate level.

5.5.3 Ring Indicator

UART1_R1 is used for indicating incoming call and SMS, sending pulse to host application program.

Operation Mode	Status
Default mode	Low level
Ringing	1s high level, 1s low level, cycling
Incoming message	150ms pulse

5.6 USIM

H350 wireless communication module supports USIM and high speed SIM card, does not support 8 line smart USIM yet.

5.6.1 USIM Interface

Pin#	Pin Name	I/O	Description
26	USIM_VCC	0	USIM power supply output
25	USIM_RST	0	USIM Reset signal

24	USIM_CLK	0	USIM clock signal
23	USIM_IO	I/O	USIM data signal
28	GND	GND	USIM ground
27	USIM_CD	I	USIM insert detect signal Low level indicates SIM card is not inserted High level indicates SIM card is inserted

5.6.2 **USIM**

5.6.2.1 Normally Closed SIM Circuit Design

Reference Design:

Figure 5-8 Normally Closed SIM Interface Reference Design

Normally closed SIM:

- 1) Pull out SIM card, pin 7 and pin 8 are shorted.
- 2) Plug SIM card, pin 7 and pin 8 are disconnected.

5.6.2.2 Normally Open SIM Circuit Design

Reference Design:

Figure 5-9 Normally Open SIM Interface Reference Design

Normally Open SIM:

- 1) Pull out SIM card, pin 7 and pin 8 are disconnected.
- 2) Inset SIM card, pin 7 and pin 8 are shorted.

Note:

- For better EMC performance, SIM card holder should be close to module
- Filtering capacitor should be close to SIM card pin
- The interface need add ESD protection, ESD should be close to SIM card pin
- USIM_IO is already pulled up inside the module
 USIM_CD support SIM hot plug, high level activated default (detect level can be changed by AT command). If high level is detected, it means SIM card is inserted.

5.6.3 USIM Design Notice

The SIM interface and signals design is extremely important.

There are several design guidelines that must be followed:

- The layout signals of the SIM card should be away from any possible EMI interference sources, such
 as the RF antenna and digital switching signals.
- To ensure signal integrity, the length between SIM interface signals and module should not exceed
 100 mm
- To avoid crosstalk between USIM_CLK and USIM_IO, it is recommended to route them separately on the application board, and preferably isolated by a surrounding ground plane.
- The SIM card signals should be protected from ESD using very low capacitance protective elements (like Zener diode). The recommended part no of ESD is AVR-M1005C080MTAAB (TDK). ESD component should layout with SIM hold closely.

5.6.4 USIM Hot Plug

H350 supports SIM hot plug.

5.6.4.1 Hardware Connection

SIM hot plug function interacts with USIM_CD signal.

When no SIM card, USIM_CD is low level; insert SIM, USIM_CD is high level.

Explanation:

For normally closed SIM card circuit, as shown in Figure 5-8, USIM_CD connects Pin8 (SW2) of U2, Pin7 (SW1) connects GND. When there is no SIM card, SW2 and SW1 are shorted, so, SW2 is low level, when insetting SIM card, SW1 and SW2 are disconnected, USIM_CD is pulled up.

For normally open SIM card circuit, as shown in Figure 5-9, USIM_CD connects Pin8 (SW2) of U2, and it also connects GND with 47K resistor, Pin 7 is pulled up with 47K resistor. When no SIM card, SW2 and SW1 are disconnected, so SW2 is low level, after inserting SIM, SW2 and SW1 are shorted, USIM_CD is pulled up.

5.6.4.2 Software Configuration

"+MSMPD" AT command defines the SIM card status detection feature.

When set AT+MSMPD=0, the SIM detected feature deactivated. Module does not detect USIM_CD signal.

When set AT+MSMPD=1, the SIM detected feature activated. USIM_CD pin can test whether SIM card is onsite or not.

SIM_CD is High level, SIM card is onsite, and module registers the network automatically.

SIM CD is Low level or not connected, SIM card is offsite and module drops out the network.

Note: The +MSMPD default value is "1". USIM_CD is only used for SIM card hot plug detecting,

Module won't detect SIM_CD at the first starting (it means the module will read SIM card data and register network at the first time starting, no matter pin SIM_CD is high level or low level).

5.7 Digital Audio

H350 supports digital audio I2S interface, this interface supports normal I2S mode and PCM mode. The level of I2S interface is 1.8V.

I2S signal description:

Pin#	Pin Name	I/O	Description
18	12S2_CLK0	0	Bit Clock
14	I2S2_WA0	0	Left & right channels clock (LRCK)
15	12S2_TX	0	Serial data output
16	12S2_RX	I	Serial data input
20	I2C_DATA	I/O	I2C control signal I/O
19	I2C_SCL	0	I2C control clock

5.7.1 I2S

H350	Signal Direction	Audio CODEC I2S Port
I2S2_CLK0		I2S_CLK
I2S2_WA0		I2S_LRCK
I2S2_RX		I2S_SDIN
I2S2_TX	-	I2S_SDOUT
CLKOUT0		I2S_MCLK

5.7.2 I2C

H350	Signal Direction	Audio CODEC I2C Port
I2C_SDA	←	I2C_SDA
I2C_SCL		I2C_SCL

Note:

- I2S can work in master mode or slave mode
- It supports various audio sample rates (48 KHz, 44.1 KHz, 32 KHz, 24 KHz, 22.5 KHz, 16 KHz, 12 KHz, 11.025 KHz and 8 KHz).

5.7.3 PCM Mode Interface

H350	Signal Direction	Audio CODEC PCM Port
I2S2_CLK0 (PCM_CLK, PCM clock signal)		PCM_CLK (PCM clock signal)
I2S2_WA0 (PCM_SYNC, PCM frame synchronization signal)		PCM_SYNC (PCM frame synchronization signal)
I2S2_RX (PCM_DIN, PCM data input)	-	PCM_DOUT (PCM data output)
I2S2_TX (PCM_DOUT, PCM data output)		PCM_DIN (PCM data input)

Note:

- PCM mode can configured to master mode and slave mode
- It supports short frame synchronization for 16 bit, 32bit, 48bit and 64bit.
- Supports sending data in burst mode and continuous mode
- It supports various audio sample rates (48 KHz, 44.1 KHz, 32 KHz, 24 KHz, 22.5 KHz, 16 KHz, 12 KHz, 11.025 KHz and 8 KHz).

5.8 ADC Interface

H350 supports ADC detection, with accuracy to 10 bit. The input voltage requirement for ADC: 0~1.2V. The following table shows the ADC signal description:

Pin#	Pin Name	1/0	Description
41	ADC1	I	ADC input

5.9 GPS_BLANKING

The defaulted-value is low level (output). When module works with GSM network, pin GPS Blanking and pin GSM burst will output same pulse signal. Because GSM TX may interfere with GPS RX, AP will close or stop GPS RX when AP detects GPS Blanking signal.

Pin#	Pin Name	I/O	Description
36	GPS_BLANKING	0	Peripheral GPS device control signal

5.10 BODY_SAR

H350 support BODY_SAR function. Pin BODY_SAR is an input I/O (its signal comes from AP output interface), default-value is high level, active low. With peripheral sensor, AP can detect the closing body and output low level to BODY_SAR, getting the interrupt, the module will reduce it's power. The threshold value(power value) can be configured by AT command.

Pin#	Pin Name	1/0	Description
37	BODY_SAR	I	BODY_SAR detection

5.11 Clock

Pin#	Pin Name	I/O	Description
3	FSYS1_26M	0	26Mclock output(peripheral GPS device can use)
38	CLKOUT0	0	26MHz main clock output(I2S can use)
30	CLK32K	0	32K clock output

Note: FSYS1 26M is more accurate than CLKOUT0.

5.12 Others

The module does not support GPIO yet.

6 Electrical and Environmental Features

6.1 Electrical Features

This table shows the electrical features range of H350.

Parameter	Minimum Value	Maximum Value	Unit
VBAT	0	4.5	V
Digital Signal	0	1.9	V

6.2 Environmental Features

This table shows the environmental features of H350.

Parameter	Minimum Value	Maximum Value	Unit
Operational Temperature	-30	+85	°C
Storage Temperature	-40	+85	°C

7 RF Interface

7.1 Operation Frequency Band

7.1.1 Main Antenna

Operating Band	Tx	Rx
UMTS 2100 (Band I IMT)	1920–1980 MHz	2110–2170 MHz
UMTS 1900 (Band II IMT)	1850–1910 MHz	1930–1990 MHz
UMTS 850 (Band V IMT)	824–849 MHz	869–894 MHz
UMTS 900 (Band VIII IMT)	880–915 MHz	925–960 MHz
GSM 850	824–849 MHz	869–894 MHz
GSM 900	880–915 MHz	925–960 MHz
DCS 1800	1710–1785 MHz	1805–1880 MHz
PCS 1900	1850–1910 MHz	1930–1990 MHz

7.2 RF PCB Design

7.2.1 Layout Guideline

As H350 does not have a RF connector, so for RF line, microstrip line is recommended. The shorter the better, insert loss is less than 0.2dB; impedance is less than 50ohm.

It is to mount H350 module and antenna connector to the same side of layout.

Add a π -type circuit (two parallel device ground pin directly to the main land) for antenna matching.

Figure 7-1π-type Circuit

7.2.2 Impedance

The RF lines impedance should not exceed 50 ohm.

7.3 Antenna Design

7.3.1 Main Antenna Design Requirements

(1) Antenna Efficiency

Antenna efficiency is the ratio between antenna input power and radiation power. The radiation power of an antenna is always lower than the input power due to the following factors: return loss, material loss, and coupling loss.

Efficiency of the master antenna > 40% (–4dB)

(2) S11 or VSWR

S11 (return loss) indicates the degree to which the input impedance of an antenna matches the reference impedance (50 ohm). S11 shows the resonance feature and impedance bandwidth of an antenna. Voltage standing wave ratio (VSWR) is another expression of S11. S11 relates to the antenna efficiency. S11 can be measured by vector analyzer.

S11 of the master antenna < -10 dB

(3) Polarization

The polarization of an antenna is the orientation of the electric field vector that rotates with time in the direction of maximum radiation.

Linear polarization is recommended: it would be better if the polarization direction of diversity antenna is different from main antenna.

(4) Radiation Pattern

Radiation pattern refers to the directional dependence of the strength of the radio waves from the antenna or other source.

The radiation pattern of half wave dipole antennas is the best for wireless terminals. If it is built-in antenna, PIFA antenna is recommended:

Antenna area (H x W x L): 6mm x 10mm x 100mm. PIFA or IFA antenna is recommended.

Radiation Pattern: Omni-directional

(5) Gain and Directivity

The directivity of the antenna is the electromagnetic field strength of the electromagnetic wave in each direction. An antenna's power gain is a key performance figure which combines the antenna's directivity and electrical efficiency.

Antenna gain ≤ 2.5dBi

(6) Interference

Besides the antenna performance, the interference on the PCB board also affects the radio performance (especially the TIS) of the module. To guarantee high performance of the module, the interference sources on the user board must be properly controlled. On the PCB board, there are various interference sources that can affect the module, such as the speaker, LCD, CPU, FPC trace and audio circuits, the power supply should be far away from antenna, notice isolation, shield and filtering processing issues.

(7) TRP/TIS

TRP (Total Radiated Power):

- W900/W850/W1900/W2100>19dBm
- GSM850/GSM900>28dBm
- DCS1800/PCS1900>25dBm

TIS (Total Isotropic Sensitivity):

- W900/W850<-102dBm
- W1900/W2100<-103dBm
- GSM850/GSM900<-102dBm
- DCS1800/PCS1900<-102dBm