铝合金板材电磁自由成形中变形程度研究实验

姓名: 李旭阳 学号: M201970988 班级: 材硕 1907 班

1. 实验设计 (第一章)

本次实验研究铝合金板材在电磁自由成形过程中板材的种类、板材的厚度以及放电的能量等因素对板材的变形程度的影响规律。

1. 实验的目的

探究板材材料、厚度以及放点电压对电磁成形过程中板材的变形程度的影响规律。

2. 实验的方法

对不同材料、厚度和放电电压进行电磁成形组合实验,分别测得各组试样在相应材料、厚度和放点能量条件下材料的成形高度。

3. 实验的评价

用每一组试样的成形高度来衡量试样的变形程度,成形高度越大,则试样的变形程度越大。

如图 1 所示为板材电磁自由成形的析因图。本次实验的变量为板材变形程度,用板材的成形高度进行衡量。实验的三个变量为板材的种类、板材厚度和放电电压,概括在可控设计因子内;保持常量的因子包括成形模具的形状尺寸、放电频率等;不可控因子包括环境的温度、压边力和润滑条件等;分区组的因子包括安装误差、线圈与板料间距等。

图 1 板材电磁自由成形析因图

2. 方差分析 (第二章)

在本次试验中,板材种类为 AA5754 和 AA5182 两种铝合金板材,材料厚度为 1mm 和 1.6mm。放电电压分布在 5.0kV 到 7.5kV 之间。实验方案和实验数据结合相关参考文献并加以改动。在成形中,放电频率保持 5.5kV 不变,成形模具形状和尺寸保持不变。

材料和厚度不同的板料在不同放电电压成形条件下测得板料的成形高度如表 1 所示。

板材种类	板材厚度/mm	放电电压/kv	成形高度/mm
AA5754	1	5	33.1
	1	5.5	37.6
	1	5.9	43
	1	6	44.4
	1	5	33.1
	1	5.5	37.6
	1	6.1	44.8
	1	6.2	46.8
	1	6.5	50.1
	1	7	58
	1	6	42.5
AA5182	1	6.5	42
	1	5.5	32
	1	5.5	34
	1	6.6	42.4
	1	6.4	40.6
	1	6.2	39.2
	1	6.1	38.1
	1	6	37.4
AA5754	1.6	5.6	30.5
	1.6	6.3	34.8
	1.6	6.8	38.4
	1.6	5.6	29.6
	1.6	6.3	34.6
	1.6	6.8	38.5
	1.6	7	41
	1.6	7.1	42
	1.6	7.5	46.2

表 1 电磁自由成形成型高度记录表

1. 单因素分析

对放电电压对 1mm 的 AA5754 板材电磁自由成形的成形高度的影响规律进行单因素分析。对表 1 中同一放电电压随机选取其一即可。由于每一组实验只测得一次成形高度,即只有一个水平,因此对每组实验进行扩充。设在某放电电压下,板料成形高度测得为 h,以该值为参考, 取 2.5%的偏差, 随机扩充两组(水平)数据, 在 EXCEL 中所用公式如下

ROUND(((RAND()-0.5)*0.05+1)*h,1),

扩充后的实验数据如表 2 所示。

放电电	成形高度 1/mm	成	形	高	度	成	形	高	度
压		2/r	nm			3/n	nm		

5	33.1	32.6	33.5
5.5	37.6	38.1	38.4
5.9	43	42.3	43.5
6	44.4	43.3	44.4
6.1	44.8	44.7	44.5
6.2	46.8	46.7	47.1
6.5	50.1	49.4	51.2
7	58	56.9	57.7

表 2 放电电压对成型高度的影响

给定α=0.05, 然后对数据进行单因素方差分析, 结果如表 3 所示。

方差分析: 单因素方差分析

SUMMARY

组	观测数	求和	平均	方差
行 1	3	98.2	32.73333	0.163333
行 2	3	112.3	37.43333	0.143333
行 3	3	129.3	43.1	0.13
行 4	3	134.9	44.96667	0.263333
行 5	3	135.6	45.2	0.16
行 6	3	142.1	47.36667	0.303333
行 7	3	149.1	49.7	0.13
行 8	3	174	58	0.25

方差分析

73 - 73 1/1						
差异源	SS	df	MS	F	P-value	F crit
组间	1244.68	7	177.8114	921.7004	1.24E- 19	2.657197
组内	3.086667	16	0.192917			
总计	1247.766	23				

由表 3 可知, F(7, 16)=921.7004>F_{0.05}(7, 16)=2.66,故接受 H₁假设,即不同放电电压对成形高度影响显著。

2. 可重复双因素分析

针对板厚和放电电压对成形高度的影响规律进行可重复双因素分析。数据由对表 1 中 1mm 和 1.6mm 的 AA5752 试样在不同电压下成形高度进行线性差值,取得相应估计值,然后加上±2.5%的随机误差后产生。实验数据如表 4 所示。

板	5	5.5	6	6.5	7	7.5
厚\电压						
1	32.1	38.2	44.2	50.3	56.4	61.3
	32.7	38.6	44.5	49.6	57.8	61
	32.8	38	43.9	51.3	56.2	60.9
1.6	31.5	34.4	37.6	40.6	43.8	46.9
	30.5	34.8	37.6	41.4	44.4	47.5
	30.7	35.1	38.2	41.1	43	46

表 4 可重复双因素分析数据

分析结果如表 5 所示。由表 5 可知, F(1, 24)=1933>F_{0.05}(1, 24)=4.26, 且 F(5, 24)=1407>F_{0.05}(5, 24)=2.62, 故板料厚度和放点电压对成形高度的影响都比较显著。同时必须注意到,交互项 F(5, 24)=129.7>F_{0.05}(5,24)=2.62,说明板料厚度和放电电压的交互作用影响也比较大。

表 5 可重复双因素分析结果

方差分析:	可重复双	因素分析					
SUMMAR'	5	5.5	6	6.5	7	7.5	总计
1							
观测数	3	3	3	3	3	3	18
求和	97.6	114.8	132.6	151.2	170.4	183.2	849.8
平均	32.53333	38.26667	44.2	50.4	56.8	61.06667	47.21111
方差	0.143333	0.093333	0.09	0.73	0.76	0.043333	105.854
1.6							
观测数	3	3	3	3	3	3	18
求和	92.7	104.3	113.4	123.1	131.2	140.4	705.1
平均	30.9	34.76667	37.8	41.03333	43.73333	46.8	39.17222
方差	0.28	0.123333	0.12	0.163333	0.493333	0.57	30.58918
总计							
观测数	6	6	6	6	6	6	
求和	190.3	219.1	246	274.3	301.6	323.6	
平均	31.71667	36.51667	41	45.71667	50.26667	53.93333	
方差	0.969667	3.761667	12.372	26.67767	51.72267	61.30667	
方差分析							
差异源	SS	df	MS	F	P-value	F crit	
样本	581.6136	1	581.6136	1933.342	1.87E-24	4.259677	
列	2117.096	5	423.4192	1407.488	8.58E-29	2.620654	
交互	195.2181	5	39.04361	129.7849	1.46E-16	2.620654	
内部	7.22	24	0.300833				
总计	2901.148	35					

3. 无重复双因素分析

针对板厚和放电电压对成形高度的影响规律进行可重复双因素分析。数据由表 4 中第一行和第四行组成,如所示。

板厚\电 压	5	5.5	6	6.5	7	7.5
1	32.1	38.2	44.2	50.3	56.4	61.3
1.6	31.5	34.4	37.6	40.6	43.8	46.9

表 6 数据 无重复双因素分析

分析结果如表 7 所示。由表可知,行和列的计算 F 值均大于 Fcrit,故放电电压

和板料厚度对成形高度的影响均比较显著。

方差分析:	无重复双	因素分析				
SUMMARY	观测数	求和	平均	方差		
行1	6	282.5	47.08333	122.1977		
行 2	6	234.8	39.13333	33.45467		
列 1	2	63.6	31.8	0.18		
列 2	2	72.6	36.3	7.22		
列 3	2	81.8	40.9	21.78		
列 4	2	90.9	45.45	47.045		
列 5	2	100.2	50.1	79.38		
列 6	2	108.2	54.1	103.68		
方差分析						
差异源	SS	df	MS	F	P-value	F crit
行	189.6075	1	189.6075	13.60608	0.014166	6.607891
列	708.5842	5	141.7168	10.16948	0.011801	5.050329
误差	69.6775	5	13.9355			
总计	967.8692	11				

表 7 无重复双因素分析结果

3 相关分析与回归分析 (第三章、第四章)

1. 一元线性相关分析

一元线性相关分析从论文数据中截取放电电压和成形高度的关系进行分析。

数据如表 8。

表 8 一元分析数据

实验序号	放电电压/kV	成形高度/mm
1	5	33
2	5.5	37.8
3	5.9	42.8
4	6	44.4
5	6.1	44.7
6	6.2	46.8
7	6.5	50.1
8	7	57.6

在 excel 中对上述数据进行一元线性相关分析, 得到结果如下表。由列线性相

关结果可知,放电电压和成形高度线性相关度很高。由于每一行因变量和自变量数据个数分别只有一个,故相关度总是为 1。

表 9 一元线性分析结果

列相关性的	分析						30	
	女电电压/k,	 形高度/mr	n				5	5
放点电压/	1							
成形高度	0.997598	1						
行相关性?								
	行1	行 2	行3	行4	行 5	行 6	行7	行8
行1	1							
行 1 行 2	1	1						
行 3	1	1	1					
行 4 行 5	1	1	1	1				
行 5	1	1	1	1	1			
行 6	1	1	1	1	1	1		
行7	1	1	1	1	1	1	1	
行8	1	1	1	1	1	1	1	1

2. 一元回归分析

表 10 为一元回归分析结果。

表 10 一元回归分析结果

回归	 统计							
Multiple R	0.996125							
R Square	0.992264							
Adjusted F	0.990975							
标准误差	0.707425							
观测值	8							
方差分析								
	df	SS	MS	F	gnificance	F		
回归分析	1	385.1573	385.1573	769.6218	1.45E-07			
残差	6	3.002701	0.50045					
总计	7	388.16						
(Coefficient: 7		t Stat	P-value Lower 95% Upper 95% T		下限 95.0%	上限 95.0%	
Intercept	-29.3243	2.678207	-10.9492	3.45E-05	-35.8776	-22.7709	-35.8776	-22.7709
X Variable	12.27789	0.442573	27.74206	1.45E-07	11.19495	13.36082	11.19495	13.36082
RESIDUAL	OUTPUT				PROBABIL	ITY OUTPL	JT	
观测值	预测 Y	残差	标准残差		百分比排位	Υ		
1	32.06517	0.934834	1.42734		6.25	33		
2	38.20411	-0.40411	-0.61701		18.75	37.8		
3	43.11526	-0.31526	-0.48136		31.25	42.8		
4	44.34305	0.056947	0.086949		43.75	44.4		
5	45.57084	-0.87084	-1.32963		56.25	44.7		
6	46.79863	0.00137	0.002092		68.75	46.8		
7	50.482	-0.382	-0.58325		81.25	50.1		
8	56.62094	0.979061	1.494867		93.75	57.6		

由回归统计中 R square 为 0.992 接近于 1 可知,成形高度和放电电压近似呈线性关系。由方差分析中回归分析的 SS=385<F=769,说明拒绝假设 H0,所以接受两者线性相关。由分析结果,成形高度和放电电压的关系式为

h = 12.28U - 32.07

由残差分布可以看出,残差较小,说明预测较为精确。

图 2 一元回归分析中的残差分布

3. 多元线性分析

在多元分析中,构造了一个因变量(结果Y)随三个因变量(因素U、V和W)变化而变化的结果,如表 10 所示。其中,Y 随三个因素变化结果由函数式Y=ROUND(8*(5*U/14-1.5*V/5-0.7*W/2)*(1+0.05*(RAND()-0.5)),2)产生。理想中,Y 与U、V和W均呈线性关系,在此基础上加上±2.5%的随机误差,然后保留两位小数。由此生成一组Y与UVW的关系表,即表 11。

表 11 多元回归分析数据表

序号	因素 U	因素 V	因素 W	结果Y
1	6	1	1	11.76
2	8	2	0.8	16. 14
3	10	3	0.5	19.62
4	12	4	2	18.74
5	14	5	1.5	23. 28
6	6	2	0.8	10.06
7	8	3	0.5	14. 22
8	10	4	2	13.65
9	12	5	1.5	18. 1
10	14	1	1	34.69
11	6	3	0.5	8.67
12	8	4	2	7. 58
13	10	5	1.5	12.49
14	12	2	1	26.83
15	14	1	0.8	34.82
16	6	4	2	1.93
17	8	5	1.5	6.66
18	10	1	1	23. 24
19	12	2	0.8	26. 96

	20	14	3	0.5	30. 99
--	----	----	---	-----	--------

列线性回归分析结果如表 12。从表中看出,第四列即结果 Y 与其他三列的相关系数并不高,这可能主要由于当一个因素不变,其他两个因素改变,从而使一个自变量值对应过个因变量值,从而使相性相关结果不能明显表现出来。行线性回归分析结果如表 13 所示。

表 12 多元线性回归列分析

	列 1	列 2	列 3	列 4
列 1	1			
列 2	-0.025	1		
列 3	-0.03327	0.598777	1	
列 4	0.875649	-0.47216	-0.40917	1

表 13 多元线性回归行分析

	行1	行 2	行3	行 4	行 5	行 6	行7	行8	行 9	行 10	行 11	行 12	行 13	行 14	行 15	行 16	行 17	行 18	行 19	行 20
行1	1																			
行 2	0.997395	1																		
行3	0.992936	0.998947	1																	
行 4	0.986945	0.991904	0.99271	1																
行 5	0.988241	0.995181	0.997833	0.998482	1															
行 6	0.988607	0.99635	0.995532	0.999574	0.999536	1														
行7	0.984997	0.994947	0.997014	0.996084	0.999512	0.997804	1													
行8	0.96687	0.971915	0.975633	0.989339	0.987686	0.986312	0.988575	1												
行 9	0.974392	0.981796	0.985574	0.996446	0.996056	0.994657	0.994828	0.994211	1											
行 10	0.996968	0.994416	0.992024	0.979746	0.975864	0.982151	0.976582	0.948122	0.96257	1										
行 11	0.94705	0.962277	0.964951	0.978074	0.979438	0.976354	0.982187	0.989197	0.993406	0.934527	1									
行 12	0.820264	0.849889	0.844701	0.884731	0.88239	0.876673	0.887299	0.950302	0.919588	0.767555	0.944091	1								
行 13	0.914066	0.932036	0.951289	0.967962	0.97493	0.96215	0.96894	0.988996	0.987883	0.887988	0.99735	0.958726	1							
行 14	0.998842	0.998514	0.996637	0.986696	0.989747	0.989018	0.989125	0.960848	0.972979	0.997906	0.946606	0.818228	0.923792	1						
行 15	0.995625	0.993849	0.990493	0.977192	0.976051	0.97868	0.978472	0.935698	0.963876	0.999983	0.92848	0.797236	0.90376	0.999003	1					
行 16	-0.14328	-0.12144	-0.09303	0.000365	-0.03771	-0.03545	-0.04217	0.114122	0.07717	-0.20566	0.122178	0.466562	0.202814	-0.15989	-0.20509	1				
行 17	0.65985	0.692333	0.710006	0.761629	0.744642	0.756283	0.751283	0.845442	0.824368	0.624275	0.865666	0.96018	0.895954	0.638695	0.623286	0.646348	1			
行 18	0.997292	0.996824	0.991513	0.982419	0.982152	0.983686	0.982861	0.954318	0.961999	0.999837	0.931938	0.800894	0.894407	0.998995	0.99966	-0.1907	0.602748	1		
行 19	0.998342	0.998962	0.9952	0.98677	0.988232	0.988845	0.985997	0.959911	0.967619	0.999146	0.945704	0.806225	0.907967	0.999678	0.999205	-0.17827	0.644304	0.999129	1	
行 20	0.996796	0.998464	0.997704	0.990445	0.990064	0.990798	0.99033	0.964564	0.978921	0.997189	0.955382	0.814523	0.925693	0.999269	0.997059	-0.15532	0.642538	0.99706	0.999476	1

4. 多元回归分析

利用上述数据,进行多元回归分析,得到结果如表 14 所示。由表中 R square 值为 0.9995,十分接近于 1,说明结果 Y 与因素 UVW 均呈现线性关系。方差分析中,回归分析 SS=1697<F=11345,从而拒绝 H0 假设,接受 H1 假设,即认为 Y 与 U、V 和 W 呈线性关系。由分析结果可得,

$$Y = 2.81U - 2.39V - 2.74W$$

而由产生数据的公式,有

$$Y = 2.86U - 2.4V - 2.8W$$
.

可见回归分析结果和理论结果相差很小。

表 14 多元回归分析结果

SUMMAR	y Output							
回归	<u>/</u> 4 → → → → → → → → → → → →							
Multiple R								
R Square	0.99953							
Adjusted F								
标准误差	0.223331							
观测值	20							
方差分析								
	df	SS	MS	F	gnificance	F		
回归分析	3	1697.647	565.8825	11345.59	7.93E-27			
残差	16	0.79803	0.049877					
总计	19	1698.445						
(Coefficients		t Stat	P-value				上限 95.0%
Intercept	0.261186	0.222654	1.17306	0.25794	-0.21082	0.733191	-0.21082	0.733191
X Variable		0.017666	159.1931	4.93E-27	2.774859	2.84976	2.774859	2.84976
X Variable		0.04409	-54.2801	1.43E-19		-2.29975	-2.48668	-2.29975
X Variable	-2.74407	0.117362	-23.3812	8.5E-14	-2.99287	-2.49528	-2.99287	-2.49528
RESIDUAL	OLITRIIT					ITY OUTPL	IT	
RESIDUAL	OUTPUT				PRODADIL	III OOIPC	<i>)</i>	
观测值	预测 Y	残差	标准残差	-	 百分比排位	Υ		
1	11.99775	-0.23775	-1.16008		2.5	1.93		
2	15.77797	0.362034	1.766512		7.5	6.66		
3	19.83259	-0.21259	-1.03731		12.5	7.58		
4	18.94788	-0.20788	-1.01432		17.5	8.67		
5	23.55132	-0.27132	-1.32386		22.5	10.06		
6	10.15335	-0.09335	-0.45548		27.5	11.76		
7	14.20797	0.01203	0.058698		32.5	12.49		
8	13.32326	0.32674	1.594298		37.5	13.65		
9	17.9267	0.173302	0.845613		42.5	14.22		
10	34.49622	0.193775	0.945508		47.5	16.14		
11	8.583352	0.086648	0.422793		52.5	18.1		
12	7.698641	-0.11864	-0.5789		57.5	18.74		
13	12.30208	0.187921	0.916943		62.5	19.62		
14	26.47839	0.351612	1.715657		67.5	23.24		
15	35.04504	-0.22504	-1.09806		72.5	23.28		
16	2.074023	-0.14402	-0.70275		77.5	26.83		
17	6.67746	-0.01746	-0.0852		82.5	26.96		
18	23.24699	-0.00699	-0.0341		87.5	30.99		
19	27.0272	-0.0672	-0.32791		92.5	34.69		
20	31.08183	-0.09183	-0.44806		97.5	34.82		

4 正交实验设计

1. 实验目的

在电磁成形过程中,影响最终成形效果的因素非常之复杂,主要包括放电回路方面(电容、电压、能量、频率等),成形线圈方面(线圈形状、尺寸等),材料方面(电导率、屈服强度等),板坯方面(形状、厚度、热处理状态等)以及板坯和线圈交互方面(两者相对位置、角度和间距等)五大方面的因素。此外,还有许多并未考虑到甚至不可控的因素。为探究电磁自由成形的成形高度的最佳工艺,初步选取放电电压、坯料板厚和线圈与坯料间距等三个因素来设计并进行正交试验,从而探究成形高度与三者的关系。

2. 实验因素和水平

水平\因素	板厚 t/mm	电压 U/kV	间距 s/mm
1	1	6	1
2	2	10	2
3	3	14	4

表 15 实验因素与水平取值

3. 正交表设计

因为没有三因素三水平的正交表, 故采用四因素三水平的正交表, 即 L9(3^4) 正交表, 如下。

水平\因素	板厚 t/mm	电压 U/kV	间距 s/mm	空列 D	成形高度 h/mm
1	1	6	1	1	27.8
2	1	10	2	2	28.6
3	1	14	4	3	31.3
4	2	6	2	1	16.4
5	2	10	4	3	9.6
6	2	14	1	2	25.6
7	3	6	4	3	0.8

表 16 正交表设计及结果

8	3	10	1	2	8.9
9	3	14	2	1	5.4

4. 数据分析

表 17 正交实验数据分析表

K1	87. 7	45	62.3			
K2	51.6	47.1	50.4			
К3	15. 1	62.3	41.7			
k1	29. 23	15	20.77			
k2	17. 2	15.7	16.8			
k3	5.03	20.77	13.9			
极差 R	24. 2	5. 77	6.87			
主次顺序	板厚>间距>电压					
最优水平	A1	В3	C1			
最优组合	A1B3C1					

采用如上正交实验分析方法,探究了板厚、电压和间距三个因素对坯料自由成形中成形高度的影响规律,得出板厚对成形高度的影响最大,坯料与线圈间距其次,放电电压的影响相对最小。另外,所设计的因素水平组合中得出最佳的组合为板厚 1mm,间距 1mm 和电压 14kV。因此可以初步得出,成形高度随放电电压升高、板厚减小和间距减小而增大。

参考文献

[1] Oliveira D A, Worswick M J, Finn M, et al. Electromagnetic forming of aluminum alloy sheet: free-form and cavity fill experiments and model[J]. Journal of Materials Processing Technology, 2005, 170(1): 350-362.)