

MASTER 1 INFO 2021–2022

OPTIMISATION ALGORITHMIQUE

Contrôle du 6 janvier 2022, durée 1h30

Tout document est interdit.

Tout appareil électronique, même à titre d'horloge, est également interdit.

Nombre de pages de l'énoncé : 2

Il faut justifier les réponses. Il sera tenu compte de la rédaction de la copie.

Questions de cours

Soit f une fonction définie et de classe \mathbb{C}^2 sur \mathbb{R}^2 et on suppose qu'il existe un minimum unique $x^* = \underset{x}{\operatorname{arg \, min}} f(x)$.

- 1. Donner la définition d'une direction de descente en un point $x \in \mathbb{R}^2$. Expliquer ce que va entraı̂ner cette définition?
- 2. Expliquer la méthode de Newton pour minimiser f. Donner les avantages et désavantages de cet algorithme.

Exercice 1

Soit $f(x_1, x_2) = \frac{1}{2}x_1^2 + x_2^2$.

- 1. Que vaut $x^* = \arg\min_{x} f(x)$?
 - 2. Calculer $\nabla f(x)$ et $H_f(x)$ au point $x = (x_1, x_2) \in \mathbb{R}^2$.
 - 3. Au point $x^{(0)} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, vérifier que $d^{(0)} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$ est une direction de descente.
 - 4. Déterminer le pas σ_0 qui minimise f le long de cette direction. (Indic. : poser $\varphi(\sigma) = f(x^{(0)} + \sigma d^{(0)})$ et minimiser φ sur \mathbb{R}_+^*).

Calculer ensuite $x^{(1)}$. Conclusion?

5. On garde le même point initial $x^{(0)}$ mais l'on prend $d^{(0)} = -\nabla f(x^{(0)})$. Déterminer alors σ_0 et $x^{(1)}$, comme dans 4. Commentez.

Exercice 2

On pose $g(x,y) = -[\log(1+x_1) + \log(1-x_1) + \log(1+x_2) + \log(1-x_2)].$

- 1. Montrer que g est définie sur $D =]-1, +1[\times]-1, +1[.$
- 2. Calculer $\nabla g(x_1, x_2)$ au point $(x_1, x_2) \in D$.
- 3. Déterminer les points critiques de g.
- 4. Déterminer $x^* = (x_1^*, x_2^*) \in \mathbb{R}^2$ tel que $v_m = g(x_1^*, x_2^*) = \min_{(x_1, x_2) \in D} g(x_1, x_2)$.

On désire tester les méthodes de descente de gradient et de Newton sur la fonction g.

- 5. Expliquer quelles précautions il faut prendre pour appliquer l'algorithme de descente de gradient avec backtracking?
- 6. Est-ce qu'il faut prendre les mêmes précautions pour la méthode de Newton?
- 7. Calculer $\tilde{g}(x_1, x_2) = e^{g(x_1, x_2)}$, pour $(x_1, x_2) \in D$. Que peut-on dire de $\tilde{x}^* = \underset{x \in D}{\operatorname{arg\,min}} \tilde{g}(x)$?