

Efficient Succinct Data Structures on Directed Acyclic Graphs

Tesi Triennale in Matematica

Luca Lombardo

9 Maggio 2025

The Challenge: Massive Data & Query Needs

Modern datasets (Science, Web, Al...) are enormous. Complex analysis demands data in RAM, but auxiliary structures (indexes, trees) needed for queries often **occupy more space than the data itself**. \implies Fitting everything in RAM is a major bottleneck.

The Challenge: Massive Data & Query Needs

Modern datasets (Science, Web, Al...) are enormous. Complex analysis demands data in RAM, but auxiliary structures (indexes, trees) needed for queries often **occupy more space than the data itself**. \implies Fitting everything in RAM is a major bottleneck.

Classic Trade-off:

- Compression: Minimal space, but slow/no direct queries.
- Traditional Data Structures: Fast queries, but large space overhead.

The Challenge: Massive Data & Query Needs

Modern datasets (Science, Web, Al...) are enormous. Complex analysis demands data in RAM, but auxiliary structures (indexes, trees) needed for queries often **occupy more** space than the data itself. \implies Fitting everything in RAM is a major bottleneck.

Classic Trade-off:

- Compression: Minimal space, but slow/no direct queries.
- Traditional Data Structures: Fast queries, but large space overhead.

The Succinct Goal: Best of Both Worlds Can we achieve both?

- Space near information-theoretic minimum.
- Efficient queries directly on compact data.

Goal: Determine the minimum average number of bits per symbol required for a lossless representation of data from a source X.

Goal: Determine the minimum average number of bits per symbol required for a lossless representation of data from a source X.

Definition (Shannon Entropy H(X)**)**

The average uncertainty, or information content, per symbol of source X:

$$H(X) = E_{P_X}[-\log_2 P_X(x)] = -\sum_{x \in \mathcal{X}} P_X(x) \log_2 P_X(x)$$
 [bits/symbol]

Goal: Determine the minimum average number of bits per symbol required for a lossless representation of data from a source X.

Definition (Shannon Entropy H(X)**)**

The average uncertainty, or information content, per symbol of source X:

$$H(X) = E_{P_X}[-\log_2 P_X(x)] = -\sum_{x \in \mathcal{X}} P_X(x) \log_2 P_X(x)$$
 [bits/symbol]

Source Coding Theorem (Lower Bound)

Shannon proved that H(X) constitutes the **theoretical lower bound** on the average number of bits per symbol required to represent the output of source X without loss of information.

We usually don't know the true source P_X . We only have the data sequence S.

Zero-Order Empirical Entropy

A Practical Bound Based on Data

We usually don't know the true source P_X . We only have the data sequence S.

Definition (Zero-Order Empirical Entropy $\mathcal{H}_0(S)$ **)**

Information content of sequence S based on its symbol counts (n_s) :

$$\mathcal{H}_0(\mathit{S}) = \sum_{\mathit{s} \in \Sigma} \frac{n_\mathit{s}}{n} \log_2 \frac{n}{n_\mathit{s}} \quad [\mathsf{bits/symbol}]$$

Uses observed frequencies $\frac{n_s}{n}$ instead of unknown $P_X(x)$.

Zero-Order Empirical Entropy

A Practical Bound Based on Data

We usually don't know the true source P_X . We only have the data sequence S.

Definition (Zero-Order Empirical Entropy $\mathcal{H}_0(S)$ **)**

Information content of sequence S based on its symbol counts (n_s) :

$$\mathcal{H}_0(\mathit{S}) = \sum_{s \in \Sigma} rac{n_s}{n} \log_2 rac{n}{n_s} \quad ext{[bits/symbol]}$$

Uses observed frequencies $\frac{n_s}{n}$ instead of unknown $P_X(x)$.

Relevance for Succinct Structures

 $n \cdot \mathcal{H}_0(S)$ is a practical space benchmark. Succinct data structures often target space close to this value (or higher-order versions \mathcal{H}_k) for the **given sequence S**.

The Simplest Sequence

Consider the most basic sequence: a **bitvector** B[1..n], a sequence of n bits from $\{0, 1\}$.

The Simplest Sequence

Consider the most basic sequence: a **bitvector** B[1..n], a sequence of n bits from $\{0, 1\}$.

- $rank_b(B, i)$: How many bits b are in the prefix B[1..i]? (Count)
- $select_b(B,j)$: What is the position (index) of the j-th occurrence of bit b? (Locate)

The Simplest Sequence

Consider the most basic sequence: a **bitvector** B[1..n], a sequence of n bits from $\{0, 1\}$.

- $rank_b(B, i)$: How many bits b are in the prefix B[1..i]? (Count)
- $select_b(B,j)$: What is the position (index) of the j-th occurrence of bit b? (Locate)

The Simplest Sequence

Consider the most basic sequence: a **bitvector** B[1..n], a sequence of n bits from $\{0, 1\}$.

- $rank_b(B, i)$: How many bits b are in the prefix B[1..i]? (Count)
- $select_b(B,j)$: What is the position (index) of the j-th occurrence of bit b? (Locate)

Furthermore, rank and select are inverse operations:

$$\operatorname{rank}_b \big(B, \operatorname{select}_b (B, j) \big) = j$$
 and $\operatorname{select}_b \big(B, \operatorname{rank}_b (B, i) \big) = i$.

RRR Structure: Entropy-Compressed Bitvectors

Achieving Space Close to Empirical Entropy

Succinct Data Structure for Bitvectors

- Goal: Support rank and select in O(1) time.
- Space: Close to the information-theoretic minimum for the bitvector.

RRR Structure: Entropy-Compressed Bitvectors

Achieving Space Close to Empirical Entropy

Succinct Data Structure for Bitvectors

- Goal: Support rank and select in O(1) time.
- Space: Close to the information-theoretic minimum for the bitvector.

Theorem (RRR Structure)

A bitvector B[1..n] with m set bits can be represented using

$$B(n,m) + o(n) + O(\log \log n)$$
 bits,

where $B(n,m) = \lceil \log_2 {n \choose m} \rceil$, while supporting rank and select queries in O(1) time.

 $B(n,m) \approx n\mathcal{H}_0(B)$ is the **information-theoretic minimum space** required to store an arbitrary subset of size m from a universe of size n

What about sequences S[1..n] over larger alphabets $\Sigma = \{1, \ldots, \sigma\}$?

What about sequences S[1..n] over larger alphabets $\Sigma = \{1, \ldots, \sigma\}$?

abracadabra

{a, b, c, d, r}

What about sequences S[1..n] over larger alphabets $\Sigma = \{1, \ldots, \sigma\}$?

abracadabra 00100010010

{a, b, c | d, r}

Beyond Bitvectors: General Alphabets

Wavelet Trees

What about sequences S[1..n] over larger alphabets $\Sigma = \{1, \ldots, \sigma\}$?

Beyond Bitvectors: General Alphabets

Wavelet Trees

What about sequences S[1..n] over larger alphabets $\Sigma = \{1, \ldots, \sigma\}$?

Beyond Bitvectors: General Alphabets

Wavelet Trees

What about sequences S[1..n] over larger alphabets $\Sigma = \{1, \ldots, \sigma\}$?

\mathcal{H}_0 -Compressed Wavelet Tree

Using RRR for bitvectors:

- Space: $n\mathcal{H}_0(S) + o(n\log\sigma)$ bits.
- Query Time: $O(\log \sigma)$ for access, rank_c, select_c.

Adapts space to the sequence's zero-order entropy.

Representing Sequence Variation: Degenerate Strings Definitions and Core Operations

Definition and Rank & Select Adaptation

A degenerate string is a sequence $X = X_1 X_2 \dots X_n$, where each X_i is a *subset* of the alphabet Σ with cardinality σ . We can define the following operations:

- subset-rank $_X(i,c)$: Counts sets X_k ($k \le i$) where $c \in X_k$.
- subset-select_X(j, c): Finds index k of the j-th set X_k where $c \in X_k$.

Representing Sequence Variation: Degenerate Strings Definitions and Core Operations

Definition and Rank & Select Adaptation

A **degenerate string** is a sequence $X = X_1 X_2 \dots X_n$, where each X_i is a *subset* of the alphabet Σ with cardinality σ . We can define the following operations:

- subset-rank $_X(i, c)$: Counts sets X_k ($k \le i$) where $c \in X_k$.
- subset-select_X(j, c): Finds index k of the j-th set X_k where $c \in X_k$.

$$X = \left\{ egin{array}{l} A \\ C \\ G \end{array} \right\} \left\{ egin{array}{l} A \\ T \end{array} \right\} \left\{ egin{array}{l} C \\ S \end{array} \right\} \left\{ egin{array}{l} T \\ G \end{array} \right\} \qquad egin{array}{l} S = \ ACG \ AT \ C \ TG \\ R = \ 100 \ 10 \ 1 \ 10 \ 1 \end{array} \\ S_1 \ S_2 \ S_3 \ S_4 \end{array}$$

Representing Sequence Variation: Degenerate Strings Definitions and Core Operations

Definition and Rank & Select Adaptation

A **degenerate string** is a sequence $X = X_1 X_2 \dots X_n$, where each X_i is a *subset* of the alphabet Σ with cardinality σ . We can define the following operations:

- subset-rank $_X(i, c)$: Counts sets X_k ($k \le i$) where $c \in X_k$.
- subset-select_X(j, c): Finds index k of the j-th set X_k where $c \in X_k$.

$$X = \left\{ egin{array}{l} A \\ C \\ G \end{array} \right\} \left\{ egin{array}{l} A \\ T \end{array} \right\} \left\{ egin{array}{l} C \\ S \end{array} \right\} \left\{ egin{array}{l} T \\ G \end{array} \right\} \qquad egin{array}{l} S = \ ACG \ AT \ C \ TG \\ R = \ 100 \ 10 \ 1 \ 10 \ 1 \end{array} \\ S_1 \ S_2 \ S_3 \ S_4 \end{array}$$

To compute subset-rank $_X(i,c)$: Let p be the end position in S for prefix $X_1..X_i$, found using select $_1(R,i+1)$. The result is rank $_c(S,p)$.

A New Perspective

Recall our degenerate string *X*:

$$X = \left\{egin{array}{c} \mathtt{A} \ \mathtt{C} \ \mathtt{G} \end{array}
ight\} \left\{egin{array}{c} \mathtt{A} \ \mathtt{T} \end{array}
ight\} \left\{egin{array}{c} \mathtt{A} \ \mathtt{G} \end{array}
ight\} \left\{egin{array}{c} \mathtt{A} \ \mathtt{G} \end{array}
ight\}$$

A New Perspective

Recall our degenerate string *X*:

$$X = \left\{egin{array}{c} \mathtt{A} \\ \mathtt{C} \\ \mathtt{G} \end{array}
ight\} \left\{egin{array}{c} \mathtt{A} \\ \mathtt{T} \end{array}
ight\} \left\{egin{array}{c} \mathtt{A} \\ \mathtt{A} \end{array}
ight\} \left\{egin{array}{c} \mathtt{A} \\ \mathtt{G} \end{array}
ight\}$$

Key Idea

We can model queries on X by constructing a specific node-weighted Directed Acyclic Graph (DAG) G_c for a target character c.

A New Perspective

Recall our degenerate string *X*:

$$X = \left\{egin{array}{c} \mathtt{A} \\ \mathtt{C} \\ \mathtt{G} \end{array}
ight\} \left\{egin{array}{c} \mathtt{A} \\ \mathtt{T} \end{array}
ight\} \left\{egin{array}{c} \mathtt{A} \\ \mathtt{A} \end{array}
ight\} \left\{egin{array}{c} \mathtt{A} \\ \mathtt{G} \end{array}
ight\}$$

Key Idea

We can model queries on X by constructing a specific node-weighted Directed Acyclic Graph (DAG) G_c for a target character c.

• **Vertices** V_c : Source s + one node $v_{k,a}$ for each character $a \in X_k$ at each position k.

Recall our degenerate string *X*:

A New Perspective

$$X = \left\{egin{array}{c} \mathtt{A} \ \mathtt{C} \ \mathtt{G} \end{array}
ight\} \left\{egin{array}{c} \mathtt{A} \ \mathtt{T} \end{array}
ight\} \left\{egin{array}{c} \mathtt{A} \ \mathtt{G} \end{array}
ight\} \left\{egin{array}{c} \mathtt{A} \ \mathtt{G} \end{array}
ight\} \left\{egin{array}{c} \mathtt{A} \ \mathtt{G} \end{array}
ight\}$$

Key Idea

We can model queries on X by constructing a specific node-weighted Directed Acyclic Graph (DAG) G_c for a target character c.

- **Vertices** V_c : Source s + one node $v_{k,a}$ for each character $a \in X_k$ at each position k.
- Weights w_c : $w_c(s) = 0$. $w_c(v_{k,a}) = 1$ if a = c, else 0. (Highlights occurrences of c).

Recall our degenerate string *X*:

A New Perspective

$$X = \left\{egin{array}{c} A \ C \ G \end{array}
ight\} \left\{egin{array}{c} A \ T \end{array}
ight\} \left\{egin{array}{c} T \ A \end{array}
ight\} \left\{egin{array}{c} A \ G \end{array}
ight\} \ X_1 & X_2 & X_3 & X_4 \end{array}$$

Key Idea

We can model queries on X by constructing a specific node-weighted Directed Acyclic Graph (DAG) G_c for a target character c.

- **Vertices** V_c : Source s + one node $v_{k,a}$ for each character $a \in X_k$ at each position k.
- Weights w_c : $w_c(s) = 0$. $w_c(v_{k,a}) = 1$ if a = c, else 0. (Highlights occurrences of c).
- Edges E_c : Connect s to k=1. Connect all $v_{k,a}$ to all $v_{k+1,b}$. (Represents sequence adjacency).

Path Weight Aggregation: The \mathcal{O} -Set

Capturing All Path Weights

Given a path
$$P=(v_0=s,\ldots,v_k=v)$$
 we define $W(P)=\sum_{j=1}^k w(v_j)$

Goal

Characterize the set of all possible distinct cumulative path weights arriving at each node.

Path Weight Aggregation: The \mathcal{O} -Set

Capturing All Path Weights

Given a path
$$P=(v_0=s,\ldots,v_k=v)$$
 we define $W(P)=\sum_{j=1}^k w(v_j)$

Goal

Characterize the set of all possible distinct cumulative path weights arriving at each node.

\mathcal{O} -Set Definition (Recursive)

- Base Case (Source): $\mathcal{O}_s = \{0\}$
- Recursive Step ($v \neq s$):

$$\mathcal{O}_{v} = \bigcup_{u \in Pred(v)} \{ y + w(v) \mid y \in \mathcal{O}_{u} \} = \{ W(P) \mid P \in Path(s, v) \}$$

Keep only distinct values. Store as a sorted sequence.

The Rank Query on Weighted DAGs

What Values are "Active" at Node N?

Rank Query on a Node N: rank $_G(N)$

1. Returns a representation of a set of integers derived from the \mathcal{O} -set \mathcal{O}_N .

$$S_N = \bigcup_{x \in \mathcal{O}_N} \{z \in \mathbb{N}_0 \mid \max(0, x - w(N) + 1) \le z \le x\}.$$

The Rank Query on Weighted DAGs

What Values are "Active" at Node N?

Rank Query on a Node N: rank_G(N)

1. Returns a representation of a set of integers derived from the \mathcal{O} -set \mathcal{O}_N .

$$S_N = \bigcup_{\mathbf{x} \in \mathcal{O}_N} \{ \mathbf{z} \in \mathbb{N}_0 \mid \max(0, \mathbf{x} - \mathbf{w}(N) + 1) \le \mathbf{z} \le \mathbf{x} \}.$$

2. These intervals are then maximally merged. The query $rank_G(N)$ returns a minimal collection of disjoint closed integer intervals

$$\mathcal{R}_N = \{[l_1, r_1], [l_2, r_2], \dots, [l_p, r_p]\}$$

such that their union exactly covers S_N .

 \mathcal{R}_N captures the range of possible cumulative sums during the *activity* at node N

The Challenge: Storing Path Information

O-Sets Can Be Huge!

• **Problem**: The size $|\mathcal{O}_{v}|$ can grow very large!

• Question: Can we represent the necessary information more compactly?

The Challenge: Storing Path Information

O-Sets Can Be Huge!

• **Problem**: The size $|\mathcal{O}_{v}|$ can grow very large!

• Question: Can we represent the necessary information more compactly?

Core Idea: Partitioning + Indirection

Partition vertices *V* into two types:

1. Explicit Vertices (V_E)

Store \mathcal{O}_{ν} directly. (Simple, but potentially large)

2. Implicit Vertices (V_I)

Do not store \mathcal{O}_{v} explicitly (Reconstruct on-the-fly.)

The Challenge: Storing Path Information

O-Sets Can Be Huge!

• **Problem**: The size $|\mathcal{O}_{v}|$ can grow very large!

Question: Can we represent the necessary information more compactly?

Core Idea: Partitioning + Indirection

Partition vertices *V* into two types:

1. Explicit Vertices (V_E)

Store \mathcal{O}_{v} directly. (Simple, but potentially large)

2. Implicit Vertices (V_I)

Do not store \mathcal{O}_{v} explicitly (*Reconstruct on-the-fly.*)

Reconstruction for $v \in V_I$ using:

- Designated Successor $\sigma(v)$
- Offset Sequence \mathcal{J}_v (at v)

Implicit Reconstruction: Successor & Offset

How V_I Nodes Refer to Others

1. Designated Successor $\sigma(v)$ (for $v \in V_I$)

Which successor should v point to? **Heuristic**: Choose $u = \sigma(v)$ that minimizes $|\mathcal{O}_u|$.

$$\sigma(\mathbf{v}) \in \underset{u \in Succ(\mathbf{v})}{\operatorname{argmin}} \{ |\mathcal{O}_u| \}.$$

2. Offset Sequence \mathcal{J}_v (for $v \in V_I$)

How to get \mathcal{O}_v from $\mathcal{O}_{\sigma(v)}$? Let $u = \sigma(v)$.

- **Relationship**: Each element $x_k \in \mathcal{O}_v$ comes from some $y_{j_k} \in \mathcal{O}_u$ via $x_k = y_{j_k} w(u)$.
- Offset Sequence \mathcal{J}_{v} : Stores the index j_{k} corresponding to each x_{k} .

$$\mathcal{J}_{v} = (j_0, j_1, \dots, j_{m-1}), \quad ext{where } m = |\mathcal{O}_{v}|$$

Example: Computing $\mathcal{O}_7[0]$

Following the Successor Path: $7 \rightarrow 9 \rightarrow 5 \rightarrow 8$

Example: Computing $\mathcal{O}_7[0]$

Following the Successor Path: $7 \rightarrow 9 \rightarrow 5 \rightarrow 8$

Example: Computing $\mathcal{O}_7[0]$ Following the Successor Path: $7 \rightarrow 9 \rightarrow 5 \rightarrow 8$

sum = 0

Example: Computing $\mathcal{O}_7[0]$ Following the Successor Path: $7 \rightarrow 9 \rightarrow 5 \rightarrow 8$

Succinct Data Structure: Components

Arrays Indexed by Vertex ID

Each node stores 3 components

Succinct Data Structure: Components

Arrays Indexed by Vertex ID

Each node stores 3 components

Succinct DAG as a Struct of Arrays

Compression Strategies Reducing Memory Footprint

Component	Description
${\mathcal W}$ (Node weights)	Array of positive integers.
Σ (Successor IDs)	Array of positive integers.

Compression Strategies

Reducing Memory Footprint

Component	Description
${\mathcal W}$ (Node weights)	Array of positive integers.
Σ (Successor IDs)	Array of positive integers.

Compression Options

- Variable-Length Integer Coding \longrightarrow we published a Rust library a for this!
- Wavelet Trees (for nodes with small weight range)

ahttps://crates.io/crates/compressed-intvec

Compression Strategies

Reducing Memory Footprint

Component	Description
${\cal W}$ (Node weights)	Array of positive integers.
Σ (Successor IDs)	Array of positive integers.
\mathcal{D} (Associated Data)	Array of arrays of increasing positive integers.

Compression Options

- Variable-Length Integer Coding \longrightarrow we published a Rust library a for this!
- Wavelet Trees (for nodes with small weight range)

ahttps://crates.io/crates/compressed-intvec

Compression Strategies

Reducing Memory Footprint

Component	Description
${\cal W}$ (Node weights)	Array of positive integers.
Σ (Successor IDs)	Array of positive integers.
\mathcal{D} (Associated Data)	Array of arrays of increasing positive integers.

Compression Options

- Variable-Length Integer Coding \longrightarrow we published a Rust library a for this!
- Wavelet Trees (for nodes with small weight range)
- Elias-Fano Encoding (for monotonic sequences)
- Run-Length Encoding (RLE) (for clustered monotonic sequences)

ahttps://crates.io/crates/compressed-intvec

How Much Information is in the Graph?

To evaluate our structure's space, we need a baseline.

0^{th} -Order Graph Entropy $H_0(G)$

A theoretical lower bound for storing the *entire* weighted DAG (V, E, w) losslessly.

$$H_0(G) = \underbrace{H_W(G)}_{ ext{Cost for Weights}} + \underbrace{H_E(G)}_{ ext{Cost for Topology (Edges)}}$$

How Much Information is in the Graph?

To evaluate our structure's space, we need a baseline.

$0^{\it th}$ -Order Graph Entropy $H_0(G)$

A theoretical lower bound for storing the *entire* weighted DAG (V, E, w) losslessly.

$$H_0(G) = \underbrace{H_W(G)}_{ ext{Cost for Weights}} + \underbrace{H_E(G)}_{ ext{Cost for Topology (Edges)}}$$

• $H_W(G) \approx \sum_{v \in V} \log(w(v) + 1)$ bits (Minimal binary encoding for weights).

How Much Information is in the Graph?

To evaluate our structure's space, we need a baseline.

$0^{\it th}$ -Order Graph Entropy $H_0(G)$

A theoretical lower bound for storing the *entire* weighted DAG (V, E, w) losslessly.

$$H_0(G) = \underbrace{H_W(G)}_{ ext{Cost for Weights}} + \underbrace{H_E(G)}_{ ext{Cost for Topology (Edges)}}$$

- $H_W(G) \approx \sum_{v \in V} \log(w(v) + 1)$ bits (Minimal binary encoding for weights).
- $H_E(G) pprox \log \binom{n(n-1)}{m}$ bits (Cost to choose m = |E| edges out of all possible n(n-1)).

How Much Information is in the Graph?

To evaluate our structure's space, we need a baseline.

$0^{\it th}$ -Order Graph Entropy $H_0(G)$

A theoretical lower bound for storing the *entire* weighted DAG (V, E, w) losslessly.

$$H_0(G) = \underbrace{H_W(G)}_{ ext{Cost for Weights}} + \underbrace{H_E(G)}_{ ext{Cost for Topology (Edges)}}$$

- $H_W(G) \approx \sum_{v \in V} \log(w(v) + 1)$ bits (Minimal binary encoding for weights).
- $H_E(G) pprox \log \binom{n(n-1)}{m}$ bits (Cost to choose m = |E| edges out of all possible n(n-1)).

Any method saving the *full* graph structure needs at least $H_0(G)$ bits!

Bitcoin DAG Example ($n \approx 22k, m \approx 50k$)

Method	Estimated Bits
Theoretical Lower Bound	1,525,730
Weights $H_W(G)$	60,824
Topology $H_E(G)$	1,464,906
Precomputed Rank Queries:	
Explicit Binary Storage	
Elias-Fano Compressed	

Our Succinct DAG

Weights ${\mathcal W}$

Successors $\boldsymbol{\Sigma}$

Assoc. Data \mathcal{D} (RLE)

Bitcoin DAG Example ($n \approx 22k, m \approx 50k$)

Method	Estimated Bits
Theoretical Lower Bound	1,525,730
Weights $H_W(G)$	60,824
Topology $H_E(G)$	1,464,906
Precomputed Rank Queries:	
Explicit Binary Storage	4,854,533
Elias-Fano Compressed	2,211,849
Our Succinct DAG	
Weights ${\mathcal W}$	
Successors Σ	
Assoc. Data \mathcal{D} (RLE)	

Bitcoin DAG Example ($n \approx 22k, m \approx 50k$)

Method	Estimated Bits
Theoretical Lower Bound	1,525,730
Weights $H_W(G)$	60,824
Topology $H_E(G)$	1,464,906
Precomputed Rank Queries:	
Explicit Binary Storage	4,854,533
Elias-Fano Compressed	2,211,849
Our Succinct DAG	602,808
Weights ${\mathcal W}$	60,824
Successors Σ	297,700
Assoc. Data $\mathcal D$ (RLE)	244,284

Bitcoin DAG Example ($n \approx 22k, m \approx 50k$)

Method	Estimated Bits
Theoretical Lower Bound	1,525,730
Weights $H_W(G)$	60,824
Topology $H_E(G)$	1,464,906
Precomputed Rank Queries:	
Explicit Binary Storage	4,854,533
Elias-Fano Compressed	2,211,849
Our Succinct DAG	602,808
Weights ${\mathcal W}$	60,824
Successors Σ	297,700
Assoc. Data \mathcal{D} (RLE)	244,284

Achieving Sub-Entropy Space: How?

Our structure is **lossy** regarding the full graph topology:

- It does not store the complete edge set.
- It only stores the chosen successor $\sigma(v)$ for each implicit node (in Σ).

However, it is **lossless** for computing the specific Rank Query.

Future Direction: Bounded Query Time

Guaranteeing Predictable Performance

Performance Consideration

Query time for implicit node v depends on the length of the successor path

$$\mathbf{v} \to \sigma(\mathbf{v}) \to \sigma(\sigma(\mathbf{v})) \to \cdots \to \mathbf{e} \in V_E$$

Problem: Can be large/variable in deep DAGs \implies slow worst-case query time.

Future Direction: Bounded Query Time

Guaranteeing Predictable Performance

Performance Consideration

Query time for implicit node v depends on the length of the successor path

$$\mathbf{v} o \sigma(\mathbf{v}) o \sigma(\sigma(\mathbf{v})) o \cdots o \mathbf{e} \in V_E$$

Problem: Can be large/variable in deep DAGs \implies slow worst-case query time.

Solution, Challenges & Trade-offs

- **Solution:** Ensure every implicit node can reach an explicit node within *k* steps.
- Challenges: Finding the smallest possible V_E' that satisfies this condition is NP-hard (minimum distance-k dominating set).
- **Trade-off:** More explicit nodes \implies faster queries, but larger space.

Efficient Succinct Data Structures on Directed Acyclic Graphs

Thank you for listening!

Worst-Case \mathcal{O} -Set Size: Is Exponential Growth Possible? Understanding the \mathcal{O} -set Size

Exponential Growth Can Occur

The cardinality of an \mathcal{O} -set, $|\mathcal{O}_v|$, is not generally bounded by a polynomial in the number of vertices |V|. It can grow exponentially.

Underlying Reason: Path Count

The number of distinct paths from a source s to a vertex v, denoted |Path(s,v)|, can itself be exponential in certain DAG structures. Since $|\mathcal{O}_v| \leq |Path(s,v)|$, the potential for exponential size exists.

Worst-Case \mathcal{O} -Set Size: Is Exponential Growth Possible? Understanding the \mathcal{O} -set Size

Exponential Growth Can Occur

The cardinality of an \mathcal{O} -set, $|\mathcal{O}_v|$, is not generally bounded by a polynomial in the number of vertices |V|. It can grow exponentially.

Underlying Reason: Path Count

The number of distinct paths from a source s to a vertex v, denoted |Path(s,v)|, can itself be exponential in certain DAG structures. Since $|\mathcal{O}_v| \leq |Path(s,v)|$, the potential for exponential size exists.

Key Condition for Exponential Growth

The exponential potential is realized if the vertex weights w(v) are assigned such that distinct paths $P_1 \neq P_2$ almost always lead to distinct cumulative weights $W(P_1) \neq W(P_2)$.

Achieving Exponential \mathcal{O} -Set Size

A Strategy for Path Weight Uniqueness

Start with a DAG structure that naturally admits an exponential number of paths between two nodes. An example is a layered graph with multiple choices at each layer transition.

Strategic Weight Assignment

Assign vertex weights w(v) carefully to ensure path weight uniqueness.

 $w(v) = 2^k$ (using a unique exponent k for each node)

Achieving Exponential \mathcal{O} -Set Size

A Strategy for Path Weight Uniqueness

Start with a DAG structure that naturally admits an exponential number of paths between two nodes. An example is a layered graph with multiple choices at each layer transition.

Strategic Weight Assignment

Assign vertex weights w(v) carefully to ensure path weight uniqueness.

 $w(v) = 2^k$ (using a unique exponent k for each node)

Mechanism: Unique Binary Representation

With power-of-2 weights, the cumulative path weight $W(P) = \sum_{v \in P \setminus \{s\}} w(v)$ becomes a sum of distinct powers of 2. Due to the uniqueness of binary representation, different sets of nodes (i.e., different paths) produce different sums. Therefore, |Path(s,v)| distinct paths yield $|\mathcal{O}_v| = |Path(s,v)|$ distinct weights.