МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Инженерная школа информационных технологий и робототехники Направление подготовки <u>09.04.01 Информатика и вычислительная техника</u> Отделение Информационных технологий

Отчет по индивидуальному заданию по дисциплине «Нейроэволюционные вычисления»

Тема работы
Реализация алгоритма SANE

Студент

Группа	Группа ФИО		Дата
8BM22	Ямкин Н.Н.		

Руководитель

Должность	ФИО	Ученая степень, звание	Подпись	Дата
Старший	Григорьев Д.С.			
преподаватель ОИТ				

Томск – 2023

Оглавление

1	Реали	изация алгоритма	3
	1.1	Класс RealGene	5
	1.2	Класс Gene	5
	1.3	Класс Neuron	10
	1.4	Класс NeuronPopulation	14
	1.5	Класс Blueprint	17
	1.6	Класс BlueprintPopulation	19
	1.7	Классы функций активации	23
	1.8	Класс Layer	24
	1.9	Класс NeuralNetwork	25
	1.10	Класс SANEAlgorithm	27
	1.11	Классы для загрузки данных	35
2	Рез	ультаты работы программы	40
3	Вы	вод	42

Цель работы: реализовать нейроэволюционный алгоритм SANE.

1 Реализация алгоритма

Алгоритм SANE (Symbiotic Adaptive NeuroEvolution) является вариантом коэволюционного алгоритма для эволюции весов и структуры нейронной сети. В алгоритме используется нейронная сеть с одним скрытым слоем. В хромосоме кодируется список связей нейрона и веса связей. Алгоритм вводит понятие комбинации нейронной сети — это набор нейронов, представляющих одну нейронную сеть. В алгоритме используются две популяции: популяция нейронов и популяция комбинаций нейронов. Данные популяции эволюционируют независимо друг от друга, т. к. представляют разные сущности.

Ниже приведены основные шаги алгоритма в рамках одного поколения.

1. Сброс приспособленностей нейронов в популяции комбинаций.

2. Для каждой комбинации:

- Выбор соответствующих нейронов.
- Формирование ИНС.
- Оценка ИНС.
- Присваивание полученного значения приспособленности текущей комбинации.
- 3. Обновить приспособленность нейрона = средняя приспособленность 5 лучших ИНС, включающих этот нейрон.
- 4. Сортировка популяции нейронов по приспособленности.
- 5. Скрещивание.
 - Скрещиваются только 25% лучших особей.
 - После скрещивания остается только 1 случайный потомок.
 - Вместо второго потомка используется один из родителей.
 - Два потомка замещают худших особей.

6. Мутация.

- Проводится для всех нейронов.
- Вероятность мутации 0,1% па каждый бит для всех особей.

7. Скрещивание комбинаций.

- 1- точечный кроссинговер.
- Точки разрыва только межу указателями.
- Все остальное как в скрещивании нейронов.

8. Мутация комбинаций.

- Только для комбинаций-потомков.
- 1% вероятность перенаправить указатель на другой нейрон.
- 50% вероятность перенаправить указатель на нейрон-потомок.

В данной работе используется модифицированный алгоритм SANE: вес кодируется помощью вещественного кодирования.

Рисунок 1 — Кодирование информации об ИНС в алгоритме SANE Рассмотрим основные классы, участвующие в реализации алгоритма.

1.1 Класс RealGene

Класс RealGene реализует логику работы с одним геном, использующим вещественное кодирование. Имеются следующие поля:

1. value – вещественное значение гена;

В классе имеются следующие методы:

- 1. __init__ конструктор с параметрами:
 - value значение гена;
- 2. init инициализация векторов входных и выходных весов случайными значениями;
 - min_value минимальное случайно сгенерированное число;
 - max value максимальное случайно сгенерированное число;
- 3. mutation мутация векторов весов. Используется нормальное распределение в окрестности значения гена.
- 4. crossover скрещивание двух нейронов, используется скрещивание смешением (Blend crossover). В качестве результата возвращается два новых нейрона. Параметры:
 - parent1 первый родитель;
 - parent2 второй родитель;

Для скрещивания используется дополнительная функция crossover_real, принимающая в качестве параметров два вещественных значения родительских генов и возвращающая два вещественных значения дочерних генов.

1.2 Класс Gene

Класс Gene реализует логику работы с одним геном, хранящим вес и структуру нейрона.

Имеются следующие поля:

- 1. label целочисленное значение, хранящее направление связи (входная или выходная) и индекс нейрона, с которым установлена связь;
 - 2. weight вес связи, объект класса RealGene.

В классе имеются следующие методы:

- 1. __init__ конструктор, происходит инициализация полей нулевыми значениями;
- 2. get_connection_type метод возвращает направление соединения, при этом, если поле label > 127, то нейрон выходной, иначе входной;
- $3.\ get_index-$ метод возвращает индекс нейрона. Индекс вычисляется по следующей формуле label mod N, где N общее количество нейронов в скрытом слое;
 - 4. get weight метод возвращает вес связи;
 - 5. init инициализация полей случайными значениями. Параметры:
 - min value минимальное случайно сгенерированное число;
 - max_value максимальное случайно сгенерированное число;
- 6. mutation мутация весов и меток; для метки используется инвертирование бита; для веса вызывается метод mutation класса RealGene;
- 7. crossover скрещивание двух генов; для метки используется одноточечный кроссинговер; для веса вызывается метод crossover класса RealGene. Параметры:
 - parent1 первый родитель;
 - parent2 второй родитель;

Исходный код классов RealGene и Gene представлены в листинге 1.

Листинг 1. Исходный код классов RealGene и Gene.

```
from enum import Enum
import random
class ConnectionType (Enum):
   INPUT = 1
   OUTPUT = 2
   @classmethod
   def from label(cls, label: int):
       return cls(cls.OUTPUT if label > (2**7 - 1) else cls.INPUT)
def crossover integer(parent1: int, parent2: int, precision: int):
   crossover point = random.randrange(precision)
   mask1 = ((2 ** precision - 1) << crossover point) & (2 ** precision -
1)
   mask2 = ((2 ** precision - 1) >> (precision - crossover point)) & (2)
** precision - 1)
   child1 = (parent1 & mask1) | (parent2 & mask2)
   child2 = (parent2 & mask1) | (parent1 & mask2)
   return child1, child2
# СКРЕЩИВАНИЕ ДВУХ ГЕНОВ
# принимает два вещественных значения родительских генов и возвращает два
# вещественных значения дочерних генов
def crossover real(parent1: float, parent2: float, blend=0.1):
   child1 = parent1 - blend * (parent2 - parent1)
   child2 = parent2 + blend * (parent2 - parent1)
   return child1, child2
def invert bit(value: int, bit: int, precision: int):
   mask = (1 \ll bit) \& (2 ** precision - 1)
   return value ^ mask
# Класс RealGene реализует логику работы с одним геном, использующим
# вещественное кодирование
class RealGene(object):
   def init (self, value: float, min value: float, max value: float):
        self.value = value
                                   # вещественное значение гена
        self.min value = min value # минимальное случайно сген. число
        self.max value = max value # максимальное случайно сген. число
# инициализация векторов входных и выходных весов случайными значениями
   def init(self):
# случайное значение, полученное из равномерного распределения в диапазоне
от min value до max value
        self.value = random.uniform(self.min value, self.max value)
# мутация векторов весов, используется распределение Гаусса в окрестности
значения гена
```

```
def mutation(self):
       self.value = random.gauss(mu=self.value, sigma=0.1) # случайное
значение, полученное из нормального распределения с заданным средним и
стандартным отклонением
# СКРЕЩИВАНИЕ ДВУХ НЕЙРОНОВ, используется скрещивание смешением (blend
crossover); в качестве результата возвращаются два новых нейрона
# метод не имеет доступа к экземпляру класса или к атрибутам экземпляра
   @staticmethod
   def crossover(parent1, parent2):
# parent1 и parent2 - экзепляры класса RealGene
       min value = parent1.min value
       max value = parent1.max value
       child1_gene, child2_gene = crossover_real( # скрещивание двух
генов
           parent1=parent1.value,
           parent2=parent2.value)
       child1 = RealGene(
                                  # первый нейрон потомок
           value=child1 gene,
           min value=min value,
           max value=max value)
       child2 = RealGene(
                                  # второй нейрон потомок
           value=child2 gene,
           min value=min value,
           max value=max value)
       return child1, child2
# Класс Gene реализует логику работы с одним геном, хранящим вес и
структуру нейрона
class Gene(object):
   def init (self, min value: float, max value: float):
       self.label = 0 # целочисленное значение, хранящее направление
связи (входная или выходная) и индекс нейрона, с которым установлена связь
       self.weight = RealGene( # вес связи, объект класса RealGene
           value=0.0,
           min value=min value,
           max value=max value)
   def get connection type(self) -> ConnectionType: # MeTog,
возвращает направление соединения (label > 127 - нейрон выходной, иначе
входной)
       return ConnectionType.from label(self.label)
# метод возвращает индекс нейрона
   def get index(self, neurons count) -> int:
       return self.label % neurons count
```

```
# метод возвращает вес связи
   def get weight(self) -> float:
        return self.weight.value
   def init(self):
       self.label = int(random.random() * (2**8 - 1)) # инициализация
метки случайным числом от 0 до 255
        self.weight.init() # инициализация веса связи
# мутация весов и меток; для метки используется инвертирование бита; для
веса вызывается метод mutation класса RealGene
   def mutation(self):
      # мутация произойдет с вероятностью 0.01 (1 %)
       if random.random() <= 0.01:</pre>
# генерация случайного числа от 0 до 8. Получаем номер бита, который будем
инвертировать
           mutation bit = random.randrange(8)
# инвертируем полученный ранее номер бита метки
            self.label = invert bit(self.label, mutation bit, 8)
            self.weight.mutation() # мутация веса связи
# скрещивание двух генов; для метки используется одноточечный
кроссинговер; для веса вызывается метод crossover класса RealGene
   @staticmethod
   def crossover(parent1, parent2): # parent1 и parent2 - экзепляры
       min value = parent1.weight.min value
       max value = parent1.weight.max value
        child1 = Gene(
                                         # потомок 1
           min value=min value,
           max value=max value)
        child2 = Gene(
                                        # потомок 2
           min value=min value,
           max value=max value)
        # скрещивание метки
        child1.label, child2.label = crossover integer(
            parent1=parent1.label,
           parent2=parent2.label,
           precision=8)
       # скрещивание весов
        child1.weight, child2.weight = RealGene.crossover(
           parent1=parent1.weight,
            parent2=parent2.weight)
       return child1, child2
```

1.3 Класс Neuron

Класс Neuron реализует логику работы с нейроном. Имеются следующие поля:

- 1. genes массив, хранящий гены (объекты класса Gene);
- 2. connections_count количество соединений в одном нейроне (в данном алгоритме подразумевается, что сеть может быть не полносвязной);
- 3. fitness приспособленность нейрона.

В классе имеются следующие методы:

- 1. __init__ конструктор. Параметры:
 - connections count количество соединений в одном нейроне;
- 2. init инициализация нейрона. Инициализация происходит в цикле, в котором создаются гены со случайными значениями полей и в конце итерации проверяется, что гены имеют разные направления соединений. Это необходимо для того, чтобы не получился нейрон, имеющий связи одного направления, поскольку такая конфигурация нейрона не будет иметь смысла. Параметры:
 - min value минимальное случайно сгенерированное число;
 - max_value максимальное случайно сгенерированное число;
- 3. get_weight получение вектора весов из генов соответствующего направления. Параметры:
 - neurons_count количество нейронов в скрытом слое (необходимо для вычисления индекса нейрона входного, либо выходного слоев);
 - connection направление соединения;
- 4. get_input_weights получение вектора весов входных соединений скрытого слоя. Параметры:
 - neurons_count количество нейронов в скрытом слое
- 5. get_output_weights получение вектора весов выходных соединений скрытого слоя. Параметры:

- neurons_count количество нейронов в скрытом слое;
- 6. mutation мутация генов. Вызывается метод mutation класса Gene для каждого гена.
- 7. crossover скрещивание двух нейронов. Вызывается метод crossover класса Gene для каждого гена. Параметры
 - parent1 первый родитель;
 - parent2 второй родитель.

Исходный код класса представлен в листинге 2.

Листинг 2. Исходный код класса Neuron.

```
import numpy as np
# класс Neuron реализует логику работы с нейроном
class Neuron(object):
   def __init__(self,
                connections_count: int):
        self.genes = [] # список, хранящий гены (объекты класса Gene)
        self.connections count = connections count # количество
соединиений в одном нейроне (подразумевается, что сеть может быть не
полносвязной)
        self.fitness = 0.0 \# приспособленность нейрона
    # инициализация нейрона. Инициализация происходит в цикле, в котором
создаются гены со случайными значениями полей и в конце итерации
проверяется, что гены имеют разные направления соединений.
    # Это необходимо для того, чтобы не получился нейрон, имеющий связи
одного направления, поскольку такая конфигурация нейрона не будет иметь
смысла
   def init(self,
            min value: float,
            max value: float):
        while True:
           for i in range(self.connections count): # количество генов
в хромосоме также равно connections count
                self.genes.append(Gene(
                                          # добавляем гены в хромосому
                   min value=min value,
                    max value=max value))
            for i in range(self.connections count):
                self.genes[i].init() # инициализируем метку и вес связи
            connection types = [connection.get connection type().value for
connection in self.genes]
            if len(set(connection types)) > 1:
                break
            self.genes.clear()
    # получение вектора весов из генов соответствующего направления
   def get weights (self,
# количество нейронов в скрытом слое (необходимо для вычисления индекса
нейрона входного либо выходного слоев)
                  neurons count: int,
# напрадение соединения
                   connection: ConnectionType) -> np.array:
        result = np.zeros(neurons count)
        for gene in self.genes:
            if gene.get connection type() == connection:
                result[gene.get index(neurons count)] = gene.get weight()
       return result
```

```
# получение вектора весов входных соединений скрытого слоя
   def get input weights (self,
# количество нейронов в скрытом слое
                          neurons count: int) -> np.array:
        return self.get weights(
            neurons count=neurons count,
            connection=ConnectionType.INPUT)
    # получение вектора весов выходных соединений скрытого слоя
   def get output weights (self,
# количество нейронов в скрытом слое
                           neurons count: int) -> np.array:
        return self.get weights(
            neurons count=neurons count,
            connection=ConnectionType.OUTPUT)
\# мутация генов. Вызывается метод mutation класса Gene для каждого гена
   def mutation(self):
       for i in range(len(self.genes)):
            self.genes[i].mutation()
# скрещивание двух нейронов. Вызывается метод mutation класса Gene для
каждого гена
   @staticmethod
   def crossover(parent1, parent2):
        genes count = len(parent1.genes)
        connections count = parent1.connections count
        child1 = Neuron(
            connections count=connections count)
        child2 = Neuron(
            connections count=connections count)
        for i in range(genes count):
            child1 gene, child2 gene = Gene.crossover(
                parent1=parent1.genes[i],
                parent2=parent2.genes[i])
            child1.genes.append(child1 gene)
            child2.genes.append(child2 gene)
        return child1, child2
```

1.4 Класс NeuronPopulation

Класс NeuronPopulation - реализует логику работы с популяцией нейронов, предоставляя высокоуровневый интерфейс над массивом нейронов.

Имеются следующие поля:

1. neurons – массив нейронов;

В классе имеются следующие методы:

- 1. __init__ конструктор. В конструкторе происходит создание нейронов. Параметры:
 - min_value минимальное случайно сгенерированное число;
 - max value максимальное случайно сгенерированное число;
- 2. init инициализация популяции нейронов. Для каждого нейрона вызывается метод init, в который передаются параметры метода. Параметры:
 - min_value минимальное случайно сгенерированное число;
 - max value максимальное случайно сгенерированное число;
 - 3. crossover скрещивание верхней четверти лучших нейронов;
 - 4. mutation мутация всех нейронов;
- 5. __ getitem__ встроенный метод языка Python, позволяющий обращаться к данному объекту как к коллекции. При этом возвращается соответствующий индексу нейрон.
- 6. __len__ встроенный метод языка Python, позволяющий получить размер коллекции. При этом возвращается размер массива нейронов.

Исходный код класса представлен в листинге 3.

Листинг 3. Исходный код класса NeuronPopulation.

```
# Класс NeuronPopulation реализует логику работы с популяцией нейронов,
предоставляя высокоуровневый интерфейс над массивом нейронов
class NeuronPopulation(object):
    def init (self,
                 population size: int,
                 connections count: int):
        self.neurons = []
                                            # Массив нейронов
        for i in range(population size):
                                          # Создание популяции нейронов
            self.neurons.append(Neuron(
                connections count=connections count))
   def init(self,
            min value: float,
             max value: float):
        for neuron in self.neurons: # инициализация нейронов в
популяции. Для каждого нейрона вызывается метод init, в который передаются
параметры входа
            neuron.init(
               min value=min value,
               max value=max value)
    # скрещивание верхней четверти лучших нейронов. Потомки при этом
заменяют худшие особи
   def crossover(self):
# сортировка массива нейронов по функции приспособленности
        self.neurons.sort(key=lambda x: x.fitness)
# выбираем из массива нейронов верхнюю четверть нейронов с лучшими
значениями функции приспособленности
        selected neuron count = int(len(self.neurons) / 4)
# оставляем четное количество нейронов в списке
        selected neuron count -= selected neuron count % 2
        for i in range(0, selected neuron count, 2):
            parent1 = self.neurons[i]
            parent2 = self.neurons[i + 1]
            child1, child2 = Neuron.crossover(
               parent1=parent1,
                parent2=parent2)
            selected1 = parent1 if random.randrange(2) == 0 else
           # после скрещивания остается только 1 случайный потомок
parent2
            selected2 = child1 if random.randrange(2) == 0 else
child2
           # вместо второго потомка используется один из родителей
            self.neurons[-selected neuron count + i] =
selected1
                      # обновляем нейроны в списке
           self.neurons[-selected neuron count + i + 1] =
selected2
                 # обновляем нейроны в списке
```

```
def mutation(self):
    for i in range(len(self.neurons)):
        self.neurons[i].mutation() # мутация нейронов

def __getitem__(self, key: int) -> Neuron: # встроенный метод языка

Python, позволяющий обращаться к данному объекту как к коллекции.
    return self.neurons[key] # при этом возвращается

соответствующий индексу нейрон

def __len__(self): # встроенный метод языка Python,
позволяющий получить размер коллекции.
    return len(self.neurons) # при этом возвращается размер

массива нейронов
```

1.5 Класс Blueprint

Класс Blueprint - реализует логику работы с комбинацией нейронов. Комбинация рассматривается как отдельная особь. Массив индексов нейронов является хромосомой. Имеются следующие поля:

- 1. neurons массив индексов нейронов;
- 2. neuron_population популяция нейронов (указатель на популяцию нейронов, поскольку данный объект не должен владеть популяцией);
 - 3. fitness значение приспособленности данной комбинации.

В классе имеются следующие методы:

- 1. _init_ конструктор. В конструкторе происходит создание нейронов. Параметры:
 - neurons массив индексов нейронов;
 - neuron population популяция нейронов.
- 2. mutation мутация комбинации. В результате мутации происходит замена выбранного нейрона в текущей комбинации на случайно выбранный нейрон из популяции нейронов.
- 3. crossover скрещивание. Скрещиваются массивы индексов нейронов. Применяется одноточечный кроссинговер.

Исходный код класса представлен в листинге 4.

Листинг 4. Исходный код класса Blueprint

```
from typing import List
# класс Blueprint - реализует логику работы с комбинацией нейронов.
Комбинация рассматривается как отдельная особь
# хромосома - массив индексов нейронов
class Blueprint(object):
   def init (self,
                neurons: List[int], # массив индексов нейронов
(комбинация нейронов)
                neuron population: NeuronPopulation):
        self.neurons = neurons
                                          # массив индексов нейронов
        # популяция нейронов (указатель на популяцию нейронов)
        self.neuron population = neuron population
        # значение приспособленности данной комбинации
        self.fitness = 0.0
 # мутация комбинации. В результате мутации происходит замена случайно
выбранного нейрона в текущей комбинации на случайно выбранный нейрон из
популяции нейронов
   def mutation(self):
       if random.random() <= 0.01:</pre>
           new neuron index =
random.randrange(len(self.neuron population)) # случайно выбранный нейрон
в популяции нейронов
           neuron index = random.randrange(len(self.neurons))
случайно выбранный нейрон в текущей комбинации
            self.neurons[neuron index] = new neuron index
                                                           # замена
нейронов
    # скрещивание. Скрещиваются массивы индексов нейронов. Применяется
одноточечный кроссинговер
    @staticmethod
    def crossover(parent1, parent2):
       neurons count = len(parent1.neurons)
                                                         # длина
комбинации нейронов
       crossover point = random.randrange(neurons count) # случайная
точка для скрещивания комбинации
        child1 neurons = parent1.neurons[:crossover point] +
parent2.neurons[crossover point:] # скрещивание комбинаций нейронов
        child2 neurons = parent2.neurons[:crossover point] +
parent1.neurons[crossover point:]
       return Blueprint(child1 neurons, None), Blueprint(child2 neurons,
None)
```

1.6 Класс BlueprintPopulation

Класс BlueprintPopulation – реализует логику работы с популяцией комбинаций нейронов, предоставляя высокоуровневый интерфейс над массивом комбинаций нейронов. Имеются следующие поля:

- 1. population_size размер популяции (количество комбинаций в популяции);
- 2. blueprint_size размер комбинации нейронов (количество нейронов в комбинации). Должен быть равен количеству нейронов в скрытом слое.
 - 3. neuron population популяция нейронов;
 - 4. blueprints массив комбинаций нейронов.

В классе имеются следующие методы:

- 1. init конструктор. Параметры:
 - population_size размер популяции;
 - blueprint_size размер комбинации нейронов.
- 2. init инициализация популяции комбинаций нейронов. Происходит создание комбинаций нейронов. Параметры:
 - neuron population популяция нейронов;
- 3. select_neurons внутренний метод, возвращающий список индексов случайно выбранных нейронов из популяции нейронов. При этом индексы являются уникальными.
- 4. crossover скрещивание верхней четверти лучших комбинации нейронов. Для скрещивания вызывается метод crossover класса Blueprint. Потомки при этом заменяют худшие особи.
 - 5. mutation мутация всех комбинаций нейронов.
- 6. __getitem__ встроенный метод языка Python, позволяющий обращаться к данному объекту как к коллекции. При этом возвращается соответствующий индексу нейрон.

- 7. __len__ встроенный метод языка Python, позволяющий получить размер коллекции. При этом возвращается размер массива нейронов
- 8. __iter__ встроенный метод языка Python, позволяющий итерироваться по объекту. Итерация происходит по массиву комбинаций нейронов.

Исходный код класса представлен в листинге 5.

Листинг 5. Исходный код класса BlueprintPopulation

```
# Класс BlueprintPopulation - реализует логику работы с популяцией
комбинаций нейронов, предоставляя высокоуровневый интерфейс над массивом
комбинаций нейронов.
class BlueprintPopulation(object):
    def __init__(self,
                population size:
                int, blueprint size: int):
        self.population size = population size # размер популяции
(количество комбинаций в популяции)
       self.blueprint size = blueprint size # размер комбинации
нейронов (количество нейронов в комбинации). Должен быть равен количеству
нейронов в скрытом слое
       self.neuron population = None
                                               # популяция нейронов
       self.blueprints = []
                                               # массив комбинаций
нейронов
    # инициализация популяции комбинаций нейронов. Происходит создание
комбинаций нейронов
   def init(self,
             neuron population: NeuronPopulation):
       self.neuron population = neuron population # создание объекта
популяции нейронов
        for in range(self.population size):
            selected neurons = self.select neurons() # отбор случайных
нейронов из популяции нейронов
            self.blueprints.append(Blueprint(
                                                   # создание массива
популяции комбинаций нейронов. Элементы массива объекты класса Blueprint
               neurons=selected neurons,
                                                    # массив индексов
выбранных нейронов
                neuron population=self.neuron population)) # популяция
нейронов
    # внутренний метод, возвращающий список индексов случайно выбранных
нейронов из популяции нейронов. При этом индексы являются уникальными
    def select neurons(self) -> List[int]:
       result = []
       while True:
                                                     # формирование списка
индексов
            for in range(self.blueprint size): # формирование одной
комбинации нейронов
                result.append(random.randrange(len(self.neuron population)
) )
            if len(set(result)) == self.blueprint size:
               break
            result.clear()
        return result
```

```
# мутация всех комбинаций нейронов
    def mutation(self):
        for blueprint in self.blueprints:
            blueprint.mutation()
    # скрещивание верхней четверти лучших комбинаций нейронов. Для
скрещивания вызывается метод crossover класса Blueprint. Потомки при этом
заменяют худшие особи
    def crossover(self):
# сортировка массива комбинаций нейронов по функции приспособленности
        self.blueprints.sort(key=lambda x: x.fitness)
# выбираем из массива нейронов верхнюю четверть нейронов с лучшими
значениями функции приспособленности
        selected blueprint count = int(len(self.blueprints) / 4)
# оставляем четное количество нейронов в списке
        selected blueprint count -= selected blueprint count % 2
        for i in range(0, selected blueprint count, 2):
           parent1 = self.blueprints[i]
            parent2 = self.blueprints[i + 1]
            child1, child2 = Blueprint.crossover(
                parent1=parent1,
                parent2=parent2)
            child1.neuron population = self.neuron population
            child2.neuron population = self.neuron population
            selected1 = parent1 if random.randrange(2) == 0 else
parent2 # после скрещивания остается только 1 случайный потомок
            selected2 = child1 if random.randrange(2) == 0 else
child2
          # вместо второго потомка используется один из родителей
            self.blueprints[-selected blueprint count + i] =
           # обновляем комбинации в списке
selected1
           self.blueprints[-selected blueprint count + i + 1] = selected2
# обновляем комбинации в списке
# встроенный метод языка Python, позволяющий обращаться к данному объекту
как к коллекции. При этом возвращается соответсвующий индексу нейрон
    def getitem (self, key: int) -> Blueprint:
       return self.blueprints[key]
    # встроенный метод языка Python, позволяющий получить размер
коллекции. При это возвращается размер массива нейронов
    def len (self):
       return len(self.blueprints)
    # встроенный метод языка Python, позволяющий итерироваться по объекту.
Итерация происходит по массиву комбинаций нейронов
   def iter (self):
     return iter(self.blueprints)
```

1.7 Классы функций активации

Базовым классом для всех функций активации является класс AbstractActivationFunction, представляющий интерфейс для работы с функциями активации. В данном классе имеется метод forward, который принимает на вход питру-массив (вектор), применяет к каждому элементу функцию активации и возвращает питру-массив. Дочерние классы должны реализовать данный метод.

Имеется реализация нескольких функций активации. Исходный код классов представлен в листинге 6.

Листинг 6. Исходный код классов функций активации.

```
class AbstractActivationFunction(object):
   def __init__ (self):
       pass
   def forward(self, input data: np.array) -> np.array:
       raise NotImplementedError()
class Sigmoid(AbstractActivationFunction):
   def __init__(self):
       pass
   def forward(self, input_data: np.array) -> np.array:
       return 1.0 / (1.0 + np.exp(-input data))
class ReLU(AbstractActivationFunction):
   def init (self):
       pass
   def forward(self, input_data: np.array) -> np.array:
       return np.maximum(0.0, input_data)
class Tanh(AbstractActivationFunction):
   def init (self):
       pass
   def forward(self, input data: np.array) -> np.array:
  return np.tanh(input data)
```

1.8 Класс Layer

Класс Layer реализует логику работы со слоем нейронной сети. Имеются следующие поля:

- 1. weights матрица весов слоя;
- 2. activation функция активации (объект класса AbstractActivationFunction);

В классе имеются следующие методы:

- 1. _init_ конструктор. Параметры:
 - weights матрица весов;
 - activation функция активации.
- 2. forward прямой проход по слою. Матрица весов умножатся на вектор-столбец входных данных, к каждому элементу полученного вектор-столбца применяется функция активации. Параметры:
 - input_data вектор входных данных.

Исходный код класса представлен в листинге 7.

Листинг 7. Исходный код класса Layer.

```
# Класс Layer реализует логику работы со слоем нейронной сети
class Layer(object):
   def init (self,
                weights: np.array,
                activation: AbstractActivationFunction):
       self.weights = weights
                                      # вектор весов
       self.activation = activation
                                      # функция активации
# прямой проход по слою. Вектор весов умножается на вектор-столбец входных
данных, к каждому элементу полученного вектора-столбца применяется функция
активации
   def forward(self,
               input data: np.array) -> np.array: # вектор входных данных
       return self.activation.forward(
           input data=np.dot(self.weights, input data))
```

1.9 Класс NeuralNetwork

Класс NeuralNetwork реализует логику работы с нейронной сетью. Имеются следующие поля:

- 1. fitness приспособленность нейронной сети;
- 2. input_weights матрица входных весов скрытого слоя;
- 3. output_weights матрица выходных весов скрытого слоя (входных весов выходного слоя);
- 4. layers список, содержащий слои нейронной сети (объекты класса Layer).

В классе имеются следующие методы:

- 1. _init_ конструктор. Происходит инициализация весов нейронной сети и создание скрытого и выходного слоев сети. Параметры:
 - hidden_neurons массив индексов нейронов, из которых будет построен скрытый слой;
 - inputs_counts количество входов нейронной сети;
 - outputs counts количество выходов нейронной сети;
 - neuron_population популяция нейронов, из которой будет происходить выборка нейронов.
- 2. forward прямой проход по сети. Последовательно выполняется прямой проход по слоям сети с помощью метода forward класса Layer. Параметры:
 - input data вектор входных данных.

Исходный код класса представлен в листинге 8.

Листинг 8. Исходный код класса NeuralNetwork.

```
class NeuralNetwork(object):
  # происходит инициализация весов нейронной сети и создание скрытого и
выходного слоёв сети
    def init (self,
                hidden_neurons: List[int], # массив индексов нейронов,
из которых будет построен скрытый слой
                 inputs count: int, # количество входов нейронной сети
                 outputs count: int, # количество выходов нейронной сети
                 neuron population: NeuronPopulation): # популяция
нейронов, из которой будет происходить выборка нейронов
        self.fitness = 0.0 # приспособленность нейронной сети
       self.input weights = np.zeros((len(hidden neurons), inputs count))
# матрица входных весов скрытого слоя
       output weights = np.zeros((len(hidden neurons),
outputs count))
                 # матрица выходных весов скрытого слоя (входных весов
выходного слоя)
       for i in range(len(hidden neurons)):
            self.input weights[i] =
neuron population[hidden neurons[i]].get input weights(inputs count)
            output weights[i] =
neuron population[hidden neurons[i]].get output weights(outputs count)
        self.output weights = np.zeros((outputs count,
len(hidden neurons)))
        for i in range(outputs count):
            self.output weights[i] = output weights[:, i]
        self.layers = []
                                            # список, содержащий слои
нейронной сети (объекты класса Layer)
        self.layers.append(Layer(
                                            # создание скрытого слоя сети
           weights=self.input weights,
            activation=Sigmoid()))
        self.layers.append(Layer(
                                            # создание выходного слоя сети
            weights=self.output weights,
           activation=Sigmoid()))
 # прямой проход по сети. Последовательно выполняется прямой проход по
слоям сети с помощью метода forward класса Layer
   def forward(self,
                input data: np.array) -> np.array: # вектор входных данных
        output = input data
       for layer in self.layers:
            output = layer.forward(output)
       return output
```

1.10 Класс SANEAlgorithm

Класс SANEAlgorithm реализует логику работы с алгоритмом SANE. Имеются следующие поля:

- 1. neuron population популяция нейронов;
- 2. blueprint population популяция комбинаций нейронов;
- 3. best nn лучшая нейронная сеть.

В классе имеются следующие молоды:

- 1. _init_ конструктор. Происходит создание популяции нейронов и популяции комбинаций нейронов. Параметры:
 - blueprints_population_size размер популяции комбинаций нейронов;
 - neuron population size размер популяции нейронов;
 - hidden layer size количество нейронов в скрытом слое;
 - connections_count количество соединений для одного нейрона.
- 2. init инициализация популяции нейронов и популяции комбинаций нейронов. Параметры:
 - min_value минимальное случайно сгенерированное число;
 - max value максимальное случайно сгенерированное число.
 - 3. train тренировка нейронных сетей. Параметры:
 - generations count количество поколений;
 - x_train массив входных данных;
 - y_train массив выходных данных.
- 4. test тестирование сети. Возвращается массив среднеквадратичных ошибок в соответствии с записями во входном наборе данных. Параметры:
 - x_train массив входных данных;
 - y_train массив выходных данных.

- 5. forward внутренний метод, предназначенный для прохода по лучшей нейронной сети с одним набором данных. Возвращает среднеквадратичную ошибку. Параметры:
 - x_train вектор входных данных;
 - y train вектор выходных данных.
- 6. forward_train внутренний метод предназначенный для прохода всех комбинаций нейронных сетей по всем входным данным. По результатам прохода берётся среднее значение среднеквадратичных ошибок, полученных в результате прохода всех данных. Полученное значение является приспособленностью для нейронной сети и для комбинации нейронной сети, Параметры:
 - neural_networks массив нейронных сетей;
 - x_train массив входных данных;
 - y_train массив выходных данных.
- 7. create_neural_networks внутренний метод, создающий массив нейронных сетей из комбинаций нейронных сетей. Параметры:
 - inputs counts количество входов нейронной сети;
 - outputs_counts количество выходов нейронной сети.
- 8. update_neuron_fitness внутренний метод, обновляющий приспособленность нейронов, являющуюся средним значением приспособленности 5 лучших нейронных сетей, включающих данный нейрон

Рассмотрим подробнее работу алгоритма (метод train). Сначала запускается цикл по количеству поколений. В цикле сначала создаются нейронные сети с помощью метода create_neural_networks. Затем, через созданные сети пропускается весь тестовый датасет. Для этого используется метод forward_train. После пропускания данных у нейронных сетей появится ненулевое значение приспособленности, и нейронные сети сортируются по ней по возрастанию. Таким образом в начале массива находятся лучшие нейронные сети. Далее происходит скрещивание и мутация популяции

нейронов, и затем скрещивание и мутация популяции комбинаций нейронов. Данные шаги повторяются заданное количество раз.

Исходный код класса представлен в листинге 9.

Листинг 9. Исходный код класса SANEAlgorithm.

```
import platform
import os
from copy import deepcopy
def mse(y_true: np.array, y_pred: np.array) -> float:
   return np.square(y true - y pred).mean()
CRLF = '\r\x1B[K' if platform.system() != 'Windows' else '\r'
# Kласc SANEAlgorithm реализует логику работы с алгоритмом SANE
class SANEAlgorithm(object):
   def init (self,
               blueprints population size: int, # размер популяции
комбинации нейронов
                neuron population size: int, # размер популяции
нейронов
                hidden layer size: int,
                                                  # количество нейронов
скрытого слоя
               connections count: int):
                                                  # количество
соединений для одного нейрона
       self.neuron population = NeuronPopulation( # популяция нейронов
           population size=neuron population size,
           connections count=connections count)
       self.blueprint population = BlueprintPopulation( # популяция
комбинаций нейронов
           population size=blueprints population size,
           blueprint size=hidden layer size)
       self.best nn = None
                                                # лучшая нейронная сеть
       self.hidden layer size = hidden layer size
    # инициализация популяции нейронов и популяции комбинаций нейронов
   def init(self,
            min value: float,
            max value: float):
       self.neuron population.init( # инициализация популяции нейронов
           min value=min value,
           max value=max value)
       self.blueprint population.init( # инициализация популяции
комбинаций нейронов
           neuron population=self.neuron population)
    # тренировка нейронных сетей
   def train(self,
             generations count: int, # количество поколений
             х train: np.array, # массив входных данных
             y train: np.array): # массив выходных данных
       if x train.shape[0] != y train.shape[0]:
```

```
raise Exception()
        result = []
        for generation in range(generations count):
            inputs count = x train[0].size
           outputs_count = y_train[0].size
           neural networks = self.create neural networks( # создание
нейронных сетей
               inputs count=inputs count,
                                                           # количество
входов нейронной сети
               outputs count=outputs count)
                                                            # количество
выходов нейронной сети
           self.forward train(
                                                            # пропускаем
весь трейновый датасет через созданную НС
               neural networks=neural networks,
               x_train=x_train,
               y train=y train)
           neural networks.sort(key=lambda x: x.fitness) # сортировка
НС по приспособленности
           best nn = neural networks[0]
                                                            # выбираем
лучшую нейронную сеть
           if self.best nn is None:
               self.best nn = deepcopy(best nn) # используется функция
deepcopy, чтобы создать независимую копию лучшей нейронной сети, а не
просто ссылку на оригинальный объект.
           if best nn.fitness < self.best nn.fitness:</pre>
               self.best nn = deepcopy(best nn)
           result.append(self.best nn.fitness)
           self.update neuron fitness()
                                                            # обновляем
фунцию приспособленности нейрона
           self.neuron population.crossover()
                                                           # скрещивание
популяции нейронов
          self.neuron population.mutation()
                                                           # мутация
популяции нейронов
          self.blueprint_population.crossover()
                                                           # скрещивание
популяции комбинации нейронов
          self.blueprint population.mutation()
                                                            # мутация
популяции комбинации нейронов
           print('{}{}/{} best fitness = {}, current fitness = {}'
                 .format(CRLF, generation, generations count,
self.best nn.fitness, best nn.fitness), end='')
       print(os.linesep)
       return result
    # тестирование сети. Возвращается массив среднеквадратичесных ошибок в
соотвествии с записями во входном наборе данных
def test(self,
```

```
x test: np.array, # массив входных данных
            y_test: np.array): # массиы выходных данных
        if x test.shape[0] != y test.shape[0]:
           raise Exception()
        dataset size = x test.shape[0]
        result = []
        for i in range (dataset size):
            error = self.forward(x=x test[i], y=y test[i])
            result.append(error)
        return result
    # внутренний метод, предназначенный для прохода по лучшей нейронной
сети с одним набором данных. Возвращает среднеквадратическую ошибку
   def forward(self, x: np.array, y: np.array):
        output = self.best nn.forward(x)
        # print(output)
       return (mse(y, output), output) # УБРАТЬ ВЫВОД output при
показе MSE
    # внутренний метод предназначенный для прохода всех комбинаций
нейронных сетей по всем входным данным.
    # по результатам прохода берется среднее значение среднеквадратичных
ошибок, полученных в результате прохода всех данных.
    # полученное значение является приспособленностью для нейронной сети и
для комбинации нейронной сети
   def forward train(self,
                     neural networks: List[NeuralNetwork], # массив
нейронных сетей
                     x train: np.array,
                                                             # массив
входных данных
                     y train: np.array):
                                                             # массив
выходных данных
       dataset size = x train.shape[0]
       for i in range(len(neural networks)): # для каждой комбинации
HC
           errors = []
            for j in range (dataset size):
                output = neural networks[i].forward(input data=x train[j])
# прямой проход по сети. Последовательно выполняется прямой проход по
слоям сети с помощью метода forward класса Layer
               error = mse(y true=y train[j], y pred=output) # считаем
ошибку
               errors.append(error) # добавляем её в список всех ошибок
           avg error = np.array(errors).mean() # вычисляем среднюю
ошибку нейронной сети и популяции комбинаций нейронных сетей
           neural networks[i].fitness = avg error # средняя ошибка
нейронной сети
            self.blueprint population[i].fitness = avg error # средняя
ошибка популяции комбинаций нейронных сетей
```

```
# внутренний метод, создающий массив нейронных сетей из комбинаций
нейронных сетей
    def create_neural networks(self,
                               inputs count:
int,
                               # количество входов нейронной сети
                               outputs count: int) ->
List[NeuralNetwork]: # количество выходов нейронной сети
        result = []
        for population in self.blueprint population: # итерация по
комбинациям нейронов в популяции
            hidden neurons = population.neurons # инициализация
скрытых нейронов НС
            result.append(NeuralNetwork(
                                                     # создание массива
HC. Каждый элемент массива - объект класса NeuralNetwork
                hidden neurons=hidden neurons,
                inputs count=inputs count,
                outputs_count=outputs count,
                neuron population=self.neuron population))
        return result
    # внутренний метод, обновляющий приспособленность нейронов, являющуюся
средним значением приспособленности 5 лучших нейронных сетей, включающих
данный нейрон
    def update neuron fitness(self):
        for neuron in self.neuron population:
            fitness list = []
            for population in self.blueprint population:
                if neuron in population.neurons:
                    fitness list.append(population.fitness)
                if len(fitness list) == 5:
                   break
            neuron.fitness = np.array(fitness list).mean() if
len(fitness list) > 0 else 0.0
    def plot network(self,
                    # best nn: NeuralNetwork,
                     x train: np.array,
                    y train: np.array):
      # Создание пустого графа
      G = nx.Graph()
      # Узлы входного слоя
      input nodes = ['Input {}'.format(i+1) for i in
range(len(x train[0]))]
      # Узлы скрытого слоя
      hidden nodes = ['Hidden {}'.format(i+1) for i in
range(self.hidden layer size)]
      # Узлы выходного слоя
      output nodes = ['Output {}'.format(i+1) for i in
range(len(y train[0]))]
```

```
# Добавление узлов в граф
      G.add nodes from(input nodes)
      G.add nodes from(hidden nodes)
      G.add nodes from(output nodes)
      # Добавление ребер (связей) между узлами
      # G.add edges from([(i, j) for i in input nodes for j in
hidden nodes])
      # G.add edges from([(i, j) for i in hidden nodes for j in
output nodes])
      input to hidden edges = []
      for i, hidd node in enumerate (self.best nn.input weights):
        for j, weight in enumerate(self.best nn.input weights[i]):
          if weight == 0:
            continue
          else:
            input to hidden edges.append(('Input {}'.format(j+1),'Hidden
{}'.format(i+1)))
      hidden output edges = []
      for i, out node in enumerate(self.best nn.output weights):
        for j, weight in enumerate(self.best nn.output weights[i]):
          if weight == 0:
            continue
          else:
            hidden output edges.append(('Hidden {}'.format(j+1),'Output
{}'.format(i+1)))
      G.add edges from(input to hidden edges)
      G.add edges from(hidden output edges)
      # Определение позиции узлов по столбцам
      pos = \{\}
      for i, node in enumerate(input nodes):
       pos[node] = (1, i+0.5)
      for i, node in enumerate(hidden nodes):
       pos[node] = (2, i)
      for i, node in enumerate(output nodes):
       pos[node] = (3, i + 4)
      # Рисование графа
      nx.draw(G, pos, with labels=True, node color='lightblue',
edge color='gray', node size=1000, font size=8, arrows=True)
      # Отображение графа
      plt.show()
```

1.11 Классы для загрузки данных

Представленные датасеты имеют схожую структуру. В начале файла имеется заголовок, в котором указано количество входных булевых и вещественных данных, и таких же выходных данных. Далее следуют записи о количестве записей для тренировки, валидации и тестирования. После заголовка следуют данные, значения которых разделены пробелами. Таким образом можно создать универсальный загрузчик данных в виде одного базового класса, задача которого — это непосредственно чтение данных, и дочерних классов, представляющих отдельные датасеты.

Исходный код классов представлен в листинге 10.

Листинг 10. Исходный код классов-загрузчиков данных.

```
def transform data(dataset, inputs, outputs):
    input data = np.zeros((len(dataset), inputs))
   output data = np.zeros((len(dataset), outputs))
    for i in range(len(dataset)):
       data = [float(value) for value in dataset[i].split()]
        input data[i] = data[:inputs]
       output data[i] = data[inputs:]
   return input data, output data
def load(path):
   with open(path, 'r') as f:
       lines = f.readlines()
       bool in = int(lines[0].split('=')[1])
        real in = int(lines[1].split('=')[1])
        bool out = int(lines[2].split('=')[1])
        real out = int(lines[3].split('=')[1])
        training examples count = int(lines[4].split('=')[1])
        validation examples count = int(lines[5].split('=')[1])
        test examples count = int(lines[6].split('=')[1])
        inputs = bool in + real in
        outputs = bool out + real out
        current line = 7
        train x, train y = transform data(lines[current line:current line
+ training examples count], inputs, outputs)
        current line += training examples count
```

```
validation x, validation y =
transform data(lines[current line:current line +
validation examples count], inputs, outputs)
        current line += validation examples count
        test x, test y = transform data(lines[current line:current line +
test examples count], inputs, outputs)
       return train x, train y, validation x, validation y, test x,
test y
class AbstractDataset(object):
   def __init__(self, path):
       self.train_x, self.train y, self.validation x, self.validation y,
self.test x, self.test y = load(path)
   def get train data(self):
       return self.train x, self.train y
    def get validation data(self):
       return self.validation x, self.validation y
    def get test data(self):
       return self.test x, self.test y
class Cancer1Dataset(AbstractDataset):
   def init (self):
       super(). init (os.path.dirname( file ) + '/data/cancer1.dt')
class Cancer2Dataset(AbstractDataset):
   def init (self):
       super(). init (os.path.dirname( file ) + '/data/cancer2.dt')
class Cancer3Dataset(AbstractDataset):
    def init (self):
       super(). init (os.path.dirname( file ) + '/data/cancer3.dt')
class Diabetes1Dataset(AbstractDataset):
   def init (self):
        super(). init (os.path.dirname( file ) + '/data/diabetes1.dt')
class Diabetes2Dataset(AbstractDataset):
   def init (self):
        super().__init__(os.path.dirname(__file__) + '/data/diabetes2.dt')
```

```
class Diabetes3Dataset(AbstractDataset):
   def __init__ (self):
       super(). init (os.path.dirname( file ) + '/data/diabetes3.dt')
class Glass1Dataset(AbstractDataset):
   def init (self):
       super(). init (os.path.dirname( file ) + '/data/glass1.dt')
class Glass2Dataset(AbstractDataset):
   def init (self):
       super(). init (os.path.dirname( file ) + '/data/glass2.dt')
class Glass3Dataset(AbstractDataset):
   def __init__(self):
       super(). init (os.path.dirname( file ) + '/data/glass3.dt')
class Card1Dataset(AbstractDataset):
   def init (self):
       super(). init (os.path.dirname( file ) + '/data/card1.dt')
class Card2Dataset(AbstractDataset):
   def init (self):
       super(). init (os.path.dirname( file ) + '/data/card2.dt')
class Card3Dataset(AbstractDataset):
   def init (self):
       super(). init (os.path.dirname( file ) + '/data/card3.dt')
class Flare1Dataset(AbstractDataset):
   def init (self):
       super(). init (os.path.dirname( file ) + '/data/flare1.dt')
class Flare2Dataset(AbstractDataset):
   def init (self):
       super(). init (os.path.dirname( file ) + '/data/flare2.dt')
class Flare3Dataset(AbstractDataset):
   def init (self):
       super(). init (os.path.dirname( file ) + '/data/flare3.dt')
class GenelDataset(AbstractDataset):
def init (self):
```

```
super(). init (os.path.dirname( file ) + '/data/gene1.dt')
class Gene2Dataset(AbstractDataset):
   def __init__ (self):
       super().__init__(os.path.dirname( file ) + '/data/gene2.dt')
class Gene3Dataset(AbstractDataset):
   def init (self):
       super(). init (os.path.dirname( file ) + '/data/gene3.dt')
class Heart1Dataset(AbstractDataset):
   def init (self):
       super(). init (os.path.dirname( file ) + '/data/heart1.dt')
class Heart2Dataset(AbstractDataset):
   def __init (self):
       super(). init (os.path.dirname( file ) + '/data/heart2.dt')
class Heart3Dataset(AbstractDataset):
   def init (self):
       super(). init (os.path.dirname( file ) + '/data/heart3.dt')
class Horse1Dataset(AbstractDataset):
   def init (self):
       super(). init (os.path.dirname( file ) + '/data/horse1.dt')
class Horse2Dataset(AbstractDataset):
   def init (self):
       super(). init (os.path.dirname( file ) + '/data/horse2.dt')
class Horse3Dataset(AbstractDataset):
   def init (self):
       super(). init (os.path.dirname( file ) + '/data/horse3.dt')
class Mushroom1Dataset(AbstractDataset):
   def init (self):
       super(). init (os.path.dirname( file ) + '/data/mushroom1.dt')
class Mushroom2Dataset(AbstractDataset):
def init (self):
```

```
super().__init__(os.path.dirname( file ) + '/data/mushroom2.dt')
class Mushroom3Dataset(AbstractDataset):
   def __init__(self):
       super().__init__(os.path.dirname( file ) + '/data/mushroom3.dt')
class Soybean1Dataset(AbstractDataset):
   def init (self):
       super(). init (os.path.dirname( file ) + '/data/soybean1.dt')
class Soybean2Dataset(AbstractDataset):
   def init (self):
       super().__init__(os.path.dirname(__file__) + '/data/soybean2.dt')
class Soybean3Dataset(AbstractDataset):
   def __init (self):
       super(). init (os.path.dirname( file ) + '/data/soybean3.dt')
class Thyroid1Dataset(AbstractDataset):
   def init (self):
       super(). init (os.path.dirname( file ) + '/data/thyroid1.dt')
class Thyroid2Dataset(AbstractDataset):
   def init (self):
       super(). init (os.path.dirname( file ) + '/data/thyroid2.dt')
class Thyroid3Dataset(AbstractDataset):
   def init (self):
 super(). init (os.path.dirname( file ) + '/data/thyroid3.dt')
```

2 Результаты работы программы

Протестируем работу алгоритма на датасете cancer1. Запустим три нейросети с различными параметрами и посмотрим, как обучается алгоритм SANE на 2000 поколениях.

Алгоритм инициализируется значениями от -1 до 1.

Таблица 1 – Параметры алгоритма

1				
<u>№</u>	Размер популяции комбинаций нейронов	Размер популяции нейронов	Количество нейронов на скрытом слое	Количество связей для одного нейрона
1	10	500	10	11
2	50	1000	9	8
3	500	2000	20	8

Выведем изменение среднеквадратичной ошибки в процессе эволюции.

Рисунок 2 – Изменение среднеквадратичной ошибки в процессе эволюции

На рисунке 2 представлено изменение среднеквадратичной ошибки трех нейронных сетей с различными конфигурациями. За 2000 поколений ошибка у лучшей нейронной сети уменьшилась приблизительно до 0,05. Таким образом, алгоритм обучается, но имеет крайне низкую

производительность: расчёт занял почти 3,5 часа, при больших размерах популяций.

Рисунок 3 — Визуализация топологии первой нейронной сети

Рисунок 4 - Визуализация топологии второй нейронной сети

3 Вывод

В результате выполнения индивидуального задания был реализован нейроэволюционный алгоритм SANE. Были проанализированы результаты и показано, что алгоритм решает задачу.