Universal Existential Paths

by Sven Nilsen, 2017

An existential path is a total function that determines the truth value of whether there exists some input to a function that returns some output:

$$\exists f := \backslash (x') = \exists x \{ f(x) = x' \}$$

$$x' = f(x)$$

$$f : X \to X$$

This can be generalized using domain constraint notation:

$$\exists f\{T_X\} := \backslash (x') = \exists x : T_X \{ f(x) = x' \}$$

In domain constraint notation you can create the universal $f{}$, so one can also create a universal existential path:

$$\exists f\{\} := \backslash (T_x) = \backslash (x') = \exists x : T_x \{ f(x) = x' \}$$

All universal existential paths are reducible to normal existential paths using `true₁`:

$$\exists f\{[true_1] true\} \iff \exists f\{true_1\} \iff \exists f$$
 $true_1 := \setminus(_) = true$

A sub-existential path is when you pass any other function than `true₁` to a universal existential path:

$$\exists f\{[g(c)] \text{ true}\} \iff \exists f\{g(c)\}$$

 $\exists f\{g(c)\}: B \rightarrow bool$
 $f: A \rightarrow B$
 $g: C \rightarrow A \rightarrow bool$

When one passes a function of more than one argument to a universal existential path, one creates a higher order existential path:

$$\exists f\{g\} : C \rightarrow B \rightarrow bool$$

Name	Notation	Туре
Sub-existential path	$\exists f\{g(c)\}$	B → bool
Higher order existential path	∃f{g}	$C \rightarrow B \rightarrow bool$
Universal existential path	∃f{}	$T_C \rightarrow B \rightarrow bool$