Bit Manipulation Basics

Content
— Decimal Number System
- Binary Number System
- Binary to becimal Conversion
- Decimal to Binary Conversion
— Addition of Decimal Numbers
- Addition of Binary Numbers
— Bitwise Operator
— -ve No. Binary Representation {2's compliment 3
— Range of Datatypes
— Importance of Constraints
$\sim 69.5 \longrightarrow 75 \longrightarrow 80$
$\sim 69.5 \longrightarrow 75 \longrightarrow 80$ Average PSP
The cage of the
more PSP confidence contest
performance
At you as a stack at a modern [modetime 25 mine]
If you are stuck at a problem { max time 25 mins }.
Hint 1 Hint 2 Video solution
TA & rideo call Help Request
Post in WA group
Reach out to me.

Decimal Number System

Binary to Decimal Conversion

convert 1101 to decimal

Convert 10101 to decimal

$$\frac{4) \cdot 2 \cdot 1 \cdot 0}{10 \cdot 10 \cdot 1} = 2^{4} + 2^{2} + 2^{0} = 16 + 4 + 1 = 21$$

Convert	20	to	binary.

	num	remo	ainder
2	20	0 1	
2	10	0	Bottom to top
2	S	1	43210
2	2	0	
2	1	1	$24 + 2^2 = 16 + 4 = 20$
	0		

2	90	0	
2	us	1	
2	22	0	1011010
2	11	1	
2	5	L	
2	2	0	
2	1	1	
	Ō		

2	45	1	
2	22	0	
2	1.1	1	101101
2	5	L	
2	2	O	
2	1	L	
	0		

Addition of Decimal Numbers 1 1 3 6 8 + 4 5 3 8 2 1

Addition of Binary Numbers

+ 00111

11101

E

110

100

→ U

6

Binary Representation of -ve
Very first bit acts by the signed bit
int> 4 bytes -> 32 bits
32
signed
o positive
For simplicity we will assume only 8 bits.
-5 in 8 bit representation.
Steps for 2s compliment.
> Ignore the sign and write binary repre.
0 0 0 0 1 0 1
—→ ~ N
1 1 1 1 0 1 0 d 15 compliment3
\longrightarrow $+1$

-10 in 8 bit representation Stop 1 0 0 0 0 1 0 Step 2 1 1 0 1 0 1 7 6 5 4 3 2 1 0 L <u>L L O L L</u> O 5tep 3 $-2^{7} + 2^{6} + 2^{5} + 2^{4} + 2^{2} + 2^{1}$ = -128 + 64 + 32 + 16 + 4 + 2-129+80+39 = -128 + 118 = -10

BHEOK 22:50

Range of Datatypes

# bits	min	max	lange	
2	1 0	<u>O</u> <u>1</u>	[-2, 1]	
	$-2^{\perp} + 0 = -2$	1		
3	$\frac{1}{-2^2} = -4$	0 1 1	[-4,3]	
Ψ	$\frac{1 \ 0 \ 0 \ 0}{-2^3 = -8}$	<u> </u>	T-8,7J	
8	76543210 10000000 -27		$\frac{10}{12^{3}+2^{2}+2^{4}+2^{6}}$	
32	$\begin{array}{c} -2^{31} \\ \downarrow \\ \approx -2 * 10^{9} \end{array}$	$2^{31} - 1$ \downarrow $\approx 2 * 10^9$	[-2* 10 ⁹ , 2* 10 ⁹]	
64	-2 ⁶³	+263-1		
$2^{10} = 1024 \approx 1000$ $2^{10} * 2^{10} * 2^{10} * 2^{10} * 2^{10} \approx 10^{18}$				
	8 * 1018 Lange -	-8*10 ¹⁸ to	十8×10 ¹⁷	

```
Importance of Contraints ***
                          int range [-2*109 to 2*109]
   int a = 10^5
   int b = 10^6
  int c = a * b
          = 10th -> overflow of integer
 lonq c = a * b
                     1st operation a* b
                                      int*int = int
           = 104
                           The result will be int
                           This result will be stored in c
 long c = (long) a * b
           long * int = long
         = 1011 // correct value
 steps -> a will be typecasted to long
         - long a or int b
        -> temp result will be stored as long
         -> C is assigned temp result.
 Constraints \longrightarrow N \rightarrow [ L to 10 5]
                A[i] \rightarrow [1 to 10^6]
                                  Cannot be
                                         stored in int
     int sum = 0
```

for
$$i \rightarrow 0$$
 to $N-1$
 $Sum + = ATi$
 $Sum + ATi$
 Su

```
long sum = 0
     for i - > 0 to N-1
           sum + = ATi]
     print (sum) // right value
No confusion code
```

long sum = 0

for
$$i \longrightarrow 0$$
 to $N-1$

long $x = ATiJ$

sum $t = x$

print (sum) // right value

HW --- Take simple code examples and print the results.

```
Doubt senion
                        > 109+7
         ( result 7. MOD)
   oracle jak i/o - Arraylist
  Away support - intro
How to solve problem ?
     -> Read the aneition
      > understand input -> output
       Bruteforce _
                    > your code should give right
                       result on simple tests
             y optimise
     Exceeded 25 mins on a question
   -> Hint i
 - Video (d'1
 - TA prideo call 3
   - whatsapp
 - Test me
```