2/2

-1/2

2/2

-1/2

-1/2

-1/2

Q.7

n'engendre pas :

+187/1/53+

QCM	I THLR 2
Nom et prénom, lisibles :	Identifiant (de haut en bas) :
PRITIDE (S	
NICOLAS	2 □1 □2 □3 □4 □5 □6 □7 □8 □9
	2
	□0 □1 □2 □3 □4 □5 孏6 □7 □8 □9
eurs réponses justes. Toutes les autres n'en ont qu lus restrictive (par exemple s'il est demandé si 0 as possible de corriger une erreur, mais vous pou acorrectes pénalisent; les blanches et réponses mu	té. Les questions marquées par « \(\Lambda \) » peuvent avoir plu- u'une; si plusieurs réponses sont valides, sélectionner la est nul, non nul, positif, ou négatif, cocher nul). Il n'est avez utiliser un crayon. Les réponses justes créditent; les ultiples valent 0. plet: les 1 entêtes sont +187/1/xx+···+187/1/xx+.
0 0 1	
	+ (42) (42,4) (42,1) (42,42)
vrai faux Pour toute expression rationnelle <i>e</i> , on a <i>e</i>	$\square '42,42'$ Q.8 Soit Σ un alphabet. Pour tout $a \in \Sigma$, $L_1, L_2 \subseteq$
e. ☑ vrai 🔊 faux 3 Pour toute expression rationnelle <i>e</i> , on a <i>e</i>	Q.8 Soit Σ un alphabet. Pour tout $a \in \Sigma$, $L_1, L_2 \subseteq \Sigma^*$, $n > 1$, on a $L_1^n = L_2^n \Longrightarrow L_1 = L_2$.
e. ☑ vrai 🔊 faux 3 Pour toute expression rationnelle <i>e</i> , on a <i>e</i>	$\square '42,42'$ Q.8 Soit Σ un alphabet. Pour tout $a \in \Sigma$, $L_1, L_2 \subseteq$
$\equiv e$. ✓ vrai faux 3 Pour toute expression rationnelle e , on a e $\equiv \phi + e \equiv e$. vrai faux	Q.8 Soit Σ un alphabet. Pour tout $a \in \Sigma$, $L_1, L_2 \subseteq \Sigma^*$, $n > 1$, on a $L_1^n = L_2^n \Longrightarrow L_1 = L_2$.
$\equiv e$. ✓ vrai faux 3 Pour toute expression rationnelle e , on a e $\equiv \phi + e \equiv e$. ✓ vrai faux 4 À quoi est équivalent ϕ^* ?	Q.8 Soit Σ un alphabet. Pour tout $a \in \Sigma$, $L_1, L_2 \subseteq \Sigma^*$, $n > 1$, on a $L_1^n = L_2^n \Longrightarrow L_1 = L_2$. Vrai \boxtimes faux Q.9 L'expression Perl '[-+]?[0-9A-F]+([-+/*][-+]?[0-9A-F]+)*' n'engendre pas :
vrai faux Pour toute expression rationnelle e , on a e $= \emptyset + e = e$. vrai faux A quoi est équivalent \emptyset^* ? \emptyset \square ε \square ε Pour toutes expressions rationnelles e , f , on	Q.8 Soit Σ un alphabet. Pour tout $a \in \Sigma$, $L_1, L_2 \subseteq \Sigma^*$, $n > 1$, on a $L_1^n = L_2^n \Longrightarrow L_1 = L_2$. Q.9 L'expression Perl '[-+]?[0-9A-F]+([-+/*][-+]?[0-9A-F]+)*' n'engendre pas: a \Box '42+42' \Box '-42' \boxtimes '42+(42*42)' \Box '-42-42'
\blacksquare e.	Q.8 Soit Σ un alphabet. Pour tout $a \in \Sigma$, $L_1, L_2 \subseteq \Sigma^*$, $n > 1$, on a $L_1^n = L_2^n \Longrightarrow L_1 = L_2$. Q.9 L'expression Perl '[-+]?[0-9A-F]+([-+/*][-+]?[0-9A-F]+)*' n'engendre pas: a \Box '42+42' \Box '-42' \boxtimes '42+(42*42)' \Box '-42-42' Q.10 \triangle Soit A, L, M trois langages. Parmi les propositions suivantes, lesquelles sont suffisantes pour
≡ e. vrai faux faux 3 Pour toute expression rationnelle e, on a e ≡ Ø + e ≡ e. vrai	Q.8 Soit Σ un alphabet. Pour tout $a \in \Sigma$, $L_1, L_2 \subseteq \Sigma^*$, $n > 1$, on a $L_1^n = L_2^n \Longrightarrow L_1 = L_2$. Q.9 L'expression Perl '[-+]?[0-9A-F]+([-+/*][-+]?[0-9A-F]+)*' n'engendre pas: a \Box '42+42' \Box '-42' \boxtimes '42+(42*42)' \Box '-42-42' Q.10 \triangle Soit A, L, M trois langages. Parmi les pro-

Fin de l'épreuve.

L'expression Perl '[-+]?[0-9]+,[0-9]*'

☐ Aucune de ces réponses n'est correcte.