Transformers

LATEST SUBMISSION GRADE 82.5%
1. Question 1 A Transformer Network, like its predecessors RNNs, GRUs and LSTMs, can process information one word at a time. (Sequential architecture).
1 / 1 point
True
⊙
False
Correct
Correct! A Transformer Network can ingest entire sentences all at the same time.
2. Question 2 Transformer Network methodology is taken from: (Check all that apply)
1 / 1 point ▼
Convolutional Neural Network style of processing.
Correct
Convolutional Neural Network style of architecture.
None of these.
Attention mechanism.

Correct

3

Question 3

The concept of Self-Attention is that:

0 / 1 point

•

Given a word, its neighbouring words are used to compute its context by selecting the highest of those word values to map the Attention related to that given word.

 \circ

Given a word, its neighbouring words are used to compute its context by summing up the word values to map the Attention related to that given word.

 \bigcirc

Given a word, its neighbouring words are used to compute its context by selecting the lowest of those word values to map the Attention related to that given word.

 \circ

Given a word, its neighbouring words are used to compute its context by taking the average of those word values to map the Attention related to that given word.

Incorrect

To revise the concept watch the lecture Self-Attention.

4.

Question 4

Which of the following correctly represents Attention?

1 / 1 point

0

Attention(Q, K, V) = $min(\frac{QK^T}{\sqrt{K}})VAttention(Q,K,V) = min(\frac{dkQKT}{V})V$

 \bigcirc

 $Attention(Q, K, V) = softmax(\left\{QV^T\right\}\left\{\left\{d_k\right\}\right\})KAttention(Q, K, V) = softmax(dk, QVT)K$

(E)

 $Attention(Q, K, V) = softmax(\left\{QK^T\right\}\left\{\left\{d_k\right\}\right\})VAttention(Q, K, V) = softmax(dk, QKT)V$

O

 $Attention(Q, K, V) = min(\frac{QV^T}{\sqrt{L}})KAttention(Q, K, V) = min(\frac{dkQVT}{L})KAttention(Q, K, V) = min(\frac{d$

Correct

5.

Question 5

Are the following statements true regarding Query (Q), Key (K) and Value (V)?

Q = interesting questions about the words in a sentence

K = specific representations of words given a Q

V = qualities of words given a Q

1 / 1 point

⊚

False

0

True

Correct

Correct! Q = interesting questions about the words in a sentence, K = qualities of words given a Q, V = specific representations of words given a Q

6.

Question 6

$Attention(W_i^QQ, W_i^KK, W_i^VV)$

 ${\it ii}$ here represents the computed attention weight matrix associated with the ${\it ithith}$ "word" in a sentence.

1 / 1 point

(

False

 \circ

True

Correct

Correct! ii here represents the computed attention weight matrix associated with the ithith "head" (sequence).

7.

Question 7

Following is the architecture within a Transformer Network. (without displaying positional encoding and output layers(s))

What information does the *Decoder* take from the *Encoder* for its second block of *Multi-Head Attention*? (Marked XX, pointed by the independent arrow)

(Check all that apply)

Q

V

Κ

Correct

~

۱/

Correct

8

Question 8

Following is the architecture within a Transformer Network. (without displaying positional encoding and output layers(s))

What is the output layer(s) of the $Decoder$? (Marked YY , pointed by the independent arrow)
1 / 1 point
Softmax layer
C
Linear layer
$oldsymbol{\circ}$
Linear layer followed by a softmax layer.
C
Softmax layer followed by a linear layer.
Connect

Correct

9

Question 9

Why is positional encoding important in the translation process? (Check all that apply)

0.75 / 1 point

V

Position and word order are essential in sentence construction of any language.

Correct

13

It helps to locate every word within a sentence.

It is used in CNN and works well there.
Providing extra information to our model.
You didn't select all the correct answers
10.
Question 10
Which of these is a good criteria for a good positionial encoding algorithm?
0.5 / 1 point
It should output a unique encoding for each time-step (word's position in a sentence).
Correct
Distance between any two time-steps should be consistent for all sentence lengths.
Distance between any two time-steps should be consistent for all sentence lengths.
The algorithm should be able to generalize to longer sentences.
None of the these.
You didn't select all the correct answers