Math 5050 – Special Topics: Manifolds– Spring 2025 w/Professor Berchenko-Kogan

Paul Carmody Notes – January – May, 2025

Definitions

- 1. **Diffeomorphism**: If $f \in C^{\infty}$ and $f^{-1} \in C^{\infty}$ then f is said to be a **diffeomorphism**. Similarly, if there exists a mapping between two sets that is a diffeomorphism, the sets are said to be **diffeomorphic** to each other.
- 2. **Tangent Space** at a point p. The set of all vectors rooted at p, written as $T_p(\mathbb{R}^n)$.
- 3. **Derivations**: any operation that supports the Liebniz Rule (D(fg) = (Df)g + fDg).
- 4. **Derivation Space**. $\mathcal{D}_p(\mathbb{R}^n)$ is the set of all derivations at p. This constitutes a vector space. There exists an isomorphism $\phi: T_p(\mathbb{R}^n) \to \mathcal{D}(\mathbb{R}^n)$ defined as

$$\phi: T_p(\mathbb{R}^n) \to \mathcal{D}_p(\mathbb{R}^n)$$
$$v \mapsto D_v = \sum v^i \left. \frac{\partial}{\partial x^i} \right|_p.$$

- 5. Germ: equivalence class of functions whose derivatives around a point are the same.
- 6. Vector Field vs Vector Space.
 - A Vector Field a function that assigns a vector to every point in the subset U.

$$f: (U \subset \mathbb{R}^m) \to T_p(\mathbb{R}^n)$$
$$X \mapsto X_p = \sum a^i(p) \frac{\partial}{\partial x^i} \bigg|_p.$$

consider a^i as coefficient functions. We say that X is C^{∞} on U if $a^i \in C^{\infty}$, $\forall i = 1, ..., n$.

- A Vector Space is any abstraction that is closed under addition and scalar multiplication.
- 7. Left R-Module: An Abelian group R with a scalar multiplication map:

$$\mu: R \times A \to A$$

usually written as $\mu(r, a)$, such that $r, s \in \mathbb{R}$ and $a, b \in A$ a

- (i) (associative) (rs)a = r(sa).
- (ii) (identity) 1a = a (1 is a multiplicative identity).
- (iii) (distributivity) (r+s)a = ra + sa and r(a+b) = ra + rb.

If R is a field then R-module is precisely a vector space over R.

A K-Algebra over a field K is also a ring A that is also a vector space over K such that the ring multiplication satisfies homogeneity (scalar distributes over vector multiplication to only one of the operators).

- 8. Exterior Algebras
- 9. **Dual Basis and Dual Space**. The **Dual Basis** is a set of functions $\alpha^i: V \to \mathbb{R}$

$$\alpha^i: V \to \mathbb{R}$$
$$\alpha^i(e_j) = \delta^i_j$$

the **Dual Space** V^{\vee} is the space of functions spanned by the Dual Basis. Elements of the Dual Space are called **Functionals (Analysis)/1-Covectors (Differential Geometry)**.

- 10. **Multi-Linear Functions** Let V be a vector space and V^k be k-tuples of vectors in V. A K-linear map or k-tensor $f: V^k \to \mathbb{R}$ such that each ith component is linear. The vector space of all k-tensors on V is denoted $L_k(V)$.
- 11. Permuting Mult-linear Functions
- 12. **Tensor Product** is an operator on $v \in V$ and $u \in U$ where

$$v \otimes u : V \times U \to V \oplus U$$
$$(v \otimes u)_{i,j} = v_i \cdot u_j, \ \forall i = 1, \dots, \dim(V), \ j = 1, \dots, \dim(U)$$

- 13. Wedge Product
- 14. Differential k-Forms
- 15. the Exterior Derivative
- 16. Tensor Product.

Given two vector spaces V, W with bases v_1, \ldots, v_n and w_1, \ldots, w_m then the Tensor Product space $V \otimes W$ has a basis referred to as $v_i \otimes w_j$ such that given any vector $\alpha = \sum \alpha_i v_i \in V$ and $\beta = \sum \beta_j w_j \in W$ the vector $\alpha \otimes \beta$ will have $n \times m$ components and each $(\alpha \otimes \beta)_{i \times j} = \alpha_i \times \beta_j$.

 α_i, β_j are all scalars. The real issue is the behavior of unit basis vectors v_i, w_j and how they are effected by the operator and the basis vectors $v_i \otimes w_j$. Thus, scalar multiplication works on either (but not both) operands and distribution over addition works over both the left and the right.

NOTE: "In a typical school, there would be graduate level courses on Smooth Manifods and anoter on Remannian Manifolds."