A Tale of Two Tasks: Data Control and Modeling

Wayne D. Gray

Beyond OpenData Sharing: Making Sense of Massive Data Sets

(Isn't that what MacSHAPA was really about???)

Beyond Open Data Sharing

- High bandwidth data collection with well formatted records, easy to reuse documentation, and ability to address new questions after the data is collected
- Tools that will aggregate sampled data to form meaningful units at different levels of analysis
- Visualizing and exploring data in terms of sequence, cooccurrence, and other patterns
- Newell's Dream: Automated or semi-automated protocol analyses, which enable theory-based parsing of log files to form runnable cognitive models

Then & Now

- MacSHAPA
 - MacSHAPA (1995's) Submarine Commanders: managing complexity of verbal and action protocols
 - MacSHAPA Cognitive Metrics Profiling
- Action Protocol Tracer
 - Finite state grammars for pattern recognition in action protocol data
- SANLab
 - SANLab tool for Stochastic Analytic Network modeling +++
 - Newell's Dream: Automating production of cognitive models from behaviorial/action protocol analysis

Experience with MacSHAPA

- Submariners (≈ 1995 to 2000)
- Tool for examining output of computational cognitive modeling

Project Nemo, or, Subgoaling Submariners

Seven Phased Approach

Phase 1: Data Collection using pulation (at NUWC) -- > COMPLETED < --

- Phase 2: Encoding
 -->COMPLETED
- Phase 4: Development of preliminary computational cognitive models **CURRENT**
- Phase 5: Data Collection using scaled world **CURRENT**
- Phase 6: Analysis of data and refinement of models
- Phase 7: Modifications of suite of models and scaled world as deliverables

rotocols from Phase 1

Table 2: Segment Shown in Table 1 Following Resegmentation and Encoding of Goals by the Experimenters

Time	L1	L2	L3	Operator	Info-Source	Ship	Attribute	Value	Duration
	DETE	CT-SUB							
62.428				DISPLAY-NAV	SONAR-NB-TOWED				
63.98				QUERY	NBT-WATERFALL				
66.82				RECEIVE	NBT-WATERFALL	SUB	ON-SONAR	NO	4.221
	POP								
	LOCA	II IZF-ME	RC.						
		SET-T	RACKER						
67.02				SET-TRACKER	SONAR-NB-TOWED	MERC			
68.201				RECEIVE	NRT-WATERFALL	MERC	ON-SONAR	YES	4 221
68.201				RECEIVE	NBT-WATERFALL	MERC	BEARING	BEAM	4.221
68.201				RECEIVE	NBT-WATERFALL	MERC	TRACKING	YES	4.221
	POP								
	DETE	RMINE-C	ONICAL-	ANGLE					
70.063				QUERY	NRT-CONICAL-ANGLE-FIELD	MERC	CONICAL-ANGLE		
70.724				RECEIVE	NBT-CONICAL-ANGLE-FIELD	MERC	CONICAL-ANGLE	82 15	0.661
	POP								
	DETE	RMINF-F	Y						
71.111				QUERY	NBT-BEARING-FIELD	MERC	BEARING		
72.088				RECEIVE	NBT-BEARING-FIELD	MERC	BEARING	152 OR 314	0.977
	POP								
	DETE	RMINE-S	NR						
72 393				OUFRY	NRT-SNR-FIFLD	MERC	SNR		
72.987				RECEIVE	NBT-SNR-FIELD	MERC	SNR	6.63	0.594
		POP							
	POP	. 0.							
	FVΔI	IATE-AR	RAY-STATI	IS					
74.635	LVAL	OAI L'AII	ioni Sizii	OUFRY	NBT-ARRAY-STATUS-FIELD	OS	ARRAY		
75.601				RECEIVE	NBT-ARRAY-STATUS-FIELD	OS	ARRAY	STABLE	0.966
, 5.001	POP			MEGETAL	THE PARTY STATES	00	CHINCH	JIMBEL	5.700

Note: The headings are the same as in Table 1 with the addition of three fields for goals and subgoals: levels 1 (I.1), 2 (I.2), and 3 (I.3). No L3 goals are encoded in this segment.

Phase 2: Tool Development -- To facilitate

Encoding of Data we developed a Tool to playback the files collected at NUWC

Phase 3: NED

One of Ned's 10 displays that AOs use for situation assessment. In data-collection mode, all AO interactions with Ned are recorded and time stamped at 60hz (16.67 msec); along with the current state of the simulation (truth!)

Experience with MacSHAPA

- Submariners (≈ 1995 to 2000)
- Tool for examining output of computational cognitive modeling

Visualizing the Output of a Process Model (ACT-R)

- ? We were asking whether we could use this approach to develop a predictions of cognitive workload by identifying tasks or subtasks where the resource demands are excessive
- Especially places where the using the system (i.e., the structure of the interactive system) consumes resources required for doing the task

Then & Now

- MacSHAPA
 - MacSHAPA (1995's) Submarine Commanders: managing complexity of verbal and action protocols
 - MacSHAPA Cognitive Metrics Profiling
- Action Protocol Tracer
 - Finite state grammars for pattern recognition in action protocol data
- SANLab
 - SANLab tool for Stochastic Analytic Network modeling +++
 - Automating production of cognitive models from behaviorial/ action protocol analysis

Our Focus was on Discrete Action Protocols

- E.g. Mouse clicks, key presses collected by a computer system
- Characteristics:
 - A large volume of protocols can be easily collected
 - High temporal resolution (e.g. 16.67 msec)
 - Constrained and easy to interpret (compared to verbal protocols)
 - Easy to aggregate across subjects

But, approach could be applied to any data process data that could be encoded in SHAPA spreadsheets

Action protocol analysis

- Two approaches to do the analysis:
 - Exploratory: searching for possible patterns in the protocols
 - Confirmatory: Looking for evidence supporting the researcher's theory
 - Both approaches require some kind of pattern matching to patterns generated by the researcher
- Automatic (or semi-automatic) protocol analyzer
 - Reduce effort
 - Increase objectivity

	WINDOW	BUTTON	REC-MODE	PR								KP-10MIN	
	SHOW-INFO-WIN	Start Trial	CLICKON	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL
	VCR-WINDOW	Start Trial	CLOCKSET-MODE		15:00		NIL	WED		ON	15		
	VCR-WINDOW	NIL	VCR-LEAVE	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL
	VCR-WINDOW	NIL	VCR-LEAVE	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL
	VCR-WINDOW	START-RADIO-BUT			E :EE	1		WED		ON	E	E	E
	VCR-WINDOW	DAY-OF-WEEK	START-MODE	OFF	15:00	1		WED		ON	15		
	VCR-WINDOW	DAY-OF-WEEK	START-MODE	OFF	15:00	1		THU	NIL	ON	15		
	VCR-WINDOW	DAY-OF-WEEK	START-MODE	OFF	15:00	1		FRI	NIL	ON	15		
	VCR-WINDOW	DAY-OF-WEEK	START-MODE	OFF	15:00	1		SAT		ON	15		
	VCR-WINDOW	DAY-OF-WEEK	START-MODE	OFF	15:00	1		SUN		ON	15		
	VCR-WINDOW	DAY-OF-WEEK	START-MODE	OFF	15:00	1		MON		ON	15		
	VCR-WINDOW	DAY-OF-WEEK	START-MODE	OFF	15:00	1		TUE	NIL	ON	15		
	VCR-WINDOW	HOUR	START-MODE	OFF	16:00	1		TUE	NIL	ON	16		
	VCR-WINDOW	HOUR	START-MODE	OFF	17:00	1		TUE	NIL	ON	17		
	VCR-WINDOW	HOUR	START-MODE	OFF	18:00	1		TUE	NIL	ON	18		
	VCR-WINDOW	HOUR	START-MODE	OFF	19:00	1		TUE	NIL	ON	19		
	VCR-WINDOW	HOUR	START-MODE	OFF	20:00	1		TUE	NIL	ON	20		
	VCR-WINDOW	HOUR	START-MODE	OFF	21:00	1		TUE	NIL	ON	21	0	
	VCR-WINDOW	HOUR	START-MODE	OFF	22:00	1		TUE	NIL	ON	22		
142650	VCR-WINDOW	HOUR	START-MODE	OFF	23:00	1	15	TUE	NIL	ON	23		
142730	VCR-WINDOW	10MIN	START-MODE	OFF	23:10	1	15	TUE	NIL	ON	23	1	
142824	VCR-WINDOW	10MIN	START-MODE	OFF	23:20	1	15	TUE	NIL	ON	23	2	
142853	VCR-WINDOW	10MIN	START-MODE	OFF	23:30	1	15	TUE	NIL	ON	23	3	
142909	VCR-WINDOW	NIL	VCR-LEAVE	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL
142980	CCL::VCR-WINDOW	CH-DOWN	START-MODE	OFF	23:30	1	14	TUE	NIL	ON	23	3	
142993	CCL::VCR-WINDOW	CH-DOWN	START-MODE	OFF	23:30	1	13	TUE	NIL	ON	23	3	
143066	CCL::VCR-WINDOW	CH-DOWN	START-MODE	OFF	23:30	1	12	TUE:	NIL	ON	23	3	
143076	CCL::VCR-WINDOW	CH-DOWN	START-MODE	OFF	23:30	1	11	TUE	NIL	ON	23	3	- 0
143084	CCL::VCR-WINDOW	CH-DOWN	START-MODE	OFF	23:30	1	10	TUE	NIL	ON	23	3	
143092	CCL::VCR-WINDOW	CH-DOWN	START-MODE	OFF	23:30	1	9	TUE	NIL	ON	23	3	- (
143099	CCL::VCR-WINDOW	CH-DOWN	START-MODE	OFF	23:30	1		TUE	NIL	ON	23	3	
143111	CCL::VCR-WINDOW	CH-DOWN	START-MODE	OFF	23:30	1		TUE	NIL	ON	23	3	- (
143132	CCL::VCR-WINDOW	CH-DOWN	START-MODE	OFF	23:30	1		TUE	NIL	ON	23	3	
143141	CCL::VCR-WINDOW	CH-DOWN	START-MODE	OFF	23:30	1		TUE	NIL	ON	23	3	
143150	CCL::VCR-WINDOW	CH-DOWN	START-MODE	OFF	23:30	1		TUE	NIL	ON	23	3	
143178	CCL::VCR-WINDOW	CH-DOWN	START-MODE	OFF	23:30	1	3	TUE	NIL	ON	23	3	
143194	CCL::VCR-WINDOW	CH-DOWN	START-MODE	OFF	23:30	1		TUE	NIL	ON	23	3	
	CCL::VCR-WINDOW		START-MODE	OFF	23:30	1		TUE	NIL	ON	23	3	-
143255	VCR-WINDOW	NIL	VCR-LEAVE	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL
143324	VCR-WINDOW	END-RADIO-BUT	END-MODE	OFF	E :EE	1	15	NIL	NIL	ON	E	E	E
	VCR-WINDOW	NIL	VCR-LEAVE	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL
143371	VCR-WINDOW	NIL	VCR-LEAVE	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL
	VCR-WINDOW	HOUR	END-MODE	OFF	23:30	1		NIL	NIL	ON	23		
	VCR-WINDOW	NIL	VCR-LEAVE	NIL	NIL.	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL
	VCR-WINDOW	NIL	VCR-LEAVE	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL
	VCR-WINDOW	CS-RADIO-BUT	CLOCKSET-MODE		15:00			WED		ON	15		
	VCR-WINDOW	PROGREC	CLOCKSET-MODE		15:00		NIL	WED		ON	15		
	VCR-WINDOW	NIL.	VCR-LEAVE	NIL	NIL	NIL	NIL	NIL	NIL.	NIL	NIL.	NIL.	NIL
	SHOW-INFO-WIN	Stop Trial	CLICKON	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL	NIL
		Otop it is											
	ERROR-TRIAL	RESET	SHOW-ET	NIL	NIL	NIL.	NIL	NIL	NIL	NIL	NIL	NIL	NIL

Finding patterns in data

A sequential stream of discrete action protocol

A B C B C F A B C D F G A B C D F G B C F B A F......

1st level
X Y X Z X Z Y Grouping

P1 P2 P3 2nd level
Hierarchy

Macro Pattern

Structure of ACT-PRO

Table 2 Grammar That Captures Variations of the Action Sequence Formed by Pressing the Buttons Channel, Up-Arrow, Down-Arrow, and Enter

SET-CHANNEL: [Object1][Object2][Object3]	(1)
$[Object1] \rightarrow channel$	(2)
[Object2] → up-arrow	(3)
[Object2] → down-arrow	(4)
[Object2] → up-arrow [Object2]	(5)
[Object2] → down-arrow [Object2]	(6)
[Object2] → enter [Object2]	(7)
[Object3] → enter	(8)

Table 3	
An Example of the Trace and	Validation Results of
Using the Hierarchical Goal S	Structure of Figure 1

Using the merarchical	Goal Structure of Figure 1
Trace	Validation results
Push goal: PROGRAM-SHOW	Push goal match
Push goal: SET-START-TIME	Push goal match
Push goal: SET-START-HOUR	Push goal match
Action: start-hour	
Action: start-hour	
Pop goal: SET-START-HOUR	Pop goal match
Push goal: SET-START-10MIN	Push goal match
Action: start-10min	
Pop goal: SET-START-10MIN	Pop goal match
Pop goal: SET-START-TIME	Pop goal mismatch
Push goal: SET-CHANNEL	Push goal match
Action: channel	
Pop goal: SET-CHANNEL	Pop goal match
Push goal: SET-START-TIME	Push goal match
Push goal: SET-START-MIN	Push goal match
Action: start-min	

Figure 1. The simplified task-relevant hierarchical goal structure of a VCR interface (Gray, 2000; Gray & Fu, 2000).

Table 3

An Example of the Trace and Validation Results of Using the Hierarchical Goal Structure of Figure 1

Trace	Validation results
Push goal: PROGRAM-SHOW	Push goal match
Push goal: SET-START-TIME	Push goal match
Push goal: SET-START-HOUR	Push goal match
Action: start-hour	
Action: start-hour	
Pop goal: SET-START-HOUR	Pop goal match
Push goal: SET-START-10MIN	Push goal match
Action: start-10min	
Pop goal: SET-START-10MIN	Pop goal match
Pop goal: SET-START-TIME	Pop goal mismatch
Push goal: SET-CHANNEL	Push goal match
Action: channel	-
Pop goal: SET-CHANNEL	Pop goal match
Push goal: SET-START-TIME	Push goal match
Push goal: SET-START-MIN	Push goal match
Action: start-min	2

Output Trace and Goodness-of-fit

a

<u>Trace</u>

Push M
Push P1
Push X
Actions: A B C
Pop X
Push Y
Actions: B C F
Pop Y
Pop P1
Push P2
Push W

Actions: D F G

Pop W

<u>Validation Results</u>

Push match
Push match
Pop match
Push match
Pop match

Push match

Pop mismatch Push match Push match

Pop match

Results

- 64 subjects, 1,228 trials, 51,232 actions
- 8 grammars were constructed for each interface, each representing a structural pattern (a strategy)
- Worst-fitting trial: 81.1%; best-fitting trial: 100% Average: 95.1% of the actions were captured by the grammars
- By inspecting the results, we found change of strategies in different interfaces
- Two different hierarchies were used in the two interfaces
- We also found differences in the higher-level patterns in the two interfaces
- 15,245 higher-level patterns are parsed
- 464 (3%) of the patterns were identified as mismatches between the data and the hierarchy

AT:ST Ratio – Analysis Time to Sequence Time

- Pre-Action Protocol Tracer
 - Gray (2000) estimated as 100:1
 - Analyzed data from 9 Ss, ≈ 72 trials
- With the Action Protocol Tracer
 - For the 3 data sets described in the Fu 2001 the building of grammars, on average, took the researchers 2–3 h, and the average running time was about 1 h.
 - 1:10

Then & Now

- MacSHAPA
 - MacSHAPA (1995's) Submarine Commanders: managing complexity of verbal and action protocols
 - MacSHAPA Cognitive Metrics Profiling
- Action Protocol Tracer
 - Finite state grammars for pattern recognition in action protocol data
- SANLab-CM
 - SANLab tool for Stochastic Analytic Network Cognitive Modeling
 - Automating production of cognitive models from behaviorial/ action protocol analysis

SANLab-CM

- An extension of the tools used by Gray & John (1993) and Gray & Boehm-Davis (2000) & other studies
- Schweickert in numerous studies

Schweickert, R., Fisher, D. L., & Proctor, R. W. (2003). Steps toward building mathematical and computer models from cognitive task analyses. *Human Factors*, 45(1), 77–103.

Schweickert, R. (1978). A critical path generalization of the additive factor method: Analysis of a Stroop task. *Journal of Mathematical Psychology*, 18(2), 105–139. Gray, W. D., & Boehm-Davis, D. A. (2000). Milliseconds Matter: An introduction to microstrategies and to their use in describing and predicting interactive behavior. *Journal of Experimental Psychology: Applied, 6*(4), 322–335.
Gray, W. D., John, B. E., & Atwood, M. E. (1993). Project Ernestine: Validating a

jaray, W. D., John, B. E., & Atwood, M. E. (1993). Project Ernestine: Validating GOMS analysis for predicting and explaining real-world performance. Human-Computer Interaction, 8(3), 237–309.

Model Window and Model Overview Window

Telephone Operator Workstation CPM-GOMS Level

SANLab-CM

- Stochastic Activity Network Laboratory for Cognitive Modeling
- Idea inspiring SANLab-CM
 - Cognitive, perceptual, and motor processes are inherently variable
 - This variability may result in changes in workload even when load conditions are constant
- Hence, SANLab-CM is a tool for analyzing and predicting variability with and without extra workload

Model Window and Model Overview Window

Example 1: Constructing a very simple CPM-GOMS model in SANLab

- Parts
- Interleaving
- Stochasticity
- Comparison of very simple models

Building a Preliminary CPM-GOMS Model CPM-GOMS Templates

Perceive Visual Information
With Eye Movement

Perceive Simple Sound

Building a Preliminary CPM-GOMS Model Cut & Paste & String Together

Inserted dependency line

Building a Preliminary CPM-GOMS Model Insert Operator Durations

Building a Preliminary CPM-GOMS Model Interleave Operators + Stochastic Operation Times

Rensselaer Cognitive Science

(randomly sampled on each model run)

Three Critical Paths

Very Simple Model: Summary

Interleaving	Fixed/ Stochastic	Critical Path	Predicted Times
No Interleaving	Fixed	One	620 ms
Interleaving	Fixed	One	470 ms
Interleaving	Stochastic	Average	490 ms
Interleaving	Stochastic	90%	511 ms
Interleaving	Stochastic	9%	317 ms
Interleaving	Stochastic	1%	230 ms

Running a Model 5,000 Times

Histogram: Runtime Distribution of 5000 model runs – min \approx 10s, max \approx 16s

Most Frequent Critical Path Accounts for 27% of Runs

2nd Most Frequent Critical Path Accounts of 16% of Runs

2nd Most Frequent Critical Path Accounts of 16% of Runs

CogTool to SANLab

Demonstration of predicting the distribution of time taken by a skilled pilot to perform a routine task in the cockpit using CogTool and SANLab-CM

Bonnie E. John Carnegie Mellon University 30 August 2011

Newell's Dream

- CogTool to SANLab is an important but limited step
- How about the ability to go from log files of people performing tasks directly to modeling?
- Newell's dream of an automatic protocol analyzer

Newell's Dream

- SANLab+
 - Requires cognitive architectures that encompass
 - Control of cognition
 - Cognition
 - Perception
 - Action
 - Ability to swap out architectural assumptions
 - For example, ACT-R, Soar, EPIC
 - Initial data sets will be taken from people performing three different paradigms

Newell's Dream

- SANLab+
 - Initial data sets will be taken from people performing three different paradigms
 - PRP psychological refractory period
 - Behaviorally this is a very simple response time paradigm
 - NavBack a dual-task paradigm
 - Continuous motor movement
 - Eye movements
 - Working memory maintainance
 - DMAP Decision Making Argus Prime
 - Complex visual search and decision making task

Then & Now

- MacSHAPA
 - MacSHAPA (1995's) Submarine Commanders: managing complexity of verbal and action protocols
 - MacSHAPA Cognitive Metrics Profiling
- Action Protocol Tracer
 - Finite state grammars for pattern recognition in action protocol data
- SANLab
 - SANLab tool for Stochastic Analytic Network modeling +++
 - Automating production of cognitive models from behaviorial/ action protocol analysis

