CSM151B Computer Systems Architecture

Week 3 Discussion 1/26/2018

Logistics

- HW2 due today
- HW3 due next Friday

HW1 solution has been uploaded on CCLE

Agenda

- ALU design
- Delay analysis

ALU Design

- Arithmetic logic unit (ALU) design
 - Input: two operand (32-bit), ALU control signals
 - Output: result, zero, overflow, carryout
 - Operation: add, subtract, and, or, nor, slt

- Input: two operand (1-bit), ALU control signal, carryin
- Output: result, carryout
- Operation: add, and, or

A 32-Bit ALU

Ripple carry adder (1-bit ALU -> 32-bit ALU)

Subtraction?

$$-a-b=a+(-b)=a+(\sim b+1)=a+\sim b+1$$

Operation: add, subtract, and, or

- NOR?
 - !(a | b) = !a & !b
- Operation: add, subtract, and, or, nor

- Set on less than?
 - Less than: sign bit of (a b)
 - Set Isb of result to be 1 if a < b</p>

A 32-Bit ALU

Operation

- Add
- Subtract
- AND
- OR
- NOR
- slt

A 32-Bit ALU

Delay Analysis

16-bit Ripple Carry Adder

- Worst case delay for 16-bit Ripple Carry Adder
 - Si = Ci ^ Ai ^ Bi Ci+1 = Ai & Bi + Ai & Ci + Bi & Ci
 - Delay(S) = 2 gate delays
 - Delay(C) = 2 gate delays
 - Worst case delay = 2 * 16 gate delays

16-bit Carry Lookahead Adder

- For calculating Cout, we will use two additional signals at 1-bit adder
 - Generate (gi) = Ai & Bi
 - Propagate (pi) = Ai ^ Bi

4-bit CLA

- c1 = g0 + (p0 & c0)

 c2 = g1 + (p1 & g0) + (p1 & p0 & c0)

 c3 = g2 + (p2 & g1) + (p2 & p1 & g0) + (p2 & p1 & p0 & c0)

 c4 = g3 + (p3 & g2) + (p3 & p2 & g1) + (p3 & p2 & p1 & g0)

 + (p3 & p2 & p1 & p0 & c0)
- Delay(c4) = $2 + max\{delay(gi), delay(pi)\} = 2 + 1 = 3 gate delays$

16-bit Carry Lookahead Adder

Hierarchical CLA

```
- P0 = p3 & p2 & p1 & p0
G0 = g3 + (p3 & g2) + (p3 & p2 & g1)
+ (p3 & p2 & p1 & g0)
```


Sample Question

- Consider the 32-bit adder as shown, find the delay of C32
- Assume the delay time sheet

Fan-In	Delay
1	1T
2	2T
3	3T
4	5T
5	8T
6	13T

Steps

- 1. Find the critical path
- 2. Understand the components of the ALU
- 3. Calculate time delay for different parts in order
 - When calculating time delay for different part, decompose it as a simple ALU as we have discussed before

Part 1: 4-bit Ripple Carry Adder

Si = Ci ^ Ai ^ Bi Ci+1 = Ai & Bi + Ai & Ci + Bi & Ci

Delay(S) = 2T + 2T = 4TDelay(C) = 2T + 3T = 5T

Delay(Cin) = 0Delay(C4) = 20T

Fan-In	Delay
1	1T
2	2T
3	3T
4	5T
5	8T
6	13T

Operation

20T

Part 2: 20-bit Two-level CLA

- Level 1: 4-bit CLA
 - P0 = p3 & p2 & p1 & p0 G0 = g3 + (p3 & g2) + (p3 & p2 & g1) + (p3 & p2 & p1 & g0)
 - Delay(P0) = 5T + 2T = 7T < Delay(Cin)Delay(G0) = 10T + 2T = 12T < Delay(Cin)
 - The latency of computing Pi and Gi is hidden by the latency of computing C4
 - Computing Pi and Gi is not on the critical path
 - We only need to analyze the second level

Part 2: 20-bit Two-level CLA

- Level 2: 5-bit CLA
 - C1 = G0 + (P0 & c0) C2 = C3 = C4 = C5 = G4 + (P4 & G3) + (P4 & P3 & G2) + (P4 & P3 & P2 & G1) + (P4 & P3 & P2 & P1 & G0) + (P4 & P3 & P2 & P1 & P0 & c0)
 - Delay(C5) = 13T + 13T = 26T
 - pi and gi from the first level is not considered here because they can be pre-computed before c0 arrives

Part 3: 2 x 4-bit CLA

4-bit CLA

```
- c1 = g0 + (p0 & c0)

c2 = g1 + (p1 & g0) + (p1 & p0 & c0)

c3 = g2 + (p2 & g1) + (p2 & p1 & g0) + (p2 & p1 & p0 & c0)

c4 = g3 + (p3 & g2) + (p3 & p2 & g1) + (p3 & p2 & p1 & g0)

+ (p3 & p2 & p1 & p0 & c0)
```

Fan-In	Delay
1	1T
2	2T
3	3T
4	5T
5	8T
6	13T

- Delay(c4) = 16T

