Faculdade de Ciências e Tecnologia Departamento de Matemática e Computação Bacharelado em Ciência da Computação

Engenharia de Software II

Aula "Zero" Prof. Dr. Rogério Eduardo Garcia

(rogerio.garcia@unesp.br)

1

Bibliografia Básica

PRESSMAN, R. S. Engenharia de Software: uma abordagem profissional, 7ª Edição, McGraw-Hill-Bookman, Porto Alegre, 2011.

SOMMERVILLE, I. Engenharia de software, 9ª Edição, Ed. Pearson Prentice Hall, São Paulo, 2011.

PETERS, J.F., PEDRYCZ, W. Engenharia de software: teoria e prática, Editora Campus, Rio de Janeiro, 2001.

PFLEEGER, S. L., Engenharia de Software, Teoria e Prática. Pearson Brasil, 2004.

.64

<u>5</u>

Cronograma								
	Semana	Aula	Qtd	Mês	Dia	Conteúdo Previsto	Total	1
	1	1	2		28	Apresentação da Disc.		1
	1	2	2	Julho	31	Revisão	4	
	2	3	2		4	Revisão		
		4	2		7	Qualidade de Software		
28/01/25	3	5	2		11	Qualidade de Software		İ
		6	2 Agosto	14	Qualidade Interna de CF	16	ĺ	
	4	7	2	Agosto	18	Métricas e Estimativas		
			8 2	21	Arquitetura de Software			
	5	9	2	1	25			
		10	2 2		28	Arquitetura de Software Exercício		1
	6	12	2	1	4	Gerência de Projeto: Planejamento	20	
		13	2		- 8	Gerência de Projeto: Planejamento		
	7	14	2		11	Projeto		
		15		Setembro	15	Projeto		
Tio. D. Nogero Education Calera	8	16		2 2 2 2 4	18	Projeto		
		17			22	Controle		
	9	18			25	Revisão		
		19			29	Prova		
		20	2	Outubro	2	Qualidade: Processo	18	1
	10	21	2		6	Qualidade: Processo		
		22	2		9	Qualidade: Processo		
	11	23	2		13	Projeto - Férias		
		24	2		16	Projeto - Férias		
	12	25	2		20	Projeto		
	13	26	2		23	Projeto		1
	13	27	2		27	Projeto		1
	15	28	2		30	Projeto		1
		29	2		4	Controle		
	16	30	2		- 6	Projeto		
		31	2		11	Projeto		
	17	32	2 Nover	Novembro	13	RUP	16	
			2		18	RUP		
	16	34	2	1	20 25	Feriado	1	1
		35	2	1	25	Controle		
,	17	36	4		2/	Revisão	\vdash	1
	-	37	2	Dezembro	4	Prova Entrega do Projeto		1
	18	38	2		9		12	
	19	40	4	1	11	Entrega do Projeto Exame		
	19	40	4		- 11	Exame		1

7

Abordagem Prática

- Vantagens
 - Mão na massa
 - Prática
 - Fixação
- Problemas potenciais
 - Falta de comprometimento dos alunos
 - Dependência inter-grupos
 - Importante a responsabilidade e consideração dos grupos com os colegas

O sucesso depende de vocês!

9

Abordagem Prática

- Separação em grupos
- Mesma pessoa assume papéis distintos em atividades do desenvolvimento
- Exemplo:
 - Pessoas E1, E2, E3 e E4
 - Projetos P1
 - E1 gerencia as atividades, planejando as tarefas e controlando seus resultados. E2 é responsável por atividades de SQA. E3 é responsável pela Análise e Projeto. E E4 é responsável pela implementação.

<u>10</u>

<u>11</u>

<u>12</u>

<u>13</u>

Método Larman: Visão Geral

- Aplicar princípios, diretrizes e padrões na construção de software
- Implementar um ciclo de desenvolvimento iterativo e incremental envolvendo atividades padrão de análise e projeto.
- Utiliza a metodologia de desenvolvimento ágil
- Integra a Modelagem Orientada a Objetos com a programação
- Criar diagramas frequentemente utilizados na notação UML

<u>14</u>

Desenvolvimento Iterativo

- Repetição dos estágios do Ciclo de Vida Iterativo (CVI), incluindo planejamento, elaboração, construção e instalação.
- O sistema é expandido com a adição e refinamento de novas funcionalidades a cada ciclo iterativo.
- Cada iteração foca em um conjunto específico de requisitos..

<u>15</u>

<u>16</u>

SCOUND

SCRUM

Estrutura ágil de gestão de projetos que ajuda as equipes a estruturar e gerenciar o trabalho por meio do conjunto de valores, princípios e práticas

SPRINT
1-4 WEEKS

Product Owner

Team

SPRINT
1-4 WEEKS

Finished

Retrospective

Finished

Retrospective

Finished

Retrospective

<u>18</u>

<u>19</u>

<u>20</u>

Documento de Requisitos

- Como resultado do processo de elicitação é desenvolvido o documento de requisitos do sistema.
 - Contém a especificação de todos os requisitos funcionais (funções) e de qualidade (atributos) do software, incluindo as capacidades do produto, os recursos disponíveis, os benefícios e os critérios de aceitação
 - Serve como um meio de comunicação entre o engenheiro de software e o usuário, a fim de estabelecer um acordo acerca do software pretendido.

23

<u>23</u>

Requisitos Funcionais: (Funções do Sistema)

- O que o sistema deve fazer?
- Devem ser identificados e listados em agrupamentos lógicos.
- Cada função pode ser expressa em termos de um ou mais requisitos que o sistema deve atender.

24

<u>24</u>

Requisitos Funcionais (Funções do Sistema)

 Descrevem as funções e comportamentos que um sistema de software deve apresentar.

- Cada função pode ser expressa em termos de um ou mais requisitos que o sistema deve atender.
 - O que o sistema deve fazer?
 - Geralmente escritas da forma: "O sistema deve fazer <X>"
 - Devem ser identificados e listados em agrupamentos lógicos.

<u>25</u>

Tipos de Funções

 Evidente ou Visível (E): deve ser executada e o usuário tem conhecimento de ela foi executada.

- Oculta (O): deve ser executada, mas não é visível para o usuário.
 - Vale para muitos serviços técnicos de infra-estrutura.
 - Ex.: Salvar a informação em um dispositivo permanente de armazenamento.
 - São frequentemente, e incorretamente, esquecidas durante a fase de especificação de requisitos.
- Enfeite/Decoração/Luxo (D): opcional.
 - Sua adição não afeta significativamente o custo ou outras funções.

ř

<u> 26</u>

Requisitos de Qualidade (Atributos do Sistema)

 Descrevem como o sistema deve se comportar em termos de atributos de qualidade, como desempenho, segurança e usabilidade

Foca em "COMO" o sistema deve funcionar

- 1. Funcionalidade
- 2. Usabilidade
- 3. Confiabilidade
- 4. Eficiência
- 5. Manutenibilidade
- 6. Portabilidade

<u>27</u>

Padrão IEEE para o Documento de Requisitos

- 1 Introdução
 - 1.1 Propósito do documento de requisitos
 - Motivações, público-alvo, ...
 - 1.2 Escopo do produto
 - Explicitar o que o produto faz (e o que não faz).
 - Descrever a aplicação.
 - 1.3 Definições, acrônimos e abreviações
 - 1.4 Referências
 - · Listar todos os documentos referenciados.
 - Especificar a origem dos documentos.
 - 1.5 Visão geral do restante do documento
 - · Estrutura/organização.

Padrão IEEE para o Documento de Requisitos

- 2 Descrição Geral
 - · 2.1 Perspectiva do Produto
 - Relacionamento: sistema, usuário, hardware, software, comunicação.
 - · 2.2 Funcionalidades do Produto
 - 2.3 Características do Usuário
 - 2.4 Restrições Gerais
 - Limitações de hardware, considerações sobre segurança, ...
 - 2.5 Suposições e Dependências
 - Máquina específica, sistema operacional, ...

29

29

Padrão IEEE para o Documento de Requisitos

- 3 Requisitos Específicos
 - Abrangem os requisitos funcionais, não funcionais e de interface.
 - Os requisitos podem documentar interfaces externas, descrever funcionalidade e desempenho do sistema, especificar requisitos lógicos de banco de dados, restrições de projeto, propriedades emergentes do sistema e características de qualidade.
- 4 Apêndices
- 5 Índice

3

<u>30</u>

<u>31</u>

<u>32</u>

Casos de Uso

 Os casos de uso são uma técnica utilizada para capturar os requisitos funcionais de um sistema.

- Descreve a sequência de eventos realizados por um ator (um agente externo) interagem com o sistema.
- Uma descrição detalhada de uma interação específica entre um usuário (ou outro sistema) e o sistema que está sendo desenvolvido.
- Proporcionam uma maneira clara e estruturada de documentar as interações entre usuários e o sistema.

κ'n

<u>33</u>

Atores

- Uma entidade externa ao sistema que participa de um caso de uso de alguma forma.
- Interagem com o sistema, estimulando-o com eventos de entrada ou de saída.
- Atores podem ser papéis desempenhados por:
 - Pessoas
 - Sistemas de computadores
 - Dispositivos elétricos/eletrônicos

ř

<u>34</u>

Casos de Uso de Alto Nível

- 1. Descreve uma visão geral do sistema e suas principais funcionalidades sem entrar em muitos detalhes.
- 2. Descreve o processo sucintamente, em duas ou três sentenças
- 3. São vagos a respeito de decisões de projeto
- 4. São úteis para a compreensão dos principais processos globais

<u>35</u>

<u>36</u>

Casos de Uso Expandido

 Capturar os detalhes de uma interação entre o usuário e o sistema, garantindo que as funcionalidades sejam implementadas de acordo com as expectativas.

Mais detalhes:

- Cláusula de referência cruzada permite conferir se todos os requisitos foram atendidos.
- Pontos de decisão e desvio podem ocorrer em um caso de uso

<u>37</u>

<u>38</u>

<u>39</u>

<u>40</u>

Modelagem Conceitual

- Representação dos conceitos, ou objetos, do mundo real pertencentes a um domínio de interesse
- É exibido por um conjunto de diagramas de estrutura estática, no qual NÃO se definem operações
- Pode ser tratado como um "dicionário visual" das abstrações significativas do domínio

<u>41</u>

Modelagem Conceitual

Pode mostrar <u>conceitos</u>, <u>associações</u> entre <u>conceitos</u> e <u>atributos</u> de conceitos

- É feita uma análise do domínio da aplicação e a modelagem das entidades e fenômenos desse domínio considerados importantes, independentemente da implementação.
- A tarefa de modelagem conceitual envolve dois mecanismos:
 - Abstração
 - Representação

Identificar Conceitos

- Analisar os requisitos e os casos de uso para identificar conceitos no sistema.
 - Usar uma Lista de Categorias de Conceitos.
 - Identificar os substantivos.

43

<u>43</u>

Cardinalidade ou Multiplicidade

- Cardinalidade define quantos objetos participam da relação
- É o número de instâncias de objetos da classe que participam da relação
- Para cada associação e agregação, são definidas duas multiplicidades: uma para cada participante do relacionamento.
- A multiplicidade define quantas instâncias de um conceito A podem ser associadas a cada instância do conceito B

<u>44</u>

unesp

Associação

- Associação é um relacionamento entre conceitos
- Uma associação não implica em um fluxo de dados ou conexão entre objetos em uma solução de software.
- Algumas associações do modelo conceitual podem não ser necessárias na implementação.
- Durante a implementação podem ser descobertas associações entre objetos de software que foram esquecidas durante a modelagem conceitual.

<u>45</u>

<u>46</u>

<u>47</u>

<u>48</u>

<u>49</u>

<u>50</u>

<u>51</u>

<u>52</u>

<u>53</u>

<u>54</u>

<u>55</u>

<u>56</u>

<u>57</u>

<u>58</u>

Diagrama de Classes

- Representação gráfica que define as classes do sistema.
- Essas classes são projetadas para detalhar os atributos e métodos que caracterizam cada componente dentro do sistema.
- Na prática, o desenvolvimento do Diagrama de Classes é um processo iterativo e evolutivo que progride ao longo das fases de projeto.
- Construído e refinado a partir das interações observadas nos Diagramas de Colaboração.
 - Essa abordagem permite que o diagrama de classes seja ajustado continuamente para refletir com precisão a estrutura e as necessidades do sistema à medida que mais informações se tornam disponíveis e as funcionalidades do sistema são mais claramente definidas.

<u>59</u>

<u>60</u>

<u>61</u>

<u>62</u>

<u>63</u>

<u>64</u>

<u>65</u>

<u>66</u>

<u>67</u>

<u>68</u>