COMP 551 - Applied Machine Learning Lecture 8 — Feature construction

William L. Hamilton

(with slides and content from Joelle Pineau and Jackie Cheung)

* Unless otherwise noted, all material posted for this course are copyright of the instructor, and cannot be reused or reposted without the instructor's written permission.

Upcoming tutorials

- Tutorial 2 on SciKit learn + Intelligent tutor
 - Session 1: Feb 6th (i.e., tomorrow)
 - STBIO S1/4, 6-8pm
 - Session 2: Feb 8th (i.e., this Friday)
 - Adams Aud, 6-8pm
- First half will be a standard tutorial, but the second half will be a demo of a AI-based tutoring system developed by a Mila student, Iulian Serban (<u>www.iulianserban.com</u>)

Office hours

- This week (Feb 4-8) I will have my office hours Wednesday (Feb 6) from 9-11am.
- Usual location: MC 309
- Apologies for the inconvience!

MiniProject 2

- Details are now available: https://cs.mcgill.ca/~wlh/comp551/files/miniproject2_spec.pdf
- Due Feb. 22nd at 11:59pm.

MiniProject 2

Steps to solving a supervised learning problem

1. Decide what the input-output pairs are.

With a focus on feature extraction for language problems!

- 2. Decide how to encode inputs and outputs.
 - This defines the input space X and output space Y.
- 3. Choose a class of hypotheses / representations *H*.
 - E.g. linear functions.
- 4. Choose an error function (cost function) to define best hypothesis.
 - E.g. Least-mean squares.
- 5. Choose an algorithm for searching through space of hypotheses.

Today: deciding on what the inputs are

So far: we have been focusing on this

Feature extraction steps

A few strategies

- Use domain knowledge to construct "ad hoc" features.
- Normalization across different features, e.g. centering and scaling with $x_i = (x'_i \mu_i) / \sigma_i$.
- Normalization across different data instances, e.g. counts/histogram of pixel colors.
- Non-linear expansions when first order interactions are not enough for good results, e.g. products x_1x_2 , x_1x_3 , etc.
- Other functions of features (e.g. sin, cos, log, exponential etc.)
- Regularization (lasso, ridge).

Feature construction

Why do we do feature construction?

- Increase predictor performance.
- Reduce time / memory requirements.
- Improve interpretability.

But: Don't lose important information!

Problem: we may end up with lots of possibly irrelevant, noisy, redundant features. (Here, "noisy" is in the sense that it can lead the predictor astray.)

Applications with lots of features

 Any kind of task involving images or videos - object recognition, face recognition. Lots of pixels!

- Classifying from gene expression data. Lots of different genes!
 - Number of data examples: 100
 - Number of variables: 6000 to 60,000

Natural language processing tasks. Lots of possible words!

Features for modelling natural language

- Words
- TF-IDF
- N-grams
- Syntactic features
- Word embeddings (not in this lecture...)
- Useful Python package for implementing these: http://www.nltk.org/

Words

- Binary (present or absent)
- Absolute frequency
 - i.e., raw count
- Relative frequency
 - i.e., proportion
 - document length

Multinomial vs Bernoulli Naïve Bayes

- Note that using binary vs. count features can have implications for your model!
- In Lecture 5 we discussed the Bernoulli (i.e., binary) Naïve Bayes:

$$P(\mathbf{x}|y=k) = \prod_{j=1}^{m} \theta_{j,k}^{x_j} (1 - \theta_{j,k})^{(1-x_j)}$$
 Bernoulli distribution

- Assumes the features are binary counts.
- But we can also have a Multinomial Naïve Bayes:

$$P(\mathbf{x}|y=k) = \frac{(\sum_{j=1}^{m} x_j)!}{\prod_{j=1}^{m} x_j!} \prod_{j=1}^{m} \theta_{j,k}^{x_j}$$
 Multinomial distribution

Assumes the features are integer counts.

Homework: what is the maximum likelihood estimate for the multinomial Naïve Bayes?

More options for words

Stopwords

- Common words like "the", "of", "about" are unlikely to be informative about the contents of a document.
- Standard practice to remove them, though they can be useful (e.g., for authorship identification)

Lemmatization

- Inflectional morphology: changes to a word required by the grammar of a language
 - e.g., "perplexing" "perplexed" "perplexes"
 - (Much worse in languages other than English, Chinese, Vietnamese)
- Lemmatize to recover the canonical form; e.g., "perplex"

Term weighting

- Not all words are equally important.
- What do you know about an article if it contains the word

the?

penguin?

TF*IDF (Salton, 1988)

- Term Frequency Times Inverse Document Frequency
- A term is important/indicative of a document if it:
 - 1. Appears many times in the document
 - 2. Is a relative rare word overall
- TF is usually just the count of the word
- IDF is a little more complicated:
 - $IDF(t, Corpus) = \log \frac{\#(Docs in Corpus)}{\#(Docs with term t) + 1}$
 - Can use a separate large training corpus for this
- Originally designed for document retrieval

N-grams

- Use sequences of words, instead of individual words
- e.g., ... quick brown fox jumped ...
 - Unigrams (i.e. words)
 - quick, brown, fox, jumped
 - Bigrams
 - quick_brown, brown_fox, fox_jumped
 - Trigrams
 - quick_brown_fox, brown_fox_jumped
- Usually stop at N <= 3, unless you have lots and lots of data

Rich linguistic features

Syntactic

- Extract features from a parse tree of a sentence
- [SUBJ The chicken] [VERB crossed] [OBJ the road].

Semantic

- e.g., Extract the semantic roles in a sentence
- [AGENT The chicken] [VERB crossed] [LOC the road].
- e.g., Features are synonym clusters ("chicken" and "fowl" are the same feature) → WordNet
- Trade-off: Rich, descriptive features might be more discriminative, but are hard (expensive, noisy) to get!

Sentiment and affective lexicons

- Words have different connotations and associated meanings.
 - "hate" vs. "love"
- There are collections of "sentiment lexicons", which map words to different sentiment values. E.g.,
 - Bing Liu's "Opinion Lexicon" (6000 positive/negative words)
 - Warriner et al's "Affective Rating Dataset" (continuous scores for 14,000 words)
 - Ratings for valence ("how positive vs. negative") and arousal ("how "strong").
- Other types of lexicons exist. E.g.,
 - <u>LIWC</u> contains various categories ("anger", "cognitive processes")
 - Brysbaert et al's "concreteness lexicon"

Feature selection

 Thousands to millions of low level features: select the most relevant one to build better, faster, and easier to understand learning machines.

Feature selection techniques

- Principal Component Analysis (PCA)
 - Also called (Truncated) Singular Value Decomposition, or Latent Semantic Indexing in NLP
- Variable Ranking
 - Think of features as random variables.
 - Find how strong they are associated with the output prediction, remove the ones that are not highly associated, either before training and during training
- Representation learning techniques [future lectures]

• Idea: Project data into a lower-dimensional sub-space, $R^m - R^m$, where m' < m.

- Idea: Project data into a lower-dimensional sub-space, $R^m --> R^m'$, where m' < m.
- Consider a linear mapping, $x_i --> W^T x_i$
 - W is the compression matrix with dimension R^{mxm'}.
 - Assume there is a decompression matrix U^{m'xm}.

- Idea: Project data into a lower-dimensional sub-space, $R^m -> R^{m'}$, where m'<m.
- Consider a linear mapping, $x_i --> W^Tx_i$
 - W is the compression matrix with dimension $R^{mxm'}$.
 - Assume there is a decompression matrix U^{m'xm}.
- Solve the following problem: $\underset{w,u}{\operatorname{argmin}} \Sigma_{i=1:n} || x_i UW^Tx_i ||^2$

- Solve the following problem: $\underset{w,y}{\operatorname{argmin}} \Sigma_{i=1:n} || x_i UW^Tx_i ||^2$
- Equivalently: argmin_{W,U} || X XWU^T ||²

- Solution is given by eigen-decomposition of X^TX.
 - W is mxm' matrix corresponding to the first m' eigenvectors of X^TX (sorted in descending order by the magnitude of the eigenvalue).
 - Equivalently: W is mxm' matrix containing the first m' left singular vectors of X
 - Note: The columns of W are orthogonal!

- W is given by eigen-decomposition of X^TX
- Select the project dimension, m', using cross-validation.
- Typically "center" the examples before applying PCA (i.e., subtract the mean).
- Interpretation: First column of W is direction with maximal variance in the data; second column is the orthogonal direction with second-most variance, etc.

Eigenfaces

- Turk & Pentland (1991) used PCA method to capture face images.
- Assume all faces are about the same size
- Represent each face image as a data vector.
- Each eigenvector is an image, called an Eigenface.

Eigenfaces

Average image

Training images

Original images in R^{50x50} .

Projection to R¹⁰ and reconstruction

Projection to R^2 . Different marks Indicate different individuals.

Other feature selection methods

- The goal: Find the input representation that produces the best generalization error.
- Two classes of approaches:
 - Wrapper & Filter methods: Feature selection is applied as a pre-processing step.
 - Embedded methods: Feature selection is integrated in the learning (optimization) method, e.g. regularization.

Variable Ranking

- Idea: Rank features by a scoring function defined for individual features, independently of the context of others. Choose the m' highest ranked features.
- Pros / cons:
 - Need to select a scoring function.
 - Must select subset size (m'): cross-validation
 - Simple and fast just need to compute a scoring function m times and sort m scores.

Scoring function: Correlation Criteria

Strong correlation

$$R(j) = \frac{\sum_{i=1:n} (x_{ij} - \overline{x}_j)(y_i - \overline{y})}{\sqrt{\sum_{i=1:n} (x_{ij} - \overline{x}_j)^2 \sum_{i=1:n} (y_i - \overline{y})^2}}$$

Weak correlation

slide by Michel Verleysen

Scoring function: Mutual information

- Think of X_i and Y as random variables.
- Mutual information between variable X_i and target Y:

$$I(j) = \int_{X_j} \int_{Y} p(x_j, y) \log \frac{p(x_j, y)}{p(x_j)p(y)} dx dy$$

$$I(j) = \sum_{X_j} \sum_{Y} P(X_j = x_j, Y = y) \log \frac{p(X_j = x_j, Y = y)}{p(X_i = x_j)p(Y = y)}$$

Empirical estimate from data (assume discretized variables):

Nonlinear dependencies with MI

- Mutual information identifies nonlinear relationships between variables.
- Example:
 - x uniformly distributed over [-1 1]
 - $y = x^2 + noise$
 - z uniformly distributed over [-1 1]
 - z and x are independent

1000 samples	<i>у,у</i>	x,y	z,y
Correlation	1	0.0460	0.0522
Mutual information	2.2582	1.1996	0.0030

Variable Ranking

- Idea: Rank features by a scoring function defined for individual features, independently of the context of others. Choose the m' highest ranked features.
- Pros / cons:
 - Need to select a scoring function.
 - Must select subset size (m'): cross-validation
 - Simple and fast just need to compute a scoring function m times and sort m scores.
 - Scoring function is defined for individual features (not subsets).

Best-Subset selection

 Idea: Consider all possible subsets of the features, measure performance on a validation set, and keep the subset with the best performance.

- Pros / cons?
 - We get the best model!
 - Very expensive to compute, since there is a combinatorial number of subsets.

Search space of subsets

n features, $2^n - 1$ possible feature subsets!

Subset selection in practice

- Formulate as a search problem, where the state is the feature set that is used, and search operators involve adding or removing feature set
 - Constructive methods like forward/backward search
 - Local search methods, genetic algorithms
- Use domain knowledge to help you group features together, to reduce size of search space
 - e.g., In NLP, group syntactic features together, semantic features, etc.

Regularization

- Idea: Modify the objective function to constrain the model choice. Typically adding term $(\sum_{j=1:m} w_j^p)^{1/p}$.
 - Linear regression -> Ridge regression, Lasso
- Challenge: Need to adapt the optimization procedure (e.g. handle nonconvex objective).
- Regularization can be viewed as a form of feature selection.
- This approach is often used for very large natural (non-constructed) feature sets, e.g. images, speech, text, video.

Steps to solving a supervised learning problem

- Decide what the input-output pairs are.
- Decide how to encode inputs and outputs.
 - This defines the input space X and output space Y.
- Choose a class of hypotheses / representations H.
 - E.g. linear functions.
- 4. Choose an error function (cost function) to define best hypothesis.
 - E.g. Least-mean squares.
- 5. Choose an algorithm for searching through space of hypotheses.

(If doing k-fold cross-validation, re-do feature selection for each fold.)

Evaluate on

Evaluate final model/hypothesis on test set

Final comments

Classic paper on this:

I. Guyon, A. Elisseeff, An introduction to Variable and Feature Selection. Journal of Machine Learning Research 3 (2003) pp.1157-1182

http://machinelearning.wustl.edu/mlpapers/paper_files/GuyonE03.pdf

(and references therein.)

More recently, move towards learning the features end-to-end, using neural network architectures (more on this later in the course).