МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа аэрокосмических технологий

Отчёт о выполнении лабораторной работы 3.6.1

Спектральный анализ электр. сигналов

Авторы: Болдинский Дмитрий Олегович Байкова Алина Алексеевна

Группа Б03-201

1 Аннотация

Цель работы: изучить спектры сигналов различной формы и влияние параметров сигнала на вид соответствующих спектров; проверить справедливость соотношений неопределённостей; познакомиться с работой спектральных фильтров на примере RC-цепочки

В работе используются: генератор сигналов произвольной формы, цифровой осциллограф с функцией быстрого преобразования Фурье или цифровой USB-осциллограф, подключённый к персональному компьютеру.

2 Теоретическое введение

Разложение сложных сигналов на периодические колебания

Представление периодического сигнала в виде суммы гармонических сигналов называется разложением в ряд Фурье.

Пусть заданная функция f(t) периодически повторяется с частотой $\Omega_1 = \frac{2\pi}{T}$, где T - период повторения. Ее разложение в ряд Фурье имеет вид

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} [a_n \cos(n\Omega_1 t) + b_n \sin(n\Omega_1 t)]$$
(1)

Здесь $\frac{a_0}{2}$ - среднее значение функции f(t),

$$a_n = \frac{2}{T} \int_{t_1}^{t_1+T} f(t) \cos(n\Omega_1 t) dt, \qquad (2)$$

$$b_n = \frac{2}{T} \int_{t_1}^{t_1+T} f(t) \sin(n\Omega_1 t) dt.$$
 (3)

Рассмотрим периодические функции, которые исследуются в нашей работе.

1. Периодическая последовательность прямоугольных импульсов (рис. 1) с амплитудой V_0 , длительностью τ , частотой повторения $\Omega_1 = \frac{2\pi}{T}$, где T - период повторения импульсов. Найдем коэффициенты разложения ряда Фурье:

$$\frac{a_0}{2} = V_0 \frac{\tau}{T},$$

$$a_n = \frac{2}{T} \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} V_0 \cos(n\Omega_1 t) dt = 2V_0 \frac{\tau}{T} \frac{\sin(n\Omega_1 \frac{\tau}{2})}{n\Omega_1 \frac{\tau}{2}} \sim \frac{\sin x}{x}.$$
 (4)

Поскольку наша функция четная, все коэффициенты синусоидальных гармоник $b_n = 0$. Спектр a_n последовательности прямоугольных импульсов представлен на рис. 2 (изображен случай, когда T кратно τ).

Назовем шириной спектра $\Delta \omega$ расстояние от главного максимума ($\omega=0$) до первого нуля огибающей, возникающего при $n=\frac{2\pi}{\tau\Omega_1}$. При этом

Рис. 1: Прямоугольные импульсы

Рис. 2: Спектр последовательности прямоугольных импульсов

$$\Delta\omega\tau \simeq 2\pi$$

или

$$\Delta \nu \Delta t \simeq 1 \tag{5}$$

Полученное соотношение взаимной связи интервалов $\Delta \nu$ и Δt является частным случаем соотношения неопределенности в квантовой механике.

2. Периодическая последовательность цугов гармонического колебания $V_0 \cos(\omega_0 t)$ с длительностью цуга τ и периодом повторения T (рис. 3).

Функция f(t) снова является четной относительно t=0. Коэффициент при n-й гармонике равен

$$a_{n} = \frac{2}{T} \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} V_{0} \cos(\omega_{0}t) \cos(n\Omega_{1}t) dt = V_{0} \frac{\tau}{T} \left(\frac{\sin[(\omega_{0} - n\Omega_{1})\frac{\tau}{2}]}{(\omega_{0} - n\Omega_{1})\frac{\tau}{2}} + \frac{\sin[(\omega_{0} + n\Omega_{1})\frac{\tau}{2}]}{(\omega_{0} + n\Omega_{1})\frac{\tau}{2}} \right)$$
(6)

Зависимость для случая, когда $\frac{T}{\tau}$ равно целому числу, представлена на рис. 4. Сравнивая спектр последовательности прямоугольных импульсов и цугов мы видим, что они аналогичны, но их максимумы сдвинуты по частоте на величину ω_0 .

Рис. 3: Последовательность цугов

Рис. 4: Спектр последовательности цугов

3. Амплитудно-модулированные колебания. Рассмотрим гармонические колебания высокой частоты ω_0 , амплитуда которых медленно меняется по гармоническому закону с частотой Ω ($\Omega \ll \omega_0$)) (рис. 5):

$$f(t) = A_0[1 + m\cos\Omega t]\cos\omega_0 t \tag{7}$$

Коэффициент m называют **глубиной модуляции**. При m < 1 амплитуда колебаний меняется от минимальной $A_{min} = A_0(1-m)$ до максимальной $A_{max} = A_0(1+m)$. Глубина модуляции может быть представлена в виде

$$m = \frac{A_{max} - A_{min}}{A_{max} + A_{min}} \tag{8}$$

Простым тригонометрическим преобразованием можно найти спектр амплитудно - модулированных колебаний:

$$f(t) = A_0 \cos(\omega_0 t) + \frac{A_0 m}{2} \cos(\omega_0 + \Omega)t + \frac{A_0 m}{2} \cos(\omega_0 - \Omega)t. \tag{9}$$

 $a_{\text{осн}}$ $a_{\text{бок}}$ $a_{$

Рис. 5: Модулированные гармонические колебания

Рис. 6: Спектр модулированных гармонических колебаний

Спектр таких колебаний содержит три составляющих основную компоненту и две боковых (рис. 6). Первое слагаемое в правой части представляет собой исходное немодулированное колебание с основной (несущей) частотой ω_0 и амплитудой $a=A_0$. Второе и третье слагаемые соответствуют новым гармоническим колебаниям с частотами $\omega_0+\Omega$ и $\omega_0-\Omega$. Амплитуды этих двух колебаний одинаковы и составляют $\frac{m}{2}$ от амплитуды немодулиро-

ванного колебания: $a = \frac{A_0 m}{2}$. Начальные фазы всех трех колебаний одинаковы.

3 Экспериментальная установка.

В работе изучаются спектры периодических электрических сигналов различной формы (последовательности прямоугольных импульсов и цугов, а также амплитудно- и фазо-модулированных гармонических колебаний). Спектры этих сигналов наблюдаются с помощью спектроанализатора, входящего в состав USB-осциллографа и сравниваются с рассчитанными теоретически. Схема установки изображена на рис.??

Рис. 7: Схема экспериментальной установки

Функциональный генератор WaveStation 2012 позволяет сформировать два различных электрических сигнала, которые выводятся на два независимых канала – "CH1"и "CH2". Сигнал с канала "CH1"подается на вход "A а сигнал с канала "CH2"— на вход "B"USB-осциллографа. Затем эти сигналы подаются на вход компьютера через USB-соединение. При работе USB-осциллографа в режиме осциллографа, на экране компьютера можно наблюдать каждый из сигналов в отдельности, а также их произведение. В режиме спектроанализатора можно наблюдать спектры этих сигналов. При включении функционального генератора, на его экране отображается информация о параметрах электрического сигнала. На рис.?? показаны области на экране генератора, в которых отображены следующие данные: А — форма или тип сигнала и номер выходного канала; Б — форма и параметры выходного сигнала; В — область установки параметров выходного сигнала; Г — форма или тип сигнала; Д — экранное меню для установки параметров сигнала.

Рис. 8: Экран генератора

Передняя панель функционального генератора показана на рис.??. 1 – кнопка включения; 2 – USB-разъем; 3 – экран; 4 – кнопки экранного меню; 5 – кнопки выбора типа сигналов; 6 – цифровая панель; 7 - функциональные кнопки; 8 – разъемы с кнопками включения (выключения) выходных сигналов 1-го и 2-го каналов; 9 – кнопки перемещения; 10 – подстроечный регулятор.

Рис. 9: Передняя панель функционального генератора

4 Ход работы

А. Исследование спектра периодической последовательности прямоугольных импульсов и проверка соотношений неопределённости

- 1. Настраиваем генератор на прямоугольные импульсы с частотой повторения $\nu_{\text{повт}}=1~\text{к}\Gamma$ ц (период T=1~мc) и длительностью импульса $\tau=T/20=50~\text{мкc}$.
- 2. Получаем на экране спектр (Преобразование Фурье) сигнала.
 - **а.** Изменяем $\nu_{\text{повт}}$ при фиксированном $\tau = 50$ мкс и получаем:

 $u_{\mathrm{повт}} = 3 \ \mathrm{k}\Gamma$ ц

 $u_{\text{повт}} = 4 \ \text{к} \Gamma$ ц

Рис. 10:

Как видно из графиков, при увеличении частоты повторения сигнала увеличивается расстояние между компонентами спектра.

б. Изменяем au при фиксированном $u_{\text{повт}} = 1$ к Γ ц и получаем:

 $\tau=100~{
m mkc}$

 $\tau=150$ мкс

Рис. 11:

Как видно из графиков, при увеличении длительности сигнала уменьшается ширина спектра.

3. Измерим амплитуды a_n и частоты ν_n спектральных гармоник при фиксированных $\nu_{\text{повт}}$ и $\tau.$

п гармоники	5	7	9	11	13	15	17	19
$\nu_n^{\text{эксп}}$, к Γ ц	5.078	7.092	8.904	11.12	13.03	15.15	16.76	19.17
$ u_n^{\text{теор}}, \text{к}\Gamma$ ц	5	7	9	11	13	15	17	19
$ a_n ^{\mathfrak{s}_{\mathrm{KCII}}}$, мВ	125.9	112.3	94.73	73.98	54.58	37.44	20.75	4.962
$ a_n/a_1 _{\mathfrak{S}KC\Pi}$	0.876	0.781	0.659	0.515	0.380	0.261	0.144	0.034
$ a_n/a_1 _{\text{Teop}}$	0.904	0.814	0.702	0.574	0.438	0.301	0.171	0.052

Здесь $a_1 = 143.8 \text{ мB}.$

$$\nu_n^{\text{Teop}} = \frac{n}{T}$$
$$|a_n|_{\text{Teop}} = \frac{|\sin \frac{\pi n \tau}{T}|}{\pi n}$$

4. Зафиксируем период повторения прямоугольного сигнала T=1мс, $\nu_{\text{повт}}=1$ к Γ ц. Изменяя длительность импульса τ в диапазоне от $\tau=T/50$ до $\tau=T/5$, измерим полную ширину

спектра сигнала $\Delta \nu$ — от центра спектра ($\nu=0$) до гармоники с нулевой амплитудой $a_n \approx 0$ и установим зависимость между $\Delta \nu$ и τ , полученную из формулы ??.

	τ , MKC	20	25	40	50	100	150	200
	$\Delta \nu$, к Γ ц	49.68	39.71	24.61	19.98	9.91	6.84	4.93
Ì	$1/\tau \cdot 10^3$, c ⁻¹	50	40	25	20	10	7	5

Таблица 1: Исследование зависимости $\Delta \nu$ и τ

Построим график $\Delta\nu\left(\frac{1}{\tau}\right)$. Используя МНК, получим $k=0.994\pm0.002$, откуда с хорошей точностью можем заключить, что $\Delta\nu\frac{1}{\tau}=1$, что экспериментально доказывает соотношение неопределённостей. График приведён на рис.12

Рис. 12: Зависимость $\Delta \nu$ от $1/\tau$

5. Зафиксируем длительность импульса прямоугольного сигнала $\tau=100$ мкс. Изменяя период повторения T в диапазоне от 2τ до 50τ измерим расстояния $\delta\nu=\nu_{n+1}-\nu_n$ между соседними гармониками спектра.

ν , к Γ ц				0.5		
$\delta \nu$, к Γ ц	5.036	1.927	1.008	0.510	0.253	0.206

Таблица 2: Зависимость $\delta \nu$ от 1/T

Рис. 13: Зависимость $\delta \nu$ от 1/T

Построим график $\delta \nu \left(\frac{1}{T}\right)$. Используя МНК, получим $k=0.996\pm0.013$, что экспериментально доказывает соотношение неопределённостей. График приведён на рис.13.

Б. Наблюдение спектра периодической последовательности цугов

- 1. Настраиваем генератор на периодичные импульсы синусоидальной формы (цугов) с несущей частотой $\nu_0=50$ к Γ ц, частотой повторения $\nu_{\text{повт}}=1$ к Γ ц, число периодов синусоиды в одном импульсе N=5 (что соответствует длительности импульса $\tau=N/\nu_o=100$ мкс).
- 2. Получаем на экране спектр (Преобразование Фурье) сигнала.
 - а. Изменяем N при фиксированных $\nu_0=50$ к Γ ц и $\nu_{\text{повт}}=1$ к Γ ц:

N=5, $\delta \nu = 1$ к Γ ц, $\Delta \nu = 10$ к Γ ц

N=10, $\delta \nu = 1$ к Γ ц, $\Delta \nu = 5$ к Γ ц

N=15, $\delta \nu = 1$ к Γ ц, $\Delta \nu \approx 3$ к Γ ц

N=20, $\delta\nu=1$ к Γ ц, $\Delta\nu\approx2.5$ к Γ ц

Рис. 14:

Соотношение неопределённостей:

$$\Delta\nu \cdot \tau = 10 \cdot 10^3 \frac{5}{50 \cdot 10^3} = 5 \cdot 10^3 \frac{10}{50 \cdot 10^3} = 2.5 \cdot 10^3 \frac{20}{50 \cdot 10^3} \approx 3 \cdot 10^3 \frac{15}{50 \cdot 10^3} \approx 1$$

Видим, что спектр остаётся симметричным относительно одной и той же точки, однако "сжимается"к ней при увеличении N.

б. Изменяем u_0 при фиксированных N=5 и $u_{\text{повт}}=1$ к Γ ц:

$$u_0=30$$
 кГц, $\delta
u=1$ кГц, $\Delta
u=6$ кГц

$$u_0=40$$
 к Γ ц, $\delta
u=1$ к Γ ц, $\Delta
u=8$ к Γ ц

 $\nu_0=50$ к
Гц, $\delta\nu=1$ к Гц, $\Delta\nu=10$ к Гц

Рис. 15:

Соотношение неопределённостей:

$$\Delta\nu \cdot \tau = 6 \cdot 10^3 \frac{5}{30 \cdot 10^3} = 8 \cdot 10^3 \frac{5}{40 \cdot 10^3} = 10 \cdot 10^3 \frac{5}{50 \cdot 10^3} = 1$$

Видим, что в этом случае спектр не меняет свою форму, однако его центр смещается в соответсвии с изменением частоты несущей.

в. Изменяем $\nu_{\text{повт}}$ при фиксированных N=5 и $\nu_0=50$ к Γ ц:

 $u_{ ext{\tiny HOBT}} = 0.5 \; ext{к} \Gamma$ ц, $\delta
u = 0.5 \; ext{к} \Gamma$ ц, $\Delta
u = 10 \; ext{к} \Gamma$ ц

 $\nu_{\text{повт}}=0.25~\text{к}\Gamma\text{ц},\,\delta\nu=0.25~\text{к}\Gamma\text{ц},\,\Delta\nu=10~\text{к}\Gamma\text{ц}$

Рис. 16:

Видно, что соотношение неопределённости выполняется:

$$\frac{\delta\nu}{\nu_{\text{\tiny HOBT}}} = \frac{1\cdot 10^3}{1\cdot 10^3} = \frac{0.5\cdot 10^3}{0.5\cdot 10^3} = \frac{0.25\cdot 10^3}{0.25\cdot 10^3} = 1$$

Также видно, что при стремлении частоты повторения к нулю, стремится к нулю и расстояние между компонентами спектра.

В. Наблюдение спектра периодической последовательности гауссианов

Рис. 17: Периодическая последовательность гауссианов и ее спектр

- 1. Настраиваем генератор в режим передачи периодической последовательности "гауссианов" с несущей частотой $\nu_0=50$ к Γ ц и периодом повторения T=10 мс.
- 2. Получаем на экране спектр (Преобразование Фурье) сигнала.
 - **а.** Изменяем ν_0 при фиксированных T=10 мс.

u=2 к Γ ц

Рис. 18:

б. Изменяем T при фиксированных $u_0=1$ к Γ ц.

 $T=15~\mathrm{mc}$

 $T=20~{
m mc}$

Рис. 19:

3. Найдём ширину отдельного импульса au и его спектра $\Delta \nu$:

ν , к Γ ц	1	2
τ , MKC	299.5	148.2
$\frac{\Delta \nu}{2}$, к Γ ц	1.403	2.906

Таблица 3:

Видно, что соотношение неопределённости выполняется, но численное значение отличается

$$\Delta\nu \cdot \tau = 1.403 \cdot 2 \cdot 10^3 \cdot 299.5 \cdot 10^{-6} = 0.84$$

$$\Delta\nu \cdot \tau = 2.906 \cdot 2 \cdot 10^3 \cdot 148.2 \cdot 10^{-6} = 0.86$$

Г. Наблюдение спектра амплитудно-модулированного сигнала

- 1. Настраиваем генератор в режим модулированного по амплитуде синусоидального сигнала с несущей частотой $\nu_0=50$ к Γ ц, частотой модуляции $\nu_{\rm mod}=2$ к Γ ц и глубиной модуляции m=0.5.
- **2.** Получаем на экране спектр (Преобразование Фурье) сигнала. Из графика получим $A_{max}=3.057 \mathrm{mB}$ и $A_{min}=1.027 \mathrm{mB}$ и убедимся в справедливости соотношения

$$m = \frac{A_{\text{max}} - A_{\text{min}}}{A_{\text{max}} + A_{\text{min}}} = \frac{2.03}{4.084} \approx 0.5$$

Поскольку мы установили глубину модуляции на 0,5, а из теории у нас получилась 0,497, то мы видим, что формула ?? верна.

3. Изменяя на генераторе глубину модуляции m в диапазоне от 10 % до 100 % (всего 6-8 точек), измерим отношение амплитуд боковой и основной спектральных линий $a_{\rm 60k}/a_{\rm och}$. Построим график зависимости $a_{\rm 60k}/a_{\rm och}$ от m и проверим, совпадает ли результат с теоретическим.

m, %	10	20	30	40	50	80	100	
абок, мВ	69.02	136.3	207.1	283.2	352.2	559.2	669.0	
$a_{ m och}=1318~{ m mB}$								
$a_{\text{бок}}/a_{\text{осн}}$	0.05	0.10	0.16	0.21	0.27	0.42	0.51	

Таблица 3. Исследование зависимости $a_{\text{бок}}/a_{\text{осн}}$ от m.

Рис. 20: Зависимость $a_{\text{бок}}/a_{\text{осн}}$ от m

Построим график $\frac{a_{60\mathrm{K}}}{a_{\mathrm{och}}}(m)$. Используя МНК, получим $k=0.516x\pm0,00007$, что подтверждает $\frac{a_{60\mathrm{K}}}{a_{\mathrm{och}}}=\frac{m}{2}$, т.е. совпадает с теоретическим предсказанием. График приведён на рис.??.

Д. Наблюдение спектра сигнала, модулированного по фазе

- 1. Настраиваем генератор в режим модулированного по фазе синусоидального сигнала с несущей частотой $\nu_0=50$ кГц, частотой модуляции $\nu_{\rm мод}=2$ кГц и максимальным отклонением (глубиной модуляцией) $\varphi=10^\circ$.
- 2. Получаем на экране спектр (Преобразование Фурье) сигнала.

$$\nu_0=50$$
к
Гц, $\nu_{\text{мод}}=2$ к
Гц, $\varphi=10^\circ$

$$\nu_0=50$$
к
Гц, $\nu_{\text{мод}}=2$ к
Гц, $\varphi=50^{\circ}$

$$u_0=100$$
 к Γ ц, $u_{ ext{mod}}=2$ к Γ ц, $arphi=10^\circ$

 $\nu_0=50$ к
Гц, $\nu_{\text{мод}}=10$ к Гц, $\varphi=10^{\circ}$

Рис. 21:

 $\nu_0=60$ к
Гц, $\nu_{\text{мод}}=5$ к Гц, $\varphi=50^\circ$

Е. Изучение фильтрации сигналов

- 1. Подключаем RC цепочку с сопротивлением R=3 кОм и ёмкостью C=1000 пФ. Получаем характерное время $\tau_{RC}=RC=3$ мкс. Подаём на вход RC-цепочки последовательность прямоугольных импульсов с периодом повторения $T\sim \tau_{RC}$.
- 2. Получаем на экране спектр (Преобразование Фурье) сигнала.

Сигнал при $\nu_0 = 300$ к Γ ц и $\tau = 510$ нс.

Сигнал при $\nu_0 = 400$ к Γ ц и $\tau = 510$ нс.

Спектр при $\nu_0 = 300$ к Γ ц и $\tau = 510$ нс.

Спектр при $\nu_0 = 400$ к Γ ц и $\tau = 510$ нс.

Рис. 22:

3. При фиксированной частоте $\nu=300$ кГц проведем измерения отношений амплитуд соответствующих спектральных гармоник (для 7–9 гармоник) фильтрованного и исходного сигналов: $K_n=|a_n^{\Phi}|/|a_n^{0}|$. Для измерения амплитуд a_n^{0} спектра исходного сигнала переподключим генератор к осциллографу напрямую.

n	1	2	3	4	5	6	7	8	9
a_n^{Φ} , мВ	695.0	295.4	166.6	82.17	27.76	0	15.55	12.28	19.15
a_n^0 , MB	4452	3768	3151	1991	891	0	647	897	1008
$K_n = a_n^{\Phi} / a_n^0 $	0.156	0.078	0.0529	0.041	0.031	?	0.024	0.014	0.019

Таблица 4:

Построим график зависимости амплитудного коэффициента фильтрации $K(\nu)$ от частоты $\nu=n\nu_0.$

Рис. 23: Зависимость $K(\nu)$

Проверим, что экспериментальная зависимость совпадает с теоретической $K=\frac{1}{\tau_{\rm RC}}\int_0^t f(t')dt'$. Т.к. мы подаём последовательность прямоугольных импульсов, то права часть зависит линейно от t, т.е. обратно пропорционально ν . График соответствует этой зависимости

5 Обсуждение результатов и выводы

В данной работе мы изучили понятие спектра и спектрального анализа, исследовали спектральный состав периодических электрических сигналов, а точнее прямоугольных импульсов, цугов гармонических колебаний, гауссиан, гармонических сигналов, модулированных по амплитуде и частоте, а также проанализировали фильтрацию сигналов при прохождении их через RC контур. Проверили частный случай выполнения соотношения неопределённости.