WP Einführung in die Computergrafik

SS 2014, Hochschule für Angewandte Wissenschaften (HAW), Hamburg Prof. Dr. Philipp Jenke, Lutz Behnke

Änderungshistorie

08.05.2014 Normierung bei Gradienten entfernt.

Aufgabenblatt 6 - Kamerafahrt

In diesem Aufgabenblatt entwickeln Sie eine Kamerafahrt durch eine 3D-Szene. Der Pfad wird bestimmt durch eine Menge von Keypoints

$$K = \{k_i \subset R^3\},\$$

durch die der Pfad laufen muss. Zwischen den Keypoints wird der Pfad mit Hermite-Kurven interpoliert.

Abbildung 1: Beispielszene mit eingezeichnetem Kamerapfad (schwarze Linie).

a) Hermite-Kurven

Implementieren Sie zunächst Auswertungs-Funktionalität für die kubischen Hermite-Kurven. Sie müssen in der Lage sein, für einen gegebenen Parameterwert t, den interpolierten 3D-Punkt auszuwerten.

b) Interpolationspfad

Der Interpolationspfad für die Kamera setzt sich aus einzelnen Segmenten von Hermite-Kurven zusammen. Die Anzahl der Segmente ist n-1. n=|K| ist die Anzahl der Keypoints. Der gesamte Interpolationspfad wird durch einen Parameter s beschrieben. s läuft dazu von 0 bis 1. An der Stelle 0 interpoliert der Pfad den ersten Keypoint k₀, an der Stelle 1 interpoliert der Pfad den letzten Keypoint k_{n-1}. Die Segmente zwischen jeweils zwei Keypoints sind äquidistant; also gleich lang. Jedes Segment hat demnach die Länge:

$$\Delta = 1/(|K|-1).$$

Um für einen Parameter s die Position auf dem Pfad auszuwerten, müssen Sie zunächst den Index des zugehörigen Keypoints bestimmt:

$$i = s/\Delta$$
.

i ist eine Ganzzahl, der Nachkommaanteil muss abgeschnitten (nicht gerundet) werden. Achtung: Sonderfall für s=1. Dann betrachtet man nur noch die lokale Interpolation zwischen den Keypoints k_1 und k_{i+1} . Hier werten Sie jetzt eine Hermite-Kurve aus. Dazu benötigen Sie zunächst einen lokalen Parameter t. Der ergibt sich als:

$$t = (s-i*\Delta)/\Delta$$
.

t liegt also ebenfalls im Wertebereich zwischen 0 und 1. Für die Auswertung der Hermite-Kurve benötigen je einen Start- und einen Endpunkt. Start- und Endpunkt sind die beiden Keypoints k_1 und k_{1+1} .

Abbildung 2: Zusammensetzung des Pfades aus Teilsegmenten zwischen den Keypoints. Innerhalb jedes Teilsegmentes findet Interpolation mit Hermite-Kurven statt.

Bei der Definition einer Hermite-Kurve benötigen Sie zusätzlich die Ableitungen am Start- und am Endpunkt. Diese müssen Sie noch festlegen. Eine Möglichkeit für die Schätzung der Ableitungen ist es, den Vektor vom vorherigen zum nächsten Keypoint zu verwenden: $k_{i+1}-k_{i-1}$. Sonderfälle haben Sie dann bei Startpunkt und Endpunkt. Verwenden Sie hier k_1-k_0 und $k_{n-1}-k_{n-2}$.

c) Setzen der Kameraparameter

Mit Hilfe der Interpolationsfunktionalität aus den vorherigen beiden Aufgabenteilen können Sie jetzt die Kamera steuern. Die Kamera ist über drei Vektoren definiert: Augpunkt, Up-Vektor und Referenzpunkt. Es genügt, wenn Sie den Augpunkt entlang des Kamerapfades bewegen. Die anderen beiden Vektoren können Sie unverändert lassen (z.B. Up-Vektor = (0,1,0) und Referenzpunkt = (0,0,0)). Jetzt müssen Sie nur noch die Laufvariable s über das Intervall von 0 bis 1 in kleinen Schritten (z.B. 0.05) laufen lassen. Verwenden Sie dazu die Methode timerTick(), die Sie von der Klasse ComputergrafikFrame überschreiben können. Das Timeout-Intervall (in welchen Zeitabständen in Millisekunden wird die Methode ausgerufen) legen Sie im Konstruktor Ihrer Hauptklasse fest.

d) Kameraflug durch eine Szene

Stellen Sie eine Beispielszene zusammen und definieren Sie einige Keypoints (Anzahl > 2), durch die sich die virtuelle Kamera bewegt. Einen Beispiel-Kameraflug als Video finden Sie hier:

 $http://users.informatik.haw-hamburg.de/``abo781/videos/camera_path.mov$