

UNIVERSIDAD AUTÓNOMA DE CHIHUAHUA Facultad de Ingeniería

Ingeniería en Ciencias de la Computación

INVESTIGACIÓN DE OPERACIONES 1 M3 - 4.5 Actividad: Método Húngaro

Trabajo de: ADRIAN ALEJANDRO GONZÁLEZ DOMÍNGUEZ [359834]

Asesora: OLANDA PRIETO ORDAZ

Problema 1

Basado en los pasos del procedimiento.

Sea P_i la persona de la fila i y A_j la actividad de la fila jota, esta es la lista de actividades que cada persona puede hacer:

$$P_1 o A_1, A_2, A_3$$

$$P_2 o A_3$$

$$P_3 o A_2,A_3$$

$$P_4
ightarrow A_2, A_3, A_4$$

$$P_5
ightarrow A_1, A_2, A_3, A_4, A_5$$

Y podemos seleccionar una solución, donde cada persona realiza solo una actividad:

$$P_1 o A_1 o 3$$

$$P_2 o A_3 o 2$$

$$P_3 o A_2 o 4$$

$$P_4 o A_4 o 3$$

$$P_5 o A_5 o 7$$

Resultando en Min Z = 19.

Se encontró una solución óptima luego de haber restado el mínimo de cada fila en su propia fila, y el mínimo de cada columna en su propia columna. En esta, la primer persona realiza la primer actividad, la segunda persona la tercera actividad, la tercera persona la segunda actividad, la cuarta persona la cuarta actividad, y la quinta persona la quinta actividad.

Problema 2

Basado en los pasos del procedimiento.

Sea P_i la persona de la fila i y A_j la actividad de la fila jota, esta es la lista de actividades que cada persona puede hacer:

$$P_1
ightarrow A_1, A_3, A_4$$

$$P_2 o A_2$$

$$P_3 o A_5$$

$$P_4 o A_1,A_5$$

$$P_5 o A_3$$

Y podemos seleccionar una solución, donde cada persona realiza solo una actividad:

$$P_1 o A_4 o 2$$

$$P_2 o A_2 o 1$$

$$P_3 o A_5 o 3$$

$$P_4 o A_1 o 2$$

$$P_5 o A_3 o 2$$

Resultando en $\mathrm{Min}Z=10$.

la primer persona realiza la primer actividad, la segunda persona la tercera actividad, la tercera persona la segunda actividad, la cuarta persona la cuarta actividad, y la quinta persona la quinta actividad.