quantum computing

luigi zuccarelli
waterford tech meetup 30 may 2018

why quantum ?

the quantum landscape

quantum fundamentals (for dummies) I'm not a physicist

duality of quantum

superposition, entanglement and teleportation

quantum hardware

the qubit - josephson junction

Qubit

superposition

$$|\psi
angle = lpha |0
angle + eta |1
angle \qquad |lpha|^2 + |eta|^2 = 1$$

$$|+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$
 $|-\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$

$$\mid \circlearrowleft
angle = rac{1}{\sqrt{2}}(\ket{0} + i\ket{1}) \hspace{0.5cm} \mid \circlearrowleft
angle = rac{1}{\sqrt{2}}(\ket{0} - i\ket{1})$$

classical computer vs quantum computer

quantum speedup

quantum programming single and multi qubit gates

cnot gate

Starting state Ending State

| 00> → | 00>

10>

11>

10>

01>

|11>

Quantum Algorithm

The spread

First part of the algorithm is to make an equal superposition of all 2ⁿ states by applying H gates

The problem

The second part is to encode the problem into this states; put phases on all 2ⁿ states

The magic

The magic of quantum algorithms is to interfere all these states back to a few outcomes containing the solution

quantum sdk

quantum assembly language qasm qiskit-sdk

demo using qiskit and qasm

grover's algorithm

GASM DOCKER CENTOS 7
GISKIT-SDR
GASM -> JSON JSON RILE DOCKER CENTES 7 CHA SIMULATOR SSON RESULT

medicine and materials

artificial intelligence

cloud security

quantum as service sdn networks

supply chain and logistics

financial services

conclusion

thank you

q&a

