Math308, Quiz 6, 10/24/13

First Name:	 Last Name:	

Grade:

Show all work!

Problem 1. 100%. Use the Laplace transform to solve the following initial value problem:

$$y'' - 2y' + 2y = 0$$

$$y(0) = 0, \quad y'(0) = 1.$$
 (1)

Solutions

Theorem. Suppose that the functions $f, f', \ldots, f^{(n-1)}$ are continuous and that $f^{(n)}$ is piecewise continuous on any interval $0 \le t \le A$. Suppose that there exist constants K, a and M such that $|f(t)| \le Ke^{at}, |f'(t)| \le Ke^{at}, \ldots, |f^{(n-1)}(t)| \le Ke^{at}$ for $t \ge M$. Then $\mathcal{L}[f^{(n)}(t)]$ exists for s > a and given by

$$\mathcal{L}[f^{(n)}(t)] = s^n \mathcal{L}[f(t)] - s^{n-1} f(0) - \dots - s f^{(n-2)}(0) - f^{(n-1)}(0).$$

Now, By taking the Laplace transform of the equation we obtain

$$\mathcal{L}[y''] - 2\mathcal{L}[y'] + 2\mathcal{L}[y] = 0. \tag{2}$$

We use the above theorem to express $\mathcal{L}[y'']$ and $\mathcal{L}[y']$ in terms of $\mathcal{L}[y]$:

$$(s^{2}\mathcal{L}[y] - sy(0) - y'(0)) - 2(s\mathcal{L}[y] - y(0)) + 2\mathcal{L}[y] = 0,$$
(3)

or we can simplify it as

$$(s^2 - 2s + 2) \mathcal{L}[y] - (s - 2)y(0) - y'(0) = 0.$$

And we now apply the initial conditions and find $\mathcal{L}[y]$:

$$L[y] = \frac{1}{s^2 - 2s + 2},$$

or

$$L[y] = \frac{1}{(s-1)^2 + 1}.$$

Finally, the inverse Laplace transform of the right hand side is

$$y = e^t \sin t$$
.