Part A

The reaction cycle given in the problem set statement is not the full reaction. There are other substrates missing in the Urea cycle. To construct a full stoichiometric matrix S for this cycle, KEGG (Arginine biosynthesis in human) was used as the tool of knowing the complete reaction. The following stoichiometric matrix is 18×20 , representing 18 metabolites and 20 flux needed.

Γ0	0	0	-1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1
-1	0	0	1	-1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	l
-1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	l
1	-1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	١
0	1	0	0	0	0	0	0	-1	0	0	0	0	0	0	0	0	0	0	0	١
0	1	-1	0	1	-1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	İ
0	0	1	-1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
-1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	
0	0	1	0	0	0	0	0	0	-1	0	0	0	0	0	0	0	0	0	0	
0	0	0	1	0	0	0	0	0	0	0	0	-1	0	0	0	0	0	0	0	
1	0	0	0	0	0	0	0	0	0	0	0	0	-1	0	0	0	0	0	0	
1	0	0	0	0	0	0	0	0	0	0	0	0	0	-1	0	0	0	0	0	
0	0	0	0	-1	1	0	0	0	0	0	0	0	0	0	-1	0	0	0	0	
0	0	0	0	2	-2	0	0	0	0	0	0	0	0	0	0	-1	0	0	0	l
0	0	0	0	1.5	-1.5	0	0	0	0	0	0	0	0	0	0	0	1	0	0	l
0	0	0	0		-1.5	0	0	0	0	0	0	0	0	0	0	0	0	1	0	١
0	0	0	0	-1.5	1.5	0	0	0	0	0	0	0	0	0	0	0	0	0	-1	l
0	0	-1	0	- 2	2_	0	0	0	0	0	1	0	0	0	0	0	0	0	0	
$^{L}v1$	v2	v3	v4	v5	v5	b1	b2	<i>b</i> 3	b4	<i>b</i> 5	<i>b</i> 6	<i>b</i> 7	<i>b</i> 8	b9	<i>b</i> 10	<i>b</i> 11	<i>b</i> 12	<i>b</i> 13	b14	J

The table below shows how metabolites correspond to row numbers.

Row#	Metabolite	Row #	Metabolite
1	Carbamoyl Phosphate	10	Pi
2	Citrulline	11	AMP
3	Aspartate	12	PPi
4	Arginosuccinate	13	NO
5	Fumarate	14	O2
6	Arginine	15	H^+
7	Ornithine	16	NADPH
8	ATP	17	NADP ⁺
9	Urea	18	H ₂ O

The fluxes are defined as given in the problem statement. For the reactions not shown in the given graph, I defined them as the following:

b5: ATP

b6: H₂O

b7: phosphate

b8: AMP

b9: Pyrophaphate

b10: Nitric Oxide Sink

b11: O₂

b12: H⁺

b13: NADPH

b14: NADP+

Part B

The balance should be written around the metabolites for C, H, N, O, P and S. To test if it is balanced, we want to use the equation $A \times S = E$. If E = 0, the atoms are balanced well. If $E \neq 0$, there might be some atoms not balanced. Matrix S is the stoichiometric matrix written in part a). Matrix A can be written for each atom as the following:

	Carbamoyl Phosphate	Citrulline	Aspartate	Arginosuccinate	Fumarate	Arginine	Ornithine	ATP	Urea	Pi	AMP	PPi	NO	O2	H+	NADPH	NADP+	H2O
С	1	6	4	10	4	6	5	10	1	0	10	0	0	0	0	21	21	0
Н	4	13	7	18	4	14	12	16	4	3	14	4	0	0	1	30	29	2
N	1	3	1	4	0	4	2	5	2	0	5	0	1	0	0	7	7	0
О	5	3	4	6	4	2	2	13	1	4	7	7	1	2	0	17	17	1
P	1	0	0	0	0	0	0	3	0	1	1	2	0	0	0	3	3	0
S	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

The result shows that some elements in some reactions are not balanced. To make them balance, we need to change stoichiometric matrix until each entry of E is 0.

Part C

In part C, it is required to find maximum rate of urea production (b₄) by using FBA method. The constraints obey that

$$0 \le \text{vj} \le \text{kcat,j} \times \text{E} \times \theta \times \prod_{K_M + X_i} \frac{X_j}{K_M + X_i}$$

 $0 \le \text{b_i} \le 10 \text{ mmol/gDW-hr}$

CHEME7770 PS3

By using the given Julia file flux.jl, we can write a Julia code that utilizes the finding in part a to get the maximum rat of urea production. The final result obtained from Julia programming is 1033.4 umol/gDW/hr.