Geometria Básica - EP03 - Tutor

Prezado(a) aluno(a),

o conteúdo desta semana referente a EP03, você encontra nos seguintes capítulos do livro de Geometria Básica - Módulo 1 - Volume 1, (autores: Arnaut, R.G.T. e Pesco, D.U.),

Aula 4: Ângulos em uma Circunferência;

Aula 5: Quadriláteros Notáveis.

Você também pode encontrar o conteúdo dessas aulas na Plataforma, na seção Material Impresso.

Exercício 1: ABCD é um losango no qual o ângulo \hat{B} mede 108° e CAPQ um outro losango cujo vértice P está no prolongamento de AB (no sentido de A para B). Determine o menor ângulo formado por \overline{AQ} e \overline{BC} .

Solução:

Seja ABCD um losango, $m(\hat{B}) = 108^{\circ}$ e CAPQ outro losango cujo vértice P está no prolongamento de AB. Seja AQ a diagonal do losango CAPQ.

Temos que

$$B\hat{A}D = 180^{\circ} - 108^{\circ} = 72^{\circ}$$

 $B\hat{A}C=\frac{72^{\circ}}{2}=36^{\circ}$, já que AC é diagonal do losango ABCD.

Como AQ é diagonal do losango CAPQ, temos que $B\hat{A}Q=\frac{36^{\circ}}{2}=18^{\circ}$.

Denomine a interseção de BC com AQ de R, então $B\hat{R}A=180^{\circ}-18^{\circ}-108^{\circ}=54^{\circ}$

Logo o menor ângulo pedido é 54°.

Exercício 2: Num paralelogramo ABCD, a bissetriz interna de D intercepta o lado BC em P e a bissetriz de $B\hat{P}D$ contem A. Sabendo-se que a medida do ângulo $P\hat{A}B$ vale 57° , determine a medida do ângulo \hat{A} .

Solução: Seja o paralelogramo ABCD, a bissetriz interna de D intercepta o lado BC em P e a bissetriz de $B\hat{P}D$ contem A.

Seja m $(P\hat{A}B) = 57^{\circ}$

Denomine $m(C\hat{D}P)=a$ e $m(A\hat{P}D)=x$. Temos que $A\hat{B}P=2a$ (Propriedade de paralelogramo: os ângulos opostos são iguais).

$$57^{\circ} + x + 2a = 180^{\circ} \Rightarrow x + 2a = 123$$
 (1)

Denomine $D\hat{A}P=t\Rightarrow 2a+t+57^\circ=180^\circ$ (soma dos ângulos consecutivos é 180°). Então

$$2a + t = 123^{\circ}$$
 (2)

De (1) e (2), vem:

$$x = t$$
 (3)

Do ΔDCP vem:

$$57^{\circ} + t + a + 180^{\circ} - 2x = 180^{\circ}$$
 (4)

Substituindo (3) em (4) vem:

$$57 + x + a + 180 - 2x = 180 \Rightarrow a - x = -57 \Rightarrow x = a + 57$$
 (5)

Substituindo (5) em (1) vem:

$$a + 57 + 2a = 123 \Rightarrow 3a = 66 \Rightarrow a = 22$$

$$\mathsf{m}(\hat{A}) = t + 57^{\circ} = x + 57^{\circ} = 22^{\circ} + 57^{\circ} + 57^{\circ} = 136^{\circ}.$$

Exercício 3: Determine o raio do círculo inscrito num triângulo retângulo de semiperímetro 24 cm e hipotenusa 20 cm.

Solução: Seja o triângulo retângulo de semiperímetro 24 cm, hipotenusa 20 cm, catetos b e c e raio do círculo inscrito r.

Fundação CECIERJ Consórcio CEDERJ

Geometria Básica – EP03 Tutor 3

Temos que

$$b-r+c-r=20$$
 (1) $\frac{a+b+c}{2}=24$ e $a=20$ \Rightarrow $b+c=28$

Temos que

Substituindo (2) em (1) vem:

$$28 - 2r = 20 \implies 2r = 8 \implies r = 4$$

(2)

Logo o raio do círculo inscrito é 4 cm.

Exercício 4: Na figura, a medida do ângulo \hat{ACD} mede 70° e a medida do ângulo \hat{APD} mede 110° . Determine a medida do ângulo \hat{BAC} .

Solução: Considere a figura dada.

Por hipótese

$$A\hat{C}D = 70^{\circ}$$
 (1) e $A\hat{P}D = 110^{\circ}$ (2)

Temos que $\hat{ACD} = \frac{\widehat{AD}}{2}$ (ângulo inscrito). Substituindo (1) vem:

$$\widehat{AD} = 2A\widehat{C}D = 2 \cdot 70^{\circ} = 140^{\circ}$$
 (3)

O ângulo \hat{APD} é o ângulo excêntrico interno, então

$$\widehat{APD} = \frac{\widehat{AD} + \widehat{BC}}{2} \qquad (4)$$

Substituindo (2) e (3) em (4) vem:

$$110^{\circ} = \frac{140^{\circ} + \stackrel{\frown}{BC}}{2} \quad \Rightarrow \quad \stackrel{\frown}{BC} = 220^{\circ} - 140^{\circ} = 80^{\circ}$$

$$B\hat{A}C = \frac{\stackrel{\frown}{BC}}{2} \text{ (ângulo inscrito)}$$

$$B\hat{A}C = \frac{80^{\circ}}{2} = 40^{\circ}$$

Logo $m(B\hat{A}C) = 40^{\circ}$.

Fundação CECIERJ Consórcio CEDERJ