A Simple Approach

Quang-Vinh Dinh PhD in Computer Science

Outline

- > Simple version of Linear Regression
- > Computational Graph
- > Mini-batch Training
- > Batch Training
- > Generalization of Linear Regression
- **Loss Functions (extension)**

Introduction

Feature	Label
area	price
6.7	9.1
4.6	5.9
3.5	4.6
5.5	6.7

House price data

	r eatur		Label
TV	Radio	Newspaper	Sales
230.1	37.8	69.2	22.1
44.5	39.3	45.1	10.4
17.2	45.9	69.3	12
151.5	41.3	58.5	16.5
180.8	10.8	58.4	17.9

Footures

Advertising data

Label

if area=6.0, price=?

if TV=55.0, Radio=34.0, and Newspaper=62.0, price=? Features Label

crim \$	zn 🕈	indus \$	chas \$	nox ÷	rm 💠	age \$	dis	rad \$	tax \$	ptratio \$	black \$	Istat \$	medv \$
0.00632	18	2.31	0	0.538	6.575	65.2	4.09	1	296	15.3	396.9	4.98	24
0.02731	0	7.07	0	0.469	6.421	78.9	4.9671	2	242	17.8	396.9	9.14	21.6
0.03237	0	2.18	0	0.458	6.998	45.8	6.0622	3	222	18.7	394.63	2.94	33.4
0.06905	0	2.18	0	0.458	7.147	54.2	6.0622	3	222	18.7	396.9	5.33	36.2
0.08829	12.5	7.87	0	0.524	6.012	66.6	5.5605	5	311	15.2	395.6	12.43	22.9

Boston House Price Data

House Price Prediction

Feature	Label
area	price
6.7	8.1
4.6	5.6
3.5	4.3
5.5	6.7

House price data

Feature	Label	
area	price	_
6.7	9.1	
4.6	5.9	
3.5	4.6	
5.5	6.7	

House price data

Find a and b whose model has the smallest error, where $error = \sum_{i} error_{i}$

How?

Area-based house price prediction

$$\hat{y}_i = wx_i + b$$

$$L(\hat{y}_i, y_i) = (\hat{y}_i - y_i)^2$$

area	price	predicted	error
6.7	9.1	-2.238	128.55
4.6	5.9	-1.524	55.11
3.5	4.6	-1.15	33.06
5.5	6.7	-1.83	72.76

$$w = -0.34$$

$$b = 0.04$$

Area-based house price prediction

$$\hat{y}_i = wx_i + b$$

$$L(\hat{y}_i, y_i) = (\hat{y}_i - y_i)^2$$

area	price	predicted	error
6.7	9.1	8.099	1.002
4.6	5.9	5.642	0.066
3.5	4.6	4.355	0.06
5.5	6.7	6.695	0.00002

$$\mathbf{w} = 1.17$$

$$b = 0.26$$

Area-based house price prediction

$$\hat{y}_i = wx_i + b$$

$$L(\hat{y}_i, y_i) = (\hat{y}_i - y_i)^2$$

How to change w and b so that $L(\hat{y}_i, y_i)$ reduces

Understanding the loss function

$$\hat{y}_i = wx_i + b$$

$$L(\hat{y}_i, y_i) = (\hat{y}_i - y_i)^2$$

How to change w and b so that $L(\hat{y}_i, y_i)$ reduces

Different b values with a fixed w value

Different w values with a fixed b value

Linear equation

$$\hat{y} = wx + b$$

where \hat{y} is a predicted value, w and b are parameters and x is input feature

Error (loss) computation

Idea: compare predicted values \hat{y} and label values y Squared loss

$$L(\hat{y}, y) = (\hat{y} - y)^2$$

Linear equation

$$\hat{y} = wx + b$$

where \hat{y} is a predicted value,

w and b are parameters

and *x* is input feature

Error (loss) computation

Idea: compare predicted values \hat{y} and label values y Squared loss

$$L(\hat{y}, y) = (\hat{y} - y)^2$$

Find better w and b

Use gradient descent to minimize the loss function

Compute derivate for each parameter

$$\frac{\partial L}{\partial w} = \frac{\partial L}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial w} = 2x(\hat{y} - y)$$

$$\frac{\partial L}{\partial b} = \frac{\partial L}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial b} = 2(\hat{y} - y)$$

Update parameters

$$w = w - \eta \frac{\partial L}{\partial w} \qquad b = b - \eta \frac{\partial L}{\partial b}$$

 η is learning rate

***** Toy example

Diagram

Cheat sheet

Compute the output \hat{y}

$$\hat{y} = wx + b$$

Compute the loss

$$L = (\hat{y} - y)^2$$

Compute derivative

$$\frac{\partial L}{\partial w} = 2x(\hat{y} - y)$$

$$\frac{\partial L}{\partial b} = 2(\hat{y} - y)$$

Update parameters

$$w = w - \eta \frac{\partial L}{\partial w}$$

$$b = b - \eta \frac{\partial L}{\partial b}$$

***** Toy example

Model prediction before and after the first update

Before updating

After updating

Summary (simple version)

- 1) Pick a sample (x, y) from training data
- 2) Compute the output \hat{y}

$$\hat{y} = wx + b$$

3) Compute loss

$$L = (\hat{y} - y)^2$$

4) Compute derivative

$$\frac{\partial L}{\partial w} = 2x(\hat{y} - y) \qquad \frac{\partial L}{\partial b} = 2(\hat{y} - y)$$

5) Update parameters

$$w = w - \eta \frac{\partial L}{\partial w}$$

$$b = b - \eta \frac{\partial L}{\partial b}$$

$$\eta \text{ is learning rate}$$

***** Implementation

Cheat sheet

Compute the output \hat{y} Compute the loss $\hat{y} = wx + b$ $L = (\hat{y} - y)^2$

Compute derivative

$$\frac{\partial L}{\partial w} = 2x(\hat{y} - y) \qquad w = w - \eta \frac{\partial L}{\partial w}$$

$$\frac{\partial L}{\partial b} = 2(\hat{y} - y) \qquad b = b - \eta \frac{\partial L}{\partial b}$$

Update parameters

```
# forward
 2 - def predict(x, w, b):
        return x*w + b
   # compute gradient
 6 - def gradient(y_hat, y, x):
        dw = 2*x*(y_hat-y)
        db = 2*(y_hat-y)
       return (dw, db)
11
    # update weights
13 - def update_weight(w, b, lr, dw, db):
        w_new = w - lr*dw
14
        b_new = b - lr*db
16
        return (w_new, b_new)
```

Code for one update

```
# forward
    def predict(x, w, b):
        return x*w + b
    # compute gradient
    def gradient(y_hat, y, x):
        dw = 2*x*(y_hat-y)
        db = 2*(y_hat-y)
 8
        return (dw, db)
10
11
    # update weights
12
    def update_weight(w, b, lr, dw, db):
14
        w_new = w - lr*dw
15
        b new = b - lr*db
16
17
        return (w_new, b_new)
```

```
# test sample
    x = 6.7
    v = 9.1
    # init weights
    b = 0.04
    W = -0.34
    lr = 0.01
 9
    # predict y hat
10
    y_hat = predict(x, w, b)
    print('y_hat: ', y_hat)
12
13
    # compute loss
14
    loss = (y_hat-y)*(y_hat-y)
    print('Loss: ', loss)
16
17
    # compute gradient
    (dw, db) = gradient(y_hat, y, x)
19
    print('dw: ', dw)
20
    print('db: ', db)
21
22
    # update weights
23
    (w, b) = update_weight(w, b, lr, dw, db)
24
    print('w_new: ', w)
25
    print('b_new: ', b)
```

Outline

- > Simple version of Linear Regression
- > Computational Graph
- > Mini-batch Training
- > Batch Training
- > Generalization of Linear Regression
- > Loss Functions

- ***** House price prediction
 - **❖** One-sample training

$$price = w * area + b$$

 $t = w * area$

- ***** House price prediction
 - ***** One-sample training

w and b usually be set by random values

For example, $N(0, \sigma)$ where σ is small

***** House price prediction

❖ One-sample training

Feature	Label
area	price
6.7	9.1
4.6	5.9
3.5	4.6
5.5	6.7

***** House price prediction

❖ One-sample training

***** House price prediction

❖ One-sample training

= -22.676

Cách cập nhật a và b

$$w = w - \eta * \frac{\partial L}{\partial w}$$
$$b = b - \eta * \frac{\partial L}{\partial b}$$

Learning rate $\eta = 0.01$

$$w = -0.34 - (0.01 * (-151.9)) = 1.179$$

$$b = 0.04 - (0.01 * (-22.67)) = 0.266$$

***** House price prediction

❖ One-sample training

Feature	Label
area	price
6.7	9.1
4.6	5.9
3.5	4.6
5.5	6.7

***** House price prediction

***** One-sample training

Feature	Label	
area	price	
6.7	9.1	_
4.6	5.9	
3.5	4.6	
5.5	6.7	

Updated a and b values help to reduce the L value

Implementation

One-sample training

Feature	Label	
area	price	_
6.7	9.1	
4.6	5.9	
3.5	4.6	
5.5	6.7	
Lacated	L	

column column
index=0 index=1

```
1 # data preparation
 2 import numpy as np
   import matplotlib.pyplot as plt
 4
   def get_column(data, index):
        result = [row[index] for row in data]
 6
        return result
 8
   data = np.genfromtxt('data.csv',
                          delimiter=',').tolist()
10
11
12 x_data = get_column(data, 0)
13 y data = get column(data, 1)
14 N = len(x_data)
15
16 print(f'areas: {x_data}')
   print(f'prices: {y_data}')
18 print(f'data_size: {N}')
areas: [6.7, 4.6, 3.5, 5.5]
prices: [9.1, 5.9, 4.6, 6.7]
data_size: 4
```

Implementation

***** House price prediction

***** One-sample training

- 1) Pick a sample (x, y) from training data
- 2) Compute the output \hat{y}

$$\hat{y} = wx + b$$

3) Compute loss

$$L = (\hat{y} - y)^2$$

4) Compute derivative

$$\frac{\partial L}{\partial w} = 2x(\hat{y} - y) \qquad \frac{\partial L}{\partial b} = 2(\hat{y} - y)$$

5) Update parameters

$$w = w - \eta \frac{\partial L}{\partial w} \qquad b = b - \eta \frac{\partial L}{\partial b}$$

```
# forward
 2 - def predict(x, w, b):
        return x*w + b
   # compute gradient
 6 - def gradient(y_hat, y, x):
   dw = 2*x*(y_hat-y)
   db = 2*(y_hat-y)
     return (dw, db)
10
11
   # update weights
   def update_weight(w, b, lr, dw, db):
14
       w_new = w - lr*dw
        b_new = b - lr*db
15
16
        return (w_new, b_new)
17
```

Implementation

```
One-sample training
                             Initialize w and b
                             Compute output \hat{y}
 Training
                               Compute loss
   data
          Pick sample
             (x, y)
                              Compute derivate
                             for each parameter
                              Update parameter
    x=area and y=price
```

```
# init weights
    b = 0.04
    w = -0.34
    lr = 0.01
    # how long
    epoch_max = 10
 9 - for epoch in range(epoch_max):
        for i in range(data_size):
10 -
            # get a sample
11
            # ...
12
13
            # predict y_hat
14
15
            # ...
16
            # compute loss
18
            # ...
19
            # compute gradient
21
            # ...
22
            # update weights
24
25
```

```
# init weights
    b = 0.04
    W = -0.34
                                                                               Giá nhà (chục lượng vàng)
    lr = 0.01
    # how long
    epoch_max = 10
    data_size = 4
 9
10 - for epoch in range(epoch_max):
         for i in range(data_size):
11 -
                                                                                  -2
12
             # get a sample
                                                                                       3.0
                                                                                             3.5
13
             x = areas[i]
             y = prices[i]
14
15
                                                                                 Giá nhà (chục lượng vàng)
             # predict y_hat
16
             y_hat = predict(x, w, b)
17
18
             # compute loss
19
20
             loss = (y_hat-y)*(y_hat-y)
21
                                                                                   5
22
             # compute gradient
              (dw, db) = gradient(y_hat, y, x)
23
24
                                                                                       3.0
                                                                                             3.5
             # update weights
25
              (w, b) = update_weight(w, b, lr, dw, db)
26
```


- ***** House price prediction
 - ***** One-sample training

Model after training

Quiz 1: Is it OK to use the following loss function?

$$L = \frac{1}{2}(\hat{y} - y)^2$$

Quiz 2: if so, construct formulas and change somehow so that the two models have the same output.

Quiz 3: What about the following loss function?

$$L = \frac{1}{2}(y - \hat{y})^2$$

Outline

- > Simple version of Linear Regression
- > Computational Graph
- > Mini-batch Training
- > Batch Training
- > Generalization of Linear Regression
- > Loss Functions

Compute derivate for w and b

- ***** House price prediction
 - **❖** m-sample training (1<m<N)

- 1) Pick m samples $(x^{(i)}, y^{(i)})$ from training data
- 2) Tính output $\hat{y}^{(i)}$

$$\hat{y}^{(i)} = wx^{(i)} + b \qquad \text{for } 0 \le i < m$$

3) Tính loss

$$L^{(i)} = (\hat{y}^{(i)} - y^{(i)})^2 \text{ for } 0 \le i < m$$

4) Tính đạo hàm

$$\frac{\partial L^{(i)}}{\partial w} = 2x^{(i)}(\hat{y}^{(i)} - y^{(i)})$$

$$\frac{\partial L^{(i)}}{\partial b} = 2(\hat{y}^{(i)} - y^{(i)})$$
for $0 \le i < m$

5) Cập nhật tham số

$$w = w - \eta \frac{\sum_{i} \frac{\partial L^{(i)}}{\partial w}}{m} \qquad b = b - \eta \frac{\sum_{i} \frac{\partial L^{(i)}}{\partial b}}{m}$$

- ***** House price prediction
 - **❖** m-sample training (1<m<N)

***** House price prediction

❖ m-sample training (1<m<N)

F	Teature	Label
	area	price
	6.7	9.1
	4.6	5.9
	3.5	4.6
	5.5	6.7

m = 2

$$\frac{sum(L'_w)}{m} = -110.115$$

$$\frac{sum(L_b')}{m} = -18.762$$

$$\frac{\mathbf{b} = 0.04}{\frac{\partial L}{\partial b}} = \begin{bmatrix} -22.676\\ -14.848 \end{bmatrix}$$

$$t = wx$$
 $\hat{y} = t + b$ $L = (\hat{y} - y)^2$

***** House price prediction

❖ m-sample training (1<m<N)

Feature	Label
area	price
6.7	9.1
4.6	5.9
3.5	4.6
5.5	6.7

m = 2

 $y = \begin{bmatrix} 9.1 \\ 5.9 \end{bmatrix}$

Update w and b

$$w = w - \eta * \frac{\partial L}{\partial w}$$

$$b = b - \eta * \frac{\partial L}{\partial b}$$

Learning rate $\eta = 0.01$

$$w = -0.34 - (0.01 * (-110.115)) = 0.761$$

$$b = 0.04 - (0.01 * (-18.762)) = 0.227$$

replace
$$b = 0.04$$

$$\frac{\partial L}{\partial h} = -18.762$$

$$t = wx$$

$$\hat{y} = t + b$$

$$\hat{y} = t + b \qquad L = (\hat{y} - y)^2$$

- ***** House price prediction
 - **❖** m-sample training (1<m<N)

Losses for 30 iterations

Model updating for different iterations

***** House price prediction

❖ N-sample training

- 1) Pick all the N samples $(x^{(i)}, y^{(i)})$ from training data
- 2) Tính output $\hat{y}^{(i)}$

$$\hat{y}^{(i)} = wx^{(i)} + b \qquad \text{for } 0 \le i < N$$

3) Tính loss

$$L^{(i)} = (\hat{y}^{(i)} - y^{(i)})^2 \text{ for } 0 \le i < N$$

4) Tính đạo hàm

$$\frac{\partial L^{(i)}}{\partial w} = 2x^{(i)}(\hat{y}^{(i)} - y^{(i)})$$

$$\frac{\partial L^{(i)}}{\partial b} = 2(\hat{y}^{(i)} - y^{(i)})$$
for $0 \le i < N$

5) Cập nhật tham số

$$w = w - \eta \frac{\sum_{i} \frac{\partial L}{\partial w}^{(i)}}{N} \qquad b = b - \eta \frac{\sum_{i} \frac{\partial L}{\partial b}^{(i)}}{N}$$

***** House price prediction

❖ N-sample training

***** House price prediction

N-sample training

$$\frac{sum(\frac{\partial L}{\partial w})}{4} = -88.5775$$

$$\frac{sum(\frac{\partial L}{\partial b})}{4} = -16.521$$

***** House price prediction

❖ N-sample training

Update w and b

$$w = w - \eta * \frac{\partial L}{\partial w}$$

$$b = b - \eta * \frac{\partial L}{\partial b}$$

Learning rate $\eta = 0.01$

$$w = -0.34 - (0.01 * (-88.5775)) = 0.54$$

$$b = 0.04 - (0.01 * (-16.521)) = 0.205$$

***** House price prediction

❖ N-sample training

Losses for 30 iterations

Model updating for different iterations

Outline

- > Simple version of Linear Regression
- > Computational Graph
- > Mini-batch Training
- > Batch Training
- > Generalization of Linear Regression
- > Loss Functions

General formula

Fea	ture	Label	
	area	price	
	6.7	9.1	
	4.6	5.9	
	3.5	4.6	
	5.5	6.7	

House price data

Linear regression models ← Linear equations

Linear equation =
$$w_1x_1 + w_2x_2 + \cdots + w_nx_n + b$$

❖ General formula

Feature	Label		
area	price		
6.7	9.1		
4.6	5.9		
3.5	4.6		
5.5	6.7		

House price data

Model:
$$\hat{y} = w_1 x_1 + b$$

price = $a * area + b$

	Label		
TV	Radio	Newspaper	\$ Sales
230.1	37.8	69.2	22.1
44.5	39.3	45.1	10.4
17.2	45.9	69.3	12
151.5	41.3	58.5	16.5
180.8	10.8	58.4	17.9

Advertising data

Model:
$$\hat{y} = w_1 x_1 + w_2 x_2 + w_3 x_3 + b$$

Sale = $w_1 * TV + w_2 * Radio + w_3 * Newspaper + b$

❖ General formula

Features	Label
reatures	Lauci

Boston House Price Data

crim \$	zn \$	indus \$	chas \$	nox ÷	rm 💠	age \$	dis 4	rad \$	tax \$	ptratio \$	black \$	Istat \$	medv \$
0.00632	18	2.31	0	0.538	6.575	65.2	4.09	1	296	15.3	396.9	4.98	24
0.02731	0	7.07	0	0.469	6.421	78.9	4.9671	2	242	17.8	396.9	9.14	21.6
0.03237	0	2.18	0	0.458	6.998	45.8	6.0622	3	222	18.7	394.63	2.94	33.4
0.06905	0	2.18	0	0.458	7.147	54.2	6.0622	3	222	18.7	396.9	5.33	36.2
0.08829	12.5	7.87	0	0.524	6.012	66.6	5.5605	5	311	15.2	395.6	12.43	22.9

$$medv = w_1 * x_1 + \dots + w_{13} * x_{13} + b$$

Generalized formula

House price data

Feature	Label
area	price
6.7	9.1
4.6	5.9
3.5	4.6
5.5	6.7

Dagateers I alkal

Model

$$price = w * area + b$$
$$\hat{y} = wx + b$$

Model (vectorization)

$$\hat{y} = \boldsymbol{\theta}^T \boldsymbol{x}$$
 where $\boldsymbol{\theta}^T = [b \ w]^T$

$$\boldsymbol{x} = [x_0 \ area]^T$$

$$x_0 = 1$$

Features

Label

TV	+ Radio	Newspaper	\$ Sales
230.1	37.8	69.2	22.1
44.5	39.3	45.1	10.4
17.2	45.9	69.3	12
151.5	41.3	58.5	16.5
180.8	10.8	58.4	17.9

Advertising data

Model

Sale =
$$w_1 * TV + w_2 * Radio + w_3 * Newspaper + b$$

 $\hat{y} = w_1 x_1 + w_2 x_2 + w_3 x_3 + b$

Model (vectorization)

$$\hat{y} = \boldsymbol{\theta}^T \boldsymbol{x}$$
 where $\boldsymbol{\theta}^T = [b \ w_1 \ w_2 \ w_3]^T$ $\boldsymbol{x} = [x_0 \ TV \ Radio \ Newspaper]^T$ $x_0 = 1$

1) Pick a sample (x_1, x_2, x_3, y) from training data

2) Compute the output \hat{y}

$$\hat{y} = w_1 * TV + w_2 * R + w_3 * N + b$$

$$\hat{y} = w_1 * x_1 + w_2 * x_2 + w_3 * x_3 + b$$

3) Compute loss

$$L = (\hat{y} - y)^2$$

4) Compute derivative

$$\frac{\partial L}{\partial w_1} = 2x_1(\hat{y} - y) \qquad \frac{\partial L}{\partial w_3} = 2x_3(\hat{y} - y)$$

$$\frac{\partial L}{\partial w_2} = 2x_2(\hat{y} - y) \qquad \frac{\partial L}{\partial b} = 2(\hat{y} - y)$$

5) Update parameters

$$w_1 = w_1 - \eta \frac{\partial L}{\partial w_1} \qquad w_3 = w_3 - \eta \frac{\partial L}{\partial w_3}$$
$$w_2 = w_2 - \eta \frac{\partial L}{\partial w_2} \qquad b = b - \eta \frac{\partial L}{\partial b}$$

Linear Regression

	Label		
TV	Radio	Newspaper	Sales
230.1	37.8	69.2	22.1
44.5	39.3	45.1	10.4
17.2	45.9	69.3	12
151.5	41.3	58.5	16.5
180.8	10.8	58.4	17.9

Advertising data

Model

Sale =
$$w_1 * TV + w_2 * Radio + w_3 * Newspaper + b$$

 $\hat{y} = w_1 x_1 + w_2 x_2 + w_3 x_3 + b$

1) Pick a sample (x_1, x_2, x_3, y) from training data

2) Compute the output \hat{y}

$$\hat{y} = w_1 * TV + w_2 * R + w_3 * N + b$$

$$\hat{y} = w_1 * x_1 + w_2 * x_2 + w_3 * x_3 + b$$

3) Compute loss

$$L = (\hat{y} - y)^2$$

4) Compute derivative

$$\frac{\partial L}{\partial w_1} = 2x_1(\hat{y} - y) \qquad \frac{\partial L}{\partial w_3} = 2x_3(\hat{y} - y)$$

$$\frac{\partial L}{\partial w_2} = 2x_2(\hat{y} - y) \qquad \frac{\partial L}{\partial b} = 2(\hat{y} - y)$$

5) Update parameters

$$w_1 = w_1 - \eta \frac{\partial L}{\partial w_1} \qquad w_3 = w_3 - \eta \frac{\partial L}{\partial w_3}$$

$$w_2 = w_2 - \eta \frac{\partial L}{\partial w_2} \qquad b = b - \eta \frac{\partial L}{\partial b}$$

```
1 # compute output and loss
 2 def predict(x1, x2, x3, w1, w2, w3, b):
       return w1*x1 + w2*x2 + w3*x3 + b
 3
 4 def compute_loss(y_hat, y):
      return (y_hat - y)**2
 6
 7 # compute gradient
 8 def compute_gradient_wi(xi, y, y_hat):
       dl dwi = 2*xi*(y hat-y)
       return dl_dwi
10
   def compute gradient b(y, y hat):
12
       dl_db = 2*(y_hat-y)
      return dl_db
13
14
15 # update weights
   def update_weight_wi(wi, dl_dwi, lr):
       wi = wi - lr*dl dwi
       return wi
18
19 def update_weight_b(b, dl_db, lr):
       b = b - lr*dl db
20
       return b
21
```

TV	Radio	Newspaper	\$ Sales
230.1	37.8	69.2	22.1
44.5	39.3	45.1	10.4
17.2	45.9	69.3	12
151.5	41.3	58.5	16.5
180.8	10.8	58.4	17.9

Label

Features

```
1 def initialize params():
        w1 = random.gauss(mu=0.0, sigma=0.01)
 2
 3
        w2 = random.gauss(mu=0.0, sigma=0.01)
        w3 = random.gauss(mu=0.0, sigma=0.01)
 4
        b = 0
 5
 6
 7
        return w1, w2, w3, b
 8
   # initialize model's parameters
10 w1, w2, w3, b = initialize_params()
11 print(w1, w2, w3, b)
0.01609506469549467 0.00607778501208891 0.0023344573891806507 0
```

```
1 import numpy as np
 2 import random
   def get_column(data, index):
        result = [row[index] for row in data]
 5
        return result
    data = np.genfromtxt('advertising.csv',
                         delimiter=',',
 9
10
                         skip header=1).tolist()
11
   # get tv (index=0)
   tv_data = get_column(data, 0)
14
   # get radio (index=1)
   radio data = get column(data, 1)
17
   # get newspaper (index=2)
    newspaper data = get column(data, 2)
20
   # get sales (index=0)
22 sales_data = get_column(data, 3)
```

Unnormalized data $\eta = 10^{-5}$

	1 catales			Laber	
	TV	+ Radio	Newspaper	\$ Sales	
4	230.1	37.8	69.2	22.1	
	44.5	39.3	45.1	10.4	
*	17.2	45.9	69.3	12	
*	151.5	41.3	58.5	16.5	
	180.8	10.8	58.4	17.9	

Features

Lahel

0.01609506469549467 0.00607778501208891 0.0023344573891806507 0

```
x1: 230.1
x2: 37.8
x1: 69.2
y: 22.1
y_hat: 4.0947591112215855
```

dl_dw1: -8286.011857015827
dl_dw2: -1361.1962111916482
dl_dw3: -2491.925339006933
dl_db: -36.01048177755683

w1: 0.09895518326565295 w2: 0.019689747124005393 w3: 0.027253710779249984 b: 0.0003601048177755684

```
1 for epoch in range(epoch_max):
        for i in range(N):
 2
            # get a sample
            x1 = tv data[i]
 4
            x2 = radio data[i]
 5
            x3 = newspaper data[i]
 6
            y = sales data[i]
 8
            # compute output
 9
            y_hat = predict(x1, x2, x3, w1, w2, w3, b)
10
11
12
            # compute gradient w1, w2, w3, b
            dl dw1 = compute_gradient_wi(x1, y, y_hat)
13
            dl_dw2 = compute_gradient_wi(x2, y, y_hat)
14
15
            dl_dw3 = compute_gradient_wi(x3, y, y_hat)
            dl_db = compute_gradient_b(y, y_hat)
16
17
18
            # update parameters
            w1 = update_weight_wi(w1, dl_dw1, lr)
19
            w2 = update weight wi(w2, d1 dw2, lr)
20
            w3 = update_weight_wi(w3, d1_dw3, lr)
21
22
            b = update weight b(b, dl db, lr)
```

Normalized data

$\eta = 10^{-2}$

Footures

	reatures			Label	
	TV	+ Radio	Newspaper	\$ Sales	
\\[\bar{\}\]	230.1	37.8	69.2	22.1	
	44.5	39.3	45.1	10.4	
	17.2	45.9	69.3	12	
	151.5	41.3	58.5	16.5	
•	180.8	10.8	58.4	17.9	

0.01609506469549467 0.00607778501208891 0.0023344573891806507 0

x1: 0.5504267881241568

x2: -0.09835863697705782

x1: 0.007579284750337614

y: 22.1

y hat: 0.008279045632653116

dl_dw1: -24.319750018095103

dl_dw2: 4.345823123098159

dl_dw3: -0.33487888747630074

dl_db: -44.1834419087347

w1: 0.2592925648764457

w2: -0.037380446218892686

w3: 0.005683246263943658

b: 0.441834419087347

```
x = \frac{x - x_{mean}}{x_{max} - x_{min}}
```

Labol

```
for epoch in range(epoch_max):
        for i in range(N):
 2
            # get a sample
            x1 = tv data[i]
 4
            x2 = radio data[i]
            x3 = newspaper data[i]
 6
            y = sales data[i]
 8
            # compute output
 9
10
            y hat = predict(x1, x2, x3, w1, w2, w3, b)
11
12
            # compute gradient w1, w2, w3, b
            dl dw1 = compute_gradient_wi(x1, y, y_hat)
13
            dl_dw2 = compute_gradient_wi(x2, y, y_hat)
14
15
            dl_dw3 = compute_gradient_wi(x3, y, y_hat)
            dl_db = compute_gradient_b(y, y_hat)
16
17
18
            # update parameters
            w1 = update_weight_wi(w1, dl_dw1, lr)
19
            w2 = update weight wi(w2, d1 dw2, lr)
20
            w3 = update_weight_wi(w3, d1_dw3, lr)
21
22
            b = update weight b(b, dl db, lr)
```

Outline

- > Simple version of Linear Regression
- > Computational Graph
- > Mini-batch Training
- > Batch Training
- > Generalization of Linear Regression
- > Loss Functions

❖ Mean Squared Error (MSE)

$$f'(x) = 2x$$

One sample

$$L(\hat{y}, y) = (\hat{y} - y)^2$$

N samples

$$L(\widehat{\boldsymbol{y}}, \boldsymbol{y}) = \frac{1}{N} \sum_{i=1}^{N} (\widehat{y}_i - y_i)^2$$

<u> </u>	У	У	L
area	price	prediction	error
6.7	9.1	5.5	12.9
4.6	5.9	3.9	4.41
3.5	4.6	3.1	2.25
5.5	6.7	4.6	4.41

17

area price 6.7 9.1 4.6 5.9 3.5 4.6 5.5 6.7

❖ Mean Squared Error (MSE)

- 1) Pick a sample (x, y) from training data
- 2) Compute the output \hat{y}

$$\hat{y} = wx + b$$

3) Compute loss

$$L = (\hat{y} - y)^2$$

4) Compute derivative

$$\frac{\partial L}{\partial w} = 2x(\hat{y} - y) \qquad \frac{\partial L}{\partial b} = 2(\hat{y} - y)$$

5) Update parameters

$$w = w - \eta \frac{\partial L}{\partial w} \qquad b = b - \eta \frac{\partial L}{\partial b}$$

$$w = 1.207$$

$$b = 0.251$$

❖ Mean Absolute Error (MAE)

$$f'(x) = \frac{x}{|x|}$$
 for $x \neq 0$

One sample

$$L(\hat{y}, y) = |\hat{y} - y|$$

N samples

$$L(\widehat{\boldsymbol{y}}, \boldsymbol{y}) = \frac{1}{N} \sum_{i=1}^{N} |\widehat{y}_i - y_i|$$

	У	У	L
area	price	prediction	error
6.7	9.1	5.5	3.6
4.6	5.9	3.8	2.1
3.5	4.6	3.1	1.5
5.5	6.7	4.6	2.1

area price 6.7 9.1 4.6 5.9 3.5 4.6 5.5 6.7

❖ Mean Absolute Error (MAE)

- 1) Pick a sample (x, y) from training data
- 2) Compute the output \hat{y}

$$\hat{y} = wx + b$$

3) Compute loss

$$L = |\hat{y} - y|$$

4) Compute derivative

$$\frac{\partial L}{\partial w} = x \frac{(\hat{y} - y)}{|\hat{y} - y|} \qquad \frac{\partial L}{\partial b} = \frac{(\hat{y} - y)}{|\hat{y} - y|}$$

5) Update parameters

$$w = w - \eta \frac{\partial L}{\partial w} \qquad b = b - \eta \frac{\partial L}{\partial b}$$

$$w = 1.185$$

$$b = 0.340$$

Quiz 4: The pros and cons of MSE and MAE when data contain outliers?

$$g(10) \gg f(10)$$

If x = 10 is an outlier, g(10) has more negative effect

⇒ MAE is better to tolerate outliers

Quiz 5: The pros and cons of MSE and MAE with a fixed learning rate η ?

 $\eta f'(x)$ values are constants

 $\alpha_3 > \alpha_4$

 $\eta f'(x)$ values reduce

⇒ MSE is better when working with a fixed learning rate

