

Managerial Accounting

RAY H. GARRISON
ERIC W. NOREEN
PETER C. BREWER
NAM SANG CHENG
KATHERINE C. K. YUEN

Cost Concepts

Chapter 2

Learning Objective 1

Identify and give examples of each of the three basic manufacturing cost categories.

Manufacturing Costs

Direct Materials

Raw materials that become an integral part of the product and that can be conveniently traced directly to it.

Example: A radio installed in an automobile

Direct Labor

Those labor costs that can be easily traced to individual units of product.

Example: Wages paid to automobile assembly workers

Manufacturing Overhead

Manufacturing costs that cannot be traced directly to specific units produced.

Examples: Indirect materials and indirect labor

Materials used to support the production process.

Examples: lubricants and cleaning supplies used in the automobile assembly plant.

Wages paid to employees who are not directly involved in production work.

Examples: maintenance workers, janitors and security guards.

Nonmanufacturing Costs

Learning Objective 2

Understand cost classifications used to prepare financial statements: product costs and period costs.

Product Costs Versus Period Costs

Product costs include direct materials, direct labor, and manufacturing overhead. **Inventory** Cost of Good Sold Sale Balance Income Sheet Statement

Which of the following costs would be considered a period rather than a product cost in a manufacturing company?

- A. Manufacturing equipment depreciation.
- B. Property taxes on corporate headquarters.
- C. Direct materials costs.
- D. Electrical costs to light the production facility.
- E. Sales commissions.

Which of the following costs would be considered a period rather than a product cost in a manufacturing company?

- A Manufacturing equipment depreciation.
- B. Property taxes on corporate headquarters.
- C. Direct materials costs.
- D. Electrical costs to light the production facility.
- E. Sales commissions.

Classifications of Costs

Manufacturing costs are often classified as follows:

Comparing Merchandising and Manufacturing Companies

Merchandisers ...

- > Buy finished goods.
- > Sell finished goods.

Manufacturers ...

- > Buy raw materials.
- > Produce and sell finished goods.

Balance Sheet

Merchandiser

Current assets

- **◆ Cash**
- **♦** Receivables
- **♦** Merchandise Inventory

Manufacturer

Current Assets

- Cash
- □ Receivables
- Inventories
 - Raw Materials
 - Work in Process
 - Finished Goods

Balance Sheet

Merchandiser

Current assets

- **♦** Cash
- ◆ Receivables
 - Partially complete products—some material, labor, or overhead has been added.

Manufacturer

Current Assets

Materials waiting to be processed.

- Inventories
 - Raw Materials
 - Work in Process
 - Finished Goods

Completed products awaiting sale.

Learning Objective 3

The Income Statement

Cost of goods sold for manufacturers differs only slightly from cost of goods sold for merchandisers.

Merchandising Company	
Cost of goods sold: Beg. merchandise	
inventory	\$ 14,200
+ Purchases	234,150
Goods available	
for sale	\$248,350
- Ending merchandise	
inventory	(12,100)
= Cost of goods	
sold	\$236,250

Manufacturing Company	
Cost of goods sold:	
Beg. finished	
goods inv.	\$ 14,200
+ Cost of goods	
manufactured	234,150
Goods available	
for sale	\$248,350
- Ending	
finished goods	
inventory	(12,100)
= Cost of goods	
sold	\$236,250

Basic Equation for Inventory Accounts

If your inventory balance at the beginning of the month was \$1,000, you bought \$100 during the month, and sold \$300 during the month, what would be the balance at the end of the month?

- A. \$1,000.
- B. \$ 800.
- C. \$1,200.
- D. \$ 200.

If your inventory balance at the beginning of the month was \$1,000, you bought \$100 during the month, and sold \$300 during the month, what would be the balance at the end of the month?

```
A $1,000.
B. $ 800.
C. $1,200.
```

$$$1,000 + $100 = $1,100$$

 $$1,100 - $300 = 800

Learning Objective 4

Schedule of Cost of Goods Manufactured

Calculates the cost of raw material, direct labor, and manufacturing overhead used in production.

Calculates the manufacturing costs associated with goods that were finished during the period.

Manufacturing Work Raw Materials Costs In Process Beginning raw Direct materials materials inventory + Raw materials purchased = Raw materials available for use in production - Ending raw materials inventory As items are removed from raw = Raw materials used

in production

materials inventory and placed into

the production process, they are

called direct materials.

Raw Materials

Beginning raw materials inventory

- + Raw materials purchased
- Raw materials available for use in production
- Ending raw materials inventory
- Raw materials used in production

Manufacturing Costs

Direct materials

- + Direct labor
- + Mfg. overhead
- = Total manufacturing costs

Work

Conversion costs are costs incurred to convert the direct material into a finished product.

Raw Materials

Beginning raw materials inventory

- + Raw materials purchased
- Raw materials available for use in production
- Ending raw materials inventory
- Raw materials used in production

Manufacturing Costs

Direct materials

- + Direct labor
- + Mfg. overhead
- = Total manufacturing costs

Work In Process

Beginning work in process inventory

- + Total manufacturing costs
- = Total work in process for the period

All manufacturing costs incurred during the period are added to the beginning balance of work in process.

Raw Materials

Beginning raw materials inventory

- + Raw materials purchased
- Raw materials available for use in production
- Ending raw materials

Costs associated with the goods that are completed during the period are transferred to finished goods inventory.

Manufacturing Costs

Direct materials

- + Direct labor
- + Mfg. overhead
- = Total manufacturing costs

Work In Process

Beginning work in process inventory

- + Total manufacturing costs
- = Total work in process for the period
- Ending work in process inventory
- = Cost of goods
 manufactured

Work In Process

Beginning work in process inventory

- + Manufacturing costs for the period
- = Total work in process for the period
- Ending work in process inventory
- = Cost of goods manufactured

Finished Goods

Beginning finished goods inventory

- + Cost of goods
 - manufactured
- = Cost of goods available for sale
- Ending finished goods inventory
 - Cost of goods sold

Manufacturing Cost Flows

Beginning raw materials inventory was \$32,000. During the month, \$276,000 of raw material was purchased. A count at the end of the month revealed that \$28,000 of raw material was still present. What is the cost of direct material used?

- A. \$276,000
- B. \$272,000
- C. \$280,000
- D. \$ 2,000

Beginning raw materials inventory was \$32,000. During the month, \$276,000 of raw material was purchased. A count at the end of the month revealed that \$28,000 of raw material was still present. What

is the cost of direct ma

A. \$276,000

B. \$272,000

C. \$280,000

D. \$ 2,000

Beg. raw materials	\$ 32,000
+ Raw materials	
purchased	276,000
= Raw materials available	
for use in production	\$ 308,000
 Ending raw materials 	
inventory	28,000
= Raw materials used	
in production	\$ 280,000

Direct materials used in production totaled \$280,000. Direct labor was \$375,000 and factory overhead was \$180,000. What were total manufacturing costs incurred for the month?

- A. \$555,000
- B. \$835,000
- C. \$655,000
- D. Cannot be determined.

Direct materials used in production totaled \$280,000. Direct labor was \$375,000 and factory overhead was \$180,000. What were total manufacturing costs incurred for the month?

\$555,000

\$835,000

\$655,000

Cannot b

Direct Materials \$280,000

+ Direct Labor 375,000

Mfg. Overhead 180,000

= Mfg. Costs Incurred for the Month

\$835,000

Beginning work in process was \$125,000. Manufacturing costs incurred for the month were \$835,000. There were \$200,000 of partially finished goods remaining in work in process inventory at the end of the month. What was the cost of goods manufactured during the month?

- A. \$1,160,000
- B. \$ 910,000
- C. \$ 760,000
- D. Cannot be determined.

Beginning work in process was \$125,000. Manufacturing costs incurred for the month were \$835,000. There were \$200,000 of partially finished goods remaining in work in

process inventory at the What was the cost of goduring the month?

\$1,160,000 \$ 910,000 \$ 760,000 Cannot be de

Beginning work in	
process inventory	\$125,000
+ Mfg. costs incurred	
for the period	835,000
= Total work in process	
during the period	\$ 960,000
Ending work in	
process inventory	200,000
= Cost of goods	
manufactured	\$760,000

Beginning finished goods inventory was \$130,000. The cost of goods manufactured for the month was \$760,000. And the ending finished goods inventory was \$150,000. What was the cost of goods sold for the month?

- A. \$ 20,000.
- B. \$740,000.
- C. \$780,000.
- D. \$760,000.

Beginning finished goods inventory was \$130,000. The cost of goods manufactured for the month was \$760,000. And the ending finished goods inventory was \$150,000. What was the cost of goods sold for the month?

```
A. $ 20,000.
```

B. \$740,000.

C. \$780,000.

D. \$760,000.

```
$130,000 + $760,000 = $890,000
$890,000 - $150,000 = $740,000
```

Learning Objective 5

Understand cost classifications used to predict cost behavior: variable costs and fixed costs.

Cost Classifications for Predicting Cost Behavior

How a cost will react to changes in the level of activity within the relevant range.

- Total variable costs change when activity changes.
- Total fixed costs remain unchanged when activity changes.

Total Variable Cost

The total cost of batteries is based on the number of autos produced in a month

Variable Cost Per Unit

The cost of battery is constant per each auto produced

Total Fixed Cost

The monthly rent for an auto factory is fixed regardless of the number of autos produced

Fixed Cost Per Unit

The average monthly rent per auto decreases as more autos are produced

© 2015 McGraw-Hill Education

Cost Classifications for Predicting Cost Behavior

Behavior of Cost (within the relevant range)								
Cost	In Total	Per Unit						
Variable	Total variable cost changes as activity level changes.	Variable cost per unit remains the same over wide ranges of activity.						
Fixed	Total fixed cost remains the same even when the activity level changes.	Average fixed cost per unit goes down as activity level goes up.						

Which of the following costs would be variable with respect to the number of cones sold at a Baskins & Robbins shop? (There may be more than one correct answer.)

- A. The cost of lighting the store.
- B. The wages of the store manager.
- C. The cost of ice cream.
- D. The cost of napkins for customers.

Which of the following costs would be variable with respect to the number of cones sold at a Baskins & Robbins shop? (There may be more than one correct answer.)

- A. The cost of lighting the store.
- B. The wages of the store manager.
- C. The cost of ice cream.
- D. The cost of napkins for customers.

Learning Objective 6

Understand cost classifications used for assigning costs to cost objects: direct and indirect costs.

Assigning Costs to Cost Objects

Direct costs

- Costs that can be easily and conveniently traced to a unit of product or other cost object.
- Examples: direct material and direct labor

Indirect costs

- Costs that cannot be easily and conveniently traced to a unit of product or other cost object.
- Example: manufacturing overhead

Learning Objective 7

Understand cost classifications used in making decisions: differential costs, opportunity costs, and sunk costs.

Cost Classifications for Decision Making

Every decision involves a choice between at least two alternatives.

Only those costs and benefits that differ between alternatives are relevant in a decision. All other costs and benefits can and should be ignored.

Differential Cost and Revenue

Costs and revenues that differ among alternatives.

Example: You have a job paying \$1,500 per month in your hometown. You have a job offer in a neighboring city that pays \$2,000 per month. The commuting cost to the city is \$300 per month.

Differential revenue is: \$2,000 - \$1,500 = \$500

Differential cost is: \$300

Opportunity Cost

The potential benefit that is given up when one alternative is selected over another.

Example: If you were not attending college, you could be earning \$15,000 per year. Your opportunity cost of attending college for one year is \$15,000.

Sunk Costs

Sunk costs have already been incurred and cannot be changed now or in the future. These costs should be ignored when making decisions.

Example: You bought an automobile that cost \$10,000 two years ago. The \$10,000 cost is sunk because whether you drive it, park it, trade it, or sell it, you cannot change the \$10,000 cost.

Suppose you are trying to decide whether to drive or take the train to Kuala Lumpur to attend a concert. You have ample cash to do either, but you don't want to waste money needlessly. Is the cost of the train ticket relevant in this decision? In other words, should the cost of the train ticket affect the decision of whether you drive or take the train to Kuala Lumpur?

- A. Yes, the cost of the train ticket is relevant.
- B. No, the cost of the train ticket is not relevant.

Suppose you are trying to decide whether to drive or take the train to Kuala Lumpur to attend a concert. You have ample cash to do either, but you don't want to waste money needlessly. Is the cost of the train ticket relevant in this decision? In other words, should the cost of the train ticket affect the decision of whether you drive or take the train to Kuala Lumpur?

- A. Yes, the cost of the train ticket is relevant.
- B. No, the cost of the train ticket is not relevant.

Suppose you are trying to decide whether to drive or take the train to Kuala Lumpur to attend a concert. You have ample cash to do either, but you don't want to waste money needlessly. Is the annual cost of licensing your car relevant in this decision?

- A. Yes, the licensing cost is relevant.
- B. No, the licensing cost is not relevant.

Suppose you are trying to decide whether to drive or take the train to Kuala Lumpur to attend a concert. You have ample cash to do either, but you don't want to waste money needlessly. Is the annual cost of licensing your car relevant in this decision?

A. Yes, the licensing cost is relevant.

(B.)No, the licensing cost is not relevant.

Suppose that your car could be sold now for \$5,000. Is this a sunk cost?

- A. Yes, it is a sunk cost.
- B. No, it is not a sunk cost.

Suppose that your car could be sold now for \$5,000. Is this a sunk cost?

A. Yes, it is a sunk cost.

B. No, it is not a sunk cost.

Summary of the Types of Cost Classifications

Financial Reporting

Predicting Cost
Behavior

Assigning Costs to Cost Objects

Making Business
Decisions

Further Classification of Labor Costs

Appendix 2A

Learning Objective 8

Idle Time

Machine Breakdowns

Material Shortages

Power Failures

The labor costs incurred during idle time are ordinarily treated as manufacturing overhead.

Overtime

The overtime premiums for all factory workers are usually considered to be part of manufacturing overhead.

What if a company consistently has overtime? Can the overtime costs be part of labor expenses?

Labor Fringe Benefits

Fringe benefits include employer paid costs for insurance programs, retirement plans, supplemental unemployment programs, Social Security, Medicare, workers' compensation, and unemployment taxes.

Some companies include all of these costs in manufacturing overhead.

Other companies treat fringe benefit expenses of direct laborers as additional direct labor costs.

Cost of Quality

Appendix 2B

Learning Objective 9

Quality of Conformance

When the overwhelming majority of products produced conform to design specifications and are free from defects.

Prevention and Appraisal Costs

Appraisal Costs

Appraisal Costs

before the products are shipped to customers

Internal and External Failure Costs

Examples of Quality Costs

Prevention Costs

- Quality training
- Quality circles
- Statistical process control activities

Appraisal Costs

- Testing and inspecting incoming materials
- Final product testing
- Depreciation of testing equipment

Internal Failure Costs

- Scrap
- Spoilage
- Rework

External Failure Costs

- Cost of field servicing and handling complaints
- Warranty repairs
- Lost sales

Distribution of Quality Costs

Quality of conformance (percent of output without defects)

Learning Objective 10

Quality Cost Report For Years 1 and 2

	Year 2			Year 1		
		Amount	Percent*	Amount	Percent*	
Prevention costs:						
Systems development	\$	400,000	0.80%	\$ 270,000	0.54%	
Quality training		210,000	0.42%	130,000	0.26%	
Supervision of prevention activities		70,000	0.14%	40,000	0.08%	
Quality improvement		320,000	0.64%	210,000	0.42%	
Total prevention cost		1,000,000	2.00%	650,000	1.30%	
Appraisal costs:						
Inspection		600,000	1.20%	560,000	1.12%	
Reliability testing		580,000	1.16%	420,000	0.84%	
Supervision of testing and inspection		120,000	0.24%	80,000	0.16%	
Depreciation of test equipment		200,000	0.40%	140,000	0.28%	
Total appraisal cost		1,500,000	3.00%	1,200,000	2.40%	
Internal failure costs:						
Net cost of scrap		900,000	1.80%	750,000	1.50%	
Rework labor and overhead		1,430,000	2.86%	810,000	1.62%	
Downtime due to defects in quality		170,000	0.34%	100,000	0.20%	
Disposal of defective products		500,000	1.00%	340,000	0.68%	
Total internal failure cost		3,000,000	6.00%	2,000,000	4.00%	
External failure costs:						
Warranty repairs		400,000	0.80%	900,000	1.80%	
Warranty replacements		870,000	1.74%	2,300,000	4.60%	
Allowances		130,000	0.26%	630,000	1.26%	
Cost of field servicing		600,000	1.20%	1,320,000	2.64%	
Total external failure cost		2,000,000	4.00%	5,150,000	10.30%	
Total quality cost	\$	7,500,000	15.00%	\$ 9,000,000	18.00%	

* As a percentage of total sales. In each year sales totaled \$50,000,000.

Quality cost reports provide an estimate of the financial consequences of the company's current defect rate.

© 2015 McGraw-Hill Education

Quality Cost Reports in Graphic Form

Quality reports can also be prepared in graphic form.

Uses of Quality Cost Information

Help managers see the financial significance of defects.

Help managers identify the relative importance of the quality problems.

Help managers see whether their quality costs are poorly distributed.

Limitations of Quality Cost Information

Simply measuring and reporting quality cost problems does not solve quality problems.

Results usually lag behind quality improvement programs.

The most important quality cost, lost sales, is often omitted from quality cost reports.

ISO 9000 Standards

ISO 9000 standards have become international measures of quality.

To become ISO 9000 certified, a company must demonstrate:

- 1. A quality control system is in use, and the system clearly defines an expected level of quality.
- 2. The system is fully operational and is backed up with detailed documentation of quality control procedures.
- 3. The intended level of quality is being achieved on a sustained basis.

End of Chapter 2

