Point-correspondence-based homography estimation

- m point correspondences are given. $\mathbf{u}_i \to \mathbf{u}_i'$:
 - $\mathbf{u}_i' \sim H\mathbf{u}_i, \quad i=1,\ldots,m$
- Task: estimate H
 - at least m = n + 2 correspondences are required
 - planar homography: at least four points needed.
 - For more points, problem is over-determined.
- In case of outliers: robust estimation
 - Robustification requires more corresponences.

Homography written by point locations

$$\alpha \begin{bmatrix} u' \\ v' \\ 1 \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{bmatrix} u \\ v \\ 1 \end{bmatrix},$$

where $\alpha \neq 0$ is an unknown scale factor.

Transformation yields

$$u' = \frac{h_{11}u + h_{12}v + h_{13}}{h_{31}u + h_{32}v + h_{33}} = \frac{\mathbf{h}_1^T \mathbf{u}}{\mathbf{h}_3^T \mathbf{u}},$$
 (16)

$$v' = \frac{h_{21}u + h_{22}v + h_{23}}{h_{31}u + h_{32}v + h_{33}} = \frac{\mathbf{h}_2^T \mathbf{u}}{\mathbf{h}_3^T \mathbf{u}},$$
 (17)

where \mathbf{h}_i is the i-th row of matrix \mathbf{H} .

Linear estimation of planar homography 1/2

Equations are multiplied by the common denominator

$$(h_{31}u + h_{32}v + h_{33})u' = h_{11}u + h_{12}v + h_{13}$$
 (18)

$$(h_{31}u + h_{32}v + h_{33})v' = h_{21}u + h_{22}v + h_{23}$$
 (19)

For the i-th point, two homogeneous equations are obtained as $A_i \mathbf{h} = 0$, where

$$A_{i} = \begin{bmatrix} u_{i} & v_{i} & 1 & 0 & 0 & 0 & -u_{i}u'_{i} & -v_{i}u'_{i} & -u'_{i} \\ 0 & 0 & 0 & u_{i} & v_{i} & 1 & -u_{i}v'_{i} & -v_{i}v'_{i} & -v'_{i} \end{bmatrix},$$
(20)

$$\mathbf{h} = [h_{11}, h_{12}, h_{13}, h_{21}, h_{22}, h_{23}, h_{31}, h_{32}, h_{33}]^{\mathsf{T}}$$
 (21)

For all points, $A\mathbf{h} = \mathbf{0}$ linear system of equations should be solved, where

$$A = [A_1, A_2, \dots, A_m]^{\mathsf{T}}$$

Linear estimation of planar homography 2/2

- Trivial solution h = 0 is discarded
 - h can be determined up to a scale
 - \rightarrow the norm is fixed: $\|\mathbf{h}\| = 1$
- If there are m = 4 correspondences; or m > 4, but data are noisy-free
 - if rank of A equals 8, exact solution can be obtained.
- If m > 4 and data are contaminated
 - only an estimate can be computed,
 - by minimizing $||A\mathbf{h}||$, subject to $||\mathbf{h}|| = 1$.
 - → Optimal solution in the least squares sense is the eigenvalue of A^TA corresponding to the smallest eigenvalue.

Properties of linear estimation 1/2

- Linear method
 - → unequivocal, clear solution
- Low computational demand
 - → fast execution
- ullet The cost function of the estimation is determined by ϵ

$$\epsilon = \|A\mathbf{h}\|$$

- \bullet ϵ -is an algebraic distance
 - no direct geometric meaning
 - → minimization of geometric distance(s) preferred

Properties of linear estimation 2/2

- Not robust
 - noisy correspondences
 - Works well if there are no outliers
 - → one outlier can destroy the good result
 - → (breakdown point) is very low
- Due to numerical computation, data normalization required
 - elements in coefficient should be in the same order of magnitude
 - → translation: origo should be at the center of gravity
 - \rightarrow scale: spread should be set to $\sqrt{2}$
- Numerical optimization is usually applied, linear method yields initial value

Data normalization

- Coordinate system can be freely selected.
- Original homography: $[u_2, v_2, 1]^T \sim \mathbf{H}[u_1, v_1, 1]^T$
 - Modified coordinates: $[u'_1, v'_1, 1]^T = \mathbf{T}_1[u_1, v_1, 1]^T$ and $[u'_2, v'_2, 1]^T = \mathbf{T}_2[u_2, v_2, 1]^T$
 - where T_1 and T_2 are affine transformations (translation + scale)
- Projection by the modified homography:

$$[u'_2, v'_2, 1]^T \sim \mathbf{H}'[u'_1, v'_1, 1]^T$$

- After substitution: $\mathbf{T}_2[u_2, v_2, 1]^T \sim \mathbf{H}' \mathbf{T}_1[u_1, v_1, 1]^T$
- Then: (multiplication by \mathbf{T}_2^{-1} from the left): $[u_2, v_2, 1]^T \sim \mathbf{T}_2^{-1} \mathbf{H}' \mathbf{T}_1 [u_1, v_1, 1]^T$
- Thus, $\mathbf{H} = \mathbf{T}_2^{-1}\mathbf{H}'\mathbf{T}_1$ or $\mathbf{H}' = \mathbf{T}_2\mathbf{H}\mathbf{T}_1^{-1}$: