Fonctions sinus, cosinus et tangentes

Caractéristiques des fonctions sinus et cosinus

- La fonction sinus et la fonction cosinus sont des fonctions périodiques de période 2π .
- Elles sont bornées, comprises entre -1 et 1.
- Elles sont définies sur R.
- Puisque $\cos(x)=\sin\left(x+\frac{\pi}{2}\right)$, alors la fonction cosinus est une translation de la fonction $\sin(x)$ de $\frac{\pi}{2}$ vers la gauche.

Tracé des fonctions $f(x) = \sin(x)$ et $f(x) = \cos(x)$

- Choisir un axe horizontal en radians de -2π à 2π par intervalles de $\frac{\pi}{2}$
- Choisir un axe vertical de -1 à 1
- Déterminer les valeurs de la fonction sinus pour les points remarquables (les multiples de $\frac{\pi}{2}$)
- Tracer la courbe en reliant les points obtenus par une courbe ondulée
- Obtenir la fonction cosinus par translation de $\frac{\pi}{2}$ vers la gauche.

Caractéristiques de la fonction tangente

- La fonction tangente est une fonction périodique de période π
- Elle est définie sur $\mathbb{R}\setminus\left\{rac{\pi}{2}+k\pi
 ight\}$
- Elle possède des asymptotes en $rac{\pi}{2}+k\pi$
- Elle possède des zéros en $k\pi$

Tracé de la fonction tangente

- Choisir un axe horizontal en radians de $-\pi$ à π par intervalles de $\frac{\pi}{4}$
- Choisir un axe vertical de -10 à 10
- Déterminer les valeurs de la fonction tangente pour les points remarquables (les multiples de $\frac{\pi}{4}$)
- ullet Tracer les asymptotes verticales en $rac{\pi}{2}+k\pi$
- Tracer la courbe en reliant les points obtenus par une courbe ondulée

Amplitude de la fonction $f(x) = a \cdot \sin(x)$

La fonction sinus peut être modifiée par un paramètre multiplicateur a. On étudie la fonction :

$$f(x) = a \cdot \sin(x)$$

Effet du paramètre a

cyan

- Le paramètre a détermine l'**amplitude** de la courbe.
- L'amplitude correspond à la valeur maximale absolue de la fonction : $\operatorname{Amplitude} = |a|$
- Si a>0, la courbe conserve sa forme habituelle.
- Si a < 0, la courbe est symétrique par rapport à l'axe horizontal.
- Plus |a| est grand, plus les pics et creux sont hauts/bas.

Exemples

- $f(x) = \sin(x)$ \rightarrow amplitude : 1
- $f(x) = 2 \cdot \sin(x) \rightarrow \text{amplitude} : \dots$
- $f(x) = -1.5 \cdot \sin(x)$ ightarrow amplitude : . . .
- $f(x) = \frac{1}{2} \cdot \sin(x)$ ightarrow amplitude : . . .

À retenir

Le paramètre a agit comme un zoom vertical sur la fonction sinus. Il modifie l'amplitude sans changer la période (qui reste 2π).

As-tu compris?

Détermine la valeur de l'amplitude pour les fonctions représentées cidessous.

Paramètre b dans $f(x) = \sin(bx)$

Le paramètre b contrôle la **fréquence** de la fonction sinus, c'est-à-dire combien d'ondes sont contenues dans un intervalle donné.

Période d'une fonction sinus

La fonction $\sin(x)$ a une **période** de 2π , ce qui signifie qu'elle se répète tous les 2π . Lorsqu'on introduit un paramètre b, la période devient :

Période =
$$\frac{2\pi}{|b|}$$

Effets de différentes valeurs de b

- Si b>1, la fonction est **compressée** horizontalement (plus de vagues par unité).
- Si 0 < b < 1, la fonction est **étirée** horizontalement.
- Si b < 0, la fonction est réfléchie horizontalement (symétrie).

Exemples

- $f(x) = \sin(x) \rightarrow \text{période} \dots$
- $f(x) = \sin(2x) \rightarrow \text{période} \dots$
- $f(x) = \sin\left(\frac{x}{2}\right)$ \rightarrow période ...
- $f(x) = \sin(-x)$ \rightarrow même forme que $-\sin(x)$

À retenir

Le paramètre b contrôle **le nombre de répétitions** (fréquence) de la fonction sinus. Une valeur absolue plus grande de b **réduit** la période. Une valeur plus petite **l'étire**.

As-tu compris?

Détermine la valeur de b pour les fonctions représentées ci-dessous.

Paramètre c dans $f(x) = \sin(bx + c)$

Le paramètre c agit sur la **position horizontale** de la courbe. On parle aussi de **décalage horizontal** ou de **phase**.

Forme générale

On considère la fonction :

$$f(x) = \sin(bx + c)$$

Cette expression peut être réécrite sous la forme : $f(x) = \sin\left(b(x+rac{c}{b})
ight)$

Décalage horizontal

- Le terme $rac{c}{b}$ représente un **décalage** horizontal.
- La courbe est décalée de $-\frac{c}{b}$ par rapport à la courbe de base.
- Si c>0, la courbe est **décalée vers la gauche**.
- Si c < 0, la courbe est **décalée vers la droite**.
- Ce paramètre **ne change pas la période ni l'amplitude** de la fonction.

Exemples

- $f(x) = \sin(x)$ \rightarrow pas de décalage
- $f(x) = \sin(x + \frac{\pi}{2})$ ightarrow décalage vers la . . .
- $f(x) = \sin(x \frac{\pi}{2})$ ightarrow décalage vers la . . .
- $f(x) = \sin(2x + \pi)$ ightarrow décalage vers la . . .

À retenir

Le paramètre c déplace la courbe **horizontalement**. Le décalage est égal à $-\frac{c}{b}$. L'**amplitude** et la **période** restent inchangées.

As-tu compris?

Détermine la valeur de c pour les fonctions représentées ci-dessous.

