Thun (X,H) polarized (3.
Thin (X,H) polarized &3. Tx is MH- Stable (\$\frac{1}{2} \tau \tau \tau \tau \tau \tau \tau \tau
Last time: If 7x contains a l.b. of pos. degree, then X is quinnled, i.e. 1 D×P1
i.e. ¹ D×P ¹ · · · · > X .
j dominant Curve
em. A K3 surface X is not uniruled.
Proof). Assume 3 DxP'> X dominant.
By vesolving the indeterminancy, we obtain a dominant morphism $f:Y \to X$
By resolving the indeterminancy, we obtain a dominant morphism f: Y -> X By generic smoothness, f is generically Etale. Take USY open so flying is Eta
We want to show $H^0(x, \omega_x) \rightarrow H^0(T, \omega_T)$ is injective.
1
It suffices to show Ito(U, wxh) \in Ho(f-(u), wx/f+(w)) is injective.
Now, the tollowing two lemmas suffice.
Len
$f: Y \rightarrow X$ étale $\rightarrow f*w_x \cong w_x$. (: $f'w_x = w_x$ in general and $f' = f^*$ if $f \notin tale$)
Len
$f: Y \to X$ dominant, $Ll.b.$ on $X \longrightarrow H^{\circ}(X, Z) \to H^{\circ}(Y, Z)$ is injective.
proof). I maps the generic pt to the gen. pt and since non-zero global section
Cannot apprich at the generic pt. (: P(x,x) - In is inj. e.g. Liu)
Knmeth I
Now, since how is birat. invariant (e.g. Har. II.8.19), $h^{\circ}(W_{Y}) = h^{\circ}(P_{XD}) = D$
while $h^{\circ}(\omega_{K}) = 1$, which is absurd.

Cor. Tx does not contain a l.b. of positive degree.

pwof of Thm)
By Cor., it suffices to show Tx does not contain a l.b. of deg 0. First, assure Tx contains (9.(D) \$0x of degree 0, i.e, D.H=0 Take n>0 so -D+nH is ample. By the Hodge index thm, D. (-D+nH)=-0'=0,
First, assure Tx contains Ox(D) \$ 0x of degree 0, i.e, D.H=0
Take 1130 So - D+ nH is ample. By the Hodge index thm, D. (-D+uH) = -01 >0,
which is abound by the corollary,
Next, assure Ox STx. By the Hodge theory, we have ho(Tx)=0, but
$h^{\circ}(0x) = 1$, which is absurd