Indhold

1	\mathbf{Uge}	e 4	1
	1.1	Basis opgaver	1
		1.1.1 i	1
		1.1.2 ii	1
	1.2	Standard opgave	1
		1.2.1 4.4	1
		1.2.2 4.5	1
		1.2.3 4.7	1
		1.2.4 4.8	2
		1.2.5 4.9	2
		1.2.6 M5	2
	1.3	Opgaver til fordybelse	2
		1.3.1 4.6	2
Litteratur			

Alle tal, f.eks. 2.4, refererer til opgaver i [Hesselholt and Wahl, 2017]. Opgaver med bogstaver refererer til ugesedler på Canvas. Det er yderligere indforstået hvorvidt en given variabel er en vektor eller skalar.

1. Uge 4

1.1 Basis opgaver

1.1.1 i

Vi tjekker om U er stabil med hensyn til vektorrumsstrukturen vha. betingelse 1-3 i [Hesselholt and Wahl, 2017, Definition 4.1.4]. 1) 0 er en del U. 2) $(x,0), (y,0) \in U$, da er $(x+y,0) \in U$ oplagt. 3) Antag (x,0), så er $a \cdot (x,0) = (ax,0) \in U$ også U er også en delmængde af \mathbb{R}^2 . Der er derfor et underrum.

1.1.2 ii

Den opfylder ikke A4 i [Hesselholt and Wahl, 2017, Definition 4.1.4] da f.eks. (-a, -b) ikke findes i V.

1.2 Standard opgave

1.2.1 4.4

Den opfylder ikke tredje betingelse i [Hesselholt and Wahl, 2017, Definition 4.1.4] da $-2 \cdot (x_1, x_2, \dots, x_n) \neq \mathbb{R}^n_{>0}$.

$1.2.2 \quad 4.5$

Opfylder ej V3. Eks. i 2-dimensioner: $(1,1)*((1+1i)+(1+2i))=(1,1)*(2+3i)=(\sqrt{13},\sqrt{13})$. Omvendt $(1,1)*(1+i)+(1,1)*(1+2i)=(\sqrt{2},\sqrt{2})+(\sqrt{5},\sqrt{5})=(\sqrt{2}+\sqrt{5},\sqrt{2}+\sqrt{5})$.

1.2.3 4.7

 \mathbf{a}

Det er oplagt kun V1 - V4 der kan gå galt. Disse kan let tjekkes at være opfyldt

b

Brug regneregler og indse at a = -2 og b = 3.

2 LinAlq 19/20 Anton Suhr

1.2.4 4.8

- a Nej, $1/2 \cdot (1,1)$ vil ikke være en del af underrummet og 3 vil ej være opfyldt.
- **b** Ja, samme argument som i basis opgave i.
- **c** Nej, 2 ej opfyldt. Tag en vektor hvor førstekoordinatet er 0 kun og en anden hvor andenkoordinatet 0 kun. Summen af disse vil ikke ligge i underrummet.
- d Ja, tjekkes nemt
- e Nej, 0 er ikke en del af underrumet.

$1.2.5 \quad 4.9$

 \mathbf{a}

1) Ja, da 0 er i begge underrum. 2) Hvis $x, y \in V \cap W$, så ligger $x, y \in V$ og $x, y \in W$. Dette betyder at $x + y \in V$ og $x + y \in W$ og videre at $x + y \in V \cap W$. 3) $x \in V \cap W$ så har vi at $a \cdot x \in V$ og $a \cdot x \in W$ og deraf at $a \cdot x \in V \cap W$ pga. de $V \cap W$ selv er vektorrum.

 \mathbf{b}

1) Ja, 0 er i begge underrum. 2) Hvis $a, b \in V + W$ så har via' + a'' = a hvor de hver ligger i henholdsvis V og W. Samme med b' + b'' = b. Da V og W hver især er vektorrum følger det at $(a' + b') + (a'' + b'') \in V + W$. 3) a' + a'' = a. ca = c(a' + a'') = ca' + ca'' og dette ligger i V + W da de hver især er vektorrum.

1.2.6 M5

For at være linæer skal afbildningen opfylde to ting. f(u+v) = f(u) + f(v) og $f(c \cdot u) = cf(u)$. Ergo vi skal tjekke 1) $(cA)^T = cA^T$ og 2) $(A+B)^T = A^T + B^T$. 1) er klart opfyldt og to følger af [Hesselholt and Wahl, 2017, Sætning 2.6.7]. Den er dermed linæer.

1.3 Opgaver til fordybelse

1.3.1 4.6

Vi ved allerede matrixsum opfylder A1-A4 i [Hesselholt and Wahl, 2017, Definition 4.1.1]. Vi tjekker V1-V4.

Litteratur

[Hesselholt and Wahl, 2017] Hesselholt, L. and Wahl, N. (2017). *Lineær Algebra*. Institut for Matematiske Fag, Københavns Universitet, København, 2 edition.