Calculus III Homework on Lecture 10

- 1. Recall that the directional derivative $D_{\mathbf{u}}$ in the direction \mathbf{u} is defined as the covariant derivative $D_{\mathbf{u}}f = \nabla_{\frac{\mathbf{u}}{|\mathbf{u}|}}f$. Find the covariant derivative $\nabla_{\mathbf{u}}f$ and the directional derivative $D_{\mathbf{u}}f$ at the indicated point.
 - (a) $f(x,y) = x^2 + y^2$, $\mathbf{u} = (1,2)$, (x,y) = P = (2,1).
 - (b) $f(x,y) = e^{x+y}$, $\mathbf{u} = (1,1)$, (x,y) = P = (0,0).
 - (c) $f(x,y,z) = \ln \sqrt{x^2 + y^2 + z^2}$, $\mathbf{u} = (1,-1,1)$, (x,y,z) = P = (1,1,1).
 - (d) $f(x, y, z) = \ln \sqrt{x^2 2y^2 + z^2}$, $\mathbf{u} = (1, -1, 2)$, (x, y, z) = (1, 1, 2)
 - (e) f(x, y, z) = xyz, $\mathbf{u} = (-1, -2, 3)$, (x, y, z) = (1, 1, 1).
- 2. (a) Let the variables b, c, x_1, x_2 be related via $b = -x_1 x_2$ and $c = x_1x_2$.
 - i. Express the differential operators $\frac{\partial}{\partial c}$ and $\frac{\partial}{\partial b}$ via $\frac{\partial}{\partial x_1}$ and $\frac{\partial}{\partial x_2}$.
 - ii. Express the differential operators $\frac{\partial}{\partial x_1}$ and $\frac{\partial}{\partial x_2}$ via $\frac{\partial}{\partial c}$ and $\frac{\partial}{\partial b}$.
 - (b) Let x,y,z and ρ,ϕ,θ be related via the usual spherical coordinates equations i.e., x=
 - i. Express the differential operators $\frac{\partial}{\partial x}$, $\frac{\partial}{\partial y}$, $\frac{\partial}{\partial z}$ via $\frac{\partial}{\partial \rho}$, $\frac{\partial}{\partial \phi}$, $\frac{\partial}{\partial \theta}$
 - ii. Express the differential operators $\frac{\partial}{\partial \rho}$, $\frac{\partial}{\partial \phi}$, $\frac{\partial}{\partial \theta}$ via $\frac{\partial}{\partial x}$, $\frac{\partial}{\partial y}$, $\frac{\partial}{\partial z}$.
 - iii. Express the Laplace differential operator $\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$ via $\frac{\partial}{\partial \rho}$, $\frac{\partial}{\partial \phi}$ (in other words, write the 3 dimensional Laplace operator in spherical coordinates).