${\bf \acute{I}ndice}$

1.	Tema 1. Fenómenos aleatorios. Espacios de probabilidad. Axiomas. Propiedades. Caso discreto. Caso continuo.	ę
2.	Tema 2. Probabilidad condicionada. Teoremas de la probabilidad condicionada. Independencia de sucesos. Teorema de la Probabilidad Total. Teorema de Bayes.	ę
3.	Tema 3. Variable aleatoria unidimensional. Probabilidad inducida por una variable aleatoria. Función de distribución. Distribuciones discretas y absolutamente continuas. Cambio de variable en las distribuciones unidimensionales.	ę
4.	Tema 4. Distribuciones unidimensionales. Esperanza matemática. Propiedades. Momentos de una variable aleatoria unidimensional. Otras medidas de posición, dispersión y de forma. Teorema de Markov y Desigualdad de Tchebychev.	4
5 .	Tema 5. Funciones generatrices. Función característica: Propiedades. Teoremas.	Ę
6.	Tema 6. Variables aleatorias bidimensionales. Funciones de distribución bidimensionales. Distribuciones discretas y absolutamente continuas. Distribuciones marginales y condicionadas. Independencia de variables aleatorias. Cambio de variable. Extensión a dimensiones mayores.	(
7.	Tema 7. Esperanza de una variable aleatoria bidimensional. Propiedades. Momentos de una variable aleatoria bidimensional. Propiedades de la varianza y la covarianza. Desigualdad de Schwarz. Coeficiente de correlación. Función característica bidimensional.	(
8.	Tema 8. Esperanza condicionada. Propiedades. Línea General de Regresión. Regresión mínimo cuadrática. Propiedades.	•
9.	Tema 9. Distribución degenerada. Distribución uniforme discreta. Distribución de Bernouilli. Distribución binomial. Distribución de Poisson. Características. Distribución de Poisson como límite de la binomial.	(
10	Tema 10. Distribución geométrica. Distribución binomial negativa. Distribución hipergeométrica. Propiedades de todas ellas.	(
11	.Tema 11. Distribución normal. Características e importancia de la distribución normal en la teoría y práctica estadística. Distribución lognormal. Distribución normal multivariante. Propiedades.	(
12	.Tema 12. Distribución uniforme. Distribución exponencial. Distribuciones gamma y beta. Distribución de Pareto. Distribución de Cauchy. Características.	6
13	.Tema 13. Distribuciones X2, t de Student y F de Snedecor. Características. Importancia de estas distribuciones en la teoría y práctica estadística. Relaciones con la distribución normal.	(
14	Tema 14. Convergencias de sucesiones de variables aleatorias: convergencia casi segura, convergencia en probabilidad, convergencia en media cuadrática, convergencia en ley. Relaciones entre ellas. Convergencia de sumas de variables aleatorias. Leyes débiles y fuertes de los grandes números. Aplicaciones a la inferencia estadística y al muestreo. Teorema Central del Límite. 14.1. Convergencias. 14.2. Leyes débiles y fuertes de los grandes números. 14.3. Teorema central del límite.	() () ()
15	.Tema 15. Cadenas de Markov. Distribución de la cadena. Cadenas homogéneas. Clasificación de los estados. Tipos de cadenas. Distribuciones estacionarias.	10

16.Tema 16. Procesos de Poisson. Proceso general de Nacimiento y Muerte. Proceso puro de Nacimiento. Proceso puro de Muerte.	e 10
17. Tema 17. Fundamentos de la Inferencia Estadística. Concepto de muestra aleatoria. Distribución de la muestra. Estadísticos y su distribución en el muestreo. Función de distribución empírica y sus características. Teorema de Glivenco-Cantelli.	
18. Tema 18. Distribuciones en el muestreo asociadas con poblaciones normales. Distribuciones de la media, varianza y diferencia de medias. Estadísticos ordenados. Distribución del mayor y menor valor. Distribución del recorrido.	
19. Tema 19. Estimación puntual I. Propiedades de los estimadores puntuales. Error cuadrático medio. Estimadores insesgados, consistentes y suficientes.	10
20. Tema 20. Estimación puntual II. Estimadores de mínima varianza. Estimadores eficientes. Estimadores robustos. Estimadores Bayesianos.	10
21. Tema 21. Métodos de estimación. Método de los momentos. Método de la mínima X2. Método de la mínima varianza. Método de los mínimos cuadrados. Métodos Bayesianos.	10
22. Tema 22. Método de estimación de máxima verosimilitud. Propiedades. Distribución asintótica de los estimadores de máxima verosimilitud.	- 10
23. Tema 23. Estimación por intervalos. Métodos de construcción de intervalos de confianzas método pivotal y método general de Neyman. Intervalos de confianza en poblaciones normales: media, varianza, diferencia de medias y cociente de varianzas. Regiones de confianza.	_
24. Tema 24. Contrastes de hipótesis. Errores y potencia de un contraste. Hipótesis simples. Lema de Neyman-Pearson.	10
25. Tema 25. Hipótesis compuestas y contrastes uniformemente más potentes. Contrastes de significación, p-valor. Contraste de razón de verosimilitudes. Contrastes sobre la media y varianza en poblaciones normales. Contrastes en poblaciones no necesariamente normales. Muestras grandes.	7
26. Tema 26. Contrastes de bondad de ajuste. Contraste X2 de Pearson. Contraste de Kolmogor Smirnov. Contrastes de normalidad. Contrastes de independencia. Contraste de homogeneidad.	
27. Tema 27. Análisis de la varianza para una clasificación simple. Comprobación de las hipótesis iniciales del modelo. Contrastes de comparaciones múltiples: método de Tuckey y método de Scheffé. Análisis de la varianza para una clasificación doble.	
28. Tema 28. Análisis de conglomerados. Medidas de disimilaridad. Métodos jerárquicos aglomerativos: el dendrograma. Métodos jerárquicos divisivos. Métodos no jerárquicos de clasificación.	
29. Tema 29. Análisis Discriminante. Clasificación con 2 grupos. Función discriminante de Fisher. Clasificación con más de 2 grupos. Funciones Clasificadoras.	10
30. Tema 30. Análisis de Componentes Principales. Formulación del Problema, resolución y propiedades. Determinación del número de componentes a considerar.	7 10
31. Tema 31. Análisis Factorial. Formulación del Problema. Técnicas de resolución. Relación con el Análisis de Componentes Principales. Rotaciones. Adecuación y Validación de hipótesis.	
32. Tema 32. Análisis de Correlación Canónica. Introducción. Correlación canónica y variables	3

canónicas: cálculo e interpretación geométrica. Propiedades. Contrastación del modelo y análisis de la dimensionalidad. Relación con otras técnicas de análisis multivariante.

10

- 33. Índices estadísticos: conceptos, criterios y propiedades. Fórmulas agregativas.
 Índices en cadena. Paaschización de índices. Índices de Roy. Índices de Divisia.
 10
- 34. Tema 34. Índices de desigualdad y medidas de concentración.

10

1. Tema 1. Fenómenos aleatorios. Espacios de probabilidad. Axiomas. Propiedades. Caso discreto. Caso continuo.

Axiomas de Kolmogorov. En un espacio probabilizable o medible, (Ω, \mathcal{F}) , una probabilidad (o medida de probabilidad) es una aplicación $P : \mathcal{F} \to \mathbb{R}$ que verifica:

- $P(A) \ge 0$ para todo $A \in \mathcal{F}$.
- ullet Para cualquier colección numerable de conjuntos, $\{A_n\}\subset \mathcal{F}$ disjuntos entre sí, se cumple:

$$P\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} P(A_n)$$

 $P(\Omega) = 1.$

Propiedades:

- $P(\emptyset) = 0.$
- Se cumple la aditividad finita: $P(\bigcup_{i=1}^n A_i) = \sum_{i=1}^n P(A_i)$.
- Si $A \subset B \subset \Omega$, entonces $P(A) \leq P(B)$.
- Si $A \subset B \subset \Omega$, entonces P(B-A) = P(B) P(A).
- Sea $A \subset \Omega$, $P(A^c) = 1 P(A)$.
- Sean $A \subset \Omega$, $B \subset \Omega$ cualesquiera, $P(A \cup B) = P(A) + P(B) P(A \cap B)$.
- 2. Tema 2. Probabilidad condicionada. Teoremas de la probabilidad condicionada. Independencia de sucesos. Teorema de la Probabilidad Total. Teorema de Bayes.
 - Probabilidad condicionada: $P(A|B) = \frac{P(A \cap B)}{P(B)}$.
 - \blacksquare Teorema de la probabilidad total: $P(B) = \sum_{i=1}^{\infty} P(B|A_i) P(A_i).$
 - Teorema de Bayes: $P(A_i|B) = \frac{P(A_i)P(B|A_i)}{\sum_{i=1}^{\infty} P(B|A_i)P(A_i)}$.
- 3. Tema 3. Variable aleatoria unidimensional. Probabilidad inducida por una variable aleatoria. Función de distribución. Distribuciones discretas y absolutamente continuas. Cambio de variable en las distribuciones unidimensionales.

Función de distribución. Una función $F: \mathbb{R} \to [0,1]$ recibe el nombre de función de distribución si:

- Es creciente, es decir $F(x_1) \ge F(x_2)$ siempre que $x_1 > x_2$.
- Es contínua por la derecha, es decir, se cumple $\lim_{y\to x,y>x} F(y) = F(x)$.
- Verifica $\lim_{x\to-\infty} F(x) = 0$ y $\lim_{x\to+\infty} F(x) = 1$.

Función de densidad. Una función $f: \mathbb{R} \to \mathbb{R}$ recibe el nombre de función de densidad si:

- f(x) > 0 para todo x.
- Es integrable en el sentido de Riemann.
- Verifica $\int_{-\infty}^{+\infty} f(x)dx = 1$.
- 4. Tema 4. Distribuciones unidimensionales. Esperanza matemática. Propiedades. Momentos de una variable aleatoria unidimensional. Otras medidas de posición, dispersión y de forma. Teorema de Markov y Desigualdad de Tchebychev.
 - \blacksquare Esperanza matemática: $E(x) = \sum_{x \in I} x P(x), \ E(x) = \int_{-\infty}^{+\infty} x f(x) dx.$
 - Esperanza matemática de una función: $E[g(x)] = \sum_{x \in I} g(x)P(x), E(x) = \int_{-\infty}^{+\infty} g(x)f(x)dx$.
 - $\bullet E(k) = k.$
 - E(x+y) = E(x) + E(y).
 - $\bullet E(a \cdot g(x) + b \cdot h(y)) = a \cdot E[g(x)] + b \cdot E[h(y)].$
 - Momentos respecto al origen: $\alpha_r = E[x^r]$. Momento de orden uno: media o esperanza, $\alpha_1 = \mu$.
 - Momentos centrales o respecto a la media: $\mu_r = E[(x E(x))^r]$. Momento de orden dos: varianza: $\mu_2 = Var(X) = \sigma^2$.
 - Para cualquier k, se cumple: $\mu_k = \sum_{i=0}^k (-1)^{k-i} \binom{k}{i} \alpha_1^{k-i} \alpha_i$.
 - Para cualquier k, se cumple: $\alpha_k = \sum_{i=0}^k \binom{k}{i} \alpha_1^{k-i} \mu_i$.
 - $Var(X) = E[X^2] (E[x])^2$.
 - Var(k) = 0.
 - Var(X+k) = Var(X).
 - $Var(kX) = k^2 Var(X).$
 - Medidas de posición:
 - Media o esperanza.
 - Mediana.
 - Moda.
 - Cuantiles.
 - Medidas de dispersión:
 - Varianza.
 - Desviación estándar: $\sigma_X = \sqrt{E[(X E(X))^2]}$.
 - Coeficiente de variación: $CV(X) = \frac{\sigma_X}{E(X)}$.
 - Promedio de las desviaciones absolutas: E[|X E(X)|].
 - Recorrido intercuartílico: $R_Q = Q_3 Q_1$.
 - Medidas de forma:
 - Coeficiente de asimetría: $\gamma_3 = \frac{\mu_3}{\sigma^3}$.

- Coeficiente de curtosis: $\gamma_4 = \frac{\mu_4}{\sigma^4} 3$.
- Desigualdad de Markov: $P(|X| > a) \le \frac{E(|X|)}{a}$.
- **Desigualdad de Chevichev:** Sea X una variable aleatoria no negativa, y $f: \mathbb{R}^+ \to \mathbb{R}^+$ creciente tal que $E[f(X)] < +\infty$, entonces para todo $\forall a \in \mathbb{R}$ se cumple:

$$f(a)P(X \ge a) \le E[f(X)]$$

• Si X tiene varianza finita definimos Y = |X - E[X]|, $f(Y) = Y^2$, y por tanto, $E[Y^2] = Var(X)$.

$$a^2P(|X - E[X]| \ge a) \le Var(X)$$

$$P(|X - E[X]| \ge a) \le \frac{Var(X)}{a^2}$$

5. Tema 5. Funciones generatrices. Función característica: Propiedades. Teoremas.

Función generatriz de probabilidad:

- Sea X variable aleatoria con valores enteros no negativos, $g_X(z) = E[z^X]$.
- $P(X = n) = \frac{g_X^{(n)}(0)}{n!}.$
- $\bullet \ E[X] = g_X'(1), \ Varc(X) = g_X''(1) + g_X'(1) (g_X'(1))^2.$

Función generatriz de momentos:

- Sea X variable aleatoria, $\psi(t) = E[e^t X]$, si existe un h > 0 tal que la función existe y es finita para todo |t| < h.
- Si $\psi_X(t) = \psi_Y(t)$ para todo |t| < h dado algún h > 0 ambas variables siguen la misma distribución.
- Si la función generatriz de momentos existe para todo |t| < h dado algún h > 0, existen momentos de todo orden, y $E[X^r] = \psi_X^{(r)}(0)$.

Función Característica:

- Sea X variable aleatoria, función característica: $\varphi(t) = E[e^i t X]$.
- $|\varphi(t)| \le \varphi(0) = 1.$
- $\varphi(-t) = \varphi(\bar{t}).$
- Si $\varphi(t)$ s función característica de X, $\varphi(at)e^{itb}$ es la función característica de aX + b.
- Si dos variables aleatorias tienen la misma función característica, tienen la misma función de distribución.
- lacktriangle La función característica de X es real si y solo si su distribución es simétrica.
- Si X_1, X_2, \ldots, X_n son variables aleatorias independientes,

$$\varphi_{X_1+X_2+\cdots+X_n}(t) = \varphi_{X_1}(t)\varphi_{X_2}(t)\cdots\varphi_{X_n}(t)$$

■ Fórmula de inversión de Levy: a < b, F contínua en ambos,

$$F(b) - F(a) = \lim_{n \to \infty} \int_{-\pi}^{+n} \frac{e^{-ita} - e^{-ita}}{it} \varphi(t) dt$$

• $\varphi_X^{(k)}=i^kE[X^k]$, si existen la derivada y el momento (la existencia de uno implica la del otro).

- 6. Tema 6. Variables aleatorias bidimensionales. Funciones de distribución bidimensionales. Distribuciones discretas y absolutamente continuas. Distribuciones marginales y condicionadas. Independencia de variables aleatorias. Cambio de variable. Extensión a dimensiones mayores.
- 7. Tema 7. Esperanza de una variable aleatoria bidimensional.
 Propiedades. Momentos de una variable aleatoria bidimensional.
 Propiedades de la varianza y la covarianza. Desigualdad de Schwarz. Coeficiente de correlación. Función característica bidimensional.
- 8. Tema 8. Esperanza condicionada. Propiedades. Línea General de Regresión. Regresión mínimo cuadrática. Propiedades.
- 9. Tema 9. Distribución degenerada. Distribución uniforme discreta. Distribución de Bernouilli. Distribución binomial. Distribución de Poisson. Características. Distribución de Poisson como límite de la binomial.
- 10. Tema 10. Distribución geométrica. Distribución binomial negativa. Distribución hipergeométrica. Propiedades de todas ellas.
- 11. Tema 11. Distribución normal. Características e importancia de la distribución normal en la teoría y práctica estadística. Distribución lognormal. Distribución normal multivariante. Propiedades.
- 12. Tema 12. Distribución uniforme. Distribución exponencial. Distribuciones gamma y beta. Distribución de Pareto. Distribución de Cauchy. Características.
- 13. Tema 13. Distribuciones X2, t de Student y F de Snedecor. Características. Importancia de estas distribuciones en la teoría y práctica estadística. Relaciones con la distribución normal.
- 14. Tema 14. Convergencias de sucesiones de variables aleatorias: convergencia casi segura, convergencia en probabilidad, convergencia en media cuadrática, convergencia en ley. Relaciones entre ellas. Convergencia de sumas de variables aleatorias. Leyes débiles y fuertes de los grandes números. Aplicaciones a la inferencia estadística y al muestreo. Teorema Central del Límite.

 $\{X_n\}_{n\in\mathbb{N}}, X_n \xrightarrow{p} X \text{ si } \lim_{n\to\infty} P(|X_n - X| > \varepsilon) = 0 \ \forall \varepsilon > 0.$

- $X_n \xrightarrow{p} X \Leftrightarrow X_n X \xrightarrow{p} 0.$
- Si $X_n \stackrel{p}{\to} X \Rightarrow X_n X_m \stackrel{p}{\to} 0$.
- Si $X_n \xrightarrow{p} X$ y $Y_n \xrightarrow{p} Y \Rightarrow X_n \pm Y_n \xrightarrow{p} X \pm Y$.
- Si $X_n \xrightarrow{p} X$ y k es una constante, $\Rightarrow kX_n \xrightarrow{p} kX$.
- Si $X_n \stackrel{p}{\to} a$ y a es una constante, $\Rightarrow X_n^2 \stackrel{p}{\to} a^2$.
- Si $X_n \xrightarrow{p} a$ y $Y_n \xrightarrow{p} b$, a y b constantes, $\Rightarrow X_n Y_n \xrightarrow{p} ab$.
- Si $X_n \stackrel{p}{\to} 1$ y $X_n \neq 0$ en ningún caso, $\Rightarrow X_n^{-1} \stackrel{p}{\to} 1$.
- Si $X_n \xrightarrow{p} a$ y $Y_n \xrightarrow{p} b$, a y b constantes, y $Y_n \neq 0$, $b \neq 0$, $\Rightarrow X_n Y_n^{-1} \xrightarrow{p} ab^{-1}$.
- Si $X_n \stackrel{p}{\to} X$ y Y es una variable aleatoria, $\Rightarrow X_n Y \stackrel{p}{\to} XY$.
- Si $X_n \xrightarrow{p} X$ y $Y_n \xrightarrow{p} Y \Rightarrow X_n Y_n \xrightarrow{p} XY$.
- Si $X_n \stackrel{p}{\to} X$ y g es una función contínua definida sobre \mathbb{R} , $\Rightarrow g(X_n) \stackrel{p}{\to} g(X)$.

Convergencia casi segura.

 $\{X_n\}_{n\in\mathbb{N}}, X_n \stackrel{cs}{\to} X \text{ si } P\left(\lim_{n\to\infty} X_n = X\right) = 1.$

- $X_n \stackrel{cs}{\to} X \Leftrightarrow X_n X \stackrel{cs}{\to} 0.$
- Si $X_n \stackrel{cs}{\to} X \Rightarrow X_n X_m \stackrel{cs}{\to} 0$.
- Si $X_n \stackrel{cs}{\to} X$ y $Y_n \stackrel{cs}{\to} Y \Rightarrow X_n \pm Y_n \stackrel{cs}{\to} X \pm Y$.
- Si $X_n \xrightarrow{cs} X$ y k es una constante, $\Rightarrow kX_n \xrightarrow{cs} kX$.
- Si $X_n \stackrel{cs}{\to} a \vee Y_n \stackrel{cs}{\to} b$, $a \vee b$ constantes, $\Rightarrow X_n Y_n \stackrel{cs}{\to} ab$.
- Si $X_n \stackrel{cs}{\to} a$ y $Y_n \stackrel{cs}{\to} b$, a y b constantes, y $Y_n \neq 0$, $b \neq 0$, $\Rightarrow X_n Y_n^{-1} \stackrel{cs}{\to} ab^{-1}$.
- Si $X_n \stackrel{cs}{\to} X$ y Y es una variable aleatoria, $\Rightarrow X_n Y \stackrel{cs}{\to} XY$.
- $\bullet \text{ Si } X_n \stackrel{cs}{\to} X \text{ y } Y_n \stackrel{cs}{\to} Y \Rightarrow X_n Y_n \stackrel{cs}{\to} XY.$
- Si $X_n \stackrel{cs}{\to} X$ y g es una función contínua definida sobre \mathbb{R} , $\Rightarrow g(X_n) \stackrel{cs}{\to} g(X)$.

Convergencia en ley (o en distribución).

 $\{X_n\}_{n\in\mathbb{N}}, X_n \xrightarrow{\mathcal{L}} X \text{ si } \lim_{n\to\infty} F_n(x) = F(x).$

- $\bullet X_n \stackrel{cs}{\to} X \Leftrightarrow X_n X \stackrel{cs}{\to} 0.$
- Si $X_n \stackrel{cs}{\to} X \Rightarrow X_n X_m \stackrel{cs}{\to} 0$.
- Si $X_n \stackrel{cs}{\to} X$ y $Y_n \stackrel{cs}{\to} Y \Rightarrow X_n \pm Y_n \stackrel{cs}{\to} X \pm Y$.
- Si $X_n \stackrel{cs}{\to} X$ y k es una constante, $\Rightarrow kX_n \stackrel{cs}{\to} kX$.
- Si $X_n \stackrel{cs}{\to} a$ y $Y_n \stackrel{cs}{\to} b$, a y b constantes, $\Rightarrow X_n Y_n \stackrel{cs}{\to} ab$.
- Si $X_n \stackrel{cs}{\to} a$ y $Y_n \stackrel{cs}{\to} b$, a y b constantes, y $Y_n \neq 0$, $b \neq 0$, $\Rightarrow X_n Y_n^{-1} \stackrel{cs}{\to} ab^{-1}$.
- Si $X_n \stackrel{cs}{\to} X$ y Y es una variable aleatoria, $\Rightarrow X_n Y \stackrel{cs}{\to} XY$.
- $\bullet \text{ Si } X_n \overset{cs}{\to} X \text{ y } Y_n \overset{cs}{\to} Y \Rightarrow X_n Y_n \overset{cs}{\to} XY.$
- Si $X_n \stackrel{cs}{\to} X$ y g es una función contínua definida sobre \mathbb{R} , $\Rightarrow g(X_n) \stackrel{cs}{\to} g(X)$.

Convergencia en media cuadrática.

 $\{X_n\}_{n\in\mathbb{N}}, X_n \stackrel{\text{m.c.}}{\to} X \text{ si } \lim_{n\to\infty} E[(X_n - X)^2] = 0.$

- Si $X_n \stackrel{m.c.}{\to} X$, entonces $X_n \stackrel{p}{\to} X$.
- Si $X_n \stackrel{m.c.}{\to} X$, entonces $E[X_n] \underset{n \to \infty}{\to} E[X]$ y $E[X_n^2] \underset{n \to \infty}{\to} E[X^2]$.
- Si $X_n \stackrel{m.c.}{\to} X$, entonces $V[X_n] \underset{n \to \infty}{\to} V[X]$.
- Sean $\{X_n\}_{n\in\mathbb{N}}$, $\{Y_m\}_{m\in\mathbb{N}}$ dos sucesiones de variables aleatorias tales que $X_n \stackrel{m.c.}{\to} X$ y $Y_m \stackrel{m.c.}{\to} Y$, entonces $E[X_nY_n] \underset{m,n\to\infty}{\to} E[XY]$.
- Sean $\{X_n\}_{n\in\mathbb{N}}$, $\{Y_m\}_{m\in\mathbb{N}}$ dos sucesiones de variables aleatorias tales que $X_n \stackrel{m.c.}{\to} X$ y $Y_m \stackrel{m.c.}{\to} Y$, entonces $Cov[X_n,Y_n] \xrightarrow[m,n\to\infty]{} Cov[X,Y]$

Relaciones entre convergencias.

$$X_n \stackrel{cs}{\to} X \Rightarrow X_n \stackrel{p}{\to} X \Rightarrow X_n \stackrel{\mathcal{L}}{\to} X$$
$$X_n \stackrel{\text{m.c.}}{\to} X \Rightarrow X_n \stackrel{p}{\to} X$$

14.2. Leyes débiles y fuertes de los grandes números.

Ley débil de los grandes números.

 $\{X_n\}_{n\in\mathbb{N}}$ cumple la ley débil de los grandes números respecto a las constantes de normalización B_n si existe una sucesión de constantes, $\{A_n\}_{n\in\mathbb{N}}$, llamadas de centralización, tales que $S_n = \sum_{i=1}^n X_i$ cumple que

$$\frac{S_n - A_n}{B_n} \stackrel{p}{\to} 0$$

Un caso especial es si definimos $B_n = n$, $A_n = \sum_{i=1}^n E[X_i]$.

Teoremas: Una sucesión de variables aleatorias cumple la ley débil de los grandes números si:

- Las variables de la sucesión son independientes, están idénticamente distribuÃdas y tienen media y varianza finitas.
- Tchebychev: Las variables de la sucesión son independientes y su varianza está acotada.
- Markov: Se cumple que $\lim_{n\to\infty} V(\bar{X}_n) = 0$.
- Khintchine: Las variables de la sucesión son independientes, idénticamente distribuídas, y su media es finita.
- **Bernouilli:** Las variables de la sucesión son independientes e idénticamente distribuídas con una distribución B(1, p).

Ley fuerte de los grandes números.

 $\{X_n\}_{n\in\mathbb{N}}$ cumple la ley fuerte de los grandes números respecto a las constantes de normalización B_n si existe una sucesión de constantes, $\{A_n\}_{n\in\mathbb{N}}$, llamadas de centralización, tales que $S_n = \sum_{i=1}^n X_i$ cumple que

$$\frac{S_n - A_n}{B_n} \stackrel{cs}{\to} 0$$

Un caso especial es si definimos $B_n = n$, $A_n = \sum_{i=1}^n E[X_i]$.

Teoremas: Una sucesión de variables aleatorias cumple la ley fuerte de los grandes números si:

- Kolmogorov: Las variables de la sucesión son tales que existen $E[X_n] = \mu_n$, $V(X_n) = \sigma_n^2$ y se cumple que $\sum_{i=1}^{\infty} \sigma_i^2 < \infty$.
- Borel-Cantelli: La frecuencia relativa de un suceso dicotómico obedece a la ley fuerte de los grandes números.
- Khintchine: Las variables de la sucesión son independientes, idénticamente distribuídas, y su media es finita.

8

14.3. Teorema central del límite.

 $\{X_n\}_{n\in\mathbb{N}}$ con medias y varianzas finitas, cumple el teorema central del límite si la sucesión $\{S_n\}_{n\in\mathbb{N}}$ tal que $S_n=\sum_{i=1}^n X_i$ converge en ley a una distribución normal, es decir, si:

$$\frac{S_n - E[S_n]}{\sqrt{V(S_n)}} \xrightarrow{\mathcal{L}} N(0,1)$$

Teoremas: Una sucesión de variables aleatorias cumple el teorema central del límite si:

- **De Moivre:** Las variables de la sucesión son independientes e idénticamente distribuídas con una distribución B(1, p).
- Levy-Lindeberg: Las variables de la sucesión son independientes, idénticamente distribuídas, y su media y varianza son finitas.

- 15. Tema 15. Cadenas de Markov. Distribución de la cadena. Cadenas homogéneas. Clasificación de los estados. Tipos de cadenas. Distribuciones estacionarias.
- 16. Tema 16. Procesos de Poisson. Proceso general de Nacimiento y Muerte. Proceso puro de Nacimiento. Proceso puro de Muerte.
- 17. Tema 17. Fundamentos de la Inferencia Estadística. Concepto de muestra aleatoria. Distribución de la muestra. Estadísticos y su distribución en el muestreo. Función de distribución empírica y sus características. Teorema de Glivenco-Cantelli.
- 18. Tema 18. Distribuciones en el muestreo asociadas con poblaciones normales. Distribuciones de la media, varianza y diferencia de medias. Estadísticos ordenados. Distribución del mayor y menor valor. Distribución del recorrido.
- 19. Tema 19. Estimación puntual I. Propiedades de los estimadores puntuales. Error cuadrático medio. Estimadores insesgados, consistentes y suficientes.
- 20. Tema 20. Estimación puntual II. Estimadores de mínima varianza. Estimadores eficientes. Estimadores robustos. Estimadores Bayesianos.
- 21. Tema 21. Métodos de estimación. Método de los momentos. Método de la mínima X2. Método de la mínima varianza. Método de los mínimos cuadrados. Métodos Bayesianos.
- 22. Tema 22. Método de estimación de máxima verosimilitud. Propiedades. Distribución asintótica de los estimadores de máxima verosimilitud.
- 23. Tema 23. Estimación por intervalos. Métodos de construcción de intervalos de confianza: método pivotal y método general de Neyman. Intervalos de confianza en poblaciones normales: media, varianza, diferencia de medias y cociente de varianzas. Regiones de confianza.
- 24. Tema 24. Contrastes de hipótesis. Errores y potencia de un contraste. Hipótesis simples. Lema de Neyman-Pearson.
- 25. Tema 25. Hipótesis compuestas y contrastes uniformemente más potentes. Contrastes de significación, p-valor. Contraste de razón de verosimilitudes. Contrastes sobre la media y varianza en poblaciones normales. Contrastes en poblaciones no necesariamente normales. Muestras grandes.

.