Assignment Project Exian Help

https://powcoder.com

Classification III: Classification objectives
Assignment Project Exam Help

https://powcoder.com

Outline

- Scoring functions
- ► Cost-sensitive classification
- Assignation Project Exam Help
 - Fairness in classification

https://powcoder.com

Scoring functions in general

▶ Statistical model: $(X,Y) \sim P$ for distribution P over

Assignment Project Exam Help

 $x \mapsto \operatorname{sign}(h(x))$

the soring provided from the provided from the soring function $h(x) = \eta(x) - 1/2$ where $\eta(x) = \Pr(Y = +1 \mid X = x)$

- Use with loss functions like $\ell_{0/1}$, ℓ_{logistic} , ℓ_{sq} , ℓ_{msq} , ℓ_{hinge} $\mathcal{R}(h) = \mathbb{E}[\ell(\mathbb{P}h(X))]$
- Issues to consider:
 - Different types of mistakes have different costs
 - ► How to get $Pr(Y = +1 \mid X = x)$ from h(x)?
 - More than two classes

Cost-sensitive classification

lacktriangle Cost matrix for different kinds of mistakes (for $c\in[0,1]$)

Assignment Project Exam Help $\underbrace{Project \stackrel{\hat{y}}{E} \stackrel{-1}{E} x}_{y=+1} = \underbrace{Project \stackrel{\hat{y}}{E} \stackrel{-1}{E} x}_{0}$

► http://www.ligg.owcoder.com

$$\begin{split} \ell^{(c)}(y,\hat{y}) &= \left(\mathbf{1}_{\{y=+1\}} \cdot (1-c) + \mathbf{1}_{\{y=-1\}} \cdot c\right) \cdot \ell(y\hat{y}). \\ \mathbf{Add_{conver}} &= \mathbf{1}_{\{y=+1\}} \cdot (1-c) + \mathbf{1}_{\{y=-1\}} \cdot c\right) \cdot \ell(y\hat{y}). \end{split}$$

► Cost-sensitive (empirical) risk:

$$\mathcal{R}^{(c)}(h) := \mathbb{E}[\ell^{(c)}(Y, h(X))]$$
$$\widehat{\mathcal{R}}^{(c)}(h) := \frac{1}{n} \sum_{i=1}^{n} \ell^{(c)}(y_i, h(x_i))$$

Minimizing cost-sensitive risk

▶ What is the analogue of Bayes classifier for cost-sensitive

Assignment Project Exam Help

 $\underbrace{ \underset{\text{Minimized when}}{\text{https://powcoder.com}}}^{\eta(x) \cdot (1-c) \cdot \mathbf{1}_{\{\hat{y}=-1\}} + (1-\eta(x)) \cdot c \cdot \mathbf{1}_{\{\hat{y}=+1\}}.$

- ► So use scoring function $h(x) = \eta(x) c$
 - \triangleright Equivalently, use η as scoring function, but threshold at cinstead of 1/2
- ▶ Where does c come from?

Example: balanced error rate

- ▶ Balanced error rate: BER := $\frac{1}{2}$ FNR + $\frac{1}{2}$ FPR

Assignment Project Exam Help

$$\begin{aligned} &= \Pr(h(X) \leq 0 \mid Y = +1) + \Pr(h(X) > 0 \mid Y = -1) \\ & \textbf{https://powcoder.eom} \ 0 \land Y = -1) \end{aligned}$$

where $\pi = \Pr(Y = +1)$.

Therefore we want to use the following cost matrix: Add Wechat powcoder

	y = -	y = +1
y = -1	0	$\frac{1}{1-\pi}$
y = +1	$\frac{1}{\pi}$	0

This corresponds to $c = \pi$.

Importance-weighted risk

- ▶ Perhaps the world tells you how important each example is
- ▶ Statistical model: $(X,Y,W) \sim P$

Assignmentation of the Miles of the Assignmentation of the Assignment of the Assignm

Add We Trat powcoder

Conditional probability estimation (1)

- ▶ How to get estimate of $\eta(x) = \Pr(Y = +1 \mid X = x)$?

Assignment Project Exam Help $\mathbb{E}[\ell_{0/1}^{(c)}(Yh(X)) \mid X = x] = \begin{cases} (1-c) \cdot \eta(x) & \text{if } h(x) \leq 0 \\ c \cdot (1-\eta(x)) & \text{if } h(x) > 0 \end{cases}$

https://powcoder.com

$$h(x) = 2\eta(x) - 1.$$

AddgiWheChat powcoder

- ► Recipe:
 - ► Find scoring function h that (approximately) minimizes (empirical) squared loss risk
 - ightharpoonup Construct conditional probability estimate $\hat{\eta}$ using above formula

Conditional probability estimation (2)

- ► Similar strategy available for logistic loss
- ▶ But not for hinge loss!

Assignment is Project Exam¹ Help

Caveat: If using insufficiently expressive functions for h (e.g., linear functions), may be far from minimizing squared loss risk note to be the following form of the control of the co

Application: Reducing multi-class to binary

Multi-class: Conditional probability function is vector-valued function

Assignment $P_{\eta(x)} = P_{\sigma(x)} = P_{\sigma(x)}$

Find the scalar valued functions the state function is supposed to approximate

$$\eta_k(x) = \Pr(Y = k \mid X = x).$$
 A dictan velocity by the state of the problem k, label is $\mathbf{1}_{\{y=k\}}$.

▶ Given the K learned conditional probability functions $\hat{\eta}_1,\dots,\hat{\eta}_K$, we form a final predictor \hat{f}

$$\hat{f}(x) = \underset{k=1,\dots,K}{\operatorname{arg\,max}} \, \hat{\eta}_k(x).$$

When does one-against-all work well?

If learned conditional probability functions $\hat{\eta}_k$ are accurate, then behavior of one-against-all classifier \hat{f} is similar to optimal Assignment Project Exam Help

$$f^*(x) = \arg\max_{k=1,...,K} \Pr(Y = k \mid X = x).$$

https://powcoder.com

$$\operatorname{err}(\hat{f}) \le \operatorname{err}(f^{\star}) + 2 \cdot \mathbb{E}[\max_{k} |\hat{\eta}_{k}(X) - \eta_{k}(X)|].$$

Fairness

▶ Use of predictive models (e.g., in admissions, hiring, criminal Assignment in the policy of the content of the policy o

Individual-based fairness also important, but not as well-studied

https://powcoder.com

Disparate treatment

 Often predictive models work better for some groups than for others

Assignment Project Exam 1911 Help

Color Matters in Computer Vision

Facial recognition algorithms made by Microsoft, IBM and Face++ were more likely to

Gender was misidentified in up to 7 percent of lighter-skinned females in a set of 296 photos.

Gender was misidentified in 35 percent of darker-skinned females in a set of 271 photos.

Possible causes of unfairness

- People deliberately being unfair

Assignment Project Exam Help

- Disparity in relevance of prediction problem for different groups
 - https://powcoder.com

ProPublica study

 ProPublica (investigative journalism group) studied a particular predictive model being used to determine "pre-trial detention"

ASSIGNIEMEN, 201 Project Exam Help should be released while awaiting trial

▶ Predictive model ("COMPAS") provides an estimate of

https://powcoder.com defendant.

Study argued that COMPAS treated black defendants unfairly in the property of the property

▶ What sense? How do they make this argument?

Fairness criteria

- Setup:
- Assignment be shrutribute (e.g., latexes per religion) predict (e.g., will repay loan", will re-offend")
 - $ightharpoonup \hat{Y}$: prediction of outcome variable (as function of (X,A))
 - ► Many fairness criteria are based on joint distribution of
 - Add We Chat powcoder

 Cavear: Often, we don't have access to Y in training data

Classification parity

► Fairness criterion: Classification parity

Assignment Project Exam Help

- Sounds reasonable, but easy to satisfy with perverse methods
- lackbox Example: trying to predict $Y=\mathbf{1}_{\{ extstyle will repay loan if given one\}}$
- ► Special properties of the p

- ightharpoonup For A=0 people, correctly give loans to people who will repay
- For A=1 people, give loans randomly (Bernoulli(1/2))
- ▶ Satisfies criterion, but bad for A = 1 people

Equalized odds (1)

► Fairness criterion: *Equalized odds*

Assignment Project Exam Help for both $y \in \{0,1\}$.

- In particular, FPR and FNR must be (approximately) same across groups. // powcoder community of the particular of the pa
- Previous example fails to satisfy equalized odds:

E.g., A=0 group has 0% FPR, while A=1 has 50% FPR.

- Criteria imply constraints on the classifier / scoring function
 - Can try to enforce constraint during training

Equalized odds (2)

- ProPublica study:
- Assignishment? Project wheeldefendants; 45%) was