Билет 2. Мастер-теорема о рекурсии

Мастер-теорема

Пусть $a \ge 1, b > 1,$ и T(n) задаётся рекуррентным соотношением:

$$T(n) = a \cdot T\left(\frac{n}{b}\right) + \Theta(n^c)$$

Тогда:

$$T(n) = \begin{cases} \Theta(n^{\log_b a}), & \text{если } a > b^c \\ \Theta(n^c \log n), & \text{если } a = b^c \\ \Theta(n^c), & \text{если } a < b^c \end{cases}$$

Доказательство

Доказательство через раскрытие рекуррентности

Шаг

Раскрываем рекуррентность:

$$T(n) = n^{c} + a \cdot T\left(\frac{n}{b}\right)$$

$$= n^{c} + a\left[\left(\frac{n}{b}\right)^{c} + a \cdot T\left(\frac{n}{b^{2}}\right)\right]$$

$$= n^{c} + a\left(\frac{n}{b}\right)^{c} + a^{2} \cdot T\left(\frac{n}{b^{2}}\right)$$

$$= n^{c} + a\left(\frac{n}{b}\right)^{c} + a^{2}\left(\frac{n}{b^{2}}\right)^{c} + a^{3} \cdot T\left(\frac{n}{b^{3}}\right)$$

$$\vdots$$

$$= n^{c}\left[1 + \frac{a}{b^{c}} + \left(\frac{a}{b^{c}}\right)^{2} + \left(\frac{a}{b^{c}}\right)^{3} + \dots + \left(\frac{a}{b^{c}}\right)^{k}\right]$$

где k — число итераций до достижения базового случая.

Вводим обозначение: $q = \frac{a}{b^c}$

Тогда сумма принимает вид:

$$T(n) = n^c \cdot S(q) = n^c \cdot (1 + q + q^2 + q^3 + \dots + q^k)$$

Количество членов: $k = \Theta(\log_b n)$

Геометрическая прогрессия: $1+q+q^2+\dots$ Работа на уровне

Шаг

Анализируем три случая:

1. Случай 1: q = 1 $(a = b^c)$

Сумма геометрической прогрессии:

$$S(q) = 1 + 1 + 1 + \dots + 1 = k + 1 = \Theta(\log n)$$

$$T(n) = n^c \cdot \Theta(\log n) = \Theta(n^c \log n)$$

2. Случай 2: q < 1 ($a < b^c$)

Бесконечно убывающая геометрическая прогрессия:

$$S(q) = 1 + q + q^2 + \dots + q^k \le \frac{1}{1 - q} = \Theta(1)$$

$$T(n) = n^c \cdot \Theta(1) = \Theta(n^c)$$

3. Случай 3: q > 1 $(a > b^c)$

Сумма растёт экспоненциально:

$$S(q) = 1 + q + q^2 + \dots + q^k = \frac{q^{k+1} - 1}{q - 1} = \Theta(q^k)$$

Выразим через исходные параметры:

$$q^k = \left(\frac{a}{b^c}\right)^{\log_b n} = \frac{a^{\log_b n}}{(b^c)^{\log_b n}} = \frac{n^{\log_b a}}{n^c}$$

Следовательно:

$$T(n) = n^c \cdot \Theta\left(\frac{n^{\log_b a}}{n^c}\right) = \Theta(n^{\log_b a})$$

Визуализация трёх случаев:

$$q = 1$$

$$q=1$$
 $q<1$ $q>1$

убывают

Итоговое соответствие:

Условие	$q = a/b^c$	Асимптотика
$a > b^c$	q > 1	$\Theta(n^{\log_b a})$
$a = b^c$	q = 1	$\Theta(n^c \log n)$
$a < b^c$	q < 1	$\Theta(n^c)$