Name:			
Instruct	or.		

Math 10560, Quiz 7 Tutorial March 28, 2017

- The Honor Code is in effect for this quiz. All work is to be your own.
- No calculators.
- ullet The quiz lasts for 25 Minutes .
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 4 pages of the test.

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!							
1.	(a)	(b)	(c)	(d)	(e)		
2.	(a)	(b)	(c)	(d)	(e)		
3.	(a)	(b)	(c)	(d)	(e)		
4.	(a)	(b)	(c)	(d)	(e)		
5.	(a)	(b)	(c)	(d)	(e)		

Name: ______
Instructor: _____

Multiple Choice

1.(2 pts) Evaluate the following improper integral $\int_0^{\pi} \sec^2 x \, dx$.

(a) 0

(b) 1

(c) Diverges

(d) $\frac{\pi}{2}$

(e) $\frac{1}{2}$

2.(2 pts) Use Euler's method with step size 0.2 to estimate y(1.6) where y(x) is the solution to the initial value problem

$$y' = \frac{x-y}{2}, \quad y(1) = 0.$$

- (a) 0.21
- (b) 1.11
- (c) 1.21
- (d) 0.111
- (e) 0.11

Name: _____

Instructor:

- **3.**(2 pts) Find $\sum_{n=1}^{\infty} \left[\frac{(-1)^{n-1}3^n}{9^n} + \frac{2}{9^{n-1}} \right].$
- (a) $-\frac{8}{4}$ (b) $\frac{4}{9}$ (c) $\frac{10}{4}$ (d) 3 (e) $\frac{8}{4}$

4.(2 pts) Find the sum of the following series

$$\sum_{n=1}^{\infty} \left[\frac{\ln(n+1)}{n+2} - \frac{\ln(n+2)}{n+3} \right].$$

(a) 0

- This series diverges (c) $\frac{\ln(2)}{2}$ (b)

(d) $\frac{\ln(2)}{3}$

(e) ln(2)

Name: _______
Instructor: _____

5.(2 pts) The sequence given by $a_n = \frac{\sin(1/n)}{\arctan(n)}$

(a) converges to 1.

(b) converges to $\frac{\pi}{2}$.

(c) converges to 0.

(d) converges to $\frac{2}{\pi}$.

(e) diverges.