Hierarchical Clustering

Build a tree-based hierarchical taxonomy (dendrogram) from a set of documents.

One approach: recursive application of a partitional clustering algorithm.

Dendrogram: Hierarchical Clustering

► Clustering obtained by cutting the dendrogram at a desired level: each connected component forms a cluster.

Hierarchical Agglomerative Clustering (HAC)

- ▶ Starts with each doc in a separate cluster
 - ▶ then repeatedly joins the <u>closest pair</u> of clusters, until there is only one cluster.
- ▶ The history of merging forms a binary tree or hierarchy.

Cluster Distance Measures

- Single link: smallest distance between an element in one cluster and an element in the other, i.e., d(C_i, C_j) = min{d(x_{ip}, x_{jq})}
- Complete link: largest distance between an element in one cluster and an element in the other, i.e., $d(C_i, C_j) = \max\{d(x_{ip}, x_{jq})\}$
- Average: avg distance between elements in one cluster and elements in the other, i.e., $d(C_i, C_j) = avg\{d(x_{ip}, x_{jq})\}$

Cluster Distance Measures

Example: Given a data set of five objects characterised by a single continuous feature, assume that there are two clusters: C₁: {a, b} and C₂: {c, d, e}. (Minkowski distance for distance matrix)

	а	b	С	d	e
Feature	1	2	4	5	6

- 1. Calculate the distance matrix .
- a
 b
 c
 d
 e

 a
 0
 1
 3
 4
 5

 b
 1
 0
 2
 3
 4

 c
 3
 2
 0
 1
 2

 d
 4
 3
 1
 0
 1

 e
 5
 4
 2
 1
 0
- 2. Calculate three cluster distances between C1 and C2.

Single link

$$dist(C_1, C_2) = min\{d(a, c), d(a, d), d(a, e), d(b, c), d(b, d), d(b, e)\}$$
$$= min\{3, 4, 5, 2, 3, 4\} = 2$$

Complete link

$$dist(C_1, C_2) = \max\{d(a, c), d(a, d), d(a, e), d(b, c), d(b, d), d(b, e)\}$$
$$= \max\{3, 4, 5, 2, 3, 4\} = 5$$

Average

$$dist(C_1, C_2) = \frac{d(a,c) + d(a,d) + d(a,e) + d(b,c) + d(b,d) + d(b,e)}{6}$$
$$= \frac{3+4+5+2+3+4}{6} = \frac{21}{6} = 3.5$$

Agglomerative Algorithm

The Agglomerative algorithm is carried out in three steps:

- Convert all object features into a distance matrix
- Set each object as a cluster (thus if we have Nobjects, we will have N clusters at the beginning)
- Repeat until number of cluster is one (or known # of clusters)
 - Merge two closest clusters
 - Update "distance matrix"

Example

Problem: clustering analysis with agglomerative algorithm

$$d_{AB} = \left((1 - 1.5)^2 + (1 - 1.5)^2 \right)^{\frac{1}{2}} = \sqrt{\frac{1}{2}} = 0.7071$$

$$d_{DF} = \left((3 - 3)^2 + (4 - 3.5)^2 \right)^{\frac{1}{2}} = 0.5$$
Euclidean distance

Dist	A	В	C	D	E	F	
A	0.00	0.71	5.66	3.61	4.24	3.20	n
В	0.71	0.00	4.95	2.92	3.54	2.50	П
c)	5.66	4.95	0.00	2.24	1.41	2.50	
D	3.61	2.92	2.24	0.00	1.00	0.50	1
E	4.24	3.54	1.41	1.00	0.00	1.12	П
F	3.20	2.50	2.50	0.50	1.12	0.00	IJ

distance matrix

Example

Merge two closest clusters (iteration 1)

Update distance matrix (iteration 1)

Min Distance (Single Linkage)

Merge two closest clusters (iteration 2)

Update distance matrix (iteration 2)

Min Distance (Single Linkage)

 Merge two closest clusters/update distance matrix (iteration 3)

 Merge two closest clusters/update distance matrix (iteration 4)

Final result (meeting termination condition)

Dendrogram tree representation

- 1. In the beginning we have 6 clusters: A, B, C, D, E and F
- We merge clusters D and F into cluster (D, F) at distance 0.50
- We merge cluster A and cluster B into (A, B) at distance 0.71
- We merge clusters E and (D, F) into ((D, F), E) at distance 1.00
- We merge clusters ((D, F), E) and C into (((D, F), E), C) at distance 1.41
- We merge clusters (((D, F), E), C) and (A, B) into ((((D, F), E), C), (A, B)) at distance 2.50
- The last cluster contain all the objects, thus conclude the computation

It will be Continued....