Advanced Control Laboratory Report

Ex2: Numerical Analysis, Simulation and Control

Mohammad EL-IRAKY^a, Tailei WANG^a

^aE-PiCo, Kiel University.

November, 2022

Abstract

The goal of this exercise is to learn the usage of the software package MATLAB/SIMULINK and its application in control engineering systems.

1. Results of Exercise 1.8

Table 1 shows different combinations utilised in our simulation.

Table 1: Parameter combinations for the measurement noise signal covariance, process covariance matrix and measurement covariance matrix.

Idx.	σ^2	σ_Q^2	σ_R^2
1	10^{-3}	10^{-5}	10^{-3}
2	10^{-3}	10^{-5}	10^{-2}
3	10^{-3}	10^{-5}	10^{-4}
4	10^{-3}	10^{-3}	10^{-3}
5	10^{-2}	10^{-5}	10^{-3}
6	10^{-4}	10^{-5}	10^{-3}

Since the obtained graphs are similar, here we only show the results of one combination, as shown in Figure 1. The selected parameters correspond to index 1 in Table 1.

Figure 1: Extended Kalman filter result plot.

To facilitate the visualization of the convergence of the estimated states, we extend the sim-

ulation time to 30s and plot the estimation errors in Figure 2.

Figure 2: Estimation errors of extended Kalman filter (Idx.1).

2. Analysis

According to the results in Figure 1 and Figure 2, it can be seen that the extended Kalman filter estimates the states with a high accuracy. Estimation errors are initially large but gradually converge to 0. Plus, the magnitude of the estimation error of EKF on y is the smallest, while the one on φ_2 is the largest.

In order to evaluate the performance of the Kalman filter in various combinations, here we introduce an index, mean squared error (MSE):

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2.$$
 (1)

where Y_i is the *i*th actual output and \hat{Y}_i is the estimate of Y_i .

In this way, the covariances in the 6 combinations are respectively substituted into the Simulink model, and the corresponding output parameter curves and further MSE values are obtained, as shown in Table 2.

Table 2: MSE results for 6 combinations.

Idx.	MSE_y	$MSE_{\varphi 1}$	$MSE_{\varphi 2}$
1	1.01×10^{-5}	4.93×10^{-7}	2.50×10^{-5}
2	3.17×10^{-7}	1.42×10^{-4}	1.48×10^{-5}
3	1.21×10^{-5}	1.95×10^{-7}	2.66×10^{-5}
4	1.00×10^{-5}	5.74×10^{-8}	2.63×10^{-5}
5	9.71×10^{-5}	6.04×10^{-6}	2.38×10^{-4}
6	1.16×10^{-6}	7.43×10^{-8}	2.41×10^{-6}

Moreover, the plots of estimation errors in the cases from index 2 to index 6 are attached in appendix.

Make a comparison among Figure 2, Figure A.3 and Figure A.4, it can be observed that an increased σ_R^2 will cause the estimation error of y to decrease, and vice versa. It is worth noting that the changes have little effect on the estimation of φ_1 and φ_2 , which can also be corroborated by Table 2.

According to Figure 2 and Figure A.5, one can infer that the estimation error of y gets larger while σ_O^2 increases.

Observe the last group of Figures A.6 and A.7, the estimation error of y decreases with a decreasing σ^2 , and vice versa.

3. Conclusion

- The applied EKF can achieve convergent estimation of the states.
- The magnitude of the estimation error of y is the smallest, while the one of φ_2 is the largest.
- The covariance of measurement noise signal significantly affects the accuracy of the Kalman filter. To be more specific: the larger the covariance, the worse the precision, and vice versa.
- The covariances of the 2 matrices Q and R have little effect on the estimation of φ_1 and φ_2 .
- An increase in σ_Q^2 will make the estimate of y worse but an increase in σ_R^2 will make it more precise.

Appendix A. Additional plots

Figure A.3: Estimation errors of extended Kalman filter (Idx.2).

Figure A.4: Estimation errors of extended Kalman filter (Idx.3).

Figure A.5: Estimation errors of extended Kalman filter (Idx.4).

Figure A.6: Estimation errors of extended Kalman filter (Idx.5).

Figure A.7: Estimation errors of extended Kalman filter (Idx.6).