Music Information Retrieval State-of-the-art techniques

Ladislav Maršík Charles University, Prague

Music Information Retrieval (MIR)

Musicology	Music information retrieval	Informatics
	Music theory	Mathematics
	Music acoustic	Physics

Applications

Outline

MIR problems (focus: audio query) with state-of-the-art techniques

Categorization of techniques

MIR problems (audio query)

- 1. Audio Fingerprinting
- 2. Whistling and Humming Queries
- 3. Cover Song Identification
- 4. Audio similarity (related: music recommendation)

1. Audio Fingerprinting

INPUT: Song recording

OUTPUT: The exact match

Time-Frequency spectrogram

Constellation analysis

Constellation analysis

Combinatorially hashed $h(f_1,f_2,t_2-t_1) \mid t_1$

Audio Fingerprinting
 Summary & State-of-the-art

Summary

- Short search time: 5-500 milliseconds / query
- Robust to noisy environment

State-of-the-art

- Various indexing techniques
- Benchmarking: MIREX 2015
- Focus on commercial deployment, advertisment

2. Whistling and Humming Queries

INPUT: Whistling or Humming

OUTPUT: Song containing the melody

- 2. Whistling and Humming Queries
 Shen and Lee: Whistle for Music (2007)
 - Whistle: 700Hz-2.8KHz
 - Translation to MIDI (Query and DB)
 - String matching methods

2. Whistling and Humming Queries Summary & State-of-the-art

Summary

- Fast & Effective
- False positives

State-of-the-art

- Hou et al.: Hierarchical K-means tree, dynamic progr.
- MusicRadar
- Benchmarking: MIREX 2015

3. Cover Song Identification

INPUT: Song / Recording

OUTPUT: Cover song / Performances

3. Cover Song Identification Khadkevich and Omologo: CSI Using Chord Profiles (2013)

3. Cover Song Identification Kim et al.: Music Fingerprint Extraction

Use of Covariance Matrix Fingerprint, Beat synchronization

3. Cover Song Identification Cross-Similarity and Self-similarity matrices (Tzanetakis 2003, Foote 1999)

Alignment using: Chromagram, Spectrogram

3. Cover Song Identification Cross-Similarity using MFCC (Traile, 2015)

Alignment using: MFCC

3. Cover Song Identification Summary & State-of-the-art

Summary

- Many various techniques
- Overall 80-90% precision of identifying covers

State-of-the-art

- Benchmarking: MIREX 2015
- Academia Sinica (Tsai, Wang): Melody extraction
- Bordeaux (Hanna): Local alignment of chroma sequences

4. Audio Similarity

INPUT: Song

OUTPUT: Similar sounding song

Music recommendation:

OUTPUT: Song that user would like to listen to

4. Audio Similarity Seyerlehner, Schedl: Block-Level Audio Features (2009)

Audio → **blocks**

deriving features from blocks

generalizing for the song

Distance measures

4. Audio Similarity
Summary & State-of-the-art

Summary

- Many various techniques
- Useful for genre classification / maybe recommentation?

State-of-the-art

Benchmarking: MIREX 2015

Categorization of techniques

Audio → **Spectrogram**

Audio -> MIDI

Audio → **Chromagram**

Categorization of techniques

Audio → **Spectrogram**

Audio -> MIDI

Audio → **Chromagram**

Categorization of techniques

Thank you for your attention