Natural Science Maths - Lent

Kevalee Shah

April 4, 2019

Contents

1	Diff	Ferential Equations 2	
	1.1	First Order Separable	
	1.2	First Order Linear	
	1.3	Substitution	
		1.3.1 Bernoulli	
	1.4	Second Order Linear Constant Coefficients	
	1.5	Second Order Linear Non-Constant Coefficients	
2	Partial Derivatives 4		
	2.1	Exact Differentials	
	2.2	Non-exact Differentials 6	
	2.3	Stationary Points	
	2.4	Laplace and Poisson	
3	Scalar and Vector Fields 7		
	3.1	Grad	
	3.2	Normal	
	3.3	Divergence	
	3.4	Curl	
4	Line Integrals 9		
	4.1	Scalar Field	
	4.2	Vector Field	
	4.3	Conservative Vector Fields	
	4.4	Surface Integrals	
	4.5	Flux	
5	Fourier Series 11		
	5.1	Orthogonal Functions	
	5.2	Fourier Series	

1 Differential Equations

- ODE: one independent variable
- First Order ODE:

$$\hat{F}(\frac{dy}{dx}, y, x) = 0$$
 $\frac{dy}{dx} = F(y, x)$

• Second Order ODE:

$$\frac{d^2y}{dx^2} = F(\frac{dy}{dx}, y, x)$$

1.1 First Order Separable

Equations are in the form:

$$\frac{dy}{dx} = F(y, x) = \frac{g(x)}{h(y)}$$

We can then solve by:

$$\int h(y) \, dy = \int g(x) \, dx$$

e.g.

$$\frac{dy}{dx} - \frac{x+1}{y-1} = 0$$

1.2 First Order Linear

$$\frac{dy}{dx} + p(x)y = f(x)$$

Homogeneous - when f(x) = 0 Inhomogeneous - when $f(x) \neq 0$

In order to solve this form of equation, we use the integrating factor method:

$$I(x) = e^{\int p(x) dx}$$

$$I(x)(\frac{dy}{dx} + p(x)y) = I(x)f(x)$$

$$I(x)y = \int I(x)f(x) dx$$

e.g.

$$\frac{dy}{dx} = e^{-2x} - 3y$$

1.3 Substitution

Equations can also be considered homogeneous when the x, y can be replaced with $\lambda x, \lambda y$ and the equation remains unchanged.

$$\frac{dy}{dx} = H(\frac{y}{x})$$

Use the substitution y = uxe.g.

$$\frac{dy}{dx} = \frac{x^2 + y^2}{xy}$$

Other substitutions to consider:

- $u = x \pm y + c$
- u = f(x, y)

1.3.1 Bernoulli

If the equation is of the form:

$$\frac{dy}{dx} + p(x)y = q(x)y^n$$

Then we use the substitution $z = y^{1-n}$

Second Order Linear Constant Coefficients

$$\frac{d^2y}{dx^2} + p(x)\frac{dy}{dx} + q(x)y = f(x)$$

When f(x) = 0 the equation is homogeneous. The solution is of the form:

$$y = Ae^{\lambda_1 x} + Be^{\lambda_2 x}$$

 λ_1, λ_2 are found by solving:

$$\lambda^2 + p\lambda + q = 0$$

 $\frac{\text{Case: } \lambda_1 = \lambda_2}{\text{Then the solution is of the form}}$

$$y = (Ax + B)e^{\lambda}$$

Case 2: λ_1, λ_2 are complex

This means that $\lambda_{1,2} = a \pm bi$ as complex roots are conjugates. Therefore the form of the solution is:

$$y = e^{ax}(A\cos(bx) + B\sin(bx))$$

All the above give the complementary integral. We also need to get particular. This can be obtained by substituting a trial equation into the differential equation and then comparing coefficients.

e.g.

Equation:
$$\frac{d^2y}{dx^2} + \frac{dy}{dx} = \cos(t)$$

Auxillary Equation: $\lambda^2 + 1 = 0 \implies \lambda = \pm i$

Complementary Function: $A\cos(t) + B\sin(t)$

Trial Function: $a\sin(t) + b\cos(t)$

Substitution: $(2a\cos(t) - at\sin(t) - 2b\sin(t) - bt\cos(t)) + (at\sin(t) + bt\cos(t)) = \cos(t)$

After equating coefficients, we get

$$y = A\sin(t) + B\cos(t) + \frac{1}{2}t\sin(t)$$

1.5 Second Order Linear Non-Constant Coefficients

If the equation is of the form:

$$y'' = F(x, y')$$

Then let $z = \frac{dy}{dx}$. Therefore:

$$z' = F(x, z)$$

e.g.

$$\frac{d^2y}{dx^2} + \frac{1}{x}\frac{dy}{dx} = x$$
$$z = \frac{dy}{dx}$$
$$\frac{dz}{dx} + \frac{1}{x}z = x$$

(solve using integrating factor)

2 Partial Derivatives

- $\bullet \ \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$
- gradient vector for f(x,y) is $\nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)$
- $df = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy$
- $\frac{df}{dt} = \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt}$
- Cartesian to Polar:

$$\left(\frac{\partial f}{\partial r}\right)_{\theta} = \left(\frac{\partial f}{\partial x}\right)_{y} (\cos(\theta)) + \left(\frac{\partial f}{\partial y}\right)_{x} (\sin(\theta))$$

$$\left(\frac{\partial f}{\partial \theta}\right)_r = \left(\frac{\partial f}{\partial x}\right)_y \left(-r\sin\theta\right) + \left(\frac{\partial f}{\partial y}\right)_x \left(r\cos\theta\right)$$

• Polar to Cartesian:

$$\left(\frac{\partial g}{\partial x}\right)_{y} = \left(\frac{\partial g}{\partial r}\right)_{\theta} \cos \theta + \left(\frac{\partial g}{\partial \theta}\right)_{r} \frac{-\sin \theta}{r}$$

$$\left(\frac{\partial g}{\partial y}\right)_{r} = \left(\frac{\partial g}{\partial r}\right)_{\theta} \sin \theta + \left(\frac{\partial g}{\partial \theta}\right)_{r} \frac{\cos \theta}{r}$$

• Reciprocity Relation: if z = z(x, y), then x = x(y, z), y = y(x, z)

$$\left(\frac{\partial x}{\partial y}\right)_z = \frac{1}{\left(\frac{\partial y}{\partial x}\right)_z}$$

• Cyclic Relation: if z = z(x, y), then x = x(y, z), y = y(x, z)

$$\left(\frac{\partial x}{\partial z}\right)_y = \frac{-\left(\frac{\partial y}{\partial z}\right)_x}{\left(\frac{\partial y}{\partial x}\right)_z}$$

$$\left(\frac{\partial x}{\partial z}\right)_y \left(\frac{\partial y}{\partial x}\right)_z \left(\frac{\partial z}{\partial y}\right)_x = -1 = \left(\frac{\partial x}{\partial y}\right)_z \left(\frac{\partial y}{\partial z}\right)_x \left(\frac{\partial z}{\partial x}\right)_y$$

2.1 Exact Differentials

Consider a differential equation of the form:

$$P(x,y)dx + Q(x,y)dy$$

It is exact if and only if:

$$\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x} = 0$$

This means that there exists f(x, y) such that:

$$df = P(x, y)dx + Q(x, y)dy$$

e.g.

y dx - x dy is NOT an exact differential. y dx + x dy is an exact differential.

Method 1 of Solving:

$$P(x,y)dx + Q(x,y)dy = 0$$

$$\frac{dy}{dx} = -\frac{P(x,y)}{Q(x,y)}$$

Method 2 of Solving:

$$\frac{\partial f}{\partial x} = P(x, y) \implies f = \int P(x, y) dx + h(y)$$
$$\frac{\partial f}{\partial y} = Q(x, y) \implies f = \int Q(x, y) dy + k(x)$$

We know these two equations are equivalent and therefore

$$f = \int P(x,y)dx + h(y) = \int Q(x,y)dy + k(x)$$

2.2Non-exact Differentials

Integrating Factor Method:

We want to transform P(x,y)dx+Q(x,y)dy into $\mu(x,y)P(x,y)dx+\mu(x,y)Q(x,y)dy$ so that the transformed equation is an exact differential. This requires:

$$\begin{split} \frac{\partial \mu P}{\partial y} &= \frac{\partial \mu Q}{\partial x} \\ \mu \left(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x} \right) + P \left(\frac{\partial \mu}{\partial y} \right) - Q \left(\frac{\partial \mu}{\partial x} \right) = 0 \end{split}$$

Suppose $\mu = \mu(x)$. Then $\frac{\partial \mu}{\partial y} = 0$

$$\mu \left(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x} \right) = Q \left(\frac{d\mu}{dx} \right)$$
$$\frac{1}{\mu} \left(\frac{d\mu}{dx} \right) = \frac{1}{Q} \left(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x} \right)$$

Likewise, if we suppose $\mu = \mu(y)$. Then $\frac{\partial \mu}{\partial x} = 0$

$$\mu \left(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x} \right) = -P \left(\frac{d\mu}{dy} \right)$$
$$\frac{1}{\mu} \left(\frac{d\mu}{dy} \right) = -\frac{1}{P} \left(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x} \right)$$

Therefore, if
$$\left(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x}\right) = Q h(x)$$
 then $\frac{1}{\mu} \frac{d\mu}{dx} = h(x)$
Else, if $\left(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x}\right) = P h(y)$ then $\frac{1}{\mu} \frac{d\mu}{dy} = -h(y)$
Note: It is not always possible to find an integrating factor of this form

e.g.

$$[\cot(x)\sin(x+y) + \cos(x+y)]dx + \cos(x+y)dy$$

$$\left(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x}\right) = \cot(x)\cos(x+y) = Q\cot(x)$$

$$\therefore \frac{1}{\mu}\frac{d\mu}{dx} = \cot(x)$$

$$\mu = \sin(x)$$

2.3 Stationary Points

We can determine the stationary points of multivariable functions by knowing that $\nabla f = \mathbf{0}$

If we do a Taylor Expansion of f(x,y) at (x_0,y_0) , and taking $(x-x_0)=\delta x, (y-y_0)=\delta y$

$$f(x,y) \approx f(x_0,y_0) + \delta x \frac{\partial f}{\partial x}(x_0,y_0) + \delta y \frac{\partial f}{\partial y}(x_0,y_0) + \frac{1}{2} \delta x^2 \frac{\partial^2 f}{\partial x^2 \partial} + \delta x \delta y \frac{\partial^2 f}{\partial x \partial y} + \frac{1}{2} \delta y^2 \frac{\partial^2 f}{\partial y^2 \partial} + \frac{$$

At the stationary point, $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ disappear and therefore we are left with:

$$f(x,y) = f(x_0, y_0) + \frac{1}{2}\delta x^2 \frac{\partial^2 f}{\partial x^2 \partial} + \delta x \delta y \frac{\partial^2 f}{\partial x \partial y} + \frac{1}{2}\delta y^2 \frac{\partial^2 f}{\partial y^2 \partial}$$

This gives the following conditions:

- Saddle Point: $f_{xx}f_{yy} f_{xy}^2 < 0$
- Min Point: $f_{xx} > 0, f_{yy} > 0, f_{xx}f_{yy} f_{xy}^2 > 0$
- Max Point: $f_{xx} < 0, f_{yy} < 0, f_{xx}f_{yy} f_{xy}^2 > 0$
- $f_{xx}f_{yy} f_{xy}^2 = 0$ cannot classify with this method

2.4 Laplace and Poisson

When an equation is of the following form it is called Poisson's equation

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = s$$

In the special case when s = 0, the equation is known as Laplace's Equation

3 Scalar and Vector Fields

Scalar Field - a scalar is assigned to each point in space. e.g. temperature Vector Field - a vector is assigned to each point in space. e.g. fluid velocity

A scalar field can be written as $\sigma(x, y, z)$ and a vector field can be written as $\vec{F}(x, y, z)$. Equivalently, if $\mathbf{x} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ then $\sigma(\mathbf{x})$ and $\mathbf{F}(\mathbf{x})$ are also valid notations for scalar and vector fields.

3.1 Grad

The grad of a scalar field, is a vector field. It represents the rate of change of $\sigma(\mathbf{x})$ with respect to position \mathbf{x} .

$$\operatorname{grad} \sigma = \nabla \sigma = \frac{\partial \sigma}{\partial x} \mathbf{i} + \frac{\partial \sigma}{\partial y} \mathbf{j} + \frac{\partial \sigma}{\partial z} \mathbf{k}$$

The change in $\sigma(\mathbf{x})$ between $x, x + \delta x$ can be written using the Taylor Series:

$$\delta\sigma \approx \frac{\partial\sigma}{\partial x}\delta x + \frac{\partial\sigma}{\partial y}\delta y + \frac{\partial\sigma}{\partial z}\delta z$$
$$= \nabla\sigma \cdot \delta x$$

3.2 Normal

n is unit normal to the surface of constant σ . It is calculate by:

$$\mathbf{n} = \frac{\nabla \, \sigma}{|\nabla \, \sigma|}$$

e.g. If $\sigma(x, y, z) = x^{2} + y^{2} + z^{2}$ then

$$\mathbf{n} = \frac{2x\mathbf{i} + 2y\mathbf{j} + 2z\mathbf{k}}{(4x^2 + 46^2 + 4z^2)^{\frac{1}{2}}}$$
$$= \frac{\mathbf{x}}{|\mathbf{x}|}$$

grad can also be thought of as a vector of differentials operator:

$$\nabla \sigma = \left(\mathbf{i} \frac{\partial}{\partial x} + \mathbf{j} \frac{\partial}{\partial y} + \mathbf{k} \frac{\partial}{\partial z} \right) \sigma$$
$$= \left(\frac{\partial}{\partial x} \frac{\partial}{\partial y} \right) \sigma$$
$$= \left(\frac{\partial}{\partial z} \right) \sigma$$

3.3 Divergence

div operates on a vector field. Let $\mathbf{U} = u\mathbf{i} + v\mathbf{j} + w\mathbf{k}$.

$$\begin{split} div(\mathbf{U}) &= \nabla \, \mathbf{U} = \left(\mathbf{i} \frac{\partial}{\partial x} + \mathbf{j} \frac{\partial}{\partial y} + \mathbf{k} \frac{\partial}{\partial z}\right) \cdot (u\mathbf{i} + v\mathbf{j} + w\mathbf{k}) \\ &= \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) \begin{pmatrix} u \\ v \\ w \end{pmatrix} \\ &= \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} \end{split}$$

e.g. Suppose $\mathbf{F} = ax\mathbf{i} + by\mathbf{j} + cz\mathbf{k}$

$$\operatorname{div}(\mathbf{F}) = a + b + c$$

In the case when a = b = c = 1, $\mathbf{F} = \mathbf{x}$. Therefore $\operatorname{div}(\mathbf{F}) = 3$

3.4 Curl

It is defined as the cross product of ∇ and a vector field. Therefore it returns a vector

$$\operatorname{curl} \mathbf{U} = \nabla \times \mathbf{U}$$

If $\mathbf{F} = \nabla \omega$ then

$$\operatorname{curl}(\mathbf{F}) = 0$$
$$\operatorname{div}(\operatorname{curl}(\mathbf{F})) = 0$$

4 Line Integrals

4.1 Scalar Field

Lawnmower example - line integral is the integral of the grass length over the distance of the path being mowed.

In a general form:

$$\Gamma = \text{path - parameterised e.g. } \mathbf{x}(t)$$
 Scalar Field - $f(x,y)$ Line integral - $\int_{\Gamma} f(\mathbf{x}(t)) \, dt$

e.g.

$$\Gamma = \mathbf{x}(t) = t\mathbf{i} + (t-1)^2\mathbf{j} \text{ for } 0 \le t \le 2$$

$$f(x,y) = x + y$$
 Line integral -
$$\int_0^2 f(t,(t-1)^2) \, dt = \frac{8}{3}$$

4.2 Vector Field

Note: $d\mathbf{x} = \frac{d\mathbf{x}}{ds}ds = \frac{d\mathbf{x}}{dt}dt$ Need to calculate:

$$\int f(\mathbf{x}(s)) ds = \int \mathbf{F}(\mathbf{x}(s)) \cdot \frac{d\mathbf{x}}{ds} ds$$
$$\int \mathbf{F}(\mathbf{x}(s)) \cdot \frac{d\mathbf{x}}{dt} dt = \int_{\Gamma} \mathbf{F} \cdot d\mathbf{x}$$

e.g. Evaluate $I=\int_{\Gamma} {\bf F}\cdot d{\bf x}$ for the vector field ${\bf F}=y^2{\bf i}+x^2{\bf j}$ where the path Γ is the semicricle $x^2+y^2=1$, for positive y

Parameterise the semicircle: $\mathbf{x}(\theta) = -\cos(\theta)\mathbf{i} + \sin(\theta)\mathbf{j}$ for $0 \le \theta \le \pi$

$$\frac{d\mathbf{x}}{\theta} = \sin(\theta)\mathbf{i} + \cos(\theta)\mathbf{j}$$

$$F = r^2 \sin^2(\theta)\mathbf{i} + r^2 \cos^2(\theta)\mathbf{j} = \sin^2(\theta)\mathbf{i} + \cos^2(\theta)\mathbf{j} \quad (r = 1)$$

$$I = \int_{\Gamma} \mathbf{F} \cdot d\mathbf{x} = \int_{0}^{\pi} \sin^3(\theta) + \cos^3(\theta) = \frac{4}{3}$$

4.3 Conservative Vector Fields

- Vector field that is the gradient of some function $\mathbf{F} = \nabla \omega$
- Line integrals are path independent

$$\oint \mathbf{F} - \Gamma \cdot d\mathbf{x} = 0$$

• Test if conservative:

We know $\nabla \times \nabla \omega = 0$

Therefore $\nabla \times \mathbf{F} = 0$

If for all closed curves $\oint \mathbf{F} - \Gamma \cdot d\mathbf{x} = 0$ is true, then **F** is conservative

4.4 Surface Integrals

Vector Area: $\mathbf{dS} = \mathbf{n} dS$ - represents small region on the surface, tends to 0 To get the area we integrate: $\int_S \mathbf{dS} = \int_S \mathbf{n} dS = \mathbf{n} \int_S dS = A\mathbf{n}$

For any closed surface this equals to 0, as the opposite sides cancel.

e.g. Vector area of a hemisphere surface S given by $x^2 + y^2 + z^2 = a^2$ z > 0

In spherical polar coordinates, we can write this as $r=a, \quad 0 \le \theta \le \frac{\pi}{2}, \quad -\pi \le \theta \le \pi$

Therefore we can parameterise the surface as:

$$\mathbf{x} = \mathbf{x}(\theta, \phi) = x\mathbf{i} + y\mathbf{j} + z\mathbf{k} = a\sin(\theta)\cos(\phi)\mathbf{i} + a\sin(\theta)\sin(\phi)\mathbf{j} + a\cos(\theta)\mathbf{k}$$

For small variations in θ , ϕ we have

$$dS = a^2 \sin(\theta) d\theta d\phi$$

The normal vector can be calculated as:

$$\mathbf{n} = \frac{\mathbf{x}}{|x|} = \sin(\theta)\cos(\phi)\mathbf{i} + \sin(\theta)\sin(\phi)\mathbf{j} + \cos(\theta)\mathbf{k}$$

We then need to calculate:

$$\int_{S} \mathbf{dS} = \int_{S} \mathbf{n} dS$$

$$= \int_{\phi = -\pi}^{\pi} \int_{\theta = 0}^{\pi} (\sin(\theta)\cos(\phi)\mathbf{i} + \sin(\theta)\sin(\phi)\mathbf{j} + \cos(\theta)\mathbf{k}) a^{2}\sin(\theta)d\theta d\phi$$

$$= \pi a^{2}\mathbf{k}$$

4.5 Flux

The flux of a vector field across a surface element with vector area dS is defined as:

$$\mathbf{F} \cdot \mathbf{dS}$$

Therefore the total flux over a surface is defined as:

$$\int_{S} \mathbf{F} \cdot \mathbf{dS} \equiv \int_{S} \mathbf{F} \cdot \mathbf{n} \, dS$$

For the earlier example, for the hemisphere, we can calculate the flux as:

$$\mathbf{F} = \alpha \mathbf{i} + \beta \mathbf{j} + \gamma \mathbf{k}$$

$$\mathbf{F} \cdot \mathbf{dS} = a^2 (\alpha \sin(\theta) \cos(\phi) + \beta \sin(\theta) \sin(\phi) + \gamma \cos(\theta)) \sin(\theta) d\theta d\phi$$

$$\int_S \mathbf{F} \cdot \mathbf{dS} = \int_{\theta=0}^{\frac{\pi}{2}} a^2 \sin \theta \left[\int_{\phi=-\pi}^{\pi} (\alpha \sin(\theta) \cos(\phi) + \beta \sin(\theta) \sin(\phi) + \gamma \cos(\theta)) \sin(\theta) d\phi \right] d\theta$$

$$= \gamma \pi a^2$$

5 Fourier Series

5.1 Orthogonal Functions

• A set of functions $\{\phi_1(x), \phi_2(x), \dots\}$ is an orthogonal set on the interval [a, b] if any two functions in the set are orthogonal to each other:

$$(\phi_n, \phi_m) = \int_a^b \phi_n(x)\phi_m(x)dx = 0 \quad (n \neq m)$$
 (1)

5.2 Fourier Series

• Mutually Orthogonal Sets on $-L \le x \le L$

$$\left\{\cos\left(\frac{n\pi x}{L}\right)\right\}_{n=0}^{\infty} \tag{2}$$

and

$$\left\{ \sin\left(\frac{n\pi x}{L}\right) \right\}_{n=1}^{\infty} \tag{3}$$