Inductive Specification

Exercise 1.1

1.
$$\{3n + 2 \mid n \in N\}$$

Definition (top-down) A natural number n is in S if and only if

1.
$$n = 2$$
, or

2.
$$n - 3 \in S$$
.

Definition (bottom-up) *Define the set S to be the smallest set contained in N and satisfying the following two properties:*

1. 2 ∈
$$S$$
, and

2. *if*
$$n$$
 ∈ S , *then* n + 3 ∈ S .

Definition (rules of inference)

$$2 \in S$$

$$\frac{n \in S}{n+3 \in S}$$

We generate some elements of *S*.

- 1. $2 \in S$.
- 2.

$$\frac{2 \in S}{(2+3) \in S}$$

3.

$$\frac{5 \in S}{(5+3) \in S}$$

2.
$$\{2n + 3m + 1 \mid n, m \in N\}$$

Definition (top-down) A natural number n is in S if and only if

- 1. n = 1, or
- 2. n − 2 ∈ S, or
- 3. n − 3 ∈ S.

Definition (bottom-up) *Define the set S to be the smallest set contained in N and satisfying the following three properties:*

- $1.1 \in S$, and
- 2. if $n \in S$, then $n + 2 \in S$, and
- *3. if* n ∈ S, *then* n + 3 ∈ S.

Definition (rules of inference)

$$1 \in S$$

$$\frac{n \in S}{(n+2) \in S}$$

$$\frac{n \in S}{(n+3) \in S}$$

We generate some elements of *S*.

- 1. $1 \in S$.
- 2.

$$\frac{1 \in S}{(1+2) \in S}$$

3.

$$\frac{3 \in S}{(3+2) \in S}$$

4.

$$\frac{5 \in S}{(5+2) \in S}$$

We could have derived $7 \in S$ differently using only property 3.

$$\frac{1 \in S}{(1+3) \in S}$$
$$\frac{(4+3) \in S}{(4+3) \in S}$$

3. $\{(n,2n+1)|n\in N\}$

Definition (top-down) A pair of natural numbers (n, m) is in the set S if and only if

- 1. *the pair is* (0,1), *or*
- 2. $(n-1,2(n-1)+1) \in S$.

Definition (bottom-up) We define S to be the smallest set of pairs whose elements are contained in N and satisfying the following properties:

- 1. $(0,1) \in S$, and
- 2. if $(n, m) \in S$, then $(n + 1, 2(n + 1) + 1) \in S$.

Definition (rules of inference)

$$(0,1) \in S$$

$$\frac{(n,m)\in S}{(n+1,2(n+1)+1)\in S}$$

We generate some elements of *S*.

1.
$$(0,1) \in S$$
.

2.

$$\frac{(0,1) \in S}{(0+1,2(0+1)+1) \in S}$$

3.

$$\frac{(1,3) \in S}{(1+1,2(1+1)+1) \in S}$$

4. $\{(n, n^2) | n \in N\}$

Definition (top-down) A pair of natural numbers (n, m) is in the set S if and only if

1. the pair is (0,0), or

2.
$$(n-1, n(n-2)+1) \in S$$
.

Definition (bottom-up) We define S to be the smallest set of pairs of natural numbers and satisfying the following properties:

1. $(0,0) \in S$, and

2. if
$$(n, m) \in S$$
, then $(n + 1, n(n + 2) + 1) \in S$.

Definition (rules of inference)

$$(0,0) \in S$$

$$\frac{(n,m) \in S}{(n+1,n(n+2)+1) \in S}$$

We generate some elements of *S*.

1. $(0,0) \in S$.

2.

$$\frac{(0,0)\in S}{(1,1)\in S}$$

3.

$$\frac{(1,1)\in S}{(2,4)\in S}$$

Exercise 1.2

1.

$$(0,1) \in S$$

$$(1,8) \in S$$

$$(2,15) \in S$$

$$(3,22) \in S$$

We find a pattern and determine the set is $\{(n,7n+1)|n \in N\}$.

2.

$$(0,1) \in S$$

$$(1,2) \in S$$

$$(2,4) \in S$$

$$(3,8) \in S$$

We find a pattern and determine the set is $\{(n, 2^n) | n \in N\}$.

3.

$$(0,0,1) \in S$$

 $(1,1,1) \in S$
 $(2,1,2) \in S$
 $(3,2,3) \in S$
 $(4,3,5) \in S$
 $(5,5,8) \in S$

This is a reasonable number of derivations to find the Fibonacci pattern. We

determine the set is $\{(n, fib(n), fib(n+1)) | n \in N\}$.

4.

$$(0,1,0) \in S$$

$$(1,3,1) \in S$$

$$(2,5,4) \in S$$

$$(3,7,9) \in S$$

$$(4,9,16) \in S$$

$$(5,11,25) \in S$$

It is clear at this point what the pattern is. We determine the set is $\{(n, 2(n + 1) + 1, n^2) | n \in N\}$.

Exercise 1.3

Let T = N, the set of natural numbers. Then T clearly satisfies the properties of S and $T \neq S$.

Defining Sets Using Grammars

Exercise 1.4

Induction

Exercise 1.5

Theorem If $e \in LcExp$, then there are the same number of left and right parentheses in e.

Proof: We prove by induction on k, the number of times a production is used to compose e. The induction hypothesis, IH(k), is that any member of LcExp constructed by $\leq k$ production applications has the same number of left and right parentheses.

Under no production applications, there is no such $e \in LcExp$, so IH(0) holds.

Let k be an integer such that IH(k) holds. We need to show that IH(k+1) holds. Consider that e is formed by $\leq k+1$ production applications. Then there are three possible forms of e:

e could be of the form *id*, where $id \in Identifier$. There are 0 left parentheses and 0 right parentheses.

e could be of the form (lambda (Identifier) e_1), where e_1 is a member of LcExp. Here, e_1 must have been constructed by k production applications. Thus IH(k) holds for e_1 . Therefore e, which we can count has 2 left parentheses and 2 right parentheses, together with e_1 , satisfy the inductive hypothesis.

e could be of the form $(e_1 \ e_2)$, where e_1 and e_2 are members of LcExp. Now e_1 and e_2 must be composed by $\leq k$ production applications. Thus IH(k) applies to them. Lastly, e has 1 left parenthesis and 1 right parenthesis, and together with e_1 and e_2 , satisfy the inductive hypothesis.

This completes the proof of the claim that IH(k+1) holds and therefore completes the induction. $\ \square$