Representation functors

Tony Feng

April 8, 2021

Some analogies in play

- ullet simplicial commutative ring \sim topological ring
- Simplicial commutative ring : (discrete) commutative ring :: commutative ring : reduced ring.

The classical deformation functor

Fix $\overline{\rho}$: $\Gamma \to G(k)$, and contemplate the functor $F^{\overline{\rho}}_{\Gamma}$ sending an Artinian algebra A augmented over k to the set of lifts

Under suitable assumptions, can apply Schlessinger's criterion to pro-represent $F^{\overline{\rho}}_{\Gamma}$ by the deformation ring $R^{\overline{\rho}}_{\Gamma}$.

Derived deformation functor

Now, want to define a functor $\mathcal{F}^{\overline{\rho}}_{\Gamma}$, sending an Artinian simplicial commutative A_{\bullet} augmented over k to the simplicial set of lifts

Apply derived Schlessinger to get a pro-representing simplicial commutative ring $\mathcal{R}^{\overline{\rho}}_{\Gamma}$.

Warning: Any operations we perform on simplicial objects need to be "derived".

Desiderata

Homotopy invariance: If

$$A_{ullet} \xrightarrow{f} A'_{ullet}$$

is a weak equivalence respecting augmentations, then

$$\mathcal{F}^{\overline{
ho}}_{\Gamma}(f) \colon \mathcal{F}^{\overline{
ho}}_{\Gamma}(A_{ullet}) o \mathcal{F}^{\overline{
ho}}_{\Gamma}(A'_{ullet})$$

should also be a weak equivalence.

$$C(A) = \frac{L}{m} (Qa, A.)$$
 $C_m(R) C_m(G)$
 $C_m(X) C_m(G)$

Compatibility with classical theory:

$$\Rightarrow_{\pi_o}(\mathcal{R}_{r_i}^e) = \mathcal{R}_r^e$$

Tangent complex:

The tangent complex of $\mathcal{F}_{\Gamma}^{\overline{\rho}}$ should be $C^{\bullet}(\Gamma, \overline{\rho}^*\mathfrak{g})$; in particular its cohomology groups should be $H^{i}(\Gamma, \overline{\rho}^*\mathfrak{g})$.

• This is the source of "quantitative control" on $\mathcal{R}^{\overline{\rho}}_{\Gamma}$ (since "tangent complex detects weak equivalences").

Fact

For any $\mathcal{R} \in \operatorname{Art}_k$, the map $\mathcal{R} \to \pi_0(\mathcal{R})$ induces an isomorphism on \mathfrak{t}^0 , and an inclusion on \mathfrak{t}^1 .

Fact

For any commutative ring R over \mathbb{Z}_p , $\dim_k \mathfrak{t}^0(R)$ is the minimal number of generators over \mathbb{Z}_p and $\dim_k \mathfrak{t}^1(R)$ is the minimal number of relations.

Corollary

 $\mathbb{R}^{\overline{\rho}}_{\Gamma} \text{ is LCI of dimension } h^1(\Gamma, \overline{\rho}^*\mathfrak{g}) - h^2(\Gamma, \overline{\rho}^*\mathfrak{g}) \text{ over } \mathbb{Z}_p \text{ if and only if } \mathcal{R}^{\overline{\rho}}_{\Gamma} \xrightarrow{\sim} \mathbb{R}^{\overline{\rho}}_{\Gamma}$

Classifying spaces

Let H be a discrete group. The classifying space BH is the geometric realization of the simplicial set $N_{\bullet}(H)$

 $N_{\bullet}(H)$ is the nerve of H viewed as a category (consisting of a single object, with endomorphisms given by H).

Note: If H is not discrete, then we can still form its classifying space H using the same diagram.

If G acts freely on a contractible space EG, then EG/G is a model for the homotopy type of BG.

Analogous to the algebraic geometer's classifying stack $BG^{\text{alg.geom.}} = [\text{pt }/G].$

Examples:

6=2/

6=6×

(
$$6^{\infty}$$
) \sim 0

 $8a \sim 6P^{\infty}$

6=2/

6=2/

 $6=2/2 \sim (Gal(6/R))$
 $a \sim 8^{1}$
 $a \sim$

Let X be a "nice" space (e.g. a simplicial set). Then

$$\pi_0 \operatorname{\mathsf{Map}}(X,BH) \leftrightarrow \{\text{``}H\text{-local systems'' on }X\}$$
 (if X connected) $\leftrightarrow \{\pi_1(X,x) \to H\}/\mathrm{conj}.$

"Framed representations", i.e. homomorphisms, correspond to maps of pointed spaces: if X connected,

$$\pi_0 \operatorname{\mathsf{Map}}_*((X,x),(BH,\operatorname{\mathsf{pt}})) \leftrightarrow \{\pi_1(X,x) \to H\}.$$

What is the higher homotopical information in Map(X, BH)? Still assuming H is **discrete**,

- $\pi_1(\mathsf{Map}(X,BH),\rho\colon \pi_1\to H)\approx Z_G(\mathsf{Im}\ \rho)$
- $\pi_i(\mathsf{Map}(X,BH),\rho)=0$ for $i\geq 2$.

If X connected,

$$\mathsf{Map}(X,BH) = \coprod_{
ho: \ \pi_1(X,x) o H/\mathrm{conj}} BZ_G(
ho)$$

If H is not discrete, then $\text{Hom}(\Gamma, H) \to \pi_0 \operatorname{\mathsf{Map}}_*((B\Gamma, \operatorname{\mathsf{pt}}), (BH, \operatorname{\mathsf{pt}}))$ is far from a bijection.

Example:

Derived classifying spaces

Now let G be an algebraic group over the Witt vectors W(k).

Fact

There exists a functorial cofibrant replacement $c(A_{\bullet}) \xrightarrow{\sim} A_{\bullet}$.

Warning 1

We can try to define $G(A_{\bullet}) = \text{Hom}(c(\mathcal{O}_{G}^{\delta}), A_{\bullet})$, but this is not a priori a simplicial group, because the functor c is not guaranteed to be monoidal.

Hom(" \mathcal{O}_{BG} ", A_{\bullet}) is a bisimplicial set $N_{\bullet}(A_{\bullet})$, and we define $BG(A_{\bullet})$ to be its geometric realization (i.e. geometric realization of the diagonal simplicial set).

Derived deformations

Let Γ be a discrete group, G an algebraic group.

Let $\overline{\rho} \in \text{Rep}(\Gamma, G(k))$, which defines a 0-simplex of Map $(B\Gamma, BG(k))$.

Define $\mathcal{F}^{\overline{\rho}}_{\Gamma}(A_{\bullet})$ to be the homotopy fiber product

Informally, this means lifts

$$\left\{\begin{array}{c}BG(A_{\bullet})\\ \\ \rho \\ \\ B\Gamma \xrightarrow{\overline{\rho}} BG(k)\end{array}\right\}.$$

The content of saying "homotopy fiber" instead of "fiber" is intuitively that instead of asking the two maps to agree, we ask for a homotopy between their images.

Example:

Onto Galois groups

Previously Γ was discrete. When Γ is profinite, write $\Gamma = \varprojlim \Gamma_{\alpha}$ where each Γ_{α} is finite, WLOG assume $\overline{\rho}$ factors over Γ_{α} .

Define

$$\mathcal{F}_{\Gamma}^{\overline{
ho}}:=\varinjlim\mathcal{F}_{\Gamma_{\alpha}}^{\overline{
ho}}.$$

If $\mathcal{F}^{\overline{\rho}}_{\Gamma_{\alpha}}$ is pro-represented by $\mathcal{R}^{\overline{\rho}}_{\Gamma_{\alpha}}$, then $\mathcal{F}^{\overline{\rho}}_{\Gamma}$ will be pro-represented by the pro-system $\mathcal{R}^{\overline{\rho}}_{\Gamma_{\alpha}}$.

If G is adjoint and $\overline{\rho}$ has trivial centralizer, then derived Schlessinger works out and we get a "derived Galois deformation ring $\mathcal{R}^{\overline{\rho}}_{\Gamma}$ " (a pro-system of simplicial commutative rings).

When considering framed deformations, these assumptions are not needed.

Cases of interest are $X = \operatorname{Spec} \mathbb{Z}[1/S]$, $X = \operatorname{Spec} \mathbb{Q}_{p'}$, $X = \operatorname{Spec} \mathbb{Z}_{p'}$, $\Gamma = \pi_1(X, x)$.

- $\mathcal{F}^{\overline{
 ho}}_{\mathbb{Z}[1/S]}, \mathcal{F}^{\overline{
 ho},\square}_{\mathbb{Z}_{p'}}, \mathcal{F}^{\overline{
 ho},\square}_{\mathbb{Q}_{p'}}.$
- $\bullet \ \mathcal{R}^{\overline{\rho}}_{\mathbb{Z}[1/S]}, \mathcal{R}^{\overline{\rho},\square}_{\mathbb{Z}_{p'}}, \mathcal{R}^{\overline{\rho},\square}_{\mathbb{Q}_{p'}}.$

Remark 2

The paper of Galatius-Venkatesh avoids taking a (homotopy) limit of this pro-system. However there are reasons one might want to do it, e.g. in order to pass to a characteristic 0 object (over \mathbb{Q}_p).

Comparison to classical deformations

Recall that π_0 is left adjoint to the inclusion of commutative rings as simplicial commutative rings. In other words,

$$\mathsf{Hom}_{\mathsf{SCR}}(\mathcal{R}, S) = \mathsf{Hom}_{\mathsf{CR}}(\pi_0(\mathcal{R}), S).$$

Hence if S is a classical ring, then $\pi_0(\mathcal{R})$ represents the classical deformation functor.

Instead of $B\Gamma$, [GV] prefer to use the *étale homotopy type* of X (avoids choosing base points).

(Alternatively take the nerve of the groupoid of maximal [insert adjective] extensions.)

Note that the compatibility of the *derived structures* is using that $X = \operatorname{Spec} \mathbb{Q}$, $\operatorname{Spec} \mathbb{Z}[1/S]$, $\operatorname{Spec} \mathbb{Q}_p$, $\operatorname{Spec} \mathbb{Z}_p$, etc. are $K(\pi, 1)$'s.

$$\mathcal{X} = \operatorname{\mathsf{Spec}}\ \mathbb{Q},\ \operatorname{\mathsf{Spec}}\ \mathbb{Z}[1/S],\ \operatorname{\mathsf{Spec}}\ \mathbb{Q}_p,\ \operatorname{\mathsf{Spec}}\ \mathbb{Z}_p,\ \operatorname{\mathsf{etc.}}\ \operatorname{\mathsf{are}}\ \mathcal{K}(\pi,1)$$

Tangent complexes

We can view the tangent complex of BG as a G-equivariant complex of k-vector spaces. $\mathfrak{g} \leftarrow \mathfrak{g} \subset \mathfrak{g}$

Theorem

The tangent complex of BG is the adjoint representation $\mathfrak g$ concentrated in cohomological degree -1 (homotopy degree 1).

Theorem

The tangent complex of $\mathsf{Map}^{\overline{\rho}}(X,BG)$ is $C^{\bullet}(X,\overline{\rho}^*TBG)\approx C^{\bullet+1}(X,\overline{\rho}^*\mathfrak{g})$.

Using the homotopy fiber sequence $\underline{H} \to \mathrm{pt} \to \underline{BH}$, we see that $\bullet \ BG(k)$ is a $K(\pi,1)$,

•
$$BG(k \oplus k[n])$$
 has $\pi_1 = G(k)$ and $\pi_{n+1} = \mathfrak{g}$, $\pi_i = 0$ otherwise, i.e.

"homotopy fiber of $BG(k \oplus k[n]) \to BG(k)$ is a $K(\mathfrak{g}, n+1)$ ".

Other approaches to the derived deformation functor

[Toën, Zhu] First define the framed functor $\mathcal{F}_{\Gamma}^{\overline{\rho},\square}$ by making sense of the expression

"Hom
$$(\Gamma, \text{Hom}(\mathcal{O}_G, A))$$
" / \mathcal{G}

by taking all maps in the appropriate ∞ -categories. (Then define the unframed version by quotienting.)

Comparison with our definition comes from

$$\operatorname{Hom}(\Gamma(G(A))) = \operatorname{Hom}_*((B\Gamma,\operatorname{pt}),\mathcal{B}G(A),e))$$

("full faithfulness of the bar construction on grouplike monoids").

Warning: this notation hides that $Hom(\Gamma, H)$ needs to be "derived", and

Warning: this notation hides that
$$Hom(\Gamma, H)$$
 needs to be "derived", and even π_0 Hom(Γ, H) looks nothing like the set of homomorphisms from Γ to H .

$$\begin{cases}
g = \begin{pmatrix} a_1 & a_g \\ b_1 & b_g \end{pmatrix} \begin{bmatrix} a_1b_1 \end{bmatrix} \begin{bmatrix} a_1b_2 \end{bmatrix} - 1 \\ b_1 & b_2 \end{bmatrix} \begin{bmatrix} a_1b_2 \end{bmatrix} \begin{bmatrix} a_1b_2 \end{bmatrix} - 1
\end{cases}$$

$$\begin{bmatrix} a_1b_2 \end{bmatrix} \begin{bmatrix} a_1b_2 \end{bmatrix} \begin{bmatrix} a_1b_2 \end{bmatrix} - 1$$

Thanks for listening!