```
In [23]:
          import pandas as pd
          import numpy as np
          import seaborn as sb
          import matplotlib.pyplot as plt
          import plotly.express as px
          import plotly.graph_objects as go
          pd.options.plotting.backend = "plotly"
          from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot
          init_notebook_mode(connected=True)
In [93]:
          threshold=pd.Timedelta(2,unit="m")
In [53]:
          #threshhold
          monday=pd.read csv("Monday (1).csv",index col=[0])
          monday["timestamp"]=pd.to_datetime(monday["index"])
          monday["count"]=[1 for i in range(0,len(monday))]
          monday.info()
          monday_timestamp=[]
          count_bunches=0
          monday_sorted=monday.sort_values(by="timestamp",ascending=True)
          monday sorted.reset index(inplace=True)
          del monday_sorted["level_0"]
          for i in range(0,len(monday)):
              for j in range(i+1,len(monday)):
                  if(monday_sorted["timestamp"][j]-monday_sorted["timestamp"][i] <= threshold)</pre>
                      count_bunches+=1
                      monday timestamp.append(thursday sorted["timestamp"][j])
                      continue
                  else:
                      break
          print("No of time bunching happended : ",count_bunches)
          print("probability of bunching taking place: ",count_bunches/len(monday))
          print("With in time interval of: ",min(monday["timestamp"])," to ",max(monday["times
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 40 entries, 0 to 39
         Data columns (total 3 columns):
              Column Non-Null Count Dtype
                         -----
              index
          0
                        40 non-null
                                        object
              timestamp 40 non-null
                                        datetime64[ns]
                                         int64
              count
                        40 non-null
         dtypes: datetime64[ns](1), int64(1), object(1)
         memory usage: 1.2+ KB
         No of time bunching happended: 10
         probability of bunching taking place: 0.25
         With in time interval of: 2022-03-07 14:54:31.462434 to 2022-03-07 20:24:22.69523
         8
In [54]:
          #threshhold
          tuesday=pd.read_csv("tuesday.csv",index_col=[0])
          tuesday["timestamp"]=pd.to_datetime(tuesday["index"])
          tuesday["count"]=[1 for i in range(0,len(tuesday))]
          tuesday.info()
          tuesday timestamp=[]
```

```
count_bunches=0
          tuesday_sorted=tuesday.sort_values(by="timestamp",ascending=True)
          tuesday_sorted.reset_index(inplace=True)
          del tuesday sorted["level 0"]
          for i in range(0,len(tuesday)):
              for j in range(i+1,len(tuesday)):
                  if(tuesday_sorted["timestamp"][j]-tuesday_sorted["timestamp"][i] <= threshol</pre>
                      count_bunches+=1
                      tuesday_timestamp.append(thursday_sorted["timestamp"][j])
                     continue
                  else:
                     break
          print("No of time bunching happended : ",count_bunches)
          print("probability of bunching taking place: ",count_bunches/len(tuesday))
          print("With in time interval of: ",min(tuesday["timestamp"])," to ",max(tuesday["tim
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 36 entries, 0 to 35
         Data columns (total 3 columns):
          # Column Non-Null Count Dtype
              index 36 non-null
          0
                                      object
                                     datetime64[ns]
int64
             timestamp 36 non-null
          1
             count 36 non-null
         dtypes: datetime64[ns](1), int64(1), object(1)
         memory usage: 1.1+ KB
         No of time bunching happended: 6
         With in time interval of: 2022-03-15 14:32:09.633333 to 2022-03-15 19:06:07.89597
         7
In [55]:
         #threshhold
         wednesday=pd.read_csv("Wedenesday.csv",index_col=[0])
          wednesday["timestamp"]=pd.to_datetime(wednesday["index"])
          wednesday["count"]=[1 for i in range(0,len(wednesday))]
          wednesday.info()
          wednesday_timestamp=[]
          count bunches=0
          wednesday sorted=wednesday.sort values(by="timestamp",ascending=True)
          wednesday_sorted.reset_index(inplace=True)
          del wednesday_sorted["level_0"]
          for i in range(0,len(wednesday)):
              for j in range(i+1,len(wednesday)):
                  if(wednesday_sorted["timestamp"][j]-wednesday_sorted["timestamp"][i] <= thre</pre>
                      count bunches+=1
                     wednesday_timestamp.append(thursday_sorted["timestamp"][j])
                     continue
                 else:
          print("No of time bunching happended : ",count_bunches)
          print("probability of bunching taking place: ",count_bunches/len(wednesday))
          print("With in time interval of: ",min(wednesday["timestamp"])," to ",max(wednesday[
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 45 entries, 0 to 44
         Data columns (total 3 columns):
              Column
                        Non-Null Count Dtype
```

```
0
            index
                       45 non-null
                                       object
          1 timestamp 45 non-null datetime64[ns]
                        45 non-null int64
          2
            count
         dtypes: datetime64[ns](1), int64(1), object(1)
         memory usage: 1.4+ KB
         No of time bunching happended: 8
         probability of bunching taking place: 0.17777777777778
         With in time interval of: 2022-03-16 14:14:48.233058 to 2022-03-16 19:12:16.43333
In [56]:
          #threshhold
          thursday=pd.read_csv("Thursday (1).csv",index_col=[0])
          thursday["timestamp"]=pd.to_datetime(thursday["index"])
          thursday["count"]=[1 for i in range(0,len(thursday))]
          thursday.info()
          count bunches=0
          thursday_timestamp=[]
          thursday_sorted=thursday.sort_values(by="timestamp",ascending=True)
          thursday_sorted.reset_index(inplace=True)
          del thursday_sorted["level_0"]
          for i in range(0,len(thursday)):
              for j in range(i+1,len(thursday)):
                  if(thursday_sorted["timestamp"][j]-thursday_sorted["timestamp"][i] <= thresh</pre>
                      count bunches+=1
                      thursday_timestamp.append(thursday_sorted["timestamp"][j])
                      continue
                  else:
                     break
          print("No of time bunching happended : ",count_bunches)
          print("probability of bunching taking place: ",count_bunches/len(thursday))
          print("With in time interval of: ",min(thursday["timestamp"])," to ",max(thursday["t
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 59 entries, 0 to 58
         Data columns (total 3 columns):
            Column Non-Null Count Dtype
             index
                       59 non-null object
          0
          1
              timestamp 59 non-null datetime64[ns]
              count 59 non-null int64
          2
         dtypes: datetime64[ns](1), int64(1), object(1)
         memory usage: 1.8+ KB
         No of time bunching happended : 10
         probability of bunching taking place: 0.1694915254237288
         With in time interval of: 2022-03-10 11:31:05 to 2022-03-10 18:45:13.200000
In [57]:
         #threshhold
          friday=pd.read_csv("Friday.csv",index_col=[0])
          friday["timestamp"]=pd.to_datetime(friday["index"])
          friday["count"]=[1 for i in range(0,len(friday))]
          friday.info()
          friday timestamp=[]
          count bunches=0
          friday sorted=friday.sort values(by="timestamp",ascending=True)
          friday sorted.reset index(inplace=True)
          del friday_sorted["level_0"]
          for i in range(0,len(friday)):
              for j in range(i+1,len(friday)):
                  if(friday sorted["timestamp"][j]-friday sorted["timestamp"][i] <= threshold)</pre>
```

```
count_bunches+=1
            friday_timestamp.append(thursday_sorted["timestamp"][j])
            continue
        else:
print("No of time bunching happended : ",count_bunches)
print("probability of bunching taking place: ",count_bunches/len(friday))
print("With in time interval of: ",min(friday["timestamp"])," to ",max(friday["times"))
<class 'pandas.core.frame.DataFrame'>
Int64Index: 60 entries, 0 to 59
Data columns (total 3 columns):
              Non-Null Count Dtype
    Column
    ----
               -----
0
    index
             60 non-null
                            object
1 timestamp 60 non-null datetime64[ns]
    count
             60 non-null
                             int64
dtypes: datetime64[ns](1), int64(1), object(1)
memory usage: 1.9+ KB
No of time bunching happended : 3
probability of bunching taking place: 0.05
```

With in time interval of: 2022-03-18 14:19:17.315909 to 2022-03-18 23:04:28.87500

Daywise bunching graphs

Distribution of Blue Buses Wednesday

Distribution of Blue Buses Wednesday

Distribution of Blue Buses Wednesday

Distribution of Blue Buses Wednesday

Distribution of Blue Buses Wednesday

Whole week bunching statistics

```
In [61]:
          bunching_timestamp=[]
          bunching_timestamp.extend(monday_timestamp)
          bunching timestamp.extend(tuesday timestamp)
          bunching_timestamp.extend(wednesday_timestamp)
          bunching_timestamp.extend(thursday_timestamp)
          bunching_timestamp.extend(friday_timestamp)
In [78]:
          print("No of time bunching happended in the week: ",len(bunching_timestamp))
          print("probability of bunching taking place through out the week: ",
                (len(bunching_timestamp)/(len(monday)+len(tuesday)+len(wednesday)+len(thursday)
          print("With in time interval of: ",min(bunching timestamp)," to ",max(bunching times
         No of time bunching happended in the week: 37
         probability of bunching taking place through out the week: 0.15416666666666667
         With in time interval of: 2022-03-10 11:52:59.297436 to 2022-03-10 17:37:25.62946
In [84]:
          fig=px.histogram(bunching_timestamp,nbins=10,histnorm="probability",title="Distribut")
                       labels={"value":"Blue Bus Arrival Timestamp"},template="simple_white")
          fig.show()
```

Distribution of Blue Buses Bunching throughout the Week

In [1]: !conda install plotly
^C
In []: