МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

Компьютерная графика: лабораторный практикум. Лабораторная работа № 6 "3D графика"

Студент гр. 5383	Допира В.Е.
Преподаватель	Герасимова Т.В

Санкт-Петербург 2018

Лабораторная работа № 6

Общие сведения

Основные параметры сцены:

- Расположение объектов
- Расположение источников освещения
- Расположение камеры

Простейшие манипуляции:

- Перемещение ($x:=x+\Delta x; y:=y+\Delta y; z:=z+\Delta z$)
- Поворот (вокруг z: $x' := x \cos \alpha + y \sin \alpha$; $y' := -x \sin \alpha + y \cos \alpha$; z' := z)
- Масштабирование $(x := k_x x)$
- Отражение по оси: *(-1)

Виды координат:

- декартовы (x, y, z)
- обобщённые (x, y, z, w) позволяют задать бесконечно удалённые точки

Связь:

- $(x, y, z, w)_{of} = (x_{dek}, y_{dek}, z_{dek}, 1)$
- $(x, y, z)_{\text{дек}} = (x_{06}, y_{06}, z_{06}) / w$ не всегда возможно

Аффинное преобразование — преобразование, которое можно задать в виде $A_{\scriptscriptstyle 2X2}$

$$\begin{pmatrix} X_1 \\ y_1 \end{pmatrix} = A \begin{pmatrix} X_0 \\ y_0 \end{pmatrix} + \begin{pmatrix} C_X \\ C_y \end{pmatrix}$$
масштаб сдвиг
$$\begin{pmatrix} X_1 \\ y_1 \\ 1 \end{pmatrix} = \underbrace{\begin{pmatrix} a_{11} & a_{12} & C_X \\ a_{21} & a_{22} & C_Y \\ 0 & 0 \end{pmatrix}}_{M} \begin{pmatrix} X_0 \\ y_0 \end{pmatrix}$$

Примеры аффинных преобразований координат:

- Мировые → видовые;
- Проекционные → экранные.

Проецирование. Виды координат

Координаты бывают:

- 1 Мировые (точка в пространстве).
- 2 Видовые (получаются путём передвижения мировых).
- 3 Проекционные (относительно плоскости проецирования, Z расстояние до объекта).
- 4 Экранные (координаты пикселей).

Поверхность проецирования — поверхность, на которой строится изображение (обычно плоскость).

Проецирование — процесс (задача) сопоставления каждой точке трёхмерной сцены некоторой точки поверхности проецирования.

Луч проецирования — луч, который идет из объекта к поверхности проецирования.

Виды проецирования:

- Параллельное: все лучи проецирования параллельны друг другу. Подвиды:
 - 1. Косоугольное: лучи не перпендикулярны плоскости проецирования.
 - 2. Аксонометрическое: лучи перпендикулярны плоскости проецирования. В зависимости от соотношения коэффициентов масштабирования kx, ky, kz (по осям X,Y,Z соответственно) выделяют следующие модификации:
- Изометрическое: kx = ky = kz.
- Диметрическое: $kx = ky \neq kz$.
- Tриметрическое: $kx \neq ky \neq kz$.
- •Перспективное: все лучи проецирования проходят через одну точку, они не параллельны.

С фокусным расстоянием связано увеличение и угол обзора. Чем меньше фокусное расстояние, тем больше угол обзора, и наоборот.

Кроп-фактор — это отношение физического размера пленки к размеру матрицы, бывает от 1 до 2. Если х — координата объекта, а x' — координата на поверхности проецирования, то $\frac{x'}{F} = \frac{x}{z} \Rightarrow x' = \frac{Fx}{z} \Rightarrow [x' = Fx; w' = z]$. Таким образом, перспективное преобразование можно задать как аффинное (с помощью матрицы 4x4 с обобщёнными координатами).

Рендеринг — это построение двумерного изображения трехмерной сцены согласно заданному положению камеры, освещению, моделей объектов и пр.

Источники освещения:

1 Точечные: свет выходит из одной точки (характеризуется координатами). Свет падает под разными углами даже в близкие точки объекта.

- 2 Бесконечно удаленные источники (характеризуется направлением). Все лучи параллельны друг другу, угол падения одинаковый у любых точек (например, Солнце).
- 3 Фоновое освещение: не знаем, откуда берутся лучи; их невозможно проследить, в каждой точке луч падает под всеми углами. Результат всех возможных отражений света.
- 4 Излучение: часть поверхности некоторого объекта, которая сама по себе светится, но никакие другие предметы не освещает.

Луч может отражаться, преломляться, поглощаться, а также комбинировать эти действия. Мы видим то, что попало в камеру. Уравнение рендеринга: для каждой точки объекта:

интенсивность исходящего луча = интенсивность отраженного + преломленного - поглощенного луча = сумма всех входящих лучей — сумма всех поглощенных.

Методы рендеринга различаются тем, что учитывается.

Метод	Что учитываем
1) Проволочная модель	Модель объекта и положение камеры
2) Удаление невидимых линий (ребер)	Учитываем путь луча от объекта до камеры, наличие преград. Если с закраской, то закрашиваем
а) с закраской	без теней и оттенков.
б) без закраски	
3) Учет освещения	Все грани рисуем закрашенными, цвет определяем
	исходя из параметров источника.
4) Учет гладких поверхностей и текстур	Является ли грань частью гладкой поверхности, накладывается ли на эту грань изображение (текстура)
5) Моделирование теней	Учитываются препятствия на пути луча от источника освещения до точек объекта.
6) Учет отражений и преломлений	Ну тут и так всё понятно.

Задание 22. Бочка

Написать программу, рисующую проекцию трехмерного каркасного объекта: бочка.

Требования

- 1. Аппроксимировать заданное тело выпуклым многогранником. Точность аппроксимации задается пользователем.
- 2. Разработать формат представления многогранника и процедуру его каркасной отрисовки в ортографической и изометрической проекциях.
- 3. Обеспечить удаление невидимых линий и возможность пространственных поворотов и масштабирования многогранника.
- 4. Обеспечить автоматическое центрирование и изменение размеров изображения при изменении размеров окна.
- 5. Обеспечить возможность вращения и масштабирования многогранника и удаление невидимых линий и поверхностей.

Тестирование Результаты тестирования представлены на снимках экрана.

Вывод

В результате выполнения лабораторной работы разработана программа, рисующая трехмерную бочку с использованием шейдеров GLSL и OpenGL.