MAT 3172 Lecture Notes

Last Updated:

 $\mathrm{May}\ 7,\ 2023$

Contents

1	\mathbf{Set}	Theory	2
	1.1	Review of Set Theory	2
		1.1.1 Properties of Sets	4
	1.2	Indicator Function	5
		1.2.1 Properties of Indicator Functions:	6
	1.3	Limsup and Liminf of Sets	6

Chapter 1

Set Theory

1.1 Review of Set Theory

Let Ω be an abstract set representing the sample space of a random experiment. The power set of Ω by $\mathcal{P}(\Omega)$ is defined to be the set of all subsets of Ω . Elements of Ω are outcomes and its subsets are events. Therefore,

$$\mathcal{P}(\Omega) = \{A : A \subseteq \Omega\}$$

For $A, B \in \mathcal{P}(\Omega)$, we define

$$A \cup B = \{x : x \in A \text{ or } x \in B\}$$

$$A \cap B = \{x : x \in A \text{ and } x \in B\}$$

$$\bar{A} = A^c = \{x : x \notin A\}$$

$$A\Delta B = (A \cup B) \setminus (A \cap B)$$

In terms of events $A \cup B$ occurs if and only if at least one of the two events A and B occurs. Also, $A \cap B$ occurs if both A and B occurs. The empty set is denoted by \emptyset .

Examples of Sample Space: When flipping a coin, we have two outcomes, so

$$\Omega = \{H,T\}$$

If we flip a coin and role a dice,

$$\Omega = \{1H, 2H, \dots, 6H, 1T, \dots 6T\}$$

If we flip a coin until we observe a head,

$$\Omega = \{H, TH, TTH, TTTH, \ldots\}$$

Here, there are infinite outcomes so the sample space is infinite, but it is countable since we can list all the possibilities.

If we pick a choose are sample space to be the points with distance one from the origin, we have the points in the unit circle,

The sample space is defined by

$$\Omega = \{(x,y) : d((x,y),(0,0)) \le 1\} = \{(x,y) : x^2 + y^2 \le 1\}$$

In this example, the sample space omega is infinite as well, but it is uncountable.

Examples of Events: An event is a subset of the sample space. For example, in the case of rolling a dice and flipping a coin, we have

$$\Omega = \{1H, 2H, \dots, 6H, 1T, \dots 6T\}$$

And we can define an event E as

$$E = \{\text{Coin is heads and the dice is even}\} = \{2H, 4H, 6H\} \subset \Omega$$

If we flip a coin until the first head appears,

$$\Omega = \{H, TH, TTH, \ldots\}$$

And we can define an event E as

 $E = \{\text{First head appears before the 5th trial}\} = \{H, TH, TTH, TTTH, TTTTH\} \subset \Omega$

Examples of Power Sets: Consider the sample space obtained by rolling a dice,

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

And let $E = \{2, 4, 6\}$ be the event we roll an even number. Then, the power set of E is

$$\mathcal{P}(E) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}\$$

The cardinality of the power set is

$$|\mathcal{P}(E)| = 2^{|E|} = 8$$

Examples of Set Operations:

$$\Omega = \{1, 2, \dots, 6\}$$

$$A = \{1, 2, 3\} \ B = \{1, 2, 3\}$$

$$A \cup B = \{1, 2, 3, 4, 6\}$$

$$A \cap B = \{2\}$$

$$A^c = \{1, 3, 5\}$$

$$A \setminus B = \{x : x \in A, x \notin B\} = \{4, 6\}$$

$$A\Delta B = (A \cup B) \setminus (A \cap B)$$

Example of Empty Set: Is $\{\{\}\} = \{\}$? **No.** $\{\{\}\}$ is a set with one element, which is the empty set, so $\{\{\}\} = \{\emptyset\}$.

1.1.1 Properties of Sets

- $A \subset A$, $\emptyset \subset A$
- $A \subset B$ and $B \subset A$ implies A = B
- $A \subset C$ and $B \subset C$ implies $A \cup B \subset C$ and $A \cap B \subset C$.
- $A \subset B$ if and only if $B^c \subset A^c$
- $(A^c)^c = A$, $c = \Omega$, $\Omega^c = \emptyset$
- $A \cup B = B \cup A$, $A \cap B = B \cap A$
- $\bullet \ A \cup A = A, \, A \cap \Omega = A, \, A \cup A^c = \Omega, \, A \cap A^c = \emptyset.$
- $A \cap (B \cup C) = (A \cap B) \cup (A \cap C) \cup (A \cap C)$
- $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- $(A \cup B)^c = A^c \cap B^c$, $(A \cap B)^c = A^c \cup B^c$

Example: We have

$$\bigcup_{n=1}^{\infty} \left[0, \frac{n}{n+1} \right) = [0,1)$$

To show that these sets are equal, consider the limit of the sequence $\left(\frac{n}{n+1}\right)_{n=1}^{\infty}$. As n becomes large, the limit approaches 1. So, the union of all these sets will contain elements that become arbitrarily close to 1 but do not reach 1, so we have [0,1).

$$\bigcap_{n=1}^{\infty} \left(0, \frac{1}{n}\right) = \emptyset$$

To show that these sets are equal, consider the sequence $\left(\frac{1}{n}\right)_{n=1}^{\infty}$, As this sequence approaches 0, the intersection of all these sets will contain elements that become arbitrarly close to 0 but do not reach 0, so we have the set (0,0) which is empty. Therefore, when taking the intersection of all these sents with $\left(0,\frac{1}{n}\right)$ which become arbitrarly small, we have the empty set.

Example: Prove that $A\Delta B = A^c \Delta B^c$.

Proof. Note that $A \setminus B = A \cap B^c$.

$$A^{c}\Delta B^{c} = (A^{c} \cup B^{c}) \setminus (A^{c} \cap B^{c})$$

$$= (A \cap B)^{c} \cap ((A \cup B)^{c})^{c}$$

$$= (A \cap B)^{c} \cap (A \cup B) = (A \cup B) \setminus (A \cap B)$$

$$= A\Delta B$$

1.2 Indicator Function

Let $A \subset \Omega$. The indicator function of A is defined as

$$I(x \in A)I_A(x) = \begin{cases} 1 & x \in A \\ 0 & x \notin A \end{cases}$$

Example: A = [1, 3]

$$I_A(x) = I_{[1,3]}(x)$$

1.2.1 Properties of Indicator Functions:

- $I_{A\cup B} = \max(I_A, I_B)$
- $\bullet \ _{A\cap B}=I_A\cdot I_B$
- $I_{A\Delta B} = I_A + I_B \pmod{2}$
- $A \subset B$ if and only if $I_A \leq I_B$
- $I_{\cup_i A_i} \leq \sum_i I_{A_i}$

1.3 Limsup and Liminf of Sets

Exercise: Prove that

$$I_{\bigcup_{i=1}^{\infty} A_i} = 1 - \prod_{i=1}^{\infty} (1 - I_{A_i})$$

and

$$I_{A\Delta B} = (I_A - I_B)^2$$

Definition 1.3.1. Let $\{A_n\}$ be a sequence of events. Then

$$\liminf A_n = \bigcup_{n=1}^{\infty} \bigcap_{m=n}^{\infty} A_m$$

and

$$\limsup A_n = \bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} A_m$$

Example: Suppose we have a sequence of events A_1, A_2, A_3, \ldots , we can define

$$B_n = \bigcap_{m=n}^{\infty} A_m$$

So its sequence members are

$$B_n = A_n \cap A_{n+1} \cap \cdots$$

$$B_{n+1} = A_{n+1} \cap A_{n+2} \cap \cdots$$

$$B_{n+2} = A_{n+2} \cap A_{n+3} \cap \cdots$$

These sets are getting smaller because surely the intersection of more sets will be smaller since $|A \cap B| \le \min(|A|, |B|)$. So as we take more intersections, the sets become smaller and smaller. Now we can look at the union of these sets,

$$\bigcup_{n=1}^{\infty} B_n = \liminf A_n$$

If instead we take B_n to be the union of all the sets,

$$B_n = \bigcup_{m=n}^{\infty} A_m$$

So the sequence members are

$$B_n = A_n \cup A_{n+1} \cup \cdots$$

$$B_{n+1} = A_{n+1} \cup A_{n+2} \cup \cdots$$

$$B_{n+2} = A_{n+2} \cup A_{n+3} \cup \cdots$$

These sets are getting larger since we are taking the union of more sets, then we can look at the intersection of these sets,

$$\bigcap_{m=n}^{\infty} = \bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} A_n = \limsup A_n$$

Lemma 1.3.1. We have

$$\limsup A_n = \left\{ \omega : \sum_{i=1}^{\infty} I_{A_i}(\omega) = \infty \right\}$$

and

$$\liminf A_n = \left\{ \omega : \sum_{i=1}^{\infty} I_{A_i^c}(\omega) < \infty \right\}$$

We can also express this as

$$\limsup_{n \to \infty} A_n = \left\{ x \in X : \limsup_{n \to \infty} I_{A_n}(x) = 1 \right\}$$

and

$$\liminf_{n \to \infty} A_n = \left\{ x \in X : \liminf_{n \to \infty} I_{A_n}(x) = 1 \right\}$$

Proof. If $\omega \in \limsup A_n$, then $\omega \in \bigcup_{m=n}^{\infty} A_m$ for all integers n. Therefore, for any integer n there exists an integer k_n such that $\omega \in A_{k_n}$, since

$$\sum_{i=1}^{\infty} A_{A_i}(\omega) \ge \sum_{i=1}^{\infty} I_{A_{k_i}}(\omega) = \infty$$

Conversely, for any integer n, by definition of the limit superior,

$$\sum_{i=n}^{\infty} I_{A_i}(\omega) = \infty$$

This implies that $\omega \in \bigcup_{j=n}^{\infty} A_j$ for all integers n. Therefore,

$$\omega \in \bigcap_{m=1}^{\infty} \bigcup_{m=n}^{\infty} A_m = \limsup A_n$$

Then, we can notice that

$$\omega \lim \inf A_n = \bigcup_{n=1}^{\infty} \bigcap_{m=n}^{\infty} A_m$$

implies that there exists an integer n_0 such that

$$\omega \in \bigcap_{k=n_0}^{\infty} A_k$$

Therefore,

$$\sum_{n=1}^{\infty} I_{A_n^c}(\omega) = \sum_{n=1}^{n_0-1} I_{A_n^c}(\omega) \le n_0 < \infty$$

Note: For this reason, sometimes we write $\limsup A_n = A_n$ infinitely often. If $\liminf A_n = \limsup A_n$, then

$$\lim A_n = \lim \inf A_n = \lim \sup A_n$$

Remark: The proof of the lemma above can be simplified by noticing the fact that

$$(\limsup A_n)^c = \bigcup_{n=1}^{\infty} \bigcap_{m=n}^{\infty} A_m^c = \liminf A_n^c$$

$$(\liminf A_n)^c = \bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} A_m^c = \limsup A_n^c$$

To summarize, with the limit superior we have infinitely many cases where $I_{A_i}(\omega) = 1$. So what it means for $\omega \in \limsup A_n$ is that ω is in infinitely many of the A_i 's. For the limit inferior, it means that ω is in all but finitely many of the A_i 's.

Example: Consider $\omega \in A_i$ when i is odd, so

$$\omega \in A_1, \omega \notin A_2, \omega \in A_3, \omega \notin A_4, \omega \in A_5, \dots$$

 ω is in infinitely many (but countable) number of the A_i 's. So $\omega \in \limsup A_n$. Now consider $\omega \in A_i$ when $i \geq 10$, so

$$\omega \notin A_1, \omega \notin A_2, \omega \notin A_3, \dots, \omega \notin A_9, \omega \in A_{10}, \omega \in A_{11}, \omega \in A_{12}, \dots$$

So, ω is not in finitely many of the A_i 's, therefore $\omega \in \liminf A_n$.

Example: Consider sample space of flipping a coin and infinite number of times, and the event $E = \{HTTHT\}$, so the event that we get HTTHT in that order. Because this outcome is possible, it will occur an infinite number of times in the sequence of events, so E is in the limit superior, and the probability that E occurs infinitely often is 1.

Lemma 1.3.2.

1. If $A_n \subset A_{n+1}$ for any integer n, then

$$\lim A_n = \bigcup_{n=1}^{\infty} A_n$$

2. If $A_{n+1} \subset A_n$ for any integer n, then

$$\lim A_n = \bigcap_{n=1}^{\infty} A_n$$

Proof. We can prove (1) and (2) similarly as follows, not that in this case,

$$\bigcap_{m=n}^{\infty} A_m = \bigcap_{m=1}^{\infty} A_m$$

for all integers n. If $A_n \subset A_{n+1}$ for any integer n, then we have that

$$A_1 \subset A_2 \subset A_3 \subset \cdots$$

So the set is getting bigger, now consider the limit superior

$$\limsup_{n \to \infty} A_n = \bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} A_m = \left(\bigcup_{m=1}^{\infty} A_m\right) \cap \left(\bigcup_{m=2}^{\infty} A_m\right) \cap \left(\bigcup_{m=3}^{\infty} A_m\right) \cap \cdots$$

These sets are equal in size since if $A_1 \subset A_2$, then $A_1 \cup A_2 = A_2$. Therefore, we get that the intersection of these sets is $\bigcup_{m=1}^{\infty} A_m$, and thus

$$\lim_{n \to \infty} \sup A_n = \bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} A_m = \bigcup_{n=1}^{\infty} A_n$$

Furthermore,

$$\lim_{n \to \infty} \inf A_n = \bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} A_m$$

$$= \left(\bigcap_{m=1}^{\infty} A_m\right) \cup \left(\bigcap_{m=2}^{\infty} A_m\right) \cup \left(\bigcap_{m=3}^{\infty} A_m\right) \cup \cdots$$

$$= A_1 \cup A_2 \cup A_3 \cup \cdots$$

$$= \bigcup_{n=1}^{\infty} A_n$$

Therefore

 $\limsup A_n = \liminf A_n \implies \limsup A_n = \liminf A_n = \lim \inf A_n$

The proof for (2) follows the same.

Example:

$$\lim_{n \to \infty} \left[0, 1 - \frac{1}{n} \right] = \lim_{n \to \infty} \left[0, 1 - \frac{1}{n} \right) = [0, 1)$$

To see this, we have that

$$A_1 = \{0\}, A_2 = \left[0, \frac{1}{2}\right], A_3 = \left[0, \frac{2}{3}\right], A_4 = \left[0, \frac{3}{4}\right], \dots$$

So the set A_n is increasing, therefore

$$\limsup A_n = \liminf A_n = \lim A_n = \bigcup_{n=1}^{\infty} A_n = [0, 1]$$

Example:

$$\lim_{n\to\infty}\left[0,1+\frac{1}{n}\right]=\lim_{n\to\infty}\left[0,1+\frac{1}{n}\right)=\left[0,1\right)$$

Similarly,

$$A_1 = [0, 2], A_2 = \left[0, 1 + \frac{1}{2}\right], A_3 = \left[0, 1 + \frac{1}{3}\right], A_4 = \left[0, 1 + \frac{1}{4}\right], \dots$$

The set A_n is decreasing, therefore

$$\limsup A_n = \liminf A_n = \bigcap_{n=1}^{\infty} A_n = \bigcap_{n=1}^{\infty} \left[0, 1 + \frac{1}{n} \right] = [0, 1]$$

Example: Let $B, C \subset \Omega$ and define the sequence

$$A_n = \begin{cases} B & \text{if } n \text{ is odd} \\ C & \text{if } n \text{ is even} \end{cases}$$

Then we have

$$\bigcup_{m=n}^{\infty} = B \cup C \implies \bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} A_m = B \cup C = \limsup A_n$$

Similarly for the limit inferior,

$$\bigcap_{m=n}^{\infty} A_m = B \cap C \implies \bigcup_{n=1}^{\infty} \bigcup_{m=n}^{\infty} A_m = B \cup C = \liminf A_n$$

Therefore, we have

$$\bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} A_m = B \cup C \text{ and } \bigcup_{n=1}^{\infty} \bigcap_{m=n}^{\infty} A_m = B \cap C$$

If $B \cap C \neq B \cup C$, then $B \cap C = \liminf A_n \neq \limsup A_n = B \cup C$.