Convex Learning Problems

Peng Lingwei

July 19, 2019

Contents

12	Con	vex Learning Problem	1
	12.1	CONVEXITY, LIPSCHITZNESS, AND SMOOTHNESS	
		12.1.1 Convexity	-
		12.1.2 Lipschitzness	
		12.1.3 Smoothness	
	12.2	CONVEX LEARNING PROBLEMS	
		12.2.1 Learnability of Convex Learning Problems	
		12.2.2 Convex-Lipschitz/Smooth-Bounded Learning Problems .	
	12.3	SUBBOGATE LOSS FUNCTIONS	

12 Convex Learning Problem

Convex learning problems can be learn efficiently. 0-1 loss function is nonconvex function, and is computationally hard to learn in the unrealizable case.

12.1 CONVEXITY, LIPSCHITZNESS, AND SMOOTHNESS

12.1.1 Convexity

Definition 12.1. (Convex Set). $\forall \mathbf{u}, \mathbf{v}$, then $\forall \alpha \in [0, 1]$, we have

$$\alpha \mathbf{u} + (1 - \alpha) \mathbf{v} \in C.$$

Definition 12.2. (Convex Function). Let C be a convex set. A function $f: C \to \mathbb{R}$ is convex if $\forall \mathbf{u}, \mathbf{v} \in C$ and $\alpha \in [0,1]$,

$$f(\alpha \mathbf{u} + (1 - \alpha)\mathbf{v}) \le \alpha f(\mathbf{u}) + (1 - \alpha)f(\mathbf{v}).$$

For convex differentiable functions,

$$\forall f(\mathbf{u}) \geq f(\mathbf{w}) + \langle \nabla f(\mathbf{w}), \mathbf{u} - \mathbf{w} \rangle.$$

Keep Convexity:

- $g(x) = \max_{i \in [r]} f_i(x)$
- $g(x) = \sum_{i=1}^{r} w_i f_i(x)$, where for all $i, w_i \ge 0$

12.1.2 Lipschitzness

Definition 12.3. (Lipschitzness).Let $C \subset \mathbb{R}^d$. A function $f : \mathbb{R}^d \to \mathbb{R}^k$ is $\rho - Lipschitz$ over C if $\forall \mathbf{w}_1, \mathbf{w}_2 \in C$, we have

$$||f(\mathbf{w}_1) - f(\mathbf{w}_2)|| \le \rho ||\mathbf{w}_1 - \mathbf{w}_2||.$$

Intuitively, Lipschitzness constrains f'(u).

Let $f(\mathbf{x}) = g_1(g_2(\mathbf{x}))$, where g_1 is $\rho_1 - Lipschitz$ and g_2 is $\rho_2 - Lipschitz$. Then, f is $(\rho_1 \rho_2) - Lipschitz$.

12.1.3 Smoothness

Definition 12.4. (Smoothness). A differentiable function $f : \mathbb{R}^d \to \mathbb{R}$ at \mathbf{w} is β – smooth if its gradient is β – Lipschitz; namely, $\forall \mathbf{v}, \mathbf{w}$ we have

$$\|\nabla f(\mathbf{v}) - \nabla f(\mathbf{w})\| < \beta \|\mathbf{v} - \mathbf{w}\|.$$

 $\beta - Smoothness$ implies that

$$f(\mathbf{v}) \le f(\mathbf{w}) + \langle \nabla f(\mathbf{w}), \mathbf{v} - \mathbf{w} \rangle + \frac{\beta}{2} ||\mathbf{v} - \mathbf{w}||^2.$$

Setting $\mathbf{v} = \mathbf{w} - \frac{1}{\beta} \nabla f(\mathbf{w})$, we have

$$\frac{1}{2\beta} \|\nabla f(\mathbf{w})\|^2 \le f(\mathbf{w}) - f(\mathbf{v}).$$

If we assume that $\forall \mathbf{v}, f(\mathbf{v}) \geq 0$, we conclude that smoothness implies *self-bounded*:

$$\|\nabla f(\mathbf{w})\|^2 \le 2\beta f(\mathbf{w}).$$

Let $f(\mathbf{w}) = g(\langle \mathbf{w}, \mathbf{x} \rangle + b)$, where $g \to \mathbb{R} \to \mathbb{R}$ is a $\beta - smooth$ function, then f is $(\beta ||\mathbf{x}||^2) - smooth$.

12.2 CONVEX LEARNING PROBLEMS

Symbols: a hypothesis classes set \mathcal{H} , a set of examples Z, and a loss function $l: \mathcal{H} \times Z \to \mathbb{R}_+$

 \mathcal{H} can be an arbitrary set. In this chapter, we consider hypothesis classes set $\mathcal{H} = \mathbb{R}^d$.

Definition 12.5. (Convex Learning Problem). A learning problem, (\mathcal{H}, Z, l) , is called convex if the hypothesis class \mathcal{H} is convex set and $\forall z \in Z$, the loss function, $l(\cdot, z)$, is a convex function (which means $f: \mathcal{H} \to \mathbb{R}$, $f(\mathbf{w}) = l(\mathbf{w}, z)$).

Lemma 12.1. If l is a convex loss function and the class \mathcal{H} is convex, then the $ERM_{\mathcal{H}}$ problem, of minimizing the empirical loss over \mathcal{H} , is a convex optimization problem.

12.2.1 Learnability of Convex Learning Problems

Is convexity a sufficient condition for the learnability of a problem? The answer is **NO**.

Example 12.1. (Nonlearnability of Linear Regression Even If d = 1). Let $\mathcal{H} = \mathbb{R}$, and the loss be the squared loss: $l(w, (x, y)) = (wx - y)^2$. We assume A is a successful PAC learner for this problem.

Choose $\epsilon=1/100$, $\delta=1/2$, let $m \geq m(\epsilon,\delta)$ and set $\mu=\frac{\ln(100/99)}{2m}$. We get two points $z_1=(1,0)$ and $z_2=(\mu,-1)$, then we construct two distributions: $\mathcal{D}_1=\{(z_1,\mu),(z_2,1-\mu)\}$, and $\mathcal{D}_2=\{(z_2,1)\}$

The probability that all examples of the training set will be z_2 is at least 99%.

$$(1-\mu)^m \ge e^{-2\mu m} = 0.99.$$

If $\hat{w} < -1/(2\mu)$, then $L_{\mathcal{D}_1}(\hat{w}) = \mu(\hat{w})^2 + (1-\mu)(\hat{w}\mu + 1)^2 \ge \mu(\hat{w})^2 \ge 1/(4\mu)$. However, $\min_{w} L_{\mathcal{D}_1}(w) \le L_{\mathcal{D}_{\infty}(0)} = (1-\mu)$, it follows that, $L_{\mathcal{D}_{\infty}}(\hat{w}) - \min_{w} L_{\mathcal{D}_1}(w) \ge \frac{1}{4\mu} - (1-\mu) > \epsilon$. $(\mu < 0.0051$, which means $1/(4\mu) - (1-\mu) > 48 \gg \epsilon$).

If $\hat{w} \ge -1/(2\mu)$, then $L_{\mathcal{D}_2} = (\hat{w}\mu + 1)^2 \ge 1/4 > \epsilon$. All in all, the problem is not PAC learnable.

In addition to the convexity requirement, we also need \mathcal{H} will be bounded. But the above example is still not PAC learnble. This motivate a definition of two families of learning problems, convex-Lipschitz-bounded and convex-smooth-bounded.

12.2.2 Convex-Lipschitz/Smooth-Bounded Learning Problems

Definition 12.6. (Convex-Lipschitz-Bounded Learning Problem). A learning problem, (\mathcal{H}, Z, l) , is called Convex-Lipschitz-Bounded, with parameters ρ , B if:

- The hypothesis class \mathcal{H} is a convex set and bounded (parameter is B).
- For all $z \in Z$, the loss function, $l(\cdot, z)$, is a convex and ρ Lipschitz function.

Example 12.2. Let $\mathcal{X} = \{x \in \mathbb{R}^d : ||\mathbf{x}|| \le \rho\}$ and $\mathcal{Y} = \mathbb{R}$. Let $\mathcal{H} = \{\mathbf{w} \in \mathbb{R}^d : ||\mathbf{w}|| \le B\}$ and let the loss function be $l(\mathbf{w}, (\mathbf{x}, y)) = |\langle \mathbf{w}, \mathbf{x} \rangle - y|$.

Proof.
$$|l(\mathbf{w}_1, (\mathbf{x}, y)) - l(\mathbf{w}_2, (\mathbf{x}, y))| \le |\langle \mathbf{w}_1 - \mathbf{w}_2, \mathbf{x} \rangle| \le ||\mathbf{x}|| \cdot ||\mathbf{w}_1 - \mathbf{w}_2||$$

Definition 12.7. (Convex-Smooth-Bounded Learning Problem). A learning problem, (\mathcal{H}, Z, l) , is called Convex-Smooth-Bounded, with parameters β , β if:

- The hypothesis class \mathcal{H} is a convex set and bounded (parameter is B).
- For all $z \in Z$, the loss function, $l(\cdot, z)$, is a convex,nonnegative and β Smooth function.

Example 12.3. Let $\mathcal{X} = \{x \in \mathbb{R}^d : ||\mathbf{x}||^2 \le \beta/2\}$ and $\mathcal{Y} = \mathbb{R}$. Let $\mathcal{H} = \{\mathbf{w} \in \mathbb{R}^d : ||\mathbf{w}|| \le B\}$ and let the loss function be $l(\mathbf{w}, (\mathbf{x}, y)) = (\langle \mathbf{w}, \mathbf{x} \rangle - y)^2$.

Proof.
$$\|\nabla l(\mathbf{w}_1, (\mathbf{x}, y)) - \nabla l(\mathbf{w}_2, (\mathbf{x}, y))\| = 2\|\mathbf{x}\langle \mathbf{w}_1 - \mathbf{w}_2, \mathbf{x}\rangle\| = 2\|\mathbf{x}\|^2\|\mathbf{w}_1 - \mathbf{w}_2\|$$

12.3 SURROGATE LOSS FUNCTIONS

The 0-1 loss function is not convex.

$$l^{0-1}(\mathbf{w}, (\mathbf{x}, y)) = \mathbf{1}\{y\langle \mathbf{w}, \mathbf{x}\rangle \le 0\}.$$

Proof. Let \mathcal{H} be the class of homogeneous halfspaces in \mathbb{R}^d . Let $\mathbf{x} = \mathbf{e}_1, y = 1$, and consider the sample $S = \{\mathbf{x}, y\}$. Let $\mathbf{w} = -\mathbf{e}_1$. Then, $\langle \mathbf{w}, \mathbf{x} \rangle = -1$ and $L_S(h_{\mathbf{w}}) = 1$. Let $\mathbf{w}', s.t. \epsilon \in (0, 1) and \|\mathbf{w}' - \mathbf{w}\| \le epsilon$. Then, $\langle \mathbf{w}', \mathbf{x} \rangle = \langle \mathbf{w}, \mathbf{x} \rangle - \langle \mathbf{w}' - \mathbf{w}, x \rangle = -1 - \langle \mathbf{w}' - \mathbf{w}, x \rangle \le -1 + \epsilon \|\mathbf{x}\| \le -1 + \epsilon < 0$, which means $L_S(\mathbf{w}') = 1$.

The requirements from a convex surrogate loss are as follows:

- It should be convex.
- It should be upper bound th original loss.

Definition 12.8. (hinge loss).

$$l^{hinge}(\mathbf{w}, (\mathbf{x}, y)) = \max\{0, 1 - y\langle \mathbf{w}, \mathbf{x} \rangle\}.$$

Then, we have:

$$L_{\mathcal{D}}^{hinge}(A(S)) \leq \min_{\mathbf{w} \in \mathcal{H}} L_{\mathcal{D}}^{hinge}(\mathbf{w}) + \epsilon.$$

$$L_{\mathcal{D}}^{0-1}(A(S)) \le \min_{\mathbf{w} \in \mathcal{H}} L_{\mathcal{D}}^{hinge}(\mathbf{w}) + \epsilon.$$

We can further rewrite the upper bound as follows:

$$L_{\mathcal{D}}^{0-1} \leq \min_{\mathbf{w} \in \mathcal{H}} L_{\mathcal{D}}^{0-1}(\mathbf{w}) + \left(\min_{\mathbf{w} \in \mathcal{H}} L_{\mathcal{D}}^{hinge}(\mathbf{w}) - \min_{mathbf w \in \mathcal{H}} L_{\mathcal{D}}^{0-1}(\mathbf{w})\right) + \epsilon.$$

The 0-1 error of the learned predictor is upper bounded by three terms:

- Approximation error: the first term.
- Optimization error: the second term.
- Estimation error: the third term.