ThinkDSP. Лабораторная 11. Модуляция и выборка (квантование).

Шерепа Никита 14 мая 2021 г.

Содержание

1	Упражение 11.3	5
2	Вывод	11

Список иллюстраций

1	Джангл-соло	5
	Спектр	
3	Удалили частоты	7
4	Результат	8
5	Без копий	9
6	Масштабируем результат	9
7	Отфильтрованная волна	0
8	Интерполированная волна	1

Листинги

1	Джангл-соло	ó
2	Спектр	5
3	Уменьшаем частоту дискретизации	3
4	Сглаживаем	3
5	Функция sample()	7
6	Применяем sample()	7
7	Отображаем результат	7
8	Избавляемся от спектральных копий	3
9	Масштабируем результат)
10	Вычисляем разницу)
11	Обратно в волну)
12	Отфильтрованная волна)
13	Интерполированная волна)
14	Разница	1

1 Упражение 11.3

1. Задание

К примеру "Соло на барабане"примените фильтр НЧ до выборки, а затем, опять же с помощью фильтра НЧ, удалите спектральные копии, вызванные выборкой. Результат должен быть идентичен отфильтрованному сигналу.

2. Ход работы

Возьмем ритмичное джангл-соло на барабанах.

Листинг 1: Джангл-соло

Рис. 1: Джангл-соло

Построим спектр

```
spectrum = wave.make_spectrum(full=True)
spectrum.plot()
Листинг 2: Спектр
```


Рис. 2: Спектр

Уменьшим частоту дискретизации в 3 раза

```
factor = 3
framerate = wave.framerate / factor
cutoff = framerate / 2 - 1
Листинг 3: Уменьшаем частоту дискретизации
```

Теперь немного сгладим спектр: удалим частоты выше новой частоты свертки, которая равна частоте кадров $/\ 2$

```
spectrum.low_pass(cutoff)
spectrum.plot()
```

Листинг 4: Сглаживаем

Рис. 3: Удалили частоты

После фильтрации запись звучит веьсма атмосферно - немного приглушенно, как олдскульный джангл-микс из платстинки в какомнибудь музыкальном магазине 90х годов.

Вот функция, имитирующая процесс дискретизации

```
from thinkdsp import Wave

def sample(wave, factor):

ys = np.zeros(len(wave))

ys[::factor] = np.real(wave.ys[::factor])

return Wave(ys, framerate=wave.framerate)

Листинг 5: Функция sample()
```

Применим к нашей записи

```
sampled = sample(filtered, factor)
sampled.make_audio()
Листинг 6: Применяем sample()
```

Результат содержит очень заметные копии спектра около 20 к Γ ц. Отобразим их.

```
from thinkdsp import Wave

def sample(wave, factor):
```

```
ys = np.zeros(len(wave))
ys[::factor] = np.real(wave.ys[::factor])
return Wave(ys, framerate=wave.framerate)
Листинг 7: Отображаем результат
```


Рис. 4: Результат

Избавимся от спектральных копий, снова применив фильтр сглаживания

```
sampled_spectrum.low_pass(cutoff)
sampled_spectrum.plot()
```

Листинг 8: Избавляемся от спектральных копий

Рис. 5: Без копий

Мы только что потеряли половину энергии в спектре, но мы можем масштабировать результат, чтобы вернуть его

```
sampled_spectrum.scale(factor)
spectrum.plot()
sampled_spectrum.plot()
Листинг 9: Масштабируем результат
```


Рис. 6: Масштабируем результат

Вычислим разницу между спектром до и после выборки

spectrum.max_diff(sampled_spectrum)

2

Output

1.8189894035458565e-12

Листинг 10: Вычисляем разницу

Разница мала и равна 1.8189894035458565е-12

После фильтрации и масштабирования преобразуем обратно в волну

interpolated = sampled_spectrum.make_wave()
interpolated.make_audio()

Листинг 11: Обратно в волну

Теперь сравним интерполированную волну и отфильтрованную волну

filtered.plot()

Листинг 12: Отфильтрованная волна

Рис. 7: Отфильтрованная волна

interpolated.plot()

Листинг 13: Интерполированная волна

Рис. 8: Интерполированная волна

Вычислим разницу

```
filtered.max_diff(interpolated)

Output
5.56290642113787e-16
Листинг 14: Разница
```

Видим, что графики похожи, а разница крайне мала и равна 5.56290642113787e-16

2 Вывод

В результате выполнения работы получены навыки работы с выборкой. Выяснено, что если применить к сигналу фильтр НЧ до выборки, и сравнить его с таким же сигналом, но в которому применили выборку и затем удалили спектральные копии, то результаты будут идентичны.