Real Analysis

Hai Le **Professor** LATEX by Rui Zhou University of Michigan

Winter 2024

Chapter 5

Lp Spaces

Definition 5.0.1: $||f||_{1p}$

Suppose (X, \mathcal{S}, μ) is a measure space, $0 , and <math>f: X \to \text{is } \mathcal{S}$ -measurable. Then the *p*-norm of f, denoted $||f||_{1p}$, is defined by

$$||f||_{1p} = \left(\int |f|^p \, \mathrm{d}\mu\right)^{1/p}.$$

Also when $p = \infty$, $||f||_{1\infty}$ is called the *essential supremum* of f, and is defined by

$$\|f\|_{1\infty}:=\inf\left\{ t>0:\mu\left(\left\{ x\in X:\left|f\left(x\right)\right|>t\right\} \right)=0\right\} .$$

Definition 5.0.2: $L^{p}(\mu)$

Suppose (X, \mathcal{S}, μ) is a measure space and $0 . The Lebesgue space <math>L^p(\mu)$ is denoted to be the set of all \mathcal{S} -measurable functions $f: X \to \text{such that}$

$$||f||_{1p} < \infty.$$

 $L^{p}(\mu)$ is a vector space. However, it is NOT a normed vector space. There exists some $f, g \in L^{p}(\mu)$ such that $f \neq g$ but $||f - g||_{1p} = 0$.

We construct $equivalence \ classese$:

$$f \sim g \iff f = g \text{ a.e.}$$

and identify each function with its own equivalence class.

Definition 5.0.3: Dual Exponent

Suppose $1 \leq p \leq \infty$. The dual exponent of p is denoted by $p' \in [1, \infty]$ that satisfies

$$\frac{1}{p} + \frac{1}{p'} = 1.$$

Example.

$$2' = 2, 1' = \infty, \infty' = 1.$$

Proposition 5.0.4

• (Holder's Inequality) $1 \le p \le \infty$, $f, h: X \to$, then

$$||fh||_{11} \le ||f||_{1p} ||h||_{1p'}.$$

• $0 , <math>\mu(X) < \infty$, then

$$||f||_{1p} \le \mu(X)^{(q-p)/(pq)} ||f||_{1q}.$$

for all $f \in L^{q}(\mu)$. Furthermore, $L^{q}(\mu) \leq L^{p}(\mu)$.

• $1 \le p < \infty, f \in p^p(\mu)$. Then

$$||f||_{1p} = \sup \left\{ \left| \int fh \ d\mu \right| : h \in L^{p'}(\mu) \text{ and } ||h||_{1p} \le 1 \right\}.$$

• (Minowsky's Inequality: $\|\cdot\|_{1p}$ is a norm) $1 \le p \le \infty$,

$$||f + g||_{1p} \le ||f||_{1p} + ||g||_{1p}$$

Now that we know L^p is a normed vector space. We want to show further that L^p is a Banach space.

Proposition 5.0.5

 $1 \le p \le \infty$, $\{f_i\} \in L^p(\mu)$ such that for all $\varepsilon > 0$, there exists $n \in$ such that

$$||f_j - f_k||_1 < \varepsilon, \forall j, k \ge n.$$

There exists $f \in L^p$ such that

$$\lim_{k \to \infty} ||f_k - f||_{1p} = 0.$$

Proof for Proposition.

To prove a Cauchy sequence is convergent, it suffice to show the convergence of any subsequence.

To extract a subsequence with the following properties: Suppose $f_0 = 0$,

$$\sum_{k=1}^{\infty} \|f_k - f_{k-1}\|_1 < \infty$$

This step is valid because the sequence of Cauchy.

Define g_1, g_2, \cdots, g_m such that

$$g_m(x) = \sum_{k=1}^{m} |f_k(x) - f_{k-1}(x)|$$

and

$$g(x) = \sum_{k=1}^{\infty} |f_k(x) - f_{k-1}(x)|$$

We have by Triangle Inequality,

$$||g_m||_{1p} \le \sum_{k=1}^m ||f_k(x) - f_{k-1}(x)||_{1p} < \infty$$

Moreover, we have pointwise convergence:

$$g_m(x) \to g(x), \forall x \in X$$

By DCT, we have

$$||g||_{1p} = \lim_{m \to \infty} ||g_m||_{1p} < \infty$$

$$\Longrightarrow g < \infty \text{ a.s}$$

Therefore,

$$\sum_{k=1}^{m} (f_k(x) - f_{k-1}(x)) = \lim_{m \to \infty} f_m(x) = f(x)$$

Moreover, $|f| \leq g$ and $g \in L^p$, this implies that $f \in L^p$.

Finally, $||f_k - f||_{1p} \le \liminf_{j \to \infty} ||f_k - f_j||_{1p} \le \varepsilon$, for k large enough. This implies that

$$\lim_{k \to \infty} ||f_k - f||_{1p} = 0.$$