Tutorial Week 2

Robin Swanson (robin@cs.toronto.edu)

Tutorial Overview

- Insertion Sort
 - Review
 - Example Array Sorting
 - Average Case Running Time
- Group Examples From Textbook
 - 6.1-1, 6.1-5
 - 6.2-4
 - 6.3-2

Insertion Sort Review

- Iteratively sort array from one end to the other
- Given the next element to sort find its new location among the already sorted elements

• Insert into the correct position, shift values > x to the right

Choose the next element from the unsorted data and start again

Insertion Sort Pseudo Code

```
i ← 1
while i < length(A)</pre>
     x \leftarrow A[i]
     j ← i – 1
     while j \ge 0 and A[j] \ge x
          A[j+1] \leftarrow A[j]
          j ← j – 1
     end while
     A[j+1] \leftarrow x
     i \leftarrow i + 1
end while
```


1

Insertion Sort Running Time

• Best Case?

Worst Case?

Insertion Sort Running Time

• Best Case? O(n)

Worst Case?

Insertion Sort Running Time

• Best Case? O(n)

Worst Case? O(n^2)

10	9	8	7	6	5	4	3	2	1	
----	---	---	---	---	---	---	---	---	---	--

Insertion Sort Average Case

For i = 2 to n

Insert the element x_i in the partially sorted list $x_1, x_2, ..., x_{i-1}$.

• Let X_i be the random variable which represents the number of comparisons required to insert i^{th} element of the input array in the sorted sub array of first i-1 elements.

$$E(X_i) = \sum_{j=1}^i x_{ij} p(x_{ij})$$

where $E(X_i)$ is the expected value X_i

and, $p(x_{ij})$ is the probability of inserting x_i in the j^{th} position $1 \le j \le i$

How many comparisons it makes to insert ith element in jth position?

Note: Here, both position 2 and 1 have # of Comparisons equal to i-1. Why? Because to insert element at position 2 we have to compare with previously first element and after that comparison we know which of them come first and which at second.

$$E(X_i) = \sum_{j=1}^i x_{ij} p(x_{ij})$$

probability to insert at jth position in the *i* possible positions: $P(x_{ij} = j) = \frac{1}{i}$

Thus,
$$E(X_i) = \sum_{j=1}^{i} j * \frac{1}{i} = (i+1)/2$$

For n elements, $E(X_2 + ... + X_n) = \sum_{i=2}^n E(X_i) = \sum_{i=2}^n (i+1)/2 = \frac{(n+4)(n-1)}{4} = \frac{n^2}{4} + \frac{3n}{4} - 1$ Therefore average case of insertion sort takes $\Theta(n^2)$

Problems From The Book (6.1-1)

• **Q**: What are the minimum and maximum numbers of elements in a heap of height *h*?

Problems From The Book (6.1-1)

- **Q**: What are the minimum and maximum numbers of elements in a heap of height *h*?
- A: At least 2^h and at most 2^h(h+1)-1
- A full binary tree of height h-1 has at most 2^h-1 elements

Problems From The Book (6.1-4)

• Q: Where in a max-heap might the smallest element reside, assuming that all elements are distinct?

Problems From The Book (6.1-4)

- Q: Where in a max-heap might the smallest element reside, assuming that all elements are distinct?
- A: The smallest element must be a leaf node. Recall that by the maxheap property a child must be less than or equal to its parent. Because every element is distinct in this heap this becomes a strict inequality. Therefore the smallest element must be somewhere in a leaf node.

Problems From The Book (6.2-4)

• Q: What is the effect of calling Max_Heapify(A, i) if i > A.heap_size/2?

Problems From The Book (6.2-4)

- Q: What is the effect of calling Max_Heapify(A, i) if i > A.heap_size/2?
- A: Nothing. i must be a leaf node, therefore the recursive call will never be made and the heap will not be changed.

Problems From The Book (6.3-2)

• Q: Why do we want the loop index i in line 2 of Build_Max_Heap to decrease from floor(A.length/2) to 1 rather than increase from 1 to floor(A.length/2)?

```
Build_Max_Heap(A):
    A.heap_size = A.length
    for i = floor(A.length/2) -> 1
        Max_Heapify(A,i)
```

Problems From The Book (6.3-2)

- Q: Why do we want the loop index i in line 2 of Build_Max_Heap to decrease from floor(A.length/2) to 1 rather than increase from 1 to floor(A.length/2)?
- A: If we begin at element 1, higher value child nodes may not be swapped up to the top of the heap.
 - Example: [2,1,1,3]
 - **1.** 2 larger than 1 & 1, no swap
 - **2.** 1 < 3 so swap 1 & 3
 - **3.** Finished. Result: [2,3,1,1]