PREENCHIMENTO

Prof. Dr. Bianchi Serique Meiguins

Prof. Dr. Carlos Gustavo Resque dos Santos

Preenchimento de formas conhecidas

Retângulo

- Basta pintar todos os pixels dentro do retângulo
- O caso mais simples

Preenchimento de formas conhecidas

- Círculo
- □ Elipse

 A ideia é preencher linhas usando os pontos encontrados na rasterização

Preenchimento de formas conhecidas

□ Para os Círculos

Preenchimento de Polígonos

□ Teste de Paridade

Varredura (Scanline Algorithm) & Análise Geométrica

- Baseia-se na descrição geométrica
- utiliza linhas de varredura (y = constante)
- identifica pontos internos do polígono e as interseções das arestas dos polígonos com as linhas de varredura
- há uma tabela de lados para descrição do polígono em questão

Varredura (Scanline Algorithm)

Casos Particulares

Cantos:

Contar apenas os pontos de mínimo por exemplo.

Varredura (Scanline Algorithm)

1º passo: montar a Tabela de lados - descrição do polígono:

LADO	Ymin	$Y_{ ext{máx}}$	X para	1/m
	10000000	20000000000	Y_{min}	
1	0	10	80	-8,0
2	10	30	0	+2,0
3	30	50	40	-1,0
4	50	70	20	+2,0
5	30	70	110	-1,25
6	0	30	130	-0,67
7	0	30	130	-1,0
8	10	30	80	+0,67

Varredura (Scanline Algorithm)

 2º passo: identificar as diversas interseções com a linha de varredura: usamos a fórmula de cálculo - eq. da reta:

$$x = \frac{1}{m} \cdot (Y_{\text{varredura}} - Y_{\text{min}}) + X_{\text{Ymin}}$$

3º passo: ordenam-se os pontos e traçam-se linhas :

Preenchimento Recursivo

 Um pixel vizinho de um outro pixel, que já esta dentro do polígono, também está dentro do polígono

- Considera-sevizinho os 4 pixels:
 - Cima, Direita, baixo, esquerda.

Preenchimento Recursivo

```
FloodFill(x,y,color,edgeColor):
current = IerPixel(x,y)
se(current != edgeColor && current != color):
      pintarPixel(x,y,color)
      FloodFill(x+1,y, color, edgeColor)
      FloodFill(x,y+1, color, edgeColor)
      FloodFill(x-1,y, color, edgeColor)
      FloodFill(x,y-1, color, edgeColor)
```

Exercício

Preencher os seguintes polígonos

