#### Tomáš Horváth

### INTRODUCTION TO DATA SCIENCE

#### Lecture 4

## Prediction – Supervised Learning

Data Science and Engineering Department Faculty of Informatics ELTE University



#### Instances and labels

• Instances are represented by their attributes

$$\mathbf{x} = (x_1, \dots, x_k) \in \mathcal{X}, \quad \mathcal{X} = \mathcal{X}_1 \times \dots \times \mathcal{X}_k$$

• An instance belongs to a **class** or have a **value**. An instance a class or a value of which is known is called **labeled** 

$$(\mathbf{x}, y) \in \mathcal{X} \times \mathcal{L}$$

 Assume that labels are assigned according to some unknown pattern called labeling function

$$l: \mathcal{X} \to \mathcal{L}, \quad l(\mathbf{x}) = y$$

- if  $\mathcal{L} \subset \mathbb{Z}^1$  then l is a classification function (classifier)
- if  $\mathcal{L} \subset \mathbb{R}$  then l is a **regression** function (regressor)



<sup>&</sup>lt;sup>1</sup>Important is, that we deal with discrete labels in case of classification.

## Example





## Train set and Modeling

The problem: The labeling function l is unknown.

• Good news: Even if *l* is not known, we have observed a sample of instances with their labels. Such a set of instances is called the **training sample** 

$$\mathcal{S}^{tr} = \{ (\mathbf{x}, y) | \mathbf{x} \in \mathcal{X}, y \in \mathcal{L} \}$$

which can be considered as an explicit definition of l.

The solution: Try somehow, using  $S^{tr}$ , to **model** l by a mapping

$$m: \mathcal{X} \to \mathcal{L}, \quad m(\mathbf{x}) = \hat{y}$$

such that m is as close to l as possible.



## Example





## The quality and the parameters of m

How do we express m?

- m is given by its **type** and **parameters**  $\Theta$ 
  - let's focus on linear models

• 
$$m^{\Theta}(\mathbf{x} = (x_1, \dots, x_k)) = \theta_0 + \theta_1 x_1 + \dots + \theta_k x_k$$
  
•  $\Theta = (\theta_0, \theta_1, \dots, \theta_k)$ 

How to measure if m approximates l well?

• empirical error<sup>2</sup>

$$err(m^{\Theta}, \mathcal{S}^{tr}) = \sum_{(\mathbf{x}, y) \in \mathcal{S}^{tr}} l_r(y, m^{\Theta}(\mathbf{x})) = \sum_{(\mathbf{x}, y) \in \mathcal{S}^{tr}} (y - m^{\Theta}(\mathbf{x}))^2$$

Modeling means<sup>3</sup> to choose a type of m and to find its parameters  $\Theta$  such that  $err(m^{\Theta}, \mathcal{S}^{tr})$  is minimal.

• least squares estimates (LSE)

<sup>&</sup>lt;sup>3</sup>There are also some other issues important while we are modeling, we'll explain them later.



 $<sup>{}^{2}</sup>l_{r}(y, m^{\Theta}(\mathbf{x}))$  is a **regression loss** function.

## A generative model (1/2)

Let's 
$$m^{\Theta}(\mathbf{x} = (x_1)) = \theta_0 + \theta_1 x_1$$

- $m^{\Theta}$  approximates l with an error  $\epsilon$ , i.e.  $y = l(\mathbf{x}) = m^{\Theta}(\mathbf{x}) + \epsilon$ 
  - assume  $\epsilon \sim N(0, \sigma^2)$ , thus,  $p(y|\mathbf{x}) \sim N(\theta_0 + \theta_1 x_1, \sigma^2)$

#### How is the data generated?

- assume the instances  $(\mathbf{x}, y)$  are "sampled" independently
- the likelihood<sup>4</sup> of this sampling given parameters  $\Theta = (\theta_0, \theta_1)$  is

$$L_{\mathcal{S}^{tr}}(\Theta) = \prod_{(\mathbf{x},y) \in \mathcal{S}^{tr}} p(\mathbf{x},y|\Theta) = \prod_{(\mathbf{x},y) \in \mathcal{S}^{tr}} p(y|\mathbf{x},\Theta) p(\mathbf{x},\Theta)$$

Modeling means to choose a type of m and to find its parameters  $\Theta$  such that  $L_{\mathcal{S}^{tr}}(\Theta)$  is maximal.

• maximum likelihood estimates (MLE)



<sup>&</sup>lt;sup>4</sup>i.e. the probability of the data  $(\mathcal{S}^{tr})$ 

## A generative model (2/2)

$$\prod_{(\mathbf{x},y)\in\mathcal{S}^{tr}} p(\mathbf{x},y) = \prod_{(\mathbf{x},y)\in\mathcal{S}^{tr}} p(y|\mathbf{x})p(\mathbf{x}) = \prod_{(\mathbf{x},y)\in\mathcal{S}^{tr}} p(y|\mathbf{x}) \prod_{(\mathbf{x},y)\in\mathcal{S}^{tr}} p(\mathbf{x})$$

since  $p(\mathbf{x})$  doesn't depends on  $\Theta$ , it's enough to maximize the **conditional likelihood** 

$$L_{\mathcal{S}^{tr}}^{cond}(\Theta) = \prod_{(\mathbf{x}, y) \in \mathcal{S}^{tr}} p(y|\mathbf{x}) = \prod_{(\mathbf{x}, y) \in \mathcal{S}^{tr}} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(y - m^{\Theta}(\mathbf{x}))^{2}}{2\sigma^{2}}}$$

this is equivalent to maximize the conditional log-likelihood

$$lnL_{\mathcal{S}^{tr}}^{cond}(\Theta) = \sum_{(\mathbf{x}, y) \in \mathcal{S}^{tr}} ln\Big(\frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(y - m^{\Theta}(\mathbf{x}))^2}{2\sigma^2}}\Big) \propto \min \sum_{(\mathbf{x}, y) \in \mathcal{S}^{tr}} (y - m^{\Theta}(\mathbf{x}))^2$$

under the assumption of normality, MLE are the LSE



## Gradient descent optimization

for more variables closed form solutions are bothersome

- How to find a minimum of an "objective" function  $f(\Theta)$ ?
  - assume f is differentiable and convex

#### Gradient descent

input:  $f, \alpha, stopping\ criteria$  initialize  $\Theta$  (not with zeros) repeat

$$\Theta \leftarrow \Theta - \alpha \frac{\partial f}{\partial \Theta}(\Theta)$$

until approximate minimum is reached return  $\Theta$ 

stopping criteria

- $|\Theta^{old} \Theta| < \epsilon$
- maximum number of iterations reached
- a combination of both



## Stochastic gradient descent optimization

if f can be written as

$$f(\Theta) = \sum_{i=1}^{n} f_i(\Theta)$$

## Stochastic gradient descent (SGD)

input:  $f_i, \alpha, stopping \ criteria$  initialize  $\Theta$ 

repeat

for all i in random order do

$$\Theta \leftarrow \Theta - \alpha \frac{\partial f_i}{\partial \Theta}(\Theta)$$

until approximate minimum is reached return  $\Theta$ 

 $\alpha$  is a **hyper-parameter** of the "learning" algorithm



#### Prediction

The aim is not to describe the data but rather to **predict** labels on yet unseen instances.

generalization error for regression<sup>1</sup>

$$err(m^{\Theta}) = E_{(\mathbf{x},y)}\{l_r(y, m^{\Theta}(\mathbf{x}))\} = \int_{\mathcal{X}} \int_{\mathcal{L}} l_r(y, m^{\Theta}(\mathbf{x})) p(\mathbf{x}, y) \, dy d\mathbf{x}$$

• generalization error for classification<sup>2</sup>

$$err(m^{\Theta}) = E_{(\mathbf{x},y)}\{l_c(y, m^{\Theta}(\mathbf{x}))\} = \int_{\mathcal{X}} \sum_{c \in \mathcal{L}} l_c(c, m^{\Theta}(\mathbf{x})) p(\mathbf{x}, y = c) \, dy d\mathbf{x}$$

Bayes predictor minimizes the generalization error

$$m_B = \underset{m^{\Theta}}{\operatorname{arg\,min}} \ err(m^{\Theta})$$



 $<sup>^{1}</sup>E_{(\mathbf{x},u)}\{l_{r}(y,m^{\Theta}(\mathbf{x}))\}\text{ is an expectation of the regression loss over }\mathcal{X}\times\mathcal{L}.$ 

 $<sup>2</sup>l_c(y, m^{\Theta}(\mathbf{x}))$  is called **classification loss** and can be defined e.g. as  $l_c(y, m^{\Theta}(\mathbf{x})) = 1 - \delta(y = m^{\Theta}(\mathbf{x}))$ , with  $\delta$  being a usual truth-indicator function.

### Regularization

The aim is to achieve low generalization error of the model

- it means, describe the available data<sup>3</sup> as well as possible
- but also, don't fit the model to the noise in the data
- i.e. try to get a smooth model

#### regularized linear regression

• the objective function<sup>4</sup> to optimize (minimize) is

$$f(\Theta) = \underbrace{\sum_{(\mathbf{x}, y) \in \mathcal{S}^{tr}} (y - m^{\Theta}(\mathbf{x}))^{2}}_{\text{empirical error}} + \underbrace{\lambda \|\Theta\|^{2}}_{\text{regularization term}}$$



<sup>&</sup>lt;sup>3</sup>Keep in mind that the available data is only the train set.

 $<sup>^4\</sup>lambda$  is a hyper-parameter, while  $\Theta$  is a parameter!

## Example





Supervised Learning

## Example





## The quality of a model

According to  $\Theta$ , we can have many **different models**  $m^{\Theta}$ .

- Which model is the best one?
- Which properties a good model should have?
  - We need some quality indicators for a model...

One model could be trained using many different training samples.

• What would the results be in case of using  $S^{tr_2}$  or any other training sample instead of  $S^{tr_1}$ ?

#### Bias and Variance

#### Bias

- measures, how  $m^{\Theta, \mathcal{S}^{tr_1}}, m^{\Theta, \mathcal{S}^{tr_2}}, \dots, m^{\Theta, \mathcal{S}^{tr_m}}$  differs from l
- determines, how generic the model  $m^{\Theta}$  is

#### Variance

- measures, how  $m^{\Theta, \mathcal{S}^{tr_1}}, m^{\Theta, \mathcal{S}^{tr_2}}, \dots, m^{\Theta, \mathcal{S}^{tr_m}}$  differs frome each other
- determines, how stable the model  $m^{\Theta}$  is





## Underfitting vs. Overfitting

Bias

$$bias_{m\Theta}^{2}(\mathbf{x}) = (l(\mathbf{x}) - \mathbf{E}_{\mathcal{S}^{tr}} \{ m^{\Theta, \mathcal{S}^{tr}}(\mathbf{x}) \})^{2}$$

Variance

$$variance_{m\Theta}(\mathbf{x}) = \mathcal{E}_{\mathcal{S}^{tr}} \{ (m^{\Theta, \mathcal{S}^{tr}}(\mathbf{x}) - \mathcal{E}_{\mathcal{S}^{tr}} \{ m^{\Theta, \mathcal{S}^{tr}}(\mathbf{x}) \})^2 \}$$

 $\mathbb{E}_{\mathcal{S}^{tr}}\{X\}$  is an **expected value** of X over all training samples.

#### Underfitting

- when the model has high bias and low variance, i.e. is too general Overfitting
- when the model has low bias and high variance, i.e. is too specific



Supervised Learning

### The bias-variance tradeoff

Usually, the bias decreases with the **complexity** of the model, while variance increases with the complexity of the model. Thus, we need to find a tradeoff model, which is not too general nor too specific.



<sup>1</sup> image source: http://scott.fortmann-roe.com/



#### Error

What happens if we sum up the bias and the variance?<sup>2</sup>

$$\begin{aligned} bias_{m\Theta}^{2}(\mathbf{x}) + variance_{m\Theta}(\mathbf{x}) &= \\ &= (l(\mathbf{x}) - \mathbf{E}_{S^{tr}} \{\hat{y}\})^{2} + \mathbf{E}_{S^{tr}} \{(\hat{y} - \mathbf{E}_{S^{tr}} \{\hat{y}\})^{2}\} \\ &= (l(\mathbf{x}) - \mathbf{E}_{S^{tr}} \{\hat{y}\})^{2} + \mathbf{E}_{S^{tr}} \{(\hat{y} - \mathbf{E}_{S^{tr}} \{\hat{y}\})^{2}\} \\ &+ 2 \cdot (l(\mathbf{x}) - \mathbf{E}_{S^{tr}} \{\hat{y}\})(\mathbf{E}_{S^{tr}} \{\hat{y}\} - \mathbf{E}_{S^{tr}} \{\hat{y}\}) \\ &= (l(\mathbf{x}) - \mathbf{E}_{S^{tr}} \{\hat{y}\})^{2} + \mathbf{E}_{S^{tr}} \{(\hat{y} - \mathbf{E}_{S^{tr}} \{\hat{y}\})^{2}\} \\ &+ 2 \cdot (l(\mathbf{x}) - \mathbf{E}_{S^{tr}} \{\hat{y}\})\mathbf{E}_{S^{tr}} \{(\mathbf{E}_{S^{tr}} \{\hat{y}\} - \hat{y})\} \\ &= \mathbf{E}_{S^{tr}} \{(l(\mathbf{x}) - \mathbf{E}_{S^{tr}} \{\hat{y}\})^{2}\} + \mathbf{E}_{S^{tr}} \{(\mathbf{E}_{S^{tr}} \{\hat{y}\} - \hat{y})^{2}\}\} \\ &+ \mathbf{E}_{S^{tr}} \{(l(\mathbf{x}) - \mathbf{E}_{S^{tr}} \{\hat{y}\} + \mathbf{E}_{S^{tr}} \{\hat{y}\} - \hat{y})^{2}\}\} \\ &= \mathbf{E}_{S^{tr}} \{(l(\mathbf{x}) - \hat{y})^{2}\} \end{aligned}$$

We get the expected squared error of the model over all training samples w.r.t. the labeling.



<sup>&</sup>lt;sup>2</sup>We will denote  $m^{\Theta,\mathcal{S}^{tr}}(\mathbf{x})$  as  $\hat{y}$  for better readability on the next slides.

### Noise in sampling

The error introduced on the previous slide deals with the labeling l.

- However, the precise values of l are unknown.
  - We should consider to use the observed labels from the training sample.

As we have seen, observations are usually noisy, i.e.  $y = l(\mathbf{x}) + \epsilon$  for all  $(\mathbf{x}, y) \in \mathcal{S}^{tr}$ , where  $\mathcal{S}^{tr}$  is an arbitrary sample of instances.

- there can be more instances with same attribute values but different labels
- note, that we don't care about where the noise came from
  - non-perfect measuring devices, human factor, etc.

$$noise(\mathbf{x}) = \mathbf{E}_{(\mathbf{x},y)} \{ (y - l(\mathbf{x}))^2 \}$$



### Noise in sampling

Usually, we assume a normally distributed sampling error  $\epsilon \sim \mathcal{N}(0,1)$ 

• thus,  $E_{(\mathbf{x},y)}\{y\} = l(\mathbf{x})$ 

Let's rewrite the equations introduced before as

$$bias_{m\Theta}^{2}(\mathbf{x}) = (E_{(\mathbf{x},y)}\{y\} - E_{\mathcal{S}^{tr}}\{\hat{y}\})^{2}$$

$$variance_{m\Theta}(\mathbf{x}) = \mathcal{E}_{\mathcal{S}^{tr}} \{ (\hat{y} - \mathcal{E}_{\mathcal{S}^{tr}} \{ \hat{y} \})^2 \}$$

$$noise(\mathbf{x}) = \mathcal{E}_{(\mathbf{x},y)} \{ (y - \mathcal{E}_{(\mathbf{x},y)} \{ y \})^2 \}$$

and sum them up

$$\underbrace{bias_{m\Theta}^{2}(\mathbf{x}) + variance_{m\Theta}(\mathbf{x})}_{\mathbf{E}_{\mathcal{S}^{tr}}\{(\mathbf{E}_{(\mathbf{x},y)}\{y\} - \hat{y})^{2}\}} + noise(\mathbf{x})$$



### Expected squared error

$$\begin{split} & E_{\mathcal{S}^{tr}} \{ (E_{(\mathbf{x},y)} \{y\} - \hat{y})^2 \} + E_{(\mathbf{x},y)} \{ (y - E_{(\mathbf{x},y)} \{y\})^2 \} \\ &= E_{(\mathbf{x},y)} \{ (y - E_{(\mathbf{x},y)} \{y\})^2 \} + E_{\mathcal{S}^{tr}} \{ (E_{(\mathbf{x},y)} \{y\} - \hat{y})^2 \} \\ &+ E_{\mathcal{S}^{tr}} \{ 2 \cdot (E_{(\mathbf{x},y)} \{y\} - E_{(\mathbf{x},y)} \{y\}) (E_{(\mathbf{x},y)} \{y\} - \hat{y}) \} \\ &= E_{\mathcal{S}^{tr}} \{ E_{(\mathbf{x},y)} \{ (y - E_{(\mathbf{x},y)} \{y\})^2 \} \} + E_{\mathcal{S}^{tr}} \{ E_{(\mathbf{x},y)} \{ (E_{(\mathbf{x},y)} \{y\} - \hat{y})^2 \} \\ &+ E_{\mathcal{S}^{tr}} \{ E_{(\mathbf{x},y)} \{ (y - E_{(\mathbf{x},y)} \{y\} + E_{(\mathbf{x},y)} \{y\} - \hat{y})^2 \} \} \\ &= E_{\mathcal{S}^{tr}} \{ E_{(\mathbf{x},y)} \{ (y - E_{(\mathbf{x},y)} \{y\} + E_{(\mathbf{x},y)} \{y\} - \hat{y})^2 \} \} \\ &= E_{\mathcal{S}^{tr}} \{ E_{(\mathbf{x},y)} \{ (y - \hat{y})^2 \} \} \end{split}$$

We get the expected squared error of the model over all training samples and all instances w.r.t. the observed labeling.

known labels for observed instances

### Test set, RMSE and MAE

In practice, we train a model  $m^{\Theta}$  on a train set  $\mathcal{S}^{tr}$  and test its error on a so-called **test sample**  $\mathcal{S}^{te}$  defined as

$$\mathcal{S}^{te} \subset \mathcal{X} \times \mathcal{L} \setminus \mathcal{S}^{tr}$$

Root mean squared error (regression)

$$rmse(m^{\Theta,\mathcal{S}^{tr}}(\mathbf{x}),\mathcal{S}^{te}) = \sqrt{\frac{\sum_{(\mathbf{x},y)\in\mathcal{S}^{te}}(m^{\Theta,\mathcal{S}^{tr}}(\mathbf{x}) - y)^2}{|\mathcal{S}^{te}|}}$$

Mean absolute error (classification)

$$mae(m^{\Theta, \mathcal{S}^{tr}}(\mathbf{x}), \mathcal{S}^{te}) = \frac{\sum_{(\mathbf{x}, y) \in \mathcal{S}^{te}} I(m^{\Theta, \mathcal{S}^{tr}}(\mathbf{x}) \neq y)}{|\mathcal{S}^{te}|}$$

where  $I(\cdot) = 1$  if the condition  $(\cdot)$  holds, otherwise  $I(\cdot) = 0$ .



## Bias-variance, test set, train set, ...





Supervised Learning

 $<sup>^3</sup>$  image from Google images.

#### Cross-validation

A small complication: As usual, we have only one training and one test set on the input! Moreover, the labels of instances in the test set are "hidden" to the model.

- Question: How can we get the model with the least expected error?
  - i.e. evaluating over all training samples and all instances...
- Answer: Try to simulate learning over "more" training sets and "more" instances.
  - i.e. creating more (smaller) training sets from the original one...



<sup>&</sup>lt;sup>1</sup>The test set should be usually used for the final evaluation of the model but not for tuning it (selection of a best technique or good parameters, etc.)



#### k-fold Cross-validation

### One possible alternative<sup>2</sup>:

**1** Split (systematically or randomly) the training sample  $\mathcal{S}^{tr}$  to k parts of similar size

$$\mathcal{S}^{tr} = \bigcup_{k} \mathcal{S}_{k}^{tr}$$

2 choose those hyper-parameters  $\Xi$  such that<sup>3</sup>

$$\Xi = \underset{m^{\Xi}}{arg\,min}\left\{\frac{1}{k}\sum_{i=1}^{k}err(m^{\Theta,\Xi,\bigcup_{1\leq j\leq k,j\neq i}\mathcal{S}_{j}^{tr}},\mathcal{S}_{i}^{tr})\right\}$$

- $S_i^{tr}$  is called **validation fold**.
- **3** "re-learn" the final  $m^{\Theta}$  using  $\Xi$  on the whole training set  $\mathcal{S}^{tr}$

 $<sup>3 \</sup>underset{m}{\Theta}, \Xi, \bigcup_{1 \leq j \leq k, j \neq i} S_{j}^{ir}$  denotes a model whose parameters  $\Theta$  were learned using hyper-parameters  $\Xi$  on the sample  $\bigcup_{1 \leq j \leq k, j \neq i} S_{j}^{ir}$ .



<sup>&</sup>lt;sup>2</sup>Ξ denotes the hyper-parameters of the model.

### Bayes Classifier

Let's have  $C_1, \ldots, C_K$  mutually exclusive and exhaustive classes **prior** probability  $P(C_i)$ 

- probability that an arbitrary instance is labeled with class  $C_i$  likelihood  $P(\mathbf{x}|C_i)$ 
  - probability that an arbitrary instance belonging to class  $C_i$  is associated with the instance  $\mathbf{x}$

### evidence $P(\mathbf{x})$

- probability that the instance  $\mathbf{x}$  is seen regardless of its class **posterior** probability  $P(C_i|\mathbf{x})$ 
  - probability that the instance  $\mathbf{x}$  is labeled with class  $C_i$

$$P(C_i|\mathbf{x}) = \frac{P(\mathbf{x}|C_i)P(C_i)}{P(\mathbf{x})}$$

for **x predict**  $C_i$  for which  $P(C_i|\mathbf{x})$  is maximal



### Discriminant function

in case of K classes, classification can be seen as an implementation of K discriminant functions  $g_1(\mathbf{x}), \dots, g_K(\mathbf{x})$  such that

• for **x predict**  $C_i$  for which  $g_i(\mathbf{x})$  is maximal

#### binary classification

- K = 2, i.e. labels of instances belong to  $\mathcal{L} = \{0, 1\}$
- e.g.  $g_1(\mathbf{x}) = P(\mathbf{x}|C_1)P(C_1)$  and  $g_2(\mathbf{x}) = P(\mathbf{x}|C_2)P(C_2)$
- a single discriminant is enough

$$g(\mathbf{x}) = g_1(\mathbf{x}) - g_2(\mathbf{x})$$

• for  $\mathbf{x}$  predict  $C_1$  if  $g(\mathbf{x}) > 0$ , and predict  $C_2$  if  $g(\mathbf{x}) < 0$ 

#### decision boundary

- separates the feature space into decision regions
- $g(\mathbf{x}) = 0$  for any  $\mathbf{x}$  lying on the decision boundary



### Example

one dimensional feature space, two classes

- assume equal priors, i.e.  $P(C_1) = P(C_2)$
- assume normal likelihoods, i.e.  $P(\mathbf{x}|C_i) = \mathcal{N}(\mu_i, \sigma_i^2)$ 
  - assume equal standard deviations, i.e.  $\sigma_1^2 = \sigma_2^2$

• 
$$g_i(\mathbf{x}) = log P(\mathbf{x}|C_i) + log P(C_i)$$

$$g_i(\mathbf{x}) = \underbrace{-\frac{1}{2}log 2\pi}_{\text{constant}} \underbrace{-\frac{log \sigma_i}{equal \text{ variances}}}_{\text{equal variances}} - \underbrace{\frac{(x - \mu_i)^2}{2\sigma_i^2}}_{\text{equal priors}} \underbrace{+log P(C_i)}_{\text{equal priors}} = -(x - \mu_i)^2$$

- we use the estimates  $m_i$  for  $\mu_i$ , i.e.  $g_i(\mathbf{x}) = -(x m_i)^2$ 
  - assign **x** to the class  $C_i$  with the nearest mean  $m_i$
- decision boundary, where  $g_1(\mathbf{x}) = g_2(\mathbf{x})$ , i.e.  $\mathbf{x} = \frac{m_1 + m_2}{2}$



#### Linear classifier

#### **linear discriminant** function – a hyperplane

• 
$$g(\mathbf{x}) = g_1(\mathbf{x}) - g_2(\mathbf{x}) = (\mathbf{w}_1^T \mathbf{x} + w_{10}) - (\mathbf{w}_2^T \mathbf{x} + w_{20})$$
  
 $g(\mathbf{x}) = (\mathbf{w}_1 - \mathbf{w}_2)^T \mathbf{x} + (w_{10} - w_{20}) = \mathbf{w}^T \mathbf{x} + w_0$ 

• assign **x** to the class  $C_1$  if  $g(\mathbf{x}) > 0$ , and to  $C_2$  if  $g(\mathbf{x}) < 0$ 





### Linear classifier – properties

Let  $\mathbf{x}_1, \mathbf{x}_2$  be two points on the hyperplane

- $g(\mathbf{x}_1) = \mathbf{w}^T \mathbf{x}_1 + w_0 = 0 = \mathbf{w}^T \mathbf{x}_2 + w_0 = g(\mathbf{x}_2) \Longrightarrow \mathbf{w}^T (\mathbf{x}_1 \mathbf{x}_2) = 0$ 
  - ullet w is orthogonal to the hyperplane, i.e. defines its direction

Let  $\mathbf{x}_p$  be the projection of  $\mathbf{x}$  on the hyperplane, i.e.  $g(\mathbf{x}_p) = 0$ 

•  $\mathbf{x} = \mathbf{x}_p + r \frac{\mathbf{w}}{\|\mathbf{w}\|}$ , where r is the distance of  $\mathbf{x}$  from the hyperplane

• 
$$g(\mathbf{x}) = g(\mathbf{x}_p + r \frac{\mathbf{w}}{||\mathbf{w}||}) = \mathbf{w}^T(\mathbf{x}_p + r \frac{\mathbf{w}}{||\mathbf{w}||}) + w_0 = \underbrace{\mathbf{w}^T \mathbf{x}_p + w_0}_{g(\mathbf{x}_p) = 0} + r \frac{\mathbf{w}^T \mathbf{w}}{||\mathbf{w}||}$$

• 
$$g(\mathbf{x}) = r||\mathbf{w}|| \Longrightarrow r = \frac{g(\mathbf{x})}{||\mathbf{w}||}$$

Let  $\mathbf{x} = \mathbf{0}$ 

• 
$$g(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0 \Longrightarrow \underbrace{\frac{g(\mathbf{x})}{||\mathbf{w}||}}_{\mathbf{x}} = \underbrace{\frac{\mathbf{w}^T \mathbf{x}}{||\mathbf{w}||}}_{\mathbf{0}} + \frac{w_0}{||\mathbf{w}||} \Longrightarrow r_0 = \frac{w_0}{||\mathbf{w}||}$$

•  $w_0$  defines the distance of the hyperplane from the origin



## Logistic regression (1/2)

Can be the probability  $P(C = 1|\mathbf{x})$  approximated by a linear function?

- $P(C=0|\mathbf{x}) = 1 P(C=1|\mathbf{x})$  in a binary case
- find parameters  $\mathbf{w}, w_0$  such that  $P(C=1|\mathbf{x}) = (\mathbf{w}^T\mathbf{x} + w_0) + \epsilon$ 
  - problem: a simple regression model can predict values outside the interval [0,1]
    - solution: use a sigmoid logistic function  $s(t) = \frac{1}{1+e^{-t}}$



• logistic regression model

$$P(C = 1|\mathbf{x}) = s(\mathbf{w}^T \mathbf{x} + w_0) + \epsilon = \frac{1}{1 + e^{-(\mathbf{w}^T \mathbf{x} + w_0)}} + \epsilon$$



<sup>&</sup>lt;sup>4</sup>Probabilities should lie between 0 and 1.

## Logistic regression (2/2)

#### Maximum lilelihood estimate

- instances  $(\mathbf{x}_i, c_i) \in \mathcal{S}^{tr}$  in a training set, where  $c_i \in \{0, 1\}$
- Bernoulli distribution for binary targets
- conditional likelihood with  $\Theta = (\mathbf{w}, w_o)$

 $(\mathbf{x}_{::}, c_{:}) \in \mathcal{S}^{tr}$ 

$$L_{\mathcal{S}^{tr}}^{cond}(\Theta) = \prod_{(\mathbf{x}_i, c_i) \in \mathcal{S}^{tr}} p(C = c_i | \mathbf{x}_i) =$$

$$= \prod_{i=1}^{\infty} p(C = 1 | \mathbf{x}_i)^{c_i} (1 - p(C = 1 | \mathbf{x}_i))^{(1-c_i)}$$

• conditional log-likelihood  $\ln L_{\mathcal{S}^{tr}}^{cond}(\Theta)$  to maximize is

$$\sum_{(\mathbf{x}_{i}, c_{i}) \in \mathcal{S}^{tr}} \left( c_{i} \ln \left( \frac{1}{1 + e^{-(\mathbf{w}^{T}\mathbf{x} + w_{0})}} \right) + (1 - c_{i}) \ln \left( 1 - \frac{1}{1 + e^{-(\mathbf{w}^{T}\mathbf{x} + w_{0})}} \right) \right)$$

#### Decision Trees







#### Random Forests





### Support Vector Machines



#### Neural Networks



### Modeling – Recap



That's all Folks!

#### References

- Pang-Ning Tan, Michael Steinbach, and Vipin Kumar (2005).
   Introduction to Data Mining. Addison-Wesley Longman Publishing Co., Inc.
- Ethem Alpaydin (2009). Introduction to Machine Learning. The MIT Press.
- Jiawei Han, Micheline Kamber and Jian Pei (2011). Data Mining: Concepts and Techniques. Morgan Kaufmann.
- Tom Mitchell (1997). Machine Learning. McGraw Hill.

#### 2 Homeworks

- 1 Home study of the basic principles for the following methods
  - Decision Trees
  - Support Vector Machines
  - Neural Networks
- 2 Use some regression techniques for the chosen regression dataset to predict the target attribute
- 3 Use some classification techniques for the chosen regression dataset to predict the target attribute

# Questions?



tomas.horvath@inf.elte.hu