

Notes

Optimal Configuration of Distribution Networks under Technical Constraints based on Predictive Methods

Master's Thesis Dissertation by Bhargav P Swaminathan

M2 - Smart Grids and Buildings

Supervisors: Raphaël Caire & Vincent Debusschere

June 25, 2014

troduction

Preliminary Work

The Algorith

Results & Conclu

Agenda

for today's presentation

Introduction

- Background
- Introduction to the Problem
- Literature Review

Preliminary Work

- Work Objectives
- Test Networks
- Day-ahead Load and DRES Models

The Algorithm

- Formulation & Economic Models
- Components
- Working of the Algorithm

Results & Conclusions

- Results Obtained
- Conclusions
- Future Work

Notes			

Introduction Preliminary Work The Algorithm

Background

Electrical Distribution Network Optimization

- Merlin and Back method, close to 40 years ago!
- Developments in Optimization.
- Shift from single-objective to multiple-objectives, to genetic, and other nature-inspired methods.
- Problems with DRES integration!
- Distribution network optimization has to take a new, giant leap.
- This work proposes a method to take this leap!

B. P. Swaminathan

Optimal Configuration of Distribution Networks under Technical Constraints based on Predictive Methods

Notes

Introduction

Preliminary Work

The Algorithm

esults & Conclusio

Introduction

to the problem

Why is large-scale DRES integration is a problem?

- Variability / Intermittency
- Bi-directional Power Flows
- · Grid Weakening
- Network Imbalance
- Fault Current Issues
- · And finally: Money!

There is a real need to find solutions that assuage the problem with the integration of DRES.

4 Grenoble INP

Notes		
Notes		

Introduction Preliminary Work The Algorithm

Literature Review

Current Work in the Domain

Forecasting:

- A lot of work has been done in forecasting for DRES and Loads
- Persistency / NWP based methods
- Both traditional and stochastic load forecasting: fairly mature
- But are they applicable to Distribution Networks?

Distribution Network Optimization:

- "Snapshot" based optimization
- Few instances of multi-temporal optimization
- Even they don't take a lot of issues into account
- Hence, there is a real need for a novel tool

B. P. Swaminatha

Optimal Configuration of Distribution Networks under Technical Constraints based on Predictive Methods

Notes

Preliminary Wor

The Algorithm

Results & Conclusio

Work Objectives

The following requirements were defined for the work to be done. The work should:

- Create a day-ahead schedule based on DRES and Load forecasts
- Effectively utilize all **flexibilities** in distribution networks for optimization
- NOT only use "snapshot" based optimziation, i.e. should be multi-temporal
- Be multi-objective
- Be modular
- Be a black box for end-users

Notes		

Notes

Notes

Test Networks

Network 1 - PREDIS Urban Network

- Reduced-scale Urban Network
- 14 buses, 17 lines
- Connected Load: 26.5 MVA
- Installed DRES Capacity: 27 MW
- Undervoltage and overcurrent problems

B. P. Swaminathan

Optimal Configuration of Distribution Networks under Technical Constraints based on Predictive Methods

Preliminary Work

Test Networks

Network 2 - IEEE 11kV Rural Network

- Larger Network than PREDIS
- 70 buses, 79 lines
- Connected Load: 5.41 MVA
- DRES Info not available

9	Grenoble INP ENSE ³

Day-ahead Load and DRES Models

Raw Models

- Two raw models extracted from literature.
- Specific weights for different types of loads.
- Residential, Industrial, Commercial, and Public Lighting.
- DRES Models: Values based on characteristic curves.
- Variation of Solar Power etc., taken into account.

B. P. Swaminathan

Optimal Configuration of Distribution Networks under Technical Constraints based on Predictive Methods

Preliminary Work

The Algorith

Results & Conclusio

Day-ahead Load and DRES Models

Models Applied to Networks

Load Model A

- This model consists of a simple association of each load type to one node.
- The load in each node varies accordingly for a given 24 hour period.

Load Model B

Each node has a particular % of loads of each type.

Load Type	PREDIS Network	Rural Network
Residential	5 – 80%	8 – 50%
Industrial	5 – 50%	20 – 75%
Commercial	0 – 50%	5-70%
Lighting	5 – 15%	5-15%

PREDIS Network (Based on Model 1)

Rural Network (Based on Model 2)

	1	1
1	Grenoble	
	Ense ³]]]

- 1	de	1+4	٥.

Notes

The Algorithm

Formulation

Available Flexibilities

The Algorithm

 $\ensuremath{\mathbb{G}}$ pro-NERDS, SunValley, gov.com.au, wikipedia

B. P. Swaminathan

Optimal Configuration of Distribution Networks under Technical Constraints based on Predictive Methods

Notes

The Algorithm

Economic Models

• Switching:

$$\begin{aligned} \textit{Cost/switching} &= \frac{\textit{C}_{\text{SW}}}{\textit{n}_{\text{SW}}} + \textit{C}_{OM} + \textit{C}_{log} \\ &\textit{C}_{OM} = c \cdot \textit{f}(\textit{t}_{\text{SW}}) \end{aligned}$$

• OLTC:

Cost/operation =
$$\frac{C_{OLTC}}{n_{op}} + C_{OM} + C_{log}$$

 $C_{OM} = c \cdot f(t_{op})$

• Models for Load Reduction, VVC, and Violations are more difficult to develop.

Switching Operation	300€
Load Reduction	6€/MWh
OLTC Operation	20 €/Tap Change
VVC	132.9 €/MWh
Violations	500 €/violation

\ .		
Grenoble INP		
	Notes	
		_
4 Grenoble INP		

The Algorithm

Components

Legend: VVC: Voltage VAr Control, LR: Load Reduction, OLTC: On-Load Tap Changing

B. P. Swaminathan

Optimal Configuration of Distribution Networks under Technical Constraints based on Predictive Methods

Notes

Notes

The Algorithm

Components - Reconfiguration

Multi-Objective Reconfiguration

• Branch exchange based method with pre-selection

The Algorithm

• Membership Functions for Each Objective:

$$x_{i} = \frac{PLOSS(i)}{PLOSS0} \qquad i = 1, 2, N_{k}$$

$$\mu L_{i} = \frac{(x_{max} - x_{i})}{(x_{max} - x_{min})} \qquad \text{for } x_{min} < x_{i} < x_{max}$$

$$\mu L_{i} = 0 \qquad \qquad \text{for } x_{i} \le x_{min}$$

$$\mu L_{i} = 1 \qquad \qquad \text{for } x_{i} \ge x_{max}$$

- Fuzzy min-max principle for finding branch to exchange
- Reconfiguration database based on "maximum" conditions

16	Grenoble Ense ³	NP

The Algorithm

The Algorithm

Components - Local Management

To manage "local" violations in distribution networks for the hour when it is launched.

Voltage Violations

- When V < 0.95pu or V > 1.05pu
- Solution: Use nearby nodes to improve voltage profile
- Objective function: f = abs(V - (0.95 + c))

Current Violations

• When $I > I_{max}$

The Algorithm

- Solution: Use downstream nodes to try reduce line current
- Objective function: $f = abs(I_{max} - (I + c))$

• When both current and voltage violations exist, consider both sets of nodes,
$$f = abs(V - (0.95 + c)) + abs(I_{max} - (I + c))$$

- Once done, check if $C_{spent} \ge C_{org}$, if yes, do not optimize.
- Return solution to calling function.

Optimal Configuration of Distribution Networks under Technical Constraints based on Predictive Methods

Notes

Notes

The Algorithm

Components - Global Management

Global Management (hour h)

With Reconfiguration

Without Reconfiguration

- At hour h, perform reconfiguration, and globally optimize using LM functions
- From hour h+1 to end of the day, check for violations
- Classify violations found and launch the respective management function
- At the end of the day, calculate overall costs and feed it back to calling function
- At hour h, use only LM functions to opt globally
- From hour h+1 to end of the day, check violations
- · Classify violations found and launch th respective management function
- · At the end of the day, calculate overall and feed it back to calling function

timize				
c for				
ne				
l costs				
Grenoble INP Ense ³				

B. P. Swaminathan

Optimal Configuration of Distribution Networks under Technical Constraints based on Predictive Methods

Notes

Notes	
Notes	

Notes

Results

Methodology

- Both networks were tested with the two load models.
- Two initial configurations were used: the original, and the 24 hour optimal configurations.

Output Variables			
Money Spent without Optimization	Money Spent with Optimization		
Load Reduction effected	DRES VVC Outputs		
Number of Switching Operations	Number of OLTC Operations		
Loss Curves over the 24h period	Complete Bus Voltage Profiles		
Violations in the Network	Final Line and Bus statuses for every hour		

B. P. Swaminathan

Optimal Configuration of Distribution Networks under Technical Constraints based on Predictive Methods

22 Grenoble INP

Results & Conclusions

Results

PREDIS Network - Load Model A

	-
	_
	_
Notes	

B. P. Swaminathan

Optimal Configuration of Distribution Networks under Technical Constraints based on Predictive Methods

25

Notes

sults & Conclusions	Notes
_	
-	
22	
Grenoble INP Ense ³	
1111	

Results & Conclusions

Notes

Results

Rural Network - Load Model B

B. P. Swaminathan

B. P. Swaminathan

Optimal Configuration of Distribution Networks under Technical Constraints based on Predictive Methods

Notes	
	_

B. P. Swaminathan

Optimal Configuration of Distribution Networks under Technical Constraints based on Predictive Methods

Notes

Results & Conclusion

Conclusions

The developed algorithm

- Can optimize networks with a variety of characteristics.
- Is multi-objective and multi-temporal.
- Takes into account the day-ahead forecasts of DRES and loads, and uses inherent flexibilities.
- Outputs a day-ahead schedule.
- Provides Up to 70% reduction in **expenditure**, 91% reduction in **violations**, and 75% reduction in **losses**.
- Executes quickly.

Professional and Personal Perspectives

- Professional Perspectives: about my work in the laboratory
- Personal Perspectives: studying abroad

Notes	

Preliminary Work The Algorithm Results & Conclusions

Future Work

Work envisaged

- Sensibility studies
- The development of a novel reconfiguration function
- The development of a better multi-objective constrained optimization function
- The development of a complete economic model
- The development of a day-ahead market based purchase scenario
- The development of a probabilistic load-flow function

All as a part of my PhD here at G2ELab, commencing in September.

B. P. Swaminathan

Optimal Configuration of Distribution Networks under Technical Constraints based on Predictive Methods

Notes	
Notes	