R boks like [].

Non-Borel Set?

9 " devil's staircase"

cts, increasing (not strictly)

U(X)=Y(X)+X cts, strictly increasing. Cu () = [0,1] → [0,2]

 $\Psi(e) \cup \Psi(0) = [0,2]$

 $M(\Psi(\Theta)) = 1$

 \Rightarrow m($\Psi(C)$) = 1. Let $W = \Psi(C)$

Fact: If M(W) > 0, then W > non mble set.

Why? W is uncountable.

Consider eq classes under ~ "rational relation"

collection of eq classes, choose N = { I member of each in W }

then leave W and do same trick as before.

Alternative: W-W > I > N

W mble => W-W mble?

 $N \subset M = \mathcal{N}(\mathcal{L})$

 $\Psi'(N) \subset C$, and m(e) = 0, χ is complete, So $\Psi'(N)$ is mble.

Ψ: Ψ'(N) → N mble non-mble So Y(N) is not Borel.

(I is its injection so it takes open intervals to open intervals

Borel sets to Borel sets).

(1)
$$f$$
 is \overline{M} -mble, $g=f$ a.e. then g is \overline{M} -mble.

If
$$f-g=0$$
 on E , $\mu(E')=0$.

$$g^{-1}((\alpha,\infty)) = (g^{-1}((\alpha,\infty)) \cap E) \cup (g^{-1}((\alpha,\infty)) \cap E^{c})$$

$$= f^{-1}((\alpha,\infty) \cap E) \qquad \text{where } O.$$

it's not true if \overline{m} is replaced by m.

(2) Show that if f is M-mble, then I an M-mble g with f=g a.e.

(prop 2.12 in follows)

(a) assume
$$f = \chi_E$$
 where $E \in \overline{M}$.
 $E = F \circ N$ where $F \in M$, $\mu(N) = 0$.

Let $g = \chi_F$.

- (b) f simple fn.
- (c) f arbitrary.

{ f, } simple for in m which increase to f.

{Ψ,} " m "

. . .