Section 1: Sets

The following are common sets we will see in this chapter:		
№ : The set of natural numbers	These are numbers that can answer counting problems. ($\mathbb{N}=0,1,2,3,$)	
$\mathbb{Z}_{}$: The set of integers	$(\mathbb{Z}=,-3,-2,-1,0,1,2,3,)$	
$\mathbb{Q}\;$: The set of rational numbers	These are characterized as ratios of integers such as $\frac{1}{2}$, $\frac{-17}{4}$, or $\frac{3}{1}$	
R : The set of real numbers	These can be thought of as decimal numbers with possibly unending strings of digits after the decimal point.	

1. Match numbers to sets (___/3)

For the following numbers, which set(s) do they belong to?

	IN	Z	Q	IR
10				
-5				
12 / 6				
π				
2.40				

- 2. List three numbers that are in the set of integers \mathbb{Z} , (___/1) but not in the set of natural numbers \mathbb{N} .
- 4. List three numbers that are in the set of real numbers \mathbb{R} , (___/1) but not in the set of rational numbers \mathbb{Q} .

Section 2: Subsets

Subsets and existence within sets:				
x exists in A	The notation $x \in A$ means "x is an element of A", which means that x is one of the members of set A.			
A is a subset of B	A is a subset of B (written as $A \subseteq B$) if every element in A is also an element in B. Formally, this means that for every x , if $x \in A$, then $x \in B$.			
A is equal to B	A is equal to B (simply written A = B) means that A and B have exactly the same members. This is expressed formally by saying, " $A \subseteq B$ and $B \subseteq A$ ".			
Empty set	A set that contains no elements is called an <i>empty set</i> , and is denoted by $\{\ \}$ or $\ \mathcal{S}$.			
The universal set	For any given discussion, all the sets will be subsets of a larger set called the <i>universal set</i> or <i>universe</i> , for short. We commonly use the letter U to denote this set.			

5. Given these sets,	()	/9)
or diven these sets,	·—–	σ,

$$U = \{ 1, 2, 3, 4, 5, 6 \}$$

$$B = \{ 2, 2 \}$$

$$C = \{ 1, 2, 4, 5, 6 \}$$

$$D = \{ 1, 4 \}$$

$$E = \{ 6, 5, 4, 2, 1 \}$$

a) Which are the true statements?

4.
$$C \subseteq U$$

7.
$$B\subseteq \mathbb{Z}$$

8.
$$B\subseteq D$$

b) Fill in the blanks with either \subseteq (is a subset of), $\not\subseteq$ (not a subset of), or = (equal (___/6) to) for the following:

Section 3: Intersections, unions, and differences

The intersection of A and B $A \cap B$	Is the set that contains those elements common to both A and B. In set-builder notation, we write: $A \cap B = \{ x \in U : x \in A \land x \in B \}$
The union of A and B $A \cup B$	Is the set that contains those elements in either set A or B. In set-builder notation, we write; $A \cup B = \{ x \in U : x \in A \lor x \in B \}$
The difference of A and B $A-B$	Is the set that contains those elements in A which are not in B. In set-builder notation, we write: $A-B = \{ x \in U : x \in A \land x \notin B \}$
Disjoint	Sets A and B are <i>disjoint</i> if $A \cap B = \emptyset$
Complement A'	Given a set A with elements from the universe U, the complement of A (written A') is the set that contains those elements of the universal set U which are not in A. That is, $A' = U - A$.

Venn diagrams are used to visually represent relationships between sets. Set A and Set B (or more) are drawn as overlapping, and the shaded-in region is the resulting set based on any intersections, unions, complements or differences.

6. Color in the following Venn diagrams to match the statements:

(___/9)

a) $A \cap B$

b) $A \cap C$

c) $(A \cap B) \cup (A \cap C)$

d) $B \cup C$

e) $A \cap (B \cup C)$

f) B-C

g) B'

h) $(A \cup B) - B$

i) $A \cup (B-C)$

7. Given the following sets, verify each statement.

$$U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$
 $A = \{1, 3, 5\}$ $B = \{1, 2, 3, 4\}$ $C = \{1, 2, 5, 6, 10\}$

It might help to write out each subset (e.g., $B \cup C$) as you go.

a) Verify
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$
 (___/1)

b) Verify
$$(A \cup B)' = A' \cap B'$$
 (____/1)

c) Verify
$$A \cap (A \cup B) = A$$
 (___/1)

Section 4: Set-builder notation

It is impractical to try to list every elem most sets. There are two different forms	ent of a set. We use <i>set-builder notation</i> to des s of set-builder notation:	scribe
	The set of all x in U such that x is". The mines whether an element of U is or is not in	
 The set of even integers: { x∈Z The set of real numbers bigger that 		
A Form Description is of the form, "All where the first part will be some equation	numbers of the form, where x is in set long (like "2x" for even).	D",
The set of integers that are multiplThe set of perfect square integers:	es of 3: $\{3k : k \in \mathbb{Z} \}$ $\{m^2 : m \in \mathbb{N} \}$, or $\{m^2 : m \in \mathbb{Z} \}$	
8. Write the following statement in form de	scription and property description set-notati	on:
a) The set of all odd integers.		(/2)
1. Let's use <i>x</i> as our variable.		
2. What set does it belong in? (This is LEFT OF THE : for prop description and RIGHT OF THE : for form description.)	<i>x</i> ∈	
3. In English, what is <i>x</i> ? (<i>This is RIGHT OF THE : for prop description</i>)	x is	
4. How do you write an odd integer, using <i>x</i> a (<i>This is LEFT OF THE : for form description.</i>)	s the variable:	
Property Description: ({ set : property })	Form Description: ({ form : set })	
b) The set of all even integers.		(/2)
Property Description:	Form Description:	

9. Convert the following from property description to form description:

a) { $x \in \mathbb{N} : x \text{ is twice a perfect square } }$

(/2)

We will be writing the form description with relation to y, rather than x.

- 1. If *y* is our variable to-be-squared, how do you write *x* in terms of *y*? (*x* is twice a perfect square)
- 2. If the variable y is a square-root of a perfect square, which set must it be part of? ($\mathbb{N}, \mathbb{Q}, \mathbb{R}, \mathbb{Z}$)
- 3. Write the equation (without x, in terms of y) as the left-hand side, and the set that y belongs in as the right-hand side:

b) {
$$x \in \mathbb{Q}$$
 : $x = 2^m$ for some $m \in \mathbb{Z}$ }

 $(_{/2})$

We will be writing the form description with relation to m, rather than x.

- 1. What is the equation for x?
- 2. What is the set that *m* exists in?
- 3. Write the equation (without x, in terms of m) as the left-hand side, and the set that m belongs in as the right-hand side:

c) { $x \in \mathbb{Z}$: x is the product of two consecutive integers }

 $(_{/2})$

We will be writing the form description with relation to z, rather than x.

- 1. Write "x is the product of two consecutive integers", using z as the variable for the integer (and z+1) for its next item.
- 2. What set does *z* belong in?
- 3. Write the equation (without x, in terms of z) as the left-hand side, and the set that z belongs in as the right-hand side:

Team Members:

1. 2.

3. 4.

Section: TR 12:30 pm T 6:00 pm

Team Rules:

- Work through these exercises with a team in class.
- **Only one answer sheet will be turned in.** Each member of the team will receive the same score.

Work Rules:

- Fill out your answers on the **answer sheet!**
- Write cleanly and linearly! If I can't make sense of your solution, you won't get credit. You can also type out your answers if you'd prefer.
- Write out each step If I can't see the logic you used to get from one step to another, you might get points off.
- <u>Don't scribble out cancellations</u> I can't read that. If a numerator / denominator cancel out, or if there is a +/- that cancels out, don't scribble just use a single slash, or add an extra step!

Grading:

Each question as a weight, and all questions can receive a score between 0 and 4:

Nothing written	Something attempted, but incorrect	Partially correct, but multiple errors.	Mostly correct, with one or two errors.	Perfect. Correct answer and notation
0	1	2	3	4

Answer Sheet

Exercise 1 (___/3)

	IN	Z	Q	IR
10				
-5				
12 / 6				
π				
2.40				

ercise 2	_/1	1)
(<u></u>	/ •	- ,

Exercise 5a circle the true statements (___/9)

- - 2. $D \subseteq A$ 3. $U \subseteq \emptyset$
- 4. $C \subseteq U$ 5. $B \subseteq B$ 6. $U \subseteq \mathbb{N}$
- 7. $B \subseteq \mathbb{Z}$ 8. $B \subseteq D$ 9. $E \subseteq D$

Exercise 5b (___/6)

Fill in with \subseteq (is a subset of), $\not\subseteq$ (not a subset of), or = (equal to)

- - 2. D ____ C 3. D ____ B

1. *B*⊆*C*

Exercise 6 color in the Venn diagrams

(___/9)

a) $A \cap B$

b) $A \cap C$

c) $(A \cap B) \cup (A \cap C)$

d) *B*∪*C*

e) $A \cap (B \cup C)$

f) B-C

g) B'

h) $(A \cup B) - B$

i) $A \cup (B-C)$

Exercise 7a	Are they equivalent? Write out, then answer Yes/No	(/1)
$A \cap (B \cup C) =$		
$(A \cap B) \cup (A \cap C)$	·)=	
Exercise 7b	Are they equivalent? Write out, then answer Yes/No	(/1)
$(A \cup B)' =$		
$A' \cap B' =$		
Exercise 7c	Are they equivalent? Write out, then answer Yes/No	(/1)
$A\cap (A\cup B)=$		
A =		
Exercise 8a		(/2)
Property description	on:	
Form description:		
Exercise 8b		(/2)
Property description	on:	
Form description:		
Exercise 9a		(/2)
Form description:		
Exercise 9b		(/2)
Form description:		
Exercise 9c		(/2
Form description:		