١٠ .

Best Available Copy

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

03-151738

(43) Date of publication of application: 27.06.1991

(51)Int.CI.

H04L 9/06

H04L 9/14

(21)Application number: 01-288887

(71)Applicant: HITACHI LTD

(22)Date of filing:

08.11.1989

(72)Inventor: FUKUZAWA YASUKO

TAKARAGI KAZUO SASAKI RYOICHI

(54) VERIFICATION DATA GENERATING SYSTEM

PURPOSE: To detect the presence of forgery of file

(57)Abstract:

content and the forged part by splitting a file data, applying logical operation while deviating one by one bit compressed sentence generated to each of split file data. CONSTITUTION: A message 303 for an object of verification, a verification data generating program 304, a verification program 305 and a hash function 306 are stored in a memory 302 in a computer and a CPU 301 uses the data to generate and verify a verification data. A message M being an object for generating the verification data is decided into (n) as M(i)(i=0...n), and a partial compression sentence HI(i)(p-bit) is generated with respect to the M(i) by using the hash function (h). The generated partial compression sentences HI(i) are deviated one by one bit to obtain exclusive OR and the result is used for the verification data HI in (p+n-1) bits. That is, the exclusive OR between the 2nd bit data of the HI(1) and the 1st bit data of the HI(2) is the 2nd bit data of the verification data.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

⑩日本国特許庁(JP)

町正有り の特許出願公開

母公開特許公報(A) 平3-151738

Int. Cl.

識別記号

庁内整理番号

❷公開 平成3年(1991)6月27日

H 04 L 9/06 9/14

6914-5K H 04 L 9/02

Z

審査請求 未請求 請求項の数 6 (全12頁)

会発明の名称

検証用データ生成方式

須特 顧 平1-288887

②出 顧 平1(1989)11月8日

@発明者福澤 專

神奈川県川崎市麻生区王禅寺1099番地 株式会社日立製作

所システム開発研究所内

@ 発明者 宝木 和夫

神奈川県川崎市麻生区王禅寺1099番地 株式会社日立製作

所システム開発研究所内

神奈川県川崎市麻生区王禅寺1099番地 株式会社日立製作

所システム開発研究所内

⑪出 願 人 株式会社日立製作所

東京都千代田区神田駿河台4丁目6番地

19代理 人 弁理士 小川 勝男

外1名

明 权 答

1. 発明の名称

検証用データ生成方式

- 2. 特許請求の範囲
 - 1. 館子的なメツセージMの検証用データ生成方 式において、

放メッセージMをn個に分割し、M=M(1) ||M(2)||……||M(i)||……||M(n)とし、

分割したn 例の該メッセージM(i)(i=1,2……n) に対し、ハッシュ関数 b によつて P ピットの圧縮文 H(i)(H(i)=h(M(i))) (i=1,2……n)を作成し、

版圧線文H(i)(i-1,2...m)をエピット $(1 \le m \le p)$ ずつずらして論理演算を施した(p+m(n-1))ピットのデータを上記メッセージMと対応する検証用データHとすることを特徴とする検証用データ作成方式。

2. 電子的なメンセージMの検証用データ生成方 式において、

該メツセージMをn倒に分割し、M⇔M(1)

||M(2)||-----||M(i)||-----||M(n)とし、

分割した n 個の該メツセージM(i)(i = 1,2……n」に対し、ハツシュ関数 h によつて p ピットの圧縮文H(i)(H(i)=h(M(i)))(i=1,2……n)を作成し、

該H(i)(i=1,2……n)の左半分をH (i)L(i=1,2……n)、右半分をH(i) R(i=1,2……n)とし、

H'(i)L=H(j)L(l≤j≤nであり、 H'(j)L≠H'(p)L(p<i)) となるよう にH(i)Lを再配置したH'(i)L(i=1, 2……n)を生成し、

 $H'(i)R = H(j)Rt, 1 \le j \le n \ \sigma b \ 0$ $H'(j)R \ne H'(p)R(p < i) \ \sigma b \ 0$

 $H'(f)R(i-2 \le f < i, i < f \le i + 2) \ne H(k)R(j-2 \le k < j, j < k \le j + 2)$ C B G

 $H'(m)R(j-5 \le m \le j-1) \ne H(n)R$ $(i+1 \le n \le i+5)$ となるようにH(i)Rを再記記したH'(i)R(i=1,2...m)を生

(2)

成し、

該H'(i)(i = 1, 2 ·····n)を m ビットずつずらして 論理演算を施した(p+m(n-1)) ビットのデータを上記メッセージMと対応する 検証用データH'とすることを特徴とする検証 用データ作成方式。

3. 諸求項2に記載の検証用データ生成方式において、

作成した p ビットの部位圧縮文H(i)(i=1,2……n)の各々を、

s(pの公的数であり、s≠1,2,p)側で 分割し、H(i)(1), H(i)(2), ………H (i)(r),…….H(i)(s)(i=1,2……n) とし、

H'(i)(1) = H(j)(1)(1 ≤ j ≤ n であ り、H'(j)(1) L ≠ H'(p)(1)(p < i)) となるようにH(i)(1)を再配置したH'(i) (1)(i=1,2……n)を生成し、

(3)

ータとすることを特徴とする電子協印方式。

3.発明の詳細な説明

〔産業上の利用分野〕

本発明は、電子化されたファイルの検証用データ生成方式に関する。

〔従來の技術〕

電子データの託用や保存が強んになるに従い、ファイルの正当性を認識する技術はますて表生でなる。ファイル内容を確認する有効な技術の1つでなる。ファイル内容を確認する有効な技術の1つでは、ファイル内容を確認すると、登しているとは対して、64ビット長程度のの地である。ファイル大田を表し、64ビット長程度のの地である。ファイルは大田を表していると、全国では、100円を表している。この技術に、公開を表している。このを対象を表している。電子を表している。このを表している。電子を表している。このには、100円を表している。

[発明が解佚しようとする裏題]

しかし、改ざんの有無を検知することができて

1くァ≦sのァについて、

(1≤x≤n)であり、H'(i)(r)が影響を及 ばす p ビントの範囲に存在する x に関し、

H'(i)(r)≠H(x)(r)でないようにH
(i)(r)を再配置したH(i)'(r)(i=1,2
....n)を生成し、

該再配列した薪果をH'(i)(i=1,2… …n)とする再配列方式。

4. 静求項2もしくは3に記収の検証用データ生成方式において、

n個に分割したメツセージ

n>(2p/s-1)^a の関係式が成立する検 ・ 証用データ生成方式。

- 5. フアイルMの圧線文に、請求項I乃至4のいずれかに記載の、検証用データを付加することを特徴とするファイル認証方式。
- 6 . 請求項1乃至5のいずれかに記載のファイル の圧縮文に、時期等の状況データを付加したデ ータを、公開鍵哨号の秘密鍵を用いて、公開鍵 時号で昨号処理し、これを練フアイルのほぼデ

(4)

も、改ざんの箇所を検知することはできない。

この問題に対処するため、改良案を考案していた(特顧昭62-321220号)。これはファイルを階層化し、階層化した個々のファイルデータに対して圧縮文を生成、保存することで、後日の改ざんを検知する。しかし、この方法だと、個々の圧縮文を保存するため、保存すべき情報量が多くなるという不満足な点があつた。

〔課題を解決するための手段〕

上記問題に対し、検証用データ生成方式を考案した。これは、ファイルデータを分割し、分割した個々のファイルデータに対して作成した圧縮文を1ビットずつずらして論理演算を行う。あるいは、検知確率を向上させるために、個々の圧縮文を2つに分割し、最適に配便し、配貸し渡した各圧縮文に対し、論理演算を行う。

(作用)

前記技術的手段により、次の効果が生じる。

- 1. フアイルの検証用データ (ex. 416ピツ
 - ト)生成後、ファイルデータが改ざんされた場

(5)

合、 $\left(1-\frac{1}{2^{418}}\right)$ の確率で改ざんの有無を検

知することができる。

2. ファイル改ざん前後の検証用データの相違に よつて、ファイルデータの改ざん位属をかなり の確率で検知することが可能になる。

(実施例)

第1図~第9図において、本発明の実施例を示す。

(実施例1)

第1國〜第4関において、電子的なメンセージ Mの検証用データ生成方式、およびメンセージ取 ざん検証の一例を示す。

第1 図は、検証用データ生成の一方法を示すフロー図である。第2 図は、メンセージの改ざんを 検知する一方法を示すフロー図である。

第3関は、処理を行う計算機の一例である。

第4回は、第1回の検証用データ生成の実際の イメージを示す。

(7)

step 1 0 6: i に 1 を加え、step 1 0 2 に進む。 step 1 0 7: カウントi を 0 に設定する。

step 1 0 8: カウントiが、i < n ならばstep 1 0 9 に進み、i ≥ n ならばstep 1 1 1 に進む。
step 1 0 9: 作成した部位圧縮文H I (i)を 1
ビントずつずらせて排他的論理和を求め、これを
(p+n-1) ビツトの検証用データH I とする。
つまり、H I (1)の 2 ビツト目とH I (2)の 1 ビット目の排他的論理和が検証用データの 2 ビツト目となる。

H 1 (1)の3ピット目とH 1 (2)の2ピット目と

HI(3)の1ビント目の排他的論理和が検証用データの3ビント目となる。

 step 1 1 0: iに1を加え、step 1 0 8 に進む。

 step 1 1 1: 検証用データHIを出力する。

 step 1 1 2: 終わり。

次に、上記の検証用データHI作成時のメンセージMと現時点でのメンセージM が同等である なを検証する例を第2関のフローに従つて示す。 第3 阿において、計算機上のメモリ302に、 検証対象のメンセージ303、検証用データ生成 プログラム304、検証プログラム305、およ びハンシュ関数306が響えられており、これら を用いてCPU301によつて検証用データ生成と検証 を行う。検証用データ生成手段を第1 関のフロー のステンプ (step) に従つて示す。

step 100:始め

(3)

step 1 0 1: 検証用データ生成の対象となるメッセージの名称 M を設定し、メッセージを n 偶に分割し、個々を M(i)(i=0……n)とする。また、カウントiを 0 に設定する。

step 1 0 2 : カウントiが、i < n ならばstep 1 0 3 に進み、i≥n ならばstep 1 0 7 に進む。

step 1 0 3: メツセージM(i)を読み込む。

step 1 0 4 : M(i)に対して、部位圧縮文H I (i) (p ビット) をハッシュ関数 b を用いて生成する。

step 1 0 5 : 部位圧縮文H 1 (i)をメモリ302 上に迅速する。

(8)

step 200:始め

step 2 0 1:既に生成済みのMの検証用データ H 1を入力する。

step 2 0 2 : 検証の対象であるメンセージMでについて、step 1 0 0 からstep 1 1 2 に従い、検証用データを生成し、これを H 1 " とする。

step 2 0 3 : 検証用データHIとHI を比較 し、不一致部分を検知する。一致した場合はstep 2 0 4 に進み、不一致の場合にはstep 2 0 5 に進む。

step 2 0 4 : メッセージM と M * は 岡一 で ある と 判定 し、 step 2 0 7 に 進む 。

step 2 0 5 : メツセージMとM' は同一でない と判定する。

step 2 0 6 : 検知した不一致部分位置から、メ ツセージM'の改ざん部位を検知する。

例えば、第4回において、HIとHI″を比較するとd_Hの位置が影響を受けていた場合、

H I (3)と H I " (3)が一致しなかつたことが自 明であり、この結果 M (3)が改ざんされたことが

(10)

わかる。

step 2 0 7 : 終わり。

(実施例2)

第5図~第8図において、電子的なメンセージ Mの検証用データ生成方式、およびデータ改ざん を検証する他の例を示す。

第5回は、検証用データ生成の一方法を示すフロー図である。第6回は、メンセージの改ざんを 検知する一方法を示すフロー図である。

第7回。第8回は、検証用データ生成の実際の イメージを示めす。

第5 例、および第7 図、第8 図において、検証 用データ生成の手順を示す。

メンセージMをn優に分割し、各分割メンセージに対してpビットの部分圧縮文を生成し、部分圧縮文をs 優に分割し、これを再配置して検証用データの生成を行う。この時、再配置における分散を高めるために、例えばn,s,pは次の関係式が成り立つようにする。

 $n > (2 p / s - 1)^{2}$

(11)

step 5 0 8 : カウントiが、i < 2 6 ならば step 5 0 9 に進み、i ≥ 2 6 ならばstep 5 1 2 に 遠む。

step 5 0 9: 作成した部位圧縮文Η I (i) (i = 1, 2…… 2 6) の左側 3 ビットをH I (i) L、 右側 3 ビットをH I (i) R とする。

 $H II' (i) L = H II (i) L (i = 1, 2 \dots 26)$

H II ' (i)R = H II (j)R(i = 1,2……26) とし、jを次のルールに従い再配置する。

- (1) 1≤j≤26であり、
- (2) H II (j) R ≠ H II′ (p) R (p < j)であり、
- (3) H n'(i) R が影響を与えるH n'(k) R
 (i-2≤k<i,i<k≤i+2) は、
 H n'(j) L が影響を与えるH n(f) R (j-

H = (j) L が影響を与えるH = (f) R $(j-2 \le f < j$, $j < f \le J + 2$) でなく、

(4) H I (j) L が影響を与えるH I '(m) R (j -5≤m≤j-1) には、H II '(i) L が影響 を与えるH I (n) R (i+1≤n≤i+4) で はない。 ここでは、フアイルMを26個に分割し、作成する各部位圧縮文は6ビットとし、各部位圧縮文は2つに分割して再配置する。各部位圧縮文より生成する検証用データ31ビットとする。

step 5 0 0 : # #

step 5 0 1 : 検証用データ生成の対象となるメ ツセージの各称Mを設定し、メツセージを 2 6 似 に分割し、例々を M(i)(i=1,2……26) とする。また、カウントiを O に設定する。

step 5 0 2 : カウントi が、i < 2 6 ならば step 5 0 3 に進み、i ≥ 2 6 ならばstep 5 0 7 に 液む

step 5 0 3 : M(i)を読み込む。

step 5 0 4 : M(i)に対して、ハツシュ関数 h を用いて部位圧縮文H H(i)(6 ピット)を作成する。

step 5 0 5: 部位圧縮文H II (i) をメモリ302 上に退避する。

step 5 0 6: i に 1 を加え、step 5 0 1 に進む。 step 5 0 7: カウントi を 0 に設定する。

(12)

step 5 1 0: 作成した部位圧縮文 H' I(i)を 1 ビットずつずらせて排他的論理和を求め、これを (p+n-1) ビットの検証用データ H I とする。 つまり、 H II'(1)の2 ビット目と H II' (2)の1 ビット目の排他的論理和が検証用データの2 ビット目となる。 H II'(1)の3 ビット目と H II'(2)の2 ビット目と、 H II'(3)の1 ビット目の排他的論理和が検証用データの3 ビット目となる。

step 5 1 1: i に 1 を加え、step 5 0 8 に進む。 step 5 1 2: 検証用データH II を出力する。 step 5 1 3: 終わり。

上記手順に従い生成した検証用データの例が第 7 関である。

次に、上記の検証用データHⅡ作成時のメツセージMと現時点でのメツセージM。 が同等であるかを検証する例を第6回のフローに従つて示す。

step 6 0 0 ; 始め

stop 6 0 1 : 既に生成済みのMの検証用データ HⅡを入力する。

(14)

(5)

step 6 0 2 : 検証の対象であるメンセージMで について、step 5 0 0 からstep 5 1 3 に従って、 検証用データHI生成と同じ型の再配列を行い、 メンセージMでの検証用データを生成し、これを HIでとする。

step 6 0 3 : 検証用データHⅡとHⅡ″を比較 し、一致した場合はstep 6 0 4 に進み、不一致の 場合にはstep 6 0 5 に進む。

step 6 0 4 : メツセージMとM* は何一である と判定し、step 6 0 7 に進む。

step 6 0 5 : メツセージMとM * は同一でない と判定される。

step 6 0 6: ファイルデータ改ざん前後の改ざ ん検知用圧縮文HとHI"の比較する。M(5)が 改ざんされた場合には、検証用データHI"にお いて、D1、およびD2の部分で一致しない。

従つて、改ざん部位の構成より、次のように判 断できる。

改ざん包位=D10D2

=(HI(3)LUHI(4)LUHI(5)LUHI(6)LUHI(7))L
(15)

持する検証用データが多くなり、一方、改ざん位 霞の検知確率は向上する)。

(変形例3)

実施例2において、分割した部位の各圧縮文を、 3以上に複数に分割する。例えば、HIE 83分割 しHIL(i), HIM(i), HIR(i)(i=1, 2……n)とし、

 $H \Pi' (i) L = H \Pi (i) L (i = 1, 2 \dots 26)$

H II ' (i) M = H II (j) R (i = 1,2 ······ 2 f) とし、うを次のルールに従い再配置する。

- (1) 1≤j≤26 cb),
- (2) 1≤k≤26であり、HⅡ′(j)Mが影響を 与える範囲に存在するkに関して、HⅡ′(j) M≠HⅡ′(k)Mとする。

また、H II'(i)R=H I(j)R(i=1, 2 …… 26)とし、jを次のルールに従い再配版する。

- (1) $1 \le j \le 26 \ \text{cb}$.
- (2) 1≦k≦26であり、HII'(j)Rが影響を

U(HI(7)RUHI(10)RUHI(13)RUHI(16)R)

n

(HI(17)LUHI(18)LUHI(19)LUHI(20)LU HI(21))LU(HI(23)RUHI(26)RUHI(5)RU HI(1)RUHI(11)R)

=H(5)

M(5)が改ざんされたことが検知できる。

ただし、ここでの∩は、論理観であり、LとR が対となつていることを意味する

step 6 0 7 : 終り。

〔变形例1〕

実施例1, 実施例2の検証用データ生成において、生成した各部位圧縮文を、排他的論理和以外の論理複算(論理和、論理發等)によつて処理しても同等の機能を実現することができる。

〔変形例2〕

実施例1,実施例2の検証用データ生成において、生成した各部位の圧縮文をm (1≤m≤p) ビツトずつずらせて論理演算処理を行つても同等の機能を実現することができる (mが多いほど保

与える範囲に存在する k に関して、H 11 ′ (j) R ≠ H II ′ (k) R とする。

〔変形例4〕

実施例1,実施例2で生成の検証用データ生成 方式は、電子取引認証における電子協印に利用す ることができる。

step 8 1 1: 取引伝標 9 0 0 を 3 5 3 の部位に 分割し、各部位の圧縮文 (6 4 ピット)を作成し、 改ざん部位検知用圧縮文 9 0 3 (4 1 6 ピット) を、実施例 1、あるいは 2 によつて作成する。

step 9 1 2: 取引伝機 9 0 0 の圧縮 文 9 0 2 (h (M)) を作成する。

stop 9 1 3: (圧縮文 9 0 2 | | 改ざん部位検知用圧縮文 9 0 3 | | 3 2 ピットの時刻等の状況データ 9 0 4) を電子捺原文 (5 1 2 ピット) 9 0 1 とし、公開鍵睛号で晴号処理する。

(18)

(変形例5)

突施例 1 , 突施例 2 で生成の検証用データ生成 方式は、ファイル認証における認証子として利用 するこができる。

(変形例6)

検証用データの生成、および検証をICカード 上で実施することも可能である。

〔發形例7〕

生成した検証用データを、ICカードに保存することも可能である。

〔瘦彩例8〕

実施例2において、検証用データを用いて検証 行う場合に、確率的評価を加えることが可能である。実施例2では、メツセージM(5)の改ざんに 伴い、D1、およびD2に影響が生じているが、

D 1 に最も影響を与える確率が高いのはH II し(5)、H II R (10)であり、

D 2 に最も影響を与える確率が高いのはH II L (19)、 H II R (5)であることから、

改ざん部位=D1 ND2

(19)

確率で検知することが可能になる。

4. 圏面の簡単な説明

代理人 弁理士 小川獅

n

(H II (19) L U H II (5) R) = H (5)

と検証することができる。

複数筋所の改ざん場所検知等の適用に有効である。

(効果)

本発明において、ファイル分割情報があり、かつファイル改ざん前後のファイル圧縮文、および 改ざん検知用圧縮文が生成できる場合、次のよう な効果が得られる。

 改ざん前のファイルの改ざん検知用圧縮文 (ex. 416ビット) 生成後、ファイルデータが改ざんされた場合。

$$\left(1-rac{1}{2^{418}}
ight)$$
 の確率で改ざんの有無を検知す

ることが可能になる。

2. フアイル改ざん前後の改ざん検証用圧縮文に より、フアイルデータの改ざん位配をかなりの (20)

第 3 図

—270—

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.