Chapter 1

Fonctions de transfert, AO en régime linéaire - corrigé

Question de cours

Formes canoniques

Avec $x = \omega/\omega_0$

• Passe bas d'ordre 1 :

$$H(\omega) = \frac{H_0}{1+jx} \tag{1.1}$$

• Passe haut d'ordre 1 :

$$H(\omega) = \frac{H_0 j x}{1 + j x} \tag{1.2}$$

 \bullet Passe bas d'ordre 2 :

$$H(\omega) = \frac{H_0}{1 + \frac{jx}{Q} + (jx)^2}$$
 (1.3)

Résonance si $Q > 1/\sqrt{2}$

• Passe haut d'ordre 2 :

$$H(\omega) = \frac{H_0(jx)^2}{1 + \frac{jx}{Q} + (jx)^2}$$
 (1.4)

Résonance si $Q > 1/\sqrt{2}$

 \bullet Passe bande d'ordre 2 :

$$H(\omega) = \frac{H_0 \frac{jx}{Q}}{1 + \frac{jx}{Q} + (jx)^2} = \frac{H_0}{1 + jQ\left(x - \frac{1}{x}\right)} = \frac{H_0 \frac{jx}{Q}}{1 + \frac{jx}{Q} - x^2}$$
(1.5)

Bande-passante : $\Delta \omega = \omega_0/Q$

Stabilité

Un système est stable si la réponse à une entrée bornée est bornée. Autre critère : tous les coefficients de l'équation différentielle du régime libre sont de même signe, car le polynôme caractéristique a une racine de partie réelle positive et donc une solution est une exponentielle croissante.

AO idéal

Un AO est idéal si :

- Les courants d'entrées sont nuls ;
- Différence de potentiel différentielle nulle en régime linéaire ;
- Gain infini et retard nul (cf caractéristique idéale) en régime linéaire ;
- Tension de sortie égale à $\pm V_{sat}$ en régime saturé.

Correction Exercice 1

- Amplificateur non-inverseur $u_s = \frac{R_1 + R_2}{R_2} u_e$. Pour que $U_s = V_{nom} = 2V_{max}$ il faut que le montage double la tension, cad $R_1 = R_2$.
- Si $R_c = \infty$, alors le courant dans la charge i_c est nul. Alors $P = u_s i_s = \frac{R_1 + R_2}{R_2^2} u_e^2$. L'AO consomme de l'énergie même s'il n'y a aucune puissance délivrée à la charge!
- Soit i_1 le courant traversant R_1 et R_2 . Alors la loi des nœuds donne : $i_s i_1 ic = 0$ (signe pris tq les puissances soient positives). On a alors :

$$P = u_s i_s = \frac{R_1 + R_2}{R_2^2} u_e^2 + \frac{(R_1 + R_2)^2}{R_2^2 R_c} u_e^2$$
(1.6)

• On prend $R_2 \gg R_c$, le premier terme de dissipation de l'AO devient négligeable devant la puissance envoyée à la charge.

Correction exercice 2

* Fonction de transfert :

$$H = \frac{u_s}{u_e} = \frac{R_1 + R_2}{R} \frac{1 + j\frac{R_1R_2}{R_1 + R_2}(C_1 + C_2)\omega}{(1 + jR_1C_1\omega)(1 + jR_2C_2\omega)} = H_0 \frac{1 + j\omega/\omega_0}{(1 + j\omega/\omega_1)(1 + j\omega/\omega_2)}$$
(1.7)

donc
$$H_0 = \frac{R_1 + R_2}{R}$$
, $\omega_0 = \frac{R_1 + R_2}{R_1 R_2 (C_1 + C_2)}$, $\omega_1 = 1/R_1 C_1$ et $\omega_2 = 1/R_2 C_2$

* Diagramme de Bode : on décompose en somme des diagramme de Bode des différents produits.

Cas $\omega_0 < \omega_1 < \omega_2$:

Cas $\omega_1 < \omega_0 < \omega_2$:

Cas $\omega_1 < \omega_2 < \omega_0$:

* Comme $\omega_0=\omega_1=\omega_2$ et $H_0=2,$ la fonction de transfert se simplifie en :

$$H = \frac{2}{(1 + j\omega/\omega_0)} \tag{1.8}$$

C'est un filtre passe-bas d'ordre 1.

* Le signal d'entrée est un signal créneau (pair, avec les cosinus) : on reconnait la décroissance typique en 1/n avec les n impairs seulement. Les coefficients de Fourier sont :

$$\begin{cases}
C_n = \frac{4U_0}{\pi} \frac{1}{2(p+1)} \\
\varphi_n = -\frac{\pi}{2}
\end{cases}$$
(1.9)

On rappelle l'écriture de la décomposition de Fourier :

$$U_e(t) = \sum_{n=0}^{\infty} C_n \cos(n\omega t + \varphi_n)$$
(1.10)

La fonction de transfert, dans le cas où $\omega \gg \omega_0$, peut se simplifier en $H \simeq \frac{2\omega_0}{j\omega}$. Les coefficients de Fourier du signal de sortie sont alors :

$$\begin{cases} C'_n &= \frac{4U_0}{\pi} \frac{1}{2(p+1)} \times |H(2(p+1)\omega)| \\ \varphi'_n &= -\frac{\pi}{2} + \arg\left(\frac{2\omega_0}{j\omega}\right) \end{cases}$$
(1.11)

On obtient donc:

$$\begin{cases}
C'_n &= \frac{4U_0}{\pi} \frac{2}{(2(p+1))^2} \frac{\omega_0}{\omega} \\
\varphi'_n &= -\frac{\pi}{2} - \frac{\pi}{2}
\end{cases}$$
(1.12)

Le signal de sortie est donc :

$$U_s(t) = \frac{2U_0}{\pi} \sum_{p=0}^{\infty} \frac{1}{(2p+1)^2} \cos(2(p+1)\omega t - \pi)$$
 (1.13)

On reconnait la décroissance en $1/n^2$ typique d'un signal triangulaire. C'est normal : le filtre se comporte ici comme un intégrateur.

Correction exercice 3

Le courant de sortie est supposé nul.

- \spadesuit Comportement : BF, $u_e = u_s$ et HF, $u_e = u_s$, c'est un filtre coupe-bande (l'inverse d'un passe-bande, qui ne laisse rien passer à BF et HF). En BF, le circuit est "flottant", cad il n'es tplus connecté à la masse. Comme l'intensité de sortie est considérée comme nulle, la chute de tension aux bornes des résistances est nulle.
- ♠ Pour la fonction de transfert, on fait une loi des nœuds en A (entre les 2 résistances du haut), en B (entre les 2 capa du milieu) et à la sortie :

$$\begin{cases} \frac{u_e - u_A}{R} + \frac{u_s - u_A}{R} - 2jC\omega u_A = 0\\ jC\omega(u_e - u_B) + jC\omega(u_s - u_B) - \frac{2}{R}u_B = 0\\ \frac{u_A - u_s}{R} + jC\omega(u_B - u_s) = 0 \end{cases}$$
(1.14)

Avec les deux premières lignes, on trouve :

$$\begin{cases}
 u_A = \frac{u_e + u_s}{2(1 + jRC\omega)} \\
 u_B = \frac{u_e + u_s}{2(1 + 1/jRC\omega)}
\end{cases}$$
(1.15)

On trouve alors en réinjectant dans la dernière équation :

$$H = \frac{1 + (jRC\omega)^2}{1 + 4jRC\omega + (jRC\omega)^2}$$
(1.16)

Diagramme de Bode : Diagramme assymptotique : $\forall \omega, H=0$ et pour $\omega=\omega_0=1/RC$, dirac à "l'envers" avec $H=-\infty$. C'est bien un coupe-bande.

 \spadesuit Pour la bande-coupante, on cherche les ω de telle sorte que :

$$G_{DB} = -20 \log \left(\frac{|1 - x^2|}{\sqrt{(1 - x^2)^2 + 16x^2}} \right) = -20 \log \left(\frac{1}{\sqrt{2}} \right) \simeq 3$$
 (1.17)

en posant $x = RC\omega$. On tombe alors sur l'équation $(1 - x^2)^2 = 16x^2$, et en enlevant le carré :

$$x^2 \pm 4x - 1 = 0 \tag{1.18}$$

Avec le signe \pm , il y a 4 solutions possibles (2 par équations, qui ont 2 solutions chacunes). Les seules solutions positives sont $\omega_{\pm} = \frac{\pm 2 + \sqrt{5}}{RC}$.

♠ On peut montrer facilement que le signal d'entrée peut s'écrire sous la forme :

$$U_e(t) = \frac{1}{4} \left(3\cos(\omega t) + \cos(3\omega t) \right) \tag{1.19}$$

On a donc deux harmoniques, à ω et 3ω , soit :

$$\begin{cases}
C_1 = \frac{3}{4}, & \varphi_1 = 0 \\
C_3 = \frac{1}{4}, & \varphi_3 = 0
\end{cases}$$
(1.20)

Ces harmoniques deviennent après sortie du filtre :

$$\begin{cases}
C_1 = \frac{3}{4} \times |H(\omega)|, & \varphi_1 = 0 + \operatorname{arg}(H(\omega)) \\
C_3 = \frac{1}{4} \times |H(3\omega)|, & \varphi_3 = 0 + \operatorname{arg}(H(3\omega))
\end{cases}$$
(1.21)

Comme $|H(3\omega)| = |H(\omega_0)| = 0$, l'harmonique 3 n'a aucune contribution. Dès lors, pur la première harmonique $x = \omega/\omega_0 = 1/3$:

$$\begin{cases} C_1 &= \frac{3}{4} \times \left| \frac{1 - \frac{1}{9}}{1 + j\frac{4}{3} - \frac{1}{9}} \right| = \frac{4}{\sqrt{52}} \simeq \frac{1}{2} \\ \varphi_1 &= -\arg\left(1 + j\frac{4}{3} - \frac{1}{9}\right) = \arctan\left(\frac{27}{32}\right) \simeq \frac{\pi}{4} \end{cases}$$
(1.22)

En très grosse approximation, on peut donc dire que :

$$U_s(t) \simeq \frac{1}{2}\cos(\omega t + \pi/4) \tag{1.23}$$

Correction exercice 4

* $H = \frac{1-jRC\omega}{1+jRC\omega}$. On remarque que $\mid H \mid = 1$, mais que $\varphi = -2\arctan(RC\omega) = -2\arctan(\omega/\omega_0)$, avec $\omega_0 = 1/RC$. On peut écrire alors H sous la forme :

$$H = e^{-2j\arctan(RC\omega)} \tag{1.24}$$

C'est un filtre déphaseur.

* On part de la décomposition de Fourier d'un signal (quelconque) d'entrée :

$$U_e(t) = \sum_n C_n \cos(n\omega t + \varphi_n)$$
(1.25)

Après le passage dans le filtre, le signal de sortie :

$$U_s(t) = \sum_n C_n |H(n\omega)| \cos(n\omega t + \varphi_n + \arg(H(n\omega)))$$

= $\sum_n C_n \cos(n\omega t + \varphi_n - 2\arctan(RCn\omega))$ (1.26)

Or, pour obtenir une forme retardée comme proposée dans l'énoncé, il faut factoriser par le $n\omega$ compris dans le arctan. On le linéarise dans le cas où $RCn\omega \ll 1$, cad $\omega \ll \omega_0$ avec $1/\tau = 1/2RC$.

Dans ce cas-là:

$$U_s(t) = \sum_n C_n \cos(n\omega t + \varphi_n - 2RCn\omega)$$

= $\sum_n C_n \cos(n\omega(t - \tau) + \varphi_n)$
= $U_e(t - \tau)$ (1.27)

Il faut donc que $\omega \ll 1/RC$, avec toutes les harmoniques qui valident cette condition (ex : signal triangulaire, avec une décroissance rapide de l'amplitude des harmoniques).

* On décompose le signal en une série de cosinus : $\cos^3(\omega t) = \frac{1}{4}(3\cos(\omega t) + \cos(3\omega t))$. Le signal de sortie sera

$$U_s(t) = \frac{1}{4} \left[3\cos(\omega t - 2\arctan(\omega/\omega_0)) + \cos(3\omega t - 2\arctan(3\omega/\omega_0)) \right]$$
 (1.28)

Pour $\omega = \frac{\omega_0}{3}$, on a:

$$U_s(t) = \frac{3}{4}\cos(\omega t - 2\arctan(1/3)) + \frac{1}{3}\cos(3\omega t - 2\arctan(1))$$

$$\simeq \frac{3}{4}\cos(\omega t - \pi/5) + \frac{1}{3}\cos(3\omega t - \pi/2)$$
(1.29)

Pour $\omega = 10^{-2}\omega_0$, on a la condition $\omega \ll \omega_0$, avec un retard de phase $\varphi = 2 \cdot 10^{-2}$.

* Pour t < 0, le condensateur est déchargé donc $u_e(t) = u_s(t) = 0$. Pour $t \ge 0$, le condensateur se charge donc $u_-(t) = E(1 - e^{-t/RC})$, et alors :

$$u_s(t) = 2E(1 - e^{-t/RC}) - E (1.30)$$

Le signal finit bien par "redevenir" celui d'entrée (car H=1) mais un retard. Attention, ici c'est une transformation de Fourier et non une série de Fourier qu'il faut opérer.

Correction exercice 5

- $H = -jRC\omega$ cad $u_s(t) = -RC\frac{du_e}{dt}$. C'est un dérivateur.
- En TF : $u_s = \varepsilon \frac{\mu_0}{1+j\tau\omega}$. Puis loi des nœuds, avec $\varepsilon = u_-$:

$$H(j\omega) = \frac{-\mu_0 jRC\omega}{1 + \mu_0 + j\omega(\tau + RC) - RC\tau\omega^2}$$
(1.31)

L'équation différentielle associée à tous ses coefficients du même signe, les solutions sont sinusoïdales donc bornées.

- En inversant les pôles, $\varepsilon = +u_-$. Cela revient à remplacer $\mu_0 \leftarrow -\mu_0$. Le terme de dérivée 0 devient alors $1 \mu_0$ et est négatif donc la solution contient une partie exponentielle et diverge jusqu'à saturation.
- C'est un filtre passe bande d'ordre 2 de pulsation $\omega_0 = \sqrt{\frac{1+\mu_0}{RC\tau}}$ Sous forme canonique, on a :

$$H(j\omega) = \frac{H_0}{1 + jQ(x - \frac{1}{x})}$$
 (1.32)

avec $H_0 = \frac{\mu_0 RC}{\tau + RC} = -5, 9 \cdot 10^3$ et $Q = \frac{\sqrt{(1 + \mu_0)RC\tau}}{\tau + RC} = 74$ Ce filtre est dérivateur pour x petit, cad $H \approx \frac{j\omega}{Q\omega_0}$. Cette condition est vérifiée jusqu'à $x \approx 0, 9$ cad $f = 2\pi\omega \approx 11 \text{kHz}$.