PRACTICE PROBLEMS ON RECTIFICATION

TYPE – I

- Find the length of the arc of the parabola $y^2 = 8x$ cut off by the latus rectum. 1.
- Find the arc length of $x^2 = 4y$ cut off by its latus rectum. 2.
- Show that the length of the parabola $y^2 = 4ax$ from the vertex to the end of the latus 3. rectum is $a[\sqrt{2} + log(1 + \sqrt{2})]$. Find the length of arc cut off by the line 3y = 8x
- Find the arc length of $y^2 = 4x$ cut off by the line y = 2x. 4.
- Find the length of arc of parabola $y^2 = 4a(a x)$ cut off by the y-axis. 5.
- Find the length of the parabola $x^2 = 4y$ which lies inside the circle $x^2 + y^2 = 6y$ 6.
- Find the length of the arc of parabola $y^2 = 4x$ which lies inside the curve $x^2 + y^2 = 5$ 7.
- Find the arc length of $ay^2 = x^3$ from (0,0) to (a,a)8.
- Find the length of the arc of $y = e^x$ from (0, 1) to (1, e)9.
- Prove that the length of the arc of the curve $y = log(\frac{e^x-1}{e^x+1})$ from x = 1 and x = 2 is 10. $log\left(e+\frac{1}{e}\right)$
- Find the total length of the curve $x^{2/3} + y^{2/3} = a^{2/3}$ 11.
- Find the length of the loop of the curve $3ay^2 = x(x-a)^2$ 12.
- Show that the length of the loop $3av^2 = x^2(a-x)is \ 4a/\sqrt{3}$ **13**.
- Show that the length of the loop $9ay^2 = x(x 3a)^2$ is $4\sqrt{3}$. a14.
- 15. Find the total length of the loop of the curve $9y^2 = (x+7)(x+4)^2$
- Find the perimeter of the loop of the curve $9ay^2 = (x 2a)(x 5a)^2$ **16**.

ANSWERS

1.
$$2\pi \ a$$
 2. $2\sqrt{2} + 2\log(\sqrt{2} + 1)$ 3. $a\left[\log 2 + \frac{15}{16}\right]$ 4. $\sqrt{2} + \log(1 + \sqrt{2})$ 5. $2a\left[\sqrt{2} + \log(1 + \sqrt{2})\right]$ 6. $2\left[\sqrt{6} + \log(\sqrt{2} + \sqrt{3})\right]$ 7. $2\sqrt{2} + 2\log(1 + \sqrt{2})$

5.
$$2a[\sqrt{2} + log(1 + \sqrt{2})]$$
 6. $2[\sqrt{6} + log(\sqrt{2} + \sqrt{3})]$ 7. $2\sqrt{2} + 2log(1 + \sqrt{2})$

8.
$$\frac{a}{27}(13\sqrt{13}-8)$$
 9. $\sqrt{1+e^2}-\sqrt{2}-\log\left[\frac{1+\sqrt{1+e^2}}{e(1+\sqrt{2})}\right]$ **11.** $6a$

12.
$$\frac{4a}{\sqrt{3}}$$
 15. $4\sqrt{3}$ 16. $4\sqrt{3}a$

TYPE - II

- Find the length of one arc of the cycloid $x = a(\theta \sin\theta)$, $y = a(1 + \cos\theta)$. 1.
- Find the length of the cycloid $x = a(\theta + \sin\theta)$, $y = a(1 \cos\theta)$ from one cusp to 2. another cusp. If s is the length of the arc from the origin to a point P(x, y) show that $s^2 = 8ay$

- 3. Trace the curve $x = a (\theta sin\theta)$, $y = a(1 cos\theta)$ as θ varies from 0 to 2π . Show that the line $\theta = \frac{2\pi}{3}$ divides it in ratio 1 : 3.
- **4.** Prove that the length of the arc of the curve $x = a \sin 2\theta (1 + \cos 2\theta)$, $y = a \cos 2\theta (1 \cos 2\theta)$ measured from the origin to (x, y) is $\frac{4}{3}a \sin 3\theta$.
- **5.** Find the length of the loop of the curve. $x = t^2$, $y = t\left(1 \frac{t^2}{3}\right)$
- **6.** Prove that the length of the curve $x=e^{\theta}\left[\sin\frac{\theta}{2}+2\cos\frac{\theta}{2}\right]$, $y=e^{\theta}\left[\cos\frac{\theta}{2}-2\sin\frac{\theta}{2}\right]$ measured from $\theta=0$ to $\theta=\pi$ is $\frac{5}{2}[e^{\pi}-1]$
- 7. Find the length of the astroid $x = a \cos^3 t$, $y = a \sin^3 t$
- 8. Find the total length of the curve $(x/a)^{2/3} + (y/b)^{2/3} = 1$. Hence, deduce the total length of the curve $x^{2/3} + y^{2/3} = a^{2/3}$. Also show that the line $\theta = \pi/3$ divides the length of the astroid $x^{2/3} + y^{2/3} = a^{2/3}$ in the first quadrant in the ratio 1: 3
- **9.** Find the length of the following curves:
 - (i) $x = a(2\cos\theta + \cos 2\theta), y = a(2\sin\theta + \sin 2\theta) \text{ from } \theta = 0 \text{ to any point } \theta.$
 - (ii) $x = a(\theta \sin\theta), y = a(1 \cos\theta)$ from $\theta = 0$ to $\theta = 2\pi$
 - (iii) $x = a(\cos \theta + \theta \sin \theta), y = a(\sin \theta \theta \cos \theta)$ from $\theta = 0$ to $\theta = 2\pi$
 - (iv) $x = ae^{\theta} \sin\theta$, $y = ae^{\theta} \cos\theta$ from $\theta = 0$ to $\theta = 2\pi$
 - (v) $x = a(3\cos\theta \cos3\theta), y = a(3\sin\theta \sin3\theta)$ from $\theta = \pi/2$ to any point θ
 - (vi) $x = a(\theta + \sin \theta), y = a(1 + \cos \theta)$ between two consecutive cusps.
 - (vii) $x = log(sec\theta + tan\theta) sin\theta, y = cos\theta$ from $\theta = 0$ to any point θ
 - (viii) $x = a(t \tan ht), y = a \sec ht$ from t = 0 to any point t.
 - (ix) $x = 1 \cos t + (3/5)t$, $y = (4/5)\sin t$ from t = 0 to $t = \pi$
 - (x) $x = a \cos t + at \sin t, y = a \sin t at \cos t$ from t = 0 to $t = \pi/2$

ANSWERS

1. 8*a*

2. 8*a*

5. $4\sqrt{3}$

7. 6*a*

9. (i) $8a\sin\left(\frac{\theta}{2}\right)$

(ii) 8*a*

(iii) $2\pi^2a$

(iv) $\sqrt{2}(e^{\pi/2}-1)a$

(v) $6a\cos\theta$

(vi) 8a

(vii) $logsec\theta$

(viii) a $\log \cos h t$

(ix) $\pi + (\frac{6}{5})$

(x) $\pi^2 a/8$

TYPE – III

- **1.** Find the length of the cardioide $r = a(1 + \sin \theta)$
- **2.** Find the length of the perimeter $r = a(1 + \cos \theta)$. Prove also that the upper half of cardiode is bisected by the line $\theta = \pi/3$.

- Show that upper half of $r=2a\cos^2\left(\frac{\theta}{2}\right)$ is bisected by the line $\theta=\pi/3$. 3.
- 4. Find the perimeter of the cardioide $r = a(1 - \cos \theta)$ and prove that the line $\theta = 2\pi/3$ bisects the upper half of the cardioide.
- Find the length of the arc of the curve $r = a \sin^2\left(\frac{\theta}{2}\right)$ from $\theta = 0$ to any point $P(\theta)$ 5.
- Find the length of the cardioide $r = a(1 \cos \theta)$ lying outside the circle $r = a \cos \theta$ 6.
- Find the length of the cardioide $r = a(1 + \cos \theta)$ which lies outside the circle $r + a \cos \theta = 0$ 7.
- Find the length of the cardioide $r = a(1 \cos \theta)$ lying inside the circle $r = a \cos \theta$ 8.
- 9. Show that the length of the arc of that part of cardioide $r = a(1 + \cos \theta)$ which lies on the side of the line 4r = 3 asec θ away from the pole is 4a

OR Show that the perimeter of cardioid $r = a(1 + \cos \theta)$ is bisected by the line $4r = 3a \sec \theta$

- Find the length of the arc of the parabola $r = \frac{6}{1+\cos\theta}$ from $\theta = 0$ to $\theta = \pi/2$ 10.
- Find the length of the Cissoid $r=2a\tan\theta\sin\theta$ from $\theta=0$ to $\theta=\pi/4$ 11.
- Find the length of the upper arc of one loop of Lemniscate $r^2 = a^2 \cos 2\theta$ **12.**
- Show that the total perimeter of $r^2 = a^2 \cos 2\theta$ is $\frac{a}{\sqrt{2\pi}} (|\overline{1/4}|^2)$ **13**.
- Find the total length of the curve $r = a \sin^3(\theta/3)$ 14.

ANSWERS

- 1.
- 5. $4asin^2\left(\frac{\theta}{4}\right)$
- **8.** $8a\left(1-\frac{\sqrt{3}}{2}\right)$
- **14.** $\frac{3}{2}\pi a$

- 2. 8a

- 6. $4a\sqrt{3}$ 7. $4a\sqrt{3}$ 11. $2a(\sqrt{5}-2) + a\sqrt{3}log(\frac{4-\sqrt{15}}{7-4\sqrt{3}})$ 12. $\frac{a}{4\sqrt{2\pi}}(|\overline{1/4}|^2)$