```
In [88]: import plotly.io as pio
pio.renderers.default = 'notebook'
```

Multiple Linear Regression with Dataset mtcars

We will be using a multiple linear regression model to try and find relationships between variables in mtcars, specifically variables

mpg (miles per gallon), **qsec** (1/4 mile time), and **am** (transmission type).

Multiple Linear Regression assumptions

- 1. The model has a linear relationship to the parameters (the regression coefficients).
- 2. Residuals have a covariance of zero and are uncorrelated for time series data.
- 3. The residuals are normally distributed and their anticipated mean value is zero.
- 4. Homogeneity of variance: the size of the error in our prediction doesn't change significantly across the values of the independent variable.
- Independence of observations: the observations in the dataset were collected using statistically valid sampling methods, and there are no hidden relationships among observations.
- 6. There is no multicollinearity (no two independent variables are highly correlated).

```
import s
import os
import numpy as np
import pandas as pandas
import matplotlib
import matplotlib.pyplot as plt
from sklearn import linear_model
import seaborn as sns
import scipy.stats as stats
matplotlib.style.use('ggplot')
from sklearn import metrics
from sklearn import datasets, linear_model
from sklearn.linear_model import LinearRegression
import statsmodels.api as sm
```

#load the dataset mtcars In [90]: mtcars = pandas.read_csv(r"C:\Users\Rbrig\Downloads\mtcars\mtcars\mtcars.csv") #get a visual of the statistics of mtcars In [91]: mtcars.describe() Out[91]: mpg cyl disp hp drat wt qsec vs **count** 32.000000 32.000000 32.000000 32.000000 32.000000 32.000000 32.000000 32.000000 32.00 mean 20.090625 6.187500 230.721875 146.687500 3.596563 3.217250 17.848750 0.437500 0.40 6.026948 1.785922 123.938694 68.562868 0.534679 0.978457 1.786943 0.504016 0.49 std **min** 10.400000 4.000000 71.100000 52.000000 2.760000 1.513000 14.500000 0.000000 0.00 0.00 25% 15.425000 4.000000 120.825000 96.500000 3.080000 2.581250 16.892500 0.000000 **50%** 19.200000 6.000000 196.300000 123.000000 3.695000 3.325000 17.710000 0.000000 0.00 **75**% 22.800000 326.000000 1.00 8.000000 180.000000 3.920000 3.610000 18.900000 1.000000 max 33.900000 8.000000 472.000000 335.000000 4.930000 5.424000 22.900000 1.000000 1.00 **•** 4

First Model

```
In [92]: #creating a model with all the variables of mtcars

X = mtcars.iloc[:,2:]
Y = mtcars.mpg

X2 = sm.add_constant(X)
est = sm.OLS(Y, X2).fit()
print(est.summary2())
```

Results: Ordinary least squares

======	========	:=======	:=====		· =====		=======	
Model:		OLS		Adj. R-squared:			0.807	
Dependent Variable:		mpg		AIC:			161.7098	
Date:		2024-02-27	13:40	BIC:			177.8329	
No. Observations:		32		Log-Likelihood		nood:	-69.855	
Df Model:		10	F-statistic:		:	13.93		
Df Residuals:		21		<pre>Prob (F-statistic):</pre>			3.79e-07	
R-squared:		0.869	0.869 Scale:		:		7.0235	
	Coef.	Std.Err.	t	P>	t	[0.025	0.975]	
	42 2024	40.7470				26 622		
const	12.3034	18.7179	0.6573		5181			
cyl	-0.1114	1.0450	-0.1066		9161	-2.284		
disp	0.0133	0.0179	0.7468		4635	-0.023		
hp	-0.0215	0.0218	-0.9868		3350	-0.066		
drat	0.7871	1.6354	0.4813		6353	-2.613		
wt	-3.7153	1.8944	-1.9612		0633	-7.6550		
qsec	0.8210	0.7308	1.1234		2739	-0.698		
VS	0.3178	2.1045	0.151		8814	-4.058		
am	2.5202	2.0567	1.2254	1 0.	2340	-1.756	8 6.7973	
gear	0.6554	1.4933	0.4389	9 0.	6652	-2.450	3.7608	
carb	-0.1994	0.8288	-0.2406	5 0.	8122	-1.922	9 1.5241	
Omnibus:		1.907	Durbin-Watson:			1.861		
Prob(Omnibus):		0.385	Jarque-Bera (JB):				1.747	
Skew:		0.521	Prob(JB):			0.418		
Kurtosis:		2.526	Condition No.:			12213		

Notes:

^[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

^[2] The condition number is large, 1.22e+04. This might indicate that there are strong multicollinearity or other numerical problems.

Diagnosing a Multiple Linear Regression Model

1. Adjusted \mathbb{R}^2

- R^2 measures how well the model fits the data. It interprets well in simple linear regression, but not in multiple linear regression.
- This is because as the number of independent variables increases, \mathbb{R}^2 tends to increase even if there is no significant relation between the target and the explanatory variable.
- To fix this issue, \mathbb{R}^2 is adjusted, and then defined as

$$R^2 = 1 - (1 - R^2) \frac{n - 1}{n - p - 1}$$

where p is number of explanatory variables in the model.

The adjusted R^2 value of our multiple linear regression model is 0.807, which means about 80% of the variation in the dependent variable is explained by the model.

2. Hypothesis test, T-test, and P Value

- The t-test is used to check whether the relationship between the dependent and independent variable is statistically significant or not at a given significance level (is there a relationship between x and y).
- If the t-statistic value is higher than the t-critical value at a given significance level, we reject the null hypothesis.
 - Otherwise, we fail to reject null hypothesis (that there is no relationship between x and y).
- We want to know the p value from our t-test.
- P-value is defined as the probability under the assumption of no effect or no difference (null hypothesis), of obtaining a result equal to or more extreme than what was actually observed.
- We want our p value to be less than 0.05, this means our data is significant.
- In the summary table of our multiple linear regression model, we see many variables have p-value > 0.05. This indicates multicollinearity in our model.

3. Multicollinearity and Variance Inflation Factor (VIF)

- Multicollinearity occurs when two or more independent variables in a regression model are strongly correlated with each other.
- Multicollinearity undermines the statistical significance of an independent variable.
- Variance Inflation Factor measures the magnitude of multicollinearity.
- VIF is given by $\frac{1}{1-R^2}$
- VIF is usually interpreted on a scale:

VIF < 5: The variable has low multicollinearity (no significant issue).

VIF between 5 and 10: The variable has moderate multicollinearity (requires further investigation).

VIF > 10: The variable has high multicollinearity (serious issue, consider mitigation techniques).

Variance Inflation Factor Table

```
In [93]: #create and view a table of varibles and their corresponding VIF
from statsmodels.stats.outliers_influence import variance_inflation_factor

vif=[variance_inflation_factor(X.values, j) for j in range(X.shape[1])]
vif_factor=pandas.DataFrame({'VIF': vif},index=X.columns)
vif_factor
```

```
Out[93]:
                        VIF
            cyl 112.629828
                  98.930791
           disp
             hp
                 56.047781
           drat 132.214353
             wt 182.948049
           qsec 317.534376
                   8.752581
             vs
                   7.412020
            am
           gear 119.804879
                  32.213836
           carb
```

Since the VIF of all the variables we are interested are > 4, we will check the correlation between features using a correlation matrix.

Correlation Matrix

disp

hp

drat

wt

qsec

٧S

am

gear carb

cyl

4. Selecting Variables

Our correlation matrix shows that there is a strong correlation between certain variables. Correlation coefficients whose magnitude are between 0.7 and 0.9 indicate variables which can be considered strongly correlated.

```
cyl:
vs, wt, drat, hp, disp
hp:
carb, vs, qsec
drat:
```

gear, am, wt

We will select one variable from each group to prevent multicollinearity. We select the variables we are interested in (wt, qsec, am).

Variance Inflation Factor and P values Table

```
In [95]: #create and display table with VIF and p values
    vif_factor['p-values']=est.pvalues[1:]
    vif_factor
```

Out[95]:		VIF	p-values
	cyl	112.629828	0.916087
	disp	98.930791	0.463489
	hp	56.047781	0.334955
	drat	132.214353	0.635278
	wt	182.948049	0.063252
	qsec	317.534376	0.273941
	vs	8.752581	0.881423
	am	7.412020	0.233990
	gear	119.804879	0.665206
	carb	32.213836	0.812179

Second Model

```
In [96]: #create multiple linear regression model with variables wt, qsec, am
X3 = X2[['const','wt','qsec','am']]
est2 = sm.OLS(Y, X3).fit()
print(est2.summary2())
```

	Coef.	Std.Err.	t	P> t	[0.025	0.975]
const wt qsec am	9.6178 -3.9165 1.2259 2.9358	6.9596 0.7112 0.2887 1.4109	1.3819 -5.5069 4.2467 2.0808	0.1779 0.0000 0.0002 0.0467	-4.6383 -5.3733 0.6346 0.0457	23.8739 -2.4597 1.8172 5.8259
Omnibus: Prob(Omnibus): Skew: Kurtosis:		2.574 0.276 0.540 2.297	Durbin-Watson: Jarque-Bera (JB): Prob(JB): Condition No.:			1.714 2.213 0.331 296

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Adjusted \mathbb{R}^2 of our new model is higher than the old one at 83.4%.

Multicollinearity is taken care of, and all the variables have p-values < 0.05, so they are significant.

5. Residual Analysis

Now the rest of our assumptions must be met.

First, we make sure residuals are normally distributed

Plot of Probabilities vs Residuals

```
In [97]: #test for normality of residuals
    probplot = sm.ProbPlot(est2.resid)
    plt.figure()
    probplot.ppplot(line='45')
    plt.show()
```

<Figure size 640x480 with 0 Axes>

Next, we test for homogeneity of variance.

Plot of Predicted Values vs Residual Values

```
In [98]: def standardized_values(vals):
    return (vals - vals.mean())/vals.std()
plt.scatter(est2.fittedvalues, est2.resid)
plt.xlabel("Standardized Predicted Values")
plt.ylabel("Standardized Residual Values")
plt.show()
```


The residuals are random and do not follow any pattern. This means the residuals have constant variance (homogeneity of variance).

Conclusions

Now our multiple linear regression model is statistically significant, meets all our assumptions, and can be used to make predictions.

We get the equation

$$(mpg) = 9.618 - 3.917(wt) + 1.226(qsec) + 2.936(am)$$

Miles per gallon (**mpg**) is positively correlated with 1/4 mile time (**qsec**), and transmission type (**am**), and negatively correlated with weight (**wt**) of the car.

Sources

• mtcars download https://gist.github.com/seankross/a412dfbd88b3db70b74b