

前海征信"好信杯"大数据算法大赛

团队:龙樱--PHM

目录

1 成员介绍

团队成员介绍

队长: 张杰

简介:南京大学计算机系研二学生

邮箱: zhangj@lamda.nju.edu.cn

主页: http://lamda.nju.edu.cn/zhangj/

团队成员介绍

队员: 李达

简介: 北京航空航天大学可靠性与系统工程学院

系研二学生,技术指导-殷磊

邮箱: Lida_dreamer@outlook.com

2

问题背景

现金贷的信用评分模型

现金贷数据 (B数据集)

信用评分模型

数据较少(4千)

模型性能较差

现金贷数据 (B数据集)

信用评分模型

数据较少(4千)

模型性能较差

现金贷数据 (B数据集)

信用评分模型

信用贷款数据 (A数据集)

数据较多(4万)

数据较少(4千)

现金贷数据 (B数据集)

信用贷款数据 (A数据集)

数据较多(4万)

模型性能较差

探索二者关 系,将A中信 息迁移到B中

更好的信用评分模型

问题背景 (赛题)

数据较少(4千)

现金贷数据 (B数据集)

信用贷款数据 (A数据集)

数据较多(4万)

模型性能较差

探索二者关 系,将A中信 息迁移到B中

更好的信用评分模型

3 算法流程

算法思路

- ① 对4千条业务B数据做简单特征工程,采用XGBoost加bagging的方式获得模型A
- ② 对4万条业务A数据采用相同的方式做特征工程,采用XGBoost建立<mark>模型</mark>B(以A数据为训练数据,B数据为验证数据调参),将模型B作为我们的迁移模型,再在模型B的基础上利用4千条业务B数据进行微调获得<mark>模型C</mark>,使模型C在能更好的拟合4千条业务B中的数据。
- ③ 利用模型A和模型C分别对测试集进行预测获得预测结果f(A)和f(C),然后对f(A)以及f(C)加权(f(A)附上较大权重,f(C)附上较小权重)获得我们最终的结果。

算法流程

算法流程1: 获取多模型A

1.1 特征工程

- > 统计每一个用户的缺失值的个数
- ▶ 统计每维特征中不同元素的个数,如果个数大于2,小于10,就进行one-hot编码

1.2 单模型

特征集合

2. XGB训练测试

单模型A

> XGBoost作为基分类器,在4千条业务B数据上cv调参,选最好的参数进行训练测试。

参数名称	参数值	参数名称	参数值
booster	gbtree	objective	binary:logistic
eval_metric	auc	lambda	3
num_boost_round	130	alpha	5
subsample	1	eta	0.05
colsample_bytree	0.9	max_depth	4
base_score	0.25		

Table 1: XGB线上效果最好的参数,与线下cv结果最好的参数在迭代次数上略有不同

1.3 模型集成预测

单模型A

多模型A

预测f(A)

- ➤ 生成多个较大diversity的模型
 - > XGB模型选用不同的参数(树的深度,列采样,正则化参数的设置等)

模型集成

> 单个模型选用不同的迭代次数

➤ 选用简单的集成方式(均值), 获得预测结果f(A) → 线上0.6009

算法流程2: 获取多模型C

2.1 获取模型B

- > 对4万条业务A数据做一样的特征工程
- 》以4万条业务A数据为训练集,4千条业务B数据为验证集进行调参,将在验证集上获得最好效果的模型作为模型B

2.2 获取模型C

3. 模型迁移到B 数据集,用B数 据集微调原模型

模型C

➤ 将模型B进行迁移,以B模型作为初始模型,利用4千条业务B数据在模型B的基础 上进行cv参数微调获得模型C,使模型C在能更好的拟合4千条业务B中的数据

模型C = xgb.train(params,train_data,base_model)

- paras: xgb的参数,包含树的深度,步长等
- train_data: 4千条业务B数据作为微调用的新数据

单模型B

● base_model: 模型B,表示以模型B为初始模型

2.3 模型集成

模型融合 单模型C

多模型C

预测f(C)

- > 生成多个较大diversity的模型
 - > XGB模型选用不同的参数(树的深度,列采样,正则化参数的设置等)
 - > 单个模型选用不同的迭代次数
- ➤ 选用简单的集成的方式(均值), 获得预测结果f(C)

算法流程3: 模型融合获得最终提交结果

- > 多模型A是在目标数据上直接获得,和测试数据相关性大,对其赋予较大权重;
- ➤ 多模型C是根据业务A数据训练并在业务B数据上微调得到,能辅助业务B数据的判断和预测,赋予相对较小的权重。

4 实验结果

实验结果

5 小结

小结

- 方法总结
 - ▶ 方法以模型为主(目标域模型+迁移模型),特征工程较少
 - ▶ 把目标域训练得到的模型作为主模型1,将在源域上训练得到的模型迁移到目标域并利用目标域数据进行fine-tune得到的模型作为主模型2,最后利用合理的加权方式得到最终结果,合理的考虑了迁移模型与目标域模型的关系。
 - ▶ 模型简单易懂,通过目标域数据对源数据模型的fine-tune的来做迁移,算法部分由XGBoost和简单的bagging构成,构建两大主模型的关系的方式也很易懂。

小结

- 改进空间
 - > 增加特征工程
 - > 对最后一步的双模型融合的参数进行进一步的调优
 - 因为提交的次数原因,只进行了4次调优尝试
 - ▶ 集成时采用不同的模型, lightGBM, 随机森林等

Thanks

请各位评委专家批评指正