К заданию на выполнение типового расчета

1. К построению процесса расширения в турбине и расчету расходов пара

Исходными данными для расчетов являются: электрическая мощность ПТУ N_3 , параметры свежего пара (p_0 , t_0) и после промперегревателя ($p_{пп}$, $t_{пп}$), давление в конденсаторе p_{κ} , число регенеративных подогревателей Z, а также температура питательной воды (t_{ne} ≈230-245°C при p_0 =12,8 МПа и $t_{пв}$ ≈263-275°C при p_0 =23,5 МПа). Принять давление питательной воды $p_{пв}$ =(1,37-1,4) p_0 при докритических параметрах свежего пара и $p_{пв}$ =(1,33-1,35) p_0 при сверхкритических параметрах свежего пара.

При построении процесса расширения в турбине учесть потери давления:

- в стопорных и регулирующих клапанах ЦВД $\Delta p_0 = 0.05 p_0$;
- в промежуточном пароперегревателе $\Delta p_{\text{пп}} = 0,10 \ p_{\text{пп}}$;
- в стопорных и регулирующих клапанах ЦСД $\Delta p = 0.03 p_{\rm nn}$.

Принять, что в выходном патрубке ЦНД турбины энергия с выходной скоростью за последней ступенью затрачивается на преодоление аэродинамического сопротивления каналов патрубка, т.е. $p_2 = p_{\kappa}$.

Принять нагрев питательной воды в питательном насосе относительно температуры по состоянию насыщения в деаэраторе 4-7°С. При этом нижняя граница диапазона температур назначается для ПЭН (в условиях докритических параметров свежего пара), а верхняя - для ПТН (в условиях сверхкритических параметров свежего пара).

1.1 Определение расходов пара на входе в турбину (G_0) и в конденсатор (G_κ) для турбин с промежуточным перегревом пара

Процесс расширения в h,s- диаграмме представлен на рис. 1.

КПД цилиндров допускается принять из следующих диапазонов численных оценок:

$$\eta_{oi}^{\Pi B \Pi} = 0.82...0.87; \ \eta_{oi}^{\Pi C \Pi} = 0.86...0.92; \ \eta_{oi}^{\Pi H \Pi} = 0.78...0.83.$$

Можно в первом приближении принять $\eta_{oi}^{1} = \eta_{oi}^{11} = 0,85$. η_{oi}^{1} – это КПД ЦВД, η_{oi}^{11} – это КПД ЦСД + ЦНД.

Расход пара в первую ступень турбины (G_0) перед построением процесса допускается оценивать на основе определения приведенного использованного теплоперепада турбины (Паровые и газовые турбины / под ред. А.Г.Костюка. М.: Энергоатомиздат, 1985. (Стр.125-126; 135-136):

$$\overline{H}_{i} = \eta_{ip} \{ (h_{0} - h_{ng}) + (h_{nn} - h_{1}) \},$$
(1)

где $h_1 = h_0 - (h_0 - h_{1t}) \eta_{oi}^{-1};$ $h_0(p_0, t_0);$ $h_{1t}(S_0, p_1);$ $egin{aligned} h_{\Pi B}(p_{\Pi B},\,t_{\Pi B}); \ h_{\Pi \Pi}(p_{\Pi \Pi},\,t_{\Pi \Pi}); \ p_1 = p_{\Pi \Pi} + \Delta p_{\Pi \Pi}. \end{aligned}$

Рис. 1. Процесс расширения в турбине

 H_{01} – располагаемый теплоперепад ЦВД (до промперегрева); H_{02} – располагаемый теплоперепад ЦСД + ЦНД (после промперегрева) p_1 - давление за ЦВД турбины (p_1 = $p_{пп}$ + $\Delta p_{пп}$)

Абсолютный внутренний КПД турбоустановки с промперегревом и регенерацией:

$$\eta_{ip} = \frac{(h_0 - h_{1t})\eta_{oi}^{1} + (h_{nn} - h_{\kappa t})\eta_{oi}^{11}}{(h_0 - h_{1t})\eta_{oi}^{1} + (h_{nn} - h_{\kappa}^{1})} \frac{1}{(1 - \xi_p^{nn})},$$
(2)

где h_{kt} ($S_{пп}$, p_k);

 $h_k^{'}\left(p_k\right)$ — энтальпия воды в состоянии насыщения (на левой пограничной кривой) при давлении p_k .

Выигрыш в экономичности от использования регенеративной системы подогрева питательной воды, оцениваемый коэффициентом ξ_p^{nn} с учетом конечного числа подогревателей Z, определяется по данным рис. 3.2, δ (Лекция 3):

$$\xi_p^{nm\infty} = 1 - \frac{1 - \frac{T_{\kappa}(S_{nn} - S_{\kappa}^I)}{(h_0 - h_{1t}) + (h_{nn} - h_{\kappa}^I)}}{1 - \frac{T_{\kappa}(S_{nn} - S_{ne})}{(h_0 - h_{1t}) + (h_{nn} - h_{ne})}},$$
(3)

где $T_{\kappa}(p_{k})$ – температура конденсата [K];

 $S_{\Pi\Pi}(p_{\Pi\Pi}, t_{\Pi\Pi});$

 $S_{\Pi B}(p_{\Pi B}, t_{\Pi B});$

Численное значение коэффициента $\overline{\xi} = \xi_p^{nn}/\xi_p^{nn\infty}$ находится при отношении $\frac{t_{ns}-t_\kappa}{t_0-t_\kappa}$,

где ${\bf t_0}^{'}$ – температура насыщения при давлении свежего пара p_0 .

При сверхкритическом давлении принять t₀ =374,2 °C.

Тогда расход свежего пара перед турбиной

$$G_0 = \frac{N_3}{\overline{H}_i \eta_{\text{tot}} \eta_{23}}, \tag{4}$$

где значение механического КПД турбоагрегата принимается в диапазоне $\eta_{\text{мех}}$ =0,99...0,995, а КПД электрического генератора - η_{32} =0,98...0,99.

Расход пара в конденсатор

$$G_{\kappa} = \frac{N_{\Im}}{(h_{\kappa} - h_{\kappa}^{-1})\eta_{MN}\eta_{\Im}} \left(\frac{1}{\eta_{ip}} - 1\right), \tag{5}$$

где $h_{\kappa} = h_{\Pi\Pi} - (h_{\Pi\Pi} - h_{\kappa t}) \eta_{oi}^{\ \ II}$.

Полученный в расчете расход свежего пара сравнить с расходом, представляемым для соответствующей турбины в известных литературных источниках (см. табл. 1). Провести оценку разницы в расходе и объяснить причины различия в численных значениях.

1.2 Определение расходов пара на входе в турбину (G_0) и в конденсатор (G_κ) для турбин без промежуточнго пергрева пара

Процесс расширения в h,s- диаграмме представлен на рис. 2,а.

Можно в первом приближении принять $\eta_{oi} = 0.85$. (η_{oi} – это КПД ЦВД + ЦСД + ЦНД, т.е. среднее значение для всей турбины).

Расход пара в первую ступень турбины (G_0) перед построением процесса допускается оценивать на основе определения приведенного использованного теплоперепада турбины (Паровые и газовые турбины / под ред. А.Г.Костюка. М.: Энергоатомиздат, 1985. (Стр.125-126; 135-136):

$$\overline{H}_{i} = \eta_{ip}(h_0 - h_{ne}),$$
 (6)

где $h_0(p_0, t_0)$;

 $h_{\text{пв}}(p_{\text{пв}}, t_{\text{пв}});$ Принять давление питательной воды $p_{\text{пв}}$ =(1,37-1,4) p_{0} .

 η_{ip} – абсолютный внутренний КПД турбоустановки при наличии регенерации.

Рис.2 Процесса расширения водяного пара в турбине в *h,s*-диаграмме:

a – с учетом дросселирования в стопорных и регулирующих клапанах; δ – упрощенное (1 - теоретический процесс; 2 – реальный процесс)

Абсолютный внутренний КПД турбоустановки с регенерацией, **но без промперегре- ва**:

$$\eta_{ip} = \frac{(h_0 - h_{\kappa t})\eta_{oi}}{(h_0 - h_{\kappa}^{-1})} \frac{1}{(1 - \xi_p)}, \tag{7}$$

где h_{kt} (S₀, p_k);

 $h_k^{'}\left(p_k\right)$ — энтальпия воды в состоянии насыщения (на левой пограничной кривой) при давлении p_k .

Выигрыш в экономичности от использования регенеративной системы подогрева питательной воды, оцениваемый коэффициентом ξ_p с учетом конечного числа подогревателей Z, определяется по данным рис. 3.2,а (Лекция 3):

По рис.3.2,а находим численное значение коэффициента $\overline{\xi} = \xi_p / \xi_p^\infty$ при отношении

$$\frac{t_{n_{\mathcal{B}}}-t_{\kappa}}{t_{0}-t_{\kappa}},$$

где $\mathbf{t_0}'$ (°С) – температура насыщения при давлении свежего пара p_0 .

Повышение экономичности, которое может быть достигнуто в идеальном регенеративном цикле с бесконечным числом отборов по сравнению с циклом без отборов, составит:

$$\xi_{\mathbf{p}}^{\ \infty} = (\eta_{\mathbf{tp}}^{\ \infty} - \eta_{\mathbf{t}}) / \eta_{\mathbf{t}} \tag{8}$$

где $\eta_{t} = 1 - T_{k} (S_{0} - S_{k}^{'}) / (h_{0} - h_{k}^{'});$

$${\eta_{tp}}^{\infty} = 1 - T_k (S_0 - S_{\pi.B.}) / (h_0 - h_{\pi B});$$

 $T_{\kappa}(p_k)$ – температура конденсата [K];

 $S_0(p_0, t_0);$

 $S_k^{'}(p_\kappa)$ - энтропия воды в состоянии насыщения (на левой пограничной кривой) при давлении p_k .;

 $S_{\Pi B}(p_{\Pi B}, t_{\Pi B});$

Зная
$$\xi_p = \overline{\xi} \,\, \xi_p^{\infty}$$

по (7) находим η_{ip} и, затем по (6) приведенный использованный теплоперепад турбины.

Тогда расход свежего пара перед турбиной

$$G_0 = \frac{N_{\Im}}{\overline{H}_i \eta_{Mex} \eta_{\Im}}, \qquad (9)$$

где значение механического КПД турбоагрегата принимается в диапазоне $\eta_{\text{мех}}$ =0,99...0,995, а КПД электрического генератора - η_{32} =0,98...0,99.

Расход пара в конденсатор

$$G_{\kappa} = \frac{N_{\Im}}{(h_{\kappa} - h_{\kappa}^{1})\eta_{Mex}\eta_{\Im}} \left(\frac{1}{\eta_{ip}} - 1\right), \tag{10}$$

где $h_{\kappa} = h_0 - (h_0 - h_{\kappa t}) \eta_{oi}$.

Полученный в расчете расход свежего пара сравнить с расходом, представляемым для соответствующей турбины в известных литературных источниках (см. табл. 1). Провести оценку разницы в расходе и объяснить причины различия в численных значениях.

3. Основные показатели паровых турбин для ТЭС

Основные показатели паровых турбин для ТЭС представлены в табл. 1. При этом под номинальной мощностью турбоагрегата понимается наибольшая мощность, которую он может длительное время развивать при номинальных значениях параметров рабочих сред турбоустановки. Максимальная мощность соответствует условиям реализации конденсационного режима эксплуатации с максимально возможным расходом свежего пара.

Максимальный расход свежего пара для теплофикационных турбин определен для условий реализации конденсационного режима эксплуатации турбоустановки с максимальной мощностью турбоагрегата.

Таблица 1. Основные показатели паровых турбин для ТЭС

Показатели	T-110/120- 12,8-4	T-180/215- 12,8-2	К-215-12,8	T-250/300- 23,5-3	К-300-23,5	K-500- 23,5-4	K-800- 23,5-5	K-1200- 23,5
Завод-изготовитель	TM3	ЛМ3	ЛМ3	TM3	ЛМ3	ЛМ3	ЛМ3	ЛМ3
Номинальная								
мощность, МВт	110	180	210	250	300	525	800	1200
Максимальная								
мощность, МВт	120	215	215	300	330	535	850	1400
Начальное давление свежего								
пара, МПа	12,8	12,8	12,8	23,5	23,5	23,5	23,5	23,5
Начальная температура све-								
жего пара, °С	555	540	540	540	560	540	540	540
Давление пара после								
промперегрева, МПа		2,49	2,4	3,73	3,53	3,8	3,34	3,5
Температура пара после								
промперегрева, °С		540	540	540	565	540	540	540
Конечное давление пара	5,6							
$p_2=p_{\kappa}$, кПа		6,27	3,46	6,9	3,43	3,3	3,43	3,58
Температура	232							
питательной воды, °С		248	246	263	265	274	274	274
Число отборов на регенера- цию	8	7	7	8	8	8	8	9
Расход свежего пара,								
номин./максим., кг/с	/135	165/186	173/186	265/277	247/258	458	670	1018
Число цилиндров (первая								
цифра) х число потоков (вто-	1x1+1x1 +1x2	1x1+1x1	1x1+1x1	1x1+2x1	1x1+1x1	1x1+1x1	1x1+1x2	1x1+1x2
рая цифра)	TIAL	+1x2	+1x2	+1x2	+1x3	+2x2	+3x2	+3x2
Длина рабочих лопаток по-								
следней ступени ЦНД								
турбины l_2 , мм	550	755	765	940	960	960	960	1200
КПД турбоустановки, %		45,3	45,8	46,4	46,7	46,8	46,9	47,1

Примечания к табл. 1.

- 1. Модификация турбины Т-180/210-12,8-1 выполнена для температуры охлаждающей воды на входе в конденсатор 27°С (p_{κ} =8,65 кПа) с длиной рабочих лопаток последней ступени ЦНД l_2 =640 мм. Вторая модификация данной турбины выполнена для температуры охлаждающей воды на входе в конденсатор 20°С (p_{κ} =6,27 кПа) с длиной рабочих лопаток последней ступени ЦНД l_2 =755 мм.
- 2. Паровые турбины K-215-12,8 ЛМЗ разработаны на базе турбины K-200-130 в двух модификациях: первая (1) для однобайпасной пусковой схемы; вторая (2) для двухбайпасной. Современная модификация серии турбин на базе K-200-130 паровая турбина K-225-12,8 с длиной рабочих лопаток последней ступени ЦНД l_2 =960 мм (из проточной части ЦНД исключена двухярусная ступень Баумана).
- 3. Для модификации турбины T-250/300-23,5-1 температура свежего пара составляла 560° C, пара после промперегрева 565° C, максимальный расход свежего пара 258,3 кг/с.
- 4. Для модификации турбины T-255/305-23,5-5 температура свежего пара составляет 540°C, пара после промперегрева 540°C, максимальный расход свежего пара 277,8 кг/с. Существуют модификации T-250/305-23,5-Д (для условий дальнего теплоснабжения потребителей около 30 км), T-265/305-23,5-С (для условий ближнего теплоснабжения потребителей) и T-250/305-23,5-ДБ (с бездеаэраторной тепловой схемой турбоустановки, в которой функции деаэратора выполняет ПНД №2 смешивающего типа).
- 5. Современной модификацией паровой турбины K-300-23,5 ЛМЗ является турбина K-330-23,5 с номинальной мощностью 300 МВт, максимальной 340 МВт, давлением $p_{\text{пп}}$ =3,66 МПа, номинальным расходом свежего пара 291 кг/с.

4. Требования к оформлению пояснительной записки и ее содержанию

Текст пояснительной записки оформляется шрифтом Times New Roman, кегль 14 через полтора интервала. Поля: левое поле – 30 мм, правое – 15 мм, верхнее и нижнее – по 20 мм. Каждый абзац должен начинаться с красной строки. Во всей работе, включая сноски, текст выравнивается по ширине рабочего поля листа.

Все расчеты представляются в таком виде: обозначение искомой величины = аналитическое выражение (формула) = подставленные численные значения в формулу = ответ – размерность.

Всем величинам присваиваются общепринятые обозначения в соответствии с прилагаемым процессом расширения в турбине или ступени. Например, в главе 2 (см. далее) обозначения величин должны соответствовать рис.1 (для турбин с промежуточным перегревом).

Основной текст включает в себя главы, параграфы. Каждый структурный элемент основного текста должен иметь порядковый номер. Каждая новая глава начинается с новой страницы.

Структура пояснительной записки

- ✓ Титульный лист.
- ✓ Бланк задания (исходные данные).
- ✓ Содержание.
- ✓ Введение.
- ✓ Главы с изложением основных результатов расчетов.
- ✓ Список литературы.
- ✓ Приложения (при необходимости).

В содержании приводятся заголовки разделов и указываются страницы, с которых они начинаются.

Во введении представляется цель и задачи проекта. Объем введения 1 стр.

В **главе 1** приводится **тепловая схема турбоустановки** и ее описание (не менее 2 стр.), а также описание конструкции паровой турбины с представлением **продольных разрезов** всех цилиндров турбины (не менее 5 стр).

В главе 2 приводятся результаты расчетов расходов свежего пара (G_0) и в конденсатор (G_{κ}). Здесь следует представить рисунок процесса расширения в турбине с обозначением всех параметров пара. Отдельный параграф посвящается выбору компоновки турбины, способа парораспределения и оценкам размеров рабочих лопаток последней ступени ЦНД.

В главе 3 приводятся результаты расчета регулирующей ступени ЦВД турбины.

В главе 4 приводятся результаты разбивки теплоперепада ЦВД по ступеням.

В главе 5 приводятся результаты расчета нерегулируемой ступени ЦВД турбины.

В главе 6 приводятся результаты прочностных расчетов.

Список литературы должен отражать перечень использованных литературных источников с указанием их библиографических данных (издательство, год издания).