1. (a) El primer harmònic, o fonamental, es pot representar com

La longitud d'ona que li correspon es pot calcular directament donat que és

$$\lambda_1 = 2L = 2 \cdot 0,325 = 0,65 \, m$$

En quant al tercer harmònic

La longitud d'ona d'aquest harmònic es pot calcular adonant-nos que és

$$1,5\lambda_2 = L \to \lambda_2 = \frac{L}{1,5} = \frac{0,325}{1,5} = 2,17 \cdot 10^{-1} \, m$$

La velocitat de propagació no depèn del mode de vibració. La podem calcular a partir de la informació que tenim pel primer harmònic

$$\lambda = vT = \frac{v}{f} \rightarrow v = \lambda f = 0,65 \cdot 38,89 = 25,28 \, m/s$$

Si la longitud de la corda és ara de $27\,cm$ la freqüència del fonamental es pot calcular com

$$f = \frac{v}{\lambda} = \frac{25,28}{2 \cdot 0,27} = 46,81 \, Hz$$

on hem tingut en compte, d'acord amb l'esquema del principi d'aquest document, que pel fonamental és $\lambda=2L.$

(b) A partir de

$$\beta = 10 \log \frac{I}{I_0}$$

calculem la intensitat

$$I = I_0 \cdot 10^{\frac{\beta}{10}} = 10^{-12} \cdot 10^{\frac{30}{10}} = 10^{-9} W/m^2$$

llavors la potència es pot calcular com

$$P = \frac{I}{S} = \frac{I}{4\pi r^2} = \frac{10^{-9}}{4\pi \cdot 23^2} = 1,5 \cdot 10^{-13} W$$

Si ara el nombre de violinistes es redueix a la meitat la intensitat emesa quedarà dividida entre dos, de forma que la intensitat sonora serà

$$\beta' = 10\log\frac{I'}{I_0} = 10\log\frac{\frac{1}{2}I}{I_0} = 10\left[\log\frac{1}{2} + \log\frac{I}{I_0}\right] = 10\log\frac{1}{2} + 10\log\frac{I}{I_0}$$

llavors

$$\beta' = 10\log\frac{1}{2} + 30 = 26,99 \approx 27 \, dB$$

2. (a) L'esquema és

a partir d'ell calculem primer la longitud d'ona

$$1,5\lambda = L \rightarrow \lambda = \frac{L}{1,5} = \frac{0,6}{1,5} = 0,4 \, m$$

ara podem calcular la velocitat de propagació de l'ona per la corda com

$$v = \lambda f = 0, 4 \cdot 200 = 80 \, Hz$$

Per calcular la velocitat màxima al centre de la corda suposarem una equació per l'ona de la forma

$$y(t) = 2A\sin kx \cos \omega t$$

la velocitat de vibració dels punts de la corda serà

$$v(t) = \frac{\partial y(t)}{\partial t} = -2A\omega \sin kx \sin \omega t$$

tenint en compte que estem en un ventre $(|\sin kx| = 1)$ serà

$$v(t) = -2A\omega\cos\omega t$$

de forma que el valor màxim en aquestes condicions és

$$v_{max} = \pm 2A\omega$$

i com sabem que 2A = 0,02 m podem escriure

$$v_{max} = \pm 0,02 \cdot 2\pi \cdot 200 = 25,13 \, m/s$$

- (b) Com la corda mesura $60\,cm$, i queda dividida en tres parts iguals pels quatre nodes, és trivial veure que a $10\,cm$ tenim un ventre, que tindrà una amplitud d'oscil·lació de $0,02\,m$ (igual que el ventre central) i que a $20\,cm$ trobarem un node, que té amplitud d'oscil·lació zero.
- 3. (a) Per un violí tenim

$$\beta = 10 \log \frac{I}{I_0}$$

mentre que per cinc

$$\beta' = 10 \log \frac{I'}{I_0} = 10 \log \frac{5I}{I_0} = 10 \left[\log 5 + \log \frac{I}{I_0} \right] = 10 \log 5 + \beta$$

de forma que el nivell d'intensitat sonora ha augmentat en

$$10 \log 5 = 6.99 \approx 7 dB$$

Notem que aquest és increment és independent del nivell de sonoritat inicial β .

(b) Escrivim senzillament

$$76,98 = \beta'' = 10 \log \frac{5I''}{I_0}$$

d'on

$$\log \frac{5I''}{I_0} = 7,698$$

i aplicant la definició de logaritme

$$\frac{5I''}{I_0} = 10^{7,698} \to I'' = \frac{I_0 \cdot 10^{7,698}}{5} = \frac{10^{-12} \cdot 10^{7,698}}{5} = 9,98 \cdot 10^{-6} \, W/m^2$$

4. (a) Els tres primers harmònics en unn tub obert pels dos extrems es poden representar com

Trobem la longitud d'ona que correspon a cada harmònic. Pel primer veiem que es compleix

$$\frac{1}{2}\lambda_1 = L \to \lambda_1 = 2 \cdot 0,700 = 1,40 \, m$$

pel segon

$$\lambda_2 = L = 0,700 \, m$$

i pel tercer

$$1,5\lambda_3 = L \to \lambda_3 = \frac{L}{1,5} = \frac{0,700}{1,5} = 0,467 \, m$$

A partir de

$$v = \lambda f$$

i tenint en compte que la velocitat de les ones dins la flauta és la del so a l'aire, les freqüències de cada harmònic seran

$$f_1 = \frac{v}{\lambda_1} = \frac{340}{1,40} = 242,86 \, Hz$$

$$f_2 = \frac{v}{\lambda_2} = \frac{340}{0,700} = 485,71 \, Hz$$

$$f_3 = \frac{v}{\lambda_3} = \frac{340}{0,467} = 728,05 \, Hz$$

(b) Per una flauta tenim

$$\beta = 10 \log \frac{I}{I_0}$$

mentre que per tres

$$\beta' = 10 \log \frac{I'}{I_0} = 10 \log \frac{3I}{I_0} = 10 \left[\log 3 + \log \frac{I}{I_0} \right] = 10 \log 3 + \beta$$

d'on

$$\beta' = 10\log 3 + 65 = 69,77 \, dB$$

