Bangabandhu Sheikh Mujibur Rahman Science & Technology University, Gopalganj Department of Computer Science & Engineering 1nd Year 2nd Semester B.Sc. (Hon's) Examination-2015 Course No.: PHY 154, Course Title: Physics.

Full Marks: 70

Time: 4 hours

	ii) A	. i) Answer SIX questions taking THREE from each section. Ill questions are of equal values. Use separate answer script for each section.	
	111)	Section-A	
Q.1.	a)	State and explain the principle of conservation of linear momentum	2.67
	b)	Show that when a hard rubber ball is dropped on a hard ground vertically, it rebounds practically with the same velocity upwards	5
	c)	A 2.5kg ball travelling with a speed of 7.5m/s makes an elastic collision with another ball of 1.5kg and travelling at the speed of 3.0m/s in the same direction. What are the velocities of the balls immediately after collision?	4
Q.2.	a)	Derive Differential equation of a simple harmonic motion	4.67
	b)	Show that for a particle executing SHM, the instantaneous velocity is $\Omega \sqrt{a^2-y^2}$ and instantaneous accelerations is $-\Omega^2 y$.	2
	c)	Derive an expression for angular velocity of a forced vibration.	5
Q.3.	a)	State and explain the Doppler's principle.	2
	b)	Derive the expression for the centripetal acceleration of a body moving with a uniform velocity in a circle.	3
	c)	Compare between perfectly elastic and inelastic collision.	3.67
	d)	State Wein's law of black body radiation. What is the physical significance of this law?	3
Q.4.	a)	For a cyclic process, prove that the 1 st law of thermodynamics represent s Joule's law.	3
	b)	Define entropy. What is the physical significance of entropy?	2.67
	c)	Give the results with figure obtained by Lummer and Pringsheim for energy distribution in the spectrum of a black body.	3
	d)	Determine the force of gravitational attraction between the earth $5.98 \times 10^{24} \text{ kg}$ and a 70 kg boy who is standing at sea level, a distance of $6.38 \times 10^6 \text{ m}$ from earth's center.	3
		Section-B	
Q.5.	a)	Give the conditions of coherent waves.	2.67
	b)	What is interference of light? Derive the equation for fringe separation in Young's double slit experiment.	5
	c)	In a Newton's ring's experiment the diameter of the 15 th ring was found to 0.59cm and that of 5 th ring was 0.336cm. If the radius of the plano-convex lens is 100cm, calculate the wavelength of light used.	2
	d)	Mention some applications of Newton's ring experiment	2