2.8 General loss functions and random design

Goal: To quantify $L(\hat{\theta}) - L(\theta^*)$ for a general $L(\theta)$.

For an example z=(x,y), $L(z,\theta)$ is the loss function and DEIRd.

Denote \mathbb{Z} as the set of all examples. Let $p^* = \Delta(\mathbb{Z})$. Let 0* EIR4 be the minimal of expected risk:

$$0^*:= \underset{\theta \in \mathbb{R}^d}{\operatorname{argmax}} L(\theta), L(\theta) := E_{z \sim p^*}[L(z, \theta)]$$

Let $\hat{\theta} \in \mathbb{R}^d$ be the minimizer of the empirical tisk: $\hat{\theta} := \underset{\theta \in \mathbb{R}^d}{\operatorname{argmax}} \hat{\mathbb{L}}(\theta) , \quad \hat{\mathbb{L}}(\theta) := \frac{1}{N} \sum_{i=1}^{N} \mathbb{L}(\mathbf{z}^{(i)}, \theta)$

where Z(i) i.i.d. drawn from P*.

Assumptions on L(Z, 0):

- (i) L(z,0) is twice differentiable in 0.
- (ii) $\nabla L(z,\theta) \in \mathbb{R}^d$ means the gradient at θ .
- (iii) $\nabla^2 L(z,\theta) \in \mathbb{R}^{d\times d}$ means the Hessian at θ .
- (iv) $E_{3\sim p^*}[\nabla^2 L(3,0)] > 0$ is positive definite for all 0.

[Definition 3] Well-specified model

- (i) $l(x,y;\theta) := -\log P_{\theta}(y|x)$
- (ii) {po: DEIRd } is conditionally well-specified if $P^{+}(x,y) = P^{+}(x)P_{\theta^{+}}(y|x)$ for some $\theta^{+} \in \mathbb{R}^{d}$.
- (iii) Suppose each o specifies a Po(x,y). {Po:0 & IRd) is jointly well-specified if $P^*(x,y) = P_{\theta^*}(x,y)$ for some $\theta^* \in \mathbb{R}^d$.

[Theorem 3] Bartlett identity.
In the well-specified case (conditionally, thus jointly), the

Tollowing Nolds:

$$\nabla^2 L(\theta^*) = \text{Cov} [\nabla L(z, \theta^*)]$$

Pf:
$$1 = \int p^{*}(z) dz = \int p^{*}(x) P_{6*}(y|x) dz$$

 $\Rightarrow \int p^{*}(x) e^{-\int (z, e^{*})} dz = 1$

differentiate w.r.t. θ^* : $\int P^*(x)e^{-\int (z,\theta^*)} (-\nabla J(z,\theta^*)) dz = 0$

which implies $E[\nabla l(z,\theta^*)] = 0$. Differentiate again: $D = \int p^*(x) \left[-e^{-l(z,\theta^*)} \nabla^2 l(z,\theta^*) + e^{-l(z,\theta^*)} \nabla l(z,\theta^*) \nabla l(z,\theta^*)^T \right] dz$ $= -E[\nabla^2 l(z,\theta^*)] + E[\nabla l(z,\theta^*) \nabla l(z,\theta^*)^T]$ $= -E[\nabla^2 l(z,\theta^*)] + Cov[\nabla l(z,\theta^*)]$ Since $E[\nabla l(z,\theta^*)] = 0$.

 $\Rightarrow \Delta_{r} \Gamma(\theta_{*}) = E[\Delta_{r} \Gamma(\mathcal{S}^{r} \theta_{*})] = Con[\Delta \Gamma(\mathcal{S}^{r} \theta_{*})]$

[Example 2] well-specified random design linear regression.

Model:

(i)
$$x \sim p^*(x)$$
 for some arbitrary $p^*(x)$

(ii)
$$y = 0^{*} \cdot x + 2$$
 Where $\xi \sim N(0,1)$

Loss function: $L(x,y;\theta) := \frac{1}{2}(\theta \cdot x - y)^2$

Property 1: $\nabla^2 L(\theta) = Cov [\nabla L(z, \theta^*)]$

(i)
$$\nabla^{1}L(\theta) = \nabla^{2}E_{X\sim p^{*}, q\sim N(0,1)}\left[\frac{1}{2}(\theta \cdot x - \theta^{*} \cdot x - \epsilon)^{2}\right]$$

$$= E\left[xx^{T}\right]$$

Now we study $\hat{\theta} - \theta^*$:

Step 1: perform a Taylor expansion of $\nabla \hat{L}$ around θ^* : $\nabla \hat{L}(\hat{\theta}) = \nabla \hat{L}(\theta^*) + \nabla^2 \hat{L}(\theta^*)(\hat{\theta} - \theta^*) + O_p(||\hat{\theta} - \theta^*||_{\hat{L}}^2)$

Using the fact $\nabla \hat{L}(\hat{\theta}) = 0$ Since $\hat{\theta}$ is optimal: $\hat{\theta} - \theta^* = -\nabla^2 \hat{L}(\theta^*)^{-1} \left(\nabla \hat{L}(\theta^*) + O_p(||\hat{\theta} - \theta^*||_2^2)\right) \quad (I)$

As $n \rightarrow \infty$, by the weak law of large numbers: $\nabla^2 \hat{L}(\theta^*) \xrightarrow{P} \nabla^2 L(\theta^*)$

Since $\nabla^2 L(\theta^*) > 0$, $\nabla^2 L(\cdot)^{-1}$ is smooth around θ^* : $\nabla^2 \hat{L}(\theta^*)^{-1} \xrightarrow{P} \nabla^2 L(\theta^*)^{-1} \qquad (CMT)$

By central limit theorem: $\sqrt{n} \nabla \hat{L}(\theta^*) \stackrel{d}{\longrightarrow} N(0, \text{Cov}[\nabla L(z, \theta^*)])$

Suppose $\hat{\theta} - \theta = Op(f(n))$, then by (I), f(n) decays at a rate of $O(\frac{1}{3n})$ or f(n), which implies $f(n) = \frac{1}{3n}$. Thus: $In \cdot Op(II\hat{\theta} - 0*II_2^2) \stackrel{P}{\longrightarrow} O$.

By Slutsky's theorem, With (I):

 $\sqrt{n} \cdot (\hat{\theta} - \theta^*) \stackrel{d}{\longrightarrow} N(0, \nabla^2 L(\theta^*)^{-1} Cov [\nabla L(z, \theta^*)] \nabla^2 L(\theta^*)^{-1})$

Due to Property 1:

 $\sqrt{n} (\hat{\theta} - \theta^*) \stackrel{d}{\longrightarrow} N(0, E[xx^T]^{-1})$