Constructions With Sets

The Clowder Project Authors

July 22, 2025

000J	This chapter develops some material relating to constructions with sets
	with an eye towards its categorical and higher-categorical counterparts to be
	introduced later in this work. Of particular interest are perhaps the following:

- 1. Explicit descriptions of the major types of co/limits in Sets, including in particular explicit descriptions of pushouts and coequalisers (see Definitions 4.2.4.1.1 and 4.2.5.1.1 and Remarks 4.2.4.1.4 and 4.2.5.1.4).
- **2.** A discussion of powersets as decategorifications of categories of presheaves, including in particular results such as:
- (a) A discussion of the internal Hom of a powerset (Section 4.4.7).
- (b) A 0-categorical version of the Yoneda lemma (Presheaves and the Yoneda Lemma, Theorem 12.1.5.1.1), which we term the *Yoneda lemma for sets* (Proposition 4.5.5.1.1).
- 01YX (c) A characterisation of powersets as free cocompletions (Section 4.4.5), mimicking the corresponding statement for categories of presheaves (??).
- (d) A characterisation of powersets as free completions (Section 4.4.6), mimicking the corresponding statement for categories of copresheaves (??).
- 01YZ (e) A (-1)-categorical version of un/straightening (Item 2 of Proposition 4.5.1.1.4 and Remark 4.5.1.1.6).
- (f) A 0-categorical form of Isbell duality internal to powersets (Section 4.4.8).
- 01Z1 3. A lengthy discussion of the adjoint triple

$$f_! \dashv f^{-1} \dashv f_* \colon \mathcal{P}(A) \xrightarrow{\rightleftarrows} \mathcal{P}(B)$$

of functors (i.e. morphisms of posets) between $\mathcal{P}(A)$ and $\mathcal{P}(B)$ induced by a map of sets $f: A \to B$, including in particular:

Contents 2

01Z2	(a) How f^{-1} can be described as a precomposition while $f_!$ and f_* can be
	described as Kan extensions (Remarks 4.6.1.1.4, 4.6.2.1.2 and 4.6.3.1.4).

- 01Z3 (b) An extensive list of the properties of $f_!$, f^{-1} , and f_* (Propositions 4.6.1.1.5, 4.6.1.1.7, 4.6.2.1.3, 4.6.2.1.5, 4.6.3.1.7 and 4.6.3.1.9).
- 01Z4 (c) How the functors f_1 , f^{-1} , f_* , along with the functors

$$-_{1} \cap -_{2} \colon \mathcal{P}(X) \times \mathcal{P}(X) \to \mathcal{P}(X),$$
$$[-_{1}, -_{2}]_{X} \colon \mathcal{P}(X)^{\mathsf{op}} \times \mathcal{P}(X) \to \mathcal{P}(X)$$

may be viewed as a six-functor formalism with the empty set \emptyset as the dualising object (Section 4.6.4).

Contents

4.1	Limits	of Sets	3
	4.1.1	The Terminal Set	3
	4.1.2	Products of Families of Sets	4
	4.1.3	Binary Products of Sets	7
	4.1.4	Pullbacks	19
	4.1.5	Equalisers	31
	4.1.6	Inverse Limits.	36
4 2	Colimi	its of Sets	40
	4.2.1	The Initial Set	
	4.2.2	Coproducts of Families of Sets.	
	4.2.3	Binary Coproducts	
	4.2.4	Pushouts	
	4.2.5	Coequalisers	
	4.2.6	Direct Colimits	
4.3	Opera	tions With Sets	67
1.0	4.3.1	The Empty Set	
	4.3.2	Singleton Sets.	
	4.3.3		
	4.3.4	Ordered Pairs.	
	4.3.5	Sets of Maps	
	4.3.6	Unions of Families of Subsets	
	4.3.7	Intersections of Families of Subsets	
	4.3.8	Binary Unions	100

	4.0.0	D' I	100
	4.3.9	Binary Intersections	
		Differences	
		Complements	
	4.3.12	Symmetric Differences	122
4.4	Power	sets	.130
	4.4.1	Foundations	.130
	4.4.2	Functoriality of Powersets	.133
	4.4.3	Adjointness of Powersets I	
	4.4.4	Adjointness of Powersets II	
	4.4.5	Powersets as Free Cocompletions	
	4.4.6	Powersets as Free Completions	
	4.4.7	The Internal Hom of a Powerset	
	4.4.8	Isbell Duality for Sets	
	61		4=0
4.5		cteristic Functions	
	4.5.1	The Characteristic Function of a Subset	
	4.5.2	The Characteristic Function of a Point	
	4.5.3	The Characteristic Relation of a Set	
	4.5.4	The Characteristic Embedding of a Set	
	4.5.5	The Yoneda Lemma for Sets	181
4.6	The Ac	djoint Triple $f_! \dashv f^{-1} \dashv f_*$	182
	4.6.1	Direct Images	.182
	4.6.2	Inverse Images	
	4.6.3	Codirect Images	
	4.6.4	A Six-Functor Formalism for Sets	
	_		
A	Other	Chapters	229
	- •	• • •	

000K 4.1 Limits of Sets

000L 4.1.1 The Terminal Set

000M DEFINITION 4.1.1.1.1 ► THE TERMINAL SET

The **terminal set** is the terminal object of Sets as in Limits and Colimits, ??.

01DB

CONSTRUCTION 4.1.1.1.2 ► CONSTRUCTION OF THE TERMINAL SET

Concretely, the terminal set is the pair $(pt, \{!_A\}_{A \in Obj(Sets)})$ consisting of:

- 01DC
- 1. *The Limit*. The punctual set pt $\stackrel{\text{def}}{=} \{ \star \}$.
- 01DD

2. The Cone. The collection of maps

$$\{!_A \colon A \to \mathsf{pt}\}_{A \in \mathsf{Obj}(\mathsf{Sets})}$$

defined by

$$!_A(a) \stackrel{\text{def}}{=} \star$$

for each $a \in A$ and each $A \in Obj(Sets)$.

PROOF 4.1.1.1.3 ► PROOF OF CONSTRUCTION 4.1.1.1.2

We claim that pt is the terminal object of Sets. Indeed, suppose we have a diagram of the form

in Sets. Then there exists a unique map $\phi: A \to \operatorname{pt}$ making the diagram

$$A - \frac{\phi}{\exists !} \rightarrow pt$$

commute, namely $!_A$.

000N 4.1.2 Products of Families of Sets

Let $\{A_i\}_{i\in I}$ be a family of sets.

000P

DEFINITION 4.1.2.1.1 ► THE PRODUCT OF A FAMILY OF SETS

The **product**¹ **of** $\{A_i\}_{i\in I}$ is the product of $\{A_i\}_{i\in I}$ in Sets as in Limits and Colimits, **??**.

¹Further Terminology: Also called the **Cartesian product of** $\{A_i\}_{i\in I}$.

01DE

CONSTRUCTION 4.1.2.1.2 ➤ CONSTRUCTION OF THE PRODUCT OF A FAMILY OF SETS

Concretely, the product of $\{A_i\}_{i\in I}$ is the pair $\left(\prod_{i\in I}A_i, \left\{\operatorname{pr}_i\right\}_{i\in I}\right)$ consisting of:

01DF

1. *The Limit*. The set $\prod_{i \in I} A_i$ defined by

$$\prod_{i \in I} A_i \stackrel{\text{def}}{=} \left\{ f \in \text{Sets} \left(I, \bigcup_{i \in I} A_i \right) \middle| \begin{array}{l} \text{for each } i \in I, \text{ we} \\ \text{have } f(i) \in A_i \end{array} \right\}.$$

01DG

2. The Cone. The collection

$$\left\{ \operatorname{pr}_i \colon \prod_{i \in I} A_i \to A_i \right\}_{i \in I}$$

of maps given by

$$\operatorname{pr}_{i}(f) \stackrel{\text{def}}{=} f(i)$$

for each $f \in \prod_{i \in I} A_i$ and each $i \in I$.

PROOF 4.1.2.1.3 ► PROOF OF CONSTRUCTION 4.1.2.1.2

We claim that $\prod_{i \in I} A_i$ is the categorical product of $\{A_i\}_{i \in I}$ in Sets. Indeed, suppose we have, for each $i \in I$, a diagram of the form

in Sets. Then there exists a unique map $\phi: P \to \prod_{i \in I} A_i$ making the diagram

$$\begin{array}{c|c}
P \\
\phi \mid \exists ! & p_i \\
\downarrow & \downarrow \\
\prod_{i \in I} A_i & \xrightarrow{pr_i} A_i
\end{array}$$

commute, being uniquely determined by the condition $\operatorname{pr}_i \circ \phi = p_i$ for each $i \in I$ via

$$\phi(x) = (p_i(x))_{i \in I}$$

for each $x \in P$.

01DH

REMARK 4.1.2.1.4 ► UNWINDING CONSTRUCTION 4.1.2.1.2

Less formally, we may think of Cartesian products and projection maps as follows:

01DJ

- 1. We think of $\prod_{i \in I} A_i$ as the set whose elements are *I*-indexed collections $(a_i)_{i \in I}$ with $a_i \in A_i$ for each $i \in I$.
- 01DK
- 2. We view the projection maps

$$\left\{ \operatorname{pr}_i \colon \prod_{i \in I} A_i \to A_i \right\}_{i \in I}$$

as being given by

$$\operatorname{pr}_i\left(\left(a_j\right)_{j\in I}\right)\stackrel{\text{def}}{=}a_i$$

for each $(a_j)_{j\in I}\in\prod_{i\in I}A_i$ and each $i\in I$.

000Q

PROPOSITION 4.1.2.1.5 ▶ PROPERTIES OF PRODUCTS OF FAMILIES OF SETS

Let $\{A_i\}_{i\in I}$ be a family of sets.

000R

1. Functoriality. The assignment $\{A_i\}_{i\in I}\mapsto \prod_{i\in I}A_i$ defines a functor

$$\prod_{i \in I} : \mathsf{Fun}(I_{\mathsf{disc}}, \mathsf{Sets}) \to \mathsf{Sets}$$

where

• *Action on Objects.* For each $(A_i)_{i \in I} \in \mathsf{Obj}(\mathsf{Fun}(I_{\mathsf{disc}},\mathsf{Sets}))$, we have

$$\left[\prod_{i\in I}\right]((A_i)_{i\in I})\stackrel{\text{def}}{=}\prod_{i\in I}A_i$$

• Action on Morphisms.

For each $(A_i)_{i \in I}$, $(B_i)_{i \in I}$

 \in

 $Obj(Fun(I_{disc}, Sets))$, the action on Hom-sets

$$\left(\prod_{i\in I}\right)_{(A_i)_{i\in I},(B_i)_{i\in I}}: \operatorname{Nat}((A_i)_{i\in I},(B_i)_{i\in I}) \to \operatorname{Sets}\left(\prod_{i\in I}A_i,\prod_{i\in I}B_i\right)$$

of $\prod_{i \in I}$ at $((A_i)_{i \in I}, (B_i)_{i \in I})$ is defined by sending a map

$$\{f_i\colon A_i\to B_i\}_{i\in I}$$

in $Nat((A_i)_{i \in I}, (B_i)_{i \in I})$ to the map of sets

$$\prod_{i \in I} f_i \colon \prod_{i \in I} A_i \to \prod_{i \in I} B_i$$

defined by

$$\left[\prod_{i\in I} f_i\right] ((a_i)_{i\in I}) \stackrel{\text{def}}{=} (f_i(a_i))_{i\in I}$$

for each $(a_i)_{i \in I} \in \prod_{i \in I} A_i$.

PROOF 4.1.2.1.6 ► PROOF OF PROPOSITION 4.1.2.1.5

Item 1: Functoriality

This follows from Limits and Colimits, ?? of ??.

000S 4.1.3 Binary Products of Sets

Let A and B be sets.

000T DEFINITION 4.1.3.1.1 ► BINARY PRODUCTS OF SETS

The **product of** A **and** B^1 is the product of A and B in Sets as in Limits and Colimits, ??.

¹Further Terminology: Also called the **Cartesian product of** A **and** B.

01DL

CONSTRUCTION 4.1.3.1.2 ► CONSTRUCTION OF BINARY PRODUCTS OF SETS

Concretely, the product of *A* and *B* is the pair $(A \times B, \{pr_1, pr_2\})$ consisting of:

01DM

1. *The Limit*. The set $A \times B$ defined by

$$A \times B \stackrel{\text{def}}{=} \prod_{z \in \{A, B\}} z$$

$$\stackrel{\text{def}}{=} \{ f \in \text{Sets}(\{0, 1\}, A \cup B) \mid \text{we have } f(0) \in A \text{ and } f(1) \in B \}$$

$$\cong \{ \{ \{a\}, \{a, b\} \} \in \mathcal{P}(\mathcal{P}(A \cup B)) \mid \text{we have } a \in A \text{ and } b \in B \}$$

$$\cong \begin{cases} \text{ordered pairs } (a, b) \text{ with } \\ a \in A \text{ and } b \in B \end{cases}.$$

01DN

2. The Cone. The maps

$$\operatorname{pr}_1: A \times B \to A,$$

 $\operatorname{pr}_2: A \times B \to B$

defined by

$$\operatorname{pr}_{1}(a, b) \stackrel{\text{def}}{=} a,$$

 $\operatorname{pr}_{2}(a, b) \stackrel{\text{def}}{=} b$

for each $(a, b) \in A \times B$.

PROOF 4.1.3.1.3 ► PROOF OF CONSTRUCTION 4.1.3.1.2

We claim that $A \times B$ is the categorical product of A and B in the category of sets. Indeed, suppose we have a diagram of the form

in Sets. Then there exists a unique map $\phi: P \to A \times B$ making the diagram

commute, being uniquely determined by the conditions

$$\operatorname{pr}_1 \circ \phi = p_1,$$

 $\operatorname{pr}_2 \circ \phi = p_2$

via

$$\phi(x) = (p_1(x), p_2(x))$$

for each $x \in P$.

000U

PROPOSITION 4.1.3.1.4 ► PROPERTIES OF PRODUCTS OF SETS

Let A, B, C, and X be sets.

000V

1. Functoriality. The assignments $A, B, (A, B) \mapsto A \times B$ define functors

$$A \times -:$$
 Sets \rightarrow Sets,
 $- \times B:$ Sets \rightarrow Sets,
 $-_1 \times -_2:$ Sets \times Sets \rightarrow Sets,

where -1×-2 is the functor where

• *Action on Objects.* For each $(A, B) \in Obj(Sets \times Sets)$, we have

$$[-1 \times -2](A, B) \stackrel{\text{def}}{=} A \times B.$$

• *Action on Morphisms*. For each $(A, B), (X, Y) \in Obj(Sets)$, the action on Hom-sets

$$\times_{(A,B),(X,Y)} \colon \mathsf{Sets}(A,X) \times \mathsf{Sets}(B,Y) \to \mathsf{Sets}(A \times B, X \times Y)$$

of \times at ((A, B), (X, Y)) is defined by sending (f, g) to the function

$$f \times g : A \times B \to X \times Y$$

defined by

$$[f \times g](a,b) \stackrel{\text{def}}{=} (f(a),g(b))$$

for each $(a, b) \in A \times B$.

and where $A \times -$ and $- \times B$ are the partial functors of -1×-2 at $A, B \in Obj(Sets)$.

2. Adjointness I. We have adjunctions

$$(A \times - \dashv \operatorname{Sets}(A, -))$$
: Sets $\xrightarrow{A \times -}$ Sets, $\operatorname{Sets}(A, -)$ $(- \times B \dashv \operatorname{Sets}(B, -))$: Sets $\xrightarrow{Sets(B, -)}$ Sets,

$$(-\times B + \mathsf{Sets}(B, -))$$
: Sets $\underbrace{-\times B}_{\mathsf{Sets}(B, -)}$ Sets

witnessed by bijections

$$Sets(A \times B, C) \cong Sets(A, Sets(B, C)),$$
$$Sets(A \times B, C) \cong Sets(B, Sets(A, C)),$$

natural in $A, B, C \in Obj(Sets)$.

3. Adjointness II. We have an adjunction

$$(\Delta_{\mathsf{Sets}} \dashv -_1 \times -_2)$$
: Sets $\underbrace{\perp}_{-_1 \times -_2}$ Sets \times Sets,

witnessed by a bijection

$$Hom_{Sets \times Sets}((A, A), (B, C)) \cong Sets(A, B \times C),$$

natural in $A \in \text{Obj}(\mathsf{Sets})$ and in $(B, C) \in \text{Obj}(\mathsf{Sets} \times \mathsf{Sets})$.

4. Associativity. We have an isomorphism of sets

$$\alpha_{A,B,C}^{\mathsf{Sets}} : (A \times B) \times C \xrightarrow{\sim} A \times (B \times C),$$

natural in $A, B, C \in Obj(Sets)$.

000W

01Z5

000X

000Y

5. Unitality. We have isomorphisms of sets

$$\lambda_A^{\mathsf{Sets}} : \mathsf{pt} \times A \xrightarrow{\sim} A,$$

 $\rho_A^{\mathsf{Sets}} : A \times \mathsf{pt} \xrightarrow{\sim} A,$

natural in $A \in Obj(Sets)$.

000Z

6. Commutativity. We have an isomorphism of sets

$$\sigma_{A,B}^{\mathsf{Sets}} : A \times B \xrightarrow{\sim} B \times A,$$

natural in $A, B \in Obj(Sets)$.

01DP

7. Distributivity Over Coproducts. We have isomorphisms of sets

$$\delta_{\ell}^{\mathsf{Sets}} \colon A \times (B \coprod C) \xrightarrow{\sim} (A \times B) \coprod (A \times C),$$

$$\delta_{r}^{\mathsf{Sets}} \colon (A \coprod B) \times C \xrightarrow{\sim} (A \times C) \coprod (B \times C),$$

natural in $A, B, C \in Obj(Sets)$.

0010

8. Annihilation With the Empty Set. We have isomorphisms of sets

$$\zeta_{\ell}^{\mathsf{Sets}} \colon \emptyset \times A \xrightarrow{\sim} \emptyset,$$

 $\zeta_{r}^{\mathsf{Sets}} \colon A \times \emptyset \xrightarrow{\sim} \emptyset,$

natural in $A \in Obj(Sets)$.

0011

9. *Distributivity Over Unions*. Let X be a set. For each $U, V, W \in \mathcal{P}(X)$, we have equalities

$$U \times (V \cup W) = (U \times V) \cup (U \times W),$$

$$(U \cup V) \times W = (U \times W) \cup (V \times W)$$

of subsets of $\mathcal{P}(X \times X)$.

0012

10. Distributivity Over Intersections. Let X be a set. For each $U, V, W \in \mathcal{P}(X)$, we have equalities

$$U \times (V \cap W) = (U \times V) \cap (U \times W),$$

$$(U \cap V) \times W = (U \times W) \cap (V \times W)$$

of subsets of $\mathcal{P}(X \times X)$.

0014 11. *Distributivity Over Differences*. Let X be a set. For each $U, V, W \in \mathcal{P}(X)$, we have equalities

$$U \times (V \setminus W) = (U \times V) \setminus (U \times W),$$

$$(U \setminus V) \times W = (U \times W) \setminus (V \times W)$$

of subsets of $\mathcal{P}(X \times X)$.

0015 12. Distributivity Over Symmetric Differences. Let X be a set. For each $U, V, W \in \mathcal{P}(X)$, we have equalities

$$U \times (V \triangle W) = (U \times V) \triangle (U \times W),$$

$$(U \triangle V) \times W = (U \times W) \triangle (V \times W)$$

of subsets of $\mathcal{P}(X \times X)$.

0013 13. *Middle-Four Exchange with Respect to Intersections*. The diagram

$$(\mathcal{P}(X) \times \mathcal{P}(X)) \times (\mathcal{P}(X) \times \mathcal{P}(X)) \xrightarrow{\cap \times \cap} \mathcal{P}(X) \times \mathcal{P}(X)$$

$$\downarrow^{\mathcal{P}_{X,X}^{\times} \times \mathcal{P}_{X,X}^{\times}} \downarrow \qquad \qquad \downarrow^{\mathcal{P}_{X,X}^{\times}}$$

$$\mathcal{P}(X \times X) \times \mathcal{P}(X \times X) \xrightarrow{\cap} \mathcal{P}(X \times X)$$

commutes, i.e. we have

$$(U \times V) \cap (W \times T) = (U \cap V) \times (W \cap T).$$

for each $U, V, W, T \in \mathcal{P}(X)$.

0016

- 14. *Symmetric Monoidality*. The 8-tuple (Sets, \times , pt, Sets(-1, -2), α^{Sets} , ρ^{Sets} , ρ^{Sets} , σ^{Sets}) is a closed symmetric monoidal category.
- 0017 15. *Symmetric Bimonoidality*. The 18-tuple

$$\begin{split} & \Big(\mathsf{Sets}, \, {\textstyle \coprod}, \, \times, \, \emptyset, \, \mathsf{pt}, \, \mathsf{Sets}(-_1, -_2), \, \alpha^{\mathsf{Sets}}, \, \lambda^{\mathsf{Sets}}, \, \rho^{\mathsf{Sets}}, \, \sigma^{\mathsf{Sets}}, \\ & \alpha^{\mathsf{Sets}, \, {\textstyle \coprod}}, \, \lambda^{\mathsf{Sets}, \, {\textstyle \coprod}}, \, \rho^{\mathsf{Sets}, \, {\textstyle \coprod}}, \, \sigma^{\mathsf{Sets}, \, {\textstyle \coprod}}, \, \delta^{\mathsf{Sets}}_{\ell}, \, \delta^{\mathsf{Sets}}_{r}, \, \zeta^{\mathsf{Sets}}_{\ell}, \, \zeta^{\mathsf{Sets}}_{r}, \, \zeta^{\mathsf{Sets}}_{r}$$

is a symmetric closed bimonoidal category, where $\alpha^{Sets, \coprod}$, $\lambda^{Sets, \coprod}$, $\rho^{Sets, \coprod}$, and $\sigma^{Sets, \coprod}$ are the natural transformations from Items 3 to 5 of Proposition 4.2.3.1.4.

PROOF 4.1.3.1.5 ► PROOF OF PROPOSITION 4.1.3.1.4

Item 1: Functoriality

This follows from Limits and Colimits, ?? of ??.

Item 2: Adjointness

We prove only that there's an adjunction $- \times B \dashv \mathsf{Sets}(B, -)$, witnessed by a bijection

$$Sets(A \times B, C) \cong Sets(A, Sets(B, C)),$$

natural in $B, C \in \text{Obj}(\mathsf{Sets})$, as the proof of the existence of the adjunction $A \times - \exists \mathsf{Sets}(A, -)$ follows almost exactly in the same way.

• *Map I*. We define a map

$$\Phi_{B,C} \colon \mathsf{Sets}(A \times B, C) \to \mathsf{Sets}(A, \mathsf{Sets}(B, C)),$$

by sending a function

$$\xi: A \times B \to C$$

to the function

$$\xi^{\dagger} \colon A \longrightarrow \mathsf{Sets}(B,C),$$

$$a \mapsto \Big(\xi_a^{\dagger} \colon B \to C\Big),$$

where we define

$$\xi_a^{\dagger}(b) \stackrel{\text{def}}{=} \xi(a,b)$$

for each $b \in B$. In terms of the $[a \mapsto f(a)]$ notation of Sets, Notation 3.1.1.1.2, we have

$$\xi^{\dagger} \stackrel{\text{def}}{=} [\![a \mapsto [\![b \mapsto \xi(a, b)]\!]\!].$$

• Map II. We define a map

$$\Psi_{B,C}$$
: Sets $(A, \text{Sets}(B, C)), \rightarrow \text{Sets}(A \times B, C)$

given by sending a function

$$\xi: A \longrightarrow \mathsf{Sets}(B, C),$$

 $a \mapsto (\xi_a: B \to C),$

01Z6

01Z7

to the function

$$\xi^{\dagger}: A \times B \to C$$

defined by

$$\xi^{\dagger}(a,b) \stackrel{\text{def}}{=} \operatorname{ev}_b(\operatorname{ev}_a(\xi))$$

$$\stackrel{\text{def}}{=} \operatorname{ev}_b(\xi_a)$$

$$\stackrel{\text{def}}{=} \xi_a(b)$$

for each $(a, b) \in A \times B$.

• Invertibility I. We claim that

$$\Psi_{A,B} \circ \Phi_{A,B} = \mathrm{id}_{\mathsf{Sets}(A \times B,C)}$$
.

Indeed, given a function $\xi: A \times B \to C$, we have

$$\begin{split} \left[\Psi_{A,B} \circ \Phi_{A,B} \right] (\xi) &= \Psi_{A,B} \big(\Phi_{A,B} (\xi) \big) \\ &= \Psi_{A,B} \big(\Phi_{A,B} \big(\big[\big[(a,b) \mapsto \xi(a,b) \big] \big] \big) \big) \\ &= \Psi_{A,B} \big(\big[\big[a \mapsto \big[\big[b \mapsto \xi(a',b') \big] \big] \big] \big) \\ &= \Psi_{A,B} \big(\big[\big[a' \mapsto \big[b' \mapsto \xi(a',b') \big] \big] \big] \big) \\ &= \big[\big[(a,b) \mapsto \operatorname{ev}_b \big(\operatorname{ev}_a \big(\big[\big[a' \mapsto \big[\big[b' \mapsto \xi(a',b') \big] \big] \big] \big) \big) \big] \big] \\ &= \big[\big[(a,b) \mapsto \operatorname{ev}_b \big(\big[\big[b' \mapsto \xi(a,b') \big] \big] \big) \big] \big] \\ &= \big[\big[(a,b) \mapsto \xi(a,b) \big] \big] \\ &= \xi. \end{split}$$

• *Invertibility II.* We claim that

$$\Phi_{A,B} \circ \Psi_{A,B} = \mathrm{id}_{\mathsf{Sets}(A,\mathsf{Sets}(B,C))}$$
.

Indeed, given a function

$$\xi: A \longrightarrow \mathsf{Sets}(B, C),$$

 $a \mapsto (\xi_a: B \to C),$

we have

$$\left[\Phi_{A,B}\circ\Psi_{A,B}\right](\xi)\stackrel{\mathrm{def}}{=}\Phi_{A,B}\left(\Psi_{A,B}(\xi)\right)$$

01Z8

$$\begin{split} &\overset{\mathrm{def}}{=} \Phi_{A,B}(\llbracket(a,b) \mapsto \xi_a(b)\rrbracket) \\ &\overset{\mathrm{def}}{=} \Phi_{A,B}(\llbracket(a',b') \mapsto \xi_{a'}(b')\rrbracket) \\ &\overset{\mathrm{def}}{=} \llbracket a \mapsto \llbracket b \mapsto \mathrm{ev}_{(a,b)}(\llbracket(a',b') \mapsto \xi_{a'}(b')\rrbracket)\rrbracket\rrbracket \\ &\overset{\mathrm{def}}{=} \llbracket a \mapsto \llbracket b \mapsto \xi_a(b)\rrbracket\rrbracket \\ &\overset{\mathrm{def}}{=} \llbracket a \mapsto \xi_a\rrbracket \\ &\overset{\mathrm{def}}{=} \xi. \end{split}$$

01ZA • Naturality for Φ, Part I. We need to show that, given a function $g: B \to B'$, the diagram

$$\begin{aligned} \mathsf{Sets}(A \times B', C) & \xrightarrow{\Phi_{B',C}} & \mathsf{Sets}(A, \mathsf{Sets}(B', C)), \\ & \mathsf{id}_A \times g^* \bigg| & & \bigg| & (g^*)_! \\ & \mathsf{Sets}(A \times B, C) & \xrightarrow{\Phi_{B,C}} & \mathsf{Sets}(A, \mathsf{Sets}(B, C)) \end{aligned}$$

commutes. Indeed, given a function

$$\xi: A \times B' \to C$$
,

we have

$$\begin{split} \left[\Phi_{B,C} \circ (\mathrm{id}_A \times g^*) \right] (\xi) &= \Phi_{B,C} ([\mathrm{id}_A \times g^*] (\xi)) \\ &= \Phi_{B,C} (\xi (-_1, g (-_2))) \\ &= [\xi (-_1, g (-_2))]^{\dagger} \\ &= \xi_{-_1}^{\dagger} (g (-_2)) \\ &= (g^*)_! (\xi^{\dagger}) \\ &= (g^*)_! (\Phi_{B',C} (\xi)) \\ &= [(g^*)_! \circ \Phi_{B',C}] (\xi). \end{split}$$

Alternatively, using the $[a \mapsto f(a)]$ notation of Sets, Notation 3.1.1.1.2, we have

$$\begin{split} \left[\Phi_{B,C}\circ(\mathrm{id}_A\times g^*)\right](\xi) &= \Phi_{B,C}([\mathrm{id}_A\times g^*](\xi)) \\ &= \Phi_{B,C}([\mathrm{id}_A\times g^*](\llbracket(a,b')\mapsto \xi(a,b')\rrbracket)) \end{split}$$

$$\begin{split} &= \Phi_{B,C}(\llbracket (a,b) \mapsto \xi(a,g(b)) \rrbracket) \\ &= \llbracket a \mapsto \llbracket b \mapsto \xi(a,g(b)) \rrbracket \rrbracket \\ &= \llbracket a \mapsto g^*(\llbracket b' \mapsto \xi(a,b') \rrbracket) \rrbracket \\ &= [g^*)_!(\llbracket a \mapsto \llbracket b' \mapsto \xi(a,b') \rrbracket) \rrbracket \\ &= (g^*)_!(\Phi_{B',C}(\llbracket (a,b') \mapsto \xi(a,b') \rrbracket)) \\ &= (g^*)_!(\Phi_{B',C}(\xi)) \\ &= [g^*)_!(\Phi_{B',C}(\xi)). \end{split}$$

• Naturality for Φ , Part II. We need to show that, given a function $h: C \to C'$, the diagram

$$\mathsf{Sets}(A \times B, C) \xrightarrow{\Phi_{B,C}} \mathsf{Sets}(A, \mathsf{Sets}(B, C)),$$

$$\downarrow_{(h_1)_1} \qquad \qquad \downarrow_{(h_1)_1}$$

$$\mathsf{Sets}(A \times B, C') \xrightarrow{\Phi_{B,C'}} \mathsf{Sets}(A, \mathsf{Sets}(B, C'))$$

commutes. Indeed, given a function

$$\xi: A \times B \to C$$

we have

$$\begin{split} \left[\Phi_{B,C} \circ h_! \right] (\xi) &= \Phi_{B,C}(h_!(\xi)) \\ &= \Phi_{B,C}(h_!(\llbracket (a,b) \mapsto \xi(a,b) \rrbracket)) \\ &= \Phi_{B,C}(\llbracket (a,b) \mapsto h(\xi(a,b)) \rrbracket) \\ &= \llbracket a \mapsto \llbracket b \mapsto h(\xi(a,b)) \rrbracket \rrbracket \\ &= \llbracket a \mapsto h_!(\llbracket b \mapsto \xi(a,b) \rrbracket \rrbracket) \\ &= (h_!)_!(\llbracket a \mapsto \llbracket b \mapsto \xi(a,b) \rrbracket \rrbracket) \\ &= (h_!)_!(\Phi_{B,C}(\llbracket (a,b) \mapsto \xi(a,b) \rrbracket)) \\ &= (h_!)_!(\Phi_{B,C}(\xi)) \\ &= [(h_!)_! \circ \Phi_{B,C}] (\xi). \end{split}$$

• Naturality for Ψ . Since Φ is natural in each argument and Φ is a componentwise inverse to Ψ in each argument, it follows from

01ZB

01ZC

Categories, Item 2 of Proposition 11.9.7.1.2 that Ψ is also natural in each argument.

This finishes the proof.

Item 3: Adjointness II

This follows from the universal property of the product.

Item 4: Associativity

This is proved in the proof of Monoidal Structures on the Category of Sets, Definition 5.1.4.1.1.

Item 5: Unitality

This is proved in the proof of Monoidal Structures on the Category of Sets, Definitions 5.1.5.1.1 and 5.1.6.1.1.

Item 6: Commutativity

This is proved in the proof of Monoidal Structures on the Category of Sets, Definition 5.1.7.1.1.

Item 7: Distributivity Over Coproducts

This is proved in the proof of Monoidal Structures on the Category of Sets, Definitions 5.3.1.1.1 and 5.3.2.1.1.

Item 8: Annihilation With the Empty Set

This is proved in the proof of Monoidal Structures on the Category of Sets, Definitions 5.3.3.1.1 and 5.3.4.1.1.

Item 9: Distributivity Over Unions

See [Pro25c].

Item 10: Distributivity Over Intersections

See [Pro25d, Corollary 1].

Item 11: Distributivity Over Differences

See [Pro25a].

Item 12: Distributivity Over Symmetric Differences

See [Pro25b].

Item 13: Middle-Four Exchange With Respect to Intersections

See [Pro25d, Corollary 1].

Item 14: Symmetric Monoidality

This is a repetition of Monoidal Structures on the Category of Sets, Proposition 5.1.9.1.1, and is proved there.

Item 15: Symmetric Bimonoidality

This is a repetition of Monoidal Structures on the Category of Sets, Proposition 5.3.5.1.1, and is proved there.

01DR

REMARK 4.1.3.1.6 \blacktriangleright The Cartesian Product of Sets as an $(\mathbb{E}_k, \mathbb{E}_\ell)$ -Tensor Product

As shown in Item 1 of Proposition 4.1.3.1.4, the Cartesian product of sets defines a functor

$$-1 \times -2$$
: Sets \times Sets \rightarrow Sets.

This functor is the $(k, \ell) = (-1, -1)$ case of a family of functors

$$\otimes_{k,\ell} : \mathsf{Mon}_{\mathbb{E}_k}(\mathsf{Sets}) \times \mathsf{Mon}_{\mathbb{E}_\ell}(\mathsf{Sets}) \to \mathsf{Mon}_{\mathbb{E}_{k+\ell}}(\mathsf{Sets})$$

of tensor products of \mathbb{E}_k -monoid objects on Sets with \mathbb{E}_ℓ -monoid objects on Sets; see ??.

01DS

REMARK 4.1.3.1.7 ► DIAGRAMS FOR ITEMS 9 TO 12 OF PROPOSITION 4.1.3.1.4

We may state the equalities in Items 9 to 12 of Proposition 4.1.3.1.4 as the commutativity of the following diagrams:

0018 4.1.4 Pullbacks

Let A, B, and C be sets and let $f: A \to C$ and $g: B \to C$ be functions.

0019 DEFINITION 4.1.4.1.1 ▶ PULLBACKS OF SETS

The **pullback of** A **and** B **over** C **along** f **and** g^1 is the pullback of A and B over C along f and g in Sets as in Limits and Colimits, ??.

¹Further Terminology: Also called the **fibre product of** A **and** B **over** C **along** f **and** g.

01DT

CONSTRUCTION 4.1.4.1.2 ► CONSTRUCTION OF PULLBACKS OF SETS

Concretely, the pullback of A and B over C along f and g is the pair $(A \times_C B, \{pr_1, pr_2\})$ consisting of:

01DU

1. The Limit. The set $A \times_C B$ defined by

$$A \times_C B \stackrel{\text{def}}{=} \{(a, b) \in A \times B \mid f(a) = g(b)\}.$$

01DV

2. The Cone. The maps¹

$$\operatorname{pr}_1: A \times_C B \to A,$$

 $\operatorname{pr}_2: A \times_C B \to B$

defined by

$$\operatorname{pr}_{1}(a, b) \stackrel{\text{def}}{=} a,$$

 $\operatorname{pr}_{2}(a, b) \stackrel{\text{def}}{=} b$

for each $(a, b) \in A \times_C B$.

PROOF 4.1.4.1.3 ► PROOF OF CONSTRUCTION 4.1.4.1.2

We claim that $A \times_C B$ is the categorical pullback of A and B over C with respect to (f,g) in Sets. First we need to check that the relevant pullback diagram commutes, i.e. that we have

$$f \circ \operatorname{pr}_1 = g \circ \operatorname{pr}_2, \qquad A \times_C B \xrightarrow{\operatorname{pr}_2} B$$

$$p_{r_1} \downarrow \qquad \qquad \downarrow g$$

$$A \xrightarrow{f} C.$$

Indeed, given $(a, b) \in A \times_C B$, we have

$$[f \circ \operatorname{pr}_1](a, b) = f(\operatorname{pr}_1(a, b))$$
$$= f(a)$$
$$= g(b)$$

¹Further Notation: Also written $\operatorname{pr}_1^{A \times_C B}$ and $\operatorname{pr}_2^{A \times_C B}$.

$$= g(\operatorname{pr}_{2}(a, b))$$
$$= [g \circ \operatorname{pr}_{2}](a, b),$$

where f(a) = g(b) since $(a, b) \in A \times_C B$. Next, we prove that $A \times_C B$ satisfies the universal property of the pullback. Suppose we have a diagram of the form

in Sets. Then there exists a unique map $\phi: P \to A \times_C B$ making the diagram

commute, being uniquely determined by the conditions

$$\operatorname{pr}_1 \circ \phi = p_1,$$

 $\operatorname{pr}_2 \circ \phi = p_2$

via

$$\phi(x) = (p_1(x), p_2(x))$$

for each $x \in P$, where we note that $(p_1(x), p_2(x)) \in A \times B$ indeed lies in $A \times_C B$ by the condition

$$f \circ p_1 = g \circ p_2$$
,

which gives

$$f(p_1(x)) = g(p_2(x))$$

for each $x \in P$, so that $(p_1(x), p_2(x)) \in A \times_C B$.

01DW REMARK 4.1.4.1.4 ▶ PULLBACKS OF SETS DEPEND ON THE MAPS

It is common practice to write $A \times_C B$ for the pullback of A and B over C along f and g, omitting the maps f and g from the notation and instead leaving them implicit, to be understood from the context.

However, the set $A \times_C B$ depends very much on the maps f and g, and sometimes it is necessary or useful to note this dependence explicitly. In such situations, we will write $A \times_{f,C,g} B$ or $A \times_C^{f,g} B$ for $A \times_C B$.

001A EXAMPLE 4.1.4.1.5 ► EXAMPLES OF PULLBACKS OF SETS

Here are some examples of pullbacks of sets.

1. *Unions via Intersections*. Let *X* be a set. We have

$$A \cap B \cong A \times_{A \cup B} B,$$

$$A \cap B \cong A \times_{A \cup B} B,$$

$$A \hookrightarrow_{\iota_A} A \cup B$$

for each $A, B \in \mathcal{P}(X)$.

PROOF 4.1.4.1.6 ► PROOF OF EXAMPLE 4.1.4.1.5

Item 1: Unions via Intersections

Indeed, we have

001B

$$A \times_{A \cup B} B \cong \{(x, y) \in A \times B \mid x = y\}$$

\approx A \cap B.

This finishes the proof.

PROPOSITION 4.1.4.1.7 ► PROPERTIES OF PULLBACKS OF SETS

Let A, B, C, and X be sets.

1. Functoriality. The assignment $(A, B, C, f, g) \mapsto A \times_{f,C,g} B$ defines a functor

23

$$-_1 \times_{-_3} -_1 : \operatorname{\mathsf{Fun}}(\mathcal{P}, \operatorname{\mathsf{Sets}}) \to \operatorname{\mathsf{Sets}},$$

where \mathcal{P} is the category that looks like this:

In particular, the action on morphisms of $-1 \times_{-3} -1$ is given by sending a morphism

in $\operatorname{Fun}(\mathcal{P},\operatorname{\mathsf{Sets}})$ to the map $\xi\colon A\times_C B\xrightarrow{\exists!} A'\times_{C'} B'$ given by

$$\xi(a,b) \stackrel{\text{def}}{=} (\phi(a), \psi(b))$$

for each $(a, b) \in A \times_C B$, which is the unique map making the diagram

001C

001D

commute.

01DX

01ZD

2. Adjointness I. We have adjunctions

$$(A \times_{X} - \exists \mathbf{Sets}_{/X}(A, -)): \quad \underbrace{\mathsf{Sets}_{/X}}_{A \times_{X} -} \underbrace{\mathsf{Sets}_{/X}}_{A, -},$$

$$(- \times_{X} B \exists \mathbf{Sets}_{/X}(B, -)): \quad \underbrace{\mathsf{Sets}_{/X}}_{A \times_{X} -} \underbrace{\mathsf{Sets}_{/X}}_{A, -},$$

witnessed by bijections

$$\mathsf{Sets}_{/X}(A \times_X B, C) \cong \mathsf{Sets}_{/X}(A, \mathbf{Sets}_{/X}(B, C)),$$

 $\mathsf{Sets}_{/X}(A \times_X B, C) \cong \mathsf{Sets}_{/X}(B, \mathbf{Sets}_{/X}(A, C)),$

natural in (A, ϕ_A) , (B, ϕ_B) , $(C, \phi_C) \in \text{Obj}(\mathsf{Sets}_{/X})$, where $\mathsf{Sets}_{/X}(A, B)$ is the object of $\mathsf{Sets}_{/X}$ consisting of (see Fibred Sets, ??):

• *The Set.* The set $\mathbf{Sets}_{/X}(A, B)$ defined by

$$\mathbf{Sets}_{/X}(A,B) \stackrel{\text{def}}{=} \coprod_{x \in X} \mathsf{Sets}\Big(\phi_A^{-1}(x), \phi_Y^{-1}(x)\Big)$$

• *The Map to X*. The map

$$\phi_{\mathsf{Sets}_{/X}(A,B)} : \mathsf{Sets}_{/X}(A,B) \to X$$

defined by

$$\phi_{\mathsf{Sets}_{/X}(A,B)}(x,f) \stackrel{\mathrm{def}}{=} x$$

for each $(x, f) \in \mathbf{Sets}_{/X}(A, B)$.

3. Adjointness II. We have an adjunction

$$\left(\Delta_{\mathsf{Sets}_{/X}} \dashv -_1 \times -_2\right)$$
: $\mathsf{Sets}_{/X} \underbrace{\perp}_{-_1 \times -_2} \mathsf{Sets}_{/X} \times \mathsf{Sets}_{/X}$

witnessed by a bijection

$$\operatorname{Hom}_{\operatorname{\mathsf{Sets}}_{/X} \times \operatorname{\mathsf{Sets}}_{/X}}((A,A),(B,C)) \cong \operatorname{\mathsf{Sets}}_{/X}(A,B \times_X C),$$

natural in $A \in \text{Obj}(\mathsf{Sets}_{/X})$ and in $(B, C) \in \text{Obj}(\mathsf{Sets}_{/X} \times \mathsf{Sets}_{/X})$.

25

001E

4. Associativity. Given a diagram

in Sets, we have isomorphisms of sets

$$(A \times_X B) \times_Y C \cong (A \times_X B) \times_B (B \times_Y C) \cong A \times_X (B \times_Y C),$$

where these pullbacks are built as in the diagrams

01DY

5. Interaction With Composition. Given a diagram

in Sets, we have isomorphisms of sets

$$\begin{split} X \times_K^{f \circ \phi, g \circ \psi} Y &\cong \left(X \times_A^{\phi, q_1} \left(A \times_K^{f, g} B \right) \right) \times_{A \times_K^{f, g} B}^{p_2, p_1} \left(\left(A \times_K^{f, g} B \right) \times_B^{q_2, \psi} Y \right) \\ &\cong X \times_A^{\phi, p} \left(\left(A \times_K^{f, g} B \right) \times_B^{q_2, \psi} Y \right) \\ &\cong \left(X \times_A^{\phi, q_1} \left(A \times_K^{f, g} B \right) \right) \times_B^{q, \psi} Y \end{split}$$

where

$$q_{1} = \operatorname{pr}_{1}^{A \times_{K}^{f,g} B}, \qquad q_{2} = \operatorname{pr}_{2}^{A \times_{K}^{f,g} B},$$

$$p_{1} = \operatorname{pr}_{1}^{\left(A \times_{K}^{f,g} B\right) \times_{Y}^{q_{2},\psi}}, \qquad X \times_{A \times_{K}^{f,g} B}^{A \times_{K}^{f,g} B} \left(A \times_{K}^{f,g} B\right),$$

$$p_{2} = \operatorname{pr}_{2}^{X \times_{K}^{f,g} B} \left(A \times_{K}^{f,g} B\right),$$

$$p_{3} = \operatorname{pr}_{4}^{X \times_{K}^{f,g} B} \left(A \times_{K}^{f,g} B\right),$$

$$p_{4} = \operatorname{pr}_{4}^{X \times_{K}^{f,g} B} \left(A \times_{K}^{f,g} B\right),$$

$$p_{5} = \operatorname{pr}_{4}^{X \times_{K}^{f,g} B} \left(A \times_{K}^{f,g} B\right),$$

$$q_{7} = \operatorname{pr}_{4}^{X \times_{K}^{f,g} B} \left(A \times_{K}^{f,g} B\right),$$

$$q_{8} = \operatorname{pr}_{4}^{X \times_{K}^{f,g} B} \left(A \times_$$

and where these pullbacks are built as in the following diagrams:

26

001F

6. Unitality. We have isomorphisms of sets

natural in $(A, f) \in \text{Obj}(\mathsf{Sets}_{/X})$.

001G

7. Commutativity. We have an isomorphism of sets

natural in $(A, f), (B, g) \in Obj(Sets_{/X})$.

01DZ

8. *Distributivity Over Coproducts*. Let A, B, and C be sets and let $\phi_A \colon A \to X$, $\phi_B \colon B \to X$, and $\phi_C \colon C \to X$ be morphisms of sets. We have isomorphisms of sets

$$\delta_{\ell}^{\mathsf{Sets}_{/X}} : A \times_{X} (B \coprod C) \xrightarrow{\sim} (A \times_{X} B) \coprod (A \times_{X} C),$$

$$\delta_{r}^{\mathsf{Sets}_{/X}} : (A \coprod B) \times_{X} C \xrightarrow{\sim} (A \times_{X} C) \coprod (B \times_{X} C),$$

as in the diagrams

natural in $A, B, C \in \text{Obj}(\mathsf{Sets}_{/X})$.

001H

9. Annihilation With the Empty Set. We have isomorphisms of sets

natural in $(A, f) \in \text{Obj}(\mathsf{Sets}_{/X})$.

001J

10. Interaction With Products. We have an isomorphism of sets

$$A \times_{\operatorname{pt}} B \cong A \times B, \qquad A \times_{\operatorname{pt}} B \cong A \times B, \qquad A \xrightarrow{!_{A}} pt.$$

001K

11. *Symmetric Monoidality*. The 8-tuple (Sets_{/X}, \times_X , X, **Sets**_{/X}, $\alpha^{\text{Sets}_{/X}}$, $\alpha^{\text{Sets}_{/X}}$, $\sigma^{\text{Sets}_{/X}}$) is a symmetric closed monoidal category.

PROOF 4.1.4.1.8 ► PROOF OF PROPOSITION 4.1.4.1.7

Item 1: Functoriality

This is a special case of functoriality of co/limits, Limits and Colimits, ?? of ??, with the explicit expression for ξ following from the commutativity of the cube pullback diagram.

Item 2: Adjointness I

This is a repetition of Fibred Sets, ?? of ??, and is proved there.

Item 3: Adjointness II

This follows from the universal property of the product (pullbacks are products in $\mathsf{Sets}_{/X}$).

Item 4: Associativity

We have

$$(A \times_X B) \times_Y C \cong \{((a,b),c) \in (A \times_X B) \times C \mid h(b) = k(c)\}$$

$$\cong \{((a,b),c) \in (A \times B) \times C \mid f(a) = g(b) \text{ and } h(b) = k(c)\}$$

$$\cong \{(a,(b,c)) \in A \times (B \times C) \mid f(a) = g(b) \text{ and } h(b) = k(c)\}$$

$$\cong \{(a,(b,c)) \in A \times (B \times_Y C) \mid f(a) = g(b)\}$$

$$\cong A \times_X (B \times_Y C)$$

and

$$(A \times_X B) \times_B (B \times_Y C) \cong \{((a,b), (b',c)) \in (A \times_X B) \times (B \times_Y C) \mid b = b'\}$$

$$\cong \left\{ ((a,b), (b',c)) \in (A \times B) \times (B \times C) \middle| f(a) = g(b), b = b', \text{and } h(b') = k(c) \right\}$$

$$\cong \left\{ (a, (b, (b',c))) \in A \times (B \times (B \times C)) \middle| f(a) = g(b), b = b', \text{and } h(b') = k(c) \right\}$$

$$\cong \left\{ (a, ((b,b'),c)) \in A \times ((B \times B) \times C) \middle| f(a) = g(b), b = b', \text{and } h(b') = k(c) \right\}$$

$$\cong \left\{ (a, ((b,b'),c)) \in A \times ((B \times_B B) \times C) \middle| f(a) = g(b) \text{ and } h(b') = k(c) \right\}$$

$$\cong \left\{ (a, (b,c)) \in A \times (B \times C) \middle| f(a) = g(b) \text{ and } h(b) = k(c) \right\}$$

$$\cong A \times_X (B \times_Y C),$$

where we have used Item 6 for the isomorphism $B \times_B B \cong B$.

Item 5: Interaction With Composition

By Item 4, it suffices to construct only the isomorphism

$$X \times_K^{f \circ \phi, g \circ \psi} Y \cong \left(X \times_A^{\phi, q_1} \left(A \times_K^{f, g} B \right) \right) \times_{A \times_{\nu}^{f, g} B}^{p_2, p_1} \left(\left(A \times_K^{f, g} B \right) \times_B^{q_2, \psi} Y \right).$$

We have

$$\left(X \times_A^{\phi,q_1} \left(A \times_K^{f,g} B\right)\right) \stackrel{\text{def}}{=} \left\{ (x, (a, b)) \in X \times \left(A \times_K^{f,g} B\right) \mid \phi(x) = q_1(a, b) \right\}$$

$$\stackrel{\text{def}}{=} \left\{ (x, (a, b)) \in X \times \left(A \times_K^{f,g} B\right) \mid \phi(x) = a \right\}$$

$$\cong \left\{ (x, (a, b)) \in X \times (A \times B) \mid \phi(x) = a \text{ and } f(a) = g(b) \right\},$$

$$\left(\left(A \times_K^{f,g} B\right) \times_B^{q_2, \psi} Y \right) \stackrel{\text{def}}{=} \left\{ ((a, b), y) \in \left(A \times_K^{f,g} B\right) \times Y \mid q_2(a, b) = \psi(y) \right\}$$

$$\stackrel{\text{def}}{=} \left\{ ((a, b), y) \in \left(A \times_K^{f,g} B\right) \times Y \mid b = \psi(y) \text{ and } f(a) = g(b) \right\},$$

$$\cong \left\{ ((a, b), y) \in (A \times B) \times Y \mid b = \psi(y) \text{ and } f(a) = g(b) \right\},$$

so writing

$$S = \left(X \times_A^{\phi, q_1} \left(A \times_K^{f, g} B \right) \right)$$

$$S' = \left(\left(A \times_K^{f, g} B \right) \times_B^{q_2, \psi} Y \right),$$

we have

$$\begin{split} S \times_{A \times_K^{f,g} B}^{p_2,p_1} S' &\stackrel{\text{def}}{=} \{ ((x,(a,b)), ((a',b'),y)) \in S \times S' \mid p_1(x,(a,b)) = p_2((a',b'),y) \} \\ &\stackrel{\text{def}}{=} \{ ((x,(a,b)), ((a',b'),y)) \in S \times S' \mid (a,b) = (a',b') \} \\ &\cong \{ ((x,a,b,y)) \in X \times A \times B \times Y \mid \phi(x) = a, \psi(y) = b, \text{ and } f(a) = g(b) \} \\ &\cong \{ ((x,a,b,y)) \in X \times A \times B \times Y \mid f(\phi(x)) = g(\psi(y)) \} \\ &\stackrel{\text{def}}{=} X \times_K Y. \end{split}$$

This finishes the proof.

Item 6: Unitality

We have

$$X \times_X A \cong \{(x, a) \in X \times A \mid f(a) = x\},\$$

$$A \times_X X \cong \{(a, x) \in X \times A \mid f(a) = x\},\$$

which are isomorphic to *A* via the maps $(x, a) \mapsto a$ and $(a, x) \mapsto a$. The proof of the naturality of $\lambda^{\text{Sets}/x}$ and $\rho^{\text{Sets}/x}$ is omitted.

Item 7: Commutativity

We have

$$A \times_C B \stackrel{\text{def}}{=} \{(a, b) \in A \times B \mid f(a) = g(b)\}$$

$$= \{(a, b) \in A \times B \mid g(b) = f(a)\}$$

$$\cong \{(b, a) \in B \times A \mid g(b) = f(a)\}$$

$$\stackrel{\text{def}}{=} B \times_C A.$$

The proof of the naturality of $\sigma^{\text{Sets}_{/X}}$ is omitted.

Item 8: Distributivity Over Coproducts

We have

$$A \times_{X} (B \coprod C) \stackrel{\text{def}}{=} \left\{ (a, z) \in A \times (B \coprod C) \middle| \phi_{A}(a) = \phi_{B \coprod C}(z) \right\}$$

$$= \left\{ (a, z) \in A \times (B \coprod C) \middle| z = (0, b) \text{ and } \phi_{A}(a) = \phi_{B \coprod C}(z) \right\}$$

$$\cup \left\{ (a, z) \in A \times (B \coprod C) \middle| z = (1, c) \text{ and } \phi_{A}(a) = \phi_{B \coprod C}(z) \right\}$$

$$= \left\{ (a, z) \in A \times (B \coprod C) \middle| z = (0, b) \text{ and } \phi_{A}(a) = \phi_{B}(b) \right\}$$

$$\cup \left\{ (a, z) \in A \times (B \coprod C) \middle| z = (1, c) \text{ and } \phi_{A}(a) = \phi_{C}(c) \right\}$$

$$\cong \left\{ (a, b) \in A \times B \middle| \phi_{A}(a) = \phi_{B}(b) \right\}$$

$$\cup \left\{ (a, c) \in A \times C \middle| \phi_{A}(a) = \phi_{C}(c) \right\}$$

$$\stackrel{\text{def}}{=} (A \times_{X} B) \cup (A \times_{X} C)$$

$$\cong (A \times_{X} B) \coprod (A \times_{X} C),$$

with the construction of the isomorphism

$$\delta_r^{\mathsf{Sets}_{/X}} : (A \coprod B) \times_X C \xrightarrow{\sim} (A \times_X C) \coprod (B \times_X C)$$

being similar. The proof of the naturality of $\delta_\ell^{\mathsf{Sets}_{/X}}$ and $\delta_r^{\mathsf{Sets}_{/X}}$ is omitted.

Item 9: Annihilation With the Empty Set

We have

$$A \times_X \emptyset \stackrel{\text{def}}{=} \{(a, b) \in A \times \emptyset \mid f(a) = g(b)\}$$
$$= \{k \in \emptyset \mid f(a) = g(b)\}$$
$$= \emptyset,$$

and similarly for $\emptyset \times_X A$, where we have used Item 8 of Proposition 4.1.3.1.4. The proof of the naturality of $\zeta_\ell^{\mathsf{Sets}_{/X}}$ and $\zeta_r^{\mathsf{Sets}_{/X}}$ is omitted.

Item 10: Interaction With Products

We have

$$A \times_{\text{pt}} B \stackrel{\text{def}}{=} \{(a, b) \in A \times B \mid !_A(a) = !_B(b)\}$$

$$\stackrel{\text{def}}{=} \{(a, b) \in A \times B \mid \star = \star\}$$

$$= \{(a, b) \in A \times B\}$$

$$= A \times B.$$

Item 11: Symmetric Monoidality

Omitted.

001L 4.1.5 Equalisers

01E2

Let *A* and *B* be sets and let $f, g: A \Rightarrow B$ be functions.

001M DEFINITION 4.1.5.1.1 ► EQUALISERS OF SETS

The **equaliser of** f **and** g is the equaliser of f and g in Sets as in Limits and Colimits, ??.

01E0 CONSTRUCTION 4.1.5.1.2 ➤ CONSTRUCTION OF EQUALISERS OF SETS

Concretely, the equaliser of f and g is the pair (Eq(f,g),eq(f,g)) consisting of:

01E1 1. The Limit. The set Eq(f,g) defined by

$$\operatorname{Eq}(f,g) \stackrel{\text{def}}{=} \{ a \in A \mid f(a) = g(a) \}.$$

2. *The Cone*. The inclusion map

$$eq(f,g): Eq(f,g) \hookrightarrow A.$$

PROOF 4.1.5.1.3 ► PROOF OF CONSTRUCTION 4.1.5.1.2

We claim that Eq(f,g) is the categorical equaliser of f and g in Sets. First we need to check that the relevant equaliser diagram commutes, i.e. that we have

$$f \circ eq(f,g) = g \circ eq(f,g),$$

which indeed holds by the definition of the set Eq(f,g). Next, we prove that Eq(f,g) satisfies the universal property of the equaliser. Suppose we have a diagram of the form

$$\operatorname{Eq}(f,g) \xrightarrow{\operatorname{eq}(f,g)} A \xrightarrow{f \atop g} B$$

in Sets. Then there exists a unique map $\phi \colon E \to \operatorname{Eq}(f,g)$ making the diagram

$$Eq(f,g) \xrightarrow{eq(f,g)} A \xrightarrow{f} E$$

$$\downarrow f$$

$$\downarrow g$$

commute, being uniquely determined by the condition

$$eq(f,g) \circ \phi = e$$

via

$$\phi(x) = e(x)$$

for each $x \in E$, where we note that $e(x) \in A$ indeed lies in Eq(f,g) by the condition

$$f \circ e = g \circ e$$
,

which gives

$$f(e(x)) = g(e(x))$$

for each $x \in E$, so that $e(x) \in \text{Eq}(f, g)$.

001N PROPOSITION 4.1.5.1.4 ▶ PROPERTIES OF EQUALISERS OF SETS

Let A, B, and C be sets.

001P 1. Associativity. We have isomorphisms of sets¹

$$\underbrace{\operatorname{Eq}(f \circ \operatorname{eq}(g,h), g \circ \operatorname{eq}(g,h))}_{=\operatorname{Eq}(f \circ \operatorname{eq}(g,h), h \circ \operatorname{eq}(g,h))} \cong \operatorname{Eq}(f,g,h) \cong \underbrace{\operatorname{Eq}(f \circ \operatorname{eq}(f,g), h \circ \operatorname{eq}(f,g))}_{=\operatorname{Eq}(g \circ \operatorname{eq}(f,g), h \circ \operatorname{eq}(f,g))}$$

where Eq(f, g, h) is the limit of the diagram

$$A \xrightarrow{\frac{f}{-g}} B$$

in Sets, being explicitly given by

$$\operatorname{Eq}(f,g,h) \cong \{a \in A \mid f(a) = g(a) = h(a)\}.$$

2. Unitality. We have an isomorphism of sets

$$\operatorname{Eq}(f, f) \cong A$$
.

3. Commutativity. We have an isomorphism of sets

$$\operatorname{Eq}(f,g) \cong \operatorname{Eq}(g,f).$$

4. Interaction With Composition. Let

$$A \stackrel{f}{\underset{g}{\Longrightarrow}} B \stackrel{h}{\underset{k}{\Longrightarrow}} C$$

be functions. We have an inclusion of sets

$$\operatorname{Eq}(h \circ f \circ \operatorname{eq}(f, g), k \circ g \circ \operatorname{eq}(f, g)) \subset \operatorname{Eq}(h \circ f, k \circ g),$$

where Eq($h \circ f \circ \text{eq}(f, g), k \circ g \circ \text{eq}(f, g)$) is the equaliser of the composition

$$\operatorname{Eq}(f,g) \stackrel{\operatorname{eq}(f,g)}{\hookrightarrow} A \stackrel{f}{\underset{g}{\Longrightarrow}} B \stackrel{h}{\underset{k}{\Longrightarrow}} C.$$

001Q

001S

001R

¹That is, the following three ways of forming "the" equaliser of (f, g, h) agree:

01ZE

(a) Take the equaliser of (f, g, h), i.e. the limit of the diagram

$$A \xrightarrow{f \atop -g \xrightarrow{h}} B$$

in Sets.

01ZF

(b) First take the equaliser of f and g, forming a diagram

$$\mathrm{Eq}(f,g) \overset{\mathrm{eq}(f,g)}{\hookrightarrow} A \overset{f}{\underset{g}{\Longrightarrow}} B$$

and then take the equaliser of the composition

$$\operatorname{Eq}(f,g) \overset{\operatorname{eq}(f,g)}{\hookrightarrow} A \overset{f}{\underset{h}{\Longrightarrow}} B,$$

obtaining a subset

$$Eq(f \circ eq(f,g), h \circ eq(f,g)) = Eq(g \circ eq(f,g), h \circ eq(f,g))$$

of Eq(f, g).

01ZG

(c) First take the equaliser of g and h, forming a diagram

$$\operatorname{Eq}(g,h) \stackrel{\operatorname{eq}(g,h)}{\hookrightarrow} A \stackrel{g}{\underset{h}{\Longrightarrow}} B$$

and then take the equaliser of the composition

$$\operatorname{Eq}(g,h) \stackrel{\operatorname{eq}(g,h)}{\hookrightarrow} A \stackrel{f}{\underset{g}{\Longrightarrow}} B,$$

obtaining a subset

$$Eq(f \circ eq(g,h), g \circ eq(g,h)) = Eq(f \circ eq(g,h), h \circ eq(g,h))$$

of Eq(g, h).

PROOF 4.1.5.1.5 ► PROOF OF PROPOSITION 4.1.5.1.4

Item 1: Associativity

We first prove that Eq(f, g, h) is indeed given by

$$Eq(f, g, h) \cong \{a \in A \mid f(a) = g(a) = h(a)\}.$$

Indeed, suppose we have a diagram of the form

$$\operatorname{Eq}(f,g,h) \xrightarrow{\operatorname{eq}(f,g,h)} A \xrightarrow{f \atop -g \xrightarrow{h}} B$$

in Sets. Then there exists a unique map $\phi \colon E \to \mathrm{Eq}(f,g,h)$, uniquely determined by the condition

$$eq(f,g) \circ \phi = e$$

being necessarily given by

$$\phi(x) = e(x)$$

for each $x \in E$, where we note that $e(x) \in A$ indeed lies in Eq(f, g, h) by the condition

$$f \circ e = g \circ e = h \circ e$$
,

which gives

$$f(e(x)) = g(e(x)) = h(e(x))$$

for each $x \in E$, so that $e(x) \in \text{Eq}(f, g, h)$.

We now check the equalities

$$\operatorname{Eq}(f \circ \operatorname{eq}(g, h), g \circ \operatorname{eq}(g, h)) \cong \operatorname{Eq}(f, g, h) \cong \operatorname{Eq}(f \circ \operatorname{eq}(f, g), h \circ \operatorname{eq}(f, g)).$$

Indeed, we have

$$\begin{split} \operatorname{Eq}(f \circ \operatorname{eq}(g,h), g \circ \operatorname{eq}(g,h)) &\cong \{x \in \operatorname{Eq}(g,h) \mid [f \circ \operatorname{eq}(g,h)](a) = [g \circ \operatorname{eq}(g,h)](a)\} \\ &\cong \{x \in \operatorname{Eq}(g,h) \mid f(a) = g(a)\} \\ &\cong \{x \in A \mid f(a) = g(a) \text{ and } g(a) = h(a)\} \\ &\cong \{x \in A \mid f(a) = g(a) = h(a)\} \\ &\cong \operatorname{Eq}(f,g,h). \end{split}$$

Similarly, we have

$$\begin{split} \operatorname{Eq}(f \circ \operatorname{eq}(f,g), h \circ \operatorname{eq}(f,g)) &\cong \{x \in \operatorname{Eq}(f,g) \mid [f \circ \operatorname{eq}(f,g)](a) = [h \circ \operatorname{eq}(f,g)](a)\} \\ &\cong \{x \in \operatorname{Eq}(f,g) \mid f(a) = h(a)\} \\ &\cong \{x \in A \mid f(a) = h(a) \text{ and } f(a) = g(a)\} \\ &\cong \{x \in A \mid f(a) = g(a) = h(a)\} \end{split}$$

$$\cong$$
 Eq (f, g, h) .

Item 2: Unitality

Indeed, we have

$$\operatorname{Eq}(f, f) \stackrel{\text{def}}{=} \{ a \in A \mid f(a) = f(a) \}$$

$$= A$$

Item 3: Commutativity

Indeed, we have

$$\operatorname{Eq}(f,g) \stackrel{\text{def}}{=} \{ a \in A \mid f(a) = g(a) \}$$
$$= \{ a \in A \mid g(a) = f(a) \}$$
$$\stackrel{\text{def}}{=} \operatorname{Eq}(g,f).$$

Item 4: Interaction With Composition

Indeed, we have

$$\begin{split} \operatorname{Eq}(h \circ f \circ \operatorname{eq}(f,g), k \circ g \circ \operatorname{eq}(f,g)) & \cong \{a \in \operatorname{Eq}(f,g) \mid h(f(a)) = k(g(a))\} \\ & \cong \{a \in A \mid f(a) = g(a) \text{ and } h(f(a)) = k(g(a))\}. \end{split}$$

and

$$Eq(h \circ f, k \circ g) \cong \{a \in A \mid h(f(a)) = k(g(a))\},\$$

and thus there's an inclusion from Eq $(h \circ f \circ eq(f,g), k \circ g \circ eq(f,g))$ to Eq $(h \circ f, k \circ g)$.

01E3 4.1.6 Inverse Limits

Let $(X_{\alpha}, f_{\alpha\beta})_{\alpha,\beta\in I}$: (I, \preceq) \rightarrow Sets be an inverse system of sets.

01E4 DEFINITION 4.1.6.1.1 ► INVERSE LIMITS OF SETS

The **inverse limit of** $(X_{\alpha}, f_{\alpha\beta})_{\alpha,\beta\in I}$ is the inverse limit of $(X_{\alpha}, f_{\alpha\beta})_{\alpha,\beta\in I}$ in Sets as in Limits and Colimits, ??.

01E5 CONSTRUCTION 4.1.6.1.2 ► CONSTRUCTION OF INVERSE LIMITS OF SETS

Concretely, the inverse limit of $(X_{\alpha}, f_{\alpha\beta})_{\alpha,\beta\in I}$ is the pair $(\lim_{\alpha\in I}(X_{\alpha}), \{\operatorname{pr}_{\alpha}\}_{\alpha\in I})$ consisting of:

01E6 1. *The Limit*. The set
$$\lim_{\alpha \in I} (X_{\alpha})$$
 defined by

$$\lim_{\substack{\longleftarrow \\ \alpha \in I}} (X_{\alpha}) \stackrel{\text{def}}{=} \left\{ (x_{\alpha})_{\alpha \in I} \in \prod_{\alpha \in I} X_{\alpha} \, \middle| \, \text{for each } \alpha, \beta \in I, \text{ if } \alpha \leq \beta, \\ \text{then we have } x_{\alpha} = f_{\alpha\beta}(x_{\beta}) \right\}.$$

01E7 2. *The Cone*. The collection

$$\left\{ \operatorname{pr}_{\gamma} \colon \lim_{\substack{\longleftarrow \\ \alpha \in I}} (X_{\alpha}) \to X_{\gamma} \right\}_{\gamma \in I}$$

of maps of sets defined as the restriction of the maps

$$\left\{ \operatorname{pr}_{\mathbf{y}} : \prod_{\alpha \in I} X_{\alpha} \to X_{\mathbf{y}} \right\}_{\mathbf{y} \in I}$$

of Item 2 of Construction 4.1.2.1.2 to $\lim_{\alpha \in I} (X_{\alpha})$ and hence given by

$$\operatorname{pr}_{\gamma}((x_{\alpha})_{\alpha\in I})\stackrel{\operatorname{def}}{=} x_{\gamma}$$

for each $\gamma \in I$ and each $(x_{\alpha})_{\alpha \in I} \in \lim_{\stackrel{\longleftarrow}{\alpha \in I}} (X_{\alpha})$.

PROOF 4.1.6.1.3 ► PROOF OF CONSTRUCTION 4.1.6.1.2

We claim that $\lim_{\leftarrow \alpha \in I} (X_{\alpha})$ is the limit of the inverse system of sets $(X_{\alpha}, f_{\alpha\beta})_{\alpha,\beta \in I}$. First we need to check that the limit diagram defined by

it commutes, i.e. that we have

$$f_{\alpha\beta} \circ \operatorname{pr}_{\alpha} = \operatorname{pr}_{\beta}, \qquad \varprojlim_{\alpha \in I} (X_{\alpha})$$

$$X_{\alpha} \xrightarrow{f_{\alpha\beta}} X_{\beta}$$

for each $\alpha, \beta \in I$ with $\alpha \leq \beta$. Indeed, given $(x_{\gamma})_{\gamma \in I} \in \lim_{\leftarrow \gamma \in I} (X_{\gamma})$, we have

$$[f_{\alpha\beta} \circ \operatorname{pr}_{\alpha}] ((x_{\gamma})_{\gamma \in I}) \stackrel{\text{def}}{=} f_{\alpha\beta} (\operatorname{pr}_{\alpha} ((x_{\gamma})_{\gamma \in I}))$$

$$\stackrel{\text{def}}{=} f_{\alpha\beta} (x_{\alpha})$$

$$= x_{\beta}$$

$$\stackrel{\text{def}}{=} \operatorname{pr}_{\beta} ((x_{\gamma})_{\gamma \in I}),$$

where the third equality comes from the definition of $\lim_{\leftarrow \alpha \in I} (X_{\alpha})$. Next, we prove that $\lim_{\leftarrow \alpha \in I} (X_{\alpha})$ satisfies the universal property of an inverse limit. Suppose that we have, for each $\alpha, \beta \in I$ with $\alpha \preceq \beta$, a diagram of the form

in Sets. Then there indeed exists a unique map $\phi: L \xrightarrow{\exists !} \varprojlim_{\alpha \in I} (X_{\alpha})$ making the diagram

commute, being uniquely determined by the family of conditions

$$\left\{p_{\alpha} = \operatorname{pr}_{\alpha} \circ \phi\right\}_{\alpha \in I}$$

via

01E9

$$\phi(\ell) = (p_{\alpha}(\ell))_{\alpha \in I}$$

for each $\ell \in L$, where we note that $(p_{\alpha}(\ell))_{\alpha \in I} \in \prod_{\alpha \in I} X_{\alpha}$ indeed lies in $\lim_{\epsilon \to \alpha \in I} (X_{\alpha})$, as we have

$$f_{\alpha\beta}(p_{\alpha}(\ell)) \stackrel{\text{def}}{=} [f_{\alpha\beta} \circ p_{\alpha}](\ell)$$

$$\stackrel{\text{def}}{=} p_{\beta}(\ell)$$

for each $\beta \in I$ with $\alpha \leq \beta$ by the commutativity of the diagram for $(L, \{p_{\alpha}\}_{\alpha \in I})$.

01E8 EXAMPLE 4.1.6.1.4 ► EXAMPLES OF INVERSE LIMITS OF SETS

Here are some examples of inverse limits of sets.

1. *The p-Adic Integers*. The ring of *p*-adic integers \mathbb{Z}_p of $\ref{p-Adic Integers}$ is the inverse limit

$$\mathbb{Z}_p \cong \lim_{\substack{\longleftarrow \\ n \in \mathbb{N}}} (\mathbb{Z}_{/p^n});$$

see ??.

01EA

2. *Rings of Formal Power Series*. The ring R[t] of formal power series in a variable t is the inverse limit

$$R[[t]] \cong \lim_{\substack{\longleftarrow \\ n \in \mathbb{N}}} (R[t]/t^n R[t]);$$

see ??.

01EB

3. *Profinite Groups*. Profinite groups are inverse limits of finite groups; see ??.

001T 4.2 Colimits of Sets

001U 4.2.1 The Initial Set

001V

DEFINITION 4.2.1.1.1 ► THE INITIAL SET

The initial set is the initial object of Sets as in Limits and Colimits, ??.

01EC

CONSTRUCTION 4.2.1.1.2 ► CONSTRUCTION OF THE INITIAL SET

Concretely, the initial set is the pair $(\emptyset, \{\iota_A\}_{A \in \text{Obj}(\mathsf{Sets})})$ consisting of:

01ED

- 1. *The Colimit*. The empty set Ø of Definition 4.3.1.1.1.
- 01EE
- 2. *The Cocone*. The collection of maps

$$\{\iota_A \colon \emptyset \to A\}_{A \in \mathsf{Obj}(\mathsf{Sets})}$$

given by the inclusion maps from \emptyset to A.

PROOF 4.2.1.1.3 ► PROOF OF CONSTRUCTION 4.2.1.1.2

We claim that \emptyset is the initial object of Sets. Indeed, suppose we have a diagram of the form

 \emptyset A

in Sets. Then there exists a unique map $\phi: \emptyset \to A$ making the diagram

$$\emptyset - \frac{\phi}{\exists !} \rightarrow A$$

commute, namely the inclusion map ι_A .

001W 4.2.2 Coproducts of Families of Sets

Let $\{A_i\}_{i\in I}$ be a family of sets.

001X DEFINITION 4.2.2.1.1 ► THE COPRODUCT OF A FAMILY OF SETS

The **coproduct of** $\{A_i\}_{i\in I}^{1}$ is the coproduct of $\{A_i\}_{i\in I}$ in Sets as in Limits and Colimits, ??.

¹Further Terminology: Also called the **disjoint union of the family** $\{A_i\}_{i\in I}$.

01EF CONSTRUCTION 4.2.2.1.2 ➤ CONSTRUCTION OF THE COPRODUCT OF A FAMILY OF SETS

Concretely, the disjoint union of $\{A_i\}_{i\in I}$ is the pair $\left(\coprod_{i\in I} A_i, \left\{\inf_i\right\}_{i\in I}\right)$ consisting of:

01EG 1. The Colimit. The set $\coprod_{i \in I} A_i$ defined by

$$\coprod_{i\in I} A_i \stackrel{\text{def}}{=} \left\{ (i, x) \in I \times \left(\bigcup_{i\in I} A_i \right) \mid x \in A_i \right\}.$$

01EH 2. *The Cocone*. The collection

$$\left\{\inf_{i}\colon A_{i}\to \bigsqcup_{i\in I}A_{i}\right\}_{i\in I}$$

of maps given by

$$\operatorname{inj}_i(x) \stackrel{\text{def}}{=} (i, x)$$

for each $x \in A_i$ and each $i \in I$.

PROOF 4.2.2.1.3 ► PROOF OF CONSTRUCTION 4.2.2.1.2

We claim that $\coprod_{i \in I} A_i$ is the categorical coproduct of $\{A_i\}_{i \in I}$ in Sets. Indeed, suppose we have, for each $i \in I$, a diagram of the form

$$A_i \xrightarrow[\text{inj}_i]{C}$$

in Sets. Then there exists a unique map $\phi: \coprod_{i \in I} A_i \to C$ making the diagram

$$A_{i} \xrightarrow{\lim_{i} \prod_{i \in I} A_{i}} A_{i}$$

commute, being uniquely determined by the condition $\phi \circ \text{inj}_i = \iota_i$ for each $i \in I$ via

$$\phi((i,x)) = \iota_i(x)$$

for each $(i, x) \in \coprod_{i \in I} A_i$.

PROPOSITION 4.2.2.1.4 ► PROPERTIES OF COPRODUCTS OF FAMILIES OF SETS

Let $\{A_i\}_{i\in I}$ be a family of sets.

1. Functoriality. The assignment $\{A_i\}_{i\in I}\mapsto \coprod_{i\in I}A_i$ defines a functor

$$\coprod_{i \in I} : \mathsf{Fun}(I_{\mathsf{disc}}, \mathsf{Sets}) \to \mathsf{Sets}$$

where

001Z

• *Action on Objects.* For each $(A_i)_{i \in I} \in \text{Obj}(\text{Fun}(I_{\text{disc}}, \text{Sets}))$, we have

$$\left[\bigsqcup_{i \in I} \right] ((A_i)_{i \in I}) \stackrel{\text{def}}{=} \bigsqcup_{i \in I} A_i$$

• Action on Morphisms. For each $(A_i)_{i \in I}, (B_i)_{i \in I} \in Obj(Fun(I_{disc}, Sets))$, the action on Hom-sets

$$\left(\bigsqcup_{i\in I}\right)_{(A_i)_{i\in I},(B_i)_{i\in I}}: \operatorname{Nat}((A_i)_{i\in I},(B_i)_{i\in I}) \to \operatorname{Sets}\left(\bigsqcup_{i\in I}A_i,\bigsqcup_{i\in I}B_i\right)$$

of $\coprod_{i\in I}$ at $((A_i)_{i\in I},(B_i)_{i\in I})$ is defined by sending a map

$$\{f_i\colon A_i\to B_i\}_{i\in I}$$

in Nat($(A_i)_{i \in I}$, $(B_i)_{i \in I}$) to the map of sets

$$\coprod_{i \in I} f_i \colon \coprod_{i \in I} A_i \to \coprod_{i \in I} B_i$$

defined by

$$\left[\bigsqcup_{i \in I} f_i \right] (i, a) \stackrel{\text{def}}{=} f_i(a)$$

for each $(i, a) \in \coprod_{i \in I} A_i$.

PROOF 4.2.2.1.5 ► PROOF OF PROPOSITION 4.2.2.1.4

Item 1: Functoriality

This follows from Limits and Colimits, ?? of ??.

0020 4.2.3 Binary Coproducts

Let A and B be sets.

0021 DEFINITION 4.2.3.1.1 ➤ COPRODUCTS OF SETS

The **coproduct of** A **and** B^1 is the coproduct of A and B in Sets as in Limits and Colimits, ??.

¹Further Terminology: Also called the **disjoint union of** A **and** B.

01EJ

CONSTRUCTION 4.2.3.1.2 ► CONSTRUCTION OF COPRODUCTS OF SETS

Concretely, the coproduct of *A* and *B* is the pair $(A \coprod B, \{inj_1, inj_2\})$ consisting of:

01EK

1. *The Colimit.* The set $A \coprod B$ defined by

$$A \coprod B \stackrel{\text{def}}{=} \coprod_{z \in \{A, B\}} z$$

$$\stackrel{\text{def}}{=} \{(0, a) \in S \mid a \in A\} \cup \{(1, b) \in S \mid b \in B\},$$

where $S = \{0, 1\} \times (A \cup B)$.

01EL

2. The Cocone. The maps

$$inj_1: A \to A \coprod B,$$

 $inj_2: B \to A \coprod B,$

given by

$$\operatorname{inj}_{1}(a) \stackrel{\text{def}}{=} (0, a),$$
 $\operatorname{inj}_{2}(b) \stackrel{\text{def}}{=} (1, b),$

for each $a \in A$ and each $b \in B$.

PROOF 4.2.3.1.3 ► PROOF OF CONSTRUCTION 4.2.3.1.2

We claim that $A \coprod B$ is the categorical coproduct of A and B in Sets. Indeed, suppose we have a diagram of the form

in Sets. Then there exists a unique map $\phi: A \coprod B \to C$ making the diagram

commute, being uniquely determined by the conditions

$$\phi \circ \operatorname{inj}_A = \iota_A,$$

$$\phi \circ \operatorname{inj}_B = \iota_B$$

via

0023

$$\phi(x) = \begin{cases} \iota_A(a) & \text{if } x = (0, a), \\ \iota_B(b) & \text{if } x = (1, b) \end{cases}$$

for each $x \in A \coprod B$.

0022 PROPOSITION 4.2.3.1.4 ➤ PROPERTIES OF COPRODUCTS OF SETS

Let A, B, C, and X be sets.

1. Functoriality. The assignment $A, B, (A, B) \mapsto A \coprod B$ defines functors

$$\begin{array}{cccc} A \coprod -\colon & \mathsf{Sets} & \to \mathsf{Sets}, \\ - \coprod B\colon & \mathsf{Sets} & \to \mathsf{Sets}, \\ -_1 \coprod -_2\colon \mathsf{Sets} \times \mathsf{Sets} \to \mathsf{Sets}, \end{array}$$

where $-_1 \coprod -_2$ is the functor where

• *Action on Objects.* For each $(A, B) \in Obj(Sets \times Sets)$, we have

$$[-1][-2](A, B) \stackrel{\text{def}}{=} A [] B.$$

 $f \mid \mid g: A \mid \mid B \rightarrow X \mid \mid Y$

• *Action on Morphisms*. For each $(A, B), (X, Y) \in Obj(Sets)$, the action on Hom-sets

$$\coprod_{(A,B),(X,Y)}$$
: Sets $(A,X) \times$ Sets $(B,Y) \rightarrow$ Sets $(A \coprod B, X \coprod Y)$ of \coprod at $((A,B),(X,Y))$ is defined by sending (f,g) to the function

defined by

$$[f \coprod g](x) \stackrel{\text{def}}{=} \begin{cases} (0, f(a)) & \text{if } x = (0, a), \\ (1, g(b)) & \text{if } x = (1, b), \end{cases}$$

for each $x \in A \mid \mid B$.

and where $A \coprod -$ and $- \coprod B$ are the partial functors of $-_1 \coprod -_2$ at $A, B \in \text{Obj}(\mathsf{Sets})$.

01ZH 2. *Adjointness*. We have an adjunction

$$(-1 \coprod -2 \dashv \Delta_{\mathsf{Sets}})$$
: Sets \times Sets $\underbrace{\bot}_{\Delta_{\mathsf{Sets}}}$ Sets,

witnessed by a bijection

0024

0026

$$Sets(A \coprod B, C), \cong Hom_{Sets \times Sets}((A, B), (C, C))$$

natural in $(A, B) \in \text{Obj}(\mathsf{Sets} \times \mathsf{Sets})$ and in $C \in \text{Obj}(\mathsf{Sets})$.

3. Associativity. We have an isomorphism of sets

$$\alpha_{X,Y,Z}^{\mathsf{Sets},\coprod} : (X \coprod Y) \coprod Z \xrightarrow{\sim} X \coprod (Y \coprod Z),$$

natural in $X, Y, Z \in Obj(Sets)$.

4. *Unitality*. We have isomorphisms of sets

$$\lambda_X^{\mathsf{Sets}, \coprod} : \emptyset \coprod X \xrightarrow{\sim} X,$$
Sets, $\coprod X \mapsto X \xrightarrow{\sim} X$

 $ho_X^{\mathsf{Sets},\coprod}:X\coprod ilde{\emptyset}\overset{\sim}{\dashrightarrow}X,$

natural in $X \in \text{Obj}(\mathsf{Sets})$.

5. *Commutativity*. We have an isomorphism of sets

$$\sigma_{X,Y}^{\mathsf{Sets},\coprod}: X \coprod Y \xrightarrow{\sim} Y \coprod X,$$

natural in $X, Y \in Obj(Sets)$.

6. *Symmetric Monoidality.* The 7-tuple (Sets, \coprod , \emptyset , α_{\coprod}^{Sets} , λ_{\coprod}^{Sets} , ρ_{\coprod}^{Sets} , σ_{\coprod}^{Sets}) is a symmetric monoidal category.

PROOF 4.2.3.1.5 ► PROOF OF PROPOSITION 4.2.3.1.4

Item 1: Functoriality

This follows from Limits and Colimits, ?? of ??.

Item 2: Adjointness

This follows from the universal property of the coproduct.

Item 3: Associativity

This is proved in the proof of Monoidal Structures on the Category of Sets, Definition 5.2.3.1.1.

Item 4: Unitality

This is proved in the proof of Monoidal Structures on the Category of Sets, Definitions 5.2.4.1.1 and 5.2.5.1.1.

Item 5: Commutativity

This is proved in the proof of Monoidal Structures on the Category of Sets, Definition 5.2.6.1.1.

Item 6: Symmetric Monoidality

This is a repetition of Monoidal Structures on the Category of Sets, Proposition 5.2.7.1.1, and is proved there.

0028 4.2.4 Pushouts

Let A, B, and C be sets and let $f: C \to A$ and $g: C \to B$ be functions.

0029 DEFINITION 4.2.4.1.1 ► PUSHOUTS OF SETS

The **pushout of** A **and** B **over** C **along** f **and** g^1 is the pushout of A and B over C along f and g in Sets as in Limits and Colimits, ??.

01EM CONSTRUCTION 4.2.4.1.2 ➤ CONSTRUCTION OF PUSHOUTS OF SETS

Concretely, the pushout of A and B over C along f and g is the pair $(A \coprod_C B, \{inj_1, inj_2\})$ consisting of:

 $^{^1}$ Further Terminology: Also called the **fibre coproduct of** A **and** B **over** C **along** f **and** g.

01EN

1. *The Colimit*. The set $A \coprod_C B$ defined by

$$A \coprod_C B \stackrel{\text{def}}{=} A \coprod B/\sim_C$$

where \sim_C is the equivalence relation on $A \coprod B$ generated by $(0, f(c)) \sim_C (1, g(c))$.

01EP

2. The Cocone. The maps

$$inj_1: A \to A \coprod_C B,$$

 $inj_2: B \to A \coprod_C B$

given by

$$inj_1(a) \stackrel{\text{def}}{=} [(0, a)]
inj_2(b) \stackrel{\text{def}}{=} [(1, b)]$$

for each $a \in A$ and each $b \in B$.

PROOF 4.2.4.1.3 ► PROOF OF CONSTRUCTION 4.2.4.1.2

We claim that $A \coprod_C B$ is the categorical pushout of A and B over C with respect to (f,g) in Sets. First we need to check that the relevant pushout diagram commutes, i.e. that we have

Indeed, given $c \in C$, we have

$$\begin{aligned} \left[\inf_{1} \circ f \right](c) &= \inf_{1} (f(c)) \\ &= \left[(0, f(c)) \right] \\ &= \left[(1, g(c)) \right] \\ &= \inf_{2} (g(c)) \\ &= \left[\inf_{2} \circ g \right](c), \end{aligned}$$

where [(0, f(c))] = [(1, g(c))] by the definition of the relation \sim on $A \coprod B$. Next, we prove that $A \coprod {}_{C}B$ satisfies the universal property of the pushout. Suppose we have a diagram of the form

in Sets. Then there exists a unique map $\phi: A \coprod_C B \to P$ making the diagram

commute, being uniquely determined by the conditions

$$\phi \circ \operatorname{inj}_1 = \iota_1,$$

 $\phi \circ \operatorname{inj}_2 = \iota_2$

via

$$\phi(x) = \begin{cases} \iota_1(a) & \text{if } x = [(0, a)], \\ \iota_2(b) & \text{if } x = [(1, b)] \end{cases}$$

for each $x \in A \coprod_C B$, where the well-definedness of ϕ is guaranteed by the equality $\iota_1 \circ f = \iota_2 \circ g$ and the definition of the relation \sim on $A \coprod B$ as follows:

01EQ

1. Case 1: Suppose we have x = [(0, a)] = [(0, a')] for some $a, a' \in A$. Then, by Remark 4.2.4.1.4, we have a sequence

$$(0,a) \sim' x_1 \sim' \cdots \sim' x_n \sim' (0,a').$$

01ER

2. Case 2: Suppose we have x = [(1,b)] = [(1,b')] for some $b,b' \in B$. Then, by Remark 4.2.4.1.4, we have a sequence

$$(1,b) \sim' x_1 \sim' \cdots \sim' x_n \sim' (1,b').$$

01ES

3. Case 3: Suppose we have x = [(0, a)] = [(1, b)] for some $a \in A$ and $b \in B$. Then, by Remark 4.2.4.1.4, we have a sequence

$$(0, a) \sim' x_1 \sim' \cdots \sim' x_n \sim' (1, b).$$

In all these cases, we declare $x \sim' y$ iff there exists some $c \in C$ such that x = (0, f(c)) and y = (1, g(c)) or x = (1, g(c)) and y = (0, f(c)). Then, the equality $\iota_1 \circ f = \iota_2 \circ g$ gives

$$\phi([x]) = \phi([(0, f(c))])
\stackrel{\text{def}}{=} \iota_1(f(c))
= \iota_2(g(c))
\stackrel{\text{def}}{=} \phi([(1, g(c))])
= \phi([y]),$$

with the case where x = (1, g(c)) and y = (0, f(c)) similarly giving $\phi([x]) = \phi([y])$. Thus, if $x \sim' y$, then $\phi([x]) = \phi([y])$. Applying this equality pairwise to the sequences

$$(0,a) \sim' x_1 \sim' \cdots \sim' x_n \sim' (0,a'),$$

 $(1,b) \sim' x_1 \sim' \cdots \sim' x_n \sim' (1,b'),$
 $(0,a) \sim' x_1 \sim' \cdots \sim' x_n \sim' (1,b)$

gives

$$\begin{aligned} \phi([(0,a)]) &= \phi([(0,a')]), \\ \phi([(1,b)]) &= \phi([(1,b')]), \\ \phi([(0,a)]) &= \phi([(1,b)]), \end{aligned}$$

showing ϕ to be well-defined.

002A REMARK 4.2.4.1.4 ► UNWINDING DEFINITION 4.2.4.1.1

In detail, by Conditions on Relations, Construction 10.5.2.1.2, the relation \sim of Definition 4.2.4.1.1 is given by declaring $a \sim b$ iff one of the following conditions is satisfied:

- 01ET 1. We have $a, b \in A$ and a = b.
- 01EU 2. We have $a, b \in B$ and a = b.

01EW

01EX

01EY

01ZJ

01ZK

01EZ

01ZL

01ZM

01F0 01F1

01F2

- 3. There exist $x_1, \ldots, x_n \in A \coprod B$ such that $a \sim' x_1 \sim' \cdots \sim' x_n \sim' b$, where we declare $x \sim' y$ if one of the following conditions is satisfied:
 - (a) There exists $c \in C$ such that x = (0, f(c)) and y = (1, g(c)).
 - (b) There exists $c \in C$ such that x = (1, g(c)) and y = (0, f(c)).

In other words, there exist $x_1, \ldots, x_n \in A \coprod B$ satisfying the following conditions:

- (c) There exists $c_0 \in C$ satisfying one of the following conditions:
 - i. We have $a = f(c_0)$ and $x_1 = g(c_0)$.
 - ii. We have $a = g(c_0)$ and $x_1 = f(c_0)$.
 - (d) For each $1 \le i \le n-1$, there exists $c_i \in C$ satisfying one of the following conditions:
 - i. We have $x_i = f(c_i)$ and $x_{i+1} = g(c_i)$.
 - ii. We have $x_i = g(c_i)$ and $x_{i+1} = f(c_i)$.
 - (e) There exists $c_n \in C$ satisfying one of the following conditions:
 - i. We have $x_n = f(c_n)$ and $b = g(c_n)$.
 - ii. We have $x_n = g(c_n)$ and $b = f(c_n)$.

01ZN REMARK 4.2.4.1.5 ➤ PUSHOUTS OF SETS DEPEND ON THE MAPS

It is common practice to write $A \coprod_C B$ for the pushout of A and B over C along f and g, omitting the maps f and g from the notation and instead leaving them implicit, to be understood from the context.

However, the set $A \coprod_C B$ depends very much on the maps f and g, and sometimes it is necessary or useful to note this dependence explicitly. In such situations, we will write $A \coprod_{f,C,g} B$ or $A \coprod_{c} f B$ for $A \coprod_{c} B$.

002B

EXAMPLE 4.2.4.1.6 ► **EXAMPLES OF PUSHOUTS OF SETS**

Here are some examples of pushouts of sets.

002C

002D

- 1. Wedge Sums of Pointed Sets. The wedge sum of two pointed sets of Pointed Sets, Definition 6.3.3.1.1 is an example of a pushout of sets.
- 2. *Intersections via Unions*. Let *X* be a set. We have

$$A \cup B \cong A \coprod_{A \cap B} B, \qquad A \longleftarrow A \cap B$$

$$A \leftarrow A \leftarrow A \cap B$$

for each $A, B \in \mathcal{P}(X)$.

PROOF 4.2.4.1.7 ► PROOF OF EXAMPLE 4.2.4.1.6

Item 1: Wedge Sums of Pointed Sets

This follows by definition, as the wedge sum of two pointed sets is defined as a pushout.

Item 2: Intersections via Unions

Indeed, $A \coprod_{A \cap B} B$ is the quotient of $A \coprod B$ by the equivalence relation obtained by declaring $(0, a) \sim (1, b)$ iff $a = b \in A \cap B$, which is in bijection with $A \cup B$ via the map with $[(0, a)] \mapsto a$ and $[(1, b)] \mapsto b$.

002E

PROPOSITION 4.2.4.1.8 ▶ PROPERTIES OF PUSHOUTS OF SETS

Let A, B, C, and X be sets.

002F

1. Functoriality. The assignment $(A, B, C, f, g) \mapsto A \coprod_{f,C,g} B$ defines a functor

$$-_1 \coprod_{-_3} -_1 \colon \mathsf{Fun}(\mathcal{P},\mathsf{Sets}) \to \mathsf{Sets},$$

where \mathcal{P} is the category that looks like this:

In particular, the action on morphisms of $-1 \coprod_{-3} -1$ is given by sending a morphism

in Fun(\mathcal{P} , Sets) to the map $\xi: A \coprod_C B \xrightarrow{\exists!} A' \coprod_{C'} B'$ given by

$$\xi(x) \stackrel{\text{def}}{=} \begin{cases} \phi(a) & \text{if } x = [(0, a)], \\ \psi(b) & \text{if } x = [(1, b)] \end{cases}$$

for each $x \in A \coprod_C B$, which is the unique map making the diagram

commute.

01ZP

2. Adjointness. We have an adjunction

$$\left(-1 \coprod_{X} -_2 \dashv \Delta_{\mathsf{Sets}_{X/}}\right) \colon \mathsf{Sets}_{X/} \times \mathsf{Sets}_{X/} \underbrace{\bot_{\Delta_{\mathsf{Sets}_{X/}}}^{-1} \mathsf{Sets}_{X/}}_{\mathsf{ASets}_{X/}} \mathsf{Sets}_{X/}$$

witnessed by a bijection

$$\mathsf{Sets}_{X/}(A \coprod_X B, C), \cong \mathsf{Hom}_{\mathsf{Sets}_{X/}} \times \mathsf{Sets}_{X/}((A, B), (C, C))$$

natural in $(A, B) \in \mathsf{Obj}(\mathsf{Sets}_{X/} \times \mathsf{Sets}_{X/})$ and in $C \in \mathsf{Obj}(\mathsf{Sets}_{X/})$.

3. Associativity. Given a diagram

in Sets, we have isomorphisms of sets

$$(A \coprod_X B) \coprod_Y C \cong (A \coprod_X B) \coprod_B (B \coprod_Y C) \cong A \coprod_X (B \coprod_Y C)$$

where these pullbacks are built as in the diagrams

4. Interaction With Composition. Given a diagram

in Sets, we have isomorphisms of sets

$$\begin{split} X \coprod_K^{\phi \circ f, \psi \circ g} Y &\cong \left(X \coprod_A^{\phi, j_1} \left(A \coprod_K^{f, g} B \right) \right) \coprod_{A \coprod_K^{f, g} B}^{i_2, i_1} \left(\left(A \coprod_K^{f, g} B \right) \coprod_B^{j_2, \psi} Y \right) \\ &\cong X \coprod_A^{\phi, i} \left(\left(A \coprod_K^{f, g} B \right) \coprod_B^{j_2, \psi} Y \right) \\ &\cong \left(X \coprod_A^{\phi, i_1} \left(A \coprod_K^{f, g} B \right) \right) \coprod_B^{j, \psi} Y \end{split}$$

002G

01F4

where

$$j_{1} = \operatorname{inj}_{1}^{A \times_{K}^{f,g} B}, \qquad j_{2} = \operatorname{inj}_{2}^{A \times_{K}^{f,g} B},$$

$$i_{1} = \operatorname{inj}_{1}^{\left(A \times_{K}^{f,g} B\right) \times_{Y}^{q_{2},\psi}}, \qquad X \times_{A \times_{K}^{f,g} B}^{\phi,q_{1}} \left(A \times_{K}^{f,g} B\right),$$

$$i_{2} = \operatorname{inj}_{2}^{A \times_{K}^{f,g} B}, \qquad i_{2} = \operatorname{inj}_{2}^{A \times_{K}^{f,g} B},$$

$$i_{3} = \operatorname{inj}_{2}^{A \times_{K}^{f,g} B}, \qquad i_{4} = \operatorname{inj}_{2}^{A \times_{K}^{f,g} B}, \qquad i_{5} = \operatorname{inj}_{2}^{A \times_{K}^{f,g} B},$$

$$i_{5} = \operatorname{inj}_{2}^{A \times_{K}^{f,g} B}, \qquad i_{7} = \operatorname{inj}_{2}^{A \times_{K}^{f,g} B}, \qquad i_{8} = \operatorname{inj}_{2}^{A \times_{K}^{f,g} B},$$

and where these pullbacks are built as in the diagrams

002H

5. Unitality. We have isomorphisms of sets

natural in $(A, f) \in \text{Obj}(\mathsf{Sets}_{X/})$.

002J

6. Commutativity. We have an isomorphism of sets

natural in (A, f), $(B, g) \in Obj(Sets_{X/})$.

002K

7. Interaction With Coproducts. We have

$$A \coprod B \longleftarrow B$$

$$A \coprod B \longleftarrow G$$

$$\uparrow \qquad \qquad \uparrow_{\iota_{B}}$$

$$A \longleftarrow_{\iota_{A}} \emptyset.$$

002L

8. *Symmetric Monoidality*. The triple $(Sets_{X/}, \coprod_X, X)$ is a symmetric monoidal category.

PROOF 4.2.4.1.9 ► PROOF OF PROPOSITION 4.2.4.1.8

Item 1: Functoriality

This is a special case of functoriality of co/limits, Limits and Colimits, ?? of ??, with the explicit expression for ξ following from the commutativity of the cube pushout diagram.

Item 2: : Adjointness

This follows from the universal property of the coproduct (pushouts are coproducts in $Sets_{X/}$).

Item 3: Associativity

Omitted.

Item 4: Interaction With Composition

Omitted.

Item 5: Unitality

Omitted.

Item 6: Commutativity

Omitted.

Item 7: Interaction With Coproducts

Omitted.

Item 8: Symmetric Monoidality

Omitted.

002M 4.2.5 Coequalisers

Let *A* and *B* be sets and let $f, g: A \Rightarrow B$ be functions.

002N DEFINITION 4.2.5.1.1 ➤ COEQUALISERS OF SETS

The **coequaliser** of f and g is the coequaliser of f and g in Sets as in Limits and Colimits, ??.

01F5 CONSTRUCTION 4.2.5.1.2 ➤ CONSTRUCTION OF COEQUALISERS OF SETS

Concretely, the coequaliser of f and g is the pair (CoEq(f,g), coeq(f,g)) consisting of:

01F6 1. *The Colimit.* The set CoEq(f, g) defined by

$$CoEq(f,g) \stackrel{\text{def}}{=} B/\sim$$
,

where \sim is the equivalence relation on *B* generated by $f(a) \sim g(a)$.

01F7

2. The Cocone. The map

$$coeq(f,g): B \rightarrow CoEq(f,g)$$

given by the quotient map $\pi: B \twoheadrightarrow B/\sim$ with respect to the equivalence relation generated by $f(a) \sim g(a)$.

PROOF 4.2.5.1.3 ► PROOF OF CONSTRUCTION 4.2.5.1.2

We claim that CoEq(f,g) is the categorical coequaliser of f and g in Sets. First we need to check that the relevant coequaliser diagram commutes, i.e. that we have

$$coeq(f, g) \circ f = coeq(f, g) \circ g$$
.

Indeed, we have

$$[\operatorname{coeq}(f,g) \circ f](a) \stackrel{\text{def}}{=} [\operatorname{coeq}(f,g)](f(a))$$

$$\stackrel{\text{def}}{=} [f(a)]$$

$$= [g(a)]$$

$$\stackrel{\text{def}}{=} [\operatorname{coeq}(f,g)](g(a))$$

$$\stackrel{\text{def}}{=} [\operatorname{coeq}(f,g) \circ g](a)$$

for each $a \in A$. Next, we prove that CoEq(f,g) satisfies the universal property of the coequaliser. Suppose we have a diagram of the form

$$A \xrightarrow{f \atop g} B \xrightarrow{\operatorname{coeq}(f,g)} \operatorname{CoEq}(f,g)$$

in Sets. Then, since c(f(a)) = c(g(a)) for each $a \in A$, it follows from Conditions on Relations, Items 4 and 5 of Proposition 10.6.2.1.3 that there exists a unique map $CoEq(f,g) \xrightarrow{\exists !} C$ making the diagram

$$A \xrightarrow{f} B \xrightarrow{\operatorname{coeq}(f,g)} \operatorname{CoEq}(f,g)$$

$$\downarrow g$$

commute.

002P REMARK 4.2.5.1.4 ➤ UNWINDING DEFINITION 4.2.5.1.1

In detail, by Conditions on Relations, Construction 10.5.2.1.2, the relation \sim of Definition 4.2.5.1.1 is given by declaring $a \sim b$ iff one of the following conditions is satisfied:

01ZQ 1. We have a = b;

01ZS

01ZV

01ZW

01ZX

01ZY

01ZZ

0200 0201

0202

002R

- 01ZR 2. There exist $x_1, \ldots, x_n \in B$ such that $a \sim' x_1 \sim' \cdots \sim' x_n \sim' b$, where we declare $x \sim' y$ if one of the following conditions is satisfied:
 - (a) There exists $z \in A$ such that x = f(z) and y = g(z).
- 01ZT (b) There exists $z \in A$ such that x = g(z) and y = f(z).

In other words, there exist $x_1, \ldots, x_n \in B$ satisfying the following conditions:

- 01ZU (a) There exists $z_0 \in A$ satisfying one of the following conditions:
 - i. We have $a = f(z_0)$ and $x_1 = g(z_0)$.
 - ii. We have $a = g(z_0)$ and $x_1 = f(z_0)$.
 - (b) For each $1 \le i \le n 1$, there exists $z_i \in A$ satisfying one of the following conditions:
 - i. We have $x_i = f(z_i)$ and $x_{i+1} = g(z_i)$.
 - ii. We have $x_i = g(z_i)$ and $x_{i+1} = f(z_i)$.
 - (c) There exists $z_n \in A$ satisfying one of the following conditions:
 - i. We have $x_n = f(z_n)$ and $b = g(z_n)$.
 - ii. We have $x_n = g(z_n)$ and $b = f(z_n)$.

002Q EXAMPLE 4.2.5.1.5 ► EXAMPLES OF COEQUALISERS OF SETS

Here are some examples of coequalisers of sets.

1. Quotients by Equivalence Relations. Let R be an equivalence relation on a set X. We have a bijection of sets

$$X/\sim_R \cong \operatorname{CoEq}\left(R \hookrightarrow X \times X \overset{\operatorname{pr}_1}{\underset{\operatorname{pr}_2}{\Longrightarrow}} X\right).$$

PROOF 4.2.5.1.6 ► PROOF OF EXAMPLE 4.2.5.1.5

Item 1: Quotients by Equivalence Relations

See [Pro25z].

002S PROPOSITION 4.2.5.1.7 ▶ PROPERTIES OF COEQUALISERS OF SETS

Let A, B, and C be sets.

1. Associativity. We have isomorphisms of sets¹

$$\underbrace{\mathsf{CoEq}(\mathsf{coeq}(f,g) \circ f, \mathsf{coeq}(f,g) \circ h)}_{=\mathsf{CoEq}(\mathsf{coeq}(f,g) \circ \mathsf{g}, \mathsf{coeq}(f,g) \circ h)} \cong \mathsf{CoEq}(f,g,h) \cong \underbrace{\mathsf{CoEq}(\mathsf{coeq}(g,h) \circ f, \mathsf{coeq}(g,h) \circ g)}_{=\mathsf{CoEq}(\mathsf{coeq}(g,h) \circ f, \mathsf{coeq}(g,h) \circ h)}$$

where CoEq(f, g, h) is the colimit of the diagram

$$A \xrightarrow{f \atop -g \xrightarrow{h}} B$$

in Sets.

2. Unitality. We have an isomorphism of sets

$$CoEq(f, f) \cong B$$
.

3. Commutativity. We have an isomorphism of sets

$$CoEq(f, g) \cong CoEq(g, f)$$
.

4. *Interaction With Composition*. Let

$$A \stackrel{f}{\underset{g}{\Longrightarrow}} B \stackrel{h}{\underset{k}{\Longrightarrow}} C$$

be functions. We have a surjection

$$CoEq(h \circ f, k \circ g) \rightarrow CoEq(coeq(h, k) \circ h \circ f, coeq(h, k) \circ k \circ g)$$

exhibiting $CoEq(coeq(h, k) \circ h \circ f, coeq(h, k) \circ k \circ g)$ as a quotient of $CoEq(h \circ f, k \circ g)$ by the relation generated by declaring $h(y) \sim k(y)$ for each $y \in B$.

002U

002V

002W

¹That is, the following three ways of forming "the" coequaliser of (f, g, h) agree:

0203

(a) Take the coequaliser of (f, g, h), i.e. the colimit of the diagram

$$A \xrightarrow{f \atop -g \xrightarrow{h}} B$$

in Sets.

0204

(b) First take the coequaliser of f and g, forming a diagram

$$A \stackrel{f}{\underset{g}{\Longrightarrow}} B \stackrel{\operatorname{coeq}(f,g)}{\Longrightarrow} \operatorname{CoEq}(f,g)$$

and then take the coequaliser of the composition

$$A \stackrel{f}{\underset{h}{\Longrightarrow}} B \stackrel{\operatorname{coeq}(f,g)}{\Longrightarrow} \operatorname{CoEq}(f,g),$$

obtaining a quotient

$$\mathsf{CoEq}(\mathsf{coeq}(f,g) \circ f, \mathsf{coeq}(f,g) \circ h) = \mathsf{CoEq}(\mathsf{coeq}(f,g) \circ g, \mathsf{coeq}(f,g) \circ h)$$
 of
$$\mathsf{CoEq}(f,g)$$

0205

(c) First take the coequaliser of g and h, forming a diagram

$$A \stackrel{g}{\underset{h}{\Longrightarrow}} B \stackrel{\operatorname{coeq}(g,h)}{\Longrightarrow} \operatorname{CoEq}(g,h)$$

and then take the coequaliser of the composition

$$A \stackrel{f}{\underset{g}{\Longrightarrow}} B \stackrel{\text{coeq}(g,h)}{\twoheadrightarrow} \text{CoEq}(g,h),$$

obtaining a quotient

$$\label{eq:coeq} \begin{split} \mathsf{CoEq}(\mathsf{coeq}(g,h) \circ f, \mathsf{coeq}(g,h) \circ g) &= \mathsf{CoEq}(\mathsf{coeq}(g,h) \circ f, \mathsf{coeq}(g,h) \circ h) \\ \mathsf{of} \ \mathsf{CoEq}(g,h). \end{split}$$

PROOF 4.2.5.1.8 ► PROOF OF PROPOSITION 4.2.5.1.7

Item 1: Associativity

Omitted.

Item 2: Unitality

Omitted.

Item 3: Commutativity

Omitted.

Item 4: Interaction With Composition

Omitted.

01FB

01FC

01FD

01F8 4.2.6 Direct Colimits

Let $(X_{\alpha}, f_{\alpha\beta})_{\alpha,\beta\in I}$: $(I, \preceq) \to \pi$ be a direct system of sets.

01F9 DEFINITION 4.2.6.1.1 ➤ DIRECT COLIMITS OF SETS

The **direct colimit of** $(X_{\alpha}, f_{\alpha\beta})_{\alpha,\beta\in I}$ is the direct colimit of $(X_{\alpha}, f_{\alpha\beta})_{\alpha,\beta\in I}$ in Sets as in Limits and Colimits, ??.

01FA CONSTRUCTION 4.2.6.1.2 ➤ CONSTRUCTION OF DIRECT COLIMITS OF SETS

Concretely, the direct colimit of $(X_{\alpha}, f_{\alpha\beta})_{\alpha,\beta\in I}$ is the pair $\left(\underset{\alpha\in I}{\operatorname{colim}}(X_{\alpha}), \underset{\alpha\in I}{\longleftrightarrow} \right)$

1. *The Colimit*. The set $\underset{\alpha \in I}{\text{colim}}(X_{\alpha})$ defined by

$$\operatorname{colim}_{\alpha \in I}(X_{\alpha}) \stackrel{\text{def}}{=} \left(\left[\sum_{\alpha \in I} X_{\alpha} \right] \right) / \sim,$$

where \sim is the equivalence relation on $\coprod_{\alpha \in I} X_{\alpha}$ generated by declaring $(\alpha, x) \sim (\beta, y)$ iff there exists some $\gamma \in I$ satisfying the following conditions:

- (a) We have $\alpha \leq \gamma$.
 - (b) We have $\beta \leq \gamma$.
- 01FE (c) We have $f_{\alpha \gamma}(x) = f_{\beta \gamma}(y)$.
- 01FF 2. *The Cocone*. The collection

$$\left\{ \operatorname{inj}_{\gamma} : X_{\gamma} \to \underset{\alpha \in I}{\operatorname{colim}}(X_{\alpha}) \right\}_{\gamma \in J}$$

of maps of sets defined by

$$\operatorname{inj}_{\gamma}(x) \stackrel{\text{def}}{=} [(\gamma, x)]$$

for each $y \in I$ and each $x \in X_y$.

PROOF 4.2.6.1.3 ► PROOF OF CONSTRUCTION 4.2.6.1.2

We will prove Construction 4.2.6.1.2 below in a bit, but first we need a lemma (which is interesting in its own right).

01FG

LEMMA 4.2.6.1.4 \triangleright **IDENTIFICATION OF** x **WITH** $f_{\alpha\beta}(x)$ **IN DIRECT COLIMITS**

For each $\alpha, \beta \in I$ and each $x \in X_{\alpha}$, if $\alpha \leq \beta$, then we have

$$(\alpha, x) \sim (\beta, f_{\alpha\beta}(x))$$

in $\operatornamewithlimits{colim}_{\stackrel{\longrightarrow}{\alpha \in I}}(X_{\alpha})$.

PROOF 4.2.6.1.5 ► PROOF OF LEMMA 4.2.6.1.4

Taking $\gamma = \beta$, we have $f_{\alpha\gamma} = f_{\alpha\beta}$, we have $f_{\beta\gamma} = f_{\beta\beta} \stackrel{\text{def}}{=} \mathrm{id}_{X_{\beta}}$, and we have

$$f_{\alpha\beta}(x) = f_{\beta\beta} (f_{\alpha\beta}(x))$$

$$\stackrel{\text{def}}{=} id_{X_{\beta}} (f_{\alpha\beta}(x)),$$

$$= f_{\alpha\beta}(x).$$

As a result, since $\alpha \leq \beta$ and $\beta \leq \beta$ as well, Items 1a to 1c of Construction 4.2.6.1.2 are met. Thus we have $(\alpha, x) \sim (\beta, f_{\alpha\beta}(x))$.

We can now prove Construction 4.2.6.1.2:

PROOF 4.2.6.1.6 ► PROOF OF CONSTRUCTION 4.2.6.1.2

We claim that $\operatornamewithlimits{colim}_{\alpha \in I}(X_{\alpha})$ is the colimit of the direct system of sets $(X_{\alpha}, f_{\alpha\beta})_{\alpha,\beta \in I}$.

Commutativity of the Colimit Diagram

First, we need to check that the colimit diagram defined by $\underset{\alpha \in I}{\overset{\longrightarrow}{\longrightarrow}} (X_{\alpha})$ commutes, i.e. that we have

$$inj_{\alpha} = inj_{\beta} \circ f_{\alpha\beta}, \quad
\begin{array}{c} \operatorname{colim}(X_{\alpha}) \\ \xrightarrow{\alpha \in I} \\ \operatorname{inj}_{\alpha} / & \operatorname{inj}_{\beta} \\ X_{\alpha} \xrightarrow{f_{\alpha\beta}} & X_{\beta} \\ \end{array}$$

for each $\alpha, \beta \in I$ with $\alpha \leq \beta$. Indeed, given $x \in X_{\alpha}$, we have

$$[\inf_{\beta} \circ f_{\alpha\beta}](x) \stackrel{\text{def}}{=} \inf_{\beta} (f_{\alpha\beta}(x))$$

$$\stackrel{\text{def}}{=} [(\beta, f_{\alpha\beta}(x))]$$

$$= [(\alpha, x)]$$

$$\stackrel{\text{def}}{=} \inf_{\beta} (x),$$

where we have used Lemma 4.2.6.1.4 for the third equality.

Proof of the Universal Property of the Colimit

Next, we prove that $\operatornamewithlimits{colim}_{\alpha \in I}(X_{\alpha})$ as constructed in Construction 4.2.6.1.2 satisfies the universal property of a direct colimit. Suppose that we have, for each $\alpha, \beta \in I$ with $\alpha \leq \beta$, a diagram of the form

in Sets. We claim that there exists a unique map $\phi: \underset{\longrightarrow}{\operatorname{colim}}(X_{\alpha}) \xrightarrow{\exists !} C$ making

the diagram

commute. To this end, first consider the diagram

$$\coprod_{\alpha \in I} X_{\alpha} \xrightarrow{\operatorname{pr}} \operatorname{colim}_{\alpha \in I} (X_{\alpha})$$

$$\coprod_{\alpha \in I} i_{\alpha} \qquad C.$$

Lemma. If $(\alpha, x) \sim (\beta, y)$, then we have

$$\left[\bigsqcup_{\alpha \in I} i_{\alpha} \right](x) = \left[\bigsqcup_{\alpha \in I} i_{\alpha} \right](y).$$

Proof. Indeed, if $(\alpha, x) \sim (\beta, y)$, then there exists some $\gamma \in I$ satisfying the following conditions:

1. We have $\alpha \leq \gamma$.

2. We have $\beta \leq \gamma$.

3. We have $f_{\alpha\gamma}(x) = f_{\beta\gamma}(y)$.

We then have

$$\left[\bigsqcup_{\alpha \in I} i_{\alpha} \right](x) \stackrel{\text{def}}{=} i_{\alpha}(x)$$

$$\stackrel{\text{def}}{=} \left[i_{\gamma} \circ f_{\alpha \gamma} \right](x)$$

0206

0207

0208

$$\stackrel{\text{def}}{=} i_{\gamma} (f_{\alpha \gamma}(x))$$

$$= i_{\gamma} (f_{\beta \gamma}(x))$$

$$\stackrel{\text{def}}{=} [i_{\gamma} \circ f_{\beta \gamma}](x)$$

$$= i_{\beta}(y)$$

$$\stackrel{\text{def}}{=} \left[\coprod_{\alpha \in I} i_{\alpha} \right](y).$$

This finishes the proof of the lemma. Continuing, by Conditions on Relations, ?? of Proposition 10.6.2.1.3, there then exists a map $\phi: \underset{\alpha \in I}{\operatorname{colim}}(X_{\alpha}) \xrightarrow{\exists !} C$ making the diagram

commute. In particular, this implies that the diagram

$$X_{\alpha} \xrightarrow{\inf_{\alpha}} \underset{\alpha \in I}{\underbrace{\operatorname{colim}}}(X_{\alpha})$$

$$\downarrow i_{\alpha} \qquad \qquad \downarrow \phi$$

$$C$$

also commutes, and thus so does the diagram

This finishes the proof.¹

¹Incidentally, the conditions

$$\left\{i_{\alpha} = \phi \circ \operatorname{inj}_{\alpha}\right\}_{\alpha \in I}$$

show that ϕ must be given by

$$\phi([(\alpha, x)]) = (i_{\alpha}(x))_{\alpha \in I}$$

for each $[(\alpha, x)] \in \underset{\alpha \in I}{\operatorname{colim}}(X_{\alpha})$, although we would need to show that this assignment is well-defined were we to prove Construction 4.2.6.1.2 in this way. Instead, invoking Conditions on Relations, ?? of Proposition 10.6.2.1.3 gave us a way to avoid having to prove this, leading to a cleaner alternative proof.

01FH

EXAMPLE 4.2.6.1.7 ► **EXAMPLES OF DIRECT COLIMITS OF SETS**

Here are some examples of direct colimits of sets.

01FJ

1. *The Prüfer Group*. The Prüfer group $\mathbb{Z}(p^{\infty})$ is defined as the direct colimit

$$\mathbb{Z}(p^{\infty}) \stackrel{\text{def}}{=} \underset{n \in \mathbb{N}}{\operatorname{colim}} (\mathbb{Z}_{/p^n});$$

see ??.

002X 4.3 Operations With Sets

002Y 4.3.1 The Empty Set

002Z

DEFINITION 4.3.1.1.1 ► THE EMPTY SET

The **empty set** is the set Ø defined by

$$\emptyset \stackrel{\text{def}}{=} \{ x \in X \mid x \neq x \},\$$

where X is the set in the set existence axiom, ?? of ??.

0030 4.3.2 Singleton Sets

Let *X* be a set.

0031 DEFINITION 4.3.2.1.1 ► SINGLETON SETS

The **singleton set containing** X is the set $\{X\}$ defined by

$$\{X\} \stackrel{\mathrm{def}}{=} \{X, X\},\,$$

where $\{X, X\}$ is the pairing of X with itself of Definition 4.3.3.1.1.

0032 4.3.3 Pairings of Sets

Let *X* and *Y* be sets.

0033 DEFINITION 4.3.3.1.1 ► PAIRINGS OF SETS

The **pairing of** X **and** Y is the set $\{X,Y\}$ defined by

$${X,Y} \stackrel{\text{def}}{=} {x \in A \mid x = X \text{ or } x = Y},$$

where *A* is the set in the axiom of pairing, ?? of ??.

0034 4.3.4 Ordered Pairs

Let *A* and *B* be sets.

0035 DEFINITION 4.3.4.1.1 ➤ ORDERED PAIRS

The **ordered pair associated to** A **and** B is the set (A, B) defined by

$$(A, B) \stackrel{\text{def}}{=} \{ \{A\}, \{A, B\} \}.$$

0036 PROPOSITION 4.3.4.1.2 ➤ PROPERTIES OF ORDERED PAIRS

Let *A* and *B* be sets.

0037

0038

- 1. *Uniqueness*. Let *A*, *B*, *C*, and *D* be sets. The following conditions are equivalent:
 - (a) We have (A, B) = (C, D).
- 0039 (b) We have A = C and B = D.

PROOF 4.3.4.1.3 ► PROOF OF PROPOSITION 4.3.4.1.2

Item 1: Uniqueness

See [Cie97, Theorem 1.2.3].

003A 4.3.5 Sets of Maps

Let *A* and *B* be sets.

DEFINITION 4.3.5.1.1 ► **SETS OF MAPS** 003B

The **set of maps from** A **to** B^1 is the set $Sets(A, B)^2$ whose elements are the functions from *A* to *B*.

PROPOSITION 4.3.5.1.2 ► PROPERTIES OF SETS OF MAPS 003C

Let *A* and *B* be sets.

1. Functoriality. The assignments $X, Y, (X, Y) \mapsto \text{Hom}_{Sets}(X, Y)$ define 003D functors

$$\begin{array}{lll} \mathsf{Sets}(X,-)\colon & \mathsf{Sets} & \to \mathsf{Sets}, \\ \mathsf{Sets}(-,Y)\colon & \mathsf{Sets}^\mathsf{op} & \to \mathsf{Sets}, \\ \mathsf{Sets}(-_1,-_2)\colon & \mathsf{Sets}^\mathsf{op} \times \mathsf{Sets} \to \mathsf{Sets}. \end{array}$$

2. Adjointness. We have adjunctions 01FK

$$(A \times - \dashv \mathsf{Sets}(A, -))$$
: Sets $\underbrace{\bot}_{\mathsf{Sets}(A, -)}$ Sets, $\underbrace{-\times B}_{\mathsf{Sets}(B, -)}$ Sets, $\underbrace{\bot}_{\mathsf{Sets}(B, -)}$

$$(-\times B \dashv \mathsf{Sets}(B,-))$$
: Sets $\underbrace{\bot}_{\mathsf{Sets}(B,-)}$

witnessed by bijections

$$Sets(A \times B, C) \cong Sets(A, Sets(B, C)),$$

 $Sets(A \times B, C) \cong Sets(B, Sets(A, C)),$

natural in $A, B, C \in Obj(Sets)$.

¹Further Terminology: Also called the **Hom set from** A **to** B.

²Further Notation: Also written $Hom_{Sets}(A, B)$.

01FL

3. Maps From the Punctual Set. We have a bijection

$$\mathsf{Sets}(\mathsf{pt},A) \cong A$$
,

natural in $A \in Obj(Sets)$.

4. Maps to the Punctual Set. We have a bijection

$$Sets(A, pt) \cong pt$$
,

natural in $A \in Obj(Sets)$.

PROOF 4.3.5.1.3 ► PROOF OF PROPOSITION 4.3.5.1.2

Item 1: Functoriality

This follows from Categories, Items 2 and 5 of Proposition 11.1.4.1.2.

Item 2: Adjointness

This is a repetition of Item 2 of Proposition 4.1.3.1.4 and is proved there.

Item 3: Maps From the Punctual Set

The bijection

$$\Phi_A : \mathsf{Sets}(\mathsf{pt}, A) \xrightarrow{\sim} A$$

is given by

$$\Phi_A(f) \stackrel{\text{def}}{=} f(\star)$$

for each $f \in Sets(pt, A)$, admitting an inverse

$$\Phi_A^{-1}: A \xrightarrow{\sim} \mathsf{Sets}(\mathsf{pt}, A)$$

given by

$$\Phi_A^{-1}(a) \stackrel{\mathrm{def}}{=} \llbracket \star \mapsto a \rrbracket$$

for each $a \in A$. Indeed, we have

$$\begin{split} \left[\Phi_A^{-1} \circ \Phi_A\right] (f) &\stackrel{\text{def}}{=} \Phi_A^{-1} (\Phi_A(f)) \\ &\stackrel{\text{def}}{=} \Phi_A^{-1} (f(\star)) \\ &\stackrel{\text{def}}{=} \left[\!\!\left[\star \mapsto f(\star)\right]\!\!\right] \\ &\stackrel{\text{def}}{=} f \end{split}$$

01FM

$$\stackrel{\text{def}}{=} \left[\mathrm{id}_{\mathsf{Sets}(\mathsf{pt},A)} \right] (f)$$

for each $f \in Sets(pt, A)$ and

$$\begin{split} \left[\Phi_{A} \circ \Phi_{A}^{-1}\right](a) &\stackrel{\text{def}}{=} \Phi_{A} \left(\Phi_{A}^{-1}(a)\right) \\ &\stackrel{\text{def}}{=} \Phi_{A} (\llbracket \star \mapsto a \rrbracket) \\ &\stackrel{\text{def}}{=} \operatorname{ev}_{\star} (\llbracket \star \mapsto a \rrbracket) \\ &\stackrel{\text{def}}{=} a \\ &\stackrel{\text{def}}{=} [\operatorname{id}_{A}](a) \end{split}$$

for each $a \in A$, and thus we have

$$\Phi_A^{-1} \circ \Phi_A = \mathrm{id}_{\mathsf{Sets}(\mathsf{pt},A)}$$

 $\Phi_A \circ \Phi_A^{-1} = \mathrm{id}_A$.

To prove naturality, we need to show that the diagram

$$\begin{array}{ccc}
\mathsf{Sets}(\mathsf{pt},A) & \xrightarrow{f_!} & \mathsf{Sets}(\mathsf{pt},B) \\
& & \downarrow \\
& & \downarrow \\
& & & \downarrow \\
& & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& & & & & & & \downarrow \\
& \downarrow$$

commutes. Indeed, we have

$$[f \circ \Phi_A](\phi) \stackrel{\text{def}}{=} f(\Phi_A(\phi))$$

$$\stackrel{\text{def}}{=} f(\phi(\star))$$

$$\stackrel{\text{def}}{=} [f \circ \phi](\star)$$

$$\stackrel{\text{def}}{=} \Phi_B(f \circ \phi)$$

$$\stackrel{\text{def}}{=} \Phi_B(f_!(\phi))$$

$$\stackrel{\text{def}}{=} [\Phi_B \circ f_!](\phi)$$

for each $\phi \in Sets(pt, A)$. This finishes the proof.

Item 4: Maps to the Punctual Set

This follows from the universal property of pt as the terminal set, Definition 4.1.1.1.

003E 4.3.6 Unions of Families of Subsets

Let *X* be a set and let $\mathcal{U} \in \mathcal{P}(\mathcal{P}(X))$.

003F DEFINITION 4.3.6.1.1 ► UNIONS OF FAMILIES OF SUBSETS

The **union of** \mathcal{U} is the set $\bigcup_{U \in \mathcal{U}} U$ defined by

$$\bigcup_{U \in \mathcal{U}} U \stackrel{\text{def}}{=} \left\{ x \in X \;\middle|\; \text{there exists some } U \in \mathcal{U} \right\}.$$
 such that we have $x \in U$

PROPOSITION 4.3.6.1.2 ➤ PROPERTIES OF UNIONS OF FAMILIES OF SUBSETS

Let *X* be a set.

01FP

01FQ

1. Functoriality. The assignment $\mathcal{U} \mapsto \bigcup_{U \in \mathcal{U}} U$ defines a functor

$$[]: (\mathcal{P}(\mathcal{P}(X)), \subset) \to (\mathcal{P}(X), \subset).$$

In particular, for each $U, V \in \mathcal{P}(\mathcal{P}(X))$, the following condition is satisfied:

$$(\star) \ \ \text{If} \ \mathcal{U} \subset \mathcal{V} \text{, then} \bigcup_{U \in \mathcal{U}} U \subset \bigcup_{V \in \mathcal{V}} V.$$

2. Associativity. The diagram

$$\begin{array}{ccc} \mathcal{P}(\mathcal{P}(\mathcal{P}(X))) & \xrightarrow{\mathrm{id}_{\mathcal{P}(X)} \star \bigcup} & \mathcal{P}(\mathcal{P}(X)) \\ \cup \star \mathrm{id}_{\mathcal{P}(X)} & & & \bigcup & \\ & \mathcal{P}(\mathcal{P}(X)) & \xrightarrow{} & \mathcal{P}(X) \end{array}$$

commutes, i.e. we have

$$\bigcup_{U \in \bigcup_{A \in A} A} U = \bigcup_{A \in \mathcal{A}} \left(\bigcup_{U \in A} U \right)$$

for each $A \in \mathcal{P}(\mathcal{P}(\mathcal{P}(X)))$.

01FR

3. Left Unitality. The diagram

commutes, i.e. we have

$$\bigcup_{V \in \{U\}} V = U$$

for each $U \in \mathcal{P}(X)$.

01FS

4. Right Unitality. The diagram

commutes, i.e. we have

$$\bigcup_{\{u\}\in\chi_X(U)}\{u\}=U$$

for each $U \in \mathcal{P}(X)$.

01FT

5. Interaction With Unions I. The diagram

$$\mathcal{P}(\mathcal{P}(X)) \times \mathcal{P}(\mathcal{P}(X)) \xrightarrow{\cup} \mathcal{P}(\mathcal{P}(X))$$

$$\cup \times \cup \downarrow \qquad \qquad \downarrow \cup$$

$$\mathcal{P}(X) \times \mathcal{P}(X) \xrightarrow{\cup} \mathcal{P}(X)$$

commutes, i.e. we have

$$\bigcup_{W \in \mathcal{U} \cup \mathcal{V}} W = \left(\bigcup_{U \in \mathcal{U}} U\right) \cup \left(\bigcup_{V \in \mathcal{V}} V\right)$$

for each $\mathcal{U}, \mathcal{V} \in \mathcal{P}(\mathcal{P}(X))$.

01FU

6. Interaction With Unions II. The diagrams

commute, i.e. we have

$$U \cup \left(\bigcup_{V \in \mathcal{V}} V\right) = \bigcup_{V \in \mathcal{V}} (U \cup V),$$
$$\left(\bigcup_{U \in \mathcal{U}} U\right) \cup V = \bigcup_{U \in \mathcal{U}} (U \cup V)$$

for each $\mathcal{U}, \mathcal{V} \in \mathcal{P}(\mathcal{P}(X))$ and each $\mathcal{U}, \mathcal{V} \in \mathcal{P}(X)$.

01FV

7. Interaction With Intersections I. We have a natural transformation

$$\mathcal{P}(\mathcal{P}(X)) \times \mathcal{P}(\mathcal{P}(X)) \xrightarrow{\cap} \mathcal{P}(\mathcal{P}(X))$$

$$\cup \times \cup \downarrow \qquad \qquad \qquad \bigcup \cup$$

$$\mathcal{P}(X) \times \mathcal{P}(X) \xrightarrow{\cap} \mathcal{P}(X),$$

with components

$$\bigcup_{W \in \mathcal{U} \cap \mathcal{V}} W \subset \left(\bigcup_{U \in \mathcal{U}} U\right) \cap \left(\bigcup_{V \in \mathcal{V}} V\right)$$

for each $\mathcal{U}, \mathcal{V} \in \mathcal{P}(\mathcal{P}(X))$.

01FW

8. *Interaction With Intersections II*. The diagrams

commute, i.e. we have

$$U \cup \left(\bigcup_{V \in \mathcal{V}} V\right) = \bigcup_{V \in \mathcal{V}} (U \cup V),$$
$$\left(\bigcup_{U \in \mathcal{U}} U\right) \cup V = \bigcup_{U \in \mathcal{U}} (U \cup V)$$

for each $U, V \in \mathcal{P}(\mathcal{P}(X))$ and each $U, V \in \mathcal{P}(X)$.

9. Interaction With Differences. The diagram

$$\mathcal{P}(\mathcal{P}(X)) \times \mathcal{P}(\mathcal{P}(X)) \xrightarrow{\setminus} \mathcal{P}(\mathcal{P}(X))$$

$$\cup \times \cup \downarrow \qquad \qquad \downarrow \cup$$

$$\mathcal{P}(X) \times \mathcal{P}(X) \xrightarrow{} \mathcal{P}(X),$$

does not commute in general, i.e. we may have

$$\bigcup_{W\in\mathcal{U}\setminus\mathcal{V}}W\neq\left(\bigcup_{U\in\mathcal{U}}U\right)\setminus\left(\bigcup_{V\in\mathcal{V}}V\right)$$

in general, where $\mathcal{U}, \mathcal{V} \in \mathcal{P}(\mathcal{P}(X))$.

10. Interaction With Complements I. The diagram

$$\mathcal{P}(\mathcal{P}(X))^{\operatorname{op}} \xrightarrow{(-)^{c}} \mathcal{P}(\mathcal{P}(X))$$

$$\cup^{\operatorname{op}} \bigvee \bigvee \bigcup \bigcup$$

$$\mathcal{P}(X)^{\operatorname{op}} \xrightarrow{(-)^{c}} \mathcal{P}(X),$$

does not commute in general, i.e. we may have

$$\bigcup_{U \in \mathcal{U}^{\mathsf{c}}} U \neq \bigcup_{U \in \mathcal{U}} U^{\mathsf{c}}$$

in general, where $\mathcal{U} \in \mathcal{P}(\mathcal{P}(X))$.

01FX

01FY

01FZ

11. Interaction With Complements II. The diagram

commutes, i.e. we have

$$\left(\bigcup_{U\in\mathcal{U}}U\right)^{\mathsf{c}}=\bigcap_{U\in\mathcal{U}}U^{\mathsf{c}}$$

for each $\mathcal{U} \in \mathcal{P}(\mathcal{P}(X))$.

01G0

12. Interaction With Complements III. The diagram

commutes, i.e. we have

$$\left(\bigcap_{U\in\mathcal{U}}U\right)^{\mathsf{c}}=\bigcup_{U\in\mathcal{U}}U^{\mathsf{c}}$$

for each $\mathcal{U} \in \mathcal{P}(\mathcal{P}(X))$.

01G1 13. Interaction With Symmetric Differences. The diagram

$$\begin{array}{cccc} \mathcal{P}(\mathcal{P}(X)) \times \mathcal{P}(\mathcal{P}(X)) & \stackrel{\triangle}{\longrightarrow} & \mathcal{P}(\mathcal{P}(X)) \\ & & & & & \downarrow \cup \\ & \mathcal{P}(X) \times \mathcal{P}(X) & \xrightarrow{\quad \triangle} & \mathcal{P}(X), \end{array}$$

does not commute in general, i.e. we may have

$$\bigcup_{W\in\mathcal{U}\triangle\mathcal{V}}W\neq\left(\bigcup_{U\in\mathcal{U}}U\right)\triangle\left(\bigcup_{V\in\mathcal{V}}V\right)$$

in general, where $\mathcal{U}, \mathcal{V} \in \mathcal{P}(\mathcal{P}(X))$.

14. Interaction With Internal Homs I. The diagram

$$\mathcal{P}(\mathcal{P}(X))^{\mathsf{op}} \times \mathcal{P}(\mathcal{P}(X)) \xrightarrow{[-1,-2]_{\mathcal{P}(X)}} \mathcal{P}(\mathcal{P}(X))$$

$$\downarrow^{\mathsf{op}} \times \cup^{\mathsf{op}} \qquad \qquad \downarrow \cup$$

$$\mathcal{P}(X)^{\mathsf{op}} \times \mathcal{P}(X) \xrightarrow{[-1,-2]_X} \mathcal{P}(X),$$

does not commute in general, i.e. we may have

$$\bigcup_{W \in [\mathcal{U}, \mathcal{V}]_{\mathcal{P}(X)}} W \neq \left[\bigcup_{U \in \mathcal{U}} U, \bigcup_{V \in \mathcal{V}} V\right]_X$$

in general, where $\mathcal{U} \in \mathcal{P}(\mathcal{P}(X))$.

15. Interaction With Internal Homs II. The diagram

01G2

01G3

commutes, i.e. we have

$$\left[\bigcup_{U\in\mathcal{U}}U,V\right]_X=\bigcap_{U\in\mathcal{U}}[U,V]_X$$

for each $U \in \mathcal{P}(\mathcal{P}(X))$ and each $V \in \mathcal{P}(X)$.

16. Interaction With Internal Homs III. The diagram

$$\begin{array}{ccc}
\mathcal{P}(\mathcal{P}(X)) & \stackrel{\bigcup}{\longrightarrow} & \mathcal{P}(X) \\
id_{\mathcal{P}(X)} \star [U,-]_X & & \downarrow [U,-]_X \\
\mathcal{P}(\mathcal{P}(X)) & \stackrel{\bigcup}{\longrightarrow} & \mathcal{P}(X)
\end{array}$$

commutes, i.e. we have

$$\left[U, \bigcup_{V \in \mathcal{V}} V\right]_X = \bigcup_{V \in \mathcal{V}} [U, V]_X$$

for each $U \in \mathcal{P}(X)$ and each $\mathcal{V} \in \mathcal{P}(\mathcal{P}(X))$.

17. *Interaction With Direct Images.* Let $f: X \to Y$ be a map of sets. The diagram

$$\begin{array}{ccc}
\mathcal{P}(\mathcal{P}(X)) & \xrightarrow{(f_!)_!} & \mathcal{P}(\mathcal{P}(Y)) \\
\downarrow & & & \downarrow \cup \\
\mathcal{P}(X) & \xrightarrow{f_!} & \mathcal{P}(Y)
\end{array}$$

commutes, i.e. we have

$$\bigcup_{U\in\mathcal{U}}f_!(U)=\bigcup_{V\in f_!(\mathcal{U})}V$$

for each $\mathcal{U} \in \mathcal{P}(X)$, where $f_!(\mathcal{U}) \stackrel{\text{def}}{=} (f_!)_!(\mathcal{U})$.

18. Interaction With Inverse Images. Let $f: X \to Y$ be a map of sets. The diagram

$$\mathcal{P}(\mathcal{P}(Y)) \xrightarrow{(f^{-1})^{-1}} \mathcal{P}(\mathcal{P}(X))$$

$$\bigcup \qquad \qquad \bigcup \qquad \qquad \bigcup \qquad \qquad \qquad \downarrow \cup$$

$$\mathcal{P}(Y) \xrightarrow{f^{-1}} \mathcal{P}(X)$$

01G4

01G5

01G6

commutes, i.e. we have

$$\bigcup_{V \in \mathcal{V}} f^{-1}(V) = \bigcup_{U \in f^{-1}(\mathcal{U})} U$$

for each $V \in \mathcal{P}(Y)$, where $f^{-1}(V) \stackrel{\text{def}}{=} (f^{-1})^{-1}(V)$.

19. Interaction With Codirect Images. Let $f: X \to Y$ be a map of sets. The diagram

$$\begin{array}{ccc} \mathcal{P}(\mathcal{P}(X)) & \xrightarrow{(f_*)_*} & \mathcal{P}(\mathcal{P}(Y)) \\ & & & \downarrow \cup \\ & & & \downarrow \cup \\ & \mathcal{P}(X) & \xrightarrow{f_*} & \mathcal{P}(Y) \end{array}$$

commutes, i.e. we have

$$\bigcup_{U \in \mathcal{U}} f_*(U) = \bigcup_{V \in f_*(\mathcal{U})} V$$

for each $\mathcal{U} \in \mathcal{P}(X)$, where $f_*(\mathcal{U}) \stackrel{\text{def}}{=} (f_*)_*(\mathcal{U})$.

20. Interaction With Intersections of Families I. The diagram

$$\begin{array}{ccc}
\mathcal{P}(\mathcal{P}(X)) & \xrightarrow{\mathrm{id}_{\mathcal{P}(X)} \star \cap} & \mathcal{P}(\mathcal{P}(X)) \\
\downarrow \star \mathrm{id}_{\mathcal{P}(X)} & & & \downarrow \cap \\
\mathcal{P}(X) & \xrightarrow{} & & X
\end{array}$$

commutes, i.e. we have

$$\bigcap_{U \in \bigcup_{A \in \mathcal{A}} A} U = \bigcap_{A \in \mathcal{A}} \left(\bigcap_{U \in A} U\right)$$

for each $A \in \mathcal{P}(\mathcal{P}(X))$.

01G7

01G8

01G9

21. Interaction With Intersections of Families II. Let X be a set and consider the compositions

given by

$$\mathcal{A} \mapsto \bigcup_{U \in \bigcap_{A \in \mathcal{A}} A} U, \quad \mathcal{A} \mapsto \bigcap_{U \in \bigcup_{A \in \mathcal{A}} A} U,$$

$$\mathcal{A} \mapsto \bigcup_{A \in \mathcal{A}} \left(\bigcap_{U \in A} U\right), \quad \mathcal{A} \mapsto \bigcap_{A \in \mathcal{A}} \left(\bigcup_{U \in A} U\right)$$

for each $A \in \mathcal{P}(\mathcal{P}(\mathcal{P}(X)))$. We have the following inclusions:

All other possible inclusions fail to hold in general.

PROOF 4.3.6.1.3 ► PROOF OF PROPOSITION 4.3.6.1.2

Item 1: Functoriality

Since $\mathcal{P}(X)$ is posetal, it suffices to prove the condition (\star) . So let $\mathcal{U}, \mathcal{V} \in \mathcal{P}(\mathcal{P}(X))$ with $\mathcal{U} \subset \mathcal{V}$. We claim that

$$\bigcup_{U\in\mathcal{U}}U\subset\bigcup_{V\in\mathcal{V}}V.$$

Indeed, given $x \in \bigcup_{U \in \mathcal{U}} U$, there exists some $U \in \mathcal{U}$ such that $x \in U$, but since $\mathcal{U} \subset \mathcal{V}$, we have $U \in \mathcal{V}$ as well, and thus $x \in \bigcup_{V \in \mathcal{V}} V$, which gives our desired inclusion.

Item 2: Associativity

We have

$$\bigcup_{U \in \bigcup_{A \in \mathcal{A}} A} U \stackrel{\text{def}}{=} \left\{ x \in X \middle| \text{ there exists some } U \in \bigcup_{A \in \mathcal{A}} A \right\}$$
 such that we have $x \in U$

$$= \begin{cases} x \in X & \text{there exists some } A \in \mathcal{A} \\ \text{and some } U \in A \text{ such that} \\ \text{we have } x \in U \end{cases}$$

$$= \begin{cases} x \in X & \text{there exists some } A \in \mathcal{A} \\ \text{such that we have } x \in \bigcup_{U \in A} U \end{cases}$$

$$\stackrel{\text{def}}{=} \bigcup_{A \in \mathcal{A}} \left(\bigcup_{U \in A} U \right).$$

This finishes the proof.

Item 3: Left Unitality

We have

$$\bigcup_{V \in \{U\}} V \stackrel{\text{def}}{=} \left\{ x \in X \mid \text{there exists some } V \in \{U\} \right\}$$

$$= \left\{ x \in X \mid x \in U \right\}$$

$$= U.$$

This finishes the proof.

Item 4: Right Unitality

We have

$$\bigcup_{\{u\} \in \chi_X(U)} \{u\} \stackrel{\text{def}}{=} \left\{ x \in X \mid \text{ there exists some } \{u\} \in \chi_X(U) \right\}$$

$$= \left\{ x \in X \mid \text{ there exists some } \{u\} \in \chi_X(U) \right\}$$

$$= \left\{ x \in X \mid \text{ there exists some } \{u\} \in \chi_X(U) \right\}$$

$$= \left\{ x \in X \mid \text{ there exists some } u \in U \right\}$$

$$= \left\{ x \in X \mid x \in U \right\}$$

$$= \{ x \in X \mid x \in U \}$$

$$= U.$$

This finishes the proof.

Item 5: Interaction With Unions I

We have

$$\bigcup_{W \in \mathcal{U} \cup \mathcal{V}} W \stackrel{\text{def}}{=} \left\{ x \in X \middle| \text{ there exists some } W \in \mathcal{U} \cup \mathcal{V} \right\} \\
= \left\{ x \in X \middle| \text{ there exists some } W \in \mathcal{U} \text{ or some} \right\} \\
= \left\{ x \in X \middle| \text{ there exists some } W \in \mathcal{U} \text{ or some} \right\} \\
\stackrel{\text{def}}{=} \left\{ x \in X \middle| \text{ there exists some } W \in \mathcal{U} \right\} \\
= \left\{ x \in X \middle| \text{ there exists some } W \in \mathcal{U} \right\} \\
= \left\{ x \in X \middle| \text{ there exists some } W \in \mathcal{V} \right\} \\
= \left\{ x \in X \middle| \text{ there exists some } W \in \mathcal{V} \right\} \\
= \left\{ y \in X \middle| \text{ there exists some } W \in \mathcal{V} \right\} \\
= \left\{ y \in X \middle| \text{ there exists some } W \in \mathcal{V} \right\} \\
= \left\{ y \in X \middle| \text{ there exists some } W \in \mathcal{V} \right\} \\
= \left\{ y \in X \middle| \text{ there exists some } W \in \mathcal{V} \right\} \\
= \left\{ y \in X \middle| \text{ there exists some } W \in \mathcal{V} \right\} \\
= \left\{ y \in X \middle| \text{ there exists some } W \in \mathcal{V} \right\} \\
= \left\{ y \in X \middle| \text{ there exists some } W \in \mathcal{V} \right\} \\
= \left\{ y \in X \middle| \text{ there exists some } W \in \mathcal{V} \right\} \\
= \left\{ y \in X \middle| \text{ there exists some } W \in \mathcal{V} \middle| \text{ such that we have } x \in W \right\} \\
= \left\{ y \in X \middle| \text{ there exists some } W \in \mathcal{V} \middle| \text{ such that we have } x \in W \middle| \text{ such that we have } x \in W \middle| \text{ there exists some } W \in \mathcal{V} \middle| \text{ such that we have } x \in W \middle| \text{ there exists some } W \in \mathcal{V} \middle| \text{ such that we have } x \in W \middle| \text{ there exists some } W \in \mathcal{V} \middle| \text{ such that we have } x \in W \middle| \text{ there exists some } W \in \mathcal{V} \middle| \text$$

This finishes the proof.

Item 6: Interaction With Unions II

Omitted

Item 7: Interaction With Intersections I

We have

$$\bigcup_{W \in \mathcal{U} \cap \mathcal{V}} W \stackrel{\text{def}}{=} \left\{ x \in X \middle| \begin{array}{l} \text{there exists some } W \in \mathcal{U} \cap \mathcal{V} \\ \text{such that we have } x \in W \end{array} \right\}$$

$$\subset \left\{ x \in X \middle| \begin{array}{l} \text{there exists some } U \in \mathcal{U} \text{ and some } V \in \mathcal{V} \\ \text{such that we have } x \in U \text{ and } x \in V \end{array} \right\}$$

$$= \left\{ x \in X \middle| \begin{array}{l} \text{there exists some } U \in \mathcal{U} \\ \text{such that we have } x \in U \end{array} \right\}$$

$$\cup \left\{ x \in X \middle| \begin{array}{l} \text{there exists some } V \in \mathcal{V} \\ \text{such that we have } x \in V \right\}$$

$$\stackrel{\text{def}}{=} \left(\bigcup_{U \in \mathcal{U}} U \right) \cap \left(\bigcup_{V \in \mathcal{V}} V \right).$$

This finishes the proof.

Item 8: Interaction With Intersections II

Omitted.

Item 9: Interaction With Differences

Let $X = \{0, 1\}$, let $\mathcal{U} = \{\{0, 1\}\}$, and let $\mathcal{V} = \{\{0\}\}$. We have

$$\bigcup_{W \in \mathcal{U} \setminus \mathcal{V}} U = \bigcup_{W \in \{\{0,1\}\}} W$$
$$= \{0,1\},$$

whereas

$$\left(\bigcup_{U \in \mathcal{U}} U\right) \setminus \left(\bigcup_{V \in \mathcal{V}} V\right) = \{0, 1\} \setminus \{0\}$$
$$= \{1\}.$$

Thus we have

$$\bigcup_{W\in\mathcal{U}\backslash\mathcal{V}}W=\left\{0,1\right\}\neq\left\{1\right\}=\left(\bigcup_{U\in\mathcal{U}}U\right)\backslash\left(\bigcup_{V\in\mathcal{V}}V\right).$$

This finishes the proof.

Item 10: Interaction With Complements I

Let $X = \{0, 1\}$ and let $\mathcal{U} = \{0\}$. We have

$$\bigcup_{U \in \mathcal{U}^{c}} U = \bigcup_{U \in \{\emptyset, \{1\}, \{0,1\}\}} U$$
$$= \{0, 1\},$$

whereas

$$\bigcup_{U\in\mathcal{U}}U^\mathsf{c}=\{0\}^\mathsf{c}$$

$$= \{1\}.$$

Thus we have

$$\bigcup_{U\in\mathcal{U}^\mathsf{c}}U=\left\{0,1\right\}\neq\left\{1\right\}=\bigcup_{U\in\mathcal{U}}U^\mathsf{c}.$$

This finishes the proof.

Item 11: Interaction With Complements II

Omitted.

Item 12: Interaction With Complements III

Omitted.

Item 13: Interaction With Symmetric Differences

Let $X = \{0, 1\}$, let $\mathcal{U} = \{\{0, 1\}\}\$, and let $\mathcal{V} = \{\{0\}, \{0, 1\}\}\$. We have

$$\bigcup_{W \in \mathcal{U} \triangle \mathcal{V}} W = \bigcup_{W \in \{\{0\}\}} W$$
$$= \{0\},$$

whereas

$$\left(\bigcup_{U \in \mathcal{U}} U\right) \triangle \left(\bigcup_{V \in \mathcal{V}} V\right) = \{0, 1\} \triangle \{0, 1\}$$
$$= \emptyset.$$

Thus we have

$$\bigcup_{W\in\mathcal{U}\triangle\mathcal{V}}W=\left\{0\right\}\neq\emptyset=\left(\bigcup_{U\in\mathcal{U}}U\right)\triangle\left(\bigcup_{V\in\mathcal{V}}V\right).$$

This finishes the proof.

Item 14: Interaction With Internal Homs I

This is a repetition of Item 7 of Proposition 4.4.7.1.4 and is proved there.

Item 15: Interaction With Internal Homs II

This is a repetition of Item 8 of Proposition 4.4.7.1.4 and is proved there.

Item 16: Interaction With Internal Homs III

This is a repetition of Item 9 of Proposition 4.4.7.1.4 and is proved there.

Item 17: Interaction With Direct Images

This is a repetition of Item 3 of Proposition 4.6.1.1.5 and is proved there.

Item 18: Interaction With Inverse Images

This is a repetition of Item 3 of Proposition 4.6.2.1.3 and is proved there.

Item 19: Interaction With Codirect Images

This is a repetition of Item 3 of Proposition 4.6.3.1.7 and is proved there.

Item 20: Interaction With Intersections of Families I

We have

$$\bigcup_{U \in \bigcup_{A \in \mathcal{A}} A} U \stackrel{\text{def}}{=} \left\{ x \in X \middle| \text{ for each } U \in \bigcup_{A \in \mathcal{A}} A, \right\} \\
\text{we have } x \in U$$

$$= \left\{ x \in X \middle| \text{ for each } A \in \mathcal{A} \text{ and each } U \in A, \text{ we have } x \in U \right\}$$

$$\stackrel{\text{def}}{=} \bigcap_{A \in \mathcal{A}} \left(\bigcap_{U \in A} U \right).$$

This finishes the proof.

Item 21: Interaction With Intersections of Families II

Omitted.

003V 4.3.7 Intersections of Families of Subsets

Let *X* be a set and let $\mathcal{U} \in \mathcal{P}(\mathcal{P}(X))$.

003W DEFINITION 4.3.7.1.1 ► INTERSECTIONS OF FAMILIES OF SUBSETS

The **intersection of** \mathcal{U} is the set $\bigcap_{U \in \mathcal{U}} U$ defined by

$$\bigcap_{U \in \mathcal{U}} U \stackrel{\text{def}}{=} \left\{ x \in X \, \middle| \, \text{for each } U \in \mathcal{U}, \right\}.$$
we have $x \in U$

01GA PROPOSITION 4.3.7.1.2 ➤ PROPERTIES OF INTERSECTIONS OF FAMILIES OF SUBSETS

Let *X* be a set.

01GB

01GC

01GD

1. Functoriality. The assignment $\mathcal{U} \mapsto \bigcap_{U \in \mathcal{U}} U$ defines a functor

$$\bigcap \colon (\mathcal{P}(\mathcal{P}(X)), \supset) \to (\mathcal{P}(X), \subset).$$

In particular, for each $\mathcal{U}, \mathcal{V} \in \mathcal{P}(\mathcal{P}(X))$, the following condition is satisfied:

(*) If
$$\mathcal{U} \subset \mathcal{V}$$
, then $\bigcap_{V \in \mathcal{V}} V \subset \bigcap_{U \in \mathcal{U}} U$.

2. Oplax Associativity. We have a natural transformation

$$\begin{array}{ccc}
\mathcal{P}(\mathcal{P}(\mathcal{P}(X))) & \xrightarrow{\mathrm{id}_{\mathcal{P}(X)} \star \bigcap} & \mathcal{P}(\mathcal{P}(X)) \\
\cap \star \mathrm{id}_{\mathcal{P}(X)} & & & & & & & & \\
\mathcal{P}(\mathcal{P}(X)) & & & & & & & & \\
\end{array}$$

with components

$$\bigcap_{A \in \mathcal{A}} \left(\bigcap_{U \in A} U \right) \subset \bigcap_{U \in \bigcap_{A \in A} A} U$$

for each $A \in \mathcal{P}(\mathcal{P}(\mathcal{P}(X)))$.

3. Left Unitality. The diagram

commutes, i.e. we have

$$\bigcap_{V \in \{U\}} V = U$$

for each $U \in \mathcal{P}(X)$.

01GE

4. Oplax Right Unitality. The diagram

does not commute in general, i.e. we may have

$$\bigcap_{\{x\}\in\chi_X(U)}\{x\}\neq U$$

in general, where $U \in \mathcal{P}(X)$. However, when U is nonempty, we have

$$\bigcap_{\{x\}\in\chi_X(U)}\{x\}\subset U.$$

01GF

5. Interaction With Unions I. The diagram

commutes, i.e. we have

$$\bigcap_{W \in \mathcal{U} \cup \mathcal{V}} W = \left(\bigcap_{U \in \mathcal{U}} U\right) \cap \left(\bigcap_{V \in \mathcal{V}} V\right)$$

for each $\mathcal{U}, \mathcal{V} \in \mathcal{P}(\mathcal{P}(X))$.

01GG

6. Interaction With Unions II. The diagram

commute, i.e. we have

$$U \cup \left(\bigcap_{V \in \mathcal{V}} V\right) = \bigcap_{V \in \mathcal{V}} (U \cup V),$$
$$\left(\bigcap_{U \in \mathcal{U}} U\right) \cup V = \bigcap_{U \in \mathcal{U}} (U \cup V)$$

for each $U, V \in \mathcal{P}(\mathcal{P}(X))$ and each $U, V \in \mathcal{P}(X)$.

7. Interaction With Intersections I. We have a natural transformation

with components

$$\left(\bigcap_{U\in\mathcal{U}}U\right)\cap\left(\bigcap_{V\in\mathcal{V}}V\right)\subset\bigcap_{W\in\mathcal{U}\cap\mathcal{V}}W$$

for each $\mathcal{U}, \mathcal{V} \in \mathcal{P}(\mathcal{P}(X))$.

8. Interaction With Intersections II. The diagrams

commute, i.e. we have

$$U \cup \left(\bigcap_{V \in \mathcal{V}} V\right) = \bigcap_{V \in \mathcal{V}} (U \cup V),$$
$$\left(\bigcap_{U \in \mathcal{U}} U\right) \cup V = \bigcap_{U \in \mathcal{U}} (U \cup V)$$

for each $\mathcal{U}, \mathcal{V} \in \mathcal{P}(\mathcal{P}(X))$ and each $\mathcal{U}, \mathcal{V} \in \mathcal{P}(X)$.

01GH

01GJ

01GK

9. Interaction With Differences. The diagram

$$\mathcal{P}(\mathcal{P}(X)) \times \mathcal{P}(\mathcal{P}(X)) \xrightarrow{\setminus} \mathcal{P}(\mathcal{P}(X))$$

$$\cap \times \cap \downarrow \qquad \qquad \downarrow \cap$$

$$\mathcal{P}(X) \times \mathcal{P}(X) \xrightarrow{\setminus} \mathcal{P}(X),$$

does not commute in general, i.e. we may have

$$\bigcap_{W\in\mathcal{U}\setminus\mathcal{V}}W\neq\left(\bigcap_{U\in\mathcal{U}}U\right)\setminus\left(\bigcap_{V\in\mathcal{V}}V\right)$$

in general, where $\mathcal{U}, \mathcal{V} \in \mathcal{P}(\mathcal{P}(X))$.

01GL

10. Interaction With Complements I. The diagram

does not commute in general, i.e. we may have

$$\bigcap_{W\in\mathcal{U}^{\mathsf{c}}}W\neq\bigcap_{U\in\mathcal{U}}U^{\mathsf{c}}$$

in general, where $\mathcal{U} \in \mathcal{P}(\mathcal{P}(X))$.

01GM

11. Interaction With Complements II. The diagram

commutes, i.e. we have

$$\left(\bigcap_{U\in\mathcal{U}}U\right)^{\mathsf{c}}=\bigcup_{U\in\mathcal{U}}U^{\mathsf{c}}$$

for each $\mathcal{U} \in \mathcal{P}(\mathcal{P}(X))$.

12. Interaction With Complements III. The diagram

commutes, i.e. we have

$$\left(\bigcup_{U\in\mathcal{U}}U\right)^{\mathsf{c}}=\bigcap_{U\in\mathcal{U}}U^{\mathsf{c}}$$

for each $\mathcal{U} \in \mathcal{P}(\mathcal{P}(X))$.

13. Interaction With Symmetric Differences. The diagram

does not commute in general, i.e. we may have

$$\bigcap_{W \in \mathcal{U} \triangle \mathcal{V}} W \neq \left(\bigcap_{U \in \mathcal{U}} U\right) \triangle \left(\bigcap_{V \in \mathcal{V}} V\right)$$

in general, where $\mathcal{U}, \mathcal{V} \in \mathcal{P}(\mathcal{P}(X))$.

01GN

01GP

01GQ

14. Interaction With Internal Homs I. The diagram

$$\mathcal{P}(\mathcal{P}(X))^{\mathsf{op}} \times \mathcal{P}(\mathcal{P}(X)) \xrightarrow{[-1,-2]_{\mathcal{P}(X)}} \mathcal{P}(\mathcal{P}(X))$$

$$\cap^{\mathsf{op}} \times \cap^{\mathsf{op}} \downarrow \qquad \qquad \downarrow \cap$$

$$\mathcal{P}(X)^{\mathsf{op}} \times \mathcal{P}(X) \xrightarrow{[-1,-2]_X} \mathcal{P}(X),$$

does not commute in general, i.e. we may have

$$\bigcap_{W \in [\mathcal{U}, \mathcal{V}]_{\mathcal{P}(X)}} W \neq \left[\bigcap_{U \in \mathcal{U}} U, \bigcap_{V \in \mathcal{V}} V\right]_X$$

in general, where $\mathcal{U} \in \mathcal{P}(\mathcal{P}(X))$.

01GR

15. Interaction With Internal Homs II. The diagram

commutes, i.e. we have

$$\left[\bigcap_{U\in\mathcal{U}}U,V\right]_X=\bigcup_{U\in\mathcal{U}}[U,V]_X$$

for each $U \in \mathcal{P}(\mathcal{P}(X))$ and each $V \in \mathcal{P}(X)$.

01GS

16. Interaction With Internal Homs III. The diagram

$$\begin{array}{ccc}
\mathcal{P}(\mathcal{P}(X)) & \stackrel{\bigcap}{\longrightarrow} & \mathcal{P}(X) \\
id_{\mathcal{P}(X)} \star [U,-]_X & & \downarrow [U,-]_X \\
\mathcal{P}(\mathcal{P}(X)) & \stackrel{\bigcap}{\longrightarrow} & \mathcal{P}(X)
\end{array}$$

commutes, i.e. we have

$$\left[U, \bigcap_{V \in \mathcal{V}} V\right]_X = \bigcap_{V \in \mathcal{V}} [U, V]_X$$

for each $U \in \mathcal{P}(X)$ and each $\mathcal{V} \in \mathcal{P}(\mathcal{P}(X))$.

17. *Interaction With Direct Images.* Let $f: X \to Y$ be a map of sets. The diagram

$$\mathcal{P}(\mathcal{P}(X)) \xrightarrow{(f_{1})_{1}} \mathcal{P}(\mathcal{P}(Y))$$

$$\cap \bigcup_{f_{1}} \bigcup_{f_{2}} \bigcap_{f_{3}} \mathcal{P}(Y)$$

commutes, i.e. we have

$$\bigcap_{U\in\mathcal{U}}f_!(U)=\bigcap_{V\in f_!(\mathcal{U})}V$$

for each $\mathcal{U} \in \mathcal{P}(X)$, where $f_!(\mathcal{U}) \stackrel{\text{def}}{=} (f_!)_!(\mathcal{U})$.

18. *Interaction With Inverse Images.* Let $f: X \to Y$ be a map of sets. The diagram

$$\mathcal{P}(\mathcal{P}(Y)) \xrightarrow{(f^{-1})^{-1}} \mathcal{P}(\mathcal{P}(X))$$

$$\cap \downarrow \qquad \qquad \downarrow \cap$$

$$\mathcal{P}(Y) \xrightarrow{f^{-1}} \mathcal{P}(X)$$

commutes, i.e. we have

$$\bigcap_{V \in \mathcal{V}} f^{-1}(V) = \bigcap_{U \in f^{-1}(\mathcal{U})} U$$

for each $V \in \mathcal{P}(Y)$, where $f^{-1}(V) \stackrel{\text{def}}{=} (f^{-1})^{-1}(V)$.

19. *Interaction With Codirect Images.* Let $f: X \to Y$ be a map of sets. The diagram

$$\begin{array}{ccc}
\mathcal{P}(\mathcal{P}(X)) & \xrightarrow{(f_*)_*} & \mathcal{P}(\mathcal{P}(Y)) \\
& & \downarrow & & \downarrow \\
\mathcal{P}(X) & \xrightarrow{f_*} & \mathcal{P}(Y)
\end{array}$$

01GT

01GU

01GV

commutes, i.e. we have

$$\bigcap_{U \in \mathcal{U}} f_*(U) = \bigcap_{V \in f_*(\mathcal{U})} V$$

for each $\mathcal{U} \in \mathcal{P}(X)$, where $f_*(\mathcal{U}) \stackrel{\text{def}}{=} (f_*)_*(\mathcal{U})$.

20. Interaction With Unions of Families I. The diagram

$$\begin{array}{ccc}
\mathcal{P}(\mathcal{P}(X)) & \xrightarrow{\mathrm{id}_{\mathcal{P}(X)} \star \cap} & \mathcal{P}(\mathcal{P}(X)) \\
\downarrow \star \mathrm{id}_{\mathcal{P}(X)} & & & \downarrow \cap \\
\mathcal{P}(X) & \xrightarrow{} & & X
\end{array}$$

commutes, i.e. we have

$$\bigcap_{U \in \bigcup_{A \in \mathcal{A}} A} U = \bigcap_{A \in \mathcal{A}} \left(\bigcap_{U \in A} U \right)$$

for each $A \in \mathcal{P}(\mathcal{P}(X))$.

21. *Interaction With Unions of Families II.* Let *X* be a set and consider the compositions

01GW

01GX

given by

$$\mathcal{A} \mapsto \bigcup_{U \in \bigcap_{A \in \mathcal{A}} A} U, \quad \mathcal{A} \mapsto \bigcap_{U \in \bigcup_{A \in \mathcal{A}} A} U,$$

$$\mathcal{A} \mapsto \bigcup_{A \in \mathcal{A}} \left(\bigcap_{U \in A} U\right), \quad \mathcal{A} \mapsto \bigcap_{A \in \mathcal{A}} \left(\bigcup_{U \in A} U\right)$$

for each $A \in \mathcal{P}(\mathcal{P}(\mathcal{P}(X)))$. We have the following inclusions:

All other possible inclusions fail to hold in general.

PROOF 4.3.7.1.3 ► PROOF OF PROPOSITION 4.3.6.1.2

Item 1: Functoriality

Since $\mathcal{P}(X)$ is posetal, it suffices to prove the condition (\star) . So let $\mathcal{U}, \mathcal{V} \in \mathcal{P}(\mathcal{P}(X))$ with $\mathcal{U} \subset \mathcal{V}$. We claim that

$$\bigcap_{V\in\mathcal{V}}V\subset\bigcap_{U\in\mathcal{U}}U.$$

Indeed, if $x \in \bigcap_{V \in \mathcal{V}} V$, then $x \in V$ for all $V \in \mathcal{V}$. But since $\mathcal{U} \subset \mathcal{V}$, it follows that $x \in U$ for all $U \in \mathcal{U}$ as well. Thus $x \in \bigcap_{U \in \mathcal{U}} U$, which gives our desired inclusion.

Item 2: Oplax Associativity

We have

$$\bigcap_{A \in \mathcal{A}} \left(\bigcap_{U \in A} U \right) \stackrel{\text{def}}{=} \left\{ x \in X \middle| \text{ for each } A \in \mathcal{A}, \\ \text{we have } x \in \bigcap_{U \in A} U \right\}$$

$$\stackrel{\text{def}}{=} \left\{ x \in X \middle| \text{ for each } A \in \mathcal{A} \text{ and each } \\ U \in A, \text{ we have } x \in U \right\}$$

$$= \left\{ x \in X \middle| \text{ for each } U \in \bigcup_{A \in \mathcal{A}} A, \\ \text{ we have } x \in U \right\}$$

$$\subset \left\{ x \in X \middle| \text{ for each } U \in \bigcap_{A \in \mathcal{A}} A, \\ \text{ we have } x \in U \right\}$$

$$\stackrel{\text{def}}{=} \bigcap_{A \in \mathcal{A}} U.$$

$$U \in \bigcap_{A \in \mathcal{A}} A$$

Since $\mathcal{P}(X)$ is posetal, naturality is automatic (Categories, Item 4 of Proposition 11.2.7.1.2). This finishes the proof.

Item 3: Left Unitality

We have

$$\bigcap_{V \in \{U\}} V \stackrel{\text{def}}{=} \left\{ x \in X \mid \text{for each } V \in \{U\}, \right\}$$

$$= \left\{ x \in X \mid x \in U \right\}$$

$$= U.$$

This finishes the proof.

Item 4: Oplax Right Unitality

If $U = \emptyset$, then we have

$$\bigcap_{\{u\}\in\chi_X(U)}\{u\}=\bigcap_{\{u\}\in\emptyset}\{u\}$$

$$=X$$
,

so $\bigcap_{\{u\} \in \chi_X(U)} \{u\} = X \neq \emptyset = U$. When *U* is nonempty, we have two cases:

1. If *U* is a singleton, say $U = \{u\}$, we have

$$\bigcap_{\{u\}\in\chi_X(U)}\{u\}=\{u\}$$

$$\stackrel{\text{def}}{=}U.$$

2. If *U* contains at least two elements, we have

$$\bigcap_{\{u\}\in\chi_X(U)}\{u\}=\emptyset$$

$$\subset U.$$

This finishes the proof.

Item 5: Interaction With Unions I

We have

$$\bigcap_{W \in \mathcal{U} \cup \mathcal{V}} W \stackrel{\text{def}}{=} \left\{ x \in X \middle| \text{ for each } W \in \mathcal{U} \cup \mathcal{V}, \right\} \\
\text{we have } x \in W$$

$$= \left\{ x \in X \middle| \text{ for each } W \in \mathcal{U} \text{ and each } W \in \mathcal{V}, \text{ we have } x \in W \right\}$$

$$\stackrel{\text{def}}{=} \left\{ x \in X \middle| \text{ for each } W \in \mathcal{U}, \right\} \\
\text{we have } x \in W$$

$$\cap \left\{ x \in X \middle| \text{ for each } W \in \mathcal{V}, \right\} \\
\text{we have } x \in W$$

$$\stackrel{\text{def}}{=} \left(\bigcap_{W \in \mathcal{U}} W \right) \cap \left(\bigcap_{W \in \mathcal{V}} W \right)$$

$$= \left(\bigcap_{W \in \mathcal{U}} U \right) \cap \left(\bigcap_{W \in \mathcal{V}} V \right).$$

This finishes the proof.

020C

020B

Item 6: Interaction With Unions II

Omitted.

Item 7: Interaction With Intersections 1

We have

$$\left(\bigcap_{U \in \mathcal{U}} U\right) \cap \left(\bigcap_{V \in \mathcal{V}} V\right) \stackrel{\text{def}}{=} \left\{ x \in X \middle| \begin{array}{l} \text{for each } U \in \mathcal{U}, \\ \text{we have } x \in U \end{array} \right\}$$

$$\cup \left\{ x \in X \middle| \begin{array}{l} \text{for each } V \in \mathcal{V}, \\ \text{we have } x \in V \end{array} \right\}$$

$$= \left\{ x \in X \middle| \begin{array}{l} \text{for each } W \in \mathcal{U} \cap \mathcal{V}, \\ \text{we have } x \in W \end{array} \right\}$$

$$\subset \left\{ x \in X \middle| \begin{array}{l} \text{for each } W \in \mathcal{U} \cup \mathcal{V}, \\ \text{we have } x \in W \end{array} \right\}$$

$$\stackrel{\text{def}}{=} \bigcap_{W \in \mathcal{U} \cap \mathcal{V}} W.$$

Since $\mathcal{P}(X)$ is posetal, naturality is automatic (Categories, Item 4 of Proposition 11.2.7.1.2). This finishes the proof.

Item 8: Interaction With Intersections II

Omitted.

Item 9: Interaction With Differences

Let $X = \{0, 1\}$, let $\mathcal{U} = \{\{0\}, \{0, 1\}\}$, and let $\mathcal{V} = \{\{0\}\}$. We have

$$\bigcap_{W \in \mathcal{U} \setminus \mathcal{V}} U = \bigcap_{W \in \{\{0,1\}\}} W$$
$$= \{0,1\},$$

whereas

$$\left(\bigcap_{U\in\mathcal{U}}U\right)\setminus\left(\bigcap_{V\in\mathcal{V}}V\right)=\left\{0\right\}\setminus\left\{0\right\}$$
$$=\emptyset.$$

Thus we have

$$\bigcap_{W\in\mathcal{U}\backslash\mathcal{V}}W=\left\{0,1\right\}\neq\emptyset=\left(\bigcap_{U\in\mathcal{U}}U\right)\backslash\left(\bigcap_{V\in\mathcal{V}}V\right).$$

This finishes the proof.

Item 10: Interaction With Complements I

Let $X = \{0, 1\}$ and let $\mathcal{U} = \{\{0\}\}$. We have

$$\bigcap_{W \in \mathcal{U}^{c}} U = \bigcap_{W \in \{\emptyset, \{1\}, \{0,1\}\}} W$$
$$= \emptyset.$$

whereas

$$\bigcap_{U \in \mathcal{U}} U^{c} = \{0\}^{c}$$
$$= \{1\}.$$

Thus we have

$$\bigcap_{W\in\mathcal{U}^\mathsf{c}}U=\emptyset\neq\{1\}=\bigcap_{U\in\mathcal{U}}U^\mathsf{c}.$$

This finishes the proof.

Item 11: Interaction With Complements II

This is a repetition of Item 12 of Proposition 4.3.6.1.2 and is proved there.

Item 12: Interaction With Complements III

This is a repetition of Item 11 of Proposition 4.3.6.1.2 and is proved there.

Item 13: Interaction With Symmetric Differences

Let $X = \{0, 1\}$, let $\mathcal{U} = \{\{0, 1\}\}\$, and let $\mathcal{V} = \{\{0\}, \{0, 1\}\}\$. We have

$$\bigcap_{W \in \mathcal{U} \triangle \mathcal{V}} W = \bigcap_{W \in \{\{0\}\}} W$$
$$= \{0\},$$

whereas

$$\left(\bigcap_{U\in\mathcal{U}}U\right)\triangle\left(\bigcap_{V\in\mathcal{V}}V\right)=\left\{0,1\right\}\triangle\left\{0\right\}$$

 $= \emptyset$,

Thus we have

$$\bigcap_{W \in \mathcal{U} \triangle \mathcal{V}} W = \{0\} \neq \emptyset = \left(\bigcap_{U \in \mathcal{U}} U\right) \triangle \left(\bigcap_{V \in \mathcal{V}} V\right).$$

This finishes the proof.

Item 14: Interaction With Internal Homs I

This is a repetition of Item 10 of Proposition 4.4.7.1.4 and is proved there.

Item 15: Interaction With Internal Homs II

This is a repetition of Item 11 of Proposition 4.4.7.1.4 and is proved there.

Item 16: Interaction With Internal Homs III

This is a repetition of Item 12 of Proposition 4.4.7.1.4 and is proved there.

Item 17: Interaction With Direct Images

This is a repetition of Item 4 of Proposition 4.6.1.1.5 and is proved there.

Item 18: Interaction With Inverse Images

This is a repetition of Item 4 of Proposition 4.6.2.1.3 and is proved there.

Item 19: Interaction With Codirect Images

This is a repetition of Item 4 of Proposition 4.6.3.1.7 and is proved there.

Item 20: Interaction With Unions of Families I

This is a repetition of Item 20 of Proposition 4.3.6.1.2 and is proved there.

Item 21: Interaction With Unions of Families II

This is a repetition of Item 21 of Proposition 4.3.6.1.2 and is proved there.

□

003G 4.3.8 Binary Unions

Let *X* be a set and let $U, V \in \mathcal{P}(X)$.

003H DEFINITION 4.3.8.1.1 ➤ BINARY UNIONS

The **union of** *U* **and** *V* is the set $U \cup V$ defined by

$$U \cup V \stackrel{\mathrm{def}}{=} \bigcup_{z \in \{U,V\}} z$$

$$\stackrel{\text{def}}{=} \{ x \in X \mid x \in U \text{ or } x \in V \}.$$

003J PROPOSITION 4.3.8.1.2 ➤ PROPERTIES OF BINARY UNIONS

Let *X* be a set.

1. Functoriality. The assignments $U, V, (U, V) \mapsto U \cup V$ define functors

$$\begin{array}{ll} U \cup -\colon & (\mathcal{P}(X), \subset) & \to (\mathcal{P}(X), \subset), \\ - \cup V \colon & (\mathcal{P}(X), \subset) & \to (\mathcal{P}(X), \subset), \\ -_1 \cup -_2 \colon (\mathcal{P}(X) \times \mathcal{P}(X), \subset \times \subset) \to (\mathcal{P}(X), \subset). \end{array}$$

In particular, the following statements hold for each $U, V, A, B \in \mathcal{P}(X)$:

- (a) If $U \subset A$, then $U \cup V \subset A \cup V$.
 - (b) If $V \subset B$, then $U \cup V \subset U \cup B$.
 - (c) If $U \subset A$ and $V \subset B$, then $U \cup V \subset A \cup B$.
- 2. Associativity. The diagram

$$\mathcal{P}(X) \times (\mathcal{P}(X) \times \mathcal{P}(X))$$

$$\alpha^{\mathsf{Sets}}_{\mathcal{P}(X), \mathcal{P}(X), \mathcal{P}(X)} \qquad \text{id}_{\mathcal{P}(X)} \times \cup$$

$$(\mathcal{P}(X) \times \mathcal{P}(X)) \times \mathcal{P}(X) \qquad \mathcal{P}(X) \times \mathcal{P}(X)$$

$$\cup \times \mathrm{id}_{\mathcal{P}(X)} \qquad \qquad \cup$$

$$\mathcal{P}(X) \times \mathcal{P}(X) \longrightarrow \mathcal{P}(X),$$

commutes, i.e. we have an equality of sets

$$(U \cup V) \cup W = U \cup (V \cup W)$$

for each $U, V, W \in \mathcal{P}(X)$.

3. *Unitality*. The diagrams

$$\operatorname{pt} \times \mathcal{P}(X) \xrightarrow{[\emptyset] \times \operatorname{id}_{\mathcal{P}(X)}} \mathcal{P}(X) \times \mathcal{P}(X) \qquad \mathcal{P}(X) \times \operatorname{pt} \xrightarrow{\operatorname{id}_{\mathcal{P}(X)} \times [\emptyset]} \mathcal{P}(X) \times \mathcal{P}(X)$$

$$\downarrow \cup \qquad \qquad \qquad \downarrow \cup \qquad \downarrow \cup$$

01GY

003K

01GZ

01H0

003M

003N

commute, i.e. we have equalities of sets

$$\emptyset \cup U = U$$
,

$$U \cup \emptyset = U$$

for each $U \in \mathcal{P}(X)$.

003P

01H1

4. Commutativity. The diagram

commutes, i.e. we have an equality of sets

$$U \cup V = V \cup U$$

for each $U, V \in \mathcal{P}(X)$.

5. Annihilation With X. The diagrams

commute, i.e. we have equalities of sets

$$U\cup X=X,$$

$$X \cup V = X$$

for each $U, V \in \mathcal{P}(X)$.

003R

6. Distributivity of Unions Over Intersections. The diagrams

commute, i.e. we have equalities of sets

$$U \cup (V \cap W) = (U \cup V) \cap (U \cup W),$$

$$(U \cap V) \cup W = (U \cup W) \cap (V \cup W)$$

for each $U, V, W \in \mathcal{P}(X)$.

01H2

7. Distributivity of Intersections Over Unions. The diagrams

commute, i.e. we have equalities of sets

$$U \cap (V \cup W) = (U \cap V) \cup (U \cap W),$$
$$(U \cup V) \cap W = (U \cap W) \cup (V \cap W)$$

for each $U, V, W \in \mathcal{P}(X)$.

003Q

8. Idempotency. The diagram

003L

003S

commutes, i.e. we have an equality of sets

$$U \cup U = U$$

for each $U \in \mathcal{P}(X)$.

9. Via Intersections and Symmetric Differences. The diagram

$$(\mathcal{P}(X) \times \mathcal{P}(X)) \times (\mathcal{P}(X) \times \mathcal{P}(X)) \xrightarrow{\Delta \times \cap} \mathcal{P}(X) \times \mathcal{P}(X)$$

$$\stackrel{\Delta_{\mathcal{P}(X) \times \mathcal{P}(X)}}{\longrightarrow} \mathcal{P}(X) \times \mathcal{P}(X) \xrightarrow{\Delta} \mathcal{P}(X)$$

commutes, i.e. we have an equality of sets

$$U \cup V = (U \triangle V) \triangle (U \cap V)$$

for each $U, V \in \mathcal{P}(X)$.

10. Interaction With Characteristic Functions I. We have

$$\chi_{U \cup V} = \max(\chi_U, \chi_V)$$

for each $U, V \in \mathcal{P}(X)$.

11. Interaction With Characteristic Functions II. We have

$$\chi_{U \cup V} = \chi_U + \chi_V - \chi_{U \cap V}$$

for each $U, V \in \mathcal{P}(X)$.

01H3 12. *Interaction With Direct Images*. Let $f: X \to Y$ be a function. The diagram

$$\mathcal{P}(X) \times \mathcal{P}(X) \xrightarrow{f_1 \times f_1} \mathcal{P}(Y) \times \mathcal{P}(Y)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \cup$$

$$\mathcal{P}(X) \xrightarrow{f_1} \mathcal{P}(Y)$$

commutes, i.e. we have

$$f_!(U \cup V) = f_!(U) \cup f_!(V)$$

for each $U, V \in \mathcal{P}(X)$.

01H4

13. *Interaction With Inverse Images.* Let $f: X \to Y$ be a function. The diagram

$$\begin{array}{cccc} \mathcal{P}(Y) \times \mathcal{P}(Y) & \xrightarrow{f^{-1} \times f^{-1}} & \mathcal{P}(X) \times \mathcal{P}(X) \\ & & & \downarrow \cup & & \downarrow \cup \\ & & & \mathcal{P}(Y) & \xrightarrow{f^{-1}} & \mathcal{P}(X) \end{array}$$

commutes, i.e. we have

$$f^{-1}(U \cup V) = f^{-1}(U) \cup f^{-1}(V)$$

for each $U, V \in \mathcal{P}(Y)$.

01H5

14. *Interaction With Codirect Images.* Let $f: X \to Y$ be a function. We have a natural transformation

with components

$$f_*(U) \cup f_*(V) \subset f_*(U \cup V)$$

indexed by $U, V \in \mathcal{P}(X)$.

003U

15. *Interaction With Powersets and Semirings.* The quintuple $(\mathcal{P}(X), \cup, \cap, \emptyset, X)$ is an idempotent commutative semiring.

PROOF 4.3.8.1.3 ► PROOF OF PROPOSITION 4.3.8.1.2

Item 1: Functoriality

See [Pro25an].

Item 2: Associativity

See [Pro25ba].

Item 3: Unitality

This follows from [Pro25bd] and Item 4.

Item 4: Commutativity

See [Pro25bb].

Item 5: Annihilation With X

We have

$$U \cup X \stackrel{\text{def}}{=} \{x \in X \mid x \in U \text{ or } x \in X\}$$
$$= \{x \in X \mid x \in X\},$$
$$= X$$

and

$$X \cup V \stackrel{\text{def}}{=} \{x \in X \mid x \in X \text{ or } x \in V\}$$
$$= \{x \in X \mid x \in X\}$$
$$= X.$$

This finishes the proof.

Item 6: Distributivity of Unions Over Intersections

See [Pro25az].

Item 7: Distributivity of Intersections Over Unions

See [Pro25aj].

Item 8: Idempotency

See [Pro25am].

Item 9: Via Intersections and Symmetric Differences

See [Pro25ay].

Item 10: Interaction With Characteristic Functions I

See [Pro25h].

Item 11: Interaction With Characteristic Functions II

See [Pro25h].

Item 12: Interaction With Direct Images

See [Pro25p].

Item 13: Interaction With Inverse Images

See [Pro25y].

Item 14: Interaction With Codirect Images

This is a repetition of Item 5 of Proposition 4.6.3.1.7 and is proved there.

Item 15: Interaction With Powersets and Semirings

This follows from Items 2 to 4 and 8 of this proposition and Items 3 to 6 and 8 of Proposition 4.3.9.1.2.

003X 4.3.9 Binary Intersections

Let *X* be a set and let $U, V \in \mathcal{P}(X)$.

003Y DEFINITION 4.3.9.1.1 ► BINARY INTERSECTIONS

The **intersection of** *U* **and** *V* is the set $U \cap V$ defined by

$$U \cap V \stackrel{\text{def}}{=} \bigcap_{z \in \{U, V\}} z$$

$$\stackrel{\text{def}}{=} \{x \in X \mid x \in U \text{ or } x \in V\}.$$

0037 PROPOSITION 4.3.9.1.2 ➤ PROPERTIES OF BINARY INTERSECTIONS

Let *X* be a set.

0040

01H6

01H7 01H8 1. Functoriality. The assignments $U, V, (U, V) \mapsto U \cap V$ define functors

$$\begin{array}{ll} U \cap -\colon & (\mathcal{P}(X), \subset) & \to (\mathcal{P}(X), \subset), \\ - \cap V \colon & (\mathcal{P}(X), \subset) & \to (\mathcal{P}(X), \subset), \\ -_1 \cap -_2 \colon (\mathcal{P}(X) \times \mathcal{P}(X), \subset \times \subset) \to (\mathcal{P}(X), \subset). \end{array}$$

In particular, the following statements hold for each $U, V, A, B \in \mathcal{P}(X)$:

- (a) If $U \subset A$, then $U \cap V \subset A \cap V$.
- (b) If $V \subset B$, then $U \cap V \subset U \cap B$.
- (c) If $U \subset A$ and $V \subset B$, then $U \cap V \subset A \cap B$.

0041

2. Adjointness. We have adjunctions

$$(U \cap - \dashv [U, -]_X): \quad \mathcal{P}(X) \xrightarrow{\stackrel{U \cap -}{\bot}} \mathcal{P}(X),$$

$$(- \cap V \dashv [V, -]_X): \quad \mathcal{P}(X) \xrightarrow{\stackrel{- \cap V}{\bot}} \mathcal{P}(X),$$

$$(-\cap V \dashv [V,-]_X): \mathcal{P}(X) \underbrace{\downarrow}_{[V,-]_X} \mathcal{P}(X),$$

witnessed by bijections

$$\operatorname{Hom}_{\mathcal{P}(X)}(U \cap V, W) \cong \operatorname{Hom}_{\mathcal{P}(X)}(U, [V, W]_X),$$

 $\operatorname{Hom}_{\mathcal{P}(X)}(U \cap V, W) \cong \operatorname{Hom}_{\mathcal{P}(X)}(V, [U, W]_X),$

natural in $U, V, W \in \mathcal{P}(X)$, where

$$[-1,-2]_X : \mathcal{P}(X)^{\mathsf{op}} \times \mathcal{P}(X) \to \mathcal{P}(X)$$

is the bifunctor of Section 4.4.7. In particular, the following statements hold for each $U, V, W \in \mathcal{P}(X)$:

01H9

01HA

01HB

01HC

01HD

01HE

0042

- (a) The following conditions are equivalent:
 - i. We have $U \cap V \subset W$.
 - ii. We have $U \subset [V, W]_X$.
- (b) The following conditions are equivalent:
 - i. We have $U \cap V \subset W$.
 - ii. We have $V \subset [U, W]_X$.
- 3. Associativity. The diagram

commutes, i.e. we have an equality of sets

$$(U \cap V) \cap W = U \cap (V \cap W)$$

for each $U, V, W \in \mathcal{P}(X)$.

4. Unitality. The diagrams

commute, i.e. we have equalities of sets

$$X \cap U = U,$$
$$U \cap X = U$$

UIIA -

for each $U \in \mathcal{P}(X)$.

5. Commutativity. The diagram

commutes, i.e. we have an equality of sets

$$U \cap V = V \cap U$$

for each $U, V \in \mathcal{P}(X)$.

6. Annihilation With the Empty Set. The diagrams

0043

0044

0047

commute, i.e. we have equalities of sets

$$\emptyset \cap X = \emptyset$$
, $X \cap \emptyset = \emptyset$

for each $U \in \mathcal{P}(X)$.

01HF

0046

7. Distributivity of Unions Over Intersections. The diagrams

commute, i.e. we have equalities of sets

$$U \cup (V \cap W) = (U \cup V) \cap (U \cup W),$$

$$(U \cap V) \cup W = (U \cup W) \cap (V \cup W)$$

for each $U, V, W \in \mathcal{P}(X)$.

8. Distributivity of Intersections Over Unions. The diagrams

commute, i.e. we have equalities of sets

$$U \cap (V \cup W) = (U \cap V) \cup (U \cap W),$$
$$(U \cup V) \cap W = (U \cap W) \cup (V \cap W)$$

for each $U, V, W \in \mathcal{P}(X)$.

0045

9. *Idempotency*. The diagram

commutes, i.e. we have an equality of sets

$$U \cap U = U$$

for each $U \in \mathcal{P}(X)$.

0048

10. Interaction With Characteristic Functions I. We have

$$\chi_{U\cap V}=\chi_U\chi_V$$

for each $U, V \in \mathcal{P}(X)$.

0049

11. Interaction With Characteristic Functions II. We have

$$\chi_{U\cap V} = \min(\chi_U, \chi_V)$$

for each $U, V \in \mathcal{P}(X)$.

01HG

12. *Interaction With Direct Images.* Let $f: X \to Y$ be a function. We have a natural transformation

with components

$$f_!(U \cap V) \subset f_!(U) \cap f_!(V)$$

indexed by $U, V \in \mathcal{P}(X)$.

01HH

13. *Interaction With Inverse Images.* Let $f: X \to Y$ be a function. The diagram

commutes, i.e. we have

$$f^{-1}(U \cap V) = f^{-1}(U) \cap f^{-1}(V)$$

for each $U, V \in \mathcal{P}(Y)$.

01HJ

14. *Interaction With Codirect Images.* Let $f: X \to Y$ be a function. The diagram

$$\mathcal{P}(X) \times \mathcal{P}(X) \xrightarrow{f_* \times f_*} \mathcal{P}(Y) \times \mathcal{P}(Y)$$

$$\uparrow \qquad \qquad \qquad \downarrow \cap$$

$$\mathcal{P}(X) \xrightarrow{f_*} \mathcal{P}(Y)$$

commutes, i.e. we have

$$f_*(U) \cap f_*(V) = f_*(U \cap V)$$

for each $U, V \in \mathcal{P}(X)$.

004A

15. *Interaction With Powersets and Monoids With Zero.* The quadruple $((\mathcal{P}(X), \emptyset), \cap, X)$ is a commutative monoid with zero.

004B

16. *Interaction With Powersets and Semirings.* The quintuple $(\mathcal{P}(X), \cup, \cap, \emptyset, X)$ is an idempotent commutative semiring.

PROOF 4.3.9.1.3 ► PROOF OF PROPOSITION 4.3.9.1.2 Item 1: Functoriality See [Pro25al]. Item 2: Adjointness See [MSE 267469]. Item 3: Associativity See [Pro25r]. Item 4: Unitality This follows from [Pro25v] and Item 5. Item 5: Commutativity See [Pro25s]. Item 6: Annihilation With the Empty Set This follows from [Pro25t] and Item 5. Item 7: Distributivity of Unions Over Intersections See [Pro25az]. Item 8: Distributivity of Intersections Over Unions See [Pro25aj]. Item 9: Idempotency See [Pro25ak]. Item 10: Interaction With Characteristic Functions I See [Pro25e]. Item 11: Interaction With Characteristic Functions II See [Pro25e]. Item 12: Interaction With Direct Images See [Pro25n]. Item 13: Interaction With Inverse Images See [Pro25w].

This is a repetition of Item 6 of Proposition 4.6.3.1.7 and is proved there.

Item 14: Interaction With Codirect Images

Item 15: Interaction With Powersets and Monoids With Zero

This follows from Items 3 to 6.

Item 16: Interaction With Powersets and Semirings

This follows from Items 2 to 4 and 8 and Items 3 to 6 and 8 of Proposition 4.3.9.1.2.

004D 4.3.10 Differences

Let *X* and *Y* be sets.

004E DEFINITION 4.3.10.1.1 ➤ DIFFERENCES

The **difference of** X **and** Y is the set $X \setminus Y$ defined by

$$X \setminus Y \stackrel{\text{def}}{=} \{ a \in X \mid a \notin Y \}.$$

004F PROPOSITION 4.3.10.1.2 ▶ PROPERTIES OF DIFFERENCES

Let *X* be a set.

004G

01HL

01HM

004H

004J

1. Functoriality. The assignments $U, V, (U, V) \mapsto U \cap V$ define functors

$$U \setminus -: \qquad (\mathcal{P}(X), \supset) \qquad \to (\mathcal{P}(X), \subset),$$

$$- \setminus V: \qquad (\mathcal{P}(X), \subset) \qquad \to (\mathcal{P}(X), \subset),$$

$$-_1 \setminus -_2: (\mathcal{P}(X) \times \mathcal{P}(X), \subset \times \supset) \to (\mathcal{P}(X), \subset).$$

In particular, the following statements hold for each $U, V, A, B \in \mathcal{P}(X)$:

- 01HK (a) If $U \subset A$, then $U \setminus V \subset A \setminus V$.
 - (b) If $V \subset B$, then $U \setminus B \subset U \setminus V$.
 - (c) If $U \subset A$ and $V \subset B$, then $U \setminus B \subset A \setminus V$.

2. De Morgan's Laws. We have equalities of sets

$$X \setminus (U \cup V) = (X \setminus U) \cap (X \setminus V),$$

$$X \setminus (U \cap V) = (X \setminus U) \cup (X \setminus V)$$

for each $U, V \in \mathcal{P}(X)$.

3. *Interaction With Unions I.* We have equalities of sets

$$U \setminus (V \cup W) = (U \setminus V) \cap (U \setminus W)$$

004K

004L

004M

for each $U, V, W \in \mathcal{P}(X)$.

4. *Interaction With Unions II*. We have equalities of sets

$$(U \setminus V) \cup W = (U \cup W) \setminus (V \setminus W)$$

for each $U, V, W \in \mathcal{P}(X)$.

5. Interaction With Unions III. We have equalities of sets

$$U \setminus (V \cup W) = (U \cup W) \setminus (V \cup W)$$
$$= (U \setminus V) \setminus W$$
$$= (U \setminus W) \setminus V$$

for each $U, V, W \in \mathcal{P}(X)$.

6. Interaction With Unions IV. We have equalities of sets

$$(U \cup V) \setminus W = (U \setminus W) \cup (V \setminus W)$$

for each $U, V, W \in \mathcal{P}(X)$.

7. *Interaction With Intersections*. We have equalities of sets

$$(U \setminus V) \cap W = (U \cap W) \setminus V$$
$$= U \cap (W \setminus V)$$

for each $U, V, W \in \mathcal{P}(X)$.

8. *Interaction With Complements*. We have an equality of sets

$$U \setminus V = U \cap V^{c}$$

for each $U, V \in \mathcal{P}(X)$.

9. *Interaction With Symmetric Differences*. We have an equality of sets

$$U \setminus V = U \triangle (U \cap V)$$

for each $U, V \in \mathcal{P}(X)$.

004R 10. *Triple Differences*. We have

$$U \setminus (V \setminus W) = (U \cap W) \cup (U \setminus V)$$

for each $U, V, W \in \mathcal{P}(X)$.

004S

11. Left Annihilation. We have

$$\emptyset \setminus U = \emptyset$$

for each $U \in \mathcal{P}(X)$.

004T

12. Right Unitality. We have

$$U \setminus \emptyset = U$$

for each $U \in \mathcal{P}(X)$.

01HN

13. Right Annihilation. We have

$$U \setminus X = U$$

for each $U \in \mathcal{P}(X)$.

004U

14. Invertibility. We have

$$U \setminus U = \emptyset$$

for each $U \in \mathcal{P}(X)$.

004V

- 15. *Interaction With Containment*. The following conditions are equivalent:
- 004W
- (a) We have $V \setminus U \subset W$.
- 004X
- (b) We have $V \setminus W \subset U$.
- 004Y
- 16. Interaction With Characteristic Functions. We have

$$\chi_{U\setminus V} = \chi_U - \chi_{U\cap V}$$

for each $U, V \in \mathcal{P}(X)$.

01HP

17. Interaction With Direct Images. We have a natural transformation

with components

$$f_!(U) \setminus f_!(V) \subset f_!(U \setminus V)$$

indexed by $U, V \in \mathcal{P}(X)$.

01HQ

18. Interaction With Inverse Images. The diagram

$$\mathcal{P}(Y)^{\mathsf{op}} \times \mathcal{P}(Y) \xrightarrow{f^{\mathsf{op},-1} \times f^{-1}} \mathcal{P}(X)^{\mathsf{op}} \times \mathcal{P}(X)$$

$$\downarrow \qquad \qquad \qquad \downarrow \setminus$$

$$\mathcal{P}(Y) \xrightarrow{f^{-1}} \mathcal{P}(X)$$

commutes, i.e. we have

$$f^{-1}(U \setminus V) = f^{-1}(U) \setminus f^{-1}(V)$$

for each $U, V \in \mathcal{P}(X)$.

01HR

19. Interaction With Codirect Images. We have a natural transformation

$$\mathcal{P}(X)^{\mathsf{op}} \times \mathcal{P}(X) \xrightarrow{f_!^{\mathsf{op}} \times f_!} \mathcal{P}(Y)^{\mathsf{op}} \times \mathcal{P}(Y)$$

$$\downarrow \qquad \qquad \qquad \downarrow \setminus \qquad \qquad \downarrow \setminus \qquad \qquad \downarrow \downarrow \qquad \qquad \downarrow$$

with components

$$f_!(U) \setminus f_!(V) \subset f_!(U \setminus V)$$

indexed by $U, V \in \mathcal{P}(X)$.

PROOF 4.3.10.1.3 ► PROOF OF PROPOSITION 4.3.10.1.2

Item 1: Functoriality

See [Pro25ad] and [Pro25ah].

Item 2: De Morgan's Laws

See [Pro25k].

Item 3: Interaction With Unions I

See [Pro251].

Item 4: Interaction With Unions II

Omitted.

Item 5: Interaction With Unions III

See [Pro25ai].

Item 6: Interaction With Unions IV

See [Pro25ac].

Item 7: Interaction With Intersections

See [Pro25u].

Item 8: Interaction With Complements

See [Pro25aa].

Item 9: Interaction With Symmetric Differences

See [Pro25ab].

Item 10: Triple Differences

See [Pro25ag].

Item 11: Left Annihilation

Omitted.

Item 12: Right Unitality

See [Pro25ae].

Item 13: Right Annihilation

Omitted.

Item 14: Invertibility

See [Pro25af].

Item 15: Interaction With Containment

Omitted.

Item 16: Interaction With Characteristic Functions

See [Pro25f].

Item 17: Interaction With Direct Images

See [Pro25o].

Item 18: Interaction With Inverse Images

See [Pro25x].

004Z 4.3.11 Complements

Let *X* be a set and let $U \in \mathcal{P}(X)$.

0050

DEFINITION 4.3.11.1.1 ► COMPLEMENTS

The **complement of** U is the set U^c defined by

$$U^{c} \stackrel{\text{def}}{=} X \setminus U$$

$$\stackrel{\text{def}}{=} \{ a \in X \mid a \notin U \}.$$

0051

PROPOSITION 4.3.11.1.2 ► PROPERTIES OF COMPLEMENTS

Let *X* be a set.

0052

1. Functoriality. The assignment $U \mapsto U^{c}$ defines a functor

$$(-)^{c} : \mathcal{P}(X)^{op} \to \mathcal{P}(X).$$

In particular, the following statements hold for each $U, V \in \mathcal{P}(X)$:

$$(\star)$$
 If $U \subset V$, then $V^{c} \subset U^{c}$.

0053

2. *De Morgan's Laws*. The diagrams

$$\mathcal{P}(X)^{\text{op}} \times \mathcal{P}(X)^{\text{op}} \xrightarrow{\cup^{\text{op}}} \mathcal{P}(X)^{\text{op}} \qquad \mathcal{P}(X)^{\text{op}} \times \mathcal{P}(X)^{\text{op}} \xrightarrow{\cap^{\text{op}}} \mathcal{P}(X)^{\text{op}} \\
(-)^{c} \times (-)^{c} \downarrow \qquad \qquad \downarrow (-)^{c} \downarrow \qquad \qquad \downarrow$$

commute, i.e. we have equalities of sets

$$(U \cup V)^{c} = U^{c} \cap V^{c},$$

$$(U \cap V)^{c} = U^{c} \cup V^{c}$$

for each $U, V \in \mathcal{P}(X)$.

0054

3. Involutority. The diagram

commutes, i.e. we have

$$(U^{\mathsf{c}})^{\mathsf{c}} = U$$

for each $U \in \mathcal{P}(X)$.

0055

4. Interaction With Characteristic Functions. We have

$$\chi_{U^c} \equiv 1 - \chi_U \pmod{2}$$

for each $U \in \mathcal{P}(X)$.

01HS

5. Interaction With Direct Images. Let $f: X \to Y$ be a function. The diagram

$$\mathcal{P}(X)^{\text{op}} \xrightarrow{f_*^{\text{op}}} \mathcal{P}(Y)^{\text{op}}
\xrightarrow{(-)^c} \qquad \qquad \downarrow^{(-)^c}
\mathcal{P}(X) \xrightarrow{f_1} \mathcal{P}(Y)$$

commutes, i.e. we have

$$f_!(U^\mathsf{c}) = f_*(U)^\mathsf{c}$$

for each $U \in \mathcal{P}(X)$.

01HT

6. *Interaction With Inverse Images.* Let $f: X \to Y$ be a function. The diagram

$$\mathcal{P}(Y)^{\mathsf{op}} \xrightarrow{f^{-1,\mathsf{op}}} \mathcal{P}(X)^{\mathsf{op}} \\
\xrightarrow{(-)^{\mathsf{c}}} \qquad \qquad \downarrow^{(-)^{\mathsf{c}}} \\
\mathcal{P}(Y) \xrightarrow{f^{-1}} \mathcal{P}(X)$$

commutes, i.e. we have

$$f^{-1}(U^{c}) = f^{-1}(U)^{c}$$

for each $U \in \mathcal{P}(X)$.

7. *Interaction With Codirect Images.* Let $f: X \to Y$ be a function. The diagram

$$\mathcal{P}(X)^{\mathsf{op}} \xrightarrow{f_!^{\mathsf{op}}} \mathcal{P}(Y)^{\mathsf{op}} \\
\xrightarrow{(-)^c} \qquad \qquad \downarrow^{(-)^c} \\
\mathcal{P}(X) \xrightarrow{f_*} \mathcal{P}(Y)$$

commutes, i.e. we have

$$f_*(U^{\mathsf{c}}) = f_!(U)^{\mathsf{c}}$$

for each $U \in \mathcal{P}(X)$.

PROOF 4.3.11.1.3 ► PROOF OF PROPOSITION 4.3.11.1.2

Item 1: Functoriality

This follows from Item 1 of Proposition 4.3.10.1.2.

Item 2: De Morgan's Laws

See [Pro25k].

Item 3: Involutority

See [Pro25i].

Item 4: Interaction With Characteristic Functions

Omitted.

Item 5: Interaction With Direct Images

This is a repetition of Item 8 of Proposition 4.6.1.1.5 and is proved there.

Item 6: Interaction With Inverse Images

This is a repetition of Item 8 of Proposition 4.6.2.1.3 and is proved there.

Item 7: Interaction With Codirect Images

01HU

This is a repetition of Item 7 of Proposition 4.6.3.1.7 and is proved there.

0056 4.3.12 Symmetric Differences

Let *X* be a set and let $U, V \in \mathcal{P}(X)$.

0057

DEFINITION 4.3.12.1.1 ► SYMMETRIC DIFFERENCES

The **symmetric difference of** *U* **and** *V* is the set $U \triangle V$ defined by ¹

$$U \triangle V \stackrel{\mathrm{def}}{=} (U \setminus V) \cup (V \setminus U).$$

¹Illustration:

0058

PROPOSITION 4.3.12.1.2 ► PROPERTIES OF SYMMETRIC DIFFERENCES

Let *X* be a set.

0059

1. Lack of Functoriality. The assignment $(U,V) \mapsto U \triangle V$ does not in general define functors

$$\begin{array}{lll} U \bigtriangleup - \colon & (\mathcal{P}(X), \subset) & \to (\mathcal{P}(X), \subset), \\ - \bigtriangleup V \colon & (\mathcal{P}(X), \subset) & \to (\mathcal{P}(X), \subset), \\ -_1 \bigtriangleup -_2 \colon & (\mathcal{P}(X) \times \mathcal{P}(X), \subset \times \subset) \to (\mathcal{P}(X), \subset). \end{array}$$

005A

2. Via Unions and Intersections. We have

$$U \triangle V = (U \cup V) \setminus (U \cap V)$$

for each $U, V \in \mathcal{P}(X)$, as in the Venn diagram

$$\boxed{\bigcirc{U \triangle V}} = \boxed{\bigcirc{U \cup V}} \setminus \boxed{\bigcirc{U \cap V}}$$

01HV

3. Symmetric Differences of Disjoint Sets. If U and V are disjoint, then we have

$$U \triangle V = U \cup V$$
.

005B

4. Associativity. The diagram

commutes, i.e. we have

$$(U \triangle V) \triangle W = U \triangle (V \triangle W)$$

for each $U, V, W \in \mathcal{P}(X)$, as in the Venn diagram

005D

5. Unitality. The diagrams

$$\operatorname{pt} \times \mathcal{P}(X) \xrightarrow{[\emptyset] \times \operatorname{id}_{\mathcal{P}(X)}} \mathcal{P}(X) \times \mathcal{P}(X) \qquad \mathcal{P}(X) \times \operatorname{pt} \xrightarrow{\operatorname{id}_{\mathcal{P}(X)} \times [\emptyset]} \mathcal{P}(X) \times \mathcal{P}(X)$$

$$\downarrow^{\Delta} \qquad \qquad \downarrow^{\Delta} \qquad \qquad \downarrow^{\Delta}$$

$$\mathcal{P}(X) \qquad \qquad \mathcal{P}(X)$$

commute, i.e. we have

$$U \triangle \emptyset = U,$$

$$\emptyset \triangle U = U$$

for each $U \in \mathcal{P}(X)$.

005C

6. Commutativity. The diagram

commutes, i.e. we have

$$U \bigtriangleup V = V \bigtriangleup U$$

for each $U, V \in \mathcal{P}(X)$.

005E 7. *Invertibility*. We have

005F

005G

005H

$$U \triangle U = \emptyset$$

for each $U \in \mathcal{P}(X)$.

8. *Interaction With Unions*. We have

$$(U \triangle V) \cup (V \triangle T) = (U \cup V \cup W) \setminus (U \cap V \cap W)$$

for each $U, V, W \in \mathcal{P}(X)$.

9. Interaction With Complements I. We have

$$U \triangle U^{c} = X$$

for each $U \in \mathcal{P}(X)$.

10. Interaction With Complements II. We have

$$U \triangle X = U^{\mathsf{c}},$$
$$X \triangle U = U^{\mathsf{c}}$$

for each $U \in \mathcal{P}(X)$.

11. Interaction With Complements III. The diagram

$$\mathcal{P}(X) \times \mathcal{P}(X) \xrightarrow{\Delta} \mathcal{P}(X) \\
\xrightarrow{(-)^{c} \times (-)^{c}} \downarrow \qquad \qquad \downarrow^{(-)^{c}} \\
\mathcal{P}(X) \times \mathcal{P}(X) \xrightarrow{\Delta} \mathcal{P}(X)$$

commutes, i.e. we have

$$U^{\mathsf{c}} \triangle V^{\mathsf{c}} = U \triangle V$$

for each $U, V \in \mathcal{P}(X)$.

005K

12. "Transitivity". We have

$$(U \triangle V) \triangle (V \triangle W) = U \triangle W$$

for each $U, V, W \in \mathcal{P}(X)$.

005L

13. The Triangle Inequality for Symmetric Differences. We have

$$U \triangle W \subset U \triangle V \cup V \triangle W$$

for each $U, V, W \in \mathcal{P}(X)$.

005M

14. Distributivity Over Intersections. We have

$$U \cap (V \triangle W) = (U \cap V) \triangle (U \cap W),$$

$$(U \triangle V) \cap W = (U \cap W) \triangle (V \cap W)$$

for each $U, V, W \in \mathcal{P}(X)$.

005N

15. Interaction With Characteristic Functions. We have

$$\chi_{U \triangle V} = \chi_U + \chi_V - 2\chi_{U \cap V}$$

and thus, in particular, we have

$$\chi_{U \triangle V} \equiv \chi_U + \chi_V \pmod{2}$$

for each $U, V \in \mathcal{P}(X)$.

005P

16. Bijectivity. Given $U, V \in \mathcal{P}(X)$, the maps

$$U \triangle -: \mathcal{P}(X) \to \mathcal{P}(X),$$

 $- \triangle V: \mathcal{P}(X) \to \mathcal{P}(X)$

are bijections with inverses given by

$$(U \triangle -)^{-1} = - \cup (U \cap -),$$

$$(- \triangle V)^{-1} = - \cup (V \cap -).$$

Moreover, the map

$$\mathcal{P}(X) \longrightarrow \mathcal{P}(X)$$

$$C \longmapsto C \triangle (U \triangle V)$$

is a bijection of $\mathcal{P}(X)$ onto itself sending U to V and V to U.

005Q

17. *Interaction With Powersets and Groups.* Let *X* be a set.

005R

(a) The quadruple $(\mathcal{P}(X), \triangle, \emptyset, \mathrm{id}_{\mathcal{P}(X)})$ is an abelian group.¹

005S

(b) Every element of $\mathcal{P}(X)$ has order 2 with respect to \triangle , and thus $\mathcal{P}(X)$ is a *Boolean group* (i.e. an abelian 2-group).

005T

- 18. Interaction With Powersets and Vector Spaces I. The pair $(\mathcal{P}(X), \alpha_{\mathcal{P}(X)})$ consisting of
 - The group $\mathcal{P}(X)$ of Item 17;
 - The map $\alpha_{\mathcal{P}(X)} \colon \mathbb{F}_2 \times \mathcal{P}(X) \to \mathcal{P}(X)$ defined by

$$0 \cdot U \stackrel{\text{def}}{=} \emptyset,$$
$$1 \cdot U \stackrel{\text{def}}{=} U;$$

is an \mathbb{F}_2 -vector space.

(b) We have

005U

19. *Interaction With Powersets and Vector Spaces II.* If *X* is finite, then:

020L

(a) The set of singletons sets on the elements of X forms a basis for the \mathbb{F}_2 -vector space $(\mathcal{P}(X), \alpha_{\mathcal{P}(X)})$ of Item 18.

020M

$$\dim(\mathcal{P}(X)) = \#X.$$

005V

20. *Interaction With Powersets and Rings*. The quintuple $(\mathcal{P}(X), \triangle, \cap, \emptyset, X)$ is a commutative ring.²

01HW

21. Interaction With Direct Images. We have a natural transformation

$$\begin{array}{ccc}
\mathcal{P}(X)^{\mathsf{op}} \times \mathcal{P}(X) & \xrightarrow{f_{!}^{\mathsf{op}} \times f_{!}} & \mathcal{P}(Y)^{\mathsf{op}} \times \mathcal{P}(Y) \\
 & & & & & & \downarrow \triangle \\
\mathcal{P}(X) & \xrightarrow{f_{!}} & & & & & & & & \\
\end{array}$$

with components

$$f_!(U) \triangle f_!(V) \subset f_!(U \triangle V)$$

indexed by $U, V \in \mathcal{P}(X)$.

01HX

22. Interaction With Inverse Images. The diagram

$$\mathcal{P}(Y)^{\mathsf{op}} \times \mathcal{P}(Y) \xrightarrow{f^{\mathsf{op},-1} \times f^{-1}} \mathcal{P}(X)^{\mathsf{op}} \times \mathcal{P}(X)$$

$$\downarrow^{\triangle} \qquad \qquad \downarrow^{\triangle}$$

$$\mathcal{P}(Y) \xrightarrow{f^{-1}} \mathcal{P}(X)$$

i.e. we have

$$f^{-1}(U) \triangle f^{-1}(V) = f^{-1}(U \triangle V)$$

for each $U, V \in \mathcal{P}(Y)$.

01HY

23. Interaction With Codirect Images. We have a natural transformation

with components

$$f_*(U \triangle V) \subset f_*(U) \triangle f_*(V)$$

indexed by $U, V \in \mathcal{P}(X)$.

i. When $X = \emptyset$, we have an isomorphism of groups between $\mathcal{P}(\emptyset)$ and the trivial group:

$$(\mathcal{P}(\emptyset), \triangle, \emptyset, id_{\mathcal{P}(\emptyset)}) \cong pt.$$

ii. When X = pt, we have an isomorphism of groups between $\mathcal{P}(pt)$ and $\mathbb{Z}_{/2}$:

$$(\mathcal{P}(\mathsf{pt}), \triangle, \emptyset, \mathsf{id}_{\mathcal{P}(\mathsf{pt})}) \cong \mathbb{Z}_{/2}.$$

020K

020J

020H

iii. When $X = \{0, 1\}$, we have an isomorphism of groups between $\mathcal{P}(\{0, 1\})$ and $\mathbb{Z}_{/2} \times \mathbb{Z}_{/2}$:

$$(\mathcal{P}(\{0,1\}), \Delta, \emptyset, id_{\mathcal{P}(\{0,1\})}) \cong \mathbb{Z}_{/2} \times \mathbb{Z}_{/2}.$$

Warning: The analogous statement replacing intersections by unions (i.e. that the quintuple $(\mathcal{P}(X), \Delta, \cup, \emptyset, X)$ is a ring) is false, however. See [Pro25aw] for a proof.

¹Here are some examples:

PROOF 4.3.12.1.3 ► PROOF OF PROPOSITION 4.3.12.1.2

Item 1: Lack of Functoriality

Omitted.

Item 2: Via Unions and Intersections

See [Pro25m].

Item 3: Symmetric Differences of Disjoint Sets

Since *U* and *V* are disjoint, we have $U \cap V = \emptyset$, and therefore we have

$$U \triangle V = (U \cup V) \setminus (U \cap V)$$
$$= (U \cup V) \setminus \emptyset$$
$$= U \cup V,$$

where we've used Item 2 and Item 12 of Proposition 4.3.10.1.2.

Item 4: Associativity

See [Pro25ao].

Item 5: Unitality

This follows from Item 6 and [Pro25at].

Item 6: Commutativity

See [Pro25ap].

Item 7: Invertibility

See [Pro25av].

Item 8: Interaction With Unions

See [Pro25bc].

Item 9: Interaction With Complements I

See [Pro25as].

Item 10: Interaction With Complements II

This follows from Item 6 and [Pro25ax].

Item 11: Interaction With Complements III

See [Pro25aq].

Item 12: "Transitivity"

We have

```
(U \triangle V) \triangle (V \triangle W) = U \triangle (V \triangle (V \triangle W))  (by Item 4)
= U \triangle ((V \triangle V) \triangle W) (by Item 4)
= U \triangle (\emptyset \triangle W) (by Item 7)
= U \triangle W. (by Item 5)
```

This finishes the proof.

Item 13: The Triangle Inequality for Symmetric Differences

This follows from Items 2 and 12.

Item 14: Distributivity Over Intersections

See [Pro25q].

Item 15: Interaction With Characteristic Functions

See [Pro25g].

Item 16: Bijectivity

Omitted.

Item 17: Interaction With Powersets and Groups

Item 17a follows from Items 4 to 7, while Item 17b follows from Item 7.1

Item 18: Interaction With Powersets and Vector Spaces I

See [MSE 2719059].

Item 19: Interaction With Powersets and Vector Spaces II

See [MSE 2719059].

Item 20: Interaction With Powersets and Rings

This follows from Items 6 and 15 of Proposition 4.3.9.1.2 and Items 14 and 17.²

Item 21: Interaction With Direct Images

This is a repetition of Item 9 of Proposition 4.6.1.1.5 and is proved there.

Item 22: Interaction With Inverse Images

This is a repetition of Item 9 of Proposition 4.6.2.1.3 and is proved there.

Item 23: Interaction With Codirect Images

This is a repetition of Item 8 of Proposition 4.6.3.1.7 and is proved there.

¹Reference: [Pro25ar].

²Reference: [Pro25au].

005W 4.4 Powersets

01HZ 4.4.1 Foundations

Let *X* be a set.

006P

DEFINITION 4.4.1.1.1 ▶ POWERSETS

The **powerset of** X is the set $\mathcal{P}(X)$ defined by

$$\mathcal{P}(X) \stackrel{\text{def}}{=} \{ U \in P \mid U \subset X \},\,$$

where P is the set in the axiom of powerset, ?? of ??.

006Q

REMARK 4.4.1.1.2 ➤ POWERSETS AS DECATEGORIFICATIONS OF CO/PRESHEAF CATEGORIES

Under the analogy that $\{t, f\}$ should be the (-1)-categorical analogue of Sets, we may view the powerset of a set as a decategorification of the category of presheaves of a category (or of the category of copresheaves):

• The powerset of a set *X* is equivalently (Item 2 of Proposition 4.5.1.1.4) the set

$$Sets(X, \{t, f\})$$

of functions from X to the set $\{t, f\}$ of classical truth values.

• The category of presheaves on a category *C* is the category

$$\operatorname{Fun}(C^{\operatorname{op}},\operatorname{Sets})$$

of functors from C^{op} to the category Sets of sets.

01J0

NOTATION 4.4.1.1.3 ► FURTHER NOTATION FOR POWERSETS

Let *X* be a set.

01J1

- 1. We write $\mathcal{P}_0(X)$ for the set of nonempty subsets of X.
- 01J2
- 2. We write $\mathcal{P}_{fin}(X)$ for the set of finite subsets of X.

O1J3 PROPOSITION 4.4.1.1.4 ► ELEMENTARY PROPERTIES OF POWERSETS

Let *X* be a set.

020P

020Q

020R

01J7

01J8

- 01J4 1. *Co/Completeness*. The (posetal) category (associated to) $(\mathcal{P}(X), \subset)$ is complete and cocomplete:
 - (a) *Products*. The products in $\mathcal{P}(X)$ are given by intersection of subsets.
 - (b) *Coproducts*. The coproducts in $\mathcal{P}(X)$ are given by union of subsets.
 - (c) *Co/Equalisers*. Being a posetal category, $\mathcal{P}(X)$ only has at most one morphisms between any two objects, so co/equalisers are trivial.
- 01J5 2. *Cartesian Closedness*. The category $\mathcal{P}(X)$ is Cartesian closed.
- 3. *Powersets as Sets of Relations.* We have bijections

$$\mathcal{P}(X) \cong \text{Rel}(\text{pt}, X),$$

 $\mathcal{P}(X) \cong \text{Rel}(X, \text{pt}),$

natural in $X \in \text{Obj}(\mathsf{Sets})$.

4. Interaction With Products I. The map

$$\mathcal{P}(X) \times \mathcal{P}(Y) \longrightarrow \mathcal{P}(X \coprod Y)$$
$$(U, V) \longmapsto U \cup V$$

is an isomorphism of sets, natural in $X,Y \in \text{Obj}(\mathsf{Sets})$ with respect to each of the functor structures $\mathcal{P}_!$, \mathcal{P}^{-1} , and \mathcal{P}_* on \mathcal{P} of Proposition 4.4.2.1.1. Moreover, this makes each of $\mathcal{P}_!$, \mathcal{P}^{-1} , and \mathcal{P}_* into a symmetric monoidal functor.

5. Interaction With Products II. The map

$$\mathcal{P}(X) \times \mathcal{P}(Y) \longrightarrow \mathcal{P}(X \coprod Y)$$
$$(U, V) \longmapsto U \boxtimes_{X \times Y} V,$$

where¹

$$U \boxtimes_{X \times Y} V \stackrel{\text{def}}{=} \{(u, v) \in X \times Y \mid u \in U \text{ and } v \in V\}$$

is an inclusion of sets, natural in $X,Y \in \text{Obj}(\mathsf{Sets})$ with respect to each of the functor structures $\mathcal{P}_!$, \mathcal{P}^{-1} , and \mathcal{P}_* on \mathcal{P} of Proposition 4.4.2.1.1. Moreover, this makes each of $\mathcal{P}_!$, \mathcal{P}^{-1} , and \mathcal{P}_* into a symmetric monoidal functor.

6. Interaction With Products III. We have an isomorphism

$$\mathcal{P}(X) \otimes \mathcal{P}(Y) \cong \mathcal{P}(X \times Y),$$

natural in $X, Y \in \text{Obj}(\mathsf{Sets})$ with respect to each of the functor structures $\mathcal{P}_!, \mathcal{P}^{-1}$, and \mathcal{P}_* on \mathcal{P} of Proposition 4.4.2.1.1, where \otimes denotes the tensor product of suplattices of ??. Moreover, this makes each of $\mathcal{P}_!, \mathcal{P}^{-1}$, and \mathcal{P}_* into a symmetric monoidal functor.

¹The set $U \boxtimes_{X \times Y} V$ is usually denoted simply $U \times V$. Here we denote it in this somewhat weird way to highlight the similarity to external tensor products in six-functor formalisms (see also Section 4.6.4).

PROOF 4.4.1.1.5 ► PROOF OF PROPOSITION 4.4.1.1.4

Item 1: Co/Completeness

Omitted.

Item 2: Cartesian Closedness

See Section 4.4.7.

Item 3: Powersets as Sets of Relations

Indeed, we have

$$Rel(pt, X) \stackrel{\text{def}}{=} \mathcal{P}(pt \times X)$$
$$\cong \mathcal{P}(X)$$

and

$$Rel(X, pt) \stackrel{\text{def}}{=} \mathcal{P}(X \times pt)$$

$$\cong \mathcal{P}(X),$$

where we have used Item 5 of Proposition 4.1.3.1.4.

Item 4: Interaction With Products I

The inverse of the map in the statement is the map

$$\Phi \colon \mathcal{P}(X \mid \mid Y) \to \mathcal{P}(X) \times \mathcal{P}(Y)$$

01J9

defined by

$$\Phi(S) \stackrel{\text{def}}{=} (S_X, S_Y)$$

for each $S \in \mathcal{P}(X \coprod Y)$, where

$$S_X \stackrel{\text{def}}{=} \{ x \in X \mid (0, x) \in S \}$$

 $S_Y \stackrel{\text{def}}{=} \{ y \in Y \mid (1, y) \in S \}.$

The rest of the proof is omitted.

Item 5: Interaction With Products II

Omitted.

Item 6: Interaction With Products III

Omitted.

01JA 4.4.2 Functoriality of Powersets

01 JB PROPOSITION 4.4.2.1.1 ► FUNCTORIALITY OF POWERSETS

Let *X* be a set.

01JC

1. Functoriality I. The assignment $X \mapsto \mathcal{P}(X)$ defines a functor

$$\mathcal{P}_1 \colon \mathsf{Sets} \to \mathsf{Sets},$$

where

• *Action on Objects.* For each $A \in Obj(Sets)$, we have

$$\mathcal{P}_!(A) \stackrel{\text{def}}{=} \mathcal{P}(A).$$

• *Action on Morphisms*. For each $A, B \in Obj(Sets)$, the action on morphisms

$$\mathcal{P}_{*|A,B} \colon \mathsf{Sets}(A,B) \to \mathsf{Sets}(\mathcal{P}(A),\mathcal{P}(B))$$

of $\mathcal{P}_!$ at (A, B) is the map defined by sending a map of sets $f \colon A \to B$ to the map

$$\mathcal{P}_!(f) \colon \mathcal{P}(A) \to \mathcal{P}(B)$$

defined by

$$\mathcal{P}_!(f) \stackrel{\mathrm{def}}{=} f_!,$$

as in Definition 4.6.1.1.1.

01JD

2. Functoriality II. The assignment $X \mapsto \mathcal{P}(X)$ defines a functor

$$\mathcal{P}^{-1}$$
: Sets^{op} \rightarrow Sets,

where

• *Action on Objects.* For each $A \in Obj(Sets)$, we have

$$\mathcal{P}^{-1}(A) \stackrel{\text{def}}{=} \mathcal{P}(A)$$
.

• *Action on Morphisms*. For each *A*, *B* ∈ Obj(Sets), the action on morphisms

$$\mathcal{P}_{A,B}^{-1} \colon \mathsf{Sets}(A,B) \to \mathsf{Sets}(\mathcal{P}(B),\mathcal{P}(A))$$

of \mathcal{P}^{-1} at (A, B) is the map defined by sending a map of sets $f: A \to B$ to the map

$$\mathcal{P}^{-1}(f) \colon \mathcal{P}(B) \to \mathcal{P}(A)$$

defined by

$$\mathcal{P}^{-1}(f) \stackrel{\text{def}}{=} f^{-1},$$

as in Definition 4.6.2.1.1.

01JE

3. Functoriality III. The assignment $X \mapsto \mathcal{P}(X)$ defines a functor

$$\mathcal{P}_* \colon \mathsf{Sets} \to \mathsf{Sets},$$

where

• Action on Objects. For each $A \in Obj(Sets)$, we have

$$\mathcal{P}_*(A) \stackrel{\text{def}}{=} \mathcal{P}(A)$$
.

• *Action on Morphisms*. For each $A, B \in Obj(\mathsf{Sets})$, the action on morphisms

$$\mathcal{P}_{!|A,B} \colon \mathsf{Sets}(A,B) \to \mathsf{Sets}(\mathcal{P}(A),\mathcal{P}(B))$$

of \mathcal{P}_* at (A, B) is the map defined by sending a map of sets $f \colon A \to B$ to the map

$$\mathcal{P}_*(f) \colon \mathcal{P}(A) \to \mathcal{P}(B)$$

defined by

$$\mathcal{P}_*(f) \stackrel{\mathrm{def}}{=} f_*,$$

as in Definition 4.6.3.1.1.

PROOF 4.4.2.1.2 ► PROOF OF PROPOSITION 4.4.2.1.1

Item 1: Functoriality I

This follows from Items 3 and 4 of Proposition 4.6.1.1.7.

Item 2: Functoriality II

This follows from Items 3 and 4 of Proposition 4.6.2.1.5.

Item 3: Functoriality III

This follows from Items 3 and 4 of Proposition 4.6.3.1.9.

01JF 4.4.3 Adjointness of Powersets I

01JG PROPOSITION 4.4.3.1.1 ► ADJOINTNESS OF POWERSETS I

We have an adjunction

$$\left(\mathcal{P}^{-1} \dashv \mathcal{P}^{-1,\mathsf{op}}\right)$$
: Sets $\overset{\mathcal{P}^{-1}}{\underbrace{\mathcal{P}^{-1,\mathsf{op}}}}$ Sets,

witnessed by a bijection

$$\underbrace{\mathsf{Sets}^\mathsf{op}(\mathcal{P}(X),Y)}_{\substack{\mathsf{def}\\ = \mathsf{Sets}(Y,\mathcal{P}(X))}} \cong \mathsf{Sets}(X,\mathcal{P}(Y)),$$

natural in $X \in \text{Obj}(\mathsf{Sets})$ and $Y \in \text{Obj}(\mathsf{Sets}^{\mathsf{op}})$.

PROOF 4.4.3.1.2 ► PROOF OF PROPOSITION 4.4.3.1.1

We have

$$Sets^{op}(\mathcal{P}(A), B) \stackrel{\text{def}}{=} Sets(B, \mathcal{P}(A))$$

$$\cong Sets(B, Sets(A, \{t, f\})) \quad \text{(by Item 2 of Proposition 4.5.1 1.4)}$$

$$\cong Sets(A \times B, \{t, f\}) \quad \text{(by Item 2 of Proposition 4.1.3 1.4)}$$

$$\cong Sets(A, Sets(B, \{t, f\})) \quad \text{(by Item 2 of Proposition 4.1.3 1.4)}$$

$$\cong Sets(A, \mathcal{P}(B)), \quad \text{(by Item 2 of Proposition 4.5.1 1.4)}$$

where all bijections are natural in A and B.¹

¹Here we are using Item 3 of Proposition 4.5.1.1.4.

01JH 4.4.4 Adjointness of Powersets II

01JJ PROPOSITION 4.4.4.1.1 ► ADJOINTNESS OF POWERSETS II

We have an adjunction

$$(Gr \dashv \mathcal{P}_!)$$
: Sets $\underbrace{\stackrel{Gr}{\iota}}_{\mathcal{P}_!}$ Rel,

witnessed by a bijection of sets

$$Rel(Gr(X), Y) \cong Sets(X, \mathcal{P}(Y))$$

natural in $X \in \text{Obj}(\text{Sets})$ and $Y \in \text{Obj}(\text{Rel})$, where Gr is the graph functor of Relations, Item 1 of Proposition 8.2.2.1.2 and $\mathcal{P}_!$ is the functor of Relations, Proposition 8.7.5.1.1.

PROOF 4.4.4.1.2 ► PROOF OF PROPOSITION 4.4.4.1.1

We have

```
Rel(Gr(A), B) \cong \mathcal{P}(A \times B)
\cong Sets(A \times B, \{t, f\}) \qquad \text{(by Item 2 of Proposition 4.5.1.1.4)}
\cong Sets(A, Sets(B, \{t, f\})) \qquad \text{(by Item 2 of Proposition 4.1.3.1.4)}
\cong Sets(A, \mathcal{P}(B)), \qquad \text{(by Item 2 of Proposition 4.5.1.1.4)}
```

where all bijections are natural in A, (where we are using Item 3 of Proposition 4.5.1.1.4). Explicitly, this isomorphism is given by sending a relation $R: Gr(A) \to B$ to the map $R^{\dagger}: A \to \mathcal{P}(B)$ sending a to the subset R(a) of B, as in Relations, Definition 8.1.1.1.1.

Naturality in *B* is then the statement that given a relation $R: B \to B'$, the

commutes, which follows from Relations, Remark 8.7.1.1.3.

01JK 4.4.5 Powersets as Free Cocompletions

Let *X* be a set.

PROPOSITION 4.4.5.1.1 ➤ POWERSETS AS FREE COCOMPLETIONS: UNIVERSAL PROPERTY

The pair $(\mathcal{P}(X), \chi_{(-)})$ consisting of

- The powerset $(\mathcal{P}(X), \subset)$ of X of Definition 4.4.1.1.1;
- The characteristic embedding $\chi_{(-)}: X \hookrightarrow \mathcal{P}(X)$ of X into $\mathcal{P}(X)$ of Definition 4.5.4.1.1;

satisfies the following universal property:

- (\star) Given another pair (Y, f) consisting of
 - A suplattice (Y, ≤);
 - **–** A function $f: X \rightarrow Y$;

there exists a unique morphism of suplattices

$$(\mathcal{P}(X),\subset) \xrightarrow{\exists !} (Y,\preceq)$$

making the diagram

commute.

This is a rephrasing of Proposition 4.4.5.1.3, which we prove below.¹

¹Here we only remark that the unique morphism of suplattices in the statement is given by the left Kan extension $\text{Lan}_{\chi_X}(f)$ of f along χ_X .

PROPOSITION 4.4.5.1.3 ➤ POWERSETS AS FREE COCOMPLETIONS: ADJOINTNESS

We have an adjunction

$$(\mathcal{P} \dashv \overline{\mathbb{D}})$$
: Sets $\overset{\mathcal{P}}{\underset{\overline{\mathbb{D}}}{\longleftarrow}}$ SupLat,

witnessed by a bijection

$$\mathsf{SupLat}((\mathcal{P}(X),\subset),(Y,\preceq))\cong\mathsf{Sets}(X,Y),$$

natural in $X \in \text{Obj}(\mathsf{Sets})$ and $(Y, \preceq) \in \text{Obj}(\mathsf{SupLat})$, where:

- The category SupLat is the category of suplattices of ??.
- The map

$$\chi_X^* : \mathsf{SupLat}((\mathcal{P}(X), \subset), (Y, \preceq)) \to \mathsf{Sets}(X, Y)$$

witnessing the above bijection is defined by

$$\chi_X^*(f) \stackrel{\mathrm{def}}{=} f \circ \chi_X,$$

i.e. by sending a morphism of suplattices $f \colon \mathcal{P}(X) \to Y$ to the composition

$$X \stackrel{\chi_X}{\longleftrightarrow} \mathcal{P}(X) \stackrel{f}{\longrightarrow} Y.$$

The map

$$\operatorname{Lan}_{\chi_X} : \operatorname{\mathsf{Sets}}(X,Y) \to \operatorname{\mathsf{SupLat}}((\mathcal{P}(X),\subset),(Y,\preceq))$$

witnessing the above bijection is given by sending a function $f: X \to Y$ to its left Kan extension along χ_X ,

$$\operatorname{Lan}_{\chi_X}(f) \colon \mathcal{P}(X) \to Y, \qquad \chi_X = \left| \begin{array}{c} \mathcal{P}(X) \\ \operatorname{Lan}_{\chi_X}(f) \end{array} \right|$$

$$X \xrightarrow{f} Y.$$

Moreover, invoking the bijection $\mathcal{P}(X) \cong \mathsf{Sets}(X, \{\mathsf{t}, \mathsf{f}\})$ of Item 2 of Proposition 4.5.1.1.4, $\mathsf{Lan}_{\mathsf{Yx}}(f)$ can be explicitly computed by

$$\begin{aligned} \left[\operatorname{Lan}_{\chi_{X}}(f) \right] (U) &= \int_{x \in X}^{x \in X} \chi_{\mathcal{D}(X)}(\chi_{x}, U) \odot f(x) \\ &= \int_{x \in X}^{x \in X} \chi_{U}(x) \odot f(x) \\ &= \bigvee_{x \in X} (\chi_{U}(x) \odot f(x)) \\ &= \left(\bigvee_{x \in U} (\chi_{U}(x) \odot f(x)) \right) \vee \left(\bigvee_{x \in U^{c}} (\chi_{U}(x) \odot f(x)) \right) \\ &= \left(\bigvee_{x \in U} f(x) \right) \vee \left(\bigvee_{x \in U^{c}} \varnothing_{Y} \right) \\ &= \bigvee_{x \in U} f(x) \end{aligned}$$

for each $U \in \mathcal{P}(X)$, where:

- We have used ?? for the first equality.
- We have used Proposition 4.5.5.1.1 for the second equality.
- We have used ?? for the third equality.
- **–** The symbol \lor denotes the join in (Y, \preceq) .
- The symbol \odot denotes the tensor of an element of *Y* by a truth value as in $\ref{eq:Y}$. In particular, we have

true
$$\odot f(x) \stackrel{\text{def}}{=} f(x)$$
,
false $\odot f(x) \stackrel{\text{def}}{=} \varnothing_Y$,

where \emptyset_Y is the bottom element of (Y, \preceq) .

In particular, when $(Y, \preceq_Y) = (\mathcal{P}(B), \subset)$ for some set B, the Kan extension $\mathrm{Lan}_{\chi_X}(f)$ is given by

$$[\operatorname{Lan}_{\chi_X}(f)](U) = \bigvee_{x \in U} f(x)$$
$$= \bigcup_{x \in U} f(x)$$

for each $U \in \mathcal{P}(X)$.

PROOF 4.4.5.1.4 ▶ PROOF OF PROPOSITION 4.4.5.1.3

Map I

We define a map

$$\Phi_{X,Y} \colon \mathsf{SupLat}((\mathcal{P}(X), \subset), (Y, \preceq)) \to \mathsf{Sets}(X, Y)$$

as in the statement, i.e. by

$$\Phi_{X,Y}(f) \stackrel{\mathrm{def}}{=} f \circ \chi_X$$

for each $f \in \mathsf{SupLat}((\mathcal{P}(X), \subset), (Y, \preceq))$.

Map II

We define a map

$$\Psi_{X,Y} \colon \mathsf{Sets}(X,Y) \to \mathsf{SupLat}((\mathcal{P}(X),\subset),(Y,\preceq))$$

as in the statement, i.e. by

$$\Psi_{X,Y}(f) \stackrel{\text{def}}{=} \operatorname{Lan}_{\chi_X}(f), \qquad X \xrightarrow{\chi_X} \downarrow \underset{f}{\downarrow} \operatorname{Lan}_{\chi_X}(f)$$

for each $f \in Sets(X, Y)$.

Invertibility I

We claim that

$$\Psi_{X,Y} \circ \Phi_{X,Y} = \mathrm{id}_{\mathsf{SupLat}((\mathcal{P}(X),\subset),(Y,\preceq))}$$
.

We have

$$[\Psi_{X,Y} \circ \Phi_{X,Y}](f) \stackrel{\text{def}}{=} \Psi_{X,Y}(\Phi_{X,Y}(f))$$

$$\stackrel{\text{def}}{=} \Psi_{X,Y}(f \circ \chi_X)$$

$$\stackrel{\text{def}}{=} \text{Lan}_{\chi_X}(f \circ \chi_X)$$

for each $f \in \mathsf{SupLat}((\mathcal{P}(X), \subset), (Y, \preceq))$. We now claim that

$$\operatorname{Lan}_{\chi_X}(f\circ\chi_X)=f$$

for each $f \in \mathsf{SupLat}((\mathcal{P}(X), \subset), (Y, \preceq))$. Indeed, we have

$$\begin{aligned} \left[\operatorname{Lan}_{\chi_X} (f \circ \chi_X) \right] (U) &= \bigvee_{x \in U} f(\chi_X(x)) \\ &= f \left(\bigvee_{x \in U} \chi_X(x) \right) \\ &= f \left(\bigcup_{x \in U} \{x\} \right) \\ &= f(U) \end{aligned}$$

for each $U \in \mathcal{P}(X)$, where we have used that f is a morphism of suplattices and hence preserves joins for the second equality. This proves our claim. Since we have shown that

$$\left[\Psi_{X,Y}\circ\Phi_{X,Y}\right](f)=f$$

for each $f \in \mathsf{SupLat}((\mathcal{P}(X),\subset),(Y,\preceq))$, it follows that $\Psi_{X,Y} \circ \Phi_{X,Y}$ must be equal to the identity map $\mathsf{id}_{\mathsf{SupLat}((\mathcal{P}(X),\subset),(Y,\preceq))}$ of $\mathsf{SupLat}((\mathcal{P}(X),\subset),(Y,\preceq))$.

Invertibility II

We claim that

$$\Phi_{X,Y} \circ \Psi_{X,Y} = \mathrm{id}_{\mathsf{Sets}(X,Y)}$$
.

We have

$$\begin{aligned} \left[\Phi_{X,Y} \circ \Psi_{X,Y}\right](f) &\stackrel{\text{def}}{=} \Phi_{X,Y}\left(\Psi_{X,Y}(f)\right) \\ &\stackrel{\text{def}}{=} \Phi_{X,Y}\left(\text{Lan}_{\chi_X}(f)\right) \\ &\stackrel{\text{def}}{=} \text{Lan}_{\chi_X}(f) \circ \chi_X \end{aligned}$$

for each $f \in Sets(X, Y)$. We now claim that

$$\operatorname{Lan}_{\chi_X}(f) \circ \chi_X = f$$

for each $f \in Sets(X, Y)$. Indeed, we have

$$\left[\operatorname{Lan}_{\chi_X}(f)\circ\chi_X\right](x)=\bigvee_{y\in\{x\}}f(y)$$

$$= f(x)$$

for each $x \in X$. This proves our claim. Since we have shown that

$$[\Phi_{X,Y} \circ \Psi_{X,Y}](f) = f$$

for each $f \in \mathsf{Sets}(X,Y)$, it follows that $\Phi_{X,Y} \circ \Psi_{X,Y}$ must be equal to the identity map $\mathsf{id}_{\mathsf{Sets}(X,Y)}$ of $\mathsf{Sets}(X,Y)$.

Naturality for Φ, Part I

We need to show that, given a function $f: X \to X'$, the diagram

$$\begin{array}{ccc} \mathsf{SupLat}((\mathcal{P}(X'),\subset),(Y,\preceq)) & \xrightarrow{\Phi_{X',Y}} & \mathsf{Sets}(X',Y) \\ & & & \downarrow f^* \\ & \mathsf{SupLat}((\mathcal{P}(X),\subset),(Y,\preceq)) & \xrightarrow{\Phi_{X,Y}} & \mathsf{Sets}(X,Y) \end{array}$$

commutes. Indeed, we have

$$\begin{split} \left[\Phi_{X,Y} \circ \mathcal{P}_{!}(f)^{*}\right] &(\xi) \overset{\text{def}}{=} \Phi_{X,Y} \left(\mathcal{P}_{!}(f)^{*}(\xi)\right) \\ &\overset{\text{def}}{=} \Phi_{X,Y} (\xi \circ f_{!}) \\ &\overset{\text{def}}{=} (\xi \circ f_{!}) \circ \chi_{X} \\ &= \xi \circ (f_{!} \circ \chi_{X}) \\ &\overset{(\dagger)}{=} \xi \circ (\chi_{X'} \circ f) \\ &= (\xi \circ \chi_{X'}) \circ f \\ &\overset{\text{def}}{=} \Phi_{X',Y} (\xi) \circ f \\ &\overset{\text{def}}{=} f^{*} \left(\Phi_{X',Y}(\xi)\right) \\ &\overset{\text{def}}{=} \left[f^{*} \circ \Phi_{X',Y}\right] (\xi), \end{split}$$

for each $\xi \in \text{SupLat}((\mathcal{P}(X'), \subset), (Y, \preceq))$, where we have used Item 1 of Proposition 4.5.4.1.3 for the fifth equality above.

Naturality for Φ, Part II

We need to show that, given a morphism of suplattices

$$g: (Y, \preceq_Y) \rightarrow (Y', \preceq_{Y'}),$$

the diagram

$$\begin{split} \mathsf{SupLat}((\mathcal{P}(X),\subset),(Y,\preceq)) & \xrightarrow{\Phi_{X,Y}} \mathsf{Sets}(X,Y) \\ & & & & \downarrow^{g_!} \\ \mathsf{SupLat}((\mathcal{P}(X),\subset),(Y',\preceq)) & \xrightarrow{\Phi_{X,Y'}} \mathsf{Sets}(X,Y') \end{split}$$

commutes. Indeed, we have

$$\begin{split} \left[\Phi_{X,Y'} \circ g_!\right] (\xi) &\stackrel{\text{def}}{=} \Phi_{X,Y'}(g_!(\xi)) \\ &\stackrel{\text{def}}{=} \Phi_{X,Y'}(g \circ \xi) \\ &\stackrel{\text{def}}{=} (g \circ \xi) \circ \chi_X \\ &= g \circ (\xi \circ \chi_X) \\ &\stackrel{\text{def}}{=} g \circ \left(\Phi_{X,Y}(\xi)\right) \\ &\stackrel{\text{def}}{=} g_!\left(\Phi_{X,Y}(\xi)\right) \\ &\stackrel{\text{def}}{=} \left[g_! \circ \Phi_{X,Y}\right] (\xi). \end{split}$$

for each $\xi \in \mathsf{SupLat}((\mathcal{P}(X), \subset), (Y, \preceq))$.

Naturality for Ψ

Since Φ is natural in each argument and Φ is a componentwise inverse to Ψ in each argument, it follows from Categories, Item 2 of Proposition 11.9.7.1.2 that Ψ is also natural in each argument.

WARNING 4.4.5.1.5 ► FREE COCOMPLETION IS NOT AN IDEMPOTENT OPERATION

Although the assignment $X \mapsto \mathcal{P}(X)$ is called the *free cocompletion of* X, it is not an idempotent operation, i.e. we have $\mathcal{P}(\mathcal{P}(X)) \neq \mathcal{P}(X)$.

01JP 4.4.6 Powersets as Free Completions

Let *X* be a set.

PROPOSITION 4.4.6.1.1 ➤ POWERSETS AS FREE COMPLETIONS: UNIVERSAL PROPERTY

The pair $(\mathcal{P}(X), \chi_{(-)})$ consisting of

- The powerset of *X* together with reverse inclusion $\mathcal{P}(X)^{op} = (\mathcal{P}(X), \supset)$ of Definition 4.4.1.1.;
- The characteristic embedding $\chi_{(-)}: X \hookrightarrow \mathcal{P}(X)$ of X into $\mathcal{P}(X)$ of Definition 4.5.4.1.1;

satisfies the following universal property:

- (\star) Given another pair (Y, f) consisting of
 - An inflattice (Y, ≤);
 - A function $f: X \to Y$;

there exists a unique morphism of inflattices

$$(\mathcal{P}(X),\supset) \xrightarrow{\exists !} (Y,\preceq)$$

making the diagram

commute.

01JR

PROOF 4.4.6.1.2 ► PROOF OF PROPOSITION 4.4.6.1.1

This is a rephrasing of Proposition 4.4.6.1.3, which we prove below.¹

¹Here we only remark that the unique morphism of inflattices in the statement is given by the right Kan extension $\operatorname{Ran}_{\chi_X}(f)$ of f along χ_X .

PROPOSITION 4.4.6.1.3 ➤ POWERSETS AS FREE COMPLETIONS: ADJOINTNESS

We have an adjunction

$$(\mathcal{P} \dashv \overline{\mathbb{K}})$$
: Sets $\underbrace{\overset{\mathcal{P}}{\vdash}}_{\overline{\mathbb{K}}}$ InfLat,

witnessed by a bijection

$$InfLat((\mathcal{P}(X),\supset),(Y,\preceq)) \cong Sets(X,Y),$$

natural in $X \in \text{Obj}(\mathsf{Sets})$ and $(Y, \preceq) \in \text{Obj}(\mathsf{InfLat})$, where:

- The category InfLat is the category of inflattices of ??.
- The map

$$\chi_X^* : \mathsf{InfLat}((\mathcal{P}(X), \supset), (Y, \preceq)) \to \mathsf{Sets}(X, Y)$$

witnessing the above bijection is defined by

$$\chi_X^*(f) \stackrel{\text{def}}{=} f \circ \chi_X,$$

i.e. by sending a morphism of inflattices $f \colon \mathcal{P}(X)^{\mathsf{op}} \to Y$ to the composition

$$X \stackrel{\chi_X}{\hookrightarrow} \mathcal{P}(X)^{\mathsf{op}} \stackrel{f}{\longrightarrow} Y.$$

The map

$$\operatorname{Ran}_{Y_Y} : \operatorname{\mathsf{Sets}}(X,Y) \to \operatorname{\mathsf{InfLat}}((\mathcal{P}(X),\supset),(Y,\preceq))$$

witnessing the above bijection is given by sending a function $f: X \to Y$ to its right Kan extension along χ_X ,

$$\operatorname{Ran}_{\chi_X}(f) \colon \mathcal{P}(X)^{\operatorname{op}} \to Y, \qquad \begin{array}{c} \mathcal{P}(X)^{\operatorname{op}} \\ \chi_X & \downarrow \\ X & \xrightarrow{f} Y. \end{array}$$

Moreover, invoking the bijection $\mathcal{P}(X) \cong \operatorname{Sets}(X, \{t, f\})$ of Item 2 of Proposition 4.5.1.1.4, $\operatorname{Ran}_{\chi_X}(f)$ can be explicitly computed by

$$\left[\operatorname{Ran}_{\chi_X}(f)\right](U) = \int_{x \in X} \chi_{\mathcal{P}(X)^{\operatorname{op}}}(\chi_x, U) \, \, \text{th} \, \, f(x)$$

$$= \int_{x \in X} \chi_{\mathcal{P}(X)}(U, \chi_{x}) \, \pitchfork f(x)$$

$$= \int_{x \in X} \chi_{U}(x) \, \pitchfork f(x)$$

$$= \bigwedge_{x \in X} \chi_{U}(x) \, \pitchfork f(x)$$

$$= \left(\bigwedge_{x \in U} \chi_{U}(x) \, \pitchfork f(x) \right) \wedge \left(\bigwedge_{x \in U^{c}} \chi_{U}(x) \, \pitchfork f(x) \right)$$

$$= \left(\bigwedge_{x \in U} f(x) \right) \wedge \left(\bigwedge_{x \in U^{c}} \omega_{Y} \right)$$

$$= \left(\bigwedge_{x \in U} f(x) \right) \wedge \omega_{Y}$$

$$= \bigwedge_{x \in U} f(x)$$

for each $U \in \mathcal{P}(X)$, where:

- We have used ?? for the first equality.
- We have used Proposition 4.5.5.1.1 for the second equality.
- We have used ?? for the third equality.
- The symbol \land denotes the meet in (Y, \preceq) .
- The symbol \pitchfork denotes the cotensor of an element of *Y* by a truth value as in **??**. In particular, we have

true
$$\pitchfork f(x) \stackrel{\text{def}}{=} f(x)$$
, false $\pitchfork f(x) \stackrel{\text{def}}{=} \infty_Y$,

where ∞_Y is the top element of (Y, \preceq) .

In particular, when $(Y, \preceq_Y) = (\mathcal{P}(B), \subset)$ for some set B, the Kan extension $\operatorname{Ran}_{\chi_X}(f)$ is given by

$$[\operatorname{Ran}_{\chi_X}(f)](U) = \bigwedge_{x \in U} f(x)$$
$$= \bigcap_{x \in U} f(x)$$

for each $U \in \mathcal{P}(X)$.

PROOF 4.4.6.1.4 ► PROOF OF PROPOSITION 4.4.5.1.3

Map I

We define a map

$$\Phi_{X,Y} : \mathsf{InfLat}((\mathcal{P}(X), \supset), (Y, \preceq)) \to \mathsf{Sets}(X, Y)$$

as in the statement, i.e. by

$$\Phi_{X,Y}(f) \stackrel{\text{def}}{=} f \circ \chi_X$$

for each $f \in InfLat((\mathcal{P}(X), \supset), (Y, \preceq))$.

Map II

We define a map

$$\Psi_{X,Y} \colon \mathsf{Sets}(X,Y) \to \mathsf{InfLat}((\mathcal{P}(X),\supset),(Y,\preceq))$$

as in the statement, i.e. by

$$\Psi_{X,Y}(f) \stackrel{\text{def}}{=} \operatorname{Ran}_{\chi_X}(f), \qquad X \xrightarrow{\chi_X} \bigvee_{f} \operatorname{Ran}_{\chi_X}(f)$$

for each $f \in Sets(X, Y)$.

Invertibility I

We claim that

$$\Psi_{X,Y} \circ \Phi_{X,Y} = \mathrm{id}_{\mathsf{InfLat}((\mathcal{P}(X),\supset),(Y,\preceq))}$$
.

We have

$$\begin{split} \left[\Psi_{X,Y} \circ \Phi_{X,Y}\right](f) &\stackrel{\text{def}}{=} \Psi_{X,Y} \left(\Phi_{X,Y}(f)\right) \\ &\stackrel{\text{def}}{=} \Psi_{X,Y}(f \circ \chi_X) \\ &\stackrel{\text{def}}{=} \operatorname{Ran}_{\chi_X}(f \circ \chi_X) \end{split}$$

for each $f \in InfLat((\mathcal{P}(X), \supset), (Y, \preceq))$. We now claim that

$$\operatorname{Ran}_{\chi_X}(f\circ\chi_X)=f$$

for each $f \in InfLat((\mathcal{P}(X), \supset), (Y, \preceq))$. Indeed, we have

$$\begin{aligned} \left[\operatorname{Ran}_{\chi_X} (f \circ \chi_X) \right] (U) &= \bigwedge_{x \in U} f(\chi_X(x)) \\ &= f \left(\bigwedge_{x \in U} \chi_X(x) \right) \\ &= f \left(\bigcup_{x \in U} \{x\} \right) \\ &= f(U) \end{aligned}$$

for each $U \in \mathcal{P}(X)$, where we have used that f is a morphism of inflattices and hence preserves meets in $(\mathcal{P}(X), \supset)$ (i.e. joins in $(\mathcal{P}(X), \subset)$) for the second equality. This proves our claim. Since we have shown that

$$\big[\Psi_{X,Y}\circ\Phi_{X,Y}\big](f)=f$$

for each $f \in InfLat((\mathcal{P}(X), \supset), (Y, \preceq))$, it follows that $\Psi_{X,Y} \circ \Phi_{X,Y}$ must be equal to the identity map $id_{InfLat((\mathcal{P}(X), \supset), (Y, \preceq))}$ of $InfLat((\mathcal{P}(X), \supset), (Y, \preceq))$.

Invertibility II

We claim that

$$\Phi_{X,Y} \circ \Psi_{X,Y} = \mathrm{id}_{\mathsf{Sets}(X,Y)}$$
.

We have

$$\begin{split} \left[\Phi_{X,Y} \circ \Psi_{X,Y} \right] (f) &\stackrel{\text{def}}{=} \Phi_{X,Y} \big(\Psi_{X,Y} (f) \big) \\ &\stackrel{\text{def}}{=} \Phi_{X,Y} \big(\text{Ran}_{\chi_X} (f) \big) \\ &\stackrel{\text{def}}{=} \text{Ran}_{\chi_X} (f) \circ \chi_X \end{split}$$

for each $f \in Sets(X, Y)$. We now claim that

$$\operatorname{Ran}_{\gamma_X}(f) \circ \chi_X = f$$

for each $f \in Sets(X, Y)$. Indeed, we have

$$[\operatorname{Ran}_{\chi_X}(f) \circ \chi_X](x) = \bigwedge_{y \in \{x\}} f(y)$$
$$= f(x)$$

for each $x \in X$. This proves our claim. Since we have shown that

$$\left[\Phi_{X,Y}\circ\Psi_{X,Y}\right](f)=f$$

for each $f \in \mathsf{Sets}(X,Y)$, it follows that $\Phi_{X,Y} \circ \Psi_{X,Y}$ must be equal to the identity map $\mathsf{id}_{\mathsf{Sets}(X,Y)}$ of $\mathsf{Sets}(X,Y)$.

Naturality for Φ, Part I

We need to show that, given a function $f: X \to X'$, the diagram

$$\begin{array}{c|c} \mathsf{InfLat}((\mathcal{P}(X'),\supset),(Y,\preceq)) & \xrightarrow{\Phi_{X',Y}} \mathsf{Sets}(X',Y) \\ & & \downarrow f^* \\ \\ \mathsf{InfLat}((\mathcal{P}(X),\supset),(Y,\preceq)) & \xrightarrow{\Phi_{X,Y}} \mathsf{Sets}(X,Y) \end{array}$$

commutes. Indeed, we have

$$\begin{split} \left[\Phi_{X,Y} \circ \mathcal{P}_{!}(f)^{*}\right] &(\xi) \overset{\text{def}}{=} \Phi_{X,Y} \left(\mathcal{P}_{!}(f)^{*}(\xi)\right) \\ &\overset{\text{def}}{=} \Phi_{X,Y} (\xi \circ f_{!}) \\ &\overset{\text{def}}{=} (\xi \circ f_{!}) \circ \chi_{X} \\ &= \xi \circ (f_{!} \circ \chi_{X}) \\ &\overset{(\dagger)}{=} \xi \circ (\chi_{X'} \circ f) \\ &= (\xi \circ \chi_{X'}) \circ f \\ &\overset{\text{def}}{=} \Phi_{X',Y} (\xi) \circ f \\ &\overset{\text{def}}{=} f^{*} \left(\Phi_{X',Y}(\xi)\right) \\ &\overset{\text{def}}{=} \left[f^{*} \circ \Phi_{X',Y}\right] (\xi), \end{split}$$

for each $\xi \in InfLat((\mathcal{P}(X'), \supset), (Y, \preceq))$, where we have used Item 1 of Proposition 4.5.4.1.3 for the fifth equality above.

Naturality for Φ, Part II

We need to show that, given a cocontinuous morphism of posets

$$g: (Y, \preceq_Y) \to (Y', \preceq_{Y'}),$$

the diagram

$$\mathsf{InfLat}((\mathcal{P}(X),\supset),(Y,\preceq)) \xrightarrow{\Phi_{X,Y}} \mathsf{Sets}(X,Y)$$

$$\downarrow^{g_!} \qquad \qquad \downarrow^{g_!}$$

$$\mathsf{InfLat}((\mathcal{P}(X),\supset),(Y',\preceq)) \xrightarrow{\Phi_{X,Y'}} \mathsf{Sets}(X,Y')$$

commutes. Indeed, we have

$$\begin{split} \left[\Phi_{X,Y'} \circ g_!\right] (\xi) &\stackrel{\text{def}}{=} \Phi_{X,Y'}(g_!(\xi)) \\ &\stackrel{\text{def}}{=} \Phi_{X,Y'}(g \circ \xi) \\ &\stackrel{\text{def}}{=} (g \circ \xi) \circ \chi_X \\ &= g \circ (\xi \circ \chi_X) \\ &\stackrel{\text{def}}{=} g \circ \left(\Phi_{X,Y}(\xi)\right) \\ &\stackrel{\text{def}}{=} g_! \left(\Phi_{X,Y}(\xi)\right) \\ &\stackrel{\text{def}}{=} \left[g_! \circ \Phi_{X,Y}\right] (\xi). \end{split}$$

for each $\xi \in InfLat((\mathcal{P}(X), \supset), (Y, \preceq))$.

Naturality for Ψ

Since Φ is natural in each argument and Φ is a componentwise inverse to Ψ in each argument, it follows from Categories, Item 2 of Proposition 11.9.7.1.2 that Ψ is also natural in each argument.

WARNING 4.4.6.1.5 ► FREE COMPLETION IS NOT AN IDEMPOTENT OPERATION

Although the assignment $X \mapsto \mathcal{P}(X)^{\text{op}}$ is called the *free completion of* X, it is not an idempotent operation, i.e. we have $\mathcal{P}(\mathcal{P}(X)^{\text{op}})^{\text{op}} \neq \mathcal{P}(X)^{\text{op}}$.

01JT 4.4.7 The Internal Hom of a Powerset

Let *X* be a set and let $U, V \in \mathcal{P}(X)$.

PROPOSITION 4.4.7.1.1 ► THE INTERNAL HOM OF A POWERSET 01JU

The **internal Hom of** $\mathcal{P}(X)$ **from** U **to** V is the subset $[U,V]_X^{-1}$ of X given by

$$[U, V]_X = U^{c} \cup V$$
$$= (U \setminus V)^{c}$$

where U^{c} is the complement of U of Definition 4.3.11.1.1.

¹Further Notation: Also written $\mathbf{Hom}_{\mathcal{P}(X)}(U,V)$.

PROOF 4.4.7.1.2 ► PROOF OF PROPOSITION 4.4.7.1.1

Proof of the Equality $U^{c} \cup V = (U \setminus V)^{c}$

We have

$$(U \setminus V)^{c} \stackrel{\text{def}}{=} X \setminus (U \setminus V)$$

$$= (X \cap V) \cup (X \setminus U)$$

$$= V \cup (X \setminus U)$$

$$\stackrel{\text{def}}{=} V \cup U^{c}$$

$$= U^{c} \cup V,$$

where we have used:

- 1. Item 10 of Proposition 4.3.10.1.2 for the second equality.
 - 2. Item 4 of Proposition 4.3.9.1.2 for the third equality.
 - 3. Item 4 of Proposition 4.3.8.1.2 for the last equality.

This finishes the proof.

Proof that $U^c \cup V$ Is Indeed the Internal Hom

This follows from Item 2 of Proposition 4.3.9.1.2.

REMARK 4.4.7.1.3 \blacktriangleright Intuition for the Internal Hom of $\mathcal{P}(X)$ 004C

Henning Makholm suggests the following heuristic intuition for the internal Hom of $\mathcal{P}(X)$ from U to V ([MSE 267365]):

1. Since products in $\mathcal{P}(X)$ are given by binary intersections (Item 1 of Proposition 4.4.1.1.4), the right adjoint $\operatorname{Hom}_{\mathcal{P}(X)}(U,-)$ of $U \cap -$ may be thought of as a function type [U, V].

020S

020T

020U

01JV

01JW

2. Under the Curry–Howard correspondence (??), the function type [U,V] corresponds to implication $U \Rightarrow V$.

01JX

3. Implication $U \Rightarrow V$ is logically equivalent to $\neg U \lor V$.

01JY

4. The expression $\neg U \lor V$ then corresponds to the set $U^c \cup V$ in $\mathcal{P}(X)$.

01JZ

5. The set $U^c \vee V$ turns out to indeed be the internal Hom of $\mathcal{P}(X)$.

01K0

PROPOSITION 4.4.7.1.4 ► PROPERTIES OF INTERNAL HOMS OF POWERSETS

Let *X* be a set.

01K1

1. Functoriality. The assignments $U, V, (U, V) \mapsto \operatorname{Hom}_{\mathcal{P}(X)}$ define func-

$$\begin{array}{ll} [U,-]_X\colon & (\mathcal{P}(X),\supset) & \to (\mathcal{P}(X),\subset), \\ [-,V]_X\colon & (\mathcal{P}(X),\subset) & \to (\mathcal{P}(X),\subset), \\ [-_1,-_2]_X\colon (\mathcal{P}(X)\times\mathcal{P}(X),\subset\times\supset) \to (\mathcal{P}(X),\subset). \end{array}$$

In particular, the following statements hold for each $U, V, A, B \in \mathcal{P}(X)$:

01K2

01K3

01K4

01K5

- (a) If $U \subset A$, then $[A, V]_X \subset [U, V]_X$.
- (b) If $V \subset B$, then $[U,V]_X \subset [U,B]_X$.
- (c) If $U \subset A$ and $V \subset B$, then $[A, V]_X \subset [U, B]_X$.
- 2. Adjointness. We have adjunctions

$$(U \cap \neg \dashv [U, \neg]_X): \quad \mathcal{P}(X) \underbrace{\downarrow}_{[U, \neg]_X} \mathcal{P}(X),$$
$$(\neg \cap V \dashv [V, \neg]_X): \quad \mathcal{P}(X) \underbrace{\downarrow}_{[V, \neg]_X} \mathcal{P}(X),$$

$$(-\cap V + [V, -]_X): \mathcal{P}(X) \xrightarrow{\stackrel{\cap \cap V}{\bot}} \mathcal{P}(X),$$

witnessed by bijections

$$\operatorname{Hom}_{\mathcal{P}(X)}(U \cap V, W) \cong \operatorname{Hom}_{\mathcal{P}(X)}(U, [V, W]_X),$$

 $\operatorname{Hom}_{\mathcal{P}(X)}(U \cap V, W) \cong \operatorname{Hom}_{\mathcal{P}(X)}(V, [U, W]_X).$

In particular, the following statements hold for each $U, V, W \in \mathcal{P}(X)$:

01K6

(a) The following conditions are equivalent:

01K7

i. We have
$$U \cap V \subset W$$
.

01K8

ii. We have $U \subset [V, W]_X$.

01K9

(b) The following conditions are equivalent:

01KA

i. We have
$$U \cap V \subset W$$
.

01KB

ii. We have
$$V \subset [U, W]_X$$
.

01KC

3. Interaction With the Empty Set I. We have

$$[U,\emptyset]_X=U^{\mathsf{c}},$$

$$[\emptyset,V]_X=X,$$

natural in $U, V \in \mathcal{P}(X)$.

01KD

4. Interaction With X. We have

$$[U,X]_X=X,$$

$$[X,V]_X=V,$$

natural in $U, V \in \mathcal{P}(X)$.

01KE

5. Interaction With the Empty Set II. The functor

$$D_X \colon \mathcal{P}(X)^{\mathsf{op}} \to \mathcal{P}(X)$$

defined by

$$D_X \stackrel{\text{def}}{=} [-, \emptyset]_X$$
$$= (-)^{c}$$

is an involutory isomorphism of categories, making \emptyset into a dualising object for $(\mathcal{P}(X), \cap, X, [-, -]_X)$ in the sense of **??**. In particular:

01KF

(a) The diagram

commutes, i.e. we have

$$\underbrace{D_X(D_X(U))}_{\text{def}} = U$$

for each $U \in \mathcal{P}(X)$.

(b) The diagram

commutes, i.e. we have

$$\underbrace{D_X(U\cap D_X(V))}_{\substack{\text{def}\\=[U\cap [V,\emptyset]_X,\emptyset]_X}}=[U,V]_X$$

for each $U, V \in \mathcal{P}(X)$.

6. *Interaction With the Empty Set III.* Let $f: X \to Y$ be a function.

(a) Interaction With Direct Images. The diagram

$$\begin{array}{ccc}
\mathcal{P}(X)^{\mathsf{op}} & \xrightarrow{f_*^{\mathsf{op}}} & \mathcal{P}(Y)^{\mathsf{op}} \\
\downarrow^{D_X} & & \downarrow^{D_Y} \\
\mathcal{P}(X) & \xrightarrow{f_1} & \mathcal{P}(Y)
\end{array}$$

commutes, i.e. we have

$$f_!(D_X(U)) = D_Y(f_*(U))$$

for each $U \in \mathcal{P}(X)$.

(b) Interaction With Inverse Images. The diagram

$$\begin{array}{ccc}
\mathcal{P}(Y)^{\mathsf{op}} & \xrightarrow{f^{-1},\mathsf{op}} & \mathcal{P}(X)^{\mathsf{op}} \\
\downarrow^{D_{Y}} & & \downarrow^{D_{X}} \\
\mathcal{P}(Y) & \xrightarrow{f^{-1}} & \mathcal{P}(X)
\end{array}$$

01KG

01KH

01KJ

01KK

commutes, i.e. we have

$$f^{-1}(D_Y(U)) = D_X(f^{-1}(U))$$

for each $U \in \mathcal{P}(X)$.

(c) Interaction With Codirect Images. The diagram

$$\begin{array}{ccc}
\mathcal{P}(X)^{\mathsf{op}} & \xrightarrow{f_!^{\mathsf{op}}} & \mathcal{P}(Y)^{\mathsf{op}} \\
\downarrow^{D_X} & & \downarrow^{D_Y} \\
\mathcal{P}(X) & \xrightarrow{f_*} & \mathcal{P}(Y)
\end{array}$$

commutes, i.e. we have

$$f_*(D_X(U)) = D_Y(f_!(U))$$

for each $U \in \mathcal{P}(X)$.

7. Interaction With Unions of Families of Subsets I. The diagram

$$\mathcal{P}(\mathcal{P}(X))^{\text{op}} \times \mathcal{P}(\mathcal{P}(X)) \xrightarrow{[-1,-2]_{\mathcal{P}(X)}} \mathcal{P}(\mathcal{P}(X)) \\
\downarrow^{\text{op}} \times \cup^{\text{op}} \qquad \qquad \downarrow \cup \\
\mathcal{P}(X)^{\text{op}} \times \mathcal{P}(X) \xrightarrow{[-1,-2]_X} \mathcal{P}(X),$$

does not commute in general, i.e. we may have

$$\bigcup_{W \in [\mathcal{U}, \mathcal{V}]_{\mathcal{P}(X)}} W \neq \left[\bigcup_{U \in \mathcal{U}} U, \bigcup_{V \in \mathcal{V}} V\right]_X$$

in general, where $\mathcal{U} \in \mathcal{P}(\mathcal{P}(X))$.

01KL

01KM

01KN

8. Interaction With Unions of Families of Subsets II. The diagram

commutes, i.e. we have

$$\left[\bigcup_{U\in\mathcal{U}}U,V\right]_X=\bigcap_{U\in\mathcal{U}}[U,V]_X$$

for each $U \in \mathcal{P}(\mathcal{P}(X))$ and each $V \in \mathcal{P}(X)$.

01KP

9. Interaction With Unions of Families of Subsets III. The diagram

$$\begin{array}{ccc}
\mathcal{P}(\mathcal{P}(X)) & \xrightarrow{\bigcup} & \mathcal{P}(X) \\
id_{\mathcal{P}(X)} \star [U,-]_X & & & \downarrow [U,-]_X \\
\mathcal{P}(\mathcal{P}(X)) & \xrightarrow{\downarrow} & \mathcal{P}(X)
\end{array}$$

commutes, i.e. we have

$$\left[U, \bigcup_{V \in \mathcal{V}} V\right]_X = \bigcup_{V \in \mathcal{V}} [U, V]_X$$

for each $U \in \mathcal{P}(X)$ and each $\mathcal{V} \in \mathcal{P}(\mathcal{P}(X))$.

01KQ

10. Interaction With Intersections of Families of Subsets I. The diagram

does not commute in general, i.e. we may have

$$\bigcap_{W \in [\mathcal{U}, \mathcal{V}]_{\mathcal{P}(X)}} W \neq \left[\bigcap_{U \in \mathcal{U}} U, \bigcap_{V \in \mathcal{V}} V\right]_X$$

in general, where $\mathcal{U} \in \mathcal{P}(\mathcal{P}(X))$.

11. Interaction With Intersections of Families of Subsets II. The diagram

commutes, i.e. we have

$$\left[\bigcap_{U\in\mathcal{U}}U,V\right]_X=\bigcup_{U\in\mathcal{U}}[U,V]_X$$

for each $U \in \mathcal{P}(\mathcal{P}(X))$ and each $V \in \mathcal{P}(X)$.

12. Interaction With Intersections of Families of Subsets III. The diagram

$$\begin{array}{ccc}
\mathcal{P}(\mathcal{P}(X)) & \xrightarrow{\bigcap} & \mathcal{P}(X) \\
\operatorname{id}_{\mathcal{P}(X)} \star [U,-]_X & & & \downarrow [U,-]_X \\
\mathcal{P}(\mathcal{P}(X)) & \xrightarrow{\bigcap} & \mathcal{P}(X)
\end{array}$$

commutes, i.e. we have

$$\left[U,\bigcap_{V\in\mathcal{V}}V\right]_{Y}=\bigcap_{V\in\mathcal{V}}[U,V]_{X}$$

for each $U \in \mathcal{P}(X)$ and each $\mathcal{V} \in \mathcal{P}(\mathcal{P}(X))$.

01KR

01KS

01KT

13. Interaction With Binary Unions. We have equalities of sets

$$[U \cap V, W]_X = [U, W]_X \cup [V, W]_X,$$

 $[U, V \cap W]_X = [U, V]_X \cap [U, W]_X$

for each $U, V, W \in \mathcal{P}(X)$.

01KU

14. Interaction With Binary Intersections. We have equalities of sets

$$[U \cup V, W]_X = [U, W]_X \cap [V, W]_X,$$

 $[U, V \cup W]_X = [U, V]_X \cup [U, W]_X$

for each $U, V, W \in \mathcal{P}(X)$.

01KV

15. Interaction With Differences. We have equalities of sets

$$[U \setminus V, W]_X = [U, W]_X \cup [V^{c}, W]_X$$
$$= [U, W]_X \cup [U, V]_X,$$
$$[U, V \setminus W]_X = [U, V]_X \setminus (U \cap W)$$

for each $U, V, W \in \mathcal{P}(X)$.

01KW

16. Interaction With Complements. We have equalities of sets

$$[U^{c}, V]_{X} = U \cup V,$$

$$[U, V^{c}]_{X} = U \cap V,$$

$$[U, V]_{X}^{c} = U \setminus V$$

for each $U, V \in \mathcal{P}(X)$.

01KX

17. Interaction With Characteristic Functions. We have

$$\chi_{[U,V]_{\mathcal{P}(X)}}(x) = \max(1 - \chi_U \pmod{2}, \chi_V)$$

for each $U, V \in \mathcal{P}(X)$.

01KY

18. *Interaction With Direct Images.* Let $f: X \to Y$ be a function. The diagram

commutes, i.e. we have an equality of sets

$$f_!([U,V]_X) = [f_*(U), f_!(V)]_Y,$$

natural in $U, V \in \mathcal{P}(X)$.

19. *Interaction With Inverse Images.* Let $f: X \to Y$ be a function. The diagram

$$\mathcal{P}(Y)^{\mathsf{op}} \times \mathcal{P}(Y) \xrightarrow{f^{-1}, \mathsf{op} \times f^{-1}} \mathcal{P}(X)^{\mathsf{op}} \times \mathcal{P}(X)
[-1, -2]_Y \qquad \qquad \qquad \downarrow [-1, -2]_X
\mathcal{P}(Y) \xrightarrow{f^{-1}} \mathcal{P}(X)$$

commutes, i.e. we have an equality of sets

$$f^{-1}([U,V]_Y) = [f^{-1}(U), f^{-1}(V)]_X,$$

natural in $U, V \in \mathcal{P}(X)$.

20. *Interaction With Codirect Images.* Let $f: X \to Y$ be a function. We have a natural transformation

with components

$$[f_!(U), f_*(V)]_V \subset f_*([U, V]_X)$$

indexed by $U, V \in \mathcal{P}(X)$.

01L0

01KZ

PROOF 4.4.7.1.5 ► PROOF OF PROPOSITION 4.4.7.1.4

Item 1: Functoriality

Since $\mathcal{P}(X)$ is posetal, it suffices to prove Items 1a to 1c.

1. Proof of Item 1a: We have

$$[A, V]_X \stackrel{\text{def}}{=} A^{\mathsf{c}} \cup V$$
$$\subset U^{\mathsf{c}} \cup V$$
$$\stackrel{\text{def}}{=} [U, V]_X,$$

where we have used:

- (a) Item 1 of Proposition 4.3.11.1.2, which states that if $U \subset A$, then $A^{c} \subset U^{c}$.
- (b) Item 1a of Item 1 of Proposition 4.3.11.1.2, which states that if $A^c \subset U^c$, then $A^c \cup K \subset U^c \cup K$ for any $K \in \mathcal{P}(X)$.
- 2. Proof of Item 1b: We have

$$\begin{split} [U,V]_X &\stackrel{\text{def}}{=} U^\mathsf{c} \cup V \\ &\subset U^\mathsf{c} \cup B \\ &\stackrel{\text{def}}{=} [U,B]_X, \end{split}$$

where we have used Item 1b of Item 1 of Proposition 4.3.11.1.2, which states that if $V \subset B$, then $K \cup V \subset K \cup B$ for any $K \in \mathcal{P}(X)$.

3. Proof of Item 1c: We have

$$[A, V]_X \subset [U, V]_X$$
$$\subset [U, B]_X,$$

where we have used Items 1a and 1b.

This finishes the proof.

Item 2: Adjointness

This is a repetition of Item 2 of Proposition 4.3.9.1.2 and is proved there.

Item 3: Interaction With the Empty Set I

020X

020W

020Y

020Z

We have

$$[U,\emptyset]_X \stackrel{\text{def}}{=} U^{\mathsf{c}} \cup \emptyset$$
$$= U^{\mathsf{c}},$$

where we have used Item 3 of Proposition 4.3.8.1.2, and we have

$$\begin{split} [\emptyset, V]_X &\stackrel{\text{def}}{=} \emptyset^\mathsf{c} \cup V \\ &\stackrel{\text{def}}{=} (X \setminus \emptyset) \cup V \\ &= X \cup V \\ &= X, \end{split}$$

where we have used:

- 1. Item 12 of Proposition 4.3.10.1.2 for the first equality.
- 2. Item 5 of Proposition 4.3.8.1.2 for the last equality.

Since $\mathcal{P}(X)$ is posetal, naturality is automatic (Categories, Item 4 of Proposition 11.2.7.1.2).

Item 4: Interaction With *X*

We have

$$[U,X]_X \stackrel{\text{def}}{=} U^{\mathsf{c}} \cup X$$
$$= X,$$

where we have used Item 5 of Proposition 4.3.8.1.2, and we have

$$[X, V]_X \stackrel{\text{def}}{=} X^{\mathsf{c}} \cup V$$

$$\stackrel{\text{def}}{=} (X \setminus X) \cup V$$

$$= \emptyset \cup V$$

$$= V,$$

where we have used Item 3 of Proposition 4.3.8.1.2 for the last equality. Since $\mathcal{P}(X)$ is posetal, naturality is automatic (Categories, Item 4 of Proposition 11.2.7.1.2).

Item 5: Interaction With the Empty Set II

0211

We have

$$D_X(D_X(U)) \stackrel{\text{def}}{=} [[U, \emptyset]_X, \emptyset]_X$$
$$= [U^c, \emptyset]_X$$
$$= (U^c)^c$$
$$= U,$$

where we have used:

- 1. Item 3 for the second and third equalities.
- 0214 2. Item 3 of Proposition 4.3.11.1.2 for the fourth equality.

Since $\mathcal{P}(X)$ is posetal, naturality is automatic (Categories, Item 4 of Proposition 11.2.7.1.2), and thus we have

$$[[-,\emptyset]_X,\emptyset]_X \cong \mathrm{id}_{\mathcal{P}(X)}$$

This finishes the proof.

Item 6: Interaction With the Empty Set III

Since $D_X = (-)^c$, this is essentially a repetition of the corresponding results for (-)c, namely Items 5 to 7 of Proposition 4.3.11.1.2.

Item 7: Interaction With Unions of Families of Subsets I

By Item 3 of Proposition 4.4.7.1.4, we have

$$[\mathcal{U}, \emptyset]_{\mathcal{P}(X)} = \mathcal{U}^{\mathsf{c}},$$

 $[\mathcal{U}, \emptyset]_{X} = \mathcal{U}^{\mathsf{c}}.$

With this, the counterexample given in the proof of Item 10 of Proposition 4.3.6.1.2 then applies.

Item 8: Interaction With Unions of Families of Subsets II

We have

$$\left[\bigcup_{U \in \mathcal{U}} U, V\right]_X \stackrel{\text{def}}{=} \left(\bigcup_{U \in \mathcal{U}} U\right)^{c} \cup V$$
$$= \left(\bigcap_{U \in \mathcal{U}} U^{c}\right) \cup V$$

$$= \bigcap_{U \in \mathcal{U}} (U^{c} \cup V)$$

$$\stackrel{\text{def}}{=} \bigcap_{U \in \mathcal{U}} [U, V]_{X},$$

where we have used:

- 1. Item 11 of Proposition 4.3.6.1.2 for the second equality.
- 2. Item 6 of Proposition 4.3.7.1.2 for the third equality.

This finishes the proof.

Item 9: Interaction With Unions of Families of Subsets III

We have

$$\bigcup_{V \in \mathcal{V}} [U, V]_X \stackrel{\text{def}}{=} \bigcup_{V \in \mathcal{V}} (U^{\mathsf{c}} \cup V)$$

$$= U^{\mathsf{c}} \cup \left(\bigcup_{V \in \mathcal{V}} V\right)$$

$$\stackrel{\text{def}}{=} \left[U, \bigcup_{V \in \mathcal{V}} V\right]_X.$$

where we have used Item 6. This finishes the proof.

Item 10: Interaction With Intersections of Families of Subsets I

Let $X = \{0, 1\}$, let $\mathcal{U} = \{\{0, 1\}\}\$, and let $\mathcal{V} = \{\{0\}, \{0, 1\}\}\$. We have

$$\bigcap_{W \in [\mathcal{U}, \mathcal{V}]_{\mathcal{P}(X)}} W = \bigcap_{W \in \mathcal{P}(X)} W$$
$$= \{0, 1\},$$

whereas

$$\left[\bigcap_{U\in\mathcal{U}}U,\bigcap_{V\in\mathcal{V}}V\right]_X=\left[\{0,1\},\{0\}\right]$$
$$=\{0\},$$

0215

Thus we have

$$\bigcap_{W\in [\mathcal{U},\mathcal{V}]_{\mathcal{P}(X)}} W = \{0,1\} \neq \{0\} = \left[\bigcap_{U\in\mathcal{U}} U,\bigcap_{V\in\mathcal{V}} V\right]_X.$$

This finishes the proof.

Item 11: Interaction With Intersections of Families of Subsets II

We have

$$\left[\bigcap_{U\in\mathcal{U}}U,V\right]_{X}^{\operatorname{def}}\left(\bigcap_{U\in\mathcal{U}}U\right)^{\operatorname{c}}\cup V$$

$$=\left(\bigcup_{U\in\mathcal{U}}U^{\operatorname{c}}\right)\cup V$$

$$=\bigcup_{U\in\mathcal{U}}(U^{\operatorname{c}}\cup V)$$

$$\stackrel{\operatorname{def}}{=}\bigcup_{U\in\mathcal{U}}[U,V]_{X},$$

where we have used:

1. Item 12 of Proposition 4.3.6.1.2 for the second equality.

2. Item 6 of Proposition 4.3.7.1.2 for the third equality.

This finishes the proof.

Item 12: Interaction With Intersections of Families of Subsets III

We have

0217

0218

$$\begin{split} \bigcap_{V \in \mathcal{V}} [U, V]_X &\stackrel{\text{def}}{=} \bigcap_{V \in \mathcal{V}} (U^\mathsf{c} \cup V) \\ &= U^\mathsf{c} \cup \left(\bigcap_{V \in \mathcal{V}} V\right) \\ &\stackrel{\text{def}}{=} \left[U, \bigcap_{V \in \mathcal{V}} V\right]_X. \end{split}$$

where we have used Item 6. This finishes the proof.

Item 13: Interaction With Binary Unions

We have

0219

021A

021B

021C

021D

$$\begin{split} [U \cap V, W]_X &\stackrel{\text{def}}{=} (U \cap V)^{\mathsf{c}} \cup W \\ &= (U^{\mathsf{c}} \cup V^{\mathsf{c}}) \cup W \\ &= (U^{\mathsf{c}} \cup V^{\mathsf{c}}) \cup (W \cup W) \\ &= (U^{\mathsf{c}} \cup W) \cup (V^{\mathsf{c}} \cup W) \\ &\stackrel{\text{def}}{=} [U, W]_X \cup [V, W]_X, \end{split}$$

where we have used:

- 1. Item 2 of Proposition 4.3.11.1.2 for the second equality.
 - 2. Item 8 of Proposition 4.3.8.1.2 for the third equality.
 - 3. Several applications of Items 2 and 4 of Proposition 4.3.8.1.2 and for the fourth equality.

For the second equality in the statement, we have

$$[U, V \cap W]_X \stackrel{\text{def}}{=} U^{c} \cup (V \cap W)$$
$$= (U^{c} \cup V) \cap (U^{c} \cap W)$$
$$\stackrel{\text{def}}{=} [U, V]_X \cap [U, W]_X,$$

where we have used Item 6 of Proposition 4.3.8.1.2 for the second equality.

Item 14: Interaction With Binary Intersections

We have

$$\begin{split} [U \cup V, W]_X &\stackrel{\text{def}}{=} (U \cup V)^{\mathsf{c}} \cup W \\ &= (U^{\mathsf{c}} \cap V^{\mathsf{c}}) \cup W \\ &= (U^{\mathsf{c}} \cup W) \cap (V^{\mathsf{c}} \cup W) \\ &\stackrel{\text{def}}{=} [U, W]_X \cap [V, W]_X, \end{split}$$

where we have used:

- 1. Item 2 of Proposition 4.3.11.1.2 for the second equality.
- 2. Item 6 of Proposition 4.3.8.1.2 for the third equality.

Now, for the second equality in the statement, we have

$$\begin{split} [U, V \cup W]_X &\stackrel{\text{def}}{=} U^{\mathsf{c}} \cup (V \cup W) \\ &= (U^{\mathsf{c}} \cup U^{\mathsf{c}}) \cup (V \cup W) \\ &= (U^{\mathsf{c}} \cup V) \cup (U^{\mathsf{c}} \cup W) \\ &\stackrel{\text{def}}{=} [U, V]_X \cup [U, W]_X, \end{split}$$

where we have used:

- 1. Item 8 of Proposition 4.3.8.1.2 for the second equality. 021E
 - 2. Several applications of Items 2 and 4 of Proposition 4.3.8.1.2 and for the third equality.

This finishes the proof.

Item 15: Interaction With Differences

We have

$$\begin{split} [U \setminus V, W]_X &\stackrel{\mathrm{def}}{=} (U \setminus V)^{\mathsf{c}} \cup W \\ &\stackrel{\mathrm{def}}{=} (X \setminus (U \setminus V)) \cup W \\ &= ((X \cap V) \cup (X \setminus U)) \cup W \\ &= (V \cup (X \setminus U)) \cup W \\ &\stackrel{\mathrm{def}}{=} (V \cup U^{\mathsf{c}}) \cup W \\ &= (V \cup (U^{\mathsf{c}} \cup U^{\mathsf{c}})) \cup W \\ &= (U^{\mathsf{c}} \cup W) \cup (U^{\mathsf{c}} \cup V) \\ &\stackrel{\mathrm{def}}{=} [U, W]_X \cup [U, V]_X, \end{split}$$

where we have used:

- 1. Item 10 of Proposition 4.3.10.1.2 for the third equality.
- 2. Item 4 of Proposition 4.3.9.1.2 for the fourth equality. 021H
 - 3. Item 8 of Proposition 4.3.8.1.2 for the sixth equality.
 - 4. Several applications of Items 2 and 4 of Proposition 4.3.8.1.2 and for the seventh equality.

021F

021G

021J

021K

We also have

$$\begin{split} [U \setminus V, W]_X &\stackrel{\text{def}}{=} (U \setminus V)^c \cup W \\ &\stackrel{\text{def}}{=} (X \setminus (U \setminus V)) \cup W \\ &= ((X \cap V) \cup (X \setminus U)) \cup W \\ &= (V \cup (X \setminus U)) \cup W \\ &\stackrel{\text{def}}{=} (V \cup U^c) \cup W \\ &= (V \cup U^c) \cup (W \cup W) \\ &= (U^c \cup W) \cup (V \cup W) \\ &= (U^c \cup W) \cup ((V^c)^c \cup W) \\ &\stackrel{\text{def}}{=} [U, W]_X \cup [V^c, W]_X, \end{split}$$

where we have used:

- 1. Item 10 of Proposition 4.3.10.1.2 for the third equality. 021L
 - 2. Item 4 of Proposition 4.3.9.1.2 for the fourth equality.
 - 3. Item 8 of Proposition 4.3.8.1.2 for the sixth equality.
 - 4. Several applications of Items 2 and 4 of Proposition 4.3.8.1.2 and for the seventh equality.
 - 5. Item 3 of Proposition 4.3.11.1.2 for the eighth equality.

Now, for the second equality in the statement, we have

$$\begin{split} [U,V\setminus W]_X &\stackrel{\mathrm{def}}{=} U^{\mathsf{c}} \cup (V\setminus W) \\ &= (V\setminus W) \cup U^{\mathsf{c}} \\ &= (V\cup U^{\mathsf{c}})\setminus (W\setminus U^{\mathsf{c}}) \\ &\stackrel{\mathrm{def}}{=} (V\cup U^{\mathsf{c}})\setminus (W\setminus (X\setminus U)) \\ &= (V\cup U^{\mathsf{c}})\setminus ((W\cap U)\cup (W\setminus X)) \\ &= (V\cup U^{\mathsf{c}})\setminus ((W\cap U)\cup \emptyset) \\ &= (V\cup U^{\mathsf{c}})\setminus (W\cap U) \\ &= (V\cup U^{\mathsf{c}})\setminus (U\cap W) \\ &\stackrel{\mathrm{def}}{=} [U,V]_X\setminus (U\cap W) \end{split}$$

where we have used:

021M

021N

021P

021Q

021R 1. Item 4 of Proposition 4.3.8.1.2 for the second equality.

2. Item 4 of Proposition 4.3.10.1.2 for the third equality.

3. Item 10 of Proposition 4.3.10.1.2 for the fifth equality.

4. Item 13 of Proposition 4.3.10.1.2 for the sixth equality.

5. Item 3 of Proposition 4.3.8.1.2 for the seventh equality.

6. Item 5 of Proposition 4.3.9.1.2 for the eighth equality.

This finishes the proof.

Item 16: Interaction With Complements

We have

021S

021T

021U

021V

021W

$$[U^{c}, V]_{X} \stackrel{\text{def}}{=} (U^{c})^{c} \cup V,$$
$$= U \cup V,$$

where we have used Item 3 of Proposition 4.3.11.1.2. We also have

$$[U, V^{c}]_{X} \stackrel{\text{def}}{=} U^{c} \cup V^{c}$$
$$= U \cap V$$

where we have used Item 2 of Proposition 4.3.11.1.2. Finally, we have

$$[U, V]_X^{c} = ((U \setminus V)^{c})^{c}$$
$$= U \setminus V,$$

where we have used Item 2 of Proposition 4.3.11.1.2.

Item 17: Interaction With Characteristic Functions

We have

$$\chi_{[U,V]_{\mathcal{P}(X)}}(x) \stackrel{\text{def}}{=} \chi_{U^{c} \cup V}(x)$$

$$= \max(\chi_{U^{c}}, \chi_{V})$$

$$= \max(1 - \chi_{U} \pmod{2}, \chi_{V}),$$

where we have used:

021X

- 1. Item 10 of Proposition 4.3.8.1.2 for the second equality.
- 021Y 2. Item 4 of Proposition 4.3.11.1.2 for the third equality.

This finishes the proof.

Item 18: Interaction With Direct Images

This is a repetition of Item 10 of Proposition 4.6.1.1.5 and is proved there.

Item 19: Interaction With Inverse Images

This is a repetition of Item 10 of Proposition 4.6.2.1.3 and is proved there.

Item 20: Interaction With Codirect Images

This is a repetition of Item 9 of Proposition 4.6.3.1.7 and is proved there.

01L1 4.4.8 Isbell Duality for Sets

Let *X* be a set.

01L2

DEFINITION 4.4.8.1.1 ► THE ISBELL FUNCTION

The **Isbell function** of *X* is the map

$$I: \mathcal{P}(X) \to \mathsf{Sets}(X, \mathcal{P}(X))$$

defined by

$$\mathsf{I}(U) \stackrel{\mathrm{def}}{=} \llbracket x \mapsto [U, \{x\}]_X \rrbracket$$

for each $U \in \mathcal{P}(X)$.

01L3

REMARK 4.4.8.1.2 ► MOTIVATION FOR THE ISBELL FUNCTION

Recall from Remark 4.4.1.1.2 that we may view the powerset $\mathcal{P}(X)$ of a set X as the decategorification of the category of presheaves PSh(C) of a category C. Building upon this analogy, we want to mimic the definition of the Isbell Spec functor, which is given on objects by

$$Spec(\mathcal{F}) \stackrel{\text{def}}{=} Nat(\mathcal{F}, h_{(-)})$$

for each $\mathcal{F} \in \mathsf{Obj}(\mathsf{PSh}(C))$. To this end, we could define

$$\mathsf{I}(U) \stackrel{\mathrm{def}}{=} \left[U, \chi_{(-)} \right]_X,$$

replacing:

- The Yoneda embedding $X \mapsto h_X$ of C into $\mathsf{PSh}(C)$ with the characteristic embedding $x \mapsto \chi_x$ of X into $\mathcal{P}(X)$ of Definition 4.5.4.1.1.
- The internal Hom Nat of PSh(C) with the internal Hom $[-,-]_X$ of $\mathcal{P}(X)$ of Proposition 4.4.7.1.1.

However, since $[U, \chi_x]_X$ is a subset of U instead of a truth value, we get a function

$$I: \mathcal{P}(X) \to \mathsf{Sets}(X, \mathcal{P}(X))$$

instead of a function

$$I: \mathcal{P}(X) \to \mathcal{P}(X).$$

This makes some of the properties involving I a bit more cumbersome to state, although we still have an analogue of Isbell duality in that $I_! \circ I$ evaluates to $id_{\mathcal{P}(X)}$ in the sense of Proposition 4.4.8.1.3.

01L4 PROPOSITION 4.4.8.1.3 ► ISBELL DUALITY FOR SETS

The diagram

$$\mathcal{P}(X) \xrightarrow{\mathsf{I}} \mathsf{Sets}(X, \mathcal{P}(X))$$

$$\Delta_{\Delta_{\mathrm{id}_{\mathcal{P}(X)}}} \qquad \qquad \mathsf{I}_{!}$$

$$\mathsf{Sets}(X, \mathsf{Sets}(X, \mathcal{P}(X)))$$

commutes, i.e. we have

$$l_!(\mathsf{I}(U)) = \llbracket x \mapsto \llbracket y \mapsto U \rrbracket \rrbracket$$

for each $U \in \mathcal{P}(X)$.

PROOF 4.4.8.1.4 ▶ PROOF OF PROPOSITION 4.4.8.1.3

We have

$$I_{!}(I(U)) \stackrel{\text{def}}{=} I_{!}(\llbracket x \mapsto U^{c} \cup \{x\} \rrbracket)$$

$$\stackrel{\text{def}}{=} \llbracket x \mapsto I(U^{c} \cup \{x\}) \rrbracket$$

$$\stackrel{\text{def}}{=} \llbracket x \mapsto \llbracket y \mapsto (U^{c} \cup \{x\})^{c} \cup \{x\} \rrbracket \rrbracket$$

$$= [x \mapsto [y \mapsto (U \cap (X \setminus \{x\})) \cup \{x\}]]]$$

$$= [x \mapsto [y \mapsto (U \setminus \{x\}) \cup \{x\}]]]$$

$$= [x \mapsto [y \mapsto U]],$$

where we have used Item 2 of Proposition 4.3.11.1.2 for the fourth equality above.

01L5 4.5 Characteristic Functions

005X 4.5.1 The Characteristic Function of a Subset

Let *X* be a set and let $U \in \mathcal{P}(X)$.

005Z DEFINITION 4.5.1.1.1 ► THE CHARACTERISTIC FUNCTION OF A SUBSET

The **characteristic function of** U^1 is the function $\chi_U: X \to \{t, f\}^2$ defined by

$$\chi_U(x) \stackrel{\text{def}}{=} \begin{cases} \text{true} & \text{if } x \in U, \\ \text{false} & \text{if } x \notin U \end{cases}$$

for each $x \in X$.

01L6

REMARK 4.5.1.1.2 ► CHARACTERISTIC FUNCTIONS OF SUBSETS AS DECATEGORIFICATIONS OF PRESHEAVES

Under the analogy that $\{t, f\}$ should be the (-1)-categorical analogue of Sets, we may view a function

$$f: X \to \{\mathsf{t},\mathsf{f}\}$$

as a decategorification of presheaves and copresheaves

$$\mathcal{F}: C^{\mathsf{op}} \to \mathsf{Sets},$$

 $F: C \to \mathsf{Sets}.$

The characteristic functions χ_U of the subsets of X are then the primordial examples of such functions (and, in fact, all of them).

 $^{^{1}}$ Further Terminology: Also called the **indicator function of** U.

²Further Notation: Also written $\chi_X(U, -)$ or $\chi_X(-, U)$.

01L7 NOTATION 4.5.1.1.3 ► FURTHER NOTATION FOR CHARACTERISTIC FUNCTIONS

We will often employ the bijection $\{t, f\} \cong \{0, 1\}$ to make use of the arithmetical operations defined on $\{0, 1\}$ when disucssing characteristic functions. Examples of this include Items 4 to 11 of Proposition 4.5.1.1.4 below.

PROPOSITION 4.5.1.1.4 ➤ PROPERTIES OF CHARACTERISTIC FUNCTIONS OF SUBSETS

Let *X* be a set.

01L8

01L9

006B

006C

1. Functionality. The assignment $U \mapsto \chi_U$ defines a function

$$\chi_{(-)} : \mathcal{P}(X) \to \mathsf{Sets}(X, \{\mathsf{t}, \mathsf{f}\}).$$

- 2. *Bijectivity*. The function $\chi_{(-)}$ from Item 1 is bijective.
- **01LA** 3. *Naturality*. The collection

$$\left\{\chi_{(-)}\colon \mathcal{P}(X) \to \mathsf{Sets}(X, \{\mathsf{t}, \mathsf{f}\})\right\}_{X \in \mathsf{Obj}(\mathsf{Sets})}$$

defines a natural isomorphism between \mathcal{P}^{-1} and Sets(-, {t, f}). In particular, given a function $f: X \to Y$, the diagram

$$\mathcal{P}(Y) \xrightarrow{f^{-1}} \mathcal{P}(X)$$

$$\chi_{(-)} \downarrow \chi \qquad \qquad \downarrow \chi_{(-)}$$

$$\mathsf{Sets}(Y, \{\mathsf{t}, \mathsf{f}\}) \xrightarrow{f^*} \mathsf{Sets}(X, \{\mathsf{t}, \mathsf{f}\})$$

commutes, i.e. we have

$$\chi_V \circ f = \chi_{f^{-1}(V)}$$

for each $V \in \mathcal{P}(Y)$.

4. Interaction With Unions I. We have

$$\chi_{U \cup V} = \max(\chi_U, \chi_V)$$

for each $U, V \in \mathcal{P}(X)$.

5. *Interaction With Unions II.* We have

$$\chi_{U \cup V} = \chi_U + \chi_V - \chi_{U \cap V}$$

for each $U, V \in \mathcal{P}(X)$.

006D

6. Interaction With Intersections I. We have

$$\chi_{U\cap V}=\chi_U\chi_V$$

for each $U, V \in \mathcal{P}(X)$.

006E

7. Interaction With Intersections II. We have

$$\chi_{U\cap V} = \min(\chi_U, \chi_V)$$

for each $U, V \in \mathcal{P}(X)$.

006F

8. Interaction With Differences. We have

$$\chi_{U \setminus V} = \chi_U - \chi_{U \cap V}$$

for each $U, V \in \mathcal{P}(X)$.

006G

9. Interaction With Complements. We have

$$\chi_{U^c} \equiv 1 - \chi_U \pmod{2}$$

for each $U \in \mathcal{P}(X)$.

006H

10. Interaction With Symmetric Differences. We have

$$\chi_{U \triangle V} = \chi_U + \chi_V - 2\chi_{U \cap V}$$

and thus, in particular, we have

$$\chi_{U \triangle V} \equiv \chi_U + \chi_V \pmod{2}$$

for each $U, V \in \mathcal{P}(X)$.

01LB

11. Interaction With Internal Homs. We have

$$\chi_{[U,V]_{\mathcal{P}(X)}} = \max(1-\chi_U \ (\text{mod}\ 2),\chi_V)$$

for each $U, V \in \mathcal{P}(X)$.

PROOF 4.5.1.1.5 ► PROOF OF PROPOSITION 4.5.1.1.4

Item 1: Functionality

There is nothing to prove.

Item 2: Bijectivity

We proceed in three steps:

1. The Inverse of $\chi_{(-)}$. The inverse of $\chi_{(-)}$ is the map

$$\Phi \colon \mathsf{Sets}(X, \{\mathsf{t}, \mathsf{f}\}) \xrightarrow{\sim} \mathcal{P}(X),$$

defined by

$$\begin{split} \Phi(f) &\stackrel{\text{def}}{=} U_f \\ &\stackrel{\text{def}}{=} f^{-1}(\mathsf{true}) \\ &\stackrel{\text{def}}{=} \{x \in X \mid f(x) = \mathsf{true}\} \end{split}$$

for each $f \in Sets(X, \{t, f\})$.

2. Invertibility I. We have

$$\begin{split} \left[\Phi \circ \chi_{(-)}\right] &(U) \stackrel{\text{def}}{=} \Phi(\chi_U) \\ &\stackrel{\text{def}}{=} \chi_U^{-1}(\mathsf{true}) \\ &\stackrel{\text{def}}{=} \left\{ x \in X \mid \chi_U(x) = \mathsf{true} \right\} \\ &\stackrel{\text{def}}{=} \left\{ x \in X \mid x \in U \right\} \\ &= U \\ &\stackrel{\text{def}}{=} \left[\mathrm{id}_{\mathcal{P}(X)} \right] &(U) \end{split}$$

for each $U \in \mathcal{P}(X)$. Thus, we have

$$\Phi \circ \chi_{(-)} = \mathrm{id}_{\mathcal{P}(X)}.$$

3. Invertibility II. We have

$$\left[\chi_{(-)} \circ \Phi \right] (U) \stackrel{\text{def}}{=} \chi_{\Phi(f)}$$

$$\stackrel{\text{def}}{=} \chi_{f^{-1}(\mathsf{true})}$$

021Z

0220

$$\stackrel{\text{def}}{=} [x \mapsto \begin{cases} \text{true} & \text{if } x \in f^{-1}(\text{true}) \\ \text{false} & \text{otherwise} \end{cases}]$$

$$= [x \mapsto f(x)]$$

$$= f$$

$$\stackrel{\text{def}}{=} [\text{id}_{\text{Sets}(X,\{t,f\})}](f)$$

for each $f \in Sets(X, \{t, f\})$. Thus, we have

$$\chi_{(-)} \circ \Phi = \mathrm{id}_{\mathsf{Sets}(X, \{\mathsf{t},\mathsf{f}\})}$$
.

This finishes the proof.

Item 3: Naturality

We proceed in two steps:

1. *Naturality of* $\chi_{(-)}$. We have

$$[\chi_V \circ f](v) \stackrel{\text{def}}{=} \chi_V(f(v))$$

$$= \begin{cases} \text{true} & \text{if } f(v) \in V, \\ \text{false} & \text{otherwise} \end{cases}$$

$$= \begin{cases} \text{true} & \text{if } v \in f^{-1}(V), \\ \text{false} & \text{otherwise} \end{cases}$$

$$\stackrel{\text{def}}{=} \chi_{f^{-1}(V)}(v)$$

for each $v \in V$.

2. Naturality of Φ . Since $\chi_{(-)}$ is natural and a componentwise inverse to Φ , it follows from Categories, Item 2 of Proposition 11.9.7.1.2 that Φ is also natural in each argument.

This finishes the proof.

Item 4: Interaction With Unions I

This is a repetition of Item 10 of Proposition 4.3.8.1.2 and is proved there.

Item 5: Interaction With Unions II

This is a repetition of Item 11 of Proposition 4.3.8.1.2 and is proved there.

0222

Item 6: Interaction With Intersections I

This is a repetition of Item 10 of Proposition 4.3.9.1.2 and is proved there.

Item 7: Interaction With Intersections II

This is a repetition of Item 11 of Proposition 4.3.9.1.2 and is proved there.

Item 8: Interaction With Differences

This is a repetition of Item 16 of Proposition 4.3.10.1.2 and is proved there.

Item 9: Interaction With Complements

This is a repetition of Item 4 of Proposition 4.3.11.1.2 and is proved there.

Item 10: Interaction With Symmetric Differences

This is a repetition of Item 15 of Proposition 4.3.12.1.2 and is proved there.

Item 11: Interaction With Internal Homs

This is a repetition of Item 17 of Proposition 4.4.7.1.4 and is proved there.

0224 REMARK 4.5.1.1.6 ➤ POWERSETS AS SETS OF FUNCTIONS AND UN/STRAIGHTENING

The bijection

$$\mathcal{P}(X) \cong \mathsf{Sets}(X, \{\mathsf{t}, \mathsf{f}\})$$

of Item 2 of Proposition 4.5.1.1.4, which

- Takes a subset $U \hookrightarrow X$ of X and *straightens* it to a function $\chi_U \colon X \to \{\text{true}, \text{false}\};$
- Takes a function $f: X \to \{\text{true}, \text{false}\}\$ and *unstraightens* it to a subset $f^{-1}(\text{true}) \hookrightarrow X \text{ of } X;$

may be viewed as the (-1)-categorical version of the 0-categorical un/s-traightening isomorphism between indexed and fibred sets

$$\underbrace{\mathsf{FibSets}_X}_{\substack{\text{def}\\ = \mathsf{Sets}_{/X}}} \cong \underbrace{\mathsf{ISets}_X}_{\substack{\text{def}\\ = \mathsf{Fun}(X_{\mathsf{disc}}, \mathsf{Sets})}}$$

of Un/Straightening for Indexed and Fibred Sets, ??. Here we view:

- Subsets $U \hookrightarrow X$ as being analogous to X-fibred sets $\phi_X \colon A \to X$.
- Functions $f: X \to \{t, f\}$ as being analogous to *X*-indexed sets $A: X_{disc} \to Sets$.

01LC 4.5.2 The Characteristic Function of a Point

Let *X* be a set and let $x \in X$.

0060

DEFINITION 4.5.2.1.1 ► THE CHARACTERISTIC FUNCTION OF A POINT

The **characteristic function of** x is the function¹

$$\chi_X \colon X \to \{\mathsf{t},\mathsf{f}\}$$

defined by

$$\chi_x \stackrel{\mathrm{def}}{=} \chi_{\{x\}},$$

i.e. by

$$\chi_x(y) \stackrel{\text{def}}{=} \begin{cases} \text{true} & \text{if } x = y, \\ \text{false} & \text{if } x \neq y \end{cases}$$

for each $y \in X$.

01LD

REMARK 4.5.2.1.2 ► CHARACTERISTIC FUNCTIONS OF POINTS AS DECATEGORIFICATIONS OF REPRESENTABLE PRESHEAVES

Expanding upon Remark 4.5.1.1.2, we may think of the characteristic function

$$\chi_X : X \to \{\mathsf{t},\mathsf{f}\}$$

of an *element* x of X as a decategorification of the representable presheaf and of the representable copresheaf

$$h_X \colon C^{\mathsf{op}} \to \mathsf{Sets},$$

 $h^X \colon C \to \mathsf{Sets}$

associated of an object X of a category C.

01LE 4.5.3 The Characteristic Relation of a Set

Let *X* be a set.

¹*Further Notation:* Also written χ^x , $\chi_X(x, -)$, or $\chi_X(-, x)$.

0061

DEFINITION 4.5.3.1.1 ► THE CHARACTERISTIC RELATION OF A SET

The **characteristic relation on** X^1 is the relation²

$$\chi_X(-1,-2): X \times X \to \{\mathsf{t},\mathsf{f}\}$$

on X defined by³

$$\chi_X(x,y) \stackrel{\text{def}}{=} \begin{cases} \text{true} & \text{if } x = y, \\ \text{false} & \text{if } x \neq y \end{cases}$$

for each $x, y \in X$.

01LF

REMARK 4.5.3.1.2 ➤ THE CHARACTERISTIC RELATION OF A SET AS A DECATEGORIFICATION OF THE HOM PROFUNCTOR

Expanding upon Remarks 4.5.1.1.2 and 4.5.2.1.2, we may view the characteristic relation

$$\chi_X(-1,-2): X \times X \to \{\mathsf{t},\mathsf{f}\}$$

of *X* as a decategorification of the Hom profunctor

$$\operatorname{Hom}_{\mathcal{C}}(-1,-2): \mathcal{C}^{\operatorname{op}} \times \mathcal{C} \to \operatorname{Sets}$$

of a category C.

01LG

PROPOSITION 4.5.3.1.3 ► PROPERTIES OF CHARACTERISTIC RELATIONS

Let $f: X \to Y$ be a function.

006A

1. The Inclusion of Characteristic Relations Associated to a Function. Let $f: A \to B$ be a function. We have an inclusion 1

$$\chi_B \circ (f \times f) \subset \chi_A, \qquad A \times A \xrightarrow{f \times f} B \times B$$

$$\chi_A \searrow \searrow \chi_B$$

$$\{t, f\}.$$

¹Further Terminology: Also called the **identity relation on** *X*.

²Further Notation: Also written χ_{-2}^{-1} , or \sim_{id} in the context of relations.

³Under the bijection Sets(*X* × *X*, {t, f}) \cong $\mathcal{P}(X \times X)$ of Item 2 of Proposition 4.5.1.1.4, the relation χ_X corresponds to the diagonal Δ_X ⊂ *X* × *X* of *X*.

¹Note: This is the 0-categorical version of Categories, Definition 11.5.4.1.1.

PROOF 4.5.3.1.4 ► PROOF OF PROPOSITION 4.5.3.1.3

Item 1: The Inclusion of Characteristic Relations Associated to a Function

The inclusion $\chi_B(f(a), f(b)) \subset \chi_A(a, b)$ is equivalent to the statement "if a = b, then f(a) = f(b)", which is true.

O1LH 4.5.4 The Characteristic Embedding of a Set

Let *X* be a set.

0062 DEFINITION 4.5.4.1.1 ► THE CHARACTERISTIC EMBEDDING OF A SET

The **characteristic embedding**¹ **of** *X* **into** $\mathcal{P}(X)$ is the function

$$\chi_{(-)}: X \hookrightarrow \mathcal{P}(X)$$

defined by²

$$\chi_{(-)}(x) \stackrel{\text{def}}{=} \chi_x$$
$$= \{x\}$$

for each $x \in X$.

01LJ

REMARK 4.5.4.1.2 ► THE CHARACTERISTIC EMBEDDING OF A SET AS A DECATEGORIFICATION OF THE YONEDA EMBEDDING

Expanding upon Remarks 4.5.1.1.2, 4.5.2.1.2 and 4.5.3.1.2, we may view the characteristic embedding

$$\chi_{(-)}: X \hookrightarrow \mathcal{P}(X)$$

of X into $\mathcal{P}(X)$ as a decategorification of the Yoneda embedding

$$\sharp : C^{\mathsf{op}} \hookrightarrow \mathsf{PSh}(C)$$

of a category C into PSh(C).

¹The name "characteristic *embedding*" is justified by Corollary 4.5.5.1.3, which gives an analogue of fully faithfulness for $\chi_{(-)}$.

²Here we are identifying $\mathcal{P}(X)$ with Sets(X, {t, f}) as per Item 2 of Proposition 4.5.1.1.4.

01LK

PROPOSITION 4.5.4.1.3 ▶ PROPERTIES OF CHARACTERISTIC EMBEDDINGS

Let $f: X \to Y$ be a map of sets.

01LL

1. Interaction With Functions. We have

$$f_{!} \circ \chi_{X} = \chi_{Y} \circ f, \qquad \chi_{X} \downarrow \qquad \qquad \downarrow \chi_{Y}$$

$$\mathcal{P}(X) \xrightarrow{f_{!}} \mathcal{P}(Y).$$

PROOF 4.5.4.1.4 ► PROOF OF PROPOSITION 4.5.4.1.3

Item 1: Interaction With Functions

Indeed, we have

$$[f_! \circ \chi_X](x) \stackrel{\text{def}}{=} f_!(\chi_X(x))$$

$$\stackrel{\text{def}}{=} f_!(\{x\})$$

$$= \{f(x)\}$$

$$\stackrel{\text{def}}{=} \chi_{X'}(f(x))$$

$$\stackrel{\text{def}}{=} [\chi_{X'} \circ f](x).$$

for each $x \in X$, showing the desired equality.

006K 4.5.5 The Yoneda Lemma for Sets

Let *X* be a set and let $U \subset X$ be a subset of *X*.

006L

PROPOSITION 4.5.5.1.1 ► THE YONEDA LEMMA FOR SETS

We have

$$\chi_{\mathcal{P}(X)}(\chi_x,\chi_U)=\chi_U(x)$$

for each $x \in X$, giving an equality of functions

$$\chi_{\mathcal{P}(X)}(\chi_{(-)},\chi_U)=\chi_U,$$

where

$$\chi_{\mathcal{P}(X)}(U,V) \stackrel{\text{def}}{=} \begin{cases} \text{true} & \text{if } U \subset V, \\ \text{false} & \text{otherwise.} \end{cases}$$

PROOF 4.5.5.1.2 ▶ PROOF OF PROPOSITION 4.5.5.1.1

We have

$$\chi_{\mathcal{P}(X)}(\chi_x, \chi_U) \stackrel{\text{def}}{=} \begin{cases} \text{true} & \text{if } \{x\} \subset U, \\ \text{false} & \text{otherwise} \end{cases}$$

$$= \begin{cases} \text{true} & \text{if } x \in U \\ \text{false} & \text{otherwise} \end{cases}$$

$$\stackrel{\text{def}}{=} \chi_U(x).$$

This finishes the proof.

006M

COROLLARY 4.5.5.1.3 ► THE CHARACTERISTIC EMBEDDING IS FULLY FAITHFUL

The characteristic embedding is fully faithful, i.e., we have

$$\chi_{\mathcal{P}(X)}(\chi_x,\chi_y)\cong\chi_X(x,y)$$

for each $x, y \in X$.

PROOF 4.5.5.1.4 ► PROOF OF COROLLARY 4.5.5.1.3

We have

$$\chi_{\mathcal{P}(X)}(\chi_x, \chi_y) = \chi_y(x)$$

$$\stackrel{\text{def}}{=} \begin{cases} \text{true} & \text{if } x \in \{y\} \\ \text{false} & \text{otherwise} \end{cases}$$

$$= \begin{cases} \text{true} & \text{if } x = y \\ \text{false} & \text{otherwise} \end{cases}$$

$$\stackrel{\text{def}}{=} \chi_y(x, y).$$

where we have used Proposition 4.5.5.1.1 for the first equality.

101LM 4.6 The Adjoint Triple $f_! \dashv f^{-1} \dashv f_*$

007F 4.6.1 Direct Images

Let $f: X \to Y$ be a function.

DEFINITION 4 C 1 1 1 N DIRECT LANCES

007G

The **direct image function associated to** f is the function¹

$$f_! \colon \mathcal{P}(X) \to \mathcal{P}(Y)$$

defined by²

$$f_!(U) \stackrel{\text{def}}{=} \left\{ y \in Y \mid \text{there exists some } x \in U \right\}$$

= $\{ f(x) \in Y \mid x \in U \}$

for each $U \in \mathcal{P}(X)$.

007H NOTATION 4.6.1.1.2 ➤ FURTHER NOTATION FOR DIRECT IMAGES

Sometimes one finds the notation

$$\exists_f \colon \mathcal{P}(X) \to \mathcal{P}(Y)$$

for $f_!$. This notation comes from the fact that the following statements are equivalent, where $y \in Y$ and $U \in \mathcal{P}(X)$:

- We have $y \in \exists_f(U)$.
- There exists some $x \in U$ such that f(x) = y.

We will not make use of this notation elsewhere in Clowder.

¹Further Notation: Also written simply $f: \mathcal{P}(X) \to \mathcal{P}(Y)$.

²Further Terminology: The set f(U) is called the **direct image of** U **by** f.

WARNING 4.6.1.1.3 ► NOTATION FOR DIRECT IMAGES IS CONFUSING

Notation for direct images between powersets is tricky:

0226

1. Direct images for powersets and presheaves are both adjoint to their corresponding inverse image functors. However, the direct image functor for powersets is a *left* adjoint, while the direct image functor for presheaves is a *right* adjoint:

0227

(a) *Powersets*. Given a function $f: X \to Y$, we have an inverse image functor

$$f^{-1} \colon \mathcal{P}(Y) \to \mathcal{P}(X).$$

The *left* adjoint of this functor is the usual direct image, defined above in Definition 4.6.1.1.1.

0228

(b) *Presheaves*. Given a morphism of topological spaces $f: X \to Y$, we have an inverse image functor

$$f^{-1} \colon \mathsf{PSh}(Y) \to \mathsf{PSh}(X).$$

The *right* adjoint of this functor is the direct image functor of presheaves, defined in ??.

0229

2. The presheaf direct image functor is denoted f_* , but the direct image functor for powersets is denoted $f_!$ (as it's a left adjoint).

022A

3. Adding to the confusion, it's somewhat common for $f_!: \mathcal{P}(X) \to \mathcal{P}(Y)$ to be denoted f_* .

We chose to write $f_!$ for the direct image to keep the notation aligned with the following similar adjoint situations:

SITUATION	Adjoint String
Functoriality of Powersets	$(f_! \dashv f^{-1} \dashv f_*) \colon \mathcal{P}(X) \xrightarrow{\rightleftharpoons} \mathcal{P}(Y)$
Functoriality of Presheaf Categories	$(f_! \dashv f^{-1} \dashv f_*) \colon PSh(X) \xrightarrow{\rightleftarrows} PSh(Y)$
Base Change	$(f_!\dashv f^*\dashv f_*)\colon C_{/X}\stackrel{\rightleftarrows}{\to} C_{/Y}$
Kan Extensions	$(F_! \dashv F^* \dashv F_*) \colon \operatorname{Fun}(C, \mathcal{E}) \xrightarrow{\rightleftarrows} \operatorname{Fun}(\mathcal{D}, \mathcal{E})$

007J REMARK 4.6.1.1.4 ► UNWINDING DEFINITION 4.6.1.1.1

Identifying $\mathcal{P}(X)$ with $\mathsf{Sets}(X, \{\mathsf{t}, \mathsf{f}\})$ via Item 2 of Proposition 4.5.1.1.4, we see that the direct image function associated to f is equivalently the function

$$f_! \colon \mathcal{P}(X) \to \mathcal{P}(Y)$$

defined by

$$f_{!}(\chi_{U}) \stackrel{\text{def}}{=} \operatorname{Lan}_{f}(\chi_{U})$$

$$= \operatorname{colim}\left(\left(f \stackrel{\rightarrow}{\times} (\underline{-_{1}})\right) \stackrel{\text{pr}}{\twoheadrightarrow} A \stackrel{\chi_{U}}{\longrightarrow} \{t, f\}\right)$$

$$= \operatorname{colim}_{\substack{x \in X \\ f(x) = -_{1}}} (\chi_{U}(x))$$

$$= \bigvee_{\substack{x \in X \\ f(x) = -_{1}}} (\chi_{U}(x)),$$

where we have used ?? for the second equality. In other words, we have

$$[f_!(\chi_U)](y) = \bigvee_{\substack{x \in X \\ f(x) = y}} (\chi_U(x))$$

$$= \begin{cases} \text{true} & \text{if there exists some } x \in X \text{ such that } f(x) = y \text{ and } x \in U, \\ \text{false} & \text{otherwise} \end{cases}$$

$$= \begin{cases} \text{true} & \text{if there exists some } x \in U \\ & \text{such that } f(x) = y, \\ \text{false} & \text{otherwise} \end{cases}$$

for each $y \in Y$.

007L

007K PROPOSITION 4.6.1.1.5 ➤ PROPERTIES OF DIRECT IMAGES I

Let $f: X \to Y$ be a function.

1. Functoriality. The assignment $U \mapsto f_1(U)$ defines a functor

$$f_1: (\mathcal{P}(X), \subset) \to (\mathcal{P}(Y), \subset).$$

In particular, for each $U, V \in \mathcal{P}(X)$, the following condition is satisfied:

(\star) If $U \subset V$, then $f_!(U) \subset f_!(V)$.

2. Triple Adjointness. We have a triple adjunction

$$(f_! \dashv f^{-1} \dashv f_*): \mathcal{P}(X) \leftarrow f^{-1} - \mathcal{P}(Y),$$

witnessed by:

(a) Units and counits of the form

$$id_{\mathcal{P}(X)} \hookrightarrow f^{-1} \circ f_!, \qquad id_{\mathcal{P}(Y)} \hookrightarrow f_* \circ f^{-1},$$

 $f_! \circ f^{-1} \hookrightarrow id_{\mathcal{P}(Y)}, \qquad f^{-1} \circ f_* \hookrightarrow id_{\mathcal{P}(X)},$

having components of the form

$$U \subset f^{-1}(f_!(U)), \qquad V \subset f_*\Big(f^{-1}(V)\Big),$$

 $f_!\Big(f^{-1}(V)\Big) \subset V, \qquad f^{-1}(f_*(U)) \subset U$

indexed by $U \in \mathcal{P}(X)$ and $V \in \mathcal{P}(Y)$.

(b) Bijections of sets

$$\operatorname{Hom}_{\mathcal{P}(Y)}(f_!(U), V) \cong \operatorname{Hom}_{\mathcal{P}(X)}(U, f^{-1}(V)),$$

 $\operatorname{Hom}_{\mathcal{P}(X)}(f^{-1}(U), V) \cong \operatorname{Hom}_{\mathcal{P}(X)}(U, f_*(V)),$

natural in $U \in \mathcal{P}(X)$ and $V \in \mathcal{P}(Y)$ and (respectively) $V \in \mathcal{P}(X)$ and $U \in \mathcal{P}(Y)$. In particular:

i. The following conditions are equivalent:

A. We have $f_!(U) \subset V$.

B. We have $U \subset f^{-1}(V)$.

ii. The following conditions are equivalent:

A. We have $f^{-1}(U) \subset V$.

B. We have $U \subset f_*(V)$.

01LP

007M

01LN

01LQ

01LR

01LS

01LT

01LU

01LV

01LW

3. Interaction With Unions of Families of Subsets. The diagram

$$\mathcal{P}(\mathcal{P}(X)) \xrightarrow{(f_{!})_{!}} \mathcal{P}(\mathcal{P}(Y))$$

$$\bigcup \qquad \qquad \bigcup \qquad \qquad \bigcup \cup$$

$$\mathcal{P}(X) \xrightarrow{f_{!}} \mathcal{P}(Y)$$

commutes, i.e. we have

$$\bigcup_{U \in \mathcal{U}} f_!(U) = \bigcup_{V \in f_!(\mathcal{U})} V$$

for each $\mathcal{U} \in \mathcal{P}(X)$, where $f_!(\mathcal{U}) \stackrel{\text{def}}{=} (f_!)_!(\mathcal{U})$.

01LX

4. Interaction With Intersections of Families of Subsets. The diagram

$$\begin{array}{ccc} \mathcal{P}(\mathcal{P}(X)) & \xrightarrow{(f_!)_!} & \mathcal{P}(\mathcal{P}(Y)) \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & \\ & & \\ & \\ & & \\ & \\ & & \\ & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$$

commutes, i.e. we have

$$\bigcap_{U\in\mathcal{U}}f_{!}(U)=\bigcap_{V\in f_{!}(\mathcal{U})}V$$

for each $\mathcal{U} \in \mathcal{P}(X)$, where $f_!(\mathcal{U}) \stackrel{\text{def}}{=} (f_!)_!(\mathcal{U})$.

01LY

5. Interaction With Binary Unions. The diagram

$$\mathcal{P}(X) \times \mathcal{P}(X) \xrightarrow{f_! \times f_!} \mathcal{P}(Y) \times \mathcal{P}(Y)$$

$$\downarrow \bigcup_{\mathcal{P}(X) \xrightarrow{f_!}} \mathcal{P}(Y)$$

commutes, i.e. we have

$$f_!(U \cup V) = f_!(U) \cup f_!(V)$$

for each $U, V \in \mathcal{P}(X)$.

01LZ

6. *Interaction With Binary Intersections*. We have a natural transformation

with components

$$f_!(U \cap V) \subset f_!(U) \cap f_!(V)$$

indexed by $U, V \in \mathcal{P}(X)$.

01M0

7. Interaction With Differences. We have a natural transformation

$$\mathcal{P}(X)^{\mathsf{op}} \times \mathcal{P}(X) \xrightarrow{f_!^{\mathsf{op}} \times f_!} \mathcal{P}(Y)^{\mathsf{op}} \times \mathcal{P}(Y)$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad$$

with components

$$f_!(U) \setminus f_!(V) \subset f_!(U \setminus V)$$

indexed by $U, V \in \mathcal{P}(X)$.

01M1

8. Interaction With Complements. The diagram

$$\mathcal{P}(X)^{\text{op}} \xrightarrow{f_*^{\text{op}}} \mathcal{P}(Y)^{\text{op}} \\
\xrightarrow{(-)^c} \qquad \qquad \downarrow^{(-)^c} \\
\mathcal{P}(X) \xrightarrow{f_!} \mathcal{P}(Y)$$

commutes, i.e. we have

$$f_!(U^{\mathsf{c}}) = f_*(U)^{\mathsf{c}}$$

for each $U \in \mathcal{P}(X)$.

01M2

9. *Interaction With Symmetric Differences*. We have a natural transformation

with components

$$f_!(U) \triangle f_!(V) \subset f_!(U \triangle V)$$

indexed by $U, V \in \mathcal{P}(X)$.

01M3

10. Interaction With Internal Homs of Powersets. The diagram

commutes, i.e. we have an equality of sets

$$f_!([U,V]_X) = [f_*(U), f_!(V)]_V,$$

natural in $U, V \in \mathcal{P}(X)$.

007N

11. Preservation of Colimits. We have an equality of sets

$$f_!\left(\bigcup_{i\in I}U_i\right)=\bigcup_{i\in I}f_!(U_i),$$

natural in $\{U_i\}_{i\in I}\in \mathcal{P}(X)^{\times I}$. In particular, we have equalities

$$f_!(U) \cup f_!(V) = f_!(U \cup V),$$

 $f_!(\emptyset) = \emptyset,$

natural in $U, V \in \mathcal{P}(X)$.

007P

12. Oplax Preservation of Limits. We have an inclusion of sets

$$f_! \left(\bigcap_{i \in I} U_i\right) \subset \bigcap_{i \in I} f_!(U_i),$$

natural in $\{U_i\}_{i\in I}\in \mathcal{P}(X)^{\times I}$. In particular, we have inclusions

$$f_!(U \cap V) \subset f_!(U) \cap f_!(V),$$

 $f_!(X) \subset Y,$

natural in $U, V \in \mathcal{P}(X)$.

0070

13. *Symmetric Strict Monoidality With Respect to Unions*. The direct image function of Item 1 has a symmetric strict monoidal structure

$$(f_!, f_!^{\otimes}, f_{!|\mathfrak{A}}^{\otimes}) \colon (\mathcal{P}(X), \cup, \emptyset) \to (\mathcal{P}(Y), \cup, \emptyset),$$

being equipped with equalities

$$f_{!|U,V}^{\otimes} \colon f_{!}(U) \cup f_{!}(V) \xrightarrow{=} f_{!}(U \cup V),$$

 $f_{!|\mathfrak{1}}^{\otimes} \colon \emptyset \xrightarrow{=} \emptyset,$

natural in $U, V \in \mathcal{P}(X)$.

007R

14. *Symmetric Oplax Monoidality With Respect to Intersections*. The direct image function of <u>Item 1</u> has a symmetric oplax monoidal structure

$$(f_!, f_!^{\otimes}, f_{!|\mathfrak{A}}^{\otimes}) \colon (\mathcal{P}(X), \cap, X) \to (\mathcal{P}(Y), \cap, Y),$$

being equipped with inclusions

$$f_{!|U,V}^{\otimes} \colon f_{!}(U \cap V) \hookrightarrow f_{!}(U) \cap f_{!}(V),$$
$$f_{!|1}^{\otimes} \colon f_{!}(X) \hookrightarrow Y,$$

natural in $U, V \in \mathcal{P}(X)$.

007S

15. *Interaction With Coproducts.* Let $f: X \to X'$ and $g: Y \to Y'$ be maps of sets. We have

$$(f \coprod g)_!(U \coprod V) = f_!(U) \coprod g_!(V)$$

for each $U \in \mathcal{P}(X)$ and each $V \in \mathcal{P}(Y)$.

007T

16. *Interaction With Products.* Let $f: X \to X'$ and $g: Y \to Y'$ be maps of sets. We have

$$(f \boxtimes_{X \times Y} g)_!(U \boxtimes_{X \times Y} V) = f_!(U) \boxtimes_{X' \times Y'} g_!(V)$$

for each $U \in \mathcal{P}(X)$ and each $V \in \mathcal{P}(Y)$.

007U

17. Relation to Codirect Images. We have

$$f_!(U) = f_*(U^{\mathsf{c}})^{\mathsf{c}}$$

$$\stackrel{\text{def}}{=} Y \setminus f_*(X \setminus U)$$

for each $U \in \mathcal{P}(X)$.

PROOF 4.6.1.1.6 ► PROOF OF PROPOSITION 4.6.1.1.5

Item 1: Functoriality

Omitted.

Item 2: Triple Adjointness

This follows from Remark 4.6.1.1.4, Remark 4.6.2.1.2, Remark 4.6.3.1.4, and Kan Extensions, ?? of ??.

Item 3: Interaction With Unions of Families of Subsets

We have

$$\bigcup_{V \in f_!(\mathcal{U})} V = \bigcup_{V \in \{f_!(U) \in \mathcal{P}(X) \mid U \in \mathcal{U}\}} V$$
$$= \bigcup_{U \in \mathcal{U}} f_!(U).$$

This finishes the proof.

Item 4: Interaction With Intersections of Families of Subsets

We have

$$\bigcap_{V \in f_!(\mathcal{U})} V = \bigcap_{V \in \{f_!(U) \in \mathcal{P}(X) \mid U \in \mathcal{U}\}} V$$
$$= \bigcap_{U \in \mathcal{U}} f_!(U).$$

This finishes the proof.

Item 5: Interaction With Binary Unions

See [Pro25p].

Item 6: Interaction With Binary Intersections

See [Pro25n].

Item 7: Interaction With Differences

See [Pro25o].

Item 8: Interaction With Complements

Applying Item 17 to $X \setminus U$, we have

$$f_{!}(U^{c}) = f_{!}(X \setminus U)$$

$$= Y \setminus f_{*}(X \setminus (X \setminus U))$$

$$= Y \setminus f_{*}(U)$$

$$= f_{*}(U)^{c}.$$

This finishes the proof.

Item 9: Interaction With Symmetric Differences

We have

022D

022E

$$f_{!}(U) \triangle f_{!}(V) = (f_{!}(U) \cup f_{!}(V)) \setminus (f_{!}(U) \cap f_{!}(V))$$

$$\subset (f_{!}(U) \cup f_{!}(V)) \setminus (f_{!}(U \cap V))$$

$$= (f_{!}(U \cup V)) \setminus (f_{!}(U \cap V))$$

$$\subset f_{!}((U \cup V) \setminus (U \cap V))$$

$$= f_{!}(U \triangle V),$$

where we have used:

- 022C 1. Item 2 of Proposition 4.3.12.1.2 for the first equality.
 - 2. Item 6 of this proposition together with Item 1 of Proposition 4.3.10.1.2 for the first inclusion.
 - 3. Item 5 for the second equality.
- **4.** Item 7 for the second inclusion.

022G

5. Item 2 of Proposition 4.3.12.1.2 for the tchird equality.

Since $\mathcal{P}(Y)$ is posetal, naturality is automatic (Categories, Item 4 of Proposition 11.2.7.1.2). This finishes the proof.

Item 10: Interaction With Internal Homs of Powersets

We have

$$f_{!}([U,V]_{X}) \stackrel{\text{def}}{=} f_{!}(U^{c} \cup V)$$

$$= f_{!}(U^{c}) \cup f_{!}(V)$$

$$= f_{*}(U)^{c} \cup f_{!}(V)$$

$$\stackrel{\text{def}}{=} [f_{*}(U), f_{!}(V)]_{Y},$$

where we have used:

022H

- 1. Item 5 for the second equality.
- 022J 2. Item 17 for the third equality.

Since $\mathcal{P}(Y)$ is posetal, naturality is automatic (Categories, Item 4 of Proposition 11.2.7.1.2). This finishes the proof.

Item 11: Preservation of Colimits

This follows from Item 2 and ??, ?? of ??.¹

Item 12: Oplax Preservation of Limits

The inclusion $f_1(X) \subset Y$ is automatic. See [Pro25n] for the other inclusions.

Item 13: Symmetric Strict Monoidality With Respect to Unions

This follows from Item 11.

Item 14: Symmetric Oplax Monoidality With Respect to Intersections

The inclusions in the statement follow from Item 12. Since $\mathcal{P}(Y)$ is posetal, the commutativity of the diagrams in the definition of a symmetric oplax monoidal functor is automatic (Categories, Item 4 of Proposition 11.2.7.1.2).

Item 15: Interaction With Coproducts

Omitted.

Item 16: Interaction With Products

Omitted.

Item 17: Relation to Codirect Images

Applying Item 16 of Proposition 4.6.3.1.7 to $X \setminus U$, we have

$$f_*(X \setminus U) = B \setminus f_!(X \setminus (X \setminus U))$$
$$= B \setminus f_!(U).$$

Taking complements, we then obtain

$$f_!(U) = B \setminus (B \setminus f_!(U)),$$

= $B \setminus f_*(X \setminus U),$

which finishes the proof.

007V

007W

007X

PROPOSITION 4.6.1.1.7 ▶ PROPERTIES OF DIRECT IMAGES II

Let $f: X \to Y$ be a function.

1. Functionality I. The assignment $f \mapsto f_!$ defines a function

$$(-)_{*|X,Y} : \mathsf{Sets}(X,Y) \to \mathsf{Sets}(\mathcal{P}(X),\mathcal{P}(Y)).$$

2. Functionality II. The assignment $f \mapsto f_1$ defines a function

$$(-)_{*|X,Y} \colon \mathsf{Sets}(X,Y) \to \mathsf{Pos}((\mathcal{P}(X),\subset),(\mathcal{P}(Y),\subset)).$$

3. *Interaction With Identities.* For each $X \in Obj(Sets)$, we have

$$(\mathrm{id}_X)_! = \mathrm{id}_{\mathcal{P}(X)}$$
.

4. *Interaction With Composition*. For each pair of composable functions $f: X \to Y$ and $g: Y \to Z$, we have

$$(g \circ f)_! = g_! \circ f_!, \qquad \begin{array}{c} \mathcal{P}(X) \xrightarrow{f_!} \mathcal{P}(Y) \\ & \downarrow g_! \\ & \mathcal{P}(Z). \end{array}$$

¹Reference: [Pro25p].

PROOF 4.6.1.1.8 ► PROOF OF PROPOSITION 4.6.1.1.7

Item 1: Functionality I

There is nothing to prove.

Item 2: Functionality II

This follows from Item 1 of Proposition 4.6.1.1.5.

Item 3: Interaction With Identities

This follows from Remark 4.6.1.1.4 and Kan Extensions, ?? of ??.

Item 4: Interaction With Composition

This follows from Remark 4.6.1.1.4 and Kan Extensions, ?? of ??.

0080 4.6.2 Inverse Images

Let $f: X \to Y$ be a function.

0081 DEFINITION 4.6.2.1.1 ► INVERSE IMAGES

The **inverse image function associated to** f is the function¹

$$f^{-1} \colon \mathcal{P}(Y) \to \mathcal{P}(X)$$

defined by²

$$f^{-1}(V) \stackrel{\text{def}}{=} \{x \in X \mid \text{we have } f(x) \in V\}$$

for each $V \in \mathcal{P}(Y)$.

0082 REMARK 4.6.2.1.2 ➤ UNWINDING DEFINITION 4.6.2.1.1

Identifying $\mathcal{P}(Y)$ with $\mathsf{Sets}(Y, \{\mathsf{t}, \mathsf{f}\})$ via Item 2 of Proposition 4.5.1.1.4, we see that the inverse image function associated to f is equivalently the function

$$f^* \colon \mathcal{P}(Y) \to \mathcal{P}(X)$$

defined by

$$f^*(\boldsymbol{\gamma}_V) \stackrel{\text{def}}{=} \boldsymbol{\gamma}_V \circ f$$

¹Further Notation: Also written $f^* : \mathcal{P}(Y) \to \mathcal{P}(X)$.

²Further Terminology: The set $f^{-1}(V)$ is called the **inverse image of** V **by** f.

for each $\chi_V \in \mathcal{P}(Y)$, where $\chi_V \circ f$ is the composition

$$X \xrightarrow{f} Y \xrightarrow{\chi_V} \{\text{true, false}\}$$

in Sets.

0083 Proposition 4.6.2.1.3 ► Properties of Inverse Images I

Let $f: X \to Y$ be a function.

1. Functoriality. The assignment $V \mapsto f^{-1}(V)$ defines a functor

$$f^{-1}: (\mathcal{P}(Y), \subset) \to (\mathcal{P}(X), \subset).$$

In particular, for each $U, V \in \mathcal{P}(Y)$, the following condition is satisfied:

$$(\star)$$
 If $U \subset V$, then $f^{-1}(U) \subset f^{-1}(V)$.

2. Triple Adjointness. We have a triple adjunction

$$(f_! \dashv f^{-1} \dashv f_*): \mathcal{P}(X) \leftarrow f^{-1} - \mathcal{P}(Y),$$

witnessed by:

(a) Units and counits of the form

$$id_{\mathcal{P}(X)} \hookrightarrow f^{-1} \circ f_!, \qquad id_{\mathcal{P}(Y)} \hookrightarrow f_* \circ f^{-1},$$

 $f_! \circ f^{-1} \hookrightarrow id_{\mathcal{P}(Y)}, \qquad f^{-1} \circ f_* \hookrightarrow id_{\mathcal{P}(X)},$

having components of the form

$$U \subset f^{-1}(f_!(U)), \qquad V \subset f_*\Big(f^{-1}(V)\Big),$$

 $f_!\Big(f^{-1}(V)\Big) \subset V, \qquad f^{-1}(f_*(U)) \subset U$

indexed by $U \in \mathcal{P}(X)$ and $V \in \mathcal{P}(Y)$.

(b) Bijections of sets

$$\operatorname{Hom}_{\mathcal{P}(Y)}(f_!(U), V) \cong \operatorname{Hom}_{\mathcal{P}(X)}(U, f^{-1}(V)),$$

0085

0084

01M4

01M5

$$\operatorname{Hom}_{\mathcal{P}(X)}\Big(f^{-1}(U),V\Big)\cong \operatorname{Hom}_{\mathcal{P}(X)}(U,f_*(V)),$$

natural in $U \in \mathcal{P}(X)$ and $V \in \mathcal{P}(Y)$ and (respectively) $V \in \mathcal{P}(X)$ and $U \in \mathcal{P}(Y)$. In particular:

- i. The following conditions are equivalent:
 - A. We have $f_!(U) \subset V$.
 - B. We have $U \subset f^{-1}(V)$.
- ii. The following conditions are equivalent:
 - A. We have $f^{-1}(U) \subset V$.
 - B. We have $U \subset f_*(V)$.
- 3. Interaction With Unions of Families of Subsets. The diagram

$$\mathcal{P}(\mathcal{P}(Y)) \xrightarrow{(f^{-1})^{-1}} \mathcal{P}(\mathcal{P}(X))$$

$$\bigcup \qquad \qquad \bigcup \qquad \qquad \bigcup \qquad \qquad \bigcup \qquad \qquad \qquad \bigcup \qquad \qquad \qquad \\ \mathcal{P}(Y) \xrightarrow{f^{-1}} \mathcal{P}(X)$$

commutes, i.e. we have

$$\bigcup_{V \in \mathcal{V}} f^{-1}(V) = \bigcup_{U \in f^{-1}(\mathcal{U})} U$$

for each $V \in \mathcal{P}(Y)$, where $f^{-1}(V) \stackrel{\text{def}}{=} (f^{-1})^{-1}(V)$.

4. Interaction With Intersections of Families of Subsets. The diagram

$$\mathcal{P}(\mathcal{P}(Y)) \xrightarrow{(f^{-1})^{-1}} \mathcal{P}(\mathcal{P}(X))$$

$$\cap \downarrow \qquad \qquad \downarrow \cap$$

$$\mathcal{P}(Y) \xrightarrow{f^{-1}} \mathcal{P}(X)$$

commutes, i.e. we have

$$\bigcap_{V \in \mathcal{V}} f^{-1}(V) = \bigcap_{U \in f^{-1}(\mathcal{U})} U$$

for each $\mathcal{V} \in \mathcal{P}(Y)$, where $f^{-1}(\mathcal{V}) \stackrel{\text{def}}{=} (f^{-1})^{-1}(\mathcal{V})$.

01M6

01M7 01M8

01M9

01MA

01MB

01MC

01MD

01ME

5. Interaction With Binary Unions. The diagram

$$\mathcal{P}(Y) \times \mathcal{P}(Y) \xrightarrow{f^{-1} \times f^{-1}} \mathcal{P}(X) \times \mathcal{P}(X)$$

$$\downarrow \qquad \qquad \downarrow \cup$$

$$\mathcal{P}(Y) \xrightarrow{f^{-1}} \mathcal{P}(X)$$

commutes, i.e. we have

$$f^{-1}(U \cup V) = f^{-1}(U) \cup f^{-1}(V)$$

for each $U, V \in \mathcal{P}(Y)$.

01MF

6. Interaction With Binary Intersections. The diagram

$$\mathcal{P}(Y) \times \mathcal{P}(Y) \xrightarrow{f^{-1} \times f^{-1}} \mathcal{P}(X) \times \mathcal{P}(X)$$

$$\uparrow \qquad \qquad \qquad \downarrow \cap$$

$$\mathcal{P}(Y) \xrightarrow{f^{-1}} \mathcal{P}(X)$$

commutes, i.e. we have

$$f^{-1}(U \cap V) = f^{-1}(U) \cap f^{-1}(V)$$

for each $U, V \in \mathcal{P}(Y)$.

01MG

7. Interaction With Differences. The diagram

$$\mathcal{P}(Y)^{\mathsf{op}} \times \mathcal{P}(Y) \xrightarrow{f^{\mathsf{op},-1} \times f^{-1}} \mathcal{P}(X)^{\mathsf{op}} \times \mathcal{P}(X)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad$$

commutes, i.e. we have

$$f^{-1}(U \setminus V) = f^{-1}(U) \setminus f^{-1}(V)$$

for each $U, V \in \mathcal{P}(X)$.

01MH

8. Interaction With Complements. The diagram

$$\mathcal{P}(Y)^{\text{op}} \xrightarrow{f^{-1,\text{op}}} \mathcal{P}(X)^{\text{op}} \\
\xrightarrow{(-)^{c}} \qquad \qquad \downarrow^{(-)^{c}} \\
\mathcal{P}(Y) \xrightarrow{f^{-1}} \mathcal{P}(X)$$

commutes, i.e. we have

$$f^{-1}(U^{c}) = f^{-1}(U)^{c}$$

for each $U \in \mathcal{P}(X)$.

01MJ

9. Interaction With Symmetric Differences. The diagram

$$\begin{array}{ccc} \mathcal{P}(Y)^{\mathsf{op}} \times \mathcal{P}(Y) & \xrightarrow{f^{\mathsf{op},-1} \times f^{-1}} & \mathcal{P}(X)^{\mathsf{op}} \times \mathcal{P}(X) \\ & & & & \downarrow^{\triangle} \\ & & \mathcal{P}(Y) & \xrightarrow{f^{-1}} & \mathcal{P}(X) \end{array}$$

i.e. we have

$$f^{-1}(U) \triangle f^{-1}(V) = f^{-1}(U \triangle V)$$

for each $U, V \in \mathcal{P}(Y)$.

01MK

10. Interaction With Internal Homs of Powersets. The diagram

$$\mathcal{P}(Y)^{\mathsf{op}} \times \mathcal{P}(Y) \xrightarrow{f^{-1}, \mathsf{op} \times f^{-1}} \mathcal{P}(X)^{\mathsf{op}} \times \mathcal{P}(X)$$

$$[-1, -2]_Y \downarrow \qquad \qquad \downarrow [-1, -2]_X$$

$$\mathcal{P}(Y) \xrightarrow{f^{-1}} \mathcal{P}(X)$$

commutes, i.e. we have an equality of sets

$$f^{-1}([U,V]_Y) = [f^{-1}(U), f^{-1}(V)]_X,$$

natural in $U, V \in \mathcal{P}(X)$.

0086

11. Preservation of Colimits. We have an equality of sets

$$f^{-1}\left(\bigcup_{i\in I}U_i\right)=\bigcup_{i\in I}f^{-1}(U_i),$$

natural in $\{U_i\}_{i\in I}\in \mathcal{P}(Y)^{\times I}$. In particular, we have equalities

$$f^{-1}(U) \cup f^{-1}(V) = f^{-1}(U \cup V),$$

 $f^{-1}(\emptyset) = \emptyset,$

natural in $U, V \in \mathcal{P}(Y)$.

0087

12. Preservation of Limits. We have an equality of sets

$$f^{-1}\left(\bigcap_{i\in I}U_i\right)=\bigcap_{i\in I}f^{-1}(U_i),$$

natural in $\{U_i\}_{i\in I} \in \mathcal{P}(Y)^{\times I}$. In particular, we have equalities

$$f^{-1}(U) \cap f^{-1}(V) = f^{-1}(U \cap V),$$

 $f^{-1}(Y) = X,$

natural in $U, V \in \mathcal{P}(Y)$.

0088

13. *Symmetric Strict Monoidality With Respect to Unions.* The inverse image function of Item 1 has a symmetric strict monoidal structure

$$\left(f^{-1}, f^{-1, \otimes}, f_{\mathbb{1}}^{-1, \otimes}\right) \colon (\mathcal{P}(Y), \cup, \emptyset) \to (\mathcal{P}(X), \cup, \emptyset),$$

being equipped with equalities

$$f_{U,V}^{-1,\otimes} \colon f^{-1}(U) \cup f^{-1}(V) \stackrel{=}{\to} f^{-1}(U \cup V),$$
$$f_{1}^{-1,\otimes} \colon \emptyset \stackrel{=}{\to} f^{-1}(\emptyset),$$

natural in $U, V \in \mathcal{P}(Y)$.

0089

14. *Symmetric Strict Monoidality With Respect to Intersections*. The inverse image function of <u>Item 1</u> has a symmetric strict monoidal structure

$$\left(f^{-1}, f^{-1, \otimes}, f_{\mathbb{1}}^{-1, \otimes}\right) \colon (\mathcal{P}(Y), \cap, Y) \to (\mathcal{P}(X), \cap, X),$$

being equipped with equalities

$$f_{U,V}^{-1,\otimes} \colon f^{-1}(U) \cap f^{-1}(V) \xrightarrow{=} f^{-1}(U \cap V),$$

$$f_{\mathbb{1}}^{-1,\otimes} \colon X \xrightarrow{=} f^{-1}(Y),$$

natural in $U, V \in \mathcal{P}(Y)$.

15. *Interaction With Coproducts.* Let $f: X \to X'$ and $g: Y \to Y'$ be maps of sets. We have

$$(f \coprod g)^{-1}(U' \coprod V') = f^{-1}(U') \coprod g^{-1}(V')$$

for each $U' \in \mathcal{P}(X')$ and each $V' \in \mathcal{P}(Y')$.

16. *Interaction With Products.* Let $f: X \to X'$ and $g: Y \to Y'$ be maps of sets. We have

$$(f \boxtimes_{X' \times Y'} g)^{-1} (U' \boxtimes_{X' \times Y'} V') = f^{-1} (U') \boxtimes_{X \times Y} g^{-1} (V')$$

for each $U' \in \mathcal{P}(X')$ and each $V' \in \mathcal{P}(Y')$.

PROOF 4.6.2.1.4 ► PROOF OF PROPOSITION 4.6.2.1.3

Item 1: Functoriality

Omitted.

Item 2: Triple Adjointness

This follows from Remark 4.6.1.1.4, Remark 4.6.2.1.2, Remark 4.6.3.1.4, and Kan Extensions, ?? of ??.

Item 3: Interaction With Unions of Families of Subsets

We have

$$\bigcup_{U \in f^{-1}(\mathcal{V})} U = \bigcup_{U \in \{f^{-1}(V) \in \mathcal{P}(X) \mid V \in \mathcal{V}\}} U$$
$$= \bigcup_{V \in \mathcal{V}} f^{-1}(V).$$

This finishes the proof.

008A

008B

Item 4: Interaction With Intersections of Families of Subsets

We have

$$\bigcap_{U \in f^{-1}(\mathcal{V})} U = \bigcap_{U \in \{f^{-1}(V) \in \mathcal{P}(X) \mid V \in \mathcal{V}\}} U$$
$$= \bigcap_{V \in \mathcal{V}} f^{-1}(V).$$

This finishes the proof.

Item 5: Interaction With Binary Unions

See [Pro25y].

Item 6: Interaction With Binary Intersections

See [Pro25w].

Item 7: Interaction With Differences

See [Pro25x].

Item 8: Interaction With Complements

See [Pro25j].

Item 9: Interaction With Symmetric Differences

We have

022K

022M

$$\begin{split} f^{-1}(U \triangle V) &= f^{-1}((U \cup V) \setminus (U \cap V)) \\ &= f^{-1}(U \cup V) \setminus f^{-1}(U \cap V) \\ &= f^{-1}(U) \cup f^{-1}(V) \setminus f^{-1}(U \cap V) \\ &= f^{-1}(U) \cup f^{-1}(V) \setminus f^{-1}(U) \cap f^{-1}(V) \\ &= f^{-1}(U) \triangle f^{-1}(V), \end{split}$$

where we have used:

- 1. Item 2 of Proposition 4.3.12.1.2 for the first equality.
- 022L 2. Item 7 for the second equality.
 - 3. Item 5 for the third equality.
- 4. Item 6 for the fourth equality.

022P

5. Item 2 of Proposition 4.3.12.1.2 for the fifth equality.

This finishes the proof.

Item 10: Interaction With Internal Homs of Powersets

We have

$$\begin{split} f^{-1}([U,V]_Y) &\stackrel{\text{def}}{=} f^{-1}(U^\mathsf{c} \cup V) \\ &= f^{-1}(U^\mathsf{c}) \cup f^{-1}(V) \\ &= f^{-1}(U)^\mathsf{c} \cup f^{-1}(V) \\ &\stackrel{\text{def}}{=} \left[f^{-1}(U), f^{-1}(V) \right]_X, \end{split}$$

where we have used:

022Q

- 1. Item 8 for the second equality.
- 022R 2. Item 5 for the third equality.

Since $\mathcal{P}(Y)$ is posetal, naturality is automatic (Categories, Item 4 of Proposition 11.2.7.1.2). This finishes the proof.

Item 11: Preservation of Colimits

This follows from Item 2 and ??, ?? of ??.¹

Item 12: Preservation of Limits

This follows from Item 2 and ??, ?? of ??.²

Item 13: Symmetric Strict Monoidality With Respect to Unions

This follows from Item 11.

Item 14: Symmetric Strict Monoidality With Respect to Intersections

This follows from Item 12.

Item 15: Interaction With Coproducts

Omitted.

Item 16: Interaction With Products

Omitted.

¹Reference: [Pro25y].

²Reference: [Pro25w].

008C PROPOSITION 4.6.2.1.5 ➤ PROPERTIES OF INVERSE IMAGES II

Let $f: X \to Y$ be a function.

008D

008E

008F

008G

1. Functionality I. The assignment $f \mapsto f^{-1}$ defines a function

$$(-)^{-1}_{XY}$$
: Sets $(X,Y) \to \text{Sets}(\mathcal{P}(Y),\mathcal{P}(X))$.

2. Functionality II. The assignment $f \mapsto f^{-1}$ defines a function

$$(-)_{X,Y}^{-1} \colon \mathsf{Sets}(X,Y) \to \mathsf{Pos}((\mathcal{P}(Y),\subset),(\mathcal{P}(X),\subset)).$$

3. *Interaction With Identities.* For each $X \in Obj(Sets)$, we have

$$\mathrm{id}_X^{-1}=\mathrm{id}_{\mathcal{P}(X)}\;.$$

4. *Interaction With Composition*. For each pair of composable functions $f: X \to Y$ and $g: Y \to Z$, we have

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1},$$

$$\mathcal{P}(Z) \xrightarrow{g^{-1}} \mathcal{P}(Y)$$

$$\downarrow^{f^{-1}}$$

$$\mathcal{P}(X).$$

PROOF 4.6.2.1.6 ► PROOF OF PROPOSITION 4.6.2.1.5

Item 1: Functionality I

There is nothing to prove.

Item 2: Functionality II

This follows from Item 1 of Proposition 4.6.2.1.3.

Item 3: Interaction With Identities

This follows from Remark 4.6.2.1.2 and Categories, Item 5 of Proposition 11.1.4.1.2.

Item 4: Interaction With Composition

This follows from Remark 4.6.2.1.2 and Categories, Item 2 of Proposi-

tion 11.1.4.1.2.

008H 4.6.3 Codirect Images

Let $f: X \to Y$ be a function.

008J

DEFINITION 4.6.3.1.1 ► CODIRECT IMAGES

The **codirect image function associated to** f is the function

$$f_* \colon \mathcal{P}(X) \to \mathcal{P}(Y)$$

defined by^{1,2}

$$f_*(U) \stackrel{\text{def}}{=} \left\{ y \in Y \middle| \begin{array}{l} \text{for each } x \in X, \text{ if we have} \\ f(x) = y, \text{ then } x \in U \end{array} \right\}$$
$$= \left\{ y \in Y \middle| \text{ we have } f^{-1}(y) \subset U \right\}$$

for each $U \in \mathcal{P}(X)$.

$$f_*(U) = f_!(U^{\mathsf{c}})^{\mathsf{c}}$$

$$\stackrel{\text{def}}{=} Y \setminus f_!(X \setminus U);$$

see Item 16 of Proposition 4.6.3.1.7.

008K

NOTATION 4.6.3.1.2 ► FURTHER NOTATION FOR CODIRECT IMAGES

Sometimes one finds the notation

$$\forall_f \colon \mathcal{P}(X) \to \mathcal{P}(Y)$$

for $f_!$. This notation comes from the fact that the following statements are equivalent, where $y \in Y$ and $U \in \mathcal{P}(X)$:

- We have $y \in \forall_f(U)$.
- For each $x \in X$, if y = f(x), then $x \in U$.

We will not make use of this notation elsewhere in Clowder.

¹Further Terminology: The set $f_*(U)$ is called the **codirect image of** U **by** f.

²We also have

WARNING 4.6.3.1.3 ► NOTATION FOR CODIRECT IMAGES IS CONFUSING

See Warning 4.6.1.1.3.

008L

REMARK 4.6.3.1.4 ► Unwinding Definition 4.6.3.1.1

Identifying $\mathcal{P}(X)$ with $\mathsf{Sets}(X, \{\mathsf{t}, \mathsf{f}\})$ via Item 2 of Proposition 4.5.1.1.4, we see that the codirect image function associated to f is equivalently the function

$$f_* \colon \mathcal{P}(X) \to \mathcal{P}(Y)$$

defined by

$$\begin{split} f_*(\chi_U) &\stackrel{\text{def}}{=} \operatorname{Ran}_f(\chi_U) \\ &= \lim \left(\left(\underbrace{(-_1)}_{\times} \stackrel{\rightarrow}{\times} f \right) \stackrel{\operatorname{pr}}{\twoheadrightarrow} X \stackrel{\chi_U}{\longrightarrow} \left\{ \text{true, false} \right\} \right) \\ &= \lim_{\substack{x \in X \\ f(x) = -_1}} (\chi_U(x)) \\ &= \bigwedge_{\substack{x \in X \\ f(x) = -_1}} (\chi_U(x)). \end{split}$$

where we have used ?? for the second equality. In other words, we have

$$[f_*(\chi_U)](y) = \bigwedge_{\substack{x \in X \\ f(x) = y}} (\chi_U(x))$$

$$= \begin{cases} \text{true} & \text{if, for each } x \in X \text{ such that} \\ f(x) = y, \text{ we have } x \in U, \end{cases}$$

$$= \begin{cases} \text{true} & \text{if } f^{-1}(y) \subset U \\ \text{false} & \text{otherwise} \end{cases}$$

for each $y \in Y$.

008M

DEFINITION 4.6.3.1.5 \blacktriangleright The Image and Complement Parts of f_*

Let *U* be a subset of X.^{1,2}

008N

1. The **image part of the codirect image** $f_*(U)$ **of** U is the set $f_{*,\text{im}}(U)$ defined by

$$f_{*,\text{im}}(U) \stackrel{\text{def}}{=} f_*(U) \cap \text{Im}(f)$$

$$= \left\{ y \in Y \middle| \begin{array}{l} \text{we have } f^{-1}(y) \subset U \\ \text{and } f^{-1}(y) \neq \emptyset. \end{array} \right\}.$$

008P

2. The **complement part of the codirect image** $f_*(U)$ **of** U is the set $f_{*,cp}(U)$ defined by

$$f_{*,cp}(U) \stackrel{\text{def}}{=} f_*(U) \cap (Y \setminus \text{Im}(f))$$

$$= Y \setminus \text{Im}(f)$$

$$= \left\{ y \in Y \middle| \text{ we have } f^{-1}(y) \subset U \right\}$$

$$= \left\{ y \in Y \middle| f^{-1}(y) = \emptyset \right\}.$$

$$f_*(U) = f_{*,im}(U) \cup f_{*,cp}(U),$$

as

$$\begin{split} f_*(U) &= f_*(U) \cap Y \\ &= f_*(U) \cap (\operatorname{Im}(f) \cup (Y \setminus \operatorname{Im}(f))) \\ &= (f_*(U) \cap \operatorname{Im}(f)) \cup (f_*(U) \cap (Y \setminus \operatorname{Im}(f))) \\ &\stackrel{\text{def}}{=} f_{*,\operatorname{im}}(U) \cup f_{*,\operatorname{cp}}(U). \end{split}$$

²In terms of the meet computation of $f_*(U)$ of Remark 4.6.3.1.4, namely

$$f_*(\chi_U) = \bigwedge_{\substack{x \in X \\ f(x) = -1}} (\chi_U(x)),$$

we see that $f_{*,im}$ corresponds to meets indexed over nonempty sets, while $f_{*,cp}$ corresponds to meets indexed over the empty set.

0080

EXAMPLE 4.6.3.1.6 ► **EXAMPLES OF CODIRECT IMAGES**

Here are some examples of codirect images.

¹Note that we have

0231 1. *Multiplication by Two*. Consider the function $f: \mathbb{N} \to \mathbb{N}$ given by

$$f(n) \stackrel{\text{def}}{=} 2n$$

for each $n \in \mathbb{N}$. Since f is injective, we have

$$f_{*,\text{im}}(U) = f_!(U)$$

 $f_{*,cp}(U) = \{ \text{odd natural numbers} \}$

for any $U \subset \mathbb{N}$. In particular, we have

 $f_*(\{\text{even natural numbers}\}) = \mathbb{N}.$

2. *Parabolas*. Consider the function $f: \mathbb{R} \to \mathbb{R}$ given by

$$f(x) \stackrel{\text{def}}{=} x^2$$

for each $x \in \mathbb{R}$. We have

$$f_{*,cp}(U) = \mathbb{R}_{<0}$$

for any $U \subset \mathbb{R}$. Moreover, since $f^{-1}(x) = \{-\sqrt{x}, \sqrt{x}\}$, we have e.g.:

$$f_{*,im}([0,1]) = \{0\},\$$

$$f_{*,im}([-1,1]) = [0,1],$$

$$f_{*,\text{im}}([1,2]) = \emptyset,$$

$$f_{*,im}([-2,-1] \cup [1,2]) = [1,4].$$

3. *Circles*. Consider the function $f: \mathbb{R}^2 \to \mathbb{R}$ given by

$$f(x,y) \stackrel{\text{def}}{=} x^2 + y^2$$

for each $(x, y) \in \mathbb{R}^2$. We have

$$f_{*,\mathrm{cp}}(U) = \mathbb{R}_{<0}$$

for any $U \subset \mathbb{R}^2$, and since

$$f^{-1}(r) = \begin{cases} \text{a circle of radius } r \text{ about the origin} & \text{if } r > 0, \\ \{(0,0)\} & \text{if } r = 0, \\ \emptyset & \text{if } r < 0, \end{cases}$$

we have e.g.:

$$f_{*,\text{im}}([-1,1] \times [-1,1]) = [0,1],$$

$$f_{*,\text{im}}(([-1,1] \times [-1,1]) \setminus [-1,1] \times \{0\}) = \emptyset.$$

0232

0233

008R PROPOSITION 4.6.3.1.7 ➤ PROPERTIES OF CODIRECT IMAGES I

Let $f: X \to Y$ be a function.

1. Functoriality. The assignment $U \mapsto f_*(U)$ defines a functor

$$f_*: (\mathcal{P}(X), \subset) \to (\mathcal{P}(Y), \subset).$$

In particular, for each $U, V \in \mathcal{P}(X)$, the following condition is satisfied:

$$(\star)$$
 If $U \subset V$, then $f_*(U) \subset f_*(V)$.

2. Triple Adjointness. We have a triple adjunction

$$(f_! \dashv f^{-1} \dashv f_*): \mathcal{P}(X) \leftarrow f^{-1} - \mathcal{P}(Y),$$

witnessed by:

(a) Units and counits of the form

$$id_{\mathcal{P}(X)} \hookrightarrow f^{-1} \circ f_!, \qquad id_{\mathcal{P}(Y)} \hookrightarrow f_* \circ f^{-1},$$

 $f_! \circ f^{-1} \hookrightarrow id_{\mathcal{P}(Y)}, \qquad f^{-1} \circ f_* \hookrightarrow id_{\mathcal{P}(X)},$

having components of the form

$$U \subset f^{-1}(f_!(U)), \qquad V \subset f_*\Big(f^{-1}(V)\Big),$$

 $f_!\Big(f^{-1}(V)\Big) \subset V, \qquad f^{-1}(f_*(U)) \subset U$

indexed by $U \in \mathcal{P}(X)$ and $V \in \mathcal{P}(Y)$.

(b) Bijections of sets

$$\operatorname{Hom}_{\mathcal{P}(Y)}(f_!(U), V) \cong \operatorname{Hom}_{\mathcal{P}(X)}(U, f^{-1}(V)),$$

 $\operatorname{Hom}_{\mathcal{P}(X)}(f^{-1}(U), V) \cong \operatorname{Hom}_{\mathcal{P}(X)}(U, f_*(V)),$

natural in $U \in \mathcal{P}(X)$ and $V \in \mathcal{P}(Y)$ and (respectively) $V \in \mathcal{P}(X)$ and $U \in \mathcal{P}(Y)$. In particular:

i. The following conditions are equivalent:

008T

008S

01ML

01MM

01MN

01MP

01MQ

01MR

01MS

01MT

01MU

A. We have $f_!(U) \subset V$.

B. We have $U \subset f^{-1}(V)$.

ii. The following conditions are equivalent:

A. We have $f^{-1}(U) \subset V$.

B. We have $U \subset f_*(V)$.

3. Interaction With Unions of Families of Subsets. The diagram

$$\mathcal{P}(\mathcal{P}(X)) \xrightarrow{(f_*)_*} \mathcal{P}(\mathcal{P}(Y))$$

$$\bigcup \qquad \qquad \bigcup \qquad \qquad \bigcup \cup$$

$$\mathcal{P}(X) \xrightarrow{f_*} \mathcal{P}(Y)$$

commutes, i.e. we have

$$\bigcup_{U\in\mathcal{U}} f_*(U) = \bigcup_{V\in f_*(\mathcal{U})} V$$

for each $\mathcal{U} \in \mathcal{P}(X)$, where $f_*(\mathcal{U}) \stackrel{\text{def}}{=} (f_*)_*(\mathcal{U})$.

4. Interaction With Intersections of Families of Subsets. The diagram

$$\mathcal{P}(\mathcal{P}(X)) \xrightarrow{(f_*)_*} \mathcal{P}(\mathcal{P}(Y))$$

$$\cap \downarrow \qquad \qquad \downarrow \cap$$

$$\mathcal{P}(X) \xrightarrow{f_*} \mathcal{P}(Y)$$

commutes, i.e. we have

$$\bigcap_{U \in \mathcal{U}} f_*(U) = \bigcap_{V \in f_*(\mathcal{U})} V$$

for each $\mathcal{U} \in \mathcal{P}(X)$, where $f_*(\mathcal{U}) \stackrel{\text{def}}{=} (f_*)_*(\mathcal{U})$.

5. *Interaction With Binary Unions*. Let $f: X \to Y$ be a function. We have a natural transformation

$$\mathcal{P}(X) \times \mathcal{P}(X) \xrightarrow{f_* \times f_*} \mathcal{P}(Y) \times \mathcal{P}(Y) \\
 \downarrow \qquad \qquad \downarrow \cup \\
 \mathcal{P}(X) \xrightarrow{f_*} \mathcal{P}(Y)$$

01MV

01MW

with components

$$f_*(U) \cup f_*(V) \subset f_*(U \cup V)$$

indexed by $U, V \in \mathcal{P}(X)$.

6. Interaction With Binary Intersections. The diagram

commutes, i.e. we have

$$f_*(U) \cap f_*(V) = f_*(U \cap V)$$

for each $U, V \in \mathcal{P}(X)$.

7. Interaction With Complements. The diagram

$$\mathcal{P}(X)^{\text{op}} \xrightarrow{f_!^{\text{op}}} \mathcal{P}(Y)^{\text{op}}
\xrightarrow[(-)^c]{} \downarrow^{(-)^c}
\mathcal{P}(X) \xrightarrow{f} \mathcal{P}(Y)$$

commutes, i.e. we have

$$f_*(U^{\mathsf{c}}) = f_!(U)^{\mathsf{c}}$$

for each $U \in \mathcal{P}(X)$.

8. *Interaction With Symmetric Differences*. We have a natural transformation

01MX

01MY

01MZ

with components

$$f_*(U \triangle V) \subset f_*(U) \triangle f_*(V)$$

indexed by $U, V \in \mathcal{P}(X)$.

9. *Interaction With Internal Homs of Powersets*. We have a natural transformation

with components

$$[f_!(U), f_*(V)]_Y \subset f_*([U, V]_X)$$

indexed by $U, V \in \mathcal{P}(X)$.

10. Lax Preservation of Colimits. We have an inclusion of sets

$$\bigcup_{i\in I} f_*(U_i) \subset f_*\left(\bigcup_{i\in I} U_i\right),\,$$

natural in $\{U_i\}_{i\in I} \in \mathcal{P}(X)^{\times I}$. In particular, we have inclusions

$$f_*(U) \cup f_*(V) \hookrightarrow f_*(U \cup V),$$

 $\emptyset \hookrightarrow f_*(\emptyset),$

natural in $U, V \in \mathcal{P}(X)$.

11. Preservation of Limits. We have an equality of sets

$$f_*\left(\bigcap_{i\in I}U_i\right)=\bigcap_{i\in I}f_*(U_i),$$

natural in $\{U_i\}_{i\in I} \in \mathcal{P}(X)^{\times I}$. In particular, we have equalities

$$f^{-1}(U \cap V) = f_*(U) \cap f^{-1}(V),$$

 $f_*(X) = Y,$

natural in $U, V \in \mathcal{P}(X)$.

01N0

008U

008V

008W

12. *Symmetric Lax Monoidality With Respect to Unions*. The codirect image function of Item 1 has a symmetric lax monoidal structure

$$(f_*, f_*^{\otimes}, f_{*|\mathbb{1}}^{\otimes}) \colon (\mathcal{P}(X), \cup, \emptyset) \to (\mathcal{P}(Y), \cup, \emptyset),$$

being equipped with inclusions

$$f_{*|U,V}^{\otimes} : f_{*}(U) \cup f_{*}(V) \hookrightarrow f_{*}(U \cup V),$$

 $f_{*|\Pi}^{\otimes} : \emptyset \hookrightarrow f_{*}(\emptyset),$

natural in $U, V \in \mathcal{P}(X)$.

008X

13. *Symmetric Strict Monoidality With Respect to Intersections*. The direct image function of Item 1 has a symmetric strict monoidal structure

$$(f_*, f_*^{\otimes}, f_{*|\mathbb{1}}^{\otimes}) \colon (\mathcal{P}(X), \cap, X) \to (\mathcal{P}(Y), \cap, Y),$$

being equipped with equalities

$$f_{*|U,V}^{\otimes} \colon f_*(U \cap V) \xrightarrow{=} f_*(U) \cap f_*(V),$$
$$f_{*|1}^{\otimes} \colon f_*(X) \xrightarrow{=} Y,$$

natural in $U, V \in \mathcal{P}(X)$.

008Y

14. *Interaction With Coproducts.* Let $f: X \to X'$ and $g: Y \to Y'$ be maps of sets. We have

$$(f \coprod g)_*(U \coprod V) = f_*(U) \coprod g_*(V)$$

for each $U \in \mathcal{P}(X)$ and each $V \in \mathcal{P}(Y)$.

008Z

15. *Interaction With Products.* Let $f: X \to X'$ and $g: Y \to Y'$ be maps of sets. We have

$$(f \boxtimes_{X \times Y} g)_*(U \boxtimes_{X \times Y} V) = f_*(U) \boxtimes_{X' \times Y'} g_*(V)$$

for each $U \in \mathcal{P}(X)$ and each $V \in \mathcal{P}(Y)$.

0090

16. Relation to Direct Images. We have

$$f_*(U) = f_!(U^{\mathsf{c}})^{\mathsf{c}}$$
$$= Y \setminus f_!(X \setminus U)$$

for each $U \in \mathcal{P}(X)$.

0091

17. *Interaction With Injections*. If *f* is injective, then we have

$$f_{*,\text{im}}(U) = f_!(U),$$

 $f_{*,\text{cp}}(U) = Y \setminus \text{Im}(f),$

and so

$$f_*(U) = f_{*,\text{im}}(U) \cup f_{*,\text{cp}}(U)$$
$$= f_!(U) \cup (Y \setminus \text{Im}(f))$$

for each $U \in \mathcal{P}(X)$.

0092

18. *Interaction With Surjections*. If *f* is surjective, then we have

$$f_{*,\text{im}}(U) \subset f_!(U),$$

 $f_{*,\text{cp}}(U) = \emptyset,$

and so

$$f_*(U) \subset f_!(U)$$

for each $U \in \mathcal{P}(X)$.

PROOF 4.6.3.1.8 ► PROOF OF PROPOSITION 4.6.3.1.7

Item 1: Functoriality

Omitted.

Item 2: Triple Adjointness

This follows from Remark 4.6.1.1.4, Remark 4.6.2.1.2, Remark 4.6.3.1.4, and Kan Extensions, ?? of ??.

Item 3: Interaction With Unions of Families of Subsets

We have

$$\bigcup_{V \in f_*(\mathcal{U})} V = \bigcup_{V \in \{f_*(U) \in \mathcal{P}(X) \mid U \in \mathcal{U}\}} V$$

$$=\bigcup_{U\in\mathcal{U}}f_*(U).$$

This finishes the proof.

Item 4: Interaction With Intersections of Families of Subsets

We have

$$\bigcap_{V \in f_*(\mathcal{U})} V = \bigcap_{V \in \{f_*(U) \in \mathcal{P}(X) \mid U \in \mathcal{U}\}} V$$
$$= \bigcap_{U \in \mathcal{U}} f_*(U).$$

This finishes the proof.

Item 5: Interaction With Binary Unions

We have

$$f_*(U) \cup f_*(V) = f_!(U^c)^c \cup f_!(V^c)^c$$

$$= (f_!(U^c) \cap f_!(V^c))^c$$

$$\subset (f_!(U^c \cap V^c))^c$$

$$= f_!((U \cup V)^c)^c$$

$$= f_*(U \cup V),$$

where:

023X

023Y

023Z

0240

0241

1. We have used Item 16 for the first equality.

2. We have used Item 2 of Proposition 4.3.11.1.2 for the second equality.

3. We have used Item 6 of Proposition 4.6.1.1.5 for the third equality.

4. We have used Item 2 of Proposition 4.3.11.1.2 for the fourth equality.

5. We have used Item 16 for the last equality.

This finishes the proof.

Item 6: Interaction With Binary Intersections

This follows from Item 11.

Item 7: Interaction With Complements

Omitted.

Item 8: Interaction With Symmetric Differences

Omitted.

Item 9: Interaction With Internal Homs of Powersets

We have

$$[f_!(U), f^!(V)]_X \stackrel{\text{def}}{=} f_!(U)^c \cup f_*(V)$$
$$= f_*(U^c) \cup f_*(V)$$
$$\subset f_*(U^c \cup V)$$
$$\stackrel{\text{def}}{=} f_*([U, V]_X),$$

where we have used:

1. Item 7 of Proposition 4.6.3.1.7 for the second equality. 0242

2. Item 5 of Proposition 4.6.3.1.7 for the inclusion.

Since $\mathcal{P}(X)$ is posetal, naturality is automatic (Categories, Item 4 of Proposition 11.2.7.1.2). This finishes the proof.

Item 10: Lax Preservation of Colimits

Omitted.

Item 11: Preservation of Limits

This follows from Item 2 and ??, ?? of ??.

Item 12: Symmetric Lax Monoidality With Respect to Unions

This follows from Item 10.

Item 13: Symmetric Strict Monoidality With Respect to Intersections

This follows from Item 11.

Item 14: Interaction With Coproducts

Omitted.

Item 15: Interaction With Products

Omitted.

Item 16: Relation to Direct Images

We claim that $f_*(U) = Y \setminus f_!(X \setminus U)$.

0243

• The First Implication. We claim that

$$f_*(U) \subset Y \setminus f_!(X \setminus U).$$

Let $y \in f_*(U)$. We need to show that $y \notin f_!(X \setminus U)$, i.e. that there is no $x \in X \setminus U$ such that f(x) = y.

This is indeed the case, as otherwise we would have $x \in f^{-1}(y)$ and $x \notin U$, contradicting $f^{-1}(y) \subset U$ (which holds since $y \in f_*(U)$).

Thus $y \in Y \setminus f_!(X \setminus U)$.

• The Second Implication. We claim that

$$Y \setminus f_!(X \setminus U) \subset f_*(U)$$
.

Let $y \in Y \setminus f_!(X \setminus U)$. We need to show that $y \in f_*(U)$, i.e. that $f^{-1}(y) \subset U$.

Since $y \notin f_!(X \setminus U)$, there exists no $x \in X \setminus U$ such that y = f(x), and hence $f^{-1}(y) \subset U$.

Thus $y \in f_*(U)$.

This finishes the proof of Item 16.

Item 17: Interaction With Injections

Omitted.

Item 18: Interaction With Surjections

Omitted.

0094

0095

0096

0093 PROPOSITION 4.6.3.1.9 ▶ PROPERTIES OF CODIRECT IMAGES II

Let $f: X \to B$ be a function.

1. Functionality I. The assignment $f \mapsto f_*$ defines a function

$$(-)_{Y|X|Y} : \mathsf{Sets}(X,Y) \to \mathsf{Sets}(\mathcal{P}(X),\mathcal{P}(Y)).$$

2. Functionality II. The assignment $f \mapsto f_*$ defines a function

$$(-)_{YY}: \mathsf{Sets}(X,Y) \to \mathsf{Pos}((\mathcal{P}(X),\subset),(\mathcal{P}(Y),\subset)).$$

3. *Interaction With Identities.* For each $X \in Obj(Sets)$, we have

$$(\mathrm{id}_X)_* = \mathrm{id}_{\mathcal{P}(X)}$$
.

0097

4. *Interaction With Composition*. For each pair of composable functions $f: X \to Y$ and $g: Y \to Z$, we have

$$(g \circ f)_* = g_* \circ f_*,$$

$$(g \circ f)_* = g_* \circ f_*,$$

$$(g \circ f)_* \qquad g_*$$

$$\mathcal{P}(Z)$$

PROOF 4.6.3.1.10 ► PROOF OF PROPOSITION 4.6.3.1.9

Item 1: Functionality I

There is nothing to prove.

Item 2: Functionality II

This follows from Item 1 of Proposition 4.6.3.1.7.

Item 3: Interaction With Identities

This follows from Remark 4.6.3.1.4 and Kan Extensions, ?? of ??.

Item 4: Interaction With Composition

This follows from Remark 4.6.3.1.4 and Kan Extensions, ?? of ??.

01N1 4.6.4 A Six-Functor Formalism for Sets

01N2 REMARK 4.6.4.1.1 ► A SIX-FUNCTOR FORMALISM FOR SETS

The assignment $X \mapsto \mathcal{P}(X)$ together with the functors f_* , f^{-1} , and $f_!$ of Item 1 of Proposition 4.6.1.1.5, Item 1 of Proposition 4.6.2.1.3, and Item 1 of Proposition 4.6.3.1.7, and the functors

$$-_{1} \cap -_{2} \colon \mathcal{P}(X) \times \mathcal{P}(X) \to \mathcal{P}(X),$$
$$[-_{1}, -_{2}]_{X} \colon \mathcal{P}(X)^{\mathsf{op}} \times \mathcal{P}(X) \to \mathcal{P}(X)$$

of Item 1 of Proposition 4.3.9.1.2 and Item 1 of Proposition 4.4.7.1.4 satisfy several properties reminiscent of a six functor formalism in the sense of ??. We collect these properties in Proposition 4.6.4.1.2 below.¹

¹See also [nLa25].

PROPOSITION 4.6.4.1.2 ► A SIX-FUNCTOR FORMALISM FOR SETS

Let *X* be a set.

01N5

01N4 1. The Beck–Chevalley Condition. Let

$$\begin{array}{c|c} X \times_Z Y & \xrightarrow{\operatorname{pr}_2} Y \\ & & \downarrow g \\ X & \xrightarrow{f} Z \end{array}$$

be a pullback diagram in Sets. We have

2. The Projection Formula I. The diagram

commutes, i.e. we have

$$f_!\Big(U\cap f^{-1}(V)\Big)=f_!(U)\cap V$$

for each $U \in \mathcal{P}(X)$ and each $V \in \mathcal{P}(Y)$.

01N6

3. The Projection Formula II. We have a natural transformation

with components

$$f_*(U) \cap V \subset f_* \Big(U \cap f^{-1}(V) \Big)$$

indexed by $U \in \mathcal{P}(X)$ and $V \in \mathcal{P}(Y)$.

01N7

4. Strong Closed Monoidality. The diagram

commutes, i.e. we have an equality of sets

$$f^{-1}([U,V]_Y) = [f^{-1}(U), f^{-1}(V)]_X,$$

natural in $U, V \in \mathcal{P}(X)$.

01N8

5. The External Tensor Product. We have an external tensor product

$$-1 \boxtimes_{X \times Y} -2: \mathcal{P}(X) \times \mathcal{P}(Y) \to \mathcal{P}(X \times Y)$$

given by

$$U \boxtimes_{X \times Y} V \stackrel{\text{def}}{=} \operatorname{pr}_{1}^{-1}(U) \cap \operatorname{pr}_{2}^{-1}(V)$$
$$= \{(u, v) \in X \times Y \mid u \in U \text{ and } v \in V\}.$$

This is the same map as the one in Item 5 of Proposition 4.4.1.1.4. Moreover, the following conditions are satisfied:

01N9

(a) *Interaction With Direct Images*. Let $f: X \to X'$ and $g: Y \to Y'$ be functions. The diagram

$$\begin{array}{c|c}
\mathcal{P}(X) \times \mathcal{P}(Y) & \xrightarrow{f_{1} \times g_{1}} & \mathcal{P}(X') \times \mathcal{P}(Y') \\
\boxtimes_{X \times Y} & & & \downarrow \boxtimes_{X' \times Y'} \\
\mathcal{P}(X \times Y) & \xrightarrow{f_{1} \times g_{1}} & \mathcal{P}(X' \times Y')
\end{array}$$

commutes, i.e. we have

$$[f_! \times g_!](U \boxtimes_{X \times Y} V) = f_!(U) \boxtimes_{X' \times Y'} g_!(V)$$

for each $(U, V) \in \mathcal{P}(X) \times \mathcal{P}(Y)$.

01NA

(b) Interaction With Inverse Images. Let $f: X \to X'$ and $g: Y \to Y'$ be functions. The diagram

$$\begin{array}{cccc} \mathcal{P}(X') \times \mathcal{P}(Y') & \xrightarrow{f^{-1} \times g^{-1}} & \mathcal{P}(X) \times \mathcal{P}(Y) \\ & \boxtimes_{X' \times Y'} & & & & & & & & & \\ & \boxtimes_{X' \times Y'} & & & & & & & & \\ & \mathcal{P}(X' \times Y') & \xrightarrow{f^{-1} \times g^{-1}} & \mathcal{P}(X \times Y) & & & & & \\ \end{array}$$

commutes, i.e. we have

$$[f^{-1} \times g^{-1}](U \boxtimes_{X' \times Y'} V) = f^{-1}(U) \boxtimes_{X \times Y} g^{-1}(V)$$

for each $(U, V) \in \mathcal{P}(X') \times \mathcal{P}(Y')$.

01NB

(c) *Interaction With Codirect Images.* Let $f: X \to X'$ and $g: Y \to Y'$ be functions. The diagram

$$\begin{array}{ccc} \mathcal{P}(X) \times \mathcal{P}(Y) & \xrightarrow{f_* \times g_*} & \mathcal{P}(X') \times \mathcal{P}(Y') \\ \boxtimes_{X \times Y} & & & & & & & \\ & \boxtimes_{X' \times Y'} & & & & & \\ & \mathcal{P}(X \times Y) & \xrightarrow{f_* \times g_*} & \mathcal{P}(X' \times Y') & \end{array}$$

commutes, i.e. we have

$$[f_* \times g_*](U \boxtimes_{X \times Y} V) = f_*(U) \boxtimes_{X' \times Y'} g_*(V)$$

for each $(U, V) \in \mathcal{P}(X) \times \mathcal{P}(Y)$.

01NC

(d) Interaction With Diagonals. The diagram

i.e. we have

$$U \cap V = \Delta_X^{-1}(U \boxtimes_{X \times X} V)$$

for each $U, V \in \mathcal{P}(X)$.

01ND

6. The Dualisation Functor. We have a functor

$$D_X \colon \mathcal{P}(X)^{\mathsf{op}} \to \mathcal{P}(X)$$

given by

$$D_X(U) \stackrel{\text{def}}{=} [U, \emptyset]_X$$
$$\stackrel{\text{def}}{=} U^{\mathsf{c}}$$

for each $U \in \mathcal{P}(X)$, as in Item 5 of Proposition 4.4.7.1.4, satisfying the following conditions:

01NE

(a) Duality. We have

$$D_X(D_X(U)) = U, \qquad D_X \longrightarrow \mathcal{P}(X)$$

$$\operatorname{id}_{\mathcal{P}(X)} \longrightarrow D_X$$

$$\mathcal{P}(X)$$

01NF

(b) Duality. The diagram

$$\mathcal{P}(X)^{\mathsf{op}} \times \mathcal{P}(X)^{\mathsf{op}} \xrightarrow{\cap^{\mathsf{op}}} \mathcal{P}(X)^{\mathsf{op}}$$

$$\downarrow^{D_X}$$

$$\mathcal{P}(X)^{\mathsf{op}} \times \mathcal{P}(X) \xrightarrow{[-1,-2]_X} \mathcal{P}(X)$$

commutes, i.e. we have

$$\underbrace{D_X(U\cap D_X(V))}_{\stackrel{\mathrm{def}}{=}[U\cap [V,\emptyset]_X,\emptyset]_X} = [U,V]_X$$

for each $U, V \in \mathcal{P}(X)$.

(c) Interaction With Direct Images. The diagram

$$\begin{array}{ccc}
\mathcal{P}(X)^{\mathsf{op}} & \xrightarrow{f_*^{\mathsf{op}}} & \mathcal{P}(Y)^{\mathsf{op}} \\
\downarrow^{D_X} & & \downarrow^{D_Y} \\
\mathcal{P}(X) & \xrightarrow{f_!} & \mathcal{P}(Y)
\end{array}$$

commutes, i.e. we have

$$f_!(D_X(U)) = D_Y(f_*(U))$$

for each $U \in \mathcal{P}(X)$.

(d) Interaction With Inverse Images. The diagram

$$\begin{array}{ccc}
\mathcal{P}(Y)^{\mathsf{op}} & \xrightarrow{f^{-1,\mathsf{op}}} & \mathcal{P}(X)^{\mathsf{op}} \\
\downarrow^{D_{Y}} & & \downarrow^{D_{X}} \\
\mathcal{P}(Y) & \xrightarrow{f^{-1}} & \mathcal{P}(X)
\end{array}$$

commutes, i.e. we have

$$f^{-1}(D_Y(U)) = D_X(f^{-1}(U))$$

for each $U \in \mathcal{P}(X)$.

(e) Interaction With Codirect Images. The diagram

$$\begin{array}{ccc}
\mathcal{P}(X)^{\mathsf{op}} & \xrightarrow{f_!^{\mathsf{op}}} & \mathcal{P}(Y)^{\mathsf{op}} \\
\downarrow D_X & & \downarrow D_Y \\
\mathcal{P}(X) & \xrightarrow{f_*} & \mathcal{P}(Y)
\end{array}$$

commutes, i.e. we have

$$f_*(D_X(U)) = D_Y(f_!(U))$$

for each $U \in \mathcal{P}(X)$.

01NH

01NG

01NJ

PROOF 4.6.4.1.3 ► PROOF OF PROPOSITION 4.6.4.1.2

Item 1: The Beck-Chevalley Condition

We have

$$[g^{-1} \circ f_!](U) \stackrel{\text{def}}{=} g^{-1}(f_!(U))$$

$$\stackrel{\text{def}}{=} \{ y \in Y \mid g(y) \in f_!(U) \}$$

$$= \left\{ y \in Y \mid \text{there exists some } x \in U \right\}$$

$$\text{such that } f(x) = g(y)$$

$$= \left\{ y \in Y \mid \text{there exists some} \right.$$

$$(x, y) \in \{(x, y) \in X \times_Z Y \mid x \in U\}$$

$$= \left\{ y \in Y \mid \text{there exists some} \right.$$

$$(x, y) \in \{(x, y) \in X \times_Z Y \mid x \in U\}$$

$$\text{such that } y = y$$

$$= \left\{ y \in Y \mid \text{there exists some} \right.$$

$$(x, y) \in \{(x, y) \in X \times_Z Y \mid x \in U\}$$

$$\text{such that pr}_2(x, y) = y$$

$$\stackrel{\text{def}}{=} (pr_2)_! (\{(x, y) \in X \times_Z Y \mid pr_1(x, y) \in U\})$$

$$\stackrel{\text{def}}{=} (pr_2)_! (pr_1^{-1}(U))$$

$$\stackrel{\text{def}}{=} [(pr_2)_! \circ pr_1^{-1}](U)$$

for each $U \in \mathcal{P}(X)$. Therefore, we have

$$g^{-1} \circ f_! = (pr_2)_! \circ pr_1^{-1}$$
.

For the second equality, we have

$$[f^{-1} \circ g_!](U) \stackrel{\text{def}}{=} f^{-1}(g_!(U))$$

$$\stackrel{\text{def}}{=} \{x \in X \mid f(x) \in g_!(V)\}$$

$$= \left\{ x \in X \mid \text{there exists some } y \in V \right\}$$
such that $f(x) = g(y)$

$$= \begin{cases} x \in X & \text{there exists some} \\ (x,y) \in \{(x,y) \in X \times_Z Y \mid y \in V\} \end{cases}$$

$$= \begin{cases} x \in X & \text{there exists some} \\ (x,y) \in \{(x,y) \in X \times_Z Y \mid y \in V\} \end{cases}$$

$$= \begin{cases} x \in X & \text{there exists some} \\ (x,y) \in \{(x,y) \in X \times_Z Y \mid y \in V\} \end{cases}$$

$$= \begin{cases} x \in X & \text{there exists some} \\ (x,y) \in \{(x,y) \in X \times_Z Y \mid y \in V\} \end{cases}$$

$$= (pr_1)_!(\{(x,y) \in X \times_Z Y \mid y \in V\})$$

$$= (pr_1)_!(\{(x,y) \in X \times_Z Y \mid pr_2(x,y) \in V\})$$

$$\stackrel{\text{def}}{=} (pr_1)_!(pr_2^{-1}(V))$$

$$\stackrel{\text{def}}{=} [(pr_1)_! \circ pr_2^{-1}](V)$$

for each $V \in \mathcal{P}(Y)$. Therefore, we have

$$f^{-1} \circ g_! = (pr_1)_! \circ pr_2^{-1}$$
.

This finishes the proof.

Item 2: The Projection Formula I

We claim that

$$f_!(U) \cap V \subset f_!(U \cap f^{-1}(V)).$$

Indeed, we have

$$f_!(U) \cap V \subset f_!(U) \cap f_!(f^{-1}(V))$$

= $f_!(U \cap f^{-1}(V)),$

where we have used:

1. Item 2 of Proposition 4.6.1.1.5 for the inclusion.

2. Item 6 of Proposition 4.6.1.1.5 for the equality.

Conversely, we claim that

$$f_!\Big(U\cap f^{-1}(V)\Big)\subset f_!(U)\cap V.$$

Indeed:

024B

024C

024D

1. Let
$$y \in f_!(U \cap f^{-1}(V))$$
.

024E

2. Since $y \in f_!(U \cap f^{-1}(V))$, there exists some $x \in U \cap f^{-1}(V)$ such that f(x) = y.

024F

3. Since $x \in U \cap f^{-1}(V)$, we have $x \in U$, and thus $f(x) \in f_!(U)$.

024G

4. Since $x \in U \cap f^{-1}(V)$, we have $x \in f^{-1}(V)$, and thus $f(x) \in V$.

024H

5. Since $f(x) \in f_!(U)$ and $f(x) \in V$, we have $f(x) \in f_!(U) \cap V$.

024J

6. But
$$y = f(x)$$
, so $y \in f_!(U) \cap V$.

024K

7. Thus
$$f_!(U \cap f^{-1}(V)) \subset f_!(U) \cap V$$
.

This finishes the proof.

Item 3: The Projection Formula II

We have

$$f_*(U) \cap V \subset f_*(U) \cap f_*(f^{-1}(V))$$
$$= f_*(U \cap f^{-1}(V)),$$

where we have used:

024L

1. Item 2 of Proposition 4.6.3.1.7 for the inclusion.

024M

2. Item 6 of Proposition 4.6.3.1.7 for the equality.

Since $\mathcal{P}(Y)$ is posetal, naturality is automatic (Categories, Item 4 of Proposition 11.2.7.1.2).

Item 4: Strong Closed Monoidality

This is a repetition of Item 19 of Proposition 4.4.7.1.4 and is proved there.

Item 5: The External Tensor Product

We have

$$U \boxtimes_{X \times Y} V \stackrel{\text{def}}{=} \operatorname{pr}_{1}^{-1}(U) \cap \operatorname{pr}_{2}^{-1}(V)$$

$$\stackrel{\text{def}}{=} \left\{ (x, y) \in X \times Y \mid \operatorname{pr}_{1}(x, y) \in U \right\}$$

$$\cup \left\{ (x, y) \in X \times Y \mid \operatorname{pr}_{2}(x, y) \in V \right\}$$

$$= \{(x, y) \in X \times Y \mid x \in U\}$$

$$\cup \{(x, y) \in X \times Y \mid y \in V\}$$

$$= \{(x, y) \in X \times Y \mid x \in U \text{ and } y \in V\}$$

$$\stackrel{\text{def}}{=} U \times V.$$

Next, we claim that Items 5a to 5d are indeed true:

- 1. *Proof of Item 5a*: This is a repetition of Item 16 of Proposition 4.6.1.1.5 and is proved there.
 - 2. *Proof of Item 5b*: This is a repetition of Item 16 of Proposition 4.6.2.1.3 and is proved there.
 - 3. *Proof of Item 5c:* This is a repetition of Item 15 of Proposition 4.6.3.1.7 and is proved there.
 - 4. Proof of Item 5d: We have

$$\begin{split} \Delta_X^{-1}(U \boxtimes_{X \times X} V) &\stackrel{\text{def}}{=} \{ x \in X \mid (x, x) \in U \boxtimes_{X \times X} V \} \\ &= \{ x \in X \mid (x, x) \in \{ (u, v) \in X \times X \mid u \in U \text{ and } v \in V \} \} \\ &= U \cap V. \end{split}$$

This finishes the proof.

Item 6: The Dualisation Functor

This is a repetition of Items 5 and 6 of Proposition 4.4.7.1.4 and is proved there.

Appendices

A Other Chapters

Preliminaries

- 1. Introduction
- 2. A Guide to the Literature

Sets

024N

024P

024Q

024R

3. Sets

- 4. Constructions With Sets
- 5. Monoidal Structures on the Category of Sets
- 6. Pointed Sets
- 7. Tensor Products of Pointed Sets

Monoidal Categories

Relations

8. Relations 13. Constructions With Monoidal Categories 9. Constructions With Relations **Bicategories** 10. Conditions on Relations 14. Types of Morphisms in Bicate-Categories gories 11. Categories Extra Part and the Yoneda 12. Presheaves Lemma 15. Notes References [MSE 267365] J. B. Show that the powerset partial order is a cartesian closed category. Mathematics Stack Exchange. url: https://math. stackexchange.com/q/267365 (cit. on p. 152). [MSE 267469] Zhen Lin. Show that the powerset partial order is a cartesian closed category. Mathematics Stack Exchange. URL: https:// math.stackexchange.com/q/267469 (cit. on p. 113). [MSE 2719059] Vinny Chase. $\mathcal{P}(X)$ with symmetric difference as addition as a vector space over \mathbb{Z}_2 . Mathematics Stack Exchange. url: https: //math.stackexchange.com/q/2719059 (cit. on p. 129). [Cie97] Krzysztof Ciesielski. Set Theory for the Working Mathematician. Vol. 39. London Mathematical Society Student Texts. Cambridge University Press, Cambridge, 1997, pp. xii+236. ISBN: 0-521-59441-3; 0-521-59465-0. DOI: 10.1017/CB09781139173131. URL: https://doi.org/10.1017/CB09781139173131 (cit. on p. 69). [nLa25] nLab Authors. Interactions of Images and Pre-images with Unions and Intersections. https://ncatlab.org/nlab/show/interactions+ of+images+and+pre-images+with+unions+and+intersections. Oct. 2025 (cit. on p. 220). [Pro25a] Proof Wiki Contributors. Cartesian Product Distributes Over Set Difference — Proof Wiki. 2025. URL: https://proofwiki.

org / wiki / Cartesian _ Product _ Distributes _ over _ Set _

Difference (cit. on p. 17).

[Pro25b]	metric Difference — Proof Wiki. 2025. URL: https://proofwiki.org/wiki/Cartesian_Product_Distributes_over_Symmetric_Difference (cit. on p. 17).
[Pro25c]	Proof Wiki Contributors. Cartesian Product Distributes Over Union — Proof Wiki. 2025. URL: https://proofwiki.org/wiki/Cartesian_Product_Distributes_over_Union (cit. on p. 17).
[Pro25d]	Proof Wiki Contributors. Cartesian Product of Intersections — Proof Wiki. 2025. URL: https://proofwiki.org/wiki/Cartesian_Product_of_Intersections (cit. on p. 17).
[Pro25e]	Proof Wiki Contributors. Characteristic Function of Intersection — Proof Wiki. 2025. URL: https://proofwiki.org/wiki/Characteristic_Function_of_Intersection (cit. on p. 113).
[Pro25f]	Proof Wiki Contributors. Characteristic Function of Set Difference — Proof Wiki. 2025. URL: https://proofwiki.org/wiki/Characteristic_Function_of_Set_Difference (cit. on p. 118).
[Pro25g]	Proof Wiki Contributors. Characteristic Function of Symmetric Difference — Proof Wiki. 2025. URL: https://proofwiki.org/wiki/Characteristic_Function_of_Symmetric_Difference (cit. on p. 129).
[Pro25h]	Proof Wiki Contributors. Characteristic Function of Union — Proof Wiki. 2025. URL: https://proofwiki.org/wiki/Characteristic_Function_of_Union (cit. on p. 106).
[Pro25i]	Proof Wiki Contributors. Complement of Complement — Proof Wiki. 2025. URL: https://proofwiki.org/wiki/Complement_of_Complement (cit. on p. 121).
[Pro25j]	Proof Wiki Contributors. Complement of Preimage equals Preimage of Complement — Proof Wiki. 2025. URL: https://proofwiki.org/wiki/Complement_of_Preimage_equals_Preimage_of_Complement (cit. on p. 204).
[Pro25k]	Proof Wiki Contributors. <i>De Morgan's Laws (Set Theory)</i> — <i>Proof Wiki</i> . 2025. URL: https://proofwiki.org/wiki/De_Morgan% 5C%27s_Laws_(Set_Theory) (cit. on pp. 117, 121).
[Pro251]	Proof Wiki Contributors. De Morgan's Laws (Set Theory)/Set Difference/Difference with Union — Proof Wiki. 2025. URL: https:

	<pre>//proofwiki.org/wiki/De_Morgan%5C%27s_Laws_(Set_ Theory)/Set_Difference/Difference_with_Union (cit. on p. 117).</pre>
[Pro25m]	Proof Wiki Contributors. Equivalence of Definitions of Symmetric Difference — Proof Wiki. 2025. URL: https://proofwiki.org/wiki/Equivalence_of_Definitions_of_Symmetric_Difference (cit. on p. 128).
[Pro25n]	Proof Wiki Contributors. <i>Image of Intersection Under Mapping</i> — <i>Proof Wiki</i> . 2025. URL: https://proofwiki.org/wiki/Image_of_Intersection_under_Mapping (cit. on pp. 113, 194, 195).
[Pro25o]	Proof Wiki Contributors. <i>Image of Set Difference Under Mapping</i> — <i>Proof Wiki</i> . 2025. URL: https://proofwiki.org/wiki/ Image_of_Set_Difference_under_Mapping (cit. on pp. 118, 194).
[Pro25p]	Proof Wiki Contributors. <i>Image of Union Under Mapping</i> — <i>Proof Wiki</i> . 2025. URL: https://proofwiki.org/wiki/Image_of_Union_under_Mapping (cit. on pp. 107, 194, 196).
[Pro25q]	Proof Wiki Contributors. Intersection Distributes Over Symmetric Difference — Proof Wiki. 2025. URL: https://proofwiki.org/wiki/Intersection_Distributes_over_Symmetric_Difference (cit. on p. 129).
[Pro25r]	Proof Wiki Contributors. <i>Intersection Is Associative</i> — <i>Proof Wiki</i> . 2025. URL: https://proofwiki.org/wiki/Intersection_is_Associative (cit. on p. 113).
[Pro25s]	Proof Wiki Contributors. <i>Intersection Is Commutative</i> — <i>Proof Wiki</i> . 2025. URL: https://proofwiki.org/wiki/Intersection_is_Commutative (cit. on p. 113).
[Pro25t]	Proof Wiki Contributors. <i>Intersection With Empty Set</i> — <i>Proof Wiki</i> . 2025. URL: https://proofwiki.org/wiki/Intersection_with_Empty_Set (cit. on p. 113).
[Pro25u]	Proof Wiki Contributors. Intersection With Set Difference Is Set Difference With Intersection — Proof Wiki. 2025. URL: https://proofwiki.org/wiki/Intersection_with_Set_Difference_is_Set_Difference_with_Intersection (cit. on p. 118).
[Pro25v]	Proof Wiki Contributors. Intersection With Subset Is Subset — Proof Wiki. 2025. URL: https://proofwiki.org/wiki/Intersection_with_Subset_is_Subset (cit. on p. 113).

[Pro25w] Proof Wiki Contributors. *Preimage of Intersection Under Mapping* — Proof Wiki. 2025. URL: https://proofwiki.org/wiki/ Preimage_of_Intersection_under_Mapping (cit. on pp. 113, 204, 205). Proof Wiki Contributors. Preimage of Set Difference Under Map-[Pro25x] ping — Proof Wiki. 2025. URL: https://proofwiki.org/wiki/ Preimage_of_Set_Difference_under_Mapping (cit. on pp. 119, 204). [Pro25y] Proof Wiki Contributors. Preimage of Union Under Mapping — Proof Wiki. 2025. URL: https://proofwiki.org/wiki/ Preimage_of_Union_under_Mapping (cit. on pp. 107, 204, 205). [Pro25z] Proof Wiki Contributors. Quotient Mapping Is Coequalizer — Proof Wiki. 2025. URL: https://proofwiki.org/wiki/Quotient_ Mapping_is_Coequalizer (cit. on p. 60). [Pro25aa] Proof Wiki Contributors. Set Difference as Intersection With Complement — Proof Wiki. 2025. URL: https://proofwiki.org/ wiki/Set_Difference_as_Intersection_with_Complement (cit. on p. 118). [Pro25ab] Proof Wiki Contributors. Set Difference as Symmetric Difference With Intersection — Proof Wiki. 2025. URL: https://proofwiki. org/wiki/Set_Difference_as_Symmetric_Difference_with_ Intersection (cit. on p. 118). Proof Wiki Contributors. Set Difference Is Right Distributive Over [Pro25ac] Union — Proof Wiki. 2025. URL: https://proofwiki.org/ wiki/Set_Difference_is_Right_Distributive_over_Union (cit. on p. 118). [Pro25ad] Proof Wiki Contributors. Set Difference Over Subset — Proof Wiki. 2025. URL: https://proofwiki.org/wiki/Set_Difference_ over_Subset (cit. on p. 117). [Pro25ae] Proof Wiki Contributors. Set Difference With Empty Set Is Self — Proof Wiki. 2025. URL: https://proofwiki.org/wiki/Set_ Difference_with_Empty_Set_is_Self (cit. on p. 118).

Proof Wiki Contributors. Set Difference With Self Is Empty Set — Proof Wiki. 2025. URL: https://proofwiki.org/wiki/Set_

Difference_with_Self_is_Empty_Set (cit. on p. 118).

[Pro25af]

[Pro25ag]	Proof Wiki Contributors. Set Difference With Set Difference Is Union of Set Difference With Intersection — Proof Wiki. 2025. URL: https://proofwiki.org/wiki/Set_Difference_with_ Set_Difference_is_Union_of_Set_Difference_with_Intersection (cit. on p. 118).
[Pro25ah]	Proof Wiki Contributors. Set Difference With Subset Is Superset of Set Difference — Proof Wiki. 2025. URL: https://proofwiki.org/wiki/Set_Difference_with_Subset_is_Superset_of_Set_Difference (cit. on p. 117).
[Pro25ai]	Proof Wiki Contributors. Set Difference With Union — Proof Wiki. 2025. URL: https://proofwiki.org/wiki/Set_Difference_with_Union (cit. on p. 118).
[Pro25aj]	Proof Wiki Contributors. Set Intersection Distributes Over Union — Proof Wiki. 2025. URL: https://proofwiki.org/wiki/ Intersection_Distributes_over_Union (cit. on pp. 106, 113).
[Pro25ak]	Proof Wiki Contributors. Set Intersection Is Idempotent — Proof Wiki. 2025. URL: https://proofwiki.org/wiki/Set_Intersection_is_Idempotent (cit. on p. 113).
[Pro25al]	Proof Wiki Contributors. Set Intersection Preserves Subsets — Proof Wiki. 2025. URL: https://proofwiki.org/wiki/Set_Intersection_Preserves_Subsets (cit. on p. 113).
[Pro25am]	Proof Wiki Contributors. Set Union Is Idempotent — Proof Wiki. 2025. URL: https://proofwiki.org/wiki/Set_Union_is_Idempotent (cit. on p. 106).
[Pro25an]	Proof Wiki Contributors. Set Union Preserves Subsets — Proof Wiki. 2025. URL: https://proofwiki.org/wiki/Set_Union_Preserves_Subsets (cit. on p. 105).
[Pro25ao]	Proof Wiki Contributors. Symmetric Difference Is Associative — Proof Wiki. 2025. URL: https://proofwiki.org/wiki/Symmetric_Difference_is_Associative (cit. on p. 128).
[Pro25ap]	Proof Wiki Contributors. Symmetric Difference Is Commutative — Proof Wiki. 2025. URL: https://proofwiki.org/wiki/Symmetric_Difference_is_Commutative (cit. on p. 128).
[Pro25aq]	Proof Wiki Contributors. Symmetric Difference of Complements — Proof Wiki. 2025. URL: https://proofwiki.org/wiki/ Symmetric_Difference_of_Complements (cit. on p. 128).

[Pro25ar]	Froof Wiki Contributors. Symmetric Difference on Power Set Forms Abelian Group — Proof Wiki. 2025. URL: https://proofwiki.org/wiki/Symmetric_Difference_on_Power_Set_forms_Abelian_Group (cit. on p. 129).
[Pro25as]	Proof Wiki Contributors. Symmetric Difference With Complement — Proof Wiki. 2025. URL: https://proofwiki.org/wiki/Symmetric_Difference_with_Complement (cit. on p. 128).
[Pro25at]	Proof Wiki Contributors. Symmetric Difference With Empty Set — Proof Wiki. 2025. URL: https://proofwiki.org/wiki/Symmetric_Difference_with_Empty_Set (cit. on p. 128).
[Pro25au]	Proof Wiki Contributors. Symmetric Difference With Intersection Forms Ring — Proof Wiki. 2025. URL: https://proofwiki.org/wiki/Symmetric_Difference_with_Intersection_forms_Ring (cit. on p. 129).
[Pro25av]	Proof Wiki Contributors. Symmetric Difference With Self Is Empty Set — Proof Wiki. 2025. URL: https://proofwiki.org/wiki/Symmetric_Difference_with_Self_is_Empty_Set (cit. on p. 128).
[Pro25aw]	Proof Wiki Contributors. Symmetric Difference With Union Does Not Form Ring — Proof Wiki. 2025. URL: https://proofwiki.org/wiki/Symmetric_Difference_with_Union_does_not_form_Ring (cit. on p. 127).
[Pro25ax]	Proof Wiki Contributors. Symmetric Difference With Universe — Proof Wiki. 2025. URL: https://proofwiki.org/wiki/Symmetric_Difference_with_Universe (cit. on p. 128).
[Pro25ay]	Proof Wiki Contributors. <i>Union as Symmetric Difference With Intersection</i> — <i>Proof Wiki</i> . 2025. URL: https://proofwiki.org/wiki/Union_as_Symmetric_Difference_with_Intersection (cit. on p. 106).
[Pro25az]	Proof Wiki Contributors. <i>Union Distributes Over Intersection</i> — <i>Proof Wiki</i> . 2025. URL: https://proofwiki.org/wiki/Union_ Distributes_over_Intersection (cit. on pp. 106, 113).
[Pro25ba]	Proof Wiki Contributors. <i>Union Is Associative</i> — <i>Proof Wiki</i> . 2025. URL: https://proofwiki.org/wiki/Union_is_Associative (cit. on p. 106).
[Pro25bb]	Proof Wiki Contributors. <i>Union Is Commutative</i> — <i>Proof Wiki</i> . 2025. URL: https://proofwiki.org/wiki/Union_is_Commutative

(cit. on p. 106).

[Pro25bc] Proof Wiki Contributors. Union of Symmetric Differences — Proof
Wiki. 2025. URL: https://proofwiki.org/wiki/Union_of_
Symmetric_Differences (cit. on p. 128).

[Pro25bd] Proof Wiki Contributors. Union With Empty Set — Proof Wiki.
2025. URL: https://proofwiki.org/wiki/Union_with_
Empty_Set (cit. on p. 106).