

COMSATS University, Islamabad

Department of Computer Science

Assignment 3

CSC475: Numerical Computing

CLO-4

Question #1:

Use least-squares regression to fit a straight line to

X	1	3	5	7	10	12	13	16	18	20
У	4	5	6	5	8	7	6	9	12	11

Question #2:

Fit a second order polynomial to data:

X	0	1	2	3	4	5
y	2. 1	7.7	13.6	27.2	40.9	61.1

X	y	X2	x3	x 4	xy	X²y		
0	2.1	0	0	0	0	0		
1	7.7	1	1	1	7.7	7.7		
2	13.6	4	8	16	27.2	54.4		
3	27.2	9	27	81	81.6	244.8		
4	40-9	16	64	256	163.6	654.4		
5	61.1	25	125	625	305.5	1527.5		
éx = 15	£y = 152.6	12 = 55	∠x³= 225	£x4=979	2×y=585.6	£x²y=2488.8		
01 = 6 $01 = 6$	(53845 6(3220) 1320 – 3920	225 979] 5 - 5061	15 [15 5] 3(0) +	225 5 979 15 (1469 55 (350] + SS 8S - 1237	[15 55 55 225] 5) + 55(3375 -	- 3025)	
	6 19	22	5 9					

$$|D_{n}| = 152.6 \begin{cases} 55 & 225 \\ 225 & 979 \end{cases} - 585.6 \begin{cases} 585.6 & 225 \\ 2483.8 & 979 \end{cases} + 55 \begin{bmatrix} 585.6 & 55 \\ 2483.8 & 979 \end{bmatrix}$$

$$|D_{n}| = 152.6 (58845 - 50625) - 15 (573302.4 - 559990) + 55 (131760 - 136884)$$

$$|D_{n}| = 152.6 (3220) - 15 (13322.4) + 55 (-5124)$$

$$|D_{n}| = 491372 - 199836 - 281820$$

$$|D_{n}| = 9716$$

$$|D_{n}| = 6 \begin{bmatrix} 585.6 & 225 \\ 15 & 585.6 & 225 \\ 2483.8 & 979 \end{bmatrix} - 152.6 \begin{bmatrix} 15 & 225 \\ 55 & 2483.8 \end{bmatrix} + 55 \begin{bmatrix} 15 & 585.6 \\ 55 & 2483.8 \end{bmatrix}$$

$$|D_{n}| = 6 (58302.4 - 569920) - 152.6 (14685 - 12375) + 55 (37332 - 32208)$$

$$|D_{n}| = 6 (13322.4) - 152.6 (2916) + 55 (37332 - 22208)$$

$$|D_{n}| = 79934.4 - 352506 + 281820$$

$$|D_{n}| = 9248.4$$

$$|D_{n}| = 6 (55 - 585.6) - 15 \begin{bmatrix} 15 - 585.6 \\ 55 - 225 - 2488.8 \end{bmatrix} + 152.6 \begin{bmatrix} 15 - 55 \\ 55 - 225 - 2488.8 \end{bmatrix}$$

$$|D_{n}| = 6 (136884 - 131760) - 15 (37332 - 32208) + 152.6 (3375 - 3025)$$

$$|D_{n}| = 6 (136884 - 131760) - 15 (37332 - 32208) + 152.6 (3375 - 3025)$$

$$|D_{n}| = 6 (5124) - 15 (5124) + 152.6 (350)$$

$$|D_{n}| = 30744 - 76860 + 58410$$

$$|D_{n}| = 7294$$

$$a = \frac{|Da|}{|D|} = \frac{9716}{3920} = 2.4786$$

$$b = \frac{|Da|}{|D|} = \frac{9248.4}{3920} = 2.3593$$

$$C = \frac{|Da|}{|D|} = \frac{7294}{3920} = 1.8607$$

$$Equation$$

$$\hat{g} = a + bx + cx^{2}$$

$$\hat{y} = 2.4786 + 2.3593x + 1.8607x^{2}$$

Question #3:

Use multiple linear regression to fit

X	0	1	1	2	2	3	3	4	4
У	0	1	2	1	2	1	2	1	2
Z	15	18	12.8	25.7	20.6	35	29.8	45.5	40.3

Ouestion # 5
Use multiple line regression.

$$x_1$$
 x_2
 y
 x_1^2
 x_2^2
 x_3^2
 x_4^3
 x_5^3
 x_5^3
 x_5^3
 x_5^4
 x_5^4
 x_5^5
 x_5^5

$$|D| = 9 \begin{bmatrix} 60 & 80 \\ 30 & 20 \end{bmatrix} - 20 \begin{bmatrix} 20 & 30 \\ 12 & 120 \end{bmatrix} + 12 \begin{bmatrix} 20 & 60 \\ 12 & 80 \end{bmatrix}$$

$$= 9 (1200 - 900) - 20(40) + 12(-120)$$

$$= 2400 - 800 - 1440$$

$$= 460$$

$$\begin{bmatrix} 242.7 & 20 & 12 \\ 661 & 60 & 30 \\ 331.2 & 30 & 20 \end{bmatrix}$$

$$|D_{a}| = 242.7 \begin{bmatrix} 60 & 30 \\ 30 & 20 \end{bmatrix} - 20 \begin{bmatrix} 661 & 30 \\ 331.2 & 20 \end{bmatrix} + 12 \begin{bmatrix} 661 & 60 \\ 331.2 & 30 \end{bmatrix}$$

$$|D_{a}| = 242.7 (1200 - 900) - 20(13220 - 9936) + 12(19880 - 19872)$$

$$|D_{a}| = 242.7 (300) - 20(3284) + 12(-42)$$

$$|D_{a}| = 4280 - 66880 + 504$$

$$|D_{a}| = 6626$$

$$\begin{bmatrix} 9 & 242.7 & 12 \\ 20 & 661 & 30 \\ 12 & 331.2 & 20 \end{bmatrix}$$

$$|D_{b}| = 9 \begin{bmatrix} 661 & 30 \\ 331.2 & 20 \end{bmatrix} - 242.7 (400 - 360) + 12(624 - 7932)$$

$$|D_{b}| = 9 (3284) - 242.7 (40) + 12(-1308)$$

$$|D_{b}| = 9 (3284) - 242.7 (40) + 12(-1308)$$

$$|D_{b}| = 29566 - 9708 - 15696$$

1Dbl = 4152

$$\begin{bmatrix}
9 & 20 & 242.7 \\
20 & 60 & 661 \\
12 & 30 & 331.2
\end{bmatrix}$$

$$|D_{c}| = 9 \left[60 & \frac{661}{30} - 20 \left(20 & 661 \\
12 & 331.2
\right]$$

$$|D_{c}| = 9 \left[60 & \frac{661}{30} - 20 \left(6624 - 7932\right) + 242.7 \left(600 - 720\right)$$

$$|D_{c}| = 9 \left(29724\right) - 20 \left(1908\right) + 242.7 \left(-120\right)$$

$$|D_{c}| = 9 \left(19872 - 19830\right) - 20 \left(6624 - 7932\right) + 242.7 \left(600 - 720\right)$$

$$|D_{c}| = 9 \left(19872 - 19830\right) - 20 \left(6624 - 7932\right) + 242.7 \left(600 - 720\right)$$

$$|D_{c}| = 9 \left(42\right) - 20 \left(-1308\right) + 242.7 \left(-120\right)$$

$$|D_{c}| = 378 + 26160 - 29124$$

$$|D_{c}| = -2586$$

$$a = \frac{|D_{c}|}{|D|} = \frac{4152}{460} = 14.4043$$

$$b = \frac{|D_{c}|}{|D|} = \frac{4152}{460} = 9.0261$$

$$c = \frac{|D_{c}|}{|D|} = \frac{-2586}{460} = -5.6217$$

$$c = \frac{|D_{c}|}{|D|} = -2.886 = -5.6217$$

$$c = \frac{|D_{c}|}{|D|} = -2.886 = -5.6217$$

$$c = \frac{|D_{c}|}{|D|} = -2.886 = -5.6217$$