MAKERERE UNIVERSITY CIT, 2010/2011 SEMESTER I

MTH 3105: DISCRETE MATHEMATICS, Test II Solutions

There are 4 (four) questions in this test, attempt all questions. Time allowed: 1 (one) hour.

1

(a) Prove that $\sqrt{10}$ is irrational.

5 marks

Assume $\sqrt{10}$ is rational, then we can write $\sqrt{10} = \frac{m}{n}$ such that m and n are both integers and they do not have common factors other than 1. Then we get $10n^2 = m^2$. Since left hand side is even, m must be even, substitute m = 2k, we get $5n^2 = 2k^2$.

Since right hand side is even, n must be even. Hence m and n are both even, which contradicts

the assumption that m and n do not have common factor other 1. Hence $\sqrt{10}$ is irrational

(b) A number n is a sum of two squares if $n = a^2 + b^2$ for some integers a and b. If x and y are both sum of two squares, prove that xy is also a sum of two squares. 5 marks

Let
$$x = a^2 + b^2$$
 and $y = c^2 + d^2$. Then
 $xy = a^2c^2 + a^2d^2 + b^2c^2 + b^2d^2$
 $= (a^2c^2 + b^2d^2 + 2abcd) + (a^2d^2 + b^2c^2 - 2abcd)$
 $= (ac + bd)^2 + (ad - bc)^2$

- 2. Solve the followings, or give "unsolvable" if it has no solution.
 - (a) $19x \equiv 20 \pmod{77}$

4 marks

3 marks

The congruence $ax \equiv b \pmod{n}$ has a solution for x if and only if b is divisible by gcd(a,n). gcd(19, 77) = 1, which divides any b, and so there is just one solution in $\{0,1,2,...,76\}$: x=74

(b) $49x \equiv 98 \pmod{21}$ $\gcd(49, 21) = 7 \pmod{3}$ $\gcd(49, 21) = 7 \pmod{3}$

gca(49, 21) = 7 (giving solutions **2,5,8,11,14,17**, and **20**), we rewrite as 7x = 14 (mod gcd(7, 3) = 1, which divides any b. There is one solution in $\{0,1,2\}$: x = 2

(c) $105x \equiv 143 \pmod{100}$

3 marks

gcd(105, 100) = 5 but $5 \nmid 143$. Therefore **unsolvable**.

3.

(a) How many cards do you need to draw from a deck of 52 cards in order to ensure there is three-of-a-kind?

5 marks

(Pigeonhole principle) The worst case is when you keep drawing until you have two of each kind, and on the next draw you will get three-of-a-kind. Therefore the number of cards to draw is $2 \times 13 + 1 = 27$ (if a kind is interpreted as the suit, we have $2 \times 4 + 1 = 9$)

(b) Count the number of ways to place four pawns on a 10 x 10 chessboard so that no two pawns share a row or a column.

5 mark

By generalized product rule there are $(10!/(10-4)!)^2$ ways to place four different pieces on a 10×10 chessboard. Then by division rule there are 4! permutations of the 4 pawns that map to the same configuration. Therefore there are $(10!/6!)^2/4! = 1,058,400$ ways.

4. Given the functions below with the respective domain and range, complete this table that tells whether they are injective, surjective, or bijective:

10 marks

	Function	Domain	Codomain	Injective?	Surjective
(a)	$f(x) = e^x$	\mathbb{R}	\mathbb{R}^{+}	Yes	Yes
(b)	f(x) = cos(x)	\mathbb{R}	\mathbb{R}	No	No
(c)	Reverse string	Bit strings of	Bit strings of	Yes	Yes
		length n	length n		
(d)	$f(x) = x^4$	\mathbb{R}	$\{0, \mathbb{R}^+\}$	No	Yes
(e)	f(x) = is-prime(x)	Z +	{T, F}	No	Yes