$$T_{f} = \frac{L}{R} \qquad T_{prop} = \frac{d}{v}$$

$$P[frame has no errors] = (1-p)^{n}$$

$$P[frame has no errors] = FER = P_{e} = 1-(1-p)^{n}$$

$$T_{f} \qquad C_{max} = R \times S$$

$$P[1 \text{ bit received in error}] = \binom{n}{1} p(1-p)^{n-1}$$

$$\mu = \frac{C}{L}$$

$$\rho = \frac{C}{\mu} \text{ bits preceived in error} = \binom{n}{n} n^{n} (1-n)^{n-1}$$

$$\lambda = \frac{C}{\mu} \text{ arrival client in error}$$

$$\mu = \frac{C}{\mu} \text{ bits preceived in error} = \binom{n}{n} n^{n} (1-n)^{n-1}$$

$$\rho = \frac{C}{\mu} \text{ bits preceived in error}$$

$$T_{prop} = \frac{C}{R}$$

 C_{max} = R x S

Efficiency

Efficiency (with Error)

Stop and Wait ARQ

W = M-1 = 2^k -1

Go-Back-N ARQ

Efficiency

Selective Repeat ARQ

 $W = \frac{M}{2} = 2^{k-1}$ Efficiency (with Error)

Efficiency (with Error)

Probability of queue having n clients

 $P(n) \mbox{ - probability of the Markov chain be in state } \\ n \mbox{ - number of clients in the queue}$

			S	ervice tim	e=1/µ		7			, ,
Subnet	1	2	4	8	16	32	64	128	256]
Host	256	128	64	32	16	8	4	2	1	
Subnet Mask	/24	/25	/26	/27	/28	/29	/30	/31	/32	$\frac{14}{1+2a}$ $1+2a$

If
$$\rho = 1$$
, $P(B) = \frac{1}{B+1}$

If
$$\rho >> 1$$
, $P(B) = \frac{\rho - 1}{\rho} = \frac{\mu - \lambda}{\lambda}$

 $W \ge 1 + 2a$

Poisson arrival, Beterministic (does that) service time 1/
$$\mu$$
 (μ)

Tw = $\frac{1}{2\mu^2(\lambda-\rho)}\frac{1}{\mu^2}\frac{1}{2\mu}\frac{1}{\mu^2}\frac{1}{\mu^2}\frac{1}{\mu^2}$

Kendall Notation A/S/s/K

A – arrival S – service s - number of servers K – buffer capacity

$$T_{f} = \frac{L}{R}$$

P[frame has no errors] = (1-p)ⁿ

P[frame has errors]= FER = $P_e = 1-(1-p)^n$

P[1 bit received in error]= $\binom{n}{1}p(1-p)^{n-1}$

P[i bits received in error]=
$$\binom{n}{i}p^i(1-p)^{n-i}$$

$$\binom{n}{i} = \frac{n!}{(i!(n-i)!)}$$

Efficiency

$$S = \frac{T_f}{E[A](T_f + 2T_{prop})} = \frac{1}{E[A](1 + 2a)} = \frac{1 - p_e}{1 + 2a}$$

$$E[A](T_f + 2T_{prop}) \quad E[A](1+2a)$$

Stop and Wait ARQ

 $S = \frac{T_f}{T_{prop} + T_f + T_{prop}} = \frac{1}{1 + 2a}$

$$\binom{i}{i} = \frac{1}{(i!(n-i)!)}$$

$$\mu = \frac{C}{L}$$
Client arrival
Arrival rate = λ client/s
$$\rho = \frac{\lambda}{\mu}$$
Queue
Client departure
Service rate= μ client/s
Service time= $1/\mu$

 λ - arrival client rate (client/s) μ - service rate (client/s) ρ - traffic intensity, how busy the server is (%)

» N- average number of clients in a system

» T – average amount of time a client spends in the system

» λ – arrival rate of clients to the system

• T=T,..+T,

 1 1

Subnet

Host

 $N=N_w+N_s$ » N_w – number of clients waiting in the queue for being served

2

128

/25

» N. - number of clients being served

1

256

/24

N_w=λT_w

M/M/1 Poisson arrival, exponential service time

$$T = N/\lambda = \frac{1}{\mu - \lambda}$$

$$T_w = T - T_s = \frac{1}{\mu - \lambda} - \frac{1}{\mu} = \frac{\rho}{\mu \ (1 - \rho)}$$

$$N_w = T_w \lambda = \frac{\lambda}{\mu - \lambda} - \frac{\lambda}{\mu} = N - \rho$$

$$N = \frac{\rho}{(1 - \rho)} = \frac{\lambda}{\mu - \lambda}$$

Probability of queue having n clients

128

2

/31

256

1

/32

 $P(n) = \rho^n (1-\rho)$

64

4

/30

P(n) - probability of the Markov chain be in state n n - number of clients in the queue

Go-Back-N ARQ

Efficiency

 $W = M-1 = 2^k -1$

If $W \ge 1+2a \implies S = 1$

If
$$W < 1+2a \rightarrow S = W/(1+2a)$$

$$S = \begin{cases} 1 - p_e & , W \ge 1 + 2a \\ \frac{W(1 - p_e)}{1 + 2a} & , W < 1 + 2a \end{cases}$$

Efficiency (with Error)

Selective Repeat ARQ

Efficiency (with Error)

$$T = \begin{cases} \frac{1 - p_e}{1 + 2ap_e} & , W \ge 1 + 2a \\ \frac{W(1 - p_e)}{(1 + 2a)(1 - p_e + Wp_e)} & , W < 1 + 2a \end{cases}$$

M/M/1/B

Poisson arrival, exponential service time

$$P(B) = \frac{(1-\rho) \rho^{B}}{1-\rho^{B+1}}$$

P(B) - Probability of packet being lost
B - Number of buffers

If $\rho = 1$, $P(B) = \frac{1}{B+1}$

If
$$\rho > 1$$
, $\rho = \rho - 1 = \mu$

If
$$\rho >> 1$$
, P(B) = $\frac{\rho - 1}{\rho} = \frac{\mu - \lambda}{\lambda}$ A - S -

M/D/1

 $W = \frac{M}{2} = 2^{k-1}$

n arrival, deterministic (constant) service time 1/µ

$$T_{w} = \frac{\lambda}{2\mu^{2}(1-\rho)} = \frac{\rho}{2\mu(1-\rho)}$$

Kendall Notation A/S/s/K

A - arrival

S - service

s - number of servers K – buffer capacity

Internet transport-layer protocols

- connection-oriented: setup required between client and server processes
- reliable transport between sending and receiving process
- · flow control: sender won't overwhelm receiver
- · congestion control: throttle sender when network overloaded
- does not provide: timing, minimum throughput guarantees, security

UDP service:

- unreliable data transfer between sending and receiving process
- does not provide: connection setup, reliability, flow control, congestion control, timing, throughput guarantee, or security
- Q: why bother? Why is there a UDP?

Signals should be reconstructed on the receiver side

4

64

/26

8

32

/27

16

16

/28

32

8

/29

- Nyquist showed that a signal having a bandwidth of B Hz, can be fully reconstructed, with a sampling rate of 2B sample/s

$C = 2B \log_2(M)$

- 2B channel capacity baudrate (symbol/s or baud)
- M levels are encoded, M = 4 (-5V(00) , -2V(01) , -2V(10), 5V(11))
- Samping at a higher rate does not bring additional information

Baseband transmission

- signal has frequencies from zero up to a maximum BH

Passband transmission

- signal uses band of frequencies around the frequency of the carrier f_c
- M-QAM(Quadrature Amplitude Modulation), M = 4
- In a stable M/D/1, $\mu = \lambda$

Shannon's Theorem

- The maximum capacity of a channel is said to be:

$$C = B_c \log_2 \left(1 + \frac{P_r}{N_0 B_c} \right)$$

- B_c bandwidth of the channel (Hz), sampling rate
- Pr Signal power as seen by the receiver (W) N_0B_c noise power within the bandwidth Bc, seen by the receiver (W)
- N_0 White noise; noise power per unit bandwidth (W/Hz)

which can be also be expressed as:

$$C = B \log_2 \left(1 + \frac{S}{N}\right)$$

- where, S/N is the Signal to Noise Ratio SNR = Pr(dB) N(dB)

If a bandpass channel has a bandwidth B_c= 100 kHz and Signal to Noise ratio (SNR) at the receiver is

$$P_r/(N_0B_c)=7$$

»
$$P_r/(N_0B_c)=7$$
 \rightarrow $C = 100k \log_2(1+7) = 300kbit/s$

»
$$P_r/(N_0B_c)=255 \rightarrow C=100k \log_2(1+255)=800kbit/s$$

Power expressed in W, dBW, or dBm

»
$$P_{dBW} = 10 log_{10}P$$
 : $P = 100 mW \rightarrow P_{dBW} = 10 log_{10} (100*10^{-3}) = -10 dBW$

»
$$P_{dBm} = 10 \log_{10}(P/1mW)$$
 : $P = 100mW \rightarrow P_{dBm} = 10 \log_{10}(100) = 20 dBm$

- UDP User Datagram Protocol (UDP) Allows applications
- to interface directly to IP
- with minimal additional protocol overhead
- often used for streaming multimedia apps
- loss tolerant - rate sensitive
- other UDP uses
- DNS
- SNMP
- reliable transfer over UDP: add reliability at application layer
- application-specific error recovery!

TCP - Transmission Control Protocol

- full duplex data:

 o bi-directional data flow in same connection
- connection-oriented:
 o handshaking (exchange of control msgs)
 inits sender, receiver state before data
 exchange

o ARQ mechanism

- flow controlled: o sender will not overwhelm receiver
- Congestion control

 Avoids network's co
- ork's congestion
- point-to-point:
 o one sender, one receiver
- reliable, in-order byte stream: o no "message boundaries"
- - TCP congestion and flow control set window size
- send & receive buffers

Packets may be lost

- Receiver confirms (ACK) reception of each segment
- If sender does not receive confirmation within a time limit → re-

Receiving duplicated segments:

- sends segment
- generated by the network of retransmissions by lost ACKs
- · Segments are numbered
- ACK identifies the number of the last received segment
- It also solves the re-ordering problem

Packets may contain errors

- Detected using checksum
- Packets with errors are ignored > handled as lost packets
- RTT → Round Trip Time
- sampleRTT measured for each segment/ACK pair
- Moving average (smooth RTT) of SRTT
- o $SRTT_{new} = (1-\alpha) \times SRTT_{old} + \alpha \times sampleRTT$ * $\alpha = 1/8$
- · Variation of RTT
- $\circ \mathsf{RTTVAR}_{\mathsf{new}} = (1 \beta) * \mathsf{RTTVAR}_{\mathsf{old}} + \beta * | \mathsf{SRTT}_{\mathsf{old}} \mathsf{sampleRTT} | \\ \bullet \beta = \%$
- RTO = SRTT + max (G, K*RTTVAR)
- o clock granularity of G seconds
- o RTO retransmission timeout

MAC

Datalink has 2 sub-layers: - LLC (Logical Link Control)

- LLC (Logical Link Control)
 interface for network layer, error and flow control
 Error and flow control
 MAC (Medium Access Control)
 Access control to the shared medium
 Frame transmission/reception
 Addressing and Error control
 deal Multiple Acress Protocol

- ideal Multiple Access Protocol
 one station wants to transmit -> it uses the R bit/s
 m stations want to transmit -> each station uses an average rate R/m bit/s

MAC Protocols:

- Channel Partitioning Time Division Multiplexing | Frequency Division Multiplexing
- Random Access channel not divided, collisions allowed

- Chainer includes.

 Taking turns

 stations take turns

 stations with more data to send can take longer turns

Channel partitionin

MAC protocols (TDM, FDM)

- » share channel efficiently and fairly at high loads » are inefficient at low loads
- delay in channel access; 1/N bandwidth allocated even if only 1 active node!
 Random access MAC protocols (Aloha, CSMA, CSMA/CD, CSMA/CA)
 » efficient at low load -> single node can fully utilize the channel

- » high load -> collisions -> inefficiency Taking turns protocols
- » look for best of both worlds!

What Are Random Access Protocols?

- When station has packet to send
 transmits at channel data rate R bit/s
- transmits at channel data rate R bit/s
 no a priori coordination among stations
 If two or more stations transmit simultaneously → collision
 It defines:
 when to send data
 how to detect collision
 how to recover from collisions
 Examples:

- Aloha, CSMA, CSMA/CD, CSMA/CA

1. ALOHA

- When packet transmission fails, it will delay a random period of time before next transmission
 Pure Aloha (unslotted)
 Station transmits when it has a frame to transmit

- S_{max} = 18.4% Slotted Aloha
- Time divided into time slots
 Tslot = Tframe
- (Re)transmissions only the beginning of a slot S_{max} = 36.8%

- CSMA (Carrier Sense Multiple Access)
 Listens before transmit
 If channel sensed free → transmit frame
- If channel sensed busy → defer transmission
 Collisions can still occur (entire packet is lost)
 vulnerability time = 2*Tprop = rtt (round trip time)
 Determine collision probability

- a = Tprop/Tframe <<1

3. CSMA/CD - Carrier Sense Multiple Access / Collision Detection

- 3. CSMA/CD Carrier Sense Multiple Access / Col-Carrier Sense
 station senses medium before transmitting
 If free -> station starts transmission
 If busy -> waits until free and then transmits
 Collision Detection
 station listens medium while transmitting
 if collision is detected
 transmission is aborted
 transmission delayed using
- - - retransmission delayed using a Binary Exponential Back-off algorithm

 - time modeled in time slots; Tslot= 2*Tprop
 after the ith consecutive collision → the station attempts to transmit, after waiting, a random number of slots uniformly distributed in [0, 2^i-1]

 - No ACK is needed
 It can detect itself for collisions
 - however, a minimum frame size is required for collision detection

- 4. CSMA/CA CSMA with Collision Avoidance
 CSMA/CD cannot be used for wireless transmission
 Therefore it is more commonly used in wireless networking
 CSMA / CA is effective before a collision.
 whereas, CSMA/CD is effective after a collision.
 Station with a frame to transmit
 monitors the channel activity juntil an idle period equal
- monitors the channel activity → until an idle period equal to a Distributed Inter-Frame Space (DIFS) has been
- observed

 then if medium remains free → transmits frame

 If the medium is sensed busy

 random backoff interval is selected
- - backoff time counter is decremented as long as the channel is sensed idle stopped when a transmission is detected on the channel

 - reactivated when the channel is sensed idle again for more than a DIFS the station transmits when the backoff time reaches $\boldsymbol{0}$
- the station transmits when the backoff time reaches o
 to avoid channel capture
 station waits random backoff time between two consecutive frame transmissions
 even if the medium is sensed idle in the DIFS time
 ACK will be required for CSMA/CA
 Since it cannot locally detect if there is a collision

- Smax = 60% commonly found

Taking turns Mac Proto

- 1. Polling master station invites slave stations to transmit in turn - concerns
- polling overhead latency
- single point of failure (master)

 2. Token Passing » control token
- passed from one station to next sequentially
 token message
- » concerns

 token overhead

 latency

 single point of failure (token)
- Hub
 Has repeaters, repeats bits received on one port to all other ports
- Layer 1 device (does not know addresses)
- if collision detected on one port -> repeats random bits on other port 1 Collision Domain and half duplex

Bridge

- » Layer 2 device
- » Layer 2 device
 » forwards MAC frames to destinations based on MAC addresses
 » Packet received on one port -> analyzed by bridge -> re-sent on some other port
 » Bridge separates collision domains
 a bridged LAN maybe larger than a repeated LAN
 several frames may be transmitted simultaneously
- Note: Switches not need a MAC Address (transparent bridging), but routers do have

Services provided by network layer Virtual Circuit network

connection-oriented service

Datagram network

connectionless service

Virtual Circuit

- circuit establishment
- 2. data transference circuit termination
- Packet carries identifier of Virtual Circuit
- Path defined from source to destination
- -sequence of VC identifiers, one for each link along path - Router
 - -maintains "state" for every supported circuit -may allocate resources (bandwidth, buffers) per Virtual Circuit

Datagram - No circuit establishment: no circuit concept

- Packets
 - -forwarded using destination host address
 - -packets between same source-destination pair may follow different paths

Issue	Datagram subnet	Virtual-circuit subnet		
Circuit setup	Not needed	Required		
Addressing	Each packet contains the full source and destination address	Each packet contains a short VC number		
State information	Routers do not hold state information about connections	Each VC requires router table space per connection		
Routing	Each packet is routed independently	Route chosen when VC is set up; all packets follow it		
Effect of router failures	None, except for packets lost during the crash	All VCs that passed through the failed router are terminated		
Quality of service	Difficult	Easy if enough resources can be allocated in advance for each VC		
Congestion control	Difficult	Easy if enough resources can be allocated in advance for each VC		

What is ARP needed for?

- On the same LAN you need to connect on the link layer
 - Known: IP address of destination (packet from Network Layer)
 - Unknown: MAC address of destination
- Protocol used to obtain the MAC address associated to a given IP address
- RARP Reverse ARP Protocol used to obtain the IP address associated to a MAC address

DHCP allows

- host to dynamically obtain its IP address (assigns a dynamic IP address) from network server when it joins network
- It supports address reuse

NAT

- To overcome IP address shortage
- Uses private IP address
- Converts an internal private IP address and port to a public one, to be used in the public network

ICMP - Internet Control Message Protocol

- Ping request
- Used by router or host

- Carried in IP datagrams

- to send layer 3 error or control messages
- to other hosts or routers
- Link-Local
 - Used for communication between hosts in the same LAN/link Address built from MAC address
 - Routers do not forward packets having Link-Local destination addresses
- Global Unicast

group

- Global addresses Address: network prefix + computer identifier Structured prefixes
- - Network aggregation; less entries in the router forwarding tables Group address: packet is received by any (only one) member of the
- Anvcast Multicast
- Group address; packet received by all the members of the group