Propositional Logic

- 1. Prove or find a counterexample for all statements below
 - a. When P is false, $P \wedge \neg P$ is false, so $P \wedge \neg P$ is not valid.
 - b. When B is false and A is false, $A \to B$ can still be true. Thus $A \to B \models B$ fails.
 - c. *Proof.* (A or B) is true, when either A or B is true. When B is true, since $(B \models C)$, C is true. When A is true, since $(A \models B)$, B is true, then C is true.
 - d. Proof.

$$A \vee \neg (B \wedge \neg C) = A \vee (\neg B \vee C)$$
$$= A \vee C \vee \neg B$$
$$A \vee C \subseteq A \vee C \vee \neg B$$
$$A \vee \neg (B \wedge \neg C) \models A \vee C$$

- e. When A is false, $\neg(A \land B) \land (A \to B)$ is true, thus satisfiable. $(\neg A \lor \neg B) \land (\neg A \lor B)$
- f. No. $((A \to \neg B) \land A) = (\neg A \lor \neg B) \land A$, there is only one model A is true and B is false can make it true. While $(A \land (B \lor C))$ has more than one model: e.g. A is ture, B is true and C is ture; A is true, B is false, and C is true.

First-order Logic

- 2. Translate the following first order logic sentences to English. Predicates and functions carry the obvious meanings.
 - a. Northwestern's mascot is Willie Wildcat.
 - b. For any x, y and z, if the sum of x and y is odd and z is odd, then the sum of x, y and z is not odd.
- 3. Translate the following English sentences to first order logic. Name predicates and functions such that their meanings are obvious.
 - a. $[student(Greg) \land student(John)] \land play(Greg, tennis)$
 - b. $\forall x, \forall y, [integer(x) \land integer(y)] \rightarrow integer(product(x,y))$
- 4. Security personnel.

(i) a.
$$\forall x, [\exists y, P(x) \rightarrow [S(y) \land A(x, y)]]$$

b. $\forall y, [\exists x, S(y) \rightarrow [A(x, y) \land P(x)]]$

c.
$$\forall x, [\forall y, A(x, y) \rightarrow M(x, y)]$$

d.
$$\forall x, \forall y, M(x, y) \rightarrow [O(x) \land O(y)]$$

- e. S(Juan)
- f. P(Sarah)
- g. O(Sarah)
- h. A(Sarah, Juan)
- (ii) Convert to CNF:

A 1
$$\neg P(x) \lor S(y)$$

$$2 \neg P(x) \lor A(x,y)$$

B 1
$$\neg S(y) \lor A(x,y)$$

$$2 \neg S(y) \lor P(x)$$

$$C \neg A(x, F(x)) \lor M(x, F(x))$$

D 1
$$\neg M(x, G(x)) \lor O(x)$$

$$2 \neg M(x, G(x)) \lor O(G(x))$$

$$E = S(Juan)$$

F P(Sarah)

(iii) The derived clause: $\neg A(Sarah, G(Sarah))$. Because we don't know whether there exists advising meeting between Sarah and Juan, i.e. we can't prove M(Sarah, Juan).

Bayes Nets

5. a.
$$1+1+2+4+4=12$$

b.
$$2^5 - 1 = 31$$

c. ii, vi, vii, ix.

d.
$$P(M=1|S)=1/2$$

$$P(S=1)P(Z=1)P(M=1|S)P(T=1|S,Z)P(A=1|M,T)=1/50$$

$$\rightarrow P(T=1|S,Z)*P(A=1|M,T)=16/25$$

Т

 \mathbf{F}

0.2

0.2

0.2

0.2

 \mathbf{T}

0.8

0.8

		A	
M	Τ	Т	F
F	F	0.8	0.2
\mathbf{F}	Τ	0.8	0.2
Τ	\mathbf{F}	0.8	0.2
Т	Τ	0.8	0.2

e. 9.