StatQuest!!!!

StatQuest!!!

StatQuest: Multiple Regression... Clearly explained!!!

People who don't understand linear regression tend to make a big deal out of the "differences" between simple and multiple regression.

y = y-intercept + slope x

$$y = y$$
-intercept + slope x

$$y = y$$
-intercept + slope x + slope z

y = y-intercept + slope x

Calculating R² is the same for both simple and multiple regression

Multiple regression

$$y = y$$
-intercept + slope x

$R^2 = \frac{SS(mean) - SS(fit)}{SS(mean)}$

y = y-intercept + slope x + slope z

Multiple regression

Body length Mouse weight

y = y-intercept + slope x

$$R^2 = \frac{SS(mean) - SS(fit)}{SS(mean)}$$

Multiple regression

$$y = y$$
-intercept + slope x

$$R^2 = \frac{SS(mean) - SS(fit)}{SS(mean)}$$

Multiple regression

y = y-intercept + slope x + slope z

For multiple regression, you adjust R^2 to compensate for the additional parameters in the equation.

$$y = y$$
-intercept + slope x

Multiple regression

$$y = y$$
-intercept + slope x + slope z

$$F = \frac{SS(mean) - SS(fit) / (p_{fit} - p_{mean})}{SS(fit) / (n - p_{fit})}$$

Calculating F and the p-value is pretty much the same...

Simple regression Body length Body length y = y-intercept Mouse weight y = y-intercept + slope x $SS(mean) - SS(fit) / (p_{fit} - p_{mean})$ \rightarrow SS(fit) / (n - p_{fit})

Multiple regression

Body length Mouse weight

$$y = y$$
-intercept + slope x

Multiple regression

$$F = \frac{SS(mean) - SS(fit) / (p_{fit} - p_{mean})}{SS(fit) / (n - p_{fit})}$$

Body length

$$F = \frac{SS(mean) - SS(fit) / (p_{fit} - p_{mean})}{SS(fit) / (n - p_{fit})}$$

Multiple regression

Body length

$$y = y$$
-intercept + slope x + slope z

$$p_{\text{fit}} = 2$$

$$= \frac{SS(mean) - SS(fit) / (p_{fit} - p_{mean})}{SS(fit) / (n - p_{fit})}$$

Body length Mouse weight

$$y = y$$
-intercept + slope x

Body length

Multiple regression

$$F = \frac{SS(mean) - SS(fit) / (p_{fit} - p_{mean})}{SS(fit) / (n - p_{fit})}$$

$$y = y$$
-intercept + slope x + slope z

y = y-intercept

So far we have compared this simple regression to the mean...

Multiple regression

So far we have compared this simple regression to the mean...

Body length

y = y-intercept

Multiple regression

y = y-intercept + slope x + slope z

...and this multiple regression to the mean...

Simple regression Body length ...but we can compare them to each other! y = y-intercept + slope xMultiple regression Body length Tail length Mouse weight y = y-intercept + slope y

Body length Mouse weight

y = y-intercept + slope x

...but we can compare them to each other!

This will tell us if it is worth the time and trouble to collect the Tail Length data because we will compare a fit without it (the simple regression) to a fit with it (the multiple regression).

Multiple regression

Body length Mouse weight

y = y-intercept + slope x

Calculating the F-value is the exact same as before, only this time we replace the "mean" stuff...

Multiple regression

Body length Mouse weight

y = y-intercept + slope x

Calculating the F-value is the exact same as before, only this time we replace the "mean" stuff...

...with with simple regression stuff.

Multiple regression

$$F = \frac{SS(\text{simple}) - SS(\text{multiple}) / (p_{\text{multiple}} - p_{\text{simple}})}{SS(\text{multiple}) / (n - p_{\text{multiple}})}$$

Mouse weight y = y-intercept + slope x

Multiple regression

$$F = \frac{SS(simple) - SS(multiple) / (p_{multiple} - p_{simple})}{SS(multiple) / (n - p_{multiple})}$$

$$F = \frac{SS(\text{simple}) - SS(\text{multiple}) / (p_{\text{multiple}} - p_{\text{simple}})}{SS(\text{multiple}) / (n - p_{\text{multiple}})}$$

$$y = y$$
-intercept + slope x

$$y = y$$
-intercept + slope x + slope z

$$F = \frac{SS(\text{simple}) - SS(\text{multiple}) / (p_{\text{multiple}} - p_{\text{simple}})}{SS(\text{multiple}) / (n - p_{\text{multiple}})}$$

Multiple regression

$$y = y$$
-intercept + slope x

$$y = y$$
-intercept + slope x + slope z

 $p_{\text{multiple}} = 3$

$$F = \frac{SS(\text{simple}) - SS(\text{multiple}) / (p_{\text{multiple}} - p_{\text{simple}})}{SS(\text{multiple}) / (n - p_{\text{multiple}})}$$

Body length Mouse weight

$$y = y$$
-intercept + slope x

Multiple regression

y = y-intercept + slope x + slope z

$$F = \frac{SS(simple) - SS(multiple) / (p_{multiple} - p_{simple})}{SS(multiple) / (n - p_{multiple})}$$

Bam!!!

$$y = y$$
-intercept + slope x

Multiple regression

y = y-intercept + slope x + slope z

If the difference in R^2 values between the simple and multiple regressions is "big" and the p-value is "small", then adding Tail Length to the model is worth the trouble.

The End!!!