Ricerca Operativa - lezione 3

Appunti di Davide Vella 2024/2025

Pierre Hosteins

pierre.hosteins@unito.it

Link al moodle:

https://informatica.i-learn.unito.it/course/view.php?id=3008

25/02/2025

Contenuti

- 1. Modelli di mix
 - 1. Esempio
 - 1. Variabili
 - 2. Formule matematiche utili per modellare il problema :
 - 3. Vincoli
 - 4. Formalizzazione
 - 1. Dati
 - 2. Variabili
 - 3. Obbiettivo
 - 4. Vincoli
- 2. Problema di trasporto
 - 1. Dati
 - 2. Variabili
 - 3. Obbiettivo
 - 4. Vincoli
- 3. Proprietà di integralità
- 4. Problema di assegnamento
 - 6. Dati
 - 7. Variabili
 - 8. Obbiettivo
 - 9. Vincoli
- 5. Problema di matching

Modelli di mix

Un caso di approvvigionamento.

Esempio

L'acciaieria PLASTIK deve evadere un ordine di 1000 tonnellate di acciaio INOX, il quale si produce con :

- manganese (almeno 1%)
- cromo (almeno 18%)
- molibdeno (almeno 2%)
 I fornitori offrono :
- 2kg di manganese, 2kg di cromo, 1kg di molibdeno a 10 euro.
- 2kg di manganese, 3kg di cromo, 1kg di molibdeno a 15 euro.
- 1kg di manganese, 2kg di cromo, 5kg di molibdeno a 20 euro.
 Facciamo in tabella

Tipo conf	Manganense	Cromo	Molbdeno	Costo	Fabbisogno (in kg per ottenere 1000 tonnelate di Acc. inox)
1	2	2	1	10	10000
2	2	3	1	15	180000
3	1	2	5	20	20000

Variabili

 $x_i = \text{confezioni di tipi i } (1, 2, 3) \text{ aquistate}$

Formule matematiche utili per modellare il problema :

- Costo di acquisto : $10x_1(\text{conf. 1}) + 15x_2(\text{conf. 2}) + 20x_3(\text{conf. 3})$.
- Quantità di manganese acquistata : $2x_1 + 2x_2 + 1x_3$.
- Quantità di cromo acquistata : $2x_1 + 3x_2 + 2x_3$.
- Quantità di molibdeno : $1x_1 + 1x_2 + 5x_3$.

Vincoli

Da quanto visto nei due punti sopra, prendiamo la quantità dei vari materiali e confrontiamoli con il fabbisogno (i nostri minimi in questo problema)

$$2x_1+2x_2+1x_3\geq 10000$$
 (fabbisogno manganese)
$$2x_1+3x_2+2x_3\geq 180000$$

$$1x_1 + 1x_2 + 5x_3 \geq 20000$$
 $ext{min costo} = 10x_1 + 15x_2 + 20x_3$

Formalizzazione

Più utile per problemi simili, ma con dati diversi.

Dati

- insiemi K di confezioni e M di metalli
- C_k = costo delle confezioni. $k \in \mathbb{K}$
- f_m = fabbisogno del metallo. $m \in \mathbb{M}$
- a_{km} = quantità di metallo $m \in M$ nella confezione $k \in K$.

Variabili

 x_k = quantità di confezioni di tipo $k \in K$ comprate.

Obbiettivo

$$\min \mathbf{z} = \sum_{k \in K} c_k x_k$$

Vincoli

$$egin{aligned} \sum a_{km}x_k &\geq f_m, & orall m \in M \ & x_k \in Z_+, & orall k \in K \end{aligned}$$

Problema di trasporto

Un'azienda deve far transitare dei containers da certi depositi (Verona, Perugia, Roma, Pescara, Taranto e Lamezia) verso i principali porti (Genova, Venezia, Ancona, Napoli e Bari). Il numero di containers disponibili in ogni deposito e la domanda in container in ogni porto sono :

	Disponibilità		
Verona	10		
Perugia	12		
Roma	20		
Pescara	24		
Taranto	18		
Lamezia	40		

	Domanda		
Genova	20		
Venezia	15		
Ancona	25		
Napoli	33		
Bari	21		

Il costo di trasporto è di 1 Euro per km. Le distanze fra depositi e porti, in km, sono le seguenti:

	Genova	Venezia	Ancona	Napoli	Bari
Verona	290	115	355	715	810
Perugia	308	340	165	380	610
Roma	505	530	285	220	450
Pescara	655	450	155	240	315
Taranto	1010	840	550	305	95
Lamezia	1072	1097	747	372	333

Dati

- l'insieme dei depositi D e l'insieme dei porti P.
- La disponibilità e la domanda in containers: A_i per $i \in D$ e D_j for $j \in P$.
- c :Il costo per km.
- δ_{ij} = la distanza fra $i \in D$ e $j \in P$.

Variabili

 $x_{ij} \geq 0$ = quantità di containers trasferiti fra $i \in D$ e $j \in P$ (che dovrebbero prendere valori interi).

Obbiettivo

$$\text{minimizzare c} \sum_{i \in D} \sum_{j \in P} \delta_{ij} x_{ij}$$

Vincoli

$$\sum_{i \in D} x_{ij} \geq D_j, \;\; orall j \in P$$

$$\sum_{j \in P} x_{ij} \geq A_i, \;\; orall i \in D$$

$$x_{ij} \geq 0, orall i \in D, j \in P$$

Proprietà di integralità

Se i parametri sono interi, la soluzione è anche lei intera, per via delle proprietà della matrice che raccoglie i coefficienti dei vincoli (unimodularità).

Problema di assegnamento

Una fabbrica possiede 5 macchine {1, 2, 3, 4, 5} che devono processare 5 lavori diversi {A, B, C, D, E}. Ogni macchina può gestire ogni lavoro ma hanno tutte un'efficienza diversa rispetto a ogni lavoro. Ogni combinazione macchina-lavoro corrisponde dunque a un livello di produttività diverso, espresso in pezzi prodotti per ora nella seguente matrice:

$$P_{mj} = egin{array}{ccccccc} {
m macchina} & A & B & C & D & E \ 10 & 7 & 9 & 2 & 1 \ 8 & 9 & 12 & 7 & 2 \ 2 & 9 & 9 & 8 & 8 \ 4 & 9 & 18 & 2 & 4 & 3 \ 5 & 9 & 9 & 4 & 5 & 4 \ \end{array}$$

La matrice è : macchina-lavoro.

Dati

- J = insieme di lavori
- M = insieme di macchine
- p_{mj} = valori di produttività

Variabili

• x_{mj} = 1 se la macchina $m \in M$ è assegnata al lavoro $j \in J$, altrimenti 0.

Obbiettivo

$$\max \mathrm{z} = \sum_{m \in M} \sum_{j \in J} p_{mj} x_{mj}$$

Vincoli

$$\sum_{j \in J} x_{mj} = 1, \;\;\; orall m \in M \; ext{(un lavoro per macchina)}$$

$$\sum_{m \in M} x_{mj} = 1, \quad orall j \in J ext{ (una macchina per lavoro)} \ x_{mj} \in \{0,1\}, \quad orall m \in M, j \in J$$

Problema di matching

Nel problema dell'assegnamento, si accoppiano elementi di due nature diverse, per es : un'azione (lavoro) a una risorsa (macchina). Nel problema di matching, si accoppiano elementi della stessa natura.

Consideriamo 2n persone ad accoppiare in n binomi di lavoro :

- c_{ij} = beneficio di accoppiare i e j (magari due persone che vanno più d'accordo tra di loro e quindi lavorano meglio e in modo più produttivo)
- x_{ij} = 1 se i e j sono accoppiati, con $1 \leq i < j \leq 2n$

$$\max \mathbf{z} = \sum_{i=1}^{2n-1} \sum_{j=i+1}^{2n} c_{ij} x_{ij}$$

 $\sum_{k \le i} x_{ki} + \sum_{j \ge i} x_{ij} = 1, i = 1, 2, 3, \ldots, n$

 $x_{ij} \in (0, 1),$