Information Protection in Content-centric Networks

Christopher C. Lamb

Department of Electrical and Computer Engineering University of New Mexico

November 6, 2012

Outline

Summary

2 Results

3 References

Original Goals

Contribution of Work

The contribution of this work is a quantitative analysis of policy-centric overlay network options, associated taxonomies of use, and prototypical technology proofs-of-concept.

- Network Control Options This includes various types networks and associated strengths and weaknesses addressing centralized and decentralized models.
- Taxonomies of Use Depending on the specific usage
 management requirements and context, different overlays have
 different applicability; this work will provide guidance on suitability; it
 will eventually lead to how to manage data flow within SDN-capable
 infrastructure.
- Prototypical Technologies Examples and proofs-of-concept will be required to appropriately analyze various architectural alternatives.

Meeting the Goals

Network Control Options

I have developed and analysed multiple types of overlay systems, both centralized (hierarchical) and non-centralized (non-hierarchical), with differing topologies and integrated content-centric control.

Taxonomies of Use

I have established an verified a taxonomy of usage management and applied that within the network providing mechanisms extendable to SDN use.

Prototypical Technologies

Prototype information-centric networks are running between the Rackspace and Amazon clouds.

Impact and Originality

- Information-centric architectures common in future internet designs
- Significant work with respect to name/object binding, overall topologies, approaches
- No significant work yet on exploiting information-centricity for enhanced security
- They have significant new capabilities inherent in approach that allow for better information security

Additional Contributions

This work, as well as providing alternatives analysis with respect to information-centric security with respect to architectures and approaches, also demonstrates the first implementation of granular context-sensitive security functionality embedded in an information-centric network.

Results Overview

Overall evaluation of impact against strategy:

- Encryption most likely to be used...
- ...Rerouting likely the best compromise (but expensive)
- Hierarchical and non-hierarchical networks had similar performance
- No clear leading strategy under all conditions

Property	Redaction	Rerouting	Encryption
Confidentiality	3	2	1
Integrity	0	1	3
Availability	0	1	2

Strategy Impact by Attribute

What does this mean? How did we get it?

Methodology

Confidentiality, Integrity characteristics based on approach.

- Redaction, by removing information, by definition destroys integrity while guaranteeing confidentiality; unavailable information that is cannot be leaked
- Rerouting removes information from a context damaging integrity that can possibly be repaired later, potentially increasing confidentiality by rendering that information unavailable
- Encryption minimizes integrity impacts be keeping ciphered data with original context at the expense of possible interception and cryptanalysis exposure

Availability is based on performance.

• Performance is measured via end-to-end time of transmittal

Redaction

Redaction: Removing content that is not approved for transmission over a given link or consumption by a given agent from a larger context of suitable content.

- Strongest confidentiality
- Destroys integrity
- Mixed impact on availability

Fast and easy to implement

Property	Redaction	Rerouting	Encryption
Confidentiality	3	2	1
Integrity	0	1	3
Availability	1	1	2

Rerouting

Rerouting: Removing content that is not approved for transmission over a given link and rerouting that content to its destination through secondary means (e.g. SMTP).

- Confidentiality dependent on secondary links
- Integrity compromised temporarily and perhaps permanently
- Availability dependent on secondary links

Undependable, expensive, good information control

Property	Redaction	Rerouting	Encryption
Confidentiality	3	2	1
Integrity	0	1	3
Availability	0	1	2

Encryption

Encryption: Enciphering content within larger documents, deciphering enciphered sections when suitable by defined policy and when content needs to be re-evaluated.

- Confidentiality questionable over time
- Integrity compromised temporarily and perhaps permanently
- Availability dependent on secondary links

Reasonably secure, simple and performant

Property	Redaction	Rerouting	Encryption
Confidentiality	3	2	1
Integrity	0	1	3
Availability	0	1	2

Hierarchical Effects

Figure: Hierarchical Results from Amazon

Hierarchical Effects

Strategy Effects (Rackspace)

Figure: Hierarchical Results from Rackspace

Hierarchical Effects

Figure: Hierarchical Results from Comcast

Non-Hierarchical Effects

Figure: Non-Hierarchical Results from Amazon

Non-Hierarchical Effects

Non-Hierarchical Effects

Strategy Effects (Comcast) 0.4 0.35 0.3 Time (seconds) 0.25 Control 0.2 Reroute 0.15 Redact 0.1 Encrypt 0.05 Home NeighborNeighborNeighborNeighbor (1) (2) (3) (4) (5)

Network-Free Evaluation

Cumulative Processing Time, 1000 Requests

Figure: Results from Requests to a Singe Node

Questions? Comments?

- DoD Information Sharing Strategy. http://dodcio.defense.gov/Portals/0/Documents/InfoSharingStrategy.pdf, May 2007.
- [2] Assured Information Sharing in Clouds. http://www.zyn.com/sbir/sbres/sttr/dod/af/af11-bt30.htm, August 2011.
- [3] http://www.ietf.org/rfc/rfc3198. http://www.ietf.org/rfc/rfc3198, November 2011.
- [4] NSA Pursues Intelligence-Sharing Architecture.
 http://www.informationweek.com/news/government/cloud-saas/229401646, April 2011.
- [5] Booz, Allen, and Hamilton. Distributed service oriented architecture (soa) compatible cross domain service (dscds). Presented at the Unified Cross Domain Management Office Conference. 2009.
- [6] NSA. Distributed service oriented architecture (soa)- compatible cross domain service (dscds) dscds overview. Presented at the Unified Cross Domain Management Office Conference, 2009.
- [7] J. Ostermann. Raytheon dscds intro. Presented at the Unified Cross Domain Management Office Conference, 2009.
- [8] S. Pearson and A. Benameur. Privacy, security and trust issues arising from cloud computing. In Cloud Computing Technology and Science (CloudCom), 2010 IEEE Second International Conference on, pages 693 –702, 30 2010-dec. 3 2010.
- [9] R. Ross. Next generation risk management. Presented at the Unified Cross Domain Management Office Conference, 2009.

