Test Deckblatt

Projektarbeit auf dem Gebiet des Flugzeugbaus und Leichtbaus Bearbeitungsdauer: 13 Wochen

Brack Tristan Matr.-Nr.
Golombek Hannes Matr.-Nr.
Kammler Hendrik Matr.-Nr.
Scholz Ole Matr.-Nr.

Ausgegeben am: 15.10.2020 Abgegeben am:

Auslegung eines alternativen Modellflügels für das Flugzeug "Zaunkönig" in Glasfaserverbund -Holm-Bauweise

1. Einleitung

Im Rahmen dieser Projektarbeit soll der Flügel des LF1 "Zaunkönig" (siehe Abbildung 1) im Modellmaßstab 1:4,7, d.h. die Halbspannweite beträgt ca. 848 mm, ausgelegt werden. Aus der Auslegung des Gesamtflugzeuges resultieren entsprechende Anforderungen an den Flügel, welche im Zuge der Auslegung und Fertigung berücksichtigt werden müssen. Sowohl die konstruktiven als auch die strukturmechanischen Maßnahmen sollen mit Hilfe geeigneter Ingenieursmethoden erfolgen und begründet werden.

Zur Überprüfung der Auslegung sollen die Ergebnisse der Berechnungen mit Messergebnissen aus vorangegangenen Tests verglichen werden.

Abbildung 1: Seitenansicht LF1 "Zaunkönig"

2. Anforderungen/Vorgaben

2.1. Geometrische Vorgaben des Flügels

Bei dem Flügel des Zaunkönigs handelt es sich um einen Rechteckflügel (Zuspitzung $\tau=0$, Pfeilung $\varphi=0^\circ$). Vorflügel und Hochauftriebsklappen erstrecken sich über die gesamte Spannweite und sind jeweils an der Flügelwurzel, -mitte und -spitze mit dem Hauptflügel verbunden (bei $\eta=\{0,0;0,5;1,0\}$). Darüber hinaus ist der Hauptflügel gegenüber dem Rumpf mit Verstrebungen am Punkt ($\eta=0,50;\ \xi=0,25$) abgestützt. Die Maße des Gesamtflügels sind Abbildung 2 sowie den beigefügten Anlagen zu entnehmen. Im Gegensatz zu dem originalen, abgestrebten Flügel des Zaunkönigs soll eine alternative Bauweise ohne Streben umgesetzt werden.

Abbildung 2: Bemaßte Front- und Draufsicht des LF1 "Zaunkönig"

2.2. Strukturmechanische Anforderungen

Für die strukturmechanischen Tests soll das Modell eines Halbflügels in Glasfaserverbund-Holm-Bauweise gebaut werden, der bei einer möglichst geringen Eigenmasse eine Prüfkraft von 500 N ohne Bruch erträgt. Dabei soll der Flügel sowohl auf Festigkeit als auch auf Steifigkeit ausgelegt werden. Eine hinreichende Steifigkeit ist gegeben, wenn sich der Flügel bei einer senkrechten Belastung von $F_{Prüf}$ = 100 N an der Flügelspitze (L/4-Punkt) um nicht mehr als z_{100N} = 22 mm durchbiegt. Um die Hautdicke ausschließlich auf Festigkeit zu dimensionieren, aber frühzeitiges Beulen der Haut zu vermeiden, kann ein Sandwich-Aufbau an kritischen Bereichen und/oder Rippen gewählt werden. Es sind geeignete konstruktive Mittel zu überlegen um diese Vorgaben zu erreichen. Die Einhaltung der Anforderungen ist rechnerisch nachzuweisen.

Darüber hinaus soll der Torsionswinkel der Flügelaußenkante in Abhängigkeit einer exzentrischen, senkrechten Prüflast mit Hilfe der Theorie nach St. Venant berechnet werden.

2.3. Konstruktive Anforderungen

Der Hauptflügel des Zaunkönigs ist als Modellflügel in Glasfaserverbund-Holm-Bauweise umzusetzen. Vorflügel und Hochauftriebsklappen sind nicht auszuführen. Das aerodynamische Profil des Hauptflügels ist zu bewahren. Die V-Stellung des Flügels ist zu vernachlässigen. Als Kernmaterial steht Styrodur und Depron zur Verfügung. Die Faserorientierung der Gewebe ist im Einklang mit den durchgeführten Rechnungen belastungsgerecht zu wählen.

Die rumpfseitigen Einspannverhältnisse sind wie in Anlage C ausgeführt. Diese sehen eine wie bei Klein- und Segelflugzeugen übliche Konstruktion vor: Der Holm wird dabei im Rumpf mit der anderen Flügelhälfte verstiftet und jede Flügelhälfte stützt sich gegen den Rumpf wobei die Torsion mit Querkraftbolzen aufgenommen wird. Für den Flügelbau bedeutet dies, dass der Holm entsprechend Anlage C aus dem Flügel herausgezogen werden muss. Es sollte außerdem berücksichtigt werden, dass der Holm geeignet getapert wird, um Versagen im Einspannungsbereich zu vermeiden. An der freien Flügelspitze ist zur Lasteinleitung eine Endrippe vorzusehen, die die lösbare Montage der Endscheibe aus Anlage D erlaubt.

Der Flügel darf ein maximales Gewicht von 0,750 kg nicht überschreiten. Auf eine fertigungsgerechte Konstruktion ist zu achten.

3. Bewertungskriterien

Das Hauptaugenmerk der Konstruktion sollte, unter Einhaltung der zuvor genannten Randbedingungen, auf einem möglichst geringen Eigengewicht des Flügels liegen. Ein Vergleich der Ergebnisse der einzelnen Gruppen untereinander soll anhand der Masse $m_{Flügel}$ entsprechend des gewichtsnormalisierten Festigkeitskriteriums $m_{Belastung,max}/m_{Flügel}$ erfolgen, welches die ertragene Bruchlast mit dem Eigengewicht der Konstruktion ins Verhältnis setzt.

4. Aufgabenstellung

Um die oben beschriebenen Anforderungen zu erfüllen, sind folgende Teilaufgaben zu bearbeiten:

- 1. Einarbeitung in die Fragen der Anforderungen
- 2. Entwicklung konstruktiver und strukturmechanischer Lösungsansätze für die Faserverbund-Bauweise
- 3. Festlegung einer konstruktiven Lösungsvariante
- 4. Dimensionierung und Nachweis der gewählten Lösungsvariante mittels
 - a. Handbuchmethoden, sowie
 - b. Numerischer Methoden
- 5. Detailentwurf der dimensionierten Lösungsvariante
- 6. Auswertung, Vergleich und Diskussion der berechneten Daten (Biegung, Torsion, max. Bruchlast, Schubmittelpunkt)
- 7. Vergleich mit im Strukturtest ermittelten Daten und denen anderer Gruppen
- 8. Diskussion der Ergebnisse
- 9. Bewertung der eigenen Konstruktion und Diskussion einer Optimierung

Arbeitsteilung und -ablauf ist durch die Gruppe selbstständig zu organisieren. Theoretische Hintergründe, erstellte Modelle, sowie Vorgehensweisen, Entscheidungskriterien und gewonnene Ergebnisse sind sorgfältig zu dokumentieren. Die Verfasser der einzelnen Abschnitte des Abschlussberichtes sind zu kennzeichnen.

5. Literatur

- [A] Horst, P., (2013) 'Leichtbau I Ingenieurtheorien des Leichtbaus' Vorlesungsskript. Braunschweig: Institut für Flugzeugbau und Leichtbau
- [B] Ostermeyer, G.-P. (2010) 'Mechanik I' Vorlesungsskript. Braunschweig: Institut für Dynamik und Schwingungen
- [C] Horst, P., (2013) 'Finite Elemente Methoden I' Vorlesungsskript. Braunschweig: Institut für Flugzeugbau und Leichtbau
- [D] Schürmann, H., (2007) 'Konstruieren mit Faser-Kunststoff-Verbunden' Springer-Verlag Berlin Heidelberg

[A] Merkblatt für die Anfertigung studentisch-wissenschaftlicher Arbeiten

6. Anlagen

(Ort, Datum)

BJ Flugelkontur, Technische Zeichnung	
C] Einspannung, Technische Zeichnung	
D] Endscheibe, Technische Zeichnung	

(Prof. Dr.-Ing. P. Horst)

Inhaltsverzeichnis

1	Bezeichnungen	6
2	Hauptteil	6
3	Grundlagen 3.1 Glasfaser	7 7
4	Modellierung des Holms4.1 Annahmen zur Modellierung	7 7 8
5	Auslegung des Holms nach VDI 2013	8
	5.1 Dimensionierung der Gurte zur Einhaltung der Anforderungen an die Steifigkeit	9
La (la <i>A</i> <i>B</i>	Bezeichnungen phabetische Ordnung! tteinisch vor griechisch, jeweils Groß- vor Kleinbuchstaben tt. Großbuchstaben) : Festlager : Loslager	
-	r_{uef} : Prüfkraft an der Flügelspitze r_{Q} : Kraftaufnahme der Querkraftbolzen	
(la	at. Kleinbuchstaben)	
$egin{aligned} l_1 \ l_2 \ l_3 \ s : \end{aligned}$: Länge des freien Endes : Abstand der Lager A und B : Abstand zwischen Lager B und den Querkraftbolzen : Abstand zwischen den Querkraftbolzen und der Flügelspitze : Halbspannweite : Absenkung der Flügelspitze in negative z-Richtung 	

2 Hauptteil

TEst Hauptteil

3 Grundlagen

3.1 Glasfaser

Test

4 Modellierung des Holms

4.1 Annahmen zur Modellierung

Das Koordinatensystem des Flügels entspricht dem Flugzeugkoordinatensystem, sodass die Flügellängskoordinate durch y definiert ist. Der Koordinatenursprung ist im Lager A positioniert.

Der Holm inkl. des Holmstummels wird für die Belastung durch eine Prüfkraft F_{pruef} in negative z-Richtung als Biegebalken ausgelegt. Dafür ist er an zwei Stellen gelagert, dem Lager A und Lager B, dabei repräsentieren sie die Verstiftungen (siehe Bauteil Ü-Profil"). Um eine Überbestimmung des Systems zu vermeiden, wird das Lager B als Loslager angenommen. Die Querkraftbolzen werden nicht durch ein Lager, sondern durch eine zusätzlich angreifende Kraft F_Q simuliert, da keine Absenkung, sondern lediglich eine Kraftaufnahme der Wurzelrippen möglich ist.

Als Randbedingungen der Modellierung sind die Halbspannweite s und die Absenkung w gegeben. Für die Absenkung w soll eine Sicherheit j=1,1 gesetzt werden. Zwischen Lager A und B wird die Länge l_1 angenommen, zwischen Lager B und der Wurzelrippe C die Länge l_2 . Die verbleibende Länge bis zur Flügelspitze, an der die Prüfkraft F_{pruef} wirkt, wird l_3 bezeichnet. Die Halbspannweite s wird beginnend in der Mitte der Verstiftungen bis zur Flügelspitze gemessen. Das Holmstummelende wird ab dem Lager A mit l_0 als Länge definiert. Diese Länge ist jedoch unerheblich für die Modellierung, sondern wird erst für die Massenbestimmung benötigt.

Anhand der Randbedingungen und der Einspannvorrichtung für den Versuchsaufbau ergeben sich folgende Längen (ebenfalls in Abb. 1 dargestellt):

$$s = 0,848m\tag{1}$$

$$l_0 = 0,03m (2)$$

$$l_1 = 0,076m (3)$$

$$l_2 = 0,037m (4)$$

Abbildung 1: Modellierung des Holms

$$l_3 = s - \frac{l_1}{2} - l_2 = 0,773m \tag{5}$$

$$w_{j=1,1} = \frac{1}{i} * w = \frac{1}{1,1} * 0,022m = 0,02m$$
 (6)

4.2 Analytische Lösung der Modellierung

5 Auslegung des Holms nach VDI 2013

Auf Basis der in der Balkenberechnung bestimmten Parameter Biegesteifigkeit, maximales Biegemoment und der maximalen Querkraft, sollen die Gurte und der Steg dimensioniert werden. Die Vorauslegung soll dabei anhand der VDI- Richtlinie 2013 erfolgen, diese enthält in einem Unterkapitel Informationen speziell zur Auslegung eines I-Trägers. Dabei ist zu beachten, dass bei einigen Berechnungen Vereinfachungen angenommen werden, die an den betreffenden Stellen spezifiziert werden. Zusätzlich sei angemerkt, dass die erste Auslegung ohne Sicherheitsfaktoren erfolgt. Grund dafür ist die Annahme, dass in den bereitgestellten Materialkennwerten ausreichende Sicherheiten verrechnet worden sind und dass die maximal zu.

5.1 Dimensionierung der Gurte zur Einhaltung der Anforderungen an die Steifigkeit

Bei der Auslegung der Gurte auf Steifigkeit wird angenommen, dass der Steg des I-Trägers keine Längskräfte aufnimmt und der Biegung nicht entgegenwirken kann. Die in der Balkenberechnung ermittelte Biegesteifigkeit EI_x , die erforderlich ist, damit bei einer Kraft $F_{pruef}=100N$ die Flügelspitze eine Absenkung von $w_{j=1,1}=20mm$ erfährt, muss allein durch die Gurte aufgebracht werden. Im Sinne der kraftflussgerechten Gestaltung sollen die Glasfasern unidirektional in Längsrichtung des Gurtes angeordnet werden. Die Bezeichnungen der Längenangaben des Holmes orientieren sich an nachstehender Skizze.