Know Abnormal, Find Evil: Frequent Pattern Mining for Ransomware Threat Hunting and Intelligence

Sajad Homayoun, Ali Dehghantanha, Marzieh Ahmadzadeh, Sattar Hashemi, Raouf Khayami

Abstract—Emergence of crypto-ransomware has significantly changed the cyber threat landscape. A crypto ransomware removes data custodian access by encrypting valuable data on victims' computers and requests a ransom payment to reinstantiate custodian access by decrypting data. Timely detection of ransomware very much depends on how quickly and accurately system logs can be mined to hunt abnormalities and stop the evil. In this paper we first setup an environment to collect activity logs of 517 Locky ransomware samples, 535 Cerber ransomware samples and 572 samples of TeslaCrypt ransomware. We utilize Sequential Pattern Mining to find Maximal Frequent Patterns (MFP) of activities within different ransomware families as candidate features for classification using J48, Random Forest, Bagging and MLP algorithms. We could achieve 99% accuracy in detecting ransomware instances from goodware samples and 96.5% accuracy in detecting family of a given ransomware sample. Our results indicate usefulness and practicality of applying pattern mining techniques in detection of good features for ransomware hunting. Moreover, we showed existence of distinctive frequent patterns within different ransomware families which can be used for identification of a ransomware sample family for building intelligence about threat actors and threat profile of a given target.

Index Terms—Malware, ransomware, crypto ransomware, ransomware detection, ransomware family detection.

I. Introduction

▼YBERCRIMINALS pose a real and persistent threat to business, government and financial institutions all around the globe [1]–[3]. The volume, scope and cost of cybercrime all remain on an upward trend [4]. Malicious programs have always been an important tool in cyber criminals portfolios [5], [6] and almost everyday we are detecting new variants of malware programs [7]. Development and wide adoption of e-currencies such as Bitcoin led to many changes in cybercriminal activities [8], [9] including development of a new type of malware called ransomware [10]. Ransomware is a type of malware that removes a custodian access to her data and request for a ransom payment to re-instantiate data access [11]. Ransomware has been around since 1989, when ransomware first appeared under the name of AIDS Trojan [12]. Ransomwares are utilizing different infection vectors ranging from social engineering and Spam emails to botnets

- S. Homayoun, M. Ahmadzadeh and Raouf Khayami are with the Department of Computer Engineering and Information Technology, Shiraz University of Technology, Shiraz, Iran. e-mail: S.Homayoun@sutech.ac.ir.
- A. Dehghantanha is with Department of Computer Science, School of Computing, Science and Engineering, University of Salford, Salford, U.K.
- S. Hashemi is with Department of Computer Engineering, Shiraz University, Shiraz, Iran.

for distribution. There are two main types of ransomwares namely *Locker* and *Crypto* ransomwares. The former locks a system and denies users' access without making any changes to the data stored on the system while the latter encrypts all or selected data usually using a strong cryptography algorithm such as AES or RSA [12]. After encryption, the victim is presented with the ransom payment instructions with possibility of recovering ransomed data.

Ransomware has dominated the threat landscape in 2016 with annual increase rate of 267% [13]. It is estimated that in 2014 only, cybercriminals have made more than \$3 million profit using ransomware programs [14]. Unsurprisingly, ransomware attacks are mostly infecting individuals who are not security aware. Taking regular backups to a secure location is a good counter measure to reduce effects of ransomware infection [15]. These days, ransomware programs are indiscriminately targeting all industries ranging from healthcare to the banking sector and even power grids [4]. The Cryptoransomware programs are much more popular than Lockers as almost always security engineers could find ways to unlock a system without paying the ransom while the only viable solution for decrypting strongly encrypted data is to pay ransom and receive decryption key [16]. Therefore, focus of this paper is only on crypto-ransomware and in the rest of the paper, the word "ransomware" is actually referring to the "crypto-ransomware" only. It was already reported that cyber security training and employee awareness would reduce the risk of ransomware attacks [17]. However, automated tools and techniques are required to detect ransomware applications before they are launched [18] or within a short period after their execution [19]. The growing danger of ransomware attacks requires new solutions for prevention, detection and removing ransomwares programs.

In this paper, we are using a sequential pattern mining technique to detect best features for classification of ransomware applications from benign apps as well as identifying a ransomware sample family. We investigate usefulness of our detected features by applying them in *J48*, *Random Forest*, *Bagging* and *MLP* classification algorithms against a dataset contains 517 *Locky* ransomware samples, 535 *Cerber* ransomware samples, 572 samples of *TeslaCrypt* ransomware and 220 standalone Windows Portable and Executable (PE32) benign applications. We not only achieved 99% accuracy in detection of ransomware samples and 96.5% in detection of their families but reduced the detection time to less than 10 seconds of launching a ransom application; a third of the

time reported by earlier studies i.e. [20]. Our results are not only indicative of usefulness of pattern mining techniques in identification of best features for hunting ransomware applications but show how patterns of different ransomware families can help in detecting a ransomware family which assist in building intelligence about threats applicable to a given target. To the best of authors knowledge this is the very first paper applying sequence pattern mining to detect frequent features of ransomware applications and to build vectored datasets of ransomware applications logs. Our created datasets contain logs of Dynamic Link Libraries (DLL) activities, file system activities and registry activities of 1624 ransomware samples from three different families and 220 benign applications.

We are using widely accepted criteria namely True Positive (TP), False Positive (FP), True Negative (TN), and False Negative to evaluate our model [21]–[23]. TP is reflecting total samples that correctly identified. FP shows incorrectly identified samples. TN demonstrates the number of correctly rejected samples, while FN shows incorrectly rejected samples. *Precisions* of a classification algorithm is a measure of relevancy of results and is calculated by dividing TP by total of FP and TP predicted by a classifier as shown in equation (1). *Recall* reflects the proportion of positives that are correctly identified by classification technique which is calculated by dividing TP by total of TP and FN as shown in equation (2). F-measure is showing the performance of a classification algorithm and is calculated by the harmonic mean of precision and recall as shown in equation (3).

$$Precision = \frac{TP}{TP + FP} \tag{1}$$

$$Recall = \frac{TP}{TP + FN} \tag{2}$$

$$F - measure = 2 \times \frac{Precision \times Recall}{Precision + Recall}$$
 (3)

We will also report *Receiver Operating Characteristic (ROC)* that is a potentially powerful metric for comparison of different classifiers, because it is invariant against skewness of classes in the dataset. In a *ROC* curve the true positive rate is plotted in function of the false positive rate for different thresholds. In addition to *ROC*, *Area Under the Curve (AUC)* is a measure of how well a parameter can be used to distinguish between two classes. *AUC* is a single value that summarizes the *ROC* by calculating the area of the convex shape below the *ROC* curve. *AUC* can be between 0 and 1, where the value of 1 shows optimal point of perfect prediction.

Matthews Correlation Coefficient (MCC) [24] provides another measures of quality to compare different classifiers [25]. The MCC value is between -1 and +1, where in cases of perfect prediction it gives +1. -1 coefficient shows total disagreement between prediction and observation while the coefficient value of 0 indicates that the classifier does not work better than a random prediction. MCC is also a useful measure of classifier performance against imbalanced datasets. While Precision, $Recall\ or\ F$ -measure values in a random guessing would be higher than 0.5, MCC value would be around 0 for random guessing. TTherefore, for making sure that our

classifiers are far from random classifiers, we will compute *MCC* values for each classifier. The values can be computed using equation (4).

$$MCC = \frac{TP \times TN - FP \times FN}{\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}}$$
(4)

The remainder of this paper is organized as follows. Section III reviews some related research while Section III explains our method for collecting and preprocessing of data in a controlled environment. We describe feature extraction and vectorization in Section IV. Section V introduces our approach for ransomware detection followed by Section VI that describes our performance in detecting ransomwares families. Finally, section VII discusses about the achievements of this paper and concludes the paper.

II. RELATED WORK

Ransomware programs are reportedly becoming a dominant tool for cybercriminals and a growing threat to our ICT infrastructure [10], [26], [27]. The possibility of using encryption techniques to encrypt users data as part of a Denial of Service (DoS) attack is known for a very long time [28]. However, recent adoption of eCurrencies such as BitCoin provided many new opportunities for attackers including receiving a ransom payment for decrypting users data [28]. In spite of its simplicity and primitive utilization of cryptographic techniques [29], ransomware programs are becoming a major tool in cyber criminals toolset [30]. For any cyber threat, prevention is ideal but detection is a must and ransomware is not an exception [7], [31].

Situational cyber security awareness plays an important role in preventing cyber-attacks [32]. An educational framework that is tailored to ransomware threats [17] as well as a tool which mimicked ransomware attacks [33] proved to be useful in reducing ransomware infections. Moreover, technical countermeasures such verifying applications trustworthiness when calling a crypto library [34] or minimizing attack surface by limiting end-users privilege proved effective in preventive ransomware attacks [16].

Most ransomwares detection solutions are relying on filesystem [35]-[37] and registry events [38] to identify malicious behaviors. Investigation of 1359 ransomware samples showed that majority of ransomware samples are using similar APIs and generating similar logs of filesystem activities [36]. For example, using 20 types of filesystem and registry events as features of a Bayesian Network model against 20 Windows ransomware samples resulted to an accurate ransomware detection with F-Measure of 0.93 [38]. UNVEIL [36] as a rasnsomware classification system utilized filesystem events to distinguish 13,637 ransomwares from a dataset of 148,223 malware samples with accuracy of 96.3%. CloudRPS [39] was a cloud-based ransomware detection system which relied on abnormal behaviors such as conversion of large quantities of files in a short interval to detect ransomware samples. *EldeRan* [20] utilized association between different operating system events to build a matrix of applications activities and to detect ransomware samples within 30 seconds of their execution with

AUC of 0.995. Timely detection of a ransomware upon its execution is very crucial and systems that fail to detect ransomware in less than 10 seconds are not considered effective [11]. Moreover, timely identification of a ransomware family would assist in building intelligence about applicable threat actors and threat profile for a given target.

III. DATA CREATION

We have downloaded 1624 Windows Portable Executable (PE32) ransomware samples from *virustotal.com* which were reported as malicious ransomware file by *Ransomware-Tracker.abuse.ch* in the period of February 2016 to March 2017. Collected samples belong to three families of ransomware namely 517 *Locky* samples, 535 *Cerber* samples and 572 samples of *TeslaCrypt*. The best type of goodware counterpart for malware applications are portable and standalone benign apps [32]. Therefore, we have collected all 220 available portable Windows PE32 benign applications from *portableapps.com*¹ in April 2017 to serve as goodware counterpart of our dataset.

We have setup the environment shown in Fig. 1 to collect logs of ransomware and goodware samples runtime activities. The Controller application on the host machine is randomly selecting a ransomware or goodware sample and passes it through FTP server to the Virtual Machine (VM). When the sample is successfully transferred, the Controller notifies the Launcher app to run the *ProcessMonitor* application and executes a given sample. Similar to the previous research [11], the first 10 seconds log of ransomware and benign applications runtime activities is collected and the created log file is uploaded to the Log repository on the host machine. Since majority of benign applications require human interactions to run (i.e. clicking on a button), we have developed an application called PyWinMonkey which automates user interactions with an application. When the log file is successfully stored on the host machine, the Controller application reverts the VM back to its original copy and passes the next sample. It is notable that PyWinMonkey is similar to Monkey² Android app which utilized in many previous Android malware research papers [40] for mimicking human interactions. We have used Python 3.6.1 to develop Controller, Launcher and PyWinMonkey apps (accessible at https://github.com/sajadhomayoun/PyWinMonkey) and run ProcessMonitor V3.31 on Windows10 build number 10240 on a computer with Core i7 CPU with 8 cores of 4GHz and 16GB of RAM. For each and every process, ProcessMonitor records loaded Dynamic Linked Libraries (DLLs), file system activities and registry activities. We scanned all captured logs to find unique activities throughout the dataset (see Table I). Therefore, we will have three sets of events namely $RegistryEvents_{Set}$, which includes all registry events, DLL_Events_Set, which includes all DLL events and $FileSystemEvents_{Set}$, which contains all Filesystem events as listed in Table I. Moreover, EventType(E) is a procedure that returns the type of given event (R for Registry

events, F for Filesystem events, and D for DLL events) as shown in Fig. 2.

Fig. 1. Environment Setup to Capture Malware and Goodware Activities Log

As we will be using a sequential pattern mining technique (MG-FSM) to detect candidate features for classification task, we should convert our data into a sequential dataset which is a collection of sequences such as $D = \{S_1, S_2, ..., S_n\}$ where S_i represents a sequentially ordered set of events. We have created a sequence of runtime events for each and every ransomware and benign application. S_i represents a sequence of all events E caused by launching an application i ordered by time as follow:

 $S_i = \{E_{1,i}(argE_1), E_{2,i}(argE_2), ..., E_{2,i}(argE_n)\}$ where $E_{x,y}(argE_x)$ represents event x for an application y and $argE_x$ shows the argument passed to the event E_x .

For example, $\{LoadImage(C : \system32\gai32.dll)\}$, $\{LoadImage(ReadFile(C : \windows\SysWOW64\wininet.dll)\}$ shows a sequence of two events where the first event loads gdi32.dll in the memory of calling process (hence $C: \system32\gai32.dll$ is the parameter for this event) and the second event reads wininet.dll file located at $C: \windows\SysWOW64$. The size of each sequence depends on the number of events that

```
1: procedure EVENTTYPE(Event E)
```

- 2: **if** $E \in RegistryEvents_{Set}$ **return R**
- 3: if $E \in FilesystemEvents_{Set}$ return F
- 4: if $E \in DLLEvents_{Set}$ return D
- 5: end procedure

Fig. 2. Determining Even Type of a given event.

¹https://portableapps.com/apps

²https://developer.android.com/studio/test/monkey.html

TABLE I LIST OF ACTIVITIES CAN BE CAPTURED BY PROCESS MONITOR

Activity Type	List
Registry	RegQueryKey, RegOpenKey, RegQueryValue, RegCloseKey, RegCreateKey, RegSetInfoKey, RegEnumKey, RegQueryKeySecurity, RegEnumValue, RegSetValue, RegDeleteValue, RegQueryMultipleValueKey, RegDeleteKey, RegLoadKey, RegFlushKey
Filesystem	QueryNameInformationFile, ReadFile, CreateFile, QueryBasicInformationFile, CloseFile, QueryStandardInformationFile, CreateFileMapping, QuerySizeInformation-Volume, FileSystemControl, QueryDirectory, WriteFile, QueryNetworkOpenInformation-File, QueryRemoteProtocolInformation, QuerySecurityFile, LockFile, UnlockFileSingle, DeviceIoControl, SetEndOfFileInformationFile, FlushBuffersFile, SetAllocation-InformationFile, SetBasicInformationFile, QueryAttributeTagFile, QueryFileInternalInformationFile, QueryInformationVolume, QueryAttributeInformationVolume, QueryAttributeInformationVolume, SetRenameInformationFile, QueryNormalized-NameInformationFile, NotifyChangeDirectory, QueryFullSizeInformationVolume, SetSecurityFile, QueryStreamInformationFile, SetDispositionInformationFile, QueryAllInformationFile, QueryIdInformationFile, QueryAllInformationFile, QueryIdInformationFile, QueryPositionInformationFile, SetValidDataLengthInformationFile
DLL	LoadImage

are called by an application and varies between different apps.

Once all sequences are created, we have utilized the *Find Frequent Pattern Outlier Factor (FindFPOF)* [41] algorithm to remove any outlier sequence from our sequential dataset. It is notable that *FindPOF* is among very few sequential dataset outlier detection techniques which offers a reasonable detection performance [42]. *FindFPOF* benefits *Frequent Pattern Outlier Factor (FPOF)* to extract all frequent patterns from a dataset and removes outlier sequences as those with the least frequent patterns. Outliers were detected and removed for each ransomware family separately as it is expected that ransomware from the same family expose common features in compare with those from different families.

Table II reflects final datasets with the number of sequences in each dataset. We use D_x notation to refer dataset x in the rest of this paper. D_{Locky} represents sequences of Locky ransomware samples, D_{Cerber} shows Cerber ransomware sequences and $D_{TeslaCrypt}$ includes sequences of TeslaCrypt ransomware samples. $D_{Ransomware}$ represents combined sequences of all ransomware samples while $D_{Goodware}$ includes sequences of events of all benign applications. We randomly collected 52 Locky, 50 Cerber, 52 TeslaCrypt and 20 benign applications sequences in a separated dataset for over-fitting test as well (D_{OF}) .

TABLE II CREATED DATASETS

Dataset	Number of Sequences
D_{Locky}	450
D_{Cerber}	470
$D_{TeslaCrypt}$	507
$D_{Goodware}$	200
D_{OF}	174

IV. FEATURE EXTRACTION AND VECTORIZATION

To detect the best features for classification task, we need to first define detectable patterns of events and then utilize a pattern mining algorithm to find *Maximal Sequential Patterns (MSP)* collections within each dataset. Afterwards, every sequence within every relevant dataset is traversed based on a given *MSP* collection to provide features for training classifiers.

Sequential pattern mining techniques discover all subsequences (Sequential Patterns) that appear in a given sequential dataset with frequency of no less than a user-specified threshold (min_{sup}) [42]. A sequence $\alpha = \{a_1, a_2, ..., a_n\}$ is called a subsequence of another sequence $\beta = \{b_1, b_2, ..., b_m\}$ and β is a super-sequence of α , denoted as $\alpha \subseteq \beta$, if there exists integers $1 \le j_1 < j_2 < ... < j_n \le m$ such that $a_1 \subseteq b_{j_1}, a_2 \subseteq b_{j_2}, ..., a_n \subseteq b_{j_n}$. A sequence is said to be frequent and called a Sequential Pattern (SP) in a sequential dataset D if $sup_{\alpha} \geq min_{sup}$, where sup_{α} (support of α) denotes the frequency of occurrence of α in a given sequential dataset D. Moreover, if a Sequential Pattern SP is not contained in any other sequential patterns, it is called a Maximal Sequential Pattern (MSP). Collection of all MSPs with in a given sequential dataset D can be denoted as a Maximal Sequential Pattern Collection (MC_D) . Members of a MC are in format of (P, sup_P) where P is a MSP and sup_P shows the frequency of occurrence of P in a given dataset D.

There are two major types of sequential pattern mining algorithms to extract MSPs namely Apriori-based and frequent pattern growth. Apriori-based algorithms are detecting MSPs based on the fact that any subset of a frequent pattern must be frequent. However, recursive nature of Apriori-based algorithms increases complexity and running time of the algorithm [43]. On the other side, frequent pattern growth algorithms are using divide-and-conquer techniques to narrow down the search space MSPs. Due to the large number of elements in each sequence (greater than 5000 elements in each sequence in this paper), traditional algorithms e.g. Generalized Sequential Pattern (GSP) [48] are inefficient. In other words, few of the commonly used sequential pattern mining algorithms are capable of producing maximal patterns in a reasonable time [44]. To detect MSPs in this study, we utilize a widely used frequent pattern growth algorithm [45] called "Mind the Gap: Frequent Sequence Mining (MG-FSM)" [46]. MG-FSM is a parallel processing solution based on Map-Reduce [47] which can be easily deployed on a cloud infrastructure to provide desired scalability. Low threshold values for minimum support may generate a huge set of MSPs that affects the computational

feasibility of our vectorization model. On the other hand, very high values of minimum support may remove useful MSPs in detecting ransomwares from our datasets. Therefore, we decided to choose min_{sup} of 50% to achieve a reasonable performance while covering sufficient number of MSPs in our dataset. Applying MG-FSM against our datasets generates four MSP collections namely $MC_{D_{Locky}}$, $MC_{D_{Cerber}}$, $MC_{D_{TeslaCrypt}}$ and $MC_{D_{Ransowmare}}$. $MC_D = \{(P_x, sup_{P_x}) | sup_{P_x} \geq min_{sup} \land \forall P_x(\not \supseteq P_y(P_x \subseteq P_y))\}.$

We can distinguish three types of atomic MSPs and six types of single step transition MSPs within our sequential datasets as shown in Table III. Atomic MSPs are representing continuous events of the same type i.e. the atomic MSP of F represents continuous Filesystem events. Single step transitions MSPs are representing a transition from one atomic MSP to another. For example, MSP of RD represents a sequence of registry events (R atomic MSP) followed by a sequence of DLL events (D atomic MSP). Since we will have one feature in our vectored dataset for each transition; in cases of considering multi step transitions we will have more features for each vector. Having too many features makes a dataset sparse and difficult to find a separation hyperplane. This issue is referred as curse of dimensionality issue [48] which states that as the dimensionality increases, the volume of the space increases so fast that the available data become sparse. In this research, we can calculate total number of features in each vector using equation (5), where 3 is the number of considered activities (F, R, D) and x is the desired steps in each transition. Consider t = a, b, c as a 2 steps MSP, a can be one of 3 possible activities (F, R, D) and as a constraint to make transition we have $b \neq a$ (2 possible activities for b) while for the next transition we must have $c \neq b$ (2 possible activities for c). Therefore, we will have (3×2^i) part of formula in equation 5. For x=3 (single step, 2 steps and 3 steps transitions), we will have total of 45 features. Therefore, we decided to only consider single step transitions to avoid sparsity in extracted features.

$$TotalFeatures = 3 + \sum_{i=1}^{x} (3 \times 2^{i})$$
 (5)

A MSP $P=\{E_1,...,E_n\}$ is atomic if $\forall_{E_x,E_y\in P\wedge E_x\neq E_y}(EventType(E_x)=EventType(E_y)).$ A MSP $P=\{E_1,...,E_n\}$ is a single step transition if $\exists_{E_x,E_y\in P\wedge E_x\neq E_y}(EventType(E_x)\neq EventType(E_y)).$

We can define a set that contains all MSP types (MSP $Type_{Set}$) and a procedure ($MSPType(MSP\ P)$ in Fig. 3) that returns type of given sequence S as follow:

$$MSPType_{Set} = \{R, F, D, RF, RD, FR, FD, DR, DF\}.$$

Support Ratio (SR) of a MSP is a value in the range of [0,1] that shows the possibility of occurrence of the MSP in a given dataset of ransomware and is calculated by dividing frequency of occurrences of MSP (sup_{MSP}) by the total number of all ransomware sequences (γ) in a given dataset D. For every sequence S we can define a Vector of size nine (9) that contains

```
1: procedure MSPTYPE(MSP P)
      for all (E_x, E_y \in P) \land (x \le i) \land (y > i) \land (i, y \le n)
2:
   do
          if EventType(E_x) == EventType(E_y) then
3:
             if EventType(E_x) == R return R
 4:
 5:
             if EventType(E_x) == F return F
             if EventType(E_x) == D return D
6:
7:
          else
8:
             if
                EventType(E_x)
                                            R
                                                      &
   EventType(E_y) == F return RF
             if EventType(E_x)
   EventType(E_u) == D return RD
10:
                EventType(E_x)
                                                      &
   EventType(E_y) == R return FR
             if EventType(E_x)
11:
   EventType(E_u) == D return FD
             if EventType(E_x)
12:
                                                      &
   EventType(E_u) == R return DR
             if EventType(E_x)
                                                      &
13:
   EventType(E_u) == F return DF
          end if
14:
       end for
15:
16: end procedure
```

Fig. 3. Finding MSP Type of a given MSP.

TABLE III
MAXIMAL SEQUENTIAL PATTERN TYPES

Type	Type Description	
R	All events must be registry	
F	All events must be file	
D	All events must be actions on dll files	
RF	The MFP has one or more transitions while the first transition is from a registry event to a file event	
RD	The MFP has one or more transitions while the first transition is from a registry event to a dll event	
FR	The MFP has one or more transitions while the first transition is from a file event to a registry event	
FD	The MFP has one or more transitions while the first transition is from a file event to a dll event	
DR	The MFP has one or more transitions while the first transition is from a dll event to a registry event	
DF	The MFP has one or more transitions while the first transition is from a dll event to a file event	

SR value of every MSP type detected in MSP Collection MC within sequence S as follow:

$$Vector(S)_{MC} = \{(SR_R), (SR_F), (SR_D), (SR_{RF}), (SR_{RD}), (SR_{FR}), (SR_{DR}), (SR_{DR}), (SR_{DF})\}$$

SR value of every MSP Type of a sequence for a given MC can be calculated using CalculateSR procedure shown in Fig. 4. When vector of all sequences within a sequential dataset D using a MSP Collection MC is created, we will have a Vectored Dataset $VD_{D,MC}$.

Moreover, for every sequence S we can define a SuperVector

```
1: procedure CALCULATESR(Sequence S, MSP Collection MC, MSPType_{Set} T)
2: SR_{P_{Total}} = 0
3: for all P \in MC do
4: if P \subseteq S \& MSPType(P) == T then
5: SR_{P_{Total}} = SR_{P_{Total}} + (\frac{sup_P}{\gamma})
6: end if
7: end for
8: return SR_{P_{Total}}
9: end procedure
```

Fig. 4. SR calculation algorithm for sequence S.

Dataset SVD_D .

of S as a set of Vectors created using MSPs collected from different dataset i.e. $MC_{D_1}, MC_{D_2}, ..., MC_{D_n}$ as follow: $SuperVector(S) = \{Vector(S)_{MC_1}, Vector(S)_{MC_2}, ..., Vector(S)_{MC_n}\}$ where MC_1 to MC_n reflects MSP Collections of different datasets. Size of a SuperVector with n vectors is calculated by $n \times m$ where m is size of each vector (9 in this research). By calculating SuperVector for all sequences within a dataset D, we will have Super Vectored

V. HUNTING FOR EVIL: RANSOMWARE DETECTION

To detect best features (MSP types) for classifying ransomware from benign applications we created a dataset $MC_{D_{Total}}$ by combining $D_{Ransomware}$ and $D_{Goodware}$ and then generated a vectored dataset $VD_{D_{Total},MC_{Ransomware}}$. We then utilized greedy stepwise search method of CfsSubsetEval [49] of Weka3.8.1 with $VD_{D_{Total},MC_{Ransomware}}$ and found that MSP Types of R (Registry), D (DLLs) and FD (File and DLL) may provide best distinction between ransomware and goodware samples (see Fig. 5). As shown in Fig. 5a ransomware applications are tend to conduct a much wider range of Registry activities in compare with gooodware apps. As shown in Fig. 5b, majority of benign applications were conducting similar DLL activities while there were much more variations in ransomware samples DLL events. Ransomware applications are taking a variety of Filesystem to DLL transitions while goodware samples were mainly taking only two specific Filesystem to DLL events transitions (see Fig. 5c).

We have utilized R, D, and FD as features to train four classifiers namely J48, Random Forest, Bagging, and Multi Layer Perception (MLP) using $VD_{D_{Total},MC_{Ransomware}}$ and 10-fold cross validation technique for evaluation. As shown in Table IV, all classifiers achieved F-measure of 0.99 with a low false positive rate (FPR < 0.04). Moreover, similarities between ROC curves of different classifiers (see Fig. 6) proves that there is not much difference between performance of different classifiers which is another indication of suitability of our features for classifying ransomware and benign applications. As shown in Fig. 7, AUC value for all classifiers is quite high (more than 0.990) while AUC value of Bagging classifier (0.995) is very close to an optimal prediction. The MCC value of all classifiers is more than 0.96 while Random Forest and Bagging achieved MCC of almost +1 which is very close to a perfect prediction.

Fig. 5. Histogram of the probability of SR values for ransomware and goodware.

 ${\it TABLE~IV} \\ {\it Classifiers performance~on~} VD_{D_{Total},MC_{Ransomwar}}.$

Classifier	TPR	FPR	F-Measure
J48	0.994	0.040	0.994
Random Forest	0.993	0.040	0.993
Bagging	0.994	0.039	0.977
MLP	0.994	0.035	0.994

To show that we have not over-fitted our classifiers, we tested all classifiers using on $VD_{DOF,MC_{Ransomware}}$. As shown in Table V all classifiers achieved accuracy of 0.994 in classifying unforeseen ransomware and goodware samples too

VI. THREAT INTELLIGENCE: DETECTION OF A RANSOMWARE FAMILY

To investigate performance of classifiers in detection of a ransomware family we have created $D_{TotalFamily}$ dataset which contains all sequences from D_{Locky} , D_{Cerber} , $D_{TeslaCrypt}$ and $D_{Goodware}$. We then generated $VD_{D_{TotalFamily},MC_{Locky}}$, $VD_{D_{TotalFamily},MC_{Cerber}}$ and

Fig. 6. ROC diagrams for classifiers.

Fig. 7. AUC of classifiers for detecting ransomwares

Fig. 8. MCC of classifiers for detecting ransomwares

 $VD_{D_{TotalFamily},MC_{TeslaCrypt}}$ vectored datasets and fed them to CfsSubsetEval of Weka3.8.1. All in all 13 candidate features were detected for classification of ransomware families as shown in Fig. 9.

Fig. 9 reveals that atomic *Registry MSPs* (activities) are of great importance to differentiate between ransomware families. Scattered values of SR_R for different families in

TABLE V RESULTS OF CLASSIFIERS ON $VD_{DOF,MC_{Ransomware}}$ FOR DETECTING RANSOMWARE

Classifier	Accuracy	
J48	0.994	
Random Forest	0.994	
Bagging	0.994	
MLP	0.994	

 $\label{eq:table_vi} \mbox{TABLE VI}$ The classifiers performance on $SVD_{DTotalFamily}$

Classifier	TPR	FPR	F-Measure	MCC
J48	0.981	0.006	0.981	0.974
Random Forest	0.983	0.006	0.983	0.978
Bagging	0.980	0.007	0.980	0.974
MLP	0.980	0.007	0.980	0.973

TABLE VII RESULTS OF CLASSIFIERS ON DATASET $SVD_{D_{OF}}$ for detecting ransomware family

Classifier	Accuracy	
J48	0.947	
Random Forest	0.965	
Bagging	0.959	
MLP	0.959	

Fig. 9a, 9b and 9c make SR_R as a desirable feature for separation of different families of ransomwares. Filesystem to DLL (SR_{FD}) is also a useful feature for identifying a ransomware family as shown in Fig. 9a, 9b and 9c. Fig. 9a also shows that Locky ransomware samples tend to have more Registry activities based on $VD_{D_{TotalFamily},MC_{Locky}}$ while Cerber samples performed more DLL activities (see SR_D in Fig. 9b) in compare with other studied families. Moreover, Locky samples had the most number of Registry to Filesystem transitions (based on $VD_{D_{TotalFamily},MC_{Locky}}$ and based on $VD_{D_{TotalFamily},MC_{TeslaCrypt}}$ in Fig. 9a and Fig. 9c respectively) and DLL to Filesystem (SR_{DF}) transitions (based on $VD_{D_{TotalFamily},MC_{Locky}}$ see Fig. 9a and 9b). Finally, Filesystem to Registry transitions (SR_{FR}) are most common within Cerber samples (see Fig. 9b).

As detection of ransomware families is a multi-class classification task with four class labels (*Locky, Cerber, TeslaCrypt* and *Goodware*), therefore, we have trained J48, *Random Forest, Bagging* and *MLP* with a multi-class classifier using $SVD_{D_{TotalFamily}}$ dataset with 13 selected features in Fig. 9.

Table VI presents performance of all classifiers obtained from 10-fold cross validation. Obtained minimum weighted average [50] *F-Measure* of 0.983 with $FPR \leq 0.006$ reflects suitability of our features for detecting ransomware samples families. MCC values of more than 0.95 for all classifiers also indicate quality of our features in enabling classifiers to provide an almost perfect prediction. Finally, as shown in Table VII our features enabled classifiers to offer an accurate prediction (≥ 0.965) even on unforeseen samples ($SVD_{D_{OF}}$).

(a) Features selected from $VD_{D_{TotalFamily},MC_{Locky}}$

(b) Features selected from $VD_{D_{TotalFamily},MC_{Cerber}}$

(c) Features selected from $VD_{D_{TotalFamily}, MC_{TeslaCrypt}}$

Fig. 9. Histogram of the probability of SR values for ransomware families.

VII. CONCLUDING REMARKS

In this paper, by combining sequential pattern mining for feature identification with machine learning classification techniques we could accurately distinguish between ransomware and goodware samples and identify given ransomware families with in first 10 seconds of a ransomware execution. We achieved minimum *F-measure* of 0.994 with minimum AUC value of 0.99 in detection of ransomware samples from goodware using Registry (R) events, DLL (D) events and Filesystem to Registry (FD) transitions as features for J48, Random Forest, Bagging and MLP classifiers. We achieved F-Measure of more than 0.98 with FPR of less than 0.007 in detection of a given ransomware family using 13 selected features detected in this study. Theoretical implication of this study stems from application of sequence pattern mining to detect frequent features of ransomware applications to build vectored datasets of ransomware logs. Moreover, created dataset of 1624 ransomware samples and 220 benign applications can be used by future researchers to further our understanding of ransomware behavior. Practical implications may include utilization of reported features for differentiating ransomware and benign applications for ransomware threat hunting while features reported for ransomware family classification are great for building intelligence about threat profiles applicable to a given target. In recent times, researchers have proposed the concept of forensic-by-design [51]-[53], and another interesting future research is to extend this forensicby-design to capturing ransomware detection, mitigation and roll-back. Applying other classification techniques such as fuzzy classification can be considered as a future work of this study. Moreover, utilization of Stream Data Mining techniques to reduce ransomware detection time is another interesting extension of this study. Finally, it is interesting to utilize our technique in other emerging domains such mobile malware detection and Internet of Things (IoT) forensics.

ACKNOWLEDGMENT

The authors would like to thank *virustotal.com* for sharing malware samples and giving the capability of scanning files. We also thank *ransomwaretracker.abuse.ch* for their updated and precious information about different families of ransomwares. This work is partially supported by the European Council 268 International Incoming Fellowship (FP7-PEOPLE-2013-IIF) grant.

REFERENCES

- M. Hopkins and A. Dehghantanha, "Exploit kits: The production line of the cybercrime economy?" in 2015 Second International Conference on Information Security and Cyber Forensics (InfoSec). IEEE, nov 2015.
 [Online]. Available: https://doi.org/10.1109%2Finfosec.2015.7435501
- [2] K.-K. R. Choo, "The cyber threat landscape: Challenges and future research directions," *Computers & Security*, vol. 30, no. 8, pp. 719–731, nov 2011. [Online]. Available: https://doi.org/10.1016/j.cose.2011.08. 004
- [3] —, "Cyber threat landscape faced by financial and insurance industry," http://www.aic.gov.au/publications/current%20series/tandi/ 401-420/tandi408.html, Feb 2011, (Accessed on 08/09/2017).
- [4] EUROPOL. (2016) The internet organised crime threat assessment (iocta) 2016. [Online]. Available: https://www.europol.europa.eu/activities-services/main-reports/internet-organised-crime-threat-assessment-iocta-2016

- [5] J. Walls and K.-K. R. Choo, "A review of free cloud-based anti-malware apps for android," in 2015 IEEE Trustcom/BigDataSE/ISPA. IEEE, aug 2015. [Online]. Available: https://doi.org/10.1109/trustcom.2015.482
- [6] J. Walls and K.-K. Choo, "A study of the effectiveness abs reliability of android free anti-mobile malware apps," in *Mobile Security* and *Privacy*. Elsevier, 2017, pp. 167–203. [Online]. Available: https://doi.org/10.1016/b978-0-12-804629-6.00008-0
- [7] N. Milosevic, A. Dehghantanha, and K.-K. R. Choo, "Machine learning aided android malware classification," *Computers & Electrical Engineering*, feb 2017. [Online]. Available: https://doi.org/10.1016% 2Fj.compeleceng.2017.02.013
- [8] K.-K. R. Choo, "New payment methods: A review of 2010–2012 FATF mutual evaluation reports," *Computers & Security*, vol. 36, pp. 12–26, jul 2013. [Online]. Available: https://doi.org/10.1016/j.cose.2013.01.009
- [9] —, "Cryptocurrency and virtual currency," in *Handbook of Digital Currency*. Elsevier, 2015, pp. 283–307. [Online]. Available: https://doi.org/10.1016/b978-0-12-802117-0.00015-1
- [10] K. Cabaj and W. Mazurczyk, "Using software-defined networking for ransomware mitigation: The case of CryptoWall," *IEEE Network*, vol. 30, no. 6, pp. 14–20, nov 2016. [Online]. Available: https://doi.org/10.1109/mnet.2016.1600110nm
- [11] A. Azmoodeh, A. Dehghantanha, M. Conti, and R. Choo, "Detecting crypto-ransomware in iot networks based on energy consumption footprint," *Journal of Ambient Intelligence and Humanized Computing*, 2017.
- [12] H. L. Kevin Savage, Peter Coogan, The evolution of ransomware. Symantec. 2015.
- [13] Symantec, "Internet security threat report," Symantec, Tech. Rep., apr 2016.
- [14] K. T. D. Y. Huang, D. W. E. B. C. GrierD, T. J. Holt, C. Kruegel, D. McCoy, S. Savage, and G. Vigna, "Framing dependencies introduced by underground commoditization," in Workshop on the Economics of Information Security, 2015.
- [15] Symantec, "Symantec backup survey," Symantec, Tech. Rep., 2009.
- [16] Monika, P. Zavarsky, and D. Lindskog, "Experimental analysis of ransomware on windows and android platforms: Evolution and characterization," *Procedia Computer Science*, vol. 94, pp. 465–472, 2016. [Online]. Available: https://doi.org/10.1016/j.procs.2016.08.072
- [17] X. Luo and Q. Liao, "Awareness education as the key to ransomware prevention," *Information Systems Security*, vol. 16, no. 4, pp. 195–202, sep 2007. [Online]. Available: https://doi.org/10.1080% 2F10658980701576412
- [18] M. Simmonds, "How businesses can navigate the growing tide of ransomware attacks," *Computer Fraud & Security*, vol. 2017, no. 3, pp. 9–12, mar 2017. [Online]. Available: https://doi.org/10.1016/ s1361-3723(17)30023-4
- [19] S. Grzonkowski, A. Mosquera, L. Aouad, and D. Morss, "Smartphone security: An overview of emerging threats." *IEEE Consumer Electronics Magazine*, vol. 3, no. 4, pp. 40–44, oct 2014. [Online]. Available: https://doi.org/10.1109/mce.2014.2340211
- [20] D. Sgandurra, L. Muoz-Gonzlez, R. Mohsen, and E. C. Lupu, "Automated dynamic analysis of ransomware: Benefits, limitations and use for detection," 2016.
- [21] M. Sohrabi, M. M. Javidi, and S. Hashemi, "Detecting intrusion transactions in database systems: a novel approach," *Journal of Intelligent Information Systems*, vol. 42, no. 3, pp. 619–644, dec 2013. [Online]. Available: https://doi.org/10.1007%2Fs10844-013-0286-z
- [22] M. Sun, X. Li, J. C. S. Lui, R. T. B. Ma, and Z. Liang, "Monet: A user-oriented behavior-based malware variants detection system for android," *IEEE Transactions on Information Forensics and Security*, vol. 12, no. 5, pp. 1103–1112, may 2017. [Online]. Available: https://doi.org/10.1109%2Ftifs.2016.2646641
- [23] M. R. Watson, N. ul-hassan Shirazi, A. K. Marnerides, A. Mauthe, and D. Hutchison, "Malware detection in cloud computing infrastructures," *IEEE Transactions on Dependable and Secure Computing*, vol. 13, no. 2, pp. 192–205, mar 2016. [Online]. Available: https://doi.org/10. 1109%2Ftdsc.2015.2457918
- [24] B. Matthews, "Comparison of the predicted and observed secondary structure of t4 phage lysozyme," *Biochimica et Biophysica Acta (BBA)* - *Protein Structure*, vol. 405, no. 2, pp. 442–451, oct 1975. [Online]. Available: https://doi.org/10.1016%2F0005-2795%2875%2990109-9
- [25] D. M. Powers, "Evaluation: from precision, recall and f-measure to roc, informedness, markedness and correlation," School of Informatics and Engineering-Flinders University, Tech. Rep., 2011.
- [26] "Ransomware becomes most popular form of attack as payouts approach \$1bn a year," Network Security, vol. 2017, no. 1, pp. 1–2, jan 2017. [Online]. Available: https://doi.org/10.1016/s1353-4858(17)30001-6

- [27] "UK major target for ransomware," Computer Fraud & Security, vol. 2016, no. 1, p. 3, jan 2016. [Online]. Available: https://doi.org/10.1016/s1361-3723(16)30003-3
- [28] H. Orman, "Evil offspring ransomware and crypto technology," *IEEE Internet Computing*, vol. 20, no. 5, pp. 89–94, sep 2016. [Online]. Available: https://doi.org/10.1109/mic.2016.90
- [29] C. Everett, "Ransomware: to pay or not to pay?" Computer Fraud & Security, vol. 2016, no. 4, pp. 8–12, apr 2016. [Online]. Available: https://doi.org/10.1016/s1361-3723(16)30036-7
- [30] A. Gazet, "Comparative analysis of various ransomware virii," *Journal in Computer Virology*, vol. 6, no. 1, pp. 77–90, jul 2008. [Online]. Available: https://doi.org/10.1007%2Fs11416-008-0092-2
- [31] R. Brewer, "Ransomware attacks: detection, prevention and cure," Network Security, vol. 2016, no. 9, pp. 5–9, sep 2016. [Online]. Available: https://doi.org/10.1016/s1353-4858(16)30086-1
- [32] M. Damshenas, A. Dehghantanha, and R. Mahmoud, "A survey on malware propagation, analysis, and detection," *International Journal of Cyber-Security and Digital Forensics (IJCSDF)*, vol. 2, no. 4, pp. 10–29, 2013.
- [33] S. Al-Sharif, F. Iqbal, T. Baker, and A. Khattack, "White-hat hacking framework for promoting security awareness," in 2016 8th IFIP International Conference on New Technologies, Mobility and Security (NTMS). IEEE, nov 2016. [Online]. Available: https://doi.org/10.1109/ntms.2016.7792489
- [34] A. L. Young, "Cryptoviral extortion using microsoft crypto API," International Journal of Information Security, vol. 5, no. 2, pp. 67–76, mar 2006. [Online]. Available: https://doi.org/10.1007% 2Fs10207-006-0082-7
- [35] A. Kharraz, W. Robertson, D. Balzarotti, L. Bilge, and E. Kirda, "Cutting the gordian knot: A look under the hood of ransomware attacks," in *Detection of Intrusions and Malware, and Vulnerability Assessment*. Springer Nature, 2015, pp. 3–24. [Online]. Available: https://doi.org/10.1007%2F978-3-319-20550-2_1
- [36] A. Kharaz, S. Arshad, C. Mulliner, W. Robertson, and E. Kirda, "Unveil: A large-scale, automated approach to detecting ransomware," in 25th USENIX Security Symposium (USENIX Security 16). Austin, TX: USENIX Association, 2016, pp. 757–772. [Online]. Available: https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/kharaz
- [37] C. Moore, "Detecting ransomware with honeypot techniques," in 2016 Cybersecurity and Cyberforensics Conference (CCC). Institute of Electrical and Electronics Engineers (IEEE), aug 2016. [Online]. Available: https://doi.org/10.1109%2Fccc.2016.14
- [38] M. M. Ahmadian and H. R. Shahriari, "2entfox: A framework for high survivable ransomwares detection," in 2016 13th International Iranian Society of Cryptology Conference on Information Security and Cryptology (ISCISC). Institute of Electrical and Electronics Engineers (IEEE), sep 2016. [Online]. Available: https://doi.org/10. 1109%2Fiscisc.2016.7736455
- [39] J. K. Lee, S. Y. Moon, and J. H. Park, "CloudRPS: a cloud analysis based enhanced ransomware prevention system," *The Journal* of Supercomputing, jul 2016. [Online]. Available: https://doi.org/10. 1007/s11227-016-1825-5
- [40] M. Damshenas, A. Dehghantanha, K.-K. R. Choo, and R. Mahmud, "M0droid: An android behavioral-based malware detection model," *Journal of Information Privacy and Security*, vol. 11, no. 3, pp. 141– 157, jul 2015. [Online]. Available: https://doi.org/10.1080/15536548. 2015.1073510
- [41] Z. He, X. Xu, Z. Huang, and S. Deng, "FP-outlier: Frequent pattern based outlier detection," *Computer Science and Information Systems*, vol. 2, no. 1, pp. 103–118, 2005. [Online]. Available: https://doi.org/10.2298%2Fcsis0501103h
- [42] R. Agrawal and R. Srikant, "Mining sequential patterns," in *Proceedings of the Eleventh International Conference on Data Engineering*, ser. ICDE '95. Washington, DC, USA: IEEE Computer Society, 1995, pp. 3–14. [Online]. Available: http://dl.acm.org/citation.cfm?id=645480. 655281
- [43] W. Shen, J. Wang, and J. Han, "Sequential pattern mining," in *Frequent Pattern Mining*. Springer International Publishing, 2014, pp. 261–282. [Online]. Available: https://doi.org/10.1007/978-3-319-07821-2_11
- [44] P. Fournier-Viger, A. Gomariz, T. Gueniche, A. Soltani, C.-W. Wu, and V. S. Tseng, "Spmf: A java open-source pattern mining library," *J. Mach. Learn. Res.*, vol. 15, no. 1, pp. 3389–3393, Jan. 2014. [Online]. Available: http://dl.acm.org/citation.cfm?id=2627435.2750353
- [45] K. Damevski, D. C. Shepherd, J. Schneider, and L. Pollock, "Mining sequences of developer interactions in visual studio for usage smells," *IEEE Transactions on Software Engineering*, vol. 43, no. 4, pp.

- 359–371, apr 2017. [Online]. Available: https://doi.org/10.1109%2Ftse. 2016.2592905
- [46] I. Miliaraki, K. Berberich, R. Gemulla, and S. Zoupanos, "Mind the gap," in *Proceedings of the 2013 international conference on Management of data - SIGMOD 13*. Association for Computing Machinery (ACM), 2013. [Online]. Available: https://doi.org/10.1145%2F2463676.2465285
- 47] "What is mapreduce? ibm analytics," https://www.ibm.com/analytics/ us/en/technology/hadoop/mapreduce/, (Accessed on 09/01/2017).
- [48] P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining. Pearson, 2005.
- [49] M. A. Hall, "Correlation-based feature selection for machine learning," Tech. Rep., 1998.
- [50] M. Sokolova and G. Lapalme, "A systematic analysis of performance measures for classification tasks," *Information Processing & Management*, vol. 45, no. 4, pp. 427–437, jul 2009. [Online]. Available: https://doi.org/10.1016/j.ipm.2009.03.002
- [51] N. H. A. Rahman, N. D. W. Cahyani, and K.-K. R. Choo, "Cloud incident handling and forensic-by-design: cloud storage as a case study," *Concurrency and Computation: Practice and Experience*, vol. 29, no. 14, p. e3868, may 2016. [Online]. Available: https://doi.org/10.1002/cpe.3868
- [52] N. H. A. Rahman, W. B. Glisson, Y. Yang, and K.-K. R. Choo, "Forensic-by-design framework for cyber-physical cloud systems," *IEEE Cloud Computing*, vol. 3, no. 1, pp. 50–59, jan 2016. [Online]. Available: https://doi.org/10.1109/mcc.2016.5
- [53] G. Grispos, W. B. Glisson, and K.-K. R. Choo, "Medical cyber-physical systems development: A forensics-driven approach," in *IEEE/ACM Con*ference on Connected Health: Applications, Systems and Engineering Technologies. IEEE, jun 2017, pp. 108–114.

Sajad Homayoun is a Ph.D candidate of Computer Networks at Shiraz University of Technology since 2013. He also has a master's degree in Information Technology form K. N. Toosi University of Technology (Khajeh Nasire Toosi) of Tehran and a bachelor's degree in Computer Software. He is currently in charge of security laboratory (SecLab) in Shiraz University of Technology since 2014. His research interests are Cyber Security, Machine Learning Applications in Computer Security and Computer Networks.

Ali Dehghantanha is a Marie-Curie International Incoming Fellow in Cyber Forensics, a fellow of the UK Higher Education Academy (HEA) and an IEEE Sr. member. He has served for many years in a variety of research and industrial positions. Other than Ph.D in Cyber Security he holds several professional certificates such as GXPN, GREM, GCFA, CISM, and CISSP. His main research interests are cyber threat intelligence, threat hunting and digital forensics.

Marzieh Ahmadzadeh holds a Ph.D in Computer Science and MSc. In Information Technology, both received from the University of Nottingham, UK, and a first class BSc in Software Engineering received from Isfahan University, Iran. Since September 2006, she has been an assistant professor at the school of computer Engineering and IT, Shiraz University of Technology, where she has supervised more than 20 MSc students whose research area are mostly applied data mining. Being a research assistant at the University of Nottingham and full

stack software engineer for 3 years is also part of her work experience. Her research interest includes Data Mining, Data Security, HCI and Computer Science Education.

Sattar Hashemi received the PhD degree in computer science from Iran University of Science and Technology in conjunction with Monash University, Australia, in 2008. Following academic appointments at Shiraz University, he is currently an associate professor at Electrical and Computer Engineering School, Shiraz University, Shiraz, Iran. His research interests include machine learning, data mining, social networks, data stream mining, game theory, and adversarial learning.

Raouf Khayami received his BS degree in computer engineering (hardware systems) from Shiraz University in 1993, the MS degree in artificial intelligence and robotics from the same university in 1996, and the Ph.D degree in software systems from Shiraz University in 2009. He is currently an assistant professor in the Computer Engineering and Information Technology Department, Shiraz University of Technology, Shiraz, Iran, and there, he is the Head of the Department. His research interests include data mining, business intelligence, and enterprise

architecture, on which he has published a number of refereed articles, surveys and technical reports in prestigious national and international conferences and journals. He also is active in consulting and industrial projects.