

UNIVERSITY OF COLOMBO, SRI LANKA

UNIVERSITY OF COLOMBO SCHOOL OF COMPUTING

BACHELOR OF SCIENCE IN COMPUTER SCIENCE

Second Year Examination - Semester II - 2018

SCS2112-Automata Theory - (Part B)

TWO (2) HOURS (For both parts A & B)

Pages: 09

To be completed by the candidate	1
Examination Index No:	

Important Instructions to candidates:

- 1. The medium of instruction and questions is English.
- 2. Note that questions appear on both sides of the paper. If a page or a part of the question paper is not printed, please inform the supervisor immediately.
- 3. Write your index number on each and every page of the question paper.
- 4. This paper has 4 questions across Part A and Part B.
- 5. Students are required to answer both **Part A** and **Part B** in **two hours**.
- Answer ALL questions. There are 2 questions in Part A (Question Numbers 1-2) and 2 questions in Part B (Question Numbers 3-4) of the paper.
- 7. All questions carry equal marks (25 marks).
- 8. Any electronic device capable of storing and retrieving text including electronic dictionaries and mobile phones are **not allowed.**
- 9. Non-Programmable / Programmable calculators are not allowed.

For examiner's use only				
Question No	Marks			
3				
4				
Total				

	Question 3	
)	Briefly explain what are regular languages?	[3 Marks]
		k
۱.)	Let $\Sigma = \{1, 0\}$, the regular expression $\mathbf{r} = (1+0)^* \cdot 1 \cdot (1+01)^*$. Find Ten (10) elements	nts/strings in
	L(r), the language generated by the regular expression r, of length less than five?	[5 Marks]
٢		

Index	No:	**************	

(c) Give Five (5) strings that are generated by the regular expression $\mathbf{r}_1 = \mathbf{ab}^* + \mathbf{ba}^* + \mathbf{b}^* \mathbf{a} + (\mathbf{a}^* \mathbf{b})^*$ but not by the regular expression $\mathbf{r}_2 = \mathbf{a}^* + \mathbf{b}^*$. Justify your answer.

[5 Marks]

(d) Write down the regular expression for the given finite automaton

[4 Marks]

$R = (01^*00 + 110^*01^*)$	[8 Mark
	· · · · · ·
	,
•	
	,

Briefly ex	plain right-linear and context-free grammars with an example for each.	12 Morl
		[3 Mark
Consider terminals S → aSa	the following grammar where $\{S, A, B\}$ is the set of non-terminals, $\{a,b\}$ is and S is the start symbol:	s the set of
terminals S → aSa	the following grammar where $\{S, A, B\}$ is the set of non-terminals, $\{a,b\}$ is and S is the start symbol:	s the set of
terminals S → aSa	the following grammar where $\{S, A, B\}$ is the set of non-terminals, $\{a,b\}$ is and S is the start symbol:	s the set of
terminals $S \rightarrow aSa$ $S \rightarrow bSb$ $S \rightarrow \varepsilon$	and S is the start symbol:	s the set of
terminals $S \rightarrow aSa$ $S \rightarrow bSb$ $S \rightarrow \varepsilon$ (i)	and S is the start symbol: Is this a context free grammar?	s the set of
terminals $S \rightarrow aSa$ $S \rightarrow bSb$ $S \rightarrow \varepsilon$	and S is the start symbol:	
terminals $S \rightarrow aSa$ $S \rightarrow bSb$ $S \rightarrow \varepsilon$ (i)	and S is the start symbol: Is this a context free grammar?	s the set of
terminals $S \rightarrow aSa$ $S \rightarrow bSb$ $S \rightarrow \varepsilon$ (i)	and S is the start symbol: Is this a context free grammar?	

	$L = \{ww^R : w \in \Sigma^*\}$ is not regular . (Use pump	[6 Mar
•		
		•
	•	
	·	
	·	

	Index No:
(d) Remove ϵ -productions (nullable variables) from the following grant $S \rightarrow abAB$	nmar
$A \rightarrow bAB \mid \varepsilon$	
$B \rightarrow BAa \mid A \mid \varepsilon$	
	[6 Marks]

Construct a non-deterministic push down automaton (NP) language $L = \{a^nb^n : n \ge 0\}$. Show that the constructed NPDA accepts the input string aal	DA) that accepts the
clearly)	[6 Marks
	. •
	Show that the constructed NYDA accepts the information of clearly)

Γ		 		
	·			
				1

Index No:

(

.