

Universidade Federal do Ceará Campus Sobral

1ª Avaliação Parcial - 2019/1 Disciplina: Eletrônica Digital SBL0069

Aluno/Mat: FRANCISCO WILLIAM SANTOS

ENG. DE COMPUTAÇÃO Data: 17/04

Prof: Rômulo Nunes

- 1) Simplifique as seguintes expressões UTILIZANDO A ÁLGEBRA BOOLEANA (15 escores)
 - a) A'BC + AB'C' + A'B'C'+AB'C+ABC > BC + B'C' + AB'
 - b) WXY + W'X(YZ + YZ') + X'(ZW+ZY')+Z(X'W'+Y'X)
 - c) Mostre que (A \odot B) ' = A \oplus B
- 2) Dada a função booleana coincidência O definida para duas variáveis da seguinte maneira: $A \odot B = AB + A'B'$

Adimitindo que C = A⊙B determine quais e o porque que as seguintes afirmações são válidas:

- a) $A = B \odot C$
- b) $A \odot BC = 1$

(15 escores)

(12-)

- 3) Considere um sistema de 6 entradas (ABCDEF) e uma saída (Y) com a seguinte expressão: Y = CE' + A'BC + C'DB + ABC'D'E'F
 - a) Para representar a saída Y em forma canônica quais maxtermos utilizariamos?
 - b) Associe cada termo da expressão original de Y ao seu respectivo subcubo no mapa K.
 - c) Onde estaria localizado no mapa K a expressão $Z = A \oplus B \oplus C \oplus D \oplus E \oplus F$: (30 escoes) (10 ~)

			B=	:0			B=1			
(2)	\ EI								EF /	
	CD /	00	01	11	10	00	01	11	10 CD	
	00	٥	1	3	2		16 - 15	19	" 00 °	
A=0	01	4	3	\$	6	1	1 1 25	1 23	1 22 01	
11-0	11	3) 1	1 13	15	14	4	\$ 1 29	का	. 30 11	
	10	1 8	1 9	11	10	1	24 1 88	22	4.5	
						(-	(.		10	
	00	32	33	35	34		us ug	st	\$0.00	
	01	,86	3.7	39	38	. \	2 57	55	54 00	
A=1	11	1 UL	A US	щ	46	<u> </u>	60 . 01		- 01	
	10	V Ao	, 41	цз	42	1	56 , 52	``		
	CD/	00	01	11		1.	1	37	38 10	
	/ El	F	01	11	10	00	01	11	10 CD	
						., .			EF \	
					n v	riávaic				

1ª Avaliação Parcial – 2019/1 Disciplina: Eletrônica Digital SBL0069

4) Considere um sistema digital de 4 saídas e controlado por um seletor dial de 5 posições conforme indica a figura:

Esta entrada seletora é utilizada para controlar a saída do fluxo de energia para 4 canais de comunicação. Estes canais podem alternar, dependendo do sinal seletor, entre o funcionamento dos dois canais principais individuais (CH1 ou CH2), o funcionamento simultâneo dos dois canais principais (CH1 e CH2) e o funcionamento simultâneo dos canais reservas (RSV1 e RSV2). De forma específica este comando segue os seguintes parâmetros:

- Se Seletor 0 ativado → Saída CH1 ativado;
- Se seletor 1 ativado → Saída CH2 ativado;
- Se seletor 2 ativado → Ambas as saídas CH1 e CH2 ativadas;
- Se Seletor 3 ativado → Ambas as saídas Reservas (RSV1 e RSV2) ativadas;
- Se Seletor 4 ativado → Todos os canais de saída desativados;

Considere que determinada saída está ativada pela associação de lógica 1, bem como qualquer caso de entrada não especificada como IRRELEVANTE (Don't Care) projete o circuito de cada saída (CH1, CH2, RSV1 e RSV4) codificando as entradas de forma mínima e utilizando a sequencia binária crescente; (40 escores); (30 —)

FRANCISCO WILLIAN SANTOS PRACIANO -385112

01.)
(Q) \(\bar{A}BC + \bar{A

-DBC+BC+BA

A igual dade foi mostrada

(b) WXY + WX(YZ + YZ) + X (ZW + ZY) + Z(X W + YX)

→ WXY + WXYZ + WXYZ + WXZ + XYZ + WXZ + XYZ

→ XY (W + WZ + WZ) + XZ (W + Y+W) + XYZ

→ XY (W + Z + WZ) + XZ (Y + 1) + XYZ

→ XY (W + Z + W) + XZ (Y + 1) + XYZ

→ XY (Z + 1) + XZY + XZ + XYZ

→ (XY) + XZY + XZ + XYZ

→ (XY) + XZY + XZ + XYZ

→ (XY) + XZY + X + XY

→ XY + Z (X + XY)

AOBCZI DIE STONE -P A(BC) + A(BC) = 1 -D A (B+C) + ABC = 1 TPABTAC + ABC = 1 Sabendo que C=AOB=AB+AB, temos PAB+ A(AB+AB) + AB(AB+AB) = 1 -D AB + A (AB) (AB) + AB (AB) + AB (AB) -D AB + A (A +B) (A+B) + AB =1 -D AB + A (AA + AB + AB + BB) + AB - DAB + FAB + AAB + + AB = 1 -P AB + AB + AB = 1 -> AB + B(A +A)=1 -n AB + B = 1 -D(A++)"B=1 logo A guddade vino foi mastrada

	4	Pade-	se Wi	ar tre	es Non	16-12/5	para repre	Sentan			
		as c	NCO F	Passibil	idades	do	selector dia)				
		1) =	NOT				
	Silitor	AE	3 0	CHI	CH2	1-251	11/25V2	,			
-	G	0 9	0	4	0	a	1/ 6/14				
	1	0 0	1	a	1	0	10				
4	2	0 1	0	1	1/4	0	O LONG				
	3	0 /	1	0	0	1	1.				
	4	1 0	0	୍ ଗ	6	6	0				
	*	1, 0	1 1	X	×	X	1 1 1				
	X	<u>t</u> 1		X	×	×	× 4 4-				
	X	()	4 71 =	×	×	×	X				
	11	1	1 2	4 _ A .	19 1	416					
1	USan	do m	in termo	5 pora	encont	ran as	1×11/2250 051	temos			
- 4	Usando mintermos para encontran as expressões, temas										
	$= A C (B+B)^{p}$										
			AC			L -					
¥	0 11			-							
1	LITE	2 二	ABC	+ AB	97	L					
1 - *	1201	11	=			1 1					
1 1	KS	V1 =	ABC								
*	1200	0.4	700								
	X > 1	12 =	ABC								
		V	MAPA	<i>L</i> 2							
1				,			í				
+											