Math 245B Lecture 25 Notes

Daniel Raban

March 13, 2019

1 Introduction to Hilbert Spaces

1.1 Motivation

Consider $(X, \mathcal{M}, \mu) = (\{1, \dots, n\}, \mathscr{P}(X), \#)$. Then $L^p_{\mathbb{C}}(\mu) = \ell^p(n) = \mathbb{C}^n$. In this case, we are specifying a specific norm:

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}.$$

These give different shapes for the unit ball; try drawing the unit ball for different values of p when n=2.

A linear functional φ on \mathbb{C}^n has the form

$$\varphi(x) = \sum_{i=1}^{n} x_i \overline{y}_i = \langle x, y \rangle$$

for some $y = (y_1, \ldots, y_n) \in \mathbb{C}^n$. So $\varphi \in (\ell^p(n))^*$; that is, every linear functional is continuous. The Riesz representation theorem says that

$$\|\varphi_y\|_{(\ell^p(n))^*} = \sup\{|\varphi_y(x)| : \|x\|_p \le 1\} = \|y\|_{\ell^q},$$

where 1/p + 1/q = 1.

There is a special case, when p=2. We get that the dual norm is the original norm. So we can think of $\ell^2(n)$ as its own dual.

Definition 1.1. Let H be a vector space over \mathbb{C} . An **inner product** on H is a map $\langle \cdot, \cdot \rangle : H \times H \to \mathbb{C}$ sending $(x, y) \mapsto \langle x, y \rangle$ such that

- 1. (bilinearity) $\langle ax + by, z \rangle = a \langle x, y \rangle + b \langle x, z \rangle$ for all $a, b \in \mathbb{C}, x, y, z \in H$,
- 2. (conjugate symmetry) $\langle x, y \rangle = \overline{\langle y, x \rangle}$,

3. $\langle x, x \rangle \in [0, \infty)$ with $\langle x, x \rangle = 0$ iff x = 0.

Example 1.1. \mathbb{C}^n is a vector space with the usual inner product.

Example 1.2. $L^2_{\mathbb{C}}(\mu)$ is a vector space with the inner product $\langle f, g \rangle = \int_X f\overline{g} d\mu$.

Example 1.3. Let $X = \mathbb{N}$ with counting measure. Then

$$\ell^2 = \ell^2(\mathbb{N}) = \{(x_n)_n : \sum_n |x_n|^2 < \infty\}$$

has the inner product $\langle x, y \rangle = \sum_{n} x_n \overline{y}_n$.

Definition 1.2. A vector space $(H, \langle \cdot, \cdot \rangle)$ is a **pre-Hilbert space** (or **inner product space**).

1.2 Norms induced by inner products

An inner product space has the associated norm $||x|| := \sqrt{\langle x, x \rangle}$. First, we have to show that this is actually a norm.

Lemma 1.1 (Cauchy-Bunyakowski-Schwarz inequality¹). For all $x, y \in H$,

$$|\langle x, y \rangle| \le ||x|| ||y||.$$

Proof. Consider $\langle x - ty, x - ty \rangle$. We get

$$0 \le \langle x - ty, x - ty \rangle$$

= $\langle x, x \rangle - t \langle y, x \rangle - t \langle x, y \rangle + t^2 \langle x, y \rangle$
= $||x||^2 - 2t \operatorname{Re}(\langle x, y \rangle) + t^2 ||y||^2$.

This achieves its minimum at $t = \text{Re}(\langle x, y \rangle) / ||y||^2$. So we get

$$0 \le ||x||^2 - \frac{(\operatorname{Re}(\langle x, y \rangle))^2}{||y||^2},$$

which gives

$$|\operatorname{Re}(\langle x, y \rangle)| \le ||x|| ||y||.$$

Similarly, let $\alpha = \operatorname{sgn}(\langle x, y \rangle)$, an apply this to x and $y' = \alpha y$. Then

$$|\langle x, y \rangle| = |\operatorname{Re}(x, y')| \le ||x|| ||y'|| = ||x|| ||y||.$$

Corollary 1.1. $\|\cdot\|$ is a norm.

¹Bunyakowski and Schwarz both knew the general form of this inequality, but, due to geopolitics, there was no way they could have ever met.

Proof.

$$||x + y||^{2} = \langle x + y, x + y \rangle$$

$$= ||x||^{2} + 2 \operatorname{Re}(\langle x, y \rangle + ||y||^{2})$$

$$\leq ||x^{2}|| + 2||x|| ||y|| + ||y||^{2}$$

$$= (||x|| + ||y||)^{2}.$$

Definition 1.3. A **Hilbert space** is a complete pre-Hilbert space.

Example 1.4. All the previous examples are complete.

Proposition 1.1. $\langle \cdot, \cdot \rangle : H \times H \to \mathbb{C}$ is continuous for the norm topology on H.

Proof. Suppose that $x_n \to x$ in norm and $y_n \to y$ in norm. Then

$$|\langle x_n, y_n \rangle - \langle x, y \rangle| \le |\langle x_n - x, y_n \rangle| + |\langle x, y_n - y \rangle|$$

$$\le ||x_n - x|| ||y_n|| + ||x|| ||y_n - y||$$

$$\to 0$$

Proposition 1.2 (Parallelogram law). For all $x, y \in H$,

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2).$$

Proof. Expand out $\langle x+y, x+y \rangle$ and cancel terms.

1.3 Orthogonality

Definition 1.4. Elements $x, y \in H$ are **orthogonal** if $\langle x, y \rangle = 0$.

Definition 1.5. If $E \subseteq H$, its **orthogonal complement** is

$$E^{\perp} = \{ x \in : \langle x, y \rangle = 0 \, \forall y \in E \}.$$

Theorem 1.1 (Pythagorean theorem²). If $x_1, \ldots, x_n \in H$ are pairwise orthogonal, then

$$\left\| \sum_{i} x_i \right\| = \sum_{i} \|x_i\|^2.$$

Proof. Expand $\left\langle \sum_{i} x_{i}, \sum_{j} x_{j} \right\rangle$ and cancel terms.

 $^{^2}$ A person named Pythagoras probably didn't exist. Nevertheless, the Pytagoreans almost surely did not know what a Hilbert space is.

Theorem 1.2. Let H be a Hilbert space, and let M be a closed subspace. Then any $x \in H$ can be written uniquely as x = y + z, where $y \in M$ and $z \in M^{\perp}$. We write $H = M \oplus M^{\perp}$.

Proof. Let $\delta = \inf\{\|x - y\| : y \in M\}$. Pick $(y_n)_n$ in M such that $\|x - y_n\| \to \delta$. We claim that (y_n) is Cauchy. We have

$$||y_n - y_m||^2 + ||y_n + y_m - 2x||^2 = 2(||y_n - x||^2 + ||y_m - x||^2).$$

Rewrite this as

$$||y_n - y_m||^2 + 4 \underbrace{\left\| \frac{y_n + y_m}{2} - x \right\|^2}_{\to \delta^2} = 2(\underbrace{\|y_n - x\|^2}_{\to \delta^2} + \underbrace{\|y_m - x\|^2}_{\to \delta^2}).$$

This is only possible if $||y_n - y_m|| \to 0$.

So the limit $y = \lim_n y_n$ exists. This is the unique closest point in M to x.

1.4 Isomorphisms of Hilbert spaces

Definition 1.6. A unitary operator $U: H_1 \to H_2$ is linear operator such that $U \in \mathcal{L}(H_1, H_2)$ is an isomorphism and $\langle Ux, Uy \rangle_2 = \langle x, y \rangle_1$.

This is the true notion of isomorphism for inner product spaces. Next time, we will prove the following theorem:

Theorem 1.3. Let H be a Hilbert space over \mathbb{C} .

- 1. If $\dim(H) = n < \infty$, then $H \cong \mathbb{C}^n$.
- 2. If $\dim(H) = \infty$ and H is separable, then $H \cong \ell^2(\mathbb{N})$.

Example 1.5. $L^2(\mathbb{R})$ is separable, so $L^2(\mathbb{R}) \cong \ell^2(\mathbb{N})$.

Example 1.6. The Fourier transform is the unitary equivalence $L^2([0,1]) \cong \ell^2(\mathbb{Z})$.