Лабораторная работа №5

Модель эпидемии (SIR)

Астраханцева А. А.

6 марта 2025

Российский университет дружбы народов, Москва, Россия

Докладчик

- Астраханцева Анастасия Александровна
- НФИбд-01-22, 1132226437
- Российский университет дружбы народов
- · 1132226437@pfur.ru
- · https://github.com/aaastrakhantseva

Вводная часть

Цели лабораторной работы

Приобретение навыков моделирования математических моделей с помощью средства имитационного моделирования Scilab, xcos и языка Modelica.

- 1. Реализовать модель в хсоѕ
- 2. Реализовать модель с помощью блока Modelica в xcos;
- 3. Реализовать модель SIR в OpenModelica.
- 4. Реализовать модель SIR с учётом процесса рождения / гибели особей в хсоз (в том числе и с использованием блока Modelica), а также в OpenModelica;
- 5. Построить графики эпидемического порога при различных значениях параметров модели (в частности изменяя параметр μ);
- 6. Сделать анализ полученных графиков в зависимости от выбранных значений параметров модели.

Выполнение ЛР

Описание модели

$$\begin{cases} \dot{s} = -\beta s(t)i(t) \\ \dot{i} = \beta s(t)i(t) - \nu i(t) \\ \dot{r} = \nu i(t), \end{cases}$$

где eta – скорость заражения, u – скорость выздоровления.

Peaлизация модели в xcos

Переменные окружения

Рис. 1: Значения переменных β и ν

Рис. 2: Блок со значением коэффициента eta

Рис. 3: Блок со значением коэффициента u

Рис. 4: Настройки для верхнего блока интегрирования

Рис. 5: Настройки для среднего блока интегрирования

Рис. 6: Настройки для нижнего блока интегрирования

Настройка моделирования

Рис. 7: Настройки времени моделирования

Рис. 8: Настройки для мультиплексора

Рис. 10: Настройки для блока суммирования

Полученная схема

График распространения эпидемии

блока Modelica в хсоѕ

Реализация модели с помощью

Параметры блока Modelica

Код на языке Modelica

Рис. 15: Итоговый вид схемы

График распространения эпидемии

Рис. 16: График распространения эпидемии

OpenModelica _____

Реализация модели SIR в

Создание нового класса в OMEdit

Имя:	sir_class	
Specialization:	Model	•
Extends (опционально):		Просмотр
Вставить в класс (опционально):		Просмотр
Partial		
Encapsulated		
State		
	ОК	Отмена

Рис. 17: Создание нового класса в OpenModelica

Параметры моделирования

Рис. 19: Реализация класса в OpenModelica

График распространения эпидемии

Рис. 20: График распространения эпидемии

Задание для самостоятельного

выполнения в xcos

Описание модели

$$\begin{cases} \dot{s} = -\beta s(t)i(t) + \mu(N - s(t)); \\ \dot{i} = \beta s(t)i(t) - \nu i(t) - \mu i(t); \\ \dot{r} = \nu i(t) - \mu r(t), \end{cases}$$

где μ — константа, которая равна коэффициенту смертности и рождаемости.

Переменные окружения

Рис. 21: Значения переменных eta, u и μ

Рис. 22: Итоговый вид схемы

График распространения эпидемии

Рис. 23: $\mu=0.5$

График распространения эпидемии: время моделирования - 60 секунд

Рис. 24: Время моделирования - 60 секунд, $\mu = 0.5$

График распространения эпидемии: $\mu=0.1$

Рис. 25: $\mu=0.1$

График распространения эпидемии: $\mu=0.9$

Рис. 26: $\mu=0.9$

Задание для самостоятельного выполнения с помощью блока

Modelica в xcos

Параметры блока Modelica

Рис. 27: Параметры блока Modelica

Код на языке Modelica

Рис. 28: Код для блока Modelica

График распространения эпидемии: $\mu=0.5, \beta=3$

Рис. 29: $\mu=0.5, \beta=3$

График распространения эпидемии: $\mu=0.1$

Рис. 30: $\mu=0.1$

Задание для самостоятельного выполнения в OpenModelica

```
model sir model ex
    Real beta = 1;
    Real nu = 0.3:
    Real mu = 0.5;
    Real s(start=.999), i(start=.001), r(start=.0);
    equation
      der(s) = -beta * s * i + mu * i + mu * r;
      der(i) = beta * s * i - nu * i - mu * i:
10
     der(r) = nu * i - mu * r;
11
12
    end sir model ex;
```

Рис. 31: Реализация класса в OpenModelica

График распространения эпидемии: $\mu=0.5, \beta=3$

Рис. 32: $\mu=0.5, \beta=3$

Выводы

В ходе выполнения лабораторной работы я приобрела навыки моделирования математических моделей с помощью средства имитационного моделирования Scilab, хсоз и языка Modelica.

Спасибо за внимание!