Phylogenetic Biology Week 3

Biology 1425
Professor: Casey Dunn, dunnlab.org
Brown University
2013

Front matter...

All original content in this document is distributed under the following license:

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US)

See sources for copyright of non-original content

Sources

Some non-original content is drawn from:

Baum, D and S. Smith (2012) Tree Thinking: and Introduction to Phylogenetic Biology. Roberts and Company Publishers. ISBN 9781936221165

Other non-original content is referenced by url.

Other resources

These slides supplement the following excellent presentations from the Wood's Hole Workshop in Molecular Evolution:

Paul Lewis - http://www.eeb.uconn.edu/people/plewis/downloads/wh2012/Likelihood_WoodsHole_24July2012_1-per-page.pdf

John Huelsenbeck - https://molevol.mbl.edu/wiki/images/3/37/WoodsHoleHandout.pdf

Baum and Smith 2012, Figure 8.10

Rate matrix

The instantaneous rate of a given substitutions

Q - Rate matrix

Substitution probability matrix

The probability of a given substitution occurring in a given interval (branch length). Because of reversals, there are an infinite number of histories that could have given rise to the particular substitution. Can be derived from the rate matrix.

P - Substitution probability matrix

Substitution probability matrix

This is called matrix exponentiation

F81 model

Q - Rate matrix

P - Substitution probability matrix

		To:					
		A	С	G	T		
From:	A	$\pi_{\rm A} + (1 - \pi_{\rm A})e^{-mt}$	$\pi_{\rm C}(1-e^{-mt})$	$\pi_G(1-e^{-mt})$	$\pi_{\mathrm{T}}(1-e^{-mt})$		
	С	$\pi_{\mathrm{A}}(1-e^{-mt})$	$\pi_{\rm C} + (1-\pi_{\rm C})e^{-mt}$	$\pi_{\rm G}(1-e^{-mt})$	$\pi_{\mathrm{T}}(1-e^{-mt})$		
	G	$\pi_{\rm A}(1-e^{-mt})$	$\pi_{\rm C}(1-e^{-mt})$	$\pi_{\rm G}+(1-\pi_{\rm G})e^{-mt}$	$\pi_{\mathrm{T}}(1-e^{-mt})$		
	T	$\pi_{\mathrm{A}}(1-e^{-mt})$	$\pi_{\rm C}(1-e^{-mt})$	$\pi_G(1-e^{-mt})$	$\pi_{\mathrm{T}} + (1 - \pi_{\mathrm{T}})e^{-mt}$		

F81 model

As the branch length goes to 0, **P** becomes a diagonal matrix

	A	С	G	Т
A	1	0	0	0
С	0	1	0	0
G	0	0	1	0
Т	0	0	0	1

As the branch length goes to infinity, the rows become the equilibrium base frequencies

I		To:					
		A	C	G	T		
	A	$\pi_{\rm A} + (1 - \pi_{\rm A})e^{-mt}$	$\pi_{\rm C}(1-e^{-mt})$	$\pi_G(1-e^{-mt})$	$\pi_{\mathrm{T}}(1-e^{-mt})$		
ij	С	$\pi_{\rm A}(1-e^{-mt})$	$\pi_{\rm C} + (1-\pi_{\rm C})e^{-mt}$	$\pi_G(1-e^{-mt})$	$\pi_{\mathrm{T}}(1-e^{-mt})$		
From:	G	$\pi_{\mathrm{A}}(1-e^{-mt})$	$\pi_{\rm C}(1-e^{-mt})$	$\pi_{\rm G} + (1-\pi_{\rm G})e^{-mt}$	$\pi_{\mathrm{T}}(1-e^{-mt})$		
	T	$\pi_{\rm A}(1-e^{-mt})$	$\pi_{\rm C}(1-e^{-mt})$	$\pi_{\rm G}(1-e^{-mt})$	$\pi_{\mathrm{T}} + (1 - \pi_{\mathrm{T}})e^{-mt}$		

Baum and Smith 2012, Figure 8.8