Define explicitly a continuous branch of $\log z$ in the complex plane slit along the negative imaginary axis, $\mathbb{C} \setminus [0, -i\infty)$.

This branch is given by $f(re^i\theta) = \log r + i\theta$ where $\theta \in (-\frac{\pi}{2}, \frac{3\pi}{2})$.

Sketch the image of the sector $\{0 < \arg z < \frac{\pi}{6}\}$ under the map $w = z^a$.

- $a = \frac{3}{2}$
- \bullet a = i

$$w = z^{\frac{3}{2}} = e^{\frac{3}{2}(\log|z| + i\operatorname{Arg}z)} = |z|^{\frac{3}{2}}e^{\frac{3}{2}i\operatorname{Arg}z}$$

$$w = z^i = e^{i \log z} = e^{i(\log|z| + i\operatorname{Arg}z)} = e^{-\operatorname{Arg}z + i\log|z|}$$

Determine the phase factors of the function $z^a(1-z)^b$ at the branch points z=0 and z=1. What conditions on a and b are necessary for the function to be single-valued on $\mathbb{C} \setminus [0,1]$?

The phase factor at the branch point z=0 is given by $e^{2\pi ia}$ and the phase factor at the branch point z=1 is given by $e^{2\pi ib}$. The function is single-valued on $\mathbb{C}\setminus[0,1]$ if we have $e^{i\pi a}e^{i\pi b}=1$ which happens when a+b is an integer.

Show that if f is analytic on D then $g(z) = \overline{f(\overline{z})}$ is analytic on the reflected domain $D^* = \{\overline{z} : z \in D\}$, and $g'(z) = \overline{f'(\overline{z})}$.

Proof. Suppose f is analytic on D. Then for any $z_0 \in D^*$ we have

$$\lim_{\Delta z \to 0} \frac{g(z_0 + \Delta z) - g(z_0)}{\Delta z} = \lim_{\Delta z \to 0} \frac{\overline{f(\overline{z_0} + \Delta z)} - \overline{f(\overline{z_0})}}{\Delta z}$$

$$= \lim_{\Delta z \to 0} \frac{\overline{f(\overline{z_0} + \overline{\Delta z}) - f(\overline{z_0})}}{\overline{\Delta z}}$$

$$= \overline{\lim_{\Delta z \to 0} \frac{f(\overline{z_0} + \overline{\Delta z}) - f(\overline{z_0})}{\overline{\Delta z}}}$$

$$= \overline{f'(\overline{z_0})}$$

This shows that $g'(z_0)$ and $g'(z_0) = \overline{f'(\overline{z_0})}$. Now to show that g is analytic on D^* . As f is analytic on D we have for any $\overline{z} \in D^*$ for any $\epsilon > 0$ there exists $\delta > 0$ such that for all $\overline{z_0} \in D^*$ with $|\overline{z} - \overline{z_0}| < \delta$ implies $|g'(\overline{z}) - g'(\overline{z_0})| = |f'(z) - \overline{f'(z_0)}| = |f'(z) - f'(z_0)| < \epsilon$. \square

Let h(t) be a continuous function on [0,1] and define

$$H(z) = \int_0^1 \frac{h(t)}{t-z} dt, \quad z \in \mathbb{C} \setminus [0,1]$$

Show that H(z) is analytic and compute its derivative.

Proof. Let H(z) be as defined let $z \in \mathbb{C} \setminus [0,1]$ then

$$\lim_{\Delta z \to 0} \frac{H(z + \Delta z) - H(z)}{\Delta z} = \lim_{\Delta z \to 0} \frac{1}{\Delta z} \left(\int_0^1 \frac{h(t)}{t - (z + \Delta z)} dt - \int_0^1 \frac{h(t)}{t - z} dt \right)$$

$$= \lim_{\Delta z \to 0} \frac{1}{\Delta z} \int_0^1 \frac{h(t)}{t - z - \Delta z} - \frac{h(t)}{t - z} dt$$

$$= \lim_{\Delta z \to 0} \int_0^1 \frac{h(t)}{(t - z - \Delta z)(t - z)} dt$$

$$= \int_0^1 \lim_{\Delta z \to 0} \frac{h(t)}{(t - z - \Delta z)(t - z)} dt$$

$$= \int_0^1 \frac{h(t)}{(t - z)^2} dt$$

This shows that H'(z) exists on $\mathbb{C} \setminus (0,1)$.