DM1: Une preuve du théorème d'Ascoli

Dernière modification 18 mai 2023

Q1 Montrer que si (Y,d) est un espace métrique compact et $(E,||\cdot||)$ un espace de Banach, alors, $\mathcal{C}(Y;E)$ l'espace des fonctions continues de Y dans E, muni de la norme de la convergence uniforme $||f||_{\infty} = \sup_{x \in Y} ||f(x)||$, est un espace de Banach.

Soit $(f_n)_{n\geq 0}$ une suite de Cauchy d'éléments de $\mathcal{C}(Y;E)$. On veut montrer que $(f_n)_{n\geq 0}$ est convergente.

Par définition,

$$\forall \epsilon > 0 \quad \exists n_0 \in \mathbb{N} \quad \text{tel que} \quad \forall n, m \ge n_0 \quad ||f_n - f_m||_{\infty} < \epsilon.$$

Donc,

$$\forall x \in Y \quad ||f_n(x) - f_m(x)|| < \epsilon$$

 $\iff (f_n(x))_{n\geq 0}$ est une suite de Cauchy dans $(E,||\cdot||)$ qui est un espace métrique complet

 $\iff (f_n(x))_{n>0}$ converge vers une limite $z_x \in E$.

Soit $z: Y \to E$ tel que $\forall x \in Y \quad z(x) = z_x$.

On note que

$$\forall x \in Y \lim_{m \to +\infty} ||f_n(x) - f_m(x)|| = ||f_n(x) - z(x)|| < \epsilon.$$

Ce qui implique $||f_n - z||_{\infty} < \epsilon \quad \forall n \ge n_0$. Donc, $(f_n)_{n \ge 0}$ converge uniformemet vers z. On note que $z \in \mathcal{C}(Y; E)$, parce que $(f_n)_{n \ge 0}$ est continue.

Remarque On note que la convergence uniforme est essentiel pour concluire. Par exemple, soit

$$f_n(x) = \arctan(nx).$$

La limite de cette suite est

$$z(x) = \begin{cases} -\frac{\pi}{2} & \text{si } x < 0\\ +\frac{\pi}{2} & \text{si } x > 0, \end{cases}$$
 (1)

qui est donc discontinue en x=0.

Définition Un espace métrique (X, d) est dit **précompact** si pour tout $\epsilon > 0$, il existe des élements $x_1, ..., x_N$ de X tels que $X \subset \bigcup_{i=1}^N B(x_i, \epsilon)$.

$\mathbf{Q2}$ Montrer que [0,1] est précompact dans \mathbb{R} .

 $\forall \epsilon > 0$ on veut montrer qu'il existe des éléments $x_0, x_1, ..., x_N \in [0, 1]$ $N \in \mathbb{N}$ tels que $[0, 1] \subset$ $\bigcup_{i=0}^{N} B(x_i, \epsilon).$

Pour $\epsilon > \frac{1}{2}$ on note que $X \subset B(\frac{1}{2}, \epsilon)$. Supposons $\epsilon \leq \frac{1}{2}$. Soit $N = \lfloor \frac{1}{\epsilon} \rfloor$, posons $\forall i, x_i = i\epsilon$. On note que $\forall x \in [0, 1], x \in B(x_{\lfloor \frac{x}{\epsilon} \rfloor}, \epsilon)$. Donc, $[0, 1] \subset \bigcup_{i=0}^{N} B(x_i, \epsilon)$.

$\mathbf{Q3}$ Montrer que tout sous-ensemble borné de \mathbb{R}^N est précompact.

Soit A un sous-ensemble borné de \mathbb{R}^N . Supposons, par absurde, que A n'est pas précompact. Donc, il existe r > 0 tel que il n'existe pas de recouvrement fini de A par des boules ouvertes de rayon r

- ⇒ cette recouvrement ne peut pas être dans une boule de rayon fini
- \implies A n'est pas borné.

Q4 Montrer qu'un espace compact est précompact.

Soit (X,d) un espace métrique compact. Supposons, par absurde, que (X,d) n'est pas précompact.

Donc, il existe r > 0 tel que il n'existe pas de recouvrement fini de X par des boules ouvertes de rayon r.

Donc, par récurrence, on peut construire une suite $(x_n)_{n\geq 0}$ tel que $x_m\notin B(x_n,r)$ $d(x_n, x_m) \ge r \quad \forall n \ne m$. On note que $(x_n)_{n \ge 0}$ n'a pas de valeur d'adhérence. Donc, X n'est pas compact.

 $\mathbf{Q5}$ Soit (X,d) un espace métrique et $Z \subset X$ précompact. Montrer que Z l'adhérence de Z est précompacte.

Q6 Montrer que (X, d) est compact si et seulement s'il est complet et précompact.

Supposons (X,d) compact. Soit $(x_n)_{n>0}$ une suite de Cauchy dans (X,d). (X,d) compact implique que $(x_n)_{n>0}$ admet un valeur d'adhérence, donc $(x_n)_{n>0}$ est convergente et (X,d)complet.

Réciproquement, supposons (X, d) complet et précompact.

Soit $(x_n)_{n>0}$ une suite dans (X,d). On veut montrer que $(x_n)_{n>0}$ a un valeur d'adhérence.

(X,d) précompact \implies par le Principe de Dirichlet que $\forall \epsilon > 0$ il existe une sous-suite $(x_{\phi(n)})_{n\geq 0}$ dans une boule ouvert de rayon ϵ . Donc, $\forall n,m \quad d(x_n,x_m)<\epsilon$. Donc, $(x_{\phi(n)})_{n\geq 0}$ est une suite de Cauchy. (X,d) complet implique que $(x_{\phi(n)})_{n>0}$ converge \implies valeur d'adhérence.

\mathbb{Q} 7
$oxed{Q8}$
${\color{red}\mathbb{Q}}9$
Q10
Q11
Q12