

SVKM'S NMIMS

MUKESH PATEL SCHOOL OF TECHNOLOGY MANAGEMENT& ENGINEERING / SCHOOL OF TECHNOLOGY MANAGEMENT& ENGINEERING

Academic Year: 2022-2023

Program/s: B. Tech/MBA Tech

Year: II Semester: IV

Stream/s: Computer Engineering/Computer Science

Subject: Theoretical Computer Science

Time: 03 hrs (10:00 AM to 01:00 PM)

No. of Pages:03

Date: 03 May 2023

Marks: 100

Final Examination / Re-Examination

Instructions: Candidates should read carefully the instructions printed on the question paper and on the cover of the Answer Book, which is provided for their use.

1) Question No. 1 is compulsory.

2) Out of remaining questions, attempt any 4 questions.

3) In all 5 questions to be attempted.

4) All questions carry equal marks.

5) Answer to each new question to be started on a fresh page.

6) Figures in brackets on the right hand side indicate full marks.

7) Assume Suitable data if necessary.

Q1		Solve the following			
CO-1; SO-1; BL-2	a.	What do you understand by formal language and finite automata? Explain			
CO-1,2; SO-1,2; BL-1	b.	Define Regular Expression and convert the following regular expressions into equivalent English statements. R1= b*ab*ab* R2= (a+b)*(aa+bb)(a+b)* R3= a(a+b)*a			
CO-3; SO-2; BL-3	c.	Write context-free grammar for the regular expression (011 + 1)* (01)*.			
CO-1,3; SO-1,2; BL-2	d.	Explain Turing Machine as finite control and tuples of the Turing machine with suitable example.			
Q2					
CO-1,3; SO-1,2; BL-2,4	а	What is the difference between the Moore machine and the Mealy machine? Convert the following Moore machine to Mealy Machine.	[10]		

CO-3; SO-2; BL-6	b	Construct the Turing Machine that computes the proper subtraction of two unary			
		numbers.			
		F(x-y) = x-y if x > y	[10]		
		$= 0$ if $x \le y$			
		Simulate the working of machine for input 3-2 and 2-3.			
Q3					
CO-2,3; SO-1,2; BL-3,6	a	Design a Deterministic finite automaton for accepting all the decimal numbers			
		divisible by 3. What are initial strings in the language? Verify the DFA for string w= "31" & w= "45".	[10]		
	b	Construct the pushdown automata (PDA) with the final state to recognize the			
CO-3; SO-2; BL-2,6		language L and explain all the tuples of constructed PDA.	[10]		
		$L=\{a^nbc^n\mid n\geq 0\}$	[]		
Q4					
CO-1,2; SO-1,2; BL-3	a	Using Arden's Theorem obtain a regular expression for the following deterministic finite automata.	[10]		
		a Q ₂ b	[10]		
CO-2;	b	Write a short note on the following.	8		
SO-1,2;		i. Universal Turing machine	[10]		
BL-2		ii. Halting problem			
Q5	v				
CO-2,3; SO-1,2; BL-2,3	a	Discuss Greibach normal form (GNF) and convert the given context-free grammar to GNF $S \rightarrow AB A$ $A \rightarrow aA \mid \epsilon$ $B \rightarrow bB \mid \epsilon$			
CO-2; SO-1,2; BL-2	ь	Identify the language generated by the following grammar by constructing various derivation trees and comment on the most suitable grammar class. i. S→aS bS a b ii. S→aSa bSb a b ∈	[05]		

	С	Convert the following non-deterministic finite automata to deterministic finite						
CO-1,3; SO-1,2; BL-3		automata.	Σ	a	b		[05]	
			\rightarrow p	{p,q}	{q}			
9			q ⁺	{r}	{r}			
-			r	ф	{r}			
Q6								
CO-2; SO-1,2; BL-1,3	a	Find left most derivation, right-most derivation, and derivation tree for the string "00110101" in the grammar given below and comment on the ambiguity of the grammar: $S \rightarrow 0B \mid 1A$ $A \rightarrow 0 \mid 0S \mid 1AA$ $B \rightarrow 1 \mid 1S \mid 0BB$					[10]	
CO-1,2; SO-1,2; BL-1,2	b	State and explain the limitations of the finite state machine (FSM)					[05]	
CO-3; SO-2; BL-6	С	Design a Moore machine for residue mod 3 of a binary number.					[05]	
Q7								
CO-2; SO-1,2; BL-1,3	a	State pumping lemma for regular language and prove L= $\{a^{2n} n \ge 1\}$ is regular language.					[10]	
CO-1; SO-1; BL-2	b	The compiler work is divided into a series of phases. The first compiler phase is a lexical analyzer, whose main task is to generate tokens. How is Theoretical Computer Science applicable in the implementation of a lexical analyzer? What are the steps followed by the lexical analyzer to generate tokens?					[05]	
CO-2; SO-1,2; BL-2	С							
		X				—X		