אשנב למתמטיקה

פתרון ממ"ן 13

שאלה 1

x * y * x = y : מתקיים $x, y \in G$ נתון שלכל . * נתון היחס לפעולה ביחס לפעולה

- א. הוכח כי כל איבר של $\,G\,$ הוא נגדי לעצמו וכי $\,G\,$ היא חבורה חילופית.
- x*y הוכח שאם x הוכח שאם הוא נגדי ל- ב. תהי G חבורה ביחס לפעולה x*y=y*x הוכח אז ב. x*y=y*x

תשובה

- א. x*y*x=y נסמן ב- x*y*x=y את האיבר הנטרלי. מאחר שלכל x*x=e את האיבר הנטרלי. מבחרנו ועבור x*x=e ששוויון זה נכון גם עבור אותו x שבחרנו ועבור x*x=e כלומר x*x=e מכאן כל איבר בחבורה נגדי לעצמו.
- כעת נבחר איברים x*y*x=y. לפני הנתון, x*y*x=y לכן x*y*x=y. אבל אז x*y=y*x (שימוש בקיבוציות) לכן x*y*e=y*x, שכן x*y*e=y*x (שימוש בקיבוציות) לכן x*y*e=y*x שוויון זה נכון לכל x*y*e=y*x לכן x*y*e=y*x היא חבורה חילופית.
- ב. נסמן שוב, ב- e את האיבר הנטרלי. נתון כי x הוא נגדי ל- x*y כלומר e את האיבר הנטרלי. נתון כי x*y*x=e הוא נגדי ל- x*(y*x)=e שיש קיבוציות, נוכל לרשום שוויון זה גם כך: e בר בר מכאן נובע כי e הוא נגדי ל- e בחבורה איברים נגדיים מתחלפים, לכן e בר e בר e בר מימין נקבל כי e מימין נקבל פיים מימין ניים מימין נקבל פיים מימין ניים מימיים מימין ניים מימיים מי

שאלה 2

. * קבוצה בעולה בינרית שונים שעליה מוגדרת פעולה בינרית $H = \{e, a, b, c\}$

a*a=b*b=e וכי H -נניח כי e הוא איבר נטרלי ב

- $c*a \neq e$ א. הוכח כי אם ב- H מתקיימים חוקי הצמצום, אז
 - $c*b \neq e$ גו הוכח פעולה קיבוצית א פעולה * ב.
 - c*c=e אז * -חבורה ביחס ל- אז H הוכח כי אם
 - ד. השלם את טבלת הפעולה של H במקרה שהיא חבורה.

תשובה

.c*c=e

- א. נניח בדרך השלילה כי a*a=e אז, על-פי הנתון נקבל כי a*a=c*a, ועל-ידי צימום ב- a*a=e א. נניח בדרך השלילה כי a*a=e סתירה. לפיכך, $c*a\ne e$
- ב. נניח בדרך השלילה כי c*b=e אז, c*b=e אז, c*b=e (יש לשים לב כי לא השתמשנו בחוקי c*b בי נניח בדרך השלילה כי c*b אז, אלא רק הצבנו e במקום e מתכונת הקיבוציות נובע כי $c*b\neq e$ ומאחר ש $c*b\neq e$ ומאחר ש $c*b\neq e$ וזו סתירה. מכאן שc*b=e*b
- ג. מאחר ש- C*e=c חבורה, קיים ל- c נגדי ב- d נגדי האינו e שכן, c*e=c הוא איננו e כי $c*a\neq e$ איננו e איננו e איננו e איננו e איננו e בחבורה מתקיימים חוקי הצימצום, ואז לפי סעיף אי, e כמו כן, הנגדי של e איננו e איננו e בחבורה יש קיבוציות, ואז, לפי סעיף ב', e בי e לפיכך, רק e יכול להיות נגדי ל- e ומכאן שבו e בחבורה יש קיבוציות, ואז, לפי סעיף ב', e בי e בחבורה יש קיבוציות, ואז, לפי סעיף ב', e בי e בי e יכול להיות נגדי ל- e ומכאן שבו e בי e בי e בי e ומכאן e בי e

*	e	a	b	c
e	e	a	b	c
a	a	e		
b	b		e	
c	c			e

٦.	: וידוע שכל איבר בחבורה הזו נגדי לעצמו, e האיבר הנטרלי הוא
	כעת, נשתמש בעובדה כי טבלת הפעולה של חבורה, כל איבר מופיע
	$a \! * \! b $ בכל שורה ובכל טור פעם אחת ויחידה. במשבצות המתאימות בכל
	ול- $b*a$ יכול להופיע רק , c שכן , c כבר הופיעו באותה שורה או
	באותו טור. נוסיף זאת לטבלה ונקבל:

*	e	а	b	С
e	e	a	b	c
a	a	e	С	
b	b	С	e	
c	c			e

במצב זה, לכל המשבצות הריקות נותרה רק אופציית מילוי אחת.

: לפיכך, טבלת הפעולה של H נראית כך

*	e	a	b	С
e	e	a	b	С
a	a	e	С	b
b	b	С	e	а
c	c	b	a	e

שאלה 3

- א. הוכח שאם בחבורה G כל איבר נגדי לעצמו אז, G חילופית.
- ב. הוכח שהחבורה כיחס לפעולת החיבור מודולו 5, $G = \{0.1, 2, 3, 4\}$ היא חילופית, אך אין בה איבר שנגדי לעצמו פרט לאיבר הנטרלי.
 - ג. הדגם חבורה לא חילופית שבה קיים איבר שנגדי לעצמו שאינו האיבר הנטרלי.

תשובה

a*b=b*a -ש. עלינו להוכיח ש. $a,b\in G$ א.

b*b=e , לכן מתקיים. לפי הנתון, b*b=e , a*a=e

(a*b)*(b*a) = a*(b*b)*a = a*e*a = a*a = e הוא נגדי ל-(a*b)*(b*a) = a*(b*b)*a = a*e*a = a*a = e

אבל a*b ו- b*a ו- b*a וה איברים a*b הם איברים a*b לכן לפי הנתון, a*b לכן לפי הנתון, a*b לכן לפי הנתון, a*b לכן לפי הנתון, a*b הם איברים לגדיים ל- a*b הם איבר שבחבורה לכל איבר יש נגדי יחיד, נובע ש- a*b הם איברים להוכיח.

ביחס לפעולת $G = \{0,1,2,3,4\}$ ביחס לפעולה את מחיבור מודולו 5.

החיבור מודוכו 5. מן הטבלה נובע מייד שמתקיימת תכונת הסגירות, ש- 0 איבר נטרלי, ושלכל איבר יש נגדי (שכן, 0 מופיע

בכל שורה). לכן, כדי להוכיח ש- G חבורה נשאר לבדוק שמתקיימת תכונת הקיבוציות.

+ _(mod 5)	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3
		U			ر

n של החילוק של התיעה החילוק של הערית נסמן ב- $n \geq 0$ מספר שלם

ב- 5. למשל: 4=4 . אנו משאירים לך לבדוק שלכל . $n=\overline{n}$, $n\in G$. ברור שלכל . ברור שלכל . $\overline{13}=3$, $\overline{4}=4$. ב- 5. למשל: m+n מתקיים m+n מתקיים m+n כלומר, שארית החילוק של m+1 ב- 5 של סכום m+n מספרים שווה בדיוק לתוצאת החיבור מודולו 5 שלהם. לפיכך, לכל m+n נקבל:

$$(m+_{(mod \, 5)} n=\overline{m+n}$$
 (כי $m+n$) $(m+_{(mod \, 5)} n)+_{(mod \, 5)} k=(\overline{m+n})+_{(mod \, 5)} k$ $=\overline{(m+n)+k}$ $=\overline{m+(n+k)}$ $=m+_{(mod \, 5)} \overline{(n+k)}$ $=m+_{(mod \, 5)} \overline{(n+k)}$ $=m+_{(mod \, 5)} (n+_{(mod \, 5)} k)$

חבורה G חבורה מלוח הפעולה נובע מייד ש- G חבורה G חבורה מלוח הפעולה נובע מייד ש- G חבורה לעצמו. חילופית (כי הלוח סימטרי ביחס לאלכסון הראשי) וכן נובע שאין ב- G איבר שונה מ- G שנגדי לעצמו. $P=\{I,R_1,R_2,S_a,S_b,S_c\}$ עניקח למשל את חבורת פעולות הסימטריה של משולש שווה צלעות $S_a \circ S_b = R_1$ אבל $S_a \circ S_a = R_1$ טבלה בעמוד 41 בספר). זו לא חבורה חילופית כי למשל $S_a \circ S_b = R_1$ אבל $S_a \circ S_b = R_1$ שונים מהאיבר הנטרלי וכל אחד מהם נגדי לעצמו.

שאלה 4

* שבה פעולה מוגדרת איברים) שעליה איברים) א קבוצה פנרית (קבוצה שבה לפחות אבה אבה אברים) א $A=\{e,a,b,c,\ldots\}$ תהי תהיaוכי מוגדי מימת את חוקי הצמצום. נתון מיaוכי הקיבוציות את חוקי הצמצום. נתון מי

- . איברים שונים $B = \{e, a, b, a * b\}$ איברים שונים.
 - $a*c \notin B$ אז $c \notin B$ ב.
- ג. הוכח שבחבורה בת חמישה איברים אין איבר שנגדי לעצמו ושונה מהאיבר הנטרלי.

תשובה

- .א. האיברים e,a,b שונים זה מזה, עפייי הנתון.
- b=e אם a*b=a או בחוק הצמצום הימני מקבלים כי a*b=a*e אם a*b=a בסתירה לנתון.

- a=e ועל-ידי שימוש בחוק הצמצום חול a*b=e*b אז אa*b=b אם בסתירה לנתוו.
- ואז, על-ידי שימוש בחוק הצימצום a*b=a*a אם a*b=e אם a*b=a*a אם b=a שוב סתירה לנתון.

מזה. האיברים e, a, b, a * b הים שונים זה לכן,

- $a*c \in B$ ונניח בדרך השלילה ש $c \notin B = \{e, a, b, a*b\}$ ב.
- $c \in B$ בסתירה להנחה a*c = a*a ואז a*c = e
- $c \in B$ בסתירה להנחה a*c = a*e אם a*c = a אם •
- לכן , (שימוש בקיבוציות) (a*a) אם a*c=a*b לכן a*(a*c)=a*b אז a*c=b • . $c \notin B$ כי $a*b \in B$ בסתירה להנחה $a*b \in B$ (כי $a*b \in B$ (גדי לעצמו) ואז a*c=a*b
 - $c \notin B$ אז סתירה להנחה, c = b אז a * c = a * b ואם

 $a*c \notin B$ לכן

- ג. נניח ש- G חבורה ביחס לפעולה * שבה חמישה איברים. נסמן ב- G את האיבר הנטרלי שלה ונניח a -שa עגדי לעצמו. בדרך השלילה שקיים a + a -שa עגדי לעצמו.
- נסמן ב- b איבר של G ששונה מ- $a*b\in G$ כמובן ש- e , a ששונה מ- b ששונה מר התכונות פר שונים איברים ב- a*b ששונים שונים זה מזה (שכן בחבורה מתקיימות כל התכונות פר a*b שבהן השתמשנו שם).
- $a*c\in G$ קיים איבר נוסף. נקרא לו c אז c אז c אז c פתכונת הסגירות ידוע ש- c קיים איבר נוסף. נקרא לו c אז c אז c איבר שבסעיף בי c נובע ש- c איבר שונים ב- c וזו סתירה. c איבר שונה מהנטרלי שנגדי לעצמו היא לא נכונה. c