AdvStDaAn, Worksheet, Week 2

Micheal Lappert

05.04.2022

Contents

```
      Exercise 1
      1

      Exercise 1.a)
      3

      Exercise 1.b)
      4

      Exercise 1.c)
      5
```

Exercise 1

```
path <- file.path('Datasets', 'sniffer.dat')
df <- read.table(path, header=TRUE)
summary(df)</pre>
```

Dataset loading and sanity check:

```
##
                       Temp.Gas
      Temp.Tank
                                       Vapor.Tank
                                                     Vapor.Dispensed
           :31.00
##
   Min.
                    Min.
                           :35.00
                                    Min.
                                            :2.590
                                                     Min.
                                                            :2.590
   1st Qu.:37.00
                    1st Qu.:41.00
                                    1st Qu.:3.290
                                                     1st Qu.:3.373
                                                     Median :4.090
  Median :60.00
                    Median :60.00
                                    Median :4.285
##
  Mean
           :57.91
                    Mean
                           :55.91
                                    Mean
                                            :4.422
                                                            :4.324
                                                     Mean
   3rd Qu.:62.00
                                    3rd Qu.:4.630
##
                    3rd Qu.:62.00
                                                     3rd Qu.:4.540
##
   Max.
           :92.00
                    Max.
                           :92.00
                                    Max.
                                           :7.450
                                                     Max.
                                                            :7.450
##
          Y
##
  Min.
          :16.00
##
   1st Qu.:23.75
## Median :31.50
           :31.12
## Mean
   3rd Qu.:34.50
##
           :55.00
  Max.
dim(df)
```

[1] 32 5

head(df)

##		${\tt Temp.Tank}$	Temp.Gas	Vapor.Tank	Vapor.Dispensed	Y
##	1	33	53	3.32	3.42	29
##	2	31	36	3.10	3.26	24
##	3	33	51	3.18	3.18	26
##	4	37	51	3.39	3.08	22
##	5	36	54	3.20	3.41	27
##	6	35	35	3.03	3.03	21

tail(df)

##		Temp.Tank	Temp.Gas	Vapor.Tank	Vapor.Dispensed	Y
##	27	60	62	4.02	3.89	33
##	28	59	62	3.98	4.02	27
##	29	59	62	4.39	4.53	34
##	30	37	35	2.75	2.64	19
##	31	35	35	2.59	2.59	16
##	32	37	37	2.73	2.59	22

plot(df)

Data looks like it is highly correlated with each other. But we keep it this way for the first exercises.

Exercise 1.a)

Fitting a first model without any transformations to the data:

```
lm1.1 \leftarrow lm(Y \sim ., data = df)
```

The model looks initially not too bad. For a proper evaluation one would need to perform a residual and sensitivity analysis to investigate the adequacy of the model. But for this exercise we keep the track of the worksheet.

E1.a)(I) Estimated coefficients

```
coef(lm1.1)

## (Intercept) Temp.Tank Temp.Gas Vapor.Tank Vapor.Dispensed
## 1.01501756 -0.02860886 0.21581693 -4.32005167 8.97488928
```

E1.a)(II) F-statistic

```
summary(lm1.1)
```

```
##
## Call:
## lm(formula = Y ~ ., data = df)
##
## Residuals:
##
     Min
              1Q Median
                            3Q
                                  Max
## -5.586 -1.221 -0.118 1.320
                               5.106
##
## Coefficients:
                   Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                   1.01502
                               1.86131
                                        0.545 0.59001
## Temp.Tank
                   -0.02861
                               0.09060
                                       -0.316 0.75461
## Temp.Gas
                                        3.187 0.00362 **
                   0.21582
                               0.06772
## Vapor.Tank
                   -4.32005
                               2.85097
                                        -1.515
                                               0.14132
## Vapor.Dispensed 8.97489
                               2.77263
                                        3.237
                                               0.00319 **
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 2.73 on 27 degrees of freedom
## Multiple R-squared: 0.9261, Adjusted R-squared: 0.9151
## F-statistic: 84.54 on 4 and 27 DF, p-value: 7.249e-15
```

The p-value of the F-statistic is « 0.05 indicating that at least one of the variables can not be 0 and therfore are important to describe the response value. Even though, the p-values of the t-test indicate that not all of them are of the same importance. In this case are only 2 explanatory variables significantly important (Temp.Gas & Vapor.Dispensed).

E1.a)(III) Variance Inflation Factor (VIF)

Inspecting multicollinearity with the Variance Inflation Factor (VIF):

library(car)

Loading required package: carData

```
vif(lm1.1)
```

```
## Temp.Tank Temp.Gas Vapor.Tank Vapor.Dispensed
## 12.997379 4.720998 71.301491 61.932647
```

A vif above 5 to 10 indicates problems with multicollinearity. According to this guideline all variables but Temp.Gas have too high vif factors and therewith problems with multicollinearity. Vapor.Tank is affected the most.

Exercise 1.b)

Performing a variable selection using the AIC stepwise from the model fitted in Exercise 1.a):

step(lm1.1)

```
## Start: AIC=68.84
## Y ~ Temp.Tank + Temp.Gas + Vapor.Tank + Vapor.Dispensed
##
                     Df Sum of Sq
##
                                      RSS
                                             AIC
                            0.743 201.97 66.956
## - Temp.Tank
## <none>
                                   201.23 68.838
## - Vapor.Tank
                      1
                           17.113 218.34 69.450
## - Temp.Gas
                      1
                           75.698 276.93 77.056
## - Vapor.Dispensed 1
                           78.090 279.32 77.332
##
## Step: AIC=66.96
## Y ~ Temp.Gas + Vapor.Tank + Vapor.Dispensed
##
##
                     Df Sum of Sq
                                      RSS
                                             AIC
                                   201.97 66.956
## <none>
## - Vapor.Tank
                           36.416 238.39 70.261
                      1
## - Temp.Gas
                           78.831 280.80 75.501
                      1
## - Vapor.Dispensed 1
                           91.850 293.82 76.952
##
## Call:
## lm(formula = Y ~ Temp.Gas + Vapor.Tank + Vapor.Dispensed, data = df)
##
## Coefficients:
##
       (Intercept)
                           Temp.Gas
                                           Vapor.Tank Vapor.Dispensed
##
            1.0655
                             0.2091
                                              -4.8882
                                                                9.2480
```

The best model with the stepwise variable selection from the model in Exercise 1.a) is $Y \sim Temp.Gas + Vapor.Tank + Vapor.Dispensed$

Temp. Tank gets not included. This would be due to multicollinearity with other variables.

Exercise 1.c)

Did we already remedy the initially found multicollinearity with the stepwise variable selection? We can check by performing a vif on the newly found model.

```
lm1.2 <- lm(Y ~ Temp.Gas + Vapor.Tank + Vapor.Dispensed, data = df)
vif(lm1.2)

## Temp.Gas    Vapor.Tank Vapor.Dispensed
## 4.255787    42.899447    55.907555</pre>
```

No, Vapor.Tank and Vapor.Dispensed have still vif values from above 5 to 10. Which ones are correlated the most?

```
pairs(df[,-5])
```


Vapor. Tank and Vapor. Dispensed seem to be correlated the most. So we try transformations of the variables by replacing them by the mean and the difference.

```
diffVapor meanVapor Temp.Tank Temp.Gas Y
##
                                            53 29
## 1
         -0.10
                    3.370
                                  33
## 2
         -0.16
                    3.180
                                  31
                                            36 24
                                  33
## 3
          0.00
                    3.180
                                            51 26
## 4
          0.31
                    3.235
                                  37
                                            51 22
## 5
                    3.305
                                  36
                                            54 27
         -0.21
## 6
          0.00
                    3.030
                                  35
                                            35 21
```

With the newly created data frame with the transformed variables one can now perform another stepwise variable selection.

```
lm1.3 \leftarrow lm(Y \sim ., data = df3)
step(lm1.3)
## Start: AIC=68.84
## Y ~ diffVapor + meanVapor + Temp.Tank + Temp.Gas
##
##
               Df Sum of Sq
                                RSS
                                       AIC
## - Temp.Tank 1
                      0.743 201.97 66.956
## <none>
                             201.23 68.838
## - diffVapor 1
                     43.585 244.81 73.112
## - Temp.Gas
                     75.698 276.93 77.056
                1
## - meanVapor 1
                    114.810 316.04 81.284
##
## Step: AIC=66.96
## Y ~ diffVapor + meanVapor + Temp.Gas
##
##
               Df Sum of Sq
                                RSS
## <none>
                             201.97 66.956
## - diffVapor 1
                     64.398 266.37 73.813
## - Temp.Gas
                     78.831 280.80 75.501
                1
## - meanVapor 1
                    265.710 467.68 91.826
##
## Call:
## lm(formula = Y ~ diffVapor + meanVapor + Temp.Gas, data = df3)
##
## Coefficients:
  (Intercept)
##
                  diffVapor
                                meanVapor
                                              Temp.Gas
        1.0655
                    -7.0681
                                   4.3597
                                                0.2091
```

This is the same model as found in Exercise 1.b) but with the transformed variables. Now one can check if the problems with multicollinearity still persists.

```
lm1.4 <- lm(Y ~ diffVapor + meanVapor + Temp.Gas, data = df3)
vif(lm1.4)

## diffVapor meanVapor Temp.Gas</pre>
```

All vif values are lower than 5 and therewith the problem with multicollinearity does not persist.

How looks the residual and sensitivity analysis?

1.538981 4.450470 4.255787

```
par(mfrow = c(2, 4))
plot(lm1.4)
plot.lmSim(lm1.4, SEED = 1)
```


leverage points > 0.25

There is no evidence that any of the assumptions is violated.