3. Ganzrationale Funktionen

a) Definitionen und Beispiele

Definition: Eine ganzrationale Funktion n-ten Grades hat als Definitionsterm ein Polynom n-ten Grades, d.h. $y = f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$.

$$a_n \neq 0, a_i \in \mathbb{R} (i = 1,...n)$$

$$y = f(x) = \sum_{i=0}^{n} a_i x^i$$

Beispiele: 1) $y = f(x) = 1.2x^5 - 17.23x^4 + \pi^{0.5}x^2 - 13$ Grad 5

2) y = f(x) = 4x + 5.8Grad 1

Gegenbeispiele: Keine ganzrationalen Funktionen sind

1) $y = x^{-1}$, $y = x^{-2}$ usw. 2) $y = x^{0.5}$, $y = x^{-3.24}$ usw.

3) $y = \sin x$, $y = \cos x$, $y = \tan x$, $y = \arcsin x$ usw.

4) $y = e^{x}$, $y = \ln x$ usw.

Satz: Summe, Differenz und Produkt von ganzrationalen Funktionen sind wieder ganzrationale Funktionen.

Beweis: direkt aus der Definition und den Rechenregeln

Beispiele: $u(x) = 2x^2$ Grad 2

v(x) = x - 1 Grad 1

 $u(x) + v(x) = 2x^{2} + x - 1$ $u(x) \cdot v(x) = 2x^{3} - 2x^{2}$ Grad 2 Grad 3

Beachte: Der Quotient zweier ganzrationalen Funktionen ist im allgemeinen

keine ganzrationale Funktion, z.B. u(x) = 1, v(x) = x; $y = \frac{u(x)}{v(x)} = \frac{1}{x}$

b) Nullstellen von ganzrationalen Funktionen

Definition: x_1 ist Nullstelle der Funktion mit Gleichung y = f(x), falls $f(x_1) = 0$ ist.

Zerlegungssatz

Ist x_1 Nullstelle der ganzrationalen Funktion mit y = f(x) vom Grade n, so ist f(x)durch $x - x_1$ teilbar.

Beweis:

$$f(x) - f(x_1) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 - (a_n x_1^n + a_{n-1} x_1^{n-1} + \dots + a_1 x_1 + a_0)$$

= $a_n (x^n - x_1^n) + a_{n-1} (x^{n-1} - x_1^{n-1}) + \dots + a_1 (x - x_1) = f(x) - 0$

1

Wir haben früher gezeigt (bei der Ableitung $f'(x_1)$ von $y = f(x) = x^n$), dass sich $(x^n - x_1^n)$ durch $(x - x_1)$ teilen lässt (für alle $n \in \mathbb{N}$)

Also ist der Term links des Gleichheitszeichens durch $(x - x_1)$ teilbar und somit auch derjenige rechts.

Beispiel: $y = f(x) = x^5 + x^4 - 3x^3 + x^2 + x - 1$

Erraten: x₁= 1 ist Nullstelle

Polynomdivision $f(x): (x-1) = x^4 + 2x^3 - x^2 + 1$ (selber!)

Definition: Ist x₁ p-fache Nullstelle der ganzrationalen Funktion mit Gleichung y =

f(x), falls f(x) durch $(x - x_1)^p$ teilbar ist. " p-faches Abspalten des Linearfaktors $(x - x_1)$ "

Beispiel: In $y = f(x) = (x - 3)^2 (x + 5)^4 (x - 1)$ ist -5 vierfache, 3 zweifache und 1 einfache Nullstelle (f hat Grad 7)

Aus dem Zerlegungssatz folgt der

Nullstellensatz

Eine ganzrationale Funktion n-ten Grades hat höchstens n Nullstellen. (p-fache Nullstellen werden dabei auch p-fach gezählt)

Aufgabe

Der Graph G_f von $y = f(x) = x^3 - 9x^2 - 24$ und der Graph G_g von y = g(x) = axschneiden sich im Punkt S(2/?). Bestimme die übrigen Schnittpunkte.

Ordinate $v_S = 2^3 - 9 \cdot 2^2 - 24 = -52$, also S(2/-52)

Sebnittaleichung: $x^3 - 9x^2 - 24 = -26x$ ist äquivalent zur

 $x^3 - 9x^2 + 26x - 24 = 0$ Nullstellengleichung:

Da x_1 = 2 Lösung dieser Gleichung, so ist $x^3 - 9x^2 + 26x - 24$ durch (x - 2)

teilbar: $(x^3 - 9x^2 + 26x - 24)$: $(x - 2) = x^2 - 7x + 12$ (selber!)

Weitere Lösungen dieser Gleichung: $x^2 - 7x + 12 = (x - 3)(x - 4) = 0$, also

 $x_2 = 3$ und $x_3 = 4$ und damit $y_2 = -26 \cdot 3 = -78$ und $y_3 = -26 \cdot 4 = -104$

Resultat: S(2/-52), $S_2(3/-78)$ und $S_3(4/-104)$

Zum Suchen einer Nullstelle hilft etwa der folgende

Satz: Hat die Gleichung $1x^n + a_{n-1}x^{n-1} + ... + a_1x + a_0 = 0$ eine ganzzahlige Lösung x_1 und sind alle $a_i \in \mathbb{Z}$ (i = 0,1,...n-1), so ist x_1 ein Teiler von a_0 .

Beweis: $1x_1^n + a_{n-1}x_1^{n-1} + ... + a_1x_1 = -a_0$

x₁ ist Teiler der ganzzahligen linken Seite, also auch der rechten Seite.

c) Kurvendiskussion

Gegeben: Ganzrationale Funktion mit Gleichung y = f(x)

Gesucht: Graph G_f mit speziellen Punkten

(a) Verhalten im ± Unendlichen

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 = x^n \left(a_n + \frac{a_{n-1}}{x} + \frac{a_{n-2}}{x^2} + \ldots + \frac{a_1}{x^{n-1}} + \frac{a_0}{x^n} \right)$$

Für $x \to \pm \infty$ geht die Klammer $(...) \to a_n$

Das Verhalten von f(x) ist also nur vom Term a_nxⁿ abhängig!

Folgerung: (typische Vertreter $y = x^2$, $y = -x^2$, $y = x^3$, $y = -x^3$)

	n gerade	n ungerade
$a_n > 0$	$f(x) \rightarrow + \infty \ (x \rightarrow \pm \infty)$	$f(x) \to +\infty \ (x \to +\infty)$
		$f(x) \rightarrow -\infty \ (x \rightarrow -\infty)$
$a_n < 0$	$f(x) \rightarrow -\infty \ (x \rightarrow \pm \infty)$	$f(x) \rightarrow -\infty \ (x \rightarrow +\infty)$
		$f(x) \rightarrow + \infty \ (x \rightarrow - \infty)$

Folgerung: Jede ganzrationale Funktion ungeraden Grades hat mindestens eine Nullstelle.

(b) Symmetrie

(b1) Symmetrie zur y-Achse

Graph G_f einer Funktion mit GI. y = f(x) ist symmetrisch zur y-Achse, falls gilt: f(x) = f(-x) für alle $x \in D_f$

Figur: selber!

Folgerung: Treten in der Gleichung einer ganzrationalen Funktion nur **gerade** Exponenten von x auf, so ist der Graph symmetrisch zur y-Achse

Beispiel: G_f von $y = f(x) = 5x^4 - 0.783x^2 + 18$

{vgl. auch etwa früher: G_f von $y = f(x) = \cos x$ ist symmetrisch zur y-Achse: $\cos x$ ist eine 'gerade' Funktion}

(b2) Punktsymmetrie zum Ursprung bzw. zum Punkt (0/c)

Graph G_f einer Funktion mit GI. y = f(x) ist symmetrisch zum Ursprung, falls gilt: f(x) = -f(-x) für alle $x \in D_f$

Figur: selber!

Folgerung: Treten in der Gleichung einer ganzrationalen Funktion nur **ungerade** Exponenten von x auf, so ist der Graph punktsymmetrisch zum Ursprung

Beispiel: G_f von $y = f(x) = 5.2x^5 - 0.7x^3 + 1.4x$ ist punktsymmetrisch zu (0/0)

{vgl. auch etwa früher: G_f von $y = f(x) = \sin x$ ist punktsymmetrisch zu (0/0): $\sin x$ ist eine 'ungerade' Funktion}

Ausbau: G_g von $y = g(x) = 5.2x^5 - 0.7x^3 + 1.4x + 3$ ist punktsymmetrisch zu (0/3), da G_g der um 3 nach oben verschobene Graph G_f ist.

(c) Monotonie

(c1) f'(x) > 0 für $x \in Intervall I \rightarrow Graph G_f$ ist monoton steigend in I

Steigung der Tangente an G_f in jedem Punkt $(x_0/f(x_0))$ positiv

(c2) f'(x) < 0 für $x \in Intervall I \rightarrow Graph G_f$ ist monoton fallend in I

Steigung der Tangente an G_f in jedem Punkt $(x_0/f(x_0))$ negativ

(d) Krümmung

(d1) f''(x) > 0 für $x \in I \rightarrow G_f$ ist monoton steigend in $I \rightarrow G_f$ ist **linksgekrümmt**

"Je grösser x, desto grösser die Steigungen der Tangenten".

Falls zusätzlich gilt: Es existiert x_0 mit $f'(x_0) = 0$, so besitzt G_f einen Tiefpunkt $T(x_0/f(x_0))$. $y_0 = f(x_0)$ ist dann relatives Minimum in I.

Das Kriterium f''(x_0)>0 ist hinreichend, aber nicht notwendig für Existenz von T: Beispiel: $y = f(x) = x^4$. G_f hat T(0/0), aber f''(0) = $12 \cdot 0^2 = 0$

[&]quot;Je grösser x, desto kleiner die Steigungen der Tangenten".

Falls zusätzlich gilt: Es existiert x_0 mit $f'(x_0) = 0$, so besitzt G_f einen Hochpunkt $H(x_0/f(x_0))$. $y_0 = f(x_0)$ ist dann relatives Maximum in I.

Das Kriterium f''(x_0)<0 ist hinreichend, aber nicht notwendig für Existenz von H: Beispiel: $y = f(x) = -x^4$. G_f hat H(0/0), aber f''(0) = -12 · 0² = 0

(e) Wendepunkt

Definition: W(x₀/f(x₀)) ist **Wendepunkt** von G_f, wenn dort die Krümmung ändert (von Rechts- zu Linkskrümmung oder umgekehrt) Hat ein Wendepunkt eine Horizontaltangente, so heisst er **Terrassenpunkt** oder **Sattelpunkt**.

f"(x₀)=0 ist notwendige Bedingung für Existenz von W, aber nicht hinreichend: Beispiel: $y = f(x) = x^4$. f"(0) = $12 \cdot 0^2 = 0$, aber G_f hat T(0/0) und nicht Wendepunkt

Zwei Möglichkeiten für hinreichende Kriterien für die Existenz von W:

- 1) direkt aus Definition: ε >0: $f''(x_0 \varepsilon) \cdot f''(x_0 + \varepsilon) < 0$ (Vorzeichenwechsel von f'')
- 2) $f'''(x_0) \neq 0$ (Änderung der zweiten Ableitung)

Möglichkeit 2) ist aber wiederum nicht notwendig: Beispiel: $y = f(x) = x^5$. G_f hat W(0/0), aber $f'''(0) = 60 \cdot 0^2 = 0$