12ML:: BASICS

Data

 $\mathcal{X} \subset \mathbb{R}^p$: p-dimensional **feature / input space** Usually we assume $\mathcal{X} \equiv \mathbb{R}^p$, but sometimes, dimensions may be bounded (e.g., for categorical or non-negative features.)

 $\mathcal{Y}\subset\mathbb{R}^g$: target space e.g.: $\mathcal{Y}=\mathbb{R}$, $\mathcal{Y}=\{0,1\}$, $\mathcal{Y}=\{-1,+1\}$, $\mathcal{Y}=\{1,\dots,g\}$ with g classes

 $\mathbf{x} = (x_1, \dots, x_p)^T \in \mathcal{X}$: feature vector

 $y \in \mathcal{Y}$: target / label / output

 $\mathbb{D}_n = (\mathcal{X} \times \mathcal{Y})^n \subset \mathbb{D}$: set of all finite data sets of size n

 $\mathbb{D} = \bigcup_{n \in \mathbb{N}} (\mathcal{X} \times \mathcal{Y})^n$: set of all finite data sets

 $\mathcal{D} = \left(\left(\mathbf{x}^{(1)}, y^{(1)} \right), \dots, \left(\mathbf{x}^{(n)}, y^{(n)} \right) \right) \in \mathbb{D}_n$: data set with n observations

 $\mathcal{D}_{\mathsf{train}}$, $\mathcal{D}_{\mathsf{test}} \subset \mathcal{D}$: data for training and testing (often: $\mathcal{D} = \mathcal{D}_{\mathsf{train}} \ \dot{\cup} \ \mathcal{D}_{\mathsf{test}}$)

 $(\mathbf{x}^{(i)}, y^{(i)}) \in \mathcal{X} \times \mathcal{Y}$: i -th observation or instance

 $o_k^{(i)} = \overbrace{(0,0,...,1,0,0,...)}^{k-1} \underbrace{(0,0,...)}^{n-k} \in \{0,1\}^n$: class vector for i-th observation of class k

 \mathbb{P}_{xy} : joint probability distribution on $\mathcal{X} \times \mathcal{Y}$

 $\pi_k = \mathbb{P}(y = k)$: **prior probability** for class k In case of binary labels we might abbreviate: $\pi = \mathbb{P}(y = 1)$.

Model and Learner

Model / hypothesis: $f: \mathcal{X} \to \mathbb{R}^g$, $\mathbf{x} \mapsto f(\mathbf{x})$ is a function that maps feature vectors to predictions, often parametrized by $\boldsymbol{\theta} \in \Theta$ (then we write $f_{\boldsymbol{\theta}}$, or, equivalently, $f(\mathbf{x} \mid \boldsymbol{\theta})$).

 $\Theta \subset \mathbb{R}^d$: parameter space

 $\theta = (\theta_1, \theta_2, ..., \theta_d) \in \Theta$: model **parameters** Some models may traditionally use different symbols.

 $\mathcal{H} = \{f : \mathcal{X} \to \mathbb{R}^g \mid f \text{ belongs to a certain functional family} \}$: hypothesis space – set of functions to which we restrict learning

Learner $\mathcal{I}: \mathbb{D} \times \Lambda \to \mathcal{H}$ takes a training set $\mathcal{D}_{\mathsf{train}} \in \mathbb{D}$ and produces a model $f: \mathcal{X} \to \mathbb{R}^g$, its hyperparameters set to $\lambda \in \Lambda$. For a parametrized model this can be adapted to $\mathcal{I}: \mathbb{D} \times \Lambda \to \Theta$

 $\Lambda = \Lambda_1 \times \Lambda_2 \times ... \times \Lambda_\ell \subset \mathbb{R}^\ell$, where $\Lambda_j = (a_j, b_j), \quad a_j, b_j \in \mathbb{R}$, $j = 1, 2, ..., \ell$: hyperparameter space

 $oldsymbol{\lambda}=(\lambda_1,\lambda_2,...,\lambda_\ell)\in oldsymbol{\Lambda}:$ model hyperparameters

 $\pi_k(\mathbf{x}) = \mathbb{P}(y = k \mid \mathbf{x}) \in [0, 1]$: **posterior probability** for class k, given \mathbf{x} (in a binary case we might abbreviate: $\pi(\mathbf{x}) = \mathbb{P}(y = 1 \mid \mathbf{x})$).

 $h(\mathbf{x}): \mathbb{R}^g \to \mathcal{Y}:$ **prediction function** for classification that maps class scores / posterior probabilities to discrete classes

 $\epsilon = y - f(\mathbf{x})$ or $\epsilon^{(i)} = y^{(i)} - f(\mathbf{x}^{(i)})$: (i-th) residual in regression

 $yf(\mathbf{x})$ or $y^{(i)}f(\mathbf{x}^{(i)})$: margin for (i-th) observation in binary classification

 \hat{y} , \hat{f} , \hat{h} , $\hat{\pi}_k(\mathbf{x})$, $\hat{\pi}(\mathbf{x})$ and $\hat{\boldsymbol{\theta}}$

The hat symbol denotes **learned** functions and parameters.

Loss and Risk

 $L: \mathcal{Y} imes \mathbb{R}^{m{g}}
ightarrow \mathbb{R}^+_0:$ loss function

Quantifies "quality" of prediction $f(\mathbf{x})$ (or $\pi_k(\mathbf{x})$) for single \mathbf{x} .

 $\mathcal{R}_{\mathsf{emp}}:\mathcal{H} o \mathbb{R}:$ empirical risk

The ability of a model f to reproduce the association between \mathbf{x} and \mathbf{y} that is present in the data \mathcal{D} can be measured by the summed loss:

$$\mathcal{R}_{emp}(f) = \sum_{i=1}^{n} L\left(y^{(i)}, f\left(\mathbf{x}^{(i)}\right)\right)$$

Learning then amounts to **empirical risk minimization** – figuring out which model \hat{f} has the smallest summed loss.

Since f is usually defined by **parameters** θ , this becomes:

$$\hat{oldsymbol{ heta}} = \mathop{\mathrm{arg\,min}}_{oldsymbol{ heta} \in \Theta} \mathcal{R}_{\mathsf{emp}}(oldsymbol{ heta})) = \mathop{\mathrm{arg\,min}}_{oldsymbol{ heta} \in \Theta} \sum_{i=1}^n L\left(y^{(i)}, f\left(\mathbf{x}^{(i)} \mid oldsymbol{ heta}
ight)
ight),$$
 where $\mathcal{R}_{\mathsf{emp}} : \Theta o \mathbb{R}$.

Components of Learning

Learning = Hypothesis space + Risk + Optimization = $\mathcal{H} + \mathcal{R}_{emp}(\theta) + arg \min_{\theta \in \Theta} \mathcal{R}_{emp}(\theta)$

Regression Losses

L2 loss / squared error:

- ► $L(y, f(x)) = (y f(x))^2$ or $L(y, f(x)) = 0.5(y f(x))^2$
- ► Convex and differentiable
- ► Tries to reduce large residuals (loss scaling quadratically)
- ► Optimal constant model: $\hat{f}(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} y^{(i)} = \bar{y}$

L1 loss / absolute error:

- $ightharpoonup L(y, f(\mathbf{x})) = |y f(\mathbf{x})|$
- ► Convex and more robust
- Non-differentiable for $y = f(\mathbf{x})$, optimization becomes harder
- ► Optimal constant model: $\hat{f}(\mathbf{x}) = \text{med}(y^{(i)})$

Classification Losses

Brier score (binary case)

$$L(y, \pi(\mathbf{x})) = (\pi(\mathbf{x}) - y)^2$$
 for $\mathcal{Y} = \{0, 1\}$

Log-loss / Bernoulli loss / binomial loss (binary case)

For
$$\mathcal{Y} = \{0, 1\}$$
: $L(y, \pi(\mathbf{x})) = -y \log(\pi(\mathbf{x})) - (1 - y) \log(1 - \pi(\mathbf{x}))$
For $\mathcal{Y} = \{-1, +1\}$: $L(y, \pi(\mathbf{x})) = \log(1 + (\frac{\pi(\mathbf{x})}{1 - \pi(\mathbf{x})})^{-y})$

For
$$\mathcal{Y}=\{0,1\}$$
: $L(y,f(\mathbf{x}))=-y\cdot f(\mathbf{x})+\log(1+\exp(f(\mathbf{x})))$
For $\mathcal{Y}=\{-1,+1\}$: $L(y,f(\mathbf{x}))=\log(1+\exp(-y\cdot f(\mathbf{x})))$

Brier score (multi-class case)

$$L(y, \pi(\mathbf{x})) = \sum_{k=1}^{g} (\pi_k(\mathbf{x}) - o_k)^2$$

Log-loss (multi-class case)

$$L(y, \pi(\mathbf{x})) = -\sum_{k=1}^{g} o_k \log(\pi_k(\mathbf{x}))$$

Classification

Classification usually means to construct g discriminant functions: $f_1(\mathbf{x}), \ldots, f_g(\mathbf{x})$, so that we choose our class as

$$h(\mathbf{x}) = \operatorname{arg\,max}_{k \in \{1, \dots, g\}} f_k(\mathbf{x})$$

Linear Classifier: functions $f_k(\mathbf{x})$ can be specified as linear functions

Binary classification: If only 2 classes $(\mathcal{Y} = \{0,1\})$ or $\mathcal{Y} = \{-1,+1\}$ exist, we can use a single discriminant function $f(\mathbf{x}) = f_1(\mathbf{x}) - f_2(\mathbf{x})$.