Számítógépes alkalmazások Alapok

Soós Sándor

Nyugat-magyarországi Egyetem Simonyi Károly Műszaki, Faanyagtudományi és Művészeti Kar Informatikai és Gazdasági Intézet

E-mail: soossandor@inf.nyme.hu

Sopron, 2015.

Tartalomjegyzék

- Bevezetés
- 2 Alapfogalmak
 - Kettes számrendszer
 - Logikai és aritmetikai műveletek
 - A rendszerszemlélet
- A számítógép működése
 - Kódolás, kódrendszerek
 - Számok kódolása
- Befejezés

Miről lesz szó a mai órán?

- A számítógépek működésének alapjai
- Kettes számrendszer
- Logikai alapműveletek
- A rendszer fogalma, rendszerszemlélet
- Kódolás, kódrendszerek, számok kódolása

Outline

- Bevezetés
- 2 Alapfogalmak
 - Kettes számrendszer
 - Logikai és aritmetikai műveletek
 - A rendszerszemlélet.
- A számítógép működése
 - Kódolás, kódrendszerek
 - Számok kódolása
- 4 Befejezés

Kettes számrendszer

- Mi az a kettes számrendszer?
- Miért jó, ha ezt használjuk a számítógép működésének alapjául?
- Két számjegy (0, 1) ⇔ Kétállapotú jelenségek (áram, mágnesség)
- Az áramkörök modellezhetők a matematikai logika elméletével

Bináris számjegy	Áram	Mágnesség	
0	nincs áram (0V)	pozitív	
1	van áram (5V, 3V)	negatív	

Outline

- Bevezetés
- 2 Alapfogalmak
 - Kettes számrendszer
 - Logikai és aritmetikai műveletek
 - A rendszerszemlélet
- A számítógép működése
 - Kódolás, kódrendszerek
 - Számok kódolása
- 4 Befejezés

Logikai műveletek igazságtáblája l

 Negáció – NOT (egyváltozós) ellentettjére változtatja a logikai értéket

Α	$\neg A$
0	1
1	0

És – AND (kétváltozós) igaz, ha mindkét operandus igaz

Α	В	$A \wedge B$
0	0	0
0	1	0
1	0	0
1	1	1

Logikai műveletek igazságtáblája II

Vagy – OR (kétváltozós) igaz, ha valamelyik operandus igaz

Α	В	$A \vee B$
0	0	0
0	1	1
1	0	1
1	1	1

Logikai műveletek igazságtáblája III

 Kizáró vagy – XOR (kétváltozós) igaz, ha pontosan az egyik operandus igaz

Α	В	A xor B
0	0	0
0	1	1
1	0	1
1	1	0

Soós Sándor

Aritmetikai műveletek

Egybites szorzás kettes számrendszerben

Α	В	$A \times B$
0	0	0
0	1	0
1	0	0
1	1	1

2 Egybites összeadás kettes számrendszerben

Α	В	A+B
0	0	00
0	1	01
1	0	01
1	1	10

Kapcsolat a logikai és az aritmetikai műveletek között

- A szorzás műveleti táblája megegyezik az És AND művelet igazságtáblájával
- Az összeadás felső bitjét az És AND, az alsó bitjét a Kizáró vagy – XOR igazságtáblája szolgáltatja
- A több-bites aritmetikai műveleteket hasonlóképpen összerakhatjuk a logikai műveletekből
- A logikai műveletek könnyen megvalósíthatók elektronikai alkatrészekkel (ÉS-kapu, VAGY-kapu, stb.)
- Így tudunk számolni elektronikus áramkörökkel
- A processzor logikai kapuk hálózatából épül fel

Outline

- Bevezetés
- 2 Alapfogalmak
 - Kettes számrendszer
 - Logikai és aritmetikai műveletek
 - A rendszerszemlélet
- A számítógép működése
 - Kódolás, kódrendszerek
 - Számok kódolása
- 4 Befejezés

A rendszer fogalma

- Rendszernek nevezzük alkotóelemek és ezek kapcsolatainak olyan együttesét, amelyek az adott vizsgálat szempontjából összetartoznak
- A rendszerek kisebb alrendszerekből, és tovább nem bontható alapelemekből épülnek fel
- Alapelemnek nevezzük a rendszer azon alkotóelemeit, amelyeket az aktuális vizsgálatban nem bontunk tovább kisebb elemekre
- Példák: autó, számítógép, ember
- Vizsgáljuk meg ezeket a rendszereket!
- Rendszerszemlélet

A rendszerek bonyolultsága

- Bonyolultság szempontjából két csoportba oszthatjuk a rendszereket:
 - egyszerű rendszer:
 - kisszámú alapelemből felépülő rendszer
 - könnyen áttekinthető, vizsgálható
 - összetett rendszer:
 - nagyszámú alkotóelemből és/vagy alrendszerekből felépülő rendszer
 - a rendszer vizsgálatához célszerű részrendszerekre bontani
- A mérnöki rendszerek vizsgálatának alapvető módszere a részekre bontás
- Minden rendszer vizsgálható ezzel a módszerrel?

A rendszerek bonyolultsága

- A rendszer nem egyenlő a részeinek összegével!
- Minél összetettebb egy rendszer, annál nagyobb a különbség a kettő között
- Mi a különbség?
- Kapcsolatok!!!
- Hogyan vizsgálhatók az összetett rendszerek?
 - Modellezés
 - Absztrakció
 - Kiválasztjuk a rendszer azon jellemzőit, amelyek a vizsgálat szempontjából fontosak
 - Felépítünk egy másik rendszert (modell), ami egyszerűbb a vizsgált rendszernél, de a kiválasztott jellemzőkben megegyezik azzal
 - Ha jól választottuk ki a fontos jellemzőket, és jól építjük fel a modellt, akkor annak vizsgálatával fontos információkat szerezhetünk a vizsgált rendszerről

A számítógép, mint rendszer

- A számítógép alkotóelemeit két nagy csoportba soroljuk:
- Hardver:
 - hardware: kemény áru
 - a számítógépet alkotó kézzel fogható alkatrészek összefoglaló neve
 - elektronikus áramkörök, mechanikus eszközök, kábelek, perifériák, stb.
 - önmagában működésképtelen
- Szoftver:
 - software: lágy áru
 - a számítógépen futó algoritmusok, programok és adatok összessége
 - a szoftver működteti a számítógép hardver eszközeit
- Ebben a tárgyban általában a szoftverrel fogunk foglalkozni

Analóg-digitális technika

- Analógnak nevezzük azokat az eszközöket, eljárásokat, amelyek folytonos mennyiségekkel dolgoznak
- Digitálisnak nevezzük azokat az eszközöket, eljárásokat, amelyek az adatokat diszkrét (nem folytonos) értékekkel, véges sok számjeggyel közelítik
- Digitális ábrázolás valamely változó értékének diszkrét ábrázolása véges sok számjeggyel
- A természetben az adatok általában analóg formában vannak jelen, hőmérséklet, áramerősség, feszültség, színek (a fény hullámhossza)
- A számítógépben általában digitális adatokkal dolgozunk
- Szükség van az adatok átalakítására

Adatok átalakítása

- 4 Analóg-digitális (A/D) átalakítás, A/D konverter:
 - mintavételezés: a folytonos jelből véges sok helyen mintát veszünk
 - kvantálás: a minta értéktartományát diszkrét intervallumokra osztjuk és minden intervallumot egy kijelölt elemével reprezentálunk
- Digitális-analóg (D/A) átalakítás, D/A konverter:
 - a digitális jelből analóg (folytonos) jelet állít elő
- Hol használunk minden nap analóg-digitális átalakítást mindkét irányban?
 - Modem, kábelmodem
 - A telefon és a kábeltévé analóg jelet továbbít

Adatok átalakítása

- Analóg-digitális (A/D) átalakítás, A/D konverter:
 - mintavételezés: a folytonos jelből véges sok helyen mintát veszünk
 - kvantálás: a minta értéktartományát diszkrét intervallumokra osztjuk és minden intervallumot egy kijelölt elemével reprezentálunk
- Digitális-analóg (D/A) átalakítás, D/A konverter:
 - a digitális jelből analóg (folytonos) jelet állít elő
- Hol használunk minden nap analóg-digitális átalakítást mindkét irányban?
 - Modem, kábelmodem
 - A telefon és a kábeltévé analóg jelet továbbít

SZALK - Alapok

Outline

- Bevezetés
- 2 Alapfogalmak
 - Kettes számrendszer
 - Logikai és aritmetikai műveletek
 - A rendszerszemlélet.
- A számítógép működése
 - Kódolás, kódrendszerek
 - Számok kódolása
- 4 Befejezés

Kódolás, kódrendszerek

- Az adatok feldolgozásához szükség van arra, hogy a számítógép számára érthető formára hozzuk azokat
- Ezt a folyamatot nevezzük kódolásnak
- Általában olyan kódolásokat használunk, amikor az adat és a kódja között kölcsönösen egyértelmű megfeleltetés áll fenn
- Ismerünk olyan kódrendszert, ami nem kölcsönösen egyértelmű?

 - veszteséges tömörítés, pl. JPEG képformátum

Kódolás, kódrendszerek

- Az adatok feldolgozásához szükség van arra, hogy a számítógép számára érthető formára hozzuk azokat
- Ezt a folyamatot nevezzük kódolásnak
- Általában olyan kódolásokat használunk, amikor az adat és a kódja között kölcsönösen egyértelmű megfeleltetés áll fenn
- Ismerünk olyan kódrendszert, ami nem kölcsönösen egyértelmű?
 - természetes nyelvek
 - természetes nyelvek fordítása
 - többek között ezért sem tudunk beszéddel kommunikálni a számítógépekkel
 - veszteséges tömörítés, pl. JPEG képformátum
- Milyen kódrendszereket ismerünk?

Elterjedt karakterkódolási rendszerek

- ASCII:
 - 8 bites kódrendszer
 - 2⁸ = 256 jelet tud megkülönböztetni
 - eredetileg 7 bites volt, az első 128 jel szabványos, egységes
 - a második 128 karakterre több különböző kódkiosztás létezik
- UNICODE:
 - 16 bites kódrendszer
 - 2¹⁶ = 65536 jelet tud megkülönböztetni
 - "minden" nyelv összes jele elfér benne
- UTF8:
 - Általános kódolási rendszer
 - Minden karaktert képes kódolni 1-4 byte hosszan
 - Változó hosszúságú kódokat használ
 - A kódolás leírása: http://en.wikipedia.org/wiki/UTF-8
 - Az UTF-8 kódok: http://www.utf8-chartable_de/

Karakterosztályok

- alfabetikus: az angol ábécé kis és nagybetűi (a, b, c, ..., A, B, C, ...)
- numerikus: számjegyek: (0, 1, 2, ..., 9)
- alfanumerikus: alfabetikus vagy numerikus, időnként beleértünk néhány írásjelet is, pl. _
- egyéb jelek: írásjelek, nemzeti karakterek, stb.

Outline

- Bevezetés
- 2 Alapfogalmak
 - Kettes számrendszer
 - Logikai és aritmetikai műveletek
 - A rendszerszemlélet.
- A számítógép működése
 - Kódolás, kódrendszerek
 - Számok kódolása
- 4 Befejezés

Számok kódolása

- Kettes számrendszer (bináris)
- Tizenhatos számrendszer (hexadecimális)
- Átváltás kettes, tízes és tizenhatos számrendszer között
- BCD (Binary Coded Decimal/binárisan kódolt decimális)

Kettes számrendszer használata

						-				
128	64	32	16	8	4	2	1		10-es számrendszer	
0	1	0	0	0	1	0	0	=	$1 \times 64 + 1 \times 4 = 68_{(10)}$	
0	0	0	0	0	0	0	1	=	$1 \times 1 = 1_{(10)}$	
0	0	0	0	0	0	1	0		$1 \times 2 = 2_{(10)}$	
0	0	0	0	0	0	1	1	=	$1 \times 2 + 1 \times 1 = 3_{(10)}$	
0	0	0	0	0	1	0	0	=	$1 \times 4 = 4_{(10)}$	
1	1	1	1	1	1	0	0	=	252 ₍₁₀₎	
1	1	1	1	1	1	0	1	=	253 ₍₁₀₎	
1	1	1	1	1	1	1	0		254 ₍₁₀₎	
1	1	1	1	1	1	1	1	=	255 ₍₁₀₎	

Egész számok átalakítása tízes-ről kettes számrendszerre

- az egész számot addig osztjuk 2-vel, amíg a hányados 0 nem lesz
- a hányadost írjuk a bal oldali oszlopba
- a maradékot a jobb oldaliba
- az eredményt a jobb oldali oszlopban kapjuk alulról felfelé

hányados	maradék
73	÷2
36	1
18	0
9	0
4	1
2	0
1	0
0	1

$$73_{(10)} = 1001001_{(2)}$$

A törtrész átalakítása

- a törtrészt addig szorozzuk
 2-vel, amíg a szorzat 1,0
 nem lesz
- ha ez nem következik be, akkor a kívánt pontosságig folytatjuk a szorzást
- a szorzat egészrészét írjuk a bal oldali oszlopba
- a törtrészt a jobb oldaliba
- az eredményt a bal oldali oszlopban kapjuk felülről lefelé

egészrész	törtrész
×2	0,125
0	0,25
0	0,5
1	0

$$0,125_{(10)} = 0,001_{(2)}$$

Átalakítás bináris, oktális és hexadecimális számrendszer között

- korábban láttuk, hogy a számítógép számára a kettes számrendszer a legalkalmasabb
- a bináris számok leírása nagyon hosszú, ezért körülményesen használhatók
- az átalakítás tízes számrendszerről elég körülményes
- ezen a problémán segít a 8-as (oktális) és a 16-os (hexadecimális) számrendszer használata
- Miért?
 - vegyük észre, hogy $8_{(10)}=1000_{(2)}$ és $16_{(10)}=10000_{(2)}$, azaz a 8 és a 16 "kerek" számok kettes számrendszerben, ahogyan a tízes számrendszerben a száz, az ezer, vagy a millió
 - Hogyan írnánk át egy számot tízes számrendszerből ezresbe?

Ezres tagolás

tízes számrendszerben így szoktuk leírni a nagy számokat:

123 456 789

 ha a háromjegyű számcsoportokat egy-egy számjegynek tekintjük, akkor ezzel átírtuk a számot ezres számrendszerbe:

[123] [456]
$$[789]_{(1000)}$$

 ha ugyanezt megtesszük a bináris számokkal, akkor ugyanilyen egyszerűen átírhatunk számokat oktális, vagy hexadecinális számrendszerbe

Bináris-oktális átalakítás

 Nyolcas számrendszerben 8 számjegyre van szükségünk, ezért használhatjuk a megszokott számjegyeket 0-tól 7-ig

például:

decimális: 42₍₁₀₎
bináris: 101 010₍₂₎

• oktális: 52₍₈₎

oktális számjegy	bináris szám
0	000
1	001
2	010
3	011
4	100
5	101
6	110
7	111

Bináris-hexadecimális átalakítás

- Tizenhatos számrendszerben 16 számjegyre van szükség 0-tól 15-ig
- 10-től 15-ig az ábécé első 6 betűjét használjuk (A-F)

hexa szjegy	bináris szám	hexa szjegy	bináris szám
0	0000	8	1000
1	0001	9	1001
2	0010	A (10)	1010
3	0011	B (11)	1011
4	0100	C (12)	1100
5	0101	D (13)	1101
6	0110	E (14)	1110
7	0111	F (15)	1111

Bináris-hexadecimális átalakítás

decimális	42 ₍₁₀₎			
bináris	00101010 ₍₂₎			
bináris tagolva	0010 1010(2)			
hexadecimális tagolva	2 A ₍₁₆₎			
hexadecimális	2A ₍₁₆₎			

- Melyiket használjuk az oktális, vagy a hexadecimális számrendszert?
- A ma használatos számítógépek 8 bites szervezésűek, ezért a hexadecimális írásmód a legcélszerűbb
- Egy bájtnyi (8 bit) adatot két hexadecimális számjeggyel írunk le

BCD - Binary Coded Decimal

- Binárisan kódolt decimális számábrázolás
- az előző ötletet alkalmazhatjuk bináris és decimális számrendszerek között is

decimális	1789 ₍₁₀₎					
decimális tagolva	1	7	8	9(10)		
bináris tagolva	0001	0111	1000	1001(2)		

- ez egy kicsit pazarló ábrázolás, mert a 4 biten elérhető 16 lehetőség közül csak 10-et használunk fel
- Pakolt BCD kód esetén két-két BCD számjegy 1 bájtba kerül
- Zónázott BCD kód esetén minden számjegyet külön bájtban tárolunk, ez tovább csökkenti a kód tömörségét, de egyszerűbbé teszi az aritmetikát

33 / 40

Negatív számok kezelése

- az eddig tárgyalt módszerekkel tetszőleges pozitív egész számokat tudunk kezelni
- a használt bitek száma meghatározza az ábrázolható számok méretét, de bármekkora számokat megvalósíthatunk
- Mit tegyünk a negatív számokkal?
 - minden számhoz külön tároljuk az előjelét
 - minden alkalommal, amikor használni akarjuk a számot, meg kell vizsgálni az előjelet, és attól függően kell használni az értéket
 - építsük be az előjelet a számok ábrázolásába, lehetőleg úgy, hogy jól működjön az aritmetika
 - a számok ábrázolásához felhasználható bitek közül egyet lefoglalunk (általában a legmagasabb helyiértékűt), és ezen tároljuk az előjelet, 0: pozitív, 1: negatív
 - az ábrázolható számok abszolútértékét ezzel megfeleztük
 - pl. $0, \ldots, +255$ helyett $-128, \ldots, +127$

Komplemensképzés

- ezzel a módszerrel úgy ábrázoljuk a negatív számokat, hogy azokkal ugyanúgy végezhessünk műveleteket, mint a pozitív számokkal
- komplemens: az a szám, amelyik az ábrázolható legnagyobb számnál eggyel nagyobbra egészíti ki az adott számot
- jele: \overline{x}
 - ha tízes számrendszerben háromjegyű számokkal dolgozunk
 - a legnagyobb ábrázolható szám: 999
 - egy a szám komplemense: $\overline{a} = 1000 a$
 - pl. $\overline{196} = 1000 196 = 804$

Kettes komplemens

- Kettes számrendszerben a következőképpen képezhetjük a kettes komplemenst:
 - a legkisebb helyiértéktől indulva, végigmegyünk a biteken
 - amíg 0 biteket találunk, azokat változatlanul leírjuk
 - amikor 1-est találunk, azt még szintén leírjuk, de a további biteket invertáljuk
- Egyes komplemens: a bináris szám bitenkénti negáltja, azaz minden bitjét az ellenkezőjére állítjuk
- ha az egyes komplemenshez egyet hozzáadunk, megkapjuk a kettes komplemenst

Példa komplemensképzésre

Például 8 bites számokkal dolgozunk,

$$11111111_{(2)} + 1 = 100000000_{(2)} = 256_{(10)}$$

-ra kell kiegészíteni

X	10111000 ₍₂₎	184 ₍₁₀₎
\overline{X}	01001000 ₍₂₎	72 ₍₁₀₎
x egyes komplemense	01000111 ₍₂₎	71 ₍₁₀₎
$oldsymbol{x}$ egyes kompl. $+1$	01001000 ₍₂₎	72 ₍₁₀₎
$x + \overline{x}$	100000000 ₍₂₎	256 ₍₁₀₎

SZALK - Alapok

Előjeles számok ábrázolása kettes komplemens kódban

- vegyünk egy kétbájtos számot
- a legmagasabb helyiértékű biten (16.) tároljuk az előjelet, 0: pozitív, 1: negatív
- ullet a legnagyobb ábrázolható szám: ${\it N_{max}}=2^{15}-1=32767$

16.	15.	14.	 6.	5.	4.	3.	2.	1.	
0	0	0	 1	1	0	1	0	0	$=52_{(10)}$
1	1	1	 0	0	1	0	1	1	egyes kompl.
0	0	0	 0	0	0	0	0	1	+1
1	1	1	 0	0	1	1	0	0	−52 kódolva

Számolás kettes komplemens kódban

16.	15.	14.	 6.	5.	4.	3.	2.	1.	
1	1	1	 0	0	1	1	0	0	$-52_{(10)}$
0	0	0	 1	1	0	1	1	1	+55(10)
0	0	0	 0	0	0	0	1	1	-52 + 55 = 3

Befejezés

Köszönöm a figyelmet!

