Model Categories

Narendran E

Learning Model categories from Quillen's book. Recording down stuff to refer.

We saye \mathscr{C} is a model category if \mathscr{C} is a cat with three classes of maps

- fibrations
- cofibrations
- weak equivalences

satisfying following axioms

M0 There exists finite limits and colimits.

M1 Given a commutative diagram

where

i is a cofibration and a weak equivalence(trivial cofibration) and p is a fibration or

i is a cofibration and p is a fibration(trivial fibration) and weak equivalence,

then \exists a lift $B \to X$.

M2 Any map f may be factored as f = pi where i=trivial cofibration and p=fibration and

f = pi where i=cofibration and p =trivial fibration.

M3 Fibrations are stable under composition, base change and any isomorphism is a fibration.

Cofibrations are stable under composition, cobase change and an isomorphism is a cofibration.

M4 The base extension of a map which is a trivial fibration is a weak equivalence.

The cobase extension of a map which is trivial fibration is a weak equivalence.

M5 if $X \xrightarrow{f} Y \xrightarrow{g} Z$ is in \mathscr{C} . Then if two of f, g, gf are weak equivalences, so is the third. Any isomorphism is a weak equivalence.

An intial object in a category \mathscr{C} is an object ϕ such that for all objects C in \mathscr{C} there is a unique morphism $\phi \to C$. The dual notion of this is the terminal object *. These objects

exist in \mathscr{C} because of M0 and they are unique.

X is cofibrant if $\phi \to X$ is a cofibration. X is fibrant if $X \to e$ is a fibration.

Let $f, g : A \to B$ be maps. We say that f is left-homtopic to g if there is a diagram of the form where σ is a weak equivalence.

$$\begin{array}{ccc}
A \lor A & \xrightarrow{f+g} B \\
\downarrow_{\nabla} & & \uparrow_{h} \\
A & \longleftarrow & \tilde{A}
\end{array} \tag{1}$$

Dually we say that f is right homotopic to g if there is a diagram of the form where s is a weak equivalence.

$$\tilde{B} \stackrel{s}{\longleftarrow} B$$

$$\downarrow k \downarrow (d_0, d_1) \qquad \uparrow \triangle$$

$$A \xrightarrow{(f,g)} B \times B$$
(2)

By cylinder object for an object A we mean an object $A \times I$ together with maps

$$A \vee A \xrightarrow{\partial_0 + \partial_1} A \times I \xrightarrow{\sigma} A$$

with $\sigma(\partial_0 + \partial_1) = \nabla_A$ such that $\partial_0 + \partial_1$ is a cofibration and σ is a weak equivalence. Dually, a path object for B shall be an onject B^I together with a factorization

$$B \xrightarrow{s} B^I \xrightarrow{(d_0,d_1)} B \times B$$

of \triangle_B where s is a weak equivalence and (d_0, d_1) is a fibration.

By a left homotopy from f to g, we mean a diagram 1 where $\partial_0 + \partial_1$ is a cofibration and hence \tilde{A} is a cylinder object for A. This is also saying that there exists a cylinder object such that the map $A \vee B \xrightarrow{f+g} B$ extends to a map $h: A \times I \to B$ with obvious commutative relations

Similarly a right homotopy from f to g is a diagram 2 where \tilde{B} is a path object for B. Equivalently the map $A \xrightarrow{(f,g)} B \times B$ extends to a map $B^I \to B \times B$ with relevant commutative relations.

lemma 1. If $f, g \in \text{hom}(A, B)$ and $f \stackrel{l}{\sim} g$, then thre is a left homotopy $h : A \times I \to B$ from f to g.

lemma 2. Le A be a cofibrant object and let $A \times I$ be a cylinder object for A. Then $\partial_0 : A \to A \times I$ and $\partial_1 : A \to A \times I$ are trivial cofibrations.

lemma 3. Let A be cofibrant and let $A \times I$ and $A \times I'$ be two cylinder objects for A. Then the result of gluing $A \times I$ and $A \times I'$ by identification $\partial_1 A = \partial'_0 A$ defined precisely to be the object \tilde{A} is also a cylinder object.

lemma 4. If A is cofibrant, then $\stackrel{l}{\sim}$ is an equivalence relation on hom(A, B).

lemma 5. Let A be cofibrant and let $f, g \in \text{hom}(A, B)$ Then

- 1. $f \stackrel{l}{\sim} g \implies f \stackrel{r}{\sim} g$ (dual)If B is fibrant then $f \stackrel{r}{\sim} g \implies f \stackrel{l}{\sim} g$
- 2. $f \stackrel{r}{\sim} g \implies$ there exists a right homotopy $k: A \to B^I$ from f to g with $s: B \to B^I$ a trivial cofibration.
- 3. If $u: B \to C$, then $f \stackrel{r}{\sim} g \implies uf \stackrel{r}{\sim} ug$

Let A and B be objects of \mathscr{C} let $\pi^r(A, B)$ (similar for $\pi^l(A, B)$) be the set of equivalence classes of hom(A, B) with repsect to the equivalence relation generated by $\overset{r}{\sim}$. When A cofibrant and B is fibrant, in which case left and right homotopies coincide and are already equivalence relations, we shall denote the relation by \sim , call it homotopy and $\pi_0(A, B)$.

lemma 6. If A is cofibrant, then composition in $\mathscr C$ induces a map $\pi^r(A,B) \times \pi^r(B,C) \to \pi^r(A,C)$.

lemma 7. Let A be cofibrant and let $p: X \to Y$ be a trivial fibration. Then p induces a bijection $p_*: \pi^l(A, X) \to \pi^l(A, Y)$.

(dual) Let B be fibrant and $i:X\to Y$ be a tivial cofibration, then i induces a bijection $i_*:\pi^r(Y,B)\simeq\pi^r(X,B)$

Let $\mathscr{C}_c, \mathscr{C}_f, \mathscr{C}_{cf}$ be full subcategories¹ consisting of the cofibrant, fibrant and both cofibrant and fibrant objects of \mathscr{C} respectively. Define

$$\pi \mathscr{C}_c$$
 with objects = $Obj(\mathscr{C}_c)$ and morphisms = $\pi^r(A, B)$

If we denote the right homotopy class of a map $f:A\to B$ by \bar{f} we obtain a functor $\mathscr{C}_c\to\pi\mathscr{C}_c$ given by $X\to X, f\to \bar{f}$. Similarly we define $\pi_{\mathscr{C}_f}$ and $\pi\mathscr{C}_{cf}$.

Let $\mathscr C$ be an arbitrary category and let S be a subclass of the class of maps of $\mathscr C$. By localization of $\mathscr C$ with respect to S we mean a category $S^{-1}\mathscr C$ together with a functor $\gamma:\mathscr C\to S^{-1}\mathscr C$ having the following universal porperty: For every $s\in S$, $\gamma(s)$ is an isomorphism; given any functor $F:\mathscr C\to\mathscr B$ with F(s) an isomorphism for all $s\in S$ there is a unique functor $\theta:S^{-1}\mathscr C\to\mathscr B$ such that $\theta\circ\gamma=F$.

Let \mathscr{C} be a model category. Then the homotopy category of \mathscr{C} is the localization of with respect to the class of weak equivalences and is denoted by $\gamma:\mathscr{C}\to Ho\mathscr{C}$. $\gamma:\mathscr{C}_c\to Ho\mathscr{C}_c$ and $\gamma:\mathscr{C}_f\to Ho\mathscr{C}_f$ will denote the localization of \mathscr{C}_c and \mathscr{C}_f with repect to the class of maps in the respective categories which are weak equivalences in \mathscr{C} . $[X,Y]:= \hom_{Ho\mathscr{C}}(X,Y)$.

lemma 8. 1. Let $F: \mathscr{C} \to \mathscr{B}$ carry weak equivalences in \mathscr{C} 1nto isomorphisms in \mathscr{B} . If $f \stackrel{l}{\sim} g$ or $f \stackrel{r}{\sim} g$, then F(f) = F(g) in \mathscr{B} .

¹some objects but all morphisms

2. Let $F: \mathscr{C}_c \to \mathscr{B}$ carry weak equivalences in \mathscr{C}_c into isomorphisms in \mathscr{B} . If $f \stackrel{r}{\sim} g$, then F(f) = F(g) in \mathscr{B} .

The above lemma implies the functors $\gamma_c, \gamma_f, \gamma$ induce functors $\overline{\gamma_c}: \pi \mathcal{C}_c \to Ho\mathcal{C}_c, \overline{\gamma_f}: \pi \mathcal{C}_f \to Ho\mathcal{C}_f, \overline{\gamma}: \pi \mathcal{C}_{cf} \to Ho\mathcal{C}$.

The homotopy category is the category

Ho with objects =
$$Obj(\mathcal{C})$$
 and $hom_{Ho\mathcal{C}}(X,Y) = hom_{\pi\mathcal{C}_{cf}}(RQX,RQY) = \pi(RQX,RQY)$

For each object X choose a trivial fibration $p_X: Q(X) \to X$ with Q(X) cofibrant and a trivial cofibration $i_X: X \to R(X)$ with R(X) fibrant. For each map $f: X \to Y$, we may choose a map $Q(f): Q(X) \to Q(Y)$ and $R(f): R(X) \to R(Y)$. By mapping $X \to Q(X)$ or R(X) and $f \to \overline{Q(F)}$ or $\overline{R(f)}$ we get functors $\overline{Q}: \mathscr{C} \to \pi\mathscr{C}_c$ and $\overline{R}: \mathscr{C} \to \pi\mathscr{C}_f$. Some more math and we get a well-defined functor

$$\overline{RQ}: \mathscr{C} \to \pi\mathscr{C}_{cf}$$
$$X \to RQX$$
$$f \to \overline{RQ(f)}$$

Theorem 1. $Ho\mathcal{C}$, $Ho\mathcal{C}_c$, $Ho\mathcal{C}_f$ exist and there is a diagram of functors

where \hookrightarrow denotes a full embedding and $\stackrel{\sim}{\to}$ denotes an equivalence of categories. Furthermore if $(\overline{\gamma})^{-1}$ is a quasi-inverse² for $\overline{\gamma}$, then the fully faithful functor

$$Ho\mathscr{C}_c \xrightarrow{\sim} Ho\mathscr{C} \xrightarrow{(\overline{y})^{-1}} \pi\mathscr{C}_{cf} \hookrightarrow \pi\mathscr{C}_c$$

is right adjoint to $\overline{\gamma_c}$ and the fully faithful functor

$$Ho\mathscr{C}_f \xrightarrow{\tilde{\gamma}} Ho\mathscr{C} \xrightarrow{(\tilde{\gamma})^{-1}} \pi\mathscr{C}_{cf} \hookrightarrow \pi\mathscr{C}_{cf} \hookrightarrow \pi\mathscr{C}_{cf}$$

is left adjoint to $\overline{\gamma_f}$.

Corollary 1. If A is cofibrant and B is fibrant, then

$$\hom_{Ho\mathscr{C}}(A,B) = \pi(A,B)$$

The category \mathscr{C} can have different model structures on it, but same $Ho\mathscr{C}$, i.e. the weak equivalences are same but fibrations and cofibrations can be different.

²Definition