Rituraj Anand 19BEC1089

Programme	:	B Tech – ECE and ECM	Semester	:	Win 2022
Course	:	Essentials of Data Analytics Lab	Code	:	CSE3506
Faculty	:	Gobinath N	Slot	:	L51 + L52

Ex_06_K-Means Clustering

Importing packages:

rm(list = ls())

install.packages('cluster')

install.packages('ClusterR')

Setting working directories and reading csv file:

setwd("C:\\Users\\Rituraj Anand\\Desktop\\Sem6\\CSE3506\\LAB\\Lab 6")

dt=read.csv("seeds_K Means.csv")

summary(dt)

> summary(dt)						
ID	area	perineter	compactness	lengthOfKernel	widthOfKernel.	asymmetryCoefficient
Min. : 1.00	Min. :10.59	Min. :12,41	Min. :0.8081	Min. :4,899	Min. 12.630	Min. :0.7651
1st Qu.: 53.25	1st Qu.:12.27	Ist Qu.:13,45	1st Qu.:0.8569	1st Qu.:5.262	1st Qu.:2.944	1st Qu.:2.5615
Median :105.50	Median :14,36	Median :14.32	Median 10.8734	Median :5.524	Median 13,237	Median :3,5990
Mean :105.50	Mean :14.85	Mean :14.56	Mean :0.8710	Mean :5.629	Mean :3.259	Mean :3.7002
3rd Qu,:157-75	3rd Qu.:17.30	3rd Qu.:15.71	3rd Qu.:0.8878	3rd Qu.:5.980	3rd Qu.:3.562	3rd Qu.:4.7687
Max. :210.00	Max. :21.18	Max, :17,25	Max. :0.9183	Max. :6.675	Max. :4,033	Max. :8.4560
lengthOfKernelG	roove seedType	6				
Min. :4.519	Min. :1					
1st Qu.:5.045	Ist Qu.:1					
Median :5.223	Median :2					
Mean :5.408	Mean :2					
3rd Qu, :5.877	3rd Qu.:3					
Max. :6.550	Max. 13					

19BEC1089 Rituraj Anand

seed distribution based on compactness:

```
> dtSsystem=as.factor(dtScompactness)
```

K-mean clustering with these two

```
> #seed distr based on compactness
> pdt=dt[,c(4,9)]
> view(pdt)
> plot(pdt,main="Price based on compactness")
> km=kmeans(pdt,2) #
> Vlew(km)
> plot(pdt,col=(km5cluster+1)) # when k( ,3)
K-means clustering with 2 clusters of sizes 140, 70
Cluster means:
  compactness seedType
0.8817936 1.5
0.8494086 3.0
Within cluster sum of squares by cluster;
[1] 35.03508132 0.03267023
(between_55 / total_55 = 75.0 %)
Available components:
[1] "cluster"
[9] "ifault"
                                                                                    "tot.withinss" "betweenss" "size"
                         "centers"
                                            "totss"
                                                                "withinss"
                                                                                                                                                "iter"
```

	compactness	seedType
1	0.8710	
2	0.8611	- 3
3	0.9050	
4	0.8955	
5	0.9034	3
6	0.8951	
7	0.8799	
.8	0.8911	
.9	0.8747	- 8
10	0.8880	8
11	0.8696	8
12	0.8796	
13	0.8880	
14	0.8759	
15	0.8744	2
16	0.8993	

Showing 1 to 17 of 210 entries, 2 total columns

Rituraj Anand 19BEC1089

Since, there are three types of seeds,

Seed type based on compactness

We can see the distortion:

Elbow point~=3

Rituraj Anand 19BEC1089

```
Appendix:
Code:
rm(list = ls())
#install.packages('cluster')
#install.packages('ClusterR')
setwd("C:\\Users\\Rituraj Anand\\Desktop\\Sem6\\CSE3506\\LAB\\Lab 6")
dt=read.csv("seeds_K Means.csv")
View(dt)
summary(dt)
dt$system=as.factor(dt$compactness)
str(dt)
#seed distr based on compactness
pdt=dt[,c(4,9)]
plot(pdt,main="Seed type based on compactness")
km=kmeans(pdt,2) #
plot(pdt,col=(km$cluster+1)) # when k( ,3)
km
#checking for optimal 'k'
dt2=pdt
ss=(nrow(dt2)-1)*sum(apply(dt2,2,var))
for(i in 2:10) ss[i]=sum(kmeans(dt2,centers = i)$withinss)
```

Result and Inference:

plot(1:10,ss,type = 'b',xlab='k',ylab='distortion')

As the value of K increases, there will be fewer elements in the cluster. So average distortion will decrease. The lesser number of elements means closer to the centroid.

Hence, we saw the seed types and its distribution with proper inference through the distortion curve.

Rituraj Anand	19BEC1089