# Analyse de sentiments HMIN232M – Méthodes de la science des données

B. Rima E. Youssef T. Shaqura

M1 Informatique AIGLE

25 avril 2019

## Sommaire

- Pré-traitements
- Visualisation des données
- 3 Vectorisation et sélection des features
- 4 Cross-validation
- 6 Calibrage des hyperparamètres
- 6 Création des pipelines
- Conclusion

# Préparation à la tokenization

#### Pré-traitements



### Tokenisation et normalisation

#### Pré-traitements



### WordCloud

#### Visualisation des données



Figure – Les mots les plus fréquents dans les avis négatifs

On peut s'attendre à...

- Beaucoup d'ironies
- Phrases à polarités différentes dans les avis

### Vectorisation et sélection des features



Figure - Traitement des features

# Principe

#### Cross-validation



Candidats

### Résultats de la cross-validation

Cross-validation

| Modèle                 | score | $\sigma$ |
|------------------------|-------|----------|
| LinearSVC              | 92%   | 1%       |
| SGDClassifier          | 92%   | 1%       |
| LogisticRegression     | 91%   | 0.8%     |
| GaussianNB             | 84%   | 1%       |
| RandomForestClassifier | 81%   | 1%       |
| KNeighborsClassifier   | 79%   | 1%       |
| DecisionTreeClassifier | 75%   | 0.8%     |

# Principe

Calibrage des hyperparamètres

# Résultats du calibrage

#### Calibrage des hyperparamètres

| Modèle             | score | Meilleurs calibrages           |
|--------------------|-------|--------------------------------|
| LogisticRegression | 90%   | $C = 11.288$ ; penalty = $L_2$ |
| LinearSVC          | 90%   | C = 1                          |

# Pipeline pour Logistic Regression

#### Création des pipelines



# Résultats pour le dataset du challenge

Création des pipelines

$$\begin{pmatrix} 1770 & 230 \\ 190 & 1810 \end{pmatrix}$$

| Value        | Precision | Recall | F1-score | Support |
|--------------|-----------|--------|----------|---------|
| -1           | 90%       | 89%    | 89%      | 2000    |
| 1            | 89%       | 91%    | 90%      | 2000    |
| Micro avg    | 90%       | 90%    | 90%      | 4000    |
| Macro avg    | 90%       | 90%    | 89%      | 4000    |
| Weighted avg | 90%       | 90%    | 89%      | 4000    |

## Résultats pour le dataset IMDB

Création des pipelines

| Value        | Precision | Recall | F1-score | Support |
|--------------|-----------|--------|----------|---------|
| -1           | 87%       | 82%    | 85%      | 5000    |
| 1            | 83%       | 88%    | 85%      | 5000    |
| Micro avg    | 85%       | 85%    | 85%      | 10000   |
| Macro avg    | 85%       | 85%    | 85%      | 10000   |
| Weighted avg | 85%       | 85%    | 85%      | 10000   |

# Pipeline pour Gaussian Naive Bayes

### Création des pipelines



# Résultats pour le dataset du challenge

Création des pipelines

$$\begin{pmatrix} 1666 & 334 \\ 290 & 1710 \end{pmatrix}$$

| Value        | Precision | Recall | F1-score | Support |
|--------------|-----------|--------|----------|---------|
| -1           | 85%       | 83%    | 84%      | 2000    |
| 1            | 84%       | 85%    | 85%      | 2000    |
| Micro avg    | 84%       | 84%    | 84%      | 4000    |
| Macro avg    | 84%       | 84%    | 84%      | 4000    |
| Weighted avg | 84%       | 84%    | 84%      | 4000    |

## Résultats pour le dataset IMDB

Création des pipelines

$$\begin{pmatrix} 3634 & 1366 \\ 914 & 4086 \end{pmatrix}$$

| Value        | Precision | Recall | F1-score | Support |
|--------------|-----------|--------|----------|---------|
| -1           | 80%       | 73%    | 76%      | 5000    |
| 1            | 75%       | 82%    | 78%      | 5000    |
| Micro avg    | 77%       | 77%    | 77%      | 10000   |
| Macro avg    | 77%       | 77%    | 77%      | 10000   |
| Weighted avg | 77%       | 77%    | 77%      | 10000   |

## Schéma globale de nos traitements

#### Conclusion

