République Algérienne Démocratique et Populaire Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

USTHB Faculté d'Informatique

Introduction aux Réseaux Informatiques 2^{eme} année Ingéniorat Informatique

TD1

Exercice 01

Une image TV numérisée doit être transmise à partir d'une source qui utilise une matrice d'affichage de 450×500 pixels, chacun des pixels pouvant prendre 32 valeurs d'intensité différentes. On suppose que 30 images sont envoyées par seconde.

- Q1) Quel est le débit D de la source ?
- **Q2**) L'image TV est transmise sur une voie de largeur de bande 4,5 MHz et un rapport signal/bruit de 35 dB. Déterminer la capacité de la voie.

Exercice 02

Deux stations s'échangent de l'information via un satellite de communication situé à 36000 km de la surface de la terre.

La vitesse de propagation du signal sur le support de transmission (l'air) entre le satellite et une station terrestre est égale à celle de la lumière, c-à-d environ 300000 km/s.

Supposant que l'une des stations émet un message vers l'autre station, d'une taille de 800 bits et avec un débit binaire de 64 Kbit/s.

- Q1) Calculer alors le temps de transmission de ce message.
- Q2) Calculer le temps de transfert.

Satellite géostationnaire

Exercice 03

Une voie de transmission véhicule 16 signaux distincts (états).

Q1) Quelle est la quantité d'information binaire maximale pouvant être transportée par chaque signal ?

Sur une voie de transmission, on constate que le nombre de communications par heure est de 1,5 et que chaque communication a une durée moyenne de 360 secondes.

Q2) Quel est le trafic correspondant?

Exercice 04

On envoie la suite de bits : 01001110 en bande de base.

Quels sont les signaux correspondants en NRZ, RZ, Manchester et Manchester différentiel?

Exercice 05

Soit le signal analogique suivant, véhiculant le message binaire 011010001101 sur une ligne de transmission d'une capacité de 4000 bits/s.

- Q1) En déduire la valence du signal.
- Q2) Donner le procédé de modulation utilisé par le modem.
- O3) Calculer le débit binaire de la transmission.
- Q4) Proposer une technique de modulation pour permettre un débit égal à la capacité de la ligne de transmission.
- Q5) Représenter alors le nouveau signal utilisé.