Parallel Perspectives for the LinBox library

Clément PERNET

Symbolic Computation Group University of Waterloo

January 29, 2007

Parallel Perspectives for the LinBox library

Clément PERNET

Introduction

Principles
Organisation of the library

perspectives

Design considerations

Algorithmic perspectives

Organisation of the library
Dense computations

Parallelism perspectives

Design considerations

Algorithmic perspectives

onclusion

Introduction

The LinBox library
Principles
Organisation of the library
Dense computations
BlackBox computations

Parallelism perspectives
Design considerations

Algorithmic perspectives

Exact linear algebra

Clément PERNET

Parallel

Perspectives for the LinBox library

Introduction

Building block in exact computation:

Cryptography: sparse system resolution

Representation theory: null space

Topology: Smith form

Graph theory: characteristic polynomial

Libraries

finite fields: NTL, GMP, Lidia, Pari, ...

polynomials: NTL, ...

integers: GMP, ...

Parallel Perspectives for

the LinBox library

0.0....

Introduction

Principles
Organisation of the library

Dense computations
BlackBox computations

perspectives

Design considerations

Libraries

finite fields: NTL, GMP, Lidia, Pari, ...

polynomials: NTL, ...

integers: GMP, ...

Global solutions

- Maple
- Magma

Parallel Perspectives for the LinBox library

Clément PERNET

Introduction

The LinBox library Principles

Organisation of the library

Dense computations

BlackBox computations

perspectives
Design considerations

Algorithmic perspectives

Libraries

finite fields: NTL, GMP, Lidia, Pari, ...

polynomials: NTL, ...

integers: GMP, ...

Global solutions

- Maple
- Magma
- Sage

Parallel Perspectives for

the LinBox library

Clément PERNET

Introduction

The LinBox library

Organisation of the library Dense computations BlackBox computations

perspectives
Design considerations

igorianno poropodire

Libraries

finite fields: NTL, GMP, Lidia, Pari, ...

polynomials: NTL, ...

integers: GMP, ...

Global solutions

- Maple
- Magma
- Sage

Linear Algebra?

Parallel Perspectives for

the LinBox library Clément PERNET

Introduction

Outline

Introduction

The LinBox library Principles

Parallel Perspectives for the LinBox library

Clément PERNET

Introduction

Principles
Organisation of the library
Dense computations

Parallelism perspectives

Design considerations

Algorithmic perspectives

onclucion.

Parallelism perspectives

Design considerations Algorithmic perspectives

Organisation of the library Dense computations BlackBox computations

Conclusion

◆ロト ◆個 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q (~)

Outline

The LinBox library

Principles
Organisation of the library
Dense computations
BlackBox computations

Parallelism perspectives

Design considerations

Algorithmic perspectives

Conclusion

Parallel
Perspectives for
the LinBox library

Clément PERNET

Introduction

The LinBox library

Principles
Organisation of the library
Dense computations

Parallelism perspectives

Design considerations

Algorithmic perspectives

nnclusion

The LinBox library

Principles

Organisation of the library

Dense computations

BlackBox computations

Parallelism perspectives

Design considerations

Algorithmic perspectives

The LinBox project, facts

Joint NFS-NSERC-CNRS project.

- U. of Delaware, North Carolina State U.
- U. of Waterloo, U. of Calgary,
- ► Laboratoires LJK, ID (Grenoble), LIP (Lyon)

Parallel Perspectives for the LinBox library

Clément PERNET

Introduction

The LinBox library

Principles

Dense computations

BlackBox computations

Parallelism perspectives

Design considerations

Algorithmic perspectives

The LinBox project, facts

Joint NFS-NSERC-CNRS project.

- U. of Delaware, North Carolina State U.
- U. of Waterloo, U. of Calgary,
- Laboratoires LJK, ID (Grenoble), LIP (Lyon)

A LGPL source library:

- ▶ 122 000 lines of C++ code
- 5-10 active developpers

Parallel Perspectives for the LinBox library

Clément PERNET

Introduction

The LinBox library

Principles

Dense computations

BlackBox computations

Design considerations

Algorithmic perspectives

LinBox-1.0

Solutions

- ▶ rank
- ▶ det
- minpoly
- charpoly
- system solve
- positive definiteness

Parallel Perspectives for the LinBox library

Clément PERNET

Introduction

The LinBox library

Principles

Dense computations
BlackBox computations

Parallelism

Design considerations

Algorithmic perspectives

LinBox-1.0

Perspectives for the LinBox library Clément PERNET

Parallel

Principles

Solutions

- rank
- det
- minpoly
- charpoly
- system solve
- positive definiteness

Domains of computation

- Finite fields
- $ightharpoonup \mathbb{Z}, \mathbb{Q}$

Solutions

- rank
- det
- minpoly
- charpoly
- system solve
- positive definiteness

Domains of computation

- Finite fields
- $\triangleright \mathbb{Z}, \mathbb{Q}$

Matrices

- Sparse, structured
- Dense

Parallelism

Design considerations
Algorithmic perspectives

Conclusion

Field/Ring interface

- Shared interface with Givaro
- Wraps NTL, Lidia, Givaro implementations, using archetype or envelopes
- Proper implementations, suited for dense computations

perspectives

Design considerations

Design considerations
Algorithmic perspective

Conclusion

Matrix interface

- Sparse, Dense: BlackBox apply
- ▶ Dense matrix interface: several levels of abstraction

Field/Ring interface

- Shared interface with Givaro
- Wraps NTL, Lidia, Givaro implementations, using archetype or envelopes
- Proper implementations, suited for dense computations

Structure of the library

Parallel
Perspectives for
the LinBox library

Clément PERNET

Introduction

The LinBox library

Organisation of the library

Dense computations

Parallelism perspectives

Design considerations

Algorithmic perspective

Several levels of use

▶ Web servers: http://www.linalg.org

Parallel Perspectives for the LinBox library

Clément PERNET

Introduction

The LinBox library

Organisation of the library

Dense computations

Parallelism perspectives

Design considerations Algorithmic perspectives

Several levels of use

Parallel
Perspectives for the LinBox library

Clément PERNET

Introduction

The LinBox library

Organisation of the library

Dense computations

Parallelism perspectives

Design considerations Algorithmic perspectives

- ▶ Web servers: http://www.linalg.org
- ► Executables: \$ charpoly MyMatrix 65521

The LinBox library
Principles

Organisation of the library

Dense computations

Parallelism perspectives

Design considerations
Algorithmic perspectives

onclusion

```
Call to a solution:
   NTL::ZZp F(65521);
   Toeplitz<NTL::ZZp> A(F);
   Polynomial<NTL::ZZp> P;
```

charpoly (P, A);

▶ Web servers: http://www.linalg.org

► Executables: \$ charpoly MyMatrix 65521

Organisation of the library

Dense computations

perspectives
Design considerations

Algorithmic perspectives

Conclusion

```
Call to a solution:
   NTL::ZZp F(65521);
   Toeplitz<NTL::ZZp> A(F);
   Polynomial<NTL::ZZp> P;
```

▶ Web servers: http://www.linalg.org

Executables: \$ charpoly MyMatrix 65521

Calls to specific algorithms

charpoly (P, A);

Building block:

matrix multiplication over word-size finite field

Principle:

- Delayed modular reduction
- ► Floating point arithmetic (fused-mac, SSE2, ...)

Parallel Perspectives for the LinBox library

Clément PERNET

Introduction

The LinBox library

Organisation of the libra

Dense computations BlackBox computations

Design considerations

Algorithmic perspectiv

Building block:

matrix multiplication over word-size finite field

Principle:

- Delayed modular reduction
- ► Floating point arithmetic (fused-mac, SSE2, ...)
- ▶ BLAS cache management

Parallel
Perspectives for the LinBox library

Clément PERNET

Introduction

The LinBox library

Organisation of the libra

Dense computations

arallelism

Design considerations

Algorithmic perspective

Building block:

matrix multiplication over word-size finite field

Principle:

- Delayed modular reduction
- ► Floating point arithmetic (fused-mac, SSE2, ...)
- ▶ BLAS cache management

Parallel Perspectives for the LinBox library

Clément PERNET

Introduction

The LinBox library

Organisation of the libra

Dense computations

arallelism

Design considerations

Algorithmic perspective

Building block:

matrix multiplication over word-size finite field

Principle:

- Delayed modular reduction
- ► Floating point arithmetic (fused-mac, SSE2, ...)
- ▶ BLAS cache management

Parallel Perspectives for the LinBox library

Clément PERNET

Introduction

The LinBox library

rinciples

Dense computations

BlackBox computation

Parallelism perspectives

Design considerations

Algorithmic perspective

Building block:

matrix multiplication over word-size finite field

Principle:

- Delayed modular reduction
- ► Floating point arithmetic (fused-mac, SSE2, ...)
- ▶ BLAS cache management
- Sub-cubic algorithm (Winograd)

Parallel Perspectives for the LinBox library

Clément PERNET

Introduction

The LinBox library

Dense computations

BlackBox computation

Parallelism perspectives

Design considerations

Algorithmic perspective

Design of other dense routines

- Reduction to matrix multiplication
- Bounds for delayed modular operations.

Parallel Perspectives for the LinBox library

Clément PERNET

Introduction

The LinBox library

Principles

Dense computations

BlackBox computations

Design considerations

Design of other dense routines

- Reduction to matrix multiplication
- Bounds for delayed modular operations.
- ⇒Block algorithm with multiple cascade

Parallel Perspectives for the LinBox library

Clément PERNET

Introduction

The LinBox library
Principles

Dense computations

BlackBox computation

Parallelism perspectives

Design considerations

Algorithmic perspectives

Design of other dense routines

- Reduction to matrix multiplication
- Bounds for delayed modular operations.
- ⇒Block algorithm with multiple cascade

	n	1000	2000	3000	5000	10000
TRSM	ftrsm dtrsm	1,66	1,33	1,24	1,12	1,01
LQUP	lqup dgetrf	2,00	1,56	1,43	1,18	1,07
INVERSE	inverse dgetrf+dgetri	1.62	1.32	1.15	0.86	0.76

Parallel Perspectives for the LinBox library

Clément PERNET

Introduction

The LinBox library
Principles

Dense computations

BlackBox computat

Design considerations

Algorithmic perspectives

Characteristic polynomial

Fact

 $\mathcal{O}\left(n^{\omega}\right)$ Las Vegas probabilistic algorithm for the computation of the characteristic polynomial over a Field.

Parallel Perspectives for the LinBox library

Clément PERNET

Introduction

The LinBox library
Principles

Dense computations

BlackBox computations

Design considerations

Characteristic polynomial

Fact

 $\mathcal{O}\left(n^{\omega}\right)$ Las Vegas probabilistic algorithm for the computation of the characteristic polynomial over a Field.

Practical algorithm:

n	magma-2.11	LU-Krylov	New algorithm
100	0.010s	0.005s	0.006s
300	0.830s	0.294s	0.105s
500	3.810s	1.316s	0.387s
1000	29.96s	10.21s	2.755s
3000	802.0s	258.4s	61.09s
5000	3793s	1177s	273.4s
7500	MT	4209s	991.4s
10 000	MT	8847s	2080s

Computation time for 1 Frobenius block matrices, on a Athlon 2200, 1.8Ghz, 2Gb

MT: Memory thrashing

Clément PERNET

Introduction

The LinBox library
Principles

Dense computations

perspectives

Design considerations

Algorithmic perspectives

Parallel Perspectives for the LinBox library

Clément PERNET

Introduction

The LinBox library

Principles

Dense computations

BlackBox computations

Parallelism perspectives

Design considerations
Algorithmic perspectives

Goal: computation with very large sparse or structured matrices.

- No explicit representation of the matrix,
- Only operation: application of a vector

Parallel Perspectives for the LinBox library

Clément PERNET

Introduction

The LinBox library
Principles
Organisation of the library

Dense computations
BlackBox computations

Parallelism perspectives

Design considerations
Algorithmic perspectives

Goal: computation with very large sparse or structured matrices.

- No explicit representation of the matrix,
- Only operation: application of a vector
- Efficient algorithms
- Efficient preconditionners: Toeplitz, Hankel, Butterfly,

...

Parallel
Perspectives for
the LinBox library

Clément PERNET

Introduction

Principles
Organisation of the library

BlackBox computations

perspectives

Design considerations

Algorithmic perspectives

- Wiedemann algorithm: scalar projections of Aⁱ for i = 1..2d
- ▶ Block Wiedemann: $k \times k$ dense projections of A^i for i = 1..2d/k
- ⇒Balance efficiency between BlackBox and dense compations

Outline

Introduction

The LinBox library
Principles
Organisation of the library
Dense computations
BlackBox computations

Parallelism perspectives
Design considerations
Algorithmic perspectives

Conclusion

Parallel
Perspectives for the LinBox library

Clément PERNET

Introduction

Principles
Organisation of the library

Parallelism perspectives

Design considerations

Algorithmic perspectives

Data Containers/Iterators

Perspectives for the LinBox library Clément PERNET

Parallel.

Design considerations

Distinction between computation and access to the data:

Example

Iterates $(u^T A^i v)_{i=1...k}$ used for system resolution can be

- precomputed and stored
- computed on the fly
- computed in parallel

Parallelism perspectives

Design considerations

Algorithmic perspective

onclusion

Distinction between computation and access to the data:

Example

Iterates $(u^T A^i v)_{i=1..k}$ used for system resolution can be

- precomputed and stored
- computed on the fly
- computed in parallel

Solution: solver defined using generic iterators, independently from the method to compute the data

Parallelism

Design considerations

Algorithmic perspectives

```
const iterator& iterator::operator++() {
   if (++current>launched) {
       for (int i=0; i < n; ++i)
          Fork<launch>(i,...):
       launched += n;
   return *this;
const value_type& iterator::operator*(){
   return d[current].read();
```

Existing containers/iterators

Scalar projections:

⇒Wiedemann's algorithm

Parallel Perspectives for the LinBox library

Clément PERNET

Introduction

The LinBox library
Principles

Organisation of the librar

Dense computations

BlackBox computations

perspectives

Design considerations
Algorithmic perspectives

onclusion

 $(v^T A^i u)_{i=1..k}$

Existing containers/iterators

- Scalar projections:
 - ⇒Wiedemann's algorithm
- ▶ Block projections:
 - ⇒Block Wiedemann algorithm

Parallel Perspectives for the LinBox library

Clément PERNET

Introduction

The LinBox library
Principles
Organisation of the library

Dense computations BlackBox computations

Design considerations

Algorithmic perspectives

onclusion

 $(v^T A^i u)_{i=1..k}$

 $(Av_i)_{i=1..k}$

Existing containers/iterators

Parallel
Perspectives for the LinBox library

Clément PERNET

Introduction

The LinBox library
Principles
Organisation of the library
Dense computations

Parallelism perspectives

Design considerations

Algorithmic perspective:

Conclusion

 $(v^T A^i u)_{i=1..k}$

 $(Av_i)_{i=1}$ k

(* * * * *)

⇒Wiedemann's algorithm

Block projections:

Scalar projections:

⇒Block Wiedemann algorithm

Modular homomorphic imaging:

 $(Algorithm(A \mod p_i))_{i=1..k}$

⇒Chinese Remainder Algorithm

The LinBox library
Principles
Organisation of the library

Organisation of the libr Dense computations BlackBox computations

perspectives
Design considerations

Algorithmic perspectives

Conclusion

Scalar projections:

⇒Wiedemann's algorithm

Block projections:

⇒Block Wiedemann algorithm

Modular homomorphic imaging:

 $(Algorithm(A \mod p_i))_{i=1..k}$

⇒Chinese Remainder Algorithm

⇒no modifications to the high level algorithms for the parallelization.

 $(v^{T}A^{i}u)_{i=1..k}$

 $(Av_i)_{i=1}$ k

Parallelization tools

Until now, few parallelization:

- attempts with MPI, and POSIX threads
- Higher level systems: Athapascan-1, KAAPI
 - ⇒Full design compatibility
 - ⇒Provides efficient schedulers; work stealing abilities

Parallel Perspectives for the LinBox library

Clément PERNET

Introduction

Principles
Organisation of the library
Dense computations

Parallelism

Design considerations

Algorithmic perspectives

Example: rank computations

[Dumas & urbanska]

parallel block Wiedemann algorithm:

$$[u_1, ..., u_k]^T (GG^T) u_i, i = 1..k$$

 \Rightarrow Only $\frac{rank(G)}{k}$ iterations

combined with sigma basis algorithm.

Parallel Perspectives for the LinBox library

Clément PERNET

Introduction

The LinBox library

Organisation of the library
Dense computations
BlackBox computations

Parallelism perspectives

Design considerations

Algorithmic perspective

Example: rank computations

[Dumas & urbanska]

parallel block Wiedemann algorithm:

$$[u_1, ..., u_k]^T (GG^T) u_i, i = 1..k$$

 \Rightarrow Only $\frac{rank(G)}{k}$ iterations

▶ combined with sigma basis algorithm.

matrix	n	m	rank
GL7d17	1,548,650	955,128	626,910
GL7d20	1,437,547	1,911,130	877,562
GL7d21	822,922	1,437,547	559,985

Parallel Perspectives for the LinBox library

Clément PERNET

Introduction

The LinBox library

Organisation of the librar Dense computations BlackBox computations

Parallelism perspectives

Design considerations
Algorithmic perspectives

[Dumas & urbanska]

parallel block Wiedemann algorithm:

$$[u_1, ..., u_k]^T (GG^T) u_i, i = 1..k$$

 \Rightarrow Only $\frac{rank(G)}{k}$ iterations

combined with sigma basis algorithm.

matrix	n	m	rank
GL7d17	1,548,650	955,128	626,910
GL7d20	1,437,547	1,911,130	877,562
GL7d21	822,922	1,437,547	559,985

Timings estimations [in days]

ma	atrix	T _{iter} [min]	T_{seq}	T_{par} (50)	T _{par} (50, ET)
GL	7d17	0.46875	621.8	12.4	8.16
GL	7d20	0.68182	1361.31	27.2272	16.6214
GL	7d21	0.35714	408.196	8.1644	5.5559

Parallel Perspectives for the LinBox library

Clément PERNET

Introduction

The LinBox library
Principles

Dense computations

BlackBox computations

Design considerations

Algorithmic perspectives

Outline

Introduction

The LinBox library

Parallel Perspectives for the LinBox library

Clément PERNET

Algorithmic perspectives

Parallelism perspectives

Algorithmic perspectives

TURBO triangular elimination

[Roch & Dumas 02]: recursive block algorithm for triangularization

- divide both rows and columns
 - ⇒Better memory management
 - ⇒Enables to use recursive data structures

Parallel Perspectives for the LinBox library

Clément PERNET

Introduction

The LinBox library
Principles

Dense computations
BlackBox computations

perspectives
Design considerations

Algorithmic perspectives

TURBO triangular elimination

[Roch & Dumas 02]: recursive block algorithm for triangularization

- divide both rows and columns
 - ⇒Better memory management
 - ⇒Enables to use recursive data structures

Parallel Perspectives for the LinBox library

Clément PERNET

Introduction

The LinBox library
Principles

Dense computations
BlackBox computations

Design considerations

Algorithmic perspectives

[Roch & Dumas 02]: recursive block algorithm for triangularization

- divide both rows and columns
 - ⇒Better memory management
 - ⇒Enables to use recursive data structures
- ▶ 5 recursive calls (U, V, C, D, Z), including 2 being parallel (C, D)

Parallel
Perspectives for
the LinBox library

Clément PERNET

Introduction

The LinBox library
Principles

Dense computations
BlackBox computations

perspectives

Design considerations

Algorithmic perspectives

Principle of Workstealing

[Arora, Blumofe, Plaxton01], [Acar, Blelloche, Blumofe02]

- ightharpoonup 2 algorithms to complete a task f: f_{seq} and f_{par}
- ▶ When a processor becomes idle, ExtractPar steals the work to f_{seq}.

Parallel Perspectives for the LinBox library

Clément PERNET

Introduction

Principles
Organisation of the library
Dense computations

perspectives
Design considerations

Algorithmic perspectives

Application to mutiple triangular system solving

TRSM: Compute
$$\begin{bmatrix} U_1 & U_2 \\ & U_3 \end{bmatrix}^{-1} \begin{bmatrix} B_1 \\ B_2 \end{bmatrix}$$
$$X_2 = \text{TRSM}(U_3, B_2)$$
$$B_1 = B_1 - U_2 X_2$$
$$X_1 = \text{TRSM}(U_1, B_1)$$

Parallel Perspectives for the LinBox library

Clément PERNET

Introduction

The LinBox library
Principles

Dense computations
BlackBox computations

perspectives

Algorithmic perspectives

Application to mutiple triangular system solving

TRSM: Compute
$$\begin{bmatrix} U_1 & U_2 \\ & U_3 \end{bmatrix}^{-1} \begin{bmatrix} B_1 \\ B_2 \end{bmatrix}$$
$$X_2 = \text{TRSM}(U_3, B_2)$$
$$B_1 = B_1 - U_2 X_2$$
$$X_1 = \text{TRSM}(U_1, B_1)$$

$$f_{\text{seq}}$$
TRSM (U, B)
 $\Rightarrow T_1 = n^3, T_\infty = \mathcal{O}(n)$

Parallel Perspectives for the LinBox library

Clément PERNET

Introduction

Principles
Organisation of the library

Dense computations
BlackBox computations

Design considerations

Algorithmic perspectives

TRSM : Compute
$$\begin{bmatrix} U_1 & U_2 \\ & U_3 \end{bmatrix}^{-1} \begin{bmatrix} B_1 \\ B_2 \end{bmatrix}$$
$$X_2 = \text{TRSM}(U_3, B_2)$$
$$B_1 = B_1 - U_2 X_2$$
$$X_1 = \text{TRSM}(U_1, B_1)$$

tsea TRSM(U, B) $\Rightarrow T_1 = n^3, T_{\infty} = \mathcal{O}(n)$

$$\begin{aligned} & f_{\text{par}} \\ & \text{Compute } V = U^{-1}; \\ & \text{TRMM}(V, B); \\ & \Rightarrow T_1 = \frac{4}{3}n^3, \ T_{\infty} = \mathcal{O}\left(\log n\right) \end{aligned}$$

Parallel Perspectives for the LinBox library

Clément PERNET

Algorithmic perspectives

Application to multiple triangular system solving

When sequential TRSM and parallel Inverse join: Compute $X_1 = A_1^{-1}B_1$ in parallel (TRMM).

Parallel Perspectives for the LinBox library

Clément PERNET

Introduction

Principles
Organisation of the library
Dense computations

perspectives
Design considerations

Algorithmic perspectives

Solving Ax = b over \mathbb{Z}

Standard p-adic Lifting [Dixon82]

```
Compute A^{-1} \mod p
r = b
for i = 0..n do
  x_i = A^{-1}r \mod p
  r = (r - Ax_i)/p
end for
z = x_0 + px_1 + p^2x_2 + \cdots + x_np^n
X = RatReconst(z)
```

Algorithmic perspectives

```
Solving Ax = b over \mathbb{Z}
```

multi-adic lifting:

```
for all j=1...k do
  Compute A^{-1} \mod p_i
  r = b
  for i = 0..n/k do
     x_i = A^{-1}r \mod p_i
     r = (r - Ax_i)/p_i
  end for
  z_j = x_0 + p_j x_1 + \cdots + p_i^{n/k} x_{n/k}
end for
z = \text{ChineseRemainderAlg}((z_j, p_i^{n/k})_{j=1..k})
X = RatReconst(z)
```

Multi-adic lifting

 Used in sequential computation [Chen & Storjohann 05], to balance efficiency between BLAS level 2 and 3

Parallel Perspectives for the LinBox library

Clément PERNET

Introduction

Principles
Organisation of the library

BlackBox computations

Parallelism

Design considerations
Algorithmic perspectives

Algorithmic perspectives

- Used in sequential computation [Chen & Storjohann 05], to balance efficiency between BLAS level 2 and 3
- Divides a sequential loop into several parallel tasks

level 2 and 3

Algorithmic perspectives

Divides a sequential loop into several parallel tasks

Storjohann 05], to balance efficiency between BLAS

Used in sequential computation [Chen &

Work stealing perspectives...

Outline

Parallel
Perspectives for the LinBox library

Clément PERNET

Introduction

The LinBox library

Organisation of the librar

Dense computations

BlackBox computations

Parallelism perspectives

Design considerations

Algorithmic perspectives

Conclusion

Daniella Para de la constanta

Design considerations
Algorithmic perspectives

Conclusion

Large grain parallelism:

- Chinese remaindering
- Multi-adic lifting
- Block Wiedemann

Parallel Perspectives for the LinBox library

Clément PERNET

Introduction

The LinBox library
Principles

Dense computations
BlackBox computations

Parallelism perspectives

Design considerations Algorithmic perspectives

Conclusion

Parallel Perspectives for the LinBox library

Clément PERNET

Conclusion

Fine grain adaptive parallelsim:

⇒Work stealing

Large grain parallelism:

Multi-adic lifting Block Wiedemann

Chinese remaindering

Large grain parallelism:

Multi-adic lifting Block Wiedemann

Chinese remaindering

Fine grain adaptive parallelsim:

Conclusion

⇒Work stealing

Perspectives

Development of simple parallel containers

Parallel distribution of LinBox, based on Kaapi