Установи последовательность!

Подготовительные задачи (\mathbf{I} ., \mathbf{II} .):

- **I.** Дана последовательность $a_1, a_1 + d, a_1 + 2d, ...,$ именуемая арифметической прогрессией. Найдите формулу n-го члена этой последовательности и формулу для суммы первых n членов.
- **II.** Дана последовательность $b_1, b_1q, b_1q^2, ...,$ именуемая геометрической прогрессией. Вопросы те же, что и в задаче **I.**

Основные задачи:

1. Рассмотрим последовательность чисел $\{a_n\}$, такую, что $a_{n+2} = pa_{n+1} + qa_n$, n = 0, 1, 2, ...; p и q — некоторые фиксированные действительные числа. Ясно, что если мы зададим конкретно элементы a_0 и a_1 , то каждый элемент последовательности будет определён однозначно. Напишем вспомогательно, так называемое, $xapakmepucmuveckoe ypashehue x^2 = px + q$, пусть x_1, x_2 — его pashuvene корни. Докажите, что тогда общий член последовательности $a_n = c_1x_1^n + c_2x_2^n$, где c_1, c_2 — некоторые постоянные, зависящие от начальных условий (a_0 и a_1).

Соображение из задачи 1 можно применять и для, например, таких последовательностей: $a_{n+3} = pa_{n+2} + qa_{n+1} + ra_n$ с начальными данными a_0, a_1, a_2 . В этом случае характеристическое уравнение будет иметь вид $x^3 = pa^2 + qa + r$, а a_n нужно искать в виде: $a_n = c_1x_1^n + c_2x_2^n + c_3x_3^n$, где $x_i - nonapho$ различные корни характеристического уравнения, c_i — чиселки, зависящие от a_0, a_1, a_2 — начальных данных и т.д. (Доказательство такое же, как и в задаче 1).

2. Найдите *n*-ый член данной рекуррентной последовательности и 10-й:

a.
$$a_0 = 0, a_1 = 1, a_{n+2} = 5a_{n+1} - 6a_n;$$

b.
$$a_0 = 1, a_1 = 1, a_{n+2} = a_n + a_{n+1}$$
 (последовательность Фибоначчи);

- **3.** Допустим, что для $a_{n+2} = pa_{n+1} + qa_n$ характеристическое уравнение имеет кратный корень, т. е. $x^2 px q = (x x_0)^2$ полный квадрат. В этом случае докажите, что при фиксированных начальных данных a_0, a_1 существует ровно одна пара чисел c_1, c_2 , такая, что $a_n = (c_1 + c_2 n)x_0^n$.
- 4. Найдите 100-ый член последовательности:

a.
$$a_0 = 1, a_1 = 2, a_{n+2} = 2a_{n+1} - a_n$$
.

b.
$$a_0 = 1, a_1 = 2, a_2 = 3, a_{n+3} = a_{n+2} + a_{n+1} - 2a_n$$

- **5.** Рассмотрим многочлен P(x). Рассмотрим последовательно его значения при x=0,1,2,... и выпишем получающуюся последовательность его значений $\{a_n^1\}$. Теперь рассмотрим последовательность $\{a_n^2\}$ разностей соседних чисел последовательности $\{a_n^1\}$. Затем последовательность $\{a_n^3\}$ разностей соседних членов последовательноси $\{a_n^2\}$ и т. д. Докажите, что существует такой номер N, что последовательность $\{a_n^N\}$ состоит из одних нулей. (Примечание: символ $\{a_n^k\}$ означает k-ую последовательность, а не возведение в степень!)
- **6.** При возведении числа $1+\sqrt{2}$ в различные степени, можно обнаружить некторые закономерности:

$$(1+\sqrt{2})^{1} = 1+\sqrt{2} = \sqrt{2}+\sqrt{1},$$

$$(1+\sqrt{2})^{2} = 3+2\sqrt{2} = \sqrt{9}+\sqrt{8},$$

$$(1+\sqrt{2})^{3} = 7+5\sqrt{2} = \sqrt{50}+\sqrt{49},$$

$$(1+\sqrt{2})^{4} = 17+12\sqrt{2} = \sqrt{289}+\sqrt{288}.$$

Для их изучения определим числа a_n, b_n при помощи равенства $(1+\sqrt{2})^n = a_n + b_n \sqrt{2}, n \geqslant 0.$

- **а.** Выразите через a_n, b_n число $(1 \sqrt{2})^n$.
- **b.** Докажите, что $a_n^2 2b_n^2 = (-1)^n$.
- **с.** Используя пункт **а.**, найдите формулы n-го члена последовательностей $\{a_n\}$ и $\{b_n\}$.
- 7. Попытайтесь понять, что при достаточно большом номере n-ый член последовательности $a_{n+1} = \frac{1}{2} \left(a_n + \frac{2}{a_n} \right), a_0 = 1$ близок к $\sqrt{2}$.