Game theory

a course for the

MSc in ICT for Internet and multimedia

Leonardo Badia

leonardo.badia @gmail.com

Examples of Bayesian NE

Useful applications

Chicken game

- An anti-coordination game: youngster can
 (C)hicken (steer) or (D)rive toward the other
 - chickens always get nothing (u=0)
 - drivers gains Respect (u=8)
 - if both drive, they split Respect, plus an accident happens; they receive u=4 minus punishment P depending on their parents
 - parents can be of the (H)ard (P=16) type or the (L)enient (P=0) one, with 0.5 probability
 - kids know the type of their parents

Chicken game

Chicken game

Matrix form			player 2		
		CC	CD	DC	DD
player 1	CC	0,0	0, 4	0,4	0,8
	CD	4,0	-1,-1	-1,3	-6, 2
	DC	4,0	3,-1	3,3	2, 2
	DD	8,0	2, -6	2,2	-4, -4

- □ BNE is (DC, DC)
 - different punishments can lead to other BNEs

Committee voting

- Many decisions are made by committees through majority voting
- Consider a jury with just two jurors deciding whether to (A)cquit or (C)onvict a defendant
 - Every juror casts a sealed vote
 - The defendant is convicted if both jurors vote C
- □ It is uncertain whether the defendant is (G)uilty or (I)nnocent: the prior probability of G is $q > \frac{1}{2}$ and is common knowledge

Committee voting (cont'd)

- □ Jurors desire to make the right decision, so their payoff is 1 if $G \rightarrow C$ and $I \rightarrow A$, 0 otherwise
- \square If the only information is probability q, then

		A ju	ror 2 C
or 1	A	1- q , 1 - q	1- q , 1 - q
jure	C	1- q , 1 - q	q,q

□ and since $q > \frac{1}{2}$ then it is dominant to play C and the NE is (C,C)

- Assume each player observes the evidence and independently gets a private **signal** (his/her idea about the case) $t_i \in \{t_G, t_I\}$
 - It is more likely (but not certain) to receive signal "t_x" if the defendant status is x
 - □ Prob[$t_G \mid G$] = Prob[$t_I \mid I$] = $p > \frac{1}{2}$ for both i = 1,2
 - \blacksquare clearly Prob[$t_G | I] = Prob[t_I | G] = 1-p < \frac{1}{2}$
 - Note. These types are not about the player itself, but about the world; still, they affect payoffs (btw, this is a binary symmetric channel = BSC)

- □ Since each player has 2 types and 2 actions,
 → 4 possible strategies: AA, AC, CA, CC
 - \blacksquare strategy (xy) means that $t_C \rightarrow x$, $t_I \rightarrow y$
 - It is a coordination game, because both players have the same objective of a right judgment
- Consider for the moment a one-person problem where only one juror decides
 - Without the signal, he plays C of course
 - How would the signal affect this choice?

Check the posterior to see the signal effect!

$$P[G|t_{G}] = \frac{P[G \& t_{G}]}{P[t_{G}]} = \frac{qp}{qp + (1-q)(1-p)} > q$$

- □ since $p > \frac{1}{2}$, thus qp + (1-q)(1-p) < qp + (1-q)p
- and instead

$$P[G|t_{I}] = \frac{P[G \& t_{I}]}{P[t_{I}]} = \frac{q (1-p)}{q(1-p) + (1-q) p} < q$$

ightharpoonup if t_{C} : conviction is even surer; if t_{I} : is doubtful

 \square Actually, if is t_I received, it all depends on p:

$$P[G|t_{I}] = \frac{q (1-p)}{q(1-p) + (1-q) p}$$

may even be less than $\frac{1}{2}$ in which case the juror prefers to acquit than to convict

- \square This happens if p > q
 - The reason is that the information content of the signal must be higher than the prior information
 - E.g. if $p = \frac{1}{2}$, the signal gives no information!

2-person decision

- □ Now, we check whether with p > q we have a BNE given by (CA,CA) in the real problem
 - That would correspond to "following the signal"
- First, draw the probability of each type pair

		type t _G jurd	or 2 type t _I
juror 1	type t _G	$qp^2 + (1-q)(1-p)^2$	p(1-p)
	$type\;t_{\mathrm{I}}$	p(1-p)	$q(1-p)^2+(1-q)p^2$

2-person decision

- Is strategy CA a best response to itself?
- With the rules of the jury, a player is decisive ("pivotal") only if the other juror chooses C
 - □ If 2 chooses A, that is the result regardless of a₁
 - □ \rightarrow If 1 believes that 2 is playing CA, **any** strategy of 1 is always a best response if the type of 2 is t_I

 - \blacksquare So we need only to check what happens if $t_2 = t_G$

Check the posterior to see the signal effect!

$$P[G|t_1=t_G,t_2=t_G] = \frac{qp^2}{qp^2 + (1-q)(1-p)^2} > q$$

□ since $p > \frac{1}{2}$, thus $qp^2 + (1-q)(1-p)^2 < qp^2 + (1-q)p^2$

$$P[G|t_1=t_I,t_2=t_G] = \frac{qp(1-p)}{p(1-p)} = q$$

- \rightarrow if also $t_1 = t_G$: conviction is even surer
- \square but if $t_1 = t_I$: useless signal (symmetry reason)

Committee voting: conclusion

- Strategy CA is **not** a best response to itself!
 - $\square \rightarrow$ one may prove that (CC, CC) is a BNE
- □ Paradox: though signal is informative $(p > \frac{1}{2})$ players go against it even if signal= t_I for both
- The problem is in the bias of beliefs!
 - The fact that the action of a player is relevant only when the other player is inclined to convict tips the scale in favor of conviction

Dynamic + Bayesian

dynamic games with incomplete information

Refinements of NE concept

- Static games, complete information: plain NE
- □ Dynamic games, complete information:
 plain NE may be insufficient → SPE
 - in case information is perfect (sequential games) this is the result of backward induction
- Bayesian games: if "static" we can use the plain NE with the caveat that a strategy is now defining what different types do
- What about Bayesian + Dynamic:?

Can we still use SPE?

- In dynamic games, we found SPE to be a peculiar "rational" outcome of the game
- Incomplete information translate a static game with types into a dynamic one
 - where Nature moves first, by choosing types
- However: trouble if two "dynamic" elements:
 Nature's choices + real gameplay evolution

Example: Entry Game

- Player 1 is a newcomer (e.g., in a market or network); he may (E)nter or stay (O)ut
- Player 2 is incumbent,
 if 1 enters, 2 may
 (A)ccept or (F)ight
- □ SPE outcome is (E,A)
 - (O,F) is a NE, but not SPE

Entry game, with types (1)

Player 2 can be Normal (left) or Crazy (right)

Entry game, with types (1)

□ Say that $p = \frac{2}{3}$			P/3 player	2	
		AA	AF	FA	FF
er 1	0	0,2	0,2	0,2	0,2
player	Ε	1, 1	1/3,4/3	-1/3, -1/3	-1,0

- 3 plain NEs: (O,FA), (O,FF), and (E,AF)
- However, only (E,AF) is an SPE (see why?)
 - \blacksquare If p is lower, this can change to (O,AF), meaning:
 - 2 always plays AF, 1 acts based on the prior p

Entry game, with types (2)

- What if the entrant (player 1) can have two types with probability p and 1-p
 - First type describes the case where situation is as above, with a (C)ompetitive entrant
 - Or the entrant can be (W)eak, e.g., does not have technologies or plants to compete with the incumbent; in this case, the outsider 1 does not want to enter (always gets negative payoff)
 - In the following, to set numbers, let $p=\frac{1}{2}$

Entry game, with types (2)

Extensive form

Strategies of the players

- This time, the situation is reversed
 - player 1 has types, not player 2
 - thus, dynamics must be taken into account, since player 1 is the first to move
- Player 1 has two types and thus 4 strategies:
 one per each of his types (OO, OE, EO, EE)
- Player 2 does not have types: his strategy is simply to (A)ccept or (F)ight

Strategies of the players

- Note. We cannot apply backward induction as the last player (no. 2) does not know what to do (types of 1, unknown)
- We can reduce the extensive form to yet another normal (static) form
- This time, we need to computed expected payoffs of the player in every case
 - e.g, (OE,A) gives $\mathbb{E}[v_1]=p-1=-\frac{1}{2}$, while $\mathbb{E}[v_2]=2p+1-p=1+p=\frac{3}{2}$

Strategies of the players

- We have 2 NEs
- (OO,F): equilibrium where the incumbent threatens to fight
- (EO,A): equilibrium where the incumbent accepts but only a competitive outsider enters (a weak one just stays out)

Sequential rationality

- (OO,F) does have some credibility problems
 - Player 2 always plays F even when it would be more logical to yield (i.e. play A)
 - This equilibrium therefore involves non credible behavior: it is not sequentially rational
- Now, is this a SPE? It surely is a NE
 - The problem is there is only one subgame! (the whole game itself)
 - Thus, this must also be a SPE by definition, although its "perfection" is questionable

Perfect Bayesian NE

- The problem is that, due to the types of player 1, we are not able to extrapolate cases of player 2 within the information set
- For dynamic games, we had subgames being "on" or "off" the equilibrium path
 - Here, everything is "on" because uncertainty about player 1's type merges all the subtrees
 - We need to recover this distinction

Perfect Bayesian equilibrium

A further extension of the NE concept

Definitions for Bayesian games

- If we have a Bayesian NE s* we say that an information set is on the equilibrium path if, given the distribution of types, it is reached with probability >0
 - Note that this applies to a Bayesian NE
 - And also note that in the BNE given by (OO,F) the information set of node 2 is never reached!(so this ought to be off the equilibrium path)

Definitions for Bayesian games

- In an extensive-form Bayesian game, a
 system of belief μ is a prob distribution over decision nodes for every information set
 - That is, the probability that when we are in an information set that spans over multiple nodes, we are really at a specific node of the tree
 - □ It is a conditional probability | prob(node | inf set)
 → as such, by Bayes' = prob(node)/prob(inf set)
 - In our entry game, the system of belief of player
 is sure, while that of player
 depends on the
 types of player
 (i.e., its prior of being C or W)

Seq. rationality requirements

- 1 Players must have a system of beliefs
- 2 On the equilibrium path they must follow Bayes' rule on conditional probability
- 3 Off the equilibrium path: arbitrary
- 4 Given the beliefs, players are sequentially rational: that is, they play a best response
- A pair (s^*, μ) of a BNE s^* and its system of beliefs μ , meeting requirements 1-4 is said to be a **perfect Bayesian equilibrium** (PBE)

Why PBE works in Entry (2)

□ First of all, a PBE is not just a pair of strategies: there must be a system of beliefs associated

Leonardo Badia – leonardo.badia@gmail.com

Why PBE works in Entry (2)

- □ A strategy pair must be **sustained** by a system of beliefs: $\mu(x_1)$ (and $\mu(x_2) = 1 \mu(x_1)$) for player 2
 - e.g.: if 2 believes 1 plays OE, then $\mu(x_1) = 0$
 - this can also work for mixed strategies
 - Bayes' rule must apply to any case where $\frac{1}{2}$ plays a strategy that leads $\frac{1}{2}$ to enter with probabilities $\frac{1}{2}$ and $\frac{1}{2}$ when $\frac{1}{2}$ type is $\frac{1}{2}$ or $\frac{1}{2}$ or $\frac{1}{2}$.

$$\mu(\mathbf{x_1}) = \frac{p \mathbf{q_C}}{p \mathbf{q_C} + (1-p) \mathbf{q_W}}$$

Why PBE works in Entry (2)

- □ Rational Bayesian NE: (EO,A)
 - \square sustained by system of belief $\mu(x_1) = 1$
 - all players play in a sequentially rational way
- □ <u>Illogical Bayesian NE</u>: (OO,F)
 - Bayes' rule cannot be applied: $q_c = q_w = 0$
 - but whatever $\mu(x_1)$, either $\mu(x_1)$ or $\mu(x_2)$ are >0 thus making the choice of F by 2 to be irrational
- Compare with off-equilibrium choices in SPE!

Further discussion (optional)

Even PBE can be insufficient, still

Is PBE enough?

- Our definition is sometimes called a "weak"
 PBE because of requirement 3
 - more stringent requirements can be set for information sets off the equilibrium path
- **Theorem**. If s^* is a profile of (possibly mixed) strategies $s^*=(s_1^*, s_2^*, ..., s_n^*)$ inducing system of beliefs μ where every information set is reached with probability>0 \rightarrow (s^* , μ) is a PBE

Weak spots of PBE

- "Refinements" of PBE may be required
- Possible reasons:
 - weak requirement (3)
 - requirement (2) does not fully specify the system of beliefs to be consistent to what happens at nodes that are never reached
- This may lead to "odd" PBE where, even with the sequential rationality requirement, the players do not behave "rationally" at all!

Another entry-like game

PBE "solution" of this game

- □ If player 1 plays D with probability >0, then the belief of player 2 is that both x_1 and x_2 have equal probability
- □ Thus, best response is to play $L \rightarrow PBE=(D,L)$
- However.. if player 1 never plays D, then the system of beliefs at these nodes is arbitrary
 - □ for example $\mu(\mathbf{x}_1) > \frac{2}{3}$ is admissible!
 - then 2's best response is R, to which always playing U is 1's best response \rightarrow PBE=(U,R)

Sequential equilibrium

- A better requirement for "solving" the game may then be as follows
- □ A joint (possibly mixed) strategy s* and its associated system of beliefs μ are said to be **consistent** if they are the limit of a sequence of non-degenerate strategies-beliefs pairs: $(s*, \mu) = \lim_{k\to\infty} (s*, \mu_k)$
- A sequential equilibrium is a consistent PBE
 - i.e., it can be reached through subsequent steps

Further discussion

- Even sequential equilibrium may be insufficient sometimes!
- Also, it is much harder to check than PBE
- Thus, the "solution concept" to use can be adapted case-by-case
- Also note that these different concepts are useful to characterize human behavior (as well as to argue about human rationality)