Линейный оператор

Правило, которое каждому вектору \mathbf{x} линейного пространства L ставит в соответствие единственный вектор $\mathbf{z} = A(\mathbf{x})$ из линейного пространства M, называется линейным отображением или общим линейным оператором, если оно обладает следующими свойствами:

- 1) $A(\mathbf{x} + \mathbf{y}) = A(\mathbf{x}) + A(\mathbf{y})$ для любых векторов \mathbf{x} и \mathbf{y} пространства L;
- 2) $A(\lambda \mathbf{x}) = \lambda A(\mathbf{x})$ для любого вектора \mathbf{x} из L и числа λ .

Вектор $\mathbf{z} = A(\mathbf{x})$ называется *образом вектора* \mathbf{x} , который, в свою очередь, называется *прообразом вектора* $\mathbf{z} = A(\mathbf{x})$.

Линейное отображение, действующее из L в L, называется преобразованием L или линейным оператором.

Замечание 1. Обычно равенства 1) и 2) записывают в компактном виде:

$$A(\lambda \mathbf{x} + \mu \mathbf{y}) = \lambda A(\mathbf{x}) + \mu A(\mathbf{y})$$
 для любых векторов \mathbf{x} и \mathbf{y} из L и чисел λ и μ .

Замечание 2. Операции сложения и умножения на число, записанные в левых частях равенств 1) и 2), в общем случае не совпадают с операциями, записанными справа, т.к. определены в разных линейных пространствах.

Примеры

- 1. Отображение $O(x) \equiv \mathbf{O}$, которое каждому вектору \mathbf{x} из L ставит в соответствие нулевой вектор пространства M является линейным оператором и называется *нулевым оператором*.
- 2. В произвольном линейном пространстве преобразование $E(\mathbf{x}) \equiv \mathbf{x}$, которое каждому вектору \mathbf{x} из L ставит в соответствие тот же самый вектор \mathbf{x} , является линейным оператором и называется *тождественным оператором*.
- 3. В произвольном линейном пространстве преобразование $\Lambda(\mathbf{x}) = \lambda \mathbf{x}$, которое каждому вектору \mathbf{x} из L ставит в соответствие вектор \mathbf{x} , умноженный на число λ , является линейным оператором и называется *оператором подобия*.
- 4. В пространстве R_n преобразование $A(\mathbf{x}) = \mathbf{A}\mathbf{x}$, где \mathbf{A} матрица размера $m \times n$, \mathbf{x} вектор-столбец размера $n \times 1$, является линейным отображением линейного пространства R_n в линейное пространство R_m .
- 5. В пространстве полиномов преобразование $A(\mathbf{x}(t)) = \mathbf{x}'(t)$ является линейным отображением, действующим из пространства полиномов степени не выше n в пространство полиномов степени не выше n-1.
- 6. Преобразование $P(\mathbf{x}) = \Pr_{L'}(\mathbf{x})$ называется оператором проектирования вектора \mathbf{x} на линейное подпространство L' линейного пространства L.

18.05.2018 23:30:04 crp. 1 u3 4

Координатная (матричная) форма записи линейного оператора

Пусть в линейном пространстве L выбран базис $\{\mathbf{e}\} = \{\mathbf{e}_1, \mathbf{e}_2, ..., \mathbf{e}_n\}$ и пусть в этом базисе вектор \mathbf{x} имеет координаты $\mathbf{x} = \{\xi_1, \xi_2, ..., \xi_n\}$, т.е.

$$\mathbf{x} = \xi_1 \mathbf{e}_1 + \xi_2 \mathbf{e}_2 + ... + \xi_n \mathbf{e}_n = \sum_{i=1}^n \xi_i \mathbf{e}_i$$
.

Пусть в линейном пространстве M выбран базис $\{\widetilde{\mathbf{e}}\} = \{\widetilde{\mathbf{e}}_1, \widetilde{\mathbf{e}}_2, ..., \widetilde{\mathbf{e}}_m\}$, в котором вектор \mathbf{z} имеет координаты $\mathbf{z} = \{\zeta_1, \zeta_2, ..., \zeta_m\}$, т.е.

$$\mathbf{z} = \zeta_1 \widetilde{\mathbf{e}}_1 + \zeta_2 \widetilde{\mathbf{e}}_2 + \dots + \zeta_n \widetilde{\mathbf{e}}_n = \sum_{i=1}^m \zeta_i \widetilde{\mathbf{e}}_i.$$

Обозначим через ξ и ζ координатные столбцы векторов \mathbf{x} и \mathbf{z} соответственно, т.е.

$$\boldsymbol{\xi} = \begin{bmatrix} \boldsymbol{\xi}_1 \\ \boldsymbol{\xi}_2 \\ \vdots \\ \boldsymbol{\xi}_n \end{bmatrix}, \quad \boldsymbol{\zeta} = \begin{bmatrix} \boldsymbol{\zeta}_1 \\ \boldsymbol{\zeta}_2 \\ \vdots \\ \boldsymbol{\zeta}_m \end{bmatrix}.$$

Заменяя в линейном отображении $A(\mathbf{x})$ вектор \mathbf{x} его разложением по базису, получим

$$A(\mathbf{x}) = A\left(\sum_{j=1}^{n} \xi_{j} \mathbf{e}_{j}\right) = \sum_{j=1}^{n} \xi_{j} A(\mathbf{e}_{j}).$$

Заменяя в последнем выражении векторы $A(\mathbf{x})$ и $A(\mathbf{e}_{j})$ их разложениями по базису { $\widetilde{\mathbf{e}}$ }

$$A(\mathbf{x}) = \sum_{i=1}^{m} \zeta_i \widetilde{\mathbf{e}}_i \quad \mathbf{u} \quad A(\mathbf{e}_j) = \sum_{i=1}^{m} a_{ij} \widetilde{\mathbf{e}}_i ,$$

получим

$$\sum_{i=1}^m \zeta_i \widetilde{\mathbf{e}}_i = \sum_{j=1}^n \xi_j \sum_{i=1}^m a_{ij} \widetilde{\mathbf{e}}_i = \sum_{i=1}^m \widetilde{\mathbf{e}}_i \sum_{j=1}^n a_{ij} \xi_j.$$

Коэффициенты разложения вектора по базису определены однозначно, поэтому

$$\zeta_i = \sum_{j=1}^n a_{ij} \xi_j$$
 для всех $i = 1, 2, ..., m$

или в векторном виде

$$\zeta = A\xi$$
.

где $\mathbf{A} = \parallel a_{ij} \parallel$ — матрица коэффициентов линейного отображения, j -й столбец которой — это координатный столбец вектора $A(\mathbf{e}_j)$ в базисе $\{\widetilde{\mathbf{e}}\}$ пространства M .

18.05.2018 23:30:04 стр. 2 из 4

Преобразование матрицы линейного оператора при смене базиса

Пусть \mathbf{S} — матрица перехода от старого базиса $\{\mathbf{e}\}$ к новому базису $\{\mathbf{e}'\}$ пространства L и \mathbf{T} — матрица перехода от старого базиса $\{\widetilde{\mathbf{e}}\}$ к новому базису $\{\widetilde{\mathbf{e}}'\}$ пространства M. Пусть ξ — координатный столбец вектора \mathbf{x} в старом базисе $\{\mathbf{e}\}$, а ξ' — его координатный столбец в новом базисе $\{\mathbf{e}'\}$. Пусть ζ и ζ' — координатные столбцы вектора \mathbf{z} в старом и новом базисах $\{\widetilde{\mathbf{e}}\}$ и $\{\widetilde{\mathbf{e}}'\}$ соответственно. Тогда имеют место следующие соотношения:

$$\xi = S\xi', \quad \zeta = T\zeta'.$$

Заменяя в матричной записи линейного отображения координатные столбцы ξ и ζ на их выражения через столбцы ξ' и ζ' , получим

$$T\zeta' = AS\xi'$$
 или $\zeta' = A'\xi'$,

где $\mathbf{A'} = \mathbf{T}^{-1}\mathbf{AS}$ — матрица линейного отображения $A(\mathbf{x})$ в базисах $\{\mathbf{e'}\}$ и $\{\widetilde{\mathbf{e'}}\}$ линейных пространств L и M соответственно.

Замечание. Если $A(\mathbf{x})$ – линейное преобразование, действующее из пространства L в L, и базисы $\{\tilde{\mathbf{e}}\} = \{\mathbf{e}\}$ и $\{\tilde{\mathbf{e}}'\} = \{\mathbf{e}'\}$, то матрицы переходов \mathbf{S} и \mathbf{T} совпадают и выражение, связывающее матрицы линейного преобразования в разных базисах, принимает вид:

$$\mathbf{A'} = \mathbf{S}^{-1} \mathbf{A} \mathbf{S} .$$

Линейные операции над функциями векторного аргумента

Сумма и произведение линейных операторов

Пусть $A(\mathbf{x})$ и $B(\mathbf{x})$ – два линейных оператора, действующих в линейном пространстве L, тогда можно естественным образом определить их сумму и произведение:

$$(A+B)(x) = A(x) + B(x)$$
 и $(AB)(x) = A(B(x))$.

Геометрические свойства линейного оператора

Пусть имеется линейный оператор $A(\mathbf{x})$, действующий в линейном пространстве L. Образом линейного оператора называется множество

$$T_{\Delta} = \{ \mathbf{z} : \mathbf{z} = A(\mathbf{x}); \mathbf{x}, \mathbf{z} \in L \}.$$

Ядром линейного оператора называется множество

$$N_A = \{ \mathbf{x} : A(\mathbf{x}) = \mathbf{O}; \mathbf{x} \in L \}.$$

Можно показать, что образ и ядро линейного оператора являются линейными подпространствами пространства L, более того имеет место следующее равенство

$$\dim(T_A) + \dim(N_A) = \dim(L)$$
.

Величина $r_A = \dim(T_A)$ называется рангом линейного оператора.

18.05.2018 23:30:04 стр. 3 из 4

Теорема (о ранге линейного операторов)

Пусть r_A , r_B , r_{A+B} и r_{AB} — ранги операторов $A(\mathbf{x})$, $B(\mathbf{x})$, $(A+B)(\mathbf{x})$ и $(AB)(\mathbf{x})$ соответственно, тогда имеют место следующие неравенства:

- 1. $r_{AB} \leq r_A$, $r_{AB} \leq r_B$.
- 2. $r_{AB} \ge r_A + r_B n$.
- $3. \quad r_{A+B} \le r_A + r_B \ .$

Обратный оператор

Линейный оператор $A(\mathbf{x})$ называется *невырожденным*, если его ядро состоит из единственного нулевого элемента, т.е. $N_A = \{\mathbf{O}\}$. Если ядро оператора содержит ненулевые векторы, то оператор называется – вырожденным.

Линейный оператор называется *взаимно-однозначным*, если его значения на любых не равных между собой векторах не равны друг другу, т.е. $A(\mathbf{x}_1) \neq A(\mathbf{x}_2)$ для любых $\mathbf{x}_1 \neq \mathbf{x}_2$.

Теорема (о невырожденном линейном операторе)

Справедливы следующие утверждения:

- 1. Линейный оператор $A(\mathbf{x})$ невырожденный тогда и только тогда, когда он взаимнооднозначный.
- 2. Если линейные операторы $A(\mathbf{x})$ и B(x) невырожденные, то оператор (AB)(x) также невырожденный.
- 3. Ранг невырожденного оператора, действующего в линейном пространстве L совпадает с размерностью пространства, т.е. $r_{\scriptscriptstyle A} = \dim(L)$.

Линейный оператор B(x) называется *обратным оператором* по отношению к линейному оператору $A(\mathbf{x})$, если (AB)(x) = (BA)(x) = E(x), где E(x) – тождественный оператор. Обратный оператор обычно обозначают $A^{-1}(x)$.

Теорема (об обратном операторе)

Линейный оператор $A(\mathbf{x})$ имеет обратный оператор тогда и только тогда, когда он невырожденный.

18.05.2018 23:30:04 crp. 4 u3 4