Instrumental Variables

Kosuke Imai

Harvard University

STAT186/GOV2002 CAUSAL INFERENCE

Fall 2018

Instrumental Variables

 From randomized encouragement design to general instrumental variabes approach:

- Instruments in the nature → natural experiments
 - random assignment of Z
 - a no direct effect of Z on Y

Classical Instrumental Variables Estimator

Linear model (in matrix notation):

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$$
 where $\mathbb{E}(\boldsymbol{\epsilon}) = \mathbf{0}_n$ and \mathbf{X} is $n \times K$

• Endogeneity:

$$\mathbb{E}(\epsilon_i \mid \mathbf{X}) \neq \mathbf{0}$$

- Instruments **Z** is $n \times L$
 - Exogeneity: $\mathbb{E}(\epsilon_i \mid \mathbf{Z}) = \mathbf{0}$

 - 3 Rank condition: $\mathbf{Z}^{\mathsf{T}}\mathbf{X}$ and $\mathbf{Z}^{\mathsf{T}}\mathbf{Z}$ have full rank
- Experimental setting:
 - \mathbf{X}_i = the treatment and pre-treatment covariates
 - **Z**_i = the randomized encouragement and pre-treatment covariates
- Identification
 - K = L just-identified
 - K < L: over-identified</p>
 - K > L: under-identified

Geometry of Instrumental Variables

- Projection matrix (onto $S(\mathbf{Z})$): $\mathbf{P}_{\mathbf{Z}} = \mathbf{Z}(\mathbf{Z}^{\top}\mathbf{Z})^{-1}\mathbf{Z}^{\top}$
- "Purge" endogeneity: $\hat{\mathbf{X}} = \mathbf{P_Z} \mathbf{X}$
- \bullet Since $\textbf{P}_{\textbf{Z}} = \textbf{P}_{\textbf{Z}}^{\top}$ and $\textbf{P}_{\textbf{Z}}\textbf{P}_{\textbf{Z}} = \textbf{P}_{\textbf{Z}},$ we have

$$\hat{\boldsymbol{\beta}}_{\mathsf{IV}} = (\hat{\mathbf{X}}^{\top}\hat{\mathbf{X}})^{-1}\hat{\mathbf{X}}^{\top}\mathbf{Y} = (\mathbf{X}^{\top}\mathbf{Z}(\mathbf{Z}^{\top}\mathbf{Z})^{-1}\mathbf{Z}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{Z}(\mathbf{Z}^{\top}\mathbf{Z})^{-1}\mathbf{Z}^{\top}\mathbf{Y}$$

- Two stage least squares:
 - **1** Regress **X** on **Z** and obtain the fitted values $\hat{\mathbf{X}}$
 - Regress Y on X
- We do not assume the linearity of X in Z

Asymptotic Inference

Estimation error:

$$\hat{\beta}_{IV} - \beta = (\mathbf{X}^{\top} \mathbf{Z} (\mathbf{Z}^{\top} \mathbf{Z})^{-1} \mathbf{Z}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{Z} (\mathbf{Z}^{\top} \mathbf{Z})^{-1} \mathbf{Z}^{\top} \epsilon
= \left\{ \left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i} \mathbf{Z}_{i}^{\top} \right) \left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{Z}_{i} \mathbf{Z}_{i}^{\top} \right)^{-1} \left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{Z}_{i} \mathbf{X}_{i}^{\top} \right) \right\}^{-1}
\times \left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i} \mathbf{Z}_{i}^{\top} \right) \left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{Z}_{i} \mathbf{Z}_{i}^{\top} \right)^{-1} \left(\frac{1}{n} \sum_{i=1}^{n} \mathbf{Z}_{i} \epsilon_{i} \right)$$

- Thus, $\hat{eta}_{\mathsf{IV}} \overset{p}{\longrightarrow} eta$
- Under the homoskedasticity, $\mathbb{V}(\epsilon \mid \mathbf{Z}) = \sigma^2 \mathbf{I}_n$:

$$\sqrt{n}(\hat{\beta}_{\mathsf{IV}} - \boldsymbol{\beta}) \overset{d}{\leadsto} \mathcal{N}(0, \ \sigma^2[\mathbb{E}(\mathbf{X}_i \mathbf{Z}_i^\top) \{ \mathbb{E}(\mathbf{Z}_i \mathbf{Z}_i^\top) \}^{-1} \mathbb{E}(\mathbf{Z}_i \mathbf{X}_i^\top)]^{-1})$$

Residuals and Robust Standard Error

- $oldsymbol{\hat{\epsilon}} = \mathbf{Y} \mathbf{X} \hat{oldsymbol{eta}}_{\mathsf{IV}}$ and not $\hat{\epsilon}
 eq \mathbf{Y} \widehat{\mathbf{X}} \hat{oldsymbol{eta}}_{\mathsf{IV}}$
- Under homoskedasticity: $\hat{\sigma}^2 = \frac{\|\hat{\epsilon}\|^2}{n-K} \stackrel{p}{\longrightarrow} \sigma^2$

$$\widehat{\mathbb{V}(\hat{\boldsymbol{\beta}}_{\text{IV}})} = \hat{\sigma}^2 \{ \boldsymbol{\mathsf{X}}^\top \boldsymbol{\mathsf{Z}} (\boldsymbol{\mathsf{Z}}^\top \boldsymbol{\mathsf{Z}})^{-1} \boldsymbol{\mathsf{Z}}^\top \boldsymbol{\mathsf{X}} \}^{-1} = \hat{\sigma}^2 (\widehat{\boldsymbol{\mathsf{X}}}^\top \widehat{\boldsymbol{\mathsf{X}}})^{-1}$$

• Sandwich heteroskedasticity consistent estimator:

$$\begin{aligned} \text{bread} &= \{\mathbf{X}^{\top}\mathbf{Z}(\mathbf{Z}^{\top}\mathbf{Z})^{-1}\mathbf{Z}^{\top}\mathbf{X}\}^{-1}\mathbf{X}^{\top}\mathbf{Z}(\mathbf{Z}^{\top}\mathbf{Z})^{-1} \\ \text{meat} &= \mathbf{Z}^{\top}\mathrm{diag}(\hat{\epsilon}_{i}^{2})\mathbf{Z}\left(=\sum_{i=1}^{n}\hat{\epsilon}_{i}^{2}\mathbf{Z}_{i}\mathbf{Z}_{i}^{\top}\right) \\ \text{bread meat bread}^{\top} &= (\widehat{\mathbf{X}}^{\top}\widehat{\mathbf{X}})^{-1}\widehat{\mathbf{X}}^{\top}\mathrm{diag}(\hat{\epsilon}_{i}^{2})\widehat{\mathbf{X}}(\widehat{\mathbf{X}}^{\top}\widehat{\mathbf{X}})^{-1} \end{aligned}$$

• Robust standard errors for clustering, auto-correlation, etc.

Multi-valued Treatment (Angirst and Imbens. 1995. J. Am. Stat. Assoc)

• Two stage least squares regression:

$$Y_i = \alpha + \beta T_i + \eta_i,$$

 $T_i = \delta + \gamma Z_i + \epsilon_i$

- Binary encouragement and binary treatment,
 - $\hat{\beta} = \widehat{\mathsf{CATE}}$ (no covariate)
 - $\hat{\beta} \xrightarrow{p} CATE$ (with covariates)
- Binary encouragement multi-valued treatment
- Monotonicity: $T_i(1) \geq T_i(0)$
- Exclusion restriction: $Y_i(1,t) = Y_i(0,t)$ for each $t = 0,1,\ldots,K$

Estimator

$$\hat{\beta}_{TSLS} \stackrel{p}{\longrightarrow} \frac{\operatorname{Cov}(Y_i, Z_i)}{\operatorname{Cov}(T_i, Z_i)} = \frac{\mathbb{E}(Y_i(1) - Y_i(0))}{\mathbb{E}(T_i(1) - T_i(0))}$$

$$= \sum_{k=0}^{K} \sum_{j=k+1}^{K} w_{jk} \mathbb{E}\left(\frac{Y_i(1) - Y_i(0)}{j-k} \middle| T_i(1) = j, T_i(0) = k\right)$$

where w_{jk} is the weight, which sums up to one, defined as,

$$w_{jk} = \frac{(j-k)\Pr(T_i(1)=j,T_i(0)=k)}{\sum_{k'=0}^{K}\sum_{j'=k'+1}^{K}(j'-k')\Pr(T_i(1)=j',T_i(0)=k')}.$$

- Easy interpretation under the constant additive effect assumption for every complier type
- Assume encouragement induces at most only one additional dose
- Then, $w_k = \Pr(T_i(1) = k, T_i(0) = k 1)$

Quarter of Birth (Angrist and Krueger. 1991. Q. J. Econ.)

- Instrument for educational attainment to address "ability bias"
 - Outcome: men's log weekly earnings in 1980
 - Compulsory education law in US: students must attend school until they reach age 16
 - Those born in the third or fourth quarter typically finish tenth grade before reaching age 16
 - Instrument at most decreases years of education by one year
- Weak instrument: first quarter vs. 2nd to 4th quarter
 - 1920s cohorts: est. = -0.126, s.e. (HC) = 0.016, corr = -0.016
 - 1930s cohorts: est. = -0.109, s.e. (HC) = 0.013, corr = -0.014
- Wald estimates:
 - 1920 cohorts: est. = 0.072, s.e. (HC) = 0.022
 - 1930 cohorts: est. = 0.102, s.e. (HC) = 0.024
- OLS estimates:
 - 1920 cohorts: est. = 0.080, s.e. (HC) = 0.0004
 - 1930 cohorts: est. = 0.071, s.e. (HC) = 0.0004

CDFs for First and Fourth Quarter of Birth

Figure 2. Schooling CDF by Quarter of Birth (Men Born 1930-1939; Data From the 1980 Census). Quarter of birth: ----, first; - - -, fourth.

Analysis of Weak Instruments

Recall the Wald estimator:

$$\hat{\beta}_{\mathsf{IV}} = \frac{\mathsf{Cov}(Y_i, Z_i)}{\mathsf{Cov}(T_i, Z_i)}$$

- $\hat{\beta}_{IV}$ does not exist if the instrument is irrelevant
- Consider the following model:

$$Y_i = \alpha + \beta T_i + \epsilon_i,$$
 $T_i = \underbrace{\gamma}_{\approx 0} Z_i + \eta_i, \text{ where } \mathbb{E}(\epsilon_i \mid Z_i) = \mathbb{E}(\eta_i \mid Z_i) = 0$

where (ϵ_i, η_i) follows a bivariate normal with mean zero. Then,

$$\hat{\beta}_{\mathsf{iv}} - \beta \approx \frac{\sum_{i=1}^{n} \epsilon_i Z_i}{\sum_{i=1}^{n} \eta_i Z_i} \stackrel{d}{\leadsto} \mathsf{Corr}(\epsilon_i, \eta_i) \sqrt{\frac{\mathbb{V}(\epsilon_i)}{\mathbb{V}(\eta_i)}} + \underbrace{W_i}_{Cauchy}$$

Asymptotic analysis for weak instruments

Simulated Instruments (Bound et al. 1995. J. Am. Stat. Assoc)

Simulation exercise:

- lacktriangled Simulate Z_i from Bernoulli with success probability equal to its empirical estimate
- Compute the Wald estimate as before

1920s cohorts:

- Estimates: min = -694.718, 1st Qu. = -0.093, median = 0.0876, 3rd Qu. = 0.260, max = 36.236
- Std. Errors: min = 0.057, 1st Qu. = 0.185, median = 0.393, 3rd Qu. = 1.467, max = 4865.657

1930s cohorts:

- Estimates: min = -36.223, 1st Qu. = -0.117, median = 0.078, 3rd Qu. = 0.284, max = 202.667
- Std. Errors: min = 0.064, 1st Qu. = 0.197, median = 0.421, 3rd Qu. = 1.814, max = 427582

Randomization Inference (Imbens and Rosenbaum. 2005. J. R. Stat. Soc. A.)

• Constant additive treatment effect model for the QoB example:

$$Y_i(t) = Y_i(0) + \beta \cdot t$$
 for $t = 0, 1, \dots$

- Randomization test:
 - **1** Null hypothesis: $H_0: \beta = \beta_0$
 - 2 Test statistic: $S_i = f(Y_i \beta_0 T_i, Z_i)$
 - 3 Assume $Z_i \sim \text{Bernoulli}(\overline{Z}_n)$ to obtain the reference distribution
- Application:
 - $S_i = \sum_{i=1}^N Z_i \cdot \text{rank}(Y_i \beta_0 T_i)$
 - 95% confidence intervals:
 - 1920 cohorts: [0.036, 0.106], [0.028, 0.115] (Wald)
 - 1930 cohorts: [0.049, 0.122], [0.055, 0.149] (Wald)
 - Simulation (rejection rates of 0.05 level tests with 1000 simulations):
 - 1920 cohorts: 0.048, 0.001 (Wald)
 - 1930 cohorts: 0.051, 0.004 (Wald)

Violations of IV Assumptions

Violation of exclusion restriction:

bias =
$$ITT_{noncomplier} \times \frac{Pr(noncomplier)}{Pr(complier)}$$

- Weak encouragement (instruments)
- Direct effects of encouragement; failure of randomization, alternative causal paths
- Violation of monotonicity:

bias =
$$\frac{\{CATE + ITT_{defier}\} Pr(defier)}{Pr(complier) - Pr(defier)}$$

- Proportion of defiers
- Heterogeneity of causal effects

Bounding the Average Treatment Effect

(Manski. (1990). Am. Econ. Rev.)

- Instrumental variable estimator does not point-identify the ATE
- Partial identification (Manski. 1995. Identification Problems in the Social Sciences.
 Harvard UP)
- Consider a binary outcome with the randomized encouragement and exclusion restriction:

$$\begin{array}{lll} \Pr(Y_i(1)=1) & = & \Pr(Y_i(1)=1 \mid Z_i=1) \\ & = & \mu_{11}\pi_1 + \Pr(Y_i(1)=1 \mid D_i=0, Z_i=1)(1-\pi_1) \\ \Pr(Y_i(0)=1) & = & \mu_{00}(1-\pi_0) + \Pr(Y_i(0)=1 \mid D_i=1, Z_i=0)\pi_0 \\ \text{where } \mu_{dz} = \Pr(Y_i=1 \mid D_i=d, Z_i=z), \, \pi_z = \Pr(D_i=1 \mid Z_i=z) \end{array}$$

Bounds on the ATE:

$$\mu_{11}\pi_1 - \mu_{00}(1 - \pi_0) - \pi_0 \le \tau \le \mu_{11}\pi_1 - \mu_{00}(1 - \pi_0) + 1 - \pi_1$$

where the width equals $1 - (\pi_1 - \pi_0)$

Sharp Bounds (Balke and Pearl. 1997. J. Am. Stat. Assoc)

- The previous bounds are not sharp:
 - only consider four latent types based on mapping from Z to D
 - there are four additional mappings from D to Y
 - a total of 16 latent types: $(D_i(1), D_i(0), Y_i(1), Y_i(0))$
 - equal to Manki's bounds under monotonicity
- Linear programming problem:

maximize/minimize
$$\sum_{u} \Pr(Y_i(d) = 1 \mid U_i = u) \Pr(U_i = u)$$

subject to

$$Pr(Y_i = y, D_i = d \mid Z_i = z)$$
= $Pr(Y_i(d) = y \mid D_i = d, U_i = u) Pr(D_i = d \mid Z_i = z, U_i = u)$
 $Pr(Z_i = z) Pr(U_i = u)$

A general strategy for a discrete potential outcome case

Revisiting the Habitual Voting Example

- Effect of voting in 2006 election on the turnout in the 2008 election: est = 0.128, s.e. = 0.022
- Potential bias of estimated CATE due to exclusion restriction:

$$ITT_{noncomplier} \times \frac{1 - 0.083}{0.083} = 11.05 \times ITT_{noncomplier}$$

- Inference for the Average Treatment Effect
 - exclusion restriction + monotonicity: [-0.315, 0.602]
 - exclusion restriction alone: [-0.315, 0.602]

Summary

- Instrumental variables as a general strategy for coping with selection bias
 - randomization of instruments
 - monotonicity
 - exclusion restriction
- Extensions to multi-valued treatment
- Weak instruments and randomization inference
- ATE vs. CATE → partial identification, method of bounds
- Suggested readings:
 - IMBENS AND RUBIN. Chapter 25
 - ANGRIST AND PISCHKE. Chapter 4