Семафори задачи + решения:

Зад 1. 27-8-2016-СЕ

Задача: Всеки от процесите Р, Q и R изпълнява поредица от три инструкции:

process P	process Q	process R
p_1	$q_{-}1$	r_1
p_2	q_2	r_2
p_3	q_3	r_3

Осигурете чрез семафори синхронизация на P, Q и R така, че да се изпълнят следните изисквания:

- (а) Инструкция р_1 да се изпълни преди q_2 и r_2.
- (б) Ако q_2 се изпълни преди r_2, то и q_3 да се изпълни преди r_2.
- (в) Ако **r_2** се изпълни преди **q_2**, то и **r_3** да се изпълни преди **q_2**.

Решение

За синхронизация използваме семафор t, инициализираме го с блокиращо начално състяние:

```
semaphore t
t.init(0)
```

Добавяме в кода на процесите P, Q и R синхронизиращи инструкции:

process P	process Q	process R
p_1	q_1	r_1
t.signal()	t.wait()	<pre>t.wait()</pre>
p_2	q_2	r_2
p_3	q_3	r_3
	t.signal()	t.signal()

Зад 2. 13-05-2017-КН

Задача: Преди стартиране на процесите Р и Q са инициализирани два семафора и брояч:

```
semaphore e, m
e.init(1); m.init(1)
int cnt = 0
```

Паралелно работещи копия на Р и Q изпълняват поредица от инструкции:

Дайте обоснован отговор на следните въпроси:

- (a) Могат ли едновременно да се изпълняват инструкциите p_section и q_section?
- (б) Могат ли едновременно да се изпълняват няколко инструкции p_section?
- (в) Могат ли едновременно да се изпълняват няколко инструкции q_section?
- (г) Има ли условия за deadlock или starvation за някой от процесите?

Упътване:

Ще казваме, че P е в критична секция, когато изпълнява инструкцията си p_section. Същото за Q, когато изпълнява q_section.

Изяснете смисъла на брояча **cnt** и какви процеси могат да бъдат приспани в опашките на двата семафора.

Покажете, че в опашката на семафора e има най-много едно копие на P и произволен брой копия на Q.

Покажете, че в момента на изпълнение на e.signal() в кой да е от процесите, никой процес не е в критичната си секция.

Решение

Първо забелязаме, че семафорът m се ползва само от P в ролята на mutex. В неговата опашка може да има само копия на P и само едно работещо копие може да намалява/увеличава брояча синхронизирано с блокирането/освобождаването на семафора e.

Увеличаването на cnt става преди критичната секция на P, а намалянето след нея. Ако не вървят никакви копия на Q, лесно се убеждаваме, че могат да се изпълняват произволен брой критични секции на P, като броячът съвпада с броя на паралелно изпълняваните критични секции. Така отговорът на въпрос (б) е ДА.

Заемането на семафора e в P става точно когато ent променя стойността en от e1 в e1. Освобождаването става точно когато ent променя стойността en от e1 в e0.

Тъй като при инициализацията броячът на е е 1, а употребата му и в двата вида процеси започва със заемане и завършва с освобождаване, само едно копие от двата типа ще може да премине e.wait(). Разглеждаме два случая:

(A) Процесът Q преминава. Тогава ще се изпълни критичната му секция, но само от това копие. Останалите копия на Q ще бъдат приспани от първата си инструкция. Следователно отговорът на въпрос (в) е НЕ.

Ако версия на P пробва e.wait(), тя също ще бъде приспана. Това ще стане точно когато cnt променя стойността си от 0 в 1, тоест не се изпълняват критични секции на P. В момента на приспиване и мутекса m е блокиран. Това обстоятелство ще блокира всички опити на други копия на P да преминат m. В този случай в опашката на семафора e има точно едно копие на P.

(B) Процесът Р преминава. Ще започне изпълнение на неговата критична секция и евентуално на други копия на Р, докато cnt>0. През този период всички копия на Q ще бъдат приспани от първата си инструкция. Когато cnt намалее до 0, никое копие не изпълнява критична секция.

От двата разгледани случая следва, че в един момент могат да се изпълняват няколко критични секции на Р или една критична секция на Q. Следователно отговорът на въпрос (а) е HE.

В описаната схема няма условия за deadlock. Q не може да инициира deadlock, тъй като ползва само един ресурс. Р също не може поради реда на заемане на ресурсите (първо заема семафора m, после e).

В описаната схема има условия за гладуване (starvation) на процес Q. Нека критичната секция на P се изпълнява бавно и Q започва работа след P. Ще започне изпълнение на критична секция на P и ако постоянно започват работа нови копия, броячът cnt може да остане положителен неограничено време. Така Q ще бъде приспан неограничено дълго.

Зад 3. 26-08-2017

Задача 5. Всеки от процесите Р и Q изпълнява поредица от две инструкции:

process	P	process	Q
p_1		q_1	
p_2		q_2	

Осигурете чрез семафори синхронизация на P и Q така, че инструкция p_1 да се изпълни преди q_2 , а q_1 да се изпълни преди p_2 .

Решение:

Задача 5. За двете искани в условието синхронизации използваме два семафора – t1 и t2, инициализираме ги с блокиращо начално състяние:

```
semaphore t1,t2
t1.init(0)
t2.init(0)
```

Добавяме в кода на процесите Р и Q синхронизиращи инструкции:

3ад 4. 26-08-2017

Задача 6. Паралелно работещи копия на всеки от процесите P и Q изпълняват поредица от две инструкции:

```
\begin{array}{ccc} process \ P & process \ Q \\ p_-1 & q_-1 \\ p_-2 & q_-2 \end{array}
```

Осигурете чрез семафори синхронизация на работещите копия така че:

- а) Във произволен момент от времето да работи най-много едно от копията.
- б) Работещите копия да се редуват във времето след изпълнение на копие на P, да следва изпълнение на копие на Q, и обратно.
- в) Първоначално е разрешено да се изпълни копие на Р.

Решение:

Задача 6. Използваме два семафора – s_p и s_q, инициализираме ги така:

```
semaphore s_p, s_q
s_p.init(1)
s_q.init(0)
```

Добавяме в кода на процесите Р и Q синхронизиращи инструкции:

process P	process Q
$s_p.wait()$	$s_q.wait()$
p_1	q_1
p_2	q_2
$s_q.signal()$	$s_p.signal()$

3ад 5. 2018-КН

Задача за KH1: Всеки от процесите P, Q и R изпълнява поредица от три инструкции:

process P	process Q	process R
p_1	$q_{-}1$	r_1
p_2	q_2	r_2
p_3	q_3	r_3

Осигурете чрез семафори синхронизация на P, Q и R така, че да се изпълнят следните изисквания:

- (a) Инструкция p_1 да се изпълни преди q_2 и r_2.
- (б) Инструкция r_2 да се изпълни преди p_3.

 $\it 3абележа:$ Решение с 2 семафора ще бъде оценено с 30 точки, решение с повече семафори ще ви донесе 20 точки.

Решение:

semaphore s1,s2; s1.init(0) s2.init(0)

process P	process Q	process R
p1	q1	r1
s1.signal()	s1.wait()	s1.wait()
p2	q2	r2
s2.wait()	s1.signal()	s2.signal()
p3	q3	s1.signal()
•	•	r3

3ад 6. 2018-КН2

Задача за KH2: Всеки от процесите P, Q и R изпълнява поредица от три инструкции:

process P	process Q	process R
p_1	$q_{-}1$	r_1
p_2	q_2	r_2
p_3	q_3	r_3

Осигурете чрез семафори синхронизация на P, Q и R така, че да се изпълнят следните изисквания:

- (а) Инструкция р_1 да се изпълни преди q_2.
- (б) Инструкция q_1 да се изпълни преди r_2.
- (в) Инструкция r_1 да се изпълни преди p_2.
- (г) Инструкция r_3 да се изпълни след p_2 и q_2.

3ад 7. 2018-СИ

Задача за СИ: Всеки от процесите P, Q и R изпълнява поредица от три инструкции:

process P	process Q	process R
p_1	q_1	r_1
p_2	q_2	r_2
p_3	q_3	r_3

Осигурете чрез семафори синхронизация на P, Q и R така, че да се изпълнят едновременно следните изисквания:

- (a) Някоя от инструкциите p_2 и q_2 да се изпълни преди r_2.
- (б) Ако инструкция p_2 се изпълни преди r_2, то q_2 да се изпълни след r_2.
- (в) Ако инструкция q_2 се изпълни преди r_2 , то p_2 да се изпълни след r_2 .

Решение:

За синхронизация използваме семафори f и u, инициализираме ги така:

```
semaphore f, u
f.init(1)
u.init(0)
```

Добавяме в кода на процесите P, Q и R синхронизиращи инструкции:

process P	process Q	process R
p_1	q_1	r_1
f.wait()	f.wait()	u.wait()
p_2	q_2	r_2
u.signal()	u.signal()	f.signal()
p_3	q_3	r_3

Зад 8. 24-08-2018-КН

Задача 6: Всеки от процесите Р и Q изпълнява поредица от три инструкции:

process P	process Q
p_1	q_1
p_2	q_2
p_3	q_3

Осигурете чрез два семафора синхронизация на P и Q така, че отделните инструкции да се изпълнят в следния времеви ред:

Задача 6:

Използваме семафорите t1 и t2, инициализираме ги така:

```
semaphore t1, t2
t1.init(1)
t2.init(0)
```

Добавяме в кода на процесите Р и Q синхронизиращи инструкции:

process P	process Q
t1.wait()	t2.wait()
p_1	q_1
t2.signal()	t1.signal()
t1.wait()	t2.wait()
p_2	q_2
t2.signal()	t1.signal()
t1.wait()	t2.wait()
p_3	q_3
t2.signal()	t1.signal()

3ад 9. 25-08-2018-СИ

Задача 1, СИ. Множество паралелно работещи копия на всеки от процесите Р и Q изпълняват поредица от три инструкции:

process P	process Q
p_1	$q_{-}1$
p_2	q_2
p_3	q_3

Осигурете чрез семафори синхронизация на работещите копия, така че:

Три инструкции $- p_1, q_2$ и p_3 се редуват циклично.

Първа се изпълнява инструкция p_1 на някое от работещите копия на процес P. След завършването ѝ се изпълнява инструкция q_2 на някое копие на Q, а след нея $-p_3$ на копие на P. С това цикълът завършва и отново може да се изпълни инструкция p_1 на някое от работещите копия на процес P.

Решение:

Задача 1, СИ За исканите в условието синхронизации използваме три семафора – t1, t2 и t3, инициализираме ги така:

```
semaphore t1, t2, t3
t1.init(1)
t2.init(0)
t3.init(0)
```

Добавяме в кода на процесите Р и Q синхронизиращи инструкции:

Зад 10. 23-03-2019-КН

Задача 4. КН1 Всеки от процесите Р, Q и R изпълнява поредица от три инструкции:

process P	process Q	process R
p_1	q_1	r_1
p_2	q_2	r_2
p_3	q_3	r_3

Осигурете чрез семафори синхронизация на P, Q и R така, че да са изпълнение едновременно условията:

- (1) инструкция р_1 да се изпълни преди q_2 и r_2.
- (2) инструкция р_3 да се изпълни след q_2 и r_2.

Решение:

Задача 4. КН1 За синхронизация използваме семафори s, t и u, инициализираме ги така:

```
semaphore s, t, u
s.init(0)
t.init(0)
u.init(0)
```

Добавяме в кода на процесите P, Q и R синхронизиращи инструкции:

process P	process Q	process R
p_1	$q_{-}1$	r_1
s.signal()	s.wait()	s.wait()
p_2	s.signal()	s.signal()
t.wait()	q_2	r_2
u.wait()	t.signal()	u.signal()
p_3	q_3	r_3

Зад 11. 23-03-2019-КН

Задача 4. KH2 Всеки от процесите P, Q и R изпълнява поредица от две инструкции:

process P	process Q	process R
p_1	q_1	r_1
p_2	q_2	r_2

Осигурете чрез три семафора синхронизация на P, Q и R така, че отделните инструкции да се изпълнят в следния времеви ред:

Решение:

Задача 4. KH2 Използваме семафорите t1, t2 и t3, инициализираме ги така:

```
semaphore t1, t2, t3
t1.init(1)
t2.init(0)
t3.init(0)
```

Добавяме в кода на процесите синхронизиращи инструкции:

process P	process Q	process R
t1.wait()	t2.wait()	t3.wait()
p_1	q_1	r_1
t2.signal()	t3.signal()	<pre>t1.signal()</pre>
t1.wait()	t2.wait()	t3.wait()
p_2	q_2	r_2
t2.signal()	t3.signal()	t1.signal()

3ад 12. 23-03-2019-СИ

Задача 4. СИ Всеки от процесите Р и Q изпълнява поредица от три инструкции:

process P	process Q
p_1	q_1
p_2	q_2
p_3	q_3

Осигурете чрез два семафора синхронизация на P и Q така, че да са изпълнени едновременно следните времеви зависимости:

- (1) инструкция р_1 да се изпълни преди q_2
- (2) инструкция q_2 да се изпълни преди p_3
- (3) инструкция q_1 да се изпълни преди p_2
- (4) инструкция р_2 да се изпълни преди q_3

Решение:

```
semaphore t1,t2
t1.init(0)
t2.init(0)
```

Добавяме в кода на процесите Р и Q синхронизиращи инструкции:

process P	process Q
p_1	q_1
t1.signal()	t2.signal()
t2.wait()	t1.wait()
p_2	q_2
t1.signal()	t2.signal()
t2.wait()	t1.wait()
p_3	q_3

Зад 13. 23-03-2019-КН

Задача 4. KH2 Всеки от процесите Р, Q и R изпълнява поредица от две инструкции:

process P	process Q	process R
p_1	q_1	r_1
p_2	q_2	r_2

Осигурете чрез три семафора синхронизация на P, Q и R така, че отделните инструкции да се изпълнят в следния времеви ред:

Решение:

Задача 4. KH2 Използваме семафорите t1, t2 и t3, инициализираме ги така:

```
semaphore t1, t2, t3
t1.init(1)
t2.init(0)
t3.init(0)
```

Добавяме в кода на процесите синхронизиращи инструкции:

process P	process Q	process R
t1.wait()	t2.wait()	t3.wait()
p_1	q_1	r_1
t2.signal()	t3.signal()	t1.signal()
t1.wait()	t2.wait()	t3.wait()
p_2	q_2	r_2
t2.signal()	t3.signal()	t1.signal()

Зад 14. 23-03-2019-КН2

Задача 4. КН1 Всеки от процесите Р, Q и R изпълнява поредица от три инструкции:

process P	process Q	process R
p_1	$q_{-}1$	r_1
p_2	q_2	r_2
p_3	q_3	r_3

Осигурете чрез семафори синхронизация на P, Q и R така, че да са изпълнение едновременно условията:

- (1) инструкция p_1 да се изпълни преди q_2 и r_2.
- (2) инструкция р_3 да се изпълни след q_2 и r_2.

Решение:

```
semaphore s, t, u
s.init(0)
t.init(0)
u.init(0)
```

Добавяме в кода на процесите P, Q и R синхронизиращи инструкции:

process P	process Q	process R
p_1	q_1	r_1
s.signal()	s.wait()	s.wait()
p_2	s.signal()	s.signal()
t.wait()	q_2	r_2
u.wait()	t.signal()	u.signal()
p_3	q_3	r_3

3ад 15. 25-08-2019-СИ

Задача 1, СИ, 25.08

Множество паралелно работещи копия на процеса P изпълняват поредица от две инструкции:

```
process P
p_1
p_2
```

Осигурете чрез семафори синхронизация на работещите копия, така че: Инструкцията **p_2** на всяко от работещите копия да се изпълни след като инструкция **p_1** е завършила изпълнението си в поне 3 работещи копия.

Упътване: Освен семафори, ползвайте и брояч.

Решение:

За исканите в условието синхронизации използваме брояч **cnt** и два семафора – **m1** и **m2**, инициализираме ги така:

```
semaphore m1, m2
m1.init(1)
m2.init(0)
int cnt=0
```

Добавяме в кода на процеса Р синхронизиращи инструкции:

```
process P
  p_1
  m1.wait()
   cnt=cnt+1
  if cnt=3 m2.signal()
  m1.signal()
  m2.wait()
  m2.signal()
  p_2
```

3ад 16. 28-06-2020-СИ

Задача 1. Множество паралелно работещи копия на всеки от процесите Р и Q изпълняват поредица от две инструкции:

```
\begin{array}{ccc} process & P & & process & \mathbb{Q} \\ p_-1 & & q_-1 \\ p_-2 & & q_-2 \end{array}
```

Осигурете чрез семафори синхронизация на P и Q, така че поне една инструкция p_1 да се изпълни преди всички q_2 , и поне една инструкция q_1 да се изпълни преди всички p_2 .

Решение:

Задача 1. За двете искани в условието синхронизации използваме два семафора – t1 и t2, инициализираме ги с блокиращо начално състяние:

```
semaphore t1,t2
t1.init(0)
t2.init(0)
```

Добавяме в кода на процесите Р и Q синхронизиращи инструкции:

```
\begin{array}{lll} process \ P & process \ Q \\ p_-1 & q_-1 \\ t1.signal() & t2.signal() \\ t2.wait() & t1.wait() \\ t2.signal() & t1.signal() \\ p_-2 & q_-2 \end{array}
```

Или "прецизно решение"

```
semaphore t1,t2,m
t1.init(0)
t2.init(0)
m.init(1)
int c1=0, c2=0
```

Добавяме в кода на процесите Р и Q синхронизиращи инструкции:

```
process Q
process P
  p_1
                             q_1
  m.wait()
                             m.wait()
                             if c2=0
  if c1=0
                                c2=1
     c1=1
     t1.signal()
                                t2.signal()
  m.signal()
                             m.signal()
  t2.wait()
                             t1.wait()
  t2.signal()
                             t1.signal()
  p_2
                             q_2
```

3ад 17. 19-06-2021

Задача 1, (20 точки)

Всеки от процесите Р, Q и R изпълнява поредица от инструкции:

process P	process Q	process R
p_1	q_1	r_1
p_2	q_2	r_2

Процесите Р и Q са единични, процесът R се изпълнява в много копия.

Осигурете чрез семафори синхронизация на P, Q и R така, че да се изпълнят едновременно следните изисквания:

- (a) Всички инструкции на P и Q да се изпълнят преди инструкция r_1 на всяко копие на R.
- (б) Процесите Р и Q да се изпълнят ефикасно, т.е. да е възможно паралелното им изпълнение, без да се изчакват.

Решение:

Задача 1. решение 2 За синхронизация използваме семафори sp и sq, инициализираме ги така:

```
semaphore sp, sq
sp.init(0)
sq.init(0)
```

Добавяме в кода на процесите P, Q и R синхронизиращи инструкции:

process P	process Q	process R
p_1	q_1	sp.wait()
p_2	q_2	sp.signal()
sp.signal()	sq.signal()	sq.wait()
		sq.signal()
		r_1
		r_2

Задача 1. решение 3 За синхронизация използваме семафори sp и sq, инициализираме ги така:

```
semaphore sp, sq
sp.init(0)
sq.init(0)
```

Добавяме в кода на процесите P, Q и R синхронизиращи инструкции:

process P	process Q	process R
p_1	q_1	sq.wait()
p_2	q_2	sq.signal()
sp.signal()	sp.wait()	r_1
	sq.signal()	r_2