ESC201T : Introduction to Electronics

L12: Capacitors and Displays

B. Mazhari Dept. of EE, IIT Kanpur

Liquid crystal cells can be looked upon as Voltage controlled light valves.

Organic light emitting diodes emit light upon application of current as a result of electron-hole recombination

Image is created by controlling amount and color of light coming out from different regions of the screen

Display elements (such as OLED) have to be selectively turned ON/OFF to create an image

- Direct addressing
- Passive Matrix addressing
- Active Matrix addressing

□In direct addressing, each OLED (or pixel) has its own dedicated connection to external driver.

Freedom to turn-on any combination of LEDs and to any level of brightness

Example of Direct Addressing: Seven segment Display

Problem

G-Numbe

Matrix Addressed Display

25 drivers and wires

10 drivers & wires

Matrix Addressed Display

No. of drivers $= M \times N$

No. of drivers = M+N

Suppose D₁ has to be turned ON only!

Current does not flow through D₃ because it is reverse biased

Suppose D₄ has to be turned ON only!

Current does not flow through D₂ because it is reverse biased

Suppose both D_1 and D_4 have to be turned ON

All four LEDS turn ON.

Two errors: D_2 and D_3 are On when they should be OFF Brightness of D_1 and D_4 is halved because current is divided

Solution: Data can be displayed row by row

Solution: Data can be displayed row by row

Average Brightness of two LEDs will be 0.5L₁ and 0.5L₂

If we want average brightness of 100, then LEDs must be illuminated to a brightness of 200 Cd/m²

What about matrix with 3 rows and 2 columns (2 x 3)?

Average brightness is 1/3 of peak brightness

NxM Matrix

•For M=480 rows, a peak luminance of 10⁵ cd/m² is needed to obtain an average luminance of 200 cd/m².

Active Matrix OLED Display

Matrix Addressed Display

Addressing is done row by row

Main Problem with Passive Matrix

Resolution = 1024×1024 ; Brightness = 200Cd/m^2

Peak brightness from OLED =
$$1024 \times 200$$

= $2 \times 10^5 \text{ Cd/m}^2$

Reason: When we go from row R_j to the next row R_{j+1} the OLED in row R_j switches OFF

Solution: Keep the OLED ON even when it is not being addressed

Active Matrix OLED Pixel

AMOLED Panel

One Pixel

