INTERNATIONAL STANDARD

IEC 60601-1

Third edition 2005-12

Medical electrical equipment -

Part 1: General requirements for basic safety and essential performance

This **English-language** version is derived from the original **bilingual** publication by leaving out all French-language pages. Missing page numbers correspond to the French-language pages.

Publication numbering

As from 1 January 1997 all IEC publications are issued with a designation in the 60000 series. For example, IEC 34-1 is now referred to as IEC 60034-1.

Consolidated editions

The IEC is now publishing consolidated versions of its publications. For example, edition numbers 1.0, 1.1 and 1.2 refer, respectively, to the base publication, the base publication incorporating amendment 1 and the base publication incorporating amendments 1 and 2.

Further information on IEC publications

The technical content of IEC publications is kept under constant review by the IEC, thus ensuring that the content reflects current technology. Information relating to this publication, including its validity, is available in the IEC Catalogue of publications (see below) in addition to new editions, amendments and corrigenda. Information on the subjects under consideration and work in progress undertaken by the technical committee which has prepared this publication, as well as the list of publications issued, is also available from the following:

• IEC Web Site (<u>www.iec.ch</u>)

. Catalogue of IEC publications

The on-line catalogue on the IEC web site (www.iec.ch/searchpub) enables you to search by a variety of criteria including text searches, technical committees and date of publication. On-line information is also available on recently issued publications, withdrawn and replaced publications, as well as corrigenda.

IEC Just Published

This summary of recently issued publications (www.iec.ch/online_news/ justpub) is also available by email. Please contact the Customer Service Centre (see below) for further information.

• Customer Service Centre

If you have any questions regarding this publication or need further assistance, please contact the Customer Service Centre:

Email: <u>custserv@iec.ch</u>
Tel: +41 22 919 02 11
Fax: +41 22 919 03 00

INTERNATIONAL STANDARD

IEC 60601-1

Third edition 2005-12

Medical electrical equipment -

Part 1: General requirements for basic safety and essential performance

© IEC 2005 Copyright - all rights reserved

No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Electrotechnical Commission, 3, rue de Varembé, PO Box 131, CH-1211 Geneva 20, Switzerland Telephone: +41 22 919 02 11 Telefax: +41 22 919 03 00 E-mail: inmail@iec.ch Web: www.iec.ch

PRICE CODE

Commission Electrotechnique Internationale

- 3 -

CONTENTS

FOREWORD		21	
INT	NTRODUCTION		25
1	Scope, object and related standards		
	1.1	* Scope	29
	1.2	Object	29
	1.3	* Collateral standards	29
	1.4	* Particular standards	31
2	* Nor	mative references	31
3	* Ter	minology and definitions	39
4	Gene	eral requirements	79
	4.1	* Conditions for application to ME EQUIPMENT or ME SYSTEMS	79
	4.2	* RISK MANAGEMENT PROCESS for ME EQUIPMENT OF ME SYSTEMS	79
	4.3	* Essential performance	81
	4.4	* EXPECTED SERVICE LIFE	81
	4.5	* Equivalent safety for ME EQUIPMENT or ME SYSTEMS	83
	4.6	* ME EQUIPMENT or ME SYSTEM parts that contact the PATIENT	83
	4.7	* SINGLE FAULT CONDITION for ME EQUIPMENT	83
	4.8	Components of ME EQUIPMENT	85
	4.9	* Use of COMPONENTS WITH HIGH-INTEGRITY CHARACTERISTICS IN ME EQUIPMENT	85
	4.10	* Power supply	87
	4.11	Power input	89
5	* Ger	neral requirements for testing ME EQUIPMENT	91
	5.1	* Type tests	91
	5.2	* Number of samples	91
	5.3	Ambient temperature, humidity, atmospheric pressure	
	5.4	Other conditions	91
	5.5	Supply voltages, type of current, nature of supply, frequency	93
	5.6	Repairs and modifications	93
	5.7	* Humidity preconditioning treatment	93
	5.8	Sequence of tests	95
	5.9	* Determination of APPLIED PARTS and ACCESSIBLE PARTS	95
6	* Classification of ME EQUIPMENT and ME SYSTEMS		99
	6.1	General	99
	6.2	* Protection against electric shock	
	6.3	* Protection against harmful ingress of water or particulate matter	
	6.4	Method(s) of sterilization	
	6.5	Suitability for use in an OXYGEN RICH ENVIRONMENT	
	6.6	* Mode of operation	
		·	

- 5 -

7	MEE	QUIPMENT identification, marking and documents	101
	7.1	General	101
	7.2	Marking on the outside of ME EQUIPMENT or ME EQUIPMENT parts	105
	7.3	Marking on the inside of ME EQUIPMENT or ME EQUIPMENT parts	113
	7.4	Marking of controls and instruments	117
	7.5	Safety signs	119
	7.6	Symbols	121
	7.7	Colours of the insulation of conductors	121
	7.8	* Indicator lights and controls	123
	7.9	ACCOMPANYING DOCUMENTS	123
8	* Pro	tection against electrical HAZARDS from ME EQUIPMENT	135
	8.1	Fundamental rule of protection against electric shock	135
	8.2	Requirements related to power sources	
	8.3	Classification of APPLIED PARTS	
	8.4	Limitation of voltage, current or energy	
	8.5	Separation of parts	
	8.6	* Protective earthing, functional earthing and potential equalization of ME EQUIPMENT	
	8.7	LEAKAGE CURRENTS and PATIENT AUXILIARY CURRENTS	
	8.8	Insulation	
	8.9	* CREEPAGE DISTANCES and AIR CLEARANCES	
	8.10	Components and wiring	
	8.11	MAINS PARTS, components and layout	
9		tection against MECHANICAL HAZARDS of ME EQUIPMENT and ME SYSTEMS	
	9.1	MECHANICAL HAZARDS of ME EQUIPMENT	
	9.2	* HAZARDS associated with moving parts	
	9.3	* HAZARD associated with surfaces, corners and edges	
	9.4	* Instability HAZARDS	
	9.5	* Expelled parts HAZARD	
	9.6	Acoustic energy (including infra- and ultrasound) and vibration	
	9.7	* Pressure vessels and parts subject to pneumatic and hydraulic pressure	
	9.8	* HAZARDS associated with support systems	
10		tection against unwanted and excessive radiation HAZARDS	
10			
		X-Radiation	
		Alpha, beta, gamma, neutron and other particle radiation Microwave radiation	
		* Lasers and light emitting diodes (LEDs)	
		, ,	
		Other visible electromagnetic radiation	
		Infrared radiation	
11		Ultraviolet radiation	
11		tection against excessive temperatures and other HAZARDS	
		* Excessive temperatures in ME EQUIPMENT	
		* Fire prevention	
	11.3	* Constructional requirements for fire ENCLOSURES of ME EQUIPMENT	323

	11.4	* ME EQUIPMENT and ME SYSTEMS intended for use with flammable anaesthetics	329
	11.5	* ME EQUIPMENT and ME SYSTEMS intended for use in conjunction with flammable agents	329
	11.6	Overflow, spillage, leakage, ingress of water or particulate matter, cleaning, disinfection, sterilization and compatibility with substances used with the ME EQUIPMENT	
	11 7	Biocompatibility of ME EQUIPMENT and ME SYSTEMS	
		* Interruption of the power supply / SUPPLY MAINS to ME EQUIPMENT	
12		curacy of controls and instruments and protection against hazardous outputs	
	12.1	Accuracy of controls and instruments	333
	12.2	USABILITY	333
	12.3	Alarm systems	333
	12.4	Protection against hazardous output	333
13	* HAZ	ZARDOUS SITUATIONS and fault conditions	337
	13.1	Specific HAZARDOUS SITUATIONS	337
	13.2	SINGLE FAULT CONDITIONS	339
14	* Pro	OGRAMMABLE ELECTRICAL MEDICAL SYSTEMS (PEMS)	351
	14.1	* General	351
	14.2	* Documentation	351
	14.3	* RISK MANAGEMENT plan	353
	14.4	* PEMS DEVELOPMENT LIFE-CYCLE	353
	14.5	* Problem resolution	353
	14.6	RISK MANAGEMENT PROCESS	353
	14.7	* Requirement specification	355
	14.8	* Architecture	355
	14.9	* Design and implementation	357
	14.10) * VERIFICATION	357
	14.11	1 * Pems validation	357
	14.12	2 * Modification	359
		3 * Connection of PEMS by NETWORK/DATA COUPLING to other equipment	
15	Cons	truction of ME EQUIPMENT	359
	15.1	* Arrangements of controls and indicators of ME EQUIPMENT	359
	15.2	* Serviceability	359
	15.3	Mechanical strength	361
	15.4	ME EQUIPMENT components and general assembly	369
	15.5	* Mains supply transformers of ME equipment and transformers providing separation in accordance with 8.5	379
16	* ME	SYSTEMS	387
	16.1	* General requirements for the ME SYSTEMS	387
		* ACCOMPANYING DOCUMENTS of an ME SYSTEM	
	16.3	* Power supply	391
		ENCLOSURES	
		* SEPARATION DEVICES	
	16.6	* LEAKAGE CURRENTS	393
	16.7	* Protection against MECHANICAL HAZARDS	395

16.6 Interruption of the power supply to parts of all ME SYSTEM	393
16.9 ME SYSTEM connections and wiring	395
17 * Electromagnetic compatibility of ME EQUIPMENT and ME SYSTEMS	399
Annex A (informative) General guidance and rationale	401
Annex B (informative) Sequence of testing	613
Annex C (informative) Guide to marking and labelling requirements for ME EQUIPMENT	
and ME SYSTEMS	
Annex D (informative) Symbols on marking	629
Annex E (informative) Examples of the connection of the measuring device (MD) for measurement of the PATIENT LEAKAGE CURRENT and PATIENT AUXILIARY CURRENT	647
Annex F (informative) Suitable measuring supply circuits	651
Annex G (normative) Protection against HAZARDS of ignition of flammable anaesthetic mixtures	657
Annex H (informative) PEMS structure, PEMS DEVELOPMENT LIFE-CYCLE and	
documentation .	
Annex I (informative) ME SYSTEMS aspects	
Annex J (informative) Survey of insulation paths	
Annex K (informative) Simplified PATIENT LEAKAGE CURRENT diagrams	
Annex L (normative) Insulated winding wires for use without interleaved insulation	737
Bibliography	743
INDEX	749
INDEX OF ABBREVIATIONS AND ACRONYMS	775
Figure 1 – Detachable mains connection	
Figure 2 – Example of the defined terminals and conductors	
Figure 3 – Example of a CLASS I ME EQUIPMENT	47
Figure 4 – Example of a metal-enclosed CLASS II ME EQUIPMENT	47
Figure 5 – Schematic flow chart for component qualification	87
Figure 6 – Standard test finger	97
Figure 7 – Test hook	99
Figure 8 – Test pin	141
Figure 9 – Application of test voltage to bridged PATIENT CONNECTIONS for DEFIBRILLATION-PROOF APPLIED PARTS	155
Figure 10 – Application of test voltage to individual PATIENT CONNECTIONS for DEFIBRILLATION-PROOF APPLIED PARTS	159
Figure 11 – Application of test voltage to test the delivered defibrillation energy	161

Figure 12 – Example of a measuring device and its frequency characteristics	169
Figure 13 – Measuring circuit for the EARTH LEAKAGE CURRENT of CLASS I ME equipment,	175
with or without APPLIED PART	
Figure 14 – Measuring circuit for the TOUCH CURRENT	177
Figure 15 – Measuring circuit for the PATIENT LEAKAGE CURRENT from the PATIENT CONNECTION to earth	179
Figure 16 – Measuring circuit for the PATIENT LEAKAGE CURRENT via the PATIENT CONNECTION(S) of an F-TYPE APPLIED PART to earth caused by an external voltage on the PATIENT CONNECTION(S)	181
Figure 17 – Measuring circuit for the PATIENT LEAKAGE CURRENT from PATIENT CONNECTION(S) to earth caused by an external voltage on a SIGNAL INPUT/OUTPUT PART	183
Figure 18 – Measuring circuit for the PATIENT LEAKAGE CURRENT from PATIENT CONNECTION(S) to earth caused by an external voltage on a metal ACCESSIBLE PART that is not PROTECTIVELY EARTHED	185
Figure 19 – Measuring circuit for the PATIENT AUXILIARY CURRENT	187
Figure 20 – Measuring circuit for the total PATIENT LEAKAGE CURRENT with all PATIENT CONNECTIONS of all APPLIED PARTS of the same type (TYPE B APPLIED PARTS, TYPE BF APPLIED PARTS or TYPE CF APPLIED PARTS) connected together	189
Figure 21 – Ball-pressure test apparatus	213
Figure 22 – Creepage distance and air clearance – Example 1	239
Figure 23 – Creepage distance and air clearance – Example 2	239
Figure 24 – Creepage distance and air clearance – Example 3	
Figure 25 – Creepage distance and air clearance – Example 4	239
Figure 26 – Creepage distance and air clearance – Example 5	239
Figure 27 – Creepage distance and air clearance – Example 6	241
Figure 28 – Creepage distance and air clearance – Example 7	241
Figure 29 – Creepage distance and air clearance – Example 8	241
Figure 30 – Creepage distance and air clearance – Example 9	241
Figure 31 – Creepage distance and air clearance – Example 10	243
Figure 32 – Ratio between HYDRAULIC TEST PRESSURE and MAXIMUM PERMISSIBLE WORKING PRESSURE	280
Figure 33 – Human body test mass	
Figure 34 – Spark ignition test apparatus	
Figure 35 – Maximum allowable current <i>I</i> as a function of the maximum allowable voltage <i>U</i> measured in a purely resistive circuit in an OXYGEN RICH ENVIRONMENT	
Figure 36 – Maximum allowable voltage <i>U</i> as a function of the capacitance <i>C</i> measured in a capacitive circuit used in an OXYGEN RICH ENVIRONMENT	
Figure 37 – Maximum allowable current <i>I</i> as a function of the inductance <i>L</i> measured in an inductive circuit in an OXYGEN RICH ENVIRONMENT	319
Figure 38 – Baffle	327
Figure 39 – Area of the bottom of an ENCLOSURE as specified in 11.3 b) 1)	327
Figure A.1 – Identification of ME EQUIPMENT, APPLIED PARTS and PATIENT CONNECTIONS in an ECG monitor	413

incorporated in the ME EQUIPMENT	415
Figure A.3 – Identification of ME EQUIPMENT, APPLIED PARTS and PATIENT CONNECTIONS in a PATIENT monitor with invasive pressure monitoring facility	417
Figure A.4 – Identification of ME EQUIPMENT, APPLIED PARTS and PATIENT CONNECTIONS in a multifunction PATIENT monitor with invasive pressure monitoring facilities	419
Figure A.5 – Identification of APPLIED PARTS and PATIENT CONNECTIONS in an X-ray ME SYSTEM	421
Figure A.6 – Identification of ME EQUIPMENT, APPLIED PARTS and PATIENT CONNECTIONS in a transcutaneous electronic nerve stimulator (TENS) intended to be worn on the PATIENT'S belt and connected to electrodes applied to the PATIENT'S upper arm	421
Figure A.7 – Identification of ME EQUIPMENT OR ME SYSTEM, APPLIED PARTS and PATIENT CONNECTIONS in a personal computer with an ECG module	423
Figure A.8 – Pictorial representation of the relationship of HAZARD, sequence of events, HAZARDOUS SITUATION and HARM	429
Figure A.9 – Example of PATIENT ENVIRONMENT	441
Figure A.10 – Floating circuit	469
Figure A.11 – Interruption of a power-carrying conductor between ME EQUIPMENT parts in separate ENCLOSURES	475
Figure A.12 – Identification of MEANS OF PATIENT PROTECTION and MEANS OF OPERATOR PROTECTION	483
Figure A.13 – Allowable protective earth impedance where the fault current is limited	497
Figure A.14 – Probability of ventricular fibrillation	509
Figure A.15 – Example of a measuring circuit for the PATIENT LEAKAGE CURRENT from a PATIENT CONNECTION to earth for ME EQUIPMENT with multiple PATIENT CONNECTIONS	519
Figure A.16 – Instability test conditions	543
Figure A.17 – Example of determining TENSILE SAFETY FACTOR using Table 21	555
Figure A.18 – Example of determining design and test loads	557
Figure A.19 – Example of human body mass distribution	557
Figure E.1 – Type B Applied Part	647
Figure E.2 – Type bf applied part	647
Figure E.3 – Type cf applied part	649
Figure E.4 – Patient auxiliary current	649
Figure E.5 – Loading of the PATIENT CONNECTIONS if specified by the MANUFACTURER	649
Figure F.1 – Measuring supply circuit with one side of the SUPPLY MAINS at approximately earth potential	651
Figure F.2 – Measuring supply circuit with SUPPLY MAINS approximately symmetrical to earth potential	651
Figure F.3 – Measuring supply circuit for polyphase ME EQUIPMENT specified for connection to a polyphase SUPPLY MAINS	653
Figure F.4 – Measuring supply circuit for single-phase ME EQUIPMENT specified for connection to a polyphase SUPPLY MAINS	

Figure F.5 – Measuring supply circuit for ME EQUIPMENT having a separate power supply unit or intended to receive its power from another equipment in an ME SYSTEM	655
Figure G.1– Maximum allowable current I_{ZR} as a function of the maximum allowable voltage U_{ZR} measured in a purely resistive circuit with the most flammable mixture of ether vapour with air	669
Figure G.2 – Maximum allowable voltage $U_{\rm ZC}$ as a function of the capacitance $C_{\rm max}$ measured in a capacitive circuit with the most flammable mixture of ether vapour with air .	671
Figure G.3 – Maximum allowable current $I_{\rm ZL}$ as a function of the inductance $L_{\rm max}$ measured in an inductive circuit with the most flammable mixture of ether vapour with air	671
Figure G.4 – Maximum allowable current I_{ZR} as a function of the maximum allowable voltage U_{ZR} measured in a purely resistive circuit with the most flammable mixture of ether vapour with oxygen	679
Figure G.5 – Maximum allowable voltage $U_{\rm ZC}$ as a function of the capacitance $C_{\rm max}$ measured in a capacitive circuit with the most flammable mixture of ether vapour with	681
Figure G.6 – Maximum allowable current I_{ZL} as a function of the inductance L_{max} measured in an inductive circuit with the most flammable mixture of ether vapour with oxygen	
Figure G.7 – Test apparatus	685
Figure H.1 – Examples of PEMS/ PESS structures	689
Figure H.2 – A PEMS DEVELOPMENT LIFE-CYCLE model	691
Figure H.3 – PEMS documentation requirements from Clause 14 and ISO 14971:2000	
Figure H.4 – Example of potential parameters required to be specified for NETWORK/DATA COUPLING	711
Figure I.1 – Example of the construction of a MULTIPLE SOCKET-OUTLET (MSO)	721
Figure I.2 – Examples of application of MULTIPLE SOCKET-OUTLETS (MSO)	723
Figure J.1 – Insulation example 1	725
Figure J.2 – Insulation example 2	725
Figure J.3 – Insulation example 3	725
Figure J.4 – Insulation example 4	727
Figure J.5 – Insulation example 5	727
Figure J.6 – Insulation example 6	727
Figure J.7 – Insulation example 7	729
Figure K.1 – ME EQUIPMENT with an ENCLOSURE made of insulating material	731
Figure K.2 – ME EQUIPMENT with an F-TYPE APPLIED PART	731
Figure K.3 – ME EQUIPMENT with an APPLIED PART and a SIGNAL INPUT/OUTPUT PART	733
Figure K.4 – ME EQUIPMENT with a PATIENT CONNECTION of a TYPE B APPLIED PART that is not PROTECTIVELY EARTHED	733
Figure K.5 – ME EQUIPMENT with a PATIENT CONNECTION of a TYPE BF APPLIED PART that is not PROTECTIVELY EARTHED	735

Table 1 – Units outside the SI units system that may be used on ME EQUIPMENT	119
Table 2 – Colours of indicator lights and their meaning for ME EQUIPMENT	123
Table 3 – * Allowable values of PATIENT LEAKAGE CURRENTS and PATIENT AUXILIARY CURRENTS under NORMAL CONDITION and SINGLE FAULT CONDITION	171
Table 4 – * Allowable values of PATIENT LEAKAGE CURRENTS under the special test conditions identified in 8.7.4.7	173
Table 5 – Legends of symbols for Figure 9 to Figure 11, Figure 13 to Figure 20, Figure A.15, Annex E and Annex F	191
Table 6 – Test voltages for solid insulation forming a MEANS OF PROTECTION	207
Table 7 – Test voltages for MEANS OF OPERATOR PROTECTION	209
Table 8 – Multiplication factors for AIR CLEARANCES for altitudes up to 5 000 m	215
Table 9 – Material group classification	217
Table 10 – Mains transient voltage	219
Table 11 – Minimum CREEPAGE DISTANCES and AIR CLEARANCES between parts of opposite polarity of the MAINS PART	223
Table 12 – Minimum CREEPAGE DISTANCES and AIR CLEARANCES providing MEANS OF PATIENT PROTECTION	225
Table 13 – Minimum AIR CLEARANCES providing MEANS OF OPERATOR PROTECTION from the MAINS PART	227
Table 14 – Additional AIR CLEARANCES for insulation in MAINS PARTS with PEAK WORKING VOLTAGES exceeding the peak value of the NOMINAL MAINS VOLTAGE a	229
Table 15 – Minimum air clearances for means of operator protection in secondary circuits	231
Table 16 – Minimum Creepage distances providing means of operator protection	233
Table 17 – Nominal cross-sectional area of conductors of a power supply cord	251
Table 18 – Testing of cord anchorages	253
Table 19 – Mechanical hazards covered by this clause	261
Table 20 – Acceptable gaps	265
Table 21 – Determination of TENSILE SAFETY FACTOR	293
Table 22 – Allowable maximum temperatures of parts	305
Table 23 – Allowable maximum temperatures for ME EQUIPMENT parts that are likely to be touched	307
Table 24 – Allowable maximum temperatures for skin contact with ME EQUIPMENT APPLIED PARTS	307
Table 25 – Acceptable perforation of the bottom of an ENCLOSURE	325
Table 26 – * Temperature limits of motor windings	345
Table 27 – Maximum motor winding steady-state temperature	349
Table 28 – Mechanical strength test applicability	361
Table 29 – Drop height	365
Table 30 – Test torques for rotating controls	377

60601-1 © IEC:2005 - 19 -

Table 31 – Maximum allowable temperatures of transformer windings under overload and short-circuit conditions at 25 °C (± 5 °C) ambient temperature	381
Table 32 – Test current for transformers	383
Table A.1 – Values of AIR CLEARANCE and CREEPAGE DISTANCE derived from Table 7 of IEC 61010-1:2001 and Table 12	525
Table A.2 – CREEPAGE DISTANCES to avoid failure due to tracking from IEC 60664-1	527
Table A.3 – Instability test conditions	543
Table A.4 – Allowable time exposure for level of acceleration	547
Table A.5 – Guidance on surface temperatures for ME EQUIPMENT that creates low temperatures (cools) for therapeutic purposes or as part of its operation	565
Table C.1- Marking on the outside of ME EQUIPMENT, ME SYSTEMS or their parts	621
Table C.2 – Marking on the inside of ME EQUIPMENT, ME SYSTEMS or their parts	623
Table C.3 – Marking of controls and instruments	623
Table C.4 – ACCOMPANYING DOCUMENTS, general	625
Table C.5 – ACCOMPANYING DOCUMENTS, instructions for use	625
Table D.1 – General symbols	631
Table D.2 – Safety signs	641
Table D.3 – General codes	645
Table G.1 – Gas-tightness of cord inlets	675
Table H.1 – NETWORK/DATA COUPLING classification	707
Table I.1 – Some examples of ME SYSTEMS for illustration	717
Table L.1– Mandrel diameter	739
Table L.2 – Oven temperature	739

- 457 -

Fuseholders where the fuselink is held in a cap that can be removed without use of a TOOL are a special concern. If the fuselink does not come out when the cap is removed, the OPERATOR could be inclined to try to remove it by gripping the end of the fuselink with the fingers. The OPERATOR could try to insert a new fuselink into the fuseholder without first inserting it in the cap. Both cases can be considered reasonably foreseeable misuse. This should be taken intoconsideration with assessing what parts are accessible.

The reader is referred to IEC 60127-6 [7] for more information on fuseholders.

Clause 6 - Classification of ME EQUIPMENT and ME SYSTEMS

ME EQUIPMENT can have a multiple classification.

Subclause 6.2 - Protection against electric shock

The term "Class III equipment" is used in some other standards to identify equipment that is powered from a safety extra-low voltage (SELV) mains supply system. The term Class III equipment is not formally used in this standard. The BASIC SAFETY of Class III equipment is critically dependent on the installation and on other Class III equipment connected thereto. These factors are outside the control of the OPERATOR and this is considered to be unacceptable for ME EQUIPMENT. Additionally, limitation of voltage is not sufficient to ensure safety of the PATIENT. For these reasons, this standard does not recognize Class III construction.

Subclause 6.3 - Protection against harmful ingress of water or particulate matter

It should be noted that compliance with the requirements of this standard automatically allows MANUFACTURERS to rate ME EQUIPMENT as IP2X because the requirements of IEC 60529 for this rating are the same as the accessibility requirements (see 5.9).

Subclause 6.6 – Mode of operation

CONTINUOUS OPERATION and non-CONTINUOUS OPERATION cover the range of operating modes of virtually all equipment. ME EQUIPMENT that remains plugged into the SUPPLY MAINS continuously but is operated intermittently should be RATED for non-CONTINUOUS OPERATION, have the appropriate indication of on/off times in the ACCOMPANYING DOCUMENTS and markings on the ME EQUIPMENT (see 7.2.11).

Subclause 7.1.1 - USABILITY of the identification, marking and documents

For ME EQUIPMENT to be well designed, its markings and ACCOMPANYING DOCUMENTS should be clear, consistent, and help to reduce potential use error. Thus, markings and ACCOMPANYING DOCUMENTS should undergo the same rigorous evaluation as other OPERATOR-ME EQUIPMENT interface elements.

Subclause 7.1.2 – Legibility of markings

Markings on ME EQUIPMENT are expected to be CLEARLY LEGIBLE by an OPERATOR over the range of normal illumination levels where the ME EQUIPMENT is typically operated. The levels used in this test are derived from the following recommended illumination levels for use in interior lighting design [51]:

- 571 -

Subclause 11.6.2 - Overflow in ME EQUIPMENT

The purpose of this test is to assess not only whether the liquid actually wets any parts in a way that would adversely affect a MEANS OF PROTECTION or result in a HAZARD; but also whether a similar amount of liquid that could overflow on another occasion and reach the same parts of the ME EQUIPMENT, but possibly not land in exactly the same way, could adversely affect a MEANS OF PROTECTION or result in a HAZARD. The results of the test should be evaluated to assure they realistically represent conditions that will be experienced when the ME EQUIPMENT is used.

Subclause 11.6.3 - Spillage on ME EQUIPMENT and ME SYSTEMS

In addition to ME EQUIPMENT that requires the use of fluids, many types are exposed to fluid spills as part of their REASONABLY FORESEEABLE MISUSES. In such cases (as well as for ME EQUIPMENT requiring fluids) the amount and location where spills can occur vary greatly. Only a proper evaluation of the ME EQUIPMENT being tested can determine an appropriate application of the requirement. Doing such an evaluation is the responsibility of the MANUFACTURER and the results are to be provided to those performing the test (typically in the RISK MANAGEMENT FILE). This requirement would be an appropriate area for evaluation by writers of particular standards.

Examination of the NORMAL USE of ME EQUIPMENT should provide an adequate estimate of the amount of fluid that is likely to be spilled on it.

Spillage for equipment that does not require the use of fluids is considered to be a SINGLE FAULT CONDITION.

Subclause 11.6.4 - Leakage

Leakage is considered to be a SINGLE FAULT CONDITION.

Subclause 11.6.5 – Ingress of water and particulate matter into ME EQUIPMENT and ME SYSTEMS

Although it is unlikely that ME EQUIPMENT would be RATED for protection against particulate matter, IEC 60529 does address the possibility and it should be considered a valid option. The presence of any water or particulate matter inside the ENCLOSURE after testing in accordance with its IEC 60529 classification is regarded as a NORMAL CONDITION. The requirement is therefore to assess the possibility of a HAZARDOUS SITUATION due to such ingress in combination with a possible SINGLE FAULT CONDITION (such as an interrupted PROTECTIVE EARTH CONNECTION).

Subclause 11.6.8 - Compatibility with substances used with the ME EQUIPMENT

ME EQUIPMENT, ACCESSORIES and parts thereof should be designed to be used safely with the substances with which they are intended to come into contact in NORMAL USE.

Where appropriate, particular standards should specify the corresponding requirements.

Subclause 11.8 - * Interruption of the power supply / SUPPLY MAINS to ME EQUIPMENT

Interruption of the power supply could result in a HAZARD due to loss of functionality. This HAZARD is dealt with in 7.9.2.4. Restoration of the power source can also result in HAZARDOUS SITUATIONS. Examples could include unintended activation of moving parts or resumption of dangerous outputs. These potentially HAZARDOUS SITUATION and the duration of the power interruption that could result in the HAZARDS need to be considered as part of the RISK MANAGEMENT PROCESS.