Задание 12 (на 30.11, в письменном виде).

[ML 59.] Пусть сигнатура содержит только одноместные предикатные символы. Покажите, что:

- (a) всякая выполнимая формула, содержащая n предикатных символов, выполнима и в интерпретации, в носителе которой не более 2^n элементов;
- (б) существует алгоритм, проверяющий выполнимость таких формул.

ML 60. Покажите, что:

- (a) если формула A(x) выводима, то выводима и формула $\forall x A(x)$;
- (б) множество выводимых формул не изменится, если мы добавим правило обобщения $\frac{A(x)}{\forall x A(x)}$, а правила Бернайса заменим на две новые аксиомы: $(\forall x (A \to B)) \to (A \to \forall x B)$ и $(\exists x (B \to A)) \to (\exists x B \to A)$, в этих аксиомах x не входит в A свободно.

| **ML 61.** | Покажите, что:

- (a) если $A \to B$ выводима, то и $\exists x A \to \exists x B$ выводима;
- (б) формула $\forall x A(x) \rightarrow \forall y A(y)$ выводима.

ML 62. Приведите пример формулы, которая истинна во всех интерпретациях с конечным носителем, но не является общезначимой.

Пусть I — интерпретация. Теорией Th(I) называется множество замкнутых формул, которые истины в интерпретации I.

ML 63. Построите две неизоморфные интерпретации теории $Th(\mathbb{Q},<,=)$ (плотный линейный порядок без первого и последнего элемента) мощности континуум.

ML 38. Докажите, что существует такое множество $S \subseteq \mathbb{N}$, что для любого бесконечного перечислимого множества A множества $A \cap S$ и $A \setminus S$ имеют бесконечный размер.

[ML 46.] Можно ли в данной интерпретации провести элиминацию кванторов (\mathbb{Q} , +)? Если нет, то можно ли добавить какой-нибудь выразимый предикат так, чтобы с новым предикатом элиминация квантором стала возможной.

[ML 47.] Можно ли в данной интерпретации провести элиминацию кванторов (\mathbb{Q} , =, S), где S — прибавление единицы? Если нет, то можно ли добавить какой-нибудь выразимый предикат так, чтобы с новым предикатом элиминация кванторов стала возможной.

ML 49. Пусть T теория следующего языка: $\{<, R, B\}$, где R (red) и B (blue) унарные предикаты.

T содержит все аксиомы плотного линейного порядка без первого и последнего элемента, а также:

$$\forall xy \exists zw (x < z < w < y \land R(z) \land B(w))$$

$$\forall x (R(x) \lor B(x))$$

$$\forall x (R(x) \leftrightarrow \neg B(x).$$

Докажите, что любые интерпретации данной теории на счетном множестве изоморфны.

ML 51. Вудет ли интерпретация $(\mathbb{N},=,<)$ элементарно эквивалентна: $(\mathbb{N}+\mathbb{Z},=,<)$.

ML 52. Будет ли интерпретация ($\mathbb{Q}, =, <$) элементарно эквивалентна:

(6) $(\mathbb{Q} + \mathbb{R}, =, <)$.

ML 53.

- (a) Покажите, что естественные интерпретации (=,+,*,0,1) для всех алгебраически замкнутых полей характеристики 0 являются элементарно эквивалентными.
- (б) Для двух алгебраически замкнутых полей k_1 и k_2 характеристики 0 выполняется, что k_1 является надполем поля k_2 . Покажите, что естественная интерпретация (=,+,*,0,1) в поле k_1 является элементарным расширением естественной интерпретации (=,+,*,0,1) в поле k_2 .
- (в) Докажите теорему Гильберта о нулях: всякая система полиномиальных уравнений с коэффициентами в алгебраически замкнутом поле характеристики ноль, имеющее решение в расширении поля, имеет решение и в самом поле.
- (г) Докажите переформулировку теоремы Гильберта о нулях: если система полиномиальных уравнений $\bigwedge_{i=1}^k P_i(x_1,x_2,\ldots,x_n)=0$ не имеет решения в некотором алгебраически замкнутом поле характеристики 0, то найдутся такие многочлены $Q_1(x_1,\ldots,x_n),\ldots,Q_k(x_1,\ldots,x_n)$, что $\sum_i Q_i P_1=1$.

ML 54. Покажите (в случае пропозициональных формул), что если $F_1, F_2, \ldots, F_n \vdash F$, то формула $(\bigwedge_{i=1}^n F_i) \to F$ является тавтологией.

ML 56. Покажите, что если формула ϕ является, то и формула, которая получится при подстановке другой формулы вместо переменной формулы ϕ , тоже будет выводимой.

ML 57. Покажите, что следующие формул являются выводимыми:

- $\overline{\text{(a)}} \xrightarrow{A} \neg \neg A \text{ } \square \neg \neg \neg A \rightarrow \neg A;$
- (б) $((A \lor B) \to C) \to ((A \to C) \land (B \to C))$ и $((A \to C) \land (B \to C)) \to ((A \lor B) \to C)$;
- (B) $((A \land C) \lor (B \land C)) \rightarrow ((A \lor B) \land C)$ и $((A \lor B) \land C) \rightarrow ((A \land C) \lor (B \land C))$;
- $(\Gamma) \ ((A \lor C) \lor (B \lor C)) \to ((A \land B) \lor C) \ \mathsf{M} \ ((A \land B) \lor C) \to ((A \lor C) \lor (B \lor C));$
- $(A) (\neg B \rightarrow \neg A) \rightarrow (A \rightarrow B).$

ML 58. Заменим 11-ую аксиому $A \vee \neg A$ на $\neg \neg A \to A$. Покажите, что множество выводимых формул не изменится.