Ames House Hunting

Machine Learning Project 2020

Anjali Pathak, Brandon Ryu, Isabel Alvarez de Lugo, Stephen Kita

Data Overview

The data used featured about 2500 house sale records from **Ames, Iowa** between 2006-2010.

There are two datasets used: `Ames_Housing_Price_Data.csv` and `Ames_Real_Estate_Data.csv`.

The `Ames_Housing_Price_Data.csv` set contains 81 data columns, including the key feature SalePrice which will be used as the target of the predictive/descriptive modeling. 2580 observations (properties)

The `Ames_Real_Estate_Data.csv` set contains 90 data columns, including the key feature Prop_Addr which will be used to find the long-lat coordinates of the houses.

Does the Month Sold affect the Sale Price? Does Remodeling a home increase the Sale Price?

Can you see the effects of the Great Recession (2007-2009) in our data?

Does having certain optional additions affect Sale Price?

Feature	Average change in worth (\$1000)	P value	Correlation with Sale Price
Pool	78	0.001801	0.061
Fireplace	72	0.000000	0.480
Finished Garage	71	0.000000	0.404
Been Remodeled	70	0.020231	-0.053
Porch	47	0.000000	0.291
Deck	46	0.000000	0.309
Finished Basement	29	0.000000	0.176

How does the Overall Quality affect Sale Price? What are the key features driving Overall Quality?

EDA: Neighborhood Analysis

Does the price sensitivity on quality depend on the neighborhood?

EDA: Neighborhood Analysis

Which are the more expensive neighborhoods? What types of homes are popular in Ames?

Affluent

1.0

Poor

EDA: Neighborhood Analysis

Which Neighborhoods are closest to ISU?

 ISU is the largest employer of Ames, IA

- Neighborhoods with more convenient job commute.
 - Crawford
 - Edwards

EDA Conclusions

- As overall quality increased so did the Sale Price
- More affluent neighborhoods were more sensitive to changes in quality.
- There were moderate correlations with having a Fireplace and having a Finished garage and Sale Price
- 60% of the house in the dataset were Ranch style

Features Engineered: Tree Based Models

- Total Bathrooms
 - Combined number of bathrooms into one feature
- Curb Appeal
 - Combined features related to curb appeal such as exterior quality, roof style, lot config, etc.
- Distance to College
- Distance to High School
- Total Porch Area
 - Combined all Porch sq. ft. features
- Basement
 - Transformed into binary whether or not house has a basement

Decision Tree from Random Forest

Feature Importance: Top 12 Features

Tree Based Models: Scores

Model	R ² Train	R ² Test
Random Forest	0.967	0.895
Gradient Boost	0.971	0.911
XGBoost	0.963	0.901

Tree Models: Residuals Plots

House Hunters - Ames, IA

Objective: Create a house pricing model that is *interpretable* and can provide *recommendations* based on a buyer/seller's profile.

Solution: Multiple linear regression

Linear Model - Processing

Remove outliers (2580 => 2125 samples)

Linear Model - Transforming

Create binary variables (15 new features)

Linear Model - Feature Selection

Feature Selection with Lasso

Dummify Variables	Lasso Regression	Watch Coefficients
Category: 1, 2, 3, 4 becomes	Grid search for best penalization term (alpha)	Features with coeff = 0 can be dropped from the model.
Category_1, Category_2, Category_3, Category_4		Categories with similar coeff can be grouped into binaries

Binary Variables

Baseline

LogLotArea LogGrLivArea

<u>Test</u>

BeenRemod HasFinBsmt HasFinGarage

 \otimes

HasPool HasFireplace HasPorch HasDeck

Linear Model - Feature Selection

50 Total Features

Draft Model Rev 1

Remove
LogBsmtSF
Bedroom
BeenRemod
HousStyle
MoSold
YearBuilt

Draft Model Rev. 2

Train Score 0.908

Test Score 0.899

Mean Error \$22,620

Final Model

<u>Coeff</u>	<u>Features</u>
0.313	LogGrLivArea
0.099	HasCentralAir
0.085	LogLotArea
0.079	HasFinBsmt
0.070	OverallQual
0.052	GarageCars
0.043	HasGreatHeat
0.037	NumBath
0.035	HasFireplace
0.033	HasAttchGarage
0.031	OverallCond
0.031	HasGreatElectric
0.023	HasFinGarage
0.023	HasDeck
0.013	HasPorch
0.011	BldgType
0.010	Neighborhood

Train Score 0.890

Test Score 0.880

Mean Error \$17,213

Linear Model

40 Total Features

Model Deployment

https://ames-housing-app.herokuapp.com/

Scenario 1: Over Budget Young Professional

Model Deployment

Scenario 2 - Under Budget College Professor

Conclusion

Model	Pros	Cons
Multiple Linear	Easy to interpret Easy to deploy	Hard to meet assumptions Inaccurate > \$300,000
Random Forest	Easy to meet assumptions Easy to tune hyperparameters	Not great for regression Inaccurate > \$400,000
Gradient Boost	Easy to meet assumptions Accurate for all price ranges	Easy to overfit due to high variance Harder to interpret

A **combination model** that uses

- Multiple Regression: Sale Price < \$300,000
- Gradient Boost: Sale Price > \$300,000

Future Work

Data **Analysis**

In Depth Neighborhood: Grocery stores, bars, cafes, parks.

Feature Engineering

Driving Distance: Integrate with MapQuest to replace Ellipsoidal distance

Modelling

Bundled Linear: Do the coefficients change if trained on different neighborhoods?

Web App

Intelligence: Smarter recommendations (effect of changing multiple features)

Thank You

Extra Slides

Garage Variables

<u>Test</u>

- GarageType GarageYrBlt
- GarageFinish

 GarageCars
 GarageArea
 GarageQual
 GarageCond

Baseline

LogLotArea LogGrLivArea

Utility Variables

Test
Heating
HeatingQC
CentralAir
Electrical
Functional

<u>Baseline</u> LogLotArea LogGrLivArea

Overall Variables

<u>Test</u> OverallQual OverallCond

<u>Baseline</u> LogLotArea LogGrLivArea

