Nano & Hoare Logic

Klaus v. Gleissenthall

Where are we?

- Logic as the language of computation
- FOL is undecidable & hence not a good basis for verification
- Theories (SMT) are expressive & decidable which allows for reliable checking
- Next: step back from logic & look at programs
- How can we prove things about them?
- Plan for today:
 - Introduce a simple programming language (Nano)
 - Show how to prove things about it!
 - Next lecture: Checking proofs automatically via SMT solvers (VCGEN)

A Simple Imperative Language: Syntax

- We consider a small imperative programming language Nano
- Made up of expressions, Boolean expressions, and statements

Expressions: $e, e_1, e_2 \ni Exp ::= n | x | e_1 + e_2 | e_1 - e_2 | e_1 * e_2$ where $n \in \mathbb{Z}, x \in Vars$

Boolean Expressions: $b, b_1, b_2 \ni BExp := \top \mid \bot \mid \neg b \mid b_1 \land b_2 \mid b_1 \lor b_2 \mid e_1 = e_2 \mid e_1 \le e_2$

Question: We are missing <, >, \ge , \ne , is this a problem?

A Simple Imperative Language: Syntax

- We consider a small imperative programming language Nano
- Made up of expressions, Boolean expressions, and statements

Expressions: $e, e_1, e_2 \ni Exp ::= n \mid x \mid e_1 + e_2 \mid e_1 - e_2 \mid e_1 * e_2$ where $n \in \mathbb{Z}, x \in Vars$

```
Boolean
Expressions: b, b_1, b_2 \ni BExp ::= \top \mid \bot \mid \neg b \mid b_1 \land b_2 \mid b_1 \lor b_2 \mid e_1 = e_2 \mid e_1 \le e_2

Statement: s, s_1, s_2 \ni Stmt ::= skip
 \mid x := e \qquad (sequential composition) \quad (sf) \quad (if) \quad (if)
 \mid while b do s \quad (while)
```

- The meaning of Nano programs depends on the value of variables $x \in Vars$
- A <u>state</u> σ is a function from *Vars* to \mathbb{Z} ; σ captures the <u>current</u> value of all variables

Expressions: • We define a relation $\langle e, \sigma \rangle \Downarrow$ n saying that e evaluates to number n under σ .

$$\langle n, \sigma \rangle \Downarrow n \qquad \langle x, \sigma \rangle \Downarrow \sigma(x)$$

$$\frac{\langle \ e_1, \, \sigma \rangle \Downarrow \ n_1 \ \langle \ e_2, \, \sigma \rangle \Downarrow \ n_2}{\langle \ e_1 + \ e_2, \, \sigma \rangle \Downarrow \ n_1 + \ n_2} \qquad \frac{\langle \ e_1, \, \sigma \rangle \Downarrow \ n_1 \ \langle \ e_2, \, \sigma \rangle \Downarrow \ n_2}{\langle \ e_1 - \ e_2, \, \sigma \rangle \Downarrow \ n_1 - \ n_2} \qquad \frac{\langle \ e_1, \, \sigma \rangle \Downarrow \ n_1 \ \langle \ e_2, \, \sigma \rangle \Downarrow \ n_2}{\langle \ e_1 \ * \ e_2, \, \sigma \rangle \Downarrow \ n_1 \ * \ n_2}$$

Boolean Expressions

- Boolean expressions evaluate to either \top or \bot .
- We're skipping v and ¬.

$$\langle \top, \sigma \rangle \Downarrow \top$$
 $\langle \bot, \sigma \rangle \Downarrow \bot$

$$\langle e_1, \sigma \rangle \Downarrow n_1 \langle e_2, \sigma \rangle \Downarrow n_2$$

$$\langle e_1 = e_2, \sigma \rangle \Downarrow n_1 = n_2$$

$$\langle e_1, \sigma \rangle \Downarrow n_1 \langle e_2, \sigma \rangle \Downarrow n_2$$

$$\langle e_1 \leq e_2, \sigma \rangle \Downarrow n_1 \leq n_2$$

• What does the expression x+1 evaluate to in state $\sigma = \{x \rightarrow 2\}$?

• What about $x+1 \le 3$?

• Does the order in which we evaluate expressions matter?

- Expressions evaluate to a number or Boolean value
- But what do statements evaluate to? They have no direct result!
- Instead, they yield a new program state: $\langle s, \sigma \rangle \Downarrow \sigma$

Gordon Plotkin

- We call a pair $\langle s, \sigma \rangle$ a <u>configuration</u>
- This approach to semantics is called <u>structural operational semantics</u> (SOS)
- Introduced by Gordon Plotkin in 1981: https://web.eecs.umich.edu/~weimerw/590/reading/plotkin81structural.pdf
- There are other approaches, for example denotational semantics

Statements

$$(skip) \quad \frac{\langle s_1, \sigma \rangle \Downarrow \sigma_1 \langle s_2, \sigma_1 \rangle \Downarrow \sigma_2}{\langle skip, \sigma \rangle \Downarrow \sigma} \\ \qquad \langle skip, \sigma \rangle \Downarrow \sigma$$

$$(seq) \quad \frac{\langle s_1, \sigma \rangle \Downarrow \sigma_1 \langle s_2, \sigma_1 \rangle \Downarrow \sigma_2}{\langle s_1; s_2, \sigma \rangle \Downarrow \sigma_2}$$

$$(if-\top) \quad \frac{\langle b, \sigma \rangle \Downarrow \top \langle s_1, \sigma \rangle \Downarrow \sigma_1}{\langle if \ b \ then \ s_1 \ else \ s_2, \sigma \rangle \Downarrow \sigma_1} \qquad (if-\bot) \quad \frac{\langle b, \sigma \rangle \Downarrow \bot \langle s_2, \sigma \rangle \Downarrow \sigma_2}{\langle if \ b \ then \ s_1 \ else \ s_2, \sigma \rangle \Downarrow \sigma_2}$$

(assn)
$$\frac{\langle e, \sigma \rangle \Downarrow n}{\langle x := e, \sigma \rangle \Downarrow \sigma[x \mapsto n]}$$

Statements

• Last one that's missing: While

$$(\text{while-}\bot) \quad \frac{\langle \ b, \sigma \rangle \Downarrow \bot}{\langle \ while \ b \ do \ s, \sigma \rangle \Downarrow \sigma} \qquad (\text{while-}\top) \quad \frac{\langle \ b, \sigma \rangle \Downarrow \top \langle s \ ; \ while \ b \ do \ s, \sigma \rangle \Downarrow \sigma}{\langle \ while \ b \ do \ s, \sigma \rangle \Downarrow \sigma}$$

- While-⊥ exits the loop
- While-⊤ unfolds the while loop once

Quiz:

- What does statement x := x-1 evaluate to in state $\sigma = \{x \to 2\}$?
- What about: if $(x+1 \le 3)$ then x:=x-1 else skip?
- What about while $(x+1 \le 3)$ then x:=x-1?
- Is $\langle e, \sigma \rangle \Downarrow$ n a total function?
- What about $\langle s, \sigma \rangle \Downarrow \sigma$?

Hoare Logic

- Hoare logic forms the basis of all deductive verification techniques
- Named after <u>Tony Hoare</u>: inventor of quick sort, father of formal verification, 1980 Turing award winner
- Logic is also known as <u>Floyd-Hoare logic</u>: some ideas introduced by <u>Robert Floyd</u> in 1967 paper
 - "Assigning Meaning to Programs"
- Also called "Axiomatic Semantics"

Dijkstra Quote

• "Program testing can be used to show the presence of bugs, but never to show their absence!"

Hoare Triples

• In Hoare logic, we specify partial correctness of programs using Hoare triples:

- Here, s is a statement in Nano
- Pand Q are SMT formulas
- Pis called a <u>precondition</u> and Q is called <u>post-condition</u>

Meaning of Hoare Triples

- Meaning of a Hoare triple {*P*} s {*Q*}
- Let us write $\sigma \vDash P$, if P holds on σ , (how could we define $\sigma \vDash P$?)
- If *P* holds in some state σ (i.e., $\sigma \vDash P$) and there exists σ' s.t. $\langle s, \sigma \rangle \Downarrow \sigma'$, then Q holds in state σ' (i.e., $\sigma' \vDash Q$).
- We write $\models \{P\}$ s $\{Q\}$ and say the Hoare triple is <u>valid</u>.
- What if s never terminates?
- Post-condition Q does not have to hold in that case!

Meaning of Hoare Triples

Quiz:

- Is $\{x=0\}$ x:=x+1 $\{x=1\}$ a valid Hoare triple?
- What about $\{x=0 \land y=1\} \ x:=x+1 \ \{x=1 \land y=2\} \ ?$
- What about $\{x=0 \land y=1\} \ x:=x+1 \ \{x=1 \lor y=2\} \ ?$
- And about $\{x=0\}$ while \top do x:=x+1 $\{x=1\}$?

Parial vs. Total Correctness

- {*P*} s {*Q*} is called a <u>partial correctness</u> specification, as it doesn't require s to terminate
- There is a stronger requirement called <u>total correctness</u>
- Total correctness is written as [P] s [Q]
- Meaning of [P] s [Q]:
 - If P holds in some state σ (i.e., $\sigma \vDash P$), then there exists σ ' s.t. $\langle s, \sigma \rangle \Downarrow \sigma$, and Q holds in state σ ' (i.e., σ ' $\vDash Q$).

Example: Is [x=0] while \top do x:=x+1 [x=1] valid?

Parial vs. Total Correctness

Quiz:

- What does $\{\top\}$ s $\{Q\}$ say?
- What about $\{P\}$ s $\{\top\}$?
- What about [P] s $[\top]$?
- When does $\{\top\}$ s $\{\bot\}$ hold ?
- When does $\{\bot\}$ s $\{Q\}$ hold ?
- We'll only focus on only partial correctness (safety)
- Total correctness = partial correctness + termination

More Hoare Triples

Quiz:

Are these Hoare triples valid or invalid?

- $\{i=o\}$ while $i < n \text{ do } i := i+1\{i=n\}$?
- $\{i=o\}$ while i < n do $i:=i+1\{i \ge n\}$?
- $\{i=o\}$ while i < n do i:=i+1; j:=j+i $\{2j=n(n+1)\}$?
- What if we strengthen the pre-condition?

Proving Partial Correctness

- Problem: How do we <u>prove</u> that a Hoare triple is valid?
- We want a proof system to show that $\models \{P\}$ s $\{Q\}$ holds
- We write ⊢ {*P*} s {*Q*} to indicate that we can prove validity
 of the Hoare triple
- Hoare gave a sound and (relatively) complete proof system that allows a semi-mechanized correctness proof
- Soundness: If $\vdash \{P\}$ s $\{Q\}$ then $\models \{P\}$ s $\{Q\}$
- Completeness: If $\models \{P\}$ s $\{Q\}$ then $\vdash \{P\}$ s $\{Q\}$

Inference Rules

• Proof rules in Hoare logic are written as inference rules:

$$\vdash \{P_1\} \ S_1 \ \{Q_1\} \ ... \ \vdash \{P_n\} \ S_n \ \{Q_n\}$$
 $\vdash \{P\} \ S \ \{Q\}$

• Says: If Hoare triples $\{P_1\}$ s₁ $\{Q_1\}$ to $\{P_n\}$ s_n $\{Q_n\}$ are provable in our proof system, then $\{P\}$ s $\{Q\}$ is also provable.

- Rules without hypotheses are base cases
- One rule per statement in Nano, let's take a look

Proof Rules: Assignments

- Consider the assignment x := y and and post-condition x > 2
- What needs to hold before the assignment so that x>2 holds afterwards?
- Consider i:=i+1 and post-condition i>10
- What do we need to know before the assignment so that i>10 holds afterwards?

Substitution

- We write P[e/x] to mean that we substitute e for variable x, in P
- Importantly, we substitute only free occurrences

Quiz:

- What is i>10[i+1/i]?
- What is $(\forall i. i>10)[i+1/i]$?

Proof Rules: Assignments

• We write P[e/x] to mean that we substitute e for variable x, in P

$$\vdash \{Q[e/x]\} x := e \{Q\}$$

• To prove Q holds <u>after</u> assignment x := e, it is sufficient to show that Q with e substituted for x holds <u>before</u> the assignment.

• Using this rule, which of these are provable?

•
$$\{y = 4\} x := 4 \{y = x\}$$

•
$$\{x+1=n\}\ x:=x+1\ \{x=n\}$$

•
$$\{y = x\} y := 2 \{y = x\}$$

•
$$\{z = 3\} y := x \{z = 3\}$$

Proof Rules: Assignments

• Your friend suggests the following proof rule for assignments:

$$\vdash \{(x=e) \rightarrow Q\} x := e \{Q\}$$

- Is this proof rule correct?
- Let's try it out on $\{?\}$ $x := 4 \{y = x\}$

Precondition Strengthening

• Is the following Hoare triple valid?

$${z = 2} y := x {y = x}$$

• Can we prove it with the assignment rule?

• Intuitively, we should be able to prove it <u>without</u> any assumptions; we should also be able to prove it <u>if we do</u> have assumptions!

Precondition Strengthening

• We write $P \Rightarrow P'$ to mean that formula $P \rightarrow P'$ is valid, i.e., $\models P \rightarrow P'$

$$\vdash \{P'\} \text{ s } \{Q\} \qquad P \Rightarrow P'$$

$$\vdash \{P\} \text{ s } \{Q\}$$

- To check $P \Rightarrow P'$, we need to call the SMT solver
- Let's now prove $\{z = 2\}$ $y := x \{y = x\}$

Postcondition Weakening

• We also need a dual rule for post-conditions called post-condition weakening:

$$\vdash \{P\} \text{ s } \{Q'\} \quad Q' \Rightarrow \quad Q$$

$$\vdash \{P\} \text{ s } \{Q\}$$

- If we prove some post-condition Q', we can always relax it to something weaker
- Again, we need to use an SMT solver when applying post-condition weakening

Postcondition Weakening

- Suppose we can prove $\{\top\}$ s $\{x = y \land z = 2\}$
- Using post-condition weakening, which of these can we prove?
 - $\bullet \ \{\top\} \ s \ \{x = y\}$
 - $\{T\}$ S $\{z=2\}$
 - $\bullet \ \{\top\} \ S \ \{z > 0\}$
 - $\{\top\}$ s $\{\forall y. x=y\}$
 - $\{\top\}$ s $\{\exists y. x=y\}$

Composition

$$\vdash \{P\} \ S_1 \ \{Q\} \ \vdash \{Q\} \ S_2 \ \{R\}$$
 $\vdash \{P\} \ S_1; \ S_2 \ \{R\}$

• Using this proof rule, let's prove validity of the Hoare triple:

$$\{\top\} x := 2; y := x \{y = 2 \land x = 2\}$$

If Statements

$$\vdash \{P \land b\} \ s_1 \ \{Q\} \qquad \{P \land \neg b\} \ s_2 \ \{Q\}$$
$$\vdash \{P\} \ \text{if b then } s_1 \ \text{else } s_2 \ \{Q\}$$

- Suppose P holds before the if-statement
- When executing the then-branch, what do we know?
- What about the else-branch?

If Statements

Example: Prove the correctness of this Hoare triple

 $\{\top\}$ if x > 0 then y := x else $y := -x \{y \ge 0\}$

Where are we?

- Hoare Logic
- How can we prove things about programs?
- What we did:
 - Introduce a simple programming language (Nano)
 - Show how to prove things about it!
 - Next lecture: More Hoare logic!
 Automating proof checking via weakest pre-condition calculus
 - For more background on this part, I recommend the following book:
 - The formal semantics of programming languages by Glynn Winskel
 - https://www.cin.ufpe.br/~if721/intranet/TheFormalSemanticsofProgrammingLanguages