Linear Regnession-03

Pecap

$$\hat{y} = w_x + w_0$$

MSE
$$\rightarrow$$
 loss fonc.

1 $\perp \stackrel{\sim}{\geq} (y'') - \hat{y}^{(i)})^2$

MSE
$$\rightarrow$$
 loss fonc.

$$\mathcal{L} = \frac{1}{n} \sum_{i=1}^{\infty} (y^{(i)} - \hat{y}^{(i)})^{2}$$

argnin $\frac{1}{n} \stackrel{\sim}{\xi} (y^i - \hat{y}^i)^2$

G.D: (2) Start randomly
$$\omega$$

Start randomly ω
 $\omega_j = \omega_j - \eta \cdot (\frac{\partial L}{\partial \omega_j})$
 $\omega_j = \omega_j - \eta \cdot (\frac{\partial L}{\partial \omega_j})$

2. G.D Converges faster

Gradient descent with and without feature scaling

Responence Metrac

R2-Score / R-squared / Coeff. of Dekomination R2-Score =

R2 Store = 1 -
$$\frac{2}{12} (y^{(i)} - y^{(i)})^2$$

R2 - Store

R2 = 1

R2 = -Ve

Worse than mean model

[Perfect]

Modul = avg

Modul = avg

Modul = y

$$\begin{array}{c}
\omega_{0} \\
\omega_{0} \\
\omega_{0}
\end{array}$$

$$\begin{array}{c}
\omega_{0} \\
\omega_{1} \\
\omega_{1} \\
\omega_{2} \\
\omega_{1} \\
\omega_{2} \\
\omega_{3} \\
\omega_{1} \\
\omega_{2} \\
\omega_{3} \\
\omega_{4} \\
\omega_{5} \\
\omega_{1} \\
\omega_{1} \\
\omega_{2} \\
\omega_{3} \\
\omega_{5} \\
\omega_{1} \\
\omega_{2} \\
\omega_{3} \\
\omega_{5} \\
\omega_{5}$$

Wo + WIX(+ WLX, + - -+WdI)

Adj R2 Score $R_2 = \left[1 - \frac{SS_{model}}{SS_{total}}\right]$ Case II: fedure is redevont (R211) 0.88
0.91

Case II: fedure is jordevont (R2107 or remain same)

$$Ag R2 \Rightarrow -1 - \left[\frac{(1-R2)\cdot(n-1)}{n-d-1}\right]$$

$$d\uparrow = adj Rz J$$

$$d\uparrow = \beta 2 \uparrow \uparrow \uparrow \uparrow =$$
(release)

Net effect= adj R2T

How does the adjusted R2 score differ from the regular R2 score?

End Quiz Now

In adjusted R-squared, what is the range of possible values?

OLS -> oridinary less squares

How is OLS different from sklearn Linear Regression?

OLS

Skkmodel

Provides detailed statistical summary about

- goodness-of-fit
- p-values
- confidence intervals a <-/
- coefficients

To assess the quality of model, offers

- residual plots
- QQ plots
- influence statistics

Sklearn

- Primary goal is to build a predictive model
- Less concerned about detailed statistical analysis and interpretation.
- Offers additional features and functionalities like
 - Feature scaling
 - (M.IMP) Regularization
 - Cross validation
 - Evaluation metrics

Why might the adjusted R2 score be considered more reliable than R2 when adding more predictors to a model?

43 users have participated

Ø	Α	Because it always increases with more predictors.	12
	В	Because it penalizes the model for adding predictors that don't improve the model.	849
	С	Because it is easier to calculate.	29
	D	Because it always equals the R2 score	29

End Quiz Now

A regression model with 3 predictors has an R2 of 0.85. After adding a 4th predictor, the R2 increases to 0.86 but the adjusted R2 decreases. What can be inferred?

End Quiz Now

Assumption of Linearity

→ No Multi-Colinearity

→ Normality of Residuals (y-ŷ)

→ No Heteroskadasticity

→ No Autocorrelation

