서울광업고등학교	WORKBOOK	학년 반 번호
전기전자과	유도전동기	At Di
	원리와 구조	성명

유도전동기 원리

- (1) 유도전동기 회전원리
- (아라고의 원판)
- : 자석의 방향대로 원판이 따라서 회전한다
- 회전 자기장 발생
- → 3상전류를 흘려주면
- → _____로 회전하는 회전자계 발생
- → 에 의해서 유도전류가 만들어짐

유도전동기 구조

- (1) 유도전동기 구조
- ① 고정자

- 철심 : _____ 성층

- 권선 : 둥근선, 평각선

② 회전자

- 철심

- 권선 : _____ / ____ (회전자 종류 구분)

- (2) 회전자 권선 종류에 따른 구분
- ① 농형 유도 전동기

- 구조가 간단. 보수용이
- 효율이 양호, _____ 불가능 (____이 정해짐)
- ② 권선형 유도 전동기

1차회로

- 기동토크가 크다

- 2차 회로에 저항을 삽입하여 _____가 가능하다

→ _____가 가능하다

- 농형에 비해 구조가 복잡하고 이 나쁨.

유도 전동기의 속도와 슬립

① : 고정자 회전자계와 회전자의

s =

- ____ 상태 : N=0 \rightarrow s=1
- 로 회전 : $N=N_s \rightarrow s=0$
- ______ 슬립 : $s=\frac{N_s-(-N)}{N_s}\!\! imes\!100[\%]$
- ② 동기속도 (N_s) : 고정자 회전자계가 회전하는 것 $N_s = \qquad [rpm]$

f:

P:

- ③ 회전속도(N) : 회전자가 회전하는 것 $N = (1-s)N_s = (1-s)\frac{120f}{P}[rpm]$
- ④ 슬립의 범위
- 정회전 (0 < s < 1)

정지 N=0 \rightarrow s=1

회전 $N=N_s \rightarrow s=0$

- 역회전 (1 < s' < 2) 정지 $N = 0 \rightarrow s' = 1$

회전 $N=-N_s$ \rightarrow s'=2

유도 전동기의 유기기전력 (정지시-회전시 관계)

① 회전자 정지 시

$$E_1 = 4.44kw_1f_1N_1\Phi_1$$

$$E_2 = 4.44 k w_2 f_2 N_2 \Phi_2$$

$$f_1 = f_2$$

$$\Phi_1 = \Phi_2$$

$$a = \frac{E_1}{E_2} = \frac{N_1}{N_2} = \frac{I_2}{I_1}$$

② 회전자 회전 시

$$E_1 = 4.44kw_1f_1N_1\Phi_1$$

$$E_{2s} = 4.44kw_2sf_2N_2\Phi_2 = sE_2$$

③ 정지 시 – 회전 시 관계

주파수	정지시	
	회전시	
기전력	정지시	
	회전시	
리액턴스	정지시	
	회전시	
권수비 (변압기)	정지시	
	회전시	

유도 전동기의 손실과 효율

< 전력 변환도 >

- ① 1차 입력(= $P_1[W]$ =고정자입력)
- ② 1차 동손(=고정자 동손)
- ③ 2차 입력(=회전자 입력, 공극출력)

$$P_2 =$$

[W]

④ 2차 동손(=회전자 동손)

$$P_{c2} = [W]$$

⑤ 유효출력

$$P_o =$$

[W]

(기계적 출력 P_o , 기계적 손실 P_m 은 무시)

유도 전동기의 손실과 효율

⑥ 2차 효율

$$\eta_2 = \frac{2 \stackrel{}{\rightarrow} \stackrel{}{\Rightarrow} \stackrel{}{\Rightarrow}}{2 \stackrel{}{\rightarrow} \stackrel{}{\cup} \stackrel{}{\Rightarrow}} =$$

⑦ 2차 입력 : 2차 동손 : 2차 효율

$$=P_2$$
 : P_{c2} : P_o

$$P_{a}$$

유도 전동기의 회전자 전류

(1) 정지시

$$I_2 = \frac{E_2}{r_2 + jx_2} [A]$$

(2) 회전시(운전시)

$$I_{2}^{'} = \frac{E_{2}^{'}}{r_{2} + jx_{2}^{'}} = \frac{sE_{2}}{r_{2} + jsx_{2}} = \frac{E_{2}}{\frac{r_{2}}{s} + jx_{2}}$$

$$= \frac{E_{2}}{r_{2} + jx_{2} + \frac{r_{2}}{s} - r_{2}} = \frac{E_{2}}{r_{2} + jx_{2} + R}$$

- (3) 등가 부하저항 : R =
- (4) 2차 역률 : $\cos \theta_2 =$
- (5) 전체효율

$$\eta = \frac{출력}{입력} \times 100 =$$

(6) 기계적 출력

$$P_o =$$

