A. Choose the correct alternative : 1 Mark

- 1. If A and B are independent events, then $P(A \cap B)$ is –
 - (a) P(A) + P(B) (b) $P(A) \cdot P(B)$
 - (c) $P\left(\frac{A}{B}\right)$ (d) $P\left(\frac{B}{\Delta}\right)$
- 2. If A, B are two mutually exclusive events then P(A + B) is equal to—
 - (a) $P(A) \cdot P(B)$
 - (b) P(A) + P(B)
 - (c) $P(A) + P(B) P(A \cap B)$
 - (d) $P(A) + P(B) + P(A \cap B)$
- 3. The probability of a sure event is-
 - (a) 1
- (b) 2
- (c) $\frac{1}{2}$
- (d) unlimited
- 4. The probability of an unlimited event is—
 - (a) 1
- (b) 2
- (c) $\frac{1}{2}$
- (d) 0
- 5. If E is an event, the P(E) is equal to—
 - (a) P(E)
- (b) 1 P(E)
- (c) -P(E) (d) 1 + P(E)
- 6. If the probability of an event is P(E), then -
 - (a) $P(E) \ge 0$ (b) $P(E) \ge 1$

 - (c) $P(E) \le 0$ (d) $0 \le P(E) \le 1$
- 7. A dice is thrown once. Then the probability of getting a number greater than 3 is—
 - (a) $\frac{1}{2}$
- (b) $\frac{2}{3}$
- (c) 6
- (d) 0

- 8. The probability of having at least one tail in 4 throws with a coin is—
 - (a) $\frac{15}{16}$ (b) $\frac{1}{16}$
 - (c) $\frac{1}{4}$
- (d) 1
- 9. A single letter is selected at random from the word 'PROBABILITY'. The probability that it is a vowel is-
 - (a) $\frac{3}{11}$ (b) $\frac{4}{11}$
 - (c) $\frac{2}{11}$
- (d) 0
- 10. Three identical dice are rolled. The probability that the same number will appear on each of them is—

 - (a) $\frac{1}{6}$ (b) $\frac{1}{36}$

 - (c) $\frac{1}{18}$ (d) $\frac{3}{28}$
- 11. If three dice thrown are simultaneously, then the probability of getting score of 5 is-
 - (a) $\frac{5}{216}$ (b) $\frac{1}{6}$
 - (c) $\frac{1}{36}$ (d) $\frac{1}{72}$
- 12. From a pack of 52 cards, the probability of drawing a court card is —
 - (a) $\frac{4}{13}$
- (b) $\frac{3}{13}$
- (c) $\frac{1}{13}$
- (d) $\frac{1}{4}$

13.	The probability of not getting a sum 7 in a single throw with a pair of dice is—	19. The probability that a card drawn ou of a packet of 52 of diamond is—
	(a) $\frac{1}{6}$ (b) $\frac{2}{3}$	(a) $\frac{0}{52}$ (b) $\frac{1}{52}$
	(c) $\frac{1}{3}$ (d) $\frac{5}{6}$	(c) $\frac{1}{13}$ (d) $\frac{1}{4}$ 20. A fair coin is tossed four times. The
14.	Two dice are thrown. The number of sample points in a sample space when six does not appear on any one side	probability that heads exceed tails in
	is – (a) 11 (b) 30	(a) $\frac{1}{2}$ (b) $\frac{11}{16}$

(c) $\frac{5}{16}$

(a) 0

(c) $\frac{1}{2}$

is —

(d) None of these

21. A balanced due to rolled twice. The

22. The simultaneous tossing of two coins,

(d) $\frac{1}{4}$

(a) $\frac{3}{8}$ (b) $\frac{1}{2}$

the probability of getting 2 tails is-

(b) 1

Three coins are tossed once. The probability of getting at most 2 heads

When the three coins are tossed simultaneously, then the probability

(b) $\frac{3}{8}$

(d)

of getting one head will be-

observed is 6 is equal to –

(a) $\frac{4}{36}$ (b) $\frac{5}{36}$

(c) $\frac{6}{36}$ (d) $\frac{7}{36}$

probability that the sum of the figures

(a) 11

(c) 18

(a) $\frac{1}{2}$

heads is—

number is—

(a) $\frac{1}{4}$

each toss is-

(a) $\frac{1}{9}$ (b) $\frac{1}{3}$

(c) $\frac{1}{12}$ (d) $\frac{2}{3}$

(b) 30 (d) 25

15. A dice is tossed twice. The probability of having a number greater than 4 on

16. From each of the four married couples,

selected are of the same sex is-

17. A and B toss 3 coins. The probability that both obtain the same number of

(b) $\frac{1}{4}$

(d) $\frac{1}{16}$

(a) $\frac{1}{9}$ (b) $\frac{3}{16}$

(c) $\frac{5}{16}$ (d) $\frac{3}{8}$

18. Two fair dice are tossed.

probability that both show an even

(b) $\frac{1}{3}$

(d) $\frac{5}{36}$

one of the partners is selected at

random. The probability that those

and the same of		
2	5. In a single throw of two dice, the chance of throwing a sum 8 is—	The probability of three mutually exclusive events A, B, C are :
	(a) $\frac{7}{36}$ (b) $\frac{5}{36}$	$P(A) = \frac{2}{3}$, $P(B) = \frac{1}{4}$, $P(C) = \frac{1}{6}$. Is the
	(c) $\frac{1}{9}$ (d) $\frac{1}{18}$	statement —
	7 10	(a) true
26	Ram Lal throws three coins. The probability of at least one head turning	(b) wrong
	up is—	(c) could be either
1	• .	(d) do not know
	(a) $\frac{1}{3}$ (b) $\frac{1}{8}$	32. Given the independent events A and
	(c) $\frac{1}{4}$ (d) $\frac{7}{8}$	B such that $P(A) = 0.30$ and $P(B) = 0.60$ The probability of getting neither
27.	From a well shuffled deck of 52 cards,	A nor B is—
	the probability of drawing a black card is—	(a) 0.12 (b) 0.42
		(c) 0.13 (d) 0.28
	(a) $\frac{1}{26}$ (b) $\frac{1}{2}$	33. In Q. No. 32; probability of getting A and not B is—
	(c) $\frac{1}{13}$ (d) $\frac{2}{13}$	(a) 0.18 (b) 0.12
28.	Probability of getting heads in all the	(c) 0.28 (d) None of these
	three trails, when a balanced coin is tossed thrice will be—	34. In Q. No. 32, probability of getting both A and B is—
	(a) $\frac{1}{4}$ (b) $\frac{1}{2}$	(a) 0.18 (b) 0.42
	· ~ ~	(c) 0.72 (d) None of these
	(c) 1 (d) $\frac{1}{8}$	35. One hundred cards are numbered from
29.	The chance of throwing an ace in the	1 to 100. The probability that a
	first only of two successive thrown	randomly chosen card has a digit 5 is –
	with an ordinary die is—	(a) $\frac{1}{100}$ (b) $\frac{9}{100}$
	(a) $\frac{1}{6}$ (b) $\frac{5}{36}$	(a) $\frac{1}{100}$ (b) $\frac{9}{100}$
	(c) $\frac{1}{36}$ (d) $\frac{25}{36}$	(c) $\frac{19}{100}$ (d) None of these
3 0.	If A and B are such that $P(A) > 0$ and	36. Two disc are rolled one after the other.
		ine probability that the number on the
	$P(B) \neq 1$, then $P\left(\frac{\overline{A}}{B}\right)$ is equal to—	first is smaller than the number on the second is—
	(a) $1 - P\left(\frac{A}{B}\right)$ (b) $1 - P\left(\frac{\overline{A}}{B}\right)$	(a) $\frac{1}{2}$ (b) $\frac{7}{10}$

(c) $\frac{1-P(A \cup B)}{P(\overline{B})}$ (d) $\frac{P(A)}{P(\overline{B})}$

(a) $\frac{1}{2}$ (b) $\frac{7}{18}$

(c) $\frac{3}{4}$ (d) $\frac{5}{12}$

37.	The probability of getting 10 in a single throw of three fair dice is—	43. A coin is tossed n times. The probability that head will turn up an
	(a) $\frac{1}{6}$ (b) $\frac{1}{8}$	odd number of times, is—
	(c) $\frac{1}{9}$ (d) None of these	(a) $\frac{1}{2}$ (b) $\frac{n+1}{2n}$
	In order to get at least once a head with probability ≥ 0.9, the number of times a coin needs to be tossed is — (a) 3 (b) 4 (c) 5 (d) None of these	(c) $\frac{n-1}{2n}$ (d) $\frac{2^{n-1}-1}{2^n}$ 44. Seven people seat themselves indiscriminately at round table. The
39.	If two squares are chosen at random on a chess board, the probability that they	probability that two distinguished persons will be next to each other is—
	have a side in common is— (a) $\frac{1}{9}$ (b) $\frac{1}{18}$	(a) $\frac{1}{3}$ (b) $\frac{1}{2}$
	(c) $\frac{2}{7}$ (d) None of these	(c) $\frac{1}{4}$ (d) None of these
40.	If there are 6 girls and 5 boys who sit in a row, then the probability that no two boys sit together is—	selected at random contains either 53 Sundays or, 53 Mondays, is—
	(a) $\frac{6!6!}{2!11!}$ (b) $\frac{7!5!}{2!11!}$	(a) $\frac{2}{7}$ (b) $\frac{4}{7}$
	(c) $\frac{6!7!}{2!11!}$ (d) None of these	(c) $\frac{3}{7}$ (d) $\frac{1}{7}$
41,	One hundred identical coins, each with probability, p, of showing up heads are tossed once. If $0 , and the$	A sum of money is rounded off to the nearest rupee; the probability that round off error is at least ten paise is—
	probability of heads showing on 50 coins is equal to that of heads showing	(a) $\frac{19}{101}$ (b) $\frac{19}{100}$
	on 51 coins, then the value of p is – . (a) $\frac{1}{2}$ (b) $\frac{49}{101}$	(c) $\frac{82}{101}$ (d) $\frac{81}{100}$
	(c) $\frac{50}{101}$ (d) $\frac{51}{101}$	47. If A and B are two events such that $P(A) > 0$ and $P(B) \neq 1$, then $P(\overline{A})$:
42.	If P(A \cap B) = $\frac{1}{2}$, P($\overline{A} \cap \overline{B}$) = $\frac{1}{3}$, P(A) =	$P(A) > 0$ and $P(B) \neq 1$, then $P\left(\frac{A}{B}\right)$ i equal to—
	p, P(B) = 2p, then the value of p is given by –	(a) $1 - P\left(\frac{\underline{A}}{\overline{B}}\right)$ (b) $1 - P\left(\frac{\overline{A}}{\overline{B}}\right)$
	(a) $\frac{1}{3}$ (b) $\frac{7}{18}$	(c) $\frac{1 - P(A \cap B)}{P(\overline{B})}$ (d) $\frac{P(\overline{A})}{P(\overline{B})}$
	(c) $\frac{4}{9}$. (d) $\frac{1}{2}$	P(B)

- In an experiment the success is twice that of failure. If the experiment is repeated 6 times, the probability that at least 4 times favourable is—
 - (a) $\frac{64}{779}$ (b) $\frac{192}{779}$
 - (c) $\frac{240}{779}$ (d) $\frac{496}{779}$
- **49.** Two coins and a dice are tossed. The probability that both coins fall heads and the dice shows a 3 or 6 is—
 - (a) $\frac{1}{8}$ (b) $\frac{1}{12}$
 - (c) $\frac{1}{16}$ (d) None of these
 - 50. Six coins are tossed simultaneously. The probability of getting at least 4 heads is—
 - (a) $\frac{11}{64}$ (b) $\frac{11}{32}$
 - (c) $\frac{15}{44}$ (d) $\frac{21}{32}$

Six dice are three