Lecture 20

Supersonic Inlets/Intakes/Diffusers

Typical Supersonic Inlets

A supersonic inlet must manage and exploit shock waves to effectively decelerate the airflow to a subsonic condition at compressor entry.

Mirage III detached half cone

Inlet cone of SR-71 Blackbird

http://en.wikipedia.org/wiki/Inlet_cone

X-35 diverterless trapezoidal

Inlet to Engine Configurations

Serpentine intake

Qualitative Summary for Isentropic Flow w/Area Change

Converging-Diverging Diffuser

- Can get close to isentropic flow
- Stability issues with shock position
- Starting problem needs over-speeding or variable area throat, which makes it heavy
- the "reverse nozzle diffuser" is not commonly used

C-D NOZZLE IN REVERSE OPERATION (AS A DIFFUSER)

Starting sequence of a <u>C-D</u> supersonic <u>diffuser</u> and the role of back pressure in positioning the shock

Practical Supersonic Inlet Types

F-16 Falcon (Normal Shock Inlet)

SR-71(Oblique Shock Inlet)

Normal Shock Diffuser (chosen to minimize weight)

Oblique Shock Diffuser

Normal Inlet Shocks

- In a supersonic inlet, transition to subsonic flow and compression occurs across a normal shock
- Significant compression can be achieved
- Associated energy losses increase rapidly with flight Mach number

Vehicle	Velocity	Mach	<u>Pram</u>
		Number	Pambient
Car	70 miles per	0.1	Less than 1.01
	hour		
Airliner	530 miles per	0.8	1.5
	hour		
Fighter	1300 miles per	2.0	7.8
Max Speed	hour		
SR-71	2130 miles per	3.2	49.4
	hour		

Net reduction in thrust using a normal shock inlet

Gradual External Deceleration

- Supersonic deceleration occurs at or ahead of the cowl lip (or throat station).
- Multiple oblique shocks occur ahead of a final, normal shock.
- Static pressure recovery increases with the number of oblique shocks and stagnation pressure loss is significantly reduced.
- However, off design operation is inefficient

Best stagnation pressure retention occurs through a series of equal strength oblique shocks, terminated by a normal shock.

Off-Design Operation

Example: SR-71 movable inlet spike

