

Public-Key Encryption

- Also referred to as non-secret, asymmetric or two-key encryption
- Most significant revolution in cryptography in modern
 - Became widely used in the late 70s
- Rely on mathematical equations for transformations
 - Symmetric schemes rely on permutations and substitutions
- Require two keys: one public and one private
 This allows public-key ciphers to be used in other tasks e.g. authentication and signature generation

2

Table 9.1 Terminology Related to Asymmetric Encryption

Asymmetric Keys
Two related keys, a public key and a private key that are used to perform complementary operations, such as encryption and decryption or signature generation and signature verification.

A digital document issued and digitally signed by the private key of a Certification Authority that binds the name of a subscriber to a public key. The certificate indicates that the subscriber identified in the certificate has sole control and access to the corresponding private key.

Public Key (Asymmetric) Cryptographic Algorithm

A cryptographic algorithm that uses two related keys, a public key and a private key. The two keys have the property that deriving the private key from the public key is computationally

Public Key Infrastructure (PKI)

A set of policies, processes, server platforms, software and workstations used for the purpose of administering certificates and public-private key pairs, including the ability to issue, maintain, and revoke public key certificates.

Source: Glossary of Key Information Security Terms, NIST IR 7298

Misconceptions Concerning Public-Key Encryption

- Public-key encryption is more secure from cryptanalysis than symmetric encryption
- Public-key encryption is a general-purpose technique that has made symmetric encryption obsolete.
- There is a feeling that key distribution is trivial when using public-key encryption, compared to the cumbersome handshaking involved with key distribution centers for symmetric encryption

2020 Pearson Education Inc. Hoboken N.I. All rights reserved

4

Principles of Public-Key Cryptosystems

 The concept of public-key cryptography evolved from an attempt to attack two of the most difficult problems associated with symmetric encryption:

Key distribution

 How to have secure communications in general without having to trust a KDC with your key

Digital signature

- How to verify that a message comes intact from the claimed sender
- Whitfield Diffie and Martin Hellman from Stanford University achieved a breakthrough in 1976 by coming up with a method that addressed both problems and was radically different from all previous approaches to cryptography

2020 Pearson Education, Inc., Hoboken, NJ, All rights reserved.

5

Public-Key Cryptosystems

Applications for Public-Key Cryptosystems Public-key cryptosystems can be classified into three categories: Encryption/decryption The sender encrypts a message with the recipient's public key Digital signature The sender "signs" a message with its private key The sender "signs" a message with its private key The sender "signs" a message with its private key The sender signs a message with its private key The sender signs a message with its private key The sender signs a message with its private key The sender signs a message with its private key The sender signs a message with its private key The sender signs a message with its private key The sender signs a message with its private key The sender signs a message with its private key The sender signs a message with its private key The sender signs a message with its p

Table 9.3 Applications for Public-Key Cryptosystems

Algorithm	Encryption/Decryption	Digital Signature	Key Exchange
RSA	Yes	Yes	Yes
Elliptic Curve	Yes	Yes	Yes
Diffie-Hellman	No	No	Yes
DSS	No	Yes	No

Table 9.3 Applications for Public-Key Cryptosystems

- RSA Rivest-Shamir-Adleman Cipher
- DSS Digital Signature Standard Cipher

13

Public-Key Requirements

- Conditions that these algorithms must fulfill:

 - It is computationally **easy** for a party B to generate a pair (public-key PU_b, private key PR_b)

 It is computationally **easy** for a sender A, knowing the public key and the message to be encrypted, to generate the corresponding ciphertext

 It is computationally **easy** for the receiver B to decrypt the resulting ciphertext using the private key to recryver the original message

 - recover the original message
 It is computationally **infeasible** for an adversary, knowing the public key, to determine the private key
 - knowing the public key and a ciphertext, to recover the original message
- 6. The two keys can be applied in either order

14

Public-Key Requirements

- Need a trap-door one-way function
 - A one-way function is one that maps a domain into a range such that every function value has a unique inverse, with the condition that the calculation of the function is easy, whereas the calculation of the inverse is infeasible

 - Y = f(X) easy
 X = f⁻¹(Y) infeasible
- A trap-door one-way function is a family of invertible functions $f_{\mathbf{k}},$ such that
 - $Y = f_k(X)$ easy, if k and X are known

 - X = f_k⁻¹(Y) easy, if k and Y are known
 X = f_k⁻¹(Y) infeasible, if Y known but k not known
- A practical public-key scheme depends on a suitable trap-door one-way function

Public-Key Cryptanalysis

- A public-key encryption scheme is vulnerable to a brute-force attack
 - Countermeasure: use large keys
 - Key size must be small enough for practical encryption and decryption
 - Key sizes that have been proposed result in encryption/decryption speeds that are too slow for general-purpose use
 Public-key encryption is currently confined to key management and
- Another form of attack is to find some way to compute the private key given the public key
- To date it has not been mathematically proven that this form of attack is infeasible for a particular public-key algorithm
- Finally, there is a probable-message attack
 - This attack can be thwarted by appending some random bits to simple messages

16

Rivest-Shamir-Adleman (RSA) Algorithm

- Developed in 1977 at MIT by Ron Rivest, Adi Shamir & Len Adleman
- Most widely used general-purpose approach to public-key encryption
- Is a cipher in which the plaintext and ciphertext are integers between 0 and n-1 for
 - A typical size for n is 1024 bits, or 309 decimal digits

17

RSA Algorithm

- RSA makes use of an expression with exponentials
- Plaintext is encrypted in blocks with each block having a binary value less than some number n
- Encryption and decryption are of the following form, for some plaintext block M and ciphertext block C

 $C = M^e \mod n$

 $M = C^d \mod n = (M^e)^d \mod n = M^{ed} \mod n$

- Both sender and receiver must know the value of n
- The sender knows the value of $\emph{e}_{\emph{t}}$ and only the receiver knows the value of \emph{d}
- This is a public-key encryption algorithm with a public key of $PU=\{e,n\}$ and a private key of $PR=\{d,n\}$

Algorithm Requirements

- For this algorithm to be satisfactory for publickey encryption, the following requirements must be met:
 - 1. It is possible to find values of e, d, n such that $M^{ed} \mod n = M$ for all M < n
 - 2. It is relatively easy to calculate M^e mod n and C^d mod n for all values of M < n
 - 3. It is infeasible to determine *d* given *e*

19

Key Generation by Alice

Select p, q p and q both prime, $p \neq q$

Calculate $n = p \times q$

Calculate $\phi(n) = (p-1)(q-1)$

Select integer e $\gcd(\phi(n), e) = 1; \ 1 < e < \phi(n)$

Calculate d $d \equiv e^{-1} \pmod{\phi(n)}$ Public key $PU = \{e, n\}$ Private key $PR = \{d, n\}$

Figure: RSA Key Generation

© 2020 Pearson Education, Inc., Hoboken, NJ. All rights reserved

20

Encryption by Bob with Alice's Public Key

Plaintext: M < n

Ciphertext: $C = M^e \mod n$

Decryption by Alice with Alice's Private Key

Ciphertext:

Plaintext: $M = C^d \mod n$

Figure: RSA Encryption/Decryption

2020 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Key Generation Before the application of Because the value of n = pqthe public-key will be known to any cryptosystem each potential adversary, primes participant must must be chosen from a generate a pair of keys: sufficiently large set Determine two prime • The method used for finding large primes must be reasonably efficient numbers p and q• Select either e or d and calculate the other

26

Procedure for Picking a Prime Number

- Pick an odd integer n at random
- Pick an integer a < n at random
- Perform the probabilistic primality test with a as a parameter. If n fails the test, reject the value n and go to step 1
- If n has passed a sufficient number of tests,
 accept n; otherwise, go to step 2

2020 Pearson Education, Inc., Hoboken, NJ. All rights reserved

Factoring Problem

- We can identify three approaches to attacking RSA mathematically:
 - Factor n into its two prime factors. This enables calculation of $\emptyset(n) = (p-1) \times (q-1)$, which in turn enables determination of $d = e^{-1} \pmod{\emptyset(n)}$
 - Determine ø(n) directly without first determining p and q. Again this enables determination of d = e⁻¹ (mod ø(n))
 - Determine *d* directly without first determining $g(\mathbf{n})$

2020 Pearson Education, Inc., Hoboken, NJ, All rights reserved.

29

Timing Attacks

- Paul Kocher, a cryptographic consultant, demonstrated that a snooper can determine a private key by keeping track of how long a computer takes to decipher messages
- Are applicable not just to RSA but to other public-key cryptography systems
- Are alarming for two reasons:
 - It comes from a completely unexpected direction
- It is a ciphertext-only attack

Fault-Based Attack

- An attack on a processor that is generating RSA digital signatures
 - Induces faults in the signature computation by reducing the
 - power to the processor

 The faults cause the software to produce invalid signatures which can then be analyzed by the attacker to recover the private key
- The attack algorithm involves inducing single-bit errors and observing the results
- While worthy of consideration, this attack does not appear to be a serious threat to RSA
- It requires that the attacker have physical access to the target machine and is able to directly control the input power to the processor

32

Summary

- Present an overview of the basic principles of public-key cryptosystems
- Explain the two distinct uses of publickey cryptosystems
- List and explain the requirements for a public-key cryptosystem
- Present an overview of the RSA algorithm
- Understand the timing attack