Cone:: intercept

Find distance t to intersection \vec{x} of a straight line with a conical surface.

Line: $\vec{w} = \vec{p} + \vec{u}t$ (1)

2-D RZ meshes containing straight-line segments yield Faces shaped as comical ribbons upon rotation into 3-D about the z-axis.

Define:
$$\Delta z = z_B - z_A$$
 (2); $\Delta r = r_B - r_A$ (3)

$$(r-r_A)\Delta z = (z-z_A)\Delta r$$
 (4)

Special case disk: $\Delta z = 0$; $\Delta r \neq 0 = 2 = Z_A = Z_B$ Special case cylinder: $\Delta r = 0$; $\Delta z \neq 0 \Rightarrow r = r_A = r_B$

Line from Eq.(1): $\vec{w} = (x, y, z)$; $\vec{p} = (p_x, p_y, p_z)$; $\vec{u} = (u_x, u_y, u_z)$ $\Rightarrow x = p_x + u_x + j$; $y = p_y + u_y + j$; $z = p_z + u_z + (5)$

In order to find the intersection of Line (1) with Cone (4), assume that $\Delta z \neq 0$ at first. In the end verify that the obtained solution also covers the $\Delta z = 0$ special case.

$$(4) \Rightarrow r = r_A + (z - z_A) \frac{\Delta r}{\Delta z} / \frac{2}{\Delta z}$$

$$\Gamma^{2} = \Gamma_{A}^{2} + 2\Gamma_{A}(2-2A) \frac{\Delta \Gamma}{\Delta Z} + (z-z_{A})^{2} \frac{\Delta \Gamma^{2}}{\Delta z^{2}}, \quad \Gamma^{2} = \chi^{2} + y^{2}$$
Substituting from (5) to obtain the equiption for $t = ?$

$$P_{x}^{2} + 2P_{x}M_{x}t + M_{x}^{2}t^{2} + P_{y}^{2} + 2P_{y}M_{y}t + M_{y}^{2}t^{2} = 2P_{x}^{2} + 2\Gamma_{A}(P_{z} + M_{z}t - z_{A}) \frac{\Delta \Gamma}{\Delta z^{2}} + (P_{z} + M_{z}t - z_{A})^{2} \frac{\Delta \Gamma^{2}}{\Delta z^{2}}$$

$$Define: \quad \Gamma_{P}^{2} = P_{x}^{2} + P_{y}^{2} \quad (6) \quad ; \quad z_{3} = P_{z} - z_{A} \quad (7)$$

$$\Gamma_{P}^{2} + 2(P_{x}M_{x} + P_{y}M_{y})t + (M_{x}^{2} + M_{y}^{2})t^{2} = 2P_{x}^{2} + 2\Gamma_{A}z_{3} \frac{\Delta \Gamma}{\Delta z^{2}} + 2\Gamma_{A}M_{z} \frac{\Delta \Gamma}{\Delta z^{2}} + 2Z_{3} \frac{\Delta \Gamma^{2}}{\Delta z^{2$$

$$\left[\Delta^{2}(\mu_{X}^{2} + \mu_{y}^{2}) - (\mu_{z} \Delta r)^{2}\right] t^{2} + 2\left[f - \mu_{z}(g + z_{D} \Delta r^{2})\right] t + \Delta^{2}(r_{p}^{2} - r_{A}^{2}) - z_{D}(2g + z_{D} \Delta r^{2}) = 0$$

$$+ \Delta^{2}(r_{p}^{2} - r_{A}^{2}) - z_{D}(2g + z_{D} \Delta r^{2}) = 0$$

$$(0)$$

Define:
$$h = g + z_D \Delta r^2$$
 (11) => $at^2 + bt + c = 0$ (12)

with: $a = \Delta z^2 (u_x^2 + u_y^2) - (u_z \Delta r)^2$ \\
 $b = 2 [f - u_z h]$ \\
 $c = \Delta z^2 (r_p^2 - r_A^2) - z_D (g + h)$

Special case disk:
$$\Delta z = 0 \Rightarrow f = 0$$
 and $g = 0$; $\Delta r \neq 0$
 $(10) \Rightarrow -(M_{\overline{z}} \Delta r) t^2 - 2M_{\overline{z}} z_{\alpha} \Delta r t - z_{\overline{z}} \Delta r = 0$

$$u_{z}^{2} t^{2} + 2u_{z}^{2} d t + 2u_{z}^{2} = 0$$

$$(z_{D} + u_{z} t)^{2} = 0$$

 $p_z - z_A + \mu_z t = 0 \iff z_A = p_z + \mu_z t$, which agrees with Eq. (5) when demanding $z = z_A = z_B$. Therefore, Eqs. (10), (12) can be used also if $\Delta z = 0$ even though their derivation assumed $\Delta z \neq 0$.

Special case cylinder: $\Delta r = 0 \Rightarrow g = 0$ and $f = \delta z^2 (p_x M_x + p_y M_y); \delta z \neq 0$

(10) =>
$$\sqrt{2}(\mu_{x}^{2} + \mu_{y}^{2})t^{2} + 2\sqrt{2}(p_{x}\mu_{x} + p_{y}\mu_{y})t + \sqrt{2}(p_{x}^{2} + p_{y}^{2} - r_{x}^{2}) = 0$$

which also follows from (5) while requiring $x^{2} + y^{2} = r_{A}^{2} = r_{B}^{2}$.

$$(\rho_x + \mu_x t)^2 + (\rho_y + \mu_y t)^2 = r_A$$

$$(\mu_x^2 + \mu_y^2)t^2 + 2(\rho_x \mu_x + \rho_y \mu_y)t + (\rho_x + \rho_y^2 - r_A^2) = 0$$

pmh_2015_0508 (4) Define: $S = p_x u_x + p_y u_y$ $D = s^2 - (u_x^2 + u_y^2)(p_x^2 + p_y^2 - r_A^2)$ then for a cylinder: $t = \frac{-s \pm \sqrt{D}}{\mu_x^2 + \mu_y^2} \Rightarrow (\mu_x^2 + \mu_y^2)t^2 = (-s \pm \sqrt{D})^2$ Verify x2+ y2 = rA: $(p_x + u_x t)^2 + (p_y + u_y t)^2 = p_x^2 + p_y^2 + 2st + (u_x^2 + u_y^2)^2 = p_x^2 + p_y^2 + 2s \frac{-s \pm \sqrt{D}}{u_x^2 + u_y^2} + \frac{1}{u_x^2 + u_y^2} \left[s^2 + 2s \sqrt{D} + D \right]$ $= p_{x}^{2} + p_{y}^{2} - (p_{x}^{2} + p_{y}^{2} - r_{A}^{2}) = r_{A}^{2}$ Cone :: subpoint Cone :: distance Drop the perpendicular from w onto xthis's line in the 2 w plane to get the subpoint; return the SIGNED distance w and the subpoint given the orientation of the Cone's defining segment AB. $B = (r_{B_1} z_B)$ W= (xw, yw, zw) -> (rw, zw) $S = | Subpoint = (r_s, Z_s) |$ (xs, ys, 2s) $\vec{S} = \vec{A} + (\vec{B} - \vec{A})t$, find too that $\vec{A} = (r_A, z_A)$ $(\vec{w} - \vec{S}) \perp (\vec{B} - \vec{A})$ $(\vec{3} - \vec{w}) \perp (\vec{B} - \vec{A})$

```
pmh_2015_0508 (3)
 (\vec{B}-\vec{A})=(\Delta r, \Delta z); see (2), (3)
(S-w) = (r_A + t\Delta r - r_w, z_A + t\Delta z - z_w)
(\vec{S} - \vec{w}) \cdot (\vec{B} - \vec{A}) = (r_A - r_w) \Delta r + t \Delta r^2 + (z_A - z_w) \Delta z + t \Delta z = 0
t = \frac{(r_w - r_A)\Delta r + (z_w - z_A)\Delta z}{\Delta r^2 + \Delta z^2}  (13)
| distance | = |\vec{S} - \vec{w}|, sign chosen according to pmh_2014_1125, p. 2

(Vector 3d: get_turn) with \vec{B} - \vec{A} \rightarrow \vec{w} and \vec{w} - \vec{A} \rightarrow \vec{v} therein.
To go from 2-D to 3-D calculate angle Q = a tan 2 (yw, xw), then x_s = r_s cos \varphi, y_s = r_s sin \varphi.

Note: \vec{s} is undefined when xw = yw = 0, but the distance remains valid.
  Cone :: contains, Vector 3d :: is_between
  Conical ribbon defined in 2-D RZ plane "contains"

point w if w "is_between" points A, B that define
  Assuming that points \vec{A}, \vec{B}, \vec{w} are colinear, and identifying \vec{A} \equiv tail, \vec{B} \equiv head, we have
  is_between = true for \vec{w} - \vec{A}, \vec{w} - \vec{B} antiparallel [Scalar product (\vec{w} - \vec{A}) \cdot (\vec{w} - \vec{B}) < 0]
  is_between = true for \vec{w} = \vec{A} or \vec{w} = \vec{B} \left[ (\vec{w} - \vec{A}) \cdot (\vec{w} - \vec{B}) = 0 \right]
 is_between = false for \vec{w} - \vec{A} + \vec{w} - \vec{B} parallel \vec{A} = \vec{B} + \vec{B}
[Scalar product (\vec{w} - \vec{A}) \cdot (\vec{w} - \vec{B}) > 0]
```