Particle spectrograph

Wave operator and propagator

$\frac{(3+2k^2)^2 t_1}{(3+2k^2)^2 t_1} - \frac{\sqrt{4z}}{(3+2k^2)^2 t_1} - \frac{\sqrt{2} \sqrt{4z}}{(3+2k^2)^2 t_1} = 0$ $\frac{6 \sqrt{2}}{(3+2k^2)^2 t_1} \frac{12}{(3+2k^2)^2 t_1} \frac{12ik}{(3+2k^2)^2 t_1} = 0$ $\frac{6i \sqrt{2} k}{(3+2k^2)^2 t_1} - \frac{12ik}{(3+2k^2)^2 t_1} \frac{12k^2}{(3+2k^2)^2 t_1} = 0$	$\sigma_1^{\sharp^2}{}_{\alpha}$ $ au_1^{\sharp}$	$t_{1}^{\#1}$	$\tau_1^{\#2}$
$\begin{bmatrix} \frac{12}{(3+2k^2)^2 t_1} \\ -\frac{12ik}{(3+2k^2)^2 t_1} \end{bmatrix}.$	0	0	0
$-\frac{12ik}{(3+2k^2)^2t_1}$	0	0	0
	0	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	0	$\frac{2ik}{t_1 + 2k^2t_1}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{2 k^2 r_1 + t_1}{(t_1 + 2 k^2 t_1)^2}$	$0 \frac{i \sqrt{2}}{(t_1)}$	$\frac{i\sqrt{2}k(2k^2r_1+t_1)}{(t_1+2k^2t_1)^2}$
0 0 0	0	0	0
$0 \qquad 0 \qquad -\frac{2ik}{t_1 + 2k^2t_1} - \frac{i\sqrt{2}k(i)}{(t_1 + 2i)}$	$\frac{i\sqrt{2}k(2k^2r_1+t_1)}{(t_1+2k^2t_1)^2}$	$0 \left \begin{array}{c} 2k^2 \\ (t_1) \end{array} \right $	$\frac{2k^2(2k^2r_1+t_1)}{(t_1+2k^2t_1)^2}$

Τ,											
/Ta w= . Ta			$\sigma_{0}^{\#1}$		$\tau_{0}^{\#1}$		$\tau_0^{\#}$	σ_0^2	#1)-		
Tax	$\sigma_{0^{+}}^{#1}$	† - (1+	$\frac{1}{(2k^2)^2}$	$\frac{1}{t_1}$	$i \sqrt{2} k$ $+2 k^2)^2$	 t ₁	0	C)		أبهر
	$ au_{0}^{\#1}$	† - 	$i \sqrt{2} k$ $-2 k^2)^2$		$\frac{2k^2}{(+2k^2)^2}$	t_1	0	C)		σ ₂
Τ,	$\tau_{0}^{\#2}$	t	0		0		0	C)		
/Ta w= . Ta	$\sigma_0^{\!\#\!1}$.		0		0		0	C)	C	σ ₂ -
Tax	σ				1						
4	$f_{1}^{#2}$	0	0	0	īkt ₁			0	()	
-	$f_{1^{ ext{-}}}^{\#1}$ lpha	0	0	0	0	_	>	0	(0	
	$\omega_{1}^{#2}{}_{lpha}f_{1}^{#1}f_{1}^{#2}{}_{lpha}$	0	0	0	$\frac{t_1}{\sqrt{2}}$		>	0	c	0	
	$\omega_{1^{\bar{-}}}^{\#1}$	0	0	0	$-k^2 r_1 - \frac{t_1}{2}$	<i>t</i> ₁	$\sqrt{2}$	0	2.1.2	$^{-I}$ K t_1	
	$f_{1}^{\#1}{}_{\alpha\beta}$	$-\frac{i k t_1}{3 \sqrt{2}}$	<u> </u>	$\frac{k^2 t_1}{3}$	0	c)	0	c	0	
	$\omega_{1}^{\#1}_{+}\omega_{1}^{\#2}_{+}\omega_{1}^{\#1}_{+}^{\#1}_{lphaeta}$	$-\frac{t_1}{3\sqrt{2}}$	1 1 3	$-\frac{1}{3}$ \bar{l} kt_1	0	c	0	0		U	
	$\omega_{1}^{\#1}{}_{\alpha\beta}$	6 6	$-\frac{t_1}{3\sqrt{2}}$	$\frac{i k t_1}{3 \sqrt{2}}$	0	c	>	0	(0	
	•	$\omega_1^{\#1} + \alpha^{eta}$	$\omega_1^{\#2} + \alpha^{eta}$	$f_1^{\#1} + \alpha \beta$	$\omega_{1^{-}}^{\#1} +^{\alpha}$	$^{\prime\prime\prime}$ #5 + $^{\prime\prime}$	- 51	$f_{1}^{\#1} \dagger^{\alpha}$	ζ#2 τα	/ 1- T	

2	‡ †"P	$\frac{1}{(1+2k^2)^2t_1}$	$\frac{1}{(1+2k^2)^2}$	$\frac{1}{2}t_1$	0	ŀ		
$\frac{1}{2}$ † $\frac{\alpha\beta\chi}{2}$		0	0		$\frac{2}{2k^2r_1+t_1}$	$\omega_{0}^{\#1}$		
	,							
	Soui	rce constra	aints/ga	uge	generat	ors		
		SO(3) irreps			 tiplicities			
	$\sigma_0^{\#1}$	$\sigma_0^{\#1} == 0$						
	$\tau_{0^{+}}^{\#2} =$	-#2 0+ == 0			1			
	$\tau_{0^{+}}^{\#1}$ -	$-2 i k \sigma_{0+}^{\#1} == 0$			1			
	τ#20	$\tau_1^{\#2\alpha} + 2 i k \sigma_1^{\#2\alpha} == 0$						
	τ#10	· == 0		3				
	$\tau_{1+}^{\#1\alpha\beta} - 2ik\sigma_{1+}^{\#1\alpha\beta} == 0$			3				
	$2 \sigma_1^{\#}$	$^{\pm 1}_{+}^{\alpha\beta} + \sigma_{1+}^{\#2}$	$\alpha\beta = 0$	3				

20

 $\tau_{2+}^{\#1}{}^{\alpha\beta} - 2ik \sigma_{2+}^{\#1}{}^{\alpha\beta} == 0$ 5

Total constraints:

 $\tau_{2^{+}\alpha\beta}^{\#1}$

 $\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$

 $\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$

 $\sigma_{2^{+}\alpha\beta}^{\#1}$

 $2i\sqrt{2}k$

$\omega_{2}^{"-}$ $_{\alpha eta \chi}$	0	0	$k^2 r_1 + \frac{t_1}{2}$
$\omega_2^{-+}\alpha\beta f_2^{-+}\alpha\beta$	$-\frac{ikt_1}{\sqrt{2}}$	$k^2 t_1$	0
$\omega_2^{"} + \alpha \beta$	$\frac{t_1}{2}$	$\frac{i k t_1}{\sqrt{2}}$	0
•	$_{2}^{#1}$ $+^{\alpha\beta}$	$_{2}^{#1}$ $+^{\alpha\beta}$	$1 + \alpha \beta \chi$

 $-i\sqrt{2}kt_1$

 $f_{0}^{#1} + f_{0}^{#2} + f_{0}^{#2} + f_{0}^{#1} + f_{$

Massive and massless spectra

Unitarity conditions

 $r_1 < 0 \&\& t_1 > 0$