BANA 273 Session 4

Assignment Project Exam Help Classification Exact Bayes & Marive Bayes Add WeChat powcoder

Prof. Vibs Abhishek
The Paul Merage School of Business
University of California, Irvine

Agenda

- Classification using Exact Bayes & Naïve Bayes
- Reminders
 - Assignment Project Exam Help
 - Assignmenthatposyppowcoder.com
 - Project proposal (1 para) due soon (check Canvas for all due dates) dd WeChat powcoder
 - Project guidelines posted to Canvas (Announcements page)

Big Picture View of Course Progress

- Databases, Data Warehousing, SQL
- RFM & Pivot Tables
 Assignment Project Exam Help
 Classification
- - Bayesian (Native Bayey) coder.com
 - Decision Tree (ID3) eChat powcoder
- Association Rules
 - Apriori
- Clustering
 - K Means

A classic: Microsoft's Paperclip

The Bayesian techniques have been widely adopted in Microsoft's products -- including the Paper Clip help wizard that pops up frequently to offer advice in the company's Office program. Many users, however, have criticized Paper Clip as an irritant, popping up too often with unwanted help.

Mr. Horvitz, who speaks apologetically about the Paper Clip program, said its shortcomings were the result of Microsoft's failure to implement all of his team's ideas.

Exact Bayes

Thomas Bayes

For each record to be classified:

- 1. Find all other records pieculike and item the predictor values are the same)
- 2. Determine what classes they all belong to and which class is more prevalent
- 3. Assign that class to the new record

Predict class attribute "Play" using Exact

Bayes

Outlook	Temp	Humidity	Windy	Play					
Sunny	Hot	High	False	No					
Sunny	Hot	High	True	No					
Overcast	Hot	High	False	Yes					
Rainy	Mild	Assignn	nealse p	rőfec	t Exan	ı Heli)		
Rainy	Cool	Normal	False	Yes					
Rainy	Cool	Normattp	s!r//po	weo	der.con	1			
Overcast	Cool	Normal	True	Yes	Outlook	Temp.	Humidity	Windy	Play
Sunny	Mild	High Adc] Hwe(Chat	poweo	lerot	High	False	?
Sunny	Cool	Normal	False	Yes					
Rainy	Mild	Normal	False	Yes	Outlook	Temp.	Humidity	Windy	Play
Sunny	Mild	Normal	True	Yes	Sunny	Cool	High	True	?
Overcast	Mild	High	True	Yes					
Overcast	Hot	Normal	False	Yes					
Rainy	Mild	High	True	No					

Notes

- Bayesian classifier works best with categorical attribute Assignment Project Exam Help
- Unlikely to find exact matches for numerical variables https://powcoder.com
 Numerical attributes must be binned and
- Numerical attributes must be binned and converted to categorical attributesler
- When the number of attributes is large (say 20), it becomes hard to find exact matches

Exact Bayes – Cutoff Probability Method

- Establish a cutoff probability for the class of interest above which we consider that a record belongs as than the Project Exam Help
- Find all the training records just like the new record
- Determine the probability that those records belong to the class of interest
- If that probability is above the cutoff probability, assign the new record to the class of interest

Example – Exact Bayes

	Sunny	Overcast	Rainy	Total
Play=Yes	2	3	2	7
Play=No	Assignme	eng Project	Exam Help	16
Total	5 https:	://powcode	r com	23

Add WeChat powcoder P(Play=Yes | outlook=sunny) = 40%

P(Play=Yes | outlook=overcast) = 25%

 $P(Play=Yes \mid outlook=rainy) = 33\%$

Conclusion: No matter what the outlook, predict Play = No

Cutoff probability method: Specify cutoff probability p

If Probability(Play=Yes | outlook = ?) > p then predict Play = Yes

Suppose p = 37%

Under what outlook would we forecast play = Yes?

Assignment Project Exam Help Classification https://ppwcodes.com

Add WeChat powcoder Prof. Vibs Abhishek

The Paul Merage School of Business University of California, Irvine

Conditional Probability

• Rules of probability: $P(A_1, A_p \mid B=1) = 1 + P(A_1, B=1)$

https://powcoder.com

This is correct only if the events A₁,...,A_p are ______Add WeChat powcoder

Let's start by assuming that they are, then:

Apply Bayes' Rule

$$P(B \mid A) = \frac{P(A \mid B)P(B)}{P(A)}$$

B = the eveAts'sPaymYeat'Project Exam Help

A = the event "Outlook = Sunny and Temp = High" https://powcoder.com

P(Play = Yes | Outlook Worth) Tempower

$$= \frac{P(Outlook = sunny, Temp = High | Play = Yes) \cdot P(Play = Yes)}{P(Outlook = sunny, Temp = High)}$$

$$= \frac{P(Outlook = sunny | Play = Yes) \cdot P(Temp = High| Play = Yes) \cdot P(Play = Yes)}{P(Outlook = sunny, Temp = High)}$$

Meaning of conditional independence

- P(outlook=sunny,Temp=High | Yes) with P(outlook=sunny,Yes) ** P(Femp=High | Yes)
- This means that we are assuming conditional independence between outlook antertemp
- If the conditional dependence is not extreme, it will work reasonably well

Probabilities for weather data

			1 10	υd	DIIIC		'I V	VCC	ati it	JI (Ja	la	•	
Oı	utlook		Tempe	rature		Hum	nidity			Wind	У		PI	ay
	Yes	No		Yes	No		Yes	No		Ye.	5	Vo	Yes	No
Sunny	2	3	Hot	2	2	High	3	4	False	6	5	2	9	5
Overcast	4	0	Mild	4	2	Normal	6	1	True	3	3	3		
Rainy	3	2	Cool	3	1									
Sunny	2/9	3/5	Hot	.2/9	m <mark>ent</mark>	Project	3/9	4/5	False Help	6/	'9	2/5	9/	5/
Overcast	4/9	0/5	MildS	818111	ment	Norma	6/9X		True	3/	9	3/5	14	14
Rainy	3/9	2/5	Cool	3/9	1/5,	2 4 2 5 4	- -	45	- 1	1A.C. 1	D I	7		
				htt	DS:// [DOWWOOD O	erre	OIIIn	niaity	Windy	Play			
				•		Sunny	Hot	Higl	h	False	No			
				A 1	1 ***	Sunny	Hot	Higl	h	True	No			
				Ad	ld We	eChat.p	OW(COde	er	False	Yes			
						Rainy	Mild	Higl	h	False	Yes			
						Rainy	Cool	Nor	mal	False	Yes			
						Rainy	Cool	Nor	mal	True	No			

Terminology

- Frequency Chart also called contingency table (on previous Assistement Project Exam Help
- Probability chart

 https://powcoder.com

 Create the chart using Microsoft Excel Pivot Add WeChat powcoder Table
- How to open ARFF file in Excel?
 - Launch Excel, Open File, Delimited, comma delimited
- Can also use SQL to compute entries in table.

Probabilities for weather data

0	utlook		Temper	ature		Hum	nidity		V	Vindy		P	lay
	Yes	No		Yes	No		Yes	No		Yes	No	Yes	No
Sunny	2	3	Hot	2	2	High	3	4	False	6	2	9	5
Overcast	4	0	Mild	4	2	Normal	6	1	True	3	3		
Rainy	3	2	Cool	3	1								
Sunny	2/9	3/5	Hot	.2/9	2/5	Project	3/9	4/5	False	6/9	2/5	9/	5/
Overcast	4/9	0/5	Mild	1811	ment	Norma	6/9X	a 111	Herb	3/9	3/5	14	14
Rainy	3/9	2/5	Cool	3/9 htt	1/5	owcod	er c	om					

• A new day: A de Wechat powcoder rue ?

Οι	utlook		Tempe	rature		Hu	midity		V	/indy		Pl	ay
	Yes	No		Yes	No		Yes	No		Yes	No	Yes	No
Sunny	2	3	Hot	2	2	High	3	4	False	6	2	9	5
Overcast	4	0	Mild	4	2	Normal	6	1	True	3	3		
Rainy	3	2	Cool	3	1								
Sunny	2/9	3/5	Hot	2/9	2/5	High	3/9	4/5	False	6/9	2/5	9/	5/
Overcast	4/9	0/5	Mild	4/9	2/5	Normal	6/9	1/5	True	3/9	3/5	14	14
Rainy	3/9	2/5	Cool	3/9	1/5	Ducias	4 17		T T = 1				

Assignment Project Exam Help

$$= \frac{\frac{2}{9} \cdot \frac{3}{9} \cdot \frac{3}{9} \cdot \frac{3}{9} \cdot \frac{9}{14}}{\Pr[E]} = \frac{0.0053}{\Pr[E]}$$

Οι	utlook		Tempe	rature		Hu	midity		V	/indy		Pl	ay
	Yes	No		Yes	No		Yes	No		Yes	No	Yes	No
Sunny	2	3	Hot	2	2	High	3	4	False	6	2	9	5
Overcast	4	0	Mild	4	2	Normal	6	1	True	3	3		
Rainy	3	2	Cool	3	1								
Sunny	2/9	3/5	Hot	2/9	2/5	High	3/9	4/5	False	6/9	2/5	9/	5/
Overcast	4/9	0/5	Mild	4/9	2/5	Normal	6/9	1/5	True	3/9	3/5	14	14
Rainy	3/9	2/5	Cool	3/9	1/5	Ducias	4 17		T T = 1				

Assignment Project Exam Help

Pr [noiE]=Pr [Outlook=Suffying Frite Perature Cooli no]

×Pr [Humidity=High no]×Pr [Windy=True no]×Pr [no]/Pr [E]

$$= \frac{\frac{3}{5} \cdot \frac{1}{5} \cdot \frac{4}{5} \cdot \frac{3}{5} \cdot \frac{5}{14}}{\Pr[E]} = \frac{0.0206}{\Pr[E]}$$

Normalize...

•
$$Pr[Yes \mid E] + Pr[No \mid E] = 1$$
 $\frac{0.0053}{Pr[E]} + \frac{0.0206}{Pr[E]} = 1$ — Play can be either "Yes" or "No"

Assignment Project Exam Help

$$Pr[Yes | E] = \frac{0.0053}{Pr[E]^{http}} / \frac{0.0053}{Pr[E]^{http}} / \frac{0.0206}{Pr[E]^{http}} com$$

$$Pr[Yes \mid E] = \frac{0.0053 \text{ WeCharopowcoder}}{0.0053 + 0.0206}$$

$$\Pr[No \mid E] = \frac{0.0206}{0.0053 + 0.0206} = 0.795$$

Example of Naïve Bayes Classifier

Name	Give Birth	Can Fly	Live in Water	Have Legs	Class	A. attributas
human	yes	no	no	yes	mammals	A: attributes
python	no	no	no	no	non-mammals	Mumammala
salmon	no	no	yes	no	non-mammals	M: mammals
whale	yes	no	yes	no	mammals	N: non-mammals
frog	no	no	sometimes	yes	non-mammals	N. Hon-mammais
komodo	no	no	no	yes	non-mammals	
bat	yes	yes 🛕 😋	rignm	yes t Di	mammals+ 🗀	xam Help
pigeon	no	yes A	mg IIIII	yesil I	non mámmals	zzam Heip
cat	yes	no	no	yes	mammals	
leopard shark	yes	no	yes	no , ,	non-mammals	
turtle	no	no	so neti ne:	yes/1001	MOOD COME	.com
penguin	no	no	sometimes	yes	non-mammals	
porcupine	yes	no	no	yes	mammals	
eel	no	no	yes 11	"WeC	non-mammals	voodor
salamander	no	no	sometimes	yes C	nen marunais	wcodei
gila monster	no	no	no	yes	non-mammals	
platypus	no	no	no	yes	mammals	
owl	no	yes	no	yes	non-mammals	
dolphin	yes	no	yes	no	mammals	
eagle	no	yes	no	yes	non-mammals	

Give Birth	Can Fly	Live in Water	Have Legs	Class
yes	no	yes	no	?

Degenerate Probabilities (Pr[Outlook=Overcast|No)=0

- Could be a "true" representation of the real-world
 - Of course, one does not have to worry in that case
 - Rare Assignment Project Exam Help
- The training data set is not big enough
 - Is it EVER possible to have Outlook=rainy" when "Play=no"? Add WeChat powcoder
 - If the answer is yes, a larger data set would have captured that fact
 - What does one do when data set is not big enough?
- We treat degeneracy seriously and try to remove it
 - Laplace approach

The "zero-frequency problem"

Why does degeneracy matter? (e.g. "Humidity = high" for class "yes")

Pr [Humidity=High|yes]=0
Assignment Project Exam Help

- Probability htitle by /prow coder.com
- (No matter how likely the other values are!)
 Add WeChat powcoder
 Remedy: add 1 to the count for every attribute value-class combination (Laplace estimator)
- Result: probabilities will never be zero! (also: stabilizes probability estimates)

Ou	tlook		Tempe	rature		Hu	midity		V	Vindy		Pl	ay
	Yes	No		Yes	No		Yes	No		Yes	No	Yes	No
Sunny	2	3	Hot	2	2	High	3	4	False	6	2	9	5
Overcast	4	0	Mild	4	2	Normal	6	1	True	3	3		
Rainy	3	2	Cool	3	1								
Sunny	2/9	3/5	Hot	2/9	2/5	High	3/9	4/5	False	6/9	2/5	9/	5/
Overcast	4/9	0/5	Mild	4/9	2/5	Normal	6/9	1/5	True	3/9	3/5	14	14
Rainy	3/9	2/5	Cool	3/9	1/5	Projec			TT 1				
-	All 3 1 row Rainy degen	rows with See	have p Outloc resultii probab	lay The ok = Su ng char oility:	s of da ps://p inny, 2r	OWCO Id with Out Conditional	ning of der.c itlook = probal pow(nly co <mark>OM</mark> • Over	rcast and s below. '	3 rd wit This el	th Out	tlook = tes the	:
Out	look	D./	Tempe			Hu	midity		V	Vindy		Pla	
	Yes	No		Yes	No		Yes	No		Yes	No	Yes	No
Sunny	2	4	Hot	2	2	High	3	4	False	6	2	9	8
Overcast	4	1	Mild	4	2	Normal	6	1	True	3	3		
Rainy	3	3	Cool	3	1								
Sunny	2/9	4/8	Hot	2/9	2/5	High	3/9	4/5	False	6/9	2/5	9/	8/
Overcast	4/9	1/8	Mild	4/9	2/5	Normal	6/9	1/5	True	3/9	3/5	17	17
Rainy	3/9	3/8	Cool	3/9	1/5								

Modified probability estimates

 In some cases, the number of rows to be added may need to be different from Xantnaemore general setting we add μ rows.

https://powcoder.com

Example: attribute outlook for class Play=No

Add WeChat powcoder

$$=(3+\mu/3)/\mu$$
 $=(0+\mu/3)/\mu$ $=(2+\mu/3)/\mu$
Sunny Overcast Rainy

Testing for Independence OPTIONAL (Information Theoretic Testing)

- Let A and B be two random variables
- Let D(A,B) = (H(A) + H(B) H(A,B))/H(A,B)
 - If A and Bigain deptendent et Exam Help

 - H(A,B) = H(A) + H(B)
 D(A,B) = https://powcoder.com
 - If A and B are linearly related (perfectly correlated)
 - H(A,B) = H(A) = H(B)
 - D(A,B) = 1; this is the maximum
- If D() value is close to zero, assume independence
 - No need for looking up of statistical tables
 - Easy to implement

Piecing it all together

- We want to estimate $P(Y=1 | X_1,...,X_p)$
- But we don't shave entire X_1, \dots, X_p in the training set
- If we had instead $P(X_1,...,X_p | Y=1)$, we could separate it to

 Add WeChat powcoder

 P(X_1,X_1) P(X_1,X_1)

$$P(X_1|Y=1) \cdot P(X_2|Y=1) \cdot \cdot \cdot P(X_p|Y=1)$$

- True if we can assume (conditional) independence between X_1 , ..., X_p within each class

Piecing it all together

$$P(Y = 1 | X_1,...,X_p) = \frac{P(X_1,...,X_p | Y = 1)P(Y = 1)}{P(X_1,...,X_p)}$$
Assignment Project Exam Help

$$\approx \frac{P(X_1 \mid Y = 1) \cdot P(X_2 \mid Y = 1) \cdot P(Y = 1)}{\text{Add} P(X_2 \mid Y = 1) \cdot P(Y = 1)}$$

$$+ \frac{P(X_1 \mid Y = 1) \cdot P(X_2 \mid Y = 1) \cdot P(Y = 1)}{\text{Add} P(X_2 \mid Y = 1) \cdot P(Y = 1)}$$

$$+ \frac{P(X_1 \mid Y = 1) \cdot P(X_2 \mid Y = 1) \cdot P(Y = 1)}{\text{Add} P(X_2 \mid Y = 1) \cdot P(Y = 1)}$$

$$+ \frac{P(X_1 \mid Y = 1) \cdot P(X_2 \mid Y = 1) \cdot P(Y = 1)}{\text{Proportion of Play=Yes in training set}}$$

Proportion of rows with that predictor combination in the training set

Use the cutoff to determine classification of this observation. Default: cutoff = 0.5 (classify to group that is most likely)

Advantages and Disadvantages

- The good
 - Simple
 - Can han Als sign amount Broject de Sxam Help
 - High performance accuracy
 - Pretty robust thtipdependencessterption
- The bad
 - Need to categoride coving the redictors of er
 - Predictors with "rare" categories -> zero probability (Use Laplace fix)
 - No insight about importance/role of each predictor

What is the probability of Play=Yes | Humidity=Normal and what would you predict for Play?

	Humidity High	Humidity Normal	Total
Play=Yes	5	7	12
Play=No	Assignment	Project Exam F	ielp
Total	12 https://r	oowcoder.com	31

A: 5/12, Predict Add WeChat powcoder

B: 7/19, Predict Play = Yes

C: 5/12, Predict Play = No

D: 7/19, Predict Play = No

E: None of the above

Naive Bayes works better with categorical data because

- A: It takes less time to compute probabilities for categorical alatiment Project Exam Help
- B: It cannot compute the distance between different values for categorical data
- C: It needs the predictor values would have to some rows to compute accurate conditional probabilities
- D: Numeric data slows down the computation too much
- E: None of the above

Data Preprocessing using Weka

- Follow steps on the following page:
- http://facAssignmentaPrioject/nEwbnsHelplasses/ect5
 84/WEKA/preprocess.html
 https://powcoder.com
- File conversion and opening text files in different applications
 - Excel, WordPad/TextEdit, Weka
 - CSV (text), XLSX (binary), ARFF (text)

Weka

• Run Naïve Bayes Classifier on cleaned and binned version of Abank dat Project Exam Help

https://powcoder.com

Add WeChat powcoder

Next Session

Testing and Validation

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

