Lecture 1 – Introduction and Number systems

Dr. Ubaidulla,
Assistant Professor, SPCRC

Chapter 1 (first half)

About the course

- Name: Digital Systems and Microcontrollers (DSM)
- Textbook:
 - M. Morris Mano and Michael D. Ciletti, "Digital Design"
- Logistics:
 - Three 1-hour lectures per week
 - One 3-hour lab per week
 - One 1-hour tut per week

Faculty: Dr. Ubaidulla (lectures)

Dr. Harikumar Kandath (labs)

About the course

• Grading scheme:

Quizzes (x2)	10
Midsem	20
Lab reports (x9)	15
Lab exam	20
End semester	35
Total	100

About the course

Counting

Lets take a relook at counting...

1 2 3 4 5 6 7

- The number system:
 - Put symbols in specific places/positions to denote their "power"
 - The *base* or the *radix* of the decimal number system is 10

1x1000+0x100+6x10+6x1 = 1066

 10^3 10^2 10^1 10^0 1000 100 10 0

1x1000+9x100+4x10+0x1 = 1940

Various number systems

Octal number system

- The base or radix is 8
- The symbols are: 0, 1, 2, 3, 4, 5, 6, 7
- Counting in octal: 0, 1, 2, 3, 4, 5, 6, 7, ?
 0, 1, 2, 3, 4, 5, 6, 7, **10, 11, ...**

Hexadecimal number system

- The base or radix is 16
- The symbols are: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
- Counting in Hex: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, **10, 11, ...**

Various number systems

- Hexadecimal number system
 - The base or radix is 16
 - The symbols are: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
- Binary number system
 - The base or radix is 2
 - The symbols are: 0, 1 (bit)
 - The symbols are: 0, 1, **10, 11**,...
- We denote the base of the number using a subscript: $(10395)_{10}$
- In general a number $(a_4a_3a_2a_1a_0)_r = a_4r^4 + a_3r^3 + a_2r^2 + a_1r^1 + a_0r^0$

Conversion to decimal

In general a number $(a_4a_3a_2a_1a_0)_r = a_4r^4 + a_3r^3 + a_2r^2 + a_1r^1 + a_0r^0$

Octal to decimal:

- $(110)_8 = 1*8^2 + 1*8^1 + 0*8^0 = (72)_{10}$
- (777)₈ =
- $(777)_8 = 7*8^2 + 7*8^1 + 7*8^0 = (505)_{10}$

Hex to decimal:

- $(110)_{16} = 1*16^2 + 1*16^1 + 0*16^0 = (272)_{10}$
- $(BAD)_{16} =$
- $(BAD)_{16} = 11*16^2 + 10*16^1 + 13*16^0 = (2989)_{10}$

Conversions to decimal

• Hex to decimal:

- $(110)_{16} = 1*16^2 + 1*16^1 + 0*16^0 = (272)_{10}$
- $(BAD)_{16} = 11*16^2 + 10*16^1 + 13*16^0 = (2989)_{10}$

• Binary to decimal:

- $(110)_2 = 1*2^2 + 1*2^1 + 0*2^0 = (6)_{10}$
- (101010)₂ =
- $(101010)_2 = 1*2^5 + 0*2^4 + 1*2^3 + 0*2^2 + 1*2^1 + 0*2^0 = (42)_{10}$

Conversions from decimal

• Algorithm:

- Divide by radix
- Save the remainder
- Repeat till quotient '0'
- Arrange remainders in reverse order

Eg: Convert (19)₁₀ to binary

Conversions from Oct/Hex to Binary

- From Oct/Hex to binary, we can take a short cut because the bases are (2)³ and (2)⁴ respectively
- For octal: take each digit and convert it individually into three bits
- For hex: take each digit and convert it individually into four bits

- Octal number system
 - $(433)_8 = 100011011$
 - (70)₈
- Hexadecimal number system
 - $(DEAD)_{16} = 11011110101011101$
 - (FEED)₁₆

Conversions from Binary to Oct/Hex

- The reverse course can be taken for converting binary to oct or hex
- For octal: take three bits and convert it individually into a symbol
- For hex: take *four* bits and convert it individually into a symbol

- Octal number system
 - $(110 \ 101 \ 011)_2 = (653)_8$
 - (1010111101)₂
- Hexadecimal number system
 - $(11101011)_2 = (EB)_{16}$
 - $(110000110)_2 = (186)_{16}$
 - (101011111)₂