Programación 1 **Tema 8**

Escuela de Ingeniería y Arquitectura Universidad Zaragoza

Índice

- Tipos reales
 - Dominio valores
 - Representación
 - Operaciones
 - La biblioteca cmath
 - Limitaciones
- Problemas

Dominio de valores

- \square Subconjunto de $\mathbb R$
- Acotado superior e inferiormente
- Precisión finita
 - Discretización
- Dominio de valores dependiente de la representación

Representación

- □ Externa
 - Arábiga decimal (con punto decimal en lugar de coma)
 - <constanteReal> ::= ["+"|"-"]
 <dígito>{<dígito>}"."<dígito>{<dígito>}
 [("E"|"e")["+"|"-"]<dígito>{<dígito>}]
- Ejemplos
 - **2.5** 3.1415926535 -2.0 0.75
 - 6.022e23 1.6726e-27 9.1093e-31

Representación

- □ Interna
 - IEEE 754
 - Mantisa × B^{exponente}
 - \Box B = 2
 - Mantisa y exponente con un número concreto de bits

Dominio de valores Ejemplo (en base 10)

- \square **Mantisa** = {-9, -8, ..., -2, -1, 0, 1, 2, ..., 8, 9}
- □ **Exponente** = $\{-1, 0, 1\}$
- \Box Base = 10
- -90, -80, -70, -60, -50, -40, -30, -20, -10, -9, -8, -7, -6, -5, -4, -3, -2, -1, -0.9, -0.8, -0.7, -0.6, -0.5, -0.4, -0.3, -0.2, -0.1, 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90

Reales en C++

Compilador GNU GCC

float

- \Box -3,40282×10³⁸ .. +3,40282×10³⁸
- \square mínimo valor absoluto mayor que cero: 1,17549×10⁻³⁸
- □ 6 dígitos de precisión (decimal)

double

- \Box -1,79769313×10³⁰⁸ .. +1,79769313×10³⁰⁸
- □ mínimo valor absoluto mayor que cero: 2,22507386×10⁻³⁰⁸
- □ 15 dígitos de precisión (decimal)

long double

- \Box -1,1897315×10⁴⁹³² .. +1,1897315×10⁴⁹³²
- □ mínimo valor absoluto mayor que cero: 3,36210314×10⁻⁴⁹³²
- 18 dígitos de precisión (decimal)

Operaciones

- □ Aritméticos: +, −, *, /
- □ Relacionales: ==, !=, <, <=, >, >=
- Funciones aritméticas de la biblioteca estándar cmath

- Funciones trigonométricas
 - double sin(double a)
 - Devuelve el valor de sen a, con a en radianes
 - double cos(double a)
 - □ Devuelve el valor de cos *a*, con <u>a en radianes</u>
 - double tan(double a)
 - □ Devuelve el valor de tg *a*, con <u>a en radianes</u>

- Funciones exponencial y logarítmicas
 - double exp(double x)
 - \Box Devuelve el valor de e^x
 - double log(double x)
 - \Box Devuelve el valor de ln x
 - double log10(double x)
 - □ Devuelve el valor de $\log_{10} x$
 - double log2(double x)
 - □ Devuelve el valor de $\log_2 x$

- Funciones que calculan raíces y potencias
 - double sqrt(double x)
 - □ Devuelve el valor de \sqrt{x}
 - double pow(double x, double y)
 - Devuelve el valor de x^y
- □ Valor absoluto
 - double abs(double x)
 - \Box Devuelve el valor |x|

- Funciones de aproximación y redondeo a valores reales sin decimales
 - double floor(double x)
 - Devuelve [x], el mayor real sin decimales que sea menor o igual que x.
 - double ceil(double x)
 - Devuelve [x], el menor real sin decimales que sea mayor o igual que x.
 - double round(double x)
 - □ Devuelve el real sin decimales más próximo a x.
 - double trunc(double x)
 - \square Devuelve [x], el real resultante de eliminar los decimales de x.

Escribir un programa C++ que, dadas las coordenadas de dos puntos del plano, indique la distancia entre ellos

```
Introduzca las coordenadas de un punto: 0.0 0.0 Introduzca las coordenadas de otro punto: 1.0 3.0 La distancia entre los puntos es de 3.1623 unidades.
```



```
#include <iostream>
#include <iomanip>
#include <cmath>
using namespace std;
 * Programa que solicita al usuario las
 * coordenadas reales de dos puntos y le
 * informa de la distancia euclídea ente
 * Los mismos.
int main() {
```



```
int main() {
  // Petición de los datos
   cout << "Introduzca las coordenadas de un punto: ";</pre>
   double x1, y1;
   cin >> x1 >> y1;
   cout << "Introduzca las coordenadas de otro punto: ";</pre>
   double x2, y2;
   cin >> x2 >> y2;
  // Cálculo de la distancia
   double dist = distancia(x1, y1, x2, y2);
  // Escritura de resultados;
   cout << "La distancia entre los puntos es de " << fixed
        << setprecision(4) << dist << " unidades." << endl;
   return 0;
```

```
* Pre:
 * Post: Devuelve la distancia euclídea
         entre los puntos (x1, y1) y
         (x2, y2).
 */
double distancia(double x1, double y1,
                 double x2, double y2) {
 double dX = x1 - x2;
 double dY = y1 - y2;
  return sqrt(dX * dX + dY * dY);
```

Limitaciones

Desbordamiento

Desbordamiento

```
#include <iostream>
#include <cfloat>
using namespace std;
 * Programa que muestra el resultado de un desbordamiento
  al trabajar con datos de tipo real.
 */
int main() {
    double x = DBL MAX;
    cout << "x = " << x << endl;
    double y = 1.5 * x;
    cout << "y = " << y << endl;
    return 1;
                                                          18
```

Desbordamiento

```
x = 1.79769e + 308
```

$$y = inf$$

Limitaciones

- Desbordamiento
- □ Precisión

Precisión

```
#include <iostream>
using namespace std;
 * Muestra un resultado con problemas de
 * precisión.
int main() {
  double x = 1e20;
  double y = 1;
  double z = x + y - x;
  cout << "z = " << z << endl;</pre>
  return 1;
```

Precisión

$$z = 0$$

Precisión. Otro ejemplo

```
#include <iostream>
using namespace std;
 * Programa que muestra el primer natural no
 * representable como double.
int main() {
     double x = 9007199254740992; // 2^{53}
     double y = 9007199254740993; // 2^{53} + 1
     double z = 9007199254740994; // 2^{53} + 2
     cout << fixed;</pre>
     cout << "x = " << x << endl;
     cout << "y = " << y << endl;
     cout << "z = " << z << endl;
     return 0;
                                 Basado en: Respuesta de kennytm a «Which is the first integer that an
                                 IEEE 754 float is incapable of representing exactly?». Stack Overflow. 2010.
                                 https://stackoverflow.com/guestions/3793838/ (consultado el 24-10-2019).
```


Precisión. Otro ejemplo

```
x = 9007199254740992.000000
```

y = 9007199254740992.000000

z = 9007199254740994.000000

Limitaciones

- Desbordamiento
- □ Precisión
- □ NaN

Not a number

```
* Programa que muestra un resultado con
 * una codificación no válida de datos de
 * tipo real.
int main() {
    double x = sqrt(-1);
    cout << "x = " << x << endl;
    return 1;
```

Desbordamiento

x = nan

Índice

- Tipos reales
 - Dominio valores
 - Representación
 - Operaciones
 - La biblioteca cmath
 - Limitaciones
- Problemas

Aproximación de series de Maclaurin

- Exponencial
 - $e^x = 1 + x^1/1! + x^2/2! + x^3/3! + x^4/4! + ...$
- Coseno
 - cos $x = 1 x^2/2! + x^4/4! x^6/6! + ...$
- □ Seno
 - sen $x = x^{1}/1! x^{3}/3! + x^{5}/5! x^{7}/7! + ...$
- \Box π

Coseno

```
/*
 * Pre: El valor de «x» viene expresado en radianes.
 * Post: Devuelve una aproximación al valor de cos x.
 */
double cos(double x) {
```


Coseno

```
double cos(double x) {
   // Se tiene en cuenta el desarrollo en serie de la función coseno:
   // cos x = 1 - x^2/2! + x^4/4! - x^6/6! + x^8/8! - x^{10}/10! + ...
   const double COTA = 1.0E-15;
   unsigned i = 0; // indice del término
   double termino = 1.0; // termino = (-1)^i \cdot x^{2i}/(2i)!
   double resultado = termino; // resultado = suma términos calculados
   while (abs(termino) > COTA) {
      // Se incrementa «resultado» con el siguiente término de la serie:
      i++; // siquiente índice
      // termino = (-1)^{i-1} \cdot x^{2i-2}/(2i-2)!
      termino = -termino * x * x / (2 * i * (2 * i - 1));
      // resultado = suma de los términos calculados
      resultado += termino;
   return resultado;
```


Coseno $\cos(\pi/4)$

i	termino	resultado
0	1,000000000000000	1,000000000000000
1	-0,308425137534042	0,691574862465958
2	0,015854344243816	0,707429206709773
3	-0,000325991886927	0,707103214822846
4	0,000003590860449	0,707106805683294
5	-0,000000024611370	0,707106781071925
6	0,00000000115012	0,707106781186936
7	-0,0000000000390	0,707106781186546
8	0,00000000000001	0,707106781186547
9	0,000000000000000	0,707106781186547

Resumen

- Tipos reales
 - Dominio valores
 - Representación
 - Operaciones
 - Desbordamiento y precisión
 - La biblioteca cmath
- Problemas