

TTM4175 - Introduction to Communication Technology and Digital Security

Amir Taherkordi {amirhost}@item.ntnu.no

September 8, 2022

TCP/IP

- TCP stands for Transmission Control Protocol.
- ■IP stands for Internet Protocol.
- A set of protocols to support network communicatin
- OSI: for research purpose, as a guidline
 - TCP/IP as a practical model

TCP/IP Layers

- To realize communication in computer network, we need:
 - IP address, MAC address, and port address
- In TCP/IP:
 - each layer take care of each of these addressing:

Layering: TCP/IP vs. OSI

TCP/IP model	Protocols and services	OSI model
Application	HTTP, FTTP, Telnel, NTP, DHCP, PING	Application
		Presentation
		Session
Transport	TCP, UDP	Transport
Network) IP, ARP, ICMP, IGMP (Network
Network Interface	Ethernet	Data Link
		Physical

Transport Layer: Services and Protocols

Services

- segmenting upper-layer application data
- establishing end-to-end operations
- sending segments from one end host to another end host
- ensuring data reliability
- providing flow control

- Protocols
 - TCP and UDP

TCP

- Reliable, *full-duplex*, *connection-oriented*, *stream* delivery
 - data is guaranteed to arrive, and in the correct order without duplications
 - or the connection will be dropped
 - imposes significant overheads
- Before sending data: TCP requires that the computers communicating
 - establish a connection (connection-oriented protocol).
- Applications:
 - HTTP, FTP, and many other protocols
 - saves the application a lot of work: reliability checking at TCP layer

TCP - Cont'd

- TCP: support for sending and receiving arbitrary amounts of
 - data as one big stream of byte data (IP is limited to 64Kb).
 - TCP breaks up the data stream into separate IP packets.
- Packets:
 - numbered, and reassembled on arrival, using sequence and sequence acknowledge numbers.
- TCP also specifies port numbers
 - → there are 65,536 different TCP ports (sockets)
- Structure of a TCP packet

TCP Data Transfer

UDP

- It stands for User Datagram Protocol.
 - also built on top of IP
 - allows for port number specification: 65,536 ports.
 - connectionless protocol, without any error detection facility.
 - only supports data transmission from one end to the other, without any further verification. => very fast
- As compared to TCP:
 - TCP highly reliable, UDP is less reliable
 - TCP is slow, UDP is generally faster
- Adds to packet:
 - packet length + checksum: guard against corrupted packets
- Still unreliable:
 - Duplication, loss, out-of-orderness possible
- Applications:
 - where packet loss is better handled by the application than the network stack
 - VOIP
 - most online games
 - video Conferencing

IP

- Responsible for end to end transmission
- Sends data in individual packets
- Maximum size of packet is determined by the networks
 - fragmented if too large
- Unreliable
 - packets might be lost, corrupted, duplicated, delivered out of order

Internet Application Protocols

- On top of TCP/IP, several services have been developed in order to homogenize applications of same nature:
 - Hypertext Transfer Protocol (HTTP)
 - the foundation of data communication for the World Wide Web.
 - hypertext: structured text uses hyperlinks + texts.
 - default port: 80
 - FTP (File Transfer Protocol)
 - to transfer files between two machines connected to the Internet.
 - default port: 21
 - Telnet (Terminal Protocol)
 - allows a user to connect to a remote host in terminal mode.
 - default port: 23
 - SMTP (Simple Mail Transfer Protocol)
 - defines a basic service for electronic mails.
 - various ports
 - SNMP (Simple Network Management Protocol)
 - allows the management of the network.
 - default port: 161 or 162

Servers

Server

A computer/system that provides resources, data, services, or programs to other computers, known as clients, over a network.

- Many types of servers: web servers, mail servers, and database servers
- Working of server
 - a device must be configured to listen to requests from clients on a network connection.

File Server

- stores and distributes files
- clients or users may share files stored on a server.

- easier to backup
- fault tolerance solutions

Print Server

- for management and distribution of printing functionality
- rather than attaching a printer to every workstation
 - a single print server responds to printing requests from clients

Application Server

- runs applications in instead of client computers running applications locally
- often runs resource-intensive applications: shared by a large number of users

DNS Server

- provides name resolution to client computers.
- converts names into IP addresses.
- is a widely distributed database of names and other DNS servers.

Mail Server

- receives emails sent to a user.
- stores them until requested by a client on behalf of said user.
- rather than requiring every client to have its own email subsystem

■ Web Server

- a kind of application server
- hosts programs/data requested by users across the Internet.
- responds to requests from browsers running on client computers for web pages, or other web-based services.
- common web servers: Apache web server, Microsoft Internet Information Services (IIS) server, and Nginx server

Database Server

- amount of data used by companies is staggering.
 - much of that data is stored in databases.
- Databases:
 - to be accessed by multiple clients at any given time.
 - can require extraordinary amounts of disk space.
 - locating such databases on servers?
- Database servers: run database applications
- Common database servers: Oracle and Microsoft SQL Server

Proxy Server

- acts as an intermediary between a client and a server.
- is often used to isolate either the clients or servers for security purposes.
- neither the client nor the server needs to directly connect to each other.

Cloud Computing

- Analogous to electricity distribution grid
 - plug to outlet, consume electricity, and pay
 - hide the internal mechanisms from the end-user
- Definition:

Cloud computing is the delivery of computing services—servers, storage, databases, networking, software, etc.—over the Internet based on a "pay-as-you-go" model

- Common between definitions:
 - pay-per-use
 - the illusion of infinite resources
 - self-service interface
 - abstracted or virtualised resources

Cloud-based Services - 1

- Three classes of cloud; viewed as a layered architecture:
 - Infrastructure as a Service (laaS)
 - Platform as a Service (PaaS)

TTM4175, IIK/NTNU

18

Cloud-based Services - 2

laaS

- offering virtualized resources (computation, storage, and communication) on demand
- several choices of OS and a customized software stack
- e.g., Amazon EC2: offering VMs with a software stack customizable like an ordinary server

PaaS

- offering an environment to create and deploy applications
- no need to know low-level technical config., e.g., number of processors or amount of memory
- offering multiple programming models and specialized services,
 e.g., data access and authentication
- e.g., Google AppEngine: for developing and hosting Web apps written in Python or Java

Cloud-based Services - 3

SaaS

- applications reside on the top of the cloud stack
- accessed by end users through Web portals
- desktop apps such as word processing as a service in the Web
- e.g., Salesforce.com: offering business productivity apps (CRM)
- Deployment models:

subscription basis

(pay as you go)

internal and/or

partners use.

Mixed usage of private and public Clouds: Leasing public cloud services when private cloud capacity is insufficient

Cloud in Our Everyday Life?

- Online Data Storage: Dropbox, GoogleDrive, OneDrive
- Antivirus Applications: Avast CloudCare, ESET Protect Entry
- Education Applications: Udemy, IBM Cloud for Education
- E-Governance applications: Skatteetaten
- Healthcare applications: Google Health, Helseboka
- Entertainment applications: PlayStation Now, Steam Cloud

Virtualization

Definition

A way to create multiple virtually simulated instances over the computer hardware to utilize your system's underlying resources fully.

■ Hypervisor:

- allows to share storage, memory, processor, etc. among multiple separate virtual computers
- virtual machine (VM): has its dedicated operating system which uses a part of the system's hardware resources for operation.

Virtualization in Cloud Computing

- A foundational element of cloud computing
 - enables multiple users to share a single physical instance of a resource at a time.

Virtual Machine?

- emulation or a virtual representation of a physical device that can execute multiple operating systems (OS) on the same computer with a different OS.
- OSs installed using the virtual machine are known as the guest OS.

How Does Virtualisation Work?

Through hypervisor

- allows to create a virtual layer over the hardware system.
- acts as a connection between the physical system and VMs to ensure the proper access of the hardware resources.

Types of Hypervisor

- Type1 (Bare Metal)
 - interacts directly with the hardware resources.
 - replaces the host OS.
- Type2:
 - runs as a software application on the host OS.
 - coordinates with the VMs for hardware resource management.

Types of Virtualization - 1

Server Virtualization?

- the process of using software to divide physical hardware into separate unique virtual servers
- once divided: independent virtual servers can be used for a multitude of tasks
- each virtual server: able to host a different OS without any compatibility issues

Application Virtualization

- the application runs without the need of installing it into the system.
- applications: run on a virtual environment

Types of Virtualization - 2

Network Virtualization

- creating a virtual instance of the network
- It forms the abstraction of the hardware components and functions (e.g., switches, routers, etc.)
- simplifying network management

Storage Virtualization

enables all the storage devices to be accessed&managed as a single storage unit pool for better maintenance.

Summary

- TCP/IP
 - Specifications
 - Differences between TCP and UDP
- Internet application protocols
- Popular server types
- Cloud Computing
 - Three classes of Cloud
 - Cloud in our everyday life
- Virtualization
 - How it works
 - Types of virtualization