

MTH 309T LINEAR ALGEBRA EXAM 1

October 3, 2019

	Name:												
saumya Pandey													
	UB	Pe	rsor	ı Nı	umb	er:		Instructions:					
	Q	0	2	3	4	Ø	8	8	 Textbooks, calculators and any other electronic devices are not permitted. 				
		1 2 3 4 5 6 7 8 9	0 1 3 4 5 6 7 8 9	0 1 2 4 5 6 7 8 9	○ ①○ ②○ ③○ ⑤○ ⑦○ ⑨	○ ①② ③④ ⑥⑦ ⑧⑨	① ①② ③④ ⑤⑥ ⑦⑨		You may use one sheet of notes. • For full credit solve each problem fully, showing all relevant work.				

1	2	3	4	5	6	7	TOTAL	GRADE

							0	nan
1	2	3	4	5	6	7	TOTAL	GRADE

1. (20 points) Consider the following vectors in \mathbb{R}^3 :

$$\mathbf{v}_1 = \left[\begin{array}{c} 1 \\ 0 \\ 2 \end{array} \right], \quad \mathbf{v}_2 = \left[\begin{array}{c} -1 \\ 1 \\ -3 \end{array} \right], \quad \mathbf{v}_3 = \left[\begin{array}{c} 1 \\ 2 \\ 0 \end{array} \right], \quad \mathbf{w} = \left[\begin{array}{c} -2 \\ 2 \\ (b) \end{array} \right]$$

- a) Find all values of b such that $w \in \text{Span}(v_1, v_2, v_3)$.
- b) Is the set $\{v_1, v_2, v_3\}$ linearly independent? Justify your answer.

a)
$$x_1V_1 + x_2V_2 + x_3V_3 = W$$

$$x_1 \begin{bmatrix} 0 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} -1 \\ -3 \end{bmatrix} + x_3 \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} -3 \\ 0 \end{bmatrix}$$

$$-3 \left(\begin{bmatrix} 0 \\ 0 \\ -3 \end{bmatrix} - \begin{bmatrix} 0 \\ 0 \end{bmatrix} - \begin{bmatrix} 0$$

No , the set \S v_1, v_2, v_3, \S is not linearly independent because the solution would be a trivial solution if it were linearly independent. In this case, it leads to infinitely many solutions.

2. (10 points) Consider the following matrix:

$$A = \left[\begin{array}{rrr} 1 & -1 & 2 \\ 1 & 0 & 1 \\ 0 & 2 & -1 \end{array} \right]$$

Compute A^{-1} .

$$= \begin{cases} 0 & 0 & 1 & | a - a & 1 \\ 0 & 1 & | -1 & | 0 & | 0 \\ 0 & 0 & | & | a - a & | \end{cases}$$

$$\implies \begin{bmatrix} 1 & 0 & 0 & | -aa = 1 \\ 0 & 1 & 0 & | 1 - 1 & | \\ 0 & 0 & | & | -aa = 1 \end{bmatrix} \implies A^{-1} \begin{bmatrix} -a & a & -1 \\ 1 & -1 & 1 \\ a & -a & 1 \end{bmatrix}$$

3. (10 points) Let A be the same matrix as in Problem 2, and let

$$B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix}$$

Find a matrix C such that $A^TC = B$ (where A^T is the transpose of A).

4. (20 points) Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation given by

$$T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1 - 2x_2 \\ x_1 + x_2 \\ x_1 - 3x_2 \end{bmatrix}$$

- a) Find the standard matrix of T.
- b) Find all vectors u satisfying $T(u) = \begin{bmatrix} 1 \\ 10 \\ -2 \end{bmatrix}$.

a)
$$e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 $e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ $T(e_1) \Rightarrow T\begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

$$T(e_2) \Rightarrow T\begin{bmatrix} 0 \\ 1 \end{bmatrix} \Rightarrow \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$

Otandard Matrix of T:

b)
$$AV = \begin{bmatrix} 1 & -3 \\ -2 & -3 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -2 & -3 \\ -2 & -3 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -3 & -3 \\ -3 & -3 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -3 & -3 \\ -3 & -3 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -3 & -3 \\ -3 & -3 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -3 & -3 \\ -3 & -3 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -3 & -3 \\ 0 & -1 & -3 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -3 & -3 \\ 0 & -1 & -3 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -3 & -3 \\ 0 & -1 & -3 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -3 & -3 \\ 0 & -1 & -3 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -3 & -3 \\ 0 & -1 & -3 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -3 & -3 \\ 0 & -1 & -3 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -3 & -3 \\ 0 & -1 & -3 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -3 & -3 \\ 0 & -1 & -3 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -3 & -3 \\ 0 & -1 & -3 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -3 & -3 \\ 0 & -1 & -3 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -3 & -3 \\ 0 & -1 & -3 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -3 & -3 \\ 0 & -1 & -3 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -3 & -3 \\ 0 & -1 & -3 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -3 & -3 \\ 0 & -1 & -3 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -3 & -3 \\ 0 & -1 & -3 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -3 & -3 \\ 0 & -1 & -3 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -3 & -3 \\ 0 & -1 & -3 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -3 & -3 \\ 0 & -1 & -3 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -3 & -3 \\ 0 & -1 & -3 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -3 & -3 \\ 0 & -1 & -3 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -3 & -3 \\ 0 & -1 & -3 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -3 & -3 \\ 0 & -1 & -3 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -3 & -3 \\ 0 & -1 & -3 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -3 & -3 \\ 0 & -1 & -3 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -3 & -3 \\ 0 & -1 & -3 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -3 & -3 \\ 0 & -1 & -3 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -3 & -3 \\ 0 & -1 & -3 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -3 & -3 \\ 0 & -1 & -3 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -3 & -3 \\ 0 & -1 & -3 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -3 & -3 \\ 0 & -1 & -3 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -3 & -3 \\ 0 & -1 & -3 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -3 & -3 \\ 0 & -1 & -3 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -3 & -3 \\ 0 & -1 & -3 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -3 & -3 \\ 0 & -1 & -3 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -3 & -3 \\ 0 & -1 & -3 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -3 & -3 \\ 0 & -1 & -3 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -3 & -3 \\ 0 & -1 & -3 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -3 & -3 \\ 0 & -1 & -3 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -3 & -3 \\ 0 & -1 & -3 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -3 & -3 \\ 0 & -1 & -3 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -3 & -3 \\ 0 & -1 & -3 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -3 & -3 \\ 0 & -1 & -3 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -3 & -3 \\ 0 & -1 & -3 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -3 & -3 \\ 0 & -1 & -3 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -3 & -3 \\ 0 & -1 & -3 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -3 & -3 \\ 0 & -1 & -3 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -3 & -3 \\ 0 & -1 & -3 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -3 & -3 \\ 0 & -1 & -3 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -3 & -3 \\ 0 & -1 & -3 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -3 & -3 \\ 0 & -1 & -3 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -3 & -3 \\ 0 & -1 & -3 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -3 & -3 \\ 0 & -1 & -3 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -3 & -3 \\ 0 & -1 & -3 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -3 & -3 \\ 0 & -1 & -3 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -3 & -3 \\ 0 & -1 & -3 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -3 & -3 \\ 0 & -1 & -3 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -3 & -3 \\ 0 & -1 & -3 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -3 & -3 \\ 0 & -1 & -3 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -3 & -3 \\ 0$$

$$\begin{bmatrix} x_1 & x_2 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} x_1 = 7 \\ x_2 = 3 \end{bmatrix} \Rightarrow y$$

5. (20 points) For each matrix A given below determine if the matrix transformation $T_A \colon \mathbb{R}^3 \to \mathbb{R}^3$ given by $T_A(\mathbf{v}) = A\mathbf{v}$ is one-to one or not. If T_A is not one-to-one, find two vectors \mathbf{v}_1 and \mathbf{v}_2 such that $T_A(\mathbf{v}_1) = T_A(\mathbf{v}_2)$.

b)
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$$
 $-3 = 7$ $\begin{bmatrix} 0 & 2 & 4 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$ $-3 = 7$ $\begin{bmatrix} 0 & 2 & 4 \\ 0 & 1 & 3 \end{bmatrix}$ $-3 = 7$ $\begin{bmatrix} 0 & 2 & 4 \\ 0 & 1 & 3 \end{bmatrix}$ $-3 = 7$ $\begin{bmatrix} 0 & 2 & 4 \\ 0 & 1 & 3 \end{bmatrix}$ $-3 = 7$ $\begin{bmatrix} 0 & 2 & 4 \\ 0 & 1 & 3 \end{bmatrix}$ $-3 = 7$ $\begin{bmatrix} 0 & 2 & 4 \\ 0 & 1 & 3 \end{bmatrix}$ $-3 = 7$ $\begin{bmatrix} 0 & 2 & 4 \\ 0 & 1 & 3 \end{bmatrix}$ $-3 = 7$ $\begin{bmatrix} 0 & 2 & 4 \\ 0 & 1 & 3 \end{bmatrix}$ $-3 = 7$ $\begin{bmatrix} 0 & 2 & 4 \\ 0 & 1 & 3 \end{bmatrix}$ $-3 = 7$ $\begin{bmatrix} 0 & 2 & 4 \\ 0 & 1 & 3 \end{bmatrix}$ $-3 = 7$ $\begin{bmatrix} 0 & 2 & 4 \\ 0 & 1 & 3 \end{bmatrix}$ $-3 = 7$ $\begin{bmatrix} 0 & 2 & 4 \\ 0 & 1 & 3 \end{bmatrix}$ $-3 = 7$ $\begin{bmatrix} 0 & 2 & 4 \\ 0 & 1 & 3 \end{bmatrix}$ $-3 = 7$ $\begin{bmatrix} 0 & 2 & 4 \\ 0 & 1 & 3 \end{bmatrix}$ $-3 = 7$ $\begin{bmatrix} 0 & 2 & 4 \\ 0 & 1 & 3 \end{bmatrix}$ $-3 = 7$ $\begin{bmatrix} 0 & 2 & 4 \\ 0 & 1 & 3 \end{bmatrix}$ $-3 = 7$ $\begin{bmatrix} 0 & 2 & 4 \\ 0 & 1 & 3 \end{bmatrix}$ $-3 = 7$ $\begin{bmatrix} 0 & 2 & 4 \\ 0 & 1 & 3 \end{bmatrix}$ $-3 = 7$ $\begin{bmatrix} 0 & 2 & 4 \\ 0 & 1 & 3 \end{bmatrix}$ $-3 = 7$ $\begin{bmatrix} 0 & 2 & 4 \\ 0 & 1 & 3 \end{bmatrix}$ $-3 = 7$ $\begin{bmatrix} 0 & 2 & 4 \\ 0 & 1 & 3 \end{bmatrix}$ $-3 = 7$ $\begin{bmatrix} 0 & 2 & 4 \\ 0 & 1 & 3 \end{bmatrix}$ $-3 = 7$ $\begin{bmatrix} 0 & 2 & 4 \\ 0 & 1 & 3 \end{bmatrix}$ $-3 = 7$ $\begin{bmatrix} 0 & 2 & 4 \\ 0 & 1 & 3 \end{bmatrix}$ $-3 = 7$ $\begin{bmatrix} 0 & 2 & 4 \\ 0 & 1 & 3 \end{bmatrix}$ $-3 = 7$ $\begin{bmatrix} 0 & 2 & 4 \\ 0 & 1 & 3 \end{bmatrix}$ $-3 = 7$ $\begin{bmatrix} 0 & 2 & 4 \\ 0 & 1 & 3 \end{bmatrix}$ $-3 = 7$ $\begin{bmatrix} 0 & 2 & 4 \\ 0 & 1 & 3 \end{bmatrix}$ $-3 = 7$ $\begin{bmatrix} 0 & 2 & 4 \\ 0 & 1 & 3 \end{bmatrix}$ $-3 = 7$ $\begin{bmatrix} 0 & 2 & 4 \\ 0 & 1 & 3 \end{bmatrix}$ $-3 = 7$ $\begin{bmatrix} 0 & 2 & 4 \\ 0 & 1 & 3 \end{bmatrix}$ $-3 = 7$ $\begin{bmatrix} 0 & 2 & 4 \\ 0 & 1 & 3 \end{bmatrix}$ $-3 = 7$ $\begin{bmatrix} 0 & 2 & 4 \\ 0 & 1 & 3 \end{bmatrix}$ $-3 = 7$ $\begin{bmatrix} 0 & 2 & 4 \\ 0 & 1 & 3 \end{bmatrix}$ $-3 = 7$ $\begin{bmatrix} 0 & 2 & 4 \\ 0 & 1 & 3 \end{bmatrix}$ $-3 = 7$ $\begin{bmatrix} 0 & 2 & 4 \\ 0 & 1 & 3 \end{bmatrix}$ $-3 = 7$ $\begin{bmatrix} 0 & 2 & 4 \\ 0 & 1 & 3 \end{bmatrix}$ $-3 = 7$ $\begin{bmatrix} 0 & 2 & 4 \\ 0 & 1 & 3 \end{bmatrix}$ $-3 = 7$ $\begin{bmatrix} 0 & 2 & 4 \\ 0 & 1 & 3 \end{bmatrix}$ $-3 = 7$ $\begin{bmatrix} 0 & 2 & 4 \\ 0 & 1 & 3 \end{bmatrix}$ $-3 = 7$ $\begin{bmatrix} 0 & 2 & 4 \\ 0 & 1 & 3 \end{bmatrix}$ $-3 = 7$ $\begin{bmatrix} 0 & 2 & 4 \\ 0 & 1 & 3 \end{bmatrix}$ $-3 = 7$ $\begin{bmatrix} 0 & 2 & 4 \\ 0 & 1 & 3 \end{bmatrix}$ $-3 = 7$ $\begin{bmatrix} 0 & 2 & 4 \\ 0 & 1 & 3 \end{bmatrix}$ $-3 = 7$ $\begin{bmatrix} 0 & 2 & 4 \\ 0 & 1 & 3 \end{bmatrix}$ $-3 = 7$ $\begin{bmatrix} 0 & 2 & 4 \\ 0 & 1 & 3 \end{bmatrix}$ $-3 = 7$ $\begin{bmatrix} 0 & 2 & 4 \\ 0 & 1 & 3 \end{bmatrix}$ $-3 = 7$ $\begin{bmatrix} 0 & 2 & 4 \\ 0 & 1 & 3 \end{bmatrix}$ $-3 = 7$ $\begin{bmatrix} 0 & 2 & 4 \\ 0 & 1 & 3 \end{bmatrix}$ $-3 = 7$ $\begin{bmatrix} 0 & 2 & 4 \\ 0 & 1 & 3 \end{bmatrix}$ $-3 = 7$ $\begin{bmatrix} 0 & 2 & 4 \\ 0 & 1 & 3 \end{bmatrix}$ $-3 = 7$ $\begin{bmatrix} 0 & 2 & 4 \\ 0 & 1 & 3 \end{bmatrix}$ $-3 = 7$ $\begin{bmatrix} 0 & 2 & 4 \\ 0 & 1 & 3 \end{bmatrix}$ $-3 = 7$ $\begin{bmatrix} 0 & 2 & 4 \\ 0$

- 6. (10 points) For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.
- a) If u, v, w are vectors in \mathbb{R}^3 such that $w + u \in \text{Span}(u, v)$ then $w \in \text{Span}(u, v) \cup V$

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = U \quad \begin{bmatrix} 0 \\ 0 \end{bmatrix} = V \quad \begin{bmatrix} 0 \\ 0 \end{bmatrix} = W$$

It is true

$$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Rightarrow W \in Span$$

$$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

b) If u, v, w are vectors in \mathbb{R}^3 such that the set $\{u, v, w\}$ is linearly independent then the set $\{u, v\}$ must be linearly independent.

$$A = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad A = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad M = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

linearly independent \Rightarrow $\begin{bmatrix} 1 & 0 & 0 & | & 0 \\ 0 & 1 & 0 & | & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$

$$9e+ \left\{ \begin{array}{c} x_1 & x_2 \\ 0 & 0 \end{array} \right\} = \left[\begin{array}{c} x_1 & x_2 \\ 0 & 0 \end{array} \right] = \left[\begin{array}{c} x_1 = 0 \\ 0 = 0 \end{array} \right]$$

doesn't

It is true. since, linear, dependence means having a trivial sol. so by decreasing the $x_1=0$, $x_2=0$, $x_3=0$ and the supposed to infinite amount of set to $x_1=0$, it would change to infinite amount of

0 1 2 3 4 5 6 7 8 9 10

7. (10 points) For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.

a) If A is a 2×2 matrix and u, v are vectors in \mathbb{R}^2 such that Au, Av are linearly dependent then u, v also must be linearly dependent. $U = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$ Linearly inclependent

It is false. You could have a linear independent $\begin{bmatrix} a & a \\ 0 & o \end{bmatrix} \begin{bmatrix} 1 \\ 0 & o \end{bmatrix}$ have a linear independent vectors and by Multiplying it $\begin{bmatrix} a & a \\ 0 & o \end{bmatrix} \neq \begin{bmatrix} a \\ 0 & o \end{bmatrix}$ by the matrix, $\begin{bmatrix} a & a \\ 0 & o \end{bmatrix} \begin{bmatrix} a \\ 0 & o \end{bmatrix} \begin{bmatrix} a \\ 0 & o \end{bmatrix}$ and up the linearly dependent. \Rightarrow $\begin{bmatrix} a & a \\ 0 & o \end{bmatrix} \neq \begin{bmatrix} a \\ 0 & o \end{bmatrix}$

b) If $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation and $u, v, w \in \mathbb{R}^2$ are vectors such that u is in Span(v, w) then T(u) must be in Span(T(v), T(w)).

Means multiplying by a matrix that could lead to no linear combinations for T(u).