Base Numéricas

Quando o homem aprendeu a contar, foi obrigado a desenvolver símbolos, chamados algarismos, que representassem as quantidades e grandezas.

- Pre-histórico: sistema unário.
- Algarismos romanos (basicamente aditivos)

$$||| = | + | + |$$

para representar grandes quantidades símbolos especiais:

=> A realização de cálculos, como multiplicação e divisão, extremamente complexa.

Sistema Hindu-arábico :
 10 algarismos (0,1,2,3,4,5,6,7,8,9)

Características:

- 1- Existe um símbolo para o valor nulo.
- 2- Cada algarismo utilizado é uma unidade maior que o seu predecessor.
- 3- A notação é posicional, ou seja, o valor de um algarismo é determinado pela sua posição dentro do número. Cada posição possui um determinado peso.

Os sistemas atuais formam os números inteiros da seguinte forma:

$$a = \sum_{i=0}^{n-1} x_i \cdot B^i$$

onde:

a – número propriamente dito

n – número de casas inteiras

B - base

 x_i – dígito na posição i, sendo que a unidade possui i =0 dígito menos significativo, n-1 dígito mais significativo.

$$X_{n-1} .B^{n-1} + X_{n-2} .B^{n-2} + ... X_2 .B^2 + X_1 .B^1 + X_0 .B^0$$

Regras:

- A base B de um sistema é igual à quantidade de algarismos distintos utilizados.
- Ex: base 10 (0,1,2,3,4,5,6,7,8,9); Ex: base binária (0,1). base hexadecimal(0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F).
- Quando uma posição é ocupada pelo maior algarismo e deve ser aumentada de uma unidade, esta posição recebe o símbolo nulo e a posição seguinte deve ser aumentada de uma unidade.
- O algarismo mais à direita tem peso 1. O algarismo imediatamente à esquerda tem o peso da base B, o seguinte tem peso de ao quadrado, depois ao cubo e assim por diante.
- O valor de cada algarismo de um número é determinado multiplicando-se o algarismo pelo peso de sua posição
- O valor do número é determindo pela soma dos valores de cada algarismo

Para uma determinada base B, empregando-se *n* dígitos tem-se: Bⁿ combinações distintas, ou seja, Bⁿ números distintos.

Ex: Base decimal empregando-se 3 dígitos para sua representação:

```
\{0, \dots 9\} = 10 possibilidades \{0, \dots 9\} = 10 possibilidades \{0, \dots 9\} = 10 possibilidades,
```

 $10x 10x 10 = B^n = 10^3 = 1000$ números distintos, cuja faixa de representação vai de 0 a 999.

Ex: Base binária empregando-se 3 dígitos para sua representação:

$$\{0, 1\} = 2$$
 possibilidades $\{0, 1\} = 2$ possibilidades $\{0, 1\} = 2$ possibilidades,

 $2x 2x 2 = B^n = 2^3 = 8$ números distintos, cuja faixa de representação vai de 0 a 7.

```
2 dígitos =>  _{-} , 2^2 = 4, faixa > 00_2 0_{10} (primeiro número)
                                                01<sub>2</sub> 1<sub>10</sub>
                                                10_2 2_{10}
                                                11_2 3_{10} ( último número )
   3 dígitos => _ _ _ , 2^3 = 8 , faixa > 000_2 0_{10} (primeiro número)
                                               001<sub>2</sub> 1<sub>10</sub>
                                               010_2 2_{10}
                                               011_2 3_{10}
                                               100_2 4_{10}
                                               101<sub>2</sub> 5<sub>10</sub>
                                               110_2 6_{10}
                                               111_2 7_{10} ( último número )
4 dígitos => _ _ _ , 2^4 = 16 , faixa > 0000_2 0_{10} ( primeiro número)
                                                1111<sub>2</sub> 15<sub>10</sub> ( último número )
```

```
4 dígitos => _ _ _ , 2^4 = 16 , faixa > 0000_2 0_{10} ( primeiro número)
                                    1111_{2} 15_{10} ( último número )
5 dígitos => _ _ _ _ , 2^5 = 32 , faixa > 00000_2 0_{10} ( primeiro número)
                                    11111<sub>2</sub> 31<sub>10</sub> ( último número )
faixa > 00000000_2 O_{10} (primeiro número)
                                 11111111<sub>2</sub> 255<sub>10</sub> ( último número )
faixa > 0000000000_2 O_{10} (primeiro número)
                                    11111111<sub>2</sub> 1023<sub>10</sub> (último número)
```

Exercício: Quantos bits na representação binária, no mínimo, são necessários para representar o número 509₁₀ ? solução:

sabe-se que 2 ⁸ = 256 => faixa de valores possíveis vai de 0 a 255, logo 8 bits é insuficiente.

Mas 2 ⁹ = 512 => faixa de valores possíveis vai de 0 a 511, logo 9 bits é suficiente.

Dê a representação de 509₁₀ na base binária. (repare que este exercício esta sendo aplicado sem sabermos as regras da conversão de números entre base diferentes)

solução:

Sabe-se que 511₁₀ = 1111111111₂ (ultimo número da faixa de valores para uma representação com 9 bits). Se começássemos a escrever a tabela de valores de baixo para cima teríamos:

```
111111101<sub>2</sub> 509_{10} \rightarrow \text{resposta}

111111110<sub>2</sub> 510_{10}

111111111<sub>2</sub> 511_{10}
```

Mudança de Base de Números Inteiros

Convenciona-se indicar em sub-escrito o valor da base. Assim, o número dezessete em diversas bases seria: 17_{10} , 17_{8} ou 17_{16} etc.

Conversão de binário para decimal.

Soma-se os pesos das posições em que o número binário tiver bit 1.

Ex:
$$11011_2 => 1$$
 1 0 1 1 $2^4 + 2^3 + 2^4 + 2^1 + 2^0 = 16 + 8 + 2 + 1 = 27_{10}$

Ex:
$$10110101_2$$
 =

$$2^{7} + 2^{6} + 2^{5} + 2^{4} + 2^{3} + 2^{2} + 2^{1} + 2^{0} = 181_{10}$$

 $128 + 0 + 32 + 16 + 0 + 4 + 0 + 1$

Mudança entre as bases 2 e 8.

As bases 2 e 8 são potências uma da outra visto que $8 = 2^3$. Por isto cada algarismo na base 8 é representado por três algarismos na base 2:

Base 8	Base2
0	000
1	001
2	010
3	011
4	100
5	101
6	110
7	111

Assim, se temos um número na base 8 e desejamos passar para a base 2 basta trocar cada algarismo octal por seu correspondente binário.

$$342_8 = 011.100.010_2$$
, pois $3_8 = 0112$, $4_8 = 100_2$ e $2_8 = 010_2$.

De forma semelhante podemos trocar da base 2 para a base 8 grupando de três em três os algarismos binários e, em seguida, transformando-os em seus correspondentes octais. ex: o número 1001010011001₂ pode ser grupado como 001.001.010.011.001₂ = 11231₈.

Mudança entre as bases 2 e 16

Similar a mudança entre as bases 2 e 8, a mudança entre as bases 2 e 16 é feita transformando-se cada quatro algarismos binários em um algarismo hexadecimal. Isto porque $16 = 2^4$.

Base 16	Base2	Base 16	Base2
0	0000	8	1000
1	0001	9	1001
2	0010	Α	1010
3	0011	В	1011
4	0100	С	1100
5	0101	D	1101
6	0110	E	1110
7	0111	F	1111

Assim, se temos um número na base 16 e desejamos passar para a base 2 basta trocar cada algarismo hexadecimtal por seu correspondente binário.

EX: 1001010110011101101_2 em $0100.1010.1100.1110.1101_2 = 4ACED_{16}$

Da mesma forma, se tivermos 10A3₁₆ podemos, rapidamente, transformar em 0001.0000.1010.0011₂

Mudança entre as bases 8 e 16

Para fazer transformações entre as bases 8 e 16, que não são potências uma da outra, usamos a base 2 como intermediária nestas transformações.

Por exemplo, para transformar 1BC4₁₆ para seu equivalente na base 8. Inicialmente transformamo-lo para a base 2. Então:

$$1BC4_{16} = 0001.1011.1100.0100_2$$

reagrupando o agora número binário de três em três temos:

$$0.001.101.111.000.100_2 = 15704_8$$

Portanto

$$1BC4_{16} = 15704_8$$
.

Por outro lado, se tivermos, por exemplo, o número 235_8 para transformá-lo para a base 16, primeiro passamo-lo para a base 2. $235_8 = 010.011.101_2$

Em seguida grupamos os algarismos binários de quatro em quatro.

$$0.1001.1101_2 = 9D_{16}$$

Conversão de decimal para binário

Método das subtrações ou processo inverso.

EX:
$$681_{10}$$
 . (Escrever as potências de 2 para auxiliar) | 2^{10} = 1024 681 é um número menor 1024 e maior que 512 | 2^9 = 512 Então podemos escrever : 681 = 512 + 169 , | 2^8 = 256 | 2^7 = 128 169 é um número menor que 256 e maior que 128 | 2^6 = 64 Logo, 169 = 128 + 41 , | 2^5 = 32 | 2^4 = 16 41 é um número menor que 64 e maior que 32 , | 2^3 = 8 Logo, 41 = 32 + 9 | 2^2 = 4 ... | 2^1 = 2^2 | 2^2 = 4^2 ...

Assim tem-se

$$681 = 512 + 128 + 32 + 8 + 1$$

$$= 1 \times 2^{9} + 0 \times 2^{8} + 1 \times 2^{7} + 0 \times 2^{6} + 1 \times 2^{5} + 0 \times 2^{4} + 1 \times 2^{3} + 0 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0}$$

$$= 1010101001_{2}$$

Conversão de decimal para binário

Método das divisões sucessivas:

```
681 / 2 = 340, resto 1 (bit menos significativo)
340/2 = 170, resto 0
170/2 = 85, resto 0
85/2 = 42, resto 1
42/2 = 21, resto 0
21/2 = 10, resto 1
10/2 = 5, resto 0
 5/2 = 2, resto 1
  2/2 = 1, resto 0
  1/2 = 0, resto 1 (bit mais significativo)
681_{10} = 1010101001_2
```

Conversão de Octal para decimal

Soma dos pesos:

Ex:
$$372_8 = 3x8^2 + 7x8^1 + 2x8^0$$

= $3x64 + 7x8 + 2x1 = 250_{10}$

Conversão de decimal para Octal

Método das divisões sucessivas:

$$31/8 = 3$$
, resto 7

$$3/8 = 0$$
, resto 3 (dígito mais significativo)

$$250_{10} = 372_8$$

Conversão de hexadecimal para decimal Soma dos pesos:

Ex:
$$356_{16} = 3 \times 16^2 + 5 \times 16^1 + 6 \times 16^0$$

= $768 + 80 + 6 = 854_{10}$
Ex: $2AF_{16} = 2 \times 16^2 + 10 \times 16^1 + 15 \times 16^0$
= $512 + 160 + 15 = 687_{10}$

Conversão de decimal para hexadecimal

Método das divisões sucessivas:

 $687_{10} = 2AF_{16}$

```
Ex: 687_{10}
687 / 16 = 42, resto 15 (dígito menos significativo)
42 / 16 = 2, resto 10
2 / 16 = 0, resto 2 (dígito mais significativo)
```