MATH326 : Mathématique pour les sciences 3

Série nº 1 — Suites et séries numériques

Ex 1.1 – On considère la suite réelle $(u_n)_{n\geqslant 1}$ définie par $u_n:=\left(1+\frac{1}{n}\right)^n$ pour tout entier $n\geqslant 1$.

- 1) Montrer que $(u_n)_{n\geqslant 1}$ converge et déterminer sa limite.
- 2) Établir que pour tout réel x > -1 on a $\frac{x}{x+1} \le \ln(1+x) \le x$.
- 3) En déduire que la suite $(u_n)_{n\geq 1}$ est croissante.

 $\mathbf{Ex} \ \mathbf{1.2} - \mathbf{Soit} \ (u_n)_{n \in \mathbf{N}}$ la suite réelle définie par $u_0 \coloneqq 2$ et $u_{n+1} = \frac{1}{2} \left(u_n + \frac{2}{u_n} \right)$ pour tout $n \in \mathbf{N}$.

- 1) Montrer que $(u_n)_{n\in\mathbb{N}}$ est bien définie et qu'elle est décroissante. Indication : on montrera au préalable que $\sqrt{2} \leqslant u_n$ pour tout $n \in \mathbb{N}$.
- 2) En déduire que la suite $(u_n)_{n\in\mathbb{N}}$ converge vers $\sqrt{2}$.
- 3) Calculer $\frac{u_{n+1} \sqrt{2}}{u_{n+1} + \sqrt{2}}$ en fonction de u_n pour tout $n \in \mathbb{N}$, puis retrouver le résultat précédent.

$\mathbf{Ex}\ \mathbf{1.3} - (\mathsf{Moyenne}\ \mathsf{arithm\acute{e}tico} ext{-}\mathsf{g\acute{e}om\acute{e}trique})$

Étant donné des réels $0 < a \le b$, on considère les suites réelles $(a_n)_{n \in \mathbb{N}}$ et $(b_n)_{n \in \mathbb{N}}$ définies par $a_0 = a$, $b_0 = b$ ainsi que $a_{n+1} = \sqrt{a_n b_n}$ et $b_{n+1} = \frac{1}{2}(a_n + b_n)$ pour tout $n \in \mathbb{N}$.

- 1) Montrer que pour tout $n \in \mathbf{N}$ on a $0 < a_n \le b_n$. Indication : on pourra regarder $b_{n+1}^2 - a_{n+1}^2$ pour tout $n \in \mathbf{N}$.
- 2) Établir que $(a_n)_{n\in\mathbb{N}}$ est croissante et que $(b_n)_{n\in\mathbb{N}}$ est décroissante.
- 3) En déduire que ces deux suites sont convergentes.
- 4) Prouver enfin que les limites de $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ sont égales. Indication : on pourra comparer $|b_{n+1}-a_{n+1}|$ à $|b_n-a_n|$ pour tout $n\in\mathbb{N}$. Remarque : cette valeur commune est appelée la moyenne arithmético-géométrique des nombres a et b, notée M(a,b).

Ex 1.4 – Soit (u_n) une suite et (v_n) la suite définie par $v_n = u_{n+1} - u_n$. Vérifier que si (u_n) converge, alors (v_n) converge vers 0. Montrer que la réciproque est fausse en considérant la suite définie par $u_n = \sum_{k=1}^n 1/k$ pour $n \ge 1$.

Ex 1.5 – Déterminer la nature des séries numériques suivantes :

$$\sum_{n\geqslant 0} \frac{n}{n+1} \ , \quad \sum_{n\geqslant 0} \sqrt{n+1} - \sqrt{n} \ , \quad \sum_{n\geqslant 0} (-1/4)^n + (3/4)^n \ , \quad \sum_{n\geqslant 1} \frac{1}{\sqrt[n]{n!}} \ , \quad \sum_{n\geqslant 1} \frac{\ln(1+1/n)}{n} \ ,$$

$$\sum_{n\geqslant 1}\frac{\ln n}{n2^n}\;,\quad \sum_{n\geqslant 1}\frac{\ln(1+n)}{n^3}\;,\quad \sum_{n\geqslant 1}\sin\biggl(\frac{1}{n}\biggr)\;,\quad \sum_{n\geqslant 1}\frac{1}{n}-\frac{1}{n+\alpha}\quad\text{et}\quad \sum_{n\geqslant 0}\frac{1}{n+\alpha^n}\quad\text{avec}\quad \alpha>0.$$

Ex 1.6 – Déterminer la nature des séries numériques suivantes :

$$\sum_{n\geqslant 0} \left(\frac{2n}{3n+2}\right)^n , \quad \sum_{n\geqslant 0} \frac{1}{n^n} , \quad \sum_{n\geqslant 0} \frac{n!}{n^n} , \quad \sum_{n\geqslant 0} \frac{(n!)^2}{(2n)!} ,$$

$$\sum_{n\geqslant 0} \frac{(n+1)2^n}{n!} , \quad \sum_{n\geqslant 0} \frac{(2n)!}{n^{2n}} \text{ et } \quad \sum_{n\geqslant 0} \frac{n^n}{(n!)^2} .$$

Ex 1.7 — Calculer les sommes des séries numériques suivantes après avoir montré qu'elles convergent :

$$\sum_{n\geqslant 1} \frac{1}{n(n+2)} \;, \quad \sum_{n\geqslant 2} \frac{(-1)^n}{n^2-1} \;, \quad \sum_{n\geqslant 1} \frac{1}{n(n+1)(n+2)} \;, \quad \sum_{n\geqslant 1} na^n \quad \text{et} \quad \sum_{n\geqslant 1} \frac{a^n}{n} \quad \text{avec} \quad a\in [0,1[...]]$$

Ex 1.8 – On considère la série $\sum u_n$ dont le terme général est défini par $u_{2p} = (\frac{1}{3})^p$ et $u_{2p+1} = 4(\frac{1}{3})^p$ pour tout $p \in \mathbb{N}$. Appliquer la règle de d'Alembert, puis la règle de Cauchy. En déduire la nature de la série.

Ex 1.9 – Déterminer la nature des séries numériques suivantes :

$$\sum_{n\geqslant 0} (-1)^n \frac{2n}{4n^2 - 3} \; , \quad \sum_{n\geqslant 1} \frac{\sin(\sqrt{n})}{n\sqrt{n}} \; , \quad \sum_{n\geqslant 1} \frac{(-1)^n}{n - \ln n} \; , \quad \sum_{n\geqslant 1} \frac{\cos n + (-1)^n n^2}{n^3} \quad \text{et} \quad \sum_{n\geqslant 1} \frac{\sin n}{n} \; .$$

 $\mathbf{Ex}\ \mathbf{1.10}$ — Déterminer la nature des séries numériques suivantes :

$$\sum_{n\geqslant 2} \frac{1}{n \ln n} , \quad \sum_{n\geqslant 2} \frac{1}{\sqrt[3]{n \ln n}} , \quad \sum_{n\geqslant 1} \frac{\ln n}{n \sqrt{n}} \quad \text{et} \quad \sum_{n\geqslant 2} \ln \left(1 + \frac{(-1)^n}{\sqrt{n}}\right).$$