## CSGE602055 Operating Systems CSF2600505 Sistem Operasi Week 05: Virtual Memory

#### Rahmat M. Samik-Ibrahim (ed.)

University of Indonesia

https://os.vlsm.org/
Always check for the latest revision!

REV259 30-Nov-2020

# Operating Systems $202^3$ ) — **PJJ from HOME** ZOOM: International [Tue 08-10] — A/Matrix [Tue 10-12]

| Week    | Schedule & Deadline <sup>1</sup> ) | Торіс                                        | <b>OSC10</b> <sup>2</sup> ) |
|---------|------------------------------------|----------------------------------------------|-----------------------------|
| Week 00 | 15 Sep - 21 Sep 2020               | Overview 1, Virtualization & Scripting       | Ch. 1, 2, 18.               |
| Week 01 | 22 Sep - 28 Sep 2020               | Overview 2, Virtualization & Scripting       | Ch. 1, 2, 18.               |
| Week 02 | 29 Sep - 05 Oct 2020               | Security, Protection, Privacy, & C-language. | Ch. 16, 17.                 |
| Week 03 | 06 Oct - 12 Oct 2020               | File System & FUSE                           | Ch. 13, 14, 15.             |
| Week 04 | 13 Oct - 19 Oct 2020               | Addressing, Shared Lib, & Pointer            | Ch. 9.                      |
| Week 05 | 20 Oct - 26 Oct 2020               | Virtual Memory                               | Ch. 10.                     |
| Week 06 | 27 Oct - 16 Nov 2020               | Concurrency: Processes & Threads             | Ch. 3, 4.                   |
|         | 29 Oct 2020                        | Maulid Nabi                                  |                             |
| Week 07 | 17 Nov - 23 Nov 2020               | Synchronization & Deadlock                   | Ch. 6, 7, 8.                |
| Week 08 | 24 Nov - 30 Nov 2020               | Scheduling + W06/W07                         | Ch. 5.                      |
| Week 09 | 01 Dec - 07 Dec 2020               | Storage, Firmware, Bootloader, & Systemd     | Ch. 11.                     |
| Week 10 | 08 Dec - 16 Dec 2020               | I/O & Programming                            | Ch. 12.                     |
|         | 09 Dec 2020                        | Pil Kada                                     |                             |

<sup>&</sup>lt;sup>1</sup>) The **DEADLINE** of Week 00 is 21 Sep 2020, whereas the **DEADLINE** of Week 01 is 28 Sep 2020, and so on...

<sup>&</sup>lt;sup>2</sup>) Silberschatz et. al.: **Operating System Concepts**, 10<sup>th</sup> Edition, 2018.

<sup>3)</sup> This information will be on **EVERY** page two (2) of this course material.

## **STARTING POINT** — https://os.vlsm.org/

- □ **Text Book** Any recent/decent OS book. Eg. (**OSC10**)
  Silberschatz et. al.: **Operating System Concepts**, 10<sup>th</sup> Edition,
  2018. See also http://codex.cs.yale.edu/avi/os-book/OS10/.
  - Resources
    - □ **SCELE** https://scele.cs.ui.ac.id/course/view.php?id=3020. The enrollment key is **XXX**.
    - □ Download Slides and Demos from GitHub.com https://github.com/UI-FASILKOM-OS/SistemOperasi/: os00.pdf (W00), os01.pdf (W01), os02.pdf (W02), os03.pdf (W03),
      - os04.pdf (W04), os05.pdf (W05), os06.pdf (W06), os07.pdf (W07),
      - os08.pdf (W08), os09.pdf (W09), os10.pdf (W10).
    - □ Problems https://rms46.vlsm.org/2/:
      195.pdf (W00), 196.pdf (W01), 197.pdf (W02), 198.pdf (W03),
      199.pdf (W04), 200.pdf (W05), 201.pdf (W06), 202.pdf (W07),
      203.pdf (W08), 204.pdf (W09), 205.pdf (W10).
- ☐ Build your own Virtual Guest

https://osp4diss.vlsm.org/

## Week 05: Memory

- Start
- Schedule
- 3 Week 05
- 4 Week 05
- Virtual Memory
- 6 Memory Allocation Algorothm
- TOP
- 8 06-memory
- Week 05: Check List
- 10 The End

## Week 05 Virtual Memory: Topics<sup>1</sup>

- Review of physical memory and memory management hardware
- Virtual Memory
- Caching
- Memory Allocation
- Memory Performance
- Working sets and thrashing

<sup>&</sup>lt;sup>1</sup>Source: ACM IEEE CS Curricula 2013

## Week 05 Virtual Memory: Learning Outcomes<sup>1</sup>

- Explain memory hierarchy and cost-performance trade-offs.
   [Familiarity]
- Summarize the principles of virtual memory as applied to caching and paging. [Familiarity]
- Describe the reason for and use of cache memory (performance and proximity, different dimension of how caches complicate isolation and VM abstraction). [Familiarity]
- Defend the different ways of allocating memory to tasks, citing the relative merits of each. [Assessment]
- Evaluate the trade-offs in terms of memory size (main memory, cache memory, auxiliary memory) and processor speed. [Assessment]
- Discuss the concept of thrashing, both in terms of the reasons it occurs and the techniques used to recognize and manage the problem. [Familiarity]

<sup>&</sup>lt;sup>1</sup>Source: ACM IEEE CS Curricula 2013

## Virtual Memory

- Reference: (OSC10-ch10 demo-w05)
- Virtual Memory: Separation Logical from Physical.
- Virtual Address Space: logical view.
- Demand Paging
- Page Flags: Valid / Invalid
- Page Fault
- Demand Paging Performance
- Copy On Write (COW)
- Page Replacement Algorithm
  - Reference String
  - First-In-First-Out (FIFO)
  - Belady Anomaly
  - Optimal Algorithm
  - Least Recently Used (LRU)
  - LRU Implementation
  - Lease Frequently Used (LFU)
  - Most Frequently Used (MFU)

## Allocation Algorothm

- Page-Buffering Algorithms
- Allocation of Frames
- Fixed Allocation
- Priority Allocation
- Global vs. Local Allocation
- Non-Uniform Memory Access (NUMA)
- Thrashing
- Working-Set Model
- Shared Memory via Memory-Mapped I/O
- Kernel
  - Buddy System Allocator
  - Slab Allocator

#### TOP



Figure: top

# TOP (2)

| <b>⊗</b> ⊜ ⊕ i | @rmsbas | se: ~     |       |                |               |        |                |       |                   |                   |
|----------------|---------|-----------|-------|----------------|---------------|--------|----------------|-------|-------------------|-------------------|
| гоо ×          | @r      | × @r ×    | @r    | × @r ×         | @je ×         | @r ×   | @г × (         | @r ×  | @r × @r           | × @r ×            |
| top -          | 18:37   | 7:28 up 3 | 14:07 | , 1 user       | , load        | averag | e: 2.77        | , 2.7 | 1, 2.74           |                   |
|                |         |           |       | unning, 1      |               |        | 0 stop         |       |                   |                   |
|                |         |           |       | sy, <b>0.0</b> |               |        | <b>0.0</b> wa, |       |                   | si, <b>0.0</b> st |
| KiB Me         |         |           |       | l, 9351        |               |        | <b>908</b> fre |       | <b>191512</b> but |                   |
| KiB Sw         | ap:     | 683004    | tota  | ι,             | <b>θ</b> used | , 683  | <b>004</b> fre | e.    | <b>639140</b> cad | ched Mem          |
| PID            | USER    | PR        | NI    | VIRT           | RES           | SHR S  | %CPU           | %MEM  | TIME+             | COMMAND           |
| 518            | root    | 20        | 0     | 162032         | 112           | 0 S    | 225.2          | 0.0   | 1882:33           | rngd              |
| 3448           | root    | 20        | 0     | 0              | 0             | 0 S    | 14.0           | 0.0   |                   | kworker/0:2       |
| 3198           | root    | 20        | 0     | 0              | 0             | 0 S    | 9.6            | 0.0   | 5:29.03           | kworker/4:0       |
| 3062           | root    | 20        | 0     | 0              | 0             | 0 S    | 5.0            | 0.0   | 11:55.39          | kworker/1:2       |
| 3289           | root    | 20        | 0     | 0              | 0             | 0 S    | 2.3            | 0.0   | 3:41.00           | kworker/6:1       |
| 7              | root    | 20        | 0     | 0              | 0             | 0 S    | 2.0            | 0.0   | 1:08.44           | rcu sched         |
| 3376           | root    | 20        | 0     | 0              | 0             | 0 S    | 1.3            | 0.0   | 0:18.73           | kworker/5:0       |
| 1914           | root    | 20        | 0     | 0              | 0             | 0 S    | 0.3            | 0.0   | 13:10.69          | kworker/2:1       |
| 1              | root    | 20        | 0     | 28684          | 4736          | 3012 S | 0.0            | 0.1   | 0:02.91           |                   |
| 2              | root    | 20        | 0     | 0              | 0             | 0 S    | 0.0            | 0.0   |                   | kthreadd          |
| 3              | root    | 20        | 0     | 0              | 0             | 0 S    | 0.0            | 0.0   |                   | ksoftirqd/0       |
| 5              | root    | 0         | - 20  | 0              | 0             | 0 S    | 0.0            | 0.0   | 0:00.00           | kworker/0:+       |
| 8              | root    | 20        | 0     | 0              | 0             | 0 S    | 0.0            | 0.0   | 0:00.00           |                   |
|                | root    | rt        | 0     | 0              | 0             | 0 S    | 0.0            | 0.0   |                   | migration/0       |
|                | root    | rt        | 0     | 0              | 0             | 0 S    | 0.0            | 0.0   |                   | watchdog/0        |
|                | root    | rt        | 0     | 0              | 0             | 0 S    | 0.0            | 0.0   |                   | watchdog/1        |
|                | root    | rt        | 0     | 0              | 0             | 0 S    | 0.0            | 0.0   |                   | migration/1       |
| 13             | root    | 20        | 0     | 0              | 0             | 0 S    | 0.0            | 0.0   | 0:06.80           | ksoftirqd/1       |

Figure: "h" = help

## TOP (3)

```
🗎 🗇 📵 @rmsbase: ~
       @r... × @r... × @r... × @r... × @je... × @r... × @r... × @r... × @r... × @r... ×
Fields Management for window 1:Def, whose current sort field is %CPU
  Navigate with Up/Dn, Right selects for move then <Enter> or Left commits,
   'd' or <Space> toggles display, 's' sets sort. Use 'q' or <Esc> to end!
 PID
          = Process Id
                            TTY
                                     = Controlling T
                                                        USED
                                                                = Res+Swap Size
 USER
          = Effective Use
                            TPGID
                                     = Tty Process G
                                                        nsIPC
                                                                = IPC namespace
 PR
          = Priority
                             SID
                                     = Session Id
                                                        nsMNT
                                                                = MNT namespace
                             nTH
 NT
          = Nice Value
                                     = Number of Thr
                                                        nsNET
                                                                = NET namespace
 VIRT
                                                        nsPID
          = Virtual Image
                                     = Last Used Cpu
                                                                = PID namespace
 RES
          = Resident Size
                            TIME
                                     = CPU Time
                                                        nsUSER
                                                                = USER namespac
 SHR
          = Shared Memory
                            SWAP
                                     = Swapped Size
                                                        nsUTS
                                                                = UTS namespace
                            CODE
          = Process Statu
                                     = Code Size (Ki
 %CPU
          = CPU Usage
                            DATA
                                     = Data+Stack (K
 %MEM
          = Memory Usage
                             nMai
                                     = Major Page Fa
 TTMF+
          = CPU Time, hun
                             nMin
                                     = Minor Page Fa
 COMMAND
                             nDRT
                                     = Dirty Pages C
          = Command Name/
 PPID
          = Parent Proces
                            WCHAN
                                     = Sleeping in F
 UID
          = Effective Use
                             Flags
                                     = Task Flags <s
                            CGROUPS
 RUTD
          = Real User Id
                                     = Control Group
 RUSER
          = Real User Nam
                            SUPGIDS = Supp Groups I
 SUID
          = Saved User Id
                            SUPGRPS = Supp Groups N
 SUSER
          = Saved User Na
                            TGID
                                     = Thread Group
 GID
          = Group Id
                             ENVIRON = Environment v
 GROUP
          = Group Name
                             vMj
                                     = Major Faults
  PGRP
          = Process Group
                             vMn
                                     = Minor Faults
```

Figure: Moving Fields: "f"

## **TOP (4)**

```
🗎 🗇 📵 @rmsbase: ~
       @r... × @r... × @r... × @r... × @je... × @r... × @r... × @r... × @r... × @r... × @r... ×
Fields Management for window 1:Def, whose current sort field is %CPU
  Navigate with Up/Dn, Right selects for move then <Enter> or Left commits,
   'd' or <Space> toggles display, 's' sets sort. Use 'q' or <Esc> to end!
 PID
          = Process Id
                             SUID
                                     = Saved User Id
                                                        vMn
                                                                = Minor Faults
 VIRT
          = Virtual Image
                             SUSER
                                     = Saved User Na
                                                        nsIPC
                                                                = IPC namespace
          = Resident Size
 RES
                             GID
                                     = Group Id
                                                        nsMNT
                                                                = MNT namespace
 SHR
                             GROUP
          = Shared Memory
                                     = Group Name
                                                        nsNET
                                                                = NET namespace
 SWAP
          = Swapped Size
                             PGRP
                                     = Process Group
                                                        nsPID
                                                                = PID namespace
 CODE
          = Code Size (Ki
                             TTY
                                     = Controlling T
                                                        nsUSER
                                                                = USER namespac
 DATA
          = Data+Stack (K
                             TPGID
                                     = Ttv Process G
                                                        nsUTS
                                                                = UTS namespace
 USED
                             SID
          = Res+Swap Size
                                     = Session Id
 nDRT
          = Dirty Pages C
                             nTH
                                     = Number of Thr
 PPID
          = Parent Proces
                                     = Last Used Cpu
 %MEM
          = Memory Usage
                             TTMF
                                     = CPU Time
 USER
                             nMaj
          = Effective Use
                                     = Major Page Fa
 PR
          = Priority
                             nMin
                                     = Minor Page Fa
 NI
          = Nice Value
                             WCHAN
                                     = Sleeping in F
          = Process Statu
                             Flags
                                     = Task Flags <s
 %CPU
                             CGROUPS = Control Group
          = CPU Usage
 TIME+
          = CPU Time. hun
                             SUPGIDS = Supp Groups I
 COMMAND
         = Command Name/
                             SUPGRPS = Supp Groups N
 UID
          = Effective Use
                             TGID
                                     = Thread Group
 RUID
          = Real User Id
                             ENVIRON = Environment v
 RUSER
          = Real User Nam
                             vMi
                                     = Major Faults
```

Figure: Moving Fields

## TOP (5)

|              |                  | -               |       |        |       |         |       |           |            |       |
|--------------|------------------|-----------------|-------|--------|-------|---------|-------|-----------|------------|-------|
| <b>⊗ ⊕ ⊕</b> | @rmsbase: ~/I    |                 |       | -      |       |         | -     |           |            |       |
| гоо ×        |                  |                 |       |        |       |         |       |           | @r ×   @r  | × + × |
|              |                  |                 |       |        |       |         |       | .54, 0.58 |            |       |
|              |                  |                 |       |        |       |         |       | , 0 zom   |            |       |
|              |                  |                 |       |        |       |         |       |           | .0 si, 0.0 | st    |
|              |                  |                 |       |        |       |         |       |           | buff/cache |       |
| KiB Sv       | wap: <b>10</b> 0 | <b>00444</b> to | otal, | 994752 | free, | 5692    | used. | 12649780  | avail Mem  |       |
| DID          | WERE             | DEC             | CUID  | CLIAD  | CODE  | DATA    | Heer  | DDT       |            |       |
| PID          | VIRT             |                 |       |        |       |         |       | nDRT      |            |       |
|              | 2377296          |                 |       |        |       | 1642748 |       |           |            |       |
| 1234         |                  | 87880           |       |        | 2288  | 25164   |       |           |            |       |
|              |                  |                 |       |        |       | 1856708 |       |           |            |       |
|              | 1687448          |                 |       |        |       | 1179008 |       |           |            |       |
| 2841         |                  |                 |       | 0      |       |         | 50860 |           |            |       |
|              |                  |                 |       |        |       | 1474084 |       |           |            |       |
|              |                  |                 |       |        |       | 1587052 |       |           |            |       |
| 32501        |                  |                 | 27960 |        | 76    | 373220  | 33500 |           |            |       |
|              | 8554396          |                 |       |        |       | 7954584 |       |           |            |       |
|              | 2391592          |                 |       |        |       | 1717824 |       |           |            |       |
|              | 2198448          |                 |       |        |       | 1532152 |       |           |            |       |
| 1292         |                  | 0               | 0     |        | 0     | 0       | 24204 |           |            |       |
|              | 930224           |                 |       |        |       | 448864  |       |           |            |       |
|              | 4515228          |                 |       |        |       | 3757984 |       |           |            |       |
| 32495        |                  |                 |       |        | 96    | 1264    |       |           |            |       |
|              | 44036            |                 |       |        |       |         |       |           |            |       |
| 2412         |                  | 11380           |       |        | 152   |         |       |           |            |       |
| 2512         | 685824           | 74188           | 36868 | 0      | 552   | 399836  | 74188 | 0         |            |       |

Figure: Write Configuration .toprc: "W"

#### 06-memory

```
/* Copyright (C) 2016-2018 Rahmat M. Samik-Ibrahim
 * https://rahmatm.samik-ibrahim.vlsm.org/
 * This program is free script/software. This program is distributed in the
 * hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
 * implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 * REVO4 Mon Mar 12 17:33:30 WIB 2018
 * START Mon Oct 3 09:26:51 WIB 2016
 */
#define MSIZEO 0x10000
#define MSTZE1 0x10008
#define MSTZE2 0x10009
#define MSTZE3 0x1000A
#define MSIZE4 0x20978
#define MSIZE5 0x20979
#define MSIZE6 0x2097A
#define MSIZE7 0xF0000
#define MSTZE8 0x10000
#define MSTZE9 0x1000
#define LINE
#define MAXSTR 80
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <sys/types.h>
void printLine(int line) {
   while(line-- > 0) putchar('x');
  putchar('\n'):
  fflush(NULL):
```

## 06-memory (2)

```
void main (void) {
   int
        msize[] = {MSIZE0, MSIZE1, MSIZE2, MSIZE3, MSIZE4,
                    MSIZE5, MSIZE6, MSIZE7, MSIZE8, MSIZE97:
   int ii. ii:
   int myPID = (int) getpid();
   char strSYS1[MAXSTR], strOUT[MAXSTR];
   char* chrStr = strSYS1:
   char* chrPTR:
   printLine(LINE):
   sprintf(strSYS1, "top -b -n 1 -p%d | tail -5", myPID);
   system (strSYS1);
   sprintf(strSYS1, "top -b -n 1 -p%d | tail -1", mvPID);
  for (ii=0; ii< (sizeof(msize)/sizeof(int)); ii++){
     chrStr = malloc(msize[ii]);
     fgets(strOUT, sizeof(strOUT)-1, popen(strSYS1, "r"));
     strOUT[(int) strlen(strOUT)-1]='\0':
     printf("%s [%X]\n", strOUT, msize[ii]);
     free(chrStr):
   7
  for (ii=0: ii< (sizeof(msize)/sizeof(int)): ii++){
     chrPTR = chrStr = malloc(msize[ii]):
     for (ii=0:ii<msize[ii]:ii++)
         *chrPTR++='x':
     fgets(strOUT, sizeof(strOUT)-1, popen(strSYS1, "r"));
      strOUT[(int) strlen(strOUT)-1]='\0':
     printf("%s [%X]\n", strOUT, msize[ii]);
     free(chrStr);
  }
}
```

## 06-memory (2)

>>>> \$ ./06-memory 7239132 free, KiB Mem: 8197060 total, 957928 used, 192520 buffers KiB Swap: 660108 cached 683004 total, 0 used, 683004 free. Mem PID VIRT RES SHR. SWAP CODE DATA USED nDRT [10000] [10008] Γ100091 [1000A] [20978] [20979] [2097A] [F0000] [10000] [1000] 

## 06-memory (3)

| 4362    | 4376 | 1200 | 1068 | 0 | 4 | 524  | 1200 | 0 [1000]  |
|---------|------|------|------|---|---|------|------|-----------|
| 4362    | 4376 | 1200 | 1068 | 0 | 4 | 524  | 1200 | 0 [10000] |
| 4362    | 4376 | 1276 | 1068 | 0 | 4 | 524  | 1276 | 0 [10008] |
| 4362    | 4376 | 1276 | 1068 | 0 | 4 | 524  | 1276 | 0 [10009] |
| 4362    | 4376 | 1284 | 1068 | 0 | 4 | 524  | 1284 | 0 [1000A] |
| 4362    | 4376 | 1284 | 1068 | 0 | 4 | 524  | 1284 | 0 [20978] |
| 4362    | 4376 | 1352 | 1068 | 0 | 4 | 524  | 1352 | 0 [20979] |
| 4362    | 4376 | 1352 | 1068 | 0 | 4 | 524  | 1352 | 0 [2097A] |
| 4362    | 5340 | 2144 | 1068 | 0 | 4 | 1488 | 2144 | 0 [F0000] |
| 4362    | 5340 | 2324 | 1068 | 0 | 4 | 1488 | 2324 | 0 [10000] |
| 4362    | 5340 | 2324 | 1068 | 0 | 4 | 1488 | 2324 | 0 [1000]  |
| >>>> \$ |      |      |      |   |   |      |      |           |

# Week 05: Check List (Deadline: Monday, 26-Oct-2020).

- ☐ Week 05 Token: **12345**
- ☐ Week 05: Assignment
  - Read: (OSC10 chapter 10)
  - 2 Update your Virtual Guest.
  - Visit https://os.vlsm.org/GitHubPages/. Review Last Week TOP 10 List and pick at least 3 out of your 10 closest neighbors. See https://cbkadal.github.io/os202/TXT/myrank.txt.
  - Create your TOP 10 List of Week 05 (e.g. https://cbkadal.github.io/os202/w05/).
    Do not use lecture material. Please be more creative!
  - Sun "chktoken 12345" and write the result into myW05token.txt.
  - Oownload https://os.vlsm.org/WEEK/W05.tar.bz2.asc and write the result into TXT/myW05.txt.
  - Update your log (e.g. https://cbkadal.github.io/os202/TXT/mylog.txt).
  - Opdate bash script (e.g. https://cbkadal.github.io/os202/TXT/myscript.sh).
  - Make SHA256SUM and sign it (detached, armor) as SHA256SUM.asc.
- ☐ The "Assignment Day" is every Thursday morning.
- ☐ This page is https://os.vlsm.org/Slides/check05.pdf.

#### The End

- ☐ This is the end of the presentation.
- imes This is the end of the presentation.
- This is the end of the presentation.