Messung der Suszeptibilität paramagnetischer Substanzen

Amelie Hater amelie.hater@tu-dortmund.de

 $\begin{array}{c} {\rm Ngoc~Le} \\ {\rm ngoc.le@tu\hbox{-}dortmund.de} \end{array}$

Durchführung: 16.04.2024

Abgabe: 23.04.2024

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Auswertung							
	1.1	Theoretische Berechnung	3					
Αı	nhang	5	5					
	Orig	ginaldaten	5					

1 Auswertung

1.1 Theoretische Berechnung

Zur Berechnung der Suszeptibilität der verschiedenen Materialien werden die Hund'schen Regeln $(\ref{eq:constraint})$ verwendet. Die sich ergebenden Werte für L, S und J sind in Tabelle (1) zu sehen. Die Größe N wird mithilfe von

$$N = 2 \cdot \frac{\rho_w N_a}{M} \tag{1}$$

berechnet. N_a steht dabei für die Avogadrokonstante, M für die Molare Masse und ρ_w für die Dichte der Probe. Die probenspeziefischen Werte sind in Tabelle (1) aufgelistet.

Tabelle 1: Theoriewerte für L, S, J und g_J

Material	L	S	J	g_J	$\cdot 10^3 \rho_w \left[\frac{\mathrm{kg}}{\mathrm{m}^3} \right]$	$\cdot 10^{-3} M \left[\frac{\text{kg}}{\text{mol}} \right]$	$\cdot 10^{28} N \left[\frac{1}{\mathrm{m}^3} \right]$
Nd	6	1,5	4,5	0,7272	$7,\!24$	336,5	2,59
Gd	0	3,5	3,5	2,0000	7,40	$362,\!5$	2,46
Dy	5	2,5	7,5	1,3333	7,8	373,0	$2,\!52$

Die mithilfe von Formel (??) berechnete Suszeptibilität ist in Tabelle (2) aufgelistet.

Tabelle 2: Theoriewerte für $\chi_{\rm theo}$

Material	$\cdot 10^{-3} \chi_{\rm theo}$
Nd	2,9877
Gd	13,6565
Dy	25,0409

Abbildung 1: Plot.

Anhang

Originaldaten