第一次作业

要求:下载并练习使用分子显示软件,如PYMOL,Rasmol (Raswin for Windows)。从Protein Data Bank (http://www.rcsb.org/)中下载SARS-CoV spike protein RBP-ACE2 complex structure (PDB code: 2AJF),观察S蛋白与ACE2的结合方式,分析S蛋白在结合界面上的关键残基及其与ACE2上残基的作用情况。有兴趣者也可以查找PDB中收录的所有Coronavirus spike protein的结构,了解全长S蛋白质的结构。

分析过程:下载得到的2AJF.pdb呈现的是一个中心对称(?)的图像,该图像包含两组S蛋白结合域与ACE2 受体。为研究方便,笔者将相似的部分删除,只留下一组S蛋白结合域与ACE2受体。为较为准确地分析 S蛋白结合域与ACE2受体残基间的相互作用,笔者采用UCSF Chimera^[1]进行分析,而不采用此前提供的PyMOL。

利用Chimera的"AddH"命令,笔者将分子所具有的氢原子全部补齐;然后,笔者用"Find Clashes/Contacts"命令,找出S蛋白结合域(E链)与ACE2受体(A链)间所有具有相互作用的残基,其中原子重叠的范德华半径阈值为-0.4埃。由此得到符合条件的原子对共有139对,对应的残基对共有32对,除去无关的辅助化合物和水分子,还有30对(见附注2),这与[2]给出的相互接触的残基对基本相同。

接下来,笔者利用"FindHBond"命令,寻找S蛋白结合域(E链)与ACE2受体(A链)间所有的氢键,其中氢键键长的约束限可变化0.4埃,键角补角的约束限可变化20°(Chimera默认值),且不寻找分子内或残基内的氢键。系统给出了55个多肽链间的氢键,但是大部分均为水与多肽链残基的氢键,不符合要求,仅有5个氢键满足要求,这几个氢键对应的残基对分别为:GLU329A-ARG426E,LYS353A-GLY488E,TYR41A-THR486E,ASP38A-TYR436E,GLU37A-TYR491E。

如果我们改动氢键判据,使键角补角的约束限可变化30°,则系统将给出62个多肽链间的氢键,其中符合要求的氢键有8个,比第一次多出的氢键对应的残基对分别为: GLN42A-TYR436E, TYR83A-TYR475E, ASN330A-THR486E。

如果我们将键角补角的约束限变化范围放大至45°,则系统将给出70个多肽链间的氢键,其中符合要求的氢键有12个,比第二次多出的氢键对应的残基对中,TYR83A-TYR475E和ASP38A-TYR436E已重复出现,故新的残基对仅有2个,分别为:GLN24A-ASN473E,TYR83A-ASN473E。

综上,氢键的作用其实比较少,其余残基对的相互作用大部分可归类为疏水相互作用和范德华力,对于少量酸性氨基酸和碱性氨基酸之间还可能存在静电相互作用。

附注1: 氢键相互作用图片

附注2: A链与E链中具有相互作用的残基对

A链残基	E链残基	A链残基	E链残基
GLN24A	ASN473E	THR27A	LEU443E, TYR475E
PHE28A	TYR475E	LYS31A	TYR442E, TYR475E
HIS34A	TYR440E, ASN479E	GLU37A	TYR491E
ASP38A	TYR436E	TYR41A	TYR484E, THR487E, THR486E
GLN42A	TYR436E, TYR484E	LEU45A	TYR484E
LEU79A	LEU472E	MET82A	LEU472E
TYR83A	ASN473E, TYR475E	GLU329A	ARG426E
ASN330A	THR486E	LYS353A	GLY482E, THR487E, GLY488E, TYR491E
GLY354A	GLY488E	ASP355A	THR487E, GLY488E
ARG357A	THR486E		

Reference

- [1] Pettersen, E. F.; Goddard, T. D.; Huang, C. C.; Couch, G.S.; Greenblatt, D. M.; Meng, E. C.; Ferrin, T. E. *J. Comput. Chem.* **2004**, *25*(*13*), 1605.
- [2] Li, F.; Li, W.; Farzan, M.; Harrison, S. C. *Science* **2005**, *309*(*5742*), 1864.