Códigos y Criptografía Grado en Ingeniería Informática

Examen escrito 1 (10% nota final) 2020

Fecha: 04 noviembre 2020

Hora: 10:05–10:55 **Lugar:** Aula I+D

Ayuda permitida: Cualquier tipo de material impreso: notas, apuntes, libros, ejercicios resueltos, ... No se permite ninguna ayuda de forma electrónica, salvo un ordenador portátil con un lector de ficheros pdf abierto, donde se puede consultar un libro electrónico o las pizarras de clase. En particular no debe tenerse abierto un explorador, SageMath o cualquier programa de email/mensajería. El wifi y datos deben estar desactivados.

Cualquier otro tipo de ayuda electrónica no se puede utilizar. Esto incluye calculadoras, teléfono móvil, tablets/pda, smartwatches, reproductores de música, . . .

Nota: Todas las respuestas deben justificarse de forma razonada.

Nota: Escribe tu nombre y apellidos en todas las hojas que entregues.

Nota: El porcentaje al principio de cada ejercicio indica su valor en el examen. El último ejercicio es un ejercicio "bonus" que permite obtener un 25% adicional.

Ejercicios: pueden encontrarse en las próximas 2 páginas.

Ejercicio 1. (40%) Sea $C \subset \mathbb{F}_2^7$ el código lineal dado por la matriz generadora

$$G = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix}$$

- (a) ¿Cuál es la longitud y la dimensión de C?
- (b) Codifica el mensaje $(1,0,1,0) \in \mathbb{F}_2^4$ usando el código C.
- (c) Calcula una matriz de control del código C.
- (d) ¿Cuál es la distancia mínima de C?

Ejercicio 2. (40%) Sea C el código lineal binario dado por la matriz de control

$$H = \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \end{pmatrix}$$

y que tiene la siguiente tabla de síndromes y líderes:

Síndrome	Líder
(0,0,0)	(0,0,0,0,0,0)
(1,1,1)	(1,0,0,0,0,0)
(1,0,1)	(0,1,0,0,0,0)
(1,1,0)	(0,0,1,0,0,0)
(1,0,0)	(0,0,0,1,0,0)
(0,1,0)	(0,0,0,0,1,0)
(0,0,1)	(0,0,0,0,0,1)
(0,1,1)	-

- (a) A partir de la tabla de síndromes y líderes, deduce la capacidad correctora del código *C*.
- (b) Usando la tabla de síndromes y líderes, decodifica las siguientes palabras recibidas de \mathbb{F}_2^6 y menciona cuantos errores se han cometido.
 - (0,0,0,1,1,1)
 - (1,0,0,1,0,0)
 - \bullet (1,0,0,1,1,1)

Ejercicio 3. (20%) Sea C el código Reed-Solomon [10, 3, 8] sobre \mathbb{F}_{11} .

- (a) Calcula cuál es el mayor tamaño de lista que se podría usar para decodificar en lista el código *C* si se quiere mejorar la capacidad correctora única de *C*.
- (b) ¿Cuántos errores se pueden corregir si el tamaño de lista es $\ell=2$?

Ejercicio 4. (extra 25%)

- (a) Encuentra un elemento primitivo de \mathbb{F}_7 .
- (b) Considera \mathbb{F}_{16} dado por $\mathbb{F}_2[X]/(X^4+X+1)$. Y sea $\alpha=x$ un elemento primitivo de \mathbb{F}_{16} .
 - Calcula $\alpha^{13} + \alpha^{14}$. Expresa la respuesta por un polinomio (o vector) y por una potencia de α .
 - Calcula $(X + X^2)(X^2 + X^3)$. Expresa la respuesta por un polinomio (o vector) y por una potencia de α .