Time Series Modeling: ADF, ACF, and PACF

Jerome Chou

February 24, 2025

Introduction

- Time series modeling is essential for forecasting and understanding data trends.
- ARIMA (AutoRegressive Integrated Moving Average) is a popular method in time series analysis.
- Key concepts:
 - ► ADF (Augmented Dickey-Fuller Test) for stationarity
 - ACF (Autocorrelation Function) for lag dependency
 - PACF (Partial Autocorrelation Function) for AR order selection

Augmented Dickey-Fuller (ADF) Test

Definition:

$$\Delta y_t = \alpha + \beta t + \gamma y_{t-1} + \sum_{i=1}^p \delta_i \Delta y_{t-i} + \epsilon_t$$
 (1)

where:

- y_t is the time series,
- $ightharpoonup \Delta y_t = y_t y_{t-1}$ (first difference),
- t is the time index,
- $ightharpoonup \epsilon_t$ is white noise.

Hypothesis Testing:

- $ightharpoonup H_0: \gamma = 0$ (unit root exists, non-stationary)
- $ightharpoonup H_1: \gamma < 0$ (stationary process)

ADF Test: Intuition

- Checks if a time series has a unit root (i.e., non-stationary).
- ▶ If H_0 is rejected, the series is stationary.
- ▶ ADF includes lagged differences to handle autocorrelation.
- Used before applying ARIMA, as ARIMA requires stationarity.

Autocorrelation Function (ACF)

Definition:

$$\rho_k = \frac{\mathsf{Cov}(y_t, y_{t-k})}{\mathsf{Var}(y_t)} \tag{2}$$

Alternative Form:

$$\rho_k = \frac{\sum_{t=1}^{n-k} (y_t - \bar{y})(y_{t+k} - \bar{y})}{\sum_{t=1}^{n} (y_t - \bar{y})^2}$$
(3)

where:

- \triangleright ρ_k is the autocorrelation at lag k.
- \triangleright \bar{y} is the mean of the time series.

ACF: Intuition

- ▶ Measures how strongly past values influence the present.
- Helps determine the order of MA (Moving Average) models in ARIMA.
- If ACF decays gradually, the series may have an AR component.
- If ACF cuts off after a few lags, the series likely follows an MA process.

Partial Autocorrelation Function (PACF)

Definition (Recursive Formula):

$$\phi_{kk} = \rho_k - \sum_{j=1}^{k-1} \phi_{k-1,j} \rho_{k-j}$$
 (4)

Alternative Representation:

$$\phi_{kk} = \frac{\text{Cov}(y_t, y_{t-k}|y_{t-1}, \dots, y_{t-k+1})}{\text{Var}(y_t)}$$
(5)

Interpretation:

- ▶ PACF measures the correlation between y_t and y_{t-k} , removing the effect of intermediate lags.
- Used to identify the AR (AutoRegressive) order in ARIMA.

PACF: Intuition

- ► PACF measures direct influence at each lag, ignoring indirect influences.
- ▶ If PACF cuts off after lag p, an AR(p) model is appropriate.
- ▶ If PACF shows slow decay, a higher-order AR model may be needed.

Summary

- ADF test is used to check stationarity before applying ARIMA.
- ACF helps identify MA components.
- PACF helps identify AR components.
- ► Together, these tools guide ARIMA model selection.