Az informatika logikai alapjai 9. előadás

Vaszil György

vaszil.gyorgy@inf.unideb.hu

I. emelet 110-es szoba

A múlt órán

- Interpretáció, változó értékelés, szemantikai szabályok
- Modell, kielégíthetőség, kielégíthetetlenség
- Logikai következmény, érvényesség, ekvivalencia

Mulladrendig Le= (L(, Con, Form) « Sumarbiliani Grahaifor -7,1,1,1,2,= , win to doi! elsőnendii yelv

L=(L(,Var, (an, Term, Form)

newenti her sobsaisor

-7,11,1,7,=,7,4

(uiiridie

milladrendig Selv Le= (L(, Con, Form) · interprefació - Con elemeiner dy Leve: logicai Extéter

első eldi yelv L=(L(,Var, (on, Term, Form) · interpretatio vallare site rela - Universión - La elemeiner splene: 1. do jl Anmer: - Kaestens fisgreget - figgréget 2. àllitaisor: - allite's kartanson ligite site cei - objectmon (i ti femalle relá vi o 2

hulladrendig yelv LO = (L(, Can, Form)

elsőrendri yelv L=(L(,Var, (on, Term, Form)

- · interprefació,8
- o me dell -3, alul |A|3=1
- o interpresa ci o (U,S)
 vallaro site rela: v
 - (U18) & v, alul |A|, = 1

L'= (LC, Var, Con, Term, Form) Példa $\begin{cases}
\frac{1}{2} & \text{for} = \{52 \text{dim}\} \\
\frac{1}{2} & \text{for} = \{5(-)\} \\
\frac{1}{2} & \text{for} = \{$ P(2) = {u'szow (-1-) } $Con = \{ nam, S(-), m''v1(-,-), m''v2(-,-) \}$ frispriger luserpreta vi à (4,3) - u: N -g: g(nam) = 0S(S(-)) = -+1 3 (m/v/(-1-)) = -+-3 (m'52 (-,-)) = - * -3 (viene (-1-)) = -=-

L(1)= (L(, Var, Con, Term, Form) Dar: frisme yer (userpreta vi o - U: N $-\varsigma: \varsigma(nam) = 0$ S(S(-))=-+1 3 (m/d(-1-)) = -+-3 (wis) (-,-)) = - * -3 (vicrey(-,-)) = -=-

Példa

$$P(z) = \{u'szou_{1}(-1-)\}$$

$$Con = \{nau_{1}, s(-), u''v'(-1-), u''v'(-1-)\}$$

$$pred'(a') tem$$

Formalizáljuk, hogy bármelyik természetes számot nullával szorozva nullát kapunk.

Mi történik, ha "szám" interpretációját megváltoztatjuk?

fulladrendig yelv LO=(L(, Con, Form) L=(L(,Var, (an, Term, Form)

· interprefació, 9

o interpresa 4 o (4,8)
vallaré sité rela: »
o medell

o me dell

- · kielegithete famle - non modellje · cielegitheter famle - ning modellje
- · A + B ([= B) A famler (Meluz)

 widen wedelze B-hel is wedelze

 · A famila eine yr, ha & = A

Le = (L(, Can, Form)

elsőrendri yelv

L=(L(,Var,(an, Term, Form))

· interprefació, 9

o interpresa 4 o (4,8)
vallaré site rela: »
o medell

o me dell

· kielegithető famla

- nan modellje

· cielegitheten famle

- une modelly

· A & B (P & B) A famela (Phelmar)

miden modellje B-hel is modellje

A S & D = 2:11:01/2 D = 7 A

· A formula sine you la JA Giele's fluetethe

elsőrendi yelv milladrendis L=(L(,Var, (on, Term, Form) L= {L(, Con, Form) · interpreta'ci o (U,8) · interprefació,8 vallaro este rela: v o medell o me dell · hielezi theto famla · Killey thesetten pull · logitai të vestoriner . ernely fermler

· logitai etrinalencia:

A=>B

alver es sar arra, ha

A=B & B = A

hulladrendis Gelv

LO= (L(, Can, Form)

· Silmandiliani Grahaidir

· interprefació, 9

o me dell

elsőrendri yelv

L=(L(,Var, (on, Term, Form)

, nemantiter sobsailor

o interpreta ho (4,8)
vallaro site rela: »

o medell

· hielézithető pula

· Killey thereton pull

· logitai të vestormen

. ernely fermer

· logitai druineletta:

A múlt órán

- Interpretáció, változó értékelés, szemantikai szabályok
- Modell, kielégíthetőség, kielégíthetetlenség
- Logikai következmény, érvényesség, ekvivalencia

A mai órán

- Az eddig szereplő fogalmak rendszerezése
- A centrális logikai fogalmak tulajdonságai
- A kvantifikáció törvényei
- Kötött változók átnevezése, kongruens formulák, változótiszta formulák

unlladsendin gelv [Co]= (LC, Con, Form) erönendi yelv L'(1) = (L(, Var, Con, Term, Form)

· læilligitheté formla halmar minden sisthal mara tilløgi thető!

Tétel

Legyen $L^{(1)} = \langle LC, Var, Con, Term, Form \rangle$ egy elsőrendű nyelv, $\Gamma \subseteq Form$ egy formulahalmaz.

Ha Γ kielégíthető formulahalmaz és $\Delta \subseteq \Gamma$, akkor Δ kielégíthető formulahalmaz.

Megjegyzés

- A tétel röviden úgy fogalmazható meg, hogy egy kielégíthető formulahalmaz minden részhalmaza kielégíthető.
- Szemléletes értelemben a tétel azt mondja ki, hogy a logikai ellentmondástalanság szűkítéssel nem rontható el.

Bizonyítás

Legyen $\Gamma \subseteq Form$ egy tetszőleges kielégíthető formulahalmaz, és $\Delta \subseteq \Gamma!$

 Γ kielégíthetősége miatt a Γ formulahalmaznak van modellje, legyen Γ egy modellje az $\langle U, \varrho, v \rangle$ rendezett hármas.

$$\langle U, \varrho, v \rangle$$
 modell tulajdonsága: Ha $A \in \Gamma$, akkor $A|_{\mathcal{V}}^{\langle U, \varrho \rangle} = 1$

Mivel $\Delta \subseteq \Gamma$, ha $A \in \Delta$, akkor $A \in \Gamma$, s így $\left|A\right|_{\mathcal{V}}^{\langle U, \varrho \rangle} = 1$. Azaz az $\langle U, \varrho, v \rangle$ rendezetthármas modellje Δ -nak, tehát Δ kielégíthető.

unlladsendin yelv La = (LC, Con, Form) erönendi yelv L'(1) = (L(, Var, Con, Term, Form)

· laillégitheté formla halmer minden sèrthal mara Gillégitheté!

· laielégithetellen formlerhennar unden Sö'vite'se killégit hefesten.

Tétel

Legyen $L^{(1)} = \langle LC, Var, Con, Term, Form \rangle$ egy elsőrendű nyelv, $\Gamma \subseteq Form$ egy formulahalmaz.

Ha Γ kielégíthetetlen formulahalmaz, és $\Gamma \subseteq \Delta$, akkor Δ kielégíthetetelen formulahalmaz.

Megjegyzés

- A tétel röviden úgy fogalmazható meg, hogy egy kielégíthetetlen formulahalmaz minden bővítése kielégíthetetlen.
- Szemléletes értelemben a tétel azt mondja ki, hogy a logikai ellentmondás bővítéssel nem szüntethető meg.

Bizonyítás

Indirekt bizonyítás:

Tegyük fel, hogy $\Gamma \subseteq Form$ tetszőleges **kielégíthetetlen formulahalmaz**, $\Delta \subseteq Form$ pedig tetszőleges formulahalmaz.

Indirekt feltétel: Γ kielégíthetetlen, és Γ U Δ kielégíthető.

$$\Gamma \subseteq \Gamma \cup \Delta$$

A kielégíthetőségre vonatkozó tétel miatt Γ kielégíthető, ez pedig ellentmondás.

unlladsendin yelv La = (LC, Con, Form) erönendi yelv L'(1) = (L(, Var, Con, Term, Form)

- · lailligitheté' formla halmer minden sèrbalmara rillogi thetó!
- · laielég/thetellen formbruhar miden soutée killégit hefesten.
- · A tileftermen relació atfogalmorain fermlabelmar tillégithetetten Dige regitségénel

Következményreláció, nulladrendű nyelvek

Coginai Ginestomen - snemans har vinetronen - selain'd (AdeH: L(0)=(L(, Can, Form), A EFOrm, I'E Form) · A Etorn famla not lévelrezenége à B famila, I'EB, la Tuinder modelse modelse Bueris.

Következményreláció, elsőrendű nyelvek

Nulladrendben láttuk:

Adett L(0)= (L(, (an, Form), r = FORM, A & Form.

Titel:

T = A arlear 2 coar area, la r of Az kielegither

texten.

A múlt héten ezt is láttuk: A következmény reláció átfogalmazása, elsőrendű nyelv estén

unlladsendin yelv La = (LC, Con, Form) erönendingelv L(1)= (L(, Var, Con, Term, Form)

- · lailligitheté' formla halmer minden sèrbalmara rillogi thetó!
- · laillégithetellen formbrierhar unden voutée killégit heteslen.
- · A historiuen relació a la galmorain fermlabelman hillegithetetten Dige segit séginel

· Energe fenne minden formulatialener Vinthermelye

Tétel

Legyen $L^{(1)} = \langle LC, Var, Con, Term, Form \rangle \setminus \text{egy elsőrendű nyelv}, A \in Form.$

Ha A érvényes formula $(\models A)$, akkor minden $\Gamma \subseteq Form$ formulahalmaz esetén $\Gamma \models A$.

Megjegyzés

A tétel szemléletesen úgy is megfogalmazható, hogy egy érvényes formula minden formulahalmaznak következménye.

Bizonyítás

Ha A érvényes formula, akkor a definíció szerint $\emptyset \models A$.

Így $\emptyset \cup \{\neg A\} \setminus (= \{\neg A\})$ kielégíthetetlen, s így a **kielégíthetetlenségre kimondott tétel** alapján ennek a halmaznak a bővítései is kielégíthetetlenek.

 $\Gamma \cup \{\neg A\}$ bővítése $\{\neg A\}$ -nak, így kielégíthetetlen, tehát $\Gamma \models A$.

unlladsendin yelv La = (LC, Con, Form) első rendű yelv L" = (L(, Var, Con, Term, Form)

- · læilligitheté' formla halmer minden sirhalmara rilløgi thető!
- · læleg/Hetellen formbruhar miden vor vitere killegit helesten.
- · A tietermen relació a'tfogalmorain fennlabelman villegithetetten Dist regitségénel
- · Greger fennla uninden formulatialinen Tilleter migt
- "Killégithetellen formlahalmornat minden formla hi ulthermige

Tétel

Legyen $L^{(1)} = \langle LC, Var, Con, Term, Form \rangle \setminus \text{egy elsőrendű nyelv} \text{ és } \Gamma \subseteq Form \text{ egy formulahalmaz.}.$

Ha a Γ formulahalmaz kielégíthetetlen, akkor minden A formula esetén $\Gamma \models A$.

Megjegyzés

A tétel szemléletesen úgy is megfogalmazható, hogy egy kielégíthetetlen formulahalmaznak minden formula következménye.

Bizonyítás

A már bizonyított tétel szerint ha a Γ formulahalmaz kielégíthetetlen, akkor Γ minden bővítése is kielégíthetetlen.

 $\Gamma \cup \{\neg A\}$ bővítése Γ -nak, így kielégíthetetlen, tehát $\Gamma \models A$.

unlladsendin yelv LO = (LC, Con, Form) erő endű yelv L(1) = (L(, Var, Con, Term, Form)

- · lailligitheté formla halmar minden sisthal mara tilligitheté!
- · laielégithetellen formbriedmar miden voutée killégit helesten.
- · A tietermen relais à Afregalmorain fernlabelmar villègibleteblen Dist regibégénel
- · Greiges fermla uniden formulabalner Tillerezhiet
 - "Killejithetellen formlaterlevornat minden formla his ulthermige
- · Köultermeyneloina og implirainis - dedurnos tetel og meg serdi taja

Tétel

Legyen $L^{(1)} = \langle LC, Var, Con, Term, Form \rangle$ egy **elsőrendű nyelv**, $\Gamma \subseteq Form$ egy formulahalmaz és $A, B \in Form$ két formula.

Ha
$$\Gamma \cup \{A\} \vDash B$$
, akkor $\Gamma \vDash (A \supset B)$.

Megjegyzés

 $\Gamma \cup \{A\} \models B$ helyett gyakran használjuk a következő rövidebb írásmódot: Γ , $A \models B$

Bizonyítás

Indirekt feltétel: Tegyük fel, hogy $\Gamma \cup \{A\} \models B$ teljesül, de $\Gamma \models (A \supset B)$ nem teljesül. Így $\Gamma \cup \{\neg(A \supset B)\}$ **kielégíthető**, tehát van **modellje**. Legyen egy modellje az $\langle U, \varrho, v \rangle$ rendezett hármas!

Az (U, Q, v) modell tulajdonságai:

1. Γ minden eleme igaz az $\langle U, \varrho \rangle$ interpretáció és a v értékelés szerint.

$$2. \left| \neg (A \supset B) \right|_{v}^{\langle U, \varrho \rangle} = 1$$

$$\left|\left(A\supset B\right)\right|_{\mathcal{V}}^{\langle\,U,\varrho\,\rangle}=0,\,\mathrm{azaz}\,\left|A\right|_{\mathcal{V}}^{\langle\,U,\varrho\,\rangle}=1\,\,\mathrm{\acute{e}s}\,\left|B\right|_{\mathcal{V}}^{\langle\,U,\varrho\,\rangle}=0.\,\,\mathrm{\acute{l}gy}\,\left|\,\neg\,B\right|_{\mathcal{V}}^{\langle\,U,\varrho\,\rangle}=1.$$

 $\Gamma \cup \{A\} \cup \{\neg B\}$ formulahalmaz minden eleme igaz az $\langle U, \varrho \rangle$ interpretáció és a v értékelés szerint, azaz a formulahalmaz kielégíthető, tehát $\Gamma \cup \{A\} \models B$ nem teljesül, ami ellentmondás.

Tétel

Legyen $L^{(1)} = \langle LC, Var, Con, Term, Form \rangle$ egy **elsőrendű nyelv**, $\Gamma \subseteq Form$ egy formulahalmaz és $A, B \in Form$ két formula.

Ha $\Gamma \models (A \supset B)$, akkor $\Gamma \cup \{A\} \models B$.

Bizonyítás

Indirekt feltétel: Tegyük fel, hogy $\Gamma \models (A \supset B)$, és ugyanakkor $\Gamma \cup \{A\} \models B$ nem teljesül. Így $\Gamma \cup \{A\} \cup \{\neg B\}$ kielégíthető, tehát van modellje. Legyen egy modellje az $\langle U, \varrho, v \rangle$ rendezett hármas!

Az (U, Q, v) modell tulajdonságai:

- Γ minden eleme igaz az $\langle U, \varrho \rangle$ interpretáció és v értékelés szerint.
- $|A|_{v}^{\langle U,\varrho\rangle} = 1$
- $|\neg B|_{v}^{\langle U,\varrho\rangle} = 1$, $|gy|_{B}|_{v}^{\langle U,\varrho\rangle} = 0$

Így $|(A \supset B)|_{v}^{\langle U, \varrho \rangle} = 0$, következésképpen $|\neg(A \supset B)|_{v}^{\langle U, \varrho \rangle} = 1$.

 $\Gamma \cup \{\neg(A \supset B)\}$ formulahalmaz minden eleme igaz az $\langle U, \varrho \rangle$ **interpretáció** és v **értékelés** szerint, azaz az $\langle U, \varrho, v \rangle$ rendezett hármas **modellje** a formulahalmaznak, ami egyben azt is jelenti, hogy a formulahalmaz **kielégíthető**. Tehát $\Gamma \models (A \supset B)$ nem teljesül, ami ellentmond indirekt feltételünknek.

A dedukciótétel és megfordításának következménye:

Legyen $L^{(1)} = \langle LC, Var, Con, Term, Form \rangle$ egy **elsőrendű nyelv**, és $A, B \in Form$ két formula. $A \models B$ akkor és csak akkor, ha $\models (A \supset B)$

Bizonyítás

Alkalmazzuk a dedukció tételt és megfordítását abban az esetben, amikor $\Gamma = \emptyset$.

unlladsendin yelv LO = (LC, Con, Form) erönendin yelv L(1)= (L(, Var, Con, Term, Form)

- · laillégitheté formla halmer min den sèrthal mara tillégithető!
- · laielégithetellen formbrheitnar minden voutére killégit hetesten.
- · A histormen relació atfogalmorain fermlabelman hillegithetetten Dige segit béginel
- · Energe ferme uniden formulabalner Vinethezmell
 - "Killejithetellen formlaterlevornat minden formla hi ulthermige
 - · Köultræmeyreloina sj implitains - dedutnis Lébel es meg serditasa
- « Legitai etniveletta si "=" (maseriali etnivellucia)

A dedukciótétel és megfordításának következménye:

Legyen $L^{(1)} = \langle LC, Var, Con, Term, Form \rangle$ egy elsőrendű nyelv, és $A, B \in Form$ két formula.

 $A \models B$ akkor és csak akkor, ha $\models (A \supset B)$

Bizonyítás

Alkalmazzuk a dedukció tételt és megfordítását abban az esetben, amikor $\Gamma = \emptyset$.

A dedukciótétel és megfordításának következménye:

Legyen $L^{(1)} = \langle LC, Var, Con, Term, Form \rangle$ egy elsőrendű nyelv és $A, B \in Form$ két formula.

 $A \Leftrightarrow B$ akkor és csak akkor, ha $\models (A \equiv B)$.

unlladsendin yelv La = (LC, Con, Form) L'(1)= (L(, Var, Con, Term, Form)

- · lailligitheté formla halmer minden sèrthal mara hillogi thető!
- · laillegishetellen formbruhar unden voutere killegit helesten.
- · A tietermen relació a'thogalmorain fennlabelman tillégithetetten Dige regitalginel
- · Ernéges fermla uniden formulabalner Tillesmige
 - "Killégithetellen formlahalmornat minden janula hi ulthermige
 - · Köultermeyreloi i å of implitei i i b - de du rio Lébel & meg ser di faia
 - « Leginai enivolencia »

 "≡" (maseriali etrinellucia)

A mai órán

- Az eddig szereplő fogalmak rendszerezése
- A centrális logikai fogalmak tulajdonságai
- A kvantifikáció törvényei
- Kötött változók átnevezése, kongruens formulák, változótiszta formulák

Tétel

Legyen $L^{(1)} = \langle LC, Var, Con, Term, Form \rangle$ egy elsőrendű nyelv, $A \in Form$ egy formula és $x \in Var$ egy változó.

Ekkor

- 1. $\neg \exists x A \Leftrightarrow \forall x \neg A$
- 2. $\neg \forall x A \Leftrightarrow \exists x \neg A$

Első De Morgan törvény bizonyítása

A törvény bizonyításához először lássuk be, hogy $\neg \exists xA \models \forall x \neg A$.

Indirekt tegyük fel, hogy nem teljesül a következményreláció, azaz a $\{\neg \exists xA, \neg \forall x \neg A\}$ halmaz kielégíthető.

Ekkor a halmaznak van modellje, legyen a tekintett formulahalmaz egy modellje az $\langle U, \varrho, v \rangle$ rendezett hármas.

Az $\langle U, \varrho, v \rangle$ modell tulajdonságai:

1.
$$|\neg \exists x A|_{v}^{\langle U, \varrho \rangle} = 1$$
, és így $|\exists x A|_{v}^{\langle U, \varrho \rangle} = 0$

2.
$$|\neg \forall x \neg A|_{v}^{\langle U, \varrho \rangle} = 1$$
, azaz $|\forall x \neg A|_{v}^{\langle U, \varrho \rangle} = 0$

Az univerzális kvantor szemantikai szabálya szerint a 2. pont akkor teljesül, ha van olyan $u \in U$,

$$\operatorname{hogy} \left| \neg A|_{v[x:u]}^{\langle U,\varrho\rangle} = 0, \operatorname{azaz} \left| A|_{v[x:u]}^{\langle U,\varrho\rangle} = 1. \right.$$

Ez pedig az **egzisztenciális kvantor szemantikai szabálya** szerint azt jelenti, hogy $\exists xA|_{v}^{\langle U,\varrho\rangle}=1$, ami ellentmond az első pontnak.

Első De Morgan törvény bizonyítása

Most lássuk be, hogy $\forall x \neg A \vDash \neg \exists x A$.

Indirekt tegyük fel, hogy nem teljesül a következményreláció, azaz a $\{\forall x \neg A, \neg \neg \exists xA\}$ halmaz kielégíthető.

Ekkor a halmaznak van modellje, legyen a tekintett formulahalmaz egy modellje az $\langle U, \varrho, v \rangle$ rendezett hármas.

Az (U, Q, v) modell tulajdonságai:

1.
$$|\forall x \neg A|_{v}^{\langle U, \varrho \rangle} = 1$$

2.
$$|\neg \neg \exists x A|_{v}^{\langle U, \varrho \rangle} = 1$$
, azaz $|\exists x A|_{v}^{\langle U, \varrho \rangle} = 1$

Az egzisztenciális kvantor szemantikai szabálya szerint a 2. pont akkor teljesül, ha van olyan $u \in U$

, hogy
$$\left|A\right|_{v[x:u]}^{\langle U,\varrho\rangle}=1$$
, azaz $\left|\neg A\right|_{v[x:u]}^{\langle U,\varrho\rangle}=0$.

Ez pedig az univerzális kvantor szemantikai szabálya szerint azt jelenti, hogy $|\forall x \neg A|_{v}^{\langle U, \varrho \rangle} = 0$, ami ellentmond az első pontnak.

Tétel

Legyen $L^{(1)} = \langle LC, Var, Con, Term, Form \rangle$ egy elsőrendű nyelv, $A \in Form$ egy formula és $x \in Var$ egy változó.

Ekkor

- 1. $\exists x A \Leftrightarrow \neg \forall x \neg A$
- 2. $\forall x A \Leftrightarrow \neg \exists x \neg A$

Bizonyítás

Ha a kvantifikáció De Morgan törvényeinek mindkét oldalát negáljuk, akkor a kettős negáció törvényének alkalmazásával megkapjuk a kifejezhetőségre vonatkozó logikai ekvivalenciákat.

- 1. $\neg \exists x A \Leftrightarrow \forall x \neg A$
- 2. $\neg \forall x A \Leftrightarrow \exists x \neg A$

Továbbá/1

- \(\text{X}\text{Y}\text{Y}\text{A}\(\text{X}\text{Y}\)
 \(\text{J}\text{X}\text{A}\(\text{X}\text{Y}\text{Y}\)
 \(\text{J}\text{X}\text{A}\(\text{X}\text{Y}\text{Y}\)
- · JXYY A(XIY) => YYJX A(XIY)

Vissrafelé vem i jaz, hissen tudur untahvi aljan interpreta'ii't, ami her a joss alderl telgiil, de a lal vem. Példeint:

U= {a,6} ign, hen A (a,6) iga, A(b,a) iga, harisses tibboi henliheini lumis.

Továbbá/2

- $\exists x (A(x) \lor B(x)) \iff \exists x A(x) \lor \exists x B(x)$ $\forall x (A(x) \land B(x)) \iff \forall x A(x) \land \forall x B(x)$
- $\forall x A(x) \cup \forall x B(x) \implies \forall x (A(x) \cup B(x))$ $\exists x (A(x) \cap B(x)) \implies \exists x A(x) \cap \exists x B(x)$

Vissrafelé hem ijaz, hisen tudur untatus aljan interpreta'h'.'+, am'her a joss alderl telziil, de a lal hem. Példiil;

> U={a15} vign, hen A(a)iga, A(b) hamis, 5 B(a) hamis, B(s) igar.

(miért is?)

Azaz, összefoglalva

- VXYY A(XIY)
 JY JX A(XIY)
 JY JX A(XIY)
- · JXYY A(XIY) => YYJX A(XIY)
- $\exists x (A(x) \lor B(x)) \iff \exists x A(x) \lor \exists x B(x)$ $\forall x (A(x) \land B(x)) \iff \forall x A(x) \land \forall x B(x)$
- $\forall x A(x) \cup \forall x B(x) \implies \forall x (A(x) \cup B(x))$ $\exists x (A(x) \wedge B(x)) \implies \exists x A(x) \wedge \exists x B(x)$

De Morgan törvények Kifejezhetőség Kvantorok mozgatása

Az alábbi törvényeket gyakran a kvantorok mozgatására vonatkozó törvényeknek nevezik. A tényleges tartalmukhoz közelebb állna, ha a kvantorok hatókörének bővítésére vonatkozó törvényeknek neveznénk ezeket.

Kvantorok és konjunkció Kvantorok és diszjunkció Univerzális kvantor és implikáció Egzisztenciális kvantor és implikáció

Tétel

Legyen $L^{(1)} = \langle LC, Var, Con, Term, Form \rangle$ egy elsőrendű nyelv, $A, B \in Form$ két formula és $x \in Var$ egy változó.

Ha $x \notin FreeVar(A)$, akkor 1. $A \land \forall xB \Leftrightarrow \forall x(A \land B)$

2. $A \land \exists xB \Leftrightarrow \exists x(A \land B)$

Megjegyzés

- A konjunkció kommutativitása miatt a tétel közvetlen következménye az alábbi két logikai ekvivalencia:
 - ∘ Ha $x \notin FreeVar(A)$, akkor

 - $\blacksquare \exists x B \land A \Leftrightarrow \exists x (B \land A)$

De Morgan törvények Kifejezhetőség Kvantorok mozgatása

Az alábbi törvényeket gyakran a kvantorok mozgatására vonatkozó törvényeknek nevezik. A tényleges tartalmukhoz közelebb állna, ha a kvantorok hatókörének bővítésére vonatkozó törvényeknek neveznénk ezeket.

Kvantorok és konjunkció Kvantorok és diszjunkció Univerzális kvantor és implikáció Egzisztenciális kvantor és implikáció

Tétel

 $\text{Legyen } L^{\left(1\right)} = \ \left\langle \ LC, Var, Con, Term, Form \ \right\rangle \ \text{egy elsőrendű nyelv}, \ A, B \in Form \ \text{két formula és} \ x \in Var$

egy változó.

Ha $x \notin FreeVar(A)$, akkor

- 1. $A \land \forall x B \Leftrightarrow \forall x (A \land B)$
- 2. $A \land \exists xB \Leftrightarrow \exists x(A \land B)$

Ha $x \notin FreeVar(A)$, akkor

- 1. $A \lor \forall x B \Leftrightarrow \forall x (A \lor B)$
- 2. $A \lor \exists xB \Leftrightarrow \exists x(A \lor B)$

Megjegyzés

- A konjunkció kommutativitása miatt a tétel közvetlen következménye az alábbi két logikai
 - ekvivalencia:
 - ∘ Ha $x \notin FreeVar(A)$, akkor

 - $\blacksquare \exists x B \land A \Leftrightarrow \exists x (B \land A)$

- ∘ Ha $x \notin FreeVar(A)$, akkor

 - $\blacksquare \exists xB \lor A \Leftrightarrow \exists x(B \lor A)$

Kvantorok és konjunkció Kvantorok és diszjunkció Univerzális kvantor és

implikáció Egzisztenciális kvantor és implikáció

Tétel

Legyen $L^{(1)} = \langle LC, Var, Con, Term, Form \rangle$ egy elsőrendű nyelv, $A, B \in Form$ két formula és $x \in Var$ egy változó.

Ha $x \notin FreeVar(A)$, akkor

- 1. $A \supset \forall x B \Leftrightarrow \forall x (A \supset B)$
- 2. $\forall x B \supset A \Leftrightarrow \exists x (B \supset A)$

Kvantorok és konjunkció Kvantorok és diszjunkció Univerzális kvantor és implikáció Egzisztenciális kvantor és implikáció

Tétel

Leaven $L^{(1)} = \langle LC, Var, Con, Term, Form \rangle$ egy elsőrendű nyelv, $A, B \in Form$ két formula és $x \in Var$ egy változó.

Ha $x \notin FreeVar(A)$, akkor

- 1. $A \supset \forall x B \Leftrightarrow \forall x (A \supset B)$
- 2. $\forall x B \supset A \Leftrightarrow \exists x (B \supset A)$

Ha $x \notin FreeVar(A)$, akkor

- 1. $A \supset \exists xB \Leftrightarrow \exists x(A \supset B)$
- 2. $\exists x B \supset A \Leftrightarrow \forall x (B \supset A)$

A mai órán

- Az eddig szereplő fogalmak rendszerezése
- A centrális logikai fogalmak tulajdonságai
- A kvantifikáció törvényei
- Kötött változók átnevezése, kongruens formulák, változótiszta formulák

3.P.4. Definíció. A QxA formulában a Q kvantor által kötött x változó átnevezéséről beszélünk, amikor

- a Qx kvantoros előtagban x helyett egy vele megegyező típusú y változót nevezünk meg, majd
- A-ban az x változó minden szabad előfordulását y-ra cseréljük ki (a kapott formulát jelöljük A_y^x -nal),

és így a QyA_y^x formulát kapjuk.

- 3.P.5. Definíció. A QxA formulából szabályosan végrehajtott kötött változó átnevezéssel kapjuk a QyA_y^x formulát, ha y nem paramétere QxAnak, és az x változó egyetlen Q által kötött előfordulása sem tartozik egyetlen y-t kötő kvantor hatáskörébe sem.
- 3.P.6. Definíció. Az A' formula az A formula variánsa (vagy A és A' egymással kongruens formulák) ha egymástól csak kötött változók szabályosan végrehajtott átnevezésében különböznek. Jelölése: $A \approx A'$.

Tx mile rahe gre x-et y e creëler

[3.P.5]

de
$$\forall x (P(x) \land R(y))!$$

the $\forall x (P(x) \land \exists y R(x,y))$

this continuate

 $\forall x (P(x) \land \exists y R(y))$

3.P.4. Definíció. A QxA formulában a Q kvantor által kötött x változó átnevezéséről beszélünk, amikor

- a Qx kvantoros előtagban x helyett egy vele megegyező típusú y változót nevezünk meg, majd
- A-ban az x változó minden szabad előfordulását y-ra cseréljük ki (a kapott formulát jelöljük A_y^x -nal),

és így a QyA_y^x formulát kapjuk.

- 3.P.5. Definíció. A QxA formulából szabályosan végrehajtott kötött változó átnevezéssel kapjuk a QyA_y^x formulát, ha y nem paramétere QxAnak, és az x változó egyetlen Q által kötött előfordulása sem tartozik egyetlen y-t kötő kvantor hatáskörébe sem.
- 3.P.6. Definíció. Az A' formula az A formula variánsa (vagy A és A' egymással kongruens formulák) ha egymástól csak kötött változók szabályosan végrehajtott átnevezésében különböznek. Jelölése: $A \approx A'$.

QXA T mile rale yre x-et y e see'ent creréfier

3.P.M. Yx(P(x),R(Z))

de $\forall \times (P(x) \land R(y))$!

de $\forall \times (P(x) \land \exists y R(x,y))$

YX (P(X) N Zy P(y))

x-et nem lehet y-ra átnevezni

x-et át lehet y-ra nevezni

Misrana

- 3.P.8. Megjegyzés. Segédeszköz annak eldöntésére, vajon két formula egymás variánsa-e:
 - vonalak segítségével jelöljük meg, melyek a kötött változó-előfordulások, és mely kvantorok kötik ezeket;
 - töröljük az összekötött változó-előfordulásokat a kvantoros előtagban található változó-megnevezéssel együtt.

Az így kapott alakzatot az eredeti *formula vázának* nevezzük. Két formula pontosan akkor lesz egymás variánsa, ha megegyező a vázuk.

(a) A formulák nem egymás variánsai, mivel vázuk különbözik:

$$\exists x P(x,y) \quad \exists x P(x,z) \quad \exists y P(y,y)$$

$$\exists P(x,y) \quad \exists P(x,z) \quad \exists P(y,y)$$

- 3.P.8. Megjegyzés. Segédeszköz annak eldöntésére, vajon két formula egymás variánsa-e:
 - vonalak segítségével jelöljük meg, melyek a kötött változó-előfordulások, és mely kvantorok kötik ezeket;
 - töröljük az összekötött változó-előfordulásokat a kvantoros előtagban található változó-megnevezéssel együtt.

Az így kapott alakzatot az eredeti *formula vázának* nevezzük. Két formula pontosan akkor lesz egymás variánsa, ha megegyező a vázuk.

(b) A két formula egymás variánsa, mivel vázuk megegyezik:

$$\exists x P(x,y) \supset \forall z P(x,z) \qquad \exists z P(z,y) \supset \forall y P(x,y)$$

$$\exists P(x,y) \supset \forall P(x,y) \qquad \exists P(x,y) \supset \forall P(x,y)$$

3.P.3. Vizsgáljuk meg, hogy szabályos-e az univerzálisan kvantált x változó átnevezése y változóra az alábbi formulák esetén, és hajtsuk végre a szabályos átnevezést, amennyiben ez lehetséges!

- (a) $\forall x (P(x,y) \lor \neg Q(y,x))$
- (b) $\forall x \exists y Q(x,y)$
- (c) $\forall x (Q(x,x) \supset \exists x \exists y R(x,y))$

3.P.3. Vizsgáljuk meg, hogy szabályos-e az univerzálisan kvantált x változó átnevezése y változóra az alábbi formulák esetén, és hajtsuk végre a szabályos átnevezést, amennyiben ez lehetséges!

- (a) $\forall x (P(x,y) \lor \neg Q(y,x))$
- (b) $\forall x \exists y Q(x,y)$
- (c) $\forall x(Q(x,x) \supset \exists x \exists y R(x,y))$

Megoldás

(a) Az átnevezés nem szabályos, mert az y változó paramétere a formulának.

$$Par(\forall x (P(x,y) \lor \neg Q(y,x))) = \{y\}$$

- (b) Az átnevezés nem szabályos, mert található olyan y változót kötő kvantor, melynek hatásköre a ∃yQ(x,y) formula, ahol az x változó előfordulása a tekintett univerzális kvantor által kötött.
- (c) Az átnevezés szabályos, mivel y nem paraméter, és x változót csak a Q(x,x) részformulában köti az univerzális kvantor, és ezen változó előfordulások nem esnek y-t kötő kvantor hatáskörébe.

Definíció

Legyen $L^{(1)} = \langle LC, Var, Con, Term, Form \rangle$ egy elsőrendű nyelv és $A \in Form$ egy formula.

Az A formulát változóiban tisztának nevezünk, ha

- 1. szabad és kötött változói diszjunkt halmazt alkotnak, azaz $FreeVar(A) \cap BoundVar(A) = \emptyset$,
- minden kötött változó pontosan egyszer fordul elő kvantort közvetlenül követő pozícióban (minden kötött változó pontosan egy kvantornak a változója).

Tétel

Legyen $L^{(1)} = \langle LC, Var, Con, Term, Form \rangle$ egy elsőrendű nyelv és $A \in Form$ egy formula.

Ekkor létezik olyan $B \in Form$ formula, hogy

- 1. a B formula változóiban tiszta,
- 2. a B formula kongruens az A formulával, azaz $B \in Cong(A)$.

Megjegyzés

A tételben szereplő B formula a kongruencia miatt logikailag ekvivalens az A formulával.

Például:
$$R(x) \wedge \exists x \neg (P(y,c) \supset \exists x R(x) \vee \forall y Q(x,y,z))$$

Legyen $L^{(1)} = \langle LC, Var, Con, Term, Form \rangle$ egy elsőrendű nyelv és $A \in Form$ egy formula.

Az A formulát változóiban tisztának nevezünk, ha

- 1. szabad és kötött változói diszjunkt halmazt alkotnak, azaz $FreeVar(A) \cap BoundVar(A) = \emptyset$,
- 2. minden kötött változó pontosan egyszer fordul elő kvantort közvetlenül követő pozícióban (minden kötött változó pontosan egy kvantornak a változója).

Tétel

Legyen $L^{(1)} = \langle LC, Var, Con, Term, Form \rangle$ egy elsőrendű nyelv és $A \in Form$ egy formula.

Ekkor létezik olyan $B \in Form$ formula, hogy

- 1. a B formula változóiban tiszta,
- 2. a B formula kongruens az A formulával, azaz $B \in Cong(A)$.

Megjegyzés

• A tételben szereplő B formula a kongruencia miatt logikailag ekvivalens az A formulával.

Például:
$$R(x) \wedge \exists x \neg (P(y,c) \supset \exists x R(x) \vee \forall y Q(x,y,z))$$

 $R(x) \wedge \exists x \neg (P(y,c) \supset \exists x R(x) \vee \forall y Q(x,y,z))$

Definíció

Legyen $L^{(1)} = \langle LC, Var, Con, Term, Form \rangle$ egy elsőrendű nyelv és $A \in Form$ egy formula.

Az A formulát változóiban tisztának nevezünk, ha

- 1. szabad és kötött változói diszjunkt halmazt alkotnak, azaz $FreeVar(A) \cap BoundVar(A) = \emptyset$,
- 2. minden kötött változó pontosan egyszer fordul elő kvantort közvetlenül követő pozícióban (minden kötött változó pontosan egy kvantornak a változója).

Tétel

Legyen $L^{(1)} = \langle LC, Var, Con, Term, Form \rangle$ egy elsőrendű nyelv és $A \in Form$ egy formula.

Ekkor létezik olyan $B \in Form$ formula, hogy

- 1. a B formula változóiban tiszta,
- 2. a B formula kongruens az A formulával, azaz $B \in Cong(A)$.

Megjegyzés

A tételben szereplő B formula a kongruencia miatt logikailag ekvivalens az A formulával.

Például:

$$R(x) \land \exists x \neg (P(y,c) \supset \exists x R(x) \lor \forall y Q(x,y,z))$$

$$R(x) \land \exists x \neg (P(y,c) \supset \exists x R(x) \lor \forall y Q(x,y,z))$$

$$R(x) \land \exists u \neg (P(y,c) \supset \exists v R(v) \lor \forall w Q(u,w,z))$$

A mai órán

- Az eddig szereplő fogalmak rendszerezése
- A centrális logikai fogalmak tulajdonságai
- A kvantifikáció törvényei
- Kötött változók átnevezése, kongruens formulák, változótiszta formulák

Ha maradt idő...

(Nem maradt rá idő, úgyhogy a prenex normálforma a jövő hétre marad)

Definíció

Legyen $L^{(1)} = \langle LC, Var, Con, Term, Form \rangle$ egy tetszőleges elsőrendű nyelv.

Az A ∈ Form formulát prenex alakúnak nevezzük, ha az alábbi két feltétel valamelyike teljesül:

- 1. az A formula kvantormentes, azaz sem a ∀ sem a ∃ kvantor nem szerepel benne;
- 2. az A formula $Q_1x_1Q_2x_2...Q_nx_nB$ (n=1,2,...) alakú, ahol
 - a. $B \in Form$ kvantormentes formula;
 - b. $x_1, x_2...x_n \in Var$ különböző változók;
 - c. $Q_1, Q_2, ..., Q_n \in \{\forall, \exists\}$ kvantorok.

Megjegyzés

 A definíció értelmében ha az A formula kvantormentes, azaz egyetlen kvantor sem szerepel benne, akkor az A formula prenex alakú.

> Például: Prenexformulák: $\neg P(x, x), \forall x \forall y (Q(x, y) \supset \neg P(x))$ Nem prenexformula: $\forall x \forall y Q(x, y) \supset \neg P(x)$

Tétel

Legyen $L^{(1)} = \langle LC, Var, Con, Term, Form \rangle$ egy tetszőleges **elsőrendű nyelv** és $A \in Form$.

Ekkor létezik olyan $B \in Form$, hogy

- 1. a B formula prenex alakú,
- 2. $A \Leftrightarrow B$.

A prenex alakra hozás lépései

- 1. A $(A \equiv B) \Leftrightarrow ((A \supset B) \land (B \supset A))$ ekvivalencia segítségével a (materiális) ekvivalencia műveletét fel kell oldani.
- Változótiszta alakra hozás, azaz meg kell határozni az eredeti formulával kongruens változóiban tiszta formulát.
- A kvantifikáció De Morgan törvényeivel és az állításlogikában megtanult ekvivalenciákkal el kell érni, hogy egyetlen negáció hatókörében se szerepeljen kvantor.
- Kvantormozgatási ekvivalenciák alkalmazásával a kvantorok a formula elejére vihetők.

Hozzuk a

$$\forall x(\forall yQ(x,y)\supset \neg \exists xP(x))\supset \forall yQ(x,y)$$

formulát prenex alakúra.

Változóiban tiszta alakra hozás:

$$\forall v(\forall wQ(v,w) \supset \neg \exists zP(z)) \supset \forall yQ(x,y)$$

Hozzuk a

$$\forall x(\forall y Q(x,y) \supset \neg \exists x P(x)) \supset \forall y Q(x,y)$$

formulát prenex alakúra.

Változóiban tiszta alakra hozás:

$$\forall v(\forall wQ(v,w) \supset \neg \exists zP(z)) \supset \forall yQ(x,y)$$

De Morgan törvényeinek alkalmazása:

$$\forall v(\forall wQ(v,w) \supset \forall z \neg P(z)) \supset \forall yQ(x,y)$$

1.
$$\neg \exists x A \Leftrightarrow \forall x \neg A$$

2.
$$\neg \forall x A \Leftrightarrow \exists x \neg A$$

Ha $x \notin FreeVar(A)$, akkor

- 1. $A \supset \forall xB \Leftrightarrow \forall x(A \supset B)$
- 2. $\forall x B \supset A \Leftrightarrow \exists x (B \supset A)$

Hozzuk a

$$\forall x (\forall y Q(x, y) \supset \neg \exists x P(x)) \supset \forall y Q(x, y)$$

Ha $x \notin FreeVar(A)$, akkor

- 1. $A \supset \exists xB \Leftrightarrow \exists x(A \supset B)$
- 2. $\exists xB \supset A \Leftrightarrow \forall x(B \supset A)$

formulát prenex alakúra.

Változóiban tiszta alakra hozás:

$$\forall v(\forall w Q(v, w) \supset \neg \exists z P(z)) \supset \forall y Q(x, y)$$

De Morgan törvényeinek alkalmazása:

$$\forall v(\forall w Q(v, w) \supset \forall z \neg P(z)) \supset \forall y Q(x, y)$$

Kvantorkiemelés:

$$\forall v \exists w \forall z (Q(v, w) \supset \neg P(z)) \supset \forall y Q(x, y)$$

Ha $x \notin FreeVar(A)$, akkor

1.
$$A \supset \forall x B \Leftrightarrow \forall x (A \supset B)$$

2.
$$\forall x B \supset A \Leftrightarrow \exists x (B \supset A)$$

Hozzuk a

$$\forall x(\forall y Q(x,y) \supset \neg \exists x P(x)) \supset \forall y Q(x,y)$$

Ha $x \notin FreeVar(A)$, akkor

1.
$$A \supset \exists xB \Leftrightarrow \exists x(A \supset B)$$

2.
$$\exists x B \supset A \Leftrightarrow \forall x (B \supset A)$$

formulát prenex alakúra.

Változóiban tiszta alakra hozás:

$$\forall v(\forall w Q(v, w) \supset \neg \exists z P(z)) \supset \forall y Q(x, y)$$

De Morgan törvényeinek alkalmazása:

$$\forall v(\forall w Q(v, w) \supset \forall z \neg P(z)) \supset \forall y Q(x, y)$$

Kvantorkiemelés:

$$\forall v \exists w \forall z (Q(v, w) \supset \neg P(z)) \supset \forall y Q(x, y)$$

Kvantorkiemelés:

$$\exists v \forall w \exists z \forall y ((Q(v, w) \supset \neg P(z)) \supset Q(x, y))$$