Bootstrap Confidence Intervals

David S. Rosenberg

NYU: CDS

October 6, 2021

Contents

Bias and Variance

2 The Bootstrap

Bias and Variance

Parameters

- Suppose we have a probability distribution *P*.
- Often we want to estimate some characteristic of P.
 - e.g. expected value, variance, kurtosis, median, etc...
- These things are called **parameters** of *P*.
- A parameter $\mu = \mu(P)$ is any function of the distribution P.

- Question: Is μ random?
- Answer: Nope. For example if P has density f(x) on \mathbb{R} , then mean is

$$\mu = \int_{-\infty}^{\infty} x f(x) \, dx,$$

which is just an integral - nothing random.

Statistics and Estimators

- Suppose $\mathcal{D}_n = (X_1, X_2, \dots, X_n)$ is an i.i.d. sample from P.
- A statistic $S = s(\mathcal{D}_n)$ is any function of the data.
- A statistic $\hat{\mu} = \hat{\mu}(\mathcal{D}_n)$ is a **point estimator** of μ if $\hat{\mu} \approx \mu$.

- Question: Are statistics and/or point estimators random?
- Answer: Yes, since we're considering the data to be random.
 - The function $s(\cdot)$ isn't random, but we're plugging in random inputs.

Examples of Statistics

- Mean: $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$.
- Median: $m = \text{median}(X_1, ..., X_n)$
- Sample variance: $\hat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \bar{X})^2$

Fancier:

- A data histogram is a statistic.
- Empirical distribution function.
- A confidence interval.

Statistics are Random

- Statistics are random, so they have probability distributions.
- The distribution of a statistic is called a **sampling distribution**.
- We often want to know some parameters of the sampling distribution.
 - Most commonly the mean and the standard deviation.
- The standard deviation of the sampling distribution is called the standard error.

- Question: Is standard error random?
- Answer: Nope. It's a parameter of a distribution.

Bias and Variance for Real-Valued Estimators

- Let $\mu = \mu(P)$ be a real-valued parameter of distribution P.
- Let $\hat{\mu} = \hat{\mu}(\mathcal{D}_n)$ be a point estimator of μ .
- We define the bias of $\hat{\mu}$ to be $Bias(\hat{\mu}) = \mathbb{E}\hat{\mu} \mu$.
- An estimator is **unbiased** if $Bias(\hat{\mu}) = \mathbb{E}\hat{\mu} \mu = 0$.
- We define the variance of $\hat{\mu}$ to be $Var(\hat{\mu}) = \mathbb{E}\hat{\mu}^2 (\mathbb{E}\hat{\mu})^2$.

Neither bias nor variance depend on a specific sample \mathcal{D}_n . We are taking expectation over \mathcal{D}_n .

• Why might we care about the bias and variance of an estimator?

Putting "Error Bars" on Estimators

- Why do we even care about estimating variance?
- May want to report a confidence interval for our point estimate, e.g.

$$\hat{\mu} \pm \sqrt{\widehat{Var}(\hat{\mu})}$$

• Where $\sqrt{\widehat{Var}(\hat{\mu})}$ is our estimate of the standard error of $\hat{\mu}$.

Estimating Variance of an Estimator

- To estimate $Var(\hat{\mu})$, we can use estimates of $\mathbb{E}\hat{\mu}$ and $\mathbb{E}\hat{\mu}^2$.
- Instead of a single sample \mathcal{D}_n of size n, suppose we had
 - B independent samples of size $n: \mathcal{D}_n^1, \mathcal{D}_n^2, \dots, \mathcal{D}_n^B$
- Can then estimate

$$\begin{split} \mathbb{E}\hat{\mu} &\approx & \frac{1}{B}\sum_{i=1}^{B}\hat{\mu}\left(\mathcal{D}_{n}^{i}\right) \\ \mathbb{E}\hat{\mu}^{2} &\approx & \frac{1}{B}\sum_{i=1}^{B}\left[\hat{\mu}\left(\mathcal{D}_{n}^{i}\right)\right]^{2} \end{split}$$

and

$$\operatorname{Var}(\hat{\mu}) \approx \frac{1}{B} \sum_{i=1}^{B} \left[\hat{\mu} \left(\mathcal{D}_{n}^{i} \right) \right]^{2} - \left[\frac{1}{B} \sum_{i=1}^{B} \hat{\mu} \left(\mathcal{D}_{n}^{i} \right) \right]^{2}.$$

Histogram of Estimator

- Want to estimate $\alpha = \alpha(P) \in \mathbb{R}$ for some unknown P, and some complicated α .
- Point estimator $\hat{\alpha} = \hat{\alpha}(\mathcal{D}_{100})$ for samples of size 100.
- How to get error bars on $\hat{\alpha}$?
- Histogram of $\hat{\alpha}$ for 1000 random datasets of size 100 (estimates sampling distribution of $\hat{\alpha}$):

Pink line indicates true value of α . This is Figure 5.10 from *An Introduction to Statistical Learning, with applications in R* (Springer, 2013) with permission from the authors: G. James. D. Witten, T. Hastie and R. Tibshirani.

- If magically we could get 1000 random datasets of size 100 from P, then we could make this histogram of $\hat{\alpha}$, which estimates the sampling distribution of $\hat{\alpha}$.
- If we are trying to estimate the standard error of $\hat{\alpha}$ (i.e. the standard deviation of the sampling distribution of $\hat{\alpha}$) to create a confidence interval, we can use the empirical standard deviation $\hat{\sigma} = SD(\hat{\alpha}_1, \dots \hat{\alpha}_{1000})$. Then a 95% confidence interval would be something like $\hat{\alpha} \pm 1.96\hat{\sigma}$.
- Of course, in reality we only get one sample \mathcal{D}_{100} from P, not 1000 draws. Enter the magical bootstrap...

The Bootstrap

The Bootstrap Sample

- A bootstrap sample from $\mathcal{D}_n = (x_1, ..., x_n)$ is a sample of size n drawn with replacement from \mathcal{D}_n .
- In a bootstrap sample, some elements of \mathcal{D}_n
 - will show up multiple times, and
 - some won't show up at all.
- Each x_i has a probability of $(1-1/n)^n$ of not being selected.
- Recall from analysis that for large n,

$$\left(1-\frac{1}{n}\right)^n \approx \frac{1}{e} \approx .368.$$

• So we expect $^{\sim}63.2\%$ of elements of $\mathcal D$ will show up at least once.

The Bootstrap Sample

From An Introduction to Statistical Learning, with applications in R (Springer, 2013) with permission from the authors: G. James, D. Witten, T. Hastie and R. Tibshirani.

The Bootstrap Method

Definition

A **bootstrap method** is when you *simulate* having B independent samples from P by taking B bootstrap samples from the sample \mathfrak{D}_n .

- Given original data \mathcal{D}_n , compute B bootstrap samples D_n^1, \ldots, D_n^B .
- For each bootstrap sample, compute some function

$$\phi(D_n^1), \ldots, \phi(D_n^B)$$

- Work with these values as though D_n^1, \ldots, D_n^B were i.i.d. P.
- Amazing fact: Things often come out very close to what we'd get with independent samples from *P*.

Independent vs Bootstrap Samples

- Want to estimate $\alpha = \alpha(P)$ for some unknown P and some complicated α .
- Point estimator $\hat{\alpha} = \hat{\alpha}(\mathcal{D}_{100})$ for sample of size 100.
- Histogram of $\hat{\alpha}$ based on
 - 1000 independent samples of size 100, vs
 - ullet 1000 bootstrap samples of size 100 from the original sample ${\mathfrak D}_{100}$

Figure 5.10 from ISLR (Springer, 2013) with permission from the authors: G. James, D. Witten, T. Hastie and R. Tibshirani.

Normal approximated confidence intervals

- Suppose we have a point estimator $\hat{\mu} = \hat{\mu}(\mathcal{D}_n)$.
- To get error bars, we can compute the "bootstrap variance".
 - Draw B bootstrap samples from \mathfrak{D}_n .
 - Compute sample SD: $\hat{\sigma} = SD(\hat{\mu}(D_n^1), \dots, \hat{\mu}(D_n^B))$.
- The normal approximated bootstrap confidence interval is

$$\hat{\mu} \pm q_{\alpha/2} \hat{\sigma}$$
,

where q_{α} is the α -quantile of a standard normal.

ullet For a typical 95% confidence interval, we'd take lpha=0.05 and find $q_{lpha/2}pprox-1.96$.