

ZOMATO DATA ANALYSIS USING PYTHON

16 August 2025

tasbihaanwaradil@gmail.com

DATASET

	name	online_order	book_table	rate	votes	approx_cost(for two people)	listed_in(type)
0	Jalsa	Yes	Yes	4.1/5	775	800	Buffet
1	Spice Elephant	Yes	No	4.1/5	787	800	Buffet
2	San Churro Cafe	Yes	No	3.8/5	918	800	Buffet
3	Addhuri Udupi Bhojana	No	No	3.7/5	88	300	Buffet
4	Grand Village	No	No	3.8/5	166	600	Buffet
5	Timepass Dinner	Yes	No	3.8/5	286	600	Buffet
6	Rosewood International Hotel - Bar & Restaurant	No	No	3.6/5	8	800	Buffet
7	Onesta	Yes	Yes	4.6/5	2556	600	Cafes
8	Penthouse Cafe	Yes	No	4.0/5	324	700	other
9	Smacznego	Yes	No	4.2/5	504	550	Cafes
10	Village Café	Yes	No	4.1/5	402	500	Cafes
11	Cafe Shuffle	Yes	Yes	4.2/5	150	600	Cafes
12	The Coffee Shack	Yes	Yes	4.2/5	164	500	Cafes
13	Caf-Eleven	No	No	4.0/5	424	450	Cafes
14	San Churro Cafe	Yes	No	3.8/5	918	800	Cafes
15	Cafe Vivacity	Yes	No	3.8/5	90	650	Cafes
16	Catch-up-ino	Yes	No	3.9/5	133	800	Cafes
17	Kirthi's Biryani	Yes	No	3.8/5	144	700	Cafes
18	T3H Cafe	No	No	3.9/5	93	300	Cafes
19	360 Atoms Restaurant And Cafe	Yes	No	3.1/5	13	400	Cafes

Step 1: Importing Python Libraries

Library & Purpose	Import Statement
Pandas – Data manipulation & analysis	import pandas as pd
NumPy – Numerical computing	import numpy as np
Matplotlib – Data visualization	import matplotlib.pyplot as plt
Seaborn – Statistical visualization	import seaborn as sns

These libraries form the foundation for data cleaning, analysis, and visualization in this project.

★ Step 2: Creating the DataFrame

Action	Code
Read CSV file into DataFrame	data_frame = pd.read_csv('Zomato-datacsv')
Preview first 20 rows	print(data_frame.head(20))

Pandas read_csv() loads data from a CSV file into a structured DataFrame.

★ Step 3: Data Cleaning & Preparation

Action	Code
Define function to extract numeric rating	def handle_rate(value): value = str(value).split('/') value = value[0] return float(value)
Apply function to rate column	data_frame['rate'] = data_frame['rate'].apply(handle_rate) print(data_frame.head())

Converted ratings like '4.2/5' into numeric values (e.g., 4.2) for analysis.

★ Step 3: Data Cleaning & Preparation

Output:

	name	online_order	book_table	rate	votes	approx_cost(for two people)	listed_in(type)
0	Jalsa	Yes	Yes	4.1/5	775	800	Buffet
1	Spice Elephant	Yes	No	4.1/5	787	800	Buffet
2	San Churro Cafe	Yes	No	3.8/5	918	800	Buffet
3	Addhuri Udupi Bhojana	No	No	3.7/5	88	300	Buffet
4	Grand Village	No	No	3.8/5	166	600	Buffet
before							

0	Jalsa	Yes	Yes	4.1	775	000	5 55 1
1 4				7.1	775	800	Buffet
	Spice Elephant	Yes	No	4.1	787	800	Buffet
2 Si	an Churro Cafe	Yes	No	3.8	918	800	Buffet
3 Addhuri	Udupi Bhojana	No	No	3.7	88	300	Buffet
4	Grand Village	No	No	3.8	166	600	Buffet

after

Converted ratings like '4.2/5' into numeric values (e.g., 4.2) for analysis.

★ Step 4: Getting Summary of DataFrame

Action	Code
Display summary info (columns, data types, non-null counts, memory usage)	data_frame.info()

Pisplay summary of DataFrame including columns, data types, and non-null counts...

★ Step 4: Getting Summary of DataFrame

Output:

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 148 entries, 0 to 147
Data columns (total 7 columns):
    Column
                               Non-Null Count Dtype
                               148 non-null object
    name
                               148 non-null object
    online_order
    book_table
                               148 non-null object
                               148 non-null float64
    rate
                                            int64
    votes
                               148 non-null
    approx_cost(for two people) 148 non-null
                                            int64
    listed_in(type) 148 non-null
                                              object
dtypes: float64(1), int64(2), object(4)
memory usage: 8.2+ KB
```

Step 5: Checking for Missing Values

Action	Code
Check each column for missing/null values	print(data_frame.isnull().sum())

Property Check each column for missing values to identify data gaps.

★ Step 5: Checking for Missing Values

Output:

```
name 0
online_order 0
book_table 0
rate 0
votes 0
approx_cost(for two people) 0
listed_in(type) 0
dtype: int64
```

There is no NULL value in dataframe.

Step 6: Visualizing Restaurant Category Distribution

Action	Code
Plot a bar chart showing the count of restaurants by type (Delivery, Dine-out, Cafes, etc.)	sns.countplot(x=data_frame['listed_in(type)']) plt.xlabel("Type of restaurant") plt.show()

Visualize the distribution of restaurants across different categories.

Step 6: Restaurant Category Distribution

The majority of restaurants in the dataset fall under the Dining category.

Step 7: Votes by Restaurant Type

Action	Code
Group votes by restaurant type	grouped_data = data_frame.groupby('listed_in(type)') ['votes'].sum()
Convert result to DataFrame	result = pd.DataFrame({'votes': grouped_data})
Plot votes vs. restaurant type	plt.plot(result, c='green', marker='o') plt.xlabel("Type of Restaurant") plt.ylabel("Votes") plt.show()

Identify which restaurant type has the highest ratings.

Step 7: Votes by Restaurant Type

Casual Dining restaurants received the highest votes among all types.

Step 8: Identify the Most Voted Restaurant

Action	Code
Find the maximum number of votes	max_votes = data_frame['votes'].max()
Identify restaurant(s) with max votes	restaurant_with_max_votes = data_frame.loc[data_frame['votes'] == max_votes, 'name'].tolist()
Display the result	print('Restaurant(s) with the maximum votes:') print(restaurant_with_max_votes)

Output:

Restaurant(s) with the maximum votes: ['Empire Restaurant'] The "Empire Restaurant" is the restaurant with the highest votes.

Step 9: Online Order Availability

Action	Code
Plot the count of restaurants offering online orders	sns.countplot(x=data_frame['online_order'])
Display the plot	plt.show()

This plot shows how many restaurants accept online orders versus those that don't.

Step 9: Online Order Availability

PA majority of the restaurants do not accept online orders.

Step 10: Analyze Ratings

Action	Code
Visualize how ratings are distributed across restaurants	plt.hist(data_frame['rate'], bins=5) plt.title("Ratings Distribution") plt.show()

Visualize how restaurant ratings are distributed across different ranges.

Step 10: Analyze Ratings

The majority of restaurants received ratings ranging from 3.5 to 4.

Step 11: Approximate Cost for Two People

Action	Code
Analyze the approx_cost(for two people) column to find the preferred price range	plt.hist(data_frame['rate'], bins=5) plt.title("Ratings Distribution") plt.show()

Visualize the preferred cost range for two people.

Step 11: Approximate Cost for Two People

Property of couples prefer restaurants with an approximate cost of ₹300.

Step 12: Ratings Comparison – Online vs Offline Orders

Action	Code
Compare restaurant ratings between those that accept online orders and those that don't.	plt.figure(figsize=(6,6)) sns.boxplot(x='online_order', y='rate', data=data_frame) plt.show()

Compare restaurant ratings: Online vs Offline orders.

Step 12: Ratings Comparison – Online vs Offline Orders

Offline orders received lower ratings compared to online orders, which obtained excellent ratings.

Step 13: Order Mode Preferences by Restaurant Type

Action	Code
Analyze restaurant type preferences for online vs offline orders using a heatmap.	pivot_table = data_frame.pivot_table(index='listed_in(type)', columns='online_order', aggfunc='size', fill_value=0) sns.heatmap(pivot_table, annot=True, cmap='YlGnBu', fmt='d') plt.title('Order Mode Preferences by Restaurant Type') plt.xlabel('Online Order') plt.ylabel('Restaurant Type') plt.show()

Visualize the preferred order mode across different restaurant types.

Step 13: Order Mode Preferences by Restaurant Type

Pining restaurants primarily accept offline orders, whereas cafes primarily receive online orders.

Found this Insightful?

Connect for the latest data-driven insights, trends, and valuable analysis.

www.linkedin.com/in/tasbiha-anwar-adil