```
import pandas as pd
import numpy as np
```

₽	ses	make	fuel_type	aspiration	num_doors	body_style	drive_wheels	engine_location
	laN	alfa- romero	gas	std	two	convertible	rwd	fro
	laN	alfa- romero	gas	std	two	convertible	rwd	fro
	laN	alfa- romero	gas	std	two	hatchback	rwd	fro
	4.0	audi	gas	std	four	sedan	fwd	fro
	4.0	audi	gas	std	four	sedan	4wd	fro

df.dtypes

symboling	int64
normalized_losses	float64
make	object
fuel_type	object
aspiration	object
num_doors	object
body_style	object
drive_wheels	object
<pre>engine_location</pre>	object
wheel_base	float64
length	float64
width	float64
height	float64
curb_weight	int64
engine_type	object
num_cylinders	object
engine_size	int64
fuel_system	object

```
float64
bore
stroke
                     float64
                     float64
compression_ratio
                     float64
horsepower
peak_rpm
                     float64
city_mpg
                       int64
highway_mpg
                       int64
                     float64
price
```

dtype: object

```
obj_df = df.select_dtypes(include=['object']).copy()
obj_df.head()
```

	make	<pre>fuel_type</pre>	aspiration	num_doors	body_style	drive_wheels	engine_loca
0	alfa- romero	gas	std	two	convertible	rwd	
1	alfa- romero	gas	std	two	convertible	rwd	
2	alfa- romero	gas	std	two	hatchback	rwd	
3	audi	gas	std	four	sedan	fwd	

obj_df[obj_df.isnull().any(axis=1)]

	make	fuel_type	aspiration	num_doors	body_style	drive_wheels	engine_loc
27	dodge	gas	turbo	NaN	sedan	fwd	
63	mazda	diesel	std	NaN	sedan	fwd	

```
obj_df["num_doors"].value_counts()
```

four 114 two 89

Name: num_doors, dtype: int64

obj_df = obj_df.fillna({"num_doors": "four"})

1 - Find and Replace

obj_df["num_cylinders"].value_counts()

four 159 six 24 five 11 eight 5 two 4 three 1

```
twelve 1
```

Name: num_cylinders, dtype: int64

```
obj_df = obj_df.replace(cleanup_nums)
obj_df.head()
```

	make	fuel_type	aspiration	num_doors	body_style	drive_wheels	engine_loca
0	alfa- romero	gas	std	2	convertible	rwd	
1	alfa- romero	gas	std	2	convertible	rwd	
2	alfa- romero	gas	std	2	hatchback	rwd	
3	audi	gas	std	4	sedan	fwd	

obj_df.dtypes

make	object
fuel_type	object
aspiration	object
num_doors	int64
body_style	object
drive_wheels	object
engine_location	object
engine_type	object
num_cylinders	int64
fuel_system	object
dtype: object	

2 - Label Encoding or Ordinal Encoding

```
obj_df["body_style"] = obj_df["body_style"].astype('category')
obj_df.dtypes
```

make	object
fuel_type	object
aspiration	object
num_doors	int64
body_style	category
drive_wheels	object
engine_location	object
engine_type	object
num_cylinders	int64
fuel_system	object
dtype: object	

obj_df["body_style_cat"] = obj_df["body_style"].cat.codes
obj_df.head()

	make	<pre>fuel_type</pre>	aspiration	num_doors	body_style	drive_wheels	engine_loca
0	alfa- romero	gas	std	2	convertible	rwd	
1	alfa- romero	gas	std	2	convertible	rwd	
2	alfa- romero	gas	std	2	hatchback	rwd	
3	audi	gas	std	4	sedan	fwd	

3 - One Hot Encoding

pd.get_dummies(obj_df, columns=["drive_wheels"]).head()

5	aspiration	num_doors	body_style	engine_location	engine_type	num_cylinders	f
3	std	2	convertible	front	dohc	4	
3	std	2	convertible	front	dohc	4	
3	std	2	hatchback	front	ohcv	6	
3	std	4	sedan	front	ohc	4	
3	std	4	sedan	front	ohc	5	

4 - Custom Binary Encoding

```
obj_df["engine_type"].value_counts()
```

ohc 148
ohcf 15
ohcv 13
dohc 12
l 12
rotor 4
dohcv 1

Name: engine_type, dtype: int64

obj_df["OHC_Code"] = np.where(obj_df["engine_type"].str.contains("ohc"), 1, 0)

obj_df[["make", "engine_type", "OHC_Code"]].head()

	make	<pre>engine_type</pre>	OHC_Code	•
0	alfa-romero	dohc	1	
1	alfa-romero	dohc	1	
2	alfa-romero	ohcv	1	
3	audi	ohc	1	
4	audi	ohc	1	

Scikit-Learn

```
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
obj_df[["body_style"]] = le.fit_transform(obj_df[["body_style"]])
obj_df[["body_style"]].head()
```

/usr/local/lib/python3.7/dist-packages/sklearn/preprocessing/_label.py:115: DataCo
y = column_or_1d(y, warn=True)

bod	y_style	1
0	0	
1	0	
2	2	
3	3	
4	3	

from sklearn.preprocessing import OrdinalEncoder

```
ord_enc = OrdinalEncoder()
obj_df["make_code"] = ord_enc.fit_transform(obj_df[["make"]])
obj_df[["make", "make_code"]].head()
```

	make	make_code	10-
0	alfa-romero	0.0	
1	alfa-romero	0.0	
2	alfa-romero	0.0	
3	audi	1.0	
4	audi	1.0	

from sklearn.preprocessing import OneHotEncoder

```
oe_style = OneHotEncoder()
oe_results = oe_style.fit_transform(obj_df[["body_style"]])
pd.DataFrame(oe_results.toarray(), columns=oe_style.categories_).head()
```

	convertible	hardtop	hatchback	sedan	wagon
0	1.0	0.0	0.0	0.0	0.0
1	1.0	0.0	0.0	0.0	0.0
2	0.0	0.0	1.0	0.0	0.0
3	0.0	0.0	0.0	1.0	0.0
4	0.0	0.0	0.0	1.0	0.0

Advanced Approaches

```
!pip install category_encoders
```

```
#Backward Difference encoding.
import category_encoders as ce
```

```
# Get a new clean dataframe
obj_df = df.select_dtypes(include=['object']).copy()
```

```
# Specify the columns to encode then fit and transform
encoder = ce.BackwardDifferenceEncoder(cols=["engine_type"])
encoder.fit_transform(obj_df, verbose=1).iloc[:,8:14].head()
```

/usr/local/lib/python3.7/dist-packages/statsmodels/tools/_testing.py:19: FutureWar import pandas.util.testing as tm

	engine_type_0	<pre>engine_type_1</pre>	<pre>engine_type_2</pre>	<pre>engine_type_3</pre>	<pre>engine_type_4</pre>	eng
0	-0.857143	-0.714286	-0.571429	-0.428571	-0.285714	
1	-0.857143	-0.714286	-0.571429	-0.428571	-0.285714	
2	0.142857	-0.714286	-0.571429	-0.428571	-0.285714	
3	0.142857	0.285714	-0.571429	-0.428571	-0.285714	
4	0.142857	0.285714	-0.571429	-0.428571	-0.285714	

#If we try a polynomial encoding, we get a different distribution of values used to encode

```
encoder = ce.PolynomialEncoder(cols=["engine_type"])
encoder.fit_transform(obj_df, verbose=1).iloc[:,8:14].head()
```

	engine_type_0	engine_type_1	engine_type_2	<pre>engine_type_3</pre>	engine_type_4	eng
0	-0.566947	5.455447e-01	-0.408248	0.241747	-0.109109	
1	-0.566947	5.455447e-01	-0.408248	0.241747	-0.109109	
2	-0.377964	9.521795e-17	0.408248	-0.564076	0.436436	
3	-0.188982	-3.273268e-01	0.408248	0.080582	-0.545545	

encoder = ce.BinaryEncoder(cols=["engine_type"])
encoder.fit_transform(obj_df).head()

	make	fuel_type	aspiration	num_doors	body_style	drive_wheels	engine_loca
0	alfa- romero	gas	std	two	convertible	rwd	
1	alfa- romero	gas	std	two	convertible	rwd	
2	alfa- romero	gas	std	two	hatchback	rwd	
3	audi	gas	std	four	sedan	fwd	
4	audi	gas	std	four	sedan	4wd	

✓ 0s completed at 12:58 PM

×