heart Last Checkpoint: 7 minutes ago

View Run Kernel Settings Help

DupyterLab P

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline

df = pd.read_csv('C:\\Users\\narasimha\\Downloads\\heart.csv')

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	target
0	52	1	0	125	212	0	1	168	0	1.0	2	2	3	0
1	53	1	0	140	203	1	0	155	1	3.1	0	0	3	0
2	70	1	0	145	174	0	1	125	1	2.6	0	0	3	0
3	61	1	0	148	203	0	1	161	0	0.0	2	1	3	0
4	62	0	0	138	294	1	1	106	0	1.9	1	3	2	0

]: df.tail()

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal	target
1020	59	1	1	140	221	0	1	164	1	0.0	2	0	2	1
1021	60	1	0	125	258	0	0	141	1	2.8	1	1	3	0
1022	47	1	0	110	275	0	0	118	1	1.0	1	1	2	0
1023	50	0	0	110	254	0	0	159	0	0.0	2	0	2	1
1024	54	1	0	120	188	0	1	113	0	1.4	1	1	3	0

```
]: #take a Look at the column names
df.columns.values
```

```
]: #checking for null values
df.isna().sum()
```

```
l: age 8 sex 8 cp 8 trestbps 9 chol 8 restecg 8 thalach 8
```

```
exang 0
oldpeak 0
slope 0
ca 0
thal 0
target 0
dtype: int64
```

In [8]: #concise summary of our dataset df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1025 entries, 0 to 1024
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	age	1025 non-null	int64
1	sex	1025 non-null	int64
2	ср	1025 non-null	int64
3	trestbps	1025 non-null	int64
4	chol	1025 non-null	int64
5	fbs	1025 non-null	int64
6	restecg	1025 non-null	int64
7	thalach	1025 non-null	int64
8	exang	1025 non-null	int64
9	oldpeak	1025 non-null	float64
10	slope	1025 non-null	int64
11	ca	1025 non-null	int64
12	thal	1025 non-null	int64

#plotting histogram of all numeric values df.hist(bins = 50, grid = False, figsize=(20,15));

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	
count	1025.000000	1025.000000	1025.000000	1025.000000	1025.00000	1025.000000	1025.000000	1025.000000	1025.000000	1025.000000	1025.000000	1025.00
mean	54.434146	0.695610	0.942439	131.611707	246.00000	0.149268	0.529756	149.114146	0.336585	1.071512	1.385366	0.75
std	9.072290	0.460373	1.029641	17.516718	51.59251	0.356527	0.527878	23.005724	0.472772	1.175053	0.617755	1.03
min	29.000000	0.000000	0.000000	94.000000	126.00000	0.000000	0.000000	71.000000	0.000000	0.000000	0.000000	0.00
25%	48.000000	0.000000	0.000000	120.000000	211,00000	0.000000	0.000000	132.000000	0.000000	0.000000	1.000000	0.00
50%	56.000000	1.000000	1.000000	130.000000	240.00000	0.000000	1.000000	152.000000	0.000000	0.800000	1.000000	0.00
75%	61.000000	1.000000	2.000000	140.000000	275.00000	0.000000	1.000000	166.000000	1,000000	1.800000	2.000000	1.00
max	77 000000	1.000000	3.000000	200 000000	564 00000	1.000000	2 000000	202 000000	1 000000	6.200000	2 000000	4.00

1]: questions - ["1. How many people have heart disease and how many people doesn't have heart disease?"

"2. People of which sex has most heart disease?"

"3. People of which sex has which type of chest pain most?"

"4. People with which chest pain are most pron to have heart disease?"

"5. What Dietary Changes Can I Make to Reduce My Heart Disease Risk?"

"6. How Common Is Heart Disease Among Women?"

"7. What treatment options do I have for heart disease?"]

questions

1]: ["1. How many people have heart disease and how many people doesn't have heart disease?2. People of which sex has most heart disease?3. People of which sex has which type of chest pain most?4. People with which chest pain are most pron to have heart disease?5. What Dietary Changes Can I Make to Reduce My Heart Disease Risk?6. How Common Is Heart Disease Among Women?7. What treat

```
ment options do I have for heart disease?"]

2]: #Let's find the answer of first question.

#1. How many people have heart disease and how many people doesn't have heart disease?

#getting the values

df.target.value_counts()

2]: target

1 526

0 499

Name: count, dtype: int64

3]: #plotting bar chart

df.target.value_counts().plot(kind = 'bar', color=["orchid", "salmon"])

plt.title("Heart Disease values")

plt.xlabel("1 = Heart Disease, 0 = No Heart Disease")
```

plt.ylabel("Amount");

In [14]: #mlotting a nie chart

```
4]: #plotting a pie chart

df.target.value_counts().plot(kind = 'pie', figsize = (8, 6))

plt.legend(["Disease", "No disease"]);
```



```
#'0' represent 'Female'
 #'I' represent 'Male'
 #SEX column part
 #'0' represent 'No disease'
 #'1' represent 'Disease'
 #Target column part
 #Now Let's check how many 'Male' and 'Female' are in the dataset
 df.sex.value_counts()
      713
      312
 Name: count, dtype: int64
 #plotting a pie chart
 df.sex.value_counts().plot(kind = 'pie', figsize = (8, 6))
 plt.title('Male Female ratio')
 plt.legend(['Male', 'Female']);
```


20]: #Number of male is more than double in our dataset than female.

```
#More than 45% male has heart disease and 75% female has heart disease

27]: #Let's find the answer of our 3rd question

#3.People of which sex has which type of chest pain most?

df.cp.value_counts()

27]: cp

8     497

2     284

1     167

3     77

Name: count, dtype: int64

28]: #plotting a bar chart
df.cp.value_counts().plot(kind = 'bar', color = ['salmon', 'lightskyblue', 'springgreen', 'khaki'])
plt.title('Chest pain type vs count');
```

Chest pain type vs count


```
cp 0 1 2 3
sex

0 133 57 109 13
1 364 110 175 64

30]: pd.crosstab(df.sex, df.cp).plot(kind= 'bar', color= ['salmon', 'lightskyblue', 'springgreen', 'khaki'])
plt.title('Type of chest pain for sex')
plt.xlabel('0 = Female, 1 = Male');
```



```
#Most of male has 'type 0' chest pain and least of 'Male' has 'type 4' pain.
#in case of 'Female' 'type 0' and 'type 2' percentage is almost same

#Let's find the answer of our 4th question

#4. People with which chest pain are most pron to have heart disease?

pd.crosstab(df.cp, df.target)

target 0 1

cp
0 375 122
1 33 134
2 65 219
3 26 51

sns.countplot(x = 'cp', data = df, hue = 'target');
```


