

Graph Theory

Author: Isaac FEI

Preface

I mainly refer to (Bondy and Murty 1976).

Contents

Chapter	1 Basic Concepts of Graphs	1	
1.1	Isomorphism	1	
1.2	Vertex Degrees	2	
1.3	Paths and Connection	2	
1.4	Cycles	3	
References			
Index		6	

Chapter 1 Basic Concepts of Graphs

1.1 Isomorphism

Two graphs G and H are identical, written as G=H, if all their components are the same, that is, V(G)=V(H), E(G)=E(H) and $\psi_G=\psi_H$. Identical graphs of course share the same properties. However, a graph H does not necessarily have to be exactly G to preserve all its properties. The labels of the vertices and edges are immaterial.

Definition 1.1.1

Two graphs G and H are said to be isomorphic, written as $G \cong H$, if there exist bijections $\theta: V(G) \to V(H)$ and $\phi: E(G) \to E(H)$ such that

$$\psi_G(e) = uv \implies \psi_H(\phi(e)) = \theta(u)\theta(v)$$
 (1.1)

The ordered pair (θ, ϕ) is called an **isomorphism** between G and H.

(Bondy and Murty 1976) includes the reverse direction of (1.1) in the definition, that is,

$$\psi_G(e) = uv \iff \psi_H(\phi(e)) = \theta(u)\theta(v)$$

But the reverse direction is redundant. To see this, we suppose that $\psi_H(\phi(e)) = \theta(u)\theta(v)$ and $\psi_G(e) = xy$. By (1.1), we have $\psi_H(e) = \theta(x)\theta(y)$. It then follows that $\theta(u)\theta(v) = \theta(x)\theta(y)$. We have either $\theta(u) = \theta(x)$, $\theta(v) = \theta(y)$, or $\theta(u)\theta(y)$, $\theta(v) = \theta(x)$. Because θ is a bijection, either u = x, v = y, or u = y, v = x. Either way, we have uv = xy. Therefore, $\psi_G(e) = xy = uv$, which proves the reverse direction \Leftarrow .

For simple graphs, there is no need to find a bijection between edges once the bijection θ between vertices is established.

Proposition 1.1.1

Let G and H be simple graphs. Then $G \cong H$ if and only if there exists a bijection $\theta : V(G) \to V(H)$ such that

$$uv \in E(G) \implies \theta(u)\theta(v) \in E(H)$$
 (1.2)

Proof (Necessity) Suppose that there exist θ and ϕ satisfying (1.1). If $e = uv \in E(G)$, then by (1.1), $\psi_H(\phi(e)) = \theta(u)\theta(v)$, which implies $\theta(u)\theta(v) \in E(H)$.

(Sufficiency) Define
$$\phi: E(G) \to E(H)$$
 by

$$\phi(uv) = \theta(u)\theta(v)$$

We need to show ϕ is bijective. Suppose $\phi(uv) = \phi(xy)$. We have $\theta(u)\theta(v) = \theta(x)\theta(y)$. Applying a similar argument we used in the previous comments, we will finally obtain uv = xy, which means ϕ is injective. On the other hand, for any edge $f \in H$. Write f = ij (i.e., $\psi_H(f) = ij$). Then because θ is bijective, there exist $u, v \in V(G)$ such that $\theta(u) = i$ and $\theta(v) = j$. Hence, $\phi(uv) = ij$, which implies ϕ is surjective.

If $\psi(e) = uv$, i.e., $e = uv \in E(G)$, then we have $\theta(u)\theta(v) \in E(H)$ by (1.2). Equivalently, $\psi_H(\phi(e)) = \theta(u)\theta(v)$.

A complete bipartite graph is a *simple* bipartite graph with bipartition (X,Y) in which each vertex in X is incident with each vertex in Y. That is, if $x \in X$ and $y \in Y$, then $xy \in E$. If |X| = m and |Y| = n, we often use the symbol $K_{m,n}$ to denote this complete bipartite graph. (See Figure 1.1.) Note that this implicitly implies that the complete bipartite graph is unique in some way since we can represent it with a common symbol. Indeed, it is unique up to isomorphism, as we will show in the next proposition.

Figure 1.1: Both (a) and (b) are $K_{5,3}$.

Proposition 1.1.2

Let G[X,Y] and H[U,V] be two complete bipartite graphs with |X| = |U| and |Y| = |V|. Then $G \cong H$. In other words, a complete bipartite graph is unique up to isomorphism if the sizes of its two vertex sets in bipartition are determined.

Proof Since |X| = |U| and |Y| = |V|, we can find a bijection $\theta : V(G) \to V(H)$ in such a way that θ maps each point in X onto U, and each point in Y onto V. Then for an edge $xy \in E(G)$, we have $\theta(x)\theta(y) \in E(H)$ since there has to be an edge connecting $\theta(x) \in U$ and $\theta(y) \in V$ by the definition of complete bipartite graphs. This proves $G \cong H$ by Proposition 1.1.1.

1.2 Vertex Degrees

1.3 Paths and Connection

Proposition 1.3.1

If there is a (u, v)-walk in G, then there is also a (u, v)-path in G.

This can be proved easily using the following algorithm (Algorithm 1).

Algorithm 1: Extracting a Path From a Walk

```
Input: A walk W = v_0 e_1 v_1 \cdots e_k v_k
Output: A path P

1 initialize P as a sequence containing just one vertex v_0;

2 for i = 1, \dots, k do

3 | if v_i is not in P then

4 | append e_i and v_i to P;

5 | else

6 | remove all the vertices and edges after the vertex v_i from P;

7 | end

8 end
```

Proposition 1.3.2

The number (v_i, v_j) -walks of length k in G is the (i, j)-th entry of the k-th power of the adjacency matrix A, i.e., A^k .

Proof

1.4 Cycles

One simple yet useful observation of a particular longest path in a graph is that all the neighbors of the terminus must occur along the path. To be specific, if $P = v_0 e_1 v_1 \cdots e_k v_k$ is one of the longest paths in G then P must contain all vertices in $N(v_k)$. To prove this, we assume P does not contain $v_{k+1} \in N(v_k)$. (Suppose $\psi(e_{k+1}) = v_k v_{k+1}$.) Then the path $P + e_{k+1} v_{k+1}$ is clearly longer than P, which leads to a contradiction. Figure 1.2 depicts such an example. Note that if 8 were a neighbor of 7, then path 12345678 would be longer.

Figure 1.2: Path 1234567 is one of the longest paths.

Proposition 1.4.1

If $\delta(G) > 2$, then we can find a cycle starting from each vertex of G.

Proof The conclusion is trivial if G has a loop. Now, we assume that G contains no loops.

Note Note that there are cases where G has no paths if we allow it to have loops. For example, if every vertex of G is incident with just exactly one loop, then G still satisfies the hypothesis. But there are no paths in G.

Let $P = v_0 e_1 v_1 \cdots e_{k-1} v_{k-1} e_k v_k$ be one of the longest paths in G. Since $\deg(v_k) \geq 2$ and v_k has no loops, v_k has a neighbor, say u, other than v_{k-1} . As noted before, u must occur in P. Therefore, there exists a cycle from u to u.

In fact, we have an algorithm to find a cycle without knowing the longest path in G.

Algorithm 2: Finding a Cycle in G With $\delta(G) \geq 2$

```
Input: G with \delta(G) > 2
   Output: A cycle C
 1 if G has a loop e from v to v then
       C \leftarrow vev;
       return C;
3
4 end
5 pick a vertex v_0;
6 P \leftarrow v_0;
7 pick v \in N(v_0) and let e be the corresponding edge, i.e., \psi(e) = v_0 v;
8 while v is not in P do
       P \leftarrow P + ev;
       pick u \in N(v) such that there exists an edge f satisfying \psi(f) = vu and f \neq e;
10
       v \leftarrow u;
       e \leftarrow f;
13 end
14 remove from P all vertices and edges before v;
15 C \leftarrow P + ev;
```

Proof We need to show that Algorithm 2 works correctly.

(initialization) Firstly, note that line 7 is possible since v_0 has no loops and $deg(v_0) \ge 2$.

We claim the loop invariants are

- 1. P has j vertices assuming that we are to execute the j-th iteration,
- 2. P has no duplicated vertices, i.e., P is a path, and
- 3. edge e is incident with v.

(Maintenance) Suppose we are in the j-th iteration. After line 9, P remains a path. Because $\deg(v) \geq 2$, there exists an edge f other than e that is incident with v. Hence, line 10 works correctly. After executing line 12, we find that the number of vertices in P is increased by one, i.e., j+1, P is still a path and e is incident with v.

(Termination) We can complete at most n-1 iterations since P can hold at most as many vertices as there are in G. Upon termination, we find v is in P and e is incident with v. By removing from P all vertices and edges before v and then append to it edge e and vertex v, we will obtain a cycle from v to v.

References

[1] J. A. Bondy and U. S. R. Murty. *Graph Theory with Applications*. New York: North Holland, 1976. ISBN: 978-0-444-19451-0.

Index

С			I	
complete bipartite graph	2	isomorphism		1