IMPORT LIBRARIES

In [1]: import numpy as np
 import pandas as pd
 import matplotlib.pyplot as plt
 import seaborn as sns

read the dataset

In [112]: df1 = pd.read_csv('FDI data.csv',index_col=[0])
df1.head()

Out[112]:

	METALLURGICAL INDUSTRIES	MINING	POWER	NON- CONVENTIONAL ENERGY	COAL PRODUCTION	PETROLEUM & NATURAL GAS	ANI GEN
Sector							
2000- 01	22.69	1.32	89.42	0.00	0.00	9.35	
2001- 02	14.14	6.52	757.44	0.00	0.00	211.07	
2002- 03	36.61	10.06	59.11	1.70	0.00	56.78	
2003- 04	8.11	23.48	27.09	4.14	0.04	80.64	
2004- 05	200.38	9.92	43.37	1.27	0.00	102.78	

5 rows × 16383 columns

NON-

PETROLEUM

Out[113]:

	METALLURGICAL INDUSTRIES	MINING	POWER	CONVENTIONAL ENERGY	COAL PRODUCTION	& NATURAL GAS	ANI GEN
Sector							
2000- 01	22.69	1.32	89.42	0.00	0.00	9.35	
2001- 02	14.14	6.52	757.44	0.00	0.00	211.07	
2002- 03	36.61	10.06	59.11	1.70	0.00	56.78	
2003- 04	8.11	23.48	27.09	4.14	0.04	80.64	
2004- 05	200.38	9.92	43.37	1.27	0.00	102.78	

5 rows × 63 columns

Out[114]:

Sector	2000- 01	2001- 02	2002- 03	2003- 04	2004- 05	2005- 06	2006- 07	2007- 08	2008- 09	2009- 10
METALLURGICAL INDUSTRIES	22.69	14.14	36.61	8.11	200.38	149.13	169.94	1175.75	959.94	419.88
MINING	1.32	6.52	10.06	23.48	9.92	7.40	6.62	444.36	34.16	174.40
POWER	89.42	757.44	59.11	27.09	43.37	72.69	157.15	988.68	907.66	1271.79

In [115]: df.shape

Out[115]: (63, 17)

data preprocessing

```
In [116]: | nv = df1.isnull().sum()
          nv.dropna()
Out[116]: METALLURGICAL INDUSTRIES
          MINING
          POWER
          NON-CONVENTIONAL ENERGY
          COAL PRODUCTION
          PRINTING OF BOOKS (INCLUDING LITHO PRINTING INDUSTRY)
          COIR
          CONSTRUCTION (INFRASTRUCTURE) ACTIVITIES
          CONSTRUCTION DEVELOPMENT: Townships, housing, built-up infrastructure and co
          nstruction-development projects
          MISCELLANEOUS INDUSTRIES
          Length: 63, dtype: int64
In [117]: # handling null values
          def fetch_count_per_null_val(data):
              nv = data.isnull().sum()
              nv = nv[nv>0]
              nv_df = pd.DataFrame({'Feature':nv.index,'Count_Null':nv.values,
                                    'Per_Null':(nv.values/data.shape[0])*100})
              nv_df = nv_df.sort_values('Per_Null', ascending=False)
              return nv_df
          nv_df = fetch_count_per_null_val(df)
In [118]:
          nv df
Out[118]:
             Feature Count_Null Per_Null
          # handling duplicates
In [119]:
          df.duplicated().sum()
Out[119]: 0
```

Statistical analysis

In [120]: df1.describe()

Out[120]:

	METALLURGICAL INDUSTRIES	MINING	POWER	NON- CONVENTIONAL ENERGY	COAL PRODUCTION	PETROLEUM & NATURAL GAS
count	17.000000	17.000000	17.000000	17.000000	17.000000	17.000000
mean	607.678824	133.637059	681.713529	304.793529	1.631765	403.303529
std	590.318680	209.032041	524.452076	359.716927	3.929237	568.490900
min	8.110000	1.320000	27.090000	0.000000	0.000000	9.350000
25%	149.130000	9.920000	89.420000	1.700000	0.000000	87.710000
50%	419.880000	34.160000	757.440000	125.880000	0.000000	180.400000
75%	1098.140000	142.650000	1066.080000	615.950000	0.220000	349.290000
max	1786.140000	684.390000	1652.380000	1106.520000	14.080000	2029.980000

8 rows × 63 columns

Out[121]:

Sector	2000-01	2001-02	2002-03	2003-04	2004-05	2005-06	2006-07	
count	63.000000	63.000000	63.000000	63.000000	63.000000	63.000000	63.000000	
mean	37.757302	63.931587	42.925714	34.727778	51.090317	87.932540	198.281905	
std	112.227860	157.878737	86.606439	67.653735	101.934873	206.436967	686.783115	
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
25%	0.000000	0.000000	0.200000	0.215000	0.715000	1.230000	4.160000	
50%	4.030000	5.070000	11.010000	6.370000	9.090000	22.620000	25.820000	
75%	23.510000	44.830000	36.555000	38.660000	43.205000	63.855000	108.325000	
max	832.070000	873.230000	419.960000	368.320000	527.900000	1359.970000	4713.780000	1

In []:

```
In [ ]:
```

Exploratory data analysis

```
df1['Total FDI'] = df1.iloc[:, :].sum(axis=1)
In [123]: df1_sorted = df1.sort_values(by='Total FDI', ascending=False)
In [124]: |print(df1_sorted[['Total FDI']])
                    Total FDI
          Sector
          2016-17
                     43478.26
          2015-16
                    40000.99
          2011-12
                    35120.78
          2008-09
                    31395.96
          2014-15
                    30930.47
          2009-10
                    25834.38
          2007-08
                     24575.40
          2013-14
                    24299.32
          2012-13
                     22423.59
          2010-11
                    21383.07
          2006-07
                    12491.76
          2005-06
                     5539.75
          2001-02
                     4027.69
          2004-05
                      3218.69
          2002-03
                     2704.32
          2000-01
                      2378.71
          2003-04
                      2187.85
          start_year = '2000-01'
In [125]:
          end_year = '2010-11'
In [126]: | df['Total FDI'] = df.loc[:, start_year:end_year].sum(axis=1)
In [127]: df_sorted = df.sort_values(by='Total FDI', ascending=False)
```

In [128]: print(df_sorted[['Total FDI']])

Sector	Total FDI
SERVICES SECTOR (Fin., Banking, Insurance, Non Fin	27185.64
CONSTRUCTION DEVELOPMENT: Townships, housing, b	17606.94
TELECOMMUNICATIONS	10554.92
COMPUTER SOFTWARE & HARDWARE	10408.80
MISCELLANEOUS INDUSTRIES	6800.79
•••	
BOILERS AND STEAM GENERATING PLANTS	9.99
GLUE AND GELATIN	8.72
COIR	1.46
MATHEMATICAL, SURVEYING AND DRAWING INSTRUMENTS	1.27
DEFENCE INDUSTRIES	0.05

```
In [129]: for sector in df1.columns:
    plt.figure(figsize=(10, 6))
    plt.plot(df1.index, df1[sector])
    plt.xticks(rotation=90)
    plt.xlabel('Year')
    plt.ylabel('FDI in Million USD')
    plt.title(f'Trend Analysis of FDI for {sector} Over Time')
    plt.tight_layout()
    plt.show()
```


Trend Analysis of FDI for CHEMICALS (OTHER THAN FERTILIZERS) Over Time

Trend Analysis of FDI for LEATHER, LEATHER GOODS AND PICKERS Over Time

Trend Analysis of FDI for GLASS Over Time

 $Trend\ Analysis\ of\ FDI\ for\ SERVICES\ SECTOR\ (Fin., Banking, Insurance, Non\ Fin/Business, Outsourcing, R\&D, Courier, Tech.\ Testing\ and\ Analysis\ ,\ Other)\ Over\ Time$

Trend Analysis of FDI for TRADING Over Time

Trend Analysis of FDI for AGRICULTURE SERVICES Over Time

Trend Analysis of FDI for CONSTRUCTION DEVELOPMENT: Townships, housing, built-up infrastructure and construction-development projects Over Time


```
In [132]: # to calculate the percentage contribution of each sector to the total FDI amc
    total_fdi = df.values.sum().sum()
    print(total_fdi)
    # # Calculating the percentage contribution of each sector
    df['Contribution (%)'] = (df.sum(axis=1) / total_fdi) * 100

# # Displaying the resulting dataframe
    print(df[['Contribution (%)']])
```

467728.570000000007 Sector Contribution (%) METALLURGICAL INDUSTRIES 3.118315 MINING 0.656274 POWER 3.684894 NON-CONVENTIONAL ENERGY 1.328550 COAL PRODUCTION 0.011229 PRINTING OF BOOKS (INCLUDING LITHO PRINTING IND... 0.180714 0.001180 CONSTRUCTION (INFRASTRUCTURE) ACTIVITIES 2.402614 CONSTRUCTION DEVELOPMENT: Townships, housing, b... 8.958193 MISCELLANEOUS INDUSTRIES 3.601285

[63 rows x 1 columns]

```
In [136]: plt.figure(figsize=(20,20))
   plt.plot(df[['Contribution (%)']])
   plt.xticks(rotation=90)
   plt.show()
```


In [137]:	# Service sector is the highest FDI Reciever # Service sector is the highest FDI reciever too # FY 2016-17 recieved highest FDI of 43478.26M dollars
In []:	
In []:	