Тема 8. Неопределенный интеграл функции одной переменной

1. Понятие неопределенного интеграла функции одной переменной. Свойства неопределенного интеграла

Ставится задача: найти для функции f(x) такую функцию F(x), что ее производная F'(x) равна f(x): F'(x) = f(x). Такую задачу назовем задачей интегрирования функции f(x).

Определение 1. Функция F(x) называется *первообразной* для функции f(x) на интервале (a;b), если при всех $x \in (a;b)$ выполняется равенство

 $F'(x) = f(x). \tag{1.1}$

Например, для функции $f(x) = 3x^2$ имеем первообразную $F(x) = x^3$, а также $F_1(x) = x^3 + 2$, $F_2(x) = x^3 - 3$, так как $(F_1(x))' = 3x^2 = f(x)$, $(F_2(x))' = 3x^2 = f(x)$.

Справедлива следующая теорема.

Теорема.

- 1) Если F(x) первообразная для функции f(x) на интервале (a;b), то функция F(x)+C (C=const) также первообразная для функции f(x) на интервале (a;b).
- 2) Если $F_1(x)$, $F_2(x)$ первообразные для функции f(x) на интервале (a;b), то

$$F_1(x) - F_2(x) = C, \quad C = const.$$
 (1.2)

Доказательство.

1)
$$(F(x)+C)'=f(x)+0=f(x)$$
.

2)
$$F_1(x) - F_2(x) = C$$
 $(C = const) \Leftrightarrow (F_1(x) - F_2(x))' = (C)' \Leftrightarrow f(x) - f(x) = 0 \Leftrightarrow 0 = 0.$

Определение 2. Пусть F(x) — первообразная для функции f(x) на интервале (a;b). Совокупность всех первообразных F(x)+C (C=const) называется **неопределенным интегралом** от функции f(x) и обозначается

$$\int f(x)dx = F(x) + C. \tag{1.3}$$

Функцию f(x) называют **подынтегральной функцией**, выражение f(x)dx **подынтегральным выражением**, символ \int – операцией интегрирования (знаком интеграла). Задача нахождения неопределенного интеграла называется **задачей интегрирования** функции.

Для нахождения неопределенного интеграла функции f(x) достаточно найти хотя бы одну первообразную F(x). Итак,

$$\int f(x)dx = F(x) + C \quad (C = const) \Leftrightarrow \left(F(x) + C \right)' = f(x)$$
 (1.4)

Неопределенный интеграл $\int 3x^2 dx = x^3 + C$ (C = const).

Свойства неопределенного интеграла

Пусть F(x) – первообразная для функции f(x) на (a,b). Тогла

1)
$$\int dF(x) = \int F'(x) dx = F(x) + C,$$

$$\int f'(x)dx = f(x) + C,$$

$$_{3)}\left(\int f(x)dx\right)'=f(x),$$

4) постоянный множитель можно выносить из-под знака интегра-

ла:
$$\int k \cdot f(x) dx = k \cdot \int f(x) dx$$
 $(k = const)$,

5) неопределенный интеграл от суммы функций равен сумме неопределенных интегралов:

 $\int (f_1(x) + f_2(x)) dx = \int f_1(x) dx + \int f_2(x) dx,$ 6) если $\int f(x) = F(x) + C$, то $\int f(kx+b) dx = \frac{1}{k} F(kx+b) + C$, k,b = const, $k \neq 0$ (интеграл с измененным линейным аргументом).

Доказательство 6). Покажем, что

$$\left(\frac{1}{k}F(kx+b)+C\right)'=f(kx+b).$$

Имеем

$$\left(\frac{1}{k}F(kx+b)+C\right)' = \begin{vmatrix} u(x)=kx+b, \\ u'_x(x)=k \end{vmatrix} = \frac{1}{k}\left(F(u(x))\right)'_x =$$

$$= \frac{1}{k} F'_u(u) \cdot u'_x(x) = \frac{1}{k} F'_u(u) \cdot k = f(u) = f(kx + b).$$

Пример 1. Найти интеграл $\int \cos(2x) dx$.

Решение. Для функции $f(x) = \cos x$ первообразной является функция $F(x) = \sin x$. Тогда на основании свойства 6)

$$\int \cos(2x) dx = |k - 2| = \frac{1}{2} \sin(2x) + C$$

Пример 2. Найти интеграл $\int e^{x/3} dx$.

Решение. Для функции $f(x) = e^x$ первообразной является функция $F(x) = e^x$. Тогда на основании свойства 6) имеем

$$\int e^{x/3} dx = \left| k = \frac{1}{3} \right| = \frac{1}{\frac{1}{3}} e^{x/3} + C = 3e^{x/3} + C.$$

2. Таблица неопределенных интегралов.

Метод непосредственного интегрирования функций

Приведем таблицу элементарных неопределенных интегралов.

1	Интеграл		Интеграл
№	$\int f(x)dx = F(x) + C$	Nº	$\int f(x)dx = F(x) + C$
T1	$\int dx = x + C$	T2	$\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + C, \ \alpha \neq -1$
Т3	$\int x^{-1}dx = \int \frac{dx}{x} = \ln x + C$	T4	$\int \frac{dx}{\sqrt{x}} = 2\sqrt{x} + C$
T5	$\int \frac{dx}{x^2} = -\frac{1}{x} + C$	Т6	$\int a^x dx = \frac{a^x}{\ln a} + C,$ $a > 0, a \neq 1$
T7	$\int e^x dx = e^x + C$	T8	$\int \cos x dx = \sin x + C$
Т9	$\int \sin x dx = -\cos x + C$	T10	$\int \frac{dx}{\cos^2 x} = tgx + C$
T11	$\int \frac{dx}{\sin^2 x} = -ctgx + C$	T12	$\int tgx dx = -\ln \cos(x) + C$
T13	$\int ctg(x)dx = \ln \sin(x) + C$	T14	$\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \operatorname{arctg}\left(\frac{x}{a}\right) + C,$ $a \neq 0$
T15	$\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin\left(\frac{x}{a}\right) + C,$ $ x < a, \ a = const \neq 0$	T16	$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left \frac{x + a}{x - a} \right + C,$
			u – U
T17	$\int \frac{dx}{\sqrt{x^2 + \alpha}} = \ln \left x + \sqrt{x^2 + \alpha} \right + C,$ $\alpha = const, \alpha \neq 0$		
	,		

Для доказательства табличных интегралов используем

$$\int f(x)dx = F(x) + C \ (C = const) \iff \left(F(x) + C \right)' = f(x).$$

Рассмотрим табличный интеграл **Т14**. Здесь $f(x) = \frac{1}{x^2 + a^2}$,

$$F(x) = \frac{1}{a} arctg\left(\frac{x}{a}\right) + C$$
. Очевидно, что

$$F'(x) = \frac{1}{a} \cdot \frac{1}{1 + \left(\frac{x}{a}\right)^2} \cdot \left(\frac{x}{a}\right)' = \frac{1}{a} \cdot \frac{1}{1 + \frac{x^2}{a^2}} \cdot \frac{1}{a} = \frac{1}{a^2} \cdot \frac{a^2}{a^2 + x^2} = \frac{1}{a^2 + x^2} = f(x).$$

На свойствах неопределенного интеграла и таблицы интегралов основан *метод непосредственного интегрирования* (метод подведения под табличные интегралы).

Пример 1. Вычислить интеграл

$$\int \left(1 - 3x^2 + 2\sin x - 4e^x\right) dx$$

Решение. Используем свойства 4), 5), табличные интегралы (подписываем под интегралом номер в таблице):

$$\int (1 - 3x^{2} + 2\sin x - 4e^{x}) dx = \int 1 \cdot dx - \int 3x^{2} dx + \int 2\sin x dx - \int 4e^{x} dx =$$

$$= \int dx - 3 \int x^{2} dx + 2 \int \sin x dx - 4 \int e^{x} dx = x - 3 \frac{x^{3}}{3} + 2(-\cos x) - 4e^{x} + C =$$

$$= x - x^{3} - 2\cos x - 4e^{x} + C$$

Пример 2. Вычислить
$$\int \left(\frac{2}{x} - \frac{1}{\sqrt{x^3}} + \sqrt[3]{x^2}\right) dx$$

Решение. Учитывая, что $\frac{1}{\sqrt{x^3}} = x^{-3/2}$, $\sqrt[3]{x^2} = x^{2/3}$, получим

$$\int \left(\frac{2}{x} - \frac{1}{\sqrt{x^3}} + \sqrt[3]{x^2}\right) dx = 2 \int \frac{dx}{x} - \int x^{-3/2} dx + \int x^{2/3} dx =$$

$$= 2 \ln|x| - \frac{x^{-1/2}}{-1/2} + \frac{x^{5/3}}{5/3} + C =$$

$$= 2 \ln|x| + \frac{2}{x^{1/2}} + \frac{3x^{5/3}}{5} + C = \ln|x| + \frac{2}{\sqrt{x}} + \frac{3\sqrt[3]{x^5}}{5} + C.$$
Пример 3. Вычислить $I = \int \left(3\cos(4-3x) - \frac{4}{\cos^2(4x)}\right) dx$

Решение. Имеем
$$I = 3 \int \cos(4-3x) dx - 4 \int \frac{dx}{\cos^2(4x)}$$
.

К первому интегралу применяем табличный интеграл T8 и свойство 6)

$$3\underbrace{\int \cos(4-3x)dx}_{T8} = 3 \cdot \frac{\sin(4-3x)}{-3} + C = -\sin(4-3x) + C.$$

Ко второму интегралу применим табличный интеграл T10 и свойство 6):

$$4\int \frac{dx}{\cos^2(4x)} = 4 \cdot \frac{tg(4x)}{4} + C = tg(4x) + C$$

В результате получим $I = -\sin(4-3x) - tg(4x) + C$

Пример 4. Вычислить $\int \left(\frac{1}{\sqrt{9-x^2}} - \frac{1}{\sqrt{4-9x^2}} \right) dx$.

Решение.
$$I = \int \left(\frac{1}{\sqrt{9-x^2}} - \frac{1}{\sqrt{4-9x^2}} \right) dx = \int \frac{dx}{\sqrt{9-x^2}} - \int \frac{dx}{\sqrt{4-9x^2}}$$
.

К первому интегралу применим табличный интеграл T15:

$$\int \frac{dx}{\sqrt{9-x^2}} = \int \frac{dx}{\sqrt{3^2-x^2}} = \arcsin\left(\frac{x}{3}\right) + C$$

Второй интеграл сначала преобразуем, вынеся коэффициент 9 изпод корня, а затем применим табличный интеграл T15:

$$\int \frac{dx}{\sqrt{4 - 9x^2}} = \int \frac{dx}{\sqrt{9\left(\frac{4}{9} - x^2\right)}} = \frac{1}{3} \int \frac{dx}{\sqrt{\left(\frac{2}{3}\right) - x^2}} = \frac{1}{3} \arcsin\left(\frac{3x}{2}\right) + C$$

$$B \text{ utore } I = \arcsin\left(\frac{x}{3}\right) - \frac{1}{3} \arcsin\left(\frac{3x}{2}\right) + C$$