APPENDIX

A. Definition

elected-fallback block: We refer to an fallback block B_f generated in view v with level 2 as an elected-fallback block, if the common-coin-flip(v) returns the index of the proposer p_l who generated B_f in the view v and if the <asynchronous-complete> for B_f exists in the first n-f <asynchronous-complete> messages received. An elected-fallback block is committed same as a synchronously-committed block.

B. Proof of agreement

Theorem 1. Let B and \tilde{B} be two blocks with rank (v,r). Each of B and \tilde{B} can be of type: (1) synchronous block which collects at least n-f votes or (2) elected-fallback block or (3) level 1 fallback block which is a parent of an elected-fallback block. Then \tilde{B} and B are the same.

Proof. This holds directly from the block formation – if both B and \tilde{B} has the same rank, then due to quorum intersection, there exists at least one node who voted for both blocks in the same rank, which is a contradiction to our assumption of non malicious nodes.

Theorem 2. Let B and \tilde{B} be two adjacent blocks, then $\tilde{B}.r = B.r + 1$ and $\tilde{B}.v \geq B.v$.

Proof. According to the algorithm, there are three instances where a new block is created.

- Case 1: when isAsync = false and L_{vcur} creates a new synchronous block by extending the $block_{high}$ with rank (v,r). In this case, L_{vcur} creates a new block with round r+1. Hence the adjacent blocks have monotonically increasing round numbers.
- Case 2: when isAsync = true and upon collecting n-f <timeout> messages in view v. In this case, the replica selects the $block_{high}$ with the highest rank (v,r), and extends it by proposing a level 1 fallback block with round r+1. Hence the adjacent blocks have monotonically increasing round numbers.
- Case 3: when isAsync = true and upon collecting n-f <vote-async> messages for a level 1 fallback block. In this case, the replica extends the level 1 block by proposing a level 2 block with round r+1. Hence the adjacent blocks have monotonically increasing round numbers.

The view numbers are non decreasing according to the algorithm. Hence Theorem 2 holds. \Box

Theorem 3. If a synchronous block B_c with rank (v,r) is committed, then all future blocks in view v will extend B_c .

Proof. We prove this by contradiction.

Assume there is a committed block B_c with $B_c.r = r_c$ (hence all the blocks in the path from the genesis block to B_c are committed). Let block B_s with $B_s.r = r_s$ be the round r_s block such that B_s conflicts with B_c (B_s does not extend B_c). Without loss of generality, assume that $r_c < r_s$.

Let block B_f with $B_f.r = r_f$ be the first valid block formed in a round r_f such that $r_s \ge r_f > r_c$ and B_f is the first block

from the path from genesis block to B_s that conflicts with B_c ; for instance B_f could be B_s . L_{vcur} forms B_f by extending its $block_{high}$. Due to the minimality of B_f (B_f is the first block that conflicts with B_c), $block_{high}$ contain either B_c or a block that extends B_c . Since $block_{high}$ extends B_c , B_f extends B_c , thus we reach a contradiction. Hence no such B_f exists. Hence all the blocks created after B_c in the view v extend B_c . \square

Theorem 4. If a synchronous block B with rank (v,r) is committed, an elected-fallback block \tilde{B} of the same view v will extend that block.

Proof. We prove this by contradiction. Assume that a synchronous block B is committed in view v and an elected-fallback block \tilde{B} does not extend B. Then, the parent level 1 block of \tilde{B} , \tilde{B}_p , also does not extend B.

To form the level $1\ \tilde{B_p}$, the replica collects n-f <timeout> messages, each of them containing the $block_{high}$. If B is committed, by theorem 3, at least n-f replicas should have set (and possibly sent) B or a block extending B as the $block_{high}$. Hence by intersection of the quorums $\tilde{B_p}$ extends B, thus we reach a contradiction.

Theorem 5. At most one level 2 fallback block from one proposer can be committed in a given view change.

Proof. Assume by way of contradiction that 2 level 2 fallback blocks from two different proposers are committed in the same view. A level 2 fallback block B is committed in the fallback phase if the common-coin-flip(v) returns the proposer of B as the elected proposer. Since the common-coin-flip(v) outputs the same elected proposer across different replicas, this is a contradiction. Thus all level 2 fallback blocks committed during the same view are from the same proposer.

Assume now that the same proposer proposed two different level 2 fallback blocks. Since no replica can equivocate, this is absurd.

Thus at most one level 2 fallback block from one proposer can be committed in a given view change. \Box

Theorem 6. Let B be a level 2 elected-fallback block that is committed, then all blocks proposed in the subsequent rounds extend B.

Proof. We prove this by contradiction. Assume that level two elected-fallback block B is committed with rank (v,r) and block \tilde{B} with rank (\tilde{v},\tilde{r}) such that $(\tilde{v},\tilde{r})>(v,r)$ is the first block in the chain starting from B that does not extend B. \tilde{B} can be formed in two occurrences: (1) \tilde{B} is a synchronous block in the view v+1 or (2) \tilde{B} is a level 1 fallback block with a view strictly greater than v. (we do not consider the case where \tilde{B} is a level 2 elected-fallback block, because this directly follows from 1)

If B is committed, then from the algorithm construction it is clear that a majority of the replicas will set B as $block_{high}$. This is because, to send a <asynchronous-complete> message with B, a replica should collect at least n-f <vote-async> messages. Hence, its guaranteed that if \tilde{B} is formed in view

v+1 as a synchronous block, then it will observe B as the $block_{high}$, thus we reach a contradiction.

In the second case, if \tilde{B} is formed in a subsequent view, then it is guaranteed that the level 1 block will extend B by gathering from the <timeout> messages B as $block_{high}$ or a block extending B as the $block_{high}$, hence we reach a contradiction.

Theorem 7. There exists a single history of committed blocks.

Proof. Assume by way of contradiction there are two different histories H_1 and H_2 of committed blocks. Then there is at least one block from H_1 that does not extend at least one block from H_2 . This is a contradiction with theorems 3, 4 and 6. Hence there exists a single chain of committed blocks.

Theorem 8. For each committed replicated log position r, all replicas contain the same block.

Proof. By theorem 2, the committed chain will have incrementally increasing round numbers. Hence for each round number (log position), there is a single committed entry, and by theorem 1, this entry is unique. This completes the proof.

C. Proof of termination

Theorem 9. If at least n-f replicas enter the fallback phase of view v by setting isAsync to true, then eventually they all exit the fallback phase and set isAsync to false.

Proof. If n-f replicas enter the fallback path, then eventually all replicas (except for failed replicas) will enter the fallback path as there are less than n-f replicas left on the synchronous path due to quorum intersection, so no progress can be made on the synchronous path and all replicas will timeout. As a result, at least n-f correct replicas will broadcast their <timeout> message and all replicas will enter the fallback path.

Upon entering the fallback path, each replica creates a fallback block with level 1 and broadcasts it. Since we use perfect point-to-point links, eventually all the level 1 blocks sent by the n-f correct replicas will be received by each replica in the fallback path. At least n-f correct replicas will send them <vote-async> messages if the rank of the level 1 block is greater than the rank of the replica. To ensure liveness for the replicas that have a lower rank, the algorithm allows catching up, so that nodes will adopt whichever level 1 block which received n - f <vote-async> arrives first. Upon receiving the first level 1 block with n-f <vote-async> messages, each replica will send a level 2 fallback block, which will be eventually received by all the replicas in the fallback path. Since the level 2 block proposed by any block passes the rank test for receiving a <vote-async>, eventually at least n-f level 2 blocks get n-f <vote-async>. Hence, eventually at least n-f replicas send the <asynchronouscomplete> message, and exit the fallback path.

Theorem 10. With probability p_{i}^{-1} , at least one replica commits an elected-fallback block after exiting the fallback path.

Proof. Let leader $L_{elected}$ be the output of the common-coinflip(v). A replica commits a block during the fallback mode if the <asynchronous-complete> message from $L_{elected}$ is among the first n-f <asynchronous-complete> messages received during the fallback mode, which happens with probability at least greater than $\frac{1}{2}$. Hence with probability no less than $\frac{1}{2}$, each replica commits a chain in a given fallback phase.

Theorem 11. A majority of replicas keep committing new blocks with high probability.

Proof. We first prove this theorem for the basic case where all replicas start the protocol with v=0. If at least n-f replicas eventually enter the fallback path, by theorem 9, they eventually all exit the fallback path, and a new block is committed by at least one replica with probability no less than $\frac{1}{2}$. According to the asynchronous-complete step, all nodes who enter the fallback path enter view v=1 after exiting the fallback path. If at least n-f replicas never set isAsync to true, this implies that the sequence of blocks produced in view 1 is infinite. By Theorem 2, the blocks have consecutive round numbers, and thus a majority replicas keep committing new blocks.

Now assume the theorem 11 is true for view v=0,...,k-1. Consider the case where at least n-f replicas enter the view v=k. By the same argument for the v=0 base case, n-f replicas either all enter the fallback path commits a new block with $\frac{1}{2}$ probability, or keeps committing new blocks in view k. Therefore, by induction, a majority replicas keep committing new blocks with high probability. \square

Theorem 12. Each client command is eventually committed.

Proof. If each replica repeatedly keeps proposing the client commands until they become committed, then eventually each client command gets committed according to theorem 11. \Box