Конспект лекций по курсу «Теория вероятностей»

Лектор: к. ф.-м. н. Родионов Игорь Владимирович

Набор: Алексей Шепелев, Александр Валентинов, Василий Морковкин

Содержание

1	Π екция от $10.02.2018$	2
	Функция распределения	3
	Классификация вероятностных мер и функций распределения на	
	прямой	4
2	Лекция от $17.02.2018$	6
	Вероятностная мера в $\left(\mathbb{R}^n, \mathscr{B}(\mathbb{R}^n)\right)$	6
	Многомерная плотность вероятности	7
	Случайные величины	7
	Действия над случайными величинами и векторами	8
	Характеристики случайных величин и векторов	Ć
3	Лекция от 03.03.2018	g
	Независимость случайных величин	10
	Интеграл Лебега	10
	Свойства матожидания	11
4	Лекция от 10.03.2018	12
	Прямое произведение вероятностных пространств и формула сверт-	
	КИ	14
5	Лекция от 17.03.2018	15
	Дисперсия и ковариация	15
	Свойства ковариации и дисперсии	16
	Многомерный случай	17

	Неравенства	
6	Лекция от 24.03.2018	19
	Свойства УМО	20
7	Лекция от 31.03.2018	22
	Условные распределения	22
	Алгоритм подсчета УМО	24
	Виды сходимости случайных величин	24
8	Лекция от 07.04.2018	26
	Контрпримеры	26
9	Лекция от 14.04.2018	29
10	Лекция от 21.04.2018	34
	Сходимость в L_2	34
	Случайные блуждания и закон повторного логарифма	35
	Характеристические функции	37
	Свойства характеристических функций	37
11	Лекция от 28.04.2018	38
12	Лекция от 05.05.2018	40
	Проверка того, что φ —характеристическая функция	41
	Центральная предельная теорема	43
13	Лекция от 12.05.2018	43
	Когда выполнены условия Линдберга?	44
	Гауссовские случайные векторы	45
	Свойства гауссовских векторов	47
14	Лекция от 19.05.2018	47
	Многомерная ЦПТ	48

1 Лекция от 10.02.2018

Будем обозначать вероятностное пространство как $(\Omega, \mathcal{F}, \mathsf{P})$, где

- 1. Ω пространство элементарных исходов;
- 2. $\mathcal{F} \sigma$ -алгебра на Ω ;
- 3. $P: \mathcal{F} \to [0,1]$ вероятностная мера, причем
 - a) $P(\Omega) = 1$;
 - b) Р σ -аддитивна, то есть $\forall \{A_n\}_{n=1}^{+\infty} \in \mathcal{F}$, причем $A_n \cap A_m = \emptyset$ при $n \neq m$: $P\left(\bigsqcup_{n=1}^{+\infty} A_n\right) = \sum_{n=1}^{+\infty} P(A_n)$.

Определение. Последовательность $\{A_n\}$ убывает к A, если $\forall n: A_n \supseteq A_{n+1}$ и $A = \bigcap_{n=1}^{+\infty} A_n$. Последовательность $\{A_n\}$ возрастает к A, если $\forall n: A_n \subseteq A_{n+1}$ и $A = \bigcup_{n=1}^{+\infty} A_n$.

Теорема (о непрерывности вероятностной меры). $[6/\partial]$ Пусть (Ω, \mathcal{F}) — измеримое пространство и на нем определена функция $P: \mathcal{F} \to [0,1]$, удовлетворяющая следующим свойствам: $P(\Omega) = 1$ и P — конечно аддитивная. Тогда следующие утверждения эквивалентны:

- 1. P вероятностная мера;
- 2. $\forall A_n \downarrow A : \mathsf{P}(A_n) \to \mathsf{P}(A)$ (непрерывность снизу);
- 3. $\forall A_n \uparrow A : P(A_n) \rightarrow P(A)$ (непрерывность сверху):
- 4. $\forall A_n \downarrow \varnothing : P(A_n) \rightarrow 0$ (непрерывность в нуле).

Теорема (Каратеодори). $[6/\partial]$ Пусть Ω — некое множество, \mathcal{A} — алгебра на Ω и P_{σ} — вероятностная мера на (Ω, \mathcal{A}) . Тогда существует единственная вероятностная мера на $(\Omega, \sigma(\mathcal{A}))$, являющаяся продолжением P_{σ} , то есть $\forall A \in \mathcal{A} : \mathsf{P}_{\sigma}(A) = \mathsf{P}(A)$.

Функция распределения

Рассмотрим измеримое пространство $(\mathbb{R}, \mathscr{B}(\mathbb{R}))$ и вероятностную меру P на нем.

Определение. Функция $F(x), x \in \mathbb{R}$, заданная по правилу $F(x) = P((-\infty, x])$ — функция распределения вероятностной меры P.

Лемма (свойства функции распределения). Пусть $F(x) - \phi y$ нкция распределения, тогда

- 1. F(x) не убывает;
- 2. $\lim_{x \to +\infty} F(x) = 1$; $\lim_{x \to -\infty} F(x) = 0$;
- 3. F(x) непрерывна справа.

Δ Пусть $y \geqslant x$, тогда $F(y) - F(x) = P((-\infty, y]) - P((-\infty, x]) = P((x, y]) \geqslant 0$, следовательно, F(x) неубывает.

Пусть $x_n \to -\infty$ при $n \to +\infty$, тогда $(-\infty, x_n] \to \varnothing$, следовательно, $F(x_n) = \mathsf{P}\big((-\infty, x_n]\big) \underset{n \to +\infty}{\longrightarrow} 0$ по теореме о непрерывности вероятностной меры.

Пусть $x_n \to +\infty$ при $n \to +\infty$, тогда $(-\infty, x_n] \to \mathbb{R}$, следовательно, $F(x_n) = P((-\infty, x_n]) \xrightarrow[n \to +\infty]{} P(\mathbb{R}) = 1$.

Пусть $x_n \downarrow x$, тогда $(-\infty, x_n] \downarrow (-\infty, x]$, отсюда по теореме о непрерывности вероятностной меры вытекает, что $F(x_n) = \mathsf{P}\big((-\infty, x_n]\big) \underset{n \to +\infty}{\longrightarrow} \mathsf{P}\big((-\infty, x]\big) = F(x)$.

Свойство 1. Функция распределения имеет предел слева $\forall x \in \mathbb{R}$, при этом число точек разрыва не более, чем счетно.

▲ Пусть $x_n \to x - 0$ — возрастающая последовательность, тогда $F(x_n) = P((-\infty, x_n]) \xrightarrow[n \to +\infty]{} P((-\infty, x)) = F(x - 0)$. Каждая точка разрыва — скачок функции распределения, каждому скачку сопоставим [F(x - 0), F(x)], а этому отрезку в свою очередь сопоставим некую рациональную точку, которая лежит в (F(x - 0), F(x)). Следовательно каждому скачку мы сопоставили точку из \mathbb{Q} , а так как \mathbb{Q} счетно, то число разрывов не более, чем счетно.

Определение. Функция F(x), которая удовлетворяет свойствам 1)-3) из леммы, называется функцией распределения на \mathbb{R} .

Теорема (о взаимно однозначном соответствии между вероятностной мерой и функцией распределения на \mathbb{R}). Пусть F(x) — функция распределения на \mathbb{R} , тогда существует единственная вероятностная мера P на $(\mathbb{R}, \mathscr{B}(\mathbb{R}))$ такая, что F(x) является ее функцией распределения, то есть $F(x) = P((-\infty, x])$.

A Рассмотрим полукольцо $S = \{(a, b]\}$ на \mathbb{R} . Определим σ -аддитивную вероятностную меру P((a, b]) = F(b) - F(a), а по теореме Каратеодори P единственным образом продолжается на всю σ -алгебру $\mathscr{B}(\mathbb{R})$.

Классификация вероятностных мер и функций распределения на прямой

(1) Дискретное распределение

Пусть $\mathscr{X} \subseteq \mathbb{R}$ не более, чем счетно.

Определение. Вероятностная мера P на $(\mathbb{R}, \mathscr{B}(\mathbb{R}))$, удовлетворяющая свойству $\mathsf{P}(\mathbb{R} \backslash \mathscr{X}) = 0$, называется дискретной вероятностной мерой на \mathscr{X} , ее функция распределения также называется дискретной.

Рассмотрим
$$\mathscr{X}=\{x_k\}$$
, положим $p_k=\mathsf{P}\big(\{x_k\}\big)$, тогда $\mathsf{P}(\mathscr{X})=1=\sum\limits_k\mathsf{P}(x_k)$.

Определение. Набор чисел $\{p_k\}$ на называется распределением вероятностей на \mathscr{X} .

(2) Абсолютно непрерывное распределение

Определение. Пусть F(x) — функция распределения вероятностной меры Р на \mathbb{R} , причем $\forall x \in \mathbb{R}$ верно $F(x) = \int\limits_{-\infty}^{x} p(t) \, dt$, где $p(t) \geqslant 0$, а $\int\limits_{-\infty}^{+\infty} p(t) \, dt = 1$. Тогда Р абсолютно непрерывна, F(x) также называется абсолютно непрерывной, а p(t) — плотность распределения F(x). Причем p(t) определена однозначно, кроме множества меры нуль.

Примеры:

1. Равномерное распределение R[a, b]

$$p(x) = \frac{1}{b-a} \cdot I(x \in [a,b]).$$

2. Нормальное (гауссовское) распределение $N(a, \sigma^2)$

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \cdot \exp\left[-\frac{(x-a)^2}{2\sigma^2}\right].$$

3. Экспоненциальное распределение $\text{Exp}(\alpha)$

$$p(x) = \alpha e^{-\alpha x} \cdot I(x > 0).$$

4. Распределение Коши Cauchy(θ)

$$p(x) = \frac{\theta}{\pi (x^2 + \theta^2)}.$$

5. Гамма распределение $\Gamma(\alpha, \gamma)$

$$p(x) = \frac{x^{\alpha - 1} \gamma^{\alpha}}{\Gamma(\alpha)} \cdot e^{-\gamma x} \cdot I(x > 0).$$

Определение. $\Gamma(\alpha) = \int\limits_0^{+\infty} x^{\alpha-1} e^{-x} \, dx$, причем $\forall n \in \mathbb{N} : \Gamma(n) = (n-1)!, \, \forall \lambda \in \mathbb{R} : \Gamma(\lambda \pm 1) = \lambda \Gamma(\lambda)$, а $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$.

(3) Сингулярные распределения

Определение. Пусть F(x) — функция распределения на \mathbb{R} . Точка $x_0 \in \mathbb{R}$ называется точкой роста F(x), если $\forall \varepsilon > 0 : F(x_0 + \varepsilon) - F(x_0 - \varepsilon) > 0$.

Определение. Функция распределения называется сингулярной, если она непрерывна и множество ее точек роста имеет Лебегову меру нуль. Например, функция Кантора.

Теорема (Лебега о функции распределения). $[6/\partial]$ Пусть F(x) — функция распределения на \mathbb{R} . Тогда существуют единственные α_1, α_2 и $\alpha_3, \alpha_i \geqslant 0, \alpha_1 + \alpha_2 + \alpha_3 = 1$ и функции распределения $F_1(x), F_2(x)$ и $F_3(x)$ такие, что $F(x) = \alpha_1 F_1(x) + \alpha_2 F_2(x) + \alpha_3 F_3(x)$, где $F_1(x)$ — дискретная функция распределения, $F_2(x)$ — абсолютно непрерывная, а $F_3(x)$ — сингулярная.

2 Лекция от 17.02.2018

Вероятностная мера в $(\mathbb{R}^n, \mathscr{B}(\mathbb{R}^n))$

Определение. Пусть Р — вероятностная мера в $(\mathbb{R}^n, \mathscr{B}(\mathbb{R}^n))$, тогда функция $F(\vec{x}) = \mathsf{P}((-\infty; x_1] \times \ldots \times (-\infty, x_n])$ называется функцией распределения вероятностной меры Р в \mathbb{R}^n .

Замечание. Пусть $\vec{x}^{(k)} = \left(x_1^{(k)}, \dots, x_n^{(k)}\right) \in \mathbb{R}^n$. Будем писать $\vec{x}^{(k)} \downarrow \vec{x}$, если $\forall i, k: x_i^{(k)} \geqslant x_i^{(k+1)}$ и $x_i^{(k)} \underset{k \to +\infty}{\longrightarrow} x_i$.

Лемма (Свойства многомерной функции распределения). Пусть $F(\vec{x}) - \phi y$ нкция распределения вероятностной меры в \mathbb{R}^n , тогда

- 1. Ecnu $\vec{x}^{(k)} \downarrow \vec{x}$, mo $F(\vec{x}^{(k)}) \to F(\vec{x}), k \to +\infty$;
- 2. $\lim_{\forall i: x_i \to +\infty} F(\vec{x}) = 1; \lim_{\exists i: x_i \to -\infty} F(\vec{x}) = 0;$
- 3. $\forall a_1 < b_1, a_2 < b_2, \dots, \quad \Delta^1_{a_1b_1} \dots \Delta^n_{a_nb_n} F(x) > 0 :, \ \epsilon \partial \epsilon$ $\Delta^i_{a_ib_i} F(\vec{x}) = F(x_1, \dots, x_{i-1}, b_i, x_{i+1}, \dots x_n) - F(x_1, \dots, x_{i-1}, a_i, x_{i+1}, \dots, x_n).$
- ▲ Первое свойство следует из непрерывности вероятностной меры, так как

$$\sum_{i=1}^{n} \left(-\infty, x_i^{(k)}\right] \downarrow \sum_{i=1}^{n} \left(-\infty, x_i\right].$$

Для доказательства второго пункта рассмотрим

$$B_m = \sum_{i=1}^n \left(-\infty, \inf_{k \geqslant m} x_i^{(k)}\right].$$

Если $\forall i: x_i \to +\infty$, то $\mathsf{P}(B_m) \to \mathsf{P}(\mathbb{R}^n) = 1$. А если $\exists i: x_i^{(k)} \to -\infty$, то $B_m \to \varnothing, \mathsf{P}(B_n) \to 0$.

Не трудно понять, что

$$\Delta_{a_1b_1}^1 \dots \Delta_{a_nb_n}^n F(x) = \mathsf{P}\big((a_1,b_1] \times \dots \times (a_n,b_n]\big),$$

откуда следует утверждение третьего пункта леммы. Так, например,

$$\Delta_{a_1b_1}^1 \Delta_{a_2,b_2}^2 F(x) = F(b_1, b_2) - F(a_1, b_2) - (F(b_1, a_2) - F(a_1, a_2)).$$

Теорема (О взаимооднозначном соответствии вероятностной меры и функции распределения в \mathbb{R}^n). $[6/\partial]$ Если функция $F(\vec{x}), \ \vec{x} \in \mathbb{R}^n$ удовлетворяет свойствам из леммы, то существует единственная P в \mathbb{R}^n , для которой $F(\vec{x})$ является функцией распределения.

Замечание. Почему нельзя заменить свойство 3) на монотонность на любом компакте?

▲ Пусть
$$F(x_1, x_2) = \max(x_1, x_2)$$
 на $[0, 1]^2$, но тогда $-1 = \Delta_{0;1}^1 \Delta_{0;1}^2 F(x_1, x_2) \neq$ $P([0, 1]^2) = 1$. Следовательно, $F(x)$ не функция распределения.

Определение. Функция $F(\vec{x})$, удовлетворяющая условиями из леммы называется функцией распределения в \mathbb{R}^n .

Многомерная плотность вероятности

Определение. Если

$$F(x_1, \dots, x_n) = \int_{-\infty}^{x_1} \dots \int_{-\infty}^{x_n} p(y_1, \dots, y_n) dy_1 \dots dy_n, \ p(x_1, \dots, x_n) \ge 0,$$

то $p(x_1,\ldots,x_n)$ называется n-мерной плотностью вероятности. Тогда

$$p(x_1, \dots, x_n) = \frac{\partial^n}{\partial x_1 \dots \partial x_n} F(x_1, \dots, x_n).$$

Случайные величины

Определение. Пусть (Ω, \mathcal{F}) и (E, \mathcal{E}) — два измеримых пространства. Отображение $X: \Omega \to E$ — случайный элемент, если $\forall B \in \mathcal{E}: X^{-1} \in \mathcal{F}$ \mathcal{F} -измеримо или $\mathcal{F}|\mathcal{E}$ -измеримо.

Если $(E,\mathcal{E}) = (\mathbb{R}, \mathscr{B}(\mathbb{R}))$, то это случайная величина.

Если $(E,\mathcal{E})=\left(\mathbb{R}^n,\mathscr{B}(\mathbb{R}^n)\right)$, то это случайный вектор.

Действия над случайными величинами и векторами

Определение. Функция $\varphi: \mathbb{R}^n \to \mathbb{R}^m$ — борелевская, если $\forall B \in \mathscr{B}(\mathbb{R}^m): \varphi^{-1}(B) \in \mathscr{B}(\mathbb{R}^n)$.

Утверждение. Любая непрерывная и кусочно-непрерывная функция — борелевская.

Теорема (критерий измеримости). $[6/\partial]$ Пусть $(\Omega, \mathcal{F}), (E, \mathcal{E})$ — два измеримых пространства, $X: \Omega \to E$ — случайный элемент тогда, и только тогда, когда существует система событий $\mathcal{M} \subseteq \mathcal{E}$, такая что $\sigma(\mathcal{M}) = \mathcal{E}$ и $\forall B \in \mathcal{M}: X^{-1}(B) \in \mathcal{F}$.

Лемма. Пусть $\vec{\xi} = (\xi_1, \dots, \xi_n)$ — случайный вектор, $\varphi : \mathbb{R}^n \to \mathbb{R}^m$ — борелевская функция, тогда $\varphi(\vec{\xi})$ — случайный вектор.

▲ Пусть $B \in \mathscr{B}(\mathbb{R}^m)$. Тогда

$$(\varphi(\vec{\xi}))^{-1}(B) = \{\omega : \varphi(\vec{\xi}(\omega)) \in B\} = \{\omega : \vec{\xi}(\omega) \in \varphi^{-1}(B) \subseteq \mathscr{B}(\mathbb{R}^n)\} \in \mathcal{F}.$$

Лемма. $\vec{\xi} = (\xi_1, \dots, \xi_n) - c$ лучайный вектор тогда, и только тогда, когда $\forall i: \xi_i - c$ лучайная величина.

▲ $Heoбxoдимость. \ \varphi(x_1, \dots, x_n) = x_i$ — непрерывная функция, значит борелевская, следовательно, по предыдущей лемме ξ_i — случайная величина. $\mathcal{A}ocmamouhocmь. \ \mathscr{B}(\mathbb{R}^n) = \sigma(B_1 \times \ldots \times B_n, B_i \in \mathscr{B}(\mathbb{R}))$, поэтому $\vec{\xi}^{-1}(B_1 \times \ldots \times B_n) = \{\omega : \vec{\xi}(\omega) \in B_1 \times \ldots \times B_n\} = \{\omega : \xi_1(\omega) \in B_1, \ldots, \xi_n(\omega) \in B_n\} = \bigcap_{i=1}^n \{\omega : \xi(\omega) \in B_i\} = \bigcap_{i=1}^n \xi_i^{-1}(B_i) \in \mathcal{F}$, значит, по критерию измеримости, $\vec{\xi}$ — случайный вектор.

Следствие. Пусть ξ , η — случайные величины, $c \in \mathbb{R}$, тогда $\xi + \eta$, $\xi - \eta$, $c\xi$, $\xi \cdot \eta$ и ξ/η , если $\forall \omega \in \Omega : \eta \neq 0$ тоже случайные величины.

Лемма (О пределах случайной величины). Пусть $\{\xi_n\}_{n\in\mathbb{N}}$ последовательность случайных величин, тогда, если пределы $\overline{\lim} \xi_n$, $\underline{\lim} \xi_n$, $\inf \xi_n$, $\sup \xi_n$ существуют, они являются случайными величинами.

▲ $\{\omega: \sup \xi_n \leqslant x\} = \bigcap_{n=1}^{+\infty} \{\omega: \xi_n(\omega) \leqslant x\} \in \mathcal{F}$. По критерию измеримости, так как $\sigma(x: (-\infty, x]) = \mathscr{B}(\mathbb{R})$, мы доказали, что $\sup \xi_n$ — случайная величина. Аналогично, $\{\omega: \inf \xi_n > x\} = \bigcup_{k=1}^{+\infty} \{\omega: \xi_n(\omega) \geqslant x\} \in \mathcal{F}$, так как $\sigma((x, +\infty)) = \mathscr{B}(\mathbb{R})$, по критерию измеримости $\inf \xi_n$ — случайная величина. Отсюда $\overline{\lim} \xi_n = \inf_n \sup_{m \geqslant n} \xi_m$ и $\underline{\lim} \xi_n = \sup_n \inf_{m \geqslant n} \xi_m$ тоже случайные величины. ■

Следствие. Пусть $\xi = \lim \xi_n$ и предел существует $\forall \omega \in \Omega$, тогда $\xi - cлучайная$ величина.

Характеристики случайных величин и векторов

(1) Распределение случайной величины

Определение. Пусть $(\Omega, \mathcal{F}, \mathsf{P})$ — вероятностное пространство, ξ — случайная величина (вектор) на нем. Распределением случайной величины называется вероятностная мера P_{ξ} на $(\mathbb{R}, \mathscr{B}(\mathbb{R}))$ $((\mathbb{R}^n, \mathscr{B}(\mathbb{R}^n)))$, заданная по правилу $\mathsf{P}_{\xi}(B) = \mathsf{P}(\xi \in B), B \in \mathscr{B}(\mathbb{R})$ $(B \in \mathscr{B}(\mathbb{R}^n))$.

(2) Функция распределения случайной величины

Определение. Пусть $(\Omega, \mathcal{F}, \mathsf{P})$ — вероятностное пространство, ξ — случайная величина (вектор) на нем. Функцией распределения ξ называется $F_{\xi}(x) = \mathsf{P}(\xi \leqslant x) \ (F_{\xi}(\vec{x}) = \mathsf{P}(\xi_1 \leqslant x_1, \dots, \xi_n \leqslant x_n)).$

3 Дискретность и непрерывность

Определение. Случайная величина называется дискретной, если ее распределение дискретно.

Определение. Случайная величина называется абсолютно непрерывной, если ее распределение абсолютно непрерывно, то есть $F_{\xi}(x) = \int\limits_{-\infty}^{x} p_{\xi}(y) dy, \ p_{\xi}(y) \geqslant 0$ — плотность случайной величины ξ .

4 Сигма-алгебра, порожденная случайной величиной

Определение. Пусть ξ — случайная величина (вектор) на $(\Omega, \mathcal{F}, \mathsf{P})$, тогда σ -алгеброй \mathcal{F}_{ξ} , порожденной случайной величиной ξ называется $\mathcal{F}_{\xi} = \{\{\xi \in B\}, B \in \mathscr{B}(\mathbb{R}) \ (\in \mathscr{B}(\mathbb{R}^n))\}.$

3 Лекция от 03.03.2018

Определение. $\mathcal{F}=\left\{\xi^{-1}(B), B\in\mathscr{B}(\mathbb{R})\right\}$ — порожденная σ -алгебра.

Определение. Пусть ξ , η — случайные величины. Тогда величина η называется \mathcal{F}_{ξ} -измеримой, если $\mathcal{F}_{\eta} \subset \mathcal{F}_{\xi}$.

Пример. Пусть f — борелевская, $\eta = f(\xi)$. Тогда $\eta - \mathcal{F}_{\xi}$ -измерима.

$$\blacktriangle$$
 $\{\eta \in B\} \in \mathcal{F}_{\xi}$, где $B \in \mathscr{B}(\mathbb{R})$, значит $\{\eta \in B\} = \{\xi \in f^{-1}(B) \in \mathscr{B}(\mathbb{R})\} \in \mathscr{F}_{\xi}$

Теорема. [Пока $6/\partial$] Пусть $\eta - \mathcal{F}_{\xi}$ -измерима, тогда существует борелевская φ , такая что $\eta = \varphi(\xi)$ почти наверное, то есть $\mathsf{P}(\eta = \varphi(\xi)) = 1$.

Независимость случайных величин

Утверждение. Случайные величины независимы тогда, и только тогда, когда порождаемые ими σ -алгебры независимы.

Определение. Системы множеств \mathcal{F} и \mathcal{G} независимы, если $\forall A \in \mathcal{F}, B \in \mathcal{G}$: $\mathsf{P}(A \cap B) = \mathsf{P}(A) \cdot \mathsf{P}(B)$.

Определение. Пусть ξ и η — случайные величины, тогда ξ и η независимы, если $\forall B_1, B_2 \in \mathscr{B}(\mathbb{R}) : \mathsf{P}(\xi \in B_1, \eta \in B_2) = \mathsf{P}(\xi \in B_1) \cdot \mathsf{P}(\eta \in B_2).$

Определение. Случайные величины $\{\xi_i\}_{i=1}^{\infty}$ независимы (в совокупности), если для любого конечного набора индексов $\alpha_1, \ldots, \alpha_n : \mathsf{P}(\xi_{\alpha_1} \in B_1, \ldots, \xi_{\alpha_n} \in B_n) = \prod_{i=1}^n \mathsf{P}(\xi_{\alpha_i} \in B_i), \ B_i \in \mathscr{B}(\mathbb{R}), i = 1, \ldots, n.$

Теорема (Критерий независимости в терминах функции распределения). Случайные величины $\{\xi_i\}_{i=1}^n$ независимы в совокупности тогда, и только тогда, когда $\forall x_1, \ldots, x_n \in \mathbb{R} : \mathsf{P}(\xi_1 \leqslant x_1, \ldots, \xi_n \leqslant x_n) = \prod_{i=1}^n \mathsf{P}(\xi_i \leqslant x_i).$

A Возьмем в качестве $B_i = (-\infty, x_i]$.

Теорема. Пусть $(\xi_1, ..., \xi_n)$ — независимые случайные векторы, ξ_i имеет размерность n_i . Пусть $f_i : \mathbb{R}^{n_i} \to \mathbb{R}^{k_i}$ — борелевские функции. Тогда величины $f_1(\xi_1), ..., f_n(\xi_n)$ — независимые.

▲ Обозначим $\eta_i = f_i(\xi_i) \Rightarrow \eta_i - \mathcal{F}_{\xi_i}$ -измеримая. По условию $\{\mathcal{F}_{\xi_i}\}_{i=1}^n$ — независимые σ-алгебры, следовательно $\{\mathcal{F}_{\eta_i}\}$ независимы, т.к. $\forall i: \mathcal{F}_{\eta_i} \subset \mathcal{F}_{\xi_i}$, значит по определению $\{\eta_i\}$ независимы в совокупности. ■

Интеграл Лебега

Лемма. $[6/\partial] \ \forall \xi \geqslant 0$ существует набор простых случайных величин $\xi_n \colon \xi_n \uparrow \xi$ $(\xi_n - npocmas, ecnu \ \xi_n = \sum_{i=1}^k c_i I_{A_i}).$

Определение. Пусть ξ — простая случайная величина, то есть $\xi = \sum_{i=1}^k c_i I_{A_i}$, тогда матожидание $\mathsf{E}\xi = \sum_{i=1}^k c_i \mathsf{P}(A_i)$, где $\bigsqcup_{i=1}^k A_i = \Omega$.

Определение. Пусть $\xi \geqslant 0$, тогда матожидание $\mathsf{E}\xi = \lim_{\substack{n \to \infty \\ \eta \leqslant \xi}} \mathsf{E}\xi_n$, где $\xi_n \uparrow \xi$, ξ_n — простые неотрицательные случайные величины или $\mathsf{E}\xi = \sup_{\eta \leqslant \xi} \mathsf{E}\eta$, η — простые неотрицательные.

Определение. Пусть ξ — произвольные случайные величины. Пусть $\xi_+ = \max(\xi,0), \, \xi_- = \max(-\xi,0) \Rightarrow \xi = \xi_+ - \xi_-, \,$ тогда матожидание

$$\mathsf{E}\xi = \begin{bmatrix} \mathsf{E}\xi_{-} \setminus \mathsf{E}\xi_{+} & <+\infty & =+\infty \\ <+\infty & \mathsf{E}\xi_{+} - \mathsf{E}\xi_{-} & +\infty \\ =+\infty & -\infty & \nexists \end{bmatrix}$$

Следствие. Е $\xi - \kappa$ онечно $\Leftrightarrow E|\xi| - \kappa$ онечно.

$$|\xi| = \xi_+ + \xi_-$$
. $E|\xi|$ — конечно $\Leftrightarrow \mathsf{E}\xi_+, \mathsf{E}\xi_-$ — конечны $\Leftrightarrow \mathsf{E}\xi$ — конечно.

Свойства матожидания

Свойство 1. Пусть $\xi - c$ лучайная величина, $\mathsf{E}\xi - \kappa$ онечно, тогда $\forall c \in \mathbb{R}$: $\mathsf{E}(c\xi) - \kappa$ онечно $u \; \mathsf{E}(c\xi) = c \mathsf{E}\xi$.

▲ Для простых случайных величин свойство очевидно. Пусть $\xi \geqslant 0$, $\xi_n \uparrow \xi$ — последовательность простых неотрицательных случайных величин, $c \geqslant 0$. Тогда $c\xi_n \uparrow c\xi \Rightarrow \mathsf{E}(c\xi) = \lim_{n \to \infty} \mathsf{E}(c\xi_n) = c \lim_{n \to \infty} \mathsf{E}(\xi_n) = c\mathsf{E}\xi$. В общем случае $\xi = \xi_+ - \xi_-$, тогда $(c\xi)_+ = c\xi_+$, $(c\xi)_- = c\xi_- \Rightarrow \mathsf{E}(c\xi) = \mathsf{E}(c\xi)_+ - \mathsf{E}(c\xi)_- = c\mathsf{E}\xi$. Если c < 0, то $(c\xi)_+ = -c\xi_-$ и $(c\xi)_- = -c\xi_+$.

Свойство 2. Если $\xi \leqslant \eta$, $\mathsf{E}\xi$, $\mathsf{E}\eta - \kappa$ онечны, то $\mathsf{E}\xi \leqslant \mathsf{E}\eta$.

▲ Для простых случайных величин — очевидно. Для неотрицательных ξ , η $\mathsf{E}\xi=\sup_{\mu\leqslant\xi}\mathsf{E}\mu$, где μ — простая случайная величина. $\sup_{\mu\leqslant\xi}\mathsf{E}\mu\leqslant\sup_{\mu\leqslant\eta}\mathsf{E}\mu=\mathsf{E}\eta$. Пусть ξ,η — произвольные, тогда $\xi_+\leqslant\eta_+$ и $\xi_-\geqslant\eta_-$. $\mathsf{E}\xi=\mathsf{E}\xi_+$ — $\mathsf{E}\xi_-\leqslant\mathsf{E}\eta_+$ — $\mathsf{E}\eta_-$ = $\mathsf{E}\eta$.

Свойство 3. Если $\mathsf{E}\xi - \kappa$ онечно, то $|\mathsf{E}\xi| \leqslant \mathsf{E}|\xi|$.

Свойство 4 (Аддитивность). Пусть ξ и η — случайные величины, $\mathsf{E}\xi$ и $\mathsf{E}\eta$ — конечные, тогда $\mathsf{E}(\xi+\eta)=\mathsf{E}\xi+\mathsf{E}\eta$.

▲ Для простых случайных величин — очевидно. Пусть $\xi, \eta \geqslant 0$, возьмем $\xi_n \uparrow \xi, \eta_n \uparrow \eta$ — простые и положительные. Тогда $\xi_n + \eta_n \uparrow \xi + \eta \Rightarrow \mathsf{E}(\xi + \eta) = \lim_{n \to \infty} \mathsf{E}(\xi_n + \eta_n) = \lim_{n \to \infty} \mathsf{E}\xi_n + \lim_{n \to \infty} \mathsf{E}\eta_n = \mathsf{E}\xi + \mathsf{E}\eta$. Пусть ξ, η — произвольные, тогда $(\xi + \eta)_+ \leqslant \xi_+ + \eta_+$. Пусть $\delta = (\xi_+ + \eta_+) - (\xi + \eta)_+ \Rightarrow \mathsf{E}\delta + \mathsf{E}(\xi + \eta)_+ = \mathsf{E}\xi_+ + \mathsf{E}\eta_+ \Rightarrow \mathsf{E}\xi_+ + \mathsf{E}\eta_+$

 $\mathsf{E}(\xi+\eta)_+ = \mathsf{E}\xi_+ + \mathsf{E}\xi_+ - \mathsf{E}\delta$. Аналогично, $\mathsf{E}(\xi+\eta)_- = \mathsf{E}\xi_- + \mathsf{E}\eta_- - \mathsf{E}\delta$. Тогда $\mathsf{E}(\xi+\eta) = \mathsf{E}(\xi+\eta)_+ - \mathsf{E}(\xi+\eta)_- = \mathsf{E}\xi_+ + \mathsf{E}\eta_+ - \mathsf{E}\delta - \mathsf{E}\xi_- - \mathsf{E}\eta_- + \mathsf{E}\delta = \mathsf{E}\xi + \mathsf{E}\eta$. Рассмотрим $(\xi+\eta)_- = (\xi+\eta)_+ - (\xi+\eta) = \xi_+ + \eta_+ - \delta - (\xi+\eta) = \xi_- + \eta_- - \delta$.

Свойство 5. 1. Пусть $|\xi| \le \eta$, $\exists \eta - \kappa$ онечное, тогда $\exists \xi - \kappa$ онечная.

- 2. Пусть $\xi \leq \eta$, $\exists \eta \kappa$ онечное, тогда $\exists \xi < +\infty$. Пусть $\xi \geq \eta$, $\exists \eta \kappa$ онечное, тогда $\exists \xi \leq -\infty$.
- 3. Если $\mathsf{E}\xi$ конечное $u\ A\in\mathcal{F},\ mo\ \mathsf{E}(\xi\cdot I_A)$ конечное.

\blacktriangle

- 1. $\xi_-, \xi_+ \leqslant \eta \Rightarrow 0 \leqslant \mathsf{E} \xi_+ = \sup_{0 \leqslant \mu \leqslant \xi_+} \mathsf{E} \mu \leqslant \mathsf{E} \eta < +\infty \Rightarrow \mathsf{E} \xi_+, \mathsf{E} \xi_- < +\infty \Rightarrow \mathsf{E} \xi$ конечное.
- 2. $\xi_+ \leqslant \eta_+ < +\infty \Rightarrow$ по первому пункту $\mathsf{E}\xi_+ < +\infty \Rightarrow \mathsf{E}\xi < +\infty$.
- 3. $(\xi \cdot I_A)_+ = I_A \cdot \xi_+ < \xi_+ \Rightarrow \mathsf{E}(\xi \cdot I_A)_+$ конечное. Аналогично $\mathsf{E}(\xi \cdot I_A)_-$ конечное.

Определение. Событие A происходит почти наверное, если P(A) = 1.

Свойство 6. *Если* $\xi = 0$ *почти наверное, то* $\mathsf{E}\xi = 0$.

▲ Пусть ξ — простая случайная величина, то есть $\xi = \sum_{k=1}^n x_k I_{A_k}$, где $\{x_k\}$ различные, $\{A_k\}$ — разбиение Ω , $A_k = \{\xi = x_k\}$. Тогда если $x_k \neq 0$, то $A_k = \{\xi = x_k\} \subseteq \{\xi \neq 0\} \Rightarrow \mathsf{P}(A_k) \leqslant \mathsf{P}(\xi \neq 0) = 0 \Rightarrow \mathsf{E}\xi = \sum_{k=1}^n x_k \mathsf{P}(A_k) = 0$. Если $\xi \geqslant 0$, то $\mathsf{E}\xi = \sup_{\xi \geqslant \eta} \mathsf{E}\eta$, где η — простые $\Rightarrow \mathsf{E}\xi \geqslant 0$. Но $0 \leqslant \eta \leqslant \xi = 0$ почти наверное $\Rightarrow \mathsf{E}\eta = 0 \Rightarrow \mathsf{E}\xi = 0$. Пусть ξ — произвольные $\Rightarrow \xi_+ = 0$ почти наверное, $\xi_- = 0$ почти наверное и $\mathsf{E}\xi = \mathsf{E}\xi_+ - \mathsf{E}\xi_- = 0$.

4 Лекция от 10.03.2018

Свойство 7. Если $\xi = \eta$ почти наверное $u \ \mathsf{E} |\eta| < +\infty, \ mo \ \mathsf{E} |\xi| < +\infty \ u \ \mathsf{E} \xi = \mathsf{E} \eta.$

▲ Пусть $A = \{\xi \neq \eta\}$, тогда $I_A = 0$ почти наверное, следовательно $\xi \cdot I_A = 0$ почти наверное и $\eta \cdot I_A = 0$ почти наверное. Так как $\xi = \xi \cdot I_A + \xi \cdot I_{\overline{A}}$, то $\xi = \xi \cdot I_A + \eta \cdot I_{\overline{A}}$, потому что на \overline{A} выполняется $\xi = \eta$. Из свойства 6 имеем $\mathsf{E}\xi = \mathsf{E}(\xi \cdot I_A) + \mathsf{E}(\eta \cdot I_{\overline{A}}) = \mathsf{E}(\eta \cdot I_A) + E(\eta \cdot I_{\overline{A}}) = \mathsf{E}\eta$.

Свойство 8. Пусть $\xi \geqslant 0$ и $\mathsf{E}\xi = 0$, тогда $\xi = 0$ почти наверное.

▲ Рассмотрим события $A = \{\xi > 0\}$ и $A_n = \{\xi > \frac{1}{n}\}$, следовательно, $A_n \uparrow A$. Имеем $\mathsf{P}(A_n) = \mathsf{E} I_{A_n}$, так как $n\xi > 1$ на A_n , то $\mathsf{E} I_{A_n} \leqslant \mathsf{E}(n\xi \cdot I_A) \leqslant n\mathsf{E}\xi = 0$, значит, $\mathsf{P}(A) = \lim_{n \to +\infty} \mathsf{P}(A_n) = 0$.

Свойство 9. Пусть $\mathsf{E}\xi$ и $\mathsf{E}\eta$ конечны, $\forall A \in \mathcal{F} : \mathsf{E}(\xi \cdot I_A) \leqslant \mathsf{E}(\eta \cdot I_A)$. Тогда $\xi \leqslant \eta$ почти наверное.

▲ Рассмотрим событие $B = \{\xi > \eta\}$. Из условия и построения B получаем, что $\mathsf{E}(\eta \cdot I_B) \leqslant \mathsf{E}(\xi \cdot I_B) \leqslant \mathsf{E}(\eta \cdot I_B)$, следовательно, $\mathsf{E}(\xi \cdot I_B) = \mathsf{E}(\eta \cdot I_B)$, значит $\mathsf{E}\big((\xi - \eta) \cdot I_B\big) = 0$. Так как $(\xi - \eta) \cdot I_B \geqslant 0$, то по свойству $8 \ (\xi - \eta) \cdot I_B = 0$ почти наверное, следовательно $I_B = 0$ почти наверное, потому что $\xi - \eta > 0$ на B. ■

Теорема (о математическом ожидании произведения случайных величин). *Пусть* $\xi \perp \!\!\! \perp \eta$, причем $\xi \in \xi$ и $\xi \in \xi$ вонечны, тогда $\xi \in \xi$ конечно $\xi \in \xi$.

▲ Пусть ξ и η — простые случайные величины, то есть ξ принимает значения $\{x_1, \ldots, x_n\}$, η принимает значения $\{y_1, \ldots, y_n\}$. Тогда по линейности

$$\begin{split} \mathsf{E}\xi\eta &= \sum_{k,j=1}^{n} x_{k} y_{j} \mathsf{P}(\xi = x_{k}, \eta = y_{j}) = \sum_{k,j=1}^{n} x_{k} y_{j} \mathsf{P}(\xi = x_{k}) \cdot \mathsf{P}(\eta = y_{j}) = \\ &= \sum_{k=1}^{n} x_{k} \mathsf{P}(\xi = x_{k}) \sum_{j=1}^{n} y_{j} \mathsf{P}(\eta = y_{j}) = \mathsf{E}\xi \cdot \mathsf{E}\eta. \end{split}$$

Рассмотрим $\xi_n \uparrow \xi$,

$$\xi_n = \sum_{k=0}^{n \cdot 2^n - 1} \frac{k}{2^n} I\left(\frac{k}{2^n} \leqslant \xi \leqslant \frac{k+1}{2^n}\right) + nI(\xi > n),$$

следовательно, $\xi_n = \varphi_n(\xi)$, значит, $\xi_n - \mathcal{F}_{\xi}$ -измеримая. Пусть $\xi, \eta \geqslant 0$. Существует последовательность \mathcal{F}_{ξ} -измеримых (\mathcal{F}_{η} -измеримых) простых неотрицательных простых функций $\xi_n \uparrow \xi$ ($\eta_n \uparrow \eta$). Так как $\xi \perp \eta$, то $\xi_n = \varphi_n(\xi) \perp \varphi_n(\eta) = \eta_n$. Следовательно, $\xi_n \cdot \eta_n \uparrow \xi \cdot \eta$, а по определению математического ожидания $\mathsf{E}\xi\eta = \lim_{n \to +\infty} \mathsf{E}(\xi_n \eta_n) = \lim_{n \to +\infty} \mathsf{E}\xi_n \cdot \mathsf{E}\eta_n = \mathsf{E}\xi \cdot \mathsf{E}\eta$.

Пусть теперь ξ и η — произвольные случайные величины. ξ^+ и ξ^- — функции от ξ , η^+ и η^- — функции от η , следовательно, $\xi^+ \perp \!\!\! \perp \eta^+$ и $\xi^- \perp \!\!\! \perp \eta^-$, отсюда $(\xi\eta)^+ = \xi^+\eta^+ + \xi^-\eta^-$ значит, $\mathsf{E}(\xi\eta)^+ = \mathsf{E}\xi^+\eta^+ + \mathsf{E}\xi^-\eta^- = \mathsf{E}\xi^+\mathsf{E}\eta^+ + \mathsf{E}\xi^-\mathsf{E}\eta^-$, аналогично $\mathsf{E}(\xi\eta)^- = \mathsf{E}\xi^+\eta^- + \mathsf{E}\xi^-\eta^+ = \mathsf{E}\xi^+\mathsf{E}\eta^- + \mathsf{E}\xi^-\mathsf{E}\eta^+$. Осталось заметить, что $\mathsf{E}\xi\eta = \mathsf{E}(\xi\eta)^+ - \mathsf{E}(\xi\eta)^- = \mathsf{E}\xi^+\mathsf{E}\eta^+ + \mathsf{E}\xi^-\mathsf{E}\eta^- - \mathsf{E}\xi^+\mathsf{E}\eta^- - \mathsf{E}\xi^-\mathsf{E}\eta^+ = (\mathsf{E}\xi^+ - \mathsf{E}\xi^-)(\mathsf{E}\eta^+ - \mathsf{E}\eta^-) = \mathsf{E}\xi \cdot \mathsf{E}\eta$.

Пусть
$$\xi = \sum_{i=1}^n x_i \cdot I(\xi = x_i)$$
 — простая случайная величина. Тогда $\mathsf{E} g(\xi) = \sum_{i=1}^n g(x_i) \cdot \mathsf{P}(\xi = x_i) = \sum_{i=1}^n g(x_i) \Delta F_\xi(x_i)$, где $\Delta F_\xi(x_i) = F_\xi(x_i) - F_\xi(x_i - 0)$.

Теорема (о замене переменной в интеграле Лебега). $[6/\partial]$ Пусть (Ω, \mathcal{F}) и (E, \mathcal{E}) — два измеримых пространства и $X = X(\omega)$ — $\mathcal{F}|\mathcal{E}$ -измеримая функция со значениями в E, то есть $\forall B \in \mathcal{E}: X^{-1}(B) \in \mathcal{F}$. Пусть P — вероятностная мера на (Ω, \mathcal{F}) и P_X — вероятностная мера на (E, \mathcal{E}) , заданная по правилу $\mathsf{P}_X(A) = \mathsf{P}(\omega: X(\omega) \in A)$ для $A \in \mathcal{E}$. Тогда для любой \mathcal{E} -измеримой функции $g(x): E \to \mathbb{R}$, то есть $\forall B \in \mathscr{B}(\mathbb{R}): g^{-1}(B) \in \mathcal{E}$, верно,

$$\int_{A} g(x) \mathsf{P}_{X}(dx) = \int_{X^{-1}(A)} g(X(\omega)) \mathsf{P}(d\omega).$$

Пусть $\xi: \Omega \to \mathbb{R}(\mathbb{R}^n)$, в таком случае вероятностная мера P_ξ однозначно восстанавливается по F_ξ , следовательно, по теореме $\mathsf{E} g(\xi) = \int g(\xi) \, d\mathsf{P} = \int g(x) \mathsf{P}_\xi(dx) = \int g(x) \, dF_\xi(x)$.

Пусть ξ — абсолютно непрерывная случайная величина с плотностью $p_{\xi}(x)$, тогда $dF_{\xi}(x)=p_{\xi}(x)\,dx$, следовательно $\mathsf{E}g(x)=\int\limits_{\mathbb{R}}g(x)p_{\xi}(x)\,dx$.

Прямое произведение вероятностных пространств и формула свертки

Определение. Пусть $(\Omega_1, \mathcal{F}_1, \mathsf{P}_1)$ и $(\Omega_2, \mathcal{F}_2, \mathsf{P}_2)$ — два вероятностных пространства. Тогда $(\Omega, \mathcal{F}, \mathsf{P})$ — их прямое произведение, если

- 1. $\Omega = \Omega_1 \times \Omega_2$;
- 2. $\mathcal{F} = \mathcal{F}_1 \otimes \mathcal{F}_2$, то есть $\mathcal{F} = \sigma\{\{B_1 \times B_2\} | B_1 \in \mathcal{F}_1, B_2 \in \mathcal{F}_2\};$
- 3. $P = P_1 \otimes P_2$, то есть P продолжение вероятностной меры $P_1 \times P_2$, заданное на прямоугольнике $B_1 \times B_2$, $B_1 \in \mathcal{F}_1$, $B_2 \in \mathcal{F}_2$ по правилу $P(B_1 \times B_2) = P_1(B_1) \cdot P_2(B_2)$. Так как $\{B_1 \times B_2\}$ полукольцо, то P существует и единственна по теореме Каратеодори.

Теорема (Фубини). $[6/\partial]$ Пусть $(\Omega, \mathcal{F}, \mathsf{P})$ — прямое произведение вероятносных пространств $(\Omega_1, \mathcal{F}_1, \mathsf{P}_1)$ и $(\Omega_2, \mathcal{F}_2, \mathsf{P}_2)$. Пусть $\xi: \Omega \to \mathbb{R}$ такая, что $\int_{\Omega} |\xi(\omega_1, \omega_2)| \, d\mathsf{P} < +\infty$. Тогда интегралы $\int_{\Omega_1} \xi(\omega_1, \omega_2) \mathsf{P}_1(d\omega_1)$ и $\int_{\Omega_2} \xi(\omega_1, \omega_2) \mathsf{P}_2(d\omega_2)$ определены почти наверное относительно P_2 и P_1 соответственно, являются измеримыми случайными величинами относительно \mathcal{F}_2 и \mathcal{F}_1 , следовательно,

$$\int_{\Omega} \xi(\omega_1, \omega_2) d\mathsf{P} = \int_{\Omega_2} \int_{\Omega_1} \xi(\omega_1, \omega_2) \mathsf{P}_1(d\omega_1) \mathsf{P}_2(d\omega_2) = \int_{\Omega_1} \int_{\Omega_2} \xi(\omega_1, \omega_2) \mathsf{P}_2(d\omega_2) \mathsf{P}_1(d\omega_1).$$

Из всего этого следует, что двойной интеграл равен повторному.

Утверждение. Пусть $\xi \perp \eta$ — случайные величины, тогда $(\mathbb{R}^2, \mathscr{B}(\mathbb{R}^2), \mathsf{P}_{(\xi,\eta)}) = (\mathbb{R}, \mathscr{B}(\mathbb{R}), \mathsf{P}_{\xi}) \otimes (\mathbb{R}, \mathscr{B}(\mathbb{R}), \mathsf{P}_{\eta}).$

▲ Достаточно проверить свойство прямого произведения:

- 1. $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$;
- 2. $\mathscr{B}(\mathbb{R}^2) = \sigma(\mathscr{B}(\mathbb{R}) \times \mathscr{B}(\mathbb{R}))$ по определению борелевской σ -алгебры в \mathbb{R}^2 ;

3.
$$P_{(\xi,\eta)}(B_1 \times B_2) = P(\xi \in B_1, \eta \in B_2) = P(\xi \in B_1) \cdot P(\eta \in B_2) = P_{\xi}(B_1) \cdot P_{\eta}(B_2)$$
.

Лемма (о свертке). Пусть случайные величины ξ и η независимы c функциями распределения F_{ξ} и F_{η} . Тогда

$$F_{\xi+\eta}(z) = \int_{\mathbb{R}} F_{\xi}(z-x) dF_{\eta}(x) = \int_{\mathbb{R}} F_{\eta}(z-x) dF_{\xi}(x).$$

Если ξ и η имеют плотности распределения f_{ξ} и f_{η} соответственно, то $\xi + \eta$ имеет плотность распределения

$$f_{\xi+\eta}(z) = \int_{\mathbb{R}} f_{\xi}(z-x) f_{\eta}(x) dx = \int_{\mathbb{R}} f_{\eta}(z-x) f_{\xi}(x) dx$$

.

Δ Заметим, $F_{\xi+\eta}(z) = \mathsf{P}(\xi+\eta\leqslant z)$, а по теореме о замене переменных в интеграле Лебега это равно $\int\limits_{\mathbb{R}^2} I(x+y\leqslant z)\mathsf{P}_{\xi}(dx)\mathsf{P}_{\eta}(dy)$, полученный двойной интеграл по Фубини можно записать как повторный:

$$\int\limits_{\mathbb{R}} \left(\int\limits_{\mathbb{R}} I(x+y\leqslant z) \mathsf{P}_{\xi}(dx) \right) \mathsf{P}_{\eta}(dy) = \int\limits_{\mathbb{R}} \left(\int\limits_{-\infty}^{z-y} \mathsf{P}_{\xi}(dx) \right) \mathsf{P}_{\eta}(dy) = \int\limits_{\mathbb{R}} F_{\xi}(z-y) \, dF_{\eta}(y).$$

Перейдем ко второму пункту доказательства:

$$F_{\xi+\eta}(z) = \int\limits_{\mathbb{R}^2} I(x+y\leqslant z) \mathsf{P}_{\xi}(dx) \mathsf{P}_{\eta}(dy) = \int\limits_{\mathbb{R}^2} I(x+y\leqslant z) f_{\xi}(x) f_{\eta}(y) \, dx \, dy \stackrel{t=x+y}{=}$$

$$\stackrel{t=x+y}{=} \int\limits_{\mathbb{R}^2} I(t\leqslant z) f_{\xi}(x) f_{\eta}(t-x) \, dx \, dt = \int\limits_{-\infty}^z \left(\int\limits_{\mathbb{R}} f_{\xi}(x) f_{\eta}(t-x) \, dx \right) \, dt.$$

Следовательно, по определению плотности, $f_{\xi+\eta}(t) = \int_{\mathbb{R}} f_{\xi}(x) f_{\eta}(t-x) dx$.

5 Лекция от 17.03.2018

Дисперсия и ковариация

Определение. Дисперсией случайной величины ξ называется $\mathsf{D}\xi = \mathsf{E}(\xi - \mathsf{E}\xi)^2,$ если $\mathsf{E}\xi < +\infty.$ Очевидно, $\mathsf{D}\xi \geqslant 0.$

Определение. Ковариацией двух случайных величин называется $\text{cov}(\xi,\eta) = \mathsf{E}\big((\xi-\mathsf{E}\xi)(\eta-\mathsf{E}\eta)\big)$. Легко заметить, что $\text{cov}(\xi,\xi) = \mathsf{D}\xi$. Если $\text{cov}(\xi,\eta) = 0$, то случайные величины ξ и η называются некоррелированными.

Определение. Величина $\rho(\xi,\eta)=\frac{\mathrm{cov}(\xi,\eta)}{\sqrt{\mathsf{D}\xi\cdot\mathsf{D}\eta}}$ называется коэффициентом корреляции случайных величин ξ и η при условии, что $\mathsf{D}\xi$ и $\mathsf{D}\eta$ не равны нулю и конечны.

Свойства ковариации и дисперсии

Свойство 1 (Билинейность ковариации). $cov(a\xi+b\zeta,\eta) = a cov(\xi,\eta) + b cov(\zeta,\eta)$

Свойство 2.
$$cov(\xi, \eta) = \mathsf{E}\xi\eta - \mathsf{E}\xi \cdot \mathsf{E}\eta \ \Rightarrow \ \mathsf{D}\xi = \mathsf{E}\xi^2 - (\mathsf{E}\xi)^2$$

Свойство 3. Пусть $c \in \mathbb{R}$, тогда $\mathsf{D}(c\xi) = c^2 \mathsf{D}\xi$, $\mathsf{D}(\xi + c) = \mathsf{D}\xi$, $\mathsf{D}c = 0$.

Свойство 4 (Неравенство Коши-Буняковского). $|\mathsf{E}\xi\eta|^2\leqslant\mathsf{E}\xi^2\cdot\mathsf{E}\eta^2$

▲ Рассмотрим для $\lambda \in \mathbb{R}$ функцию $f(\lambda) = \mathsf{E}(\xi - \lambda \eta)^2 \geqslant 0$. Имеем $f(\lambda) = \mathsf{E}\xi^2 + 2\lambda\mathsf{E}\xi\eta + \lambda^2\mathsf{E}\eta^2 \geqslant 0$. Для выполнения неравенства дискриминант полученного многочлена должен быть меньше нуля: $D = 4\mathsf{E}\xi\eta - 4\mathsf{E}\xi^2\eta^2 \leqslant 0$, откуда следует неравенство.

Свойство 5. $|\rho(\xi,\eta)|\leqslant 1$, причем $\rho(\xi,\eta)=\pm 1 \iff \xi=a\eta+b$ почти наверное.

▲ Рассмотрим случайные величины $\xi_1 = \xi - \mathsf{E}\xi$ и $\eta_1 = \eta - \mathsf{E}\eta$, следовательно $\rho(\xi_1,\eta_1) = \frac{\mathsf{E}\xi_1\eta_1}{\sqrt{\mathsf{E}\xi_1^2\cdot\mathsf{E}\eta_1^2}} \leqslant 1$ по неравенству Коши-Буняковского. Пусть $|\rho(\xi_1,\eta_1)| = 1$, тогда дискриминант D=0, следовательно, $\exists!\lambda_0: f(\lambda_0)=0$, то есть $\mathsf{E}(\xi_1+\lambda_0\eta_1)^2=0$, отсюда $(\xi_1+\lambda_0\eta)^2=0$ почти наверное, а, значит, и $\xi_1+\lambda_0\eta=0$ почти наверное. Теперь можно заключить, что $\xi=\mathsf{E}\xi-\lambda_0(\eta-\mathsf{E}\eta)$.

Свойство 6. *Если* $\xi \perp \eta$, то $cov(\xi, \eta) = 0$, обратное неверное.

$$\blacktriangle$$
 $\operatorname{cov}(\xi,\eta) = \mathsf{E}\xi\eta - \mathsf{E}\xi \cdot \mathsf{E}\eta$, но так как $\xi \perp \!\!\! \perp \eta$, то $\mathsf{E}\xi\eta = \mathsf{E}\xi \cdot \mathsf{E}\eta$, следовательно, $\operatorname{cov}(\xi,\eta) = 0$.

Пемма. Пусть ξ_1, \ldots, ξ_n — попарно некоррелированные случайные величины (например, независимые в совокупности), $D\xi_1 + \ldots + D\xi_n < +\infty$, тогда $D(\xi_1 + \ldots + \xi_n) = D\xi_1 + \ldots + D\xi_n$.

A

$$D\left(\sum_{i=1}^{n} \xi_i\right) = \operatorname{cov}\left(\sum_{i=1}^{n} \xi_i, \sum_{j=1}^{n} \xi_j\right) = \sum_{i,j=1}^{n} \operatorname{cov}(\xi_i, \xi_j).$$

По условию, если $i \neq j$, то $cov(\xi_i, \xi_j) = 0$, следовательно

$$D\left(\sum_{i=1}^n \xi_i\right) = \sum_{i=1}^n \operatorname{cov}(\xi_i, \xi_i) = \sum_{i=1}^n \mathsf{D}\xi_i.$$

Многомерный случай

Определение. Пусть $\vec{\xi} = (\xi_1, \dots, \xi_n)$ — случайный вектор, тогда его математическим ожиданием называется вектор из математических ожиданий его компонент, то есть $\vec{\xi} = (\xi_1, \dots, \xi_n)$.

Определение. Матрицей ковариаций случайного вектора $\vec{\xi}$ называется

$$\operatorname{Var} \vec{\xi} = \begin{pmatrix} \operatorname{cov}(\xi_1, \xi_1) & \cdots & \operatorname{cov}(\xi_1, \xi_n) \\ \vdots & \ddots & \vdots \\ \operatorname{cov}(\xi_n, \xi_1) & \cdots & \operatorname{cov}(\xi_n, \xi_n) \end{pmatrix} = \left\| \operatorname{cov}(\xi_i, \xi_j) \right\|_{i,j=1}^n.$$

Лемма. Mampuua ковариаций случайного вектора — симметрическая и неотрицательно определенная¹.

 \blacktriangle Матрица $\mathrm{Var}\, \vec{\xi} = \|\mathrm{cov}(\xi_i,\xi_j)\|_{i,j=1}^n$ — симметрическая, так как $r_{ij} \equiv \mathrm{cov}(\xi_i,\xi_j) = \mathrm{cov}(\xi_j,\xi_i) \equiv r_{ji}$. Пусть $\vec{x} \in \mathbb{R}^n$, тогда

$$\vec{x}^T \operatorname{Var} \vec{\xi} \vec{x} = (\vec{x}, \operatorname{Var} \vec{\xi} \vec{x}) = \sum_{i,j=1}^n \operatorname{cov}(\xi_i, \xi_j) x_i x_j = \sum_{i,j=1}^n \operatorname{cov}(x_i \xi_i, x_j \xi_j) = \\ = \operatorname{cov} \left(\sum_{i=1}^n x_i \xi_i, \sum_{j=1}^n x_j \xi_j \right) = \operatorname{cov} \left(\sum_{i=1}^n x_i \xi_i, \sum_{i=1}^n x_i \xi_i \right) = \operatorname{D} \left(\sum_{i=1}^n x_i \xi_i \right) \geqslant 0.$$

Неравенства

Лемма (Неравенство Маркова). Пусть $\xi \geqslant 0$ — случайная величина, $\mathsf{E}\xi < +\infty$ (существует). Тогда $\forall \varepsilon > 0 : \mathsf{P}(\xi \geqslant \varepsilon) \leqslant \frac{\mathsf{E}\xi}{\varepsilon}$.

¹Матрица A неотрицательно определена, если $\forall \vec{x} \in \mathbb{R}^n : \vec{x}^T A \vec{x} \geqslant 0$

▲ $P(\xi \geqslant \varepsilon) = EI(\xi \geqslant \varepsilon)$. На множестве $\xi \geqslant \varepsilon$ случайная величина $\frac{\xi}{\varepsilon} \geqslant 1$, следовательно $EI(\xi \geqslant \varepsilon) \leqslant E\left(\frac{\xi}{\varepsilon} \cdot I(\xi \geqslant \varepsilon)\right) \leqslant \frac{1}{\varepsilon} \cdot E\xi$.

Лемма (Неравенство Чебышёва). Пусть $\xi - \epsilon$ лучайная величина такая, что $\mathsf{D}\xi < +\infty, \ mor\partial a \ \forall \varepsilon > 0 : \mathsf{P}\big(|\xi - \mathsf{E}\xi| \geqslant \varepsilon\big) \leqslant \frac{\mathsf{D}\xi}{\varepsilon^2}.$

▲
$$P(|\xi - E\xi| \ge \varepsilon) = P(|\xi - E\xi|^2 \ge \varepsilon^2)$$
. Из неравенства Маркова имеем, что $P(|\xi - E\xi|^2 \ge \varepsilon^2) \le \frac{E(\xi - E\xi)^2}{\varepsilon^2} = \frac{D\xi}{\varepsilon^2}$. ■

Лемма (Неравенство Йенсена). Пусть g(x) — борелевская выпуклая вниз (вверх) функция $u \ \mathsf{E} \xi < +\infty$. Тогда $\mathsf{E} g(\xi) \geqslant g(\mathsf{E} \xi)$ ($\mathsf{E} g(\xi) \leqslant g(\mathsf{E} \xi)$).

A Так как g(x) выпукла вниз, то $\forall x_0 \in \mathbb{R} : g(x) \geqslant g(x_0) + \lambda(x_0)(x - x_0)$. Положим $x = \xi$ и $x_0 = \mathsf{E}\xi$, тогда $g(\xi) \geqslant g(\mathsf{E}\xi) + \lambda(\mathsf{E}\xi)(\xi - \mathsf{E}\xi)$, считая математическое ожидание от обоих частей неравенства, получаем $\mathsf{E}g(\xi) \geqslant g(\mathsf{E}\xi) + 0$.

Определение. Пусть ξ и $\{\xi_i\}_{i=1}^{+\infty}$ — случайные величины, тогда $\xi_n \stackrel{\mathsf{P}}{\to} \xi$ сходится по вероятности, если $\forall \varepsilon > 0 : \mathsf{P} \big(\omega : |\xi_n(\omega) - \xi(\omega)| > \varepsilon \big) \to 0$ при $n \to +\infty$.

Теорема (Закон больших чисел в форме Чебышёва). Пусть $\{\xi_i\}_{i=1}^{+\infty}$ — последовательность попарно некоррелированных случайных величин таких, что $\forall n \in \mathbb{N} : \mathsf{D}\xi_n \leqslant C$. Обозначим $S_n = \sum_{i=1}^n \xi_i$, тогда $\frac{S_n - \mathsf{E}S_n}{n} \overset{\mathsf{P}}{\to} 0$ при $n \to +\infty$.

▲ По неравенству Чебышёва

$$\mathsf{P}\left(\left|\frac{S_n-\mathsf{E}S_n}{n}\right|>\varepsilon\right)\leqslant \frac{\mathsf{D}S_n}{n^2\varepsilon^2}.$$

Применяя лемму о дисперсии суммы, получаем

$$\frac{1}{n^2 \varepsilon^2} \sum_{i=1}^n \mathsf{D}\xi_i \to 0.$$

Следствие. Пусть $\{\xi_n\}_{i=1}^{+\infty}$ — независимые случайные величины такие, что $\forall n \in \mathbb{N} : \mathsf{D}\xi_n \leqslant C \land \mathsf{E}\xi_n = a.$ Тогда $\frac{S_n}{n} \stackrel{\mathsf{P}}{\to} a$ при $n \to +\infty$.

Условные математические ожидания (УМО)

Пусть $(\Omega, \mathcal{F}, \mathsf{P})$ — вероятностное пространство; $\xi : \Omega \to \mathbb{R}$ — случайная величина; $\mathcal{F}_{\xi} = \{\xi^{-1}(B), B \in \mathscr{B}(\mathbb{R})\}$ — σ -алгебра, порожденная ξ . Если \mathcal{G} — под σ -алгебра σ -алгебра \mathcal{F} , то ξ называется \mathcal{G} -измеримой, если $\mathcal{F}_{\xi} \subset \mathcal{G}$.

Определение. Пусть ξ — случайная величина на $(\Omega, \mathcal{F}, \mathsf{P}), \mathcal{G}$ — под σ -алгебра \mathcal{F} . Условным математическим ожиданием случайной величины ξ относительно \mathcal{G} называется случайная величина $\mathsf{E}(\xi|\mathcal{G}),$ обладающая следующими свойствами:

- 1. $\mathsf{E}(\xi|\mathcal{G})$ является \mathcal{G} -измеримой случайной величиной;
- 2. $\forall A \in \mathcal{G} : \mathsf{E}(\xi \cdot I_A) = \mathsf{E}\big(\mathsf{E}(\xi|\mathcal{G}) \cdot I_A\big)$ или, что тоже самое, $\int\limits_A \xi \, d\mathsf{P} = \int\limits_A \mathsf{E}(\xi|\mathcal{G}) \, d\mathsf{P}$.

Обозначаем $\mathsf{E}(\xi|\eta) \equiv \mathsf{E}(\xi|\mathcal{F}_{\eta})$, если такая η существует.

Определение. Пусть $(\Omega, \mathcal{F}, \mathsf{P})$ — вероятностное пространство. Функция множеств $\nu : \mathcal{F} \to \mathbb{R}$ — заряд (мера со знаком), если ν — σ -аддитивна на \mathcal{F} , то есть $\nu \left(\bigsqcup_{i=1}^{+\infty} A_i \right) = \sum_{i=1}^{+\infty} \nu(A_i)$ для $\{A_i\}_{i=1}^{+\infty} \in \mathcal{F}$, ряд в правой части сходится абсолютно и $\sup_{A \in \mathcal{F}} |\nu(A)| < +\infty$.

Определение. Заряд ν называется абсолютно непрерывным относительно меры P, если $\forall A \in \mathcal{F} : (P(A) = 0 \Rightarrow \nu(A) = 0).$

Теорема (Радона-Никодима). $[6/\partial]$ Пусть $(\Omega, \mathcal{F}, \mathsf{P})$ — вероятностное пространство, ν — заряд на \mathcal{F} , абсолютно непрерывный относительно меры P . Тогда существует и единственна почти наверное случайная величина η на $(\Omega, \mathcal{F}, \mathsf{P})$ такая, что $\mathsf{E}\eta < +\infty$ и $\nu(A) = \int_A \eta \, d\mathsf{P} = \mathsf{E}\eta \cdot I_A$.

6 Лекция от 24.03.2018

Лемма (о существовании УМО). Пусть ξ — случайная величина $c \ E|\xi| < +\infty$. Тогда $\forall \mathcal{G} \subset \mathcal{F}$ (под σ -алгебра) : $E(\xi|\mathcal{G})$ существует и единственно почти наверное.

▲ Рассмотрим вероятностное пространство $(\Omega, \mathcal{G}, \mathsf{P})$. Положим, что $\forall A \in \mathcal{G}: Q(A) = \int\limits_A \xi \, d\mathsf{P} = \mathsf{E}(\xi \cdot I_A)$, следовательно, Q(A) — заряд на $(\Omega, \mathcal{G}, \mathsf{P})$, абсолютно непрерывный относительно меры P . Тогда по теореме Радона-Никодима существует и единственна почти наверное случайная величина η на $(\Omega, \mathcal{G}, \mathsf{P})$ с $\mathsf{E}\eta < +\infty$ такая, что $Q(A) = \int\limits_A \eta \, d\mathsf{P}$. Значит, η — УМО. Действительно, η \mathcal{G} -измерима и $\forall A \in \mathcal{G}: \int\limits_A \eta \, d\mathsf{P} = \int\limits_A \xi \, d\mathsf{P}$.

Теорема. Пусть σ -алгебра $\mathcal G$ порожедена разбиением Ω $\{D_n\}_{n=1}^{+\infty}$, причем, $\mathsf{P}(D_n) > 0$. Тогда, если $\mathsf{E}\xi < +\infty$, то $\mathsf{E}(\xi|\mathcal G) = \sum_{n=1}^{+\infty} \frac{\mathsf{E}(\xi \cdot I(D_n))}{\mathsf{P}(D_n)} \cdot I(D_n)$.

▲ Пусть η \mathcal{G} -измерима. Покажем, что $\eta = \sum_{n=1}^{+\infty} c_n I_{D_n}(\omega)$. Пусть $\eta \neq$ const на D_n , тогда $\exists a \neq b : \{\omega : \eta(\omega) = a\} \cap D_n \neq \varnothing$ и $\{\omega : \eta(\omega) = b\} \cap D_n \neq \varnothing$, следовательно, $\{\omega : \eta(\omega) = a\} \cap D_n = D_n$ и $\{\omega : \eta(\omega) = b\} \cap D_n \neq D_n$, иначе $\{\omega : \eta(\omega) = a\} \notin \mathcal{G}$, то есть η не \mathcal{G} -измерима. Получили противоречие.

Найдем $c_n: \mathsf{E}(\xi|\mathcal{G}) = \sum_{n=1}^{+\infty} c_n I_{D_n}$, так как $\mathsf{E}(\xi|\mathcal{G})$ \mathcal{G} -измерима по определению.

$$\mathsf{E}(\xi \cdot I_{D_n}) = \mathsf{E}\big(\mathsf{E}(\xi|\mathcal{G}) \cdot I_{D_n}\big) = \mathsf{E}\left(\sum_{m=1}^{+\infty} c_m I_{D_m} I_{D_n}\right) = \mathsf{E}(c_n I_{D_n}) = c_n \mathsf{P}(D_n).$$

Следовательно, $c_n = \frac{\mathsf{E}(\xi \cdot I_{D_n})}{\mathsf{P}(D_n)}.$

Свойства УМО

Свойство МО : если $\forall A \in \mathcal{F} : \mathsf{E}(\xi \cdot I_A) = \mathsf{E}(\eta \cdot I_A)$, то $\xi = \eta$ почти наверное на $(\Omega, \mathcal{F}, \mathsf{P})$.

Свойство 1. Если ξ *G*-измерима, то $\mathsf{E}(\xi|\mathcal{G}) = \xi$ почти наверное.

\(\bigcup \) \(\xi \) удовлетворяет свойствам УМО: первому по условиям, а второму, поскольку \(\int \mathbb{E}(\xi|\mathbb{G}) d\mathbb{P} = \int \xi \xi d\mathbb{P}. Следовательно, \(\mathbb{E}(\xi|\mathbb{G}) = \xi \) почти наверное. \(\bigcup \)

Свойство 2 (формула полной вероятности). $\mathsf{E}\big(\mathsf{E}(\xi|\mathcal{G})\big) = \mathsf{E}\xi$.

▲ Так как $\Omega \in \mathcal{G}$, то по интегральному свойству $\mathsf{E}\big(\mathsf{E}(\xi|\mathcal{G})\big) = \mathsf{E}\big(\mathsf{E}(\xi|\mathcal{G})\cdot I_{\Omega}\big) = \mathsf{E}(\xi\cdot I_{\Omega}) = \mathsf{E}\xi$.

Свойство 3 (линейность). $\mathsf{E}(\alpha\xi + \beta\eta|\mathcal{G}) = \alpha\mathsf{E}(\xi|\mathcal{G}) + \beta\mathsf{E}(\eta|\mathcal{G}).$

 \blacktriangle $\alpha \mathsf{E}(\xi|\mathcal{G}) + \beta \mathsf{E}(\eta|\mathcal{G})$ \mathcal{G} -измерима. Осталось проверить интегральное свойство:

$$\forall A \in G : \int_{A} \left(\alpha \mathsf{E}(\xi|\mathcal{G}) + \beta \mathsf{E}(\eta|\mathcal{G}) \right) d\mathsf{P} = \alpha \int_{A} \mathsf{E}(\xi|\mathcal{G}) \, d\mathsf{P} + \beta \int_{A} \mathsf{E}(\eta|\mathcal{G}) \, d\mathsf{P} =$$

$$= \alpha \int_{A} \xi \, d\mathsf{P} + \beta \int_{A} \eta \, d\mathsf{P} = \int_{A} \left(\alpha \xi + \beta \eta \right) d\mathsf{P} = \int_{A} \mathsf{E}(\alpha \xi + \beta \eta |\mathcal{G}) \, d\mathsf{P}$$

Свойство 4. Пусть ξ не зависит от \mathcal{G} , то есть $\mathcal{F}_{\xi} \perp \mathcal{G}$. Тогда $\mathsf{E}(\xi|\mathcal{G}) = \mathsf{E}\xi$ почти наверное.

▲ Пусть $\xi \perp \!\!\! \perp \!\!\! \mathcal{G}$, что равносильно $\forall A \in \mathcal{G} : \xi \perp \!\!\! \perp I_A$. Е ξ — константа, следовательно, она измерима относительно \mathcal{G} , так как $\mathcal{F}_{\mathsf{E}\xi} = \{\Omega,\varnothing\}$. Интегральное свойство УМО: $\mathsf{E}(\xi \cdot I_A) = \boxed{\mathsf{E}\big(\mathsf{E}(\xi|\mathcal{G}) \cdot I_A\big)} = \mathsf{E}\xi \cdot \mathsf{P}(A) = \boxed{\mathsf{E}\big(\mathsf{E}(\xi) \cdot I_A\big)}$, следовательно, $\mathsf{E}\xi = \mathsf{E}(\xi|\mathcal{G})$.

Свойство 5. Пусть $\xi \leqslant \eta$ почти наверное, тогда $\mathsf{E}(\xi|\mathcal{G}) \leqslant \mathsf{E}(\eta|\mathcal{G})$ почти наверное.

▲ $\xi \leqslant \eta$ почти наверное, следовательно, $\forall A \in \mathcal{G}: \int\limits_A \xi \, d\mathsf{P} \leqslant \int\limits_A \eta \, d\mathsf{P}$, что равносильно $\int\limits_A \mathsf{E}(\xi|\mathcal{G}) \, d\mathsf{P} \leqslant \int\limits_A \mathsf{E}(\eta|\mathcal{G}) \, d\mathsf{P}$, а из свойств математического ожидания вытекает, что $\mathsf{E}(\xi|\mathcal{G}) \leqslant \mathsf{E}(\eta|\mathcal{G})$ почти наверное.

Свойство 6. $|E(\xi|\mathcal{G})| \leq E(|\xi||\mathcal{G})$.

$$\blacktriangle -|\xi| \leqslant \xi \leqslant |\xi|.$$

Свойство 7 (телескопическое свойство). Пусть $\mathcal{G}_1 \subset \mathcal{G}_2 \subset \mathcal{F}$, тогда

- 1. $\mathsf{E}(\mathsf{E}(\xi|\mathcal{G}_1)|\mathcal{G}_2) = \mathsf{E}(\xi|\mathcal{G}_1)$ почти наверное,
- 2. $\mathsf{E}\big(\mathsf{E}(\xi|\mathcal{G}_2)\big|\mathcal{G}_1\big) = \mathsf{E}(\xi|\mathcal{G}_1)$ почти наверное.
- \blacktriangle $\mathsf{E}(\xi|\mathcal{G}_1)$ \mathcal{G}_2 -измерима, следовательно, по первому свойству

$$\mathsf{E}\big(\mathsf{E}(\xi|\mathcal{G}_1)\big|\mathcal{G}_2\big) = \mathsf{E}(\xi|\mathcal{G}_1).$$

Пусть $A \in \mathcal{G}_1$, следовательно, $A \in \mathcal{G}_2$.

$$\mathsf{E}\big(\mathsf{E}(\xi|\mathcal{G}_1)\cdot I_A) = \mathsf{E}(\xi\cdot I_A) = \mathsf{E}\big(\mathsf{E}(\xi|\mathcal{G}_2)\cdot I_A\big) = \mathsf{E}\big(\mathsf{E}\big(\mathsf{E}(\xi|\mathcal{G}_2)\big|\mathcal{G}_1\big)\cdot I_A\big).$$

По свойству математического ожидания $\mathsf{E}(\xi|\mathcal{G}_1) = \mathsf{E}\big(\mathsf{E}(\xi|\mathcal{G}_2)\big|\mathcal{G}_1\big).$

Свойство 8. $[6/\partial]$ Пусть $\forall n > 1 : |\xi_n| \leqslant \eta$, $\exists \eta < +\infty \ u \ \xi_n \xrightarrow{n.n.} \xi$. Тогда $\forall \mathcal{G} \subset \mathcal{F} : \mathsf{E}(\xi_n|\mathcal{G}) \xrightarrow{n.n.} \mathsf{E}(\xi|\mathcal{G})$.

Свойство 9. Пусть η *G*-измерима, $\mathsf{E}|\xi\eta|<+\infty$, $\mathsf{E}|\xi|<+\infty$. Тогда $\mathsf{E}(\xi\eta|\mathcal{G})=\eta\mathsf{E}(\xi|\mathcal{G})$ почти наверное.

 \blacktriangle Пусть $\eta = I_B$, где $B \in \mathcal{G}$. Тогда

$$\forall A \in \mathcal{G} : \mathsf{E}\big(\mathsf{E}(\xi \eta | \mathcal{G}) \cdot I_A\big) = \mathsf{E}(\xi \eta \cdot I_A) = \mathsf{E}(\xi I_B I_A) = \\ = \mathsf{E}(\xi I_{A \cap B}) = \mathsf{E}\big(\mathsf{E}(\xi | \mathcal{G}) \cdot I_{A \cap B}\big) = \mathsf{E}\big(\eta \mathsf{E}(\xi | \mathcal{G}) \cdot I_A\big).$$

Следовательно, $\mathsf{E}(\xi\eta|\mathcal{G}) = \eta \mathsf{E}(\xi|\mathcal{G})$ почти наверное по свойству математического ожидания.

Теорема (о наилучшем квадратичном прогнозе). Пусть ξ — случайная величина, \mathcal{G} — подо-алгебра \mathcal{F} . Обозначим $\mathcal{A}_{\mathcal{G}} = \{\eta | \eta - \mathcal{G}$ -измеримая сл. вел. $\}$. Тогда $\inf_{\eta \in \mathcal{A}_{\mathcal{G}}} \mathsf{E}(\xi - \eta)^2 = \mathsf{E}\big(\xi - \mathsf{E}(\xi | \mathcal{G})\big)^2$.

 \blacktriangle Пусть $\eta \in \mathcal{A}_{\mathcal{G}}$, тогда

$$\begin{split} \mathsf{E}(\xi-\eta)^2 &= \mathsf{E}\big(\xi-\mathsf{E}(\xi|\mathcal{G})+\mathsf{E}(\xi|\mathcal{G})-\eta\big)^2 = \\ &= \mathsf{E}\big(\xi-\mathsf{E}(\xi|\mathcal{G})\big)^2 + \mathsf{E}\big(\mathsf{E}(\xi|\mathcal{G})-\eta\big)^2 + 2\mathsf{E}\big(\big(\xi-\mathsf{E}(\xi|\mathcal{G})\big)\big(\mathsf{E}(\xi|\mathcal{G})-\eta\big)\big). \end{split}$$

Пусть $\varkappa \equiv \xi - \mathsf{E}(\xi|\mathcal{G}), \ \psi \equiv \mathsf{E}(\xi|\mathcal{G}) - \eta$. Рассмотрим $\mathsf{E}(\varkappa\psi)$, по свойству 2 это равно $\mathsf{E}\big(\mathsf{E}(\varkappa\psi|\mathcal{G})\big)$, а по свойству 9, это можно переписать, как $\mathsf{E}\big(\psi\mathsf{E}(\varkappa|\mathcal{G})\big)$. Но $\mathsf{E}(\varkappa|\mathcal{G}) = \mathsf{E}\big((\xi - \mathsf{E}(\xi|\mathcal{G}))\big|\mathcal{G}\big) = 0$, следовательно, $\mathsf{E}(\varkappa\psi) = 0$. Значит $\mathsf{E}(\xi - \eta)^2 = \mathsf{E}\big(\xi - \mathsf{E}(\xi|\mathcal{G})\big)^2 + \mathsf{E}\big(\mathsf{E}(\xi|\mathcal{G}) - \eta\big)^2 \geqslant \mathsf{E}\big(\xi - \mathsf{E}(\xi|\mathcal{G})\big)^2$.

$7\,\,\mathrm{Лекция}$ от 31.03.2018

Условные распределения

Определение. Пусть $A \in \mathcal{F}$, тогда по определению $\mathsf{P}(A|\mathcal{G}) = \mathsf{E}(I_A|\mathcal{G}), \, \mathcal{G} \subset \mathcal{F}$. Если ξ, η — случайные величины на $(\Omega, \mathcal{F}, \mathsf{P})$, то $\mathsf{E}(\xi|\eta) = \mathsf{E}(\xi|\mathcal{F}_{\eta})$.

Определение. Величиной $\mathsf{E}(\xi|\eta=y)$ называется такая борелевская функция $\varphi(y),$ что $\forall B\in\mathscr{B}(\mathbb{R}): \mathsf{E}(\xi\cdot I(\eta\in B))=\int\limits_{B}\varphi(y)\mathsf{P}_{\eta}(dy).$

Лемма. Если $\mathsf{E}\xi$ существует, то $\mathsf{E}(\xi|\eta=y)$ существует и единственно почти наверное относительно P_{η} .

▲ Рассмотрим $\psi(B) = \mathsf{E}\big(\xi \cdot I(\eta \in B)\big)$ — заряд на $\big(\mathbb{R}, \mathscr{B}(\mathbb{R}), \mathsf{P}_{\eta}\big)$, потому что $\psi(B)$ σ -аддитивна по свойству интеграла Лебега и конечна, так как $\mathsf{E}(\xi) < +\infty$. ψ абсолютно непрерывна относительно P_{η} , так как если $\mathsf{P}_{\eta}(B) = 0$, то $I(\eta \in B) = 0$ почти наверное, следовательно, $\mathsf{E}\big(\xi \cdot I(\eta \in B)\big) = 0$, а, значит, выполнены условия теоремы Радона-Никодима, то есть существует и единственна почти наверное случайная величина φ на $\big(\mathbb{R}, \mathscr{B}(\mathbb{R}), P_{\eta}\big)$ (борелевская функция) такая, что $\psi(B) = \int\limits_{\mathcal{B}} \varphi(y) \mathsf{P}_{\eta}(dy)$.

Лемма. $\mathsf{E}(\xi|\eta=y)=\varphi(y)$ тогда и только тогда, когда $\mathsf{E}(\xi|\eta)=\varphi(\eta)$ почти наверное.

▲ Пусть $B \in \mathcal{B}(\mathbb{R})$, тогда $\mathsf{E}\big(\mathsf{E}(\xi|\eta) \cdot I(\eta \in B)\big) = \mathsf{E}\big(\xi \cdot I(\eta \in B)\big) = \int_{B} \varphi(y) \mathsf{P}_{\eta}(dy)$.

По теореме о замене переменных в интеграле Лебега это можно переписать, как $\int\limits_{\{\eta\in B\}}\varphi(\eta)\,d\mathsf{P}=\mathsf{E}\big(\varphi(\eta)\cdot I(\eta\in B)\big),$ что равносильно условию $\mathsf{E}(\xi|\eta)=\varphi(\eta)$ почти $\{\eta\in B\}$

наверное по Свойству. Обратно аналогично, по тем же равенствам.

Следствие. Пусть $\xi - \mathcal{F}_{\eta}$ -измеримая случайная величина, тогда существует борелевская функция $\psi(x)$ такая, что $\xi = \psi(x)$ почти наверное.

A Так как $\xi - \mathcal{F}_{\eta}$ -измеримая, то по свойству 1 $\xi = \mathsf{E}(\xi|\eta)$ почти наверное. С другой стороны, так как существует единственная $\psi(x): \psi(x) = \mathsf{E}(\xi|\eta = x)$, то $\xi = \mathsf{E}(\xi|\eta) = \psi(\eta)$.

Определение. Условным распределением случайной величины ξ при условии $\eta = y$ называется вероятностная мера $\mathsf{P}(\xi \in B | \eta = y) = \mathsf{E}\big(I(\xi \in B) | \eta = y)$. Является мерой на $\mathscr{B}(R)$.

Определение. Условной плотностью случайной величины ξ относительно η называется плотность условного распределения $\mathsf{P}(\xi \in B | \eta = y)$, то есть функция $f_{\xi|\eta}(x|y)$ такая, что $\mathsf{P}(\xi \in B | \eta = y) = \int\limits_{B} f_{\xi|\eta}(x|y) \, dx$.

Теорема (о свойстве условной плотности). Пусть существует условная плотность случайной величины ξ относительно случайной величины η $f_{\xi|\eta}(x|y)$. Тогда для любой борелевской функции g(x) такой, что $\mathsf{E}\big|g(x)\big|$ существует, выполнено $\mathsf{E}\big(g(\xi)|\eta=y\big)=\int\limits_{\mathbb{R}}g(x)f_{\xi|\eta}(x|y)\,dx$ относительно P_{η} почти наверное.

▲ Пусть $B \in \mathscr{B}(\mathbb{R})$, пусть также $g(x) = I_A(x), A \in \mathscr{B}(\mathbb{R})$. Тогда

$$\int\limits_{\mathbb{R}} g(x) \cdot f_{\xi|\eta}(x|y) \, dx = \int\limits_{\mathbb{R}} I_A(x) \cdot f_{\xi|\eta}(x|y) \, dx = \int\limits_{A} f_{\xi|\eta}(x|y) \, dx =$$

$$= \mathsf{P}(\xi \in A|\eta = y) = \mathsf{E}\big(I(\xi \in A)|\eta = y) = \mathsf{E}\big(g(\xi)|\eta = y)\big).$$

Так как доказали для индикаторов, то доказали и для всех простых функций g(x). Далее с помощью теоремы Лебега для условных математических ожиданий доказываем для всех g(x). ($\mathsf{E}(\xi_n|\eta) \xrightarrow{\mathrm{n.h.}} \mathsf{E}(\xi|\eta)$, где $\xi_n \xrightarrow{\mathrm{n.h.}} \xi$, ξ_n — простые)

Теорема (о виде условной плотности). Пусть ξ и η — случайные величины такие, что существует их совместная плотность $f_{(\xi,\eta)}(x,y)$. Пусть $f_{\eta}(y)$ — плотность случайной величины η , тогда функция

$$\varphi(x,y) = \frac{f_{(\xi,\eta)}(x,y)}{f_{\eta}(y)} \cdot I(f_{\eta}(y) > 0)$$

есть условная плотность $f_{\xi|\eta}(x|y)$.

 \blacktriangle Для любых $A \in \mathscr{B}(\mathbb{R}), B \in \mathscr{B}(\mathbb{R})$ выполнено

$$\mathsf{P}(\xi \ \in \ B, \eta \ \in \ A) \ = \int\limits_{B \rtimes A} f_{(\xi, \eta)}(x, y) \, dx \, dy \ = \int\limits_{A} \left(\int\limits_{B} \frac{f_{(\xi, \eta)}(x, y)}{f_{\eta}(y)} \, dx \right) f_{\eta}(y) \, dy,$$

с другой стороны

$$\mathsf{P}(\xi \in B, \eta \in A) = \mathsf{E}\big(I(\xi \in B, \eta \in A)\big) = \int_{\{\eta \in A\}} I(\xi \in B) \, d\mathsf{P}.$$

Далее по интегральному свойству получаем, что

$$\mathsf{P}(\xi \in B, \eta \in A) = \int_{\{\eta \in A\}} \mathsf{E}\big(I(\xi \in B)|\eta\big) \, d\mathsf{P},$$

заменяя переменные, окончательно имеем следующее:

$$\begin{split} \mathsf{P}(\xi \in B, \eta \in A) &= \int\limits_A \mathsf{E} \big(I(\xi \in B | \eta = y) \big) \mathsf{P}_{\eta}(dy) = \\ &= \int\limits_A \mathsf{P}(\xi \in B | \eta = y) \mathsf{P}_{\eta}(dy) = \int\limits_A \mathsf{P}(\xi \in B | \eta = y) f_{\eta}(y) \, dy. \end{split}$$

Алгоритм подсчета УМО

- 1. Найти совместную плотность $f_{(\xi,\eta)}(x,y)$, затем $f_{\eta}(y) = \int_{\mathbb{R}} f_{(\xi,\eta)}(x,y) dx$, тогда условная плотность $f_{\xi|\eta}(x|y) = \frac{f_{(\xi,\eta)}(x,y)}{f_{\eta}(y)}$.
- 2. Вычислить $\varphi(y) = \mathsf{E}\big(g(\xi)|\eta=y\big) = \int\limits_{\mathbb{R}} g(x) f_{\xi|\eta}(x|y) \, dx.$
- 3. Тогда $\mathsf{E}\big(g(x)|\eta) = \varphi(\eta)$.

Виды сходимости случайных величин

Определение. Последовательность $\{\xi_n\}_{n\geqslant 1}$ сходится к случайной величине ξ

- 1. по вероятности $(\xi_n \xrightarrow{\mathsf{P}} \xi)$, если $\forall \varepsilon > 0 : \mathsf{P}(\omega : |\xi_n(\omega) \xi(\omega)| \geqslant \varepsilon) \xrightarrow[n \to +\infty]{} 0$,
- 2. почти наверное $(\xi_n \xrightarrow{\text{п.н.}} \xi)$, если $\mathsf{P}(\omega: \xi_n \to \xi) = 1$,
- 3. в $L_p(\xi_n \xrightarrow{L_p} \xi)$, если $\mathsf{E}|\xi_n|^p < +\infty$, $\mathsf{E}|\xi|^p < +\infty$ и $\mathsf{E}|\xi_n \xi|^p \xrightarrow[n \to +\infty]{} 0 \ (p > 0)$,
- 4. по распределению $(\xi_n \xrightarrow{d} \xi)$, если для любой непрерывной ограниченной функции f(x) выполнено $\mathsf{E} f(\xi_n) \xrightarrow[n \to +\infty]{} \mathsf{E} f(\xi)$.

Теорема (Александрова). $[6/\partial] \xi_n \xrightarrow{d} \xi$ тогда только тогда, когда $F_{\xi_n}(x) \xrightarrow{g} F_{\xi_n}(x)$ но есть $F_{\xi_n}(x) \to F_{\xi_n}(x)$ во всех точках непрерывности функции распределения $F_{\xi_n}(x)$.

Лемма (критерий сходимости почти наверное). $\xi_n \xrightarrow{n.n.} \xi \mod u$ только тогда, когда $\forall \varepsilon > 0 : \mathsf{P} \big(\omega : \sup_{k \geqslant n} |\xi_k(\omega) - \xi(\omega)| \geqslant \varepsilon \big) \xrightarrow[n \to +\infty]{} 0.$

$$\blacktriangle$$
 Пусть $A_k^{\varepsilon} = \{\omega : |\xi_k - \xi| \geqslant \varepsilon\}, A^{\varepsilon} = \bigcap_{n=1}^{+\infty} \bigcup_{k \geqslant n} A_k^{\varepsilon} = \{\omega : \forall n \; \exists k \geqslant n : |\xi_k - \xi| \geqslant \varepsilon\}.$ Тогда $\{\omega : \xi_n(\omega) \not\to \xi(\omega)\} = \bigcup_{m=1}^{+\infty} A^{\frac{1}{m}} = \{\omega : \exists m \; \forall n \; \exists k \geqslant n : |\xi_k(\omega) - \xi(\omega)| > \frac{1}{m}\}.$ Следовательно,

$$\begin{split} \mathsf{P} \big(\omega : \xi_n(\omega) \not\to \xi(\omega) \big) &= 0 \Leftrightarrow \mathsf{P} \left(\bigcup_{m=1}^{+\infty} A^{\frac{1}{m}} \right) = 0 \Leftrightarrow \\ &\Leftrightarrow \forall m \in \mathbb{N} : \mathsf{P} \left(A^{\frac{1}{m}} \right) = 0 \Leftrightarrow \forall \varepsilon > 0 : \mathsf{P} \left(A^{\varepsilon} \right) = 0, \end{split}$$

так как всегда существует m, что $\frac{1}{m} \geqslant \varepsilon \geqslant \frac{1}{m+1}$, то есть $A^{\frac{1}{m+1}} \supseteq A^{\varepsilon} \supseteq A^{\frac{1}{m}}$. Но $\bigcup_{k\geqslant n} A_k^{\varepsilon} \downarrow A^{\varepsilon}$, следовательно,

$$\begin{split} 0 &= \mathsf{P}\left(A^{\varepsilon}\right) = \lim_{n \to +\infty} \mathsf{P}\left(\bigcup_{k \geqslant n} A_k^{\varepsilon}\right) \Leftrightarrow \forall \varepsilon > 0 : \mathsf{P}\left(\bigcup_{k \geqslant n} A_k^{\varepsilon}\right) \xrightarrow[n \to +\infty]{} 0 \Leftrightarrow \\ &\Leftrightarrow \forall \varepsilon > 0 : \mathsf{P}\left(\omega : \sup_{k \geqslant n} \left|\xi_k(\omega) - \xi(\omega)\right| \geqslant \varepsilon\right) \xrightarrow[n \to +\infty]{} 0. \end{split}$$

Теорема (взаимоотношения различных видов сходимости).

$$n.H.$$

$$\downarrow P \longrightarrow d$$

$$\downarrow L_p$$

следовательно, $P(|\xi_n - \xi| \ge \varepsilon) \to 0$.

$$(L_p \Rightarrow \mathsf{P})$$
 $\mathsf{P}(|\xi_n - \xi| \geqslant \varepsilon) = \mathsf{P}(\omega : |\xi_n(\omega) - \xi(\omega)|^p > \varepsilon^p)$, а по неравенству Маркова это меньше или равно $\frac{\mathsf{E}|\xi_n(\omega) - \xi(\omega)|^p}{\varepsilon^p} \xrightarrow[n \to +\infty]{} 0.$

 $(\mathsf{P}\Rightarrow d)$ Пусть f(x) — ограниченная непрерывная функция, тогда $\exists C\in \mathbb{R}\ \forall x\in \mathbb{R}: |f(x)|\leqslant C.$ Зафиксируем $\varepsilon>0$, возьмем $N\in \mathbb{R}: \mathsf{P}\big(|\xi|>N\big)\leqslant \frac{\varepsilon}{4C}.$ На отрезке $[-N,N]\ f(x)$ равномерно непрерывна, следовательно,

$$\exists \delta > 0 \ \forall x, y \in \mathbb{R} : \left(|x - y| < \delta \Rightarrow |f(x) - f(y)| < \frac{\varepsilon}{2} \right).$$

Рассмотрим разбиение Ω :

$$A_{1} = \{\omega : |\xi(\omega)| < N, |\xi_{n}(\omega) - \xi(\omega)| \leq \delta\},$$

$$A_{2} = \{\omega : |\xi(\omega)| > N, |\xi_{n}(\omega) - \xi(\omega)| \leq \delta\},$$

$$A_{3} = \{\omega : |\xi_{n}(\omega) - \xi(\omega)| > \delta\}.$$

Оценим

$$\begin{aligned} & \left| \mathsf{E} f(\xi_n) - \mathsf{E} f(\xi) \right| \leqslant \mathsf{E} \left| f(\xi_n) - f(\xi) \right| = \mathsf{E} \left[|f(\xi) - f(\xi_n)| \cdot (I_{A_1} + I_{A_2} + I_{A_3}) \right] \leqslant \right]. \end{aligned}$$
 Пусть $\omega \in A_1$, тогда $\left| f(\xi_n) - f(\xi) \right| \leqslant \frac{\varepsilon}{2}$, следовательно, $\mathsf{E} \left[|f(\xi_n) - f(\xi)| \cdot I_{A_1} \right] \leqslant \frac{\varepsilon}{2} \cdot \mathsf{E} I_{A_1} = \frac{\varepsilon}{2} \cdot \mathsf{P}(A_1) \leqslant \frac{\varepsilon}{2}.$ Если же $\omega \in A_2, A_3, \text{ то } |f(\xi_n) - f(\xi)| \leqslant 2C.$ Значит, $\left| \xi \right| = +2C \cdot \mathsf{P}(A_2) + 2C \cdot \mathsf{P}(A_3) \leqslant \frac{\varepsilon}{2} + 2C \cdot \mathsf{P}(|\xi| > N) + 2C \cdot \mathsf{P}(|\xi_n| = \xi) > \delta \right) \leqslant C_1 \varepsilon.$

Значит,
$$\leq \frac{\varepsilon}{2} + 2C \cdot \mathsf{P}(A_2) + 2C \cdot \mathsf{P}(A_3) \leq \frac{\varepsilon}{2} + 2C \cdot \mathsf{P}(|\xi| > N) + 2C \cdot \mathsf{P}(|\xi_n - \xi| > \delta) \leq C_1 \varepsilon$$
. Следовательно, $\mathsf{E}f(\xi_n) \to \mathsf{E}f(\xi)$, то есть $\xi_n \stackrel{d}{\to} \xi$.

8 Лекция от 07.04.2018

Контрпримеры

Пример (п.н. $\not\Rightarrow L_p$, а значит, $P \not\Rightarrow E_p$ и $d \not\Rightarrow L_p$). Рассмотрим $\Omega = [0,1]$, $\mathcal{F}=\mathscr{B}ig([0,1]ig),\,\mathsf{P}=\lambda.$ Пусть $\xi_n=e^n\cdot I_{\left[0,\frac{1}{n}\right]},\,\xi=0,$ тогда $\xi_n\xrightarrow{\mathrm{п.н.}}\xi,$ но $\mathsf{E}|\xi_n-\xi|^p=0$ $e^{np} \cdot \frac{1}{n} \to +\infty.$

Пример $(L_p \not\Rightarrow \text{ п.н.}, \mathsf{P} \not\Rightarrow \text{ п.н.}, d \not\Rightarrow \text{ п.н.})$. Рассмотрим $\Omega = [0,1], \mathcal{F} = \mathscr{B}\big([0,1]\big),$ $\mathsf{P} = \lambda$. Возьмем $\xi_{2^n+i} = I\left(\omega \in \left[\frac{i}{2^n}, \frac{i+1}{2^n}\right)\right), \quad i = 0, \dots, 2^n-1; \quad n \in \mathbb{Z}_+$. Тогда $\xi_k \xrightarrow{L_p} 0$ при $k \to +\infty$, так как $\mathsf{E}|\xi_k|^p = \frac{1}{2^n}$, где $n = [\log_2 k]$. Но для любой точки из [0,1] существует бесконечно много ξ_i таких, что $\xi_i(\omega)=1$ и $\xi_i(\omega)=0$, следовательно, $\forall \omega : \xi_i(\omega) \xrightarrow[i]{} 0.$

Пример $(d \not\Rightarrow P)$. Пусть $\Omega = \{\omega_1, \omega_2\}, P(\omega_i) = \frac{1}{2}, \forall n \in \mathbb{Z}_+ : \xi_n(\omega_1) = 1, \xi_n(\omega_2) = 1$ 0. Тогда $\xi_n \sim \text{Bern}\left(\frac{1}{2}\right)$. $\xi(\omega_1) = 1, \xi(\omega_2) = 0$, значит, $\xi \sim \text{Bern}\left(\frac{1}{2}\right)$, следовательно, по теореме Александрова $\xi_n \xrightarrow{d} \xi$, но $P(|\xi_n - \xi| > 0.5) = 1$, значит, $\xi_n \xrightarrow{P} \xi$.

Определение. Последовательность чисел $\{x_n\}$ называется фундаментальной, если $|x_n - x_m| \to 0$ при $n, m \to +\infty$.

Теорема (критерий Коши сходимости числовой последовательности). $[6/\partial]$ Последовательность чисел $\{x_n\}$ сходится тогда и только тогда, когда $\{x_n\}$ фундаментальна.

Теорема (критерий Коши сходимость почти наверное). Последовательно случайных величин $\{\xi_n\}$ сходится почти наверное тогда и только тогда, когда $\{\xi_n\}$ фундаментальна почти наверное, то есть $\mathsf{P}\big(\omega:|\xi_n(\omega)-\xi_m(\omega)|\to 0\big)=1$ при $n,m\to+\infty$.

- \blacktriangle (\Rightarrow) Пусть $\xi_n \xrightarrow{\text{п.н.}} \xi$, тогда, если $\omega \in \{\omega : \xi_n(\omega) \to \xi(\omega)\}$, то $\omega \in \{\omega : \{\xi_n\} \text{фундаментальная}\}$, следовательно, $\mathsf{P}\big(\omega : \{\xi_n(\omega)\} \text{фундаментальная}\big) \geqslant \mathsf{P}\big(\omega : \xi_n(\omega) \to \xi(\omega)\big) = 1$.
- (\Leftarrow) Обозначим $A = \{\omega : \{\xi_n\} \text{фундаментальная}\}$. Построим такую случайную величину ξ , что $\xi_n \xrightarrow{\text{п.н.}} \xi$. По критерию Коши для любого $\omega \in A$ у последовательности $\{\xi_n(\omega)\}$ существует предел $\xi(\omega)$. Положим по определению $\xi(\omega) = \lim_{n \to +\infty} \xi_n(\omega) \cdot I_A(\omega)$. Тогда $\xi_n \cdot I_A \to \xi$, то есть ξ случайная величина, как предел случайных величин, и $\mathsf{P}\big(\omega : \xi_n(\omega) \to \xi(\omega)\big) = \mathsf{P}(A) = 1$.

Лемма (критерий фундаментальности почти наверное). $[6/\partial]$ Последовательность случайных величин $\{\xi_n\}$ фундаментальна почти наверное тогда и только тогда, когда $\forall \varepsilon > 0 : \mathsf{P} \big(\omega : \sup_{k \geqslant n} |\xi_k(\omega) - \xi_n(\omega)| > \varepsilon \big) \xrightarrow[n \to +\infty]{} 0.$

Определение. Пусть $\{A_n\}_{n\in\mathbb{N}}$ — последовательность событий, тогда событием $\{A_n \text{ бесконечно часто (б.ч.)}\}$ называется событие $\{\omega: \forall n \exists k \geqslant n : \omega \in A_k\}$, то есть все такие ω , что ω принадлежит бесконечному числу элементов из $\{A_n\}_{n\in\mathbb{N}}$. $\{A_n \text{ б.ч.}\} = \bigcap_{n=1}^{\infty} \bigcup_{k\geq n}^{\infty} A_k$.

Лемма (Бореля-Кантелли). 1. Если $\sum_{k=1}^{\infty} \mathsf{P}(A_k) < +\infty, \ mo \ \mathsf{P}(A_n \ \textit{б.ч.}) = 0.$

- 2. Если $\sum_{k=1}^{\infty} P(A_k) = +\infty \ u \ \{A_k\}$ независимы в совокупности, то $P(A_n \ б.ч.) = 1$.
- \blacktriangle $\mathsf{P}(A_n \ \mathsf{б.ч.}) = \mathsf{P}\left(\bigcap_{n=1}^\infty \bigcup_{k\geqslant n}^\infty A_k\right)$ \equiv . Известно, что $\bigcup_{k\geqslant n} A_n \downarrow \{A_n \ \mathsf{б.ч.}\}$, следовательно, по непрерывности вероятностной меры имеем $\equiv \lim_{n\to\infty} \mathsf{P}\left(\bigcup_{k\geqslant n} A_k\right) \leqslant \lim_{n\to\infty} \sum_{k\geqslant n} \mathsf{P}(A_k) = 0.$

Заметим, что
$$P(A_n \text{ б.ч.}) = \lim_{n \to \infty} P\left(\bigcup_{k \geqslant n} A_k\right) = \lim_{n \to \infty} \left(1 - P\left(\bigcap_{k \geqslant n} \overline{A_k}\right)\right)$$
, но

$$\mathsf{P}\left(\bigcap_{k\geqslant n}\overline{A}\right) = \lim_{N\to\infty}\mathsf{P}\left(\bigcap_{k=n}^{N}\overline{A_{k}}\right) = \lim_{N\to\infty}\prod_{k=n}^{N}\mathsf{P}\left(\overline{A_{k}}\right) = \lim_{N\to\infty}\prod_{k=n}^{N}\left[1-\mathsf{P}(A_{k})\right] \leqslant \\ \leqslant \lim_{N\to\infty}\prod_{k=n}^{N}\exp\left(-\mathsf{P}\left(\overline{A_{k}}\right)\right) = \lim_{N\to\infty}\exp\left(-\sum_{k=n}^{N}\mathsf{P}\left(A_{k}\right)\right) = \exp\left(-\sum_{k=n}^{\infty}\mathsf{P}\left(A_{k}\right)\right).$$

Теорема (Рисса). Если последовательность случайных величин $\{\xi_n\}$ фундаментальна (или сходится) по вероятности, то из нее можно выделить подпоследовательность $\{\xi_{n_k}\}$ фундаментальную (сходящуюся) почти наверное.

 \blacktriangle Пусть $\{\xi_n\}$ фундаментальна по вероятности, то есть

$$\forall \varepsilon > 0 : \mathsf{P} \big(\omega : |\xi_k - \xi_n| > \varepsilon \big) \xrightarrow[n,k \to \infty]{} 0.$$

Докажем, что можно выделить подпоследовательность $\{\xi_{n_k}\}$, сходящуюся почти наверное. Пусть $n_1=1$. По индукции определим n_k , как наименьшее $n>n_{k-1}$ такое, что $\forall s\geqslant n,t\geqslant n: \mathsf{P}\big(|\xi_t-\xi_s|>2^{-k}\big)<2^{-k}$. Тогда $\sum\limits_{k=1}^\infty\mathsf{P}\big(|\xi_{n_{k+1}}-\xi_{n_k}|>2^{-k}\big)<2^{-k}$. $\mathsf{P}\big(|\xi_{n_{k+1}}-\xi_{n_k}|>2^{-k}\big)<\sum\limits_{k=1}^\infty\mathsf{P}\big(|\xi_{n_{k+1}}-\xi_{n_k}|>2^{-k}\big)<\sum\limits_{k=1}^\infty\mathsf{P}\big(|\xi_{n_{k+1}}-\xi_{n_k}|>2^{-k}\big)$. Почти наверное $\sum\limits_{k=1}^\infty\mathsf{P}\big(|\xi_{n_{k+1}}-\xi_{n_k}|<+\infty\big)$. Пусть $\mathsf{P}\big(|\xi_{n_k}-\xi_{n_k}|>2^{-k}\big)$, тогда $\mathsf{P}\big(|\xi_{n_k}-\xi_{n_k}|>2^{-k}\big)$. Положим $\mathsf{P}\big(|\xi_{n_k}-\xi_{n_k}|>2^{-k}\big)$. Получаем, $\sum\limits_{k=1}^k\mathsf{P}\big(|\xi_{n_k}-\xi_{n_k}|>2^{-k}\big)$ $\mathsf{P}\big(|\xi_{n_k}-\xi_{n_k}|>2^{-k}\big)$ $\mathsf{P}\big(|\xi_{n_k}-\xi_{n_k}-\xi_{n_k}|>2^{-k}\big)$ $\mathsf{P}\big(|\xi_{n_k}-\xi_{n_k}-\xi_{n_k}-\xi_{n_k}|>2^{-k}\big)$ $\mathsf{P}\big(|\xi_{n_k}-\xi_{n_k}-\xi_{n_k}-\xi_{n_k}-\xi_{n_k}-\xi_{n_k}\big)$ $\mathsf{P}\big(|\xi_{n_k}-\xi_{n_k}-\xi_{n_k}-\xi_{n_k}-\xi_{n_k}\big)$ $\mathsf{P}\big(|\xi_{n_k}-\xi_{n_k}-\xi_{n_k}-\xi_{n_k}-\xi_{n_k}\big)$ $\mathsf{P}\big(|\xi_{n_k}-\xi_{n_k}-\xi_{n_k}-\xi_{n_k}-\xi_{n_k}\big)$ $\mathsf{P}\big(|\xi_{n_k}-\xi_{n_k}-\xi_{n_k}-\xi_{n_k}-\xi_{n_k}\big)$ $\mathsf{P}\big(|\xi_{n_k}-\xi_{n_k}-\xi_{n_k}-\xi_{n_k}\big)$ $\mathsf{P}\big(|\xi_{n_k}-\xi_{n_k}-\xi_{n_k}-\xi_{n_k}\big)$ $\mathsf{P}\big(|\xi_{n_k}-\xi_{n_k}-\xi_{n_k}-\xi_{n_k}-\xi_{n_k}\big)$ $\mathsf{P}\big(|\xi_{n_k$

Пусть теперь $\xi_n \xrightarrow{\mathsf{P}} \xi$, тогда

$$\mathsf{P}\big(|\xi_m - \xi_n| \geqslant \varepsilon\big) \leqslant \mathsf{P}\left(|\xi_n - \xi| \geqslant \frac{\varepsilon}{2}\right) + \mathsf{P}\left(|\xi_m - \xi| \geqslant \frac{\varepsilon}{2}\right) \xrightarrow[n, m \to \infty]{} 0.$$

Следовательно, из сходимости по вероятности следует фундаментальность по вероятности, а дальше все тоже самое.

Теорема (критерий Коши сходимости по вероятности). $\xi_n \stackrel{P}{\to} \xi$ тогда и только тогда, когда $\{\xi_n\}$ фундаментальна по вероятности.

▲ (⇒) Следует из теоремы Рисса.

 (\Leftarrow) Если $\{\xi_n\}$ фундаментально по вероятности, то по теореме Рисса существует подпоследовательность $\{\xi_{n_k}\}$ такая, что $\xi_{n_k} \xrightarrow{\text{п.н.}} \xi$, то есть $\xi_{n_k} \xrightarrow{\text{Р}} \xi$. Тогда $\mathsf{P}\big(|\xi_n - \xi| \geqslant \varepsilon\big) \leqslant \mathsf{P}\big(|\xi_n - \xi_{n_k}| \geqslant \frac{\varepsilon}{2}\big) + \mathsf{P}\big(|\xi_{n_k} - \xi| \geqslant \frac{\varepsilon}{2}\big) \xrightarrow[n \to +\infty]{0, \text{т.к. сход.}} 0.$

Теорема (Неравенство Колмогорова). Пусть ξ_1,\ldots,ξ_n — независимые случайные величины такие, что $\mathsf{E}\xi_i=0,\;\mathsf{D}\xi_i<+\infty.$ Обозначим $S_n=\sum\limits_{i=1}^n\xi_i.$ Тогда $\forall \varepsilon>0:\mathsf{P}\left(\max_{1\leqslant k\leqslant n}|S_k|\geqslant \varepsilon\right)\leqslant \frac{\mathsf{E}S_n^2}{\varepsilon^2}.$

▲ Обозначим $A = \{ \max_{1 \le k \le n} |S_k| \ge \varepsilon \}$. Разобьем A на несколько непересекающихся событий, то есть $A_k = \{ |S_k| \ge \varepsilon \}$ и $\forall i \le k-1 : |S_k| \le \varepsilon$, следовательно, $A = \bigsqcup_{k=1}^n A_k$. Тогда

$$\begin{split} \mathsf{E}(S_n^2 \cdot I_{A_k}) &= \mathsf{E} \big((S_k + \underbrace{\xi_{k+1} + \ldots + \xi_n})^2 \cdot I_{A_k} \big) = \\ &= \mathsf{E}(S_k^2 \cdot I_{A_k}) + \mathsf{E} \left(\overline{S_k}^2 \cdot I_{A_k} \right) + 2\mathsf{E} \left(S_k \overline{S_k} \cdot I_{A_k} \right). \end{split}$$

Рассмотрим

$$\mathsf{E}(\underbrace{S_k \cdot I_{A_k}}_{\sigma\{\xi_1, \dots, \xi_k\} \ - \ \mathsf{u}\mathsf{3}\mathsf{Mep}}, \underbrace{\sigma_{\{\xi_{k+1}, \dots, \xi_n\}}}_{\sigma\{\xi_{k+1}, \dots, \xi_n\} \ - \ \mathsf{u}\mathsf{3}\mathsf{Mep}}).$$

Следовательно, $S_k \cdot I_{A_k} \perp \!\!\! \perp \overline{S_k}$, так как $\{\xi_1, \dots, \xi_k\} \perp \!\!\! \perp \{\xi_{k+1}, \dots, \xi_n\}$, а, значит, $\mathsf{E}(S_k \cdot I_{A_k} \cdot \overline{S_k}) = \mathsf{E}(S_k \cdot I_{A_k}) \cdot \mathsf{E} \overline{S_k} = 0$. Отсюда

$$\mathsf{E}(S_k^2 \cdot I_{A_k}) + \mathsf{E}\left(\overline{S_k}^2 \cdot I_{A_k}\right) \geqslant \mathsf{E}(S_k^2 \cdot I_{A_k}) \geqslant \varepsilon^2 \cdot \mathsf{E}I_{A_k} = \varepsilon^2 \cdot \mathsf{P}(A_k).$$

В итоге,

$$\mathsf{E} S_n^2 \geqslant \mathsf{E} (S_n^2 \cdot I_A) = \sum_{k=1}^n \mathsf{E} (S_n^2 \cdot I_{A_k}) \geqslant \sum_{k=1}^n \mathsf{P} (A_k) \cdot \varepsilon^2 = \mathsf{P} (A) \cdot \varepsilon^2.$$

9 Лекция от 14.04.2018

Теорема (Колмогорова-Хинчина о сходимости ряда). Пусть $\{\xi_n\}_{n\geqslant 1}$ — последовательность независимых случайных величин такая, что $\mathsf{E}\xi_n=0$ и $\mathsf{E}\xi^2<+\infty$. Тогда, если $\sum_{n=1}^{\infty}\mathsf{E}\xi_n^2<+\infty$, то $\sum_{n=1}^{\infty}\xi_n$ сходится почти наверное.

▲ Обозначим $S_n = \sum_{k=1}^n \xi_k$. По критерию Коши $\left\{\sum_{n=1}^\infty \xi_n \right\}$ сходится п.н. равносильно тому, что $\left\{S_n \right\}$ фундаментально п.н., а это в свою по критерию фундаментальности равносильно тому, что

$$\forall \varepsilon > 0 : \mathsf{P}\left(\sup_{k \geqslant n} |S_k - S_n| \geqslant \varepsilon\right) \xrightarrow[n \to +\infty]{} 0.$$

Очевидно,

$$\mathsf{P}\left(\sup_{k\geqslant n}|S_k-S_n|\geqslant\varepsilon\right)=\mathsf{P}\left(\bigcup_{k\geqslant n}\left\{|S_k-S_n|\geqslant\varepsilon\right\}\right),$$

а из непрерывности вероятностной меры следует, что

$$\lim_{N \to +\infty} \mathsf{P}\left(\bigcup_{k=n}^{N} \left\{ |S_k - S_n| \geqslant \varepsilon \right\} \right) = \lim_{N \to +\infty} \mathsf{P}\left(\max_{n \leqslant k \leqslant N} |S_k - S_n| \geqslant \varepsilon \right).$$

По неравенство Колмогорова это меньше или равно, чем

$$\lim_{N\to +\infty}\frac{\mathsf{E}(S_N-S_n)^2}{\varepsilon^2}=\lim_{N\to +\infty}\frac{1}{\varepsilon^2}\sum_{k=n+1}^N\mathsf{E}\xi_k^2=\frac{1}{\varepsilon^2}\sum_{k>n}\mathsf{E}\xi_k^2\xrightarrow[n\to +\infty]{}0.$$

Лемма (Тёплица). Пусть $x_n \to x$ — числовая последовательность, числа $\{a_n\}_{n\geqslant 1}$ таковы, что $\forall n: a_n\geqslant 0$ и $b_n=\sum\limits_{k=1}^n a_k\uparrow +\infty$. Тогда $\frac{1}{b_n}\sum\limits_{i=1}^n a_ix_i\xrightarrow[n\to +\infty]{}x.$

Δ Пусть $\varepsilon > 0$. Выберем n_0 так, что $\forall n > n_0 : |x_n - x| \leqslant \frac{\varepsilon}{2}$. Выберем $n_1 > n_0$ такое, что $\frac{1}{b_{n_1}} \sum_{k=1}^{n_0} a_k |x_k - x| \leqslant \frac{\varepsilon}{2}$, тогда

$$\forall n > n_1 : \left| \frac{1}{b_n} \sum_{k=1}^n a_k x_k - x \right| = \left| \frac{1}{b_n} \sum_{k=1}^n a_k x_k - \frac{1}{b_n} \sum_{k=1}^n a_k x \right| \leqslant \frac{1}{b_n} \sum_{k=1}^n a_k |x_k - x| =$$

$$= \frac{1}{b_n} \sum_{k=1}^{n_0} a_k |x_k - x| + \frac{1}{b_n} \sum_{k=n_0+1}^n a_k |x_k - x| \leqslant \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \cdot \frac{1}{b_n} \sum_{k=n_0+1}^n a_k \leqslant \varepsilon.$$

Лемма (Кронекера). Пусть ряд $\sum_{n=1}^{\infty} x_n \, cxo dumcs$, $\{a_n\}_{n\geqslant 1} \, makosa$, что $a_n\geqslant 0$, $b_n=\sum_{k=1}^n a_k\uparrow +\infty$. Тогда $\frac{1}{b_n}\sum_{k=1}^n b_k x_k \xrightarrow[n\to +\infty]{} 0$.

 \blacktriangle Пусть $S_n = \sum_{k=1}^n x_k$, тогда $S_n \xrightarrow[n \to +\infty]{} S = \sum_{k=1}^\infty x_k$. Заметим,

$$\sum_{j=1}^{n} b_j x_j = \sum_{j=1}^{n} b_j (S_j - S_{j-1}) = b_n S_n - \sum_{j=1}^{n} S_{j-1} (b_j - b_{j-1}) = b_n S_n - \sum_{j=1}^{n} S_{j-1} a_j.$$

Следовательно,

$$\frac{1}{b_n}\sum_{k=1}^n b_k x_k = S_n - \frac{1}{b_n}\sum_{j=1}^n S_{j-1}a_j \xrightarrow[n \to +\infty]{} 0.$$

Теорема (усиленный закон больших чисел в форме Колмогорова-Хинчина). Пусть $\{\xi_n\}_{n\geqslant 1}$ — независимые случайные величины, $\forall n: \mathsf{D}\xi_n < +\infty$. Пусть $\{b_n\}_{n\geqslant 1}$ — числовая последовательность, $b_1>0$ и $b_n\uparrow+\infty$, причем $\sum\limits_{n=1}^{\infty}\frac{\mathsf{D}\xi_n}{b_n^2}<+\infty$. Пусть $S_n=\sum\limits_{i=1}^n\xi_i$, тогда $\frac{S_n-\mathsf{E}S_n}{b_n}\xrightarrow[n\to+\infty]{n.n.} 0$.

▲ Преобразуем:

$$\frac{S_n - \mathsf{E}S_n}{b_n} = \frac{1}{b_n} \sum_{i=1}^n b_i \cdot \frac{\xi_i - \mathsf{E}\xi_i}{b_i}.$$

Обозначим $\eta_i = \frac{\xi_i - \mathsf{E} \xi_i}{b_i}$. Случайные величины η_i независимы и $\mathsf{E} \eta_i = 0$. Значит,

$$\sum_{i=1}^\infty \mathsf{E} \eta_i^2 = \sum_{i=1}^\infty \frac{\mathsf{E} (\xi_i - \mathsf{E} \xi_i)^2}{b_i^2} = \sum_{i=1}^\infty \frac{\mathsf{D} \xi_i}{b_i^2} < +\infty.$$

Следовательно, по теореме Колмогорова-Хинчина о сходимости ряда $\sum_{i=1}^n \eta_i$ сходится почти наверное. По лемме Кронекера последовательность

$$\frac{1}{b_n} \sum_{i=1}^n b_i \cdot \frac{\xi_i - \mathsf{E}\xi_i}{b_i}$$

сходится к нулю для всех ω , для которых сходится ряд

$$\sum_{i=1}^{\infty} \frac{\xi_i - \mathsf{E}\xi_i}{b_i} = \sum_{i=1}^{\infty} \eta_i.$$

Следовательно,

$$\frac{1}{b_n} \sum_{i=1}^n b_i \cdot \frac{\xi_i - \mathsf{E} \xi_i}{b_i} = \frac{S_n - \mathsf{E} S_n}{b_n} \xrightarrow[n \to \infty]{\text{\tiny II.H}} 0.$$

Лемма. Пусть $\xi \geqslant 0$, $\mathsf{E}\xi < +\infty$, тогда

$$\sum_{n=1}^{\infty} \mathsf{P}(\xi \geqslant n) \leqslant \mathsf{E}\xi \leqslant 1 + \sum_{n=1}^{\infty} \mathsf{P}(\xi \geqslant n).$$

•

$$\sum_{n=1}^{\infty} \mathsf{P}(\xi \geqslant n) = \sum_{n=1}^{\infty} \sum_{k=n}^{\infty} \mathsf{P}(k \leqslant \xi \leqslant k+1) = \sum_{k=1}^{\infty} \sum_{n=1}^{k} \mathsf{P}(k \leqslant \xi \leqslant k+1) =$$

$$= \sum_{k=0}^{\infty} k \cdot \mathsf{P}(k \leqslant \xi \leqslant k+1) = \sum_{k=0}^{\infty} \mathsf{E}(k \cdot I(k \leqslant \xi \leqslant k+1)) =$$

$$= \sum_{k=0}^{\infty} \mathsf{E}(\lfloor \xi \rfloor) \cdot I(k \leqslant \xi \leqslant k+1) \leqslant \sum_{k=0}^{\infty} \mathsf{E}(\xi \cdot I(k \leqslant \xi \leqslant k+1)) =$$

$$= \mathsf{E}\left(\xi \cdot \sum_{k=0}^{\infty} I(k \leqslant \xi \leqslant k+1)\right) = \mathsf{E}\xi.$$

Верхнее неравенство доказывается аналогично.

Определение. Случаные величины ξ и η одинаково распределены, если $\forall x$: $F_{\xi}(x) = F_{\eta}(x)$. Обозначают $\xi \stackrel{d}{=} \eta$.

Утверждение. $Ecnu \xi \stackrel{d}{=} \eta$, $mo \forall g(x) : Eg(\xi) = Eg(\eta)$.

$$\blacktriangle \ \mathsf{E}g(\xi) = \int g(x) \, dF_{\xi}(x) = \int g(x) \, dF_{\eta}(x) = \mathsf{E}g(\eta).$$

Теорема (Усиленный закон больших чисел в форме Колмогорова). *Пусть* $\{\xi_n\}_{n\in\mathbb{N}}$ — независимые одинаково распределенные случайные величины такие, что $\mathsf{E}|\xi_1|<+\infty$. Тогда

$$\frac{\xi_1 + \ldots + \xi_n}{n} \xrightarrow[n \to \infty]{n.n.} 0.$$

 $lacksymbol{\Delta}$ Поскольку $\mathsf{E}|\xi_1|<+\infty,$ то по предыдущей лемме $\sum\limits_{n=1}^{\infty}\mathsf{P}ig(|\xi_1|\geqslant nig)<+\infty.$

Так как $\xi_1 \stackrel{d}{=} \xi_n$, то $\sum_{n=1}^{\infty} \mathsf{P} \big(|\xi_n| \geqslant n \big) < +\infty$, следоватально, по лемме Бореля-Кантелли $\mathsf{P} \Big(\big\{ |\xi_n| \geqslant n \big\}$ б.ч.) = 0. То есть с вероятностью 1 случается конечное число $\big\{ |\xi_n| \geqslant n \big\}$. Обозначим $\tilde{\xi}_n \equiv \xi_n \cdot I \big\{ |\xi_n| \leqslant n \big\}$. Тогда с вероятность 1 $\xi_n = \tilde{\xi}_n$ кроме конечного числа ξ_n . Пусть $\mathsf{E} \xi_i = 0$, если это не так, то $\eta_i = \xi_i - \mathsf{E} \xi_i$. Получаем, что

$$\mathsf{P}\left(\frac{\xi_n+\ldots+\xi_n}{n}\to 0\right)=\mathsf{P}\left(\frac{\tilde{\xi}_1+\ldots+\tilde{\xi}_n}{n}\to 0\right).$$

Рассмотрим

$$\mathsf{E}\tilde{\xi}_n = \mathsf{E}\Big(\xi_n \cdot I\big(|\xi_n| \leqslant n\big)\Big) = \mathsf{E}\Big(\xi_1 \cdot I\big(|\xi_1| \leqslant n\big)\Big) \to \mathsf{E}\xi_1 = 0$$

по теореме Лебега о мажорируемой сходимости, поскольку

$$\left|\xi_1 \cdot I(|\xi_1| \leqslant n)\right| \leqslant \xi_1 \quad \text{if } \xi_1 \cdot I(|\xi_1| \leqslant n) \xrightarrow[n \to \infty]{\text{II.H.}} \xi_1.$$

По лемме Тёплица

$$\frac{1}{n}\sum_{i=1}^{n}\mathsf{E}\tilde{\xi}_{i}\to\mathsf{E}\xi_{1}=0\quad\Rightarrow\quad\frac{1}{n}\sum_{i=1}^{n}\tilde{\xi}_{i}\xrightarrow[n\to\infty]{\mathrm{H.H.}}0\quad\Leftrightarrow\quad\frac{1}{n}\sum_{i=1}^{n}\left(\tilde{\xi}_{i}-\mathsf{E}\tilde{\xi}_{i}\right)\xrightarrow[n\to\infty]{\mathrm{H.H.}}0.$$

Обозначим $\bar{\xi}_n = \tilde{\xi}_n - \mathsf{E}\tilde{\xi}_n$. По лемме Кронекера, если сходится $\sum_{k=1}^\infty \frac{\overline{\xi}_k}{k}$ на какомто ω , то $\frac{1}{n}\sum_{k=1}^n k\cdot \frac{\overline{\xi}_k}{k} \xrightarrow[n \to +\infty]{} 0$ на том же ω . Проверим, что $\sum_{k=1}^\infty \frac{\overline{\xi}_k}{k}$ сходится почти наверное. По теормере Колмогорова-Хинчина доскаточно показать, что $\sum_{k=1}^\infty \frac{\mathsf{E}\left(\overline{\xi}_k\right)^2}{k^2} < +\infty$.

$$\sum_{k=1}^{\infty} \frac{\mathsf{E}\left(\overline{\xi}_{k}\right)^{2}}{k^{2}} = \sum_{k=1}^{\infty} \frac{\mathsf{E}\left(\widetilde{\xi}_{k} - \mathsf{E}\widetilde{\xi}_{k}\right)^{2}}{k^{2}} \leqslant \sum_{k=1}^{\infty} \frac{\mathsf{E}\left(\widetilde{\xi}_{k}\right)^{2}}{k^{2}} = \sum_{k=1}^{\infty} \frac{1}{k^{2}} \cdot \mathsf{E}\left(\xi_{k}^{2} \cdot I\left(|\xi_{k}| \leqslant k\right)\right) = \sum_{k=1}^{\infty} \frac{1}{k^{2}} \cdot \mathsf{E}\left(\xi_{1}^{2} \cdot \sum_{k=1}^{\infty} I\left(n - 1 < |\xi_{1}| \leqslant n\right)\right) = \sum_{k=1}^{\infty} \mathsf{E}\left(\xi_{1}^{2} \cdot I\left(n - 1 < |\xi_{1}| \leqslant n\right)\right) \cdot \sum_{k=n}^{\infty} \frac{1}{k^{2}} \leqslant \sum_{n=1}^{\infty} \frac{2}{n} \cdot \mathsf{E}\left(\xi_{1}^{2} \cdot I\left(n - 1 < |\xi_{1}| \leqslant n\right)\right) \leqslant \sum_{k=1}^{\infty} \mathsf{E}\left(\xi_{1}^{2} \cdot I\left(n - 1 < |\xi_{1}| \leqslant n\right)\right) = \sum_{k=1}^{\infty} \mathsf{E}\left(\xi_{1}^{2} \cdot I\left(n - 1 < |\xi_{1}| \leqslant n\right)\right) \leqslant \sum_{k=1}^{\infty} \mathsf{E}\left(\xi_{1}^{2} \cdot I\left(n - 1 < |\xi_{1}| \leqslant n\right)\right) = \sum_{k=1}^{\infty} \mathsf{E}\left(\xi_{1}^{2} \cdot I\left(n - 1 < |\xi_{1}| \leqslant n\right)\right) \leqslant \sum_{k=1}^{\infty} \mathsf{E}\left(\xi_{1}^{2} \cdot I\left(n - 1 < |\xi_{1}| \leqslant n\right)\right) = \sum_{k=1}^{\infty} \mathsf{E}\left(\xi_{1}^{2} \cdot I\left(n - 1 < |\xi_{1}| \leqslant n\right)\right) = \sum_{k=1}^{\infty} \mathsf{E}\left(\xi_{1}^{2} \cdot I\left(n - 1 < |\xi_{1}| \leqslant n\right)\right) = \sum_{k=1}^{\infty} \mathsf{E}\left(\xi_{1}^{2} \cdot I\left(n - 1 < |\xi_{1}| \leqslant n\right)\right) \leqslant \sum_{k=1}^{\infty} \mathsf{E}\left(\xi_{1}^{2} \cdot I\left(n - 1 < |\xi_{1}| \leqslant n\right)\right) = \sum_{k=1}^{\infty} \mathsf{E}\left(\xi_{1}^{2} \cdot I\left(n - 1 < |\xi_{1}| \leqslant n\right)\right) = \sum_{k=1}^{\infty} \mathsf{E}\left(\xi_{1}^{2} \cdot I\left(n - 1 < |\xi_{1}| \leqslant n\right)\right) = \sum_{k=1}^{\infty} \mathsf{E}\left(\xi_{1}^{2} \cdot I\left(n - 1 < |\xi_{1}| \leqslant n\right)\right) = \sum_{k=1}^{\infty} \mathsf{E}\left(\xi_{1}^{2} \cdot I\left(n - 1 < |\xi_{1}| \leqslant n\right)\right) = \sum_{k=1}^{\infty} \mathsf{E}\left(\xi_{1}^{2} \cdot I\left(n - 1 < |\xi_{1}| \leqslant n\right)\right) = \sum_{k=1}^{\infty} \mathsf{E}\left(\xi_{1}^{2} \cdot I\left(n - 1 < |\xi_{1}| \leqslant n\right)\right)$$

Теорема (Беппо-Леви). Пусть $\{\xi_n\}_{n\geqslant 1}$ — случайные величины, $\forall n:\xi_n\geqslant 0$. Тогда $\mathsf{E}\sum_{n=1}^\infty \xi_n=\sum_{n=1}^\infty \mathsf{E}\xi_n$.

 \blacktriangle Пусть $S_n = \sum_{k=1}^n \xi_k$, тогда $S_n \uparrow S = \sum_{k=1}^\infty \xi_k$. По теореме о монотонной сходимости $\mathsf{E} \sum_{k=1}^n \xi_k \xrightarrow[n \to +\infty]{} \mathsf{E} \sum_{k=1}^\infty \xi_k$, следовательно,

$$\mathsf{E} \sum_{k=1}^n \xi_k = \sum_{k=1}^n \mathsf{E} \xi_k \uparrow \mathsf{E} \sum_{k=1}^\infty \mathsf{E} \xi_k.$$

10 Лекция от 21.04.2018

Теорема (о монотонной сходимости). [б/д] Пусть $\{\xi_n\}_{n\geqslant 1}, \xi, \eta$ — случайные величины, тогда

- 1. Если $\xi_n \uparrow \xi$ почти наверное $u \ \forall n \in \mathbb{N} : \xi_n \geqslant \eta, \exists \eta > -\infty, \ mo \ \exists \xi = \lim_{n \to \infty} \exists \xi_n.$
- 2. Если $\xi_n \downarrow \xi$ почти наверное $u \ \forall n \in \mathbb{N} : \xi_n \leqslant \eta, \exists \eta < +\infty, \ mo \ \exists \xi = \lim_{n \to \infty} \exists \xi_n.$

Лемма (Фату). Пусть $\{\xi_n\}_{n\geqslant 1}$ и η — случайные величины, $\mathsf{E}|\eta|<+\infty$, тогда

- 1. $Ecnu \ \forall n: \xi_n \geqslant \eta, \ mo \ \underline{\lim}_{n \to \infty} \mathsf{E} \xi_n \geqslant \mathsf{E} \ \underline{\lim}_{n \to \infty} \xi_n.$
- 2. $Ecnu \ \forall n : \xi_n \leqslant \eta, \ mo \ \overline{\lim_{n \to \infty}} \ \mathsf{E}\xi_n \leqslant \mathsf{E} \ \overline{\lim_{n \to \infty}} \ \xi_n.$
- 3. Если $\forall n: |\xi_n| < \eta$, то $\mathsf{E} \varliminf_{n \to \infty} \xi_n \leqslant \varliminf_{n \to \infty} \mathsf{E} \xi_n \leqslant \varlimsup_{n \to \infty} \mathsf{E} \xi_n \leqslant \mathsf{E} \varlimsup_{n \to \infty} \xi_n$.
- \blacktriangle (1) Обозначим $\psi_n = \inf_{k\geqslant n} \xi_k$. Очевидно, $\psi_n \uparrow \varliminf_{n\to\infty} \xi_n$. кроме того $\psi_n \geqslant \eta$, следовательно, по теореме о монотонносй сходимости $\lim_{n\to\infty} \mathsf{E}\psi_n = \mathsf{E}\varliminf_{n\to\infty} \xi_n$. Рассмотрим

$$\mathsf{E} \varliminf_{n \to \infty} \xi_n = \lim_{n \to \infty} \mathsf{E} \psi_n = \varliminf_{n \to \infty} \mathsf{E} \psi_n \overset{\text{\tiny t.K.}}{\leqslant} \psi_n \overset{\psi_n \leqslant \xi_n}{\leqslant} \varliminf_{n \to \infty} \mathsf{E} \xi_n.$$

- (2) Следует из пункта (1) заменой $\xi'_n = -\xi_n$.
- (3) Следует из (1) и (2).

Теорема (Лебега о мажорируемой сходимости). Пусть $\xi_n \xrightarrow{n.н.} \xi, |\xi| \leqslant \eta, \exists \eta < +\infty.$ Тогда $\exists \xi_n \xrightarrow[n \to +\infty]{} \exists \xi \ u \ \exists |\xi_n - \xi| \xrightarrow[n \to +\infty]{} 0.$

 \blacktriangle Заметим, что $\xi \stackrel{\text{п.н.}}{=} \lim_{n \to \infty} \xi_n = \underline{\lim}_{n \to \infty} \xi_n = \overline{\lim}_{n \to \infty} \xi_n$. По пункту (3) леммы Фату

$$\mathsf{E}\xi = \mathsf{E} \varliminf_{n \to \infty} \xi_n \leqslant \varliminf_{n \to \infty} \mathsf{E}\xi_n \leqslant \varlimsup_{n \to \infty} \mathsf{E}\xi_n \leqslant \mathsf{E} \varlimsup_{n \to \infty} \xi_n = \mathsf{E}\xi \quad \Rightarrow \quad \mathsf{E}\xi = \lim_{n \to \infty} \mathsf{E}\xi_n.$$

Конечность $\mathsf{E}\xi$ следует из того, что $|\xi| < \eta$ почти наверное, следовательно, так как $\mathsf{E}\eta < +\infty$, то $\mathsf{E}|\xi| \leqslant \mathsf{E}|\eta| < +\infty$.

Докажем L_1 -сходимость. Возьмем $\psi_n = |\xi_n - \xi|$. Тогда $|\psi_n| \le 2\eta$ почти наверное и $\psi_n \xrightarrow[n \to +\infty]{\text{п.н.}} 0$, следовательно, $\mathsf{E}\psi_n \xrightarrow[n \to +\infty]{\text{п.н.}} 0$ по теореме Лебега.

Сходимость в L_2

Введем пространство $L_2=L_2(\Omega,\mathcal{F},\mathsf{P})=\{\xi:\mathsf{E}\xi^2<+\infty\}$. Это минимальное пространство, так как $\mathsf{E}(a\xi+b\eta)^2\leqslant 2a^2\mathsf{E}\xi^2+2b^2\mathsf{E}\eta^2$.

Основное неравенство: $(x + y)^2 \le 2x^2 + 2y^2$.

Норма $\|\xi\| = \sqrt{\mathsf{E}\xi^2}$; скалярное произведение $(\xi, \eta) = \mathsf{E}\xi\eta$.

Лемма. Пусть $\xi_n \xrightarrow{L_2} \xi$, $\forall n : \xi_n \in L_2$. Тогда

- 1. $\xi \in L_2$,
- 2. $\mathsf{E}\xi_n \xrightarrow[n \to +\infty]{} \mathsf{E}\xi$,
- 3. $\mathsf{E}\xi_n^2 \xrightarrow[n \to +\infty]{} \mathsf{E}\xi^2$
- 4. если $\eta_n \xrightarrow{L_2} \eta$, $\forall n : \eta_n \in L_2$, то $(\xi_n, \eta_n) \xrightarrow[n \to +\infty]{} (\xi, \eta)$.
- ▲ Докажем первый пункт леммы:

$$\mathsf{E}\xi^2 = \mathsf{E}(\xi - \xi_n + \xi_n)^2 \leqslant 2\mathsf{E}(\xi - \xi_n)^2 + 2\mathsf{E}\xi_n^2 < +\infty.$$

Перейдем ко второму пункту. Если $\mathsf{E}\xi^2<+\infty$, то $\mathsf{E}|\xi|=\mathsf{E}|\xi|\cdot 1$, а по неравенству Коши-Буняковского это меньше или равно, чем $\sqrt{\mathsf{E}\xi^2}\cdot\mathsf{E} \mathcal{T}^{*}<+\infty$. Осталось заметить, что $\left|\mathsf{E}(\xi_n-\xi)\right|\leqslant \mathsf{E}|\xi_n-\xi|\leqslant \sqrt{\mathsf{E}(\xi_n-\xi)^2\cdot\mathsf{E} 1^2}\xrightarrow[n\to+\infty]{}0$. Пункт 3.

$$\mathsf{E}(\xi_n^2 - \xi^2) = \mathsf{E}(\xi_n + \xi)(\xi_n - \xi) \leqslant \sqrt{\mathsf{E}(\xi_n + \xi)^2 \cdot \mathsf{E}(\xi_n - \xi)^2} \leqslant \sqrt{\left(2\mathsf{E}(\xi_n - \xi)^2 + 8\mathsf{E}\xi^2\right) \cdot \mathsf{E}(\xi_n^2 - \xi^2)} \xrightarrow[n \to +\infty]{} 0.$$

Остается доказать четвертый пункт леммы:

$$\begin{split} \mathsf{E}(\xi_n\eta_n - \xi\eta) &= \mathsf{E}(\xi_n\eta_n - \xi_n\eta) + \mathsf{E}(\xi_n\eta - \xi\eta) \leqslant \\ &\leqslant \sqrt{\mathsf{E}\xi^2 \cdot \underbrace{\mathsf{E}(\eta_n - \eta)^2}_{\to 0}} + \sqrt{\mathsf{E}\eta^2 \cdot \underbrace{\mathsf{E}(\xi_n - \xi)^2}_{\to 0}} \xrightarrow[n \to +\infty]{} 0. \end{split}$$

Случайные блуждания и закон повторного логарифма

Пусть $\{\xi_i\}_{i\geqslant 1}$ — последовательность независимых одинаково распределенных случайных величин таких, что $\mathsf{E}\xi_n=0, \mathsf{E}\xi_n^2=\sigma^2.$

Определение. Случайная величина $S_n = \sum_{i=1}^n \xi_i$ называется случайным блужданием.

Известно (из Ц.П.Т.), что $\overline{\lim}_{n\to\infty}\frac{S_n}{\sqrt{n}}=+\infty$, а $\underline{\lim}_{n\to\infty}\frac{S_n}{\sqrt{n}}=-\infty$. С другой стороны,

$$\sum_{n=1}^{\infty} \frac{\mathsf{E}\xi_n^2}{n \ln^2 n} = \sum_{n=1}^{\infty} \frac{\sigma^2}{n \ln^2 n} < +\infty.$$

Следовательно, по теореме Колмогорова-Хинчина о сходимости ряда почти наверное $\sum_{n=1}^{\infty} \frac{\xi_n}{\sqrt{n} \ln n}$ сходится почти наверное, значит, по лемме Кронекера,

$$\frac{1}{\sqrt{n}\ln n} \sum_{k=1}^{n} \sqrt{k} \ln k \frac{\xi_k}{\sqrt{k}\ln k} = \frac{S_n}{\sqrt{n}\ln n} \xrightarrow[n \to \infty]{\text{n.H.}} 0.$$

Определение. Функция $\varphi^* = \varphi^*(n)$, n > 1 называется верхней для S_n , если $S_n(\omega) < \varphi^*(n)$ почти наверное для всех n, начиная с некоторого $n_0(\omega)$.

Определение. Функция $\varphi_* = \varphi_*(n)$, n > 1 называется нижней для S_n , если $S_n(\omega) > \varphi_*(n)$ почти наверное для бесконечно многих n (бесконечно часто).

То есть $\varphi^*(n) = \varepsilon \sqrt{n} \ln n$ — верхняя для произвольного случайного блуждания, $\varphi_*(n) = \varepsilon \sqrt{n}$ — нижняя. Пусть $\varphi(n)$ — «точная асимптотика», возьмем $\varphi_\varepsilon^* = (1 + \varepsilon) \varphi$; $\varphi_{*\varepsilon} = (1 - \varepsilon) \varphi$ для $\varepsilon > 0$. Тогда

$$\begin{split} \left\{ \overline{\lim}_{n \to \infty} \frac{S_n}{\varphi(n)} \leqslant 1 \right\} &= \left\{ \lim_{n \to \infty} \sup_{m \geqslant n} \frac{S_m}{\varphi(m)} \leqslant 1 \right\} = \\ &= \left\{ \forall \varepsilon > 0 \text{ и некоторого } n_\varepsilon : \sup_{m \geqslant n_\varepsilon} \frac{S_m}{\varphi(m)} \leqslant 1 + \varepsilon \right\} = \\ &= \left\{ \forall \varepsilon > 0 \ \forall m \geqslant n_\varepsilon : S_m \leqslant (1 + \varepsilon) \varphi(m) \right\} \quad \Leftrightarrow \quad (1 + \varepsilon) \varphi(m) - \text{ верхняя.} \end{split}$$

Аналогично,

$$\left\{ \overline{\lim}_{n \to \infty} \frac{S_n}{\varphi(n)} \geqslant 1 \right\} = \left\{ \lim_{n \to \infty} \sup_{m \geqslant n} \frac{S_m}{\varphi(m)} \geqslant 1 \right\} =$$

$$= \left\{ \forall \varepsilon > 0 \text{ и для беск. многих } n_\varepsilon : S_m \geqslant (1 - \varepsilon)\varphi(m) \right\} \Leftrightarrow$$

$$\Leftrightarrow (1 - \varepsilon)\varphi(m) - \text{нижняя.}$$

Отметим,
$$\forall \varepsilon > 0 : \varphi_{\varepsilon}^* = (1+\varepsilon)\varphi$$
 — верхняя \Leftrightarrow $\mathsf{P}\left(\overline{\lim_{n \to \infty}} \frac{S_n}{\varphi(n)} \leqslant 1\right) = 1.$ Аналогично, $\forall \varepsilon > 0 : \varphi_{\varepsilon}^* = (1+\varepsilon)\varphi$ — нижняя \Leftrightarrow $\mathsf{P}\left(\underline{\lim_{n \to \infty}} \frac{S_n}{\varphi(n)} \geqslant 1\right) = 1.$

Теорема (закон повторного логарифма (ЗПЛ)). [б/д] Пусть $\{\xi_n\}_{n\geqslant 1}$ — независимые одинаково распределенные случайные величины, $\mathsf{E}\xi_1=0, \mathsf{E}\xi_1^2=\sigma^2, 0<\sigma^2<+\infty$. Тогда

$$\mathsf{P}\left(\overline{\lim_{n\to\infty}}\,\frac{S_n}{\varphi(n)}=1\right)=1, \varphi(n)=\sqrt{2\sigma^2n\ln\ln n}.$$

Замечание. Применяя ЗПЛ к S_n , получаем, что $\mathsf{P}\left(\varliminf_{n\to\infty}\frac{S_n}{\varphi(n)}=-1\right)=1.$

За нижнюю ветку S_n выходит бесконечно часто (см. Рис. 1), а за верхнюю лишь конечное число раз (почти наверное не выходит).

Рис. 1: Поведение верхней и нижней функции случайного блуждания

Характеристические функции

Определение. Характеристическое функцией случайной величины ξ называется $\varphi_{\xi}(t) = \mathsf{E}e^{it\xi}, t \in \mathbb{R}.$

Определение. Пусть F(x) — функция распределения, тогда ее характеристическая функция $\varphi_F(t)=\int\limits_{\mathbb{R}}e^{itx}\,dF(x).$

Если $F_{\xi}(x)$ — функция распределения случайной величины ξ , то характеристические функции ξ и F_{ξ} совпадают.

По формуле Эйлера $\varphi_{\xi}(t) = \mathsf{E} e^{it\xi} = \mathsf{E} \cos(t\xi) + i\mathsf{E} \sin(t\xi)$.

Определение. Пусть $\vec{\xi}=(\xi_1,\dots,\xi_n)$ — случайный вектор. Его характеристической функцией называется $\varphi_{\vec{\xi}}\left(\vec{t}\right)=\mathsf{E}e^{i\left(\vec{t},\vec{\xi}\right)},t\in\mathbb{R}^n.$

Определение. Пусть $F\left(\vec{x}\right), \vec{x} \in \mathbb{R}^{n}$ — функция распределения в \mathbb{R}^{n} , тогда его характеристической функцией называется $\varphi_{F}\left(\vec{t}\right) = \int\limits_{\mathbb{R}} e^{i\left(\vec{t},\vec{x}\right)} \, dF\left(\vec{x}\right), \vec{x} \in \mathbb{R}^{n}$.

Свойства характеристических функций

Свойство 1. Пусть $\varphi(t)-$ характеристическая функция случайной величины $\xi,\ mor\partial a\ |\varphi(t)|\leqslant \varphi(0)=1.$

11 Лекция от 28.04.2018

Свойство 2. Пусть $\varphi(t)$ —характеристическая функция случайной величины ξ , $a \eta = a\xi + b$, где $a, b \in \mathbb{R}$, тогда $\varphi_{\eta}(t) = e^{itb} \cdot \varphi_{\xi}(at)$.

Свойство 3. Пусть ξ_1, \ldots, ξ_n —независимые случайные величины, $S_n = \sum_{i=1}^n \xi_i \Rightarrow \varphi_{S_n}(t) = \prod_{i=1}^n \varphi_{\xi_k}(t).$

Свойство 4. Пусть $\varphi(t)$ — характеристическая функция, тогда $\varphi(t) = \overline{\varphi(-t)}$

Свойство 5. Пусть $\varphi(t)$ — характеристическая функция случайной величины ξ , тогда $\varphi(t)$ равномерно непрерывна на \mathbb{R} .

▲ Рассмотрим $|\varphi(t+h) - \varphi(t)| = |\mathsf{E} e^{i(t+h)\xi} - \mathsf{E} e^{it\xi}| = |\mathsf{E} e^{it\xi}(e^{ih\xi} - 1)| \leqslant \mathsf{E} |e^{it\xi}| \cdot |e^{ih\xi} - 1| = \mathsf{E} |e^{ih\xi} - 1|$. При $h \to 0$ выполнено $e^{ih\xi} - 1 \xrightarrow{\text{п.н.}} 0$ по теореме о наследовании сходимости. $\forall h : |e^{ih\xi} - 1| \leqslant |e^{ih\xi}| + 1 = 2$, $\mathsf{E} 2 < +\infty$. Следовательно, по теореме Лебега о мажорируемой сходимости, $\mathsf{E} |e^{ih\xi} - 1| \to \mathsf{E} 0 = 0$. Значит, $\varphi(t)$ равномерно непрерывна. ■

Теорема (единственности (д-во позже)). Пусть F и G — функции распределения, такие что $\varphi_{F(x)} = \varphi_{G(x)} \Rightarrow F(x) = G(x) \ \forall x$.

Свойство 6. Пусть $\varphi_{\xi}(t)$ —характеристическая функция случайной величины ξ , $\varphi(t)$ принимает действительные значения $\Leftrightarrow \xi$ имеет симметричное распределение.

 \blacktriangle (\Leftarrow) Пусть распределение ξ —симметрично, тогда $E(\sin(t\xi)) = E(\sin(t(-\xi))) = -E(\sin(t\xi)) = 0$. Значит $\varphi_{\xi}(t) = E\cos t\xi + iE\sin t\xi = E\cos t\xi \in \mathbb{R}$. (\Rightarrow) Пусть $\varphi_{\xi}(t) \in \mathbb{R}$ $\forall t$. Тогда по свойствам 2 и 3 $\varphi_{\xi}(t) = \overline{\varphi_{\xi}(-t)} = \varphi_{\xi}(-t) = \varphi_{-\xi}(t) \Rightarrow \xi$ и $-\xi$ имеют одиаковую характеристическую функцию $\Rightarrow \xi \stackrel{d}{=} -\xi$ по теореме единственности.

Свойство 7.

Теорема (о производных х.ф.). Пусть $E|\xi|^n<+\infty,\ n\in\mathbb{N}.$ Тогда $\forall k\leqslant n\ \exists \varphi_{\mathcal{E}}^{(k)}(t),\ npuчём$

1.
$$\varphi_{\xi}^{(k)}(t) = \int_{\mathbb{R}} (ix)^k e^{itx} dF(x)$$

2.
$$E\xi^k = \frac{\varphi_{\xi}^{(k)}(0)}{i^k}$$

3.
$$\varphi_{\xi}(t) = \sum_{k=0}^{n} \frac{(it)^k}{k!} E\xi^k + \frac{(it)^n}{n!} \varepsilon_n(t)$$

$$|\varepsilon_n(t)| \leq 3E|\xi|^n, \ \varepsilon_n(t) \to 0, \ t \to 0.$$

- 1. Рассмотрим $\frac{\varphi_{\xi}(t+h)-\varphi_{\xi}(t)}{h} = \frac{Ee^{i(t+h)\xi}-Ee^{it\xi}}{h} = \frac{Ee^{it\xi}(e^{ih\xi}-1)}{h}$. при $h \to 0$ $\frac{e^{ih\xi}-1}{h} \xrightarrow{\text{п.н.}} i\xi$, кроме того, $\left|\frac{e^{ih\xi}-1}{h}\right| \leqslant |\xi|$ почти наверное, так как хорда меньше дуги. По теореме о мажорируемой сходимости $\lim_{h\to 0} E\frac{e^{ih\xi}-1}{h}e^{it\xi} = \varphi'_{\xi}(t) = E(i\xi\cdot e^{it\xi}) = \int\limits_{\mathbb{R}} ixe^{itx}dF_{\xi}(x)$. Доказательство формулы для $\varphi^{(k)}$ аналогично.
- 2. Из пункта 1, $E\xi^n = \int\limits_{\mathbb{R}} x^k dF_\xi(x) = \frac{1}{i^k} \int\limits_{\mathbb{R}} (ix)^k e^{i0x} dF(x) = \frac{\varphi^{(k)}(0)}{i^k}.$
- 3. Ряд Тейлора $e^{i\eta} = \sum_{k=0}^{n-1} \frac{(i\eta)^k}{k!} + \frac{(i\eta)^n}{n!} (\cos\theta_1 y + i\sin\theta_2 y), \ |\theta_1| \leqslant 1, \ |\theta_2| \leqslant 1, \ \text{то-гда} \ \varphi_\xi(t) = E e^{it\xi} = E \left[\sum_{k=0}^{n-1} \frac{(it\xi)^k}{k!} + \frac{(it\xi)^n}{n!} (\cos\theta_1 t\xi + i\sin\theta_2 t\xi) \right] = \sum_{k=0}^n \frac{(it)^k}{k!} E \xi^k + \frac{(it)^n}{n!} \varepsilon_n(t), \ \text{где} \ \varepsilon_n(t) = E(\xi^n \cdot [\cos\theta_1 t\xi + i\sin(\theta_2 t\xi) 1]) \Rightarrow \varepsilon_n(t) \leqslant 3E|\xi|^n; \ |\xi^n[\cos(\theta_1 t\xi) + i\sin(\theta_2 t\xi) 1]| \leqslant 3|\xi|^n \ \text{и} \ \xi^n(\cos(\theta_1 t\xi) 1 + \underbrace{\sin(\theta_2 t\xi)}_{\to 0}) \xrightarrow{\text{п.н.}} 0 \ \text{при} \ t \to 0 \Rightarrow \text{по теореме} \ \text{Лебега о мажорируемой сходимости,} \ \varepsilon_n(t) \xrightarrow[t\to 0]{} 0.$

Свойство 8 (б/д). Если существует и конечна $\varphi^{(2n)}(0)$, то $E|\xi|^{2n}<+\infty$. Теорема (о разложении х.ф. в ряд). Пусть ξ случайная величина, такая что $E|\xi|^n<+\infty$ $\forall n$. Если для некоторого T>0 выполнено $\overline{\lim_n}\left(E\frac{|\xi|^n}{n!}\right)<\frac{1}{T},$ то $\forall t:|t|< T$ выполнено $\varphi_\xi(t)=\sum_{n=0}^{+\infty}\frac{(it)^n}{n!}E\xi^n$.

▲ Пусть t_0 такое, что $|t_0| < T$, тогда $\overline{\lim_{n \to +\infty}} E\left(\frac{|\xi|^n \cdot |t_0|^n}{n!}\right)^{\frac{1}{n}} = \frac{|t_0|}{T} < 1$, следовательно, по признаку Коши-Адамара сходимости рядов, ряд $\sum_{n=0}^{+\infty} \frac{E|\xi|^n \cdot |t_0|^n}{n!}$ сходится. Рассмотрим $|t| \le |t_0| : \varphi_{\xi}(t) = \sum_{k=0}^{n} \frac{(it)^k}{k!} E\xi^k + \underbrace{\frac{(it)^n}{n!}}_{R_n(t)} \varepsilon_n(t)$ (*).

 $R_n(t) \leqslant 3 \cdot \frac{|t|^n}{n!} \cdot E|\xi|^n \underset{n \to +\infty}{\longrightarrow} 0$ по условию теоремы. Устремляя $n \to +\infty$ в (*), получаем $\varphi_{\xi}(t) = \sum_{k=0}^{+\infty} \frac{(it)^k}{k!} E\xi^k$. В силу произвольности $|t_0| < T$, разложение верно $\forall t \in (-T,T)$.

Пример. Пусть
$$\xi \sim N(0;1) \Rightarrow \varphi_{\xi}(t) = e^{-\frac{t^2}{2}}$$
. Мы знаем, что $E\xi^m = \left\{ \begin{array}{l} (m-1)!!, \ m \ \vdots \\ 0, \ m \ \not \vdots \\ 2 \end{array} \right.$

$$E|\xi|^m = \begin{cases} (m-1)!!, & m:2\\ (m-1)!!\sqrt{\frac{2}{n}}, & m \not | 2 \end{cases} \Rightarrow \text{по предыдущей теореме}, \varphi_\xi(t) = \sum_{n=0}^\infty \frac{(it)^{2n}}{(2n)!} (2n-1)!! = \sum_{n=0}^{+\infty} \frac{(it)^{2n}}{(2n)!!} = \sum_{n=0}^{+\infty} \left(-\frac{t^2}{2}\right)^n \frac{1}{n!} = e^{-\frac{t^2}{2}}.$$

$$\frac{\text{Условие теоремы:}}{0 \Rightarrow T = +\infty}$$
. $\left(\frac{E|\xi|^m}{m!}\right)^{\frac{1}{m}} \leqslant \left(\frac{(m-1)!!}{m!}\right)^{\frac{1}{m}} = \left(\frac{1}{m!!}\right)^{\frac{1}{m}} \approx \frac{1}{\sqrt{2}} \left(\left(\frac{m}{2e}\right)^{\frac{m}{2}}\right)^{\frac{1}{m}} \sim \frac{C}{\sqrt{m}} \rightarrow C$

Теорема (формула обращения (6/д)). Пусть $\varphi(t)$ характеристическая функции распределения F. Тогда

- 1. Для $\forall a < b \ (moчки непрерывности)$ F выполнено $F(b) F(a) = \frac{1}{2\pi} \lim_{c \to +\infty} \int\limits_{-c}^{c} \frac{e^{-itb} e^{-ita}}{-it} \varphi(t) dt$
- 2. Если $\int\limits_{\mathbb{R}} |\varphi(t)| dt < +\infty$, то у функции распределения F(x) существует плотность f(x) и $f(x) = \frac{1}{2\pi} \int\limits_{\mathbb{R}} e^{-tx} \varphi(t) dt$.

12 Лекция от 05.05.2018

Теорема (единственности). Пусть F и G — функции распределения, такие $umo \varphi_{F(x)} = \varphi_{G(x)} \Rightarrow F(x) = G(x) \ \forall x.$

A Пусть $a < b \in \mathbb{R}$. Рассмотрим $f_{\varepsilon}(x)$ (шапочка). Докажем, что $\forall \varepsilon > 0 \int_{\mathbb{R}} f_{\varepsilon}(x) df(x) = \int_{\mathbb{R}} f_{\varepsilon}(x) dG(x)$. Рассмотрим отрезок [-n,n] такой, что $[a,b+\varepsilon] \subset [-n,n]$. По теореме Вейерштрасса-Стоуна, $f_{\varepsilon}(x)$ сколь угодно точно приближается тригонометрическими многочленами от $\frac{\pi x}{n}$, так как $f_{\varepsilon}(x)$ непрерывна и периодична на [-n,n] с периодом 2n.

 $\Rightarrow \forall n \; \exists f_\varepsilon^n(x) = \sum_{k \in K} a_k \cdot e^{\frac{ik\pi x}{n}}, \; a_k \in \mathbb{R}, \; K - \text{ конечное подмножество } \mathbb{Z}, \; \text{такое, что} \\ \forall x \in [-n,n] : |f_\varepsilon^n(x) - f_\varepsilon(x)| < \frac{1}{n}. \; f_\varepsilon^n - \text{периодическая с периодом } 2n. \; \text{Поскольку} \\ |f_\varepsilon(x)| < 1 \; \text{и} \; \forall x \in [-n,n] : |f_\varepsilon^n(x) - f_\varepsilon(x)| < \frac{1}{n}, \; \text{то} \; |f_\varepsilon^n(x)| \leqslant 2 \; \forall x. \; \text{По условию,} \\ \end{cases}$

 $\int e^{itx} dF(x) = \int e^{itx} dG(x) \Rightarrow \int f_{\varepsilon}^{n}(x) dF(x) = \int f_{\varepsilon}^{n}(x) dG(x).$

$$\left| \int_{\mathbb{R}} f_{\varepsilon}(x) dF(x) - \int_{\mathbb{R}} f_{\varepsilon}(x) dG(x) \right| \leq \left| \int_{\mathbb{R}} f_{\varepsilon}(x) dF(x) - \int_{\mathbb{R}} f_{\varepsilon}^{n}(x) dF(x) \right| +$$

$$+ \left| \int_{\mathbb{R}} f_{\varepsilon}^{n}(x) dF(x) - \int_{\mathbb{R}} f_{\varepsilon}^{n}(x) dG(x) \right| + \left| \int_{\mathbb{R}} f_{\varepsilon}^{n}(x) dG(x) - \int_{\mathbb{R}} f_{\varepsilon}(x) dG(x) \right| \leq$$

$$\leq \frac{1}{n} \int_{[-n,n]} dF(x) + \frac{1}{n} \int_{[-n,n]} dG(x) + (1 - F(n) + F(-n) + 1 - G(n) + G(-n)) \leq$$

$$\leq \frac{2}{n} + o(1) \Rightarrow \forall \varepsilon > 0 : \int f_{\varepsilon}(x) dF(x) = \int f_{\varepsilon}(x) dG(x).$$

При $\varepsilon \to 0$ $f_{\varepsilon}(x) \to I_{[a,b]}(x)$, при этом $|f_{\varepsilon}(x)| \leqslant 1 \ \forall x \in \mathbb{R}$. По теореме Лебега о мажорировании сходимости(рассматриваем $f_{\varepsilon}(x)$ как набор случайных величин на $(\mathbb{R}, \mathscr{B}(\mathbb{R}), P_f) \to (\mathbb{R}, \mathscr{B}(\mathbb{R}))$). $\int_{\mathbb{R}} f_{\varepsilon}(x) dF(x) \to \int_{\mathbb{R}} I_{[a,b]} dF(x) = F(b) - F(a)$. Аналогично, для функции распределения $G\int\limits_{\mathbb{D}} f_{\varepsilon}(x)dG(x) \xrightarrow[\varepsilon \to 0]{} G(b) - G(a) \Rightarrow \forall a < 0$ $b\ F(b) - F(a) = G(b) - G(a)$. Полагая $a = (-\infty)$, получаем требуемое.

Теорема (критерий назависимости). Пусть $\vec{\xi} = (\xi_1, \dots, \xi_n)$. Тогда (ξ_1, \dots, ξ_n) назависимые в совокупности $\Leftrightarrow \varphi_{\vec{\xi}(\vec{t})} = \prod_{i=1}^n \varphi_{\xi_i}(t_i) \ \forall \vec{t} = (t_1, \dots, t_n) \in \mathbb{R}^n.$

$$\blacktriangle \ (\Rightarrow) \ \varphi_{\vec{\xi}(\vec{t})} = Ee^{i(\vec{t},\vec{\xi})} = Ee^{i\vec{t},\vec{\xi}} = Ee^{i\vec{t}_k\xi_k} \stackrel{\text{hes-ctb}}{=} \prod_{k=1}^n Ee^{it_k\xi_k} = \prod_{k=1}^n \varphi_{\xi_x}(t_k).$$

рию независимости в терминах функции распределения.

 (\Leftarrow) Пусть $F_k(x)$ — функция распределения случайной величины ξ_k . Пусть $G(x_1,\ldots,x_n)=F_1(x)\cdot\ldots\cdot F_n(x)$ — это функция распределения. Посчитаем её характеристическую функцию: $\varphi_G(t)=\int\limits_{\mathbb{R}^n}e^{i(\vec{t},\vec{x})}dG(\vec{x})=\int\limits_{\mathbb{R}}e^{i(\vec{t},\vec{x})}dF_1(x_1)\cdot\ldots\cdot$

$$dF_n(x_n)=$$
 (по теореме Фубини) $\prod\limits_{k=1}^n\int\limits_{\mathbb{R}}e^{it_kx_k}dF_k(x_k)=\prod\limits_{k=1}^n\varphi_{\xi_k}(t_k)\stackrel{\text{по усл}}{=}\varphi_{\vec{\xi}}(\vec{t})\Rightarrow$ характеристическая функция G и $\vec{\xi}$ совпадают \Rightarrow по теореме единственности $F_{\xi}=G\Rightarrow F_{\vec{\xi}}(\vec{x})=\prod\limits_{k=1}^nF_{\xi_k}(x_k)\Rightarrow \xi_1,\ldots,\xi_n$ независимы в совокупности по крите-

Проверка того, что φ —характеристическая функция

Определение. Функция $\varphi(t)$ является неотрицательно определённой, если $\forall n \ \forall t_1, \dots, t_n \in$ $\mathbb{R}, \ \forall z_1, \dots, z_n \in \mathbb{C}, \ \sum_{i,j=1}^n \varphi(t_i - t_j) z_k \overline{z_j} \geqslant 0.$

Теорема (Бохнера-Хинчина). Пусть $\varphi(t)$ такая, что $\varphi(0) = 1$ и $\varphi(t)$ непрерывна в нуле. Тогда $\varphi(t)$ —характеристическая функция $\Leftrightarrow \varphi(t)$ неотрицательно определённая.

 \blacktriangle (\Rightarrow) $\varphi(t)$ — характеристическая функция, проверим неотрицательность:

$$\forall t_1, \dots, t_n \in \mathbb{R} \ \forall z_1, \dots, z_n \in \mathbb{C}$$

$$\sum_{j,k=1}^n \varphi(t_j - t_k) z_j \overline{z_k} = \sum_{j,k=1}^n E e^{i(t_j - t_k)\xi} z_j \overline{z_k} =$$

$$= E \sum_{k,k=1}^n e^{it_j \xi} \cdot z_j \cdot \overline{e^{et_k \xi}} \cdot \overline{z_k} = E \left| \sum_{j=1}^n e^{it_j \xi} z_j \right|^2 \geqslant 0$$

Следствие. Если $\varphi(t) = \psi(t) - x$ арактеристическая функция, $\alpha \in (0,1)$, то $\alpha \varphi(t) + (1-\alpha)\psi(t) - x$ арактеристическая функция.

▲ Все три условия из теоремы Бохнера-Хинчина выполнены.

Теорема (Пойа(б/д)). Пусть непрерывная, чётная и выпуклая вниз на $(0; +\infty)$ функция $\varphi(t)$ такова, что $\varphi(t) \geqslant 0$, $\varphi(0) = 1$, $\varphi(t) \xrightarrow[t \to +\infty]{} 0$. Тогда $\varphi(t) -$ характеристическая функция.

Пример. Любая функция вида

является характеристической.

Теорема (Марцинкевича(б/д)). Если характеристическая функция $\varphi(t)$ имеет вид $\exp(P(t))$, где P(t) — полином, то степерь этого полинома $\leqslant 2$ (deg $P(t) \leqslant 2$).

Пример. e^{-t^n} не является характеристической функцией.

Определение. Последовательность функций $F_n(x)$ слабо сходится к F(x), если $\forall f(x)$ — непрерывна и ограничена, то верно $\int\limits_{\mathbb{R}} f(x)df_n(x) \to \int\limits_{\mathbb{R}} f(x)dF(x)$.

Обозначение $F_n \xrightarrow{w} F$. $(\xi_n \xrightarrow{d} \xi \Leftrightarrow F_{\xi_n} \xrightarrow{w} F)$.

Теорема (нерперывности для х.ф.).

▲ Знаем, что $\forall f$ — непрерывной ограниченной функции : $\int\limits_{\mathbb{R}} f(x)dF_n(x) \to \int\limits_{\mathbb{R}} f(x)dF(x)$. Но функции $\sin tx$ и $\cos tx$ непрерывны и ограничены $\Rightarrow \varphi_n(t) = \int\limits_{\mathbb{R}} (\cos tx + i\sin tx)dF_n(x) \xrightarrow[n \to +\infty]{} \int\limits_{\mathbb{R}} (\cos tx + i\sin tx)dF(x) = \varphi(t)$. ■

Центральная предельная теорема

Теорема (ЦПТ в форме Леви). Пусть $\{\xi_n\}_{n\geqslant 1}$ — независимые одинаково распределённые случайные величины, $0 < D\xi < +\infty$. Обозначим $S_n = \sum_{i=1}^n \xi_i$. Тогда $\frac{S_n - ES_n}{\sqrt{DS_n}} \xrightarrow[n \to +\infty]{d} N(0,1)$.

▲ Обозначим $E\xi_i = a, D\xi_i = \sigma^2$. Рассмотрим случайные величины $\eta_i = \frac{\xi_i - a}{\sigma} \Rightarrow E\eta_i = 0; \ D\eta_i = 1.$ Тогда $T_n = \frac{S_n - ES_n}{\sqrt{DS_n}} = \frac{S_n - na}{\sqrt{n}\sigma^2} = \frac{\eta_1 + \dots + \eta_n}{\sqrt{n}}$. Рассмотрим характеристическую функцию η_i : по свойствам характеристической функции $\varphi(t) \equiv \varphi_{\eta_i}(t) = 1 + it \ E\eta_j + \frac{1}{2} \ E\eta_j^2 \cdot (it)^2 + o(t^2 = 1 - \frac{t^2}{2} + o(t^2), \ t \to 0$. Отсюда, $\varphi_{T_n}(t) = \varphi_{\sum_{j=1}^n \eta_j}(t) \stackrel{\text{св-ва x.ф.}}{=} \left(\varphi\left(\frac{t}{\sqrt{n}}\right)\right)^n = \left(1 - \frac{t^2}{2} + o\left(\frac{t^2}{n}\right)\right)^n = e^{-\frac{t^2}{2}}$. Но $e^{-\frac{t^2}{2}}$ — характеристическая функция $N(0,1) \Rightarrow$ (по т. непрерывности) $T_n = \frac{S_n - ES_n}{\sqrt{DS_n}} \stackrel{d}{\to} N(0,1)$.

13 Лекция от 12.05.2018

Теорема (Линдберга). $[6/\partial]$ Пусть $\{\xi_k\}_{k\geqslant 1}$ — независимые случайные величины, $E\xi_k^< + \infty \ \forall k$, обозначим $m_k = E\xi_k$, $\sigma_k^2 = D\xi_k > 0$: $S_n = \sum_{i=1}^n \xi_i$; $D_n^2 = \sum_{k=1}^n \sigma_k^2$ и $F_k(x)$ — функция распределения ξ_k . Пусть выполнено условие Линдберга, то есть:

$$\forall \varepsilon > 0 \ \frac{1}{D_n^2} \sum_{k=1}^n \int_{\{x:|x-m_k| > \varepsilon D_n\}} (x-m_k)^2 dF_k(x) \underset{n \to \infty}{\longrightarrow} 0.$$

Тогда $\frac{S_n - ES_n}{\sqrt{DS_n}} \stackrel{d}{\longrightarrow} N(0,1), n \to \infty.$

Когда выполнены условия Линдберга?

1. Пусть выполнено условие Ляпунова, то есть

$$\frac{1}{D_n^{2+\delta}} \sum_{i=1}^n E|\xi_k - m_k|^{2+\delta} \underset{n \to \infty}{\longrightarrow} 0$$

для некоторого $\delta > 0$, тогда выполнено условие Линдберга.

 $E|\xi_k - m_k|^{2+\delta} = \int_{\mathbb{R}} |x - m_k|^{2+\delta} dF_k(x) \geqslant$ $\geqslant \int_{|x - m_k| \geqslant \varepsilon D_n} |x - m_k|^{2+\delta} dF_k(x) \geqslant \varepsilon^{\delta} D_n^{\delta} \int_{|x - m_k| > \varepsilon D_n} |x - m_k|^2 dF_k(x)$ $\Rightarrow \frac{1}{D^{2+\delta}} \sum_{k=1}^n E|\xi_k - m_k|^{2+\delta} \geqslant \frac{\varepsilon^{\delta}}{D_n^2} \sum_{k=1}^n \int_{\{x:|x - m_k| > \varepsilon D_n\}} |x - m_k|^2 dF_k(x).$

- 2. Из условий теоремы Леви вытекает условие Линдберга.
 - ▲ Пусть $\{\xi_k\}_{k\geqslant 1}$ независимые одинаково распределённые случайные величины, $+\infty>D\xi_1=\sigma^2>0,\; E\xi_1=a\Rightarrow$

$$\frac{1}{D_n} \sum_{k=1}^n \int_{\{x:|x-a|>\varepsilon D_n\}} |x-a|^2 dF_k(x) =$$

$$= \frac{1}{n\sigma^2} \sum_{k=1}^n \int_{\{x:|x-a|>\varepsilon D_n\}} |x-a|^2 dF_1(x) =$$

$$\frac{1}{\sigma^2} \int_{|x-a|>\varepsilon \sqrt{n}\sigma} |x-a|^2 dF_1(x) \to 0, \text{ T.K. } \{x:|x-a|>\varepsilon \sqrt{n}\sigma\} \to \varnothing;$$

$$\int_{\mathbb{D}} |x-a|^2 dF_1(x) < +\infty.$$

3. Пусть $\{\xi_k\}_{k\geqslant 1}$ —независимые случайные величины, $|\xi_k|\leqslant K;\ D_n\to +\infty.$ Тогда

$$\int_{|x-m_k|>\varepsilon D_n} (x-m_k)^2 dF_k(x) =$$

$$= E((\xi_k - m_k)^2 \cdot T(|\xi_k - m_k| > \varepsilon D_n)) \le (2k)^2 EI(|\xi_k - m_k| > \varepsilon D_n) =$$

$$= (2k)^2 P(|\xi_k - m_k| > \varepsilon D_n),$$

то по неравенству Чебышева это не превосходит

$$(2k)^2 \frac{\sigma_k^2}{\varepsilon^2 D_n^2}.$$

Рассмотрим сумму

$$\frac{1}{D_n^2} \sum_{k=1}^n \int_{x:|x-m_k|>\varepsilon D_n} |x-m_k|^2 dF_k(x) \leqslant \frac{(2k)^2}{D_n^2} \sum_{k=1}^n \frac{\sigma_k^2}{\varepsilon^2 D_n^2} = \frac{(2k)^2}{\varepsilon^2 D_n^2} \to 0 \text{ при } n \to \infty.$$

Замечание. Условие Линдберга является необходимым и достаточным условием для справедливости ЦПТ. При выполнении условия бесконечной малости слагаемых:

$$\max_{a < x \leqslant n} P\left(\frac{|\xi_k - m_k|}{D_n} \geqslant \varepsilon\right) \to 0 \text{ при } n \to \infty.$$

Теорема (Берри-Эссена(б/д)). Пусть $\{\xi_k\}_{k\geqslant 1}$ — независимые одинаково распределённые случайные величины, $E|\xi_i|^3<+\infty,\ E\xi_i=a,\ D\xi_i=\sigma^2,\ S_n=\sum_{i=1}^n \xi_i;\ T_n=\frac{S_n-ES_n}{\sqrt{DS_n}}.$ Тогда

$$\sup_{x \in \mathbb{R}} |F_{T_n}(x) - \Phi(x)| \leqslant C \cdot \frac{E|\xi_T a|^3}{\sigma^3 \sqrt{n}}, \ \epsilon \partial e \ \frac{1}{\sqrt{2\pi}} < C < 0, 48,$$

$$i\partial e \ \Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx.$$

Гауссовские случайные векторы

Определение. Случайные вектор $\vec{\xi} \sim N(m, \Sigma)$ — гауссовский, если его характеристическая функция $\varphi_{\vec{\xi}}(\vec{t}) = \exp\left(i(\vec{m}, \vec{t}) - \frac{1}{2}(\Sigma \vec{t}, \vec{t})\right), \ \vec{m} \in \mathbb{R}^n, \ \Sigma$ — симметричная неотрицательно определённая матрица.

Определение. Случайный вектор $\vec{\xi}$ — гауссовский, если он представляется в следующем виде: $\vec{\xi} = A\vec{\eta} + \vec{B}$,где $\vec{B} \in \mathbb{R}^n$, $A \in \mathrm{Mat}(n \times m)$ и $\vec{\eta} = (\eta_1, \dots, \eta_m)$ — независимые и $\sim N(0,1)$.

Определение. Случайный вектор $\vec{\xi}$ — гауссовский, если $\forall \lambda \in \mathbb{R}^n$ случайная величина (λ, ξ) имеет нормальное распределение.

Теорема (об эквивалентности определений гауссовских векторов). *Предыдущие определения эквивалентны*.

1. Опр 1 \Rightarrow Опр 2. Пусть $\varphi_{\xi}(t)=e^{i(t,\vec{m}-(Rt,t))}$. Так как матрица R — симметричная и неотрицательно определённая, то $\exists S$ — ортогональная, такая что

$$S^T R S = D = \begin{pmatrix} d_1 & & & & \\ & \ddots & & 0 & \\ & & d_k & & \\ & 0 & & 0 & \\ & & & 0 & \end{pmatrix}, d_i > 0.$$

Определим
$$\tilde{D}=\left(\begin{array}{cccc} \frac{1}{\sqrt{d_1}} & & & \\ & \ddots & & \\ & & \frac{1}{\sqrt{d_k}} & & \\ & 0 & & 0 \\ & & & 0 \end{array}\right)$$
, в таком случае

$$\tilde{D}^TS^TRS\tilde{D} = \begin{pmatrix} 1 & & & \\ & \ddots & & \\ & & 1 & & \\ & & 0 & & \\ & & & 0 \end{pmatrix}.$$
 Рассмотрим $(S\tilde{D})^T\vec{\xi}$ и его характеристи-

ческую функцию. $\varphi_{(S\tilde{D})^T\vec{\xi}}(\vec{t}) = \varphi_{\vec{\xi}}((S\tilde{D})\vec{t})$, так как

$$\begin{split} \varphi_{(S\tilde{D})^T\vec{\xi}}(\vec{t}) &= Ee^{i(\vec{t},(S\tilde{D})^T\vec{\xi})} = \exp(i((S\tilde{D})\vec{t},\vec{m}) - \frac{1}{2}(R(S\tilde{D})\vec{t},(S\tilde{D})\vec{t})) = \\ &= \exp[i(\vec{t},(S\tilde{D})^T\vec{m}) - \frac{1}{2}\underbrace{(\tilde{D}^TS^TRS\tilde{D}\vec{t},\vec{t})}_{=i=1}^{T}] = \\ &= \sum_{i=1}^k t_i^2 \\ &= \exp[i(\vec{t},(S\tilde{D})^T\vec{m}) \prod_{i=1}^k \varphi_{\eta_i}(t_i)], \end{split}$$

 $\eta_i \sim N(0;1)$ и независимы по теореме единственности и теореме независимости в терминах характеристической функции \Rightarrow вектор $\vec{\eta} = (S\tilde{D})^T (\vec{\xi} - \vec{m})$ — искомый, так как $\vec{\xi} = ((S\tilde{D})^T)^{-1} \vec{\eta} + \vec{m}$.

- 3. Опр 3 \Rightarrow Опр 1. Пусть $(\xi; \lambda)$ нормально распределённая случайная величина, тогда её характеристическая функция $Ee^{i(\xi,\lambda)t}=e^{iE(\xi,\lambda)t-\frac{D(\xi,\lambda)t^2}{2}}$. Подставим t=1 \Rightarrow $Ee^{i(\xi,\lambda)}=e^{i\sum\limits_{k=1}^{n}\lambda_k E\xi_k-\frac{1}{2}\sum\limits_{k,l=1}^{n}\lambda_k\lambda_l\cos(\xi_k,\xi_l)}=\exp(i(\vec{\lambda},E\vec{\xi})-\frac{1}{2}(R\vec{t},\vec{t})),~R=$ $\mathrm{Var}\,\vec{\xi}.$

Свойства гауссовских векторов

Свойство 1. Если $\xi \sim N(a,\Sigma),\ mo\ \vec{a}=\begin{pmatrix} E\xi_1\\ \vdots\\ E\xi_n \end{pmatrix}$ — вектор средних, Σ — матрица ковариаций.

▲ Аналогично пункту 3 предыдущей теоремы.

Свойство 2. Пусть $\vec{\xi} \sim N(a, \Sigma)$, тогда ξ_i независимы $\Leftrightarrow \Sigma - \partial$ иагональна.

▲ Заметим, что характеристическая функция ξ_j равна $\varphi_{\xi_j}(t_j) = e^{et_j a_j - \frac{1}{2} \sigma_{jj}^2 t_j^2}$, нужно подставить $\vec{t} = (0 \dots 0, t, 0 \dots 0)$. Тогда (ξ_1, \dots, ξ_n) независимы в совокупности $\Leftrightarrow \varphi_{\vec{\xi}}(\vec{t}) = \prod_{i=1}^n \varphi_{\xi_j}(t_j) = e^{i(\vec{a}, \vec{t}) - \frac{1}{2} \sum_{j=1}^n \sigma_{jj}^2 t_j^2} \Leftrightarrow \Sigma$ — диагональна. ■

Свойство 3 (Коши). Гауссовские вектора — нормальные случайные величины.

 \blacktriangle Следует из определения 3 для $\lambda_j = (0, \dots, 0, 1, 0, \dots, 0).$

Свойство 4. $\vec{\xi}$ — гауссовский \Rightarrow любое его линейное преобразование — гауссовский вектор.

▲ Пусть $\vec{\chi} = B\vec{\xi} + \vec{c}$. По второму определению гауссовского вектора, $\vec{\chi} = B(A\vec{\eta} + \vec{b}) + \vec{c} = BA\vec{\eta} + B\vec{b} + \vec{c}$, отсюда $\vec{\chi}$ — гауссовский по определению 2.

Свойство 5. Пусть $\vec{\xi}$ — гауссовский. Тогда его коспоненты независимые \Leftrightarrow они некоррелированны.

 \blacktriangle (ξ_1,\ldots,ξ_n) — попарно некоррелированны \Leftrightarrow $\mathrm{cov}(\xi_i,\xi_j)=0,\ i\neq j\Leftrightarrow \Sigma$ — диагонально \Leftrightarrow по свойству 2 компоненты $\vec{\xi}$ независимы в совокупности.

14 Лекция от 19.05.2018

Свойство 6 (Явный вид плотности многомерного нормального распределения). Если $\vec{\xi} \sim N(\vec{m}, \Sigma)$ и const $(\Sigma) = n$, то $\vec{\xi}$ имеет плотность в \mathbb{R}^n .

A Так как const $\Sigma = n \Rightarrow \exists A = \Sigma^{-1}$. Обозначим $f(x) = \frac{|A|^{1/2}}{(2n)^{n/2}} e^{-\frac{1}{2}(A(x-m),(x-m)),\vec{x} \in \mathbb{R}^n}$. Достаточно показать, что $\int\limits_{\mathbb{R}^n} e^{i(\vec{t},\vec{x})} f(x) dx = e^{i(\vec{t},\vec{m}) - \frac{1}{2}(\Sigma \vec{t},\vec{t})}$, тогда f — плотность

 $ec{\xi}$. Обозначим $I_n=\int\limits_{\mathbb{R}^n}e^{i(ec{f},ec{x}-ec{m})}\frac{|A|^{1/2}}{(2\pi)^{n/2}}e^{-\frac{1}{2}A(ec{x}-ec{m},ec{x}-ec{m})}dx$. Хотим доказать, что $I_n=e^{-\frac{1}{2}(\Sigma ec{t},ec{t})}$. Мы знаем, что $\exists S$ — ортогональная, такая что

$$S^{T}\Sigma S = D = \begin{pmatrix} d_{1} & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & d_{n} \end{pmatrix}, d_{i} > 0,$$

так как Σ не вырожденная, тогда $|A| = |\Sigma^{-1}| = \frac{1}{d_1 \cdot \dots \cdot d_n}$. Сделаем замену: $\vec{x} - \vec{m} = S\vec{u}$; $\vec{t} = S\vec{v}$. Тогда $i(\vec{t}, \vec{x} - \vec{m}) - \frac{1}{2}(A(\vec{x} - \vec{m}), \vec{x} - \vec{m}) = i(S\vec{v}, S\vec{u}) - \frac{1}{2}(AS\vec{u}, S\vec{u}) = i\vec{v}^T\underbrace{S^TS_n}_{E} - \frac{1}{2}\vec{u}^T\underbrace{S^TAS}_{D^{-1}}u = i\vec{v}^T\vec{u} - \frac{1}{2}\vec{u}^TD^{-1}\vec{u}$. В итоге,

$$I_{n} = \frac{1}{(2\pi)^{n/2} (d_{1} \cdot \dots \cdot d_{n})^{1/2}} \int_{\mathbb{R}^{n}} e^{i(\vec{v}, \vec{u}) - \frac{1}{2} \vec{u}^{T} D^{-1} \vec{u}} \cdot J \cdot du =$$

$$= \prod_{k=1}^{n} \frac{1}{(2\pi d_{k})^{1/2}} \int_{\mathbb{R}} e^{iv_{k} u_{k} - \frac{1}{2} \frac{u_{k}^{2}}{d_{k}}} du_{k} = \prod_{k=1}^{n} e^{\frac{-v_{k}^{2} d_{k}}{2}} =$$

$$= e^{-\frac{1}{2} \vec{v}^{T} D \vec{v}} = e^{-\frac{1}{2} \vec{v}^{T} S^{T} \Sigma S \vec{v}} = e^{-\frac{1}{2} \vec{t}^{T} \Sigma t},$$

где J=|S|=1 — якобиан. $e^{-\frac{1}{2}\vec{t}^T\Sigma t}$ — характеристическая функция $\vec{\xi}\Rightarrow f(x)$ — плотность $\vec{\xi}$.

Многомерная ЦПТ

Теорема (Многомерная ЦПТ). Пусть $|\vec{x}_i|_{i\geqslant 1}$ — независимые одинаково распределенные случайные вектора, $\vec{\mathrm{E}}\vec{x}_i = \vec{a}$, $\mathrm{Var}\,\vec{x}_i = \Sigma$, тогда $\sqrt{n}\left(\frac{\vec{x}_1+\ldots+\vec{x}_n}{n}\to\vec{a}\right)\stackrel{d}{\to} N(\vec{0},\Sigma), \ n\to+\infty$.

Замечание. Сходимость векторов по распределению вводится аналогично обычной сходимости случайной величины по распределению, то есть $\forall f: \mathbb{R}^n \to \mathbb{R}$ непрерывно ограниченных $\mathsf{E} f(\vec{x}_n) \to \mathsf{E} f(\vec{x})$.

▲ Рассмотрим характеристическую функцию $\varphi_{k,n}(t) = \mathsf{E} \exp\left(i\left(t,\frac{x_k-a}{\sqrt{n}}\right)\right)$ и $\varphi_n(t) = \mathsf{E} \exp\left(i\left(\frac{S_n-na}{\sqrt{n}},t\right)\right) = \prod_{k=1}^n \varphi_{k,n}(t)$, где $S_n = \sum_{k=1}^n \vec{x}_k$. Для доказательства достаточно убедиться, что $\varphi_n(t) \to e^{-\frac{1}{2}} \vec{t}^T \Sigma \vec{t}$. Заметим, что $\varphi_{k,n}(t) = \varphi_{\xi}\left(\frac{1}{\sqrt{n}}\right)$, где $\xi = (\vec{x}_k - \vec{a}, \vec{t})$. Для $\varphi_{\xi}(S)$ верно представление (по теореме о производной характеристической функции) $\varphi_{\xi}(S) = 1 + S\varphi'_{\xi}(0) + \frac{S^2}{2}\varphi''_{\xi}(0) + o(S^2), S \to 0$. Е $\xi = 0$, D $\xi = \mathsf{E}\xi \cdot \xi = \vec{t}^T \mathsf{E}(\vec{x}_k - \vec{a})(\vec{x}_k - \vec{a})^T \vec{t} = \vec{t}^T \Sigma \vec{t} \Rightarrow \varphi_{\xi}(S) = 1 - \frac{S^2}{2} \vec{t}^T \Sigma t + o(S^2), S \to 0$. $0 \Rightarrow \varphi_{k,n}(t) = \varphi_{\xi}\left(\frac{1}{\sqrt{n}}\right) = 1 - \frac{\vec{t}^T \Sigma \vec{t}}{2n} + o(\frac{1}{n}), n \to \infty$. Тогда $\varphi_n(t) = \prod_{k=1}^n \varphi_{k,n}(t) = \left(1 - \frac{1}{2n} \vec{t}^T \Sigma \vec{t} + o\left(\frac{1}{n}\right)\right)^n \xrightarrow[n \to +\infty]{} \exp\left(-\frac{1}{2} \vec{t}^T \Sigma t\right)$.