In-class Exercise Week 5

Questions

- 1. Demonstrate what happens when we insert the keys 5, 28, 19, 15, 20, 33, 12, 17, 10 into a hash table with collisions resolved by chaining. Let the table have 9 slots, and let the hash function be $h(k) = k \mod 9$.
- 2. Let H be a hash table where collisions are handled by chaining. Re-hashing is used each time the load factor, α exceeds 0.5. Assume that the initial size of H is 2 and that re-hashing doubles the size of the table. After inserting 10 items with different keys, what is the size of the hash-table H?
- 3. a) Suppose we design an algorithm for hashing character based item, such as strings. Hence word 'cat' i.e 99 + 97 + 116 = 312 can be thought of as sum of ordinal values . Write suitable code/pseudocode which takes string and table size and returns hash value in the range 0 to table size-1.
 - b) Would there be collision for anagrams? Propose a solution to handle such cases. Anagram is word or phrase formed by rearranging the letters of a different word or phrase, typically using all the original letters exactly once. For example "rail safety" = "fairy tales".

Solutions

1. Demonstrate what happens when we insert the keys 5, 28, 19, 15, 20, 33, 12, 17, 10 into a hash table with collisions resolved by chaining. Let the table have 9 slots, and let the hash function be $h(k) = k \mod 9$.

Solution:

Label the slots of the table to be 0, 1, 2, ..., 8. Numbers which appear to the left in the table have been inserted layer.

0			
1	10	19	28
2	20		
3	12		
4			
5	5		
6	33	15	
7			
8	17		-

Solutions

2. Let H be a hash table where collisions are handled by chaining. Re-hashing is used each time the load factor, α exceeds 0.5. Assume that the initial size of H is 2 and that re-hashing doubles the size of the table. After inserting 10 items with different keys, what is the size of the hash-table H?

Solution:

$$lpha$$
 after 1st insert is $\frac{1}{2}$.

 $lpha$ after 2nd insert is $\frac{1+1}{2*2} = \frac{2}{4}$.

 $lpha$ after 3rd insert is $\frac{2+1}{4*2} = \frac{3}{8}$.

 $lpha$ after 4th insert is $\frac{3+1}{8} = \frac{4}{8}$.

Continuing in this manner ...

$$\alpha$$
 after 10th insert is $\frac{10}{32}$.

Since α is the number of items in the table divided by the size of the table, the size of the table after 10 insertions is 32.

Solutions

- 3. a) Suppose we design an algorithm for hashing character based item, such as strings. Hence word 'cat' i.e 99 + 97 + 116 = 312 can be thought of as sum of ordinal values . Write suitable code/pseudocode which takes string and table size and returns hash value in the range 0 to table size-1.
 - b) Would there be collision for anagrams? Propose a solution to handle such cases. Anagram is word or phrase formed by rearranging the letters of a different word or phrase, typically using all the original letters exactly once. For example "rail safety" = "fairy tales".

Solution:

```
a) def hash(astring, tablesize):
    sum=0
    for pos in range(len(astring)):
        sum=sum + ord (astring[pos])
    return sum%tablesize
```

b) Take weights (position of string) too as a factor. Hence sum can be written as 1*99+2*97+3*116=641