Rachunek prawdopodobieństwa 2R

Kycia

Spis rozmaitości treściowalnych

06.10.2	3 : Warunkowa wartość oczekiwana	3
1.1.	Prawdopodobieństwo warunkowe	3
1.2.	Konstrukcja warunkowej wartości oczekiwanej	3
1.3.	Prawdopodobieństwo warunkowe	6
	3 : Własności WWO	8
2.1.	Poprawność: istnienie i jedyność	8
2.2.	Własności wwo	10
	Zadania	
		20
3.1.	Regularne rozkłady warunkowe	23
	Zadania	
30.10.2	3 : Martyngały	29
4.1.	Transformata martyngałowa	32
	Zadania	
6 11 20	23 : Twierdzenie Dooba o zatrzymaniu, czyli jak uprawiać bazard	36

Wykład 06.10.23: Warunkowa wartość oczekiwana

1.1 Prawdopodobieństwo warunkowe

Tak jak zwykle do tej pory, pracować będziemy na przestrzeni probabilistycznej $(\Omega, \mathcal{F}, \mathbb{P})$.

Przypomnijmy definijcję **prawdopodobieństwa warunkowego** z Rachunku Prawdopodobieństwa 1 (i z liceum). Dla zdarzenia $A \in \mathcal{F}$ takiego, że $\mathbb{P}\left[A\right] \in (0,1)$ definiujemy prawdopodobieństwo warunkowe jako

 $\mathbb{P}\left[\mathsf{B}\mid\mathsf{A}\right]=\frac{\mathbb{P}\left[\mathsf{A}\cap\mathsf{B}\right]}{\mathbb{P}\left[\mathsf{A}\right]}.$

Wartość ta informuje nas o zajściu B wtedy, gdy jesteśmy pewni, że A zaszło. Ale co, jeśli nasza wiedza dotycząca A jest mniej pewna? To znaczy, *co jeśli* $\mathbb{P}[A] = 0$? Dość naturalne wydaje się rozważenie zdarzenia przeciwnego i zsumowania obu prawdopodobieństw:

$$\mathbb{1}_{A}\mathbb{P}\left[\mathsf{B}\mid\mathsf{A}\right]+\mathbb{1}_{\mathsf{A}^{\mathsf{C}}}\mathbb{P}\left[\mathsf{B}\mid\mathsf{A}^{\mathsf{C}}\right].$$

Zauważmy od razu, że wyrażenie $\mathbb{1}_A \mathbb{P} [B \mid A]$ jest zmienną losową.

W przypadku, gdy mamy dwa zbiory, $A_1, A_2 \in \mathcal{F}$, i chcemy zbadać $\mathbb{P}\left[B \mid A_1 \cap A_2\right]$ możemy powyższe rozumowanie rozszerzyć na wszystkie możliwe kombinacje A_1, A_2 i ich dopełnień:

$$\mathbb{1}_{A_1\cap A_2}\mathbb{P}\left[B\mid A_1\cap A_2\right]+\mathbb{1}_{A_1\cap A_2^c}\mathbb{P}\left[B\mid A_1\cap A_2^c\right]+\mathbb{1}_{A_1^c\cap A_2}\mathbb{P}\left[B\mid A_1^c\cap A_2\right]+\mathbb{1}_{A_1^c\cap A_2^c}\mathbb{P}\left[B\mid A_1^c\cap A_2^c\right].$$

Działanie jak wyżej daje pełną informacje o każdym zdarzeniu z ciała generowanego przez zdarzenia A_1 i A_2 . Nazywamy je **rozbiciem** względem σ -ciała generowanego przez A_1 i A_2 .

Analogicznie możemy zdefiniować $\mathbb{E}\left[\mathbf{X}\mid\mathbf{A}\right]$ dla całkowalnej zmiennej losowej X (tzn. $\mathbb{E}\left[|\mathbf{X}|\right]<\infty$):

$$\mathbb{E}\left[\mathbf{X}\mid\mathbf{A}\right]=\int_{\Omega}\mathbf{X}(\omega)\mathbb{P}\left[\mathsf{d}\omega\mid\mathbf{A}\right]=\frac{1}{\mathbb{P}\left[\mathbf{A}\right]}\mathbb{E}\left[\mathbf{X}\mathbb{1}_{\mathbf{A}}\right],$$

gdzie całka wyżej tłumaczy się na całkę po X względem miary $\mathbb{P}\left[\mathsf{B}\mid\mathsf{A}\right]$.

Uzasadnimy, dlaczego wzór wyżej jest zasadną definicją prawdopodobieństwa warunkowego przy ograniczonej wiedzy o zdarzeniu A.

1.2 Konstrukcja warunkowej wartości oczekiwanej

Zanim zdefiniujemy **warunkową wartość oczekiwaną [wwo]** zmiennej losowej X, zaczniemy od przyjrzenia się bliżej motywacji i konstrukcji stojącej za tym pojęciem.

Niech Z będzie całkowalną zmienną losową przyjmującą przeliczalnie wiele wartości. Zdefiniujmy funkcję

$$h(z) = \begin{cases} \mathbb{E} [X \mid Z = z] & \mathbb{P}[Z = z] > 0 \\ 0 & \text{wpp} \end{cases}$$

oraz zmienną losową Y = h(Z). Weźmy dowolny C \in Bor(\mathbb{R}) i zbadajmy $\mathbb{E}\left[Y\mathbb{1}_{\{Z\in C\}}\right]$. Zaczniemy od skorzystania z faktu, że Z przyjmuje przeliczalnie wiele wartości, więc możemy zapisać sumę po

nich wszystkich

$$\begin{split} \mathbb{E}\left[Y\mathbb{1}_{\{Z\in C\}}\right] &= \sum_{z\in C} h(z)\mathbb{P}\left[Z=z\right] = \\ &\stackrel{\star}{=} \sum_{z\in C} \mathbb{E}\left[X\mathbb{1}_{\{Z=z\}}\right] \frac{1}{\mathbb{P}\left[Z=z\right]}\mathbb{P}\left[Z=z\right] = \\ &= \sum_{z\in C} \mathbb{E}\left[X\mathbb{1}_{\{Z=z\}}\right] = \\ &= \mathbb{E}\left[\sum_{z\in C} X\mathbb{1}_{\{Z=z\}}\right] = \\ &= \mathbb{E}\left[X\mathbb{1}_{\{Z\in C\}}\right] \end{split}$$

Równość \star wynika ze sposobu w jaki zdefiniowaliśmy $\mathbb{E}\left[X\mid A\right]$ w poprzednim podrozdziale.

Zauważmy, że dowolne zdarzenie $F \in \sigma(Z)$ jest postaci $F = \{z \in C\}$ dla pewnego $C \in Bor(\mathbb{R})$. Wyprowadziliśmy więc równość:

$$\mathbb{E}\left[\mathsf{Y}\mathbb{1}_{\mathsf{F}}\right] = \mathbb{E}\left[\mathsf{X}\mathbb{1}_{\mathsf{F}}\right] \quad \mathsf{F} \in \sigma(\mathsf{Z}).$$

Pozostaje zapytać, co z tej zależności wynika?

Dla F = Ω dostajemy

$$\mathbb{E}\left[h(Z)\right] = \mathbb{E}\left[Y\right] = \mathbb{E}\left[X\right]$$
.

Dygresja.

W tym miejscu kuszące byłoby rozpisanie Y = h(Z) wprost z definicji, tzn. h(Z) = $\mathbb{E}\left[X\mid Z=Z\right]$, ale jest to całkowitą brednią. W definicji funkcji h podanej na samym początku przykładu z jest teoretycznym punkcikiem, natomiast przy definiowaniu Y = h(Z) ów Z jest już obserwowaną przez nas, konkretną zmienną losową. W takim razie, bardziej poprawny byłby zapis

$$h(Z(\omega)) = \mathbb{E} [X \mid {\omega' : Z(\omega') = Z(\omega)}].$$

Przykład(y) 1.1

1. Ze zbioru {1, 2, ..., 10} losujemy w sposób jednostajny liczbę i oznaczamy ją jako N. W drugim losowaniu, również w sposób jednostajny, wybieramy liczbę ze zbioru {1, ..., N} i nazywamy ją M. Chcemy znaleźć średnią wartość liczby M. Oczywiście, nie jest trudno zrobić to metodami poznanymi na poprzednich przygodach probabilistycznych, jednak w tym przypadku użyjemy konstrukcji wyżej.

Funkcja h będzie wyglądać następująco:

$$h(n) = \mathbb{E}\left[M \mid N = n\right] = \sum_{1 \le i \le n} \frac{i}{n} = \frac{1}{n} \cdot \frac{n(n+1)}{2} = \frac{n+1}{2}$$

czyli h(N) = $\frac{N+1}{2}$.

Stosując notację jak wyżej, mamy

$$Z = N$$

$$X = M$$

czyli podstawiając do wzoru:

$$\begin{split} \mathbb{E}\left[\mathsf{M}\right] &= \mathbb{E}\left[\mathsf{h}(\mathsf{N})\right] = \mathbb{E}\left[\frac{\mathsf{N}+1}{2}\right] = \\ &= \frac{1}{2}\left(\mathbb{E}\left[\mathsf{N}\right]+1\right) = \frac{1}{2}\left(\sum_{1 \leq i \leq 10} \frac{\mathsf{i}}{10} + 1\right) = \\ &= \frac{1}{2}\left(\frac{11}{2} + 1\right)\frac{13}{4} \end{split}$$

Rozbicie jak wyżej można w elegancki sposób zamienić w bardziej abstrakcyjną definicję warunkowej wartości oczekiwanej.

Definicja 1.1.

Niech $\mathcal{G} \subseteq \mathcal{F}$ będzie σ -ciałem, a X całkowalną zmienną losową.

Zmienną losową Y nazywamy warunkową wartością oczekiwaną [wwo] X pod warunkiem \mathcal{G} , jeśli następujące warunki są spełnione:

(W1) Y jest G-mierzalne

(W2)
$$(\forall G \in \mathcal{G}) \mathbb{E} [X1_G] = \mathbb{E} [Y1_G]$$

Nasuwają się teraz pytania o poprawność Y zdefiniowanego jak wyżej. Czy zawsze istnieje i czy jest on jedyny?

Przykład(y) 1.2

1. Niech $\mathcal{G} = \sigma(Z)$, gdzie Z jest zmienną losową przyjmującą przeliczalnie wiele wartości. Wówczas Y = h(Z) dla h(z) = $\mathbb{E}\left[X \mid Z = z\right]$ jest wwo X względem \mathcal{G} .

Twierdzenie 1.1: poprawność wwo.

Dla σ -ciała $\mathcal{G}\subseteq\mathcal{F}$ i całkowalnej zmiennej losowej X **istnieje jedyna zmienna losowa** Y będąca wwo X względem \mathcal{G} . Będziemy ją oznaczać

$$\mathbb{E}\left[X\mid\mathcal{G}\right]=Y.$$

Jeśli Y, Y' są wwo X względem \mathcal{G} , to Y = Y' prawie wszędzie.

Dowód

Dowód na następnym wykładzie.

Uwaga 1.2.

O wwo X pod warunkiem \mathcal{G} należy myśleć jako o przybliżeniu X na podstawie informacji zawartych w \mathcal{G} (więcej na wykładzie 3).

Przykład(y) 1.3

1. Jeśli X i $\mathcal G$ są niezależne, to znaczy dla każdego B \in Bor($\mathbb R$) i dla każdego G \in $\mathcal G$ zachodzi

$$\mathbb{P}[X \in B, G] = \mathbb{P}[X \in B] \mathbb{P}[G],$$

to wtedy $\mathbb{E}\left[X\mid\mathcal{G}\right]=\mathbb{E}\left[X\right]=Y$.

Warunek (W1) jest oczywiście spełniony, bo Y jest funkcją stałą, więc jego przeciwobraz to całość lub \emptyset (czyli jest \mathcal{G} -mierzalny). Warunek (W2) sprawdzamy dla dowolnego $G \in \mathcal{G}$:

$$\mathbb{E}\left[\mathsf{X}\mathbb{1}_{\mathsf{G}}\right] = \mathbb{E}\left[\mathsf{X}\right]\mathbb{E}\left[\mathbb{1}_{\mathsf{G}}\right] = \mathbb{E}\left[\mathbb{E}\left[\mathsf{X}\right]\mathbb{1}_{\mathsf{G}}\right] = \mathbb{E}\left[\mathsf{Y}\mathbb{1}_{\mathsf{G}}\right].$$

2. Rozważmy pokrycie Ω rozłącznymi zbiorami $\{A_n\}_{n\in\mathbb{N}}$, gdzie $A_i\in\mathcal{F}$ dla każdego i. Niech $\mathcal{G}=\sigma(A_i:i\in\mathbb{N})$ będzie σ -ciałem rozpinanym przez to pokrycie. Wówczas

$$\mathbb{E}\left[X\mid\mathcal{G}\right] = \sum_{i\in\mathbb{N}} \mathbb{1}_{A_i} \mathbb{E}\left[X\mid A_i\right]$$

Spełnianie pierwszego warunku jest oczywiste, bo mamy doczynienia z funkcją prostą. Warunek (W2) wystarczy sprawdzić dla atomów, czyli $G = A_i$, bo wszystkie zmienne losowe \mathcal{G} -mierzalne są stałe na A_i .

$$\begin{split} \mathbb{E}\left[\left[\sum\mathbb{1}_{A_{i}}\mathbb{E}\left[X\mid A_{i}\right]\right]\mathbb{1}_{A_{j}}\right] &= \mathbb{E}\left[\mathbb{E}\left[X\mid A_{j}\right]\mathbb{1}_{A_{j}}\right] = \\ &= \mathbb{E}\left[\mathbb{1}_{A_{j}}\frac{\mathbb{E}\left[X\mathbb{1}_{A_{j}}\right]}{\mathbb{P}\left[A_{j}\right]}\right] = \\ &= \mathbb{E}\left[\mathbb{1}_{A_{j}}\right]\frac{\mathbb{E}\left[X\mathbb{1}_{A_{j}}\right]}{\mathbb{P}\left[A_{i}\right]} = \mathbb{E}\left[X\mathbb{1}_{A_{j}}\right], \end{split}$$

$$\operatorname{gdyż} \mathbb{E}\left[\mathbb{1}_{A_j}\right] = \mathbb{P}\left[A_j\right].$$

3. Jeśli w przykładzie wyżej weźmiemy $A_1 = A$, $A_2 = A^c$ i $A_3 = A_4 = ... = \emptyset$ oraz $\mathcal{G} = \sigma(A)$, to dostajemy to samo co na samym początku tego wykładu:

$$\mathbb{E}\left[X\mid\mathcal{G}\right]-\mathbb{1}_{A}\mathbb{E}\left[X\mid A\right]+\mathbb{1}_{A^{C}}\mathbb{E}\left[X\mid A^{C}\right].$$

1.3 Prawdopodobieństwo warunkowe

Definicja 1.2: prawdopodobieństwo warunkowe.

Dla σ -ciała $\mathcal{G}\subseteq\mathcal{F}$ definiujemy **prawdopodobieństwo warunkowe** pod warunkiem \mathcal{G} jako

$$\mathbb{P}\left[\mathsf{A}\mid\mathcal{G}\right]=\mathbb{E}\left[\mathbb{1}_{\mathsf{A}}\mid\mathcal{G}\right]$$

Prawdopodobieństwo $\mathbb{P}\left[\mathsf{A}\mid\mathcal{G}\right]$ jest zmienną losową taką, że:

 \blacksquare $\mathbb{P}\left[\mathsf{A}\mid\mathcal{G}\right]$ jest \mathcal{G} -mierzalna (ze względu na wwo w definicji)

$$\blacksquare$$
 $\mathbb{E}\left[\mathbb{P}\left[A\mid\mathcal{G}\right]\mathbb{1}_{\mathsf{G}}\right] = \mathbb{E}\left[\mathbb{1}_{\mathsf{A}}\mathbb{1}_{\mathsf{G}}\right] = \mathbb{P}\left[A\cap\mathsf{G}\right]$

Przykład(y) 1.4

1. Niech E_1 , E_2 będą niezależnymi zmiennymi losowymi z rozkładem $\exp(1)$. Chcemy się zastanowić jak wygląda prawdopodobieństwo

$$\mathbb{P}\left[\mathsf{E}_1 + \mathsf{E}_2 > \mathsf{t} \mid \sigma(\mathsf{E}_1)\right]$$

dla t > 0. Ponieważ liczymy to prawdopodobieństwo względem $\sigma(E_1)$, to tak naprawdę wszystkie informacje o E_1 mamy w ręku, gdyż tę zmienną obserwujemy. Czyli E_1 możemy w takim przypadku potraktować jako zwykłą stałą i zgadnąć, że

$$\mathbb{P}\left[\mathsf{E}_1 + \mathsf{E}_2 > \mathsf{t} \mid \sigma(\mathsf{E}_1)\right] = \mathsf{e}^{-(\mathsf{t} - \mathsf{E}_1)}.$$

Dla pewności, przerachujemy cały ten przykład wprost z definicji, żeby przekonać się że strzał był poprawny.

Niech $G \in \sigma(E_1)$, wtedy zgodnie z wcześniejszą obserwacją istnieje pewne $C \in Bor(\mathbb{R})$ takie, że G jest postaci $G = \{E_1 \in C\}$. Policzymy $\mathbb{E}\left[\mathbb{P}\left[\{E_1 + E_2 > t\} \mid \sigma(E_1)\right]\right]$ gdyż jak wyżej zauważyliśmy, $\mathbb{P}\left[A \mid \mathcal{G}\right]$ jest zmienną losową. Mamy więc

$$\begin{split} \mathbb{E}\left[\mathbb{P}\left[E_{1}+E_{2}>t \mid \sigma(E_{1})\right]\mathbb{1}_{G}\right] &\overset{\star}{=} \mathbb{P}\left[\{E_{1}+E_{2}>t\} \cap G\right] = \\ &= \mathbb{P}\left[\{E_{1}+E_{2}>t\} \cap \{E_{1} \in C\}\right] = \\ &= \iint\limits_{C \times \mathbb{R}_{+}} e^{-x}e^{-y}dxdy = \\ &= \int_{C} e^{-x}\left[\int_{x+y>t} e^{-y}dy\right]dx = \\ &= \int_{C} e^{-x}e^{-(t-x)+}dx = \mathbb{E}\left[e^{-(t-E_{1})+}\mathbb{1}_{\{E_{1} \in C\}}\right] = \\ &= \mathbb{E}\left[e^{-(t-E_{1})+}\mathbb{1}_{G}\right] \end{split}$$

Równość \star wynika z uwagi pod definicją prawdopodobieństwa warunkowego. Całka $\star\star$ jest równa 1 gdy x > t (gdyż wtedy dla każdego y mamy x + y > t), natomiast dla x \leq t wynosi ona $e^{-(t-x)}$.

Wykład 09.10.23: Własności WWO

Na tym wykładzie zajmiemy się dowodzeniem własności wwo, w tym pokażemy jej istnienie i jedyność.

2.1 Poprawność: istnienie i jedyność

Lemat 2.1: WWO jest całkowalna.

To znaczy, że mając całkowalną zmienną losową X oraz σ -ciało $\mathcal{G}\subseteq\mathcal{F}$, to zachodzi $\mathbb{E}\left[\left|\mathbb{E}\left[\mathbf{X}\mid\mathcal{G}\right]\right|\right]<\infty$.

Dowód

Rozważmy zbiór

$$A = \{\omega : \mathbb{E} \left[X \mid \mathcal{G} \right] (\omega) > 0 \} = \{\omega : \mathbb{E} \left[X \mid \mathcal{G} \right] \in (0, \infty) \} = \left[\mathbb{E} \left[X \mid \mathcal{G} \right] \right]^{-1} ((0, \infty))$$

jako przeciwobraz zbioru $(0,\infty)\in \mathrm{Bor}(\mathbb{R})$ przez funkcję \mathcal{G} -mierzalną $\mathbb{E}\left[\mathsf{X}\mid\mathcal{G}\right]$ wiemy, że $\mathsf{A}\in\mathcal{G}$. Ponieważ $\mathbb{E}\left[\mathsf{X}\mid\mathcal{G}\right]$ jest wwo X pod warunkiem \mathcal{G} , to musi warunek (W2):

$$0 \leq \mathbb{E}\left[\mathbb{E}\left[X \mid \mathcal{G}\right] \mathbb{1}_{A}\right] = \mathbb{E}\left[X \mathbb{1}_{A}\right] \leq \mathbb{E}\left[|X| \mathbb{1}_{A}\right] < \infty$$

bo X jest całkowalna.

Analogicznie postępujemy dla zbioru A^c:

$$0 \leq \mathbb{E}\left[-\mathbb{E}\left[X \mid \mathcal{G}\right] \mathbb{1}_{A}\right] = \mathbb{E}\left[-X\mathbb{1}_{A^{C}}\right] \leq \mathbb{E}\left[|X|\mathbb{1}_{A^{C}}\right] < \infty.$$

Zauważmy, że

$$\left| \mathbb{E} \left[X \mid \mathcal{G} \right] \right| = \mathbb{E} \left[X \mid \mathcal{G} \right] \mathbb{1}_{\mathsf{A}} - \mathbb{E} \left[X \mid \mathcal{G} \right] \mathbb{1}_{\mathsf{A}^\mathsf{C}}$$

Dodając obie te nierówności (i korzystając z liniowości wartości oczekiwanej) uzyskujemy

$$0 \leq \mathbb{E}\left[\mathbb{E}\left[X \mid \mathcal{G}\right] \mathbb{1}_{A}\right] - \mathbb{E}\left[\mathbb{E}\left[X \mid \mathcal{G}\right] \mathbb{1}_{A^{C}}\right] = \mathbb{E}\left[\mathbb{E}\left[X \mid \mathcal{G}\right] \mathbb{1}_{A} - \mathbb{E}\left[X \mid \mathcal{G}\right] \mathbb{1}_{A^{C}}\right] = \mathbb{E}\left[\left|\mathbb{E}\left[X \mid \mathcal{G}\right]\right|\right] < \infty$$

Lemat 2.2 : jedyność p.w..

Niech $\mathcal{G} \subseteq \mathsf{F}$ będzie σ -ciałem. Jeśli Y i Y' są obie wersjami $\mathbb{E}\left[\mathsf{X} \mid \mathcal{G}\right]$, to Y = Y' p.w..

Dowód

Ustalmy ε > 0 i rozważmy zdarzenie

$$\mathsf{A}_{\varepsilon} = \{\mathsf{Y} - \mathsf{Y}' > \varepsilon\} \in \mathcal{G}$$

które jest \mathcal{G} -mierzalne, bo Y i Y' takie są.

$$\begin{split} \varepsilon \mathbb{P}\left[\mathsf{A}_{\varepsilon}\right] + \mathbb{E}\left[\mathsf{Y}'\mathbb{1}_{\mathsf{A}_{\varepsilon}}\right] &= \mathbb{E}\left[\varepsilon\mathbb{1}_{\mathsf{A}_{\varepsilon}}\right] + \mathbb{E}\left[\mathsf{Y}'\mathbb{1}_{\mathsf{A}_{\varepsilon}}\right] = \\ &= \mathbb{E}\left[\left(\varepsilon + \mathsf{Y}'\right)\mathbb{1}_{\mathsf{A}_{\varepsilon}}\right] \leq \\ &\stackrel{\star}{\leq} \mathbb{E}\left[\mathsf{Y}\mathbb{1}_{\mathsf{A}_{\varepsilon}}\right] \stackrel{(\mathsf{W2})}{=} \mathbb{E}\left[\mathsf{X}\mathbb{1}_{\mathsf{A}_{\varepsilon}}\right] = \\ &= \mathbb{E}\left[\mathsf{Y}'\mathbb{1}_{\mathsf{A}_{\varepsilon}}\right] \end{split}$$

gdzie \star wynika z tego, że na zbiorze $A_{\varepsilon} Y > Y' + \varepsilon$.

Dostajemy więc, że

$$\varepsilon \mathbb{P}\left[\mathsf{A}_{\varepsilon}\right] + \mathbb{E}\left[\mathsf{Y}'\mathbb{1}_{\mathsf{A}_{\varepsilon}}\right] \leq \mathbb{E}\left[\mathsf{Y}'\mathbb{1}_{\mathsf{A}_{\varepsilon}}\right]$$

co po przeniesieniu $\mathbb E$ na jedną stronę daje

$$\varepsilon \mathbb{P}\left[\mathsf{A}_{\varepsilon}\right] \leq \mathsf{0}$$

a ponieważ ε > 0, to musi być $\mathbb{P}[A_{\varepsilon}] = 0$.

Wówczas

$$\mathbb{P}\left[Y > Y'\right] = \underbrace{\mathbb{P}\left[\left(\exists \ n\right) \ Y \geq Y' + \frac{1}{n}\right]}_{\mathbb{P}\left[A_{\frac{1}{n}}\right]} = \mathbb{P}\left[\bigcup A_{\frac{1}{n}}\right] = \lim \mathbb{P}\left[A_{\frac{1}{n}}\right] = 0$$

ponieważ $A_{\frac{1}{n}} \subseteq A_{\frac{1}{n+1}}$.

Zamieniając miejscami Y i Y' w dowodzie dostaniemy $\mathbb{P}\left[Y' > Y\right] = 0$, czyli obie możliwości są miary zero.

Twierdzenie 2.3: o istnieniu WWO.

Niech $\mathcal{G} \subseteq \mathcal{F}$ będzie σ -ciałem, a X jest całkowalną zmienną losową. Istnieje zmienna losowa Y spełniająca oba postulaty wwo X pod warunkiem \mathcal{G} .

Jest to Twierdzenie 1.1 z poprzedniego wykładu.

Zanim jednak przejdziemy do dowodu 2.3, przypomnijmy *twierdzenie Radona-Nikodyma* z teorii miary:

Dygresja: twierdzenie Radona-Nikodyma.

Niech μ i ν będą σ -miarami na przestrzeni (Ω, \mathcal{G}) takimi, że ν jest *absolutnie ciągta* względem μ [$\nu \ll \mu$], tzn μ (A) = 0 $\Rightarrow \nu$ (A) = 0. Wówczas istnieje \mathcal{G} -mierzalna funkcja f : $\Omega \to \mathbb{R}$ taka, że

$$\nu(\mathsf{A}) = \int_{\mathsf{A}} \mathsf{f}(\mathsf{x}) \mu(\mathsf{d}\mathsf{x})$$

Funkcję f jak wyżej często oznaczamy f = $\frac{d\nu}{d\mu}$ i nazywamy pochodną Radona-Nikodyma.

Dowód

Wracając do dowodu twierdzenia 2.3. Najpierw pokażemy prostszy przykład, gdy $X \ge 0$, a potem uogólnimy go do dowolnego X.

Załóżmy, że X \geq 0 p.w. Wtedy możemy rozważyć miary μ = $\mathbb{P} \upharpoonright \mathcal{G}$ oraz ν (A) = $\mathbb{E} [X1_A]$. Od razu widać, że w takim ułożeniu $\nu \ll \mu$, więc na mocy twierdzenia Radona-Nikodyma istnieje f \mathcal{G} -mierzalna taka, że

$$\mathbb{E}\left[\mathsf{f}\mathbb{1}_\mathsf{A}\right] = \int_\mathsf{A} \mathsf{f}(\omega)\mu(\mathsf{d}\omega) = \nu(\mathsf{A}) - \mathbb{E}\left[\mathsf{X}\mathbb{1}_\mathsf{A}\right].$$

Funkcja f spełnia (W1) z definicji wwo, bo jest \mathcal{G} -mierzalna, a (W2) jest potwierdzone przez rachunek wyżej. Czyli f jest wwo X pod warunkiem \mathcal{G} .

Niech teraz X będzie dowolną zmienną losową. Możemy ją rozbić jako

$$X = X^{+} - X^{-},$$

gdzie $X^+=\max(0,X)\geq 0$ oraz $X^-=-\min(0,X)\geq 0$. Do obu tych zmiennych możemy zastosować pierwszą część dowodu, by dostać zmienne $\mathbb{E}\left[X^+\mid\mathcal{G}\right]$ oraz $\mathbb{E}\left[X^-\mid\mathcal{G}\right]$. Wystarczy zauważyć, że dzięki liniowości \mathbb{E} możemy w prosty sposób pokazać

$$\mathbb{E}\left[X\mid\mathcal{G}\right] = \mathbb{E}\left[X^{+}\mid\mathcal{G}\right] - \mathbb{E}\left[X^{-}\mid\mathcal{G}\right]$$

2.2 Własności wwo

Twierdzenie 2.4: o arytmetyce wwo.

Niech $\mathcal{G}, \mathcal{G}_1, \mathcal{G}_2 \subseteq \mathcal{F}$ będą σ -ciałami, a X, X₁, X₂ całkowalnymi zmiennymi losowymi

- 1. $\mathbb{E}\left[\mathbb{E}\left[X\mid\mathcal{G}\right]\right] = \mathbb{E}\left[X\right]$
- 2. Jeśli X \geq 0, to również $\mathbb{E}\left[\mathsf{X}\mid\mathcal{G}
 ight]\geq 0$
- 3. $\mathbb{E}\left[aX_1 + bX_2 \mid \mathcal{G}\right] = a\mathbb{E}\left[X_1 \mid \mathcal{G}\right] + b\mathbb{E}\left[X_2 \mid \mathcal{G}\right]$
- 4. $|\mathbb{E}[X | \mathcal{G}]| \leq \mathbb{E}[|X| | \mathcal{G}]$
- 5. Jeśli $\mathcal{G}_1 \subseteq \mathcal{G}_2$, to wówczas

$$\mathbb{E}\left[\mathbb{E}\left[\mathsf{X}\mid\mathcal{G}_{1}\right]\mid\mathcal{G}_{2}\right]=\mathbb{E}\left[\mathbb{E}\left[\mathsf{X}\mid\mathcal{G}_{2}\right]\mid\mathcal{G}_{1}\right]=\mathbb{E}\left[\mathsf{X}\mid\mathcal{G}_{1}\right]$$

To znaczy, że mając informacje o X w dwóch zawartych w sobie ciałach, to mniejsze zawsze wygrywa.

6. Jeśli Y jest \mathcal{G} -mierzalna i XY jest całkowalna, to $\mathbb{E}\left[XY\mid\mathcal{G}\right]=Y\mathbb{E}\left[X\mid\mathcal{G}\right]$, czyli Y możemy traktować jako stałą.

Dowód

1. Wystarczy wstawić G = Ω w warunek (W2):

$$\mathbb{E}\left[\mathbb{E}\left[X\mid\mathcal{G}\right]\right] = \mathbb{E}\left[\mathbb{E}\left[X\mid\mathcal{G}\right]\mathbb{1}_{\Omega}\right] \stackrel{\text{(W2)}}{=} \mathbb{E}\left[X\mathbb{1}_{\Omega}\right] = \mathbb{E}\left[X\right]$$

2. Wynika z dowodu twierdzenia o istnieniu, bo $\frac{d\nu}{d\mu} = \mathbb{E}\left[X \mid \mathcal{G}\right]$. Gdyby A = $\{\omega : \mathbb{E}\left[X \mid \mathcal{G}\right] < 0\}$, to wówczas

$$\mathbb{E}\left[\mathsf{X}\mathbb{1}_{\mathsf{A}}\right] = \nu(\mathsf{A}) = \int_{\mathsf{A}} \mathbb{E}\left[\mathsf{X} \mid \mathcal{G}\right](\omega)\mu(\mathsf{d}\omega) = \mathbb{E}\left[\mathbb{E}\left[\mathsf{X} \mid \mathcal{G}\right]\mathbb{1}_{\mathsf{A}}\right] < 0$$

ale przecież $X \ge 0 \Rightarrow \mathbb{E}[X1_A] \ge 0$, więc $A = \emptyset$.

3. Można to zrobić na dwa sposoby: licząc wszystko pokolei, albo można sprawdzić, czy Y = $a\mathbb{E}\left[X_1\mid\mathcal{G}\right]+b\mathbb{E}\left[X_2\mid\mathcal{G}\right]$ spełnia warunki wwo tej samej zmiennej co $\mathbb{E}\left[aX_1+bX_2\mid\mathcal{G}\right]$. Wówczas obie te zmienne są równe prawie wszędzie.

Warunek \mathcal{G} -mierzalności dla Y jest spełniony, bo Y jest kombinacją liniową dwóch funkcji \mathcal{G} -mierzalnych. Wystarczy więc sprawdzić warunek (W2). W tym celu ustalmy $A \in \mathcal{G}$.

$$\begin{split} \mathbb{E}\left[\mathbf{Y}\mathbb{1}_{\mathsf{A}}\right] &\stackrel{\star}{=} \mathsf{a}\mathbb{E}\left[\mathbb{E}\left[\mathsf{X}_{1} \mid \mathcal{G}\right]\mathbb{1}_{\mathsf{A}}\right] + \mathsf{b}\mathbb{E}\left[\mathbb{E}\left[\mathsf{X}_{2} \mid \mathcal{G}\right]\mathbb{1}_{\mathsf{A}}\right] = \\ &= \mathsf{a}\mathbb{E}\left[\mathsf{X}_{1}\mathbb{1}_{\mathsf{A}}\right] + \mathsf{b}\mathbb{E}\left[\mathsf{X}_{2}\mathbb{1}_{\mathsf{A}}\right] = \\ &= \mathbb{E}\left[\left(\mathsf{a}\mathsf{X}_{1} + \mathsf{b}\mathsf{X}_{2}\right)\mathbb{1}_{\mathsf{A}}\right] = \mathbb{E}\left[\mathbb{E}\left[\mathsf{a}\mathsf{X}_{1} + \mathsf{b}\mathsf{X}_{2} \mid \mathcal{G}\right]\mathbb{1}_{\mathsf{A}}\right] \end{split}$$

4. Wiemy, że $-|X| \le X \le |X|$. Korzystając z punktu 2 dostajemy

$$0 \leq X + |X| \Rightarrow 0 \leq \mathbb{E}\left[|X| \mid \mathcal{G}\right] + \mathbb{E}\left[X \mid \mathcal{G}\right] \Rightarrow -\mathbb{E}\left[|X| \mid \mathcal{G}\right] \leq \mathbb{E}\left[X \mid \mathcal{G}\right]$$

$$0 \leq |X| - X \Rightarrow 0 \leq \mathbb{E}\left[|X| \mid \mathcal{G}\right] - \mathbb{E}\left[X \mid \mathcal{G}\right] \Rightarrow \mathbb{E}\left[X \mid \mathcal{G}\right] \leq \mathbb{E}\left[|X| \mid \mathcal{G}\right]$$

Po złożeniu tych dwóch nierówności:

$$-\mathbb{E}\left[\left|X\right|\mid\mathcal{G}\right]\leq\mathbb{E}\left[X\mid\mathcal{G}\right]\leq\mathbb{E}\left[\left|X\right|\mid\mathcal{G}\right]$$

wiemy, że – $|\mathbb{E}\left[\mathbf{X}\mid\mathcal{G}\right]|\leq\mathbb{E}\left[\mathbf{X}\mid\mathcal{G}\right]\leq|\mathbb{E}\left[\mathbf{X}\mid\mathcal{G}\right]|$, więc musi być

$$\left|\mathbb{E}\left[X\mid\mathcal{G}\right]\right|\leq\mathbb{E}\left[\left|X\right|\mid\mathcal{G}\right].$$

5. Zaczniemy od sprawdzenia, że $\mathbb{E}\left[\mathbb{E}\left[X\mid\mathcal{G}_{2}\right]\mid\mathcal{G}_{1}\right]$ = $\mathbb{E}\left[X\mid\mathcal{G}_{1}\right]$. Wybierzmy A $\in\mathcal{G}_{1}\subseteq\mathcal{G}_{2}$:

$$\mathbb{E}\left[\mathbb{E}\left[X\mid\mathcal{G}_{1}\right]\mathbb{1}_{A}\right]=\mathbb{E}\left[X\mathbb{1}_{A}\right]=\mathbb{E}\left[\mathbb{E}\left[X\mid\mathcal{G}_{2}\right]\mathbb{1}_{A}\right]$$

co potwierdza warunek (W2). \mathcal{G}_1 -mierzalność $\mathbb{E}\left[\mathsf{X}\mid\mathcal{G}_2\right]$ jest oczywista, gdyż $\mathcal{G}_1\subseteq\mathcal{G}_2$, $\mathbb{E}\left[\mathsf{X}\mid\mathcal{G}_2\right]$ jest \mathcal{G}_2 -mierzalne, a po obcięciu do \mathcal{G}_1 dostajemy funkcję \mathcal{G}_1 -mierzalną.

Pozostaje nam sprawdzić czym jest $\mathbb{E}\left[\mathbb{E}\left[X\mid\mathcal{G}_1\right]\mid\mathcal{G}_2\right]$. Roboczo nazwiemy Y = $\mathbb{E}\left[X\mid\mathcal{G}_1\right]$. Jest to funkcja \mathcal{G}_1 -mierzalna, ale dzięki $\mathcal{G}_1\subseteq\mathcal{G}_2$ mamy też \mathcal{G}_2 -mierzalność. W takim razie (tak jak w jednym z przykładów z pierwszego wykładu) $\mathbb{E}\left[Y\mid\mathcal{G}_2\right]$ = Y. Pisząc bez używania litery Y dostajemy

$$\mathbb{E}\left[\mathbb{E}\left[X\mid\mathcal{G}_{1}\right]\mid\mathcal{G}_{2}\right]=\mathbb{E}\left[X\mid\mathcal{G}_{1}\right]$$

6. Ćwiczenie, a poniżej moja próba.

Jeśli Y jest \mathcal{G} -mierzalne, to Y $\mathbb{E}\left[X\mid\mathcal{G}\right]$ też takie jest jako iloczyn dwóch funkcji \mathcal{G} -mierzalnych. Pozostaje sprawdzić warunek (W2).

Zacznijmy od Y = $\sum a_i \mathbb{1}_{A_i}$ dla $A_i \in \mathcal{G}$, czyli od funkcji prostej. Wybierając $A \in \mathcal{G}$ możemy ograniczyć się do zbiorów A_i , gdyż są one rozłączne i na dowolnym innym zbiorze Y = 0. Mamy więc

$$\begin{split} \mathbb{E}\left[\mathbb{E}\left[XY\mid\mathcal{G}\right]\mathbb{1}_{A_{i}}\right] &\stackrel{(W2)}{=} \mathbb{E}\left[XY\mathbb{1}_{A_{i}}\right] = \mathbb{E}\left[a_{i}X\mathbb{1}_{A_{i}}\right] = a_{i}\mathbb{E}\left[X\mathbb{1}_{A_{i}}\right] = \\ &= a_{i}\mathbb{E}\left[\mathbb{E}\left[X\mid\mathcal{G}\right]\mathbb{1}_{A_{i}}\right] = \mathbb{E}\left[(a_{i}\mathbb{E}\left[X\mid\mathcal{G}\right])\mathbb{1}_{A_{i}}\right] = \\ &= \mathbb{E}\left[(Y\mathbb{E}\left[X\mid\mathcal{G}\right])\mathbb{1}_{A_{i}}\right] \end{split}$$

Czyli $\mathbb{E}[XY \mid \mathcal{G}] = Y\mathbb{E}[X \mid \mathcal{G}]$ dla przypadku gdy Y jest funkcją prostą.

Jeśli teraz Y jest dowolną nieujemną funkcją mierzalną, to istnieje ciąg funkcji prostych

$$s_1 \le s_2 \le ... \le s_n \le ...$$
 lim $s_i = Y$

Wówczas dla dowolnego A $\in \mathcal{G}$

$$\begin{split} \mathbb{E}\left[\mathbb{E}\left[XY\right]\mathbb{1}_{A}\right] &= \mathbb{E}\left[XY\mathbb{1}_{A}\right] = \mathbb{E}\left[X\lim s_{i}\mathbb{1}_{A}\right] \stackrel{\star}{=} \lim \mathbb{E}\left[Xs_{i}\mathbb{1}_{A}\right] = \\ &\stackrel{\star\star}{=} \lim \mathbb{E}\left[s_{i}\mathbb{E}\left[X\mid\mathcal{G}\right]\mathbb{1}_{A}\right] = \mathbb{E}\left[\lim s_{i}\mathbb{E}\left[X\mid\mathcal{G}\right]\mathbb{1}_{A}\right] = \\ &= \mathbb{E}\left[Y\mathbb{E}\left[X\mid\mathcal{G}\right]\mathbb{1}_{A}\right] \end{split}$$

 \star można zrobić na mocy twierdzenia o monotoniczności ciągu s_i dla zwykłej $\mathbb E$, natomiast $\star\star$ stosuje poprzedni przypadek Y.

Pozostaje przypadek, gdy Y jest dowolną \mathcal{G} -mierzalną zmienną losową. Wówczas możemy rozbić Y = Y⁺ – Y⁻ i skorzystać z liniowości wwo:

$$\mathbb{E}\left[\mathsf{X}\mathsf{Y}\mid\mathcal{G}\right] = \mathbb{E}\left[\mathsf{X}\mathsf{Y}^{+}\mid\mathcal{G}\right] - \mathbb{E}\left[\mathsf{X}\mathsf{Y}^{-}\mid\mathcal{G}\right] = \mathsf{Y}^{+}\mathbb{E}\left[\mathsf{X}\mid\mathcal{G}\right] - \mathsf{Y}^{-}\mathbb{E}\left[\mathsf{X}\mid\mathcal{G}\right] = \mathsf{Y}\mathbb{E}\left[\mathsf{X}\mid\mathcal{G}\right]$$

Twierdzenie 2.5 : o zbieżności i ciągłości.

Niech $\mathcal{G}\subseteq\mathcal{F}$ będzie σ -ciałem, a X, X₁, X₂, ... będzie ciągiem całkowalnych zmiennych losowych. Wówczas

- 1. Jeśli $0 \le X_1 \le X_2 \le ...$ oraz $X_n
 X$, to $\mathbb{E}\left[X_n \mid \mathcal{G}\right]
 \mathbb{E}\left[X \mid \mathcal{G}\right]$ p.w. (twierdzenie o zbieżności monotonicznej)
- $2. \ \ \mathsf{Jeśli} \ X \geq 0, to \ \mathbb{E} \left[\mathsf{lim} \ \mathsf{inf}_n \ \mathsf{X}_n \ | \ \mathcal{G} \right] \leq \mathsf{lim} \ \mathsf{inf}_n \ \mathbb{E} \left[\mathsf{X}_n \ | \ \mathcal{G} \right] \ (\mathsf{lemat} \ \mathsf{Fatou}).$
- 3. Jeśli $|X_n| \leq Y$ oraz Y jest całkowalny i $X_n \to X$ p.w., to $\mathbb{E}\left[X_n \mid \mathcal{G}\right] \to \mathbb{E}\left[X \mid \mathcal{G}\right]$ (twierdzenie o zbieżności ograniczonej)

Dowód

1. Zauważamy, że ciąg $\mathbb{E}\left[X_n\mid\mathcal{G}\right]$ jest niemalejący i ograniczony przez $\mathbb{E}\left[X\mid\mathcal{G}\right]$ (na mocy punktu 2 z poprzedniego twierdzenia).

Niech Y = $\lim \mathbb{E} [X_n \mid \mathcal{G}]$. Wystarczy, że pokażemy Y = $\mathbb{E} [X \mid \mathcal{G}]$ p.w., czyli sprawdzimy warunki (W1) i (W2). Oczywiście, warunek (W1) wynika z faktu, że granica ciągu funkcji \mathcal{G} -mierzalnych jest nadal \mathcal{G} -mierzalna. Dla sprawdzenia warunku (W2) wybierzmy $A \in \mathcal{G}$

$$\mathbb{E}[Y1_A] = \mathbb{E}\left[\lim \mathbb{E}\left[X_n \mid \mathcal{G}\right] 1_A\right] \stackrel{\star}{=} \lim \mathbb{E}\left[\mathbb{E}\left[X_n \mid \mathcal{G}\right] 1_A\right] =$$
$$= \lim \mathbb{E}\left[X_n 1_A\right] = \mathbb{E}\left[\lim X_n 1_A\right] = \mathbb{E}\left[X_n 1_A\right] = \mathbb{E}\left[X_n 1_A\right]$$

czyli Y = $\mathbb{E}\left[X \mid \mathcal{G}\right]$ p.w.

- 2. Zaczniemy od dwóch obserwacji:
 - ➡ Dla ciągu {a_n} lim inf a_n to najmniejszy z jego punktów skupienia, równoważnie:

$$\underset{n}{\text{lim inf }} a_n = \underset{k \to \infty}{\text{lim inf }} a_n$$

 \Re Dla dowolnej przeliczalnej rodziny zmiennych losowych $\{Z_n\}_{n\in T}$ i dla dowolnego $t\in T$ mamy

$$\begin{split} &\inf_{s \in T} Z_s \leq Z_t \\ &\mathbb{E} \left[\inf_{s \in T} Z_s \right] \leq \mathbb{E} \left[Z_t \right] \\ &\mathbb{E} \left[\inf_{s \in T} Z_s \right] \leq \inf_{t \in T} \mathbb{E} \left[Z_t \right] \end{split}$$

(co jest tak naprawdę wersją lematu Fatou dla $\mathbb E$ z RP1R).

Stosując obserwację w przejściach \star , obserwację w przejsciu $\star\star$ oraz ptk 1. (inf_{n>k} $X_n \leq \inf_{n>k+1} X_n$) w $\star\star\star$, dostajemy

$$\begin{split} \mathbb{E}\left[\liminf_{n} X_{n} \mid \mathcal{G} \right] &\stackrel{\star}{=} \mathbb{E}\left[\liminf_{k} X_{n} \mid \mathcal{G} \right] \stackrel{\star \star \star}{=} \lim_{k} \mathbb{E}\left[\inf_{n > k} X_{n} \mid \mathcal{G} \right] \leq \\ &\stackrel{\star \star}{\leq} \lim_{k} \inf_{n > k} \mathbb{E}\left[X_{n} \mid \mathcal{G} \right] \stackrel{\star}{=} \lim_{n} \inf_{n} \mathbb{E}\left[X_{n} \mid \mathcal{G} \right] \end{split}$$

3. Rozważmy zmienne X_n' = Y + X_n . Ponieważ $|X_n| \le Y$, to Y + $X_n \ge 0$.

$$\begin{split} \mathbb{E}\left[Y + \lim\inf X_n \mid \mathcal{G}\right] &= \mathbb{E}\left[\lim\inf (X_n + Y) \mid \mathcal{G}\right] \overset{3.}{\leq} \lim\inf \mathbb{E}\left[Y + X_n \mid \mathcal{G}\right] = \\ &= \mathbb{E}\left[Y\right] + \lim\inf \mathbb{E}\left[X_n \mid \mathcal{G}\right] \end{split}$$

To daje nam, $\dot{z}e \mathbb{E}\left[\lim\inf X_n \mid \mathcal{G}\right] \leq \lim\inf \mathbb{E}\left[X_n \mid \mathcal{G}\right].$

Postępując analogicznie dla X_n " = $Y-X_n$ (które dalej jest ≥ 0) dostaniemy $\mathbb{E}\left[\limsup X_n \mid \mathcal{G}\right] \geq \lim \sup \mathbb{E}\left[X_n \mid \mathcal{G}\right]$:

$$\begin{split} \mathbb{E}\left[Y - lim \, sup \, X_n \mid \mathcal{G}\right] &= \mathbb{E}\left[lim \, sup(Y - X_n) \mid \mathcal{G}\right] = \\ &= -\mathbb{E}\left[lim \, inf(X_n - Y) \mid \mathcal{G}\right] \overset{3.}{\geq} - lim \, inf \, \mathbb{E}\left[X_n - Y \mid \mathcal{G}\right] = \\ &= lim \, sup \, \mathbb{E}\left[Y - X_n \mid \mathcal{G}\right] \end{split}$$

Ale wiemy, że lim inf $X_n = X$ oraz lim sup $X_n = X$, czyli

$$\lim\inf\mathbb{E}\left[X_{n}\mid\mathcal{G}\right]\geq\mathbb{E}\left[\lim\inf X_{n}\mid\mathcal{G}\right]=\mathbb{E}\left[X\mid\mathcal{G}\right]=\mathbb{E}\left[\lim\sup X_{n}\mid\mathcal{G}\right]\geq\lim\sup\mathbb{E}\left[X_{n}\mid\mathcal{G}\right]$$

ale przecież lim inf $\mathbb{E}\left[X_n\mid\mathcal{G}\right]\leq\lim\sup\mathbb{E}\left[X_n\mid\mathcal{G}\right]$, czyli musi być

$$\lim\inf\mathbb{E}\left[X_{n}\mid\mathcal{G}\right]=\mathbb{E}\left[X\mid\mathcal{G}\right]=\lim\sup\mathbb{E}\left[X_{n}\mid\mathcal{G}\right]$$

i ponieważ lim inf = lim sup = lim to mamy

$$\lim \mathbb{E} \left[X_n \mid \mathcal{G} \right] = \mathbb{E} \left[X \mid \mathcal{G} \right].$$

Twierdzenie 2.6.

Niech $\mathcal{G}\subseteq\mathcal{F}$ będzie σ -ciałem. Załóżmy, że

- ★ X jest G-mierzalna
- \blacksquare Y jest niezależna od \mathcal{G}
- \blacksquare funkcja $\psi: \mathbb{R}^2 \to \mathbb{R}$ jest mierzalna taka, że

$$\mathbb{E}\left[|\psi(\mathbf{X},\mathbf{Y})|\right]<\infty.$$

Wówczas

$$\mathbb{E}\left[\psi(\mathsf{X},\mathsf{Y})\mid\mathcal{G}\right]=\Psi(\mathsf{X}),$$

gdzie funkcja $\Psi : \mathbb{R} \to \mathbb{R}$ jest zdefiniowana jako $\Psi(x) = \mathbb{E} \left[\psi(x, Y) \right]$.

Dowód

Tak jak w dowodzie ostatniego punktu twierdzenia 2.4 zaczniemy od funkcji φ prostych i stopniowo przejdziemy do dowolnych funkcji mierzalnych.

Zaczniemy od funkcji φ postaci $\varphi(x, y) = \mathbb{1}_{A \times B}(x, y) = \mathbb{1}_{A}(x) \cdot \mathbb{1}_{B}(y)$ dla pewnych A, B \in Bor(\mathbb{R}).

Po pierwsze zauważmy, że jeżeli X jest \mathcal{G} -mierzalne, to $\mathbb{1}_A(X)$ też takie jest. Analogicznie, jeśli Y jest niezależna od \mathcal{G} , to $\mathbb{1}_B(Y)$ też jest niezależne i wtedy $\mathbb{E}\left[\mathbb{1}_B(Y)\mid\mathcal{G}\right]=\mathbb{E}\left[\mathbb{1}_B(Y)\right]$. Korzystając z 2.4 w przejściu \star , dostajemy

$$\begin{split} \mathbb{E}\left[\varphi(\mathsf{X},\mathsf{Y})\mid\mathcal{G}\right] &= \mathbb{E}\left[\mathbb{1}_{\mathsf{A}}(\mathsf{X})\mathbb{1}_{\mathsf{B}}(\mathsf{Y})\mid\mathcal{G}\right] = \\ &\stackrel{\star}{=} \mathbb{1}_{\mathsf{A}}(\mathsf{X})\mathbb{E}\left[\mathbb{1}_{\mathsf{B}}(\mathsf{Y})\mid\mathcal{G}\right] = \\ &= \mathbb{1}_{\mathsf{A}}(\mathsf{X})\mathbb{E}\left[\mathbb{1}_{\mathsf{B}}(\mathsf{Y})\right] \end{split}$$

Z drugiej strony mamy

$$\begin{split} \Psi(\mathsf{x}) &= \mathbb{E}\left[\varphi(\mathsf{x},\mathsf{Y})\right] = \mathbb{E}\left[\mathbb{1}_{\mathsf{A}}(\mathsf{x})\mathbb{1}_{\mathsf{B}}(\mathsf{Y})\right] = \\ &= \mathbb{1}_{\mathsf{A}}(\mathsf{x})\mathbb{E}\left[\mathbb{1}_{\mathsf{B}}(\mathsf{Y})\right] \end{split}$$

czyli $\Psi(X) = \mathbb{1}_A(X)\mathbb{E} \left[\mathbb{1}_B(Y)\right]$ tak jak chcieliśmy.

Chcemy przejść teraz do funkcji postaci $\varphi(x,y) = \mathbb{1}_C(x,y)$ dla $C \in Bor(\mathbb{R}^2)$. Skorzystamy przy tym z lematu o $\pi - \lambda$ układach:

Dygresja : lemat o π – λ układach.

Niech P będzie π -układem (tzn. A, B \in P \Rightarrow A \cap B \in P) oraz niech P \subseteq L będzie λ -układem ($\Omega \in L$, A \subseteq B \in L \Rightarrow B \setminus A \in L i A₁ \subseteq A₂ \subseteq ... \in L \Rightarrow \bigcup A_i \in L).

Wówczas L jest σ -ciałem i w szczególności zawiera σ -ciało generowane przez π -układ P.

Rozważmy zbiór

$$\mathsf{D} = \{\mathsf{C} \in \mathsf{Bor}\,\mathbb{R}^2 \ : \ \mathbb{E}\left[\mathbb{1}_\mathsf{C}(\mathsf{X},\mathsf{Y}) \mid \mathcal{G}\right] = \Psi_\mathsf{C}(\mathsf{X})\}.$$

Oczywiście, zbiór wszystkich "kwadratów" A \times B dla A, B $\subseteq \mathbb{R}$ jest π -układem zbiorów z \mathbb{R}^2 i zgodnie z tym co już pokazaliśmy, zawiera się on w D. Chcemy więc pokazać, że D jest λ -układem.

1. $\Omega \in D$

Jest to prawdą, bo w tym przypadku $\Omega = \mathbb{R} \times \mathbb{R}$, czyli podlega pod przypadek udowodniony wyżej.

2. $A \subseteq B \in D \Rightarrow B \setminus A \in D$

Niech A \subseteq B \in D, wówczas

$$\mathbb{1}_{\mathsf{B}\backslash\mathsf{A}}(\mathsf{X},\mathsf{Y}) = \mathbb{1}_{\mathsf{B}}(\mathsf{X},\mathsf{Y}) - \mathbb{1}_{\mathsf{A}}(\mathsf{X},\mathsf{Y})$$

czyli wówczas

$$\begin{split} \mathbb{E}\left[\mathbb{1}_{B\backslash A}(X,Y)\mid\mathcal{G}\right] &= \mathbb{E}\left[\mathbb{1}_{B}(X,Y) - \mathbb{1}_{A}(X,Y)\mid\mathcal{G}\right] = \\ &= \mathbb{E}\left[\mathbb{1}_{B}(X,Y)\mid\mathcal{G}\right] - \mathbb{E}\left[\mathbb{1}_{A}(X,Y)\mid\mathcal{G}\right] = \\ &= \Psi_{B}(X) - \Psi_{A}(Y) = \mathbb{E}\left[\mathbb{1}_{B}(X,Y)\right] - \mathbb{E}\left[\mathbb{1}_{A}(X,Y)\right] = \\ &= \mathbb{E}\left[\mathbb{1}_{B\backslash A}(X,Y)\right] = \Psi(X) \end{split}$$

i tym samym dostajemy $B \setminus A \in D$

3. $A_1 \subseteq A_2 \subseteq ... \Rightarrow \bigcup A_i \in D$

Wystarczy zauważyć, że przy wstępującym ciągu zbiorów A_i mamy $\mathbb{1}_{A_n} \geq \mathbb{1}_{A_{n-1}}$ oraz $\mathbb{1}_{\bigcup A_i} = \lim \mathbb{1}_{A_i}$, a następnie zastosować twierdzenie o zbieżności monotonicznej:

$$\begin{split} \mathbb{E}\left[\bigcup\mathbb{1}_{A_{i}}(X,Y)\mid\mathcal{G}\right] &= \mathbb{E}\left[\lim\mathbb{1}_{A_{i}}(X,Y)\mid\mathcal{G}\right] = \\ &= \lim\mathbb{E}\left[\mathbb{1}_{A_{i}}(X,Y)\mid\mathcal{G}\right] = \\ &= \lim\Psi_{A_{i}}(X) = \lim\mathbb{E}\left[\mathbb{1}_{A_{i}}(X,Y)\right] = \\ &= \mathbb{E}\left[\lim\mathbb{1}_{A_{i}}(X,Y)\right] = \\ &= \mathbb{E}\left[\mathbb{1}_{\bigcup A_{i}}(X,Y)\right] \end{split}$$

W ten sposób pokazaliśmy już, że twierdzenie jest prawdziwe dla funkcji prostych $\varphi:\mathbb{R}^2\to\mathbb{R}$. Przejdziemy teraz do przypadku, gdy φ jest nieujemną funkcją mierzalną, czyli istnieje ciąg funkcji prostych $s_1\leq s_2\leq ...\leq s_n\leq ...\leq \varphi$ taki, że φ = lim s_i .

$$\begin{split} \mathbb{E}\left[\varphi(X,Y)\mid\mathcal{G}\right] &= \mathbb{E}\left[\lim s_{i}(X,Y)\mid\mathcal{G}\right] = \\ &\stackrel{\hookrightarrow}{=} \lim \mathbb{E}\left[s_{i}(X,Y)\mid\mathcal{G}\right] = \\ &= \lim \mathbb{E}\left[s_{i}(X,Y)\right] = \\ &= \mathbb{E}\left[\lim s_{i}(X,Y)\right] = \mathbb{E}\left[\varphi(X,Y)\right] \end{split}$$

W przejściu ♡ skorzystaliśmy ponownie z twierdzeniu o zbieżności monotonicznej.

Pozostaje jedynie przypadek, gdy φ jest dowolną funkcją mierzalną. Wtedy możemy zapisać φ = φ^+ – φ^- dla φ^+ oraz φ^- nieujemnych. Wtedy, korzystając z wcześniej już pokazanych form funkcji mierzalnych dostajemy

$$\begin{split} \mathbb{E}\left[\varphi(\mathsf{X},\mathsf{Y})\mid\mathcal{G}\right] &= \mathbb{E}\left[\varphi^+(\mathsf{X},\mathsf{Y}) - \varphi^-(\mathsf{X},\mathsf{Y})\mid\mathcal{G}\right] = \\ &= \mathbb{E}\left[\varphi^+(\mathsf{X},\mathsf{Y})\mid\mathcal{G}\right] - \mathbb{E}\left[\varphi^-(\mathsf{X},\mathsf{Y})\mid\mathcal{G}\right] = \\ &= \mathbb{E}\left[\varphi^+(\mathsf{X},\mathsf{Y})\right] - \mathbb{E}\left[\varphi^-(\mathsf{X},\mathsf{Y})\right] = \\ &= \mathbb{E}\left[\varphi^+(\mathsf{X},\mathsf{Y}) - \varphi^-(\mathsf{X},\mathsf{Y})\right] = \mathbb{E}\left[\varphi(\mathsf{X},\mathsf{Y})\right] \end{split}$$

2.3 Zadania

Zadanie 1.

Niech $\mathcal{G}\subseteq\mathcal{F}$ będzie σ -ciałem. Rozważmy \mathcal{G} -mierzalną zmienną losową X oraz niezależną od \mathcal{G} zmienną losową Y. Załóżmy, że $\psi:\mathbb{R}^2\to\mathbb{R}$ jest taką funkcją mierzalną, że $\mathbb{E}\left[|\psi(\mathsf{X},\mathsf{Y})|\right]<\infty$. Pokaż, że

$$\mathbb{E}\left[\psi(\mathbf{X},\mathbf{Y})\mid\mathcal{G}\right]=\Psi(\mathbf{X})\quad\Psi(\mathbf{x})=\mathbb{E}\left[\psi(\mathbf{x},\mathbf{Y})\right]$$

Rozwiązanie.

Patrz dowód twierdzenia 2.6.

Zadanie 2.

Niech (X, Y) będzie dwuwymiarowym wektorem losowych o rozkładzie jednostajnym na kwadracie o wierzchołkach (-1, 0), (0, -1), (1, 0), (0, 1). Oblicz $\mathbb{P}\left[X > \frac{1}{2} \mid \mathcal{Y}\right]$.

Rozwiązanie.

Zaczniemy od znalezienia gęstości rozkładu Y.

Oczywiście, gęstość rozkładu wektora $(X,Y) = \frac{1}{2}$ gdyż kwadrat ma pole 2. W takim razie, gęstość zmiennej Y to

$$\begin{split} f_Y(y) &= \begin{cases} \int_{y-1}^{1-y} \frac{1}{2} dx & y \geq 0 \\ \int_{-y-1}^{1+y} \frac{1}{2} dx & y < 0 \end{cases} = \\ &= \begin{cases} 1-y & y \geq 0 \\ 1+y & y < 0 \end{cases} = 1-|y| \end{split}$$

Skorzystamy z zadania 4 z listy 1, gdzie pokazaliśmy, że

$$\mathbb{E}\left[h(X)\mid Y\right] = \int_{\mathbb{R}}h(x)f_{X\mid Y}(x,Y)dx$$

gdzie

$$f_{X|Y}(x,y) = \begin{cases} \frac{f(x,y)}{f_Y(y)} & f_Y(y) \neq 0\\ 0 & \text{wpp.} \end{cases}$$

W tym zadaniu chcemy wyliczyć

$$\begin{split} \mathbb{P}\left[2X > 1 \mid Y\right] &= \mathbb{E}\left[\mathbb{1}_{\{2X > 1\}} \mid Y\right] = \int_{1/2}^{1} \mathbb{1}_{\square}(x, Y) \frac{1}{2 - 2|Y|} dx = \\ &= \int_{1/2}^{1 - |Y|} \frac{\mathbb{1}_{[-1/2, 1/2]}(Y)}{2 - 2|Y|} dx = \mathbb{1}_{[-1/2, 1/2]}(Y) \frac{1/2 - |Y|}{2 - 2|Y|} \end{split}$$

Zadanie 3.

Niech $\{X_n\}$ będzie ciągiem niezależnych zmiennych losowych o takim samym rozkładzie z wartością oczekiwaną m. Niech N będzie dyskretną zmienną losową o wartościach w $\mathbb N$ niezależną od ciągu $\{X_n\}$ z wartością oczekiwaną M. Zdefiniujmy $S_n = \sum_{k=1}^n x_k$. Znajdź

$$\mathbb{E}\left[\mathsf{S}_{\mathsf{N}} \mid \mathsf{N} \right] \quad \mathsf{oraz} \quad \mathbb{E}\left[\mathsf{S}_{\mathsf{N}} \right]$$

Rozwiązanie.

Możemy od razu zacząć od tezy, że

$$\mathbb{E}\left[\mathsf{S}_\mathsf{N} \mid \mathsf{N}\right] = \mathsf{N} \cdot \mathsf{m}$$

ale spróbujemy rozwiązać to w bardziej metodyczny sposób.

Niech $G \in \sigma(N)$, czyli $G = \{N \in C\}$ dla $C \in Bor(\mathbb{R})$.

$$\begin{split} \mathbb{E}\left[\mathbb{E}\left[S_{N}\mid N\right]\mathbb{1}_{G}\right] &= \mathbb{E}\left[S_{n}\mathbb{1}_{G}\right] = \\ &= \mathbb{E}\left[\sum_{k=1}^{N}X_{k}\mathbb{1}_{\left\{N\in C\right\}}\right] = \\ &= \sum_{n\in C}\mathbb{E}\left[\sum_{k=1}^{n}X_{k}\right]\mathbb{P}\left[N=n\right] = \\ &= \sum_{n\in C}\sum_{k=1}^{n}\mathbb{P}\left[N=n\right]\mathbb{E}\left[\sum_{k=1}^{n}X_{k}\right] = \\ &= m\sum_{n\in C}n\cdot\mathbb{P}\left[N=n\right] = \\ &= m\cdot\mathbb{E}\left[N\mathbb{1}_{G}\right] = \mathbb{E}\left[N\cdot m\mathbb{1}_{G}\right] \end{split}$$

Czyli warunek (W2) jest spełniony przez Nm, a warunek σ (N)-mierzlaności jest spełniony przez fakt, że N jest σ (N)-mierzalne.

Korzystając z 1. własności wwo (2.4) wiemy, że

$$\mathbb{E}\left[\mathsf{S}_{\mathsf{N}}\right] = \mathbb{E}\left[\mathbb{E}\left[\mathsf{S}_{\mathsf{N}} \mid \mathsf{N}\right]\right] = \mathbb{E}\left[\mathsf{N} \cdot \mathsf{m}\right] = \mathsf{m} \cdot \mathsf{M}$$

Zadanie 4.

Zmienne losowe X i Y są niezależne i mają rozkład Exp(1).

- (a) Oblicz $\mathbb{E}\left[X + Y \mid X\right]$
- (b) Oblicz $\mathbb{E}\left[X \mid X + Y\right]$

Rozwiązanie.

(a) Zacznijmy od szybkiego przypomnienia, że jeśli X i Y są niezależne, to Y jest niezależne od $\sigma(X)$. Dla A, B \in Bor (\mathbb{R}) i G = $\{X \in B\} \in \sigma(X)$ mamy

$$\mathbb{P}\left[Y \in A \mid G\right] = \mathbb{P}\left[Y \in A \mid X \in B\right] =$$

$$= \mathbb{P}\left[Y \in A\right] \mathbb{P}\left[X \in B\right] = \mathbb{P}\left[Y \in A\right] \mathbb{P}\left[G\right]$$

Czyli wracając do treści zadania

$$\mathbb{E}\left[X+Y\mid X\right]=\mathbb{E}\left[X\mid X\right]+\mathbb{E}\left[Y\mid X\right]=X+\mathbb{E}\left[Y\right]=X+1$$

gdyż X jest mierzalne względem $\sigma(X)$, więc $\mathbb{E}\left[X\mid X\right]=X$, a z drugiej strony ponieważ Y jest niezależne od $\sigma(X)$, to $\mathbb{E}\left[Y\mid X\right]=\mathbb{E}\left[Y\right]$.

(b) Zaczniemy od obserwacji, że

$$\mathbb{E}\left[X\mid X+Y\right]=\mathbb{E}\left[Y\mid X+Y\right]$$

ponieważ

$$\begin{split} \mathbb{E}\left[\mathbb{E}\left[X\mid X+Y\right]\mathbb{1}_{\{X+Y\in C\}}\right] &= \mathbb{E}\left[X\mathbb{1}_{\{X+Y\in C\}}\right] = \\ &= \mathbb{E}\left[Y\mathbb{1}_{\{X+Y\in C\}}\right] = \\ &= \mathbb{E}\left[\mathbb{E}\left[Y\mid X+Y\right]\mathbb{1}_{\{X+Y\in C\}}\right] \end{split}$$

W takim razie

$$\mathbb{E}\left[X\mid X+Y\right] = \frac{1}{2}(\mathbb{E}\left[X\mid X+Y\right] + \mathbb{E}\left[Y\mid X+Y\right]) = \frac{1}{2}\mathbb{E}\left[X+Y\mid X+Y\right] = \frac{1}{2}(X+Y)$$

Zadanie 5.

Pokaż, że jeśli X i Y są zmiennymi losowymi takimi, że X oraz XY są całkowalne oraz Y jest zmienną losową mierzalną względem \mathcal{G} , to

$$\mathbb{E}\left[\mathsf{XY}\mid\mathcal{G}\right]=\mathsf{Y}\mathbb{E}\left[\mathsf{X}\mid\mathcal{G}\right]$$

Rozwiązanie.

Patrz dowód twierdzenia 2.4.

Zadanie 6.

Niech X będzie całkowalną zmienną losową. Niech $\mathcal{C}\subseteq\mathcal{G}$ będzie π -układem generującym

$$\sigma$$
-ciało $\sigma(\mathcal{C}) = \mathcal{G} \subseteq \mathcal{F}$.

Rozwiązanie.

Zadanie sprowadza się do skorzystania z lematu o π – λ układach i sprawdzeniu czy zbiór

$$D = \{A : \mathbb{E} [X1_A] = \mathbb{E} [Z1_A] \}$$

zawierający π -układ $\mathcal C$ jest λ -układem. Wówczas D samo w sobie będzie σ -układem, w szczególności zawierającym ciało $\mathcal G$.

- 1. $\Omega \in D$ bo aby \mathcal{C} generowało σ -ciało, to musi zawierać Ω .
- $2. \ A \subseteq B \in D \Rightarrow B \setminus A \in D$

Niech A \subseteq B \in D, wówczas $\mathbb{1}_{B\setminus A}$ = $\mathbb{1}_B$ – $\mathbb{1}_A$. Daje to:

$$\begin{split} \mathbb{E}\left[\mathsf{X}\mathbb{1}_{\mathsf{B}\backslash\mathsf{A}}\right] &= \mathbb{E}\left[\mathsf{X}(\mathbb{1}_{\mathsf{B}} - \mathbb{1}_{\mathsf{A}})\right] = \\ &= \mathbb{E}\left[\mathsf{X}\mathbb{1}_{\mathsf{B}}\right] - \mathbb{E}\left[\mathsf{X}\mathbb{1}_{\mathsf{A}}\right] = \\ &= \mathbb{E}\left[\mathsf{Z}\mathbb{1}_{\mathsf{B}}\right] - \mathbb{E}\left[\mathsf{Z}\mathbb{1}_{\mathsf{A}}\right] = \\ &= \mathbb{E}\left[\mathsf{Z}(\mathbb{1}_{\mathsf{B}} - \mathbb{1}_{\mathsf{A}})\right] = \\ &= \mathbb{E}\left[\mathsf{Z}\mathbb{1}_{\mathsf{B}\backslash\mathsf{A}}\right] \end{split}$$

czyli z B \ A zaspokaja warunek należenia do D.

3.
$$A_1 \subseteq A_2 \subseteq ... \in D \Rightarrow \bigcup A_i \in D$$

Dla pokazania tego warunku będziemy korzystać z twierdzenia o zbieżności monotonicznej. Zauważmy, że dla każdego n $\in \mathbb{N}$ zachodzi X $\mathbb{1}_{\bigcup A_i} \geq X\mathbb{1}_{A_n}$ oraz X $\mathbb{1}_{A_1} \leq X\mathbb{1}_{A_2} \leq$

$$\begin{split} \mathbb{E}\left[X\mathbb{1}_{\bigcup A_{i}}\right] &= \mathbb{E}\left[X\lim\mathbb{1}_{A_{i}}\right] = \\ &= \lim\mathbb{E}\left[X\mathbb{1}_{A_{i}}\right] = \\ &= \lim\mathbb{E}\left[Z\mathbb{1}_{A_{i}}\right] = \\ &+ \mathbb{E}\left[Z\lim\mathbb{1}_{A_{i}}\right] = \mathbb{E}\left[Z\mathbb{1}_{\bigcup A_{i}}\right] \end{split}$$

Czyli tak długo jak Z jest \mathcal{G} -mierzalne, to jest ono wwo X pod warunkiem że \mathcal{G} .

Zadanie 7.

Niech \mathcal{G} , $\mathcal{D} \subseteq \mathcal{F}$ będą niezależnymi σ -ciałami. Niech X będzie całkowalną zmienną losową.

(a) Załóżmy, że X jest niezależna od σ -ciala $\mathcal D$. Czy prawdą jest, że

$$\mathbb{E}\left[\mathsf{X}\mid\sigma(\mathcal{G}\cup\mathcal{D})\right]=\mathbb{E}\left[\mathsf{X}\mid\mathcal{G}\right]?\quad(\star)$$

(b) Pokaż, że jeżeli \mathcal{D} jest niezależne od $\sigma(\sigma(X) \cup \mathcal{G})$, to (\star) zachodzi.

Wykład 23.10.23: Interpretacje geometryczne WWO

Rozważmy zmienną losową X taką, że $\mathbb{E}\left[X^2\right]<\infty$. Interesuje nas zagadnienie regresji, mianowicie obserwując inną zmienną losową Z chcemy móc X aproksymować. Przez przybliżanie X rozumiemy przybliżanie średniokwadratowe.

Szukamy więc funkcji mierzalnej $h_0 : \mathbb{R} \to \mathbb{R}$ takiej, żeby

$$\mathbb{E}\left[(X - h_0(Z))^2\right] = \inf_{h:\mathbb{R} \to \mathbb{R}} \mathbb{E}\left[(X - h(Z))^2\right]$$

Fakt 3.1.

Dla każdej zmiennej losowej Y mierzalnej względem $\sigma(Z)$ (co w skrócie będziemy notować Y $\in \sigma(Z)$) istnieje h takie, że Y = h(Z).

Dowód

Zadanie, moja próba poniżej.

Zaczynamy od Y będącego funkcją prostą i przechodzimy do coraz to bardziej skomplikowanych postaci funkcji mierzalnych.

Jeżeli Y = $\mathbb{1}_A$, to ponieważ Y jest $\sigma(Z)$ -mierzalne, mamy A $\in \sigma(Z)$. To znaczy, że istnieje B \in Bor(\mathbb{R}) taki, że Z(A) = B, czyli A = $Z^{-1}[B]$ i wówczas

$$Y = 1_A = 1_{Z^{-1}[B]} = 1_B(Z)$$

Zrobimy tutaj jeszcze krok Y = $\sum a_i \mathbb{1}_{A_i}$. Dla każdego i wiemy, że $\mathbb{1}_{A_i}$ = $h_i(Z)$, gdyż są to funkcje $\sigma(Z)$ -mierzalne. W takim razie:

$$Y = \sum a_i \mathbb{1}_{A_i} = \sum a_i \cdot h_i(Z) = \left[\sum a_i \cdot h_i\right](Z)$$

a więc szukane $h = \sum a_i \cdot h_i$.

Teraz załóżmy, że istnieje ciąg funkcji prostych $s_1 \leq s_2 \leq ... \leq Y$ taki, że $Y = \lim s_i$. Wówczas pokazaliśmy już, że każda funkcja $s_i = h_i(Z)$ dla pewnego borelowskiego $h_i : \mathbb{R} \to \mathbb{R}$. Ciąg s_i jest zbieżny, więc również ciąg h_i musi zbiegać do pewnego h. Wówczas dla dowolnego $\omega \in \Omega$

$$Y(\omega) = \lim s_i(\omega) = \lim h_i(Z(\omega)) = h(Z(\omega))$$

czyli $Y = h(Z) dla h = lim h_i$.

Dla formalności należy rozważyć jeszcze $Y = Y^+ - Y^-$, gdzie Y^+ oraz Y^- podlegają pod poprzedni podpunkt.

$$\mathbb{E}\left[(X-h(Z))^2\right] = \inf_{Y \in \sigma(Z)} \mathbb{E}\left[(X-Y)^2\right]$$

mając pewną wiedzę o przestrzeniach Hilberta jest do tego dość naturalne podejście: rzut ortogonalny.

Dla σ -ciała $\mathcal{G} \subseteq \mathcal{F}$ będziemy rozważać

$$L^2(\mathcal{G}) = \{Y \in \mathcal{G} \ : \ \mathbb{E}\left[Y^2\right] < \infty\}$$

wówczas L $^2(\mathcal{G})$ jest przestrzenią Euklidesową z iloczynem skalarnym $\langle X,Y\rangle=\mathbb{E}$ [XY], który z kolei zadaje normę

$$\|\mathbf{X}\| = \sqrt{\mathbb{E}\left[\mathbf{X}^2\right]}.$$

Używając tego języka będziemy wiedzieli jak szukać Y z początku wykładu, ale najpierw fakt pomocniczy do twierdzenia które nadejdzie lada moment.

Fakt 3.2: warunkowa wersja nierówności Cauchy'ego-Schwartza.

Dla zmiennych X, Y takich, że $\mathbb{E}\left[X^2\right]$, $\mathbb{E}\left[Y^2\right] < \infty$ i σ -ciała $\mathcal{G}\subseteq\mathcal{F}$ zachodzi

$$\mathbb{E}\left[\left|XY\right|\mid\mathcal{G}\right]\leq\mathbb{E}\left[X^{2}\mid\mathcal{G}\right]^{\frac{1}{2}}\mathbb{E}\left[Y^{2}\mid\mathcal{G}\right]^{\frac{1}{2}}$$

Dowód

Zadanie, tutaj moje podejście.

Zauważmy na początku, że

$$XY = \underbrace{\frac{\left(\mathbb{E}\left[Y^2 \mid \mathcal{G}\right] + \frac{1}{n}\right)^{1/4}}{\left(\mathbb{E}\left[X^2 \mid \mathcal{G}\right] + \frac{1}{n}\right)^{1/4}}}_{X_n} \underbrace{\frac{\left(\mathbb{E}\left[X^2 \mid \mathcal{G}\right] + \frac{1}{n}\right)^{1/4}}{\left(\mathbb{E}\left[Y^2 \mid \mathcal{G}\right] + \frac{1}{n}\right)^{1/4}}}_{Y_n}Y$$

przy czym korzystamy z $\frac{1}{n}$, żeby na pewno nie dzielić przez 0 gdy np. $\mathbb{E}\left[X^2\mid\mathcal{G}\right]$ = 0.

Dalej zauważmy, że ponieważ $(X_n - Y_n)^2 \geq 0,$ to również

$$0 \leq \mathbb{E}\left[(X_n - Y_n)^2 \mid \mathcal{G} \right] = \mathbb{E}\left[X_n^2 + Y_n^2 - 2X_nY_n \mid \mathcal{G} \right]$$

czyli korzystając z liniowości i przenosząc $\mathbb{E}\left[X_{n}Y_{n}\mid\mathcal{G}\right]$ na lewą stronę nierówności dostajemy

$$\begin{split} \mathbb{E}\left[XY\mid\mathcal{G}\right] &= \mathbb{E}\left[X_{n}Y_{n}\mid\mathcal{G}\right] \leq \frac{1}{2}\mathbb{E}\left[X_{n}^{2}\mid\mathcal{G}\right] + \frac{1}{2}\mathbb{E}\left[Y_{n}^{2}\mid\mathcal{G}\right] = \\ &= \frac{1}{2}\mathbb{E}\left[\frac{(\mathbb{E}\left[Y^{2}\mid\mathcal{G}\right] + \frac{1}{n})^{1/2}}{(\mathbb{E}\left[X^{2}\mid\mathcal{G}\right] + \frac{1}{n})^{1/2}}X^{2}\mid\mathcal{G}\right] + \frac{1}{2}\mathbb{E}\left[\frac{(\mathbb{E}\left[X^{2}\mid\mathcal{G}\right] + \frac{1}{n})^{1/2}}{(\mathbb{E}\left[Y^{2}\mid\mathcal{G}\right] + \frac{1}{n})^{1/2}}Y^{2}\mid\mathcal{G}\right] = (\heartsuit) \end{split}$$

a ponieważ $\frac{(\mathbb{E}\left[Y^2\mid\mathcal{G}\right]+\frac{1}{n})^{1/2}}{(\mathbb{E}\left[X^2\mid\mathcal{G}\right]+\frac{1}{n})^{1/2}}$ jest \mathcal{G} -mierzalne, to możemy wyciągnąć je przed nawias:

$$\begin{split} (\heartsuit) &= \frac{1}{2} \cdot \frac{(\mathbb{E}\left[Y^2 \mid \mathcal{G}\right] + \frac{1}{n})^{1/2}}{(\mathbb{E}\left[X^2 \mid \mathcal{G}\right] + \frac{1}{n})^{1/2}} \mathbb{E}\left[X^2 \mid \mathcal{G}\right] + \frac{1}{2} \cdot \frac{(\mathbb{E}\left[X^2 \mid \mathcal{G}\right] + \frac{1}{n})^{1/2}}{(\mathbb{E}\left[Y^2 \mid \mathcal{G}\right] + \frac{1}{n})^{1/2}} \mathbb{E}\left[Y^2 \mid \mathcal{G}\right] \to \\ &\xrightarrow{n \to \infty} (\mathbb{E}\left[Y^2 \mid \mathcal{G}\right])^{1/2} (\mathbb{E}\left[X^2 \mid \mathcal{G}\right])^{1/2} \end{aligned}$$

Z tego nierówności w fakcie 3.2 wynika, że dla Y = 1 mamy

$$\mathbb{E}\left[\left|X\right|\mid\mathcal{G}\right]^{2}\leq\mathbb{E}\left[X^{2}\mid\mathcal{G}\right]\Rightarrow\mathbb{E}\left[\mathbb{E}\left[X\mid Y\right]^{2}\right]<\infty$$

Twierdzenie 3.3 : wwo jest rzutem ortogonalnym na $L^2(\mathcal{G})$.

Niech X będzie zmienną losową taką, że $\mathbb{E}\left[X^2\right] < \infty$, a $\mathcal{G} \subseteq \mathcal{F}$ jest σ -ciałem. Wówczas

$$\mathbb{E}\left[X\mid\mathcal{G}\right]\in L^2(\mathcal{G})$$

jest rzutem ortogonalnym X na $L^2(\mathcal{G})$.

Dokładniej, $\mathbb{E}\left[X\mid\mathcal{G}\right]$ daje minimum zbioru $\left\{\mathbb{E}\left[(X-Y)^2\right]:Y\in L^2(\mathcal{G})\right\}$. Z faktu 3.1 dla $\mathcal{G}=\sigma(Z)$, $\mathbb{E}\left[X\mid\mathcal{G}\right]=h_0(Z)$ dla pewnego h_0 .

Dowód

Dla $Y \in L^2(\mathcal{G})$ mamy

$$\mathbb{E}\left[(X-Y)^{2}\right] = \mathbb{E}\left[((X-\mathbb{E}\left[X\mid\mathcal{G}\right]) - \overbrace{(Y-\mathbb{E}\left[X\mid\mathcal{G}\right]))^{2}}^{=Y'}\right] =$$

$$= \mathbb{E}\left[(X-\mathbb{E}\left[X\mid\mathcal{G}\right])^{2}\right] - 2\mathbb{E}\left[(X-\mathbb{E}\left[X\mid\mathcal{G}\right])Y'\right] + \mathbb{E}\left[(Y')^{2}\right] =$$

$$\stackrel{*}{=} \mathbb{E}\left[(X-\mathbb{E}\left[X\mid\mathcal{G}\right])^{2}\right] + \mathbb{E}\left[(Y')^{2}\right]$$

Zauważmy, że

$$\begin{split} \mathbb{E}\left[Y'X\mid\mathcal{G}\right] &= Y'\mathbb{E}\left[X\mid\mathcal{G}\right]\\ \mathbb{E}\left[\mathbb{E}\left[Y'X\mid\mathcal{G}\right]\right] &= \mathbb{E}\left[Y'X\right] &= \mathbb{E}\left[Y'\mathbb{E}\left[X\mid\mathcal{G}\right]\right] \end{split}$$

Przykład(y) 3.1

1. Niewiele mający z tym co przed chwilą było. Niech $\Omega = [0,1]$, $\mathcal{F} = Bor([0,1])$ i $\mathbb{P} = \lambda$. Chcemy rozważyć $\mathbf{t} \in (0,1)$ oraz $\mathcal{G} = \sigma(Bor([0,t])$.

Dla całkowalnej zmiennej losowej X szukamy $\mathbb{E}[X \mid \mathcal{G}]$.

Dowolny $G \in \mathcal{G}$ ma postać $G = A \cup B$, gdzie $A \in Bor([0,t])$ i $B \in \{(t,1],\emptyset\}$. W takim razie, jeśli $Y \in \mathcal{G}$, to Y jest stała na (t,1]. Czyli żeby $Y = \mathbb{E}\left[X \mid \mathcal{G}\right]$ to zapewne będzie postaci:

$$\mathsf{Y}(\omega) = \mathsf{X}(\omega)\mathbb{1}_{[0,\mathsf{t}]}(\omega) + \mathsf{c}\mathbb{1}_{(\mathsf{t},\mathsf{1}]}(\omega)$$

gdzie c jest pewną stałą.

Musimy sprawdzić, czy (i kiedy) $\mathbb{E}\left[X\mathbb{1}_{G}\right]$ = $\mathbb{E}\left[Y\mathbb{1}_{G}\right]$. Widać od razu, że dla G = A \cup B jak wyżej, mamy

$$X1_A = Y1_A$$

czyli $\mathbb{E}[X1_A] = \mathbb{E}[Y1_A]$. Zostaje nam uzgodnić część B kiedy jest on niepusty:

$$\mathbb{E}\left[X\mathbb{1}_{\mathsf{B}}\right] = \int_{\mathsf{t}}^{1} \mathsf{X}(\mathsf{s}) \mathsf{d}\mathsf{s}$$

$$\mathbb{E}\left[Y\mathbb{1}_{\mathsf{B}}\right]=\mathsf{c}(1-\mathsf{t}),$$

czyli c musi być średnią X na przedziale (t, 1]:

$$c = \frac{1}{1-t} \int_{t}^{1} X(s) ds.$$

3.1 Regularne rozkłady warunkowe

Dla zmiennej losowej Y i całkowalnej zmiennej losowe X napis

$$\mathbb{E}\left[\mathsf{X}\mid\mathsf{Y}\right]\coloneqq\mathbb{E}\left[\mathsf{X}\mid\sigma(\mathsf{Y})\right]$$

będzie wwo X względem σ -ciała generowanego przez Y.

Zadanie dla dociekliwych:

Jeśli $\mathbb{P}[Y = y] > 0$ dla $y \in \mathbb{R}$, to biorąc $\omega \in \{Y = y\}$ dostajemy:

$$\mathbb{E}\left[X\mid Y\right](\omega) = \mathbb{E}\left[X\mid Y=y\right] = \frac{1}{\mathbb{P}\left[Y=y\right]}\mathbb{E}\left[X\mathbb{1}_{\{Y=y\}}\right]$$

Definicja 3.1: wwo X **pod warunkiem** $\{Y = y\}$.

Po pierwsze zauważamy, że istnieje funkcja h : $\mathbb{R} \to \mathbb{R}$ taka, że $\mathbb{E}\left[X \mid Y\right]$ = h(Y). (\star)

Niech X i Y będą dowolnymi zmiennymi losowymi, przy czym od X wymagamy całkowalności. Dla y $\in \mathbb{R}$ warunkową wartość oczekiwaną X pod warunkiem {Y = y} definiujemy przez

$$\mathbb{E}\left[X\mid Y=y\right]=h(y)$$

gdzie h spełnia warunek (⋆).

Podobnie definiujemy prawdopodobieństwo zbioru A pod warunkiem {Y = y}:

$$\mathbb{P}\left[\mathsf{A}\mid\mathsf{Y}=\mathsf{y}\right]=\mathbb{E}\left[\mathbb{1}_{\mathsf{A}}\mid\mathsf{Y}=\mathsf{y}\right]$$

Przykład(y) 3.2

1. Jeżeli X i Z są niezależne, to chcemy zapytać o

$$\mathbb{P}\left[\mathsf{X} + \mathsf{Z} \in \mathsf{B} \mid \mathsf{X} = \mathsf{x}\right] \stackrel{?}{=} \mathbb{P}\left[\mathsf{Z} + \mathsf{x} \in \mathsf{B}\right] = \mu_{\mathsf{Z}}(\mathsf{B} - \mathsf{x})$$

Wysławiając tę wartość w terminach całego X:

$$\mathbb{P}\left[\mathsf{X} + \mathsf{Z} \in \mathsf{B} \mid \mathsf{X}\right] = \mathbb{E}\left[\mathbb{1}_{\mathsf{X} + \mathsf{Z} \in \mathsf{B}} \mid \mathsf{X}\right] \stackrel{\star}{=} \mathbb{E}\left[\varphi(\mathsf{X}, \mathsf{Z}) \mid \mathsf{X}\right] = \Phi(\mathsf{X})$$

w \star definiujemy: $\varphi(x, z) = \mathbb{1}_{x+z \in B}$. Dla ustalonego x mamy więc:

$$\mathsf{h}(\mathsf{x}) = \mathbb{E}\left[\varphi(\mathsf{x},\mathsf{Z})\right] = \mathbb{E}\left[\mathbb{1}_{\mathsf{x}+\mathsf{Z}\in\mathsf{B}}\right] = \mathbb{P}\left[\mathsf{Z}+\mathsf{x}\in\mathsf{B}\right]$$

2. Niech wektor losowy (X, Y) ma gęstość łączną f(x, y). Wówczas

$$\mathbb{P}\left[X\in B\mid Y=y\right]=\int_{B}f_{X\mid Y}(x,y)dx,$$

gdzie

$$f_{X|Y}(x,y) = \frac{f(x,y)}{\int f(t,y)dt}.$$

3. Rozważmy $\mathbb{P}\left[\mathsf{E}_1\in\bullet\mid\mathsf{E}_1+\mathsf{E}_2=\mathsf{y}\right]$ dla $\mathsf{E}_1,\mathsf{E}_2$ niezależnych o rozkładzie Exp(1).

Przyłożymy do tego przypadku wzór z przykładu 2. Wektor losowy (E_1 , E_1 + E_2) ma rozkład losowy o łącznej gęstości $f(x,y) = e^{-x}e^{-(y-x)}\mathbb{1}_{y \geq x \geq 0}$.

$$\int f(s,y)ds = \int_0^y e^{-y}ds = y,$$

czyli

$$f_{E_1|E_1+E_2}(x,y) = \frac{1}{y} \mathbb{1}_{y \ge x \ge 0}$$

co daje rozkład jednostajny:

$$\mathbb{P}\left[\mathsf{E}_1 \in \bullet \mid \mathsf{E}_1 + \mathsf{E}_2 = \mathsf{y}\right] = \mathsf{U}[\mathsf{0},\mathsf{y}](\bullet)$$

Można zadać sobie pytanie, czy

$$\mathbb{P}\left[\mathsf{A}\mid\mathsf{Y}=\mathsf{y}\right]=\mathbb{E}\left[\mathbb{1}_{\mathsf{A}}\mid\mathsf{Y}=\mathsf{y}\right]$$

zawsze zadaje miarę probabilistyczną? Okazuje się, że tak faktycznie jest.

Definicja 3.2: regularny rozkład warunkowy.

Niech X będzie zmienną losową, a $\mathcal{G}\subseteq\mathcal{F}$ będzie σ -ciałem. Funkcja

$$\kappa_{\mathsf{X},\mathcal{G}}:\Omega\times\mathsf{Bor}(\mathbb{R})\to[\mathsf{0},\mathsf{1}]$$

nazywa się **regularnym rozkładem warunkowym** [rrw] X pod warunkiem \mathcal{G} , jeżeli

- (R1) Dla każdego B \in Bor($\mathbb R$) zmienna losowa $\kappa_{\mathsf{X},\mathcal{G}}(ullet,\mathsf{B})$ jest $\mathcal G$ -mierzalna
- (R2) Dla każdej $\omega \in \Omega$ $\kappa_{X,\mathcal{G}}(\omega, \bullet)$ jest rozkładem prawdopodobieństwa na prostej.
- (R3) Dla każdego B \in Bor (\mathbb{R}) i \mathbb{P} -p.w. $\omega \in \Omega$

$$\mathbb{P}\left[\mathsf{X}\in\mathsf{B}\mid\mathcal{G}\right](\omega)=\kappa_{\mathsf{X},\mathcal{G}}(\omega,\mathsf{B})$$

Twierdzenie 3.4: rrw istnieje.

Dla każdego X i dla każdego $\mathcal G$ istnieje rrw X pod warunkiem $\mathcal G$

Dowód

W notatkach

Fakt 3.5.

Dla funkcji f : $\mathbb{R} \to \mathbb{R}$ i zmiennej losowej X takiej, że $\mathbb{E}\left[|f(X)|\right] < \infty$ mamy

$$\mathbb{E}\left[\mathsf{f}(\mathsf{X})\mid\mathcal{G}\right](\omega) = \int_{\mathbb{R}}\mathsf{f}(\mathsf{x})\kappa_{\mathsf{X},\mathcal{G}}(\omega,\mathsf{d}\mathsf{x})$$

Pisząc to mówię "weź f(x) i weź miarę κ w punkcie ω i scałkuj κ ".

Dowód

Ćwiczenia.

Będziemy przechodzić od najprostszych możliwych funkcji f do coraz to bardziej skomplikowanych konstrukcji.

W pierwszych kroku niech f(x) = $\mathbb{1}_B(x)$ dla B \in Bor(\mathbb{R}). Wówczas

$$\begin{split} \mathbb{E}\left[\mathsf{f}(\mathsf{X})\mid\mathcal{G}\right](\omega) &= \mathbb{E}\left[\mathbb{1}_{\mathsf{B}}(\mathsf{X})\mid\mathcal{G}\right](\omega) = \mathbb{E}\left[\mathbb{1}_{\{\mathsf{X}\in\mathsf{B}\}}\mid\mathcal{G}\right](\omega) = \\ &= \mathbb{P}\left[\mathsf{X}\in\mathsf{B}\mid\mathcal{G}\right](\omega) = \kappa_{\mathsf{X},\mathcal{G}}(\omega,\mathsf{B}) = \\ &= \int_{\mathsf{B}} \kappa_{\mathsf{X},\mathcal{G}}(\omega,\mathsf{dx}) = \int_{\mathbb{R}} \mathbb{1}_{\mathsf{B}}(\mathsf{x})\kappa_{\mathsf{X},\mathcal{G}}(\omega,\mathsf{dx}) \end{split}$$

Dalej, niech $f(x) = \sum a_i \mathbb{1}_{A_i}(x)$. Wtedy mamy

$$\begin{split} \mathbb{E}\left[f(X)\mid\mathcal{G}\right](\omega) &= \mathbb{E}\left[\sum a_{i}\mathbb{1}_{A_{i}}(X)\mid\mathcal{G}\right](\omega) = \sum a_{i}\mathbb{E}\left[\mathbb{1}_{A_{i}}(X)\mid\mathcal{G}\right](\omega) = \\ &= \sum a_{i}\int_{\mathbb{R}}\mathbb{1}_{A_{i}}(x)\kappa_{X,\mathcal{G}}(\omega,dx) = \int_{\mathbb{R}}\sum a_{i}\mathbb{1}_{A_{i}}(x)\kappa_{X,\mathcal{G}}(\omega,dx) = \\ &= \int_{\mathbb{R}}f(x)\kappa_{X,\mathcal{G}}(\omega,dx) \end{split}$$

Teraz niech $f(x) = \lim s_i(x)$ dla $0 \le s_1 \le s_2 \le ... \le f$ dla prostych funkcji s_i jak z poprzednich podpunktów. Zauważmy, że mamy tutaj predyspozycje do skorzystania z twierdzenia o zbieżności monotonicznej.

$$\begin{split} \mathbb{E}\left[f(X)\mid\mathcal{G}\right](\omega) &= \mathbb{E}\left[\lim s_i(X)\mid\mathcal{G}\right](\omega) = \lim \mathbb{E}\left[s_i(X)\mid\mathcal{G}\right](\omega) = \\ &= \lim \int_{\mathbb{R}} s_i(x)\kappa_{X,\mathcal{G}}(\omega,dx) = \int_{\mathbb{R}} \lim s_i(x)\kappa_{X,\mathcal{G}}(\omega,dx) = \\ &= \int_{\mathbb{R}} f(x)\kappa_{X,\mathcal{G}}(\omega,dx) \end{split}$$

Ostatni krok w dowodzie to $f = f^+ - f^-$ i korzysta się tutaj już tylko z poprzednich podpunktów oraz liniowości wwo:

$$\begin{split} \mathbb{E}\left[f(X)\mid\mathcal{G}\right](\omega) &= \mathbb{E}\left[f^{+}(X) - f^{-}(X)\mid\mathcal{G}\right](\omega) = \mathbb{E}\left[f^{+}(X)\mid\mathcal{G}\right](\omega) - \mathbb{E}\left[f^{-}(X)\mid\mathcal{G}\right](\omega) = \\ &= \int_{\mathbb{R}}f^{+}(x)\kappa_{X,\mathcal{G}}(\omega,dx) - \int_{\mathbb{R}}f^{-}(x)\kappa_{X,\mathcal{G}}(\omega,dx) = \\ &= \int_{\mathbb{R}}(f^{+}(x) - f^{-}(x))\kappa_{X,\mathcal{G}}(\omega,dx) = \int_{\mathbb{R}}f(x)\kappa_{X,\mathcal{G}}(\omega,dx) \end{split}$$

Jeżeli G = σ (Z), to pojęcie rrw troszkę się upraszcza (z naciskiem na trochę):

Definicja 3.3.

Dla zmiennych losowych X, Y funkcję $\kappa_{X,Y}:\mathbb{R} imes Bor(\mathbb{R}) \to [0,1]$ nazywamy rrw X pod warunkiem Y, jeżeli:

- (P1) Dla każdego B \in Bor($\mathbb R$) funkcja $\kappa_{X,Y}(ullet, B)$ jest borelowska
- (P2) Dla każdego y $\in \mathbb{R}$, $\kappa_{X,Y}(y,ullet)$ jest rozkładem prawdopodobieństwa na prostej.
- (P3) $\mathbb{P}\left[X \in B \mid Y = y\right] = \kappa_{X,Y}(y,B)$

3.2 Zadania

Zadanie 1.

Niech Y i Z będą dowolnymi zmiennymi losowymi. Pokaż, że jeżeli zmienna Y jest $\sigma(Z)$ -mierzalna,

to istnieje borelowska funkcja h : $\mathbb{R} \to \mathbb{R}$ taka, że Y = h(Z).

Rozwiązanie.

Treść dowodu faktu 3.1.

Zadanie 2.

Pokaż, że dla zmiennych X i Y takich, że $\mathbb{E}\left[X^2\right]$, $\mathbb{E}\left[Y^2\right] < \infty$ i σ -ciała $\mathcal{G} \subseteq \mathcal{F}$ zachodzi

$$|\mathbb{E}\left[XY\mid\mathcal{G}\right]| \leq [\mathbb{E}\left[X^2\mid\mathcal{G}\right]]^{1/2} [\mathbb{E}\left[Y^2\mid\mathcal{G}\right]]^{1/2}$$

Rozwiązanie.

Patrz dowód twierdzenia 3.2.

Zadanie 3.

Niech $\kappa_{X,\mathcal{G}}$ będzie regularnym rozkładem warunkowym X pod warunkiem σ -ciała $\mathcal{G}\subseteq\mathcal{F}$. Pokaż, że dla każdej funkcji $f:\mathbb{R}\to\mathbb{R}$ takiej, że $\mathbb{E}\left[|f(X)|\right]<\infty$ zachodzi

$$\mathbb{E}\left[\mathsf{f}(\mathsf{X})\mid\mathcal{G}\right](\omega) = \int_{\mathbb{R}}\mathsf{f}(\mathsf{x})\kappa_{\mathsf{X},\mathcal{G}}(\omega,\mathsf{d}\mathsf{x})$$

Rozwiązanie.

Kolejne rozwiązanie jako dowód faktu 3.5.

Zadanie 4.

(Nierówność Jensena) Dana jest funkcja wypukła $\varphi: \mathbb{R} \to \varphi$, przestrzeń probabilistyczna $(\Omega, \mathcal{F}, \mathbb{P})$ oraz \mathcal{G} pod- σ -ciało \mathcal{F} . Załóżmy, że zmienne losowe X i φ (X) są całkowalne. Pokaż, że

$$\varphi(\mathbb{E}\left[\mathbf{X}\mid\mathcal{G}\right])\leq\mathbb{E}\left[\varphi(\mathbf{X})\mid\mathcal{G}\right]$$

Rozwiązanie.

Korzystając z faktu 3.5 możemy powiedzieć, że

$$\mathbb{E}\left[\varphi(\mathsf{X})\mid\mathcal{G}\right](\omega) = \int_{\mathbb{R}} \varphi(\mathsf{x})\kappa_{\mathsf{X},\mathcal{G}}(\omega,\mathsf{d}\mathsf{x}) \geq \\ \geq \varphi\left[\int_{\mathbb{R}} \kappa_{\mathsf{X},\mathcal{G}}(\omega,\mathsf{d}\mathsf{x})\right] = \varphi(\mathbb{E}\left[\mathsf{X}\mid\mathcal{G}\right])$$

nierówność wynika z twierdzenia Jensena dla całek (które mówi, że $\int \varphi \circ f \ d\mu \ge \varphi \left(\int f \ d\mu \right)$) a ostatnie przejście to ponowne zastosowanie faktu 3.5, tym razem dla $\mathbb{E}\left[\mathrm{id}(\mathsf{X}) \mid \mathcal{G} \right]$.

Zadanie 5.

Załóżmy, że wektor losowy (X, Y) ma dwuwymiarowy rozkład normalny.

(a) Znajdź $a \in \mathbb{R}$ takie, że zmienne X – aY i Y są niezależne.

(b) Pokaż, że

$$\mathbb{E}\left[X\mid Y\right](\omega) = \mu_X + \frac{\text{Cov}(X,Y)}{\text{Var}(Y)}(Y(\omega) - \mu_Y),$$

gdzie $\mu_X = \mathbb{E}[X]$ oraz $\mu_Y = \mathbb{E}[Y]$.

(c) Dla $y \in \mathbb{R}$ znajdź rozkład X pod warunkiem Y = y.

Rozwiązanie.

(a) Z Rachunku Prawdopodbieństwa 1R wiemy, że jeśli wektor losowy ma rozkład normalny, a jego poszczególne elementy są nieskorelowane, to są one również niezależne. Patrzymy więc na kowariancję

$$Cov(X - aY, Y) = Cov(X, Y) - aCov(Y, Y) = Cov(X, Y) - aVar(Y)$$

i przyrównujemy ją do 0

$$0 = Cov(X, Y) - aVar(Y) \Rightarrow a = \frac{Cov(X, Y)}{Var(Y)}$$

(b) Zauważmy, że korzystając z poprzedniego punktu możemy przepisać równość jako

$$\mathbb{E}\left[X\mid Y\right](\omega) = \mathbb{E}\left[X\right] - a\mathbb{E}\left[Y\right] + aY(\omega) = \mathbb{E}\left[X - aY\right] + a\mathbb{E}\left[Y\mid Y\right]$$

gdzie Y = $\mathbb{E}[Y \mid Y]$, bo Y jest $\sigma(Y)$ -mierzalne.

Kolejne przekształcenia dają

$$\mathbb{E}\left[X\mid Y\right]-a\mathbb{E}\left[Y\mid Y\right]=\mathbb{E}\left[X-aY\right]$$

co jest prawdą, gdyż po skorzystaniu z liniowości wwo po lewej stronie mamy

$$\mathbb{E}\left[X - aY \mid Y\right] = \mathbb{E}\left[X - aY\right]$$

a ponieważ X – aY dobraliśmy tak, żeby było niezależne od Y, to jest ono również niezależne od σ (Y). Czyli wwo jest równe wartości oczekiwanej X – aY.

(c) Rozkład X pod warunkiem Y = y to $\kappa_{X,Y}(y,B) = \mathbb{P}[X \in B \mid Y = y]$. Wiemy, że

$$\mathbb{P}\left[X \in B \mid Y = y\right] = \frac{\mathbb{P}\left[X \in B \mid Y = y\right]}{\mathbb{P}\left[Y = y\right]}$$

czyli można wydedukować, że szukamy

$$\mathbb{P}\left[X\mid Y=y\right]=f_{X\mid Y=y}(x,y)=\frac{f(x,y)}{f_{Y}(y)}$$

co jest zbyt dużą liczbą brzydkich obliczeń żeby nawet mi się chciało to dokładnie spisywać. Wystarczy podstawić pod gęstość (X, Y) na górze i do gęstości Y na dole.

Wykład 30.10.23: Martyngały

Mają coś współnego z jazdą konną (podobno).

Przykład(y) 4.1

- 1. Rozważmy dowolną grę i dla uproszczenia niech polega ona na rzucaniu monetą, na której orzeł wypada z $\mathbb{P} = p \in (0, 1)$. Obstawiamy według zasady double or nothing:
 - jeśli wypada orzeł, to podwajamy nasz kapitał
 - jeżeli wypada reszka, to tracimy wszystko

Czy taka gra jest sprawiedliwa?

Rozważmy ciąg niezależnych zmiennych losowych $\{\xi_{\mathbf{k}}\}_{\mathbf{k}\in\mathbb{N}}$ o tym samym rozkładzie

$$\mathbb{P}\left[\xi_{\mathsf{k}}=2\right]=1-\mathbb{P}\left[\xi_{\mathsf{k}}=0\right]=\mathsf{p}.$$

Wówczas ciąg

$$X_n = \xi_n \cdot \xi_{n-1} \cdot \dots \cdot \xi_1 \cdot X_0$$

reprezentuje stan konta po n-tym rzucie, gdzie X₀ to jakaś stała.

Rozważmy σ -ciało $\mathcal{F}_n = \sigma(\xi_n,...,\xi_1,X_0)$ generowane przez pierwszych n rzutów i stan początkowy. Zadajmy sobie teraz pytanie, ile wynosi

$$\mathbb{E}\left[X_{n+1} \mid \mathcal{F}_n\right]$$
?

Mamy zależność rekurencyjną $X_{n+1} = \xi_{n+1}X_n$, stąd możemy powiedzieć, że

$$\mathbb{E}\left[\mathsf{X}_{\mathsf{n}+1}\mid\mathcal{F}_{\mathsf{n}}\right]=\mathbb{E}\left[\xi_{\mathsf{n}+1}\mathsf{X}_{\mathsf{n}}\mid\mathcal{F}_{\mathsf{n}}\right]$$

samo X_n jest w \mathcal{F}_n , więc możemy je wyciągnąć przed \mathbb{E} . Dodatkowo, ξ_{n+1} jest niezależne od \mathcal{F}_n , więc

$$\mathbb{E}\left[X_{n+1}\mid\mathcal{F}_{n}\right]=X_{n}\mathbb{E}\left[\xi_{n+1}\mid\mathcal{F}_{n}\right]=X_{n}\mathbb{E}\left[\xi_{n+1}\right]=(2p)\cdot X_{n}$$

Jeżeli p > $\frac{1}{2}$, to wówczas

$$\mathbb{E}\left[X_{n+1} \mid \mathcal{F}_n\right] \geq X_n$$

i wtedy taka gra jest korzystna, bo z coraz to kolejnym rzutem oczekiwania rosną.

$$\mathbb{E}\left[X_{n+1} \mid \mathcal{F}_n\right] \leq X_n$$

i gra jest korzystna, ale dla kasyna a nie gracza.

 \Rightarrow Jeżeli p = $\frac{1}{2}$, to wówczas

$$\mathbb{E}\left[\mathsf{X}_{\mathsf{n+1}}\mid\mathcal{F}_{\mathsf{n}}\right]=\mathsf{X}_{\mathsf{n}}$$

i w takim przypadku powiemy, że gra jest sprawiedliwa.

Ten ostatni, uczciwy przypadek to jest jeden ze sposobów, na które możemy myśleć o martyngałach.

Definicja 4.1: o martyngałach słów kilka.

woheadright woh

$$\mathbb{F} = \{\mathcal{F}_n\}_{n \in \mathbb{N}},$$

 $\mathcal{F}_n \subseteq \mathcal{F}_{n+1}$, nazywamy **filtracją**

- Adaptowalny i całkowalny ciąg {Xn} nazywamy nadmartyngałem, jeśli

$$\mathbb{E}\left[X_{n+1} \mid \mathcal{F}_n\right] \leq X_n$$

$$\mathbb{E}\left[X_{n+1} \mid \mathcal{F}_n\right] \geq X_n$$

Z kolei ciąg {X_n} jest martyngałem, jeśli jest jednocześnie nadmartyngałem i podmartyngałem, czyli zachodzi równość

$$\mathbb{E}\left[X_{n+1} \mid \mathcal{F}_n\right] = X_n$$

Przykład(y) 4.2

1. Niech $\{\eta_k\}_{k\in\mathbb{N}}$ będą niezależne takie, że $\mathbb{E}\left[\eta_k\right]$ = 0 dla każdego k $\in \mathbb{N}$. Wówczas jako filtrację możemy rozważyć

$$\mathcal{F}_{\mathsf{n}} = \sigma(\eta_1, ..., \eta_{\mathsf{n}})$$

a jako nowy ciąg zmiennych losowych zdefiniujemy jako $M_0 = 0$ i

$$\mathsf{M}_{\mathsf{n}} = \sum_{\mathsf{k}=1}^{\mathsf{n}} \eta_{\mathsf{k}}.$$

Tak zdefiniowany ciąg $\{M_n\}$ jest $\mathbb{F} = \{\mathcal{F}_n\}$ -martyngałem:

$$\begin{split} \mathbb{E}\left[\mathsf{M}_{\mathsf{n}+1}\mid\mathcal{F}_{\mathsf{n}}\right] &= \mathbb{E}\left[\eta_{\mathsf{n}+1} + \mathsf{M}_{\mathsf{n}}\mid\mathcal{F}_{\mathsf{n}}\right] = \\ &= \mathbb{E}\left[\eta_{\mathsf{n}+1}\mid\mathcal{F}_{\mathsf{n}}\right] + \mathbb{E}\left[\mathsf{M}_{\mathsf{n}}\mid\mathcal{F}_{\mathsf{n}}\right] = \\ &= \mathbb{E}\left[\eta_{\mathsf{n}+1}\right] + \mathsf{M}_{\mathsf{n}} = 0 + \mathsf{M}_{\mathsf{n}} = \mathsf{M}_{\mathsf{n}} \end{split}$$

2. Dla dowolnej filtracji $\mathbb{F} = \{\mathcal{F}_n\}$ i całkowalnej zmiennej losowej X rozważmy

$$M_n = \mathbb{E} [X \mid \mathcal{F}_n].$$

Wówczas

$$\mathbb{E}\left[M_{n+1}\mid\mathcal{F}_{n}\right]=\mathbb{E}\left[\mathbb{E}\left[X\mid\mathcal{F}_{n+1}\right]\mid\mathcal{F}_{n}\right]=\mathbb{E}\left[X\mid\mathcal{F}_{n}\right]=M_{n}$$

Uwaga 4.1.

Jeżeli $\{X_n\}$ jest martyngałem, to

$$\mathbb{E}\left[X_{n+1}\mid\mathcal{F}_{n}\right]=X_{n}$$

czyli mam dwie zmienne losowe które są sobie równe, czyli

$$\mathbb{E}\left[X_{n+1}\right] = \mathbb{E}\left[\mathbb{E}\left[X_{n+1} \mid \mathcal{F}_{n}\right]\right] = \mathbb{E}\left[X_{n}\right]$$

W szczególności, jeśli zastosujemy indukcję, to dostaniemy, że dla dowolnego n $\in \mathbb{N}$

$$\mathbb{E}[X_n] = \mathbb{E}[X_0]$$

Przykład(y) 4.3

1. Proces Gaultona-Watsona

Rozważmy populację, w której osobniki rozmnażają się bezpłciowo, niezależnie od siebie. Można myśleć o tym jako o obserwacji populacji pantofelków z pomiarami w jakiś określonych odstępach czasu.

Myślimy o tym jako o drzewie, w którym liczba krawędzi z danego wierzchołka oznacza liczbę potomstwa, a ilość wierzchołków na danej głębokości oznacza ilość pantofelków po n-tym pokoleniu.

Niech μ będzie dowolnym rozkładem prawdopodobieństwa na $\mathbb{N}=\{0,1,...\}$. Rozważmy zmienne losowe losowe indeksowane parami liczb naturalnych $\{Y_{n,k}\}_{n,k\in\mathbb{N}}$. Kładziemy

$$Z_1 = 1$$

$$Z_{n+1} = \sum_{k=1}^{Z_n} Y_{n+1,k}$$

 Z_1 to liczba pantofelków na samym początku, $Z_2 = Y_{2,1}$ to liczba dzieci pierwszego pantofelka, z kolei

$$Z_3 = Y_{3,1} + Y_{3,2} + Y_{3,3} + Y_{3,4}$$

co odpowiada kolorom na rysunku. To znaczy, że $Y_{n+1,k}$ to liczba potomstwa w generacji n + 1 zrodzona z k-tego pantofelka w generacji n.

Filtracją będzie dla nas ciąg o elementach \mathcal{F}_n = $\sigma(Y_{j,k}:k\in\mathbb{N},j\leq n)$. Chcemy zapytać się o wartość oczekiwaną Z_{n+1}

$$\mathbb{E}\left[Z_{n+1}\mid\mathcal{F}_{n}\right]=\mathbb{E}\left[\sum_{k=1}^{Z_{n}}Y_{n+1,k}\mid\mathcal{F}_{n}\right]=h(Z_{n})$$

gdzie

$$h(z) = \mathbb{E}\left[\sum_{k=1}^{z} Y_{n+1,k}\right] = z \cdot \underbrace{\mathbb{E}\left[Y_{n,k}\right]}_{m} = m \cdot z,$$

bo wszystkie Y_{n,k} mają taką samą średnią. Oznacza to, że

$$\mathbb{E}\left[\mathsf{Z}_{n+1}\mid\mathcal{F}_{n}\right]=m\cdot\mathsf{Z}_{n}.$$

Jeżeli m < 1, to dostajemy w ten sposób nadmartyngał, jeśli m > 1 to mamy podmartyngał, a w krytycznym przypadku m = 1, to $\{Z_n\}$ jest martyngałem.

Jeśli pomnożymy

$$\mathbb{E}\left[\mathsf{Z}_{n+1}\mid\mathcal{F}_{n}\right]=\mathsf{m}\mathsf{Z}_{n}$$

oboma stronami przez m⁻ⁿ⁻¹, to dostajemy

$$\mathbb{E}\left[m^{-n-1}Z_{n+1}\mid \mathcal{F}_{n}\right]=m^{-n}Z_{n}$$

i wtedy $W_n = m^{-n}Z_n$ jest zawsze martyngałem, bo

$$\mathbb{E}\left[\mathsf{W}_{n+1}\mid\mathcal{F}_{n}\right]=\mathsf{W}_{n}$$

4.1 Transformata martyngałowa

Stan konta gracza wynosi X_n po n-tej sprawiedliwej grze. Przychodzi drugi gracz i obstawia on wyniki w grze tego pierwszego. Wypłata drugiego gracza wynosi $B_n \cdot (X_n - X_{n-1})$, tzn. za każdy przychód pierwszego gracza dostaje jakąś część tej wygranej.

Dla ciągu funkcji $B_n \in \mathcal{F}_{n+1} = \sigma(X_0, ..., X_{n-1})$. Żeby było łatwiej, niech drugi gracz zaczyna z tym samym kapitałem co pierwszy. Stan konta drugiego gracza po n-tej grze wynosi

$$W_n = \sum_{k=1}^n B_k \cdot (X_k - X_{k-1}) + X_0.$$

Tak zdefiniowany ciąg {Q_n} jest również martyngałem, bo

$$\begin{split} \mathbb{E}\left[W_{n+1}\mid\mathcal{F}_{n}\right] &= \mathbb{E}\left[B_{n+1}\cdot\left(X_{n+1}-X_{n}\right)\mid\mathcal{F}_{n}\right] + \mathbb{E}\left[W_{n}\mid\mathcal{F}_{n}\right] = \\ &= B_{n+1}\mathbb{E}\left[X_{n+1}-X_{n}\mid\mathcal{F}_{n}\right] + W_{n} = \\ &= B_{n+1}(\mathbb{E}\left[X_{n+1}\mid\mathcal{F}_{n}\right] - X_{n}) + W_{n} = W_{n} \end{split}$$

bo X_n sam w sobie był martyngałem, więc $X_n = \mathbb{E}\left[X_{n+1} \mid \mathcal{F}_n\right]$.

Definicja 4.2.

Niech \mathbb{F} będzie filtracją. Zmienną losową $T:\Omega\to\mathbb{N}\cup\{+\infty\}$ nazywamy \mathbb{F} -czasem zatrzymania, jeżeli zdarzenie $\{T=n\}$ jest mierzalne względem \mathcal{F}_n dla każdego $n\in\mathbb{N}$.

Przykład(y) 4.4

1. Rzucamy 10-krotnie monetą. Zdefiniujmy zmienną losową

$$X_n = \begin{cases} 1 & \text{orzef w n-tym} \\ 0 & \text{wpp} \end{cases}$$

Filtracją niech będzie $\mathcal{F}_n = \sigma(X_1, ..., X_n)$. Jeśli T będzie momentem wypadnięcia pierwszego orła, a S - wypadnięcia ostatniego orła, to T jest czasem zatrzymania, bo

$$\{T=n\}=\{X_1=0,X_2=0,...,X_n=1\}\in\mathcal{F}_n$$

a S nim nie jest, bo wymaga informacji wybiegającej w przyszłość:

$$\{S=n\}=\{X_n=1,X_{n+1}=0,....\}\notin \mathcal{F}_n$$

2. Rozważmy \mathbb{F} -adaptowalny ciąg zmiennych losowych $\{X_n\}$. Dla $B \in Bor(\mathbb{R})$ kładziemy

$$T(B) = \inf\{n : X_n \in B\}.$$

Tak zdefiniowane T jest czasem zatrzymania:

$$\{T=n\}=\{X_1\notin B,...,X_{n-1}\notin B,X_n\in B\}\in \mathcal{F}_n$$

3. Jeżeli T = n_0 dla pewnego $n_0 \in \mathbb{N}$, to taka stała funkcja nadal jest czasem zatrzymania, bo

$$\{T=n\} = \begin{cases} \emptyset & n \neq n_0 \\ \Omega & n=n_0 \end{cases}$$

4.2 Zadania

Zadanie 1.

Załóżmy, że $\{X_n\}_{n\in\mathbb{N}}$ jest ciągiem niezależnych zmiennych losowych o takim samym rozkładzie, średniej 0 i skończonej wariancji. Rozważmy filtrację $\mathbb{F}=\{\mathcal{F}_n\}$ zadaną przez $\mathcal{F}_n=\sigma(X_0,X_1,...,X_n)$. Udowodnij, że ciąg

$$Z_n = X_0X_1 + X_1X_2 + + X_{n-1}X_n$$
, $Z_0 = 0$

jest F-martyngałem.

Rozwiązanie.

Chcemy pokazać, że

$$\mathbb{E}\left[\mathsf{Z}_{n+1}\mid\mathcal{F}_{n}\right]=\mathsf{Z}_{n}$$

dla dowolnego n $\in \mathbb{N}$.

$$\begin{split} \mathbb{E}\left[Z_{n+1}\mid\mathcal{F}_{n}\right] &= \mathbb{E}\left[Z_{n} + X_{n}X_{n+1}\mid\mathcal{F}_{n}\right] = \\ &= \mathbb{E}\left[Z_{n}\mid\mathcal{F}\right] + \mathbb{E}\left[X_{n}X_{n+1}\mid\mathcal{F}_{n}\right] = \\ &= Z_{n} + X_{n}\mathbb{E}\left[X_{n+1}\mid\mathcal{F}_{n}\right] \end{split}$$

ponieważ X_n jest \mathcal{F}_n -mierzalne oraz

$$\mathbb{E}\left[\left|X_{n}X_{n+1}\right|\right] \leq \mathbb{E}\left[X_{n}^{2}\right]^{1/2} \mathbb{E}\left[X_{n+1}^{2}\right]^{1/2} < \infty$$

gdzie nierówność wynika z nierówności Cauchy'ego-Schwarza, a $\mathbb{E}\left[X_n^2\right]$ = $\text{Var}(X_n) < \infty$.

Zauważmy teraz, że X_{n+1} jest niezależne od \mathcal{F}_n , gdyż X_n jest niezależne od każdej ze zmiennych $X_1,...,X_n$. W takim razie, $\mathbb{E}\left[X_{n+1}\mid\mathcal{F}_n\right]=\mathbb{E}\left[X_{n+1}\right]=0$, a więc ostatecznie dostajemy

$$\mathbb{E}\left[Z_{n+1}\mid\mathcal{F}_{n}\right]=Z_{n}+X_{n}\mathbb{E}\left[X_{n+1}\mid\mathcal{F}_{n}\right]=Z_{n}+X_{n}\cdot0=Z_{n}$$

Czyli Z_n faktycznie jest martyngałem.

Zadanie 2.

Ustalmy $\theta \in \mathbb{R}$. Niech $X_1, X_2, ...$ będzie ciągiem niezależnych zmiennych losowych o takim samym rozkładzie takich, że

$$\mathbb{E}\left[\mathsf{e}^{\theta\mathsf{X}_1}\right]<\infty.$$

Pokaż, że

$$\mathsf{M}_{\mathsf{n}} = \mathbb{E}\left[\mathsf{e}^{\theta \mathsf{X}_1}\right]^{-\mathsf{n}} \prod_{j=1}^{\mathsf{n}} \mathsf{e}^{\theta \mathsf{X}_j}$$

jest \mathbb{F} -martyngałem dla filtracji $\mathbb{F} = \{\mathcal{F}_n\}$ danej przez $\mathcal{F}_n = \sigma(X_1, ..., X_n)$.

Rozwiązanie.

Zacznijmy od obserwacji, że

$$\mathsf{M}_{n+1} = \mathbb{E}\left[e^{\theta X_1}\right]^{-n-1} \prod_{i=1}^{n+1} e^{\theta X_j} = \mathsf{M}_n \cdot \mathbb{E}\left[e^{\theta X_1}\right]^{-1} e^{\theta X_{n+1}}$$

w takim razie, wwo M_{n+1} to jest

$$\mathbb{E}\left[\mathsf{M}_{n+1}\mid\mathcal{F}_{n}\right]=\mathbb{E}\left[\mathsf{e}^{\theta X_{1}}\right]^{-1}\cdot\mathbb{E}\left[\mathsf{M}_{n}\cdot\mathsf{e}^{\theta X_{n+1}}\mid\mathcal{F}_{n}\right]$$

Od razu widać, że M_n jest mierzalne względem \mathcal{F}_n , bo zależy tylko od zmiennych $X_1,...,X_n$ które \mathcal{F}_n generują. Chcemy teraz sprawdzić, czy $\mathbb{E}\left[|M_n\cdot e^{\theta X_{n+1}}|\right]<\infty$, wówczas możemy wyciągnąć M_n przed wwo.

$$\begin{split} \mathbb{E}\left[\left|\mathsf{M}_{n}\cdot e^{\theta \mathsf{X}_{n+1}}\right|\right] &= \mathbb{E}\left[\left|\mathbb{E}\left[e^{\theta \mathsf{X}_{1}}\right]^{-1}\cdot\prod_{j=1}^{n}e^{\theta \mathsf{X}_{j}}\cdot e^{\theta \mathsf{X}_{n+1}}\right|\right] = \\ &= \left|\mathbb{E}\left[e^{\theta \mathsf{X}_{1}}\right]\right|^{-n}\cdot\mathbb{E}\left[\prod_{j=1}^{n+1}e^{\theta \mathsf{X}_{j}}\right] = \\ &= \left|\mathbb{E}\left[e^{\theta \mathsf{X}_{1}}\right]\right|^{-n}\cdot\prod_{j=1}^{n+1}\mathbb{E}\left[e^{\theta \mathsf{X}_{j}}\right] = \\ &= \mathbb{E}\left[e^{\theta \mathsf{X}_{n+1}}\right] = \mathbb{E}\left[e^{\theta \mathsf{X}_{1}}\right] < \infty \end{split}$$

ponieważ jeśli $\{X_n\}$ są niezależne, to e^{X_n} też są niezależne, a dla niezależnych X, Y zachodzi $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$. W takim razie dostajemy

$$\mathbb{E}\left[\mathsf{M}_{n+1}\mid\mathcal{F}_{n}\right] = \mathbb{E}\left[\mathsf{e}^{\theta X_{1}}\right]^{-1}\mathbb{E}\left[\mathsf{M}_{n}\cdot\mathsf{e}^{\theta X_{n+1}}\mid\mathcal{F}_{n}\right] = \mathsf{M}_{n}\mathbb{E}\left[\mathsf{e}^{\theta X_{1}}\right]^{-1}\mathbb{E}\left[\mathsf{e}^{\theta X_{n+1}}\mid\mathcal{F}_{n}\right]$$

ale ponieważ \mathcal{F}_n nie zawiera ani grama informacji o X_{n+1} , to $e^{\theta X_{n+1}}$ jest niezależne od \mathcal{F}_n , więc

$$\mathbb{E}\left[e^{\theta X_{n+1}} \mid \mathcal{F}_n\right]$$

a to już daje to co chcieliśmy.

Zadanie 3.

Niech $\{Y_n\}$ będzie ciągiem niezależnych zmiennych losowych o średniej 0 i wariancji σ^2 . Pokaż,

że ciąg

$$X_n = \left(\sum_{k=1}^n Y_k\right)^2 - n\sigma^2$$

jest martyngałem.

Rozwiązanie.

Zacznijmy od wyrażenia X_{n+1} przy użyciu X_n

$$\begin{split} X_{n+1} &= \left(\sum_{k=1}^{n+1} Y_k\right)^2 - (n+1)\sigma^2 = \left(\sum_{k=1}^{n} Y_k + Y_{n+1}\right)^2 - (n+1)\sigma^2 = \\ &= \left(\sum_{k=1}^{n} Y_k\right)^2 - n\sigma^2 + 2Y_{n+1} \left(\sum_{k=1}^{n} Y_k\right) + Y_{n+1}^2 - \sigma^2 = \\ &= X_n + 2\left(\sum_{k=1}^{n} Y_{n+1} Y_k\right) - \sigma^2 + Y_{n+1}^2 \end{split}$$

Rozważmy teraz filtrację $\mathbb{F} = \{\mathcal{F}_n\}$ dla ciągu $\mathcal{F}_n = \sigma(Y_1, ..., Y_n)$.

Wykład 6.11.2023 : Twierdzenie Dooba o zatrzymaniu, czyli jak uprawiać hazard

Dla T : $\Omega \to \mathbb{N}$ i procesu $\{X_n\}$ definiujemy zmienną X_T wzorem

$$X_{\mathsf{T}}(\omega) = X_{\mathsf{T}(\omega)}(\omega)$$

Dla martyngału $\{X_n\}_{n\in\mathbb{N}}$ i czasu zatrzymania T rozważamy ciąg zmiennych $\{X_{n\wedge T}\}_{n\in\mathbb{N}}$

$$X_{n \wedge T}(\omega) = \begin{cases} X_n & n \leq T(\omega) \\ X_{T(\omega)}(\omega) & n \geq T(\omega) \end{cases}$$

Tutaj dla X, $y \in \mathbb{R}$ piszemy $x \land y$ aby przekazać, że interesuje nas min $\{x, y\}$. To znaczy $x \land y = \min\{x, y\}$. Czyli gramy w pewna uczciwą grę i mamy strategię wyjścia T, ale musimy np. zdążyć na obiad, więc chcemy wyjść po co najwyżej n rundach.

Twierdzenie 5.1: Dooba o zatrzymaniu (uproszczone).

Niech $\{X_n\}$ będą odpowiednio martyngałem i czasu zatrzymania względem tej samej filtracji $\mathbb{F} = \{\mathcal{F}_n\}$. Wówczas proces (ciąg) $\{X_{n \wedge T}\}$ zdefiniowany wyżej jest martyngałem. W szczególności

$$\mathbb{E}\left[X_{n\wedge T}\right]=\mathbb{E}\left[X_{0}\right]$$

dla każdego n (średnia jest stała w czasie).

Dowód

Mamy

$$X_{n \wedge T} = \sum_{k=1}^{n \wedge T} (X_k - X_{k-1}) + X_0 = \sum_{k=1}^{n} \mathbb{1}_{T \geq k} (X_k - X_{k-1}) + X_9$$

gdzie

$$\mathbb{1}_{T > k} = \mathbf{1} - \mathbb{1}_{T < k} = \mathbf{1} - \mathbf{1}_{T < k-1} \in \mathcal{F}_{k-1}$$

i teza wynika z przykładu o transformacie martyngałowej.

Przykład(y) 5.1

1. Gracz rozpoczyna grę z kapitałem j\$. W każdym rozdaniu może z prawdopodobieństwem $\frac{1}{2}$ zyskać jednego dolara lub go stracić. Celem gracza jest wzbogacenie się o k dolarów. Jakie jest prawdopodobieństwo sukcesu $p_{k,i}$?

Zaczynamy w punkcie j i chcemy dojść do punktu j + k, a boimy się punktu 0

Niech $\{\xi_k\}$ będą niezależne o tym samym rozkładzie $\mathbb{P}\left[\xi_k=\pm 1\right]=\frac{1}{2}$. Rozważmy

$$X_n = \sum_{k=1}^n \xi_n.$$

Żeby rozwiązać to zadanie to chcemy rozważyć funkcję

$$T = \inf\{n \in \mathbb{N} : X_n = -j \text{ lub } X_n = k\}$$

Teraz szukane przez nas prawdopodobieństwo to

$$p_{k,i} = \mathbb{P}\left[X_T = k\right]$$

Rozważamy filtrację $\mathbb{F}=\{\mathcal{F}_n\},\;\mathcal{F}_n=\sigma(\xi_1,...,\xi_n).\;$ Ciąg $\{X_n\}$ jest \mathbb{F} -adaptowalny, więc T jest \mathbb{F} -czasem zatrzymania.

Ciąg $\{X_n\}$ jest \mathbb{F} -martyngałem, co wynika z faktu, że ξ_{n+1} są niezależne od \mathcal{F}_n i mają \mathbb{E} równą 0:

$$\mathbb{E}\left[X_{n+1}\mid\mathcal{F}_{n}\right] = \mathbb{E}\left[\xi_{n+1} + X_{n}\mid\mathcal{F}_{n}\right] = \mathbb{E}\left[\xi_{n+1}\right] + \mathbb{E}\left[X_{n}\mid\mathcal{F}_{n}\right] = 0 + X_{n}$$

Z twierdzenia o zatrzymaniu wiemy więc, że

$$\mathbb{E}[X_{n \wedge T}] = \mathbb{E}[X_0] = 0$$

i tutaj szkopuł jest taki, że nas interesuje X_T a nie $X_{n\wedge T}$. Musimy więc przejść z n do nieskończoności.

W pierwszej kolejności chcemy się upewnić, że $\mathbb{P}[T < \infty] = 1$, bo

$$\mathbb{P}\left[T \geq n\right] \leq \mathbb{P}\left[\left|X_n\right| \leq k+j\right] = \mathbb{P}\left[\frac{\left|X_n\right|}{\sqrt{n}} \leq \frac{j+k}{\sqrt{n}}\right] \xrightarrow{CTG} 0$$

a ponieważ

$$\mathbb{P}\left[\mathsf{T}=\infty\right]=\lim_{n\to\infty}\mathbb{P}\left[\mathsf{T}\geq n\right]=0.$$

W takim razie ciąg $X_{n\wedge T}$ zbiega prawie wszędzie do ciągu X_T . Mało tego, dla pewnego n się zacznie stabilizować. Pozostaje uzasadnić, że możemy wejść z granicą pod całkę, ale to wynika z faktu, że

$$|X_{n\wedge T}|\leq j+k,$$

więc mamy

$$0=\mathbb{E}\left[X_{0}\right]=\lim\mathbb{E}\left[X_{n\wedge T}\right]=\mathbb{E}\left[\lim X_{n\wedge T}\right]=\mathbb{E}\left[X_{T}\right].$$

Rozpisując już na końcu

$$0 = \mathbb{E}\left[X_T\right] = k\mathbb{P}\left[X_T = k\right] - j\mathbb{P}\left[X_T = -j\right] = k \cdot p_{k,j} - j(1 - p_{k,j})$$

co pozwala nam wyliczyć

$$p_{k,j} = \frac{j}{k+j}.$$

W szczególności mamy

$$\begin{split} \mathbb{P}\left[\{X_n\} \text{ osiągnie k}\right] &= \lim_{j \to \infty} \mathbb{P}\left[\{X_k\} \text{ osiągnie k przed osiągnięciem -j}\right] = \\ &= \lim_{j \to \infty} p_{k,j} = \lim_{j \to \infty} \frac{j}{j+k} = 1 \end{split}$$

2. Gracz rozpoczyna grę z kapitałem j\$. W każdym rozdaniu może z prawdopodobieństwem p zyskać jednego dolara lub stracić go z prawdopodobieństwem (1 – p). Celem gracza jest wzbogacenie się o k dolarów. Jakie jest prawdopodobieństwo sukcesu $p_{k,j}$ gdy p > $\frac{1}{2}$?

Jest to niemalże takie samo zadanie jak wcześniej, z tym że tym razem nie mamy martyngału. Niemniej jednak modelować będziemy to w niemalże identyczny sposób.

Niech $\{\eta_k\}$ będą iid takie, że $\mathbb{P}\left[\eta_k=1\right]=p$ oraz $\mathbb{P}\left[\eta_k=-1\right]=1$ – p. Określamy $X_n=\sum_{k=1}^n\eta_k$. Mamy wówczas

$$\mathbb{E}\left[X_{n+1} \mid \mathcal{F}_{n}\right] = \mathbb{E}\left[\eta_{n+1}\right] + X_{n} = X_{n} + (2p-1) > X_{n}$$

czy {X_n} jest podmartyngałem. Określmy czas zatrzymania

$$T = \inf\{n : X_n = -j \mid ub \mid X_n = k\}.$$

Chcemy sobie zorganizować nowy martyngał postaci

$$M_n = f(X_n)$$

dla pewnej funkcji $f: \mathbb{Z} \to \mathbb{R}$ takiej, że

$$\mathbb{E}\left[\mathsf{M}_{\mathsf{n}+1}\mid\mathcal{F}_{\mathsf{n}}\right]=\mathsf{M}_{\mathsf{n}}.$$

Mamy

$$\mathbb{E}\left[\mathsf{M}_{\mathsf{n}+1}\mid\mathcal{F}_{\mathsf{n}}\right] = \mathbb{E}\left[\mathsf{f}(\mathsf{X}_{\mathsf{n}}+\eta_{\mathsf{n}+1}\mid\mathcal{F}_{\mathsf{n}}\right] = \mathsf{F}(\mathsf{X}_{\mathsf{n}}),$$

gdzie $F(x) = \mathbb{E}\left[f(x+\eta_{n+1})\right] = pf(x+1) + (1-p)f(x-1)$ jest oznaczeniem pomocniczym przy "odcałkowaniu niezależnej η_{n+1} ".

Aby {M_n} był martyngałem musi zachodzić

$$\mathsf{M}_n = \mathsf{f}(\mathsf{X}_n) = \mathsf{pf}(\mathsf{X}_n + 1) + (1 - \mathsf{p})\mathsf{f}(\mathsf{X}_n - 1) = \mathsf{F}(\mathsf{X}_n) = \mathbb{E}\left[\mathsf{M}_{n+1} \mid \mathcal{F}_n\right]$$

f musi zatem spełniać rekurencję

$$f(x) = pf(x + 1) + (1 - p)f(x - 1)$$

Szukamy rozwiązania postaci $f(x) = \gamma^{x}$. Mamy więc

$$\gamma^{\mathsf{X}} = \mathsf{p}\gamma^{\mathsf{X}+1} + (\mathsf{1} - \mathsf{p})\gamma^{\mathsf{X}-1}$$

$$\gamma = p\gamma^2 + (1 - p)$$

i istnieją dwa rozwiązania: γ = 1 oraz γ = $\frac{1-p}{p}$. Wówczas

$$M_n = f(X_n) = \left(\frac{1-p}{p}\right)^{X_n}$$

jest martyngalem. Znowu $M_{n \wedge T} \leq \left(\frac{p}{1-p}\right)^{k+j}$, a z twierdzenia Dooba

$$\mathbb{E}\left[\mathsf{M}_{n \wedge T}\right] = \mathbb{E}\left[\mathsf{M}_{0}\right] = \mathbf{1}$$

i poprzez przejście graniczne

$$\mathbb{E}\left[\mathsf{M}_\mathsf{T}\right]$$
 = 1

Oznaczamy $\mathbb{P}\left[X_{\mathsf{T}}=\mathsf{k}\right]=\mathsf{r}_{\mathsf{j},\mathsf{j}}$ i mamy

$$1 = \mathbb{E}\left[\mathsf{M}_{\mathsf{T}}\right] = \gamma^{-\mathsf{j}}(1 - \mathsf{r}_{\mathsf{k},\mathsf{j}}) + \gamma^{\mathsf{k}}\mathsf{r}_{\mathsf{k},\mathsf{j}}$$

gdzie

$$r_{k,j} = \frac{1 - \gamma^{-j}}{\gamma^k - \gamma^{j-1}}$$

w szczególności

$$\mathbb{P}\left[\{X_n\} \text{ osiągnie } k\right] = \lim_{j \to \infty} r_{j,k} = 1$$

$$\mathbb{P}\left[\{\mathsf{X}_{\mathsf{n}}\}\,\mathsf{osiagnie}\,\mathsf{j}\right] = \lim_{\mathsf{k} \to \infty} (\mathsf{1} - \mathsf{r}_{\mathsf{k},\mathsf{j}}) = \lim_{\mathsf{k} \to \infty} ... = \gamma^{\mathsf{j}}$$

3. Rozważmy $X_n = \sum Y_k$, gdzie Y_k są iid takie, że $\mathbb{P}[Y_1 = \pm 1] = \frac{1}{2}$. To znaczy, że jeden gracz bierze udział w uczciwej grze i obstawiamy.