로봇 내비게이션

[Homework 5]

과 목 명	로봇 내비게이션		
담당교수	정문호 교수님		
제 출 일	2020.05.31		
학 과	로봇학부		
학 번	2018741024		
이 름	김동현		

Homework #5

- Show Implementation of Odometry Motion Model like the below figure
 - · Use the followings
 - · Gaussian Sampling in kfc.h, kfc.cpp
 - Odometry Data:
 (0,0,0)₀, (1,0,0)₁, (2,0,0)₂,
 (3,0,0)₃, (3,1,90)₄, ..., (3,3,90)₈,
 (2,3,180)₇, ..., (-2,3,180)₁₁

sampling을 하기 전에 Gaussian noise를 더하는 코드는 다음과 같다.

위에서 Gaussian noise를 더해준 값을 이용해 위치를 예측하는 코드는 다음과 같다.

```
sample[i].x += g_delta_trans + cos(nowPosition,theta + g_delta_rot1);
sample[i].y += g_delta_trans + sin(nowPosition,theta + g_delta_rot1);
sample[i].theta += g_delta_rot1 + g_delta_rot2;
sample의 크기는 1000으로 하였다.
```

실행결과는 다음과 같다.

실행 결과

다음은 UI의 왼쪽 위에 있는 parameter를 변경할 경우 각 parameter가 끼치는 영향에 대해 표로 나타내었다.

parameter	alpha1	alpha2	alpha3	alpha4
영향	회전각	이동 거리에 따라 회전각과 거리	X축의 이동 거리	Y축의 이동 거리