과제 2 답안

1-1)

	A_1	A_2	A_3	A_4	A_5	합	평균
B_1	79	72	51	58	68	328	65.6
B_2	75	66	48	56	65	310	62
B_3	69	64	44	51	61	289	57.8
B_4	65	62	41	45	58	271	54.2
합	288	264	184	210	252	1198	
평균	72	66	46	52.5	63		59.9

 H_0 : $\alpha_1 = \cdots = \alpha_5 = 0$, H_1 : 적어도 한 α_i 는 0이 아니다.

 $\mathbf{H_0}$: $\beta_1 = \cdots = \beta_4 = 0$, $\mathbf{H_1}$: 적어도 한 $\beta_i \leftarrow$ 0이 아니다.

 $lpha_i$: 역청탄 i의 처리효과

 eta_j : 타르피치 첨가량 j의 처리효과

$$TSS = (79^2 + \dots + 271^2) - \frac{1198^2}{20} = 2153.8$$

$$SSA = (288^2 + 264^2 + 184^2 + 210^2 + 252^2) \times \frac{1}{4} - \frac{1198^2}{20} = 1764.8$$

$$SSB = \frac{(328^2 + 310^2 + 289^2 + 271^2)}{5} - \frac{1198^2}{20} = 369$$

$$SSE = SST - SSA - SSB = 2153.8 - 1764.8 - 369 = 20$$

변인	자유도	제곱합	평균제곱	F
처리A	4	1764.8	441.2	264.19
처리B	3	369	123	73.65
오차	12	20	1.67	
전체	19	2153.8		•

 $264.19 > F_{0.05.4.12} = 3.26$

유의수준 5%에서 역청탄의 종류에 따라서 코크스의 인장 강도에 유의한 차이가 있다.

 $73.65 > F_{0.05,3,12} = 3.49$

유의수준 5%에서 타르피치의 첨가량에 따라 코크스의 인장 강도에 유의한 차이가 있다.

1-2)

$$t_{0.025,12} \sqrt{\frac{1.67}{4}} = 2.179 \times \sqrt{\frac{1.67}{4}} = 1.40$$

 $\mu(A_1)$: 72 ± 1.40 = [70.6, 73.4]

 $\mu(A_2)$: 66 ± 1.40 = [64.6, 67.4]

 $\mu(A_3)$: 46 ± 1.40 = [44.6, 47.4]

 $\mu(A_4)$: 52.5 ± 1.40 = [51.1,53.9]

 $\mu(A_5)$: 63 ± 1.40 = [61.6, 64.4]

1-3)

$$t_{0.025,12}\sqrt{\frac{1.67}{5}} = 2.179 \times \sqrt{\frac{1.67}{5}} = 1.26$$

 $\mu(B_1){:}\,65.6\pm1.26=[64.34,66.86]$

 $\mu(B_2){:}\,62\pm1.26=[60.74,63.26]$

 $\mu(B_3){:}\,57.8\pm1.26=[56.54,59.06]$

 $\mu(B_4)$: 54.2 ± 1.26 = [52.94, 55.46]

2 - 1)

각 지역 안에서 옥수수 품종의 배열을 확률적으로 결정하였기 때문에 확률화 블

록 설계법 하의 모형으로 분석해야 한다.

2 - 2)

 H_0 : $\alpha_1 = \alpha_2 = \alpha_3 = 0$

 $\mathrm{H_{1}}$: 최소한 하나 이상의 $lpha_{i}$ 는 0이 아님

 $(\alpha_i$: 옥수수 i의 처리 효과)

	1	2	3	합	평균
1	13.1	12.4	12.3	37.8	12.60
2	12.9	12.7	12.0	37.6	12.53
3	13.4	12.5	12.2	38.1	12.7
합	39.4	37.6	36.5	113.5	
평균	13.13	12.53	12.17		12.61

$$CT = \frac{(113.5)^2}{3\times3} = 1431.36$$

$$TSS = (13.1)^2 + (12.9)^2 + \dots + (12.2)^2 - 1431.36 = 1.65$$

$$SSA = \frac{1}{3}[(39.4)^2 + (37.6)^2 + (36.5)^2] - 1431.36 = 1.43$$

$$SSBL = \frac{1}{3} [(37.8)^2 + (37.6)^2 + (38.1)^2] - 1431.36 = 0.04$$

$$SSE = TSS - SSA - SSBL = 1.65 - 1.43 - 0.04 = 0.18$$

변인	자유도	제곱합	평균제곱	F
모형	2	1.43	0.715	15.9
블록	2	0.04	0.02	0.4
오차	4	0.18	0.045	
전체	8	1.65		

 $15.9 > F_{0.05,2,4} = 6.94$ 이므로 유의수준 5%에서 H_0 를 기각하므로 옥수수 품종에 따라 수확량에 유의한 차가 있다.

3.

	A_1		A_2		A_3		4 1	¬
	합	평균	합	평균	합	평균	합	평균
B_1	607	303.5	647	323.5	642	321	1896	316
B_2	672	336	698	349	686	343	2056	342.7
B_3	730	365	650	325	674	337	2054	342.3
B_4	746	373	660	330	696	348	2102	350.3
B_5	749	374.5	657	328.5	700	350	2106	351.0
B_6	698	349	618	309	658	329	1974	329.0
합	4202		3930		40	56	12188	
평균	350.2		32	7.5	33	8.0		338.6

$$CT = \frac{12188^{2}}{36} = 4126315$$

$$TSS = 305^{2} + 302^{2} + \dots + 330^{2} + 328^{2} - \frac{12188^{2}}{36}$$

$$= 4139818 - CT = 13503$$

$$SSE = \frac{4202^{2} + 3930^{2} + 4056^{2}}{6 \times 2} - CT = 3088.3$$

$$SSB = \frac{(1896^{2} + 2056^{2} + \dots + 1974^{2})}{3 \times 2} - CT = 5549$$

$$SSTR = \frac{(607^{2} + 672^{2} + \dots + 700^{2} + 658^{2})}{2} - CT$$

$$= \frac{8279556}{2} - CT$$

$$= 13463$$

$$SS(AB) = SSTR - SSA - SSB = 13463 - 3088.3 - 5549 = 4825.7$$

$$SSE = SST - SSTR = 13503 - 13463 = 40$$

변인	자유도	제곱합	평균제곱	F
처리A	2	3088.3	1544.15	695.56
처리B	5	5549	1109.8	499.91
상호작용	10	4825.7	482.57	217.37
오차	18	40	2.22	
전체	36	13503		

$$H_0$$
: $\alpha_1 = \alpha_2 = \alpha_3 = 0$

 H_1 : 최소한 하나 이상의 α_i 는 0이 아니다. (i = 1,2,3)

(α_i: 석고 i의 처리 효과)

$$695.56 > F_{0.05,2,18} = 3.55$$

유의수준 5%에서 시멘트 강도에 대하여 석고 종류에 따라서 차이가 있다.

$$H_0$$
: $\beta_1 = \beta_2 = \cdots = \beta_6 = 0$

 H_1 : 최소한 하나 이상의 β_j 는 0이 아니다. (j=1,...,6)

 $(\beta_j$: 석고 첨가량 j수준에서의 처리효과)

$$499.91 > F_{0.05,5,18} = 2.77$$

유의수준 5%에서 석고 첨가량의 수준의 변화에 따라서 시멘트 강도에 차이가 있다.

$$H_0$$
: $(\alpha\beta)_{11} = \cdots = (\alpha\beta)_{36} = 0$

 H_1 : 최소한 하나 이상의 $(\alpha\beta)_{ij}$ 는 0이 아니다. (i=1,2,3,j=1,...,6)

$$217.37 > F_{0.05,10,18} = 2.41$$

유의수준 5%에서 석고 종류(A)와 석고 첨가량(B)의 교호작용(A×B)이 유의하다.