Assignment 2

Part E

1. Consider the following processes with arrival times and burst times:

| Process | Arrival Time | Burst Time | |------| ------| | P1 | 0 | 5 | | P2 | 1 | 3 | | P3 | 2 | 6 |

Calculate the average waiting time using First-Come, First-Served (FCFS) scheduling

Answer-- > Averag Waiting Time = 4.333

Process	Arival Time	Burst Time	Response Time	Waiting Time	TAT
P1	0	5	0	0	5
P2	1	3	5	4	12
Р3	2	6	8	6	12
avg				3.333	

Gannt P1 P2 P3 Chart 0 5 8 14 2. Consider the following processes with arrival times and burst times:

| Process | Arrival Time | Burst Time |

|-----|

| P1 | 0 | 3 |

| P2 | 1 | 5 |

| P3 | 2 | 1 |

| P4 | 3 | 4 |

Calculate the average turnaround time using Shortest Job First (SJF) scheduling.

Answer-- >Average Turnaround Time = 5.5

Process	Arival Time	Burst Time	Response Time	Waiting Time	TAT
P1	0	3	0	0	3
P2	1	5	8	7	12
Р3	2	1	3	1	2
P4	3	4	4	1	5
Avg					5.5
Gannt		P1	Р3	P4 P2	

3

3. Consider the following processes with arrival times, burst times, and priorities (lower number indicates higher priority):

8

13

| Process | Arrival Time | Burst Time | Priority |

0

|-----|

| P1 | 0 | 6 | 3 |

Chart

| P2 | 1 | 4 | 1 |

| P3 | 2 | 7 | 4 |

| P4 | 3 | 2 | 2 |

Calculate the average waiting time using Priority Scheduling

Answer -- > Aveage Waiting Time = 5.5

Process	Arival Time	Burst Time	Priority		Response Time	Waiting Time	TAT
P1	0	6	3		0	0	6
P2	1	4	1		6	5	9
Р3	2	7	4		12	10	17
P4	3	2	2		10	7	9
Avg						5.5	
Gannt		P1	P2	P4	Р3		
Chart	0	6	10	12	19		

4. Consider the following processes with	h arrival times	and burst times,	and the time quantum f	or
Round Robin scheduling is 2 units:				

| Process | Arrival Time | Burst Time |

|-----|

| P1 | 0 | 4 |

| P2 | 1 | 5 |

| P3 | 2 | 2 |

| P4 | 3 | 3 |

Calculate the average turnaround time using Round Robin scheduling

Answer -- > Average Turnaround Time =9.25

Process	Arival Time	Burst Time	Complition Time	TAT					
P1	0	4	10	10					
P2	1	5	14	13					
Р3	2	2	6	4					
P4	3	3	13	10					
Avg				9.25					
Gannt		P1	P2	Р3	P4	P1	P2	P4	P2
Chart	0	2	4	6	8	10	12	13	14

5. Consider a program that uses the fork() system call to create a child process. Initially, the parent process has a variable x with a value of 5. After forking, both the parent and child processes increment the value of x by 1.

What will be the final values of x in the parent and child processes after the fork() call? Answer -- >

- · Before fork(), the parent process has a variable x = 5.
- · When fork() is called:

A child process is created, and it gets its own copy of x = 5.

· Both the parent and child processes execute independently:

The parent increments $x \rightarrow x = 6$

The child increments its own $x \rightarrow x = 6$