# 第二十二章 模糊数学模型

## § 1 模糊数学的基本概念

## 1.1 模糊数学简介

1965 年,美国著名计算机与控制专家查德(L.A.Zadeh)教授提出了模糊的概念,并在国际期刊《Information and Control》并发表了第一篇用数学方法研究模糊现象的论文 "Fuzzy Sets"(模糊集合),开创了模糊数学的新领域。

模糊是指客观事物差异的中间过渡中的"不分明性"或"亦此亦彼性"。如高个子与矮个子、年轻人与老年人、热水与凉水、环境污染严重与不严重等。在决策中,也有这种模糊的现象,如选举一个好干部,但怎样才算一个好干部?好干部与不好干部之间没有绝对分明和固定不变的界限。这些现象很难用经典的数学来描述。

模糊数学就是用数学方法研究与处理模糊现象的数学。它作为一门崭新的学科,它是继经典数学、统计数学之后发展起来的一个新的数学学科。经过短暂的沉默和争议之后,迅猛的发展起来了,而且应用越来越广泛。如今的模糊数学的应用已经遍及理、工、农、医及社会科学的各个领域,充分的表现了它强大的生命力和渗透力。

统计数学是将数学的应用范围从确定性的领域扩大到了不确定性的领域,即从必然 现象到偶然现象,而模糊数学则是把数学的应用范围从确定领域扩大到了模糊领域,即 从精确现象到模糊现象。

实际中,我们处理现实的数学模型可以分成三大类:第一类是确定性数学模型,即模型的背景具有确定性,对象之间具有必然的关系。第二类是随机性的数学模型,即模型的背景具有随机性和偶然性。第三类是模糊性模型,即模型的背景及关系具有模糊性。

- 1.2 基本概念
- 1.2.1 模糊集和隶属函数
- 定义 1 论域 X 到 [0,1] 闭区间上的任意映射

 $\mu_A: X \rightarrow [0,1]$ 

$$x \to \mu_{\scriptscriptstyle A}(x)$$

都确定 X 上的一个模糊集合 A ,  $\mu_A$  叫做 A 的 <mark>隶属函数</mark> ,  $\mu_A(x)$  叫做 x 对模糊集 A 的 隶属度,记为:

$$A = \{(x, \mu_A(x)) \mid x \in X\}$$

# 使 $\mu_A(x) = 0.5$ 的点 $x_0$ 称为模糊集 A 的过渡点,此点最具模糊性。

显然,模糊集合 A 完全由隶属函数  $\mu_A$  来刻画,当  $\mu_A(x)=\{0,1\}$  时, A 退化为一个普通集。

## 1.2.2 模糊集合的表示方法

当论域 X 为有限集时,记  $X=\{x_1,x_2,\cdots,x_n\}$ ,则 X 上的模糊集 A 有下列三种常见的表示形式。

i) zadeh 表示法

当论域 X 为有限集时,记  $X = \{x_1, x_2, \dots, x_n\}$ ,则 X 上的模糊集 A 可以写成

$$A = \sum_{i=1}^{n} \frac{\mu_A(i)}{x_i} = \frac{\mu_A(x_1)}{x_1} + \frac{\mu_A(x_2)}{x_2} + \dots + \frac{\mu_A(x_n)}{x_n}$$

注: " $\sum$ "和 "+"不是求和的意思,只是概括集合诸元的记号; " $\frac{\mu_A(x_i)}{x_i}$ "不是

分数,它表示点 $x_i$ 对模糊集A的隶属度是 $\mu_A(x_i)$ 。

ii) 序偶表示法

$$A = \{(x_1, \mu_A(x_1)), (x_2, \mu_A(x_2)), \dots, (x_n, \mu_A(x_n))\}$$

iii) 向量表示法

$$A = (\mu_A(x_1), \mu_A(x_2), \dots, \mu_A(x_n))$$

当论域 X 为无限集时, X 上的模糊集 A 可以写成

$$A = \int_{x \in X} \frac{\mu_A(x)}{x}$$

注: " $\int$ "也不是表示积分的意思, " $\frac{\mu_A(x_i)}{x_i}$ "也不是分数。

例 1 设论域  $X = \{x_1(140), x_2(150), x_3(160), x_4(170), x_5(180), x_6(190)\}$  (单位:

cm)表示人的身高,X上的一个模糊集"高个子"(A)的隶属函数  $\mu_A(x)$  可定义为

$$\mu_A(x) = \frac{x - 140}{190 - 140}$$

用 zadeh 表示法,

$$A = \frac{0}{x_1} + \frac{0.2}{x_2} + \frac{0.4}{x_3} + \frac{0.6}{x_4} + \frac{0.8}{x_5} + \frac{1}{x_6}$$

用向量表示法,

$$A = (0,0.2,0.4,0.6,0.8,1)$$

例 2 设论域 X=[0,1], Fuzzy 集 A 表示"年老", B 表示"年轻", Zadeh 给出 A、 B 的隶属度函数分别为

$$A(x) = \begin{cases} 0 & 0 \le x \le 50 \\ [1 + (\frac{x - 50}{5})^{-2}]^{-1} & 50 < x \le 100 \end{cases}$$

$$B(x) = \begin{cases} 1 & 0 \le x \le 25 \\ [1 + (\frac{x - 25}{5})^2]^{-1} & 25 \le x \le 100 \end{cases}$$

 $A(70) \approx 0.94$ , 即"70岁"属于"年老"的程度为 0.94。又易知  $A(60) \approx 0.8$ ,

 $B(60) \approx 0.02$ , 可认为 "60岁"是"较老的"。

$$A = \text{"} \mp \text{"} = \int_{50}^{100} \frac{\left[1 + \left(\frac{x - 50}{5}\right)^{-2}\right]^{-1}}{x}$$

$$B = \text{``} \mp \text{E''} = \int_0^{25} \frac{1}{x} + \int_{25}^{100} \frac{\left[1 + \left(\frac{x - 25}{5}\right)^2\right]^{-1}}{x}$$

1.2.3 模糊集的运算

常用取大"∨"和取小"∧"算子来定义 Fuzzy 集之间的运算。

定义 2 对于论域 X 上的模糊集 A , B , 其隶属函数分别为  $\mu_{A}(x)$  ,  $\mu_{B}(x)$  。

- i) 若对任意  $x \in X$  ,有  $\mu_B(x) \le \mu_A(x)$  ,则称 A 包含 B ,记为  $B \subseteq A$  ;
- ii)  $\overline{B} A \subseteq B \perp B \subseteq A$ ,则称 $A \subseteq B$ 相等,记为A = B。

定义3 对于论域X上的模糊集A, B,

i) 称 Fuzzy 集  $C = A \cup B$ ,  $D = A \cap B$  为  $A \subseteq B$  的并 (union) 和交 (intersection),

即

$$C = (A \bigcup B)(x) = \max\{A(x), B(x)\} = A(x) \lor B(x)$$

$$D = (A \cap B(x) = \min\{A(x), B(x)\} = A(x) \land B(x)$$

他们相应的隶属度  $\mu_C(x)$ ,  $\mu_D(x)$  被定义为

$$\mu_C(x) = \max\{\mu_A(x), \mu_B(x)\}$$

$$\mu_D(x) = \min\{\mu_A(x), \mu_B(x)\}\$$

ii) Fuzzy 集 *A<sup>C</sup>* 为 *A* 的补集或余集(complement), 其隶属度

$$\mu_{A^C}(x) = 1 - \mu_A(x)$$

例 3 已知

$$X = \{1,2,3,4,5,6,7,8,\},$$

$$A = \frac{0.3}{1} + \frac{0.5}{2} + \frac{0.8}{3} + \frac{0.4}{4} + \frac{0.1}{5},$$

$$B = \frac{0.2}{3} + \frac{0.3}{4} + \frac{0.9}{5} + \frac{0.5}{6},$$

则有

-260-

$$A \cup B = \frac{0.3}{1} + \frac{0.5}{2} + \frac{0.8}{3} + \frac{0.4}{4} + \frac{0.9}{5} + \frac{0.5}{6},$$

$$A \cap B = \frac{0.2}{3} + \frac{0.3}{4} + \frac{0.1}{5},$$

$$A^{C} = \frac{0.7}{1} + \frac{0.5}{2} + \frac{0.2}{3} + \frac{0.6}{4} + \frac{0.9}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}.$$

#### 1.2.4 隶属函数的确定方法

模糊数学的基本思想是隶属度的思想。应用模糊数学方法建立数学模型的关键是建立符合实际的隶属函数。如何确定一个模糊集的隶属函数至今还是尚未解决的问题。这里仅仅介绍几种常用的确定隶属函数的方法。

#### (1) 模糊统计方法

模糊统计方法是一种客观方法,主要是基于模糊统计试验的基础上根据隶属度的客观存在性来确定的。所谓的模糊统计试验包含以下四个要素:

- i) 论域 X;
- ii) X 中的一个固定元素  $x_0$ ;
- iii) X 中一个随机变动的几何  $A^*$  (普通集):
- iv) X 中一个以  $A^*$  作为弹性边界的模糊集 A ,对  $A^*$  的变动起着制约作用。其中  $x_0 \in A^*$  ,或者  $x_0 \not\in A^*$  ,致使  $x_0$  对 A 的关系是不确定的。

假设做n次模糊统计试验,则可计算出

$$x_0$$
 对  $A$  的隶属频率 =  $\frac{x_0 \in A^*$ 的次数  $n$ 

实际上,当n不断增大时,隶属频率趋于稳定,其频率的稳定值称为 $x_0$ 对A的隶属度,即

$$\mu_A(x_0) = \lim_{n \to \infty} \frac{x_0 \in A^* 的次数}{n}$$

#### (2) 指派方法

指派方法是一种主观的方法,它主要依据人们的实践经验来确定某些模糊集隶属函数的一种方法。

如果模糊集定义在实数域 *R* 上,则模糊集的隶属函数称为模糊分布。所谓指派方法就是根据问题的性质主观地选用某些形式地模糊分布,再根据实际测量数据确定其中所包含地参数,常用的模糊分布如表 1 所示。

实际中,根据问题对研究对象的描述来选择适当的模糊分布:

- ① 偏小型模糊分布一般适合于描述像"小,少,浅,淡,冷,疏,青年"等偏小的程度的模糊现象。
- ② 偏大型模糊分布一般适合于描述像"大,多,深,浓,热,密,老年"等偏大的程度的模糊现象。
- ③ 中间型模糊分布一般适合于描述像"中,适中,不太多,不太少,不太深,不太浓,暖和,中年"等处于中间状态的模糊现象。

但是,表1给出的隶属函数都是近似的,应用时需要对实际问题进行分析,逐步修 改进行完善,最后得到近似程度更好的隶属函数。

#### (3) 其它方法

在实际应用中,用来确定模糊集的隶属函数的方法示多种多样的,主要根据问题的实际意义来确定。譬如,在经济管理、社会管理中,可以借助于已有的"客观尺度"作为模糊集的隶属度。下面举例说明。

如果设论域 X 表示机器设备,在 X 上定义模糊集 A = "设备完好",则可以用"设备完好率"作为 A 的隶属度。如果 X 表示产品,在 X 上定义模糊集 A = "质量稳定",则可以用产品的"正品率"作为 A 的隶属度。如果 X 表示家庭,在 X 上定义模糊集 A = "家庭贫困",则可以用"Engel 系数=食品消费/总消费"作为 A 的隶属度。

另外,对于有些模糊集而言,直接给出隶属度有时是很困难的,但可以利用所谓的 "二元对比排序法"来确定,即首先通过两两比较确定两个元素相应隶属度的大小排出 顺序,然后用数学方法加工处理得到所需的隶属函数。

表 1 常用的模糊分布

| 类型                    | 偏小型                                                                                                                          | 中间型                                                                                                                                                                 | 偏大型                                                                                                                           |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| 矩<br>阵<br>型           | $\mu_A = \begin{cases} 1, & x \le a \\ 0, & x > a \end{cases}$                                                               | $\mu_{A} = \begin{cases} 1, & a \le x \le b \\ 0, & x < a \Rightarrow x > b \end{cases}$                                                                            | $\mu_A = \begin{cases} 1, & x \ge a \\ 0, & x < a \end{cases}$                                                                |
| 梯形型                   | $\mu_{A} = \begin{cases} 1, & x \le a \\ \frac{b-x}{b-a}, & a \le x \le b \\ 0, & x > b \end{cases}$                         | $\mu_{A} = \begin{cases} \frac{x-a}{b-a}, & a \le x \le b \\ 1, & b \le x \le c \\ \frac{d-x}{d-c}, & c \le x \le d \\ 0, & x < a, x \ge d \end{cases}$             | $\mu_{A} = \begin{cases} 0, & x < a \\ \frac{x - a}{b - a}, & a \le x \le b \\ 1, & x > b \end{cases}$                        |
| k<br>次<br>抛<br>物<br>型 | $\mu_{A} = \begin{cases} 1, & x \le a \\ (\frac{b-x}{b-a})^{k}, & a \le x \le b \\ 0, & x > b \end{cases}$                   | $\mu_{A} = \begin{cases} (\frac{x-a}{b-a})^{k}, & a \le x \le b \\ 1, & b \le x \le c \\ (\frac{d-x}{d-c})^{k}, & c \le x \le d \\ 0, & x < a, x \ge d \end{cases}$ | $\mu_{A} = \begin{cases} 0, & x < a \\ (\frac{x-a}{b-a})^{k}, & a \le x \le b \\ 1, & x > b \end{cases}$                      |
| Γ<br>型                | $\mu_A = \begin{cases} 1, & x \le a \\ e^{-k(x-a)}, & x > a \end{cases}$                                                     | $\mu_{A} = \begin{cases} e^{k(x-a)}, & x < a \\ 1, & a \le x \le b \\ e^{-k(x-a)}, & x > b \end{cases}$                                                             | $\mu_{A} = \begin{cases} 0, & x < a \\ 1 - e^{-k(x-a)}, & x \ge a \end{cases}$                                                |
| 正态型                   | $\mu_{A} = \begin{cases} 1, & x \le a \\ \exp\left\{-\left(\frac{x-a}{\sigma}\right)^{2}\right\}, & x > a \end{cases}$       | $\mu_A = \exp\left\{-\left(\frac{x-a}{\sigma}\right)^2\right\}$                                                                                                     | $\mu_{A} = \left\{ 0, & x \le a \\ 1 - \exp\left\{ -\left(\frac{x - a}{\sigma}\right)^{2} \right\}, & x > a \right\}$         |
| 柯西型                   | $\mu_{A} = \begin{cases} 1, & x \le a \\ \frac{1}{1 + \alpha(x - a)^{\beta}}, & x > a \end{cases}$ $(\alpha > 0, \beta > 0)$ | $\mu_{A} = \frac{1}{1 + \alpha(x - a)^{\beta}}$ $(\alpha > 0, \beta)$ 为正偶数)                                                                                         | $\mu_{A} = \begin{cases} 0, & x \le a \\ \frac{1}{1 + \alpha(x - a)^{-\beta}}, & x > a \end{cases}$ $(\alpha > 0, \beta > 0)$ |

# 1.3 模糊关系、模糊矩阵

#### 1.3.1 基本概念

定义 4 设论域U,V,乘积空间上 $U \times V = \{(u,v) | u \in U, v \in V\}$ 上的一个模糊子集R为从从集合U到集合V的模糊关系。如果<mark>模糊关系R</mark>的隶属函数为

$$\mu_R : U \times V \rightarrow [0,1], \quad (x,y) \mapsto \mu_R(x,y)$$

则称隶属度 $\mu_R(x,y)$ 为(x,y)关于模糊关系R的相关程度。

这是二元模糊关系的数学定义, 多元模糊关系也可以类似定义。

设 $U = \{x_1, x_2, \cdots, x_m\}$ , $V = \{y_1, y_2, \cdots, y_n\}$ ,R 为从从U 到V 的模糊关系,其隶属函数为 $\mu_R(x,y)$ ,对任意的 $(x_i, y_j) \in U \times V$  有 $\mu_R(x_i, y_j) = r_{ij} \in [0,1]$ , $i = 1, 2, \cdots, m, j = 1, 2, \cdots, n$ ,记 $R = (r_{ij})_{m \times n}$ ,则R 就是所谓的模糊矩阵。下面给出一般的定义。

定义 5 设矩阵  $R=(r_{ij})_{m\times n}$ ,且  $r_{ij}\in[0,1]$ ,  $i=1,2,\cdots,m,\,j=1,2,\cdots,n$ ,则 R 称为模糊矩阵。

特别地,如果  $r_{ij} \in \{0,1\}$  ,  $i=1,2,\cdots,m$  ,  $j=1,2,\cdots,n$  , 则称 R 为布尔(Bool)矩阵。 当模糊方阵  $R=(r_{ij})_{n\times n}$  的对角线上的元素  $r_{ij}$  都为 1 时,称 R 为模糊自反矩阵。

当 m=1 或 者 n=1 时 , 相 应 地 模 糊 矩 阵 为  $R=(r_1,r_2,\cdots,r_n)$  或 者  $R=(r_1,r_2,\cdots,r_n)^T$  ,则分别称为模糊行向量和模糊列向量。

例 4 设评定科研成果等级的指标集为 $U=(x_1,x_2,\cdots,x_5)$ , $x_1$ 表示为科研成果发明或创造、革新的程度, $x_2$ 表示安全性能, $x_3$ 表示经济效益, $x_4$ 表示推广前景, $x_5$ 表示成熟性;V表示定性评价的评语论域 $V=(y_1,y_2,y_3,y_4)$ , $y_1,y_2,y_3,y_4$ 分别表示很好、较好、一般、不好。通过专家评审打分,按下表给出 $U\times V$ 上每个有序对 $(x_i,y_i)$ 指定的隶属度。

表 2 有序对 $(x_i, y_i)$ 指定的隶属度

| y     |                   | V                 |       |                   |
|-------|-------------------|-------------------|-------|-------------------|
| x     | y <sub>1</sub> 很好 | y <sub>2</sub> 较好 | y3 一般 | y <sub>4</sub> 不好 |
| $x_1$ | 0.45              | 0.35              | 0.15  | 0.05              |
| $x_2$ | 0.30              | 0.34              | 0.10  | 0.26              |
| $x_3$ | 0.50              | 0.30              | 0.10  | 0.10              |
| $x_4$ | 0.60              | 0.30              | 0.05  | 0.05              |
| $x_5$ | 0.56              | 0.10              | 0.20  | 0.14              |

由此确定一个从U到V的模糊关系R,这个模糊关系的隶属度函数是一个  $5\times4$  阶的矩阵,记为

$$R = \begin{pmatrix} 0.45 & 0.35 & 0.15 & 0.05 \\ 0.3 & 0.34 & 0.1 & 0.26 \\ 0.5 & 0.3 & 0.1 & 0.1 \\ 0.6 & 0.3 & 0.05 & 0.05 \\ 0.56 & 0.1 & 0.2 & 0.14 \end{pmatrix}$$

则R为一个模糊关系矩阵。

- 1.3.2 模糊矩阵的运算及其性质
- (1) 模糊矩阵间的关系及并、交、余运算

定义

i) 相等:

$$A=B \iff a_{ij}=b_{ij};$$

ii) 包含:

$$A \leq B \iff a_{ij} \leq b_{ij}$$
;

iii) 并:

$$A \bigcup B = (a_{ij} \vee b_{ij})_{m \times n} ;$$

iv) 交:

$$A \cap B = (a_{ij} \wedge b_{ij})_{m \times n}$$

v) 余:

$$A^C = (1 - a_{ij})_{m \times n}$$

例 5 设 
$$A = \begin{pmatrix} 1 & 0.1 \\ 0.3 & 0.5 \end{pmatrix}$$
,  $B = \begin{pmatrix} 0.7 & 0 \\ 0.4 & 0.9 \end{pmatrix}$ , 则 
$$A \cup B = \begin{pmatrix} 1 & 0.1 \\ 0.4 & 0.9 \end{pmatrix}$$
,  $A \cap B = \begin{pmatrix} 0.7 & 0 \\ 0.3 & 0.5 \end{pmatrix}$ ,  $A^C = \begin{pmatrix} 0 & 0.9 \\ 0.7 & 0.5 \end{pmatrix}$ 

(2) 模糊矩阵的合成

定义 7 设 
$$A = (a_{ik})_{m \times s}$$
,  $B = (b_{kj})_{s \times n}$ , 称模糊矩阵

$$A \circ B = (c_{ij})_{m \times n}$$

为A与B的合成,其中

$$c_{ij} = \max\{(a_{ik} \wedge b_{kj}) | 1 \le k \le s\}$$

例 6 设 
$$A = \begin{pmatrix} 0.4 & 0.7 & 0 \\ 1 & 0.8 & 0.5 \end{pmatrix}$$
,  $B = \begin{pmatrix} 1 & 0.7 \\ 0.4 & 0.6 \\ 0 & 0.3 \end{pmatrix}$ , 则

$$A \circ B = \begin{pmatrix} 0.4 & 0.6 \\ 1 & 0.7 \end{pmatrix}, \quad B \circ A = \begin{pmatrix} 0.7 & 0.7 & 0.5 \\ 0.6 & 0.6 & 0.5 \\ 0.3 & 0.3 & 0.3 \end{pmatrix}$$

两模糊矩阵合成的 MATLAB 函数如下:

```
function ab=synt(a,b);
m=size(a,1);n=size(b,2);
for i=1:m
    for j=1:n
        ab(i,j)=max(min([a(i,:);b(:,j)']));
    end
end
-266-
```

模糊方阵  $A = (a_{ij})_{m \times m}$  的幂定义为

$$A^2 = A \circ A , \qquad A^k = A^{k-1} \circ A$$

(3) 模糊矩阵的转置

定义 8 设  $A=(a_{ij})_{m\times n}$  ,  $i=1,2,\cdots,m,\,j=1,2,\cdots,n$  , 称  $A^T=(a_{ji}^T)_{n\times m}$  为 A 的转置矩阵,其中  $a_{ji}^T=a_{ij}$  。

(4) 模糊矩阵的 λ - 截矩阵

定义 9 设  $A = (a_{ij})_{m \times n}$ , 对任意的  $\lambda \in [0,1]$ ,

i) 令

$$a_{ij}^{(\lambda)} = \begin{cases} 1, & a_{ij} \ge \lambda \\ 0, & a_{ij} < \lambda \end{cases}$$

则称  $A_{\lambda} = (a_{ii}^{(\lambda)})_{m \times n}$  为模糊矩阵 A 的  $\lambda$  截矩阵。

ii) 令

$$a_{ij}^{(\lambda)} = \begin{cases} 1, & a_{ij} > \lambda \\ 0, & a_{ij} \le \lambda \end{cases}$$

则称  $A_{\lambda} = (a_{ij}^{(\lambda)})_{m \times n}$  为模糊矩阵 A 的  $\lambda$  强截矩阵。

显然,对于任意的 $\lambda \in [0,1]$ , $\lambda$ 截矩阵是布尔矩阵。

例 7 设 
$$A = \begin{pmatrix} 1 & 0.5 & 0.2 & 0 \\ 0.5 & 1 & 0.1 & 0.3 \\ 0.2 & 0.1 & 1 & 0.8 \\ 0 & 0.3 & 0.8 & 1 \end{pmatrix}$$
, 则
$$A_{0.5} = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}, A_{0.3} = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{pmatrix}$$

下面给出模糊矩阵的一个性质。

性质 设  $A=(a_{ij})_{m\times n}$  ,  $i=1,2,\cdots,m,j=1,2,\cdots,n$  是模糊自反矩阵(对角线上的元素  $r_{ii}$  都为 1 的模糊矩阵), I 是 n 阶单位矩阵,则

$$I \leq R \leq R^2$$

证:因为 $A=(a_{ii})_{m\times n}$ 是模糊自反矩阵,即有 $r_{ii}=1$ ,所以 $I\leq R$ ,又

$$\max\{(a_{ik} \wedge a_{kj}) | 1 \le k \le n\} \ge r_{ii} \wedge r_{ij} = r_{ij}$$

即有  $R \leq R^2$ 。

## § 2 模糊模式识别

本节我们假定论域为U, U上的模糊集的全体记为F(U)。

2.1 模糊集的贴近度 贴近度是对两个模糊集接近程度的一种度量。

定义 10 设  $A, B, C \in F(U)$ , 若映射

$$N: F(U) \times F(U) \rightarrow [0,1]$$

满足条件:

- (1) N(A,B) = N(B,A);
- (2) N(A, A) = 1,  $N(U, \Phi) = 0$ , 这里 $\Phi$ 为空集;
- (3) 若 $A \subseteq B \subseteq C$ ,则 $N(A,C) \le N(A,B) \land N(B,C)$ ;

则称N(A,B)为模糊集A 与 B的贴近度。N称为F(U)上的贴近度函数。

1. 海明贴近度

若
$$U = \{u_1, u_2, \dots, u_n\}$$
,则

$$N(A,B) \stackrel{\Delta}{=} 1 - \frac{1}{n} \sum_{i=1}^{n} |A(u_i) - B(u_i)|$$

当U 为实数域上的闭区间[a,b]时,则有

$$N(A,B) \stackrel{\Delta}{=} 1 - \frac{1}{b-a} \int_a^b |A(u) - B(u)| du$$

2. 欧几里得贴近度

若
$$U = \{u_1, u_2, \dots, u_n\}$$
,则

$$N(A, B) \triangleq 1 - \frac{1}{\sqrt{n}} \left( \sum_{i=1}^{n} (A(u_i) - B(u_i))^2 \right)^{1/2}$$

当U = [a,b]时,则有

$$N(A,B) \stackrel{\Delta}{=} 1 - \frac{1}{\sqrt{b-a}} \left( \int_a^b (A(u) - B(u))^2 du \right)^{1/2}$$

3. 黎曼贴近度

若U为实数域,被积函数为黎曼可积,且广义积分收敛,则

$$N_1(A,B) \triangleq \frac{\int_{-\infty}^{+\infty} (A(u) \wedge B(u)) du}{\int_{-\infty}^{+\infty} (A(u) \vee B(u)) du}$$

$$N_{2}(A,B) \triangleq \frac{2 \int_{-\infty}^{+\infty} (A(u) \wedge B(u)) du}{\int_{-\infty}^{+\infty} A(u) du + \int_{-\infty}^{+\infty} B(u) du}$$

例 8 设U = [0,100],且

$$A(x) = \begin{cases} 0, & 0 \le x < 20 \\ \frac{x - 20}{40}, & 20 \le x < 60, & B(x) = \begin{cases} 1, & 0 \le x < 40 \\ \frac{80 - x}{40}, & 40 \le x < 80 \\ 0, & 80 \le x \le 100 \end{cases}$$

见图 1。求黎曼贴近度  $N_1(A,B)$ 。



图 1 隶属函数图

解 不难求得 A(x) 和 B(x) 的交点坐标  $x^* = 50$  ,于是

$$A(x) \wedge B(x) = \begin{cases} \frac{x - 20}{40}, & 20 \le x < 50\\ \frac{80 - x}{40}, & 50 \le x < 80\\ 0, & \sharp \dot{\Xi} \end{cases}$$

$$A(x) \lor B(x) = \begin{cases} 1, & 0 \le x < 40 \\ \frac{80 - x}{40}, & 40 \le x < 50 \\ \frac{x - 20}{40}, & 50 \le x < 60 \\ 1, & 60 \le x \le 100 \end{cases}$$

$$N_1(A,B) = \frac{\int_0^{100} (A(u) \wedge B(u)) du}{\int_0^{100} (A(u) \vee B(u)) du} \approx 0.2308$$

计算的 MATLAB 程序:

i) 编写定义函数  $A(x) \wedge B(x)$  的 MATLAB 函数

function f1=jixiao(x);

f1=(x>=20 & x<50).\*(x-20)/40+(x>=50 & x<80).\*(80-x)/40;

ii) 编写定义函数  $A(x) \vee B(x)$  的 MATLAB 函数

function f2=jida(x);

f2=(x>=0 & x<40)+(x>=40 & x<50).\*(80-x)/40+(x>=50 & x<60).\*(x-20)/40+(x>=60 & x<=100);

iii)利用 MATLAB 的积分命令 quadl 计算  $N_1(A, B)$ 

N1=quadl(@jixiao,0,100)/quadl(@jida,0,100)

例 9 设U = R (实数域),正态型隶属函数

$$A(x) = e^{-\left(\frac{x-a}{\sigma_1}\right)^2}, \quad B(x) = e^{-\left(\frac{x-a}{\sigma_2}\right)^2}$$

求当 $\sigma_1 \le \sigma_2$ 时,N(A,B) (见图2)



图 2 隶属函数图

解 当 $\sigma_1 \le \sigma_2$ ,  $\forall x \in R$ ,  $A(x) \le B(x)$ 

根据黎曼贴近度,有

$$N_1(A, B) = \frac{\int_{-\infty}^{+\infty} A(x) dx}{\int_{-\infty}^{+\infty} B(x) dx} = \frac{\sigma_1}{\sigma_2}$$

$$N_2(A, B) = \frac{2\int_{-\infty}^{+\infty} A(x)dx}{\int_{-\infty}^{+\infty} A(x)dx + \int_{-\infty}^{+\infty} B(x)dx} = \frac{2\sigma_1}{\sigma_1 + \sigma_2}$$

## 2.2 格贴近度

定义 10 设  $A, B \in F(U)$ , 称

$$A\odot B=\bigvee_{u\in U}(A(u)\wedge B(u))$$

为模糊集A,B的内积。

内积的对偶运算为外积。

定义 11 设  $A, B \in F(U)$ , 称

$$A \otimes B = \bigwedge_{u \in U} (A(u) \vee B(u))$$

为模糊集A,B的外积。

如果在闭区间[0,1]上定义"余"运算:  $\forall \alpha \in [0,1]$ ,  $\alpha^c = 1 - \alpha$ , 那么有性质 1

性质 1 
$$(A \otimes B)^c = A^c \odot B^c$$
,  $(A \odot B)^c = A^c \otimes B^c$ 。

对  $A \in F(U)$ , 令

$$\overline{a} = \bigvee_{u \in U} A(u), \quad \underline{a} = \bigwedge_{u \in U} A(u)$$

 $\bar{a}$  和 a 分别叫做模糊集 A 的峰值和谷值。对模糊集 A,B,C ,不难得到如下性质。

性质 2  $A \odot B \le \overline{a} \wedge \overline{b}$  ,  $A \otimes B \ge a \vee b$  。

性质 3  $A \odot A = \overline{a}$ ,  $A \otimes A = \underline{a}$ 

性质 4 
$$\bigvee_{B \in F(U)} (A \odot B) = \overline{a}$$
 ,  $\bigwedge_{B \in F(U)} (A \otimes B) = \underline{a}$ 

性质 5  $A \subset B \Rightarrow A \odot B = \overline{a}$ ,  $A \otimes B = b$ 

性质 6 
$$A \odot A^c \leq \frac{1}{2}$$
,  $A \otimes B \geq \frac{1}{2}$ 

性质 7  $A \subset B \Rightarrow A \odot B \leq B \odot C$ , 并且  $A \otimes C \leq B \otimes C$ 

由性质发现,给定模糊集 A ,让模糊集 B 靠近 A ,会使内积  $A \odot B$  增大而外积  $A \otimes B$  减少。换句话说,当  $A \odot B$  较大且  $A \otimes B$  较少时, $A \cup B$  比较贴近。所以,采用内积与外积相结合的"格贴近度"来刻画两个模糊集的贴近程度。

引理 1 设  $A, B \in F(U)$ , 令  $(A, B) = (A \odot B) \land (A \otimes B)^c$ ,则下列结论成立:

- (1)  $0 \le (A, B) \le 1$ ;
- (2) (A,B) = (B,A);
- (3)  $(A,A) = \overline{a} \wedge (1-a)$ ;

(4) 
$$A \subset B \subset C \Rightarrow (A, C) \leq (A, B) \land (B, C)$$

特别当 $\bar{a}=1$ , a=0时, (A,A)=1。

根据引理1和贴近度的定义,立即得到:

定理 1 设  $A, B \in F(U)$ ,则

$$(A,B) = (A \odot B) \wedge (A \otimes B)^c$$

是模糊集A,B的贴近度,叫做A,B的格贴近度。记为

$$N(A,B) = (A \odot B) \wedge (A \otimes B)^c$$

例 10 设论域 R 为实数域,模糊集的隶属函数为

$$A(x) = e^{-\left(\frac{x-a_1}{\sigma_1}\right)^2}, \quad B(x) = e^{-\left(\frac{x-a_2}{\sigma_2}\right)^2}$$

求N(A,B)。

解法 I (格贴近度法)对上述函数,有

若
$$A(x) \le B(x)$$
,则 $A \odot B = \bigvee_{x \in R} (A(x) \land B(x)) = \bigvee_{x \in R} A(x) = B(x^*)$ 

若 
$$B(x) \le A(x)$$
,则  $A \odot B = \bigvee_{x \in R} (A(x) \land B(x)) = \bigvee_{x \in R} B(x) = A(x^*)$ 

可见,内积 $A \odot B$ 是A(x)与B(x)相等时的值,这时 $x = x^*$ 。故可令A(x) = B(x),

求 $x^*$ ,即从

$$e^{-\left(\frac{x-a_1}{\sigma_1}\right)^2} = e^{-\left(\frac{x-a_2}{\sigma_2}\right)^2}$$

求得

$$x_1 = \frac{\sigma_1 a_2 + \sigma_2 a_1}{\sigma_1 + \sigma_2}$$
,  $x_2 = \frac{\sigma_2 a_1 - \sigma_1 a_2}{\sigma_2 - \sigma_1}$ 

其中 $x_2$ 不是最大值点,故选 $x^* = x_1$ 。于是

$$A \odot B = A(x_1) = e^{-\left(\frac{a_2 - a_1}{\sigma_2 + \sigma_1}\right)^2}$$

而

$$A^{C} \odot B^{C} = \bigvee_{x \in R} ((1 - A(x)) \wedge (1 - B(x))) = 1$$

由格贴近度公式,得

$$N(A,B) = e^{-\left(\frac{a_2 - a_1}{\sigma_2 + \sigma_1}\right)^2}$$

解法 II (黎曼贴近度法)

$$N_{1}(A,B) = \frac{\int_{-\infty}^{x^{*}} e^{-\left(\frac{x-a_{2}}{\sigma_{2}}\right)^{2}} dx + \int_{x^{*}}^{+\infty} e^{-\left(\frac{x-a_{1}}{\sigma_{1}}\right)^{2}} dx}{\int_{-\infty}^{x^{*}} e^{-\left(\frac{x-a_{1}}{\sigma_{1}}\right)^{2}} dx + \int_{x^{*}}^{+\infty} e^{-\left(\frac{x-a_{2}}{\sigma_{2}}\right)^{2}} dx}$$

$$N_{2}(A,B) = \frac{\int_{-\infty}^{x^{*}} e^{-\left(\frac{x-a_{2}}{\sigma_{2}}\right)^{2}} dx + \int_{x^{*}}^{+\infty} e^{-\left(\frac{x-a_{1}}{\sigma_{1}}\right)^{2}} dx}{\int_{-\infty}^{+\infty} e^{-\left(\frac{x-a_{1}}{\sigma_{1}}\right)^{2}} dx + \int_{-\infty}^{+\infty} e^{-\left(\frac{x-a_{2}}{\sigma_{2}}\right)^{2}} dx}$$

其中,
$$a_1 < x^* < a_2$$
, $x^* = \frac{\sigma_2 a_1 + \sigma_1 a_2}{\sigma_1 + \sigma_2}$  (见解法 I)。

求解式中各积分非常麻烦,这里就不解下去了。不过已经发现,求解此题,以选择 格贴近度法最好。

## 2.3 模糊模式识别原则

模糊模式识别大致有两种方法,一是直接方法,按"最大隶属原则"归类,主要应用于个体的识别,另一是间接方法,按"择近原则"归类,一般应用于群体模型的识别。

## 2.3.1 最大隶属原则

设
$$A_i \in F(U)$$
 ( $i = 1, 2, \dots, n$ ), 对 $u_0 \in U$ , 若存在 $i_0$ , 使

$$A_{i_0}(u_0) = \max\{A_1(u_0), A_2(u_0), \dots, A_n(u_0)\}$$

则认为 $u_0$ 相对地隶属于 $A_i$ ,这是最大隶属原则。

例 11 考虑人的年龄问题,分为年轻、中年、老年三类,分别对应三个模糊集  $A_1,A_2,A_3$ 。设论域U=(0,100],且对  $x\in(0,100]$ ,有

$$A_{1}(x) = \begin{cases} 1, & 0 < x \le 20 \\ 1 - 2\left(\frac{x - 20}{20}\right)^{2}, & 20 < x \le 30 \\ 2\left(\frac{x - 40}{20}\right)^{2}, & 30 < x \le 40 \\ 0, & 40 < x \le 100 \end{cases}$$

$$A_3(x) = \begin{cases} 0, & 0 < x \le 50 \\ 2\left(\frac{x - 50}{20}\right)^2, & 50 < x \le 60 \\ 1 - 2\left(\frac{x - 70}{20}\right)^2, & 60 < x \le 70 \\ 1, & 70 < x \le 100 \end{cases}$$

$$\begin{cases} 0, & 0 < x \le 20 \\ 2 \left(\frac{x - 20}{20}\right)^2, & 20 < x \le 30 \end{cases}$$
 
$$1 - 2 \left(\frac{x - 40}{20}\right)^2, & 30 < x \le 40 \end{cases}$$
 
$$1 - 2 \left(\frac{x - 50}{20}\right), & 50 < x \le 60 \end{cases}$$
 
$$1 - 2 \left(\frac{x - 70}{20}\right)^2, & 60 < x \le 70$$
 
$$0, & 70 < x \le 100 \end{cases}$$

某人 40 岁,根据上式, $A_1(40) = 0$ , $A_2(40) = 1$ , $A_3(40) = 0$ ,则

$$A_2(40) = \max\{A_1(40), A_2(40), A_3(40)\} = 1$$

按最大隶属原则, 他应该是中年人。

又如当 x=35 时,  $A_{\scriptscriptstyle 1}(35)=0.125$  ,  $A_{\scriptscriptstyle 2}(35)=0.875$  ,  $A_{\scriptscriptstyle 3}(35)=0$  。可见 35 岁的人应该是中年人。

2.3.2 择近原则

设 
$$A_i, B \in F(U)$$
 ( $i = 1, 2, \dots, n$ ), 若存在  $i_0$ , 使

$$N(A_{i_0}, B) = \max\{N(A_1, B), N(A_2, B), \dots, N(A_n, B)\}$$

则认为B与 $A_{i_0}$ 最贴近,即判定B与 $A_{i_0}$ 为一类。该原则称为择近原则。

例 12 现有五个等级的茶叶样品  $A_1,A_2,A_3,A_4,A_5$ , 待识别茶叶 B 。反映茶叶质量的因素有六项指标,构成论域 U ,其中

$$U = \{x_1(条素), x_2(色泽), x_3(净度), x_4(汤色), x_5(香气), x_6(滋味)\}$$

设五个等级的样品对 6 项指标的数值为:

$$A_1 = (0.5, 0.4, 0.3, 0.6, 0.5, 0.4)$$

$$A_2 = (0.3, 0.2, 0.2, 0.1, 0.2, 0.2)$$

```
A_3 = (0.2,0.2,0.2,0.1,0.1,0.2) A_4 = (0,0.1,0.2,0.1,0.1,0.1) A_5 = (0,0.1,0.1,0.1,0.1,0.1) 待识别茶叶的各项指标值为 B = (0.4,0.2,0.1,0.4,0.5,0.6) 确定 B 的属类。 解 \quad 利用格贴近度公式计算可得 <math display="block">N(B,\mathrm{I}) = 0.5 \;,\;\; N(B,\mathrm{II}) = 0.3 \;,\;\; N(B,\mathrm{III}) = 0.2 \;,
```

按择近原则,可以将B定为一级茶叶(与 $A_1$ 同属一类)。

N(B, IV) = 0.2, N(B, V) = 0.1

#### § 3 模糊聚类分析方法

在工程技术和经济管理中,常常需要对某些指标按照一定的标准(相似的程度或亲疏关系等)进行分类处理。例如,根据生物的某些性态对其进行分类,根据空气的性质对空气质量进行分类,以及工业上对产品质量的分类、工程上对工程规模的分类、图像识别中对图形的分类、地质学中对土壤的分类、水资源中的水质分类等等。这些对客观事物按一定的标准进行分类的数学方法称为聚类分析,它是多元统计"物以聚类"的一-276-

种分类方法。然而,在科学技术、经济管理中有许多事物的类与类之间并无清晰的划分, 边界具有模糊性,它们之间的关系更多的是模糊关系。对于这类事物的分类,一般用模 糊数学方法、我们把应用模糊数学方法进行的聚类分析,称为<mark>模糊聚类分析</mark>。

- 3.1 预备知识
- 3.1.1 模糊等价矩阵

定义 12 设  $R=(r_{ij})_{n\times n}$  是 n 阶模糊方阵, $i=1,2,\cdots,m,\,j=1,2,\cdots,n$ ,I 是 n 阶单位方阵,若 R 满足

① 自反性:

$$I \leq R(\Leftrightarrow r_{ii} = 1)$$
;

② 对称性:

$$R^T = R \iff r_{ii} = r_{ii}$$
;

③ 传递性:

$$R^2 \leq R \iff \max\{(a_{ik} \wedge a_{ki}) | 1 \leq k \leq n\} \geq r_{ii}\};$$

则称 R 为模糊等价矩阵。

定理 2 设  $R = (r_{ij})_{n \times n}$  是 n 阶模糊等价方阵,则  $\forall \lambda \in [0,1]$  ,  $R_{\lambda}$  是 n 阶等价布尔矩阵。

定理 3 设  $R=(r_{ij})_{n\times n}$  是 n 阶模糊等价矩阵,则  $\forall 0 \leq \lambda \leq \mu \leq 1$ ,  $R_{\mu}$  所决定的分类中的每一个类是  $R_{\lambda}$  所决定的分类中的某个子集。

这就是说,如果  $x_i, x_j$  按  $R_\mu$  分在一类,则按  $R_\lambda$  ( $0 \le \lambda \le \mu \le 1$ ) 也必分在一类,即  $R_\mu$  所决定的分类中的每一个类是  $R_\lambda$  所决定的分类中的某个子集。

定理 3 表明: 当  $\lambda < \mu$  时,  $R_{\mu}$  的分类是  $R_{\lambda}$  分类的加细,当  $\lambda$  由 1 变成 0 时,  $R_{\lambda}$  的分类由细变粗,形成一个动态的聚类图,称之为模糊分类。

例 13 设  $X = \{x_1, x_2, x_3, x_4, x_5\}$ ,

$$R = \begin{pmatrix} 1 & 0.4 & 0.8 & 0.5 & 0.5 \\ 0.4 & 1 & 0.4 & 0.4 & 0.4 \\ 0.8 & 0.4 & 1 & 0.5 & 0.5 \\ 0.5 & 0.4 & 0.5 & 1 & 0.6 \\ 0.5 & 0.4 & 0.5 & 0.6 & 1 \end{pmatrix}$$

容易验证,R为模糊等价矩阵。

当
$$\lambda = 1$$
时, $R_1 = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$ ,得到的分类是 $\{x_1\}, \{x_2\}, \{x_3\}, \{x_4\}, \{x_5\}$ ;

当 
$$\lambda = 0.6$$
 时,  $R_{0.6} = \begin{pmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix}$ , 得到的分类是  $\{x_1, x_3\}, \{x_2\}, \{x_4, x_5\};$ 

当
$$\lambda=0.5$$
时, $R_{0.5}=\begin{pmatrix} 1&0&1&1&1\\0&1&0&0&0\\1&0&1&1&1\\1&0&1&1&1\\1&0&1&1&1 \end{pmatrix}$ ,得到的分类是 $\{x_1,x_3,x_4,x_5\},\{x_2\}$ ;

3.1.2 模糊相似矩阵

定义 13 设  $R=(r_{ij})_{n\times n}$  是 n 阶模糊方阵,  $i=1,2,\cdots,m,$   $j=1,2,\cdots,n$  , I 是 n 阶单位方阵,若 R 满足

① 自反性:

$$I \leq R(\Leftrightarrow r_{ii} = 1)$$
;

② 对称性:

$$R^T = R \iff r_{ij} = r_{ji}$$
;

则称R为模糊相似矩阵。

定理 4 设 R 为模糊相似矩阵,则存在一个最小的自然数 k ( $k \le n$ ),使得  $R^k$  为模糊等价矩阵,且对一切大于 k 的自然数 l ,恒有  $R^l = R^k$  。

证明从略。

定义 13 定理 4 中的  $R^k$  称为 R 的传递闭包矩阵,记为 t(R)。

由定理 4 可以得到将n阶模糊相似矩阵R改造成n阶模糊等价矩阵的方法:

 $\mathbb{A}_n$  阶模糊相似矩阵  $\mathbb{R}$  出发,依次求平方:

$$R \to R^2 \to R^4 \to \cdots$$

直到

$$R^{2^{i}} \circ R^{2^{i}} = R^{2^{i}} (2^{i} \le n, i \le \log_{2} n)$$

为止,则

$$t(R)=R^{2^i}.$$

例 14 设

$$R = \begin{pmatrix} 1 & 0.1 & 0.2 \\ 0.1 & 1 & 0.3 \\ 0.2 & 0.3 & 1 \end{pmatrix}$$

容易验证,R为模糊相似矩阵,用平方法求其传递闭包t(R)。

$$R \circ R = \begin{pmatrix} 1 & 0.1 & 0.2 \\ 0.1 & 1 & 0.3 \\ 0.2 & 0.3 & 1 \end{pmatrix} \circ \begin{pmatrix} 1 & 0.1 & 0.2 \\ 0.1 & 1 & 0.3 \\ 0.2 & 0.3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0.2 & 0.2 \\ 0.2 & 1 & 0.3 \\ 0.2 & 0.3 & 1 \end{pmatrix} = R^2$$

$$R^{2} \circ R^{2} = \begin{pmatrix} 1 & 0.2 & 0.2 \\ 0.2 & 1 & 0.3 \\ 0.2 & 0.3 & 1 \end{pmatrix} \circ \begin{pmatrix} 1 & 0.2 & 0.2 \\ 0.2 & 1 & 0.3 \\ 0.2 & 0.3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0.2 & 0.2 \\ 0.2 & 1 & 0.3 \\ 0.2 & 0.3 & 1 \end{pmatrix} = R^{2}$$

故传递闭包

$$t(R) = R^2 = \begin{pmatrix} 1 & 0.2 & 0.2 \\ 0.2 & 1 & 0.3 \\ 0.2 & 0.3 & 1 \end{pmatrix}$$

容易验证,传递闭包t(R)是模糊等价矩阵。

3.2 模糊聚类分析法的基本步骤

Step1:数据标准化

(1) 获取数据

设论域  $X = \{x_1, x_2, \dots, x_n\}$  为被分类的对象,每个对象又由m个指标表示其性态,

即

$$x_i = \{x_{i1}, x_{i2}, \dots, x_{im}\}\ (i = 1, 2, \dots, n)$$

于是可以得到原始数据矩阵  $A = (x_{ii})_{n \times m}$  。

#### (2) 数据的标准化处理

在实际问题中,不同的数据可能有不同的性质和不同的量纲,为了使原始数据能够适合模糊聚类的要求,需要将原始数据矩阵 A 作标准化处理,即通过适当的数据变换,-280-

将其转化为模糊矩阵。常用的方法有以下两种:

① 平移一标准差变换

$$x_{ij} = \frac{x_{ij} - \overline{x}_j}{s_j}$$
  $(i = 1, 2, \dots, n, j = 1, 2, \dots, m)$ 

其中

$$\overline{x}_j = \frac{1}{n} \sum_{i=1}^n x_{ij}$$
,  $s_j = \left[\frac{1}{n} \sum_{i=1}^n (x_{ij} - \overline{x}_j)^2\right]^{\frac{1}{2}}$ ,  $(j = 1, 2, \dots, m)$ 

## ② 平移一极差变换

如果经过平移一标准差变换后还有某些 $x_{ij}' \notin [0,1]$ ,则还需对其进行平移一极差变换,即

$$x_{ij} = \frac{x_{ij} - \min_{1 \le i \le n} \{x_{ij}\}}{\max_{1 \le i \le n} \{x_{ij}\} - \min_{1 \le i \le n} \{x_{ij}\}}, \quad (j = 1, 2, \dots, m)$$

显然所有的 $x_{ij}^{"} \in [0,1]$ ,且也不存在量纲因素的影响,从而可以得到模糊矩阵

$$R = (x_{ij}^{"})_{n \times m}$$

Step2: 建立模糊相似矩阵

设论域  $X = \{x_1, x_2, \cdots, x_n\}$ ,  $x_i = \{x_{i1}, x_{i2}, \cdots, x_{im}\}$   $(i = 1, 2, \cdots, n)$ , 即数据矩阵  $A = (x_{ij})_{n \times m}$ 。 如果  $x_i$  与  $x_j$  的相似程度为  $r_{ij} = R(x_i, x_j)$ , 则称之为相似系数。确定相似系数  $r_{ii}$  有下列方法。

## (1) 数量积法

对于 
$$x_i = \{x_{i1}, x_{i2}, \dots, x_{im}\}$$
, 令  $M = \max_{i \neq j} (\sum_{k=1}^m x_{ik} \cdot x_{ik})$ , 则取

$$r_{ij} = \begin{cases} 1, & i = j \\ \frac{1}{M} \sum_{k=1}^{m} x_{ik} \cdot x_{jk}, & i \neq j \end{cases}$$

显然  $\left|r_{ij}\right| \in [0,1]$ ,若出现某些  $r_{ij} < 0$ ,可令  $r_{ij} = \frac{r_{ij} + 1}{2}$ ,则有  $r_{ij} \in [0,1]$ 。也可以用

平移一极差变换将其压缩到[0,1]上,可以得到模糊相似矩阵 $\mathbf{R} = (\mathbf{r}_{ij})_{n \times m}$ 。

(2) 夹角余弦法

$$r_{ij} = \frac{\left| \sum_{k=1}^{m} x_{ik} \cdot x_{jk} \right|}{\sqrt{\sum_{k=1}^{m} x_{ik}^{2} \cdot \sum_{k=1}^{m} x_{jk}^{2}}}, \quad (i, j = 1, 2, \dots, n)$$

(3) 相关系数法

$$r_{ij} = \frac{\left| \sum_{k=1}^{m} (x_{ik} - \overline{x}_i) \cdot (x_{jk} - \overline{x}_j) \right|}{\sqrt{\sum_{k=1}^{m} (x_{ik} - \overline{x}_i)^2 \cdot \sum_{k=1}^{m} (x_{jk} - \overline{x}_j)^2}}, \quad (i, j = 1, 2, \dots, n)$$

(4) 指数相似系数法

$$r_{ij} = \frac{1}{m} \sum_{k=1}^{m} \exp \left\{ -\frac{3}{4} \frac{(x_{ik} - x_{jk})^2}{s_k^2} \right\},$$

其中

$$\overline{x}_k = \frac{1}{n} \sum_{i=1}^n x_{ik}$$
,  $s_k = \frac{1}{n} \sum_{k=1}^n (x_{ik} - \overline{x}_k)^2$ ,  $(k = 1, 2, \dots, m)$ 

(5) 最大最小值法

$$r_{ij} = \frac{\sum_{k=1}^{m} (x_{ik} \wedge x_{jk})}{\sum_{k=1}^{m} (x_{ik} \vee x_{jk})}, \quad (x_{ij} > 0, \quad i, j = 1, 2, \dots, n)$$

(6) 算术平均值法

$$r_{ij} = \frac{\sum_{k=1}^{m} (x_{ik} \wedge x_{jk})}{\frac{1}{2} \sum_{k=1}^{m} (x_{ik} + x_{jk})}, \quad (x_{ij} > 0, \quad i, j = 1, 2, \dots, n)$$

(7) 几何平均值法

$$r_{ij} = \frac{\sum_{k=1}^{m} (x_{ik} \wedge x_{jk})}{\sum_{k=1}^{m} \sqrt{x_{ik} \cdot x_{jk}}}, \quad (x_{ij} > 0, \quad i, j = 1, 2, \dots, n)$$

(8) 绝对值倒数法

$$r_{ij} = \begin{cases} 1, & i = j \\ M(\sum_{k=1}^{m} |x_{ik} - x_{jk}|)^{-1}, & i \neq j \end{cases}$$

其中M 为使得所有 $r_{ij} \in [0,1]$   $(i, j = 1,2,\dots,n)$  的确定常数。

(9) 绝对值指数法

$$r_{ij} = \exp\{-\sum_{k=1}^{m} |x_{ik} - x_{jk}|\}$$
  $(i, j = 1, 2, \dots, n)$ 

(10) 海明距离法

$$\begin{cases} r_{ij} = 1 - H \cdot d(x_i, x_j) \\ d(x_i, x_j) = \sum_{k=1}^{m} |x_{ik} - x_{jk}| \end{cases}, \quad (i, j = 1, 2, \dots, n)$$

其中H为使得所有 $r_{ij} \in [0,1]$   $(i,j=1,2,\cdots,n)$  的确定常数。

(11) 欧氏距离法

$$\begin{cases} r_{ij} = 1 - E \cdot d(x_i, x_j) \\ d(x_i, x_j) = \sqrt{\sum_{k=1}^{m} (x_{ik} - x_{jk})^2} \end{cases}, \quad (i, j = 1, 2, \dots, n)$$

其中E为使得所有 $r_{ij} \in [0,1]$   $(i,j=1,2,\cdots,n)$  的确定常数。

## (12) 切比雪夫距离法

$$\begin{cases} r_{ij} = 1 - Q \cdot d(x_i, x_j) \\ d(x_i, x_j) = \bigvee_{k=1}^{m} |x_{ik} - x_{jk}| \end{cases}$$

其中Q为使得所有 $r_{ij} \in [0,1]$   $(i, j = 1,2,\cdots,n)$  的确定常数。

#### (13) 主观评分法

设有 N 个专家组成专家组  $\{p_1,p_2,\cdots,p_N\}$ ,让每一个专家对所研究的对象  $x_i$  与  $x_j$  相似程度给出评价,并对自己的自信度作出评估。如果第 k 位专家  $p_k$  关于对象  $x_i$  与  $x_j$  的相似程度评价位  $r_{ij}(k)$ ,对自己的自信度评估为  $a_{ij}(k)$ , $(i,j=1,2,\cdots,n)$ ,则相关系数定义为

$$r_{ij} = \frac{\sum_{k=1}^{N} (a_{ij}(k) \cdot r_{ij}(k))}{\sum_{k=1}^{N} a_{ij}(k)}, \quad (i, j = 1, 2, \dots, n)$$

Step3: 聚类

所谓聚类方法就是依据模糊矩阵将所研究的对象进行分类的方法。对于不同的置信水平 $\lambda \in [0,1]$ ,可以得到不同的分类结果,从而形成动态聚类图。常用的方法如下:

## (1) 传递闭包法

从 Step2 中求出的模糊相似矩阵 R 出发,来构造一个模糊等价矩阵  $R^*$ 。其方法就是用平方法求出 R 的传递闭包 t(R),则  $t(R)=R^*$ ;然后,由大到小取一组  $\lambda \in [0,1]$ ,确定相应的  $\lambda$  截矩阵,则可以将其分类,同时也可以构成动态聚类图。

### (2) 布尔矩阵法

设论域  $X = \{x_1, x_2, \cdots, x_n\}$ , R 是 X 上的模糊相似矩阵,对于确定的  $\lambda$  水平要求 X 中的元素分类。

首先,由模糊相似矩阵作出其 $\lambda$ 截矩阵 $R_{\lambda}=(r_{ij}(\lambda))$ ,即 $R_{\lambda}$ 为布尔矩阵;然后,依据 $R_{\lambda}$ 中的1元素可以将其分类。

如果 $R_{\lambda}$ 为等价矩阵,则R也是等价矩阵,则可以直接分类。

若 $R_{\lambda}$ 不是等价矩阵,则首先按一定的规则将 $R_{\lambda}$ 改造成一个等价的布尔矩阵,再进行分类。

#### (3) 直接聚类法

此方法是直接由模糊相似矩阵求出聚类图的方法,具体步骤如下:

1) 取 $\lambda_1 = 1$ (最大值),对于每个 $x_i$ 作相似类:  $[x_i]_R = \{x_j | r_{ij} = 1\}$ ,即将满足 $r_{ij} = 1$ 的 $x_i$ 与 $x_j$ 视为一类,构成相似类。

相似类和等价类有所不同,不同的相似类可能有公共元素,实际中对于这种情况可以合并为一类。

- 2) 取  $\lambda_2(\lambda_2<\lambda_1)$  为次大值,从 R 中直接找出相似程度为  $\lambda_2$  的元素对  $(x_i,x_j)$ ,即  $r_{ij}=\lambda_2$ ,并相应地将对应于  $\lambda_1=1$  的等价分类中  $x_i$  与  $x_j$  所在的类合并为一类,即可得到  $\lambda_2$  水平上的等价分类。
- 3) 依次取  $\lambda_1 > \lambda_2 > \lambda_3 > \cdots$ ,按第 2)步的方法依次类推,直到合并到 X 成为一类为止,最后可以得到动态聚类图。

#### 3.3 模糊聚类分析应用案例

例 15 某地区内有 12 个气象观测站, 10 年来各站测得的年降水量如表 3 所示。 为了节省开支, 想要适当减少气象观测站, 试问减少哪些观察站可以使所得到的降水量 信息仍然足够大?

|      |       |       |       |       |       | 1114  | •     |       |       |       |       |       |
|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|      | 站 1   | 站 2   | 站 3   | 站 4   | 站 5   | 站 6   | 站 7   | 站 8   | 站 9   | 站 10  | 站 11  | 站 12  |
| 1981 | 276.2 | 324.5 | 158.6 | 412.5 | 292.8 | 258.4 | 334.1 | 303.2 | 292.9 | 243.2 | 159.7 | 331.2 |
| 1982 | 251.5 | 287.3 | 349.5 | 297.4 | 227.8 | 453.6 | 321.5 | 451.0 | 466.2 | 307.5 | 421.1 | 455.1 |
| 1983 | 192.7 | 433.2 | 289.9 | 366.3 | 466.2 | 239.1 | 357.4 | 219.7 | 245.7 | 411.1 | 357.0 | 353.2 |

表 3 年降水量 (mm)

| 1984 | 246.2 | 232.4 | 243.7 | 372.5 | 460.4 | 158.9 | 298.7 | 314.5 | 256.6 | 327.0 | 296.5 | 423.0 |
|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 1985 | 291.7 | 311.0 | 502.4 | 254.0 | 245.6 | 324.8 | 401.0 | 266.5 | 251.3 | 289.9 | 255.4 | 362.1 |
| 1986 | 466.5 | 158.9 | 223.5 | 425.1 | 251.4 | 321.0 | 315.4 | 317.4 | 246.2 | 277.5 | 304.2 | 410.7 |
| 1987 | 258.6 | 327.4 | 432.1 | 403.9 | 256.6 | 282.9 | 389.7 | 413.2 | 466.5 | 199.3 | 282.1 | 387.6 |
| 1988 | 453.4 | 365.5 | 357.6 | 258.1 | 278.8 | 467.2 | 355.2 | 228.5 | 453.6 | 315.6 | 456.3 | 407.2 |
| 1989 | 158.2 | 271.0 | 410.2 | 344.2 | 250.0 | 360.7 | 376.4 | 179.4 | 159.2 | 342.4 | 331.2 | 377.7 |
| 1990 | 324.8 | 406.5 | 235.7 | 288.8 | 192.6 | 284.9 | 290.5 | 343.7 | 283.4 | 281.2 | 243.7 | 411.1 |

解 我们把 12 个气象观测站的观测值看成 12 个向量组,由于本题只给出了 10 年的观测数据,根据线性代数的理论可知,若向量组所含向量的个数大于向量的维数,则该向量组必然线性相关。于是只要求出该向量组的秩就可确定该向量组的最大无关组所含向量的个数,也就是需保留的气象观测站的个数。由于向量组中的其余向量都可由极大线性无关组线性表示,因此,可以使所得到的降水信息量足够大。

用
$$i = 1,2,\cdots,10$$
分别表示 1981 年,1982 年, $\cdots$ ,1990 年。 $a_{ii}$ ( $i = 1,2,\cdots,10$ ,

$$j = 1, 2, \dots, 12$$
)表示第  $j$  个观测站第  $i$  年的观测值,记  $A = (a_{ii})_{10 \times 12}$ 。

利用 MATLAB 可计算出矩阵 A 的秩 r(A) = 10,且任意 10 个列向量组成的向量组都是极大线性无关组,例如,我们选取前 10 个气象观测站的观测值作为极大线性无关组,则第 11,12 这两个气象观测站的降水量数据完全可以由前 10 个气象观测站的数据表示。设  $x_i$  ( $i=1,2,\cdots,12$ )表示第 i 个气象观测站或第 i 个观测站的观测值。则有

$$x_{11} = 0.0124x_1 - 0.756x_2 + 0.1639x_3 + 0.3191x_4 - 1.3075x_5$$
$$-1.0442x_6 - 0.1649x_7 - 0.8396x_8 + 1.679x_9 + 2.9379x_{10}$$

$$x_{12} = 1.4549x_1 + 10.6301x_2 + 9.8035x_3 + 6.3458x_4 + 18.9423x_5 + 19.8061x_6 - 27.0196x_7 + 5.868x_8 - 15.5581x_9 - 26.9397x_{10}$$

到目前为止,问题似乎已经完全解决了,可其实不然,因为如果上述观测站的数据不是 10 年,而是超过 12 年,则此时向量的维数大于向量组所含的向量个数,这样的向量组未必线性相关。故上述的解法不具有一般性,下面我们考虑一般的解法,首先,我们利用已有的 12 个气象观测站的数据进行模糊聚类分析,最后确定从哪几类中去掉几个观测站。

#### (1) 建立模糊集合

设  $A_j$  (这里我们仍用普通集合表示)表示第 j 个观测站的降水量信息 ( $j=1,2,\cdots,12$ ),我们利用模糊数学建立隶属函数:

$$\mu_{A_j}(x) = e^{-\left(\frac{x-a_j}{b_j}\right)^2}$$

其中
$$a_j = \frac{\sum\limits_{i=1}^{10} a_{ij}}{10}$$
,  $b_j = \sqrt{\frac{1}{9} \sum\limits_{i=1}^{10} (a_{ij} - a_j)^2}$ 。

利用 MATLAB 程序可以求得  $a_j,b_j$  ( j = 1,2,···,12 )的值分别见表 4,表 5。

表 4 均值 
$$a_i$$
 ( $j = 1, 2, \dots, 12$ ) 的值

| $a_1$  | $a_2$  | $a_3$  | $a_4$  | $a_5$  | $a_6$  | $a_7$  | $a_8$  | $a_9$  | $a_{10}$ | $a_{11}$ | $a_{12}$ |
|--------|--------|--------|--------|--------|--------|--------|--------|--------|----------|----------|----------|
| 291.98 | 311.77 | 320.32 | 342.28 | 292.22 | 315.15 | 343.99 | 303.71 | 312.16 | 299.47   | 310.72   | 391.89   |

表 5 均值
$$b_i$$
 ( $j = 1, 2, \dots, 12$ )的值

| $b_1$  | $b_2$ | $b_3$  | $b_4$ | $b_5$ | $b_6$ | $b_7$ | $b_8$ | $b_9$ | $b_{10}$ | $b_{11}$ | $b_{12}$ |
|--------|-------|--------|-------|-------|-------|-------|-------|-------|----------|----------|----------|
| 100.25 | 80.93 | 108.24 | 63.97 | 94.1  | 94.2  | 38.05 | 85.07 | 109.4 | 57.25    | 86.52    | 36.83    |

# (2) 利用格贴近度建立模糊相似矩阵

令

$$r_{ii} = e^{-\left(\frac{a_j - a_i}{b_i + b_j}\right)^2}$$
,  $(i, j = 1, 2, \dots, 12)$ 

求模糊相似矩阵 $R = (r_{ij})_{12 \times 12}$ , 具体求解结果略。

## (3) 求R的传递闭包

求得 $R^4$ 是传递闭包,也就是所求的等价矩阵。这里传递闭包的结果略。

取 $\lambda = 0.998$ , 进行聚类, 可以把观测站分为4类:

$$\{x_1, x_5\} \cup \{x_2, x_3, x_6, x_8, x_9, x_{10}, x_{11}\} \cup \{x_4, x_7\} \cup \{x_{12}\}$$

上述分类具有明显的意义, $x_1, x_5$ 属于该地区 10 年中平均降水量偏低的观测站,

 $x_4, x_7$  属于该地区 10 年平均降水量偏高的观测站, $x_{12}$  是平均降水量最大的观测站,而

其余观测站属于中间水平。

#### (4) 选择保留观测站的准则

显然,去掉的观测站越少,则保留的信息量越大。为此,我们考虑在去掉的观测站数目确定的条件下,使得信息量最大的准则。由于该地区的观测站分为4类,且第4类只含有一个观测站,因此,我们从前3类中各去掉一个观测站,我们的准则如下:

min 
$$err = \sum_{i=1}^{10} (\bar{d}_{i3} - \bar{d}_i)^2$$

其中, $\bar{d}_i$ 表示该地区第i年的平均降水量, $\bar{d}_{i3}$ 表示该地区去掉 3 各观测站以后第i年的平均降水量。利用 MATLAB 软件,我们计算了 28 组不同的方案(表 7),求得满足上述准则应去掉的观测站为:  $x_5, x_6, x_7$ ,此时年平均降水量曲线如图 1 所示,二者很接近。



图 3 年降水量比较示意图

表 6 前 3 类各取消一个站点的各方案的误差平方和

|   | 取消站点编号 | •  | err       | ] | 取消站点编号 | •  | err       |
|---|--------|----|-----------|---|--------|----|-----------|
| 1 | 4      | 2  | 1. 71E+03 | 5 | 4      | 2  | 3. 36E+03 |
| 1 | 4      | 3  | 1. 30E+03 | 5 | 4      | 3  | 2. 27E+03 |
| 1 | 4      | 6  | 2. 03E+03 | 5 | 4      | 6  | 1. 14E+03 |
| 1 | 4      | 8  | 2. 94E+03 | 5 | 4      | 8  | 3. 26E+03 |
| 1 | 4      | 9  | 2. 29E+03 | 5 | 4      | 9  | 2. 04E+03 |
| 1 | 4      | 10 | 1. 94E+03 | 5 | 4      | 10 | 4. 08E+03 |
| 1 | 4      | 11 | 1. 49E+03 | 5 | 4      | 11 | 2. 39E+03 |
| 1 | 7      | 2  | 1. 29E+03 | 5 | 7      | 2  | 2. 51E+03 |

| 1 | 7 | 3  | 1.82E+03  | 5 | 7 | 3  | 2. 36E+03 |
|---|---|----|-----------|---|---|----|-----------|
| 1 | 7 | 6  | 1. 95E+03 | 5 | 7 | 6  | 6. 26E+02 |
| 1 | 7 | 8  | 1. 53E+03 | 5 | 7 | 8  | 1. 42E+03 |
| 1 | 7 | 9  | 1. 65E+03 | 5 | 7 | 9  | 9. 72E+02 |
| 1 | 7 | 10 | 1. 11E+03 | 5 | 7 | 10 | 2. 81E+03 |
| 1 | 7 | 11 | 1. 05E+03 | 5 | 7 | 11 | 1. 51E+03 |

#### (5) 求解的 MATLAB 程序如下:

i) 求模糊相似矩阵的 MATLAB 程序

```
a=[276.2 324.5 158.6 412.5 292.8 258.4 334.1 303.2 292.9 243.2 159.7 331.2
251.5 287.3 349.5 297.4 227.8 453.6 321.5 451.0 466.2 307.5 421.1 455.1
192.7 433.2 289.9 366.3 466.2 239.1 357.4 219.7 245.7 411.1 357.0 353.2
246.2 \\ 232.4 \\ 243.7 \\ 372.5 \\ 460.4 \\ 158.9 \\ 298.7 \\ 314.5 \\ 256.6 \\ 327.0 \\ 296.5 \\ 423.0 \\
291.7 311.0 502.4 254.0 245.6 324.8 401.0 266.5 251.3 289.9 255.4 362.1
466.5 158.9 223.5 425.1 251.4 321.0 315.4 317.4 246.2 277.5 304.2 410.7
258.6 327.4 432.1 403.9 256.6 282.9 389.7 413.2 466.5 199.3 282.1 387.6
453.4 365.5 357.6 258.1 278.8 467.2 355.2 228.5 453.6 315.6 456.3 407.2
158.2 271.0 410.2 344.2 250.0 360.7 376.4 179.4 159.2 342.4 331.2 377.7
324.8 406.5 235.7 288.8 192.6 284.9 290.5 343.7 283.4 281.2 243.7 411.1];
mu=mean(a),sigma=std(a)
for i=1:12
    for j=1:12
       r(i,j) = \exp(-(mu(j)-mu(i))^2/(sigma(i)+sigma(j))^2);
    end
end
r
save datal r a
    ii) 矩阵合成的 MATLAB 函数
function rhat=hecheng(r);
n=length(r);
for i=1:n
    for j=1:n
        rhat(i,j) = max(min([r(i,:);r(:,j)']));
    end
end
    iii) 求模糊等价矩阵和聚类的程序
load data1
r1=hecheng(r)
r2=hecheng(r1)
```

```
r3=hecheng(r2)
bh=zeros(12);
bh(find(r2>0.998))=1
   iv)计算表6的程序
   编写计算误差平方和的函数如下:
function err=wucha(a,t);
b=a;b(:,t)=[];
mu1=mean(a,2);mu2=mean(b,2);
err=sum((mu1-mu2).^2);
    计算28个方案的主程序如下:
load data1
ind1=[1,5];ind2=[2:3,6,8:11];ind3=[4,7];
so=[];
for i=1:length(ind1)
   for j=1:length(ind3)
      for k=1:length(ind2)
         t=[ind1(i),ind3(j),ind2(k)];
         err=wucha(a,t);
         so=[so;[t,err]];
      end
   end
end
so
tm=find(so(:,4)==min(so(:,4)));
shanchu=so(tm,1:3)
```

## §3 模糊决策分析方法

模糊数学中有一个研究的热点问题就是"模糊决策",它就是研究在模糊环境下或者模糊系统中进行决策的数学理论和方法。模糊决策的目标是把决策论域中的对象在模糊环境下进行排序,或按某些模糊限制条件从决策域中选择出最优对象。

### 3.1 模糊综合评价法

模糊综合评价方法,是应用模糊关系合成的原理,从多个因素(指标)对被评价事物 隶属等级状况进行综合性评判的一种方法,其具体的步骤为:

- (1) 确定被评判对象的因素论域U,  $U = (u_1, u_2, \dots, u_n)$ ;
- (2) 确定评语等级论域V ,  $V = (v_1, v_2, \dots, v_n)$  。通常评语有V = (很高,高,较高,…,较低,低,很低);
  - (3) 进行单因素评判,建立模糊关系矩阵R

$$R = \begin{pmatrix} r_{11} & r_{12} & \cdots & r_{1m} \\ r_{21} & r_{22} & \cdots & r_{2m} \\ \cdots & \cdots & \cdots & \cdots \\ r_{n1} & r_{n2} & \cdots & r_{nm} \end{pmatrix}, \qquad 0 \le r_{ij} \le 1$$

其中 $r_{ii}$ 为U中因素 $u_i$ 对于V中等级 $v_i$ 的隶属关系;

- (4) 确定评判因素权向量  $A = (a_1, a_2, \cdots, a_n)$ , $A \neq U$  中各因素对被评事物的隶属关系,它取决于人们进行模糊综合评判时的着眼点,即根据评判时各因素的重要性分配权重;
  - (5) 选择评价的合成算子,将 A 与 R 合成得到  $B = (b_1, b_2, \dots, b_m)$ 。

$$B = AOR = (a_1, a_2, \dots, a_n) O \begin{pmatrix} r_{11} & r_{12} & \cdots & r_{1m} \\ r_{21} & r_{22} & \cdots & r_{2m} \\ \cdots & \cdots & \cdots & \cdots \\ r_{n1} & r_{n2} & \cdots & r_{nm} \end{pmatrix}$$

$$b_j = (a_1 \bullet r_{1j}) + (a_2 \bullet r_{2j}) + \dots + (a_n \bullet r_{nj}), \quad j = 1, 2, \dots, m$$

常用的模糊算子有:

- ① *M*(∧,∨), 即用∧代替•,用∨代替+,式中∧为取小运算,∨代表取大运\* \*
  - ② *M*(•,∨), 即用实数乘法•代替•, 用∨代替+;
  - ③  $M(\land,\oplus)$ , 即用  $\land$  代替  $\bullet$  , 用  $\oplus$  代替 + , 其中  $a \oplus b = \min(1,a+b)$  ;
  - ④ *M*(•,⊕),即用实数乘法•代替•,用⊕代替+。

经过比较研究,  $M(\bullet, \oplus)$  对各因素按权数大小, 统筹兼顾, 综合考虑, 比较合理。

- (6) 对模糊综合评价结果 B 作分析处理。
- ★ 多目标模糊综合评价法建模实例

科技成果通常可用技术水平、技术难度、工作量、经济效益、社会效益等 5 个指标进行评价,等级分为一等、二等、三等、四等。某项科研成果经过评委会评定,得到单因素评判矩阵

$$R = \begin{pmatrix} 0.35 & 0.39 & 0.22 & 0.04 \\ 0.17 & 0.35 & 0.39 & 0.09 \\ 0 & 0.30 & 0.44 & 0.26 \\ 0.09 & 0.22 & 0.30 & 0.39 \\ 0.43 & 0.35 & 0.22 & 0 \end{pmatrix}$$

若为了评定作者的学术成就, 取权数分配

$$A = (0.35, 0.35, 0.1, 0.1, 0.1)$$
,

综合评判为

$$B = AOR = A = (0.35, 0.35, 0.1, 0.1, 0.1) O \begin{pmatrix} 0.35 & 0.39 & 0.22 & 0.04 \\ 0.17 & 0.35 & 0.39 & 0.09 \\ 0 & 0.30 & 0.44 & 0.26 \\ 0.09 & 0.22 & 0.30 & 0.39 \\ 0.43 & 0.35 & 0.22 & 0 \end{pmatrix}$$

用  $M(\land, \lor)$  算子计算得到 B = (0.35, 0.35, 0.35, 0.1) 成果仍模糊,成果评一、二、三等都行,无法分辨。

用 $M(\bullet,\vee)$ 算子,得

$$B = (0.12, 0.14, 0.14, 0.04)$$

用 M (∧,⊕) 算子,得

$$B = (0.71,1,0.87,0.33)$$

$$B = (0.23, 0.35, 0.31, 0.11)$$

由计算结果可见,用 $M(\bullet, \oplus)$ 评价模型比较合理,成果应评为二等奖。

# 3.2 多目标模糊综合评价决策法

当被评价的对象有两个以上时,从多个对象中选择出一个最优的方法称为多目标模糊综合评价决策法。

评价的步骤:

- ① 对每个对象按上面多个目标(因素)进行模糊综合评价;
- ② 将模糊评语量化,计算各对象的优先度。假设模糊评价评语量化集(或评价尺度)为*S*,则各对象的优先度为:

$$N_k = B_k S^T = (B_k^1, B_k^2, \dots, B_k^m) \cdot (S_1, S_2, \dots, S_m)^T$$

★ 多目标模糊综合评价决策法建模实例

假定在上例中有两项科研成果,第一项科研成果为甲项,其模糊评价结果为

$$B_1 = (0.23, 0.5, 0.31, 0.11)$$

现对科研成果乙进行同样的模糊评价,其评价矩阵为

$$R_2 = \begin{pmatrix} 0.3 & 0.6 & 0.1 & 0 \\ 0.3 & 0.6 & 0.1 & 0 \\ 0.4 & 0.30 & 0.2 & 0.1 \\ 0.1 & 0.2 & 0.6 & 0.1 \\ 0.2 & 0.2 & 0.3 & 0.3 \end{pmatrix}$$

各评价因素的权值分配为 A = (0.35, 0.35, 0.1, 0.1, 0.1)

所以,综合评价为

$$B_2 = AOR_2 = A = (0.35, 0.35, 0.1, 0.1, 0.1) O \begin{pmatrix} 0.3 & 0.6 & 0.1 & 0 \\ 0.3 & 0.6 & 0.1 & 0 \\ 0.4 & 0.30 & 0.2 & 0.1 \\ 0.1 & 0.2 & 0.6 & 0.1 \\ 0.2 & 0.2 & 0.3 & 0.3 \end{pmatrix}$$

=(0.28,0.49,0.18,0.003)

下面将评语集量化: 即(一等、二等、三等、四等) = (0.4,0.3,0.2,0.1) = S

所以 
$$N_1 = B_1 S^T = (0.23, 0.5, 0.31, 0.11) (0.4, 0.3, 0.2, 0.1)^T = 0.315$$

$$N_2 = B_2 S^T = (0.28, 0.49, 0.18, 0.003) (0.4, 0.3, 0.2, 0.1)^T = 0.2953$$

所以, $N_1 > N_2$ ,即项目甲优于项目乙。

例 16 某露天煤矿有五个边坡设计方案, 其各项参数根据分析计算结果得到边坡设计方案的参数如下表所示。

| 项 目       | 方案 I | 方案 II | 方案 III | 方案 IV | 方案 V |  |  |
|-----------|------|-------|--------|-------|------|--|--|
| 可采矿量(万吨)  | 4700 | 6700  | 5900   | 8800  | 7600 |  |  |
| 基建投资(万元)  | 5000 | 5500  | 5300   | 6800  | 6000 |  |  |
| 采矿成本(元/吨) | 4.0  | 6.1   | 5.5    | 7.0   | 6.8  |  |  |
| 不稳定费用(万元) | 30   | 50    | 40     | 200   | 160  |  |  |
| 净现值(万元)   | 1500 | 700   | 1000   | 50    | 100  |  |  |

表 7 设计方案数据表

据勘探该矿探明储量 8800 吨,开采总投资不超过 8000 万元,试作出各方案的优劣排序,选出最佳方案。

解 首先确定隶属函数:

(1) 可采矿量的隶属函数

因为勘探的地质储量为8800吨,故可用资源的利用函数作为隶属函数

$$\mu_A(x) = \frac{x}{8800}$$

- (2) 投资约束是 8000 万元,所以  $\mu_B(x) = -\frac{x}{8000} + 1$ 。
- (3) 根据专家意见,采矿成本  $a_1 \le 5.5$  元/吨为低成本,  $a_2 = 8.0$  元/吨为高成本,

故

$$\mu_C(x) = \begin{cases} 1, & 0 \le x \le a_1 \\ \frac{a_2 - x}{a_2 - a_1}, & a_1 \le x \le a_2 \\ 0, & a_2 < x \end{cases}$$

- (4) 不稳定费用的隶属函数  $\mu_D(x) = 1 \frac{x}{200}$ .
- (5) 净现值的隶属函数

取上限 15 (百万元), 下限 0.5 (百万元), 采用线性隶属函数

$$\mu_E(x) = \frac{1}{14.5}(x - 0.5)$$

根据各隶属函数计算出5个方案所对应的不同隶属度,见表8。

表 8 隶属度表

| 项 目   | 方案 I   | 方案 II  | 方案 III | 方案 IV | 方案 V   |
|-------|--------|--------|--------|-------|--------|
| 可采矿量  | 0.5341 | 0.7614 | 0.6705 | 1     | 0.8636 |
| 基建投资  | 0.3750 | 0.3125 | 0.3375 | 0.15  | 0.25   |
| 采矿成本  | 1      | 0.76   | 1      | 0.4   | 0.48   |
| 不稳定费用 | 0.85   | 0.75   | 0.8    | 0     | 0.2    |
| 净现值   | 1      | 0.4480 | 0.6552 | 0     | 0.0345 |

这样就决定了模糊关系矩阵

$$R = \begin{bmatrix} 0.5341 & 0.7614 & 0.6705 & 1 & 0.8636 \\ 0.3750 & 0.3125 & 0.3375 & 0.15 & 0.25 \\ 1 & 0.76 & 1 & 0.4 & 0.48 \\ 0.85 & 0.75 & 0.8 & 0 & 0.2 \\ 1 & 0.4480 & 0.6552 & 0 & 0.0345 \end{bmatrix}$$

根据专家评价, 诸项目在决策中占的权重为 A = (0.25, 0.20, 0.20, 0.10, 0.25),

于是得诸方案的综合评价为

$$B = AR = (0.7435, 0.5919, 0.6789, 0.3600, 0.3905)$$

由此可知:方案 I 最佳, III 次之, IV 最差。

程序计算如下:

(1) 首先编写函数文件 myfun.m 如下:

function f=myfun(x);

f(1,:)=x(1,:)/8800;

f(2,:)=1-x(2,:)/8000;

f(3,:)=0;

f(3,find(x(3,:) <= 5.5))=1;

flag=find(x(3,:)>5.5 & x(3,:)<=8);

f(3,flag)=(8-x(3,flag))/2.5;

f(4,:)=1-x(4,:)/200;

f(5,:)=(x(5,:)-50)/1450;

(2) 编写程序文件如下:

x=[4700 6700 5900 8800 7600

5000 5500 5300 6800 6000

4.0 6.1 5.5 7.0 6.8

30 50 40 200 160

1500 700 1000 50 100];

r=myfun(x);

a=[0.25,0.20,0.20,0.10,0.25];

b=a\*r

- 3.3 多层次模糊综合评价模型的数学方法
- 3.3.1 多层次模糊综合评价模型数学方法的基本步骤
- (1) 给出被评价的对象集合  $X\{x_1, x_2, x_3, \dots, x_k\}$
- (2) 确定因素集(亦称指标体系)  $U = \{u_1, u_2, \dots, u_n\}$

若因素众多,往往将 $U = \{u_1, u_2, \dots u_n\}$ 按某些属性分成s个子集,

 $U_i = \{u_1^{(i)}, u_2^{(i)}, \dots, u_n^{(i)}\}$ ,  $i = 1, 2, \dots s$ , 且满足条件:

① 
$$\sum_{i=1}^{s} n_i = n$$
; ②  $\bigcup_{i=1}^{s} U_i = U$ ; ③  $U_i \cap U_j = \phi, i \neq j$ 

- (3) 确定评语集  $V = \{v_1, v_2, \dots v_m\}$ .
- (4) 由因素集 $U_i$ 与评语集V,可获得一个评价矩阵  $R_i = \begin{pmatrix} r_{11}^{(i)} & r_{12}^{(i)} & \cdots & r_{1m}^{(i)} \\ \vdots & \vdots & & \vdots \\ r_{n_i1}^{(i)} & r_{n_i2}^{(i)} & \cdots & r_{n_im}^{(i)} \end{pmatrix}$
- (5) 对每一个 $U_i$ ,分别作出综合决策。设 $U_i$ 中的各因素权重的分配(称为模糊权向

量)为
$$A_i = (a_1^{(i)}, a_2^{(i)}, \cdots a_{n_i}^{(i)})$$
,其中 $\sum_{t=1}^{n_i} a_t^{(i)} = 1$ 。

若 $R_i$ 为单因素矩阵,则得到一级评价向量为:

$$A_i OR_i = (b_{i1}, b_{i2}, \dots, b_{im}) \Delta B_i, \quad i = 1, 2, \dots s$$

(6) 将每个 $U_i$ 视为一个因素,记 $U = \{U_1, U_2, \cdots U_s\}$ ,于是U又是单因素集, U

的单因素判断矩阵为 
$$R = \begin{pmatrix} B_1 \\ B_2 \\ \vdots \\ B_s \end{pmatrix} = \begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1m} \\ \vdots & \vdots & & \vdots \\ b_{s1} & b_{s2} & \cdots & b_{sm} \end{pmatrix}$$

每个 $U_i$ 作为U的一部分,反映了U的某种属性,可以按他们的重要性给出权重分配

$$A = (a_1, a_2, \cdots, a_s)$$

于是得到二级模糊综合评价模型为:

$$B = AOR = (b_1, b_2, \dots, b_m)$$

若每个子因素 $U_i$   $(i=1,2,\cdots,s)$  仍有较多因素, 则可将 $U_i$  再划分,于是有三级或更高级模型。

3.3.2 多目标模糊综合评价决策法建模实例

科技成果模糊综合评价模型的建立及其有关参数的确定。

(1) 科技成果综合评价的因素集(指标体系)的确定

根据科研成果的特点, 并经过专家调研, 设计以下一套综合评价指标体系.



# 目标层(A) 准则层(B) 指标层(C)

图 3 科技成果综合评价层次结构

#### (2) 科技成果的评语集的确定

在评价科技成果时,可以将其分为一定的等级. 在此, 从"专家打分"的角度把评价的等级分为"10分"、"8分"、"6分"、"4分"、"2分"五个等级,因此评语集表示为:

$$V = \{10 \, \text{分}, 8 \, \text{分}, 6 \, \text{分}, 4 \, \text{分}, 2 \, \text{分}\}.$$

(3) 确定各指标 $u_i$ 隶属于V 中评语的隶属度 $r_{ii}$ .

采用评委会评分法确定隶属度 $r_{ii}$ .

若评委会有n个人,那么对某一科技成果, 指标层中某一指标隶属于V中某一评语的隶属度表示为:

$$r_{ij} = \frac{\forall C + \text{phik} - \text{BS} u_i, \text{$2$ ferse per part} V + \text{$\beta$} f + \text{$\emptyset$} \text{$0$} \text{$0$}}{n}$$

由于C中的9个指标按科研效益 $U_1$ 、科研水平 $U_2$ 、科研投入 $U_3$ 三个准则分成了三类,把每个类别中的元素作为一个整体来构造评价矩阵,如 $U_1$ (科研效益)中的"直接经济效益"、"潜在经济效益"、"社会效益"对评语集V中的五个等级而言,按上述的定义可得到 $3\times5$ 矩阵 $R_1$ ,同样可得到 $R_2$ , $R_3$ ,即

$$R_{1} = \begin{bmatrix} r_{11} & r_{12} & r_{13} & r_{14} & r_{15} \\ r_{21} & r_{22} & r_{23} & r_{24} & r_{25} \\ r_{31} & r_{32} & r_{33} & r_{34} & r_{35} \end{bmatrix},$$

$$R_{2} = \begin{bmatrix} r_{11} & r_{12} & r_{13} & r_{14} & r_{15} \\ r_{21} & r_{22} & r_{23} & r_{24} & r_{25} \\ r_{31} & r_{32} & r_{33} & r_{34} & r_{35} \\ r_{41} & r_{42} & r_{43} & r_{44} & r_{45} \end{bmatrix}$$

$$R_{3} = \begin{bmatrix} r_{11}^{"} & r_{12}^{"} & r_{13}^{"} & r_{14}^{"} & r_{15}^{"} \\ r_{21}^{"} & r_{22}^{"} & r_{23}^{"} & r_{24}^{"} & r_{25}^{"} \end{bmatrix}$$

# (4) 权重 $a_k$ 的确定

在(1)给出的综合评价体系中三大准则及9个指标中,他们在综合评价中的重要程度是不一样的。地位重要的,应给予较大的权重;反之,应给出较小的权重。下文给出两种确定权重的实用方法。

### ① 频数统计法确定权重.

设因素集为 $U=\{u_1,u_2,\cdots u_n\}$ ,请k ( $k\geq 30$ ) 位专家对各因素提出自己的权重分配。组织者根据回收的权重分配调查表,对每个因素 $u_i$  ( $i=1,2,\cdots n$ )进行单因素的权重统计试验,步骤如下:

- i) 对因素  $u_i$   $(i=1,2,\cdots n)$  在它的权重  $a_{ij}$   $(j=1,2,\cdots k)$  中找出最大值  $M_i$  和最小值  $m_i$  .
- ii) 适当选取正整数 p ,利用公式  $\frac{M_i-m_i}{p}$  计算出把权重分成 p 组的组距, 并将权重从大到小分成 p 组.
  - iii) 计算落在每组内权重的频数与频率.
- iv) 根据频数和频率分布情况,一般取最大频率所在分组的组中值为因素 $u_i$ 的权重  $a_i$   $(i=1,2,\cdots n)$ , 从而得到初始权重的向量为  $A=(a_1,a_2,\cdots,a_n)$ , 再归一化处理,得权重向量为:

$$A = \left(\frac{a_1}{\sum_{i=1}^{n} a_i}, \frac{a_2}{\sum_{i=1}^{n} a_i}, \dots, \frac{a_n}{\sum_{i=1}^{n} a_i}\right).$$

#### ② 模糊层次分析法 (AHP) 确定权重

该法的基本原理是从(1)中给出的综合评价体系的层次结构出发,针对每个准则内的指标,运用专家的知识、智慧、信息和价值观,对同一层或同一个域的指标进行两两比较对比,并按 1—9 判断标度及含义构造判断矩阵  $D=(d_{ij})_{n\times n}$ ,再由组织者计算比

較判断矩阵 D 的最大特征根  $\lambda_{\max}$  ,并由  $\lambda_{\max}$  解特征方程:  $Dx = \lambda_{\max} x$  得到对应  $\lambda_{\max}$  的特征向量  $x = (x_1, x_2, \dots, x_n)^T$  ,最后进行归一化处理,得到最后的评价指标权重向量:

$$A = (\frac{x_1}{\sum_{i=1}^{n} x_i}, \frac{x_2}{\sum_{i=1}^{n} x_i}, \dots, \frac{x_n}{\sum_{i=1}^{n} x_i})$$

在确定最终的权重向量之前需要对判断矩阵D作一致性检验。

设由以上提供的任一方法所确定的权数向量为:

$$A=(a_1,a_2,a_3)$$
  $A_1=(a_{11},a_{12},a_{13})$   $A_2=(a_{21},a_{22},a_{23},a_{24})$   $A_3=(a_{31},a_{32})$  其中  $A$  表示科研效益 $U_1$ 、科研水平 $U_2$ 、科研投入 $U_3$ 三个准则的权重向量; $A_i$  表示各准则 $U_i$ ( $i=1,2,3$ )中的各指标的权重向量。

### (5) 科技成果的综合评价

$$B = A O R = (a_1, a_2, a_3)O\begin{pmatrix} A_1OR_1 \\ A_2OR_2 \\ A_3OR_3 \end{pmatrix} = (a_1, a_2, a_3)O\begin{pmatrix} b_{11} & b_{12} & b_{13} & b_{14} & b_{15} \\ b_{21} & b_{22} & b_{23} & b_{24} & b_{25} \\ b_{31} & b_{32} & b_{33} & b_{34} & b_{35} \end{pmatrix}$$
$$= (b_1, b_2, b_3, b_4, b_5)$$

其中"O"取算子 $M(\bullet,\oplus)$ :  $\bullet$  定义为 $a \cdot b = a \times b = ab$ ;  $\oplus$  定义为 $a \oplus b = (a+b) \land 1$ 。

对B进行归一化处理得:

$$B = \left(\frac{b_1}{\sum_{i=1}^{5} b_i}, \frac{b_2}{\sum_{i=1}^{5} b_i}, \cdots, \frac{b_5}{\sum_{i=1}^{n} b_i}\right) \stackrel{\Delta}{=} (C_1\%, C_2\%, \cdots, C_5\%)$$

结果说明:对某科技成果,评委中有 $C_1$ %的人认为可得 10分,有 $C_2$ %的人认为可得 8分,有 $C_3$ %的人认为可得 6分,有 $C_4$ %的人认为可得 4分,有 $C_5$ %的人认为 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -300 -

可得2分。

进一步的, 把 10 分,8 分,6 分,4 分,2 分作为 5 个档次。令  $Y = (10,8,6,4,2)^T$ ,所以该科技成果的综合评价得分为: Z = BOY, "O"取算子 $M(\cdot,+)$ 得到:

$$Z = 10C_1\% + 8C_2\% + 6C_3\% + 4C_4\% + 2C_5\%$$

- 3.4 模糊多属性决策方法
- 3.4.1 模糊多属性决策理论的描述

模糊多属性决策理论是在经典多属性决策理论基础上发展起来的,它可以描述为:给定一个方案集  $A = \{A_1, A_2, \cdots, A_m\}$  和相应的每个方案的属性集(也称指标集)  $C = (C_1, C_2, \cdots, C_n)$ ,并给定每种属性相对重要程度的权重集合  $w = (w_1, w_2, \cdots, w_n)$ 。 把已知的属性指标、权重大小和数据结构都相应的表示成决策空间中的模糊子集或模糊数,得到模糊指标值矩阵,记为  $F = (f_{ij})_{m \times n}$ 。然后采用广义模糊合成算子对模糊权重向量 w 和模糊指标值矩阵 F 实施变换,得到模糊决策矩阵  $D: D = w\Theta F$  ,对于 D 中的元素采用模糊折衷型决策方法对其进行排序,以此来选出  $A_i$   $(i = 1, 2, \cdots, m)$ 中的最优方案。

- 3.4.2 折衷型模糊多属性决策方法
- (1) 折衷型模糊决策的基本原理

折衷型模糊决策的基本原理是: 从原始的样本数据出发, 先虚拟模糊正理想和模糊负理想, 其中模糊正理想是由每一个指标中模糊指标值的极大值构成; 模糊负理想是由每一个指标中模糊指标值的极小值构成。然后采用加权欧氏距离的测度工具来计算各备选对象与模糊正理想和模糊负理想之间的距离。在此基础上, 再计算各备选对象属于模糊正理想的隶属度, 其方案优选的原则是, 隶属度越大, 该方案越理想。

(2) 折衷型模糊决策的基本步骤

Step1: 指标数据的三角形模糊数表达

定义 14 记 F(R) 为 R 上的全体模糊集,设  $M \in F(R)$ 。如果 M 的隶属度函数  $\mu_M$  表示为

$$\mu_{M}(x) = \begin{cases} \frac{x-l}{m-l}, & x \in [l,m] \\ \frac{x-u}{m-u}, & x \in [m,u] \\ 0, & x < l \quad \vec{\boxtimes} \quad x > u \end{cases}$$

其中  $l \leq m \leq u$  , 则称 M 为三角形模糊数, 记为  $M = (l, m, u) = (m_L, m, m_R)$  。

下面运用以上的定义将定性、定量指标以及权重数据统一量化为三角形模糊数.

1) 对于定性指标,可以将两极比例法改进为三角模糊数比例法。再利用三角模糊数比例法将定性指标转化为定量指标,其具体的转化形式见表 9。

| 量<br>化<br>值<br>性 | (0,0,1) | (1,1,2) | (2,3,4) | (4,5,6) | (6,7,8) | (7,8,9) | (9,10,10) |
|------------------|---------|---------|---------|---------|---------|---------|-----------|
| 成本型指标            | 最高      | 很高      | 高       | 一般      | 低       | 很低      | 最低        |
| 收益型指标            | 最低      | 很低      | 低       | 一般      | 高       | 很高      | 最高        |

表 9 定性指标向定量指标转化的三角模糊数比例法

2) 对于精确的定量指标值,也写成三角模糊数的形式。设 *a* 是一个具体的精确数,由三角模糊数的定义,则 *a* 表示成三角模糊数的形式为:

$$a = (a, a, a) \tag{1}$$

当所有的属性指标全部化为三角模糊数后,设此时得到的模糊指标矩阵为  $F = (f_{ij})_{m \times n}$  。

- 3) 对于权重向量的三角模糊数表示
- ① 若权重是定量的形式给出的,则由公式(1)可表示为

$$W = [(w_1, w_1, w_1), (w_2, w_2, w_2), (w_3, w_3, w_3), (w_4, w_4, w_4), (w_5, w_5, w_5), (w_6, w_6, w_6)]$$
(2)

② 若权重是定性描述给出的,此时可以利用表 3 的转化方法将其转化为三角模糊 -302-

数的表达形式.

Step2: 模糊指标矩阵 F 归一化处理

一般地,设有 N 个评价对象,对于第 j (j = 1,2,···,5) 个评价指标而言,在 F 中对应有 N 个模糊指标值,记为  $x_i$  = ( $a_i$ , $b_i$ , $c_i$ ), (i = 1,2,···,N)。将  $x_i$  进行归一化的具体公式如下:

① 若 x; 是成本型指标对应的模糊指标值,则归一化公式为

$$y_i = \left(\frac{\min(a_i)}{c_i}, \frac{\min(b_i)}{b_i}, \frac{\min(c_i)}{a_i} \wedge 1\right)$$
(3)

② 若 $\tilde{x}$ , 是收益型指标对应的模糊指标值,则化归公式为

$$y_i = \left(\frac{a_i}{\max(c_i)}, \frac{b_i}{\max(b_i)}, \frac{c_i}{\max(a_i)} \land 1\right)$$
(3')

设归一化后的模糊指标矩阵  $R = (y_{ij})_{m \times n}$ 。

Step3: 构造模糊决策矩阵

将归一化后的模糊指标矩阵 R 进行加权处理可得到模糊决策矩阵  $D=(r_{ij})_{m\times n}$ ,其中

$$r_{ii} = w\Theta y_{ii} (i = 1, 2, \dots, N, j = 1, 2, \dots, 5)$$

这里我们采用普通的加权方式,即若 $w = (w^{(1)}, w^{(2)}, w^{(3)})$ , $y_{ij} = (y_{ij}^{(1)}, y_{ij}^{(2)}, y_{ij}^{(3)})$ ,则

$$r_{ij} = w\Theta y_{ij} = (w^{(1)}y_{ij}^{(1)}, w^{(2)}y_{ij}^{(2)}, w^{(3)}y_{ij}^{(3)})$$
(4)

Step4: 确定模糊正理想 $M^+$ 与模糊负理想 $M^-$ 

设

$$M^{+} = (M_{1}^{+}, M_{2}^{+}, \dots, M_{15}^{+}), \quad M^{-} = (M_{1}^{-}, M_{2}^{-}, \dots, M_{15}^{-})$$
 (5)

其中分量  $M_j^+ = \max\{r_{1j}, r_{2j}, \cdots, r_{nj}\}$  ( $j=1,2,\cdots,15$ )是模糊决策矩阵 D 中第 j 列的模

糊指标值所对应的模糊极大值; $M_j^- = \min\{r_{1j}, r_{2j}, \cdots, r_{mj}\}$ ( $j = 1, 2, \cdots, 15$ )是模糊决策矩阵D中第j列的模糊指标值所对应的模糊极小值。

Step5: 确定评价对象i与模糊正理想 $M^+$ 之间的距离 $d_i^+$ 

$$d_{i}^{+} = \sqrt{\sum_{j=1}^{15} (r_{ij} - M_{j}^{+})^{2}} , \quad i = 1, 2 \dots, N$$
 (6)

Step6: 确定评价对象i与模糊负理想 $M^-$ 之间的距离 $d_i^-$ 

$$d_{i}^{-} = \sqrt{\sum_{j=1}^{15} (r_{ij} - M_{j}^{-})^{2}} \quad , \quad i = 1, 2 \cdots, N$$
 (7)

Step7: 模糊优选决策

设评价对象i以隶属度 $\mu$ 。从属于模糊正理想,则

$$\mu_i = \frac{d_i^-}{d_i^+ + d_i^-}, \quad i = 1, 2, \dots, N$$
 (8)

显然 $0 \le \mu_i \le 1$ ,若 $A_i \le M^+$ 越接近,则 $\mu_i$  越接近于 1。按隶属度 $\mu_i$  从大到小进行排序。 $\mu_i$  越大,表示评价对象i 越优。最后按隶属度的排序结果确定评价对象的优劣。

#### 3.4.3 折衷型模糊决策方法建模实例

某市直属单位因工作需要,拟向社会公开招聘8名公务员,具体的招聘办法和程序如下:

- (一)公开考试:凡是年龄不超过 30 周岁,大学专科以上学历,身体健康者均可报名参加考试,考试科目有:综合基础知识、专业知识和"行政职业能力测验"三个部分,每科满分为 100 分。根据考试总分的高低排序选出 16 人选择进入第二阶段的面试考核。
- (二)面试考核:面试考核主要考核应聘人员的知识面、对问题的理解能力、应变能力、表达能力等综合素质。按照一定的标准,面试专家组对每个应聘人员的各个方面都给出一个等级评分,从高到低分成 A/B/C/D 四个等级,具体结果见表 10 所示。—304-

现要求根据表8中的数据信息对16名应聘人员作出综合评价,选出8名作为录用 的公务员。

表 10 招聘公务员笔试成绩,专家面试评分

| 应聘    | 笔试  |     | 专家组对应聘者特长的等级评分 |      |      |  |  |  |
|-------|-----|-----|----------------|------|------|--|--|--|
| 人员    | 成绩  | 知识面 | 理解能力           | 应变能力 | 表达能力 |  |  |  |
| 人员 1  | 290 | A   | A              | В    | В    |  |  |  |
| 人员 2  | 288 | A   | В              | A    | С    |  |  |  |
| 人员3   | 288 | В   | A              | D    | С    |  |  |  |
| 人员 4  | 285 | A   | В              | В    | В    |  |  |  |
| 人员 5  | 283 | В   | A              | В    | С    |  |  |  |
| 人员 6  | 283 | В   | D              | A    | В    |  |  |  |
| 人员 7  | 280 | A   | В              | С    | В    |  |  |  |
| 人员8   | 280 | В   | A              | A    | С    |  |  |  |
| 人员 9  | 280 | В   | В              | A    | В    |  |  |  |
| 人员 10 | 280 | D   | В              | A    | С    |  |  |  |
| 人员 11 | 278 | D   | С              | В    | A    |  |  |  |
| 人员 12 | 277 | A   | В              | С    | A    |  |  |  |
| 人员 13 | 275 | В   | С              | D    | A    |  |  |  |
| 人员 14 | 275 | D   | В              | A    | В    |  |  |  |
| 人员 15 | 274 | A   | В              | С    | В    |  |  |  |
| 人员 16 | 273 | В   | A              | В    | С    |  |  |  |

(此题来源于 2004 高教社杯全国大学生数学建模竞赛 D 题——公务员招聘) 建模过程:

① 借鉴表 9 的思想,对于定性指标值 A, B, C, D,可以定义表 10 的量化标准 将这些定性指标进行量化,其具体的量化形式见表 11。

表 11 定性指标量化标准

| 专家评分等级 | A             | В            | С            | D            |
|--------|---------------|--------------|--------------|--------------|
| 量化模糊数  | (85, 90, 100) | (75, 80, 85) | (60, 70, 75) | (50, 55, 60) |

② 由表 11 和公式(1)把表 10中的指标信息、权重信息化成三角形模糊数,得到

```
(290,290,290) (85,90,100) (85,90,100)
                                          (75,80,85)
                                                       (75,80,85)
(288, 288, 288)
               (85,90,100)
                             (75,80,85)
                                          (85,90,100)
                                                       (65,70,75)
(288, 288, 288)
                (75,80,85)
                             (85,90,100)
                                          (50,60,65)
                                                       (65,70,75)
(285,285,285) (85,90,100)
                             (75,80,85)
                                          (75,80,85)
                                                       (75,80,85)
                             (85,90,100)
                                          (75,80,85)
(283, 283, 283)
                (75,80,85)
                                                       (65,70,75)
(283,283,283)
                (75,80,85)
                             (50,60,65)
                                          (85,90,100)
                                                       (75,80,85)
(280,280,280) (85,90,100)
                             (75,80,85)
                                          (65,70,75)
                                                       (75,80,85)
(280, 280, 280)
                             (85,90,100)
                                          (85,90,100)
                (75,80,85)
                                                       (65,70,75)
(280, 280, 280)
                (75,80,85)
                             (75,80,85)
                                          (85,90,100)
                                                       (75,80,85)
(280, 280, 280)
                (50,60,65)
                             (75,80,85)
                                          (85,90,100)
                                                       (65,70,75)
(278,278,278)
                (50,60,65)
                             (65,70,75)
                                          (75,80,85)
                                                       (85,90,100)
(277,277,277) (85,90,100)
                             (75,80,85)
                                          (65,70,75)
                                                       (85,90,100)
(275,275,275)
                (75,80,85)
                             (65,70,75)
                                          (50,60,65)
                                                       (85,90,100)
(275,275,275)
                (50,60,65)
                                          (85,90,100)
                                                       (75,80,85)
                             (75,80,85)
(274,274,274) (85,90,100)
                             (75,80,85)
                                          (65,70,75)
                                                        (75,80,85)
                                                       (65,70,75)
(273,273,273)
                (75,80,85)
                             (85,90,100)
                                          (75,80,85)
```

 $W = \left[ (0.5, 0.5, 0.5), (0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.1$ 

- ③ 由公式 (3') 和 (4) 将 F 中的数据进行归一加权化,得到模糊决策矩阵 D 。
- ④ 由公式(5)确定出模糊正理想与模糊负理想

 $M^+ = [(0.5,0.5,0.5),(0.1063,0.125,0.125),(0.1063,0.125,0.125),$ (0.1063,0.125,0.125),(0.1063,0.125,0.125)]

 $M^{-} = [(0.4707, 0.4707, 0.4707), (0.0625, 0.0764, 0.0882), (0.0625, 0.0764, 0.0882), (0.0625, 0.0764, 0.0882), (0.075, 0.0972, 0.125)]$ 

⑤ 模糊优选决策

由公式 (6)  $\sim$  (8), 可求出相应的  $d_i^+$ ,  $d_i^-$ ,  $\mu_i$  ( $i=1,2,\cdots,16$ ), 结果如表 12。

表 12 计算结果数据表

| 人员编号 | 模糊正理想 $d_i^+$ | 模糊负理想 $oldsymbol{d}_i^-$ | 隶属度 $\mu_i$ |
|------|---------------|--------------------------|-------------|
| 1    | 0.0264        | 0.1338                   | 0.8351      |
| 2    | 0.0462        | 0.1296                   | 0.7373      |
| 3    | 0.0881        | 0.1057                   | 0.5454      |
| 4    | 0.0356        | 0.1205                   | 0.7718      |
| 5    | 0.0537        | 0.1166                   | 0.6846      |
| 6    | 0.0822        | 0.103                    | 0.5559      |
| 7    | 0.0578        | 0.1099                   | 0.6555      |
| 8    | 0.0547        | 0.1234                   | 0.693       |
| 9    | 0.044         | 0.117                    | 0.7265      |
| 10   | 0.0928        | 0.098                    | 0.5135      |

| 11 | 0.0949 | 0.0863 | 0.4762 |
|----|--------|--------|--------|
| 12 | 0.06   | 0.114  | 0.655  |
| 13 | 0.0987 | 0.0852 | 0.4634 |
| 14 | 0.0913 | 0.0987 | 0.5195 |
| 15 | 0.0688 | 0.108  | 0.6109 |
| 16 | 0.0709 | 0.1127 | 0.6139 |

由以上结果可知,16个人的综合水平的高低排序为:

```
\mu_1 > \mu_4 > \mu_2 > \mu_9 > \mu_8 > \mu_5 > \mu_7 > \mu_{12} > \mu_{16}
        > \mu_{15} > \mu_6 > \mu_3 > \mu_{14} > \mu_{10} > \mu_{11} > \mu_{13}
因此被选种的8个人员是人员1、4、2、9、8、5、7、12。
    计算的 MATLAB 程序如下:
%把表 3 中的数据复制到纯文本文件 mohu.txt 中, 然后把 A 替换成 85 90 100,
%B 替换成758085, C 替换成607075, D 替换成505560
clc,clear
load mohu.txt
sj=[repmat(mohu(:,1),1,3),mohu(:,2:end)];
%首先进行归一化处理
n=size(sj,2)/3; m=size(sj,1);
w=[0.5*ones(1,3),0.125*ones(1,12)];
w=repmat(w,m,1);
y=[];
for i=1:n
    tm=sj(:,3*i-2:3*i);
    max_t=max(tm);
    max_t=repmat(max_t,m,1);
    \max_{t=\max_{t}(:,3:-1:1)};
    yt=tm./max_t;yt(:,3)=min([yt(:,3)';ones(1,m)]);
    y=[y,yt];
end
```

%下面求模糊决策矩阵

# r=[];

for i=1:n

tm1=y(:,3\*i-2:3\*i);tm2=w(:,3\*i-2:3\*i); r=[r,tm1.\*tm2];

end

%求M+、M一和距离

mplus=max(r);mminus=min(r);

dplus=dist(mplus,r');dminus=dist(mminus,r'); %求隶属度 mu=dminus./(dplus+dminus); [mu\_sort,ind]=sort(mu,'descend')

# 习题二十二

1. (工程评标问题)某建设单位组织一项工程项目的招标,现组建成评标专家组对 4 个投标单位的标书进行评标。4 个标书的指标信息见表 13,其中前三个指标信息是各投标单位给定的精确数据,后三个指标信息是评标专家组经考察后的定性结论。请你帮评标专家组设计一个工程评标模型,以确定最后中标单位。

表 13 各投标单位基本信息表

| 指          | 投标报价 | 工期  | 主材用料 | 施工方案 | 质量业绩 | 企 业 |
|------------|------|-----|------|------|------|-----|
| <b>華</b> 标 | (万元) | (月) | (万元) |      |      | 信誉度 |
| 位          |      |     |      |      |      |     |
| $A_1$      | 480  | 15  | 192  | 很好   | 好    | 高   |
| $A_2$      | 490  | 14  | 196  | 好    | 一般   | 一般  |
| $A_3$      | 501  | 14  | 204  | 好    | 好    | 很高  |
| $A_4$      | 475  | 18  | 190  | 一般   | 很好   | 一般  |
| 权重         | 0.3  | 0.1 | 0.1  | 0.2  | 0.1  | 0.2 |