DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING **EXAMINATIONS 2008**

MSc and EEE PART IV: MEng and ACGI

RADIO FREQUENCY ELECTRONICS

Corrected Copy

Wednesday, 30 April 10:00 am

Time allowed: 3:00 hours

There are SIX questions on this paper.

Answer FOUR questions.

All questions carry equal marks

Any special instructions for invigilators and information for candidates are on page 1.

Examiners responsible

First Marker(s):

S. Lucyszyn

Second Marker(s): E. Rodriguez-Villegas

Special instructions for invigilators:	This is a Closed Book examination.
--	------------------------------------

Information for candidates: This is a Closed Book examination.

The Questions

- 1. The photograph in Figure 1.1 is of a MMIC.
 - a) Draw the equivalent circuit model for the MMIC shown in Figure 1.1, and mark the RF and DC bias ports with the corresponding probe pad numbers shown. Describe the type of amplifier circuit. Hint: if you are uncertain about a component then state any assumptions used.

[10]

b) Briefly describe the different range of component technologies used for the transistors, inductors and capacitors, and also state the advantages and disadvantages of these technologies. State what compromises have to be made with the design of MMICs, when compared to HMICs.

[5]

c) Briefly comment as to why the complexity of the full equivalent circuit model is much more than the circuit derived in 1(a) and explain why circuit modelling alone is not sufficient if a significant reduction in the chip area is required.

[5]

Figure 1.1Photograph of a 3.5 x 1.5 mm² LNA

a) With the use of simple illustrations for the attenuation against frequency curves, describe the differences between Butterworth, Chebyshev and Elliptical-function filters. Also, comment on the group delay characteristics for these filters.

[5]

b) Given prototype low-pass filter attenuation curves and tables for the corresponding normalised element values (see attached sheets), design an L-C lumped-element band-pass filter that meets the following specifications:

Centre Frequency, f_O	500 MHz
3 dB Bandwidth, B	50 MHz
Attenuation Bandwidth	100 MHz
Pass-Band Ripple (Peak-to-Peak)	0.1 dB
Stop-Band Attenuation	45 dB
Input Impedance, R_{IN}	100Ω
Output Impedance, R_{OUT}	50 Ω.

[15]

Filter tables

Attenuation characteristics for Butterworth filters.

Attenuation characteristics for a Chebyshev filter with 0.01-dB ripple.

Attenuation characteristics for a Chebyshev filter with 0.1-dB ripple,

Attenuation characteristics for a Chebyshev filter with 0.5-dB ripple.

Attenuation characteristics for a Chebyshev filter with 1-dB ripple.

Chebyshev Low-Pass Prototype Element Values for 1.0-dB Ripple

φ	C ₁ +	C, +	R _L	
+	+	Ť	+	
R_g/R_L	Ci	L_2	C_2	L_4
3.000 4.000 8.000	0.572 0.365 0.157 1.213	3.132 4.600 9.658 1.109		
1.000 0.500 0.333 0.250 0.125 ∞	2.216 4.431 6.647 8.862 17.725 1.652	1.088 0.817 0.726 0.680 0.612 1.460	2.216 2.216 2.216 2.216 2.216 1.108	
3.000 4.000 8.000	0,653 0.452 0.209 1.350	4.411 7.083 17.164 2.010	0.814 0.612 0.428 1.488	2.535 2.648 3.281 1.106
R_L/R_S	L_1	C ₂	L_3	C_4

Chebyshev Low-Pass Prototype Element Values for 1.0-dB Ripple

n	R_{δ}/R_{L}	C ₁	L_2	Ca	L_4	Cs	Lt	C ₇
5	1.000 0.500 0.333 0.250 0.125	2,207 4,414 6,622 8,829 17,657 1,721	1.128 0.565 0.376 0.282 0.141 1.645	3.103 4.853 6.205 7.756 13.961 2.061	1.128 1.128 1.128 1.128 1.128 1.128	2.207 2.207 2.207 2.207 2.207 2.207 1.103		+
6	3.000 4.000 8.000	0.679 0.481 0.227 1.378	3.873 5.644 12.310 2.097	0.771 0.478 0.198 1.690	4.711 7,351 16.740 2.074	0.909 0.849 0.726 1.494	2,406 2,582 2,800 1,102	
7	1.000 0.500 0.333 0.250 0.125	2.204 4.408 6.612 8.815 17.631 1.741	1.131 0.566 0.377 0.283 0.141 1.677	3.147 6.293 9.441 12.588 25.175 2.155	1.194 0.895 0.796 0.747 0.671 1.703	3.147 3.147 3.147 3.147 3.147 2.079	1.131 1.131 1.131 1.131 1.131 1.494	2.204 2.204 2.204 2.204 2.204 1.102
n	R_L/R_d	L_1	C ₂	La	C4	$L_{\rm L}$	C _e	L_7

Butterworth Low-Pass Prototype Element Values C₁
1.035
0.848
0.867
0.566
0.448
0.342
0.245
0.156
0.074
1.414
0.808
0.844
0.015
1.023
1.181
1.425
1.838
2.669
5.167
1.500 1.835 2.121 2.439 2.628 3.346 4.095 5.313 7.707 14.814 0.707 1.633 1.384 1.165 0.709 0.004 0.400 0.288 0.133 1.599 1.926 2.277 2.702 3.261 4.064 5.383 7.910 15.455 0.500 1.744 1.511 1.391 1.082 0.883 0.691 0.507 0.332 0.162

1,592 1,695 1,862 2,103 9,452 2,986 3,883 5,684 11,094 1,577

1,111 1,250 1,429 1,667 2,000 2,500 3,333 5,000 10,000

 R_L/R_S

	*		C ₁	c, T		R _L §		
n	R_B/R_L	C_1	L ₂	Ca	L4	Cs	La	C,
5	0.900 0.800 0.700 0.900 0.500 0.400 0.300 0.200 0.100	0,442 0,470 0,517 0,586 0,686 0,838 1,094 1,608 3,512 1,545	1.027 -0.566 0.731 0.609 0.496 0.388 0.285 0.186 0.001 1.694	1.910 2.061 2.285 2.600 3.051 3.736 4.884 7.185 14.095 1.382	1.756 1.544 1.333 1.126 0.924 0.727 0.537 0.352 0.173 0.894	1.389 1.738 2.108 2.552 3.133 3.965 5.307 7.935 15.710 0.309	7	
6	1.111 1.250 1.429 1.667 2.000 2.500 3.333 5.000 10.000	0.289 0.245 0.207 0.173 0.141 0.111 0.082 0.054 0.026 1.553	1.040 1.118 1.236 1.407 1.853 9.028 9.658 3.917 7.705 1.759	1.322 1.128 0.957 0.801 0.654 0.514 0.379 0.248 0.132 1.553	2.054 2.239 2.499 2.858 3.369 4.141 5.423 8.020 15.786 1.202	1.744 1.550 1.348 1.143 0.942 0.745 0.552 0.363 0.170 0.756	1.335 1.688 2.062 2.509 3.094 3.931 5.280 7.922 15.738 0.259	
7	0.90b 0.800 0.700 0.600 0.500 0.400 0.300 0.200 0.100	0.299 0.322 0.357 0.408 0.480 0.590 0.775 1.145 2.257 1.558	0.711 0.606 0.515 0.432 0.354 0.278 0.206 0.135 0.067 1.799	1.404 1.517 1.688 1.928 2.273 2.795 3.671 5.427 10.700 1.659	1.489 1.278 1.091 0.917 0.751 0.592 2.437 0.287 0.142 1.397	2.125 2.334 2.618 3.005 3.553 4.380 5.761 8.526 16.822 1.055	1.727 1.548 1.350 1.150 0.951 0.754 0.580 0.389 0.182 0.656	1,996 1,652 2,628 2,477 3,064 3,904 5,258 7,908 15,748 0,223
n	R_L/R_S	L_1	C ₂	L ₃	C ₄	L ₅	C _e	L

Chebyshov Low-Pass Element Values for 0.01-dB Ripple

um L₁ C_{a} 1.101 1.111 1.259 1.429 1.429 2.500 2.500 3.333 5.000 0.690 0.690 0.690 0.400 0.100 0.000 1.347 1.247 1.247 0.693 0.693 0.479 0.343 0.259 0.184 0.078 1.190 1.190 1.274 1.190 0.354 0.495 1.483 1.595 1.997 2.344 2.750 3.277 4.033 5.255 7.850 14.749 0.742 1.821 1.660 1.443 1.228 1.024 0.845 0.470 0.305 0.148 1.433 1.938 1.946 2.075 2.279 2.571 2.994 4.727 0.910 1.046 1.165 1.617 2.008 2.461 3.045 3.875 5.209 7.813 15.510 0.523 R_L/R_g C_4 Tuna L'a Rt \$

Chebyshev Low-Pass Element Values for 0.01-dB Ripple

Chebyshev Low-Pass Prototype Element Values for 0.1-dB Ripple

n	R_a/R_L	C1	L_2	Ca	L ₄
2	1.355 1.429 1.887 2.000 2.500 3.333 5.000 10.000	1.209 0.977 0.733 0.560 0.417 0.293 0.184 0.087 1.391	1.638 1.982 2.489 3.054 3.827 5.050 7.426 14.433 0.819		L4
3	1.000 0.900 0.800 0.700 0.600 0.500 0.400 0.300 0.200 0.100	1.433 1.426 1.451 1.521 1.648 1.853 2.186 2.763 3.942 7.512	1,594 1,494 1,356 1,193 1,917 0,838 0,660 0,486 0,317 0,155 1,510	1.433 1.622 1.871 2.190 2.603 3.159 3,988 5.279 7.850 15.468 0.716	
4	1.355 1.429 1.667 2.000 2.500 3.333 5.000 10.000	0.992 0.779 0.576 0.440 0.329 0.233 0.148 0.070 1.511	2.148 2.348 2.730 3.227 3.961 5.178 7.607 14.887 1.768	1.585 1.429 1.185 0.967 0.760 0.560 0.367 0.180 1.455	1.341 1.700 2.243 5.856 3.698 5.030 7.614 15.230 0.673
1	R_L/R_B	L_1	Ca	L_{3}	C4

Chebyshev Low-Pass Prototype Element Values for 0.1-dB Ripple

	R_R/R_L	<i>C</i> .	7		7			-
5	1,000 0,900 0,800 0,700 0,600 0,500 0,500 0,400 0,300 0,200 0,100 0,00	C ₁ 1.301 1.285 1.300 1.358 1.470 1.654 1.954 2.477 3.546 6.787 1.561	L ₂ 1.558 1.433 1.282 1.117 0.947 0.778 0.612 0.451 0.295 0.115 1.507	C ₈ 2,241 2,380 2,582 2,888 3,288 3,845 4,720 6,196 9,127 17,957 1,706	L ₄ 1.556 1.488 1.382 1.244 1.085 0.913 0.733 0.580 0.366 0.182 1.417	C ₆ 1.301 1.488 1.738 2.062 2.484 3.055 3.886 5.237 7.889 13.745 0.651	L_4	C ₇
	1,355 1,429 1,687 2,000 2,500 3,333 5,000 10,000	0.942 0.735 0.542 0.414 0.310 0.220 0.139 0.067 1.534	2.080 2.249 2.600 3.068 3.765 4.927 7.250 14.220 1.884	1.659 1.454 1.183 0.958 0.749 0.551 0.361 0.178 1.831	2.247 2.544 3.064 3.712 4.651 6.195 9.261 18.427 1.749	1.534 1.405 1.185 0.979 0.778 0.560 0.384 0.190	1.277 1.629 2.174 2.794 3.645 4.996 7.618 15.350 0.638	
	1.000 0.900 0.800 0.700 0.600 0.500 0.400 0.300 0.200 0.100	1.262 1.242 1.255 1.310 1.417 1.595 1.885 2.392 3.428 6.570 1.575	1.520 1.395 1.245 1.083 0.917 0.753 0.593 0.437 0.286 0.141 1.858	2.239 2.361 2.548 2.819 3.205 3.764 4.618 6.054 8.937 17.603 1.921	1.680 1.578 1.443 1.283 1.209 0.928 0.742 0.556 0.369 0.164 1.827	9.239 2.397 2.824 2.942 3.384 4.015 4.970 6.569 9.770 19.376 1.734	1.520 1.459 1.362 1.233 1.081 0.914 0.738 0.557 0.372 0.186 1.379	1.262 1.447 1.497 2.021 2.444 3.018 3.855 5.217 7.890 15.813 0.631
	R_L/R_B	L_1	C2	La	C,	Ls	$C_{\mathfrak{g}}$	L_7

Chebyshev Low-Pass Prototype Element Values for 0.5-dB Ripple

Chebyshev Low-Pass Prototype Element Values for 0.5-dB Ripple

- 3.
- a) With the aid of a diagram, describe the S-parameter representation of a linear two-port circuit, stating the precise definitions of all parameters and the main power specifications.

[5]

b) State which RF components best described the following S-parameter matrices and calculate any relevant power specifications:

(i)
$$[S] = \begin{pmatrix} 0 & e^{-j720} \\ e^{-j720} & 0 \end{pmatrix}$$
 (3.1)

(ii)
$$[S] = \begin{pmatrix} 0 & 0.07e^{-j30} \\ e^{-j60} & 0 \end{pmatrix}$$
 (3.2)

(iii)
$$[S] = \begin{pmatrix} 0.1e^{-j30} & 0.3e^{-j80} \\ 9.7e^{-j80} & 0.15e^{-j60} \end{pmatrix}$$
 (3.3)

[5]

c) Derive an algebraic expression for the overall Γ_{in} , of a linear two-port network that is terminated at its output port with a one-port network represented by Γ_L .

[6]

d) Referring to the result in 3(c), state the condition for stability for the overall one-port network, for any value of generator source impedance. If the two-port network in 3(b)(ii) is terminated with a load impedance having $\Gamma_L = 0.5$, determine if the overall one-port network is stable.

[4]

4. An amplifier chain is illustrated in Figure 4.1. All sub-systems are assumed to be perfectly impedance matched.

Figure 4.1 Amplifier Chain

For an overall input power of 3 dBm, calculate the following at the output of each subsystem, while also stating the main equations used:-

All variables have their usual meaning.

- 5.
- a) Explain why filters having sharp frequency roll-off characteristics require large components to achieve low insertion losses.

[4]

b) Explain why impedance and admittance inverters are required for realising practical narrow bandwidth filters. In addition, with the use of simple block diagrams, explain how these inverters work.

[6]

c) Redesign the 1.8 GHz resonator topology shown in Figure 5.1, by employing all capacitive admittance inverters, so that the series tuned circuit can be replaced with a shunt parallel tuned circuit.

Figure 5.1

[8]

d) What effect on the insertion phase does the all capacitance admittance inverter have?

[2]

6.

a) Draw the topology of a double-balanced amplifier. If 3 dB quadrature couplers are used in conjunction with identical non-ideal single-ended amplifiers, use S-parameter analysis to determine expressions for the overall insertion gain and input return loss. Assume the couplers are perfectly matched to the reference impedance, Zo, and the interconnections between the main components are ideal.

[10]

b) For the topology in 6(a), if the working single-ended amplifiers have a forward voltage wave transmission coefficient of $S_{21} = |10| \angle 35^{\circ}$, determine the overall insertion gain and input return loss if one of the amplifiers fails, such that $S_{21} = 0$. Assume that there is no change in the input or output impedances of the failed transistor. What is the main application of this topology and what are its advantages and disadvantages when compared to a single-ended amplifier?

[10]