Harvard University Computer Science 20

Problem Set 1

PROBLEM 1

A half dozen different operators may appear in propositional formulas, but just \land , \lor , and \neg are enough to express every proposition. That is because each of the operators is equivalent to a simple formula using only these three operators. For example, $A \to B$ is equivalent to $\neg A \lor B$. So all occurrences of \to in a formula can be replaced using just \neg and \lor .

We already know that $A \iff B$ is equivalent to $(A \land B) \lor (\neg A \land \neg B)$ and $A \oplus B$ is equivalent to $(A \land \neg B) \lor (\neg A \land \neg B)$ by definition.

(A) Prove that we don't even need \wedge , that is, write a proposition using $\mathbf{only} \vee \mathsf{and} \neg \mathsf{that}$ is equivalent to $A \wedge B$. Prove your answer.

In parts B and C you will prove that we can get by with the single operator NAND. NAND is written \uparrow , and is defined as $\neg(A \land B)$. To prove we only need \uparrow , all you need to do is construct propositions using $only \uparrow$ that are logically equivalent to $\neg A$ and $A \lor B$. Nota bene: Because NAND is both sufficient and easy to build in a digital circuit, in practice it is often actually the case that NAND is the only operator.

- (B) For this part, write a proposition using only \uparrow and A that is equivalent to $\neg A$. Prove the equivalence of your proposition.
- (C) For this part, write a proposition using only \uparrow that is equivalent to $A \lor B$. Prove the equivalence.

Solution.

(A)

 $A \wedge B$ can be expressed without using the \wedge logical connective as $\neg(\neg A \vee \neg B)$. This is proven by the truth table constructed below, which demonstrates identical truth values in the columns representing $A \wedge B$ and $\neg(\neg A \vee \neg B)$.

Α	В	$\neg A$	$\neg B$	$ \begin{array}{c c} \neg(\neg A \lor \neg A) \\ & T \\ & F \\ & F \\ & F \end{array} $	$A \wedge B$
Т	Т	F	F	Т	Т
Т	F	F	Т	F	F
F	Т	Т	F	F	F
F	F	F	Т	F	F

(B)

 $A \uparrow B$ is equivalent to $\neg A$. The equivalence chain below proves their equivalence.

$$A \uparrow B \equiv \neg (A \land B)$$

$$A \uparrow A \equiv \neg (A \land A)$$

$$A \uparrow A \equiv \neg(A)$$

$$A\uparrow A \equiv \neg A$$

(C) Equivalence chain proves equivalence between $A \uparrow B$ and $\neg(\neg A \land \neg B)$

$$A \uparrow B \equiv \neg (A \land B)$$

$$A \uparrow B \equiv \neg A \vee \neg B$$
 : DeMorgan's law

$$(A \uparrow A) \uparrow B \equiv \neg \neg A \vee \neg B : \text{ equivalence } (A \uparrow A \equiv \neg A) \text{ proven in part 1B}$$

$$(A \uparrow A) \uparrow (B \uparrow B) \equiv \neg \neg A \lor \neg \neg B$$
: equivalence $(A \uparrow A \equiv \neg A)$ proven in part 1B

$$(A \uparrow A) \uparrow (B \uparrow B) \equiv A \lor B$$
: double negation

Let x and y be fixed (but unknown) integers. Let z=x*y. Let P="x is even", Q="y is even", and R="z is even".

Translate the following sentences to propositional logic:

- (A) If the product of x and y is even, then at least one of x and y is even
- (B) z is even, but x is odd
- (C) z is even if x is even
- (D) z is even only if x and y are even
- (E) z is odd unless x or y is even
- (F) For each of the above propositions, determine whether it is true or false or whether it depends on the values of x, y, and z.

Solution.

- (A) $R \to P \lor Q$: True
- (B) $R \wedge \neg P$: depends on variables
- $(C) P \rightarrow R$: True
- (D) $R \leftrightarrow P \land Q$: False
- (E) $\neg (P \lor Q) \to \neg R$: True

For each of the following propositions, if it is a tautology or it is unsatisfiable, prove it with a truth table. If it is satisfiable, identify a satisfying assignment.

(A)
$$(P \lor Q) \lor (Q \to P)$$

(B)
$$(P \to Q) \to P$$

(C)
$$P \rightarrow (Q \rightarrow P)$$

Solution.

Ρ	Q	$(P \lor Q)$	$(Q \rightarrow P)$	$ (P \lor Q) \land (Q \to P) $ T
Т	Т	T	T	T
Т	F	Т	T	Т
F	Т	T	F	F
F	F	F	Т	F

(C)
$$(P \rightarrow (Q \rightarrow P))$$
 is a Tautology

Consider a proposition of n variables. Here is an algorithm for checking for satisfiability: Generate a truth table for the proposition. Check if all lines of the truth table are false. If not, the proposition is satisfiable. Why is this algorithm exponentially costly? **Solution.**

As each new variable is added the cases which need to be covered grows 2 fold, such that the number of cases/rows that need to be added to the table can be modelled by 2^n . This makes the algorithm's cost exponential because it is executed on an exponentially growing input. $\binom{2}{1}^n = 2^n$

THIS PROBLEM SHOULD BE SUBMITTED IN CARNAP. ONLY ANSWERS SUBMITTED IN CARNAP WILL BE ACCEPTED.

Convert the following proposition to DNF with a justification for each step: $(P \to Q) \land (\neg (Q \lor \neg R) \lor (P \land \neg S))$

Solution.	
	solution-6.png

Consider the formula:

$$(p_1 \wedge q_1) \vee (p_2 \wedge q_2) \vee \ldots \vee (p_n \wedge q_n)$$

where $n \geq 2$ and the p_i and q_i are propositional variables. This proposition has n clauses and length 4n-1 if we count each propositional variable and operator as adding 1 to the length and we ignore the parentheses.

- (A) First, write the CNF version of the proposition when n=2. Give a justification for each step. THIS SUBPROBLEM SHOULD BE SUBMITTED IN CARNAP. ONLY ANSWERS SUBMITTED IN CARNAP WILL BE GRADED.
- (B) When you distribute the and over the or, what happens to the number of clauses?
- (C) How long is your conjunctive normal form of this formula, using the same conventions as in the problem statement?
- (D) For general n, how many clauses are in the conjunctive normal form as a function of n? How long is it?

Solution.

(A)

1		
1		
problem7.png		
Propremi.Png		

- (B) The number of clauses doubles
- (C) The CNF contains 4 clauses. (Sorry, Im not sure what is meant by "same conventions as in the problem statement") (D) n^2 where n is the number of clauses in the DNF version.

Consider the following algorithm for checking satisfiability: Put the formula into disjunctive normal form and then check to see if all of the disjuncts are contradictions (containing both a variable and its complement). If not, then it is satisfiable. Why is this algorithm exponentially costly? **Solution.**

In the process of building the disjunctive formula, we are forced to consider both the variable and its negation when creating conjunctions. As a result we are forced to consider two possibilities per variable, with n variables, which causes the complexity of our equation to grow at a rate of approximately 2^n where n represent the number of variables. An example of this would be in the distributing of \wedge over \vee operators (when converting from a "CNF-esque" form of the formula), causing the number of terms to grow exponentially.