Uni. Roll No:

II Mid- Term Examination, 2014-15 Course: B.Tech. I- Year, I-Semester Subject: Mathematics -I (AHM- 101)

Time: 90 Minutes, Max. Marks: 20

Section -A

Note: Attempt all questions:

 $(5 \times 1 = 5 \text{ Marks})$

- Q1. If f(u, v) = u and $g(u, v) = v^2$ then find the value of $\frac{\partial(u, v)}{\partial(f, g)}$
- Q2. Write the necessary and sufficient conditions for f(x, y) to be maximum.
- Q3. Find the radius of curvature if the pedal equation of an

ellipse be
$$\frac{1}{p^2} = \frac{1}{a^2} + \frac{1}{b^2} - \frac{r^2}{a^2 b^2}$$

- Q4. Write the quadrants where curve $x^5 + y^5 = 5 a^2 x^2 y$ is symmetric.
- Q5. Find the envelope of the family of straight lines $y = mx + \frac{a}{m}$.

Section-B

Note: Attempt any three questions:

 $(3 \times 2 = 6 \text{ Marks})$

Q1. Find the points (x, y) where the function x y (1 - x - y) is either maximum or minimum.

1

Q2. If
$$x = u v$$
 and $y = \frac{u+v}{u-v}$ determine $\frac{\partial(u,v)}{\partial(x,y)}$.

- Q3. Calculate the radius of curvature at (a, 0) for $a^2y^2 = a^3 x^3$.
- Q4. Find the envelope of straight lines $\frac{x}{a} + \frac{y}{b} = 1$ where the

parameters a and b are connected by the relation a $b = c^2$, where c being a constant.

Section-C

Note: Attempt any three questions:

 $(3 \times 3 = 9 \text{ Marks})$

Q1.Find the dimensions of the rectangular box with open top of maximum capacity whose surface area is 432 sq. cm.

Q2. If
$$u^3 + v^3 + w^3 = x + y + z$$
, $u^2 + v^2 + w^2 = x^3 + y^3 + z^3$ and $u + v + w = x^2 + y^2 + z^2$ then find $\frac{\partial(u, v, w)}{\partial(x, y, z)}$.

- Q3. Trace the curve $y^2(2a-x) = x^3$.
- Q4. Find the equation of the circle of curvature at the point (0, 1) of the curve $y = x^3 + 2x^2 + x + 1$.