Package 'atRisk'

August 8, 2023

Title At-Risk **Version** 0.1.0

Description The at-Risk (aR) approach is based on a two-step parametric estimation procedure that allows to forecast the full conditional distribution of an economic variable at a given horizon, as a function of a set of factors. These density forecasts are then be used to produce coherent forecasts for any downside risk measure, e.g., value-at-risk, expected shortfall, downside entropy. Initially introduced by Adrian et al. (2019) <doi:10.1257/aer.20161923> to reveal the vulnerability of economic growth to financial conditions, the aR approach is currently extensively used by international financial institutions to provide Value-at-Risk (VaR) type forecasts for GDP growth (Growth-at-Risk) or inflation (Inflation-at-Risk). This package provides methods for estimating these models. Datasets for the US and the Eurozone are available to allow testing of the Adrian et al. (2019) model. This package constitutes a useful toolbox (data and functions) for private practitioners, scholars as well as policymakers.

Depends R (>= 3.5.0)
License GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 7.2.3
Imports stats, quantreg, sn, dfoptim, ggplot2, ggridges
NeedsCompilation no
Author Quentin Lajaunie [aut, cre], Guillaume Flament [aut, ctb], Christophe Hurlin [aut], Souzan Kazemi [rev]
Maintainer Quentin Lajaunie <quentin_lajaunie@hotmail.fr></quentin_lajaunie@hotmail.fr>
Repository CRAN
Date/Publication 2023-08-08 14:50:05 UTC
R topics documented:

2 data_euro

	data_param_histo	3
	data_US	3
	f_compile_quantile	4
	f_distrib	5
	f_ES	6
	f_histo_RM	7
	f_param_histo	8
	f_plot_distrib_2D	9
	f_plot_distrib_3D	10
	f_VaR	11
Index		13

Description

data_euro

data_euro contains: - Quarterly annualized GDP, from 2008:Q4 to 2022:Q3 - Financial Condition Index of the euro Area, from 2008:Q4 to 2022:Q3 - Composite Indicator of Systemic Stress, from 2008:Q4 to 2022:Q3 Sources: https://sdw.ecb.europa.eu/browseExplanation.do?node=9689686 https://webstat.banque-france.fr/ws_wsen/browseSelection.do?node=DATASETS_FCI https://fred.stlouisfed.org/series/CLVMEURSCAB1GQEA1

Historical data for the eurozone (GDP and Financial Conditions) from

Usage

```
data("data_euro")
```

Format

A data frame with 57 observations on the following 4 variables.

2008:Q4 to 2022:Q3

DATE Vector of dates.

GDP Vector of annualized PIB.

FCI Historical values of the Financial Condition Index (FCI).

CISS Historical values of the Composite Indicator of Systemic Stress (CISS).

data_param_histo 3

data_param_histo	Historical parameters (skew-t) for the US from 1973:Q1 to 2022:Q3

Description

Data corresponding to historical parameters estimated over the period 1973:Q1 to 2022:Q3, based on the data_US file in the matrisk package, with the skew-t distribution, and calculated with the f_param_histo function. data_param_histo_US has been calculated using c(0.05,0.25,0.75,0.95) for the qt_trgt parameter, PIB_us_forward_1 as the dependent variable, NFCI_us_lag_1 as the explanatory variable, "skew-t" for the type_function parameter and c(0, 1, -0.5, 1.3) for the starting_values.

Usage

```
data("data_param_histo")
```

Format

A matrix with 187 rows and 5 columns (first column for the periods and the 4 following columns for the for parameters of the skew-t distribution).

data_US	Historical data for the US (GDP and Financial Conditions) from
	1973:Q1 to 2022:Q3

Description

data_euro contains: - Quarterly annualized GDP, from 1973:Q1 to 2022:Q3 - National Financial Condition Index of the US, from 1973:Q1 to 2022:Q3 Sources: https://www.chicagofed.org/research/data/nfci/current-data https://fred.stlouisfed.org/series/A191RL1Q225SBEA

Usage

```
data("data_US")
```

Format

A data frame with 200 observations on the following 4 variables.

DATE Vector of dates.

GDP Vector of annualized PIB.

NFCI Historical values of the National Financial Condition Index (NFCI).

4 f_compile_quantile

f_compile_quantile Estimation of quantiles

Description

Predicted values based on each quantile regression (Koenker and Basset, 1978), at time=t_trgt, for each quantile in qt_trgt.

Usage

```
f_compile_quantile(qt_trgt, v_dep, v_expl, t_trgt)
```

Arguments

qt_trgt	Numeric vector, dim k, of k quantiles for different qt-estimations
v_dep	Numeric vector of the dependent variable
v_expl	Numeric vector of the (k) explanatory variable(s)
t_trgt	Numeric time target (optional)

Value

Numeric matrix with the predicted values based on each quantile regression, at time fixed in input

References

Koenker, Roger, and Gilbert Bassett Jr. "Regression quantiles." Econometrica: journal of the Econometric Society (1978): 33-50.

Examples

```
# Import data
data("data_euro")

# Data process
PIB_euro_forward_4 = data_euro["GDP"][c(5:length(data_euro["GDP"][,1])),]
FCI_euro_lag_4 = data_euro["FCI"][c(1:(length(data_euro["GDP"][,1]) - 4)),]
CISS_euro_lag_4 = data_euro["CISS"][c(1:(length(data_euro["GDP"][,1]) - 4)),]
quantile_target <- as.vector(c(0.10,0.25,0.75,0.90))
results_quantile_reg <- f_compile_quantile(qt_trgt=quantile_target,
v_dep=PIB_euro_forward_4,
v_expl=cbind(FCI_euro_lag_4, CISS_euro_lag_4),
t_trgt = 30)</pre>
```

f_distrib 5

f_distrib

Distribution

Description

This function is used to estimate the parameters of the distribution (mean and standard deviation for Gaussian, xi, omega, alpha, and nu for skew-t) based on the quantile regression results (Koenker and Basset, 1978). See Adrian et al. (2019) and Adrian et al. (2022) for more details on the estimation steps.

Usage

```
f_distrib(type_function, compile_qt, starting_values)
```

Arguments

type_function String argument : "gaussian" for normal distribution or "skew-t" for t-student distribution

compile_qt Numeric matrix containing different quantiles and associated values starting_values

Numeric vector with initial values for optimization

Value

a data.frame with the parameters of the distribution

References

Adrian, Tobias, Nina Boyarchenko, and Domenico Giannone. "Vulnerable growth." American Economic Review 109.4 (2019): 1263-89.

Adrian, Tobias, et al. "The term structure of growth-at-risk." American Economic Journal: Macroeconomics 14.3 (2022): 283-323.

Koenker, Roger, and Gilbert Bassett Jr. "Regression quantiles." Econometrica: journal of the Econometric Society (1978): 33-50.

Examples

```
# Import data
data("data_euro")

# Data process
PIB_euro_forward_4 = data_euro["GDP"][c(5:length(data_euro["GDP"][,1])),]
FCI_euro_lag_4 = data_euro["FCI"][c(1:(length(data_euro["GDP"][,1]) - 4)),]
CISS_euro_lag_4 = data_euro["CISS"][c(1:(length(data_euro["GDP"][,1]) - 4)),]
# for a gaussian
quantile_target <- as.vector(c(0.25,0.75))</pre>
```

6 f_ES

```
results_quantile_reg <- f_compile_quantile(qt_trgt=quantile_target,
v_dep=PIB_euro_forward_4,
v_expl=cbind(FCI_euro_lag_4, CISS_euro_lag_4),
t_{tgt} = 30
results_g <- f_distrib(type_function="gaussian",</pre>
compile_qt=results_quantile_reg,
starting_values=c(0, 1))
# for a skew-t
quantile_target <- as.vector(c(0.10,0.25,0.75,0.90))</pre>
results_quantile_reg <- f_compile_quantile(qt_trgt=quantile_target,
v_dep=PIB_euro_forward_4,
v_expl=cbind(FCI_euro_lag_4, CISS_euro_lag_4),
t_{tgt} = 30
results_s <- f_distrib(type_function="skew-t",
compile_qt=results_quantile_reg,
starting_values=c(0, 1, -0.5, 1.3))
```

f_ES

Expected Shortfall

Description

The function allows to calculate Expected-shortfall for a given distribution. It takes as parameters alpha (risk level), a distribution and the parameters associated with this distribution. For example, for a normal distribution, the user must enter the mean and the standard deviation. Currently, the function can calculate the Expected-shortfall for the normal distribution and for the skew-t distribution (Azzalini and Capitianio, 2003)

Usage

```
f_ES(alpha, type_function, params, accuracy = 0.005)
```

Arguments

alpha Numeric argument for Expected-Shortfall, between 0 and 1

type_function String argument: "gaussian" for normal distribution or "skew-t" for t-student

distribution

params Numeric vector containing parameters of the distribution

accuracy Scalar value which regulates the accuracy of the ES (default value 1e-05)

Value

Numeric value for the expected-shortfall given the distribution and the alpha risk.

f_histo_RM 7

References

Azzalini, Adelchi, and Antonella Capitanio. "Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t-distribution." Journal of the Royal Statistical Society: Series B (Statistical Methodology) 65.2 (2003): 367-389.

Azzalini, Adelchi, and Maintainer Adelchi Azzalini. "Package 'sn'." The skew-normal and skew-t distributions (2015): 1-3.

Examples

```
f_ES(0.95, "gaussian", params=c(0,1))
f_ES(0.95, "gaussian", params=c(0,1), accuracy=1e-05)
f_ES(0.9999, "gaussian", params=c(0,1), accuracy=1e-04)
```

f_histo_RM

Historical parameters and Risk Measures

Description

This function allows to calculate historical historical parameters and the VaR and ES for each historical period.

Usage

```
f_histo_RM(qt_trgt, v_dep, v_expl, type_function, starting_values, alpha)
```

Arguments

qt_trgt	Numeric vector, dim k, of k quantiles for different qt-estimations (k>=4)	
v_dep	Numeric vector of the dependent variable	
v_expl	Numeric vector of the (k) explanatory variable(s)	
type_function	String argument: "gaussian" for normal distribution or "skew-t" for t-student distribution	
starting_values		
	Numeric vector with initial values for optimization	
alpha	Numeric argument for Expected-Shortfall, between 0 and 1	

Value

A list with historical estimated coefficients, VaR(alpha) and ES(alpha)

f_param_histo

Examples

```
# Import data
data("data_euro")

# Data process
PIB_euro_forward_4 = data_euro["GDP"][c(5:length(data_euro["GDP"][,1])),]
FCI_euro_lag_4 = data_euro["FCI"][c(1:(length(data_euro["GDP"][,1]) - 4)),]
CISS_euro_lag_4 = data_euro["CISS"][c(1:(length(data_euro["GDP"][,1]) - 4)),]

# for a skew-t
results_s <- f_histo_RM(qt_trgt= as.vector(c(0.10,0.25,0.75,0.90)),
v_dep=PIB_euro_forward_4,
v_expl=cbind(FCI_euro_lag_4, CISS_euro_lag_4),
type_function="skew-t",
starting_values=c(0, 1, -0.5, 1.3),
alpha=0.95)</pre>
```

f_param_histo

Historical parameters

Description

This function allows to calculate historical parameters of distributions.

Usage

```
f_param_histo(qt_trgt, v_dep, v_expl, type_function, starting_values)
```

Arguments

qt_trgt	Numeric vector, dim k, of k quantiles for different qt-estimations (k>=4)
v_dep	Numeric vector of the dependent variable
v_expl	Numeric vector of the (k) explanatory variable(s)
type_function	String argument : "gaussian" for normal distribution or "skew-t" for t-student distribution
starting_values	

Numeric vector with initial values for optimization

Value

A matrix with the historical parameters of the distribution

f_plot_distrib_2D 9

Examples

```
# Import data
data("data_US")

# Data process data_US
PIB_us_forward_1 = data_US["GDP"][c(2:length(data_US["GDP"][,1])),]
NFCI_us_lag_1 = data_US["NFCI"][c(1:(length(data_US["GDP"][,1]) - 1)),]

# Historical parameters for a skew-t distribution
results_s <- f_param_histo(qt_trgt= as.vector(c(0.10,0.25,0.75,0.90)),
v_dep=PIB_us_forward_1,
v_expl=NFCI_us_lag_1,
type_function="skew-t",
starting_values=c(0, 1, -0.5, 1.3))</pre>
```

f_plot_distrib_2D

Plot of historical distributions in 2D

Description

This function allows to create a plot in 2D of historical distributions.

Usage

```
f_plot_distrib_2D(
    m_param_histo,
    type_function,
    database,
    x_lab,
    y_lab,
    x_min,
    x_max
)
```

Arguments

m_param_histo	Numeric matrix containing the parameters of the f_param_histo function
type_function	String argument specifying the distribution type ("gaussian" or "skew-t")
database	Dataframe containing the data, with dates in the first column and dependent variable in the second column
x_lab	String optional argument for the x axis title (default value = x)
y_lab	String optional argument for the y axis title (default value = y)
x_min	Numeric optional argument (default value = -15)
x_max	Numeric optional argument (default value = 10)

10 f_plot_distrib_3D

Value

A plot of historical distributions with the median, four quantiles (5th, 25th, 75th, 95th) and the realized dependent variable.

Examples

```
# Import data
data(data_US)

data(data_param_histo)

results_plot_2D <- f_plot_distrib_2D(m_param_histo=data_param_histo,
type_function="skew-t",
database=data_US,
x_lab="US GDP variation",
y_lab="Year")</pre>
```

f_plot_distrib_3D

Plot of historical distributions in 3D

Description

This function allows to create a plot in 3D of historical distributions.

Usage

```
f_plot_distrib_3D(
   m_param_histo,
   type_function,
   database,
   n_samples,
   x_min,
   x_max,
   x_lab,
   y_lab
)
```

Arguments

m_param_histo Numeric matrix containing the parameters of the f_param_histo function

type_function String argument specifying the distribution type ("gaussian" or "skew-t")

Dataframe containing the data, with dates in the first column and dependent variable in the second column

n_samples Number optional of samples for the plot (default value = 1000)

x_min Numeric optional argument (default value = -15)

f_VaR 11

x_max	Numeric optional argument (default value = 10)
x_lab	String optional argument for the x axis title (default value = x)
y_lab	String optional argument for the y axis title (default value = y)

Value

A plot in 3D of historical distributions

Examples

```
# Import data
data(data_US)

data(data_param_histo)

results_plot_3D <- f_plot_distrib_3D(m_param_histo=data_param_histo,
type_function="skew-t",
database=data_US,
x_lab="US GDP variation",
y_lab="Year")</pre>
```

f_VaR Value-at-Risk

Description

The function allows to calculate Value-at-Risk for a given distribution. It takes as parameters alpha (risk level), a distribution and the parameters associated with this distribution. For example, for a normal distribution, the user must enter the mean and the standard deviation. Currently, the function can calculate the Value-at-Risk for the normal distribution and for the skew-t distribution (Azzalini and Capitianio, 2003)

Usage

```
f_VaR(alpha, type_function, params)
```

Arguments

alpha Numeric argument for Expected-Shortfall, between 0 and 1

type_function String argument: "gaussian" for normal distribution or "skew-t" for t-student

distribution

params Numeric vector containing parameters of the distribution

Value

Numeric value for the Value-at-Risk given the distribution and the alpha risk

 $f_{Va}R$

References

Azzalini, Adelchi, and Antonella Capitanio. "Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t-distribution." Journal of the Royal Statistical Society: Series B (Statistical Methodology) 65.2 (2003): 367-389.

Azzalini, Adelchi, and Maintainer Adelchi Azzalini. "Package 'sn'." The skew-normal and skew-t distributions (2015): 1-3.

Examples

```
f_{VaR}(0.95, "gaussian", params=c(0,1))
```

Index

```
data_euro, 2
data_param_histo, 3
data_US, 3

f_compile_quantile, 4
f_distrib, 5
f_ES, 6
f_histo_RM, 7
f_param_histo, 8
f_plot_distrib_2D, 9
f_plot_distrib_3D, 10
f_VaR, 11
```