Problem Set 2 Yushu Liu

Problems

- 1. LFD Problem 1.12
- 2. LFD Problem 2.3
- 3. LFD Problem 2.8
- $4.~\mathrm{LFD~Problem}~2.10$
- $5.~\mathrm{LFD~Problem}~2.13$
- 6. LFD Problem 2.22
- 7. LFD Problem 2.24

Q1: LFD Problem 1.12

(a)

Proof: Given that:

$$E_{in}(h) = \sum_{n=1}^{N} (h - y_n)^2$$
$$\frac{d}{dh} E_{in}(h) = \sum_{n=1}^{N} 2h - 2y_n$$

To minimize $E_{in}(h)$, let $\frac{d}{dh}E_{in}(h) = 0$, then:

$$\sum_{n=1}^{N} 2h - 2y_n = 0$$

$$\sum_{n=1}^{N} y_n = Nh$$

$$h = \frac{1}{N} \sum_{n=1}^{N} y_n$$

(b)

Proof:

$$E_{in}(h) = \sum_{n=1}^{N} |h - y_n|$$
$$\frac{d}{dh} E_{in}(h) = sign(h - y_n)$$

To minimize $E_{in}(h)$, let $\frac{d}{dh}E_{in}(h) = 0$. This equals to zero only when the number of positive items equals the number of negative which happens when h=median $\{y_1, y_2, ... y_n\}$

(c)

In this case h_{mean} will become very large $(h_{mean} \to \infty)$, while h_{median} will stay constant.

Q2: LFD Problem 2.3

(a)

The positive ray will generate N+1 dichotomy, and the negative ray will generate N-1 unique dichotomies (all dichotomies opposite from dichotomies generated by positive ray minus the two repeated ones - all N points are negative and all N points are positive). So the total dichotomies are 2N.

The VC dimension can be solved by find the maximum N such that $2^N = 2N$, so $d_{vc} = 2$.

(b)

The positive interval will generate $\frac{n(n+1)}{2} + 1$ dichotomy, and the negative ray will generate $\frac{n(n+1)}{2} + 1 - 2N$ unique dichotomies (all dichotomies opposite from dichotomies generated by positive interval minus the 2N repeated ones - all N points are negative and all N points are positive plus all dicotomies including the minimum and maximum). So total dichotomies are $\mathbf{N}(\mathbf{N}+\mathbf{1}) + \mathbf{2} - \mathbf{2N}$. The VC dimension can be solved by find the maximum N such that $N(N+1) + 2 - 2N = 2^N$, so $d_{vc} = 3$

(c)

The result will be the same as positive interval (set d = 1 then the concentric spheres will be exactly the positive interval).

So the maximum number of dichotomies is $\frac{n(n+1)}{2} + 1$ and $d_{vc} = 2$

Q3: LFD Problem 2.8

We know that if $m_{\mathcal{H}}(k) < 2^k$, then \forall N, the growth function must have a polynomial bound:

$$m_{\mathcal{H}}(N) \leq \sum_{i=0}^{k-1} \binom{N}{i}$$

or in other word, there are 2 cases:

$$\begin{cases} d_{vc} = +\infty, m_{\mathcal{H}}(k) = 2^K \\ d_{vc} \text{is finite}, m_{\mathcal{H}}(k) \text{ is bounded by } N^{d_{vc}} + 1 \end{cases}$$

Then:

- (N+1:) is possible growth function: $d_{vc} = 1$, N + 1 is bounded by N + 1
- $(1+N+\frac{N(N-1)}{2})$ is possible growth function: $d_{vc}=2,\,1+N+\frac{N(N-1)}{2}$ is bounded by N^2+1 for all $N\geq 1$
- (2^N) is possible growth function: $d_{vc} = +\infty$, and $m_H(k) = 2^K$
- $(2^{\sqrt{N}})$ is not a possible growth function: $d_{vc} = 1$, but $2^{\sqrt{N}}$ is not bounded by N+1 (for N = 25, $2^{\sqrt{25}} = 32 > 25 + 1 = 26$).
- $(2^{\frac{N}{2}})$ is not a possible growth function: $d_{vc} = 0$, but $2^{\sqrt{N}}$ is not bounded by 2 (for N = 4, $2^{\frac{4}{2}} = 4 > 2$).
- $(1 + N + \frac{N(N-1)(N-2)}{6})$ is not a possible growth function: $d_{vc} = 1$, but $1 + N + \frac{N(N-1)(N-2)}{6}$ is not bounded by N +1 (for N = 3, $1 + N + \frac{N(N-1)(N-2)}{6} = 5 > 1 + 3 = 4$).

Q4: LFD Problem 2.10

Partition the 2N points to 2 fractions: $\{x_1, x_2, x_N\}$ and $\{x_{N+1}, x_{N+2}, x_{2N}\}$, each with N points. For each fraction there are $m_{\mathcal{H}}(N)$ ways to dichotomies N points, so for 2N points, there are at most $m_{\mathcal{H}}(N) * m_{\mathcal{H}}(N)$ dichotomies. Which suggests $m_{\mathcal{H}}(2N) \leq m_{\mathcal{H}}(N)^2$.

Therefore, we can rewrite the VC generalization bound as follow:

$$E_{out}(g) \le E_{in}(g) + \sqrt{\frac{8}{N} \ln \frac{4m_{\mathcal{H}}(2N)}{\delta}}$$
$$\le E_{in}(g) + \sqrt{\frac{8}{N} \ln \frac{4(m_{\mathcal{H}}(N))^2}{\delta}}$$

Q5: LFD Problem 2.13

(a)

Since d_{vc} is defined as the largest value of N for which $m_{\mathcal{H}}(N) = 2^N$, while $m_{\mathcal{H}}(N)$ is the maximum number of possible partition on N points. Since there are k hypothesis, the maximum number of partitions can not exceed k for any N, which produce an upper bound of the growth function $m_{\mathcal{H}}(N) \leq M$ for any N including the value of VC dimension. Therefore:

$$m_{\mathcal{H}}(d_{vc}) = 2^{d_{vc}} \le M$$
$$d_{vc} \le \log_2 M$$

(b)

Lower bound: 0

It could be possible that the intersection of all hypothesis set is the empty set. In this case, $d_{vc} =$ 0 since there are only 1 possible dichotomy for any N.

Upper bound: $\min_{1 \le k \le K} d_{vc}(\mathcal{H}_k)$ First, show that $\min_{1 \le k \le K} d_{vc}(\mathcal{H}_k)$ is an upper bound.

Let $\min_{1 \le k \le K} d_{vc}(\mathcal{H}_k) = d$. Assume $\bigcap_{k=1}^K \mathcal{H}_k > d$.

Then by definition, $\bigcap_{k=1}^{K} \mathcal{H}_k$ must shutter d+1 points, which suggest for all $1 \leq k \leq K$, \mathcal{H}_k also shutter d+1 points. This contradicts with the fact there exist some k such that $1 \le k \le K$ and $d_{vc}(\mathcal{H}_k) = d$. Therefore d must be an upper bound of $d_{vc}(\bigcap_{k=1}^{K} \mathcal{H}_k)$.

Then, show $\min_{1 \le k \le K} d_{vc}(\mathcal{H}_k)$ is the tightest upper bound. Given the case that K = 1, then:

$$d_{vc}(\bigcap_{k=1}^{K} \mathcal{H}_k) = d_{vc}(\mathcal{H}_1) = d_{vc} \min_{1 \le k \le K} d_{vc}(\mathcal{H}_k)$$

Then $\min_{1 \le k \le K} d_{vc}(\mathcal{H}_k)$ is a maximum (an achievable upper bound), which is the tightest possible upper bound.

(c)

Lower Bound: $\max_{1 \le k \le K} d_{vc}(\mathcal{H}_k)$ First, show that $\max_{1 \le k \le K} d_{vc}(\mathcal{H}_k)$ is a lower bound.

Let
$$\max_{1 \le k \le K} d_{vc}(\mathcal{H}_k) = d$$
. Assume $\bigcap_{k=1}^K \mathcal{H}_k < d$.

Then by definition, $\bigcup_{k=1}^{K} \mathcal{H}_k$ does not shutter d points, which suggest for all $1 \le k \le K$, there does not exist a \mathcal{H}_k that shutter d points. This contradicts with the fact there exist some k such that $1 \leq k \leq K$ and $d_{vc}(\mathcal{H}_k) = d$. Therefore d must be a lower bound of $d_{vc}(\bigcup_{k=1}^K \mathcal{H}_k)$.

Then, show $\min_{1 \le k \le K} d_{vc}(\mathcal{H}_k)$ is the tightest upper bound. Given the case that K = 1, then:

$$d_{vc}(\bigcap_{k=1}^{K} \mathcal{H}_k) = d_{vc}(\mathcal{H}_1) = d_{vc} \max_{1 \le k \le K} d_{vc}(\mathcal{H}_k)$$

Then $\max_{1 \leq k \leq K} d_{vc}(\mathcal{H}_k)$ is a minimum (an achievable lower bound), which is the tightest possible lower bound.

Upper Bound:
$$\sum_{k=1}^{K} d_{vc}(\mathcal{H}_k) + K - 1$$

The maximum number of partition for union of two hypothesis set can be deduced as follow: Since the maximum number of dichotomy generate by two hypothesis set is smaller than the sum of number of partition generated by each set, the following inequality must hold:

$$m_{\mathcal{H}_1}(N) + m_{\mathcal{H}_2}(N) \le \sum_{i=0}^{d_1} \binom{N}{i} + \sum_{i=0}^{d_2} \binom{N}{i}$$

= $\sum_{i=0}^{d_1} \binom{N}{i} + \sum_{i=0}^{d_2} \binom{N}{N-i}$

For all N satisfy $d_1 + d_2 \leq N - 1$,

$$\begin{split} \sum_{i=0}^{d1} \binom{N}{i} + \sum_{i=0}^{d2} \binom{N}{N-i} &= \sum_{i=0}^{N} \binom{N}{i} - \sum_{i=d_1}^{d_2} \binom{N}{i} \\ \sum_{i=0}^{d1} \binom{N}{i} + \sum_{i=0}^{d2} \binom{N}{N-i} + \sum_{i=d_1}^{d_2} \binom{N}{i} &= 2^N \\ \sum_{i=0}^{d1} \binom{N}{i} + \sum_{i=0}^{d2} \binom{N}{N-i} &< 2^N \end{split}$$

Then for all $N \ge d_1 + d_2 + 1$:

$$m_{\mathcal{H}_1}(N) + m_{\mathcal{H}_2}(N) \le \sum_{i=0}^{d_1} \binom{N}{i} + \sum_{i=0}^{d_2} \binom{N}{i}$$

$$< 2^N$$

which is equivalent to $\mathcal{H}_1 \cup \mathcal{H}_2$ can not shutter $d_1 + d_2 + 1$ points. Thus, $d_1 + d_2 + 1$ is an upper bound of $d_v c$ for $\mathcal{H}_1 \cup \mathcal{H}_2$.

Using similar logic for the K union of hypothesis, $\bigcup_{k=1}^K \mathcal{H}_k$, we can conclude that the upper bound of $d_{vc}(\bigcup_{k=1}^K \mathcal{H}_k)$ is $\sum_{k=1}^K d_{vc}(\mathcal{H}_k) + K - 1$.

Q6: LFD Problem 2.22

$$\mathbb{E}_{\mathcal{D}}[E_{out}(g^{(D)})] = \mathbb{E}_{\mathcal{D}}[E_{x,y}[(g^{(D)}(x) - y(x))^{2}]]$$

$$= \mathbb{E}_{x,y}[E_{D}[(g^{(D)}(x) - y(x))^{2}]]$$

$$= \mathbb{E}_{x,y}[E_{D}[(g^{(D)}(x))^{2}] - 2E_{D}[(g^{(D)}y(x)] + y(x)^{2}]$$

$$= \mathbb{E}_{x,y}[E_{D}[(g^{(D)}(x))^{2}] - 2E_{D}[(g^{(D)}(f(x) + \epsilon)] + (f(x) + \epsilon)^{2}]$$

$$= \mathbb{E}_{x}[E_{D}[(g^{(D)}(x))^{2}] - 2E_{D}[(g^{(D)}f(x)] + (f(x) + \epsilon)^{2}] + \mathbb{E}_{x,y}[2f(x)\epsilon + \epsilon^{2} - 2\overline{g}(x)\epsilon]$$

$$= var + bias + \mathbb{E}_{x,y}[2\epsilon(f(x) - \overline{g}(x)) + \epsilon^{2}]$$

$$= var + bias + \mathbb{E}[\epsilon^{2}] + 2\mathbb{E}[\epsilon]\mathbb{E}_{x}[f(x) - \overline{g}(x)]$$
Since $\mathbb{E}[\epsilon] = 0$, $\mathbb{E}[\epsilon^{2}] = Var[\epsilon] - (\mathbb{E}[\epsilon])^{2} = \sigma^{2}$, then:
$$\mathbb{E}_{\mathcal{D}}[E_{out}(g^{(D)})] = var + bias + \mathbb{E}[\epsilon^{2}] + 2\mathbb{E}[\epsilon]\mathbb{E}_{x}[f(x) - \overline{g}(x)]$$

$$= var + bias + \sigma^{2} + 2 * 0 * \mathbb{E}_{x}[f(x) - \overline{g}(x)]$$

$$= var + bias + \sigma^{2}$$

Q7: LFD Problem 2.24

(a)

$$\overline{g}(x) = \mathbb{E}_{D}[g^{(D)}(x)]
= \mathbb{E}_{D}[\frac{x_{2}^{2} - x_{1}^{2}}{x^{2} - x_{1}}x - x_{1}x_{2}]
= \mathbb{E}_{x_{1},x_{2}}[(x_{1} + x_{2})x - x_{1}x_{2}]
= \frac{1}{4}(\int_{-1}^{1} \int_{-1}^{1} x_{1} + x_{2}dx_{1}dx_{2}) - \frac{1}{4}(\int_{-1}^{1} \int_{-1}^{1} x_{1}x_{2}dx_{1}dx_{2})
= \frac{1}{4}x(0) + 0
= 0$$

(b)

- 1. Generate a K pair of x_1, x_2 randomly with uniform distribution from [-1, 1], for each pair $1 \le k \le K$ fit $g_k(x) = a_k x + b$.
- 2. Compute $\overline{g}(x)$ using g(x) for all pair of x_1, x_2 generated such that:

$$\overline{g}_(x) = \frac{\sum_{i=1}^K a_k}{K} x + \frac{\sum_{i=1}^K b_k}{K}$$

3. Generate K x randomly ($\{x_1, x_2, x_3, ... x_K\}$) with uniform distribution from [-1, 1], using the following formula to compute E_{out} , bias and var directly.

$$E_{out} = \frac{\sum_{j=0}^{K} \sum_{i=0}^{K} (g_i(x_j) - x_j^2)^2}{K^2}$$

$$bias = \frac{\sum_{j=0}^{K} \sum_{i=0}^{K} (g_i(x_j) - \overline{g}(x_j))^2}{K^2}$$

$$var = \frac{\sum_{i=0}^{K} (\overline{g}(x_k) - x_k^2)^2}{K}$$

(c)

$$bias = 0.20$$
$$var = 0.33$$

 $E_{out} = 0.53 = bias + var$

(d)

First compute E_{out} :

$$E_{out} = E_x[(g(x) - f(x))^2]$$

$$= E_x[(ax + b - f(x))^2]$$

$$= E_x[(x^2 - ax - b)^2]$$

$$= E_x[a^2x^2 + 2abx - 2ax^3 + b^2 - 2bx^2 + x^4)]$$

$$= \frac{1}{2} \int_{-1}^{1} a^2x^2 + 2abx - 2ax^3 + b^2 - 2bx^2 + x^4dx$$

$$= \frac{2/5 + (2a^2)/3 - (4b)/3 + 2b^2}{2}$$

$$= \frac{1}{5} + \frac{2a^2}{3} - \frac{2b}{3} + b^2$$

Then $\mathbb{E}_{\mathcal{D}}[E_{out}]$:

$$\mathbb{E}_{\mathcal{D}}[E_{out}] = \mathbb{E}_{x_1, x_2}[E_{out}]$$

$$= \mathbb{E}_{x_1, x_2} \left[\frac{1}{5} + \frac{(x_1 + x_2)^2}{3} + \frac{2x_1x_2}{3} + (x_1x_2)^2 \right]$$

$$= \frac{1}{4} \left(\int_{-1}^{1} \int_{-1}^{1} \frac{1}{5} + \frac{(x_1 + x_2)^2}{3} + \frac{2x_1x_2}{3} + (x_1x_2)^2 dx_1 dx_2 \right)$$

$$= \frac{8}{15}$$

Similarly:

$$bias(x) = (\overline{g} - f(x))^{2}$$

$$= f(x)^{2}$$

$$= x^{4}$$

$$bias = \mathbb{E}_{x}[x^{4}]$$

$$= \frac{1}{2} \int_{-1}^{1} x^{4} dx$$

$$= \frac{1}{5}$$

And since by definition, $\mathbb{E}_{\mathcal{D}}[E_{out}] = bias + var$, $var = \frac{8}{15} - \frac{1}{5} = \frac{1}{3}$.