Data Communication

DIGITAL DATA TRANSMISSION TECHNIQUES

Digital Data Transmission Techniques

- Transmission Technique (Serial, Parallel)
- Error Detection Techniques
- Error Correction Techniques
- Connection Interface Standarts

Cyclic Redundancy Check

- one of most common and powerful checks
- for block of *k* bits transmitter generates an *n* bit frame check sequence (FCS)
- transmits k+n bits which is exactly divisible by some number
- receiver divides frame by that number
 - o if no remainder, assume no error

CRC

- based on r+1 bit pattern (generator) 6 known to tx and rx
- 🗂 treat data bits D as a binary number
- obtain r-bit CRC R such that <D,R> divisible (modulo 2) by G
- receiver divides <D,R> by G. non-zero remainder implies error
- can detect all burst errors less than r+1 bits
- widely used in practice (ATM, HDCL)

CRC-Example

$$G = 1001 (r=3)$$

$$D = 101110$$

R = remainder
$$\left[\frac{D \cdot 2^r}{G}\right]$$

Transmitted Frame:

101110011

CRC-Example 2

CRC-Example 3

Frame : 1101011011

Generator: 10011

Message after 4 zero bits are appended: 1 1 0 1 0 1 1 0 1 1 0 (0

Transmitted frame: 110101111110

CRC (Receiver Side)

- Receiver divide the received data stream by G(x) generator function.
- If the remainder is "0", it is said that there is no error.
- Receiver crops the last r bits and send the d bits

CRC Coding Standarts Example

CRC-32-IEEE 802.3	$x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^8 + x^7 + x^5 + x^4 + x^2 + x + 1$ (V.42, MPEG-2, PNG ^[16] , POSIX cksum)
CRC-1	x + 1 (most hardware; also known as parity bit)
CRC-8-ATM	x8 + x2 + x + 1 (ATM HEC)
CRC-16-IBM	$x^{16} + x^{15} + x^2 + 1$ (Bisync, Modbus, USB, ANSI X3.28, many others; also known as <i>CRC-16</i> and <i>CRC-16-ANSI</i>)

Digital Data Transmission Techniques

- Transmission Technique (Serial, Parallel)
- Error Detection Techniques
- Error Correction Techniques
- Connection Interface Standarts

Error Correction Process

How Error Correction Works

- adds redundancy to transmitted message
- can deduce original despite some errors
- eg. block error correction code
 - o map k bit input onto an n bit codeword
 - o each distinctly different
 - o if get error assume codeword sent was closest to that received
- means have reduced effective data rate

Hamming Code Rate

As you can see, if you have m parity bits, it can cover bits from 1 up to 2^m-1 . If we subtract out the parity bits, we are left with 2^m-m-1 bits we can use for the data. As m varies, we get all the possible Hamming codes:

Parity bits	Total bits	Data bits	Name
2	3	1	Hamming(3,1) (Triple <u>repetition code</u>)
3	7	4	Hamming(7,4)
4	15	11	Hamming(15,11)
5	31	26	Hamming(31,26)
			•••
m	$2^{m}-1$	$2^m - m - 1$	Hamming $(2^m - 1, 2^m - m - 1)$

Parity bit Coverage

B posi		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Enco data	oded bits	P1	p2	d1	p4	d2	d3	d4	p8	d5	d6	d7	d8	d9	d1 0	d11	p16	d12	d13	d14	d15
P a	p1	X		X		X		X		X		X		X		X		X		X	
r i t y	p2		X	X			X	X			X	X			X	X			X	X	
bit c o	p4				X	X	X	X					X	X	X	X					X
v e r	p8								X	X	X	X	X	X	X	X					
a g E	P1 6																X	X	X	X	X

Hamming Code

- M message bits
- C test bits
- $C1=M1 \oplus M2 \oplus M4 \oplus M5 \oplus M7$
- $C2=M1 \oplus M3 \oplus M4 \oplus M6 \oplus M7$
- C3=M2 M3 M4 M8
- C4= $M5 \oplus M6 \oplus M7 \oplus M8$

• http://cnx.org/content/m18663/latest/lbc_hamming-encoder-hammingcode.htm

- Suppose that we have a data with seven bits.
 0110101
- Calculate the Hamming code.

	p_1	p_2	$d_{\scriptscriptstyle 1}$	p_3	d_2	d_3	d_4	p_4	d_5	d_6	\mathbf{d}_7
Data (no parity bit):			o		1	1	0		1	o	1
P_1	1		0		1		О		1		1
P_2		o	O			1	O			O	1
P_3				0	1	1	0				
P_4								O	1	О	1
Data (with parity bits):	1	o	0	o	1	1	O	0	1	0	1

- **10**0**0**110**0**101 (D1-D11) is the stream of data sent.
- **10**0**0**110**0**100 is the stream of data received. (suppose that the MSB is in error)
- Execute the Hamming process at the receiver side.

	p_1	p_2	d_1	p_3	d_2	d_3	d_4	p ₄	d_5	d_6	\mathbf{d}_7	Parity check	Parity bit
Received Data	1	О	О	0	1	1	O	O	1	o	0		
$p_{_1}$	1		О		1		О		1		O	Fall	1
p_2		o	O			1	О			o	O	Fall	1
p_3				o	1	1	О					Pass	O
p_4								o	1	О	O	Fall	1

- •If parity check falls then new parity bit is "1". Else "o"
- •All parity bits are in even parity.
- p4p3p2p1 = (1011)2 = 11
- •So error is in 11th bit.

Hamming Code Simulator

• http://candle.ctit.utwente.nl/wp5/tel-sys/exercises/datalinkp2p/hamming74demo.html