

GigaMOS™ TrenchT2 HiperFET™

IXFN320N17T2

Power MOSFET

N-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Diode

Symbol	Test Conditions		Maximum Ratings		
V _{DSS}	T _J = 25°C to 175°	°C	170	V	
V_{DGR}	$T_{J} = 25^{\circ} \text{C to } 175^{\circ}$	$^{\circ}$ C, R _{GS} = 1M Ω	170	V	
V _{GSS}	Continuous		±20	V	
V _{GSM}	Transient		±30	V	
I _{D25}	T _c = 25°C (Chip (Capability)	260	А	
L(RMS)	External Lead Cur	rent Limit	200	Α	
I _{DM}	$T_{\rm C} = 25^{\circ}$ C, Pulse	Width Limited by $T_{_{\rm JM}}$	800	Α	
IA	$T_{c} = 25^{\circ}C$		100	Α	
E _{AS}	$T_{\rm C} = 25^{\circ} C$		5	J	
dV/dt	$I_{S} \leq I_{DM}, V_{DD} \leq V_{DS}$	ss, T _J ≤ 175°C	20	V/ns	
P _D	T _C = 25°C		1070	W	
T_{J}			-55 +175	°C	
T _{JM}			175	°C	
T _{stg}			-55 +175	°C	
T,	1.6mm (0.062 in.)	from Case for 10s	300	°C	
T _{SOLD}	Plastic Body for 1	0s	260	°C	
V _{ISOL}	50/60 Hz, RMS	t = 1 minute	2500	٧~	
	$I_{ISOL} \le 1 mA$	t = 1 second	3000	V~	
M _d	Mounting Torque		1.5/13	Nm/lb.in.	
	Terminal Connect	ion Torque	1.3/11.5	Nm/lb.in.	
Weight			30	g	

Symbol	Test Conditions	Characteristic Values				;
$(T_J = 25^{\circ}C, l)$	Unless Otherwise Specified)		Min.	Тур.	Max	
BV _{DSS}	$V_{GS} = 0V, I_D = 3mA$		170			V
$V_{GS(th)}$	$V_{DS} = V_{GS}, I_{D} = 8mA$		2.5		5.0	V
I _{GSS}	$V_{GS} = \pm 20V, V_{DS} = 0V$				±200	nA
I _{DSS}	$V_{DS} = V_{DSS}, V_{GS} = 0V$				50	μА
		$T_J = 150^{\circ}C$			5	mA
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 60A, Note 1$				5.2	mΩ

 $V_{DSS} = 170V$ $I_{D25} = 260A$ $R_{DS(on)} \le 5.2m\Omega$ $t_{rr} \le 150ns$

G = Gate D = DrainS = Source

Either Source Terminal S can be used as the Source Terminal or the Kelvin Source (Gate Return) Terminal.

Features

- International Standard Package
- miniBLOC, with Aluminium Nitride Isolation
- Isolation Voltage 2500 V~
- High Current Handling Capability
- Fast Intrinsic Diode
- Avalanche Rated
- Low R_{DS(on)}

Advantages

- Easy to Mount
- Space Savings
- High Power Density

Applications

- Synchronous Recification
- DC-DC Converters
- Battery Chargers
- Switched-Mode and Resonant-Mode Power Supplies
- DC Choppers
- AC Motor Drives
- Uninterruptible Power Supplies
- High Speed Power Switching Applications

•				racteristi Typ.	acteristic Values Typ. Max.		
g _{fs}		V _{DS} = 10V, I _D = 60A, Note 1	120	190		S	
C _{iss})			45		nF	
\mathbf{C}_{oss}	}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		2890		pF	
\mathbf{C}_{rss}	J			410		рF	
R_{Gi}		Gate Input Resistance		1.96		Ω	
t _{d(on)})	Deciative Cuitabing Times		46		ns	
t,		Resistive Switching Times		170		ns	
$\mathbf{t}_{d(off)}$		$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 100A$		115		ns	
t,	J	$R_{\rm G} = 1\Omega$ (External)		230		ns	
$\mathbf{Q}_{g(on)}$)			640		nC	
\mathbf{Q}_{gs}	}	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 160A$		185		nC	
\mathbf{Q}_{gd}	J			175		nC	
R _{thJC}					0.14	°C/W	
R _{thCS}				0.05		°C/W	

SOT-227B (IXFN) Outline (M4 screws (4x) supplied) SYM INCHES MILLIMETERS HINCHES MILLIMETERS MILL METERS MILL ME

-.002

.004

-0.05

0.1

Source-Drain Diode

Symbol	Test Conditions	Characteristic Values			
$(T_J = 25^{\circ}C)$, Unless Otherwise Specified)	Min.	Тур.	Max.	
Is	$V_{GS} = 0V$			320	Α
I _{SM}	Repetitive, Pulse Width Limited by $T_{_{JM}}$			1280	Α
V _{SD}	$I_{\rm F} = 100 {\rm A}, \ V_{\rm GS} = 0 {\rm V}, \ {\rm Note} \ 1$			1.25	V
t _{rr}				150	ns
Q _{RM}	$I_F = 160A, -di/dt = 100A/\mu s$		0.53		μC
I _{RM}	$V_R = 60V, V_{GS} = 0V$		9.00		Α

Note 1. Pulse test, $t \le 300 \mu s$; duty cycle, $d \le 2\%$.

ADVANCE TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

Fig. 1. Output Characteristics

Fig. 2. Extended Output Characteristics

Fig. 3. Output Characteristics

Fig. 4. $R_{DS(on)}$ Normalized to $I_D = 160A$ Value vs. Junction Temperature

Fig. 5. $R_{DS(on)}$ Normalized to I_D = 160A Value vs.

Drain Current

Fig. 6. Drain Current vs. Case Temperature

IXFN320N17T2

 $\ensuremath{\mathsf{IXYS}}$ Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 13. Resistive Turn-on Rise Time vs. Junction Temperature

Fig. 14. Resistive Turn-on Rise Time vs. Drain Current

Fig. 15. Resistive Turn-on Switching Times vs. Gate Resistance

Fig. 16. Resistive Turn-off Switching Times vs. Junction Temperature

Fig. 17. Resistive Turn-off Switching Times vs. Drain Current

Fig. 18. Resistive Turn-off Switching Times vs. Gate Resistance

Fig. 19. Maximium Transient Thermal Impedance

