Lineare Algebra für Informatik

L.105.96100

Vorlesungsskript

1. Mathematische Grundlagen

1.1. Mengen

1.1.1. Definition

Eine Menge ist eine (gedankliche) Zusammenfassung wohlunterschiedener Objekte, gennant Elemente der Menge.

- Ist M eine Menge, so gilt für jedes Objekt x:
 - entweder $x \in M$ ("x ist Element von M")
 - oder $x \notin M$ ("x ist nicht Element von M").

1.1.2. Beispiel (Beschreibung von Mengen)

- (1) Aufzählung
 - (a) Menge der Früchte = {Apfel, Birne, Pflaume, ...}
 - (b) $\mathbb{N} := \{1, 2, 3, ...\}$ natürliche Zahlen
 - (c) $\mathbb{Z} := \{..., -2, -1, 0, 1, 2, ...\}$ ganze Zahlen
 - (d) $\emptyset = \{\}$ leere Menge

Es kommt nicht auf Reihenfolge und Wiederholung an:

$$\{1,2,3\} = \{3,1,3,2,3,1\}$$

- (2) Angabe einer charakteristischen Eigenschaft
 - (a) $\mathbb{N}_0 = \{ n \mid n \in \mathbb{Z} \text{ und } n \ge 0 \} = \{ n \in \mathbb{Z} \mid n \ge 0 \}$
 - (b) $\{n \in \mathbb{N} \mid n \text{ ist eine Primzahl}\} = \{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, ...\}$

$$= \{2, 3, 5, 7, 11, 13, ...\}$$

- (3) Beschreibung der Elemente:
 - (a) $\mathbb{Q} := \left\{ \frac{a}{b} \mid a, b \in \mathbb{Z} \text{ und } b \neq 0 \right\}$
 - (b) $\{2n+1 \mid n \in \mathbb{Z}\}$ ungerade Zahlen
 - (c) \mathbb{R} = Menge der reellen Zahlen (s. Analysis)

1.1.3. Notation

Seien M und N Mengen. N heißt Teilmenge von M, geschrieben $n \subseteq M$, wenn gilt: wenn $x \in N$, dann gilt $x \in M$.

Abbildung 1: Teilmenge

Falls $N \subseteq M$, definiere $N^c = \overline{N} := \{x \in M \mid x \notin N\}$.

Abbildung 2: Mengenkomplement

Schreibe M=N, falls $N\subseteq M$ und $M\subseteq N$.

1.1.4. Definition

(i) $M \cup N := \{x \mid x \in M \text{ oder } x \in N\}$ Vereinigung

Abbildung 3: Vereinigung

(ii) $M \cap N \coloneqq \{x \mid x \in M \text{ und } x \in N\}$ Durchschnitt

Abbildung 4: Durchschnitt

M und N heißen disjunkt, wenn $M \cap N = \emptyset$.

Abbildung 5: Disjunkte Mengen

Eine disjunkte Vereinigung $M \cup N$ oder $M \sqcup N$ bedeutet $M \cup N$ unter der Bedingung $M \cap N = \emptyset$.

(iii) $M \setminus N \coloneqq \{x \mid x \in M \text{ und } x \not \in N\}$ Differenz

Abbildung 6: Differenz

Falls
$$N \subseteq M$$
, dann gilt $M \setminus N = N$.

(iv)
$$M \times N := \{(m, n) \mid m \in M \text{ und } n \in N\}$$

Dabei ist (m, n) ein geordnetes Paar; es gilt (m, n) = (m', n') genau dann, wenn m = m' und n = n'.

Abbildung 7: Kartesisches Produkt

Beispiel:

$$\{1,2,3\} \times \{a,b\} = \{(1,a),(1,b),(2,a),(2,b),(3,a),(3,b)\}$$

Allgemeiner: Für Mengen $M_1, M_2, ..., M_n$ (mit $n \in \mathbb{N}$) setze

$$M_1\times M_2\times...\times M_n:=\prod_{i=1}^n M_i$$

$$:=\{(m_1,m_2,...,m_n)\ |\ m_i\in M; \text{für alle }i=1,2,...,n\}$$

1.2. Aussagen

1.2.1. Definition

Eine Aussage ist ein Satz der entweder wahr (w) oder falsch (f) ist.

1.2.2. Beispiel

- (i) "Alle Gummibärchen sind grün" (falsche) Aussage
- (ii) "Wenn es regnet, wird die Erde nass" (wahre) Aussage
- (iii) "x + 5 = 2" ist keine Aussage
- (iv) "Es gibt ein $x \in \mathbb{N}$ mit x + 5 = 2" (falsche) Aussage
- (v) "Bitte stehen Sie auf" keine Aussage

$$\begin{array}{c|c}
A & \neg A \\
\hline
w & f \\
\hline
f & w
\end{array}$$

A	B	$A \wedge B$	$A \lor B$	$A \Rightarrow B$	$A \Leftrightarrow B$
w	w	w	w	w	w
w	f	f	w	f	f
f	W	f	w	w	f
f	f	f	f	w	w

1.2.3. Satz

Seien A, B, C Aussagen. Dann gilt

(i)
$$\underbrace{A \vee \neg A}_{\text{Tautologie}}$$
 ist wahr; $\underbrace{A \wedge \neg A}_{\text{Widerspruch}}$ ist falsch

- (ii) $\neg(\neg A) \Leftrightarrow A$
- (iii) $\neg (A \land B) \Leftrightarrow \neg A \lor \neg B$
- (iv) $\neg (A \lor B) \Leftrightarrow \neg A \land \neg B$
- (v) $A \land (B \lor C) \Leftrightarrow (A \land B) \lor (A \land C)$
- (vi) $A \lor (B \land C) \Leftrightarrow (A \lor B) \land (A \lor C)$
- (vii) $A \Rightarrow B \Leftrightarrow \neg A \lor B$
- (viii) $A \Rightarrow B \Leftrightarrow \neg B \Rightarrow \neg A (\Leftrightarrow \neg A \Rightarrow \neg B)$
- (ix) $A \Leftrightarrow B \Leftrightarrow \neg A \Leftrightarrow \neg B$
- (x) $\neg (A \Rightarrow B) \Leftrightarrow A \land \neg B$

1.2.4. Definition

Sei M eine Menge, und für jedes $x \in M$ sei A(x) eine Aussage.

- (i) " $\forall x \in M : A(x)$ " bedeutet: "Für jedes x in M gilt A(x)." (Allquantor)
- (ii) " $\exists x \in M : A(x)$ " bedeutet: "Es existiert mindestens ein x in M, sodass A(x) gilt." (Existenzquantor)

1.2.5. Bemerkung (Verneinung von Quantoren)

- (a) $\neg(\forall x \in M : A(x)) \Leftrightarrow \exists x \in M : \neg A(x)$
- (b) $\neg(\exists x \in M : A(x)) \Leftrightarrow \forall x \in M : \neg A(x)$

1.3. Abbildungen

1.3.1. Definition

Seien X,Y zwei Mengen. Eine Abbildung $f:X\to Y$ ist ein Vorschrift, die jedem $x\in X$ genau ein $f(x)\in Y$ zuordnet: $x\mapsto f(x)$. x heißt Definitionsbereich und Y Wertebereich von f.

Abbildung 8: Abbildungen

Die Menge $\Gamma_f = \{(x,y) \in X \times Y \mid y = f(x)\}$ heißt Graph von f.

Abbildung 9: Graph von Abbildung f

Eine Abbildung $f:X\to Y$ ist ein Tripel (X,Y,Γ) , wobei X,Y Mengen sind und $\Gamma\subseteq X\times Y$ eine Teilemenge mit der folgenden Eigenschaft:

$$\forall x \in X : \exists ! y \in Y : (x, y) \in \Gamma$$

1.3.2. Bemerkung

Zwei Abbildungen $f: X \to Y, x \mapsto f(x)$ und $g: X' \to Y', x' \mapsto g(x')$ sind genau dann gleich, wenn X = X', Y = Y' und f(x) = g(x) für alle $x \in X(=X')$.

1.3.3. Beispiel

(i) $id_X: X \to X, x \mapsto x = id_X(x)$ heißt Identität von X.

Abbildung 10: Identitätsabbildung id $_X$

- (ii) $\emptyset \to X$ ist eine Abbildung: Aber, falls $X \neq \emptyset$, dann existiert keine Abbildung $X \to \emptyset$. Der Graph zu $\emptyset \to X$ ist die leere Menge: $\emptyset \times X = \emptyset \quad (\emptyset, X, \emptyset)$.
- (iii) $\mathbb{Z} \to \mathbb{R}, n \mapsto n^2$ und $\mathbb{Z} \to \mathbb{N}_0, n \mapsto n^2$ sind verschiedene Abbildungen.
- (iv) $\mathbb{N} \to \mathbb{R}, n \mapsto \pm \sqrt{n}$ ist keine Abbildung $\mathbb{Z} \to \mathbb{R}, n \mapsto \sqrt{n}$ ist keine Abbildung

(v)
$$f: \mathbb{R} \to \mathbb{R}, x \mapsto f(x) \coloneqq \begin{cases} 1 \text{ falls } x \in \mathbb{Q} \\ 0 \text{ falls } x \notin \mathbb{Q} \end{cases}$$

Allgemein: $N \subseteq \mathbb{R}$ Teilemenge,

$$\mathrm{char}_N:\mathbb{R}\to\mathbb{R}, x\mapsto \begin{cases} 1 \text{ falls } x\in N\\ 0 \text{ sonst} \end{cases}$$

Abbildung 11: Abbildungsbeispiel char_N

1.3.4. Definition

Sei $f:X\to Y$ eine Abbildung, $A\subseteq X$ und $B\subseteq Y$ Teilmengen.

(a)
$$f(A) := \{ y \in Y \mid \exists a \in A : f(a) = y \}$$

$$= \{ f(a) \mid a \in A \} \subseteq Y$$

Abbildung 12: Das Bild einer Abbildung

(b)
$$f^{-1}(B) := \{x \in X \mid f(x) \in B\}$$

Abbildung 13: Das Urbild einer Abbildung

- (c) $f|_A:A\to Y, a\mapsto f(x)$ heißt Einschränkung von f auf/nach A.
 - $Y \supseteq f(A)$ heißt Bild von A unter f.
 - $X \supseteq f^{-1}(B)$ heißt Urbild von B unter f.

Beispiel:

$$f: \mathbb{R} \to \mathbb{R}, x \mapsto \sin(x)$$

Abbildung 14: Beispiel für Bild und Urbild

$$f(\mathbb{R}) = [-1;1] \coloneqq \{x \in \mathbb{R} \mid -1 \le x \le 1\}$$

$$f^{-1}(\{0\}) = \{0, \pm \pi, \pm 2\pi, ..., \pm k\pi, ...\}, \quad k \in \mathbb{Z}$$

1.3.5. Definition

Sei $f: X \to Y$ eine Abbildung

- (i) f heißt injektiv, falls: Für alle $x, x' \in X$ mit $x \neq x'$ gilt $f(x) \neq f(x')$.
 - $\Leftrightarrow \text{ Für alle } x,x'\in X \text{ gilt: } f(x)=f(x')\Rightarrow x=x'$
 - \Leftrightarrow Für alle $y \in Y$ hat $f^{-1}(\{y\})$ höchstens ein Element $(|f^{-1}(\{y\})| \le 1)$

Alternative schreibweise: $f: X \hookrightarrow Y$

- (ii) f heißt surjektiv, falls $f(X) \subseteq Y$
 - $\Leftrightarrow \text{ F\"{u}r alle } y \in Y \text{ hat } f^{-1}(\{y\}) \text{ mindestens ein Element } (\left|f^{-1}(\{y\})\right| \geq 1)$

Alternative schreibweise: $f: X \twoheadrightarrow Y$

- (iii) f heißt bijektiv, falls f injektiv und surjektiv ist
 - \Leftrightarrow Für alle $y \in Y$ hat $f^{-1}(\{y\})$ genau ein Element $(|f^{-1}(\{y\})| = 1)$

Beispiel:

(i)
$$\sin: \mathbb{R} \to \mathbb{R}$$

ist weder injektiv noch surjektiv

(ii)
$$\sin: \mathbb{R} \to [-1; 1]$$

ist surjektiv, aber nicht injektiv

(iii)
$$\sin: \left[\frac{-\pi}{2}, \frac{\pi}{2}\right] \to [-1; 1]$$

ist bijektiv (s. Analysis)

1.3.6. Definition

Seien $f:X\to Y$ und $g:Y\to Z$ Abbildungen. Dann heißt: $g\circ f:X\to Z, x\mapsto (g\circ f)(x):=g(f(x))$ die Komposition (Verknüpfung) von f und g.

1.3.7. Bemerkung

 \circ ist assoziativ. Ist $h:Z \to A$ eine weitere Abbildung, so gilt $h\circ (g\circ f)=(h\circ g)\circ f$. Denn für alle $x\in X$ gilt:

$$(h \circ (g \circ f))(x) = h((g \circ f)(x))$$

$$= h(g(f(x)))$$

$$= (h \circ g)(f(x))$$

$$= ((h \circ g) \circ f)(x)$$

1.3.8. Beispiel

(i) Ist
$$f: X \to Y$$
 eine Abbildung, so gilt $f \circ id_X = f = id_Y \circ f: X \to Y$

(ii)
$$f:\mathbb{R}\to\mathbb{R}, x\mapsto \sin(x)-1 \quad g:\mathbb{R}\to\mathbb{R}, x\mapsto x^2$$

$$(f\circ g)(x)=\sin(x^2)-1$$

$$(g\circ f)(x)=(\sin(x)-1)^2$$

Im Allgemeinen gilt: $f \circ g \neq g \circ f$

1.3.9. Satz

Für eine Abbildung $f: X \to Y$ sind äquivalent:

- (a) f ist bijektiv
- (b) Es existiert eine Abbildung $g:Y\to X$ derart, dass $g\circ f=\mathrm{id}_X:X\to X$ und $f\circ g=\mathrm{id}_Y:Y\to Y$