HI221/HI221GW 用戶手冊

HI221無線傳輸模組及接收器, Rev 0.2


```
HI221/HI221GW 用戶手冊
  簡介
  特性
     板載傳感器
     數據處理
     通訊接口及供電
     其他
  硬體及尺寸(節點)
     硬體參數
  性能指標
     姿態角輸出精度
     陀螺儀
     加速度計
     磁傳感器參數
     模組數據接口參數(UART)
     模組數據接口參數(2.4G RF)
  參考系定義
  串口通訊協議
     數據包格式
     出廠默認寄存器
     數據幀結構示例
  通用AT指令
          AT+ID
          AT+URFR
          AT+INFO
          AT+ODR
          AT+BAUD
          AT+EOUT
          AT+RST
          AT+TRG
          AT+SETPEL
          AT+MODE
          AT+GYRCTL
          AT+GWID
          AT+GWCFG
  附錄A - 四元數-歐拉角轉換
     四元數基礎
     四元數與旋轉矩陣,歐拉角轉換
        四元數->旋轉矩陣
        四元數->歐拉角
        歐拉角->四元數
        歐拉角->旋轉矩陣(n->b)
        旋轉矩陣(n->b) 到歐拉角
```

附錄B-韌體升級與恢復出廠設置

簡介

H221/HI221GW是超核電子推出的一款低成本、高性能、小體積、低延時的慣性測量單元(IMU)·本產品集成了三軸加速度計、三軸陀螺儀以及一款低功耗微處理器。可輸出經過傳感器融合算法計算得到的基於當地地理坐標的三維方位數據,包含橫滾角、俯仰角以及以相對的航向角。同時也可以輸出原始的傳感器數據。HI221由HI221GW(接收機)和HI221(姿態模組)組成。一個HI221GW和最多8個HI221模組組成星形網絡結構。每個HI221可輸出最高達100Hz的實時姿態數據。

特性

板載傳感器

- 三軸陀螺儀, 最大量程: ±2000%s 輸出速率 2000Hz
- 三軸加速度計,最大量程:±8g 輸出速率 125Hz
- 三軸地磁場傳感器,最大量程:800mG內部採樣率100Hz

數據處理

- 加速度出廠前經過校準
- 數據融合算法計算並輸出地理坐標系下的旋轉四元數及歐拉角

通訊接口及供電

• 串口(兼容TTL可直接與5V或3.3V串口設備連接)

• 供電電壓: 3.3 (+/- 100 mV)

• 最大峰值功耗:120mA(RFTx發射)

其他

• PC端上位機程序,提供實時數據顯示,波形,校準及excel 數據記錄功能

• 多項模組參數用戶可配置

硬體及尺寸(節點)

硬體參數

參數	值
輸出數據接口	UART(TTL 1.8V - 3.3V) 或者 2.4RF Radio
工作電壓	3.3V (± 100mV)
工作電流	30mA
待機電流	20uA
充電後平均工作時長	8h
溫度範圍	-20°C - 85 °C
最大線性加速度	0 - 115 m/s^2
尺寸	20 x 38 x 8.5mm (W x L x H)
板載傳感器	三軸加速度計三軸陀螺儀三軸地磁場傳感器

性能指標

姿態角輸出精度

姿態角	典型值	最大值
橫滾角\俯仰角 - 靜態	0.2°	0.4°
橫滾角\俯仰角 - 動態	0.5°	2.0°
航向角	-	-

陀螺儀

參數	值
測量範圍	±2000°/s
非線性度	±0.1% (25°最佳)
噪聲密度	$0.08^{\circ}/s/\sqrt{Hz}$
採樣率	2000Hz

加速度計

參數	值
測量範圍	±8G
非線性度	±0.5% (25°最佳)
最大零點偏移	10mG(校準後)
噪聲密度	$250 uG\sqrt{Hz}$
採樣率	400Hz

磁傳感器參數

參數	值
測量範圍	±8Gauss
非線性度	±0.1%
採樣率	100Hz

模組數據接口參數(UART)

參數	值
串口輸出波特率	4800/9600/115200/460800可選
幀輸出速率	1 - 500Hz

模組數據接口參數(2.4G RF)

參數	值
空中波特率	1Mbps/2Mbps可選
幀輸出速率	1- 100Hz
接收器最大連接模組數	8

參考系定義

本產品採用右手(RH, Right-Hand)坐標系。輸出的四元數及歐拉角為傳感器坐標系到慣性坐標系(世界坐標系)的旋轉。其中歐拉角旋轉順序為ZYX(先轉Z軸·再轉Y軸·最後轉X軸)旋轉順序·歐拉角具體定義如下:

本產品使用北西天(North-West-Up NWU) 坐標系統,即視為模組的地理坐標系(世界坐標系)定義如下:

- X 軸正方向指向北
- Y 軸正方向指向西
- Z 軸正方向指向天

當採用 NWU 系時,如果將模組視為飛行器的話。X 軸應視為機頭方向。當傳感器系與慣性系重合時,歐拉角的理想輸出為:Pitch = 0° , Roll = 0° , Yaw = 0°

串口通訊協議

數據包格式

模組上電後,模組默認按100Hz (出廠默認輸出速率)輸出數據包,數據包格式如下:

其中:

域	值	長度 (字節)	
PRE	0x5A	1	固定為Ox5A
TYPE	0xA5	1	固定為OxA5 代表數據幀
LEN	1- 65535	2	幀中數據域的長度。LSB(低字節在前),長度表示數據域的長度,不包含PRE,TYPE,LEN,CRC字段。
CRC	-	2	除CRC 本身外其餘所有幀數據的16 位CRC 校驗和。LSB(低字節在前)
PAYLOAD	-	1-256	一幀攜帶的數據

CRC實現函數:

```
currectCrc: previous crc value, set 0 if it's first section
 2
 3
        src: source stream data
 4
        lengthInBytes: length
 5
    static void crc16_update(uint16_t *currectCrc, const uint8_t *src, uint32_t lengthInBytes)
 6
 7
 8
        uint32_t crc = *currectCrc;
 9
        uint32_t j;
         for (j=0; j < lengthInBytes; ++j)</pre>
10
11
12
            uint32_t i;
            uint32_t byte = src[j];
13
            crc ^= byte << 8;
14
15
            for (i = 0; i < 8; ++i)
16
17
                uint32_t temp = crc << 1;
                 if (crc & 0x8000)
18
19
20
                     temp ^= 0x1021;
21
22
                crc = temp;
23
24
25
         *currectCrc = crc;
26
```

• PAYLOAD(數據域):

PAYLOAD 由若干個**寄存器數據**組成。每個寄存器數據包含:寄存器地址(REG_ADDR)和寄存器數據 (DATA) 兩部分。寄存器地址決定了數據的類型及長

度, DATA 為寄存器數據內容。模組支持的寄存器如下:

寄存器地址 (REG_ADDR)	寄存器長度(DATA長度, 單 位字節)	名稱	單位	支持該數據包 的產品
0x90	1	用戶ID	無	HI22X
0xA0	6	加速度	0.001G[^G]	HI22X
0xA5	6	線性加速度	0.001G	HI22X
0xB0	6	角速度	0.1%s	HI22X
0xC0	6	磁場強度	0.001Gauss	HI22X
0xD0	6	歐拉角 (整形輸出)	度	HI22X
0xD9	12	歐拉角(浮點輸 出)	度	HI22X
0xD1	16	四元數	N/A	HI22X
0xF0	4	氣壓	Pa	N/A
0x71	128-256字節可變	無線節點四元數集合	無	HI221GW(接 收機)
0x72	48-96字節可變	無線節點歐拉角集合	同0xD0	HI221GW(接 收機)
0x75	48-96字節可變	無線節點加速度集合	同0xA0	HI221GW(接 收機)
0x78	48-96字節可變	無線節點角速度集合	同0xB0	HI221GW(接 收機)
0x61	3	無線數據幀拓展標識	N/A	HI221GW(接 收機)

• 0x90 用戶ID

• 0xA0

加速度·格式為int16·共三個軸·每個軸占2個字節·X、Y、Z三軸共6個字節·LSB。傳感器輸出的原始加速度

• 0xA5

性加速度·格式為int16·共三個軸·每個軸占2個字節·X、Y、Z 三軸共6個字節·LSB。地理坐標系下去除重力份量的加速度值

0xB0

角速度·格式為int16·共三個軸·每個軸占2個字節·X、Y、Z三軸共6個字節·LSB。傳感器輸出的角速度

0xC0

磁場強度·格式為int16·共三個軸·每個軸占2個字節·X、Y、Z 三軸共6個字節·LSB。傳感器輸出的磁場強度

• 0xD0

歐拉角整形格式,格式為int16,共三個軸,每個軸占2個字節,順序為Pitch/Roll/Yaw。LSB。接收到Roll, Pitch 為物理值乘以100 後得到的數值,Yaw 為乘以10 得到的數值舉例:當接收到的Yaw = 100 時,表示航向角為 10°

0xD9

浮點格式輸出的歐拉角。格式為float,共3個值(Pitch/Roll/Yaw),每個值占4字節(float型單精度

浮點數),LSB。

• 0XD1

四元數·格式為float·共4個值·順序為:WXYZ.。每個值占4字節(float)·整個四元數為4個float· 共16字節·LSB。

• 0XF0

氣壓。格式為float。(只針對有氣壓傳感器的產品)

• 0x71

節點四元數集合. 所有節點的四元數·每個節點16字節·從0到最後一個節點順序排列。每個節點4個浮點數·分別為WXYZ, 每個數用float 型表示,每個float 4字節。float為LSB

0x72

)節點歐拉集合. 所有節點的歐拉角,每個節點6字節,從0到最後一個節點順序排列。每個節點歐拉為角整形格式,格式為int16,共三個軸,每個軸占2 個字節,順序為Pitch/Roll/Yaw。LSB。接收到Roll, Pitch 為物理值乘以100 後得到的數值·Yaw 為乘以10 得到的數值舉例:當接收到的Yaw = 100時,表示航向角為10°

• 0x75

節點加速度集合. 每個節點6字節,從0到最後一個節點順序排列。每個節點3個int16_t型數據。分別為XYZ的加速度。每個int16_t 占2字節,LSB

0x78

節點角速度集合. 每個節點6字節,從0到最後一個節點順序排列。每個節點3個 $int16_t$ 型數據。分別 為XYZ的角速度。每個 $int16_t$ 占2字節,LSB

0x61

數據幀拓展資訊標識,共3個字節:

數據幀拓展資訊字節偏移	值	說明
0	-	保留
1	GWID	接收機GWID
2	CNT	此幀包含無線節點數: 1-16

出廠默認寄存器

出廠默認一幀中攜帶寄存器數據定義如下:

HI226/HI229/HI221節點:

順序	數據包	說明
1	0x90	用戶ID
2	0xA0	加速度
3	0xB0	角速度
4	0xC0	磁場強度
5	0xD0	歐拉角(整形輸出)
6	0xF0	氣壓

HI221接收機:

順序	寄存器	說明
1	0x71	四元數
2	0x75	加速度

數據幀結構示例

```
假設輸出的數據幀帶有 AO, BO, DO 寄存器, 使用串口助手採樣一幀數據如下所示:
```

5A A5 15 00 A9 8B A0 EA FF D0 03 45 FF B0 00 00 00 00 00 00 B7 00 6F 27 F5 FF

其中:

5A A5 幀頭

1500幀數據域長度: (0x00<<8) + 0x15 = 21

A9 8B幀CRC校驗值: (0x8B<<8) + 0xA9 = 0x8BA9

A0 EA FF D0 03 45 FF 加速度數據包, A0為加速度寄存器地址, 三軸加速度為:

 $AccX = (int16_t)((0xFF << 8) + 0xEA) = -22$

 $AccY = (int16_t)((0x03 << 8) + 0xD0) = 976$

 $AccZ = (int16_t)((0xFF << 8) + 0x45) = -187$

B0 00 00 00 00 00 00 角速度數據包,B0為角速度寄存器地址, 三軸角速度全為0

D0 87 00 6F 27 F5 FF 歐拉角數據包, D0為歐拉角寄存器地址

Pitch= $(int16_t)((0x00 << 8) + 0x87) / 100 = 1.35^{\circ}$

Roll= $(int16_t)((0x27 << 8) + 0x6F) / 100 = 100.95^{\circ}$

Yaw = $(int16_t)((0xFF << 8) + 0xF5) / 10 = -1.1^{\circ}$

計算CRC校驗值:

記上面接收到的一幀數據存為C語言uint8_t 數組 buf:

```
1
        uint16_t payload_len;
2
        uint16_t crc;
3
4
        crc = 0;
5
        payload_len = buf[2] + (buf[3] << 8);
6
        /* calulate 5A A5 and LEN filed crc */
7
        crc16_update(&crc, buf, 4);
8
9
10
        /* calulate payload crc */
11
        crc16_update(&crc, buf + 6, payload_len);
```

最後計算得 CRC值為 0x8BA9, 與幀攜帶CRC值相同, 幀校驗正確。

通用AT指令

模組採用AT 指令集配置/查看模組參數。AT 指令總以ASCII 碼AT 開頭,後面跟控制字符,最後以回車換行 $\rrline{1}$ $\rrline{1}$

Hi Module Setting ×

通用模組 AT指令如下

指令	功能	掉電保存 (Y)	備註	支持該指令的產品
AT+ID	設置模組用戶ID	Υ	復位/重啟後生 效	HI22X
AT+URFR	旋轉模組傳感器坐標系	Υ	復位/重啟後生 效	HI22X
AT+INFO	打印模組資訊	N	立即生效	HI22X
AT+ODR	設置模組串口輸出幀頻 率	Υ	復位/重啟後生 效	HI22X
AT+BAUD	設置串口波特率	Υ	復位/重啟後生 效	HI22X
AT+EOUT	數據輸出開關	N	立即生效	HI22X
AT+RST	復位模組	N	立即生效	HI22X
AT+TRG	單次輸出觸發	N	立即生效	HI226/HI229
AT+SETPEL	設置輸出數據包	Υ	復位/重啟後生 效	HI22X
AT+MODE	設置模組工作模式	Υ	復位/重啟後生 效	HI229/HI221

指令	功能	掉電保存 (Y)	備註	支持該指令的產品
AT+GYRCTL	設置陀螺儀限幅濾波器 參數	Υ	復位/重啟後生 效	HI22X
AT+GWID	設置無線網關ID	Υ	復位/重啟後生 效	HI221GW(接收機)/HI221 節點
AT+GWCFG	設置接收機無線網絡屬 性	Υ	復位/重啟後生 效	HI221GW(接收機)

AT+ID

設置模組用戶ID

例 AT+ID=1

AT+URFR

某些情況下傳感器需要傾斜垂直安裝·這時候需要旋轉傳感器坐標系·這條指令提供了旋轉傳感器坐標系的接口:

AT+URFR=C00,C01,C02,C10,C11,C12,C20,C21,C22

其中 C_{nn} 支持浮點數

$$\left\{ \begin{matrix} X \\ Y \\ Z \end{matrix} \right\}_{U} = \left[\begin{matrix} C00 & C01 & C02 \\ C10 & C11 & C12 \\ C20 & C21 & C22 \end{matrix} \right] \cdot \left\{ \begin{matrix} X \\ Y \\ Z \end{matrix} \right\}_{B}$$

其中
$$\left\{ egin{aligned} X \\ Y \\ Z \end{array} \right\}_U$$
 為旋轉後的 傳感器坐標系下 傳感器數據 $\cdot \left\{ egin{aligned} X \\ Y \\ Z \end{array} \right\}_B$ 為旋轉前 傳感器坐標系下 傳感器數據

下面是幾種常用旋轉舉例:

- 新傳感器坐標系為 繞原坐標系X軸 旋轉 90°, 輸入命令: AT+URFR=1,0,0,0,0,1,0,-1,0
- 新傳感器坐標系為 繞原坐標系X軸 旋轉-90° · 輸入命令:AT+URFR=1,0,0,0,0,-1,0,1,0
- 新傳感器坐標系為 繞原坐標系X軸 旋轉180°· 輸入命令:AT+URFR=1,0,0,0,-1,0,0,0,-1
- 新傳感器坐標系為 繞原坐標系Y軸 旋轉 90°, 輸入命令: AT+URFR= 0,0,-1,0,1,0,1,0,0
- 新傳感器坐標系為 繞原坐標系Y軸 旋轉-90°, 輸入命令: AT+URFR= 0,0,1,0,1,0,-1,0,0
- 新傳感器坐標系為 繞原坐標系Y軸 旋轉180°, 輸入命令: AT+URFR= -1,0,0,0,1,0,0,0,-1
- 恢復默認值:AT+URFR=1,0,0,0,1,0,0,0,1

AT+INFO

打印模組資訊,包括產品型號,版本,韌體發佈日期等。AT+INFO可以拓展二級指令實現更多資訊的查詢

INFO二級拓展指令	功能	示例
CAL	顯示模組內部校準參數	AT+INFO=CAL
RF	顯示無線設備參數	AT+INFO=RF
VER	顯示詳細版本資訊	AT+INFO=VER

AT+ODR

設置模組串口輸出速率。 掉電保存, 復位模組生效

例 設置串口輸出速率為100Hz: AT+ODR=100

AT+BAUD

設置串口波特率,可選值:4800/9600/115200/256000/460800

例 AT+BAUD=115200

!!! note "注意"

- 使用此指令需要特別注意,輸入錯誤波特率後可能會導致無法和模組通訊
- 波特率參數設置好後掉電保存,復位模組生效。上位機的波特率也要做相應修改。
- 升級韌體時,需要切換回115200波特率。

AT+EOUT

串口輸出開關

例打開串口輸出AT+EOUT=1 關閉串口輸出AT+EOUT=0

AT+RST

復位模組

例 AT+RST

AT+TRG

觸發模組輸出一幀數據,可以配合AT+ODR=O來實現單次觸發輸出。

例 AT+TRG

AT+SETPEL

設置輸出協議:

模組數據幀中的數據包組成可使用AT指令配置,格式為 $AT+SETPTL=<ITEM_ID>,<ITEM_ID>...$ 一幀輸出可包含最多8個數據包。

例配置模組輸出加速度・角速度,整形格式歐拉角和四元數的指令為:AT+SETPTL=A0,B1,D0,D1

Hi Module Setting ×

AT+MODE

設置模組工作模式

例

- 設置模組工作在6軸模式(無磁校準) AT+MODE=0
- 設置模組工作在9軸模式(地磁場傳感器參與航向角校正) AT+MODE=1

AT+GYRCTL

設置陀螺限幅濾波器閾值(出廠默認值1.0)

例

• 設置陀螺限幅濾波器限幅閾值為1.5%: AT+GYRCTL=LMF,1.5

陀螺限幅濾波主要為解決陀螺零偏問題,當模組靜止經受機械振動時(比如安裝在機器上,機器人上電待機但不移動時會有電機空載振動),陀螺航向角會因為Z軸振動而緩慢飄移。當陀螺Z軸小於設定閾值時,模組則會強制把Z軸數值歸O.

限幅濾波可以解決由於陀螺零偏或小範圍振動時帶來的航向角飄移問題,但缺點是小於設定閾值的轉動會無法檢測。一般情況下,閾值設定範圍應在0.1-3.5之間。

限幅閾值過高會導致小於閾值的轉動角速度無法檢測

限幅閾值過低會導致陀螺零偏無法校準,航向角隨時間緩慢飄移。

AT+GWID

可通過AT+GWID指令配置,GWID屬性決定了接收器和節點的RF頻率,只有節點的GWID和接收器的GWID相同時,模組和接收器直接才能通訊。GWID相當於無線網段,當在同一地點使用多個接收機組成多個星形網絡時,必須保證每個接收器的GWID(網段)不同。

例 將一個接收器設置為GWID=3· 並將3個模組的自身ID設置為 0.1.2 並連接到這個接收器上:

接收機配置:AT+GWID=3

節點O配置: AT+GWID=3 AT+ID=0 節點1配置: AT+GWID=3 AT+ID=1 節點2配置: AT+GWID=3 AT+ID=2

AT+GWCFG

配置接收機支持的節點數和無線通訊頻率。接收機默認支持8個節點,每個節點100Hz通訊頻率。通訊 頻率*節點數收到RF帶寬的限制,錯誤的配置將會導致無法輸出數據。推薦的配置如下:

配置選項	通訊頻率(Hz,每個節點)	支持的節點數
1(出廠默認)	100	8
2	200	4
3	30	16

例 配置接收機支持的最大節點數為16,每個節點接收頻率為30Hz,依次輸入:

AT+GWCFG=FRQ, 30

AT+GWCFG=CNT, 16

附錄A - 四元數-歐拉角轉換

四元數基礎

四元數是一個四維空間上的一點,使用一個實數和三個虛數來代表: $q \in \mathbb{R}^4 = \mathbb{H}$ 四元數有如下幾種常用的表示方法:

複數表示	向量表示	四元數表示法1	四元數表示法2
$q=q_0+\mathrm{i}q_1+\mathrm{j}q_2+\mathrm{k}q_3$	$egin{aligned} q = [q_0, \mathbf{q}] = egin{bmatrix} q_0, egin{pmatrix} q_1 \ q_2 \ q_3 \end{pmatrix} \end{bmatrix}$	$q = [q_0, q_1, q_2, q_3]$	$q=\left[q_{w},q_{x},q_{y},q_{z} ight]$

其中:

$$i^2=j^2=k^2=ijk=-1$$

$$ij=k=-ji,\quad jk=i=-kj,\quad ki=j=-ik$$

四元數乘法:

$$\mathbf{p}\otimes\mathbf{q} = egin{bmatrix} p_wq_w - p_xq_x - p_yq_y - p_zq_z \ p_wq_x + p_xq_w + p_yq_z - p_zq_y \ p_wq_y - p_xq_z + p_yq_w + p_zq_x \ p_wq_z + p_xq_y - p_yq_x + p_zq_w \end{bmatrix}$$

一個單位四元數總是可以表示為這種這種形式: $q_R(\alpha,\mathbf{u}) = \left[\cos\frac{\alpha}{2},\sin\frac{\alpha}{2}\cdot\mathbf{u}\right]$ 其中 α 是旋轉角度 \cdot $\mathbf{u} \in \mathbb{R}^3$ 為旋轉軸 \cdot 且 $\|\mathbf{u}\| = 1$.

四元數與旋轉矩陣,歐拉角轉換

四元數->旋轉矩陣

(對應四元數 q_n^b 代表從n系到b系的**坐標**變換矩陣, q_n^b 也可以理解為從b系到n系的**坐標系**的變換,前半句說的是"坐標變換",後半句說的是"坐標系變換",請注意兩者區別。

$$R_n^b = egin{bmatrix} q_0^2 + q_1^2 - q_2^2 - q_3^2 & 2\left(q_1q_2 + q_0q_3
ight) & 2\left(q_1q_3 - q_0q_2
ight) \ 2\left(q_1q_2 - q_0q_3
ight) & q_0^2 - q_1^2 + q_2^2 - q_3^2 & 2\left(q_2q_3 + q_0q_1
ight) \ 2\left(q_1q_3 + q_0q_2
ight) & 2\left(q_2q_3 - q_0q_1
ight) & q_0^2 - q_1^2 - q_2^2 + q_3^2 \end{bmatrix}$$

四元數->歐拉角

旋轉矩陣,四元數和歐拉角是表示旋轉的三種常用方式,其中另外兩種表示形式轉換為歐拉角時,必須 先指定歐拉角旋轉順序。本產品使用"ZYX"旋轉順序,即先旋轉航向角,然後俯仰角,最後橫滾角: 轉換公式為:

$$\begin{bmatrix} \phi(\texttt{橫滾}) \\ \theta(\texttt{∰仰}) \\ \psi(\texttt{ឥ亩}) \end{bmatrix} = \begin{bmatrix} \operatorname{atan} 2 \left(2q_2q_3 + 2q_0q_1, q_3^2 - q_2^2 - q_1^2 + q_0^2 \right) \\ -\operatorname{asin} (2q_1q_3 - 2q_0q_2) \\ \operatorname{atan} 2 \left(2q_1q_2 + 2q_0q_3 \right), q_1^2 + q_0^2 - q_3^2 - q_2^2 \right) \end{bmatrix}$$

歐拉角->四元數

記 $s_{\phi} = \sin \frac{\phi}{2}, c_{\phi} = \cos \frac{\phi}{2}$,以此類推:

$$\mathbf{q} = egin{bmatrix} c_{\phi/2}c_{ heta/2}c_{\psi/2} + s_{\phi/2}s_{ heta/2}s_{\psi/2} \ -c_{\phi/2}s_{ heta/2}s_{\psi/2} + c_{ heta/2}c_{\psi/2}s_{\phi/2} \ c_{\phi/2}c_{\psi/2}s_{ heta/2} + s_{\phi/2}c_{ heta/2}s_{\psi/2} \ c_{\phi/2}c_{\psi/2}s_{ heta/2} - s_{\phi/2}c_{\psi/2}s_{ heta/2} \end{pmatrix}$$

歐拉角->旋轉矩陣(n->b)

$$R_n^b = egin{bmatrix} c_ heta c_\psi & c_ heta s_\psi & -s_ heta \ s_\phi s_ heta c_\psi - c_\phi s_\psi & s_\phi s_ heta s_\psi + c_\phi c_\psi & c_ heta s_\phi \ c_\phi s_ heta c_\psi + s_\phi s_\psi & c_\phi s_ heta s_\psi - s_\phi c_\psi & c_ heta c_\phi \end{bmatrix}$$

旋轉矩陣(n->b) 到歐拉角

$$egin{bmatrix} \phi \ heta \ \psi \end{bmatrix} = egin{bmatrix} atan 2 \left(r_{23}, r_{33}
ight) \ - rc asin(r_{13}) \ atan 2 \left(r_{12}, r_{11}
ight) \end{bmatrix}$$

附錄B-韌體升級與恢復出廠設置

本產品支持在線升級韌體·請關注超核電子官網<u>www.hipnuc.com</u>來獲取最新韌體版本韌體升級步驟:

- 獲取最新的韌體程序。副檔名為.hex
- 連接模組,打開上位機,將模組和上位機波特率都設置為115200.切換到韌體升級窗口
- 點擊連接按鈕,如出現模組連接資訊。則說明升級系統準備就緒,點擊文件選擇器(...)選擇副檔名為 xxx.hex 的韌體,然後點擊開始編程。下載完成後會提示編程完成,此時關閉串口,重新上電,模組升級完成。

Hi Firmware Updater

