Statistical Sciences Honours Matrix Methods

Lecture 1 – Nomenclature and Revision of Basics

Stefan S. Britz stefan.britz@uct.ac.za

Department of Statistical Sciences University of Cape Town

1.1 Nomenclature

Different mathematical objects we will be working with:

Concept	Symbol	Dimension	Handwritten
Scalar	a	1×1	
Matrix	\boldsymbol{A}	$n \times p$	
Column Vector	a	$n \times 1$	
Row Vector	a'	$1 \times p$	

1.1 Nomenclature

From a given matrix we can also extract specific rows, columns, or scalars:

Square matrix

$$\mathbf{A}: n \times n = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$

Square matrix

$$\mathbf{A}: n \times n = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$

• Diagonal matrix – \boldsymbol{A} : $n \times n$ where $a_{ij} = 0 \ \forall \ i \neq j$

$$\mathbf{A} = diag(d_i) = \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{bmatrix}$$

• Symmetric matrix – $A: n \times n$ where $a_{ij} = a_{ji}$

- Symmetric matrix \mathbf{A} : $n \times n$ where $a_{ij} = a_{ji}$
- Upper triangular matrix

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{bmatrix}$$

- Symmetric matrix \mathbf{A} : $n \times n$ where $a_{ij} = a_{ji}$
- Upper triangular matrix

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{bmatrix}$$

• Identity matrix

$$\boldsymbol{I}: n \times n = diag(\mathbf{1}) = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

Transpose

If
$$A = \{a_{ij}\}$$
, then its transpose is $A' = A^T = \{a_{ji}\}$
Note that for symmetric matrices $A = A'$

Transpose

If
$$A = \{a_{ij}\}$$
, then its transpose is $A' = A^T = \{a_{ji}\}$
Note that for symmetric matrices $A = A'$

Addition

$$C = A + B$$
 is the matrix $\{a_{ij} + b_{ij}\}$

6 / 24

Transpose

If
$$A = \{a_{ij}\}$$
, then its transpose is $A' = A^T = \{a_{ji}\}$
Note that for symmetric matrices $A = A'$

Addition

$$C = A + B$$
 is the matrix $\{a_{ij} + b_{ij}\}$

Scalar multiplication

$$\boldsymbol{B} = c\boldsymbol{A}$$
 is the matrix $\{ca_{ij}\}$

Transpose

If
$$A = \{a_{ij}\}$$
, then its transpose is $A' = A^T = \{a_{ji}\}$
Note that for symmetric matrices $A = A'$

Addition

$$C = A + B$$
 is the matrix $\{a_{ij} + b_{ij}\}$

Scalar multiplication

$$\boldsymbol{B} = c\boldsymbol{A}$$
 is the matrix $\{ca_{ij}\}$

Trace

For a square matrix, the trace is the sum of the diagonal

$$tr(\mathbf{A}) = \sum_{i=1}^{n} a_{ii}$$

Partitioning

It is often convenient to look at rectangular subsets of the matrix elements, which are themselves matrices (or vectors/scalars) of lower dimensions. For example, $A: r \times c$ could be split up, or "partitioned" as follows:

$$\mathbf{A} = \begin{bmatrix} \mathbf{A}_{11} : p \times q & \mathbf{A}_{12} : p \times (c - q) \\ \mathbf{A}_{21} : (r - p) \times q & \mathbf{A}_{22} : (r - p) \times (c - q) \end{bmatrix}$$

Partitioning

It is often convenient to look at rectangular subsets of the matrix elements, which are themselves matrices (or vectors/scalars) of lower dimensions. For example, $A: r \times c$ could be split up, or "partitioned" as follows:

$$\mathbf{A} = \begin{bmatrix} \mathbf{A}_{11} : p \times q & \mathbf{A}_{12} : p \times (c - q) \\ \mathbf{A}_{21} : (r - p) \times q & \mathbf{A}_{22} : (r - p) \times (c - q) \end{bmatrix}$$

Other examples:

7 / 24

The concept of a matrix is intimately linked with the linear algebraic concept of the linear transformation of one vector to another.

Let $x: n \times 1$ and $y: m \times 1$ be n- and m-dimensional vectors respectively, such that each element of y is related to x through the linear relationship:

$$y_i = \sum_{j=1}^n a_{ij} x_j, \quad i = 1, \dots, m$$

The concept of a matrix is intimately linked with the linear algebraic concept of the linear transformation of one vector to another.

Let $x: n \times 1$ and $y: m \times 1$ be n- and m-dimensional vectors respectively, such that each element of y is related to x through the linear relationship:

$$y_i = \sum_{j=1}^n a_{ij} x_j, \quad i = 1, \dots, m$$

This can be expressed as:

$$y = Ax$$

where \boldsymbol{A} is the matrix $\{a_{ij}\}$

We can now define the multiplication of two matrices by considering a matrix as a collection of columns (or rows):

$$C = AB = A[b_1 \ b_2 \ \dots \ b_p]$$

$$= [Ab_1 \ Ab_2 \ \dots \ Ab_p]$$

$$= \begin{bmatrix} \sum_{k=1}^n a_{1k} b_{k1} & \dots & \sum_{k=1}^n a_{1k} b_{kp} \\ \vdots & \ddots & \vdots \\ \sum_{k=1}^n a_{mk} b_{k1} & \dots & \sum_{k=1}^n a_{mk} b_{kp} \end{bmatrix}$$

such that

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

Note that the multiplication rules for matrices defined in terms of their elements apply also to manipulation on the component matrices of partitioned matrices.

For example,

$$\begin{bmatrix} \boldsymbol{A}_{11} & \boldsymbol{A}_{12} \\ \boldsymbol{A}_{21} & \boldsymbol{A}_{22} \end{bmatrix} \begin{bmatrix} \boldsymbol{B}_{11} & \boldsymbol{B}_{12} \\ \boldsymbol{B}_{21} & \boldsymbol{B}_{22} \end{bmatrix} = \begin{bmatrix} \boldsymbol{A}_{11} \boldsymbol{B}_{11} + \boldsymbol{A}_{12} \boldsymbol{B}_{21} & \boldsymbol{A}_{11} \boldsymbol{B}_{12} + \boldsymbol{A}_{12} \boldsymbol{B}_{22} \\ \boldsymbol{A}_{21} \boldsymbol{B}_{11} + \boldsymbol{A}_{22} \boldsymbol{B}_{21} & \boldsymbol{A}_{21} \boldsymbol{B}_{12} + \boldsymbol{A}_{22} \boldsymbol{B}_{22} \end{bmatrix},$$

conditional on all products of partitions being conformable.

Matrix multiplication is crucial to countless statistical applications:

Exercises

Exercise 1.1

Show that if $D = diag(d_i)$, then $DA = \{d_i a_{ij}\}$; note that this implies that IA = A, where I is the identity matrix.

Exercise 1.2

Show that

- (a) (AB)' = B'A'
- (b) tr(AB) = tr(BA)

The following laws apply to matrix operations:

Associativity

$$(A+B)+C=A+(B+C)$$

The following laws apply to matrix operations:

Associativity

$$(A+B)+C=A+(B+C)$$

Distributivity

$$A(B+C) = AB + AC$$

The following laws apply to matrix operations:

Associativity

$$(A+B) + C = A + (B+C)$$

Distributivity

$$A(B+C) = AB + AC$$

• Commutativity in addition...

$$A + B = B + A$$

The following laws apply to matrix operations:

Associativity

$$(A+B) + C = A + (B+C)$$

Distributivity

$$A(B+C) = AB + AC$$

• Commutativity in addition...

$$A + B = B + A$$

...but NOT in multiplication!

$$AB \neq BA$$

1.6 Other types of matrix multiplication

Two other "products" derive from different considerations:

• Hadamard product (Schur product) – $A \circ B$ The element-wise or Hadamard product of two matrices of the same size is the matrix with elements $\{a_{ij}b_{ij}\}$.

1.6 Other types of matrix multiplication

Two other "products" derive from different considerations:

- Hadamard product (Schur product) $A \circ B$ The element-wise or Hadamard product of two matrices of the same size is the matrix with elements $\{a_{ij}b_{ij}\}$.
- Kronecker product $A \otimes B$ The direct or Kronecker product of any two matrices (there are no size matching restrictions), say $A: p \times q$ and $B: m \times n$, is defined as the $pm \times qn$ matrix

$$m{A} \otimes m{B} = egin{bmatrix} a_{11} m{B} & a_{12} m{B} & \dots & a_{1q} m{B} \ a_{12} m{B} & a_{22} m{B} & \dots & a_{2q} m{B} \ dots & dots & \ddots & dots \ a_{p1} m{B} & a_{p2} m{B} & \dots & a_{pq} m{B} \end{bmatrix}$$

Note that $(A \otimes B)' = A' \otimes B'$

Class Exercise

Suppose you are given the following two matrices:

$$\boldsymbol{S} = \begin{bmatrix} 6 & -2 \\ 3 & 9 \end{bmatrix} \quad \text{and} \quad \boldsymbol{T} = \begin{bmatrix} 5 & 5 \\ 0 & -4 \end{bmatrix}$$

Calculate:

$$\bullet$$
 $ST =$

$$\bullet$$
 $TS =$

$$\bullet$$
 $S \circ T =$

$$ullet$$
 $S\otimes T=$

- Symmetric matrices
 - (a) If A and B are both symmetric, then $(AB)' = B'A' = BA \neq AB$ in general. Therefore, AB is not (necessarily) symmetric.
 - (b) For any matrix A, both A'A and AA' are symmetric. This also applies to the $n \times n$ matrix xx' where x is an n-vector.
 - (c) tr(A'A) is the sum of the squares of the elements of A.

- Symmetric matrices
 - (a) If A and B are both symmetric, then $(AB)' = B'A' = BA \neq AB$ in general. Therefore, AB is not (necessarily) symmetric.
 - (b) For any matrix A, both A'A and AA' are symmetric. This also applies to the $n \times n$ matrix xx' where x is an n-vector.
 - (c) tr(A'A) is the sum of the squares of the elements of A.

Exercise 1.3

Show that for a square matrix $A: n \times n$, $tr(A'A) = \sum_{i=1}^n \sum_{j=1}^n a_{ij}^2$

Matrices of ones

Define 1 as the vector consisting only of 1's and J=11' as the square matrix consisting only of 1's.

Matrices of ones

Define 1 as the vector consisting only of 1's and J=11' as the square matrix consisting only of 1's.

Exercise 1.4

Show that if x and 1 have length n, then

- (a) 1'1 = n
- (b) $1'x = \sum_{i=1}^{n} x_i$
- (c) $\left(I \frac{1}{n}J\right)x$ is the vector with elements $x_i \bar{x}$ where \bar{x} is the mean of the elements of x. The matrix $I \frac{1}{n}J$ is termed the centring matrix.

Idempotency

A matrix K such that $K^2 = K$ is said to be idempotent.

Idempotency

A matrix K such that $K^2 = K$ is said to be idempotent.

Exercise 1.5

Show that the centring matrix is idempotent. (Applying centring to an already centred vector does nothing further to it!)

Idempotency

A matrix K such that $K^2 = K$ is said to be idempotent.

Exercise 1.5

Show that the centring matrix is idempotent. (Applying centring to an already centred vector does nothing further to it!)

Orthogonal vectors

Vectors x and y are orthogonal if x'y = y'x = 0.

Idempotency

A matrix K such that $K^2 = K$ is said to be idempotent.

Exercise 1.5

Show that the centring matrix is idempotent. (Applying centring to an already centred vector does nothing further to it!)

- Orthogonal vectors Vectors x and y are orthogonal if x'y = y'x = 0.
- Norm

The norm or length of x is defined by $||x|| = \sqrt{x'x}$. The vector $u = \frac{x}{||x||}$ has a norm of 1 and is said to be normalised.

Orthonormal vectors

If x and y are orthogonal and normalised, they are an orthonormal pair of vectors. Clearly, if the columns of the matrix P are an orthonormal set of vectors, then P'P = I. Similarly, if the rows form an orthonormal set then PP' = I.

Orthogonal matrix

If the matrix P is square and the rows and columns are mutually orthonormal, P is an orthogonal matrix.

Orthogonal matrix

If the matrix P is square and the rows and columns are mutually orthonormal, P is an orthogonal matrix.

• Bilinear and quadratic forms

Observe that

$$\mathbf{x'Ay} = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_i y_j$$

where \boldsymbol{x} and \boldsymbol{y} are $n\times 1$ vectors and \boldsymbol{A} an $n\times n$ matrix. This is termed a bilinear form and, if $\boldsymbol{x}=\boldsymbol{y}$, a quadratic form.

Class Exercise

ullet Write out the quadratic form of a vector $oldsymbol{x}$ and the embedded matrix

$$\begin{bmatrix} 2 & -1 & -1 \\ -1 & 1 & 1 \\ -1 & 1 & 4 \end{bmatrix}$$

Class Exercise

ullet Write out the quadratic form of a vector x and the embedded matrix

$$\begin{bmatrix} 2 & -1 & -1 \\ -1 & 1 & 1 \\ -1 & 1 & 4 \end{bmatrix}$$

Determine an embedded matrix that would yield the quadratic form

$$g = x_1^2 - 2x_1x_2 - x_1x_3 + 3x_2^2 + 5x_3^2$$

Positive definiteness

A symmetric matrix A is:

- Positive definite if x'Ax > 0 for any $x \neq 0$.
- Positive semi-definite if $x'Ax \ge 0$ and x'Ax = 0 for at least one $x \ne 0$.
- Negative definite if x'Ax < 0 for any $x \neq 0$.

Positive definiteness

A symmetric matrix A is:

- Positive definite if x'Ax > 0 for any $x \neq 0$.
- Positive semi-definite if $x'Ax \ge 0$ and x'Ax = 0 for at least one $x \ne 0$.
- Negative definite if x'Ax < 0 for any $x \neq 0$.

Examples:

- (a) $J: 2 \times 2$ yields $x'Jx = (x_1 + x_2)^2$ which is non-negative, but zero whenever $x_1 = -x_2$. Thus J is positive semi-definite.
- (b) The matrix $\mathbf{A} = \begin{bmatrix} 2 & 1 \\ -2 & -1 \end{bmatrix}$ yields $\mathbf{x'Ax} = (x_1 x_2)(2x_1 + x_2)$ and hence \mathbf{A} is indefinite.

Exercises

Exercise 1.6

Show that

$$x'\left(I - \frac{1}{n}J\right)\left(I - \frac{1}{n}J\right)x = x'\left(I - \frac{1}{n}J\right)x = \sum_{i=1}^{n}(x_i - \bar{x})^2$$