Matrix Algebra and Is Applications Problem Set for Chapters 5 and 6

- 1. Show that the determinant equals the product of the eigenvalue by first factoring the characteristic polynomial into $\det(A \lambda I) = (\lambda_1 \lambda)(\lambda_2 \lambda)...(\lambda n \lambda)$ and then making a clever choice of λ .
- 2. Show that the eigenvalues of A equal the eigenvalues of A^T . Show by an example that the eigenvectors of A and A^T are not the same.
- 3. Suppose the matrix A has eigenvalues 0,1,2 with eigenvectors v_0 , v_1 , v_2 . Describe the nullspace and the column space of A. Solve the equation $Ax = v_1 + v_2$. Show that $Ax = v_0$ has no solution.
- 4. Which of these matrices cannot be diagonalized?

$$A_1 = \begin{bmatrix} 2 & -2 \\ 2 & -2 \end{bmatrix}$$
 $A_2 = \begin{bmatrix} 2 & 0 \\ 2 & -2 \end{bmatrix}$ $A_3 = \begin{bmatrix} 2 & 0 \\ 2 & 2 \end{bmatrix}$

- 5. (a) If $A^2 = I$, what are the possible eigenvalues of A?
 - (b) If this A is 2 by 2, and not I or -I, find its trace and determinant?
 - (c) If the first row is (3, -1), what is the second row?
- 6. Let P be the projection matrix that projects any vector in \mathbb{R}^4 onto $x_1+x_2+x_3+x_4=0$. Find the eigenvalues and eigenvectors of P.
- 7. If each number is the average of the two previous numbers, $G_{k+2} = \frac{1}{2}(G_{k+1} + G_k)$, set up the matrix A and diagonalize it.
 - (a) Find a formula for G_{k} .
 - (b) Compute G_k as $k \to \infty$.
 - (c) Starting from $G_0 = 0$ and $G_1 = \frac{1}{2}$, compute G_{∞} .
- 8. What are the limits as $k \to \infty$ (the steady states) of

$$\begin{bmatrix} .4 & .2 \\ .6 & .8 \end{bmatrix}^k \begin{bmatrix} 1 \\ 0 \end{bmatrix} \text{ and } \begin{bmatrix} .4 & .2 \\ .6 & .8 \end{bmatrix}^k \begin{bmatrix} 0 \\ 1 \end{bmatrix} \text{ and } \begin{bmatrix} .4 & .2 \\ .6 & .8 \end{bmatrix}^k ?$$

9. Write out the matrix A^{H} and compute $C = A^{H}A$ if

$$A = \begin{bmatrix} 1 & i & 0 \\ i & 0 & 1 \end{bmatrix}$$

What is the relation between C and C^H ? Does it hold whenever C is constructed from some $A^H A$?

10. Rewrite the following matrices in the form $\lambda_1 x_1 x_1^H + \lambda_2 x_2 x_2^H$.

$$P = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \quad Q = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \quad R = \begin{bmatrix} 3 & 4 \\ 4 & -3 \end{bmatrix}$$

- 11. Write one significant fact about the eigenvalues of each of the following
 - (a) A real symmetric matrix
 - (b) A stable matrix (solutions of du/dt=Au approach zero)
 - (c) An orthogonal matrix
 - (d) A Markov matrix
 - (e) A defective (nondiagonalizable) matrix
 - (f) A singular matrix
- 12. Diagonalize the following 2 by 2 skew-Hermitian matrix

$$K = \begin{bmatrix} i & i \\ i & i \end{bmatrix}.$$

Compute $e^{Kt} = Se^{\Lambda t}S^{-1}$, and verify that e^{Kt} is unitary.

13. Every matrix Z can be split into a Hermitian and a skew-Hermitian part, i.e., Z=A+K where $A=(Z+Z^H)/2$. Find the formula for K and split the following matrices into A+K.

$$Z = \begin{bmatrix} 3 & 2 \\ 4 & 4 \end{bmatrix}$$
, $Z = \begin{bmatrix} 3+i & 4+2i \\ 0 & 5 \end{bmatrix}$, and $Z = \begin{bmatrix} i & i \\ -i & i \end{bmatrix}$

14. Diagonalize the following unitary matrix V to reach $V=U\Lambda U^H$. (Remember all $|\lambda|=1$)

$$V = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & 1-i \\ 1+i & -1 \end{bmatrix}$$

- 15. (a) What matrix M changes the basis V_1 =(1, 1), V_2 =(1, 4) to the basis v_1 =(2, 5), v_2 =(1, 4)? (Hint: the columns of M come from expressing V_1 and V_2 as combinations $\sum m_{ij}v_i$ of the v's.)
 - (b) For the same two bases, express the vector (3, 9) as a combination $c_1V_1+c_2V_2$ and also as $d_1v_1+d_2v_2$. Check numerically that M connects c to d: Mc=d.

16. Let
$$A = \begin{bmatrix} 5 & 4 \\ 4 & 5 \end{bmatrix}$$
 and the quadratic function be $\begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 5 & 4 \\ 4 & 5 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$.

- (i) Factor *A* into *LDU* and expand the quadratic function into a summation of two quadratic terms.
- (ii) Diagonalize A into QAQ^T and expand the quadratic function into a summation of two quadratic terms.
- (iii) Compare results of (i) and (ii) and use them to determine whether the quadratic function is definite, semi-definite or indefinite.
- 17. Give a quick reason why each of these statements is true:
 - (i) Every positive definite matrix is invertible.
 - (ii) The only positive definite projection matrix is P=I
 - (iii) A diagonal matrix with positive diagonal entries is positive definite.
 - (iv) A symmetric matrix with a positive determinant might not be positive definite.
- 18. Find the singular decomposition of

$$A = \begin{bmatrix} 2 & 2 \\ 1 & 0 \end{bmatrix}$$

19. Compute the polar decomposition A = QS.

$$A = \frac{1}{\sqrt{10}} \begin{bmatrix} 10 & 6 \\ 0 & 8 \end{bmatrix}$$

Knowing Q, find the reverse form A=S'Q.

20. Find the singular value decomposition and the psuedoinverse of

$$A = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix} \quad B = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \text{ and } C = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$

21. If *B* is similar to *A* and *C* is similar to *B*, show that *C* is similar to *A*. Which matrices are similar to *I*.