Example

Let's design a tracking controller for the following two tank system:

Nonlinear model:

$$\dot{h_1} = \frac{1}{A_1} \Big(q_1 - k_1 \cdot \text{sign}(h_1 - h_2) \sqrt{|h_1 - h_2|} \Big)$$

$$\dot{h_2} = \frac{1}{A_2} \Big(q_2 + k_1 \cdot \text{sign}(h_1 - h_2) \sqrt{|h_1 - h_2|} - k_2 \sqrt{h_2} \Big)$$

Parameter		Value
A_1	Cross sectional area of Tank 1	0.071 m^2
A_2	Cross sectional area of Tank 2	0.071 m^2
k_1	Valve coefficient	$0.008 \mathrm{m}^{2.5}/\mathrm{s}$
k_2	Valve coefficient	$0.018 \mathrm{m}^{2.5}/\mathrm{s}$

Operating point (steady state, $\dot{h}_1 = \dot{h}_2 = 0$):

h_1^*	h_2^*	$\boldsymbol{q_1^*}$	$\boldsymbol{q_2^*}$
0.8 m	0.4 m	$0.0050596 \text{ m}^3/\text{s}$	$0.0063246 \text{ m}^3/\text{s}$

Linearized model around the operating point:

$$\begin{bmatrix} \Delta \dot{h}_1 \\ \Delta \dot{h}_2 \end{bmatrix} = \begin{bmatrix} -0.0891 & 0.0891 \\ 0.0891 & -0.2895 \end{bmatrix} \begin{bmatrix} \Delta h_1 \\ \Delta h_2 \end{bmatrix} + \begin{bmatrix} 14.0845 & 0 \\ 0 & 14.0845 \end{bmatrix} \begin{bmatrix} \Delta q_1 \\ \Delta q_2 \end{bmatrix}$$
$$\begin{bmatrix} \Delta y_1 \\ \Delta y_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \Delta h_1 \\ \Delta h_2 \end{bmatrix}$$

Deviation variables: $\Delta h_1 = h_1 - h_1^*$, $\Delta h_2 = h_2 - h_2^*$, $\Delta q_1 = q_1 - q_1^*$, $\Delta q_2 = q_2 - q_2^*$

Control goal: track step references for the water levels h_1 and h_2 by manipulating the inflows q_1 and q_2