https://tinyurl.com/plantbio-repo

American Society of Plant Biology, @ASPB

eLife Science, @eLife

Reproducibility Resources & Tools

Data management

Harvard University Data Management page https://datamanagement.hms.harvard.edu/ Kbroman Lab https://datamanagement.hms.harvard.edu/ Kbroman Lab https://kbroman.org/dataorg/ (Short primer on data storage and handling form Kbroman)

Purdue Library http://guides.lib.purdue.edu/c.php?g=353013&p=2378292 (Short primer on data management and file naming conventions)

Data One Best Practices https://www.dataone.org/best-practices (Detailed resource on how to handle data throughout its life-cycle)

Mantra https://mantra.edina.ac.uk/ (Free online course for those who handle digital data)

Electronic Lab Notebooks (ELN)

Harvard University ELN guide https://tinyurl.com/Harvard-ELN (Great summary about current ELNs and what they do)

Benchling https://benchling.com/ (free)

Evernote https://evernote.com/ (free and \$\$)

Labguru https://www.labguru.com/ (\$)

sciNote https://scinote.net/ (open source, free)
Open Science Framework https://osf.io/ (free)

Code

Github https://github.com/ (code repository; free for public repos)

Jupyter Notebooks http://jupyter.org/ (open source web-app for creating & sharing live code, equations, and more)

Code Ocean https://codeocean.com/ (computational reproducibility platform; free to upload, share & publish executable code with DOI; pay for more computing time over freemium limit) Conda and BioConda https://conda.io/docs/ and https://conda.io/docs/ and https://conda.io/docs/ and https://bioconda.github.io/ (A operating system independent package environment manager for the command line)

Docker and Biocontainers https://docs.docker.com/ and https://docs.docker.com/ and https://docs.docker.com/ and https://docker.com/ and <a hre

Binder https://mybinder.org/ (A tool to make your github repository an online docker image run in the cloud)

Galaxy https://usegalaxy.org/ (A web and graphic interface based bioinformatics platform. Needs local set-up for larger data handling.)

Reagents

Addgene https://www.addgene.org/ (nonprofit plasmid repository)

CiteAb https://www.citeab.com/ (antibody search engine with results sorted by citations)

Quartzy https://www.quartzy.com/ (manage lab inventory)

Methods

Bio-Protocol https://bio-protocol.org/ (A peer-reviewed protocol journal; free to read & publish) **protocols.io** http://protocols.io/ (an open access repository of science methods; free to read & publish)

Data

DataDryad http://datadryad.org/ (curated digital repository; free to access, \$120 to publish dataset up to 20GB)

Figshare http://datadryad.org/ (free digital repository, 5GB per file limit) **Zenodo** https://zenodo.org/ (free digital repository; 50GB per dataset limit)

Data Visualization

Beyond Bar Graphs: Free Tools & Resources for Creating More Transparent Figures for Small Datasets https://tinyurl.com/ecrbeyondbargraph

Interactive Dotplot Tool http://statistika.mfub.bg.ac.rs/interactive-dotplot/ (create dotplots, box plots, violin plots, show subgroups or display clusters of non-independent data):

Interactive Linegraph Tool (examine different summary statistics, focus on groups, time points or conditions of interest, examine lines for any individual in the dataset, view change scores): http://statistika.mfub.bg.ac.rs/interactive-linegraph/

Other free tools: https://twitter.com/T Weissgerber/status/953334933019398145

R

Tutorial - Plotting in R:

https://www.youtube.com/watch?v=sf_li1XV664&list=PL-IR12W3BZkXGfljRtMgAw1Ff0liWX_Aj Customized interactive visualizations (Shiny):

https://www.frontiersin.org/articles/10.3389/fpsyg.2015.01782/full

Ggplot2

https://ggplot2.tidyverse.org/

Claus Wilke blog post

http://serialmentor.com/blog/2018/1/23/fundamentals-of-data-visualization (cotains several links to his upcoming book about datavisiulization)

Python

Collection of useful resources:

https://github.com/schmelling/python materials

Tutorial - Data Analysis and Visualization in Python:

<u>Data Carpentry: An Introduction to Python for Data Analysis and Visualization - Tracy Teal</u> PyCon 2016 Tutorial

PyData Packages (incl. Matplotlib, Seaborn, Numpy, Pandas, and many more important for data analysis and visualization)

https://pydata.org/downloads.html

Statistical Analysis

Handbook of Biological Statistics! http://www.biostathandbook.com/ and http://companion.org/rcompanion/ (Web page from John H. McDonald and others form University of Delaware with pdf download links to free book on stats in Biology and its R implementation).

Scipy stats lectures https://tinyurl.com/scipystats (Lecture on stats in python using scipy) see also https://www.statsmodels.org/stable/index.html for more stats in python

Nature Stats for Biologist resources

https://www.nature.com/collections/gghhqm/content/practical-guides

Practical tips for reproducibility

- 1. Plan for reproducibility before you start
 - a. Write a study plan or protocol and track new versions.
 - b. **Set-up a reproducible project** using an electronic lab notebook to organize and track your work. Avoid saving proprietary file formats.
- 2. Keep track of things
 - a. Preregister important study design and analysis information. Free tools to help you make your first registration include <u>AsPredicted</u>, <u>Open Science Framework</u>, and <u>Registered Reports</u>. Clinical trials use <u>Clinicaltrials.gov</u>.
 - b. **Track changes** to your files using version control.
 - Document everything done by hand in a README file and data dictionary. Karl Broman's Data Organization module: http://kbroman.org/dataorg/pages/dictionary.html
- 3. Report your research transparently
 - a. Share your protocols and interventions explicitly and transparently.

- b. **Write a transparent report**. Guidelines from the <u>Equator Network</u> or processes like <u>Registered Reports</u> can help.
- 4. Archive & share your materials
 - a. Share and licence your research
 - i. Data
 - Avoid supplementary files, licence, and share your data using a repository. How to License Research Data: http://www.dcc.ac.uk/resources/how-guides/license-research-data.
 - ii. Materials & reagents
 - Licence your published materials so they can be reused. Creative Commons License Picker: https://creativecommons.org/choose/
 - Deposit reagents with repositories like <u>Addgene</u>, <u>The Bloomington</u> <u>Drosophila Stock Center</u>, and <u>ATCC</u> to make them easily accessible to other researchers.
 - iii. Software
 - Licence your code using <u>Code Ocean</u> or <u>Github</u>. Open Source Initiative: About Open Source Licences: https://opensource.org/licenses.
- 5. Further reading:
- Ten Simple Rules for Reproducible Computational Research: http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003285
- Reproducibility in Science: http://ropensci.github.io/reproducibility-quide/
- Open Science MOOC: https://opensciencemooc.eu/ and https://opensciencemooc.github.io/site/Resources/#three
- Tools and Resources for Reproducibility Series at protocols.io: goo.gl/r7GKMA
- Managing Laboratory Notebooks http://colinpurrington.com/tips/lab-notebooks
- General File and Folder Organization https://zapier.com/blog/organize-files-folders/
- File Naming Conventions

 http://www.exadox.com/en/articles/file-naming-convention-ten-rules-best-practice
- 6. Example studies:
- Gene family innovation, conservation and loss on the animal stem lineage
 - o Paper: https://doi.org/10.7554/eLife.34226
 - Protocols: dx.doi.org/10.17504/protocols.io.kwscxees
 - Data: https://doi.org/10.6084/m9.figshare.5686984.v2
- A robust method for transfection in choanoflagellates illuminates their cell biology and the ancestry of animal septins
 - o Paper: https://doi.org/10.1101/343111
 - Protocols: http://www.protocols.io/groups/king-lab

- Constructs: http://www.addgene.org/Nicole King
- Implicating candidate genes at GWAS signals by leveraging topologically associating domains
 - o Paper: https://dx.doi.org/10.1038/ejhg.2017.108
 - Code: https://zenodo.org/record/163950#.W0hgTdJKjIU
 - o Docker workflow: https://zenodo.org/record/166556#. W0hqc9JKjIU
- mcSCRB-seq: sensitive and powerful single-cell RNA sequencing
 - Protocol: dx.doi.org/10.17504/protocols.io.p9kdr4w
 - Paper: https://doi.org/10.1101/188367
 - Code: https://github.com/cziegenhain/Bagnoli 2017
- TransRate: reference-free quality assessment of de novo transcriptome assemblies
 - o Paper: https://dx.doi.org/10.1101%2Fgr.196469.115
 - Code: https://github.com/Blahah/transrate
 - Tutorial: http://hibberdlab.com/transrate/
- Genomic insights into members of the candidate phylum Hyd24-12 common in mesophilic anaerobic digesters
 - o Paper: https://doi.org/10.1038/ismej.2016.43
 - Code: https://github.com/Kirk3gaard/Publications
- Experimenting with Reproducibility: a case study of Robustness in Bioinformatics
 - o Paper: https://doi.org/10.1093/gigascience/giy077
 - Code: https://github.com/sje30/waverepo
- A Bayesian Mixture Modelling Approach For Spatial Proteomics
 - Paper: https://doi.org/10.1101/282269
 - Code: https://github.com/lgatto/2018-tagm-paper

@Addgene

@ProtocolsIO

@CodeOceanHQ