

Theorem: Suppose {sn} {tn} EC $\lim_{n\to\infty} s_n = s$, $\lim_{n\to\infty} t_n = t$. Then a) $\lim_{n\to\infty} (s_n + t_n) = s + t$ any constant b) $\lim_{n\to\infty} (s_n = es, \lim_{n\to\infty} e + s_n = e + s)$ e) lim sntn = st d) lim 1 - 1 provided sn +0 and s +0 a) Given 670 3 N, N2 3 N2N, ~> 18,-5/2, 1=N2->12--------It follows that if n > max & N1, N2 } (tn+sn)-(++s) (=+==E. c) Observe that sntn-st= (Sn-3)(tn-t) + 3tn + Snt - 2st = (sn-s)(tn-t)+s(tn-t)+z(sn-s)

Let e>o be given, Than I Ni, N2 > n≥N/ C=> 150-5/ </E n= N2 <-> /tn-2/2/E $C > n \ge max \{N_1, N_2\} C > (s_n - s)(t_n - t)/2 \epsilon$, $So lim ((s_n - s)(t_n - t)) = 0$ Combined ty a) and b) we conclude that $\lim_{n\to\infty} s_n t_n - st = 0$ and we are done. Oroof of d) Choose $m \ni |s_n-s| < \frac{1}{2}|s|$ if $n \ge m$, and conclude that $|s_n| > \frac{1}{2}|s|$ Let e>0 & find N>m >

N => 15n-S1< 2/51 E If follows that nz NC-> $\left| \frac{1}{S_n} - \frac{1}{S} \right| = \left| \frac{S_n - S}{S_n S} \right| < \frac{1}{2} \left| \frac{1}{8} \right|^2$

Theorem: a) $X_n \in \mathbb{R}$ $X_n = (\alpha_{i,n}, \alpha_{i,n}, \dots, \alpha_{k,n})$ Then X_n converges to $X = (x_1, ..., x_K)$ if $\lim_{n \to \infty} x_{j,n} = x_j$, $1 \le j \le K$ 6) $x_n, y_n \in \mathbb{R}$, β_n real sequence, and $x_n \rightarrow x$, $y_n \rightarrow y$, $\beta_n \rightarrow \beta$. Then $\lim_{n \rightarrow \infty} (x_n + y_n) = x + y$, $\lim_{n \rightarrow \infty} x_n \cdot y_n = x \cdot y$, $\lim_{n \rightarrow \infty} (x_n + y_n) = x + y$, $\lim_{n \rightarrow \infty} (x_n + y_n) = x$, $\lim_{n \rightarrow \infty} (x_n + y_n) =$ $\lim_{n\to\infty} \beta_n x_n = \beta x.$ one direction follows. Conversely, Let E>O be given, Then FN7 -> [din-di] < = 12 j = part 6) follows from a) and the previous