Fall 2016 Notes

Carlos Salinas

September 16, 2016

Contents

Contents		1
1	Probability 1.1 Discrete Probability	2 2
2	Introduction to Partial Differential Equations 2.1 Introduction	4 4
3	Algebraic Geometry 3.1 The statement of de Rham's theorem	7 7
4	Algebraic Topology 4.1 Cohomology	8
Bibliography		9

Probability

We will devote this chapter to the material that is covered in MA 51900 (discrete probability) as it was covered in DasGupta's class. We will, for the most part, reference Feller's *An introduction to probability theory and its applications, Volume 1* [5] (especially for the discrete noncalculus portion of the class) and DasGupta's own book *Fundamentals of Probability: A First Course* [3].

1.1 Discrete Probability

The material in this chapter is mostly pulled from Sheldon Ross's A First Course in Probability Theory [?] with some examples from [3] and [5]. I find Ross's book to be better structured than the latter two.

Combinatorial Analysis

These are the main results from this section.

Theorem 1.1 (The basic principle of counting). Suppose that two experiments are to be performed. Then if experiment 1 can result in any one of m possible outcomes and if, for each outcome of experiment 1, there are n possible outcomes of experiment 2, then together there are mn possible outcomes of the two experiments.

Theorem 1.2 (The generalized principle of counting). If r experiments that are to be performed are such that the first one may result in any of n_1 possible outcomes; and if, for each of these n_1 possible outcomes, there are n_2 possible outcomes for the second experiment; and if, for each of the possible outcomes of the first two experiments, there are n_3 possible outcomes for the third experiment; etc. ..., then there is a total of $n_1 n_2 \cdots n_r$ possible outcomes of the r experiments.

Using notation as in [5], the number

$$(n)_r = n(n-1)\cdots(n-r+1)$$

represents the number of different ways that a group of r items could be selected from n items when the order of selection is relevant, and as each group of r items will be counted r! times in this count,

it follows that the number of different groups of r items that could be formed from a set of n items is

$$\frac{(n)_r}{r!} = \frac{n!}{(n-r)!r!}$$

for which we reserve the notation

$$\binom{n}{r}$$

read n choose r. (This is called a binomial coefficient since it appears in the binomial expansion $(a+b)^n$.)

A useful combinatorial identity on binomial coefficients is the following

$$\binom{n}{r} = \binom{n-1}{r-1} + \binom{n-1}{r}$$

for $1 \le r \le n$.

Theorem 1.3 (The binomial theorem).

$$(a+b)^n = \sum_{i=1}^n \binom{n}{i} x^i y^{n-i}.$$

PROOF. We provide a combinational proof of the theorem. Consider the product

$$(a_1+b_1)\cdots(a_n+b_n).$$

Its expansion consists of the sum of 2^n terms, each term being the product of n factors. Furthermore, each of the 2^n terms in the sum will contain as a factor either a_i or b_i for each $1 \le i \le n$. Now, how many of the 2^n terms in the sum will have k of the a_i and n-k of the b_i as factors? As each term consisting of k of the a_i and n-k of the b_i correspond to a choice of a group of k from the values a_1, \ldots, a_n , there are $\binom{n}{k}$ such terms. Thus, letting $a_i = a$, $b_i = b$, $1 \le i \le n$, we see that

$$(a+b)^n = \sum_{i=0}^n \binom{n}{i} x^i y^{n-i}.$$

Introduction to Partial Differential Equations

Here we summarize some important points about PDEs. The material is mostly taken from Evans's Partial Differential Equations [4] with occasional detours to Strauss's Partial Differential Equations: An Introduction [7]. We will be following Dr. Petrosyan's Course Log which can be found here https://www.math.purdue.edu/~arshak/F16/MA523/courselog/, i.e., summarizing the appropriate chapters from [4].

2.1 Introduction

Partial differential equations

Definition 2.1. An expression of the form

$$F(D^k u(x), D^{k-1} u(x), \dots, Du(x), u(x), x) = 0 \qquad (x \in U)$$
 (2.1)

is called a kth-order partial differential equation (PDE), where

$$F: \mathbf{R}^{n^k} \times \mathbf{R}^{n^{k-1}} \times \cdots \times \mathbf{R}^n \times U \longrightarrow \mathbf{R}$$

is given, and

$$u \colon U \longrightarrow \mathbf{R}$$

is the unknown.

Here are some more definitions,

Definition 2.2.

(i) The partial differential equation (2.1) is called *linear* if it has the form

$$\sum_{|\alpha| \le k} a_{\alpha}(x) D^{\alpha} u = f(x)$$

for given functions $a_{\alpha}(|\alpha| \leq k)$, f. This linear PDE is homogeneous if f = 0.

(ii) The PDE (2.1) is semilinear if it has the form

$$\sum_{|\alpha|=k} a_{\alpha} D^{\alpha} u + a_0 \left(D^{k-1} u, \dots, D u, u, x \right) = 0.$$

(iii) The PDE (2.1) is quasilinear if it has the form

$$\sum_{|\alpha|=k} a_{\alpha} (D^{k-1}u, \dots, Du, u, x) D^{\alpha}u + a_0 (D^{k-1}u, \dots, Du, u, x) = 0.$$

(iv) The PDE (2.1) is fully nonlinear if it depends upon the highest order derivatives.

A *system* of partial differential equations is, informally speaking, a collection of several PDEs for several unknown functions.

Definition 2.3. An expression of the form

$$\mathbf{F}(D^k \mathbf{u}(x), D^{k-1} \mathbf{u}(x), \dots, D\mathbf{u}(x), \mathbf{u}(x), x) = 0 \qquad (x \in U)$$
(2.2)

is called a kth-order system of PDEs, where

$$\mathbf{F} \colon \mathbf{R}^{mn^k} \times \mathbf{R}^{mn^{k-1}} \times \cdots \times \mathbf{R}^{mn} \times \mathbf{R}^m \times U \longrightarrow \mathbf{R}^m$$

is given and

$$\mathbf{u} \colon U \longrightarrow \mathbf{R}^m, \qquad \mathbf{u} = (u^1, \dots, u^m)$$

is the unknown.

Remark 2.4. We haven't talked much about systems of PDEs and I suspect we will not do so very much in this course.

Examples

This is only a fraction of the PDEs listed in Evan's chapter.

Linear equations

1. Laplace's equation

$$\Delta u = \sum_{i=1}^{n} u_{x_i x_i} = 0.$$

2. Helmholtz's (or eigenvalue) equation

$$-\Delta u = \lambda u.$$

3. Linear transport equation

$$u_t + \sum_{i=1}^{n} b^i u_{x_i} = 0.$$

4. Liouville's equation

$$u_t - \sum_{i=1}^n (b^i u)_{x_i} = 0.$$

5. Heat (or diffusion) equation

$$u_t - \Delta u = 0.$$

6. Wave equation

$$u_{tt} - \Delta u = 0.$$

7. Telegraph equation

$$u_{tt} + du_t - u_{xx} = 0.$$

Nonlinear equations

1. Eikonal equation

$$|Du| = 1.$$

2. Nonlinear Poisson equation

$$-\Delta u = f(u).$$

3. Inviscid Burgers' equation

$$u_t + uu_x = 0.$$

and so on.

2.2 The transport equation

We begin our study with one of the simplest PDEs, the $transport\ equation$ with constant coefficients. This is the PDE

$$u_t + b \cdot Du = 0, \quad \text{in } \mathbf{R}^n \times (0, \infty),$$
 (2.3)

where b is a fixed vector in \mathbf{R}^n , $b = (b_1, \dots, b_n)$, $x = (x_1, \dots, x_n) \in \mathbf{R}^n$ is a typical point in space, $t \geq 0$ denotes a typical time and $u \colon \mathbf{R} \times [0, \infty) \to \mathbf{R}$ is the unknown, u = u(x, t). We write $Du = D_x u = (u_{x_1}, \dots, u_{x_n})$ for the gradient of u with respect to the spatial variable x.

So, which functions solve (2.3)? Well, let us suppose for a moment that u is a smooth solution to the PDE and let us try to compute it. To do so, we first recognize that (2.3) asserts that a particular directional derivative of u vanishes, namely, $D_b u = 0$. We exploit this by fixing a point $(x,t) \in \mathbf{R}^n \times (0,\infty)$ and defining

$$z(s) := u(x + sb, t + s), \qquad s \in \mathbf{R}.$$

Then we calculate

$$\dot{z}(s) = Du(x+sb,t+s) \cdot b + u_t(x+sb,t+s)$$

= 0,

the second equality holding by (2.3). Thus, z is a constant function of s, and consequently for each (x,t), u is constant on the line through (x,t) with direction $(b,1) \in \mathbf{R}^{n+1}$. Hence, if we know the value of u at any point on each such line, we know its value everywhere in $\mathbf{R}^n \times (0,\infty)$.

Algebraic Geometry

A summary to a course on an introduction to sheaf cohomology. We will mostly reference Donu's notes available here https://www.math.purdue.edu/~dvb/classroom.html, but also cite Ravi Vakil's Fundamentals of Algebraic Geometry [8] available here https://math216.wordpress.com/.

3.1 The statement of de Rham's theorem

These are almost verbatim Arapura's notes on the de Rham Complex and cohomology.

Before doing anything fancy, let's start at the beginning. Let $U \subseteq \mathbb{R}^3$ be an open set. In calculus class, we learn about operations

$$\{\,\text{functions}\,\} \xrightarrow{\nabla} \{\,\text{vector fields}\,\} \xrightarrow{\nabla\times} \{\,\text{vector fields}\,\} \xrightarrow{\nabla\cdot} \{\,\text{functions}\,\}$$

such that $(\nabla \times)(\nabla) = 0$ and $(\nabla \cdot)(\nabla \times) = 0$. This is a prototype for a *complex*. An obvious question: does $\nabla \times v = 0$ imply that v is a gradient? Answer: sometimes yes (e.g. if $U = \mathbf{R}^3$) and sometimes no (e.g. if $U = \mathbf{R}^3$ minus a line).

Algebraic Topology

From my meetings with Mark. We reference Hatcher's $Algebraic\ Topology\ [6]$ freely available here https://www.math.cornell.edu/~hatcher/#ATI.

4.1 Cohomology

Bibliography

- [1] V.I. Arnold, K. Vogtmann, and A. Weinstein. *Mathematical Methods of Classical Mechanics*. Graduate Texts in Mathematics. Springer New York, 2013.
- [2] R. Bott and L.W. Tu. *Differential Forms in Algebraic Topology*. Graduate Texts in Mathematics. Springer New York, 2013.
- [3] A. DasGupta. Fundamentals of Probability: A First Course. Springer Texts in Statistics. Springer New York, 2010.
- [4] L.C. Evans. *Partial Differential Equations*. Graduate studies in mathematics. American Mathematical Society, 2010.
- [5] W. Feller. An introduction to probability theory and its applications. Number v. 1 in Wiley mathematical statistics series. Wiley, 1950.
- [6] A. Hatcher. Algebraic Topology. Cambridge University Press, 2002.
- [7] W.A. Strauss. Partial Differential Equations: An Introduction. Wiley, 1992.
- [8] R. Vakil. Math 216: Foundations of algebraic geometry, 2016.