HELIA GOHARBAVANG

Houstn, TX 77019

■ hgoharbavang@uh.edu • F Google Scholar • in helya-goharbavang • C helia77

EDUCATION

Doctor of Philosophy in Electrical Engineering, University of Houston, TX, GPA: 3.852

August 2026

Related coursework: GPU Programming, Computer Vision, Machine Learning, Adv. Computer Architecture

Bachelor of Science in Electrical Engineering, Tehran Polytechnic, GPA: 3.55

September 2021

Thesis project: "DAQ-LoRa: A data acquisition system with a central controller"

WORK EXPERIENCE

Research Assistant August 2022 - Present

University of Houston, Scalable Tissue Imaging and Modeling Lab (STIM-Lab)

- Contributor to the "tiralib" repository, a tissue imaging, reconstruction, and analysis library
- · Developer of the 3D tools of the "tensor" repository, a visualization and processing program for 2D and 3D tensor fields
- · Developer of the "glOrthoview", a visualization program for orthographic slices of a 3D volume using OpenGL

Teaching Assistant

· GPU and Heterogeneous Programming, University of Houston

Spring 2024

· Advance Computer Programming, Tehran Polytechnic

Fall 2017

Team Lead May 2020 - January 2021

Ronix Tools Company

- · Managed a team of 10+ employees in the Content Production department for a three-month campaign
- · Created and translated technical content (English/German)

PROJECTS

Tensor Voting, Developing a new analytical theory for tensor voting, including CUDA-based software for repairing, refining, and visualizing gigavoxel-scale 3D tensor fields

GPU-Programming, GPU-accelerated vesselness filter for vascular network enhancement, developed a parallel ray tracer as a class assignment

3D Segmentation and Skeletonization, Performed and implemented state-of-the-art vascular segmentation and centerline extraction methods on several large-scale microvascular datasets and evaluated the results

CNNs and Machine Learning, Blood glucose level estimation using images of test strips, responsible AI in primary healthcare using adversarial learning, implemented vision transformers, clustering, semantic segmentation, object detection, autoencoders

Visualization Programs, Visualization tools for 3D tensor fields, 3D visualization toolkit for large-scale microvasculature data using OpenGL (glOrthoView)

Embedded Systems and Hardware Programming, Experience programming Arduino UNO and Raspberry Pi, integrating various sensors, actuators, and long-range communication technologies for IoT and robotic projects

TECHNICAL STRENGTHS

Computer Languages Python, C, C++, MATLAB, HTML

Quantitative SkillsOptimization, Profiling, Statistical Analysis, Signal Processing CUDA, Git, CMake, OpenGL, Blender, Slicer₃D, MeshLab

Libraries Keras, OpenCV, PyTorch

Others Fluent in English, Persian, German (B2 Niveau)

SELECTED COURSES

Computer Engineering Advanced Computer Architecture

Artificial Intelligence Advanced Machine Learning, Computer Vision

Parallel Programming GPU and Heterogeneous Programming

Signal Processing Digital Signal Processing, Digital Image Processing, Stochastic Processing,

Estimation Theory

PUBLICATIONS

Goharbavang, H., Baige, O., Chen, G., Mayerich, D. (2024). Closed-Form GPU-Accelerated Tensor Voting with Refinement **Manuscript under review**

Goharbavang, H., Wythe, J., Chen, G., Mayerich, D. (2024). Segmentation and Modeling of Large-Scale Microvascular Networks: A Survey. **Manuscript submitted for publication**

Niger, M., Goharbavang, H., Ahn, T., Alley, E., Wythe, J., Chen, G., Mayerich, D. (2024). GPU-Accelerated RSF Level Set Evolution for Large-Scale Microvascular Segmentation. Manuscript submitted for publication