Naval Surface Warfare Center Carderock Division

West Bethesda, MD 20817-5700

NSWCCD-CISD-2011/004 August 2011

Center for Innovation in Ship Design Technical Report

Hospital Ship Replacement

Ву

Hannah Allison, Christopher Mehrvarzi, Rebecca Piks, Beau Lovdahl

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 30-08-2011	2. REPORT TYPE Final	3. DATES COVERED (From - To) 05-23-2011 - 30-08-2011
4. TITLE AND SUBTITLE Hospital Ship Replacement		5a. CONTRACT NUMBER
		5b. GRANT NUMBER
		5c. PROGRAM ELEMENT NUMBER
6. AUTHOR(S) Hannah Allison, Christopher	r Mehrvarzi, Rebecca Piks, Beau	5d. PROJECT NUMBER
Lovdahl		5e. TASK NUMBER
		5f. WORK UNIT NUMBER
7. PERFORMING ORGANIZATION NAME(S	S) AND ADDRESS(ES) AND ADDRESS(ES)	8. PERFORMING ORGANIZATION REPORT NUMBER
Naval Surface Warfare Center Carderock Division 9500 Macarthur Boulevard West Bethesda, MD 20817-570		NSWCCD-CISD-2011/004
9. SPONSORING / MONITORING AGENCY	NAME(S) AND ADDRESS(ES)	10. SPONSOR/MONITOR'S ACRONYM(S)
Chief of Naval Research One Liberty Center 875 North Randolph Street,		ONR
Suite 1425 Arlington, VA 22203-1995		11. SPONSOR/MONITOR'S REPORT NUMBER(S)
12 DISTRIBUTION / AVAIL ARILITY STATE	MENT	

Approved for Public Release: Distribution Unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

The Center for Innovation in Ship Design (CISD) requested the development of a concept that could serve as a replacement for the existing hospital ships. The U.S. Navy plays a significant role in humanitarian missions by providing immediate aid during disaster situations. The existing hospital ships, USNS Mercy (T-AHS 19) and USNS Comfort (T-AHS 20) carry out two missions: 1) to provide medical and surgical care in support of U.S. amphibious task forces, and 2) to serve as a full-service hospital for use by various government agencies involved in support of non-combat roles such as disaster relief and humanitarian assistance. These hospital ships are over 35 years old and will need to be replaced once they are at the end of their service life. Other shortcomings include excessive draft, seakeeping at zero knots, low-speed maneuverability and inadequate patient throughput. The Navy Bureau of Medicine has stressed the need for modular medical facilities and amphibious support to enable increased ship-to-shore patient transfer and extend medical capabilities ashore.

15. SUBJECT TERMS

Hospital ship, CISD, humanitarian aid, disaster relief, combat casualty care, ship design

16. SECURITY CLASS	SIFICATION OF:		17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON Colen Kennell
a. REPORT UNCLASSIFIED	b. ABSTRACT UNCLASSIFIED	c. THIS PAGE UNCLASSIFIED	UL	51	19b. TELEPHONE NUMBER (include area code) 301-227-5468

People

Innovation

Naval Surface Warfare Center Carderock Division Center for Innovation in Ship Design Hospital Ship Replacement

Abstract

The Center for Innovation in Ship Design (CISD) requested the development of a concept that could serve as a replacement for the existing hospital ships. The U.S. Navy plays a significant role in humanitarian missions by providing immediate aid during disaster situations. The existing hospital ships, USNS *Mercy* (T-AHS 19) and USNS *Comfort* (T-AHS 20) carry out two missions: 1) to provide medical and surgical care in support of U.S. amphibious task forces, and 2) to serve as a full-service hospital for use by various government agencies involved in support of non-combat roles such as disaster relief and humanitarian assistance. These hospital ships are over 35 years old and will need to be replaced once they are at the end of their service life. Other shortcomings include excessive draft, seakeeping at zero knots, low-speed maneuverability, and inadequate patient throughput. The Navy Bureau of Medicine has stressed the need for modular medical facilities and amphibious support to enable increased ship-to-shore patient transfer and extend medical capabilities ashore.

People

Innovation

Naval Surface Warfare Center Carderock Division Center for Innovation in Ship Design Hospital Ship Replacement

Acknowledgements

The HSR design team would like to sincerely thank the following for guidance throughout the project:

LCdr Robert Comeau NAVSEA

LCdr Robert D'Eon NSWCCD 2202, Canadian Navy Liaison Martin Collarbone NSWCCD 2202, UK Exchange Engineer

John Hepp MSC

CDR Steven Jeffs OPNAV N81

Colen Kennell NSWCCD 2202, CISD

Jim Mann NSWCCD 634

Ashley McClelland NSWCCD 2202, CISD Jack Offutt NSWCCD 2202, CISD Steve Ouimette NSWCCD 2202, CISD

Gregory Peck BUMED M5B4 CAPT Corley Puckett BUMED M3/5

CAPT James Rice MSC CAPT Daniel Ryan MSC

Andrew Tate NSWCCD 2202, CISD

Melanie Zajic NSWCCD 634 John Zarkowsky BUMED M5B4

Design Team

Hannah Allison

Christopher Mehrvarzi NREIP

Rebecca Piks NREIP

Beau Lovdahl SEAP

People

Innovation

Center for Innovation in Ship Design

Hospital Ship Replacement

Naval Surface Warfare Center Carderock Division

Table of Contents

Abstract	i
Acknowledgements	ii
Design Team	ii
Table of Contents	iii
List of Tables	V
List of Figures	vi
Acronyms	vii
1.0 Introduction	1
1.1 Objective	1
1.2 Background	1
2.0 Project Directives and Constraints	
3.0 Ship Design	
3.1 Concept Summary	
3.2 Hull Form Selection	
3.2.1 Selection of Monohull	
3.2.2 Comparable Ships	
3.2.3 LPD-17 Hull Form	
3.2.4 Principle Characteristics	8
3.3 Medical Facilities Breakdown	8
3.4 Resistance & Power	9
3.5 Propulsion	11
3.6 Mission Systems	13
3.6.1 Need for Modularity	13
3.6.2 Flex Spaces	14
3.6.3 ISO Container Systems	15
3.6.4 Fresh Water Production	16
3.6.5 Oxygen Generation	
3.6.6 Waste Management	
3.7 General Arrangements	
3.7.1 Profile View	
3.7.2 Madical Spaces	10

Center for Innovation in Ship Design

Knowledge People Innovation

Naval Surface Warfare Center Carderock Division
Center for Innovation in Ship Design
Hospital Ship Replacement

	Hospital Ship Replacement
3.7.3 Collective Protection System	
3.8 Ambulance Vehicles	21
3.8.1 Air Support	21
3.8.2 Amphibious Support	23
3.9 Weights	24
3.10 Seakeeping	26
3.12 Lifeboats and Liferafts	26
4.0 Conclusions	27
4.1 Summary	27
4.2 Future Work	27
Appendices	29
Appendix A: Project Gantt Chart	29
Appendix B: Army Field Manual Information	30
Appendix C: Ambulance Craft Trade Study	34
Appendix D: Electric Load Estimation	38
Appendix E: General Arrangements	42
Appendix F: Wärtsilä Gensets (18V32)	44
Appendix G: KARBOX ISO Container: Operating Hall	45
Appendix H: OxyStar Oxygen Generation System	46
Appendix I: OxyStar Feed Air System	47
Appendix J: SteriMed specifications	48
Appendix K: SOLAS Approved Noreq Lifeboats	49
Appendix L: HSR Detailed Equipment List	50
Appendix M: References	51

People

Naval Surface Warfare Center Carderock Division Center for Innovation in Ship Design Hospital Ship Replacement

List of Tables

Table 1: T-AH Principal Characteristics	1
Table 2: Missions Performed by USNS Mercy and USNS Comfort	2
Table 3: Requirements for Hospital Ship Replacement	3
Table 4: HSR Principal Characteristics	4
Table 5: HSR Equipment List	5
Table 6: Scaled Parent Hull Forms	6
Table 7: Principal Characteristics	
Table 8: Hospital Bed Breakdown	9
Table 9: Augmented LPD-17 Hotel Loads	10
Table 10: Total Electric Load	11
Table 11: DAHER KARBOX Medical ISO Containers	15
Table 12: LPD-17 Weights	24
Table 13: Additional Medical and Ship Weights	24
Table 14: HSR Weights	
Table 15: Lifeboat Selection	27
Table 16: Planning Factors	
Table 17: Summary Table of Field Hospital	33
Table 18: HSR in comparison to the USNS Mercy and Comfort	33
Table 19: HSR Crew	33
Table 20: Ambulance Craft Analyzed in Trade Study	
Table 21: Beach slope 1/20	
Table 22: Beach slope 1/100	
Table 23: Beach slope is 1/500	37
Table 24: Electric Load Estimates that Apply to HSR	38
Table 25: Flectric Load Data for LPD-17	39

People

Naval Surface Warfare Center Carderock Division Center for Innovation in Ship Design Hospital Ship Replacement

List of Figures

Figure 1: USNS <i>Mercy</i>	2
Figure 2: HSR Concept	
Figure 3: Draft versus Displacement for various naval vessels (Dr. Colen Kennell)	
Figure 4: Required propulsion power versus speed	10
Figure 5: Wärtsilä 18V32 Genset	11
Figure 6: Azipod electric propulsor	12
Figure 7: Azipod model comparison	12
Figure 8: Mission requirements and corresponding medical facilities of HSR	13
Figure 9: Example of flex space for HA/DR missions	14
Figure 10: Example of flex space for combat casualty missions	14
Figure 11: Crawford CB35SW Solid Waste Oxidizer	18
Figure 12: SteriMed Waste Processor	18
Figure 13: Inboard Profile	19
Figure 14: HSR's Medical General Arrangements	20
Figure 15: Sikorsky CH-53K helicopter dimensions	
Figure 16: V-22 Osprey dimensions	22
Figure 17: Griffon 2400TD hovercraft	

People

Innovation

Naval Surface Warfare Center Carderock Division Center for Innovation in Ship Design Hospital Ship Replacement

Acronyms

ABS American Bureau of Shipping

AFM Army Field Manual

BUMED Navy Bureau of Medicine and Surgery

CBRNE Chemical, Biological, Radiological, Nuclear, Explosive

CISD Center for Innovation in Ship Design
EPA Environmental Protection Agency
HA/DR Humanitarian Aid/ Disaster Relief
HCA Humanitarian Civic Assistance
HSR Hospital Ship Replacement

ICU Intensive Care Unit

IMO International Maritime Organization
LBP Length Between Perpendiculars

LCAC Landing Craft Air Cushion

LOA Length Overall

LPD Landing Platform Dock

MARPOL Marine Pollution

MSC Military Sealift Command

NAVSEA Naval Sea Systems Command

NREIP Naval Research Enterprise Intern Program

ROC/POE Required Operational Capability and Projected Operational Environment

SAIC Science Applications International Corporation
SEAP Science and Engineering Apprenticeship Program

SOLAS Safety of Life at Sea

SWBS Ship Weight Breakdown Structure

USNS United States Naval Ship

People

Innovation

NAVSEA WARFAS CANTERS

Naval Surface Warfare Center Carderock Division Center for Innovation in Ship Design Hospital Ship Replacement

1.0 Introduction

1.1 Objective

The goal of this design is to create a ship concept to replace the U.S. Navy's existing hospital ships. The ship design incorporates mission requirements prescribed by the Center for Innovation in Ship Design (CISD) and the Navy Bureau of Medicine and Surgery (BUMED). The hospital ship replacement incorporates the following capabilities:

- a. Provide immediate and mobile medical services to deployed military both ashore and afloat
- b. Provide mobile medical services for humanitarian aid and disaster relief in emergency situations
- c. Maximize patient throughput

1.2 Background

The current hospital ships that support the U.S. Navy are the *Mercy* (T-AH-19, Figure 1) and *Comfort* (T-AH-20). These ships are converted *San-Clemente* Class tankers that were constructed in 1975 and commissioned as hospital ships in 1986. These ships are outdated and have excess internal volume; as a result, the patient throughput of the vessels is not fully efficient.

Historically, hospital ships have been primarily engaged in combat casualty care. The United States began using primitive hospital ships as early as the Civil War. The function of hospital ships at this time was merely to transport casualties back home. By World War II, hospital ships began carrying surgical teams to stabilize wounded soldiers in amphibious operations. It was not until the Korean War that hospital ships began to utilize helicopters for immediate ambulatory transport of soldiers. The USS *Consolation* (AH-15) was the first hospital ship (and, more broadly, one of the first Navy ships) to be outfitted with a helicopter pad.

Since then, hospital ships have expanded in capacity and capability. The principal characteristics of the *Mercy* Class are listed in Table 1.

Table 1: T-AH Principal Characteristics

Mercy Class Characteristics			
Displacement, full load	69,360 LT		
Length, overall	894 feet		
Beam, overall	105 feet		
Draft	33 feet		
Sustained Speed	17.5 knots		
Total Installed Power	18.3 MW		
Power & Propulsion	2 x boilers, 2 x steam turbines, single shaft		
Accommodations	1,000 Patients, 61 Civilian, 1,214 Military		

People

Innovation

Naval Surface Warfare Center Carderock Division Center for Innovation in Ship Design Hospital Ship Replacement

Figure 1: USNS Mercy

The primary mission of the *Mercy* Class is to provide mobile medical and surgical services to support forces deployed ashore. These ships are engaged not only in combat casualty care, but also disaster relief and planned humanitarian operations within and outside the continental United States. While the latter two are considered secondary in priority, planned humanitarian aid and disaster relief (HA/DR) are expected to dominate the future missions of hospital ships. This refocus in mission priority is the driving factor in the redesign of medical facilities and arrangements.

Table 2 details missions that involved both USNS *Mercy* and USNS *Comfort*. A majority of the missions listed deal with HA/DR.

Table 2: Missions Performed by USNS Mercy and USNS Comfort

Mission	Details
Operations Desert Shield and Storm (1990)	More than 8,000 outpatients and 700 inpatients seen337 surgeries performed
Operation Uphold Democracy (1994)	Medical support for U.S. troops Emergency care to Haitian civilians Civil Affairs program to rebuild local healthcare system
Operation Sea Signal (1994)	Aided Haitian and Cuban migrant workers
Operation Noble Eagle (2001)	 Temporary clinic for relief workers during September 11th Treated 561 patients
Operation Iraqi Freedom (2003)	Traveled to Persian Gulf to treat 700+ patients
Hurricanes Katrina and Rita (2005)	 Assisted the gulf coast after Hurricanes Katrina and Rita Treated 1,956 patients in New Orleans and Pascagoula
Partnership for the Americas (2007)	 Humanitarian mission in Latin America and Caribbean. Treated over 98,000 people in 12 different countries
Pacific Partnership (2008)	Humanitarian and civic mission to aid Southeast Asia
Operation Unified Assistance (2010)	 Humanitarian relief effort following the Haiti earthquake First time that <i>Comfort</i> at full capacity Treated 1,000 patients and performed 850 surgeries

People

Innovation

Naval Surface Warfare Center Carderock Division Center for Innovation in Ship Design Hospital Ship Replacement

2.0 Project Directives and Constraints

The goal of this project is to design a replacement hospital ship with improved medical care capabilities. The study focused on existing hospital ships' shortcomings in the following areas:

- Seakeeping at zero knots A hull form with improved stability is required to perform medical
 operations during unsteady conditions. With medical staff being capable of operating during
 higher sea states, the throughput rate of patients will remain constant and uninterrupted and
 patient safety will be enhanced.
- Excessive draft A design with a shallower draft is preferred for specific missions of hospital ships. This will increase efficiency in moving casualties to/from the ship by allowing it to anchor closer to shore.
- 3. **Oxygen and freshwater production** An investigation of more efficient processes in producing large amounts of oxygen and freshwater while in "unsanitary" environments. Advanced technologies and green alternatives are desirable.
- 4. Modular medical spaces Modular medical spaces to allow rapid reconfiguration of medical spaces and possibly facilitate the movement of some medical capabilities ashore for sustained operations are desirable. Modular spaces with robust medical capabilities can provide immediate care and improve patient throughput for the humanitarian effort.
- 5. Additional requirements stipulated by CISD are listed in Table 3.

Table 3: Requirements for Hospital Ship Replacement

Characteristic	Requirement		
Performance			
Sustained Speed	20-22 knots		
Sea State Operability	SS5		
Sea State Survivability	SS8		
Pers	sonnel		
Crew	TBD by team		
Medical Staff, Flight Operators, MSC Crew, etc.	TBD by team		
Medica	Facilities		
TBD by team			
Aviation	n Facilities		
Land/Launch Spots	2 x CH-53		
Hangar	1 x CH-53, or 2 x H-60		
Other			
Boat Handling	Must be capable of transferring personnel, cargo, and injured patients in calm seas		
Lifeboats	Compliance with SOLAS		

Knowledge People

Innovation

Naval Surface Warfare Center Carderock Division Center for Innovation in Ship Design Hospital Ship Replacement

Not all required characteristics are listed explicitly. The premise of this project is being explored for the first time and the purpose of this investigation is to determine appropriate characteristics and requirements that can serve as a basis for further designs.

3.0 Ship Design

3.1 Concept Summary

The Hospital Ship Replacement (HSR) concept is shown in Figure 2. Principal characteristics and an equipment list for this concept are found in Table 4 and Table 5, respectively.

Figure 2: HSR Concept

Table 4: HSR Principal Characteristics

HSR Principal Characteristics			
Displacement	25,000 LT		
LOA	684 feet		
LBP	668 feet		
Beam	105 feet		
Draft	23 feet		
Depth	62.3 feet		
Mission Length	30 days		
Sustained Speed	20 knots		
Total Installed Power	35 MW		
	4 x Wartsila 18V32 Gensets		
Propulsion	Integrated Power System		
	Dual azimuthing pods		
Accommodations	500 patients, 72 MSC crew, 428 medical		

People

Innovation

Naval Surface Warfare Center Carderock Division Center for Innovation in Ship Design Hospital Ship Replacement

Table 5: HSR Equipment List

Equipment	QTY
Azipod XO1800	2
Aqua-Chem Watermaker	1
Bilge Water Treatment	1
CATSCAN	1
CH-53K Helicopter	1
Crawford CB35SW Incinerator	1
ISO Container (Fully Loaded)	6
Marine Sewage Treatment	2
MCM Technologies SteriMed	1
Mitsubishi FD160N Fork Lift	1
MRI	4
Noreq Lifeboats LBT 1090 C	6
Noreq Lifeboats LBT 935 C	6
Noreq Lifeboats LBT 650 C	3
Noreq Fast Rescue Boat FRB 650 Twin 90 hp	2
Noreq Davits (36)	3
OxyPlus Oxystar99 300	2
SAIC Solid Waste Shredder	1
SAIC Plastic Waste Shredder	1
SAIC Compress Melt Unit Mod 1	1
SAIC Large Pulper	1
Wärtsilä Genset 16V32	4
X-Ray	1

3.2 Hull Form Selection

3.2.1 Selection of Monohull

Hull form selection was an extensive process in the preliminary stages of the design spiral since the project requirements were given without a specified hull form. Mission requirements, BUMED objectives, and design constraints were among the many considerations which influenced the final hull form selection. The importance of a shallower draft, improved seakeeping capabilities, and ease of patient transport to and from the platform were the driving design factors during selection.

Deliberation began with four hull form options: monohull, catamaran, trimaran and SWATH. All of these hull forms provided potential in carrying out hospital ship missions. Through initial analysis, the catamaran was removed as a serious contender. Although it is a proven hull design for stability, integrating the ability to quickly transfer patients aboard is challenging.

The SWATH was the next hull form to be ruled out. Even with increased seakeeping capabilities and good stability performance in higher sea states, this hull form posed a variety of issues. Among the issues was the weight sensitivity of the platform when moving patients and cargo around the medical

People

Innovation

NAVSEA WAR CHIEF

Naval Surface Warfare Center Carderock Division Center for Innovation in Ship Design Hospital Ship Replacement

facilities. Additionally, SWATH hull forms typically have a large draft, which was something that was deemed definitely undesirable for HSR.

While the trimaran has many superior aspects such as shallow draft, hull stability and good seakeeping, the negatives aspects outweighed the positive ones. When scaled up to the desired displacement, a trimaran would have a beam of approximately 160 feet. This posed numerous issues with maneuverability and the ability to get in and out of ports and disaster areas. If the beam were to be restricted to a desirable dimension, the internal volume of a trimaran would be insufficient for the needs of a hospital ship. Thus, a monohull was selected as a more conventional and feasible design. By using a conservative monohull design, the replacement hospital ship would have an inexpensive and reliable, yet large, displacement hull form. A monohull is also an optimal choice for integrating multiple forms of ship-to-shore patient transport due to decreased weight sensitivity.

3.2.2 Comparable Ships

Once the monohull hull form was selected, it was necessary to compare vessels with similar design characteristics and determine the feasibility of scaling the vessel to the HSR's desired displacement. A displacement between 25,000 and 30,000 LT along with a draft between 20 and 28 feet was determined as a reasonable range of size for a replacement hospital ship. The range of draft considered is considerably less than the existing ships' 33-foot draft. Although commercial vessels such as cargo ships and cruise liners have similar scales of internal volume and have implemented motion reduction systems, development of a concept design for a hospital replacement ship in ten weeks required use of an existing hull form. Consequently, a limited number of naval monohull designs were available that would be scalable to the desired displacement. This tradeoff was necessary to ensure that focus for the design could be directed towards optimizing the flow of the medical facilities on the replacement hospital ship.

The initial parent hull forms considered include USNS Zeus (T-ARC 7) and USNS Safeguard (T-ARS 50), a cable laying ship and a salvage ship, respectively. Both designs were considered for their integrated systems and hull form. These ships were constructed in order to mitigate wave effects aft of the ship. This capability is essential to keep medical operations functional while afloat.

Table 6: Scaled Parent Hull Forms

		Current		Scaled	
	Unit	T-ARS 50	T-ARC 7	T-ARS 50	T-ARC 7
Length (overall)	ft	255	513	495.5	539.1
Beam	ft	51	73	103.2	86.7
Draft	ft	17	26	32.0	28.5
Displacement	LT	2,840	14,934	25,000	25,000

As shown in Table 6, neither Zeus nor Safeguard provided a considerable improvement in draft when scaled to the desired displacement of 25,000 LT. To ensure that the ship will be able to access ports

People

Innovation

Naval Surface Warfare Center Carderock Division Center for Innovation in Ship Design Hospital Ship Replacement

and operate nearshore, a draft less than 25 feet was desired. As a result, neither of these scaled hull forms met the design requirements.

3.2.3 LPD-17 Hull Form

Figure 3 shows the draft and displacement of a number of naval auxiliaries and aircraft carriers. The figure shows that amphibious ships have the lowest draft in the displacement range of interest. While all combatant craft remain under the desirable draft, the displacement is too little. A target displacement of 25,000 LT coupled with a desired draft of less than 25 feet hence falls into the category of amphibious vessels.

Figure 3: Draft versus Displacement for various naval vessels (Dr. Colen Kennell)

The LPD-17 San Antonio Class hull form was chosen in the final stages of hull form selection. This hull form's draft of 23 feet provides a ten foot draft improvement from USNS Mercy and USNS Comfort. This augments mission capabilities by increasing accessibility to ports and enabling nearshore operations. The integrated Well Deck, hangar and Flight Deck are characteristics which greatly enhance ship-to-shore capabilities for patient transport.

People

Innovation

NAVSEA WARRE CENTERS

Naval Surface Warfare Center Carderock Division Center for Innovation in Ship Design Hospital Ship Replacement

3.2.4 Principle Characteristics

Table 7: Principal Characteristics

	LPD-17	HSR
Length, overall (ft)	684	684
Beam, overall (ft)	105	105
Draft (ft)	23	23
Displacement, full load (LT)	24,900	24,979
Speed, sustained (knots)	22+	20
Total Installed Power (MW)	31	35
Mission Length (days)	30	30
		500 patients
Accommodations	1,024	72 MSC crew
		428 medical

To focus on the design and integration of the medical facilities rather than elements of the hull form, several aspects of the LPD-17 were kept constant. As seen in Table 7, the length, beam and draft of the HSR are identical to those of the LPD-17. Watertight bulkheads and decks were also kept constant. The hangar and Flight Deck were retained to preserve the capability to simultaneously land two helicopters as well as store a CH-53 K Super Stallion or a V-22 Osprey.

The Well Deck was retained to provide access and transportation of ambulance vehicles. All armament was removed to adhere to the stipulations of the Geneva Convention for hospital ships. New features to the hull form include a completely revamped deckhouse designed to the specific mission needs. Additionally, double hull fuel tanks were inserted to comply with MARPOL regulations; which states that a vessel with over 600 cubic meters fuel capacity is required to incorporate a double hull in the design.

3.3 Medical Facilities Breakdown

The decision to design a 500 bed capacity hospital ship was made in consultation with BUMED. Details of the beds and medical facilities are listed in Table 8. Although this change may appear debilitating to the mission capabilities, the HSR's medical facilities are designed to have a more efficient flow of patients and a greater patient throughput which allows the ship to accommodate the same number of patients as USNS *Mercy*, but with a smaller ship. Once the formal analysis is complete, the replacement ship should be capable of having patients brought onboard, treated, and taken off ship within 72 hours of arriving.

People

Innovation

Naval Surface Warfare Center Carderock Division Center for Innovation in Ship Design Hospital Ship Replacement

Table 8: Hospital Bed Breakdown

	T-AH 19 & 20	Readiness State II HA/DR
Intensive Care	80	60
Recovery	20	15
Intermediate Care	400	320
Minimal Care	500	105
Reception/Triage	50	35
Operating Room	12	6
X-Ray	4	3
Total Bed Capacity	1,000	500

The medical facilities are designed for Readiness State II as specified in the Required Operational Capability and Projected Operational Environment (ROC/POE) document. This size of medical facilities provided a solid design point for designing a replacement hospital ship. Designed in this manner, the ship can provide tailored levels of surgical-intensive care, while focusing on primary care, preventative medicine and specialized procedures more readily. This change in bed capacity and breakdown is consistent with the change in mission focus to HA/DR. Modular medical facilities will serve as the bridge to address the changes in facilities needed for combat casualty care missions.

3.4 Resistance & Power

Speed, while arguably desirable in a hospital ship, was not one of the main design drivers of this project. Ideally, sustained speed of the vessel would be around 20 knots. This speed is easily achieved for a vessel of this magnitude, and is also a 2.5 knot improvement over the current hospital ships. Maximum, or trial, speed for the design is 22 knots. The HSR speed-power curve is found in Figure 4.

Naval Surface Warfare Center Carderock Division Center for Innovation in Ship Design Hospital Ship Replacement

Figure 4: Required propulsion power versus speed

The hotel load of the HSR was derived from electrical load data taken from the LPD-17 (Appendix D: Electric Load Estimation). Different load cases were given depending on the ship's transient characteristics and the time of year the ship is in operation. The largest of these load cases was selected to obtain a conservative estimate. Electrical loads that were mission-specific to LPD-17 were eliminated including parts of the command and surveillance group and the entire armament group. Worst case loads for command and surveillance, auxiliary systems, and general outfits and furnishings are shown in Table 9. Together, these systems require about 4,763 kW. After adding the power that will be needed for the hospital facilities (Appendix B: Army Field Manual Information) as well as an additional margin, the hotel loads sum up to approximately 6 MW.

Table 9: Augmented LPD-17 Hotel Loads

SWBS	Component	Max power (MW)
400	Command + Surveillance	0.3
500	Auxiliary Systems	4.2
600	Outfitting + Furnishing, General	0.3
	Total Hotel Loads	4.8

As seen in Table 10, the HSR required operating power was estimated by combining the propulsion load (including a NAVSEA Speed-Power preliminary design margin of 10%), augmented hotel loads, and large medical power requirements.

Naval Surface Warfare Center Carderock Division Center for Innovation in Ship Design Hospital Ship Replacement

Table 10: Total Electric Load

System	Load (MW)
Propulsion (with 10% margin)	28.3
Hotel	4.8
Medical	1.2
Total	34.3

Machinery systems aboard a variety of comparable ships were analyzed to determine a suitable power system. Because of the HSR's demand for large hotel loads and a high passenger capacity, power systems on cruise liners were considered since they have comparable operational functions as a hospital ship. An all electric system was selected because it has proven to be an effective power source aboard cruise liners and it also has lower fuel costs and increased efficiency compared to the USNS *Mercy's* and USNS *Comfort's* existing systems. Four Wärtsilä medium speed diesel gensets were incorporated into the design to produce the required power. Each genset provides 8.64 MW of power, supplying the ship with a total combined power of 34.56 MW.

Figure 5: Wärtsilä 18V32 Genset

3.5 Propulsion

Electric pod propulsors were selected for the design to exploit the arrangement flexibility and efficiently of the all electric design. Most of the propulsion system is contained in a suspended pod, as seen in Figure 6. The propulsors require limited space within the hull and eliminate the need for shafting. The interior volume saved was then used to improve arrangement of necessary medical spaces. The pods also produce less noise and vibration when compared to other systems, which is extremely helpful in minimizing the vibrations propagated to medical facilities.

By employing dual azimuthing pods, the design allows for increased positioning and maneuvering control of the vessel. This will be useful for a hospital ship entering or exiting disaster areas where waters are restricted for navigation and tugs are not available.

Naval Surface Warfare Center Carderock Division Center for Innovation in Ship Design Hospital Ship Replacement

Figure 6: Azipod electric propulsor

Power is the major deciding factor when selecting a specific Azipod model. As seen in Figure 4, the design requires between 16,000 kW and 22,500 kW of propulsion power to operate within the desired speed range. By dividing these requirements in half, we were able to calculate the ideal shaft power of each pod (between 8,000 and 11,250 kW). Figure 7 shows that the Azipod model XO1800 performs within the designated power range.

Figure 7: Azipod model comparison

People

Innovation

NAVS WARP CATE

Naval Surface Warfare Center Carderock Division Center for Innovation in Ship Design Hospital Ship Replacement

3.6 Mission Systems

3.6.1 Need for Modularity

BUMED stressed that the flexibility of modular medical facilities was essential to the concept of operations. Each mission type will require specific medical facilities; tailoring of medical capabilities between two similar missions is necessary. A hospital ship that is engaged in humanitarian efforts in two different regions in the world may require different sets of medical facilities depending on the conditions of the people and the environment in each region. Figure 8 illustrates the needed flexibility for different missions; bolded areas represent the critical facilities needed.

Figure 8: Mission requirements and corresponding medical facilities of HSR

The goal of the HSR design is to incorporate organic medical facilities that are common for all missions. These organic facilities will be complemented by modular medical spaces. The modular medical facilities will be integrated into the ship in two ways. First, by designating large flex spaces on board ship that will be able to be converted into a variety of medical or non-medical spaces to meet the mission-specific requirements. Second, the HSR will use ISO containers outfitted as medical spaces to provide immediate medical care on location when needed. Several of the medical facilities used onboard can fit into the capacity of an ISO container. Stowage for six of these containers is

People

Innovation

Naval Surface Warfare Center Carderock Division Center for Innovation in Ship Design Hospital Ship Replacement

provided in the expanded hangar- space and will be transported by helicopter to shore if needed. The combination of these two modular systems will ensure an agile and adaptable hospital ship design.

3.6.2 Flex Spaces

The flex space must be convertible into a variety of medical spaces. This means that the space must be capable of being equipped with a variety of medical services such as oxygen, water, HVAC, and electrical. The large reconfigurable medical space with be outfitted dockside before each mission to meet that mission's specific needs. For example, a primary communications center could be outfitted where facilitating communication between foreign governments, NGOs, and other entities involved in a disaster relief mission could take place. In the case of a casualty combat care mission, the flex space can be outfitted for overflow berthing, operating rooms, or immediate care wards. Figure 8 illustrates the flexibility of the space for the different mission types.

Figure 9: Example of flex space for HA/DR missions

Figure 10: Example of flex space for combat casualty missions

People

Innovatio

Naval Surface Warfare Center Carderock Division Center for Innovation in Ship Design Hospital Ship Replacement

There are two separate examples of flex space on the HSR. These flex spaces would be outfitted dockside prior to the hospital ship's mission departure. Rooms would be divided using temporary walls, which allows the spaces to be reconfigured in transit or even during the mission if necessary. The primary flex space is located on the second deck directly above the level of most critical medical care. The 21,800 square foot area is capable of being converted into a range of medical facilities for specific missions. The secondary flex space is located on the third deck and is approximately 1,660 square feet in area. Details of these spaces are found in Appendix E: General Arrangements. It is located on the level of most critical medical care and will be capable of converting into two additional operating rooms if necessary during combat casualty care missions.

3.6.3 ISO Container Systems

The HSR has the capability of loading six medically outfitted ISO containers. These portable containers can house a variety of medical facilities. The containers can be airlifted to areas inland to provide immediate medical care to disaster stricken areas. The helicopter used to transport the containers to and from the ship is discussed in detail within Section 3.8.1 Air Support.

These medical ISO containers will be stored in the garage adjacent to the hangar. A Mitsubishi FD 160N Forklift is representative of the forklift needed to move the ISO containers from the garage to the Flight Deck. It has a 110 kW, diesel powered engine and a 35,274 lbs load capacity. The containers can then be airlifted by one of the ship's helicopters. Portable generators will be required to power the containers once on site.

Medically outfitted ISO containers are commercially available. For example, DAHER KARBOX s.r.o., based in Czech Republic, manufactures a variety of medical ISO containers. Details about these containers are found in Table 11.

Table 11: DAHER KARBOX Medical ISO Containers

Dimensions (feet)	
Operating Hall	20 x 16 x 8
Intensive Care Unit	20 X 10 X 6
Dentist Ambulance	
Pharmacy	
X-Ray Laboratory	
Ear, Nose, and Throat Ambulance	20 x 8 x 8
Sterilization Room	
Biochemical and Hematology Laboratory	
Examination Room	
Tare (lbs)	5,512 ± 5%
Maximum Gross Weight (lbs)	26,455

All containers are equipped with appropriate electrical wiring, distribution of water, a wastewater drain, lighting, heating and air conditioning. The Operating Hall and ICU both consist of two, three-walled containers. Each container lacks a sidewall where it will be connected to the other container. A removable sandwich panel closes the open wall to protect the containers when not in use. The two

Center for Innovation in Ship Design

Knowledge

People

Innovation

Naval Surface Warfare Center Carderock Division Center for Innovation in Ship Design Hospital Ship Replacement

containers create an operating room that has an interior area of 275 square feet. The containers that compose the Operating Hall can be airlifted separately and connected together on site with accessories stored inside the containers. Each Operating Hall can also be connected to a Pre-Operating Room container ISO and Hygiene Filter and Machine Room.

3.6.4 Fresh Water Production

BUMED has stressed the importance of adequate water production. A large portion of humanitarian aid missions take place in disaster stricken or impoverished areas where seawater is dirty or contaminated. Therefore, it was important to designate a water production system that was capable of quickly producing large amounts of potable water. Planning factors in the Army Field Manual (AFM) indicated that water requirements for the hospital ship at maximum capacity would be around 80-100,000 gallons per day (gpd). Details can be found in Appendix B: Army Field Manual Information. Fresh water capacity for the HSR was increased to 300,000 gpd to support fresh water distribution ashore during disaster relief missions (which was conducted in Haiti).

Three main water treatment techniques were considered: distillation, reverse osmosis, and filtration. Distillation is the method currently used on the USNS *Mercy* Class. Although favored for its simplicity and ability to power itself with waste products of other systems, this system was eliminated from consideration due to its large waste output, cost, and high maintenance requirements. Filtration solved these issues, requiring very little energy and cost, but this method was also eliminated because it could not meet the capacities required.

The method of choice for the HSR is reverse osmosis, which happens to also be a prospective choice for future U.S. naval ships. Reverse osmosis is capable of quickly producing large quantities of fresh water very efficiently. The water production system implemented on the hospital ship design includes a combination of a blue water reverse osmosis system and a coastal "ultra filtration" pretreatment system. Combined, this system will desalinate and decontaminate water where primary missions of this vessel will be carried out, providing safe potable water.

3.6.5 Oxygen Generation

Being essentially an isolated hospital, the ship needs to be self-sufficient in terms of oxygen production. It will not necessarily be able to rely on surrounding areas to restock its oxygen supply. According to Army Field Manuel (AFM) planning factors, a 500-patient hospital consumes around 366,828 liters of oxygen each day. An oxygen generator has been designated that is capable of producing 390,000 liters of 99.5% pure oxygen per day at a rate of 16.5 m³/hr. This purity level complies with the U.S. Pharmacopeia standard for oxygen used for medical practice of 93% purity. To provide the clean air required by the oxygen generation system, an air compressor and treatment unit has also been designated.

Oxygen is hard-piped into essential rooms including the operating rooms, triages, flex spaces, and ICUs. Excess oxygen can be bottled and transported to various sections of the ship and ashore for

Center for Innovation in Ship Design

Knowledge

People

Innovation

Naval Surface Warfare Center Carderock Division Center for Innovation in Ship Design Hospital Ship Replacement

mobile operations. These pressurized cylinders will add to the emergency supply stocked onboard and be allocated for use in the event of system damage.

3.6.6 Waste Management

Waste management afloat is a constant challenge for the Navy. It is even more so when designing a hospital ship. In addition to the typical waste produced by the ship's crew and machinery, different varieties of medical waste including infectious, and noninfectious, and biohazard waste can be present. Each type has to be properly treated and disposed. If simply left to accumulate, waste storage would take up a large portion of the ship's volume.

Eight different waste management systems have been incorporated into the HSR to treat the full spectrum of waste:

- Incinerator, Crawford CB35SW Solid Waste Oxidizer
- Medical Waste Processor, SteriMed
- Solid waste shredder, SAIC
- Plastic waste shredder, SAIC
- Compress Melt Unit, SAIC
- Large pulper, SAIC
- Bilge water treatment system
- Marine sewage treatment system

The design employs two main waste systems: an incinerator and a medical waste processor. These systems allow for the disinfection and elimination of infectious waste, which cannot be stored aboard for longer than seven days.

The incinerator, a Crawford CB35SW Solid Waste Oxidizer, is a multi-chambered model capable of processing up to 100 lbs/hr of waste (Figure 11). A dual chamber system was a necessity as it allows waste to be fully sterilized before leaving the system and still maintain clean emissions. The incinerator is able to greatly reduce the volume of both medical and non-medical waste. The medical waste processor, also known as the SteriMed (Figure 12), is a specialized piece of waste management equipment that deals exclusively with medical waste. It shreds and disinfects waste, including plastic, to the point where it becomes sterile. This output can then be unloaded at generic waste facilities around the globe, as opposed to the few specialized contaminated waste treatment centers. For redundancy purposes, both of these systems were included in the concept design.

People

Innovation

Center for Innovation in Ship Design Hospital Ship Replacement

Figure 11: Crawford CB35SW Solid Waste Oxidizer

Figure 12: SteriMed Waste Processor

The five other waste management systems deal with the remaining non-medical waste produced aboard the ship. Plastic shredders paired with a compressed melt unit consolidate and store discarded plastic which cannot be discharged into the ocean. Similarly, a solid waste shredder breaks down metal and glass that can then be discharged overboard. Finally, a bilge water treatment system, a marine sewage treatment system, and a pulper are employed to deal with any remaining waste.

3.7 General Arrangements

3.7.1 Profile View

The inboard profile illustrates the location of the seven main compartments within the ship. Medical facilities are the main priority and the focus of the design; therefore, the medical facilities were centralized in the hull amidships on the main deck, 2nd deck, 3rd deck and 1st platform. By this arrangement of medical facilities, more efficient patient transfer can occur from all three modes of entry. The HSR design contains two separate machinery spaces: one amidships and one forward. The main gensets powering the propulsion system and large hotel loads are located amidships while the emergency generator is located forward. This redundancy is essential in the case of machinery failure.

People

Innovation

Naval Surface Warfare Center Carderock Division Center for Innovation in Ship Design Hospital Ship Replacement

Figure 13: Inboard Profile

3.7.2 Medical Spaces

The general arrangements were developed to verify that all medical facilities and major components of the vessel could be fitted to the desired hull. More detailed arrangements can be found in Appendix E: General Arrangements. Area and volume requirements for medical spaces were scaled from the USNS Mercy general arrangements. All machinery, propulsion, waste, water and oxygen spaces were re-designed for the replacement hospital ship. Footprints for these various systems were acquired from vendor information. Crew accommodations were scaled based on relationships between manning numbers and the maximum patient capacity on USNS *Mercy*.

The four decks shown in Figure 14 show the layout of the main medical facilities on the HSR. Optimizing patient throughput and efficient patient flow through the hospital was the primary focus in the design. As such, it was necessary to determine which medical facilities would be organic to the ship and which would be outfitted pre-mission departure in the large reconfigurable medical space located on the 2rd deck. The 3rd deck was chosen for the level with all critical medical care facilities. This was done such that patient transport would only be one deck up from the Well Deck and two decks down from the Flight Deck entry. It was essential to centralize the medical facilities to put all medical needs such as ward beds, labs, sterile receiving, etc. directly above and below the level of critical medical care. On the critical care level, 3rd Deck, the radiology equipment, labs, operating rooms and intensive care units are kept in close proximity in a linear flow to increase patient throughput. The multiple elevators allow better patient transport between the hospital levels and add to the increased efficiency.

In the lessons learned from USNS Mercy and USNS Comfort, BUMED stressed the need for decontamination facilities at each point of entry onto the vessel. As seen on the Main Deck and 1st platform (green shaded regions), there are multiple decontamination stations located by both the Well Deck and Flight Deck entries, which is strictly used for patient decontamination. Although not depicted here, port and starboard side-hull access areas are provided with a small triage and decontamination facility. Multiple stations at each entry will increase the efficiency of patient flow and will reduce the

Knowledge People

Naval Surface Warfare Center Carderock Division Center for Innovation in Ship Design Hospital Ship Replacement

chance of turning into a choke point. These decontamination facilities will be protected to prevent any type of CBRNE (Chemical, Biological, Radiological, Nuclear, and Explosive) contamination in medical spaces.

Figure 14: HSR's Medical General Arrangements

3.7.3 Collective Protection System

The HSR design includes a pressurized ventilation system known as Collective Protection System (CPS). This system is used onboard ships to protect against CBRN contamination. This system works by filtering all intake air and applying a positive air pressure to spaces to prevent contaminated air

Center for Innovation in Ship Design

Knowledge

People

Innovatio

Naval Surface Warfare Center Carderock Division Center for Innovation in Ship Design Hospital Ship Replacement

particles from ingressing into safe areas (habitation, surgical, work, etc). Different levels of protection may be required to develop a multi-layered citadel of protection. The rooms that will be among the top tier of protection will include medical facilities that need a particularly clean environment like operating rooms, certain labs and intensive care units. A second tier will include the less critical medical facilities like wards and general ship functions such as berthing, messing, and stores. Finally, a third tier includes the machinery spaces. Decontamination stations and airlocks will be placed between any two different citadel tiers. Furthermore, the HSR will be divided into four HVAC zones that will run independently of one another and will each have their own air intake filter. If the quality of the air in one zone is compromised, it will not affect the other zones.

3.8 Ambulance Vehicles

3.8.1 Air Support

There are limited capabilities in terms of ship-to-shore air transportation on the current hospital ships. It is essential to have helicopter capabilities because it can locate and pick up patients in areas otherwise inaccessible by sea. Additionally, certain helicopters have the capability of transporting items such as ISO containers. Helicopters also provide a large range inshore and can serve as a secondary transport system to the amphibious support efforts. Although the current ships are equipped with a Flight Deck, it is only large enough to land one MedEvac helicopter. This results in a serious bottleneck as the ship loses the ability to transport large amounts of patients and cargo between the ship and the shore. Not only does the *Mercy* Class have very limited air capabilities, but also hangar facilities.

The HSR design has incorporated numerous improvements in air support. The integrated Flight Deck and hangar in the design of the LPD-17 was retained. The large Flight Deck area allows for simultaneous landing and take-off of two helicopters. The new ship design will be capable of landing a V-22 Osprey (Figure 16) on the Flight Deck and store it in the hangar. Although it is possible to have an Osprey organic to the ship, it is more feasible to choose the upcoming CH-53K Super Stallion (Figure 15) as the helicopter of choice. This helicopter has a large payload capacity which allows it to airlift the modular ISO medical care containers included in the design. It also has a very large patient capacity at 24 litters. The HSR will support two Super Stallions organic to the ship, one in the hangar and one housed on the Flight Deck. Additional structural design analysis should be facilitated to assess wind off the hangar and pressure waves from the blades of the CH-53K and V-22.

Naval Surface Warfare Center Carderock Division Center for Innovation in Ship Design Hospital Ship Replacement

Figure 15: Sikorsky CH-53K helicopter dimensions

Figure 16: V-22 Osprey dimensions

People

Innovation

Naval Surface Warfare Center Carderock Division Center for Innovation in Ship Design Hospital Ship Replacement

3.8.2 Amphibious Support

The *Mercy* Class hospital ships are severely disadvantaged in their ability to transport patients between the ship and shore by amphibious vessels. Patients can not directly access the ship at the waterline and has limited points of entry by means of a davit lift system. While able to lower and raise the *Mercy* Class' organic ambulance boats, they can only do so in very low sea states. With this limited capability, there were immense risks associated with raising a boat transporting casualties to the boat deck. In order to resolve this issue, the Well Deck from the original LPD-17 hull form has been retained, but resized. The Well Deck will be halved in length in order to increase internal volume while retaining the capability of presenting the opportunity for a variety of organically stored ambulance craft.

Twenty-four surface craft were evaluated based on their ability to quickly and smoothly transport patients to the ship. This trade study analyzed various small craft vehicles for amphibious support based on beach slope, ship draft, vessel speed and patient capacity. Hovercrafts were determined to be the preferred mode of ambulance transportation as they not only offer improved ride quality and speed, but also are capable of driving up onto the shore. Additionally, hovercrafts provide a sufficiently large patient transfer, quick transfer times for loading and unloading of passengers, and good seakeeping in rough weather conditions.

Although the half-scale Well Deck is fully capable of housing one organic LCAC, it was determined that the Griffon 2400TD hovercraft would be a more efficient ambulance vehicle. The Well Deck is capable of housing up to four of these smaller vehicles at a time, and the ship will house two organically. This adds the benefit of redundancy and the ability to have multiple hovercrafts simultaneously accessing various locations in the same disaster area with the added benefit of extra Well Deck storage space. Details of this trade study and information on the Griffon 2400 TD hovercraft is found in Appendix C: Ambulance Craft Trade Study.

Figure 17: Griffon 2400TD hovercraft

People

Innovation

Naval Surface Warfare Center Carderock Division Center for Innovation in Ship Design Hospital Ship Replacement

3.9 Weights

Weight estimates were prepared utilizing the LPD-17 SWBS (Ship Work Breakdown Structure) weight report. A weight summary for the LPD-17 is shown in Table 12.

Table 12: LPD-17 Weights

SWBS	LPD-17 (LT)
100 – Hull Structures	11,614
200 - Propulsion Plant	1,053
300 – Electric Plant	904
400 – Command + Communications	486
500 – Outfitting + Furnishings	2,407
600 – Auxiliary Systems	1,527
700 – Armament	230
TOTAL	18,221
Loads	6,609
Full Load Displacement	24,830

A significant amount of LPD-17 mission related weights were deleted since the related systems were not needed for missions of the HSR. In Group 100, weights for structures such as 04 and 05 Deckhouse levels, ballistic plating, armament foundations, and the enclosed masts were removed. In Group 200, all weights related to the LPD-17's transmission and propulsor systems were replaced with podded system counterparts. The original medium speed turbocharged diesels in Group 300 (Electric Plant) were removed along with the existing emergency generator and replaced with weights for the HSR's integrated electric plant. Countermeasures and fire control systems were removed from Group 400 since the hospital ship is expected to comply with the Geneva Convention. In Group 500, climate control items weights were scaled to account for the increased HVAC (heating, ventilation, air conditioning) requirements of medical spaces. Group 600 weight items were scaled to reflect the increase of personnel and the rearrangement of hull spaces. Approximately 200 tons of armament were removed from Group 700, including missiles, rockets, guns, and ammunition. In addition, weights for the HSR medical equipment were inserted into the weight estimate. Table 13 lists the weights of HSR related equipment included in the weight estimate.

Table 13: Additional Medical and Ship Weights

Additional Items	Quantity	Total Weight (LT)
Medical Equipment		
CATSCAN	1	3.2
Compress Melt Unit Mod 1	1	0.6
Crawford CB35SW Incinerator	2	10.9
Medical ISO Containers (full)	6	70.9
MRI	4	47.2
Oxygen Production Units	2	1.5
SteriMed Medical Processor	1	0.7
X-Ray	1	0.2

Naval Surface Warfare Center Carderock Division Center for Innovation in Ship Design Hospital Ship Replacement

Ship Systems		
Azipods	2	572.3
Bilge Water Treatment	1	0.7
CH-53K (organic)	1	38.8
Davits (36 person capacity)	3	15.7
FD160N Forklift	1	15.8
Large Pulper	1	1.3
Lifeboats (130 person capacity)	6	40.9
Lifeboats (102 person capacity)	6	33.1
Lifeboats (36 person capacity)	3	9.2
Marine Sewage Treatment	1	15.7
Plastic Waste Shredder	1	0.6
Solid Waste Shredder	1	0.6
Wartsila 18V32 Gensets	4	2,094.4
Water Production Unit	1	113.8
	TOTAL	3,088.2

HSR weights are summarized in Table 14. A 10% design margin was included in the estimate due to the moderate risk of this concept design; this margin complies with NAVSEA Instruction 9096.6B. Loads for the HSR were modified from the LPD-17 as follows:

- All cargo removed, including fuel and lubricants, amphibious assault cargo, and ordinance and delivery system cargo;
- Mission related expendables and systems removed;
- Added JP5 load to accommodate the organic CH-53K

Table 14: HSR Weights

SWBS	HSR Concept (LT)
100 – Hull Structures	11,020
200 - Propulsion Plant	920
300 – Electric Plant	2,733
400 – Command + Communications	296
500 – Outfitting + Furnishings	2,496
600 – Auxiliary Systems	1,774
700 – Armament	13
Total	19,252
Various medical items	421
Margin (10%)	1,968
Lightship + Margin	21,641
Loads	3,338
- Fuel	2,361
- Ships Force & Stores	356
 Other (non-petro based liquids, lubricating oil, etc.) 	621
Full Load Displacement	24,979

Center for Innovation in Ship Design

Knowledge

People

Innovatio

Naval Surface Warfare Center Carderock Division
Center for Innovation in Ship Design
Hospital Ship Replacement

For this concept, a comprehensive study on the structural weights is imperative. LPD-17 was built with shock-hardened structures and SSDS (Ship Self-Defense Systems). The LPD-17 hull form also employs nuclear blast protection. These self-defense systems are not needed for a hospital ship and the design does not need to comply with military design and construction standards. Furthermore, HSR must adhere to MARPOL Regulation 12A – Oil Fuel Tank Protection. This regulation states that any vessel capable of carrying over 600 m³ of fuel is required to have a double hull structure within all fuel tanks.

Further analysis of Group 700 weights is recommended. *Mercy* Class ships carry small arms only; however, armament mounts for.50cal machine guns is being considered. The HSR accounts for carrying small arms onboard, but the gun mounts are not included. Additional analyses of certain medical weights is recommended, including medical supplies, beds, equipment, operating rooms, etc.

3.10 Seakeeping

By selecting a monohull as the basic hull form, several inherent stability issues had to be dealt with. It is important not only to overcome these issues, but also to achieve operational stability at zero knots so that the hospital can function safely. A variety of stability enhancement mechanisms were considered including gyrostabilizers, jack-up mechanisms, anti-roll tanks, and active fins.

Initially, the idea of a jack-up ship was promising as it provided the most stable platform by simply raising the hull above the impact of waves. Upon further analysis, the limitations of such a design negated its benefits. The jacks themselves are finite in length, constraining operations to shallow water. They also consume a large portion of the ships volume and add significant weight. Similarly, the righting torque provided by a gyrostabilization system requires a large amount of power to operate.

Two separate stabilization mechanisms are incorporated into the ship design. The first, a passive system, is a series of anti-roll tanks located along the centerline of the vessel. When designed correctly, these tanks are simple and relatively inexpensive. They also have the added benefit of working at any speed. In combination with anti-rolling tanks, the design incorporates an active fin stabilization system. This system is designed to operate primarily when anchored to reduce the effects of roll. Quantum markets two separate zero speed active roll fin models for small ships. Feasibility of scaling fins to the size of the hospital ship requires validation.

3.12 Lifeboats and Liferafts

The safety appliances designated for the HSR are in compliance with the Safety of Life at Sea (SOLAS) standards. Fifteen completely-enclosed lifeboats of varying sizes are capable of carrying 1,500 persons in the case of an emergency. These lifeboats, placed at various locations around the ship, account for 150% of the total passenger capacity. However, the lifeboats listed do not account for the patients that will evacuate on litters. These patients will inevitability take up more space than a seated passenger.

r Carderock Division

Naval Surface Warfare Center Carderock Division Center for Innovation in Ship Design Hospital Ship Replacement

Table 15: Lifeboat Selection

Туре	Area (sq.ft)	Dimensions (ft)	Seating	# Boats	Total Area (sq.ft)	Total Seating
LBT 650 T	160.9	21.3 x 7.5	36	3	483	108
LBT 935 T	362.3	30.7 x 11.8	102	6	2,174	612
LBT 1090 T	457.6	35.8 x 12.8	130	6	2,745	780
			TOTAL	15	5,402	1,500

In addition, the design includes 37 inflatable life rafts which are able to seat 125% of the total passenger capacity. Two rescue crafts, each capable of travelling at 30 knots and carrying 15 passengers, are located on the Main Deck. More information pertaining to lifeboats and liferafts is located in Appendix K: SOLAS Approved Noreq Lifeboats.

4.0 Conclusions

4.1 Summary

The need to replace the existing hospital ships is a rising concern for the U.S. Navy. As the USNS *Mercy* and USNS *Comfort* reach the end of their service life, the fleet will need to replace these ships with a modern, more efficient hospital ship that will be able to efficiently satisfy the ship's missions. This project has produced a ship design that incorporates features that are desirable in a new hospital.

The outfit of the HSR can be tailored to the different missions of hospital ships: humanitarian missions, disaster relief, and combat casualty care. By incorporating medical ISO container systems and large, flex spaces, the design can provide modular medical facilities in response to the variety of missions.

The 25,000 LT HSR design provides solutions to a number of issues that have been encountered with the existing hospital ships. By scaling down to a 500-bed capacity and using a different hull form, the HSR has a shallower draft; the ship is then capable of accessing a wider range of ports as well as anchoring closer to shore during its missions. With the integration of both a Well Deck and Flight Deck, it provides an efficient system for patient transport by both sea and air, thus increasing patient throughput. It uses an integrated power system comprised of four diesel gensets along with dual electric pod propulsors to improve maneuverability. Anti-roll tanks and zero-speed active fins are included in the design to improve seakeeping at zero knots to enhance safety during medical procedures. Modern systems for both freshwater and oxygen production have been selected to meet the demands of hospital operations.

4.2 Future Work

The HSR is a solid base design for future development of a new hospital ship. If this design effort was to be continued, several opportunities for future work are recommended.

People

Innovation

Naval Surface Warfare Center Carderock Division Center for Innovation in Ship Design Hospital Ship Replacement

Further evaluation of requirements of the hospital ship needs to be revisited. Although the HSR has incorporated means of reducing motions at anchor, the seakeeping requirement needs to be quantified so that a trade study of other motion-damping systems can be conducted. While the LPD-17 structure, subdivision, and structural weight were the bases for the HSR design, the structural design of the hull is inappropriate for the hospital ship mission. LPD-17 structure was constructed with nuclear blast protection, shock protection, and to comply with numerous military standards such as those governing stability after damage. By comparison, hospital ship structure should be designed to commercial standards and classed under the American Bureau of Shipping (ABS) Steel Vessel Rules. Designing to commercial standards will result in a more producible and lower cost ship. Use of appropriate damage stability standards in combination with ABS structures may reduce the number of bulkheads needed to facilitate a more efficient arrangement of the ship. The more efficient arrangement may be particularly important in streamlining medical operations.

Ship producibility studies have identified numerous design features that enhance producibility and reduce ship cost. The HSR design did not incorporate many of these features. Design features such as higher deck heights and/or dedicated passageways to facilitate installation/maintenance of distributive systems and limited numbers of structural plate sizes and shapes should be explored in future design work.

The importance of surface ambulances and the Well Deck have been identified in this design. Further evaluation of ambulance alternatives and the related Well Deck design are recommended. Ballast system requirements to support ambulance operations also warrant review.

Finally, a look into possible green design alternatives would help pinpoint opportunities within the design for ecological improvement. For example, an exploration of fuel cell technology would help reduce fuel consumption onboard without eliminating essential systems while reducing noise and vibration in the ship.

People

Innovation

Naval Surface Warfare Center Carderock Division Center for Innovation in Ship Design Hospital Ship Replacement

Appendices

Appendix A: Project Gantt Chart

People

Innovation

Naval Surface Warfare Center Carderock Division Center for Innovation in Ship Design Hospital Ship Replacement

Appendix B: Army Field Manual Information

The HSR design used the same specifications as the field hospital in the Army Field Manual. This field hospital information was obtained from the Army Field Manual: Hospital Planning Factors. The information contains planning factors for personnel, transportation and movement, supply, personnel service support, CHS planning for hospitalization, and engineer requirements. The following tables are specifications for a field hospital.

There are two water consumption tables. The Water Consumption (2) was chosen as the water consumption specifications for the HSR, because it requires more water and thus was deemed to be a more conservative specification.

Table 16: Planning Factors

Food Storage						
Meals/Pallet Total Total Pallets Pallet [cu. 1						
Patients	400	45,000	112.5	5,187.5		
Crew	400	44,910	112.3	5,177.1		
Total		89,910	224.8	10,364.6		

	Water Consumption (1)						
Personnel	Consumptive Factors	Gallons/Day	Volume/Day [cu. ft/day]	Volume [cu. ft]	Volume [gallons]		
Total Patients	(# beds) x 17.25	8,625	1,153	34,592	258,750		
OR	(# beds) x 19	9,500	1,270	38,102	285,000		
ICU	(# beds) x 22	11,000	1,471	44,118	330,000		
Minimal Care	(# beds) x 10	5,000	668	20,054	150,000		
Crew	(# crew) x 10.25	5,115	684	20,514	153,443		
Crew (40%)	(# crew) x 9.4	4,691	627	18,813	140,718		
Total		43,931	5,873	176,191	1,317,911		
Decontamination		Gallons/Day	Volume/Day	Volume	Volume		
Decomanination	···	Gallotto/Day	[cu. ft/day]	[cu. ft]	[gallons]		
7 gallons per indi	ividual	7	1	28	210		
380 gallons per r	major end item	380	51	1,524	11,400		
	Total	387	52	1,552	11,610		
Vehicle Maintenance		Gallons/Day	Volume/Day	Volume	Volume		
		Gallolis/Day	[cu. ft/day]	[cu. ft]	[gallons]		
1 gallon per vehicle (hot climate)		1	0.1	4	30		
Loss/waste factor = 10 % of total req.		973	130	3,904	29,200		
Total		974	130	3,908	29,230		
	Total hospital need	45,292	6,055	181,651	1,358,750		

People

Innovation

Naval Surface Warfare Center Carderock Division
Center for Innovation in Ship Design
Hospital Ship Replacement

Hospital Ship Replacement						
		nsumption	n (2)			
Crew	Consumptive Factors [gal/man/day]	Gallons /Day	Volume/Day [cu. ft/day]	Volume [cu. ft]	Volume [gallons]	
Drinking	1.5	749	100	3,002	22,455	
Hygiene	1.7	848	113	3,402	25,449	
Food Prep	1.8	873	117	3,502	26,198	
Extra Showers	5.3	2,645	354	10,607	79,341	
Wastewater	7.0	3,493	467	14,009	104,790	
	Total	8,608	1,151	34,523	258,233	
Patient	Consumptive Factors [gal/man/day]	Gallons /Day	Volume/Day [cu. ft/day]	Volume [cu. ft]	Volume [gallons]	
Cleanup	1.0	500	67	2,005	15,000	
Heat Treatment	0.2	100	13	401	3,000	
Bed bath	5.0	2,500	334	10,027	75,000	
Hygiene	1.7	850	114	3,409	25,500	
Bed pan wash	1.5	750	100	3,008	22,500	
Lab	0.2	100	13	401	3,000	
Sterilizer	0.2	100	13	401	3,000	
X-ray	0.2	100	13	401	3,000	
Hand Washing	2.0	1,000	134	4,011	30,000	
Cleanup	1.0	500	67	2,005	15,000	
Wastewater	12.0	6,000	802	24,064	180,000	
	Total	12,500	1,671	50,134	375,000	
Surgical	Consumptive Factors [gal/man/day]	Gallons /Day	Volume/Day [cu. ft/day]	Volume [cu. ft]	Volume [gallons]	
Scrub	10.0	120	16	481	3,600	
Instrument Wash	4.0	48	6	193	1,440	
OR cleanup	5.0	60	8	241	1,800	
Wastewater	19.0	228	30	914	6,840	
	Total	456	61	1,829	13,680	
Laundry	Consumptive Factors [gal/man/day]	Gallons /Day	Volume/Day [cu. ft/day]	Volume [cu. ft]	Volume [gallons]	
Bed patients	22.0	11,000	1,471	44,118	330,000	
Ambulatory Patients	10.0	5,000	668	20,054	150,000	
Staff Smocks	9.4	4,700	628	18,850	141,000	
Wastewater	41.4	20,700	2,767	83,021	621,000	
	Total	41,400	5,535	166,043	1,242,000	
Decontamination	Consumptive Factors [gal/man/day]	Gallons /Day	Volume/day [cu. ft/day]	Volume [cu. ft]	Volume [gallons]	
Individual	7	175	23	702	5,250	

Naval Surface Warfare Center Carderock Division Center for Innovation in Ship Design Hospital Ship Replacement

				Hospitai Sn	ip Replacement
Major end item	380	9,500	1,270	38,102	285,000
Vehicle Main't	450	11,250	1,504	45,120	337,500
Total		20,925	2,798	83,924	627,750
Miscellaneous	Consumptive Factors [Gal/meal/day]	Gallons /Day	Volume/Day [cu. ft/day]	Volume [cu. ft]	Volume [gallons]
Water used for food (Crew)	928		-	-	
Water used for food (Patients)	928		-	-	
	Total	167,777	22,430	672,904	
	Total hospital need	83,889	11,215	336,452	2,516,663

Solid Waste						
	Production Factor	Gallons/Day	Volume/Day [cu. ft/day]	Volume [cu. ft]	Volume [gallons]	
Total Patients	(# beds) x 15 lbs	7,500	1,003	30,080	225,000	
Crew	(# crew) x 12.5	250	33	1,003	7,500	
	Total	7,750	1,036	31,083	232,500	

Oxygen Requirements						
	Consumption Rate [liters/Day]	-				
OR Table Hours	96,768	2,903,040	82,214,093	H Cylinders 466		
	,					
ICU Beds on Vent	191,601	5,748,030	162,784,210	923		
EMT & Other						
Requirements	77,760	2,332,800	66,064,896	374		
Pneumatic Instruments	699	20,970	593,870	4		
Total	366,828	11,004,840	311,657,069	1,767		

Blood Storage						
		Total # Units	Total # Refrigerators	Total Refrigerator Surface Area [sq. ft]		
Red Blood Cells	4 units/ patient/ day	60,000	83	1,217		
Fresh Frozen Plasma	.08 units/ patient/ day	1,200	2	24		
Frozen Platelet						
Concentrate	.04 units/ patient/ day	600	1	12		
	Total	61,800	86	1,254		

Laundry				
	Total Weight per person/day (lb)	Hourly wash 25 kg/hr		
Weight of clothing to be washed per day (4 lbs for personnel and 8 lbs for patients)	5,996	2,611		

Naval Surface Warfare Center Carderock Division Center for Innovation in Ship Design Hospital Ship Replacement

Fuel Consumption					
Gal/Day Weight Volume Volume (Ib) (cu. ft) (gallons)					
Diesel	997	7,011	134	29,918	
Total	997	7,011	134	29,918	

Table 17: Summary Table of Field Hospital

FH Requirements/Assumptions	Input
Number of Patients (total)	500
Number of Surgical cases (OR beds) maximum	16
Number of bed patients (ICU beds)	60
Number of minimal care patients	105
Number of Decontamination Cases	15
Number of crew (hospital and civil service)	499
Number of days	30
Generator power output (Continuous kilowatts)	
Generator fuel consumption (gph)	
Daily power requirement (kW)	1384

Table 18: HSR in comparison to the USNS Mercy and Comfort

	Mercy/ Comfort	New Design (1/2)	State II (HA/DR)
Intensive Care	80	40	60
Recovery	20	10	15
Intermediate Care	400	200	320
Minimal Care	500	250	105
Operating Room	24	12	12
X-Ray	4	2	3
Reception/ Triage	50	25	35
Total Bed Capacity	1000	500	500

Table 19: HSR Crew

State II (HA/DR)			
Hospital Crew	428		
Civil Service Mariners	71		
Total Crew	499		

People

Innovation

Naval Surface Warfare Center Carderock Division Center for Innovation in Ship Design Hospital Ship Replacement

Appendix C: Ambulance Craft Trade Study

Table 20: Ambulance Craft Analyzed in Trade Study

Ambulance Craft	Length [m]	Beam [m]	Passengers [max]	Max. Payload [tons]	Speed [knots]	Well Deck Capacity [# of craft]
Griffon 380TD	6.8	3.76	5	0.38	30	4
Griffon 500TD	8.04	3.92	5	0.47	30	4
Griffon 2000TD	12.7	6.1	20	2	35	4
Griffon 2400TD	13.4	6.8	25	2.4	30	4
Griffon 3000TD	18.4	10.1	42	4	37	2
Griffon 8000TD	21.3	11	85	9.3	45	1
Griffon 8100TD	22.55	11	98	12	45	1
Griffon BHT130	29.3	15	130	20	45	1
Griffon BHT150	31	15	150	22.5	45	1
Griffon BHT 160	32.3	15	160	22.5	45	1
Griffon BHT 180	33.7	15	180	22.5	45	1
Hovertechnics Hoverguard 1000	5.87	2.44	5	0.6	35	4
Hovertechnics Hovertour 2000	6.7	2.44	5	0.75	35	4
LCAC	26.40	14.30	180	60	40	1
LCU	41.12	8.80	400	170	8	1
LCM 8	22.50	6.40	200	60	9	2
LCM 6	17.10	4.30	80	34.4	9	2
RIB	10.98	3.23	15	1.6	45	4
AAVP-7	9.79	3.93	18	4.5	7.3	4
AAAV	10.67	3.66	17	5.0	20	4
Hover Probe 2000	6.71	2.74	5	0.75	30.4	4
Ambulance Boat	8.50	2.51	12	4.35	30	4
Rescue Eagle Rib	15.00	3.59	40	13.2	30	3
Rescue Eagle Hovercraft	9.63	4.41	16	2	35.1	4

Assumptions:

- 1. Draft of HSR is 23 feet
- 2. Time to load each patient in a hovercraft = 1 minute
- 3. Time to load each patient in other small craft = 2 minutes

Knowledge People Innovation

Naval Surface Warfare Center Carderock Division Center for Innovation in Ship Design Hospital Ship Replacement

Table 21: Beach slope 1/20

Beach Slope = 0.050Draft [ft] = 23Distance to Ship [ft] = 460

Distance to Ship [ft] =	460			
Ambulance Craft	Time for (un)loading [hr]	Time per Roundtrip [hr]	Trips Per Hour	Patients Per Hour (max)
Griffon 380TD	0.08	0.17	5.82	116.47
Griffon 500TD	0.08	0.17	5.82	116.47
Griffon 2000TD	0.33	0.67	1.49	119.23
Griffon 2400TD	0.42	0.84	1.19	119.28
Griffon 3000TD	0.70	1.40	0.71	59.83
Griffon 8000TD	1.42	2.84	0.35	29.96
Griffon 8100TD	1.63	3.27	0.31	29.97
Griffon BHT130	2.17	4.34	0.23	29.98
Griffon BHT150	2.50	5.00	0.20	29.98
Griffon BHT 160	2.67	5.34	0.19	29.98
Griffon BHT 180	3.00	6.00	0.17	29.98
Hovertechnics Hoverguard 1000	0.08	0.17	5.85	116.96
Hovertechnics Hovertour 2000	0.08	0.17	5.85	116.96
LCAC	3.00	6.00	0.17	29.98
LCU	13.33	26.69	0.04	14.99
LCM 8	6.67	13.35	0.07	29.96
LCM 6	2.67	5.35	0.19	29.91
RIB	0.50	1.00	1.00	59.80
AAVP-7	0.60	1.22	0.82	58.98
AAAV	0.57	1.14	0.88	59.60
Hover Probe 2000	0.08	0.17	5.83	116.52
Ambulance Boat	0.40	0.81	1.24	59.62
Rescue Eagle Rib	1.33	2.67	0.37	44.91
Rescue Eagle Hovercraft	0.27	0.54	1.86	119.04

Knowledge P

People

Innovation

NAVSEA WARFASE CANTERS

Naval Surface Warfare Center Carderock Division Center for Innovation in Ship Design Hospital Ship Replacement

Table 22: Beach slope 1/100

Beach Slope = 0.010 Draft [ft] = 23 Distance to Ship [ft] = 2,300

Distance to Snip [ft] =	2,300			
Ambulance Craft	Time for (un)loading [hr]	Time per Roundtrip [hr]	Trips Per Hour	Patients Per Hour (max)
Griffon 380TD	0.08	0.19	5.21	104.22
Griffon 500TD	0.08	0.19	5.21	104.22
Griffon 2000TD	0.33	0.69	1.45	116.23
Griffon 2400TD	0.42	0.86	1.16	116.47
Griffon 3000TD	0.70	1.42	0.70	59.14
Griffon 8000TD	1.42	2.85	0.35	29.82
Griffon 8100TD	1.63	3.28	0.30	29.85
Griffon BHT130	2.17	4.35	0.23	29.88
Griffon BHT150	2.50	5.02	0.20	29.90
Griffon BHT 160	2.67	5.35	0.19	29.91
Griffon BHT 180	3.00	6.02	0.17	29.92
Hovertechnics Hoverguard 1000	0.08	0.19	5.31	106.22
Hovertechnics Hovertour 2000	0.08	0.19	5.31	106.22
LCAC	3.00	6.02	0.17	29.91
LCU	13.33	26.76	0.04	14.95
LCM 8	6.67	13.42	0.07	29.81
LCM 6	2.67	5.42	0.18	29.53
RIB	0.50	1.02	0.98	59.01
AAVP-7	0.60	1.30	0.77	55.23
AAAV	0.57	1.17	0.85	58.06
Hover Probe 2000	0.08	0.19	5.22	104.40
Ambulance Boat	0.40	0.83	1.21	58.17
Rescue Eagle Rib	1.33	2.69	0.37	44.58
Rescue Eagle Hovercraft	0.27	0.55	1.80	115.34

Knowledge

People

Innovation

Naval Surface Warfare Center Carderock Division Center for Innovation in Ship Design Hospital Ship Replacement

Table 23: Beach slope is 1/500

Beach Slope = 0.002 Draft [ft] = 23 Distance to Ship [ft] = 11.500

Distance to Snip [it]	11,500			
Ambulance Craft	Time for (un)loading [hr]	Time per Roundtrip [hr]	Trips Per Hour	Patients Per Hour (max)
Griffon 380TD	0.08	0.29	3.41	68.30
Griffon 500TD	0.08	0.29	3.41	68.30
Griffon 2000TD	0.33	0.77	1.29	103.25
Griffon 2400TD	0.42	0.96	1.04	104.22
Griffon 3000TD	0.70	1.50	0.67	55.91
Griffon 8000TD	1.42	2.92	0.34	29.14
Griffon 8100TD	1.63	3.35	0.30	29.25
Griffon BHT130	2.17	4.42	0.23	29.43
Griffon BHT150	2.50	5.08	0.20	29.50
Griffon BHT 160	2.67	5.42	0.18	29.53
Griffon BHT 180	3.00	6.08	0.16	29.59
Hovertechnics Hoverguard 1000	0.08	0.27	3.64	72.78
Hovertechnics Hovertour 2000	0.08	0.27	3.64	72.78
LCAC	3.00	6.09	0.16	29.53
LCU	13.33	27.14	0.04	14.74
LCM 8	6.67	13.75	0.07	29.08
LCM 6	2.67	5.75	0.17	27.81
RIB	0.50	1.08	0.92	55.34
AAVP-7	0.60	1.72	0.58	41.90
AAAV	0.57	1.32	0.76	51.41
Hover Probe 2000	0.08	0.29	3.43	68.69
Ambulance Boat	0.40	0.93	1.08	51.83
Rescue Eagle Rib	1.33	2.79	0.36	42.97
Rescue Eagle Hovercraft	0.27	0.64	1.56	99.82

People

Naval Surface Warfare Center Carderock Division Center for Innovation in Ship Design Hospital Ship Replacement

Appendix D: Electric Load Estimation

Table 24: Electric Load Estimates that Apply to HSR

	Table 24: Electric Load Estimates that Apply HSR Hotel Loads	to HSR
SWBS		May power
	Component	Max power
400	Command + Surveillance	256.4
410	Command and Control Systems	64.4
411	Data Display Group	34.5
412	Data Processing Group	29.9
430	Interior Communications	40
440	Exterior Communications	152
441	Radio Systems	152
450	Surface Surveillance System	0
451	Surface Search Radar	X
455	Identification Systems	X
456	Multiple Mode Radar	X
460	Underwater Surveillance	0
461	Active Sonar	X
466	Lamps Electronics	X
470	Countermeasures	0
472	Passive ECM	X
473	Torpedo decoys	X
474	Decoys (Other)	X
490	Special Purpose System	0
491	Elctrnc Test,Checkout,Mon	X
493	Non-combat data process	X
500	Auxiliary Systems	4,162.90
510	Climate Control	3,304.90
511	Compartment Heating Systems	1,513.60
512	Ventilation Systems	871.1
514	AC systems	900
516	Refrigeration Systems	20.2
520	Sea Water Systems	213.1
521	Firemen +Sea water flush	211.1
529	Drainage + Ballasting System	2
530	Fresh Water Systems	343.7
531	Distilling Plant	67.1
532	Cooling Water	12.4
533	Potable Water	264.2
540	Fuels/Lubricants, Handling	69.8
541	Ship Fuel + Compensating	47.3
542	Aviation + General Purpose	22.5
550	Air, Gas+MISC Fluid System	48.8
551	Compressed Air System	48.8
560	Ship Control Systems	110.1
561	Steering and Driving Controls	110.1

Naval Surface Warfare Center Carderock Division Center for Innovation in Ship Design Hospital Ship Replacement

580	Mechanical Handling System	36.2
583	Boats, Handling, and Storage	16
584	Mech Oper Door,Gate,Ram	10.4
588	Aircraft Handling, Service	9.8
590	Special Purpose Systems	36.3
593	Environmental Pollution	36.3
600	Outfitting + Furnishing, General	344.2
620	Hull Compartmentation	23.4
625	Airports, Fixed Portlights	23.4
630	Perservatives+Coverings	18
633	Cathodic Protection	18
650	Service Spaces	250.9
651	Commissary Space	157.3
652	Medical Space	11.3
655	Laundry Space	79.1
656	Trash Disposal Spaces	3.2
660	Working Spaces	51.9
665	Workshops, Labs, Test Areas	51.9

Table 25: Electric Load Data for LPD-17

LPD 17 Electrical Load Data						
Elect Load	Des Margin Fac	-				
Elect Load	SI Margin Fac	0.2				
	ect Load Fac	0.1				
Max 400-H	lz Elec Load	48.4				
24-Hr Avg	Elect Load	3,573.4				
Total Sumi	mer Cruise Load	4,705.8				
Connected	Elect Load	14,516.3				
Total Winte	er Cruise Load	5,477.8				
Max Marg	Elec Load	6,538.1				
Total Sumi	mer Launch Load	5,102.5				
Max Stby E	Elect Load	5,034.4				
Total Winte	er Launch Load	5,117.8				
Vital Elect Load		5,034.4				
Total Anchor Load		4,946.8				
Total Eme	gency Load	1,574.4				
200	Propulsion Plant	36.30				
230	Propulsion Units	7.30				
233	Diesel Engines	7.30				
234	Gas Turbines	-				
240	Transmission + Propulsors	4.00				
241	Reduction Gears	4.00				
243	Shafting	2.60				
245	Propulsors	-				
250 Support Systems		11.20				
251	Combustion Air System	-				
252	Propulsion Control Sys	11.20				
256	Circ + Cool Sea Water	_				

Naval Surface Warfare Center Carderock Division Center for Innovation in Ship Design Hospital Ship Replacement

		Hos
260	Propul Fuel & Lube Oil	13.80
261	Fuel Service System	13.60
264	Lube Oil Handling	1.00
300	Electric Plant, General	763.90
310	Electric Power Generation	210.90
311	Ship Service Power Gene	200.00
313	Batteries + Service Facilities	4.00
314	Power Conversion Equipment	6.90
330	Lighting System	553.00
400	0	050.40
400	Command + Surveillance	658.10
410	Command + Control Sys	64.40
411	Data Display Group	34.50
412	Data Processing Group	29.90
430	Interior Communications	40.00
440	Exterior Communications	152.00
441	Radio Systems	152.00
450	Surf Surv Sys (Radar)	179.80
451	Surface Search Radar	-
455	Identification Systems	-
456	Multiple Mode Radar	-
460	Underwater Surveillance	55.00
461	Active Sonar	55.00
466	Lamps Electronics	-
470	Countermeasures	88.80
472	Passive Ecm	-
473	Torpedo Decoys	-
474	Decoys (Other)	-
475	Degaussing	88.80
480	Fire Control Sys	37.30
481	Gun Fire Control System	-
482	Missile Fire Control Sy	37.30
483	Underwater Fire Control	-
484	Integrated Fire Control	-
490	Special Purpose Sys	40.80
491	Elctrnc Test,Chkout,Mon	6.40
493	Non-Combat Data Process	21.20
495	Spec Purpose Intelligen	-
F00	Associtions Systems	4.400.00
500	Auxiliary Systems	4,160.90
510	Climate Control	3,304.90
511	Compartment Heating Sys	1,513.60
512	Ventilation System	871.10
514	Air Conditioning System	900.00
516	Refrigeration System	20.20
520	Sea Water Systems	211.10
521	Firemain + Sea Water Flus	211.10
529	Drainage + Ballasting Sys	2.00
530	Fresh Water Systems	343.70
531	Distilling Plant	67.10

Knowledge People Innovation

Naval Surface Warfare Center Carderock Division Center for Innovation in Ship Design Hospital Ship Replacement

		Hos
532	Cooling Water	12.40
533	Potable Water	264.20
540	Fuels/Lubricants, Handlin	69.80
541	Ship Fuel + Compensating	47.30
542	Aviation + General Purpose	22.50
550	Air,Gas + Misc Fluid Syste	48.80
551	Compressed Air Systems	48.80
560	Ship Cntl Sys	110.10
561	Steering + Diving Cntl Sy	110.10
580	Mechanical Handling Syst	36.20
583	Boats, Handling + Stowage	16.00
584	Mech Oper Door,Gate,Ram	10.40
588	Aircraft Handling,Servi	9.80
590	Special Purpose Systems	36.30
593	Environmental Pollution	36.30
600	Outfit +	344.30
	Furnishing,General	
620	Hull Compartmentation	23.40
625	Airports, Fixed Portligh	23.40
630	Preservatives + Coverings	18.00
633	Cathodic Protection	18.00
650	Service Spaces	251.00
651	Commissary Spaces	157.30
652	Medical Spaces	11.30
655	Laundry Spaces	79.10
656	Trash Disposal Spaces	3.20
660	Working Spaces	51.90
665	Workshops,Labs,Test Are	51.90
700	Armament	118.50
710	Guns + Ammunition	-
720	Missiles + Rockets	10.30
721	Launching Devices	10.30
750	Torpedoes	-
770	Cargo Munitions	108.20
772	Cargo Munitions Handling	108.20
	Total Loads	6,082.00

Naval Surface Warfare Center Carderock Division Center for Innovation in Ship Design Hospital Ship Replacement

DR WAVSEA

Appendix E: General Arrangements

Naval Surface Warfare Center Carderock Division
Center for Innovation in Ship Design
Hospital Ship Paplacement

People

Innovation

Naval Surface Warfare Center Carderock Division Center for Innovation in Ship Design Hospital Ship Replacement

Appendix F: Wärtsilä Gensets (18V32)

WÄRTSILÄ GENSET 32

IMO Tier II

Main data	
Cylinder bore	320 mm
Piston stroke	400 mm
Cylinder output	. 480, 500 kW/cyt
Engine speed	720, 750 rpm
Mean effective pressure	24.9 bar
Piston speed	9.6, 10,0 m/s
Generator voltage	0.4 - 13.8 kV
Generator efficiency	0.95 - 0.97

Fuel oil specification: 700 c9t/50°C 7200 sR1/100°F ISO 8217, category ISO-F-FIMK 700 SFOC 175 g/kWh at ISO condition

Options: Common rall fuel injection,crude oil.

		F	ated power	gener	rating sets			
		60 Hz	720 mm			50 Hz	750 rpm	
Engine type	480 KV	V/cyl	550 W	V/cyl	500 KV	V/cyl	580 W	l/cyl
	Engine kW	Gen. kW	Engine kW	Gen. kW	Engine kW	Gen.	Engine löV	Gery
6L32 7L32 9L32 9L32 12V32 16V32 16V32	2 880 3 350 3 640 4 320 5 760 7 680 8 640	2 760 3 230 3 690 4 150 5 530 7 370 8 290	3300 3850 4400 4950 6600 8800 9900	3170 3700 4220 4750 6340 8450 9500	3 000 3 500 4 000 4 500 6 000 8 000 9 000	2 880 3 360 3 840 4 320 5 760 7 680 8 640	3480 4640 5220 8960 9280	3340 4450 5010 6680 6910

Dimensions (mm) and weights (tormes)								
Engine type	A*	E.	P	K	L.	Weight		
6L32 7L32 8L32 9L32 12V32	8 345 9 215 9 785 10 475 10 075	2 290 2 690 2 690 2 890 3 060	1 450 1 650 1 630 1 630 1 700	2 345 2 345 2 345 2 345 2 120	3 940 4 140 3 925 3 925 4 985	57 69 77 84 96		
16V32 18V32	11 175 11 825	3 060	1.850	2 120	4 280	121		

*Dependent on generator type and size. Generator output based on a generator efficiency of 96%. Final measurements might differ depending on selected furbocharger execution.

GENERATING SET DIMENSIONS

- A Total length of the generating set.
- Total width of the generating set.
- Distance from the bottom of the common baseframe to the crankshaft centreline.
- K Minimum height from the crankshaft centreline when removing a piston.
- Total height of the generating set.

People

Innovation

Naval Surface Warfare Center Carderock Division Center for Innovation in Ship Design Hospital Ship Replacement

Appendix G: KARBOX ISO Container: Operating Hall

Medical equipment	
Operational table	1
Surgeon's chair	2
Operational single-arm lighting unit	1
Tripod	1
Anaesthesiological apparatus with monitor	1
Anaesthetist's chair	- 1
Negatoscope	1
Electric extraction system - mobile	-1
Infusion pump	2
Linear dosing machine	2
Laryngoscope	1
Heating underlay under patient	1
Defibrillator	1
AMBU bag	1
Cryomachine	1
Infusion support stand	1
X-RAY C arm	1
Hydraulic medical instrument table	1
Germicidal emitter - closed	8

Non-medical equipment	
Source pons	1
Distribution of medical gasses	1
Instrument table	2
Hydraulic medical instruments table	1
Compressor	1
Stainless washbasin	1
Soap dispense	1
Disinfecting fluid dispense	1
Closed waste bin	1
Special container for medical waste	1
Fire extinguisher	1

Ground plan of OPERATING HALL containers

OPERATING HALLS container dimensions Container exterior dimensions

6 058 mm
4 876 mm
2 438 mm

Container interior dimensions

lenght	5 804 mm
width	4 640 mm
height	2 075 mm

Maximum gross mass of 1 container 12 000 kg

People

Innovation

Naval Surface Warfare Center Carderock Division Center for Innovation in Ship Design Hospital Ship Replacement

Appendix H: OxyStar Oxygen Generation System

OXYSTAR₉₉ standard features

The oxygen generator is constituted of the following elements:

- integral frame* including first production stage 95% and second production stage 99%
- pneumatic, electrical and monitoring parts
- 2 PSA sieve beds (Nitrogen) 2 PSA sieve beds (Argon)
- High definition touch screen control panel
- separate oxygen receiver with flexible hoses set
- 2 air inlet filters with manual drain valve (25 μ m and 0.1 μ m)
- 1 oxygen outlet filter with manual drain valve
- *except for OxyStar99 330 model

Technical data						
	OxyStar ₉₉ 153	OxyStar ₉₉ 219	OxyStar ₉₉ 300	OxyStar ₉₉ 330		
Oxygen purity %		98.8 to 99.2				
Maximum oxygen flow at 99% * Nm3/h	9.2	13.1	16	20		
Maximum oxygen flow at 99% * SCFH	324.9	462.6	565	706.2		
Oxygen outlet pressure	5 to 6 bar – 72 to 87 Psig			2 2 3 44 11		
Minimum requested O2 receiver capacity L	500	1 000	1 000	1 000		
Oxygen outlet diameter "G	3/4	3/4	3/4	3/4		
Air inlet diameter "G	1″1/2	1″1/2	1"1/2	1″1/2		
Dimensions (without O2 tank) Lxwxh-cm	130 x 75 x 160	130 x 75 x 160	130 x 75 x 160	155 x 95 x 220		
Weight Kg	465	515	750	1 520		
Power supply voltage – frequency – protection	230 V 1ph – 50 Hz – 6 A					
Feed air requirements	Please refer to Feed Air Station technical datasheet					

^{*} Oxyplus oxygen generators are specially designed for hospital consumption profile

People

Innovation

Naval Surface Warfare Center Carderock Division Center for Innovation in Ship Design Hospital Ship Replacement

Appendix I: OxyStar Feed Air System

The following feed air system works with the OxyStar₉₉330 system.

Feed Air Requirement						
Suitable for		Premium 540 HF Premium 620 HF Oxystar99 219 OxyStar99 300 OxyStar99 300 Orlane 600 Orlane 720 Orlane 900			Premium 830 HF OxyStar ₉₉ 415 Orlane 1 200	
Clean and dry Air In Comp	oliance with	ISO 8573-1				
Air compressor power	KW	37	45	55	75	
Air flow rate	Nm3/h	315	378	492	630	
Air flow rate	SCFH	11 124	13 349	17 375	22 248	
Air compressed pressure		10 bar – 145 Psig				
Air receiver volume (minimum)	L	1500 1500 1500 2.0			2 000	
Air treatment station capacity	Nm3/h	420	420	540	640	
Air treatment station capacity	SCFH	14832	14 832	19 070	22 598.8	
Dew point (maximum)	°C	3				
Air filtration - max. solid particle	es size µm	25				
Air filtration – max. oil concentra	ation mg/m3	0.01				

Standard geographical and climatic conditions: Ambient temperature: + 5 °C to + 25 °C - Altitude: sea level - Relative humidity: 75 %. For different geographical and climatic conditions, local conditions must be taken into account to size the Feed Air Station.

People

Innovation

Naval Surface Warfare Center Carderock Division Center for Innovation in Ship Design Hospital Ship Replacement

Appendix J: SteriMed specifications

capacity (per cycle)

Bagged waste: 70 liters (18.5 gal.)

~ 14 kg (30 lbs.)

Sharps containers: (1) 5 gal. or (2) 2 gal. Dialysis kits: ~ 10 single use or 16 reuse

physical dimensions

Height: 155 cm (60") Width: 183 cm (72") Depth: 70 cm (27")

Weight: 750 kg (1650 lbs.)

Ster-Cid[®] is a trademark of MCM Environmental Technologies, Inc.

consumption

Water: 38 liters (10 gal.) per cycle Ster-Cid® disinfectant: 175 ml (.05 gal.)

per cycle

Power: ~ 0.4 KWh

utilities requirements

Electrical (US): 3 phase, 60 Hz, 480 VAC, 16 Amp or 240 VAC, 25 Amp

(International): 3 phase, 50 Hz,

400 VAC, 16 Amp

Water supply: 19 mm (3/4") line,

250-550 Kpa (35-77 psi)

Floor drain: 110 mm (4") diameter

Naval Surface Warfare Center Carderock Division Center for Innovation in Ship Design Hospital Ship Replacement

Appendix K: SOLAS Approved Noreq Lifeboats

Туре	Dimension [LxWxH]	Max Seating [p]	Hook Distance [m]	Davit Load [kg]
LBT 525 T	5.25 x 2.30 x 3.05	25	4.90	4,537
LBT 650 T	6.50 x 2.30 x 3.10	36	6.10	5,825
LBT 700 T	7.00 x 2.70 x 3.10	48	6.60	7,224
LBT 750 T	7.50 x 2.90 x 3.25	68	7.10	8,608
LBT 850 T	8.50 x 2.90 x 3.25	80	8.14	10,656
LBT 935 T	9.35 x 3.60 x 3.25	102	8.95	13,250
LBT 1090T	10.90 x 3.90 x 3.50	130	10.50	16,675

SOLAS approved Rescue Boats (FRB 650 Twin 90 hp)					
Туре	Dimension	Capacity	Speed	Davit Load	
	[LxWxH]	[p]	[knots]	[kg]	
FRB 610 [outboard 60 hp]	6.10 x 2.20 x 2.35	6	22	1,421	
FRB 610 [outboard 90 hp]	6.10 x 2.20 x 2.35	6	25	1,487	
FRB 650 Twin 60 hp	6.50 x 2.32 x 2.30	15	28	2,585	
FRB 650 Twin 90 hp	6.50 x 2.32 x 2.30	15	34	2,735	
FRB 650 [inboard 212 hp]	6.50 x 2.32 x 2.30	15	30	2,825	
FRB 750 [inboard 212 hp]	7.50 x 2.32 x 2.30	15	30	2,945	
Fast rescue boats in stock. See: www.noreq.no					

People

Innovation

Naval Surface Warfare Center Carderock Division Center for Innovation in Ship Design Hospital Ship Replacement

Appendix L: HSR Detailed Equipment List

Equipment	QTY	Indiv. Weight	Total Weight
		(LT)	(LT)
Azipod XO1800	2	289.12	578.24
Aqua-Chem Watermaker	1	113.84	113.84
Wärtsilä Genset 16V32	4	523.60	2094.39
OxyPlus Oxystar99 300	2	0.74	1.48
CH-53K Helicopter	1	38.84	38.84
CATSCAN	1	3.19	3.19
X-Ray	1	0.21	0.21
MRI	4	11.8	47.2
Noreq Lifeboats LBT 1090 C	6	6.82	40.92
Noreq Lifeboats LBT 935 C	6	5.51	33.06
Noreq Lifeboats LBT 650 C	3	3.08	9.24
Noreq Fast Rescue Boat FRB 650 Twin 90 hp	2	2.69	5.38
Noreq Davits (36)	3	5.22	15.66
Mitsubishi FD160N Fork Lift	1	18.65	18.65
ISO Container (Fully Loaded)	6	11.81	70.86
MCM Technologies SteriMed	1	0.74	0.74
SAIC Solid Waste Shredder	1	0.58	0.58
SAIC Plastic Waste Shredder	1	0.58	0.58
SAIC Compress Melt Unit Mod 1	1	0.58	0.58
SAIC Large Pulper	1	1.25	1.25
Crawford CB35SW Incinerator	1	5.45	5.45
Bilge Water Treatment	1	0.67	0.67
Marine Sewage Treatment	2	7.87	15.74
Total	48	1,041	3,050

Knowledge

People

Innovation

NAVSEA WARRED CHIEF

Naval Surface Warfare Center Carderock Division Center for Innovation in Ship Design Hospital Ship Replacement

Appendix M: References

- 1. Blewett, William K., Harris, MSG Jef L., and Seitzinger, Alan T. Receiving CBW-Contaminated Casualties Aboard a T-AH20 Hospital Ship Phase I Report. January 1996.
- 2. Burke, Darlene M. *The Hospital Ship: A Mixed Blessing for the Operational Commander*. Rep. Department of the Navy.
- 3. Carey, Neil, Grefer, James, Trost, Robert and Robert Levy. "Future Deployable Medical Capabilities and Platforms for Navy Medicine." CNA. February 2002.
- 4. Department of the Navy. *Accommodation Standards for Military Sealift Command Ships*. Tech. No. 9330.6D.
- 5. Hanthorn, LT Dave, Sewell, LT Eli, and Tepper, LT Nadia. "LPD-17 Hospital Ship Variant." Massachusetts Institute of Technology. January 30, 2009.
- 6. Jurkiewicz, David. *Use of Heavy Lift Ships as Modular Casualty Receiving Ships.* NSWCCD-CISD-2006/005. April 2007.
- 7. Mattonen, Maryann C. "The Use of Hospital Ships for Joint, Interagency, and Multinational Humanitarian Assistance Operations." Naval War College. February 13, 2006.
- 8. Negus, Tracy L., Carrie J. Brown, and Paula Konoske. "Military Medicine." *Determining Medical Staffing Requirements for Humanitarian Assistance Missions* 1st ser. 175.1 (2010): 1-6.
- Reid, Alan R., Huff, David S., and John C. Cameron. "Conversion of San Clemente Class Tankers to Hospital Ships for the U.S. Navy." Marine Technology. Vol. 24 (July 1987): 193-20.
- 10. Salenga, Edilberto M. "Developing Soft Power Using Afloat Medical Capabilities." U.S. Army War College. 2-03-2009.
- Wang, Daniel, Grecer, Onur, Gougoulidis, George, Gold, Robert. "Crisis Response Vehicle (CRV) Conversion Study." 13.413 --- Projects in Naval Ships Conversion Design. MIT. 25 February 2003.
- 12. Michelis, Alexandros, Smith, Matthew, and Summers, Simon. "Initial Capabilities Document Conversion of Dock Landing Ship (LSD)-41 Class Vessel to Hospital Ship with Naval Construction Force Capability." January 8, 2008.