Determinant, Minor, Cofactor, Adjoint and Inverse

Determinant

The **determinant** of a square matrix provides important information about the matrix. It's a scalar value that can be calculated for any square matrix. The determinant can tell us:

- Whether the matrix is invertible (non-zero determinant) or singular (zero determinant).
- The area or volume of the space defined by the matrix.
- When you apply transformation, the area changes. Determinant tells us by what factor has the area changed.
 - The determinant of a transformation will be 3 if it increases the area by the factor of 3.
 - The determinant will be 0.5 if it squishes down the area by half.
 - The determinant will be 0 if it squishes all of space onto a line or a point.

Determinants can have negative values

- It's about orientation
- It inverts the orientation of space
 - It flips the plane

For a 2x2 matrix
$$A = egin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 , the determinant is: $\det(A) = ad - bc$

- In 3D, determinant tells information about the Volume.
- Right hand rule

$$A = \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix}$$

$$det(A) = a_1 \begin{vmatrix} b_2 & b_3 \\ c_2 & c_3 \end{vmatrix} - a_2 \begin{vmatrix} b_1 & b_3 \\ c_1 & c_3 \end{vmatrix} + a_3 \begin{vmatrix} b_1 & b_2 \\ c_1 & c_2 \end{vmatrix}$$

$$= a_1(b_2c_3 - b_3c_2) - a_2(b_1c_3 - b_3c_1) + a_3(b_1c_2 - b_2c_1)$$

$$\det(M_1M_2) = \det(M_1)\det(M_2)$$

Eigenvalues and Eigenvectors

• An **eigenvector** is a vector that, when multiplied by a matrix, only gets **stretched or shrunk** (no change in direction). The amount of stretching or shrinking is called the **eigenvalue**.

Minor

What is a Minor?

- A minor of an element in a matrix is the determinant of the smaller matrix you
 get by removing the row and column that contain that element.
- Formed by deleting the row and column containing that element.
- It helps in calculating determinants, cofactors, and inverses.

Python code:

```
import numpy as np
def minor(matrix, i, j):
  # Delete the i-th row and j-th column
  submatrix = np.delete(np.delete(matrix, i, axis=0), j, axis=1)
  return np.linalg.det(submatrix)
# Example matrix
A = np.array([
  [1, 2, 3],
  [4, 5, 6],
  [7, 8, 9]
1)
# Compute minor of element at row 1, column 2 (0-based indexing)
minor_23 = minor(A, 1, 2)
print(f"Minor of element at row 2, column 3: {minor_23}")
Output:
Minor of element at row 2, column 3: -6.0
```

Cofactor

 A cofactor is a number that is calculated based on the minor of a matrix element, with an additional sign factor depending on the position of the element.

How to Calculate a Cofactor?

1. Find a Minor

- 2. Apply the Sign: The cofactor is the minor, but you also apply a sign change based on the position of the element.
 - The sign follows a **checkerboard pattern** starting from the top-left corner:
 - The sign is **positive** for positions where **i+j is even**.
 - The sign is negative for positions where i+j is odd.

Multiply the minor by $(-1)^{i+j}$ to adjust the sign.

This pattern looks like this:

So, the cofactor of an element A_{ij} is calculated as:

$$C_{ij} = (-1)^{i+j} \cdot M_{ij}$$

Where:

- M_{ij} is the **minor** of the element A_{ij} ,
- $(-1)^{i+j}$ gives the sign based on the position of the element (using the checkerboard pattern).

Example

Given a 3×3 matrix:

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

To find the **cofactor of 5** (which is at **row 2**, **column 2**, so i=2,j=2):

1. Remove row 2 and column 2, leaving:

$$\begin{bmatrix} 1 & 3 \\ 7 & 9 \end{bmatrix}$$

2. Compute its minor:

$$(1 \times 9) - (3 \times 7) = 9 - 21 = -12$$

3. Compute the cofactor:

$$C_{22} = (-1)^{2+2} imes (-12) = 1 imes (-12) = -12$$

So, the cofactor of 5 is -12.

Why is Cofactor Important?

- **Used in Determinants** → Determinants are calculated using cofactors.
- **Used in Inverse Matrices** → The inverse of a matrix involves cofactors.
- Used in Adjugates → The adjugate (transpose of the cofactor matrix) is useful in computing the inverse.

if we multiply a row by its own cofactor → Cofactor

If not → Zero

$$A = \begin{bmatrix} 3 & 4 \\ \hline & 1 & 2 \end{bmatrix}$$

$$(a_{11} = 2) \quad (a_{12} = 4)$$

$$(a_{21} = -4) \quad (a_{22} = 3)$$

$$|A| = 2$$

$$3 \times 2 + 4(-1) = 6 - 4 = 2$$

$$|X2 + 2(-1) = 2 - 2 = 0$$

Adjoint/Adjugate

• Used particularly in finding the inverse of a matrix.

For a given square matrix A, the adjoint of A, denoted as adj(A), is the transpose of the cofactor matrix of A.

How to calculate Adjoint?

- Compute the Cofactor Matrix: Determine the cofactor for each element of A.
- **Transpose the Cofactor Matrix:** Swap the rows and columns of the cofactor matrix to obtain the adjoint.

If A is an n imes n matrix, the adjoint of A, denoted as $\operatorname{adj}(A)$, is given by:

$$\mathrm{adj}(A) = [C_{ij}]^{\mathrm{T}}$$

Here, $\overline{C_{ij}}$ represents the cofactor of the element at the i-th row and j-th column of A, and $^{\mathrm{T}}$ denotes the transpose operation.

Steps to Calculate the Adjoint:

- 1. Find the Cofactor Matrix:
 - For each element a_{ij} in A:
 - Minor: Eliminate the i-th row and j-th column to form a submatrix. Calculate its determinant.
 - Cofactor: Multiply the minor by $(-1)^{i+j}$ to account for the position's sign.
- 2. Transpose the Cofactor Matrix: Interchange rows and columns to obtain the adjoint.

Example:

$$A = egin{bmatrix} 1 & 2 \ 3 & 4 \end{bmatrix}$$

- 1. Minor Matrix:
 - For element $a_{11}=1$, remove the 1st row and 1st column to get:

$$M_{11}=\det \left[4
ight] =4$$

• For element $a_{12}=2$, remove the 1st row and 2nd column to get:

$$M_{12}=\det \left[3
ight] =3$$

ullet For element $a_{21}=3$, remove the 2nd row and 1st column to get:

$$M_{21}=\detigl[2igr]=2$$

ullet For element $a_{22}=4$, remove the 2nd row and 2nd column to get:

$$M_{22}=\det \left[1
ight] =1$$

2. Cofactor Matrix: Apply the sign factor $(-1)^{i+j}$ to each minor:

$$C = egin{bmatrix} 4 & -3 \ -2 & 1 \end{bmatrix}$$

3. Adjoint Matrix (Transpose of the Cofactor Matrix):

$$\operatorname{adj}(A) = extstyle C^T = egin{bmatrix} 4 & -2 \ -3 & 1 \end{bmatrix}$$

Applications of Adjoint:

1. Inverse of a Matrix:

• If the matrix A is **invertible**, the inverse of A can be computed using the adjoint:

$$A^{-1} = rac{1}{\det(A)} imes \operatorname{adj}(A)$$

 This is particularly useful when you need to find the inverse of a matrix and you know its determinant is non-zero.

2. Determinants:

• The adjoint matrix also has properties related to the determinant. For an $n \times n$ matrix A:

$$\det(\operatorname{adj}(A)) = (\det(A))^{n-1}$$

- 3. Solving Systems of Linear Equations:
 - The adjoint can be used in methods for solving systems of linear equations, particularly when the system is represented in matrix form.

Inverse

The **inverse** of a matrix is like the "opposite" of the matrix. Just like how multiplying 5 by

 $\frac{1}{5}$ gives 1, multiplying a matrix by its inverse gives the **identity matrix I**.

$$A imes A^{-1} = A^{-1} imes A = I$$

Where I I is the **identity matrix** (like the number 1 in normal multiplication), which looks like this for a 2×2 :

$$I = egin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix}$$

When Does a Matrix Have an Inverse?

A matrix **only** has an inverse if:

- 1. It is **square** (number of rows = number of columns).
- 2. Its **determinant** is **not zero** (if det(A)=0, then the matrix is **singular** and has no inverse).

How to Find the Inverse?

1. For a 2 imes 2 Matrix

If:

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

Then the inverse is given by:

$$A^{-1} = rac{1}{\det(A)} imes \operatorname{adj}(A)$$

Where:

Determinant:

$$\det(A) = ad - bc$$

Adjoint (Adjugate):

$$\operatorname{adj}(A) = egin{bmatrix} d & -b \ -c & a \end{bmatrix}$$

So:

$$A^{-1} = rac{1}{ad-bc} egin{bmatrix} d & -b \ -c & a \end{bmatrix}$$

Example:

If

$$A = \begin{bmatrix} 4 & 7 \\ 2 & 6 \end{bmatrix}$$

1. Compute the determinant:

Cofactor:

$$\det(A) = (4 \times 6) - (7 \times 2) = 24 - 14 = 10$$

2. Compute the adjugate:

Transpose of Cofactor

$$\mathrm{adj}(A) = \begin{bmatrix} 6 & -7 \\ -2 & 4 \end{bmatrix}$$

3. Multiply by $\frac{1}{\det(A)}$:

$$A^{-1} = \frac{1}{10} \begin{bmatrix} 6 & -7 \\ -2 & 4 \end{bmatrix}$$
$$= \begin{bmatrix} 0.6 & -0.7 \\ -0.2 & 0.4 \end{bmatrix}$$

2. For a 3×3 Matrix

- 1. Find the determinant $\det(A)$.
- 2. Find the cofactor matrix (each element's determinant, adjusted with $(-1)^{i+j}$).
- 3. Transpose the cofactor matrix (swap rows and columns).
- 4. Divide by det(A).

Inverse Using Python

import numpy as np

A = np.array([[4, 7], [2, 6]])

 $A_{inv} = np.linalg.inv(A)$

print(A_inv)

Output:

[[0.6 -0.7] [-0.2 0.4]]

Geometric Meaning

- The inverse of a **transformation matrix** undoes the transformation.
- For example, if a matrix rotates a point, its inverse rotates it back.
- If a matrix scales a vector, its inverse scales it back.

INVERSE=UNDO

