DeepFashion: Dress Type Detection

Prepared by Ahjeong Yeom, Akhir Syabani, Kenji Laurens, Steven Wu

Today's Agenda

DeepFashion:
Dress Type Detection

- 1. Abstract
- 2. EDA & Preprocessing
- 3. Model Building
 - a. Modeling 1: Image Classification (ResNet, VGG, AlexNet, 2 Custom Models)
 - b. Modeling 2: Object
 Detection (YOLO)
- 4. Model Deployment/ Management
- 5. Conclusion

Abstract

Problem:

- Fashion requires deeper understanding: it keeps evolving and producing new style variations.
- Classifying different types of clothing is important as a base for more advanced works of deep learning in fashion.

Approach:

- Object detection model solves the problem of recognizing types of clothes.
- From the the whole dataset of 200,000+ images on various clothing pieces, our team narrowed down the scope to female dress category and then focused on detecting three dress types (Mini, Midi, Maxi) due to hardware limitations.

Results:

>70% of accuracy detecting three types of dress.

EDA: Data Description

Dataset: **DeepFashion** Attribute Prediction Dataset (<u>Source</u>)

- Multimedia Laboratory, The Chinese University of Hong Kong
- Images and attributes of 289,222 clothing articles of various types and categories
- Exactly 1000 attributes:
 - o simple attributes (dress, trousers, shirt, blouse, etc)
 - o complex attributes (plaid, a-line, collared, sheer, etc)
- Each clothing can and do possess multiple attributes
- Mostly frontal and focused on the clothes only
- Bounding boxes included, to further narrow down the image to each clothing only
- Background images are varied: empty or some environment
- Various resolutions, mostly around 300 x 300

Selected samples: female dress category (attributes/types: mini, midi, maxi

EDA: Data Description

Different Dress Types:

Three dress types were trained given the restriction of the project scope.

- Mini dresses: above the knee height around the thighs
- Midi dresses: crops at knee length
- Maxi dresses: longer than knee length, often to the ankles

Examples from Dataset

EDA & Preprocessing: Data Engineering & Feature Selection

Raw Data:

Multiple tables as .txt files + ~3GB img zip file

Merged

Selection:

- Image_name contains 'Dress'
- Attributes: 'Mini', 'Midi', 'Maxi

Cleaning:

Removed mislabeled images:

- No labels
- Multi-labeled

	image_name	x_1	x_2	y_1	y_2	mini	midi	maxi
198816	$img/Open-Shoulder_Eyelash_Lace_Dress/img_00000$	21	152	64	254	1.0	NaN	NaN
198818	$img/Open-Shoulder_Eyelash_Lace_Dress/img_00000$	34	141	42	202	1.0	NaN	NaN
198819	$img/Open-Shoulder_Eyelash_Lace_Dress/img_00000$	60	152	39	202	1.0	NaN	NaN
198822	$img/Open-Shoulder_Eyelash_Lace_Dress/img_00000$	1	207	53	300	1.0	NaN	NaN
198825	$img/Open-Shoulder_Eyelash_Lace_Dress/img_00000$	1	207	59	300	1.0	NaN	NaN

284839	img/Chiffon-Paneled_Maxi_Dress/img_00000024.jpg	118	185	1	158	NaN	NaN	1.0
287902	img/Crocheted_Gauze_Maxi_Dress/img_00000020.jpg	57	151	15	281	NaN	NaN	1.0
215018	img/Dainty_A-Line_Dress/img_00000074.jpg	106	202	34	191	NaN	NaN	1.0
206860	img/Butterfly_Print_Maxi_Dress/img_00000066.jpg	106	201	53	300	NaN	NaN	1.0
201257	img/Watercolor_Ikat_M-Slit_Maxi_Dress/img_0000	113	201	17	225	NaN	NaN	1.0
8185 rows x 8 columns								

Sampling & Balancing Data:

•	Clean Set	Sample
Maxi	12,468 (70%)	3,000 (36%)
Midi	2,756 (16%)	2,756 (34%)
Mini	2,429 (14%)	2,429 (30%)

Pre-processing:

- Attributes are one-hot encoded (fill NA = 0)
- Two separate image arrays:
 - o full image,
 - cropped to the bounding boxes
- All standardized and resized to (100, 100, 3) numpy array
- Other pre-processing to follow each model requirements

Modeling 1: Image Classification ResNet50, VGG16, AlexNet, Custom Model 1 & 2

ResNet50	VGG16	AlexNet	Custom Model 1	Custom Model 2
Layers: • 48 convolutional • 1 max pooling • 1 avg pooling • Weight: imagenet • Activation: ReLU • Added dense layer with softmax • Early stopping	Layers: 13 convolutional 3 fully connected 5 max pooling Max pooling Weight: imagenet Activation: ReLU Added dense layer with softmax Early stopping	Layers:	Layers: 4 convolutional 3 fully connected 2 max pooling 4 dropouts 1 batch normalization Activation: ReLU, softmax Early stopping	Layers:
Parameters: • 23 million	Parameters: • 138 million	Parameters: • 62 million	Parameters: • 146 thousand	Parameters: • 28 million

Modeling 1: Image ClassificationResNet50

Epoch: 150/150

loss: 0.6483

accuracy: 0.7450

val loss: 0.8019

val accuracy: 0.6585

Est. runtime: 50ms/step

Good/acceptable accuracy, though validation set shows slower rate of improvement in each epoch

Modeling 1: Image Classification VGG16

Epoch: 135/150

(early stopping)

loss: 1.0002

accuracy: 0.4980 val loss: 1.0169

val accuracy: 0.4667

Est. runtime: 50ms/step

Lower accuracy, yet consistent performance across training and validation (minimized overfitting)

Modeling 1: Image ClassificationAlexNet

Epoch: 108/150

(early stopping)

loss: 0.0056

accuracy: 0.9985 val loss: 1.4573

val accuracy: 0.7654

Est. runtime: 40ms/step

High accuracy, yet large gap / overfitting

Modeling 1: Image Classification Custom Model 1

Epoch: 69/150

(early stopping)

loss: 0.5162

accuracy: 0.8812

val loss: 0.8094

val accuracy: 0.7807

Est. runtime: 30ms/step

Simpler customized architecture with good/acceptable performance with decent consistency across training and validation

Modeling 1: Image Classification Custom Model 2

Epoch: 61/150

(early stopping)

loss: 0.1309

accuracy: 0.9934

val loss: 1.2711

val accuracy: 0.7355

Est. runtime: 103ms/step

More complex customized architecture with good/acceptable performance but produce overfitting results

Modeling 1: Image Classification

Comparison and Evaluation

ResNet50	VGG16	AlexNet	Custom Model 1	Custom Model 2
Loss • Training: 0.65 • Validation: 0.80	Loss • Training: 1.00 • Validation: 1.02	Loss • Training: 0.01 • Validation: 1.46	Loss • Training: 0.52 • Validation: 0.81	Loss • Training: 0.13 • Validation: 0.74
Accuracy: • Training: 75% • Validation: 66%	Accuracy: • Training: 50% • Validation: 47%	Accuracy: • Training: 99% • Validation: 77%	Accuracy: • Training: 88% • Validation: 78%	Accuracy: • Training: 99% • Validation: 74%
# Layers: 50 # Params: 23mn Est. runtime: 50ms/step	# Layers: 16 # Params: 138mn Est. runtime: 50ms/step	# Layers: 8 # Params: 62mn Est. runtime: 30ms/step	# Layers: 7 # Params: 146k Est. runtime: 40ms/step	# Layers: 9 # Params: 28mn Est. runtime: 103ms/step

Modeling 1: Image Classification Limitations and Further Improvements

Data:

- More distinction on 'mini' & 'midi' classifications
- Further clean-up on labeling (handling mislabeled data)
- Use higher image resolutions

Execution:

- Use larger hardware/software capacity
- Try deeper layers
- Further experiment with grayscale images (initial assessment: no difference)
- Add noise for better model generalization

Modeling 2: Object Detection

YOLO v3 - Summary

Modeling Design

- Tried to fit to a YOLOv3 custom object detection using ImageAI API
- A smaller subset was was used (only about 230 images for each category)
- Created annotations for all images
 - Annotations are in PASCAL Visual Object Classes (VOC) format
 - Used the bounding boxes provided

Execution

- Training took a very long time, 13 epochs took 2 hours
- Ran out of Colab GPU runtime allocation

```
1120/1120 [===========] - 612s 546ms/step - loss: 115.6004 - yolo_layer_6_loss: 13.8674 - yolo_layer_7_loss: 26.4391
Epoch 2/13
1120/1120 [=============] - 595s 531ms/step - loss: 23.4449 - yolo_layer_6_loss: 2.4267 - yolo_layer_7_loss: 5.4595 -
Epoch 3/13
1120/1120 [===========] - 594s 530ms/step - loss: 18.9928 - yolo_layer_6_loss: 2.5498 - yolo_layer_7_loss: 5.3762 -
Epoch 5/13
- 591s 527ms/step - loss: 16.6548 - yolo_layer_6_loss: 2.5199 - yolo_layer_7_loss: 4.6554 -
                 - 601s 536ms/step - loss: 16.0430 - yolo_layer_6_loss: 2.4591 - yolo_layer_7_loss: 4.5810 -
1120/1120 [============] - 599s 535ms/step - loss: 15.6048 - yolo_layer_6_loss: 2.3639 - yolo_layer_7_loss: 4.4318 - ;
Epoch 11/13
```

Modeling 2: Object Detection YOLO v3 - Video Detection: Model Creation & Engineering

- Full images used (uncropped to bounding boxes)
- Full resolution used for each image
- Bounding boxes were already part of dataset
- Had to retrain the model from scratch according to using ImageAl API

```
<?xml version="1.0"?>
- <annotation>
    <folder>train</folder>
    <filename>27.ipq</filename>
    <path>./train/images/27.jpg</path>
        <database>MMM</database>
     </source>
        <width>300</width>
        <height>300</height>
        <depth>3</depth>
    <seamented>0</seamented>
   <object>
        <name>Mini</name>
        <pose>Frontal</pose>
        <truncated>0</truncated>
        <difficult>0</difficult>
        <occluded>0</occluded>
           <xmin>83</xmin>
           <xmax>235</xmax>
           <ymin>67</ymin>
           <vmax>297</vmax>
     </object>
 </annotation>
```

```
>> train >> images
                           >> img 1.jpg (shows Object 1)
                           >> img_2.jpg (shows Object_2)
           >> images
                           >> img_3.jpg (shows Object_1, Object_3 and Object_n)
           >> annotations >> img_1.xml (describes Object_1)
           >> annotations >> img_2.xml (describes Object_2)
           >> annotations >> img 3.xml (describes Object 1, Object 3 and Object n)
>> validation
              >> images
                               >> img_151.jpg (shows Object_1, Object_3 and Object_n)
               >> images
                               >> img_152.jpg (shows Object_2)
                               >> img_153.jpg (shows Object_1)
               >> annotations >> img 151.xml (describes Object 1, Object 3 and Object n)
               >> annotations >> img_152.xml (describes Object_2)
               >> annotations >> img 153.xml (describes Object 1)
```

```
trainer = DetectionModelTrainer()
trainer.setGpuUsage(1)
trainer.setModelTypeAsYOLOv3()
trainer.setDataDirectory('./drive/MyDrive/Project YOLO')
trainer.setTrainConfig(object_names_array=["Mini", "Midi", 'Maxi'], batch_size=4,
trainer.trainModel()
```

Modeling 2: Object Detection YOLO v3 - Custom Object Detection Video

- Pinterest video of a woman trying out different dresses
- Tried all mini, midi and maxi dresses
- Text showing type of dress is from the video and not annotated by the model
- Model prediction is unfortunately annotated out of frame
 - Due to training images lacking much noise

https://www.pinterest.com/pin/mini-midi-maxis-oh-my-video--209628557647083293/

Modeling 2: Object Detection YOLO v3 - Evaluation

- Unable to create robust model due to lacking GPU allocation
- The model was most confident with Maxi dresses, and almost unable to detect Mini dress
- Very low mAP score (Mean Average Precision)

Evaluation samples: 140

Using IoU: 0.5

Using Object Threshold: 0.3

Using Non-Maximum Suppression: 0.5

Maxi: 0.4467 Midi: 0.1051 Mini: 0.0320 mAP: 0.1946

- Our training images lack any noise
- All images are highly focused on the dresses themselves
- Might cause the model to assume the dress should take up the whole screen
- Since label annotations are placed above detection bounds, our demo video did not show any annotations

Modeling 2: Object Detection YOLO v3 - Limitations and Further Improvements

- Use images that has a background instead of the whole image (noisy images)
- Run more epochs
- Try transfer learning with trained detection model or other general models
- Updated version of YOLOv5 can be used for improvement

Use Case

- Image Classification:
 - Fashion Recommendation Powered By DL
 - Attributes extracted from image classification can help enhance the fashion companies' recommendation to consumers based on purchase or search history
 - User can hover on image and see specific article label and this hover action can micro-logged and used for building fine-tuned recommendation as fashion outfit photos generally contain many items in one outfit.
- Object Detection
 - Video scene labeling is a popular DL application. Now fashion object detection can add more complex information to the description of the video scene. (ie. A woman with leopard maxi dress and blue eyes are carrying her weekender bag)
 - Tiktok and Reels can use this algorithm to extract information from videos and read the real-time fashion trends globally

Model Deployment/Management

https://towardsdatascience.com/deplovinc-an-image-classification-web-app-with-python-3753c46bb79
https://www.analyticsvidhya.com/bloq/2020/07/deplov-an-image-classification-model-usinc-flask/
https://www.fairwinds.com/bloq/heroku-vs.-kubernetes-the-biq-differences-you-should-know
https://wachinelearningmastery.com/update-neural-network-models-with-more-data/

Model Deployment/Management

- Given that new input data will come in rapidly (fashion evolves rapidly), dynamic training architecture is optimal where model is re-trained with constant data feed into the data pipeline
- Integration of automated data versioning, monitoring, and continuous deployment of the model is essential using a scheduling tool/trigger-based orchestration tool
- Kubernetes will be a good scalable option for our runtime environment as it is portable, executable anywhere and model-agnostic. Also, it can optimize the resources for ML workload

Conclusion

- Selecting and preparing the right training data is crucial
 - Ensure enough variance
 - Correct labeling
 - Use image augmentation when possible
- Pre-trained models sometimes are not the way to go
 - Need to balance computing power and expected accuracy
 - Always need to retrain the model and fine-tune the parameters and layers for a better fit
- Careful adjustment to manage model tendency to overfitting

Thank You!

References:

- https://mmlab.ie.cuhk.edu.hk/projects/DeepFashion/AttributePrediction.html
- https://towardsdatascience.com/deploying-an-image-classification-web-app-with-python-3753c46bb79
- https://www.analyticsvidhya.com/blog/2020/07/deploy-an-image-classificatio

 n-model-using-flask/
- https://www.fairwinds.com/blog/heroku-vs.-kubernetes-the-big-differences-you-should-know
- https://machinelearningmastery.com/update-neural-network-models-with-more-data/
- https://towardsdatascience.com/deploying-an-image-classification-web-app-with-python-3753c46bb79
- https://www.analyticsvidhya.com/blog/2020/07/deploy-an-image-classification-model-using-flask/
- https://www.fairwinds.com/blog/heroku-vs.-kubernetes-the-big-differences-you-should-know
- https://machinelearningmastery.com/update-neural-network-models-with-more-data/
- https://neptune.ai/blog/mlops-architecture-guide