江西理工大学考试卷B

试卷编号:

2009-2010 学年第2学期

考试性质(正考、补考或其它):[正考]

课程名称: 高等数学(二)

考试方式(开卷、闭卷): [闭卷]

考试时间: 2010 年 7 月 日

试卷类别(A、B、C):[**B**] 共三大题

温馨提示

请考生自觉遵守考试纪律,争做文明诚信的大学生。如有违犯考试纪律,将严格 按照《江西理工大学学生违纪处分暂行规定》处理。

班级	学号	姓名	参考答案
312-3X	_ , ,	_/∸ ⊢	<i>></i> 10/N

题号	_	=	Ξ	总 分
得分				

一、选择题(请将正确答案编码填入下表中,每小题3分,共24分)

题号	1	2	3	4	5	6	7	8
答案	A	С	D	В	D	В	С	A

二、填空题(请将正确答案填写在以下相应的横线上,每空3分,共24分)

1.
$$y = C_1 e^{-x} + C_2 e^x + C_3 e^3$$

$$2. \quad \frac{x-1}{2} = \frac{y}{1} = \frac{z-2}{3}$$

1.
$$y = C_1 e^{-x} + C_2 e^x + C_3 e^{3x}$$
 2. $\frac{x-1}{2} = \frac{y}{1} = \frac{z-2}{3}$ 3. $dz = y^x \ln y \cdot dx + xy^{x-1} dy$

$$4. (3, -3)$$

5.
$$\int_{-2}^{0} dx \int_{0}^{-x} f(x,y) dy$$

7.
$$16\pi$$

$$8. \quad \sum_{n=0}^{\infty} \frac{(\ln 2)^n}{n!} x^n , \quad x \in \mathbb{R}$$

三、计算题(6小题,共52分)

1. 设u = f(y, xy), f 具有二阶连续偏导数,求 $\frac{\partial u}{\partial y}$, $\frac{\partial^2 u}{\partial y \partial x}$. (7分)

$$\frac{\partial^2 u}{\partial y \partial x} = \frac{\partial}{\partial x} \left(\frac{\partial u}{\partial y} \right) = \frac{\partial}{\partial x} (f_1' + x f_2')$$
5 \(\forall \)

$$=\frac{\partial f_1'}{\partial x} + \frac{\partial (xf_2')}{\partial x} = yf_{12}'' + f_2' + xyf_{22}''.$$
 7 \(\frac{\gamma}{2} \)

2. 求曲面 $e^z - z + xy = 3$ 在点(1,3,0)处的切平面及法线方程. (7分)

解
$$\diamondsuit F(x, y, z) = e^z - z + xy - 3$$
,

则
$$F'_x = y$$
, $F'_y = x$, $F'_z = e^z - 1$,

曲面在点
$$(x,y,z)$$
的切平面的法向量为 $h = (y,x,e^z-1)$, 3分

点(1,3,0)的切平面的法向量为h=(3,1,0),

故所求的切平面方程为3(x-1)+(y-3)=0,

整理得
$$3x + y - 6 = 0$$
; 5 分

所求法线方程为
$$\frac{x-1}{3} = \frac{y-3}{1} = \frac{z-0}{0}$$
. 7分

3. 设 Ω 是曲面 Σ_1 : $z = \sqrt{x^2 + y^2}$ 与 Σ_2 : $z = 6 - x^2 - y^2$ 所围成的立体,求 Ω 的体积V 与表面积S. (10分)

解
$$V = \iiint_{\Omega} dV$$

 $= \int_{0}^{2\pi} d\theta \int_{0}^{2} r dr \int_{r}^{6-r^{2}} dz$
 $= 2\pi \int_{0}^{2} r(6-r^{2}-r) dr = \frac{32}{3}\pi$;

第2页 共4页

$$S = S_{1} + S_{2} = \iint_{\Sigma_{1}} dS + \iint_{\Sigma_{2}} dS, \quad \cancel{\Xi} = D_{xy} \not \supset x^{2} + y^{2} \le 4,$$

$$\iint_{\Sigma_{1}} dS = \iint_{D_{xy}} \sqrt{1 + (z'_{x})^{2} + (z'_{y})^{2}} d\sigma = \iint_{D_{xy}} \sqrt{2} d\sigma = 4\sqrt{2}\pi,$$

$$\iint_{\Sigma_{2}} dS = \iint_{D_{xy}} \sqrt{1 + (z'_{x})^{2} + (z'_{y})^{2}} d\sigma = \iint_{D_{xy}} \sqrt{1 + 4x^{2} + 4y^{2}} d\sigma$$

$$= \int_{0}^{2\pi} d\theta \int_{0}^{2} \sqrt{1 + 4r^{2}} r dr = \frac{\pi}{6} (17\sqrt{17} - 1),$$

$$9 \not \supset$$

因此,
$$S = S_1 + S_2 = 4\sqrt{2}\pi + \frac{\pi}{6}(17\sqrt{17} - 1)$$
.

4. 计算 $\iint_{\Sigma} (z + xy^2) dy dz + (yz^2 - xz) dz dx + (x^2z + x^3) dx dy$ 其中 Σ 为 $x^2 + y^2 + z^2 = 1$ ($z \le 0$), 取下侧. (10 分)

解 补充曲面 Σ_1 : $z = 0(x^2 + y^2 \le 1)$, 并取上侧,则由高斯公式

$$\iint_{\Sigma+\Sigma_{1}} (z+xy^{2}) dydz + (yz^{2}-xz) dzdx + (x^{2}z+x^{3}) dxdy$$

$$= \iiint_{\Omega} (y^{2}+z^{2}+x^{2}) dydz + (yz^{2}-xz) dzdx + (x^{2}z+x^{3}) dxdy$$

$$= \int_{0}^{2\pi} d\theta \int_{\frac{\pi}{2}}^{\pi} d\varphi \int_{0}^{1} r^{2} \cdot r^{2} \sin \varphi dr$$

$$= \frac{2\pi}{5}, \qquad 5 \%$$

$$\overrightarrow{\text{III}} \iint_{\Sigma_{1}} (z+xy^{2}) dydz + (yz^{2}-xz) dzdx + (x^{2}z+x^{3}) dxdy$$

$$= \iint_{\Sigma_{1}} r^{3} dx dy = 0 \qquad 8 \%$$

$$= \iint_{D_{xy}} x^3 dx dy = 0.$$
 8 \mathcal{T}

所以 原式=
$$\iint_{\Sigma+\Sigma_1} (z+xy^2) dydz + (yz^2 - xz) dzdx + (x^2z+x^3) dxdy$$

$$- \iint_{\Sigma_1} (z+xy^2) dydz + (yz^2 - xz) dzdx + (x^2z+x^3) dxdy$$

$$= \frac{2\pi}{5}.$$
10 分

5. 计算 $\int_{L} (2xy^3 - y^2 \cos x) dx + (1 - 2y \sin x + 3x^2 y^2) dy$, 其中 L 为抛物线 $2x = \pi y^2$ 从点 O(0, 0) 到点 $A(\frac{\pi}{2}, 1)$ 的一段弧. (10 分)

解 补充有向线段 \overrightarrow{AB} 、 \overrightarrow{BO} ,其中点 $B(\frac{\pi}{2}, 0)$,则由格林公式

$$\oint_{L+\overline{AB}+\overline{BO}} (2xy^3 - y^2 \cos x) dx + (1 - 2y \sin x + 3x^2 y^2) dy = \iint_{D_{xy}} 0 dx dy = 0,$$
5 \(\frac{1}{2} \)

$$\oint_{BO} (2xy^3 - y^2 \cos x) dx + (1 - 2y \sin x + 3x^2 y^2) dy = \int_{\frac{\pi}{2}}^{0} 0 dx = 0,$$
9 \(\frac{\psi}{2}\)

所以原式=
$$\oint_{L+\overline{AB}+\overline{BO}} (2xy^3 - y^2 \cos x) dx + (1 - 2y \sin x + 3x^2 y^2) dy$$

$$- \oint_{\overline{AB}} (2xy^3 - y^2 \cos x) dx + (1 - 2y \sin x + 3x^2 y^2) dy$$

$$- \oint_{\overline{BO}} (2xy^3 - y^2 \cos x) dx + (1 - 2y \sin x + 3x^2 y^2) dy$$

$$= \frac{1}{4} \pi^2.$$
10 分

6. 求幂级数 $\sum_{n=0}^{\infty} (n+1)x^n$ 的收敛域与和函数. (8分).

解 因为
$$\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{n+1}{n} \right| = 1$$
,所以 $R = \frac{1}{\rho} = 1$,

且当 $x = \pm 1$ 时,所给的幂级数发散,故所求的收敛域为(-1, 1). 4分

和函数
$$s(x) = \sum_{n=0}^{\infty} (n+1)x^n = \sum_{n=0}^{\infty} (x^{n+1})' = \left(\sum_{n=0}^{\infty} x^{n+1}\right)' = \left(\frac{x}{1-x}\right)' = \frac{1}{(x-1)^2}.$$
 8分