Parametric Study of Plate FEM

Presented By: **Emayavaramban ELANGO** École centrale De Nantes

Supervisor :
PHAM Van Thang
ArcelorMittal Maizières Research SA

September 13, 2025

2/1

Plan

Domain Information

Response of the plate for different Axial velocities (V) m/s

Response of the plate for different Thickness(t) m

Response of the plate for different Densities(ρ) Kg/m^3

Response of the plate for different Poisson's ratio (ν)

Response of the plate for different Axial Tension (N) N/m^2

Response of the plate for different Young's modulus (E) Pa

Response of the plate for different Young's modulus (E) with applied force

Plan

(a) Mesh: 1, No of Nodes = 505

(b) Mesh: 2, No of Nodes = 1407

(c) Mesh : 3 , No of Nodes = 4411

,

(d) Mesh : 4 , No of Nodes = 7711

(e) Mesh: 5, No of Nodes = 7813

Mesh Dependency test 1

(d) Mesh: 2_{-3} , Skewness Ratio = 1.02

(e) Mesh: 2_4 , Skewness Ratio = 1.03

Mesh Dependency test 2

(a) Mesh: 4, Nn = 7813

(b) Mesh: 2_3 , Nn = 1407

(c) Mesh : strip , Nn = 1886

Plan

Strip with displacement from real world data

Plan

Plate twisted in one end with axial stress = $3E7 N/m^2$

Thank you for your attention!!!