

Base de programmation

BA1 Informatique
Johan Depréter – johan.depreter@heh.be

•.AVI, MPEG, GIF, JPEG, FLAC, MP3...

Chapitre 10

Compression de données

Introduction

 Processus permettant de réduire la taille des données pour économiser de l'espace de stockage et améliorer les performances de transmission

Données de + en + volumineuses

Importance d'optimiser l'espace et l'échange de données

Méthodes

Compression sans perte
Aucune perte des données d'origine, réécriture de façon concise. Pas de solution universelle

 Compression avec perte
Utilisée pour les données sonores ou visuelles où la perte d'informations est imperceptible pour l'œil humain

Compression sans perte

 Possibilités de décompresser les données pour revenir à l'origine

Exemples :

Compression de fichiers textes

Compression d'archives

Compression de fichiers de configuration

Compression sans perte

- Basé sur la redondance, l'entropie
- Implémenté de manière statique ou sur base d'un dictionnaire

Compression sans perte

- Quelques algorithmes :
 - Lempel-Ziv-Welch (LZW)
 - Huffman
 - Run Legnth Encoding (RLE)

- Très souvent utilisé avec les .GIF, les .PDF et les .TIFF
- Regroupement de symboles en chaînes
- Convertir chaînes en codes
- Codes moins de places que les chaînes

- Choix fréquents d'entrée possibles : 4096
- 0 à 255 bloqués pour les caractères uniques du fichier d'entrée

 Identification des séquences répétées dans les données et ajout à la table de codage

2

P=A

BABAAE	BAAA		P=B C = empty
Encoder	Output	String	Table
Output Code	representing	codeword	string
66	В	256	BA
65	Α	257	AB

BABAA	BAAA		P=A C = empty
Encoder	Output	String	Table
Output Code	representing	codeword	string
66	В	256	ВА
65	Α	257	AB
256	BA	258	BAA

LZW compression step 1

ı	LZW	compress	ion si	ep

BABAABAAA

LZW compression step 3

P=AA

C = empty

BABAABAAA

BABAABAAA	P=A
↑	C = empty

	1		
Encoder	Output	String	Table
Output Code	representing	codeword	string
66	В	256	BA
65	Α	257	AB
256	ВА	258	BAA
257	AB	259	ABA

1	Î .		C = A
Encoder	Encoder Output		Table
Output Code	representing	codeword	string
66	66 B 256		ВА
65	Α	257	AB
256	ВА	258	BAA
257	AB	259	ABA
65	65 A		AA

Encoder	Output	String	Table
Output Code	representing	codeword	string
66	В	256	BA
65	Α	257	AB
256	BA	258	BAA
257	AB	259	ABA
65	Α	260	AA
260	AA		

Phelotyer

LZW compression step 4

<66><65><256><257><65><260>		Old = 256 Si New = 256 C	<66><65><256><257><6		ld = 257 S=Al ew = 257 C=A
Encoder Output	String	Table	Encoder Output	String	Table
string	codeword	string	string	codeword	string
В			В		
А	256	ВА	А	256	BA
ВА	257	AB	ВА	257	AB
			АВ	258	BAA

3	<u>T</u>	N	ew = 257 C=/
	Encoder Output	String	Table
	string	codeword	string
	В		
	Α	256	ВА
	ВА	257	AB
	AB	258	BAA

LZW compression step 1

<66><65><256><257><65><260> Old = 65 S=A New = 66 C=A

Encoder Output	String	Table
string	codeword string	
В		
А	256	ВА
ВА	257	AB
AB	258	BAA
A	259	ABA

LZW compression step 2

<66><65><256><257><65><260> Old = 260 S=AA ↑New = 260 C=A

Encoder Output	String	Table
string	codeword	string
В		
А	256	ВА
BA	257	AB
AB	258	BAA
А	259	ABA
AA	260	AA

LZW compression step 4

LZW compression step 5

- Attribution de code en fonction de la fréquence d'apparition
 - Les symboles avec une basse fréquence sont codés sur beaucoup de bits et inversement pour les symboles à haute fréquence
- Génération d'un arbre binaire avec les branches étiquetées de 0 et de 1
- L'arbre et le message compressé doivent être envoyé pour pouvoir être décodé

Char	a	е		n	0	S	t
Frequenc	4	6	1	4	1	2	5
e	5	5	3	5	8	2	3

Créer l'arbre

Trouver le code de chaque symbole

a:110

e:10

I:0110

n: 111

o: 0111

s:010

t:00

Codage de Huffman et technologies Statique

 Avec les infos d'avant on peut par exemple encoder « tales »

00110011010010

 Et pour décoder il suffit de vérifier, à partir de la racine, bit par bit jusqu'à obtenir une feuille :

0110011101000

lost

Exercices!

Exercices

 En utilisant l'arbre d'Huffman réalisé durant la séance, décoder les séries de bits suivants, si c'est possible. Si ce n'est pas possible, expliquer où le decodage plante.

10100010111010001000010011

001001101111000

001001000

00100

Encoder « states » et « notes »

Exercices

Réaliser l'arbre d'huffman pour les fréquences suivantes :

E:102

A:64

C:35

G:12

S:48

T:35

H:9

Exercices

 Compresser et décompresser la chaine de caractères suivantes selon LZW :

TOBEORNOTTOBEORTOBEORNOT

RLE

- BBBBHHDDXXXXKKKKWWZZZZ
- Va devenir : B4H2D2X4K4W2Z3

	10 1
	412041
	314031
	216021
	11201120112011
	118011
	3110211031
	21101120111021
	111011102110111011
	10 1

Compression avec perte

Les données répétitives sont remplacées par des codes plus court, afin de réduire la perte d'informations

 Les données compressées ne peuvent pas être décompressées pour récupérer exactement les données d'origine.

Les algorithmes de compression

- JPEG (Joint Photographic Expert Group) Utilisé dans la compression d'image.
- MPEG (Moving Picture Experts Group) Utilisé dans la compression vidéo.
- MP3

JPEG

