Chi square test step by step

pineapple

OS_new Idon'tmind No Yes

Apple 12 20 9

Microsoft 27 26 27

Contingency table table(0s_new,pineapple)

pineapple/ new 0S	ldon'tmind	No	Yes	Row totals
Apple	12	20	9	
Microsoft	27	26	27	
Column				

Column and row sums please calculate and tell me what to fill in!

pineapple/ new 0S	ldon'tmind	No	Yes	Row totals
Apple	12	20	9	41
Microsoft	27	26	27	80
Sum totals	39	4-6	36	121

Column and row sums

pineapple/ new 0S	ldon'tmind	No	Yes	Row totals
Apple	12	20	9	R
Microsoft	27	26	27	R
Column	C		C	G

Expected values for each cell E=R*C/G

Row Idon'tmind Yes totals 39*41/121 46*41/121 41*36/121 41 Apple Microsoft 80*39/121 80*46/121 80*36/121 80 Column 39 36 46 121 totals

Expected values for each cell E=R*C/G

Expected values

$$\chi^2 = \sum \frac{(O-E)^2}{E}$$

Chi square value

Observed minus expected frequencies divided by expected frequency

	0	E	(0-E)^2	$\frac{(O-E)^2}{E}$
Apple I don't mind	12	13.21		
Apple No	20	15.58		
Apple Yes	9	12.19		
Microsoft I don't mind	27	25.78		
Microsoft No	26	30.41		
Microsoft Yes	27	23.80		

Observed and Expected values

taking the sum of the last column = Chi square value

	0	E	(0-E)^2	$\frac{(O-E)^2}{E}$
Apple I don't mind	12	13.21	1.47	0.11
Apple No	20	15.58		
Apple Yes	9	12.19		
Microsoft I don't mind	27	25.78		
Microsoft No	26	30.41		
Microsoft Yes	27	23.80		

Observed and Expected values

taking the sum of the last column = Chi square value

	0	E	(0-E)^2	$\frac{(O-E)^2}{E}$
Apple I don't mind	12	13.21	1.47	0.11
Apple No	20	15.58	19.48	1.25
Apple Yes	9	12.19	10.23	0.84
Microsoft I don't mind	27	25.78	1.47	0.06
Microsoft No	26	30.41	19.48	0.64
Microsoft Yes	27	23.80	10.23	0.43

Observed and Expected values

taking the sum of the last column = Chi square value

$$\chi^2 = \sum \frac{(O-E)^2}{E}$$

Chi square value

Observed minus expected frequencies divided by expected frequency

> chisq.test(table(OS_new,pineapple))

Pearson's Chi-squared test

data: table(OS_new, pineapple) X-squared = 3.3272, df = 2, p-value = 0.1895

how did we get the p-value?

degrees of treedom = (r-1) * (c-1) (3-1) * (2-1) = 2

Probability density function

now we have to calculate the area under the curve of our test statistic...

the p-value is the area under the curve to the right of your value!

our Chi Square value = 3.3

the p-value is the area under the curve to the right of your value!
p=0.1895

Upper-tail critical values of chi-square distribution with ν degrees of freedom

	Prob	ability le	ss than the	e critical	value
ν	0.90	0.95	0.975	0.99	0.999
1	2 706	3.841	E 024	6 625	10 020
2	2.706 4.605	5.991	5.024 7.378	6.635 9.210	10.828 13.816
3	6.251	7.815	9.348	11.345	16.266
4	7.779	9.488	11.143	13.277	18.467
5	9.236	11.070	12.833	15.086	20.515
6	10.645	12.592	14.449	16.812	22.458
7	12.017	14.067	16.013	18.475	24.322
8	13.362	15.507	17.535	20.090	26.125
9	14.684	16.919	19.023	21.666	27.877
10	15.987	18.307	20.483	23.209	29.588
11	17.275	19.675	21.920	24.725	31.264
10	10 540	21 026	22 227	26 217	22 010

Table with critical values

Luckily we do not have to calculate the p-value.

Now we have software... and even before that, we had tables of critical values.

achisallo. Sala

how to calculate the critical value in R 0.95 = certainty level and 2 = degrees of freedom

this is our critical value and since our value is smaller than the critical value we have to except the Null-hypothesis—> no relationship between pineapple on pizza and OS.

the p-value is the area under the curve to the right of your value!
p=0.1895

Take home message

- * data format and distribution determine your test statistic
- * p-value always has the same meaning across tests
- * we are looking for p-values smaller than 0.05
- * the way a p-value is calculated is based on the probability density function