Algorithmen und Datenstrukturen

Sommersemester 2015

Jana Grajetzki (jana.grajetzki@uni-jena.de)

2. Übungsserie

Abgabe: Donnerstag, 30.4.2015, bis 12.00 Uhr im Sekretariat bei Frau Kunze (Raum 3333).

Geben Sie bitte deutlich Ihre Übungsgruppe, Namen und Matrikelnummer an.

Aufgabe 1:

Vergleichen Sie in jedem der fünf Fälle das asymptotische Wachstum der Funktionen f und g. Beweisen Sie, ob $f \in O(g)$, $f \in O(g)$, gilt.

(a)
$$f(n) = \frac{1}{4}n; g(n) = \sqrt{n \log n}$$

(b)
$$f(n) = 6 \cdot 3^{\frac{n}{2}+1}$$
; $g(n) = 2^n$

(c)
$$f(n) = n^2 \log n$$
; $g(n) = n \log^2 n$

(d)
$$f(n) = \log(n!); g(n) = (\log n)^{\log n}$$

(e)
$$f(n) = \log_a n$$
; $g(n) = \log_b n$, a, b Konstanten mit $a > 0, b > 0$ (12 Punkte)

Aufgabe 2:

Bringen Sie die folgenden Funktionen in eine Reihenfolge g_1, g_2, \ldots, g_7 so dass gilt $g_1 \in O(g_2), g_2 \in O(g_3), \ldots, g_6 \in O(g_7).$

$$\log \sqrt[3]{n}, \ 2^{\sqrt{n}}, \ n^{\frac{1}{10}}, \ n!, \ n^{\log n}, \ (\log n)^{40}, \ \sqrt{4^{\log n}}$$
 (8 Punkte)

Aufgabe 3:

Beweisen Sie die Transitivität der O-Notation:

$$f \in \mathcal{O}(g) \land g \in \mathcal{O}(h) \Rightarrow f \in \mathcal{O}(h)$$

(5 Punkte)

Aufgabe 4:

Es seien $f_1, f_2, \dots f_k : \mathbb{N} \longrightarrow \mathbb{R}$. Beweisen oder widerlegen Sie folgende Aussagen:

(a)
$$(f_1 + f_2 + \dots + f_k) \in \Theta(\max\{f_1, f_2, \dots f_k\})$$

(b)
$$(f_1 + f_2 + \dots + f_k) \in \Theta(\min\{f_1, f_2, \dots f_k\})$$
 (5 Punkte)