We review methods for finding roots of nonlinear functions.

Both this worksheet and its solution (writeup and code) may be found at https://github.com/op554/Numerical_Analysis_2023.

1 Fixed point methods

Let's find roots of the nonlinear equation

$$f(x) := 2x - \tan(x) = 0$$

using the fixed point method.

1.1

Plot f(x) in MATLAB (or Python or Julia, if you prefer) on the domain [-0.5, 1.3].

- 1. Remember to add a title and axis labels to your plot.
- 2. Try to "generalize" your code. For example, if we want to plot another function, is it straightforward to edit your code to adapt to the new task?

1.2

- 1. f(x) has two roots on this domain. What are they (just approximate by eyeballing your plot)?
- 2. Let's try to find the positive root ξ using fixed point iteration, i.e. $x_{k+1} = g(x_k)$. First, verify that ξ is also a fixed point, i.e. $g(\xi) = \xi$, of these three functions g_i :
 - $g_1(x) = \frac{1}{2}\tan(x)$
 - $g_2(x) = \operatorname{atan}(2x)$
 - $g_3(x) = x \frac{2x \tan(x)}{1 \tan(x)^2}$
- 3. Implement the fixed point method for these three functions with starting value $x_0 = 1$. What stopping criterion should you use? Record the number of iterations taken for each g_i . Use this to get a "feel" for how each g_i behaves.
- 4. Based on the above, use one of the g_i to compute a "super accurate" value for ξ . How accurate is your solution (i.e. what's the L1 error, $|2\xi \tan(\xi)|$)?
- 5. Discuss the stability of ξ for each choice of g_i using the contraction mapping theorem. Do your results make sense given your numerical experiments?
- 6. Derive Newton's method for the solution of f(x) = 0 and compare with the fixed point method corresponding to g_3 . What do you observe?