Math 127 Homework Problem Set 4

Problem 1. Let n > 1 be a natural number. Consider the set \mathbb{R}^n of all n-tuples $\bar{x} = (x_1, x_2, \dots, x_n)$ all of whose components are real numbers.

Define the operations of addition and of multiplication of two n-tuples by doing them coordinate-wise. In other words,

$$(\bar{x}, \bar{y}) \in \mathbb{R}^n \times \mathbb{R}^n \quad \mapsto \quad \bar{x} + \bar{y} \stackrel{\text{def}}{=} (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n) \in \mathbb{R}^n,$$

 $(\bar{x}, \bar{y}) \in \mathbb{R}^n \times \mathbb{R}^n \quad \mapsto \quad \bar{x} \cdot \bar{y} \stackrel{\text{def}}{=} (x_1 y_1, x_2 y_2, \dots, x_n y_n) \in \mathbb{R}^n.$

Show that \mathbb{R}^n with these operations is a <u>commutative</u> ring. Show also that it is <u>not</u> a field.

In mathematics, a relation \mathcal{R} on a non-empty set S is a mathematical concept allowing us to "link" certain elements of S (possibly motivated by a certain interesting property we want to study, and which is supposed to be shared by "linked" elements, and not shared by elements that have not been "linked").

Formally, a (binary) relation \mathcal{R} on S is a subset of $S \times S$, that is, it is a set of ordered pairs with components from S. For instance, $\mathcal{R}_1 = \{(m,n) : m,n \in \mathbb{N}, m \text{ divides } n\}$ is a relation on \mathbb{N} , while $\mathcal{R}_2 = \{(0,1),(1,2),(2,4),(3,3)\}$ is a relation on \mathbb{Z}_5 (of course the latter relation may not be particularly meaningful).

Notation. If two elements a, b in S are "linked" in \mathcal{R} , the most common ways of denoting this are

$$(a,b) \in \mathcal{R}$$
 or $a \mathcal{R} b$ or $a \sim b$.

There are some types of binary relations that can be really useful.

Definition. A binary relation \mathcal{R} on a non-empty set S is called an *equivalence* relation if:

- for every $a \in S$, we have that $a \mathcal{R} a$ (we say \mathcal{R} is reflexive);
- for every $a, b \in S$, if $a \mathcal{R} b$, then $b \mathcal{R} a$ as well (we say \mathcal{R} is symmetric);
- for every $a, b, c \in S$, if $a \mathcal{R} b$ and $b \mathcal{R} c$, then $a \mathcal{R} c$ as well (we say \mathcal{R} is transitive).

Side Remark. Not every interesting relation in Mathematics has to be an equivalence relation. For example, the relation \mathcal{R}_1 above, which is reflexive and transitive, but not symmetric, or the relation

$$\mathcal{R}_3 = \{(x,y) : x, y \in \mathbb{R}, x < y\} = \{(x,y) : x, y \in \mathbb{R}, y - x > 0\},\$$

which only satisfies the transitive property out of the above three, but fully encodes the standard ordering in \mathbb{R} , offer us a lot of useful information.

Problem 2. (a) Let \mathbb{F} be a field, and m, n be positive integers. Show that row equivalence of matrices in $\mathbb{F}^{m \times n}$ is an equivalence relation on $\mathbb{F}^{m \times n}$. Recall that we say that $A \in \mathbb{F}^{m \times n}$ is row equivalent to $B \in \mathbb{F}^{m \times n}$ (and we write $A \sim B$) if there are some $k \geq 1$ and some elementary matrices $\mathcal{E}_1, \mathcal{E}_2, \ldots, \mathcal{E}_k \in \mathbb{F}^{m \times m}$ so that

$$B = \mathcal{E}_k \cdots \mathcal{E}_2 \mathcal{E}_1 A.$$

(b) Let m > 1 be a positive integer. Recall that congruence modulo m is a relation on \mathbb{Z} defined as follows: $k \equiv l \pmod{m}$ if and only if m divides l - k. Show that this is an equivalence relation.

Problem 3. Let k, λ, μ, u, v, w be unknown constants/parameters allowed to take values in \mathbb{Z}_5 . Consider the following linear system with coefficients from \mathbb{Z}_5 :

$$\begin{cases} \kappa x_1 + \lambda x_2 + 3x_3 - 4x_4 + 3x_5 + x_6 - x_7 = 1\\ \mu x_2 + x_3 + 2x_5 - x_6 + 2x_7 = 2\\ 2x_3 - 4x_4 + x_5 + 4x_6 = 1\\ x_4 - 2x_5 + x_6 + x_7 = 3\\ vx_5 + x_6 + 2x_7 = 0\\ (u^2 - 1)x_7 = w \end{cases}.$$

- (a) For which combinations of κ , λ , μ , u, v and w, if any, do we get a staircase system?
- (b) For which of the "good" combinations, which you are asked to find in part (a), does the corresponding (staircase) system have
 - (i) no solution?
 - (ii) a unique solution?
- (iii) or more than one solutions? (For each of the combinations in this case determine also how many solutions the corresponding system has.)

[Clarification. In part (b) here, you don't have to find any solutions to the different systems you will consider, just how many solutions each system has.]

Problem 4. Let $k \in \mathbb{Z}_{17}$ be some (unknown) constant. Consider the system

$$\left\{
\begin{array}{cccccc}
x_1 & + & 2x_2 & - & 3x_3 & = & 4 \\
3x_1 & - & x_2 & + & 5x_3 & = & -2 \\
2x_1 & - & 3x_2 & + & (k^2 - 8)x_3 & = & k - 2
\end{array}
\right\}$$

where the coefficients come from \mathbb{Z}_{17} .

- (a) For which value(s) of k, if any, does the system have
 - (i) a unique solution?
 - (ii) no solution?
- (iii) more than one solutions? (And specify how many solutions the system has in each subcase here.)
- (b) Solve the system where possible. That is, for those k in case (i) above, find the unique solution $(x_1, x_2, x_3) \in \mathbb{Z}^3_{17}$ (this solution will depend on k), and for each of the k in case (iii) above, parametrise the solutions (x_1, x_2, x_3) appropriately.

[Clarification. In part (b), when you try to find the unique solution of the system for each value k belonging to case (i) above, do not plug in different values of k from (i), but rather try to find a formula for the unique solution in terms of k.]

Problem 5. (a) Let n > 1 and \mathbb{F} a field. Show that any two diagonal matrices in $\mathbb{F}^{n \times n}$ commute.

(b) <u>True or False?</u> Decide whether the following statement is correct or not, and give a proof of it or of its negation accordingly.

If D, E are matrices in $\mathbb{F}^{n \times n}$ and D is diagonal, then D and E commute.

The following problem suggests two more criteria for determining when a square matrix is invertible (compare these with Theorem 2 from Lectures 28-35).

Problem 6. (a) Let \mathbb{F} be a field, and suppose that A is a square matrix in $\mathbb{F}^{n\times n}$ with the property that, for <u>at least one</u> $\bar{b} \in \mathbb{F}^n$, the vector equation (or equivalently, the system of linear equations) $A\bar{x} = \bar{b}$ has a unique solution.

Prove that A is invertible.

(b) Suppose that B is a square matrix in $\mathbb{F}^{n\times n}$ with the property that, for every $\bar{c} \in \mathbb{F}^n$, the vector equation $B\bar{y} = \bar{c}$ is consistent (that is, it has at least one solution).

Prove that, for every \bar{c} , the vector equation $B\bar{y} = \bar{c}$ has a unique solution. (Note that by part (a) this also implies that B is invertible.)