POINTS RATIONNELS ET UNIFORMITÉ

NOTES PRISES PAR ZIYANG GAO

4. Les espaces de modules grossiers et fins

(19/11/2020 par Marc Hindry)

Dans cet exposé, par « courbe » nous voulons dire une courbe projective lisse géométriquement irréductible sauf indication contraire.

Quelques références pour cet exposé :

- D. Mumford et J. Fogarty et F. Kirwan, « Geometric Invariant Theory », Ergebnisse der Mathematik und ihrer Grenzgebiete. 2. Folge, vol. 34, 1994, Springer-Verlag.
- D. Mumford, « Stability of Projective Varieties : Lectures Given at Bures-sur-Yvette », France, Mar.-Apr. 1976, numéro 25 de Monographies de l'enseignement mathématique, 1977.
- P. Deligne et D. Mumford, « The irreducibility of the space of curves of given genus », Publ. de l'IHÉS, **36**:75–109, 1969.
- J. Harris et I. Morrisan, « Moduli of Curves », GTM 187, 1998, Springer.
- G. Faltings et C.-L. Chai, « Degeneration of Abelian Varieties », Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics, vol. 22, 1990, Springer-Verlag.

4.1. Les premiers exemples, familles v.s. paramètres. Nous voulons construire :

- (i) \mathbb{M}_q qui paramètre les courbes de genre g modulo isomorphismes;
- (ii) \mathbb{A}_g qui paramètre les variétés abéliennes principalement polarisées de dimension g modulo isomorphismes.

Les buts de cette sous-section, comme soulignés dans le titre, sont tout d'abord de donner quelques exemples pour \mathbb{M}_g et \mathbb{A}_g (pour $g \leq 3$), et ensuite de voir dim \mathbb{M}_g et dim \mathbb{A}_g pour g quelconque si \mathbb{M}_g et \mathbb{A}_g existent.

4.1.1. Courbes. Avant de voir le cas général, regardons comment classifier les classes d'isomorphismes des courbes de genre g pour des petits g.

Soit C une courbe définie sur un corps k.

- Cas g = 0. Dans ce cas-là, C est tout simplement \mathbb{P}^1 pour k algébriquement clos, et donc \mathbb{M}_0 est un point. Pour k quelconque, C est isomorphe à une conique, et $C \simeq \mathbb{P}^1$ sur k si $C(k) \neq \emptyset$.
- Cas g = 1. Il y a plusieurs façons pour regarder ce cas. Dans ce cas, la courbe est souvent notée E (l'abbreviation de « elliptique ») au lieu de C.

(i) E peut être réalisée comme le lieu de zéros de $y^2 = x^3 + Ax + B$ (lorsque $\operatorname{car}(k) \neq 2, 3$). Posons $j(E) = \frac{A^3}{4A^3 + 27B^2}$. Il est connu que $j(E) = j(E') \Leftrightarrow E \simeq E'$ sur \overline{k} .

L'on a ainsi la conséquence suivante : chaque famille de courbes elliptiques $\mathcal{E} \to B$ induit une application $j \colon B \to \mathbb{A}^1$ définie par $b \mapsto j(E_b)$. Ceci suggère que l'on peut poser $\mathbb{M}_1 = \mathbb{A}^1$, qui est un espace de modules grossier.

(ii) Avant de donner la deuxième façon pour voir \mathbb{M}_1 , nous expliquons les espaces de modules fins par l'exemple suivant. Les hyperplans dans \mathbb{P}^N sont paramétrés par $(\mathbb{P}^\vee)^N$ (selon la convention de Grothendieck). Nous avons une famille des hyperplans $\pi\colon Z\subseteq \mathbb{P}^N\times (\mathbb{P}^\vee)^N\to (\mathbb{P}^\vee)^N$, c'est-à-dire que $\pi^{-1}(m)$ est l'hyperplan de \mathbb{P}^N que m paramètre. L'existence de la famille universelle indique que $(\mathbb{P}^\vee)^N$ est un espace de modules fin.

L'on voudrais avoir l'analogue pour les courbes elliptiques. Posons $\mathcal{E}_t: y^2 + xy = x^3 - \frac{36}{t-1728}x - \frac{1}{t-1728}$ pour tout $t \neq 1728$. Alors \mathcal{E}_t est une courbe elliptique avec $j(\mathcal{E}_t) = t$ pour $t \neq 0,1728$. Ceci donne une famille $\mathcal{E} \to \mathbb{P}^1 \setminus \{\infty,0,1728\}$, qui est une famille « presque universelle ».

- (iii) La dernière façon est par le modèle de Legendre $E_{\lambda} \colon y^2 = x(x-1)(x-\lambda)$ pour $\lambda \in \mathbb{P}^1 \setminus \{0,1,\infty\}$. Il est connu que $E_{\mu} \simeq E_{\lambda} \Leftrightarrow \mu \in \{\lambda,\lambda^{-1},1-\lambda,(1-\lambda)^{-1},\frac{\lambda}{\lambda-1},\frac{\lambda-1}{\lambda}\}$. Ceci suggère que l'on peut poser $\mathbb{M}_1 = (\mathbb{P}^1 \setminus \{0,1,\infty\})/S_3$.
- Cas g=2. Une courbe de genre 2 peut s'écrire comme $C_{\mathbf{t}}$: $y^2=x(x-1)(x-t_1)(x-t_2)(x-t_3)$. L'on a $C_{\mathbf{t}} \simeq C_{\mathbf{t}'} \Leftrightarrow \mathbf{t}' = \sigma(\mathbf{t})$ pour un $\sigma \in S_5$. Donc l'on peut poser $\mathbb{M}_2 = ((\mathbb{P}^1 \setminus \{0,1,8\})^3 \setminus \Delta)/S_5$. Ici Δ est la diagonale. Remarquons que dim $\mathbb{M}_2 = 3$. Cette construction est a été précisée par Igusa en 1960.
- Cas g = 3. Dans ce cas-là, C est soit hyperelliptique (si ω_C n'est pas très ample) soit quartique dans \mathbb{P}^2 (si ω_C est très ample).

Il peut être vérifié que

- (i) l'espace de modules des courbes hyperelliptiques de genre 3 est Hyperell₃ = $((\mathbb{P}^1 \setminus \{0, 1, \infty\})^5 \setminus \Delta)/S_7$. Ici Δ est la diagonale. Il est évident que dim Hyperell₃ = 5.
- (ii) l'espace de modules des quartiques (lisses) dans \mathbb{P}^2 est $Q_3 \simeq (\mathbb{P}H^0(\mathbb{P}^2, \mathcal{O}(4)) \setminus \operatorname{disc})/\operatorname{PGL}(3)$, avec disc le lieu où le discriminant s'annule. L'on peut vérifier que dim $Q_3 = 15 9 = 6$.

L'on a $\mathbb{M}_3 = Q_3 \sqcup \text{Hyperell}_3$. Remarquons que dans \mathbb{M}_3 , Q_3 est un ouvert Zariski et Hyperell₃ est un diviseur.

Lemme 4.1. L'on
$$a \dim \mathbb{M}_g = \begin{cases} 3g - 3 & si \ g \ge 2 \\ 1 & si \ g = 1 \\ 0 & si \ g = 0 \end{cases}$$

Démonstration par la théorie de déformations. Les déformations d'une courbe C sont paramétrées par $H^1(C, T_C)$. Sa dimension est (notons g le genre de C)

$$\begin{split} h^1(C,T_C) &= h^1(C,\omega_C^{\otimes -1}) \\ &= h^0(C,\omega_C^{\otimes 2}) \quad \text{par la dualit\'e de Serre} \\ &= 3g - 3 + h^0(C,\omega_C^{\otimes -1}) \quad \text{par Riemann-Roch.} \end{split}$$

Donc
$$h^1(C, T_C) = \begin{cases} 3g - 3 & \text{si } g \ge 2\\ 1 & \text{si } g = 1 \text{ pour } C \text{ une courbe de genre } g \text{ arbitraire.} \\ 0 & \text{si } g = 0 \end{cases}$$

Pourtant, les propriétés infinitésimales autour d'un point de \mathbb{M}_g sont caractérisées par les déformations de la courbe qu'il paramètre. En particulier, l'on a dim $\mathbb{M}_g = h^1(C, T_C)$, d'où l'on peut conclure par le paragraphe précédent.

Démonstration par des revêtements de grand degré. Fixons d>2g-2. Nous faisons deux décomptes pour le nombre de paramètres pour choisir un revêtement $\phi\colon C\to \mathbb{P}^1$ de degré d avec C une courbe de genre g.

Le 1^{er} décompte : si $car(k) \neq 2$, alors un revêtement générique n'a que s points de ramification qui sont des nœuds (double ordinaire) ^[1]. La formule de Riemann–Hurwitz implique que s = 2d + 2g - 2.

Par ailleurs, si les points de ramification P_1, \ldots, P_s sont fixés, alors il n'y a qu'un nombre fini de tels revêtements à isomorphismes près par le théorème de Riemann-Hilbert.

Par conséquent, le nombre de paramètres en question est 2d + 2g - 2.

Le $2^{\text{ème}}$ décompte : le nombre de paramètres pour choisir une courbe C est $\dim \mathbb{M}_g$, le nombre de paramètres pour choisir un $L \in \text{Pic}^d(C)$ (un fibré de degré d) est $\dim \text{Pic}^d(C) = \dim \text{Pic}^0(C) = g$, le nombre de paramètres pour choisir une paire de sections $(s_1, s_2) \in (H^0(C, L) \times H^0(C, L))/\mathbb{G}_m$ est $2h^0(C, L) - 1$. [2] De plus, $h^0(C, L) = d + 1 - g$ par Riemann–Roch.

Par conséquent, le nombre de paramètres en question est dim $\mathbb{M}_g + g + 2h^0(C, L) - 1 = \dim \mathbb{M}_g + 2d - g + 1$ lorsque $g \geq 2$ (en genre 1 et 0, il faut aussi compter la contribution de $\mathrm{Aut}(C)$, qui est de dimension 0 si $g \geq 2$).

En comparant les deux décomptes, nous obtenons $\dim \mathbb{M}_g + 2d - g + 1 = 2d + 2g - 2$ pour $g \geq 2$. Donc $\dim \mathbb{M}_g = 3g - 3$ pour $g \geq 2$.

4.1.2. Variétés abéliennes. Pour les variétés abéliennes, $\operatorname{Aut}(A)$ peut être infini (si $\operatorname{End}(A) \neq \mathbb{Z}$). En plus il n'y a pas un fibré en droites ample canonique sur A sauf si A est une courbe elliptique. Donc il faut ajouter des données supplémentaires.

L'idée naïve est de fixer un fibré en droites ample L sur A pour chaque variété abélienne A. L'on dit alors $(A, L) \sim (A', L')$ s'il existe $\phi \colon A \xrightarrow{\sim} A'$ tel que $\phi^*L' \simeq L$. Le problème de cette construction naïve est qu'elle ne s'étend pas bien aux schémas abéliens.

Afin de trouver le bon candidat comme donnée supplémentaire à ajouter, nous regardons la construction suivante. À chaque fibré en droites L sur A, l'on peut associer un

^{[1].} Autrement dit, $\phi^*P = 2Q_1 + Q_2 + \dots Q_{d-1}$ pour chaque point de ramification, avec Q_1, \dots, Q_{d-1} deux-à-deux distincts.

^{[2].} Ayant ces données, l'on obtient un revêtement de degré d défini par $C \to \mathbb{P}^1$, $x \mapsto [s_1(x) : s_2(x)]$.

morphisme

$$\phi_L \colon A \to A^{\vee} := \operatorname{Pic}^0(A), \quad a \mapsto [t_a^* L \otimes L^{-1}]$$

où $t_a \colon A \to A$ est la translation par a. De plus, ϕ_L est une isogénie si L est ample. Il est connu que $\phi_L = \phi_{L'}$ si et seulement si L est algébriquement équivalent à L'.

Définition 4.2. Une isogénie $\lambda \colon A \to A^{\vee}$ est appelée une **polarisation** de A si $\lambda = \phi_L$ pour un fibré en droites ample L sur A.

Une polarisation λ est dite **principale** $si \deg(\lambda) = 1$.

Lemme 4.3. Soit λ une polarisation de A. Alors $Aut(A, \lambda)$ est fini.

De plus, étant donnée une polarisation λ sur A, l'on peut plonger A dans un espace projectif en utilisant le fibré en droites L associé à λ bien que ce plongement n'est pas canonique.

Posons

 $\mathbb{A}_q = \{ \text{variétés abéliennes principalement polarisée de dimension } g \} / \text{isom.}$

Les existences de tels \mathbb{A}_g ne sont pas évidentes. Pour les petits g ($g \leq 3$), l'on peut construire \mathbb{A}_g à partir de \mathbb{M}_g .

- Pour g = 1, l'on peut tout simplement poser $\mathbb{A}_1 = \mathbb{M}_1$.
- Pour g = 2, un théorème de Weil assure que (A, L) est soit $(\operatorname{Jac}(C), \Theta)$ soit $E_1 \times E_2$ avec la polarisation naturelle. Donc l'on peut poser $\mathbb{A}_2 = \mathbb{M}_2 \sqcup (\mathbb{M}_1 \times \mathbb{M}_1)/S_2$.
- Pour g=3, il y a un analogue du théorème de Weil qui donne $\mathbb{A}_3=\mathbb{M}_3\sqcup\mathbb{M}_2\times\mathbb{M}_1\sqcup(\mathbb{M}_1\times\mathbb{M}_1\times\mathbb{M}_1)/S_3$.

Pour $g \geq 4$, les mêmes procédures ne suffiront plus. En effet, si \mathbb{A}_g existe, alors sa dimension peut être explicitée.

Lemme 4.4. L'on $a \dim \mathbb{A}_g = \frac{g(g+1)}{2}$. Donc $\dim \mathbb{A}_g > \dim \mathbb{M}_g$ pour $g \geq 4$.

Démonstration. Sur \mathbb{C} , une variété abélienne principalement polarisée satisfait $A(\mathbb{C}) = \mathbb{C}^g/(\mathbb{Z}^g + \tau \mathbb{Z}^g)$ pour un $\tau \in \operatorname{Mat}(g \times g, \mathbb{C})$ avec $\tau = {}^{\mathrm{t}}\tau$ et $\operatorname{Im}\tau > 0$.

Posons $\mathfrak{H}_g = \{ \tau \in \operatorname{Mat}(g \times g, \mathbb{C}) : \tau = {}^{\operatorname{t}}\tau, \operatorname{Im}\tau > 0 \}. \operatorname{Alors } \dim_{\mathbb{C}} \mathfrak{H}_g = \frac{g(g+1)}{2}.$

La polarisation principale peut s'écrire comme suit. Considérons la forme de Riemann $H(w,w')={}^{\mathrm{t}}w(\mathrm{Im}\tau)^{-1}\overline{w}'\ (w,w'\in\mathbb{C}^g)$. L'on a

$$Im H(m + \tau n, k + \tau l) = {}^{t}nk - {}^{t}ml$$

pour $m, n, k, l \in \mathbb{Z}^g$. Donc ImH est un accouplement antisymétrique de déterminant 1. Par conséquent, ImH donne une polarisation principale sur A.

La propriété suivante peut être vérifiée : $A_{\tau} \simeq A_{\tau'}$ si et seulement s'il existe $\gamma \in \operatorname{Sp}(2g,\mathbb{Z})$ tel que $\gamma(\tau) = \tau'$.

Donc
$$\mathbb{A}_g(\mathbb{C}) = \mathfrak{H}_g/\operatorname{Sp}(2g,\mathbb{Z})$$
. Par conséquent, dim $\mathbb{A}_g = \dim \mathfrak{H}_g = \frac{g(g+1)}{2}$.

4.2. **Modules fins et grossiers.** Soit X un schéma. Rappelons le foncteurs des points de X (absolu ou sur une base S)

$$h_X : (Sch)^o \to \mathcal{E}ns, \quad Y \mapsto Mor(Y, X)$$

avec, pour un morphisme $f: Y \to Z$ de schéma,

$$h_X(f) \colon \operatorname{Mor}(Z,X) \to \operatorname{Mor}(Y,X), \quad g \mapsto g \circ f.$$

Définition 4.5. Un foncteur $F: (Sch)^o \to \mathcal{E}ns$ est dit **représentable** si $F = h_M$ pour un schéma M. Dans ce cas-là nous appelons M l'espace de modules **fin** pour F.

Maintenant, posons \mathcal{M}_g le foncteur défini par

$$\mathcal{M}_g(B) = \{X \to B \text{ familles de courbes de genre } g\}/\text{isom}.$$

S'il était représentable (faux) par M, alors $1_M \colon M \to M$ correspond à une famille $\mathcal{U} \to M$ qui est « universelle » au sens suivant : toute famille de courbes $f \colon X \to B$ induit un diagramme cartésien

$$X \longrightarrow \mathcal{U}$$

$$f \downarrow \qquad \qquad \downarrow$$

$$B \longrightarrow M.$$

Pareil, posons \mathcal{A}_q le foncteur défini par

 $A_g(B) = \{X \to B \text{ schéma abélien principalement polarisé de dimension relative } g\}/\text{isom}$. Nous aurions une famille universelle si A_g était représentable.

Malheureusement, ces deux foncteurs ne sont pas représentables car nous ne pouvons pas avoir des familles universelles. Voici deux raisons : tout d'abord deux courbes (ou variétés abéliennes principalement polarisées) isomorphes sur \overline{K} ne sont pas forcément isomorphes sur K; ensuite le groupe d'automorphismes de l'object paramétré varie.

Mais tout n'est pas perdu. L'on prend du recul et regarde les espaces de modules quossiers.

Définition 4.6. Un schéma M est dit un espace de modules **grossier** pour un foncteur $F: (Sch)^o \to \mathcal{E}ns$ s'il existe une transformation naturelle $F \to h_M$ qui donne une bijection entre les points sur \overline{K} .

Bien qu'il n'y ait pas de famille universelle au-dessus d'un espace de modules grossier, l'on a la propriété suivante (prenons l'exemple de \mathcal{M}_g en supposant que son espace de modules grossier \mathbb{M}_g existe) : à chaque famille de courbes $f: X \to B$, l'on peut associer un morphisme (de façon fonctorielle) $\iota: B \to \mathbb{M}_q$ tel que $\iota(b) = \iota(b') \Leftrightarrow X_b \simeq X_{b'}$ sur \overline{K} .

Théorème 4.7 (Mumford). \mathbb{M}_g (resp. \mathbb{A}_g) existe, sur \mathbb{Z} , comme l'espace de modules grossier pour le foncteur \mathcal{M}_g (resp. pour \mathcal{A}_g).

Exemple 4.8. Avant de continuer, regardons un exemple important pour les espaces de modules fins.

Nous voulons paramétrer les sous-variétés X de \mathbb{P}^N . Il y a deux points de vue.

(Chow) Posons $r = \dim X$ et $d = \dim X$. Posons $Z_X = \{(x, h_0, \dots, h_r) \in X \times ((\mathbb{P}^N)^\vee)^{r+1} : x \in X \cap H_0 \cap \dots \cap H_r\}$. L'on a deux projections naturelles $p_1 \colon Z_X \to X$ et $p_2 \colon Z_X \to ((\mathbb{P}^N)^\vee)^{r+1}$. Il peut être vérifié que p_2 est génériquement fini, et donc $H_X := p_2(Z_X)$ est le lieu de zéro d'une forme F_X (appelée la **forme de Chow**) multihomogène de degré d symétrique.

L'on obtient ainsi une application $X \mapsto F_X \in \mathbb{P}(d, N, r)$, qui est injective. ^[3] Donc l'on a un sous-schéma Chow_{d,N,r} de $\mathbb{P}(d, N, r)$ qui paramètre les $X \subseteq \mathbb{P}^N$ de dimension r et de degré d.

^{[3].} Ici, $\mathbb{P}(d, N, r)$ est un espace projectif qui dépend de d, N et r.

(Hilbert-Grothendieck) Posons I(X) l'idéal homogène de X (saturé). La théorie des polynômes de Hilbert dit que $\dim(k[X_0,\ldots,X_N]/I(X))_{\deg=t}$ est donnée par un polynôme $H_X(t)$ pour $t\gg 0$. Ce polynôme est appelé le **polynôme de Hilbert**. En effet, $H_X(t)=\chi(\mathcal{O}_X(t))=\frac{d}{r!}t^r+\cdots+\chi(\mathcal{O}_X)$ avec $\chi(\mathcal{O}_X)=1+(-1)^rp_a(X)$.

Il est connu que pour une famille plate $\mathbb{P}^N \times B \supseteq \mathscr{X} \to B$, l'on a que les polynômes de Hilbert des fibres ne varient pas. Donc l'on peut définir le foncteur $\mathcal{H}ilb_P$, où P est un polynôme, par

 $\mathcal{H}ilb_P(B) = \{ \mathscr{X} \to B \text{ famille plate telle que } H_{\mathscr{X}_b}(t) = P(t) \text{ pour tout point fermé b de } B \}.$ Grothendieck a démontré que $\mathcal{H}ilb_P$ est représentable par un schéma $Hilb_P$. Donc l'on a une famille universelle $\mathcal{U}_P \to \mathcal{H}ilb_P$.

Exemple 4.9. Regardons un exemple pour les schémas de Hilbert. Considérons \mathbb{P}^N avec N=(2m-1)(g-1)-1. Soit P(t)=dt+1-g avec $d=m(g-1)(=\deg\phi_{\omega_C^{\otimes m}}(C))$. Alors Hilb_P contient une sous-variété localement fermée Z_g paramètrant toutes les courbes de genre g prolongées par $\omega_C^{\otimes 3}$. L'on a ainsi un diagramme cartésien

$$\begin{array}{ccc}
\mathcal{C}^{\mathrm{univ}} & \longrightarrow \mathcal{U}_P \\
\downarrow & \downarrow & \downarrow \\
\downarrow & \downarrow & \downarrow \\
Z_g & \stackrel{\subseteq}{\longrightarrow} \operatorname{Hilb}_P.
\end{array}$$

Soient $X \to B$ une famille de courbes de genre g et $\phi \colon B \to Z_g$ tel que $X = B \times_{Z_g} \mathcal{C}^{\text{univ}}$. Un isomorphisme $\psi \colon C \simeq C'$ entre deux courbes induit $\pi^* \colon H^0 \ast (C', \omega_{C'}^{\otimes m}) \simeq H^0(C, \omega_C^{\otimes m})$. Donc l'on a la propriété suivante : $X_b \simeq X_{b'}$ si et seulement si $\phi(b)$ et $\phi(b')$ sont $\operatorname{PGL}(N+1)$ -équivalents.

Ceci suggère que pour construire \mathbb{M}_g , il faut chercher à prendre le quotient de Z_g par $\operatorname{PGL}(N+1)$. Ceci repose sur la théorie des invariants géométriques.

4.3. Stabilité et quotients. Soit X un schéma muni d'une action algébrique d'un groupe G. Nous voulons construire le quotient de X par G.

Un quotient $\pi\colon X\to X/G$ est tout d'abord un morphisme G-équivariant (c'est-à-dire $\pi(g\cdot x)=\pi(x)$ pour tout $g\in G$ et $x\in X$) et surjectif. Ensuite il y a deux propriétés souvent requises :

- (i) les fibres de π sont des G-orbites;
- (ii) pour tout morphisme $\psi \colon X \to Z$ qui est G-équivariant, il existe $\widehat{\psi} \colon X/G \to Z$ tel que $\psi = \widehat{\psi} \circ \pi$.

Un « bon quotient » est un quotient qui satisfait les propriétés (i) et (ii). Si π ne satisfait que la propriété (ii), alors l'on l'appelle un quotient catégorique.

Exemple 4.10. Par exemple l'action de GL(n) sur \mathbb{A}^n , le morphisme $\pi \colon \mathbb{A}^n \to \{\text{pt}\}$ est un quotient catégorique mais pas un bon quotient.

Maintenant, supposons que G est un groupe réductif. Soit $\rho \colon G \to \mathrm{GL}(V)$ une représentation.

Définition 4.11. Soit $x \in V \setminus \{0\}$. Notons $O_G(x) = G \cdot x$. L'on dit que

(i) x est instable si $0 \in \overline{O_G(x)}$;

- (ii) x est semi-stable si $0 \notin \overline{O_G(x)}$;
- (iii) x est stable si $O_G(x)$ est fermée et que $Stab_G(x)$ est fini.

Pour décrire le critère de stabilité des points dans X, nous utilisons la notation suivante. Soit $\lambda \colon \mathbb{G}_{\mathrm{m}} \to G$ un cocaractère. Alors $\rho \circ \lambda(t) = U \cdot \mathrm{diag}(t^{m_1}, \dots, t^{m_r}) \cdot U^{-1}$ pour des entiers positifs m_1, \dots, m_r et une matrice U. Donc pour $x = \sum x_i e_i$, l'on a $\rho \circ \lambda(t)(x) = \sum t^{m_i} x_i e_i$. Posons

$$(4.1) W_x(\lambda) := \{ m_i : x_i \neq 0 \}.$$

Proposition 4.12 (Mumford + Haboush). *Soit* $x \in V \setminus \{0\}$.

- (i) x est instable $\Leftrightarrow P(x) = 0$ pour tout polynôme P qui est homogène et G-invariant $\Leftrightarrow \Pi$ existe $\lambda \colon \mathbb{G}_{\mathrm{m}} \to G$ tel que $m_i > 0$ pour tout $m_i \in W_x(\lambda)$.
- (ii) x est semi-stable $\Leftrightarrow P(x) = 0$ pour un polynôme P qui est homogène et G-invariant $\Leftrightarrow P$ our tout $\lambda \colon \mathbb{G}_m \to G$, il existe $m_i \in W_x(\lambda)$ tel que $m_i \leq 0$.
- (iii) x est stable \Leftrightarrow Pour tout $y \in V \setminus O_G(x)$, il existe un polynôme homogène Ginvariant P tel que $P(x) \neq P(y) \Leftrightarrow$ Pour tout $\lambda \colon \mathbb{G}_{\mathrm{m}} \to G$ non-trivial, il existe $m_i, m_j \in W_x(\lambda)$ tels que $m_i < 0$ et $m_j > 0$.

Pour $m \gg 0$, prenons f_1, \ldots, f_N une base de $k[X_1, \ldots, X_n]_m^G$. L'application rationnelle

$$\pi : \mathbb{P}(V) - - > \mathbb{P}^N, \qquad x \mapsto [f_0(x) : \dots : f_N(x)]$$

satisfait les propriétés suivantes :

- (i) π est bien définie hors du lieu instable;
- (ii) π épare les points stables;
- (iii) π est G-invariante.

Posons $\mathbb{P}(V)^{ss}$ le lieu semi-stable dans $\mathbb{P}(V)$ et $\mathbb{P}(V)^{st}$ le lieu stable dans $\mathbb{P}(V)$. L'on a un diagramme commutatif

Alors $\mathbb{P}(V)^{ss} \to X^{ss}$ est un quotient catégorique, et $\mathbb{P}(V)^{st} \to X^{st}$ est un bon quotient.

Retournons aux constructions des espaces de modules grossiers. Il faut démontrer que les points dans Z_g provenant les courbes sont des points stables; voir l'Exemple 4.9 pour Z_g . Point clef : le critère avec les $\lambda \colon \mathbb{G}_m \to G$ se traduit en un critère numérique (compliqué mais accessible).

Théorème 4.13 (Mumford + Gieseker). Si $m \geq 5$, alors le point de Chow correspondant à $\phi_{\omega_{\infty}^{\otimes m}}(C)$ est stable pour l'action de $G = \operatorname{PGL}(N+1)$.

Corollaire 4.14. L'espace de modules grossier \mathbb{M}_g existe et peut être construit comme $Z_g/\operatorname{PGL}(N+1)$.

Pour les variétés abéliennes, l'on a les analogues. Plus précisément, l'on a :

Théorème 4.15. Pour $m \gg 0$, le point de Chow correspondant à $\phi_{L^{\otimes m}(A)}$ est stable pour l'action de $G' = \operatorname{PGL}(N'+1)$.

Corollaire 4.16. L'espace de modules grossier \mathbb{A}_g existe et peut être construit comme $Z'_g/\operatorname{PGL}(N'+1)$.

Bien entendu, Z_g' est une sous-variété localement fermée dans un schéma de Hilbert bien choisi.

4.4. **Des variantes.** Commençons par les compactifications de \mathbb{M}_g .

Définition 4.17. Une variété C (réduite), connexe, propre de dimension 1 est appelée une courbe stable de genre g si

- (i) C n'a que des points doubles ordinaires comme singularités;
- (ii) si une composante de C est isomorphe à \mathbb{P}^1 , alors elle rencontre C en au moins 3 points;
- (iii) $h^1(\mathcal{O}_C) = g$.

L'hypothèse (ii) assure que Aut(C) est fini. En plus, il peut être démontré qu'une courbe stable est une variété projective.

Théorème 4.18. L'espace de modules grossier des courbes stables de genre g, noté $\overline{\mathbb{M}}_g$, existe. De plus, $\overline{\mathbb{M}}_g$ est projective.

 $D\acute{e}monstration$. Ceci est une conséquence du théorème de réduction stable et le critère valuatif de propreté.