(12)

EUROPEAN PATENT APPLICATION published in accordance with Art. 158(3) EPC

(43) Date of publication: 05.09.2001 Bulletin 2001/36

(21) Application number: 99971804.2

(22) Date of filing: 10.11.1999

(51) Int CI.7: **C07D 263/22**, C07D 413/12, C07D 417/10, A61K 31/421, A61K 31/435, A61K 31/445, A61K 31/496, A61K 31/541, A61K 31/55, A61K 31/44

(86) International application number: PCT/JP99/06260

(87) International publication number: WO 00/27830 (18.05.2000 Gazette 2000/20)

(84) Designated Contracting States:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU

MC NL PT SE

Designated Extension States:

AL LT LV MK RO SI

(30) Priority: 11.11.1998 JP 32013798 27.09.1999 JP 27323099

(71) Applicant: HOKURIKU SEIYAKU CO., LTD. Katsuyama-shi, Fukul 911-0813 (JP)

(72) Inventors:

KADO, Noriyuki
 Katsuyama-shi, Fukui 911-0813 (JP)

 TOKUYAMA, Ryukou Katsuyama-shi, Fukui 911-0813 (JP)

 TSUBOUCHI, Masatoshi Katsuyama-shi, Fukui 911-0813 (JP)

 TOMITA, Yayoi Katsuyama-shi, Fukui 911-0813 (JP)

(74) Representative: Sternagel, Fleischer, Godemeyer & Partn r Patentanwälte An den Gärten 7 51491 Overath (DE)

(54) THIOCARBAMIC ACID DERIVATIVES

(57) Thiocarbamic acid derivatives represented by the following general formula or salts thereof which are useful as antibacterial agents:

wherein R¹ represents an alkyl group which may be substituted, or a cycloalkyl group which may be substituted; and R², R³, and R⁴ independently represent hydrogen atom, a halogen atom, an alkyl group which may be substituted, an alkogyl group which may be substituted, an alkanoyl group which may be substituted, an alkanoyl group which may be substituted, a cycloalkyloxy group which has a heteroatom as a ring constituting atom and which may be substituted, or a saturated heterocyclic group which may be substituted; or any two of R², R³, and R⁴ may bind to each other to form, together with the benzene ring, a condensed hydrocarbon ring which may be substituted.

Description

Technical Field

5 [0001] The present invention relates to novel thiocarbamic acid derivatives or salts thereof which are useful as medicaments, particularly as antibacterial agents.

Background Art

[0002] As compounds having the 3-aryl-2-oxooxazolidine structure which are analogous to the compounds according to the present invention, Japanese Patent Unexamined Publication No.(Sho) 60-8277, Journal of Medicinal Chemistry, Vol. 39, p.673 (1996) and the like disclose N-[(3-aryl-2-oxooxazolidin-5-yl)methyl]acetamide derivatives; Current Pharmaceutical Design, Vol. 2, p.175 (1996), Journal of Medicinal Chemistry, Vol. 32, p.1673 (1989) and the like disclose 3-aryl-5-hydroxymethyl-2-oxooxazolidine derivatives, 3-aryl-5-halogenomethyl-2-oxooxzolidine derivatives and the like; and Japanese Patent Unexamined Publication No.(Hei) 9-316073 and the like disclose N-(3-heteroaryl-2-oxooxazolidin-5-yl)methylthioacetamide derivatives, N-(3-heteroaryl-2-oxooxazolidin-5-yl)methyl-N'-methylthiourea derivatives and the like. These compounds are described to have antibacterial activities against Gram-positive bacteria. However, the antibacterial activities of these compounds are insufficient, and development of more excellent antibacterial agents has been desired.

[0003] Various antibacterial agents such as antibiotics and synthetic antibacterial agents, each having different mechanism of action, have been clinically used as therapeutic agents for infectious diseases. Upon the use of these antibacterial agents, appearance of multiple drug-resistant bacteria including bacteria such as Methicillin-resistant Staphylococcus aureus (MRSA) has become a worldwide problem. In patients having an underlying disease and being subjected to chemotherapy, those being subjected to administration of an immunosuppressive agent in organ transplantation, and those suffering from AIDS or another disease as so-called immunocompromized hosts, increase in opportunistic infection has been recognized, and development of chemotherapy for diseases caused by atypical acid-fast microorganism has especially desired for which only a few effective antibacterial - agents are available. Moreover, need of chemotherapy of infectious diseases caused by Mycobacterium avium complex (Mycobacterium avium, Mycobacterium intracellulare) among atypical acid-fast microorganisms have become a serious problem. The object of the present invention is to provide compounds which have excellent antibacterial activity against clinically isolated strains and atypical acid-fast microorganisms including multiple drug-resistant bacteria as well as type bacteria.

Disclosure of the Invention

10004] The inventors of the present invention made intensive studies to achieve the aforementioned object. As a result, they found that novel thiocarbamic acid derivatives represented by the following general formula or salts thereof have excellent antibacterial activity against clinically isolated strains and atypical acid-fast microorganisms including multiple drug-resistant bacteria as well as type bacteria. The present invention was achieved on the basis of the above findings.

[0005] The present invention thus relates to novel thiocarbamic acid derivatives represented by the following general formula (I) or salts thereof:

$$\mathbb{R}^4$$
 \mathbb{R}^3
 \mathbb{R}^4
 \mathbb

50

45

25

30

wherein R¹ represents an alkyl group which may be substituted, or a cycloalkyl group which may be substituted; and R², R³ and R⁴ independently represent hydrogen atom, a halogen atom, an alkyl group which may be substituted, an alkoxyl group which may be substituted, an amino group which may be substituted, an alkanoyl group which may be substituted, a cycloalkyloxy group which has a heteroatom as a ring constituting atom and which may be substituted, or a saturated heterocyclic group which may be substituted; or any two of R², R³ and R⁴ may bind to each other to form, together with the benzene ring, a condensed hydrocarbon ring which may be substituted.

[0006] According to the second embodiment of the present invention, there are provided novel thiocarbamic acid derivatives represented by the following general formula (II) or salts thereof:

$$(O=)_aS \longrightarrow N \longrightarrow N \longrightarrow N \longrightarrow N \longrightarrow N$$

$$R^5 \longrightarrow N \longrightarrow N \longrightarrow N \longrightarrow N$$

$$R^6 \longrightarrow N \longrightarrow N \longrightarrow N$$

$$R^1 \longrightarrow N \longrightarrow N$$

wherein R⁵ and R⁶ independently represent hydrogen atom, or a halogen atom; and symbol "a" represents an integer of from 0 to 2; and R¹ has the same meaning as that defined above.

[0007] According to the third embodiment of the present invention, there are provided novel thiocarbamic acid derivatives represented by the following general formula (III) or salts thereof:

$$R^7$$
 (CH₂)_b N N R^5 O H O R^1 (III)

wherein R^7 represents an alkyl group which may be substituted, an amino group which may be substituted, or an alkoxyl group which may be substituted; and symbol "b" represents an integer of from 1 to 4; and R^1 , R^5 and R^6 have the same meanings as those defined above.

[0008] According to the forth embodiment of the present invention, there are provided novel thiocarbamic acid derivatives represented by the following general formula (IV) or salts thereof:

wherein R8 represents an alkyl group which may be substituted, a cycloalkyl group which may be substituted, an alkenyl group which may be substituted, an alkynyl group which may be substituted, an alkoxyl group which may be substituted, an alkylthio group which may be substituted, an amino group which may be substituted, a saturated heterocyclic group which may be substituted, an aryl group which may be substituted, or an aralkyl group which may be substituted; Y represents CH or nitrogen atom; X represents NH or single bond; symbol "d" represents an integer of from 0 to 3; symbols "e" and "f" independently represent an integer of from 1 to 3; and R1, R5 and R6 have the same meanings as those defined above.

[0009] According to another aspect of the present invention, there is provided a medicament which comprises as an active ingredient the aforementioned thiocarbamic acid derivative or the salt thereof. The medicament provided by the present invention can be suitably used, for example, as an antibacterial agent.

[0010] According to a further aspect, there are provided a use of the aforementioned thiocarbamic acid derivative or the salt thereof for the manufacture of the aforementioned medicament; and a method for preventive and/or therapeutic treatment of infectious diseases, which comprises the step of administering a preventively and/or therapeutically effective amount of the aforementioned thiocarbamic acid derivative or the salt thereof to a mammal including a human.

Best Mode for Carrying Out the Invention

[0011] Specific explanations of the novel thiocarbamic acid derivatives represented by the aforementioned general formulas (I) to (IV) of the present invention will be given below. The compounds represented by the aforementioned general formulas (II) to (IV) are characterized in that any two of R², R³ and R⁴ are independently hydrogen atom or a halogen atom in the aforementioned general formula (I). However, the scope of the present invention is not limited to the compounds represented by the aforementioned general formulas (II) to (IV), and it should be understood that any compounds which have, as any two of R², R³ and R⁴, substituents other than hydrogen atom or a halogen atom among

5

10

15

20

25

40

45

50

those defined in the aforementioned general formula (I) fall within the scope of the present invention.

[0012] In the aforementioned general formulas (I) to (IV) according to the present invention, the alkyl group represented by R¹, R², R³, R⁴, R² or R³ includes a straight or branched chain alkyl group, or cyclic alkyl group or an alkyl group as a combination thereof having from 1 to 6 carbon atoms, preferably a straight or branched chain alkyl group. Examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, n-hexyl group and the like. The cycloalkyl group represented by R¹ or R³ includes a cycloalkyl group having from 3 to 6 carbon atoms. Examples include cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group and the like. The halogen atom represented by R², R³, R⁴, R⁵ or R⁶ includes fluorine atom, chlorine atom, bromine atom, and iodine atom. The alkoxyl group represented by R², R³, R⁴, R⁵ or R⁶ includes a straight or branched chain alkyl group having from 1 to 6 carbon atoms. Examples include methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, sec-butoxy group, tert-butoxy group, n-pentyloxy group, isopentyloxy group, neopentyloxy group, n-hexyloxygroup and the like.

[0013] In the aforementioned general formulas (!) and (IV) according to the present invention, the alkanoyl group represented by R², R³ or R⁴ includes, for example, formyl group, acetyl group, propionyl group, butyryl group, isobutyryl group, valeryl group, isovaleryl group, hexanoyl group, heptanoyl group and the like. The cycloalkyloxy group represented by R², R³ or R⁴ which has a heteroatom as a ring constituting atom includes, for example, aziridinyloxy group, azetidinyloxy group, pyrrolidinyloxy group, piperidyloxy group, hexahydro-1H-azepin-1-yloxy group, oxetanyloxy group, tetrahydrofuranyloxy group, tetrahydropyranyloxy group, thiazolidinyloxy group, piperazinyloxy group, morpholinyloxy group, thiomorpholinyloxy group, 1,1-dioxidothiomorpholinyloxy group, hexahydro-1H-1,4-diazepin-1-yloxy group, oxazolidinyl group, thiazolidinyl group, piperazinyl group, piperazinyl group, azetidinyl group, pyrrolidinyl group, oxazolidinyl group, thiazolidinyl group, piperidyl group, piperazinyl group, oxetanyl group, tetrahydrofuranyl group, tetrahydrofuranyl group, tetrahydrothiopyranyl group, tetrahydrothiopyranyl group, tetrahydrothiopyranyl group, tetrahydrothiopyranyl group, hexahydro-1H-1,4-diazepin-1-yl group, hexahydro-1H-1,4-diazepin-1-yl group, 3-azabicyclo[3.3.0]octanyl group, 3,7-diazabicyclo[3.3.0]octanyl group and the like.

20

25

30

40

[0014] In the aforementioned general formula (I) according to the present invention, when any two of R², R³ and R⁴ bind to each other to form a condensed hydrocarbon ring together with the benzene ring, the condensed ring group includes, for example, indan-5-yl group, 1-indanon-5-yl group, inden-5-yl group, 1-indanon-6-yl group, 2-indanon-5-yl group, 1,3-indandion-5-yl group, naphthalen-2-yl group, 1(2H)-naphthalenon-6-yl group, 1,2,3,4-tetrahydronaphthalen-6-yl group, 1,2,3,4-tetrahydro-1-naphthalenon-6-yl group, 1,2,3,4-tetrahydro-1-naphthalenon-6-yl group, 1,2,3,4-tetrahydro-2-naphthalenon-6-yl group, 1,2-naphthoquinon-6-yl group, 1,2-naphthoquinon-7-yl group, 1,4-naphthoquinon-6-yl group, fluoren-2-yl group, fluoren-3-yl group, fluoren-3-yl group, anthracen-1-yl group, anthracen-2-yl group and the like.

[0015] In the aforementioned general formula (IV) according to the present invention, the alkenyl group represented by R8 includes a straight or branched chain alkenyl group having from 2 to 4 carbon atoms, for example, vinyl group, propenyl group, 2-methylpropenyl group, butenyl group, butadienyl group and the like. The alkynyl group includes an alkynyl group having from 2 to 4 carbon atoms, for example, ethynyl group, propynyl group, butynyl group and the like. The alkylthio group represented by R8 includes an alkylthio group which comprises a straight or branched chain alkyl group having from 1 to 6 carbon atoms, for example, methylthio group, ethylthio group, n-propylthio group, isopropylthio group, n-butylthio group, isobutylthio group, sec-butylthio group, tert-butylthio group, n-pentylthio group, isopentylthio group, neopentylthio group, n-hexylthio group and the like. The anyl group represented by R8 means an aromatic ring group which encompasses ring systems containing two or more rings optionally having a heteroatom as a ring constituting atom. Examples include phenyl group, pyridin-2-yl group, pyridin-3-yl group, pyridin-4-yl group, pyrazin-2-yl group, pyrimidin-2-yl group, pyrimidin-4-yl group, pyrimidin-5-yl group, furan-2-yl group, furan-3-yl group, thiophen-2-yl group, thiophen-3-yl group, pyrrol-1-yl group, pyrrol-2-yl group, pyrrol-3-yl group, pyrazol-1-yl group, pyrazol-3-yl group, pyrazol-4-yl group, imidazol-1-yl group, imidazol-2-yl group, imidazol-4-yl group, 1H-1,2,3-triazol-1-yl group, 1H-1,2,3-triazol-4-yl group, 1H-1,2,4-triazol-1-yl group, 1H-1,2,4-triazol-3-yl group, 1H-1,2,4-triazol-5-yl group, tetrazol-1-yl group, tetrazol-5-yl group, oxazol-2-yl group, oxazol-4-yl group, oxazol-5-yl group, thiazol-2-yl group, thiazol-4-yl group, thiazol-5-yl group, naphthalen-1-yl group, naphthalen-2-yl group, benzofuran-2-yl group, benzofuran-3-yl group, benzofuran-4-yl group, benzofuran-5-yl group, benzofuran-6-yl group, benzofuran-7-yl group, benzofb]thiophen-2-yl group, benzo[b]thiophen-3-yl group, benzo[b]thiophen-4-yl group, benzo[b]thiophen-5-yl group, benzo[b]thiophen-6-yl group, benzo[b]thiophen-7-yl group, indol-1-yl group, indol-2-yl group, indol-3-yl group, indol-4-yl group, indol-5-yl group, indol-6-yl group, indol-7-yl group, benzimidazol-1-yl group, benzimidazol-2-yl group, benzimidazol-4-yl group, benzimidazol-5-yl group, benzotriazol-1-yl group, benzotriazol-4-yl group, benzotriazol-5-yl group, benzotriazol-1-yl gro

group, benzoxazol-4-yl group, benzoxazol-5-yl group, benzoxazol-6-yl group, benzoxazol-7-yl group, benzoxazol-2-yl group, benzothiazol-4-yl group, benzothiazol-5-yl group, benzothiazol-6-yl group, benzothiazol-7-yl group and th like. The aralkyl group represented by R8 means an alkyl group having from 1 to 4 carbon atoms which is substituted with the aforementioned anyl group at any position. Examples include benzyl group, phenethyl group, phenylpropyl group, phenylbutyl group, triphenylmethyl group, (pyridin-2-yl)methyl group, (pyrazin-2-yl)methyl group, (pyrimidin-2-yl)methyl group, (furan-2-yl)methyl group, (thiophen-2-yl)methyl group, (pyrrol-1-yl)methyl group, (pyrazol-1-yl)methyl group, (imidazol-1-yl)methyl group, (1H-1,2,3-triazol-1-yl)methyl group, (1H-1,2,4-triazol-1-yl)methyl group, (tetrazol-5-yl)methyl group, (oxazol-2-yl)methyl group, (thiazol-2-yl)methyl group, (naphthalen-1-yl)methyl group, (benzofuran-2-yl)methyl group, (benzo[b]thiophen-2-yl)methyl group, (indol-1-yl)methyl group, (benzimidazol-1-yl)methyl group, (benzotriazol-1-yl)methyl group, (benzoxazol-2-yl)methyl group, (benzothiazol-2-yl)methyl group and the like. [0016] In the present specification, a substituting/binding position of "cycloalkyloxy group which has a heteroatom as a ring constituting atom", "saturated heterocyclic group", "condensed hydrocarbon ring formed together with the benzene ring", "aryl group" and "aralkyl group" may be at any position on a substitutable/bindable atom among ringconsituting elements, otherwise a substituting/binding position is specifically limited as some examples given above. [0017] In the present specification, when certain functional groups are defined as "which may be substituted." the number and kind of substituents are not particularly limited. When two or more substituents exist, they may be the same or different. Such substituents include, for example, alkyl groups, cycloalkyl groups, hydroxyl group, mercapto group, alkoxyl groups, alkylthio groups, halogen atoms, amino group, alkylamino groups, dialkylamino groups, cyano group, cyanoalkyl groups, nitro group, formyl group, alkoxycarbonyl groups, alkoxycarbonylalkyl groups, carboxyalkyl groups, hydroxyalkanoyl groups, alkoxyalkoxyl groups, alkoxyalkanoyl groups, benzyloxycarbonyl group, benzyloxyalkanoyl groups, alkylaminoalkoxyl groups, dialkylaminoalkoxyl groups, alkylaminoalkyl groups, dialkylaminoalkyl groups, halogenoalkyl groups, oxo group, hydroxyimino group, alkoxyimino groups, aryloxyimino groups, carboxyl group, alkanoyl groups, alkanoylalkyl groups, carbamoyl group, aryl groups, aralkyl groups, phthalimido group, phthalimidoalkyl groups, alkylsulfonylamino groups, alkylcarbonylamino groups, alkylthiocarbonyl groups, alkenylthiocarbonyl groups, alkoxythiocarbonyl groups, alkoxythiocarbonylalkyl groups, thiocarbamoyl group, Nalkylthiocarbamoyl groups, N,N-dialkylthiocarbamoyl groups, azetidinylthiocarbonyl group, pyrrolidinylthiocarbonyl group, piperazinylthiocarbonyl group, morpholinylthiocarbonyl group, thiomorpholinylthiocarbonyl group, alkylthiothiocarbonyl groups, arylthiocarbonyl groups, aralkylthiocarbonyl groups, alkylthiocarbonylamino groups, alkylthiocarbonylaminoalkyl groups, alkoxythiocarbonylamino groups, alkoxythiocarbonylaminoalkyl groups, N-alkylthiocarbamoylamino groups, N,N-dialkylthiocarbamoylamino groups, alkylthiothiocarbonylamino groups, alkylthiothiocarboanylaminoalkyl groups, arylthiocarbonylamino groups, aralkylthiocarbonylamino groups, thiocarbamoylalkyl groups, Nalkylthiocarbamoylalkyl groups, N,N-dialkylcarbamoylalkyl groups, alkanoylaminoalkyl groups, alkoxythiocarbonylaminoalkyl groups, alkylsulfonylaminoalkyl groups, alkanoylalkylthiocarbonyl groups, alkylthiocarbonyl groups, thiocarbamoylaminoalkyl groups, N-alkylthiocarbamoylaminoalkyl groups, N,N-dialkylthiocarbamoylaminoalkyl groups, alkanoylalkylaminothiocarbonyl groups, alkylthiocarbonylalkylaminothiocarbonyl groups, alkylthiocarbonylalkyl groups, alkylthiothiocarbonylalkyl groups, alkoxythiocarbonylalkyl groups, thiocarbamoylamino group, cycloalkylthiocarbonyl groups, cycloalkylthiocarbonylamino groups, alkynylthiocarbonyl groups, alkynylthiocarbonylamino groups, thiocarbamoylalkylaminothiocarbonyl groups, N-alkylthiocarbamoylalkylaminothiocarbonyl groups, N,N-dialkylthiocarbamoylalkylaminothiocarbonyl groups and the like.

[0018] The thiocarbamic acid derivatives of the present invention have one asymmetric carbon atom in the oxazolidine ring, and may further have one or more asymmetric carbons depending on type of a substituent. The asymmetric carbons existing in the compounds of the present invention may be independently in the (R)- or (S)-configuration, and stereoisomers such as optical isomers and diastereoisomers may exist on the basis of one or more asymmetric carbons. Any stereoisomers in pure forms, any mixure of the stereoisomers, racemates and the like fall within the scope of the present invention.

[0019] The thiocarbamic acid derivatives of the present invention can be converted into salts, preferably pharmacologically acceptable salts, if desired; and the salts generated can also be converted into compounds in free forms. The salts of the compounds of the present invention are preferably the pharmacologically acceptable salts. As the acid-additive salts, there can be used, for example, salts with mineral acids such as hydrochloric acid, hydrobromic acid, nitric acid, sulfuric acid, hydroiodic acid, and phosphoric acid; and salts with organic acids such as acetic acid, propionic acid, butyric acid, formic acid, valeric acid, maleic acid, fumaric acid, citric acid, oxalic acid, malic acid, methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, trifluoroacetic acid, benzoic acid, p-toluenesulfonic acid, mandelic acid, 10-camphorsulfonic acid, tartaric acid, lactic acid, stearic acid, nicotinic acid, gluconic acid, 5-oxotetrahydrofuran-2-carboxylic acid, and 2-hydroxyglutaric acid. As the alkali-additive salts, there can be used, for example, inorganic alkali salts such as sodium salt, potassium salt, calcium salt, magnesium salt, and ammonium salt; and salts with organic bases such as ethanolamine, N,N-dialkylethanolamine, triethanolamine, piperidine, piperazine, morpholine, and thiomorpholine.

[0020] The thiocarbamic acid derivatives of the present invention or the salts thereof may exist as any crystal form

5

15

20

25

30

35

40

45

50

depending on manufacturing conditions, or may exist as any hydrate or solvate. These crystal forms, hydrates, and solvates, and mixtures thereof fall within the scope of the present invention.

[0021] Preferred compounds of the present invention include the following compounds; however, the present invention is not limited to these examples. The abbreviations in the tables have the following meanings: Me: methyl group; Et: ethyl group; n-Pr: n-propyl group; i-Pr: isopropyl group; n-Bu: n-butyl group; i-Bu: isobutyl group; tert-Bu: tert-butyl group; n-Pent: n-pentyl group; n-Hex: n-hexyl group; Ph: phenyl group; Bn: benzyl group; Ms: mesyl group; and, Boc: tert-butoxycarbonyl group.

R-N H N Me

	No.	R	No.	R
	1	<u></u>	2	· > -
	3	Me —	4	Me————
	5 ·	Et-	6	Et —
	7	n-Pr-	8	n-Pr
	9	i-Pr —	10	⊢Pr — — — F
	11	n-Bu—	12	n-Bu————
	13	MeO-	14	MeO F
	15	E10-(16	E10-
	17	n-PrO-	18	n-Pro-
	19	i-PrO-	20	i-Pro
	21	n-BuO-	22	n-BuO————
	23	Me	24	Me
	25	Me ————	26	F-
-	27	F-	28	No No

R-N H

No.	R	No.	- R
29	Me F	30	et —
31	Et F	32	n-Pi
33	n-Pr F	34	, PY
35	i.PY F	36	n-Bu
37	n-Bu F	38	MeO-(CH ₂) ₂ -0-
39	MeO-(CH ₂) ₂ -O-	40	Mo N
41	Me N	42	<>~_>
43	◇ N- ◇ >-	44	
45		46	
47		48	
49		50	\$
51	\$\	52	s_ \-
53	\$__\	54	s_N_F

No.	R	No.	R
55	o=\$_\n-__	56	0=\$_N-\\
57	; <u>\$</u>	58	
59	ни ————	60	HN
61	Mo-\N-\	62	Ma N-
63	Et	64	
65	n-Pr\\\\	66	n-Pr-\\
67	n-BuN	68	n-Bu—\\N—\\F
69	MeO-_N-\	70	MeO-_N-\
71	MeO-(CH ₂) ₂ -0-\N-\N-\N-\	72	MeO-(CH ₂) ₂ -0-\(\nabla\)N-\(\nabla\)F
73	Me0	74	MaQ N F
75	EtO-N-	76	EtO—N—F
77	n-Pr0-_N-__	78	n-Pro-N
79	LPr0N	80	LPrO-N-F
81	n-BuO — N——	82	n-BuO——N——————————————————————————————————
	55 57 59 61 63 65 67 69 71 73 75 77	55	55

No.	R	No.	R
83	MeO-(CH ₂) ₂ -0-\\N-\\\N-\\\	84	MeO-(CH ₂) ₂ -O-N-F
85	Me-N N-	86	Me-N - F
87	Et-N N-	88	
89	p-Pr-N_N	90	n-Pr-N N-
91		92	i-Pr-N N-
93	n-Bu-N_N-	94	n-Bu-N N-
95	%-N	96	MeO N N
97	E10 N —	98	
99	MeO-CH ₂ -N-N-	100	MeO-CH ₂ -N-N-
101	MeO-(CH ₂) ₂ N N	102	MeO-(CH ₂) ₂ N N F
103	MeO CH ₂ -N N-	104	MeO CH ₂ -N N-
105	O CH2-N N-	106	CH2-NN-N-
107	O N-(CH ₂) ₂ -N N-(CH ₂)	108	0 MeO (CH ₂) ₂ -N N
109	O EtO N-(CH ₂) ₂ -N N-(CH ₂) ₂ -N	110	0 Et0 (CH ₂) ₂ -N N F

R-N H N Me

Γ	No.	R	No.	R
	111	O MeO N—(CH ₂) ₃ -N N—(D)	112	O MeO N N N N N N N N N N N N N N N N N N N
	113	0 EKO N-(CH ₂) ₃ -N N-(114	O Eto N-(CH ₂) ₃ -N N-(F
	115	0 MeO N-(CH ₂) ₄ -N N-(CH ₂) ₄ -N	116	MeO CH ₂) ₄ -N N
	117	0 Et0 N-(CH ₂) ₄ -N N-(CH ₂) ₄ -N	118	O EtO N N N
	119	Me-NO-	120	Mo-N0
	121	Et-N 0-(122	Et-N -0-
	123	n-Pr-N 0-	124	n-Pr-N -0-
	125	n-Bu-N O-	126	n-Bu-N O-
	127	0 Neo	128	MeO N -0 - 5
ľ	129	EKO NO-0-	130	Eto F
	131	HO-CH ₂ -N-O-C	132	HO-CH3 N O-
	133	HO-(CH ₂) ₂ -II-N-0-	134	HO-(CH ₂) ₂ -N-O-F
	135	MeO-CH ₂ -N-O-C	136	MeO-CH ₂ -N-O-F
	137	MeG-(CH ₂) ₂ N 0	138	MeO-(CH ₂) ₂ N O-
	139	0 Et0 CH ₂ -N O-	140	CH ₂ -N O-

EP 1 130 016 A1

No.	R	No.	R
141	0 (CH ₂) ₂ -N 0	142	O E10 -0 -0 -
143	CH33-N 0-C-	144	0 Et0 -(CH ₂) ₃ -N -0-
145	Mo-N\	146	Me-N O-F
147	N	148	Meo NO-0-
149	MeO-(CH ₂) ₂ N O-	150	MeO-(CH ₂) ₂ —N\
151	0 E30 (CH ₂) ₂ -N -0-	152	0 Et0 (CH ₂) ₂ -N -0 - F
153		154	
155		156	
157		158	
159	0 Me CH ₂ -N N-	160	O N-CH ₂ -N N-F
161	0 Et N-(N-(N-(N-(N-(N-(N-(N-(N-(N-(N-(N-(N-(N	162	O Et
163	0 Me (CH ₂) ₂ -N N-(164	O Me>—(CH ₂) ₂ —N N——————————————————————————————————
165	0 E1 N-(CH ₂) ₂ -N N-(CH ₂) ₂ -N	166	O (CH ₂) ₂ -N N-
167	0 Me (CH ₂) ₃ -N N-	168	O Ne CH ₂) ₃ -N N- F
169	0 E1 N-(CH ₂) ₃ -N N-(170	O (CH ₂) ₃ -N N-

R-N H Me

	<u> </u>						
No.	R	No.	R				
171	0 Mo N-(CH ₂) ₄ -N N-(CH ₂) ₄ -N	172	Q → (CH ₂) ₄ – N N → F				
173	O E1 N-(CH ₂) ₄ -N N-(N-(N-(N-(N-(N-(N-(N-(N-(N-(N-(N-(N-(N	174	O Et (CH ₂) ₄ -N N-				
175	Me O (CH ₂) ₂ -N N-	176	Me N II (CH ₂) ₂ -N N F				
177	Me - (CH ₂) ₃ -N N N	178	Ma H (CH ₂) ₃ -N N				
179	M2-N-(CH3)3-N-N-(CH3)3-N	180	Ms-N-(CH ₂) ₃ -N-N				
181	N-(CH ₂) ₂ -N-(N-(CH ₂))-N-(N-(CH ₂)-N-(N-(CH	182	N-(CH ₂) ₂ -N N-				
183	NC(CH ₂) ₂ N	184	NC-(CH ₂) ₂ -N N-				
185	H ₂ N——N——N———	186	H ₂ N — N — N — N — N — N — N — N — N — N —				
187	H ₂ N N N N	188	H ₂ N N N N				
189	Me N N N	190	Me N N N				
191	Et. N. N.—	192	Et. N N N F				
193	n-Pr-N N N-	194	n-Pr N N N N				
195	Me N N N	196	Me N N N N N N N N N N N N N N N N N N N				

R-N H N Me

No.	R	No.	R
197	Me N N N	198	Ma N N N N N N N N N N N N N N N N N N N
199	S N N N	200	S Et N N N N N N N N N N N N N N N N N N N
201		202	→ ¹ ,
203		204	
205		206	
207		208	
209		210	
211	Me N N	212	Me N N F
213	Et N N	214	Est N N-
215	n-PT N N-C	216	n-Pr N-
217	i pr N N-	218	LPT N N-
219	\$ N_N_	220	N N N N N N N N N N N N N N N N N N N

R-N H N Me

No.	R	No.	R
221 h		222	Me N N N N N N N N N N N N N N N N N N N
223 N	Mo S NO NO NO	224	Mo · S
225	Ph N N-	226	Ph N N-
227	S N N	228	Bn N N
229		230	
231		232	
233	\$ N N N N N N N N N N N N N N N N N N N	234	
235	MeO N N	236	Meo N N
237	E10 N N-	238	Eto N N
239	n-Pro N N	240	n-Pro N N-C
241	. \$ I-Pro N N—	242	i-Pyro N N N N N N N N N N N N N N N N N N N
243	Mes N N	244	MoS N N F
245	EIS N N-	246	Ets N N-

5			\$ \$	
	No.	R	No.	R
10	247	O S N N N N N N N N N N N N N N N N N N	248	Me CH ₂ N N N F
15	249	O (CH ₂) ₂ N N-(CH ₂) ₂	250	Me (CH ₂) ₂ N N F
	251	S CH2 N N-	252	S CH2 N F
20	253	H ₂ N CH ₂ N N	254	H ² N H CH ² N N
25	255	Me-H-CH2-M-M-	256	Mo N CH2 N F
30 .	257	H ₂ N H (CH ₂) ₂ N N N	258	H ₂ N (CH ₂) ₂ N N
	259	Me H (CH ₂) ₂ - N	260	Ma- N N (CH2)2- N N
35	261	H ₂ N H (CH ₂) ₃ N N N	262	H ₂ N (CH ₂) ₃ N N
40	263	Me-N-(CH ₂) ₃ -N-N-(N-(N-(N-(N-(N-(N-(N-(N-(N-(N-(N-(N	264	Me- N CH2)3-N N
45	265	Me H CH2 N N-	266	Ma H CH ₂ N N
	267	Et H N N N	268	Et H CH3-N N
50	269	Me H CH ₂) ₂ N N	270	Me H (CH ₂) ₂ N N
55	271	Me N (CH ₂)s N N	272	No H (CH2)3 N N

			<u>s</u>	
	No.	R	No.	Ŕ
10	273	Meo N CH ₂ N N	274	MeO H CH2-N N-
	275	EKO H2 N H	276	Eto N CH3-N N-F
15	277	MeO H (CH2)2 N N N	278	MacO N (CH ₂) ₂ N N N
20	279	MeO H (CH ₂) ₃ N N	280	Moo H (CH ₂) ₃ N H
25	281	Mes CH ₂ N N	282	Mos N CH2-N N-
30	283	S (CH ₂) ₂ N N—	284	MoS (CH ₂) ₂ N N
	285	Mes (CH ₂) ₃ N N	286	MoS N N N
35	287	Me CH2 N N	288	Me CH2 H
40	289	Me (CH2)2 N N	290	Mo (CH ₂) ₂ N
	291	MeO CH2 N	292	MeO CH2-N
45	293	Me TCH2 N N N N	294	Me CH2-N N N-F
50	295	Me CH 3/2 N N N	296	Me CH ₂) ₂ -N N N F
	297	H ₂ N CH ₂ N N	298	H ₂ M CM ₂ N N F
<i>55</i>				

R-N H N Me

5			Me S	
Γ	No.	R	No.	R
10	299	Mar H CH2-H H	300	month cut in the contract of t
	301	H ₂ N - \	302	H ₂ N N F
15	303		304	Me N F
20	305	Et N N	306	Et N
25	307	n-Pr N N	308	n-Pr N
30	309	Me N N	310	Me N N N N N N N N N N N N N N N N N N N
	311	Mo N Et	312	Me N Et
<i>35</i>	313	Et N	314	Et N Et
40	315		316	
45	317	No No	318	Mo N-
	319	Et L	320	E! F
50	321	n-Pr N-C	322	n-Pr N-
55	323	\$ N-(324	i,pq N

18

PHIODOCIO--ED ++20018A1 I

R-N H N Me

5		~~ N	Me S	
Γ	No.	R	No.	R
10	325	Mo The Company	326	Me T N - S
	327		328	
15	329	LPT \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	330	i-Pr
20	331	H ₂ N \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	332	H ₂ N Y N Y
	333	Me H H	334	Mo- II TI
25	335	Me H N N	336	Mo-N N N N N N N N N N N N N N N N N N N
30	337	MeO N N	338	MeO N
	339		340	Eto Ji
35	341	LPro II	342	i Pro Till
40	343	MeS N-C	344	Mes N F
	345	EIS H N	346	ELIS
45	347	I-PYS THE CONTRACT OF THE CONT	348	LPrs T
50	349	Ma CH ₂ N	350	Me CH ₂ N
	351	Me-N-CH2-N-	352	Me-H CH2 N-F
55				

R-N H O Me

10	

No.	R	Š No.	R
353	MeO CH ₂ N	354	MeQ CH ₂ H
355	MeS CH ₂ N-C	356	MeS CH ₂ N-
357	Me (CH ₂) ₂ \ N	358	Me (CH ₂) ₂ N
359	Mer (CH ₂) ₂ N-C	360	Mar (CH ₂) ₂
361	MeQ (CH ₂) ₂ N	362	MeQ (CH ₂) ₂ N
363	MeS (GH ₂) ₂ N—	364	MeS (GH ₂) ₂
365	Me (CH ₂) ₃ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	366	Ma (CH ₂) ₃ N
367	Mo-H (CH ₂)s	368	Me (CH ₂) ₃
369	MeO (CH ₂) ₃ \ H	370	MeO (CH ₂) ₃ N
371	MeS (CH ₂) ₃	372	MoS (CH ₂) ₃
373	Mo H2 CH2	374	Ma H ₂ CH ₂ CH ₂
375	Mo N CH2 VI	376	Ma N CH2 CH2
377	Meo H2 N	378	Mao H2 N-CH2
379	Mas H CH2 N	380	Mes H ₂ CH ₂
381	Me (CH ₂) ₂	382	Me (GH ₂) ₂

No.	R	No.	R
383	Mo 1 (CH ₂) ₂	384	Me CH ₂) ₂
385	S (CM ₂) ₂ (N-()	386	Med N-(CH ₂)2 N-
387	Mes CH ₂ / ₂ N	388	MeS (CH ₂)2 (CH ₂)2
389	S (CH ₂) ₃ V V	390	Mo (CH ₂)3
391	Mo H CH772	392	Mo 11 11 COHAS OF F
393	Med H (CH2)2	394	MeO (CH2)3 (P)
395	Mas H (CH ₂) ₃ N	396	Mes H (CH ₂)s
397	S N-N-	398	Ne Ne P
399	H ₂ N H	400	H ₂ N H ₂ N F
401	MeO N	402	Meo H
403	Mes N	404	Mes N-
405	Ma The Charles	406	Me y N N N F
407	H ₂ N Y N N N N N N N N N N N N N N N N N N	408	H ₂ N N N
409	Meo JI N-C>	410	MeO N N N
411	Mes N-C	412	MeS N N

	R-N H O Me				
No.	R	No.	R		
413	M* T H	414	He H		
415	Meo Th	416	Mao THOUSE THE SECOND S		
417	HAN THE THE PARTY	418	H ₂ M T H		
419	Mes T 1 N-()-	420	Mas II		
421	Me N N	422			
423	MeO N N	424	Mac N N N N N N N N N N N N N N N N N N N		
425	H ₂ N N N	426	H ₂ M N N		
427	Mes N N	428	MeS N N		
429		430			
431		432			
433		434			
435		436			
437		438			
439		440			

R-N H O Me

No.	R	No.	- R
441	MeHN—	442	MoH N-
443	Mo N————	444	Me N-
445	Et N-	446	Et F
447	s	448	s N-
449	○○ -	450	○ -
451	800-N N-	452	Boc —N N—
453	\$\rightarrow\rightarro	454	\$ → ← ← ← ←

	Lo
S_N	N H O R1

No.	R¹	No.	R ¹
455	Et	456	n-Pr
457	i-Pr	458	n-Bu
459	i-Bu	460	tert-Bu
461	n-Pent	462	n-Hex
463	$\neg \Box$	464	\rightarrow
465		466	

No.	R ¹	No.	· R1
467	Et	468	n-Pr

-	No.	R	No.	R
	469	s	470	s ————————————————————————————————————

[0022] The thiocarbamic acid derivatives of the present invention which are represented by the aforementioned general formulas (I) to (IV) can be prepared, for example, by the following method. However, the preparation methods of the aforementioned compounds are not limited thereto. In the following preparation methods, specific explanations will be given as for the compounds represented by the aforementioned general formula (I), and it is obvious that these preparation methods include the compounds represented by the aforementioned general formulas (II) to (IV). In addition, specific and detailed explanations will be given in the examples of the present specification as for preparations of typical compounds of the thiocarbamic acid derivatives of the present invention. Accordingly, persons skilled in the art can readily prepare the compounds of the present invention which are encompassed within the aforementioned general formula (I) by referring to the following general explanation and specific explanation in the examples, appropriately choosing starting materials, reagents, and reaction conditions, and if necessary, suitably modifying or altering these methods.

[0023] The first preparation method of the compounds of the present invention include a method which involves the use of a compound represented by the general formula (V) as a starting material and synthesis of the thiocarbamic acid derivative represented by the general formula (I) via a novel compound represented by the general formula (VI):

$$\begin{array}{c|c}
R^4 & O & \\
R^2 & R^3 & O \\
\hline
R^1-OH & (VII)
\end{array}$$

$$\begin{array}{c|c}
R^4 & O \\
R^2 & R^3 & O \\
\hline
R^1-OH & (VII)
\end{array}$$

$$\begin{array}{c|c}
R^4 & O \\
R^2 & R^3 & O \\
\hline
R^1 & O \\
R^2 & R^3 & O \\
\hline
R^1 & O \\
R^2 & R^3 & O \\
\hline
R^1 & O \\
R^2 & R^3 & O \\
\hline
R^1 & O \\
R^2 & R^3 & O \\
\hline
R^1 & O \\
R^2 & R^3 & O \\
\hline
R^1 & O \\
\hline
R^1 & O \\
\hline
R^2 & O \\
\hline
R^2 & O \\
\hline
R^3 & O \\
\hline
R^1 & O \\
\hline
R^1 & O \\
\hline
R^2 & O \\
\hline
R^2 & O \\
\hline
R^3 & O \\
\hline
R^1 & O \\
\hline
R^1 & O \\
\hline
R^2 & O \\
\hline
R^2 & O \\
\hline
R^2 & O \\
\hline
R^3 & O \\
\hline
R^1 & O \\
\hline
R^2 & O \\
\hline
R^2 & O \\
\hline
R^3 & O \\
\hline
R^1 & O \\
\hline
R^2 & O \\
\hline
R^2 & O \\
\hline
R^3 & O \\
\hline
R^1 & O \\
\hline
R^2 & O \\
\hline
R^2 & O \\
\hline
R^3 & O \\
\hline
R^1 & O \\
\hline
R^2 & O \\
\hline
R^2 & O \\
\hline
R^3 & O \\
\hline
R^3 & O \\
\hline
R^4 & O \\
\hline
R^4 & O \\
\hline
R^2 & O \\
\hline
R^3 & O \\
\hline
R^4 & O \\
\hline
R^2 & O \\
\hline
R^3 & O \\
\hline
R^4 & O \\
\hline
R^2 & O \\
\hline
R^3 & O \\
\hline
R^4 & O \\
\hline
R^5 & O \\
\hline
R^$$

wherein R1, R2, R3 and R4 have the same meanings as those defined above.

[0024] In this method, the compound represented by the general formula (VI) can be prepared by reacting the compound represented by the general formula (V) with carbon disulfide in the presence of a base such as triethylamine in a solvent such as tetrahydrofuran, and reacting the resulting dithiocarbamate with ethyl chlorocarbonate, copper sulfate, iron nitrate, iron sulfate, zinc sulfide or other reagent at a temperature ranging from ice-cooling temperature to 200°C. As other preparation methods, the compound represented by the general formula (VI) can directly be synthesized by a preparation method which comprises the step of reacting the compound represented by the general formula "(V) with thiophosgene in the presence of a base such as triethylamine in a solvent such as tetrahydrofuran, and by a method disclosed in Organic Synthesis Collective Volume, Vol. 1, p.447.

[0025] Then, the compound represented by the general formula (I) can be prepared by reacting the compound represented by the general formula (VII) with the compound represented by the general formula (VII) in the presence or absence of a base without solvent or in a solvent.

[0026] As the solvent used in the aforementioned reaction, any solvents may be used so far that they do not inhibit the reaction. Examples include aprotic polar solvents such as acetone, acetonitrile, N,N-dimethylformamide, N-methyl-2-pyrrolidone, dimethylsulfoxide, tetramethylene sulfone, tetramethylene sulfoxide, and hexamethylphosphoric triamide; etheric solvents such as diethyl ether, diisopropyl ether, and tetrahydrofuran; ester solvents such as methyl acetate and ethyl acetate; aromatic hydrocarbon solvents such as benzene and toluene; organic base solvents such as pyridine, picoline, lutidine, and collidine; halogenated hydrocarbon solvents such as dichloromethane, 1,2-dichloroethane, and chloroform; and mixtures thereof. Examples of the base include inorganic bases such as lithium, sodium, sodium hydride, potassium, potassium tert-butoxide, potassium carbonate, sodium carbonate, and sodium hydrogencarbonate; and organic bases such as triethylamine and diisopropylethylamine. The reaction is carried out at a temperature ranging from an ice-cooling temperature to 200°C.

[0027] The second preparation method of the compounds of the present invention includes a method comprising the step of reacting the compound represented by the general formula (V) with an appropriate O-alkyl chlorothiocarbonate in the presence of a base such as triethylamine in a solvent such as tetrahydrofuran at a temperature ranging from an ice-cooling temperature to a refluxing temperature of a solvent to obtain the compound of the general formula (I).

[0028] In the third preparation method of the compounds of the present invention, a compound represented by the general formula (I), wherein any one of R², R³ and R⁴ is a cycloalkyloxy group having a heteroatom as a ring constituting atom or a saturated heterocyclic group and wherein said group has a protected nitrogen atom, may be subjected to deprotection of the nitrogen to prepare the corresponding deprotected compound of the general formula (I).

[0029] The deprotection can be carried out by various methods depending on the type of a protecting group for the nitrogen atom. For example, when the protecting group is an amide-type protecting group such as an alkanoyl group and an arylcarbonyl group, the deprotection may be carried out by hydrolysis using an acid or a base to prepared the desired compound. The hydrolysis of the amide may be carried out by a known method. In acidic hydrolysis, an acid such as hydrochloric acid, sulfuric acid, and trifluoroacetic acid may be used, and in basic hydrolysis, a base such as sodium hydroxide and potassium hydroxide may be used. These acids or bases may be used as aqueous solutions. The deprotection may be carried out in an organic solvent including alcoholic solvents such as methanol, ethanol, n-butanol, sec-butanol, and tert-butanol; etheric solvents such as diethyl ether, diisopropyl ether, and tetrahydrofuran;

5

10

15

20

25

35

40

45

and ester solvents such as methyl acetate and ethyl acetate, or in a water-containing organic solvent at a temperature ranging from room temperature to a refluxing temperature of a solvent. When the protecting group is an urethane-type protecting group such as a lower alkoxycarbonyl group, the deprotection can be carried out by treatment with an acid such as hydrochloric acid, hydrobromic acid, and trifluoroacetic acid without a solvent or in a solvent such as acetic acid, ethyl acetate, 1,4-dioxane, water, methanol, ethanol, and a mixture thereof at a temperature ranging from an ice-cooling temperature to 200°C to prepare the desired compound.

[0030] In the forth preparation method of the present invention, the compound of the general formula (I) obtained in the third preparation method wherein any one of R², R³ and R⁴ is a cycloalkyloxy group having a heteroatom as a ring constituting atom or a saturated heterocyclic group and wherein said group has a deprotected nitrogen atom can be subjected to appropriate alkylation, acylation, urethane-introduction, urea-introduction, thioacylation, thioacylation, thioacylation, thioacylation and urethane-introduction; or the compound can be subjected to an appropriate reaction such as acylation and urethane-introduction, and then the resulting carbonyl group can be converted into a thiocarbonyl group by using the Lawesson's reagent or other reagent, to obtain the corresponding compound of general formula (I) wherein the nitrogen atom is substituted.

[0031] The introduction of a substituent into the nitrogen atom can be carried out by various methods depending upon the kind of the substituent. For example, for alkylation, alkylation using an alkyl halide, alkyl sulfonate, or other reagent, or the Michael addition using an acrylic acid ester or other reagent can be carried out in the presence or absence of a base without a solvent or in a solvent to obtain the corresponding compound of the general formula (!). Alternatively, acylation or urethane-introduction using an acyl halide and the like; urea-introduction using sodium cyanate and the like; thioacylation using a thioacyl halide and the like; thiourea-introduction using an alkylisothiocyanate and the like; or thiocarbamation using an O-alkyl chlorothiocarbonate and the like can be carried out in the presence of a base without a solvent or in a solvent, and if necessary, conversion of the carbonyl group of the compound having a nitrogen atom substituted with an acyl group or the like into thiocarbonyl group can be carried out using the Lawesson's reagent without a solvent or in a solvent to obtain the corresponding compound of the general formula (!).

[0032] As for the solvents used in these reactions, any solvents may be used so far that they do not inhibit the reactions. Examples include water; alcoholic solvents such as methanol and ethanol; aprotic polar solvents such as acetone, acetonitrile, N,N-dimethylformamide, N-methyl-2-pyrrolidone, dimethylsulfoxide, tetramethylene sulfone, tetramethylene sulfoxide, and hexamethylphosphoric triamide; etheric solvents such as diethyl ether, diisopropyl ether, and tetrahydrofuran; ester solvents such as methyl acetate and ethyl acetate; aromatic hydrocarbon solvents such as benzene and toluene; organic acid solvents such as acetic acid; organic base solvents such as pyridine, picoline, lutidine, and collidine; halogenated hydrocarbon solvents such as dichloromethane, 1,2-dichloroethane, and chloroform; and mixtures thereof. The base includes, for example, inorganic bases such as lithium, sodium, potassium, potassium tert-butoxide, potassium carbonate, sodium carbonate, and sodium hydrogencarbonate; and organic bases such as triethylamine and diisopropylethylamine. The reaction is carried out at a temperature ranging from an ice-cooling temperature to 200°C.

[0033] Some of the compounds represented by the general formulas (V) which are used as starting materials for the preparation methods of the compounds of the present invention are known compounds, which are disclosed in Japanese Patent Unexamined Publication No.(Hei) 8-73455, Journal of Medicinal Chemistry, Vol. 39, p. 673 and 680 (1996) and the like, and can be prepared according to the method described therein. Several novel compounds can be prepared, for example, by the following method, and the details of the preparation will be described in reference examples:

(XII)

wherein Boc represents tert-butoxycarbonyl group; Z represents benzyloxycarbonyl group; n-Bu represents n-butyl \sim group; Ms represents mesyl group; Ph represents phenyl group; and R², R³ and R⁴ have the same meanings as those defined above.

[0034] In process 1, the compound of the general formula (IX) can be obtained by reducing the nitro group of the ecompound of the general formula (VIII) by an appropriate reducing method, for example, a hydrogenation reduction which is carried out by using a catalyst such as platinum oxide, Raney nickel, and palladium-carbon in a solvent such as ethyl acetate and methanol at a temperature ranging from room temperature to 50°C under hydrogen pressure ranging from normal pressure to 50 atm; a reduction which is carried out by using iron powder and hydrochloric acid, acetic acid or another reagent; or other reducing method.

[0035] In process 2, the compound of the general formula (X) can be obtained by subjecting the amino group of the compound of the general formula (IX) to appropriate urethane-introduction, for example, using di-tert-butyl dicarbonate in an appropriate organic solvent such as methanol and tetrahydrofuran at a temperature ranging from an ice-cooling temperature to a refluxing temperature of a solvent; or using benzyloxycarbonyl chloride in the presence of a bas such as triethylamine, potassium carbonate, sodium carbonate, and sodium hydrogencarbonate in a solvent such as water; an organic solvent including acetone, methanol, and tetrahydrofuran; and a mixed solvent thereof at a temperature ranging from an ice-cooling temperature to a refluxing temperature of a solvent; then treating the resulting compound with a base such as n-butyllithium in an appropriate aprotic organic solvent such as tetrahydrofuran and N,Ndimethylformamide at a temperature ranging from -78°C to room temperature, and then reacting the resulting compound with glycidyl butylate.

[0036] In process 3, the compound of the general formula (XI) can be obtained by reacting the compound of the general formula (X) with methanesulfonyl chloride in the presence of a base such as triethylamine in an appropriate organic solvent such as dichloromethane and tetrahydrofuran at a temperature ranging from an ice-cooling temperature to a refluxing temperature of a solvent.

[0037] In process 4, the compound of the general formula (XII) can be obtained by reacting the compound of the general formula (XI) with sodium azide in an appropriate organic solvent such as tetrahydrofuran and N,N-dimethylformamide at a temperature ranging from an ice-cooling temperature to a refluxing temperature of a solvent.

[0038] In the compound of the general formula (XI), when any one of R2, R3 and R4 has a protected nitrogen atom in the substituent, deprotection may be carried out in accordance with the third preparation method of the compound of the present invention after the azidation in process 4, and then if necessary, appropriate alkylation, acylation, urethane-introduction, thioacylation, thiourea-introduction, thiocarbamation or other reaction may be carried out in accordance with the forth preparation method to obtain the respective corresponding compounds of the general formula (XII). [0039] In the compound of the general formula (XI), when any one of R2, R3 and R4 is thiomorpholinyl group, the sulfur atom may be subjected to appropriate oxidation for conversion into S-oxide or S,S-dioxide, and then the corre-

5

25

40

45

50

sponding compound represented by the general formula (XII) can be prepared according to the process 4.

[0040] The oxidation of the sulfur atom can be carried out by various methods depending on target compounds. The conversion into S-oxide group can be carried out, for example, by using an oxidizing agent such as chromic acid, hydrogen peroxide, metachloroperbenzoic acid, sodium metaperiodate and potassium metaperiodate in a solvent such as water, an organic solvent including tetrahydrofuran, methanol, acetonitrile, acetone, and dichloromethane, and a mixed solvent thereof at a temperature ranging from an ice-cooling temperature to a refluxing temperature of a solvent. The conversion into S,S-dioxide group can be carried out, for example, by using an oxidizing agent such as chromic acid, hydrogen peroxide, metachloroperbenzoic acid, osmium tetraoxide, and ruthenium tetraoxide in a solvent such as water, an organic solvent including tetrahydrofuran, methanol, acetone, and dichloromethane, and a mixed solvent thereof at a temperature ranging from an ice-cooling temperature to a refluxing temperature of a solvent.

[0041] In process 5, the compound represented by the general formula (V) can be obtained by reducing the azide group of the compound of the general formula (XII) by an appropriate reducing method, for example, a hydrogenation reduction which is carried out by using a catalyst such as platinum oxide and palladium carbon in a solvent such as methanol at a temperature ranging from room temperature to 50°C under hydrogen pressure ranging from normal pressure to 50 atom; a reducing method which is carried out by using triphenylphosphine and water in a solvent such as tetrahydrofuran at a temperature ranging from an ice-cooling temperature to a refluxing temperature of a solvent or other reducing method.

[0042] The medicament of the present invention is characterized to comprise the thiocarbamic acid derivative represented by the aforementioned general formulas (I) to (IV) or a salt thereof as an active ingredient. As the active ingredient of the medicament of the present invention, a substance selected from the group consisting of the aforementioned compound in free form and a pharmacologically acceptable salt thereof, and any crystal form thereof, a solvate thereof, and a hydrate thereof can be used, and two or more substances may be used in combination. As the medicament of the present invention, the aforementioned substance may be used *per se*. In general, the medicament is desirably provided in a form of a pharmaceutical composition which comprises the aforementioned substance as an active ingredient and one or more pharmaceutical additives.

[0043] The form of the pharmaceutical composition is not particularly limited, and the composition can be prepared, for example, as an oral preparation in the forms of capsules, tablets, fine granules, granules, powders, syrups and the like, or as a parenteral preparation in the forms of injections, suppositories, eye drops, eye ointments, ear drops, nasal drops, transdermal and transmucosal agents, inhalations, dermatologic preparation and the like. These preparations can be manufactured according to conventional methods after the addition of pharmacologically and pharmaceutically acceptable additives. For oral preparations and suppositories, pharmaceutical ingredients such as excipients such as lactose, D-mannitol, com starch, and crystalline cellulose; disintegrators such as carboxymethylcellulose and carboxymethylcellulose calcium; binders such as hydroxypropyl cellulose, hydroxypropyl methylcellulose, and polyvinylpyrrolidone; lubricants such as magnesium stearate and talc; coating agents such as hydroxypropyl methylcellulose, sucrose, and titanium oxide; plasticizers such as poly(ethylene glycol); bases such as poly(ethylene glycol) and hard fat and the like may be used. For injections, eye drop, ear drop, or nasal drop, pharmaceutical ingredients including solubilizers or solubilizing aids which may constitute aqueous dosage forms or forms dissolved upon use such as distilled water for injection, physiological saline, and propylene glycol; pH modifiers such as inorganic or organic acids or bases; isotonicities such as sodium chloride, glucose, and glycerin; stabilizers and the like may be used. For eye ointments and dermatologic preparations, pharmaceutical ingredients which are suitable for ointments, creams, and patches such as white vaseline, macrogols, glycerin, liquid paraffin, and cotton cloth may be used.

[0044] The medicament of the present invention can be administered, for example, as an antibacterial agent for therapeutic or preventive treatment of infectious diseases of mammals including humans. A dose of the medicament of the present invention is not particularly limited, and an appropriate dose can be chosen depending on the kind of pathogenic bacteria, the age and body weight of a patient, severity of a disease and the like. For example, a daily dose is usually from about 10 to 2,000 mg for oral administration, and from about 1 to 1,000 mg for parenteral administration for an adult. The aforementioned dose can be administered once a day or several times a day as divided portions. However, it is desirable that the dose is suitably increased or decreased depending on purpose of therapeutic or preventive treatment, a body part suffering from infection, the kind of pathogenic bacteria, the age or symptom of a patient and the like.

Examples

10

20

25

30

35

40

50

55

[0045] The present invention will be explained by referring to Reference examples and Working Examples. However, the scope of the present invention is not limited to these examples. The abbreviations in the tables have the following meanings: Me: methyl group; Et: ethyl group; n-Pr: n-propyl group; i-Pr: i-propyl group; n-Bu: n-butyl group; Boc: tert-butoxycarbonyl group; Z: benzyloxycarbonyl group; Ms: mesyl group; cyc-Hex: cyclohexyl group; Ph: phenyl group.

Reference example 1

[0046] N-tert-Butoxycarbonyl-4-piperidinol

[0047] To a suspension of 50.0 g of 4-piperidinol in 250 ml of dried tetrahydrofuran, 125 ml of di-tert-butyl dicarbonate was added under ice-cooling and with stirring, and the mixture was stirred at room temperature for 30 minutes. After the reaction was completed, the solvent was evaporated under reduced pressure to obtain 120.5 g of a pale yellow liquid.

NMR spectrum (CDCl₃) δ ppm:

1.46(9H,s),1.47-1.50(2H,m),1.81-1.87(2H,m),3.01-3.10(2H,m),3.73-3.87(3H,m)

IR spectrum v (liq.) cm⁻¹: 1698,3684

Mass spectrum (m/z): 201(M+)

[0048] The compound of Reference example 2 was obtained in the same manner as in Reference example 1.

Reference example 2

15

20

25

40

45

50

[0049] N-tert-Butoxycarbonyl-3-azetidinol

Appearance: yellow liquid

NMR spectrum (DMSO-d₆) δ ppm :

1.37(9H,s),3.55-3.60(2H,m),3.95-4.00(2H,m),4.30-4.40(1H,m),5.50(1H,d,J=6Hz)

IR spectrum v (liq.) cm⁻¹: 1678,3416

Reference example 3

[0050] N-tert-Butoxycarbonyl-4-methoxypiperidine

[0051] To a suspension of 8.77 g of 60% sodium hydride in 300 ml of dried N,N-dimethylformamide, a solution of 49.0 g of N-tert-butoxycarbonyl-4-piperidinol in 190 ml of dried N,N-dimethylformamide was added under stirring at room temperature. Then, the mixture was added dropwise with 30.4 ml of methyl iodide, and stirred at the same temperature for 5 hours. The reaction solution was poured into ice water, and extracted with ethyl acetate. The extract was washed with saturated brine and dried over sodium sulfate, and then the solvent was evaporated under reduced repressure. The residue was purified by column chromatography (silica gel, ethyl acetate: n-heptane = 1:2 to 1:1) to be betain 44.1 g of a colorless liquid.

NMR spectrum (CDCl₃) δ ppm:

1.45 - 1.55(2H,m), 1.46(9H,s), 1.80 - 1.90(2H,m), 3.05 - 3.15(2H,m), 3.30 - 3.40(1H,m), 3.35(3H,s), 3.70 - 3.80(2H,m), 3.45(2H,m), 3.45(

IR spectrum v (liq.) cm⁻¹: 1698

35 Mass spectrum (m/z): 215 (M+)

Reference example 4

[0052] N-tert-Butoxycarbonyl-3-(2-methoxyethoxy)azetidine

[0053] To a suspension of 0.25 g of 60% sodium hydride in 5 ml of dried N,N-dimethylformamide, a solution of 1.00 g of N-tert-butoxycarbonyl-3-azetidinol in 3 ml of dried N,N-dimethylformamide was added under stirring at room temperature. The mixture was stirred at room temperature for 30 minutes, then added dropwise with a solution of 0.98 g of 2-methoxyethyl methanesulfonate in 2 ml of dried N,N-dimethylformamide, and stirred at the same temperature for 4 hours. The reaction solution was poured into ice water, and extracted with ethyl acetate. The extract was washed successively with water and saturated brine, and dried over sodium sulfate, and then the solvent was evaporated under reduced pressure. The residue was purified by column chromatography (silica gel, ethyl acetate: n-heptane = 1:3) to obtain 0.67 g of a colorless liquid.

NMR spectrum (DMSO-d₆) δ ppm :

1.37(9H,s),3.25(3H,s),3.41-3.45(2H,m),3.46-3.49(2H,m),3.64(2H,dd,J=9,4Hz),3.98(2H,dd,J=9,6.5Hz),4.21-4.26(1H,m)

IR spectrum v (liq.) cm⁻¹: 1706

Reference example 5

55 [0054] 4-Methoxypiperidine hydrochloride

[0055] To 220ml of 9 % hydrogen chloride ethyl acetate solution, a solution of 43.9 g of N-tert-butoxycarbonyl-4-methoxypiperidine in 220 ml of ethyl acetate was added under ice-cooling and with stirring, and the mixture was stirred under ice-cooling for 2.5 hours. After the reaction, the precipitated crystals were collected by filtration to obtain 29.1 g

of colorless crystals. NMR spectrum (CDCl₃) δ ppm: 1.95 - 2.05(2H,m), 2.10 - 2.20(2H,m), 3.15 - 3.30(4H,m), 3.33(3H,s), 3.50 - 3.60(1H,m)IR spectrum v (lig.) cm⁻¹: 3448 5 Mass spectrum (m/z): 115(M+) [0056] The compound of Reference example 6 was obtained in the same manner as in Reference example 5. Reference example 6 [0057] 3-(2-Methoxyethoxy)azetidine hydrochloride 10 Appearance: pale yellow liquid NMR spectrum (DMSO-d₆) δ ppm : 3.26(3H,s),3.43(2H,t,J=4.5Hz),3.54(2H,t,J=4.5Hz),3.75-3.80(2H,m),4.05-4.10(2H,m),4. 35-4.40(1H,m) IR spectrum v (liq.) cm⁻¹: 3436 15 Mass spectrum (m/z): 131(M+) Reference example 7 [0058] 3-Fluoro-4-(4-methoxypiperidin-1-yl)nitrobenzene [0059] To a solution of 15.0 g of 3,4-difluoronitrobenzene and 41 ml of N,N-diisopropylethylamine in 150 ml of dried 20 acetonitrile, 15.8 g of 4-methoxypiperidine hydrochloride was added, and the mixture was heated under reflux for 5 hours. Th solvent was evaporated under reduced pressure, the residue was added with water and 10% aqueous sodium hydroxide, and the resulting alkaline mixture was extracted with ethyl acetate. The extract was washed with saturated brine, and dried over sodium sulfate, and then the solvent was evaporated under reduced pressure to obtain 24.1 g of a yellowish 25 brown liquid. NMR spectrum (DMSO-d₆) δ ppm : $1.54 - 1.62(2H,m), 1.92 - 2.00(2H,m), 3.08 - 3.16(2H,m), 3.28(3H,s), 3.38 - 3.46(1H,m), 3.49 - 3.5 \\ 7(2H,m), 7.16(1H,t,J=8.5Hz), 3.28(3H,s), 3.28(3H,s), 3.28(3H,s), 3.38 - 3.46(1H,m), 3.49 - 3.5 \\ 7(2H,m), 7.16(1H,t,J=8.5Hz), 3.28(3H,s), 3.28(3H,s), 3.28(3H,s), 3.38 - 3.46(1H,m), 3.49 - 3.5 \\ 7(2H,m), 7.16(1H,t,J=8.5Hz), 3.28(3H,s), 3.28$ 7.95(1H,dd,J=14,3Hz),7.97(1H,dd,J=8.5,3Hz) IR spectrum v (liq.) cm-1: 1336,1518 30 Mass spectrum (m/z): 254(M+) [0060] The compounds of Reference examples 8 through 18 were obtained in the same manner as in Reference example 7. 35 40 45 50

į	Reference		Physical properties [recrystallization solvent]
	example		yellow needles[i-PrOH]
5			mp,62~63°C
	8	Eto N-NO2	Elemental analysis for C18H17FN2O3
'		F	Calcd. %: C,58.20;H,6.39;N,10.44
			Found %: C,58.10;H,6.60;N,10.45
10			yellow crystals[i-Pr2O-n-Heptane]
		M=O-(CH ₂) ₂ -ONNO ₂	mp,58.5~59.5°C
	9 .		Elemental analysis for C14H19FN2O4
			Calcd. %: C,56.37;H,6.42;N,9.39
15	L		Found %: C,56.36;H,6.54;N,9.34
			yellowish brown prisms[i-Pr ₂ O]
		Me-N N-NO2	mp,68~68.5°C
	10		Elemental analysis for C ₁₁ H ₁₄ FN ₃ O ₂ Calcd. %: C,55.22;H,5.90;N,17.56
20		۴	Found %: C,55.24;H,5.71;N,17.63
			yellow liquid
		MeO-(CH ₂) ₂ -0-\N-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	NMR(DMSO-d ₆) δ ppm:3.27(3H,s),3.47(2
			H.t.J=4.5Hz),3.56(2H,t,J=4.5Hz),3.95-
05			4.00(2H,m),4.35-4.40(2H,m),4.45-4.50(
25	11	,	1H,m),6.57(1H,t,J=9Hz),7.89(1H,dd,J)
	1		=13,2.5Hz),7.93(1H,dd,J=9,2.5Hz)
			IR ν (liq.) cm ⁻¹ :1326,1532
	1		MS(m/z):270(M+)
30			yellowish brown liquid
: : 5	Ì		$ NMR(DMSO-d_6) \delta ppm:1.50-1.60(4H,m), $
			1.70-1.85(4H,m),3.55-3.65(4H,m),6.96(
	12	NO ₂	1H,t,J=9Hz),7.88(1H,dd,J=16,3Hz),7.9
35		F	0(1H,dd,J=9,3Hz)
			IR ν (liq.) cm ⁻¹ :1324,1522
			MS(m/z):238(M+)
	1		yellowish brown liquid
40	40	(NMR(DMSO-d ₆) & ppm:0.95(3H,d,J=6Hz
70		13 Me—N—NO ₂),1.20-1.35(2H,m),1.55-1.65(1H,m),1.6 5-1.80(2H,m),2.85-3.00(2H,m),3.60-3.7
	13		5-1.80(2H,m),2.85-3.00(2H,m),3.80-3.7 5(2H,m),7.13(1H,t,J=9Hz),7.93(1H,dd,
			J=13.5,2.5Hz),7.97(1H,dd,J=9,2.5Hz)
			IR ν (liq.) cm ⁻¹ :1334,1512
45	}		MS(m/z):238(M+)
	<u> </u>		

31

50

ſ	Reference	•	Physical properties
5	example		[recrystallization solvent]
Ì			yellowish brown liquid
1			NMR(CDCl ₃) & ppm:0.93(3H,t,J=7.5Hz),1.
i	j		25-1.45(5H,m),1.82(2H,d,J=5.5Hz),2.86(
10		Et—\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	2H,t,J=12Hz),3.71(2H,d,J=12Hz),6.91(1
	14		H,t,J=9Hz),7.88(1 $H,dd,J=13.5,2.5Hz$),7.
]		F	96(1H,dd,J=9,2.5Hz)
]			IR ν (liq.) cm ⁻¹ :1338,1518
	1		MS(m/z):252(M+)
15			yellow needles[i-PrOH]
		Me	mp,95~96°C
	15	Me F	Elemental analysis for C ₈ H ₉ FN ₂ O ₂
			Calcd. %: C,52.17;H,4.93;N,15.21
20]		Found %: C,51.93;H,4.72;N,15.21
ļ			yellow needles[n-Heptane]
]	Et.	mp,40~41°C
	16	Me NO2	Elemental analysis for C9H11FN2O2
		F	Calcd. %: C,54.54;H,5.59;N,14.13
25			Found %: C,54.26;H,5.76;N,14.19
			yellow prisms[n-Heptane]
		Et	mp,49.5~50.5°C
	17	Et NO2	Elemental analysis for C10H13FN2O2
<i>30</i>		F'	Calcd. %: C,56.60;H,6.17;N,13.20
			Found %: C,56.41;H,6.01;N,13.06
35			yellow needles[i-PrOH]
			mp,125~125.5°C
	18	F NO2	Elemental analysis for C ₁₃ H ₁₅ FN ₂ O ₄
			Calcd. %: C,55.32;H,5.36;N,9.92
		<u> </u>	Found %: C,55.21;H,5.18;N,9.88

Reference example 19

40

45

50

[0061] 3-Fluoro-4-(2-methoxyethoxy)nitrobenzene

[0062] To a suspension of 4.20 g of 60 % sodium hydride in 100 ml of dried tetrahydrofuran, a solution of 7.90 g of ethylene glycol monomethyl ether in 50 ml of dried tetrahydrofuran was added dropwise under ice-cooling and with stirring, and the mixture was stirred at room temperature for 15 minutes. The reaction mixture was added dropwise with a solution of 15.0 g of 3,4-difluoronitrobenzene in 50 ml of dried tetrahydrofuran under ice-cooling and with stirring, and stirred at the same temperature for 30 minutes. The reaction solution was added with ice water, and extracted with ethyl acetate. The extract was washed with saturated brine, and dri d over sodium sulfate, and then the solvent was

evaporated under reduced pressure. The residue was washed with n-hexane to obtain 19.0 g of yellow crystals. Recrystallization from diisopropyl ether gave yellow needles having the melting point of from 62.5 to 63°C.

Elemental analysis for C ₉ H ₁₀ FNO ₄						
Calculated %	C,	50.24;	Н,	4.68;	N,	6.51
Found %	C,	50.18;	Н,	4.54;	N,	6.50

[0063] The compounds of Reference examples 20 through 21 were obtained in the same manner as in Reference example 19.

Reference example		Physical properties [recrystallization solvent]
20	Boc-N O-NO ₂	Elemental analysis for C ₁₆ H ₂₁ FN ₂ O ₅ Calcd. %: C,56.46;H,6.22;N,8.23 Found %: C,56.36;H,6.34;N,8.29
21	Boc-NO-O-NO ₂	pale yellow needles [EtOH] mp,117~117.5°C Elemental analysis for C ₁₄ H ₁₇ FN ₂ O ₅ Calcd. %: C,53.84;H,5.49;N,8.97 Found %: C,53.73;H,5.44;N,8.97

Reference example 22

5

10

15

20

25

35

45

50

55

[0064] 3-Fluoro-4-(4-methylpiperazin-1-yl)aniline

[0065] A suspension of 19.0 g of 3-fluoro-4-(4-methylpiperazin-1-yl)nitrobenzene and 0.190 g of platinum(IV) oxid in 190 ml of methanol was stirred at a hydrogen pressure of 2 atm at ordinary temperature for 2 hours. The catalyst was filtered off, and then the filtrate was concentrated under reduced pressure to obtain 17.0 g of dark brown crystals. Recrystallization from diisopropyl ether gave dark brown prisms having the melting point of from 87 to 88°C.

Elemental analysis for C ₁₁ H ₁₆ FN ₃						
Calculated %	C,	63.13;	Н,	7.71;	N,	20.08
Found %	С,	63.10;	Н,	7.46;	N,	20.08

[0066] The compounds of Reference examples 23 through 36 were obtained in the same manner as in Reference example 22.

ſ	Reference		Physical properties [recrystallization solvent]
_	example		
10	23	MeO NH2	black liquid NMR(DMSO-d ₆) & ppm:1.49-1.59(2H,m), 1.86-1.94(2H,m),2.59-2.67(2H,m),2.97 -3.04(2H,m),3.22-3.29(1H,m),3.25(3H, s),4.83(2H,br-s),6.29(1H,dd,J=8.5,2.5 Hz),6.33(1H,dd,J=14.5,2.5Hz),6.75(1 H,t,J=8.5Hz) IR \(\nu\) (liq.) cm ⁻¹ :3360,3448 MS(m/z):224(M+)
15			blackish brown liquid NMR(DMSO-de) δ ppm:1.11(3H,t,J=7.5H z),1.50-1.60(2H,m),1.85-1.95(2H,m),2. 60-2.70(2H,m),2.95-3.05(2H,m),3.30-3.
20	24	EtO N-NH ₂	40(1H,m),3.47(2H,q,J=7.5Hz),4.83(2H, br-s),6.30(1H,dd,J=8.5,2.5Hz),6.30(1H ,dd,J=14,2.5Hz),6.75(1H,dd,J=9.5,8.5 Hz) IR ν (liq.) cm ⁻¹ :3360,3456
<i>25</i>			MS(m/z):238(M+)
30	25	MeO-(CH ₂) ₂ -O-NH ₂	brown liquid NMR(DMSO-d ₆) δ ppm:1.50-1.60(2H,m), 1.85-1.95(2H,m),2.60-2.65(2H,m),2.95- 3.05(2H,m),3.26(3H,s),3.35-3.40(1H,m),3.44(2H,t,J=5Hz),3.54(2H,t,J=5Hz),4 .83(2H,br-s),6.28(1H,dd,J=8.5,2.5Hz),6.32(1H,dd,J=14.5,2.5Hz),6.75(1H,t,J=8.5Hz) IR ν (liq.) cm ⁻¹ :3364,3464
			MS(m/z):268(M+)
40	26	N——NH ₂	blackish purple liquid NMR(DMSO-d ₆) & ppm:1.50-1.65(4H,m), 1.65-1.75(4H,m),3.07(4H,t,J=6Hz),4.7 0(2H,br-s),6.26(1H,dd,J=8.5,2.5Hz),6. 31(1H,dd,J=14.5,2.5Hz),6.71(1H,t,J=8 .5Hz) IR \(\nu\) (liq.) cm ⁻¹ :3224,3356 MS(m/z):208(M ⁺)
45	L	<u> </u>	Mr2/(III/8):200/Mr.)

1	Reference	T	Physical properties
	example		[recrystallization solvent]
10	27	Me—N—NH ₂	black liquid NMR(DMSO-d ₆) δ ppm:0.93(3H,d,J=6.5 Hz),1.20-1.30(2H,m),1.35-1.50(1H,m), 1.60-1.70(2H,m),2.45-2.60(2H,m),3.00- 3.10(2H,m),4.81(2H,br-s),6.28(1H,dd,J =9,2.5Hz),6.32(1H,dd,J=14.5,2.5Hz),6. 74(1H,t,J=9Hz) IR ν (liq.) cm ⁻¹ :3224,3356,3464
15			MS(m/z):208(M+) blackish brown liquid NMR(CDCl ₃) δ ppm:0.91(3H,t,J=7.5Hz),
20	28	Et—N—NH ₂	1.15-1.30(1H,m),1.32(2H,quin,J=7.5Hz), 2),1.38(1H,dd,J=12,4Hz),1.43(1H,dd,J=12,4Hz),1.76(2H,d,J=4Hz),2.56(2H,td,J=11.5,2Hz),3.26(2H,d,J=11.5Hz),3.34(2H,br-s),6.39(1H,dd,J=9,2.5Hz),6.42(1H,dd,J=13.5,2.5Hz),6.82(1H,t,J=9Hz) IR \(\nu\) (liq.) cm ⁻¹ :8352,3464 MS(m/z):222(M+)
30 f	29	MeQ-(CH ₂) ₂ -0-\N\N\N\N\N\N\N\N\N\	black liquid NMR(DMSO-d ₆) δ ppm:3.25(3H,s),3.40-3 .45(4H,m),3.50(2H,t,J=4.5Hz),3.90-4.0 0(2H,m),4.25-4.35(1H,m),4.61(2H,br-s),6.25-6.35(3H,m) IR ν (liq.) cm ⁻¹ :3360,3430 MS(m/z):240(M+)
<i>35</i>	30	MeO-(CH ₂) ₂ -O-NH ₂	blackish brown liquid NMR(CDCl ₃) δ ppm:3.44(3H,s),3.49(2H, br-s),3.71(2H,t,J=5Hz),4.10(2H,t,J=5 Hz),6.30-6.40(1H,m),6.45(1H,dd,J=12. 5,2.5Hz),6.84(1H,t,J=8.5Hz) IR ν (liq.) cm ⁻¹ :3368,3460
			MS(m/z):185(M+)

Reference	:	Physical properties [recrystallization solvent]
example		
31	Me NH ₂	pale green crystals NMR(DMSO-d ₆) δ ppm:2.58(6H,s),4.79(2 H,br-s),6.30(1H,dd,J=8.5,2.5Hz),6.33(1H,dd,J=14,2.5Hz),6.73(1H,t,J=8.5Hz) IR ν (KBr) cm ⁻¹ :3328,3456 MS(m/z):154(M+)
32	Me N—NH ₂	blackish purple liquid NMR(DMSO-d ₆) δ ppm:0.95(3H,t,J=7.5 Hz),2.57(3H,s),2.88(2H,q,J=7.5Hz),4.8 2(2H,br-s),6.29(1H,dd,J=9,2.5Hz),6.32 (1H,dd,J=16,2.5Hz),6.75(1H,t,J=9Hz) IR ν (liq.) cm ⁻¹ :3224,3348 MS(m/z):168(M+)
33	Et N-NH ₂	grayish brown crystals NMR(DMSO-d ₆) ô ppm:0.89(6H,t,J=7Hz),2.91(4H,q,J=7Hz),4.89(2H,br-s),6.25- 6.35(2H,m),6.78(1H,t,J=9Hz) IR \(\nu\) (KBr) cm ⁻¹ :3208,3332 MS(m/z):182(M+)
34	Boc-N O-NH ₂	dark brown liquid NMR(DMSO-d ₆) δ ppm:1.40(9H,s),1.45-1 .55(2H,m),1.75-1.85(2H,m),3.05-3.20(2 H,m),3.55-3.70(2H,m),4.05-4.15(1H,m) ,4.90(2H,br-s),6.29(1H,ddd,J=8.5,2.5,1 Hz),6.38(1H,dd,J=13.5,2.5Hz),6.84(1H ,t,J=8.5Hz) IR ν (liq.) cm ⁻¹ :1682,3368 MS(m/z):310(M+)
35	Boc-NO-O-NH	yellowish brown prisms[i-Pr ₂ O] mp,85.5~86°C Elemental analysis for C ₁₄ H ₁₉ FN ₂ O ₃ Calcd. %: C,59.56;H,6.78;N,9.92 Found %: C,59.43;H ₃ 7.06;N,9.89
36	NH ₂	dark brown needles[i-PrOH] mp,113.5~114°C Elemental analysis for C ₁₃ H ₁₇ FN ₂ O ₂ Calcd. %: C,61.89;H,6.79;N,11.10 Found %: C,61.72;H,6.55;N,11.14

Reference example 37

[0067] N-Benzyloxycarbonyl-4-(thiomorpholin-4-yl)aniline

[0068] To a mixture of a solution of 19.0 g of 4-(thiomorpholin-4-yl)aniline in 190 ml of 10% aqueous sodium carbonate and 190 ml of acetone, 21.0 ml of benzyloxycarbonyl chloride was added dropwise under ice-cooling and with stirring. The resulting mixture was stirred at room temperature for 30 minutes, and then the precipitated crystals were collected by filtration, and washed with diisopropyl ether to obtain 25.5 g of pale brown crystals. Recrystallization from a mixture of ethyl acetate-diisopropyl ether gave colorless needles having the melting point of from 145 to 146.5°C.

Elemental analysis for C ₁₈ H ₂₀ N ₂ O ₂ S						
Calculated %	C,	65.83;	Н,	6.14;	N,	8.53
Found %	C,	65.69;	Н,	6.12;	N,	8.38

[0069] The compounds of Reference examples 38 through 53 were obtained in the same manner as in Reference example 37.

ļ	Reference		Physical properties
	example		[recrystallization solvent]
5			pale purple needles[i-PrOH]
			mp,120~121°C
	38	N-V-N-Z	Elemental analysis for C18H19FN2O2
;		F'	Calcd. %: C,68.77;H,6.09;N,8.91
10			Found %: C,68.88;H,6.00;N,8.88
			colorless crystals[AcOEt-i-Pr2O]
			mp,107~108°C
	39	MeO NHZ	Elemental analysis for C20H23FN2O3
		/ F	Calcd. %: C,67.02;H,6.47;N,7.82
15			Found %: C,66.90;H,6.35;N,7.73
			pale purple crystals[i-PrOH]
			mp,123.5~125°C
	40	EtO N-NHZ	Elemental analysis for C21H25FN2O3
20		F	Calcd. %: C,67.72;H,6.77;N,7.52
			Found %: C,67.63;H,6.81;N,7.47
			pale brown needles [AcOEt-i-Pr2O]
	1		mp,78~78.5°C
	41	N—\ \ \ NHZ	Elemental analysis for C20H23FN2O2
25	1		Calcd. %: C,70.15;H,6.77;N,8.18
			Found %: C,70.10;H,6.77;N,8.17
			pale purple needles [AcOEt-i-Pr2O]
			mp,124.5~126°C
30	42	Me N-NHZ	Elemental analysis for C ₂₀ H ₂₃ FN ₂ O ₂
	1	F F	Calcd. %: C,70.15;H,6.77;N,8.18
	1		Found %: C,70.11;H,6.83;N,8.12
			pale purple needles [i-PrOH]
	Ì		mp,114~115°C
35	43	Et N-NHZ	Elemental analysis for C21H25FN2O2
			Calcd. %: C,70.76;H,7.07;N,7.86
			Found %: C,70.66;H,7.17;N,7.84
			pale brown crystals[AcOEt-i-Pr2O]
40	1	MeO-(CH ₂) ₂ -O-N-N-NH2	mp,97~98.5°C
	44		Elemental analysis for C22H27FN2O4
	1		Calcd. %: C,65.66;H,6.76;N,6.96
			Found %: C,65.59;H,6.98;N,6.96
45			colorless needles [i-PrOH]
70	1		mp,136.5~137°C
	45	Me-N N-NHZ	Elemental analysis for C19H22FN3O2
		=	Calcd. %: C,66.46;H,6.46;N,12.24
		1	Found %: C,66.50;H,6.49;N,12.14
50	L		

[Reference example	·	Physical properties [recrystallization solvent]
5	Olivin pro		colorless crystals[i-Pr2O]
	40	Me — NHZ	mp,77.5~78°C
	46		Elemental analysis for C ₁₆ H ₁₇ NO ₂ Calcd. %: C,75.27;H,6.71;N,5.49
	1	rese	Found %: C,75.16;H,6.63;N,5.51
10			colorless crystals [AcOEt]
			mp,91~92°C
	47	MeO-(CH ₂) ₂ -0-NHZ	Elemental analysis for C ₁₇ H ₁₈ FNO ₄
		F [']	Calcd. % : C,63.94;H,5.68;N,4.39
15			Found %: C,63.71;H,5.59;N,4.35
			colorless needles [i-PrOH]
	48	NHZ	mp,100~100.5°C
	40		Elemental analysis for C ₁₈ H ₁₉ NO ₂ Calcd. %: C,76.84;H,6.81;N,4.98
20			Found %: C,76.85;H,7.07;N,4.98
			colorless crystals [AcOEt-i-Pr2O]
		Me /=	mp,106.5~107.5°C
25	49	N-NHZ Me	Elemental analysis for C ₁₆ H ₁₈ N ₂ O ₂
25			Calcd. %: C,71.09;H,6.71;N,10.36
			Found %: C,71.15;H,6.89;N,10.35
			gray crystals
<i>30</i> .		Me 🥽	NMR(DMSO-d ₆) & ppm:3.64(6H,s),5.03(2 H,s),7.13(2H,d,J=7.5Hz),7.26(1H,dd,J
.a.	50	Me F	=9,2.5Hz),7.30-7.55(4H,m),7.70-7.75(1
			H,m),10.3(1H,br-s)
			IR ν (KBr) cm ⁻¹ :1740
35			MS(m/z):288(M+)
			colorless crystals [AcOEt-n-Heptane]
	g .	N-(-)-NHZ	mp,60~61°C
	51	Et' "	Elemental analysis for C ₁₇ H ₁₉ FN ₂ O ₂ Calcd. %: C,67.53;H,6.33;N,9.27
40		j	Found %: C,67.32;H,6.33;N,9.29
			brackish brown liquid
			NMR(DMSO-ds) δ ppm:0.96(6H,t,J=7.5H
		Et	z),3.06(4H,q,J=7.5Hz),5.15(2H,s),6.95(
45	52	Et THE	1H,t,J=9Hz),7.12(1H,dd,J=9,2Hz),7.25
: :	}	F	-7.45(6H,m),9.62(1H,br-s)
			Rν(liq.) cm ⁻¹ :1706
	L	<u> </u>	MS(m/z):316(M+)

39

50

Reference example		Physical properties [recrystallization solvent]
53	Boc-N O-NHZ	reddish brown liquid NMR(DMSO-d ₆) δ ppm:1.40(9H,s),1.49-1 .57(2H,m),1.82-1.88(2H,m),3.13-3.20(2 H,m),3.60-3.66(2H,m),4.35-4.41(1H,m) ,5.14(2H,s),7.10-7.16(2H,m),7.30-7.44(6H,m),9.68(1H,br-s) IR ν (liq.) cm ⁻¹ :1668,3304 MS(m/z):444(M+)

Reference example 54

[0070] N,N'-Di-tert-butoxycarbonyl-3-fluoro-4-(piperazin-1-yl)aniline

[0071] To a solution of 5.56 g of di-tert-butyl dicarbonate in 10 ml of methanol, a solution of 2.00 g of 3-fluoro-4-(piperazin-1-yl)aniline in 10 ml of methanol was added dropwise under stirring at room temperature, and the mixture was stirred overnight at room temperature. The precipitated crystals were collected by filtration, and washed with ethanol to obtain 3.12 g of yellow crystals. Recrystallization from ethyl acetate gave pale yellow crystals having the melting point of from 194 to 195°C.

Elemental analysis for C ₂₀ H ₃₀ FN ₃ O ₄						
Calculated %	C,	60.74;	Н,	7.65;	N,	10.63
Found %	C,	60.47;	Н,	7.93;	N,	10.53

30 [0072] The compounds of Reference examples 55 through 57 were obtained in the same manner as in Reference example 54.

	Reference		Physical properties
5	example		[recrystallization solvent]
			brown liquid
			$NMR(DMSO-d_6) \delta ppm:1.45(9H,s),3.26(3)$
			H,s),3.44(2H,t,J=4.5Hz),3.52(2H,t,J=4
		MeO-(CH ₂) ₂ -O-N-NHBoc	.5Hz),3.55-3.60(2H,m),4.00-4.10(2H,m
10	55	ا کر),4.35-4.40(1H,m),6.46(1H,t,J=8.5Hz),
			7.04(1H,dd,J=8.5,2Hz),7.22(1H,dd,J=1
			5,2Hz),9.03(1H,br-s)
			IR ν (liq.) cm ⁻¹ :1724,3328
15			MS(m/z):340(M+)
13			pale brown scales [CH3CN]
		Boc-N O-NHBoc	mp,220~221℃
	56	BOC-N - NOTEDC	Elemental analysis for C ₁₉ H ₂₇ FN ₂ O ₅
		f	Calcd. %: C,59.67;H,7.12;N,7.33
20			Found %: C,59.45;H,7.24;N,7.37
			reddish brown prisms[i-PrOH]
		N-NHBoc	mp,139~140.5℃
!	57	NAMES OF THE PARTY	Elemental analysis for C ₁₈ H ₂₅ FN ₂ O ₄
25		[F	Calcd. %: C,61.35;H,7.15;N,7.95
23			Found %: C,61.30;H,7.37;N,7.98

Reference example 58

30-

35

40

45

50

55

[0073] (R)-5-Hydroxymethyl-2-oxo-3-[4-(thiomorpholin-4-yl)phenyl]oxazolidine

[0074] To a solution of 25.0 g of N-benzyloxycarbonyl-4-(thiomorpholin-4-yl)aniline in 250 ml of dried tetrahydrofuran, 50 ml of 1.63 mol/L n-butyl lithium n-hexane solution was added dropwise with stirring at -78°C under nitrogen flow. Then, the mixture was stirred at the same temperature for 1 hour, added dropwise with 11.5 ml of (R)-(-)-glycidyl butyrate, and stirred at the same temperature for 1 hour, and then at room temperature for 23 hours. The reaction mixture was added with 250 ml of 10% aqueous ammonium chloride, and extracted with ethyl acetate. The extract was washed successively with water and saturated brine, and dried over sodium sulfate, and then the solvent was evaporated under reduced pressure. The residue was washed with diisopropyl ether to obtain 18.8 g of grayish brown crystals. Recrystallization from ethyl acetate gave colorless crystals having the melting point of from 126.5 to 127.5°C.

Elemental analysis for C ₁₄ H ₁₈ N ₂ O ₃ S						
Calculated %	C,	57.12;	Н,	6.16;	N,	9.52
Found %	C,	56.85;	Н,	6.13;	N,	9.25

Specific rotation $[\alpha]_D^{20}$ -40.9° (c = 0.1, DMSO)

[0075] The compounds of Reference examples 59 through 79 were obtained in the same manner as in Reference example 58.

5	ОН					
	Reference	R	Physical properties [recrystallization solvent]			
10	example 59	N-\S	pale purple needles [EtOH] mp,178~179°C Elemental analysis for C ₁₄ H ₁₇ FN ₂ O ₃ Calcd. %: C,59.99;H,6.11;N,9.99 Found %: C,59.97;H,6.06;N,9.98 Specific rotation [α] _D ²⁰ -54.9° (c=0.1,DMSO)			
20	60	MeO-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	pale brown crystals[AcOEt] mp,139.5~141°C Elemental analysis for C ₁₆ H ₂₁ FN ₂ O ₄ Calcd. %: C,59.25;H,6.53;N,8.64 Found %: C,58.95;H,6.46;N,8.39 Specific rotation [α] _D ²⁰ -48.1° (c=0.1,DMSO)			
25 30	61	EtO—N——	colorless crystals[i-PrOH] mp,131~132°C Elemental analysis for C ₁₇ H ₂₃ FN ₂ O ₄ Calcd. %: C,60.34;H,6.85;N,8.28 Found %: C,60.20;H,7.07;N,8.11 Specific rotation [α] _D 20-37.0° (c=0.1,DMSO)			
35	62	Me N	pale purple needles[AcOEt-i-Pr ₂ O] mp,141.5~143°C Elemental analysis for $C_{16}H_{21}FN_{2}O_{3}$ Calcd. %: C,62.32;H,6.86;N,9.09 Found %: C,62.21;H,6.94;N,9.01 Specific rotation [α] $_{D}^{20}$ -42.9° (c=0.1,DMSO)			
40 45	63		colorless needles[i-PrOH] mp,149~149.5°C Elemental analysis for C ₁₇ H ₂₃ FN ₂ O ₃ Calcd. %: C,63.34;H,7.19;N,8.69 Found %: C,63.17;H,7.35;N,8.67 Specific rotation			
50	64	MeO-(CH ₂) ₂ -O-N-F	[α] _D 20-43.0° (c=0.1,DMSO) colorless crystals[AcOEt] mp,94.5~96°C Elemental analysis for C ₁₈ H ₂₅ FN ₂ O ₅ Calcd. %: C,58.68;H,6.84;N,7.60 Found %: C,58.41;H,7.11;N,7.56 Specific rotation [α] _D 20-37.9° (c=0.1,DMSO)			

R-N OH

5 Reference Physical properties R example [recrystallization solvent] pale brown prisms[AcOEt-i-Pr2O] mp,118~119°C 10 Elemental analysis for C16H21FN2O3 65 Calcd. %: C,62.32;H,6.86;N,9.09 Found %: C,62.13;H,6.98;N,9.07 Specific rotation $[\alpha]_{D^{20}-36.9}^{\circ}$ (c=0.1,DMSO) 15 colorless needles[AcOEt] mp,113~114℃ Elemental analysis for C16H21FN2O5 66 Calcd. %: C,56.46;H,6.22;N,8.23 20 Found %: C,56.30;H,6.33;N,8.24 Specific rotation $[\alpha]_{D^{20}-41.2}^{\circ}$ (c=0.1,DMSO) colorless prisms[i-PrOH] mp,150~151°C 25 Elemental analysis for C15H20FN3O3 67 Calcd. %: C,58.24;H,6.52;N,13.58 Found %: C,58.33;H,6.31;N,13.56 Specific rotation 30 $[\alpha]_{D^{20}-38.9}^{\circ}$ (c=0.1,DMSO) pale brown prisms[i-PrOH] mp,130~132°C Elemental analysis for C₁₉H₂₆FN₃O₅ 35 68 Calcd. %: C,57.71;H,6.63;N,10.63 Found %: C,57.55;H,6.87;N,10.57 Specific rotation $[\alpha]_{D^{20}\text{-}36.0}^{\circ}$ (c=0.1,DMSO) pale yellow crystals [EtOH] 40 mp,127.5~128.5°C Elemental analysis for C11H13NO3 69 Calcd. %: C,63.76;H,6.32;N,6.76 Found %: C,63.59;H,6.39;N,6.78 45 Specific rotation $[\alpha]_{D^{20}-55.0}$ ° (c=0.1,DMSO) colorless prisms [EtOH] mp,150~151°C 50 Elemental analysis for C12H15NO3 70 Calcd. %: C,65.14;H,6.83;N,6.33

43

Specific rotation

Found %: C,65.01;H,6.64;N,6.28

 $[\alpha]_{D^{20}-45.9}^{\circ}$ (c=0.1,DMSO)

R-N OH

5			ОН
	Reference example	R	Physical properties [recrystallization solvent]
10	71	MeO-{CH ₂) ₂ -0-	pale brown needles [i-PrOH] mp,119~120°C Elemental analysis for C ₁₃ H ₁₆ FNO ₅ Calcd. %: C,54.73;H,5.65;N,4.91 Found %: C,54.58;H,5.55;N,4.89 Specific rotation
15			[α] _D ²⁰ -40.9° (c=0.1,DMSO) colorless needles[CH ₃ CN]
20	72	Me N————	mp,183~185°C Elemental analysis for C ₁₂ H ₁₆ N ₂ O ₃ Calcd. %: C,61.00;H,6.83;N,11.86 Found %: C,60.90;H,6.95;N,11.86 Specific rotation [\alpha] ₀ 2 ₀ -53.8° (c=0.1,DMSO)
25	73	Me N	colorless prisms [AcOEt] mp,128~130°C Elemental analysis for C ₁₂ H ₁₅ FN ₂ O ₃ Calcd. %: C,56.69;H,5.95;N,11.02 Found %: C,56.66;H,6.24;N,10.97 Specific rotation [α]p ²⁰ -51.1° (c=0.1,DMSO)
35	74	Me N	colorless needles [AcOEt-i-Pr ₂ O] mp,95~96°C Elemental analysis for C ₁₈ H ₁₇ FN ₂ O ₈ Calcd. %: C,58.20;H,6.39;N,10.44 Found %: C,58.06;H,6.53;N,10.36 Specific rotation [α] _D ²⁰ -54.8° (c=0.1,DMSO)
45	75	Et F	brown liquid NMR(DMSO-d ₆) & ppm:0.99(3H,t,J=7.5H z),3.11(2H,q,J=7.5Hz),3.56(1H,dd,J=1 2,3.5Hz),3.66(1H,dd,J=12,3.5Hz),3.79(1H,dd,J=9,6.5Hz),4.04(1H,t,J=9Hz),4. 60-4.70(1H,m),5.09(1H,br-s),7.03(1H,t,J=9Hz),7.17(1H,dd,J=9,2.5Hz),7.44(1H,dd,J=15,2.5Hz)
50			IR ν (liq.) cm ⁻¹ :1748,3416 MS(m/z):282(M+) Specific rotation [α] $_{\rm D}^{20}$ -39.2° (c=0.1,DMSO)

10	Reference example	R	Physical properties [recrystallization solvent]
15	76		colorless prisms[AcOEt] mp,145.5~146.5°C Elemental analysis for C ₁₄ H ₁₇ NO ₃ Calcd. %: C,68.00;H,6.93;N,5.66 Found %: C,67.88;H,7.23;N,5.68 Specific rotation [α] _D ²⁰ -51.1° (c=0.1,DMSO)
25	77	Boc→N	colorless crystals[EtOH] mp,109~110°C Elemental analysis for C ₂₀ H ₂₇ FN ₂ O ₆ Calcd. %: C,58.53;H,6.63;N,6.83 Found %: C,58.28;H,6.54;N,6.83 Specific rotation [α]p ²⁰ -32.0° (c=0.1,DMSO)
30 	78	Boc-N\\\-O-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	pale yellowish brown prisms[AcOEt] mp,157~158°C Elemental analysis for C ₁₈ H ₂₃ FN ₂ O ₈ Calcd. %: C,56.54;H,6.06;N,7.33 Found %: C,56.42;H,6.32;N,7.26 Specific rotation [\$\alpha\$]\text{p}^{20}-30.1° (c=0.1,DMSO)
<i>35</i>	79		pale purple prisms[i-PrOH] mp,163~165.5°C Elemental analysis for C ₁₇ H ₂₁ FN ₂ O ₅ Calcd. %: C,57.95;H,6.01;N,7.95 Found %: C,57.89;H,6.04;N,7.92 Specific rotation [α] _D ²⁰ -41.1° (c=0.1,DMSO)

Reference example 80

45

50

55

5

[0076] (R)-5-Mesyloxymethyl-2-oxo-3-[4-(thiomorpholin-4-yl)phenyl]oxazolidine

[0077] To a solution of 10.0 g of (R)-5-hydroxymethyl-2-oxo-3-[4-(thiomorpholin-4-yl)phenyl]oxazolidine and 10.5 ml of triethylamine in 200 ml of dichloromethane, 3.20 ml of methanesulfonyl chloride was added dropwise under ice-cooling and with stirring, and then the mixture was stirred at room temperature for 2 hours. The reaction solution was added with 200 ml of water, and extracted with dichloromethane. The extract was washed successively with water and saturated brine, and dried over sodium sulfate, and then the solvent was evaporated under reduced pressure. The residue was washed with diisopropyl ether to obtain 11.5 g of grayish brown crystals. Recrystallization from ethyl acetate gave colorless prisms having the melting point of from 174.5 to 175.5°C.

Elemental analysis for C ₁₅ H ₂₀ N ₂ O ₅ S ₂						
Calculated %	C,	48.37;	Н,	5.41;	N,	7.52

(continued)

Elemental analysis for C ₁₅ H ₂₀ N ₂ O ₅ S ₂						
Found %	C,	48.41;	Н,	5.33;	N,	7.36

Specific rotation $[\alpha]_D^{20}$ -54.2° (c = 0.1, DMSO) [0078] The compounds of Reference examples 81 through 101 were obtained in the same manner as in Reference example 80.

1	Reference		Physical properties
	example	R	[recrystallization solvent]
10	example		colorless crystals[AcOEt-i-Pr ₂ O]
		į	mp,111~112°C
			Elemental analysis for C ₁₅ H ₁₉ FN ₂ O ₅ S
	81		Calcd. %: C,50.27;H,5.34;N,7.82
15		F	Found %: C,50.10;H,5.30;N,7.73
			Specific rotation [\alpha] \(\text{p}^{20}\)-50.1° (c=0.1,DMSO)
			colorless prisms[AcOEt]
			mp,124.5~125.5°C
		MeO-\ N-\ \	Elemental analysis for C ₁₇ H ₂₈ FN ₂ O ₆ S
20	82	سر ب	Calcd. % : C,50.74;H,5.76;N,6.96
		r	Found %: C,50.50;H,5.66;N,6.87
			Specific rotation [\alpha]_D^{20}-49.9° (c=0.1,DMSO)
			colorless needles[i-PrOH]
25			mp,128~128.5°C
	83	EtO-(N-)-	Elemental analysis for C ₁₈ H ₂₅ FN ₂ O ₆ S
	00		Calcd. %: C,51.91;H,6.05;N,6.73
			Found %: C,51.80;H,6.29;N,6.69
30			Specific rotation [α]p ²⁰ -47.9° (c=0.1,DMSO)
			pale purple prisms[i-PrOH]
			mp,155~156.5°C
	84	Me—N—	Elemental analysis for C ₁₇ H ₂₃ FN ₂ O ₅ S Calcd. %: C,52.84;H,6.00;N,7.25
		F	Found %: C,52.65;H,6.22;N,7.07
35			Specific rotation [α] _D 20-52.9° (c=0.1,DMSO)
			colorless plates[EtOH]
			mp,155~156°C
		Et-\(\mathbb{N}\)	Elemental analysis for C18H25FN2O5S
40	85		Calcd. %: C,53.99;H,6.29;N,7.00
		F	Found %: C,53.74;H,6.40;N,6.87
			Specific rotation [α] _D 20-51.1° (c=0.1,DMSO)
			pale brown needles[AcOEt]
45			mp,124~124.5°C
	00	MeO-(CH ₂) ₂ -O-(N-(-)	Elemental analysis for C19H27FN2O7S
	86		Calcd. %: C,51.11;H,6.10;N,6.27
	1	F	Found %: C,50.82;H,6.34;N,6.25
			Specific rotation [α] $_{D^{20}-47.8^{\circ}}$ (c=0.1,DMSO)
50			

R-N OMs

	Reference	R	Physical properties
	example		[recrystallization solvent]
		•	colorless needles[AcOEt-i-Pr2O]
10			mp,121~122.5℃
	0.7	jv-<>-	Elemental analysis for C ₁₇ H ₂₃ FN ₂ O ₅ S
·	87		Calcd. % : C,52.84;H,6.00;N,7.25
		F	Found %: C,52.57;H,6.16;N,7.20
'			Specific rotation [α] D^{20} -52.8° (c=0.1,DMSO)
15			brown liquid
'			NMR(DMSO-d ₆) δ ppm:3.22(3H,s),3.26(3H,s),
		•	3.45(2H,t,J=5Hz),3.53(2H,t,J=5Hz),3.60-3.7
			0(2H,m),3.77(1H,dd,J=9.5,6.5Hz),4.10-4.15(
			3H,m),4.35-4.45(1H,m),4.44(1H,dd,J=11.5,5
20	88	MeO(CH ₂) ₂ -ON	.5Hz),4.49(1H,dd,J=11.5,3Hz),4.90-5.00(1H,
	35		m),6.58(1H,t,J=9Hz),7.12(1H,dd,J=9,2.5Hz)
			,7.37(1H,dd,J=14.5,2.5Hz)
	Ì	1	IR ν (liq.) cm ⁻¹ :1754
25	ı		MS(m/z):418(M+)
25			Specific rotation [α] $_{D^{20}-45.7^{\circ}}$ (c=0.1,DMSO)
			colorless prisms[AcOEt]
			mp,159.5~160.5°C
]	Me-N N-	Elemental analysis for C16H22FN3O5S
30	89		Calcd. %: C,49.60;H,5.72;N,10.85
			Found %: C,49.58;H,5.46;N,10.75
			Specific rotation [α] D^{20} -49.0° (c=0.1,DMSO)
			colorless prisms[MeOH]
35			mp,182.5~183.5°C
		Boc-N N-	Elemental analysis for C20H28FN3O7S
	90	محر ب	Calcd. %: C,50.73;H,5.96;N,8.87
	1	•	Found %: C,50.63;H,6.11;N,8.88
			Specific rotation [α] $_{D^{20}-46.0^{\circ}}$ (c=0.1,DMSO)
40			pale brown crystals[i-PrOH]
			mp,128~130°C
			Elemental analysis for C12H15NO5S
	91	Me	Calcd. %: C,50.52;H,5.30;N,4.91
45	}	1	Found %: C,50.23;H,5.30;N,4.83
73		1	Specific rotation [α] $_{D^{20}-54.0^{\circ}}$ (c=0.1,DMSO)

48

DUDDOOD -FD 4490040A4 I

50

55

ſ	Reference	R	Physical properties
	example		[recrystallization solvent]
10			pale yellow prisms[i-PrOH]
l			mp,113~113.5°C
		Me—〈 ̄〉—	Elemental analysis for C12H17NO5S
	92)	Calcd. %: C,52.16;H,5.72;N,4.68
15		Me	Found %: C,51.91;H,5.56;N,4.63
			Specific rotation [\alpha] \text{D}^{20}-52.9° (c=0.1,DMSO)
			colorless crystals[EtOH]
		/= \	mp,72.5~74°C
		MeO-(CH ₂) ₂ -O-	Elemental analysis for C14H18FNO7S
20	93		Calcd. %: C,46.28;H,4.99;N,3.85
•	·	r	Found %: C,46.22;H,4.95;N,3.83
	ļ		Specific rotation [\alpha]D20-51.2° (c=0.1,DMSO)
			colorless prisms[AcOEt-i-Pr2O]
		Ma Ma	mp,141.5~143°C
25			Elemental analysis for C18H18N2O6S
	94		Calcd. %: C,49.67;H,5.77;N,8.91
			Found %: C,49.41;H,5.64;N,8.84
			Specific rotation [\alpha] _D 20-55.9° (c=0.1,DMSO)
<i>30</i> ·			pale yellowish brown amorphous solid
		Me N-	NMR(DMSO-d ₆) & ppm:2.88(6H,s),3.23(3H,s),3
			.82(1H,dd,J=9,6Hz),4.18(1H,t,J=9Hz),4.45(1
	j		H,dd,J=11.5,5.5Hz),4.50(1H,dd,J=11.5,3Hz),
	95		4.95-5.05(1H,m),7.20-7.30(2H,m),7.52(1H,d,
35	30	Me _	J=14Hz)
	1	, F	$IR \nu (liq.) cm^{-1}:1758$
			MS(m/z):332(M+)
	1		Specific rotation [\alpha] \text{p20-41.5} (c=0.1,DMSO)
			pale purple crystals [AcOEt-i-Pr2O]
40			mp.66~67°C
		Me	Elemental analysis for C14H19FN2O5S
	96	Et	Calcd. %: C,48.55;H,5.53;N,8.09
			Found %: C,48.20;H,5.64;N,7.94
45	1		Specific rotation [\alpha]D20-58.5 (c=0.1,DMSO)
	ī	I	

R-N OMs

5			R-N OMs
	Reference	R	Physical properties
	example	N	[recrystallization solvent]
10		Et. (~~)	brown liquid NMR(DMSO-d ₆) δ ppm:1.00(6H,t,J=7Hz),3.15(4 H,q,J=7Hz),3.23(3H,s),3.81(1H,dd,J=9,6Hz),4. 16(1H,t,J=9Hz),4.45(1H,dd,J=11.5,5.5Hz),4.50
15	97	Et. F	(1H,dd,J=11.5,3Hz),4.95-5.05(1H,m),7.05-7.15 (1H,m),7.15-7.25(1H,m),7.40-7.50(1H,m) IR ν (liq.) cm ⁻¹ :1178,1360,1756 MS(m/z):360(M+) Specific rotation [α] $_{\rm D}^{20}$ -42.2° (c=0.1,DMSO)
20	98	∞	colorless needles[i-PrOH] mp,100.5~102.5°C Elemental analysis for C ₁₅ H ₁₉ NO ₅ S Calcd. %: C,55.37;H,5.89;N,4.30 Found %: C,55.11;H,6.02;N,4.27 Specific rotation [α] _D 20-58.1° (c=0.1,DMSO)
25	99	Bac-N O-S	colorless prisms[i-PrOH] mp,126~127.5°C Elemental analysis for C ₂₁ H ₂₉ FN ₂ O ₈ S Calcd. %: C,51.63;H,5.98;N,5.73
30			Found %: C,51.44;H,6.18;N,5.68 Specific rotation [α] _D 20-37.9° (c=0.1,DMSO)
35	100	Bac-N O-S	colorless prisms[i-PrOH] mp,114.5~117°C Elemental analysis for C ₁₉ H ₂₅ FN ₂ O ₈ S Calcd. %: C,49.56;H,5.47;N,6.08 Found %: C,49.46;H,5.67;N,6.03
			Specific rotation [α] $_{D^{20}-46.0^{\circ}}$ (c=0.1,DMSO) pale purple scales [AcOEt]
40	101	\$\$\frac{1}{2}\$\frac{1}{2}\$	mp,147.5~149°C Elemental analysis for $C_{18}H_{23}FN_2O_7S$ Calcd. %: C,50.22;H,5.39;N,6.51 Found %: C,50.06;H,5.66;N,6.49 Specific rotation [α] _D 20-45.8° (c=0.1,DMSO)

Reference example 102

45

[0079] (R)-5-Azidomethyl-2-oxo-3-[4-(thiomorpholin-4-yl)phenyl]oxazolidine
[0080] A suspension of 11.5 g of (R)-5-mesyloxymethyl-2-oxo-3-[4-(thiomorpholin-4-yl)phenyl]oxazolidine and 8.35 g of sodium azide in 110 ml of dried N,N-dimethylformamide was stirred with heating to 65°C for 5 hours. The reaction solution was cooled, then added with 200 ml of water, and extracted with ethyl acetate. The extract was washed successively with water and saturated brine, and dried over sodium sulfate, and then the solvent was evaporated under reduced pressure. The residue was washed with diisopropyl ether to obtain 8.85 g of grayish brown crystals. Recrystallization from ethyl acetate gave colorless crystals having the melting point of from 110 to 111°C.

Elemental analysis for C ₁₄ H ₁₇ N ₅ O ₂ S						
Calculated %	C,	52.65;	Н,	5.37;	N,	21.93
Found %	C,	52.47;	Н,	5.35;	N,	21.65

Specific rotation $[\alpha]_D^{20}$ -124.4° (c = 0.1, DMSO)

[0081] The compounds of Reference examples 103 through 123 were obtained in the same manner as in Reference example 102.

R-N N

Physical properties Reference R [recrystallization solvent] example colorless crystals[AcOEt] mp,109~109.5℃ Elemental analysis for C14H16FN5O2 103 Calcd. %: C,55.08;H,5.28;N,22.94 Found %: C,54.88;H,5.12;N,22.70 Specific rotation [α] $_{D^{20}}$ -136.4° (c=0.1,DMSO) colorless needles[AcOEt-i-Pr2O] mp.89~90°C Elemental analysis for C16H20FN5O8 104 Calcd. %: C,55.01;H,5.77;N,20.05 Found %: C,54.83;H,5.72;N,19.88 Specific rotation [α] n^{20} -118.5° (c=0.1,DMSO) pale brown needles[i-PrOH] mp.66~67°C Elemental analysis for C17H22FN5O2 105 Calcd. %: C,56.19;H,6.10;N,19.27 Found %: C,56.05;H,6.36;N,19.23 Specific rotation [α] p^{20} -110.5° (c=0.1,DMSO) pale purple prisms [AcOEt-i-Pr2O] mp,97.5~98.5℃ Elemental analysis for C16H20FN5O2 106 Calcd. %: C.57.65;H.6.05;N.21.01 Found %: C,57.69;H,6.21;N,20.90 Specific rotation [α] $_{D^{20}}$ -122.4° (c=0.1,DMSO) colorless plates [EtOH] mp,99~100°C Elemental analysis for C17H22FN5O2 107 Calcd. %: C,58.78;H,6.38;N,20.16 Found %: C,58.66;H,6.47;N,20.06 Specific rotation [α] D^{20} -117.3° (c=0.1,DMSO)

55

5

10

15

20

25

30

35

40

₹-N N₃

5			R-N N ₃
ſ	Reference	5	Physical properties
	example	R	[recrystallization solvent]
10	108	MeO-(CH _{2b} -O-\\	pale brown liquid NMR(DMSO-d ₆) & ppm:1.55-1.65(2H,m),1.90- 2.00(2H,m),2.75-2.80(2H,m),3.15-3.25(2H, m),3.27(3H,s),3.40-3.50(1H,m),3.45(2H,t,J= 5Hz),3.56(2H,t,J=5Hz),3.67(1H,dd,J=13.5,6 Hz),3.70-3.80(2H,m),4.10(1H,t,J=9Hz),4.80 -4.90(1H,m),7.06(1H,t,J=9Hz),7.17(1H,dd,J =9,2.5Hz),7.45(1H,dd,J=15,2.5Hz) IR \(\nu\) (liq.) cm ⁻¹ :1756,2112 MS(m/z):393(M+)
			Specific rotation
20			$[\alpha]_{D^{20}-100.3}^{\circ}$ (c=0.1,DMSO)
25 30	109	MeO-{CH ₂) ₂ -O-\N-\F	brown liquid NMR(DMSO-de) δ ppm:3.26(3H,s),3.45(2H,t,J =4.5Hz),3.53(2H,t,J=4.5Hz),3.60-3.75(5H, m),4.08(1H,t,J=9Hz),4.05-4.15(2H,m),4.35-4.45(1H,m),4.80-4.90(1H,m),6.58(1H,t,J=8.5Hz),7.12(1H,dd,J=8.5,2Hz),7.38(1H,dd,J=14.5,2Hz) IR ν (liq.) cm ⁻¹ :1752,2112 MS(m/z):365(M+) Specific rotation [α]p ²⁰ -91.4° (c=0.1,DMSO)
35	110		colorless crystals[AcOEt-i-Pr ₂ O] mp,67~67.5°C Elemental analysis for C ₁₆ H ₂₀ FN ₅ O ₂ Calcd. %: C,57.65;H,6.05;N,21.01 Found %: C,57.66;H,6.09;N,21.05 Specific rotation [α]p ²⁰ -122.6° (c=0.1,DMSO)
45	111	Me-N N-S	colorless scales [i-PrOH] mp,106.5~107°C Elemental analysis for C ₁₅ H ₁₉ FN ₆ O ₂ Calcd. %: C,53.88;H,5.73;N,25.14 Found %: C,53.88;H,5.63;N,25.14 Specific rotation
			$[\alpha]_{D^{20}-118.5^{\circ}}$ (c=0.1,DMSO)

50

55

R-N N₃

5	N ₃					
i	Reference	R	Physical properties			
	example	R	[recrystallization solvent]			
			pale brown needles[i-PrOH]			
10			mp,112~113℃			
	112	Boc-N N-	Elemental analysis for C19H25FN6O4			
	112	سر ب	Calcd. %: C,54.28;H,5.99;N,19.99			
		•	Found %: C,54.20;H,6.09;N,20.07			
_			Specific rotation [a]p20-101.9° (c=0.1,DMSO)			
15			reddish brown liquid			
			NMR(CDCl ₃) δ ppm:2.33(3H,s),3.59(1H,dd,J=13.5			
			,4.5Hz),3.68(1H,dd,J=13.5,4.5Hz),3.84(1H,dd,J			
	113	Me—	=9,6Hz),4.08(1H,t,J=9Hz),4.74-4.80(1H,m),7.18			
20			(2H,d,J=8Hz),7.41(2H,d,J=8Hz)			
			IR ν (liq.) cm-1:1754,2112 MS(m/z):232(M+)			
			Specific rotation [α] 20 -119.1° (c=0.1,DMSO)			
	ļ		pale brown crystals [i-Pr2O]			
25		Me Me	mp.85~85.5°C			
25	114		Elemental analysis for C12H14N4O2			
			Caled. %: C,58.53;H,5.73;N,22.75			
			Found %: C,58.30;H,5.59;N,22.46			
	1		Specific rotation [\alpha] \(\text{p}^{20}\)-140.4° (c=0.1,DMSO)			
30			coloriess plates[EtOH]			
		(011)	mp,75~76°C			
		MeO-(CH ₂) ₂ -0-	Elemental analysis for C13H15FN4O4			
	115	F'	Calcd. %: C,50.32;H,4.87;N,18.06			
35			Found %: C,50.27;H,4.94;N,18.01			
			Specific rotation [\alpha]_{D^{20}}-119.8° (c=0.1,DMSO)			
			colorless prisms[AcOEt]			
	ļ	Me 🥽	mp,112~113°C			
	116	\	Elemental analysis for C ₁₂ H ₁₅ N ₅ O ₂			
40		Me	Calcd. %: C,55.16;H,5.79;N,26.80 Found %: C,55.12;H,5.60;N,26.73			
			Specific rotation [α] $_{0}^{20}$ -142.0° (c=0.1,DMSO)			
	L	<u></u>	Opcours to seation [to] b - 1 + 2 - 0 (0 - 0 - 1, D into 0)			

53

45

50

5			~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
ſ	Reference	R	Physical properties
	example		[recrystallization solvent]
10	117	Me F	pale brown crystals NMR(DMSO-d ₆) δ ppm:2.75(6H,s),3.66(1H,dd,J=13.5,5.5Hz),3.70-3.75(2H,m),4.10(1H,t,J=9Hz), 4.80-4.90(1H,m),6.98(1H,t,J=9Hz),7.15(1H,dd,J=9,2.5Hz),7.43(1H,dd,J=15,2.5Hz) IR ν (KBr) cm ⁻¹ :1752,2108 MS(m/z):279(M+) Specific rotation [α]p ²⁰ -137.8° (c=0.1,DMSO)
Ì			brown liquid
20	118	He F	NMR(DMSO-de) δ ppm:1.03(3H,t,J=7Hz),2.73(3H,s),3.12(2H,q,J=7Hz),3.67(1H,dd,J=13.5,5.5Hz),3.70-3.80(2H,m),4.10(1H,t,J=9Hz),4.80-4.90(1H,m),6.98(1H,t,J=9Hz),7.16(1H,dd,J=9,2.5Hz),7.42(1H,dd,J=15.5,2.5Hz) IR ν (liq.) cm ⁻¹ :1756,2112 MS(m/z):293(M+) Specific rotation [α]p ²⁰ -134.8° (c=0.1,DMSO)
30	119	Et N-	brown liquid NMR(DMSO-d ₆) δ ppm:0.99(6H,t,J=7.5Hz),3.12(4 H,q,J=7.5Hz),3.67(1H,dd,J=13.5,5.5Hz),3.70-3. 80(2H,m),4.11(1H,t,J=9Hz),4.80-4.90(1H,m),7. 03(1H,t,J=9Hz),7.17(1H,dd,J=9,2.5Hz),7.42(1 H,dd,J=15.5,2.5Hz) IR ν (liq.) cm ⁻¹ :1756,2112 MS(m/z):307(M*)
<i>35</i>	L		Specific rotation [α]n ²⁰ -105.8° (c=0.1,DMSO)
40	120		colorless needles[i-PrOH] mp,104~105.5°C Elemental analysis for C ₁₄ H ₁₆ N ₄ O ₂ Calcd. %: C,61.75;H,5.92;N,20.58 Found %: C,61.64;H,5.73;N,20.54
-		<u> </u>	Specific rotation [α] _D 20-135.9° (c=0.1,DMSO)

R-N N₃

colorless prisms[i-PrOH]

Physical properties

[recrystallization solvent]

5

10

15

20

25

30

35

t .	•	,
		mp,111~112.5°C
101	Boc-N >-0-()-	Elemental analysis for C20H26FN5O5
121		Calcd. %: C,55.16;H,6.02;N,16.08
		Found %: C,55.07;H,6.15;N,15.88
]		Specific rotation [\alpha] p ²⁰ -86.3° (c=0.1,DMSO)
		colorless prisms[i-PrOH]
1		mp,122~123°C
100	Bos-N 0-0-	Elemental analysis for C ₁₈ H ₂₂ FN ₅ O ₅
122	محر ۱	Calcd. %: C,53.07;H,5.44;N,17.19
}	1	Found %: C,53.02;H,5.66;N,17.22
		Specific rotation [α] $_{D}^{20}$ -96.8° (c =0.1,DMSO)
		pale brown prisms [i-PrOH]

mp,114.5~116℃

Elemental analysis for C17H20FN5O4

Calcd. %: C,54.11;H,5.34;N,18.56

Found %: C,54.32;H,5.32;N,18.26

Specific rotation [α]p²⁰-113.0° (c=0.1,DMSO)

Reference example 124

123

Reference

example

[0082] (R)-5-Azidomethyl-3-[3-fluoro-4-(piperazin-1-yl)phenyl]-2-oxooxazolidine

R

[0083] To 1.00 g of (R)-5-azidomethyl-3-[4-(4-tert-butoxycarbonylpiperazin-1-yl)-3-fluorophenyl]-2-oxooxazolidine, 20 ml of 16 % hydrogen chloride ethyl acetate solution was added, and the mixture was stirred at room temperature for 30 minutes. The precipitated crystals were collected by filtration. The crystals were added with aqueous sodium hydroxide, and then the resulting alkaline mixture was extracted with ethyl acetate. The extract was washed with saturated brine and dried over sodium sulfate, and then the solvent was evaporated under reduced pressure to obtain 0.72 g of pale brown crystals. Recrystallization from isopropanol gave colorless crystals having the melting point of from 114 to 115°C.

40

Elemental analysis for C ₁₄ H ₁₇ FN ₆ O ₂						
Calculated %	C,	52.49;	Н,	5.35;	N,	26.24
Found %	С,	52.24;	Н,	5.21;	N,	26.15

Specific rotation $[\alpha]_D^{20}$ -127.3° (c = 0.1, DMSO)

[0084] The compounds of Reference examples 125 through 126 were obtained in the same manner as in Reference example 124.

50

45

colorless prisms [MeOH]

mp,169~170°C

pale brown crystals

 $IR \nu (KBr) cm^{-1}:1744,2116$

Physical properties

[recrystallization solvent]

Elemental analysis for C15H18FN5O3-HCl

Specific rotation [α] D^{20} -99.8° (c=0.1,DMSO)

NMR(DMSO-d₆) δ ppm:3.67(1H,dd,J=14,6Hz),3. 70-3.80(2H,m),4.02(2H,dd,J=12,5Hz),4.12(1H,t,J=9Hz),4.41(2H,dd,J=12,7Hz),4.80-4.90(1H,m),5.05-5.15(1H,m),7.05(1H,t,J=9Hz),7.22(1

H,dd,J=9.2Hz),7.60(1H,dd,J=13.5,2Hz),9.46(

Specific rotation [α] $_{D^{20}-108.6^{\circ}}$ (c=0.1,DMSO)

Calcd. %: C,48.46;H,5.15;N,18.84 Found %: C,48.23;H,5.12;N,18.65

10

5

15

20

25

30

35

40

45

Reference example 127

Reference

example

125

126

R

- HCI

HC

[0085] (R)-5-Azidomethyl-3-[4-(4-ethylpiperazin-1-yl)-3-fluorophenyl]-2-oxo-oxazolidine

[0086] To a solution of 5.00 g of (R)-5-azidomethyl-3-[3-fluoro-4-(piperazin-1-yl)phenyl]-2-oxooxazolidine and 2.16 g of potassium carbonate in 50 ml of dried N,N-dimethylformamide, 1.40 ml of ethyl iodide was added dropwise at room temperature, and the mixture was stirred at room temperature for 3 hours. The reaction solution was added with water, and extracted with ethyl acetate. The extract was washed with saturated brine, and dried over sodium sulfate, and then the solvent was evaporated under reduced pressure to obtain 4.53 g of pale brown crystals. Recrystallization from a mixture of ethyl acetate and n-heptane gave colorless crystals having the melting point of from 90 to 91°C.

1H,br-s)

Elemental analysis for C ₁₆ H ₂₁ FN ₆ O ₂						
Calculated %	C,	55.16;	Н,	6.08;	N,	24.12
Found %	C,	55.22;	Н,	6.20;	N,	24.03

Specific rotation $[\alpha]_D^{20}$ -120.9° (c = 0.1, DMSO)

[0087] The compounds of Reference examples 128 through 136 were obtained in the same manner as in Reference example 127.

55

R-N N₃

		Dismoisel name autica
	R	Physical properties
example		[recrystallization solvent]
		pale brown needles[i-PrOH]
ļ		mp,113.5~114.5°C
100	n-Pr—N N—	Elemental analysis for C ₁₇ H ₂₃ FN ₆ O ₂
128		Calcd. %: C,56.34;H,6.40;N,23.19
:	F	Found %: C,56.32;H,6.48;N,23.17
		Specific rotation [\alpha] \(\text{p}^{20}-114.3\) (c=0.1,DMSO)
		pale yellow scales[i-PrOH]
		mp,102~103℃
700	· n-Bu-N N-	Elemental analysis for C18H25FN6O2-1/8H2O
129		Calcd. %: C,57.09;H,6.72;N,22.19
		Found %: C,57.10;H,6.86;N,22.20
		Specific rotation [α] p^{20} -104.8° (c=0.1,DMSO)
	CH2-N N-	colorless needles[AcOEt-i-Pr2O]
130		mp,125~126.5℃
		Elemental analysis for C ₁₈ H ₂₈ FN ₆ O ₄
		Calcd. %: C,53.20;H,5.70;N,20.68
		Found %: C,53.03;H,5.47;N,20.49
		Specific rotation [\alpha] \text{p}^{20}-101.5\(^{\text{c}}\) (c=0.1,DMSO)
		colorless crystals[AcOEt-i-Pr2O]
ì	CH 2)3-N	mp,64.5~66°C
121		Elemental analysis for C20H27FN6O4
131	F	Calcd. %: C,55.29;H,6.26;N,19.34
1	}	Found %: C,55.25;H,6.33;N,19.31
	1	Specific rotation [\alpha]D20-89.0° (c=0.1,DMSO)
	Reference example 128 129 130	128 n-Py-N N- 129 n-Bu-N N- 130 ch ₂ -N N- ch ₂

BNSDOCID: <EP 1130016A1 I >

R-N N₃

5			N ₃
Г	Reference	R	Physical properties
l	example	K	[recrystallization solvent]
T T			pale brown prisms [EtOH]
40			mp,105~106°C
10		% /\ \	Elemental analysis for C16H19FN6O4
1	132	>N N-	Calcd. %: C,50.79;H,5.06;N,22.21
ļ		MeO — F	Found %: C,50.66;H,5.16;N,22.20
]		·	Specific rotation
15			[α] _D 20-103.9° (c=0.1,DMSO)
<u> </u>			pale brown prisms[i-PrOH]
j		1	mp,80~81.5°C
1		9. /¬ /¬	Elemental analysis for C17H20FN5O5
	133	>-v >-o-()-	Calcd. %: C,51.91;H,5.12;N,17.80
20	200	MeO	Found %: C,51.91;H,4.87;N,17.75
· ·		•	Specific rotation
ļ			$[\alpha]_{D^{20}-98.6^{\circ}}$ (c=0.1,DMSO)
}			pale yellow prisms[EtOH]
25		0	mp,99~101°C
	134	MeO-(CH ₂) ₂ N N-	Elemental analysis for C18H23FN6O4
			Calcd. %: C,53.20;H,5.70;N,20.68
			Found %: C,53.07;H,5.68;N,20.75
30			Specific rotation
30			$[\alpha]_{D^{20}-106.9^{\circ}}$ (c=0.1,DMSO)
			pale yellow liquid
		1	NMR(DMSO-d ₆) δ ppm:1.50-1.70(2H,m),1.8
		1	0-2.00(2H,m),2.57(2H,t,J=6Hz),3.20-3.40
<i>35</i>			(2H,m),3.23(3H,s),3.56(2H,t,J=6Hz),3.65-
			3.85(4H,m),3.67(1H,dd,J=13.5,5.5Hz),4.1
	105	4-7-CHL	2(1H,t,J=9Hz),4.50-4.60(1H,m),4.80-4.90
	135		(1H,m),7.22(1H,dd,J=9,2.5Hz),7.27(1H,t,
40		1	J=9Hz),7.54(1H,dd,J=13.5,2.5Hz)
			$\mathbb{R} \nu$ (liq.) cm ⁻¹ :1756,2112
		ļ	MS(m/z):421(M+)
			Specific rotation
			[α] _D 20-86.2° (c=0.1,DMSO)
45]	1	pale brown prisms[i-PrOH]
			mp,82~83°C
	1		Elemental analysis for C ₁₅ H ₁₆ FN ₅ O ₅
	136	MeO	Calcd. %: C,49.32;H,4.41;N,19.17
5 0		F	Found %: C,49.05;H,4.32;N,19.18
			Specific rotation
		<u> </u>	$[\alpha]$ p ²⁰ -103.9° (c=0.1,DMSO)

Reference example 137

[0088] Ethyl (R)-3-[4-[4-(5-azidomethyl-2-oxooxazolidin-3-yl)-2-fluorophenyl]-piperazin-1-yl]propionate

[0089] A solution of 7.00 g of (R)-5-azidomethyl-3-[3-fluoro-4-(piperazin-1-yl)-phenyl]-2-oxooxazolidine and 3.56 ml of ethyl acrylate_ in 70 ml of ethanol was heated under reflux for 1 hour. The solvent was evaporated under reduced pressure, and the residue was purified by column chromatography (silica gel, diethyl ether) to obtain 7.50 g of colorless crystals. Recrystallization from isopropanol gave colorless crystals having the melting point of from 82 to 83°C.

Elemental analysis for C ₁₉ H ₂₅ FN ₆ O ₄								
Calculated %	C,	54.28;	Н,	5.99;	N,	19.99		
Found %	C,	53.99;	Н,	5.88;	N,	19.97		

Specific rotation $[\alpha]_D^{20}$ -95.0° (c = 0.1, DMSO)

5

10

15

20

25

30

35

40

45

50

55

[0090] The compounds of Reference examples 138 through 139 were obtained in the same manner as in Reference example 137.

0	
μ-	
R-N I	
	N.

Reference example	R	Physical properties [recrystallization solvent]
138	NC (CH ₂) ₂ -N N—	pale brown needles[MeOH] mp,110~112°C Elemental analysis for C ₁₇ H ₂₀ FN ₇ O ₂ Calcd. %: C,54.68;H,5.40;N,26.26 Found %: C,54.65;H,5.39;N,26.04 Specific rotation [α] _D 20-114.8° (c=0.1,DMSO)
139	Me (CH ₂) ₂ N N	colorless needles [AcOEt] mp,130.5~131.5°C Elemental analysis for $C_{19}H_{26}FN_7O_3$ Calcd. %: C,54.40;H,6.25;N,23.38 Found %: C,54.37;H,6.35;N,23.20 Specific rotation [α]p ²⁰ -100.0° (c=0.1,DMSO)

Reference example 140

[0091] (R)-5-Azidomethyl-3-[3-fluoro-4-[4-(3-phthalimidopropyl)piperazin-1-yl]-phenyl]-2-oxooxazolidine [0092] To a suspension of 5.00 g of (R)-5-azidomethyl-3-[3-fluoro-4-(piperazin-1-yl)phenyl]-2-oxooxazolidine and 2.16 g of potassium _ carbonate in 110 ml of dried N,N-dimethyformamide, 4.60 g of N-(3-bromopropyl)phthalimide was added, and the mixture was stirred with heating at an outer temperature of 50°C for 3 hours. The reaction solution was added with water, and extracted with ethyl acetate. The extract was washed with saturated brine, and dried over sodium sulfate, and then the solvent was evaporated under reduced pressure. The residue was washed with diisopropyl ether to obtain 6.54 g of pale brown crystals. Recrystallization from ethyl acetate gave colorless needles having the melting point of from 153 to 154.5°C.

Elemental analysis for C ₂₅ H ₂₆ FN ₇ O ₄								
Calculated %	C,	59.16;	Н,	5.16;	N,	19.32		
Found %	C,	58.99;	Н,	5.02;	N,	19.29		

Specific rotation $[\alpha]_D^{20}$ -95.3° (c = 0.1, DMSO)

[0093] The compound of Reference example 141 was obtained in the same manner as in Reference example 140.

Reference example 141

[0094] (R)-5-Azidomethyl-3-[3-fluoro-4-[4-(2-phthalimidoethyl)piperazin-1-yl]-phenyl]-2-oxooxazolidine

Appearance: pale yellow crystals (recrystallization solvent: DMF-H₂O)

Melting point: 210.5 to 212°C

Elemental analysis for C ₂₄ H ₂₄ FN ₇ O ₄								
Calculated %	C,	58.41;	Н,	4.90;	N,	19.87		
Found %	C,	58.04;	Н,	4.67;	N,	19.72		

Specific rotation $[\alpha]_D^{20}$ -95.1° (c = 0.1, DMSO)

Refer nce example 142

15

20

25

10

.5

[0095] (R)-3-[4-[4-(3-Aminopropyl)piperazin-1-yl]-3-fluorophenyl]-5-azidomethyl-2-oxooxazolidine [0096] To a solution of 6.24 g of (R)-5-azidomethyl-3-[3-fluoro-4-[4-(3-phthalimidopropyl)piperazin-1-yl]phenyl]-2-oxooxazolidine in 60 ml of ethanol, 0.66 ml of hydrazine hydrate was added, and the mixture was heated under reflux for 4 hours. The reaction solution was added with water, and acidified with 10 % hydrochloric acid, and the aqueous layer was washed with ethyl acetate. The aqueous layer was alkalified with aqueous sodium hydroxide, and extracted with ethyl acetate. The extract was washed with saturated brine, and dried over sodium sulfate, and then the solvent was evaporated under reduced pressure to obtain 4.35 g of a pale brown liquid.

NMR spectrum (DMSO-d₆) δ ppm:

 $\begin{array}{lll} 1.55(2H,quin,J=7Hz),2,37(2H,t,J=7Hz),2.51(4H,t,J=4.5Hz),2.62(2H,t,J=7Hz), & 2.99(4H,t,J=4.5Hz),3.67(1H,dd,J=13.5,5.5Hz),3.70-3.80(2H,m),4.10(1H,t,J=9Hz), & 4.80-4.90(1H,m),7.04(1H,t,J=9Hz),7.18(1H,dd,J=9,2.5Hz),7.46 \\ & (1H,dd,J=15,2.5Hz) \end{array}$

IR spectrum v (liq.) cm-1: 1752,2112

Mass spectrum (m/z): 377(M+)

Specific rotation $[\alpha]_D^{20}$ -116.9° (c = 0.1, DMSO)

30

35

40

45

Ref rence example 143

[0097] (R)-3-[4-[4-(3-Acetylaminopropyl)piperazin-1-yl]-3-fluorophenyl]-5-azidomethyl-2-oxooxazolidine [0098] To a solution of 2.00 g of (R)-3-[4-[4-(3-aminopropyl)piperazin-1-yl]-3-fluorophenyl]-5-azidomethyl-2-oxooxazolidine in 20 ml of pyridine, 1.50 ml of acetic anhydride was added under ice-cooling and with stirring, and the mixture was stirred at the same temperature for 1 hour. The solvent was evaporated under reduced pressure, and then th residue was added with aqueous sodium hydroxide, and the resulting alkaline mixture was extracted with ethyl acetate. The extract was washed with saturated brine, and dried over sodium sulfate, and then the solvent was evaporated under reduced pressure. The residue was purified by column chromatography (alumina, ethyl acetate to ethyl acetate: methanol = 20:1) to obtain 1.63 g of a pale brown liquid.

NMR spectrum (DMSO-d₆) δ ppm:

 $1.57(2H,quin,J=7.5Hz),1.79(3H,s),2.34(2H,t,J=7.5Hz),2.51(4H,t,J=5Hz),2.99(4H,t,J=5Hz),3.00-3.10(2H,m),3.67(1H,dd,J=13.5,5.5Hz),3.70-3.80(2H,m), \\ 4.10(1H,t,J=9Hz),4.80-4.90(1H,m),7.05(1H,t,J=9Hz),7.18(1H,dd,J=9,2.5Hz),\\ 7.46(1H,dd,J=15,2.5Hz),7.68(1H,br-s)$

Mass spectrum (m/z): 419(M+)

Specific rotation $[\alpha]_D^{20}$ -96.2° (c = 0.1, DMSO)

Reference example 144

[0099] (R)-5-Azidomethyl-3-[3-fluoro-4-[4-(3-mesylaminopropyl)piperazin-1-yl]-phenyl]-2-oxooxazolidine [0100] To a solution of 0.90 g of (R)-3-[4-[4-(3-aminopropyl)piperazin-1-yl]-3-fluorophenyl]-5-azidomethyl-2-oxooxazolidine in 20 ml of dried tetrahydrofuran, 0.21 ml of methanesulfonyl chloride was added under ice-cooling and with stirring, and the mixture was stirred under ice-cooling for 2 hours. The reaction solution was alkalified with aqueous sodium hydroxide, and extracted with ethyl acetate. The extract was washed with saturated brine, and dried over sodium sulfate, and then the solvent was evaporated under reduced pressure. The residue was purified by column chromatography (alumina, ethyl acetate: n-heptane = 1:1) to obtain 0.62 g of pale brown crystals. NMR spectrum (DMSO-d₆) δ ppm:

1.65(2H,quin,J=7Hz),2.39(2H,t,J=7Hz),2.52(4H,t,J=4.5Hz),2.88(3H,s), 2.99(4H,t,J=4.5Hz),3.00(2H,t,J=7Hz),3.67

 $(1H,dd,J=13.5,5.5Hz), 3.70-3.80(2H,m), \qquad 4.10(1H,t,J=9Hz), 4.80-4.90(1H,m), 6.87(1H,t,J=5.5Hz), 7.05(1H,t,J=9Hz), \\ 7.18(1H,dd,J=9,2.5Hz), 7.46(1H,dd,J=14.5,2.5Hz)$

IR spectrum v (KBr) cm⁻¹: 1734,2112

Mass spectrum (m/z): 455(M+)

Specific rotation $[\alpha]_D^{20}$ -93.3° (c = 0.1, DMSO)

Ref rence example 145

5

10

15

20

25

30

35

40

45

50

55

[0101] (R)-5-Azidomethyl-3-[3-fluoro-4-(1-oxidothiomorpholin-4-yl)phenyl]-2-oxo-oxazolidine

[0102] To a solution of 5.30 g of sodium metaperiodate in 56 ml of water, a mixture of 8.00 g of (R)-5-azidomethyl-3-[3-fluoro-4-(thiomorpholin-4-yl)phenyl]-2-oxooxazolidine in 80 ml of acetonitrile and 80 ml of methanol was added dropwise, and the mixture was stirred at room temperature for 18 hours. The reaction solution was added with water, and extracted with 1,2-dichloroethane. The extract was washed with saturated brine, and dried over sodium sulfate, and then the solvent was evaporated under reduced pressure to obtain 7.98 g of pale brown crystals. Recrystallization from isopropanol gave colorless prisms having the melting point of from 123.5 to 125°C.

Elemental analysis for C ₁₄ H ₁₆ FN ₅ O ₃ S								
Calculated %	C,	47.58;	Н,	4.56;	N,	19.82		
Found %	C,	47.58;	Н,	4.56;	N,	19.69		

Specific rotation $[\alpha]_D^{20}$ -114.1° (c = 0.1, DMSO)

Reference example 146

[0103] (R)-5-Azidomethyl-3-[3-fluoro-4-(1,1-dioxidothiomorpholin-4-yl)phenyl]-2-oxo oxazolidine

[0104] To a suspension of 5.00 g of (R)-5-azidomethyl-3-[3-fluoro-4-(thiomorpholin-4-yl)phenyl]-2-oxooxazolidine in 25 ml of water and 75 ml of acetone, 10 ml of 50 % aqueous 4-methylmorpholine-N-oxide and 3.77 g of osmium tetroxide were added under stirring at room temperature, and the mixture was stirred at the same temperature for 10 minutes. The reaction solution was added with water, and extracted with 1,2-dichloroethane. The extract was washed with saturated brine and dried over sodium sulfate, and then the solvent was evaporated under reduced pressure to obtain 4.71 g of pale brown crystals. Recrystallization from acetone gave pale brown prisms having the melting point of from 146 to 148°C.

Elemental analysis for C ₁₄ H ₁₆ FN ₅ O ₄ S								
Calculated %	C,	45.52;	Н,	4.37;	N,	18.96		
Found %	C,	45.63;	Н,	4.32;	N,	18.84		

Specific rotation $[\alpha]_D^{20}$ -108.8° (c = 0.1, DMSO)

Reference example 147

[0105] (R)-1-[4-[4-(5-Azidomethyl-2-oxooxazolidin-3-yl)-2-fluorophenyl]piperazine]-carbothioamide

- 1) To a solution of 5.00 g of (R)-5-azidomethyl-3-[3-fluoro-4-(piperazin-1-yl)phenyl]-2-oxooxazolidine and 2.60 ml of triethylamine in 40 ml of dried tetrahydrofuran, 1.40 ml of thiophosgene was added dropwise under ice-cooling, and the mixture was stirred at the same temperature for 30 minutes. The reaction solution was added with water, and extracted with ethyl acetate. The extract was washed with saturated brine, and dried over sodium sulfate, and then the solvent was evaporated under reduced pressure to obtain 4.32 g of (R)-5-azidomethyl-3-[4-(4-chlorothiocarbonylpiperazin-1-yl)-3-fluorophenyl]-2-oxooxazolidine as brown crystals.
- 2) A solution of 4.32 g of the crystals obtained in 1) in 43 ml of dried tetrahydrofuran was stirred with bubbling of ammonia gas at room temperature for 3 hours. The reaction solution was concentrated under reduced pressure, and the residue was purified by column chromatography (silica gel, 1,2-dichloroethane: methanol = 20:1) to obtain 2.95 g of pale brown crystals.

NMR spectrum (DMSO-d₆) δ ppm:

2.99(4H,t,J=5Hz),3.66(1H,dd,J=13.5,5.5Hz),3.70-3.80(2H,m),3.91(4H,t,J=5Hz), 4.11(1H,t,J=9Hz),4.80-4.90(1H,m),7.09(1H,t,J=9Hz),7.20(1H,dd,J=9,2.5Hz), 7.39(2H,br-s),7.50(1H,dd,J=14.5,2.5Hz)

IR spectrum v (KBr) cm⁻¹: 1738,2108,3184,3286,3424 Specific rotation [α]_D²⁰ -109.1° (c = 0.1, DMSO)

Reference example 148

5

10

15

25

30

35

40

45

50

55

[0106] (R)-N,N-Dimethyl-1-[4-[4-(5-azidomethyl-2-oxooxazolidin-3-yl)-2-fluorophenyl]piperazine]carbothioamide [0107] To a solution of 5.00 g of the crystals obtained by the method of Reference example 147-1) in 20 ml of dried tetrahtdrofuran, 10 ml of 50% aqueous dimethylamine was added at room temperature, and the mixture was stirred at the same temperature for 18 hours. The reaction solution was concentrated under reduced pressure, and the residue was washed successively with water and ethanol to obtain 4.25 g of pale brown crystals. Recrystallization from acetonitrile gave pale brown prisms having the melting point of from 160 to 162°C.

Elemental analysis for C ₁₇ H ₂₂ FN ₇ O ₂ S										
Calculated %	C,	50.11;	Н,	5.44;	N, 24.06					
Found %	C,	50.38;	Н,	5.44;	N, 23.95					

Specific rotation $[\alpha]_D^{20}$ -101.7° (c = 0.1, DMSO)

20 Reference example 149

[0108] O-Methyl (R)-1-[4-[4-(5-azidomethyl-2-oxooxazolidin-3-yl)-2-fluorophenyl]-piperazine]thiocarboxylate [0109] A solution of 5.00 g of the crystals obtained by the method of Reference example 147-1) in 50 ml of methanol was stirred with heating to 60°C for 30 minutes, and then stirred at room temperature for 1 hour. The precipitated crystals were collected by filtration, and washed with disopropyl ether to obtain 4.00 g of pale brown crystals. Recrystallization from methanol gave pale brown needles having the melting point of from 138 to 139°C.

Elemental analysis for C ₁₆ H ₁₉ FN ₆ O ₃ S								
Calculated %	C,	48.72;	Н,	4.86;	N,	21.31		
Found %	C,	48.79;	Н,	4.84;	N,	20.94		

Specific rotation $[\alpha]_D^{20}$ -105.4° (c = 0.1, DMSO)

[0110] The compounds of Reference examples 150 through 151 were obtained in the same manner as in Reference example 149.

Physical properties Reference R [recrystallization solvent] example brown crystals[EtOH] mp,122.5~125.5℃ Elemental analysis for C17H21FN6O3S Calcd. %: C,49.99;H,5.18;N,20.58 150 Found %: C,50.16;H,5.06;N,20.54 Specific rotation $[\alpha]_{D^{20}}$ -104.5° (c=0.1,DMSO) pale brown crystals [MeOH] mp,122.5~124.5℃ Elemental analysis for C18H28FN6O3S Calcd. %: C.51.17;H.5.49;N.19.89 151 Found %: C,51.09;H,5.26;N,19.78 Specific rotation $[\alpha]_{D^{20}-100.3}^{\circ}$ (c=0.1,DMSO)

25

30

5

10

15

20

Reference example 152

[0111] Methyl (R)-1-[4-[4-(5-azidomethyl-2-oxooxazolidin-3-yl)-2-fluorophenyl]-piperazine]carbodithioate [0112] To a solution of 5.00 g of (R)-5-azidomethyl-3-[3-fluoro-4-(piperazin-1-yl)-phenyl]-2-oxooxazolidine and 2.20 ml of triethylamine in 50 ml of dried tetrahydrofuran, 2.00 ml of carbon disulfide was added dropwise under ice-cooling, and the mixture was stirred at room temperature for 18 hours. Furthermore, the mixture was added with 1.00 ml of methyl iodide under ice-cooling, and stirred at the same temperature for 30 minutes. The reaction solution was added with water, and extracted with ethyl acetate. The extract was washed with saturated brine, and dried over sodium sulfate, and then the solvent was evaporated under reduced pressure. The residue was washed with ethanol to obtain 5.96 g of colorless crystals. Recrystallization from acetonitrile gave pale brown prisms having the melting point of from 139.5 to 140°C.

40

45

50

Elemental analysis for C ₁₆ H ₁₉ FN ₆ O ₂ S ₂								
Calculated %	C,	46.81;	Н,	4.67;	N,	20.47		
Found %	C,	46.96;	Н,	4.68;	N,	20.41		

Specific rotation $[\alpha]_D^{20}$ -104.6° (c = 0.1, DMSO)

Reference example 153

[0113] (R)-N-Methyl-1-[4-[4-(5-azidomethyl-2-oxooxazolidin-3-yl)-2-fluorophenyl]-piperazine]carbothioamide [0114] To a solution of 3.00 g of (R)-5-azidomethyl-3-[3-fluoro-4-(piperazin-1-yl)-phenyl]-2-oxooxazolidine in 30 ml of dried tetrahydrofuran, 0.71 ml of methyl isothiocyanate was added under ice-cooling and with stirring, and the mixture was stirred at the same temperature for 1 hour. The reaction solution was added with water, and the precipitated crystals were collected by filtration, and then washed with diisopropyl ether to obtain 3.63 g of colorless crystals. Recrystallization from ethyl acetate gave colorless needles having the melting point of from 156.5 to 158°C.

Elemental analysis for C ₁₆ H ₂₀ FN ₇ O ₂ S								
Calculated %	C,	48.84;	Н,	5.12;	N,	24.92		
Found %	C,	48.70;	Н,	5.09;	N,	24.88		

Specific rotation $[\alpha]_D^{20}$ -111.7° (c = 0.1, DMSO)

5

10

15

20

25

30

35

40

45

55

[0115] The compounds of Reference examples 154 through 156 were obtained in the same manner as in Reference example 153.

0	
<i>u</i>	•
R-N	Ó
R-N	1
	\sim N ₃

		N ₃
Reference	R	Physical properties
example		[recrystallization solvent]
		colorless prisms[EtOH]
		mp,174~175.5℃
}		Elemental analysis for C ₁₇ H ₂₂ FN ₇ O ₂ S
154		Calcd. % : C,50.11;H,5.44;N,24.06
	,	Found % : C,50.16;H,5.28;N,23.98
	•	Specific rotation
]	$[\alpha]_{D^{20}-108.8^{\circ}}$ (c=0.1,DMSO)
		colorless crystals [EtOH]
	n-Pr-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-	mp,172.5~174.5°C
		Elemental analysis for C ₁₈ H ₂₄ FN ₇ O ₂ S
155		Calcd. %: C,51.29;H,5.74;N,23.26
		Found %: C,51.49;H,5.72;N,23.08
]		Specific rotation
		$[\alpha]_{D^{20}-104.0^{\circ}}$ (c=0.1,DMSO)
		colorless crystals
{		NMR(DMSO-d ₆) δ ppm:1.68(2H,quin,J=7
		Hz),2.37(2H,t,J=7Hz),2.53(4H,t,J=5H
		z),2.83(3H,d,J=4.5Hz),3.00(4H,t,J=5H
		z),3.30-3.45(2H,m),3.67(1H,dd,J=13.5,
	Me (CH ₂)s	5.5Hz),3.74(1H,dd,J=13.5,3.5Hz),3.74(
156		1H,dd,J=9,6Hz),4.11(1H,t,J=9Hz),4.80
	F	-4.90(1H,m),7.05(1H,t,J=9Hz),7.18(1H
		,dd,J=9,2.5Hz),7.31(1H,br-s),7.37(1H,
		br-s),7.46(1H,dd,J=15,2.5Hz)
		IR ν (KBr) cm ⁻¹ :1764,2104,3240
		Specific rotation
		$[\alpha]_{D^{20}}-89.8^{\circ}$ (c=0.1,DMSO)

Reference example 157

[0116] (R)-3-[4-[4-(5-Azidomethyl-2-oxooxazolidin-3-yl)-2-fluorophenyl]piperazin-1-yl]propyl isothiocyanate [0117] To a solution of 2.00 g of (R)-3-[4-[4-(3-aminopropyl)piperazin-1-yl]-3-fluorophenyl]-5-azidomethyl-2-oxooxazolidine and 0.74 ml of triethylamine in 20 ml of dried tetrahydrofuran, 0.64 ml of carbon disulfide was added dropwise under ice-cooling, and the mixture was stirred at the same temperature for 5 hours. The mixture was added with 0.51 ml of ethyl chlorocarbonate, and further stirred at the same temperature for 1.5 hours. The reaction solution was added with water, and extracted with ethyl acetate. The extract was washed with saturated brine, and dried over sodium sulfate, and then the solvent was evaporated under reduced pressure. The residue was purified by column chromatography (silica gel, ethyl acetate) to obtain 0.85 g of a brown liquid.

NMR spectrum (DMSO- d_6) δ ppm : $1.84(2H,quin, J=6.5Hz), 2.43(2H,t, J=6.5Hz), 2.53(4H,t, J=4.5Hz), 3.00(4H,t, J=4.5Hz), \quad 3.60-3.80(5H,m), 4.11(1H,t, J=9Hz), \\ 1.84(2H,quin, J=6.5Hz), 2.43(2H,t, J=6.5Hz), 2.53(4H,t, J=4.5Hz), \\ 2.50(4H,t, J=4.5Hz), 2.43(2H,t, J=6.5Hz), \\ 2.50(4H,t, J=4.5Hz), \\ 2.50(4H,t,$ 4.80-4.90(1H,m),7.05(1H,t,J=9Hz), 7.18(1H,dd,J=9,2.5Hz),7.46(1H,dd,J=14.5,2.5Hz) IR spectrum v (liq.) cm⁻¹: 1754,2112,2184

Mass spectrum (m/z): 419(M+)

Specific rotation $[\alpha]_D^{20}$ -89.1° (c = 0.1, DMSO)

Reference example 158

10

25

35

40

50

5 [0118] Methyl (R)-N-[3-[4-[4-(5-azidomethyl-2-oxooxazolidin-3-yl)-2-fluorophenyl]-piperazin-1-yl]propyl]thiocarbamate

[0119] To 25 ml of dried methanol, 0.87 g of 60 % sodium hydride was added under ice-cooling and with stirring, and the mixture was stirred at room temperature for 30 minutes. Then, the mixture was added with a solution of 4.56 g of (R)-3-[4-[4-(5-azidomethyl-2-oxooxazolidin-3-yl)-2-fluorophenyl]piperazin-1-yl]propyl isothiocyanate in 30 ml of dried methanol-dried tetrahydrofuran (2:1), and stirred at room temperature for 1.5 hours. The reaction mixture was acidified with ice water and 10 % hydrochloric acid, and extracted with ethyl acetate. The extract was washed with saturated brine, and dried over sodium sulfate, and then the solvent was evaporated under reduced pressure. The residue was purified by column chromatography (silica gel, ethyl acetate: n-heptane = 2:1) to obtain 4.32 g of a brown liquid.

15 NMR spectrum (DMSO-d₆) δ ppm:

1.60-1.75(2H,m),2.39(2H,t,J=6.5Hz),2.53(4H,t,J=5Hz),3.02(4H,t,J=5Hz), 3.40-3.50(2H,m),3.65(1H,dd, J=13.5,5.5Hz),3.72(1H,dd,J=13.5,3.5Hz), 3.74(1H,dd,J=9,6Hz),3.87(3H,s),4.10(1H,t,J=9Hz),4.80-4.90(1H,m),7.03 (1H,t,J=9Hz), 7.17(1H,dd,J=9,2.5Hz),7.41(1H,dd,J=15.5,2.5Hz),8.77(1H,br-s)

IR spectrum v (lig.) cm⁻¹: 1748,2112,3284

20 Mass spectrum (m/z) : 451(M+)

Specific rotation $[\alpha]_D^{20}$ -85.5° (c = 0.1, DMSO)

Reference example 159

[0120] (R)-5-Azidomethyl-3-[3-fluoro-4-(4-oxopiperidin-1-yl)phenyl]-2-oxooxazolidine

[0121] A suspension of 1.45 g of (R)-5-azidomethyl-3-[4-(1,4-dioxa-8-azaspiro[4.5]-decan-8-yl)-3-fluorophenyl]-2-oxooxazolidine and 1.10 g of p-toluenesulfonic acid in 60 ml of acetone-water (1:1) was heated under reflux for 18 hours. The solvent was evaporated under reduced pressure, and the residue was neutralized with aqueous sodium hydrogencarbonate, and then extracted with ethyl acetate. The extract was washed with saturated brine, and dried over sodium sulfate, and then the solvent was evaporated under reduced pressure. The residue was purified by column chromatography (silica gel, ethyl acetate: n-heptane = 1:1) to obtain 1.20 g of colorless crystals. Recrystallization from ethanol gave colorless crystals having the melting point of from 99.5 to 101°C.

Elemental analysis for C ₁₅ H ₁₆ FN ₅ O ₃						
Calculated %	C,	54.05;	Н,	4.84;	N,	21.01
Found %	C,	54.02;	Н,	4.87;	N,	21.18

Specific rotation $[\alpha]_D^{20}$ -118.4° (c = 0.1, DMSO)

Reference example 160

[0122] (R)-5-Azidomethyl-3-[3-fluoro-4-(4-hydroxyiminopiperidin-1-yl)phenyl]-2-oxo-oxazolidine

[0123] A suspension of 6.75 g of (R)-5-azidomethyl-3-[3-fluoro-4-(4-oxopiperidin-1-yl)phenyl]-2-oxooxazolidine, 1.55 g of hydroxylamine hydrochloride and 3.66 g of sodium acetate in 135 ml of methanol was stirred at room temperature for 1 hour. The reaction solution was added with water, and the precipitated crystals were collected by filtration, and then washed with disopropyl ether to obtain 6.52 g of pale brown crystals. Recrystallization from ethyl acetate gave colorless prisms having the melting point of from 155 to 156°C.

Elemental analysis for C ₁₅ H ₁₇ FN ₆ O ₃						
Calculated %	C,	51.72;	H,	4.92;	N,	24.13
Found %	C,	51.72;	Н,	4.81;	N,	24.22

Specific rotation [α]₀²⁰ -131.7° (c = 0.1, DMSO)

Reference example 161

5

20

25

30

35

40

45

50

55

[0124] (R)-5-Azidomethyl-3-[3-fluoro-4-(4-thiobenzoylpiperazin-1-yl)phenyl]-2-oxo-oxazolidine

[0125] To a solution of 2.00 g of (R)-5-azidomethyl-3-[3-fluoro-4-(piperazin-1-yl)-phenyl]-2-oxooxazolidine and 1.97 ml of triethylamine in 20 ml of dried 1,2-dichloroethane, 10.0 g of thiobenzoyl chloride was added dropwise under ice-cooling and with stirring, and the mixture was stirred at the same temperature for 1 hour. The reaction solution was added with water, and extracted with 1,2-dichloroethane. The extract was washed with saturated brine, and dried over sodium sulfate, and then the solvent was evaporated under reduced pressure. The residue was purified by column chromatography (silica gel, ethyl acetate: n-heptane = 1:4) to obtain 3.30 g of a green liquid.

10 NMR spectrum (CDCl₃) δ ppm:

3.04(2H,t,J=5Hz),3.27(2H,t,J=5Hz),3.59(1H,dd,J=13.5,4.5Hz), 3.71(1H,dd,J=13.5,4.5Hz),3.76(2H,t,J=5Hz),3.88(1H,dd,J=8.5,6Hz), 4.05(1H,t,J=8.5Hz),4.61(2H,t,J=5Hz),4.75-4.80(1H,m),6.94(1H,t,J=9Hz), 7.13(1H,d,J=9Hz),7.30-7.40 (5H,m),7.48(1H,dd,J=14,2.5Hz)

Mass spectrum (m/z): 440(M+)

15 Specific rotation $[\alpha]_{D}^{20}$ -85.3° (c = 0.1, DMSO)

Ref rence example 162

[0126] (S)-5-Aminomethyl-2-oxo-3-[4-(thiomorpholin-4-yl)phenyl]oxazolidine

[0127] A solution of 8.50 g of (R)-5-azidomethyl-2-oxo-3-[4-(thiomorpholin-4-yi)-phenyl]oxazolidine and 7.68 g of triphenylphosphine in 130 ml of dried tetrahydrofuran was stirred at room temperature for 15 hours. Furthermore, the mixture was added with 4.8 ml of water, and stirred with heating to 40°C for 14 hours. The reaction solution was cooled, then added with 100 ml of water, acidified with 10 % hydrochloric acid, and then extracted with diethyl ether. The aqueous layer was alkalified with potassium carbonate, and extracted with a mixture of dichloromethane-methanol (30:1). The extract was washed with saturated brine, and dried over sodium sulfate, and then the solvent was evaporated under reduced pressure to obtain 6.88 g of colorless crystals. Recrystallization from ethyl acetate gave colorless crystals having the melting point of from 119.5 to 121°C.

Elemental analysis for C ₁₄ H ₁₉ N ₃ O ₂ S						
Calculated %	C,	57.31;	Н,	6.53;	N,	14.32
Found %	C,	57.36;	Н,	6.45;	N,	14.06

Specific rotation $[\alpha]_D^{20}$ -35.9° (c = 0.1, DMSO)

[0128] The compounds of Reference examples 163 through 212 were obtained in the same manner as in Reference example 162.

_	~ 2				
	Reference	R	Physical properties		
I	example		[recrystallization solvent]		
			pale brown crystals		
10			NMR(CDCl ₃) & ppm:1.36(2H,br-s),2.95-3.00(5H,		
			m),3.13(1H,dd,J=13.5,4Hz),3.20-3.30(2H,m),3		
			.70-3.80(2H,m),3.83(1H,dd,J=8.5,7Hz),4.01(1		
	100	0=s N-()-	H,t,J=8.5Hz),4.60-4.70(1 H,m),7.03(1 $H,t,J=9$		
	163	سر ب	Hz),7.12(1H,dd,J=9,2Hz),7.54(1H,dd,J=14,2		
15		F	Hz)		
	1		IR ν (KBr) cm ⁻¹ :1750,3400		
1			MS(m/z):327(M+)		
			Specific rotation [\alpha]_D^20-39.0° (c=0.1,DMSO)		
00			colorless prisms[EtOH]		
20			mp,162~163°C		
	1		Elemental analysis for C14H18FN8O4S		
	164		Calcd. % : C,48.97;H,5.28;N,12.24		
			Found %: C,48.92;H,5.28;N,12.08		
25			Specific rotation [\alpha] \(\text{p}^{20} - 32.9\circ \) (c=0.1,DMSO)		
			colorless crystals[AcOEt]		
			mp,100~101.5°C		
	105	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Elemental analysis for C14H18FN8O2		
	165		Calcd. %: C,60.20;H,6.50;N,15.04		
<i>30</i> ··			Found % : C,60.16;H,6.44;N,15.18		
			Specific rotation [α] _D 20-38.9° (c=0.1,DMSO)		
			pale brown crystals[i-PrOH-i-Pr2O]		
			mp,90~92°C		
35	100		Elemental analysis for C ₁₅ H ₂₀ FN ₃ O ₂		
	166	سر پ	Calcd. %: C,61.42;H,6.87;N,14.32		
		ř	Found %: C,61.16;H,6.56;N,14.40		
			Specific rotation [\alpha]_D^{20}-36.1° (c=0.1,DMSO)		
			colorless needles[AcOEt-i-Pr2O]		
40			mp,102~102.5°C		
	105	67 Meo N	Elemental analysis for C ₁₆ H ₂₂ FN ₃ O ₃		
	167		Calcd. %: C,59.43;H,6.86;N,12.99		
			Found %: C,59.13;H,6.72;N,12.89		
45			Specific rotation [α] 20 -35.0° (c=0.1,DMSO)		

R-N NH₂

5			NH ₂
ſ	Reference	R	Physical properties [recrystallization solvent]
Ļ	example		
10			pale brown crystals[i-PrOH] mp,85~86.5°C
"	168	Eto—\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Elemental analysis for C ₁₇ H ₂₄ FN ₃ O ₃
	100	F	Calcd. %: C,60.52;H,7.17;N,12.45
		·	Found %: C,60.28;H,7.42;N,12.42
		<i>-</i>	Specific rotation [\alpha] p20-29.1° (c=0.1,DMSO)
15			colorless needles[AcOEt-i-Pr2O]
			mp,111.5~113°C
	169	Me— N—	Elemental analysis for C ₁₈ H ₂₂ FN ₃ O ₂
	103		Calcd. %: C,62.52;H,7.21;N,13.67
20		r	Found %: C,62.43;H,7.43;N,13.59
			Specific rotation [\alpha]_D^20-35.9° (c=0.1,DMSO)
	170		colorless plates[i-PrOH]
			mp,113~114℃
			Elemental analysis for C17H24FN3O2
25			Calcd. %: C,63.53;H,7.53;N,13.07
			Found %: C,63.34;H,7.84;N,12.97
		<u> </u>	Specific rotation [\alpha]_D20-35.9° (c=0.1,DMSO)
			pale brown crystals
30			NMR(DMSO-d ₆) & ppm:1.52(2H,br-s),1.55-1.65
	1		(2H,m),1.90-2.00(2H,m),2.70-2.85(3H,m),2.8
			5(1H,dd,J=13.5,5Hz),3.15-3.25(2H,m),3.27(3
		MeO-(CH ₂) ₂ -0-(N-(N-(N-(N-(N-(N-(N-(N-(N-(N-(N-(N-(N-	H,s),3.40-3.50(1H,m),3.45(2H,t,J=5Hz),3.56(
25	171	•	2H,t,J=5Hz),3.81(1H,dd,J=9,6.5Hz),4.01(1H
35		Į.	,t,J=9Hz),4.55-4.65(1H,m),7.05(1H,t,J=9Hz) ,7.17(1H,dd,J=9,2.5Hz),7.46(1H,dd,J=15,2.5
	İ		
	}	·	Hz) MS(m/z):367(M+)
	Į.	•	Specific rotation [α] $_{D^{20}}$ -30.1° (c=0.1,DMSO)
40			pale brown crystals[AcOEt]
			mp,105~106.5°C Elemental analysis for C14H18FN3O3
	172	MeO N	Calcd. %: C,56.94;H,6.14;N,14.23
15			Found %: C,56.68;H,5.92;N,14.00
45			Specific rotation [α] 20 -36.1° (c=0.1,DMSO)
	L	<u></u>	Phentin Longitor Fe In . co. T. (c. c.Thrifton)

50

R-N NH₂

_			
	Reference	R	Physical properties
	example	·	[recrystallization solvent]
			brown liquid
10			NMR(DMSO-d ₆) & ppm:1.54(2H,br-s),2.79(1H,
			dd,J=13.5,5Hz),2.84(1H,dd,J=13.5,5Hz),3.2
			6(3H,s),3.45(2H,t,J=4.5H ₂),3.53(2H,t,J=4.5
		· · · · · · · · · · · · · · · · · · ·	Hz),3.60-3.65(2H,m),3.78(1H,dd,J=8.5,6.5H)
15		MeO-(CH ₂) ₂ -O-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-	z),3.98(1H,t,J=8.5Hz),4.05-4.15(2H,m),4.35-
15	173	F [']	4.45(1H,m), 4.50-4.60(1H,m), 6.57(1H,t,J=8.
,			5Hz),7.12(1H,dd,J=8.5,2Hz),7.38(1H,dd,J=1
		-	4.5,2H ₂)
			IR ν (liq.) cm ⁻¹ :1744,3384
20			MS(m/z):339(M+)
			Specific rotation [\alpha]p20-27.9° (c=0.1,DMSO)
			colorless crystals[AcOEt-i-Pr2O]
	174		mp,87~87.5°C
			Elemental analysis for C ₁₆ H ₂₂ FN ₃ O ₂
25			Calcd. %: C,62.52;H,7.21;N,13.67
Į			Found %: C,62.23;H,7.28;N,13.51
			Specific rotation [α] $^{20-44.0^{\circ}}$ (c=0.1,DMSO)
			colorless amorphous solid
00		ļ	NMR(DMSO-d ₆) δ ppm:2.27(3H,s),2.80(1H,dd,
30 Ž			J=13.5,5Hz),2.85(1H,dd,J=13.5,5Hz),3.07(2
		1	H,br-s),3.82(1H,dd,J=8.5,6Hz),4.02(1H,t,J=
	175	Ma	8.5Hz),4.53-4.61(1H,m),7.18(2H,d,J=8.5Hz)
	175		7.43(2H,d,J=8.5Hz)
<i>35</i>	į		IR ν (KBr) cm ⁻¹ :1748,3356
			MS(m/z):206(M ⁺)
			Specific rotation [α] \mathbf{p}^{20} -38.1° (c=0.1,DMSO)
		<u> </u>	pale yellow crystals
			paie yellow crystals NMR(DMSO-de) δ ppm:1.60(2H,br-s),2.19(3H,
40	1		1
	j		s),2.22(3H,s),2.80(1H,dd,J=13.5,5.5Hz),2.85
			(1H,dd,J=13.5,5.5Hz),3.81(1H,dd,J=9,6Hz),
	176	Me	4.01(1H,t,J=9Hz),4.50-4.60(1H,m),7.11(1H,d,J=8.5Hz),7.27(1H,dd,J=8.5,2.5Hz),7.32(1
45		Me	
		, me	H,d,J=2.5Hz) IR ν (KBr) cm ⁻¹ :1730,3420
			MS(m/z):220(M+)
		<u> </u>	Specific rotation [α] p^{20} -37.0° (c=0.1,DMSO)

55

R-N NH,

			- Varia
	Reference	R	Physical properties
- 1	example	N	[recrystallization solvent]
Γ			pale yellow crystals
10	1		NMR(CDCl ₃) δ ppm:1.31(2H,br-s),2.98(1
į.			H,dd,J=13.5,4.5Hz),3.11(1H,dd,J=13.5
1	1		,4.5Hz),3.45(3H,s),8.76(2H,t,J=4.5Hz),
1			3.82(1H,dd,J=8.5,6.5Hz),4.00(1H,t,J=
15		MeO-(CH ₂) ₂ -O-	8.5Hz),4.18(2H,t,J=4.5Hz),4.60-4.70(1
"	177		H,m),7.00(1H,t,J=9Hz),7.10-7.20(1H,
. 1	ì	F	m),7.47(1H,dd,J=13,3Hz)
,			IR ν (KBr) cm ⁻¹ :1746,3328,3396
			MS(m/z):284(M+)
20	į		Specific rotation
			$[\alpha]_{D^{20}-33.0}^{\circ}$ (c=0.1,DMSO)
			pale brown needles [AcOEt-i-Pr2O]
			mp,91.5~92°C
	178	Mo N-	Elemental analysis for C12H17N3O2
25			Calcd. %: C,61.26;H,7.28;N,17.86
			Found %: C,60.90;H,7.16;N,17.60
			Specific rotation
ı			$[\alpha]_{D^{20}-32.9}^{\circ}$ (c=0.1,DMSO)
30			reddish brown crystals
			NMR(DMSO-ds) δ ppm:1.88(2H,br-s),2.7
			4(6H,s),2.79(1H,dd,J=13.5,5Hz),2.85(1
			H,dd,J=13.5,5Hz),3.80(1H,dd,J=9,6Hz
		Me, /=), $4.00(1H,t,J=9Hz)$, $4.50-4.65(1H,m)$, $6.$
<i>35</i>	179		97(1H,t,J=8.5Hz),7.16(1H,dd,J=8.5,2.
		F F	5Hz),7.44(1H,dd,J=15.5,2.5Hz)
			IR ν (KBr) cm ⁻¹ :1732,3336,3372
			MS(m/z):253(M+)
40			Specific rotation
40			$[\alpha]_{D^{20}\text{-}45.0}^{\circ} \text{ (c=0.1,DMSO)}$
•			colorless crystals[AcOEt-i-Pr2O]
			mp,51~52°C
45		Me, /=\	Elemental analysis for C13H18FN3O2
	180	\ _\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Calcd. %: C,58.41;H,6.79;N,15.72
		F F	Found %: C,58.42;H,6.78;N,15.52
			Specific rotation
			$[\alpha]_{D^{20}\text{-}45.8}^{\circ}$ (c=0.1,DMSO)
		1	

R-N NH₂

5			NH ₂
	Reference example	R	Physical properties [recrystallization solvent]
10	eram pre		brown liquid NMR(DMSO-de) & ppm:0.99(6H,t,J=7.5H z),1.55(2H,br-s),2.80(1H,dd,J=14,5Hz) ,2.85(1H,dd,J=14,5Hz),3.11(4H,q,J=7. 5Hz),3.81(1H,dd,J=9,6.5Hz),4.02(1H,t, J=9Hz),4.55-4.65(1H,m),7.02(1H,t,J=9
15	181	Et P	.5Hz),7.17(1H,dd,J=9.5,2.5Hz),7.43(1 H,dd,J=15.5,2.5Hz) IR ν (liq.) cm ⁻¹ :1750,3392 MS(m/z):281(M*) Specific rotation [α]p ²⁰ -33.3° (c=0.1,DMSO)
		~~~	colorless prisms [i-PrOH-n-Hexane] mp,81~82.5°C Elemental analysis for C14H18N2O2
25	182		Calcd. %: C,68.27;H,7.37;N,11.37 Found %: C,68.03;H,7.53;N,11.31 Specific rotation [α] _D ²⁰ -36.0° (c=0.1,DMSO)
30			pale brown crystals NMR(DMSO-ds) & ppm:1.21(3H,t,J=7.5H z),2.15(2H,br-s),2.68(4H,t,J=4.5Hz),2. 80(1H,dd,J=13.5,5Hz),2.85(1H,dd,J=13.5,5Hz),2.99(4H,t,J=4.5Hz),3.26(2H,s)
35	183	Etto N-	),3.81(1H,dd,J=9,6.5Hz),4.02(1H,t,J=9 Hz),4.11(2H,q,J=7.5Hz),4.55-4.65(1H, m),7.05(1H,t,J=9Hz),7.18(1H,dd,J=9,2 .5Hz),7.47(1H,dd,J=14.5,2.5Hz) IR \(\nu\) (KBr) cm ⁻¹ :1740,3388
40			MS(m/z):380(M+) Specific rotation [α]p ²⁰ -34.0° (c=0.1,DMSO)
45	184	O (CH ₂ ) ₂ -N N - F	colorless crystals [i-PrOH-i-Pr ₂ O] mp,88~88.5°C Elemental analysis for C ₁₉ H ₂₇ FN ₄ O ₄ Calcd. %: C,57.85;H,6.90;N,14.20 Found %: C,57.57;H,7.15;N,14.06 Specific rotation
50			$[\alpha]_{D^{20}\text{-}30.0}^{\circ}$ (c=0.1,DMSO)

R-N NHb

			NH ₂
	Reference	R	Physical properties
	example		[recrystallization solvent]
10			pale brown crystals NMR(DMSO-d ₆ ) δ ppm:1.19(3H,t,J=7.5H z),1.71(2H,quin,J=7.5Hz),1.71(2H,br-s ),2.31(2H,t,J=7.5Hz),2.34(2H,t,J=7.5H
15	185	(CH ₂ ) ₃ -NNN-	z),2.50(4H,t,J=5Hz),2.80(1H,dd,J=13. 5,5Hz),2.85(1H,dd,J=13.5,5Hz),2.97(4 H,t,J=5Hz),3.81(1H,dd,J=9,6.5Hz),4.0 1(1H,t,J=9Hz),4.06(2H,q,J=7.5Hz),4.5 5-4.65(1H,m),7.03(1H,t,J=9Hz),7.18(1
20			H,dd,J=9,2.5Hz),7.47(1H,dd,J=15.5,2. 5Hz)  MS(m/z):408(M+)  Specific rotation [α]p ²⁰ -26.9° (c=0.1,DMSO)
25	186	%-N_N-\	colorless prisms [i-PrOH] mp,109~111°C Elemental analysis for C ₁₆ H ₂₁ FN ₄ O ₄ Calcd. %: C,54.54;H,6.01;N,15.90
30		F	Found %: C,54.31;H,6.00;N,15.83 Specific rotation [α] _D 20-29.7° (c=0.07,DMSO)
		Wast-ICH-LAND N-(-)-	pale yellow crystals[i-PrOH] mp,134~135°C Elemental analysis for C ₁₈ H ₂₅ FN ₄ O ₄
35	187	mau—(cn _{2/2} n	Calcd. %: C,56.83;H,6.62;N,14.73 Found %: C,56.86;H,6.74;N,14.66 Specific rotation
40	100	Boc-N N-(*)	[α] _D ²⁰ -35.0° (c=0.1,DMSO)  colorless crystals [AcOEt-i-Pr ₂ O]  mp,138~139°C  Elemental analysis for C ₁₉ H ₂₇ FN ₄ O ₄
45	188		Calcd. %: C,57.85;H,6.90;N,14.20 Found %: C,57.75;H,7.14;N,14.06 Specific rotation [α]p ²⁰ -26.9° (c=0.1,DMSO)

50

5

R-N NH₂

5			NH ₂
ſ	Reference	R	Physical properties
	example	K	[recrystallization solvent]
			pale yellow crystals
10			NMR(DMSO-d ₆ ) & ppm:1.89(2H,br-s),2.22(3H,s
			),2.46(4H,t,J=5Hz),2.79(1H,dd,J=14,5Hz),2.
			84(1H,dd,J=14,5Hz),2.98(4H,t,J=5Hz),3.81(
	189	Me-N N	1H,dd,J=9,6Hz),4.01(1H,t,J=9Hz),4.54-4.61(
	300		1H,m),7.03(1H,t,J=8.5Hz),7.18(1H,dd,J=8.5, 2Hz),7.46(1H,dd,J=15.5,2Hz)
15	İ		IR ν (KBr) cm ⁻¹ :1734,3328,3372
			MS(m/z):308(M+)
	·		Specific rotation [ $\alpha$ ] $p^{20}$ -34.0° (c=0.1,DMSO)
	190		colorless needles [AcOEt-i-Pr ₂ O]
20			mp,104~105.5°C
			Elemental analysis for C ₁₆ H ₂₃ FN ₄ O ₂
			Calcd. %: C,59.61;H,7.19;N,17.38
			Found %: C,59.46;H,7.17;N,17.37
25			Specific rotation [ $\alpha$ ] $_{D^{20}-37.0^{\circ}}$ (c=0.1,DMSO)
			pale brown crystals [AcOEt-i-Pr2O]
			mp,93~95℃
	191	n-Pr-N N-	Elemental analysis for C ₁₇ H ₂₅ FN ₄ O ₂
20	131		Calcd. %: C,60.70;H,7.49;N,16.65
30	1	,	Found %: C,60.47;H,7.38;N,16.55
			Specific rotation [α]D ²⁰ -37.9° (c=0.1,DMSO) pale yellow crystals[i-PrOH-i-Pr ₂ O]
	1		mp.98~100°C
			Elemental analysis for C ₁₈ H ₂₇ FN ₄ O ₂ •2/5H ₂ O
35	192	U-BO-W	Calcd. %: C,60.45;H,7.83;N,15.67
		F F	Found %: C,60.62;H,7.81;N,15.46
			Specific rotation [ $\alpha$ ] $p^{20}$ -34.1° (c=0.1,DMSO)
		_ <u></u>	

DNEOCOID- 250 113001841 1 5

R-N NH₂

5			R-N NH ₂
	Reference example	R	Physical properties [recrystallization solvent]
10	193	Meo No P	pale yellowish brown liquid  NMR(DMSO-d ₆ ) & ppm:1.54-1.62(2H,m),  1.82(2H,br-s),1.85-1.92(2H,m),2.81(1H,dd,J=14,5Hz),3 .22-3.29(2H,m),3.60(3H,s),3.64-3.70(2H,m),3.82(1H,dd,J=9,6Hz),4.03(1H,t,J=9Hz),4.45-4.52(1H,m),4.57-4.63(1H,m),7.22(1H,dd,J=9,2.5Hz),7.25(1H,t,J=9Hz),7.54(1H,dd,J=13.5,2.5Hz)
20			IR ν (liq.) cm ⁻¹ :1688,1748,3368 MS(m/z):367(M+) Specific rotation [α] _D ²⁰ -26.0° (c=0.1,DMSO)
25	194	Meo N O F	colorless prisms [AcOEt] mp,119.5~122°C Elemental analysis for C15H18FN8O5-1/6H2O Calcd. %: C,52.63;H,5.40;N,12.28 Found %: C,52.49;H,5.29;N,12.27 Specific rotation
30			$[\alpha]_{D^{20}\text{-}30.9}^{\circ}$ (c=0.1,DMSO)
35	195	Med—(CH ₃ )2 N O	pale yellow liquid NMR(DMSO-d ₈ ) & ppm:1.50-1.70(2H,m), 1.80-2.00(2H,m),1.91(2H,br-s),2.57(2H ,t,J=6.5Hz),2.81(1H,dd,J=13.5,5Hz),2. 86(1H,dd,J=13.5,5Hz),3.20-3.40(2H,m ),3.23(3H,s),3.56(2H,t,J=6.5Hz),3.82(1 H,dd,J=9,6Hz),4.03(1H,t,J=9Hz),4.45- 4.55(1H,m),4.55-4.65(1H,m),7.22(1H,d
40			d,J=9,2.5Hz),7.25(1H,t,J=9Hz),7.54(1 H,dd,J=13.5,2.5Hz) IR $\nu$ (liq.) cm ⁻¹ :1634,1750,3464 MS(m/z):395(M+)
45			Specific rotation [ $\alpha$ ] 20 -34.7° (c=0.1,DMSO)

50

5	Reference	R	Physical properties
	example		[recrystallization solvent]
			pale brown crystals
			NMR(DMSO-d ₆ ) δ ppm:2.45-2.65(6H,m),2.90
10			-3.10(4H,m),3.30-3.40(3H,m),3.50-3.65(2H)
			,m),4.00-4.15(1H,m),4.75-4.85(1H,m),7.00(
		N (CH ₂ ) ₂ N N	1H,t,J=9Hz),7.10-7.25(2H,m),7.35-7.55(4H
	196		,m)
		, and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second	IR ν (KBr) cm ⁻¹ :1712,1750,3424
15			MS(m/z):467(M+)
			Specific rotation
			$[\alpha]_{D^{20}-30.0^{\circ}}$ (c=0.1,DMSO)
			pale brown amorphous solid
20			NMR(DMSO-d ₆ )δ ppm:1.57(2H,quin,J=7.5H
20			z),1.62(2H,br-s),1.79(3H,s),2.34(2H,t,J=7.
		Ma CH ₃ )3-N N	5Hz),2.51(4H,t,J=5Hz),2.80(1H,dd,J=13.5,
			5Hz),2.85(1H,dd,J=13.5,5Hz),2.98(4H,t,J=
	197		5Hz),3.00-3.10(2H,m),3.81(1H,dd,J=9,6.5
25			Hz),4.01(1H,t,J=9Hz),4.55-4.65(1H,m),7.0
			4(1H,t,J=9Hz),7.18(1H,dd,J=9,2.5Hz),7.47
			(1H,dd,J=15.5,2.5Hz),7.68(1H,br-s)
			IR $\nu$ (KBr) cm-1:1724,1744,3304
			MS(m/z):393(M+)
30			Specific rotation
			$[\alpha]_{D^{20}-28.9}^{\circ}$ (c=0.1,DMSO)
			pale brown crystals
			$  NMR(DMSO-d_6) \delta ppm:1.65(2H,quin,J=7Hz)  $
35		1	,1.77(2H,br-s),2.39(2H,t,J=7Hz),2.52(4H,t,
<b>J</b> J			J=4.5Hz),2.80(1H,dd,J=13.5,5Hz),2.85(1H,
			dd,J=13.5,5Hz),2.88(3H,s),2.98(4H,t,J=4.5
	İ	Mas (Cital)	Hz),3.00(2H,t,J=7Hz),3.81(1H,dd,J=9,6.5
	198		Hz),4.02(1H,t,J=9Hz),4.55-4.65(1H,m),6.8
40		} <b>f</b>	7(1H,br-s),7.04(1H,t,J=9Hz),7.18(1H,dd,J)
			=9,2.5Hz),7.47(1H,dd,J=14.5,2.5Hz)
			IR $\nu$ (KBr) cm ⁻¹ :1726,3276
			MS(m/z):429(M+)
		1	Specific rotation
45			$[\alpha]_{D^{20}-23.0^{\circ}}$ (c=0.1,DMSO)

**75** 

50

R-N NH₂

5 Physical properties Reference R [recrystallization solvent] example colorless needles[i-PrOH] mp,115.5~117℃ 10 Elemental analysis for C17H22FN6O2 Calcd. %: C,58.78;H,6.38;N,20.16 199 Found %: C,58.60;H,6.38;N,20.09 Specific rotation  $[\alpha]_{D^{20}-36.9}^{\circ}$  (c=0.1,DMSO) 15 colorless crystals[AcOEt] mp,142~144℃ Elemental analysis for C19H28FN5O3 200 Calcd. %: C,58.00;H,7.17;N,17.80 20 Found %: C,57.82;H,7.41;N,17.59 Specific rotation  $[\alpha]_{D^{20}-27.9}^{\circ}$  (c=0.1,DMSO) colorless crystals NMR(DMSO-d₆) δ ppm:1.62(2H,br-s),2.8 25 0(1H,dd,J=14,5Hz),2.85(1H,dd,J=14,4.5Hz), 2.98(4H, t, J=5Hz), 3.82(1H, dd, J= 9,6.5Hz),3.90(4H,t,J=5Hz),4.02(1H,t,J =9Hz),4.55-4.65(1H,m),7.08(1H,t,J=9 201 30 Hz), 7.20(1H, dd, J=9, 2.5Hz), 7.39(2H, br-s),7.50(1H,dd,J=15,2.5Hz) IR v (KBr) cm-1:1714,3384 Specific rotation  $[\alpha]_{D^{20}-37.0^{\circ}}$  (c=0.1,DMSO) 35 colorless crystals[DMF-H2O] mp,167.5~169.5℃ Elemental analysis for C16H22FN5O2S Calcd. %: C,52.30;H,6.03;N,19.06 202 Found %: C,52.13;H,5.99;N,19.08 40 Specific rotation

76

 $[\alpha]_{D^{20}-47.0^{\circ}}$  (c=0.1,DMSO)

BNSDOCID: <EP 1130016A1 | >

45

50

R-N NH

ſ	Reference	R	Physical properties
,	example		[recrystallization solvent]
			colorless needles[CH3CN]
10		S	mp,172.5~174℃
			Elemental analysis for C ₁₇ H ₂₄ FN ₅ O ₂ S
	203		Calcd. %: C,53.53;H,6.34;N,18.36
		F	Found %: C,53.37;H,6.16;N,18.11
			Specific rotation
15			$[\alpha]_{D^{20}-32.0^{\circ}}$ (c=0.1,DMSO)
			colorless crystals[MeOH]
		ş	mp,171~173℃
		n-Pr	Elemental analysis for C ₁₈ H ₂₆ FN ₅ O ₂ S
	204		Calcd. %: C,54.66;H,6.63;N,17.71
20		<b>f</b>	Found %: C,54.53;H,6.45;N,17.37
			Specific rotation
			$[\alpha]_{D^{20}-34.9}^{\circ}$ (c=0.1,DMSO)
			colorless prisms[MeOH]
<i>25</i>		_	mp,178~179.5°C
		s	Elemental analysis for C ₁₇ H ₂₄ FN ₅ O ₂ S
	205	We N N N	Caled. %: C,53.53;H,6.34;N,18.36
		i/a	Found %: C,53.54;H,6.25;N,18.19
	`	F	Specific rotation
30 _			$[\alpha]_{D^{20}}$ -31.0° (c=0.1,DMSO)
2			pale brown crystals
	1		NMR(DMSO-d ₆ ) δ ppm:1.70(2H,br-s),2.80(1H,
		Í	dd,J=13.5,5Hz),2.85(1H,dd,J=13.5,5Hz),2.9
			5-3.10(4H,m),3.81(1H,dd,J=9,6.5Hz),3.81-3
35			.90(2H,m), 3.98(3H,s), 4.02(1H,t,J=9Hz), 4.1
			0-4.20(2H,m),4.55-4.65(1H,m),7.08(1H,t,J=
	206	MeO N N	9Hz),7.21(1H,dd,J=9,2.5Hz),7.50(1H,dd,J=
		<b>=</b> '	14.5,2.5Hz)
40			IR ν (KBr) cm ⁻¹ :1730,3388
70			MS(m/z):368(M+)
			Specific rotation
	ļ	1	$[\alpha]_{D^{20}-29.1}^{\circ}$ (c=0.1,DMSO)
			pale brown scales[H2O]
45		s	mp,240~243.5°C
	}		Elemental analysis for C ₁₇ H ₂₃ FN ₄ O ₃ S·HCl
•	207	EIO N N	Calcd. %: C,48.74;H,5.77;N,13.37
		<b>F</b>	Found %: C,48.57;H,5.53;N,13.27
	1	- HCI	Specific rotation
50	1		$[\alpha]_{D^{20}-39.8}^{\circ}$ (c=0.1,DMSO)
			1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

55

R-N NH-

Physical properties Reference R [recrystallization solvent] example brown crystals  $NMR(DMSO-d_6)\delta ppm:0.94(3H,t,J=7Hz)$ 10 ,1.67(2H,br-s),1.71(2H,sex,J=7Hz),2.7 9(1H,dd,J=13.5,5Hz),2.85(1H,dd,J=13).5,5Hz),2.90-3.10(4H,m),3.75-3.90(3H, m),4.02(1H,t,J=9Hz),4.10-4.20(2H,m),15 4.38(2H,t,J=7Hz),4.55-4.65(1H,m),7.0208 8(1H.t.J=9Hz),7.20(1H,d,J=9Hz),7.50(1H,dd,J=14.5,2Hz)IR  $\nu$  (KBr) cm⁻¹:1738,3380 MS(m/z):396(M+)20 Specific rotation  $[\alpha]_{D^{20}-28.9}^{\circ}$  (c=0.1,DMSO) grayish brown crystals  $NMR(DMSO-d_6) \delta ppm: 2.61(3H,s), 3.11(4)$ H,t,J=5Hz),3.15-3.25(2H,m),3.86(1H,d25 d.J=9.6.5Hz),4.15(1H,t,J=9Hz),4.20-4. 40(4H,m),4.85-4.95(1H,m),7.12(1H,t,J)=9Hz),7.19(1H,dd,J=9,2.5Hz),7.49(1H, 209  $dd_{J}=14.5,2.5Hz),7.98(2H,br-s)$ IR v (KBr) cm-1:1754,3464 30 MS(m/z):384(M+)Specific rotation  $[\alpha]_{D^{20}-36.8}^{\circ}$  (c=0.1,DMSO) pale brown liquid 35 NMR(DMSO-d6) & ppm:1.68(2H,quin,J=7 Hz),2.37(2H,t,J=7Hz),2.53(4H,t,J=4.5 Hz),2.80-2.90(2H,m),2.83(3H,d,J=4.5 Hz),3.00(4H,t,J=4.5Hz),3.38(2H,br-s), 3.81(1H,dd,J=9,6.5Hz),4.03(1H,t,J=9)40 Hz),4.55-4.65(1H,m),7.04(1H,t,J=9Hz) 210 -7.18(1H.dd.J=9.2.5Hz),7.32(1H,br-s),7.39(1H,br-s), 7.47(1H,dd,J=15.5,2.5H)z) IR  $\nu$  (liq.) cm⁻¹:1740,3308 45 Specific rotation  $[\alpha]_{D^{20}}$ -21.0° (c=0.1,DMSO)

55

50

Reference example	R	Physical properties [recrystallization solvent]
211	MeO (GH2)3-N N	brown amorphous solid NMR(DMSO-d ₆ ) δ ppm:1.55-1.80(4H,m),2.38( 2H,t,J=6.5Hz),2.53(4H,t,J=5Hz),2.83(1H,d d,J=13.5,5Hz),2.87(1H,dd,J=13.5,5Hz),3.0 1(4H,t,J=5Hz),3.40-3.50(2H,m),3.79(1H,dd ,J=9,6.5Hz),3.87(3H,s),4.01(1H,t,J=9Hz),4. 50-4.60(1H,m),7.02(1H,t,J=9Hz),7.17(1H,d d,J=9,2.5Hz),7.42(1H,dd,J=15.5,2.5Hz),8.7 7(1H,br-s) IR ν (liq.) cm ⁻¹ :1746,3284 MS(m/z):425(M+) Specific rotation [α] _D ²⁰ -28.4° (c=0.1,DMSO)
212	Ph N N	yellow crystals [ClCH ₂ CH ₂ Cl-AcOEt] mp,183~186°C Elemental analysis for C ₂₁ H ₂₃ FN ₄ O ₂ S·1/4H ₂ O Calcd. %: C,60.20;H,5.65;N,13.37 Found %: C,60.28;H,5.50;N,13.14 Specific rotation [α]p ²⁰ -26.9° (c=0.1,DMSO)

#### Reference example 213

5

10

15

20

25

30

55

[0129] (S)-5-Aminomethyl-3-[4-(4-aminopiperidin-1-yl)-3-fluorophenyl]-2-oxooxazoli dine dihydrochloride
[0130] A suspension of 4.70 g of (S)-5-azidomethyl-3-[3-fluoro-4-(4-hydroxyiminopiperidin-1-yl)phenyl]-2-oxooxazolidine and 4.70 ml of Raney nickel in 95 ml of 10 % ammonia methanol solution was stirred at 40°C at a hydrogen pressure of under 30 atm for 6 hours. The catalyst was filtered off, and the filtrate was concentrated under reduced pressure. The residue was added with ethanol and 33% hydrogen chloride ethanol solution, and the mixture was stirred under ice-cooling for 1 hour. The precipitated crystals were collected by filtration to obtain 5.66 g of pale brown crystals.

NMR spectrum (DMSO-d₆)  $\delta$  ppm: 1.65-1.80(2H,m),2.00-2.10(2H,m),2.70-2.80(2H,m),3.10-3.25(3H,m),3.30-3.40(2H,m), 3.89(1H,dd,J=9,6.5Hz),4.15 (1H,t,J=9Hz),4.90-5.00(1H,m),7.10(1H,t,J=9Hz), 7.17(1H,dd,J=9,2.5Hz),7.45(1H,dd,J=14.5,2.5Hz),8.29(3H,br-s), 8.47(3H,br-s)

IR spectrum v (KBr) cm⁻¹: 1744,3440 Specific rotation [ $\alpha$ ]_D²⁰ -33.8° (c = 0.1, DMSO)

#### Reference example 214

[0131] (R)-N-[2-Oxo-3-[4-(thiomorpholin-4-yl)phenyl]oxazolidin-5-yl]methyl isothiocyanate [0132] To a mixture of 1.0 g of (S)-5-aminomethyl-2-oxo-3-[4-(thiomorpholin-4-yl)-phenyl]oxazolidine in 10 ml of benzene and 1 ml of N,N-dimethylformamide, 0.50 ml of triethylamine and 0.20 ml of carbon disulfide were added, and the mixture was stirred at room temperature for 6 hours. The reaction solution was concentrated under reduced pressure, and the residue was added with 10 ml of dichloromethane and 0.50 ml of triethylamine. The mixture was added with 0.35 ml of ethyl chlorocarbonate under ice-cooling and with stirring, and stirred at the same temperature for 30 minutes. The reaction solution was added with water, and the precipitated crystals were collected by filtration to obtain 0.98 g of colorless crystals. Recrystallization from a mixture of N,N-dimethylformamide-water gave colorless crystals having the melting point of from 194.5 to 195.5°C.

Elemental analysis for C ₁₅ H ₁₇ N ₃ O ₂ S ₂						
Calculated %	C,	53.71;	Н,	5.11;	N,	12.53
Found %	C,	53.53;	Н,	5.07;	N,	12.54

Specific rotation  $[\alpha]_D^{20}$  -151.8° (c =0.1, DMSO) [0133] The compounds of Reference examples 215 through 264 were obtained in the same manner as in Reference example 214.

R-N NCS

5			NCS
	Reference example	. <b>R</b>	Physical properties [recrystallization solvent]
10	215	s	pale yellow columns [CH ₃ CN] mp,135.5~136.5°C Elemental analysis for C ₁₅ H ₁₆ FN ₃ O ₂ S ₂ Calcd. %: C,50.97;H,4.56;N,11.89 Found %: C,51.01;H,4.60;N,11.85 Specific rotation [ $\alpha$ ] _D ²⁰ -151.9° (c=0.1,DMSO)
20	216	0=\$_N	colorless amorphous solid NMR(CDCl ₃ ) $\delta$ ppm:2.95-3.10(4H,m),3.25-3. 30(2H,m),3.75-3.85(2H,m),3.85-3.95(2H,m),3.97(1H,dd,J=14.5,5.5Hz),4.17(1H,t,J=9 Hz),4.80-4.90(1H,m),7.05-7.15(2H,m),7.52 (1H,d,J=13.5Hz) IR $\nu$ (KBr) cm ⁻¹ :1754,2096 MS(m/z):369(M+) Specific rotation [ $\alpha$ ] $_{\rm D}^{20}$ -94.4° (c=0.1,DMSO)
30 35	217		yellow liquid NMR(DMSO-d ₆ ) $\delta$ ppm:3.23(4H,t,J=5Hz),3.4 9(4H,t,J=5Hz),3.80(1H,dd,J=9,5.5Hz),4.0 2(1H,dd,J=15.5,5.5Hz),4.10(1H,dd,J=15.5,3.5Hz),4.19(1H,t,J=9Hz),4.90-5.00(1H,m),7.15-7.25(2H,m),7.50(1H,dd,J=15,2Hz) IR $\nu$ (liq.) cm ⁻¹ :1754,2100 MS(m/z):385(M+) Specific rotation
40	218		[α] _D 20-123.3° (c=0.1,DMSO)  pale yellow crystals[i-PrOH]  mp,109.5~110°C  Elemental analysis for C ₁₅ H ₁₆ FN ₃ O ₂ S  Calcd. %: C,56.06;H,5.02;N,13.08  Found %: C,56.09;H,5.32;N,13.12  Specific rotation  [α] _D 20-166.3° (c=0.1,DMSO)
50	219		pale brown crystals [i-PrOH] mp,107~109°C Elemental analysis for $C_{16}H_{18}FN_3O_2S$ Calcd. %: C,57.30;H,5.41;N,12.53 Found %: C,57.25;H,5.63;N,12.52 Specific rotation [ $\alpha$ ] $_{\rm D}^{20}$ -154.2° (c=0.1,DMSO)

R-N NCS

•			- >1100
F	Reference	R	Physical properties
Į	example		[recrystallization solvent]
10	220	MeO N	colorless prisms[AcOEt-i-Pr ₂ O] mp,118.5~120°C Elemental analysis for C ₁₇ H ₂₀ FN ₃ O ₃ S Calcd. %: C,55.88;H,5.52;N,11.50
15		F	Found %: C,55.89;H,5.58;N,11.41 Specific rotation [\alpha]D^{20-146.6° (c=0.1,DMSO)
20	221	EtO—N————	colorless crystals[i-PrOH] mp,114.5~116°C Elemental analysis for $C_{18}H_{22}FN_3O_3S$ Calcd. %: C,56.98;H,5.84;N,11.07 Found %: C,56.97;H,5.88;N,10.93 Specific rotation [ $\alpha$ ] $_{D^{20}-136.4^{\circ}}$ (c=0.1,DMSO)
25	222	Mo-N	colorless needles[AcOEt-i-Pr ₂ O] mp,133.5~134.5°C Elemental analysis for C ₁₇ H ₂₀ FN ₃ O ₂ S Calcd. %: C,58.43;H,5.77;N,12.03 Found %: C,58.39;H,5.67;N,11.95 Specific rotation [ $\alpha$ ]p ²⁰ -153.5° (c=0.1,DMSO)
35	223	Et — N — — — — — — — — — — — — — — — — —	colorless needles[Toluene] mp,94~95°C Elemental analysis for C ₁₈ H ₂₂ FN ₃ O ₂ S Calcd. %: C,59.48;H,6.10;N,11.56 Found %: C,59.27;H,6.12;N,11.43 Specific rotation [α] _D ²⁰ -147.9° (c=0.1,DMSO)
45	224	MeO-(CH ₂ ) ₂ -O-N-	colorless crystals[AcOEt-i-Pr2O] mp,63~64°C Elemental analysis for C19H24FN3O4S Calcd. %: C,55.73;H,5.91;N,10.26 Found %: C,55.64;H,5.99;N,10.27 Specific rotation
			$[\alpha]_{D^{20}-130.7^{\circ}}$ (c=0.1,DMSO)

R-N NCS

_	<u> </u>		
	Reference	R	Physical properties
L	example		[recrystallization solvent]
l			brown liquid
10			NMR(DMSO-d ₆ ) δ ppm:3.24(3H,s),3.60-3.7
ł			0(2H,m),3.75(1H,dd,J=9,5.5Hz),3.95-4.2
j		^ 🦱	0(5H,m),4.25-4.35(1H,m),4.85-4.95(1H,
}	995	MeO————————————————————————————————————	m),6.59(1H,dd,J=10.5,8.5Hz),7.12(1H,dd
	225	ا سر ۲	,J=8.5,2Hz),7.36(1H,dd,J=14.5,2Hz)
15		F	IR $\nu$ (liq.) cm ⁻¹ :1754,2100
1	j		MS(m/z):337(M+)
1	ļ	!	Specific rotation
1	1		$[\alpha]_{D^{20}-129.3}^{\circ}$ (c=0.1,DMSO)
20			colorless needles[AcOEt-i-Pr2O]
1			mp,78.5~79.5°C
1		MeO-(CH ₂ ) ₂ -O-N-	Elemental analysis for C17H20FN8O4S
į	226		Calcd. %: C,53.53;H,5.29;N,11.02
I	220	F	Found %: C,53.47;H,5.47;N,10.93
25			Specific rotation
			$[\alpha]_{D^{20}-140.4^{\circ}}$ (c=0.1,DMSO)
}			colorless crystals [AcOEt-i-Pr2O]
l			mp,128~129°C
30			Elemental analysis for C ₁₇ H ₂₀ FN ₃ O ₂ S
	227	) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	Calcd. %: C,58.43;H,5.77;N,12.03
- 1	441		Found %: C,58.50;H,5.97;N,11.95
		•	Specific rotation
			$[\alpha]_{\text{D}^{20}\text{-}153.8^{\circ}}$ (c=0.1,DMSO)
35			pale brown liquid
į			page 576wh fiquid   NMR(DMSO-d ₆ ) δ ppm:2.28(3H,s),3.79
	:		(1H,dd,J=9,5.5Hz),4.04(1H,dd,J=15,5Hz
		<u> </u>	),4.10(1H,dd,J=15,3Hz),4.19(1H,t,J=9H
40			z),4.10(1H,dd,3=15,5Hz),4.19(1H,t,3=5Hz),
40	228	Me—	7.43(2H,d,J=8.5Hz)
			IR $\nu$ (liq.) cm ⁻¹ :1756,2096
			•
			MS(m/z):248(M+)
45			Specific rotation
			$[\alpha]_{D^{20}-178.3^{\circ}}$ (c=0.1,DMSO)
			colorless prisms[i-PrOH]
			mp,92~92.5°C
	ł	Mo	Elemental analysis for C ₁₃ H ₁₄ N ₂ O ₂ S
50	229		Calcd. %: C,59.52;H,5.38;N,10.68
	1	Me	Found %: C,59.54;H,5.39;N,10.65
		1	Specific rotation
		<u> </u>	$[\alpha]_{D^{20}-175.1^{\circ}}$ (c=0.1,DMSO)

83

55

R-N NCS

5			NCS
	Reference	R	Physical properties [recrystallization solvent]
10	example 230	MeO-(CH ₂ ) ₂ -O-	pale brown crystals [AcOEt] mp,71.5~73.5°C Elemental analysis for C ₁₄ H ₁₅ FN ₂ O ₄ S Calcd. %: C,51.53;H,4.63;N,8.58 Found %: C,51.46;H,4.56;N,8.49 Specific rotation [α] _D ²⁰ -137.7° (c=0.1,DMSO)
20	231	Me N- Me'	colorless needles[AcOEt-i-Pr ₂ O] mp,140.5~141.5°C Elemental analysis for $C_{13}H_{15}N_3O_2S$ Calcd. %: C,56.30;H,5.45;N,15.15 Found %: C,56.45;H,5.35;N,14.95 Specific rotation [ $\alpha$ ]p ²⁰ -172.5° (c=0.1,DMSO)
25	232	Me N-	pale yellow needles[i-PrOH] mp,74.5~75°C Elemental analysis for $C_{13}H_{14}FN_3O_2S$ Calcd. %: C,52.87;H,4.78;N,14.23 Found %: C,52.81;H,4.99;N,14.18 Specific rotation [ $\alpha$ ] _D 20-172.7° (c=0.1,DMSO)
35	233	Mo Et	colorless needles[AcOEt-i-Pr ₂ O] mp,78~79°C Elemental analysis for C ₁₄ H ₁₆ FN ₃ O ₂ S Calcd. %: C,54.35;H,5.21;N,13.58 Found %: C,54.42;H,5.30;N,13.63 Specific rotation [ $\alpha$ ]p ²⁰ -177.5° (c=0.1,DMSO)
40 45	234	Et N————————————————————————————————————	pale brown liquid  NMR(DMSO-d ₆ ) δ ppm:1.00(6H,t,J=7.5Hz),  3.13(4H,q,J=7.5Hz),3.78(1H,dd,J=9.5,6H z),4.03(1H,dd,J=15.5,5.5Hz),4.11(1H,dd, J=15.5,3.5Hz),4.17(1H,t,J=9.5Hz),4.90-5.  00(1H,m),7.04(1H,t,J=9Hz),7.17(1H,dd,J=9,2.5Hz),7.41(1H,dd,J=14.5,2.5Hz)  MS(m/z):323(M+) Specific rotation
50			Specific rotation [α] _D 20-162.3° (c=0.1,DMSO)

_			NC3
5	Reference	R	Physical properties
	example	~	[recrystallization solvent]
			colorless needles[AcOEt]
			mp,103.5~104.5°C
10			Elemental analysis for C14H14N2O2S
	235		Calcd. %: C,61.29;H,5.14;N,10.21
		~	Found %: C,61.24;H,5.13;N,10.20
	1		Specific rotation [ $\alpha$ ] $p^{20}$ -172.7° (c=0.1,DMSO)
			colorless needles[i-PrOH]
15			mp,122.5~124°C
			Elemental analysis for C ₁₅ H ₁₆ N ₂ O ₂ S
	236	( ) <u>~</u>	Calcd. %: C,62.48;H,5.59;N,9.71
		)	Found %: C,62.49;H,5.61;N,9.65
20			Specific rotation [\alpha] \text{b}^{20}-166.8° (c=0.1,DMSO)
20			pale yellow crystals
			NMR(DMSO-d ₆ ) δ ppm:2.55(3H,s),3.89(1H,dd,J=9
	1		.5,5.5Hz),4.08(1H,dd,J=15,5.5Hz),4.15(1H,dd,J
		<b>%</b> /=\	=15,3.5Hz),4.28(1H,t,J=9.5Hz),4.98-5.03(1H,m)
25	237	Me	,7.70(2H,d,J=9Hz),8.00(2H,d,J=9Hz)
			IR ν (KBr) cm ⁻¹ :1748,2092
		1	MS(m/z):276(M+)
	Ì		Specific rotation [ $\alpha$ ] _D 20-195.6° (c=0.1,DMSO)
			pale brown needles[AcOEt-i-Pr2O]
30		CH2-N N-	mp,117~119°C
	000		Elemental analysis for C ₁₉ H ₂₃ FN ₄ O ₄ S
	238		Calcd. %: C,54.02;H,5.49;N,13.26
			Found %: C,54.30;H,5.40;N,13.00
25		l	Specific rotation [α] _D 20-103.2° (c=0.1,DMSO)
35			pale yellow needles[i-PrOH]
	1	9	mp,92.5~94°C
	000	(CH ₂ ) ₂ -N	Elemental analysis for C20H25FN4O4S
	239	F	Caled. %: C,55.03;H,5.77;N,12.84
40			Found %: C,54.84;H,5.87;N,12.71
	1		Specific rotation [\alpha]p20-121.8° (c=0.1,DMSO)
			colorless needles[AcOEt-i-Pr2O]
	}		mp,95.5~97℃
		(CH3)3—N N—( )	Elemental analysis for C21H27FN4O4S
45	240	EtO	Calcd. %: C,55.98;H,6.04;N,12.44
		•	Found %: C,55.70;H,5.76;N,12.29
	1	1	Specific rotation
			$[\alpha]_{D^{20}}$ -108.3° (c=0.1,DMSO)

R-N NCS

	NCS			
	Reference	R	Physical properties	
	example		[recrystallization solvent]	
10			colorless crystals[i-PrOH]	
10			mp,102~103℃	
	241	)	Elemental analysis for C ₁₇ H ₁₉ FN ₄ O ₄ S	
	241	MeO C	Calcd. %: C,51.77;H,4.86;N,14.20	
		•	Found %: C,51.77;H,4.83;N,14.10	
15			Specific rotation [ \alpha ] \( \text{p}^{20}-139.5\) (c=0.1,DMSO)	
15			pale yellow crystals[MeOH]	
			mp,110~112°C	
		i ~ ~	Elemental analysis for C ₁₉ H ₂₂ FN ₄ O ₄ S-1/4H ₂ O	
	. 242	MeO-(CH ₂ ) ₂ N N	Calcd. %: C,53.45;H,5.55;N,13.12	
20			Found %: C,53.40;H,5.46;N,13.12	
20		-		
			Specific rotation [α] _D 20-123.9° (c=0.1,DMSO)	
	•	Bac-N N-	colorless needles [AcOEt-i-Pr2O]	
			mp,142~143.5°C	
25	243		Elemental analysis for C20H25FN4O4S	
23			Calcd. %: C,55.03;H,5.77;N,12.84	
			Found %: C,54.96;H,5.88;N,12.79	
			Specific rotation [α]n ²⁰ -121.1° (c=0.1,DMSO)	
			colorless prisms [THF-i-Pr ₂ O]	
30	}		mp,127~127.5°C	
	244	Mo-N N-	Elemental analysis for C ₁₆ H ₁₉ FN ₄ O ₂ S	
			Calcd. %: C,54.84;H,5.47;N,15.99	
			Found %: C,54.83;H,5.41;N,15.84	
			Specific rotation [ \alpha ] \( \text{p}^{20}-159.0\cdot \) (c=0.1,DMSO)	
<i>35</i>			coloriess needles[AcOEt-i-Pr2O]	
			mp,86.5~87.5°C	
	045	E1-N N-	Elemental analysis for C ₁₇ H ₂₁ FN ₄ O ₂ S	
	245		Calcd. %: C,56.03;H,5.81;N,15.37	
		F	Found %: C,56.09;H,5.76;N,15.46	
40		1	Specific rotation [ $\alpha$ ] $_{\rm D}^{20}$ -151.2° (c=0.1,DMSO)	
			colorless crystals [AcOEt-i-Pr2O]	
			mp.93~94°C	
	]	D-Pr-N	Elemental analysis for C ₁₈ H ₂₉ FN ₄ O ₂ S	
45	246	""" T	Calcd. %: C,57.12;H,6.13;N,14.80	
		ļ F	Found %: C,57.12;H,6.13;N,14.80	
	j			
		<u> </u>	Specific rotation [α]p ²⁰ -141.6° (c=0.1,DMSO)	

5			
[	Reference	R	Physical properties [recrystallization solvent]
ļ	example		
1			pale yellow plates[i-PrOH]
10			mp,101~102°C
"		n_Bu_N N_	Elemental analysis for C19H25FN4O2S
	247		Calcd. %: C,58.14;H,6.42;N,14.27
		f į	Found %: C,58.06;H,6.51;N,14.16
			Specific rotation
15			[α]p ²⁰ -133.8° (c=0.1,DMSO)
"			yellowish brown liquid
			NMR(DMSO-de) & ppm:1.50-1.70(2H,m),1.85-
			1.95(2H,m),3.20-3.30(2H,m),3.60(3H,s),3.6
			0-3.70(2H,m),3.79(1H,dd,J=9,6Hz),4.02(1
20			H,dd,J=15.5,5.5Hz),4.11(1H,dd,J=15.5,3.5
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Hz),4.19(1H,t,J=9Hz),4.45-4.55(1H,m),4.9
	248	MeO F	0-5.00(1H,m),7.22(1H,dd,J=9,2.5Hz),7.26(
			1H,t,J=9Hz),7.52(1H,dd,J=13.5,2.5Hz)
			IR ν (liq.) cm ⁻¹ :1696,1758,2096
25			MS(m/z):409(M+)
			Specific rotation
			$[\alpha]_{D^{20}-108.0^{\circ}}$ (c=0.1,DMSO)
			colorless prisms[AcOEt]
	ļ	1	mp,121~122°C
30	1	9, ^	Elemental analysis for C16H16FN3O5S
•	249	N >-0-	Calcd. %: C,50.39;H,4.23;N,11.02
		MeO F	Found %: C,50.29;H,4.20;N,10.87
			Specific rotation
	İ		$[\alpha]_{D^{20}-133.1^{\circ}}$ (c=0.1,DMSO)
35			colorless amorphous solid
	ł		NMR(DMSO-d ₆) δ ppm:1.50-1.70(2H,m),1.80-
			2.00(2H,m),2.57(2H,t,J=6.5Hz),3.20-3.40(
	1	}	2H,m),3.23(3H,s),3.56(2H,t,J=6.5Hz),3.65-
40	1	ļ	3.75(1H,m),3.80(2H,dd,J=9,6Hz),4.03(1H,
40	1	l in a	dd,J=15,5.5Hz),4.10(1H,dd,J=15,3Hz),4.1
	250	Maco-(CH ₂) ₂ N	9(1H,t,J=9Hz),4.50-4.60(1H,m),4.90-5.00(
	200	*	1H,m, 7.22(1H, dd, J=9, 2.5Hz), 7.27(1H, t, J=
			9Hz),7.52(1H,dd,J=13.5,2.5Hz)
45	1		IR ν (KBr) cm ⁻¹ :1756,2120
70]	J	MS(m/z):437(M+)
	1		Specific rotation
		1	$[\alpha]_{D^{20}-113.5^{\circ}}$ (c=0.1,DMSO)
	L		<u> </u>

R-N NCS

Part				
recrystalization solvent yellow crystals [DMF-H ₂ O] mp.209~211°C Elemental analysis for C ₂₈ H ₂₄ FN ₅ O ₄ S Calcd. %: C.58.93;H.4.75;N,13.74 Found %: C.58.83;H.4.68;N,13.65 Specific rotation α] ₁₀ 20-117.9° (c=0.1,DMSO) pale brown liquid NMR(DMSO-de) δ ppm:1.55-1.65(2H,m),1.7 9(3H,8),2.30-2.40(2H,m),2.40-2.50(4H,m) 2.90-3.00(4H,m),3.00-3.10(2H,m),3.45-3. 55(2H,m),3.79(1H,dd,J=9,6.5H ₂),4.13(1H t,J=9H ₂),4.85-4.95(1H,m),7.04(1H,t,J=9 H ₂),7.18(1H,dd,J=9,5.5H ₂),7.47(1H,dd,J = 14.5,2.5H ₂),7.70(1H,br-6) IR ν (liq.) cm ⁻¹ :1746 Specific rotation α] ₁₀ 20-66.8° (c=0.1,DMSO) colorless crystals [AcOEt] mp,103.5~105.5°C Elemental analysis for C ₁₈ H ₂₀ FN ₂ O ₂ S Calcd. %: C,55.5;H,5.18;N,17.98 Found %: C,55.45;H,5.18;N,17.98 Found %: C,55.45;H,5.18;N,17.98 Specific rotation α] ₁₀ 20-46.3° (c=0.1,DMSO) pale brown crystals NMR(DMSO-de) δ ppm:2.50-2.70(4H,m),2.8 2(3H,8),2.90-3.10(4H,m),2.98(3H,8),3.78(1H,dd,J=9.5,6H ₂),4.02(1H,dd,J=15,5H ₂), 4.10(1H,dd,J=15,3.5H ₂),4.17(1H,t,J=9.5 H ₂ ,4.90-5.00(1H,m),7.05(1H,t,J=9H ₂),7.19(1H,dd,J=9.5,5H ₂),7.45(1H,dd,J=15,2.5H ₂) H ₂ ,4.90-5.00(1H,m),7.05(1H,t,J=9H ₂),7.19(1H,dd,J=9.5,5H ₂),7.45(1H,dd,J=15,2.5H ₂) Specific rotation R ₂ γ (KBr) cm ⁻¹ :1630,1762,2132 MS(m/2:435(M+) Specific rotation	Γ	Reference	R	Physical properties
mp,209~211°C Elemental analysis for C22H24FN604S Calcd. %: C,58.93;H,4.75;N,13.74 Found %: C,58.85;H,4.68;N,13.65 Specific rotation [α]p ^{20-117.9°} (c=0.1,DMSO) pale brown liquid NMR(DMSO-de) δ ppm:1.55-1.65(2H,m),1.7 9(3H,8),2.30-2.40(2H,m),3.45-3. 55(2H,m),3.79(1H,dd,J=9,6.5Hz),4.13(1H,t,J=9Hz),4.85-4.95(1H,m),7.04(1H,t,J=9Hz),7.18(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=14.5,2.5Hz),7.70(1H,br-s) IR ν (iq.) cm ⁻¹ :1746 Specific rotation [α]p ²⁰⁻⁶ 6.8° (c=0.1,DMSO) colorless crystals [AcOEt] mp,103.5~105.5°C Elemental analysis for C12H26FN5O2S Calcd. %: C,55.51;H,5.18;N,17.98 Found %: C,55.45;H,5.11;N,17.89 Specific rotation [α]p ²⁰⁻¹ 46.3° (c=0.1,DMSO) pale brown crystals NMR(DMSO-de) δ ppm:2.50-2.70(4H,m),2.8 2(3H,s),2.90-3.10(4H,m),2.98(3H,s),3.78(1H,dd,J=9.5,6Hz),4.02(1H,dd,J=15,5Hz),4.10(1H,dd,J=15,3.5Hz),4.17(1H,t,J=9.5 Hz),4.90-5.00(1H,m),7.05(1H,t,J=9Hz),7.19(1H,dd,J=9,2.5Hz),7.45(1H,dd,J=15,2.5Hz) IR ν (KBr) cm ⁻¹ :1630,1762,2132 MS(m/z):435(M*) Specific rotation Specific rotation Ry (KBr) cm ⁻¹ :1630,1762,2132 MS(m/z):435(M*) Specific rotation	1.	example		
Elemental analysis for C ₂₈ H ₂₄ FN ₈ O ₄ S Calcd. %: C,58.93;H,4.75;N,13.74 Found %: C,58.85;H,4.68;N,13.65 Specific rotation [α] _P 20-117.9° (c=0.1,DMSO) pale brown liquid NMR(DMSO-de) δ ppm:1.55-1.65(2H,m),1.7 9(3H,s),2.30-2.40(2H,m),2.40-2.50(4H,m),2.99-3.00(4H,m),3.00-3.10(2H,m),3.46-3.55(2H,m),3.79(1H,dd,J=9,6.5Hz),4.13(1H,dd,J=9,4.5Hz),7.18(1H,dd,J=9,4.5Hz),7.18(1H,dd,J=9,4.5Hz),7.18(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=14.5,2.5Hz),7.70(1H,br-s) IR ν (liq.) cm ⁻¹ :1746 Specific rotation [α] _P 20-66.8° (c=0.1,DMSO) colorless crystals [AcOEt] mp,103.5~105.5°C Elemental analysis for C ₁₈ H ₂₆ FN ₅ O ₂ S Calcd. %: C,55.51;H,5.18;N,17.98 Found %: C,55.45;H,5.11;N,17.89 Specific rotation [α] _P 20-146.3° (c=0.1,DMSO) pale brown crystals NMR(DMSO-de) δ ppm:2.50-2.70(4H,m),2.8 2(3H,s),2.90-3.10(4H,m),2.98(3H,s),3.78(1H,dd,J=9.5,6Hz),4.02(1H,dd,J=15,5Hz),4.17(1H,t,J=9.5) H ₂ (3H,s),2.90-3.10(4H,m),2.98(3H,s),3.78(1H,dd,J=9.5,6Hz),4.02(1H,dd,J=15,5Hz),4.10(1H,dd,J=9,2.5Hz),7.45(1H,dd,J=15,2.5Hz) 1R ν (KBr) cm ⁻¹ :1630,1762,2132 MS(m/z):435(M*) Specific rotation				yellow crystals[DMF-H ₂ O]
Calcd. %: C,58.93;H,4.75;N,13.74 Found %: C,58.85;H,4.68;N,13.65 Specific rotation [a]p ²⁰ -117.9° (c=0.1,DMSO) pale brown liquid NMR(DMSO-de) \(\delta \) ppm:1.55-1.65(2H,m),1.7 9(3H,8),2.30-2.40(2H,m),2.40-2.50(4H,m),2.40-2.50(4H,m),2.90-3.00(4H,m),3.00-3.10(2H,m),3.45-3. 55(2H,m),3.79(1H,dd,J=9,6.5Hz),4.13(1H,t,J=9Hz),4.85-4.95(1H,m),7.04(1H,t,J=9Hz),7.13(1H,dd,J=9,2.5Hz),7.70(1H,br-s) IR \(\nu(\text{liq}\) \) cm-1:1746 Specific rotation [a]p ²⁰ -66.8° (c=0.1,DMSO) colorless crystals [AcOEt] mp,103.5~105.5~C Elemential analysis for C1sH2sFN5O2S Calcd. %: C,55.5;H,5.18;N,17.98 Found %: C,55.45;H,5.11;N,17.89 Specific rotation [a]p ²⁰ -146.3° (c=0.1,DMSO) pale brown crystals NMR(DMSO-de) \(\delta \) ppm:2.50-2.70(4H,m),2.8 2(3H,8),2.90-3.10(4H,m),2.98(3H,s),3.78(1H,dd,J=9.5,6Hz),4.02(1H,dd,J=15,5Hz),4.10(1H,dd,J=15,3.5Hz),4.17(1H,t,J=9.5),4.20(1H,dd,J=9.2.5Hz),7.45(1H,dd,J=15,2.5Hz),1.17(1H,t,J=9.5),1.27(1H,dd,J=9,2.5Hz),7.45(1H,dd,J=15,2.5Hz),1.27(1H,dd,J				mp,209~211°C
Calcd. %: C,58.93;H,4.75;N,13.74 Found %: C,58.85;H,4.68;N,13.65 Specific rotation [a]p ²⁰ -117.9° (c=0.1,DMSO) pale brown liquid NMR(DMSO-de) \(\delta \) ppm:1.55-1.65(2H,m),1.7 9(3H,8),2.30-2.40(2H,m),2.40-2.50(4H,m),2.40-2.50(4H,m),2.90-3.00(4H,m),3.00-3.10(2H,m),3.45-3. 55(2H,m),3.79(1H,dd,J=9,6.5Hz),4.13(1H,t,J=9Hz),4.85-4.95(1H,m),7.04(1H,t,J=9Hz),7.13(1H,dd,J=9,2.5Hz),7.70(1H,br-s) IR \(\nu(\text{liq}\) \) cm-1:1746 Specific rotation [a]p ²⁰ -66.8° (c=0.1,DMSO) colorless crystals [AcOEt] mp,103.5~105.5~C Elemential analysis for C1sH2sFN5O2S Calcd. %: C,55.5;H,5.18;N,17.98 Found %: C,55.45;H,5.11;N,17.89 Specific rotation [a]p ²⁰ -146.3° (c=0.1,DMSO) pale brown crystals NMR(DMSO-de) \(\delta \) ppm:2.50-2.70(4H,m),2.8 2(3H,8),2.90-3.10(4H,m),2.98(3H,s),3.78(1H,dd,J=9.5,6Hz),4.02(1H,dd,J=15,5Hz),4.10(1H,dd,J=15,3.5Hz),4.17(1H,t,J=9.5),4.20(1H,dd,J=9.2.5Hz),7.45(1H,dd,J=15,2.5Hz),1.17(1H,t,J=9.5),1.27(1H,dd,J=9,2.5Hz),7.45(1H,dd,J=15,2.5Hz),1.27(1H,dd,J			(CH ₂) ₂	Elemental analysis for C25H24FN5O4S
Found %: C,58.85;H,4.68;N,13.65 Specific rotation [\alpha]_{2^0-117.9^\circ} (c=0.1,DMSO) pale brown liquid NMR(DMSO-de) \delta ppm:1.55-1.65(2H,m),1.7 9(3H,9),2.30-2.40(2H,m),2.40-2.50(4H,m) 2.90-3.00(4H,m),3.00-3.10(2H,m),3.45-3. 55(2H,m),3.79(1H,dd,J=9,6.5Hz),4.13(1H t,J=9Hz),4.85-4.95(1H,m),7.04(1H,t,J=9 Hz),7.18(1H,dd,J=9,2.5Hz),7.47(1H,dd,J =14.5,2.5Hz),7.70(1H,br-8) IR \nu (liq.) cm^1.1746 Specific rotation [\alpha]_{2^0-66.8^\circ} (c=0.1,DMSO) colorless crystals [AcOEt] mp,103.5~105.5^\circ Elemental analysis for C18H20FNsO2S Calcd. %: C,55.51;H,5.18;N,17.98 Found %: C,55.51;H,5.18;N,17.98 Found %: C,55.45;H,5.11;N,17.89 Specific rotation [\alpha]_{2^0-146.3^\circ} (c=0.1,DMSO) pale brown crystals NMR(DMSO-de) \delta ppm:2.50-2.70(4H,m),2.8 2(3H,8),2.90-3.10(4H,m),2.98(3H,8),3.78(1H,dd,J=9.5,6Hz),4.02(1H,dd,J=15,5Hz),4.17(1H,t,J=9.5) H2,4.90-5.00(1H,m),7.05(1H,t,J=9Hz),7. 19(1H,dd,J=9,2.5Hz),7.45(1H,dd,J=15,2.5Hz) IR \nu (KBr) cm^1:1630,1762,2132 MS(m/z):435(M*) Specific rotation		251		
Specific rotation (α lp²0-117.9° (c=0.1,DMSO) pale brown liquid NMR(DMSO-de) δ ppm:1.55-1.65(2H,m),1.7 9(3H,s),2.30-2.40(2H,m),2.40-2.50(4H,m) 2.90-3.00(4H,m),3.00-3.10(2H,m),3.45-3. 55(2H,m),3.79(1H,dd,J=9,6.5Hz),4.13(1H t,J=9Hz),4.85-4.95(1H,m),7.04(1H,t,J=9 Hz),7.18(1H,dd,J=9,2.5Hz),7.47(1H,dd,J =14.5,2.5Hz),7.70(1H,br-e) IR ν (liq.) cm ⁻¹ :1746 Specific rotation [α lp²0-66.8° (c=0.1,DMSO) colorless crystals [AcOEt] mp,103.5~105.5°C Elemental analysis for C12H20FN5O2S Calcd. %: C,55.51;H,5.18;N,17.98 Found %: C,55.45;H,5.11;N,17.89 Specific rotation [α lp²0-146.3° (c=0.1,DMSO) pale brown crystals NMR(DMSO-de) δ ppm:2.50-2.70(4H,m),2.8 2(3H,s),2.90-3.10(4H,m),2.98(3H,s),3.78(1H,dd,J=9.5,6Hz),4.02(1H,dd,J=15,5Hz),4.10(1H,dd,J=15,3.5Hz),4.17(1H,t,J=9.5) Hz),4.90-5.00(1H,m),7.05(1H,t,J=9Hz),7.19(1H,dd,J=15,2.5Hz),2.17(1H,t,J=9.5) Ly (KBr) cm ⁻¹ :1630,1762,2132 MS(m/z):435(M*) Specific rotation			o F	
(a p ²⁰ -117.9° (c=0.1,DMSO)	1			
pale brown liquid NMR(DMSO-de) & ppm:1.55-1.65(2H,m),1.7 9(3H,s),2.30-2.40(2H,m),2.40-2.50(4H,m) 2.90-3.00(4H,m),3.00-3.10(2H,m),3.45-3. 55(2H,m),3.79(1H,dd,J=9,6.5Hz),4.13(1H, 4,J=9Hz),4.85-4.95(1H,m),7.04(1H,t,J=9 Hz),7.18(1H,dd,J=9,2.5Hz),7.47(1H,dd,J =14.5,2.5Hz),7.70(1H,br-s) IR \nu(\text{liq.}) \text{cm}^{-1:1746} Specific rotation [\alpha] \text{log1} \text{colorestatis} \text{[AcOEt]} mp,103.5~105.5^C Elemental analysis for C12H20FNsO2S Calcd. %: C,55.51;H,5.18;N,17.98 Found %: C,55.45;H,5.11;N,17.89 Specific rotation [\alpha] \text{lpm} \text{[CH_2)z} \text{ mp,103.5} \text{ colorestation} [\alpha] \text{lpm} \text{[colored]} \text{ colorestation} [\alpha] \text{lpm} \text{lpm} \text{ colorestation} [\alpha] \text{lpm}				
NMR(DMSO-de) & ppm:1.55-1.65(2H,m),1.7 9(3H,s),2.30-2.40(2H,m),2.40-2.50(4H,m) 2.90-3.00(4H,m),3.00-3.10(2H,m),3.45-3. 55(2H,m),3.79(1H,dd,J=9,6.5Hz),4.13(1H t,J=9Hz),4.85-4.95(1H,m),7.04(1H,t,J=9 Hz),7.18(1H,dd,J=9,2.5Hz),7.47(1H,dd,J =14.5,2.5Hz),7.70(1H,br-s) IR \(\nu\) (liq.) cm ⁻¹ :1746 Specific rotation \[\alpha\) 20-66.8° (c=0.1,DMSO) colorless crystals [AcOEt] mp,103.5~105.5°C Elemental analysis for C1sH2eFNsO2S Caled. %: C,55.51;H,5.18;N,17.98 Found %: C,55.45;H,5.11;N,17.89 Specific rotation \[\alpha\) 20-146.3° (c=0.1,DMSO) pale brown crystals NMR(DMSO-de) & ppm:2.50-2.70(4H,m),2.8 2(3H,s),2.90-3.10(4H,m),2.98(3H,s),3.78(1H,dd,J=9.5,6Hz),4.02(1H,dd,J=15,5.5Hz),4.10(1H,dd,J=15,3.5Hz),4.17(1H,t,J=9.5) Hz),4.90-5.00(1H,m),7.05(1H,t,J=9Hz),7.19(1H,dd,J=9,2.5Hz),7.45(1H,dd,J=15,2.5Hz) IR \(\nu\) (EBr) cm ⁻¹ :1630,1762,2132 MS(m/z):435(M*) Specific rotation	<u> </u> -			
9(3H,s),2.30-2.40(2H,m),2.40-2.50(4H,m),2.90-3.00(4H,m),3.00-3.10(2H,m),3.45-3.55(2H,m),3.79(1H,dd,J=9,6.5Hz),4.13(1H,t,J=9Hz),4.85-4.95(1H,m),7.04(1H,t,J=9Hz),7.18(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=14.5,2.5Hz),7.70(1H,br-s) IR \nu (liq.) cm-1:1746 Specific rotation [\alpha]^{20-66.8} (c=0.1,DMSO) colorless crystals [AcOEt] mp,103.5~105.5~C Elemental analysis for C ₁₈ H ₂₀ FN ₅ O ₂ S Calcd. %: C,55.51;H,5.18;N,17.98 Found %: C,55.45;H,5.11;N,17.89 Specific rotation [\alpha]^{20-146.3} (c=0.1,DMSO) pale brown crystals NMR(DMSO-d ₆) \(\delta\) ppm:2.50-2.70(4H,m),2.8 2(3H,s),2.90-3.10(4H,m),2.98(3H,s),3.78(1H,dd,J=9.5,6Hz),4.10(1H,dd,J=15,3.5Hz),4.17(1H,t,J=9.5) Hz),4.90-5.00(1H,m),7.05(1H,t,J=9Hz),7.19(1H,dd,J=9,2.5Hz),7.45(1H,dd,J=15,2.5Hz) IR \nu (KBr) cm-1:1630,1762,2132 MS(m/z):435(M+) Specific rotation	•			
252 252 253 254 255 256 257 258 259 259 254 259 250 250 250 250 250 250 250				
252 Solution Sol				
1.			٥	
Hz),7.18(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=14.5,2.5Hz),7.70(1H,br-s) IR ν (liq.) cm ⁻¹ :1746 Specific rotation [α] _D ²⁰ -66.8° (c=0.1,DMSO) colorless crystals [AcOEt] mp,103.5~105.5°C Elemental analysis for C ₁₈ H ₂₀ FN ₅ O ₂ S Calcd. %: C,55.51;H,5.18;N,17.98 Found %: C,55.45;H,5.11;N,17.89 Specific rotation [α] _D ²⁰ -146.3° (c=0.1,DMSO) pale brown crystals NMR(DMSO-de) δ ppm:2.50-2.70(4H,m),2.8 2(3H,s),2.90-3.10(4H,m),2.98(3H,s),3.78(1H,dd,J=9.5,6Hz),4.02(1H,dd,J=15,5Hz), 4.10(1H,dd,J=15,3.5Hz),4.17(1H,t,J=9.5 Hz),4.90-5.00(1H,m),7.05(1H,t,J=9Hz),7. 19(1H,dd,J=9,2.5Hz),7.45(1H,dd,J=15,2.5Hz) IR ν (EBr) cm ⁻¹ :1630,1762,2132 MS(m/z):435(M*) Specific rotation	1	222	(СН.)з	
253 NC (CH ₂) ₂ (C		252		
IR ν (liq.) cm ⁻¹ :1746 Specific rotation [α]n ²⁰ -66.8° (c=0.1,DMSO) colorless crystals [AcOEt] mp,103.5~105.5°C Elemental analysis for C ₁₈ H ₂₀ FN ₅ O ₂ S Calcd. % : C,55.51;H,5.18;N,17.98 Found % : C,55.45;H,5.11;N,17.89 Specific rotation [α]p ²⁰ -146.3° (c=0.1,DMSO) pale brown crystals NMR(DMSO-de) δ ppm:2.50-2.70(4H,m),2.8 2(3H,s),2.90-3.10(4H,m),2.98(3H,s),3.78(1H,dd,J=9.5,6Hz),4.02(1H,dd,J=15,5Hz), 4.10(1H,dd,J=15,3.5Hz),4.17(1H,t,J=9.5 Hz),4.90-5.00(1H,m),7.05(1H,t,J=9Hz),7. 19(1H,dd,J=9,2.5Hz),7.45(1H,dd,J=15,2.5Hz) IR ν (KBr) cm ⁻¹ :1630,1762,2132 MS(m/z):435(M*) Specific rotation	1		f	
Specific rotation [α]p ²⁰ -66.8° (c=0.1,DMSO) colorless crystals[AcOEt] mp,103.5~105.5°C Elemental analysis for C ₁₈ H ₂₀ FN ₅ O ₂ S Calcd. %: C,55.51;H,5.18;N,17.98 Found %: C,55.45;H,5.11;N,17.89 Specific rotation [α]p ²⁰ -146.3° (c=0.1,DMSO) pale brown crystals NMR(DMSO-de) δ ppm:2.50-2.70(4H,m),2.8 2(3H,s),2.90-3.10(4H,m),2.98(3H,s),3.78(1H,dd,J=9.5,6Hz),4.02(1H,dd,J=15,5Hz), 4.10(1H,dd,J=15,3.5Hz),4.17(1H,t,J=9.5) Hz),4.90-5.00(1H,m),7.05(1H,t,J=9Hz),7. 19(1H,dd,J=9,2.5Hz),7.45(1H,dd,J=15,2.5Hz) IR ν (KBr) cm ⁻¹ :1630,1762,2132 MS(m/z):435(M+) Specific rotation	1		ļ	
[α] lp ²⁰ -66.8° (c=0.1,DMSO) colorless crystals [AcOEt] mp,103.5~105.5°C Elemental analysis for C ₁₈ H ₂₀ FN ₅ O ₂ S Calcd. %: C,55.51;H,5.18;N,17.98 Found %: C,55.45;H,5.11;N,17.89 Specific rotation [α] lp ²⁰ -146.3° (c=0.1,DMSO) pale brown crystals NMR(DMSO-d ₆) δ ppm:2.50-2.70(4H,m),2.8 2(3H,s),2.90-3.10(4H,m),2.98(3H,s),3.78(1H,dd,J=9.5,6Hz),4.02(1H,dd,J=15,5Hz), 4.10(1H,dd,J=15,3.5Hz),4.17(1H,t,J=9.5 Hz),4.90-5.00(1H,m),7.05(1H,t,J=9Hz),7. 19(1H,dd,J=9.2.5Hz),7.45(1H,dd,J=15,2.5Hz) IR ν (KBr) cm ⁻¹ :1630,1762,2132 MS(m/z):435(M+) Specific rotation	1		İ	,
colorless crystals [AcOEt] mp,103.5~105.5°C Elemental analysis for C ₁₈ H ₂₀ FN ₅ O ₂ S Calcd. %: C,55.51;H,5.18;N,17.98 Found %: C,55.45;H,5.11;N,17.89 Specific rotation [α]p ²⁰ -146.3° (c=0.1,DMSO) pale brown crystals NMR(DMSO-de) δ ppm:2.50-2.70(4H,m),2.8 2(3H,s),2.90-3.10(4H,m),2.98(3H,s),3.78(1H,dd,J=9.5,6Hz),4.02(1H,dd,J=15,5Hz), 4.10(1H,dd,J=15,3.5Hz),4.17(1H,t,J=9.5 Hz),4.90-5.00(1H,m),7.05(1H,t,J=9Hz),7. 19(1H,dd,J=9,2.5Hz),7.45(1H,dd,J=15,2. 5Hz) IR ν (KBr) cm ⁻¹ :1630,1762,2132 MS(m/z):435(M+) Specific rotation				
mp,103.5~105.5°C Elemental analysis for C ₁₈ H ₂₀ FN ₅ O ₂ S Calcd. %: C,55.51;H,5.18;N,17.98 Found %: C,55.45;H,5.11;N,17.89 Specific rotation [α] _D ²⁰ -146.3° (c=0.1,DMSO) pale brown crystals NMR(DMSO-de) δ ppm:2.50-2.70(4H,m),2.8 2(3H,s),2.90-3.10(4H,m),2.98(3H,s),3.78(1H,dd,J=9.5,6Hz),4.02(1H,dd,J=15,5Hz), 4.10(1H,dd,J=15,3.5Hz),4.17(1H,t,J=9.5 Hz),4.90-5.00(1H,m),7.05(1H,t,J=9Hz),7. 19(1H,dd,J=9,2.5Hz),7.45(1H,dd,J=15,2.5Hz) IR ν (KBr) cm ⁻¹ :1630,1762,2132 MS(m/z):435(M+) Specific rotation	Ļ			
Elemental analysis for C ₁₈ H ₂₀ FN ₅ O ₂ S Calcd. %: C,55.51;H,5.18;N,17.98 Found %: C,55.45;H,5.11;N,17.89 Specific rotation [α] _D 20-146.3° (c=0.1,DMSO) pale brown crystals NMR(DMSO-de) δ ppm:2.50-2.70(4H,m),2.8 2(3H,s),2.90-3.10(4H,m),2.98(3H,s),3.78(1H,dd,J=9.5,6Hz),4.02(1H,dd,J=15,5Hz), 4.10(1H,dd,J=15,3.5Hz),4.17(1H,t,J=9.5 Hz),4.90-5.00(1H,m),7.05(1H,t,J=9Hz),7. 19(1H,dd,J=9,2.5Hz),7.45(1H,dd,J=15,2.5Hz) IR ν (KBr) cm ⁻¹ :1630,1762,2132 MS(m/z):435(M*) Specific rotation	1			
Calcd. %: C,55.51;H,5.18;N,17.98 Found %: C,55.45;H,5.11;N,17.89 Specific rotation [\alpha]D^{20}-146.3° (c=0.1,DMSO) pale brown crystals NMR(DMSO-de) \delta ppm:2.50-2.70(4H,m),2.8 2(3H,s),2.90-3.10(4H,m),2.98(3H,s),3.78(1H,dd,J=9.5,6Hz),4.02(1H,dd,J=15,5Hz), 4.10(1H,dd,J=15,3.5Hz),4.17(1H,t,J=9.5 Hz),4.90-5.00(1H,m),7.05(1H,t,J=9Hz),7. 19(1H,dd,J=9,2.5Hz),7.45(1H,dd,J=15,2. 5Hz) IR \nu (KBr) cm^{-1}:1630,1762,2132 MS(m/z):435(M*) Specific rotation	I			
Found %: C,55.45;H,5.11;N,17.89 Specific rotation [\alpha]_{D^{20}-146.3^{\circ}} (c=0.1,DMSO) pale brown crystals NMR(DMSO-de) \delta ppm:2.50-2.70(4H,m),2.8 2(3H,s),2.90-3.10(4H,m),2.98(3H,s),3.78(1H,dd,J=9.5,6Hz),4.02(1H,dd,J=15,5Hz), 4.10(1H,dd,J=15,3.5Hz),4.17(1H,t,J=9.5 Hz),4.90-5.00(1H,m),7.05(1H,t,J=9Hz),7. 19(1H,dd,J=9,2.5Hz),7.45(1H,dd,J=15,2. 5Hz) IR \nu(KBr) cm^{-1}:1630,1762,2132 MS(m/z):435(M*) Specific rotation	'		NC (CH ₂) ₂ N N	
Specific rotation [\alpha]_{p20-146.3^{\circ}} (c=0.1,DMSO) pale brown crystals NMR(DMSO-de) \delta ppm:2.50-2.70(4H,m),2.8 2(3H,s),2.90-3.10(4H,m),2.98(3H,s),3.78(1H,dd,J=9.5,6Hz),4.02(1H,dd,J=15,5Hz), 4.10(1H,dd,J=15,3.5Hz),4.17(1H,t,J=9.5) Hz),4.90-5.00(1H,m),7.05(1H,t,J=9Hz),7. 19(1H,dd,J=9,2.5Hz),7.45(1H,dd,J=15,2.5Hz) IR \nu(KBr) cm^{-1}:1630,1762,2132 MS(m/z):435(M*) Specific rotation	l	253		
[\alpha]p20-146.3° (c=0.1,DMSO) pale brown crystals NMR(DMSO-de) \delta ppm:2.50-2.70(4H,m),2.8 2(3H,s),2.90-3.10(4H,m),2.98(3H,s),3.78(1H,dd,J=9.5,6Hz),4.02(1H,dd,J=15,5Hz), 4.10(1H,dd,J=15,3.5Hz),4.17(1H,t,J=9.5) Hz),4.90-5.00(1H,m),7.05(1H,t,J=9Hz),7. 19(1H,dd,J=9,2.5Hz),7.45(1H,dd,J=15,2. 5Hz) IR \nu(KBr) cm^-1:1630,1762,2132 MS(m/z):435(M+) Specific rotation	i		F	
pale brown crystals NMR(DMSO-d ₆) δ ppm:2.50-2.70(4H,m),2.8 2(3H,s),2.90-3.10(4H,m),2.98(3H,s),3.78(1H,dd,J=9.5,6Hz),4.02(1H,dd,J=15,5Hz), 4.10(1H,dd,J=15,3.5Hz),4.17(1H,t,J=9.5 Hz),4.90-5.00(1H,m),7.05(1H,t,J=9Hz),7. 19(1H,dd,J=9,2.5Hz),7.45(1H,dd,J=15,2. 5Hz) IR ν (KBr) cm ⁻¹ :1630,1762,2132 MS(m/z):435(M+) Specific rotation	1			
NMR(DMSO-d ₆) δ ppm:2.50-2.70(4H,m),2.8 2(3H,s),2.90-3.10(4H,m),2.98(3H,s),3.78(1H,dd,J=9.5,6Hz),4.02(1H,dd,J=15,5Hz),4.10(1H,dd,J=15,3.5Hz),4.17(1H,t,J=9.5 Hz),4.90-5.00(1H,m),7.05(1H,t,J=9Hz),7.19(1H,dd,J=9,2.5Hz),7.45(1H,dd,J=15,2.5Hz) IR ν (KBr) cm ⁻¹ :1630,1762,2132 MS(m/z):435(M+) Specific rotation				
254 23H,s),2.90-3.10(4H,m),2.98(3H,s),3.78(1H,dd,J=9.5,6Hz),4.02(1H,dd,J=15,5Hz), 4.10(1H,dd,J=15,3.5Hz),4.17(1H,t,J=9.5) Hz),4.90-5.00(1H,m),7.05(1H,t,J=9Hz),7. 19(1H,dd,J=9,2.5Hz),7.45(1H,dd,J=15,2.5Hz) IR \(\nu\) (KBr) cm ⁻¹ :1630,1762,2132 MS(m/z):435(M*) Specific rotation	•			
1H,dd,J=9.5,6Hz),4.02(1H,dd,J=15,5Hz), 4.10(1H,dd,J=15,3.5Hz),4.17(1H,t,J=9.5 Hz),4.90-5.00(1H,m),7.05(1H,t,J=9Hz),7. 19(1H,dd,J=9,2.5Hz),7.45(1H,dd,J=15,2. 5Hz) IR \(\nu\) (KBr) cm ⁻¹ :1630,1762,2132 MS(m/z):435(M*) Specific rotation				
4.10(1H,dd,J=15,3.5Hz),4.17(1H,t,J=9.5 Hz),4.90-5.00(1H,m),7.05(1H,t,J=9Hz),7. 19(1H,dd,J=9,2.5Hz),7.45(1H,dd,J=15,2. 5Hz) IR ν (KBr) cm ⁻¹ :1630,1762,2132 MS(m/z):435(M*) Specific rotation	1		1	
Hz),4.90-5.00(1H,m),7.05(1H,t,J=9Hz),7. 19(1H,dd,J=9,2.5Hz),7.45(1H,dd,J=15,2. 5Hz) IR ν (KBr) cm ⁻¹ :1630,1762,2132 MS(m/z):435(M*) Specific rotation				
254 ö 19(1H,dd,J=9,2.5Hz),7.45(1H,dd,J=15,2.5Hz) 1R ν (KBr) cm ⁻¹ :1630,1762,2132 MS(m/z):435(M*) Specific rotation	_		Me (CH)	
F 19(1H,dd,3=9,2.8H2),7.48(1H,dd,3=13,2.5Hz) 5Hz) IR ν (KBr) cm ⁻¹ :1630,1762,2132 MS(m/z):435(M*) Specific rotation	'	054	Me N N N	
IR ν (KBr) cm ⁻¹ :1630,1762,2132 MS(m/z):435(M ⁺) Specific rotation		254		
MS(m/z):435(M+) Specific rotation				
Specific rotation				IR ν (KBr) cm ⁻¹ :1630,1762,2132
Specific rotation			1	
$[\alpha]_{D^{20}-108.1^{\circ}}$ (c=0.1,DMSO)	7		1	
				$[\alpha]_{D^{20}-108.1^{\circ}}$ (c=0.1,DMSO)

R-N H OMe

Reference example	R	Physical properties [recrystallization solvent]
Cadapic		pale brown crystals[CH3CN]
		mp,174~175.5°C
	S	Elemental analysis for C17H20FN5O2S2
255	Me N N	Calcd. %: C,49.86;H,4.92;N,17.10
255	H ~_~ }/	Found %: C,49.97;H,4.81;N,16.94
	f f	Specific rotation
		[α] $_{D^{20}-125.7^{\circ}}$ (c=0.1,DMSO)
		pale brown crystals [CH ₃ CN]
		mp,233~235°C
ļ	ş	Elemental analysis for C ₁₈ H ₂₂ FN ₅ O ₂ S ₂
950	Et. N. N.	Calcd. %: C,51.05;H,5.24;N,16.54
256	H ~_~ }/	Found %: C,51.08;H,5.18;N,16.36
	f	Specific rotation
		$[\alpha]_{\text{D}^{20}\text{-}121.8}^{\text{Specific Foliation}}$
 		colorless crystals[ClCH ₂ CH ₂ Cl]
		mp,183.5~185.5°C
	s	Elemental analysis for
	n-Pr	C ₁₉ H ₂₄ FN ₅ O ₂ S ₂ ·1/2H ₂ O
257		Calcd. %: C,51.10;H,5.64;N,15.68
1	F'	Found %: C,51.10;H,5.42;N,15.42
		Specific rotation
		$\begin{array}{c} \text{Specific rotation} \\ [\alpha]_{\text{D}^{20}\text{-}118.1^{\circ}} \text{ (c=0.1,DMSO)} \end{array}$
		colorless crystals [CH ₃ CN]
		mp,197~198.5°C
	S	Elemental analysis for C ₁₈ H ₂₂ FN ₅ O ₂ S ₂
258	Mo N N	Calcd. %: C,51.05;H,5.24;N,16.54
200	Me	Found %: C,51.23;H,5.19;N,16.65
	F	Specific rotation
İ	1	$[\alpha]_{\rm p}^{20-119.3^{\circ}}$ (c=0.1,DMSO)
-		colorless crystals [AcOEt]
		mp,132~133°C
	ş	Elemental analysis for C ₁₇ H ₁₉ FN ₄ O ₃ S ₂
259	Med N N	Calcd. %: C,49.74;H,4.67;N,13.65
499		Found %: C,49.87;H,4.74;N,13.44
1	F	Specific rotation
		$[\alpha]_{D^{20}-115.6^{\circ}}$ (c=0.1,DMSO)
		[u]D-110.0 (c-0.1,DMDO)

21/2000/01/FP 1130016A1 1 5

5	NCS		
	Reference example	R	Physical properties [recrystallization solvent]
15	260	EtO N N	pale yellow crystals NMR(DMSO-d ₆) δ ppm:1.30(3H,t,J=6.5Hz),3.0 0-3.10(4H,m),3.79(1H,dd,J=9,6Hz),3.82-3.8 8(2H,m),4.02(1H,dd,J=15,5Hz),4.12(1H,dd,J=15,4Hz),4.10-4.15(2H,m),4.18(1H,t,J=9Hz),4.47(2H,q,J=6.5Hz),4.90-5.00(1H,m),7.10 (1H,t,J=9Hz),7.21(1H,d,J=9Hz),7.50(1H,d,J=14.5Hz) IR ν (KBr) cm ⁻¹ :1748,2228 MS(m/z):424(M*) Specific rotation [α]p ²⁰ -131.4° (c=0.1,DMSO)
25	261	n-Pro N N	pale brown crystals [AcOEt] mp,156~158°C Elemental analysis for C ₁₉ H ₂₈ FN ₄ O ₃ S ₂ Calcd. %: C,52.04;H,5.29;N,12.78 Found %: C,52.32;H,5.29;N,12.70 Specific rotation [α] _D ²⁰ -121.6° (c=0.1,DMSO)
30	262	Mes N N	pale brown crystals [AcOEt-i-Pr ₂ O] mp,138~140°C Elemental analysis for C ₁₇ H ₁₉ FN ₄ O ₂ S ₃ Calcd. %: C,47.87;H,4.49;N,13.13 Found %: C,47.75;H,4.59;N,12.84 Specific rotation [α] _D ²⁰ -110.4° (c=0.1,DMSO)
40	263	SCN-N-F	pale brown crystals[AcOEt-i-Pr ₂ O] mp,113~115°C Elemental analysis for C ₁₇ H ₁₇ FN ₄ O ₂ S ₂ Calcd. %: C,52.02;H,4.37;N,14.28 Found %: C,51.82;H,4.46;N,14.00 Specific rotation [α]p ²⁰ -125.4° (c=0.1,DMSO)

R-N NCS

Reference example	R	Physical properties [recrystallization solvent]
264	Ph N N F	yellow amorphous solid NMR(CDCl ₃) δ ppm:3.04(2H,t,J=5Hz),3. 27(2H,t,J=5Hz),3.76(2H,t,J=5Hz),3.80 -3.90(2H,m),3.96(1H,dd,J=15,5Hz),4.1 5(1H,t,J=9Hz),4.60(2H,t,J=5Hz),4.80- 4.85(1H,m),6.95(1H,t,J=9Hz),7.13(1H,dd,J=9,2.5Hz),7.30-7.40(5H,m),7.46(1H,dd,J=14,2.5Hz) IR ν (KBr) cm ⁻¹ :1754,2080 Specific rotation [α]p ²⁰ -106.6° (c=0.1,DMSO)

Reference example 265

5

10

15

20

25

30

45

50

55

[0134] (R)-1-[4-[2-Fluoro-4-(5-isothiocyanatomethyl-2-oxooxazolidin-3-yl)phenyl]-piperazine]carbothioamide [0135] To a solution of 0.79 g of 1,1'-thiocarbonyl diimidazole and 0.52 ml of triethylamine in 20 ml of 1,2-dichloroethane, 1.20 g of (R)-1-[4-[4-(5-aminomethyl-2-oxooxazolidin-3-yl)-2-fluorophenyl]piperazine]carbothioamide was added under ice-cooling, and the mixture was stirred at room temperature for 18 hours. The reaction solution was added with water and 1,2-dichloroethane, and the insoluble solid was removed. Then, the 1,2-dichloroethane layer was washed with saturated brine, and dried over sodium sulfate, and then the solvent was evaporated under reduced pressure. The residue was purified by column chromatography (silica gel, 1,2-dichloroethane : methanol = 20 : 1) to obtain 0.25 g of yellow crystals.

NMR spectrum (DMSO-d₆) δ ppm:

35 2.99(4H,t,J=5Hz),3.79(1H,dd,J=9.5,5.5Hz),3.90(4H,t,J=5Hz),4.02(1H,dd,J=15,5.5Hz), 4.10(1H,dd,J=15,4Hz),4.18 (1H,t,J=9Hz),4.90-5.00(1H,m),7.09(1H,t,J=9Hz), 7.20(1H,dd,J=9,2.5Hz),7.39(2H,br-s),7.48(1H,dd,J=14.5,2.5Hz) IR spectrum v (KBr) cm⁻¹: 1746,2220

Specific rotation $[\alpha]_D^{20}$ -130.4° (c = 0.1, DMSO)

[0136] The compounds of Reference examples 266 through 267 were obtained in the same manner as in Reference example 265.

R

pale yellow crystals

J=14.5,2.5Hz

Specific rotation

Specific rotation

orange liquid

IR ν (KBr) cm⁻¹:1744,2088,3280

 $[\alpha]_{D^{20}}$ -44.0° (c=0.1,DMSO)

IR ν (liq.) cm⁻¹:1752,2088,3296

 $[\alpha]_{D^{20}-67.5}^{\circ}$ (c=0.1,DMSO)

Physical properties

[recrystallization solvent]

NMR(DMSO-d₆) δ ppm:1.69(2H,quin,J=7

Hz),2.42(2H,t,J=7Hz),2.58(4H,s),2.82(3H,d,J=4.5Hz),3.02(4H,s),3.35-3.45(2H,m),3.78(1H,dd,J=9,6Hz),4.02(1H,dd,J=15,5Hz),4.11(1H,dd,J=15,3.5Hz),4.18(1H,t,J=9Hz),4.90-5.00(1H,m),7.06(

1H,t,J=9Hz),7.19(1H,dd,J=9,2.5Hz),7.32(1H,br-s),7.39(1H,br-s),7.46(1H,dd,

 $NMR(DMSO-d_6) \delta ppm:1.60-1.80(2H,m),$

2.39(2H,t,J=6.5Hz),2.53(4H,t,J=5Hz), 3.02(4H,t,J=5Hz),3.40-3.50(2H,m),3.7 7(1H,dd,J=9,6Hz),3.87(3H,s),3.99(1H,dd,J=15,5Hz),4.07(1H,dd,J=15,3.5Hz), 4.17(1H,t,J=9Hz),4.85-4.95(1H,m),7.0

3(1H,t,J=9Hz),7.17(1H,dd,J=9,2.5Hz), 7.41(1H,dd,J=15.5,2.5Hz),8.77(1H,br-

10	

Reference

266

267

example

5

15

20

25

30

35

40 Example 1

[0137] O-Methyl (S)-N-[3-[3-fluoro-4-(thiomorpholin-4-yl)phenyl]-2-oxooxazolidin-5-yl]methylthiocarbamate [0138] To 44 ml of dried methanol, 0.53 g of 60 % sodium hydride was added under ice-cooling and with stirring, and the mixture was stirred at room temperature for 30 minutes. Then, the mixture was added with 4.41 g of (R)-N-[3-fluoro-4-(thiomorpholin-4-yl)phenyl]-2-oxooxazolidin-5-yl]methyl isothiocyanate, and stirred at room temperature for 3 hours. The reaction mixture was neutralized with ice water and 10% hydrochloric acid, and the precipitated crystals were collected by filtration to obtain 4.68 g of pale brown crystals. Recrystallization from ethanol gave pale brown crystals having the melting point of from 141.5 to 143°C.

ຂາ	c
	v

Elemental analysis for C ₁₆ H ₂₀ FN ₃ O ₃ S ₂						
Calculated % C, 49.85; H, 5.23; N, 10.90						
Found %	C,	49.58;	Н,	5.05;	N,	10.82

55 Speck rotation $[\alpha]_D^{20}$ -25.9° (c =0.1, DMSO)

[0139] The compounds of Examples 2 through 60 were obtained in the same manner as in Example 1.

Example	R	Physical properties
Example		[recrystallization solvent]
		colorless prisms[CH3CN]
		mp,206~207°C
	0=8 N-()-	Elemental analysis for C16H20FN3O4S2
2		Calcd. %: C,47.87;H,5.02;N,10.47
	F	Found %: C,48.04;H,5.00;N,10.51
		Specific rotation [\alpha]p ²⁰ -25.0° (c=0.1,DMSO)
		yellow liquid
•		NMR(DMSO-de) δ ppm:3.19(4H,t,J=5.5Hz),3.5
1		1(4H,t,J=5.5Hz),3.80-3.90(3H,m),3.92(3H,s)
	0,5/	4.10(1H,t,J=9Hz),4.80-4.90(1H,m),7.15-7.2
3		5(2H,m),7.43(1H,dd,J=13.5,2.5Hz),9.10(1H,
}	F	br-s)
		MS(m/z):417(M+)
\		Specific rotation [α] p^{20} -23.9° (c=0.1,DMSO)
<u> </u>	 	pale brown crystals[EtOH]
	\(\mathbb{\rightarrow}\)	mp,147~148.5°C
		Elemental analysis for C ₁₆ H ₂₀ FN ₃ O ₃ S
4		Calcd. %: C,54.38;H,5.70;N,11.89
		Found %: C,54.27;H,5.75;N,11.91
		Specific rotation [α] _D ²⁰ -26.9° (c=0.1,DMSO)
		colorless crystals[EtOH]
		1
	s n-(=)-	mp,131~133°C
5		Elemental analysis for C ₁₆ H ₂₁ N ₃ O ₃ S ₂
		Calcd. %: C,52.29;H,5.76;N,11.43
		Found %: C,52.24;H,5.76;N,11.43
<u> </u>		Specific rotation [α] _D ²⁰ -24.1° (c=0.1,DMSO)
		pale brown crystals[i-PrOH]
l l		mp,117~118°C
6		Elemental analysis for C ₁₇ H ₂₂ FN ₃ O ₃ S
		Calcd. %: C,55.57;H,6.03;N,11.44
		Found %: C,55.35;H,6.24;N,11.33
		Specific rotation [α] p^{20} -29.1° (c=0.1,DMSO)

			•
	17310	R	Physical properties
	Example	N.	[recrystallization solvent]
10			pale brown needles[i-PrOH]
	}	~ <u> </u>	mp,124.5~125.5℃
		N-(-)	Elemental analysis for C ₁₈ H ₂₄ FN ₃ O ₃ S
	7		Calcd. %: C,56.67;H,6.34;N,11.02
15	l i	F	Found %: C,56.55;H,6.50;N,10.82
15			Specific rotation[\alpha] _D 20-29.0° (c=0.1,DMSO)
			pale brown needles[i-PrOH]
			mp,135~136℃
		Me— N— —	Elemental analysis for C18H24FN3O3S
20	8		Calcd. %: C,56.67;H,6.34;N,11.02
		F	Found %: C,56.67;H,6.24;N,10.91
			Specific rotation[α] _{D²⁰-25.9° (c=0.1,DMSO)}
			colorless crystals[i-PrOH]
25	1		mp,112~114°C
			Elemental analysis for C19H26FN3O3S
	9		Calcd. %: C,57.70;H,6.63;N,10.62
	1		Found %: C,57.70;H,6.74;N,10.53
	1	<u> </u>	Specific rotation[α]p ²⁰ -24.1° (c=0.1,DMSO)
30			colorless needles[i-PrOH]
			mp,112~113.5°C
	10	MeO-\ N-\ \	Elemental analysis for C ₁₈ H ₂₄ FN ₃ O ₄ S
	10	10 F	Calcd. %: C,54.39;H,6.09;N,10.57
35			Found %: C,54.19;H,6.21;N,10.47
			Specific rotation[α] _D ²⁰ -24.1° (c=0.1,DMSO)
			colorless crystals[i-PrOH]
			mp,138~140°C
40	11	EtO-()N-()-	Elemental analysis for C19H26FN3O4S
40	1 11		Calcd. %: C,55.46;H,6.37;N,10.21
	1	1	Found %: C,55.65;H,6.58;N,10.15
			Specific rotation[\alpha]_{\text{D}}^{20}-32.9\(^{\text{c}}\) (c=0.1,DMSO)
			pale brown crystals[i-PrOH]
45			mp,99~100.5°C
	12	12 MeO-(CH ₂) ₂ -O-N-	Elemental analysis for C ₂₀ H ₂₈ FN ₃ O ₅ S
	14		Calcd. %: C,54.41;H,6.39;N,9.52
			Found %: C,54.20;H,6.50;N,9.50
50			Specific rotation [α] _D ²⁰ -23.9° (c=0.1,DMSO)

55

	Example	R	Physical properties [recrystallization solvent]
10	13	MeO-ON-S	colorless needles [i-PrOH] mp,110~112°C Elemental analysis for $C_{16}H_{20}FN_{3}O_{4}S$ Calcd. %: C,52.02;H,5.46;N,11.37 Found %: C,52.02;H,5.42;N,11.27 Specific rotation [α] $_{0}^{20}$ -27.0° (c=0.1,DMSO)
20	14	MeO-(CH ₂) ₂ -O-\N-\F	pale brown needles [i-PrOH] mp,79~80°C Elemental analysis for C ₁₈ H ₂₄ FN ₃ O ₅ S Calcd. %: C,52.29;H,5.85;N,10.16 Found %: C,52.20;H,5.66;N,10.19 Specific rotation [α] _D 20-25.0° (c=0.1,DMSO)
25	15	Me-N N-	pale yellow crystals [i-PrOH-i-Pr ₂ O] mp,119.5~121.5°C Elemental analysis for C ₁₇ H ₂₈ FN ₄ O ₈ S Calcd. %: C,53.39;H,6.06;N,14.65 Found %: C,53.20;H,5.94;N,14.50 Specific rotation[α] _D ²⁰ -30.1° (c=0.1,DMSO)
35	16	Et-N N-F	pale brown crystals[i-PrOH] mp,122~123°C Elemental analysis for C ₁₈ H ₂₅ FN ₄ O ₃ S Calcd. %: C,54.53;H,6.36;N,14.13 Found %: C,54.29;H,6.10;N,14.02 Specific rotation [α] _D ²⁰ -19.1° (c=0.1,DMSO)
40	17	n-Pt-N N-	pale brown needles[i-PrOH] mp,128.5~129.5°C Elemental analysis for C ₁₉ H ₂₇ FN ₄ O ₃ S Calcd. %: C,55.59;H,6.63;N,13.65 Found %: C,55.36;H,6.57;N,13.57 Specific rotation [\alpha] _D 20-25.0° (c=0.1,DMSO)
<i>45</i>	18	n-Bu-N N-	pale brown needles [i-PrOH] mp,118.5~120°C Elemental analysis for C ₂₀ H ₂₉ FN ₄ O ₃ S Calcd. %: C,56.58;H,6.89;N,13.20 Found %: C,56.50;H,7.03;N,13.14 Specific rotation [α] _D ²⁰ -22.0° (c=0.1,DMSO)

Ţ	Example	R	Physical properties [recrystallization solvent]
10			colorless needles[i-PrOH]
		•	mp,153.5~155℃
		Base-N N-	Elemental analysis for C21H29FN4O5S
İ	19	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Calcd. %: C,53.83;H,6.24;N,11.96
		F	Found %: C,53.83;H,6.17;N,11.85
15			Specific rotation [\alpha]_D^{20}-14.0° (c=0.1,DMSO)
			colorless needles[i-PrOH]
		_	mp.147.5~149°C
		CHN N-	Elemental analysis for C19H25FN4O5S
20	20	Med	Calcd. %: C,51.81;H,5.72;N,12.72
		F	Found %: C,51.76;H,5.59;N,12.53
			Specific rotation [α] $_{D^{20}}$ -22.0° (c=0.1,DMSO)
			colorless needles[i-PrOH]
25	1		mp,126~127°C
		>-cH ₂ -N N	Elemental analysis for C20H27FN4O5S
	21	End	Calcd. %: C,52.85;H,5.99;N,12.33
			Found %: C,52.82;H,5.75;N,12.22
	}		Specific rotation [α] _D ²⁰ -24.0° (c=0.1,DMSO)
30			pale yellow crystals[i-PrOH-i-Pr2O]
			mp,98~99°C
)-(CH ₂) ₂ -N N-_	Elemental analysis for C21H29FN4O5S
	22	Etto	Calcd. %: C,53.83;H,6.24;N,11.96
35	1		Found %: C,53.75;H,6.26;N,11.93
			Specific rotation [α]p ²⁰ -19.1° (c=0.1,DMSO)
•			colorless needles[i-PrOH]
			mp,97~98°C
40	00	(CH ₂) ₃ -N N-()	Elemental analysis for C21H29FN4O5S
40	23	MeO	Calcd. %: C,53.83;H,6.24;N,11.96
	1		Found %: C,53.77;H,6.34;N,11.89
			Specific rotation [α] _D 20-16.0° (c=0.1,DMSO)
			colorless crystals[i-PrOH-i-Pr2O]
45		9, ~	mp,114~116°C
	24	Meo N-F	Elemental analysis for C ₁₈ H ₂₈ FN ₄ O ₅ S
	24		Calcd. %: C,50.69;H,5.44;N,13.14
			Found %: C,50.85;H,5.53;N,12.88 Specific rotation [α] _D 20-26.1° (c=0.1,DMSO)
50	L	<u> </u>	Specific rotation (a inzo.1 (c-o.1,Diago)

R-N H OMe

[recrystallization solvent] pale reddish brown crystals[i-PrOH] mp,157~160°C Elemental analysis for C20H27FN4O5S Calcd. %: C,52.85;H,5.99;N,12.33 Found %: C,52.60;H,6.20;N,12.27 Specific rotation [\alpha]\(\text{p}\) [20-17.0° (c=0.1,DMSO) pale brown crystals[i-PrOH] mp,173~174°C Elemental analysis for C21H30FN5O4S				
pale reddish brown crystals [i-PrOH] mp,157~160°C Elemental analysis for C ₂₀ H ₂₁ rFN ₄ O ₅ S Calcd. %: C,52.85;H,5.99;N,12.83 Found %: C,52.80;H,6.20;N,12.27 Specific rotation [α D ²⁰ -17.0° (c=0.1,DMSO) pale brown crystals [i-PrOH] mp,173~174°C Elemental analysis for C ₂₁ H ₃₀ FN ₅ O ₄ S Calcd. %: C,53.95;H,6.47;N,14.98 Found %: C,53.75;H,6.78;N,14.71 Specific rotation [α D ²⁰ -21.0° (c=0.1,DMSO) pale yellow liquid NMR(DMSO-de) δ ppm:1.57(2H,quin,J=7.5Hz), 1.79(3H,9),2.34(2H,t,J=7.5Hz),2.50(4H,t,J=4 .5Hz),2.98(4H,t,J=4.5Hz),3.00-3.10(2H,m),3.45-3.55(2H,m),3.75-3.85(1H,m),3.89(3H,s),4. 11(1H,t,J=9Hz),4.85-4.95(1H,m),7.03(1H,t,J=9Hz),7.17(1H,dd,J=9,2.5Hz),7.46(1H,dd,J=14.5,2.5Hz),7.68(1H,br-s),8.39(1H,br-s) IR ν (liq.) cm ⁻¹ :1748,3304 Specific rotation [α D ²⁰ -50.6° (c=0.1,DMSO) colorless crystals [i-PrOH] mp,115~117°C Elemental analysis for C ₁₉ H ₂₄ FN ₆ O ₃ S Calcd. %: C,54.14;H,5.74;N,16.62 Found %: C,54.08;H,5.93;N,16.51 Specific rotation [α D ²⁰ -24.0° (c=0.1,DMSO) pale brown crystals [DMF-H ₂ O] mp,193.5~195°C Elemental analysis for C ₂₈ H ₃₈ FN ₆ O ₅ S Calcd. %: C,57.66;H,5.21;N,12.93 Found %: C,57.66;H,5.21;N,12.93 Found %: C,57.66;H,5.21;N,12.93 Found %: C,57.66;H,5.21;N,12.93	ł	Example	R	Physical properties
25 mp,157~160°C Elemental analysis for C20H2rFN4O5S Calcd. %: C,52.85;H,5.99;N,12.33 Found %: C,52.80;H,6.20;N,12.27 Specific rotation [α]b ²⁰ -17.0° (ce-0.1,DMSO) pale brown crystals [i-PrOH] mp,173~174°C Elemental analysis for C21H3oFN5O4S Calcd. %: C,53.95;H,6.47;N,14.98 Found %: C,53.72;H,6.78;N,14.71 Specific rotation [α]b ²⁰ -21.0° (ce-0.1,DMSO) pale yellow liquid NMR(DMSO-de)δ ppm:1.57(2H,quin,J=7.5Hz), 1.79(3H,s),2.34(2H,t,J=4.5Hz),2.50(4H,t,J=4.5Hz),2.46(4H,t,J=4.5Hz),7.46(4H,t,J=4.5H	į			
25 Second Seco	10		_	· · · · · · · · · · · · · · · · · · ·
Calcd. %: C,52.85;H,5.99;N,12.33 Found %: C,52.80;H,6.20;N,12.27 Specific rotation [α]p ²⁰ -17.0° (c=0.1,DMSO) pale brown crystals [i-PrOH] mp,173~174°C Elemental analysis for C ₂₁ H ₂₀ FN ₅ O ₄ S Calcd. %: C,53.95;H,6.47;N,14.98 Found %: C,53.72;H,6.78;N,14.71 Specific rotation [α]p ²⁰ -21.0° (c=0.1,DMSO) pale yellow liquid NMR(DMSO-de) δ ppm:1.57(2H,quin,J=7.5Hz), 1.79(3H,s),2.34(2H,t,J=7.5Hz),2.50(4H,t,J=4.5Hz),2.98(4H,t,J=4.5Hz),3.00-3.10(2H,m),3. 45-8.55(2H,m),3.75-3.85(1H,m),7.03(1H,t,J=9Hz),7.71(1H,d3,J=9+2.5Hz),7.46(1H,dd,J=14.5,2.5Hz),7.68(1H,br-s),8.39(1H,br-s) Rν(liq.) cm ⁻¹ :1748,3304 Specific rotation[α]p ²⁰ -50.6° (c=0.1,DMSO) colorless crystals [i-PrOH] mp,115~117°C Elemental analysis for C ₁₉ H ₂₄ FN ₅ O ₃ S Calcd. %: C,54.14;H,5.74;N,16.62 Found %: C,54.08;H,5.93;N,16.51 Specific rotation [α]p ²⁰ -24.0° (c=0.1,DMSO) pale brown crystals [DMF-H ₂ O] mp,193.5~195°C Elemental analysis for C ₂₆ H ₂₆ FN ₅ O ₆ S Calcd. %: C,57.66;H,5.21;N,12.93 Found %: C,57.66;H,5.21;N,12.93 Found %: C,57.64;H,5.20;N,12.77			i 🦳 🦳	
Found %: C,52.60;H,6.20;N,12.27 Specific rotation [α]b ²⁰ -17.0° (c=0.1,DMSO) pale brown crystals [i-PrOH] mp,173~174°C Elemental analysis for C ₂₁ H ₃₀ FN ₅ O ₄ S Calcd. %: C,53.95;H,6.47;N,14.98 Found %: C,53.72;H,6.78;N,14.71 Specific rotation [α]b ²⁰ -21.0° (c=0.1,DMSO) pale yellow liquid NMR(DMSO-de) δ ppm:1.57(2H,quin,J=7.5Hz), 1.79(3H,s),2.34(2H,t,J=7.5Hz),2.50(4H,t,J=4.5Hz),2.98(4H,t,J=4.5Hz),3.00-3.10(2H,m),3.45-3.55(2H,m),3.75-3.85(1H,m),7.03(1H,t,J-14.5.25Hz),7.68(1H,br-s),8.39(1H,br-s) IR ν (liq.) cm ⁻¹ :1748,330 Specific rotation [α]b ²⁰ -20.6° (c=0.1,DMSO) colorless crystals [i-PrOH] mp,115~117°C Elemental analysis for C ₁ sH ₂₄ FN ₅ O ₃ S Calcd. %: C,54.14;H,5.74;N,16.62 Found %: C,54.08;H,5.93;N,16.51 Specific rotation [α]b ²⁰ -24.0° (c=0.1,DMSO) pale brown crystals [DMF-H ₂ O] mp,193.5~195°C Elemental analysis for C ₂ sH ₂₈ FN ₆ O ₅ S Calcd. %: C,57.66;H,5.21;N,12.93 Found %: C,57.64;H,5.20;N,12.77			MeO-(CH ₂)2 N N	
Specific rotation [α] _D 20-17.0° (c=0.1,DMSO) pale brown crystals[i-PrOH] mp,173~174°C Elemental analysis for C2:1H30FN5O4S Calcd. %: C,53.95;H,6.47;N,14.98 Found %: C,53.72;H,6.78;N,14.71 Specific rotation [α] _D 20-21.0° (c=0.1,DMSO) pale yellow liquid NMR(DMSO-de) δ ppm:1.57(2H,quin,J=7.5Hz), 1.79(3H,9),2.34(2H,t,J=7.5Hz),2.50(4H,t,J=4.5Hz),2.98(4H,t,J=4.5Hz),3.00-3.10(2H,m),3.45-3.55(2H,m),3.75-3.85(1H,m),3.89(3H,s),4.1(1H,t,J=9Hz),4.85-4.95(1H,m),7.03(1H,t,J=9Hz),7.17(1H,dd,J=9,2.5Hz),7.46(1H,dd,J=14.5,2.5Hz),7.68(1H,br-s),8.39(1H,br-s) IR ν (liq.) cm²·1748,3304 Specific rotation [α] _D 20-26.6° (c=0.1,DMSO) colorless crystals [i-PrOH] mp,115~117°C Elemental analysis for C1:3H24FNsO3S Calcd. %: C,54.14;H,5.74;N,16.62 Found %: C,54.08;H,5.93;N,16.51 Specific rotation [α] _D 20-24.0° (c=0.1,DMSO) pale brown crystals [DMF-H2O] mp,193.5~195°C Elemental analysis for C2:4H28FNsO5S Calcd. %: C,57.66;H,5.21;N,12.93 Found %: C,57.64;H,5.20;N,12.77		25		
Specific rotation [α D ²⁰ -17.0° (c=0.1,DMSO)	15		•	
26 27 28 28 29 20 26 27 28 28 28 29 29 20 20 20 20 20 20 20 20				Specific rotation [α] $_{D^{20}-17.0^{\circ}}$ (c=0.1,DMSO)
26 26 26 27 28 28 29 28 29 20 20 20 20 20 20 20 20 20				pale brown crystals[i-PrOH]
26			Me Gu 🧢	mp,173~174°C
Found %: C,53.72;H,6.78;N,14.71 Specific rotation [α]p ²⁰ -21.0° (c=0.1,DMSO) pale yellow liquid NMR(DMSO-de) δ ppm:1.57(2H,quin,J=7.5Hz), 1.79(3H,s),2.34(2H,t,J=7.5Hz),2.50(4H,t,J=4 .5Hz),2.98(4H,t,J=4.5Hz),3.00-3.10(2H,m),3. 45-3.55(2H,m),3.75-3.85(1H,m),3.89(3Hs),4. 11(1H,t,J=9Hz),4.85-4.95(1H,m),7.03(1H,t,J=9Hz),7.17(1H,dd,J=9,2.5Hz),7.46(1H,dd,J=14.5,2.5Hz),7.68(1H,br-s),8.39(1H,br-s) IR ν (liq.) cm ⁻¹ :1748,3304 Specific rotation[α]p ²⁰ -50.6° (c=0.1,DMSO) colorless crystals [i-PrOH] mp,115~117°C Elemental analysis for C ₁₉ H ₂₄ FN ₈ O ₃ S Calcd. %: C,54.14;H,5.74;N,16.62 Found %: C,54.08;H,5.93;N,16.51 Specific rotation [α]p ²⁰ -24.0° (c=0.1,DMSO) pale brown crystals [DMF-H ₂ O] mp,193.5~195°C Elemental analysis for C ₂₆ H ₂₈ FN ₅ O ₅ S Calcd. %: C,57.66;H,5.21;N,12.93 Found %: C,57.66;H,5.21;N,12.93 Found %: C,57.66;H,5.21;N,12.93	!		Me N (Lutt2/2 N N	Elemental analysis for C21H30FN5O4S
Specific rotation [α]p ²⁰ -21.0° (c=0.1,DMSO) pale yellow liquid NMR(DMSO-d ₀) δ ppm:1.57(2H,quin,J=7.5Hz), 1.79(3H,s),2.34(2H,t,J=7.5Hz),2.50(4H,t,J=4 .5Hz),2.98(4H,t,J=4.5Hz),3.00-3.10(2H,m),3. 45-3.55(2H,m),3.75-3.85(1H,m),3.89(3H,s),4. 11(1H,t,J=9Hz),4.85-4.95(1H,m),7.03(1H,t,J=9Hz),7.68(1H,br-s),8.39(1H,br-s) IR ν (liq.) cm-1:1748,3304 Specific rotation[α]p ²⁰ -50.6° (c=0.1,DMSO) colorless crystals[i-PrOH] mp,115~117°C Elemental analysis for C ₁₉ H ₂₄ FN ₅ O ₃ S Calcd. % : C,54.14;H,5.74;N,16.62 Found % : C,54.08;H,5-39;N,16.51 Specific rotation [α]p ²⁰ -24.0° (c=0.1,DMSO) pale brown crystals[DMF-H ₂ O] mp,193.5~195°C Elemental analysis for C ₂₆ H ₂₆ FN ₆ O ₅ S Calcd. % : C,57.66;H,5.21;N,12.93 Found % : C,57.64;H,5.20;N,12.77	20	26) °	Calcd. % : C,53.95;H,6.47;N,14.98
pale yellow liquid NMR(DMSO-de) δ ppm:1.57(2H,quin,J=7.5Hz), 1.79(3H,s),2.34(2H,t,J=7.5Hz),2.50(4H,t,J=4.5Hz),2.98(4H,t,J=4.5Hz),3.00-3.10(2H,m),3. 45-3.55(2H,m),3.75-3.85(1H,m),3.89(3H,s),4. 11(1H,t,J=9Hz),4.85-4.95(1H,m),7.03(1H,t,J=9Hz),7.17(1H,dd,J=9,2.5Hz),7.46(1H,dd,J=14.5,2.5Hz),7.68(1H,br-s),8.39(1H,br-s) IR ν (liq.) cm ⁻¹ :1748,3304 Specific rotation[α]p ²⁰ -50.6° (c=0.1,DMSO) colorless crystals [i-PrOH] mp,115~117°C Elemental analysis for C ₁₉ H ₂₄ FN ₅ O ₃ S Calcd. %: C,54.14;H,5.74;N,16.62 Found %: C,54.08;H,5.93;N,16.51 Specific rotation [α]p ²⁰ -24.0° (c=0.1,DMSO) pale brown crystals [DMF-H ₂ O] mp,193.5~195°C Elemental analysis for C ₂₆ H ₂₈ FN ₅ O ₅ S Calcd. %: C,57.66;H,5.21;N,12.93 Found %: C,57.64;H,5.20;N,12.77		}		
NMR(DMSO-d ₆) δ ppm:1.57(2H,quin,J=7.5Hz), 1.79(3H,s),2.34(2H,t,J=7.5Hz),2.50(4H,t,J=4 .5Hz),2.98(4H,t,J=4.5Hz),3.00-3.10(2H,m),3. 45-3.55(2H,m),3.75-3.85(1H,m),3.89(3H,s),4. 11(1H,t,J=9Hz),4.85-4.95(1H,m),7.03(1H,t,J=9Hz),7.17(1H,dd,J=9,2.5Hz),7.46(1H,dd,J=14.5,2.5Hz),7.68(1H,br-s),8.39(1H,br-s) IR ν (liq.) cm ⁻¹ :1748,3304 Specific rotation[α]p ²⁰ -50.6° (c=0.1,DMSO) colorless crystals [i-PrOH] mp,115~117°C Elemental analysis for C ₁₉ H ₂₄ FN ₅ O ₃ S Calcd. %: C,54.14;H,5.74;N,16.62 Found %: C,54.08;H,5.93;N,16.51 Specific rotation [α]p ²⁰ -24.0° (c=0.1,DMSO) pale brown crystals [DMF-H ₂ O] mp,193.5~195°C Elemental analysis for C ₂₆ H ₂₆ FN ₆ O ₅ S Calcd. %: C,57.66;H,5.21;N,12.93 Found %: C,57.64;H,5.20;N,12.77				Specific rotation [\alpha] \(p^{20}-21.0^\circ\$ (c=0.1,DMSO)
1.79(3H,s),2.34(2H,t,J=7.5Hz),2.50(4H,t,J=4.5Hz),2.98(4H,t,J=4.5Hz),3.00-3.10(2H,m),3. 45-3.55(2H,m),3.75-3.85(1H,m),3.89(3H,s),4. 11(1H,t,J=9Hz),4.85-4.95(1H,m),7.03(1H,t,J=9Hz),7.17(1H,dd,J=9,2.5Hz),7.46(1H,dd,J=14.5,2.5Hz),7.68(1H,br-s),8.39(1H,br-s) Rν (liq.) cm ⁻¹ :1748,3304 Specific rotation[α]p ²⁰ -50.6° (c=0.1,DMSO) colorless crystals[i-PrOH] mp,115~117°C Elemental analysis for C19H24FN5O3S Calcd. %: C,54.14;H,5.74;N,16.62 Found %: C,54.08;H,5.93;N,16.51 Specific rotation [α]p ²⁰ -24.0° (c=0.1,DMSO) pale brown crystals[DMF-H ₂ O] mp,193.5~195°C Elemental analysis for C ₂₆ H ₂₈ FN ₆ O ₆ S Calcd. %: C,57.66;H,5.21;N,12.93 Found %: C,57.64;H,5.20;N,12.77				pale yellow liquid
1.79(3H,s),2.34(2H,t,J=7.5Hz),2.50(4H,t,J=4.5Hz),2.98(4H,t,J=4.5Hz),3.00-3.10(2H,m),3.45-3.55(2H,m),3.75-3.85(1H,m),3.89(3H,s),4.11(1H,t,J=9Hz),4.85-4.95(1H,m),7.03(1H,t,J=9Hz),7.17(1H,dd,J=9,2.5Hz),7.46(1H,dd,J=14.5,2.5Hz),7.68(1H,br-s),8.39(1H,br-s) IR ν (liq.) cm ⁻¹ :1748,3304 Specific rotation[α] p ²⁰ -50.6° (c=0.1,DMSO) colorless crystals [i-PrOH] mp,115~1176 C Elemental analysis for C ₁₉ H ₂₄ FN ₅ O ₃ S Calcd. %: C,54.14;H,5.74;N,16.62 Found %: C,54.08;H,5.93;N,16.51 Specific rotation [α] p ²⁰ -24.0° (c=0.1,DMSO) pale brown crystals [DMF-H ₂ O] mp,193.5~195°C Elemental analysis for C ₂₆ H ₂₈ FN ₅ O ₅ S Calcd. %: C,57.66;H,5.21;N,12.93 Found %: C,57.64;H,5.20;N,12.77	26	Į.		NMR(DMSO-de) & ppm:1.57(2H,quin,J=7.5Hz),
27 28 28 28 28 29 29 20 20 20 20 20 20 20 20	25			1.79(3H,s),2.34(2H,t,J=7.5Hz),2.50(4H,t,J=4
45-3.55(2H,m),3.75-3.85(1H,m),3.89(3H,s),4. 11(1H,t,J=9Hz),4.85-4.95(1H,m),7.03(1H,t,J=9Hz),7.17(1H,dd,J=9,2.5Hz),7.46(1H,dd,J=14.5,2.5Hz),7.68(1H,br-s),8.39(1H,br-s) IR ν (liq.) cm ⁻¹ :1748,3304 Specific rotation[α]ν ²⁰ -50.6° (c=0.1,DMSO) colorless crystals [i-PrOH] mp,115~117°C Elemental analysis for C ₁₉ H ₂₄ FN ₅ O ₃ S Calcd. %: C,54.14;H,5.74;N,16.62 Found %: C,54.08;H,5.93;N,16.51 Specific rotation [α]ν ²⁰ -24.0° (c=0.1,DMSO) pale brown crystals [DMF-H ₂ O] mp,193.5~195°C Elemental analysis for C ₂₆ H ₂₈ FN ₅ O ₅ S Calcd. %: C,57.66;H,5.21;N,12.93 Found %: C,57.64;H,5.20;N,12.77		}		.5Hz),2.98(4H,t,J=4.5Hz),3.00-3.10(2H,m),3.
11(1H, T, J=9Hz), 4.85-4.93(1H, M), 7.03(1H, L, J=9Hz), 7.17(1H, dd, J=9, 2.5Hz), 7.46(1H, dd, J=14.5, 2.5Hz), 7.68(1H, hr-s), 8.39(1H, hr-s) IR ν (liq.) cm ⁻¹ :1748, 3304 Specific rotation[α]p ²⁰ -50.6° (c=0.1, DMSO) colorless crystals [i-PrOH] mp, 115~117°C Elemental analysis for C ₁₉ H ₂₄ FN ₅ O ₃ S Calcd. %: C,54.14; H,5.74; N,16.62 Found %: C,54.08; H,5.93; N,16.51 Specific rotation [α]p ²⁰ -24.0° (c=0.1, DMSO) pale brown crystals [DMF-H ₂ O] mp, 193.5~195°C Elemental analysis for C ₂₆ H ₂₈ FN ₅ O ₅ S Calcd. %: C,57.66; H,5.21; N,12.93 Found %: C,57.64; H,5.20; N,12.77			CH2h	
14.5,2.5Hz),7.68(1H,br-s),8.39(1H,br-s) IR ν (liq.) cm ⁻¹ :1748,3304 Specific rotation[α]p ²⁰ -50.6° (c=0.1,DMSO) colorless crystals [i-PrOH] mp,115~117°C Elemental analysis for C ₁₉ H ₂₄ FN ₅ O ₃ S Calcd. %: C,54.14;H,5.74;N,16.62 Found %: C,54.08;H,5.93;N,16.51 Specific rotation [α]p ²⁰ -24.0° (c=0.1,DMSO) pale brown crystals [DMF-H ₂ O] mp,193.5~195°C Elemental analysis for C ₂₆ H ₂₈ FN ₅ O ₅ S Calcd. %: C,57.66;H,5.21;N,12.93 Found %: C,57.64;H,5.20;N,12.77		27		11(1H,t,J=9Hz),4.85-4.95(1H,m),7.03(1H,t,J
IR ν (liq.) cm ⁻¹ :1748,3304 Specific rotation[α]p ²⁰ -50.6° (c=0.1,DMSO) colorless crystals [i-PrOH] mp,115~117°C Elemental analysis for C ₁₉ H ₂₄ FN ₅ O ₃ S Calcd. %: C,54.14;H,5.74;N,16.62 Found %: C,54.08;H,5.93;N,16.51 Specific rotation [α]p ²⁰ -24.0° (c=0.1,DMSO) pale brown crystals [DMF-H ₂ O] mp,193.5~195°C Elemental analysis for C ₂₆ H ₂₈ FN ₅ O ₅ S Calcd. %: C,57.66;H,5.21;N,12.93 Found %: C,57.64;H,5.20;N,12.77	30	Ì	F	=9Hz),7.17(1H,dd,J=9,2.5Hz),7.46(1H,dd,J=
Specific rotation[α]p ²⁰ -50.6° (c=0.1,DMSO) colorless crystals [i-PrOH] mp,115~117°C Elemental analysis for C ₁₉ H ₂₄ FN ₆ O ₃ S Calcd. %: C,54.14;H,5.74;N,16.62 Found %: C,54.08;H,5.93;N,16.51 Specific rotation [α]p ²⁰ -24.0° (c=0.1,DMSO) pale brown crystals [DMF-H ₂ O] mp,193.5~195°C Elemental analysis for C ₂₆ H ₂₈ FN ₆ O ₅ S Calcd. %: C,57.66;H,5.21;N,12.93 Found %: C,57.64;H,5.20;N,12.77	•			14.5,2.5Hz),7.68(1H,br-s),8.39(1H,br-s)
colorless crystals [i-PrOH] mp,115~117°C Elemental analysis for C ₁₉ H ₂₄ FN ₆ O ₃ S Calcd. %: C,54.14;H,5.74;N,16.62 Found %: C,54.08;H,5.93;N,16.51 Specific rotation [α] _D ²⁰ -24.0° (c=0.1,DMSO) pale brown crystals [DMF-H ₂ O] mp,193.5~195°C Elemental analysis for C ₂₆ H ₂₈ FN ₆ O ₅ S Calcd. %: C,57.66;H,5.21;N,12.93 Found %: C,57.64;H,5.20;N,12.77]		IR ν (liq.) cm ⁻¹ :1748,3304
mp,115~117°C Elemental analysis for C ₁₉ H ₂₄ FN ₅ O ₃ S Calcd. %: C,54.14;H,5.74;N,16.62 Found %: C,54.08;H,5.93;N,16.51 Specific rotation [α] _D ²⁰ -24.0° (c=0.1,DMSO) pale brown crystals [DMF-H ₂ O] mp,193.5~195°C Elemental analysis for C ₂₆ H ₂₈ FN ₅ O ₅ S Calcd. %: C,57.66;H,5.21;N,12.93 Found %: C,57.64;H,5.20;N,12.77			ì	Specific rotation[\alpha]p^20-50.6° (c=0.1,DMSO)
mp,115~117°C Elemental analysis for C ₁₉ H ₂₄ FN ₆ O ₃ S Calcd. %: C,54.14;H,5.74;N,16.62 Found %: C,54.08;H,5.93;N,16.51 Specific rotation [α] _D ²⁰ -24.0° (c=0.1,DMSO) pale brown crystals [DMF-H ₂ O] mp,193.5~195°C Elemental analysis for C ₂₆ H ₂₈ FN ₆ O ₅ S Calcd. %: C,57.66;H,5.21;N,12.93 Found %: C,57.64;H,5.20;N,12.77	25			colorless crystals[i-PrOH]
Calcd. %: C,54.14;H,5.74;N,16.62 Found %: C,54.08;H,5.93;N,16.51 Specific rotation [α] _D ²⁰ -24.0° (c=0.1,DMSO) pale brown crystals [DMF-H ₂ O] mp,193.5~195°C Elemental analysis for C ₂₆ H ₂₈ FN ₆ O ₅ S Calcd. %: C,57.66;H,5.21;N,12.93 Found %: C,57.64;H,5.20;N,12.77	33	1		mp,115~117°C
Found %: C,54.08;H,5.93;N,16.51 Specific rotation [α] _D 20-24.0° (c=0.1,DMSO) pale brown crystals [DMF-H ₂ O] mp,193.5~195°C Elemental analysis for C ₂₆ H ₂₈ FN ₆ O ₅ S Calcd. %: C,57.66;H,5.21;N,12.93 Found %: C,57.64;H,5.20;N,12.77			NC (CH ₂) ₂ N N	Elemental analysis for C ₁₉ H ₂₄ FN ₅ O ₃ S
Specific rotation [α] _D 20-24.0° (c=0.1,DMSO) pale brown crystals [DMF-H ₂ O] mp,193.5~195°C Elemental analysis for C ₂₆ H ₂₈ FN ₆ O ₅ S Calcd. %: C,57.66;H,5.21;N,12.93 Found %: C,57.64;H,5.20;N,12.77		28		Calcd. %: C,54.14;H,5.74;N,16.62
pale brown crystals [DMF-H ₂ O] mp,193.5~195°C Elemental analysis for C ₂₆ H ₂₈ FN ₅ O ₅ S Calcd. %: C,57.66;H,5.21;N,12.93 Found %: C,57.64;H,5.20;N,12.77		1	•	Found %: C,54.08;H,5.93;N,16.51
29 mp,193.5~195°C Elemental analysis for C ₂₆ H ₂₈ FN ₆ O ₅ S Calcd. %: C,57.66;H,5.21;N,12.93 Found %: C,57.64;H,5.20;N,12.77	40	1		Specific rotation [α] $_{D^{20}-24.0^{\circ}}$ (c=0.1,DMSO)
29 Elemental analysis for C ₂₆ H ₂₈ FN ₆ O ₅ S Calcd. %: C,57.66;H,5.21;N,12.93 Found %: C,57.64;H,5.20;N,12.77				pale brown crystals[DMF-H2O]
Calcd. %: C,57.66;H,5.21;N,12.93 Found %: C,57.64;H,5.20;N,12.77				mp,193.5~195°C
Found %: C,57.64;H,5.21;N,12.95 Found %: C,57.64;H,5.20;N,12.77	45	29	N - (CH2)2-N N -	Elemental analysis for C26H28FN5O5S
Found %: C,57.64;H,5.20;N,12.77				Calcd. %: C,57.66;H,5.21;N,12.93
Specific rotation [α] _D 20-19.1° (c=0.1,DMSO)				
				Specific rotation [\alpha] \text{D}^{20}-19.1\circ (c=0.1,DMSO)

97

BNSDOCID: <EP 1130016A1 1 >

50

55

R-N H OMe

Example R Physical properties [recrystallization solvent]		•			
Colorless crystals[i-Pr ₂ O] mp,102.5~103.5°C Elemental analysis for C ₁₈ H ₁₆ N ₂ O ₃ S Calcd. % : C,55.70;H,5.75;N,9.99 Found % : C,55.86;H,6.02;N,9.89 Specific rotation[α]n ²⁰ -33.9° (c=0.1,DMSO) colorless needles[i-PrOH] mp,108~110°C Elemental analysis for C ₁₄ H ₁₈ N ₂ O ₃ S Calcd. % : C,57.12;H,6.16;N,9.52 Found % : C,57.29;H,6.38;N,9.51 Specific rotation[α]n ²⁰ -32.0° (c=0.1,DMSO) pale yellow needles[i-PrOH] mp,146.5~148.5°C			R	Example	
Colorless crystals[i-Pr ₂ O] mp,102.5~103.5°C Elemental analysis for C ₁₈ H ₁₆ N ₂ O ₃ S Calcd. % : C,55.70;H,5.75;N,9.99 Found % : C,55.86;H,6.02;N,9.89 Specific rotation[α] _D ²⁰ -33.9° (c=0.1,DMSO) colorless needles[i-PrOH] mp,108~110°C Elemental analysis for C ₁₄ H ₁₈ N ₂ O ₃ S Calcd. % : C,57.12;H,6.16;N,9.52 Found % : C,57.29;H,6.38;N,9.51 Specific rotation[α] _D ²⁰ -32.0° (c=0.1,DMSO) pale yellow needles[i-PrOH] mp,146.5~148.5°C				Dadinpro	10
Some Elemental analysis for C ₁₈ H ₁₆ N ₂ O ₃ S Calcd. % : C,55.70;H,5.75;N,9.99 Found % : C,55.86;H,6.02;N,9.89 Specific rotation[α]D ²⁰ -33.9° (c=0.1,DMSO) colorless needles[i-PrOH] mp,108~110°C Elemental analysis for C ₁₄ H ₁₆ N ₂ O ₃ S Calcd. % : C,57.12;H,6.16;N,9.52 Found % : C,57.29;H,6.38;N,9.51 Specific rotation[α]D ²⁰ -32.0° (c=0.1,DMSO) pale yellow needles[i-PrOH] mp,146.5~148.5°C	j	1			
Calcd. %: C,55.70;H,5.75;N,9.99 Found %: C,55.86;H,6.02;N,9.89 Specific rotation[α]p ²⁰ -33.9° (c=0.1,DMSO) colorless needles[i-PrOH] mp,108~110°C Elemental analysis for C ₁₄ H ₁₈ N ₂ O ₃ S Calcd. %: C,57.12;H,6.16;N,9.52 Found %: C,57.29;H,6.38;N,9.51 Specific rotation[α]p ²⁰ -32.0° (c=0.1,DMSO) pale yellow needles[i-PrOH] mp,146.5~148.5°C	į	mp,102.5~103.5°C	İ	1	
Found %: C,55.86;H,6.02;N,9.89 Specific rotation[α]p ²⁰ -33.9° (c=0.1,DMSO) colorless needles[i-PrOH] mp,108~110°C Elemental analysis for C ₁₄ H ₁₈ N ₂ O ₃ S Calcd. %: C,57.12;H,6.16;N,9.52 Found %: C,57.29;H,6.38;N,9.51 Specific rotation[α]p ²⁰ -32.0° (c=0.1,DMSO) pale yellow needles[i-PrOH] mp,146.5~148.5°C		Elemental analysis for C ₁₈ H ₁₆ N ₂ O ₈ S	•••	20	
Specific rotation [α] p ²⁰ -33.9° (c=0.1,DMSO) colorless needles [i-PrOH] mp,108~110°C Elemental analysis for C ₁₄ H ₁₈ N ₂ O ₃ S Calcd. %: C,57.12;H,6.16;N,9.52 Found %: C,57.29;H,6.38;N,9.51 Specific rotation [α] p ²⁰ -32.0° (c=0.1,DMSO) pale yellow needles [i-PrOH] mp,146.5~148.5°C mp,146.5~148.5°C	l	Calcd. %: C,55.70;H,5.75;N,9.99		30	
colorless needles[i-PrOH] mp,108~110°C Elemental analysis for C ₁₄ H ₁₈ N ₂ O ₃ S Calcd. %: C,57.12;H,6.16;N,9.52 Found %: C,57.29;H,6.38;N,9.51 Specific rotation[α] _D ²⁰ -32.0° (c=0.1,DMSO) pale yellow needles[i-PrOH] mp,146.5~148.5°C	1	Found %: C,55.86;H,6.02;N,9.89			15
mp,108~110°C Elemental analysis for C ₁₄ H ₁₈ N ₂ O ₃ S Calcd. %: C,57.12;H,6.16;N,9.52 Found %: C,57.29;H,6.38;N,9.51 Specific rotation[α] _D ²⁰ -32.0° (c=0.1,DMSO) pale yellow needles[i-PrOH] mp,146.5~148.5°C)	Specific rotation[α] _D 20-33.9° (c=0.1,DMSO)		Ţ	
Elemental analysis for C ₁₄ H ₁₈ N ₂ O ₃ S Calcd. %: C,57.12;H,6.16;N,9.52 Found %: C,57.29;H,6.38;N,9.51 Specific rotation[\alpha] _D ²⁰ -32.0° (c=0.1,DMSO) pale yellow needles[i-PrOH] mp,146.5~148.5°C		colorless needles[i-PrOH]			
Calcd. %: C,57.12;H,6.16;N,9.52 Found %: C,57.29;H,6.38;N,9.51 Specific rotation[\alpha] \(\partial \text{D}^{20}\)-32.0° (c=0.1,DMSO) pale yellow needles[i-PrOH] mp,146.5~148.5°C	1	mp,108~110°C	_		
Calcd. %: C,57.12;H,6.16;N,9.52 Found %: C,57.29;H,6.38;N,9.51 Specific rotation[\alpha] \(\partial \text{D}^{20}\)-32.0° (c=0.1,DMSO) pale yellow needles[i-PrOH] mp,146.5~148.5°C]	Elemental analysis for C14H18N2O3S	Mo-{\bigcirc}-		20
Specific rotation[α] _D 20-32.0° (c=0.1,DMSO) pale yellow needles[i-PrOH] mp,146.5~148.5°C	ı	Calcd. %: C,57.12;H,6.16;N,9.52	السكر	31	
pale yellow needles[i-PrOH] mp,146.5~148.5°C		Found %: C,57.29;H,6.38;N,9.51	Me		
mp,146.5~148.5°C)	Specific rotation[α] $_{D^{20}-32.0^{\circ}}$ (c=0.1,DMSO)			
mp,146.5~148.5°C		pale yellow needles[i-PrOH]			
Planantal analysis for C II N C C		mp,146.5~148.5°C			25
$\sqrt{-}$ Elemental analysis for $U_14H_16N_2U_4S$	ļ	Elemental analysis for C14H16N2O4S	% /=\		
32 Calcd. % : C,54.53;H,5.23;N,9.08		Calcd. %: C,54.53;H,5.23;N,9.08	Ma	32	
Found %: C,54.51;H,5.11;N,9.05		Found %: C,54.51;H,5.11;N,9.05			
Specific rotation[α] D^{20} -45.0° (c=0.1,DMSO)))	Specific rotation[α] _D 20-45.0° (c=0.1,DMSO)			30
pale brown crystals[i-PrOH]		pale brown crystals[i-PrOH]			
mp,149~150°C		mp,149~150°C			
Elemental analysis for C14H19N3O3S		Elemental analysis for C14H19N3O3S	Me	00	
33 Calcd. %: C,54.35;H,6.19;N,13.58		Calcd. %: C,54.35;H,6.19;N,13.58	Me	33	26
Found %: C,54.54;H,6.14;N,13.45					33
Specific rotation [α] $_{D^{20}-24.0^{\circ}}$ (c=0.1,DMSO))	Specific rotation [α] p^{20} -24.0° (c=0.1,DMSO			
pale yellow liquid		1.			
NMR(DMSO-d ₆) δ ppm:2.77(6H,s),3.75-3.850	.85(3	NMR(DMSO-d ₆) δ ppm:2.77(6H,s),3.75-3.8			
40 H,m),3.92(3H,s),4.06(1H,t,J=9Hz),4.80-4.90			Me 🥽	1	40
1H,m),6.95(1H,t,J=9Hz),7.13(1H,dd,J=9,2				0.4	
Hz),7.40(1H,dd,J=15.5,2.5Hz),9.10(1H,Dr-s)	r-s)		Me' _	34	
IR ν (liq.) cm ⁻¹ :1754,3268		1 · · · · · · · · · · · · · · · · · · ·	"		
MS(m/z):327(M+)				l	45
Specific rotation[α] _D 20-38.1° (c=0.1,DMSO)))	Specific rotation[α]p ²⁰ -38.1° (c=0.1,DMSO)	1	1	_

55

	·	
77	R	Physical properties
Example	K	[recrystallization solvent]
		pale brown needles[i-PrOH]
		mp,91~92°C
	Me N	Elemental analysis for C15H20FN3O3S
35	. Et	Calcd. %: C,52.77;H,5.90;N,12.31
	F	Found %: C,52.83;H,6.16;N,12.26
		Specific rotation [\alpha]p^{20}-25.1° (c=0.1,DMSO)
		pale brown liquid
		$NMR(DMSO-d_6) \delta ppm:1.01(6H,t,J=7Hz),3.13$
		4H,q,J=7Hz, 3.70-3.85(3H,m), 3.92(3H,s), 4.
	Et –	9(1H,t,J=9Hz),4.80-4.90(1H,m),7.01(1H,t,J)
36)	9Hz),7.10-7.20(1H,m),7.36(1H,dd,J=14.5,2
	Et F	Hz),9.10(1H,br-s)
	1	IR ν (liq.) cm ⁻¹ : 1378,1460
		MS(m/z):355(M+)
		Specific rotation [α] $_{D^{20}}$ -35.8° (c=0.1,DMSO)
		colorless needles[EtOH]
1	MeO-(CH ₂) ₂ -O-	mp,101~102°C
95		Elemental analysis for C ₁₅ H ₁₉ FN ₂ O ₅ S
37	F'	Calcd. %: C,50.27;H,5.34;N,7.82
		Found %: C,50.22;H,5.36;N,7.81
		Specific rotation [α] $_{D^{20}-33.0^{\circ}}$ (c=0.1,DMSO)
		pale brown prisms[i-PrOH]
Į		mp,134~135°C
		Elemental analysis for C ₁₅ H ₁₈ N ₂ O ₃ S
38		Calcd. %: C,58.80;H,5.92;N,9.14
1		Found %: C,58.94;H,6.04;N,9.16
		Specific rotation [\alpha] \(D^{20} - 31.0^\circ \) (c=0.1,DMSO)
	1	pale brown prisms[i-PrOH]
		mp,145.5~147°C
		Elemental analysis for C16H20N2O3S
39		Calcd. %: C,59.98;H,6.29;N,8.74
		Found %: C,60.10;H,6.40;N,8.70
1		Specific rotation [α] _D ²⁰ -35.1° (c=0.1,DMSO)

ſ	Ti-servale	R	Physical properties
10	Example	K	[recrystallization solvent]
,5		0	yellow liquid NMR(DMSO-d ₆) δ ppm:1.55-1.65(2H,m),1.80- 1.95(2H,m),3.20-3.30(2H,m),3.61(3H,s),3.60 -3.70(2H,m),3.70-3.85(3H,m),3.92(3H,s),4.1
15	40	MeO N P	0(1H,t,J=8.5Hz),4.40-4.50(1H,m),4.80-4.90(1H,m),7.15-7.25(2H,m),7.40-7.50(1H,m),9.1 0(1H,br-s)
20			IR ν (liq.) cm ⁻¹ :1696,1756 Specific rotation[α]p ²⁰ -20.7° (c=0.1,DMSO)
20			colorless amorphous solid NMR(DMSO-d ₆) & ppm:1.55-1.65(2H,m),1.85- 1.95(2H,m),2.56(2H,t,J=6.5Hz),3.24(3H,s),3
<i>25</i>	41	MeO-(CH ₂)2 N O-(CH ₂)2	.25-3.35(2H,m),3.58(2H,t,J=6.5Hz),3.70-3.8 5(3H,m),3.92(3H,s),4.10(1H,t,J=9Hz),4.45-4 .55(1H,m),4.80-4.90(1H,m),7.15-7.25(2H,m) ,7.47(1H,d,J=13Hz),9.11(1H,br-s) IR ν (liq.) cm ⁻¹ :1756
30			Specific rotation[\alpha]_p^{20}-17.2° (c=0.1,DMSO)
35	42	Med N	pale yellow prisms[EtOH] mp,177~178.5°C Elemental analysis for C ₁₇ H ₂₀ FN ₃ O ₆ S Calcd. %: C,49.39;H,4.88;N,10.16 Found %: C,49.23;H,4.79;N,10.07 Specific rotation [α] _D 20-24.0° (c=0.1,DMSO)
40	43	H ₂ N N N	colorless crystals NMR(DMSO-d ₆) & ppm:3.03(4H,t,J=5Hz),3.75 -3.85(3H,m),3.85-3.90(4H,m),3.91(3H,s),4.1 1(1H,t,J=9Hz),4.80-4.90(1H,m),7.06(1H,t,J =9Hz),7.13(2H,br-s),7.17(1H,dd,J=9,2.5Hz), 7.43(1H,dd,J=15.5,2.5Hz),9.11(1H,br-s) IR \(\nu\) (KBr) cm ⁻¹ :3272
45			Specific rotation[α] $_{D}^{20}$ -60.1° (c=0.1,DMSO)

R-N H OME

		<u> </u>			
	Example	R	Physical properties		
	Example		[recrystallization solvent]		
10	·		pale brown needles[EtOH]		
,		Me I	mp,168~169°C		
		M N N	Elemental analysis for C18H24FN5O3S2		
	44	"	Calcd. %: C,48.96;H,5.48;N,15.86		
15		•	Found %: C,48.82;H,5.26;N,15.76		
			Specific rotation[\alpha]D^{20}-24.0° (c=0.1,DMSO)		
			pale brown needles[CH3CN]		
		s	mp,157~158.5°C		
		Et. L.	Elemental analysis for C19H26FN5O3S2		
20	45		Calcd. %: C,50.09;H,5.75;N,15.37		
		F	Found %: C,50.10;H,5.69;N,15.26		
			Specific rotation[\alpha]\text{D}^{20}-28.0\alpha (c=0.1,DMSO)		
			colorless crystals[MeOH]		
25	}	S	mp,162.5~164.5°C		
	_	U-br N N N-	Elemental analysis for C20H28FN5O3S2		
	46	سر س	Calcd. %: C,51.15;H,6.01;N,14.91		
	}	1	Found %: C,51.07;H,5.87;N,14.90		
	1		Specific rotation[\alpha]D20-21.1° (c=0.1,DMSO)		
<i>30</i>			pale brown crystals		
			NMR(DMSO-d ₆) δ ppm:3.09(4H,t,J=5Hz),3.11(6		
	}	s —	$H_{,s}$, 3.51(4H, t, $J=5Hz$), 3.75-3.85(3H, m), 3.92(3)		
	1	We N N	$H_{,S}$, 4.10(1 $H_{,t}$, $J=9Hz$), 4.80-4.90(1 $H_{,m}$), 7.07(1		
35	47	Me	H,t,J=9Hz),7.18(1H,dd,J=9,2Hz),7.42(1H,dd,J		
		}	=14.5,2Hz),9.11(1H,br-s)		
	1.		IR ν (KBr) cm ⁻¹ :1748,3392		
			Specific rotation[\alpha] \text{p20-21.9} (c=0.1, DMSO)		
			colorless needles[i-PrOH]		
40	1	s	mp,181~182.5°C		
			Elemental analysis for C ₁₈ H ₂₈ FN ₄ O ₄ S ₂		
	48	MeO N N	Calcd. %: C,48.85;H,5.24;N,12.66		
	1) F	Found %: C,49.04;H,5.13;N,12.71		
45	1		Specific rotation[α] _D ²⁰ -32.1° (c=0.1,DMSO)		

DMCCOCID >TD HEROMET I.

50

55

5

			· 8
10	Example	R	Physical properties [recrystallization solvent]
15	49	Eto N N F	colorless crystals[EtOH] mp,126.5~127°C Elemental analysis for C ₁₉ H ₂₅ FN ₄ O ₄ S ₂ Calcd. %: C,49.98;H,5.52;N,12.27 Found %: C,49.87;H,5.69;N,12.27 Specific rotation [α] _D ²⁰ -25.9° (c=0.1,DMSO)
20	50	n-Pro N N F	colorless crystals [MeOH] mp,148~149°C Elemental analysis for $C_{20}H_{27}FN_4O_4S_2$ Calcd. %: C,51.05;H,5.78;N,11.91 Found %: C,51.16;H,5.81;N,11.70 Specific rotation [α]n ²⁰ -24.0° (c=0.1,DMSO)
30	51	MeS N N F	colorless crystals[i-PrOH] mp,160~162°C Elemental analysis for C ₁₈ H ₂₃ FN ₄ O ₃ S ₃ Calcd. %: C,47.14;H,5.06;N,12.22 Found %: C,47.40;H,5.04;N,12.13 Specific rotation [α] _D ²⁰ -22.9° (c=0.1,DMSO)
<i>35</i>	52	Ph N N	yellow needles [AcOEt] mp,148~149°C Elemental analysis for C ₂₃ H ₂₅ FN ₄ O ₃ S ₂ Calcd. %: C,56.54;H,5.16;N,11.47 Found %: C,56.39;H,5.10;N,11.32 Specific rotation [α] _D 20-25.0° (c=0.1,DMSO)

·	Example	R	Physical properties [recrystallization solvent]
10			colorless amorphous solid NMR(DMSO-d ₆) δ ppm:1.69(2H,quin,J=6.
15	53	Me-y CH2)3-10	5Hz),2.39(2H,t,J=6.5Hz),2.54(4H,t,J=5 Hz),2.85(3H,d,J=4.5Hz),3.03(4H,t,J=5 Hz),3.40-3.50(2H,m),3.70-3.85(3H,m),3 .92(3H,s),4.08(1H,t,J=9Hz),4.80-4.90(1 H,m),7.03(1H,t,J=9Hz),7.12(1H,br-s),7. 15(1H,dd,J=9,2.5Hz),7.16(1H,br-s),7.39
20			(1H,dd,J=15,2.5Hz),9.10(1H,br-s) IR ν (KBr) cm ⁻¹ :1746,3252 Specific rotation [α]p ²⁰ -20.9° (c=0.1,DMSO)
25			pale brown liquid NMR(DMSO-de) δ ppm:1.60-1.80(2H,m),2 .39(2H,t,J=6.5Hz),2.53(4H,t,J=5Hz),3.0 2(4H,t,J=5Hz),3.40-3.50(2H,m),3.70-3.
30	54	MeO H (CHab N)	85(3H,m),3.87(3H,s),3.92(3H,s),4.08(1 H,t,J=9Hz),4.80-4.90(1H,m),7.02(1H,t, J=9Hz),7.15(1H,dd,J=9,2.5Hz),7.39(1H ,dd,J=15.5,2.5Hz),8.77(1H,br-s),9.10(1 H,br-s)
35			IR ν (liq.) cm ⁻¹ :1740,3268 Specific rotation [α]n ²⁰ -18.1° (c=0.1,DMSO)
40		Head H ()	pale brown crystals NMR(DMSO-d ₆) δ ppm:1.60-1.75(2H,m),1 .90-2.05(1H,m),2.40-2.55(2H,m),2.70-2. 85(2H,m),3.25-3.35(2H,m),3.65-3.85(3 H,m),3.89(3H,s),3.92(3H,s),4.08(1H,t,J
45	55	F F	=9Hz),4.80-4.90(1H,m),7.05(1H,t,J=9Hz),7.14(1H,dd,J=9,2.5Hz),7.39(1H,dd,J=14.5,2.5Hz),8.80(1H,br-s),9.11(1H,br-s) IR ν (KBr) cm ⁻¹ :1740,3272 Specific rotation
50			[α] _D ²⁰ -25.0° (c=0.1,DMSO)

•			
Example	R ¹	Physical properties	
		[recrystallization-solvent]	
j		colorless crystals[i-PrOH]	
		mp,103.5~104.5°C	
56	Et	Elemental analysis for C ₁₇ H ₂₂ FN ₃ O ₃ S ₂	
- 50	20	Calcd. %: C,51.11;H,5.55;N,10.52	
		Found %: C,51.20;H,5.67;N,10.38	
		Specific rotation [α] $_{D}^{20}$ -23.1° (c=0.1,DMSO)	
		pale yellow crystals[i-PrOH]	
		mp,124~125°C	
57	n-Pr	Elemental analysis for C ₁₈ H ₂₄ FN ₃ O ₃ S ₂	
		Calcd. %: C,52.28;H,5.85;N,10.16	
		Found %: C,52.22;H,5.86;N,10.12	
		Specific rotation [α] $_{D^{20}-30.9^{\circ}}$ (c=0.1,DMSO)	
	j	colorless crystals[i-PrOH-i-Pr ₂ O]	
		mp,164~166°C	
58	i-Pr	Elemental analysis for C ₁₈ H ₂₄ FN ₃ O ₃ S ₂	
00		Calcd. %: C,52.28;H,5.85;N,10.16	
		Found %: C,52.06;H,5.56;N,10.01	
		Specific rotation [α] _D ²⁰ -32.1° (c=0.1,DMSO)	
	1	pale yellow crystals[MeOH]	
		mp,150~152°C	
59	cyc-Hex	Elemental analysis for C ₂₁ H ₂₈ FN ₃ O ₃ S ₂	
00	3,0 2232	Calcd. %: C,55.61;H,6.22;N,9.26	
		Found %: C,55.49;H,5.97;N,9.07	
		Specific rotation [α] p^{20} -26.9° (c=0.1,DMSO)	

Example	R ¹	Physical properties [recrystallization solvent]
60	Et	pale yellow prisms [EtOH] mp,152~153°C Elemental analysis for C ₁₉ H ₂₆ FN ₅ O ₈ S ₂ Calcd. %: C,50.09;H,5.75;N,15.37 Found %: C,50.14;H,5.82;N,15.13 Specific rotation [α] $_{0}^{20}$ -30.0° (c=0.1,DMSO)

20 Example 61

5

10

15

25

30

35

40

45

50

55

[0140] O-Methyl (S)-N-[3-[3-fluoro-4-[4-(3-mesylaminopropyl)piperazin-1-yl]-phenyl]-2-oxooxazolidin-5-yl]methylthiocarbamate

1) To a solution of 0.40 g of (S)-5-aminomethyl-3-[3-fluoro-4-[4-(3-mesylaminopropyl)piperazin-1-yl]phenyl]-2-oxooxazolidine and 0.13 ml of triethylamine in 4 ml of dried tetrahydrofuran, 0.12 ml of carbon disulfide was added under ice-cooling and with stirring, and the mixture was stirred at the same temperature for 5 hours. The mixture was added with 0.09 ml of ethyl chlorocarbonate under ice-cooling and with stirring, and further stirred at the same temperature for 2 hours. The reaction solution was added with water, and extracted with ethyl acetate. The extract was washed with saturated brine, and dried over sodium sulfate, and then the solvent was evaporated under reduced pressure to obtain 0.39 g of a pale brown amorphous solid.

2) To 3.5 ml of dried methanol, 0.06 g of 60 % sodium hydride was added under stirring at room temperature, and the mixture was stirred at room temperature for 30 minutes. Then, the mixture was added with 0.35 g of the amorphous solid obtained in 1), and stirred at room temperature for 1 hour. The reaction mixture was neutralized with ice water and 10 % hydrochloric acid, and extracted with ethyl acetate. The extract was washed with saturated brine, and dried over sodium sulfate, and then the solvent was evaporated under reduced pressure. The residue was purified by column chromatography (alumina, ethyl acetate) to obtain 0.14 g of pale brown crystals. Recrystallization from isopropanol gave colorless needles having the melting point of from 120 to 121.5°C.

Elemental analysis for C ₂₀ H ₃₀ FN ₅ O ₅ S ₂							
Calculated %	C,	47.70;	Н,	6.00;	N,	13.91	
Found %	C,	47.76;	Н,	5.88;	N,	13.70	

Specific rotation $[\alpha]_D^{20}$ -19.0° (c = 0.1, DMSO)

Example 62

[0141] O-Methyl (S)-N-[3-[3-fluoro-4-(piperazin-1-yl)phenyl]-2-oxooxazolidin-5-yl]-methylthiocarbamate [0142] To 4 ml of 10 % hydrogen chloride ethyl acetate solution, 0.20 g of O-methyl (S)-N-[3-[4-(4-tert-butoxycarb-onylpiperazin-1-yl)-3-fluorophenyl]-2-oxooxazolidin-5-yl]methylthiocarbamate was added under ice-cooling and with stirring, and the mixture was stirred at room temperature for 6 hours. After the reaction, the solvent was evaporated under reduced pressure, and the residue was added with aqueous sodium hydrogencarbonate, and extracted with 1,2-dichloroethane. The extract was washed successively with water and saturated brine, and dried over sodium sulfate, and then the solvent was evaporated under reduced pressure to obtain 0.10 g of a colorless amorphous solid. NMR spectrum (DMSO-d₆) δ ppm:

 $3.00(8H,s), 3.21(1H,br-s), \overline{3.75} - 3.85(3H,m), 3.89(3H,s), 4.11(1H,t,J=9Hz), \\ 4.85 - 4.90(1H,m), 7.07(1H,t,J=9.5Hz), 7.15 - 4.85 - 4.90(1H,m), \\ 7.07(1H,t,J=9.5Hz), 7.15 - 4.85 - 4.90(1H,m), \\ 7.07(1H,t,J=9.5Hz), \\$

7.19(1H,m),7.45(1H,dd,J=15,3Hz), 9.39(1H,br-s) IR spectrum ν (KBr) cm⁻¹: 1750,3228 Specific rotation [α]_D²⁰ -30.1° (c = 0.1, DMSO)

5 Example 63

10

20

45

50

55

[0143] O-Methyl (S)-N-[3-[3-fluoro-4-[4-(3-oxobutyl)piperazin-1-yl]phenyl]-2-oxo-oxazolidin-5-yl]methylthiocarbamate

[0144] To a solution of O-methyl (S)-N-[3-[3-fluoro-4-(piperazin-1-yl)phenyl]-2-oxo-oxazolidin-5-yl]methylthiocar-bamate in 1 ml of methanol, 0.01 ml of methyl vinyl ketone was added under stirring at room temperature, and the mixture was stirred at the same temperature for 30 minutes. After the reaction, the solvent was evaporated under reduced pressure, and the residue was purified by column chromatography (alumina, ethyl acetate) to obtain 0.06 g of colorless crystals.

NMR spectrum (CDCl₃) δ ppm:

2.19(3H,s),2.63(4H,t,J=5Hz),2.66(2H,t,J=6.5Hz),2.74(2H,t,J=6.5Hz),3.07(4H,t,J=5Hz), 3.82(1H,dd,J=9,6.5Hz),4.00 (3H,s),3.90-4.15(3H,m),4.85-4.95(1H,m),6.69(1H,t,J=6Hz), 6.92(1H,t,J=9Hz),7.07(1H,dd,J=9,2.5Hz)17.41(1H,dd,J=14,2.5Hz)

IR spectrum v (KBr) cm⁻¹: 1714,1746,3284 Specific rotation $[\alpha]_D^{20}$ -20.8° (c = 0.1, DMSO)

Example 64

[0145] O-Methyl (S)-N-[3-[4-(4-carbamoylpiperazin-1-yl)-3-fluorophenyl]-2-oxo-oxazolidin-5-yl]methylthiocarbamate

[0146] To a solution of 0.50 g of O-methyl (S)-N-[3-[3-fluoro-4-(piperazin-1-yl)-phenyl]-2-oxooxazolidin-5-yl]methylthiocarbamate in 5.0 ml of acetic acid, a solution of 0.21 g of sodium cyanate in 5.0 ml of water was added under stirring at room temperature, and the mixture was stirred at the same temperature for 2 hours. The reaction solution was neutralized with 40% aqueous sodium hydroxide, and then extracted with ethyl acetate. The extract was washed successively with water and saturated brine, and dried over sodium sulfate, and then the solvent was evaporated under reduced pressure. The residue was washed with ethyl acetate to obtain 0.15 g of colorless crystals.

NMR spectrum (DMSO-d₆) δ ppm: 2.90-3.00(4H,m),3.40-3.50(5H,m),3.70-3.85(2H,m),3.92(3H,s),4.09(1H,t,J=9Hz), 4.70-4.90(1H,m),5.64(2H,br-s), 7.05(1H,t,J=9Hz),7.10-7.20(1H,m), 7.41(1H,dd,J=14.5,2.5Hz),9.10(1H,br-s) IR spectrum v (KBr) cm⁻¹: 1740

35 Specific rotation $\left[\alpha\right]_{D}^{20}$ -32.0° (c = 0.1, DMSO)

Example 65

[0147] O-Methyl (S)-N-[3-[3-fluoro-4-(4-thioacetylpiperazin-1-yl)phenyl]-2-oxooxazolidin-5-yl]methylthiocarbamate [0148] To a solution of 0.50 g of O-methyl (S)-N-[3-[3-fluoro-4-(piperazin-1-yl)-phenyl]-2-oxooxazolidin-5-yl]methylthiocarbamate in 5.0 ml of tetrahydrofuran, 0.17 ml of ethyl dithioacetate was added under stirring at room temperature, and the mixture was stirred at the same temperature for 18 hours. After the reaction, the solvent was evaporated under reduced pressure, and the residue was washed with ethyl acetate to obtain 0.27 g of colorless crystals. Recrystallization from acetonitrile gave colorless crystals having the melting point of from 176 to 178°C.

Elemental analysis for C ₁₈ H ₂₃ FN ₄ O ₃ S ₂						
Calculated %	C,	50.69;	Н,	5.44;	N,	13.14
Found %	C,	50.71;	Н,	5.34;	N,	13.26

Specific rotation $[\alpha]_D^{20}$ -33.0° (c = 0.1, DMSO)

[0149] To evaluate excellent effectiveness of the thiocarbamic acid derivatives of the present invention, antibacterial tests against type strains, clinical isolates, and atypical acid-fast bacteria were performed.

[Antibacterial spectra against type strains, clinical isolates, and atypical acid-fast bacteria]

[0150] Antibacterial activities (minimum inhibitory concentration: MIC) were determined according to the standard method of the Japan Society of Chemotherapy [Chemotherapy, Vol. 29, p.76 (1981)] by using type strains and strains

106

MICROSID: -ED - 112001041 1 -

isolated from patients with infectious disease (including clinical isolates and atypical acid-fast bacteria), and applying 10⁶/ml of colony forming bacteria. Linezolid was used as the reference compound [a compound described in Journal of Medicinal Chemistry, Vol. 39, p.673 (1996), hereinafter referred to as "reference compound"].

[0151] The compounds of the present invention had excellent antibacterial activities compared to the reference compound against type strains, clinical isolates, and atypical acid-fast bacteria.

[0152] Names of the bacteria in the table are as follows:

ن

Type strain	Staphylococcus aureus (S. aureus) Bacillus subtilis (B. subtilis)
Clinical isolates	Methicillin-resistant Staphylococcus aureus (MRSA) Staphylococcus epidermidis (S.
	epidermidis) Enterococcus faecalis (E. faecalis) Enterococcus faecium (E. faecium)
Atypical acid-fast	bacteria Mycobacterium avium (M. avium) Mycobacterium intracellulare (M. intracellulare)

ON-CONTROL H MO

Reference compound (Linezolid)

Antibacterial spectrum against type strains (MIC μ g/ml)									
Compound Names of bacteria	Example 1	Example 2	Example 3	Example 4	Reference compound				
S.aureus Smith HPC023	1.56	0.78	0.78	0.39	3.13				
S.aureus MS353 HPC017	0.78	0.78	0.78	0.39	3.13				
B.subtilis ATCC 6633 HPR022	0.39	0.39	0.39	0.39	0.78				
Antibacterial spectrum against clinical isolates (MIC μ g/ml)									
Compound Names of bacteria	Example 1	Example 2	Example 3	Example 4	Reference compound				
MRSA HPC 432	0.78	0.78	0.78	0.39	3.13				
MRSA HPC 1336	0.78	0.78	0.78	0.39	3.13				
S.epidermidis HPC 1728	0.78	0.78	0.39	0.39	3.13				
E.faecalis HPC 1321	0.78	0.39	0.39	0.39	1.56				
E.faecium HPC 1322	0.78	0.39	0.39	0.39	1.56				
Antibacterial spectrum aga	Antibacterial spectrum against atypical acid-fast bacteria (MIC μ g/ml)								
Compound Names of bacteria	Example 1	Example 2	Example 3	Example 4	Reference compound				
M.avium 20092	0.39	3.13	3.13	1.56	25				
M.avium 20096	0.39	3.13	3.13	1.56	50				
M.intracellulare 20067	0.39	6.25	3.13	1.56	12.5				
M.intracellulare 20073	0.39	6.25	3.13	0.78	6.25				

[0153] The novel thiocarbamic acid derivatives or salts thereof according to the present invention have excellent antibacterial activity against clinical isolates and atypical acid-fast bacteria including multiple drug-resistant bacteria as will as type strains, and are extremely useful as antibacterial agents.

Claims

10

15

20

25

30

35

40

45

50

55

1. A thiocarbamic acid derivative represented by the following general formula or a salt thereof:

wherein R¹ represents an alkyl group which may be substituted, or a cycloalkyl group which may be substituted; and R², R³, and R⁴ independently represent hydrogen atom, a halogen atom, an alkyl group which may be substituted, an alkoxyl group which may be substituted, an alkanoyl group which may be substituted, a cycloalkyloxy group which has a heteroatom as a ring constituting atom and which may be substituted, or a saturated heterocyclic group which may be substituted; or any two of R², R³, and R⁴ may bind to each other to form, together with the benzene ring, a condensed hydrocarbon ring which may be substituted.

2. A thiocarbamic acid derivative represented by the following general formula or a salt thereof:

wherein R¹ represents an alkyl group which may be substituted, or a cycloalkyl group which may be substituted; R⁵ and R⁶ independently represent hydrogen atom, or a halogen atom; and symbol "a" represents an integer of from 0 to 2.

A thiocarbamic acid derivative represented by the following general formula or a salt thereof:

wherein R¹ represents an alkyl group which may be substituted, or a cycloalkyl group which may be substituted; R⁵ and R⁶ independently represent hydrogen atom, or a halogen atom; R⁵ represents an alkyl group which may be substituted, an amino group which may be substituted, or an alkoxyl group which may be substituted; and symbol "b" represents an integer of from 1 to 4.

4. A thiocarbamic acid derivative represented by the following general formula or a salt thereof:

$$R^{8} \times (CH_{2})_{d$$

wherein R¹ represents an alkyl group which may be substituted, or a cycloalkyl group which may be substituted; R⁵ and R⁶ independently represent hydrogen atom, or a halogen atom; R⁶ represents an alkyl group which may be substituted, a cycloalkyl group which may be substituted, an alkenyl group which may be substituted, an alkynyl group which may be substituted, an alkylthio group which may be substituted, an alkylthio group which may be substituted, an aryl group which may be substituted, are aryl group which may be substituted, or an aralkyl group which may be substituted; Y represents CH or nitrogen atom; X represents NH or single bond; symbol "d" represents an integer of from 0 to 3; and symbols "e" and "f" independently represent an integer of from 1 to 3.

- 5. A medicament which comprises the compound or a salt thereof according to any one of claims 1 to 4 as an active ingredient.
- 6. The medicament according to claim 5 which is an antibacterial agent.

ä

- 7. A use of the compound or a salt thereof according to any one of claims 1 to 4 for the manufacture of the medicament according to claim 5 or 6.
- 8. A method for preventive and/or therapeutic treatment of an infectious disease, which comprises the step of administering a preventively and/or therapeutically effective amount of the compound or a salt thereof according to any one of claims 1 to 4 to a mammal including a human.

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP99/06260

PX WO. 98/54161, Al (Pharmacia & Upjohn Company), 03 December, 1998 (03.12.98) & AU, 9874883, Al A EP, 789025, Al (Bayer AG.), 13 August, 1997 (13.08.97) & DE, 19604223, Al & US, 5792765, A & JP, 9-316073, A Further documents are listed in the continuation of Box C. Special categories of cited documents: document defining the general state of the art which is not considered to be of particular relevance; estimate document but published on or after the international filing date The document which may throw doubts on priority claim(s) or which is "X" See patent family annex. "I later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered to be of particular relevance; the claimed invention cannot be considered to involve an invention set purpose or cannot be considered to involve an invention set purpose or cannot be considered to involve an invention set purpose or cannot be considered to involve an invention set purpose or cannot be considered to involve an invention set purpose or cannot be considered to involve an invention set purpose or cannot be considered to involve an invention set purpose or cannot be considered to involve an invention set purpose or cannot be considered to involve an invention set purpose or cannot be considered to involve an invention set purpose or cannot be considered to involve an invention set purpose or cannot be considered to involve an invention and the constitution and the		1
Minimum documentation searched (classification system followed by classification symbols) Int. cl. 2012 G97D463/22, C07D413/12, C07D417/10, A61K31/421, A61K31/435 A61K31/445, A61K31/445, A61K31/451, A61K31/55, A61K31/41 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) CAPALUS (STN) REGISTRY (STN) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. 20 Secretary (Str. 1998) A U. 9874883, A1 A EP, 789025, A1 (Bayer AG.), 13 August 1, 1997 (13, 08, 97) & DE, 19604223, A1 & U.S., 5792765, A & JP, 9-316073, A Loss of the documents of the att which is no considered to be of particular relevance on considered to be of particular relevance. To comment defining the general state of the art which is no considered to be of particular relevance. The control which may throw doubts on priority claiming or which is concentrated to be of particular relevance. The control published on or after the international filing date or priority date and so it is continued to the relevance of particular relevance, the claimed invention considered to be of particular relevance. The control published prior to the international search (10 documents or referring to an ord discourse, use, exhibition or other control published relevance, the claimed invention considered to involve an inventive step when the invention of document referring to an ord discourse, use, exhibition or other control published prior to the international search (10 document to considered to involve an inventive step when the ordinary in storal to search the constitution of the same patent family The control published prior to the international search of the same patent family The control published prior to the international search of the same patent f	Int.Cl7 C07D263/22, C07D413/1	2, CO7D417/10, A61K31/421, A61K31/435 A61K31/541, A61K31/55, A61K31/44
Minimum documentation searched (classification system followed by classification symbols) Int.Cl	According to International Patent Classification (IPC) or to b	th national classification and IPC
Int. C1 C07D263/22, C07D413/12, C07D417/10, A61K31/421, A61K31/421, A61K31/445, A61K31/445, A61K31/445, A61K31/445, A61K31/445, A61K31/446, A61K31/451, A61K31/451, A61K31/446 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) CAPLIS (STN) REGISTRY (STN) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No 03 December, 1998 (03.12.98) & AU, 9874883, A1 A EP, 789025, A1 (Bayer AG.), 13 August, 1997 (13.08.97) & DE, 19604223, A1 & US, 5792765, A & JP, 9-316073, A Light accomment by a political or or after the international filing date or comment which may throw doubts on priority claim(t) or which is cited to establish the publication due of another citation or other consument which may throw doubts on priority claim(t) or which is cited to establish the publication due of another citation or other consument by a published prior to the international filing date but later than the priority date claimed Date of the actual completion of the international search of 4 Pebruary, 2000 (04.02.00) Name and mailing address of the ISA/ Japanese Patent Office		
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) CAPLUS (STN) REGISTRY (STN) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. PX. WO. 98/54161, A1 (Pharmacía & Upjohn Company), & AU, 98/4883, A1 A. EP, 789025, A1 (Bayer AG.), 2 August 1, 1997 (13.08.97) & DE, 19604223, A1 & US, 5792765, A & UP, 9-316073, A Length of the international filing date or priority date and so in conflict with the application but cited to considered to be of particular relevance and countered to be of particular relevance. "Expectate categories of cited documents: "A document depthiciation during about citation or other carries of considered to be of particular relevance. "Capture of the execution of the international filing date to the constitution of the constant the proficial relevance; the claimed invention cannot to considered cover or cannot to considered and the cannot or cannot to considered and the cannot of cannot to considered and the cannot to considered and the cannot considered cover or cannot to considered even or cannot to considered and the cannot considered cover or cannot to considered	Int.C1 C07D263/22, C07D413/1 A61K31/445, A61K31/496	2, C07D417/10, A61K31/421, A61K31/435 A61K31/541, A61K31/55, A61K31/44
CAPLUS (STN) REGISTRY (STN) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No 98 / S4161, A1 (Pharmacia & Upjohn Company), 03 December, 1998 (03.12.98) & AU, 9874883, A1 A EP, 789025, A1 (Bayer AG.), 13 August, 1997 (13.08.97) & DE, 19604223, A1 & US, 5792765, A & UP, 9-316073, A Let DE, 19604223, A1 & US, 5792765, A & UP, 9-316073, A Special categories of cited documents: occurrent of the comment defining the general state of the art which is not considered to be of particular relevance. The carrier document but published on a rather the international filing date of the carrier document but published on a rather the international filing date of the carrier document published on a rather the international filing date or priority date testing to exceed understood the profile or theory underlying the invention considered to recommend the comment of the comment of the international filing date but later the comment of the international filing date but later the comment of the international filing date but later than the priority date claimed Date of the actual completion of the international search of A Pebruary, 2000 (04.02.00) Name and mailing address of the ISA/ Japanese Patent Office	•	
Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No PX WO, 98/54161, A1 (Pharmacia & Upjohn Company), 03 December, 1998 (03.12.98) & AU, 9874883, A1 A EP, 789025, A1 (Bayer AG.), 13 August, 1997 (13.08.97) & DE, 19604223, A1 & US, 5792765, A & JP, 9-316073, A Special categories of cited focuments* document defining the general rate of the att which is not considered to be of principled and the continuation of the considered to be of principled and the continuation of the considered to be of principled and the continuation of particular relevance; the claimed invention cannot to considered novel or cannot be considered to involve an invention cannot to considered novel or cannot be considered to involve an invention cannot to considered in such a short of particular relevance; the claimed invention cannot to considered in such a short of particular relevance; the claimed invention cannot to considered in such a short of particular relevance; the claimed invention cannot considered novel or cannot be considered to involve an invention cannot to considered in such a short of particular relevance; the claimed invention cannot considered novel or cannot be considered to involve an invention cannot to considered in such a short of particular relevance; the claimed invention cannot considered novel or cannot be considered to involve an invention cannot considered novel or cannot be considered to involve an invention cannot considered novel or cannot be considered to involve an	Caplus (STN)	(name of data base and, where practicable, search terms used)
WO, 98/54161, Al (Pharmacia & Upjohn Company), 03 December, 1998 (03.12.98) & AU, 9874883, Al Ep, 789025, Al (Bayer AG.), 13 August, 1997 (13.08.97) & DE, 19604223, Al & US, 5792765, A & JP, 9-316073, A US, 5792765, A & JP, 9-316073, A US, 5792765, A & JP, 9-316073, A US, 5792765, A & JP, 9-316073, A US, 5792765, A US, 5792765, A & JP, 9-316073, A US, 5792765,	C. DOCUMENTS CONSIDERED TO BE RELEVANT	
O3 December, 1998 (03.12.98) & AU, 9874883, Al EP, 789025, Al (Bayer AG.), 13 August, 1997 (13.08.97) & DE, 19604223, Al & US, 5792765, A JP, 9-316073, A Special categories of cited documents: "A" Comment defining the general state of the art which is not considered to be of particular relevance; "estimated ocument by ubblished on or after the international filing date or priority date and not in conflict with the application but cited to cannot document which may throw doubts on priority claim(s) or which is cited to establish the published on or after the internation or other special reason (as specified) "O" Comment referring to an oral disclosure, use, exhibition or other means." "For document published prior to the international filing date but later document up the priority date claimed in which may throw doubts on priority claim(s) or which is cited to establish the published on or after the internation or other means." "O document referring to an oral disclosure, use, exhibition or other means." "O document published prior to the international filing date but later document up the priority date claimed in which may throw doubts on priority claim(s) or which is cited to establish the published on or after the internation or other means." "O document published prior to the international filing date but later document to priority and is taken alone document is considered to involve an inventive step when the document or considered to involve an inventive step when the document or considered to involve an inventive step when the document of particular relevance, the claimed invention cannot considered to involve an inventive step when the document of particular relevance, the claimed invention cannot considered to involve an inventive step when the document of particular relevance, the claimed invention cannot considered to involve an inventive step when the document of particular relevance, the claimed invention cannot considered to involve an inventive step when the document of particular rel	Category* Citation of document, with indication, wh	ere appropriate, of the relevant passages Relevant to claim No.
Turther documents are listed in the continuation of Box C. See patent family annex.	03 December, 1998 (03.12.98	
"A" document defining the general state of the art which is not considered to be of particular relevance earlier document but published on or after the international filing date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered to be of particular relevance; the claimed invention and document of particular relevance; the claimed invention cannot be considered to involve an invention cannot be considered to involve an invention cannot be considered to involve an invention cannot be combined with one or more other such document is taken alone document published prior to the international filing date but later than the priority date claimed Date of the actual completion of the international search 04 February, 2000 (04.02.00) Name and mailing address of the ISA/ Japanese Patent Office "I" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention cannot be considered to involve an inventive step when the document is step when the document is on involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document member of the same patent family Date of the actual completion of the international search 04 February, 2000 (04.02.00) Authorized officer The later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention cannot be considered to involve an inventive step when the document is taken alone of understand the principle or theory underlying the invention cannot be considered to involve an inventive step when the document is taken alone of understand the principle or theory underlying the invention cannot be consi	13 August, 1997 (13.08.97) & DE, 19604223, Al & US, 5	
Japanese Patent Office	"A" document defining the general state of the art which is not considered to be of particular relevance earlier document but published on or after the international fidate "L" document which may throw doubts on priority claim(s) or will cited to establish the publication date of another citation or o special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or or means "P" document published prior to the international filing date but than the priority date claimed Date of the actual completion of the international search	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document member of the same patent family Date of mailing of the international search report
Facsimile No. Telephone No.	Name and mailing address of the ISA/ Japanese Patent Office	Authorized officer
	Facsimile No.	Telephone No.

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP99/06260

Form PCT/ISA/210 (continuation of first sheet (1)) (July 1992)

	,	
	·	