Proposition: Let $f:G \rightarrow \mathbb{C}$ analytic & suppose that $B(a,r) \subset G$. If $S(t) = a + re^{it}$, $0 \le t \le 2\pi$, then eventually to be proved for S(t) = S(t) =Proof: We may assume that a= 0 & p=1. $\frac{1}{2\pi i} \int \frac{f(\omega)}{\omega - z} d\omega = \frac{1}{2\pi} \int \frac{f(e^{is})}{e^{is} - z} \frac{ds}{ds}$ definition; not much eles to be done We must show that $0 = \frac{1}{2\pi} \int_{0}^{2\pi} \left(\frac{g(e^{is})e^{is}}{e^{is} - 2} - \frac{g(2)}{2} \right) ds$ Let $\varphi(s,t) = \int_{e^{is}-2}^{(z+t(e^{is}-z))e^{is}} \int_{e^{is}}^{(z)}$ $) 0 \leq t \leq 1, \quad 0 \leq s \leq 2\pi$ well-defined and continuously differentiable

Let $g(t) = \int_{0}^{2\pi} \varphi(s,t) ds$ We must show that g(1)=0. Strategy is to show that g(0)=0 a proving that g'' is constant.

$$g(o) = \int_{0}^{2\pi} \theta(s,o) ds = \int_{0}^{2\pi} \int_{0}^{2\pi} e^{is} - \int_{$$

(3)
We need to understand how integrals 4 infinite sums can be interchanged.
Lemma: Let I be a rectifiable curve in C and suppose that For, F continuous up For From Exp. Then
SF= lim SFn
Proof: Let $\epsilon > 0$ be given. Then $\exists N \ni 1$ $ F - F_n < \epsilon \text{It follows that}$
F-F _n \ \(\frac{\infty}{V(8)}\). It follows that
$ SF-SF_n = S(F-F_n) \leq S F(\omega)-F_n(\omega) d\omega \leq \epsilon,$ $ SF-SF_n = S(F-F_n) \leq S F(\omega)-F_n(\omega) d\omega \leq \epsilon,$
Now we are ready for power series. Theorem: Let f be analytic in B(a, R). Then
$\int_{0}^{\infty} (t) = \sum_{n=0}^{\infty} a_n(t-a) \text{for } t-a < R, \text{ where}$ $\int_{0}^{\infty} a_n = \frac{1}{n!} \int_{0}^{\infty} (a) \text{if } radius \text{ of } tonvergence > R.$
n! some of convergence > R.
Proof: Let 0 L r L R => B(a,r) < B(a,r). If 8(t) = a+re't
$S(z) = \frac{1}{2\pi i} S - \frac{S(w)}{w-z} dw \text{ for } z-a < P$.
Furthermore, if $W \in \{8\}$,
18(w) 1/2-a1 = M (12-a1) w/ M = max { g(w) : w-a =13.

4 Since 12-a1 < 1, $\sum g(w) \frac{(2-a)}{(w-a)^{n+1}}$ converges uniformly for $w \in \{x\}$ Putting everything together, $\int_{n=0}^{\infty} \left[\frac{1}{2\pi i} \int_{\infty}^{\infty} \frac{\int_{\infty}^{\infty} (w)}{(w-a)^{m+1}} dw \right] \left(\frac{2-a}{2-a} \right)^{n}$ q we Let $a_n = \frac{1}{2\pi i} \int \int_{-\alpha}^{\alpha} (w) dw$, But we already $V_{n,n}$. already know that $a_n = \frac{1}{n!} \int_{-\infty}^{(n)} (a)$ we conclude that $\int_{-\infty}^{\infty} (a)^n = \frac{1}{n!} \int_{-\infty}^{\infty} a_n (a-a)^n \int_{-\infty}^{\infty} (a)^n = 0$ I we are done since $r \angle R$ is arbitrary.

Corollary: $\overline{1}$ $f: G \rightarrow C$ analytic $s \in G$, then $f(z) = \sum_{n=0}^{\infty} c_n(z-a)^n$ for $|z-a| \angle R$, where $R = J(a, \partial G)$. Corollary: If $f: G \rightarrow C$ analytic, then f is infinitely differentiable corollary: If $f: G \rightarrow C$ is analytic $f: B(G, \Gamma) \subset C$, then $f(\alpha) = \bigcap_{i=1}^{n} f(\alpha) = \bigcap_{i$ where X(+)= a+reit 0 = t = 200 ~

lauchy estimate: Let f be analytic in B(a,R) and suppose $|S(2)| \leq M$ $\forall z \in B(a,R)$. Then $|g^{(n)}(a)| \leq n! M$ Proof: By the corollary above, $|S^{(n)}(a)| \leq \frac{n!}{2\pi} \left| S^{(w)}(w-a)^{n+1} dw \right|$ $\frac{2 n!}{2\pi} \frac{M}{p^{n+1}}, \frac{2\pi r}{p^n} = \frac{n!M}{r^n}$ q we are done since n<R is anbitrary. Dropps: fion: Let f be analytic in the disk B(a,R) and suppose that f is a closed metrifiable curve in B(a,R). Then f has a primitive and hence f f = 0. Proof: Showing that I has a primitive is enough by before. We know that $f(z) = \sum_{n=0}^{\infty} a_n (z-a)^n$ for |z-a| < R. Let $F(z) = \sum_{n=0}^{\infty} \left(\frac{a_n}{n+1}\right) \left(\frac{z-a}{2}\right)^{n+1} = (z-a)\sum_{n=0}^{\infty} \frac{a_n}{n+1} \left(\frac{z-a}{2}\right)^n$ It is clear that F(z)= f(z) and we are done.

(6) Zeroes of analytic functions: is analytic