```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
data = pd.read csv('sample data/hotel bookings.csv', sep=",")
print(data.shape)
   (119390, 32)
Гэ
import os
os.getcwd()
    '/content'
Гэ
total count = data.shape[0]
cat cols = []
for col in data.columns:
    # Количество пустых значений
    temp null count = data[data[col].isnull()].shape[0]
    dt = str(data[col].dtype)
    if temp null count>0 and (dt=='object'):
        cat cols.append(col)
        temp_perc = round((temp_null_count / total_count) * 100.0, 2)
        print('Колонка {}. Тип данных {}. Количество пустых значений {}, {}%.'.format(col
    Колонка country. Тип данных object. Количество пустых значений 488, 0.41%.
print('Bcero crpok: {}'.format(total_count))
    Всего строк: 119390
 Гэ
# Удаление колонок, содержащих пустые значения
data_new_1 = data.dropna(axis=1, how='any')
(data.shape, data new 1.shape)
    ((119390, 32), (119390, 28))
Удалим строки, содержащие null значения
data new 2 = data.dropna(axis=0, how='any')
(data.shape, data new 2.shape)
    ((119390, 32), (217, 32))
data new 2.head()
 Гэ
```

	hotel	is_canceled	<pre>lead_time</pre>	arrival_date_year	arrival_date_month	arr
2392	Resort Hotel	0	6	2015	October	
2697	Resort Hotel	0	24	2015	October	
2867	Resort Hotel	0	24	2015	November	
2877	Resort Hotel	0	24	2015	November	
2878	Resort Hotel	0	24	2015	November	

data_new_2.describe()

₽		is_canceled	lead_time	arrival_date_year	arrival_date_week_number	arr
	count	217.000000	217.000000	217.000000	217.000000	
	mean	0.078341	40.520737	2015.465438	38.198157	
	std	0.269329	61.748375	0.720053	12.890292	
	min	0.000000	0.000000	2015.000000	1.000000	
	25%	0.000000	12.000000	2015.000000	33.000000	
	50%	0.000000	27.000000	2015.000000	45.000000	
	75%	0.000000	36.000000	2016.000000	46.000000	
	max	1.000000	364.000000	2017.000000	53.000000	

Оценим плотность вероятности распределения данных

```
fig, ax = plt.subplots(figsize=(10,10))
sns.distplot(data_new_2['agent'])
```

С→

<matplotlib.axes._subplots.AxesSubplot at 0x7f8469858240>

sns.pairplot(data_new_2)

₽

Находим почти линейную зависимость между значениями двух колонок: arrival_date_week_

```
fig, ax = plt.subplots(figsize=(10,10))
sns.scatterplot(ax=ax, x='arrival_date_week_number', y='adr', data=data_new_2)
```

C <matplotlib.axes._subplots.AxesSubplot at 0x7f8469608da0>

sns.violinplot(x=data_new_2['agent'])

<matplotlib.axes._subplots.AxesSubplot at 0x7f846951efd0>

Из приведенных графиков видно, что violinplot действительно показывает распределение і

Корреляционный анализ

Построим корреляционную матрицу

data_new_2.corr()

□		is someoled	lood time	arrival date year	
			_		arriva
is_car	nceled	1.000000	-0.039767	-0.069527	
lead_	time	-0.039767	1.000000	0.232138	
arrival_d	ate_year	-0.069527	0.232138	1.000000	
arrival_date_v	week_number	-0.003159	0.106130	-0.768645	
arrival_date_c	lay_of_month	0.002215	0.068615	0.367765	
stays_in_wee	ekend_nights	-0.133996	0.097390	-0.293971	
stays_in_w	eek_nights	-0.105148	-0.001527	-0.437521	
adı	ılts	-0.032118	0.345290	0.105956	
child	dren	0.027563	-0.061248	0.145736	
bab	ies	NaN	NaN	NaN	
is_repeat	ed_guest	-0.011839	-0.136182	0.278636	
previous_ca	ancellations	-0.019837	-0.024873	0.145344	
previous_booking	gs_not_canceled	-0.012140	-0.102228	0.206977	
booking_	changes	0.015698	-0.052918	-0.482208	
age	ent	-0.034460	-0.369766	-0.175110	
comp	pany	-0.043769	0.249593	-0.037900	
days_in_w	aiting_list	NaN	NaN	NaN	
ac	dr	-0.057069	0.240089	0.495254	
required_car_p	arking_spaces	-0.092895	-0.089066	-0.073376	

Также построим матрицу корреляций по Пирсону

total_of_special_requests

Так как значений довольно много, выберем матрицу без подписания числовых значений

-0.105983

-0.001975

sns.heatmap(data_new_2.corr())

С→

0.399946

В примере тепловая карта помогает определить сильную корреляцию, например, между прestays_in_week_nights и stays_in_weekeend_nights, следовательно только один из этих признак в модель.