John Jay College

CITY UNIVERSITY OF NEW YORK

Final Report

NIH/NIDA CHALLENGE GRANT 1RC1DA028476-01/02

IDU Network Topologies and HIV Stabilization Dynamics

Authors:

Bilal Khan
Kirk Dombrowski
Mohamed Saad
Katherine Mclean
Evan Misshula
Ric Curtis
Travis Wendel
William Jett

Version: 3.0 Draft

b

September 1, 2011

percolation models, 31	showtest (MABUSE command-line),
period	185
emergent, 117	SimEnt, 205
steady, 117	simulation
Poisson process	ERGM, 31
churn act impulses, 61	percolation, 31
risk act impulses, 56	trial, 99
population decline, 65	Simulation Event, 205
population growth, 64	slow burn, 124
population process, 60, 64	Social Factors for HIV Risk, 23
Presentation Tier, 190	spike
procedure	hot, 102, 103, 148, 210
MakeEdge, 49	stabilization, 148
MakeNetwork, 46	steady, 65
MakePathogens, 47	steady period, 117
MakePopulation, 46	structural model, 45
MakeRelations, 47	survey, 37
process	
aging, 60, 66	temporal frame, 38
churn, 60	test, 185
population, 60, 64	testlist (MABUSE command-line),
process risk, 55	185
progress (MABUSE command-line),	trajectory, 52
185	transient, 65
100	transients, 151, 162
red herring, 149	transitive closure, 72
risk	transitivity, 62
transients, 151	triadic closure, 62
risk network, 22, 37, 38	trial, 99
human-centric rendering, 110	triangle bias, 72
virus-centric rendering, 110	
risk process, 55	univariate distributions
risk relationships, 37	attribute, 44
runtest (MABUSE command-line),	degree, 44
185	variables, 73
100	virus burden, 25
Scheduler, 205	virus-centric rendering, 110
SFHR, 23, 70	virus-centific rendering, 110
shoot (MABUSE command-line), 185	Zeno's paradox, 48
,,,	• /