$$I(J^P) = \frac{1}{2}(2^-)$$

See our mini-review in the 2004 edition of this Review, PDG 04.

K₂(1770) MASS

ν	ALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT		
1773± 8 OUR AVERAGE									
	$1777 \pm 35 + 122 \\ -77$	4289	¹ AAIJ	17 C	LHCB		$B^+ \rightarrow J/\psi \phi K^+$		
	$1773\pm$ 8		² ASTON	93	LASS		$11K^-p \rightarrow K^-\omega p$		
● ● We do not use the following data for averages, fits, limits, etc. ● ●									
	1743 ± 15		TIKHOMIROV	03	SPEC		$^{40.0}$ $^{\pi^-}$ C \rightarrow $^{\kappa^0_S}$ 0 0 0 0 0		
	1810 ± 20		FRAME	86	OMEG	+	13 $K^+ p \rightarrow \phi K^+ p$		
^	J 1730		ARMSTRONG	83	OMEG	_	$18.5 K^- p \rightarrow 3K p$		
^	1780		³ DAUM	81 C	CNTR	_	$63~K^-p\rightarrow~K^-2\pi p$		
	1710 ± 15	60	CHUNG	74	HBC	_	$7.3 K^- p \rightarrow K^- \omega p$		
	1767 ± 6		BLIEDEN	72	MMS	_	11–16 K ⁻ p		
	1730 ± 20	306	⁴ FIRESTONE	72 B	DBC	+	12 $K^+ d$		
	1765 ± 40		⁵ COLLEY	71	HBC	+	$10 K^+ p \rightarrow K 2\pi N$		
	1740		DENEGRI	71	DBC	_	12.6 $K^-d \rightarrow \overline{K} 2\pi d$		
	1745 ± 20		AGUILAR	70 C	HBC	_	4.6 K ⁻ p		
	1780 ± 15		BARTSCH	70 C	HBC	_	$10.1~K^{-}p$		
	1760 ± 15		LUDLAM	70	HBC	_	12.6 K ⁻ p		
	4								

¹ From an amplitude analysis of the decay $B^+ o J/\psi \phi K^+$ with a significance of 5.0 σ .

K₂(1770) WIDTH

	VALUE (MeV)	EVTS	DOCUMENT ID		TECN CHG	COMMENT			
186± 14 OUR AVERAGE									
	$217\pm116^{+221}_{-154}$	4289	⁶ AAIJ	17 C	LHCB	$B^+ \rightarrow J/\psi \phi K^+$			
	186 ± 14		⁷ ASTON	93	LASS	$11K^-p \rightarrow K^-\omega p$			
	• • • We do not us	se the follow	wing data for aver	ages,	fits, limits, etc	C. ● ● ●			
	147± 70		TIKHOMIROV	03	SPEC	$^{40.0}_{\ \ \kappa_{S}^{0}} \kappa_{S}^{-} \kappa_{S}^{0} \kappa_{I}^{0} X$			
	$140\pm~40$		FRAME	86	OMEG +	13 $K^+ p \rightarrow \phi K^+ p$			
	\sim 220		ARMSTRONG	83	OMEG -	$18.5 K^- p \rightarrow 3K p$			
	\sim 210		⁸ DAUM	81 C	CNTR -	$63~K^-p\rightarrow~K^-2\pi p$			
	$110\pm~50$	60	CHUNG	74	HBC –	$7.3 K^- p \rightarrow K^- \omega p$			
	100 ± 26		BLIEDEN	72	MMS –	11–16 K ⁻ p			

Created: 5/30/2017 17:20

 $^{^2\,\}mathrm{From}$ a partial wave analysis of the $\mathrm{K}^-\,\omega$ system.

 $^{^3}$ From a partial wave analysis of the $K^-2\pi$ system.

 ⁴ Produced in conjunction with excited deuteron.
 ⁵ Systematic errors added correspond to spread of different fits.

$210\pm~30$	⁹ FIRESTONE				
$90\pm~70$	¹⁰ COLLEY	71	HBC	+	$10 K^+ p \rightarrow K2\pi N$
130	DENEGRI	71	DBC	_	$12.6 \ K^- d \rightarrow \ \overline{K} 2\pi d$
$100\pm~50$	AGUILAR	70 C	HBC	_	$4.6 K^{-} p$
$138\pm~40$	BARTSCH	70 C	HBC	_	$10.1 \ K^- p$
$50^{+}_{-}\ {\overset{40}{20}}$	LUDLAM	70	HBC	_	12.6 K ⁻ p

⁶ From an amplitude analysis of the decay $B^+ \to J/\psi \phi K^+$ with a significance of 5.0 σ .

K₂(1770) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
$\overline{\Gamma_1}$	$K\pi\pi$	
Γ_2	$K_2^*(1430)\pi$	dominant
Γ_3	$K^*(892)\pi$	seen
Γ_4	$K f_2(1270)$	seen
Γ ₅	$K f_0(980)$	
Γ ₆	$\mathcal{K}\phi$	seen
Γ_7	$K\omega$	seen

K₂(1770) BRANCHING RATIOS

$\Gamma(K_2^*(1430)\pi)/\Gamma(K\pi\pi)$

 Γ_2/Γ_1

 $(K_2^*(1430) \to K\pi)$

<u>VALUE</u>	DOCUMENT ID		TECN	<u>CHG</u>	COMMENT					
• • • We do not use the following data for averages, fits, limits, etc. • •										
~ 0.03	DAUM	81 C	CNTR		$63~K^-p\rightarrow~K^-2\pi p$					
~ 1.0	¹¹ FIRESTONE	72 B	DBC	+	12 $K^+ d$					
<1.0	COLLEY	71	HBC		10 K ⁺ p					
0.2 ± 0.2	AGUILAR	70 C	HBC	_	4.6 K ⁻ p					
<1.0	BARTSCH	70 C	HBC	_	10.1 K ⁻ p					
1.0	BARBARO	69	HBC	+	12.0 $K^+ p$					
11										

TECN COMMENT

$\Gamma(K^*(892)\pi)/\Gamma(K\pi\pi)$

 Γ_3/Γ_1

• • • We do not use the following data for averages, fits, limits, etc. • • • 81C CNTR 63 $K^- p \to K^- 2\pi p$ ~ 0.23 **DAUM**

DOCUMENT ID

$\Gamma(K f_2(1270))/\Gamma(K\pi\pi)$ $(f_2(1270) \rightarrow \pi\pi)$

 Γ_4/Γ_1

TECN COMMENT DOCUMENT ID • • • We do not use the following data for averages, fits, limits, etc. • •

81C CNTR 63 $K^-p \rightarrow K^-2\pi p$ ~ 0.74 DAUM

HTTP://PDG.LBL.GOV

Page 2

Created: 5/30/2017 17:20

⁷ From a partial wave analysis of the $K^-\omega$ system. ⁸ From a partial wave analysis of the $K^-2\pi$ system. ⁹ Produced in conjunction with excited deuteron.

¹⁰ Systematic errors added correspond to spread of different fits.

¹¹ Produced in conjunction with excited deuteron.

Γ(<i>K f</i> ₀ (980	0))/I	total	<u>DOCUM</u>	MENT ID	TE	CN COMN	1ENT	Γ ₅ /Γ
• • • We de	o not	use the follow					• •	
possibly seen			TIKH	OMIROV	03 SP	EC 40.0	$^{\pi^-}_{S} \stackrel{C}{\kappa_S^0} \stackrel{ ightarrow}{\kappa_L^0} angle$	<
Γ(Κφ)/Γ _t	otal		<u>DOCUMENT</u>	ID	<u>TECN</u>	CHG COM	MENT	Γ ₆ /Γ
seen		4289 12	² AAIJ	17 C	LHCB	B^+	$\rightarrow J/\psi \phi$	K ⁺
seen			ARMSTRO	NG 83	OMEG	- 18.5	$K^-p \rightarrow$	$K^-\phi N$
¹² From an	amp	litude analysis	of the decay	$B^+ \rightarrow B$	$J/\psi\phi K^{-}$	$^+$ with a sig	gnificance	of 5.0 σ .
$\Gamma(K\omega)/\Gamma_{t}$			JMENT ID	<u>TECN</u>	<u>CHG</u>	<u>COMMENT</u>		Γ ₇ /Γ
seen		OTT	ER 8	1 HBC		8.25,10,16	•	
seen		CHU	NG 7	4 HBC	_	7.3 K ⁻ p	$\rightarrow K^-\omega$	p
			K ₂ (1770)	REFERE	NCES			
AAIJ Also PDG TIKHOMIROV	17C 04 03	PRL 118 0220 PR D95 01200 PL B592 1 PAN 66 828 Translated from	12 R. <i>A</i> S. E G.D.	Aaij <i>et al.</i> Aaij <i>et al.</i> Iidelman <i>et i</i> Tikhomirov			(LHCb C (LHCb C (PDG C	ollab.)
ASTON FRAME ARMSTRONG DAUM OTTER CHUNG BLIEDEN FIRESTONE COLLEY DENEGRI AGUILAR BARTSCH LUDLAM BARBARO	93 86 83 81C 81 74 72 72B 71 70C 70C 70 69	PL B308 186 NP B276 667 NP B221 1 NP B187 1 NP B181 1 PL 51B 413 PL 39B 668 PR D5 505 NP B26 71 NP B28 13 PRL 25 54 PL 33B 186 PR D2 1234 PRL 22 1207	D. F T.A. C. E G. C S.U. H.R. A. F D.C. M. A J. B T. L	Aston et al. Frame et al. Armstrong Daum et al. Otter Chung et a Blieden et Firestone et Colley et a Denegri et a Aguilar-Benit Fartsch et al. Ludlam, J. S Barbaro-Galti	et al. (AACH3 al. al. al. l. tez et al. andweiss,	(SLAC, NA (BAR) MST, CERN , BERL, LON (AACH A.J. Slaughte	(, BIRM, CE , CRAC, MF C, VIEN, BI (STON, I (BIRM, (GLAS) ERN+) PIM+) RM+) (BNL) NEAS) (LBL) GLAS) (JHU) JP (BNL)

Created: 5/30/2017 17:20