SUPPORT VECTOR REGRESSION

SVR

Support Vector Regression (SVR) is a supervised machine learning algorithm used for regression tasks. It aims to predict continuous output variables by finding a hyperplane that minimizes the difference between predicted and actual values within a specified margin of tolerance.

Soft margin SVR

Minimize:

$$\frac{1}{2} \|w\|^2 + C \sum_{i=1}^{N} \left(\xi_i + \xi_i^* \right)$$

Constraints:

$$y_i - wx_i - b \le \varepsilon + \xi_i$$

$$wx_i + b - y_i \le \varepsilon + \xi_i^*$$

$$\xi_i, \xi_i^* \ge 0$$

Constraint:

Any thing within the margin or some slack value is acceptable.

Application: Robot Motion and Goal prediction using SVR

% Read data from CSV file
data = readtable('robot.csv');

A	А	В	
1	Time	Position_X	GoalAchieved
2	0	3	1
3	0.2	6.26	1
4	0.4	-1.48	1
5	0.6	-0.51	1
6	0.8	6.61	1
7	1	-0.45	1
8	1.2	3.74	1
9	1.4	5.72	1
10	1.6	2.75	1
11	1.8	7.98	1
12	2	4.12	1
13	2.2	9.67	1
14	2.4	8.78	1
15	2.6	51.97	-1
16	2.8	7.47	1
17	3	11.32	1
18	3.2	10.54	1
19	3.4	7.36	1
20	3.6	11.18	1
21	3.8	14.91	1

14.4	99.48	1	
14.6	95.38	1	
14.8	101.93	1	
15	101.61	1	
15.2	131.23	-1	
15.4	104.79	1	
15.6	71.9	-1	
15.8	111.25	1	
16	108.8	1	
16.2	155.1	-1	
16.4	117.48	1	
16.6	102.68	-1	
16.8	123.43	1	
17	122.65	1	
17.2	132.98	1	
17.4	130.55	1	
17.6	132.38	1	

For making this into a Non - linear regression we will make the Data set into Non - Linear Data set

Training Data

% Features

