Question 1

What is the optimal value of alpha for ridge and lasso regression? What will be the changes in the model if you choose double the value of alpha for both ridge and lasso? What will be the most important predictor variables after the change is implemented?

The optimum values of alpha obtained are 1 for ridge and 0.0001 for Lasso

Original values			On doubling the alpha				
Metric 0 R2 Score (Train) 1 R2 Score (Test) 2 RSS (Train) 3 RSS (Test) 4 MSE (Train) 5 MSE (Test) 6 RMSE (Train) 7 RMSE (Test)	Ridge Regression 0.919236 0.882839 12.958133 8.477038 0.012692 0.019310 0.112657 0.138960	Lasso Regression	0 1 2 3 4 5 6 7		rain) Test) rain) Test) rain) Test) rain)	Ridge Regression 0.917914 0.883121 13.170236 8.456653 0.012899 0.019263 0.113575 0.138793	Lasso Regression 0.91791 0.88312 13.17023 8.45665 0.01289 0.01926 0.113579

Observation: There is a minute decrease (3rd order decimal) to R2 in the train and test set for both Ridge and Lasso.

Coefficients changes for Predictor variables

Original values		On doubling the alpha			
OverallQual_Excellent	0.213995	OverallQual_Excellent	0.200143		
Neighborhood_NridgHt	0.149678	Neighborhood_NridgHt	0.135041		
Neighborhood_NoRidge	0.138238	OverallQual_Very Good	0.126250		
Neighborhood_Crawfor	0.132234	Neighborhood_Crawfor	0.122665		
OverallQual_Very Good	0.131093	Neighborhood_NoRidge	0.119018		
Neighborhood_StoneBr	0.119630	Neighborhood_Somerst	0.109239		
Neighborhood_Somerst	0.119350	OverallCond_Excellent	0.104502		
OverallCond_Excellent	0.109616	Neighborhood_StoneBr	0.102728		
OverallQual_Very Excellent	0.104470	OverallQual_Very Excellent	0.083833		
Neighborhood_ClearCr	0.086901	Neighborhood_ClearCr	0.073615		
MSSubClass_2-1/2 STORY ALL AGES	0.072413	MSSubClass_2-1/2 STORY ALL AGES	0.066412		
SaleCondition_Partial	0.068016	SaleCondition_Partial	0.066247		
Neighborhood_Veenker	0.066420	GrLivArea	0.064248		
GrLivArea	0.063446	BsmtExposure_Gd	0.060328		
BsmtExposure_Gd	0.060882	OverallCond_Very Good	0.056056		
OverallCond_Very Good	0.054710	Neighborhood_Veenker	0.055531		
SaleCondition_Normal	0.054673	SaleCondition_Normal	0.054291		
OverallQual_Good	0.052662	OverallQual_Good	0.049735		
Exterior2nd_MetalSd	0.049731	2ndFlrSF	0.048289		
2ndFlrSF	0.047862	MSSubClass_1-STORY 1946 & NEWER ALL STYL	ES 0.041306		
Name: Ridge, dtype: float64		Name: Ridge, dtype: float64			
OverallQual_Excellent	0.225407	OverallQual_Excellent	0.219288		
Neighborhood_NridgHt	0.152167	OverallQual_Very Good	0.132459		
Neighborhood_NoRidge	0.143192	Neighborhood_NridgHt	0.130515		
Neighborhood_Crawfor	0.141590	Neighborhood_Crawfor	0.129373		
OverallQual_Very Good	0.136055	Neighborhood_NoRidge	0.129373		
Neighborhood_Somerst	0.134324	Neighborhood_Somerst	0.118820		
Neighborhood_StoneBr	0.121012	GrLivArea	0.108221		
OverallQual_Very Excellent	0.109521	OverallCond_Excellent	0.105221		
OverallCond_Excellent	0.109521	Neighborhood_StoneBr	0.096759		
Neighborhood_ClearCr	0.092407	OverallQual_Very Excellent	0.095739		
Neighborhood_Clearer Neighborhood_Veenker		Neighborhood_ClearCr	0.085727		
_	0.068806	SaleCondition_Partial	0.060788		
SaleCondition_Partial	0.065214	BsmtExposure_Gd	0.060766		
BsmtExposure_Gd	0.061631	OverallCond_Very Good	0.056168		
2ndFlrSF	0.059537	OverallCond_very Good OverallQual_Good	0.052386		
MSSubClass_2-1/2 STORY ALL AGES	0.058001				
OverallQual_Good	0.055116	SaleCondition_Normal	0.050059		
OverallCond_Very Good	0.053875	Neighborhood_Veenker	0.049828		
SaleCondition_Normal	0.052154	MSSubClass_2-1/2 STORY ALL AGES	0.046595		
	0.047632	GarageCars	0.040859		
GrLivArea		1 -+0	0.040400		
GrLivArea 1stFlrSF Name: Lasso, dtype: float64	0.046092	LotConfig_CulDSac Name: Lasso, dtype: float64	0.040108		

Predictor variables are still the same but the order has changed.

Question 2

You have determined the optimal value of lambda for ridge and lasso regression during the assignment. Now, which one will you choose to apply and why?

In this case where we have too many variables it's better to use Lasso.

Question 3

After building the model, you realized that the five most important predictor variables in the lasso model are not available in the incoming data. You will now have to create another model excluding the five most important predictor variables. Which are the five most important predictor variables now?

```
      OverallCond_Excellent
      0.127606

      MSSubClass_2-1/2 STORY ALL AGES
      0.090685

      2ndFlrSF
      0.072037

      BsmtExposure_Gd
      0.067025

      1stFlrSF
      0.058205

      Name: Lasso, dtype: float64
```

Now we have overall condition to be excellent, MSSubCalss- 2-1/2 Story, 2nd floor Square ft, Good Basement Exposure, 1st floor SF to be Top 5 parameters

Question 4

How can you make sure that a model is robust and generalisable? What are the implications of the same for the accuracy of the model and why?

We can ensure to keep the model robust and generalisable by ensuring that overfitting is avoided to maximum extent. This is possible by evaluating residual error of the model against predictors to check whether they fit the linear regression conditions (heteroskedasticity, no noticeable pattern between predictors and residuals). Further by employing strategies like Cross validate (GridSearchCV etc.), robust feature engineering (here we introduced Age as feature) and ensuring R2 scores are nominal in both train and test. Too complex model will have high accuracy but will have decreased variance and thereby low bias. By generalizing models, we are to a few extent compromising on accuracy by introducing bias. However, we ensure as we saw here that RMSEs are not overly increased and are fairly regulated to keep the model generalized and thereby avoiding overfitting.