1 Analysis 1

1.1 Prädikatenlogik

1.2 Mengenlehre

Definition 1.2.0.1 (Menge):

Nach Georg Cantor: "Unter einer 'Menge' verstehen wir jede Zusammenfassung $\mathbb M$ von bestimmten wohlunterschiedenen Objekten $\mathfrak m$ unserer Anschauung oder unseres Denkens (welche die 'Elemente' von $\mathbb M$ genannt werden) zu einem Ganzen."

Definition 1.2.0.2 (" \in " Notation):

Man schreibt $\mathfrak{m} \in \mathbb{M}$ falls \mathfrak{m} ein Element der Menge \mathbb{M} ist und $\mathfrak{m} \notin \mathbb{M}$ falls \mathfrak{m} kein Element der Menge ist.

kartesischen Produkts

1.3 Induktion

Definition 1.3.0.3 (\mathbb{N} als Teilmenge von \mathbb{R}):

Es sei $\mathbb N$ die kleinste Teilmenge von $\mathbb R$ mit den folgenden Eigenschaften:

- 1. $0 \in \mathbb{N}$
- 2. $x \in \mathbb{N} \Rightarrow x + 1 \in \mathbb{N}$

N besteht also aus der 0 und ihren, durch Addition von 1, definierten Nachfolgern. Dazu gibt's die Nachfolgerfunktion:

$$\nu : \mathbb{N} \mapsto \mathbb{N}, \ \nu(x) := x + 1$$

DEFINITION 1.3.0.4 (PEANO AXIOME):

- $(\mathbf{P.1})$ Zwei verschiedene Elemente von \mathbb{N} haben verschiedene Nachfolger: $\mathbf{x} \neq \mathbf{y} \Rightarrow \mathbf{v}(\mathbf{x}) \neq \mathbf{v}(\mathbf{y})$
- (P.2) Kein Element von $\mathbb N$ hat 0 als Nachfolger: $0 \notin \nu(\mathbb N)$
- (P.3) (Induktions-Axiom)

Sei $\mathbb{M} \subset \mathbb{N}$ eine Teilmenge mit folgenden Eigenschaften:

- 1. $0 \in \mathbb{M}$
- 2. $x \in \mathbb{M} \Rightarrow v(x) \in \mathbb{M}$

Dann gilt $\mathbb{M} = \mathbb{N}$.

Definition 1.3.0.5 (Induktionsprinzip):

Eine Aussage A(n) gilt für alle $n \in \mathbb{N}$, wenn A(1) gilt und für jedes $n \in \mathbb{N}$ aus der Aussage A(n) die Aussage A(n+1) folgt.

Anmerkung 1

A(1) nennt man den Induktionsanfang und den Beweis von $\forall n \in \mathbb{N} : A(n) \Rightarrow A(n+1)$ den Induktionsschluss oder Induktionsschritt.

1.4 Abbildungen

Definition 1.4.0.6 (Abbildung):

Eine Abbildung f von einer Menge \mathbb{X} in eine Menge \mathbb{Y} (Notation: $f : \mathbb{X} \mapsto \mathbb{Y}$) ist eine Zuordnung oder Vorschrift, die jedem Element $x \in \mathbb{X}$ ein eindeutiges Element $f(x) \in \mathbb{Y}$ zuordnet.

DEFINITION 1.4.0.7 (GRAPH):

Der Graph einer Abbildung ist eine Teilmenge $\mathbb{G} \subset \mathbb{X} \times \mathbb{Y}$, die durch Graph $(f) := \{(x, f(x)) \in \mathbb{X} \times \mathbb{Y} \mid x \in \mathbb{X}\}$ beschrieben wird. Jedem $x \in \mathbb{X}$ wird genau ein $y \in \mathbb{X}$ zugeordnet (Notation: y = f(x)).

1.5 Körperaxiome

Definition 1.5.0.8 (Körper):

Ein Tripel $(\mathbb{K},+,\cdot)$ bestehend aus einer Menge \mathbb{K} und zwei binären Verknüpfungen

- $+\quad:\quad \mathbb{K}\times\mathbb{K}\to\mathbb{K},\quad (x,y)\mapsto x+y$
- \cdot : $\mathbb{K} \times \mathbb{K} \to \mathbb{K}$, $(x,y) \mapsto x \cdot y$

(normalerweise Addition und Multiplikation) heißt genau dann Körper, wenn für alle $x,y,z\in\mathbb{K}$ die folgenden Axiome gelten:

- Axiome der Addition
 - 1. Assoziativität: x + (y + z) = (x + y) + z
 - 2. Kommutativität: x + y = y + x
 - 3. Existenz des neutralen Elements: $\exists 0 \in \mathbb{K} : x + 0 = x$
 - 4. Existenz der inversen Elemente: Zu jedem $\mathbf{x} \in \mathbb{K}$ existiert genau ein Element $-\mathbf{x} \in \mathbb{K}$: $\mathbf{x} + (-\mathbf{x}) = 0$
- Axiome der Multiplikation
 - 1. Assoziativität: $\mathbf{x} \cdot (\mathbf{y} \cdot \mathbf{z}) = (\mathbf{x} \cdot \mathbf{y}) \cdot \mathbf{z}$
 - 2. Kommutativität: $x \cdot y = y \cdot x$
 - 3. Existenz des neutralen Elements: $\exists 1 \in \mathbb{K}, 1 \neq 0 : x \cdot 1 = x$
 - 4. Existenz der inversen Elemente: Zu jedem $\mathbf{x} \in \mathbb{K}$ mit $\mathbf{x} \neq 0$ existiert genau ein Element $\mathbf{x}^{-1} \in \mathbb{K}$: $\mathbf{x} \cdot \mathbf{x}^{-1} = 1$
- Distributivgesetz: $x \cdot (y + z) = x \cdot y + x \cdot z$

Beispiel 1 Die Mengen \mathbb{Q}, \mathbb{R} und \mathbb{C} bilden mit "+" und " · " einen Körper. Neutrale Elemente sind 0 bzw. (0,0) für die Addition und 1 bzw. (1,0) für die Multiplikation.

1.5.1 Relation

DEFINITION 1.5.1.1 (BINÄRE RELATION):

Eine binäre Relation \mathcal{R} auf der Menge \mathbb{M} ist eine Teilmenge von $\mathbb{M} \times \mathbb{M}$, also $\mathcal{R} \subset \mathbb{M} \times \mathbb{M}$

Definition 1.5.1.2 (Relationseigenschaften):

Eine binäre Relation $\mathcal R$ auf einer Menge $\mathbb M$ heißt

- reflexiv, falls $\forall m \in M : (m, m) \in \mathcal{R}$
- symmetrisch, falls $\forall m, n \in \mathbb{M} : (m, n) \in \mathcal{R} \Rightarrow (n, m) \in \mathcal{R}$
- transitiv, falls $\forall k, m, n \in \mathbb{M} : (k, m) \in \mathcal{R} \land (m, n) \in \mathcal{R} \Rightarrow (k, n) \in \mathcal{R}$

DEFINITION 1.5.1.3 (ÄQUIVALENZRELATION):

 \mathcal{R} ist eine binäre Relation auf \mathbb{M} , welche reflexiv, symmetrisch und transitiv ist. Notation: $x \sim y$.

DEFINITION 1.5.1.4 (ORDNUNGSRELATION):

 \mathcal{R} ist eine binäre Relation auf \mathbb{M} , welche reflexiv, antisymmetrisch und transitiv ist. Notation: $x \leq y$.

Definition 1.5.1.5 (angeordneter Körper):

Ein Körper $(\mathbb{K},+,\cdot)$ wird mit einer Ordnungsrelation \leq zu einem angeordneten Körper. Elemente aus \mathbb{K} werden damit vergleichbar und es gilt $\forall x,y\in\mathbb{K}:x\leq y\vee y\leq x$

2

1.5.2 Absolutbetrag

DEFINITION 1.5.2.1 (ABSOLUTBETRAG):

$$|\mathbf{x}| := \left\{ \begin{array}{cc} \mathbf{x} & \mathbf{x} \geqslant 0 \\ -\mathbf{x} & \mathbf{x} < 0 \end{array} \right.$$

Satz 1 (Eigenschaften des Absolutbetrages)

- (a) Positive Definitheit: $\forall x \in \mathbb{R} : |x| \ge 0 \text{ und } |x| = 0 \iff x = 0$
- (b) Multiplikativität: $\forall x, y \in \mathbb{R} : |x \cdot y| = |x| \cdot |y|$
- (c) Dreiecksungleichung: $\forall x, y \in \mathbb{R} : |x + y| \le |x| + |y|$

Anmerkung 2 Gelten in einem Körper die Eigenschaften a,b,c aus Satz ??, dann nennt man ihn einen bewerteten Körper. Angeordnete Körper müssen nicht gleich bewertete Körper sein. Beispiel: \mathbb{C}

Definition 1.5.2.2 (Metrik im Reellen):

Über die Betragsfunktion lässt sich eine Metrik (Abstandsfunktion) definieren: $\forall x, y \in \mathbb{R} : d(x, y) := |x - y| = |y - x|$.

1.5.3 Archimedisches Axiom

DEFINITION 1.5.3.1 (ARCHIMEDISCHES AXIOM):

Zu je zwei reellen Zahlen x, y > 0 existiert eine natürliche Zahl n mit $n \cdot x > y$.

Korollar 1 (Gauß-Klammer)

abrunden: [x] ist jene Zahl $n \in \mathbb{Z}$ für die gilt: $n \le x < n + 1$. **aufrunden:** [x] ist jene Zahl $m \in \mathbb{Z}$ für die gilt: $m < x \le m + 1$.

Satz 2 (Bernoullische Ungleichung)

Sei $x \ge -1$, dann gilt $\forall n \in \mathbb{N}$:

$$(1+x)^n \geqslant 1+n \cdot x$$

1.6 Folgen, Grenzwerte

Definition 1.6.0.2 (Folge):

Unter einer Folge reeller Zahlen versteht man eine Abbildung $\mathbb{N} \mapsto \mathbb{R}$. Jedem $\mathfrak{n} \in \mathbb{N}$ ist also ein $\mathfrak{a}_{\mathfrak{n}} \in \mathbb{R}$ zugeordnet. Notation: $(\mathfrak{a}_{\mathfrak{n}})_{\mathfrak{n} \in \mathbb{N}}$ oder $(\mathfrak{a}_{\mathfrak{0}}, \mathfrak{a}_{\mathfrak{1}}, \mathfrak{a}_{\mathfrak{2}}, \mathfrak{a}_{\mathfrak{3}}, ...)$

Definition 1.6.0.3 (Konvergenz):

Sei $(a_n)_{n\in\mathbb{N}}$ eine Folge reeller Zahlen. Die Folge heißt konvergent gegen $a\in\mathbb{R}$, falls gilt:

$$\forall \varepsilon > 0 \ \exists N = N(\varepsilon) \in \mathbb{N} \ \forall n \in \mathbb{N} : n \geqslant N(\varepsilon) \Rightarrow |a_n - a| < \varepsilon$$

Notation: $\lim_{n\to\infty}$