Introduction to Machine Learning

Perceptron

Barnabás Póczos

Contents

- ☐ History of Artificial Neural Networks
- ☐ Definitions: Perceptron, Multi-Layer Perceptron
- □ Perceptron algorithm

Short History of Artificial Neural Networks

□ Progression (1943-1960)

- First mathematical model of neurons
 - Pitts & McCulloch (1943)
- Beginning of artificial neural networks
- Perceptron, Rosenblatt (1958)
 - A single neuron for classification
 - Perceptron learning rule
 - Perceptron convergence theorem

□ Degression (1960-1980)

- Perceptron can't even learn the XOR function
- We don't know how to train MLP
- 1963 Backpropagation... but not much attention...

Bryson, A.E.; W.F. Denham; S.E. Dreyfus. Optimal programming problems with inequality constraints. I: Necessary conditions for extremal solutions. AIAA J. 1, 11 (1963) 2544-2550

□ Progression (1980-)

- 1986 Backpropagation reinvented:
 - Rumelhart, Hinton, Williams:
 Learning representations by back-propagating errors.
 Nature, 323, 533—536, 1986
- Successful applications:
 - Character recognition, autonomous cars,...
- Open questions: Overfitting? Network structure? Neuron number? Layer number? Bad local minimum points? When to stop training?
- Hopfield nets (1982), Boltzmann machines,...

☐ Degression (1993-)

- SVM: Vapnik and his co-workers developed the Support Vector Machine (1993). It is a shallow architecture.
- SVM and Graphical models almost kill the ANN research.
- Training deeper networks consistently yields poor results.
- Exception: deep convolutional neural networks, Yann LeCun 1998. (discriminative model)

Progression (2006-)

Deep Belief Networks (DBN)

- Hinton, G. E, Osindero, S., and Teh, Y. W. (2006).
 A fast learning algorithm for deep belief nets.
 Neural Computation, 18:1527-1554.
- Generative graphical model
- Based on restrictive Boltzmann machines
- Can be trained efficiently

Deep Autoencoder based networks

Bengio, Y., Lamblin, P., Popovici, P., Larochelle, H. (2007). Greedy Layer-Wise Training of Deep Networks, Advances in Neural Information Processing Systems 19

Convolutional neural networks running on GPUs

Alex Krizhevsky, Ilya Sutskever, Geoffrey Hinton, Advances in Neural Information Processing Systems 2012

The Neuron

The Neuron

- Each neuron has a body, axon, and many dendrites
- A neuron can fire or rest
- If the sum of weighted inputs larger than a threshold, then the neuron fires.
- Synapses: The gap between the axon and other neuron's dendrites. It determines the weights in the sum.

The Mathematical Model of a Neuron

Typical activation functions

Identity function

 $net = \sum w_i x_i$

Threshold function

(perceptron)

Ramp function

Typical activation functions

Logistic function

$$f(x) = (1 + e^{-x})^{-1}$$

Hyperbolic tangent function

$$f(x) = \tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} = \frac{e^{2x} - 1}{e^{2x} + 1} = \frac{1 - e^{-2x}}{1 + e^{-2x}}$$

Typical activation functions

Rectified Linear Unit (ReLU)

$$f(x) = x^+ = \max(0, x)$$

Softplus function

(This is a smooth approximation of ReLU)

$$f(x) = \ln[1 + \exp(x)]$$

Leaky ReLU

$$f(x) = \begin{cases} x & \text{if } x > 0\\ ax & \text{otherwise} \end{cases}$$

Exponential Linear Unit

$$f(x) = \begin{cases} x & \text{if } x >= 0\\ a[\exp(x) - 1] & \text{otherwise} \end{cases}$$

$$f(x) = \begin{cases} x & \text{if } x > 0 \\ \alpha \left(\exp(x) - 1 \right) & \text{if } x \le 0 \end{cases}$$

Structure of Neural Networks

Fully Connected Neural Network

Input neurons, Hidden neurons, Output neurons

Layers, Feedforward neural networks

Convention: The input layer is Layer 0.

Multilayer Perceptron

- Multilayer perceptron: Connections only between Layer i and Layer i+1
- The most popular architecture.

Recurrent Neural Networks

Recurrent NN: there are connections backwards too.

The Perceptron

The Training Set

Let

$$X^+ = \{\mathbf{x}_k | \mathbf{x}_k \in \text{Class A} \}$$

 $X^- = \{\mathbf{x}_k | \mathbf{x}_k \in \text{Class B} \}$

be the training set. Assume that they are linearly separable.

The Perceptron

Let \mathbf{w}^* be the normal vector of the separating hyperplane through the origin:

Goal: find such w*

The Perceptron

Matlab: opengl hardwarebasic, nnd4pr

Matlab demos: nnd3pc

The Perceptron Algorithm

The Perceptron algorithm

The perceptron learning algorithm

$$\widehat{y}(k) = sgn(\mathbf{w}(k-1)^T \mathbf{x}(k))$$

$$\mathbf{w}(k) = \mathbf{w}(k-1) + \mu(y(k) - \widehat{y}(k))\mathbf{x}(k)$$

$$\mathbf{w}(k) = \mathbf{w}(k-1) + \mu\varepsilon(k)\mathbf{x}(k)$$

• $\mu > 0$ learning rate

• if
$$y(k), \hat{y}(k) \in \{-1, 1\} \Rightarrow \varepsilon(k) \in \{0, 2, -2\}$$

The perceptron algorithm

- 1., If k = 1, let w(0) be arbitrary.
- 2., Let $\mathbf{x}(k) \in X^+ \cup X^-$ be a training point misclassified by $\mathbf{w}(k-1)$
- 3., If there is no such vector \Rightarrow 5.

3., If there is no such vector
$$\Rightarrow$$
 5.
$$\widehat{y}(k) = sgn(\mathbf{w}(k-1)^T\mathbf{x}(k))$$

$$\alpha(k) = \mu\epsilon(k) = \mu(y(k) - \widehat{y}(k))$$

$$\mathbf{w}(k) = \mathbf{w}(k-1) + \alpha(k)\mathbf{x}(k)$$

$$k = k+1$$
 Back to 2

5., END

Observation

• If y(k) = 1 and $\mathbf{w}(k-1)^T \mathbf{x}(k) < 0 \Rightarrow \alpha(k) > 0$.

• If y(k) = -1 and $\mathbf{w}(k-1)^T \mathbf{x}(k) > 0 \Rightarrow \alpha(k) < 0$.

The Perceptron Algorithm

$$\mathbf{w}(k) = \mathbf{w}(k-1) + \mu(y(k) - \hat{y}(k))\mathbf{x}(k)$$

How can we remember this rule?

Gradient descent on $\frac{1}{2}(y(k) - \hat{y}(k))^2$ with learning rate μ :

$$\mathbf{w}(k) = \mathbf{w}(k-1) - \mu \frac{\partial_{\frac{1}{2}}^{1}(y(k)-\hat{y}(k))^{2}}{\partial \mathbf{w}(k-1)}$$
 where $\hat{y}(k) = \mathbf{w}(k-1)^{T}\mathbf{x}(k)$

An interesting property:

we do not require the learning rate to go to zero!

The Perceptron Algorithm

- ullet Each input \mathbf{x}_i determines a hyperplane orthogonal to \mathbf{x}_i
- On the + side of the hyperplane for each $\mathbf{w} \in \mathbb{R}^n$: $\mathbf{w}^T \mathbf{x}_i > 0$, $sgn(\mathbf{w}^T \mathbf{x}_i) = 1$
- On the side of the hyperplane for each $\mathbf{w} \in \mathbb{R}^n$: $\mathbf{w}^T \mathbf{x}_i < 0$, $sgn(\mathbf{w}^T \mathbf{x}_i) = -1$
- We need to update the weights, if $\exists \mathbf{x}_i$ in the training set, such that $sign(\mathbf{w}^T\mathbf{x}_i) \neq y_i$, where $y_i = class(\mathbf{x}_i) \in \{-1, 1\}$
- Then update w such that $\hat{y}_i = \text{sgn}((\mathbf{w} \pm |\alpha_i|\mathbf{x}_i)^T\mathbf{x}_i)$ gets closer to $y_i \in \{-1,1\}$

Theorem

If the samples are linearly separable, then the perceptron algorithm finds a separating hyperplane in finite steps.

The running time does not depend on the sample size n.

Proof of the Theorem

Lemma Let

$$\bar{X} = X^+ \bigcup \{-X^-\}$$

Then $\exists b>0$ such that $\forall \mathbf{\bar{x}}\in \bar{X}$ we have $\mathbf{w}^{*T}\mathbf{\bar{x}}\geq b>0$

Proof of the Lemma:

Since

$$\mathbf{w}^{*T}\mathbf{x} > 0 \text{ if } \mathbf{x} \in X^+$$

$$\mathbf{w}^{*T}\mathbf{x} < \mathbf{0} \text{ if } \mathbf{x} \in X^-$$

by the definition of X^+ and X^- , therefore $\exists b > 0$ such that $\forall \bar{\mathbf{x}} \in \bar{X}$ we have $\mathbf{w}^{*T}\bar{\mathbf{x}} > b > 0$.

We need an update step at iteration k-1, if $\exists \bar{\mathbf{x}} \in \bar{X}$ such that $\mathbf{w}(k-1)^T \bar{\mathbf{x}} \leq 0$. Let this $\bar{\mathbf{x}}$ be denoted by $\bar{\mathbf{x}}(k)$.

If
$$\bar{\mathbf{x}}(k) \in X^+ \Rightarrow \mathbf{x}(k) = \bar{\mathbf{x}}(k) \in X^+$$
.

If
$$\bar{\mathbf{x}}(k) \in -X^- \Rightarrow \mathbf{x}(k) = -\bar{\mathbf{x}}(k) \in X^-$$
.

Lemma Using this notation, the update rule can be written as

$$\mathbf{w}(k) = \mathbf{w}(k-1) + \alpha(k)\mathbf{x}(k) = \mathbf{w}(k-1) + \bar{\alpha}\bar{\mathbf{x}}(k)$$

where $\bar{\alpha} > 0$ is an arbitrary constant.

Proof

• If $x(k) \in X^+$, $w(k-1)^T x(k) < 0 \Rightarrow \alpha(k) > 0$, $\bar{\alpha} = \alpha(k) > 0$, $\bar{x}(k) = x(k)$

• If
$$x(k) \in X^-$$
, $w(k-1)^T x(k) > 0 \Rightarrow \alpha(k) < 0$, $\bar{\alpha} = -\alpha(k) > 0$, $\bar{x}(k) = -x(k)$

In both cases $\alpha(k)\mathbf{x}(k) = \bar{\alpha}\bar{\mathbf{x}}(k)$.

Lemma

Let

$$\mathbf{w}(k) = \mathbf{w}(k-1) + \bar{\alpha}\bar{\mathbf{x}}(k)$$

where $\bar{\alpha} > 0$ is an arbitrary constant. Then,

$$\mathbf{w}(k)^T \bar{\mathbf{x}}(k) = \underbrace{\mathbf{w}(k-1)^T \bar{\mathbf{x}}(k)}_{\leq 0} + \underbrace{\bar{\alpha}\bar{\mathbf{x}}(k)^T \bar{\mathbf{x}}(k)}_{>0}$$

Therefore,

$$\mathbf{w}(k)^T \mathbf{\bar{x}}(k) > \mathbf{w}(k-1)^T \mathbf{\bar{x}}(k)$$

Let us see how the weights change on set \bar{X} .

$$\mathbf{w}(0) = 0$$

$$\mathbf{w}(1) = \bar{\alpha}\bar{\mathbf{x}}(1)$$

$$\mathbf{w}(2) = \mathbf{w}(1) + \bar{\alpha}\bar{\mathbf{x}}(2) = \bar{\alpha}(\bar{\mathbf{x}}(1) + \bar{\mathbf{x}}(2))$$

$$\vdots$$

$$\mathbf{w}(k) = \mathbf{w}(k-1) + \bar{\alpha}\bar{\mathbf{x}}(k) = \bar{\alpha}\sum_{i=1}^{k}\bar{\mathbf{x}}(i)$$

Therefore,

$$\mathbf{w}^{T}(k)\mathbf{w}^{*} = \bar{\alpha} \sum_{i=1}^{k} \bar{\mathbf{x}}(i)^{T}\mathbf{w}^{*} \geq \bar{\alpha}kb$$

Lower bound

We have proved:

$$\mathbf{w}^{T}(k)\mathbf{w}^{*} = \bar{\alpha} \sum_{i=1}^{k} \bar{\mathbf{x}}(i)^{T}\mathbf{w}^{*} \ge \alpha kb$$

From Cauchy-Schwarz

$$\| \mathbf{w}(k) \|^2 \| \mathbf{w}^* \|^2 \ge (\mathbf{w}^T(k)\mathbf{w}^*)^2 \ge \alpha^2 k^2 b^2$$

Therefore,

$$\| \mathbf{w}(k) \|^2 \ge \frac{\alpha^2 k^2 b^2}{\| \mathbf{w}^* \|^2}$$

and thus $\|\mathbf{w}(k)\|^2$ is at least quadratic in k.

Upper bound

Let us find an upperbound on w(k).

Let
$$\mathbf{w}(0) = 0$$
, and let $M > \max_{\bar{\mathbf{x}}(i) \in \bar{X}} \|\bar{\mathbf{x}}(i)\|^2$

$$\mathbf{w}(k) = \mathbf{w}(k-1) + \bar{\alpha}\bar{\mathbf{x}}(k) \| \mathbf{w}(k) \|^2 = \| \mathbf{w}(k-1) \|^2 + 2\bar{\alpha} \underbrace{\mathbf{w}^T(k-1)\bar{\mathbf{x}}(k)}_{\leq 0} + \bar{\alpha}^2 \| \bar{\mathbf{x}}(k) \|^2$$

 $\mathbf{w}^T(k-1)\mathbf{\bar{x}}(k) \leq 0$ since we had to make an update step.

Therefore,

$$\|\mathbf{w}(k)\|^2 - \|\mathbf{w}(k-1)\|^2 < \bar{\alpha}^2 \|\bar{\mathbf{x}}(k)\|^2$$

Upper bound

Therefore,

$$\| \mathbf{w}(k) \|^{2} - \| \mathbf{w}(k-1) \|^{2} \leq \bar{\alpha}^{2} \| \bar{\mathbf{x}}(k) \|^{2}$$

$$\| \mathbf{w}(k-1) \|^{2} - \| \mathbf{w}(k-2) \|^{2} \leq \bar{\alpha}^{2} \| \bar{\mathbf{x}}(k-1) \|^{2}$$

$$\vdots$$

$$\| \mathbf{w}(1) \|^{2} - \| \mathbf{w}(0) \|^{2} \leq \bar{\alpha}^{2} \| \bar{\mathbf{x}}(1) \|^{2}$$

$$\Rightarrow \| \mathbf{w}(k) \|^2 \leq \bar{\alpha}^2 \sum_{i=1}^k \| \bar{\mathbf{x}}(i) \|^2$$
$$\Rightarrow \| \mathbf{w}(k) \|^2 \leq \bar{\alpha}^2 kM$$

 $\Rightarrow \|\mathbf{w}(k)\|^2$ does not grow faster than a linear function in k.

The Perceptron Algorithm

We have proved:

$$\|\mathbf{w}(k)\|^2 \geq \frac{\bar{\alpha}^2 k^2 b^2}{\|\mathbf{w}^*\|^2}$$
$$\|\mathbf{w}(k)\|^2 \leq \bar{\alpha}^2 k M$$

ullet Therefore k is finite, and there exists k_{max}

 \bullet k_{max} does not depend on the size of the training set.

• $\alpha > 0$ arbitrary fixed.

Take me home!

- **☐** History of Neural Networks
- Mathematical model of the neuron
- □ Activation Functions
- Perceptron definition
- □ Perceptron algorithm
- **☐** Perceptron Convergence Theorem