以機器學習預測氣喘病患未來氣喘狀況之App

An app for predicting asthma patient's future condition with machine learning

資工4A 陳韋霖 資工4A 陳昱銘

指導教授:曾新穆

Introduction

氣喘是一種因體質或外在刺激導致的慢性呼吸道疾病,發作可能非常快速且危險,故患者以尖峰呼氣流速計做規律記錄是監控病情的重要方法,也是醫師臨床診斷的重要參考。本專題以:

- 一、氣喘的突發危險性
- 二、不易考量的環境刺激因素
- 三、傳統紙筆紀錄的不便

為出發點,開發出一款方便記錄生理數 據並加入環境因子,以機器學習預測未 來氣喘病況的應用程式。

About Data

一、病患生理資料:

尖峰呼氣流量測量值、正常值、各種身 體症狀、用藥及治療情形、基本資料。

二、天氣資料:

平均氣溫、最高溫、最低溫及平均濕度

三、空汙資料:

各種空污指標物質測量數據

四、預測指標:

綠燈區 PEFR > 80%

黄燈區 80% > PEFR > 60%

紅燈區 PEFR < 60%

Methedology

根據PEFR值區間,綠燈區與黃燈區為一類,紅燈區為一類,為二分類問題。根據專業醫師指出,氣喘較有效之觀察天數區間為3至5天,意即氣喘病患鄰近天數內的情形有一定的相關性,故我們使用不同連續天數的資料集,實驗前n天資料預測下一天。最後以不同n的設定、不同的不平衡資料處理方法、不同模型選擇,以f1-score為評估指標進行實驗比較。

imbalance	n	Decision Tree	Random Forest	Logistic Regression	SVM
None	1	0.517	0.493	0.694	0.493
	2	0.712	0.493	0.829	0.493
	3	0.559	0.494	0.690	0.494
SMOTE	1	0.559	0.594	0.628	0.655
	2	0.606	0.630	0.802	0.637
	3	0.520	0.548	0.658	0.588
SMOTE + ENN	1	0.561	0.671	0.598	0.649
	2	0.580	0.629	0.759	0.634
	3	0.506	0.545	0.654	0.590
	1	0.528	0.493	0.575	0.616
Adjust weights	2	0.598	0.493	0.786	0.613
	3	0.512	0.494	0.654	0.564

根據上表實驗數據,選擇綜合表現最佳的羅吉斯回歸及支持向量機模型,以n等於2,不平衡處理採用SMOTE的設定再進行優化,評估指標則是 PEFR紅燈區的召回值(recall)。

	Logistic Regression	SVM
recall	0.700	0.800
f1-score	0.913	0.900

最後根據實驗結果,在f1-score 沒有顯著差異下,選擇召回 值較高的支持向量機模型作 為最終app上部署的模型。

App

主要架構為Home按鈕及四個 主要功能按鈕。

一、個人資料設定:基本資料

填寫。

二、生理資料輸入:昨日及今

日的生理資料填寫。

三、氣喘情況預測:進行預測

並顯示結果。

四、天氣空汙查看:顯示氣溫、

濕度、空污指標。

