Raport

Łukasz Fabia

20.05.2024

Spis treści

1	\mathbf{W} stęp	1
2	Dane2.1Model danej	2 2 2 2
3	Wygląd do danych	3
4	Rozkłady i statystyki 4.1 Jak się pracuje w IT? 4.2 Kogo szukają pracodawcy? 4.3 Jak rozkładają się zarobki? 4.4 Jakie technologie są najbardziej poszukiwane? 4.5 Gdzie jest największy popyt na programistów? 4.6 Gdzie poszukiwani są juniorzy?	4 5 6 7 8 9 10
5	Powiązania między danymi 5.1 Powiązania między technologiami 5.2 Powiązania między innymi zmiennymi 5.3 Zarobek a technologie	11 11 12 13

1 Wstęp

Celem badań jest analiza danych dotyczących ofert pracy w IT. W swojej pracy postaram się odpowiedzieć na pytanie, jakie są najbardziej poszukiwane umiejętności w branży IT oraz ile można zarobić znając dane języki, frameworki czy narzędzia. W tym celu postram się wykorzystać sci-kit learn do stworzenia modelu regresji liniowej, który pozwoli mi przewidzieć zarobki na podstawie umiejętności (technologii).

2 Dane

Dane pozyskam z serwisu justjoin.it, który zbiera oferty pracy z wielu różnych serwisów, zatem ofert pracy będzie całkiem sporo. Na stronie mamy katergorie, które mogą być przydatne do analizy, takie jak: JS, PHP, Ruby, Python, Java, Net, Mobile, C, DevOps, Security, Data, Go, Game, Scala. W mojej analizie skupię się na nich. Dodatkowo analizuję zarobki tylko na b2b oraz na umowie o prace (uop), ponieważ są to najbardziej popularne formy zatrudnienia w IT a inne formy takie jak umowa o zlecenie czy umowa o staż pratykcznie nie występują. Do analizy będę również brał pod uwagę lokalizację.

Technologia - język programowania, framework, narzędzie, które jest wymagane w ofercie pracy.

2.1 Model danej

Dane będą zawierały informacje o ofertach pracy, takie jak:

- tytuł oferty
- widełki dla B2B
- widełki dla UOP
- technologie dotyczące umowy
- lokalizacja
- doświadczenie junior, mid, senior
- typ pracy stacjonarnie, hybrydowo, zdalnie

2.2 Obsługa technologii, lokalizacji

Najpierw zdefiniuje sobie słownik klucz, wartość, gdzie klucz to ustandaryzowana technologia, a wartość do synonimy tej technologii.

np. "JavaScript": ["javascript", "js", "node.js", "nodejs", "express.js", "expressjs",],

Dzięki temu będę mógł przekonwertować technologie z oferty pracy na wektor binarny, gdzie 1 oznacza, że technologia jest wymagana, a 0, że nie jest wymagana. Kolejnym krokiem będzie obsługa lokalizacji. W tym przypadku jeśli oferta dot. kilku miast to znaczy, że pojawi się w zbiorze klika ofert z tymi samymi danymi, ale dla różnych miast.

2.3 Pozykiwanie danych

Dane będą pozyskiwane z ww. serwisu, za pomocą narzędzi do web scrappingu w moim przypadku będzie to Selenium, ponieważ strona ma dynamicznie ładowany content.

Kroki:

- napisanie skryptu pobierającego linki do ofert pracy z danej kategorii, ponieważ nie chcemy śmiecowych ofert typu Product manager
- napisanie skryptu przetwarzającego linki do ofert pracy, aby pobrać dane z oferty
- przekierowanie wyniku do pliku json.
- normalizacja oraz oczyszczanie danych, kodowanie technologii, do wektora przy pomocy MultiLabelBinarizer z sklearn
- kodowanie duplkacja ofert z różnymi lokalizacjami oraz kodowanie typu pracy i doświadczenia (label encoding)
- usunięcie ofert z wynagrodzniem godzinowym bo zalezą one od ilości przepracowanych godzin

Ofert ze stawką godzinową było kilka więc nie wypływają one na wyniki.

3 Wygląd do danych

uwaga przykładowe dane nie zawierają wszystkich kolumn bo jest ich za dużo, wszystkie dane można znaleźć w ../data/jobs.csv

Przykładowe dane:

title	min_b2b	max_b2b	min₋uop	max_uop
Senior Software Engineer	0.0	0.0	18000.0	28000.0
Senior Backend Node.js Engineer	0.0	0.0	18360.0	25125.0
Senior Fullstack Developer	22680.0	27216.0	16600.0	19920.0

$location_code$	$operating_mode_code$	$experience_code$
38	0	2
17	2	2
51	0	2

AWS	JavaScript	React	Java
1	1	1	0
0	1	1	0
1	1	1	0

4 Rozkłady i statystyki

Aktualnie w zbiorze jobs.csv znajduje się **4574** ofert pracy, które będą poddane analizie. Wszystkie dane są znormalizowane i gotowe do analizy. Analizę można zacząć od średniej zarobków dla kontraktu B2B oraz UOP.

Widełki dla Juniora:

PLN	B2B	UOP	
średnie widełki	8555.40	13558.71	
min widełki	4250.00	6000.00	
max widełki	16443.00	28000.00	

Tabela 1: Średnie zarobki w PLN dla juniora w Polsce

Widełki dla Mida:

PLN	B2B	UOP	
średnie widełki	12378.99	18041.77	
min widełki	5000.00	7000.00	
max widełki	25000.00	30000.00	

Tabela 2: Średnie zarobki w PLN dla mida w Polsce

Widełki dla Seniora:

PLN	B2B	UOP	
średnie widełki	18930.61	25848.46	
min widełki	8000.00	11000.00	
max widełki	40000.00	80000.00	

Tabela 3: Średnie zarobki w PLN dla seniora w Polsce

4.1 Jak się pracuje w IT?

Rysunek 1: Rozkład typów pracy

Jak widać najwięcej ofert pracy dotyczy pracy zdalnej.

4.2 Kogo szukają pracodawcy?

Rysunek 2: Rozkład typów pracy

Tak jak można było się spodziewać - najwięcej ofert pracy jest dla seniorów, stąd też wynika dlaczego tak dużo kontraktów dotyczy pracy zdalnej. Chociaż warto powiedzieć sytuacja midów jest również dobra. Gorzej jest z ofertami dla młodych programistów. Tutaj liczba ofert wyniosła zaledwie 139, co jest bardzo małą liczbą w porównaniu do innych grup.

Czy to oznacza, że młodzi programiści mają trudniej, a słynne "eldorado" w IT jest tylko dla doświadczonych programistów?

Tutaj można powiedzieć, że juniorzy mają trudniej **wejść** do branży, ale zarobki po wejściu są naprawdę atrakcyjne, no, ale tutaj problem może być z wejściem.

Rysunek 6: Popularne technologie w ofertach pracy w Polsce

Tutaj moim zdaniem troche zaskoczenie ponieważ bez SQL ciężko znaleźć prace w IT, czyli bazy danych to jest podstawa przy rekrutowanu się do pracy.

Oczywiście nie mogło zabraknąć Pythona oraz JavaScriptu jeśli chodzi o języki skryptowe. Co warto zazanczyć narzędzia takie jak Docker czy Kubernetes również są bardzo popularne i warto je znać. Java wygrywa z C# a GNU/Linux deklasuje Windowsa.

4.5 Gdzie jest największy popyt na programistów?

Rysunek 7: Popularne miasta w ofertach pracy w Polsce

Zestawienie miast jest zgodne z oczekiwaniami, najwięcej ofert pracy jest kolejno w **Warszawie**, **Krakowie** oraz **Wrocławiu**, chociaż **Gdańsk** również pojawiał się w dużej ilości ofert pracy.

4.6 Gdzie poszukiwani są juniorzy?

Rysunek 8: Popularne miasta w ofertach dla juniorów

Warszawa jest najbardziej przyjazna dla juniorów, ale warto zauważyć, że wykres nie różni się bardzo od poprzedniego z jednym, ale - **Katowice** są na 3 miejscu w zestawieniu dla juniorów, co może być zaskoczeniem.

5 Powiązania między danymi

5.1 Powiązania między technologiami

Rysunek 9: Powiązania między technologiami, zawierająca tylko wartości korelacji większe niż $0.14\,$

Co można zauważyć?

- 1. HTML i CSS idą ze prawie w parze co jest zrozumiałe, bo to podstawy front-endu
- 2. Przy Javie warto znać Springa
- 3. React i JS i TS często pojawiają sie razem w ofertach pracy obok HTML i CSS
- 4. Jak sie uczy Django to warto znać inne frameworki backendowe takie jak Flask czy Fast ${\rm API}$
- 5. Jak sie idzie w Embedded to warto znać C/C++ oraz Linux

To tylko kilka przykładów wymienionych wynikający z obrazka powyżej, ale warto zauważyć, że nie ma tutaj dużo powiązań między technologiami, co może wynikać z tego, że technologie są zbyt różne, aby były powiązane.

5.2 Powiązania między innymi zmiennymi

Rysunek 10: Powiązania między innymi zmiennymi

Co można zauważyć?

- $1.\ \mathrm{W}$ jakiś spobób powiązane są ze sobą zarobki na B2B i UOP ma sens
- 2. Wynagrodzenie na B2B i UOP jest powiązane z doświadczeniem

5.3 Zarobek a technologie

Rysunek 11: Powiązania między zarobkiem a technologiami

Tutaj jest kilka ciekawych powiązań, które warto zauważyć, np. na umowie o prace znaczenie ma znajomość: Go, AWS, Angulara, Java, SQL czy Andorida, chociaż nie są to mocne powiązania. Natomiast na B2B nie ma jakiś znaczących powiązań można wskazać np. Resta, AWS, Docker/Kubernetes czy PHP, ale są to watości rzędu 0.09, co nie jest imponującym wynikiem.