CATEGORICAL ONTOLOGY I

EXISTENCE

DARIO DENTAMARO AND FOSCO LOREGIAN

ABSTRACT. The present paper is the first piece of a series whose aim is to develop an approach to ontology and metaontology through category theory. We exploit the theory of elementary toposes to purport the claim that a satisfying "theory of existence", and more at large ontology itself, can be obtained appealing to category theory. In this perspective, an ontology is a mathematical object: a category, the universe of discourse in which our mathematics (intended at large, as a theory of knowledge) can be deployed. The internal language that all categories possess prescribes the modes of existence for the objects of a fixed ontology/category.

Such internal language allows to re-enact propositional calculus: all first-order properties of an object can be modeled by propositions $p:U\to\Omega$ valued in an object whose "elements" are the truth values that p can assume. Each ontology $\mathcal E$ now yields its own $\Omega_{\mathcal E}$, and thus its own set of truth values, and thus its own "theory of meaning". This approach resembles, but is more general than, fuzzy logics, as most choices of $\mathcal E$ and thus of $\Omega_{\mathcal E}$ yield nonclassical, many-valued logics.

Framed this way, ontology suddenly becomes more mathematical: a solid corpus of techniques can be used to backup philosophical intuition with a useful, modular language, suitable for a practical foundation. As both a test-bench for our theory, and a literary divertissement, we propose a possible category-theoretic solution of Borges' famous paradoxes of Tlön's "nine copper coins", and of other seemingly paradoxical construction in his literary work. We then delve into the topic with some vistas on our future works.

Contents

1.	Introduction	2
	Categories as places	9
	Preliminaries on variable set theory	15
4.	The internal language of variable sets	19
5.	Nine copper coins, and other toposes	23
6.	Vistas on ontologies	33
Appendix A. Category theory		37
References		42

1. Introduction

El mundo, desgraciadamente, es real.

[Bor53]

This is the first piece of a series of works that will hopefully span through a certain amount of time, and touch a pretty wide range of topics. Its purpose is to adopt a wide-ranging approach to a fragment of elementary problems in a certain branch of contemporary philosophy. In particular, our work aims to lay a foundation, or a transcription, of a few problems in ontology by means of pure mathematics; in particular, by means of the branch of mathematics known as category theory.

As authors, we are aware that such an ambitious statement of purpose must be adequately motivated. This is the scope of the initial section of the present first manuscript.

1.1. What is this series. Since forever, mathematics studies three fundamental indefinites: form, measure, and inference. Apperception makes us recognise that there are extended entities in space, persisting in time. From this, the necessity to measure how much these entities are extended, and to build a web of conceptual relations between them, explaining how they arrange "logically". Contamination between these three archetypal processes is certainly possible and common; mathematics happens exactly at the crossroad where algebra, geometry and logic intersect.

We can even say more: mathematics is a language; meta-mathematics done through mathematics (if such a thing even exists) exhibits the features of a *ur-language*, a generative scheme for "all" possible languages. It is a language whose elements are the rules to give oneself a language, conveying information, and allowing deduction. It is a meta-object: a scheme to generate objects/languages.

Taken this tentative definition, mathematics (not its history, not its philosophy, but its *practice*) serves as a powerful tool to tackle the essential questions of ontology: what "things" are, what makes them what they are and not different.

Quantitative thinking is a consistent (some would say "honest") way of approaching this deep problem, cogency of entities; yet, it is undeniable that a certain philosophical debate has become hostile to mathematical language. A tear in the veil that occurred a long time ago, due to different purposes and different specific vocabulary, can not be repaired by two people only. If, however, the reader of these notes asks for an extended motivation for our work, a wide-ranging project in which it fits, a long-term goal, in short a program, they will find it now: there is a piece of mathematics whose purpose is to solve philosophical problems, in the same way certain mathematics "solves" the motion of celestial bodies. It does not completely annihilate the question: it proposes models within which one can reformulate it; it highlights what is trivial consequence of the axioms of that model and what instead is not, and requires the language to expand, to be modified, sharpened. Our aim is to approach this never-mentioned discipline as mathematicians.

Sure, solving once and for all the problems posited by ontology would be megalomaniac; we do not claim such a thing. Instead, more modestly, we propose a starting point unhinging

some well-established beliefs (above all else, the idea that ontology is too general to be approached quantitatively); we humbly point the finger at some problems that prose is unable to notice, because it lacks a specific and technical language; we suggest that in such a language, when words mean precise things and are tools of epistemic research instead of mere magic spells, a few essential questions of recent ontology dissolve in a thread of smoke, and others simply become "the wrong question": not false, just meaningless as the endeavour to attribute a temperature to consciousness or justice.

We shall say at the outset that such a language is not mathematics; but mathematics has an enormous hygienic capacity to hint at what the *characteristica universalis* should be made of.

It may seem suspicious to employ mathematics to tackle questions that traditionally pertain to philosophy: in doing so, we believe we can provide a more adequate language, taken from mathematics, within which to frame some deep ontological questions. The reader will allow a tongue-in-cheek here: when coming to ontology, it is not a matter of making a *correct use of language*, but rather to *use the correct language*.

This correct language is inherently mathematical, as only mathematics has the power to substantiate an analysis in quantitative terms. This language is *category theory*, as only category theory has the power to speak about a totality of structures of a given kind in a compelling way, treating mathematical *theories* as mathematical *objects*.

As it is currently organised, our work will attempt to cover the following topics:

- the present manuscript, Existence, aims at providing a sufficiently expressive theory of existence. Having a foundational rôle, the scope of most of our remarks is of course more wide-ranging and aimed at building the fundamentals of our toolset (mainly, category theory and categorical logic, as developed in [MLM92, Joh77, LS88]). As both a test-bench for our theory, and a literary divertissement, we propose a category-theoretic solution of Borges' paradoxes present in [Bor44]. In our final section we relate our framework to more classical ancient and modern philosophers; we link topos theory to Berkeley's instantaneism, and internal category theory to Quine's definition of [domain of] existence as domain of quantifiers.
- A second chapter [LDa], currently in preparation, addresses the problem of *identity*, and in particular its context-dependent nature. Our proof of concept here consists of a solution to Black's classical "two spheres" paradox [Bla52]; this time the solution is provided by Klein's famous *Erlangen program* group-theoretic devices. The two interlocutors of Black's imaginary dialogue inhabit respectively an Euclidean and an affine world: this affects their perception of the "two" spheres, and irredeemably prevents them from mutual understanding.
- A third chapter [LDb], currently in preparation, addresses again the problem of identity, but this time through the lens of algebraic topology; in recent years homotopy theory defied a well-established ontological assumptions such as the identity principle; the many commonalities between category theory and homotopy theory suggest that "identity" is not a primitive concept, but instead depends on our concrete representation of mathematical entities. When X, Y are objects in a category \mathcal{C} , there

is often a class of "equivalences" $W \subseteq \text{hom}(\mathcal{C})$ prescribing that X,Y shouldn't be distinguished; equality (better, some sort of homotopy equivalence) is then defined $ex\ post$ in terms of W, changing as the ambient category \mathcal{C} does; this yields a W-parametric notion of identity \equiv_W , allowing categories to be categorified versions of $Bishop\ sets$, i.e. pairs (S,ρ) where ρ is an equivalence relation on S prescribing a ρ -equality.

1.2. On our choice of meta-theory and foundation. During '900 the direction of the evolution of mathematics brought the discipline to divide in different sub-disciplines at first, with their own specific objects and languages, to then find unexpected unification under a one an only notion, the notion of *structure*, using the formal tool that has best characterized the concept, the *categories*. This process has spontaneously led to epistemological revision of mathematics and has inspired, in the development of operational tools, a revision of both his foundations and his ontology. For many scholars is undeniable that

[the] mathematical uses of the tool CT and epistemological considerations having CT as their object cannot be separated, neither historically nor philosophically. [Krö07]

The mathematical practice in the structuralist way produces a "natural" ontology, that same, later, felt the need to characterized more precisely. After all, similarly to what Carnap ¹ suggested regarding semantics,

mathematicians creating their discipline were apparently not seeking to justify the constitution of the objects studied by making assumptions as to their ontology. [Krö07]

Beyond the attempts (ever those of Bourbaki group), what matter is that the habit of reasoning in terms of structure has suggested implicit epistemological and ontological attitudes. This matter would deserve an exhausting independent inquiry.

For our objectives it's enough to declare a differentiation that Krömer elaborate, inspired by [Corry, 1996]: the difference between *structuralism* and *structural mathematics*:

S1) Structuralism: the philosophical position regarding structures as the subject matter of mathematics

we take the position that the introduction of the new ways of speaking does not need any theoretical justification because it does not imply any assertion of reality [...]. it is a practical, not a theoretical question; it is the question of whether or not to accept the new linguistic forms. The acceptance cannot be judged as being either true or false because it is not an assertion. It can only be judged as being more or less expedient, fruitful, conducive to the aim for which the language is intended. Judgments of this kind supply the motivation for the decision of accepting or rejecting the kind of entities. [Car56]

¹Some words that philosophers should keep in mind, on the lawfulness of the use of abstract entities (specifically mathematical) in semantic reflection, also valid in ontology:

S2) Structural Mathematics: the methodological approach to look in a given problem "for the structure"

Remark 1.1. Of course, S1 implies S2 but the opposite is not always true.

That is, one can do structural mathematics without being structuralists; that is, taking different, or even opposite, positions with respect to structuralism itself. That it has often come spontaneously to embrace this position in the theoretical reflection in the recent history of mathematics is quite different (the "natural" ontology).

The use of CT as meta-language, despite the historical link with structuralism, it doesn't nevertheless make automatic the transition from S2 to S1, but suggests that the ontology is not only dependent to "ideology" (in Quinean sense) of the theory, namely it expressive power, but is influenced by the epistemological model inspired by use of formal language itself.

The usefulness of Krömer's distinction, however, is another: instead of stumbling in a possibly not ambiguous definition of *structure* (with the unwanted consequences that could arise in the operational practice), the philosophy S1 can be reduce (or redefine) to the methodology S2, saying that:

structuralism is the claim that mathematics is essentially structural mathematics [Krö07] $\,$

(the operative practice that "intervenes" in definition of structuralism avoid the decadelong debate of the humanities on this concepts).

This is the same thing as saying: the structural practice is its philosophy itself.

The historical attempts of explaining the term "structure" by Bourbaki in the years following publication of the *Elements des Mathématiques*, had the first systematic elaboration of a philosophy that could accorded with rate of success of *structural mathematics*. His target it is to "assembling of all possible ways in which given set can be endowed with certain structure" [Krö07], and to do so elaborate, in the programmatic paper *The Architecture of Mathematics* (written by Dieudonné alone), published in 1950, a formal strategy. While specifying that "this definition is not sufficiently general for the needs of mathematics" [Bourbaki, 1950], he codifies a series of operational steps through which a structure on set is "assembled set-theoretically". Adopting therefore a reductionist perspective in which

the structureless sets are the raw material of structure building which in Bourbaki's analysis is "unearthed" in a quasi-archaeological, reverse manner; they are the most general objects which can, in a rewriting from scratch of mathematics, successively be endowed with ever more special and richer structures.

[Krö07]

On balance in the Bourbaki's structuralism the notion of *set* doesn't disappear definitively in front of the notion of structure. The path towards an "integral" structuralism was still long.

In his influential paper [Law66] William Lawvere proposes a foundation of mathematics based on category theory. To appreciate the depth and breadth of such an impressive piece of work, however, the word "foundation" must be taken in the particular sense intended by mathematicians:

[...] a single system of first-order axioms in which all usual mathematical objects can be defined and all their usual properties proved.

Such a position sounds at the same time a bit cryptic to unravel, and unsatisfactory; Lawvere's (and others') stance on the matter is that a foundation of mathematics is de facto just a set \mathcal{L} of first order axioms organised in a Gentzen-like deduction system. The deductive system so generated reproduces mathematics as we know and practice it, i.e. provides a formalisation for something that already exists and needs no further explanation, and that we call "mathematics".

It is not a vacuous truth that \mathcal{L} exists somewhere: the fact that the theory so determined has a nontrivial model, i.e the fact that it can be interpreted inside a given familiar structure, is both the key assumption we make, and the less relevant aspect of the construction itself; showing that \mathcal{L} "has a model" is –although slightly improperly– meant to ensure that, assuming the existence of a naive set theory (i.e., assuming the prior existence of structures called "sets"), axioms of \mathcal{L} can be satisfied by a naive set. Alternatively, and more crudely: assuming the existence of a model of ZFC, \mathcal{L} has a model inside that model of ZFC.²

A series of works attempting to unhinge some aspects of ontology through category theory should at least try to tackle such a simple and yet diabolic question as "where" are the symbols forming the first-order theory of ETCC. And yet, everyone just believes in sets, and solves the issue of "where" they are with a leap of faith from which all else follows.

This might appear somewhat circular: aren't sets in themselves already a mathematical object? How can they be a piece of the theory they aim to be a foundation of? In his [Lol77] the author addresses the problem as follows:

Quando un matematico parla di modelli non ha infatti l'impressione di uscire dall'ambito insiemistico. Questa impressione, che è corretta, è giustificata dalla possibilità di rappresentare i linguaggi formali con gli oggetti della teoria degli insiemire di studiare in essa le relazioni tra le strutture e le rappresentazioni dei simboli. Quando l'attenzione è rivolta ai modelli di una teoria degli insiemi, certe questioni sofistiche non possono però essere più evitate. La domanda spontanea sulla relazione che intercorre tra gli insiemi che sono modelli di una teoria e gli insiemi di cui parla la teoria non è altro che una domanda sulla relazione tra la metateoria semantica insiemistica e

²However, ensuring that a given theory has a model isn't driven by psychological purposes only: on the one hand, purely syntactic mathematics would be very difficult to parse, as opposed to the unformalised, more colloquial practice of mathematical development; on the other hand (and this is more important), the only thing syntax can see is equality, and truth. To prove that a given statement is false, one either checks all possible syntactic derivations leading to φ , finding none –this is unpractical, to say the least– or they find a model where $\neg \varphi$ holds.

la teoria in esame, o teoria oggetto. Le due teorie possono coincidere, anzi la metateoria può essere anche una sottoteoria propria della teoria oggetto. [...]

Si sceglie un insieme i cui elementi, di solito insiemi finiti, rappresentano i simboli del linguaggio che si vuole studiare, quindi con una operazione di concatenazione che può essere la coppia ordinata si definisce l'insieme delle parole L-delle formule ben formate, dei termini, l'operazione che a una formula associa le sue variabili libere e così via per tutte le nozioni sintattiche.

The idea that a subtheory $L' \subset L$ of the object theory can play the rôle of metatheory might appear baffling; in practice, the submodel doesn't exactly play such rôle: instead, there are two possible solutions. Pure Platonism assumes the existence of a hierarchy of universes harbouring the object theory; pure syntacticism exploits Gödel's completeness theorem: every proof is a finite object, and every theorem proved in the metatheory is just a finite string of symbols. No need for a model.

Platonism has limits: in a fixed a class theory C (MK, Morse-Mostowski; or NBG, Von Neumann-Bernays-Gödel), there's an object V that plays the rôle of the universe of sets; in V, all mathematics can be enacted. Of course, consistency of C is only granted by an act of faith.

Syntacticism has limits: following it, one abjures any universality mathematics might claim. But syntacticism also has merits: undeniably (disgracefully, luckily) the World is real. And reality is complex enough to contain languages as purely syntactical objects; the percussion of a log with oxen bones, rather than prophecies over the entrails of a lamb, or intuitionistic type theory, all have the same purpose: intersubjective convection of meaning, deduced by a bundle of perceptions, so to gain advantage, i.e. predictive power, over them. Of course: intuitionistic type theory is just *slightly* more effective than hepatomancy.

Knowledge is obtained by collision and retro-propagation between Reality and the perceptual bundle it generates.

Accepting this, the urge to define seemingly abstract concepts like learning, conscience, and knowledge, together with precious continuous feedback coming from real objects, evidently determine an undeniable primacy of quantitative thinking, this time intended as machine learning and artificial intelligence, that sets (it should, if only more philosophers knew linear algebra) a new bar for research in philosophy of mind.

However, we refrain from entering such a deep rabbit-hole, as it would have catastrophic consequences on the quality, length, and depth of our exposition.

The usual choice for mathematicians is to assume that, wherever and whatever they are, these symbols "are", and our rôle in unveiling mathematics is *descriptive* rather than generative.³

^aAuthors' translation:

³Inside constructivism, it is not legitimate to posit that axioms "create" mathematical objects; from this, the legitimacy of the question of where they are, and the legitimate answer "nowhere". The only thing we can

This state of affairs has, to the best of our moderate knowledge on the subject, various possible explanations:

- On one hand, it constitutes the heritage of Bourbaki's authoritarian stance on formalism in pure mathematics;
- on the other hand, a different position would result in barely no difference for the "working class"; mathematicians are irreducible pragmatists, somewhat blind to the consequences of their philosophical stances.

So, symbols and letters do not exist outside of the Gentzen-like deductive system we specified together with \mathcal{L} .

As arid as it may seem, this perspective proved itself to be quite useful in working mathematics; consider for example the type declaration rules of a typed functional programming language: such a concise declaration as

```
data Nat = Z | S Nat
```

makes no assumption on "what" Z and S:: Nat -> Nat are; instead, it treats these constructors as meaningful formally (in terms of the admissible derivations a well-formed expression is subject to) and intuitively (in terms of the fact that they model natural numbers: every data structure that has those two constructors must be the type N of natural numbers).

In altre parole possiamo tradurre "formally" con "synctactically" (di modo che, ad esempio, gli assiomi di PA sono significanti per via delle derivazioni formali che ci permettono di fare) e "intuitively" con "semantically" (gli assiomi di PA si presume abbiano almeno un modello, quello standard).

Taken as an operative rule, this reveals exactly what is our stance towards foundations: we are "structuralist in the metatheory", meaning that we treat the symbols of a first-order theory or the constructors of a type system irregardless of their origin, provided the same relation occur between criptomorphic collections of labeled atoms.

In this precise sense we are thus structuralists in the metatheory, and yet we do so with a grain of salt, maintaining a transparent approach to the consequences and limits of this partialisation. On the one hand, pragmatism works; it generates rules of evaluation for the truth of sentences. On the other hand, this sounds like a Munchhausen-like explanation of its the value, in terms of itself. Yet there seems to be no way to do better: answering the initial question would give no less than a foundation of language.

And this for no other reason that "our" metatheory is something near to a structuralist theory of language; thus, a foundation for such a metatheory shall inhabit a meta-metatheory... and so on.

Thus, rather than trying to revert this state of affairs we silently comply to it as everyone else does; but we feel contempt after a brief and honest declaration of intents towards where our metatheory lives. Such a metatheory hinges again on work of Lawvere, and especially on the series of works on functorial semantics.

say is that they "make precise, albeit implicitly, the *meaning* of mathematical objects" [?] (it seems to us that in mathematics as well as in philosophy of language, meaning and denotation are safely kept separate). We take this principle, and here we stop.

2. Categories as places

The present section has double, complementary purposes: we would like to narrow the discussion down to the particular flavour in which we interpret the word "category", but also to expand its meaning so as to encompass its rôle as a foundation for mathematics. More or less, the idea is that a category is both an algebraic structure (a microcosm) and a metastructure in which all other algebraic structures can be interpreted (a macrocosm).

More in detail, a category provides with a sound graphical representation of the defining operation of a certain type of structure \mathfrak{T} (see Definition 2.1 below; we take the word universal in the sense of [Gri07, XV.1]). Such a perspective allows to concretely build an object representing a given (fragment of) a language L, and a topos (see Definition A.2) obtained as sort of a universal semantic interpretation of L as internal language. This construction is a classical piece of categorical logic, and will not be recalled in detail (yet, see our Definition 4.1): the reader is invited to consult [LS88, II.12, 13, 14], and in particular

J. Lambek proposed to use the *free topos* [on a type theory/language] as ambient world to do mathematics in; [...] Being syntactically constructed, but universally determined, with higher-order intuitionistic type theory as internal language, [Lambek] saw [this structure] as a reconciliation of the three classical schools of philosophy of mathematics, namely formalism, Platonism, and intuitionism.

Interpretation, as defined in logical semantics [Gam91], can be seen as a function $t:L^*\to \Omega$ that associates elements of a set Ω to the free variables of a formula α in the language L^* generated by an alphabet L; along the history of category theory, subsequent refinements of this fundamental idea led to revolutionary notions as that of functorial semantics and internal logic of a topos. As an aside, it shall be noted that the impulse towards this research was somewhat motivated by the refusal of set-theoretic foundations, opposed to type-theoretic

In the following subsection, we give a more fine-grained presentation of the philosophical consequences that a "metatheoretic structural" perspective has on mathematical ontology.

2.1. Theories and their models. In [Law66] the author W. Lawvere builds a formal language ETAC encompassing "elementary" category theory, and a theory ETCC for the category of all categories, yielding a model for ETAC. In this perspective category theory has a syntax CT; in CT, categories are terms. In addition, we are provided with a *meta*theory, in which we can consider categories of categories, etc.:

⁴As an aside, we shall at least mention the dangers of too much a naive approach towards the micro/macrocosm dichotomy: if all algebraic structures can be interpreted in a category, and categories are algebraic
structures, there surely is such a thing as the theory of categories *internal* to a given one. And large categories shall be thought as categories internal to the "meta"category (unfortunate but unavoidable name)
of categories. There surely is a well-developed and expressive theory of internal categories (see [Bor94a,
8]); but our reader surely has understood that the two "categories", albeit bearing the same name, shall be
considered on totally different grounds: one merely is a structure; the other is a foundation for that, and
others, structure.

If Φ is any theorem of elementary theory of abstract categories, then $\forall \mathcal{A}(\mathcal{A} \models \Phi)$ is a theorem of basic theory of category of all categories. [Law66]

After this, the author makes the rather ambiguous statement that "every object in a world described by basic theory is, at least, a category". This is a key observation: what is the world described by ETAC, what are its elements?

We posit that the statement shall be interpreted as follows: categories in mathematics carry a double nature. They surely are the structures in which the entities we are interested to describe organise themselves; but on the other hand, they inhabit a single, big (meta)category of all categories. Such a big structure is fixed once and for all, at the outset of our discussion, and it is the *place* in which we can provide concrete models for "small" categories.

In other words (and this is true also in light of our subsection A.3), categories live on different, almost opposite, grounds: as syntactic objects, that can be used to model *language*, and as semantic objects, that can be used to model *meaning*.

To fix ideas with a particular example: we posit that there surely is such a thing as "the category of groups". But on the other hand, groups are just very specific kinds of sets, so groups are but a substructure of the only category that exists.

Sure, such an approach is quite unsatisfactory in a structural perspective. It bestows the category of sets with a privileged role that it does not have: sets are just *one* of the possible choices for a foundation of mathematics. Instead, we would like to disengage the (purely syntactic) notion of structure from the (semantic) notion of interpretation.

The "categories as places" philosophy now provides such a disengagement, in order to approach the foundation of mathematics agnostically.

In this perspective one can easily fit various research tracks in categorical algebra, [AA.04], functorial semantics [Law63, HP07], categorical logic [LS88], and topos theory [Joh77] that characterised the last sixty years of research in category theory.

Lawvere's functorial semantics was introduced in the author's PhD thesis [Law63] in order to provide a categorical axiomatisation of universal algebra, the part of mathematical logic whose subject is the abstract notion of mathematical structure: a semi-classical reference for universal algebra, mingled with a structuralist perspective, is [Man12]; see also [SB81]. We shall say at the outset that a more detailed and technical presentation of the basic ideas of functorial semantics is given in our subsection A.3 below; here we aim neither at completeness nor at self-containment.

Everything starts with the following definition:

Definition 2.1. A type \mathfrak{T} of universal algebra is a pair $(T,\underline{\alpha})$ where T is a set called the (algebraic) signature of the theory, and $\underline{\alpha}$ a function $T \to \mathbb{N}$ that assigns to every element $t \in T$ a natural number $n_t : \mathbb{N}$ called the arity of the function symbol t.

Definition 2.2. A (universal) algebra of type \mathfrak{T} is a pair (A, f^A) where A is a set and $f^A: T \to \prod_{t \in T} \mathsf{Set}(A^{n_t}, A)$ is a function that sends every function symbol t: T to a function $f_t^A: A^{n_t} \to A$; f_t^A is called the n_t -ary operation on A associated to the function symbol t: T.

We could evidently have replaces Set with another category \mathcal{C} of our choice, provided the object $A^n:\mathcal{C}$ still has a meaning for every $n:\mathbb{N}$ (to this end, it suffices that \mathcal{C} has finite products; we call such a \mathcal{C} a Cartesian category). A universal algebra of type \mathfrak{T} in \mathcal{C} is now a pair (A, f^A) where $A:\mathcal{C}$ and $f^A:T\to\prod_{t\in T}\mathcal{C}(A^{n_t},A)$; it is however possible to go even further, enlarging the notion of "type of algebra" even more.

The abstract structure we are trying to classify is a *sketch* (the terminology is neither new nor inexplicable: see [Ehr68, CL84, Bor94b]) representing the most general arrangement of operations $f^A: A^n \to A$ and properties thereof⁵ that coexist in an object A; such a sketch is pictorially represented as a (rooted directed) graph, modeling arities of the various function symbols determining a given type of algebra \mathfrak{T} (see also [Gri07, XV.3] for the definition of *variety of algebras*).

Given the "theory" \mathfrak{T} and the graph $G_{\mathfrak{T}}$ that it represents, the category $\mathcal{L}_{\mathfrak{T}}$ generated by $G_{\mathfrak{T}}$ "is" the theory we aimed to study, and every functor $A:\mathcal{L}_{\mathfrak{T}}\to \mathsf{Set}$ with the property that $A([n+m])\cong A[n]\times A[m]$ concretely realises via its image a representation of $\mathcal{L}_{\mathfrak{T}}$ (and thus of \mathfrak{T}) in Set .

Remark 2.3. More concretely, there is a "theory of groups". Such a theory determines a graph G_{Grp} built in such a way to generate a category $\mathcal{L} = \mathcal{L}_{\mathsf{Grp}}$ with finite products. Models of the theory of groups are functors $\mathcal{L} \to \mathsf{Set}$ uniquely determined by the image of the "generating object" [1] (the set G = G[1] is the underlying set, or the carrier of the algebraic structure in study; in our Definition 2.1 the carrier is just the first member of the pair (A, f^A)); the request that G is a product preserving functor entails that if \mathcal{L} is a theory and $G : \mathcal{L} \to \mathsf{Set}$ one of its models, we must have $G[n] = G^n = G \times G \times \cdots \times G$, and thus each function symbol $f : [n] \to [1]$ describing an abstract operation on G receives an interpretation as a concrete function $f : G^n \to G$.

Until now, we interpreted our theory \mathcal{L} in sets; but we could have chosen a different category \mathcal{C} at no additional cost, provided \mathcal{C} was endowed with finite products, in order to speak of the object $A^n = A \times \cdots \times A$ for all $n : \mathbb{N}$. In this fashion, we obtain the \mathcal{C} -models of \mathcal{L} , instead of its Set-models: formally, and conceptually, the difference is all there.

Yet, the freedom to disengage language and meaning visibly has deep consequences: suddenly, and quite miraculously, we are allowed to speak of groups internal to the category of sets, i.e. functors $\mathcal{L}_{\mathsf{Grp}} \to \mathsf{Set}$, topological groups, i.e. functors $\mathcal{L}_{\mathsf{Grp}} \to \mathsf{Top}$ (so multiplication and inversion are continuous maps by this very choice, without additional requests); we can treat monoids in the category of R-modules, i.e. R-algebras [Che57, IV], and monoids in the category of posets (i.e. quantales [PR00]) all on the same conceptual ground.

It is evident that $\mathcal{L}_{\mathfrak{T}}$ is the same in all our choices; all that changes is the semantic universe in which the theory acquires meaning. This context-dependent definition of "structure" inspires our stance towards ontology, as the reader will notice throughout our section 5 and section 6.

⁵Examples of such properties are (left) alternativity: for all x, y, z, one has $f^A(x, f^A(x, y)) = f^A(f^A(x, x), y)$; associativity: $f^A(x, f^A(y, z)) = f^A(f^A(x, y), z)$; commutativity: $f^A(x, y) = f^A(y, x)$; and so on.

2.2. The rôle of toposes. Among many different Cartesian categories in which we can interpret a given theory \mathcal{L} , toposes play a special rôle; this is mostly due to the fact that the internal language every topos carries (in the sense of Definition 4.1) is quite expressive.

To every theory \mathcal{L} one can associate a category, called the *free topos* $\mathcal{E}(\mathcal{L})$ on the theory (see [LS88]), such that there is a natural bijection between the \mathcal{F} -models of \mathcal{L} , in the sense of Remark 2.3, and (a suitable choice of) morphisms of toposes⁶ $\mathcal{E}(\mathcal{L}) \to \mathcal{F}$:

$$\mathsf{Mod}(\mathcal{L}, \mathcal{F}) \cong \mathsf{hom}(\mathcal{E}(\mathcal{L}), \mathcal{F}).$$

In the present subsection we analyse how the construction of models of \mathcal{L} behaves when the semantics takes value in a category of presheaves (cf. [Bor94a, ??]).

Let's start stating a plain tautology, that still works as blatant motivation for our interest in toposes opposed as more general categories for our semantics. Sets can be canonically identified with the category [1, Set], so models of $\mathcal L$ are tautologically identified to its [1, Set]-models. It is then quite natural to wonder what $\mathcal L$ -models become when the semantics is taken in more general functor categories like $[\mathcal C, \mathsf{Set}]$. This generalisation is compelling to our discussion: in case $\mathcal C=I$ is a discrete category, we get back the well-known category of variable sets Set/I of Proposition 3.1.

Now, it turns out that $[\mathcal{C}, \mathsf{Set}]$ -model for an algebraic theory \mathcal{L} , defined as functors $\mathcal{L} \to [\mathcal{C}, \mathsf{Set}]$ preserving finite products, correspond precisely to functors $\mathcal{C} \to \mathsf{Set}$ such that each FC is a \mathcal{L} -model: this gives rise to the following "commutative property" for semantic interpretation:

 \mathcal{L} -models in $[\mathcal{C}, \mathsf{Set}]$ are precisely those models $\mathcal{C} \to \mathsf{Set}$ that take value in the subcategory $\mathsf{Mod}_{\mathcal{L}}(\mathsf{Set})$ of models for \mathcal{L} . In other words we can "shift" the $\mathsf{Mod}(-)$ construction in and out $[\mathcal{C}, \mathsf{Set}]$ at our will:

$$\mathsf{Mod}_{\mathcal{L}}([C,\mathsf{Set}]) \cong [C,\mathsf{Mod}_{\mathcal{L}}(\mathsf{Set})]$$

As the reader can see, the procedure of interpreting a given "theory" inside an abstract finitely complete category \mathcal{K} is something that is only possible when the theory is interpreted as a category, and when a model of the theory as a functor. This part of mathematics goes under many names: the one we will employ, i.e. *categorical*, or *functorial*, semantics [Law63], but also *internalisation* of structures, *categorical algebra*.

The internalisation paradigm sketched above suggests how "small" mathematicians often happily develop their mathematics without ever exiting a single (large) finitely complete category \mathcal{K} , without even suspecting the presence of models for their theories outside \mathcal{K} . To a category theorist, "groups" as abstract structures behave similarly to the disciples of the sect of the Phoenix [Bor]: "the name by which they are known to the world is not the same as the one they themselves pronounce." They are a different, deeper structure than the one intended by their users.

⁶We refrain to enter the details of the definition of a morphism of toposes, but we glimpse at the definition: given two toposes \mathcal{E}, \mathcal{F} a morphism $(f^*, f_*) : \mathcal{E} \to \mathcal{F}$ consists of a pair of *adjoint* functors (see [Bor94a, 3]) $f^* : \mathcal{E} \leftrightarrows \mathcal{F} : f_*$ with the property that f^* commutes with finite limits (see [Bor94a, 2.8.2]).

By leaving the somewhat unsatisfying picture that "all categories are small" and by fixing a semantic universe like Set), every large category works as a world in which one can speak mathematical language (i.e. "study models for the theory of Ω -structures" as long as Ω is one of our abstract theories).

So, categories really exhibit a double nature: they are the theories we want to study, but they also are the *places* where we want to realise those theories; looking from high enough, there is plenty of other places where one can move, other than the category Set of sets and functions (whose existence is, at the best of our knowledge, consequence of a postulate; we similarly posit that there exists a model for ETAC). Small categories model theories, they are *syntax*, in that they describe a relational structure using compositionality; but large categories offer a way to interpret the syntax, so they are a *semantics*. Our stance is that a large relational structure is fixed once and for all, lying on the background, and allows for all other relational structures to be interpreted.

It is nearly impossible to underestimate the importance of this disengagement: syntax and semantics, once separated and given a limited ground of action, acquire their meaning.⁷

More technically, in our Definition 4.1 we recall how this perspective allows to interpret different kinds of logic in different kinds of categories: such an approach leads very far, to the purported equivalence between different flavours of logics and different classes of categories; the particular shape of semantics that you can interpret in \mathcal{K} is but a reflection of \mathcal{K} 's nice categorical properties (e.g., having finite co/limits, nice choices of factorisation systems [Bor94a, 5.5], [FK72], a subobject classifier; or the property of the posets $\mathsf{Sub}(A)$ of subobjects of an object A of being a complete, modular, distributive lattice...).

In light of Definition 4.1, this last property has to do with the internal logic of the category: propositions are the set, or rather the type, of "elements" for which they are "true"; and in nice cases (like e.g. in toposes), they are also arrows with codomain a suitable type of truth values Ω).

2.3. Categories are universes of discourse. Somehow, the previous section posits that category theory as a whole is "bigger than the mathematics itself", and it works as one of its foundations; a category is a totality where all mathematics can be re-enacted; in this perspective, ETAC works as a metalanguage in which we develop our approach. This is not very far from current mathematical practice, and in particular from Mac Lane's point of view:

since the unique large category we posit is "the universe". But this approach goes further, as it posits that *mathematical theories are in themselves mathematical objects*, and as such, subject to the same analysis we perform on the object of which those theories speak about.

⁷Of course, this is dialectical opposition at its pinnacle, and by no means a sterile approach to category theory; see [Law96] for a visionary account of how "dialectical philosophy can be modeled mathematically".

All in all, our main claim is that categories are of some use in clarifying a few philosophical problems, especially for what concerns the objects of discourse of ontology. The advantages of this approach are already visible in mathematics; we are trying to export them in the current philosophical debate.

Among many such advantages, we record those that are more influential to our work:

- the possibility of reading theories in terms of relations: this allows to suspend our ontological commitment on the nature of objects. They are given, but embedded in a relational structure; this relational structure, i.e. a category modeling the ontology in study, is the object of our discourse. Even more: the two entities should not be considered as distinct: an ontology is a category. This perspective is sketched in our section 6.
- a sharper, more precise, and less time-consuming conceptualisation process for ontology's subjects of study; if ontology is regarded as (the internal language of) a category, it becomes a *context-dependent* entity, i.e. a function of the relational structure in which it is located.
- Ontology can be approached with a *problem solving* attitude: answers to ontological problems are at least to some extent quantitatively determined; see our section 5 for a roundup of examples in this direction.
- A weak form of structuralism, kept at an informal, metatheoretic level, is more than enough to appreciate how objects interact between each other inside a theory, and to deduce how they should behave by just applying the basic constructions of elementary mathematics coupled with category theory. To put it simple, the reader isn't forced to unconditionally adopt an hardcore-structuralist foundation such as e.g. the Structural Realism of [Bai13, Eva16]; a similar attitude towards foundations is widespread in mathematical practice: many people do structural mathematics without even knowing, or without worrying about, the subtleties of what a purely structuralist foundation implies. And this for the simple reason that structural mathematics works: structural theories are easier to grok, they are modular, resilient to change, concise.
- In our system, ontology does not pose absolute questions: beings exist in a context, relative to a relational structure (=a category) they are the objects of. Something is certainly lost: we claim that what is lost is a complicated and confused tangle of misunderstandings, caused by the habit of confusing natural and formal language. A fortunate analogy still involves foundations of Mathematics: bounding the existence of sets to a hierarchy of universes undoubtedly loses something. But what is this something? How can it be probed? And then, in what sense it "exists"?

Our main point is that the majority of, if not all, theories of existence seem burdened by the impossibility to disentangle existence from a "context of existence". Instead, the super-exponential progress of mathematics along the XXth century can only be explained by the general acceptance of the belief that things do not "exist" in themselves; instead they do as long as they are meaningful pieces of relational structures. Sure structuralism is a single philosophical current among many: it is "the right one", since it profoundly reshaped

mathematics (=the prominent, most effective factory of epistemic knowledge humankind has ever produced).

As extremist as it may seem, our position fits into an already developed open debate; see for example the work of J.P. Marquis:

[...] to be is to be related, and the "essence" of an "entity" is given by its relations to its "environment". [Mar97]

Sure, such a point of view is only acceptable when its fruitfulness has been determined by clarifying and formalising the relationship between an ontology regarded as "all that there is", and a (large) category as "the place we inhabit (and in which we craft language)". Our purpose is to add a grain of sand to this fertile area of discussion.

As mentioned in our ?? these conceptual tools helped mathematical practice and has inadvertently inspired an epistemological and ontological quest about its objects of study. Someone might object that we should first know what is a structure before working with it; Krömer's reply seems particularly compelling:

this reproach is empty and one tries to explain the clearer by the more obscure when giving priority to ontology in such situations [...]. Structure occurs in the dealing with something and does not exist independently of this dealing. [Krö07]

Category theory was invented without worrying about foundational issues; they were addressed just later. It effectively and faithfully involved all mathematics; we now claim structuralism provides a "practical foundation" for metaphysical problems. For pragmatism and what it means in category theory, see

that structural mathematics is characterized as an activity by a treatment of things as if one were dealing with structures. From the pragmatist viewpoint, we do not know much more about structures than how to deal with them, after all.

[Krö07]

3. Preliminaries on variable set theory

अव्यक्तादीनि भूतानि व्यक्तमध्यानि भारत । अव्यक्तनिधनान्येव तत्र का परिदेवना ॥ २८॥

Śrīmadbhagavadgītā II, 28

The present section introduces the main mathematical tool of our discussion: the theory of variable sets. A variable set is just a family of sets indexed by another set I, i.e. (more formally) a class function $I \to \mathsf{Set}$. The collection of all such functions forms the object class of a category. Such categories are denoted as Set/I (read "sets over I") and they are a particularly rich framework to re-enact mathematics in its entirety; here we explore the structure of Set/I in full detail.

We begin by assessing the equivalence between two different but equivalent descriptions of the category of variable sets: as class functions $I \to \mathsf{Set}$, or as functions $h: A \to I$ with fixed codomain I (cf. [Bor94a, 1.6.1]). In some of our proofs it will be crucial to blur such a distinction between the category of functors $I \to \mathsf{Set}$ and the *slice* category Set/I ; once the following result is proved, we will freely refer to any of these two categories as the category of *variable sets* (indexed by I).

Proposition 3.1. Let I be a set, regarded as a discrete category, and let Set^I be the category of functors $F: I \to \mathsf{Set}$; moreover, let Set/I the slice category. Then, there is an equivalence (actually, an isomorphism, see [Bor94a, 1.5.1]) between Set^I and Set/I .

Proof. Our proof is based on the fact that we can represent the category Set^I as the category of I-indexed families of objects, i.e. with the category whose objects are $(\underline{X})_I := \{X_i \mid i \in I\}$, and morphisms $(\underline{X})_I \to (\underline{Y})_I$ the families $\{f_i : X_i \to Y_i \mid i \in I\}$. Given this, the two categories obviously identify, as a functor $F : I \to \mathsf{Set}$ amounts to a choice of sets $A_i := F(i)$, and functoriality reduces to the property that identity arrows in I go to identity functions $A_i \to A_i$.

Let us consider an object $h: X \to I$ of Set/I , and define a function $i \mapsto h^{\leftarrow}(i)$; of course, $(X(h))_I := \{h^{\leftarrow}(i) \mid i \in I\}$ is a I-indexed family, and since I can be regarded as a discrete category, this is sufficient to define a functor $F_h: I \to \mathsf{Set}$.

Let us define a functor in the opposite direction: let $F: I \to \mathsf{Set}$ be a functor. This defines a function $h_F: \coprod_{i \in I} Fi \to I$, where $\coprod_{i \in I} Fi$ is the disjoint union of all the sets Fi.

The claim now follows from the fact that the correspondences $h \mapsto F_h$ and $F \mapsto h_F$ are mutually inverse.

This is easy to verify: the function F_{h_F} sends $i \in I$ to the set $h_F^{\leftarrow}(i) = Fi$, and the function $h_{F_h} \in \mathsf{Set}/I$ has domain $\coprod_{i \in I} F_h(i) = \coprod_{i \in I} h^{\leftarrow}(i) = X$ (as i runs over the set I, the disjoint union of all preimages $h^{\leftarrow}(i)$ equals the domain of h, i.e. the set X).

Notation 3.2. The present remark is meant to establish a bit of terminology: by virtue of Proposition 3.1 above, an object of the category of variable sets is equally denoted pair $(A, f: A \to I)$, as a function $h: I \to \mathsf{Set}$, or as the family of sets $\{h(i) \mid i \in I\} = \{A_i \mid i \in I\}$. We call the function f the *structure map* of the variable set A, and we call the function F_h the functor *associated*, or corresponding, to the variable set in study. Common parlance almost always blurs the distinction between these objects.

Remark 3.3. A more abstract look at this result establishes the equivalence $\mathsf{Set}/I \cong \mathsf{Set}^I$ as a particular instance of the *Grothendieck construction* (see [Lei04, 1.1]): for every small category \mathcal{C} , the category of functors $\mathcal{C} \to \mathsf{Set}$ is equivalent to the category of *discrete fibrations* on \mathcal{C} (see [Lei04, 1.1]). In this case, the domain $\mathcal{C} = I$ is a discrete category, hence all functors $\mathcal{E} \to I$ are, trivially, discrete fibrations.

Remark 3.4. The next crucial step of our analysis is the observation that the category of variable sets is a *topos*: we break the result into the verification of the various axioms, as exposed in Definition A.2 and Definition A.3. Our proof relies on the fact that the category

of sets is itself a topos: in particular, it is cartesian closed, and admits the set $\{\bot, \top\}$ as subobject classifier.⁸

Proposition 3.5. The category of variable sets is Cartesian closed in the sense of [Bor94a, p.335].

Proof. We shall first show that the category of variable sets admits products: this is well-known as in Set/I , products are precisely pullbacks ([Bor94a, 2.5.1]); note that Proposition 3.1 gives an identification between the pullback $X \times_I Y$ as a set over I, and the I-indexed family of the preimages of i under h:

$$X \times_{I} Y$$

$$X \downarrow_{h} Y \iff i \mapsto h^{\leftarrow}(i) = \left\{ (x, y) \in X \times_{I} Y \mid h(x, y) = i \right\}$$

Now, this yields a canonical bijection $h^{\leftarrow}(i) \cong f^{\leftarrow}(i) \times g^{\leftarrow}(i)$. This is exactly the definition of the product of the two associated functors $F_f, F_g: I \to \mathsf{Set}$.

To complete the proof, we shall show that each functor $_\times_I Y$ has a right adjoint $Y \pitchfork_I _$. The functor $\mathsf{Set}^I \to \mathsf{Set}^I : Z \mapsto Y \pitchfork_I Z$ where $Y \pitchfork_I Z : i \mapsto \mathsf{Set}(Y_i, Z_i)$ does the job. This, together with a straightforward verification, sets up the bijection

$$\begin{array}{c} X \times_I Y \longrightarrow Z \\ \hline X \longrightarrow Y \pitchfork_I Z \end{array}$$

and by a completely analogous argument (the construction $(A, B) \mapsto A \times_I B$ is of course symmetric in its two arguments), we get a bijection

$$\begin{array}{c} X \times_I Y \longrightarrow Z \\ \hline Y \longrightarrow X \pitchfork_I Z; \end{array}$$

showing that also $X \times_I$ has a right adjoint $X \pitchfork_I$. This concludes the proof that the category of variable sets is Cartesian closed.

Proposition 3.6. The category of variable sets has a subobject classifier.

Proof. From Definition A.2 we know that we shall find a variable set Ω such that there is a bijection

$$\frac{\chi: A \longrightarrow \Omega}{\mathsf{Sub}_I(A)}$$

⁸We choose to employ a classical model of set theory, as opposed to an intuitionistic model where the classifier Ω consists of a more general Heyting algebra H; a general procedure to obtain a Ω -many valued logic of set theory is to take the topos $\mathcal{E} = \operatorname{Sh}(H)$ of *sheaves* on a Heyting algebra H: then, there is an isomorphism $\Omega_{\mathcal{E}} \cong H$. The core of all our argument is very rarely affected by the choice to cut the complexity of our Ω to be the bare minimum; this is mainly due to expository reasons. The reader shall feel free to replace $\{\bot, \top\}$ with a more generic choice of Heyting algebra, and they are invited to adapt the arguments of section section 5 accordingly.

where $\mathsf{Sub}_I(A)$ denotes the set of isomorphism classes of monomorphisms into A, in the category of variable sets.⁹ For the sake of simplicity, for the rest of the proof we fix as category of variable sets the slice Set/I .

From this we make the following guess: as an object of Set/I , Ω is the canonical projection $\pi_I: I \times \{\bot, \top\} \to I$. We are thus left with the verification that π_I has the correct structure and universal property.

First, we shall find a universal monomorphism $\mathbf{t}: * \to \Omega$ in Set/I . Unwinding the definitions (in particular, since the identity function $\mathrm{id}_I: I \to I$ is evidently the terminal object in Set/I), such a map amounts to an injective function $I \to \Omega$ having the projection $\pi_I: \Omega \times I \to I$ as left inverse.

It turns out that the function $I \to I \times \{\bot, \top\}$ choosing the top-level copy of $I \cong I \times \{\top\}$ plays the rôle of t: in the following, we shortly denote Ω_I such a product set.

Now, a monomorphism $\begin{bmatrix} s \\ \downarrow \end{bmatrix} \hookrightarrow \begin{bmatrix} a \\ \downarrow \end{bmatrix}$ in Set/I is given by an injective function $S \hookrightarrow A$ that commutes with the structure maps of S, A; so, the commutative square

$$S \longrightarrow I$$

$$\downarrow \qquad \qquad \downarrow_{\mathsf{t}}$$

$$A \xrightarrow{\chi_S} \Omega_I$$

is easily seen to be a pullback; in fact, every morphism of variable sets $\chi_S: A \to \Omega_I$ must send the element a:A to a pair $(i,\epsilon): I \times \{\bot, \top\}$. The pullback of χ and \mathfrak{t} , as defined above, consists of the subset of the product $A \times I$ such that $\chi(a) = \mathfrak{t}(i) = (i, \top)$; this defines a variable set $S = (\chi(i, \top))_I$, and such a correspondence is clearly invertible: every variable set arises in this way, and defines a "characteristic" function $\chi_S: (A, \lceil f \downarrow^A \rceil) \to (\Omega_I, \pi_I)$:

$$\chi_S(a) = \begin{cases} (f(a), \top) & \text{if } a \in S \\ (f(a), \bot) & \text{if } a \notin S \end{cases}$$

This concludes the proof of the fact that Set/I admits a subobject classifier.

Remark 3.7. A straightforward but important remark is now in order. The structure of subobject classifier of Ω_I , and in particular the shape of a characteristic function $\chi_S: A \to \Omega_I$ for a subobject $S \subseteq A$ in Set/I , is explicitly obtained using the structure map f of the variable set $f: A \to I$.

This will turn out to be very useful along our main section, where we shall note that a proposition in the internal language of Set/I amounts to a function $p:U\to\Omega_I$, having as

⁹A monomorphism into A as an object of Set^I is nothing but a family of injections $s_i: S_i \to A_i$; a monomorphism in Set/I is a set S in a commutative triangle

domain a variable set $u: U \to I$, whose structure map uniquely determines the "strength" (see Remark 5.1) of the proposition p. In a nutshell, p(x) is a truth value in Ω_I ; the fact that p is a morphism of variable sets however forces this truth value to be $(u(x), \epsilon) \in I \times \{\bot, \top\}$. We invite the baffled reader not to worry now; we will duly justify each of these conceptual steps along section 5.

Proposition 3.8. The category of variable sets is cocomplete and accessible.

Proof. Cocompleteness can be shown appealing to [Bor94a, ??]: if \mathcal{C} is a small category, and \mathcal{D} a cocomplete category, the category $\mathcal{D}^{\mathcal{C}}$ of all functors $F: \mathcal{C} \to \mathcal{D}$ is cocomplete, and colimits are computed pointwise, meaning that given a diagram $\mathcal{J} \to \mathcal{D}^{\mathcal{C}}$ of functors F_j , colim $F_j: \mathcal{D}^{\mathcal{C}}$ is the functor $C \mapsto \operatorname{colim}_{\mathcal{J}} F_j(C)$ (that exists in \mathcal{D} by assumption). Given that $\operatorname{Set}/I \cong \operatorname{Set}^I$, and that the category Set is cocomplete, we obtain the result.

Accessibility is a corollary of Yoneda in the following form: every $F:I\to\mathsf{Set}$ is a colimit of representables

$$F \cong \operatorname{colim}\left(\mathcal{E}(F) \xrightarrow{\Sigma} I \xrightarrow{y} \operatorname{Set}^{I}\right)$$

(the category of elements [Bor94a] $\mathcal{E}(F)$ of $F: \mathsf{Set}^I$ is small because in this case $\mathcal{E}(F) \cong \coprod_{i \in I} Fi$).

Corollary 3.9. The category of variable sets is a Grothendieck topos.

4. The internal language of variable sets

I am hard but I am fair; there is no racial bigotry here.
[...] Here you are all equally worthless.

GySgt Hartman

Definition 4.1. The internal language of a topos \mathcal{E} is a formal language defined by types and terms; suitable terms form the class of variables. Other terms form the class of formulæ.

- Types are the objects of \mathcal{E}
- Terms of type X are morphisms of codomain X, usually denoted $\alpha, \beta, \sigma, \tau : U \to X$.
 - Suitable terms are variables: the identity arrow of $X \in \mathcal{E}$ is the variable $x : X \to X$. For technical reasons we shall keep a countable number of variables of the same type distinguished: $x, x', x'', \dots : X \to X$ are all interpreted as 1_X .
- ullet Generic terms may depend on multiple variables; the domain of a term of type X is the domain of definition of a term.

A number of inductive clauses define the other terms of the language:

• the identity arrow of an object $X \in \mathcal{E}$ is a term of type X;

¹⁰These technical reasons lie on the evident necessity to be free to refer to the same free variable an unbounded number of times. This can be formalised in various ways: we refer the reader to [LS88] and [Joh77].

• given terms $\sigma:U\to X$ and $\tau:V\to Y$ there exists a term $\langle\sigma,\tau\rangle$ of type $X\times Y$ obtained from the pullback

$$\begin{array}{c|c} W & \longrightarrow X \times V \\ \downarrow & & \downarrow \\ V \times Y & \longrightarrow X \times Y \end{array}$$

- Given terms $\sigma: U \to X, \tau: V \to X$ of the same type X, there is a term $[\sigma = \tau]: W \xrightarrow{\langle \sigma, \tau \rangle} X \times X \xrightarrow{\delta_X} \Omega$, where $\delta_X: X \times X \to \Omega$ is defined as the classifying map of the mono $X \hookrightarrow X \times X$.
- Given a term $\sigma:U\to X$ and a term $f:X\to Y$, there is a term $f[\sigma]:=f\circ\sigma:U\to Y$.
- Given terms $\theta: V \to Y^X$ and $\sigma: U \to X$, there is a term

$$W\langle\theta,\sigma\rangle\to Y^X\times X\xrightarrow{\mathrm{ev}}Y$$

• In the particular case $Y = \Omega$, the term above is denoted

$$[\sigma \in \theta] : W\langle \theta, \sigma \rangle \to \Omega$$

• If x is a variable of type X, and $\sigma: X \times U \to Z$, there is a term

$$\lambda x.\sigma: U \xrightarrow{\eta} (X \times U)^X \xrightarrow{\sigma^X} Z^X$$

obtained as the mate of σ .

These rules can of course be also presented as the formation rules for a Gentzen-like deductive system: let us rewrite them in this formalism.

$$\begin{array}{ll} \frac{\sigma: U \to X & \tau: V \to Y}{\langle \sigma, \tau \rangle : W \langle \theta, \sigma \rangle \to X \times Y} \\ \\ \frac{\sigma: U \to X & \tau: V \to X}{[\sigma = \tau]: W \to \Omega} & \frac{\sigma: U \to X & f: X \to Y}{f[\sigma]: U \to Y} \\ \\ \frac{\theta: V \to Y^X & \sigma: U \to X}{W \langle \theta, \sigma \rangle \to Y^X \times X \xrightarrow{\mathrm{ev}} Y} & \frac{x: X & \sigma: X \times U \to Z}{\lambda x. \sigma = \sigma^X \circ \eta: U \to (X \times U)^X \to Z^X} \end{array}$$

To formulas of the language of \mathcal{E} we apply the usual operations and rules of first-order logic: logical connectives are induced by the structure of internal Heyting algebra of Ω : given formulas φ, ψ we define

- $\varphi \vee \psi$ is the formula $W\langle \varphi, \psi \rangle \to \Omega \times \Omega \xrightarrow{\vee} \Omega$;
- $\varphi \wedge \psi$ is the formula $W\langle \varphi, \psi \rangle \to \Omega \times \Omega \xrightarrow{\wedge} \Omega$;
- $\varphi \Rightarrow \psi$ is the formula $W(\varphi, \psi) \to \Omega \times \Omega \xrightarrow{\Rightarrow} \Omega$;
- $\neg \varphi$ is the formula $U \to \Omega \xrightarrow{\neg} \Omega$.

Universal quantifiers admit an interpretation in the Mitchell-Bénabou language of \mathcal{E} : the following definition comes from [MLM92, VI].

Definition 4.2. Let \mathcal{E} be a topos, and let $\varphi: U \times V \to \Omega$ be a formula defined on a product type $U \times V$. The variable u: U can be now quantified over yielding a new formula

$$\forall u.\varphi(u,v):V\to\Omega$$

which no longer contains u as a free variable.

The term $\forall u.\varphi(u,v)$ is obtained by composition of $\lambda u.\varphi(u,v):V\to V\to\Omega^U$ with the unique right adjoint $\forall_t: \Omega^U \to \Omega$ to the precomposition $t^*: \Omega \to \Omega^{U11}$ in the diagram

$$V \xrightarrow{\lambda u.\varphi} \Omega^U \xrightarrow{\forall_t} \Omega$$

(see [MLM92, IV.9]). Similarly, we obtain a term $\exists u.\varphi(u,v)$ from the composition

$$V \xrightarrow{\lambda u.\varphi} \Omega^U \xrightarrow{\exists_t} \Omega$$

with the left adjoint $\exists_t \dashv t$.

Each formula $\varphi: U \to \Omega$ defines a subobject $\{x \mid \varphi\} \subseteq U$ of its domain of definition; this is the subobject classified by φ , and must be thought as the subobject where " φ is true".

If $\varphi:U\to\Omega$ is a formula, we say that φ is universally valid if $\{x\mid\varphi\}\cong U$. If φ is universally valid in \mathcal{E} , we write " $\mathcal{E} \Vdash \varphi$ " (read: " \mathcal{E} believes in φ ").

Examples of universally valid formulas:

- $\mathcal{E} \Vdash [x = x]$
- $\begin{array}{c} \bullet \ \mathcal{E} \Vdash [(x \in_X \{x \mid \varphi\}) \iff \varphi] \\ \bullet \ \mathcal{E} \Vdash \varphi \ \text{if and only if} \ \mathcal{E} \Vdash \forall x. \varphi \\ \end{array}$
- $\mathcal{E} \Vdash [\varphi \Rightarrow \neg \neg \varphi]$

Let us now glance at the internal language of variable sets. This will turn out to be the cornerstone for the analysis in section 5.

Here we just unwind Definition 4.1 at its very surface; we invite the reader to endeavour in the instructive exercise to fill all details properly.

Definition 4.3. Types and terms of $\mathcal{L}(\mathsf{Set}/I)$ are respectively arrows $\begin{bmatrix} U \\ \downarrow I \end{bmatrix}$ with codomain I, and commutative triangles

Given this, we define

• product terms as functions $\sigma: U_1 \times_I U_2 \times_I \cdots \times_I U_n \to X$;

¹¹The arrow $t: U \to 1$ is the terminal map, and $t^*: \Omega^1 \to \Omega^U$ is induced by precomposition; it sends a term $x:\Omega$ to the constant function $t^*x=\lambda u.x.$

• terms $\langle \sigma, \tau \rangle$ obtained as the (diagonal map in the) pullback

• terms $[\sigma = \tau]$, obtained as compositions

$$W\langle \sigma, \tau \rangle \xrightarrow{\langle \sigma, \tau \rangle} X \times_I Y \xrightarrow{\delta_X} \Omega_I$$

where $\delta_X: X \times_I X \to \Omega$ classifies the mono $m: X \to X \times_I X$ obtained by the universal property of the pullback $X \times_I X$ as the kernel pair of $\begin{bmatrix} x \\ x \downarrow \end{bmatrix}$.

The cartesian closed structure of Set/I (cf. Proposition 3.5) yields terms (we denote $B^A :=$ $A \cap B$ in the notation of Proposition 3.5)

- $[\sigma \in \theta]: W\langle \theta, \sigma \rangle \to Y^X \times_I X \to \Omega_I$ from suitable σ, θ ;
- $U \to (X \times_I U)^X \xrightarrow{\sigma^X} Z^X$ (λ -abstraction on x : X) from a suitable $\sigma : X \times_I U \to Z$.

Quantifiers can be deduced in a similar way, starting from their general definition in Definition 4.2.

Remark 4.4. Like every other Grothendieck topos, the category Set/I has a natural number object (see [MLM92, VI.1], [LS88, p.46]); here we shall outline its construction. It is a general fact that such a natural number object in the category of variable sets, consists of the constant functor on \mathbb{N} : Set, when we realise variable sets as functors $I \to \text{Set}$: thus, in fibered terms, the natural number object is just $\pi_I : \mathbb{N} \times I \to I$.

A natural number object provides the category \mathcal{E} it lives in with a notion of recursion and with a notion of \mathcal{E} -induction principle: namely, we can interpret the sentence

$$(Q0 \land \bigwedge_{i \le n} Qi \Rightarrow Q(i+1)) \Rightarrow \bigwedge_{n:\mathbb{N}} Qn$$

for every $Q: \mathbb{N} \to \Omega_I$.

In the category of variable sets, the universal property of $\pi_I : \mathbb{N} \times I \to I$ amounts to the following fact: given any diagram of solid arrows

where every arrow carry a structure of morphism over I (and $0: i \mapsto (0, i), s \times I: (n, i) \mapsto (n+1, i)$), there is a unique way to complete it with the dotted arrow, i.e. with a function $u: \mathbb{N} \times I \to X$ such that

$$u \circ (s \times I) = f \circ u.$$

Clearly, u must be defined by induction: if it exists, the commutativity of the left square amounts to the request that u(0, i) = x(i) for every i : I. Given this, the inductive step is

$$u(s(n, i)) = u(n + 1, i) = f(u(n, i)).$$

This recursively defines a function with the desired properties; it is clear that these requests uniquely determine u.

Such a terse exposition obviously does not exhaust such a vast topic as recursion theory conducted with category-theoretic tools. The interested reader shall consult [JR97] for a crystal-clear introductory account, and [CH08, CHH14] for more recent and modern development of recursion theory.

The object of natural numbers of Set/I is easily seen to match the definition of the *initial* object [Bor94a] of the category Dyn/I so defined:

- the objects of Dyn/I are dynamical systems in Set/I , i.e. the triples (x,X,f), where $X : \mathsf{Set}/I$ (say, with structure map $\xi : X \to I$), $x : (I, \mathrm{id}_I) \to (X, \xi)$ and $f : X \to X$ is an endo-morphism of variable sets;
- given two dynamical systems (x, X, f) and (y, Y, g) a morphism between them is a function $u: X \to Y$ such that the diagram in (4.1) commutes in all its parts.

The reason why such a triple (x, X, f) identifies as a (discrete) dynamical system is easily seen: the function $x: I \to X$ works as initial seed for a recursive application of f, in such a way that every $f: X \to X$ defines a sequence

$$u_{n+1} := f(u_n)$$

of its iterates. The system now lends itself to all sorts of questions: is there a fixed point for $u_n(x)$? Does the limit of $u_n(x)$ belong to X (not obvious: consider X = [0, 1[and $u_n(x) \equiv 1 - \frac{1}{n})$? Is $u_n(x)$ continuous in x? Etc.

5. Nine copper coins, and other toposes

Explicaron que una cosa es *igualdad*, y otra *identidad*, y formularon una especie de *reductio ad absurdum*, o sea el caso hipotético de nueve hombres que en nueve sucesivas noches padecen un vivo dolor. ¿No sería ridículo -interrogaron- pretender que ese dolor es el mismo?

JLB —Tlön, Uqbar, Orbis Tertius

According to our description of the Mitchell-Bénabou language in the category of variable sets, *propositions* are morphisms of the form

$$p:U\to\Omega_I$$

where Ω_I is the subobject classifier of Set/I described in Proposition 3.6; now, recall that

- the object $\Omega_I = \{0,1\} \times I \to I$ becomes an object of Set/I when endowed with the projection $\pi_I : \Omega_I \to I$ on the second factor of its domain;
- the universal monic $t: I \to \Omega_I$ consists of a section of π_I , precisely the one that sends i: I to the pair $(i, 1): \Omega_I$;
- every subobject $U \hookrightarrow A$ of an object A results as a pullback (in Set/I) along t:

(see Proposition 3.6 for a complete proof)

The set I in this context acts as a *multiplier* of truth values, in that every proposition can have a pair (ϵ, i) as truth value. We introduce the following notation: a proposition $p: U \to \Omega_I$ is true, in context x: U, with strength t, if p(x) = (1, t) (resp., p(x) = (0, t)).

Remark 5.1. A proposition in the internal language of variable sets is a morphism of the following kind: a function $p: U \to \Omega_I$, defined on a certain domain, and such that

$$U \xrightarrow{p} \{0,1\} \times I$$

$$\downarrow u \qquad \qquad \downarrow \pi_{I}$$

$$I = I$$

(it must be a morphism of variable sets!) This means that $\pi p(x:U) = u(x:U)$, so that $p(x) = (\epsilon_x, u(x))$ for $\epsilon_x = 0, 1$ and u is uniquely determined by the "variable domain" U. This is an important observation: the strength with which p is true/false is completely determined by the structure of its domain, in the form of the function $u: U \to I$ that renders the pair (U, u) an object of Set/I .

To get a grip of the different roles of various classes of propositions, and given that our interest will be limited to a certain class of particular propositions that we will construct ex nihilo, it is now convenient to discuss what constraints we have to put on the structure of I: of course, the richest this structure is, the better will the category Set/I behave: it is for example possible to equip I with an order structure, or a natural topology. Among different choices of truth multiplier, yielding different categories of variable sets, and different kinds of internal logic therein, we will privilege those that make I behave like a space of strengths: a dense, linear order with LUP, thus not really far from being a closed, bounded subset of the real line.

The main result of the present section is a roundup of examples showing that it is possible to concoct categories of variable sets where some seemingly paradoxical constructions coming

from J.L. Borges' literary world have, instead, a perfectly "classical" behaviour when looked with the lenses of the logic of variable set theory.

Each of the examples in our roundup Example 5.4, 5.10, 5.11 is organised as follows: we recall the shape of a paradoxical statement in Borges' literary world. Then, we show in which topos this reduces to an intuitive statement expressed in the syntax of a variable set category.

More than often, we use I = [0,1] as base of variable sets; as already said, there are different reasons for this choice: the most intuitive is that if a truth value is given with a *strength* $t \in I$ it is a natural request to be able to *compare* elements in this set; in particular, it should always be possible to assess what truth value is stronger.

For this reason, even if this assumption is never strictly necessary (the only constraint is that I is totally, or partially, ordered set by a relation \leq), a natural choice for I is a continuum (=a dense total order with LUP –see [Mos09]). An alternative choice drops the density assumption: in that case the (unique) finite total order $\Delta[n] = \{0 < 1 < \cdots < n\}$, or the countable total order $I = \omega = \bigcup_n \Delta[n]$ are all pretty natural choices for I (although it is way more natural for I to have a minimum and a maximum element).¹² In each of these cases "classical" logic is recovered as a projection: propositions p can be true or false with strength 1, 1 the maximum element of I:

In order to aid the reader understand the explicit way in which I "multiplies" truth values, we spell out explicitly the structure of the subobject classifier in $\mathsf{Set}/\Delta[2]$. In order to keep calling the minimum and maximum of I respectively 0 and 1 we call $\frac{1}{2}$ the intermediate point of $\Delta[2]$.

¹²We're only interested in the notion of an abstract interval here: a continuum X endowed with an operation $X \to X \lor X$ of "zooming", uniquely defined by this property. In a famous paper Freyd characterises "the interval" as the terminal interval coalgebra: see [Fre08, §1]; for our purposes, note that [0,1] is a natural choice: it is a frame, thus a Heyting algebra $\mathfrak{H} = ([0,1], \land, \lor, \Rightarrow)$ with respect to the pseudo-complement operation given by $(x \Rightarrow z) := \bigvee_{x \land y \leq z} y$ (it is immediate that $x \land a \leq b$ if and only if $a \leq x \Rightarrow b$ for every $a, b \in [0,1]$).

¹³Here I is represented as an interval whose minimal and maximal element are respectively 0 and 1; of course these are just placeholders, but it is harmless for the reader to visualise I as the interval [0, 1].

Remark 5.2. The subobject classifier of $\operatorname{Set}/\Delta[2]$ consists of the partially ordered set $\Delta[1] \times$ $\Delta[2]$ that we can represent pictorially as a rectangle

endowed with the product order. The resulting poset is partially ordered, and in fact a Heyting algebra, because it results as the product of two Heyting algebras: the Boole algebra $\{0 < 1\}$ and the frame of open subsets of the Sierpinski space $\{a, b\}$ (the topology is $\tau_S =$ $\{\emptyset, \{a\}, \{a,b\}\}\$).

Remark 5.3. Given that I = [0,1] ndowed with its usual Euclidean topology is one of our most natural choices, we explicitly define some interesting sets obtained out of Ω_I or out of a proposition $p: U \to \Omega_I$ in the Mitchell-Bénabou language of $\mathsf{Set}/[0,1]$:

- $A^{\top} = \{x : U \mid p(x) = (1, t_x), t_x > 0\} = p^{\leftarrow}(\{1\} \times (0, 1]) \text{ e } A^{\perp} = \{x : U \mid p(x) = (0, t_x), t_x > 0\}; \text{ this is the subset of functions } u : U \to I \text{ such that } u^{\leftarrow}0 = \varnothing.$ $B^{\top} = \{x : U \mid p(x) = (1, 1)\} = p^{\leftarrow}((1, 1)) \text{ and } B^{\perp} = \{x : U \mid p(x) = (0, 1)\}$ "true"s
- and "false"s; these are obtained as fibers over the maximal element of I.
- $E_t^{\top} = \{x : U \mid p(x) = (1, t)\}\ e E_t^{\perp} = \{x : U \mid p(x) = (0, t)\}.$

A crucial decision at some point will be about the regularity with which the strength of p depends with respect to the variables on its domain of definition. Without a continuous dependence, small changes in context x:U might drastically change the truth value p(x). ¹⁴

5.1. The unimaginable topos theory hidden in Borges' library. Jorge Luis Borges' literary work is well-known for being made by paradoxical worlds; oftentimes, seemingly absurd consequences follow by stretching to their limit ideas from logic and mathematics: time, infinite, self-referentiality, duplication, recursion, the relativity of time, the illusory nature of our perceptions, the limits of language, its capacity to generate worlds.

In the present section we choose *Fictions*, Borges' famous collection of novels, as source of inspiration for possible and impossible worlds and their ontology.

Usualmente la costruzione di un "mondo impossibile" (variamente impiegato nelle semantiche paraconsistenti) va circa come segue: since the classic work of Rescher and Brandom [W.82] it is obtained with recursive operations on (kripkean) standard worlds ...; noi rovesciamo tale prospettiva, e invece di depennare dal computo degli universi i mondi le cui caratteristiche do not comply with sensorial experience, or imply paradoxical entities/constructs, we accept their existence for bizarre that it may seem, and we try to deduce what kind of logic can consistently generate such statements.

¹⁴There is no a priori reason to maintain that p is a continuous proposition; one might argue that discontinuous changes in truth value of p happen all the time in "real life"; see the family of paradoxes based on so-called separating instants: how well-defined the notion of "time of death" is? How well-defined the notion of "instant in time"?

The interest in such a literary calembour is manifold, and the results are surprising:

- we unravel how a mathematically deep universe Borges has inadvertently created: of the many compromises we had to take in order to reconcile literature and the uniderlying mathematics, ¹⁵ we believe no one is particularly far-fetched one;
- we unravel how *relative* ontological assumptions are; they are not given: using category theory, ontology, far from being the presupposition on which it is based, is a byproduct of language itself. The more expressive language is, the more ontology; the fuzzier its capacity to assert truth, the fuzzier existence becomes;
- "Fuzziness" of existence, i.e. the fact *entia* exist less than completely, is hard-coded in the language (in the sense of Definition 4.1) of the category we decide to work in from time to time;

• ..

To sum up, readers willing to find an original result in this paper, might find it precisely here: we underline how Borges' alternative worlds (Babylon, Tlön dots) are mathematically consistent places, worthy of existence as much as our world, just based on a different internal logic. And they are so just thanks to a base-sensitive theory of existence –ontology breaks in a spectrum of ontologies, one for each category/world.

The first paradox we aim to frame in the right topos is the famous nine copper coins argument, used by the philosophers of Tlön to construct a paradoxical object whose existence persists over time, in absence of a consciousness continually perceiving it and maintaining in a state of being.

Example 5.4 (Nine copper coins). First, we recall the exact statement of the paradox: ¹⁶

El martes, X atraviesa un camino desierto y pierde nueve monedas de cobre. El jueves, Y encuentra en el camino cuatro monedas, algo herrumbradas por la lluvia del miércoles. El viernes, Z descubre tres monedas en el camino. El viernes de mañana, X encuentra dos monedas en el corredor de su casa. El quería deducir de esa historia la realidad -id est la continuidad- de las nueve monedas recuperadas.

Tuesday, X crosses a deserted road and loses nine copper coins. On Thursday, Y finds in the road four coins, somewhat rusted by Wednesday's rain. On Friday, Z discovers three coins in the road. On Friday morning, X finds two coins in the corridor of his house. The heresiarch would deduce from this story the reality - i.e., the continuity - of the nine coins which were recovered.

It is absurd (he affirmed) to imagine that four of the coins have not existed between Tuesday and Thursday, three between Tuesday and Friday afternoon, two between Tuesday and Friday morning. It is logical to think that they have existed - at least in some secret way, hidden from the comprehension of men - at every moment of those three periods.

 $^{^{15}}$ See Remark 5.5 below: these "compromises" mainly amount to assumptions on the behaviour of space-time on Tlön and Babylon.

¹⁶The paradox appears in a primitive, mostly unchanged version in [Bor97], where instead of nine copper coins, a single arrow, shot by an anonymous archer, disappears among the woods. For what concerns Tlön's nine copper coins, our translation comes from [Bor99b]:

Es absurdo (afirmaba) imaginar que cuatro de las monedas no han existido entre el martes y el jueves, tres entre el martes y la tarde del viernes, dos entre el martes y la madrugada del viernes. Es lógico pensar que han existido -siquiera de algún modo secreto, de comprensión vedada a los hombres- en todos los momentos de esos tres plazos.

Before going on with our analysis, it is important to remark that there is one and only one reason why the paradox of the nine copper coins is invalid: copper does not rust. Incidentally, we will be able to propose a rectification of this "rust counterargument" without appealing to the assumption that copper can rust on Tlön due to a purported difference between Earth's and Tlönian chemistry.

It is obvious on what this construction leverages to build an efficient aporia: the unimaginable persistence of things through time, even without a perceivent consciousness.

Expressed in natural language, our solution to the paradox goes more or less as follows: X loses their coins on Tuesday, and the force φ with which they "exist" lowers; it grows back in the following days, going back to a maximum value when X retrieves two of their coins on the front door. Y findings of other coins raises their existence force to a maximum. The coins that Y has found rusted (or rather, the surface copper oxidized: this is possible, but water is rarely sufficient to ignite the process alone –certainly not in the space of a few hours.

Remark 5.5. In this perspective, Tlön classifier of truth values can be taken as $\Omega_I = \{0 < 1\} \times I$, where I is any set with more than one element; a minimal example can be $I = \{N, S\}$ (justifying this choice from inside Tlön is easy: the planet is subdivided into two emispheres; each of which now has its own logic "line" independent from the other), but as explained in Remark 5.5 a more natural choice for our purposes is the closed real interval I = [0, 1].

This allows for a continuum of possible forces with which a truth value can be true or false; it is tobe noted that [0,1] is also the most natural place on which to interpret fuzzy logic, albeit the interest for [0,1] therein can be easily and better motivated starting from probability theory. (There are interesting perspective on how to develop basic measure theory out of [0,1]. For example, measures valued in things like Banach space and more general topological vector spaces have been considered.)

We now start to formalise properly what we said until now. To set our basic assumptions straight, we proceed as follows:

• Without loss of generality, we can assume the set $C = \{c_1, \ldots, c_9\}$ of the nine coins to be totally orered and partitioned in such a way that the first two coins are those retrieved by X on Tuesday, the subsequent four are those found by Y on their way, and the other three are those seen by Z. So,

$$C = C_X \sqcup C_Y \sqcup C_Z$$
.

and $C_X = \{c_{X1}, c_{X2}\}$, $C_Y = \{c_{Y1}, c_{Y2}, c_{Y3}, c_{Y4}\}$, $C_Z = \{c_{Z1}, c_{Z2}, c_{Z3}\}$ As already said, the truth multiplier I is the closed interval [0, 1] with its canonical order –so with its canonical structure of Heyting algebra, and if needed, endowed with the usual topology inherited by the real line.

• Propositions of interest for us are of the following form:

$$\lambda gcd.p(g,c,d): \{X,Y,Z\} \times C \times W \to \Omega_I$$

where $W \subseteq \{S, M, Tu, W, Th, F, Sa\}$ is a set of days (strictly speaking, the paradox involves just the interval [Tu, F]). The value p(g, c, d) models how in g's frame of existence the coin c exists at day d with strength p(g, c, d).

Definition 5.6 (Admissible coins). We now define an admissible configuration of coins any arrangement of C such that the following two conditions are satisfied:

AD1) for all day d and coin c, we have

$$\sum_{u \in \{X,Y,Z\}} p(u,c,d) = (\top,1)$$

where we denote as "sum" the logical conjunction in Ω_I : this means that day by day, the *global* existence of the group of coins constantly attains the maximum; it is the *local* existence that lowers when the initial conglomerate of coins is partitioned.

AD2) Moreover,

$$\begin{cases} \sum_{c_X \in C_X} p(X, c_X, V) = (\top, 1) \\ \sum_{c_Y \in C_Y} p(Y, c_Y, G) = (\top, 1) \\ \sum_{c_Z \in C_Z} p(Z, c_Z, V) = (\top, 1) \end{cases}$$

In an admissible configuration the subsets C_X , C_Y , C_Z can only attain an existence $p(g, c, d) \leq (\top, 1)$; that is to say, no coin completely exists locally. But for an hypothetical external observer, capable of observing the system, adding up the forces with which the various parts of C exist, the coins globally exist "in some secret way, of understanding forbidden to men" (or rather, to X, Y, Z).

Remark 5.7. An important claim is now in order, as our construction might appear just a sleight of hand leaving open the main problem posed by the coin riddle: where do the coins exist? Not to mention that to some extent, every theory of existence posits that things are there in some secret way. Tlön's idealist might deny time (our model makes no strong assumption on what time is made of: discrete, continuous, homogeneous, slowed by traveling at high speed...); B^{\perp} ontologists live comfortably in B^{\perp} , as defined in Remark 5.3 without being able to tell anything about how objects "completely do not exist". At the opposite side of the spectrum the pure empiricist lives in B^{\top} , and they're unable to tell how they "completely exist").

This is where our analysis comes in handy; in particular, this is where our particular choice of Ω_I plays its rôle. In our model B^{\perp}, B^{\top} are just particular slices of a single object where they coexist as particular fibers; the approach that looks at them as such is *inherently better*, as it yields a quantitative answer framing both B^{\top} - and B^{\perp} -ontology as opposite sides of a spectrum made out of diverse colours.

FIGURE 1. A pictorial representation of the truth forces of coins in different days; we choose a minimally complex, piecewise linear model where strength of existence goes up and down linearly to join the points where [Bor99b] gives complete information about the coins' configuration. X is marked in red, Z in yellow, Y in blue. Time is considered as a continuum line, marked at weekdays for readability.

Example 5.8. An example of an admissible configuration of coins is the following (cf. Figure 1): we assume strength of existence goes up and down linearly to join the points where we have information about total existence of the subsets C_X, C_Y, C_Z : in the remaining instants of time, the coins out of sight for X share an equal amount of existence in such a way that constraints AD1 and AD2 above are satisfied: in this particular example, $p(Y, c_Y, \mathbb{Th}) = (\top, 1)$, whereas $p(X, C_X, \mathbb{Th}) = p(Z, C_Z, \mathbb{Th}) = (\top, 1/5)$, and $p(Y, c_Y, \mathbb{F}) = (\top, 1/4)$, whereas $p(X, C_X, \mathbb{F}) = p(Z, C_Z, \mathbb{F}) = (\top, 1)$.

Remark 5.9 (Continuity for a proposition). Let $p:U\to\Omega_I$ be a proposition; here we investigate what does it mean for p to be (globally) continuous with respect to the Euclidean topology on I=[0,1], in the assumption that its domain of definition U is metrisable (this is true for example when U is a subset of space-time). The condition is that

$$\forall \epsilon > 0, \ \exists \delta > 0: |x - y| < \delta \Rightarrow |px - py| < \epsilon$$

Da questo segue immediatamente che quando p è continua nel suo dominio, i valori di verità di p in configurazioni "vicine" in un senso opportuno sono dati con forze allo stesso modo vicine (chiaramente questa è una descrizione spannometrica della nozione di continuità...).

All elementary topology results apply to such a proposition: for example the set of forces with which p is true or false is a connected subset of Ω_I , compact if U was compact.

Continuity and discontinuity of a proposition $p: U \to \Omega_I$ now capture quite well other pieces of Borges' literary universe: here we provide two examples. We refrain from a deep,

quantitative analysis, and we invite the reader to fill the details of our reasoning as a pleasant re-reading exercise of [Bor99a] and [Bor99b].¹⁷

Example 5.10 (Discontinuity, sapphire from Taprobana). Propositions $p: U \to \Omega_{[0,1]}$ that are allowed to be discontinuous in its variables depend unpredictably from their context: such propositions model seemingly chaotic events triggered as the end terms of a chain of disconnected prior events; in fact, if we assume a real base for the domain of p, its continuity as stated in Remark 5.9 roughly means that events in the same neighbourhood –"near" in space or temporally contiguous– can't have too much different truth/force values.

A model for such a universe, where "terrible consequences" sometimes follow from the "impersonal drawings, whose purpose is unclear" characterising the Company's actions: seemingly disconnected (that "a sapphire from Taprobana be thrown into the waters of the Euphrates"; that "a bird be released from the top of a certain tower"; that "every hundred years a grain of sand be added to (or taken from) the countless grains of sand on a certain beach"), but generating nontrivial dynamics when inserted in a suitable sequence as in Figure 2.

Let us consider the dynamical system $(\nabla \circ p, [0,1])$ obtained from the iterates of the composition $\nabla \circ p : [0,1] \to [0,1]$ $(\nabla : I \coprod I \to I)$ is the fold map of I, obtained from the identity of I and the universal property of the coproduct). We start from a proposition p depending on a free variable t : I; then, $p(t) = (u(t), \epsilon) \in \Omega_I$ consists of a force and a truth value; but p can be evaluated on u(t) (although this is not its universal property, the fold map ∇ just forgets the truth value, keeping the force): the process can thus be iterated as follows, exploiting the universal property of the natural number object in Set/I :

FIGURE 2. A dynamical system induced by the Company's infinite, impersonal drawings.

It is clear that the limit behaviour of such a sequence strongly depends on the analytic properties of f (cf. [Str96] for an intro to one-dimensional dynamic systems and for their applications see [Wig03]). In a well-known procedure, a repeated series of drawings can chaotically deform the configuration space on which p is evaluated.¹⁸

Another compelling example is that of the monotonicity of a proposition depending, say, on a certain number of observers who acknowledge the "existence" of an object R (be it

¹⁷The plot of [Bor99a] in a nutshell is: in Babylon, a lottery game infiltrates reality to the point that it ends up governing the actions of all men; freeing them from free will while coorting them into pawns of an infinite, inescapable, unknowable game, governed by an iron, seemingly chaotic, probabilistic logic.

¹⁸There is of course countless termination conditions on such process p; the series can be periodic, it can stop when p reaches maximum or minimum force, or a prescribed value, or is inside/outside a certain range of forces...; we leave such speculations to the mystagogues of the Company, or to the lions of Qaphqa.

physical or conceptual) in large numbers, from which very reason the existence of R gains strength.

Example 5.11 (Continuity: a few birds, a horse). Let us consider objects whose existence strength depends monotonously and continuously from their parameters: for example a proposition p may be "truer" the more people observe it, because

things became duplicated in Tlön; they also tend to become effaced and lose their details when they are forgotten. A classic example is the doorway which survived so long it was visited by a beggar and disappeared at his death. At times some birds, a horse, have saved the ruins of an amphitheater. [Bor99b]

In such a situation, we can note that the strength of existence of some ruins -modeled as it is the more naive to do, like a rigid body R in space—depends on the number of its observers:

$$p(R,n) = \left(\top, 1 - \frac{1}{n}\right)$$

FIGURE 3. On Tlön, there are things that exist stronger the more you believe in them. This is a consequence of the strength $p(\triangle)$ monotonically depending on an increasing variable n ("trust" in that existence, "belief" that the impossible tribar \triangle exists.)

A last, somewhat dramatic example. What happens if we change topology on I? For example, we could brutally forget the Euclidean topology of the closed interval [0,1], and regard I as the disjoint union $\{\{t\} \mid t \in [0,1]\}$ of its points; so, the subobject classifier becomes the disjoint union of [0,1] copies of $\{\bot,\top\}$. (See Figure 4 below for a picture.)

Example 5.12 (Burning fields at the horizon). Our tenet in this section is that Berkeley idealism of infinite and disconnected instants of time finds a natural home in our framework if the classifier is chosen to be the object $\Omega_I = \coprod_{t:[0,1]} \{\bot, \top\}$. Such a peculiar logical framework allows for language to be reshaped in light of berkeleyan instantaneism: the various terms of the perceptual bundle are recorded and stockpiled by instantaneous accretion, by disjoint sum of their constituents. This is exactly what happens on Tlön for words like "round airy-light on dark" or "pale-orange-of-the-sky"; objects are determined by their simultaneity, instead of their logical dependence: accretion superimposes fictitious meaning on a temporal sequence; it is just an illusion, a mistake of perception tricked into an illicit interpolation.

Spinoza ascribes to his inexhaustible divinity the attributes of extension and thought; no one in Tlön would understand the juxtaposition of the first

(which is typical only of certain states) and the second - which is a perfect synonym of the cosmos. In other words, they do not conceive that the spatial persists in time. The perception of a cloud of smoke on the horizon and then of the burning field and then of the half-extinguished cigarette that produced the blaze is considered an example of association of ideas.

[Bor99b]

Instantaneism is, of course, way larger than a paragraph: we explore the consequences of this principle in our subsection 6.1 below, where we sketch a

yadda yadda

FIGURE 4. Times as an infinite, and infinitely subdivided, sequence of distinguished instants: the "Berkeley paradox" of non existence of causality lives in a topos, as nearby slices E_t , E_s for small |s-t| give no predictive power on how (and if) the transition from E_t to E_s might happen.

6. Vistas on ontologies

¿No basta un solo término repetido para desbaratar y confundir la serie del tiempo? ¿Los fervorosos que se entregan a una línea de Shakespeare no son, literalmente, Shakespeare?

[Bor53]

Looking at our section 5 it's surprising how mathematically consistent Borges' universe becomes when it is described through category theory. As we already said, this has to be regarded as an experiment, a literary *divertissement*, and a test-bench for our main claim, that as abstract as it may seem ontology has a quantitative content.

There is clearly no point to just analyse Borges' literary work: we can go further. The present section has this purpose, while sketching somelong term goals our work can aspire to become. We begin with a more academic discussion of classical idealism \grave{a} la Berkeley; of course, in light of our Example 5.12, this can still be linked to Tlön's universe, as Borges has always been fascinated by, and mocked, classical idealism (see [Bor53]).

To this, it follows a more wide-ranging discourse; surely a less substantiated one, but we aim at laying a foundation for future work, ours or others', in a research track that we feel is fertile and promising.

6.1. **Answers to the idealist.** Let us reconsider Example 5.4; although in passing, we mentioned famous Berkeley's view of perception as a bundle of stimulation incapable to cohere. Let's say clearly that endeavouring on such a wide ground as classical idealism isn't the purpose of our work; yet, in his novel Borges regards Tlön's language and philosophy as a concrete realisation of Berkeley's theory of knowledge.

Within topos theory, è scorretto dire che p è falsa in "assoluto", ma che semmai è "falsa con forza t" dove $t \in I$. Il berkeleyano vorrebbe ottenere (una volta accettato che le monete esistano solo un po' in alcuni punti) che $\sum_{u} p(u, c, d) = (\bot, 1)$.

Non può per costruzione, ma se volesse deve fornire un modello alternativo del paradosso che sia altrettando valido (ci sembra sia difficile comunque non parlare in termini di "forze" o loro equivalenti, in "istanti" singoli).

Ad essere ancora più pignoli, alla domanda se le monete esistano o meno la risposta corretta è a sua volta una domanda: "In quale I sei?" ed essendo I totalmente ordinato "In quale suo punto vuoi calcolare la forza?".

Il punto può essere un riferimento temporale, spaziale o di qualunque altro genere (a seconda della struttura di U), l'importante è che l'insieme abbia le proprietà da noi indicate.

Per poter "parlare" all'interno del topos, e rispondere alla domanda sull'esistenza, è necessario prima fornire i "dati" (osservatore, subset di C, giorno della settimana) e poi possiamo assegnare un valore di verità dotato di forza.

Sostituire nozioni classiche (identità, persistenza-nel-tempo) con nozioni precise suggerite dal linguaggio che proponiamo, vuol dire perciò modificare anche il linguaggio naturale. Quando l'idealista afferma che negli istanti in cui chiude gli occhi il tavolo davanti a lui non esiste più, sta anch'egli parlando di "forza" nel senso qui definito: lo deve solo esplicitare. Si mette in un universo (un topos) "non-classico" con più valori di verità e deve semplicemente calcolare qual è il valore di p.

L'ampliamento dei valori di verità ¹⁹ si traduce in un ampliamento delle risposte possibili da dare alla domanda sulle monete. Non indichiamo quella "corretta" ma il topos in cui trovarla, il contesto di discorso dal quale non si può prescindere, intuitivamente un contesto fuzzy, che evita le sterili dicotomie in cui era impantanato il dibattito da qualche secolo.

Da notare (come anticipato in 1.4) che abbiamo potuto modellizzare il paradosso senza impiegare un framework di logica temporale; è lecito interpretare gli elementi di I come istanti, ma non necessario. La descrizione in termini temporali è un sottocaso del modello più generale che abbiamo fornito. Persino un presentista o l'idealista coerente di Borges (che dalle tesi berkeleyane deduce l'inesistenza del tempo) può stabilire la verità di p senza abiurare alla sua posizione ontologica, ma deve poi accettare il risultato del calcolo.

Altro vantaggio che l'idealista, e non solo, potrebbe apprezzare è dato dalla densità di I. Proprietà che permette, nel caso di disaccordo tra due interlocutori X e Y sul grado di

 $^{^{19}}$ Ad esser precisi: $\{0,1\}$ è "fisso"; la varietà di risposte è data dalla scelta di I e dalla struttura di U

esistenza della moneta, (per via principalmente della dipendenza funzionale delle proposizioni dalle configurazioni), di trovare una forza intermedia compresa tra la forza assegnata da X e quella assegnata da Y. In un certo senso questo è un modo di formalizzare l'intersoggettività all'interno di Tlön.

La posizione metafisica che emerge dal lavoro sembra una via di mezzo tra empirismo e idealismo.

La critica storica dell'idealismo al metodo scientifico è l'uso di prove indirette di esistenza (come le dimostrazioni non costruttive che non piacciono agli intuizionisti).

Nella nostra visione fuzzy dell'esistenza si può assumere che la barca invisibile che nessuno vede, se non perché l'acqua si sposta, non esista, o assumere che la barca ci sia ma con una forza minore del massimo 20 .

Se si usa questo linguaggio non si può semplicemente affermare che la barca non esiste perché non è osservabile, posizione che non spiega lo spostamento dell'acqua ²¹; in breve non ci si può scordare del dettaglio per cui, anche se è lecito pensare che il mondo sparisca quando chiudo gli occhi (per cui posso non assumere che abbia forza di esistenza massima), nondimeno riappare quando li riapro (per cui globalmente non può avere forza 0).

Se la freccia "sparisce" e nessun altro osservatore in un dato istante ne fa esperienza, evidentemente essa esiste con forza minore di 1. Essendo dentro Tlön questa è una concessione alla visione epistemica dei suoi abitanti, i quali non possono sapere cosa ne è delle monete degli altri osservatori; e in questo senso, non potendo calcolare la forza globale, il modello è inutilizzabile dai tlöniani. Possiamo formalizzare adeguatamente la loro ontologia, per poter dire qualcosa in più rispetto a chi vive in essa.

All'idealista tuttavia possiamo rispondere, se egli parla il linguaggio delle categorie ²².

6.2. By their fruits you will know them. The main point of our paper can be summarised very concisely: an "ontology" is a category \mathcal{O} , inside which "Being unravels". Every existence theory shall be reported, and is relative, to a fixed ontology \mathcal{O} , the "world we live in"; such existence theory coincides with the internal language $\mathcal{L}(\mathcal{O})$ of the ontology/category (from now on we employ the two terms as synonyms), in the syntax-semantics adjunction of [nLa20b].

So determined, the internal language of an ontology \mathcal{O} is the collection of "things that can be said" about the elements of the ontology.

If, now, ontology is the study of Being, and if we are structuralist in the metatheory (cf. section 1), we cannot know beings but through their attributes. Secretly, this is *Yoneda*

 $^{^{20}}$ Come si è detto in 1.4 è un tentativo di risoluzione epistemica del paradosso. cfr. Quando si parla di "maggiore è il numero di osservatori più intenso è il grado di esistenza delle monete"

²¹Anche il metafisico che non assume avvenga il processo di causazione deve spiegare la relazione (qualunque essa sia, se c'è) o comunque la correlazione tra il fenomeno "la barca si muove" (che presuppone l'esistenza della barca) e il fenomeno "l'acqua si sposta", il quale non è collegato, ad esempio, al fenomeno dell'esistenza delle nuvole

²²Preme comunque notare che prendiamo qui come interlocutore l'idealismo in quanto esempio di metafisica "estrema", e perchè era negli obiettivi del racconto di Borges fornirne una lettura critica e alternativa, ma non è questo il claim del paper.

lemma (cf. [Bor94a, 1.3.3]), the statement that the totality of modes of understanding a "thing" X coincides with the totality of modes your language allows you to probe X. Things do not exist out of an ontology; objects do not exist out of a category; types do not exist out of a type theory. In relational structures, objects are known via their modes of interaction with other objects, and these are modeled as morphisms $U \to X$; Yoneda lemma posits that we shall "know objects by their morphisms": the object $X : \mathcal{C}$ coincides with the totality of all morphisms $U \to X$, organised in a coherent bundle (a functor $\mathcal{C}(_, X) : \mathcal{C} \to \mathsf{Set}$).

All in all, an ontology is a mode of understanding the attributes of Being: a category, be it in an Aristotelic or in a structuralist sense. As a consequence *meta*ontology, i.e. the totality of such ways of understanding, must coincide with the general theory of such individual modes: with *category theory*.

We should say no more on the matter: everything else pertains to metaontology.

Indeed, questions as "where is language" and what general principles inspire it might have an anthropological or even neurophysiological answer; not an ontological one. Or at least, not without paying a price: operative ontology as sketched here has limits. It can't speak of Being out of the one ignited by itself. (read as: category theory has limits: it cannot speak efficiently of objects out of a fixed universe of discourse. Implicit: category theory also has merits.)

6.3. **Metaontology.** The gist of our Example 5.4 is that X, Y, Z can't assess the existence of the coins classically; they just have access to partial information allowing neither a global statement of existence on the set C of coins lost by X, nor an unbiased claim about the meaning thereof. Coins are untouched as a global lost conglomerate, yet their strength of existence is very likely to change *locally*.

This begs the important questions of to which extent language determines ontology. And to which extent it constrains its expressive power? To which extent the inhabitants of Tlön fail to see what is exactly "a topos further" (persistence of existence through time). To what extent we fail to see that...

Far from claiming we resolved such metaontological issues, here we make an hopefully clarifying statement: according to Quine and his school, ontology can be defined as the "domain over which [logical, or natural language's] quantifiers run". This is not wrong; in fact, it is perfectly compatible with our views. But we work at a raised complexity level, in the following sense. In our framework, ontology à la Quine still is a category, because (cf. Definition 4.2) a quantifier can be described as a certain specific kind of functor

$$\forall,\exists:PX\to PY$$

between powersets regarded as *internal* categories of our ambient ontology \mathcal{O} ; in light of this, it's easy to imagine this pattern to continue: if Quine calls metaontology what we call ontology, i.e. the metacategory grounding his propositional calculus is a single ambient category *among many*, we live "one universe higher" in the cumulative hierarchy of foundations and meta-foundations: our ontology possesses a higher dimensionality, and harbours Quinean theory as an internal structure (see Definition A.15 for the definition of an internal category). So, it shall exist, *somewhere* -at least in some secret way, hidden from the comprehension of

men- a language that calls ontology what we call metaontology (and thus a language that declassifies Quine's to a sub-ontology -whatever this means).

Finding the bottom of this tower of turtles is the aim of the track of research, of very ancient tradition, within which we want to insert the present work.

Of course our work does not make a single comment on how, if, and when, this ambitious foundational goal can be achieved. We just find remarkable that framing Quine's definition in this bigger picture is not far from the so-called practice of "negative thinking" in category theory: negative thinking is the belief that a high-dimensional/complex entity can be understood by means of the analogy with its low-dimensional/complexity counterparts; see [nLa17, nLa11] for a minimal introduction to the principle, [BS10] for a practical introduction, and see [Gow07] for what Gowers calls "backwards generalisation".

6.4. **Conclusion.** The circle apparently closes on, and motivates better, our initial foundational choice: categories and their theory correspond 1:1 to ontology and its theory. However, countless important issues remain open: in what sense this is satisfying? In what sense the scope of our analysis is not limited by this choice? What's his foundation? Is this a faithful way to describe such an elusive concept as "Being"?

None of these questions is naive; in fact, each legitimately pertains to metaontology, and has no definitive answer. More or less our stance is as follows: approaching problems in ontology with a reasonable amount of mathematical knowledge is fruitful. Yet, the problem of what is a foundation for that mathematics remains (fortunately!) wide open; it pertains to metaontology, whose ambitious effort is to clarify "what there is". We believe the philosophers' job to work in synergy with quantitative knowledge, approaching the issue with complementary tools.

APPENDIX A. CATEGORY THEORY

El atanor está apagado -repitió- y están llenos de polvo los alambiques. En este tramo de mi larga jornada uso de otros instrumentos.

[Bor75]

A.1. **Fundamentals of CT.** Throughout the paper we employ standard basic category-theoretic terminology, and thus we refrain from giving a self contained exposition of elementary definitions. Instead, we rely on famous and wide-spread sources like [Bor94a, Bor94b, ML98, Rie17, Lei14, Sim11].

Precise references for the basic definitions can be found

- for the definition of category, functor, and natural transformation, in [Bor94a, 1.2.1], [ML98, I.2], [Bor94a, 1.2.2], [ML98, I.3], [Bor94a, 1.3.1].
- The Yoneda lemma is stated as [Bor94a, 1.3.3], [ML98, III.2].
- For the definition of co/limit and adjunction, in [Bor94a, 2.6.2], [ML98, III.3], [Bor94a, 2.6.6], [ML98, III.4].

- For the definition of accessible and locally presentable category in [Bor94b, 5.3.1], [Bor94b, 5.2.1], [AR94].
- Basic facts about ordinal and cardinal numbers can be found in [Kun83]; another comprehensive reference on basic and non-basic set theory is [Jec13].
- The standard source for Lawvere functorial semantics is Lawvere's PhD thesis [Law63]; more modern accounts are [HP07].
- Standard references for topos theory are [MLM92, Joh77]. See in particular [MLM92, VI.5] and [Joh77, 5.4] for what concerns the Mitchell-Bénabou language of a topos.

A.2. **Toposes.** For us, an *ordinal number* will be an isomorphism class of well-ordered sets, and a *cardinal number* is any ordinal which is not in bijection with a smaller ordinal. Every set X admits a unique *cardinality*, i.e. a least ordinal κ with a bijection $\kappa \cong X$ such that there are no bijections from a smaller ordinal. We freely employ results that depend on the axiom of choice when needed. A cardinal κ is *regular* if no set of cardinality κ is the union of fewer than κ sets of cardinality less than κ ; all cardinals in the following subsection are assumed regular without further mention.

Let κ be a cardinal; we say that a category \mathcal{A} is κ -filtered if for every category $\mathcal{J} \in \mathsf{Cat}_{<\kappa}$ with less than κ objects, \mathcal{A} is injective with respect to the cone completion $\mathcal{J} \to \mathcal{J}^{\triangleright}$; this means that every diagram

has a dotted filler $\bar{D}: \mathcal{J}^{\triangleright} \to \mathcal{A}$.

We say that a category \mathcal{C} admits filtered colimits if for every filtered category \mathcal{A} and every diagram $D: \mathcal{A} \to \mathcal{C}$, the colimit colim D exists as an object of \mathcal{C} . Of course, whenever an ordinal α is regarded as a category, it is a filtered category, so a category that admits all κ -filtered colimits admits all colimits of chains

$$C_0 \to C_1 \to \cdots \to C_{\alpha} \to \cdots$$

with less than κ terms. A useful, completely elementary result is that the existence of colimits over all ordinals less than κ implies the existence of κ -filtered colimits; this relies on the fact that every filtered category \mathcal{A} admits a cofinal functor (see [Bor94a]) from an ordinal $\alpha_{\mathcal{A}}$.

We say that a functor $F: \mathcal{A} \to \mathcal{B}$ commutes with or preserves filtered colimits if whenever \mathcal{J} is a filtered category, $D: \mathcal{J} \to \mathcal{A}$ is a diagram with colimit $L = \operatorname{colim}_{\mathcal{J}} D_j$, then F(L) is the colimit of the composition $F \circ D$. Anoter common name for such an F is a finitary functor, or a functor with rank ω .

Definition A.1. Let \mathcal{C} be a category;

- We say that C is κ -accessible if it admits κ -filtered colimits, and if it has a small subcategory $S \subset A$ of κ -presentable objects such that every $A \in A$ is a κ -filtered colimit of objects in S.
- We say that C is (locally) κ -presentable if it is accessible and cocomplete.

The theory of presentable and accessible categories is a cornerstone of *categorical logic*, i.e. of the translation of model theory into the language of category theory.

Accessible and presentable categories admit representation theorems:

- A category \mathcal{C} is accessible if and only if it is equivalent to the ind-completion $\operatorname{Ind}_{\kappa}(\mathcal{S})$ of a small category, i.e. to the completion of a small category \mathcal{S} under κ -filtered colimits:
- A category C is presentable if and only if it is a full reflective subcategory of a category of presheaves $i: C \to \mathsf{Cat}(S^{\mathrm{op}}, \mathsf{Set})$, such that the embedding functor i commutes with κ -filtered colimts.

All categories of usual algebraic structures are accessible, and they are locally presentable as soon as they are cocomplete; an example of a category which is \aleph_1 -presentable but not \aleph_0 -presentable: the category of metric spaces and short maps.

We now glance at topos theory:

Definition A.2. An elementary topos is a category \mathcal{E}

- which is Cartesian closed, i.e. each functor $_ \times A$ has a right adjoint $[A, _]$;
- having a subobject classifier, i.e. an object $\Omega \in \mathcal{E}$ such that the functor Sub : $\mathcal{E}^{\mathrm{op}} \to \mathsf{Set}$ sending A into the set of isomorphism classes of monomorphisms $\begin{bmatrix} U \\ \downarrow A \end{bmatrix}$ is representable by the object Ω .

The natural bijection $\mathcal{E}(A,\Omega) \cong \operatorname{Sub}(A)$ is obtained pulling back the monomorphism $U \subseteq A$ along a universal arrow $t: 1 \to \Omega$, as in the diagram

$$U \longrightarrow 1$$

$$\downarrow \qquad \qquad \downarrow t$$

$$A \xrightarrow{\chi_U} \Omega$$

so, the bijection is induced by the map $\begin{bmatrix} U \\ \downarrow \\ A \end{bmatrix} \mapsto \chi_U$.

Definition A.3. A *Grothendieck topos* is an elementary topos that, in addition, is locally presentable.

The well-known *Giraud theorem* gives a proof for the difficult implication of the following *recognition principle* for Grothendieck toposes:

Theorem A.4. Let \mathcal{E} be a category; then \mathcal{E} is a Grothendieck topos if and only if it is a left exact reflection of a category $Cat(\mathcal{A}^{op}, Set)$ of presheaves on a small category \mathcal{A} .

(recall that a *left exact reflection* of \mathcal{C} is a reflective subcategory $\mathcal{R} \hookrightarrow \mathcal{C}$ such that the reflector $r: \mathcal{C} \to \mathcal{R}$ preserves finite limits. It is a reasonably easy exercise to prove that a left exact reflection of a Grothendieck topos is again a Grothendieck topos; Giraud proved that all Grothendieck toposes arise this way.)

A.3. A little primer on algebraic theories. The scope of this short subsection is to collect a reasonably self-contained account of functorial semantics. It is unrealistic to aim at such a big target as providing a complete account of it in a single appendix; the reader is warmly invited to parallel their study with more classical references as [Law63].

Definition A.5 (Lawvere theory). A *Lawvere theory* is a category having objects the natural numbers, and where the sum on natural numbers has the universal property of a categorical product, as defined e.g. in [Bor94a, 2.1.4].

Let us denote [n] the typical object of \mathcal{L} . Unwinding the definition, we deduce that in a Lawvere theory \mathcal{L} the sum of natural numbers [n+m] is equipped with two morphisms $[n] \leftarrow [n+m] \rightarrow [m]$ exhibiting the universal property of the product.

Every Lawvere theory comes equipped with a functor $p: \mathsf{Fin}^{\mathsf{op}} \to \mathcal{C}$ that is the identity on objects and preserves finite products. A convenient shorthand to refer to the Lawvere theory \mathcal{L} is thus as the functor p, or as the pair (p, \mathcal{L}) .

Definition A.6. The category Law of Lawvere theories has objects the Lawvere theories, understood as functors $p: \mathsf{Fin}^{\mathsf{op}} \to \mathcal{L}$, and morphisms the functors $h: p \to q$ such that the triangle

is commutative. It is evident that Law is the subcategory of the undercategory Fin^{op}/Cat (see e.g. [ML98, I.6] for a precise definition) made by those functors that preserve finite products.

Remark A.7. The category Law has no nonidentity 2-cells; this is a consequence of the fact that a natural transformation $\alpha: h \Rightarrow k$ that makes the triangle "commute", i.e. $\alpha * p = \mathrm{id}_q$ must be the identity on all objects.

Example A.8 (The trivial theories). The category Fin^op , opposite to the category of finite sets and functions, is the initial object in the category Law ; the terminal object is constructed as follows: the category $\mathcal T$ has objects the natural numbers, and $\mathcal T([n],[m]) = \{*\}$ for every $n,m \in \mathbb N$. It is evident that given this definition, there is a unique identity-on-objects functor $\mathcal L \to \mathcal T$ for every other Lawvere theory $(p,\mathcal L)$.

Definition A.9 (Model of a Lawvere theory). A model for a Lawvere theory (p, \mathcal{L}) consists of a product-preserving functor $L: \mathcal{L} \to \mathsf{Set}$. The subcategory $[\mathcal{L}, \mathsf{Set}]_\times \subset [\mathcal{L}, \mathsf{Set}]$ of models of the theory \mathcal{L} is full, i.e. a morphism of models $L \to L'$ consists of a natural transformation $\alpha: L \Rightarrow L'$ between the two functors.

Observe that the mere request that $\alpha: L \to L'$ is a natural transformation between product preserving functors means that $\alpha_{[n]}: L[n] \to L'[n]$ coincides with the product $(\alpha_{[1]})^n: L[1]^n \to L'[1]^n$.

Proposition A.10. Let $p: \mathsf{Fin}^{\mathrm{op}} \to \mathcal{L}$ be a Lawvere theory. Then, the following conditions are equivalent for a functor $L: \mathcal{L} \to \mathsf{Set}$:

- L is a model for the Lawvere theory (p, \mathcal{L}) ;
- the composition $L \circ p : \mathsf{Fin}^{\mathsf{op}} \to \mathsf{Set}$ preserves finite products;
- there exists a set A such that $L \circ p = \mathsf{Set}(j[n], A)$.

Corollary A.11. The square

$$\begin{array}{c|c} \mathsf{Mod}(p,\mathcal{L}) & \xrightarrow{r} [\mathcal{L},\mathsf{Set}] \\ u & & \downarrow^{p^*} \\ \mathsf{Set} & \xrightarrow{N_j} [\mathsf{Fin}^{\mathrm{op}},\mathsf{Set}] \end{array}$$

is a pullback of categories. The functor u is completely determined by the fact that u(L) = L[1], r is an inclusion, and $N_j(A) = \lambda F.\mathsf{Set}(F,A)$ is the functor induced by the inclusion $j : \mathsf{Fin} \subset \mathsf{Set}$.

Corollary A.12. The category of models $\mathsf{Mod}(p,\mathcal{L})$ of a Lawvere theory is a locally presentable, accessibly embedded, complete and cocomplete subcategory of $[\mathcal{L},\mathsf{Set}]$. Moreover, the forgetful functor $u:\mathsf{Mod}(p,\mathcal{L})\to\mathsf{Set}$ of Corollary A.11 is monadic in the sense of $[\mathsf{Bor}94\mathsf{b},\ 4.4.1]$. A complete proof of all these facts is in $[\mathsf{Bor}94\mathsf{b},\ 3.4.5]$, $[\mathsf{Bor}94\mathsf{b},\ 3.9.1]$, $[\mathsf{Bor}94\mathsf{b},\ 5.2.2.\mathsf{a}]$. A terse argument goes as follows: the functors p^*,N_j are accessible right adjoints between locally presentable categories; therefore, so is the pullback diagram: r is a fully faithful, accessible right adjoint, and u is an accessible right adjoint, that moreover reflects isomorphisms. It can be directly proved that it preserves the colimits of split coequalizers, and thus the adjunction $f \dashv u$ is monadic by $[\mathsf{Bor}94\mathsf{b},\ 4.4.4]$.

The last technical remark that we collect sheds a light on the discorso prolisso in section 2: the models of a theory \mathcal{L} interpreted in the category of models of a theory M correspond to the models of a theory $\mathcal{L} \otimes \mathcal{M}$, defined by a suitable universal property:

$$\mathsf{Mod}(\mathcal{L} \otimes \mathcal{M}, \mathsf{Set}) \cong \mathsf{Mod}(\mathcal{L}, \mathsf{Mod}(\mathcal{M}, \mathsf{Set})) \cong \mathsf{Mod}(\mathcal{M}, \mathsf{Mod}(\mathcal{L}, \mathsf{Set})).$$

Definition A.13. Given two theories \mathcal{L} and \mathcal{M} it is possible to construct a new theory called the *tensor product* $\mathcal{L} \otimes \mathcal{M}$; this new theory can be characterized by the following universal property: the models of $\mathcal{L} \otimes \mathcal{M}$ consist of the category of \mathcal{L} -models interpreted in the category of \mathcal{M} -models or, equivalently (and this is remarkable) of \mathcal{M} -models interpreted in the category of \mathcal{L} -models.

Theorem A.14. ([Bor94b, 4.6.2]) There is an equivalence between the following two categories:

- Law, regarded as a non-full subcategory of the category $\mathsf{Fin}^{\mathrm{op}}/\mathsf{Cat}$, i.e. where a morphism of Lawvere theories consists of a functor $h: \mathcal{L} \to \mathcal{M}$ that preserves finite products;
- finitary monads, i.e. those monads that preserve filtered colimits, and morphisms of monads in the sense of [Bor94b, 4.5.8].

Proof. The proof goes as follows: given a Lawvere theory $p: \mathsf{Fin}^{\mathsf{op}} \to \mathcal{L}$, we have shown that the functor $u: \mathsf{Mod}(p) \to \mathsf{Set}$ in the pullback square Corollary A.11 has a left adjoint $f: \mathsf{Set} \to \mathsf{Mod}(p)$; the composition uf is thus a monad on Set . This is functorial, when a morphism of monads is defined

Definition A.15. Let \mathcal{C} be a category with finite limits. An internal category \underline{A} consists of a pair (A_0, A_1) of objects of \mathcal{C} , endowed with morphisms s, t, c, i as in the following diagram

$$A_1 \times_{A_0} A_1 \xrightarrow{\stackrel{p_0}{-}} A_1 \xrightarrow{\stackrel{s}{\longleftarrow}} A_0$$

where $A_1 \times_{A_0} A_1$ is obtained pulling back s, t. These data must satisfy the following axioms, resembling the category axioms:

- IC1) i equalises the pair (s,t), i.e. $s \circ i = t \circ i$, and this composition makes the identity 1_{A_0} ;
- IC2) $t \circ p_1 = t \circ c$ and $s \circ p_0 = s \circ c$;
- IC3) $c \circ \langle 1_{A_1}, i \circ s \rangle = c \circ \langle i \circ t, 1_{A_1} \rangle$, and this composition makes the identity 1_{A_1} ;
- IC4) c is associative, i.e. $c \circ (1_{A_1} \times_{A_0} c) = c \circ (c \times_{A_0} 1_{A_1})$.

These axioms are meant to re-enact the definition of category, as an abstract "object of objects" and "object of morphisms", endowed with maps $s,t:A_1\to A_0$ sending every morphism to its *source* and *target*, with an *identity selector* map $i:A_0\to A_1$ and with a composition partial binary operation $c:A_1\times A_1\to A_1$ whose domain is the object of *composable* arrows. Cf. [Bor94a, 8] for a torough discussion.

References

- [AA.04] AA. VV., Galois theory, Hopf algebras, and semiabelian categories, Fields Institute Communications, vol. 43, American Mathematical Society, Providence, RI, 2004, Papers from the Workshop on Categorical Structures for Descent and Galois Theory, Hopf Algebras, and Semiabelian Categories held in Toronto, ON, September 23–28, 2002.
- [AR94] J. Adámek and J. Rosický, Locally presentable and accessible categories, London Mathematical Society Lecture Note Series, vol. 189, Cambridge University Press, Cambridge, 1994.
- [Bai13] J. Bain, Category-theoretic structure and radical ontic structural realism, Synthese 190 (2013), no. 9, 1621–1635.
- [Bla52] Max Black, The Identity of Indiscernibles, Mind 61 (1952), no. 242, 153–164.
 - [Bor] J.L. Borges, The sect of the Phoenix, Collected Fictions.
- [Bor44] _____, Ficciones, Editorial Sur, Buenos Aires, 1944.
- [Bor53] _____, Nueva refutación del tiempo, Otras inquisiciones, Sur, 1953.
- [Bor75] _____, La rosa de paracelso, El libro de arena, Emecé, 1975.
- [Bor94a] F. Borceux, Handbook of categorical algebra. 1, Encyclopedia of Mathematics and its Applications, vol. 50, Cambridge University Press, Cambridge, 1994, Basic category theory.

- [Bor94b] _____, Handbook of categorical algebra. 2, Encyclopedia of Mathematics and its Applications, vol. 51, Cambridge University Press, Cambridge, 1994, Categories and structures.
- [Bor97] J.L. Borges, Otras inquisiciones, Biblioteca Borges, Alianza, 1997.
- [Bor99a] _____, The lottery in Babylon, Collected Fictions, Penguin Books, 1999.
- [Bor99b] _____, Tlön, Uqbar, Orbis Tertius, Collected Fictions, Penguin Books, 1999.
 - [BS10] John C Baez and Michael Shulman, Lectures on n-categories and cohomology, Towards higher categories, Springer, 2010, pp. 1–68.
- [Car56] Rudolf Carnap, Meaning and necessity, enlarged edition, University of Chicago, Chicago (1956).
- [CH08] J Robin B Cockett and Pieter JW Hofstra, *Introduction to turing categories*, Annals of pure and applied logic **156** (2008), no. 2-3, 183–209.
- [Che57] Claude C. Chevalley, Fundamental concepts of algebra, Pure and applied mathematics, vol.7, Academic Press Inc., U.S., 1957.
- [CHH14] J Robin B Cockett, Pieter JW Hofstra, and P Hrubeš, Total maps of turing categories, Electronic Notes in Theoretical Computer Science 308 (2014), 129–146.
 - [CL84] Laurent Coppey and Christian Lair, Leçons de théorie des esquisses, Diagrammes 12 (1984), i-38.
- [Ehr68] Charles Ehresmann, Esquisses et types des structures algébriques..., 1968.
- [Eva16] B. Eva, Category theory and physical structuralism, European Journal for Philosophy of Science 6 (2016), no. 2, 231–246.
- [FK72] P.J. Freyd and G.M. Kelly, Categories of continuous functors. I, J. Pure Appl. Algebra 2 (1972), 169–191.
- [Fre08] Peter Freyd, Algebraic real analysis, Theory and Applications of Categories 20 (2008), no. 10, 215–306.
- [Gam91] LTF Gamut, Logic, language, and meaning, volume 1: Introduction to logic, vol. 1, University of Chicago Press, 1991.
- [Gow07] Timothy Gowers, One way of looking at cauchy's theorem, Gowers' Weblog, September 2007.
- [Gri07] Pierre Antoine Grillet, Abstract algebra, vol. 242, Springer Science & Business Media, 2007.
- [HP07] Martin Hyland and John Power, The category theoretic understanding of universal algebra: Lawvere theories and monads, Electronic Notes in Theoretical Computer Science 172 (2007), 437–458.
- [Jec13] Thomas Jech, Set theory, Springer Science & Business Media, 2013.
- [Joh77] P.T. Johnstone, Topos theory, LMS Mathematical Monographs, no. 10, Academic Press, London, 1977.
- [JR97] Bart Jacobs and Jan Rutten, A tutorial on (co) algebras and (co) induction, Bulletin-European Association for Theoretical Computer Science 62 (1997), 222–259
- [Krö07] Ralf Krömer, Tool and object: a history and philosophy of category theory, 2007 ed., Science networks historical studies 32, Birkhäuser, 2007.

- [Kun83] Kenneth Kunen, Set theory. an introduction to independence proofs, 1 ed., Studies in Logic and the Foundations of Mathematics 102, North Holland, 1983.
- [Law63] F William Lawvere, Functorial semantics of algebraic theories, Proceedings of the National Academy of Sciences of the United States of America 50 (1963), no. 5, 869.
- [Law66] F. William Lawvere, The category of categories as a foundation for mathematics, Proceedings of the Conference on Categorical Algebra (Berlin, Heidelberg) (S. Eilenberg, D. K. Harrison, S. MacLane, and H. Röhrl, eds.), Springer Berlin Heidelberg, 1966, pp. 1–20.
- [Law96] F William Lawvere, *Unity and identity of opposites in calculus and physics*, Applied categorical structures 4 (1996), no. 2-3, 167–174.
 - [LDa] Fosco Loregian and Dario Dentamaro, Categorical ontology II: A geometric look on identity, in preparation.
 - [LDb] _____, Categorical ontology III: No identity without homotopy, in preparation.
- [Lei04] T. Leinster, *Higher operads, higher categories*, London Mathematical Society Lecture Note Series, vol. 298, Cambridge University Press, Cambridge, 2004.
- [Lei14] ______, Basic category theory, vol. 143, Cambridge University Press, 2014.
- [Lol77] Gabriele Lolli, Categorie, universi e principi di riflessione, Boringhieri, 1977.
- [LS88] J. Lambek and P.J. Scott, *Introduction to higher-order categorical logic*, Cambridge Studies in Advanced Mathematics, Cambridge University Press, 1988.
- [Man12] Ernest G Manes, Algebraic theories, vol. 26, Springer Science & Business Media, 2012.
- [Mar97] Jean-Pierre Marquis, Category theory and structuralism in mathematics: Syntactical considerations, pp. 123–136, Springer Netherlands, Dordrecht, 1997.
- [ML98] S. Mac Lane, Categories for the working mathematician, second ed., Graduate Texts in Mathematics, vol. 5, Springer-Verlag, New York, 1998.
- [MLM92] S. Mac Lane and I. Moerdijk, Sheaves in geometry and logic: A first introduction to topos theory, Springer, 1992.
- [Mos09] Yiannis N Moschovakis, *Descriptive set theory*, no. 155, American Mathematical Soc., 2009.
- [nLa11] nLab authors, Negative thinking, March 2011, revision 9.
- [nLa17] ______, Category theory vs order theory, March 2017, revision 12.
- [nLa20a] _____, Free topos, April 2020, Revision 14.
- [nLa20b] ______, Syntax-Semantics duality, April 2020, Revision 11.
 - [PR00] Jan Paseka and Jiří Rosický, Quantales, pp. 245–262, Springer Netherlands, 2000.
 - [Rie17] E. Riehl, Category theory in context, Courier Dover Publications, 2017.
 - [SB81] H.P. Sankappanavar S. Burris, H. P. Sankappanavar, A course in universal algebra, 1 ed., Graduate Texts in Mathematics, Springer, 1981.
- [Sim11] H. Simmons, An introduction to category theory, Cambridge University Press, 2011.
- [Str96] Steven H Strogatz, Nonlinear dynamics and chaos.
- [W.82] R. G. W., The Review of Metaphysics **35** (1982), no. 3, 627–629.

[Wig03] Stephen Wiggins, Introduction to applied nonlinear dynamical systems and chaos, vol. 2, Springer Science & Business Media, 2003.

Dario Dentamaro: Email address: dio@cane.it

Fosco Loregian: Tallinn University of Technology, Institute of Cybernetics, Akadeemia tee 15/2,12618 Tallinn, Estonia

 $Email\ address \hbox{: } {\tt fosco.loregian@taltech.ee} \\ Email\ address \hbox{: } {\tt fosco.loregian@gmail.com} \\$