

Vertices	Distances	fredecesso15
9,1,2,3,4,5,6,7	0, 00, 00, 00, 00, 00, 00	-1,-1,-1,-1,-1,-1,-1
1,23,456,7	0,5,4,6,00,00,00,00	-1,0,0,0,-1,-1,-1,-1
134567	0,5,4,5,7,11,00,00	-1, 0, 0, 2, 2, 2, -1, -1
8,4,5,6,7	0,545,77120	-1, 0, 0, 2, 2, 1, 1, -1
48,67	0,5,4,5,7,7,12,0	-1,0,0,2,2,1,1,-1
F, الم	0, 5, 4, 5, 7, 7, 6, 13	-1,0,0,2,2,1,5,5
% 7	1, 5, 4, 5, 7, 7, 10, 13	-1,0,0,2,2, 1,5,5
A	0, 5, 4, 5, 7, 7, 10, 13	-1,0,0,2,2,1,5,5
ø	0, 5, 4, 5, 7, 7, 10, 13	-1,0,0,2,2,1,5,5
•	7	^
		he use this to
	These are the	reconstruct the
	Minimum distances from 0 to every	shortest paths.
	1, 3, 1, 3, 1, 3	

Implicit assumption: all edge weights are positive.

You reed a different algorithm if your graph has negative edge weights -> Bellman-Ford

(this isn't assessable!)

other vertex.

Q 5.

Iteration	Candidates	Choice
1	1-74, 6-7	174
2	677	677
3	172, 374	3-74
4	172	172
5	2×4, 1->5, 4-> 7	477
6	cyde 3×6, 5=7	5-1.

Kruskal: pick smallest edge that avoids cycles at each step.

Unique edges considered: 9 (6 picked + 3 rejected)

For a graph G(V, E)

- Min #. of edges considered: V-1
- Max #. of edges considered: E

What extra edge could force the worst case?

Iteration	Candidates	Choice	
1	AB(2), AC(6), AD(5)	AB	
	,		
2	Ac(6), AD(5), BE(8)	AD	
	•		
3	AC(6), BE(8), CD(10), DF(2), DG(3)	DF	
	DF(2), DG(3)		
4	AC(6), BE(8), CD(10),	DG	
	DG(3), EF(4), FG(9)		
5	AC(6), BE(8), 40(10), EF(4), CG(7), EG(1)	EG	
	EF(4), CG(7), EG(1)	·	
4	AC(6), CD(10), CG(7)	AC	
•			

Prim: Add smallest "loosely connected" edge at each step.