СПЕКТРАЛЬНАЯ ТЕОРЕМА

Функциональные пространства и операторы, действующие в этих пространствах, создают мощную базу для построения моделей. Правильный подбор функциональных пространств позволяет реализовывать модель при помощи линейных операторов, что сводит задачу к построению обратного оператора.

Вопрос о существовании обратного оператора естественно расширить до вопроса о построении функций от оператора f(A). Если при этом из равенства h(x) = f(x)g(x) будет следовать h(A) = f(A)g(A), то для получения обратного оператора будет достаточно применить к нему функцию f(x) = 1/x.

Эту идею легче всего реализовать на диагональных матрицах

$$\left(\begin{array}{cc} a & 0 \\ 0 & b \end{array}\right)^{-1} = \left(\begin{array}{cc} a^{-1} & 0 \\ 0 & b^{-1} \end{array}\right), \quad \left(\begin{array}{cc} a & 0 \\ 0 & b \end{array}\right)^{n} = \left(\begin{array}{cc} a^{n} & 0 \\ 0 & b^{n} \end{array}\right).$$

Единственным ограничением здесь является условие: числа на диагонали должны быть отличны от нуля.

Продолжая эти построения можно определить многочлены от диагональной матрицы, аналитические функции (сходящиеся степенные ряды) и далее ряды Лорана (в последнем случае необходимо гарантировать, что диагональные элементы не совпадают с полюсами функции). При обращении матрицы требуется именно это условие, чтобы диагональные элементы не обращались в ноль.

Условие диагональности матрицы можно значительно ослабить

Все построения проходят для матриц, допускающих приведение к диагональному виду, то есть матриц, собственные вектора которых образуют базис пространства. Для таких матриц всегда возможно разложение $A = V^{-1}DV$, где D — диагональная матрица, и тогда $A^n = V^{-1}D^nV$ и $f(A) = V^{-1}f(D)V$ при условии, что диагональные элементы (собственные числа матрицы A) не совпадают с полюсами функции f. В этом случае

$$f(A)\left(\sum_{k=1}^{n} x_k d_k\right) = \sum_{k=1}^{n} f(\lambda_k) x_k d_k,$$

здесь λ_k — собственные числа и d_k — собственные вектора оператора.

Отметим, что для операторов в конечномерных пространствах (матриц), такой способ построения функции от оператора проходит всегда, поскольку любую матрицу можно привести к жордановой форме.

Важная роль собственных чисел в этих построениях привела к тому, что для их множества появилось свое устойчивое название.

Спектром оператора A называется множество $\sigma(A)$ комплексных чисел λ , для которых оператор $A - \lambda I$ не имеет обратного.

Замечание

Спектр матрицы – это множество ее собственных чисел. Из основной теоремы алгебры следует, что он всегда не пуст.

Спектр оператора в бесконечномерном пространстве может быть устроен сложнее.

Например, оператор A, сопоставляющий функции $f \in C[0,1]$ функцию g(x) = xf(x), вообще не имеет собственных чисел.

Проверим это. Допустим, что это не так, и λ является собственных числом. Тогда существовала бы отличная от нуля функции, для которой выполнялось бы равенство $xf(x)=\lambda f(x)$, т. е. в любой точке, где функция отлична от нуля должно выполняться равенство $x=\lambda$, что невозможно.

Причем спектр оператора не пуст: 0 принадлежит спектру, — и следовательно, оператор необратим.

Это следует это из того, что последовательность непрерывных функций f_n , линейных на отрезках $\left[0,\frac{1}{2n}\right],\left[\frac{1}{2n},\frac{1}{n}\right],\left[\frac{1}{n},1\right]$ и принимающих значения $f_n(0)=f_n\left(\frac{1}{n}\right)=f_n(1)=0,$ $f_n\left(\frac{1}{2n}\right)=1$ на концах этих отрезков, переводится этим оператором в функции с нормами $\frac{1}{2n}$, в то время как сами функции имеют норму равную единице.

Возможна и другая крайность. Оператор сдвига, отображающий пространство l^2 в себя, заданный формулой y = Ax, $y_n = x_{n+1}$, $n \in \mathbb{N}$, имеет «слишком много» собственных чисел, точнее, всякое комплексное число λ , по модулю меньшее 1, является собственным числом этого оператора.

Проверим это, рассмотрим последовательность $x = \{1, \lambda, \dots, \lambda^n, \dots\}$, она принадлежит l^2 :

$$||x||^2 = \sum_{n=0}^{\infty} |\lambda|^{2n} = \frac{1}{1 - |\lambda|^2}.$$

Оператор сдвига переводит ее в последовательность $y_n = x_{n+1} = \lambda^{n+1} = \lambda x_n$, то есть $y = \lambda x$. Значит, весь единичный круг $\{z : |z| < 1\}$ входит в спектр оператора.

Основная цель спектральной теории — описание классов пространств и классов операторов, для которых можно получить описание спектра и построить функциональное исчисление.

Всюду далее будут рассматриваться только гильбертовы пространства. Будет доказана теорема о спектральном разложении в простейшей бесконечномерной ситуации, сохраняющая сходство с аналогичным результатом для матриц.

Дальнейшие продвижения будут только намечены, но они требуют существенно иной техники.

Описание спектрального разложения будет дано при сильных ограничениях на оператор. Главное из них – условие компактности оператора.

Определение

Оператор A, отображающий одно банахово пространство в другое, называется **ком-пактным**, если из любой ограниченной последовательности $\{x_n\}$ можно выделить подпоследовательность $\{y_k\} \subset \{x_n\}$ такую, что существует $\lim_{k\to\infty} Ay_k$.

Определение

Оператор A, действующий в гильбертовом пространстве H, называется $\mathit{camoconps}$ женным, если

$$(Ax, y) = (x, Ay) \ \forall x, y \in H.$$

ТЕОРЕМА о спектральном разложении

Если A — компактный самосопряженный оператор на гильбертовом пространстве H,

то он имеет не более чем счетное множество собственных векторов $\{\lambda_n\}$,

собственные подпространства оператора $H_n = \{x : Ax = \lambda_n x\}$ конечномерны,

ортогональны между собой и справедлива формула спектрального разложения

$$Ax = \sum_n \lambda_n P_n x$$
, где P_n – проектор на H_n .

Замечание

доказательство сводится к постепенному «отщеплению» от исходного пространства собственных подпространств оператора и контролю того, что после отщепления для оставшейся части оператора выполнены условия теоремы.

Предложение

Собственные числа самосопряженного оператора вещественны, а собственные элементы, относящиеся к разным собственным числам ортогональны.

Доказательство

Если λ – собственное число самосопряженного оператора A, то для него существует собственный элемент ($Ax = \lambda x, x \neq 0$).

Самосопряженность оператора означает, что (Ax, x) = (x, Ax), следовательно, $(\lambda x, x) = (x, \lambda x)$

и далее по свойствам скалярного произведения

$$\lambda(x,x) = \bar{\lambda}(x,x)$$
, то есть $\lambda = \bar{\lambda}$.

Если $Ax_1 = \lambda_1 x_1$ и $Ax_2 = \lambda_2 x_2$, то равенство $(Ax_1, x_2) = (x_1, Ax_2)$ можно переписать в виде $\lambda_1(x_1, x_2) = \lambda_2(x_1, x_2)$

(учли, что $\lambda_2 = \bar{\lambda_2}$);

при $\lambda_1 \neq \lambda_2$ такое равенство возможно только в случае $(x_1, x_2) = 0$

Предложение

Произведение самосопряженных операторов является самосопряженным оператором тогда и только тогда, когда они коммутируют.

Доказательство

Утверждение следует из тождества $(AB)^* = B^*A^*$, которое легко вывести из определения сопряженного оператора. Из самосопряженности операторов A и B следует $(AB)^* = B^*A^* = BA$, а из самосопряженности оператора AB следует $(AB)^* = AB$. Эти два равенства доказывают требуемое.

Предложение

Если оператор A самосопряжен, то скалярное произведение (Ax, x) вещественно для любого x.

. Доказательство

Если A самосопряжен, то (Ax, x) = (x, Ax), а по свойствам скалярного произведения $(Ax, x) = (A\bar{x}, x)$, то есть скалярное произведение вещественно.

Предложение

Если оператор A самосопряжен, то

$$||A|| = \sup\{|(Ax, x)| : ||x|| < 1\}.$$

Доказательство

Обозначим $Q = \sup\{|(Ax, x)| : ||x|| \le 1\}$. Поскольку для $||x|| \le 1$

$$|(Ax, x)| \le ||Ax|| \cdot ||x|| \le ||A|| \cdot ||x|| \le ||A||$$

то $Q \leq ||A||$. Для завершения доказательства достаточно установить обратное неравенство. Это можно сделать используя тождества, которые легко проверяются непосредственно

$$(A(x+y), x+y) = (Ax, x) + 2Re(Ax, y) + (Ay, y),$$

$$(A(x-y), x-y) = (Ax, x) - 2Re(Ax, y) + (Ay, y).$$

Из этих тождеств и равенства параллелограмма следует оценка

$$|Re(Ax,y)| = \frac{1}{4} |(A(x+y), x+y) - (A(x-y), x-y)| \le \frac{Q}{4} [||x+y||^2 + ||x-y||^2] = \frac{Q}{2} [||x||^2 + ||y||^2].$$

Фиксируем элемент x такой, что $||x|| \le 1$ и $Ax \ne 0$, и положим $y = \frac{Ax}{||Ax||}$, тогда ||y|| = 1.

Получаем

$$||Ax|| = (Ax, y) = \frac{1}{||Ax||} (Ax, Ax) = Re\left(Ax, \frac{Ax}{||Ax||}\right) \le \frac{Q}{2} [||x||^2 + ||y||^2] \le Q.$$

Неравенство тем более верно, если Ax = 0.

Следовательно, $||A|| \leq Q$. Вместе с обратным неравенством это дает доказательство предложения.

Теорема о существовании собственного числа

Если A — компактный самосопряженный оператор в гильбертовом пространстве, то он имеет собственное число λ такое, что $||A|| = |\lambda|$.

Доказательство

Обозначим $m=\inf\{(Ax,x):||x||=1\},\ M==\sup\{(Ax,x):||x||=1\}.$ Тогда по доказанному выше предложению $||A||=\max\{|m|,M\}.$

Обозначим $\lambda = \max\{|m|, M\}$ и покажем, что это собственное число оператора. Для определенности будем считать, что $\lambda = M$.

Из определения супремума следует существование последовательности $\{x_n\}$ такой, что $||x_n||=1$ и $\lim_{n\to\infty}(Ax_n,x_n)=\lambda$.

Из определения компактности оператора следует, что найдется подпоследовательность $\{y_k\} \subset \{x_n\}$ такая, что существует $\lim_{n\to\infty} Ay_k = z_0$.

Тогда

$$||Ay_k - \lambda y_k||^2 = ||Ay_k||^2 - 2\lambda(Ay_k, y_k) + \lambda^2 \le \le ||A||^2 - 2\lambda^2 + o(1) + \lambda^2 = o(1).$$

Значит, $\lim_{k\to\infty} \lambda y_k = z_0$.

Положим $x_0 = \lambda^{-1} z_0$ и получим $Ax_0 = \lambda x_0$.

Компактность оператора обязывает собственные подпространства такого оператора иметь конечную размерность.

Предложение

Если A компактный оператор и $H_1 = \{x : Ax = = \lambda x\}$ – его собственное подпространство, то размерность H_1 конечна.

Доказательство

Предположим, это неверно.

Тогда в H_1 можно построить ортогональный нормированный базис $\{e_n\}$, $n=1,2,\ldots$ Из компактности оператора следует, что у последовательности $\{Ae_n\}$ найдется сходящаяся подпоследовательность $\{Ae_{n_k}\}$, $k=1,2,\ldots$

Но из того, что $e_{n_k} \in H_1$, следует $Ae_{n_k} = \lambda e_{n_k}$, то есть последовательность ортогональных векторов $\{e_{n_k}\}$ сходится, однако в силу ортогональности $||e_{n_k} - e_{n_m}||^2 = 2$.

Полученное противоречие говорит о том, что сделанное предположение неверно.

Рассматриваемые далее операторы проектирования играют важную роль в формулировке и доказательстве спектральной теоремы.

Определение

Оператор P называется проектором гильбертова пространства H на подпространство H_1 ,

если на H_1 он действует как тождественный оператор,

а на его ортогональном дополнении

 $H_0 = \{x : (x, y) = 0 \text{ для всякого } y \in H_1\}$

он действует как нулевой оператор.

Предложение

Оператор P является проектором тогда и только тогда, когда он является самосопряженным и равен своему квадрату.

Доказательство

Необходимость.

Если P проектор, то для любых $x, y \in H$ можно записать ортогональные разложения

$$x = x_1 + x_0, \ y = y_1 + y_0, \ x_1, y_1 \in H_1, \ x_0, y_0 \in H_0.$$

Легко проверяется, что оператор самосопряжен:

$$(Px, y) = (x_1, y_1 + y_0) = (x_1, y_1) = (x_1, Py_1) = (x, Py).$$

Второе свойство очевидно: $Px = x_1, P(Px) = x_1$.

Достаточность. Обозначим

$$H_1 = \{x : \exists y \in H \text{ такой, что } x = Py\}, H_0 = \{x : (x, y) = 0 \ \forall y \in H_1\}.$$

Проверим, что на H_1 оператор P является тождественным оператором. Пусть $x \in H_1$, тогда x = Py, $y \in H$ и по условию $Px = P^2y = Py = x$.

Проверим, что на H_0 оператор P является нулевым.

Пусть $x \in H_0$, по определению Px ортогонален H_0 . С другой стороны для любого $y \in H_1$ (Px, y) = (x, Py) = 0, так как $x \in H_0$, $Py \in H_1$.

Таким образом, элемент Px ортогонален всем элементам пространства H, следовательно, Px = 0.

Предложение

Подпространства H_0 и H_1 гильбертова пространства H ортогональны тогда и только тогда,

когда $P_0P_1=P_1P_0=0$, здесь P_0 и P_1 – проекторы на H_0 и H_1 соответственно.

Доказательство Необходимость.

Пусть
$$x \in H$$
, тогда $x = x_0 + x_1$, $P_0(P_1(x)) = P_0(x_1) = 0$.

Достаточность.

Если
$$P_0P_1=P_1P_0=0$$
, то $P_1x=P_1P_0x=0$ для любого $x\in H_0$, значит, x ортогонален H_1 .

Теперь все готово для описания процедуры отщепления собственных подпространств.

Предложение

Пусть A – компактный самосопряженный оператор на гильбертовом пространстве H,

 λ_{1} – его собственное число такое, что $|\lambda_{1}| = ||A||$,

 $H_1 = \{x : Ax = \lambda_1 x\}$ – соответствующее собственное подпространство,

 P_1 — ортогональный проектор на это подпространство,

тогда
$$\lambda_1 P_1 = A P_1 = P_1 A$$
.

Доказательство

Возьмем произвольный элемент $x \in H$. Обозначим $x_1 = P_1 x, \ x_0 = x - x_1,$ тогда x_0 ортогонально H_1 , так как P_1 – ортогональный проектор.

Значит,
$$AP_1x = Ax_1 = \lambda_1 x_1$$
 и $\lambda_1 P_1 x = \lambda_1 x_1$. Следовательно, $\lambda_1 P_1 = AP_1$.

Второе равенство утверждает, что операторы A и P_1 перестановочны. Ранее было доказано что, для этого достаточно, чтобы оператор AP_1 был самосопряжен.

Проверим это, возьмем пару элементов $x,y\in H$ и разложим каждый в ортогональную сумму $x=x_1+x_0,\,y=y_1+y_0$

тогда $(P_1Ax, y) = (P_1Ax, y_1 + y_0) = (Ax, y_1) = (x, Ay_1) = \lambda_1(x_1 + x_0, y_1) = = \lambda_1(x_1, y_1)$ справедливость этих равенств следует из самосопряженности операторов и ортогональности компонент разложения элементов.

Равенство $(AP_1x, y) = \lambda_1(x_1, y_1)$ проверяется аналогично.

Для описания процесса отщеплений собственных пространства удобно обозначить оператор A через A_1 и сохранить обозначение λ_1 для наибольшего по модулю собственного вектора подпространства H_1 и проектора P_1 .

Предложение

Обозначим $A_2 = A_1 - \lambda_1 P_1$ и $\tilde{P_1} = I - P_1$.

Тогда оператор \tilde{P}_1 — ортогональный проектор и оператор A_2 самосопряженный и компактный, причем $||A_2|| \leq ||A_1||$.

Доказательство

Как доказано выше, оператор \tilde{P}_1 будет проектором, если он самосопряжен и равен своему квадрату. Проверим это.

Заметим, что $\tilde{P}_1A_1=A_1-P_1A_1=A_1-A_1P_1=A_1\tilde{P}_1$, То же предложение гарантирует, что оператор $A_2=\tilde{P}_1A_1$ самосопряжен.

Компактность оператора A_2 наследуется от A_1 . Действительно, компактность оператора A_1 означает, что из любой ограниченной последовательности x_n можно выделить подпоследовательность x_{n_k} такую, что последовательность $A_1x_{n_k}$ является сходящейся. Очевидно оператор проектирования не нарушит сходимости, то есть последовательность $A_2x_{n_k}$ тоже является сходящейся, а оператор A_2 компактный.

Оценка норм следует из того, что оператор проектирования имеет норму равную 1:

$$||A_2|| = ||\tilde{P}_1 A_1|| \le ||\tilde{P}_1|| \cdot ||A_1|| = ||A_1||.$$

Предложение

Оператор A_2 имеет собственные числа, отличные от числа λ_1 .

Доказательство

Пусть λ_2 – собственное число оператора A_2 .

Теорема о существовании собственного числа утверждает $|\lambda_2| = ||A_2||$, кроме того было показано, что $|\lambda_2| \leq ||A_1||$

Предположим, что утверждение неверно и $\lambda_2 = \lambda_1$, тогда найдется ненулевой элемент $x \in H$ такой, что $A_2 x = \lambda_1 x$.

Из определения оператора получим $(A_1 - \lambda_1 P_1)x = A_1 x - \lambda_1 P_1 x = \lambda_1 x$. Применим к обеим частям равенства проектор P_1 и получим $(P_1 A_1 x - \lambda_1 P_1 x = \lambda_1 P_1 x)$.

Ранее был доказано, что $P_1A_1 = \lambda_1 P_1$ и, значит, $P_1x = 0$.

Но будучи собственным вектором для λ_1 элемент x должен быть ненулевым элементом из H_1 .

Полученное противоречие говорит о том, что сделанное предположение неверно.

Предложение

Если λ_* — собственное число оператора A_2 , $H_* = \{x : A_2x = \lambda_*x\}$ — соответствующее собственное пространство,

то λ_* и H_* являются собственным числом и собственным пространством оператора A_1 .

Покажем, что для всякий ненулевой элемент $x_* \in H_*$ является собственным вектором оператора A_1 с тем же собственным числом.

Как было показано, элемент x_* ортогонален H_1 Следовательно, $P_1x_*=0$, $\tilde{P}_1x_*=x_*$, откуда $A_1x_*=A_1\tilde{P}_1x_*=A_2x_*=\lambda_*x_*$.

Предположим, $A_1x^* = \lambda_*x^*$ и покажем, что $x^* \in H_*$. Как было отмечено, элемент x^* ортогонален H_1 и, значит, $\tilde{P}_1x^* = x^*$. Тогда $A_2x^* = A_1\tilde{P}_1x^* = A_1x^*$.

Предложение

Оператор A можно представить в виде

$$A = \lambda_1 P_1 + \lambda_2 P_2 + \ldots + \lambda_n P_n + A \tilde{P}_n,$$

где P_k - ортогональные проекторы на попарно ортогональные пространства H_k ,

оператор \tilde{P}_n – это ортогональный проектор на пространство \tilde{H}_n – ортогональное дополнение линейной оболочки пространств H_k (то есть H является суммой ортогональных пространств H_k , $k=1,\ldots,n$, и \tilde{H}_n).

Доказательство

Серия утверждений, доказанных выше, составляет базу индукции нужную для доказа-

тельства этого предложения.

$$A_1 = \lambda_1 P_1 + A_1 \tilde{P}_1$$

предположим, что доказано равенство

$$A = \lambda_1 P_1 + \lambda_2 P_2 + \ldots + \lambda_n P_n + A \tilde{P}_n.$$

Тогда оператор $A_{n+1} = AP_n$ будет самосопряженным и компактным и для него можно реализовать процедуру разложения

$$A_{n+1} = \lambda_{n+1} P_{n+1} + A_{n+1} \tilde{P}_{n+1}$$

Объединяя это равенство с равенством, составляющим индукционное предположение, получим требуемое.

Доказательство спектральной теоремы

Воспользуемся результатом предшествующего предложения и запишем конечное разложение оператора

$$A = \lambda_1 P_1 + + \lambda_2 P_2 + \ldots + \lambda_n P_n + A \tilde{P}_n.$$

Если найдется n такое, что $A\tilde{P_n} \equiv \{0\}$, то разложение завершено и теорема доказана.

Покажем, что если оператор имеет бесконечное число различных собственных чисел $\{\lambda_n\}_{n=1}^{\infty}$, то они должны стремиться к 0.

Предположим, что это не так.

Чтобы не усложнять обозначения, будем считать, что $|\lambda_n| > c > 0$, иначе рассмотрим подпоследовательность с таким свойством.

Выберем собственные элементы $Ax_n = \lambda_n x_n$, $||x_n|| = 1$, тогда из последовательности $y_n = Ax_n$ невозможно выбрать подпоследовательность, сходящуюся к 0, так как $||y_n|| = |\lambda_n| > c > 0$. Это противоречит компактности оператора.

Покажем, что последовательность $\lambda_1 P_1 + \lambda_2 P_2 + \ldots + \lambda_n P_n$ сходится к оператору A, точнее, докажем, что разность $A_{n+1} = A - (\lambda_1 P_1 + \lambda_2 P_2 + \ldots + \lambda_n P_n)$ стремится к нулевому оператору.

Как оказано ранее наибольшее по модулю собственное число λ_{n+1} оператора A_{n+1} $||A_{n+1}|| = |\lambda_{n+1}|$.

Следовательно, норма разности (оператор A_{n+1}) стремится к 0 и сходимость доказана.

Легко проверить, что оператор не имеет собственных чисел, отличных от λ_n и, может быть, 0. (Последнее означает, что ядро оператора содержит элементы отличные от 0.)

Если бы нашлось такое собственное число $\lambda_* \neq 0$, то линейное пространство его соб-

ственных элементов было бы ортогонально всем H_k и оператор $A = \lambda_1 P_1 + \lambda_2 P_2 + \ldots + \lambda_n P_n + \ldots$ оказался бы на нем нулевым. Но на собственном подпространстве оператор действует как умножение на λ_* .

Из доказанного также следует, что число собственных чисел оператора не более, чем счетно.

Следствие (альтернатива Фредгольма)

Пусть A — самосопряженный компактный оператор в гильбертовом пространстве H, $b \in H$, $\mu \in \mathbb{R}$,

 λ_n - собственные числа оператора,

 d_n – собственные элементы оператора A,

 $b = b_0 + \sum_n \beta_n d_n$, где $b_0 \in \ker A$, – разложение правой части по базису собственных элементов.

Тогда о решении уравнения

$$x - \mu Ax = b$$

можно утверждать следующее:

- 1) Если для всех n произведение $\mu\lambda_n\neq 1$, то уравнение имеет единственное решение.
- 2) Если существует m такое, что $\mu \lambda_m = 1$ и $\beta_m \neq 0$, то уравнение не имеет решений.
- 3) Если существует m такое, что $\mu \lambda_m = 1$ и $\beta_m = 0$, то уравнение имеет бесконечно много решений.

Доказательство

Используя введенные обозначения, уравнение можно переписать в виде

$$\left(x_0 + \sum_n \alpha_n d_n\right) - \sum_n \mu \lambda_n \alpha_n d_n = b_0 + \sum_n \beta_n d_n.$$

Здесь $x_0 + \sum_n \alpha_n d_n$ – разложение искомого элемента по базису, неопределенные коэффициенты α_n надо найти.

В силу линейной независимости элементов базиса это означает, что $x_0 = b_0$ и при всех n выполнены равенства $(1 - \lambda_n)\alpha_n = \beta_n$. Перечисленные в формулировке альтернативы теперь очевидны.

Замечание

Форма записи уравнения не создает никаких ограничений (в таком виде можно записать любое уравнение). Но надо понимать, что при этом условие компактности оператора A будет выполнено далеко не всегда.

Дополнение.

В приведенном доказательстве спектральной теоремы условие компактности оператора играет решающую роль. Отказ от него в корне меняет ситуацию, но оставляет возможности для доказательства спектральной теоремы. Дадим краткое описание этой

конструкции для произвольного ограниченного самосопряженного оператора в гильбертовом пространстве. Полное доказательство приведено в книге [3].

Спектр такого оператора не обязан быть дискретным и суммы проекторов придется заменить на интегралы. Главная трудность, возникающая на этом пути, – построение спектральной меры, соответствующей оператору.

Понятно, что для любого многочлена p(t) можно построить оператор p(A).

На отрезке, содержащем спектр оператора, любую непрерывную функцию можно равномерно приблизить многочленом. Оказывается, сходимость сохранится и для многочленов от операторов.

Рассмотрим семейство непрерывных функций

$$\phi_a(t)=0,\ t< a,\ \phi_a(t)=t-a,\ t\geq a$$
 Построим, соответствующие операторы $\phi_a(A)$ и обозначим ядра этих операторов $H_a=\{x:\phi_a(A)(x)=0\},$ проекторы на эти пространства обозначим P_a .

Можно доказать, что пространства H_a образуют **расширяющееся** семейство подпространств,

причем левее спектра $H_a = \{0\}$, а правее $H_a = H$.

Эта монотонность переносится на проекторы и дает возможность определить интегральные суммы от непрерывной функции,

в которых вместо длины интервала разбиения $a_{k+1}-a_k$ стоит приращение проекторов $P_{a_{k+1}}-P_{a_k}$.

Можно доказать сходимость операторнозначных интегральных сумм и получить спектральное разложение оператора

$$A = \int_{-\infty}^{\infty} t dP_t.$$

Эта необычная формула, сводится к обычным интегралам.

Она означает, что для любых $x, y \in H$ справедливо числовое равенство

$$(Ax, y) = \int_{-\infty}^{\infty} t d(P_t(x), y).$$