Non-uniqueness in Calderón's problem for anisotropic conductivities

Based on a Paper by Kohn, Shen, Vogelius and Weinstein

Karthik Iyer

University of Washington

11th June 2015

- Suppose we have a conductor in a bounded region Ω with conductivity $\sigma(x)$ defined on $\bar{\Omega}$. We apply a voltage f on $\partial\Omega$ and measure the current that flows out of the region.
- Measuring the current flux through $\partial\Omega$ determines the quantity $\sigma(x)\nabla u(x)\cdot \eta(x)$.
- Application of Ohm's law leads us the BVP

$$\nabla \cdot (\sigma \nabla u) = 0$$
 on Ω with $u = f$ on $\partial \Omega$ (1)

PDE (1) determines a Dirichlet to Neumann map Λ_{σ} which takes boundary voltage to associated current flux

$$\Lambda_{\sigma}: u\big|_{\partial\Omega} \to \sigma \nabla u \cdot \nu\big|_{\partial\Omega} \tag{2}$$

• The inverse conductivity problem is to get information about σ from Λ_σ

- Different aspects of the inverse conductivity problem are uniqueness, stability and reconstruction.
- In the general case, we define the DN map weakly.
- Only concerned with uniqueness for this talk i.e does $\Lambda_{\sigma_1} = \Lambda_{\sigma_2} \implies \sigma_1 = \sigma_2$ on $\bar{\Omega}$.
- Yes if σ_I are scalar valued, positive and finite. No if σ_I is matrix valued, positive definite and finite.

• Let y = F(x) be an invertible, orientation-preserving change of variables in Ω with F(x) = x on $\partial \Omega$. Then

$$\int\limits_{\Omega} \sum \sigma_{ij} \frac{\partial u}{\partial x_i} \frac{\partial u}{\partial x_j} \, dx = \int\limits_{\Omega} \sum \sigma_{ij} \frac{\partial u}{\partial y_k} \frac{\partial y_k}{\partial x_i} \frac{\partial u}{\partial y_l} \frac{\partial y_l}{\partial x_j} det(\frac{\partial x}{\partial y}) \, dy.$$

More compactly,

$$\int_{\Omega} (\sigma(x) \nabla_{x} u \cdot \nabla_{x} u) = \int_{\Omega} (F_{*} \sigma(y) \nabla_{y} u \cdot \nabla_{y} u) \, dy$$

where
$$F_*\sigma(y)=\frac{1}{\det DF(x)}DF(x)\sigma(x)(DF(x))^T$$
 with $DF_{ij}=\frac{\partial y_i}{\partial x_j}$

- $\Lambda_{\sigma} = \Lambda_{F_*\sigma}$
- Is this the only impediment to uniqueness?

Cloaking

• Let $D \subset \Omega$ be fixed. Let $\sigma_c : \Omega \setminus D$ be a non-negative, matrix valued conductivity. We say σ_c cloaks D if its extensions across D,

$$\sigma_A(x) = A(x)$$
 for $x \in D$
= $\sigma_c(x)$ for $x \in \Omega \setminus D$

produces the same boundary measurements as a uniform region with conductivity $\sigma = 1$, regardless of choice of A(x).

Appropriate name since cloaking renders D invisible with respect to boundary measurements.

Relation between uniqueness and cloaking

- No restricted uniqueness if cloaking is possible. We will show existence of cloak and hence non-uniqueness for the inverse conductivity problem.
- For simplicity, we will show existence of cloaks for $D = B_1$ with $\Omega = B_2$.
- Consider an F of the form F(x)

$$\begin{split} &=\frac{x}{\rho}\quad\text{for }|x|\leq\rho\\ &=\big(\frac{2-2\rho}{2-\rho}+\frac{1}{2-\rho}|x|\big)\frac{x}{|x|}\quad\text{for }\rho\leq|x|\leq2 \end{split}$$

• The associated near cloak is the push forward via F of $\sigma=1$, F_*1 , restricted to $B_2\setminus B_1$.

• The boundary measurements of $\sigma_A(y)$

$$= A(y) \quad \text{for } y \in B_1 \tag{3}$$

$$= F_*1(y) \quad \text{for } y \in B_2 \setminus B_1 \tag{4}$$

are identical, by change of variables principle, to $F_*^{-1}\sigma_A(x)$

$$= F_*^{-1} A(x) \text{ for } x \in B_\rho$$

= 1 for $x \in B_2 \setminus B_\rho$

where
$$F_*^{-1} = (F^{-1})_*$$

- The boundary measurements associated with σ_A are the same as those of a uniform ball perturbed by a small inclusion at the center.
- If the radius ρ is small, we hope that the boundary measurements are close to that of a completely uniform ball thus almost cloaking the unit ball.

Near Cloak

By a result of Kohn and Vogelius (1989), we have the following bounds,

$$||\Lambda_{\sigma_A} - \Lambda_1|| \le C \rho^d$$

• Thus the boundary measurements for σ_A are almost identical to those of a uniform ball with conductivity 1. This almost cloaks the unit ball.

Perfect cloak

- Pass to the limit $\rho \to 0$ to get $F(x) = (1 + \frac{|x|}{2}) \frac{x}{|x|}$. We hope that the DN map for σ as in (3) and (4) is the same as that of uniform ball with conductivity 1.
- Have to be careful as F is singular at 0.
- Near the inner boundary of the shell, at least one eigenvalue of F_*1 tends to 0. We now show how to take care of this degeneracy. (Lack of uniform lower bound). Must define the DN map carefully

Existence and Uniqueness of solution

- Let v be the potential associated with Dirichlet data f: $\nabla \cdot (\sigma_A \nabla v) = 0$ in B_2 with v = f on ∂B_2 where σ_A is as given in (3) and (4) using singular change of variables.
- Because of degeneracy of F_*1 near |y|=1, is existence and uniqueness of v now guaranteed?

• Consider the ansatz v(y)

$$= u(x) \text{ for } y \in B_2 \setminus B_1$$
 (5)

$$= u(0) \quad \text{for } y \in B_1 \tag{6}$$

where u is the harmonic function with the same Dirichlet data f and $x = F^{-1}(y)$

- We assume that $|v(y)| \le C$ for $|y| \le r$ for $1 < r \le 2$ i.e v does not diverge as $|y| \to 1$.
- The idea of the proof is to show the following:
 - If v solves the BVP and satisfies the above assumption, then v(y) = u(x) for 1 < |y| < 2 with $x = F^{-1}(y)$.
 - Show that v is indeed a solution i.e $\sigma_A \nabla v$ is weakly divergence free.
 - v(y) = u(0) in B_1 .

Potential outside cloaked region

Theorem 1

If v solves $\nabla \cdot (\sigma_A \nabla v) = 0$ in B_2 with v = f on ∂B_2 and $|v(y)| \le C$ for $|y| \le r$ for $1 < r \le 2$ then v(y) = u(x) for 1 < |y| < 2 where $x = F^{-1}(y)$ and u is the harmonic function on B_2 with the same Dirichlet data f.

Proof.

Change of variables + removal of isolated singularities for harmonic functions.

Potential inside cloaked region

Theorem 2

Fix $f \in H^{\frac{1}{2}}(\partial B_2)$. Let v be as defined in (5) and (6). Then

- (a) v is Lipschitz continuos away from ∂B_2 i.e $|\nabla v|$ is uniformly bounded in B_r for every r < 2.
- (b) $\sigma_A \nabla v$ is also uniformly bounded away from ∂B_2 .
- (c) $(\sigma_A \nabla v) \cdot \nu \to 0$ uniformly as |y| decreases to 1, where $\nu = \frac{y}{|y|}$ is the normal to ∂B_1 .
- (d) $\sigma_A \nabla V$ is weakly divergence free in B_2 .

Potential inside the cloaked region

- To ensure that v(y) = u(0) in B_1 , we assume further that ∇v and $\sigma_A \nabla v$ are in $L^2(B_2)$.
- We have already shown that if v_1 is any solution, then $v_1 = u(x)$ on 1 < |y| < 2.
- For |y| = 1, $v(y) = u(F^{-1}(y)) = u(0)$. $v_1(y) = v_1|_{|y| \downarrow 1} = u(x)|_{|x| \downarrow 0} = u(0)$.
- Both v and v_1 solve $\nabla \cdot (A\nabla g) = 0$ in B_1 and g = u(0) on ∂B_1 . Hence, $v_1 = v$.

Singular change of variables gives perfect cloaking

Theorem 3

Let σ_A be as given in (3) and (4) with singular F. Then $\Lambda_{\sigma_A} = \Lambda_1$

Proof.

- $\int_{B_2} (\sigma_A \nabla v \cdot \nabla v) dy = \int_{B_2 \setminus B_1} (\sigma_A \nabla v \cdot \nabla v) dy$
- Definition of σ_A and change of variables formula gives us

$$\int_{B_2\setminus B_1} (\sigma_A \nabla v \cdot \nabla v) = \int_{B_2} |\nabla_x u|^2 dx$$

where u is harmonic with same Dirichlet data as v

• Thus $\Lambda_{\sigma_A}(f)(f) = \Lambda_1(f)(f)$

Non Radial case

Theorem 4

Let $G: B_2 \to \Omega$ be a bi-Lipschitz map and let $D = G(B_1)$. Then $H = G \circ F \circ G^{-1}: \Omega \to \Omega$ is identity on $\partial \Omega$ and blows up $z_0 = G(0)$ to D. Consider a conductivity σ_A of the form

$$\sigma_A(w) = A(w)$$
 for $w \in D$
= $H_*1(w)$ for $w \in \Omega \setminus D$

where A is symmetric and positive definite but otherwise arbitrary. Then we have $\Lambda_{\sigma_A} = \Lambda_1$.

Open questions

- Does Λ_{σ} determine σ uniquely? (in a restricted sense)
- ullet If σ is only non-negative, then answer is no.
- The question is still open if σ is only supposed to be positive definite and finite in dimensions > 3.