

SECOM ANALYTICS

TEAM 3

Gupta, Himansha Pomay Polat, Ekin Dsouza, Rashmi Carol Pham, Quynh Dinh Hai

TABLE OF CONTENTS

1. OVERALL WORKFLOW

2. DATA UNDERSTANDING & PREPROCESSING

3. DATA MODELING

- Balancing Methods
 - Synthetic Minority Oversampling Technique (SMOTE)
 - Adaptive Synthetic (ADASYN)
 - Random Over-Sampling Examples (ROSE)
- Scaling Dataset
- Machine Learning Models
 - Support Vector Machine (SVM)
 - Decision Tree Classifier
 - Random Forest Classifier

4. DATA EVALUATION

- Evaluation Process
- Hyperparameter Tuning
- Final results

5. CONCLUSION

WORKFLOW

DATA UNDERSTANDING & PREPROCESSING

DATA PREPROCESSING

DATA PREPARATION

MERGING DATA

SEPARATE TRAINING & TEST DATA

DATA PREPARATION

REDUCING DIMENSIONALITY

def percent(dataframe, threshold):

return columns.tolist()

na_columns = percent(X_train, 0.5)
X_train_na = X_train.drop(na_columns, axis=1)

X_test_na = X_test.drop(na_columns, axis=1)

columns = dataframe.columns[(dataframe.isna().sum()/dataframe.shape[1])>threshold]

- 1. Remove the Timestamp feature
- 2. Remove features with missing values

Threshold:

Features with more than 50% missing value

eatures with more than 50% missing value (sorted)

OUTLIER TREATMENT

MISSING VALUE IMPUTATION

Which Imputation Method did we choose?

FEATURE SELECTION

Random Forest Feature Importance

TRIAL AND ERROR PROCESS

SELECTION AND ELIMINATION

	Type I error	Type II error	F1 score	AUC	Cost	Remaining features		Type I	Type II error	F1 score	AUC	Cost	Remaining Features
KNN - Boruta - SMOTE	11	74	72	70	\$ 98.75	12	MICE - Boruta - SMOTE	error 11	76	68	72	\$100.75	
KNN - Boruta - SMOTE-ENN	10	88	69	73	\$ 110.50	12	MICE - Boruta - SMOTE-ENN	9	84	74	70	\$104.25	
KNN - Boruta - SMOTE-TOMEK	11	67	75	68	\$ 91.75	12	MICE - Boruta - SMOTE-TOMEK	11	78		69	\$102.75	
KNN - Boruta - ADASYN	12	79	71	63	\$ 106.00	12	MICE - Boruta - ADASYN	11	82		63	\$106.75	12
KNN - Boruta - ROSE	10	53	79	72	\$ 75.50	12	MICE - Boruta - ROSE	9	53		71	\$ 73.25	
KNN - Chi-Square Test - SMOTE	13	43		67	\$ 72.25	29	MICE - Chi-Square Test - SMOTE	14	43		65	\$ 74.50	
KNN - Chi-Square Test - SMOTE-ENN	11	61	77	69	\$ 85.75	29	MICE - Chi-Square Test - SMOTE-ENN	13	61	76	67	\$ 90.25	
KNN - Chi-Square Test - SMOTE-TOMEK	14	41		68	\$ 72.50	29	MICE - Chi-Square Test - SMOTE-TOMEK	15	46	11.0	66	\$ 79.75	
KNN - Chi-Square Test - ADASYN	12	42	82	68	\$ 69.00	29	MICE - Chi-Square Test - ADASYN	11	42		67	\$ 66.75	
KNN - Chi-Square Test - ROSE					\$ -	29	•	11	72	63	07	\$ -	29
KNN - Lasso Regression - SMOTE	14	25	87	73	\$ 56.50	29	MICE - Chi-Square Test - ROSE					-	
KNN - Lasso Regression - SMOTE-ENN	11	62	76	72	\$ 86.75	29	MICE - Lasso Regression - SMOTE	14	26		74	\$ 57.50	29
KNN - Lasso Regression - SMOTE-TOMEK	16	20	87	72	\$ 56.00	29	MICE - Lasso Regression - SMOTE-ENN	10	64		71	\$ 86.50	29
KNN - Lasso Regression - ADASYN	14	34	84	71	\$ 65.50	29	MICE - Lasso Regression - SMOTE-TOMEK	14	26		74	\$ 57.50	
KNN - Lasso Regression - ROSE					\$ -	29	MICE - Lasso Regression - ADASYN	15	36	83	74	\$ 69.75	29
KNN - Boruta SHAP - SMOTE					\$ -		MICE - Lasso Regression - ROSE					\$ -	29
KNN - Forward Selection - SMOTE	13	30	86	70	\$ 59.25	15	MICE - Boruta SHAP - SMOTE					\$ -	6
KNN - Forward Selection - SMOTE-ENN	9	49	81	73	\$ 69.25	15	MICE - Forward Selection - SMOTE	12	29	86	73	\$ 56.00	
KNN - Forward Selection - SMOTE-TOMEK	13	30	86	72	\$ 59.25	15	MICE - Forward Selection - SMOTE-ENN	10	46	82	70	\$ 68.50	
KNN - Forward Selection - ADASYN	14	30	85	73	\$ 61.50	15	MICE - Forward Selection - SMOTE-TOMEK	14	27	86	71	\$ 58.50	
KNN - Forward Selection - ROSE	11	28	87	75	\$ 52.75	15	MICE - Forward Selection - ADASYN	12	32	85	72	\$ 59.00	
KNN - RFE - SMOTE	14	45	81	73	\$ 76.50	15	MICE - Forward Selection - ROSE	10	35	85	76	\$ 57.50	
KNN - RFE - SMOTE-ENN	11	77	71	70	\$ 101.75	15							

There is no best feature selection method. Instead, we have discovered what works best for the specific problems related to this Dataset using careful systematic experimentation/trial and error method. We tried a range of different models fit on different subsets of features chosen via different statistical measures and discovered the ones works best.

Problem with Imbalance Dataset

Standard learners are often biased towards the majority class. The reason is because these classifiers attempt to reduce overall quantities such as error rate, not taking the data distribution into consideration, therefore, tend to bias performance towards the majority class.

Solutions:

Re-sampling provides a simple way of biasing the generalization process. It can do so by:

- Generating synthetic samples accordingly biased
- Controlling the amount and placement of the new samples

Methods:

Synthetic Minority Oversampling Technique (SMOTE)

Adaptive Synthetic (ADASYN)

Random Over-Sampling Examples (ROSE)

Synthetic Minority Oversampling Technique (SMOTE)

It combines Informed Oversampling of the minority class with Random Undersampling of the majority class.

νυνόλη

Adaptive Synthetic (ADASYN)

It uses a weighted distribution for different minority class examples according to their level of difficulty in learning, where more synthetic data generated for minority class examples that are harder to learn compared to those minority examples that are easier to learn

ROSE

Random Over-Sampling Examples (ROSE)

It is a bootstrap-based technique which aids the task of binary classification in the presence of rare classes.

Why we chose a certain balancing method?

ROSE

SCALING

SCALING

We are almost ready to fit the model, but...

Features have different Dimensions...

We applied scaling in KNN. Scaling is recommended

Since the approach relying on measuring distances

To evaluate the results on the same scale, the final model is applied to generate the predictions.

MACHINE LEARNING MODELS

MACHINE LEARNING MODELS

Support Vector Machine (SVM)

Support Vector Machine (SVM)

It creates the best line or decision boundary (hyperplane) that can segregate n-dimensional space into classes so that new data point can be easily put in correct category in the future.

Decision Tree Classifier

Decision Tree Classifier

It is a tree-structured classifier, where internal nodes represent the features of a dataset, branches represent the decision rules and each leaf node represents the outcome.

Random Forest Classifier

Random Forest Classifier

It combines hundreds of decision trees and trains each decision tree on a different sample of the observations. The final predictions are made by averaging the predictions of each individual tree.

RESULTS WITH SVM

Best combinations in terms of accuracy:

- KNN-Boruta-SMOTE
- KNN-Boruta-ADASYN

RESULTS WITH DECISION TREE CLASSIFIER

Best combinations in terms of accuracy:

- KNN-Boruta-SMOTE
- KNN-Boruta-ROSE

RESULTS WITH RANDOM FOREST CLASSIFIER

Best combinations in terms of accuracy:

- KNN-Boruta-SMOTE
- KNN-Chi-Square Test-ADASYN
- KNN-Lasso Regression-ADASYN

EVALUATION PROCESS

CONFUSION MATRIX

COST MODEL

ELIMINATION OF MODELS

RANDOM FOREST CLASSIFIER

RESULTS WITH COST MODEL

Type 2 Error < 35

Lowest Type 1 Error

Best Model: KNN-Boruta-ROSE using Random Forest Classifier

Type I error: 10Type II error: 32

• Cost: \$54,500

MODEL OPTIMISATION

MODEL OPTIMISATION

CROSS VALIDATION

For Cross Validation we have used a **10-fold** approach in which the data is split randomly in 10 subsets that have the same number of samples. The steps described in the next subsections are repeated 10 times and each time the testing data will be one distinct fold from the set of the 10 folds and the training data will consist of the remaining 9 folds.

REDUCES OVERFITTING PROBLEM

HYPERPARAMETER TUNING WITH GRID SEARCH CV

Important parameter

HYPERTUNING FOR MAXIMUM DEPTH

RESULTS

FINAL RESULT (KNN - Boruta - ROSE with Random Forest Classifier)

SUMMARY

Lesson Learned and Best Practices

- 1. Using CRISP DM
- 2. Complete Data
- 3. Outlier treatment and imputation of data
- 4. Balancing the data
- 5. Scaling the data
- 6. Business Understanding and defining model
- 7. Model Quality

Gupta, Himansha Himansha.Gupta@student.htw-berlin.de

Dsouza, Rashmi Carol Rashmi.Dsouza@Student.HTW-Berlin.de Pomay Polat, Ekin Ekin.PomayPolat@student.htw-berlin.de

Pham, Quynh Dinh Hai Quynh.Pham@Student.HTW-Berlin.de

