CHAPTER 5

RECURRENCE RELATIONS

HOMEWORK

- Again, all homework is from the Exercises
 - No problems are from the Review Exercises
- Section 5.1, (p. 232), #4-8, 18-20, 37-40
- Section 5.2, (p. 244), #14-18, 34-36

RECURRENCE RELATIONS

- We actually saw these before
- Here is an example

$$- a_1 = 6$$

- $a_{n+1} = a_n - 3, n \ge 1$

- Here is another example
- This is the Fibonacci relation

$$- F_0 = I, F_1 = I$$

 $- F_n = F_{n-1} + F_{n-2}, n >= 3$

AN EXAMPLE

- For example, suppose you do a job repeatedly
- It's hard
- The first time you do it, it takes one hour
- Each time you do it after that, it takes you one hour longer than the previous time
- You could describe the times like this:
 - $-t_1 = 1$
 - $-t_{n+1}=t_n+1, n \ge 1$

THAT JOB JUST GOT EVEN HARDER!

- Now, suppose the job is even harder
- Each time it takes twice as long as the previous time
- Now you can describe the times as
 - $-t_1 = 1$
 - $t_{n+1} = 2t_n, n \ge 1$
- Some vocabulary
 - The equations are called a recurrence relation
 - The "first equation" is called an initial condition

A THIRD EXAMPLE

- This example is similar to an example from the book
- You deposit \$1000 into the bank
- The bank pays 12% interest annually, compounded monthly
 - This means that 1% is paid each month
- After n months, how much money will you have?

THE RECURRENCE RELATION

- This time I'm starting at 0
- The recurrence relation is

$$- a_0 = 1000$$

$$- a_{n+1} = a_n + 0.0 I a_n, n \ge 0$$

• Let's rewrite this by factoring a_n out of the right side of the recurrence relation:

$$- a_0 = 1000$$

$$- a_{n+1} = (1+0.01)a_n, = 1.01a_n, n \ge 0$$

RECURRENCE RELATIONS COME FROM RECURSIVE CODE

- Recurrence relations often come from recursive code.
- For example, to compute the interest, you could use this algorithm:

```
procedure compute_interest (months)
  if months = 0 then
    return 1000
  else
    return 1.01*compute_interest (months-I)
end compute_interest
```

STILL ANOTHER EXAMPLE

- Let S_n = the number of n-bit strings that do not contain III
- It's easy to find a recurrence relation for this
- We break all n-bit strings that do not contain III into three categories
 - Those that start with 0 and do not contain 111
 - Those that start with 10 and do not contain 111
 - Those that start with II and do not contain III
- Notice that these three categories are disjoint (they have nothing in common)
- Also, notice that these three categories cover all possibilities

CONTINUING THE EXAMPLE

- The first case: The string starts with 0 and doesn't contain III
 - It's easy to see that the number of strings is S_{n-1}
- The second case: The string starts with 10 and doesn't contain 111
 - It's easy to see that the number of strings is S_{n-2}
- The third case: The string starts with II and doesn't contain III
 - Suppose a string starts II_ and doesn't contain III
 - Then the blank cannot contain I, and so must contain 0
 - So, the number of strings is S_{n-3}
- So we get the recurrence relation $S_n = S_{n-1} + S_{n-2} + S_{n-3}$

FINISHING THE EXAMPLE

- Notice that this is for n >= 4
- For initial conditions, we need to know

$$-S_{1}=2$$

$$-S_2 = 4$$

$$-S_3 = 7$$

So the recurrence relation is

$$-S_1 = 2$$
. $S_2 = 4$. $S_3 = 7$.

$$- S_n = S_{n-1} + S_{n-2} + S_{n-3}, n >= 4$$

THE TOWERS OF HANOI

- Here is another example of recursive code
- Suppose you code the Towers of Hanoi problem directly
- · You want to know how much faster a recursive program would run
 - You are ignoring some implementation details
 - For example, it does take time to process activation records
- The code appears on the next slide

THE CODE

- procedure move_disks (n, start_pole, spare_pole, end_pole)
- move_disks (n-I, start_pole, end_pole, spare_pole);
- Move top disk from start_pole to end_pole
- move_disks (n-l, spare_pole, end_pole, start_pole);
- end move_disks

COUNTING MOVES

- We want to know how many moves it takes to move n disks
 - Let's call this m_n
- If there is one disk, m₁ = I
- Otherwise, we get the recurrence relation
 - $-m_1 = 1$
 - $m_{n+1} = m_n + 1 + m_n$, or $m_{n+1} = 2m_n + 1$, $n \ge 1$

THE COBWEB IN ECONOMICS

- Model demand
 - -p = a bq, where p = unit price, q = quantity purchased, a, b are constants >= 0
 - This equation shows that as the price increases, people will buy less of the product
- Model supply
 - -p = kq, where p is as above, q = quantity produced, and k is a positive constant
 - This equation shows that as the price increases, the producer will make more
- · We will assume that the two q's are the same
 - This means we sell every item we produce
- · We want to model this over a period of time
 - This means we have $p_0, p_1, p_2, ...$
- We also will assume that there is a one-unit time lag to get the supply to consumers

GENERATING THE MODEL

- So, we use the demand equation $p_n = a bq_n$
 - The quantity produced at time n will be sold at the price p_n
- We also use the supply equation $p_n = kq_{n+1}$
 - It takes one time period for the producer to adjust the quantity (from q_n to q_{n+1}) for price p_n
- Combining these equations gives $p_{n+1} = a (b/k)p_n$
- We also need p₀, but we get that from data

INTERPRETING THIS GRAPHICALLY

- If b < k, we get the picture shown in Fig. 5.1.5 on p. 230
 - The price stabilizes
- If b > k, we get the picture shown in Fig. 5.1.7 on p. 231
 - The price keeps spiraling out of control
- If b = k, then the equation changes to $p_{n+1} = a p_n = a (a p_{n-1}) = p_{n-1}$
 - This will oscillate between p_0 and p_1 , where $p_1 = a p_0$

ANOTHER EXAMPLE

- This is n example developed to check on recursion
 - The idea here was to convert a recursive program to one using only for loops
- · Ackermann's original function looked different from this one, but is the same
 - See the note before Problem 44 on p. 233 for his original function
- The function is
 - $A(0, n) = n + 1, n \ge 0$
 - $A(m, 0) = A(m-1, 1), m \ge 1$
 - $A(m, n) = A(m-1, A(m, n-1)), m \ge 1, n \ge 1$

CHECKING ON THE RECURRENCE RELATION

- This function gets complicated quickly
- Let's calculate A(2, I)
- We have, by the last recurrence
 - A(2, 1) = A(1, A(2,0))
 - = A(I,A(I,I))
- This process continues
- · Details are given on the next slide

THE FULL CALCULATION OF A(2,1)

	Calculation	Justification	Formulas discovered
I	A(2, I)		
2	= A(1, A(2,0))	because (3) $A(2,1) = A(1,A(2,0))$	A(2,0) = 3 (from Step 7)
3	=A(I, A(I,I))	because (2) $A(2,0) = A(1,1)$	A(I,I) = 3 (from Step 7)
4	= A(I, A(0,A(I,0)))	because (3) $A(1,1) = A(0,A(1,0))$	
5	= A(I, A(0,A(0,I)))	because (2) $A(1,0) = A(0,1)$	A(1,0) = A(0,1) = 2 (Step 6)
6	= A(1, A(0, 2))	because (I) $A(0,I) = 2$	A(0,1)=2
7	=A(1, 3)	because (1) $A(0,3) = 3$	A(0,2) = 3
8	= A(0,A(1,2))	because (3) $A(1,3) = A(0,A(1,2))$	
9	= A(0, A(1,2))	Just rewriting the line above with spaces	A(1,2) = 4 (from Step 12
10	= A(0, A(0, A(1,1)))	because (3) $A(1,2) = A(0,A(1,1))$	
11	= A(0, A(0, 3))	because $A(I,I) = 3$ from the work above	
12	=A(0, 4)	because (1) $A(0,3) = 4$	
13	= 5	because (1) $A(0,4) = 5$	

HOMEWORK

- Now you should be able to complete the homework from Section 5.1
- Again, all homework is from the Exercises
 - No problems are from the Review Exercises
- Section 5.1, (p. 232), #4-8, 18-20, 37-40