Final project: Data and Programming for Public Policy II

Cristian Bancayan, Sol Rivas Lopes & Claudia Felipe 2024-12-04

Set-up

```
#-----
 Settings
# Packages
#-----
import os
import pandas as pd
import altair as alt
import numpy as np
import altair as alt
from altair_saver import save
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from linearmodels.panel import PanelOLS
import statsmodels.api as sm
from scipy.stats import ttest_ind
import statsmodels.formula.api as smf
# Working directory
#-----
username = os.getlogin()
# Define paths for each user of this project
```

Data cleaning and merging

II\python_final_proj

Country-Aggregated Education Outcomes over Time

In this section, we create visualizations to compare the median values of key outcome variables over time between rural and urban areas for all Latin American countries with conditional cash transfer (CCT) programs, excluding Colombia and Argentina. This approach allows us to observe trends and differences across the region, providing insights into the potential impact of CCT programs. By focusing on median values, we minimize the influence of outliers and better capture central tendencies in the data.

```
# List of outcomes to include in the analysis
outcomes = ['years_edu_all', 'enrollment6_12yo', 'enrollment13_17yo']
# Separate rural and urban data
rural data = countries with cct df[[
    'country', 'year', 'cct_active'] + [f"{var}_rural" for var in

   outcomes]].copy()

urban_data = countries_with_cct_df[[
    'country', 'year', 'cct_active'] + [f"{var}_urban" for var in
    → outcomes]].copy()
# Rename columns to unify structure
rural_data.columns = ['country', 'year', 'cct_active'] + outcomes
urban_data.columns = ['country', 'year', 'cct_active'] + outcomes
# Add 'area' column to differentiate rural and urban
rural_data['area'] = 'rural'
urban_data['area'] = 'urban'
# Combine both datasets
combined_data = pd.concat([rural_data, urban_data], ignore_index=True)
```

```
# Aggregate data: Calculate the median for each year and area for each
aggregated_data = combined_data.melt(
    id_vars=['country', 'year', 'cct_active', 'area'],
   value_vars=outcomes,
   var_name='variable',
    value_name='value'
).groupby(['year', 'area', 'variable']).agg(
    median_value=('value', 'median')
).reset index()
# Creating custom, informative titles for each plot
custom_titles = {
    'years_edu_all': 'Years of Education',
    'enrollment6_12yo': 'Proportion of 6- to 12-year-olds Enrolled in
    ⇔ School',
    'enrollment13_17yo': 'Proportion of 13- to 17-year-olds Enrolled in
    ⇔ School'
}
# Creating custom, informative y-axis titles for each plot
custom_y = {
    'years edu all': 'Years of Education',
    'enrollment6_12yo': 'Enrollment (%)',
    'enrollment13 17yo': 'Enrollment (%)'
# List with all years of implementation
cct_years = np.unique(countries_with_cct_df["year_cct"]).astype(int).tolist()
# Loop through each variable and create a separate chart
for var in outcomes:
    # Filter data for the current variable
    data_for_var = aggregated_data[aggregated_data['variable'] == var]
    # Create the chart
    chart = alt.Chart(data_for_var).mark_line(point=True).encode(
        x=alt.X('year:0', axis=alt.Axis(title='Year')),
        y=alt.Y('median_value:Q', axis=alt.Axis(
            title=f'Median {custom_y[var]}')),
        color=alt.Color('area:N',
```

```
scale=alt.Scale(domain=['urban', 'rural'],
                                    range=['#363633', '#89a6a5']),
                    legend=alt.Legend(title='Region Type',
                                      labelFontSize=12,
                                       titleFontSize=14)),
    tooltip=['year', 'median_value', 'area']
).properties(
    width=600,
    height=400,
    title=f"Median {custom_titles[var]}: Rural vs. Urban"
)
vertical_lines = alt.Chart(pd.DataFrame({'year': cct_years})).mark_rule(
    color='red', # Color of the line
    strokeDash=[4, 4] # Dotted line style
).encode(
    x='year:0'
label = alt.Chart(pd.DataFrame({'year': [cct_years],
                                 'label': ['Years when a CCT Program was

    first implemented']
})
                  ).mark_text(
    align='right',
    baseline='bottom',
    dx=-5, # Offset the label slightly to the right of the line
    dy=190,
    color='red',
    fontSize=10
).encode(
    x='year:0',
    text='label'
)
# Combine the line chart and the vertical lines
final_chart = chart + vertical_lines + label
final_chart.show()
# Save the chart as a PNG file
chart.save(f'{var}.png')
```

```
alt.LayerChart(...)
alt.LayerChart(...)
alt.LayerChart(...)
```

Education outcomes by country and region type

In this section, we analyze the mean values of key outcome variables across Latin American countries with conditional cash transfer (CCT) programs. We calculate the mean for each variable, distinguishing between rural and urban areas, and grouping by the presence or absence of CCT programs. This analysis provides insights into the average impact of CCT programs at the country level.

```
# List of outcomes to include in the analysis
outcomes = ['years_edu_all', 'enrollment6_12yo', 'enrollment13_17yo']
# Aggregate data: Calculate the mean for each country and CCT state for each
aggregated_data = countries_with_cct_df.melt(
    id_vars=['country', 'year', 'cct_active'],
    value_vars=[f"{var}_rural" for var in outcomes] + [f"{var}_urban" for var

    in outcomes],
   var name='variable',
    value_name='value'
).groupby(['country', 'cct_active', 'variable']).agg(
    mean_value=('value', 'mean')
).reset index()
aggregated_data['cct_active'] = aggregated_data['cct_active'].replace({0:
→ 'Pre', 1: 'Post'})
# Creating custom, informative titles for each plot
custom_titles = {
    'years_edu_all': 'Years of Education',
    'enrollment6_12yo': 'Share of 6- to 12-year-olds Enrolled in School',
    'enrollment13 17yo': 'Share of 13- to 17-year-olds Enrolled in School'
}
# Creating custom, informative y-axis titles for each plot
custom y = {
    'years_edu_all': 'Years of Education',
```

```
'enrollment6_12yo': 'Enrollment (%)',
    'enrollment13_17yo': 'Enrollment (%)'
}
# Filter the data by each variable and create bar charts
for var in outcomes:
    data_for_var = aggregated_data[
        (aggregated_data['variable'] == f"{var}_rural") |

    (aggregated_data['variable'] == f"{var}_urban")

    chart = alt.Chart(data_for_var).mark_bar().encode(
       x=alt.X('country:N', axis=alt.Axis(title='Country'),
               sort=["Pre", "Post"]),
       y=alt.Y('mean_value:Q', axis=alt.Axis(title=f'Mean
 color=alt.Color('cct_active:N',
                       scale=alt.Scale(domain=['Pre', 'Post'],
                                       range=['#363633', '#89a6a5']), #
                                        legend=alt.Legend(title='Cash Transfer',
                                         labelFontSize=10,
                                         titleFontSize=10),
                       sort=["Pre", "Post"]),
       column='variable:N',
       tooltip=['country', 'mean_value', 'cct_active'],
       xOffset='cct_active:N'
    ).properties(
       width=150,
       height=400,
       title=f"Mean {custom_titles[var]}: Rural vs. Urban"
    )
    chart.show()
    # Save the chart as a PNG file
    chart.save(f'mean_{var}.png')
alt.Chart(...)
```

```
alt.Chart(...)
alt.Chart(...)
alt.Chart(...)
```

Differential growth in years of education and enrollment pre- and post-CCT, per country

This section produces graphs showing the differential increse in education outcomes by country, disaggregated by region type.

```
# Create an education df
education_agg_df = countries_with_cct_df[['years_edu_all_urban',
                                           'enrollment6 12yo urban',

    'enrollment13_17yo_urban',
                                           'years edu all rural',
                                           'enrollment6_12yo_rural',
                                           'enrollment13 17yo rural',
                                           'cct_active',
                                           'country',
                                           'year']]
# Specify outcomes of interest
outcomes = ['years_edu_all', 'enrollment6_12yo', 'enrollment13_17yo']
# Compute the mean value for each combination of country, cct_active, and

    variable

education_agg_df = education_agg_df.melt(
    id_vars=['country', 'year', 'cct_active'],
    value_vars=[f"{var}_rural" for var in outcomes] +
    [f"{var} urban" for var in outcomes],
    var_name='variable',
    value name='value'
).groupby(['country', 'cct_active', 'variable']).agg(
    mean_value=('value', 'mean')
).reset_index()
# Pivot the table to separate cct_active == 1 and cct_active == 0
pivot_df = education_agg_df.pivot_table(
    index=['country', 'variable'],
    columns='cct_active',
    values='mean_value',
    aggfunc='mean'
).reset index()
# Rename columns more intuitively
pivot_df.rename(columns={0: "Pre", 1: "Post"}, inplace=True)
```

```
# Create a Rural/Urban variable
pivot_df['rural_urban'] = pivot_df['variable'].apply(
   lambda x: 'Urban' if 'urban' in x else 'Rural'
)
# Compute the difference between the mean values pre/post cct
pivot_df['mean_difference'] = pivot_df["Post"] - pivot_df["Pre"]
# Create custom, informative titles for each plot
custom_titles = {
    'years_edu_all': 'Years of Education',
   'enrollment6_12yo': 'Share of Children Aged 6-12 Enrolled in School',
   'enrollment13_17yo': 'Share of Teenagers Aged 13-17 Enrolled in School'
}
# Filter the data by each variable and create bar charts
for var in outcomes:
   data_for_var = pivot_df[pivot_df['variable'].str.contains(var)]
   chart = alt.Chart(data_for_var).mark_bar().encode(
       x=alt.X('country:N', title='Country'),
       y=alt.Y('mean_difference:Q', title='Percentage Point Increase'),
       color=alt.Color('rural urban:N',
                      scale=alt.Scale(domain=['Urban', 'Rural'],
                                    range=['#363633', '#89a6a5']), #
                                     \hookrightarrow Celeste and blue
                      legend=alt.Legend(title='Region Type',
                                      labelFontSize=10,
                                      titleFontSize=10)),
       xOffset='rural_urban:N', # Offset the bars to place them side by

    side

       tooltip=['country', 'rural_urban', 'mean_difference']
   ).properties(
       width=300,
       height=400,
       title=f'Increase in {custom_titles[var]} Post Cash Transfer'
   )
```

```
chart.show()
alt.Chart(...)
alt.Chart(...)
```

T-test

alt.Chart(...)

```
# Initialize a list to store the results
diff_of_diff_results = []
# Get the list of unique countries and variables
countries = combined_data['country'].unique()
variables = ['years_edu_all', 'enrollment6_12yo', 'enrollment13_17yo']
for country in countries:
    country data = combined data[combined_data['country'] == country]
    for variable in variables:
        # Filter data for rural and urban areas
        rural_data = country_data[country_data['area'] == 'rural']
        urban_data = country_data[country_data['area'] == 'urban']
        # Separate data by cct_active (0 and 1) for rural and urban
        rural_pre = rural_data[rural_data['cct_active'] == 0][variable]
        rural_post = rural_data[rural_data['cct_active'] == 1][variable]
        urban_pre = urban_data[urban_data['cct_active'] == 0][variable]
        urban_post = urban_data[urban_data['cct_active'] == 1][variable]
        # Calculate the increments (Post - Pre) if data is available
        if not rural_pre.empty and not rural_post.empty and not

    urban_pre.empty and not urban_post.empty:

            rural_diff = rural_post.mean() - rural_pre.mean()
            urban_diff = urban_post.mean() - urban_pre.mean()
            # Calculate the difference of differences
            diff_of_diff = urban_diff - rural_diff
```

```
# Perform a t-test between the increments
            rural_increment = rural_post.values - rural_pre.mean()
            urban_increment = urban_post.values - urban_pre.mean()
            t_stat, p_val = ttest_ind(rural_increment, urban_increment,

    equal_var=False)

            diff_of_diff_results.append({
                'Country': country,
                'Variable': variable,
                'Rural Increment': rural_diff,
                'Urban Increment': urban_diff,
                'Difference of Differences': diff_of_diff,
                't-stat': t_stat,
                'p-value': p_val
            })
# Convert the results to a DataFrame
diff_of_diff_results_df = pd.DataFrame(diff_of_diff_results)
# Save the results to a CSV file
output_path = 'difference_of_differences_results.csv' # Replace with your

→ desired output path

diff_of_diff_results_df.to_csv(output_path, index=False)
# Display the results
print("Difference of Differences Results:")
print(diff_of_diff_results_df)
```

Difference of Differences Results:

	Country	Variable	Rural Increment	Urban Increment	\
0	Brazil	years_edu_all	1.761709	1.908782	
1	Brazil	enrollment6_12yo	9.443256	3.912245	
2	Brazil	enrollment13_17yo	16.868877	8.069285	
3	Chile	years_edu_all	2.026280	1.610190	
4	Chile	enrollment6_12yo	4.831182	0.888070	
5	Chile	enrollment13_17yo	22.189369	5.801917	
6	Mexico	years_edu_all	1.505164	1.150179	
7	Mexico	enrollment6_12yo	5.017859	1.750852	
8	Mexico	enrollment13_17yo	19.877480	8.191788	
9	Paraguay	years_edu_all	1.479305	1.570265	
10	Paraguay	enrollment6_12yo	4.705052	2.149144	

```
11 Paraguay enrollment13_17yo
                                      15.229327
                                                          6.619711
12
        Peru
                  years_edu_all
                                        0.887155
                                                          0.731799
13
        Peru
               enrollment6_12yo
                                         3.103534
                                                          0.407910
14
        Peru enrollment13_17yo
                                                          3.155340
                                       12.192505
   Difference of Differences
                                  t-stat
                                                p-value
0
                     0.147072 -0.603600 5.498954e-01
1
                    -5.531011 11.893812 1.052610e-11
2
                    -8.799592 7.011017 1.108841e-07
3
                    -0.416090
                                     NaN
                                                    NaN
4
                    -3.943112
                                     {\tt NaN}
                                                    NaN
5
                   -16.387452
                                     {\tt NaN}
                                                    NaN
6
                    -0.354985
                                     {\tt NaN}
                                                    NaN
7
                    -3.267007
                                     NaN
                                                    NaN
8
                   -11.685692
                                     {\tt NaN}
                                                    NaN
9
                     0.090960 -0.457260 6.502325e-01
10
                    -2.555909
                               5.723570 5.436598e-06
11
                    -8.609616 5.536294 1.171162e-05
12
                    -0.155355 1.514825 1.418201e-01
                    -2.695624 9.606900 1.139337e-10
13
14
                    -9.037165 6.439323 2.587994e-06
```

T-test without empty observations

```
# Eliminar filas con valores nulos en las variables clave
filtered_data = combined_data.dropna(subset=['years_edu_all',
    'enrollment6_12yo', 'enrollment13_17yo'])

# Initialize a list to store the results
diff_of_diff_results = []

# Get the list of unique countries and variables
countries = filtered_data['country'].unique()
variables = ['years_edu_all', 'enrollment6_12yo', 'enrollment13_17yo']

for country in countries:
    country_data = filtered_data[filtered_data['country'] == country]

for variable in variables:
    # Filter_data for rural_and_urban_areas
```

```
rural_data = country_data[country_data['area'] == 'rural']
       urban_data = country_data[country_data['area'] == 'urban']
       # Separate data by cct_active (0 and 1) for rural and urban
       rural_pre = rural_data[rural_data['cct_active'] == 0][variable]
       rural_post = rural_data[rural_data['cct_active'] == 1][variable]
       urban_pre = urban_data[urban_data['cct_active'] == 0][variable]
       urban_post = urban_data[urban_data['cct_active'] == 1][variable]
        # Calculate the increments (Post - Pre) if data is available
       if not rural_pre.empty and not rural_post.empty and not

    urban_pre.empty and not urban_post.empty:

           rural_diff = rural_post.mean() - rural_pre.mean()
           urban_diff = urban_post.mean() - urban_pre.mean()
           # Calculate the difference of differences
           diff_of_diff = urban_diff - rural_diff
           # Perform a t-test between the increments
           rural_increment = rural_post.values - rural_pre.mean()
           urban_increment = urban_post.values - urban_pre.mean()
           t_stat, p_val = ttest_ind(rural_increment, urban_increment,

    equal_var=False)

            diff_of_diff_results.append({
                'Country': country,
                'Variable': variable,
                'Rural Increment': rural diff,
                'Urban Increment': urban_diff,
                'Difference of Differences': diff_of_diff,
                't-stat': t_stat,
                'p-value': p_val
           })
# Convert the results to a DataFrame
diff_of_diff_results_df = pd.DataFrame(diff_of_diff_results)
# Save the results to a CSV file
output path = 'difference of differences results.csv' # Replace with your

→ desired output path

diff_of_diff_results_df.to_csv(output_path, index=False)
```

```
# Display the results
print("Difference of Differences Results:")
print(diff_of_diff_results_df)
```

Dif	ference of	Differences Resul	lts:				
	Country	Variable	e Rural In	crement	Urban	Increment	\
0	Brazil	years_edu_all	L 1	.761709		1.908782	
1	Brazil	enrollment6_12yo	9	.443256		3.912245	
2	Brazil	enrollment13_17yo	16	.868877		8.069285	
3	Chile	years_edu_all	L 2	.026280		1.610190	
4	Chile	enrollment6_12yo	9 4	.831182		0.888070	
5	Chile	enrollment13_17yo	22	.189369		5.801917	
6	Mexico	years_edu_all	L 1	.505164		1.150179	
7	Mexico	enrollment6_12yo	5	.017859		1.750852	
8	Mexico	enrollment13_17yo	19	.877480		8.191788	
9	Paraguay	years_edu_all	L 1	.479305		1.570265	
10	Paraguay	enrollment6_12yo	9 4	.705052		2.149144	
11	Paraguay	enrollment13_17yo	15	.229327		6.619711	
12	Peru	years_edu_all	L 0	.887155		0.731799	
13	Peru	enrollment6_12yo	3	.103534		0.407910	
14	Peru	enrollment13_17yo	12	.192505		3.155340	
	Difference	e of Differences	t-stat	7-q	alue		
0		0.147072	-0.603600	5.498954			
1			11.893812	1.052610			
2			7.011017	1.10884			
3		-0.416090	1.206698	2.487465			

	Difference o	f Differences	t-stat	p-value
0		0.147072	-0.603600	5.498954e-01
1		-5.531011	11.893812	1.052610e-11
2		-8.799592	7.011017	1.108841e-07
3		-0.416090	1.206698	2.487465e-01
4		-3.943112	15.954646	1.573648e-07
5		-16.387452	11.843053	7.910643e-07
6		-0.354985	1.456123	1.594543e-01
7		-3.267007	8.285836	6.281733e-08
8		-11.685692	5.756274	1.675278e-05
9		0.090960	-0.457260	6.502325e-01
10		-2.555909	5.723570	5.436598e-06
11		-8.609616	5.536294	1.171162e-05
12		-0.155355	1.514825	1.418201e-01
13		-2.695624	9.606900	1.139337e-10
14		-9.037165	6.439323	2.587994e-06

Education and quality of dwellings

Quality of Dwellings post-CCT

alt.Chart(...)

```
y=alt.Y('dwellings_low_quality_rural:Q',
              axis=alt.Axis(title='Share of Poor Dwellings'))
   ).properties(
       width=360,
       height=360,
       title= f"Share of Poor Dwellings in {country}'s Rural Areas Before
\hookrightarrow and After CCT Implementation"
   vertical_line = alt.Chart(pd.DataFrame({'year':
x='year:0' # Ensure the year is treated as ordinal for the vertical
\hookrightarrow line
   )
   plot = chart + vertical_line
   plot.show()
alt.LayerChart(...)
alt.LayerChart(...)
```

alt.LayerChart(...) alt.LayerChart(...) alt.LayerChart(...)

Educational outcomes post CCT

```
import pandas as pd
import altair as alt

countries = ["Brazil", "Chile", "Mexico", "Peru", "Paraguay"]

# Year of CCT implementation for each country
implementation_years = {
    "Brazil": 2003,
    "Chile": 2002,
```

```
"Mexico": 1997,
    "Peru": 2005,
    "Paraguay": 2005
# Education variables of interest
education_vars = ['years_edu_all', 'enrollment6_12yo', 'enrollment13_17yo']
# Custom titles for the variables
custom titles = {
    'years_edu_all': 'Years of Education',
    'enrollment6_12yo': 'Share of Children Aged 6-12 Enrolled in School',
    'enrollment13_17yo': 'Share of Teenagers Aged 13-17 Enrolled in School'
}
# Loop to generate plots for each country and variable
for country in countries:
    country_df = countries_with_cct_df[countries_with_cct_df["country"] ==

    country]

    for var in education_vars:
       # Generate plots for rural and urban areas
       for area in ['rural', 'urban']:
           area_var = f"{var}_{area}"
           chart = alt.Chart(country_df).mark_point().encode(
               x=alt.X('year:0', axis=alt.Axis(title='Year')), # Year as
 → ordinal
               y=alt.Y(f'{area_var}:Q',
                       axis=alt.Axis(title=f'{custom_titles[var]}
 scale=alt.Scale(zero=False)),
               tooltip=['year', area_var]
           ).properties(
               width=360,
               height=360,
               title=f"{custom_titles[var]} in {country}'s
 # Vertical line for the implementation year
           vertical_line = alt.Chart(pd.DataFrame({'year':
   [implementation_years[country]]})).mark_rule(color='red').encode(
```

```
x='year:0'
)

# Combine the chart and the vertical line
plot = chart + vertical_line

# Display the plot
plot.show()
```

```
alt.LayerChart(...)
```

```
alt.LayerChart(...)
```

Regression Analysis

In this section, we perform a correlation analysis to explore the relationships between key variables and the implementation of conditional cash transfer (CCT) programs. We separately analyze rural and urban areas, focusing on variables related to education outcomes, infrastructure, and living conditions.

```
# Relevant columns for rural and urban areas
relevant_columns_rural = [
    'cct_active', 'enrollment3_5yo_rural', 'enrollment6_12yo_rural',
    'enrollment13_17yo_rural', 'years_edu_all_rural', 'water_rural',
    'electricity_rural', 'hygienic_restrooms_rural', 'sewerage_rural',
    'dwellings_low_quality_rural', 'country', 'year'
]

relevant_columns_urban = [
    'cct_active', 'enrollment3_5yo_urban', 'enrollment6_12yo_urban',
    'enrollment13_17yo_urban', 'years_edu_all_urban', 'water_urban',
    'electricity_urban', 'hygienic_restrooms_urban', 'sewerage_urban',
    'dwellings_low_quality_urban', 'country', 'year'
]
```

```
# Ensure valid columns are present
relevant_columns_rural = [col for col in relevant_columns_rural if col in

    countries_with_cct_df.columns]

relevant_columns_urban = [col for col in relevant_columns_urban if col in

    countries_with_cct_df.columns]

# Filter datasets
cct_data_corr_rural = countries_with_cct_df[relevant_columns_rural].dropna()
cct_data_corr_urban = countries_with_cct_df[relevant_columns_urban].dropna()
# Check dataset shapes
print(f"Rural data shape: {cct_data_corr_rural.shape}")
print(f"Urban data shape: {cct_data_corr_urban.shape}")
# Correlation analysis in rural areas
# Exclude non-numeric columns for correlation analysis - rural
numeric_columns_rural = cct_data_corr_rural.select_dtypes(include=['float64',

    "int64", 'int32']).columns

correlation_matrix_rural = cct_data_corr_rural[numeric_columns_rural].corr()
# Focus on correlations with `cct_active` in rural areas
cct_correlations_rural =
correlation_matrix_rural['cct_active'].sort_values(ascending=False)
print("\nCorrelations with CCT Active (Rural):")
print(cct_correlations_rural)
# Correlation analysis in urban areas
# Exclude non-numeric columns for correlation analysis - urban
numeric_columns_urban = cct_data_corr_urban.select_dtypes(include=['float64',

    'int64', "int32"]).columns

correlation_matrix_urban = cct_data_corr_urban[numeric_columns_urban].corr()
# Focus on correlations with `cct_active`
cct_correlations_urban =
correlation_matrix_urban['cct_active'].sort_values(ascending=False)
print("\nCorrelations with CCT Active (Urban):")
print(cct_correlations_urban)
Rural data shape: (68, 12)
Urban data shape: (68, 12)
```

Correlations with CCT Active (Rural):

```
1.000000
cct_active
                                0.777479
year
enrollment3_5yo_rural
                                0.742998
enrollment6_12yo_rural
                                0.732965
enrollment13 17yo rural
                                0.624852
hygienic restrooms rural
                                0.597938
water rural
                                0.544289
years_edu_all_rural
                                0.531501
sewerage_rural
                                0.512202
electricity_rural
                                0.499567
dwellings_low_quality_rural
                               -0.029018
Name: cct_active, dtype: float64
Correlations with CCT Active (Urban):
cct_active
                                1.000000
                                0.777479
year
enrollment3_5yo_urban
                                0.760834
enrollment6_12yo_urban
                                0.612219
years_edu_all_urban
                                0.578741
enrollment13 17yo urban
                                0.433408
electricity urban
                                0.431030
hygienic restrooms urban
                                0.418414
water_urban
                                0.381919
sewerage urban
                                0.183597
dwellings_low_quality_urban
                                0.085650
Name: cct_active, dtype: float64
```

In this section, we conduct fixed effects regressions to examine the relationship between the implementation of conditional cash transfer (CCT) programs and key educational outcomes in rural and urban areas. The regressions are run separately for rural and urban datasets, allowing us to identify differences in the impact of CCT programs across these contexts. By using a fixed effects approach, we account for unobserved heterogeneity within countries over time, providing robust estimates of the effects of the CCT programs.

```
'hygienic_restrooms_urban', 'water_urban']
# Outcome variables (including dwellings_low_quality)
outcome_vars = ['years_edu_all', 'enrollment3_5yo', 'enrollment6_12yo',

    'enrollment13_17yo',

               'dwellings_low_quality']
# Function to fit the fixed effects model
def run fixed effects(data, outcomes, explanatory vars, region):
   print(f"\n--- Fixed Effects Regressions for {region.capitalize()} Data
    for outcome in outcomes:
       outcome var = f"{outcome} {region}"
       if outcome_var in data.columns:
           # Dependent and independent variables
           y = data[outcome_var]
           X = sm.add_constant(data[explanatory_vars])
           # Fit the model
           model = PanelOLS(y, X, entity_effects=True).fit()
           # Display results
           print(f"Fixed Effects Results for {outcome.capitalize()}
            print(model.summary)
           print("\n")
       else:
           print(f"Outcome variable '{outcome_var}' not found in {region}

    dataset.")

# Run the regression for rural and urban data
run_fixed_effects(cct_data_corr_rural, outcome_vars, explanatory_vars_rural,

    'rural')

run_fixed_effects(cct_data_corr_urban, outcome_vars, explanatory_vars_urban,

    'urban')

--- Fixed Effects Regressions for Rural Data ---
Fixed Effects Results for Years_edu_all (Rural):
                         PanelOLS Estimation Summary
______
```

Dep. Variable: years_edu_all_rural R-squared:

0.9098

Estimator: PanelOLS R-squared (Between):

0.4816

No. Observations: 68 R-squared (Within):

0.9098

Date: Tue, Dec 03 2024 R-squared (Overall):

0.6970

Time: 13:47:18 Log-likelihood

-5.7676

Cov. Estimator: Unadjusted

F-statistic:

117.05

Entities: 5 P-value

0.0000

Avg Obs: 13.600 Distribution:

F(5,58)

Min Obs: 6.0000

Max Obs: 22.000 F-statistic (robust):

117.05

P-value 0.0000

Time periods: 31 Distribution:

F(5,58)

Avg Obs: 2.1935 Min Obs: 1.0000 Max Obs: 4.0000

Parameter Estimates

=======================================	==========	========	========	========	================
	Parameter CI Upper		T-stat	P-value	Lower
const	2.9797	0.2734	10.899	0.0000	
2.4325 3.5270 cct_active	0.4756	0.1436	3.3112	0.0016	
0.1881 0.7631	0.4750	0.1400	3.3112	0.0010	
electricity_rural	-0.0031	0.0063	-0.4976	0.6207	
-0.0157 0.0094					
sewerage_rural	0.0134	0.0135	0.9890	0.3268	
-0.0137 0.0405					
hygienic_restrooms_rura 0.0138 0.0315	al 0.0227	0.0044	5.1333	0.0000	

water_rural 0.0118 0.0056 2.1030 0.0398

0.0006 0.0230

F-test for Poolability: 45.565

P-value: 0.0000

Distribution: F(4,58)

Included effects: Entity

Fixed Effects Results for Enrollment3_5yo (Rural):

PanelOLS Estimation Summary

Dep. Variable: enrollment3_5yo_rural R-squared:

0.9608

Estimator: PanelOLS R-squared (Between):

-1.3688

No. Observations: 68 R-squared (Within):

0.9608

Date: Tue, Dec 03 2024 R-squared (Overall):

0.4857

Time: 13:47:18 Log-likelihood

-194.32

Cov. Estimator: Unadjusted

F-statistic:

284.60

Entities: 5 P-value

0.0000

Avg Obs: 13.600 Distribution:

F(5,58)

Min Obs: 6.0000

Max Obs: 22.000 F-statistic (robust):

284.60

P-value 0.0000

Time periods: 31 Distribution:

F(5,58)

Avg Obs: 2.1935 Min Obs: 1.0000 Max Obs: 4.0000

Parameter Estimates

		Parameter : CI Upper		T-stat	P-value	Lower
const		4.1462	4.3753	0.9476	0.3472	
-4.6119	12.904					
cct_active		3.1404	2.2986	1.3662	0.1771	
-1.4607	7.7416					
electricity_	rural	0.0766	0.1004	0.7628	0.4487	
-0.1244	0.2776					
sewerage_rur	ral	-0.2997	0.2168	-1.3821	0.1722	
-0.7337	0.1343					
hygienic_res	strooms_rural	0.5900	0.0708	8.3384	0.0000	
0.4484	0.7316					
water_rural		0.4265	0.0898	4.7511	0.0000	
0.2468	0.6062					
=========						

F-test for Poolability: 96.378

P-value: 0.0000

Distribution: F(4,58)

Included effects: Entity

Fixed Effects Results for Enrollment6_12yo (Rural): PanelOLS Estimation Summary

enrollment6_12yo_rural R-squared: Dep. Variable: 0.7146 R-squared (Between): PanelOLS Estimator: -4.7992No. Observations: 68 R-squared (Within): 0.7146 Date: Tue, Dec 03 2024 R-squared (Overall): -0.1047 Time: 13:47:18 Log-likelihood -136.78Cov. Estimator: Unadjusted F-statistic: 29.039 Entities: P-value

0.0000

Avg Obs: 13.600 Distribution: F(5,58)Min Obs: 6.0000 Max Obs: 22.000 F-statistic (robust): 29.039 P-value 0.0000 Time periods: Distribution: 31 F(5,58)Avg Obs: 2.1935 Min Obs: 1.0000 Max Obs: 4.0000

Parameter Estimates

T-stat

P-value

Lower

Parameter Std. Err.

	CI Upper	CI			
const	85.192	1.8773	45.380	0.0000	
81.434 88.949					
cct_active	2.5326	0.9863	2.5679	0.0128	
0.5584 4.5069					
electricity_rural	0.1247	0.0431	2.8946	0.0053	
0.0385 0.2109					
sewerage_rural	-0.2903	0.0930	-3.1205	0.0028	
-0.4765 -0.1041					
hygienic_restrooms_rural	0.0450	0.0304	1.4838	0.1433	
-0.0157 0.1058					
water_rural	0.0092	0.0385	0.2381	0.8126	
-0.0679 0.0863					

F-test for Poolability: 4.6958

P-value: 0.0024

Distribution: F(4,58)

Included effects: Entity

Fixed Effects Results for $Enrollment13_17yo$ (Rural):

PanelOLS Estimation Summary

Dep. Variable: enrollment13_17yo_rural R-squared:

0.8802

Estimator: PanelOLS R-squared (Between):

-2.4370

No. Observations: 68 R-squared (Within):

0.8802

Date: Tue, Dec 03 2024 R-squared (Overall):

0.1882

Time: 13:47:18 Log-likelihood

-173.98

Cov. Estimator: Unadjusted

F-statistic:

85.245

Entities: 5 P-value

0.0000

Avg Obs: 13.600 Distribution:

F(5,58)

Min Obs: 6.0000

Max Obs: 22.000 F-statistic (robust):

85.245

P-value

0.0000

Time periods: 31 Distribution:

F(5,58)

Avg Obs: 2.1935
Min Obs: 1.0000
Max Obs: 4.0000

Parameter Estimates

	Parameter S		T-stat	P-value	Lower
const	50.407	3.2442	15.538	0.0000	
43.913 56.901	4 7440	4 7044	0.7000	0.0070	
cct_active 1.3299 8.1532	4.7416	1.7044	2.7820	0.0073	
electricity_rural	0.2643	0.0745	3.5503	0.0008	
0.1153 0.4134					
sewerage_rural	-0.1224	0.1608	-0.7613	0.4495	
-0.4442 0.1994					
hygienic_restrooms_rural -0.0209 0.1892	0.0841	0.0525	1.6037	0.1142	

water_rural 0.0997 0.0666 1.4981 0.1395

-0.0335 0.2330

F-test for Poolability: 40.135

P-value: 0.0000

Distribution: F(4,58)

Included effects: Entity

Fixed Effects Results for Dwellings_low_quality (Rural): PanelOLS Estimation Summary

Dep. Variable: dwellings_low_quality_rural R-squared:

0.5125

Estimator: PanelOLS R-squared (Between):

-0.2084

No. Observations: 68 R-squared (Within):

0.5125

Date: Tue, Dec 03 2024 R-squared (Overall):

-0.0070

Time: 13:47:18 Log-likelihood

-200.72

Cov. Estimator: Unadjusted

F-statistic:

12.195

Entities: 5 P-value

0.0000

Avg Obs: 13.600 Distribution:

F(5,58)

Min Obs: 6.0000

Max Obs: 22.000 F-statistic (robust):

12.195

P-value

0.0000

Time periods: 31 Distribution:

F(5,58)

Avg Obs: 2.1935 Min Obs: 1.0000 Max Obs: 4.0000

Parameter Estimates

	Parameter CI Uppe:	Std. Err. r CI	T-stat	P-value	Lower
const	24.074	4.8071	5.0080	0.0000	
14.452 33.697					
cct_active	-1.8142	2.5255	-0.7183	0.4754	
-6.8695 3.2412					
electricity_rural	0.0901	0.1103	0.8170	0.4173	
-0.1307 0.3110					
sewerage_rural	-0.9414	0.2382	-3.9517	0.0002	
-1.4183 -0.4645					
hygienic_restrooms_rural	-0.2661	0.0777	-3.4236	0.0011	
-0.4218 -0.1105					
water_rural	0.2259	0.0986	2.2909	0.0256	
0.0285 0.4234					
=======================================					

F-test for Poolability: 40.249

P-value: 0.0000

Distribution: F(4,58)

Included effects: Entity

--- Fixed Effects Regressions for Urban Data ---

Fixed Effects Results for Years_edu_all (Urban):

PanelOLS Estimation Summary

Dep. Variable: years_edu_all_urban R-squared:

0.9014

Estimator: PanelOLS R-squared (Between):

0.1383

No. Observations: 68 R-squared (Within):

0.9014

Date: Tue, Dec 03 2024 R-squared (Overall):

0.6426

Time: 13:47:18 Log-likelihood

-3.7586

Cov. Estimator: Unadjusted

F-statistic:

106.00

Entities: 5 P-value

0.0000

Avg Obs: 13.600 Distribution:

F(5,58)

Min Obs: 6.0000

Max Obs: 22.000 F-statistic (robust):

106.00

P-value 0.0000

Time periods: 31 Distribution:

F(5,58)

Avg Obs: 2.1935 Min Obs: 1.0000 Max Obs: 4.0000

Parameter Estimates

	Parameter CI Upper	Std. Err. r CI	T-stat	P-value	Lower
const	1.0687	2.9380	0.3638	0.7174	
-4.8123 6.9498					
cct_active	0.4663	0.1252	3.7254	0.0004	
0.2158 0.7169					
electricity_urban	-0.0321	0.0374	-0.8574	0.3947	
-0.1070 0.0428					
sewerage_urban	0.0113	0.0164	0.6866	0.4951	
-0.0215 0.0440					
hygienic_restrooms_urban	0.0935	0.0150	6.2416	0.0000	
0.0635 0.1235					
water_urban	0.0049	0.0197	0.2493	0.8040	
-0.0345 0.0443					
=======================================					

F-test for Poolability: 80.829

P-value: 0.0000

Distribution: F(4,58)

Included effects: Entity

Fixed Effects Results for Enrollment3_5yo (Urban): PanelOLS Estimation Summary

Dep. Variable: enrollment3_5yo_urban R-squared:

0.9198

Estimator: PanelOLS R-squared (Between):

-35.779

No. Observations: 68 R-squared (Within):

0.9198

Date: Tue, Dec 03 2024 R-squared (Overall):

-1.3519

Time: 13:47:18 Log-likelihood

-202.13

Cov. Estimator: Unadjusted

F-statistic:

132.98

Entities: 5 P-value

0.0000

Avg Obs: 13.600 Distribution:

F(5,58)

Min Obs: 6.0000

Max Obs: 22.000 F-statistic (robust):

132.98

P-value 0.0000

Time periods: 31 Distribution:

F(5,58)

Avg Obs: 2.1935 Min Obs: 1.0000 Max Obs: 4.0000

Parameter Estimates

		Std. Err. er CI	T-stat	P-value	Lower	
const	-110.85	54.327	-2.0403	0.0459		
-219.59 -2.0981	[
cct_active	9.8471	2.3146	4.2544	0.0001		
5.2139 14.480						
electricity_urban	0.2504	0.6919	0.3618	0.7188		
-1.1347 1.6354	<u>l</u>					

-1.6989 -0.4859					
hygienic_restrooms_urban	2.6814	0.2771	9.6777	0.0000	
2.1268 3.2360					
water_urban	-0.0525	0.3642	-0.1440	0.8860	
-0.7815 0.6766					
	:========	-=======	========	-======================================	=======================================

0.0006

-1.0924 0.3030 -3.6056

F-test for Poolability: 52.119

P-value: 0.0000

sewerage_urban

Distribution: F(4,58)

Included effects: Entity

Fixed Effects Results for Enrollment6_12yo (Urban): PanelOLS Estimation Summary

Paneluls Estimation Summary

Dep. Variable: enrollment6_12yo_urban R-squared:

0.6722

Estimator: PanelOLS R-squared (Between):

-0.3724

No. Observations: 68 R-squared (Within):

0.6722

Date: Tue, Dec 03 2024 R-squared (Overall):

0.5563

Time: 13:47:18 Log-likelihood

-78.762

Cov. Estimator: Unadjusted

F-statistic:

23.785

Entities: 5 P-value

0.0000

Avg Obs: 13.600 Distribution:

F(5,58)

Min Obs: 6.0000

Max Obs: 22.000 F-statistic (robust):

23.785

P-value 0.0000

Time periods: 31 Distribution:

F(5,58)

Avg Obs: 2.1935

Min Obs: 1.0000 Max Obs: 4.0000

Parameter Estimates

	Parameter CI Upper	Std. Err.	T-stat	P-value	Lower
const	97.130	8.8527	10.972	0.0000	
79.409 114.85					
cct_active	0.7179	0.3772	1.9034	0.0620	
-0.0371 1.4729					
electricity_urban	-0.1628	0.1127	-1.4442	0.1541	
-0.3885 0.0629					
sewerage_urban	0.0146	0.0494	0.2965	0.7679	
-0.0842 0.1135					
hygienic_restrooms_urban	0.1150	0.0451	2.5481	0.0135	
0.0247 0.2054					
water_urban	0.0612	0.0593	1.0309	0.3069	
-0.0576 0.1800					
=======================================	.========		========	========	=======================================

F-test for Poolability: 6.4380

P-value: 0.0002

Distribution: F(4,58)

Included effects: Entity

Fixed Effects Results for Enrollment13_17yo (Urban):

PanelOLS Estimation Summary

Dep. Variable: enrollment13_17yo_urban R-squared:

0.8383

Estimator: PanelOLS R-squared (Between):

0.0215

No. Observations: 68 R-squared (Within):

0.8383

Date: Tue, Dec 03 2024 R-squared (Overall):

0.4975

Time: 13:47:18 Log-likelihood

-122.00

Cov. Estimator: Unadjusted

F-statistic:

60.149

Entities: 5 P-value

0.0000

Avg Obs: 13.600 Distribution:

F(5,58)

Min Obs: 6.0000

Max Obs: 22.000 F-statistic (robust):

60.149

P-value 0.0000

Time periods: 31 Distribution:

F(5,58)

Avg Obs: 2.1935
Min Obs: 1.0000
Max Obs: 4.0000

Parameter Estimates

	Parameter CI Uppe	Std. Err. r CI	T-stat	P-value	Lower
const	61.645	16.719	3.6872	0.0005	
28.179 95.112					
cct_active	1.5865	0.7123	2.2273	0.0298	
0.1607 3.0123					
electricity_urban	-0.2879	0.2129	-1.3521	0.1816	
-0.7141 0.1383					
sewerage_urban	0.1404	0.0932	1.5062	0.1374	
-0.0462 0.3271					
hygienic_restrooms_urban	0.2251	0.0853	2.6394	0.0106	
0.0544 0.3957					
water_urban	0.2936	0.1121	2.6198	0.0112	
0.0693 0.5180					
=======================================					

F-test for Poolability: 14.957

P-value: 0.0000

Distribution: F(4,58)

Included effects: Entity

Fixed Effects Results for Dwellings_low_quality (Urban): PanelOLS Estimation Summary

===========		
Dep. Variable: 0.5238	dwellings_low_quality_urban	R-squared:
Estimator: -0.5048	PanelOLS	R-squared (Between):
No. Observations:	68	R-squared (Within):
0.5238		
Date:	Tue, Dec 03 2024	R-squared (Overall):
-0.5051		
Time:	13:47:18	Log-likelihood
-137.97		
Cov. Estimator:	Unadjusted	
	-	F-statistic:
		12.758
Entities:	5	P-value
0.0000		
Avg Obs:	13.600	Distribution:
F(5,58)	23,333	
Min Obs:	6.0000	
Max Obs:	22.000	F-statistic (robust):
12.758	22.000	1 Buddibule (10bdbu).
		P-value
		0.0000
Time periods:	31	Distribution:
F(5,58)		
Avg Obs:	2.1935	
Min Obs:	1.0000	
Max Obs:	4.0000	
	-10000	
	Parameter E	stimates
	Parameter Std. Err. CI Upper CI	T-stat P-value Lower

	Parameter S CI Upper		T-stat	P-value	Lower
const 16.528 101.18	58.854	21.145	2.7833	0.0073	
cct_active -2.2920 1.3146	-0.4887	0.9009	-0.5425	0.5896	
electricity_urban -1.4416 -0.3635	-0.9025	0.2693	-3.3513	0.0014	

-0.3801	0.0920				
hygienic_res	trooms_urban	-0.4017	0.1078	-3.7254	0.0004
-0.6176	-0.1859				
water_urban		0.9095	0.1418	6.4161	0.0000
0.6258	1.1933				

-0.1440 0.1179 -1.2213 0.2269

F-test for Poolability: 62.276

P-value: 0.0000

sewerage_urban

Distribution: F(4,58)

Included effects: Entity

Dif in Dif

```
# Function to perform Difference-in-Differences analysis
def run_did_analysis(data, outcomes, region):
   print(f"\n--- Difference-in-Differences Analysis for
    results = []
   # Reset index temporarily to access 'year'
   data = data.reset_index()
   for outcome in outcomes:
       outcome_var = f"{outcome}_{region}"
       if outcome_var in data.columns:
           # Define the pre/post indicator
           data['post'] = data['year'] >= data['year'].median() # Define

→ pre/post as before/after median year

           data['post'] = data['post'].astype(int)
           # Fit the DiD model
           formula = f"{outcome_var} ~ cct_active + post + cct_active:post"
           model = smf.ols(formula, data=data).fit()
           # Extract results for the interaction term
```

```
interaction coeff = model.params.get('cct_active:post', None)
            p_value = model.pvalues.get('cct_active:post', None)
            # Store results
            results.append({
                'Outcome': outcome_var,
                'Interaction_Coeff': interaction_coeff,
                'p-value': p_value
            })
            # Display the summary
            print(f"DiD Results for {outcome} ({region.capitalize()}):")
            print(model.summary())
            print("\n")
        else:
            print(f"Outcome variable '{outcome_var}' not found in {region}
            → dataset.")
    # Return results as DataFrame
    return pd.DataFrame(results)
# Define datasets and outcomes
outcomes = ['years_edu_all', 'enrollment6_12yo', 'enrollment13_17yo',

    'dwellings low quality']

regions = ['rural', 'urban']
# Example for running the analysis
did_results_rural = run_did_analysis(cct_data_corr_rural, outcomes, 'rural')
did_results_urban = run_did_analysis(cct_data_corr_urban, outcomes, 'urban')
# Combine results
final_did_results = pd.concat([did_results_rural, did_results_urban])
print("\nFinal DiD Results:")
print(final_did_results)
# Save results to CSV
final_did_results.to_csv("did_results_with_dwellings.csv", index=False)
```

```
--- Difference-in-Differences Analysis for Rural Data ---
DiD Results for years_edu_all (Rural):
```

OLS Regression Results

=======================================			========	========		
Dep. Variable: 0.424	years_edu_	years_edu_all_rural R-squared:				
Model:		OLS	Adj. R-squ	ared:		
0.407	.					
Method:	Leas	st Squares	F-statisti	c:		
23.96 Date:	Tuo 03	2 Dog 2024	Prob (F-st	otistis).		
1.60e-08	rue, oc	Dec 2024	FIOD (F-St	atistic).		
Time:		13:47:18	Log-Likeli	hood:		
-95.836		13.47.10	Log Likeii	noou.		
No. Observations:		68	AIC:			
197.7		00	nio.			
Df Residuals:		65	BIC:			
204.3						
Df Model:		2				
Covariance Type:		nonrobust				
=======================================				=======		====
	coef	std err	t	P> t	[0.025	
	0.975]					
			15.098			
4.082						
cct_active	0.7369	0.348	2.117	0.038	0.042	
1.432						
post	0.6146	0.154	4.002	0.000	0.308	
0.921						
cct_active:post	0.6146	0.154	4.002	0.000	0.308	
0.921						
			 Durbin-Wats		=======================================	
0.252		3.032	Duibin wats	011.		
Prob(Omnibus):		0.053	Jarque-Bera	(JB) ·		
5.948		0.000	tarquo bora	(02).		
Skew:		0.717	Prob(JB):			
0.0511						
Kurtosis:		2.787	Cond. No.			
2.11e+16						

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 3.58e-31. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

DiD Results for enrollment6_12yo (Rural):

Prob(Omnibus):

249.012

OLS Regression Results

		_	ssion Resul			
Dep. Variable: 0.591						
Model: 0.578		C	DLS Adj. F	R-squared:		
Method: 46.88	I	east Squar	es F-stat	cistic:		
Date: 2.48e-13	Tue,	03 Dec 20	24 Prob	(F-statistic)	:	
Time: -155.92		13:47:	18 Log-Li	ikelihood:		
No. Observations: 317.8			68 AIC:			
Df Residuals: 324.5			65 BIC:			
Df Model:			2			
Covariance Type:		nonrobu				
	coef 0.975]	std err	t	P> t		
Intercept 92.945					90.638	
cct_active 6.434	4.7520	0.842	5.642	0.000	3.070	
post 1.824	1.0814	0.372	2.910	0.005	0.339	
1.824	1.0814				0.339	
Omnibus: 0.333		52.189	Durbin-Wat			:===

Jarque-Bera (JB):

0.000

Skew: -2.218 Prob(JB):

8.47e-55

Kurtosis: 11.259 Cond. No.

2.11e+16

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 3.58e-31. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

DiD Results for enrollment13_17yo (Rural):

OLS Regression Results

Dep. Variable: enrollment13_17yo_rural R-squared:

0.428

Model: OLS Adj. R-squared:

0.411

Method: Least Squares F-statistic:

24.36

Date: Tue, 03 Dec 2024 Prob (F-statistic):

1.28e-08

Time: 13:47:18 Log-Likelihood:

-235.86

No. Observations: 68 AIC:

477.7

Df Residuals: 65 BIC:

484.4

Df Model: 2
Covariance Type: nonrobust

	coef 0.975]	std err	t	P> t	[0.025	
Intercept 75.386	71.6476	1.872	38.274	0.000	67.909	
cct_active 16.596	11.1457	2.729	4.084	0.000	5.696	
post 4.905	2.5004	1.204	2.077	0.042	0.096	

cct_active:post 2.5004 1.204 2.077 0.042 0.096

4.905

Omnibus: 7.695 Durbin-Watson:

0.427

Prob(Omnibus): 0.021 Jarque-Bera (JB):

8.001

Skew: -0.838 Prob(JB):

0.0183

Kurtosis: 2.876 Cond. No.

2.11e+16

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

[2] The smallest eigenvalue is 3.58e-31. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

DiD Results for dwellings_low_quality (Rural):

OLS Regression Results

Dep. Variable: dwellings_low_quality_rural R-squared:

0.003

Model: OLS Adj. R-squared:

-0.027

Method: Least Squares F-statistic:

0.1076

Date: Tue, 03 Dec 2024 Prob (F-statistic):

0.898

Time: 13:47:18 Log-Likelihood:

-280.47

No. Observations: 68 AIC:

566.9

Df Residuals: 65 BIC:

573.6

Df Model: 2
Covariance Type: nonrobust

coef std err t P>|t| [0.025

0.975]

Intercept 29.508	22.3031	3.607	6.182	0.000	15.098	
cct_active 8.253	-2.2491	5.259	-0.428	0.670	-12.752	
post 5.562	0.9289	2.320	0.400	0.690	-3.705	
<pre>cct_active:post 5.562</pre>	0.9289	2.320	0.400	0.690	-3.705	
============			.=======	=======		===
Omnibus:		24.928	Durbin-Wats	on:		
Prob(Omnibus): 35.031		0.000	Jarque-Bera	(JB):		
Skew: 2.47e-08		1.588	Prob(JB):			
Kurtosis:		4.511	Cond. No.			
2.11e+16		1.011	001101			

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 3.58e-31. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.
- --- Difference-in-Differences Analysis for Urban Data ---
- DiD Results for years_edu_all (Urban):

OLS Regression Results

Dep. Variable: years_edu_all_urban R-squared: 0.464 Model: OLS Adj. R-squared: 0.447 Method: Least Squares F-statistic: 28.08 Date: Tue, 03 Dec 2024 Prob (F-statistic): 1.62e-09 Time: 13:47:18 Log-Likelihood:

-89.282

No. Observations: 68 AIC: 184.6

Df Residuals: 65 BIC:

191.2

Df Model: 2
Covariance Type: nonrobust

=======================================							
	coef 0.975]	std err	t	P> t	[0.025		
Intercept 6.845	6.4123	0.217	29.572	0.000	5.979		
cct_active 1.494	0.8623	0.316	2.728	0.008	0.231		
post 0.829	0.5505	0.139	3.947	0.000	0.272		
cct_active:post 0.829	0.5505	0.139	3.947	0.000	0.272		
Omnibus: 0.231		4.782	Durbin-Wats	on:			
Prob(Omnibus): 2.189		0.092	Jarque-Bera (JB):				
Skew: 0.335		-0.065	Prob(JB):				
<pre>Kurtosis: 2.11e+16</pre>		2.131	Cond. No.				
						===	

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 3.58e-31. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

DiD Results for enrollment6_12yo (Urban):

OLS Regression Results

Dep. Variable: enrollment6_12yo_urban R-squared:

0.421

Model: OLS Adj. R-squared:

0.403

Method:	L	east Square	es F-stati	stic:		
23.59 Date: 1.98e-08	Tue,	03 Dec 202	24 Prob (F	7-statistic)	:	
Time: -108.38		13:47:1	l8 Log-Lik	celihood:		
No. Observations: 222.8		6	88 AIC:			
Df Residuals: 229.4		6	BIC:			
Df Model:			2			
Covariance Type:		nonrobus	st			
	coef 0.975]			P> t		
Intercept 97.219			336.579			
cct_active	1.6024	0.419	3.828	0.000	0.766	
post 0.787	0.4184	0.185	2.265	0.027	0.050	
cct_active:post	0 /18/	0 185	2.265	0.027	0.050	

20.488 Omnibus: Durbin-Watson:

0.340

0.787

Prob(Omnibus): 0.000 Jarque-Bera (JB):

38.159

Skew: -1.015 Prob(JB):

5.17e-09

Cond. No. Kurtosis: 6.057

2.11e+16

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 3.58e-31. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

DiD Results for enrollment13_17yo (Urban):

OLS Regression Results

=======

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 3.58e-31. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

DiD Results for dwellings_low_quality (Urban):

6.571

OLS Regression Results

============						
Dep. Variable:						
0.021			OT G	4.1. D	1	
Model:			OLS	Adj. R-square	a:	
-0.009		T+	C	P statistis.		
Method:		Least	squares	F-statistic:		
0.7122		T 00 1	D 0004	D1 (E -+-+:	-+	
Date:		lue, 03	Dec 2024	Prob (F-stati	Stic):	
0.494			40 47 40	T T.1 7.1	1	
Time:			13:47:18	Log-Likelihoo	a:	
-218.67			20			
No. Observations:			68	AIC:		
443.3						
Df Residuals:			65	BIC:		
450.0			_			
Df Model:			2			
Covariance Type:			onrobust			
	coef 0.975]	std err	t	P> t	[0.025	
Intercept 10.297						
cct_active	-0.0474	2.119	-0.022	0.982	-4.280	
post 2.772	0.9051	0.935	0.968	0.337	-0.962	
<pre>cct_active:post 2.772</pre>						
Omnibus: 0.542			Durbin-Wa			===
Prob(Omnibus):		0.038	Jarque-Be	era (JB):		

Skew: 0.760 Prob(JB):

0.0374

Kurtosis: 2.914 Cond. No.

2.11e+16

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

[2] The smallest eigenvalue is 3.58e-31. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

Final DiD Results:

	Outcome	Interaction_Coeff	p-value
0	years_edu_all_rural	0.614602	0.000163
1	enrollment6_12yo_rural	1.081422	0.004939
2	enrollment13_17yo_rural	2.500356	0.041772
3	dwellings_low_quality_rural	0.928885	0.690192
0	years_edu_all_urban	0.550484	0.000197
1	enrollment6_12yo_urban	0.418350	0.026825
2	enrollment13_17yo_urban	1.099080	0.126308
3	dwellings_low_quality_urban	0.905113	0.336606