Tarea #: 4 Tema: Clasificación de datos utilizando texto Fecha entrega: 11:59 pm Junio 06 de 2025 Objetivo: Utilizar modelos de regresión logística y lstm para crear un modelo de clasificación utilizando datos reales .

Punto 2 clasificador del tipo de contenido basados en el titulo.

2.a.i - Conteo de Palabras

Se normalizan los títulos:

- Conversión a minúsculas.
- Eliminación de tildes con `unicodedata`.
- Separación por palabras usando expresiones regulares.

Luego, se construye un vocabulario de palabras únicas y se genera una matriz de conteo de palabras por título. Cada fila representa un título, y cada columna una palabra; el valor es cuántas veces aparece esa palabra en ese título.

2.a.ii - Remoción de Stopwords y Matriz TF

Se utiliza NLTK y sklearn para eliminar palabras vacías (stopwords) en español e inglés. Luego, se genera una nueva matriz llamada TF (Term Frequency), que normaliza el conteo de palabras dividiendo por el total de palabras en cada título.

2.a.iii - Cálculo del Vector IDF

Se calcula el número de títulos en los que aparece cada palabra del vocabulario y se construye el vector IDF usando la fórmula:

log((n_titulos + 1) / (n_titulos_con_palabra + 1))

Esto da más peso a palabras menos comunes.

2.a.iv - TF-IDF y Separación Train/Test

Se multiplica la matriz TF por el vector IDF para obtener la matriz TF-IDF final. Esta matriz se divide en entrenamiento y prueba usando `train_test_split`. Las etiquetas (categoría) son codificadas numéricamente con `LabelEncoder`.

2.a.v - Entrenamiento y Evaluación de Modelos

Se entrenaron tres modelos de clasificación:

- Regresión Logística.
- Random Forest.
- LSTM (utilizando una capa de embedding).

Para los dos primeros se usó la matriz TF-IDF. Para LSTM se empleó un `Tokenizer` con `pad_sequences`.

Graficas y resultados obtenidos

logModel

	precision	recall	f1-score	support
Deportes	0.89	0.84	0.86	38
Educación	0.54	0.29	0.38	24
Entretenimiento	0.61	0.77	0.68	48
Gente y Blogs	0.50	0.25	0.33	8
0tros	0.80	0.40	0.53	10
Película y Animación	0.49	0.62	0.55	32
accuracy			0.64	160
macro avg	0.64	0.53	0.56	160
weighted avg	0.65	0.64	0.63	160

Random Forest

	precision	recall	f1-score	support
Deportes	0.90	0.74	0.81	38
Educación	0.67	0.33	0.44	24
Entretenimiento	0.64	0.77	0.70	48
Gente y Blogs	0.67	0.25	0.36	8
0tros	0.71	0.50	0.59	10
Película y Animación	0.47	0.72	0.57	32
accuracy			0.64	160
macro avg	0.68	0.55	0.58	160
weighted avg	0.68	0.64	0.64	160

	_		Random Forest						
	Deportes -	28	1	2	1	0	6		- 35
	Educación y Otros -	1	8	6	О	1	8		- 30 - 25
True	Entretenimiento -	О	1	37	О	0	10		- 20
Ē	Película y Animación -	o	1	4	2	1	0		- 15
		1	0	2	О	5	2		- 10
		1	1	7	О	О	23		- 5
		Deportes -	Educación y Otros –	Entretenimiento -	ရှိ Película y Animación -				- 0

LSTM

Comparación Metricas

I		Modelo	Accuracy	Precision promedio	Recall promedio	\
	0	Regresión Logística	0.63750	0.636952	0.529934	
	1	Random Forest	0.64375	0.676361	0.551626	
	2	LSTM	0.45625	0.158854	0.286367	
		F1-score promedio				
	0	0.556126				
	1	0.578987				
	2	0.199671				
	1	0.556126 0.578987				

Resultados Obtenidos en Kaggle

