

알고리즘 특강 트리

그래프의 특수한 형태로, 정확히 N개의 정점과 N-1개의 간선으로 이루어진 구조입니다. 트리만의 특수한 구조를 이해하고 접근해야 합니다.

Tree

- 그래프의 특수한 형태로, 계층 구조가 있으며, 단 1개의 간선만 존재하는 자료구조.
- 루트 노드의 부모는 0개이며, 자식 노드의 부모는 1개이다.
- 루트 노드는 0개 이상의 자식 노드를 갖고 있으며, 자식 노드 또한 0개 이상의 자식 노드를 가지고 있다.
- 사이클을 갖고 있지 않다.

Binary Tree

● 트리에서, 자식 노드의 개수가 <mark>0개 이상 2개 이하로</mark> 제한된 트리.

갑자기 문제??

Silver 3 - 상근이의 여행 (#9372)

요약

- 주어진 항공 루트를 이용하여 여행을 할 때, 가장 적은 종류의 루트를 통해 N개의 국가를 둘러보려고 한다.
- 가장 적은 루트의 수를 구하는 프로그램을 작성하시오.

제약조건

- 국가의 수 N은 2 <= N <= 1,000 이다.
- 모든 국가는 연결 그래프를 이루고 있음이 보장된다.

Silver 3 - 상근이의 여행 (#9372)

Spanning Tree → 무조건 N - 1개!

전위 순회 (Preorder Traversal)

부모 → 왼쪽 자식 → 오른쪽 자식 순으로 탐색

중위 순회 (Inorder Traversal)

왼쪽 자식 → 부모 → 오른쪽 자식 순으로 탐색

후위 순회 (Postorder Traversal)

왼쪽 자식 → 오른쪽 자식 → 부모 순으로 탐색

전위 순회 (Preorder Traversal)

부모 → 왼쪽 자식 → 오른쪽 자식 순으로 탐색 A-B-D-E-C-F-G

S위 순회 (Inorder Traversal)

왼쪽 자식 → 부모 → 오른쪽 자식 순으로 탐색 D-B-E-A-F-C-G

후위 순회 (Postorder Traversal)

왼쪽 자식 → 오른쪽 자식 → 부모 순으로 탐색 D-E-B-F-G-C-A

전위 순회 (Preorder Traversal)

```
function PreOrder(node)
  visit(node)
  PreOrder(node.left)
  PreOrder(node.right)
```

중위 순회 (Inorder Traversal)

```
function InOrder(node)
    InOrder(node.left)
    visit(node)
    InOrder(node.right)
```

후위 순회 (Postorder Traversal)

```
function PostOrder(node)
   PostOrder(node.left)
   PostOrder(node.right)
   visit(node)
```

연습해보자!

Silver 1 - 트리 순회 (#1991)

• 이진 트리를 입력 받아 전위, 중위, 후위 순회한 결과를 출력하는 프로그램을 작성하시오.

제약조건

정점의 수 N은 1 <= N <= 26 이다.

이건 뭐람?

• 이진 트리의 중위 순회와 후위 순위의 결과가 주어질 때, 전위 순회한 결과를 출력하는 프로그램을 작성하시오.

• 정점의 수 N은 1 <= N <= 100,000 이다.

전위 순회 (Preorder Traversal)

function PreOrder(node)
 visit(node)
 PreOrder(node.left)
 PreOrder(node.right)

중위 순회 (Inorder Traversal)

function InOrder(node)
 InOrder(node.left)
 visit(node)
 InOrder(node.right)

후위 순회 (Postorder Traversal)

function PostOrder(node)
PostOrder(node.left)
PostOrder(node.right)
visit(node)

Gold 3 - 트리의 순회 (#2263)

전위 순회 (Preorder Traversal)

function PreOrder(node)
 visit(node)
 PreOrder(node.left)
 PreOrder(node.right)

중위 순회 (Inorder Traversal)

function InOrder(node)
 InOrder(node.left)
 visit(node)
 InOrder(node.right)

D-B-E-A-F-C-G

후위 순회 (Postorder Traversal)

function PostOrder(node)
 PostOrder(node.left)
 PostOrder(node.right)
 visit(node)

전위 순회 (Preorder Traversal)

function PreOrder(node)
 visit(node)
 PreOrder(node.left)
 PreOrder(node.right)

중위 순회 (Inorder Traversal)

function InOrder(node)
 InOrder(node.left)
 visit(node)
 InOrder(node.right)

D-B-E-A-F-C-G

후위 순회 (Postorder Traversal)

function PostOrder(node)
 PostOrder(node.left)
 PostOrder(node.right)
 visit(node)

전위 순회 (Preorder Traversal)

function PreOrder(node)
 visit(node)
 PreOrder(node.left)
 PreOrder(node.right)

중위 순회 (Inorder Traversal)

function InOrder(node)
 InOrder(node.left)
 visit(node)
 InOrder(node.right)

후위 순회 (Postorder Traversal)

function PostOrder(node)
PostOrder(node.left)
PostOrder(node.right)
visit(node)

S위 순회 (Inorder Traversal)

function InOrder(node)
 InOrder(node.left)
 visit(node)
 InOrder(node.right)

D-B-E-A-F-C-G

후위 순회 (Postorder Traversal)

function PostOrder(node)
 PostOrder(node.left)
 PostOrder(node.right)
 visit(node)

S위 순회 (Inorder Traversal)

function InOrder(node)
 InOrder(node.left)
 visit(node)
 InOrder(node.right)

D-B-E-A-F-C-G

후위 순회 (Postorder Traversal)

function PostOrder(node)
 PostOrder(node.left)
 PostOrder(node.right)
 visit(node)

S위 순회 (Inorder Traversal)

function InOrder(node)
 InOrder(node.left)
 visit(node)
 InOrder(node.right)

D-B-E-A-F-C-G

후위 순회 (Postorder Traversal)

function PostOrder(node)
 PostOrder(node.left)
 PostOrder(node.right)
 visit(node)

S위 순회 (Inorder Traversal)

function InOrder(node)
 InOrder(node.left)
 visit(node)
 InOrder(node.right)

후위 순회 (Postorder Traversal)

function PostOrder(node)
 PostOrder(node.left)
 PostOrder(node.right)
 visit(node)

결론은...

```
function GetPreOrder(post_start, in_start, length)
  if (length == 1)
     print InOrder[in_start]
     end

set target -> PostOrder[post_start + length - 1]
  print(target)

for(i = 0 ... length)
    if (InOrder[in_start + i] == target)
        set pos -> i

GetPreOrder(post_start, in_start, pos)
  GetPreOrder(post_start + pos + 1, in_start + pos + 1, length - pos - 1)
```


★ Level 3 - 길 찾기 게임 (2019 kakao Blind Recruitment 1차 코딩테스트)

是初가 길니다. 强能 华德만 골라서 해석하는 연습을 해봅니다!

요약

• 트리의 지름이란, 임의의 두 점 사이의 거리 중 가장 긴 것을 말한다. 지름을 구하는 프로그램을 작성하시오.

제약조건

- 정점의 수 V는 2 <= V <= 100,000 이다.
- 정점과 정점 사이의 거리는 1 <= E₁ <= 10,000 이다.

(#1167) Gold 3 - 트리의 지름 (#1167)

- 한 지점에서 가장 먼 거리를 구함.
- 그 지점에서 제일 먼 거리를 구하면, 그것이 지름이 됨.
- 귀류법을 통해 증명할 수 있으나, 생략함. (https://www.quora.com/How-does-following-algorithm-for-finding-longest-path-in-tree-work)

근데 잠깐, 입력의 상태가?


```
5
132-1
244-1
31243-1
4243356-1
546-1
```


(#1167) Gold 3 - 트리의 지름 (#1167)

5 132-1 244-1 31243-1 4243356-1 546-1

● 부모-자식 관계를 어떻게 찾을까?

트리 찾기

```
function DFS(node)
  visited[node] = true
  for (next <- graph[node])
   if visited[next] == true
       append next to tree[node]
  else
      DFS(next)</pre>
```


Gold 1 - 우수 마을 (#1949)

요약

- 트리 구조로 구성된 마을이 있다. 이 마을 중 몇 개를 골라 우수 마을로 선정하려고 한다.
- 단, 우수 마을끼리는 인접할 수 없으며, 선정되지 않은 마을은 최소 한 개 이상의 우수 마을과 인접해 있어야 한다.
- 이 때, 우수 마을에 선정된 마을의 주민수의 합의 최댓값을 구하는 프로그램을 작성하시오.

제약조건

- 정점의 수 N은 1 <= N <= 10,000 이다.
- 주민의 수는 10,000 이하 이다.

이게 왜 DP야?

Gold 1 - 우수 마을 (#1949)

- 큰 문제를 작은 문제로 쪼갰을 때, <mark>작은 문제의 답을 통해 큰 문제의 답을 도출할 수 있는가?</mark>
- 큰 문제를 해결하기 위해 작은 문제의 답을 여러 <mark>번 구해야 하는</mark>가?

트리의 특성을 고려해보자.

- 단, 우수 마을끼리는 인접할 수 없으며, 선정되지 않은 마을은 최소 한 개 이상의 우수 마을과 인접해 있어야 한다.
- 이 때, 우수 마을에 선정된 마을의 주민수의 합의 최댓값을 구하는 프로그램을 작성하시오.

위/아래를 일일히 따지긴 어려우니까…

Gold 1 - 우수 마을 (#1949)

- 단, 우수 마을끼리는 인접할 수 없으며, 선정되지 않은 마을은 최소 한 개 이상의 우수 마을과 인접해 있어야 한다.
- 이 때, 우수 마을에 선정된 마을의 주민수의 합의 최댓값을 구하는 프로그램을 작성하시오.

윗 부분을 고정시켜버리자!

- 단, 우수 마을끼리는 인접할 수 없으며, 선정되지 않은 마을은 최소 한 개 이상의 우수 마을과 인접해 있어야 한다.
- 이 때, 우수 마을에 선정된 마을의 주민수의 합의 최댓값을 구하는 프로그램을 작성하시오.

윗 부분을 고정시켜버리자!

- 단, 우수 마을끼리는 인접할 수 없으며, 선정되지 않은 마을은 최소 한 개 이상의 우수 마을과 인접해 있어야 한다.
- 이 때, 우수 마을에 선정된 마을의 주민수의 합의 최댓값을 구하는 프로그램을 작성하시오.

윗 부분을 고정시켜버리자!

- 단, 우수 마을끼리는 인접할 수 없으며, 선정되지 않은 마을은 최소 한 개 이상의 우수 마을과 인접해 있어야 한다.
- 이 때, 우수 마을에 선정된 마을의 주민수의 합의 최댓값을 구하는 프로그램을 작성하시오.

A가 선택 된 경우

A가 선택 되지 않은 경우

B는 절대 선택 되어서는 안됨.

B는 선택해도 되고, 아니어도 되고…

이거는요?

선정되지 않은 마을은 최소 한 개 이상의 우수 마을과 인접해 있어야 한다.

B는 선택해도 되고, 아니어도 되고…

선정되지 않은 마을은 최소 한 개 이상의 우수 마을과 인접해 있어야 한다.

→ 만약에 자기 주변 애들이 다 안 선택되면 어쩌려고요??

B는 선택해도 되고, 아니어도 되고…

선정되지 않은 마을은 최소 한 개 이상의 우수 마을과 인접해 있어야 한다.

→ 만약에 자기 주변 애들이 다 안 선택되면 어쩌려고요??

선정되지 않은 마을은 최소 한 개 이상의 우수 마을과 인접해 있어야 한다.

- → 만약에 자기 주변 애들이 다 안 선택되면 어쩌려고요??
 - → 어차피 최댓값으로 비교하면 밀려서 괜찮다!

B는 절대 선택 되어서는 안됨.

- 두 경우를 테스트 하기 위해 <mark>트리 아래쪽으로 반복적으로 내려감</mark>.
- 결국, 똑같은 부분 문제를 계속해서 풀어야 함! → DP 맞네!

B는 선택해도 되고, 아니어도 되고…

힌트만 드릴게.

📂 Level 4 - 매출 하락 최소화 (2021 kakao Blind Recruitment 1차 코딩테스트)

理性规则证别证别上别见的

https://github.com/tony9402/baekjoon

- 최근 기업 코딩테스트 알고리즘 분류
- 특정 알고리즘 관련 추천 문제 모음
- 코딩테스트와 유사한 모의고사 (예정)

</s>

"Any question?"

"Thank You!"