WILLIAM BAUM

DESIGN OF EXPERIMENTS & MULTIPLE RESPONSE OPTIMIZATION

FATHER OF DOE

SIR RONALD FISCHER

WHY DESIGN OF EXPERIMENTS?

- Design of Experiments [DOE] provides the optimal mathematical solutions to conduct univariate and multivariate prospective (forward-looking) experiments.
- One Factor At a Time [OFAT] experiments, by comparison, show only a portion of inference, compared with DOE plans.
- OFAT models can be misleading, because they do not account for common interaction or polynomial effects.
- But how does DOE work its magic?

DESIGN OF EXPERIMENTS

THE UNDERLYING STRUCTURE

ORTHOGONAL DESIGN

- DOE provides optimal efficiency by creating orthogonal, or near-orthogonal designs.
- DOE systematically changes multiple input settings, simultaneously, and thereby estimates interaction effects.

http://www.euclideanspace.com/maths/algebra/matrix/orthogonal/index.htm

- This leads to better inference regarding phenomenological causality compared with models based on observational data.
- Designs may be modified to incorporate covariates and account for the difficulty in changing the settings of input factors.

ORTHOGONAL DESIGN

- DOE provides optimal efficiency by creating orthogonal, or nearorthogonal designs.
- + stands for 'on' or 'True' (boolean) or 'high' (continuous).

		1 Factor Assignment						
		Main Effects		3 Interactions			4	
		Α	В	С	D (A-B)	E (A-C)	F (B-C)	G (A-B-C)
2	1		-	_	+	+	+	_
T e s t	2	+	10.00	-		-	+	+
	3	<u>=</u> 5.,	+	_	-	+	_	+
	4	+	+	-	+		-	_
	5	<u> </u>	-	+	+	-	_	+
S	6	+		+		+	-	_
	7	<u>=</u>	+	+	_	_	+	_
	8	+	+	+	+	+	+	+

Design Of Experiments (DOE)

- is 'off', 'false', 'low'. (One can also include mid-points for continuous variables)
- Constraints may be added to ensure DOE stays within budget by limiting the number of runs, and reassessing which designs are optimal based on the number of available runs/tests.

MULTIPLE RESPONSE OPTIMIZATION

A BRIEF INTRODUCTION

MULTIPLE RESPONSE OPTIMIZATION

- Why optimize one outcome, when you can do so for multiple outcomes (responses) at once? Often, more than one outcome is important...
- You can do it easily with Multiple Response Optimization [MRO]!
- Uses individual and collective Desirability Functions [DF]:

 - Target (when most desirable outcome falls between Min and Max)
 - Composite (Optimizes all DFs, together, to inform a final decision)
 - The Full Details:
 https://cran.r-project.org/web/packages/desirability/vignettes/desirability.pdf

DESIGN OF EXPERIMENTS

READING & RESOURCES

RESOURCES

- pyDOE https://pypi.org/project/pyDOE/
 https://pythonhosted.org/pyDOE/
- It seems that Data Science continues to learn from its older sibling, statistics...
- Data Camp just launched a new course in R to teach DOE https://www.datacamp.com/courses/experimental-design-in-r
- Check out Bradley Jones and his optimal designs, using JMP Discovery Software, by SAS. www.jmp.com
- R package: https://cran.r-project.org/web/packages/desirability/index.html

RECOMMENDED READING

Optimal Design of Experiments: A Case Study Approach

Peter Goos, Bradley Jones; SAS

- Also...
- For a general survey, the
 JMP community is great.
 You can access
 free materials on DOE, here:

https://www.jmp.com/en_us/applications/design-ofexperiments.html

