Package 'impactflu'

October 13, 2022				
Title Quantification of Population-Level Impact of Vaccination				
Version 0.1.0				
Description Implements the compartment model from Tokars (2018) doi:10.1016/j.vaccine.2018.10.026 >. This enables quantification of population-wide impact of vaccination against vaccine-preventable diseases such as influenza.				
License MIT + file LICENSE				
Encoding UTF-8				
LazyData true				
Depends R (>= $3.6.0$)				
RoxygenNote 7.0.2				
LinkingTo Rcpp				
Imports Rcpp, tibble, dplyr, rlang, glue, lubridate, magrittr				
Suggests testthat (>= 2.1.0)				
NeedsCompilation yes				
Author Arseniy Khvorov [aut, cre]				
Maintainer Arseniy Khvorov <khvorov45@gmail.com></khvorov45@gmail.com>				
Repository CRAN				
Date/Publication 2020-01-14 11:00:02 UTC				
R topics documented:				
generate_counts				

2 generate_dates

generate	counts

Generate normal counts

Description

Generates counts from a normal distribution density function.

Usage

```
generate_counts(init_pop_size, n_timepoints, overall_prop, mean, sd)
```

Arguments

overall_prop Overall proportion of the population to be included in the counts over all the

timepoints

mean Mean of the normal distribution

sd Standard deviation of the normal distribution

Value

An integer vector of counts of length n_timepoints

Examples

```
# Tokars (2018) vaccinations
vacs_tok <- generate_counts(1e6, 304, 0.55, 100, 50)
# Tokars (2018) cases
casen_tok <- generate_counts(1e6, 304, 0.12, 190, 35)</pre>
```

generate_dates

Generate dates

Description

Generate dates given timepoint indices, start date and step unit

Usage

```
generate_dates(timepoints, start, unit)
```

method1 3

Arguments

timepoints Integer vector timepoint indices

start Date of index 1

unit "year" "month" or "day"

Value

A vector of dates the same length as timepoints

Examples

```
# Dates from Tokars (2018)
timepoints <- 1L:304L
dates <- generate_dates(timepoints, lubridate::ymd("2017-08-01"), "day")</pre>
```

method1

Analysis methods from Tokars (2018)

Description

Method 1 was said to be as current. Method 3 was determined to be the least biased.

Usage

```
method1(init_pop_size, vaccinations, cases, ve)
method3(init_pop_size, vaccinations, cases, ve)
```

Arguments

vaccinations Integer vector counts of vaccinations

cases Integer vector counts of cases

ve Vector vaccine effectiveness. If length 1, assumed to not vary with time.

Value

A tibble with the following columns (method-dependent):

cases Observed cases

vaccinations Observed vaccinations

ve Assumed vaccine effectiveness

pvac Proportion of the starting population vaccinated

vc_lag Vaccine coverage lagged pops Susceptible population

4 method1

pflu Infection risk
popn Non-cases is absence of vaccination
cases_novac Cases in absence of vaccination
avert Expected number of vaccinations

References

Tokars JI, Rolfes MA, Foppa IM, Reed C. An evaluation and update of methods for estimating the number of influenza cases averted by vaccination in the United States. Vaccine. 2018;36(48):7331–7337. doi:10.1016/j.vaccine.2018.10.026

Examples

```
library(dplyr)
# Simulate a population
nsam <- 1e6L
ndays <- 304L
pop_tok <- sim_reference(</pre>
  init_pop_size = nsam,
  vaccinations = generate_counts(nsam, ndays, 0.55, mean = 100, sd = 50),
  cases_novac = generate_counts(nsam, ndays, 0.12, mean = 190, sd = 35),
  ve = 0.48,
  lag = 14,
  deterministic = TRUE
)
# Summarise by month
pop_tok_month <- pop_tok %>%
  mutate(
   datestamp = generate_dates(
      timepoint, lubridate::ymd("2017-08-01"), "day"
   ),
   year = lubridate::year(datestamp),
    month = lubridate::month(datestamp)
 ) %>%
 group_by(year, month) %>%
 summarise(
   vaccinations = sum(vaccinations), cases = sum(cases), ve = mean(ve)
 ) %>%
 ungroup()
# Estimate averted cases using the two different methods
m1 <- method1(
  nsam, pop_tok_month$vaccinations, pop_tok_month$cases, pop_tok_month$ve
)
m3 <- method3(
  nsam, pop_tok_month$vaccinations, pop_tok_month$cases, pop_tok_month$ve
)
sum(m1$avert)
sum(m3$avert)
```

sim_reference 5

sim_reference	Simulate an ideal population	

Description

Simulates an ideal population using the reference model from Tokars (2018).

Usage

```
sim_reference(
  init_pop_size,
  vaccinations,
  cases_novac,
  ve,
  lag,
  deterministic,
  seed = sample.int(.Machine$integer.max, 1)
)
```

Arguments

vaccinations Integer vector number of vaccinations at every timepoint

cases_novac Integer vector number of cases at every timepoint

ve Vaccine effectiveness (proportion)

lag Integer lag period measured in timepoints

deterministic Boolean whether to make the simulation deterministic

seed Integer seed to use

Value

A tibble with the following columns:

timepoint	Indev	of time	noint
timepoint	index	or time	mome

vaccinations Expected number of vaccinations

cases_novac Expected number of cases in absence of vaccination

ve Expected vaccine effectiveness

pflu Flu incidence

cases Actual number of cases

popn Non-cases in absence of vaccination

pvac Proportion of starting population vaccinated

Number vaccinated at that time
 Non-vaccinated non-cases
 Vaccinated non-cases lagging

E Non-vaccinated cases

6 sim_reference

References

Tokars JI, Rolfes MA, Foppa IM, Reed C. An evaluation and update of methods for estimating the number of influenza cases averted by vaccination in the United States. Vaccine. 2018;36(48):7331–7337. doi:10.1016/j.vaccine.2018.10.026

Examples

```
# Population from Tokars (2018)
nsam <- 1e6L
ndays <- 304L
pop_tok <- sim_reference(
   init_pop_size = nsam,
   vaccinations = generate_counts(nsam, ndays, 0.55, mean = 100, sd = 50),
   cases_novac = generate_counts(nsam, ndays, 0.12, mean = 190, sd = 35),
   ve = 0.48,
   lag = 14,
   deterministic = TRUE
)
head(pop_tok)
sum(pop_tok$avert)</pre>
```

Index

```
generate_counts, 2
generate_dates, 2

method1, 3
method3 (method1), 3

sim_reference, 5

tibble, 3, 5
```