Two-Stage Miller OPAMP

- A two-stage Miller OPAMP is used here.
 - Note: You also have to design a biasing circuit for V_b!
- If you have prior design experience and would like to try other amplifier architectures, you could do so.

Two-Stage Miller OPAMP

- ¹Diode Connected Active Load
- ²Differential Input Pair
- ³Tail Current Sources
- ⁴Compensation Capacitor
- ⁵Bias Voltage

OPAMP Specifications

Parameter	Abbr.	Unit	Specification
DC Gain	Av	[dB]	> 50
Gain Bandwidth	GBW	[MHz]	≥ 20
Phase Margin	PM	[°]	≥ 55
Common-Mode Rejection Ratio	CMRR	[dB]	> 60
Slew Rate (+ve, -ve)	SR+, SR-	[V/µs]	≥ 15 , 15
Settling Time @ 5 % error (high, low)	ST _{high} , ST _{low}	[ns]	≤ 500 , 500
Input Common-Mode Range	ICMR	[V]	0.5 1.3
Output Voltage Swing	-	[V]	0.3 1.5
Input Offset Voltage	-	[mV]	≤ 5
Input Referred Noise @ 20 kHz	V _{ni,rms}	[nV/√Hz]	≤ 55
Power Dissipation	P _{DC}	[mW]	≤ 0.6
Load Capacitance	CL	[pF]	≥ 2
Supply Voltage	V _{DD}	[V]	1.8

^{*}The given specifications are absolute minimum for typical corner post-layout simulations.

Your design will be evaluated based on:

- How optimized it is. How power & area efficient it is.
- How well the specifications for Corner and Monte-Carlo analysis are met.

OPAMP Design

Design procedure for the OPAMP:

- 1. Initial design using hand calculations.
 - Please understand the operating principles of the OPAMP and the transistors before attempting to design the OPAMP. Otherwise, you will not be able to make good design decisions.
 - A provided Matlab Script will help you with the initial calculations. It is based on simplified equations and uses look-up tables for the transistor sizing.
- 2. Adapted/optimized design using Cadence Virtuoso.
 - Setup your testbench to simulate all relevant parameters.
 - Optimize your design based on simulation with Cadence Virtuoso.
 - After achieving good performance in the nominal case, check and fine-tune your design using Corner and Monte-Carlos Analysis.

OPAMP Design

- 3. Layout creation using Cadence Virtuoso.
 - Your layout must not have DRC violations or LVS errors.
- 4. Post-Layout Simulation
 - Extract the layout to include the parasitic effects. Simulate your extracted design and make sure, that your design still meets the specifications.

OPAMP_Design&Simulation.pdf for some hints on the design of the OPAMP and on how to do its simulations!

