PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-337236

(43) Date of publication of application: 07.12.2001

(51)Int.Cl.

6/12 GO2B

(21)Application number: 2000-

(71)Applicant: NIPPON TELEGR & TELEPH

159811

CORP (NTT)

(22)Date of filing:

30.05.2000

(72)Inventor: YOKOHAMA ITARU **NOTOMI MASAYA**

ARAYA AKIHIKO

TAMAMURA TOSHIAKI

TOMARU AKIRA

TAKAHASHI CHIHARU

SUGITA AKIO

(54) PHOTONIC CRYSTAL

(57)Abstract:

PROBLEM TO BE SOLVED: To solve such problems that propagation loss in the light propagating a conventional two-dimensional photonic crystal or in the light propagating a defective part of a conventional two-dimensional photonic crystal is high.

SOLUTION: The photonic crystal has a substrate 1, lower clad layer 2, light guide layer (3, 4) and upper clad layer 5. The light guide layer (3, 4) consists of a plurality of columnar parts (4) having a refractive index n1 arranged in the direction perpendicular to the substrate 1 and in a specified period between the lower clad layer 2 and the upper clad layer 5, and a part (3) having a refractive index n2 (n1≠n2) possessing the space between the lower clad layer 2 and

the upper clad layer 5 except the columnar part (4). The refractive index of the lower clad layer 2 is lower than both of the refractive indices n1 and n2, and the refractive index of the upper clad layer 5 is lower than both of the refractive indices n1 and n2.

LEGAL STATUS

[Date of request for examination]

19.12.2001

[Date of sending the examiner's decision 27.09.2005 of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

会裁(4) 1 华 噩 4 (12) (19)日本国特許庁 (JP)

特開2001-337236 (11)特許出顧公開番号

(P2001-337236A)

(43)公開日 平成13年12月7日(2001.12.7)

数数 47

FI F-7	7 71/0
4000	
į	21/9
(51) Int.Cl.	

(全12月) 客空間水 未離水 謝水頃の数7 〇L

(21) 出資条号	仲間 2000-159811(P2000-159811)	(71) 出版人	(71) 出國人 000004226
(22) 出版日	平成12年5月30日(2000.5.30)		日本集团集品的体现实在 東京都千代田区大手町二丁目3番1号
		(72)発明者	遊戏 班
			東京都千代田区大手町二丁目3番1号 日
			本電信電影株式会社内
		(72)発明者	粉醇 器也
			東京都千代田区大手町二丁目3番1号 日
			本體價電話株式会社内
		(74)代理人	(74)代理人 100064621
			弁理士 山川 政樹
			現株買に扱く

フォトニック結晶 (54) [発政の名称]

光、ならびに従来の2次元フォトニック結晶中の欠陥部 【課題】 従来の2次元フォトニック結晶中を伝搬する 分を伝搬する光の伝搬扣失が大きいという問題を解決す

故する婦(3、4)と、上部クラッド婦5とを備え、光 と、下部クラッド婦2と上部クラッド婦5との間のうち 【解決年段】 - 基板1と、下部クラッド層2と、光を導 を導数する屋(3, 4)は、下部クラッド屋2とを上部 クラッド協5との間に基板1と直交する向きでかつ所定 柱状部分(4)以外を占める風折率n; (n; +n;)の の周期で配設された屈折率n,の複数の柱状部分(4)

部分(3)とで構成され、下部クラッド層2は、その組

折ゆがn,およびn,の何れよりも低く、上部クラッド

層5は、その屈折率がn:およびn:の何れよりも低い

ものである。

漢

[特許請求の範囲]

ラッド陌と、この下部クラッド層上に形成され光を導波 する層と、この光を導放する層上に形成された上部クラ 【請求項1】 基板と、この基板上に形成された下部ク

加配光を導放する層は、前配下部クラッド層と前記上部 配下部クラッド層と前記上部クラッド層との間のうち前 クラッド層との間に前記基板と直交する向きでかつ所定 の周期で配設された屈折率 n,の複数の柱状部分と、前 記住状部分以外を占める屈折率n1 (n1 + n1) の部分 とで確長され、

前配下部クラッド層は、その風折率が前記 n. および前 記n,の何れよりも低く、

前記上部クラッド層は、その風折率が前記n,およびn の何れよりも低いことを特徴とするフォトニック結 【請求項2】 請求項1に記載のフォトニック結晶にお

前記上部クラッド層は、前記複数の柱状部分の直上領域 と前記屈折率n:の領域の直上領域とで屈折率が異なる ことを特徴とするフォトニック結晶。

[請求項3] 請求項1または請求項2に記載のフォト ニック結晶において、

前記下部クラッド層は、前記複数の柱状部分の直下領域 と前記屈折率n:の領域の直下領域とで屈折率が異なる

【請求項4】 請求項1乃至請求項3の何れか一項に記 ことを特徴とするフォトニック結晶。 載のフォトニック結晶において、 前記光を導波する層は、柱状物または空孔が基板上に周 部に周期性の欠陥部分を有することを特徴とするフォト 期的に形成された構造を有するとともに、この構造の一 ニック結品。 【請求項5】 請求項1乃至請求項4の何れか一項に記 娘のフォトニック結晶において、

のうち、屈折率の低い何れが一つの餌域は、エポキシ系 【甜末項6】 開水項1乃至請水項5の何れか一項に記 ポリマーからなることを特徴とするフォトニック結晶。 前記屈折率n,の柱状部分または前記屈折率n,の領域 載のフォトニック結晶において、

前記上部クラッド層は、エポキシ条ポリマーからなるこ とを特徴とするフォトニック結晶。

【請求項7】 請求項1乃至請求項6の何れか一項に記 段のフォトニック結晶において、

関域の直下の領域がエポキン系ポリマーからなることを 前記下部クラッド層は、前記風折率n,の柱状部分と前 沿国が率n:の恒域のうち、屈折率の低い向れかーしの 特徴とするフォトニック結晶。 【発明の詳細な説明】

[発明の属する技術分野] 本発明は、フォトニック結晶

校照2001-337236

8

ザ、光導波路、光塩積回路等の様々な光デバイス等を構 に因し、特に光情報処理、光伝送等に川いられるレー **式するためのフォトニック結晶に関するものである。**

ンド構造をとることが知られており、このような既倒体 周期構造はフォトニック結品と呼ばれている。 フォトニ ック結晶中の光の伝搬はパンド構造により決定されるた め、結品構造や周期的摂動の大きさを制御することによ り、その光学的性質を設計することができる。フォトニ ック結晶の中で、柱状物あるいは空孔が基板上に周期的 に形成される構造は、2次元的周期構造をもつことから 2 次元フォトニック結晶と呼ばれる。ほとんどの光デバ イスが2次元フォトニック結晶で実現できる可能性があ ること、作製工程が3次元フォトニック結晶に比べて比 較的容易であることから、作製および検討がなされてい 【従来の技術】誘電体周期構造中の光は周期的摂動を受 け、因故数の分散関係が結晶中のパンド構造と同様なパ

[0003] 理想的な2次元フォトニック結晶は、厚さ 無限大の構造であるが、現実的には有限基をの構造を収 り扱わなければならないため、周期方向に対して垂直な 方向の光の閉じ込めが現実的には頂要となる。垂直方向 の光の閉じ込めを実現する方法として、柱状物あるいは 空孔が周期的に形成されている構造を有する層を、柱状 物あるいは空孔の投存部分を形成する媒質よりも低い組 折率を有する層で挟み込む構造(後述の従来の第一の構 造)、または柱状物もしくは空孔の段存部分に、屈折草 の高い材料を屈折率の低い材料で挟み込む構造を形成す 5.構造(後述の従来の第二の構造)の主に2.つが従来穏 案され、作製が行われている。

さらにその上に上部SiM93が形成されたSOI (Si licon-on-insulator) 基板を用い、上部Si 的93にド ライエッチングにより、周期的に空孔 9 4 が形成されて いる。この構造では、2次元の周期構造を有する上部S 図92 (風折率約1.5)と空気図(風折率1.0)と 【0004】従来の第一の構造のうち、空孔を形成する 1 № 9 3 (風折單約3. 5) を、風折車の低いSiO; で挟み込んでおり、垂直方向の光の閉じ込めを図ってい 構造の上面図とそのH—H′級所面図を模式的i図 €に 示す。 基板Si91上に、SiO: №92が形成され、

94の直径が0.3μm、3角格子を形成している空孔 皮及 1. 5 μ mの電界の振動方向が基板 9 1 面内に垂直 393を透過し、電界の振動方向が基板91面内に水平 である木平偏光は、フォトニックベンドギャップのため である垂直偏光は、2次元の周期構造を有する上部Si 2μm、SiOi № 92の厚さが3.0μm、また空孔 [0005] この例では、上部Si N93の厚きがO. 34の周期が0.4ヵmとなったいる。この資料では、 2 次元の周期構造を有する上部 3 i № 9 3 を透過しな

B/mmとなり、比較的大きな損失値となっており、ミ リメートル(mm)オーダーでの光の伝搬を行うことが

基板を用い、上部SiMにドライエッチングにより、周 期的に円柱103が形成されている。この構造では、2 【0006】従来の第一の構造のうち、住状物を形成す 成され、さらにその上に上部S : 騒が形成されたSO1 次元の周期構造を有する円柱103(風折率約3.5) と空気層(屈折率1.0)とで挟み込んでおり、垂直方 る構造の上面図とその1-1、教師面図を核式的1位1 0に示す。 拡板Si101上に、Si04層102が形 を、晶折率の低いSiOi層102 (風折率約1.5) 向の光の閉じ込めを図っている。

03の直径が0、16μm、3角格子を形成している円 木平である木平偏光は、フォトニックバンドギャップの **柱103の周期が0.4ヵmとなっている。この試料で** は、彼及1. 5μmの電界の扱動方向が基板101面内 に飛血である鹿山偏光は、2次元の周期構造を有する円 性103を透過し、電界の超動方向が基板101面内に ろ40dB/mmとなり、比較的大きな損失値となって おり、mmオーダーでの光の伝搬を行うことが難しいも 【0007】この例では、円柱103の耳さが0.2 μ **い。しかし、原白伽光に対する遜過損失を測定したとこ** m、SiOr層102の厚さが3.0μm、また円柱1 ため2次元の周期構造を有する円柱103を透過しな

打するGaAs屋112 (風折草約3.5)を、風折車 が低く同じく 2 次元の周期構造を有する上部A1GaA 次元周期構造を有する下部AIGaAs超114 (屈折 【0008】 従来の第二の構造のうち、空孔を形成する M (耳さ0. 4 mm) が形成された基板に、ドライエッ s 図113 (国折草約3.0)と阻折率が低く一部が2 2μm) が形成され、さらにその上に上師AlGaAs チングにより、周期的に登孔111 (深さ1、0 mm) が形成されている。この構造では、2次元の周期構造を 母約3.0)とで挟み込んでおり、垂直方向の光の関じ に示す。下部AIGaAsM上にGaAs版 (見さの. ★位の上面区とその」ー」、依原面区を核式的は以11 込めを図っている。

界の拡動方向がGaAs屋112の面内に垂直である垂 木平である木平偏光は、フォトニックバンドギャップの ため2次元の周期構造を有するG a A s 層 1 1 2 を透過 μ田となっている。この試料では、波段1. 5μmの鉛 **直偏光は、2次元の周期構造を有するGaAs屋112** しない。しかし、垂直偏光に対する透過損失を測定した ところ30dB/mmとなり、比較的大きな損失値とな [0009] この例では、空孔111の直径が0.3μ m, 3角格子を形成している空孔111の周期が0.4 を透過し、低界の観動方向がG a A s № 1 1 2 の面内に

っており、mmオーダーでの光の伝搬を行うことが難し

形成され、さらにその上に上部S;磨123が形成され ングにより、周期的に空孔124が形成されている。こ この例では、上部S 1 屋 1 2 3 の厚さが 0. 2 μ m、S [0010]また、従米構造を使って、2次元周期構造 ことも検討されている。従来の第一の構造のうち、空孔 を形成する構造に直線の欠陥部分を導入した構造の上面 たSO1基板を用い、上部Si厬123にドライエッチ の構造では、2次元の周期構造を有する上部51 図12 2 (屈折率約1.5)と空気層(屈折率1.0)とで挟 **直径が0.3μm、3角格子を形成している空孔124** カー部に欠陥を導入し、その欠陥部分に光を導波させる 1.2に示す。基板Si121上に、Si04層122が 3 (屈折率約3.5)を、屈折率の低いSiO: 層12 み込んでおり、垂直方向の光の閉じ込めを図っている。 i O_i № 1 2 2 の母さが 3.0 μm、また空孔 1 2 4 の 図とそのK一K, およびL―L, 銀炉画図を模式的図 の周期が0.4μmとなっている。

125を伝搬する。しかし、水平偏光に対する欠陥導波 直偏光は、2 次元の周期構造を有する上部8 1 層 1 2 3 5.水平偏光は、フォトニックパンドギャップのため2次 5に入射された水平偏光の波長1.5μmの光は、水平 方向に関しては空孔124の周期構造がフォトニックバ での光の伝搬を行うことが難しく、光集積回路を作製す [0011] この政料では、前述したように被投1.5 μ mの電界の振動方向が基板121面内に垂直である垂 を透過し、電界の振動方向が基板121面内に水平であ 本政料では、周期構造の一部に空孔が1列抜けた直線状 の欠陥導波路125が形成されている。欠陥導波路12 ンドギャップとなっているため欠陥導波路125部分に 閉じ込められ、垂直方向に関しては上下の屈折率逆によ り欠陥導被路125部分に閉じ込められて、欠陥導被路 路125の透過損失を測定したところ20dB/mmと なり、比較的大きな損失値となっており、mmオーダー 元の周期構造を有する上部31图123を透過しない。

ることができなかった。 [0012]

の2 次元フォトニック結晶の伝搬損失が大きく、フォト 「発明が解決しようとする歌題」以上のように、従来の ニック結晶の有する種々の特徴を活かしたデバイスへの 2 次元フォトニック結晶の構成では、光伝搬媒体として 応用が困難という問題点があった。

【0013】本発明は、このような觀題を解決するため のものであり、従来の2次元フォトニック結晶中を伝搬 する光、ならびに従来の2次元フォトニック結晶中の欠 **瑜部分を伝搬する光の伝搬損失が大きいという問題を容** 易に解決することができるフォトニック結晶を提供する ことを目的とする。

[0014]

|課題を解決するための手段| 上配間題点を解決するた ウ、本願発明者らは従来構成の損失要因を検討した。そ 図12の断画図中に核式的に矢印で示したよう

こ係るフォトニック結晶は、基板と、この基板上に形成 部分についても微視的に屈折率逆による垂直方向閉じ込 【0015】このような目的を遠成するために、本発明 **ó棒造を形成することにある。**

の何れよりも低く、前記上部クラッド層は、その屈折率 前記下部クラッド層とを前記上部クラッド層との間に前 記基板と直交する向きでかつ所定の周期で配設された屈 された下部クラッド層と、この下部クラッド層上に形成 され光を導波する層と、この光を導液する層上に形成さ 記上部クラッド層との間のうち前配柱状部分以外を占め 折率 n. の複数の柱状部分と、前記下部クラッド層と前 れた上部クラッド層とを備え、前記光を導設する層は、 る屈折率n: (n.≠n:)の部分とで構成され、前記下 部クラッド層は、その屈折率が前記n,および前記n, が前記n,およびn,の何れよりも低いものである。

す構成を含むものである。すなわち、前記上部クラッド [0016]また、本発明はその他の簡様として次に示 クラッド層は、前記複数の柱状部分の直下倒域と前記屈 の領域の直上領域とで屈折率が異なる。また、前配下部 前記光を導波する層は、柱状物または空孔が基板上に周 明的に形成された構造を有するとともに、この構造の一 母は、前配複数の柱状部分の直上領域と前記屈折率n₃ 折率n1の領域の直下領域とで屈折率が異なる。また、 部に周期性の欠陥部分を有する。

2 次元フォトニック結晶あるいは2 次元フォトニック結 **到域は、エポキン系ポリマーからなる。また、何記上部** 沿屈折率 n:の領域のうち、屈折率の低い何れか一つの 【0017】また、前記屈折率n,の柱状部分または前 前記下部クラッド層は、前記屈折率 n,の柱状部分と前 クラッド例は、エポキシ来ポリマーからなる。さらに、 記屈折率niの領域のうち、屈折率の低い何れか一つの 【0018】このように構成することにより本発明は、 領域の直下の包核がエポキシ系ポリマーからなる。

は、従来構成を模式的に表した上述の図9、図10、図 向の光の閉じ込め構造が微視的になされていないことに 見的になされていなかった空孔部あるいは柱状物以外の の結果、従来は、周期構造が光の波長以下の微小構造で あるため、各層の平均屈折率の逆により光は垂直方向に 十分閉じ込められると考えられていたが、主な損失要因 に、空孔部あるいは柱状物以外の部分において、垂直方 た。そして、問題点を解決する手段として、本発明の基 本的な考え方は、従来垂直方向の光の閉じ込め構造が微 **起因する上下方向への散乱損失にあることを見いだし**

【0021】また、空孔を充填した部分4の直径が0. 1. 5、瓜さ3μm) である。

が0. 4μmとなっている。本構造においては、周期的 おける屈折牵の高い部分になっており、周期的に形成さ の断面図に模式的に矢印で示したように、周期的構造の に形成された空孔以外の部分3の5 iが、周期的構造に 母の低い部分となっている。 その結果、 周期的に変化す る構造の屈折率の高い部分の屈折率をn1、屈折率の低 い部分の組折率をn:とし、下部クラッド層の組折率を からniくniの条件を溢たしている。このため、図1 <n.かつn.<n.かつn.<n.であり、かつ、n.<n nı、上部クラッド層の屈折率をn.としたとき、nı

(a) Si 脳21上にSi Oi 脳22が形成され、さら 12、周期的構造を転写したN 1 マスク 2 4 を蒸着する。

[0023] (d) SiO: №22ならびに空孔の残存 (c) Niマスク24をエッチングにより除去する。 んだエポキシ系ポリマーM26を形成する。

キシ系ポリマーM26を空孔の残存部分のSi25の先 (o) ドライエッチングにより、空孔を埋め込んだエポ **蟷部分がほぼ鴎出するまでエッチングし、空孔を充填し**

フォトニック結晶欠陥導故路を実現することができ、種

4のデバイスへの応用が可能となる。

し、低損失2次元フォトニック結晶および低損失2次元

晶欠陥導波路の伝搬損失が大きいという問題点を解決

3

特丽2001-337236

[0020] [第一の実施の形態] 本発明の第一の実施 発明の実施の形態】次に、本発則の実施の形態につい

はSi (屈折草約3.5、早さ0.2μm)であり、囚 リマー (屈折率1, 6, 以さ0, 2μm) であり、上部 の形態の構造を模式的に図」に示す(上面図(上部クラ その上に周期的に形成された空孔以外の部分3と周期的 3 μm) であり、周期的に形成された空孔以外の部分3 期的に形成された空孔を充填した部分4はエポキシ系ポ 図)。 基板1上に下部クラッド的2が形成され、さらに に形成された空孔を充填した部分4が形成され、さらに その上に上部クラッド層5が形成された構造となってい 下部クラッド悩2はSiOa㎏ (屈折率約1.5、以さ る。この第一の実施の形態では、基板1はSiであり、 クラッド回5はフッ森化エポキシ系ポリマー (風折容 ッド悩5の一部は除去)およびそのAーA、 紋形面

3 μ m、3 角格子を形成し充填された周期的空孔の周期 れた空孔を充填した部分4のエポキシ来ポリマーが屈折 国折率の低い部分の微視的構造においても風折率差によ る垂直方向の光の閉じ込めがなされる構造となってい

【0022】第一の実施の形態の作製工程を囚2に示

(も) ドライエッチングにより、Niマスク24の蒸着 にその上にトップSiM23が形成されたSO1 基板上 されていないトップ 8 i 粉 2 3 に垂直孔を開け、空孔の 残存部分の5;25を形成する。

ティングにより資布し、その後硬化させ、空孔を埋め込 部分のSi25上に、エポキシ系ポリャーをスピンコー

ッド届となるフッ装化エポキシ系ポリマー図28を形成 (!) さらにその上に、フッ薬化エポキシ系ポリャーを スピンコーティングにより留在し、硬化させ、上部クラ

したがって、本実施の形態の試料は、mmオーダーでの [0024] この試料では、被投1、5μmの電界の擬 分4を透過し、電界の収動方向が基板1面内に水平であ る水平偏光は、フォトニックパンドギャップのため2次 た部分4を透過しない。 垂直偏光に対する透過損失を測 ド層に固体材料を用いたが、屈折率の条件を満たせば気 助方向が基板1面内に垂直である垂直偏光は、2次元の **同期構造を有する空孔以外の部分3と空孔を充填した部** 1 mmあたりで20 d B以上の極めて大きな損失改辞が た、本実施の形倣では上部クラッド陥および下部クラッ 体材料または液体材料であっても同様の効果を得ること 元の周期構造を有する空孔以外の部分3と空孔を充填し 得られ、本発明の効果が極めて大きいことが示された。 **定したところ5dB/mmとなり、従来構造に比べて、** 光の伝教を十分に行うことができる媒質といえる。ま

上に下部クラッド層2が形成され、さらにその上に周期 クラッド層5が形成された構造となっている。第二の実 空孔を充填した部分4が形成され、さらにその上に上部 **周期的に形成された空孔以外の部分3はSi (風折率約** 56、早さ0.2μm)であり、上部クラッド傾5はS の形態を説明するが、構造は1<u>以1</u>に示す第一の実施の形 的に形成された空孔以外の部分3と周期的に形成された **歯の形態では、基板1はSiであり、下部クラッド屋2** 3. 5、耳さ0. 2 mm) であり、周期的に形成された 飽と同一であり、一部材料が異なるものである。 基板 1 はSiOnM (風折率約1.5、厚さ3μm) であり、 空孔を光填した部分4はG。添加SiO, (風折率1. i Os 屋 (旭折年1.5、厚き3μm) である。

の低い部分となっている。その結果、周期的に変化する 3 μ m、3 角格子を形成し充填された周期的空孔の周期 が0. 4μmとなっている。本構造においては、四期的 に形成された空孔以外の部分3の5;が、周期的構造に おける屈折率の高い部分になっており、囚期的に形成さ たように、周期的構造の組折率の低い部分の徴税的構造 れた空孔を充填した部分4のG。添加SiO,が屈折率 你分の紐折串をn,とし、下部クラッド層の紐折串をn Oniくniの条件を溢たしている。 10ため、 第一の状 箱の形態と回接に、図1の断面図に模式的に矢印で示し 【0026】また、空孔を充填した部分4の直径がの。 構造の屈折率の高い部分の屈折率をn.、 屈折率の低い s、上部クラッド層の組折率をn.としたとき、n₁< niかつniくniかつniくniであり、かつniくniか

においても屈折率並による張位方向の光の閉じ込めがな

【0027】次に、第二の実施の形態の作製工程を図3

- こその上にトップS: **図33が形成されたSOI 基板上** (a) SiM31上にSiO・M32が形成され、さち に、因期的構造を転写したNiマスク34を蒸着する。
- (b) ドライエッチングにより、Niマスク34の蒸剤 されていないトップSi層33に垂直孔を開け、空孔の
 - 及存部分のSi35を形成する。
- 部分のSi35上に、Ge 添加SiO゚ をスパッタリン グにより堆積し、空孔を埋め込んだGe 添加SiOi層 [0028] (d) SiO: 閥32ならびに空孔の残存 (c) Niマスク34をエッチングにより除去する。
- (e) ドライエッチングにより、空孔を埋め込んだGe 部分がほぼ腐出するまでエッチングし、空孔を充填した **添加Si0⋅ 歿36を空孔の残存部分のSi35の先端** G e 添加S i O, 37を形成する。
- (f) さらにその上に、SiOaをスパッタリングによ 9 堆積し、上部クラッド陌となるSiO4 屆38を形成

【0025】 [第二の実施の形態] 本発明の第二の実施

ックパンドギャップのため2次元の周期構造を有する空 **垂直偏光に対する透過損失を測定したところ6 d B / m** 直である垂直偏光は、2次元の周期構造を有する空孔以 助方向が基板1面内に水平である水平偏光は、フォトニ 以上の極めて大きな損失改善が得られ、第一の実施の形 外の部分3と空孔を充填した部分4を透過し、低界の極 mとなり、従来構造に比べて、1mmあたりで20dB た。本実施の形態の試料は、ロロオーダーでの光の伝統 に、故長1. 5 mmの電界の振動方向が基板1面内に垂 凡以外の部分3と空孔を充填した部分4を透過しない。 【0029】この資料では、第一の実施の形態と同様 低と同様に本発明の効果が極めて大きいことが示され を十分に行うことができる媒質である。

が形成され、さらにその上に周期的に形成された円柱部 に形成された円柱部分43はSi (屈折率約3.5、U さ0.2μm)であり、周期的に形成された円柱以外の 部分を充填した部分44はエポキシ系ポリマー(風折率 1. 6、厚さ0. 2 mm) であり、上部クラッド層45 はフッ寮化エポキシ茶ポリマー (屈折率1. 5、厚さ3 【0030】 [第三の実施の形態] 本発明の第三の実施 図)。 第三の実施の形態では周期的に柱状物を形成した 霄造となっている。基板41上に、下部クラッド層42 分43と周期的に形成された円柱以外の部分を充填した の形態の構造を模式的に図りに示す(上面図(上部クラ 部分44が形成され、さらにその上に上部クラッド層4 5が形成された構造となっている。 第三の実施の形態で は、基板41はSiであり、下部クラッド層42はSi O: 層 (風折率約1.5、厚さ3 mm) であり、周期的 ッド悩45の一部は除去)およびそのB―B、線断面

n、3角格子を形成し周期的構造の円柱の周期が0.4

【0031】本構造においては、周期的に形成された円 **町分になっており、周期的に形成された円柱以外の部分** を充填した部分44のエポキシ系ポリマーが屈折率の低 い部分となっている。その結果、周期的に変化する構造 は式的に矢印で示したように、周期的構造の配折率の **むい部分の微視的構造においても屈折率差による垂直方** 主部分43のSiが、周期的構造における屈折率の高い の屈折率の高い部分の屈折率を n1、 屈折率の低い部分 くn:の条件を潜たしている。このため、図4の断面図 上部クラッド層の屈折率をn.としたとき、n.<n.か の屈折率をn1とし、下部クラッド層の屈折率をn1、 つロ・くロがつロ・くローであり、かつロ・くロがつロ・ 向の光の閉じ込めがなされる構造となっている。

分を充填した部分44を透過し、電界の振動方向が基板 と円柱以外の部分を充填した部分44を透過しない。 垂 直編光に対する透過損失を測定したところ7 d B/mm めて大きいことが示された。本実施の形態の資料は、m 【0032】第三の実施の形態の作製工程は、第一の実 異なるのみである。この試料では、被長1.5μmの配 2 次元の周期構造を有する円柱部分43と円柱以外の部 41面内に水平である水平偏光は、フォトニックバンド ギャップのため2次元の周期構造を有する円柱部分43 となり、従来構造に比べて、1mmあたりで20dB以 上の極めて大きな損失改善が得られ、本発明の効果が極 mオーダーでの光の伝搬を十分に行うことができる媒質 **あの形態と同一であり、Niマスクのパターンニングが** 界の振動方向が基板41面内に垂直である垂直偏光は、

貸52と第一の上部クラッド№53と第一の下部クラッ 第二のコア뤔55が第二の上部クラッド뤔56と第二の 【0033】 [第四の実施の形態] 本発明の第四の実施 の形態の構造を棋式的に図5に示す。 基板51上に空孔 ド階54からなり、第一のコア層52が第一の上部クラ ッド層53と第一の下部クラッド層54に挟まれる構造 であって、空孔部分が、第二のコア層55と第二の上部 下部クラッド層57に挟まれる構造により充填されてお り、第一のコア層52と第二のコア層55がほぼ同一の が周期的に形成され、空孔の残りの部分が、第一のコア クラッド陥56と第二の下部クラッド陥57からなり、 平面内に存在している構造となっている。

I G a A s であり、第一の上部クラッド뤔 5 3はA 1 G a As (屈折率3.0、 耳さ0.4 mm) および第一の 下部クラッド隔54はA1GaAs (屈折率3.0、 ^{| |} き0. 4m) であり、第一のコア層52はGaAs (屈 [0034] この第四の実施の形態では、基板51はA 近母3. 5、厚さ0. 2 mm) である。また、第二のコ ア쪔55はエポキン系ポリマー(紐折率1.6、厚さ

キシ系ポリマー (屈折率1. 5、耳さ0. 4 mm) であ m)であり、第二の下部クラッド悩ち7はフッ茶化エボ O. 2μm) であり、第二の上部クラッド №56 はフッ 松化エポキン米ポリマー(風折母1.5、瓜さ0.4μ

林田2001-337236

9

ため、区5の断面図に核式的に矢印で示したように、四 期的構造の屈折率の低い部分の徴税的構造においても組 折卑笠による垂直方向の光の閉じ込めがなされる構造と 第一の上部クラッド層の屈折母をn,、第一の下部クラ **育二の上部クラッド脳の風折率をn.、第二の下部クラ** いつniくniかつniくniの条件を溢たしている。この [0035] その結果、第一のコア屋の屈折摩をn.、 ッド因の屈折母をい、としたとき、いくいかつい ッド屋の屈折率を n,、第二のコア屋の屈折率を n,、 くいがしいくいばもり、かしいくいがしいくい なっている。

【0036】 第四の実施の形態の作製工程を図6に示

- れた基板上に、周期的構造を転写したNiマスク64を (a) AIGaAsM61上にGaAs图62が形成さ れ、さらにその上にトップAIGaAsM63が形収さ
- 図62を貫通してAIGaAs№61の一部までに頭瓜 孔を開け、空孔の投存部分を形成する。これにより、第 -のコア屋65、第一の上部クラッド屋66、第一の下 (b) ドライエッチングにより、Niマスク64の痛着 されていないトップAIGaAs附63およびGaAs 部クラッド図67が形成される。
- 【0037】 (d) 空孔を形成したAIGaAs 悩なら いに空孔の枝存部分上に、第一の下部クラッド屋の以き を堆積し、第二の下部クラッド№68を形成する。この 温度の厚きの堆積では空孔は埋め込まれることなく堆積 である0. 4 μm LだけスパッタリングによりSiO1 (c) Niマスク64をエッチングにより除去する。
- (e) さらに、第一のコア枌の耳さである0.2μm以 どけスパッタリングによりG e 狐加SiOz を堆積し、 第二のコア屋69を形成する。
- (1) さらに、第一の上部クラッド屋の厚さであるの。 4 μπ厚だけスパッタリングによりSiO を堆積し、 第二の上部クラッド層610を形成する。
- (8) 空孔の投存部分上の堆積物をエッチングにより除

[0038] この試料では、被投1.5μmの租界の版 助方向が基板51面内に垂直である垂直偏光は、第一の **コア帰52と第二のコア帰55を透過し、電界の擬動力** 向が基板51面内に水平である水平偏光は、フォトニッ 育55を透過しない。 班直編光に対する透過損失を測定 したといろ5dB/mmとなり、従来構造に比べて、1 クバンドギャップのため第一のコアM52と類二のコア

8

特開2001-337236

mmあたりで20dB以上の極めて大きな損失改資が得 られ、本発明の効果が極めて大きいことが示された。本 **収施の形態の試料は、mmオーダーでの光の伝験を十分** に行うことができる媒質である。

[0039] 本状態の形態では、周期的構造の屈折卓の 高い部分が空孔の投作即分であったが、屈折草の高い部 分が柱状や(例えば円柱)であっても同僚に損失低域が なされることはもちろんである。 [0040] [第五の実施の形態] 次に、2 次元四期権 边の一部に欠陥を導入し、その欠陥部分に光を導放させ る均合の次施の形態について説明する。本発明の京五の 政略の形態の構造を核式的に図って示す(上面図(上部 クラッドM75の一部は除去)およびそのローロ', E ーE (条所面図)。 第五の実施の形態は、第一の実施の 形態の周期的構造の一部に直線状の欠陥を設け、空孔が 1列抜けた構成となっており欠陥導被路76を形成して いる。 基板71上に下部クラッドM72が形成され、さ らにその上に周期的に形成された空孔以外の部分73と れ、さらにその上に上部クラッド層75が形成された構 **改となっており、さらに上面図に示すように直袋状の欠** 周期的に形成された空孔を充填した部分74が形成さ **応導数路76が形成されている。**

[0041] この第五の実施の形態では、第一の実施の **形態と同様、基板71はSiであり、下部クラッド園7** り、周期的に形成された空孔以外の部分73はSi(組 折枠約3.5、厚さ0.2μm)であり、周期的に形成 (風折率1. 6、厚さ0. 2 mm) であり、上部クラッ 5、 耳さ3 μm) である。また、欠陥導波路76は周期 また、空孔を充填した部分74の直径が0、3μm、3 角格子を形成し充填された周期的空孔の周期が0.4μ 的に形成された空孔以外の部分73と同じSiである。 2は5:0.2 (風折草約1.5、瓜さ3μm)であ された空孔を充填した部分74はエボキシ系ポリマー ド層75はフッ湖化エポキシ系ポリマー (風折率1.

[0042]本構造においては、周期的に形成された空 孔以外の部分73のSiが、周期的構造における組折率 の高い部分になっており、周期的に形成された空孔を充 均した部分74のエポキシ系ポリマーが屈折草の低い部 分となっている。その結果、周期的に変化する構造の組 の条件を済たしている。このため、<u>147</u>の断面図に核式 的に矢印で示したように、周期的構造の屈折草の低い部 近年の高い部分の屈折率をn.、屈折草の低い部分の組 折草をn:とし、下部クラッドの屈折草をn:、上部ク ラッド園の同折印をn.としたとき、n.くn.かつn. くぃがつぃくぃであり、かつぃくぃかつぃくぃ

[0043] 郑五の実施の形態の作製工程は、第一の実 筋の形態と同一であり、マスクパターン形状が異なるの の閉じ込めがなされる構造となっている。

分の徴収的構造においても屈折率並による垂直方向の光

この試料では、彼及1.5μmの電界の複動 5向が基板71面内に垂直である垂直偏光は、2次元の **羽期構造を有する空孔以外の部分73と空孔を充填した** 部分74を透過し、電界の板動方向が基板71面内に水 平である木平區光は、フォトニックバンドギャップのた め2 次元の周期構造を有する空孔以外の部分73と空孔 を充填した部分74を透過しない。

ドの屈折母並により欠陥導被路76部分に閉じ込められ 【0044】本試料では、周期構造の一部に空孔が1列 抜けた直線状の欠陥導波路76が形成されている。 欠陥 導波路76に入射された水平偏光の波投1.5μmの光 は、水平方向に関しては充填された空孔の周期構造がフ オトニックパンドギャップとなっているため周期的構造 を有する空孔以外の部分73と空孔を充填した部分74 に光が侵入することができず反射されることにより欠陥 尊故路76部分に閉じ込められ、垂直方向に関しては上 て、欠陥導波路76を伝搬する。 [0045] しかしながら、伝搬する光は完全に欠陥導 皮路76内のみ伝搬するのではなく、厳密には光の若干 部分が欠陥導波路外ににじみだした状態で伝搬する。 こ のため、欠陥導設路外側の周期構造を有する空孔以外の 節分73と空孔を充填した部分74の伝像において垂直 方向への散乱損失が大きければ、欠陥導被路を伝搬する 光の伝拠損失も大きくなる。本実施の形態で、水平偏光 に対する欠陥導波路76の透過損失を測定したところ2 dB/mmとなり、従来構造に比べて、1mmあたりで 15 d B以上の極めて大きな損失改造が得られ、本発明 の効果が極めて大きいことが示された。本実施の形態の X芍は、センチメートル(c H)オーダーでの光の位数 を十分に行うことができる導波路媒質である。

欠陥導波路であったものが、角度60度まげの曲り欠陥 [0046] [第六の英旛の形飾]次に、2次元因期構 位の一部に欠陥を導入し、その欠陥部分に光を導放させ る場合で、欠陥部分が曲り導波路である実施の形態につ いて説明する。本発明の第六の実施の形態の構造を模式 的に図8に示す(上面図(上部クラッド層85の一部は 除去) およびそのドード', G--G' 穀断面図)。 算六 の実施の形態は、第五の実施の形態において、直線状の 尊敬路となっている。 拈板81上に下部クラッド個82 が形成され、さらにその上に周期的に形成された空孔以 84が形成され、さらにその上に上部クラッド層85が 外の部分83と周期的に形成された空孔を充填した部分 形成された構造となっており、さらに上面図に示すよう に曲り欠陥導波路86が形成されている。

【0047】 類六の実施の形態では、第一の実施の形態 と同僚、基板81はSiであり、下部クラッド層82は 期的に形成された空孔以外の部分83はSi (屈折率約 3. 5、 見さ0. 2 mm) であり、 周期的に形成された 空孔を充填した部分84はエポキシ系ポリマー(風折草 SiOs 個 (風折率約1.5、耳さ3 mm) であり、周

れた空孔以外の部分83と同じSiである。また、空孔 を充填した部分84の直径が0.3μm、3角格子を形 1. 6、厚さ0. 2μm) であり、上部クラッド帰85 **はフッ塔化エポキツ発ポリマー (屈折母1. 5、口さ3** um)である。また、欠陥導政路86は囚期的に形成さ **改し充填された囚期的空孔の囚期が0. 4μmとなって** [0048] 本構造においては、周期的に形成された空 孔以外の部分83の81が、周期的構造における風折率 貸した部分84のエポキシ系ポリマーが屈折容の低い部 の条件を満たしている。このため、198の断面図に模式 的に矢印で示したように、周期的構造の屈折率の低い部 分の微視的構造においても屈折卑差による垂直方向の光 の高い部分になっており、周期的に形成された翌孔を光 分となっている。その結果、周期的に変化する構造の組 **折空の高い部分の鼠折空をn1、組折容の低い部分の屈** 折印をn:とし、下部クラッドMの紐折印をn:、上部 クラッド層の屈折宰をn,としたとき、n:<n.かつn くロがつれくロであり、かつのくのがつれくい の閉じ込めがなされる構造となっている。

【0049】 第六の実施の形態の作製工程は、 第一の実 **歯の形態と回しであり、マスクパターン形状が異なるの** みである。この試料では、被及1、5μmの領界の板動 方向が基板81面内に垂直である垂直偏光は、2改元の 国期構造を有する空孔以外の部分83と空孔を充填した 部分84を透過し、電界の複動方向が基板81面内に水 平である水平観光は、フォトニックパンドギャップのた め2 次元の周期構造を有する空孔以外の部分83と空孔 を充填した部分84を透過しない。

【0050】本政科では、周期構造の一部に空孔が1列 抜けた曲り欠陥導波路86が形成されている。曲り欠陥 導故路76に入射された水平偏光の故長1.5μmの光 は、水平方向に関しては充填された登孔の周期構造がフ **ギトロックパンドギャップとなっているため四期色構造** を有する空孔以外の部分83と空孔を充填した部分84 に光が収入することができず反射されることにより曲り は上下の屈折卑迫により曲り欠陥導波路86部分に閉じ 欠陥導波路86部分に閉じ込められ、垂直方向に関して ふめられて、曲り欠陥導波路86を伝搬する。

【0051】しかしながら、伝敬する光は完全に欠陥導 皮路86内のみ伝教するのではなく、厳密には光の若干 部分が欠陥導波路外ににじみだした状態で伝搬する。こ のため、欠陥導波路外側の周期構造を有する空孔以外の 部分83と空孔を充填した部分84の伝搬において垂直 方向への散乱扣失が大きければ、欠陥導被路を伝放する **光の伝版損失も大きくなる。従来は欠陥導波路自体の損** 失値が20dB/mm以上と大きかったため、曲げ部分 の曲げ損失が精確に測定できなかったが、本実施の形態 で、水平偏光に対する曲り欠陥導波路86(全長1m m、曲り協所1億所)の強過損失を測定したところ、

 5dBと見積もることができた。曲り部分において 6、曲り導波路外図への光のにじみだしはより大きくな 5ため、本実施の形態の構造は、曲り損失低域にも効果 バあると考えられる。本発明の効果により、曲り導波路 2. 5dBとなり、本実施の形態での曲り部分の損失は においても低損失な欠陥尊敬路が実現できることが示さ

形態により本発明を説明したが、本発明は上記尖越の形 [0052]以上の第一の実施の形態から辞六の式極の 節の構造および材料に限定されるものでないことは明ら いてある。

[0053]

[発明の効果] 以上説明したとおり本発明によれば、屈 り構造が微矩的になされていなかった空孔部あるいは柱 に配配することで配折中を周期的に変化させた局を、前 ッド局とで挟むことにより、従来垂直方向の光の閉じ込 状物以外の部分についても、類別的に固折中沿による場 沿n.および側記n,よりも組折母の低い下部クラッド 当と、前記n:およびn:よりも屈折草の低い上部クラ F 中 n , の複数の柱状物を屈折中 n ;の回域中に周期的 立方向閉じ込め構造を形成している。

ハという問題点を解決し、低損失2次元フォトニック結 品および低損失2次元フォトニック結晶欠陥導液路を実 【0054】その結果、2次元フォトニック結晶あるい **現することができ、種々の光デバイス(例えば光情報処 エ2次元フォトニック結晶欠陥尊遊路の伝説机失が大き 型や光伝送等に用いられるレーザ、光等波路、光集権側** 音等) への応用が可能となる。

エポキシ系ポリマーやフッ芸化エポキシ系ポリマーを用 **立では、これら欠陥草数路における曲り損失の低域に効** 取的である。また、下部クラッド屋、上部クラッド屋に いることにより、Siよりも低値折収を容易に次現する 【0055】また、光を導放する同における柱状的また 12空孔の一部に、周期性の欠陥部分を導入することによ り、例えば直線上の欠陥導波路または角度60度の曲り 欠陥導波路等を容易に作成することができる。 本発明構 ことができる。 【図面の簡単な説明】

|凶1| 本路町のぼーおよびばこの状植の形筒の焦鉛 (周期的に空孔を配置)を示す模式図である。

[四2] 本発明の第一の実施の形態 (周期的に空孔を BIR)の作製工程を示す模式図である。 [143] 本発明の第二の実施の形態(周期的に登孔を [四4] 本発明の第三の状態の形態の構造 (周期的に **品配)の作製工程を示す模式図である。**

2.孔を配配、かつ、上部クラッド 64および下部クラッド [図5] 本発明の第四の実施の形態の構造 (周期的に 円柱を配置)を示す棋式図である。

司にも空孔を形成)を示す模式図である。

[図6] 本発明の第四の実施の形態 (因別的に変孔を

特阻2001—337236

特開2001-337236

9

皇段、かつ、上部クラッド協および下部クラッド協にも

[四元] 本発明の第五の実施の形態の構造 (直線状の 欠陥)を示す模式因である。

空孔を形成)の作製工程を示す模式図である。

- [四8] 本発明の第六の実施の形態の構造 (角度60
- 【四旦】 従来の2次元フォトニック結晶の一構造 (周 度の曲り欠陥)を示す棋式図である。
 - [囚10] 従来の2次元フォトニック結晶の一構造 (周期的に用柱を配置)を示す模式図である。 期的に空孔を配置)を示す模式図である。
- (周期的に空孔を配配、かつ、上加クラッド紛および下 [国11] 従来の2次元フォトニック結晶の一構造 前クラッド層にも空孔を形成)を示す模式図である。
- [四1二] 従来の2次元フォトニック結晶欠陥導波路
 - の一構造(直線状久陥)を示す模式図である。 【符号の説明】
- 1…基板、2…下師クラッド屋、3…周期的に形成され た空孔以外の部分、4…周期的に形成された空孔を充填 25…空孔の投作部分のSi、26…空孔を埋め込んだ エポキシ系ポリマー層、27…空孔を充填したエポキシ 飛ポリマー、28…上師クラッドMとなるフッ森化エポ 33…トップSi㎏、34…Niマスク、35…空孔の 段体部分のSi、36…空孔を埋め込んだGe 舷加Si した部分、5…上部クラッド屋、21…Si屋、22… SiOs M. 23…トップSiM. 24…Niマスク、 Ot 屋、37…空孔を光虹したGe 低加SiOt 屋、3 キシ系ポリマーM、31…SiM、32…SiO₁M、

[4]

[X]

ş

の周期構造を有する下部AIGaAs屆、121…基板 外の部分、44…周期的に形成された空孔を充填した部 分、45…上部クラッド局、51…基板、52…第一の **コア松、53…第一の上部クラッド脳、54…第一の下** 部クラッド層、55…第二のコア層、56…第二の上部 **段、610…第二の上部クラッド점、71…基板、72** …下部クラッド層、73…周期的に形成された空孔以外 分、75…上部クラッド码、76…近線久路導波路、8 1…拈板、82…下部クラッド層、83…周期的に形成 された空孔以外の部分、84…周期的に形成された空孔 を充填した部分、85…上部クラッド局、86…曲り欠 改元の周期構造を有するGBAs履、113…2改元の 岡期構造を有する上部A1GaAs B、114…2次元 2…下部クラッド層、43…周期的に形成された空孔少 GaAs脳、62…GaAs脳、63…トップAlGa As 悩、64…Niマオク、65…第一のコア幅、66 上部Si層、94…空孔、101…基板Si、102… クラッド層、57…第二の下部クラッド層、61…A1 Si、122…SiOiA, 123…上部SiA, 12 SiOs層、103…円柱、111…空孔、112…2 …第一の上部クラッド紀、67…第一の下部クラッド の部分、74…囚期的に形成された空孔を充填した部 陥導波路、91…基板Si、92…SiO:層、93… 図、68…第二の下部クラッド幅、69…第二のコア 8…上部クラッド囚となるSiO1層、41…基板、

[2] 占 [X 2]

[[4]]

[图2]

特別2001-337236

[312]

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.