# Inductive Learning Algorithms and Representations for Text Categorization

Susan Dumais John Platt David Heckerman

Mehran Sahami

Presenter: Haoran Hou

## Text Categorization

real-time sorting emails/files

topic identification

structured search and/or browsing

finding documents that match long-term standing interests

## Old School

**Dewey Decimal** 

MeSH(Medical Subject Headings)

Yahoo!'s topic hierarchy

CyberPatrol

Evaluation

Results & Others

#### Data:

a collection of hand-tagged financial newswire stories from Reuters.

http://www.research.att.com/~lewis/reuters21578.html (no longer available)

Classifiers

Inductive Learning of Classifiers

Classifiers

#### Classifiers

$$\rightarrow -x = (x1,x2,x3...xn)$$

$$f(\rightarrow x) = confidence(class)$$

eg. class- interest

if (interest AND rate) OR (quarterly), then confidence(cat interest) = 0.9

confidence(interest cat) = 0.3\*interest + 0.4\*rate + 0.7\*quarterly

Inductive Learning of Classifiers

Find Similar (a variant of Rocchio's method for relevance feedback)

**Decision Tree** 

Naive Bayes

Naive Nets

SVM

\*All methods require only on a small amount of labeled training data The effectiveness of the model is tested on previously unseen instances.

Inductive Learning of Classifiers

## Find Similar (a variant of Rocchio's method for relevance feedback)

-tf\*idf

-all features used

$$x_j = \alpha \cdot x_{q,j} + \beta \cdot \frac{\sum\limits_{i \in rel} x_{i,j}}{n_r} + \gamma \cdot \frac{\sum\limits_{i \in non-rel} x_{i,j}}{N-n_r}$$

$$= \sum_{\beta \cdot \frac{i \in rel}{n_r}} x_{i,j}$$

\*no error minimization is applied

Inductive Learning of Classifiers

#### Feature selection

$$MI(x_i,c) = \sum_{x_i \in [0,1]} \sum_{c \in [0,1]} P(x_i,c) \log \frac{P(x_i,c)}{P(x_i)P(c)}$$

SVM: K = 300

The remaining: K = 50

Only binary feature values are used

Inductive Learning of Classifiers

Decision Tree

Recursive greedy splitting

Bayesian posterior probability

Node → class probability



Inductive Learning of Classifiers

#### Naive Bayes

$$P(C = c_k \mid \vec{x}) = \frac{P(\vec{x} \mid C = c_k)P(C = c_k)}{P(\vec{x})}$$

Assume the features X1,....Xn are conditionally independent

$$P(\vec{x} \mid C = c_k) = \prod_i P(x_i \mid C = c_k)$$

Inductive Learning of Classifiers

Bayes Nets



2-dependence Bayesian classifier

Inductive Learning of Classifiers

SVM

Simplest linear version



$$y_i(\vec{w}\cdot\vec{x}_i-b)\geq 1$$

## Evaluation

Reuters-21578

Summary of Inductive Learning Process

#### Reuters-21578

21578 collection, 200 words in length

118 categories

75% train, 25% test



| Category Name | Num Train | Num Test |  |
|---------------|-----------|----------|--|
| Earn          | 2877      | 1087     |  |
| Acquisitions  | 1650      | 719      |  |
| Money-fx      | 538       | 179      |  |
| Grain         | 433       | 149      |  |
| Crude         | 389       | 189      |  |
| Trade         | 369       | 118      |  |
| Interest      | 347       | 131      |  |
| Ship          | 197       | 89       |  |
| Wheat         | 212       | 71       |  |
| Corn          | 182       | 56       |  |

#### Summary of Inductive Learning Process



Average of precision and recall(F measure?)
Train/test dataset not optimized

## Results & Others

Training Time

Classification Speed for New Instances

Classification Accuracy

Other Experiments

#### Training Time

266 MHz Pentium II running Windows NT.

Fastest: Find Similar (<1 CUP sec/cat)

SVM (<2 CUP sec/cat)

Naive Bayes(8 CPU sec/cat)

Decision Trees (~70 CUP sec/cat)

Slowest: Bayes Nets(~145 CUP sec/cat)

|             | Findsim | NBayes | BayesNets | Trees | LinearSVM |
|-------------|---------|--------|-----------|-------|-----------|
| earn        | 92.9%   | 95.9%  | 95.8%     | 97.8% | 98.0%     |
| acq         | 64.7%   | 87.8%  | 88.3%     | 89.7% | 93.6%     |
| money-fx    | 46.7%   | 56.6%  | 58.8%     | 66.2% | 74.5%     |
| grain       | 67.5%   | 78.8%  | 81.4%     | 85.0% | 94.6%     |
| crude       | 70.1%   | 79.5%  | 79.6%     | 85.0% | 88.9%     |
| trade       | 65.1%   | 63.9%  | 69.0%     | 72.5% | 75.9%     |
| interest    | 63.4%   | 64.9%  | 71.3%     | 67.1% | 77.7%     |
| ship        | 49.2%   | 85.4%  | 84.4%     | 74.2% | 85.6%     |
| wheat       | 68.9%   | 69.7%  | 82.7%     | 92.5% | 91.8%     |
| corn        | 48.2%   | 65.3%  | 76.4%     | 91.8% | 90.3%     |
| Avg Top 10  | 64.6%   | 81.5%  | 85.0%     | 88.4% | 92.0%     |
| Avg All Cat | 61.7%   | 75.2%  | 80.0%     | N/A   | 87.0%     |

Table 2 – Breakeven Performance for 10 Largest Categories, and over all 118 Categories.

New Instances?

All less than 2 sec



Figure 3 – Precision-Recall Curve for Category "grain"

Others?

Sample Size

N-gram

Binary vs. 0/1/2 features

