Go to next item

 Which of the following logical operations does the following perceptron represent? Note that x<sub>1</sub> and x<sub>2</sub> are binary.





- $\bigcap x_1 \text{ NAND } x_2$
- $\bigcap x_1 XOR x_2$
- $\bigcap x_1 \text{ OR } x_2$ 
  - Correct Your answer is correct. The correct answer is  $x_1$  AND  $x_2$ . Consider Logical AND. Logical AND outputs 1 only when both inputs  $x_1$  and  $x_2$  are 1. For every other case, AND should output 0. The weights are the same for both inputs  $x_1$  and  $x_2$ . w \* x + b is negative except for when both  $x_1$  and  $x_2$  are 1.
- 2. True or False: The following training set can be classified exactly by a single perceptron.

| ; | 3 / | 3 | ро | ints |
|---|-----|---|----|------|
|   |     |   |    |      |

 $x_1$   $x_2$ 

y

0 1 0 1 0 0 1 1 0 0 1 1

→ T

True



**False** 

| Correct Your answer is correct. A single perceptron is a linear classifier. A linear classifier can properly separate these data points.                                                                                                                                            |              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| <ol> <li>Which of the following can be guaranteed<br/>to behave as Activation functions and are<br/>not difficult to train? Select one or more:</li> </ol>                                                                                                                          | 6 / 6 points |
| sine ReLu                                                                                                                                                                                                                                                                           |              |
| Correct ReLu is guaranteed to behave as an Activation function and is not difficult to train.                                                                                                                                                                                       |              |
| Sigmoid                                                                                                                                                                                                                                                                             |              |
| <ul> <li>Correct         Sigmoid is guaranteed to behave as an         Activation function and is not difficult to         train.</li> </ul>                                                                                                                                        |              |
| Tanh                                                                                                                                                                                                                                                                                |              |
| <ul> <li>Correct         Tanh is guaranteed to behave as an Activation function and is not difficult to train.     </li> </ul>                                                                                                                                                      |              |
| Step function                                                                                                                                                                                                                                                                       |              |
| <ul> <li>Correct         Step function is guaranteed to behave as an Activation function and is not difficult to train.     </li> </ul>                                                                                                                                             |              |
| cosine                                                                                                                                                                                                                                                                              |              |
| <ul> <li>4. Consider your model is being trained using the Perceptron algorithm. Let W be the current Weight and x be a misclassified instance. Which of the following statements are valid?</li> <li>If x is a positive instance classified as negative, then W = W - x</li> </ul> | 4 / 4 points |
| If x is a positive instance classified as negative, then $W = W + x$                                                                                                                                                                                                                |              |

instance misclassified as negative, then adjust the weight with W = W + x. If x is a negative instance classified as positive, then W = W - xCorrect Your answer is correct. If x is a negative instance misclassified as positive, then adjust the weight with W = W - x. If x is a negative instance classified as positive, then W = W + x4 / 4 points What are the possible hyperparameters that can be tuned for a Multi-Layered Perceptron (MLP)? Select one or more: Number of hidden layers Correct Number of hidden layers are a hyperparameter that can be tuned for MLP. Activation functions Activation functions are a hyperparameter that can be tuned for MLP. Weights Number of nodes in a layer Number of nodes in a layer are a

hyperparameter that can be tuned for

MLP.

Your answer is correct. If x is a positive