Group 12 Project Documentation Sales Analytics

Problem Statement 1: Advanced Data Cleaning

Objective

To ensure data quality by identifying and handling outliers, addressing missing values, and correcting data type inconsistencies.

Steps and Justifications:

1. Loading the Dataset

- Loaded the dataset using Pandas to facilitate data manipulation and cleaning.

2. Identifying Outliers

- Used the Interquartile Range (IQR) method to detect outliers. This method is chosen for its robustness in identifying extreme values without being influenced by them.
 - Calculated the first quartile (Q1) and third quartile (Q3) and determined the IQR as Q3 Q1.
 - Outliers are defined as data points that fall below Q1 1.5 * IQR or above Q3 + 1.5 * IQR.

Output:

```
Missing values before imputation:
Unnamed: 0
                               40000
CustomerID
                                 0
Age
Gender
                                  a
Location
ProductCategory
PurchaseDate
PurchaseAmount
                                  0
PaymentMethod
Quantity
DiscountPercentage
IsReturned
Rating
IsPromotion
                                  ø
CustomerSegment
ShippingDuration
                                  0
                                  0
Region
LoyaltyScore
                              1000
PurchaseFrequency
                               1000
CustomerLifetimeValue
                              1000
                             11000
CustomerType
                              21000
PurchaseChannel
                              21000
SeasonalDiscount
                             21000
HolidayPeriod
                              21000
CustomerSatisfactionScore
                              21000
dtype: int64
```


3. Handling Missing Values

- Applied different imputation techniques based on the nature of the data:
 - Mean Imputation: Used for numerical data where the mean is appropriate.
 - Median Imputation: Chosen for skewed numerical data to avoid mean distortion.
 - Mode Imputation: Used for categorical data to fill in the most frequent value.

Output:

Missing values after	imputation:
Unnamed: 0	Ø
CustomerID	0
Age	0
Gender	0
Location	0
ProductCategory	Ø
PurchaseDate	0
PurchaseAmount	Ø
PaymentMethod	Ø
Quantity	0
DiscountPercentage	0
IsReturned	0
Rating	Ø
IsPromotion	Ø
CustomerSegment	0
ShippingDuration	0
Region	Ø
LoyaltyScore	0
PurchaseFrequency	0
CustomerLifetimeValue	e 0
Season	0
CustomerType	Ø
PurchaseChannel	0
SeasonalDiscount	0
HolidayPeriod	0
CustomerSatisfactionS	Score 0
dtype: int64	

4. Correcting Data Type Inconsistencies

- Ensured that each column had a consistent data type:
 - Converted date columns to datetime objects.
 - Changed numerical columns stored as strings to appropriate numerical types.
- Verified and corrected any misclassified data types.

Problem Statement 2: Data Augmentation

Objective

To enhance the dataset by generating additional samples while maintaining the statistical properties of the original data.

Steps and Justifications

1. Analyzing Data Distribution

- Conducted an in-depth analysis of the existing data's distribution to understand its characteristics.
 - Identified key statistical properties such as mean, variance, skewness, and kurtosis.

2. Data Augmentation Techniques

- Applied bootstrapping to create additional samples. Bootstrapping is a resampling technique that generates new data points by sampling with replacement from the existing data.
 - Ensured that the augmented data followed the original dataset's statistical distribution.

3. Integrating Augmented Data

- Merged the newly generated samples with the original dataset to create an expanded dataset.
- Maintained the integrity of the original data while ensuring the augmented data enhanced the dataset

4. Validation

- Performed rigorous validation to ensure the augmented data met quality standards.
- Compared statistical properties of the augmented dataset with the original to confirm consistency.

Problem Statement 3: Real-time Data Ingestion

Objective

To set up a real-time data ingestion pipeline using Apache Kafka and ensure optimized data flow into SQL databases.

Steps and Justifications

1. Setting Up Apache Kafka

- Configured an Apache Kafka environment to manage real-time data streams.
- Established Kafka brokers, topics, and partitions to facilitate efficient data flow.

2. Creating Kafka Producers

- Developed Kafka producers to simulate real-time data streams.
- Configured producers to send data to the appropriate Kafka topics.

3. Developing Kafka Consumers

- Used Python to create Kafka consumers that ingest data from Kafka topics into SQL databases.
- Ensured consumers were optimized for high throughput and low latency to handle real-time data efficiently.

4. Optimizing Data Ingestion

- Implemented strategies to minimize latency and maximize throughput.
- Used batching and compression techniques to enhance performance.

Problem Statement 4: Storage Optimization

Objective

To evaluate and optimize storage formats for better efficiency and performance.

Steps and Justifications

1. Evaluating Columnar Storage Formats

- Assessed columnar storage formats such as Parquet and ORC for their storage efficiency and performance.
 - Compared these formats with traditional row-based storage.

2. Converting Dataset

- Converted the dataset to Parquet and ORC formats.
- Evaluated the storage space required and the query performance for each format.

3. Comparison and Analysis

- Conducted a detailed comparison of storage efficiency and query performance between columnar and row-based storage.
 - Analyzed metrics such as storage size, read/write speeds, and query response times.

This documentation provides a clear and comprehensive overview of each problem statement, the methods used, and the justifications for these methods, ensuring a thorough understanding of the tasks and their execution.

Agile Model - Jira (Progress Dashboard)

