LEYES DEL ÁLGEBRA PROPOSICIONAL

PRÁCTICA DIRIGIDA

EJERCICIOS RESUELTOS

Mg. Bruno Enrique Bravo Chipa

LÓGICA

TAUTOLOGÍA.- Para cualquier valor de sus componentes, su valor de verdad siempre es verdadero (V)

р	q	(p	^	q)	\rightarrow	(p	V	q)
V	V		V	V	V	V	V	V	V
V	Ŧ		V	F	F	V	V	V	F
F	V	-10	F	F	V	V	F	V	V
F	F		F	F	F	V	F	F	F

LÓGICA

CONTRADICCIÓN.-Para cualquier valor de sus componentes, su valor de verdad siempre es Falso (F).

р	p	\	~ p
V	V	F	FV
F	F	F	VF

LÓGICA

CONTINGENCIA.- Entre sus valores de verdad se halla contenida V y F.

р	q	2	(p	^	~	q)
V	V	V		٧	F	E	V
V	7	H		٧	٧	V	Ŧ
F	V	V		F	F	F	V
F	F	V		F	F	V	F

PROPOSICIONES LOGICAMENTE EQUIVALENTES

Dos proposiciones p y q son equivalentes, si sus tablas de verdad son idénticas, Ejemplo:

$$p \rightarrow q \equiv \sim q \rightarrow \sim p$$

LEYES DEL ÁLGEBRA DE PROPOSICONES

A) Proposiciones disyuntivas	LEYES DE
1A. $p \lor p \equiv p$	Idempotencia
$2A. p \lor q \equiv q \lor p$	Conmutativa
$3A. (p \lor q) \lor r \equiv p \lor (q \lor r)$	Asociativa
4A. $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$	Distributiva
5A. $p \lor F \equiv p$	Identidad
6A. $p \lor V \equiv V$	Identidad
7A. $p \lor \sim p \equiv V$	Complemento
8A. $\sim \sim p \equiv p$	Complemento
9A. $\sim (p \vee q) \equiv \sim p \wedge \sim q$	Morgan

LEYES DEL ÁLGEBRA DE PROPOSICONES

B) Proposiciones conjuntivas	LEYES DE
1B. $p \wedge p \equiv p$	Idempotencia
2 <i>B</i> . $p \wedge q \equiv q \wedge p$	Conmutativa
3B. $(p \land q) \land r \equiv p \land (q \land r)$	Asociativa
4B. $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	Distributiva
5B. $p \wedge F \equiv F$	Identidad
6B. $p \wedge V \equiv p$	Identidad
7B. $p \land \sim p \equiv F$	Complemento
8B. $\sim V \equiv F$; $\sim F \equiv V$	Complemento
9B. $\sim (p \land q) \equiv \sim p \lor \sim q$	Morgan

LEYES DEL ÁLGEBRA DE PROPOSICONES

C) Leyes adicionales	LEYES DE
1C. $p \rightarrow q \equiv \sim p \vee q$	Condicional
2C. $p \rightarrow q \equiv \sim q \rightarrow \sim p$	Condicional
3C. $p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$	Bicondicional
4C. $p \leftrightarrow q \equiv (p \land q) \lor (\sim p \land \sim q)$	Bicondicional
$5C. p \land (p \lor q) \equiv p$	Absorción
6C. $p \lor (p \land q) \equiv p$	Absorción

EJERCICIOS

1) Simplificar:

$$\sim [\sim (p \land q) \rightarrow \sim q] \lor q$$

$$\sim \left[\sim (p \land q) \rightarrow \sim q \right] \lor q$$

$$\sim \left[\sim (p \land q) \lor \sim q \right] \lor q \dots (1C)$$

$$\sim \left[(p \land q) \lor \sim q \right] \lor q \dots (8A)$$

$$\left[\sim (p \land q) \land \sim \sim q \right] \lor q \dots (9A)$$

$$\left[(\sim p \lor \sim q) \land q \right] \lor q \dots (9B), (8A)$$

$$q \qquad \dots (6C)$$

2) Simplificar:

$$[(\sim p \land q) \rightarrow (r \land \sim r)] \land \sim q$$

$$[(\sim p \land q) \rightarrow (r \land \sim r)] \land \sim q$$

$$[(\sim p \land q) \rightarrow F] \land \sim q \dots (7B)$$

$$[\sim (\sim p \land q) \lor F] \land \sim q \dots (1C)$$

$$\sim (\sim p \land q) \land \sim q \ldots (5A)$$

$$(p \lor \sim q) \land \sim q \ldots (9B)$$

$$\sim q$$
 (5C)

3) Simplificar:

$$[(p \lor \sim q) \land q] \to p$$

$$[(p \lor \sim q) \land q] \rightarrow p$$

$$\sim [(p \lor \sim q) \land q] \rightarrow p \dots (1C)$$

$$[\sim (p \lor \sim q) \lor \sim q] \lor p \dots (9B)$$

$$[(\sim p \land q) \lor \sim q] \lor p \dots (9A)$$

$$[(\sim q \lor q) \land (\sim q \lor \sim p)] \lor p \dots (4A)$$

$$[V \land (\sim q \lor \sim p)] \lor p \dots (7A)$$

$$(\sim q \lor \sim p) \lor p \dots (6B)$$

$$(\sim p \lor p) \lor \sim q \dots (3A)$$

$$V \lor \sim q \dots (7A)$$

$$V \dots (6A)$$

4) Simplificar:

$$(p \land q) \rightarrow [\sim p \lor (p \leftrightarrow q)]$$

```
(p \land q) \rightarrow [\sim p \lor (p \leftrightarrow q)]
  (p \land q) \rightarrow \{ \sim p \lor [(p \rightarrow q) \land (q \rightarrow p)] \} \dots (3C)
  (p \land q) \rightarrow \{ \sim p \lor [(\sim p \lor q) \land (\sim q \lor p)] \} \dots (1C)
  (p \land q) \rightarrow \{ [\sim p \lor (\sim p \lor q)] \land [\sim p \lor (\sim q \lor p)] \} \dots (4A)
  (p \land q) \rightarrow \{ [(\sim p \lor \sim p) \lor q] \land [(\sim p \lor p) \lor \sim q] \} \dots (3A)
  (p \land q) \rightarrow \{(\sim p \lor q) \land (V \lor \sim q)\}...(1A), (7A)
  (p \land q) \rightarrow \{(\sim p \lor q) \land V\} ...(6A)
  (p \land q) \rightarrow (\sim p \lor q) ....(6B)
\sim (p \land q) \lor (\sim p \lor q) ....(1C)
  (\sim p \lor \sim q) \lor (\sim p \lor q) \qquad \dots (9B)
  (\sim p \lor \sim p) \lor (\sim q \lor q) \qquad \dots (3A)
\sim p \vee V
                                  ....(1A) y(7A)
   V
                                            \dots(6A)
```

GRACIAS

