

Piano di Qualifica

 $Gruppo\ MILCT dev - Progetto\ Open APM \ milct dev. team@gmail.com$

Versione 2.0.0

Redazione | Tommaso Carraro

Verifica | Mattia Bano

Approvazione | Luca Dal Medico

Uso Esterno

Distribuzione | Kirey Group

Prof. Tullio Vardanega Prof. Riccardo Cardin Gruppo MILCTdev

Descrizione

Questo documento si prefigge di regolamentare le operazioni di verifica del gruppo MILCT dev necessarie ad assicurare i requisiti qualitativi per il $progetto_G$ OpenAPM.

Registro delle modifiche

Versione	Ruolo	Nominativo	Descrizione	Data
2.0.0	Responsabile	Luca Dal Medico	Approvazione del documento per il rilascio	2018-03-08
1.1.0	Verificatore	Mattia Bano	Verifica documento	2018-03-07
1.0.4	Analista	Tommaso Carraro	Stesura appendice C: Valutazione per il miglioramento	2018-02-23
1.0.3	Analista	Tommaso Carraro	Incremento sezione 2: Visione generale della strategia di gestione della qualità	2018-02-22
1.0.2	Analista	Tommaso Carraro	Incremento sezione 3: La strategia di gestione della qualità nel dettaglio	2018-02-21
1.0.1	Analista	Tommaso Carraro	Modifica alle date del documento	2018-02-21
1.0.0	Responsabile	Tommaso Carraro	Approvazione del documento per il rilascio	2018-01-03
0.3.0	Verificatore	Dragos Cristian Lizan	Verifica documento	2017-12-28
0.2.1	Analista	Mattia Bano	Stesura appendice D: Standard di qualità	2017-12-17
0.2.0	Verificatore	Mattia Bano	Verifica documento	2017-12-14
0.1.1	Verificatore	Carlo Munarini	Stesura appendice A: Resoconto delle attività di verifica	2017-12-12
0.1.0	Verificatore	Mattia Bano	Verifica documento	2017-12-11
0.0.3	Analista	Leonardo Nodari	Stesura sezione 3: Metriche di qualità	
0.0.2	Analista	Leonardo Nodari	Stesura sezione 2: Strategie di gestione qualità	2017-12-01
0.0.1	Analista	Isacco Maculan	Stesura sezione 1: Introduzione	2017-11-29
0.0.0	Analista	Isacco Maculan	Inserimento template documento	2017-11-29

Indice

1	Intr	roduzione	7
	1.1	Scopo del documento	7
	1.2	Scopo del prodotto	7
	1.3	Glossario	7
	1.4	Riferimenti	7
		1.4.1 Riferimenti normativi	7
		1.4.2 Riferimenti informativi	8
2	V	ione monorele delle strategie di mostione delle quelità	ę
4	2.1	ione generale della strategia di gestione della qualità	(
	2.1	*	
		•	6
		•	
	2.2	2.1.3 Tabella degli obiettivi	
	2.2	Metriche e misure	
	2.3	Scadenze temporali	
	2.3	Scadenze temporan	- 4
3	Las	strategia di gestione della qualità nel dettaglio 1	. 3
	3.1	Risorse	3
	3.2	Misure e metriche in dettaglio	3
		3.2.1 Misure e metriche per i processi	
		3.2.1.1 Schedule Variance	3
		3.2.1.2 Cost Variance	
		3.2.1.3 SPICE	4
		3.2.2 Misure e metriche per i prodotti	4
		3.2.2.1 Misure e metriche per i documenti	4
		3.2.2.1.1 Indice Gulpease	4
		3.2.2.2 Misure e metriche per il software	
		3.2.2.2.1 Structutal Fan-In (SFIN)	4
		3.2.2.2.2 Structutal Fan-Out (SFOUT)	Į
		3.2.2.2.3 Logical Source Lines of Code	١
		3.2.2.2.4 Code Coverage	٦
		3.2.2.2.5 Test Automation Proportion	Į
		3.2.2.2.6 Rapporto linee di commento per linee di codice .	٦
		3.2.2.2.7 Complessità ciclomatica	
		3.2.2.2.8 Failure Avoidance	16
		3.2.2.2.9 Percentuale superamento test	1
		3.2.2.2.10 Requisiti obbligatori soddisfatti	1
	ъ		_
A		oconto delle attività di verifica	
	A.1	Verifica dei processi	17

Piano di Qualifica v2.0.0

		A.1.1 Cost Variance	17
		A.1.2 SPICE	
		A.1.3 Schedule Variance	
	A.2	Verifica dei prodotti	
		A.2.1 Indici Gulpease	20
В	Piar	nificazione test	21
	B.1	Test di sistema	21
		B.1.1 Test di sistema previsti	
		B.1.2 Tracciamento test di sistema-requisiti	
\mathbf{C}	Valı	utazione per il miglioramento	27
	C.1	Valutazione sui ruoli	27
	C.2	Valutazione sull'organizzazione	27
		Valutazione sugli strumenti	
D	Star	ndard di qualità	29
	D.1	ISO/IEC 15504	29
		PDCA	
		ISO/IEC 9126	

Tabelle

2	Tabella degli obiettivi	10
4	Tabella delle metriche	11
5	Schedule Variance - Analisi, analisi in dettaglio	19
6	Schedule Variance - Progettazione architetturale	19
7	Test di sistema	24
8	Tracciamento test di sistema - Requisiti	26
9	Valutazione sui ruoli	27
10	Valutazione sull'organizzazione	27
11	Valutazione sugli strumenti	28

Immagini

1	Variazione della metrica Cost Variance	17
2	Variazione dei valori SPICE	18
3	Variazione degli indici Gulpease nei documenti	20
4	Test di sistema - Stato attuale	24
5	Schema della capability dimension di SPICE	30
6	Schema del miglioramento continuo tramite PDCA	31
7	Schema del ciclo di qualità del software	32
8	Schema delle caratteristiche definite in ISO/IEC 9126	34

1 Introduzione

1.1 Scopo del documento

Lo scopo del documento è fissare, in modo quantitativo, gli obiettivi di qualità, di processo e di $prodotto_G$, e di illustrare le strategie di verifica e validazione adottate dal gruppo MILCTdev per raggiungerli. A tal fine è necessaria una verifica continua sulle attività svolte, in modo da individuare e correggere eventuali anomalie, evitando così uno spreco di risorse.

Il seguente documento non è da considerarsi completo, contiene infatti le strategie per la realizzazione di un progetto di qualità, relative al periodo di realizzazione corrente. Questo è dovuto alla natura incrementale del progetto che porta, a ogni periodo, all'aggiornamento delle parti che compongono il documento, quali ad esempio:

- la specifica dei test;
- gli esiti delle verifiche.

1.2 Scopo del prodotto

Lo scopo del $prodotto_G$ è realizzare un set di funzioni basate su $Elasticsearch_G$ e $Kibana_G$ per interpretare i dati raccolti da un $Agent_G$. I dati interpretati forniranno a $DevOps_G$ statistiche e informazioni utili per comprendere il funzionamento della propria applicazione. In particolare si richiede lo sviluppo di un motore di generazione di $metriche_G$ da $trace_G$, un motore di generazione di $baseline_G$ basato sulle metriche del punto precedente, e un motore di gestione di $critical\ event_G$.

1.3 Glossario

All'interno del documento sono presenti termini che possono assumere significati diversi a seconda del contesto. Per evitare ambiguità, i significati dei termini complessi adottati nella stesura della documentazione sono contenuti nel documento $Glossario\ v2.0.0$. Per segnalare un termine del testo presente all'interno del Glossario verrà aggiunta una $_G$ a pedice e il testo sarà in corsivo.

1.4 Riferimenti

1.4.1 Riferimenti normativi

• Norme di progetto: Norme di Progetto v2.0.0;

• Capitolato d'appalto C7:

http://www.math.unipd.it/~tullio/IS-1/2017/Progetto/C7.pdf (ultima consultazione effettuata in data 2018-03-07).

1.4.2 Riferimenti informativi

- Piano di progetto: Piano di Progetto v2.0.0;
- Qualità di prodotto Slide del corso Ingegneria del Software: http://www.math.unipd.it/~tullio/IS-1/2017/Dispense/L13.pdf (ultima consultazione effettuata in data 2018-03-07);
- Qualità di processo Slide del corso Ingegneria del Software: http://www.math.unipd.it/~tullio/IS-1/2017/Dispense/L15.pdf (ultima consultazione effettuata in data 2018-03-07);
- Sommerville Ian, Software Engineering, 10th ed., Pearson (2015) - §24 Quality management
- Sommerville Ian, Software Engineering, 9th ed., Pearson (2010) - §26 Process improvement
- Standard ISO/IEC 15504: https://en.wikipedia.org/wiki/ISO/IEC_15504 (ultima consultazione effettuata in data 2018-03-07);
- PDCA:

https://it.wikipedia.org/wiki/Ciclo_di_Deming (ultima consultazione effettuata in data 2018-03-07);

• Standard ISO/IEC 9126:

https://it.wikipedia.org/wiki/ISO/IEC_9126 (ultima consultazione effettuata in data 2018-03-07);

• Indice di Gulpease:

http://it.wikipedia.org/wiki/Indice_Gulpease (ultima consultazione effettuata in data 2018-03-07);

• Logical SLOC:

https://en.wikiversity.org/wiki/Software_metrics_and_measurement (ultima consultazione effettuata in data 2018-03-07).

2 Visione generale della strategia di gestione della qualità

2.1 Obiettivi di qualità

In questa sezione vengono illustrati gli obiettivi che MILCTdev intende raggiungere per assicurare la qualità di processo e di prodotto per quanto riguarda la realizzazione di OpenAPM. Inoltre, per ognuno di questi obiettivi, vengono fissate metriche per rendere quantificabile il raggiungimento della qualità di processo e di prodotto; queste sono descritte nella sezione 2.2.

2.1.1 Qualità di processo

Per realizzare un prodotto valido, MILCTdev ha deciso di adottare lo standard ISO/IEC 15504 per valutare la qualità di ogni processo necessario allo sviluppo di OpenAPM. Viene inoltre utilizzato il ciclo di Deming per assicurare un miglioramento continuo dei processi, senza eventuali regressioni. Nell'appendice D vengono approfonditi questo metodo e lo standard utilizzato.

Gli obiettivi fissati per i processi sono:

- rispettare tempi e costi descritti nel Piano di Progetto v2.0.0;
- avere prestazioni sempre misurabili;
- perseguire un miglioramento continuo delle stesse.

2.1.2 Qualità di prodotto

Basandosi sullo standard ISO/IEC 9126, descritto nell'appendice D, sono stati fissati obiettivi che mirano a garantire la qualità del prodotto finale. Questi sono:

- i **documenti** devono:
 - essere leggibili e comprensibili a chiunque;
 - essere corretti dal punto di vista ortografico, sintattico, semantico e logico.
- il **software** deve:
 - soddisfare tutti i requisiti obbligatori descritti in Analisi dei Requisiti v2.0.0;
 - superare gran parte dei test illustrati in appendice B;
 - garantire usabilità e manutenibilità;
 - essere affidabile.

2.1.3 Tabella degli obiettivi

Viene qui riassunto ogni obiettivo, classificandolo con il suo codice identificativo e indicando le metrice che ne quantificano il raggiungimento. Per una descrizione delle metriche vedere nella sezione 2.2.

ID	Nome	Metrica
OPC1	Coorongo con Piono di Progetto	MPC1:Schedule Variance
OFCI	Coerenza con Piano di Progetto	MPC2:Cost Variance
OPC2	Miglioramento continuo	MPC3:SPICE
OPDD1	Leggibilità documenti	MPDD1:Indice Gulpease
OPDS1	Implementazione requisiti	MPDS10:Requisiti obbligatori
OFDSI	obbligatori	soddisfatti
OPDS2	Superamento test	MPDS9:Percentuale superamento
01 D52	Superamento test	test
		MPDS1:Structutal Fan-In
		MPDS2:Structutal Fan-Out
		MPDS3:Logical Source Lines of
		Code
OPDS3	Manutenibilità e usabilità	MPDS4:Code coverage
OPDS	Manutembilita e usabilita	MPDS5:Test automation
		proportion
		MPDS6:Rapporto linee di
		commento per linee di codice
		MPDS7:Complessità ciclomatica
OPDS4 Affidabilità MPDS8:Failure avo		MPDS8:Failure avoidance

Table 2: Tabella degli obiettivi

Ogni obiettivo si riterrà raggiungo solamente al raggiungimento del valore minimo di ogni metrica che concorre alla quantificazione del suo grado di raggiungimento. La spiegazione di valore minimo si trova in $Norme\ di\ Progetto\ v2.0.0$.

2.2 Metriche e misure

Ogni processo ed ogni prodotto dovrebbero sempre presentare un set di KPI_G che permettano il tracciamento, la comunicazione ed il miglioramento della loro qualità. In questa sezione pertanto, si provvederà alla presentazione delle metriche che permettano di quantificare e valutare la qualità dei processi e dei prodotti di MILCTdev. Le spiegazioni e le modalità di calcolo di ogni metrica sono definite nella sezione 3.2. Per alcune metriche, relative al periodo di progettazione e sviluppo, non sono ancora stati

definiti i range di risultati precedentemente definiti. Questo perché, ad oggi, MILCTdev non può indicare con precisione quali questi siano.

2.2.1 Tabella delle metriche

Nella seguente tabella vengono indicati, oltre a Identificativo, Nome e Obiettivo a cui si riferisce, anche le soglie di accettazione minime e ottimali di ogni metrica.

ID	Nome	Obiettivo	Soglie di accettazione
MPC1	Schedule	OPC1:Coerenza con	$Valore\ minimo: \leq 3$
MIT OI	Variance	Piano di Progetto	$Valore\ ottimale: \leq 0$
MPC2	Cost Variance	OPC1:Coerenza con	$Valore\ minimo: \leq 8\%$
WII OZ	Cost variance	Piano di Progetto	$Valore\ ottimale: \le 1\%$
MPC3	SPICE	OPC2:Miglioramento	Valore minimo: Livello 2
WII OS	DI IOE	continuo	$Valore\ ottimale: \geq Livello\ 4$
MPDD1	Indice Gulpease	OPDD1:Leggibilità	$Valore\ minimo: \ge 40$
MII DDI	indice Guipease	documenti	$Valore\ ottimale: \geq 70$
MPDS1	Structutal Fan-In	OPDS3:Manutenibilità	
MII DOI		e usabilità	
MPDS2	Structutal	OPDS3:Manutenibilità	
MII DOZ	Fan-Out	e usabilità	
MPDS3	Logical Source	OPDS3:Manutenibilità	
MII DOS	Lines of Code	e usabilità	
MPDS4	Code coverage	OPDS3:Manutenibilità	
MII DO4	_	e usabilità	
MPDS5	Test automation	OPDS3:Manutenibilità	
MII DOS	proportion	e usabilità	
	Rapporto linee di	OPDS3:Manutenibilità	$Valore\ minimo: \geq 10\%$
MPDS6	commento per	e usabilità	$Valore\ intimmo. \ge 10\%$ $Valore\ ottimale: \ge 10\%$
	linee di codice		<i>valore oldinale.</i> ≥ 10/0
MPDS7	Complessità	OPDS3:Manutenibilità	
	ciclomatica	e usabilità	
MPDS8	Failure avoidance	OPDS4:Affidabilità	
MPDS9	Percentuale	OPDS2:Superamento	$Valore\ minimo: \geq 75\%$
MII DOS	superamento test	test	$Valore\ ottimale: \geq 95\%$
	Requisiti	OPDS1:Implementa-	Valore minimo: 100%
MPDS10	obbligatori	zione requisiti	Valore ottimale: 100%
	soddisfatti	obbligatori	raiore ottimuie. 100/0

Table 4: Tabella delle metriche

2.3 Scadenze temporali

Il rispetto delle $milestones_G$ presenti in $Piano\ di\ Progetto\ v2.0.0$ indicano che la realizzazione del prodotto sta procedendo come stabilito; tuttavia la presenza di parti incomplete o che non dispongono di un grado di qualità accettabile, porterebbe il gruppo a far slittare le date definite per la consegna del progetto, con conseguente impatto nel preventivo fornito in $Piano\ di\ Progetto\ v2.0.0$. Per prevenire l'insorgenza di tali errori MILCTdev attua procedure di verifica descritte in dettaglio nelle $Norme\ di\ Progetto\ v2.0.0$.

3 La strategia di gestione della qualità nel dettaglio

3.1 Risorse

Per la realizzazione di un prodotto di qualità, MILCTdev effettua un controllo su ogni parte del progetto sfruttando risorse umane e tecnologiche. Per quanto riguarda le risorse umane, i ruoli di maggiore impatto sono quello di Responsabile di Progetto, che si occupa della qualità dei processi, e del Verificatore che ha il compito di garantire la qualità dei prodotti. Una descrizione più approfondita di questi e degli altri ruoli è presente nelle Norme di Progetto v2.0.0.

Per risorse tecnologiche si intende, invece, l'insieme degli strumenti software ed hardware utilizzati del gruppo durante le attività di verifica, anch'essi presentati nelle *Norme di Progetto v2.0.0*.

3.2 Misure e metriche in dettaglio

3.2.1 Misure e metriche per i processi

In questa sezione si provvederà alla descrizione delle metriche che permettono di quantificare e valutare la qualità dei processi e dei prodotti di MILCTdev. All'interno della spiegazione di ogni metrica verrà illustrato quando, come e su cosa viene fatta la misurazione durante il processo di verifica.

3.2.1.1 Schedule Variance

La Schedule Variance è un indice di efficienza che ha come oggetto la durata temporale di un processo o di un'attività. Questa metrica aiuta il Responsabile di Progetto nella creazione dei prospetti orari inseriti nei consuntivi di periodo, e di conseguenza aiuta il $team_G$ nell'analisi dell'utilizzo di risorse temporali.

Il calcolo della Schedule Variance avviene in questo modo:

 $SV = data \ conclusione \ reale - data \ conslusione \ preventivata$

Entrambe le date si riferiscono alla conclusione dell'attività o del processo.

3.2.1.2 Cost Variance

La Cost Variance, o Variazione di Costo, è una metrica che analizza il costo, nonché le risorse legate ad un processo o ad un attività. Essa può essere influenzata anche dalla metrica sopracitata.

La Variazione di Costo viene così calcolata:

CV = costo delle risorse effettivo - costo delle risorse preventivato

3.2.1.3 SPICE

Al termine di ogni periodo, il team MILCTdev provvederà alla valutazione della qualità dei processi tramite lo standard ISO/IEC 15504 conosciuto come SPICE. Lo standard SPICE, ed i livelli di maturità, vengono illustrati in maniera completa ed approfondita nell'Appendice D.

3.2.2 Misure e metriche per i prodotti

3.2.2.1 Misure e metriche per i documenti

3.2.2.1.1 Indice Gulpease

Per analizzare la leggibilità della documentazione prodotta, il team MILCTdev ha deciso di avvalersi dell' $indice\ Gulpease_G$. Questo è stato creato per venire incontro alla complessità della lingua italiana, non contemplata in altri indici, come l' $indice\ di\ Flesch_G$.

L'indice Gulpease viene calcolato tramite questa formula:

$$IG = 89 + \frac{(300 \times numero\ delle\ frasi) - (10 \times numero\ delle\ lettere)}{numero\ delle\ parole}$$

Il valore ottenuto indicherà la leggibilità del testo e può variare da 0, indice di bassissima leggibilità, a 100, indice di ottima leggibilità.

3.2.2.2 Misure e metriche per il software

Al fine di poter correttamente quantificare e valutare la qualità del prodotto software, il team MILCTdev ha deciso utilizzare diverse metriche. Gran parte delle metriche indicate in questa sezione verranno riviste ed aggiornate nel corso dei successivi periodi.

3.2.2.2.1 Structutal Fan-In (SFIN)

Questa metrica, detta anche grado di accoppiamento afferente, permetterà di avere una visione del numero di moduli che usufruiscono della componente oggetto di analisi.

Il valore di questo indice è semplicemente dato dal conteggio delle componenti indicate poco sopra. Un valore molto basso può indicare una scarsa utilità del modulo analizzato, all'opposto un grado troppo alto potrebbe indicare un pericoloso livello di dipendenza.

3.2.2.2. Structutal Fan-Out (SFOUT)

Il grado di accoppiamento efferente, così come l'accoppiamento afferente, ha come oggetto di analisi il numero di moduli che sono legati alla componente in analisi.

Questa volta si prende in considerazione il numero di moduli esterni che vengono utilizzati. Un indice ottimale dovrebbe avere un valore di 0 o 1, questo perché minore è il suo valore, più il modulo è indipendente ai cambiamenti del resto del sistema. Un valore eccessivamente alto è indice di troppa dipendenza rispetto al resto del sistema.

3.2.2.3 Logical Source Lines of Code

Questa metrica dà un idea della grandezza del prodotto software contando il numero di linee di codice. Il team ha scelto di utilizzare la variante definita Logical SLOC, andando quindi a contare solamente il numero di $statements_G$ all'interno del codice.

3.2.2.2.4 Code Coverage

Il code coverage è una metrica che, sfruttando la Logical SLOC, indica la percentuale di statements coperti dai test.

Il valore della code coverage è così calcolato:

$$CC = \frac{Logical~SLOC}{Numero~di~statement~coperti~da~test} \times 100$$

3.2.2.2.5 Test Automation Proportion

Questa metrica dà un idea della percentuale di test automatici implementati dal team MILCTdev. La volontà è quella di aumentare sempre più il valore di questa metrica.

Il valore viene così calcolato:

$$TAP = \frac{Numero\ di\ test\ automatici}{Numero\ di\ test\ manuali} \times 100$$

3.2.2.2.6 Rapporto linee di commento per linee di codice

Un indice di buona manutenibilità del codice potrebbe essere il rapporto tra $Physical SLOC_G$ e numero di linee di commento all'interno dello stesso.

Il valore viene espresso in percentuale e viene così calcolato:

$$RLCLC = \frac{Numero\ di\ linee\ di\ codice\ totali}{Numero\ di\ linee\ di\ commento} \times 100$$

3.2.2.2.7 Complessità ciclomatica

L'indice di complessità di un programma aiuta ad identificare il numero di test necessari al raggiungimento di un coverage completo. Questa metrica software può essere applicata anche a $packages_G$, moduli, metodi o classi.

Il calcolo avviene sfruttando il grafo di controllo di flusso_G e l'indice non è altro che il numero di cammini indipendenti attraverso il codice sorgente. La formula è quindi la seguente:

$$v(G) = e - n + 2p$$

Dove:

- n: è il numero di nodi del grafo, nonché il numero di tutti i gruppi indivisibili di istruzioni;
- e: rappresenta il numero di archi del grafo, cioè il numero di collegamenti tra due nodi tali che, il nodo seguente possa essere eseguito immediatamente dopo il nodo preso di riferimento;
- p: è il numero di componenti connesse.

3.2.2.2.8 Failure Avoidance

Indica la robustezza di un prodotto nel far fronte a possibili imprevisti o errori e viene così calcolata:

$$FA = \frac{Numero\ situazioni\ anomale\ evitate}{Numero\ totale\ situazioni\ anomale\ occorse}$$

3.2.2.2.9 Percentuale superamento test

Questa metrica indica quanti dei test implementati hanno esito positivo e può essere ottenuta così:

$$PST = \frac{Numero~test~superati}{Numero~test~implementati} \times 100$$

3.2.2.2.10 Requisiti obbligatori soddisfatti

Questa metrica aiuta il team a capire in che quantità sono stati soddisfatti i requisiti obbligatori indicati in'Analisi dei Requisiti v2.0.0.

Il valore viene espresso in percentuale e viene calcolato come segue:

$$ROS = \frac{Num.\ Requisiti\ obbligatori\ individuati}{Num.\ Requisiti\ obbligatori\ soddisfatti} \times 100$$

A Resoconto delle attività di verifica

Questa sezione illustra i risultati di verifica ottenuti utilizzando le metriche descritte nella sezione 2.2 nel corso dello sviluppo del progetto (per la spiegazione dei diversi periodi vedere in $Piano\ di\ Progetto\ v2.0.0$). Le misurazioni sono state fatte a distanza di sette giorni l'una dall'altra e vengono presentate con un diagramma, che ha la funzione di fare da cruscotto, per evidenziare le variazioni nel tempo. È stato scelto il diagramma a cruscotto perché più parlante rispetto alla classica rappresentazione tabellare per gli esiti delle verifiche.

A.1 Verifica dei processi

A.1.1 Cost Variance

Figure 1: Variazione della metrica Cost Variance

Questa metrica è strettamente dipendente con la Schedule Variance infatti, se un'attività termina prima del tempo previsto, la Cost Variance diminuisce perché il monte ore preventivato per quell'attività è superiore alle ore effettive. Quindi, nel grafico precedente, una diminuzione della Cost Variance corrisponde ad attività terminata in anticipo mentre un aumento corrisponde ad un ritardo nei tempi previsti.

A.1.2 SPICE

Il calo a seguito alla Revisione dei Requisiti(2018-01-26) è causato da una rivalutazione del livello raggiunto e non da una effettiva perdita di maturità dei processi.

Figure 2: Variazione dei valori SPICE

A.1.3 Schedule Variance

Questi risultati hanno una rappresentazione tabellare perché, per come é definita la Schedule Variance (vedere nella sezione 3.2), i valori sono relativi alle diverse attività presenti nei diversi periodi, descritti nel *Piano di Progetto v2.0.0*, e vengono quindi calcolati solamente a fine del periodo e non durante questo.

Attività	Schedule Variance
Analisi dei Requisiti	0
Glossario	0
Norme di progetto	0
Piano di progetto	0
Piano di qualifica	-2
Studio di fattibilità	0
Totale	-2

Table 5: Schedule Variance nel periodo di analisi e analisi in dettaglio

Attività	Schedule Variance
Incremento documenti precedenti	+1
Tecnology baseline	-2
Totale	-1

Table 6: Schedule Variance nel periodo di Progettazione architetturale

A.2 Verifica dei prodotti

A.2.1 Indici Gulpease

Indice Gulpease per documento

Figure 3: Variazione degli indici Gulpease nei documenti

B Pianificazione test

B.1 Test di sistema

Vengono qui presentati i test di sistema necessari a garantire che il prodotto soddisfi i requisiti presenti in $Analisi\ dei\ Requisiti\ v2.0.0$.

Quelli presentati sono relativi ai requisiti che MILCT dev ritiene debbano avere test. La composizione del codice identificativo é presente nelle $Norme\ di\ Progetto\ v2.0.0$.

B.1.1 Test di sistema previsti

Id Test	Descrizione	Stato
TSFO1.1	Verifica che la procedura batch sia in grado di leggere trace da un indice ElasticSearch contenente le trace	$Non \ implementato$
TSFO1.2	Verifica che la procedura batch sia in grado di filtrare le trace prima di fare dei raggruppamenti su di esse	$Non \\ implementato$
TSFO1.2.1	Verifica che la procedura batch sia in grado di leggere la modalità di filtraggio delle trace da un indice ElasticSearch	$Non \ implementato$
TSFO1.2.2	Verifica che la procedura batch sia in grado di filtrare le trace in base alla configurazione di filtraggio scelta	$Non \ implementato$
TSFO1.3	Verifica che la procedura batch sia in grado di raggruppare delle trace in base a dei parametri configurabili	$Non \\ implementato$
TSFO1.3.1	Verifica che la procedura batch sia in grado di leggere la modalità di raggruppamento delle trace da un indice ElasticSearch	$Non \\ implementato$
TSFO1.3.2	Verifica che la procedura batch sia in grado di scegliere un valore per configurare la modalità di raggruppamento scelta, prelevandolo da ElasticSearch	$Non \ implementato$
TSFO1.3.3	Verifica che la procedura batch sia in grado di raggruppare le trace in base alla modalità e al parametro di raggruppamento scelti	$Non \ implementato$
TSFO1.4	Verifica che la procedura batch sia in grado di calcolare una metrica	$Non \ implementato$

Id Test	Descrizione	Stato
TSFO1.4.1	Verifica che la procedura batch sia in grado di leggere la tipologia di metrica da calcolare da ElasticSearch	$Non \ implementato$
TSFO1.4.2	Verifica che la procedura batch sia in grado di scegliere la granularità di tempo per il calcolo della metrica	$Non \ implementato$
TSFO1.4.3	Verifica che la procedura batch sia in grado di calcolare metriche basandosi sullo storico delle metriche	$Non \ implementato$
TSFO1.5	Verifica che la procedura batch sia in grado di salvare la metrica calcolata su un indice ElasticSearch	$Non \ implementato$
TSFO2	Verifica che l'inserimento di una metrica scateni la generazione di una baseline su tale metrica, da parte della procedura batch	$Non \ implementato$
TSFO2.1	Verifica che l'inserimento di una metrica scateni l'aggiornamento della baseline associata a tale tipo di metrica, nel caso in cui la baseline esista già	$Non \ implementato$
TSFO2.2	Verifica che la procedura batch sia in grado di scegliere una configurazione temporale, prelevata da un indice ElasticSearch, per il calcolo di una baseline	$Non \ implementato$
TSFO2.3	Verifica che la procedura batch sia in grado di leggere le metriche coinvolte dal calcolo della baseline da un indice ElasticSearch	$Non \ implementato$
TSFO2.4	Verifica che la procedura batch sia in grado di calcolare una baseline	$Non \ implementato$
TSFO2.5	Verifica che la procedura batch sia in grado di salvare la baseline calcolata in un indice ElasticSearch	$Non \ implementato$
TSFO3	Verifica che l'inserimento di una nuova metrica scateni un controllo di critical event da parte della procedura batch	$Non \ implementato$
TSFO3.1	Verifica che la procedura batch sia in grado di configurare una policy leggendo dati da ElasticSearch	$Non \ implementato$
TSFO3.1.1	Verifica che la procedura batch sia in grado di leggere una tipologia di soglia per la policy da un indice ElasticSearch	$Non \ implementato$

Id Test	Descrizione	Stato
TCCC0010	Verifica che la procedura batch sia in grado di	Non
TSFO3.1.2	leggere un valore per la tipologia di soglia scelta, prelevandolo da un indice ElasticSearch	implementato
	Verifica che la procedura batch sia in grado di	
	leggere l'azione di rimedio da eseguire,	Non
TSFO3.1.3	prelevandola da ElasticSearch, nel caso in cui si	implementato
	verifichi un critical event	impiementato
	Verifica che la procedura batch sia in grado di	Non
TSFO3.2	verificare la policy configurata	implementato
TOPO 2 2 1	Verifica che la procedura batch sia in grado di	Non
TSFO3.2.1	leggere il valore attuale della metrica inserita	implementato
	Verifica che la procedura batch controlli che il	
TSFO3.2.2	valore della metrica sia in linea con la soglia	$Non \ implementato$
	selezionata	•
TSFO3.3	Verifica che la procedura batch lanci un critical	Non
151 00.0	event nel caso in sui la soglia viene superata	implementato
	Verifica che la procedura batch, una volta	Non
TSFO3.4	lanciato il critical event, possa eseguire	implementato
	un'azione di rimedio	•
TSFO3.4.1	Verifica che la procedura batch possa inviare	Non
	una e-mail di notifica del critical event	implementato
TSFO3.4.2	Verifica che la procedura batch possa eseguire	Non
	una procedura automatica	implementato
TSFO3.4.3	Verifica che la procedura batch possa salvare il critical event su un indice ElasticSearch	Non
	Verifica che allo scattare di uno critical event,	implementato
TSFD4	la procedura batch sia in grado di inviare una	Non
151.04	mail di notifica	implementato
	Verifica che la procedura batch sia in grado di	
TSFD4.1	prelevare l'indirizzo e-mail del destinatario da	Non
101 2 1.1	un indice ElasticSearch	implementato
TIGED 4.0	Verifica che il template della mail venga creato	Non
TSFD4.2	con Spring mail	implementato
	Verifica che la procedura batch configuri la	λ7
TSFD4.3	mail leggendo la configurazione da un indice	Non
	ElasticSearch	implementato
TSFD4.4	Verifica che la procedura batch sia in grado di	Non
151 154.4	collegarsi al server di invio della mail	implementato
	Verifica che la procedura batch sia in grado di	Non
TSFD4.5	inviare la mail al destinatario scelto e con le	implementato
	configurazioni impostate	

Id Test	Descrizione	Stato
TSFD5	Verifica che la procedura batch, al verificarsi di un critical event, possa memorizzarlo in un indice ElasticSearch	$Non \ implementato$
TSFD5.1	Verifica che la procedura batch sia in grado di prelevare l'indice ElasticSearch dove memorizzare il critical event	Non implementato
TSFD6	Verifica che la procedura batch, al verificarsi di un critical event, possa eseguire una procedura automatica	$Non \ implementato$
TSFD6.1	Verifica che la procedura batch sia in grado di prelevare la procedura automatica da eseguire da un indice ElasticSearch	$Non \\ implementato$
TSFF7	Verifica che l'amministratore di sistema sia in grado di configurare la schedulazione delle procedure batch da eseguire	Non implementato
TSFF7.1	Verifica che l'amministratore di sistema sia in grado di leggere la configurazione della procedura da un indice ElasticSearch	Non implementato
TSFF7.2	Verifica che l'amministratore di sistema sia in grado di configurare la procedura con i parametri prelevati	Non implementato
TSFF7.3	Verifica che l'amministratore di sistema sia in grado di memorizzare su ElasticSearch la nuova configurazione per la procedura	$Non \ implementato$

Table 7: Tabella dei test di sistema

Figure 4: Test di sistema - Stato attuale

B.1.2 Tracciamento test di sistema-requisiti

Test	Requisito
TSFO1.1	RFO1.1
TSFO1.2	RFO1.2
TSFO1.2.1	RFO1.2.1
TSFO1.2.2	RFO1.2.3
TSFO1.3	RFO1.3
TSFO1.3.1	RFO1.3.1
TSFO1.3.2	RFO1.3.2
TSFO1.3.3	RFO1.3.3
TSFO1.4	RFO1.4
TSFO1.4.1	RFO1.4.1
TSFO1.4.2	RFO1.4.2
TSFO1.4.3	RFO1.4.3
TSFO1.5	RFO1.5
TSFO2	RFO3
TSFO2.1	RFO2.1
TSFO2.2	RFO2.1.1
TSFO2.3	RFO2.1.2
TSFO2.4	RFO2.1.3
TSFO2.5	RFO2.1.5
TSFO3	RFO3
TSFO3.1	RFO3.1
TSFO3.1.1	RFO3.1.1
TSFO3.1.2	RFO3.1.2
TSFO3.1.3	RFO3.1.3
TSFO3.2	RFO3.2
TSFO3.2.1	RFO3.2.1
TSFO3.2.2	RFO3.2.2
TSFO3.3	RFO3.3
TSFO3.4	RFO3.4
TSFO3.4.1	RFO3.4.1
TSFO3.4.2	RFO3.4.2
TSFO3.4	RFO3.4
TSFD4.1	RFD4.1
TSFD4.2	RFD4.2
TSFD4.3	RFD4.3
TSFD4.4	RFD4.4
TSFD4.5	RFD4.5
TSFD5	RFD5
TSFD5.1	RFD5.1

Test	Requisito
TSFD6	RFD6
TSFD6.1	RFD6.1
TSFF7	RFD7
TSFF7.1	RFD7.1
TSFF7.2	RFD7.2
TSFF7.3	RFD7.3

Table 8: Tabella di tracciamento test di sistema-requisiti

C Valutazione per il miglioramento

C.1 Valutazione sui ruoli

Ruolo	Problema	Soluzione
Responsabile	Difficoltà nella distribuzione	Suddivisione del lavoro in
	corretta del carico di lavoro	piccole parti
Verificatore	Difficoltà nell'analisi	Aumento del tempo dedicato
	completa e approfondita dei	alle attività di verifica e utilizzo
	documenti	della lista di controllo
Analista	Difficoltà nella classificazione	Gli Analisti collaborano nello
	dei requisiti	svolgimento del compito

Table 9: Valutazione sui ruoli

C.2 Valutazione sull'organizzazione

Problema	Soluzione	
	Utilizzo di Ticket, mediante Asana, per	
Assegnazione precisa dei compiti	l'assegnazione di compiti precisi e con scadenza	
	fissata	
Difficoltà nell'organizzare	Utilizzo di strumenti di videoconferenza	
incontri con tutti i membri		

 ${\bf Table~10:~Valutazione~sull'organizzazione}$

C.3 Valutazione sugli strumenti

Strumento	Problema	Soluzione
Strumenti generali	 Problemi di compatibilità tra diversi sistemi operativi; Evidenziare solo la prima occorrenza di un termine presente nel glossario. 	 Utilizzare software disponibile sia per Linux che per Windows; Creazione di uno script che aiuti in questo compito.
Texmaker	Problemi con la correzione	Impostato in modo corretto il
	delle parole italiane.	vocabolario italiano.
Github	Problemi con conflitti	Creazione di un branch per ogni
	durante i commit.	documento.

Table 11: Valutazione sugli strumenti

D Standard di qualità

D.1 ISO/IEC 15504

Lo standard ISO/IEC 15504, altresì conosciuto come SPICE (Software Process Improvement and Capability Determination), stabilisce un modello di riferimento per la valutazione della maturità (capability dimension) dei processi software (process dimension).

In particolare, la *process dimension* è definita in riferimento allo standard ISO/IEC 12207 per la gestione del ciclo di vita.

La capability dimension, invece, definisce una scala di sei livelli di maturità di processo:

- 0 Incomplete: il processo è fallito oppure non è stato implementato;
- 1 Performed: il processo è stato implementato ed ha ademptito al proprio obiettivo;
- 2 Managed: il processo, oltre ad essere semplicemente *performed*, è gestito in maniera organizzata, con responsabilità ben definite, pianificandone e tracciandone l'esecuzione e garantendone la qualità;
- 3 Established: il processo, oltre ad essere *managed*, è implementato aderendo ai principi dell'ingegneria del software e agli standard esistenti;
- 4 Predictable: il processo, oltre ad essere *established*, è attuato entro limiti prestazionali definiti per il raggiungimento degli obiettivi previsti;
- 5 Optimizing: il processo, oltre ad essere *predictable*, è oggetto di miglioramento continuo per il soddisfacimento di obiettivi di business, attuali, previsti e futuri.

Ogni processo è classificabile in base al livello di soddisfacimento dei seguenti nove attributi:

- 1.1 Process performance: capacità del processo di raggiungere gli obiettivi prefissati;
- 2.1 Performance management: misura del grado di gestione dell'attuazione del processo in esame;
- 2.2 Work product management: misura del grado di gestione dei prodotti del processo in esame;
- 3.1 Process definition: misura dell'adeguatezza del processo rispetto agli standard di riferimento;
- 3.2 Process deployment: capacità del processo di sfruttare le risorse allocate;
- 4.1 Process measurement: capacità del processo di produrre misurazioni utili a fini di controllo;

- 4.2 Process control: capacità del processo di essere corretto o migliorato grazie all'analisi delle misurazioni rilevate;
- 5.1 Process innovation: misura del grado in cui i cambiamenti strutturali e di esecuzione del processo sono controllati a fini di innovare e migliorare gli standard presenti;
- 5.2 Process optimization: capacità del processo di implementare le modifiche effettuate in modo da ottenere un miglioramento continuo nella realizzazione degli obiettivi prefissati.

La scala di valutazione degli attributi di processo è la seguente:

- N: non posseduto (0 15%);
- P: parzialmente posseduto (>15% 50%);
- L: largamente posseduto (>50% 85%);
- **F**: pienamente posseduto (>85% 100%).

Figure 5: Schema della capability dimension di SPICE (tratta da SPiCE 1-2-1)

D.2 PDCA

Il PDCA, conosciuto anche come *Ciclo di Deming*, è un metodo di gestione dei processi durante il loro ciclo di vita con il fine di controllare il miglioramento continuo della loro qualità e, quindi, anche quella dei loro prodotti. L'approccio che propone è suddiviso in quattro fasi da ripetere iterativamente fino al raggiungimento dell'obiettivo finale:

- Plan: fase di pianificazione in cui vengono stabiliti gli obiettivi ed i processi necessari per il raggiungimento dei risultati attesi;
- **Do**: fase di esecuzione di quanto pianificato al punto precedente con rilevamento di dati significativi da poter analizzare nelle fasi successive;
- Check: fase di controllo dei dati rilevati nella fase *Do* per confrontare i risultati ottenuti con quelli attesi dalla fase *Plan*. Le differenze riscontrate e le deviazioni nell'attuazione del piano osservate serviranno alla fase successiva;
- Act: fase di attuazione del miglioramento della qualità, tramite l'adozione di strategie emerse dallo studio dei risultati della fase di *Check*, eventualmente anche al di fuori del processo in questione.

Figure 6: Schema del miglioramento continuo tramite PDCA (creato da Johannes Vietze)

D.3 ISO/IEC 9126

Lo standard ISO/IEC 9126 fornisce un modello per la definizione della qualità di un software.

In particolare, esso distingue tre punti di vista sul software rispetto ai quali valutarne la qualità:

- Qualità interna: relativa al software sorgente non in esecuzione ed alla documentazione correlata. Viene rilevata tramite analisi statica ed è influenzata dalla qualità dei processi del ciclo di vita del prodotto;
- Qualità esterna: relativa al software in esecuzione. Viene rilevata tramite test, in funzione degli obiettivi stabiliti, ed è influenzata dalla qualità interna;
- Qualità in uso: relativa alla percezione dell'utente del prodotto finito in contesti reali d'uso. È influenzata dalla qualità esterna.

Figure 7: Schema del ciclo di qualità del software (creato da Giuseppe Manuele)

Per ciascuno dei punti di vista vengono inoltre delineate delle caratteristiche e sottocaratteristiche qualitative, eventualmente misurabili quantitativamente, mediante apposite metriche.

Per la qualità interna ed esterna esse sono:

- Funzionabilità: capacità di fornire funzioni che soddisfino le esigenze stabilite, nei relativi contesti di presentazione.
 - appropriatezza;
 - accuratezza;
 - interoperabilità;
 - conformità;
 - sicurezza.

- Affidabilità: capacità di mantenere un determinato livello di prestazioni in date condizioni per un dato periodo.
 maturità;
 tolleranza agli errori;
 recuperabilità;
- Efficienza: capacità di fornire appropriate prestazioni relativamente alle risorse utilizzate.
 - comportamento rispetto al tempo;
 - utilizzo di risorse;
 - conformità.

aderenza.

- Usabilità: capacità del prodotto software di essere capito, appreso e usato dall'utente, al verificarsi di determinate condizioni.
 - comprensibilità;
 - apprendibilità;
 - operabilità;
 - attrattiva;
 - conformità.
- Manutenibilità: capacità del prodotto software di essere modificato, corretto o migliorato facilmente nel tempo.
 - analizzabilità;
 - modificabilità;
 - stabilità;
 - testabilità;
 - collaudabilità.
- Portabilità: capacità del prodotto software di essere trasportato da un ambiente di lavoro all'altro.
 - adattabilità;
 - installabilità;
 - conformità;
 - sostituibilità.

Le caratteristiche per la qualità in uso sono:

- Efficacia: capacità di permettere all'utente di raggiungere gli obiettivi specificati con accuratezza e completezza;
- **Produttività**: capacità di permettere all'utente di spendere una quantità di risorse appropriata all'efficacia ottenuta dall'uso del prodotto;
- Soddisfacibilità: capacità di soddisfare l'utente;
- Sicurezza: capacità di raggiungere accettabili livelli di rischio nei confronti di persone e dell'ambiente di lavoro.

Figure 8: Schema delle caratteristiche definite in ISO/IEC 9126 (creato da Giuseppe Manuele)

