Package 'polypharmacy'

February 12, 2021

10014417 12, 2021
Type Package
Version 0.0.0.9000
Title Calculate several polypharmacy indicators
Description Analyse prescription drug deliveries to calculate several indicators of polypharmacy corresponding to the various definitions found in the literature.
Maintainer Guillaume Boucher <guiboucher8@gmail.com></guiboucher8@gmail.com>
BugReports https://github.com/guiboucher/polypharmacy/issues
License GPL-3 + file LICENSE
Imports data.table (>= 1.13.0), doParallel (>= 1.0.16), foreach (>= 1.5.1), itertools (>= 0.1.3), lubridate (>= 1.7.9), parallel (>= 4.0.3), stringr (>= 1.4.0)
Roxygen list(markdown = TRUE)
RoxygenNote 7.1.1
Encoding UTF-8
LazyData true
Suggests knitr, rmarkdown, testthat (>= 3.0.0)
VignetteBuilder knitr
Depends R (>= 2.10)
Config/testthat/edition 3
R topics documented:
polypharmacy-package 2 cst_deliv_duration 3 data_process 4 drug_bkdn 5 indicators 5 ind_simult 9

	ind_stdcontinuous																					 	10
	ind_stdcumul																						
ind_ucontinuous									12														
	ind_wcumul																						
	Rx_processed																					 	13
	Rx_unprocessed																					 	14
	stat_quantile_prob								•														14
Index																							15
polyp	oharmacy-package (Calcul	ate	sev	era	ıl pe	oly	ph	ar	m	ac:	y ii	ıdi	ica	ito	rs							

Description

This package analyse prescription drug deliveries to calculate several indicators of polypharmacy corresponding to the various definitions found in the literature.

Details

It is essential to know the concepts used to calculate the various polypharmacy indicators to adequately use this package.

The core of the package is the data_process() function that creates the data.table of drug treatments by restructuring the drug delivery records (usually extracted from a pharmacy or a health insurance information system) into continuous periods of drug availability (called drug treatments), applying user-defined arguments such as the grace periods between renewals or the longest treatment duration that an individual may accumulate through the successive renewals.

Then, each polypharmacy indicator can be computed using the corresponding function (ind_simult(), ind_stdcumul(), ind_stdcumul(), ind_ucontinuous()) or using the overall function indicators() to select the desired indicator(s) to be calculated at once.

Prior to running data_process() the user may need to pre-process the table of original drug delivery records to break down combination drug into their individual components (drugs_bkdn()) and/or to overwrite some delivery durations of specified drugs with constant durations (cst_trt_dur()).

Author(s)

Maintainer: Guillaume Boucher < guiboucher 8@gmail.com>

Authors:

- Bernard Candas <bernard.candas.1@gmail.com>
- Houssem Missaoui <missaoui_houssem@hotmail.fr>

See Also

Useful links:

• Report bugs at https://github.com/guiboucher/polypharmacy/issues

cst_deliv_duration 3

Description

Overwrites the delivery durations with constant durations for each drug code listed in a user-provided table.

Usage

```
cst_deliv_duration(
  Rx_deliv,
  Rx_drug_code,
  Rx_deliv_dur,
  Cst_deliv_dur,
  Cst_drug_code,
  Cst_duration
)
```

Arguments

Rx_deliv	Name of the table listing all prescription drugs delivered.
Rx_drug_code	Column name of Rx_deliv that contains the drug unique identifier.
Rx_deliv_dur	Column name of the constant treatment duration in the Rx_deliv table.
Cst_deliv_dur	Name of the table that contains the constant delivery durations that will overwrite that in the Rx_deliv table for the specified drug codes.
Cst_drug_code	Column name of Cst_deliv_dur that contains the drug unique identifier (same format as Rx_drug_code).
Cst_duration	Column name of the constant treatment duration in the Cst_deliv_dur table (same format as Rx_deliv_dur).

Value

data.table of the same structure as Rx_deliv.

Examples

4 data_process

data_process

Create the table of the drug treatments

Description

Reads a table of successive drug delivery records (usually extracted from a pharmacy or a health insurance information system) and creates the table required for the calculation of the polypharmacy indicators by applying various user-defined arguments, incorporating hospital stays into the treatment periods and reconstruct continuous treatment periods by merging quasi continuous and/or overlapping drugs deliveries.

Usage

```
data_process(
  Rx_deliv,
  Rx_id,
  Rx_drug_code,
  Rx_drug_deliv,
  Rx_deliv_dur,
  Cohort = NULL,
  Cohort_id = NULL,
  Hosp_stays = NULL,
  Hosp_id = NULL,
  Hosp_admis = NULL,
  Hosp_discharge = NULL,
  study_start = NULL,
  study_end = NULL,
  grace_fctr = 0.5,
  grace_cst = 0,
  max_reserve = NULL,
  cores = parallel::detectCores(logical = FALSE),
)
```

Arguments

Rx_deliv	Name of the table listing all prescription drugs deliveries including the run-in period. See <i>Details</i> .
Rx_id	Column name of Rx_deliv containing individual unique identifier (any format).
Rx_drug_code	Column name of Rx_deliv that contains the drug unique identifier (any format).
Rx_drug_deliv	Column name of Rx_deliv that contains the dates of the drug delivery (Date format, see <i>Details</i>).
Rx_deliv_dur	Column name of Rx_deliv that contains the duration of the delivery (integer number).
Cohort	Name of the table providing the unique identifiers of the study cohort. Only the ids listed in both the Cohort and the Rx_deliv tables will be returned. if Cohort = NULL, all ids of the Rx_deliv table will be returned.
Cohort_id	Column name of Cohort containing individual's unique identifiers (same format as Rx_id). If Cohort is not NULL and Cohort_id is NULL, Cohort_id will take the same value as Rx_id.

data_process 5

Hosp_stays Name of the table listing all hospital stays. (see *Details* for possible format).

Hosp_id Column name of Hosp_stays containing individual's unique identifier (same

format as Rx_id). If $Hosp_stays$ is not NULL and $Hosp_id$ is NULL, $Hosp_id$

will take the same value as Rx_id.

Hosp_admis Column name of Hosp_stays that contains the date of admission in hospital

(Date format, see Details).

Hosp_discharge Column name of Hosp_stays that contains the date of discharge from hospital

(Date format, see Details).

study_start, study_end

Defines the first and last day of the study period for which the polypharmacy indicator(s) need to be calculated. All treatment periods prior to study_start and past study_end are not transcribed into the result table (Date format, see

Details).

grace_fctr, grace_cst

Numbers ≥ 0 . Two types of grace periods can be applied. One is proportional to the treatment duration of the latest delivery (grace_fctr) and the other is a

constant number of days (grace_cst).

max_reserve An integer number ≥ 0 or NULL. Longest treatment duration, in days, that can

be stored from successive overlapping deliveries. When max_reserve = NULL no limit is applied. When max_reserve = 0 no accumulation of extra treatment

duration is accounted for.

cores The number of cores to use when executing data_process(). See parallel::detectCores.

Details

Variables:

- Rx_id, Cohort_id and Hosp_id columns must be of the same class (integer, numeric, character, ...).
- Rx_drug_deliv, Hosp_admis and Hosp_discharge can be 1) as.Date('yyyy-mm-dd'), 2) as.character('yyyy-mm-dd') or 3) as.integer() where 0 is January 1^{st} , 1970.

Arguments:

• study_start and study_end can be 1) as. Date('yyyy-mm-dd'), 2) as. character('yyyy-mm-dd') or 3) as. integer() where 0 is January 1^{st} , 1970.

Hospital stays:

Drug availability is assumed to continue during the hospital stay as it is on the day prior admission. The patient is assumed to resume the consumption of the drugs delivered by community pharmacists (as recorded in Rx_deliv) the day after hosp_discharge.

Run-in period:

A run-in period is necessary to account for the medications that are available to the individuals on the day of study_start. It is recommended to include a run-in period of about 6 months (e.g. 7 months to account for possible delays) as some drugs are delivered for up to 6 months at once.

Grace period:

The grace period is used to determine if two successive deliveries can be considered as a continuous treatment even if there is a gap of several days for which no treatment is apparently available. Two successive deliveries of an identical drug are considered part of a single continuous treatment if the next delivery doesn't occur more than grace_cst + (grace_fctr × Rx_deliv_dur) days after the end of the latest drug delivery. The availability of extra drugs accumulated over the successive deliveries is accounted for prior to evaluating the duration of the gap between deliveries.

6 data_process

Performance

For better performance, date columns are converted to integer numbers.

•••

verif_cols=FALSE: For better performance, you can avoid columns class checking with verif_cols=FALSE. **Not recommended**.

Value

data.table with four (4) variables:

- The individual unique identifier which name is defined by Rx_id.
- The drug unique identifier which name is defined by Rx_drug_code.
- tx_start: The date of initiation of the reconstructed continued treatment (format as date).
- tx_end: The date of the last day of the reconstructed continued treatment (format as date).

Examples

```
Rx_dt1 <- data.frame(id = 1, code = 'A',</pre>
              date = c('2020-01-01', '2020-01-09', '2020-01-21', '2020-02-05', '2020-02-21'),
                     duration = 10)
Rx1 <- data_process(Rx_deliv = Rx_dt1,</pre>
                    Rx_id = 'id', Rx_drug_code = 'code',
                     Rx_drug_deliv = 'date', Rx_deliv_dur = 'duration')
## With a study cohort
Rx_dt2 \leftarrow data.frame(id = c(1, 1, 1, 2, 2), code = 'A',
              date = c('2020-01-01', '2020-01-09', '2020-01-21', '2020-02-05', '2020-02-21'),
                      duration = 10)
Cohort_dt2 = data.frame(id = 1, age = 65, sex = 'F', x1 = 'ind8', x2 = 'ex1')
Rx2 <- data_process(Rx_deliv = Rx_dt2,</pre>
                     Rx_id = 'id', Rx_drug_code = 'code',
                     Rx_drug_deliv = 'date', Rx_deliv_dur = 'duration',
                     Cohort = Cohort_dt2, Cohort_id = 'id')
## With hospital stays
Hosp_dt2 <- data.frame(id = 1,</pre>
                        start = c('2019-01-01', '2019-12-25'),
                        end = c('2019-05-20', '2019-12-31'))
Rx3 <- data_process(Rx_deliv = Rx_dt2,</pre>
                     Rx_id = 'id', Rx_drug_code = 'code',
                     Rx_drug_deliv = 'date', Rx_deliv_dur = 'duration',
                     Cohort = Cohort_dt2, Cohort_id = 'id',
                    Hosp_stays = Hosp_dt2, Hosp_id = 'id',
                    Hosp_admis = 'start', Hosp_discharge = 'end')
## With study_start not NULL
Rx3_start <- data_process(Rx_deliv = Rx_dt2,</pre>
                           Rx_id = 'id', Rx_drug_code = 'code',
                           Rx_drug_deliv = 'date', Rx_deliv_dur = 'duration',
                           Cohort = Cohort_dt2, Cohort_id = 'id',
                           Hosp_stays = Hosp_dt2, Hosp_id = 'id',
                           Hosp_admis = 'start', Hosp_discharge = 'end',
                           study_start = '2019-12-29')
```

drug_bkdn 7

drug_bkdn	Translate combination drug deliveries into single active ingredients

Description

Replaces each combination drug into several deliveries of elementary active ingredients according to a user-provided correspondence table.

Usage

```
drug_bkdn(Rx_deliv, Rx_drug_code, Combn_drugs, Combn_drug_code, Combn_act_code)
```

Arguments

Rx_deliv	Name of the table listing all prescription drugs deliveries.						
Rx_drug_code	Column name of Rx_deliv that contains the combination drug unique identifiers (any format).						
Combn_drugs	Name of the correspondence table listing all elementary active ingredients that make up each combination drug.						
Combn_drug_code							
	Column name of Combn_drugs that contains the combination drug unique identifiers (same format as Rx_drug_code).						
Combn_act_code	Column name of elementary active ingredients that is present in Combn_drugs (same format as Rx_drug_code).						

Value

data.table of the same structure as Rx_deliv.

Examples

indicators Indicators: All selected

Description

Wrapper function for all Indicator functions.

8 indicators

Usage

Arguments

processed_tab Table created by data_process function.

stats Statistics to calculate on the drug consumption. See *Details* for possible values.

method Indicator functions name to use.

stdconti_pdays *stdcontinuous* method: Number of days to create intervals [min; min+pdays]

and [max-pdays; max] where a drug should be consumed to be counted.

 $simult_ind_stats$

simult method: Statistics to calculate for each drug user.

simult_calendar

simul method: TRUE or FALSE. Create a table indicating the number of drugs consumed for each day for each user (FALSE by default).

stdcumul_nPeriod

std_cumul method: Integer value greater or equal to 1 and lesser or equal to the total number of days in the study period. If nPeriod is greater than 1, the study period is divide in nPeriod subperiod and the total number of drugs consumption would be the average of the periods.

tion would be the average of the periods

cores The number of cores to use when executing ind_simult(). See parallel::detectCores.

Details

stats & simult_ind_stats: Possible values are

- 'mean', 'min', 'median', 'max', 'sd';
- 'pX' where *X* is a value in [0, 100];
- 'q1' = 'p25', 'q2' = 'p50' = 'median', q3 = 'p75'.

Value

list

ind_simult 9

Description

Descriptive statistics on daily consumption.

Usage

Arguments

```
processed_tab Table created by data_process function.

individual_stats

Statistics to calculate for each drug user. See Details for possible values.

stats Statistics to calculate for each individual_stats. See Details for possible values.

calendar TRUE or FALSE. Create a table indicating the number of drugs consumed for each day for each user (FALSE by default).

cores The number of cores to use when executing ind_simult(). See parallel::detectCores.
```

Details

individual_stats & stats: Possible values are

- 'mean', 'min', 'median', 'max', 'sd';
- 'pX' where *X* is a value in [0, 100];
- 'q1' = 'p25', 'q2' = 'p50' = 'median', q3 = 'p75'.

Value

if calendar is FALSE:

• data.table indicating each stats (columns) for each individual_stats (rows).

if calendar is TRUE, a list of two (2) elements:

- indicators: Table described above.
- calendar: Table indicating the number of drugs consumed for each day (only for those who has at least 1 day with 1 drug consumption).

10 ind_stdcontinuous

Examples

```
dt_process <- data_process(
    Rx_deliv = data.frame(
        ID = c(1, 1, 1, 2, 2), Code = c('A', 'B', 'C', 'D', 'E'),
        Date = c('2020-01-01', '2020-01-05', '2020-01-10', '2020-01-15', '2020-01-26'),
        Duration = c(20, 15, 10, 5, 3)
), Rx_id = 'ID', Rx_drug_code = 'Code', Rx_drug_deliv = 'Date', Rx_deliv_dur = 'Duration',
        cores = 1
)
dt_simult <- ind_simult(dt_process, cores = 1)
dt_calendar <- ind_simult(dt_process, calendar = TRUE, cores = 1)</pre>
```

ind_stdcontinuous

Indicator: Continuous

Description

Description

Usage

Arguments

processed_tab Table created by data_process function.

pdays Number of days to create intervals [min; min+pdays] and [max-pdays; max]

where a drug should be consumed to be counted.

stats Statistics to calculate on the drug consumption. See *Details* for possible values.

Details

stats: Possible values are

```
• 'mean', 'min', 'median', 'max', 'sd';
```

- 'pX' where *X* is a value in]0, 100];
- 'q1' = 'p25', 'q2' = 'p50' = 'median', q3 = 'p75'.

Value

data.table indicating each stats (columns).

ind_stdcumul 11

ind_stdcumul

Indicator: Cumulative (multiple medication)

Description

Descriptive statistics: Sum of different drugs consumed over a given period time.

Cumulative polypharmacy, also known as multiple medication (Hovstadius et al.,2010a), is defined by the sum of different medications administered over a given period of time (Fincke et al., 2005).

Usage

Arguments

processed_tab Table created by data_process function.

nPeriod

Integer value greater or equal to 1 and lesser or equal to the total number of days in the study period. If nPeriod is greater than 1, the study period is divide in nPeriod subperiod and the total number of drugs consumption would be the average of the periods.

stats

Statistics to calculate on the drug consumption. See *Details* for possible values.

Details

stats: Possible values are

- 'mean', 'min', 'median', 'max', 'sd';
- 'pX' where *X* is a value in]0, 100];
- 'q1' = 'p25', 'q2' = 'p50' = 'median', q3 = 'p75'.

The attribute nRx is a data.table indicating the number of drugs consumption per period and the average of these periods.

Value

```
data.table indicating each stats (columns).
```

ind_wcumul

ind_ucontinuous

Indicator: U Continuous

Description

Description

Usage

Arguments

processed_tab Table created by data_process function.

stats

Statistics to calculate on the drug consumption. See *Details* for possible values.

Details

stats: Possible values are

- 'mean', 'min', 'median', 'max', 'sd';
- 'pX' where *X* is a value in]0, 100];
- 'q1' = 'p25', 'q2' = 'p50' = 'median', q3 = 'p75'.

Value

data.table indicating each stats (columns).

ind_wcumul

Indicator: Weight Cumulative

Description

Description

Usage

Rx_processed 13

Arguments

```
processed_tab Table created by data_process function.
```

stats Statistics to calculate on the drug consumption. See *Details* for possible values.

Details

stats: Possible values are

- 'mean', 'min', 'median', 'max', 'sd';
- 'pX' where *X* is a value in [0, 100];
- 'q1' = 'p25', 'q2' = 'p50' = 'median', q3 = 'p75'.

Value

data.table indicating each stats (columns).

Rx_processed

Table: Processed "unprocessed table"

Description

Table required for the calculation of the polypharmacy indicators. This table is created by using data_process() function on Rx_unprocessed data.

Usage

Rx_processed

Format

A data.table with 6792 obs and 4 variables:

id Individual unique identifier.

code Drug unique identifier.

tx_start The date of initiation of the reconstructed continued treatment (format as date).

tx_end The date of the last day of the reconstructed continued treatment (format as date).

14 stat_quantile_prob

Rx_unprocessed

Table: Prescription drugs deliveries

Description

Table listing all prescription drugs deliveries.

Usage

Rx_unprocessed

Format

A data.table with 17060 obs and 4 variables:

id Individual unique identifiercode Drug unique identifierstart Date of the drug delivery

duration Duration of the delivery

stat_quantile_prob

 $Statistic\ functions$

Description

Determine the percentile from a qX value where X is a number from 1 to 3.

Usage

```
stat_quantile_prob(x)
```

Arguments

Х

Character string, a quantile function, quarter values.

Value

Number 25, 50, 75

Index

```
* datasets
    Rx_processed, 13
    Rx_unprocessed, 14
cst\_deliv\_duration, 3
data_process, 4, 8-13
drug_bkdn, 7
ind_simult, 9
\verb"ind_stdcontinuous", \\ 10
ind_stdcumul, 11
ind_ucontinuous, 12
ind\_wcumu1, 12
indicators, 7
parallel::detectCores, 5, 8, 9
polypharmacy(polypharmacy-package), 2
polypharmacy-package, 2
Rx_processed, 13
Rx_unprocessed, 14
stat_quantile_prob, 14
```