Graph Theory: Homework #7

Due on February 18, 2015

 $Professor\ McGinley\ MWF\ 9:15$

Rick Sullivan

Problem 1

Determine all r, s such that $K_{r,s}$ is planar.

Solution

 $K_{r,s}$ is planar whenever either r or s is less than or equal to 2.

Problem 2

Show that the graph obtained by deleting one edge of $K_{3,3}$ is planar.

Solution

Proof. Removing any edge from $K_{3,3}$ produces an isomorphism of the same graph.

Moving the top and bottom vertices in the left set, we can embed the graph in the plane in the following way

Problem 3

Determine (using the algorithm given in class) if the graph below is planar. If so, give its planar embedding.

Problem 4

Is the graph below planar? Use one of the theorems we talked about in class, not the algorithm.

Solution

Proof. According to a corollary of Euler's formula, for a graph to be planar, $e(G) \leq 3n(G) - 6$.

$$n(G) = 16$$

 $e(G) = 32$
 $e(G) \le 3n(G) - 6$
 $32 \le 48 - 6$
 $32 \le 42$

For graphs with no triangular faces, it also must be true that $e(G) \leq 2n(G) - 4$. This graph has no triangular faces, so

$$e(G) \le 2n(G) - 4$$

 $32 \le 32 - 4$
 $32 \le 28$

This is not true, so this graph is not planar.