

Vorlesungsskript

Falk Jonatan Strube

Vorlesung von Herrn Meinhold

4. November 2015

Inhaltsverzeichnis

I.	Elementare Grundlagen	1
1.	Aussagen und Grundzüge der Logik	1
2.	Mengen	1
3.	Zahlen 3.1. Gruppen, Ringe, Körper	1 1

Teil I. Elementare Grundlagen

- 1. Aussagen und Grundzüge der Logik
- 2. Mengen
- 3. Zahlen
- 3.1. Gruppen, Ringe, Körper
 - Gegeben sei eine Menge M und eine zweistellige Operation \circ (d.h. Abb. von $M \times M$ in M) Bezeichnung: (M, \circ) , analog $(M, \circ, *)$
 - Die Operation \circ heißt *kommutativ*, wenn $a \circ b = b \circ a$ für alle $a, b \in M$.
 - Die Operation \circ heißt *assoziativ*, wenn $(a \circ b) \circ c = a \circ (b \circ c)$ für alle $a, b, c \in M$.

Def. 1:

 (M, \circ) heißt *Gruppe*, wenn gilt:

- 1.) Die Operation ∘ ist assoziativ
- 2.) Es gibt genau ein *neutrales Element* $e \in M$ mit $a \circ e = e \circ a = a$ (für alle $a \in M$)
- 3.) Es gibt zu jedem $a \in M$ genau ein *inverses Element* a^{-1} mit $a \circ a^{-1} = a^{-1} \circ a = e$
- 4.) Eine Gruppe heißt *ABELsch*, wenn zusätzlich folgendes gilt:
 ∘ ist kommutativ

Def. 2:

 $(M, \oplus, *)$ heißt *Ring*, wenn gilt:

- 1.) (M, \oplus) ist eine ABELsche Gruppe.
- 2.) Die Operation * ist assoziativ.
- 3.) Es gelten für beliebige $a, b, c \in M$:

$$a*(b\oplus c)=(a*b)\oplus (a*c)$$
 $(a\oplus b)*c=(a*c)\oplus (b*c)$ (Distributivgesetze)

- 4.) Ein Ring heiß kommutativer Ring, wenn gilt:
 - * ist kommutativ

Def. 3:

 $(M, \oplus, *)$ heißt *Körper*, wenn gilt:

- 1.) $(M, \oplus, *)$ ist ein Ring (mit dem neutralen Element E_0 für die Operation \oplus)
- 2.) $(M \setminus \{E_0\}, *)$ ist eine ABELsche Gruppe (mit dem neutralen Element E_1 für die Operation *)

3.2. Zahlentheorie

- Eine natürliche Zahl p > 1, die nurch durch 1 und sich selbst teilbar ist heißt *Primzahl*.
- ullet Jede natürliche Zahl n>1 ist entweder eine Primzahl, oder sie lässt sich als Produkt von Primzahlen schreiben.

Diese sogenannte Primfaktorzerlegung ist bis auf die Reihenfolge der Faktoren eindeutig.

Def. 4:

Zwei natürliche zahlen aus \mathbb{N}^* heißen *teilerfremd*, wenn sie außer 1 keine gemeinsamen teiler besitzen

- Es sei $a \in \mathbb{Z}$ und $m \in \mathbb{N}^*$. Dann gibt es eine eindeutige Darstellung der Gestalt $a = q \cdot m + r$ mit $0 \le r < m$ und $q \in \mathbb{Z}$. Bezeichnung: $m \dots$ Modul $m \in \mathbb{Z}$. (kleinste nichtnegative) Rest modulo $m \in \mathbb{Z}$ mod(a, m))
- Zur Erinnerung: a und b seien ganze Zahlen, $m \in \mathbb{R}^*$, dann $a \equiv b \pmod{m}$ [a kongruent $b \bmod m$]

```
\Leftrightarrow a und b haben den gleicher Rest modulo\ m \Leftrightarrow a-b ist durch m teilbar (d.h. \exists k \in \mathbb{Z} \quad a-b=k\cdot m)
```

Satz 1:

Es sei $a \equiv b \pmod{m}$, $c \equiv d \pmod{m}$, dann gilt: $a + c \equiv b + d \pmod{m}$ und $a \cdot c \equiv b \cdot d \pmod{m}$ (d.h. in Summen und Produktenn darf jede Zahl durch einen beliebigen Vertreter der gleichen Restklasse ersetzt werden).

Bsp. 1:

- a) $307 + 598 \equiv 1 + (-2) \equiv -1 \equiv 5 \pmod{6}$
- b) $307 \cdot 598 \equiv 1 \cdot (-2) \equiv -2 \equiv 4 \pmod{6}$
- c) $598^6 \equiv (-2)^6 \equiv 64 \equiv 4 \pmod{6}$
- Man wählt aus jeder Restklasse den kleinsten nichtnegativen Vertreter
 - \sim Menge von Resten $modulo\ m$: $\mathbb{Z}_m := \{0, 1, ..., m-1\}$
 - \sim "modulare Arithmetik": Operation \oplus und \odot für Zahlen aus \mathbb{Z}_m erklärbar, in dem für das Ergebnis jeweils der kleinste nichtnegative Rest $modulo\ m$ gewählt wird (vgl. Satz 1)

z.B.
$$\mathbb{Z}_7 = \{0, 1, ..., 6\}, \quad 5 \oplus 4 = 2$$
, da $5 + 4 \equiv 9 \equiv 2 \pmod{7}$ $5 \odot 6 = 2$, da $5 \cdot 6 \equiv 30 \equiv 2 \pmod{7}$

Falls keine Verwechselung zu befürchten ist, wird die übliche Schreibweise + und \cdot anstelle von \oplus und \odot verwendet.

Def. 5:

Wenn es zu $c \in \mathbb{Z}_m$ eine Zahl $d \in \mathbb{Z}_m$ gibt, mit $c \cdot d \equiv 1 \pmod{m}$ (bzw. $c \odot d \equiv 1$), so heißt d die *(multiplikative) modulare Inverse* zu c in \mathbb{Z}_m . Bezeichnung: $d = c^{-1}$

Bsp. 2:

$$c=3\in\mathbb{Z}_7$$
, wegen $3\cdot 5\equiv 1 \pmod{7}$ ist (in \mathbb{Z}_7) $3^{-1}=5$.

Satz 2: Zu $a \in \mathbb{Z}_m, a \neq 0$, gibt es genau dann eine modulare Inverse in \mathbb{Z}_m , wenn a und m teilerfremd sind (ggT(a,m)=1).

Satz 3: Es sei p eine Primzahl. Dann ist $(\mathbb{Z}_m, \oplus, \odot)$ ein Körper. Bemerkung: Falls m keine Primzahl ist, so ist $(\mathbb{Z}_m, \oplus, \odot)$ ein kommutativer Ring.

EUKLIDischer Algorithmus

- Verfahren zur Ermittlung des größten gemeinsamen Teilers t zweier positiver natürlicher Zahlen, t = qqT(a,b).
- In erweiterter Form bietet der Algorithmus eine Möglichkeit zur Bestimmung der modularen Inversen von a zum Modul m (mit a < m und a, m teilerfremd).

Satz 4: (EUKLIDischer Algorithmus)

Es seien $a, b \in \mathbb{N}^*, a > b$. Man bildet die endliche Folge

 $r_0 := b, \ r_1 = mod \ (a,b), \ r_2 = mod \ (r_0,r_1), ..., \ r_n = mod \ (r_{n-2},r_{n-1}),$ Abbruch falls $r_n = 0$.

In diesem Fall gist $ggT(a,b) = r_{n-1}$ (letzter nicht verschwindender Rest).

Bezeichnung: j-te Division ... $r_{j-2}:r_{j-1}=q_j$ Rest r_j (j=1,...,n) (dabei $r_1:=a$).

Satz 5: (erweiterter EUKLIDischer Algorithmus)

Zusätzlich zur Folge (r_n) aus Satz 4 bilde man die Folgen

$$\begin{array}{ll} x_0 = 0, \ x_1 = 1, \ x_2 = x_0 - q_2 x_1, ..., \ x_j = x_{j-2} - q_j x_{j-1} & (j \leq n-1) \text{ und } \\ y_0 = 1, \ y_1 = -q_1, \ y_2 = y_0 - q_2 y_1, ..., \ y_j = y_{j-2} - q_j y_{j-1} & (j \leq n-1) \\ \text{Dann gilt für alle } j = 0, ..., \ n-1: \boxed{r_j = x_j \cdot a + y_j \cdot b} \\ \text{Insbesondere gilt } \boxed{ggT(a,b) = x_{n-1} \cdot a + y_{n-1} \cdot b} \end{array}$$

Diskussion:

- 1.) Der Sinn der erweiterten EUKLIDischen Algorithmus besteht darin, in jedem Schrit den *Divisionsrest* r als linearkombination von a und b mit ganzzahligen Koeffizienten x und y darzustellen: $r = x \cdot a + y \cdot b$
 - Der Mechanismus wird am besten im Rechenschema des nachfolgenden Bsp. 4 deutlich.
- 2.) Sind c und m teilerfremd, $1 \le c < m$, d.h. ggT(m,c) = 1, so erhält man mit dem erweiterten EUKLIDischen Algorithmus (a = m, b = c) eine Darstellung in der Form $1 = x \cdot m + y \cdot c$. $y \cdot c \equiv 1 \pmod{m}$ und damit $c^{-1} \equiv y \pmod{m}$ (für die modulare Inverse muss eventuell noch der in \mathbb{Z}_m liegende, zu y kongruente, Wert gebildet werden!).

Bsp. 3:

Man ermittle den größten gemeinsamen Teiler t sowie das kleinste gemeinsame Vielfache v der Zahlen 132 und 84.

• Es genügt der "einfache" Algorithmus:

$$132:84=1$$
 Rest 48 $84:48=1$ Rest 36 $48:36=1$ Rest 12 $0 t=ggT(132,84)=\underline{12}$ $36:12=3$ Rest $\boxed{0}$ $0 t=ggT(132,84)=\underline{12}$

•
$$v = \frac{a \cdot b}{t} = \frac{132 \cdot 84}{12} = \underline{924} = kgV(132, 84)$$

Bsp. 4:

Man ermittle die modulare Inverse von $\overbrace{11}^{b}$ zum Modul $\overbrace{25}^{a}$

 $\curvearrowright (-9) \cdot 11 \equiv 1 \pmod{25}$

 $\sim 11^{-1} \equiv -9 \equiv 16 \pmod{25}$, die Inverse von 11 in \mathbb{Z}_{25} ist 16.

Zu den Schritten:

- (1) $b = 0 \cdot a + 1 \cdot b$
- (2) mittleres Feld als Linearkombination
- (3) ab hier Rechnung links spaltenweise durchführen, dabei Faktoren a und b beibehalten.

EULERsche φ -Funktion, Satz von EULER

Def. 6:

Es sei $n \in \mathbb{N}^*$. Dann *EULERsche* φ -Funktion:

 $\varphi(n) := \text{Anzahl der zu } n \text{ teilerfremden Elemente aus } \{1, 2, ..., n\}.$ Eigenschaften der φ -Funktion:

- ullet Es sei p eine Primzahl, dann ist $\boxed{ arphi(p) = p-1 }$, $\boxed{ arphi(p^k) = p^{k-1}(p-1) }$ $(k \in \mathbb{N}^*$
- Falls ggT(m,n)=1, so gilt $\varphi(m\cdot n)=\varphi(m)\cdot\varphi(n)$.
- Speziell: $n=p\cdot q$ (p,q Primzahlen), dann $\boxed{\varphi(n)=(p-1)\cdot (q-1)}$ (1).

Satz 6: (Satz von EULER)

Es sei ggT(a, n) = 1, dann gilt:

$$a^{\varphi(n)} \equiv 1 \pmod{n}$$
 (2).

RSA-Verschlüsselung

- Die Formeln (1) und (2) [siehe oberhalb] bilden die Grundlage für die sogenannte RSA-Verschlüsselung (RIVES, SHAMIR, ADLEMAN - 1978)
- Schlüsselerzeugung:
 - 1.) Man wählt (in der Praxis sehr große) Primzahlen d und q.
 - **2.)** $n := p \cdot q, m := \varphi(n) \stackrel{(1)}{=} (p-1)(q-1)$
 - 3.) e wird so gewählt, dass ggT(e,m)=1
 - 4.) $d := e^{-1} \pmod{m}$ (modulare Inverse)
 - 5.) (n, e) ... öffentlicher Schlüssel (n, d) ... geheimer Schlüssel (geheim ist nur d) p, q und m werden nicht mehr benötigt, bleiben aber geheim!

• Verschlüsselung: Klartext a teilerfremd zu n verschlüsseln mit e, d.h. $b :\equiv a^e (mod \ n)$ bilden ($b \dots$ Geheimtext)