

Computational revolution in Structural Biology

ResTech All Hands Meeting: 2024 July 13 Dr Keiran Rowell

Structural Biology & Modelling

Molecules: 3D, represented by many models

Depends on application:

- Reaction energies: 1/100th of bond strength energy
- Protein structures: 0.1-0.3 nm 'atomic resolution'
- Structural Evolution: 1-in-1-billion spatial alignments

Structures 'hand-made' -> routine in the last 3 years

Comp. Struct. Bio. was academic, now determines science

Models in Chemical Biology - function follows chemical form

1957

Schrödinger speculates øn/ the molecules of life 1944

Watson & Crick's DNA doublehelix model 1953

Wilkins & Fraklin's X-ray diffraction images of DNA 1953

X-rays ruled 20thC – CryoEM & Calcs the 21st

Compute power - Moore's law +
DNA Sequencing - super-Moore's law +
Deep Learning - context scaling laws
=

Comp.Struct.Bio. - 1000x in 2 years

X'Fold' programs - co-evolution DeepLearning

DL: No physics of folding — Transformers — 1D sequence -> 3D structure

coevolution

HPC & Hyperscalers: Batch, O(N2) VRAM, O(N3) time, fixed DBs, 1000s calcs, fast I/O

'Evo'formers (GPU+CPU+DBs)

(Alpha|Open|RoseTTA|Ab)Fold

Google DeepMind

Protein-LMs (GPU)

ESMFold, ProtTrans

Diffusion GenAI (GPU)

RFDiffusion, Chroma

DL Biomolecular structures – Uses

Archaeal evolution - Michie/Burns Labs - ESMFold + FoldSeek

Sequence whole genome 4622 proteins

Structural
AFDB-search

Medical genomics - Oates Lab - RFoldNA

160 variants

Neural disease (genetic)

Healthy population'

Antibiotic Resistance - Tree Lab - RFoldNA

'Golden Staph' vancomycin tolerance via RNA structures

Immune response - Tedla Lab -T(Cell)Fold

Eukarva

Workloads – Biomolecular Structures

(Alpha)Fold walltime:

- Bulk fold a proteome (A100-40)
 - Archeal virus 613 proteins AlphaFold 22 days ESMFold 8 hrs
 - Lokiarcheon 4622 proteins AlphaFold ??(2yrs) - ESMFold 10 days
- National use (Galaxy Aus)
 - ~15k AlphaFold jobs. Median 10, mean 83. Top user 1000s
 - 55% of jobs are multiple proteins together "multimers"

(Alpha)Fold VRAM use – courtesy of Daniel Cao @ HPE – thanks for benchmarking!

Table 1 – Inference latency for long sequence				
Sequence Length	OpenFold (01 GPU)	FastFold (02 GPUs)	FastFold (04 GPUs)	FastFold (08 GPUs)
2564	~56 min	495.6 s ⁽⁶⁴⁾	262.4 s ⁽⁶⁴⁾	8 GPUs only offer marginal improvement, even when using FastFold DAP (Ref: FastFold paper below)
3013	~60 min	1391 s ⁽⁶⁴⁾	419.5 s ⁽⁶⁴⁾	
3507	~122 min	1426.17(16)	OOM ⁽⁶⁴⁾ -> 678.3 ⁽¹⁶⁾	
4008	~180 min	2873.1 s ⁽¹⁶⁾	1494.6 s ⁽¹⁶⁾	
4516		OOM ⁽¹⁶⁾	OOM ⁽¹⁶⁾ -> OOM ⁽⁸⁾ ->	
5005	OOM	OOM ⁽¹⁶⁾	OOM ⁽¹⁶⁾ -> OOM ⁽⁸⁾	
(64)/(16)/(8)/(4) Fixed chunk size of 64/16/8/4 To replicate the results, download the scripts from this <u>GitHub repo</u>				300 - 200 -

RFDiffusion walltime: design ~100 scaffolds/hr, then AlphaFolded

(c) Sequence Length = 2560

Cryo-Electron Density processing

Evolving ecosystem of EM-image software

The best (for ease of use)

- App-like user-friendly web interface, port forward
- Most popular suite, but not feature-complete
- Supports PBSPro integration for <u>long</u> image jobs

- 555 popular Structural Biology packages
- Version and dependency control (CUDA)
- UniMelb (Spartan) has SBGrid module
- source /programs/sbgrid.shrc

...and the rest

- Relion
- IMOD/Etomo
- EMAN2
- MotionCor2
- Gctf
- Scipion (Spanish CryoEM competitor to SBGrid)
- ISOLDE (interactive Molecular Dynamics refinement)
 - Iterative refinement, not 'set-and-forget' batch
 - Different graphics stacks (XCB/OpenGL, direct/indirect render)
 - Some programs (e.g. IMOD) recommend against VNC remote view
 - Monash 'MASSIVE' data visualisation HPC supports some programs

Workloads – CryoEM data transfer

Nguyen T.; Song J.; STAR Protocols 2(4):100852

61,478 particles

TBs of movie files to transfer from EMU (currently cifs share mounted on worker, want to change)

'On-the-fly' very useful (Daniel Luque)

Largely CryoSPARC portal Remote desk (RustDesk) fallback

Improved Workflows – HPC + Network

Data transfer - couple TBs/day/CryoEM scope -> GPU worker SSD cache

Next gen storage - I/O-bound, >4x AlphaFold sequence align - 7x CryoEM

GPU nodes for structure prediction - new Hopper-141GB nodes

GPU/CPU pipelines - BioCommons NextFlow proteinfold - NCI/Pawsey

More efficient methods - MMSeq2 faster sequence alignment, ESMFold

Interface wet-lab scientist friendly - nice defaults, no CLI learning

What's the Future for compute in Struct Bio?

Protein-Interaction screening:

• CoFolding large #s of proteins and drug candidates

Workflow integration with sequence data:

Ramaciotti RNASeq data in Katana -> workflow to RFoldNA 3D predictions

CryoEM <-> AlphaFold cross talk:

Experimental density maps will help de novo structure prediction and vice versa

Molecular **Dynamics**:

AlphaFold produces single static structures

GPU Quantum Chemistry of whole proteins:

AlphaFold skips molecular physics. QDX (Barca group) has protein-scale QM calcs

Questions / Discussion

How to make these tools accessible