Search and Optimization Al Assignment 2 – Spring 2025

Submitted by: Shanu Yadav(MA23M013)
Gurmeet Singh(MA23M007)

Submitted to: Dr. Ajin George Joseph

IIT Tirupati

April 6, 2025

Overview

Algorithms Implemented:

- Branch and Bound (BnB)
- Iterative Deepening A* (IDA*)
- Hill Climbing (HC)
- Simulated Annealing (SA)

Environments Used:

- Frozen Lake (BnB, IDA*)
- Ant Maze (IDA*)
- Traveling Salesman Problem (HC, SA)

Frozen Lake with BnB and Iterative Deepening A*

Click on the following link for GIF1: Above GIF Click on the following link for GIF2: Above GIF Click on the following link for GIF3: Above GIF Click on the following link for GIF4: Above GIF

Plot of Average time for BnB and IDA* for Frozen Lake

Performance Metrics:

- Avg. Time for BnB and IDA* is 2.15, 1.9 resp.
- Heuristic Function is Manhattan Distance here.

Figure: Plot 1

Figure: Plot 2

Antmaze with BnB and Iterative Deepning A*

Click on the following link for GIF1: Above GIF Click on the following link for GIF2: Above GIF

Antmaze with BnB and Iterative Deepning A*

Click on the following link for GIF3: Above GIF Click on the following link for GIF4: Above GIF

Plot of Average time for BnB and IDA* for Ant Maze

Performance Metrics:

- Avg. Time for BnB and IDA* is 2.149, 2.151 resp.
- Heuristic Function is Euclidean Distance here.

Figure: Plot 1

Figure: Plot 2

Hill Climbing on TSP

- **Heuristic Used:** Total Tour Length
- Performance Metrics:
 - Avg. Time to Reach is 0.0033 seconds
 - Number of Cities: 10
 - In best Path number of Convergence Iteration is 3.

Simulated Annealing: Performance Visualization

- Avg. Time to Reach is 0.0033 seconds
- Number of Cities: 10
- In best Path number of Convergence Iteration is 3.

Simulated Annealing Convergence

Time Plot for 5 Runs

Conclusion and Insights

- **BnB:** High accuracy, but time-intensive for larger states.
- IDA*: Balanced performance, low memory usage.
- HC: Fast but risks getting stuck in local optima.
- **SA:** Slower, but finds better global solutions in TSP.
- Observation: Trade-off between computation time and optimality.