



# **Model Optimization and Tuning Phase Template**

| Date          | 03-10-2024                                                 |
|---------------|------------------------------------------------------------|
| Team ID       | LTVIP2024TMID24892                                         |
| Project Title | Liver Patient Identification – prediction of liver patient |
| Maximum Marks | 10 Marks                                                   |

## **Model Optimization and Tuning Phase**

The Model Optimization and Tuning Phase involves refining machine learning models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

### **Hyperparameter Tuning Documentation (6 Marks):**

| Model         | Tuned Hyperparameters                                                                                                                                                                                                                                   | Optimal Values                                                                                                                                                                                                                                                                 |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Random Forest | <pre>rf_classifier = RandomForestClassifier()  param_grid = {    'n_estimators': [50, 100, 200],    'criterion': ['gini', 'entropy'],    'max_depth': [None, 10, 20, 30],    'min_samples_split': [2, 5, 10],    'min_samples_leaf': [1, 2, 4], }</pre> | accuracy = accuracy_score(y_test, y_pres)  print(f(optimal hyperparameters: (best_parame)')  print(f'Accuracy on Test Set: {accuracy}')  Optimal Hyperparameters: {'criterion': 'entropy', 'max_depth': None, 'min_samples_leaf': 1,  Accuracy on Test Set: 8.8343849844585388 |
| SVM           | <pre>svm_classifier = svm.SVC()  # Define the hyperparameters and their possible values param_grid = {     'kernel': ['linear', 'rbf', 'poly'],     'C': [0.1, 1, 10],     'gamma': ['scale', 'auto'] }</pre>                                           | accuracy = accuracy_score(y_test, y_pred) print(f'Accuracy with Best Parameters: {accuracy}')  Best Parameters: {'C': 10, 'gamma': 'scale', 'kernel': 'rbf'} Accuracy with Best Parameters: 0.77070063369426752                                                                |





```
knn_classifier = KNeighborsClassifier()

# Define the hyperparameters and their possible values

param_grid = {

    'n_neighbors': [3, 5, 7, 9],

    'weights': ['uniform', 'distance'],

    'p': [1, 2]
}

knn_classifier = KNeighborsClassifier()

# Couracy = accuracy_score(y_test, y_pred)

print(f'Accuracy on Test Set: (accuracy)')

# Optimal Hyperparameters: ('n_neighbors': 3, 'p': 1, 'weights': 'distance')

Accuracy on Test Set: 0.777078635942676
```

## **Performance Metrics Comparison Report (2 Marks):**

| Model          |               | Baseline             | Metric, o  | ptimal m    | etrics  |  |
|----------------|---------------|----------------------|------------|-------------|---------|--|
|                | print(clas    | ssification_         | report(y_t | est,y_pred) | ))      |  |
|                | Accuracy: 0.8 | 40764331 <i>2</i> 10 | 1911       |             |         |  |
|                |               | precision            |            | f1-score    | support |  |
| Random Forest  | 0             | 0.93                 | 0.72       | 0.81        | 76      |  |
| Kandom i orest | 2             | 0.79                 | 0.95       | 0.86        | 81      |  |
|                |               |                      |            |             |         |  |
|                | accuracy      |                      |            | 0.84        |         |  |
|                | macro avg     |                      |            |             |         |  |
|                | weighted avg  | 0.86                 | 0.84       | 0.84        | 157     |  |
|                | nnint/al      |                      | nonont/v   | toot v ppo  | 4))     |  |
|                | print(cia     | assification         | _report(y_ | test,y_pre  | a))     |  |
|                | Accuracy: 0.  | 73248407643          | 3121       |             |         |  |
|                |               | precision            | recall     | f1-score    | support |  |
| SVM            | ø             | 0.81                 | 0.58       | 0.68        | 76      |  |
| S V IVI        | 2             | 0.69                 | 0.88       | 0.77        | 81      |  |
|                | accuracy      |                      |            | 0.73        | 157     |  |
|                | macro avg     | 0.75                 | 0.73       | 0.72        | 157     |  |
|                | weighted avg  | 0.75                 | 0.73       | 0.73        | 157     |  |
|                |               |                      |            |             |         |  |
|                |               |                      |            |             |         |  |
|                |               |                      |            |             |         |  |





|     | <pre>print('Accuracy:', accuracy_score(y_test,y_pred)) print(classification_report(y_test,y_pred))</pre> |              |        |          |          |
|-----|----------------------------------------------------------------------------------------------------------|--------------|--------|----------|----------|
|     | Accuracy: 0.7643                                                                                         | 312101910    | 829    |          |          |
|     | pr                                                                                                       | ecision      | recall | f1-score | support  |
| KNN | 0                                                                                                        | 0.87         | 0.61   | 0.71     | 76       |
|     | 2                                                                                                        | 0.87<br>0.71 |        |          | 76<br>81 |
|     | _                                                                                                        | 0.,_         | 0.51   | 0.00     | 01       |
|     | accuracy                                                                                                 |              |        | 0.76     | 157      |
|     | macro avg                                                                                                | 0.79         | 0.76   | 0.76     | 157      |
|     | weighted avg                                                                                             | 0.79         | 0.76   | 0.76     | 157      |

## **Final Model Selection Justification (2 Marks):**

| print(classification_report(y_test,y_pred))  Accuracy: 0.8407643312101911 | Final Model   | Reasoning                    |
|---------------------------------------------------------------------------|---------------|------------------------------|
| confusion_matrix(y_test,y_pred)  array([[55, 21],                         | Random Forest | Accuracy: 0.8407643312101911 |

NOTE: I have done other models like Gradient Boosting Classifier, AdaBoost Classifier these model will be available in the lliver.ipynb file.



