

Congestion Control in Converged Ethernet with Heterogeneous and Time-Varying Delays

Wenxue Cheng, Wanchun Jiang (CSU), Tong Zhang,
Bo Wang, Kun Qian, Fengyuan Ren
NNS Group @ Tsinghua University

IEEE/ACM IWQoS 2017, VILANOVA I LA GELTRÚ, SPAIN

Converged Ethernet (CE)

Storage Area Networks (SAN)

Deterministic, in-order, guaranteed delivery to be sent to/from storage devices.

Local Area Networks (LAN)

Traditional TCP/IP based Ethernet network for best effort data communications.

Inter-process Communication Networks (IPC)

High performance computing (HPC) clusters for high speed, low latency messages.

Data Center Networks

Converged Ethernet (CE)

Enhance Ethernet as a unified fabric in data center.

Storage Area Networks (SAN)

Deterministic, in-order, guaranteed delivery to be sent to/from storage devices.

Local Area Networks (LAN)

Traditional TCP/IP based Ethernet network for best effort data communications.

Inter-process Communication Networks (IPC)

High performance computing (HPC) clusters for high speed, low latency messages.

Data Center Networks

- Indispensable for losslessness and high utilization.
- Deployed in link layer

- Indispensable for losslessness and high utilization.
- Deployed in link layer
 - Quantified Congestion Notification (QCN)
 - Recommended in standard draft of DCB.
 - Implemented in devices.
 - Extended as DCQCN to support RoCEv2

- Indispensable for losslessness and high utilization.
- Deployed in link layer
- Quantified Congestion Notification (QCN)
 - Recommended in standard draft of DCB.
 - Implemented in devices.
 - Extended as DCQCN to support RoCEv2
- Sliding Mode Congestion Control (SMCC) [Infocom'12]
 - Configuration-sensitive issue of QCN
 - Slide mode motion to be robust to the changes of system parameters and network configurations.

Heterogeneous and Time-Varying Delays

Delays in the feedback loop

-Heterogeneous for different sources.

Negative Impact of Delays

- Obstruct sources from obtaining the right congestion status timely
 - -Error rate adjustment → Overflow or Underflow
 - −Heterogeneous and time-varying delays → Complex
 - -High speed Ethernet link → More serious

Mitigate the negative impacts of delays

Heterogeneous and Time-Varying Delays

The congested switch samples the packets

 \rightarrow Take the sample period T as slot

The k_{th} feedback is sent to source i

- Backward delay: $m_i^b(k) = \left[\tau_i^b(k)/T\right]$
- Forward delay: $m_i^f(k) = \left[\tau_i^f(k)/T\right]$
- Total delay: $m_i(k) = m_i^b(k) + m_i^f(k)$

Rate Adjustments

Evolution of Switch Queue

- $\bullet Q_f$: Queue length offset to the target value q_0
- • Q_v : Queue length variance

$$\begin{cases} \Delta Q_f(k+m) = Q_v(k+m) \\ \Delta Q_v(k+m) = T(u(k) + \varepsilon(k)) \end{cases}$$

$$\begin{cases} Q_f(k+m) = Q_f(k) + mQ_v(k) + T\sum_{i=1}^m i[u(k-i) + \varepsilon(k-i)] \\ Q_v(k+m) = Q_v(k) + T\sum_{i=1}^m [u(k-i) + \varepsilon(k-i)] \end{cases}$$

$$\begin{cases}
\widehat{Q_f}(k) = Q_f(k) + mQ_v(k) + T\sum_{i=1}^m iu(k-i) \\
\widehat{Q_v}(k) = Q_v(k) + T\sum_{i=1}^m u(k-i)
\end{cases}$$

$$\begin{cases} \Delta \widehat{Q}_f(k) = \widehat{Q}_v(k) + mT\varepsilon(k - m) \\ \Delta \widehat{Q}_v(k) = T(u(k)) + T\varepsilon(k - m) \end{cases}$$

nodel

New Congestion Detector

$$\begin{cases}
\widehat{Q_f}(k) = Q_f(k) + mQ_v(k) + T\sum_{i=1}^m iu(k-i) \\
\widehat{Q_v}(k) = Q_v(k) + T\sum_{i=1}^m u(k-i)
\end{cases}$$

$$\begin{cases} \Delta \widehat{Q}_f(k) = \widehat{Q}_v(k) + mT\varepsilon(k - m) \\ \Delta \widehat{Q}_v(k) = T(u(k)) + T\varepsilon(k - m) \end{cases}$$

- • $(\widehat{Q_f}(k), \widehat{Q_v}(k))$ estimates the real evolution of the switch queue length with the impact of delays.
- $\bullet(\widehat{Q_f}(k),\widehat{Q_v}(k))$ can be calculated at time k.
- $(\widehat{Q_f}(k), \widehat{Q_v}(k)) = (0,0)$ is the stable state.
- The disturbance $\xi(k m)$ is limited

Sliding Mode Control Method

Step 1: Determining Boundary Line

- Quadrant I → Overflow
- Quadrant III → Underflow
- Quadrant II/IV
 - $\delta > 0 \rightarrow$ Overflow
 - $\delta < 0 \rightarrow$ Underflow

Step 2: Developing Rules

Fulfilling Sliding Mode Motion

• $u(k) = \begin{cases} -a\widehat{Q_f}(k), & \text{in state } A \\ -b\widehat{Q_v}(k), & \text{in state } B \end{cases}$

• Satisfy $\delta(k) * \Delta \delta(k) < 0$

Step 3: Developing Reaching Process

• $u(k) = -c\widehat{Q_f}(k)$, in state C

Sliding Mode Control Method

Step 1: Determining Boundary Line

- Quadrant I → Overflow
- Quadrant III → Underflow
- Quadrant II or IV
 - $\delta > 0 \rightarrow$ Overflow
 - $\delta < 0 \rightarrow$ Underflow

Step 2: Developing Rules Fulfilling Sliding Mode Motion

• $u(k) = \begin{cases} -a\widehat{Q_f}(k), & \text{in state } A \\ -b\widehat{Q_v}(k), & \text{in state } B \end{cases}$

• Satisfy $\delta(k) * \Delta \delta(k) < 0$

Step 3: Developing Reaching Process

• $u(k) = -c\widehat{Q_f}(k)$, in state C

Sliding Mode Control Method

Step 1: Determining Boundary Line

- Quadrant I → Overflow
- Quadrant III → Underflow
- Quadrant II or IV
 - $\delta > 0 \rightarrow$ Overflow
 - $\delta < 0 \rightarrow$ Underflow

Step 2: Developing Rules Fulfilling Sliding Mode Motion

• $u(k) = \begin{cases} -a\widehat{Q_f}(k), & \text{in state } A \\ -b\widehat{Q_v}(k), & \text{in state } B \end{cases}$

• Satisfy $\delta(k) * \Delta \delta(k) < 0$

Step 3: Developing Reaching Process

• $u(k) = -c\widehat{Q_f}(k)$, in state C

Delay-Tolerant Sliding Model (DSM) Congestion Control Scheme

Switch

$$\bullet \quad F_b(k) = \begin{cases} -a\widehat{Q_v}(k), if \ \widehat{Q_v}(k) * \left(\widehat{Q_f}(k) + \omega \widehat{Q_v}(k)\right) < 0 \\ -b\widehat{Q_v}(k), if \ \widehat{Q_f}(k) * \left(\widehat{Q_f}(k) + \omega \widehat{Q_v}(k)\right) < 0 \\ -c\widehat{Q_f}(k), if \ \widehat{Q_f}(k) * \widehat{Q_v}(k) > 0 \end{cases}$$

$$\bullet \quad \begin{cases} \widehat{Q_f}(k) = Q_f(k) + mQ_v(k) + T\sum_{i=1}^m iF_b(k-i) \\ \widehat{Q_v}(k) = Q_v(k) + T\sum_{i=1}^m F_b(k-i) \end{cases}$$

$$\begin{pmatrix} m = \inf\{m \in N^+: m_i(k) \leq m, \forall i, k\} \\ a \to \left[\frac{1}{p \max(Q_f + \omega Q_v) + \frac{m(m+1)}{2}T}\right]^- \\ b \to \left[\frac{1}{p \max(Q_v) + m}\frac{1}{T}\right]^- \\ c \to \left[\min\left\{\frac{1}{p \max(Q_v)}, \frac{1}{T}, \frac{2}{T}\right\}\right]^- \\ \omega > m + p \max(Q_v) - 1 \end{cases}$$

Delay-Tolerant Sliding Model (DSM) Congestion Control Scheme

Switch

$$F_{b}(k) = \begin{cases} -a\widehat{Q_{v}}(k), & if \ \widehat{Q_{v}}(k) * \left(\widehat{Q_{f}}(k) + \omega\widehat{Q_{v}}(k)\right) < 0 \\ -b\widehat{Q_{v}}(k), & if \ \widehat{Q_{f}}(k) * \left(\widehat{Q_{f}}(k) + \omega\widehat{Q_{v}}(k)\right) < 0 \\ -c\widehat{Q_{f}}(k), & if \ \widehat{Q_{f}}(k) * \widehat{Q_{v}}(k) > 0 \end{cases}$$

$$(\widehat{Q_{v}}(k) = Q_{v}(k) + mQ_{v}(k) + T\sum_{i=1}^{m} iE_{v}(k-i)$$

$$\begin{cases}
\widehat{Q_f}(k) = Q_f(k) + mQ_v(k) + T\sum_{i=1}^m iF_b(k-i) \\
\widehat{Q_v}(k) = Q_v(k) + T\sum_{i=1}^m F_b(k-i)
\end{cases}$$

$$m = \inf\{m \in N^+: m_i(k) \le m, \forall i, k\}$$

$$a \to \left[\frac{1}{p \max(Q_f + \omega Q_v) + \frac{m(m+1)}{2}T}\right]^-$$

•
$$\begin{cases} b \to \left[\frac{1}{p \max(Q_v) + m} \frac{1}{T} \right]^{-1} \\ c \to \left[\min \left\{ \frac{1}{p \max(Q_v)} \frac{1}{T}, \frac{2}{T} \right\} \right]^{-1} \\ \omega > m + p \max(Q_v) - 1 \end{cases}$$

•
$$r \leftarrow r + F_b$$

Complexity

Switch

- Spatial complexity: O(M)
 - Memorize the last m feedbacks
- Computing complexity: O(1)
 - Iteration Method

$$\begin{cases} S_1(k) = \sum_{i=1}^m F_b(k-i) \\ S_2(k) = \sum_{i=1}^m i F_b(k-i) \end{cases} \Rightarrow \begin{cases} \widehat{Q_f}(k) = Q_f(k) + m Q_v(k) + T S_2(k) \\ \widehat{Q_v}(k) = Q_v(k) + T S_2(k) \\ S_1(k+1) = S_1(k) + F_b(k-m) \\ S_2(k+1) = S_1(k+1) + S_2(k) - m F_b(k-m) \end{cases}$$

•NIC

•Complexity: O(1)

Stability

(a) Queue length evolutions in DSM, QCN and SMCC in 10Gbps Ethernet.

(b) Queue length evolutions in DSM, QCN and SMCC in 100Gbps Ethernet.

Responsiveness

Adaptability

Heterogeneous and Time-Varying Delays

- Dumbbell topology
- 10Gbps links
- Random delays
- 100 times

(a) Queue Length

(b) Throughput and Packet-Drops

Evaluation

Multiple Bottlenecks Scenario

Long Flows

Multiple Bottlenecks Scenario

Mixed Flows

- 5 long-lived flows
- Short flows
 - Poisson arrival
 - Heavy-tailed flow size^[SIGCOMM'09]

Conclusion

Mitigate the negative impacts of delays

- Model
 New congestion detector
 - Estimate the real congestion status with historical information.
 - Regard heterogeneous and time-varying feature as disturbances.
- Delay-tolerant Sliding Mode (DSM) scheme
 - New congestion detector → Delay-tolerant
 - Sliding mode control method → Robust to disturbances
- Properties of DSM
 - Complexity ✓Stability ✓
 - Responsiveness ▼ Adaptability ▼
 - Heterogeneous and time-varying delays
 - Multiple bottlenecks scenarios ▼

Thanks!

Q & A