applications W/Bayes

Plus some ways of handling missing data

Agenda

- Equation practice
- Fitting multilevel logistic regression models with **brms**
 - Applied walkthrough 1: Twitter data
 - Applied walkthrough 2: Lung cancer data
- Missing values

Equation practice

Data

Read in the **nurses.csv** data. Note – each row represents data for one nurse.

```
library(tidyverse)
nurses <- read_csv(here::here("data", "nurses.csv"))</pre>
```


Data

nurses

```
## # A tibble: 1,000 x 11
##
      hospital ward wardid nurse age gender experien stress wardtype
##
         <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
                                                  <dbl> <dbl> <chr>
##
                         11
                                     36 Male
                                                     11
            1
                                                             7 general care
##
   2
                        11
                                                     20
                                 45 Male
                                                             7 general care
                                  32 Male
##
                        11
                                                             7 general care
##
                        11
                                4 57 Female
                                                     25
                                                             6 general care
##
                        11
                                                     22
                                  46 Female
                                                             6 general care
##
                        11
                                6 60 Female
                                                     22
                                                             6 general care
##
                        11
                               7 23 Female
                                                     13
                                                             6 general care
##
                        11
                                8
                                                     13
                                                             7 general care
                                    32 Female
##
   9
                         11
                                9 60 Male
                                                     17
                                                             7 general care
## 10
                         12
                               10
                                     45 Male
                                                     21
                                                             6 special care
## # ... with 990 more rows
```

Fit the following model

```
	ext{stress}_i \sim N\left(lpha_{j[i]} + eta_{1j[i]}(	ext{experien}), \sigma^2
ight) \ \left(egin{array}{c} lpha_j \ eta_{1j} \end{array}
ight) \sim N\left(\left(egin{array}{c} \gamma_0^lpha + \gamma_1^lpha(	ext{wardtype}_{	ext{special care}}) \ \gamma_0^{eta_1} + \gamma_1^{eta_1}(	ext{wardtype}_{	ext{special care}}) \end{array}
ight), \left(egin{array}{c} \sigma_{lpha_j}^2 & 
ho_{lpha_jeta_{1j}} \ 
ho_{eta_{1j}lpha_j} & \sigma_{eta_{1j}}^2 \end{array}
ight) \end{array}
ight), 	ext{for wardid } \mathbf{j} = 1, \ldots, \mathbf{J}
	ext{lmer(stress } \sim \text{ experien} * \text{ wardtype } + \text{ (experien|wardid)}, 	ext{}
```

02:00

Fit the following model

```
	ext{stress}_i \sim N\left(lpha_{j[i],k[i]} + eta_{1j[i],k[i]}(	ext{experien}), \sigma^2
ight) \ \left(egin{array}{c} lpha_j \ eta_{1j} \end{array}
ight) \sim N\left(\left(egin{array}{c} \gamma_0^lpha + \gamma_1^lpha(	ext{wardtype}_{	ext{special care}}) \ \gamma_0^{eta_1} + \gamma_1^{eta_1}(	ext{wardtype}_{	ext{special care}}) \end{array}
ight), \left(egin{array}{c} \sigma_{lpha_j}^2 & 
ho_{lpha_jeta_{1j}} \ 
ho_{eta_{1j}lpha_j} & \sigma_{eta_{1j}}^2 \end{array}
ight) 
ight), 	ext{for wardid j} = 1, \ldots, J \ \left(egin{array}{c} lpha_k \ eta_{1k} \end{array}
ight) \sim N\left(\left(egin{array}{c} \gamma_0^lpha + \gamma_1^lpha(	ext{hospsize}_{	ext{medium}}) + \gamma_2^lpha(	ext{hospsize}_{	ext{small}}) \ \mu_{eta_{1k}} \end{array}
ight), \left(egin{array}{c} \sigma_{lpha_k}^2 & 
ho_{lpha_keta_{1k}} \ 
ho_{eta_{1k}lpha_k} & \sigma_{eta_{1k}}^2 \end{array}
ight) 
ight), 	ext{for hospital k} = 1, \ldots, K
```

02:00

```
egin{aligned} 	ext{stress}_i &\sim N\left(lpha_{j[i],k[i]} + eta_{1j[i],k[i]}(	ext{experien}) + eta_2(	ext{age}),\sigma^2
ight) \ \left(egin{aligned} lpha_j \ eta_{1j} \end{aligned}
ight) &\sim N\left(\left(egin{aligned} \gamma_0^lpha + \gamma_1^lpha(	ext{expcon}_{	ext{experiment}}) \ \mu_{eta_{1j}} \end{aligned}
ight), \left(egin{aligned} \sigma_{lpha_j}^2 & 0 \ 0 & \sigma_{eta_{1j}}^2 \end{aligned}
ight), 	ext{for wardid j} = 1, \ldots, 	ext{J} \ \left(egin{aligned} lpha_k \ eta_{1k} \end{aligned}
ight) &\sim N\left(\left(egin{aligned} \mu_{lpha_k} \ \mu_{eta_{1k}} \end{aligned}
ight), \left(egin{aligned} \sigma_{lpha_k}^2 & 0 \ 0 & \sigma_{eta_{1k}}^2 \end{aligned}
ight), 	ext{for hospital k} = 1, \ldots, 	ext{K} \end{aligned}
```

```
\begin{aligned} & \text{stress}_i \sim N\left(\alpha_{j[i],k[i]} + \beta_{1j[i],k[i]}(\text{experien}) + \beta_2(\text{age}), \sigma^2\right) \\ & \left(\begin{array}{c} \alpha_j \\ \beta_{1j} \end{array}\right) \sim N\left(\left(\begin{array}{c} \gamma_0^\alpha + \gamma_1^\alpha(\text{expcon}_{\text{experiment}}) + \gamma_2^\alpha(\text{wardtype}_{\text{special care}}) \\ \mu_{\beta_{1j}} \end{array}\right), \left(\begin{array}{c} \sigma_{\alpha_j}^2 & \rho_{\alpha_j\beta_{1j}} \\ \rho_{\beta_{1j}\alpha_j} & \sigma_{\beta_{1j}}^2 \end{array}\right)\right), \text{ for wardid } j = 1, \ldots, J \\ & \left(\begin{array}{c} \alpha_k \\ \beta_{1k} \end{array}\right) \sim N\left(\left(\begin{array}{c} \gamma_0^\alpha + \gamma_1^\alpha(\text{hospsize}_{\text{medium}}) + \gamma_2^\alpha(\text{hospsize}_{\text{small}}) \\ \gamma_0^{\beta_1} + \gamma_1^{\beta_1}(\text{hospsize}_{\text{medium}}) + \gamma_2^{\beta_1}(\text{hospsize}_{\text{small}}) \end{array}\right), \left(\begin{array}{cc} \sigma_{\alpha_k}^2 & \rho_{\alpha_k\beta_{1k}} \\ \rho_{\beta_{1k}\alpha_k} & \sigma_{\beta_{1k}}^2 \end{array}\right)\right), \text{ for hospital } k = 1, \ldots, K \end{aligned}
```



```
egin{aligned} & \operatorname{expcon}_i \sim \operatorname{Binomial}(n=1,\operatorname{prob}_{\operatorname{expcon}=\operatorname{experiment}} = P) \ & \log \left[ rac{\hat{P}}{1-\hat{P}} 
ight] = lpha_{j[i],k[i]} + eta_{1j[i]}(\operatorname{age}) \ & \left( egin{aligned} & lpha_j \\ & eta_{1j} \end{aligned} 
ight) \sim N \left( \left( egin{aligned} & \mu_{lpha_j} \\ & \mu_{eta_{1j}} \end{aligned} 
ight), \left( egin{aligned} & \sigma_{lpha_j}^2 & 
ho_{lpha_jeta_{1j}} \\ & 
ho_{eta_{1j}lpha_j} & \sigma_{eta_{1j}}^2 \end{array} 
ight) 
ight), 	ext{ for wardid } 	ext{j} = 1, \ldots, 	ext{J} \ & lpha_k \sim N \left( \mu_{lpha_k}, \sigma_{lpha_k}^2 \right), 	ext{ for hospital } 	ext{k} = 1, \ldots, 	ext{K} \end{aligned}
```

```
\begin{split} & \operatorname{expcon}_{i} \sim \operatorname{Binomial}(n=1,\operatorname{prob}_{\operatorname{expcon}=\operatorname{experiment}} = \widehat{P}) \\ & \log \left[ \frac{\hat{P}}{1-\hat{P}} \right] = \alpha_{j[i],k[i]} + \beta_{1j[i]}(\operatorname{age}) \\ & \left( \begin{array}{c} \alpha_{j} \\ \beta_{1j} \end{array} \right) \sim N \left( \left( \begin{array}{c} \gamma_{0}^{\alpha} + \gamma_{1}^{\alpha}(\operatorname{wardtype}_{\operatorname{special \, care}}) \\ \mu_{\beta_{1j}} \end{array} \right), \left( \begin{array}{c} \sigma_{\alpha_{j}}^{2} & \rho_{\alpha_{j}\beta_{1j}} \\ \rho_{\beta_{1j}\alpha_{j}} & \sigma_{\beta_{1j}}^{2} \end{array} \right) \right), \text{ for wardid } j = 1, \ldots, J \\ & \alpha_{k} \sim N \left( \gamma_{0}^{\alpha} + \gamma_{1}^{\alpha}(\operatorname{hospsize}_{\operatorname{medium}}) + \gamma_{2}^{\alpha}(\operatorname{hospsize}_{\operatorname{small}}), \sigma_{\alpha_{k}}^{2} \right), \text{ for hospital } k = 1, \ldots, K \end{split}
```



```
\begin{split} & \operatorname{expcon}_{i} \sim \operatorname{Binomial}(n=1,\operatorname{prob}_{\operatorname{expcon=experiment}} = \widehat{P}) \\ & \log \left[ \frac{\hat{P}}{1-\hat{P}} \right] = \alpha_{j[i],k[i]} + \beta_{1j[i],k[i]}(\operatorname{age}) + \beta_{2}(\operatorname{gender}_{\operatorname{Male}}) + \beta_{3}(\operatorname{age} \times \operatorname{gender}_{\operatorname{Male}}) \\ & \left( \begin{array}{c} \alpha_{j} \\ \beta_{1j} \end{array} \right) \sim N \left( \left( \begin{array}{c} \gamma_{0}^{\alpha} + \gamma_{1}^{\alpha}(\operatorname{wardtype}_{\operatorname{special \, care}}) \\ \mu_{\beta_{1j}} \end{array} \right), \left( \begin{array}{c} \sigma_{\alpha_{j}}^{2} & \rho_{\alpha_{j}\beta_{1j}} \\ \rho_{\beta_{1j}\alpha_{j}} & \sigma_{\beta_{1j}}^{2} \end{array} \right) \right), \text{ for wardid } j=1,\ldots,J \\ & \left( \begin{array}{c} \alpha_{k} \\ \beta_{1k} \end{array} \right) \sim N \left( \left( \begin{array}{c} \gamma_{0}^{\alpha} + \gamma_{1}^{\alpha}(\operatorname{hospsize}_{\operatorname{medium}}) + \gamma_{2}^{\alpha}(\operatorname{hospsize}_{\operatorname{small}}) \\ \mu_{\beta_{1k}} \end{array} \right), \left( \begin{array}{c} \sigma_{\alpha_{k}}^{2} & \rho_{\alpha_{k}\beta_{1k}} \\ \rho_{\beta_{1k}\alpha_{k}} & \sigma_{\beta_{1k}}^{2} \end{array} \right) \right), \text{ for hospital } k=1,\ldots,K \end{split}
```


Fit the following model

```
\begin{split} & \operatorname{expcon}_{i} \sim \operatorname{Binomial}(n=1, \operatorname{prob}_{\operatorname{expcon=experiment}} = \widehat{P}) \\ & \log \left[ \frac{\hat{P}}{1 - \hat{P}} \right] = \alpha_{j[i], k[i]} + \beta_{1}(\operatorname{age}) + \beta_{2}(\operatorname{gender}_{\operatorname{Male}}) + \beta_{3j[i], k[i]}(\operatorname{experien}) \\ & \left( \begin{array}{c} \alpha_{j} \\ \beta_{3j} \end{array} \right) \sim N \left( \left( \begin{array}{c} \gamma_{0}^{\alpha} + \gamma_{1}^{\alpha}(\operatorname{wardtype}_{\operatorname{special \, care}}) \\ \gamma_{0}^{\beta_{3}} + \gamma_{1}^{\beta_{3}}(\operatorname{wardtype}_{\operatorname{special \, care}}) \end{array} \right), \left( \begin{array}{c} \sigma_{\alpha_{j}}^{2} & \rho_{\alpha_{j}\beta_{3j}} \\ \rho_{\beta_{3j}\alpha_{j}} & \sigma_{\beta_{3j}}^{2} \end{array} \right) \right), \text{ for wardid } j = 1, \ldots, J \\ & \left( \begin{array}{c} \alpha_{k} \\ \beta_{3k} \end{array} \right) \sim N \left( \left( \begin{array}{c} \gamma_{0}^{\alpha} + \gamma_{1}^{\alpha}(\operatorname{hospsize}_{\operatorname{medium}}) + \gamma_{2}^{\alpha}(\operatorname{hospsize}_{\operatorname{small}}) \\ \gamma_{0}^{\beta_{3}} + \gamma_{1}^{\beta_{3}}(\operatorname{hospsize}_{\operatorname{medium}}) + \gamma_{2}^{\beta_{3}}(\operatorname{hospsize}_{\operatorname{small}}) \end{array} \right), \left( \begin{array}{c} \sigma_{\alpha_{k}}^{2} & \rho_{\alpha_{k}\beta_{3k}} \\ \rho_{\beta_{3k}\alpha_{k}} & \sigma_{\beta_{3k}}^{2} \end{array} \right) \right), \text{ for hospital } \mathbf{k} = 1, \ldots, J \end{split}
```

02:00

An applied example

The data

Twitter!

- Real data, collected Wednesday, but anonymized
- You can see the code I used to get the data, but you'll pull different data if you run it
- 18,000 tweets including the hashtag #blm
- Sentence-level text coded for sentiment using the {sentimentr} package, then averaged for the entire tweet

Data prep

- Tweets of exactly 0 (neutral) sentiment removed
- Collapsed to positive/negative sentiment
- A few other features pulled out too (e.g., is trump mentioned in the person's bio)

Read in the data

#

It's a little different because there's still a list column of hashtags. Use code like the following:

```
library(tidyverse)
blm <- read_rds(here::here("data", "blm_sentiment.Rds"))
blm</pre>
```

```
## # A tibble: 14,339 x 21
##
     user id status id trump in description followers count friends count
##
       <dbl>
                <dbl> <lql>
                                                   <int>
                                                                <int>
## 1 1691
                14339 FALSE
                                                     964
                                                                 859
##
   2 7740
               14338 FALSE
                                                    135
                                                                 389
##
   3 313
                14337 FALSE
                                                    261
                                                                  31
## 4 5740 14336 FALSE
## 5 5740 2927 FALSE
                                                    4032
                                                                3872
                                                    4032
                                                                3872
##
   6 5740 9379 FALSE
                                                    4032
                                                              3872
## 7 5740 2457 FALSE
                                                    4032
                                                              3872
##
   8 5740 7854 FALSE
                                                    4032
                                                                3872
## 9 5740 1550 FALSE
                                                    4032
                                                                3872
## 10
                                                    4032
                                                                3872
     5740
                11789 FALSE
## # ... with 14,329 more rows, and 11 more variables: tweet created at <dttm
```

n mentions <int>, hashtags <list>, favorite count <int>, retweet cou

Getting more info

This is a data frame like any other with one exception – the hashtags column is a list.

See all hashtags

```
blm %>%
  unnest(hashtags) %>%
  count(hashtags, sort = TRUE) # %>%
```

```
## # A tibble: 12,011 x 2
##
  hashtags
                        n
##
   <chr>
                    <int>
## 1 BLM
                    12209
## 2 blm
                2231
##
   3 BlackLivesMatter 2153
## 4 GeorgeFloyd
                 1473
##
   5 SashaJohnson 559
## 6 racism
                     416
   7 blacklivesmatter 410
                     360
##
   8 LGBTQ
                      291
   9 FBR
                      289
  10 Resist
```

List column

We can unnest() to see all of them, but we can't use that in modeling

Pull more features

Let's get the number of hashtags in the tweet

```
blm <- blm %>%
  rowwise() %>%
  mutate(n_hashtags = length(hashtags)) %>%
  ungroup()

blm %>%
  select(user_id, n_hashtags)
```

Antifa hashtag?

```
blm <- blm %>%
  rowwise() %>%
  mutate(has_antifa_hashtag = any(
     grepl("antifa", tolower(hashtags))
     )
    ) %>%
  ungroup()

blm %>%
  count(has_antifa_hashtag)
```

```
## # A tibble: 2 x 2
## has_antifa_hashtag n
## <lgl> <int>
## 1 FALSE 13786
## 2 TRUE 553
```

Data exploration

Can we use some of these features to predict whether the sentiment of the tweet is positive? Let's explore the data some. First, look at the outcome:

```
ggplot(blm, aes(is_positive_sentiment)) +
  geom_histogram()
```


What about

trump_in_description?

```
trump_proportions <- blm %>%
  mutate(sentiment = ifelse(
    is_positive_sentiment > 0, "Positive", "Negative"
    )
  ) %>%
  count(trump_in_description, sentiment) %>%
  group_by(trump_in_description) %>%
  mutate(proportion = n/sum(n))
trump_proportions
```

Visualize it

```
library(colorspace)
ggplot(trump_proportions, aes(trump_in_description, sentiment))
geom_tile(aes(fill = proportion)) +
   scale_fill_continuous_sequential(palette = "Purples 3", limits
   facet_wrap(~sentiment, scales = "free_y")
```


Quick skim

Particularly when you're working with data that you're not **super** familiar with, **skimr::skim()** can be really helpful. Try it now!

```
# install.packages("skimr")
skimr::skim(blm)
```

Distributions

Notice from **skimr::skim()** that some of the distributions are *highly* skewed, e.g., **followers_count**.

Can transformations help? Give it a try and see what you think

Log transformation

Note – it's not strictly neccessary for these to be normally distributed, but it can often help with estimation (while also potentially hurting interpretation, unless you're careful)

```
ggplot(blm, aes(log(followers_count))) +
  geom_histogram()
```


Account creation

In reality I would probably explore my data for a bit longer, unless I already knew a lot about out. For now, let's just do one more, looking at the relation between when their account was created, and whether the sentiment was positive.

Recent accounts only

Maybe a little bit of evidence...

```
blm %>%
  filter(account_created_at > lubridate::mdy("01/01/2020")) %>%
  ggplot(aes(account_created_at, factor(is_positive_sentiment)))
  geom_jitter(width = 0, alpha = 0.2)
```

Last bit

Sample size issues

The number of tweets per person varies a lot.

- When n=1 it's not theoretically a problem, although I've had issues with estimation in the past.
- You might consider including the number of tweets a person as a predictor.
 - Could be an indicator they are a bot or a journalist.

```
blm %>%
  count(user_id) %>%
  ggplot(aes(n)) +
  geom_histogram()
```


Modeling

Person-variance

We have lots of tweets from lots of people – maybe we start by modeling the baseline variability in sentiment across people?

You try first – go ahead and just use {Ime4} and then we'll replicate it with {brms}

02:00

Maximum likelihood version

```
librarv(lme4)
m0_ml <- glmer(is_positive_sentiment ~ 1 + (1|user_id),</pre>
               data = blm,
               family = binomial(link = "logit"))
arm::display(m0 ml)
## glmer(formula = is positive sentiment ~ 1 + (1 | user id), data = blm,
## family = binomial(link = "logit"))
## coef.est coef.se
## -0.40 0.02
##
## Error terms:
## Groups Name
                 Std.Dev.
## user id (Intercept) 0.95
## Residual
               1.00
## ---
## number of obs: 14339, groups: user id, 9454
\#\# AIC = 18757.7, DIC = 10514.1
## deviance = 14633.9
```

Interpretation

The baseline log-odds of a positive tweet was -0.40. The brms::inv_logit_scaled() function will translate it to probability.

```
brms::inv_logit_scaled(fixef(m0_ml))
```

```
## (Intercept)
## 0.4004497
```

So about a 40% chance.

Variability

The log-odds varied between people with a standard deviation of 0.95.

The probability of a person one standard deviation above and below the average posting a positive tweet were estimated at:

```
# Probability for an individual 1 SD below
brms::inv_logit_scaled(-0.40 - 0.95)

## [1] 0.2058704

# Probability for an individual 1 SD above
brms::inv_logit_scaled(-0.40 + 0.95)
```

[1] 0.6341356

Plot the variability

First pull the random effect estimates (deviations from the fixed effect)

```
library(broom.mixed)
tidy_m0_ml <- tidy(m0_ml, "ran_vals", conf.int = TRUE) %>%
  mutate(level = fct_reorder(level, estimate))
```

Next create the plot

Plot the variability

Fitting with {brms}

We would probably actually just pick a framework and go with that, **but**, in my experience, multilevel binomial models often have a hard time with convergence. Bayes can help with that.

Let's re-fit with {brms}

Fit using Bayes

You try first. Fit the same model using Bayes. Go ahead and assume flat priors.

```
##
-
\
|
/
-
```


Summary

Notice the variance is fairly different here

summary(m0_b)

```
## Family: bernoulli
## Links: mu = logit
## Formula: is positive sentiment ~ 1 + (1 | user id)
     Data: blm (Number of observations: 14339)
##
## Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
##
           total post-warmup samples = 4000
##
## Group-Level Effects:
## ~user id (Number of levels: 9454)
                Estimate Est. Error 1-95% CI u-95% CI Rhat Bulk ESS Tail ES
##
## sd(Intercept) 1.51 0.07 1.38 1.65 1.01 528
##
## Population-Level Effects:
##
            Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk ESS Tail ESS
## Intercept -0.46 0.03 -0.51 -0.40 1.00
                                                         2643
                                                                 2906
##
## Samples were drawn using sample(hmc). For each parameter, Bulk ESS
## and Tail ESS are effective sample size measures, and Rhat is the potenti
## scale reduction factor on split chains (at convergence, Rhat = 1).
```

Posterior predictive

pp_check(m0_b, type = "bars")

Convergence checks

plot(m0_b)

Posteriors

```
library(insight)
m0_posterior <- get_parameters(m0_b)
head(m0_posterior)</pre>
```

Plot density

Using the density

What's the likelihood that the intercept (baseline log-odds) is less than -0.5 (i.e., average probability of a positive tweet less than 0.38)?

```
sum(m0_posterior$b_Intercept < -0.5) / nrow(m0_posterior)</pre>
```

[1] 0.06925

About a 7% chance

Plot person-estimates

We have to go to {tidybayes} for this

- General purpose tool to pull lots of different things from our model and plot them
- For now, we'll do the plotting ourselves
- Let's start by looking at what's actually in the model

In this case r_* implies "random". These are the deviations from the average.

```
library(tidybayes)
get_variables(m0_b)
```

"Intercept'

"r user id

Pull random vars

- The random effect name is r_user_id
- We use brackets to assign new names

```
m0_id_re <- gather_draws(m0_b, r_user_id[id, term])
m0_id_re</pre>
```

```
## # A tibble: 37,816,000 x 7
  # Groups: id, term, .variable [9,454]
        id term .chain .iteration .draw .variable .value
##
##
  <int> <chr> <int> <int> <int> <int> <chr>
                                                  <dbl>
## 1 1 Intercept
                                         1 r user id -0.0826422
## 2 1 Intercept
                                         2 r user id -0.567424
## 3 1 Intercept
                                         3 r user id -0.546465
## 4 1 Intercept
                                         4 r user id -1.88725
##
   5 1 Intercept
                                         5 r user id 1.12419
## 6    1 Intercept
## 7    1 Intercept
                                         6 r user id -2.31118
                                         7 r user id -0.249097
## 8 1 Intercept
                                         8 r user id -3.61696
## 9 1 Intercept
                                         9 r user id -1.6264
## 10
         1 Intercept
                                  10
                                        10 r user id 0.158484
## # ... with 37,815,990 more rows
```

Compute credible intervals

I recognize this part is complex, but you'll have the code for reference

```
id_qtiles <- m0_id_re %>%
  group_by(id) %>%
  summarize(
    probs = c("median", "lower", "upper"),
    qtiles = quantile(.value,probs = c(0.5, 0.025, 0.975))
) %>%
  ungroup()
id_qtiles
```

Move it wider

Plot

Extend our model

Let's add the following predictors to our model:

- trump_in_description
- has_antifa_hashtag
- log(favorite_count + 1)

You try first

Just try writing the code - not running the model.

##

Summary

summary(m1_b)

```
## Family: bernoulli
##
   Links: mu = logit
## Formula: is positive sentiment ~ trump in description + has antifa hasht
     Data: blm (Number of observations: 14339)
##
## Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
##
          total post-warmup samples = 4000
##
## Group-Level Effects:
## ~user id (Number of levels: 9454)
##
               Estimate Est. Error 1-95% CI u-95% CI Rhat Bulk ESS Tail ES
## sd(Intercept) 1.51 0.07 1.37 1.65 1.01
                                                        663
##
## Population-Level Effects:
##
                        Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk
                           -0.47 0.03 -0.54 -0.40 1.00
## Intercept
## logfavorite countP1 0.05 0.03 -0.00 0.10 1.00
##
## Samples were drawn using sample(hmc). For each parameter, Bulk ESS
## and Tail ESS are effective sample size measures, and Rhat is the potenti
## scale reduction factor on split chains (at convergence, Rhat = 1).
```

Posteriors

What's the likelihood that our posterior mean for the log of favorite counts is positive?

```
m1_posterior <- get_parameters(m1_b)
sum(m1_posterior$b_logfavorite_countP1 > 0) / nrow(m1_posterior)
```

[1] 0.97175

97% probability! But note – this would probably just miss "significance", with a frequentist approach because of the use of two-tailed tests.

Marginal plots

conditional_effects(m1_b, "trump_in_description")

Marginal plots

conditional_effects(m1_b, "has_antifa_hashtag")

Marginal plots

Notice this is on the raw scale, not the log scale

conditional_effects(m1_b, "favorite_count")

Marginal plots: Spaghetti

Notice this is on the raw scale, not the log scale

conditional_effects(m1_b, "favorite_count", spaghetti = TRUE)

Warnings

As I was playing around with different models, I sometimes ran into warnings.

These were easy to solve in this case by just logtransforming the predictor variables that were highly skewed.

For general guidance, see here.

Break

05:00

A second example

There's more we could do here, but this example (like lots of real data) is sort of difficult for illustration. Let's try a different dataset

New data

Lung cancer data: Patients nested in doctors

```
hdp <- read_csv("https://stats.idre.ucla.edu/stat/data/hdp.csv")
   janitor::clean_names() %>%
   select(did, tumorsize, pain, lungcapacity, age, remission)
hdp
```

```
## # A tibble: 8,525 x 6
##
       did tumorsize pain lungcapacity age remission
##
     <dbl>
              <dbl> <dbl>
                               <dbl>
                                       <dbl>
                                                <dbl>
        1 67.98120
                       4 0.8010882 64.96824
## 1
                                                    0
## 2
        1 64.70246
                       2 0.3264440 53.91714
##
        1 51.56700
                       6 0.5650309 53.34730
##
        1 86.43799
                         0.8484109 41.36804
##
        1 53.40018
                         0.8864910 46.80042
        1 51.65727
##
                          0.7010307 51.92936
## 7
        1 78.91707
                         0.8908539 53.82926
##
                       3 0.6608795 46.56223
        1 69.83325
##
        1 62.85259
                       4 0.9088714 54.38936
## 10
        1 71.77790
                           0.9593268 50.54465
## # ... with 8,515 more rows
```

Predict remission

Build a model where age, lung capacity, and tumor size predict whether or not the patient was in remission.

- Build the model so you can evaluate whether or not the relation between the tumor size and likelihood of remission depends on age
- Allow the intercept to vary by the doctor ID.
- Fit the model using brms

Lung cancer remission model

```
lc <- brm(
  remission ~ age * tumorsize + lungcapacity + (1|did),
  data = hdp,
  family = bernoulli(link = "logit"),
  cores = 4,
  backend = "cmdstan"
)</pre>
```

```
##
-
\
|
/
```

Model summary

summary(lc)

```
##
   Family: bernoulli
##
   Links: mu = logit
## Formula: remission ~ age * tumorsize + lungcapacity + (1 | did)
     Data: hdp (Number of observations: 8525)
##
## Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
##
          total post-warmup samples = 4000
##
## Group-Level Effects:
## ~did (Number of levels: 407)
##
               Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk ESS Tail ES
## sd(Intercept) 2.01 0.10 1.82 2.23 1.00
                                                          599
                                                                 160
##
## Population-Level Effects:
##
               Estimate Est. Error 1-95% CI u-95% CI Rhat Bulk ESS Tail ES
## Intercept
                  1.66 1.51 -1.31 4.57 1.00 1925
                                                                 278
                 -0.05 0.03 -0.10 0.01 1.00 1919
                                                                 253
## age
                -0.01 0.02 -0.05 0.03 1.00 1931
                                                                 283
## tumorsize
## lungcapacity 0.07 0.19 -0.29 0.44 1.00 4872
                                                                 306
## age:tumorsize -0.00 0.00 -0.00
                                                        1905
                                                                 281
                                           0.00 1.00
##
## Samples were drawn using sample(hmc). For each parameter, Bulk ESS
## and Tail ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
```

67 / 125

Posterior predictive check

pp_check(lc, type = "bars")

Chains

plot(lc)

Marginal predictions: Age

conditional_effects(lc, "age")

Marginal predictions: tumor size

conditional_effects(lc, "tumorsize")

Marginal predictions: lung capacity

conditional_effects(lc, "lungcapacity")

Interaction

conditional_effects(lc, "age:tumorsize")

Make predictions

Check the relation for tumor size

Note - we're using {tidybayes} again

pred tumor

```
## # A tibble: 555,100 x 9
##
   # Groups:
               age, lungcapacity, tumorsize, did, .row [5,551]
##
        age lungcapacity tumorsize did .row .chain .iteration .draw
##
      <int>
                              <int> <dbl> <int> <int>
                    <dbl>
                                                              <int> <int>
##
                                      -999
         20
               0.7740865
                                 30
                                                                 NA
                                                                       22 0.88
    1
                                                     NA
##
    2
         20
               0.7740865
                                 30
                                     -999
                                                                       167 0.13
                                                     NA
                                                                 NA
##
    3
         20
               0.7740865
                                 30
                                     -999
                                                                       296 0.45
                                                     NA
                                                                 NA
##
    4
         20
               0.7740865
                                 30
                                     -999
                                                     NA
                                                                 NA
                                                                       327 0.93
##
    5
         20
                                 30
                                     -999
               0.7740865
                                                     NA
                                                                 NA
                                                                       371 0.31
##
         20
                                 30
                                     -999
                                                                       392 0.98
    6
               0.7740865
                                                     NA
                                                                 NA
##
    7
         20
               0.7740865
                                 30
                                     -999
                                                                       446 0.99
                                                     NA
                                                                 NA
##
    8
         20
               0.7740865
                                 30
                                     -999
                                                                       461 0.35
                                                     NA
                                                                 NA
##
         20
                                 30
                                     -999
                                                                       555 0.87
               0.7740865
                                                     NA
                                                                 NA
         20
## 10
               0.7740865
                                 30
                                     -999
                                                     NA
                                                                 NA
                                                                       559 0.74
## # ... with 555,090 more rows
```

Plot

```
ggplot(pred_tumor, aes(age, .value)) +
  stat_lineribbon()
```


Different plot

Variance by Doctor

Let's look at the relation between age and proability of remission for each of the first nine doctors.

```
pred_age_doctor <- expand.grid(
    did = unique(hdp$did)[1:9],
    age = 20:80,
    tumorsize = mean(hdp$tumorsize),
    lungcapacity = mean(hdp$lungcapacity)
) %>%
    add_fitted_draws(model = lc, n = 100)
```

pred_age_doctor

```
## # A tibble: 54,900 x 9
##
  # Groups: did, age, tumorsize, lungcapacity, .row [549]
##
              age tumorsize lungcapacity .row .chain .iteration .draw
        did
##
      <dbl> <int>
                      <dbl>
                                    <dbl> <int> <int>
                                                             <int> <int>
##
                   70.88067
          1
               20
                                0.7740865
                                                                NA
                                                                       38 0.34
    1
                                               1
                                                     NA
##
    2
                   70.88067
               20
                                0.7740865
                                                                       73 0.11
                                                     NA
                                                                NA
##
    3
                   70.88067
                                0.7740865
                                                                       99 0.00
               20
                                                     NA
                                                                NA
##
    4
               20
                   70.88067
                                0.7740865
                                                     NA
                                                                NA
                                                                      107 0.02
##
    5
               20
                   70.88067
                                0.7740865
                                                     NA
                                                                NA
                                                                      217 0.10
##
    6
               20
                   70.88067
                                0.7740865
                                                                      241 0.05
                                                     NA
                                                                NA
##
    7
                   70.88067
               20
                                0.7740865
                                                                      331 0.15
                                                     NA
                                                                NA
##
    8
                   70.88067
                                0.7740865
               20
                                                                      348 0.36
                                                     NA
                                                                NA
##
               20
                   70.88067
                                0.7740865
                                                     NA
                                                                NA
                                                                      356 0.04
## 10
               20
                   70.88067
                                0.7740865
                                                     NA
                                                                NA
                                                                      368 0.01
## # ... with 54,890 more rows
```

```
ggplot(pred_age_doctor, aes(age, .value)) +
  geom_line(aes(group = .draw), alpha = 0.2) +
  facet_wrap(~did)
```


Look at our variables

get_variables(lc)

```
##
         "b Intercept"
                                   "b age"
                                                            "b tumorsize"
     [1]
                                                            "r did[2, Intercept]'
##
     [7]
         "Intercept"
                                   "r did[1,Intercept]"
##
                                   "r did[7,Intercept]"
                                                            "r did[8, Intercept]'
    [13]
         "r did[6, Intercept]"
##
                                   "r did[13,Intercept]"
         "r did[12, Intercept]"
                                                            "r did[14, Intercept]
    [19]
##
         "r did[18, Intercept]"
    [25]
                                   "r did[19,Intercept]"
                                                            "r did[20, Intercept]
##
                                                            "r did[26, Intercept]
    [31]
         "r did[24, Intercept]"
                                   "r did[25, Intercept]"
                                   "r did[31,Intercept]"
                                                            "r did[32, Intercept]
##
    [37]
         "r did[30,Intercept]"
                                   "r did[37,Intercept]"
                                                            "r did[38, Intercept]
##
    [43]
         "r did[36, Intercept]"
         "r did[42,Intercept]"
##
                                   "r did[43,Intercept]"
    [49]
                                                            "r did[44, Intercept]
##
    [55]
         "r did[48, Intercept]"
                                   "r did[49,Intercept]"
                                                            "r did[50, Intercept]
##
         "r did[54,Intercept]"
                                                            "r did[56, Intercept]
    [61]
                                   "r did[55, Intercept]"
                                                            "r did[62,Intercept]
##
    [67]
         "r did[60,Intercept]"
                                   "r did[61,Intercept]"
         "r did[66, Intercept]"
                                                            "r did[68, Intercept]
##
    [73]
                                   "r did[67, Intercept]"
##
    [79]
         "r did[72, Intercept]"
                                   "r did[73, Intercept]"
                                                            "r did[74, Intercept]
##
    [85]
         "r did[78, Intercept]"
                                   "r did[79, Intercept]"
                                                            "r did[80, Intercept]
##
         "r did[84,Intercept]"
                                                            "r did[86, Intercept]
    [91]
                                   "r did[85,Intercept]"
                                   "r did[91,Intercept]"
                                                            "r did[92,Intercept]
##
    [97]
         "r did[90,Intercept]"
                                                            "r did[98, Intercept]
##
   [103]
         "r did[96, Intercept]"
                                   "r did[97, Intercept]"
##
         "r did[102, Intercept]"
                                                            "r did[104,Intercept
   [109]
                                   "r did[103, Intercept]"
##
   [115]
         "r did[108, Intercept]"
                                  "r did[109, Intercept]"
                                                            "r did[110,Intercept
##
   [121]
         "r did[114, Intercept]"
                                  "r did[115, Intercept]"
                                                            "r did[116, Intercept
                                  "r did[121,Intercept]"
                                                            "r did[122,Intercept
##
   [127]
         "r did[120, Intercept]"
         "r did[126,Intercept]"
                                                            "r did[128,Intercept
##
   [133]
                                  "r did[127, Intercept]"
         "r did[132, Intercept]"
                                  "r did[133, Intercept]"
                                                            "r did[134,Intercept
   [139]
```

Get all draws: Intercept

Notice I'm using **spread_draws()** here for a slightly different output format

```
int <- lc %>%
  spread_draws(b_Intercept)
int
```

```
## # A tibble: 4,000 x 4
##
     .chain .iteration .draw b Intercept
##
     <int> <int> <int> <int>
                                 <dbl>
                          1 0.799584
## 1
##
                         2 -0.0137843
##
   3
                         3 1.11889
                        4 2.99813
## 4
##
   5
                         5 1.37627
                         6 2.57053
##
                         7 3.96603
##
##
                    8 8 3.98211
## 9
                      9 0.561609
## 10
                   10
                        10 0.135172
## # ... with 3,990 more rows
```

Plot the distribution

Alternative to insight::get_parameters()

Grab random effects

The random effect name is r_did

```
spread_draws(lc, r_did[did, term])
```

```
## # A tibble: 1,628,000 x 6
## # Groups: did, term [407]
##
       \mbox{did term} \qquad \qquad \mbox{r\_did .chain .iteration .draw}
## <int> <chr> <dbl> <int> <int> <int> <int> <
## 1
        1 Intercept -1.94541
## 2
        1 Intercept -8.03429
## 3 1 Intercept -3.57734
## 4 1 Intercept -2.27834
## 5 1 Intercept -3.41082
## 6 1 Intercept -2.17562
## 10 1 Intercept -5.06383
                                             10
                                        10
## # ... with 1,627,990 more rows
```

Look at did distributions

First 75 doctors

Long format

Use **gather_draws()** for a longer format (as we did before)

```
## # A tibble: 20,000 x 5
## # Groups: .variable [5]
     .chain .iteration .draw .variable .value
##
    <int> <int> <int> <chr>
##
                                       <dbl>
## 1
                        1 b Intercept 0.799584
                  ## 2
                    2 b Intercept -0.0137843
##
##
                    4 b Intercept 2.99813
##
                        5 b Intercept 1.37627
                  6 6 b Intercept 2.57053
##
## 7
                      7 b Intercept 3.96603
                  8 8 b Intercept 3.98211
##
                 9 9 b Intercept 0.561609
##
## 10
                  10
                       10 b Intercept 0.135172
## # ... with 19,990 more rows
```

Plot the densities

```
ggplot(fixed_l, aes(.value)) +
  geom_density(fill = "#61adff", alpha = 0.7, color = NA) +
  facet_wrap(~.variable, scales = "free")
```


Multiple comparisons

One of the nicest things about Bayes is that any comparison you want to make can be made without jumping through a lot of additional hoops (e.g., adjusting α).

Scenario

Imagine a **35** year old has a tumor measuring **58 millimeters** and a lung capacity rating of **0.81**.

What would we estimate as the probability of remission if this patient had did == 1 versus did == 2?

Fixed effects

Not really "fixed", but rather just average relation

```
## # A tibble: 4,000 x 8
##
     .chain .iteration .draw b Intercept b age b tumorsize b lungcapa
                              <dbl>
##
     <int>
            <int> <int>
                                       <dbl>
                                                  <dbl>
                       1 0.799584 -0.0318583 0.00418452
## 1
                                                           0.1792
## 2
                         -0.0137843 -0.016284 0.0151118
                                                          0.0433
                  3 1.11889 -0.0304524 0.00133416
   3
##
                                                           0.0474
##
                    4 2.99813 -0.0769063 -0.0199561
                                                           0.1573
##
   5
                    5 1.37627 -0.0447789 0.00165146
                                                           0.2046
##
                      6 2.57053 -0.0661329 -0.0211792
                                                           0.1617
                      7 3.96603 -0.0934501 -0.0318102
## 7
                                                          0.1216
## 8
                       8 3.98211 -0.090909 -0.0310474
                                                          -0.0166
## 9
                    9 0.561609 -0.0246561 0.00422727
                                                           0.1612
## 10
                       10 0.135172
                 10
                                   -0.0192131 0.0167028
                                                          -0.0024
## # ... with 3,990 more rows
```

Data

```
age <- 35
tumor_size <- 58
lung_cap <- 0.81
```

Population-level predictions (there's other ways we could do this, but it's good to remind ourselves the "by hand" version too)

```
pop_level <-
   fe$b_Intercept +
   (fe$b_age * age) +
   (fe$b_tumorsize * tumor_size) +
    (fe$b_lungcapacity * lung_cap) +
    (fe$`b_age:tumorsize` * (age * tumor_size))
pop_level</pre>
```

```
## [1] -0.49463415 -0.63799719 -0.45421805 -0.30701290 -0.36786178 -0.43
## [13] -0.51347752 -0.35731807 -0.30377370 -0.45074384 -0.39412555 -0.42
## [25] -0.41777911 -0.24052536 -0.26502943 -0.14023521 -0.08610160 -0.25
## [37] -0.39127941 -0.54278890 -0.81346645 -0.82226173 -0.69583974 -0.50
```

Plot population level

Add in did estimates

```
did1 <- filter(dids, did == 1)
did2 <- filter(dids, did == 2)

pred_did1 <- pop_level + did1$r_did
pred_did2 <- pop_level + did2$r_did</pre>
```

Distributions

Plot

Transform

Let's look at this again on the probability scale using brms::inv_logit_scaled() to make the transformation.

Difference

- The difference in the probability of remission for our theoretical patient is large between the two doctors.
- The median difference in log-odds is

diff(did12_medians\$did_median)

[1] 3.629635

Exponentiation

[1] 37.69907

We can exponentiate the log-odds to get normal odds

These are fairly interpretable (especially when greater than 1)

```
# probability
inv_logit_scaled(did12_medians$did_median)

## [1] 0.03741181 0.59435448

# odds
exp(did12_medians$did_median)

## [1] 0.03886586 1.46520658

# odds of the difference
exp(diff(did12_medians$did_median))
```

We estimate that our theoretical patient is about 38 times **more likely** (!) to go into remission if they had **did** 2, instead of 1.

Confidence in difference?

Everything is a distribution

Just compute the difference in these distributions, and we get a new distribution, which we can use to summarize our uncertainty

```
did12_wider <- tibble(
   did1 = pred_did1,
   did2 = pred_did2
) %>%
   mutate(diff = did2 - did1)

did12_wider
```

Summarize

Plot distribution

Show the most likely 95% of the distribution

Directionality

Let's say we want to simplify the question to directionality.

Is there a greater chance of remission for did 2 than 1?

```
table(did12_wider$diff > 0) / 4000
```

```
##
## TRUE
## 1
```

The distributions are not overlapping at all – therefore, we are as certain as we can be that the odds of remission are higher with did 2 than 1.

One more quick example

Let's do the same thing, but comparing did 2 and 3.

```
## # A tibble: 4,000 x 3
           did2 did3 diff
##
##
          <dbl> <dbl> <dbl>
## 1 0.7427359 2.316826 1.57409
##
  2 -0.2324662 1.038893 1.271359
##
   3 0.2963330 1.632892 1.336559
## 4 0.8626371 1.552087 0.68945
##
   5 0.2879902 1.575678 1.287688
##
   6 0.2724074 1.483903 1.211496
##
   7 0.7147088 1.749563 1.034854
## 8 0.6158916 1.229078 0.613186
## 9 0.4442302 1.474110 1.02988
## 10 0.2998222 1.705350 1.405528
```

Directionality

```
table(did23$diff > 0) / 4000
```

```
## FALSE TRUE
## 0.13425 0.86575
```

So there's roughly an 87% chance that the odds of remission are higher with with did 3 than 2.

Plot data

```
## # A tibble: 12,000 x 2
## Distribution `Log-Odds`
## <chr>
                   <dbl>
## 1 did2 0.7427359
## 2 did3
              2.316826
## 3 diff
               1.57409
## 4 did2 -0.2324662
## 5 did3 1.038893
## 6 diff
                1.271359
## 7 did2
                0.2963330
## 8 did3
                1.632892
## 9 diff
               1.336559
## 10 did2
        0.8626371
## # ... with 11,990 more rows
```


Probability scale

Any time left?

Missing data

Disclaimer

- Missing data is a **massive** topic
- I'm hoping/assuming you've covered it some in other classes
- This is mostly about implementation options

Missing data on the DV

- Mostly what we tend to talk about in classes
- Also regularly the least problematic
- If we can assume MAR (missing at random conditional on covariates), most modern models do a pretty good job

Missing data on the IVs

- Much more problematic, no matter the model or application
- Remove all cases with any missingness on any IV?
 - Limits your sample size
 - Might (probably?) introduces new sources of bias
- Impute?
 - Often ethical challenges here do you really want to impute somebody's gender?

Solution?

- There really isn't a great one. Be clear about the decisions you do make.
- If you do choose imputation, use multiple imputation
 - This will allow you to have uncertainty in your imputation
- The purpose is to get unbiased population estimates for your parameters (not make inferences about an individual for whom data were imputed)

Missing IDs

- In multilevel models, you always have IDs linking the data to the higher levels
- If you are missing these IDs, I'm not really sure what to tell you
 - This is particularly common with longitudinal data (e.g., missing prior school IDs)
 - In rare cases, you can make assumptions and impute, but those are few and far between, in my experience, and the assumptions are still pretty dangerous

Let's do it

Multiple imputation

This part is general, and not specific to multilevel modeling

First, install/load the **{mice}** package (you might also check out **{Amelia}**)

library(mice)

Data

We'll impute data from the **nhanes** dataset, which comes with **{mice}**

head(nhanes)

```
## age bmi hyp chl
## 1 1 NA NA NA
## 2 2 22.7 1 187
## 3 1 NA 1 187
## 4 3 NA NA NA
## 5 1 20.4 1 113
## 6 3 NA NA 184
```

How much missingness

A lot

```
#install.packages("naniar")
naniar::vis_miss(nhanes)
```


Multiple imputation

• First, we're going to create 5 new dataset, each one with the missing data imputed

```
mi_nhanes <- mice(nhanes, m = 5, print = FALSE)</pre>
```

MI for BMI

mi_nhanes\$imp\$bmi

```
## 1 2 3 4 5
## 1 30.1 27.2 33.2 29.6 30.1
## 3 30.1 30.1 29.6 26.3 30.1
## 4 21.7 22.5 27.4 22.5 25.5
## 6 24.9 24.9 21.7 21.7 25.5
## 10 28.7 27.4 27.2 20.4 27.4
## 11 30.1 28.7 22.0 28.7 35.3
## 12 27.5 22.0 22.5 27.4 28.7
## 16 35.3 27.2 27.2 26.3 30.1
## 21 29.6 22.0 22.0 26.3 33.2
```

Fit model w/brms

Now just feed the **{mice}** object to **brms::brm_multiple()** as your data.

Note – this is considerably easier than it is with **Ime4**, but it is do-able

Alternative

- A neat thing we can do with Bayes, is to impute on the fly using the posterior
- We still get uncertainty because of the repeated samples we're taking from the posterior anyway
- With **{brms}**, we can do this by just passing a slightly more complicated formula

Missing formula

We specify a model for each column that has missingness

We have missing data in **bmi** and **chl** (not **age**).

bmi is our outcome, and it will be modeled by age and the complete (missing data imputed) chl variable, as well as their interaction

The missing data in **chl** will be imputed via a model with **age** as its predictor!

We're basically fitting two models at once.

In code

The | mi() part says to include missing data, while `

```
bayes_impute_formula <- bf(bmi | mi() ~ age * mi(chl)) + # base |
bf(chl | mi() ~ age) + # model for chl missingness
set_rescor(FALSE) # we don't estimate the residual correlation</pre>
```

Fit

```
m_onfly <- brm(bayes_impute_formula, data = nhanes)</pre>
```

Comparison

Multiple imputation before modeling

Next time

Piece-wise models, crossclassification & (maybe) multiple membership models