Week 10: Graph Mining (Graph Basic)

Instructor: Daejin Choi (djchoi@inu.ac.kr)

Our goal: Analyzing Large-Scale Data

Statistical analysis is not enough, what's next?

We first need to model the data

Graph-based model can be a solution!

WHY GRAPH?

Most data is structured from *Network*

A Complex System Consisting of Interacting Entities

The Network!

Graph Entities

What Can Be Modeled as a Graph?

Social networks

Economic networks

Communication networks

Information networks: Web & citations

Internet

Networks of neurons

"Relations" may be inferred

"Relations" may be inferred

Flavor network [1] is built by bipartite graph projection

Why Networks (Graph)? And... Why Now?

- Universal language for describing complex data
 - Networks from science, nature, and technology are more similar than one would expect
- Shared vocabulary between fields
 - Computer Science, Social Science, Physics, Economics, Statistics, Biology
- Data availability & computational challenges
 - Web/mobile, bio, health, and medical
- Impact!
 - Social networking, Drug design, AI reasoning

→ Okay, What Can We Do with Graph?

Application Example: Degree of Separation

Facebook social graph

4-degrees of separation [Backstrom-Boldi-Rosa-Ugander-Vigna, 2011]

Application Example: Social Circle Detection

Application Example: Recommendation

4+B pins, 2+B boards

Application Example: Recommendation (cont'd)

Content recommendation is link prediction

Application Example: Polarization (1/2)

Connections between political blogs

Polarization of the network [Adamic-Glance, 2005]

Application Example: Polarization (2/2)

Retweet networks: Polarized (left), Unpolarized (right)

Conover, M., Ratkiewicz, J., Francisco, M. R., Gonçalves, B., Menczer, F., & Flammini, A. "Political Polarization on Twitter." (2011)

Application Example: Misinformation

- Q: Is a given Wikipedia article a hoax?
 - Real articles link more coherently:

Hoax article detection performance:

50%

66%

Random

Human

86%

Network

<u>Disinformation on the Web: Impact, Characteristics, and Detection of Wikipedia Hoaxes</u>. Kumar et al. WWW '16.

Application Example: Virality

Information cascade in social networks

Application Example: Multi-layered Graph

Directed, weighted

Social Activity Layer (G_{pm}, G_{party})

Undirected, weighted

Friendship Layer (G_{friend})

Undirected, unweighted

Graph Basic

Revisit: Graph Definition

- Data Structure (or dataset) to model the relations of entity
 - E.g., Social relation, p2p network, code flow, paths on the map, ...
- G = (V, E, W)
 - V: a set of entity (also called as nodes, object, ...)
 - E: a set of relation (also called as link, ...)
 - W: a set of weight (on the corresponding link)

Graph Types

Undirected Graph

(A) (B)

- E consists of only undirected links
- E.g., Facebook friendship
- (Usually) indicated by (A, B)
- (A, B) = (B, A)
- Directed Graph
 - E consists of only directed links
 - E.g., Twitter following/follower
 - (Usually) indicated by <A, B>
 - <A, B> ≠ <B, A>
- Unweighted Graph
 - All elements in W are same
 - (Usually) weights are not indicated

Degrees

- In undirected graph,
 - #links connected to a given node (= #neighbors)
 - In G1, degree(0) = 3

- In directed graph,
 - In-degrees: #links toward a given node (= #incoming links)
 - Out-degrees: #links from a given node
 (= #out-going links)
 - In G3, Indegree(1) = 1, Outdegree(1) = 2

Representing a Graph: Adjacent Matrix

- For an adjacent matrix M,
 - M[i][j] = 1 if there is a link from node i to node j
 - M[i][j] = 0 otherwise
- Symmetric when undirected graph

Revisit: Tree

- A type of graph satisfying the following conditions
 - All nodes are connected (i.e., no isolated nodes)
 - No cycles

Tools for Graph Modeling & Analysis

Tools

- Graph analysis
 - igraph (Fast!)
 - NetworkX
 - Pajek
 - ...

- Network visualization tools (valid for small network)
 - Gephi
 - Graphviz
 - Pajek
 - ...

iGraph Example

```
import igraph
from igraph import Graph
if name == ' main ':
 g = Graph.Read Ncol('test1.csv', weights=True, directed=False)
 degrees = q.degree()
 node count = len(q.vs)
 edge count = len(q.es)
 print 'Number of nodes = ', node_count
 print 'Number of edges = ', edge_count
 print 'len(degrees) = ', len(degrees)
 print 'Avg.Degree = ', float(sum(degrees))/float(len(degrees))
 print degrees
 cc = g.transitivity undirected()
 print 'Avg.CC = ', cc
 # motif = g.motifs_randesu(3, None, None)
 # print 'Number of 3-motifs = ', len(motif)
```


Network Properties: A first measure for graph

Overview

- Assume that you have modeled a graph, what can you do next?
- You will have to measure "coarse-grained characteristics" of a graph!
 - Can be done with network properties

Degree distribution: P(k)

Path length:

Clustering coefficient:

Connected components: s

Definitions will be presented for undirected graphs, sometimes we will explicitly mention extensions to directed graphs, and sometimes extensions will be obvious

Network Properties: Degree Distribution

- Degree distribution P(k): Probability that a randomly chosen node has degree k
 - N_k = # nodes with degree k
- Normalized histogram:
 - $P(k) = N_k / N$

For directed graphs we have separate in- and out-degree distributions.

Paths in a Graph

 A path is a sequence of nodes in which each node is linked to the next one

$$P_n = \{i_0, i_1, i_2, \dots, i_n\} \qquad P_n = \{(i_0, i_1), (i_1, i_2), (i_2, i_3), \dots, (i_{n-1}, i_n)\}$$

- NOTE: A path can intersect itself and pass through the same edge multiple times
 - i.e., the path length between two nodes can be infinite
 - E.g.: ACBDCDEG

Network Properties: Distance (Shortest Path Length)

- The number of edges along the shortest path connecting the nodes
 - If the two nodes are not connected, the distance is usually defined as infinite (or zero)

 $h_{B,D} = 2, h_{A,X} = \infty$

 $h_{B,C} = 1, h_{C,B} = 2$

- In directed graphs, paths need to follow the direction of the arrows
 - i.e., Distance is not symmetric: $h_{B,C} \neq h_{C,B}$

Network Properties: Diameter & APL

- Diameter: The maximum (shortest path) distance between any pair of nodes in a graph
- Average path length (for a connected graph or a strongly connected directed graph)

$$\overline{h} = \frac{1}{2E_{\text{max}}} \sum_{i, j \neq i} h_{ij}$$

- $\overline{h} = \frac{1}{2E_{\max}} \sum_{i,j \neq i} h_{ij}$ h_{ij} is the distance from node i to node j• E_{\max} is the max number of edges (total number of node pairs) = n(n-1)/2

 Many times we compute the average only over the connected pairs of nodes (that is, we ignore "infinite" length paths) -> Isolated nodes are not considered!

Network Properties: Clustering Coefficient

- Clustering coefficient (for undirected graphs):
 - How connected are i's neighbors to each other?
 - Node i with degree k_i

$$C_i = \frac{2e_i}{k_i(k_i - 1)}$$
 where e_i is the number of edges between the neighbors of node i

$$C_i \in [0,1]$$
 $k_{-}(k_{-}-1)$ is max number of edges between the k_{-} neighbors

Clustering coefficient is undefined (or defined to be 0) for nodes with degree 0 or 1

• Average clustering coefficient: $C = \frac{1}{N} \sum_{i=1}^{N} C_{i}$

$$C = \frac{1}{N} \sum_{i}^{N} C_{i}$$

Computing Clustering Coefficient

- Clustering coefficient (for undirected graphs):
 - How connected are i's neighbors to each other?
 - Node i with degree k_i

$$C_i = \frac{2e_i}{k_i(k_i - 1)}$$
 where e_i is the number of edges between the neighbors of node i

$$k_B=2$$
, $e_B=1$, $C_B=2/2=1$

$$k_D=4$$
, $e_D=2$, $C_D=4/12=1/3$

Avg. clustering: C=0.33

Network Properties: Connectivity

Size of the largest connected component

Largest set where any two vertices can be joined by a

path

- Start from random node and perform Breadth First Search (BFS)
- Label the nodes that BFS visits
- If all nodes are visited, the network is connected
- Otherwise find an unvisited node and repeat BFS

Summary: Key Network Properties

Degree distribution: P(k)

Path length:

Clustering coefficient: C

Connected components: s

Network Properties in Real-world Networks

MSN Messenger

MSN Messenger: 1 month of activity

- 245 million users logged in
- 180 million users engaged in conversations
- More than 30 billion conversations
- More than 255 billion exchanged messages

Modeling Interactions as a Graph

- Messaging as an undirected graph
 - Edge (u,v) if users u and v exchanged at least 1 msg

Geography of Communication

Geography of Communication

Network: 180M people, 1.3B edges

Network Properties: Degree Distribution

Degree Distribution: Log-Log Scale

Network Properties: Clustering Coefficient

 C_k : average C_i of nodes i of degree k: $C_k = \frac{1}{N_k} \sum_{i:k_i=k} C_i$

Network Properties: Connected Components

Network Properties: Diameter of WCC

Avg. path length **6.6** 90% of the nodes can be reached in < 8 hops

Steps		#Nodes
# nodes as we do BFS out of a random node	0	1
	1	10
	2	78
	3	3,96
	4	8,648
	5	3,299,252
	6	28,395,849
	7	79,059,497
	8	52,995,778
	9	10,321,008
	10	1,955,007
	11	518,410
	12	149,945
	13	44,616
	14	13,740
	15	4,476
	16	1,542
	17	536
	18	167
	19	71
	20	29
	21	16
	22	10
	23	3
	24	2
	25	3

Summary: Properties of MSN Network

Degree distribution:

Heavily skewed; avg. degree = 14.4

Path length:

6.6

Clustering coefficient:

0.11

Connected components: giant component

Are these values "expected"?

Are they "surprising"?

Let's generate a random model and compare!

Thank you!

Instructor: Daejin Choi (djchoi@inu.ac.kr)