Großübung: Grundlagen der Theoretischen Informatik

Christopher Bischopink[™]

[™]bischopink@informatik.uni-oldenburg.de

8. November 2019

Pumping Lemma

Zeigt mit Hilfe des Pumping Lemmas für reguläre Sprachen, dass

$$L = \{a^{j^2} \mid j \ge 0\}$$

nicht regulär ist.

Satz von Myhill und Nerode

Bestimmen Sie zu den folgenden Sprachen mit dem Satz von Myhill und Nerode, ob sie regulär sind. Zeigen Sie dazu entweder, dass die Nerode-Rechtskongruenz \equiv_L unendlich viele Äquivalenzklassen besitzt, oder (i) geben Sie alle (endlich vielen) Äquivalenzklassen an und (ii) konstruieren Sie daraus den Äquivalenzklassen-Automaten.

- $L_1 = \{ w \in \{a, b, c\}^* \mid \#_a(w) = 2 \land \#_c(w) = 1 \}$
- ► $L_2 = \{a^i b^k c^m | i, k, m \in \mathbb{N} \land (i = k \lor k = m)\}$

Satz von Myhill und Nerode

Bestimmen Sie zu den folgenden Sprachen mit dem Satz von Myhill und Nerode, ob sie regulär sind. Zeigen Sie dazu entweder, dass die Nerode-Rechtskongruenz \equiv_L unendlich viele Äquivalenzklassen besitzt, oder (i) geben Sie alle (endlich vielen) Äquivalenzklassen an und (ii) konstruieren Sie daraus den Äquivalenzklassen-Automaten.

- ► $L_1 = \{ w \in \{a, b, c\}^* \mid \#_a(w) = 2 \land \#_c(w) = 1 \}$
- ► $L_2 = \{a^i b^k c^m | i, k, m \in \mathbb{N} \land (i = k \lor k = m)\}$

Skript: \equiv_L

 $u \equiv_L v$ gdw. für alle $w \in \Sigma^* : uw \in L \Leftrightarrow vw \in L$.

Entscheidbarkeitsfragen

Zeigen Sie, dass folgende Probleme für reguläre Sprachen entscheidbar sind. Gegeben sei ein beliebiger NEA

$$A = (Q, \Sigma, \delta, q_0, F)$$
 und $\Gamma \subseteq \Sigma$ und $a \in \Sigma$.

- **.**..
- ► Gilt $\forall w \in L(A) : \#_a(w) \ge 1$?

Hinweis: Geben Sie entweder einen Algorithmus an, der die obigen Probleme entscheiden kann, oder bringen Sie sie algorithmisch lösbar in die Form eines der entscheidbaren Probleme (Skript S. 32ff).