Algorithmic Thinking Luay Nakhleh

The Growth of Functions: An Illustration of Asymptotic Notation

Recall the definition of big-O that we saw in class.

Definition 1 Let T(n) and f(n) be two functions. We say that T(n) is O(f(n)), denoted by T(n) = O(f(n)), if there exist constants c > 0 and $n_0 \ge 0$ such that for all $n \ge n_0$, we have $T(n) \le c \cdot f(n)$.

How do we prove that T(n) = O(f(n)) for two functions T(n) and f(n)? How do we prove T(n) is not O(f(n)) for two other functions? For the former, we have to prove the **witnesses** c and n_0 and establish that $T(n) \le c \cdot f(n)$. For the latter, we have to show that no matter what choice of c > 0 and $n_0 \ge 0$ we make, we can always find an $n \ge n_0$ such that $T(n) \le c \cdot f(n)$. Let's see two examples.

Theorem 1 $T(n) = n^2 + 2n + 1$ is $O(n^2)$.

Proof: We need to choose c>0 and $n_0\geq 0$ such that $n^2+2n+1\leq cn^2$ for every $n\geq n_0$. While we can try to guess the witnesses c and n_0 , we can go about doing so more systematically by first solving the inequality without specific values of c and n_0 . Since $2n\leq n^2$ for $n\geq 2$ and $1\leq n^2$ for $n\geq 1$, it follows that $n^2+2n+1\leq n^2+n^2+n^2$ whenever $n\geq 2$. That is, for $n\geq 2$, we have $n^2+2n+1\leq 3n^2$. We can now take $n_0=2$ and $n_0=2$ an

Theorem 2 $T(n) = n^2$ is not O(n).

Proof: To prove this theorem, we must show that no pair of constants $n_0 \ge 0$ and c > 0 exist such that $n^2 \le cn$ for every $n \ge n_0$. That is, we need to show that for any choice of $n_0 \ge 0$ and c > 0, we can find at least one value $n \ge n_0$ such that $n^2 \not\le cn$. We use a proof technique called **proof by contradiction**. We assume that we can find a pair c > 0 and $n_0 \ge 0$ such that $n^2 \le cn$ for all $n \ge n_0$, and arrive at a contradiction. If there exist a pair c > 0 and $n_0 \ge 0$ such that $n^2 \le cn$ for all $n \ge n_0$, then $n^2 - cn \le 0$, which is equivalent to $n(n-c) \le 0$ for all $n \ge n_0$. Let n be an integer that is greater than both n_0 and c. Then, n is positive and n-c is positive. Therefore, n(n-c) is positive, which is a contradiction to the assumption that $n(n-c) \le 0$ for all $n \ge n_0$.