AgriData Explorer: Understanding Indian Agriculture with EDA

Comprehensive Project Report - Synthetic ICRISAT Dataset (Sample Results)

Student: ABILASH A

Institute: GUVI Geek Network Private Limited

Submission Date: 22 October 2025

Skills: Python, Data Cleaning, EDA, SQL, Power BI

Domain: Agriculture - Crop production, yields, area (District-level)

Table of Contents

- 1. 1. Problem Statement & Use Cases
- 2. 2. Dataset & Synthetic Generation
- 3. 3. Data Cleaning & Python Code (with outputs)
- 4. 4. Exploratory Data Analysis (Charts & Insights)
- 5. 5. SQL Queries & Sample Results
- 6. 6. Power BI Dashboard: Simulated Visuals
- 7. 7. Recommendations & Conclusion
- 8. 8. Appendix: Files & Code

1. Problem Statement & Use Cases

Problem Statement:

India's agricultural data is fragmented and complex. This project provides an integrated visualization platform to explore district-level crop production, yield, and area statistics. Stakeholders: Farmers, Policymakers, Researchers.

Business Use Cases:

- Farmers: Historical trend analysis to support crop decisions and identify productivity gaps.
- Policymakers: Target interventions to low-yield regions and design subsidy programs.
- Researchers: Combine with weather/soil data to test hypotheses on yield drivers.

2. Dataset & Synthetic Generation

Dataset Description (Synthetic)

Synthetic ICRISAT-like district-level data covering years 1975-2024.

Columns include: dist_code, year, state_code, state_name, dist_name, and per-crop: area (1000 ha), production (1000 to Rows (approx): 2,500 (district-year combinations).

Units: Area in 1000 ha, Production in 1000 tons, Yield in kg/ha.

3. Data Cleaning & Python Code

Python Script: Data Cleaning & EDA (snippet)

```
# Load and normalize columns
import pandas as pd
df = pd.read_csv('icrisat_synthetic_cleaned.csv')
df.columns = [c.strip().lower().replace(' ', '_') for c in df.columns]
# Convert numeric columns and compute yields if missing
for col in df.columns:
if 'production' in col or 'area' in col or 'yield' in col:
df[col] = pd.to_numeric(df[col], errors='coerce')
# Example: compute rice yield if missing
df['rice_yield_kg_per_ha'] = (df['rice_production_1000_tons']*1000) / (df['rice_area_1000_ha']*1000)
```


4. Exploratory Data Analysis

Key Charts and Interpretations

4. Exploratory Data Analysis

4. Exploratory Data Analysis

5. SQL Queries & Sample Results

Selected SQL Queries (for the 10 question set)

-- Total production per crop

SELECT crop, SUM(production_tonnes) AS total_production FROM agri_table GROUP BY crop ORDER BY total_production

-- Year-wise Trend Rice Production (Top 3 states)

WITH state_totals AS (SELECT state_name, SUM(rice_production_1000_tons) AS total_rice FROM agri_icrisat GROUP BY

-- Top districts groundnut 2020

SELECT dist_name, state_name, groundnut_production_1000_tons FROM agri_icrisat WHERE year=2020 ORDER BY groundnut

Figure: Sample SQLifesult - Top dist	ricts by groundก็นั _้ โคroduction in 20	20 (from synthetic data).tons)
Gujarat_D3	Gujarat	104.67
Tamil_D2	Tamil Nadu	100.06
Rajasthan_D3	Rajasthan	98.2
Rajasthan_D5	Rajasthan	92.23
Gujarat_D2	Gujarat	78.84
Gujarat_D4	Gujarat	76.93
Andhra_D2	Andhra Pradesh	74.4
Gujarat_D1	Gujarat	73.57
Rajasthan_D2	Rajasthan	71.54
Rajasthan_D1	Rajasthan	70.42

6.	Power	ΒI	Dashboa	rd: Si	imulate	d Visual	ls

Simulated Power BI Screenshots (static charts)

Figure: KPI overview (Total Production, Total Area, Avg Yield) - interactive in Power BI.

Total Production (2024): 125,418 (1000 tons)

Avg Yield (kg/ha): 7.9

Total Area (2024): 15,866.6 (1000 ha)

6. Power BI Dashboard: Simulated Visuals

6. Power BI Dashboard: Simulated Visuals

7. Recommendations & Conclusion

Recommendations

- 1. Use dashboard to prioritize extension services in mid-performing states.
- 2. Integrate weather and input data to improve forecasting accuracy.
- 3. Encourage adoption of high-yield practices from top-performing districts.

8. Appendix & Files

Files Included

- AgriData_Explorer_Report_Abilash_A_ENHANCED.pdf (this file)
- icrisat_synthetic_cleaned.csv
- agri_data_cleaning_and_eda.py
- agri_sql_schema_and_queries.sql
- PowerBI_instructions.md
- outputs/ (PNG charts used in report)

Prepared by: ABILASH A | GUVI Geek Network Private Limited | Submission Date: 22 Oct 2025