Soluciones. Anillos de polinomios.

Ejercicio 4.1. Encontrar un polinomio $f(x) \in \mathbb{Q}[x]$ de grado 3 tal que: f(0) = 6, f(1) = 12 y $f(x) \equiv (3x+3) \mod (x^2+x+1)$.

Solución:
$$f(x) = (ax + b)(x^2 + x + 1) + (3x + 3)$$

 $f(0) = b + 3 = 6$, $f(1) = (a + b)3 + 6 = 12$ y de aquí $a = -1$, $b = 3$ y $f(x) = \Box$

Ejercicio 4.2. Demostrar que en un D.E. todos los ideales son principales. Concluir entonces que el DFU $\mathbb{Z}[x]$ no es un D.E. viendo que el ideal suyo generado por 2 y x no es principal.

Ejercicio 4.3. Encontrar los polinomios irreducibles de grados 2 y 3 en $\mathbb{Z}_2[x]$, $\mathbb{Z}_3[x]$ y $\mathbb{Z}_5[x]$.

Solución: Hallaremos los irreducibles mónicos

```
En \mathbb{Z}_2 x^2 + x + 1. x^3 + x + 1, x^3 + x^2 + 1. En \mathbb{Z}_3 x^2 + 1, x^2 + x + 2, x^2 + 2x + 2. 1 + 2x + x<sup>3</sup>, 2 + 2x + x<sup>3</sup>, 2 + x + x<sup>2</sup> + x<sup>3</sup>, 1 + 2x + x<sup>2</sup> + x<sup>3</sup>, 1 + 2x<sup>2</sup> + x<sup>3</sup>, 1 + x + 2x<sup>2</sup> + x<sup>3</sup>, 2 + 2x + 2x<sup>2</sup> + x<sup>3</sup>. En \mathbb{Z}_5 2 + x<sup>2</sup>, 3 + x<sup>2</sup>, 1 + x + x<sup>2</sup>, 2 + x + x<sup>2</sup>, 3 + 2x + x<sup>2</sup>, 4 + 2x + x<sup>2</sup>, 3 + 3x + x<sup>2</sup>, 4 + 3x + x<sup>2</sup>, 1 + 4x + x<sup>2</sup>, 2 + 4x + x<sup>2</sup>. 1 + x + x<sup>3</sup>, 4 + x + x<sup>3</sup>, 1 + 2x + x<sup>3</sup>, 4 + 2x + x<sup>3</sup>, 2 + 3x + x<sup>3</sup>, 3 + 3x + x<sup>3</sup>, 2 + 4x + x<sup>3</sup>, 3 + 4x + x<sup>3</sup>, 1 + x<sup>2</sup> + x<sup>3</sup>, 2 + x<sup>2</sup> + x<sup>3</sup>, 4 + x + x<sup>2</sup> + x<sup>3</sup>, 1 + 3x + x<sup>2</sup> + x<sup>3</sup>, 4 + 3x + x<sup>2</sup> + x<sup>3</sup>, 1 + 2x<sup>2</sup> + x<sup>3</sup>, 3 + 2x + 2x<sup>2</sup> + x<sup>3</sup>, 3 + 2x + 2x<sup>2</sup> + x<sup>3</sup>, 4 + x + 2x<sup>2</sup> + x<sup>3</sup>, 4 + x + 2x<sup>2</sup> + x<sup>3</sup>, 3 + 2x + 2x<sup>2</sup> + x<sup>3</sup>, 3 + 2x + 2x<sup>2</sup> + x<sup>3</sup>, 4 + x + 2x<sup>2</sup> + x<sup>3</sup>, 2 + 2x + 2x<sup>2</sup> + x<sup>3</sup>, 3 + 2x + 2x<sup>2</sup> + x<sup>3</sup>, 3 + 4x + 2x<sup>2</sup> + x<sup>3</sup>, 3 + 4x + 2x<sup>2</sup> + x<sup>3</sup>, 4 + 3x<sup>2</sup> + x<sup>3</sup>, 3 + 4x + 2x<sup>2</sup> + x<sup>3</sup>, 4 + 3x<sup>2</sup> + x<sup>3</sup>, 3 + 4x + 3x<sup>2</sup> + x<sup>3</sup>, 3 + 4x + 3x<sup>2</sup> + x<sup>3</sup>, 3 + 4x + 2x<sup>2</sup> + x<sup>3</sup>, 4 + 4x<sup>2</sup> + x<sup>3</sup>, 4 + 4x
```

Ejercicio 4.4. Estudiar si los siguientes polinomios son reducibles ó irreducibles en $\mathbb{Z}[x]$ y en $\mathbb{Q}[x]$:

Solución:

a)
$$2x^5 - 6x^3 + 9x^2 - 15$$

Es primitivo. Aplicamos Eisenstein para p=3, irreducible en $\mathbb{Q}[X]$ y por ser primitivo irreducible en $\mathbb{Z}[X]$

b)
$$x^4 + 15x^3 + 7$$

Es primitivo. No puedo aplicar Eisenstein. Las posibles raíces racionales ± 1 y ± 7 no son raíces. El polinomio es un 4 o un 2+2.

En $\mathbb{Z}_2[x]$ resulta $x^4 + x^3 + 1$ que no tiene raíces, por tanto es un 4 o un 2+2. Como no es divisible por $x^2 + x + 1$ (el único irreducible de grado 2) obtenemos que es irreducible. La irreducibilidad en $\mathbb{Z}_2[x]$ asciende a $\mathbb{Q}[x]$ y por ser primitivo es irreducible en $\mathbb{Z}[x]$.

c)
$$x^5 + x^4 + x^2 + x + 2$$

Es primitivo. No puedo aplicar Eisenstein. Las posibles raíces racionales ± 1 y ± 2 no son raíces. El polinomio es un 5 o un 3+2.

En $\mathbb{Z}_2[x]$ resulta $x^5 + x^4 + x^2 + x = x(x+1)^2(x^2+x+1)$ es 1+1+1+2 compatible con ambos casos.

En $\mathbb{Z}_3[x]$ resulta $x^5 + x^4 + x^2 + x + 2 = (x+2)^2(x^3 + 2x + 2)$ es 1+1+3 compatible con ambos casos.

En $\mathbb{Z}_5[x]$ resulta $x^5 + x^4 + x^2 + x + 2 = (x^2 + x + 1)(x^3 + 4x + 2)$ es 2+3 compatible con ambos casos.

En $\mathbb{Z}_7[x]$ resulta $x^5 + x^4 + x^2 + x + 2 = (x+3)(x+5)(x^3+6x+2)$ es 1+1+3 compatible con ambos casos.

Lo intentaré a fuerza bruta

$$x^5 + x^4 + x^2 + x + 2 = (x^2 + ax + b)(x^3 + cx^2 + dx + e)$$

$$\begin{cases} be & = & 2 \\ bd + ae & = & 1 \\ bc + ad + e & = & 1 \\ b + ac + d & = & 0 \\ a + c & = & 1 \end{cases} \Leftrightarrow \begin{cases} a & = & 1 \\ b & = & 1 \\ c & = & 0 \\ d & = & -1 \\ e & = & 2 \end{cases}$$

Por lo que es reducible $x^5 + x^4 + x^2 + x + 2 = (x^2 + x + 1)(x^3 - x + 2)$.

ch) $2x^4 + 3x^3 + 3x^2 + 3x + 1$

Es primitivo. No puedo aplicar Eisenstein. Probamos las posibles raíces racionales ± 1 y $\pm \frac{1}{2}$. Obtenemos que -1 y $-\frac{1}{2}$ son raíces.

Dividimos y $2x^4 + 3x^3 + 3x^2 + 3x + 1 = (x+1)(2x+1)(x^2+1)$ ya que $x^2 + 1$ es irreducible en $\mathbb{Q}[x]$ y $\mathbb{Z}[x]$.

d) $x^4 - 22x^2 + 1$

Es primitivo. No puedo aplicar Eisenstein. Las posibles raíces racionales ± 1 no son raíces. El polinomio es un 4 o un 2+2.

En $\mathbb{Z}_2[x]$ resulta $x^4 + 1 = x(x+1)^4$ es 1+1+1+1.

En $\mathbb{Z}_3[x]$ resulta $x^4 + 2x^2 + 1 = (x^2 + 1)^2$ es 2+2.

En $\mathbb{Z}_5[x]$ resulta $x^4 + 3x^2 + 1 = (x+1)^2(x+4)^2$ es 1+1+1+1.

En $\mathbb{Z}_7[x]$ resulta $x^4 + 6x^2 + 1 = (x^2 + 2)(x^2 + 4)$ es 2+2.

Lo intentaré a fuerza bruta

$$x^4 - 22x^2 + 1 = (x^2 + ax + b)(x^2 + cx + d)$$

$$\begin{cases} bd = 1\\ bc + ad = 0\\ b + ac + d = -22\\ a + c = 0 \end{cases} \Leftrightarrow \text{Sin soluciones enteras}$$

Por lo que es irreducible.

e) $x^3 + 17x + 36$

Es primitivo. No puedo aplicar Eisenstein. Las posibles raíces racionales ± 1 , ± 2 , ± 3 , ± 4 , ± 6 , ± 9 , ± 12 , ± 24 y ± 36 no son raíces. El polinomio es irreducible.

f) $x^5 - x^2 + 1$

Es primitivo. No puedo aplicar Eisenstein. Las posibles raíces racionales ± 1 no son raíces. El polinomio es un 5 o un 3+2.

En $\mathbb{Z}_2[x]$ resulta que no tiene raíces y no es divisible por $x^2 + x + 1$ (el único irreducible de grado 2) por lo que es irreducible.

La irreducibilidad en $\mathbb{Z}_2[x]$ asciende a $\mathbb{Q}[x]$ y por ser primitivo es irreducible en $\mathbb{Z}[x]$.

g) $x^4 + 10x^3 + 5x^2 - 2x - 3$

Es primitivo. No puedo aplicar Eisenstein. Las posibles raíces racionales ± 1 y ± 3 no son raíces. El polinomio es un 4 o un 2+2

En $\mathbb{Z}_2[x]$ resulta $x^4 + x^2 + 1 = (x^2 + x + 1)^2$ es 2+2 compatible con ambos casos.

En $\mathbb{Z}_3[x]$ resulta $x^4 + x^3 + 2x^2 + x = x(x^3 + x^2 + 2x + 1)$ es 1+3 solo compatible con 4.

Por tanto es irreducible en $\mathbb{Q}[x]$ y por ser primitivo es irreducible en $\mathbb{Z}[x]$.

h) $x^4 + 6x^3 + 4x^2 - 15x + 1$

Es primitivo. No se puede aplicar Eisenstein. Las posibles raíces racionales ± 1 no son raíces. El polinomio es un 4 o un 2+2.

En $\mathbb{Z}_2[x]$ resulta $x^4 + x + 1$ que no tiene raíces ni es divisible por $x^2 + x + 1$, por tanto es irreducible. La irreducibilidad asciende a $\mathbb{Q}[x]$ y por ser primitivo es irreducible en $\mathbb{Z}[x]$.

i) $x^4 - x^2 - 2x - 1$

Es primitivo. No se puede aplicar Eisenstein. Las posibles raíces racionales ± 1 no son raíces. El polinomio es un 4 o un 2+2.

En $\mathbb{Z}_2[x]$ resulta $x^4 + x^2 + 1 = (x^2 + x + 1)^2$ es 2+2 compatible con ambos casos.

En $\mathbb{Z}_3[x]$ resulta $x^4 + 2x^2 + x + 2 = (x+2)^2(x^2 + 2x + 2)$ es 1+1+2 compatible con ambos casos.

En $\mathbb{Z}_5[x]$ resulta $x^4 + 4x^2 + 3x + 4 = (x+2)^2(x^2 + x + 1)$ es 1+1+2 compatible con ambos casos.

En $\mathbb{Z}_7[x]$ resulta $x^4 + 6x^2 + 5x + 6 = (x+2)^2(x^2 + x + 1)$ es 1+1+2 compatible con ambos casos.

Lo intentaré a fuerza bruta

$$x^4 - x^2 - 2x - 1 = (x^2 + ax + b)(x^2 + cx + d)$$

12 Álgebra I

$$\begin{cases} bd &= -1 \\ bc + ad &= -2 \\ b + ac + d &= -1 \\ a + c &= 0 \end{cases} \Leftrightarrow \begin{cases} a &= 1 \\ b &= 1 \\ c &= -1 \\ d &= -1 \end{cases}$$

Por lo que es reducible, $x^4 - x^2 - 2x - 1 = (x^2 + x + 1)(x^2 - x - 1)$.

j) $x^5 + 5x^4 + 7x^3 + x^2 - 3x - 11$

Es primitivo. No se puede aplicar Eisenstein. De las posibles raíces racionales ± 1 y pm11 es raíz 1 por tanto $x^5 + 5x^4 + 7x^3 + x^2 - 3x - 11 = (x - 1)(x^4 + 6x^3 + 13x^2 + 14x + 11)$. El polinomio es un 1+4 o un 1+2+2.

En $\mathbb{Z}_2[x]$ resulta $x^5 + x^4 + x^3 + x^2 + x + 1 = (x+1)(x^2 + x + 1)^2$ es 1+2+2 compatible con ambos casos.

En $\mathbb{Z}_3[x]$ resulta $x^5 + 2x^4 + x^3 + x^2 + 1 = (x+2)^2(x^3 + x^2 + 2x + 1)$ es 1+1+3 compatible con 1+4 e incompatible con 1+2+2.

Por lo que es reducible, $x^5 + 5x^4 + 7x^3 + x^2 - 3x - 11 = (x - 1)(x^4 + 6x^3 + 13x^2 + 14x + 11)$.

k) $x^5 - 10x^4 + 36x^3 - 53x^2 + 26x + 1$

Es primitivo. No se puede aplicar Eisenstein. De las posibles raíces racionales ± 1 , ninguna es raíz, por tanto es un 5 o un 3+2.

En $\mathbb{Z}_2[x]$ resulta $x^5 + x^2 + 1$ no tiene raíces ni es divisible por $x^2 + x + 1$, es por tanto irreducible.

La irreducibilidad asciende a $\mathbb{Q}[x]$ y por ser primitivo es irreducible en $\mathbb{Z}[x]$.

1) $x^4 + 6x^3 + 4x^2 - 15x + 1$

Es primitivo. No se puede aplicar Eisenstein. De las posibles raíces racionales ± 1 , ninguna es raíz, por tanto es un 4 o un 2+2.

En $\mathbb{Z}_2[x]$ resulta $x^4 + x + 1$ no tiene raíces ni es divisible por $x^2 + x + 1$, es por tanto irreducible.

La irreducibilidad asciende a $\mathbb{Q}[x]$ y por ser primitivo es irreducible en $\mathbb{Z}[x]$.

11) $x^4 + 3x^3 + 5x^2 + 1$

Es primitivo. No se puede aplicar Eisenstein. De las posibles raíces racionales ± 1 , ninguna es raíz, por tanto es un 4 o un 2+2.

En $\mathbb{Z}_2[x]$ resulta $x^4 + x^3 + x^2 + 1 = (x+1)(x^3 + x + 1)$ es un 1+3 que es compatible con 4 e incompatible con 2+2. Por tanto es irreducible en $\mathbb{Q}[x]$ y por ser primitivo es irreducible en $\mathbb{Z}[x]$.

m) $x^6 + 3x^5 - x^4 + 3x^3 + 3x^2 + 3x - 1$

Es primitivo. No se puede aplicar Eisenstein. De las posibles raíces racionales ± 1 , ninguna es raíz, por tanto es un 6 o 4+2 o 3+3 o 2+2+2.

En $\mathbb{Z}_2[x]$ resulta $x^6 + x^5 + x^4 + x^3 + x^2 + x + 1 = (x^3 + x + 1)(x^3 + x^2 + 1)$ es un 3+3 que es compatible con 6 o 3+3 e incompatible con 4+2 o 2+2+2.

En $\mathbb{Z}_3[x]$ resulta $x^6 + 2x^4 + 2 = (x^2 + 1)(x^4 + x^2 + 2)$ es un 2+4 que es compatible con 6 o 4+2 o 2+2+2 e incompatible con 3+3.

Por tanto es irreducible en $\mathbb{Q}[x]$ y por ser primitivo es irreducible en $\mathbb{Z}[x]$.

n) $x^4 + 4x^3 - x^2 + 4x + 1$

Es primitivo. No se puede aplicar Eisenstein. De las posibles raíces racionales ± 1 , ninguna es raíz, por tanto es un 4 o 2+2.

En $\mathbb{Z}_2[x]$ resulta $x^4 + x^2 + 1 = (x^2 + x + 1)^2$ es un 2+2 que es compatible con ambos casos.

En $\mathbb{Z}_3[x]$ resulta $x^4 + x^3 + 2x^2 + x + 1 = (x+1)(x^3 + 2x + 2)$ es un 1+3 que es compatible con 4 e incompatible con 2+2.

Por tanto es irreducible en $\mathbb{Q}[x]$ y por ser primitivo es irreducible en $\mathbb{Z}[x]$.

 \tilde{n}) $x^5 - 6x^4 + 3x^3 + 2x - 1$

o) $2x^4 + 2x^3 + 6x^2 + 4$

No es primitivo $2x^4 + 2x^3 + 6x^2 + 4 = 2(x^4 + x^3 + 3x^2 + 2)$. Estudiamos $(x^4 + x^3 + 3x^2 + 2)$, no se puede aplicar Eisenstein. De las posibles raíces racionales ± 1 y ± 2 , ninguna es raíz, por tanto es un 4 o 2+2.

En $\mathbb{Z}_2[x]$ resulta $x^4 + x^2 + 1 = (x^2 + x + 1)^2$ es un 2+2 que es compatible con ambos casos.

En $\mathbb{Z}_3[x]$ resulta $x^4 + x^3 + 2x^2 + x + 1 = (x+1)(x^3 + 2x + 2)$ es un 1+3 que es compatible con 4 e incompatible con 2+2.

Por tanto $x^4 + x^3 + 3x^2 + 2$ es irreducible en $\mathbb{Q}[x]$ y por ser primitivo es irreducible en $\mathbb{Z}[x]$. Y de aquí, $2x^4 + 2x^3 + 6x^2 + 4$ es irreducible en $\mathbb{Q}[x]$ y reducible $2x^4 + 2x^3 + 6x^2 + 4 = 2(x^4 + x^3 + 3x^2 + 2)$ en $\mathbb{Z}[x]$

p) $3x^5 - x^4 - 4x^3 - 2x^2 + 2x + 1$

Es primitivo. No se puede aplicar Eisenstein. Las posibles raíces racionales ± 1 y $\pm \frac{1}{3}$ no son raíces. El polinomio es un 5 o un 3+2.

Departamento de Álgebra

En $\mathbb{Z}_2[x]$ resulta $x^5 + x^4 + 1 = (x^2 + x + 1)(x^3 + x + 1)$ es 3+2 compatible con ambos casos.

En $\mathbb{Z}_3[x]$ no podemos aplicar criterios pues baja el grado.

En $\mathbb{Z}_5[x]$ resulta $3x^5 + 4x^4 + x^3 + 3x^2 + 2x + 1 = 3(x+3)(x^2+2x+3)(x^2+3x+3)$ es 1+2+2 compatible con ambos

Lo intentaré a fuerza bruta

Lo intentaré a fuerza bruta

$$3x^5 - x^4 - 4x^3 - 2x^2 + 2x + 1 = (ax^2 + bx + 1)(cx^3 + dx^2 + ex + 1)$$

$$\begin{cases} ac & = & 3 \\ bc + ad & = & -1 \\ c + bd + ae & = & -4 \\ a + d + be & = & -2 \\ b + e & = & 2 \end{cases} \Leftrightarrow \begin{cases} a & = & -3 \\ b & = & 1 \\ c & = & -1 \\ d & = & 0 \\ e & = & 1 \end{cases}$$

Por lo que es reducible, $3x^5 - x^4 - 4x^3 - 2x^2 + 2x + 1 = (-3x^2 + x + 1)(-x^3 + x + 1)$.

q) $x^4 - x^3 + 9x^2 - 4x - 1$

Es primitivo. No se puede aplicar Eisenstein. Las posibles raíces racionales ± 1 no son raíces. El polinomio es un 4 o un 2+2.

En $\mathbb{Z}_2[x]$ resulta $x^4 + x^3 + x^2 + 1 = (x+1)(x^3 + x + 1)$ es 1+3 compatible con 4 e incompatible con 2+2.

Por tanto $x^4 - x^3 + 9x^2 - 4x - 1$ es irreducible en $\mathbb{Q}[x]$ y por ser primitivo es irreducible en $\mathbb{Z}[x]$.

r) $x^7 + 5x^6 + x^2 + 6x + 5$

Es primitivo. No se puede aplicar Eisenstein. Las posibles raíces racionales ± 1 y ± 5 nos dan como raíz -5. Por tanto $x^7 + 5x^6 + x^2 + 6x + 5 = (x + 5)(x^6 + x + 1)$. Comenzamos el estudio de $x^6 + x + 1$. Pude ser 6 o 4+2 o 3+3 o 2+2+2

En $\mathbb{Z}_2[x]$ resulta $x^6 + x + 1$ no tiene raíces, no es divisible por $x^2 + x + 1$, ni por $x^3 + x + 1$, ni por $x^3 + x^2 + 1$. Por tanto es irreducible.

Y de ahí, $x^6 + x + 1$ es irreducible en $\mathbb{Q}[x]$ y por ser primitivo es irreducible en $\mathbb{Z}[x]$.

La factorización en irreducibles será $x^7 + 5x^6 + x^2 + 6x + 5 = (x+5)(x^6 + x + 1)$.

s) $3x^5 + 42x^3 - 147x^2 + 21$

No es primitivo $3x^5 + 42x^3 - 147x^2 + 21 = 3(x^5 + 14x^3 - 49x^2 + 7)$. Estudiamos $x^5 + 14x^3 - 49x^2 + 7$, se puede aplicar Eisenstein (p=7) y obtenemos que es irreducible en $\mathbb{Q}[x]$ y en $\mathbb{Z}[x]$. Por tanto $3x^5 + 42x^3 - 147x^2 + 21$ es irreducible en $\mathbb{Q}[x]$ y reducible $3x^5 + 42x^3 - 147x^2 + 21 = 3(x^5 + 14x^3 - 49x^2 + 7)$ en $\mathbb{Z}[x]$.

t) $x^5 + 3x^4 + 10x^2 - 2$

Es primitivo. No se puede aplicar Eisenstein. Las posibles raíces racionales ± 1 y ± 2 no son raíces. El polinomio es un 5 o un 3+2.

En $\mathbb{Z}_2[x]$ resulta $x^5 + x^4 = x^4(x+1)$ es 1+1+1+1+1 es compatible con ambos casos.

En $\mathbb{Z}_3[x]$ resulta $x^5 + x^2 + 1 = (x+2)(x^4 + x^3 + x^2 + 2x + 2)$ es 1+4 que es incompatible con 3+2.

Por tanto $x^5 + 3x^4 + 10x^2 - 2$ es irreducible en $\mathbb{Q}[x]$ y por ser primitivo es irreducible en $\mathbb{Z}[x]$.

u) $x^4 + 3x^2 - 2x + 5$

Es primitivo. No se puede aplicar Eisenstein. Las posibles raíces racionales ± 1 y ± 5 no son raíces. El polinomio es un 4 o un 2+2.

En $\mathbb{Z}_2[x]$ resulta $x^4 + x^2 + 1 = (x^2 + x + 1)^2$ es 2+2 es compatible con ambos casos.

En $\mathbb{Z}_3[x]$ resulta $x^4 + x + 2$ no tiene raíces ni es divisible por $x^2 + 1$, ni por $x^2 + x + 2$, ni por $x^2 + 2x + 2$. Luego es irreducible.

Por tanto $x^4 + 3x^2 - 2x + 5$ es irreducible en $\mathbb{Q}[x]$ y por ser primitivo es irreducible en $\mathbb{Z}[x]$.

v) $3x^6 + x^5 + 3x^2 + 4x + 1$

Es primitivo. No se puede aplicar Eisenstein. Las posibles raíces racionales ± 1 y $\pm \frac{1}{3}$ dan como raíz $-\frac{1}{3}$, resul-

tando $3x^6 + x^5 + 3x^2 + 4x + 1 = (3x + 1)(x^5 + x + 1)$. Pasamos a estudiar $x^5 + x + 1$ que es un 5 o un 3+2.

En $\mathbb{Z}_2[x]$ resulta $x^5 + x + 1 = (x^2 + x + 1)(x^3 + x + 1)$ es 3+2 compatible con ambos casos.

En $\mathbb{Z}_3[x]$ resulta $x^5 + x + 1 = (x+2)^2(x^3 + 2x^2 + 1)$ es 1+1+3 compatible con ambos casos.

En $\mathbb{Z}_5[x]$ resulta $x^5 + x + 1 = 3(x+3)(x^2 + x + 1)(x^2 + x + 2)$ es 1 + 2 + 2 compatible con ambos casos.

Lo intentaré a fuerza bruta

$$x^5 + x + 1 = (x^2 + ax + b)(x^3 + cx^2 + dx + e)$$

$$\left\{ \begin{array}{cccc} a+c & = & 0 \\ b+ac+d & = & 0 \\ bc+ad+e & = & 0 \\ bd+ae & = & 1 \\ be & = & 1 \end{array} \right\} \Leftrightarrow \left\{ \begin{array}{cccc} a & = & 1 \\ b & = & 1 \\ c & = & -1 \\ d & = & 0 \\ e & = & 1 \end{array} \right\}$$

Por lo que es reducible, $x^5 + x + 1 = (x^2 + x + 1)(x^3 - x^2 + 1)$.

14 Álgebra I

w) $2x^4 + x^3 + 5x + 3$

Es primitivo. No se puede aplicar Eisenstein. Las posibles raíces racionales $\left\{\pm 1, \pm 3, \pm \frac{1}{2}, \pm \frac{3}{2}\right\}$ no lo son. El polinomio es un 4 o un 2+2.

En $\mathbb{Z}_2[x]$ no podemos estudiarlo pues baja el grado.

En $\mathbb{Z}_3[x]$ resulta $2x^4 + x^3 + 2x = x(2x^3 + x^2 + 2)$ es un 1+3 que solo es compatible con 4.

Por tanto $2x^4 + x^3 + 5x + 3$ es irreducible en $\mathbb{Q}[x]$ y por ser primitivo es irreducible en $\mathbb{Z}[x]$.

 $x) 2x^5 - 2x^2 - 4x - 2$

No es primitivo. $2x^5 - 2x^2 - 4x - 2 = 2(x^5 - x^2 - 2x - 1)$. Pasamos a estudiar $x^5 - x^2 - 2x - 1$. No se puede aplicar Eisenstein. Las posibles raíces racionales ± 1 no lo son. El polinomio es un 5 o un 3+2.

En $\mathbb{Z}_2[x]$ resulta $x^5 + x^2 + 1$ no tiene raíces ni es divisible por $x^2 + x + 1$ por tanto es irreducible.

Por tanto $2x^5 - 2x^2 - 4x - 2$ es irreducible en $\mathbb{Q}[x]$ y es reducible $2x^5 - 2x^2 - 4x - 2 = 2(x^5 - x^2 - 2x - 1)$ en $\mathbb{Z}[x]$.

v) $3x^4 + 3x^3 + 9x^2 + 6$

No es primitivo. $3x^4 + 3x^3 + 9x^2 + 6 = 3(x^4 + x^3 + 3x^2 + 2)$. Pasamos a estudiar $x^4 + x^3 + 3x^2 + 2$. No se puede aplicar Eisenstein. Las posibles raíces racionales ± 2 no lo son. El polinomio es un 4 o un 2+2.

En $\mathbb{Z}_2[x]$ resulta $x^4 + x^3 + x^2 = x^2(x^2 + x + 1)$ es un 1+1+2 compatible con ambos casos.

En $\mathbb{Z}_3[x]$ resulta $x^4 + x^3 + 2$ no tiene raíces ni es divisible por $x^2 + 1$, ni por $x^2 + x + 2$, ni por $x^2 + 2x + 2$. Luego es irreducible.

Por tanto $3x^4 + 3x^3 + 9x^2 + 6$ es irreducible en $\mathbb{Q}[x]$ y es reducible $3x^4 + 3x^3 + 9x^2 + 6 = 3(x^4 + x^3 + 3x^2 + 2)$ en $\mathbb{Z}[x]$.

z) $x^6 - 2x^5 - x^4 - 2x^3 - 2x^2 - 2x - 1$

Es primitivo. No se puede aplicar Eisenstein. Las posibles raíces racionales ± 1 no lo son. El polinomio es un 6 o un 4+2 o un 3+3 o un 2+2+2.

En $\mathbb{Z}_2[x]$ resulta $x^6 + x^4 + 1 = (x^3 + x^2 + 1)^2$ es 3+3 compatible con 6 o 3+3.

En $\mathbb{Z}_3[x]$ resulta $x^6 + x^5 + 2x^4 + x^3 + x^2 + x + 1 = (x+1)(x+2)(x^4 + x^3 + 2x + 1)$ es 1+1+4 compatible con 6 e incompatible con 3+3.

Por tanto $x^6 - 2x^5 - x^4 - 2x^3 - 2x^2 - 2x - 1$ es irreducible en $\mathbb{Q}[x]$ y como es primitivo es irreducible en $\mathbb{Z}[x]$.

 α) $6x^4 + 9x^3 - 3x^2 + 1$

Es primitivo. No se puede aplicar Eisenstein. Las posibles raíces racionales ± 1 no lo son. El polinomio es un 4 o un 2+2.

En $\mathbb{Z}_2[x]$ y $\mathbb{Z}_3[x]$ no podemos estudiarlo porque baja el grado.

En $\mathbb{Z}_5[x]$ resulta $x^4 + 4x^3 + 2x^2 + 1 = (x+1)(x^3 + 3x^2 + 4x + 1)$ es 1+3 compatible con 4 e incompatible con 2+2. Por tanto $6x^4 + 9x^3 - 3x^2 + 1$ es irreducible en $\mathbb{O}[x]$ y como es primitivo es irreducible en $\mathbb{Z}[x]$.

 β) $2x^4 + 8x^3 + 10x^2 + 2$

No es primitivo. $2x^4 + 8x^3 + 10x^2 + 2 = 2(x^4 + 4x^3 + 5x^2 + 1)$. Pasamos a estudiar $x^4 + 4x^3 + 5x^2 + 1$. No se puede aplicar Eisenstein. Las posibles raíces racionales ± 1 no lo son. El polinomio es un 4 o un 2+2.

En $\mathbb{Z}_2[x]$ resulta $x^4 + x^2 + 1 = (x^2 + x + 1)^2$ es un 2+2 compatible con ambos casos.

En $\mathbb{Z}_3[x]$ resulta $x^4 + x^3 + 2x^2 + 1 = (x+1)(x^3 + 2x + 1)$ es 1+3 compatible con 4 e incompatible con 2+2.

Por tanto $2x^4 + 8x^3 + 10x^2 + 2$ es irreducible en $\mathbb{Q}[x]$ y reducible $2x^4 + 8x^3 + 10x^2 + 2 = 2(x^4 + 4x^3 + 5x^2 + 1)$ en $\mathbb{Z}[x]$.

 $(x^4 + 4x^3 + 6x^2 + 2x + 1)$

Es primitivo. No se puede aplicar Eisenstein. Las posibles raíces racionales ± 1 no lo son. El polinomio es un 4 o un 2+2.

En $\mathbb{Z}_2[x]$ resulta $x^4 + 1 = (x+1)^4$ es un 1+1+1+1 compatible con ambos casos.

En $\mathbb{Z}_3[x]$ resulta $x^4 + x^3 + 2x + 1$ que no tiene raíces y no es divisible por $x^2 + 1$, ni por $x^2 + x + 2$, ni por $x^2 + 2x + 2$. Es irreducible.

Por tanto $x^4 + 4x^3 + 6x^2 + 2x + 1$ es irreducible en $\mathbb{Q}[x]$ y como es primitivo es irreducible en $\mathbb{Z}[x]$.

 δ) $x^6 - x^5 + 3x^4 + x + 2$ sabiendo que reducido módulo 7, es producto de un polinomio de grado 1 por un irreducible de grado 5.

Departamento de Álgebra