

CSE408 Design and analysis of algorithms

Lecture #0

Course details

- LTP 3 0 0 [Three lectures/week]
- (Self Learning Mode)
- Text Book
 - INTRODUCTION TO THE DESIGN
 AND ANALYSIS OF ALGORITHMS
 - ANANY LEVITIN,
 PEARSON EDUCATION

hent Model

1. >=90% -- 5 marks

Each CA would be of 30 marks.

Best 2 would be taken at the end

MTE would be of 40 marks

ETE would be of 70 marks and it would be prorated to 50 at the end

ETE

Total

Detail of Academic Tasks

• AT1: Test1 Before MTE

• AT2: Test2 Before MTE

• AT3: Test3 After MTE

Why we need to study this course?

Why are we learning Design and analysis of algorithms?

- Algorithms are used in almost every program or software system.
- Once we design an algorithm we need to know how well it performs on any input.
- In particular we would like to know whether there are better algorithms for the problem, An answer to this first demands a way to analyze an algorithm in a machine-independent way.
- Some Specific design techniques are essential ingredients of many software applications.

- UNIT I Foundations of algorithm
- UNIT II String matching algorithms and computational geometry
- UNIT III Divide and conquer and ordered statists
- UNIT IV Dynamic programming and greedy techniques
- UNIT V Approximation algorithms
- UNIT VI Number-theoretic algorithms and complexity classes

UNIT I

Foundations of algorithm

Analysis and growth

Basic DS

- Analysis of algorithm:
- History and Motivation
- A Scientific Approach, Example: Quicksort
- Introductions to "big-oh" notation and asymptotic analysis.
- Recurrence relations:
- Computing Values
- Telescoping
- Types of Recurrences
- Mergesort
- Master Theorem .
- Overview of generating functions:
- Ordinary Generating Functions
- Counting with Generating Functions
- Catalan Numbers,
- Solving Recurrences

- Exponential Generating Functions
- Asymptotics:
- Standard Scale
- Manipulating Expansions
- Asymptotics of Finite Sums
- Asymptotics of Finite Sums
- Trees:
- Trees and Forests
- Binary Search Trees
- Path Length
- Other Types of Trees.

Link of Coursera:-

https://www.coursera.org/learn/analysis-of-

<u>algorithms</u>

UNIT IIString matching algorithms and computational geometry

- Strings and Tries:
- Bitstrings with Restrictions
- Languages
- Tries
- Trie Parameters Key pattern matching concepts:
- Suffix Tree
- Suffix Array
- Knuth-Morris-Pratt algorithm .

Link of Coursera:-

https://www.coursera.org/learn/algorithms-onstrings

UNIT III

Divide and conquer and ordered statists

- What Are Divide and Conquer Algorithms?
- Max Subarray Problem Using Divide and Conquer
- Karatsuba's Multiplication Algorithm
- FFT Part 1: Introduction and Complex Numbers
- FFT Definition and Interpretation of Discrete Fourier Transforms
- FFT: Divide and Conquer Algorithm for FFT Application
- # 1 : Fast Polynomial Multiplication using FFT Application

2: Data Analysis using FFT

Link of Coursera

https://www.coursera.org/learn/dynamicprogramming-greedy-algorithms#modules

UNIT IV

Dynamic programming and greedy technique

Which sweet should I have next?

Dynamic programming(Knap sack)

Greedy technique

Greedy technique

Shortest Distance=?

Dynamic programming

Shortest Distance=?

- Introduction to Dynamic Programming + Rod Cutting Problem
- Coin Changing Problem
- Knapsack Problem
- When Optimal Substructure Fails
- Dynamic Programming: Longest Common
 Subsequence
 https://www.coursera.org/learn/dyname
- Memoization
- Coin Changing Problem.
- Introduction to Greedy Algorithms
- Greedy Interval Scheduling
- Prefix Codes
- Huffman Codes
- Huffman Codes: Proof of Optimality

https://www.coursera.org/learn/dynamicprogramming-greedy-algorithms#modules

UNIT V

Backtracking and approximation algorithms

- Introduction to Approximation Algorithms
- Introduction to Job shop Scheduling and Algorithm Design
- Analysis of Job shop Scheduling
- Approximation Algorithms for Vertex Cover and their Analysis,
- Approximation Algorithms for the Maximum Satisfiability Problem
- Travelling Salesman Problem
- Approximation Schemes: Introduction to TSP and its applications
- NP-Hardness of TSPs
- Hardness of Approximating General TSPs

Link of Coursera

https://www.coursera.org/learn/linearprogramming-and-approximationalgorithms#modules

UNIT VI

Number-theoretic algorithms and complexity classes

- Decision Problems and Languages
- Polynomial Time Problems
- NP Definition
- NP Completeness and Reductions
- NP Complete Problems: Examples
- Computation and Physics Qubits and Operations
- Bell's Inequality
- Grover's Search Algorithm

Link of coursera

https://www.coursera.org/learn/dynamicprogramming-greedy-algorithms#modules It is mandatory to complete the number of course for being eligible for End Term Examination along with the attendance criteria of the university. The links of the courses as shared in the IP should be completed on/before the last teaching day as per the academic calendar of the university.

What will be the course outcome?

CO1: Understand the basic techniques of analyzing the algorithms using space and time complexity, asymptotic notations

CO2: Apply the various string matching algorithms

CO3: Analyze the divide and conquer algorithm design technique using various searching and sorting algorithms

CO4: Evaluate the various dynamic programming and greedy algorithm design technique to solve various problems

CO5: :Apply the backtracking method to solve some classic problems and understand branch and bound algorithm design technique

CO6: Define Number-Theoretic Algorithms and Complexity Classes and understand the basics concepts of complexity classes

What will be the Program outcome?

PO1::Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2::Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences.

PO3::Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4::Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5::Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.

PO6::Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7::Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8::Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9::Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10::Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11::Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12::Recognize the need for, and have the preparation and ability to engage in independent and lifelong learning in the broadest context of technological change.

MOOCs or Industry certification

Details of MOOC Provider	MOOC Name
Coursera	Design and Analysis of algorithms

Bloom's Taxonomy

Produce new or original work

Design, assemble, construct, conjecture, develop, formulate, author, investigate

evaluate

Justify a stand or decision

appraise, argue, defend, judge, select, support, value, critique, weigh

analyze

Draw connections among ideas

differentiate, organize, relate, compare, contrast, distinguish, examine, experiment, question, test

apply

Use information in new situations

execute, implement, solve, use, demonstrate, interpret, operate, schedule, sketch

understand

Explain ideas or concepts

classify, describe, discuss, explain, identify, locate, recognize, report, select, translate

remember

Recall facts and basic concepts

define, duplicate, list, memorize, repeat, state

OER(OPEN EDUCATIONAL RESOURCE)

OPEN EDUCATIONAL RESOURCE

Course Code: CSE408

Course Title: DESIGN AND ANALYSIS OF ALGORITHMS

L.T.P: 3.0.0 Credit: 3

Course Code	Course Title	Unit	Broad	OER	Title of OER	*%age	Source URL
	Title	mapped	topic/Sub Topic	Туре	OER	mapped with OER (approx)	
CSE408:DESIGN ANALYSIS OF ALGORITHMS	AND	Unit 1	Analysis of algorithm: History and Motivation, A Scientific Approach, Example: Quicksort. Introductions to "big-oh" notation and asymptotic analysis Recurrence relations: Computing Values, Telescoping, Types of Recurrences, Mergesort, Master	online Coursera Portal	Modules and content will be made available through the online Coursera Portal, enabling individuals to attain a heightened clarity on algorithmic concept		https://www.coursera .org/learn/analysis-of- algorithms https://www.coursera. org/learn/data- structures

generating functions: Ordinary Generating Functions, Counting with	
Ordinary Generating Functions, Counting with	
Generating Functions, Counting with	
Functions, Counting with	
Counting with	
Generating Functions,	- 1
Catalan	
Numbers,	
Solving Solving	
Recurrences,	
Exponential	
Generating Functions. As	
vmptotics:	
Standard	
Scale,	
Manipulating Manipulating	
Expansions,	
Asymptotics	
of Finite	
Sums,	
Asymptotics	
of Finite	
Sums Trees:	
Trees and	
Forests,	
Binary Search	
Trees, Path	
Length, Other	
Types of	
Trees.	
Unit 2 Strings and online Modules https://www.course	
Ifies: Portal will be Sold will be	<u> </u>
Bitstrings with made	
Restrictions, available	
Languages, through the	
Tries , Trie online Coursera	
Parameters Portal	
Key pattern enabling	

matching concepts: Suffix Tr Burrow wheeler transform Suffix Ar Knuth-Mo Pratt algorithm	ree, and ray, orris-	individuals to attain a heightened clarity on algorithmic concept	
Fourier Transform FFT: D	Jarray Jsing and 's ation t 1: on nplex nition tion screte us	Modules and content will be made available through the online Coursera Portal, enabling individuals to attain a heightened clarity on algorithmic concept	: https://www.coursera .org/learn/dynamic- programming-greedy- algorithms#modules

	# <u>1 · Fast</u>				
	Polynomial				
	Multiplication				
	using				
	FFT Applicati				
	on				
	# 2: Data				
	Analysis using				
	FFT				
Unit 4	Introduction to	online Coursera	Modules and content		https://www.coursera
	Dynamic	Portal	will be		.org/learn/dynamic-
	Programming		made		programming-greedy- algorithms#modules
	+ Rod Cutting		available		aigoritiiiismiilouules
	Problem		through the		
	Coin Changing		online Coursera		
	Problem		Portal,		
	_		enabling		
	Knapsack		individuals		
	Problem		to attain a heightened		
	When Optimal		clarity on		
	Substructure		algorithmic		
	Fails		concept		
	1 alls				
	Dynamic				
	Programming:				
	Longest				
	Common				
	Subsequence				
	Memoization				
	-				
	Coin Changing				
	Problem.				
	Tutus desetions de				
	Introduction to				
	Greedy Algorithms				
	Aigorithins				
	Greedy				
	Interval				
	Scheduling				
	D6 6- 1				
	Prefix Codes				
				l	

		Huffman			
		Codes			
		Huffman			
		Codes: Proof			
<u> </u>		of Optimality			
l u	nit 5	Introduction to	online	Modules	Approximation
		Approximatio	Coursera	and content	Algorithms and Linear
		n Algorithms,:	Portal	will be	Programming
		Introduction to		made	Coursera
		Job shop		available	Coursera
		Scheduling		through the	
		and Algorithm		online	
				Coursera	
		Design,		Portal.	
		Analysis of		enabling	
		Job shop		individuals	
		Scheduling,		to attain a	
		Approximatio			
		n Algorithms		heightened	
		for Vertex		clarity on	
		Cover and		algorithmic	
		their Analysis,		concept	
		Approximatio			
		n Algorithms			
		for the			
		Maximum			
		Satisfiability			
		Problem,			
		Travelling			
		Salesman			
		Problem and			
		Approximatio			
		n Scemes:			
		Introduction to			
		TSP and its			
		applications,			
		NP-Hardness			
		of TSPs,			
		Hardness of			
		Approximatin			
		g General			
		TSPs, Held			
		and Karp's			
		Dynamic			
		Programming			
		Algorithm,			
		Integer Linear			
		Programming			
		Formulation,			
		Subtours and			
		Subtours and			

		Subtour Elimination Formulation, Metric TSP and Shortcutting, Eulerian Walks for approximating TSPs, Christofides Algorithm and its Analysis, Heuristics for TSPs, Full Polynomial Time Approximatio n Scheme and Knapsack.			
	Unit 6	Decision Problems and Languages Polynomial Time Problems NP Definition NP Completene ss and Reductions NP Complete Problems: Examples Computatio n and Physics Qubits and Operations Bell's Inequality Grover's Search Algorithm	online Conirsera Portal	Modules and content will be made available through the online Coursera Portal, enabling individuals to attain a heightened clarity on algorithmic concept	https://www.coursera .org/learn/dynamic- programming-greedy- algorithms#modules

Let's Start: Foundations of algorithm