Probabilistic models for neural data: From single neurons to population dynamics

NEUROBIO 316QC

Jan Drugowitsch
jan_drugowitsch@hms.harvard.edu

Session 8: Variational autoencoders

Today

Q&A about previous session

Paper discussion (~1h)

Variational autoencoders (~25min)

Autoencoders

Variational Bayesian inference

Autoencoders

Variational Bayesian inference

Autoencoders

"Code" z generates observations x through $p_{\theta^*}(z) \to p_{\theta^*}(x|z)$ (e.g., neural network)

Usually $\dim(z) \ll \dim(x) \rightarrow$ autoencoders perform non-linear dimensionality reduction

Aim: given
$$p_{\theta}(\mathbf{z})$$
 and $p_{\theta}(\mathbf{x}|\mathbf{z})$, find θ that maximizes $p_{\theta}(\mathbf{x}_{1:N}) = \prod_{n} \int p_{\theta}(\mathbf{x}_{n}|\mathbf{z}_{n}) p_{\theta}(\mathbf{z}_{n}) d\mathbf{z}_{n}$
$$p_{\theta}(\mathbf{x}_{n})$$

Challenges: for sufficiently complex $p_{\theta}(x|\mathbf{z})$ (e.g., network), $p_{\theta}(\mathbf{x})$ intractable Approach: introduce approximate $q_{\phi}(\mathbf{z}|\mathbf{x}) \approx p_{\theta}(\mathbf{z}|\mathbf{x}) \propto p_{\theta}(\mathbf{x}|\mathbf{z})p_{\theta}(\mathbf{z})$

$$x_n \xrightarrow{q_{\phi}(\mathbf{z}_n|\mathbf{x}_n)} z_n \xrightarrow{p_{\theta}(\mathbf{x}_n|\mathbf{z}_n)} x_n$$

New aims: 1. optimize θ to maximize $p_{\theta}(x_n|z_n)$

(Wake phase)

2. optimize ϕ to align $q_{\phi}(\mathbf{z}_n|\mathbf{x}_n) \approx p_{\theta}(\mathbf{z}_n|\mathbf{x}_n)$

(Sleep phase)

Variational Bayesian inference

Turning inference into optimization

Assume data X, latent variables Z, and parameters θ Approximate posterior $q(Z) \approx p_{\theta}(Z|X)$

$$\log p_{\theta}(\textbf{\textit{X}}) = \underbrace{\text{KL}[q(\textbf{\textit{Z}})||p_{\theta}(\textbf{\textit{Z}}|\textbf{\textit{X}})]}_{\text{formula}} + \underbrace{\mathcal{L}[q(\textbf{\textit{Z}}),p_{\theta}(\textbf{\textit{X}},\textbf{\textit{Z}})]}_{\text{formula}} \geq \mathcal{L}[q(\textbf{\textit{Z}}),p_{\theta}(\textbf{\textit{X}},\textbf{\textit{Z}})]$$
 "lower bound"
$$E_q \left[\log \frac{q(\textbf{\textit{Z}})}{p_{\theta}(\textbf{\textit{Z}}|\textbf{\textit{X}})}\right] + \underbrace{E_q \left[\log \frac{p_{\theta}(\textbf{\textit{X}},\textbf{\textit{Z}})}{q(\textbf{\textit{Z}})}\right]}_{\text{KL}(\cdot) \geq 0} + \underbrace{KL(\cdot) \geq 0}_{\text{KL}(\cdot) = 0 \text{ iff } q(\textbf{\textit{Z}}) = p_{\theta}(\textbf{\textit{Z}}|\textbf{\textit{X}})}$$

Approaches assume factorization $q(\mathbf{Z}) = \prod_k q_k(\mathbf{z}_k)$ & non-parametric optimization parametrize $q_{\phi}(\mathbf{Z})$ & optimize wrt. ϕ

Autoencoders

Variational Bayesian inference

Variational autoencoders

Single variational objective optimized wrt. both θ and ϕ Both p_{θ} and q_{ϕ} are (deep) neural networks q_{ϕ} (

$$\begin{split} \mathcal{L}\left(q_{\phi}(\boldsymbol{Z}|\boldsymbol{X}), p_{\theta}(\boldsymbol{X}, \boldsymbol{Z})\right) &= E_{q_{\phi}}[\log p_{\theta}(\boldsymbol{X}|\boldsymbol{Z}) + \log p_{\theta}(\boldsymbol{Z})] - E_{q_{\phi}}[\log q_{\phi}(\boldsymbol{Z}|\boldsymbol{X})] \\ &= E_{q_{\phi}}[\log p_{\theta}(\boldsymbol{X}|\boldsymbol{Z})] - \text{KL}[q_{\phi}(\boldsymbol{Z}|\boldsymbol{X})||p_{\theta}(\boldsymbol{Z})] \\ &\quad \text{data likelihood} \quad \text{distance between} \\ &\quad \text{under approx. posterior} \quad \text{prior and} \\ &\quad \text{approx. posterior} \end{split}$$

Challenge: low-variance estimator of $\nabla \mathcal{L}(q_{\phi}, p_{\theta})$, involving $E_{q_{\phi}}[\cdot]$ (usually very noisy) Approach: use "reparametrization trick" that separates noise from gradient

Training (alternate):

- 1. Draw minibatch from X, samples $Z \sim q_{\phi}(Z|X)$ from minibatch
- 2. Compute gradients, using Z samples to approximate $\nabla_{\theta,\phi} \mathcal{L}(\cdot)$, follow gradient

Variational autoencoders for state space models

$$\mathcal{L}\left(q_{\phi}(\mathbf{z}_{1:N}|\mathbf{x}_{1:N}), p_{\theta}(\mathbf{x}_{1:N}, \mathbf{z}_{1:N})\right) = E_{q_{\phi}}[\log p_{\theta}(\mathbf{x}_{1:N}|\mathbf{z}_{1:N})] - \text{KL}[q_{\phi}(\mathbf{z}_{1:N}|\mathbf{x}_{1:N})||p_{\theta}(\mathbf{z}_{1:N})]$$

Data likelihood under approx. posterior

$$E_{q_{\phi}}[\log p_{\theta}(\mathbf{x}_{1:N}|\mathbf{z}_{1:N})] = \sum_{n} E_{q_{\phi}(\mathbf{z}_n)}[\log p_{\theta}(\mathbf{x}_n|\mathbf{z}_n)]$$

Distance between approx. posterior and prior

$$KL[q_{\phi}(\mathbf{z}_{1:N}|\mathbf{x}_{1:N})||p_{\theta}(\mathbf{z}_{1:N})] = KL[q_{\phi}(\mathbf{z}_{1}|\mathbf{x}_{1:N})||p_{\theta}(\mathbf{z}_{1})] + \sum_{n=2}^{N} KL[q_{\phi}(\mathbf{z}_{n}|\mathbf{z}_{n-1},\mathbf{x}_{1:N})||p_{\theta}(\mathbf{z}_{n}|\mathbf{z}_{n-1})]$$

Training (alternate):

- 1. Draw minibatch from X, samples $Z \sim q_{\phi}(Z|X)$ from minibatch
- 2. Compute gradients, using Z samples to approximate $\nabla_{\theta,\phi} \mathcal{L}(\cdot)$, follow gradient

Autoencoders

Variational Bayesian inference

Summary

Autoencoders: model p(x) by assuming generation $z \to x$ from lower-d latent state zTractable approach separates decoder $p_{\theta}(x|z)$ and encoder $p_{\phi}(z|x)$, jointly trains them

Variational inference: inference as optimization by maximizing lower bound on $\log p(x)$

Variational autoencoder: use same (variational) objective to jointly train encoder/decoder Sequential variational autoencoder: variational autoencoder applied to state space models

Until next week

Complete GPFA exercise (see notes for Session 8)

Read paper and prepare presentation (see notes for Session 9)

Next session

Q & A for previous session

Discussing GPFA exercise (~20min)

Paper discussion (~1h)

Course wrap-up (~20min)