Please complete following problems.

- 1. Design an algorithm computing $x_n(\varepsilon)$ (see page 3 of the lecture notes) inductively. (There are multiple ways. Design and describe one.) (10 points)
- 2. Use your favorite method to give a proof of Proposition 2 on page 3. (10 points)
- 3. In the proof of Theorem 1, convince yourself that the fixed point of the map $\mathcal{F}_{\varepsilon}$ is C^2 and indeed solves the origin differential equation. (integral solution \Rightarrow strong solution) (0 points, no need for hand-writing solutions)
- 4. Define a sequence of functions by $\{y_n(t)\}_{n=1}^{\infty}$ by $y_0(t) = x_0(t)$ and $y_n(t;\varepsilon) = (\mathcal{F}_{\varepsilon}y_{n-1}(\cdot;\varepsilon))(t)$, $n \ge 1$.
 - i. Show that $||x_{\varepsilon}(\cdot) y_n(\cdot; \varepsilon)|| = \mathcal{O}(|\varepsilon|^{n+1})$ where $x_{\varepsilon}(\cdot)$ is the fixed point of $\mathcal{T}_{\varepsilon}$. (5 points)
 - ii. Compute the $\mathcal{O}(1)$ and $\mathcal{O}(|\varepsilon|)$ terms of $y_1(\cdot;\varepsilon)$ and call them $x_0(t)$ and $x_1(t)\varepsilon$. Check they agree the results obtained from formal computations. (5 points)
 - iii. Show that $||y_1(\cdot;\varepsilon) x_0(\cdot) x_1(\cdot)\varepsilon|| = \mathcal{O}(|\varepsilon|^2)$. Combining with i. (with n = 1), we finally obtain that

$$||x_{\varepsilon}(\cdot) - x_{0}(\cdot) - x_{1}(\cdot)\varepsilon|| = \mathcal{O}(|\varepsilon|^{2}),$$

completing the proof of Theorem 1. (10 points)