

PRÁCTICA 3 " REGISTROS"

Código VHDL

```
1 -- Ulises Jesùs Santos Mèndez
2 --Pràctica 3 Registros
3 --2CV8
4 library ieee;
5 use ieee.std logic 1164.all;
6 use work.std arith.all;
7
8 entity registro is
9 port(es,clk,clr: in std logic;
       d: in std logic vector(6 downto 0);
10
11
       op: in std_logic_vector(1 downto 0);
12
       q: out std logic vector(6 downto 0));
13
14
      attribute pin numbers of registro: entity is
15
      "clk:1 es:2 d(6):3 d(5):4 d(4):5 d(3):6 d(2):7 "
16 €
     "d(1):8 d(0):9 op(0):10 op(1):11 clr:13 q(6):20 "
17 €
      "q(5):19 q(4):18 q(3):17 q(2):16 q(1):15 q(0):14 ";
18
19 end registro;
20
21 architecture argreg of registro is
      signal auxD, auxQ: std logic vector (6 downto 0);
22
23 begin
24 --Ciclo concurrente del multiplexor
```



```
25 -- 00 -> retencion
26 -- 01 -> carga
27 -- 10 -> corrimiento izquierda
28 -- 11 -> corrimiento derecha
29
       process(op,d,auxQ,es, auxD)
30
       begin
31
           case op is
32
               when "00" =>
33
                    auxD <= auxQ;
34
                when "01" =>
35
                    auxD <= d;
               when "10" =>
36
37
                    for i in 0 to 6 loop
                        if(i>0) then
38
                        auxD(i) \le auxQ(i-1);
39
40
                        else
                        auxD(i)<=es;
41
42
                        end if:
43
                    end loop:
              when "11" =>
44
45
                    for i in 0 to 6 loop
46
                        if(i<6) then
47
                        auxD(i) <= auxQ(i+1);
48
                        else
```



```
49
                        auxD(i)<=es;
                        end if:
50
51
                    end loop;
52
              when others =>
53
                    auxD<="0000000";
54
              end case:
55
               end process;
56
57
58 -- Ciclo secuencial para la serie de flip flops
       process(clk, clr)
59
       begin
60
           if(clr = '1')then
61
62
               for i in 0 to 6 loop
               auxQ(i)<='0';
63
64
           end loop;
           elsif(rising edge(clk))then
65
               for i in 0 to 6 loop
66
67
               auxQ <= auxD;
68
               end loop;
69
           end if:
70
       end process;
71
       q \le auxQ;
72 end argreg;
```


Simulación en Active HDL-Sim y en Proteus

a) Reset

Name	Value	Sti	1 - 50 - 1 - 100 - 1 - 150 - 1 - 200 - 1 - 250 - 1 - 3
⊟ ⊳ ор	3		(3
□ op(1)	1	<= 1	
P- op(0)	1	<= 1	
+ r d	6D		(6D
± ⇔ q	00		(Z)(W
¤- clr	1	<= 1	
r- es	1	<= 1	
r- clk	0	Clock	

b) Retención durante dos ciclos de reloj

c) Cargar el valor 0x18

Name	Value	Sti	1	5,0		,	100		150	,	ı	20) ,	ı	,	250	ı	. 3
⊟ ⊳ ор	1		(1															
□ op(1)	0	<= 0																
P- op(0)	1	<= 1																
+ - d	18		(18															
+	18		(ZZ)(00		X18													
□ clr	0	<= 0																
P- es	0	<= 0																
⊳ clk	0	Clock																

d) Retener 2 ciclos de reloj

Name	Value	Sti	100	ı	200	ı	300	ı	4 00	ı	500	ı	6(
⊡ ⊳ op	0	(1							_X0				\supset
P op(1)	0	<= 0											
□ op(0)	0	<= 0											
⊕ d	18	(18											\supset
+ ⇔ q	18	\(\	X18										\supset
⊏ dr	0	<= 0											
D- es	0	<= 0											
P− clk	0	Clock											

e) Hacer corrimiento a la izquierda de 4 bits con ES=1

f) Reset

g) Hacer corrimiento a la derecha hasta que el registro quede lleno de 1's

Name	Value	Sti	ı 10)0 г	200	1 3	3 <u>0</u> 0	1 4	00	, 5	Ō0	ı	6 <u>0</u> 0	ı	700	ı	800	ı	9(
⊟ ⊶ ор	3		3																\Box
□ op(1)	1	<= 1																	
□ op(0)	1	<= 1																	
+ □ d	7F		7F																\supset
+ ⇔ q	7F		X X40	\square X	60		0) 	}	X70	,	X7	E	χ	7F				
¤ dr	0	<= 0																	
p- es	1	<= 1																	
□- clk	0	Clock			abla		L				L		L						

CUESTIONARIO

- ¿Cuántos dispositivos PLD 22V10 son necesarios para el desarrollo de esta práctica?
 R= 1 dispositivo PLD 22V10
- 2) ¿Cuántos dispositivos de la serie 74xx (TTL) ó 40xx (CMOS) hubieras necesitado para el desarrollo de esta práctica?
 - R= 2 Flip Flop 4013 y 4 multiplexores 74ls139
- ¿Cuántos pines de entrada/salida del PLD 22V10 se usan en el diseño?R=12 de entrada y 7 de salida
- 4) ¿Cuántos términos producto ocupan las ecuaciones para cada señal de salida y que porcentaje se usa en total del PLD 22V10?
- 5) R= 4 términos producto y se ocupó el 86% del PLD 22V10.
- 6) ¿Cuáles son tus observaciones con respecto al funcionamiento del registro?

 R= todos los registros tienen una gran relación de entradas y salidas de los flip flop de manera que pueden ejecutar las operaciones debido a entradas y salidas y a los flancos del reloj.
- 7) ¿Cuáles son las señales que funcionan de manera síncrona y cuáles de manera asíncrona?
 - R= El reloj funciona de manera síncrona y los registros de corrimiento a derecha e izquierda, los asíncronos son los registros de carga y retención.
- 8) ¿Qué puedes concluir de esta práctica?
 R= La práctica nos mostró las formas en que se comunican los flip flops para hacer operaciones y actuar como memorias.