, a.first) - ord.

fw[i].assign(coord[i].size() + 1, 0);

v	6.2 KMP Automaton
	6.3 Trie
Contents	6.4 Aho-Corasick
	6.5 Algoritmo de Z
	6.6 Suffix Array
1 Data Structures	1 6.7 Suffix Tree
1.1 BIT 2D Comprimida	1 0.6 Sumx Automaton
1.2 Iterative Segment Tree	
1.3 Iterative Segment Tree with Lazy Propagation	2 1 Miscellaneous
1.4 Segment Tree with Lazy Propagation	2 7.1 LIS - Longest Increasing Subsequence
1.5 Treap	
1.6 Persistent Treap	7.4 Random Number Generator
1.7 KD-Tree	7.5 Rectangle Hash
1.8 Sparse Table	· 6 7.6 Unordered Man Tricks
1.9 Max Queue	· 6 77 Submask Enumeration
1.10 Policy Based Structures	· 7 7.8 Sum over Subsets DP
1.11 Color Updates Structure	7 7.9 Java Fast I/O
	7.10 Dates
2 Graph Algorithms	7 7.11 Regular Expressions
2.1 Simple Disjoint Set	
2.2 Boruvka	
2.3 Dinic Max Flow	· 8 8 Teoremas e formulas uteis
2.4 Minimum Vertex Cover	9 8.1 Grafos
2.5 Min Cost Max Flow	· 9 8.2 Math
2.6 Euler Path and Circuit	
2.7 Articulation Points/Bridges/Biconnected Components	
2.8 SCC - Strongly Connected Components / 2SAT	
2.9 LCA - Lowest Common Ancestor	
2.10 Heavy Light Decomposition	
2.11 Centroid Decomposition	
2.12 Sack	
2.14 Burunduk	
2.15 Minimum Arborescence	
3 Dynamic Programming	16 // src: tfg50
3 Dynamic Programming 3 Line Container	10
3.1 Line Container	template <class t="int"></class>
3.1 Line Container	10 template <class t="int"> . 16 struct Bit2D {</class>
3.1 Line Container	10
3.1 Line Container	10
3.1 Line Container 3.2 Li Chao Tree 3.3 Divide and Conquer Optimization 3.4 Knuth Optimization	10
3.1 Line Container	10
3.1 Line Container 3.2 Li Chao Tree 3.3 Divide and Conquer Optimization 3.4 Knuth Optimization 4 Math 4.1 Chinese Remainder Theorem	10 16
3.1 Line Container 3.2 Li Chao Tree 3.3 Divide and Conquer Optimization 3.4 Knuth Optimization 4 Math 4.1 Chinese Remainder Theorem 4.2 Diophantine Equations	<pre>10 16</pre>
3.1 Line Container 3.2 Li Chao Tree 3.3 Divide and Conquer Optimization 3.4 Knuth Optimization 4 Math 4.1 Chinese Remainder Theorem	10
3.1 Line Container 3.2 Li Chao Tree 3.3 Divide and Conquer Optimization 3.4 Knuth Optimization 4 Math 4.1 Chinese Remainder Theorem 4.2 Diophantine Equations 4.3 Discrete Logarithm	10
3.1 Line Container 3.2 Li Chao Tree 3.3 Divide and Conquer Optimization 3.4 Knuth Optimization 4 Math 4.1 Chinese Remainder Theorem 4.2 Diophantine Equations 4.3 Discrete Logarithm 4.4 Discrete Root	<pre>10 16</pre>
3.1 Line Container 3.2 Li Chao Tree 3.3 Divide and Conquer Optimization 3.4 Knuth Optimization 4 Math 4.1 Chinese Remainder Theorem 4.2 Diophantine Equations 4.3 Discrete Logarithm 4.4 Discrete Root 4.5 Primitive Root	<pre>10 16</pre>
3.1 Line Container 3.2 Li Chao Tree 3.3 Divide and Conquer Optimization 3.4 Knuth Optimization 4 Math 4.1 Chinese Remainder Theorem 4.2 Diophantine Equations 4.3 Discrete Logarithm 4.4 Discrete Root 4.5 Primitive Root 4.6 Extended Euclides 4.7 Matrix Fast Exponentiation 4.8 FFT - Fast Fourier Transform	<pre>10 16</pre>
3.1 Line Container 3.2 Li Chao Tree 3.3 Divide and Conquer Optimization 3.4 Knuth Optimization 4 Math 4.1 Chinese Remainder Theorem 4.2 Diophantine Equations 4.3 Discrete Logarithm 4.4 Discrete Root 4.5 Primitive Root 4.6 Extended Euclides 4.7 Matrix Fast Exponentiation 4.8 FFT - Fast Fourier Transform 4.9 NTT - Number Theoretic Transform	<pre>10 16</pre>
3.1 Line Container 3.2 Li Chao Tree 3.3 Divide and Conquer Optimization 3.4 Knuth Optimization 4 Math 4.1 Chinese Remainder Theorem 4.2 Diophantine Equations 4.3 Discrete Logarithm 4.4 Discrete Root 4.5 Primitive Root 4.6 Extended Euclides 4.7 Matrix Fast Exponentiation 4.8 FFT - Fast Fourier Transform 4.9 NTT - Number Theoretic Transform 4.10 Fast Walsh Hadamard Transform	<pre>10 16</pre>
3.1 Line Container 3.2 Li Chao Tree 3.3 Divide and Conquer Optimization 3.4 Knuth Optimization 4 Math 4.1 Chinese Remainder Theorem 4.2 Diophantine Equations 4.3 Discrete Logarithm 4.4 Discrete Root 4.5 Primitive Root 4.6 Extended Euclides 4.7 Matrix Fast Exponentiation 4.8 FFT - Fast Fourier Transform 4.9 NTT - Number Theoretic Transform 4.10 Fast Walsh Hadamard Transform 4.11 Miller and Rho	<pre>10 16</pre>
3.1 Line Container 3.2 Li Chao Tree 3.3 Divide and Conquer Optimization 3.4 Knuth Optimization 4 Math 4.1 Chinese Remainder Theorem 4.2 Diophantine Equations 4.3 Discrete Logarithm 4.4 Discrete Root 4.5 Primitive Root 4.5 Primitive Root 4.6 Extended Euclides 4.7 Matrix Fast Exponentiation 4.8 FFT - Fast Fourier Transform 4.9 NTT - Number Theoretic Transform 4.9 NTT - Number Theoretic Transform 4.10 Fast Walsh Hadamard Transform 4.11 Miller and Rho 4.12 Determinant using Mod	<pre>10 16</pre>
3.1 Line Container 3.2 Li Chao Tree 3.3 Divide and Conquer Optimization 3.4 Knuth Optimization 4 Math 4.1 Chinese Remainder Theorem 4.2 Diophantine Equations 4.3 Discrete Logarithm 4.4 Discrete Root 4.5 Primitive Root 4.6 Extended Euclides 4.7 Matrix Fast Exponentiation 4.8 FFT - Fast Fourier Transform 4.9 NTT - Number Theoretic Transform 4.10 Fast Walsh Hadamard Transform 4.11 Miller and Rho 4.12 Determinant using Mod 4.13 Lagrange Interpolation	<pre>10 16</pre>
3.1 Line Container 3.2 Li Chao Tree 3.3 Divide and Conquer Optimization 3.4 Knuth Optimization 4 Math 4.1 Chinese Remainder Theorem 4.2 Diophantine Equations 4.3 Discrete Logarithm 4.4 Discrete Root 4.5 Primitive Root 4.5 Primitive Root 4.6 Extended Euclides 4.7 Matrix Fast Exponentiation 4.8 FFT - Fast Fourier Transform 4.9 NTT - Number Theoretic Transform 4.9 NTT - Number Theoretic Transform 4.10 Fast Walsh Hadamard Transform 4.11 Miller and Rho 4.12 Determinant using Mod	<pre>10 16</pre>
3.1 Line Container 3.2 Li Chao Tree 3.3 Divide and Conquer Optimization 3.4 Knuth Optimization 4 Math 4.1 Chinese Remainder Theorem 4.2 Diophantine Equations 4.3 Discrete Logarithm 4.4 Discrete Root 4.5 Primitive Root 4.6 Extended Euclides 4.7 Matrix Fast Exponentiation 4.8 FFT - Fast Fourier Transform 4.9 NTT - Number Theoretic Transform 4.10 Fast Walsh Hadamard Transform 4.11 Miller and Rho 4.12 Determinant using Mod 4.13 Lagrange Interpolation 4.14 Count integer points inside triangle	<pre>10 16</pre>
3.1 Line Container 3.2 Li Chao Tree 3.3 Divide and Conquer Optimization 3.4 Knuth Optimization 3.4 Knuth Optimization 4 Math 4.1 Chinese Remainder Theorem 4.2 Diophantine Equations 4.3 Discrete Logarithm 4.4 Discrete Root 4.5 Primitive Root 4.6 Extended Euclides 4.7 Matrix Fast Exponentiation 4.8 FFT - Fast Fourier Transform 4.9 NTT - Number Theoretic Transform 4.10 Fast Walsh Hadamard Transform 4.11 Miller and Rho 4.12 Determinant using Mod 4.13 Lagrange Interpolation 4.14 Count integer points inside triangle	<pre>10 16</pre>
3.1 Line Container 3.2 Li Chao Tree 3.3 Divide and Conquer Optimization 3.4 Knuth Optimization 4 Math 4.1 Chinese Remainder Theorem 4.2 Diophantine Equations 4.3 Discrete Logarithm 4.4 Discrete Root 4.5 Primitive Root 4.6 Extended Euclides 4.7 Matrix Fast Exponentiation 4.8 FFT - Fast Fourier Transform 4.9 NTT - Number Theoretic Transform 4.10 Fast Walsh Hadamard Transform 4.11 Miller and Rho 4.12 Determinant using Mod 4.13 Lagrange Interpolation 4.14 Count integer points inside triangle 5 Geometry 5.1 Geometry 5.1 Geometry 5.1 Geometry	<pre>10</pre>
3.1 Line Container 3.2 Li Chao Tree 3.3 Divide and Conquer Optimization 3.4 Knuth Optimization 4 Math 4.1 Chinese Remainder Theorem 4.2 Diophantine Equations 4.3 Discrete Logarithm 4.4 Discrete Root 4.5 Primitive Root 4.6 Extended Euclides 4.7 Matrix Fast Exponentiation 4.8 FFT - Fast Fourier Transform 4.9 NTT - Number Theoretic Transform 4.10 Fast Walsh Hadamard Transform 4.11 Miller and Rho 4.12 Determinant using Mod 4.13 Lagrange Interpolation 4.14 Count integer points inside triangle 5 Geometry 5.1 Geometry 5.1 Geometry 5.2 Convex Hull	<pre>10 16</pre>
3.1 Line Container 3.2 Li Chao Tree 3.3 Divide and Conquer Optimization 3.4 Knuth Optimization 4 Math 4.1 Chinese Remainder Theorem 4.2 Diophantine Equations 4.3 Discrete Logarithm 4.4 Discrete Root 4.5 Primitive Root 4.6 Extended Euclides 4.7 Matrix Fast Exponentiation 4.8 FFT - Fast Fourier Transform 4.9 NTT - Number Theoretic Transform 4.10 Fast Walsh Hadamard Transform 4.11 Miller and Rho 4.12 Determinant using Mod 4.13 Lagrange Interpolation 4.14 Count integer points inside triangle 5 Geometry 5.1 Geometry 5.2 Convex Hull 5.3 Cut Polygon	<pre>10</pre>
3.1 Line Container 3.2 Li Chao Tree 3.3 Divide and Conquer Optimization 3.4 Knuth Optimization 4 Math 4.1 Chinese Remainder Theorem 4.2 Diophantine Equations 4.3 Discrete Logarithm 4.4 Discrete Root 4.5 Primitive Root 4.6 Extended Euclides 4.7 Matrix Fast Exponentiation 4.8 FFT - Fast Fourier Transform 4.9 NTT - Number Theoretic Transform 4.10 Fast Walsh Hadamard Transform 4.11 Miller and Rho 4.12 Determinant using Mod 4.13 Lagrange Interpolation 4.14 Count integer points inside triangle 5 Geometry 5.1 Geometry 5.2 Convex Hull 5.3 Cut Polygon 5.4 Smallest Enclosing Circle	<pre>10</pre>
3.1 Line Container 3.2 Li Chao Tree 3.3 Divide and Conquer Optimization 3.4 Knuth Optimization 4 Math 4.1 Chinese Remainder Theorem 4.2 Diophantine Equations 4.3 Discrete Logarithm 4.4 Discrete Root 4.5 Primitive Root 4.6 Extended Euclides 4.7 Matrix Fast Exponentiation 4.8 FFT - Fast Fourier Transform 4.9 NTT - Number Theoretic Transform 4.10 Fast Walsh Hadamard Transform 4.11 Miller and Rho 4.12 Determinant using Mod 4.13 Lagrange Interpolation 4.14 Count integer points inside triangle 5 Geometry 5.1 Geometry 5.2 Convex Hull 5.3 Cut Polygon 5.4 Smallest Enclosing Circle 5.5 Minkowski	<pre>10 16</pre>
3.1 Line Container 3.2 Li Chao Tree 3.3 Divide and Conquer Optimization 3.4 Knuth Optimization 4 Math 4.1 Chinese Remainder Theorem 4.2 Diophantine Equations 4.3 Discrete Logarithm 4.4 Discrete Root 4.5 Primitive Root 4.6 Extended Euclides 4.7 Matrix Fast Exponentiation 4.8 FFT - Fast Fourier Transform 4.9 NTT - Number Theoretic Transform 4.10 Fast Walsh Hadamard Transform 4.11 Miller and Rho 4.12 Determinant using Mod 4.13 Lagrange Interpolation 4.14 Count integer points inside triangle 5 Geometry 5.1 Geometry 5.2 Convex Hull 5.3 Cut Polygon 5.4 Smallest Enclosing Circle	<pre>10 16</pre>

Amigos do Beto - ICPC Library

```
void upd(T x, T y, T v) {
    for(int xx = upper_bound(ord.begin(), ord.end(), x) - ord.begin();
          xx < fw.size(); xx += xx & -xx) {
      for(int yy = upper_bound(coord[xx].begin(), coord[xx].end(), y)
           - \operatorname{coord}[xx].\operatorname{begin}(); yy < \operatorname{fw}[xx].\operatorname{size}(); yy += yy & -yy) {
         fw[xx][yy] += v;
  T qry(T x, T y) {
    T ans = 0;
    for(int xx = upper_bound(ord.begin(), ord.end(), x) - ord.begin();
          xx > 0; xx -= xx & -xx) {
      for(int yy = upper_bound(coord[xx].begin(), coord[xx].end(), y)
           - coord[xx].begin(); yy > 0; yy -= yy & -yy) {
        ans += fw[xx][vv]:
    return ans;
  T qry(T x1, T y1, T x2, T y2) {
    return qry(x^2, y^2) - qry(x^2, y^2 - 1) - qry(x^2 - 1, y^2) + qry(x^2 - 1)
        1, y1 - 1);
  void upd(T x1, T y1, T x2, T y2, T v) { // !insert these points
    upd(x1, y1, v);
    upd(x1, y2 + 1, -v);
    upd(x2 + 1, y1, -v);
    upd(x2 + 1, y2 + 1, v);
private:
  vector<T> ord:
  vector<vector<T>> fw, coord;
};
```

1.2 Iterative Segment Tree

```
int n, t[2 * ms];

void build() {
   for(int i = n - 1; i > 0; --i) t[i] = t[i<<1] + t[i<<1|1]; // Merge
}

void update(int p, int value) { // set value at position p
   for(t[p += n] = value; p > 1; p >>= 1) t[p>>1] = t[p] + t[p^1]; //
        Merge
}

int query(int l, int r) {
   int res = 0;
   for(1 += n, r += n+1; l < r; l >>= 1, r >>= 1) {
      if(1&1) res += t[l++]; // Merge
      if(r&1) res += t[--r]; // Merge
   }
   return res;
```

```
// If is non-commutative
S query(int 1, int r) {
S resl, resr;
for (1 += n, r += n+1; 1 < r; 1 >>= 1, r >>= 1) {
if (1&1) resl = combine(resl, t[1++]);
if (r&1) resr = combine(t[--r], resr);
}
return combine(resl, resr);
}
```

1.3 Iterative Segment Tree with Lazy Propagation

```
struct LazyContext {
  LazyContext() { }
  void reset() { }
  void operator += (LazyContext o) { }
  // atributes
};
struct Node {
  Node() {
    // neutral element
  Node() {
    // init
  Node (Node 1, Node r) {
    // merge
  bool canBreak(LazyContext lazy) {
    // return true if can break without applying lazy
  bool canApply(LazyContext lazy) {
    // returns true if can apply lazy
  void apply(LazyContext &lazy) {
    // changes lazy if needed
  // atributes
};
template <class i_t, class e_t, class lazy_cont>
class SegmentTree {
public:
  void init(std::vector<e_t> base) {
    n = base.size();
    \mathbf{h} = 0;
    while((1 << h) < n) h++;
    tree.resize(2 * n);
    dirty.assign(n, false);
    lazy.resize(n);
    for (int i = 0; i < n; i++) {
      tree[i + n] = i_t(base[i]);
    for (int i = n - 1; i > 0; i--) {
      tree[i] = i_t(tree[i + i], tree[i + i + 1]);
      lazv[i].reset();
```

```
i_t qry(int 1, int r) {
    if(l >= r) return i_t();
    1 += n, r += n;
    push(1);
    push(r - 1);
    i_t lp, rp;
    for (; 1 < r; 1 /= 2, r /= 2) {
      if(l & 1) lp = i t(lp, tree[l++]);
      if(r & 1) rp = i_t(tree[--r], rp);
    return i_t(lp, rp);
  void upd(int 1, int r, lazy_cont lc) {
    if(1 >= r) return;
    1 += n, r += n;
    push(1);
    push(r - 1):
    int 10 = 1, r0 = r;
    for (; 1 < r; 1 /= 2, r /= 2) {
     if(1 & 1) downUpd(l++, lc);
      if(r & 1) downUpd(--r, lc);
    build(10);
    build(r0 - 1);
  void upd(int pos, e_t v) {
    pos += n;
    push (pos);
    tree[pos] = i_t(v);
    build(pos);
private:
  int n, h;
  std::vector<bool> dirty:
  std::vector<i_t> tree;
  std::vector<lazy_cont> lazy;
  void apply(int p, lazy_cont lc) {
    tree[p].apply(lc);
    if(p < n) {
      dirty[p] = true;
      lazy[p] += lc;
  void pushSingle(int p) {
    if(dirty[p]) {
      downUpd(p + p, lazy[p]);
      downUpd(p + p + 1, lazy[p]);
      lazy[p].reset();
      dirty[p] = false;
  void push(int p) {
    for(int s = h; s > 0; s--) {
      pushSingle(p >> s);
```

```
void downUpd(int p, lazy_cont lc) {
    if(tree[p].canBreak(lc)) {
      return:
    } else if(tree[p].canApplv(lc)) {
      apply(p, lc);
    } else {
      pushSingle(p);
      downUpd(p + p, lc);
      downUpd(p + p + 1, lc);
      tree[p] = i_t(tree[p + p], tree[p + p + 1]);
  void build(int p) {
    for (p /= 2; p > 0; p /= 2) {
      tree[p] = i_t(tree[p + p], tree[p + p + 1]);
      if(dirtv[p]) {
        tree[p].apply(lazy[p]);
};
```

1.4 Segment Tree with Lazy Propagation

```
int arr[ms], seq[4 * ms], lazy[4 * ms], n;
void build(int idx = 0, int l = 0, int r = n-1) {
  int mid = (1+r)/2;
 lazy[idx] = 0;
 if(1 == r) {
    seq[idx] = arr[l];
    return;
  build(2*idx+1, 1, mid); build(2*idx+2, mid+1, r);
  seg[idx] = seg[2*idx+1] + seg[2*idx+2]; // Merge
void apply(int idx, int 1, int r) {
  if(lazy[idx] && !canBreak) { // if not beats canBreak = false
   if(1 < r) {
     lazy[2*idx+1] += lazy[idx]; // Merge de lazy
      lazv[2*idx+2] += lazv[idx]; // Merge de lazv
    if(canApply) { // if not beats canApply = true
      seg[idx] += lazy[idx] * (r - 1 + 1); // Aplicar lazy no seg
      apply (2*idx+1, 1, mid); apply (2*idx+2, mid+1, r);
      seq[idx] = seq[2*idx+1] + seq[2*idx+2]; // Merge
  lazy[idx] = 0; // Limpar a lazy
int query(int L, int R, int idx = 0, int 1 = 0, int r = n-1) {
  int mid = (1+r)/2;
  apply(idx, l, r);
  if(l > R | | r < L) return 0; // Valor que nao atrapalhe</pre>
```

```
if(L <= 1 && r <= R) return seg[idx];
return query(L, R, 2*idx+1, 1, mid) + query(L, R, 2*idx+2, mid+1, r)
    ; // Merge
}

void update(int L, int R, int V, int idx = 0, int 1 = 0, int r = n-1)
    {
    int mid = (1+r)/2;
    apply(idx, 1, r);
    if(1 > R || r < L) return;
    if(L <= 1 && r <= R) {
        lazy[idx] = V;
        apply(idx, 1, r);
        return;
    }
    update(L, R, V, 2*idx+1, 1, mid); update(L, R, V, 2*idx+2, mid+1, r)
    ;
    seg[idx] = seg[2*idx+1] + seg[2*idx+2]; // Merge
}</pre>
```

1.5 Treap

```
mt19937 rng ((int) chrono::steady_clock::now().time_since_epoch().
    count());
typedef int Value:
typedef struct item * pitem;
struct item {
 item () {}
  item (Value v) { // add key if not implicit
   prio = uniform_int_distribution<int>() (rng);
   cnt = 1:
   rev = 0;
   1 = r = 0:
  pitem 1, r;
 Value value;
  int prio, cnt;
 bool rev;
};
int cnt (pitem it) {
  return it ? it->cnt : 0;
void fix (pitem it) {
 if (it)
    it->cnt = cnt(it->1) + cnt(it->r) + 1;
void pushLazv (pitem it) {
  if (it && it->rev) {
   it->rev = false;
   swap(it->1, it->r);
   if (it->1) it->1->rev ^= true;
   if (it->r) it->r->rev ^= true;
```

```
void merge (pitem & t, pitem 1, pitem r) {
  pushLazy (1); pushLazy (r);
  if (!1 || !r) t = 1 ? 1 : r;
  else if (l->prio > r->prio)
   merge (1->r, 1->r, r), t = 1;
   merge (r->1, 1, r->1), t = r;
  fix (t);
void split (pitem t, pitem & l, pitem & r, int key) {
  if (!t) return void( l = r = 0 );
  pushLazy (t);
  int cur_key = cnt(t->1); // t->key if not implicit
  if (kev <= cur kev)</pre>
   split (t->1, 1, t->1, key), r = t;
    split (t->r, t->r, r, key - (1 + cnt(t->1))), 1 = t;
  fix (t);
void reverse (pitem t, int l, int r) {
 pitem t1, t2, t3;
  split (t, t1, t2, 1);
  split (t2, t2, t3, r-l+1);
  t2->rev ^= true;
 merge (t, t1, t2);
 merge (t, t, t3);
void unite (pitem & t, pitem l, pitem r) {
 if (!1 || !r) return void ( t = 1 ? 1 : r );
  if (1->prio < r->prio) swap (1, r);
 pitem lt, rt;
 split (r, lt, rt, l->key);
 unite (1->1, 1->1, 1t);
 unite (1-> r, 1->r, rt);
  t = 1;
```

1.6 Persistent Treap

```
mt19937_64 rng(chrono::steady_clock::now().time_since_epoch().count())
;

typedef int Key;
struct Treap {
   Treap(){}
   Treap(char k) {
      key = 1;
      size = 1;
      l = r = NULL;
      val = k;
   }

   Treap *1, *r;
   Key key;
   char val;
   int size;
```

```
};
typedef Treap * PTreap;
bool leftSide(PTreap 1, PTreap r) {
  return (int) (rng() % (1->size + r->size)) < 1->size;
void fix(PTreap t) {
  if (t == NULL) {
    return;
  t \rightarrow size = 1:
  t->key = 1;
  if (t->1) {
   t\rightarrow size += t\rightarrow l\rightarrow size:
   t->key += t->l->size;
  if (t->r) {
    t->size += t->r->size;
void split(PTreap t, Key key, PTreap &1, PTreap &r) {
  if (t == NULL) {
    1 = r = NULL;
  } else if (t->key <= key) {</pre>
    1 = new Treap();
    *1 = *t;
    split(t->r, key - t->key, l->r, r);
    fix(1);
  } else {
    r = new Treap();
    *r = *t;
    split(t->1, key, l, r->l);
    fix(r);
void merge(PTreap &t, PTreap 1, PTreap r) {
  if (!l || !r) {
    t = 1 ? 1 : r;
    return;
  t = new Treap();
  if (leftSide(l, r)) {
    *t = *1;
    merge(t->r, 1->r, r);
  } else {
    *t = *r;
    merge(t->1, 1, r->1);
  fix(t);
vector<PTreap> ver = {NULL};
PTreap build(int 1, int r, string& s) {
 if (1 >= r) return NULL;
  int mid = (1 + r) >> 1;
  auto ans = new Treap(s[mid]);
```

```
ans->1 = build(1, mid, s);
  ans->r = build(mid + 1, r, s);
  fix(ans);
  return ans;
int last = 0;
void go(PTreap t, int f) {
  if (!t) return;
  qo(t->1, f);
  cout << t->val;
  last += (t->val <math>== 'c') * f;
  qo(t->r, f);
void insert(PTreap t, int pos, string& s) {
 PTreap 1, r;
  split(t, pos + 1, l, r);
 PTreap mid = build(0, s.size(), s);
 merge(mid, 1, mid);
 merge(mid, mid, r);
  ver.push_back(mid);
void erase(PTreap t, int L, int R) {
 PTreap 1, mid, r;
  split(t, L, l, mid);
  split(mid, R - L + 1, mid, r);
 merge(1, 1, r);
  ver.push_back(1);
```

1.7 KD-Tree

```
int d:
long long getValue(const PT &a) {return (d & 1) == 0 ? a.x : a.y; }
bool comp (const PT &a, const PT &b) {
  if((d & 1) == 0) { return a.x < b.x; }</pre>
  else { return a.v < b.v; }</pre>
long long sqrDist(PT a, PT b) { return (a - b) * (a - b); }
class KD_Tree {
public:
  struct Node {
   PT point;
    Node *left, *right;
  void init(std::vector<PT> pts) {
    if(pts.size() == 0) {
      return;
    int n = 0;
    tree.resize(2 * pts.size());
    build(pts.begin(), pts.end(), n);
    //assert(n <= (int) tree.size());</pre>
```

```
long long nearestNeighbor(PT point) {
    // assert(tree.size() > 0);
    long long ans = (long long) le18;
    nearestNeighbor(&tree[0], point, 0, ans);
    return ans;
private:
  std::vector<Node> tree;
  Node* build(std::vector<PT>::iterator 1, std::vector<PT>::iterator r
      , int &n, int h = 0) {
    int id = n++;
    if(r - 1 == 1) {
      tree[id].left = tree[id].right = NULL;
      tree[id].point = *1;
    \} else if (r - 1 > 1) {
      std::vectorPT>::iterator mid = 1 + ((r - 1) / 2);
      std::nth_element(l, mid - 1, r, comp);
      tree[id].point = \star (mid - 1);
      // BE CAREFUL!
      // DO EVERYTHING BEFORE BUILDING THE LOWER PART!
      tree[id].left = build(l, mid, n, h^1);
      tree[id].right = build(mid, r, n, h^1);
    return &tree[id];
  void nearestNeighbor(Node* node, PT point, int h, long long &ans) {
    if(!node) {
      return;
    if(point != node->point) {
      // THIS WAS FOR A PROBLEM
      // THAT YOU DON'T CONSIDER THE DISTANCE TO ITSELF!
      ans = std::min(ans, sqrDist(point, node->point));
    d = h;
    long long delta = getValue(point) - getValue(node->point);
    if(delta <= 0) {
      nearestNeighbor(node->left, point, h^1, ans);
      if(ans > delta * delta) {
        nearestNeighbor(node->right, point, h^1, ans);
    } else {
      nearestNeighbor(node->right, point, h^1, ans);
      if(ans > delta * delta) {
        nearestNeighbor(node->left, point, h^1, ans);
};
```

1.8 Sparse Table

```
vector<vector<int>> table;
vector<int> lg2;
void build(int n, vector<int> v) {
  lg2.resize(n + 1);
```

```
lg2[1] = 0;
for (int i = 2; i <= n; i++) {
    lg2[i] = lg2[i >> 1] + 1;
}
table.resize(lg2[n] + 1);
for (int i = 0; i < lg2[n] + 1; i++) {
    table[i].resize(n + 1);
}
for (int i = 0; i < n; i++) {
    table[0][i] = v[i];
}
for (int i = 0; i < lg2[n]; i++) {
    for (int j = 0; j < n; j++) {
        if (j + (1 << i) >= n) break;
        table[i] + 1][j] = min(table[i][j], table[i][j + (1 << i)]);
    }
}
int get(int l, int r) {
    int k = lg2[r - 1 + 1];
    return min(table[k][1], table[k][r - (1 << k) + 1]);
}</pre>
```

1.9 Max Queue

```
// src: tfq50
template <class T, class C = std::less<T>>
struct MaxQueue {
 MaxQueue() {
    clear();
  void clear() {
   id = 0;
    q.clear();
  void push(T x) {
    std::pair<int, T> nxt(1, x);
    while(q.size() > id && cmp(q.back().second, x)) {
      nxt.first += q.back().first;
      q.pop_back();
    q.push_back(nxt);
  T qry() {
    return q[id].second;
  void pop() {
    a[id].first--;
    if(q[id].first == 0) {
     id++;
private:
  std::vector<std::pair<int, T>> q;
  int id;
```

```
C cmp;
};
```

1.10 Policy Based Structures

1.11 Color Updates Structure

```
struct range {
  int 1, r:
  int v;
  range(int l = 0, int r = 0, int v = 0) : l(1), r(r), v(v) {}
 bool operator < (const range &a) const {
    return 1 < a.1;</pre>
};
set<range> ranges;
vector<range> update(int 1, int r, int v) { // [1, r)
  vector<range> ans;
  if(l >= r) return ans;
  auto it = ranges.lower_bound(1);
  if(it != ranges.begin()) {
    it--;
    if(it->r>1) {
      auto cur = *it;
      ranges.erase(it);
      ranges.insert(range(cur.1, 1, cur.v));
      ranges.insert(range(l, cur.r, cur.v));
  it = ranges.lower_bound(r);
  if(it != ranges.begin()) {
    it--:
    if(it->r>r) {
      auto cur = *it;
      ranges.erase(it);
      ranges.insert(range(cur.l, r, cur.v));
      ranges.insert(range(r, cur.r, cur.v));
```

2 Graph Algorithms

2.1 Simple Disjoint Set

```
struct dsu {
 vector<int> hist, par, sz;
 vector<ii> changes;
 int n;
 dsu (int n) : n(n) {
   hist.assign(n, 1e9);
   par.resize(n);
   iota(par.begin(), par.end(), 0);
    sz.assign(n, 1);
  int root (int x, int t) {
   if(hist[x] > t) return x;
    return root(par[x], t);
 void join (int a, int b, int t) {
   a = root(a, t);
   b = root(b, t);
   if (a == b) { changes.emplace_back(-1, -1); return; }
    if (sz[a] > sz[b]) swap(a, b);
   par[a] = b;
   sz[b] += sz[a];
   hist[a] = t;
   changes.emplace_back(a, b);
   n--;
 bool same (int a, int b, int t) {
    return root(a, t) == root(b, t);
 void undo () {
   int a, b;
   tie(a, b) = changes.back();
```

```
changes.pop_back();
  if (a == -1) return;
  sz[b] -= sz[a];
  par[a] = a;
  hist[a] = 1e9;
  n++;
}

int when (int a, int b) {
  while (1) {
    if (hist[a] > hist[b]) swap(a, b);
    if (par[a] == b) return hist[a];
    if (hist[a] == 1e9) return 1e9;
    a = par[a];
  }
};
```

2.2 Boruyka

```
struct edge {
  int u, v;
 int w;
 int id;
 edge () {};
  edge (int u, int v, int w = 0, int id = 0) : u(u), v(v), w(w), id(id
     ) {};
 bool operator < (edge &other) const { return w < other.w; };</pre>
vector<edge> boruvka (vector<edge> &edges, int n) {
 vector<edge> mst;
 vector<edge> best(n);
 initDSU(n):
 bool f = 1;
 while (f) {
   f = 0:
   for (int i = 0; i < n; i++) best[i] = edge(i, i, inf);</pre>
   for (auto e : edges) {
      int pu = root(e.u), pv = root(e.v);
      if (pu == pv) continue;
      if (e < best[pu]) best[pu] = e;</pre>
      if (e < best[pv]) best[pv] = e;</pre>
    for (int i = 0; i < n; i++) {
      edge e = best[root(i)];
      if (e.w != inf) {
        join(e.u, e.v);
       mst.push_back(e);
        f = 1;
  return mst;
```

```
const int ms = 1e3; // Quantidade maxima de vertices
const int me = 1e5; // Quantidade maxima de arestas
int adj[ms], to[me], ant[me], wt[me], z, n;
int copy_adj[ms], fila[ms], level[ms];
void clear() { // Lembrar de chamar no main
  memset(adj, -1, sizeof adj);
  z = 0;
void add(int u, int v, int k) {
  to[z] = v;
 ant[z] = adj[u];
 wt[z] = k;
 adj[u] = z++;
 swap(u, v);
  to[z] = v;
  ant[z] = adi[u]:
  wt[z] = 0; // Lembrar de colocar = 0
 adj[u] = z++;
int bfs(int source, int sink) {
 memset(level, -1, sizeof level);
  level[source] = 0;
  int front = 0, size = 0, v;
  fila[size++] = source;
  while(front < size) {</pre>
    v = fila[front++];
    for(int i = adj[v]; i != -1; i = ant[i]) {
      if(wt[i] && level[to[i]] == -1) {
       level[to[i]] = level[v] + 1;
        fila[size++] = to[i];
  return level[sink] != -1;
int dfs(int v, int sink, int flow) {
 if(v == sink) return flow:
  int f:
  for(int &i = copy_adj[v]; i != -1; i = ant[i]) {
    if(wt[i] \&\& level[to[i]] == level[v] + 1 \&\&
      (f = dfs(to[i], sink, min(flow, wt[i])))) {
      wt[i] -= f;
      wt[i ^ 1] += f;
      return f;
  return 0;
int maxflow(int source, int sink) {
  int ret = 0, flow;
  while(bfs(source, sink)) {
    memcpy(copy_adj, adj, sizeof adj);
    while((flow = dfs(source, sink, 1 << 30))) {</pre>
      ret += flow;
```

```
}
return ret;
```

2.4 Minimum Vertex Cover

```
// + Dinic
vector<int> coverU, U, coverV, V; // ITA - Parti o U LEFT,
    parti o V RIGHT, O indexed
bool Zu[mx], Zv[mx];
int pairU[mx], pairV[mx];
void getreach(int u) {
  if (u == -1 \mid | Zu[u]) return;
  Zu[u] = true;
  for (int i = adj[u]; ~i; i = ant[i]) {
    int v = to[i];
    if (v == SOURCE || v == pairU[u]) continue;
    Zv[v] = true;
    getreach(pairV[v]);
void minimumcover () {
  memset(pairU, -1, sizeof pairU);
  memset(pairV, -1, sizeof pairV);
  for (auto i : U) {
    for (int j = adj[i]; ~j; j = ant[j]) {
      if (!(j&1) && !wt[j]) {
        pairU[i] = to[j], pairV[to[j]] = i;
  memset (Zu, 0, sizeof Zu);
  memset (Zv, 0, sizeof Zv);
  for (auto u : U) {
   if (pairU[u] == -1) getreach(u);
  coverU.clear(), coverV.clear();
  for (auto u : U) {
    if (!Zu[u]) coverU.push_back(u);
  for (auto v : V) {
    if (Zv[v]) coverV.push_back(v);
```

2.5 Min Cost Max Flow

```
template <class T = int>
class MCMF {
public:
    struct Edge {
        Edge(int a, T b, T c) : to(a), cap(b), cost(c) {}
        int to;
        T cap, cost;
    };

MCMF(int size) {
```

```
n = size;
    edges.resize(n);
    pot.assign(n, 0);
    dist.resize(n);
    visit.assign(n, false);
  std::pair<T, T> mcmf(int src, int sink) {
    std::pair<T, T> ans(0, 0);
    if(!SPFA(src, sink)) return ans;
    fixPot();
    // can use dijkstra to speed up depending on the graph
    while(SPFA(src, sink)) {
      auto flow = augment(src, sink);
      ans.first += flow.first;
      ans.second += flow.first * flow.second;
      fixPot();
    return ans:
  void addEdge(int from, int to, T cap, T cost) {
    edges[from].push_back(list.size());
    list.push_back(Edge(to, cap, cost));
    edges[to].push_back(list.size());
    list.push_back(Edge(from, 0, -cost));
private:
  int n;
  std::vector<std::vector<int>> edges;
  std::vector<Edge> list;
  std::vector<int> from;
  std::vector<T> dist, pot;
  std::vector<bool> visit;
  /*bool dij(int src, int sink) {
    T INF = std::numeric_limits<T>::max();
    dist.assign(n, INF);
    from.assign(n, -1);
    visit.assign(n, false);
    dist[src] = 0;
    for (int i = 0; i < n; i++) {
     int best = -1;
      for (int j = 0; j < n; j++) {
        if(visit[j]) continue;
        if(best == -1 \mid \mid dist[best] > dist[j]) best = j;
      if(dist[best] >= INF) break;
      visit[best] = true;
      for(auto e : edges[best]) {
        auto ed = list[e];
        if (ed.cap == 0) continue;
        T toDist = dist[best] + ed.cost + pot[best] - pot[ed.to];
        assert(toDist >= dist[best]);
        if(toDist < dist[ed.to]) {</pre>
          dist[ed.to] = toDist;
          from[ed.to] = e;
    return dist[sink] < INF;
```

```
}*/
  std::pair<T, T> augment(int src, int sink) {
    std::pair<T, T> flow = {list[from[sink]].cap, 0};
    for(int v = sink; v != src; v = list[from[v]^1].to) {
      flow.first = std::min(flow.first, list[from[v]].cap);
      flow.second += list[from[v]].cost;
    for(int v = sink; v != src; v = list[from[v]^1].to) {
      list[from[v]].cap -= flow.first;
      list[from[v]^1].cap += flow.first;
    return flow;
  std::queue<int> q;
  bool SPFA(int src, int sink) {
    T INF = std::numeric_limits<T>::max();
    dist.assign(n, INF);
    from.assign(n, -1);
    q.push(src);
    dist[src] = 0;
    while(!q.empty()) {
      int on = q.front();
      q.pop();
      visit[on] = false;
      for(auto e : edges[on]) {
        auto ed = list[e];
        if(ed.cap == 0) continue;
        T toDist = dist[on] + ed.cost + pot[on] - pot[ed.to];
        if(toDist < dist[ed.to]) {</pre>
          dist[ed.to] = toDist;
          from[ed.to] = e;
          if(!visit[ed.to]) {
            visit[ed.to] = true;
            q.push(ed.to);
    return dist[sink] < INF;</pre>
  void fixPot() {
    T INF = std::numeric limits<T>::max();
    for(int i = 0; i < n; i++) {</pre>
      if(dist[i] < INF) pot[i] += dist[i];</pre>
};
```

2.6 Euler Path and Circuit

```
int pathV[me], szV, del[me], pathE, szE;
int adj[ms], to[me], ant[me], wt[me], z, n;

// Funcao de add e clear no dinic

void eulerPath(int u) {
  for(int i = adj[u]; ~i; i = ant[u]) if(!del[i]) {
```

```
del[i] = del[i^1] = 1;
  eulerPath(to[i]);
  pathE[szE++] = i;
}
pathV[szV++] = u;
```

2.7 Articulation Points/Bridges/Biconnected Components

```
int adj[ms], to[me], ant[me], z;
int num[ms], low[ms], timer;
int art[ms], bridge[me], rch;
int bc[ms], nbc;
stack<int> st;
bool f[me];
void clear() { // Lembrar de chamar no main
 memset(adj, -1, sizeof adj);
  z = 0;
void add(int u, int v) {
  to[z] = v;
  ant[z] = adj[u];
  adj[u] = z++;
void generateBc (int v) {
  while (!st.empty())
    int u = st.top();
    st.pop();
   bc[u] = nbc;
    if (v == u) break;
  ++nbc;
void dfs (int v, int p) {
  st.push(v);
  low[v] = num[v] = ++timer;
  for (int i = adj[v]; i != -1; i = ant[i]) {
    if (f[i] || f[i^1]) continue;
    f[i] = 1;
    int u = to[i];
    if (num[u] == -1) {
      dfs(u, v);
      if (low[u] > num[v]) bridge[i] = bridge[i^1] = 1;
      art[v] \mid = p != -1 \&\& low[u] >= num[v];
      if (p == -1 \&\& rch > 1) art[v] = 1;
      else rch ++;
      low[v] = min(low[v], low[u]);
      low[v] = min(low[v], num[u]);
  if (low[v] == num[v]) generateBc(v);
void biCon (int n) {
```

```
nbc = 0, timer = 0;
memset(num, -1, sizeof num);
memset(bc, -1, sizeof bc);
memset(bridge, 0, sizeof bridge);
memset(art, 0, sizeof art);
memset(f, 0, sizeof f);
for (int i = 0; i < n; i++) {
   if (num[i] = -1) {
      rch = 0;
      dfs(i, 0);
   }
}</pre>
```

2.8 SCC - Strongly Connected Components / 2SAT

```
vector<int> q[ms];
int idx[ms], low[ms], z, comp[ms], ncomp;
stack<int> st:
int dfs(int u) {
  if(~idx[u]) return idx[u] ? idx[u] : z;
  low[u] = idx[u] = z++;
  st.push(u);
  for(int v : g[u]) {
    low[u] = min(low[u], dfs(v));
  if(low[u] == idx[u]) {
    while(st.top() != u) {
      int v = st.top();
      idx[v] = 0;
      low[v] = low[u];
      comp[v] = ncomp;
      st.pop();
    idx[st.top()] = 0;
    st.pop();
    comp[u] = ncomp++;
  return low[u];
bool solveSat() {
 memset(idx, -1, sizeof idx);
 z = 1; ncomp = 0;
  for (int i = 0; i < n; i++) dfs(i);</pre>
  for(int i = 0; i < n; i++) if(comp[i] == comp[i^1]) return false;</pre>
  return true;
// Operacoes comuns de 2-sat
// ~v = "nao v"
#define trad(v) (v<0?((~v)*2)^1:v*2)
void addImp(int a, int b) { g[trad(a)].push(trad(b)); }
void addOr(int a, int b) { addImp(~a, b); addImp(~b, a); }
void addEqual(int a, int b) { addOr(a, b); addOr(a, b); }
void addDiff(int a, int b) { addEqual(a, ~b); }
// valoracao: value[v] = comp[trad(v)] < comp[trad(~v)]</pre>
```

2.9 LCA - Lowest Common Ancestor

```
int par[ms][mlg+1], lvl[ms];
vector<int> q[ms];
void dfs(int v, int p, int 1 = 0) { // chamar como dfs(root, root)
  1v1[v] = 1;
  par[v][0] = p;
  for (int k = 1; k \le mlg; k++) {
    par[v][k] = par[par[v][k-1]][k-1];
  for(int u : g[v]) {
    if (u != p) dfs(u, v, l + 1);
int lca(int a, int b) {
  if(|v|[b] > |v|[a]) swap(a, b);
  for(int i = mlg; i >= 0; i--) {
    if(lvl[a] - (1 << i) >= lvl[b]) a = par[a][i];
  if(a == b) return a;
  for(int i = mlg; i >= 0; i--) {
    if(par[a][i] != par[b][i]) a = par[a][i], b = par[b][i];
  return par[a][0]:
```

2.10 Heavy Light Decomposition

```
// src: tfg
class HLD {
public:
  void init(int n) {
    // this doesn't delete edges!
    sz.resize(n);
    in.resize(n);
    out.resize(n);
    rin.resize(n);
    p.resize(n);
    edges.resize(n);
    nxt.resize(n);
    h.resize(n);
  void addEdge(int u, int v) {
    edges[u].push_back(v);
    edges[v].push_back(u);
  void setRoot(int n) {
   t = 0;
    p[n] = n;
    h[n] = 0;
    prep(n, n);
    nxt[n] = n;
    hld(n);
```

```
int getLCA(int u, int v) {
    while(!inSubtree(nxt[u], v)) {
      u = p[nxt[u]];
    while(!inSubtree(nxt[v], u)) {
      v = p[nxt[v]];
    return in[u] < in[v] ? u : v;</pre>
  bool inSubtree(int u, int v) {
    // is v in the subtree of u?
    return in[u] <= in[v] && in[v] < out[u];</pre>
  vector<pair<int, int>> getPathtoAncestor(int u, int anc) {
    // returns ranges [1, r) that the path has
    vector<pair<int, int>> ans;
    //assert(inSubtree(anc, u));
    while(nxt[u] != nxt[anc]) {
      ans.emplace back(in[nxt[u]], in[u] + 1);
      u = p[nxt[u]];
    // this includes the ancestor!
    ans.emplace_back(in[anc], in[u] + 1);
    return ans;
private:
  vector<int> in, out, p, rin, sz, nxt, h;
  vector<vector<int>> edges;
  int t;
  void prep(int on, int par) {
    sz[on] = 1;
    p[on] = par;
    for(int i = 0; i < (int) edges[on].size(); i++) {</pre>
      int &u = edges[on][i];
      if(u == par) {
        swap(u, edges[on].back());
        edges[on].pop_back();
        i--:
      } else {
        h[u] = 1 + h[on];
        prep(u, on);
        sz[on] += sz[u];
        if(sz[u] > sz[edges[on][0]]) {
          swap(edges[on][0], u);
  void hld(int on) {
    in[on] = t++;
    rin[in[on]] = on;
    for(auto u : edges[on]) {
      nxt[u] = (u == edges[on][0] ? nxt[on] : u);
      hld(u);
    out[on] = t;
```

2.11 Centroid Decomposition

};

```
//Centroid decomposition1
void dfsSize(int v, int pa) {
  sz[v] = 1;
  for(int u : adi[v]) {
   if (u == pa || rem[u]) continue;
   dfsSize(u, v);
   sz[v] += sz[u];
int getCentroid(int v, int pa, int tam) {
  for(int u : adj[v]) {
   if (u == pa || rem[u]) continue;
   if (2 * sz[u] > tam) return getCentroid(u, v, tam);
  return v;
void decompose (int v, int pa = -1) {
  //cout << v << ' ' << pa << '\n';
 dfsSize(v, pa);
  int c = getCentroid(v, pa, sz[v]);
  //cout << c << '\n';
 par[c] = pa;
 rem[c] = 1:
  for(int u : adj[c]) {
   if (!rem[u] && u != pa) decompose(u, c);
  adj[c].clear();
//Centroid decomposition2
void dfsSize(int v, int par) {
  sz[v] = 1;
  for(int u : adj[v]) {
   if (u == par || removed[u]) continue;
   dfsSize(u, v);
    sz[v] += sz[u];
int getCentroid(int v, int par, int tam) {
 for(int u : adj[v]) {
   if (u == par || removed[u]) continue;
   if (2 * sz[u] > tam) return getCentroid(u, v, tam);
  return v;
void setDis(int v, int par, int nv, int d) {
  dis[v][nv] = d;
  for(int u : adj[v]) {
```

if (u == par || removed[u]) continue;

```
setDis(u, v, nv, d + 1);
}

void decompose(int v, int par, int nv) {
    dfsSize(v, par);
    int c = getCentroid(v, par, sz[v]);
    ct[c] = par;
    removed[c] = 1;
    setDis(c, par, nv, 0);
    for(int u : adj[c]) {
        if (!removed[u]) {
            decompose(u, c, nv + 1);
        }
    }
}
```

2.12 Sack

```
void dfs(int v, int par = -1, bool keep = 0) {
    int big = -1;
    for (int u : adj[v]) {
        if (u == par) continue;
        if (big == -1 \mid \mid sz[u] > sz[big]) {
            big = u;
    for (int u : adj[v]) {
        if (u == par || u == big) {
            continue;
        dfs(u, v, 0);
    if (big !=-1) {
        dfs(big, v, 1);
    for (int u : adj[v]) {
        if (u == par || u == big) {
            continue;
        put (u, v);
    if (!keep) {
```

2.13 Hungarian Algorithm - Maximum Cost Matching

```
//input: matrix n x m, n <= m
//return vector p of size n, where p[i] is the match for i
// and minimum cost
// time complexity: O(n^2 * m)

int u[ms], v[ms], p[ms], way[ms], minv[ms];
bool used[ms];

pair<vector<int>, int> solve(const vector<vector<int>> &matrix) {
```

```
int n = matrix.size();
if(n == 0) return {vector<int>(), 0};
int m = matrix[0].size();
assert (n <= m);</pre>
memset (u, 0, (n+1) *sizeof(int));
memset(v, 0, (m+1)*sizeof(int));
memset(p, 0, (m+1)*sizeof(int));
for(int i = 1; i <= n; i++) {</pre>
  memset(minv, 0x3f, (m+1)*sizeof(int));
  memset(way, 0, (m+1) *sizeof(int));
  for (int j = 0; j \le m; j++) used [j] = 0;
  p[0] = i;
  int k0 = 0;
  do {
    used[k0] = 1;
    int i0 = p[k0], delta = inf, k1;
    for (int j = 1; j \le m; j++) {
      if(!used[j]) {
        int cur = matrix[i0-1][j-1] - u[i0] - v[j];
        if (cur < minv[j]) {</pre>
          minv[j] = cur;
          way[j] = k0;
        if(minv[i] < delta) {</pre>
          delta = minv[j];
          k1 = j;
    for(int j = 0; j <= m; j++) {</pre>
      if(used[j]) {
        u[p[j]] += delta;
        v[j] -= delta;
      } else {
        minv[j] -= delta;
    k0 = k1;
  } while(p[k0]);
  do {
    int k1 = way[k0];
    p[k0] = p[k1];
    k0 = k1;
  } while(k0);
vector<int> ans(n, -1);
for (int j = 1; j \le m; j++) {
  if(!p[j]) continue;
  ans[p[i] - 1] = i - 1;
return {ans, -v[0]};
```

2.14 Burunduk

```
struct edge {
   int a, b, l, r;
};

typedef vector <edge> List;
```

```
go(m, r, v1, vn1, add_vn);
```

2.15 Minimum Arborescence

```
// uncommented O(V^2) arborescence
struct Edges {
  //set<pair<long long, int>> cost; O(Elog^2)
  long long cost[ms];
  // possible optimization, use vector of size n
  // instead of ms
  long long sum = 0;
  Edges() {
    memset(cost, 0x3f, sizeof cost);
  void addEdge(int u, long long c) {
    // cost.insert({c - sum, u}); O(Elog^2)
    cost[u] = min(cost[u], c - sum);
  pair<long long, int> getMin() {
    //return *cost.begin(); O(E*log^2)
    pair<long long, int> ans(cost[0], 0);
    // in this loop can change ms to n to make it faster for many
        cases
    for(int i = 1; i < ms; i++) {</pre>
      if(cost[i] < ans.first) {</pre>
        ans = pair<long long, int>(cost[i], i);
    return ans;
  void unite(Edges &e) {
    O(E*log^2E)
    if(e.cost.size() > cost.size()) {
      cost.swap(e.cost);
      swap(sum, e.sum);
    for(auto i : e.cost) {
      addEdge(i.second, i.first + e.sum);
    e.cost.clear();
    // O(V^2)
    // can change ms to n
    for(int i = 0; i < ms; i++) {
      cost[i] = min(cost[i], e.cost[i] + e.sum - sum);
};
typedef vector<vector<pair<long long, int>>> Graph;
```

```
Edges ed[ms];
int par[ms];
long long best[ms];
int col[ms];
int getPar(int x) { return par[x] < 0 ? x : par[x] = getPar(par[x]); }</pre>
void makeUnion(int a, int b) {
  a = getPar(a);
 b = getPar(b);
  if(a == b) return;
  ed[a].unite(ed[b]);
 par[b] = a;
long long arborescence(Graph edges) {
  // root is 0
  // edges has transposed adjacency list (cost, from)
  // edge from i to j cost c is
  // edge[j].emplace_back(c, i)
  int n = (int) edges.size();
  long long ans = 0;
  for (int i = 0; i < n; i++) {
    ed[i] = Edges();
    par[i] = -1;
    for(auto j : edges[i]) {
      ed[i].addEdge(j.second, j.first);
    col[i] = 0;
  // to change the root you can simply change this next line to
  // col[root] = 2;
  col[0] = 2;
  for (int i = 0; i < n; i++) {
    if(col[getPar(i)] == 2) {
      continue;
    int on = getPar(i);
    vector<int> st;
    while(col[on] != 2) {
      assert(getPar(on) == on);
      if(col[on] == 1) {
        // found cycle
        int v = on;
        vector<int> cycle;
        //cout << "found cycle\n";</pre>
        while(st.back() != v) {
          //cout << st.back() << endl;
          cycle.push_back(st.back());
          st.pop_back();
        // compress cycle
        for(auto u : cycle) {
          makeUnion(v, u);
        v = getPar(v);
        col[v] = 0;
        on = v;
      } else {
        // still no cycle
        // while best is in compressed cycle, remove
        /*
```

```
THIS IS TO MAKE O(E*log^2) ALGORITHM!!
        while (!ed[on].cost.empty() && getPar(on) == getPar(ed[on].
            getMin().second)) {
          ed[on].cost.erase(ed[on].cost.begin());
        */
        // O(V^2)
        for (int x = 0; x < n; x++) {
          if(on == getPar(x)) {
            ed[on].cost[x] = 0x3f3f3f3f3f3f3f3f1LL;
        }
        // best edge
        auto e = ed[on].getMin();
        // O(E*log^2) assert(!ed[on].cost.empty()) if every vertex
            appears in the arborescence
        // O(V^2)
        assert(e.first < 0x3f3f3f3f3f3f3f3f3f3fLL);
        int v = getPar(e.second);
        //cout << "found not cycle to " << v << " of cost " << e.first
             + ed[on].sum << '\n';
        assert(v != on);
        best[on] = e.first + ed[on].sum;
        ans += best[on];
        // compress edges
        ed[on].sum = -(e.first);
        st.push back(on);
        col[on] = 1;
        on = v;
    // make everything 2
    for(auto u : st) {
      assert(getPar(u) == u);
      col[u] = 2:
  return ans:
int main() {
  cin.tie(NULL);
  ios_base::sync_with_stdio(NULL);
  // https://open.kattis.com/problems/fastestspeedrun
  int n;
  cin >> n;
  Graph edges(n+1);
  for(int i = 1; i <= n; i++) {</pre>
      int x, s;
      cin >> x >> s;
      edges[i].emplace_back(s, x);
    for (int j = 0; j \le n; j++) {
      int x;
      cin >> x:
      edges[i].emplace_back(x, j);
```

```
cout << arborescence(edges) << '\n';</pre>
/*int n;
cin >> n;
vector<int> a(n), b(n);
for (int i = 0; i < n; i++) {
 cin >> a[i];
for (int i = 0; i < n; i++) {
 cin >> b[i];
Graph edges(n+1);
for(int i = 0; i < n; i++) {
 edges[i+1].emplace_back(a[i] ^ b[i], 0);
for (int i = 0; i < n; i++) {
 for (int j = 0; j < n; j++) {
   if(i == j) continue;
    edges[i+1].emplace_back(a[i] ^ b[i], i+1);
long long cost = arborescence(edges);
cout << cost << '\n';
vector<bool> got(n, false);
long long cur = 0;
for(int i = 0; i < n; i++) {
 int j = 0;
 while(1) {
    while(got[j]) {
      //cout << "skipping " << j << '\n';
      j++;
    //cout << "testing " << j << endl;
    for(auto &e : edges) e.clear();
    int mn = a[j] ^ b[j];
    for (int k = 0; k < n; k++) {
      if(got[k] \mid \mid k == j)  {
        mn = min(mn, a[i] ^ b[k]);
      } else {
        int mine = a[k] \hat{b}[k];
        for (int x = 0; x < n; x++) {
         if(qot[x] | | x == j | | x == k)  {
            mine = min(mine, a[k] \hat{b}[x]);
          } else {
            edges[k+1].emplace_back(a[k] ^ b[x], x+1);
        edges[k+1].emplace_back(mine, 0);
    //cout << "got here!" << endl;</pre>
    long long gott = arborescence(edges);
    //cout << "!" << gott + cur + mn << "\n";
    if(gott + cur + mn == cost) {
      cout << j + 1 << (i + 1 == n ? ' \ n' : ' ');
      cur += mn;
      //cout << endl;
      got[i] = true;
      break:
    j++;
```

Dynamic Programming

3.1 Line Container

1 */

```
typedef long long int 11;
bool O:
struct Line {
  mutable 11 k, m, p:
  bool operator<(const Line& o) const {</pre>
    return Q ? p < o.p : k < o.k;
};
struct LineContainer : multiset<Line> {
  // (for doubles, use inf = 1/.0, div(a,b) = a/b)
  const ll inf = LLONG MAX;
  ll div(ll a, ll b) { // floored division
    return a / b - ((a ^ b) < 0 && a % b); }
  bool isect(iterator x, iterator y) {
    if (y == end()) { x->p = inf; return false; }
    if (x->k == y->k) x->p = x->m > y->m ? inf : -inf;
    else x->p = div(y->m - x->m, x->k - y->k);
    return x->p >= y->p;
  void add(ll k, ll m) {
    auto z = insert(\{k, m, 0\}), y = z++, x = y;
    while (isect(y, z)) z = erase(z);
    if (x != begin() \&\& isect(--x, y)) isect(x, y = erase(y));
    while ((y = x) != begin() && (--x)->p >= y->p)
      isect(x, erase(y));
  11 query(11 x) {
    assert(!empty());
    Q = 1; auto 1 = *lower_bound({0,0,x}); Q = 0;
    return 1.k * x + 1.m;
};
```

3.2 Li Chao Tree

```
// by luucasv
typedef long long T;
const T INF = 1e18, EPS = 1;
const int BUFFER_SIZE = 1e4;

struct Line {
   T m, b;

   Line(T m = 0, T b = INF): m(m), b(b){}
   T apply(T x) { return x * m + b; }
};
```

```
struct Node {
 Node *left, *right;
 Line line:
 Node(): left(NULL), right(NULL) {}
};
struct LiChaoTree {
 Node *root, buffer[BUFFER_SIZE];
 T min value, max value;
  int buffer_pointer;
  LiChaoTree (T min_value, T max_value): min_value (min_value),
      max_value(max_value + 1) { clear(); }
  void clear() { buffer_pointer = 0; root = newNode(); }
  void insert_line(T m, T b) { update(root, min_value, max_value, Line
      (m, b)); }
  T eval(T x) { return query(root, min_value, max_value, x); }
  void update(Node *cur, T l, T r, Line line) {
    T m = 1 + (r - 1) / 2;
    bool left = line.applv(l) < cur->line.applv(l);
    bool mid = line.apply(m) < cur->line.apply(m);
    bool right = line.apply(r) < cur->line.apply(r);
    if (mid) {
     swap(cur->line, line);
    if (r - 1 <= EPS) return;</pre>
    if (left == right) return;
    if (mid != left) {
      if (cur->left == NULL) cur->left = newNode();
      update(cur->left, 1, m, line);
    } else {
      if (cur->right == NULL) cur->right = newNode();
      update(cur->right, m, r, line);
  T query(Node *cur, T l, T r, T x) {
    if (cur == NULL) return INF;
    if (r - 1 <= EPS) {
      return cur->line.apply(x);
    T m = 1 + (r - 1) / 2;
    T ans;
    if (x < m) {
      ans = query(cur->left, l, m, x);
      ans = query(cur->right, m, r, x);
    return min(ans, cur->line.apply(x));
  Node* newNode() {
      buffer[buffer_pointer] = Node();
      return &buffer[buffer_pointer++];
};
```

3.3 Divide and Conquer Optimization

```
int n, k;
11 dpold[ms], dp[ms], c[ms][ms]; // c(i, j) pode ser funcao

void compute(int 1, int r, int optl, int optr) {
```

```
if(l>r) return;
    int mid = (1+r)/2;
    pair<11, int> best = {inf, -1}; // long long inf
    for(int k = optl; k <= min(mid, optr); k++) {</pre>
        best = min(best, \{dpold[k-1] + c[k][mid], k\});
    dp[mid] = best.first;
    int opt = best.second;
    compute(l, mid-1, optl, opt);
    compute(mid+1, r, opt, optr);
11 solve() {
    dp[0] = 0;
    for(int i = 1; i <= n; i++) dp[i] = inf; // initialize row 0 of</pre>
    for (int i = 1; i \le k; i++) {
        swap(dpold, dp);
        compute(0, n, 0, n); // solve row i of the dp
    return dp[n]; // return dp[k][n]
```

3.4 Knuth Optimization

```
int n, m, mid[ms][ms];
11 dp[ms][ms];

void knuth() {
  for(int i = n; i >= 0; i--) { // limites entre 0 e n
      dp[i][i+1] = 0; mid[i][i+1] = i; // caso base
      for(int j = i+2; j <= n; j++) {
      dp[i][j] = inf; // long long inf
      for(int k = mid[i][j-1]; k <= mid[i+1][j]; k++) {
        if(dp[i][j] > dp[i][k] + dp[k][j]) {
            dp[i][j] = dp[i][k] + dp[k][j];
            mid[i][j] = k;
      }
      dp[i][j] += c(i, j); // custo associado ao intervalo
      }
   }
}
```

4 Math

4.1 Chinese Remainder Theorem

```
#include<bits/stdc++.h>
using namespace std;
const long long N = 20;

long long GCD(long long a, long long b) {
  return (b == 0) ? a : GCD(b, a % b);
}
```

```
inline long long get_LCM(long long a, long long b) {
  return a / GCD(a, b) * b;
inline long long normalize(long long x, long long mod) {
  if (x < 0) x += mod;
  return x;
struct GCD_type {
  long long x, y, d;
};
GCD_type ex_GCD(long long a, long long b) {
  if (b == 0) return {1, 0, a};
 GCD_type pom = ex_GCD(b, a % b);
 return {pom.y, pom.x - a / b * pom.y, pom.d};
long long testCases;
long long t;
long long a[N], n[N], ans, LCM;
int main() {
  ios_base::sync_with_stdio(0);
  cin.tie(0);
  t = 2;
  long long T;
  cin >> T;
  while (T--) {
    for(long long i = 1; i \le t; i++) {
      cin >> a[i] >> n[i];
      normalize(a[i], n[i]);
    ans = a[1];
    LCM = n[1];
    bool impossible = false;
    for (long long i = 2; i \le t; i++) {
      auto pom = ex_GCD(LCM, n[i]);
      long long x1 = pom.x;
      long long d = pom.d;
      if((a[i] - ans) % d != 0) {
        impossible = true;
      ans = normalize(ans + x1 * (a[i] - ans) / d % (n[i] / d) * LCM,
          LCM * n[i] / d);
      LCM = get LCM(LCM, n[i]);
    if (impossible) cout << "no solution\n";</pre>
    else cout << ans << " " << LCM << endl;
  return 0;
```

4.2 Diophantine Equations

```
int gcd_ext(int a, int b, int& x, int &y) {
  if (b == 0) {
    x = 1, y = 0;
    return a;
}
```

```
int gc = gcd_ext(b, a % b, nx, ny);
  x = ny;
 y = nx - (a / b) * ny;
  return gc;
vector<int> diophantine(int D, vector<int> 1) {
  int n = l.size();
  vector<int> gc(n), ans(n);
  qc[n-1] = l[n-1];
  for (int i = n - 2; i >= 0; i--) {
    int x, y;
    qc[i] = qcd_ext(l[i], qc[i + 1], x, y);
  if (D % qc[0] != 0) {
    return vector<int>();
  for (int i = 0; i < n; i++) {
    if (i == n - 1) {
      ans[i] = D / l[i];
     D = l[i] * ans[i];
      continue;
    int x, y;
    gcd_ext(l[i] / gc[i], gc[i + 1] / gc[i], x, y);
    ans[i] = (long long int) D / gc[i] * x % (gc[i + 1] / gc[i]);
    if (D < 0 \&\& ans[i] > 0) {
      ans[i] \rightarrow (gc[i + 1] / gc[i]);
    if (D > 0 \&\& ans[i] < 0) {
      ans[i] += (gc[i + 1] / gc[i]);
    D = l[i] * ans[i];
  return ans;
```

4.3 Discrete Logarithm

```
ll discreteLog (ll a, ll b, ll m) {
    a %= m; b %= m;
    ll n = (ll) sqrt (m + .0) + 1, an = 1;
    for (ll i = 0; i < n; i++) {
        an = (an * a) % m;
    }
    map<ll, ll> vals;
    for (ll i = 1, cur = an; i <= n; i++) {
        if (!vals.count(cur)) vals[cur] = i;
        cur = (cur * an) % m;
    }
    ll ans = lel8; //inf
    for (ll i = 0, cur = b; i <= n; i++) {
        if (vals.count(cur)) {
            ans = min(ans, vals[cur] * n - i);
        }
        cur = (cur * a) % m;
    }
    return ans;
}</pre>
```

4.4 Discrete Root

```
//x^k = a % mod

11 discreteRoot(11 k, 11 a, 11 mod) {
    11 g = primitiveRoot(mod);
    11 y = discreteLog(fexp(g, k, mod), a, mod);
    if (y == -1) {
        return y;
    }
    return fexp(g, y, mod);
}
```

4.5 Primitive Root

```
int primitiveRoot(int p) {
  vector<int> fact;
  int phi = p - 1, n = phi;
 for (int i = 2; i * i <= n; i++) {
   if (n % i == 0) {
      fact.push_back(i);
      while (n \% i == 0) {
       n /= i;
  if (n > 1) {
   fact.push_back(n);
  for (int res = 2; res <= p; res++) {</pre>
   bool ok = true;
   for (auto it : fact) {
     ok &= fexp(res, phi / it, p) != 1;
      if (!ok) {
       break;
   if (ok) {
      return res;
  return -1;
```

4.6 Extended Euclides

```
// euclides estendido: acha u e v da equacao:
// u * x + v * y = gcd(x, y);
// u eh inverso modular de x no modulo y
// v eh inverso modular de y no modulo x

pair<1l, ll> euclides(ll a, ll b) {
    ll u = 0, oldu = 1, v = 1, oldv = 0;
    while(b) {
        ll q = a / b;
        oldv = oldv - v * q;
        oldu = oldu - u * q;
```

```
a = a - b * q;
swap(a, b);
swap(u, oldu);
swap(v, oldv);
}
return make_pair(oldu, oldv);
}
```

4.7 Matrix Fast Exponentiation

```
const 11 \mod = 1e9+7;
const int m = 2; // size of matrix
struct Matrix {
  11 mat[m][m];
  Matrix operator * (const Matrix &p) {
    Matrix ans:
    for (int i = 0; i < m; i++)
      for (int j = 0; j < m; j++)
        for (int k = ans.mat[i][j] = 0; k < m; k++)
          ans.mat[i][j] = (ans.mat[i][j] + mat[i][k] * p.mat[k][j]) %
    return ans:
};
Matrix fExp(Matrix a, ll b) {
 Matrix ans:
  for (int i = 0; i < m; i++) for (int j = 0; j < m; j++)
    ans.mat[i][j] = i == j;
  while(b) {
    if(b \& 1) ans = ans * a;
    a = a * a;
    b >>= 1;
  return ans;
```

4.8 FFT - Fast Fourier Transform

```
typedef double ld;
const ld PI = acos(-1);

struct Complex {
  ld real, imag;
  Complex conj() { return Complex(real, -imag); }
  Complex(ld a = 0, ld b = 0) : real(a), imag(b) {}
  Complex operator + (const Complex &o) const { return Complex(real + o.real, imag + o.imag); }
  Complex operator - (const Complex &o) const { return Complex(real - o.real, imag - o.imag); }
  Complex operator * (const Complex &o) const { return Complex(real * o.real - imag * o.imag, real * o.imag + imag * o.real); }
  Complex operator / (ld o) const { return Complex(real / o, imag / o) ; }
  void operator *= (Complex o) { *this = *this * o; }
  void operator /= (ld o) { real /= o, imag /= o; }
```

```
};
typedef std::vector<Complex> CVector;
const int ms = 1 << 22;
int bits[ms];
Complex root[ms];
void initFFT() {
  root[1] = Complex(1);
  for(int len = 2; len < ms; len += len) {</pre>
    Complex z(cos(PI / len), sin(PI / len));
    for(int i = len / 2; i < len; i++) {</pre>
      root[2 * i] = root[i];
      root[2 * i + 1] = root[i] * z;
void pre(int n) {
  int LOG = 0;
  while (1 << (LOG + 1) < n) {
   LOG++;
  for (int i = 1; i < n; i++) {
    bits[i] = (bits[i >> 1] >> 1) | ((i & 1) << LOG);
CVector fft(CVector a, bool inv = false) {
  int n = a.size();
 pre(n);
  if(inv) {
    std::reverse(a.begin() + 1, a.end());
  for (int i = 0; i < n; i++) {
    int to = bits[i];
    if(to > i) {
      std::swap(a[to], a[i]);
  for(int len = 1; len < n; len *= 2) {</pre>
    for(int i = 0; i < n; i += 2 * len) {
      for(int j = 0; j < len; j++) {
        Complex u = a[i + j], v = a[i + j + len] * root[len + j];
        a[i + j] = u + v;
        a[i + j + len] = u - v;
  if(inv) {
    for (int i = 0; i < n; i++)
      a[i] /= n;
  return a;
void fft2in1(CVector &a, CVector &b) {
  int n = (int) a.size();
```

```
for (int i = 0; i < n; i++) {
    a[i] = Complex(a[i].real, b[i].real);
  auto c = fft(a);
  for(int i = 0; i < n; i++) {</pre>
    a[i] = (c[i] + c[(n-i) % n].conj()) * Complex(0.5, 0);
   b[i] = (c[i] - c[(n-i) % n].conj()) * Complex(0, -0.5);
}
void ifft2in1(CVector &a, CVector &b) {
  int n = (int) a.size();
  for(int i = 0; i < n; i++) {
    a[i] = a[i] + b[i] * Complex(0, 1);
  a = fft(a, true);
  for(int i = 0; i < n; i++) {
   b[i] = Complex(a[i].imag, 0);
   a[i] = Complex(a[i].real, 0);
std::vector<long long> mod mul(const std::vector<long long> &a, const
    std::vector<long long> &b, long long cut = 1 << 15) {</pre>
  // TODO cut memory here by /2
  int n = (int) a.size();
  CVector C[4];
  for (int i = 0; i < 4; i++) {
    C[i].resize(n);
  for(int i = 0; i < n; i++) {
   C[0][i] = a[i] % cut;
   C[1][i] = a[i] / cut;
    C[2][i] = b[i] % cut;
    C[3][i] = b[i] / cut;
  fft2in1(C[0], C[1]);
  fft2in1(C[2], C[3]);
  for(int i = 0; i < n; i++) {
    // 00, 01, 10, 11
    Complex cur[4]:
    for (int j = 0; j < 4; j++) cur[j] = C[j/2+2][i] * C[j % 2][i];
    for(int j = 0; j < 4; j++) C[j][i] = cur[j];
  ifft2in1(C[0], C[1]);
  ifft2in1(C[2], C[3]);
  std::vector<long long> ans(n, 0);
  for (int i = 0; i < n; i++) {
    // if there are negative values, care with rounding
    ans[i] += (long long) (C[0][i].real + 0.5);
    ans[i] += (long long) (C[1][i].real + C[2][i].real + 0.5) * cut;
    ans[i] += (long long) (C[3][i].real + 0.5) * cut * cut;
  return ans;
std::vector<int> mul(const std::vector<int> &a, const std::vector<int>
    } (d&
  int n = 1:
  while (n - 1 < (int) \ a.size() + (int) \ b.size() - 2) \ n += n;
```

```
CVector poly(n);
for(int i = 0; i < n; i++) {
    if(i < (int) a.size()) {
        poly[i].real = a[i];
    }
    if(i < (int) b.size()) {
        poly[i].imag = b[i];
    }
}
poly = fft(poly);
for(int i = 0; i < n; i++) {
        poly[i] *= poly[i];
}
poly = fft(poly, true);
std::vector<int> c(n, 0);
for(int i = 0; i < n; i++) {
        c[i] = (int) (poly[i].imag / 2 + 0.5);
}
while (c.size() > 0 && c.back() == 0) c.pop_back();
return c;
```

4.9 NTT - Number Theoretic Transform

```
long long int mod = (11911 << 23) + 1, c_root = 3;</pre>
namespace NTT {
  typedef long long int 11;
  11 fexp(ll base, ll e) {
   11 \text{ ans} = 1:
    while(e > 0) {
      if (e & 1) ans = ans * base % mod;
      base = base * base % mod;
      e >>= 1;
    return ans;
  11 inv mod(ll base) {
    return fexp(base, mod - 2);
  void ntt(vector<ll>& a, bool inv) {
    int n = (int) a.size();
    if (n == 1) return;
    for (int i = 0, j = 0; i < n; i++) {
      if (i > j) {
        swap(a[i], a[j]);
      for(int 1 = n / 2; (j = 1) < 1; 1 >>= 1);
    for(int sz = 1; sz < n; sz <<= 1) {</pre>
      11 delta = fexp(c_root, (mod - 1) / (2 * sz)); //delta = w_2sz
      if (inv) {
        delta = inv mod(delta);
      for (int i = 0; i < n; i += 2 * sz) {
```

```
11 w = 1;
        for (int j = 0; j < sz; j++) {
          11 \ u = a[i + j], \ v = w * a[i + j + sz] % mod;
          a[i + j] = (u + v + mod) % mod;
          a[i + j] = (a[i + j] + mod) % mod;
          a[i + j + sz] = (u - v + mod) % mod;
          a[i + j + sz] = (a[i + j + sz] + mod) % mod;
          w = w * delta % mod;
    if (inv) {
     ll inv_n = inv_mod(n);
      for(int i = 0; i < n; i++) {</pre>
        a[i] = a[i] * inv_n % mod;
    for (int i = 0; i < n; i++) {
      a[i] %= mod;
      a[i] = (a[i] + mod) % mod;
  void multiply(vector<ll> &a, vector<ll> &b, vector<ll> &ans) {
    int lim = (int) max(a.size(), b.size());
    int n = 1;
    while (n < lim) n <<= 1;
    n \ll 1;
    a.resize(n);
    b.resize(n);
    ans.resize(n);
    ntt(a, false);
    ntt(b, false);
    for (int i = 0; i < n; i++) {
      ans[i] = a[i] * b[i] % mod;
    ntt(ans, true);
};
```

4.10 Fast Walsh Hadamard Transform

```
vector<ll> FWHT(char oper, vector<ll> a, const bool inv = false) {
  int n = (int) a.size();
  for(int len = 1; len < n; len += len) {
    for(int i = 0; i < n; i += 2 * len) {
      for(int j = 0; j < len; j++) {
        auto u = a[i + j] % mod, v = a[i + j + len] % mod;
        if(oper == '^') {
            a[i + j] = (u + v) % mod;
            a[i + j + len] = (u - v + mod) % mod;
        }
      if(oper == '|') {
            if(!inv) {
                a[i + j + len] = (u + v) % mod;
            } else {
                  a[i + j + len] = (v - u + mod) % mod;
            }
            if(oper == '&') {</pre>
```

```
if(!inv) {
            a[i + j] = (u + v) % mod;
          } else {
            a[i + j] = (u - v + mod) % mod;
  if(oper == '^' && inv) {
    11 \text{ rev} = \text{fexp(n, mod - 2);}
    for(int i = 0; i < n; i++) {</pre>
      a[i] = a[i] * rev % mod;
  return a;
vector<ll> multiply(char oper, vector<ll> a, vector<ll> b) {
  int n = 1:
  while (n < (int) max(a.size(), b.size())) {</pre>
   n <<= 1;
  vector<ll> ans(n);
  while (a.size() < ans.size()) a.push_back(0);</pre>
  while (b.size() < ans.size()) b.push_back(0);</pre>
  a = FWHT(oper, a);
  b = FWHT(oper, b);
  for (int i = 0; i < n; i++) {
    ans[i] = a[i] * b[i] % mod;
  ans = FWHT(oper, ans, true);
  return ans;
const int mxlog = 17;
vector<ll> subset_multiply(vector<ll> a, vector<ll> b) {
  int n = 1:
  while (n < (int) max(a.size(), b.size())) {</pre>
   n <<= 1;
  vector<11> ans(n);
  while (a.size() < ans.size()) a.push_back(0);</pre>
  while (b.size() < ans.size()) b.push back(0);</pre>
  vector<vector<ll>>> A(mxlog + 1, vector<ll>(a.size())), B(mxlog + 1,
      vector<ll>(b.size()));
  for (int i = 0; i < n; i++) {</pre>
    A[ builtin popcount(i)][i] = a[i];
    B[__builtin_popcount(i)][i] = b[i];
  for (int i = 0; i <= mxlog; i++) {</pre>
   A[i] = FWHT('|', A[i]);
    B[i] = FWHT('|', B[i]);
  for (int i = 0; i <= mxlog; i++) {</pre>
    vector<ll> C(n);
    for (int x = 0; x <= i; x++) {
      int v = i - x:
      for (int j = 0; j < n; j++) {
        C[j] = (C[j] + A[x][j] * B[y][j] % mod) % mod;
```

```
}

C = FWHT('|', C, true);

for (int j = 0; j < n; j++) {
    if (_builtin_popcount(j) == i) {
        ans[j] = (ans[j] + C[j]) % mod;
    }
}

return ans;
}</pre>
```

4.11 Miller and Rho

```
typedef long long int 11;
bool overflow(ll a, ll b) {
  return b && (a >= (111 << 62) / b);
11 add(11 a, 11 b, 11 md) {
  return (a + b) % md;
11 mul(ll a, ll b, ll md) {
  if (!overflow(a, b)) return (a * b) % md;
  11 \text{ ans} = 0;
  while(b) {
    if (b & 1) ans = add(ans, a, md);
    a = add(a, a, md);
    b >>= 1;
  return ans:
11 fexp(ll a, ll e, ll md) {
 11 \text{ ans} = 1;
  while(e) {
    if (e & 1) ans = mul(ans, a, md);
    a = mul(a, a, md);
    e >>= 1;
  return ans;
11 my_rand() {
  11 \text{ ans} = \text{rand();}
  ans = (ans \ll 31) \mid rand();
  return ans:
11 gcd(ll a, ll b) {
  while(b) {
   11 t = a % b;
    a = b:
    b = t;
  return a;
```

```
bool miller(ll p, int iteracao) {
  if(p < 2) return 0;
  if(p % 2 == 0) return (p == 2);
  11 s = p - 1;
  while(s % 2 == 0) s >>= 1;
  for(int i = 0; i < iteracao; i++) {</pre>
    11 a = rand() % (p - 1) + 1, temp = s;
    11 \mod = fexp(a, temp, p);
    while(temp != p - 1 && mod != 1 && mod != p - 1) {
      mod = mul(mod, mod, p);
      temp <<= 1;
    if(mod != p - 1 && temp % 2 == 0) return 0;
  return 1;
ll rho(ll n) {
  if (n == 1 || miller(n, 10)) return n;
  if (n % 2 == 0) return 2;
  while(1) {
    11 x = my_rand() % (n - 2) + 2, y = x;
    11 c = 0, cur = 1;
    while (c == 0) {
      c = my_rand() % (n - 2) + 1;
    while(cur == 1) {
     x = add(mul(x, x, n), c, n);
      y = add(mul(y, y, n), c, n);
     y = add(mul(y, y, n), c, n);
      cur = gcd((x >= y ? x - y : y - x), n);
    if (cur != n) return cur;
```

4.12 Determinant using Mod

```
// by zchao1995
// Determinante com coordenadas inteiras usando Mod
11 mat[ms][ms];
11 det (int n) {
  for (int i = 0; i < n; i++) {
    for (int j = 0; j < n; j++) {
      mat[i][j] %= mod;
  11 \text{ res} = 1:
  for (int i = 0; i < n; i++) {
    if (!mat[i][i]) {
      bool flag = false;
      for (int j = i + 1; j < n; j++) {
        if (mat[j][i]) {
          flag = true;
          for (int k = i; k < n; k++) {
            swap (mat[i][k], mat[j][k]);
          res = -res;
```

```
break;
    }
    if (!flag) {
        return 0;
    }
    for (int j = i + 1; j < n; j++) {
        while (mat[j][i]) {
            ll t = mat[i][i] / mat[j][i];
            for (int k = i; k < n; k++) {
                mat[i][k] = (mat[i][k] - t * mat[j][k]) % mod;
                swap (mat[i][k], mat[j][k]);
            }
        res = -res;
        }
    }
    res = (res * mat[i][i]) % mod;
}
return (res + mod) % mod;
}</pre>
```

4.13 Lagrange Interpolation

```
class LagrangePoly {
public:
  LagrangePoly(std::vector<long long> _a) {
    //f(i) = \_a[i]
    //interpola o vetor em um polinomio de grau y.size() - 1
    y = _a;
    den.resize(y.size());
    int n = (int) y.size();
    for (int i = 0; i < n; i++) {
     y[i] = (y[i] % MOD + MOD) % MOD;
      den[i] = ifat[n - i - 1] * ifat[i] % MOD;
      if((n - i - 1) % 2 == 1) {
        den[i] = (MOD - den[i]) % MOD;
  long long getVal(long long x) {
    int n = (int) v.size();
    x %= MOD;
    if(x < n) {
      //return y[(int) x];
    std::vector<long long> 1, r;
    l.resize(n);
    1[0] = 1;
    for (int i = 1; i < n; i++) {
     l[i] = l[i - 1] * (x - (i - 1) + MOD) % MOD;
    r.resize(n);
    r[n - 1] = 1;
    for (int i = n - 2; i >= 0; i--) {
      r[i] = r[i + 1] * (x - (i + 1) + MOD) % MOD;
    long long ans = 0;
    for (int i = 0; i < n; i++) {
```

```
long long coef = l[i] * r[i] % MOD;
      ans = (ans + coef * y[i] % MOD * den[i]) % MOD;
    return ans;
private:
  std::vector<long long> y, den;
};
int main(){
  fat[0] = ifat[0] = 1;
  for(int i = 1; i < ms; i++) {</pre>
    fat[i] = fat[i - 1] * i % MOD;
    ifat[i] = fexp(fat[i], MOD - 2);
  // Codeforces 622F
  int x, k;
  std::cin >> x >> k;
  std::vector<long long> a;
  a.push_back(0);
  for (long long i = 1; i \le k + 1; i++) {
    a.push_back((a.back() + fexp(i, k)) % MOD);
  LagrangePoly f(a);
  std::cout << f.getVal(x) << '\n';</pre>
```

4.14 Count integer points inside triangle

```
//gcd(p, q) == 1
ll get(ll p, ll q, ll n, bool floor = true) {
    if (n == 0) {
        return 0;
    }
    if (p % q == 0) {
        return n * (n + 1) / 2 * (p / q);
    }
    if (p > q) {
        return n * (n + 1) / 2 * (p / q) + get(p % q, q, n, floor);
    }
    ll new_n = p * n / q;
    ll ans = (n + 1) * new_n - get(q, p, new_n, false);
    if (!floor) {
        ans += n - n / q;
    }
    return ans;
}
```

5 Geometry

5.1 Geometry

```
const double inf = 1e100, eps = 1e-9;
const double PI = acos(-1.0L);
int cmp (double a, double b = 0) {
```

```
if (abs(a-b) < eps) return 0;</pre>
  return (a < b) ? -1 : +1;
struct PT {
  double x, v;
  PT (double x = 0, double y = 0) : x(x), y(y) {}
  PT operator + (const PT &p) const { return PT(x+p.x, y+p.y); }
  PT operator - (const PT &p) const { return PT(x-p.x, y-p.y); }
  PT operator * (double c) const { return PT(x*c, y*c); }
  PT operator / (double c) const { return PT(x/c, y/c); }
 bool operator < (const PT &p) const {
    if(cmp(x, p.x) != 0) return x < p.x;
    return cmp(y, p.y) < 0;
  bool operator == (const PT &p) const {
    return !cmp(x, p.x) && !cmp(y, p.y);
 bool operator != (const PT &p) const {
    return ! (p == *this);
};
double dot (PT p, PT q) { return p.x * q.x + p.y*q.y; }
double cross (PT p, PT q) { return p.x * q.y - p.y*q.x; }
double dist2 (PT p, PT q = PT(0, 0)) { return dot(p-q, p-q); }
double dist (PT p, PT q) { return hypot(p.x-q.x, p.y-q.y); }
double norm (PT p) { return hypot(p.x, p.y); }
PT normalize (PT p) { return p/hypot(p.x, p.y); }
double angle (PT p, PT q) { return atan2(cross(p, q), dot(p, q)); }
double angle (PT p) { return atan2(p.y, p.x); }
double polarAngle (PT p) {
  double a = atan2(p.y,p.x);
  return a < 0 ? a + 2*PI : a;
// - p.y*sen(+90), p.x*sen(+90)
PT rotateCCW90 (PT p) { return PT(-p.y, p.x); }
// - p.y*sen(-90), p.x*sen(-90)
PT rotateCW90 (PT p) { return PT(p.y, -p.x); }
PT rotateCCW (PT p, double t) {
  return PT(p.x*cos(t)-p.y*sin(t), p.x*sin(t)+p.y*cos(t));
// !!! PT (int, int)
typedef pair<PT, int> Line;
PT getDir (PT a, PT b) {
  if (a.x == b.x) return PT(0, 1);
  if (a.y == b.y) return PT(1, 0);
  int dx = b.x-a.x;
  int dy = b.y-a.y;
  int g = \underline{gcd(abs(dx), abs(dy))};
  if (dx < 0) q = -q;
  return PT(dx/g, dy/g);
Line getLine (PT a, PT b) {
 PT dir = getDir(a, b);
  return {dir, cross(dir, a)};
```

```
// Projeta ponto c na linha a - b assumindo a != b
// a.b = |a| cost * |b|
PT projectPointLine (PT a, PT b, PT c) {
 return a + (b-a) * dot (b-a, c-a) / dot (b-a, b-a);
PT reflectPointLine (PT a, PT b, PT c) {
 PT p = projectPointLine(a, b, c);
 return p*2 - c;
// Projeta ponto c no segmento a - b
PT projectPointSegment (PT a, PT b, PT c) {
 double r = dot(b-a, b-a);
 if (cmp(r) == 0) return a;
 r = dot(b-a, c-a)/r;
  if (cmp(r, 0) < 0) return a;
 if (cmp(r, 1) > 0) return b;
 return a + (b - a) * r;
// Calcula distancia entre o ponto c e o segmento a - b
double distancePointSegment (PT a, PT b, PT c) {
 return dist(c, projectPointSegment(a, b, c));
// Parallel and opposite directions
// Determina se o ponto c esta em um segmento a - b
bool ptInSegment (PT a, PT b, PT c) {
 if (a == b) return a == c;
 a = a-c, b = b-c;
 return cmp(cross(a, b)) == 0 && cmp(dot(a, b)) <= 0;
// Determina se as linhas a - b e c - d sao paralelas ou colineares
bool parallel (PT a, PT b, PT c, PT d) {
 return cmp(cross(b - a, c - d)) == 0;
bool collinear (PT a, PT b, PT c, PT d) {
  return parallel(a, b, c, d) && cmp(cross(a - b, a - c)) == 0 && cmp(
      cross(c - d, c - a)) == 0;
// Calcula distancia entre o ponto (x, y, z) e o plano ax + by + cz =
double distancePointPlane(double x, double y, double z, double a,
    double b, double c, double d) {
    return abs (a * x + b * y + c * z - d) / sqrt(a * a + b * b + c * c
        ):
// Determina se o segmento a - b intersecta com o segmento c - d
bool segmentsIntersect (PT a, PT b, PT c, PT d) {
  if (collinear(a, b, c, d)) {
   if (cmp(dist(a, c)) == 0 \mid | cmp(dist(a, d)) == 0 \mid | cmp(dist(b, c))
       ) == 0 || cmp(dist(b, d)) == 0) return true;
   if (cmp(dot(c - a, c - b))) > 0 && cmp(dot(d - a, d - b))) > 0 &&
        cmp(dot(c - b, d - b)) > 0) return false:
   return true;
```

```
if (cmp(cross(d - a, b - a) * cross(c - a, b - a)) > 0) return false
  if (cmp(cross(a - c, d - c) * cross(b - c, d - c)) > 0) return false
  return true;
// Calcula a intersecao entre as retas a - b e c - d assumindo que uma
     unica intersecao existe
// Para intersecao de segmentos, cheque primeiro se os segmentos se
    intersectam e que nao sao paralelos
// r = a1 + t*d1, (r - a2) \times d2 = 0
PT computeLineIntersection (PT a, PT b, PT c, PT d) {
 b = b - a; d = c - d; c = c - a;
 assert(cmp(cross(b, d)) != 0);
  return a + b * cross(c, d) / cross(b, d);
// Calcula centro do circulo dado tres pontos
PT computeCircleCenter (PT a, PT b, PT c) {
 b = (a + b) / 2; // bissector
 c = (a + c) / 2; // bissector
  return computeLineIntersection(b, b + rotateCW90(a - b), c, c +
      rotateCW90(a - c));
vector<PT> circle2PtsRad (PT p1, PT p2, double r) {
  vector<PT> ret;
  double d2 = dist2(p1, p2);
  double det = r * r / d2 - 0.25;
  if (det < 0.0) return ret;</pre>
  double h = sgrt.(det.):
  for (int i = 0; i < 2; i++) {
    double x = (p1.x + p2.x) * 0.5 + (p1.y - p2.y) * h;
    double y = (p1.y + p2.y) * 0.5 + (p2.x - p1.x) * h;
    ret.push_back(PT(x, y));
    swap(p1, p2);
  return ret;
// Calcula intersecao da linha a - b com o circulo centrado em c com
    raio r > 0
bool circleLineIntersection(PT a, PT b, PT c, double r) {
    return cmp(dist(c, projectPointLine(a, b, c)), r) <= 0;</pre>
vector<PT> circleLine (PT a, PT b, PT c, double r) {
  vector<PT> ret;
  PT p = projectPointLine(a, b, c), p1;
  double h = norm(c-p);
  if (cmp(h,r) == 0) {
    ret.push_back(p);
  else if (cmp(h,r) < 0) 
    double k = sqrt(r*r - h*h);
    p1 = p + (b-a) / (norm(b-a)) *k;
    ret.push_back(p1);
    p1 = p - (b-a) / (norm(b-a)) *k;
    ret.push back(p1);
  return ret;
```

```
bool ptInsideTriangle(PT p, PT a, PT b, PT c) {
  if(cross(b-a, c-b) < 0) swap(a, b);
  if(ptInSegment(a,b,p)) return 1;
  if(ptInSegment(b,c,p)) return 1;
  if(ptInSegment(c,a,p)) return 1;
  bool x = cross(b-a, p-b) < 0;
  bool v = cross(c-b, p-c) < 0;
 bool z = cross(a-c, p-a) < 0;
  return x == y && y == z;
// Determina se o ponto esta num poligono convexo em O(lqn)
bool pointInConvexPolygon(const vector<PT> &p, PT q) {
  if (p.size() == 1) return p.front() == q;
  int 1 = 1, r = p.size()-1;
  while (abs(r-1) > 1) {
    int m = (r+1)/2:
    if(cross(p[m]-p[0], q-p[0]) < 0) r = m;
    else 1 = m:
  return ptInsideTriangle(q, p[0], p[1], p[r]);
// Determina se o ponto esta num poligono possivelmente nao-convexo
// Retorna 1 para pontos estritamente dentro, 0 para pontos
    estritamente fora do poligno
// e 0 ou 1 para os pontos restantes
// Eh possivel converter num teste exato usando inteiros e tomando
    cuidado com a divisao
// e entao usar testes exatos para checar se esta na borda do poligno
bool pointInPolygon(const vector<PT> &p, PT q) {
 bool c = 0;
  for(int i = 0; i < p.size(); i++){</pre>
    int j = (i + 1) % p.size();
    if((p[i].y \le q.y \& q.y \le p[j].y | p[j].y \le q.y \& q.y \le p[i].y
      q.x < p[i].x + (p[j].x - p[i].x) * (q.y - p[i].y) / (p[j].y - p[i].y)
          il.v))
      c = !c;
  return c;
// Determina se o ponto esta na borda do poligno
bool pointOnPolygon(const vector<PT> &p, PT q) {
  for(int i = 0; i < p.size(); i++)</pre>
    if(cmp(dist2(projectPointSegment(p[i], p[(i + 1) % p.size()], q),
        (a) ) < 0)
      return true;
    return false;
// area / semiperimeter
double rIncircle (PT a, PT b, PT c) {
  double ab = norm(a-b), bc = norm(b-c), ca = norm(c-a);
  return abs(cross(b-a, c-a)/(ab+bc+ca));
// Calcula intersecao do circulo centrado em a com raio r e o centrado
     em b com raio R
```

```
vector<PT> circleCircle (PT a, double r, PT b, double R) {
  vector<PT> ret:
  double d = norm(a-b);
  if (d > r + R \mid \mid d + min(r, R) < max(r, R)) return ret;
  double x = (d*d - R*R + r*r) / (2*d); // x = r*cos(R opposite angle)
  double y = sqrt(r*r - x*x);
  PT v = (b - a)/d;
  ret.push_back(a + v*x + rotateCCW90(v)*y);
  if (cmp(v) > 0)
    ret.push_back(a + v*x - rotateCCW90(v)*y);
  return ret;
double circularSegArea (double r, double R, double d) {
  double ang = 2 * acos((d*d - R*R + r*r) / (2*d*r)); // cos(R)
      opposite angle) = x/r
  double tri = sin(ang) * r * r;
  double sector = ang * r * r;
 return (sector - tri) / 2:
// Calcula a area ou o centroide de um poligono (possivelmente nao-
    convexo)
// assumindo que as coordenadas estao listada em ordem horaria ou anti
    -horaria
// O centroide eh equivalente a o centro de massa ou centro de
    gravidade
double computeSignedArea (const vector<PT> &p) {
  double area = 0;
  for (int i = 0; i < p.size(); i++) {</pre>
    int j = (i+1) % p.size();
    area += p[i].x*p[j].y - p[j].x*p[i].y;
  return area/2.0;
double computeArea(const vector<PT> &p) {
  return abs(computeSignedArea(p));
PT computeCentroid(const vector<PT> &p) {
  PT c(0,0);
  double scale = 6.0 * ComputeSignedArea(p);
 for(int i = 0; i < p.size(); i++){</pre>
    int j = (i + 1) % p.size();
    c = c + (p[i] + p[j]) * (p[i].x * p[j].y - p[j].x * p[i].y);
  return c / scale;
// Testa se o poligno listada em ordem CW ou CCW eh simples (nenhuma
    linha se intersecta)
bool isSimple(const vector<PT> &p) {
  for(int i = 0; i < p.size(); i++) {</pre>
    for(int k = i + 1; k < p.size(); k++) {</pre>
      int j = (i + 1) % p.size();
      int 1 = (k + 1) % p.size();
      if (i == l \mid | j == k) continue;
      if (segmentsIntersect(p[i], p[j], p[k], p[l]))
        return false:
```

```
return true;
vector< pair<PT, PT> > getTangentSegs (PT c1, double r1, PT c2, double
  if (r1 < r2) swap(c1, c2), swap(r1, r2);</pre>
 vector<pair<PT, PT> > ans;
  double d = dist(c1, c2);
  if (cmp(d) <= 0) return ans;</pre>
  double dr = abs(r1 - r2), sr = r1 + r2;
  if (cmp(dr, d) >= 0) return ans;
 double u = acos(dr / d);
 PT dc1 = normalize(c2 - c1) *r1;
 PT dc2 = normalize(c2 - c1) \starr2;
  ans.push_back(make_pair(c1 + rotateCCW(dc1, +u), c2 + rotateCCW(dc2,
       +11))):
  ans.push_back(make_pair(c1 + rotateCCW(dc1, -u), c2 + rotateCCW(dc2,
       -u)));
  if (cmp(sr, d) >= 0) return ans;
  double v = acos(sr / d);
  dc2 = normalize(c1 - c2)*r2;
  ans.push_back({c1 + rotateCCW(dc1, +v), c2 + rotateCCW(dc2, +v)});
 ans.push_back({c1 + rotateCCW(dc1, -v), c2 + rotateCCW(dc2, -v)});
 return ans;
```

5.2 Convex Hull

```
vector<PT> convexHull(vector<PT> p, bool needs = 1) {
  if(needs) sort(p.begin(), p.end());
  p.erase(unique(p.begin(), p.end()), p.end());
  int n = p.size(), k = 0;
  if(n <= 1) return p;</pre>
  vector<PT> h(n + 2);
  for (int i = 0; i < n; i++) {
    while (k \ge 2 \&\& cross(h[k-1] - h[k-2], p[i] - h[k-2]) \le 0)
   h[k++] = p[i];
  for (int i = n - 2, t = k + 1; i >= 0; i--) {
    while (k \ge t \&\& cross(h[k-1] - h[k-2], p[i] - h[k-2]) \le 0)
        k--;
    h[k++] = p[i];
  h.resize(k); // n+1 points where the first is equal to the last
  return h:
void sortByAngle (vector<PT>::iterator first, vector<PT>::iterator
    last, const PT o) {
  first = partition(first, last, [&o] (const PT &a) { return a == o;
  auto pivot = partition(first, last, [&o] (const PT &a) {
    return ! (a < 0 | | a == 0); // PT(a.y, a.x) < PT(o.y, o.x)
  auto acmp = [&o] (const PT &a, const PT &b) { // C++11 only
    if (cmp(cross(a-o, b-o)) != 0) return cross(a-o, b-o) > 0;
    else return cmp(norm(a-o), norm(b-o)) < 0;</pre>
  };
```

```
sort(pivot, last, acmp);
vector<PT> graham (vector<PT> v) {
  sort(v.begin(), v.end());
  sortByAngle(v.begin(), v.end(), v[0]);
  vector<PT> u (v.size());
  int top = 0;
  for (int i = 0; i < v.size(); i++) {</pre>
    while (top > 1 \&\& cmp(cross(u[top-1] - u[top-2], v[i]-u[top-2]))
        <= 0) top--;
    u[top++] = v[i];
  u.resize(top);
  return u;
vector<PT> splitHull(const vector<PT> &hull) {
  vector<PT> ans(hull.size());
  for (int i = 0, j = (int) hull.size()-1, k = 0; k < (int) hull.size()
      ; k++) {
    if(hull[i] < hull[j]) {</pre>
      ans[k] = hull[i++];
    } else {
      ans[k] = hull[j--];
  return ans;
vector<PT> ConvexHull(const vector<PT> &a, const vector<PT> &b) {
  auto A = splitHull(a);
  auto B = splitHull(b);
  vector<PT> C(A.size() + B.size());
  merge(A.begin(), A.end(), B.begin(), B.end(), C.begin());
  return ConvexHull(C, false);
int maximizeScalarProduct(const vector<PT> &hull, PT vec) {
  // this code assumes that there are no 3 colinear points
  int ans = 0;
  int n = hull.size();
  if(n < 20) {
    for(int i = 0; i < n; i++) {
      if (dot(hull[i], vec) > dot(hull[ans], vec)) {
    if(dot(hull[1], vec) > dot(hull[ans], vec)) {
      ans = 1;
    for(int rep = 0; rep < 2; rep++) {</pre>
      int 1 = 2, r = n - 1;
      while (1 != r)  {
        int mid = (1 + r + 1) / 2;
       bool flag = dot(hull[mid], vec) >= dot(hull[mid-1], vec);
        if(rep == 0) { flag = flag && dot(hull[mid], vec) >= dot(hull
            [0], vec); }
        else { flag = flag || dot(hull[mid-1], vec) < dot(hull[0], vec</pre>
```

sort(first, pivot, acmp);

```
); }
if(flag) {
    l = mid;
} else {
    r = mid - 1;
}
if(dot(hull[ans], vec) < dot(hull[l], vec)) {
    ans = 1;
}
}
return ans;</pre>
```

5.3 Cut Polygon

```
struct Segment {
 typedef long double T;
 PT p1, p2;
 T a, b, c;
 Segment() {}
 Segment (PT st, PT en) {
   p1 = st, p2 = en;
   a = -(st.y - en.y);
   b = st.x - en.x;
   c = a * en.x + b * en.y;
 T plug(T x, T y) {
   // plug >= 0 is to the right
   return a * x + b * y - c;
 T plug(PT p) {
   return plug(p.x, p.y);
 bool inLine(PT p) { return cross((p - p1), (p2 - p1)) == 0; }
 bool inSegment(PT p) {
   return inLine(p) && dot((p1 - p2), (p - p2)) >= 0 && dot((p2 - p1)
        (p - p1)) >= 0;
 PT lineIntersection(Segment s) {
   long double A = a, B = b, C = c;
   long double D = s.a, E = s.b, F = s.c;
   long double x = (long double) C \star E - (long double) B \star F;
   long double y = (long double) A * F - (long double) C * D;
   long double tmp = (long double) A * E - (long double) B * D;
   x /= tmp;
   y /= tmp;
   return PT(x, y);
 bool polygonIntersection(const vector<PT> &poly) {
   long double 1 = -1e18, r = 1e18;
   for(auto p : poly) {
```

```
long double z = plug(p);
      1 = \max(1, z);
      r = min(r, z);
    return 1 - r > eps;
};
vector<PT> cutPolygon(vector<PT> poly, Segment seg) {
  int n = (int) poly.size();
  vector<PT> ans;
  for(int i = 0; i < n; i++) {
    double z = seg.plug(poly[i]);
    if(z > -eps) {
      ans.push_back(poly[i]);
    double z2 = seq.plug(poly[(i + 1) % n]);
    if((z > eps \&\& z2 < -eps) || (z < -eps \&\& z2 > eps)) {}
      ans.push_back(seq.lineIntersection(Segment(poly[i], poly[(i + 1)
           % n])));
  return ans;
```

5.4 Smallest Enclosing Circle

```
typedef pair<PT, double> circle;
bool inCircle (circle c, PT p) {
  return cmp(dist(c.first, p), c.second) <= 0;</pre>
PT circumcenter (PT p, PT q, PT r) {
 PT a = p-r, b = q-r;
  PT c = PT(dot(a, p+r)/2, dot(b, q+r)/2);
  return PT(cross(c, PT(a.y,b.y)), cross(PT(a.x,b.x), c)) / cross(a, b
      );
mt19937 rnq(chrono::steady_clock::now().time_since_epoch().count());
circle spanningCircle (vector<PT> &v) {
  int n = v.size();
  shuffle(v.begin(), v.end(), rng);
  circle C(PT(), -1);
  for (int i = 0; i < n; i++) if (!inCircle(C, v[i])) {</pre>
    C = circle(v[i], 0);
    for (int j = 0; j < i; j++) if (!inCircle(C, v[j])) {</pre>
      C = circle((v[i]+v[j])/2, dist(v[i], v[j])/2);
      for (int k = 0; k < j; k++) if (!inCircle(C, v[k])) {
        PT o = circumcenter(v[i], v[j], v[k]);
        C = circle(o, dist(o, v[k]));
  return C;
```

5.5 Minkowski

```
bool comp (PT a, PT b) {
  int hp1 = (a.x < 0 \mid | (a.x==0 \&\& a.y<0));
  int hp2 = (b.x < 0 \mid | (b.x==0 \&\& b.y<0));
  if(hp1 != hp2) return hp1 < hp2;</pre>
  long long R = cross(a, b);
  if(R) return R > 0;
  return dot(a, a) < dot(b, b);</pre>
 // This code assumes points are ordered in ccw and the first points
     in both vectors is the min lexicographically
vector<PT> minkowskiSum(const vector<PT> &a, const vector<PT> &b) {
  if(a.empty() || b.empty()) return vector<PT>(0);
  vector<PT> ret;
  int n1 = a.size(), n2 = b.size();
  if(min(n1, n2) < 2){
    for(int i = 0; i < n1; i++) {</pre>
      for (int j = 0; j < n2; j++) {
        ret.push_back(a[i]+b[j]);
    return ret;
  PT v1, v2, p = a[0]+b[0];
  ret.push_back(p);
  for (int i = 0, j = 0; i + j + 1 < n1+n2; ) {
    v1 = a[(i+1) n1] - a[i];
    v2 = b[(j+1) n2] - b[j];
    if(j == n2 \mid | (i < n1 \&\& comp(v1, v2))) p = p + v1, i++;
    else p = p + v2, j++;
    while(ret.size() >= 2 && cmp(cross(p-ret.back(), p-ret[(int))ret.
        size()-2])) == 0) {
      // removing colinear points
      // needs the scalar product stuff it the result is a line
      ret.pop_back();
    ret.push_back(p);
  return ret;
```

5.6 Half Plane Intersection

```
bool check (L la, L lb, L lc) {
    PT p = computeLineIntersection(lb, lc);
    double det = cross((la.b - la.a), (p - la.a));
    return cmp(det) < 0;</pre>
vector<PT> hpi (vector<L> line) { // salvar (i, j) CCW, (j, i) CW
    sort(line.begin(), line.end(), comp);
    vector<L> pl(1, line[0]);
    for (int i = 0; i < (int)line.size(); ++i) if (cmp(angle(line[i]),</pre>
         angle(pl.back())) != 0) pl.push_back(line[i]);
    deque<int> dq;
    dq.push_back(0);
    dg.push back(1):
    for (int i = 2; i < (int)pl.size(); ++i) {</pre>
        while ((int)dq.size() > 1 && check(pl[i], pl[dq.back()], pl[dq
            [dq.size() - 2]])) dq.pop_back();
        while ((int) dg.size() > 1 && check(pl[i], pl[dg[0]], pl[dg
            [1]])) dq.pop_front();
        dq.push back(i);
    while ((int)dq.size() > 1 && check(pl[dq[0]], pl[dq.back()], pl[dq
        [dq.size() - 2]])) dq.pop_back();
    while ((int)dq.size() > 1 && check(pl[dq.back()], pl[dq[0]], pl[dq
        [1]])) dq.pop_front();
    vector<PT> res;
    for (int i = 0; i < (int) dg. size(); ++i){}
        res.emplace_back(computeLineIntersection(pl[dq[i]], pl[dq[(i +
             1) % dq.size()]]));
    return res;
```

5.7 Closest Pair

```
double closestPair(vector<PT> p) {
  int n = p.size(), k = 0;
  sort(p.begin(), p.end());
  double d = inf;
  set<PT> ptsInv;
  for(int i = 0; i < n; i++) {
    while(k < i && p[k].x < p[i].x - d) {
        ptsInv.erase(swapCoord(p[k++]));
    }
    for(auto it = ptsInv.lower_bound(PT(p[i].y - d, p[i].x - d));
        it != ptsInv.end() && it->x <= p[i].y + d; it++) {
        d = min(d, dist(p[i] - swapCoord(*it), PT(0, 0)));
    }
    ptsInv.insert(swapCoord(p[i]));
}
return d;
}</pre>
```

5.8 Delaunay Triangulation

```
bool ge(const l1& a, const l1& b) { return a >= b; }
```

```
bool le(const ll& a, const ll& b) { return a <= b; }
bool eq(const ll& a, const ll& b) { return a == b; }
bool gt(const ll& a, const ll& b) { return a > b; }
bool lt(const ll& a, const ll& b) { return a < b; }</pre>
int sgn(const ll& a) { return a >= 0 ? a ? 1 : 0 : -1; }
struct pt {
    11 x, y;
    pt() { }
    pt(11 _x, 11 _y) : x(_x), y(_y) { }
    pt operator-(const pt& p) const {
        return pt (x - p.x, y - p.y);
    11 cross(const pt& p) const {
        return x * p.y - y * p.x;
    ll cross (const pt& a, const pt& b) const {
        return (a - *this).cross(b - *this);
    11 dot(const pt& p) const {
        return x * p.x + y * p.y;
    11 dot(const pt& a, const pt& b) const {
        return (a - *this).dot(b - *this);
    11 sqrLength() const {
        return this->dot(*this);
    bool operator == (const pt & p) const {
        return eq(x, p.x) && eq(y, p.y);
};
const pt inf_pt = pt(1e18, 1e18);
struct QuadEdge {
    pt origin;
    QuadEdge* rot = nullptr;
    QuadEdge* onext = nullptr;
    bool used = false;
    QuadEdge* rev() const {
        return rot->rot;
    QuadEdge* lnext() const {
        return rot->rev()->onext->rot;
    QuadEdge* oprev() const {
        return rot->onext->rot;
    pt dest() const {
        return rev()->origin;
};
QuadEdge* make_edge(pt from, pt to) {
    QuadEdge* e1 = new QuadEdge;
    QuadEdge* e2 = new QuadEdge;
    QuadEdge* e3 = new QuadEdge;
    QuadEdge* e4 = new QuadEdge;
    e1->origin = from;
    e2->origin = to;
```

```
e3->origin = e4->origin = inf_pt;
    e1->rot = e3;
    e2->rot = e4;
    e3 \rightarrow rot = e2;
    e4->rot = e1;
    e1->onext = e1;
    e2 - > onext = e2;
    e3->onext = e4;
    e4->onext = e3;
    return e1;
void splice(QuadEdge* a, QuadEdge* b) {
    swap(a->onext->rot->onext, b->onext->rot->onext);
    swap(a->onext, b->onext);
void delete_edge(QuadEdge* e) {
    splice(e, e->oprev());
    splice(e->rev(), e->rev()->oprev());
    delete e->rot;
    delete e->rev()->rot;
    delete e;
    delete e->rev();
OuadEdge* connect(OuadEdge* a, OuadEdge* b) {
    QuadEdge* e = make_edge(a->dest(), b->origin);
    splice(e, a->lnext());
    splice(e->rev(), b);
    return e;
bool left_of(pt p, QuadEdge* e) {
    return gt(p.cross(e->origin, e->dest()), 0);
bool right_of(pt p, QuadEdge* e) {
    return lt(p.cross(e->origin, e->dest()), 0);
template <class T>
T det3(T a1, T a2, T a3, T b1, T b2, T b3, T c1, T c2, T c3) {
    return a1 * (b2 * c3 - c2 * b3) - a2 * (b1 * c3 - c1 * b3) +
           a3 * (b1 * c2 - c1 * b2);
bool in_circle(pt a, pt b, pt c, pt d) {
// If there is int128, calculate directly.
// Otherwise, calculate angles.
#if defined(__LP64___) || defined(_WIN64)
    __int128 det = -det3<__int128>(b.x, b.y, b.sqrLength(), c.x, c.y,
                                     c.sqrLength(), d.x, d.y, d.
                                         sqrLength());
    det += det3<__int128>(a.x, a.y, a.sqrLength(), c.x, c.y, c.
        sqrLength(), d.x,
                           d.y, d.sqrLength());
    det -= det3 < \underline{int128} > (a.x, a.y, a.sqrLength(), b.x, b.y, b.
        sqrLength(), d.x,
                           d.y, d.sqrLength());
    det += det3 < \underline{\quad} int128 > (a.x, a.y, a.sqrLength(), b.x, b.y, b.
```

```
sqrLength(), c.x,
                          c.y, c.sqrLength());
    return det > 0;
#else
    auto ang = [](pt l, pt mid, pt r) {
        11 x = mid.dot(1, r);
        ll y = mid.cross(l, r);
        long double res = atan2((long double)x, (long double)y);
   long double kek = ang(a, b, c) + ang(c, d, a) - ang(b, c, d) - ang
        (d, a, b);
   if (kek > 1e-8)
        return true;
    else
        return false;
#endif
pair<QuadEdge*, QuadEdge*> build_tr(int 1, int r, vector<pt>& p) {
   if (r - 1 + 1 == 2) {
        QuadEdge* res = make_edge(p[l], p[r]);
        return make_pair(res, res->rev());
   if (r - 1 + 1 == 3) {
        QuadEdge *a = make\_edge(p[1], p[1 + 1]), *b = make\_edge(p[1 + 1])
            1], p[r]);
        splice(a->rev(), b);
        int sg = sgn(p[1].cross(p[1 + 1], p[r]));
        if (sq == 0)
            return make_pair(a, b->rev());
        QuadEdge* c = connect(b, a);
        if (sq == 1)
            return make_pair(a, b->rev());
        else
            return make_pair(c->rev(), c);
   int mid = (1 + r) / 2;
   QuadEdge *ldo, *ldi, *rdo, *rdi;
   tie(ldo, ldi) = build_tr(l, mid, p);
   tie(rdi, rdo) = build_tr(mid + 1, r, p);
    while (true) {
        if (left_of(rdi->origin, ldi)) {
            ldi = ldi->lnext();
            continue;
        if (right_of(ldi->origin, rdi)) {
            rdi = rdi->rev()->onext;
            continue;
        break;
    QuadEdge* basel = connect(rdi->rev(), ldi);
    auto valid = [&basel](OuadEdge* e) { return right of(e->dest(),
        basel); };
   if (ldi->origin == ldo->origin)
        ldo = basel->rev();
   if (rdi->origin == rdo->origin)
        rdo = basel:
    while (true) {
        QuadEdge* lcand = basel->rev()->onext;
```

```
if (valid(lcand)) {
            while (in circle(basel->dest(), basel->origin, lcand->dest
                             lcand->onext->dest())) {
                QuadEdge* t = lcand->onext;
                delete edge(lcand);
                lcand = t;
        QuadEdge* rcand = basel->oprev();
        if (valid(rcand)) {
            while (in_circle(basel->dest(), basel->origin, rcand->dest
                             rcand->oprev()->dest())) {
                QuadEdge* t = rcand->oprev();
                delete_edge(rcand);
                rcand = t;
        if (!valid(lcand) && !valid(rcand))
            break:
        if (!valid(lcand) ||
            (valid(rcand) && in_circle(lcand->dest(), lcand->origin,
                                       rcand->origin, rcand->dest())))
            basel = connect(rcand, basel->rev());
        else
            basel = connect(basel->rev(), lcand->rev());
    return make_pair(ldo, rdo);
vector<tuple<pt, pt, pt>> delaunay(vector<pt> p) {
    sort(p.begin(), p.end(), [](const pt& a, const pt& b) {
        return lt(a.x, b.x) || (eq(a.x, b.x) && lt(a.y, b.y));
    auto res = build_tr(0, (int)p.size() - 1, p);
    QuadEdge* e = res.first;
    vector<QuadEdge*> edges = {e};
    while (lt(e->onext->dest().cross(e->dest(), e->origin), 0))
        e = e->onext;
    auto add = [&p, &e, &edges]() {
        QuadEdge* curr = e;
        do {
            curr->used = true;
            p.push_back(curr->origin);
            edges.push_back(curr->rev());
            curr = curr->lnext();
        } while (curr != e);
    };
    add();
    p.clear();
    int kek = 0;
    while (kek < (int)edges.size()) {</pre>
        if (!(e = edges[kek++])->used)
            add();
    vector<tuple<pt, pt, pt>> ans;
    for (int i = 0; i < (int)p.size(); i += 3) {</pre>
        ans.push_back(make_tuple(p[i], p[i + 1], p[i + 2]));
    return ans;
```

5.9 Java Geometry Library

```
import java.util.*;
import java.io.*;
import java.awt.geom.*;
import java.lang.*;
//Lazy Geometry
class AWT {
  static Area makeArea(double[] pts){
    Path2D.Double p = new Path2D.Double();
    p.moveTo(pts[0], pts[1]);
    for(int i = 2; i < pts.length; i+=2) {</pre>
      p.lineTo(pts[i], pts[i+1]);
    p.closePath();
    return new Area(p);
  static double computePolygonArea(ArrayList<Point2D.Double> points) {
    Point2D.Double[] pts = points.toArray(new Point2D.Double[points.
        size()]);
    double area = 0;
    for (int i = 0; i < pts.length; i++) {</pre>
      int j = (i+1) % pts.length;
      area += pts[i].x * pts[j].y - pts[j].x * pts[i].y;
    return Math.abs(area)/2;
  static double computeArea(Area area) {
    double totArea = 0;
    PathIterator iter = area.getPathIterator(null);
    ArrayList<Point2D.Double> points = new ArrayList<Point2D.Double>()
    while (!iter.isDone()) {
      double[] buffer = new double[6];
      switch (iter.currentSegment(buffer)) {
        case PathIterator.SEG_MOVETO:
        case PathIterator.SEG_LINETO:
          points.add(new Point2D.Double(buffer[0], buffer[1]));
          break;
        case PathIterator.SEG_CLOSE:
          totArea += computePolygonArea(points);
          points.clear();
          break;
      iter.next();
    return totArea;
```

6 String Algorithms

6.1 KMP

```
string p, t;
```

```
int b[ms], n, m;
void kmpPreprocess() {
  int i = 0, j = -1;
  b[0] = -1;
  while(i < m) {</pre>
    while(j \ge 0 \&\& p[i] != p[j]) j = b[j];
    b[++i] = ++j;
void kmpSearch() {
  int i = 0, j = 0, ans = 0;
  while(i < n) {</pre>
    while (j \ge 0 \&\& t[i] != p[j]) j = b[j];
    <u>i++;</u> <u>j++;</u>
    if(j == m) {
      //ocorrencia aqui comecando em i - j
      ans++;
      j = b[j];
  return ans;
```

6.2 KMP Automaton

```
const int limit =
vector<vector<int>>> build_automaton(string s) {
    s += '#'; //tem que ser diferente de todos os caracteres
    int n = (int) s.size();
    vector<vector<int>> ans(n, vector<int>(limit));
    vector<int> fail(n);
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < limit; j++) {
            if (i == 0) {
                if (s[i] == j + 'a') {
                    ans[i][j] = i + 1;
                    ans[i][j] = 0;
            } else {
                if (s[i] == j + 'a') {
                    ans[i][j] = i + 1;
                    ans[i][j] = ans[fail[i - 1]][j];
        if (i == 0) {
            continue;
        int j = fail[i - 1];
        while (j > 0 \&\& s[i] != s[j]) {
            j = fail[j - 1];
        fail[i] = j + (s[i] == s[j]);
    return ans;
```

6.3 Trie

```
int trie[ms][sigma], terminal[ms], z;
void init() {
 memset(trie[0], -1, sizeof trie[0]);
int get_id(char c) {
  return c - 'a';
void insert(string &p) {
  int cur = 0;
  for(int i = 0; i < p.size(); i++) {</pre>
    int id = get_id(p[i]);
    if(trie[cur][id] == -1) {
      memset(trie[z], -1, sizeof trie[z]);
      trie[cur][id] = z++;
    cur = trie[cur][id];
  terminal[cur]++;
int count(string &p) {
  int cur = 0;
  for (int i = 0; i < p.size(); i++) {
    int id = get_id(p[i]);
    if(trie[cur][id] == -1) {
      return false;
    cur = trie[cur][id];
  return terminal[cur];
```

6.4 Aho-Corasick

```
// Construa a Trie do seu dicionario com o codigo acima
int fail[ms];
queue<int> q;

void buildFailure() {
   q.push(0);
   while(!q.empty()) {
      int node = q.front();
      q.pop();
      for(int pos = 0; pos < sigma; pos++) {
       int &v = trie[node][pos];
      int f = node == 0 ? 0 : trie[fail[node]][pos];
      if(v == -1) {
         v = f;
      } else {</pre>
```

```
fail[v] = f;
    q.push(v);
    // juntar as informacoes da borda para o V ja q um match em V
        implica um match na borda
    terminal[v] += terminal[f];
    }
}

int search(string &txt) {
    int node = 0;
    int ans = 0;
    for(int i = 0; i < txt.length(); i++) {
        int pos = get_id(txt[i]);
        node = trie[node][pos];
        // processar informacoes no no atual
        ans += terminal[node];
}
return ans;
}</pre>
```

6.5 Algoritmo de Z

```
string s;
int fz[ms], n;

void zfunc() {
  fz[0] = n;
  for(int i = 1, l = 0, r = 0; i < n; i++) {
    fz[i] = max(0, min(r-i, fz[i-l]));
    while(s[fz[i]] == s[i+fz[i]]) ++fz[i];
    if(i + fz[i] > r) {
      l = i;
      r = i + fz[i];
    }
}
```

6.6 Suffix Array

```
if (out[i] >= h) temp[bpos[posBucket[out[i] - h]]++] = out[i] -
          h;
   c = 0;
   for (int i = 0; i + 1 < n; i++) {
        int a = (bucket[i] != bucket[i + 1]) || (temp[i] >= n - h)
            || (posBucket[temp[i + 1] + h] != posBucket[temp[i] + h]);
        bucket[i] = c;
        c += a;
   bucket[n - 1] = c++;
   temp.swap(out);
 return out;
vector<int> buildLcp(string s, vector<int> sa) {
 int n = (int) s.size();
 vector<int> pos(n), lcp(n, 0);
 for (int i = 0; i < n; i++) {
   pos[sa[i]] = i;
 int k = 0;
  for (int i = 0; i < n; i++) {
   if (pos[i] + 1 == n) {
     k = 0;
     continue;
   int j = sa[pos[i] + 1];
   while (i + k < n \&\& j + k < n \&\& s[i + k] == s[j + k]) k++;
   lcp[pos[i]] = k;
   k = \max(k - 1, 0);
 return 1cp;
```

6.7 Suffix Tree

```
#define fpos adla
const int inf = 1e9;
const int maxn = 1e4;
char s[maxn];
map<int, int> to[maxn];
int len[maxn], fpos[maxn], link[maxn];
int node, pos;
int sz = 1, n = 0;

int make_node(int _pos, int _len)
{
   fpos[sz] = _pos;
   len [sz] = _len;
   return sz++;
}

void go_edge()
{
   while(pos > len[to[node][s[n - pos]]])
   {
```

```
node = to[node][s[n - pos]];
        pos -= len[node];
void add letter(int c)
    s[n++] = c;
    pos++;
    int last = 0;
    while (pos > 0)
        go_edge();
        int edge = s[n - pos];
        int &v = to[node][edge];
        int t = s[fpos[v] + pos - 1];
        if(v == 0)
            v = make_node(n - pos, inf);
            link[last] = node;
            last = 0;
        else if(t == c)
            link[last] = node;
            return;
        else
            int u = make_node(fpos[v], pos - 1);
            to[u][c] = make_node(n - 1, inf);
            to[u][t] = v;
            fpos[v] += pos - 1;
            len [v] -= pos - 1;
            v = u;
            link[last] = u;
            last = u;
        if(node == 0)
            pos--;
        else
            node = link[node];
//len[0] = inf
```

6.8 Suffix Automaton

```
int len[ms*2], link[ms*2], nxt[ms*2][sigma];
int sz, last;

void build(string &s) {
  len[0] = 0; link[0] = -1;
  sz = 1; last = 0;
  memset(nxt[0], -1, sizeof nxt[0]);
  for(char ch : s) {
   int c = ch-'a', cur = sz++;
   len[cur] = len[last]+1;
   memset(nxt[cur], -1, sizeof nxt[cur]);
```

```
int p = last;
while(p != -1 && nxt[p][c] == -1) {
  nxt[p][c] = cur; p = link[p];
if(p == -1) {
  link[cur] = 0;
} else {
  int q = nxt[p][c];
  if(len[p] + 1 == len[q]) {
    link[cur] = q;
  } else {
    len[sz] = len[p]+1; link[sz] = link[q];
    memcpy(nxt[sz], nxt[q], sizeof nxt[q]);
    while (p != -1 && nxt[p][c] == q) {
     nxt[p][c] = sz; p = link[p];
    link[q] = link[cur] = sz++;
last = cur;
```

7 Miscellaneous

7.1 LIS - Longest Increasing Subsequence

```
int arr[ms], lisArr[ms], n;
// int bef[ms], pos[ms];
int lis() {
  int len = 1;
  lisArr[0] = arr[0];
  // bef[0] = -1;
  for (int i = 1; i < n; i++) {
    // upper_bound se non-decreasing
    int x = lower_bound(lisArr, lisArr + len, arr[i]) - lisArr;
    len = max(len, x + 1);
    lisArr[x] = arr[i];
    // pos[x] = i;
    // bef[i] = x ? pos[x-1] : -1;
  return len;
vi getLis() {
  int len = lis();
  for(int i = pos[lisArr[len - 1]]; i >= 0; i = bef[i]) {
    ans.push_back(arr[i]);
  reverse(ans.begin(), ans.end());
  return ans:
```

```
// R
for(int i = 0; i < LOG; i++) {</pre>
  long double m1 = (A * 2 + B) / 3.0;
  long double m2 = (A + 2 * B) / 3.0;
  if(f(m1) > f(m2))
    A = m1;
  else
    B = m2;
ans = f(A);
I/Z
while (B - A > 4) {
  int m1 = (A + B) / 2;
  int m2 = (A + B) / 2 + 1;
  if(f(m1) > f(m2))
    A = m1;
  else
    B = m2;
ans = inf;
for(int i = A; i <= B; i++) ans = min(ans , f(i));</pre>
```

7.3 Count Sort

```
int H[(1 << 15) +1], to [mx], b[mx];
void sort(int m, int a[]) {
  memset(H, 0, sizeof H);
  for (int i = 1; i <= m; i++) {</pre>
    H[a[i] % (1 << 15)] ++;
  for (int i = 1; i < 1<<15; i++) {</pre>
    H[i] += H[i-1];
  for (int i = m; i; i--) {
    to[i] = H[a[i] % (1 << 15)] --;
  for (int i = 1; i <= m; i++) {</pre>
    b[to[i]] = a[i];
  memset(H, 0, sizeof H);
  for (int i = 1; i <= m; i++) {
   H[b[i] >> 15] ++;
  for (int i = 1; i < 1 << 15; i++) {
    H[i] += H[i-1];
  for (int i = m; i ; i--) {
    to[i] = H[b[i] >> 15] --;
  for (int i = 1; i <= m; i++) {</pre>
    a[to[i]] = b[i];
```

7.2 Ternary Search

```
// mt19937_64 se LL
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
// Random Shuffle
shuffle(v.begin(), v.end(), rng);
// Random number in interval
int randomInt = uniform int distribution(0, i)(rng);
double randomDouble = uniform_real_distribution(0, 1)(rng);
// bernoulli_distribution, binomial_distribution,
    geometric distribution
// normal_distribution, poisson_distribution, exponential_distribution
```

7.7 Submask Enumeration 7.5 Rectangle Hash

```
namespace {
  struct safe_hash {
    static uint64_t splitmix64(uint64_t x) {
      // http://xorshift.di.unimi.it/splitmix64.c
      x += 0x9e3779b97f4a7c15;
      x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9;
      x = (x ^ (x >> 27)) * 0x94d049bb133111eb;
      return x ^ (x >> 31);
    size_t operator()(uint64_t x) const {
          now().time_since_epoch().count();
      return splitmix64(x + FIXED_RANDOM);
 };
struct rect {
  int x1, y1, x2, y2; // x1 < x2, y1 < y2
  rect () {};
      y2) {};
  rect inter (rect other) {
    int x3 = max(x1, other.x1);
    int y3 = max(y1, other.y1);
    int x4 = min(x2, other.x2);
    int y4 = min(y2, other.y2);
    return rect (x3, y3, x4, y4);
  uint64_t get_hash() {
    safe_hash sh;
   uint64_t ret = sh(x1);
    ret ^= sh(ret ^ y1);
    ret ^= sh(ret ^ x2);
    ret ^= sh(ret ^\circ y2);
    return ret;
};
```

Unordered Map Tricks

```
static const uint64_t FIXED_RANDOM = std::chrono::steady_clock::
rect (int x1, int y1, int x2, int y2) : x1(x1), x2(x2), y1(y1), y2(
```

```
size_t operator()(const pair<int,int>&x)const{
    return (size_t) x.first * 37U + (size_t) x.second;
};
unordered_map<int,int>mp;
mp.reserve(1024);
mp.max_load_factor(0.25);
```

struct HASH{

```
for (int s=m; ; s=(s-1) \& m) {
  ... you can use s ...
  if (s==0) break;
```

Sum over Subsets DP

```
// F[i] = Sum \ of \ all \ A[j] \ where j is a submask of i
for (int i = 0; i < (1 << N); ++i)
  F[i] = A[i];
for(int i = 0; i < N; ++i) for(int mask = 0; mask < (1<<N); ++mask) {
  if (mask & (1<<i))
    F[mask] += F[mask^(1<<i)];
```

7.9 Java Fast I/O

```
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.Random;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
import java.io.BufferedReader;
import java.io.InputStream;
import java.util.*;
import java.io.*;
// src petr
public class Main {
 public static void main(String[] args) {
    InputStream inputStream = System.in;
    OutputStream outputStream = System.out;
    InputReader in = new InputReader(inputStream);
    PrintWriter out = new PrintWriter(outputStream);
    TaskA solver = new TaskA();
    solver.solve(1, in, out);
    out.close();
  static class TaskA {
```

```
public void solve(int testNumber, InputReader in, PrintWriter out)
static class InputReader {
 public BufferedReader reader;
 public StringTokenizer tokenizer;
 public InputReader(InputStream stream) {
   reader = new BufferedReader(new InputStreamReader(stream),
        32768);
   tokenizer = null;
 public String next() {
   while (tokenizer == null || !tokenizer.hasMoreTokens()) {
       tokenizer = new StringTokenizer(reader.readLine());
      } catch (IOException e) {
       throw new RuntimeException(e);
    return tokenizer.nextToken();
 public int nextInt() {
   return Integer.parseInt(next());
```

7.10 Dates

```
string dayOfWeek[] = {"Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"
    };
// converts Gregorian date to integer (Julian day number)
int dateToInt (int m, int d, int y) {
  return
    1461 * (y + 4800 + (m - 14) / 12) / 4 +
    367 * (m - 2 - (m - 14) / 12 * 12) / 12 -
    3 \star ((y + 4900 + (m - 14) / 12) / 100) / 4 +
    d - 32075;
// converts integer (Julian day number) to Gregorian date: month/day/
void intToDate (int jd, int &m, int &d, int &y) {
  int x, n, i, j;
  x = jd + 68569;
  n = 4 * x / 146097;
  x = (146097 * n + 3) / 4;
  i = (4000 * (x + 1)) / 1461001;
  x = 1461 * i / 4 - 31;
  \dot{j} = 80 * x / 2447;
  d = x - 2447 * j / 80;
  x = j / 11;
 m = j + 2 - 12 * x;
  y = 100 * (n - 49) + i + x;
```

```
// converts integer (Julian day number) to day of week
string intToDay (int jd) {
  return dayOfWeek[jd % 7];
}
```

7.11 Regular Expressions

```
import java.util.*;
import java.util.regex.*;

public class Main {
   public static String BuildRegex () {
      return "^" + sentence + "$";
   }

   public static void main (String args[]) {
      String regex = BuildRegex();
      // check pattern documentation
      Pattern pattern = Pattern.compile (regex);
      Scanner s = new Scanner(System.in);
      String sentence = s.nextLine().trim();
      boolean found = pattern.matcher(sentence).find()
   }
}
```

7.12 Lat Long

```
Converts from rectangular coordinates to latitude/longitude and vice
versa. Uses degrees (not radians).
*/
struct 11
  double r, lat, lon;
struct rect
  double x, y, z;
11 convert(rect& P)
  11 Q;
  Q.r = sqrt(P.x*P.x+P.y*P.y+P.z*P.z);
  Q.lat = 180/M_PI*asin(P.z/Q.r);
 Q.lon = 180/M_PI*acos(P.x/sqrt(P.x*P.x+P.y*P.y));
  return Q;
rect convert (ll& Q)
 rect P:
 P.x = Q.r*cos(Q.lon*M_PI/180)*cos(Q.lat*M_PI/180);
 P.y = Q.r*sin(Q.lon*M_PI/180)*cos(Q.lat*M_PI/180);
 P.z = Q.r*sin(Q.lat*M_PI/180);
```

```
return P;
```

8 Teoremas e formulas uteis

8.1 Grafos

```
Formula de Euler: V - E + F = 2 (para grafo planar)
Handshaking: Numero par de vertices tem grau impar
Kirchhoff's Theorem: Monta matriz onde Mi, i = Grau[i] e Mi, j = -1 se
    houver aresta i-j ou 0 caso contrario, remove uma linha e uma
    coluna qualquer e o numero de spanning trees nesse grafo eh o det
    da matriz
Grafo contem caminho hamiltoniano se:
Dirac's theorem: Se o grau de cada vertice for pelo menos n/2
Ore's theorem: Se a soma dos graus que cada par nao-adjacente de
    vertices for pelo menos n
Trees:
Tem Catalan(N) Binary trees de N vertices
Tem Catalan (N-1) Arvores enraizadas com N vertices
Caley Formula: n^(n-2) arvores em N vertices com label
Prufer code: Cada etapa voce remove a folha com menor label e o label
    do vizinho eh adicionado ao codigo ate ter 2 vertices
Flow:
Max Edge-disjoint paths: Max flow com arestas com peso 1
Max Node-disjoint paths: Faz a mesma coisa mas separa cada vertice em
    um com as arestas de chegadas e um com as arestas de saida e uma
    aresta de peso 1 conectando o vertice com aresta de chegada com
    ele mesmo com arestas de saida
Konig's Theorem: minimum node cover = maximum matching se o grafo for
    bipartido, complemento eh o maximum independent set
Min Node disjoint path cover: formar grafo bipartido de vertices
    duplicados, onde aresta sai do vertice tipo A e chega em tipo B,
    entao o path cover eh N - matching
Min General path cover: Mesma coisa mas colocando arestas de A pra B
    sempre que houver caminho de A pra B
Dilworth's Theorem: Min General Path cover = Max Antichain (set de
    vertices tal que nao existe caminho no grafo entre vertices desse
Hall's marriage: um grafo tem um matching completo do lado X se para
    cada subconjunto W de X,
    |W| <= |vizinhosW| onde |W| eh quantos vertices tem em W
```

8.2 Math

```
Goldbach's: todo numero par n > 2 pode ser representado com n = a + b
    onde a e b sao primos
Twin prime: existem infinitos pares p, p + 2 onde ambos sao primos
Legendre's: sempre tem um primo entre n^2 e (n+1)^2
Lagrange's: todo numero inteiro pode ser inscrito como a soma de 4
    quadrados
Zeckendorf's: todo numero pode ser representado pela soma de dois
    numeros de fibonnacis diferentes e nao consecutivos
Euclid's: toda tripla de pitagoras primitiva pode ser gerada com
```

```
Wilson's: n \in primo quando (n-1)! \mod n = n - 1
Mcnugget: Para dois coprimos x, y o maior inteiro que nao pode ser
    escrito como ax + by eh (x-1)(y-1)/2
Fermat: Se p eh primo entao a(p-1) % p = 1
Se x \in m tambem forem coprimos entao x^k % m = x^k (k \mod (m-1)) % m
Euler's theorem: x^{(m)} \mod m = 1 onde phi(m) eh o totiente de
Chinese remainder theorem:
Para equacoes no formato x = al \mod ml, ..., x = an \mod mn onde todos
     os pares m1, ..., mn sao coprimos
Deixe Xk = m1 * m2 * ... * mn/mk e Xk^-1 mod mk = inverso de Xk mod mk, entao
x = somatorio com k de 1 ate n de ak*Xk*(Xk,mk^-1 mod mk)
Para achar outra solucao so somar m1*m2*..*mn a solucao existente
Catalan number: exemplo expressoes de parenteses bem formadas
C0 = 1, Cn = somatorio de i=0 -> n-1 de <math>Ci*C(n-1+1)
outra forma: Cn = (2n \text{ escolhe } n)/(n+1)
Bertrand's ballot theorem: p votos tipo A e q votos tipo B com p>q,
    prob de em todo ponto ter mais As do que Bs antes dele = (p-q)/(p+
Se puder empates entao prob = (p+1-q)/(p+1), para achar quantidade de
    possibilidades nos dois casos basta multiplicar por (p + q escolhe
Propriedades de Coeficientes Binomiais:
Somatorio de k = 0 -> m de (-1)^k * (n escolhe k) = (-1)^m * (n -1)
    escolhe m)
(N \text{ escolhe } K) = (N \text{ escolhe } N-K)
(N \text{ escolhe } K) = N/K * (n-1 \text{ escolhe } k-1)
Somatorio de k = 0 \rightarrow n de (n escolhe k) = 2^n
Somatorio de m = 0 \rightarrow n de (m = scolhe k) = (n+1 = scolhe k + 1)
Somatorio de k = 0 \rightarrow m de (n+k \text{ escolhe } k) = (n+m+1 \text{ escolhe } m)
Somatorio de k = 0 \rightarrow n de (n \text{ escolhe } k)^2 = (2n \text{ escolhe } n)
Somatorio de k = 0 ou 1 \rightarrow n de k*(n escolhe k) = n * 2^(n-1)
Somatorio de k = 0 \rightarrow n de (n-k \text{ escolhe } k) = \text{Fib}(n+1)
Hockey-stick: Somatorio de i = r \rightarrow n de (i escolhe r) = (n + 1)
    escolher + 1)
Vandermonde: (m+n \text{ escolhe } r) = \text{somatorio de } k = 0 -> r \text{ de } (m \text{ escolhe } k)
    ) \star (n escolhe r - k)
Burnside lemma: colares diferentes nao contando rotacoes quando m=1
    cores e n = comprimento
(m^n + somatorio i = 1 - > n-1 de m^gcd(i, n))/n
Distribuicao uniforme a, a+1, ..., b Expected[X] = (a+b)/2
Distribuicao binomial com n tentativas de probabilidade p, X =
    P(X = x) = p^x * (1-p)^(n-x) * (n escolhe x) e E[X] = p*n
Distribuicao geometrica onde continuamos ate ter sucesso, X =
    tentativas:
    P(X = x) = (1-p)^(x-1) * p e E[X] = 1/p
Linearity of expectation: Tendo duas variaveis X e Y e constantes a e
    b, o valor esperado de aX + bY = a*E[X] + b*E[X]
V(X) = E((X-u)^2)
V(X) = E(X^2) - E(X^2)
PG: a1 * (q^n - 1)/(q - 1)
```

 $(n^2 - m^2, 2nm, n^2+m^2)$ onde n, m sao coprimos e um deles eh par

8.3 Geometry

Formula de Euler: V - E + F = 2

Pick Theorem: Para achar pontos em coords inteiras num poligono Area = i + b/2 - 1 onde i eh o o numero de pontos dentro do poligono e b de pontos no perimetro do poligono

Two ears theorem: Todo poligono simples com mais de 3 vertices tem pelo menos 2 orelhas, vertices que podem ser removidos sem criar um crossing, remover orelhas repetidamente triangula o poligono

Incentro triangulo: (a(Xa, Ya) + b(Xb, Yb) + c(Xc, Yc))/(a+b+c) onde
 a = lado oposto ao vertice a, incentro eh onde cruzam as
 bissetrizes, eh o centro da circunferencia inscrita e eh
 equidistante aos lados

Delaunay Triangulation: Triangulacao onde nenhum ponto esta dentro de nenhum circulo circunscrito nos triangulos

Eh uma triangulacao que maximiza o menor angulo e a MST euclidiana de um conjunto de pontos eh um subconjunto da triangulacao

```
Brahmagupta s formula: Area cyclic quadrilateral s = (a+b+c+d)/2 area = sqrt((s-a)*(s-b)*(s-c)*(s-d)) d = 0 => area = sqrt((s-a)*(s-b)*(s-c)*s)
```

8.4 Mersenne's Primes

Primos de Mersenne 2^n - 1
Lista de Ns que resultam nos primeiros 41 primos de Mersenne:
2; 3; 5; 7; 13; 17; 19; 31; 61; 89; 107; 127; 521; 607; 1.279; 2.203;
2.281; 3.217; 4.253; 4.423; 9.689; 9.941; 11.213; 19.937; 21.701;
23.209; 44.497; 86.243; 110.503; 132.049; 216.091; 756.839;
859.433; 1.257.787; 1.398.269; 2.976.221; 3.021.377; 6.972.593;
13.466.917; 20.996.011; 24.036.583;