Республиканская олимпиада по математике, 2016 год, 10 класс

- **1.** Дано натуральное N. Докажите, что все натуральные делители числа N можно выписать в последовательность d_1 , ..., d_k так, чтобы для каждого $1 \le i < k$ одно из чисел d_i/d_{i+1} и d_{i+1}/d_i было простым. (Д. Елиусизов)
- **2.** Найдите все рациональные числа a, для которых существует бесконечно много таких положительных рациональных чисел q, что уравнение $[x^a] \cdot \{x^a\} = q$ не имеет решений в рациональных числах x. (A. Bacunbee)
- 3. Вокруг треугольника ABC описана окружность ω , а I точка пересечения биссектрис этого треугольника. Прямая CI пересекает ω вторично в точке P. Пусть окружность с диаметром IP пересекает AI, BI и ω вторично в точках M, N и K соответственно. Отрезки KN и AB пересекаются в точке B_1 , а отрезки KM и AB в точке A_1 . Докажите, что $\angle ACB = \angle A_1IB_1$. (M. Кунгожин)
- **4.** Вписанная окружность треугольника ABC касается сторон BC и AC в точках A_1 и B_1 , а вневписанная окружность, соответствующая стороне AB, касается продолжении этих сторон в точках A_2 и B_2 соответственно. Пусть вписанная в $\triangle ABC$ окружность касается стороны AB в точке K. Обозначим через O_a и O_b центры описанных около треугольников A_1A_2K и B_1B_2K окружностей. Докажите, что прямая O_aO_b проходит через середину отрезка AB. (M. Кунгожин)
- **5.** Найдите количество таких непустых подмножеств T множества $S = \{0,1,2\dots,2015\}$, что для любых двух элементов $a,b\in T$ (не обязательно различных) остаток от деления 2a+b на 2016 тоже лежит в T. (E. $\mathit{Байсалов}$)
- **6.** Бесконечная строго возрастающая последовательность $\{a_n\}$ положительных чисел удовлетворяет соотношению

$$a_{n+2} = (a_{n+1} - a_n)^{\sqrt{n}} + n^{-\sqrt{n}}$$

для каждого натурального n. Докажите, что для любого C>0 существует такое натуральное m(C) (зависящее от C), что $a_{m(C)}>C$. (Сатылханов K.)