Électronique Introduction à l'électricité générale

Andres Arciniegas

IUT Cergy-Pontoise, Dep GEII, site de Neuville

Plan du cours

- Avant propos
- ② Grandeurs électriques
- Dipôles, conventions et générateurs parfaits
- Résistances et loi d'Ohm
- Oircuits séries, parallèles et association de résistances
- Exercices

Pré-requis

• Manipuler les opérations de base, les fractions ;

Pré-requis

Manipuler les opérations de base, les fractions ;

Contenu et objectifs

- Comprendre l'utilisation des composants de l'électricité (Résistance, Condensateur, Bobine) et l'électronique (Diode, Transistor, Amplificateurs opérationnels)
- Appliquer les lois générales de l'électricité à l'étude du fonctionnement de circuits électroniques
- Identifier les principaux montages à amplificateurs opérationnels et comprendre les fonctions électroniques réalisées
- Comprendre le vocabulaire relatif aux régimes continu et variable

Pré-requis

Manipuler les opérations de base, les fractions ;

Contenu et objectifs

- Comprendre l'utilisation des composants de l'électricité (Résistance, Condensateur, Bobine) et l'électronique (Diode, Transistor, Amplificateurs opérationnels)
- Appliquer les lois générales de l'électricité à l'étude du fonctionnement de circuits électroniques
- Identifier les principaux montages à amplificateurs opérationnels et comprendre les fonctions électroniques réalisées
- Comprendre le vocabulaire relatif aux régimes continu et variable

Déroulement du module (24 heures)

- 18 heures de Cours/Travaux dirigés :
 Présentation des notions (diaporamas) et leurs mises en application (exercices)
- 2 Devoirs surveillés chacun de 1,5 heure (+ 1,5 heure correction)

Régimes de fonctionnement

Pour l'électronique on s'intéressera aux régimes :

• Continu: grandeurs continues en fonction du temps, notations majuscules (U, I, P...).

Régimes de fonctionnement

Pour l'électronique on s'intéressera aux régimes :

- Continu: grandeurs continues en fonction du temps, notations majuscules (U, I, P...).
- Variable: grandeurs variables en fonctions du temps, notations minuscules (u(t), i(t), p(t)...).

Notation de l'ingénieur : valeurs chiffrées sous la forme $\pm a.10^{3n}$

Notation de l'ingénieur : valeurs chiffrées sous la forme $\pm a$. 10^{3n}

- L'exposant est divisible par $3: 10^{-6}, 10^{-3}, 10^{3}, 10^{6}...$
- L'utilisation de la puissance de 10 la plus proche.

Notation de l'ingénieur : valeurs chiffrées sous la forme $\pm a.10^{3n}$

- L'exposant est divisible par $3: 10^{-6}, 10^{-3}, 10^{3}, 10^{6}...$
- L'utilisation de la puissance de 10 la plus proche.
- Permet une écriture compacte et limite les 0 non significatifs.
- Permet clairement d'afficher l'ordre de grandeur.

Notation de l'ingénieur : valeurs chiffrées sous la forme $\pm a$. 10^{3n}

- L'exposant est divisible par $3: 10^{-6}, 10^{-3}, 10^{3}, 10^{6}...$
- L'utilisation de la puissance de 10 la plus proche.
- Permet une écriture compacte et limite les 0 non significatifs.
- Permet clairement d'afficher l'ordre de grandeur.

Préfixes utilisés couramment :

Facteur	Nom	Symbole
10 ¹²	téra	T
10 ⁹	giga	G
10 ⁶	méga	M
10 ³	kilo	k
10^{-3}	milli	m
10^{-6}	micro	μ
10^{-9}	nano	n
10^{-12}	pico	р
10 ⁻¹⁵	femto	f

Grandeurs électriques

Force

Force \rightarrow Mouvement

 $Force \rightarrow Mouvement \rightarrow \acute{E}nergie \ (joule)$

 Liée à la force qui permet de faire circuler les électrons.

- Liée à la force qui permet de faire circuler les électrons.
- Notation : $U_{AB} = U_A U_B$

 Liée à la force qui permet de faire circuler les électrons.

ullet Notation : $oldsymbol{\mathit{U_{AB}}} = oldsymbol{\mathit{U_A}} - oldsymbol{\mathit{U_B}}$

Unité : volt (V)

 Liée à la force qui permet de faire circuler les électrons.

Unité : volt (V)

- Notions équivalentes et homogènes :
 - tension électrique
 - force électromotrice, f.e.m pour un générateur

 Liée à la force qui permet de faire circuler les électrons.

• Notation : $U_{AB} = U_A - U_B$

Unité : volt (V)

- Notions équivalentes et homogènes :
 - tension électrique
 - force électromotrice, f.e.m pour un générateur
- Peut être créée artificiellement par des méthodes :
 - chimiques: piles, batteries
 - mécaniques : générateurs
 - photovoltaïques

 Liée à la force qui permet de faire circuler les électrons.

- Notation : $U_{AB} = U_A U_B$
- Unité : volt (V)
- Notions équivalentes et homogènes :
 - tension électrique
 - force électromotrice, f.e.m pour un générateur
- Peut être créée artificiellement par des méthodes :
 - chimiques : piles, batteries
 - mécaniques : générateurs
 - photovoltaïques

Ordres de grandeur :

- tensions en électronique standard : de 0 V à ±24 V continues (typiquement 5 V),
- tension du réseau électrique domestique européen : 230 V (sinusoïdal alternative, valeur efficace),
- ligne à très haute tension (THT): de 225 kV à 400 kV (sinusoïdal alternative, valeur efficace),
- foudre : de 100 MV à 200 MV.

• Déplacement de charges dans un conducteur électrique.

- Déplacement de charges dans un conducteur électrique.
- Notation: I

- Déplacement de charges dans un conducteur électrique.
- Notation : I

Unité : ampère (A)

- Déplacement de charges dans un conducteur électrique.
- Notation: I

- Unité : ampère (A)
- Variation des charges par unité de temps :

$$I = \frac{q}{t} \rightarrow \frac{\Delta q}{\Delta t} \rightarrow \frac{dq}{dt} \rightarrow [A] = [C.s^{-1}]$$

- Déplacement de charges dans un conducteur électrique.
- Notation: I

- Unité : ampère (A)
- Variation des charges par unité de temps :

$$I = \frac{q}{t} \to \frac{\Delta q}{\Delta t} \to \frac{dq}{dt} \to [A] = [C.s^{-1}]$$

Ordres de grandeur :

- valeurs en électronique standard : de 0 A à qq A,
- seuil de perception ≈ 2 mA,
- seuil de danger \approx 20 mA (24 V),
- port USB : 500 mA max (5 V).
- bouilloire : de 5 A à 10 A,
- foudre : de 100 kA à 300 kA.

Énergie électrique :

• Énergie stockée ou échangée lors d'un mouvement de charges.

Énergie électrique :

- Énergie stockée ou échangée lors d'un mouvement de charges.
- E = q.U

Énergie électrique :

- Énergie stockée ou échangée lors d'un mouvement de charges.
- E = q.U
- Unité : joule (J) \equiv (C.V)

Énergie électrique :

- Énergie stockée ou échangée lors d'un mouvement de charges.
- E = q.U
- Unité : joule (J) ≡ (C.V)

Ordres de grandeur généraux :

- 1 J → augmenter de 1 °C la température de 1 L d'air sec,
- 10 J \rightarrow élever une masse de 1 kg de 1 m,
- 500 MJ \rightarrow foudre.

Énergie électrique :

- Énergie stockée ou échangée lors d'un mouvement de charges.
- E = a.U
- Unité : joule (J) ≡ (C.V)
- Ordres de grandeur généraux :
 - lacktriangle 1 J ightarrow augmenter de 1 °C la température de 1 L d'air sec,
 - 10 J → élever une masse de 1 kg de 1 m,
 - 500 MJ → foudre.

Puissance électrique :

• Quantité d'énergie délivrée ou consommée par unité de temps.

Énergie électrique :

- Énergie stockée ou échangée lors d'un mouvement de charges.
- E = q.U
- Unité : joule (J) ≡ (C.V)
- Ordres de grandeur généraux :
 - 1 J → augmenter de 1 °C la température de 1 L d'air sec,
 - $10 \text{ J} \rightarrow \text{élever}$ une masse de 1 kg de 1 m,
 - 500 MJ → foudre.

Puissance électrique :

- Quantité d'énergie délivrée ou consommée par unité de temps.
- $P = \frac{E}{t} \rightarrow \frac{dE}{dt} \rightarrow \frac{d(q.U)}{dt} \rightarrow \text{en r\'egime continu}: P = \frac{dq}{dt}.U = U.I$

Énergie électrique :

- Énergie stockée ou échangée lors d'un mouvement de charges.
- E = q.U
- Ordres de grandeur généraux :
 - 1 J → augmenter de 1 °C la température de 1 L d'air sec,
 - $10 \text{ J} \rightarrow \text{élever}$ une masse de 1 kg de 1 m,
 - 500 MJ → foudre.

Puissance électrique :

- Quantité d'énergie délivrée ou consommée par unité de temps.
- $\bullet \ \ P = \tfrac{E}{t} \to \tfrac{dE}{dt} \to \tfrac{d(q.U)}{dt} \to \text{en r\'egime continu} : P = \tfrac{dq}{dt}.U = U.I$
- Unité : watt (W) \equiv (J.s $^{-1}$)

Énergie électrique :

- Énergie stockée ou échangée lors d'un mouvement de charges.
- E = q.U
- Unité : joule (J) ≡ (C.V)

Ordres de grandeur généraux :

- lacktriangledown 1 J ightarrow augmenter de 1 °C la température de 1 L d'air sec,
- $10 \text{ J} \rightarrow \text{élever}$ une masse de 1 kg de 1 m,
- 500 MJ → foudre.

Puissance électrique :

- Quantité d'énergie délivrée ou consommée par unité de temps.
- $P = \frac{E}{t} \rightarrow \frac{dE}{dt} \rightarrow \frac{d(q.U)}{dt} \rightarrow \text{en régime continu}: P = \frac{dq}{dt}.U = U.I$
- Unité : watt (W) \equiv (J.s⁻¹)

Ordres de grandeur :

- ampoule à LED : de 5 W à 10 W,
- ampoule à incandescence : de 20 W à 100 W,
- bouilloire: 1 kW,
- tranche de centrale nucléaire : 1 GW,
- foudre : 20 GW.

Dipôles, conventions et générateurs parfaits

ullet **Dipôle**: 2 pôles = 2 connexions o représentation de nombreux composants.

- **Dipôle**: 2 pôles = 2 connexions → représentation de nombreux composants.
- Dipôles non-polarisés, pas de sens : résistances, bobines, certains condensateurs...

- **Dipôle**: 2 pôles = 2 connexions → représentation de nombreux composants.
- Dipôles non-polarisés, pas de sens : résistances, bobines, certains condensateurs...
- Dipôles polarisés, sens!: sources, diodes, le reste des condensateurs...

- **Dipôle**: 2 pôles = 2 connexions → représentation de nombreux composants.
- Dipôles non-polarisés, pas de sens : résistances, bobines, certains condensateurs...
- Dipôles polarisés, sens!: sources, diodes, le reste des condensateurs...

Dipôles actifs: générateurs ou sources,

→ délivrent de la puissance

U et l fléchés en « convention générateur »

- **Dipôle**: 2 pôles = 2 connexions → représentation de nombreux composants.
- Dipôles non-polarisés, pas de sens : résistances, bobines, certains condensateurs...
- Dipôles polarisés, sens!: sources, diodes, le reste des condensateurs...

Dipôles actifs : générateurs ou sources, → délivrent de la puissance

U et l fléchés en « convention générateur »

Dipôles passifs : récepteurs, → consomment de la puissance

U et l fléchés en « convention récepteur »

Générateur de tension parfait

Rôle: délivrer une tension indépendante du courant fourni.

Générateur de tension parfait

- Rôle: délivrer une tension indépendante du courant fourni.
- Tension fixée ou réglée, le courant s'ajuste en fonction du circuit. Limité en I et P.

Générateur de tension parfait

- Rôle: délivrer une tension indépendante du courant fourni.
- Tension fixée ou réglée, le courant s'ajuste en fonction du circuit. Limité en I et P.
- Dipôle actif: U et I représentés en convention générateur.

Générateur de tension parfait

- Rôle: délivrer une tension indépendante du courant fourni.
- Tension fixée ou réglée, le courant s'ajuste en fonction du circuit. Limité en I et P.
- Dipôle actif: U et l représentés en convention générateur.

Générateur de tension parfait

- Rôle: délivrer une tension indépendante du courant fourni.
- Tension fixée ou réglée, le courant s'ajuste en fonction du circuit. Limité en I et P.
- Dipôle actif : U et l représentés en convention générateur.

Utilisations :

- source d'électricité générale ;
- batteries, piles...;
- modélisation d'appareils ou systèmes (capteurs, sorties d'amplificateurs...).

Générateur de tension parfait

- Rôle: délivrer une tension indépendante du courant fourni.
- Tension fixée ou réglée, le courant s'ajuste en fonction du circuit. Limité en I et P.
- Dipôle actif : U et I représentés en convention générateur.

Utilisations:

- source d'électricité générale ;
- batteries, piles...;
- modélisation d'appareils ou systèmes (capteurs, sorties d'amplificateurs...).

Générateur de courant parfait

• Rôle: délivrer un courant indépendant de la tension fournie.

Générateur de tension parfait

- Rôle: délivrer une tension indépendante du courant fourni.
- Tension fixée ou réglée, le courant s'ajuste en fonction du circuit. Limité en I et P.
- Oipôle actif: U et l représentés en convention générateur.

Utilisations:

- source d'électricité générale ;
- batteries, piles...;
- modélisation d'appareils ou systèmes (capteurs, sorties d'amplificateurs...).

Générateur de courant parfait

- Rôle: délivrer un courant indépendant de la tension fournie.
- Courant fixé ou réglé, la tension s'ajuste en fonction du circuit.

Générateur de tension parfait

- Rôle: délivrer une tension indépendante du courant fourni.
- Tension fixée ou réglée, le courant s'ajuste en fonction du circuit. Limité en I et P.
- Dipôle actif: U et l représentés en convention générateur.

Utilisations:

- source d'électricité générale ;
- batteries, piles...;
- modélisation d'appareils ou systèmes (capteurs, sorties d'amplificateurs...).

Générateur de courant parfait

- Rôle: délivrer un courant indépendant de la tension fournie.
- Courant fixé ou réglé, la tension s'ajuste en fonction du circuit.
- Dipôle actif : U et l représentés en convention générateur.

Générateur de tension parfait

- Rôle: délivrer une tension indépendante du courant fourni.
- Tension fixée ou réglée, le courant s'ajuste en fonction du circuit. Limité en I et P.
- Dipôle actif: U et I représentés en convention générateur.

Utilisations:

- source d'électricité générale ;
- batteries, piles...;
- modélisation d'appareils ou systèmes (capteurs, sorties d'amplificateurs...).

Générateur de courant parfait

- Rôle: délivrer un courant indépendant de la tension fournie.
- Courant fixé ou réglé, la tension s'ajuste en fonction du circuit.
- Dipôle actif : U et l représentés en convention générateur.

Générateur de tension parfait

- Rôle: délivrer une tension indépendante du courant fourni.
- Tension fixée ou réglée, le courant s'ajuste en fonction du circuit. Limité en I et P.
- Dipôle actif: U et l représentés en convention générateur.

Utilisations:

- source d'électricité générale ;
- batteries, piles...;
- modélisation d'appareils ou systèmes (capteurs, sorties d'amplificateurs...).

Générateur de courant parfait

- Rôle: délivrer un courant indépendant de la tension fournie.
- Courant fixé ou réglé, la tension s'ajuste en fonction du circuit.
- Dipôle actif: U et l représentés en convention générateur.

Utilisations:

- appareils spécifiques ;
- modélisation de circuits/systèmes avec un comportement « source de courant ».

• Circuit électrique: ensemble de composants électriques connectés.

- Circuit électrique: ensemble de composants électriques connectés.
- Au minimum : un générateur et un récepteur.

- Circuit électrique: ensemble de composants électriques connectés.
- Au minimum : un générateur et un récepteur.

Circuit ouvert

Le courant ne peut pas circuler.

$$\dot{l} = 0$$

- Circuit électrique: ensemble de composants électriques connectés.
- Au minimum : un générateur et un récepteur.

Circuit ouvert
Le courant ne peut pas circuler. I = 0

Circuit fermé Le courant peut circuler. l>0

Résistances et loi d'Ohm

Définitions

Conductivité:

• Caractéristique du matériau à laisser les charges circuler librement.

Définitions

Conductivité:

- Caractéristique du matériau à laisser les charges circuler librement.
- lacktriangle Symbole : $oldsymbol{\sigma}$

Définitions

Conductivité:

- Caractéristique du matériau à laisser les charges circuler librement.
- lacktriangle Symbole : $oldsymbol{\sigma}$
- Unité : siemens par mètre (S.m⁻¹)

Définitions

Conductivité:

- Caractéristique du matériau à laisser les charges circuler librement.
- lacksquare Symbole : $oldsymbol{\sigma}$
- Unité : siemens par mètre (S.m⁻¹)

Résistivité :

Définitions

Conductivité:

- Caractéristique du matériau à laisser les charges circuler librement.
- Symbole : σ
- Unité: siemens par mètre (S.m⁻¹)

Résistivité :

Inverse de la conductivité, caractéristique du matériau à s'opposer à la circulation des charges.

Définitions

Conductivité:

- Caractéristique du matériau à laisser les charges circuler librement.
- Symbole : σ
- Unité: siemens par mètre (S.m⁻¹)

Résistivité:

- Inverse de la conductivité, caractéristique du matériau à s'opposer à la circulation des charges.
- Symbole : ho

Définitions

Conductivité:

- Caractéristique du matériau à laisser les charges circuler librement.
- Symbole : σ
- Unité: siemens par mètre (S.m⁻¹)

Résistivité:

- Inverse de la conductivité, caractéristique du matériau à s'opposer à la circulation des charges.
- lacksquare Symbole : ho
- Unité : ohm.mètre (Ω.m)

Définitions

Conductivité:

- Caractéristique du matériau à laisser les charges circuler librement.
- Symbole : σ
- Unité: siemens par mètre (S.m⁻¹)

Résistivité:

- Inverse de la conductivité, caractéristique du matériau à s'opposer à la circulation des charges.
- lacktriangle Symbole : ho
- Unité : ohm.mètre (Ω.m)

$$\rho = \frac{1}{\sigma}$$

Définitions

Conductivité:

- O Caractéristique du matériau à laisser les charges circuler librement.
- Symbole : σ
- Unité: siemens par mètre (S.m⁻¹)

Résistivité :

- Inverse de la conductivité, caractéristique du matériau à s'opposer à la circulation des charges.
- Symbole : ρ
- Unité : ohm.mètre (Ω.m)

$$\rho = \frac{1}{\sigma}$$

Classification des matériaux

lacktriangle Bons conducteurs : métaux (cuivre, alu, or) ightarrow connexions, fils, câbles, armatures...

Définitions

Conductivité:

- O Caractéristique du matériau à laisser les charges circuler librement.
- Symbole : σ
- Unité: siemens par mètre (S.m⁻¹)

Résistivité:

- Inverse de la conductivité, caractéristique du matériau à s'opposer à la circulation des charges.
- lacksquare Symbole : ho
- Unité : ohm.mètre (Ω.m)

$$\rho = \frac{1}{\sigma}$$

Classification des matériaux

- lacktriangle Bons conducteurs : métaux (cuivre, alu, or) ightarrow connexions, fils, câbles, armatures...
- Conducteurs non-métalliques : carbone → certains composants/connexions

Définitions

Conductivité:

- Caractéristique du matériau à laisser les charges circuler librement.
- Symbole : σ
- Unité: siemens par mètre (S.m⁻¹)

Résistivité:

- Inverse de la conductivité, caractéristique du matériau à s'opposer à la circulation des charges.
- lacksquare Symbole : ho
- Unité : ohm.mètre (Ω.m)

$$\rho = \frac{1}{\sigma}$$

Classification des matériaux

- lacktriangle Bons conducteurs : métaux (cuivre, alu, or) ightarrow connexions, fils, câbles, armatures...
- Onducteurs non-métalliques: carbone → certains composants/connexions
- Isolants: air, papier, verre, plastique.

• Rôle : Limiter et contrôler le courant électrique.

• Rôle : Limiter et contrôler le courant électrique.

• Symbole : **R**

• Rôle : Limiter et contrôler le courant électrique.

• Symbole : **R**

Unité : ohm (Ω)

- Rôle : Limiter et contrôler le courant électrique.
- Symbole : *R* Unité : **ohm** (Ω)

Résistance d'un conducteur de longueur L et section S : $R=\rho \frac{L}{\overline{S}}$

• Rôle : Limiter et contrôler le courant électrique.

• Symbole: R

Unité : ohm (Ω)

Loi d'Ohm

$$U = RI$$

Résistance d'un conducteur de longueur L et section $\mathcal{S} \colon \mathcal{R} = \rho \frac{L}{\mathfrak{F}}$

• Rôle : Limiter et contrôler le courant électrique.

• Symbole : **R**

Unité : ohm (Ω)

Loi d'Ohm

$$U = RI$$

Puissance dissipée en watt (W)

$$P = U.I = (R.I).I = R.I^2$$

Résistance d'un conducteur de longueur L et section S : $R=\rho \frac{L}{S}$

• Rôle : Limiter et contrôler le courant électrique.

• Symbole : **R**

Unité : ohm (Ω)

Loi d'Ohm

$$U = RI$$

Puissance dissipée en watt (W)

$$P = U.I = (R.I).I = R.I^{2}$$
ou
$$P = U.I = U.\left(\frac{U}{R}\right) = \frac{U^{2}}{R}$$

Résistance d'un conducteur de longueur L et section S : $R=
ho {L\over S}$

 Rôle : Limiter et contrôler le courant électrique.

Symbole : R

Unité : ohm (Ω)

Loi d'Ohm

$$U = RI$$

Puissance dissipée en watt (W)

$$P = U.I = (R.I).I = R.I^{2}$$
ou
$$P = U.I = U.\left(\frac{U}{R}\right) = \frac{U^{2}}{R}$$

Résistance d'un conducteur de longueur L et section S : $R=
ho {L\over 5}$

Remarques

- Puissance max: donnée par le constructeur, valeur à ne pas dépasser.
- Valeurs normalisées : E12, E24,...

https://www.vishay.com/docs/31001/dectable.pdf

Circuits séries, parallèles et association de résistances

Vocabulaire

• Nœud: connexion d'au moins 3 fils.

Vocabulaire

- Nœud: connexion d'au moins 3 fils.
- Branche: un ou plusieurs composants entre deux nœuds.

Vocabulaire

- Nœud: connexion d'au moins 3 fils.
- Branche: un ou plusieurs composants entre deux nœuds.
- Maille: contour fermé de branches.

Vocabulaire

- Nœud: connexion d'au moins 3 fils.
- Branche: un ou plusieurs composants entre deux nœuds.
- Maille: contour fermé de branches.

Circuit série

Vocabulaire

- Nœud: connexion d'au moins 3 fils.
- Branche: un ou plusieurs composants entre deux nœuds.
- Maille : contour fermé de branches.

Circuit série

 Le courant qui traverse les composants est le même en tout point du circuit.

Vocabulaire

- Nœud: connexion d'au moins 3 fils.
- Branche: un ou plusieurs composants entre deux nœuds.
- Maille: contour fermé de branches.

Circuit série

- Le courant qui traverse les composants est le même en tout point du circuit.
- Le courant est d'autant plus faible que le nombre d'éléments en série est élevé.

Vocabulaire

- Nœud: connexion d'au moins 3 fils.
- Branche: un ou plusieurs composants entre deux nœuds.
- Maille: contour fermé de branches.

Circuit série

- Le courant qui traverse les composants est le même en tout point du circuit.
- Le courant est d'autant plus faible que le nombre d'éléments en série est élevé.
- La tension globale se répartit sur chaque élément.

Vocabulaire

- Nœud: connexion d'au moins 3 fils.
- Branche: un ou plusieurs composants entre deux nœuds.
- Maille: contour fermé de branches.

Circuit série

- Le courant qui traverse les composants est le même en tout point du circuit.
- Le courant est d'autant plus faible que le nombre d'éléments en série est élevé.
- La tension globale se répartit sur chaque élément.

Circuit parallèle

Vocabulaire

- Nœud: connexion d'au moins 3 fils.
- Branche: un ou plusieurs composants entre deux nœuds.
- Maille: contour fermé de branches.

Circuit série

- Le courant qui traverse les composants est le même en tout point du circuit.
- Le courant est d'autant plus faible que le nombre d'éléments en série est élevé.
- La tension globale se répartit sur chaque élément.

Circuit parallèle

La tension est la même aux bornes des composants.

Vocabulaire

- Nœud: connexion d'au moins 3 fils.
- Branche: un ou plusieurs composants entre deux nœuds.
- Maille: contour fermé de branches.

Circuit série

- Le courant qui traverse les composants est le même en tout point du circuit
- Le courant est d'autant plus faible que le nombre d'éléments en série est élevé.
- La tension globale se répartit sur chaque élément.

Circuit parallèle

- La tension est la même aux bornes des composants.
- Le courant dans chaque branche dépend des éléments considérés.

Vocabulaire

- Nœud: connexion d'au moins 3 fils.
- Branche: un ou plusieurs composants entre deux nœuds.
- Maille: contour fermé de branches.

Circuit série

- Le courant qui traverse les composants est le même en tout point du circuit
- Le courant est d'autant plus faible que le nombre d'éléments en série est élevé.
- La tension globale se répartit sur chaque élément.

Circuit parallèle

- La tension est la même aux bornes des composants.
- Le courant dans chaque branche dépend des éléments considérés.
- Plus il y a d'éléments, le courant général I sera élevé.

Résistances en série

Une résistance équivalente série est la somme des résistances dans un circuit série.

Résistances en série

Une résistance équivalente série est la somme des résistances dans un circuit série.

$$R_{S} = \sum_{i} R_{i}$$

Résistances en série

Une résistance équivalente série est la somme des résistances dans un circuit série.

$$R_{S} = \sum_{i} R_{i}$$

Si on a N résistances R_i en série et $R_i = R$, alors $R_S = N.R$.

Résistances en série

Une résistance équivalente série est la somme des résistances dans un circuit série.

$$R_{\mathcal{S}} = \sum_{i} R_{i}$$

Si on a N résistances R_i en série et $R_i = R$, alors $R_S = N.R$.

Résistances en parallèle

Une conductance équivalente parallèle est la somme des conductances dans un circuit parallèle.

Résistances en série

Une résistance équivalente série est la somme des résistances dans un circuit série.

$$R_{\mathcal{S}} = \sum_{i} R_{i}$$

Si on a N résistances R_i en série et $R_i = R$, alors $R_S = N.R$.

Résistances en parallèle

Une conductance équivalente parallèle est la somme des conductances dans un circuit parallèle.

conductance :
$$G = \frac{1}{R}$$

Résistances en série

Une résistance équivalente série est la somme des résistances dans un circuit série.

$$R_{S} = \sum_{i} R_{i}$$

Si on a N résistances R_i en série et $R_i = R$, alors $R_S = N.R$.

Résistances en parallèle

Une conductance équivalente parallèle est la somme des conductances dans un circuit parallèle.

conductance : $G = \frac{1}{R}$

$$G_P = \sum_i G_i$$

Résistances en série

Une résistance équivalente série est la somme des résistances dans un circuit série.

$$R_{S} = \sum_{i} R_{i}$$

Si on a N résistances R_i en série et $R_i = R$, alors $R_S = N.R$.

Résistances en parallèle

Une conductance équivalente parallèle est la somme des conductances dans un circuit parallèle.

conductance : $G = \frac{1}{R}$

$$G_P = \sum_i G_i$$

et

$$R_P = \frac{1}{G_P}$$

Résistances en série

Une résistance équivalente série est la somme des résistances dans un circuit série.

$$R_S = \sum_i R_i$$

Si on a N résistances R_i en série et $R_i = R$, alors $R_S = N.R$.

Résistances en parallèle

Une conductance équivalente parallèle est la somme des conductances dans un circuit parallèle.

conductance : $G = \frac{1}{R}$

$$G_P = \sum_i G_i$$

et

$$R_P = \frac{1}{G_P}$$

Si on a N conductances G_i et $G_i = G$, alors $R_P = \frac{1}{N \cdot G} = \frac{R}{N}$.

Exercices

Exercices

- Donner l'expression de la résistance parallèle dans le cas de l'association de 2 résistances en parallèle, puis dans le cas de 3.
- ② Donner l'expression de la résistance équivalente vue aux bornes du générateur du circuit ci-dessous.
- **3** Calculer le courant fourni par le générateur du circuit ci-dessous si E = 10 V et lorsque $R_1 = R_2 = R_3 = R_4 = R_5 = 1$ k Ω .

