EAS 5830: BLOCKCHAINS

The Bitcoin Mining Economy

Professor Brett Hemenway Falk

Difficulty

- o A bitcoin block is only "valid" if its hash is less than a "target" value
- o All miners are doing this simultaneously and independently by hashing candidate blocks
- - On average about 2³² ~ 4 billion trials
- o Difficulty defined to be: initial target / current target
- Current difficulty has increased to about 83.0T

Difficulty

- o Current difficulty ~ 83.0T
 - (Current Difficulty) (Base Difficulty) ~ 356.5*10^21 nashes on average before finding a solution
- A good CPU can do ~ 1M hashes / second
- o ASICs can do ~ 200 T hashes / second

Years per block (CPU)	11.3B
Years per block (ASIC)	56.5

Why mine?

- o When you mine a block you collect:
 - Block rewards
 - Block rewards halve every 210,000 blocks (approximately every 4 years)
 - o Block rewards were initial 50 BTC / block
 - o $50 \rightarrow 25 \rightarrow 12.5 \rightarrow 6.25 \rightarrow 3.125$
 - Transaction fees

Basic economics

- o <u>Best ASIC miners run at ~30 J / TH</u>
- o 356.5*10^21 Hashes required to find a block
- o (Expected number terahashes)·(Joules / TH) = 10.7T Joules / Block
 - (1 kWH = 3.6 M J)
- o Average residential energy cost is \$0.16 / kWH
- o Average Bitcoin miner pays about .05 kWH for electricity
- Current Bitcoin block rewards are 3.125 BTC

	Residential	Miner
Block Rewards	\$215,625	\$215,625
Electricity Cost	\$475,309.71	\$148,534.29
Profit	-\$259,685	\$67,091

Energy usage

- o Bitcoin network computes (on average) 356.5*10^21 hashes every ten minutes
- o Best ASIC miners run at ~ 30J / TH
- o ~ 18GW (if all mining was done with best ASICs)
 - Recall 1 watt = 1 joule per second

Bitcoin network power demand

updated every 24 hours

Theoretical lower bound

9.59

GW

84.08

TWh

Estimated ②

16.89

GW

Annualised consumption ?

148.08

TWh

Theoretical upper bound

33.85

GW

296.76

TWh

Comparisons

- o <u>Bitcoin uses approximately as much energy as Poland</u> (170 TWH)
- o Netflix required .451 TWH in 2019
 - Maybe up to 94 TWH?
- o <u>Facebook 15 TWH</u>
- o Training GPT-4 might have required 7.2 GWH
- o By 2027 Al might consume 134 TWH

Why not change?

- o Economics
 - Miners have invested billions of dollars in mining hardware, they don't want that investment to be wasted
- o Stability
 - It's hard to get people to upgrade to new versions
 - The anti-upgrade mentality is necessary to keep supply from increasing
- o Anonymity
 - It's easier to mine anonymously
 - Staking requires buying stake
 - Mining can be done by anyone who can get electricity

Variability of rewards

- o Expected rewards
 - (Probability of mining a block) · (Rewards for mining a block)
 - Probability is very low
 - Rewards are very high
- o This means the *variance* in rewards is very high
 - If you get value v with probability p, and 0 otherwise
 - Expectation is $v \cdot p$
 - <u>Variance</u> is $v^2 \cdot p \cdot (1-p)$
- O Decreasing $oldsymbol{v}$ and increasing $oldsymbol{p}$ keeps expectation the same, but decreases variance

Mining pools

- o Miners pool together and share rewards
- o Same expected revenue
- o Lower variance

Operating mining pools

- o Pool operator sends a block template to miners
- Miners iterate over nonces
 - Bitcoin only accepts with block with ~78 leading zeros
 - Mining pool accepts "partial" solutions with ~32 leading zeros
- o When a pool finds a block rewards are split between all pool members
 - Each member receives rewards proportional to number of partial solutions they have submitted

Attacks on mining pools

- o Mine on different pools submit "partial" proofs to two pools
 - **Fix**: Has a unique block template, only accept partial proofs with correct template
- Withhold winning block if a pool member finds a valid block, send it directly to the blockchain, don't send it to the pool
 - **Fix**: Pool template includes coinbase payment to pool, not to member
 - Problem: Miner has to trust pool (but pool does not have to trust miner)

Mining Pools

Centralization

- o If pool operator chooses transactions, then small number of operators can censor Bitcoin transactions
- o If individual pool members choose transactions, pool cannot easily censor transactions
- o <u>Bitcoin Explained has a good description of Stratum V2</u>