Trabajo Práctico Nº 5

Transistores

Figura 12.44.

Artividad RESUELTA

12.8

Seguidamente, vamos a analizar las magnitudes que se dan en un circuito de este tipo. Para ello resolveremos el circuito ejemplo que se muestra en la Figura 12.44, para encontrar el punto aproximado de funcionamiento del transistor

El primer paso es determinar la caída de tensión que aparece en la resistencia de base R_2 . A esta tensión se la conoce por el nombre de tensión de base V_B (tensión de la base respecto a masa). Para ello, vamos a despreciar el pequeño valor de la corriente de base que atraviesa R_1 . En este caso, la corriente que fluye por R_2 estará delimitada por V_{CC} y la suma de R_1 y R_2 :

$$I = \frac{V_{CC}}{R_1 + R_2}$$

Si ahora aplicamos la ley de Ohm entre los extremos de R_2 , tendremos que:

$$V_B = R_2 \cdot I$$

Sustituyendo este valor en la primera ecuación, tendremos que:

$$V_B = \frac{R_2}{R_1 + R_2} \cdot V_{CC}$$

Si ahora aplicamos los valores correspondientes al circuito de nuestro ejemplo, resultará que:

$$V_B = \frac{2.000}{15.000 + 2.000} \cdot 10 = 1,176 \text{ V}$$

Para calcular la tensión V_E que aparece en el emisor (tensión del emisor respecto a masa), aplicamos la segunda ley de Kirchhoff a la malla correspondiente:

$$V_E = V_B - V_{BE}$$

Dado que estamos trabajando con un transistor de silicio, se puede suponer con aproximación que la tensión de polarización directa del diodo emisor-base es de unos 0,7 V. Aplicando estos valores a la última ecuación concluida, tendremos que:

$$V_E = 1,176 - 0,7 = 0,476 \text{ V}$$

Aplicando la ley de Ohm a la resistencia de emisor R_E , podremos calcular la corriente de emisor I_E :

$$I_E = \frac{V_E}{R_E} = \frac{0,476}{100} = 4,76 \text{ mA}$$

Dado que la intensidad de base es muy pequeña se puede suponer que las intensidades de colector y emisor son iguales:

$$I_C \approx I_E$$
 , $I_C = 4,76 \text{ mA}$

A continuación, calcularemos la tensión que aparece en el colector V_C (tensión de colector respecto a masa), que

será igual a la tensión V_{CC} de la fuente de alimentación menos la caída de tensión $(R_C \cdot I_C)$ que aparece en R_C :

$$V_C = V_{CC} - R_C \cdot I_C = 10 - (1.000 \cdot 0,00476) = 5,24 \text{ V}$$

Por último, calcularemos la tensión que aparece entre el colector-emisor, la cual nos indicará el punto de trabajo del transistor. Esta tensión será igual a la diferencia de tensiones que aparece entre el colector y el emisor, es decir:

$$V_{CE} = V_C - V_E = 5,24 - 0,476 = 4,76 \text{ V}$$

Observa cómo la tensión V_{CE} ha quedado a un valor muy próximo a la mitad de la tensión de alimentación ($V_{CC}=10$ V). Esto significa que el punto Q de trabajo se encontrará aproximadamente en la mitad de la recta de carga, lo cual nos indica que el transistor trabaja en un punto estable de operación.

Conviene resaltar el hecho de que se han utilizado, para este circuito, las tensiones de base V_B , emisor V_E y colector V_C respecto a masa. El conocimiento de estas tensiones es siempre muy útil para la localización de las averfas en un circuito, dada la facilidad con la que se pueden medir y contrastar con las originales aportadas por el diseñador.