Romanian sub-dialect identification

Matei Gabriel Valentin - Grupa 243

Reprezentare datelor

Pentru a clasifica texte din doua dialecte, am ales sa reprezint datele folosind n-grams.

Folosind WhitespaceTokenizer din biblioteca nltk am despartit toate datele in cuvinte. Din aceste cuvinte am extras seturi de cate 1,2,3-grame, iar din fiecare cuvant am extras cate 1,2,3-grame de caractere.

In urma procesarii tuturor datelor de antrenare am creat un vocabular care memoreaza de cate ori apare un ngram. Am reprezentat cheile generic prin {type}{n}[{value}], unde type este c daca este un n-gram format din caractere si w pentru cuvinte, n reprezinta numarul de caractere, respectiv cuvinte din secventa, iar value este secventa de caractere ce reprezinta n-gramul.

Mai jos este un exemplu de descompunere in n-grame a textului "Ana are mere"

```
ngram_features('Ana are mere')
Output: {
 'c1[A]': 1,
 'c1[a]': 2,
 'c1[e]': 3,
 'c1[m]': 1,
 'c1[n]': 1,
 'c1[r]': 2,
 'c2[ A]': 1,
 'c2[ a]': 1,
 'c2[ m]': 1,
 'c2[An]': 1,
 'c2[a ]': 1,
 'c2[ar]': 1,
 'c2[e]': 2,
 'c2[er]': 1,
 'c2[me]': 1,
 'c2[na]': 1,
 'c2[re]': 2,
 'c3[ An]': 1,
 'c3[ ar]': 1,
 'c3[ me]': 1,
 'c3[Ana]': 1,
 'c3[are]': 1,
 'c3[ere]': 1,
 'c3[mer]': 1,
 'c3[na ]': 1,
 'c3[re]': 2,
 'w1[Ana]': 1,
 'w1[are]': 1,
 'w1[mere]': 1,
```

```
'w2[Ana are]': 1,
'w2[are mere]': 1,
'w3[Ana are mere]': 1}
```

Antrenarea modelului

Am facut o lista cu cativa clasificatori pe care biblioteca sklearn ii pune la dispozitie (K Nearest Neighbors, Decision Tree, Random Forest, Logistic Regression, SGD Classifier, Naive Bayes, SVM Linear) si apoi am iterat prin acesti clasificatori si apoi am comparat performantele acestora.

```
names = ["K Nearest Neighbors", "Decision Tree", "Random Forest", "Logistic
Regression", "SGD Classifier", "Naive Bayes", "SVM Linear"]
classifiers = [
    KNeighborsClassifier(),
    DecisionTreeClassifier(),
    RandomForestClassifier(),
    LogisticRegression(max_iter = 100),
    SGDClassifier(max_iter = 100),
    MultinomialNB(),
    SVC(kernel = 'linear')
]
models = list(zip(names, classifiers))
for name, model in models:
    model.fit(x_train, y_train)
    y_pred = model.predict(x_test)
    show model info(name, model, x test, y test, y pred)
```

In urma executiei bucatii de cod de mai sus am obtinut diferite informatii despre performantele acestora pe datele de antrenare:

1. K Nearest Neighbors

```
Accuracy: 0.5380271084337349
```


	precision	recall	f1-score	support
0	0.61	0.16	0.25	1301
1	0.53	0.90	0.67	1355
accuracy			0.54	2656
macro avg	0.57	0.53	0.46	2656
weighted avg	0.57	0.54	0.46	2656

2. **Decision Tree**

		precision	recall	f1-score	support
	0	0.60	0.59	0.60	1301
	1	0.61	0.62	0.62	1355
accur	acy			0.61	2656
macro	avg	0.61	0.61	0.61	2656
weighted	avg	0.61	0.61	0.61	2656

3. Random Forest

Accuracy: 0.639683734939759

	precision	recall	f1-score	support
0	0.63	0.63	0.63	1301
1	0.65	0.65	0.65	1355
accuracy			0.64	2656
macro avg	0.64	0.64	0.64	2656
weighted avg	0.64	0.64	0.64	2656

4. Logistic Regression

	precision	recall	f1-score	support
0	0.67	0.65	0.66	1301
1	0.67	0.69	0.68	1355
accuracy			0.67	2656
macro avg	0.67	0.67	0.67	2656
weighted avg	0.67	0.67	0.67	2656

5. **SGD Classifier**

Accuracy: 0.6698042168674698

		precision	recall	f1-score	support
	0	0.64	0.74	0.69	1301
	1	0.71	0.60	0.65	1355
accura	су			0.67	2656
macro a	vg	0.67	0.67	0.67	2656
weighted a	vg	0.67	0.67	0.67	2656

6. Naive Bayes

	precision	recall	f1-score	support
0	0.68	0.57	0.62	1301
1	0.64	0.75	0.69	1355
accuracy			0.66	2656
macro avg	0.66	0.66	0.66	2656
weighted avg	0.66	0.66	0.66	2656

7. SVM Linear

precision recall f1-score support 0 0.66 0.65 0.65 1301 1 0.66 0.67 0.67 1355 accuracy 0.66 2656 macro avg 0.66 0.66 0.66 2656 weighted avg 0.66 0.66 0.66 2656		precision	necall	f1-score	support
1 0.66 0.67 0.67 1355 accuracy 0.66 2656 macro avg 0.66 0.66 0.66 2656		precision	I CCall	11-30016	Suppor c
accuracy 0.66 2656 macro avg 0.66 0.66 0.66 2656	0	0.66	0.65	0.65	1301
macro avg 0.66 0.66 0.66 2656	1	0.66	0.67	0.67	1355
	accuracy			0.66	2656
weighted avg 0.66 0.66 0.66 2656	macro avg	0.66	0.66	0.66	2656
	weighted avg	0.66	0.66	0.66	2656

Alegerea clasificatorului final

Uitandu-ma la leaderboard-ul de pe Kaggle am fost multumit de rezultatele obtinute si am decis sa folosesc un VotingClassifier. Am setat parametrul voting = 'hard'. Asta inseamna ca toti clasificatorii de mai sus vor vota o anumita intrare, iar rezultatul va fi egal cu majoritatea predictiilor.

Rezultatele acestuia sunt urmatoarele:

		precision	recall	f1-score	support
	0	0.71	0.62	0.66	1301
	1	0.67	0.76	0.71	1355
acc	uracy			0.69	2656
macr	o avg	0.69	0.69	0.69	2656
weighte	d avg	0.69	0.69	0.69	2656

Rezultat

Antrenand toti clasificatorii folosind datele de antrenare combinate cu cele de validare am reusit sa obtin un scor pe Kaggle de 0.72103 (Public Leaderboard) si 0.71565 (Private Leaderboard).