Operazione di pivot

L'operazione di pivot sull'elemento $a_{hk} \neq 0$ di una matrice $A \in \mathcal{R}^{(m \times n)}$ (cioè con m righe e n colonne, con $n \ge m$) consiste nel costruire una nuova matrice $\bar{A} \in \mathcal{R}^{(m \times n)}$. Ciascuna riga di \bar{A} si costruisce come combinazione lineare di una o due righe di A, in modo tale da trasformare la colonna k di A nella colonna h di *I* (matrice identità di ordine *n*).

Definizioni: h è la <u>riga di pivot</u>, k è la <u>colonna di pivot</u>, a_{hk} è l'<u>elemento di pivot</u>, a_h^T è la <u>riga h di A</u>, \bar{a}_h^T è la riga h di \overline{A} .

Operazione di pivot su a_{hk} :

operazione	commento
$_{\overline{a}T}$ 1 $_{aT}$	Tutti gli elementi della riga h di A sono divisi per l'elemento di pivot, con il
$\bar{a}_h^T = \frac{1}{a_{hk}} a_h^T$	risultato che $\bar{a}_{hk} = 1$
Per $i=1, 2,, n$,	Tutte le altre righe, tranne h , si ottengono sommando alla riga i di A la riga di pivot
$con i \neq h$:	moltiplicata per $\frac{-a_{ik}}{a}$ con il risultato che tutti gli elementi della colonna k di \bar{A} sono
$\bar{a}_i^T = a_i^T - \frac{a_{ik}}{a_{hk}} a_h^T$	uguali a zero, tranne \bar{a}_{hk} .

Nota: l'operazione di pivot non è definita se $a_{hk} = 0$.

Esempio. Data la matrice $A = \begin{bmatrix} 3 & 2 & 4 & 2 \\ 0 & 1 & 2 & 4 \\ 1 & 0 & 6 & 3 \end{bmatrix} \in \mathcal{R}^{(3 \times 4)}$ si effettui un'operazione di pivot su a_{23} .

L'elemento di pivot $a_{23} = 2$ è evidenziato in verde, la riga di pivot h = 2 in giallo, la colonna di pivot k = 3in azzurro. La matrice \bar{A} va costruita riga per riga.

Riga 1. Non è la riga di pivot, quindi si utilizza la formula $\bar{a}_i^T = a_i^T - \frac{a_{ik}}{a_{hk}} a_h^T$ con i = 2, h = 2, k = 3,

quindi $\bar{a}_1^T = a_1^T - \frac{a_{13}}{a_{23}} a_2^T = (3 \quad 2 \quad 4 \quad 2) - \frac{4}{2} (0 \quad 1 \quad 2 \quad 4)$

Poiché $-\frac{4}{3}(0 \ 1 \ 2 \ 4) = (0 \ -2 \ -4 \ -8)$ si ha:

 $\bar{a}_1^T = (3 \quad 2 \quad 4 \quad 2) + (0 \quad -2 \quad -4 \quad -8) = (3 \quad 0 \quad 0 \quad -6).$

Riga 2. È la riga di pivot, quindi si utilizza la formula $\bar{a}_h^T = \frac{1}{a_{hk}} a_h^T \cos h = 2$, k = 3, quindi

 $\bar{a}_2^T = \frac{1}{a_{23}} a_2^T = \frac{1}{2} (0 \quad 1 \quad 2 \quad 4) = \begin{pmatrix} 0 & \frac{1}{2} & 1 & 2 \end{pmatrix}.$

Riga 3. Non è la riga di pivot, quindi si utilizza la formula $\bar{a}_i^T = a_i^T - \frac{a_{ik}}{a_{hk}} a_h^T$ con i = 3, h = 2, k = 3,

quindi $\bar{a}_3^T = a_{31}^T - \frac{a_{33}}{a_{23}} a_2^T = (1 \quad 0 \quad 6 \quad 3) - \frac{6}{2} (0 \quad 1 \quad 2 \quad 4)$

Poiché $-\frac{6}{2}(0 \quad 1 \quad 2 \quad 4) = (0 \quad -3 \quad -6 \quad -12)$ si ha:

 $\bar{a}_3^T = (1 \quad 0 \quad 6 \quad 3) + (0 \quad -3 \quad -6 \quad -12) = (1 \quad -3 \quad 0 \quad -9).$ La matrice \bar{A} è quindi: $\bar{A} = \begin{bmatrix} 3 & 0 & \mathbf{0} & -6 \\ 0 & \frac{1}{2} & \mathbf{1} & 2 \\ 1 & -3 & \mathbf{0} & -9 \end{bmatrix}.$

Nota 1: la colonna k=3 di A si è trasformata nella colonna h=2 della matrice identità.

Nota 2: l'operazione di pivot equivale a un prodotto di matrici, in particolare si può scrivere $\bar{A} = PA$ dove la matrice quadrata $P \in \mathcal{R}^{(3\times3)}$ è definita come segue:

 $P = \begin{bmatrix} 1 & -2 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & -3 & 1 \end{bmatrix}$, ovvero P è una matrice identità a meno della colonna k che ha per elementi $p_{ik} = -\frac{a_{ik}}{a_{hk}}$

per $i \neq h$ e $p_{hk} = \frac{1}{q_{kk}}$

Calcolo della matrice inversa con Gauss-Jordan

L'operazione di pivot è alla base dell'algoritmo di Gauss-Jordan per l'inversione di una matrice quadrata. Se si vuole invertire la matrice $B \in \mathcal{R}^{(n \times n)}$ è sufficiente costruire la matrice $A = [B \ I] \in \mathcal{R}^{(n \times 2n)}$ ed effettuare n operazioni di pivot in successione, con elementi di pivot a_{hh} , per $h=1,\ldots,n$. Per effetto di queste operazioni, le prime n colonne di A si saranno trasformate nelle prime n colonne della matrice identità, e quindi l'effetto complessivo di tutte le varie operazioni di pivot è equivalente a moltiplicare A (a sinistra) per B^{-1} , pertanto si ottiene: $\bar{A}^n = \begin{bmatrix} I & B^{-1} \end{bmatrix}$.

Esempio. Si vuole invertire la matrice $B = \begin{bmatrix} 1 & 0 & 2 \\ 2 & 1 & -1 \\ 2 & 1 & 0 \end{bmatrix}$.

Allo scopo si parte da $A = \begin{bmatrix} 1 & 0 & 2 & 1 & 0 & 0 \\ 2 & 1 & -1 & 0 & 1 & 0 \\ 2 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$.

Passo 1. Costruiamo la matrice \bar{A}^1 da A effettuando un pivot su a_{11} .

La riga di pivot è $a_1^T = (\mathbf{1} \quad 0 \quad 2 \quad 1 \quad 0 \quad 0)$. Si ottiene:

$$\bar{a}_1^T = \frac{1}{a_1} a_1^T = \frac{1}{a_1} (1 \quad 0 \quad 2 \quad 1 \quad 0 \quad 0) = (1 \quad 0 \quad 2 \quad 1 \quad 0 \quad 0);$$

$$\bar{a}_2^T = a_2^T - \frac{a_{21}}{a_{11}} a_1^T = (2 \quad 1 \quad -1 \quad 0 \quad 1 \quad 0) - \frac{2}{1} (1 \quad 0 \quad 2 \quad 1 \quad 0 \quad 0) = (0 \quad 1 \quad -5 \quad -2 \quad 1 \quad 0)$$

$$\bar{a}_3^T = a_3^T - \frac{a_{31}}{a_{11}} a_1^T = (2 \quad 1 \quad 0 \quad 0 \quad 1) - \frac{2}{1} (1 \quad 0 \quad 2 \quad 1 \quad 0 \quad 0) = (0 \quad 1 \quad -4 \quad -2 \quad 0 \quad 1)$$

$$\bar{A}^1 = \begin{bmatrix} 1 & 0 & 2 & 1 & 0 & 0 \\ 0 & 1 & -5 & -2 & 1 & 0 \\ 0 & 1 & -4 & -2 & 0 & 1 \end{bmatrix}$$

$$\bar{A}^{1} = \begin{bmatrix} 1 & 0 & 2 & 1 & 0 & 0 \\ 0 & 1 & -5 & -2 & 1 & 0 \\ 0 & 1 & -4 & -2 & 0 & 1 \end{bmatrix}$$

Passo 2. Costruiamo la matrice \bar{A}^2 da \bar{A}^1 effettuando un pivot su a_{22} .

La riga di pivot è
$$a_2^T = \begin{pmatrix} 0 & 1 & -5 & -2 & 1 & 0 \end{pmatrix}$$
. Si ottiene:

$$\bar{A}^2 = \begin{bmatrix} 1 & 0 & 2 & 1 & 0 & 0 \\ 0 & 1 & -5 & -2 & 1 & 0 \\ 0 & 0 & 1 & 0 & -1 & 1 \end{bmatrix}$$

Passo 3. Costruiamo la matrice \bar{A}^3 da \bar{A}^2 effettuando un pivot su a_{33}

La riga di pivot è $a_3^T = (0 \ 0 \ 1 \ 0 \ -1 \ 1)$.

Si ottiene:
$$\bar{A}^3 = \begin{bmatrix} 1 & 0 & 0 & 1 & 2 & -2 \\ 0 & 1 & 0 & -2 & -4 & 5 \\ 0 & 0 & 1 & 0 & -1 & 1 \end{bmatrix}$$
. Pertanto, $B^{-1} = \begin{bmatrix} 1 & 2 & -2 \\ -2 & -4 & 5 \\ 0 & -1 & 1 \end{bmatrix}$.

Come controprova, per controllare l'assenza di errori di calcolo, basta verificare che:

$$BB^{-1} = \begin{bmatrix} 1 & 0 & 2 \\ 2 & 1 & -1 \\ 2 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 & -2 \\ -2 & -4 & 5 \\ 0 & -1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Esercizi

Esercizio 1. Effettuare l'operazione di pivot sull'elemento a_{31} della matrice $A = \begin{bmatrix} 3 & 2 & -2 & 2 & -1 \\ 2 & 4 & 1 & 1 & 1 \\ 2 & 0 & 4 & 1 & 2 \end{bmatrix}$.

Esercizio 2. Calcolare l'inversa della matrice
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 1/2 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

Domanda di approfondimento. Cosa accade se in un qualche passo dell'algoritmo di Gauss-Jordan l'elemento di pivot è nullo?