Electrical generation and control of the valley carriers in a monolayer transition metal dichalcogenide

LETTERS

PUBLISHED ONLINE: 4 APRIL 2016 | DOI: 10.1038/NNANO.2016.49

nature nanotechnology

Electrical generation and control of the valley carriers in a monolayer transition metal dichalcogenide

Yu Ye¹, Jun Xiao¹, Hailong Wang², Ziliang Ye¹, Hanyu Zhu¹, Mervin Zhao¹, Yuan Wang¹, Jianhua Zhao², Xiaobo Yin³ and Xiang Zhang^{1,4,5}*

Chao Lv

2017.12.22

Electrical valley generation

Spin-orbit-coupling in 2D TMDC:

Fig.1 Electronic structure at the K and K' valleys of monolayer TMDC

- 1. The strong spin—orbit interaction originating from the transition metal ion's d orbitals introduces a large split in the valence bands. The transitions between split valence and conduction band edges are excitonic in nature, termed the A and B excitons.
- 2. Valley contrasting optical selection rules are therefore expected due to the spin-valley locking in TMDC monolayers.

Detection in monolayer TMDCs

Fig.2 Schematic of the monolayer TMDC/(Ga,Mn)As heterojunction for electrical valley polarization devices.

TMDC: long lifetime of polarized hole and spin-valley locking.

Ferromagnetic semiconductor: conductivity matching and high spin injection efficiency.

WS₂/(Ga, Mn)As heterostructure

No defect emission. Suppression of B exciton emission.

Electrical Valley excitation in WS₂

Fig.4 Electrical control of valley polarization in monolayer WS₂.

$$\rho = \frac{I(\sigma_{-}) - I(\sigma_{+})}{I(\sigma_{-}) + I(\sigma_{+})} \qquad \rho = 16.2\%$$

$$\rho = -14.8\%$$

Magnetic field dependent

Fig.5 Out-of-plane magnetic field dependence of electroluminescence helicity.

Valley exciton generation efficiency

Fig.6 Valley dynamics measurement in monolayer WS_2 on (Ga,Mn)As. a, Time-resolved total photoluminescence using a σ + polarization femtosecond

excitation laser pulse with an energy of 2.21 eV. Convolution fitting with the laser pulse (green dashed line), yields two exciton lifetimes of 2.9 ps and 20.0

ps. b, Time-resolved σ + and σ - photoluminescence components excited by a σ + polarized laser..

$$\rho = \frac{N_K - N_{K'}}{N_K + N_{K'}} = \frac{\rho_0}{1 + 2\tau/\tau_K}$$

Non-perfect spin polarization.

Valley scattering.

Joule heating.

Thanks for your attention