Capítulo 2 Movimento a uma dimensão

2. Um volante de badmington foi largado de uma altura considerável. A lei do movimento é

$$y(t) = \frac{v_T^2}{g} \log \left[\cosh \left(\frac{gt}{v_T} \right) \right],$$

em que a terminal do volante v_T é 6.80 m/s.

- a) Faça o gráfico da lei do movimento y(t) de 0 a 4.0 s.
- b) Determine a velocidade instantânea em função do tempo, usando cálculo simbólico. Faça o gráfico da velocidade em função do tempo de 0 a 4 s, usando o pacote matplotlib.
- c) Determine a aceleração instantânea em função do tempo, usando cálculo simbólico. faça o gráfico da aceleração em função do tempo de 0 a 4 s, usando o pacote matplotlib.
- d) Mostre que a aceleração $a_y(t)=g-\frac{g}{v_x^2}v_y\big|v_y\big|$ é equivalente à calculada na alínea anterior.
- e) Se o volante for largado de uma altura de 20 m, quanto tempo demora a atingir o solo? Compare com o tempo que demoraria se não houvesse resistência do ar.
- f) Nas condições da alínea anterior, qual o valor da velocidade e da aceleração quando o volante chega ao solo?

Nota:

- Para cálculo simbólico: para derivar pode usar as funções diff do pacote sympy
- Para cálculo numérico: Pode usar a função arccosh do pacote numpy.

$$\cosh x = \frac{e^x + e^{-x}}{2} e \sinh x = \frac{e^x - e^{-x}}{2};$$

$$\cosh^2(x) - \sinh^2(x) = 1; \tanh(x) = \sinh(x) / \cosh(x)$$

Resolução:

Resolução:

a) ver ficheiro prob2.2-volante.py

b) ver ficheiros prob2.2-volante-symbol.py

$$v_y = \frac{dy}{dt} = v_f + \frac{g_f}{v_f}$$

Ver ficheiro prob2.2-volante.py

e) 0 + rola

log (cosh (
$$\frac{3}{N_T}$$
) = $\frac{3}{N_T}$ $\frac{3}{N_T}$

Cosh ($\frac{3}{N_T}$) = $\frac{3}{N_T}$
 $\frac{3}{N_T}$ = are $\frac{3}{N_T}$ $\frac{3}{N_T}$

Thus = $\frac{N_T}{3}$ are $\frac{3}{N_T}$

Sem resistance do ar $\frac{3}{N_T}$
 $\frac{2}{N_T}$
 $\frac{3}{N_T}$
 $\frac{3}{N_T}$

Soluções Problemas Cap. 2

2. a)

b) $v_x(t) = v_T \tanh \frac{gt}{v_T}$

c) $a_x(t) = \frac{g}{\cosh^2\left(\frac{gt}{v_T}\right)}$

e) com resistência do ar 3.4 s; sem resistência 2,0 s; f) 6.8 m/s e 0.002 m/s 2 .