COMP225: Algorithms and Data Structures

Applications of Graphs (1)

Mark Dras

Mark.Dras@mq.edu.au

E6A380

Outline

- Directed graphs
- Graph operations
 - topological sort
 - spanning trees
 - minimal spanning trees

A Directed Graph

Directed Graph Definition

Edges

- for a directed graph, $(v_1, v_2) \neq (v_2, v_1)$
- if there is an edge (v_1, v_2) , then v_2 is adjacent to v_1 , but not vice versa
 - alternatively, v_2 is a successor of v_1 , and v_1 is a predecessor of v_2

Degree of vertices

- in-degree: how many predecessors
- out-degree: how many successors

Application: Garbage Collection

- Traversals can be defined on directed graphs in the same way as on undirected graphs
 - the only difference is in the definition of adjacency lists
- This kind of traversal is used in automatic garbage collection:
 - in C++, garbage collection is manual
 - memory is reclaimed using e.g. delete
 - in Java, garbage collection is automatic

Garbage Collection

- Memory heap contains a lot of objects, some still currently accessible ("live"), some not
 - want to free up memory that's not accessible
 - how to determine this?
- Running programs store variables and objects in the runtime stack
 - referred to as root objects
 - anything accessible from these is live

Garbage Collection

```
void someFn (node* a, node* b)
{
    node* c;
    if (a)
        c = a->next;
        cout << c->data << endl;
    else
        c = 0;
    nodeStruct* d;
    d->firstpart = a;
    d->secondpart = b;
}
```


Garbage Collection

- Most common algorithm is called mark-sweep
- Do a graph traversal from root objects (in previous example, a, b, c, d)
 - each element is tagged with a mark bit, set when it's visited in a traversal
- Then visit each object in the heap and see if it's been marked
- In practice, there are also space considerations

Outline

- Directed graphs
- Graph operations
 - topological sort
 - spanning trees
 - minimal spanning trees

A Directed Acyclic Graph (DAG)

Topological order

- Only defined on DAGs
- The previous graph has at least two possible topological orders
 - a, g, d, b, e, c, f
 - a, b, g, d, e, f, c
- Note that before a node can be placed in the topological ordering, all of its predecessors must be in the ordering
 - you can see this by 'squashing' the graph
 - then, no back arrows

Linear Order

Orderings

Q: Are there more than two orderings?

- General principle in ordering
 - nodes with the largest in-degree or outdegree are the most constrained ("bottlenecks")

TopSort Algorithms

- Can start from the 'end':
 - find nodes with no successor, and successively remove them from the graph
- Can start from the 'start':
 - find nodes with no predecessor
 - start from these and do a DFS

TopSort Algorithm 1

```
topSort1(in theGraph: Graph, out aList:List)
// arranges the vertices in the Graph into a topological order and places
// them in aList
n = number of vertices in theGraph
for (step = 1 through n) {
   select a vertex v that has no successors
   aList.insert(1,v)
   delete from the Graph vertex v and its edges
```

topSort1

TopSort Algorithm 2

```
topSort2(in theGraph: Graph, out aList:List)
// arranges the vertices in the Graph into a topological order and places
// them in aList
s.createStack()
for (all vertices v in the graph)
    if (v has no predecessors) {
            s.push(v)
            mark v as visited
while (!s.isEmpty()) {
    if (all vertices adjacent to the vertex on the top of the stack have been visited) {
            s.pop(v)
            aList.insert(1,v)
    else {
            select an unvisited vertex u adjacent to the vertex on top of the stack
            s.push(u)
            mark u as visited
```

topSort2

TopSort: Exercise

Are these valid topological orderings?

```
abcdefghi
acbfidegh
cabigfdeh
acbidfgeh
            b
```

Outline

- Directed graphs
- Graph operations
 - topological sort
 - spanning trees
 - minimal spanning trees

Spanning Trees

- Recall that a tree is a kind of graph
 - it has no cycles
 - so, if you successively remove edges from a connected graph such that the remaining graph is connected, at some point you will have a tree
- Spanning tree (of a connected undirected graph G): a subgraph of G that contains all G's vertices and enough edges to form a tree

Graphs and Cycles

- A connected undirected graph that has n vertices must have at least n-1 edges
- A connected undirected graph that has n vertices and exactly n-1 edges cannot contain a cycle

Graphs and Cycles

- A connected undirected graph that has n vertices and more than n-1 edges must contain at least one cycle
 - aside: what if the graph's not connected?
- Therefore, to get a spanning tree, remove edges until only n-1 edges remain, at each step maintaining a connected graph
- Can use depth-first or breadth-first traversal

Example: Depth-First

depth-first traversal (starting from a):
a-b-d-e-c-f-g

Example: Depth-First

DF spanning tree starting from a

DF Algorithm

```
depthFirstSearch()
  for all vertices v
     num(v) = 0;
  edges = null;
  i = 1;
  while there is a vertex v such that num(v) == 0
     DFS(v);
  output edges;
dfs (v)
  num(v) = i++; // mark v as visited
  for (all vertices u adjacent to v)
     if num(u) == 0 // u is unvisited
       attach edge(uv) to edges // mark (u,v) as a discovery edge
       dfs(u)
```

DF Algorithm

- How do you mark edges?
 - typically, there's an extra data element in the objects that make up the adjacency list or the adjacency matrix
 - also possible to have a separate data member as part of the graph
- Q: Is the spanning tree unique?

Example: Breadth-First

BF spanning tree starting from a:

BF Algorithm

```
bfs ()
  for all vertices v
     num(v) = 0;
  edges = null;
  i = 1;
  q.createQueue();
  while there is a vertex v such that num(v) == 0
     num(v) = i++; // mark v as visited
     q.push(v);
     while (!q.isEmpty()) {
       v = q.pop()
       // loop invariant: there is a path from former front of queue to every vertex in queue
       for (all unvisited vertices u adjacent to v) {
           num(u) = i++; // mark u as visited
           attach edge(vu) to edges // mark (v,u) as discovery edge
           q.push(u)
  output edges
```

Outline

- Directed graphs
- Graph operations
 - topological sort
 - spanning trees
 - minimal spanning trees

Minimum Spanning Trees

- In a weighted graph, costs are associated with edges
 - an obvious problem to solve then is to find the spanning tree with the least cost
 - cost of spanning tree is defined as the sum of costs of its component edges

- To construct a minimum spanning tree
 - begin with a tree containing only one vertex
 - at each stage, add the least cost edge that begins from some vertex in the tree and ends with some vertex not in the tree

Example

Example: Prim's Algorithm

node order visit (starting from a): a-g-e-d-f-b-c

Example: Prim's Algorithm

node order visit (starting from a): a-g-e-d-f-b-c

```
primsAlgorithm (in v:Vertex)

// determines a minimum spanning tree for a weighted, connected, undirected

// graph whose weights are non-negative, beginning with vertex v

mark v as visited and include it in the minimum spanning tree

while (there are unvisited vertices) {

find the least-cost edge (v,u) from any visited vertex v to unvisited vertex u

mark u as visited

add the vertex u and the edge (v,u) to the minimum spanning tree

}
```

- Note that it's quite different from a traversal
 - in a traversal, at any point you only have one node as the base to move to the next step (the top of the stack for DF, the front of the queue for BF)
 - in Prim's, you can move from any node in the spanning tree to any other adjacent node

Comparison

- traversal (recall from previous lecture)
 - assume adjacency list representation, with list ordered by node ordering
 - at any point in the traversal, there's only one choice, and the next node is the first element in the adjacency list
 - there are |V| such node visits (plus checking of edges): O(V + E)

- Comparison
 - Prim's
 - assume the adjacency list is ordered by weight
 - at any point in the search, the next choice can come from any of the nodes in spanning tree
 - on average there are |V|/2
 - then choose first element of adjacency list
 - there are n nodes visited in the search
 - therefore $O(V^2)$

Optimality of Prim's Algorithm

- Greedy algorithm
 - often aren't optimal, but Prim's Algorithm is
- Proof by contradiction
 - assume some graph G where PA does not return an MST
 - then there's some point at which we inserted edge (x,y) that took us away from the MST
 - but there's some path from x to y in the MST, using (u,v) shorter than (x,y)
 - PA would have then chosen (u,v) not (x,y)

An Improvement

- Keep track of the lowest cost edge at each node
- This can be in the form of a heap-based priority queue
- Following is a variant of Prim's

PQ-Prim

```
PQPrim (in v:Vertex)
// determines a minimum spanning tree for a weighted, connected, undirected
    graph whose weights are non-negative, beginning with vertex v
// uses a global priority queue
for each vertex u in G {
  set u.key = ∞
  set u.parent = nil
v.key = 0
initialise a min priority queue Q with all vertices from G
while Q is not empty {
  u = EXTRACT-MIN(Q)
  for each vertex x adjacent to u {
     if x in is Q and the weight of (u,x) < x.key {
       x.parent = u
       x.key = weight of (u,x)
                                                                     42/45
```

PQ-Prim

- Difference from previous algorithm is with global priority queue Q
 - don't need to go through all nodes already in MST
 - insertion and deletion operations are O(log E)
- Aside: priority queues can also have a DECREASE-KEY operation
 - functionality is to decrease the value of an element in the PQ
 - complexity for PQ of size n is O(log n)
 - not proved here, but consider deletion followed by insertion

43/45

PR-Prim

- Now, while loop executes |V| times, and each EXTRACT-MIN operation takes O(log V) time
 - therefore O(V log V) for all calls to EXTRACT-MIN
- The for loop executes O(E) times
 - sum of all adjacency lists is 2|E|
 - assignment of key in for loop is an implicit DECREASE-KEY, which is O(log V)
 - total for these calls is O(E log V)
- Therefore complexity is O(V log V + E log V)

Directed Graphs

- Note that Prim's doesn't work for directed graphs
 - cycles cause complications
 - algorithms do exist for this, like Chu-Liu-Edmonds