Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 2 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження лінійних алгоритмів»

Варіант <u>13</u>

Виконав студент	<u> 111-13, Жмаило Дмитро Олександрович</u>
	(шифр, прізвище, ім'я, по батькові)
Перевірив	
Персырив	(прізвище, ім'я, по батькові)

Лабораторна робота 1

Дослідження лінійних алгоритмів

Мета - дослідити подання керувальної дії чергування у вигляді умовної та альтернативної форм та набути практичних навичок їх використання під час складання програмних специфікацій.

Індивідуальне завдання

Варіант 13

Задані дійсні числа х, у. Визначити, чи належить точка з координатами (х, у) заштрихованій частині площини:

Постановка задачі

Маємо графік рівняння, що складається з кола, заданого рівнянням $(x-1)^2 - 4 = y^2$ обмеженого на проміжку по осі абсцис так, що $-1 \le x \le 1$ і прямих y' = x-3, y'' = -x+3, обмежених на проміжку по осі абсцис так, що $1 \le x \le 3$. Необхідно визначити чи належить точка з координатами (x, y) області, обмеженою двома відрізками і півколом.

Побудова математичної моделі

D				_	•
Відповідно	$\Pi \Lambda$	VMORIA	СКПЯПЕМО	таблины	змінних.
рідпорідпо	дυ	YMIUDEL	СКЛАДСИЮ	таолицю	JIVIIIIIIIIIA.

Змінна	Tun	Назва	Призначення
Координата х	Дійсний	X	Вхідні дані
Координата у	Дійсний	у	Вхідні дані
Перевірочна координата у'	Дійсний	y_check	Проміжні дані
Перевірочна координата у''	Дійсний	y2_check	Проміжні дані
Результат	Булевий	V	Вихідні дані

Для зручності розіб'ємо графік рівняння на дві частини, а саме:

- 1) **-1≤x≤1**
- 2) **1≤x≤3**

Після цього необхідно зробити перевірку значення змінної х. Маємо розгалуження:

Якщо -1≤х≤3, то

- Якщо -1≤х≤1, то перевірити рівність (sqrt((x-1)*(x-1) + y*y)) ≤ R, де sqrt функція добування квадратного кореня з певного виразу, R радіус заданого кола, а точка (1,0) центр цього кола. Якщо рівність справджується, то точка належить заштрихованій частині площини; значення змінної результату (result) позитивне (true); інакше негативне (false)
- Інакше $1 < x \le 3$, то необхідно підставити значення змінної х в рівняння y' = x-3 і в рівняння y'' = -x+3. Якщо $y' \le y \le y''$, то точка належить заштрихованій частині площини; значення змінної результату (**result**) позитивне (true)

Інакше точка не належить заштрихованій частині площини, значення змінної результату (**result**) негативне (false)

Розв'язання:

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми.

```
Крок 1. Визначимо основні дії;
Крок 2. Деталізуємо дію порівняння значення х;
   • Псевдокод:
Крок 1
початок
      введення х, у
      порівняння значення х
      виведення result
кінець
Крок 2
початок
      введення х, у
      якщо -1≤х && х≤3
        TO
           якщо -1≤х && х≤1
             T0
                 якщо (sqrt((x-1)*(x-1) + y*y)) \le 2
                   T0
                       result := true
                 інакше
                       result := false
                 все якщо
           інакше
                 y_check := x-3
                 y_check2 := -x+3
                 якщо y_check≤y && y≤y_check2
                   T0
                       result := true
                 інакше
                       result:= false
                 все якщо
           все якщо
      інакше
           result := false
      все якщо
```

виведення result

кінець

• Блок-схема:

Крок 1

Крок 2

• Випробування алгоритму:

Блок	Дія
	Початок
1	Введення х=3, у=1
2	-1 ≤ 3 ≤ 3 виконується
3	-1 ≤ 3 ≤ 1 не виконується
4	$0 \le 1 \le 0$ не виконується, отже не належить (false)
5	Вивід: false
	Кінець

Блок	Дія
	Початок
1	Введення х=0.5, у=0.5
2	-1 ≤ 0.5 ≤ 3 виконується
3	-1 ≤ 0.5 ≤ 1 виконується
4	0.707 ≤ 2 виконуэться, отже належить (true)
5	Вивід: true
	Кінець

Висновок:

Ми дослідили подання керувальної дії чергування у вигляді умовної та альтернативної форм та набули практичних навичок їх використання під час складання програмних специфікацій. Навчилися робити розгалуження дій програми у вигляді псевдокоду та блок-схем.