On Firing Signals

Hugo Aguettaz

Institut für Signal- und Informationsverarbeitung ETH Zürich

February 11, 2022

Outline

Introduction

Section 1

Introduction

Definition (Firing sequence)

A binary sequence of length L is a firing sequence if and only if there at least T_r 0s between any two consecutive 1s, and considering periodic boundaries.

We denote by \mathcal{F} the set of all firing sequences of length L and refractory period T_r (with implicit L and T_r).

Example

With L=10 and $T_r=2$, (0,0,1,0,0,0,1,0,0) is a firing signal but (0,0,1,0,1,0,0,0,1,0) and (1,0,0,1,0,0,0,0,1,0) are not.

Cardinality

Theorem (Cardinality)

Assume $T_r > 0$ and let $\ell_{T_r}^L$ denotes the number of firing signals of length L and refractory period T_r . Then:

$$\ell_{T_r}^L = \begin{cases} 1 & 1 \leq L \leq T_r \\ L+1 & T_r+1 \leq L \leq 2T_r \\ \sum_{i=1}^{T_r+1} \frac{\varphi_{T_r+1,i}^{T_r+1,i}}{\varphi_{T_r+1,i}^{T_r+1}+T_r} - 2T_r^2 + LT_r & 2T_r+1 \leq L \leq 3T_r+1 \\ \sum_{i=1}^{T_r+1} \varphi_{T_r+1,i}^L & L > 3T_r+1 \end{cases}$$

where $\varphi_{p,i}$, i=1,...,p denotes the roots of the polynomials $x^p-x^{p-1}-1$ with $p\geq 2$.

Reasonable

Definition (Reasonable firing sequence)

A firing sequence $(x_1, ..., x_L)$ is said to be T_h -reasonable if for any $i \in \{1, ..., L\}$, x_i is fully determined by $(x_{i-T_h}, ..., x_{i-1})$.

Example

With $T_h = 4$ (0,0,0,0,0,0,0,0,0) and (1,0,0,0,0,1,0,0,0) are T_h -reasonable but (0,1,0,0,0,1,0,0,1,0) is not.

Autonomous (energy)

Definition (Autonomous firing sequence)

A firing sequence (x_1, \ldots, x_L) is said to be T_h -autonomous if for any $1 \le i \le L$ such that $x_i = \cdots = x_{i+T_h} = 0$, $x_{i+T_h+1} = 0$.

Example

With $T_h=4$, (0,0,0,0,0,0,0,0,0,0) and (0,1,0,0,0,1,0,0,1,0) are T_h -autonomous but (1,0,0,0,0,1,0,0,0) is not.

Reducible

Definition (Reducible firing sequence)

A firing sequence (x_1, \ldots, x_L) is said to be *reducible* (with order d) if for any $1 \le i \le L \ x_{i+kT} = x_i$ with T = L/d and d as large as possible.

Example

(0,0,0,0,0,0,0,0,0) and (1,0,0,0,0,1,0,0,0,0) are reducible with orders d=6 and d=2 respectively.