14. Sulfuric acid reacts with sodium hydroxide according to the following:

 $H_2SO_4 + NaOH \longrightarrow Na_2SO_4 + H_2O.$

- a. Balance the equation for this reaction.
- b. What mass of H₂SO₄ would be required to react with 0.75 mol NaOH?
- c. What mass of each product is formed by this reaction? (Hint: See Sample B.)
- **15.** Copper reacts with silver nitrate through single replacement.
 - a. If 2.25 g of silver are produced from the reaction, how many moles of copper(II) nitrate are also produced?
 - b. How many moles of each reactant are required in this reaction? (Hint: See Sample Problem D.)
- **16.** Aspirin, C₉H₈O₄, is produced through the following reaction of salicylic acid, C₇H₆O₃, and acetic anhydride, C₄H₆O₃: C₇H₆O₃(s) + C₄H₆O₃(l) → C₉H₈O₄(s) + HC₂H₃O₂(l).
 - a. What mass of aspirin (kg) could be produced from 75.0 mol of salicylic acid?
 - b. What mass of acetic anhydride (kg) would be required?
 - c. At 20°C, how many liters of acetic acid, HC₂H₃O₂, would be formed? The density of HC₂H₃O₂ is 1.05 g/mL.

Limiting Reactants and Percentage Yield

SECTION 3 REVIEW

- **17.** Distinguish between ideal and real stoichiometric calculations.
- **18.** Distinguish between the limiting reactant and the excess reactant in a chemical reaction.
- **19.** a. Distinguish between the theoretical yield and actual yield in stoichiometric calculations.
 - b. How does the value of the theoretical yield generally compare with the value of the actual yield?
- **20.** What is the percentage yield of a reaction?
- **21.** Why are actual yields usually less than calculated theoretical yields?

PRACTICE PROBLEMS

22. Given the reactant amounts specified in each chemical equation, determine the limiting reactant in each case:

a. HCl + NaOH \longrightarrow NaCl + H₂O 2.0 mol 2.5 mol

b. Zn + 2HCl $\longrightarrow ZnCl_2 + H_2$ 2.5 mol 6.0 mol

c. $2\text{Fe}(\text{OH})_3 + 3\text{H}_2\text{SO}_4 \longrightarrow \text{Fe}_2(\text{SO}_4)_3 + 6\text{H}_2\text{O}$ 4.0 mol 6.5 mol

(Hint: See Sample Problem F.)

- **23.** For each reaction specified in Problem 22, determine the amount in moles of excess reactant that remains. (Hint: See Sample Problem G.)
- **24.** For each reaction specified in Problem 22, calculate the amount in moles of each product formed.
- **25.** a. If 2.50 mol of copper and 5.50 mol of silver nitrate are available to react by single replacement, identify the limiting reactant.
 - b. Determine the amount in moles of excess reactant remaining.
 - c. Determine the amount in moles of each product formed.
 - d. Determine the mass of each product formed.
- **26.** Sulfuric acid reacts with aluminum hydroxide by double replacement.
 - a. If 30.0 g of sulfuric acid react with 25.0 g of aluminum hydroxide, identify the limiting reactant.
 - b. Determine the mass of excess reactant remaining.
 - c. Determine the mass of each product formed. Assume 100% yield.
- 27. The energy used to power one of the Apollo lunar missions was supplied by the following overall reaction: $2N_2H_4 + (CH_3)_2N_2H_2 + 3N_2O_4 \longrightarrow 6N_2 + 2CO_2 + 8H_2O$. For the phase of the mission when the lunar module ascended from the surface of the moon, a total of 1200. kg N_2H_4 was available to react with 1000. kg $(CH_3)_2N_2H_2$ and 4500. kg N_2O_4 .
 - a. For this portion of the flight, which of the allocated components was used up first?
 - b. How much water, in kilograms, was put into the lunar atmosphere through this reaction?