Problem 1

 $i: A \to B \ p: B \to C$ Suppose we are given $\pi: B \to A$, then we can naturally define $\alpha: B \to A \oplus C$ by $\alpha(b) = (\pi(b), 0)$. Suppose we are given $\sigma: C \to B$, we can naturally define $\alpha': A \oplus C \to B$ by $\alpha'(a, c) = \sigma(c)$.

Now suppose we are given $\alpha: B \to A \oplus C$, then we can define $\pi: B \to A$ by $\pi(b) = \alpha(b)[1]$ (i.e. take the first coordinate)

Similarly if we are given $\alpha':A\oplus C\to B$, then we can naturally define $\sigma(c)=\alpha'(0,c)$.

If (iii) is isomorphic, then the case of α and α' become consistent and we obtain all the bijections.

Problem 2

For torus T we use two annuli A_1, A_2 that cover the upper part and lower part of the torus respectively and their intersection are two disjoint circles. Hence we have the following reduce MV sequence (as A_1, A_2 are homotopic equivalent to S^1 and their intersection is homeomorphic to $S^1 \sqcup S^1$) $0 \to H_2(T) \xrightarrow{\partial} \mathbb{Z} \oplus \mathbb{Z} \xrightarrow{i} \mathbb{Z} \oplus \mathbb{Z} \xrightarrow{j} H_1(T) \xrightarrow{\partial} \mathbb{Z} \to 0$.

where i is induced by the inclusion map from $A_1 \cap A_2$ into A_1 and A_2 , which can be represented by matrix [1, 1; 1, 1], j is induced by the inclusion map from A_1 and A_2 into T.

Hence $H_2(T) \cong ker(i)$, but that is simply $[1,-1]\mathbb{Z} \cong \mathbb{Z}$. Hence $H_2(T) \cong \mathbb{Z}$.

$$H_1(T)/ker\partial \cong \mathbb{Z}$$

 $\cong H_1(T)/imgj$
 $\cong H_1(T)/(\mathbb{Z} \oplus \mathbb{Z}/kerj)$
 $\cong H_1(T)/(\mathbb{Z} \oplus \mathbb{Z}/imgi)$
 $\cong H_1(T)/\mathbb{Z}$

Hence $H_1(T) \cong \mathbb{Z} \oplus \mathbb{Z}$.

Obviously we have (unreduced) $H_0(T) = \mathbb{Z}$. And $H_n(T) = 0$ for any n > 2 (as $H_n(S^1) = 0$ when $n \ge 2$.)

We decompose the Klein bottle K into two Mobius strip M_1, M_2 . Since M_1, M_2 can deformation retract to S^1 and $M_1 \cap M_2$ is homeomorphic to S^1 , $H_2(M_1) \oplus H_2(M_2) = 0$ and we have the following (reduced) MV sequence $0 \to H_2(K) \xrightarrow{\partial} \mathbb{Z} \xrightarrow{i} \mathbb{Z} \oplus \mathbb{Z} \xrightarrow{j} H_1(K) \xrightarrow{\partial} 0$

where i is induced by the inclusion map from $M_1 \cap M_2$ to M_1 and M_2 , and j is induced by the inclusion map from M_1 and M_2 to K.

Hence $H_2(K) = 0$ as the inclusion map from $M_1 \cap M_2$ to M_1 and M_2 maps the generator to 2 times of the circular generator by properties of mobius strip.

We also have $H_1(K) = \mathbb{Z} \oplus \mathbb{Z}/ker(j) = \mathbb{Z} \oplus \mathbb{Z}/img(i) = \mathbb{Z} \oplus \mathbb{Z}_2$.

And obviously unreduced $H_0(K) = \mathbb{Z}$. And $H_n(K) = 0$ for any n > 2 (as $H_n(S^1) = 0$ when $n \geq 2$.)

Problem 3

- (a) The induced map $f^*: \pi_1(S^1) \to \pi_1(S^1)$ maps the generator (call it 1 in this case) into n. As \mathbb{Z} is already abelian, the abelianization (from π_1 to H_1) has trivial effect. Hence, the degree of f by definition is n.
- (b) The base case m=0 is proven in (a). Now suppose the conclusion (of degree) holds for S^{m+1} . Then consider S^{m+2} as $D^{m+2} \cup_{S^{m+1}} D^{m+2}$ (i.e. two hemisphere with ≥ 0 and ≤ 0 on the last coordinate, respectively). Hence by naturality of MV sequence we have the following commutative diagram:

$$0 \to H_k(S^{m+2}) \xrightarrow{\partial} H_{k-1}(S^{m+1}) \to 0$$

$$\downarrow \qquad \qquad \downarrow$$

$$H_k(S^{m+2}) \xrightarrow{\partial} H_{k-1}(S^{m+1})$$

where the down arrow represent f^* (and we know that f^* preserve coordinates in \vec{x} .). Since MV sequence tells us that ∂ is an isomorphism, the degree of f^* remains n for all m.

Problem 4

(a) we construct the homotopy $H(x,t) = \frac{tf(x) + (1-t)g(x)}{||tf(x) + (1-t)g(x)||}$. If the denominator never equals to 0 because that only can happen when f(x) and g(x) are on

the same line and point towards the opposite direction, which in this means they are antipodal (i.e. f(x) = -g(x)). Hence f and g are homotopic.

- (b) The antipodal map $S^n \to S^n$ is simply a composition of n+1 reflection map, each having degree -1. Hence the degree of antipodal map is $(-1)^{n+1}$. By Hopf's theorem, when n is even, the degree of antipodal map is -1 while the degree of 1_{S^n} is 1. Hence they are not homotopic to each other.
- (c) Suppose there exists such non vanishing tangent field f. Then normalize it by v = f/||f||. We can now construct a homotopy between the identity map and the antipodal map H(x,t) = cos(t)x + sin(t)v(x), where $t \in [0,\pi]$. This means the degree of the antipodal map has to equal to that of the identity map, which by (b) means n must be odd.