

# 数学分析复习

常庚哲——《数学分析教程》

时间: 9/25/2022

版本: 1.0



## 目录

| 第1章 | 数列极限      | 2 |
|-----|-----------|---|
| 第2章 | 函数的连续性    | 7 |
| 第3章 | 函数的导数     | 8 |
| 盆4音 | Taylor 定理 | 9 |

#### 前言

这份讲义是来自于常庚哲的《数学分析教程》. 对于其中不熟悉的知识点(如定义,定理等)详细书写,对于其中熟悉的知识点只摘录题目与例题.

根据中国科学技术大学 (USTC) 的课程安排, 我们把数学分析分为三大模块, 第一模块是《数学分析教程》的第一章到第七章, 第二模块是第八章到第十三章, 第三模块是第十四章到第十八章. 在某些章节时, 会选用其他书进行补充.

对于题目,大部分以课本上的题目为主,额外增加谢惠民《数学分析习题课讲义》上的问题.

#### 第1章 数列极限

**例题 1.1** 证明:

$$\lim_{n\to\infty}\frac{3\sqrt{n}+1}{2\sqrt{n}-1}=\frac{3}{2}$$

解

$$\left| \frac{3\sqrt{n}+1}{2\sqrt{n}-1} - \frac{3}{2} \right| = \left| \frac{3\sqrt{n}+1}{2\sqrt{n}-1} - \frac{\frac{3}{2}\left(2\sqrt{n}-1\right)}{2\sqrt{n}-1} \right| = \frac{5}{4\sqrt{n}-2} < \frac{5}{2\sqrt{n}}$$

所以,对于任意的给定的  $\varepsilon>0$ ,只要取  $N=[\frac{25}{4\varepsilon^2}]$ ,当 n>N 时,便有

$$\left| \frac{3\sqrt{n}+1}{2\sqrt{n}-1} - \frac{3}{2} \right| < \varepsilon$$

问题 1.1 证明:

$$\lim_{n \to \infty} \frac{n!}{n^n} = 0$$

**解** 当  $n \ge 1$  时, 我们有  $\frac{n!}{n^n} \le \frac{1}{n}$ . 因为该乘积中的最大项是 1, 其余项都小于 1. 那么我们可以取  $N = [\frac{1}{\epsilon}] + 1$ , 当 n > N 时, 有

$$\left| \frac{n!}{n^n} - 0 \right| \le \frac{1}{n} < \varepsilon$$

所以  $\left| \frac{n!}{n^n} - 0 \right| < \varepsilon$ .

**问题 1.2** 证明:

$$\lim_{n \to \infty} \frac{1^2 + 2^2 + \dots + n^2}{n^3} = \frac{1}{3}$$

**解** 首先要知道  $1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$ .

$$\frac{1^2 + 2^2 + \dots + n^2}{n^3} = \frac{n(n+1)(2n+1)}{6n^3} = \frac{2n^3 + 3n^2 + n}{6n^3} \to \frac{1}{3}(n \to \infty)$$

如果证明的话,进行恰当变换即可.

**问题 1.3** 设 a, b, c 是三个给定的实数, 令  $a_0 = a, b_0 = b, c_0 = c$ , 并归纳地定义

$$\begin{cases} a_n = \frac{b_{n-1} + c_{n-1}}{2} \\ b_n = \frac{c_{n-1} + a_{n-1}}{2} \\ c_n = \frac{a_{n-1} + b_{n-1}}{2} \end{cases}$$

求证:

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = \lim_{n \to \infty} c_n = \frac{1}{3}(a+b+c)$$

证明 对于本题的迭代数列,我们采用线性代数中的方法.注意到

$$\begin{pmatrix} a_n \\ b_n \\ c_n \end{pmatrix} = \begin{pmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix} \begin{pmatrix} a_{n-1} \\ b_{n-1} \\ c_{n-1} \end{pmatrix} = \begin{pmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix}^n \begin{pmatrix} a_0 \\ b_0 \\ c_0 \end{pmatrix}$$

根据矩阵对角化的条件,我们可以求出特征值与特征向量,于是就有

$$\begin{pmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix} = \begin{pmatrix} -1 & -1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} -\frac{1}{2} & 0 & 0 \\ 0 & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -1 & -1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}^{-1}$$

$$\begin{pmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix}^{n} = \begin{pmatrix} -1 & -1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} \left(-\frac{1}{2}\right)^{n} & 0 & 0 \\ 0 & \left(-\frac{1}{2}\right)^{n} & 0 \\ 0 & 0 & \left(1\right)^{n} \end{pmatrix} \begin{pmatrix} -1 & -1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}^{-1}$$

带入计算后就可以得到最后的结果.

**问题 1.4** 设  $a_n > 0 (n = 1, 2, 3, \dots)$ , 且  $\lim_{n \to \infty} a_n = a$ , 求证:

$$\lim_{n \to \infty} (a_1 a_2 \cdots a_n)^{1/n} = a$$

证明 本题用到了一个重要结论,设  $\lim_{n\to\infty}a_n=a$ ,我们就有

$$\lim_{n \to \infty} \frac{a_1 + \dots + a_n}{n} = a$$

对于本题

$$(a_1 \cdots a_n)^{1/n} = e^{\frac{\ln(a_1 \cdots a_n)}{n}} = e^{\frac{\ln a_1 + \cdots + \ln a_n}{n}} \to e^{\ln a}(n \to \infty) = a$$

问题 1.5 如果  $a_0 + a_1 + \cdots + a_p = 0$ . 求证:

$$\lim_{n \to \infty} (a_0 \sqrt{n} + a_1 \sqrt{n+1} + \dots + a_p n + p) = 0$$

证明 首先有

$$\lim_{n \to \infty} (\sqrt{n+k} - \sqrt{n}) = \lim_{n \to \infty} k \frac{1}{\sqrt{n+k} + \sqrt{n}} \to 0 (n \to \infty) (k \in \mathbb{Z})$$

因为  $a_0 = -(a_1 + \cdots + a_p)$ , 所以

$$a_0\sqrt{n} + a_1\sqrt{n+1} + \dots + a_p\sqrt{n+p} = -(a_1 + \dots + a_p)\sqrt{n} + a_1\sqrt{n+1} + \dots + a_p\sqrt{n+p}$$
$$= \lim_{n \to \infty} \sum_{k=0}^{p} a_k(\sqrt{n+k} - \sqrt{n}) \to 0 (n \to \infty)$$

问题 1.6 证明:

$$\lim_{n \to \infty} \sum_{k=1}^{n} \left( \sqrt{1 + \frac{k}{n^2}} - 1 \right) = \frac{1}{4}$$

证明 我们有

$$\frac{\frac{k}{n^2}}{\sqrt{1+\frac{1}{n}+1}} \le \left(\sqrt{1+\frac{k}{n^2}}-1\right) = \frac{\frac{k}{n^2}}{\sqrt{1+\frac{k}{n^2}}+1} = \frac{k}{\sqrt{n^4+kn^2}+n^2} \le \frac{k}{2n^2}$$
$$\frac{n+1}{2n} \cdot \frac{1}{\sqrt{1+\frac{1}{n}}+1} \le \sum_{k=1}^n \left(\sqrt{1+\frac{k}{n^2}}-1\right) \le \frac{n+1}{4n}$$

运用夹逼准则,很容易发现极限是 $\frac{1}{4}$ .

上面这种题型,也可以总结为

**问题 1.7** 已知函数在零点附近可微, 且 f(0) = 0, f'(0) = a, 对于正整数 p, 有

$$\lim_{n \to \infty} \left[ f\left(\frac{1^p}{n^{p+1}}\right) + f\left(\frac{2^p}{n^{p+1}}\right) + \dots + f\left(\frac{n^p}{n^{p+1}}\right) \right] = \frac{a}{p+1}$$

比如说, 对于上题, 只要取  $f(x) = \sqrt{1+x} - 1$  即可, 我们在后续会接触到这个证明, 在这里不再赘述.

问题 1.8(Toeplitz 定理) 设  $n, k \in \mathbb{Z}^*, t_{nk} \geq 0, \sum_{k=1}^n t_{nk} = 1, \lim_{n \to \infty} t_{nk} = 0.$  若  $\lim_{n \to \infty} a_n = a,$  令

$$x_n = \sum_{k=1}^n t_{nk} a_k$$

证明

$$\lim_{n\to\infty} x_n = a$$

补充: 运用 Toeplitz 定理计算: 设  $\lim_{n\to\infty}a_n=a$ . 证明

$$\lim_{n \to \infty} \frac{a_1 + 2a_2 + \dots + na_n}{n^2} = \frac{a}{2}$$

解

$$\frac{a_1 + 2a_2 + \dots + na_n}{n(n+1)/2} \cdot \frac{n(n+1)/2}{n^2}$$

显然  $t_{nk} = \frac{k}{n(n+1)/2}$ , 关于 Toeplitz 定理的条件均满足. 所以

$$\lim_{n \to \infty} \frac{a_1 + 2a_2 + \dots + na_n}{n(n+1)/2} = a$$

综上, 题目被证明.

问题 1.9 (1) 数列  $\{a_n\}$  满足

$$|a_{n+p} - a_n| \le \frac{p}{n}$$

且对一切  $n, p \in \mathbb{N}^*$  成立. 问  $\{a_n\}$  是不是 Cauchy 列.

(2) 当  $|a_{n+p} - a_n| \le \frac{p}{n^2}$  时, 上述的结论又如何?

**解** (1){ $a_n$ } 不是 Cauchy 列, 对于 { $a_n$ } =  $\sum_{k=1}^{n} \frac{1}{k}$ , 我们有

$$|a_{n+p} - a_n| = \sum_{k=n}^{n+p} \frac{1}{k} \le \frac{p}{n}$$

(2) 该列是 Cauchy 列, 我们有

$$|a_{n+p} - a_n| = |a_{n+p} - a_{n+p-1}| + |a_{n+p-1} - a_{n+p-2}| + \dots + |a_{n+1} - a_n|$$

$$\leq \frac{1}{(n+p-1)^2} + \frac{1}{(n+p-2)^2} + \dots + \frac{1}{n^2}$$

$$\leq \frac{1}{n+p-2} - \frac{1}{n+p-1} + \frac{1}{n+p-3} - \frac{1}{n+p-2} + \dots + \frac{1}{n-1} - \frac{1}{n}$$

$$= \frac{1}{n-1} - \frac{1}{n+p-1}$$

所以只要取 
$$N=[\frac{1}{\varepsilon}]+1$$
,当  $n>N$  时,我们有 
$$\frac{1}{n-1}-\frac{1}{n+p-1}<\frac{1}{n-1}<\varepsilon$$

问题 1.10(Lebesgue 数) 设开区间族  $\{I_{\lambda}\}$  是有限闭区间 [a,b] 的一个开覆盖, 则必存在  $\sigma > 0$ , 使得只要区间  $A \subset [a,b]$  且 A 的长度  $|A| < \sigma$ , 就必有  $\{I_{\lambda}\}$  中的一个区间包含 A. 其中  $\sigma$  称为 Lebesgue 数.

或者换一种叙述方法, 设开区间族  $\{I_{\lambda}\}$  是有限闭区间 [a,b] 的一个开覆盖, 则必存在一个正数  $\sigma > 0$ ,使得对于区间 [a,b] 中的任意两个点 x',x'',都有  $|x'-x''| < \sigma$ ,那么就存在开覆盖中的一个开区间, 它覆盖 x',x''. 其中  $\sigma$  称为 Lebesgue 数.

证明 对于第一个叙述,使用反证法.对于第二个叙述,谢惠民中提到的是一种几何化的方法.

### 第2章 函数的连续性

### 第3章 函数的导数

## 第4章 Taylor 定理