1

UTR.108XC1

SEQUENCE LISTING

<110>	Mullin, Beth C. Gupta, Rakesh Dobritsa, Svetlana V.														
<120>	Novel Plant Glycine and Histidine-Rich Metal-Binding Protein Family and Uses Thereof														
<130>	UTR.108XC1														
<140> <141>	•														
<150> <151>	• • • • • • • • • • • • • • • • • • • •														
<160>	8														
<170>	PatentIn version 3.3														
<210><211><211><212><213>															
<220> <221> <222> <223>	21> MISC_FEATURE 22> (1)(26)														
<220> <221> MISC_FEATURE <222> (50)(83) <223> metal binding domain															
<400> 1															
Met Gl	y Tyr	Ser	Lys 5	Thr	Phe	Leu	Leu	Leu 10	Gly	Leu	Ala	Phe	Ala 15	Val	
Val Le	u Leu	Ile 20	Ser	Ser	Asp	Val	Ser 25	Ala	Ser	Glu	Leu	Ala 30	Val	Ala	
Ala Gl	n Thr 35	Lys	Glu	Asn	Met	Gln 40	Thr	Asp	Gly	Val	Glu 45	Glu	Asp	Lys	
Tyr Hi 50	s Gly	His	Arg	His	Val 55	His	Gly	His	Gly	His 60	Gly	His	Val	His	
Gly As 65	n Gly	Asn	Glu	His 70	Gly	His	Gly	His	His 75	His	Gly	Arg	Gly	His 80	

Pro Gly His Gly Ala Ala Ala Asp Glu Thr Glu Thr Glu Thr 85 90 95

Asn Gln Asn

<220>

<221> MISC FEATURE

```
<210> 2
<211> 655
<212>
      DNA
<213> Alnus glutinosa
<220>
<221> MISC FEATURE
<222> (74)..(373)
<223> Coding sequence (positions (74)..(373))
<220>
<221> MISC FEATURE
<222> (74)..(373)
<223> coding sequence (positions (74)..(373))
<400> 2
aattaatcat cttagagttt gtttccctag ctagtactac attgtctcca atcctcttca
                                                                      60
ttgttaacga aaaatgggtt actccaagac ttttcttctc cttggccttg cctttqctgt
                                                                     120
tgtgctcctc atctcctccg atgtctcage ttctgagett gctgttgccg ctcaaaccaa
                                                                     180
ggagaatatg caaactgacg gtgtggagga ggataagtat catggccatc gtcacgtgca
                                                                     240
tggacatggg catggacatg tacatgggaa tgggaatgaa catggacatg gtcatcacca
                                                                     300
cggccgtggt cacccaggac acggtgctgc tgcagacgag acagaaaccg aaactgaaac
                                                                     360
caaccaaaat tagaccaatc ttttgattcg tcctatatat gctatcagtt gtacgtacgt
                                                                     420
ctaagtgtgt ctaagtcgta atatgtggct taattatcta attaagcttg tatgccaata
                                                                     480
aactttatgt ttctactttt gtcatgtgta atttttgctt ttctatgtat tacaatgtac
                                                                     540
gctgtagcat atcaaaatta aacgaatcct ttgtcctata tatatatata tqcaactttt
                                                                     600
gaaaggetgt aegtgaataa gattatattg gatgaatata tagtttatga attet
                                                                     655
<210> 3
<211> 26
<212> PRT
<213> Alnus glutinosa
```

```
<222> (1)..(26)
<223> signal sequence or signal peptide
<400> 3
Met Gly Tyr Ser Lys Thr Phe Leu Leu Gly Leu Ala Phe Ala Val
Val Leu Leu Ile Ser Ser Asp Val Ser Ala
           20
<210> 4
<211> 34
<212> PRT
<213> Alnus glutinosa
<220>
<221> MISC_FEATURE
<222> (1)..(34)
<223> metal binding domain
<400> 4
His Gly His Arg His Val His Gly His Gly His Gly His Val His Gly
1 5
                    10
Asn Gly Asn Glu His Gly His Gly His His Gly Arg Gly His Pro
                             25
Gly His
<210> 5
<211> 5
<212> PRT
<213> Artificial sequence
<220>
<223> Peptide linker
<400> 5
Ser Gly Gly Gly
<210> 6
<211> 7
<212> PRT
<213> Artificial sequence
<220>
```

4 UTR.108XC1

```
<223> Peptide linker
<400> 6
Ser Gly Gly Gly Ser Pro
<210> 7
<211> 5
<212> PRT
<213> Artificial sequence
<220>
<223> Peptide linker
<400> 7
Ser Ser Ser Gly
<210> 8
<211> 7
<212> PRT
<213> Artificial sequence
<220>
<223> Peptide linker
<400> 8
Ser Ser Ser Gly Ser Pro
```