#### **Mathematical Logic Questions**

- 1. Исчисление высказываний. Общезначимость, следование, доказуемость, выводимость. Корректность, полнота, непротиворечивость. Теорема о дедукции для исчисления высказываний.
  - Общезначимость(  $\models \alpha$  ) . Общезначимое высказывание высказывание, которое истинно при любой оценке пропозициональных переменных.
  - Следование(  $\Gamma \models \alpha$  ). Пусть  $\Gamma = \gamma_1, \gamma_2, \ldots, \gamma_n$ . Тогда  $\alpha$  следует из  $\Gamma$ , если при истинной оценке  $\Gamma$  (каждого высказывания из  $\Gamma$ ) следует истинность  $\alpha$ .
  - Доказуемость(  $\vdash \alpha$  ) . Высказывание  $\alpha$  доказуемо, если существует доказательство  $\alpha_1, \alpha_2 \dots \alpha_k$  и  $\alpha_k$  совпадает с  $\alpha$

Доказательство. Доказательство в исчислении высказываний — это некоторая конечная последовательность выражений (высказываний)  $\alpha_1,\alpha_2\dots\alpha_k$ , что каждое из высказываний  $\alpha_i$  либо является аксиомой, либо получается из других утверждений  $\alpha_{P_1},\alpha_{P_2},\dots,\alpha_{P_n}$   $(P_1\dots P_n< i)$  по правилу вывода.

• Выводимость (  $\Gamma \vdash \alpha$  ). Высказывание  $\alpha$  выводимо из списка гипотез  $\Gamma$ , если существует вывод  $\alpha_1, \alpha_2 \dots \alpha_k$  и  $\alpha_k$  совпадает с  $\alpha$ .

Вывод. Доказательство, в котором могут использоваться гипотезы. Ака. Вывод в исчислении высказываний — это некоторая конечная последовательность выражений (высказываний)  $\alpha_1,\alpha_2\dots\alpha_k$ , что каждое из высказываний  $\alpha_i$  либо является аксиомой, либо получается из других утверждений  $\alpha_{P_1},\alpha_{P_2},\dots,\alpha_{P_n}$   $(P_1\dots P_n< i)$  по правилу вывода, либо является гипотезой из списка  $\Gamma$ .

- **Корректность(**  $\vdash \alpha \Rightarrow \models \alpha$  **).** Если высказывание доказуемо, то оно общезначимо
- Полнота(  $\models \alpha \Rightarrow \vdash \alpha$  ). Если высказывание общезначимо, то оно доказуемо.
- Непротиворечивость.
- Теорема о дедукции. Пусть имеется  $\Gamma, \alpha, \beta$ . Утверждение  $\Gamma \vdash \alpha \to \beta$  тогда и только тогда, когда  $\Gamma, \alpha \vdash \beta$

(если из списка высказываний  $\Gamma$  выводится импликация  $\alpha$  и  $\beta$ , то можно перестроить вывод таким образом, что из из  $\Gamma, \alpha$  выводимо  $\beta$  и наоборот)

#### 2. Теорема о полноте исчисления высказываний.

- Классическое исчисление высказываний полно. Полнота(  $\models \alpha \Rightarrow \vdash \alpha$  ). Если высказывание общезначимо, то оно доказуемо.
- 3. Интуиционистское исчисление высказываний. ВНК-интерпретация. Решётки. Булевы и псевдобулевы алгебры.

- ВНК-интерпретация (Brouwer-Heyting-Kolmogorov interpretation). Пусть заданы высказывания  $\alpha$ ,  $\beta$ , тогда:
  - $\circ~$  мы считаем  $\alpha\&\beta$  доказанным, если у нас есть доказательство  $\alpha$  и есть доказательство  $\beta$
  - мы считаем  $\alpha \vee \beta$  доказанным, если у нас есть доказательство  $\alpha$  или доказательство  $\beta$ , и мы точно знаем какое
  - $\circ~$  мы считаем  $\alpha \to \beta$  доказанным, если из доказательства  $\alpha$  мы можем построить доказательство  $\beta$
  - $\circ$  мы считаем  $\bot$  (aka 0) утверждением не имеющим доказательства
  - $\neg \alpha$  есть сокращение  $\alpha \to \bot$ . Мы считаем  $\neg \alpha$  доказанным, если мы умее из доказательства  $\alpha$  получить противоречие
- Решётка. Частично-упорядоченное(рефлексивно, транзитивно, антисимметрично) множество  $\langle M, \sqsubseteq \rangle$ , в котором, для любых a,b определены две операции:
  - ullet верняя грань a,b: a+b=c, наименьший c, что  $a\sqsubseteq c,b\sqsubseteq c$
  - ullet нижняя грань a,b: a\*b=c, наибольший c, что  $\,c\sqsubseteq a,c\sqsubseteq b\,$
  - example: a + b = x, a \* b = y



• наименьший и минимальный:

x-наименьший, если для всех  $t \in M: \ x \sqsubseteq t$ 

x-минимальный, если нет такого  $t \in M: \ t \sqsubseteq x$ 

example:  $x,x^{\prime}:$  никакой не наименьший, но оба минимальные



- Дистрибутивная решетка. Для любых a,b,c: (a+b)\*c = a\*c+b\*c
  - ullet Решетка дистрибутивна т. и т. т., когда при любых a,b,c : a\*b+c=(a\*c)+(b\*c)
- Импликативная решётка. Решетка с псевдодополнением.
  - ullet Операция псевдополнения. c=a o b, c это такой наибольший t, что  $t*a\sqsubseteq b$
  - В импликативной решетке есть наибольший элемент
- Псевдобулева алгебра (ака алгебра Гейтинга). Импликативная решетка с 0
  - 0 наименьший элемент решетки
- Булева алгебра. Псевдобулева алгебра, в которой для любых  $a{:}\; a+(a o 0)=1$

### 4. Алгебра Линденбаума. Полнота интуиционистского исчисления высказываний в псевдобулевых алгебрах.

- Алгебра Линдебаума. Множество множеств (классов) факторизованных по отношению эквивалентности.
  - Определение. Возьмем множество всех формул ИИВ, тогда:
  - 1.  $\alpha \sqsubseteq \beta$ , если  $\alpha \vdash \beta$
  - 2. lphapproxeta, если  $lpha\sqsubseteqeta$  и  $eta\sqsubseteqlpha$
- Полнота ИИВ???

## 5. Модели Крипке. Сведение моделей Крипке к псевдобулевым алгебрам. Нетабличность интуиционистского исчисления высказываний.

- ???
- Не существует полной табличной модели ИИВ

## 6. Гёделева алгебра. Операция $\Gamma(A)$ . Дизъюнктивность интуиционистского исчисления высказываний.

- Гёделева алгебра Алгебра A гёделева, если для любых  $a,b\in A$  если a+b=1, то a=1 и b=1.
- **Гёдевелизация** ( $\Gamma(A)$ ) Добавление элемента, который больше всех



Алгебра с добавлением  $\omega$  и  $1_{\Gamma(A)}.$  Причем если  $a\in A$ , то  $\omega\geqslant a, 1_{\Gamma}(A)\geqslant a$  и  $1_{\Gamma}(A)>\omega$ 

• Дизъюнктивность ИИВ. Если  $\vdash \alpha \lor \beta$ , то  $\vdash \alpha$  или  $\vdash \beta$ 

## 7. Исчисление предикатов. Общезначимость, следование, выводимость. Теорема о дедукции в исчислении предикатов.

•

## 8. Непротиворечивые множества формул. Доказательство существования моделей у непротиворечивых множеств формул в бескванторном исчислении предикатов.

S

9. Теорема Гёделя о полноте исчисления предикатов. Доказательство полноты исчисления предикатов.

S

#### 10. Теории первого порядка, структуры и модели. Аксиоматика Пеано. Арифметические операции. Формальная арифметика.

- **Теория первого порядка.** Теорией первого порядка назовем исчисление предикатов с дополнительными ("нелогическими" или "математическими")
  - предикатными и функциональными символами
  - аксиомами сущности, взятые из исходного исчисления высказываний, назовём логическими.
- Структура. ???
- Модель. ???
- Формальная арифметика. формальная арифметика теория первого порядка, со следующими добавленными нелогическими:
  - двуместными функциональными символами (+),(\*), одноместным функциональным символом ('), нульместным функциональным символом 0;
  - двуместным предикатным символом (=);
  - восемью аксиомами:
    - lacktriangle (A1) a=b o a=c o b=c (транзитивность равенства)
    - $lacktriangledown (A2) \ a=b 
      ightarrow a'=b'$  (инъективность штриха)
    - (A3) a'=b' 
      ightarrow a=b (инъективность штриха)
    - $(A4) \neg a' = 0$  (у нуля нет предшественников)
    - (A5) a + 0 = a (определение сложения)
    - (A6) a = b' = (a + b)' (определение сложения)
    - $(A7) \ a * 0 = 0$  (определение умножения)
    - $(A8) \ a*b' = a*b+a$  (определение умножения)
  - схемой аксиом индукции

$$\psi[x:=0]\&(orall x.\,(\psi o\psi[x:=x'])) o\psi$$

# 11. Примитивно-рекурсивные и рекурсивные функции. Функция Аккермана. Примитивная рекурсивность арифметических функций, функций вычисления простых чисел, частичного логарифма.

- Примитивы:
  - 1. Ноль.  $Z:\mathbb{N}_0 o\mathbb{N}_0, Z(x)=0$
  - 2. Инкремент.  $N:\mathbb{N}_0 o\mathbb{N}_0, N(x)=x'$
  - 3. Проекция.  $V_i^n:\mathbb{N}_0 o\mathbb{N}_0, V_i^n(x_1,\dots,x_n)=x_i$
  - 4. Подстановка. Если  $f:\mathbb{N}_0^n\to\mathbb{N}_0$  и  $g_1,\dots,g_n:\mathbb{N}_0^m\to\mathbb{N}_0$ , то  $S\langle f,g_1,\dots,g_n\rangle:\mathbb{N}_0^m\to\mathbb{N}_0$ , при этом:

$$S\langle f,g_1,\ldots,g_n\rangle(x_1,\ldots,x_m)=f(g_1(x_1,\ldots,x_m),\ldots,g_n(x_1,\ldots,x_m))$$

5. Примитивная рекурсия. Если  $f:\mathbb{N}_0^n o\mathbb{N}_0$  и  $g:\mathbb{N}_0^{n+2} o\mathbb{N}_0$ , то  $R\langle f,g\rangle:\mathbb{N}_0^{n+1} o\mathbb{N}_0$ , при этом

$$R\langle f,g
angle(x_1,\ldots,x_n,y)=\left\{egin{aligned} f(x_1,\ldots,x_n),y=0\ g(x_1,\ldots,x_n,y-1,R\langle f,g
angle(x_1,\ldots,x_n,y)),y>0 \end{aligned}
ight.$$

6. Минимизация. Если  $f:\mathbb{N}_0^{n+1} o\mathbb{N}_0$ , то  $\mu\langle f
angle:\mathbb{N}_0^n o\mathbb{N}_0$ , при этом

$$\mu\langle f
angle(x_1,\ldots,x_n)=$$
 такое минимальное число  $y$ , что  $f(x_1,\ldots,x_n,y)=0.$  Если такого  $y$  нет, то результат примитива неопределен

- Примитивно-рекурсивная функция. Функция называется примитивно-рекурсивной, если возможно построить выражение только из первых пяти примитивов, такое, что оно при всех аргументах возвращает значение, равно значению требуемой функции.
- **Рекурсивная функция.** Если функция может быть выражена только из 6 примитивов, то она называется рекурсивной.
- Функция Аккермана.

$$A(m,n) = \left\{egin{aligned} n+1, & ext{если} & m=0 \ A(m-1,1), & ext{если} & m>0, n=0 \ A(m-1,A(m,n-1)), & ext{если} & m>0, n>0 \end{aligned}
ight.$$

- Любая функция представимая в ФА рекурсивна (верно и обратное)
- Простые числа??
- Логарифм??

## 12. Выразимость отношений и представимость функций в формальной арифметике. Представимость примитивов N, Z, S, U в формальной арифметике.

- Выразимое отношение. Отношение R называется выразимым (в формальной арифметике), если существует такая формула  $\alpha(x_1,\dots x_n)$  с n свободными переменными, что для любых натуральных чисел  $k_1,\dots,k_n$ 
  - 1. если  $(k_1,\ldots,k_n)\in R$ , то доказуемо  $lpha(\overline{k_1},\ldots,\overline{k_n})$
  - 2. если  $(k_1,\ldots,k_n)
    ot\in R$ , то доказуемо  $eg lpha(\overline{k_1},\ldots,\overline{k_n})$

- Представимость. Функция f от n аргументов называется представимой в формальной арифметике, если существует такая формула  $\alpha(x_1,\ldots,x_{n+1})$  с n+1 свободной переменной, что для любых натуральных  $k_1,\ldots,k_n$ :
  - 1.  $f(k_1,\ldots,k_n)=k_{n+1}$  тогда и только тогда, когда доказуемо  $\alpha(\overline{k_1},\ldots,\overline{k_{n+1}})$
  - 2. Доказуемо  $\exists!b.\ \alpha(\overline{k_1},\ldots,\overline{k_n},\overline{b}),$  где  $\exists!y.\ \alpha(y)=(\exists y.\ \alpha(y))\& \forall a.\ \forall b.\ \alpha(a)\& \alpha(b) o a=b$
- Представимость примитива Z (Ноль). Примитив Z представим в ФА
- Представимость примитива N (Инкремент). Примитив N представим в ФА
- Представимость примитива S (Подстановка). Примитив S представим в  $\Phi A$
- Представимость примитива U (Проекция). Примитив U представим в  $\Phi A$

### 13. Бета-функция Гёделя. Представимость примитивов R и M и рекурсивных функций в формальной арифметике.

- $\beta$ -функция Гёделя.  $\beta(b,c,i) := b\%(1+(i+1)*c)$
- Представимость примитива R (Примитивная рекурсия). Примитив R представим в  $\Phi A$
- Представимость примитива M (Минимизация). Примитив M представим в  $\Phi A$
- **Представимость рекурсивных в формальной арифметике.** Рекурсивные функции представимы в формальной арифметике (индукция по длине док-ва)

## 14. Гёделева нумерация. Рекурсивность представимых в формальной арифметике функций.

• Гёделева нумерация. Будем называть Гёделевой нумераций следующую конструкцию. Пусть  $\langle a_0,\dots,a_{n-1}\rangle$ -некоторый список оложительных натуральных чисел. Пусть  $p_i$ -простое число номер i, тогда Гёделева нумерация этого списка:

$$\lceil \langle a_0,\ldots,a_{n-1}
angle 
ceil = 2^{a_0}*3^{a_1}*\ldots*p_{n-1}^{a_{n-1}}$$

• Также мы можем составить Гёделеву нумерацию для всей программы, в тч для отдельных символов:

| Номер          | Символ        |
|----------------|---------------|
| 3              | (             |
| 5              | )             |
| 7              | 1             |
| 9              |               |
| 11             | ٦             |
| 13             | $\rightarrow$ |
| 15             | V             |
| 17             | &             |
| 19             | A             |
| 21             | 3             |
| 23             | F             |
| 25+6k          | $x_k$         |
| $27+6*2^k*3^n$ | $f_k^n$       |
| $29+6*2^k*3^n$ | $p_k^n$       |

• Рекурсивность функций представимых в ФА. Рекурсивные функции представимы в ФА

## 15. Непротиворечивость и $\omega$ -непротиворечивость. Первая теорема Гёделя о неполноте арифметики, её неформальный смысл.

• ???

16. Формулировка первой теоремы Гёделя о неполноте арифметики в форме Россера, её неформальный смысл. Формулировка второй теоремы Гёделя о неполноте арифметики, Consis. Неформальное пояснение метода доказательства.