- 1.6 1) $D_f = \mathbb{R}$, vu que la fonction $f(x) = 5x^4 3x^2 + 2$ est polynomiale. $f(-x) = 5(-x)^4 3(-x)^2 + 2 = 5x^4 3x^2 + 2 = f(x)$ La fonction f est donc paire.
 - 2) La fonction $f(x) = \sqrt{1 x^2}$ est définie si $1 x^2 = (1 + x)(1 x) \ge 0$.

	-1 1		
1+x	_	+	+
1-x	+	+	l
$1 - x^2$	_	+	_

Ce tableau de signes indique que $D_f = [-1; 1]$.

$$f(-x) = \sqrt{1 - (-x)^2} = \sqrt{1 - x^2} = f(x)$$

La fonction f est par conséquent paire.

- 3) Étant donné que $f(x) = x^3 2x$ est une fonction polynomiale, $D_f = \mathbb{R}$. $f(-x) = (-x)^3 2(-x) = -x^3 + 2x = -(x^3 2x) = -f(x)$ La fonction f est ainsi impaire.
- 4) La fonction $f(x) = \frac{3x^2-2}{2x}$ n'est pas définie si son dénominateur s'annule, c'est-à-dire si 2x = 0 ou encore si x = 0. On en déduit $D_f = \mathbb{R} \{0\}$.

$$f(-x) = \frac{3(-x)^2 - 2}{2(-x)} = \frac{3x^2 - 2}{-2x} = -\frac{3x^2 - 2}{2x} = -f(x)$$

Il apparaı̂t donc que la fonction f est impaire.

5) La fonction $f(x) = \frac{1}{2x^2 + x + 1}$ n'est pas définie si son dénominateur s'annule, en d'autres termes si $2x^2 + x + 1 = 0$. En cherchant à résoudre cette équation, on calcule $\Delta = 1^2 - 4 \cdot 2 \cdot 1 = -7 < 0$: il est donc impossible que le dénominateur s'annule, de sorte que $D_f = \mathbb{R}$.

$$f(1) = \frac{1}{2 \cdot 1^2 + 1 + 1} = \frac{1}{4}$$

$$f(-1) = \frac{1}{2 \cdot (-1)^2 + (-1) + 1} = \frac{1}{2}$$

La fonction f ne saurait être paire, car dans ce cas on aurait $\frac{1}{4} = f(1) = f(-1) = \frac{1}{2}$.

De même, la fonction f ne peut être impaire, sinon on aurait $-\frac{1}{4}=-f(1)=f(-1)=\frac{1}{2}.$

En définitive, la fonction f est quelconque.

6) Pour que la fonction $f(x) = \frac{1}{\sqrt{1-x^2}}$ soit définie, il faut non seulement que l'argument de la racine carrée soit positif, mais encore qu'il soit non nul. En résumé, la fonction f est définie si $1 - x^2 = (1 + x)(1 - x) > 0$.

	_	1 1	L
1+x	_	+	+
1-x	+	+	_
$1 - x^2$	_	+	_

Ce tableau de signes permet de conclure que $D_f =]-1;1[$.

$$f(-x) = \frac{1}{\sqrt{1 - (-x)^2}} = \frac{1}{\sqrt{1 - x^2}} = f(x)$$

La fonction f est dès lors paire.

7) $x^2 \ge 0$ implique $x^2 + 1 \ge 1 > 0$ pour tout $x \in \mathbb{R}$. Cela signifie que le dénominateur ne s'annule jamais, si bien que $D_f = \mathbb{R}$.

$$f(-x) = \frac{(-x)^3 - 2(-x)}{(-x)^2 + 1} = \frac{-x^3 + 2x}{x^2 + 1} = -\frac{x^3 - 2x}{x^2 + 1} = -f(x)$$

Il en résulte que la fonction f est impaire.

8) La fonction $f(x) = \frac{x^2+2}{x^2-1}$ n'est pas définie si son dénominateur s'annule, en d'autres termes si $x^2 - 1 = (x+1)(x-1) = 0$, donc si x = -1 ou si x = 1. C'est pourquoi $D_f = \mathbb{R} - \{-1; 1\}$.

$$f(-x) = \frac{(-x)^2 + 2}{(-x)^2 - 1} = \frac{x^2 + 2}{x^2 - 1} = f(x)$$

La fonction f s'avère ainsi paire.

9) La fonction $f(x) = \frac{1}{x+2} - \frac{1}{x-2}$ n'est pas définie si l'un des dénominateurs x+2 ou x-2 s'annule, c'est-à-dire si x=-2 ou si x=2. De là suit que $D_f = \mathbb{R} - \{-2; 2\}$.

$$f(-x) = \frac{1}{-x+2} - \frac{1}{-x-2} = -\frac{1}{x-2} + \frac{1}{x+2} = \frac{1}{x+2} - \frac{1}{x-2} = f(x)$$
Le fonction f set per senséquent poins

10) La fonction $f(x) = \frac{4x}{x-5}$ n'est pas définie si son dénominateur s'annule, à savoir si x-5=0. On en déduit que $D_f = \mathbb{R} - \{5\}$.

La fonction f ne peut être ni paire ni impaire : sinon, son ensemble de définition devrait être symétrique. Or il ne l'est pas, puisque la fonction f est définie en -5, mais non en 5. C'est pourquoi la fonction f est quelconque.

11) Comme $\sin(x)$ existe pour tout nombre réel x, on a $D_f = \mathbb{R}$.

L'exercice 16.10 1) de première année a établi que $\sin(-x) = -\sin(x)$ pour tout $x \in \mathbb{R}$, si bien que la fonction $f(x) = \sin(x)$ est impaire.

12) Puisque $\cos(x)$ existe quel que soit $x \in \mathbb{R}$, on conclut que $D_f = \mathbb{R}$.

L'exercice 16.10 1) de première année a montré que $\cos(-x) = \cos(x)$ pour tout $x \in \mathbb{R}$, de sorte que la fonction $f(x) = \cos(x)$ est paire.