ANNA UNIVERSITY: CHENNAI 600025

BONAFIDE CERTIFICATE

Certified that this project "AUDIO CONTENT RECOGNITION USING FINGERPRINTING" is the bonafide work of "ADARSH T ARAVIND (714015104004), V HARISH (714015104023), and S NIKIL NANDHA (714015104049)" who carried out the project work under my supervision.

SIGNATURE	SIGNATURE		
Dr.K.E.KANNAMMAL	Mr.G.SELVA KUMAR		
PROFESSOR AND HEAD	SUPERVISOR		
Department of Computer Science	Associate Professor		
and Engineering,	Department of Computer Science		
Sri Shakthi Institute of Engineering	and Engineering,		
and Technology,	Sri Shakthi Institute of Engineering		
Coimbatore –641062.	and Technology,		
	Coimbatore -641062.		
Submitted for Anna University project viva-voce conducted on			

INTERNAL EXAMINER

EXTERNAL EXAMINER

ACKNOWLEDGEMENT

We express our deepest gratitude to our **Chairman Dr.S.Thangavelu** for his continuous encouragement and support throughout our course of study.

We are thankful to our **Secretary Er.T.Dheepan** for his unwavering support during the entire course of this project work.

We are also thankful to our **Joint Secretary Mr.T.Sheelan** for his support during the entire course of this project work.

We are very grateful to our **Principal Dr.S.Prakash** for his magnanimity in allowing us to avail the facilities in thedepartment.

We are deeply indebted to our **Head of the Department**, Computer Science and Engineering, **Dr.K.E.Kannammal**, for providing us with the necessary facilities.

It's a great pleasure to thank our **Project Guide Mr.G.SELVA KUMAR**, Associate Professor for his valuable technical suggestions and continuous guidance throughout this project work.

We are also thankful to our **Project Coordinator Mrs.A.MohanaPriya** Assistant Professor and **Internal Review Members Dr.Godlin Atlas, Dr.K.Rajakumari, Mrs.P.Hamsagayathri** Department of Computer Science and Engineering, for providing us with necessary facilities and encouragement.

We solemnly extend our thanks to all the teachers and non-teaching staff of our department, family and friends for their valuable support.

ADARSH T ARAVIND V HARISH S NIKILNANDHA

ABSTRACT

Audio fingerprinting is a process that uses computers to analyze small clips of music recordings to answer a common question that people who listen to music often ask: "What is the name of that song I hear?" Audio fingerprinting systems identify musical content in audio and search a reference database for recordings that contain the same musical features. Audio fingerprinting technologies have recently attracted attention since they allow the monitoring of audio independently of its format and without the need of meta-data or watermark embedding. These systems can find matching recordings even when the query has been recorded in a public space and contains added noise. Audio fingerprinting algorithm make use of usually short audios of three to thirty seconds in length to create an audio fingerprint. This audio fingerprint is compared to a database of known audio fingerprints to identify the original audio source. After getting identified it provides the metadata of the audio as a result. This work is done with the help of Application Program Interface (ACR Cloud). The audio fingerprints of the segments do not necessarily have to be of high quality to be a match. Distortions and interference of the original signal makes matching of the fingerprints less reliable, but (to a certain extent) it will still be recognizable. The interface is created using Android studio and ACR libraries are included. This can be used to search a segment of an audio file from millions of audio collections within seconds with the help of ACR cloud API.

Keywords: Audio Fingerprinting, Automatic Content Recognition, ACR Bucket

TABLE OF CONTENTS

CHAPTER NO.	TITLE	PAGE NO
	ABSTRACT	iii
	LIST OF FIGURES	vi
	LIST OF ABBREVIATIONS	vii
1.	INTRODUCTION	
	1.1 Audio Finger printing	1
	1.2 Requirement of audio finger printing algorithm	3
	1.3 Audio Finger printing process	4
	1.4 Finger printing algorithm used in evaluation	7
	1.5 Contribution of this Implementation	8
2.	LITERATURE SURVEY	
	2.1 Introduction	9
	2.2 Existing System	17
3.	SYSTEM SPECIFICATION	
	3.1 Software Requirements	20
	3.1.1 Android Studio	20
	3.1.2 ACR Cloud Libraries	20
	3.1.3 Adobe Photoshop	21
	3.2 Hardware Requirements	22
4.	IMPLEMENTATION	
	4.1 Proposed System	23
	4.2 System Architecture	24
	4.3 List of Modules	25
	4.3.1 ACR Library Implementation	25
	4.3.2 ACR Bucket	26
	4.3.3 Dependencies	28
	4.3.4 ACR Application Program Interface	29
	4.3.5 Flash Screen	30
	4.3.6 UI Design	31

5.	RESULT AND DISCUSSION			
	5.1 Introduction	34		
	5.2 Algorithm used	35		
	5.2.1 Front End	38		
	5.2.2 Fingerprint Modelling	40		
	5.2.3 Factors for Good Audio Fingerprinting System	41		
	5.3 How the application works	42		
6.	CONCLUSSION AND FUTURE STUDIES			
	6.1 Conclusion	44		
	6.2 Future Works	44		
	APPENDIX			
	A.1 Screenshots	46		
	A.2 Codes	47		
	REFERENCE	61		

LIST OF FIGURES

FIGURE	TITLE	PAGE NO.
1.1	Convert audio to fingerprint	5
1.2	Audio fingerprinting process	7
2.1	Workflows in a typical audio fingerprint system.	13
2.2	Background process of shazam	18
4.1	System Architecture	24
4.2	Overview of ACRcloud	26
4.3	Creating Bucket	27
4.4	Uploading Audio to Bucket	27
4.5	Creating Project	28
4.6	ACR Bucket View	28
4.7	Flash screen design	31
4.8	UI Design	32
5.1	Steps in Audio Fingerprinting	37
5.2	Result page	43
A.1	Home Screen	46
A.2	Flash Screen	46
A.3	Final Result	47

LIST OF ABBREVIATIONS

ACR - Automatic Content Recognition

CB - Cloud Bucket

CBID - Central Brain Identifier

DCT - Discrete Cosine Transform

DFT - Discrete Fourier Transform

ENMFP - Echo Next Musical Fingerprint

GPU - Global Processing Unit

HSD - Heavy Signal Degradation

IDE - Integrated Development Environment

KOD - Key Oriented Distribution

KSE - Knowledge System Engineering

LUT - Lookup Table

LLoV - Linked List Over Vector

MIR - Music Information Retrieval

QBC - Query Bycontent

QBH - Query By Humming

STFT - Short Time Fourier Transform