GTI Übungsblatt 9

Tutor: Marko Schmellenkamp

ID: MS1

Übung: Mi16-18

Max Springenberg, 177792

9.1

9.1.1

Gegeben sei ein 2-Kellerautomat A mit

$$A = (Q, \Sigma, \Gamma, \delta, s, \tau_0, F)$$

Dabei hat δ die Form

$$\delta \subseteq (Q \times (\Sigma \cup \{\epsilon\}) \times \Gamma \times \Gamma) \times (Q \times \Gamma^* \times \Gamma^*)$$

Folglich besteht eine Konfiguration von A aus:

- 1. einem Zustand $q \in Q$
- 2. einem Kellerinhalt des ersten Kellers $u \in \Gamma$
- 3. einem Kellerinhalt des zweiten Kellers $v \in \Gamma$
- 4. der noch zu lesenden Eingabe $w \in \Sigma^*$

Dementsprechend kann eine Solche konfiguration auch als Tupel notiert werden, mit:

$$(q, w, u, v), q \in Q, w \in \Sigma^*, u, v \in \Gamma^*$$

Die untersten Kellsymbole der jeweiligen Keller können, aber müssen nicht gleich sein, wichtig ist lediglich, dass sie als solche definiert sind.

 $\tau_n, n \in \{1, 2\}$, sei das unterste Kellersymbol des n-ten Kellers.

Des weiteren sei ein Stratzustand s nach Notation des Automaten aus der Aufgabenstellung definiert.

Daraus folgt die Startkonfiguration $K_0 = (s, w, \tau_1, \tau_2), w \in \Sigma^*$, mit dem Eingabewort w für A.

Die Folgekonfigurationsrelation \vdash_A sei wie folgt definiert:

$$\forall p, q \in Q, \qquad \sigma \in \Sigma, y \in \Sigma^*, \qquad \tau', \tau'' \in \Gamma, u, v, z', z'' \in \Gamma^* :$$

$$(p, \sigma y, \tau' u, \tau'' v) \vdash_A (q, y, z' u, z'' v), \text{falls: } ((p, \sigma, \tau', \tau''), (q, z', z'')) \in \delta$$

$$(p, y, \tau'u, \tau''v) \vdash_A (q, y, z'u, z''v)$$
, falls: $((p, \epsilon, \tau', \tau''), (q, z', z'')) \in \delta$

Eine Konfiguration K' ist also genau dann eine Nachfolgekonfiguration von K, wenn gilt $K \vdash_A K'$.

Nach Aufgabenstellung wird mit akzeptierenden Zuständen akzeptiert.

Eine Eingabe $w \in \Sigma^*$ wird genau dann akzeptiert, wenn gilt:

$$(F \neq \emptyset) \land (K_0 \vdash_A^* (q, \epsilon, w', w''), w', w'' \in \Gamma^*, q \in F)$$

Für die Semantik von A bedeuted dies ferner:

$$L(A) = \{ w \in \Sigma^* | A \text{ akzeptiert } w \}$$

Damit A deterministisch ist muss zusätzlich mit den Konfigurationen K, K_1, K_2 gelten: $\nexists K_1, K_2: K \vdash_A K_1 \land K \vdash_A K_2 \land K_1 \neq K_2$

9.1.2

Das unterste Kellersymbol beider Keller sei ⊳, der erste Keller enthalte den Teil des Strings vom linken Rand bis zur aktuellen Position, der zweite Keller enthalte den Teil rechts von der aktuellen Position.

Zunächst soll die Eingabe komplett eingelesen werden.

Dies geschieht über Transitionsregeln:

$$((p, \sigma y, u, \rhd), (q, \sigma u, \rhd)) \in \delta$$

, die zu Nachfolgekonfigurationen der Form:

$$(p, \sigma y, u, \triangleright) \vdash_A (q, y, \sigma u, \triangleright),$$

, mit
$$\sigma \in \Sigma, y \in \Sigma^*, u \in \Gamma^*, p,q \in Q-F$$
 führen.

Nachdem die Eingabe eingelesen wurde befindet sich A also noch nicht in einem Akzeptierenden Zustand.

Fortan wird mit ϵ -Transitionen die Touringmaschine M simuliert.

Dabei wird zunächst wieder zurück zum Start des Strings gelaufen:

$$(p, \epsilon, \tau u \triangleright, \triangleright v) \vdash_A (q, \epsilon, u \triangleright, \triangleright \tau v), \tau \in \Gamma, u, v \in \Gamma^*, p, q \in Q - F$$

, bis die Konfiguration $K_{M0}=(q_{M0},\epsilon,\triangleright,\triangleright w),q_{M0}\in Q-F,w\in\Gamma^*$ erreicht wird.

Jede Transition $\delta_M(p_M, \tau) = (q_M, \tau', a), p_M, q_M \in Q_M, \tau, \tau' \in \Gamma, a \in \{\rightarrow, \leftarrow, \downarrow\}$ von M wird durch:

$$\begin{array}{l} ((p,\epsilon,\tau u,\tau''v),(q,u,\tau'\tau''v)), \text{ wenn } a=\leftarrow\\ ((p,\epsilon,\tau u,v),(q,u\tau'\tau'',v)), \text{ wenn } a=\rightarrow\\ ((p,\epsilon,\tau u,v),(q,u\tau',\tau''v)), \text{ wenn } a=\downarrow\\ ,p,q\in Q,\tau''\in\Gamma \end{array}$$

in A, mit p, q denau dann akzeptierend, wenn p_M , bzw. $q_M \in \{ja\}$, simuliert.

- 9.2
- 9.3
- 9.3.1
- 9.3.2