Laborator 6

Sîrbu Matei-Dan

19 noiembrie 2020

Exercițiul 1

Breviar teoretic

Printre cele mai utilizate structuri de date sunt listele, două tipuri speciale de liste: stiva și coada, și nu în ultimul rând o structură de storcare asociativă numită *map*.

O $list\Breve{a}$ reprezint\Breve{a} o secvenț\Breve{a} de zero (lista vid\Breve{a}) sau mai multe elemente de un anumit tip:

$$a_1, a_2, \ldots, a_n$$

unde $n \geq 0$ și este numit lungimea listei (n = 0 listă vidă) iar a_i este elementul din listă de pe poziția i ($1 \leq i \leq n$). Cele mai importante operații cu o listă sunt

- INSERT(x, p, L). Inserarea adaugă în lista L elementul x la poziția p, deplasând la dreapta toate elementele care se aflau pe pozițiile p, \ldots, n .
- LOCATE(x, L). Returnează poziția elementului x în lista L. Dacă x apare de mai multe ori poziția primei apariții este returnată.
- RETRIEVE(p, L). Returnează elementul aflat pe poziția p în lista L.
- DELETE(p, L). Șterge elementul de pe poziția p din lista L iar elementele de pe pozițiile $p+1,\ldots,n$ sunt mutate cu o poziție la stânga.
- NEXT(p, L) și PREVIOUS(p, L) returnează poziția următoare respectivanterioară din lista L.

Exercițiul 2

Definiție 1. Variabila aleatoare X urmează legea normală (Gauss-Laplace) (X are repartiție normală) cu parametrii m și σ $(m \in \mathbb{R}, \sigma > 0)$ dacă densitatea sa de probabilitate (repartiție) este funcția

$$f(x;m;\sigma) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-m)^2}{2\sigma^2}}$$
(1)

O variabilă aleatoare cu repartiție normală cu parametrii m și σ se notează cu $N(m,\sigma^2)$.

Funcția f de mai sus se numește densitatea de repartiție normală sau gaussiană. Observăm că f este o densitate de probabilitate, deoarece $f(x)>0, \forall x\in\mathbb{R}$ și $\int_{-\infty}^{\infty}f(x)dx=1$. Într-adevăr, pentru a verifica ultima relație, în integrala de mai sus facem schimbarea de variabilă $\frac{x-m}{\sigma\sqrt{2}}=y$. Rezultă că $dx=\sigma\sqrt{2}dy$. Dacă $x\to-\infty$ atunci $y\to-\infty$, iar dacă $x\to\infty$ atunci $y\to\infty$. Obținem astfel

$$\int_{-\infty}^{\infty} f(x) dx = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-y^2} dy = \frac{2}{\sqrt{\pi}} \int_{0}^{\infty} e^{-y^2} dy = 1.$$

Am folosit mai sus integrala lui Euler-Poisson $\int_0^\infty e^{-y^2} dy = \sqrt{\pi}/2$.

Graficul funcției f are formă de clopot (vezi figura 1). Dreapta de ecuație x=m este axă de simetrie pentru acest grafic, iar pentru x=m se obține valoarea maximă a funcției f, și anume $\frac{1}{\sigma\sqrt{2\pi}}$. Punctele $x=m-\sigma$ și $x=m+\sigma$ sunt puncte de inflexiune.

Figura 1: Clopotul lui Gauss

Exercițiul 3

	Încredere în sine	Onestitate
Valori	Autonomie	Integritate
	Independență	Diversitate
	Spirit antreprenorial	Responsabilitate
	Diversitate	Munca în echipă
		Sociabil
Caracteristici		Încrezător
	Comfortabil cu schimbările	Optimist
	Cinic	Orientat spre realizări
	Pragmatic	Cooperant
	Flexibil	Educat
	Multifuncțional	Tehnologizat
	Creativ	Conștiență socială (socially aware)
	Autonom	Altruist
	Ţeluri specifice	Multifuncțional
		Practic
		Team worker
	Concentrat pe carieră	Muncă semnificativă
Preferințe	Echilibru viața profesională -	Job flexibil
la locul de	viața personală	Feedback/Mentoring
muncă	Lipsa siguranței	Concentrat pe carieră
	Abordarea informală	