Chapter V

Optimality and duality

Skills to acquire

- Laagrange Duality
- Conjugate function and duality
- Algorithms on dual problems

We consider a general convex optimization problem

$$\min_{x \in \mathbb{R}^n} f(x) \tag{V.1}$$

Duality is associated to a particular formulation of the optimization problem, so that for instance making change of variables results in a different duality.

1 Lagrange Duality

We consider the convex optimization problem:

minimize
$$f(\mathbf{x})$$

subject to $A \mathbf{x} = y$,
 $g(\mathbf{x}) \leq 0$.

where $f: \mathbb{R}^n \to \mathbb{R}$, $A \in \mathbb{R}^{p \times n}$, and $g: \mathbb{R}^n \to \mathbb{R}^q$. This problem will be referred to as the *primal problem*. We write the associated Lagrangian.

$$\mathcal{L}(\boldsymbol{x}, \lambda, \beta) = f(\boldsymbol{x}) + \lambda^{T} (A\boldsymbol{x} - \boldsymbol{y}) + \mu^{T} (g(\boldsymbol{x}))$$

The dual objective function $q: \mathbb{R}^p \times \mathbb{R}^q \to \mathbb{R} \cup \{-\infty\}$ is defined to be

$$q(\lambda, \mu) \stackrel{\text{def.}}{=} \min_{\boldsymbol{x}} \mathcal{L}(\boldsymbol{x}, \lambda, \mu).$$
 (V.2)

The dual problem is given by

$$q^* = \max_{(\lambda,\mu) \in \text{dom}(q)} q(\lambda,\mu). \tag{V.3}$$

© 2020, Mohammed Hachama.

Theorem 1.1 (convexity of the dual problem). dom(q) is a convex set and q is a concave function over dom(q).

The following proposition is the so-called weak duality, which assert that values of the dual problems always lower bounds values of the primal one

Theorem 1.2 (Weak duality). Consider the primal problem its dual problem. Then

$$q^* \le f^*$$
,

where q^* , f^* are the optimal dual and primal values respectively.

Example 1.1.

minimize
$$x_1^2 - 3x_2^2$$

subject to $x_1 = x_2^3$ (V.4)

It is not difficult to show that the optimal solutions of the problem are (1,1), (-1,-1) with an optimal value of $f^* = -2$. The Lagrangian function is

$$\mathcal{L}(x_1, x_2, \mu) = x_1^2 + \mu x_1 - 3x_2^2 - \mu x_2^3.$$

Obviously, for any $\mu \in \mathbb{R}$,

$$\min_{x_1, x_2} \mathcal{L}(x_1, x_2, \mu) = -\infty,$$

and hence the dual optimal value is $q^* = -\infty$, which is an extremely poor lower bound on the primal optimal value $f^* = -2$.

The following fundamental theorem gives a sufficient condition (so-called qualification of the constraints) such that one actually has equality.

Theorem 1.3 (Strong duality). If the primal problem is convex and $\exists x_0 \in \mathbb{R}^N$, $Ax_0 = y$ and $g(x_0) < 0$, then $q^* = f^*$ (strong duality holds). Furthermore, x^* and (u^*, v^*) are solutions of the dual problem verifying strong duality iff and only if

$$Ax^* = y, \quad q(x^*) \leqslant 0, \quad u^* \geqslant 0$$
 (V.5)

$$0 \in \partial f(x^*) + A^* u^* + \sum_{i} v_i^* \partial g_i(x^*)$$
 (V.6)

$$\forall i, \quad u_i^{\star} g_i(x^{\star}) = 0 \tag{V.7}$$

2 Conjugate function and duality

To simplify and accelerate computation involving Lagrange duality, we introduce the Legendre-Fenchel transform which plays a similar role for convex function as the Fourier transform for signal or images.

2.1 Definitions

Definition 2.1. Let $f: \mathbb{R}^n \to (-\infty, +\infty]$ be a proper function. The conjugate function (or Legendre-Fenchel transformation) is a function $f^*: \mathbb{R}^n \to \overline{\mathbb{R}}$, defined by

$$f^*(\boldsymbol{y}) = \sup_{\boldsymbol{x} \in \text{dom}(f)} \ \left\{ \boldsymbol{y}^T \boldsymbol{x} - f(\boldsymbol{x}) \right\}.$$

Proposition 2.1. f^* is closed and convex (even when f is not).

The conjugacy operation can be invoked twice resulting in the second conjugate:

$$f^{**}(\boldsymbol{x}) = \sup_{\boldsymbol{x} \in \mathbb{R}^n} (\boldsymbol{x}^T \boldsymbol{y} - f^*(y))$$

Theorem 2.4. Let $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ be a function. Then

$$f^{**}(\boldsymbol{x}) \leq f(\boldsymbol{x}), \quad \forall \, \boldsymbol{x} \in \mathbb{R}^n.$$

If $f: \mathbb{R}^n \to (-\infty, +\infty]$ is closed and convex, then $f^{**} = f$.

Remarque 2.1. f^{**} is the convex envelop of f (i.e. the largest convex function smaller than f).

Example 2.1 (Indicator function). $f = \mathbb{1}_S$, where $S \subset \mathbb{R}^n$ is nonempty.

$$f^*(\boldsymbol{y}) = \sup_{\boldsymbol{x} \in S} \boldsymbol{y}^T \boldsymbol{x}.$$

Example 2.2.

$$f(x) = \alpha x + \beta; \quad g(x) = ||x||; \quad h(x) = \frac{c}{2}x^2.$$

$$g^*(y) = \begin{cases} \beta, & y = \alpha \\ +\infty, & y \neq \alpha \end{cases}; \quad g^*(y) = \begin{cases} 0, & \|y\|_* \le 1 \\ +\infty, \|y\|_* > 1 \end{cases}; \quad h^*(y) = \frac{1}{2c}y^2.$$

Example 2.3 (Quadratic). $Q \succ 0$

$$f(x) = \frac{1}{2}x^{T}Qx + b^{T}x + c;$$
 $f^{*}(y) = \frac{1}{2}(y - b)^{T}Q^{-1}(y - b) - c$

2.2 Calculus rules

Theorem 2.5 (Calculus rules).

• Separable sum: If $g(x_1, x_2) = f_1(x_1) + f_2(x_2)$, then

$$q^*(y_1, y_2) = f_1^*(y_1) + f_2^*(y_2)$$

• Scaling $(\alpha > 0)$: If $g(x) = \alpha f(x)$, then

$$g^*(y) = \alpha f^*(y/\alpha),$$

and if $g(\mathbf{x}) = \alpha f(\mathbf{x}/\alpha)$ then $g^*(\mathbf{y}) = \alpha g^*(\mathbf{y})$.

• Summation: If $g(x) = f_1(x) + f_2(x)$, then

$$g^*(y) = \inf_{z} \{f_1^*(z) + f_2^*(y-z)\}$$

• Addition to affine function

$$f(x) = g(x) + a^{T}x + b;$$
 $f^{*}(y) = g^{*}(y - a) - b$

• Infimal convolution

$$(f \otimes g)(\boldsymbol{x}) \stackrel{\text{def.}}{=} \sup_{\boldsymbol{y} + \boldsymbol{y}' = \boldsymbol{x}} f(\boldsymbol{y}) + g(\boldsymbol{y}').$$

$$(f+g)^* = f \otimes g$$
 and $(f \otimes g)^* = f + g$.

2.3 Properties

Theorem 2.6 (Fenchel's inequality). the definition implies that

$$f(x) + f^*(y) \geqslant x^T y; \quad \forall x, y$$

Theorem 2.7 (Conjugate Subgradient Theorem). Let $f : \mathbb{R}^n \to (-\infty, +\infty]$ be a proper convex function.

$$\forall (\boldsymbol{x}, \boldsymbol{y}), \boldsymbol{x}^T \boldsymbol{y} = f(\boldsymbol{x}) + f^*(\boldsymbol{y}) \quad \Leftrightarrow \quad \boldsymbol{y} \in \partial f(\boldsymbol{x}).$$

If, in addition f is closed, then

$$\mathbf{y} \in \partial f(\mathbf{x}) \iff \mathbf{x} \in \partial f^*(\mathbf{y})$$

The conjugate subgradient theorem can be written as the following.

Corollary 2.1. If f is proper closed and convex then

$$\partial f^*(\boldsymbol{y}) = \operatorname*{argmax}_{\boldsymbol{x}} \left\{ \boldsymbol{y}^T \boldsymbol{x} - f(\boldsymbol{x}) \right\}$$

$$\partial f(\boldsymbol{x}) = \operatorname*{argmax}_{\boldsymbol{y}} \left\{ \boldsymbol{x}^T \boldsymbol{y} - f^*(\boldsymbol{y}) \right\}$$

Theorem 2.8 (Fenchel's duality theorem). Let $f, g : \mathbb{R}^n \to (-\infty, +\infty]$ be proper convex functions. If relint $(\text{dom}(f)) \cap \text{relint}(\text{dom}(g)) \neq \emptyset$, then

$$\min_{x} \{f(x) + g(x)\} = \max_{y} \{-f^{*}(y) - g^{*}(-y)\},\$$

and the maximum in the right-hand problem is attained whenever it is finite.

Proposition 2.2 (Legendre transform and smoothness). One has

$$\nabla f$$
 is L-Lipschitz \iff ∇f^* is μ -strongly convex.

Assume f is closed and strongly convex with parameter $\mu > 0$. Then, f^* is defined for all y and is differentiable everywhere, with gradient

$$\nabla f^*(\boldsymbol{y}) = \underset{\boldsymbol{x}}{\operatorname{argmax}} \left(y^T x - f(x) \right).$$

2.4 Fenchel-Rockafellar Duality

Very often the Lagrange dual can be expressed using the conjugate of the function f. We give here a particularly important example, which is often called Fenchel-Rockafellar Duality.

Consider the generic primal problem

$$\min_{\boldsymbol{x}} f(\boldsymbol{x}) + g(A\boldsymbol{x})$$

We rewrite the primal as:

minimize
$$f(\mathbf{x}) + g(\mathbf{y}),$$

subject to $A\mathbf{x} = \mathbf{y}.$ (V.8)

From Lagrange duality:

$$\inf_{x,y} (f(x) + z^T A x + g(y) - z^T y) = -f^*(-A^T z) - g^*(z) = q(\mathbf{z}).$$

We get the dual problem

$$\max_{z} q(z).$$

The next theorem gives primal-dual optimality conditions.

Theorem 2.9 (Fenchel-Rockafellar). Let $f: \mathbb{R}^n \to \overline{\mathbb{R}}$, $g: \mathbb{R}^m \to \overline{\mathbb{R}}$ two convex functions and $A: \mathbb{R}^n \to \mathbb{R}^m$. If

$$0 \in \operatorname{relint}(\operatorname{dom}(q) - A\operatorname{dom}(f))$$

the one has the following strong duality

$$\inf_{x} (f(x) + g(Ax)) = \sup_{z} -f^{*}(-A^{T}z) - g^{*}(z)$$

Furthermore, (x, z) is a pair of optimal primal-dual solutions if and only if

$$-A^T z \in \partial f(x)$$
 and $Ax \in \partial g^*(z) \ (or \ \boldsymbol{z} \in \partial g(Ax)).$ (V.9)

Example 2.4 (Norm regularization).

$$\min_{\boldsymbol{x}} f(\boldsymbol{x}) + \|A\boldsymbol{x} - \boldsymbol{b}\|$$

The dual problem can be written as

$$\begin{array}{ll} \text{maximize} & -\boldsymbol{b}^T\boldsymbol{z} - f^*(-A^T\boldsymbol{z}) \\ \boldsymbol{z} \\ \text{subject to} & \|\boldsymbol{z}\|_* \leqslant 1 \end{array} \tag{V.10}$$

3 Algorithms

3.1 Dual Subgradient method

$$\begin{array}{ll}
\text{minimize} & f(\mathbf{x}) \\
\text{subject to} & A\mathbf{x} = \mathbf{b}
\end{array}$$

Dual Problem

$$\max_{\boldsymbol{z}} h(\boldsymbol{z}) = -f^*(-A^T \boldsymbol{z}) - \boldsymbol{b}^T \boldsymbol{z}$$

Subgradient of the Dual

• $\partial h(z) = A \partial f^*(-A^T z) - b$

•
$$u \in \partial f^*(-A^T z) \iff z \in \underset{x}{\operatorname{argmin}} \{f(x) + z^T A x\}$$

If f is strictly convex, f^* is differentiable. We get dual gradient ascent.

$$x^{k+1} \in \underset{\boldsymbol{x}}{\operatorname{argmin}} \left\{ f(\boldsymbol{x}) + (\boldsymbol{z}^k)^T A \boldsymbol{x} \right\},$$

 $\boldsymbol{z}^{k+1} = \boldsymbol{z}^k + \beta_k (A \boldsymbol{x}^{k+1} - \boldsymbol{b})$

Dual Decomposition

minimize
$$\sum_{i=1}^{n} f_i(\boldsymbol{x}_i)$$

subject to $A\boldsymbol{x} = \boldsymbol{b}$

Algorithm

$$x_i^{k+1} \in \underset{\boldsymbol{x}_i}{\operatorname{argmin}} \left\{ f_i(\boldsymbol{x}_i) + (\boldsymbol{z}^k)^T A_i \boldsymbol{x}_i \right\},$$

 $\boldsymbol{z}^{k+1} = \boldsymbol{z}^k + \beta_k \left(\sum_{i=1}^n A_i \boldsymbol{x}_i^{k+1} - \boldsymbol{b} \right)$

3.2 Forward-backward on the Dual

Problem 1

primal:
$$\min_{\boldsymbol{x}} f(\boldsymbol{x}) + g(\boldsymbol{x}),$$

dual: $\max_{\boldsymbol{z}} -g^*(\boldsymbol{z}) - f^*(-\boldsymbol{z})$

Use Moreau decomposition to simplify DR iteration

$$x_{k+1} = \operatorname{prox}_f(y_k),$$

 $y_{k+1} = x_{k+1} + \operatorname{prox}_{g^*}(2x_{k+1} - y_k)$

Make change of variables $z_k = x_k - y_k$:

$$x_{k+1} = \operatorname{prox}_f(x_k - z_k),$$

 $z_{k+1} = \operatorname{prox}_{g^*}(z_k + 2x_{k+1} - x_k)$

Problem 2: constrained convex problem

$$\begin{array}{ll} \underset{\boldsymbol{x}}{\text{minimize}} & f(x) \\ \text{subject to} & x \in V \end{array} \tag{V.11}$$

f closed and convex; V a subspace.

• Douglas–Rachford splitting with $g = \delta_V$

$$x_{k+1} = \operatorname{prox}_f(y_k),$$

 $y_{k+1} = y_k + P_V(2x_{k+1} - y_k) - x_{k+1}$

• Primal-dual form

$$x_{k+1} = \text{prox}_f(x_k - z_k),$$

 $z_{k+1} = P_{V^{\perp}}(z_k + 2x_{k+1} - x_k)$

Problem 3: Equality constraints optimization problem

Consider the "primal" proble

minimize
$$f(x)$$

 x (V.12)
subject to $Ax = b$

The dual problem is

$$\max_{\boldsymbol{z}} - b^T \boldsymbol{z} - f^*(-A^T \boldsymbol{z})$$

Dual gradient ascent algorithm

$$\hat{x} = \underset{\boldsymbol{x}}{\operatorname{argmin}} \left(f(\boldsymbol{x}) + \boldsymbol{z}^T A \boldsymbol{x} \right),$$

 $z^+ = z + t(A\hat{x} - b)$

- Step one: compute a subgradient $\hat{x} \in \partial f^*(-A^T z)$
- Step two: compute a subgradient $b A\hat{x}$ of $b^T z + f^*(-A^T z)$ at z
- Step 3: Update z: $z^+ = z + t(A\hat{x} b)$.

This algorithm is of interest if calculation of \hat{x} is inexpensive (for example, f is separable).

Problem 4: composite optimization problem

Consider the "primal" problem

$$\min_{\boldsymbol{x}} f(\boldsymbol{x}) + g(A\boldsymbol{x})$$

 f_1 and f_2 have simple prox-operators.

The associated dual problem

$$\max_{z} - f^*(-A^T z) - g^*(z)$$

or

$$\min_{\mathbf{z}} g^*(z) + f^*(-A^T z)$$

• proximal gradient update:

$$z^+ = \operatorname{prox}_{tg^*} \left(\boldsymbol{z} + tA\nabla f^*(-A^T \boldsymbol{z}) \right)$$

where

$$\nabla f^*(-A^T z) = \underset{x}{\operatorname{argmin}} \left(f(x) + z^T A x \right)$$

Total variation image denoising

A typical example, which was the one used by Antonin Chambolle to develop this class of method, is the total variation denoising. Consider that images $\boldsymbol{x} \in \mathbb{R}^N$ are represented by arrays X of size (n,n) and gradient vector fields $\nabla \boldsymbol{x} = \boldsymbol{u} \in \mathbb{R}^P$ are represented by arrays U size (n,n,2), where $P = N \times 2$. The total variation denoising model writes as

$$\min_{\bm{x}} \frac{1}{2} \|\bm{y} - \bm{x}\|^2 + \lambda \|\nabla \bm{x}\|_{1,2}$$

where $\|\cdot\|_{1,2}$ is the vectorial- ℓ^1 norm (also called $\ell^1-\ell^2$ norm):

$$\|\boldsymbol{u}\|_{1,2} \stackrel{\text{def.}}{=} \sum_{i,j} (U_{i,j,1})^2 + (U_{i,j,2})^2.$$

The primal problem corresponds to minimizing E(x) = f(x) + g(A(x)) where

$$f(x) = \frac{1}{2} ||x - y||^2$$
 and $g(u) = \lambda ||u||_{1,2}$.

The dual problem corresponds to minimzing F(u) + G(u) where

$$F(u) = \frac{1}{2} \|y - A^* u\|^2 - \frac{1}{2} \|y\|^2 \quad \text{and} \quad G(u) = \iota_{\mathcal{C}}(u) \quad \text{where} \quad \mathcal{C} = \{u \; ; \; \|u\|_{\infty, 2} \leqslant \lambda\} \,,$$

and

$$||u||_{\infty,2} = \max_{i,j} ||u_{i,j}||.$$

One can thus solves the ROF problem by computing

$$x^* = y - A^* u^*$$

where

$$u^* \in \underset{\|u\|_{1,2} \leqslant \lambda}{\operatorname{argmin}} \|y - A^*u\|.$$

One can compute explicitly the gradient of F:

$$\nabla F(u) = A(A^*u - y).$$

The proximal operator of G is the orthogonal projection on \mathcal{C} , which is obtained as

$$\operatorname{prox}_{\gamma G}(u)_{i,j} = \frac{u_{i,j}}{\max(1, \|u_{i,j}\|/\lambda)}.$$

Note that it does not depend on γ . The gradient step size of the FB should satisfy

$$\gamma < \frac{2}{\|A^*A\|} = \frac{1}{4}.$$