STA261: Problems 2

Alex Stringer

July, 2018

This assignment is not for credit. Complete the questions as preparation for the quiz in tutorial 2 on July 11th. The questions on the quiz will be very similar to the questions on the assignment.

- 1. Consistency. For independent random samples from the following families of distributions, show that the given estimator is consistent for the population parameter.
 - (a) $X_i \sim Pois(\lambda), \ \hat{\lambda} = \bar{X}.$
 - (b) $X_i \sim Exp(\theta)$, where $f_{\theta}(x) = \theta e^{-\theta x}$, $\hat{\theta} = 1/\bar{X}$.
 - (c) $X_i \sim Exp(\beta)$, where $f_{\beta}(x) = \frac{1}{\beta} e^{-\frac{x}{\beta}}$, $\hat{\beta} = \bar{X}$
 - (d) $X_i \sim \chi_{\nu}^2, \, \hat{\nu} = \bar{X}$
 - (e) $X_i \sim Gamma(\alpha, \beta)$ with $f_{\alpha, \beta}(x) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}}x^{\alpha-1}e^{-\frac{x}{\beta}}$, $\hat{\alpha} = \frac{(\bar{X})^2}{s^2}$ and $\hat{\beta} = \frac{s^2}{\bar{X}}$, where $s^2 = \frac{1}{n}\sum_{i=1}^n (x_i \bar{x})^2$. Note you can use $\frac{1}{n-1}$ in the sample variance if you want- they both give a consistent estimator of σ^2 .
- 2. Consistency: For $X_i \sim N(\mu, \sigma)$, state and prove whether each estimator is consistent or not. Be sure to say exactly where you are assuming a function is continuous in your proofs.
 - (a) $\hat{\mu} = \bar{X}$

 - (a) $\mu = \Lambda$ (b) $\hat{\sigma} = s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} \left(X_i \bar{X}\right)^2}$ (c) $\hat{\sigma} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} \left(X_i \bar{X}\right)^2}$ (d) $\hat{\mu} = \frac{1}{n+1,000,000} \sum_{i=1}^{n} X_i$ (e) $\hat{\mu} = \frac{1}{\frac{1}{n} \sum_{i=1}^{n} \frac{1}{X_i}}$ (f) $\hat{\sigma}^2 = \frac{1}{\frac{1}{n} \sum_{i=1}^{n} \frac{1}{X_i^2} \left(\frac{1}{n} \sum_{i=1}^{n} \frac{1}{X_i}\right)^2}$ We thought of Moments. For independent
- 3. Method of Moments. For independent random samples from the following families of distributions, find a consistent estimator for the population parameter using the method of moments. Some of these are tricky; if you need more practice, first try doing the previous questions in reverse. The method of moments is just a reverse consistency proof, as discussed in lecture.
 - (a) The gamma distribution as asked in question 1. Note the support of x is x > 0.
 - (b) $X_i \sim Beta(\alpha, \beta)$ with $f_{\alpha, \beta}(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha 1} (1 x)^{\beta 1}, x \in (0, 1).$
 - (c) $X_i \sim LogNormal(\mu, \sigma)$, with $f_{\mu,\sigma}(x) = \frac{1}{x\sigma\sqrt{2\pi}}e^{-\frac{(\log x \mu)^2}{2\sigma^2}}$, x > 0
 - (d) $X \sim Unif(0, \beta), x \in (0, \beta)$
- 4. Method of Moments. Let $X_i \sim Unif(\alpha, \beta)$. Find a method of moments estimator of (α, β) . This question is messy.