Розділ 2. Аналітична геометрія

2.1. Прямі лінії та площини

І. Різні типи рівнянь площини

1. Рівняння площини, яка задана точкою і нормальним вектором.

Площина $Q \subset \mathbb{R}^3$.

<u>Дано</u>: $M_0(x_0, y_0, z_0) \in Q$, \vec{n} - нормальний вектор, $\vec{n} \perp n n \cdot Q$, $\vec{n} = (A, B, C)$

Треба записати рівняння площини Q .

Коротко Q:?

Розв'язання:

 $\overline{M\left(x,y,z\right)}$ \in nл.Q - це точка з поточними координатами

$$\overrightarrow{M_{\scriptscriptstyle 0}M}\perp\vec{n}\Longrightarrow\Bigl(\overrightarrow{M_{\scriptscriptstyle 0}M},\vec{n}\Bigr)=0\ (*)$$

 $\overrightarrow{M_0M} = \overrightarrow{r} - \overrightarrow{r_0}$, бо вектор різниці з'єднує кінці векторів і напрямлений в бік зменшуваного.

3 (*) випливає:
$$(\vec{r} - \vec{r_0}, \vec{n}) = 0$$

$$\vec{r}=ig(x,y,zig), \ \ \vec{r_0}=ig(x_0,y_0,z_0ig)$$
 - це радіуси-вектори точок M і M_0 . $\vec{r}-\vec{r_0}=ig(x-x_0,y-y_0,z-z_0ig)$ $ig(x-x_0,y-y_0,z-z_0ig)\cdot ig(A,B,Cig)=0$ $Q:\ Aig(x-x_0ig)+Big(y-y_0ig)+Cig(z-z_0ig)=0$. (1)

Це рівняння площини, заданої точкою і нормальним вектором.

2. Загальне рівняння площини.

О. Загальним рівняння площини називається рівняння вигляду:

$$Ax + By + Cz + D = 0$$
, (2)

де A, B, C, D - задані числа, $A, B, C \neq 0$ одночасно.

Шляхом простих перетворень з рівняння (1) отримується рівняння (2):

$$(1) \Rightarrow Ax + By + Cz + \underbrace{\left(-Ax_0 - By_0 - Cz_0\right)}_{D} = 0.$$

Отримали рівняння вигляду (2).

Отже, в (2) $\vec{n} = (A, B, C)$, вільний член D не має геометричного змісту.

3. Рівняння площини у відрізках.

Перетворимо рівняння Ax + By + Cz + D = 0 (2), де $A, B, C, D \neq 0$:

$$Ax + By + Cz = -D \quad /: -D \neq 0$$

$$\frac{x}{-\frac{D}{A}} + \frac{y}{-\frac{D}{B}} + \frac{z}{-\frac{D}{C}} = 1.$$

Позначимо:
$$a = -\frac{D}{A}, \ b = -\frac{D}{B}, \ c = -\frac{D}{C}$$

$$Q: \frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$
 (3)

– рівняння площини у відрізках.

Числа a,b,c з точністю до знака дають довжини відрізків, що відтинаються площиною на осях координат.

4. Рівняння площини, що проходить через три точки.

Дано:
$$M_1(x_1, y_1, z_1) \in Q$$

 $M_2(x_2, y_2, z_2) \in Q$
 $M_3(x_3, y_3, z_3) \in Q$.

Знайти рівняння площини Q:?

Розв'язання:

Задамо $M(x, y, z) \in Q$, точка з поточними координатами.

З'єднаємо \boldsymbol{M}_1 з \boldsymbol{M} , \boldsymbol{M}_2 , \boldsymbol{M}_3 .

За побудовою отримані три вектори компланарні.

Умова компланарності: $(\overline{M_1M}, \overline{M_1M_2}, \overline{M_1M_3}) = 0$.

Звідси:

$$Q: \begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \end{vmatrix} = 0 (4)$$

-це рівняння площини, що проходить через 3 точки.

На практиці складають рівняння (4) за умови задання 3-х точок, визначник зліва розкривають, роблять перетворення до одержання вигляду:

$$Ax + By + Cz + D = 0.$$

5. Нормальне рівняння площини

Дано: одиничний нормальний вектор $\overrightarrow{n_0}$, напрямлений в бік площини Q , $\overrightarrow{n_0} = (\cos\alpha, \cos\beta, \cos\gamma)$, $|\overrightarrow{n_0}| = 1$, відстань від початку координат O до площини Q : $\rho(O,Q) = p \ge 0$.

Знайти: рівняння площини Q:?

Розв'язання:

 $\overrightarrow{M(x,y,z)} \in n$ л.Q - це точка з поточними координатами. Проекція радіуса-вектора $\overrightarrow{OM} = \overrightarrow{r}$ на $\overrightarrow{n_0}$ дорівнює $np_{\overrightarrow{n_0}}\overrightarrow{OM} = OT = p$.

$$np_{\overrightarrow{n_0}}\overrightarrow{OM} = \frac{(\overrightarrow{OM},\overrightarrow{n_0})}{|\overrightarrow{n_0}|} = (\overrightarrow{r},\overrightarrow{n_0}) = p$$
 , бо $|\overrightarrow{n_0}| = 1$ за умовою.

 $Q: (\vec{r}, \vec{n_0}) - p = 0$ - нормальне рівняння площини у векторній формі.

$$\vec{r}=(x,y,z)$$
 , точка $M(x,y,z)\in Q$, $\vec{n_0}=(\cos\alpha,\cos\beta,\cos\gamma)$ за умовою. Тоді

$$Q: x\cos\alpha + y\cos\beta + z\cos\gamma - p = 0, \ p \ge 0 \quad (5)$$

- нормальне рівняння площини у координатній формі.

Для розпізнавання, чи ϵ рівняння нормальним, а не просто загальним, треба перевірити такі умови:

- 1) сума квадратів коефіцієнтів при x, y, z дорівнює одиниці.
- 2) $p \ge 0$.

В рівнянні (5) зміст вільного члена такий: p - відстань $\rho(O,Q)$.

Зауважимо, що від загального рівняння (2) можна перейти до нормального (5),

вводячи нормувальний множник
$$\mu = \frac{1}{\pm \sqrt{A^2 + B^2 + C^2}}$$
, де знак перед коренем

вибирається протилежним до знаку вільного члена D. Тоді будуть виконуватись умови 1) та 2), зазначені вище.

Доведення:

$$Ax + By + Cz + D = 0 / \cdot \mu$$

 $(A\mu)x + (B\mu)y + (C\mu)z + D\mu = 0$.

1)
$$(A\mu)^2 + (B\mu)^2 + (C\mu)^2 = \frac{A^2 + B^2 + C^2}{A^2 + B^2 + C^2} = 1$$
.

2) $D\mu = -p, \ p \ge 0, -p \le 0$. $D\mu \le 0$, якщо знаки D та μ протилежні.

Деякі типи рівнянь прямої на площині.

Позначимо пряму на площині l . Вважаємо $l \subset \mathbb{R}^2$.

Відповідні рівняння l отримаємо з наведених вище рівнянь (1-5) площин Q ($Q \subset R^3$) вилученням координати z:

1.
$$l: A(x-x_0)+B(y-y_0)=0$$
 (1') – рівняння прямої, заданої точкою $M(x_0,y_0)$ і нормальним вектором $\vec{n}=(A,B)$;

2.
$$l: Ax + By + C = 0$$
 (2') – загальне рівняння $\vec{n} = (A, B)$;

3.
$$l: \frac{x}{a} + \frac{y}{b} = 1$$
 (3') – рівняння прямої у відрізках;

4.
$$l$$
: $\frac{x-x_1}{x_2-x_1} = \frac{y-y_1}{y_2-y_1}$ (4′) – рівняння прямої, що проходить через 2 точки, або

$$l: \begin{vmatrix} x-x_1 & y-y_1 \\ x_2-x_1 & y_2-y_1 \end{vmatrix} = 0 \Longrightarrow (4')$$
, за властивостями визначників.

5. $l: x\cos\alpha + y\cos\beta - p = 0, \ p \ge 0$ (5') - нормальне рівняння прямої на площині. Крім того, запишемо ще одне рівняння відоме з шкільного курсу.

3 рівняння (2')
$$\Rightarrow By = -Ax - C$$
, $B \neq 0$. Далі звідси

$$y = -\frac{A}{B}x - \frac{C}{B} \Rightarrow$$

6. l: y = kx + b – рівняння прямої з кутовим коефіцієнтом.

<u>Приклад 1.</u> Написати рівняння площини Q, що проходить через точку M(1,2,0), перпендикулярно вектору $\vec{n} = (3,4,5)$.

Розв'язання:

Підставляємо данні в рівняння $Q: A(x-x_0)+B(y-y_0)+C(z-z_0)=0$.

Q: 3(x-1)+4(y-2)+5(z-0)=0.

Розкриваємо дужки, отримуємо

$$Q: 3x + 4y + 5z - 11 = 0.$$

Приклад 2. Написати рівняння площини Q, що проходить через три точки $M_1(1,0,1), M_2(-1,2,0), M_3(2,1,3).$

Розв'язання:

Підставляємо координати точок в рівняння $Q: \begin{vmatrix} x-x_1 & y-y_1 & z-z_1 \\ x_2-x_1 & y_2-y_1 & z_2-z_1 \\ x_3-x_1 & y_3-y_1 & z_3-z_1 \end{vmatrix} = 0.$

$$\begin{vmatrix} x-1 & y-0 & z-1 \\ -1-1 & 2-0 & 0-1 \\ 2-1 & 1-0 & 3-1 \end{vmatrix} = \begin{vmatrix} x-1 & y-0 & z-1 \\ -2 & 2 & -1 \\ 1 & 1 & 2 \end{vmatrix} =$$

$$= (x-1)\begin{vmatrix} 2 & -1 \\ 1 & 2 \end{vmatrix} - y\begin{vmatrix} -2 & -1 \\ 1 & 2 \end{vmatrix} + (z-1)\begin{vmatrix} -2 & 2 \\ 1 & 1 \end{vmatrix} =$$

$$=(x-1)\cdot 5 - y\cdot (-3) + (z-1)\cdot (-4) = 5x + 3y - 4z - 1$$

Отримали
$$Q: 5x+3y-4z-1=0$$
.

II. Різні типи рівнянь прямої у просторі

Позначимо пряму у просторі L. Будемо писати $L \subset \mathbb{R}^3$.

1. Загальні рівняння прямої у просторі.

Пряма у просторі може бути задана як лінія перетину двох непаралельних площин Q_1 і Q_2 ; $Q_1 \ Q_2$. Тому рівняння можна задати у вигляді:

$$L: \begin{cases} A_1x + B_1y + C_1z + D_1 = 0 \\ A_2x + B_2y + C_2z + D_2 = 0 \end{cases} \quad (1) - \text{це загальні рівняння прямої у просторі}.$$

У формулі (1) перше рівняння – рівняння площини Q_1 ; друге – рівняння площини Q_2 .

2. Параметричні рівняння прямої у просторі.

Дано: точка $A(x_0, y_0, z_0) \in L$, вектор \vec{S} - напрямний вектор прямої;

$$\vec{S} \parallel L, \vec{S} = (m, n, p).$$

Треба написати рівняння прямої L. Коротко L: ?.

Розв'язання:

Наносимо рисунок:

На рисунку точка $M(x, y, z) \in L$, це точка з поточними координатами.

Згідно умови $\vec{S} \parallel \overrightarrow{AM}$, де $\overrightarrow{AM} = \vec{r} - \overrightarrow{r_0}$.

Умову колінеарності записуємо у вигляді: $\overrightarrow{AM} = \lambda \vec{S}, \ \lambda$ - параметр (число).

Звідси
$$\vec{r} - \vec{r_0} = \lambda \vec{S}$$

L: $\vec{r} = \vec{r_0} + \lambda \vec{S}$ - параметричне рівняння прямої у просторі.

Переходимо до координатної форми, враховуючи, що $\vec{r} = (x, y, z)$, $\vec{r_0} = (x_0, y_0, z_0)$,

$$\vec{S} = (m, n, p) .$$

Тоді
$$(x, y, z) = (x_0, y_0, z_0) + \lambda(m, n, p)$$

$$L$$
: $\begin{cases} x = x_0 + \lambda m \\ y = y_0 + \lambda n \end{cases}$ (2) — параметричні рівняння прямої L в координатній формі. $z = z_0 + \lambda p$

У подальшому точку $A(x_0, y_0, z_0) \in L$ будемо називати **базовую**.

3. Канонічні рівняння прямої у просторі.

3(2) випливає:

$$\lambda = \frac{x - x_0}{m}, \ \lambda = \frac{y - y_0}{n}, \ \lambda = \frac{z - z_0}{p}.$$

Тоді $L: \frac{x-x_0}{m} = \frac{y-y_0}{n} = \frac{z-z_0}{p}$ (3) – канонічні рівняння прямої.

Тут $A(x_0, y_0, z_0) \in L$ базова точка, $\vec{S} = (m, n, p)$ напрямний вектор прямої.

4. Рівняння прямої, що проходить через 2 точки.

Дано:
$$M_1(x_1, y_1, z_1) \in L$$
, $M_2(x_2, y_2, z_2) \in L$.

L:?

Розв'язання:

Скористаємось канонічними рівняннями прямої (3). Враховуючи задану інформацію, покладемо $\vec{S} = \overrightarrow{M_1 M_2} = (x_2 - x_1, y_2 - y_1, z_2 - z_1), \ M_1(x, y, z) \in L$. Це базова точка.

Тоді
$$L: \frac{x-x_1}{x_2-x_1} = \frac{y-y_1}{y_2-y_1} = \frac{z-z_1}{z_2-z_1}$$
. (4)

Деякі рівняння прямої на площині.

Відповідні рівняння l отримаємо з наведених вище рівнянь (2-4) прямих $L \subset R^3$ вилученням координати z:

1.
$$l: \begin{cases} x = x_0 + \lambda m \\ y = y_0 + \lambda n \end{cases}$$
 (2') — параметричні рівняння; $A(x_0, y_0) \in l$, $\vec{S} = (m, n)$.

2.
$$l: \frac{x-x_0}{m} = \frac{y-y_0}{n}$$
 (3') – канонічне рівняння прямої на площині.

3.
$$l: \frac{x-x_1}{x_2-x_1} = \frac{y-y_1}{y_2-y_1}$$
 (4') – рівняння прямої, що проходить через 2 точки $M_1(x_1,y_1), M_2(x_2,y_2)$.

Зауважимо, що загальних рівнянь прямої на площині тут немає, бо перетин двох непаралельних прямих дає точку, а не пряму.

III. Деякі задачі на пряму та площину

1. Відстань від точки до площини.

Дано:
$$Q: Ax + By + Cz + D = 0; M_1(x_1, y_1, z_1)$$

Знайти: відстань від точки M_1 до площини Q . Коротко $hoig(M_1,Qig)$ —?

На рисунку
$$K = np_Q M_1$$
; $\left| \overrightarrow{KM_1} \right| = \rho(M_1, Q)$. $K(x_0, y_0, z_0) \in Q \Rightarrow Ax_0 + By_0 + Cz_0 + D = 0$ (*) $\overrightarrow{n} \parallel \overrightarrow{KM_1} \Rightarrow (\overrightarrow{n}, \overrightarrow{KM_1}) = \pm \left| \overrightarrow{n} \right| \cdot \left| \overrightarrow{KM_1} \right| = \pm \left| \overrightarrow{n} \right| \cdot \rho(M_1, Q)$. " \pm ", бо $(\overrightarrow{n}, \stackrel{\wedge}{KM_1}) = 0, \pi$.
$$\rho(M_1, Q) = \frac{\left| (\overrightarrow{n}, \overrightarrow{KM_1}) \right|}{\left| \overrightarrow{n} \right|}.$$
 $\left| \overrightarrow{n} \right| = \sqrt{A^2 + B^2 + C^2}$, $(\overrightarrow{n}, \overrightarrow{KM_1}) = (A, B, C) \cdot (x_1 - x_0, y_1 - y_0, z_1 - z_0) = A(x_1 - x_0) + B(y_1 - y_0) + C(z_1 - z_0) = Ax_1 + By_1 + Cz_1 + D \cdot (Ax_0 + By_0 + Cz_0 + D) = Ax_1 + By_1 + Cz_1 + D$. Тоді: $\rho(M_1, Q) = \frac{|Ax_1 + By_1 + Cz_1 + D|}{\sqrt{A^2 + B^2 + C^2}}$. (1)

Алгоритм: в ліву частину заданого рівняння площини підставляємо координати т. M_1 , що дає чисельник; знаменник $|\vec{n}|$, \vec{n} - нормальний вектор площини.

Приклад. Знайти відстань від точки $M_1(1,2,3)$ до площини Q:4x-5y+z+1=0.

$$\begin{split} \mathbf{Poзb'язання} \colon & \rho\big(M_1, Q\big) = \frac{\left|Ax_1 + By_1 + Cz_1 + D\right|}{\sqrt{A^2 + B^2 + C^2}} \,. \\ & \rho(M_1, Q) = \frac{\left|4 \cdot 1 - 5 \cdot 2 + 1 \cdot 3 + 1\right|}{\sqrt{4^2 + (-5)^2 + 1^2}} = \frac{\left|4 - 10 + 3 + 1\right|}{\sqrt{16 + 25 + 1}} = \frac{2}{\sqrt{42}} \,. \end{split}$$

2. Кут між двома площинами.

Дано:

$$Q_1: \vec{n}_1 = (A, B, C); \ Q_2: \vec{n}_2 = (A_2, B_2, C_2); \ \varphi = (Q_1, ^Q_2) -?$$

Розв'язання:

$$\begin{split} & \varphi = \left(Q_{1}, {}^{\wedge}Q_{2}\right) = \left(\vec{n}_{1}, {}^{\wedge}\vec{n}_{2}\right). \text{ Тоді } \cos\varphi = \frac{\left(\vec{n}_{1}, \vec{n}_{2}\right)}{\left|\vec{n}_{1}\right| \cdot \left|\vec{n}_{2}\right|} \\ & Q_{1} \parallel Q_{2} \Rightarrow \vec{n}_{1} \parallel \vec{n}_{2} \Rightarrow \vec{n}_{1} \times \vec{n}_{2} = 0 \text{ a foo } \frac{A_{1}}{A_{2}} = \frac{B_{1}}{B_{2}} = \frac{C_{1}}{C_{2}}; \\ & Q_{1} \perp Q_{2} \Rightarrow \vec{n}_{1} \perp \vec{n}_{2} \Rightarrow \left(\vec{n}_{1}, \vec{n}_{2}\right) = 0 \text{ a foo } A_{1}A_{2} + B_{1}B_{2} + C_{1}C_{2} = 0. \end{split}$$

3. Відстань від точки до прямої у просторі.

<u>Дано</u>:

L:
$$A(x_0, y_0, z_0)$$
, $\vec{S} = (m, n, p)$, $M(x_1, y_1, z_1)$. $\rho(M, L)$ -?

На рисунок наносимо L, точки A, M та \vec{S} і добудовуємо до паралелограма. $\rho(M,L)$ - дорівнює висоті паралелограма.

$$\begin{cases} S_{napan} = \left| \overrightarrow{AM} \times \overrightarrow{S} \right| \\ S_{napan} = \left| \overrightarrow{S} \right| \cdot \rho(M, L) \Rightarrow \left| \overrightarrow{AM} \times \overrightarrow{S} \right| = \left| \overrightarrow{S} \right| \cdot \rho(M, L) \Rightarrow \rho(M, L) = \frac{\left| \overrightarrow{AM} \times \overrightarrow{S} \right|}{\left| \overrightarrow{S} \right|}. \end{cases}$$
(2)

4. Кут між двома прямими у просторі.

Дано:

$$L_1: \vec{S}_1 = (m_1, n_1, p_1); L_2: \vec{S}_2 = (m_2, n_2, p_2); \varphi = (L_1, ^L_2) - ?$$

Розв'язання:

$$\varphi = \left(L_1, ^{\wedge} L_2\right) = \left(\vec{S}_1, ^{\wedge} \vec{S}_2\right).$$

Тоді
$$\cos \varphi = \frac{\left(\vec{S}_1, \vec{S}_2\right)}{\left|\vec{S}_1\right| \cdot \left|\vec{S}_2\right|}$$

Далі умови паралельності та перпендикулярності прямих.

$$L_1 \parallel L_2 \Rightarrow \vec{S}_1 \parallel \vec{S}_2 \Rightarrow \vec{S}_1 \times \vec{S}_2 = 0$$
 abo $\frac{m_1}{m_2} = \frac{n_1}{n_2} = \frac{p_1}{p_2}$

$$L_1 \perp L_2 \Rightarrow \vec{S}_1 \perp \vec{S}_2 \Rightarrow \left(\vec{S}_1, \vec{S}_2\right) = 0$$
 або $m_1 m_2 + n_1 n_2 + p_1 p_2 = 0$.

5. Кут між прямою та площиною.

Дано:

$$L: \vec{S} = (m, n, p), Q: \vec{n} = (A, B, C). \varphi = (L, ^Q) - ?$$

Введемо кут між прямою та площиною:

$$\varphi = \left(L, ^{\wedge} Q\right) = \left(L, ^{\wedge} np_{Q}L\right), \quad 0 \leq \varphi < \pi \ .$$

Формулу наводимо без доведення:

$$\sin \varphi = \frac{\left|\left(\vec{n}, \vec{S}\right)\right|}{\left|\vec{n}\right| \cdot \left|\vec{S}\right|} \quad \left(\sin \varphi \ge 0, \text{ fo } 0 \le \varphi < \pi\right).$$

Далі умови паралельності та перпендикулярності прямої та площини.

$$L \parallel Q \Rightarrow \vec{n} \perp \vec{S} \Rightarrow (\vec{n}, \vec{S}) = 0$$
 also $Am + Bn + Cp = 0$

$$L \perp Q \Rightarrow \vec{n} \parallel \vec{S} \Rightarrow \vec{n} \times \vec{S} = 0$$
 and $\frac{A}{m} = \frac{B}{n} = \frac{C}{p}$.

<u>Приклад 1</u>. Записати рівняння прямої L, яка проходить через точки A(2,1,-3), B(3,2,4). Розв'язання:

$$L: \frac{x - x_A}{x_B - x_A} = \frac{y - y_A}{y_B - y_A} = \frac{z - z_A}{z_B - z_A}.$$

$$L: \frac{x - 2}{3 - 2} = \frac{y - 1}{2 - 1} = \frac{z + 3}{4 - (-3)}; L: \frac{x - 2}{1} = \frac{y - 1}{1} = \frac{z + 3}{7}.$$

2.2. Криві другого порядку

До кривих другого порядку відноситься відома зі шкільного курсу крива, рівняння якої

$$x^2 + y^2 = R^2$$

що є колом з центром в т. O(0,0) радіуса R.

Будемо розглядати інші криві другого порядку, а саме: еліпс, гіперболу, параболу.

І. Еліпс

<u>О.</u> *Еліпсом* називається геометричне місце точок M(x, y), сума відстаней від яких до двох даних точок F_1 , F_2 , що називаються фокусами, є величина стала (ця стала величина додатна і більше відстані між фокусами).

Позначення: стала величина – 2а;

Відстань між фокусами $\rho(F_1, F_2) = 2c$

$$2a > 0 \Rightarrow a > 0$$

$$2a > 2c \Rightarrow a > c \Rightarrow a^2 > c^2$$
; $a^2 - c^2 > 0$

Тоді можна позначити $b^2 = a^2 - c^2$.

Виберемо систему координат так, щоб фокуси $F_1, F_2 \in oci\ Ox$, а точка O ділила F_1F_2 навпіл.

Точка $M(x, y) \in \text{еліпсу}$, це точка з поточними координатами.

Згідно означення

$$r_1 + r_2 = 2a$$
.

Запишемо вирази r_1 та r_2 як відстань між двома точками.

$$\sqrt{(x+c)^2 + y^2} + \sqrt{(x-c)^2 + y^2} = 2a$$
.

Далі, відокремивши корінь зліва і підносячи двічі до квадрата, отримуємо:

$$\frac{x^2}{a^2} + \frac{y^2}{a^2 - c^2} = 1$$
.

Скористаємось позначенням: $a^2 - c^2 = b^2$, отримаємо:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \ (1)$$

— канонічне рівняння еліпса, де $b^2 = a^2 - c^2$, $0 < b \le a$ (a і b називаються великою та малою піввіссю еліпса).

Якщо b = a, маємо з (1) $x^2 + y^2 = a^2$ - рівняння кола.

Дослідження форми еліпса

1. Графік еліпса симетричний відносно осей координат (бо x та y у парному степені).

2. Точки перетину з осями координат

$$y = 0, x^2 = a^2 \Rightarrow x = \pm a;$$
 $A_1(-a,0), A_2(a,0)$
 $x = 0, y^2 = b^2 \Rightarrow y = \pm b;$ $B_1(0,-b), B_2(0,b).$

 $A_1A_2=2a\,$ - велика вісь еліпса, $B_1B_2=2b$ - мала вісь.

Розв'язавши (1) відносно y, та знайшовши похідну y', побачимо, що y' < 0 в першій чверті при x > 0, тобто графік функції спадає.

3. Далі будуємо графік еліпса в І чверті і, враховуючи симетрію, продовжуємо в інші чверті.

Починаємо побудову з побудови вершин та графіка в першій чверті.

Існує механічний спосіб побудови еліпса.

Беремо нитку довжиною 2a, кінці її закріплюємо в точках F_1 , F_2 . Натягуємо нитку олівцем і проводимо еліпс.

Тут використано те, що $r_1 + r_2 = 2a$, де б не взяти точку M(x, y), що належить еліпсу.

4. Важливою характеристикою еліпса ϵ ексцентриситет та директриси.

<u>О.1.</u> Ексцентриситетом_ еліпса називається величина $\varepsilon = \frac{c}{a}$, де c - півфокусна відстань,

а - величина великої півосі.

Враховуючи, що a > c, $\varepsilon < 1$; при c = 0, тобто b = a, маємо коло; $\varepsilon = 0$.

Ексцетриситет вказує на степінь відхилення еліпса від кола: чим більше ексцентриситет, тим більше еліпс витягується вздовж осі Ox.

0.2. Директрисами еліпса називається пара прямих, перпендикулярних великій осі, рівняння яких $x = \pm \frac{a}{\varepsilon}$

Директриси розташовані правіше правої вершини і лівіше лівої вершини відповідно.

II. Гіпербола

<u>О.</u> *Гіперболою* називається геометричне місце точок M(x,y), різниця відстаней від яких до двох даних точок F_1 , F_2 , що називаються фокусами, є величина стала. (Ця стала величина додатна і менше відстані між фокусами).

Позначення: стала величина 2a,

$$\rho(F_1, F_2) = 2c$$

$$2a > 0 \Rightarrow a > 0$$

$$2a < 2c \Rightarrow a < c \Rightarrow c > a \Rightarrow c^2 > a^2, \quad c^2 - a^2 > 0.$$

Тоді можна позначити: $b^2 = c^2 - a^2$.

Виберемо систему координат так, щоб фокуси $F_1, F_2 \in$ осі Ox, точка O ділила F_1F_2 навпіл.

Точка M(x, y) належить гіперболі.

Згідно означення $r_1 - r_2 = \pm 2a$ («+», якщо $r_1 > r_2$; «-», якщо $r_1 < r_2$).

Запишемо r_1 і r_2 як відстані між двома точками:

$$\sqrt{(x+c)^2 + y^2} - \sqrt{(x-c)^2 + y^2} = \pm 2a$$
.

Далі, відокремивши корінь зліва і підносячи двічі до квадрата, отримаємо:

$$\frac{x^2}{a^2} - \frac{y^2}{c^2 - a^2} = 1.$$

Скориставшись позначенням $c^2 - a^2 = b^2$ отримаємо:

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \ (1)$$

- канонічне рівняння гіперболи, де a і b називають дійсною та уявною піввіссю вілповілно.

При b = a маємо: $x^2 - y^2 = a^2$ - рівняння рівносторонньої гіперболи.

Дослідження форми гіперболи

- 1. Графік гіперболи симетричний відносно осей координат.
- 2. Точки перетину з осями координат

$$y = 0$$
 $x^2 = a^2$, $x = \pm a$ $A_1(-a,0)$, $A_2(a,0)$ - дійсні вершини гіперболи,

$$x = 0$$
 $y^2 = -b^2$ $\Rightarrow y = \pm \sqrt{-b^2} = b \sqrt{-1} = \pm bi$.

Вводимо точки: $B_1(0,-b)$, $B_2(0,b)$ - уявні вершини гіперболи.

 $A_1A_2 = 2a$ - дійсна вісь (вісь Ox - також дійсна вісь);

 $B_1B_2 = 2b$ - уявна вісь (вісь *Oy* - уявна вісь).

- 3. Розв'язавши (1) відносно y, та знайшовши похідну y', побачимо, що y' > 0 в І чверті при x > a, тобто функція зростає при x > a.
- 4. Можна довести, що графік функції має дві асимптоти $y = \pm \frac{b}{a} x$.

Далі будуємо графік за такими етапами:

- 1) наносимо вершини;
- 2) будуємо допоміжний прямокутник;
- 3) проводимо діагоналі прямокутника, та продовживши їх, отримуємо асимптоти;
- 4) наносимо графік в І чверті і продовжуємо на всю площину, враховуючи симетрію. Графік проведемо суцільною лінією.

5. Рівняння вигляду $\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1$ визначає гіперболу, спряжену до гіперболи

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1.$$

На рисунку ця гіпербола нанесена пунктиром. У неї дійсна вісь Oy.

6. Зауважимо, що графік гіперболи $y=\frac{1}{x}$ отримуємо з графіка рівносторонньої (вивчалась в школі) гіперболи $x^2-y^2=a^2$ (допоміжний прямокутник – квадрат) шляхом повороту її на кут 45^0 .

- 7. Важливі характеристики. Ексцентриситет та директриси.
- **О.1.** *Ексцентриситетом* гіперболи називається величина $\varepsilon = \frac{c}{a}$, де c півфокусна відстань, a величина дійсної півосі.

$$\varepsilon > 1$$
, for $c > a$.

О.2. *Директрисами* гіперболи називається пара прямих, перпендикулярних дійсній осі, рівняння яких $x=\pm \frac{a}{\varepsilon}$.

Директриси гіперболи розташовані лівіше правої вершини і правіше лівої вершини відповідно, тобто між гілками гіперболи.

III. Парабола

О. Параболою називається геометричне місце точок M(x,y), однаково віддалених від точки F, яка називається фокусом і прямої D, яка називається директрисою. Позначення: відстань $\rho(F,D)=p>0$ - параметр параболи.

Виберемо систему координат так, щоб $F\in$ осі Ox, $D\perp$ осі Ox, точка O ділила відстань між F і D навпіл.

Точка $M(x, y) \in$ параболі.

Згідно означення r = d.

Запишемо r і d як відстані між двома точками

$$\sqrt{\left(x-\frac{p}{2}\right)^2+y^2}=\sqrt{\left(x+\frac{p}{2}\right)^2}.$$

Піднісши до квадрата, маємо:

$$x^{2} - xp + \frac{p^{2}}{4} + y^{2} = x^{2} + xp + \frac{p^{2}}{4}$$

 $y^2 = 2 px$ (1), p > 0 - канонічне рівняння параболи

Дослідження форми параболи

- 1. Графік симетричний відносно осі Ox (бо y в парному степені).
- 2. Т. $O(0,0) \in \text{графіку}$ (це вершина параболи).
- 3. 3 рівняння $y^2 = 2 px$ випливає, що $x \ge 0$, бо $y^2 \ge 0, p > 0$.
- 4. Розв'язавши рівняння $y^2 = 2px$ відносно y, та знайшовши похідну, побачимо, що в І чверті, при x > 0 функція зростає (y' > 0).
- 5. Наносимо графік в І чверті і по симетрії переносимо в IV чверть.
- 6. Рівняння параболи може задаватись у вигляді: $x^2 = 2py$ (2). Графік симетричний відносно осі Oy.

$$3(2) \Rightarrow y = \frac{1}{2p}x^2, p > 0$$
 (ця функція вивчалась в школі).

7. Ексцентриситет параболи
$$\varepsilon = \frac{r}{d} = 1$$
. Парабола має одну директрису $x = -\frac{p}{2}$.

Отже, для вивчених кривих значення ексцентриситету таке:

 $0 \le \varepsilon < 1$ - еліпс, $\varepsilon = 0$ - коло.

 $\varepsilon > 1$ - гіпербола

 $\varepsilon = 1$ - парабола.

По цій характеристиці, якщо вона задана, можна розпізнавати, яка крива розглядається.

IV. Загальне рівняння кривої другого порядку.

Вигляд рівняння:

$$Ax^{2} + 2Bxy + Cy^{2} + Dx + Ey + F = 0 , (1)$$

де A, B, C одночасно не дорівнюють нулю.

За виглядом рівняння (1) визначають тип кривої 2-го порядку, а саме складають визначник:

$$\Delta = \begin{vmatrix} A & B \\ B & C \end{vmatrix} = AC - B^2 .$$

Якщо $\Delta > 0$ - крива еліптичного типу;

 $\Delta < 0$ - крива гіперболічного типу;

 $\Delta = 0$ - крива параболічного типу.

Відомо що, якщо виконати поворот на деякий кут (спеціально підібраний), то можна в рівнянні (1) позбавитися доданку з добутком *XV*. Тоді рівняння прийме вигляд:

$$Ax^{2} + Cy^{2} + Dx + Ey + F = 0. (2)$$

Від рівняння (2) за допомогою паралельного перенесення системи координат можна перейти до одного з дев'яти вказаних нижче рівнянь (це робиться за допомогою виділення повних квадратів у рівнянні (2), заміною змінних):

6)
$$y^2 = 2px$$
 або $x^2 = 2py$ (парабола)
7) $y^2 = a^2 \Rightarrow y = \pm a$ (паралельні прямі) це фігури параболічного типу,
8) $y^2 = 0 \Rightarrow y = 0$ (співпавші прямі) $\Delta = 0$
9) $y^2 = -a^2$, \varnothing

Отже, рівняння (1) подається у вигляді дев'яти вказаних типів рівнянь, в яких задіяні вказані канонічні рівняння кривих другого порядку. Це дало можливість ввести вказану класифікацію.

2.3. Поверхні другого порядку

Ідея розглядання поверхні другого порядку полягає у тому, що задається рівняння поверхні і для її зображення використовується метод перерізів. Згідно з цим методом робиться переріз поверхні координатними площинами і площинами, паралельними координатним. На основі цього робиться зображення поверхні.

Сфера

Рівняння сфери: $x^2 + y^2 + z^2 = R^2$, де R - pagiyc сфери.

Еліпсоїд

Рівняння еліпсоїда: $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ (1),

де a, b, c – задані додатні числа, півосі еліпсоїда. Дослідження форми проводимо методом перерізів

1)
$$z = 0$$
 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ – еліпс

2)
$$y = 0$$
 $\frac{x^2}{a^2} + \frac{z^2}{c^2} = 1 - eninc$

3)
$$x = 0$$
 $\frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 - \text{ еліпс}$

4)
$$z = h$$

(1) =>
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 - \frac{h^2}{c^2}$$
 (2)

Випадок 1: |h| > c; $1 - \frac{h^2}{c^2} < 0$

$$(2) => \emptyset$$

Випадок 2: |h| < c; $1 - \frac{h^2}{c^2} = k^2 > 0$

$$(2) \Rightarrow \frac{x^2}{k^2 a^2} + \frac{y^2}{k^2 b^2} = 1 -$$
еліпс

$$\tilde{a} = ka; \ \tilde{b} = kb;$$

Випадок 3: $|\mathbf{h}| = \mathbf{c}$

$$1-\frac{h^2}{c^2}=0$$

$$(2) = > \frac{x^2}{a^2} + \frac{y^2}{b^2} = 0$$
 – пара точок: $(0;0;\pm c)$

5-6) Формули для x = h, y = h виводяться аналогічно

7) Якщо c=b=a, то маємо $x^2+y^2+z^2=\ a^2-\$ рівняння сфери

Гіперболоїди (Однопорожнинний; двопорожнинний)

A)
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$
 (1)

(1) – рівняння однопорожнинного гіперболоїда.

а, b, c – задані додатні числа, півосі

1)
$$z = 0$$
 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ - еліпс;

2)
$$y = 0$$
 $\frac{x^2}{a^2} - \frac{z^2}{c^2} = 1$ - гіпербола; (Ох – дійсна вісь)

3)
$$x = 0$$
 $\frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$ - гіпербола; (Оу – дійсна вісь)

4)
$$z = h$$

(1)
$$\Rightarrow \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 + \frac{h^2}{c^2}$$
 (2)

$$1 + \frac{h^2}{c^2} = k^2 > 0$$

$$(2) \Rightarrow \frac{x^2}{k^2 a^2} + \frac{y^2}{k^2 b^2} = 1$$
 – еліпс

$$\tilde{\mathbf{a}} = \mathbf{ka}; \, \tilde{\mathbf{b}} = \mathbf{kb};$$

$$\mathbf{b})\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1 \, (1)$$

(1) – рівняння двопорожнинного гіперболоїда.

а, b, с – задані додатні числа, півосі

1)
$$z = 0$$
 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1 - \emptyset$

2)
$$y = 0$$
 $\frac{z^2}{c^2} - \frac{x^2}{a^2} = 1$ - гіпербола; (Оz – дійсна вісь)

3)
$$x = 0$$
 $\frac{z^2}{c^2} - \frac{y^2}{b^2} = 1$ - гіпербола; (Оz – дійсна вісь)

4)
$$z = h$$
 (1) => $\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{h^2}{c^2} - 1$ (2)

Випадок 1:
$$|h| > c$$
 $\frac{h^2}{c^2} - 1 = k^2 > 0$

$$(2) \Rightarrow \frac{x^2}{k^2 a^2} + \frac{y^2}{k^2 b^2} = 1$$
 – еліпс

$$\tilde{\mathbf{a}} = \mathbf{ka}; \, \tilde{\mathbf{b}} = \mathbf{kb};$$

Випадок 2:
$$h \mid < c$$
 $\frac{h^2}{c^2} - 1 < 0$

$$(2) => \emptyset$$

Випадок 3: |h| = c;

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 0$$
 – пара точок: $(0; 0; \pm c)$

5-6) Формули для x = h, y = h виводяться аналогічно

Конус

Рівняння конуса: $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0$ (1)), де a, b, c – задані додатні числа півосі

1)
$$z = 0$$

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 0$$
 — точка з координатами (0;0;0)

2)
$$y = 0$$
 $\frac{x^2}{a^2} - \frac{z^2}{c^2} = 0$;

$$\frac{z^2}{c^2} = \frac{x^2}{a^2}$$
; $z = \pm \frac{c}{a} x$ - пара прямих, які перетинаються у початку координат

3)
$$x = 0$$
 $\frac{y^2}{b^2} - \frac{z^2}{c^2} = 0$ - пара прямих

4)
$$z = h$$
 (1) $\Rightarrow \frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{h^2}{c^2}$ (2)

$$\frac{h^2}{c^2} = k^2 > 0$$

$$(2) \Rightarrow \frac{x^2}{k^2 a^2} + \frac{y^2}{k^2 b^2} = 1$$
 – еліпс

5-6) Формули для x = h, y = h виводяться аналогічно

Параболоїди (еліптичний; гіперболічний)

А) Еліптичний параболоїд

$$\frac{x^2}{p} + \frac{y^2}{q} = 2z$$
 (1), де p, q – задані числа одного знака, тобто pq > 0

Для визначеності покладаємо p > 0; q > 0.

- 1) z = 0 $\frac{x^2}{p} + \frac{y^2}{q} = 0$ –точка (0,0,0).
- 2) y = 0 $x^2 = 2pz$ парабола напрямлена гілками вгору.
- 3) x = 0 $y^2 = 2qz$ парабола напрямлена гілками вгору.
- 4) z = h $\frac{x^2}{p} + \frac{y^2}{q} = 2h (2)$ Випадок 1: h > 0 $(2) \Rightarrow \frac{x^2}{2ph} + \frac{y^2}{2qh} = 1 \text{еліпс}$

Випадок 2: h < 0

$$(2) => \emptyset$$

5-6) Формули для x = h, y = h виводяться аналогічно

Б) Гіперболічний параболоїд

$$\frac{x^2}{p} - \frac{y^2}{q} = 2z$$
 (1), де p, q – задані числа одного знака

Для визначенності покладаємо: p > 0, q > 0.

1)
$$z = 0$$

$$\frac{x^2}{p} - \frac{y^2}{q} = 0$$
 – пара прямих, що перетинаються у точці $(0,0,0)$

2)
$$y = 0$$
 $x^2 = 2pz - парабола, напрямлена вгору$

3)
$$x = 0$$
 $y^2 = -2qz$ — парабола, напрямлена вниз

$$(1) \Rightarrow \frac{x^2}{p} - \frac{y^2}{q} = 2h \mid : 2h \neq 0$$

$$\frac{x^2}{2ph} - \frac{y^2}{2qh} = 1 (2)$$

4) z = h

h > 0 – гіпербола, дійсна вісь паралельна Ох

h < 0 – гіпербола, дійсна вісь $\| Oy \|$

5-6) Формули для x = h, y = h виводяться аналогічно

Циліндри

A)
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, \forall z (1)$$

(1) – рівняння еліптичного циліндра

$$\text{B}$$
) $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1, \forall z (2)$

(2) – рівняння гіперболічного циліндра

B)
$$y = 2px, \forall z (3)$$

(3) – рівняння параболічного циліндра

