220427 反三角与向量 题目选解

Eason S.

Section 1 填空题

1. 下列各式正确的是 (1) (3).

(1)
$$\arcsin\left(\sin\frac{5\pi}{4}\right) = -\frac{\pi}{4};$$

(4)
$$\sin\left(\arcsin\frac{\pi}{3}\right) = \frac{\pi}{3};$$

(2)
$$\arcsin\left(-\frac{\pi}{3}\right) = -\frac{\sqrt{3}}{2};$$

(5)
$$\sin\left[\arccos\left(-\frac{1}{2}\right)\right] = -\frac{\sqrt{3}}{2}$$
.

(3)
$$\arccos\left(-\frac{\sqrt{3}}{2}\right) = \frac{5\pi}{6};$$

解析. 反三角函数.

2. 方程 $\sin x = \lg x$ 的实根有 **3** 个.

解析. 可通过函数图像判断方程解的个数的超越方程.

 $\lg x = 1 \text{ iff. } x = 10 > 3\pi,$

3. 满足 $\arccos 2x < \arccos(1-x)$ 的 x 的取值集合为 $\left(\frac{1}{3}, \frac{1}{2}\right]$.

解析. 可化为代数不等式的三角不等式.

4. 已知 A(0,3), B(2,0), C(-1,3) 与 $\overrightarrow{AB} + 2\overrightarrow{AC}$ 方向相反的单位向量是 (0,1).

解析. 向量的基本运算.

5. 在 $\triangle ABC$ 中, $a=5,b=8,C=60^{\circ}$, 则 $\overrightarrow{BC}\cdot\overrightarrow{CA}$ 的值为 -20.

解析. 向量的基本运算, 三角形.

6. 设函数 $y = \arctan x$ 的图像沿 x 轴正方向平移 2 个单位, 所得图像为 C_1 , 又设图像 C_2 与 C_1 关于原点对称, 那么 C_2 所对应的函数是 $y = \arctan(x+2)$.

解析. 函数的变换.

7. 函数 $y = 2 \arcsin 3x \left(0 < x \le \frac{1}{3}\right)$ 的值域为 $(0, \pi]$.

解析. 反三角函数.

8. 方程 $\sin 3x - \sin x = 0$ 的解集是 $\left\{ x | x = k\pi \text{ or } x = \frac{2k+1}{4}\pi, k \in \mathbb{Z} \right\}$.

解析. 可化为代数方程的三角方程.

$$\sin 3x - \sin x = 0 \Rightarrow \sin 3x = \sin x$$

$$\Rightarrow 3x = x + 2k\pi \text{ or } 3x = \pi - x + 2k\pi, k \in \mathbb{Z}$$

$$\Rightarrow x = k\pi \text{ or } 4x = \pi + 2k\pi, k \in \mathbb{Z}$$

$$\Rightarrow x = k\pi \text{ or } x = \frac{2k+1}{4}\pi, k \in \mathbb{Z}.$$

9. 函数 $y = \sin x, x \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$ 的反函数为 $y = \pi - \arcsin x, x \in [-1, 1]$.

解析. 反三角函数.

10. 方程 $\sqrt{5\cos x + \cos 2x} + \sin x = 0$ 在 $[0, 2\pi]$ 上的解集是 $\left\{2\pi - \arccos \frac{1}{3}\right\}$. 解析. 三角方程.

$$\sqrt{5\cos x + \cos 2x} + \sin x = 0, x \in [0, 2\pi] \Rightarrow 5\cos x + \cos 2x = \sin^2 x \text{ and } \sin x \leq 0 \text{ and } x \in [0, 2\pi]$$

$$\Rightarrow 5\cos x + 2\cos^2 x - 1 = 1 - \cos^2 x, x \in [\pi, 2\pi]$$

$$\Rightarrow 2\cos^2 x + 5\cos x - 2 = 0, x \in [\pi, 2\pi]$$

$$\Rightarrow (3\cos x - 1)(\cos x + 2) = 0, x \in [\pi, 2\pi]$$

$$\Rightarrow \cos x = \frac{1}{3} \text{ or } \cos x = -2, x \in [\pi, 2\pi]$$

$$\Rightarrow x = \pm \arccos \frac{1}{3} + 2k\pi, k \in \mathbb{Z} \text{ and } x \in [\pi, 2\pi]$$

$$\Rightarrow x = 2\pi - \arccos \frac{1}{3}.$$

11. 在 $\triangle ABC$ 中, AB = 2, BC = 3, $\angle ABC = 60^\circ$, AD 为 BC 边上的高, O 为 AD 的中点, 若 $\overrightarrow{AO} = \lambda \overrightarrow{AB} + \mu \overrightarrow{BC}$, 其中 $\lambda, \mu \in \mathbb{R}$, 则 $\lambda + \mu$ 等于 $\frac{2}{3}$.

解析. 向量的线性组合.

显然有

$$\overrightarrow{AD} = \overrightarrow{AB} + \overrightarrow{BD} = \overrightarrow{AB} + \frac{1}{6}\overrightarrow{BC},$$

又O为AD中点,有

$$\overrightarrow{AO} = \frac{1}{2}\overrightarrow{AD} = \frac{1}{2}\overrightarrow{AB} + \frac{1}{6}\overrightarrow{BC},$$

于是有 $\lambda=\frac{1}{2}, \mu=\frac{1}{6}, \lambda+\mu=\frac{2}{3}.$ **12.** 如图, 菱形 ABCD 的边长为 2, $\angle BAD=60^\circ, M$ 为 DC 的中点, 若 N 为菱形内任意一点 (含边界), 则 $\overrightarrow{AM} \cdot \overrightarrow{AN}$ 的最大值为 9.

解析. 向量几何综合.

由向量的内积的定义,有

$$\overrightarrow{AM} \cdot \overrightarrow{AN} = \left| \overrightarrow{AM} \right| \operatorname{Prj}_{\overrightarrow{AM}} \overrightarrow{AN},$$

于是有

$$\begin{aligned} \max\left(\overrightarrow{AM}\cdot\overrightarrow{AN}\right) &= \overrightarrow{AM}\cdot\overrightarrow{AC} \\ &= \left(\frac{1}{2}\overrightarrow{AB} + \overrightarrow{AD}\right)\cdot\left(\overrightarrow{AB} + \overrightarrow{AD}\right) \\ &= \frac{1}{2}\overrightarrow{AB}^2 + \overrightarrow{AD}^2 + \frac{3}{2}\overrightarrow{AB}\cdot\overrightarrow{AD} \\ &= 9. \end{aligned}$$

Section 2 解答题

13. 已知函数 $f(x) = \sqrt{3}\cos^2 x + \sin x \cos x, x \in [0, \pi],$

(1) 求函数 f(x) 的单调递增区间. $\left[0, \frac{\pi}{12}\right], \left[\frac{7\pi}{12}, \pi\right]$.

解析. 三角函数的单调性.

$$f(x) = \sqrt{3}\cos^2 x + \sin x \cos x = \sin\left(2x + \frac{\pi}{3}\right) + \frac{\sqrt{3}}{2}.$$

(2) 如果关于 x 的方程 |f(x)|=m,在区间 $(0,\pi)$ 上有两个不同的实根,求实数 m 的取值范围. $m\in$ $\{0\} \cup \left(1 - \frac{\sqrt{3}}{2}, \sqrt{3}\right) \cup \left(\sqrt{3}, 1 + \frac{\sqrt{3}}{2}\right).$

解析. 利用图像解方程.

14. 甲船在 A 处观察到乙船在它的北偏东 60° 方向的 B 处,两船相距 a 海里,乙船正向北行驶,若甲船是乙船速度的 $\sqrt{3}$ 倍,问甲船应取什么方向前进才能在最短时间内追上乙船?此时乙船行驶多少海里? 北偏东 30° ; a 海里.

解析. 太水了, 不写.

15. 已知 $\vec{a} = (\cos \alpha, \sin \alpha), \vec{b} = (\cos \beta, \sin \beta),$ 其中 $0 < \alpha < \beta < \pi$,

(1) 求证: $\vec{a} + \vec{b} = \vec{a} - \vec{b}$ 互相垂直.

解析. 向量垂直 (正交) ⇔ 内积为 0.

(2) 若 $k\vec{a} + \vec{b}$ 与 $\vec{a} - k\vec{b}$ 的长度相等, 求 $\beta - \alpha$ 的值, 其中 $k \in \mathbb{R} \setminus \{0\}$. $\frac{\pi}{2}$. 解析. 向量的模相等 \Leftrightarrow 向量的模的平方相等 \Leftrightarrow 向量与自身的内积相等.

$$\begin{split} \left|k\vec{a} + \vec{b}\right| &= \left|\vec{a} - k\vec{b}\right| \Rightarrow \left|k\vec{a} + \vec{b}\right|^2 = \left|\vec{a} - k\vec{b}\right|^2 \\ &\Rightarrow \left(k\vec{a} + \vec{b}\right)^2 = \left(a - k\vec{b}\right)^2 \\ &\Rightarrow k^2 \left|\vec{a}\right|^2 + 2k\vec{a} \cdot \vec{b} + \left|\vec{b}\right|^2 = \left|\vec{a}\right|^2 - 2k\vec{a} \cdot \vec{b} + k^2 \left|\vec{b}\right|^2. \end{split}$$

有 $|\vec{a}| = \left| \vec{b} \right| = 1$,有

$$k^2 + 2k\vec{a} \cdot \vec{b} + 1 = 1 - 2k\vec{a} \cdot \vec{b} + k^2$$
.

有

$$\vec{a} \cdot \vec{b} = 0.$$

即

$$(\cos \alpha, \sin \alpha) \cdot (\cos \beta, \sin \beta) = 0,$$

即

$$\cos \alpha \cos \beta + \sin \alpha \sin \beta = 4 \cos(\beta - \alpha) = 0.$$

因为有
$$0 < \alpha < \beta < \pi$$
, 有 $\beta - \alpha = \frac{\pi}{2}$.

Section 3 附加题

16. 在 $\triangle ABC$ 中, $\overrightarrow{AB} \cdot \overrightarrow{AC} = \left| \overrightarrow{AB} - \overrightarrow{AC} \right| = 2$.

(1) 求 $\left| \overrightarrow{AB} \right|^2 + \left| \overrightarrow{AC} \right|^2$ 的值. 8.

解析. 向量的基础应用.

显然有

$$\left|\overrightarrow{AB}\right|^2 + \left|\overrightarrow{AC}\right|^2 - 2\overrightarrow{AB} \cdot \overrightarrow{AC} = 4,$$

即

$$\left|\overrightarrow{AB}\right|^2 + \left|\overrightarrow{AC}\right|^2 = 2\overrightarrow{AB} \cdot \overrightarrow{AC} + 4,$$

又 $\overrightarrow{AB} \cdot \overrightarrow{AC} = 2$, 有

$$\left|\overrightarrow{AB}\right|^2 + \left|\overrightarrow{AC}\right|^2 = 8.$$

(2) 当 $\triangle ABC$ 的面积最大时, 求 $\angle A$ 的大小. $\frac{\pi}{3}$.

解析. 三角形面积公式, 同角三角比.

由向量的内积的定义,有
$$\cos \angle BAC = \frac{2}{\left|\overrightarrow{AB}\right| \cdot \left|\overrightarrow{AC}\right|}$$
,有

$$\sin \angle BAC = \sqrt{1 - \left(\frac{2}{\left|\overrightarrow{AB}\right| \cdot \left|\overrightarrow{AC}\right|}\right)^2} = \frac{\sqrt{\left(\left|\overrightarrow{AB}\right| \cdot \left|\overrightarrow{AC}\right|\right)^2 - 4}}{\left|\overrightarrow{AB}\right| \cdot \left|\overrightarrow{AC}\right|}.$$

由三角形正弦面积公式

$$\begin{split} S_{\triangle ABC} &= \frac{1}{2} \left| \overrightarrow{AB} \right| \cdot \left| \overrightarrow{AC} \right| \sin \angle BAC \\ &= \frac{1}{2} \sqrt{\left(\left| \overrightarrow{AB} \right| \cdot \left| \overrightarrow{AC} \right| \right)^2 - 4} \\ &\leq \frac{1}{2} \sqrt{\left(\left| \overrightarrow{AB} \right| + \left| \overrightarrow{AC} \right| \right)^4 - 4}, \end{split}$$

等号成立当且仅当 $\left|\overrightarrow{AB}\right| = \left|\overrightarrow{AC}\right| = 2$,即 $\cos \angle BAC = \frac{1}{2}$,即 $\angle BAC = \frac{\pi}{3}$.