ETSI/SAGE Specification

Version: 1.0

Date: 10th January 2006

Specification of the 3GPP Confidentiality and Integrity Algorithms UEA2 & UIA2

Document 3: Implementors' Test Data

Blank Page

PREFACE

This specification has been prepared by the 3GPP Task Force, and gives detailed test data for implementors of the algorithm set. It provides visibility of the internal state of the algorithm to aid in the realisation of the algorithms.

This document is the third of four, which between them form the entire specification of the 3GPP Confidentiality and Integrity Algorithms:

• Specification of the 3GPP Confidentiality and Integrity Algorithms *UEA2* & *UIA2*.

Document 1: Algorithm Specifications.

Specification of the 3GPP Confidentiality and Integrity Algorithms UEA2 & UIA2

Document 2: SNOW 3G Algorithm Specification.

• Specification of the 3GPP Confidentiality and Integrity Algorithms *UEA2* & *UIA2*.

Document 3: Implementors' Test Data.

Specification of the 3GPP Confidentiality and Integrity Algorithms UEA2 & UIA2.

Document 4: Design Conformance Test Data.

This document is purely informative. The normative part of the specification of the *UEA2* (confidentiality) and the *UIA2* (integrity) algorithms is in the main body of document 1. The normative part of the specification of **SNOW 3G** is found in document 2.

Blank Page

TABLE OF CONTENTS

1.	OUTLINE OF THE IMPLEMENTORS' TEST DATA	7
2.	INTRODUCTORY INFORMATION	7
۷.	2.1. Introduction	
	2.2. Radix	
	2.3. Bit/Byte ordering	
	2.4. Presentation of input/output data	
3.	SNOW 3G	8
	3.1. Overview	8
	3.2. Format	8
	3.3. Test Set 1	8
	3.4. Test Set 2	
	3.5. Test Set 3	
	3.6. Test Set 4	11
4.	CONFIDENTIALITY ALGORITHM UEA2	12
	4.1. Overview	12
	4.2. Format	12
	4.3. Test Set 1	12
	4.4. Test Set 2	13
	4.5. Test Set 3	13
	4.6. Test Set 4	14
	4.7. Test Set 5	14
5.	INTEGRITY ALORITHM <i>UIA2</i>	15
	5.1. Overview	15
	5.2. Format.	
	5.3. Test Set 1	
	5.4. Test Set 2	
	5.5. Test Set 3	
	5.6. Test Set 4	
	5.7. Test Set 5	
	5 8 Test Set 6	

REFERENCES

- [1] 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; 3G Security; Security Architecture (3G TS 33.102 version 6.3.0)
- [2] 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; 3G Security; Cryptographic Algorithm Requirements; (3G TS 33.105 version 6.0.0)
- [3] Specification of the 3GPP Confidentiality and Integrity Algorithms *UEA2 & UIA2*. Document 1: *UEA2* and *UIA2* specifications.
- [4] Specification of the 3GPP Confidentiality and Integrity Algorithms *UEA2 & UIA2*. Document 2: **SNOW 3G** specification.
- [5] Specification of the 3GPP Confidentiality and Integrity Algorithms *UEA2 & UIA2*. Document 3: Implementors' Test Data.
- [6] Specification of the 3GPP Confidentiality and Integrity Algorithms *UEA2 & UIA2*. Document 4: Design Conformance Test Data.
- [7] P. Ekdahl and T. Johansson, "A new version of the stream cipher SNOW", in Selected Areas in Cryptology (SAC 2002), LNCS 2595, pp. 47–61, Springer-Verlag,

1. OUTLINE OF THE IMPLEMENTORS' TEST DATA

Section 2 introduces the algorithms and describes the notation used in the subsequent sections.

Section 3 provides test data for **SNOW 3G**.

Section 4 provides test data for the Confidentiality Algorithm *UEA2*.

Section 5 provides test data for the Integrity Algorithm *UIA2*.

2. INTRODUCTORY INFORMATION

2.1. Introduction

Within the security architecture of the 3GPP system there are two standardised algorithms; a confidentiality algorithm *UEA2*, and an integrity algorithm *UIA2*. These algorithms are specified in a companion document [3]. Each of these algorithms is based on the **SNOW 3G** algorithm that is specified in [4].

To assist implementors with their realisation of the algorithm set this document provides test data for these algorithms along with extensive detail of the internal states of the algorithms as they process the given input data.

Final testing of the algorithms should be performed using the test data sets given in the "Design Conformance" companion document [6].

2.2. Radix

Unless stated otherwise, all test data values presented in this document are in hexadecimal.

2.3. Bit/Byte ordering

All data variables in this specification are presented with the most significant bit (or byte) on the left hand side and the least significant bit (or byte) on the right hand side. Where a variable is broken down into a number of sub-strings, the left most (most significant) substring is numbered 0, the next most significant is numbered 1 and so on through to the least significant.

For example the 128-kit key K is subdivided into four 32-bit substrings K_0 , K_1 , K_2 , K_3 so if we have a key

K = 0123456789ABCDEFFEDCBA9876543210

we have:

 $K_0 = 01234567$, $K_1 = 89$ ABCDEF, $K_2 = FEDCBA98$, $K_3 = 76543210$.

2.4. Presentation of input/output data

The basic data processed by the *UEA2* and *UIA2* algorithms are bit streams. In general in this document the data is presented in hexadecimal format as bytes, thus the last byte shown as part of an input or output data stream may include between 0 and 7 bits that are ignored once the **LENGTH** parameter is taken into account. (The least significant bits of the byte are ignored).

3. SNOW 3G

3.1. Overview

The test data sets presented here are for the SNOW 3G stream cipher algorithm.

3.2. Format

Each test set starts by showing the input and output data values.

This is followed by a table showing the state of the LFSR at the beginning of the computation.

Then for the first 8 steps of the initialisation the content of s_0 , s_2 , s_5 , s_{11} , s_{15} , R1, R2, R3 is given in a table.

Then the state of the LFSR and the FSM at the end of the initialisation is given.

For the first 3 steps of keystream generation s_0 , s_2 , s_5 , s_{11} , s_{15} , R1, R2, R3 are given in a table.

Finally the output $\mathbf{z}_1, \mathbf{z}_2, \dots$ is given.

3.3. Test Set 1

input:

Key: 2B D6 45 9F 82 C5 B3 00 95 2C 49 10 48 81 FF 48 IV: EA 02 47 14 AD 5C 4D 84 DF 1F 9B 25 1C 0B F4 5F

output:

z₁: AB EE 97 04 **z**₂: 7A C3 13 73

K ₀	K ₁	K ₂	K ₃
2B D6 45 9F	82 C5 B3 00	95 2C 49 10	48 81 FF 48
IV ₀	IV ₁	IV ₂	IV ₃
EA 02 47 14	AD 5C 4D 84	DF 1F 9B 25	1C 0B F4 5F

Initialisation Mode

LFSR-state at the beginning:

i	$oldsymbol{\mathcal{S}}_{0^+\mathrm{i}}$	$oldsymbol{\mathcal{S}}_{1+i}$	$\boldsymbol{\mathcal{S}}_{2+i}$	S _{3+i}	\mathcal{S}_{4+i}	S 5+i	S _{6+i}	S 7+i
0	D429BA60	7D3A4CFF	6AD3B6EF	B77E00B7	2BD6459F	82C5B300	952C4910	4881FF48
8	D429BA60	6131B8A0	B5CC2DCA	B77E00B7	868A081B	82C5B300	952C4910	A283B85C

	S_0	$\boldsymbol{\mathcal{S}}_2$	S 5	$\boldsymbol{\mathcal{S}}_{11}$	$\boldsymbol{\mathcal{S}}_{15}$	R1	R2	R3
0	D429BA60	6AD3B6EF	82C5B300	B77E00B7	A283B85C	00000000	00000000	00000000
1	7D3A4CFF	B77E00B7	952C4910	868A081B	97DF2884	82C5B300	63636363	25252525
2	6AD3B6EF	2BD6459F	4881FF48	82C5B300	311BA301	136CCF98	486C5BC4	93939393
3	B77E00B7	82C5B300	D429BA60	952C4910	A69FCBCB	237EC89F	EAEBC424	4B7815EA
4	2BD6459F	952C4910	6131B8A0	A283B85C	E76F0ADA	8A3D73AE	21A4385B	E662EC27

5	82C5B300	4881FF48	B5CC2DCA	97DF2884	A52DCD12	A8F78CE2	63A7F600	BC3F3A8D
6	952C4910	D429BA60	B77E00B7	311BA301	1A349A62	6D9B0D47	20712A2D	391D0883
7	4881FF48	6131B8A0	868A081B	A69FCBCB	2A2A44DB	AED43261	401B1511	45A6ED60

LFSR-state after completion of the initialisation mode:

i	$oldsymbol{\mathcal{S}}_{0^+\mathrm{i}}$	$\boldsymbol{\mathcal{S}}_{1+i}$	$\boldsymbol{\mathcal{S}}_{2+i}$	S _{3+i}	$\boldsymbol{\mathcal{S}}_{4+\mathrm{i}}$	S 5+i	S _{6+i}	S 7+i
0	8F1215A6	E003A052	9241C929	68D7BF8C	16BF4C2A	8DEF9D70	32381704	11DD346A
8	E18B81EA	77EBD4FE	57ED9505	0C33C0EF	1A037B59	97591E82	A91CCB44	7B48E04F

FSM-state after completion of the initialisation mode:

R1 = 61DA9249

R2 = 427DF38C

R3 = 0FB6B101

Keystream mode

	S_0	S_2	S ₅	$\boldsymbol{\mathcal{S}}_{11}$	$\boldsymbol{\mathcal{S}}_{15}$	R1	R2	R3
0	E003A052	68D7BF8C	32381704	1A037B59	1646644C	C4D71FFD	90F0B31F	CC612008
1	9241C929	16BF4C2A	11DD346A	97591E82	52E43190	8F49EA2B	0AACC1E1	3367438C
2	68D7BF8C	8DEF9D70	E18B81EA	A91CCB44	B737110E	2D6739C7	5295DA23	5293E49E

Output:

 $\mathbf{z}_1 = AB EE 97 04$

 $\mathbf{z}_2 = 7A C3 13 73$

3.4. Test Set 2

input:

Key: 8C E3 3E 2C C3 C0 B5 FC 1F 3D E8 A6 DC 66 B1 F3
IV: D3 C5 D5 92 32 7F B1 1C DE 55 19 88 CE B2 F9 B7

output:

z₁: EF F8 A3 42 **z**₂: F7 51 48 0F

Initialisation Mode

LFSR-state at the beginning:

			s _{2+i}					
0	731CC1D3	3C3F4A03	E0C21759	23994E0C	8CE33E2C	C3C0B5FC	1F3DE8A6	DC66B1F3
8	731CC1D3	F28DB3B4	3E970ED1	23994E0C	BE9C8F30	C3C0B5FC	1F3DE8A6	0FA36461

	S_0	$\boldsymbol{\mathcal{S}}_2$	S ₅	$\boldsymbol{\mathcal{S}}_{11}$	$\boldsymbol{\mathcal{S}}_{15}$	R1	R2	R3
0	731CC1D3	E0C21759	C3C0B5FC	23994E0C	0FA36461	00000000	00000000	00000000
1	3C3F4A03	23994E0C	1F3DE8A6	BE9C8F30	EF81E474	C3C0B5FC	63636363	25252525

2	E0C21759	8CE33E2C	DC66B1F3	C3C0B5FC	7A554815	9D7C30E6	F878FA8B	93939393
3	23994E0C	C3C0B5FC	731CC1D3	1F3DE8A6	53E0AE66	486E1CEB	2148E845	098F198B
4	8CE33E2C	1F3DE8A6	F28DB3B4	0FA36461	9A1EE9B8	9BDCC09D	87A622BB	EFFA4239
5	C3C0B5FC	DC66B1F3	3E970ED1	EF81E474	2390FE04	A51E1448	F6CFB4FB	2087DC1D
6	1F3DE8A6	731CC1D3	23994E0C	7A554815	6FB8C36C	14E087C7	72462DC5	0B8BF471
7	DC66B1F3	F28DB3B4	BE9C8F30	53E0AE66	BA5DB98F	9A58E842	481D2AB5	5C8EE565

LFSR-state after completion of the initialisation mode:

i	$oldsymbol{\mathcal{S}}_{0^+i}$	$\boldsymbol{\mathcal{S}}_{1+i}$	$\boldsymbol{\mathcal{S}}_{2+i}$	S _{3+i}	$\boldsymbol{\mathcal{S}}_{4+i}$	S 5+i	S _{6+i}	S 7+i
0	04D6A929	942E1440	82ABD3FE	5832E9F4	5F9702A0	08712C81	644CC9B9	DBF6DE13
8	BAA5B1D0	92E9DD53	A2E2FA6D	CE6965AA	02C0CD4E	6E6D984F	114A90E7	5279F8DA

FSM-state after completion of the initialisation mode:

R1 = 65130120

R2 = A14C7DBD

R3 = B68B551A

Keystream mode

	$\mathcal{oldsymbol{\mathcal{S}}}_0$	$\boldsymbol{\mathcal{S}}_2$	S ₅	$\boldsymbol{\mathcal{S}}_{11}$	$\boldsymbol{\mathcal{S}}_{15}$	R1	R2	R3
0	942E1440	5832E9F4	644CC9B9	02C0CD4E	C1E93B6B	6046F758	59E685C1	7DCBC989
1	82ABD3FE	5F9702A0	DBF6DE13	6E6D984F	CEB99926	736D85F1	37DD84E6	A9BECBB1
2	5832E9F4	08712C81	BAA5B1D0	114A90E7	E34F6919	AA259A88	56C45F48	C3546A61

Output:

 $z_1 = EF F8 A3 42$

 $\mathbf{z}_2 = F7 51 48 0F$

3.5. Test Set 3

input:

Key: 40 35 C6 68 0A F8 C6 D1 A8 FF 86 67 B1 71 40 13 IV: 62 A5 40 98 1B A6 F9 B7 45 92 B0 E7 86 90 F7 1B

output:

z₁: A8 C8 74 A9 **z**₂: 7A E7 C4 F8

K₀ K₁ K₂ K₃ 40 35 C6 68 0A F8 C6 D1 A8 FF 86 67 B1 71 40 13 IV₀ IV₁ IV₂ IV₃ 62 A5 40 98 1B A6 F9 B7 45 92 B0 E7 86 90 F7 1B

Initialisation Mode

LFSR-state at the beginning:

i	$\boldsymbol{\mathcal{S}}_{0+\mathrm{i}}$	$oldsymbol{\mathcal{S}}_{1+i}$	S _{2+i}	S _{3+i}	$\boldsymbol{\mathcal{S}}_{4+i}$	S 5+i	$\boldsymbol{\mathcal{S}}_{6+\mathrm{i}}$	S 7+i
0	BFCA3997	F507392E	57007998	4E8EBFEC	4035C668	0AF8C6D1	A8FF8667	B1714013
8	BFCA3997	7397CE35	1292C97F	4E8EBFEC	5B933FDF	0AF8C6D1	A8FF8667	D3D4008B
	-							
	$\mathcal{oldsymbol{\mathcal{S}}}_0$	$\boldsymbol{\mathcal{S}}_2$	S ₅	\mathcal{S}_{11}	$\boldsymbol{\mathcal{S}}_{15}$	R1	R2	R3

0	BFCA3997	57007998	0AF8C6D1	4E8EBFEC	D3D4008B	00000000	00000000	00000000
1	F507392E	4E8EBFEC	A8FF8667	5B933FDF	EE2CABF5	0AF8C6D1	63636363	25252525
2	57007998	4035C668	B1714013	0AF8C6D1	667356A3	F13E06A5	79A1E99D	93939393
3	4E8EBFEC	0AF8C6D1	BFCA3997	A8FF8667	6410181D	9C84BD1D	8EEEB4AE	E5995CC4
4	4035C668	A8FF8667	7397CE35	D3D4008B	241A7790	E9421A01	75196F5C	C83E1776
5	0AF8C6D1	B1714013	1292C97F	EE2CABF5	C485B826	30C3489F	36A44937	0F317420
6	A8FF8667	BFCA3997	4E8EBFEC	667356A3	A211C1E9	54480696	02D90971	3D982023
7	B1714013	7397CE35	5B933FDF	6410181D	6E8AE7E6	75EFA940	D63B98F8	883F13A7

LFSR-state after completion of the initialisation mode:

	1. 5.00.00	arcer e		11 01 011			·	
i	$\boldsymbol{\mathcal{S}}_{0^+i}$	$oldsymbol{\mathcal{S}}_{1+i}$	$\mathbf{\mathcal{S}}_{2+i}$	$\mathbf{\mathcal{S}}_{3+i}$	$\boldsymbol{\mathcal{S}}_{4+i}$	$\boldsymbol{\mathcal{S}}_{5+i}$	$\mathbf{\mathcal{S}}_{6+\mathrm{i}}$	S _{7+i}
0	FEAFBAD8	1B11050A	23708014	AC8494DB	ED97D431	DBBB59B3	6CD30005	7EC36405
8	B20F02AC	EB407735	50E41A0E	FFA8ABC1	EB4800A7	D4E6749D	D1C452FE	A92A3153

FSM-state after completion of the initialisation mode:

R1 = 6599AA50

R2 = 5EA9188B

R3 = F41889FC

Keystream mode

	S_0	S_2	S_5	$\boldsymbol{\mathcal{S}}_{11}$	$\boldsymbol{\mathcal{S}}_{15}$	R1	R2	R3
0	1B11050A	AC8494DB	6CD30005	EB4800A7	0FE91C6F	8E4CE8DA	2DEF74EA	42B4B0A3
1	23708014	ED97D431	7EC36405	D4E6749D	C3CB3734	5C572590	79B51828	2496A1E1
2	AC8494DB	DBBB59B3	B20F02AC	D1C452FE	739AB29C	D40ADE0C	5037В990	32D1FAE0

Output:

 $z_1 = A8 C8 74 A9$

 $\mathbf{z}_2 = 7A E7 C4 F8$

3.6. Test Set 4

This test ensures that all entries in the tables S_R, T0, T1, T2, T3, S2_T0, S2_T1, S2_T2, S2_T3 and MUL_{α} , DIV_{α} are correct. For a fixed key and IV the algorithm is clocked 2500 times in keystream mode. With the given data every entry will be used at least once.

Iterated test for full tables coverage
input:

Key: 0D ED 72 63 10 9C F9 2E 33 52 25 5A 14 0E 0F 76 IV: 6B 68 07 9A 41 A7 C4 C9 1B EF D7 9F 7F DC C2 33

output:

 z_1 : D7 12 C0 5C z_2 : A9 37 C2 A6 z_3 : EB 7E AA E3

••

z₂₅₀₀: 9C 0D B3 AA

4. CONFIDENTIALITY ALGORITHM *UEA2*

4.1. Overview

The test data sets presented here are for the *UEA2* confidentiality algorithm. No detailed data is presented for the internal states of **SNOW 3G** as that is covered in section 3.

4.2. Format

Each test set starts by showing the various inputs to the algorithm including the data stream to be encrypted/decrypted. (The length field is in decimal). This is followed by:

```
the key words \mathbf{K}_0, \mathbf{K}_1, \mathbf{K}_2, \mathbf{K}_3
the Initialisation Variables \mathbf{IV}_0, \mathbf{IV}_1, \mathbf{IV}_2, \mathbf{IV}_3.
```

Thereafter three columns of data are shown.

Word number shows the number of the current 32-bit word.

Keystream shows the 32-bit output from **SNOW 3G**.

Enc/dec data shows the modified input data, i.e. it is the bitwise exclusive-or of the

corresponding keystream and the input data to the algorithm. As this is a bitwise stream cipher it is purely a matter of context whether the operation is

regarded as "encryption" or "decryption".

4.3. Test Set 1

```
Count.-C
          = 72A4F20F
Bearer
        = 0C
Direction = 1
         = 2B D6 45 9F 82 C5 B3 00 95 2C 49 10 48 81 FF 48
        = 798 bits
Length
Plaintext:
7EC61272 743BF161 4726446A 6C38CED1
66F6CA76 EB543004 4286346C EF130F92
922B0345 0D3A9975 E5BD2EA0 EB55AD8E
1B199E3E C4316020 E9A1B285 E7627953
59B7BDFD 39BEF4B2 484583D5 AFE082AE
E638BF5F D5A60619 3901A08F 4AB41AAB
9B134880
                K_1
                                 K_2
K_0
                                                  K_3
                                 82 C5 B3 00 2B D6 45 9F
                95 2C 49 10
48 81 FF 48
IV_0
                                 IV_2
                 IV_1
                                                   IV_3
64 00 00 00
                72 A4 F2 OF
                                 64 00 00 00
                                                   72 A4 F2 OF
Wordnumber
                      Keystream
                                            enc/dec data
   0
                     F22DB45B 37E71C5B
                                           8CEBA629 43DCED3A
   2
                      4EB6F404 CD886C15
                                            0990B06E A1B0A2C4
                      9DCA27B1 F062AF46
                                            FB3CEDC7 1B369F42
   6
                      F8E2F587 8976E8B8
                                            BA64C1EB 6665E72A
   8
                      33E2B848 E798969D
                                            A1C9BB0D EAA20FE8
```

10	85E5961A 057	7983F1 6058B8B	A EE2C2E7F
12	10F55076 711	L85285 OBECCE48	B52932A5
14	D53CED16 FD5	580500 3C9D5F93	3 1A3A7C53
16	7BEE12BE 1C5	5C52EC 2259AF43	3 25E2A65E
18	78C12E8A C5E	3084AD5	F 6A513B7B
20	3BF90900 DF0)6DF63 DDC1B651	F 0AA0D97A
22	3C3C15D5 C27	70DE52 053DB552	A 88C4C4F9
24	FB4D09C0	605E4140)

4.4. Test Set 2

Count-C = E28BCF7B

= 18 Bearer Direction = 0

= EF A8 B2 22 9E 72 OC 2A 7C 36 EA 55 E9 60 56 95

= 510 bits Length

Plaintext:

CO 00 00 00

10111231 E060253A 43FD3F57 E37607AB 2827B599 B6B1BBDA 37A8ABCC 5A8C550D 1BFB2F49 4624FB50 367FA36C E3BC68F1 1CF93B15 10376B02 130F812A 9FA169D8

 K_0 K_2 K_3 9E 72 0C 2A EF A8 B2 22 E9 60 56 95 7C 36 EA 55 IV_2 IV_3 IV_1

E2 8B CF 7B

Wordnumber Keystream enc/dec data F0CB07FB 6E4571CF E0DA15CA 8E2554F5 \cap

CO 00 00 00

E2 8B CF 7B

A691AB3F 3F1A7BB9 E56C9468 DC6C7C12 2 B4713F3C B592AC3A 9C568AA5 032317E0 4 79AF82A8 3627BAAB 4E072964 6CABEFA6 6 89864C41 0F24F919 8 927D6308 49000249 D0619E91 196B16A7 E61E3DFD FAD77E56 10 114992D8 26F421E6 0DB0A9CD 36C34AE4 12 181490B2 9F5FA2FC 0B1B1198 00FECB24

Test Set 3 4.5.

14

Count-C = FA556B26

= 03 Bearer Direction = 1

CK = 5A CB 1D 64 4C 0D 51 20 4E A5 F1 45 10 10 D8 52

= 120 bits Length

Plaintext:

AD9C441F 890B38C4 57A49D42 1407E8

 K_2 K_1 Kз

4E A5 F1 45 4C 0D 51 20 10 10 D8 52 5A CB 1D 64

 ${\tt IV}_2$ IV_1 IV_0 IV3

1C 00 00 00 FA 55 6B 26 1C 00 00 00 FA 55 6B 26

Keystream Wordnumber enc/dec data

1793752F 8A3FFDAF BA0F3130 0334C56B 0

2 52A7497C BAC046 0503D43E AEC7AE

Test Set 4 4.6.

Count-C = 398A59B4

Bearer = 05Direction = 1

CK = D3 C5 D5 92 32 7F B1 1C 40 35 C6 68 0A F8 C6 D1

Length = 253 bits

Plaintext:

981BA682 4C1BFB1A B4854720 29B71D80 8CE33E2C C3C0B5FC 1F3DE8A6 DC66B1F0

 K_0 K_1 K_2 K_3

40 35 C6 68 32 7F B1 1C 0A F8 C6 D1 D3 C5 D5 92

 IV_1 IV_2 IV_3

39 8A 59 B4 2C 00 00 00 2C 00 00 00 39 8A 59 B4

Wordnumber Keystream enc/dec data 0080D71E 902835AD 989B719C DC33CEB7 2 7BA22D72 ABCBF214 CF276A52 827CEF94 298F7EEC 685D340B A56C40C0 AB9D81F7 BD945260 D2777540 A2A9BAC6 0E11C4B0

4.7. Test Set 5

Count-C = 72A4F20FBearer = 09

Direction = 0

CK = 60 90 EA E0 4C 83 70 6E EC BF 65 2B E8 E3 65 66 Length = 837 bits

Plaintext:

40981BA6 824C1BFB 4286B299 783DAF44 2C099F7A B0F58D5C 8E46B104 F08F01B4 1AB48547 2029B71D 36BD1A3D 90DC3A41 B46D5167 2AC4C966 3A2BE063 DA4BC8D2 808CE33E 2CCCBFC6 34E1B259 60876A0 FBB5A437 EBCC8D31 C19E4454 318745E3

98764598 7A986F2C B0

 K_0 K_1 K_2

EC BF 65 2B 4C 83 70 6E E8 E3 65 66 60 90 EA EO

 IV_0 IV_3 IV_1 IV_2

48 00 00 00 72 A4 F2 OF 48 00 00 00 72 A4 F2 OF

Wordnumber	Keystream	enc/dec data
0	180AA00E 09F7D155	5892BBA8 8BBBCAAE
2	ECF02839 1355927E	AE769AA0 6B683D3A
4	3BC59BD9 D97D9BCB	17CC04A3 69881697
6	CD18F5FA 25709B41	435E44FE D5FF9AF5
8	612A0C4A 6D75D36D	7B9E890D 4D5C6470
10	AE38CEB7 74DAAAAD	9885D48A E40690EC
12	B056FB8E 5A935F82	043BAAE9 705796E4
14	93D4BA28 57C0FE05	A9FF5A4B 8D8B36D7
16	7372B4F2 4031D316	F3FE57CC 6CFD6CD0
18	312C8A0B AE56E26E	05CD3852 A85E94CE
20	907834E7 3BB4B4FF	6BCD90D0 D07839CE
22	C8ED7110 FB0970EB	09733544 CA8E3508
24	DB52C0C8 E8B2AE04	43248550 922AC128

26 A8 18

5. INTEGRITY ALORITHM *UIA2*

5.1. Overview

The test data sets presented here are for the *UIA2* integrity algorithm. No detailed data is presented for the internal states of **SNOW 3G** as that is covered in section 3.

5.2. Format

The test data set shows the input values to the algorithm.

This is followed by:

the key words \mathbf{K}_0 , \mathbf{K}_1 , \mathbf{K}_2 , \mathbf{K}_3 the Initialisation Variables \mathbf{IV}_0 , \mathbf{IV}_1 , \mathbf{IV}_2 and \mathbf{IV}_3 the keystream words \mathbf{z}_1 , \mathbf{z}_2 , \mathbf{z}_3 , \mathbf{z}_4 , \mathbf{z}_5 . the value $\mathbf{P} = \mathbf{z}_1 \parallel \mathbf{z}_2$ the value $\mathbf{Q} = \mathbf{z}_3 \parallel \mathbf{z}_4$.

Then for each message word M_i , $0 \le i \le \mathbf{D}$ -1 this word M_i and the intermediate value EVAL are given. After that the result of the multiplication of EVAL by \mathbf{Q} is displayed.

Finally the output **MAC-I** of the *UIA2*-algorithm is shown.

5.3. Test Set 1

```
COUNT-I
            = 38A6F056
           = 05D2EC49
FRESH
           = 2B D6 45 9F 82 C5 B3 00 95 2C 49 10 48 81 FF 48
           = 189 bits
LENGTH
MESSAGE:
6B227737296F393C 8079353EDC87E2E8 05D2EC49A4F2D8E0
                                    {\rm K}_2
K_0
                                                       K_3
                  95 2C 49 10
                                    82 C5 B3 00
48 81 FF 48
                                                       2B D6 45 9F
IV_0
                  IV_1
                                    IV_2
                                                       IV_3
05 D2 EC 49
                  38 A6 F0 56
                                    05 D2 EC 49
                                                       38 A6 F0 56
                              Z3
                              7E 1B 8E 28 25 EC 4C AA
DC 0D 53 25
               2A 5D 31 90
                                                            63 D9 C7 7C
P= DC 0D 53 25
                2A 5D 31 90
O= 7E 1B 8E 28
                25 EC 4C AA
            Μi
                                  EVAL
```

Ω	6D227727	296F393C	00770000	0D8C242D
U	00221131	290F393C	ODA/ODCD	00002420
1	8079353E	DC87E2E8	7559CCE4	3F4DCEB5
2	05D2EC49	A4F2D8E0	8C108081	F386B04E
3	00000000	000000BD	8C108081	F386B0F3

Multiply by Q: EVAL= 4817DF5C 251B5E20

MAC-I: 2BCE1820

5.4. Test Set 2

COUNT-I = 3EDC87E2FRESH = A4F2D8E2

DIRECTION = 1

IK = D4 2F 68 24 28 20 1C AF CD 9F 97 94 5E 6D E7 B7

LENGTH = 254 bits

MESSAGE:

B5924384328A4AE0 0B737109F8B6C8DD 2B4DB63DD533981C EB19AAD52A5B2BC0

K₀ K₁ K₂ K₃ 5E 6D E7 B7 CD 9F 97 94 28 20 1C AF D4 2F 68 24

IV₀ IV₁ IV₂ IV₃

A4 F2 58 E2 BE DC 87 E2 A4 F2 D8 E2 3E DC 87 E2

P= 67 0E 29 DE 2A D6 DE 7E Q= A4 2A D0 48 40 7A 24 AC

i Mi EVAL

0 B5924384 328A4AE0 E7354091 E1B57157

1 0B737109 F8B6C8DD 655CA81A A179F483

2 2B4DB63D D533981C E6E0FD58 B1B4BA89

3 EB19AAD5 2A5B2BC0 9BC353AA 5FE30866

4 00000000 000000FE 9BC353AA 5FE30898

Multiply by Q: EVAL= DC8378CD FD41FE17

MAC-I: FC7B18BD

5.5. Test Set 3

COUNT-I = 36AF6144 FRESH = 9838F03A

DIRECTION = 1

IK = FD B9 CF DF 28 93 6C C4 83 A3 18 69 D8 1B 8F AB

LENGTH = 319 bits

MESSAGE:

5932BC0ACE2B0ABA 33D8AC188AC54F34 6FAD10BF9DEE2920 B43BD0C53A915CB7

DF6CAA72053ABFF2

 $\text{IV}_0 \qquad \qquad \text{IV}_1 \qquad \qquad \text{IV}_2 \qquad \qquad \text{IV}_3$

98 38 70 3A B6 AF 61 44 62 55 58 EC 64 55 58 EC

P= B3 9A FB 5D 53 AA 27 D4 Q= 56 A1 C4 AE CB 68 F9 1A

i Mi EVAL

0 5932BC0A CE2B0ABA 6E988791 F4F8ADD7

1 33D8AC18 8AC54F34 39723954 579492CB

2 6FAD10BF 9DEE2920 EEEAC385 C4D5E0C0

3 B43BD0C5 3A915CB7 EB79B071 CBAECF56

4 DF6CAA72 053ABFF2 32114B23 317FA002

5 00000000 0000013F 32114B23 317FA13D

Multiply by Q: EVAL= BDD6CED4 C458544C

MAC-I: 02F1FAAF

5.6. Test Set 4

COUNT-I = 14793E41 FRESH = 0397E8FD

DIRECTION = 1

IK = C7 36 C6 AA B2 2B FF F9 1E 26 98 D2 E2 2A D5 7E

LENGTH = 384 bits

MESSAGE:

D0A7D463DF9FB2B2 78833FA02E235AA1 72BD970C1473E129 07FB648B6599AAA0 B24A038665422B20 A499276A50427009

 K₀
 K₁
 K₂
 K₃

 E2 2A D5 7E
 1E 26 98 D2
 B2 2B FF F9
 C7 36 C6 AA

 IV₀
 IV₁
 IV₂
 IV₃

 03 97 68 FD
 94 79 3E 41
 03 97 E8 FD
 14 79 3E 41

P= 45 89 8E 82 8F 27 EB 98 Q= E3 23 07 09 A0 0C B7 0A

i	Mi		EVAI	ı	
0	D0A7D463 DF9	FB2B2	9E80B47B	98010914	
1	78833FA0 2E2	35AA1	5EA34890	532D5FFB	
2	72BD970C 147	3E129	0EAE8E55	95661FCF	
3	07FB648B 659	9AAA0	7EA00D6D	65C8F93F	
4	B24A0386 654	22B20	BEC91666	B07F7551	
5	A499276A 504	27009	689EF151	53554DC2	
6	00000000 000	00180	689EF151	53554C42	

Multiply by Q: EVAL= B7C0F88B 24B5417C

MAC-I: 38B554C0

5.7. Test Set 5

= 296F393C COUNT-I = 6B227737

DIRECTION = 1

= F4 EB EC 69 E7 3E AF 2E B2 CF 6A F4 B3 12 OF FD

= 1000 bits LENGTH

MESSAGE:

10BFFF839E0C7165 8DBB2D1707E14572 4F41C16F48BF403C 3B18E38FD5D1663B 6F6D900193E3CEA8 BB4F1B4F5BE82203 2232A78D7D75238D 5E6DAECD3B4322CF 59BC7EA84AB18811 B5BFB7BC553F4FE4 4478CE287A148799 90D18D12CA79D2C8

55149021CD5CE8CA 0371CA04FCCE143E 3D7CFEE94585B588 5CAC46068B

 K_0 K_1 K_2 K_3

E7 3E AF 2E B3 12 OF FD B2 CF 6A F4 F4 EB EC 69

 IV_0 IV_1 IV_2

6B 22 77 37 6B 22 F7 37 A9 6F 39 3C 29 6F 39 3C

 \mathbf{z}_2 \mathbf{z}_3 \mathbf{z}_4 1C 79 03 08 66 2D 90 AA 99 14 88 47 FA C5 92 D2 05 8B EA 75

P= 99 14 88 47 1C 79 03 08 Q= 66 2D 90 AA FA C5 92 D2

i	M	i	EVA	- -	
0	10BFFF83	9E0C7165	012195E9	7A42A6A9	
1	8DBB2D17	07E14572	AA21E590	9BF9218F	
2	4F41C16F	48BF403C	9102FF2C	FA4C4906	
3	3B18E38F	D5D1663B	5243F583	1D672845	
4	6F6D9001	93E3CEA8	18BC08D1	186CA669	
5	BB4F1B4F	5BE82203	31D2F689	B033849E	
6	2232A78D	7D75238D	33E9FCFC	7BFA4A8E	
7	5E6DAECD	3B4322CF	0305A650	808ECF4E	
8	59BC7EA8	4AB18811	923C4E45	E2F6BD66	
9	B5BFB7BC	553F4FE4	4DEE3814	18B4C03B	
10	4478CE28	7A148799	705DF239	099FB08B	
11	90D18D12	CA79D2C8	AD00C27B	09065FA0	
12	55149021	CD5CE8CA	52079A4B	3518C204	
13	0371CA04	FCCE143E	392E7593	A8C1E40F	
14	3D7CFEE9	4585B588	692A55BE	F50F6B7F	
15	5CAC4606	8B000000	1D034F2B	EAADE93F	
16	00000000	000003E8	1D034F2B	EAADEAD7	

Multiply by Q: EVAL= 039CAFDB C799E383

MAC-I: 061745AE

5.8. Test Set 6

This test ensures that all entries in the tables PM0, PM1, ..., PM7 are correct. The message is chosen such that every entry of every table PM0, PM1, ..., PM7 is used once.

COUNT-I = 296F393C FRESH = 6B227737

DIRECTION = 1

= B3 12 OF FD B2 CF 6A F4 E7 3E AF 2E F4 EB EC 69

LENGTH = 16448 bits

MESSAGE:			
000000000000000000000000000000000000000	0101010101010101	E0958045F3A0BBA4	E3968346F0A3B8A7
C02A018AE6407652	26B987C913E6CBF0	83570016CF83EFBC	61C082513E21561A
427C009D28C298EF	ACE78ED6D56C2D45	05AD032E9C04DC60	E73A81696DA665C6
C48603A57B45AB33	221585E68EE31691	87FB0239528632DD	656C807EA3248B7B
46D002B2B5C7458E	B85B9CE95879E034	0859055E3B0ABBC3	EACE8719CAA80265
C97205D5DC4BCC90	2FE1839629ED7132	8A0F0449F588557E	6898860E042AECD8
4B2404C212C9222D	A5BF8A89EF679787	0CF50771A60F66A2	EE62853657ADDF04
CDDE07FA414E11F1	2B4D81B9B4E8AC53	8EA30666688D881F	6C348421992F31B9
4F8806ED8FCCFF4C	9123B89642527AD6	13B109BF75167485	F1268BF884B4CD23
D29A0934925703D6	34098F7767F1BE74	91E708A8BB949A38	73708AEF4A36239E
50CC08235CD5ED6B	BE578668A17B58C1	171D0B90E813A9E4	F58A89D719B11042
D6360B1B0F52DEB7	30A58D58FAF46315	954B0A8726914759	77DC88C0D733FEFF
54600A0CC1D0300A	AAEB94572C6E95B0	1AE90DE04F1DCE47	F87E8FA7BEBF77E1
DBC20D6BA85CB914	3D518B285DFA04B6	98BF0CF7819F20FA	7A288EB0703D995C
59940C7C66DE57A9	B70F82379B70E203	1E450FCFD2181326	FCD28D8823BAAA80
DF6E0F4435596475	39FD8907C0FFD9D7	9C130ED81C9AFD9B	7E848C9FED38443D
5D380E53FBDB8AC8	C3D3F06876054F12	2461107DE92FEA09	C6F6923A188D53AF
E54A10F60E6E9D5A	03D996B5FBC820F8	A637116A27AD04B4	44A0932DD60FBD12
671C11E1C0EC73E7	89879FAA3D42C64D	20CD1252742A3768	C25A901585888ECE
E1E612D9936B403B	0775949A66CDFD99	A29B1345BAA8D9D5	400C91024B0A6073
63B013CE5DE9AE86	9D3B8D95B0570B3C	2D391422D32450CB	CFAE96652286E96D
EC1214A934652798	0A8192EAC1C39A3A	AF6F15351DA6BE76	4DF89772EC0407D0
6E4415BEFAE7C925	80DF9BF507497C8F	2995160D4E218DAA	CB02944ABF83340C
E8BE1686A960FAF9	0E2D90C55CC6475B	ABC3171A80A36317	4954955D7101DAB1
6AE8179167E21444	B443A9EAAA7C91DE	36D118C39D389F8D	D4469A846C9A262B
F7FA18487A79E8DE	11699E0B8FDF557C	B48719D453BA7130	56109B93A218C896
75AC195FB4FB0663	9B3797144955B3C9	327D1AEC003D42EC	DOEA98ABF19FFB4A
F3561A67E77C35BF	15C59C2412DA881D	B02B1BFBCEBFAC51	52BC99BC3F1D15F7
71001B7029FEDB02	8F8B852BC4407EB8	3F891C9CA733254F	DD1E9EDB56919CE9
FEA21C174072521C	18319A54B5D4EFBE	BDDF1D8B69B1CBF2	5F489FCC98137254
7CF41D008EF0BCA1	926F934B735E090B	3B251EB33A36F82E	D9B29CF4CB944188
FA0E1E38DD778F7D	1C9D987B28D132DF	B9731FA4F4B41693	5BE49DE30516AF35
78581F2F13F561C0	663361941EAB249A	4BC123F8D15CD711	A956A1BF20FE6EB7
8AEA2373361DA042	6C79A530C3BB1DE0	C99722EF1FDE39AC	2B00A0A8EE7C800A
08BC2264F89F4EFF	E627AC2F0531FB55	4F6D21D74C590A70	ADFAA390BDFBB3D6
8E46215CAB187D23	68D5A71F5EBEC081	CD3B20C082DBE4CD	2FACA28773795D6B
0C10204B659A939E	F29BBE1088243624	429927A7EB576DD3	A00EA5E01AF5D475
83B2272C0C161A80	6521A16FF9B0A722	C0CF26B025D5836E	2258A4F7D4773AC8
		463525887652B0B2	
871E25039113C7E1		C463249FB8D05E0F	
		59712B46A54BA295	
		DB272A516BC94C28	
		5DDD2969384E7FF4	
		DF8B287EF6CC9149	
		50292F199F401857	
		D27F2E0E51C2F6EA	
		54852D360245C536	
		D6D32C21CCC72B8B	
	8913D291A6589902		8C36B0C3C8D085BF
		ECF73393F7F0D2A4	
	C347BD53ED1F105D		889AB2EC55D558DE
	4DB5B663B6902B89		0ACCB3FB9B57B663
	D7FBAF6C600ADD2C		856EB49CF2DB3F7D
	4041B013119E4C2A		0738B58B3C59D1C0
		635534F49E7C5BBA	
		E10335E350FEB507	
		7C113A3A4D65499D	
		FE473B2D83E7A720	
		78BD3815D06094FC	
B996389E3721E3AF	5F05BEDDC2875E0D	FAEB39021EE27A41	187CBB45EF40C3E7

3BC03989F9A30D12 C54BA7D2141DA8A8 75493E65776EF35F 97DEBC2286CC4AF9 B4623EEE902F840C 52F1B8AD658939AE F71F3F72B9EC1DE2 1588BD35484EA444 36343FF95EAD6AB1 D8AFB1B2A303DF1B 71E53C4AEA6B2E3E 9372BE0D1BC99798 B0CE3CC10D2A596D 565DBA82F88CE4CF F3B33D5D24E9C083 1124BF1AD54B7925 32983DD6C3A8B7D0

Z 1 Z 2	Z 2	Z A	Z 5
IV ₀	IV ₁	IV ₂	IV ₃
6B 22 F7 37	A9 6F 39 3C	6B 22 77 37	29 6F 39 3C
K ₀	K ₁	K ₂	K ₃
F4 EB EC 69	E7 3E AF 2E	B2 CF 6A F4	B3 12 OF FD

 ${f z}_1$ ${f z}_2$ ${f z}_3$ ${f z}_4$ ${f z}_5$ EC 81 B3 C2 3C CF 81 87 61 F7 63 FF 4B A3 D3 7A 12 C6 F4 AC

P= EC 81 B3 C2 3C CF 81 87 Q= 61 F7 63 FF 4B A3 D3 7A

i	Mi	EVAL
0	00000000 00000000	0000000 00000000
1	01010101 01010101	E1948144 F2A1BAA5
2	E0958045 F3A0BBA4	E1948144 F2A1BAA5
3	E3968346 F0A3B8A7	C3290289 E5437551
4	C02A018A E6407652	22BD83CD 17E2CFF4
255	1124BF1A D54B7925	CD67C229 3C57482F
256	32983DD6 C3A8B7D0	2CF3436D CEF6F28A
257	00000000 00004040	2CF3436D CEF6B2CA
255 256		2CF3436D CEF6F28A

Multiply by Q: EVAL= 0559DB0A B7D8E5A3

MAC-I: 179F2FA6

<End of Document>