线

重庆大学《算法分析与设计》课程试卷

A卷 B卷

2014 — 2015 学年 第1学期

开课学院: <u>计算机学院</u> 课程号: <u>18016435</u> 考试日期: <u>2013.12.26</u>

考试方式: ○开卷 ⊙闭卷 ○其他

考试时间: 120 分钟

题 号	_	1	11	四	五	六	七	八	九	+	总分
得 分											

考试提示

1.严禁随身携带通讯工具等电子设备参加考试;

2.考试作弊, 留校察看, 毕业当年不授学位; 请人代考、 替他人考试、两次及以上作弊等, 属严重作弊, 开除学籍。

一、(15分)算法复杂度渐进分析

- (1) Sort the follwing items ascendingly (升序) by their asymptoticy (5 分) $(\log(n))^{0.5}$ 100000 $(2.00001)^n$ 1.001 $^{n*(n+1)}$ $n+1/n+\log(n)$
- (2) Work out the following function by expansion method (展开法) (10 分) T(n) = 2T(n/2) + n, $T(1) = \Theta(1)$.

二、 (20 分)快速排序

- (1) What is the <u>best time</u>(最好时间) complexity to sort an array with quicksort? Describe such a situation <u>briefly</u>(简短叙述). (3 分)
- (2) What is the worst time(最坏时间) complexity to sort the above array with

quicksort? Describe such a situation briefly. (3 分)

- (3) During each iteration, if we assume that the initial array is <u>split</u>(划分) according to the ration 1:9, then
 - A) write the recurrence(递推函数) of this situation; (3 分)
 - B) draw out the corresponding recursion tree; (3 %)
 - C) prove the tight bound (Θ) of your recurrence with <u>substitution</u>(替代法).

(8分)

李佳

三、 (15分) 动态规划(钢管切割问题)

For rod-cutting problem, we have following prices list:

Let r(n) be the <u>maximum revenue</u>(最大收入) by cutting up a rod of length n and selling the pieces.

- (1) Give the recursive formula of r(n). (5 分)
- (2) Write the algorithm into a program in pseudo code or other programming languages. (5 %)
- (3) Work out r(1), r(2),..., r(8). (5 分)

四、(10分)贪心算法(Huffman Encoding)

Given the frequencies of 6 letters to be encoded as a:40%, b:13%; c:8%; d:%16; e:%9; f:14%,

- (1) give the corresponding Huffman tree; (5 %)
- (2) write the corresponding <u>binary codes</u>(2 进制码) for each letter, and compute the averaged coding length(编码长度的平均值). (5 分)

五、(20分)动态规划(文件配置问题)

Suppose we want to $\underline{replicate}(复制)$ a file over a $\underline{collection}(集合)$ of n servers(服务器), labeled S_1, S_2, \ldots, S_n . To place a copy of the file at server S_i results in a $\underline{placement\ cost}(配置代价)$ of \mathbf{c}_i (\mathbf{c}_i is a positive integer). Now if a user requests the file from server S_i , and no copy of the file is present at S_i , then servers $S_{i-1}, S_{i-2}, S_{i-3} \ldots$ are searched in order until a copy of the file is finally found, say at

server S_j , where j < i. This results in an $\underline{access\ cost}$ (搜索代价) of i - j. The access cost is 0 if S_i holds a copy of file. We will require that a copy of the file be placed at server S_1 , so that all such searches will terminate, at the latest at S_1 . We'd like to place copies of the files at servers so as to $\underline{minimize}$ (最小化) the $\underline{sum\ of\ placement\ and\ access\ costs}$ (配置代价与搜索代价之和). Formally, we say that a configuration is a choice, for each server S_i with i = 2, 3, ...n, of

say that a configuration is a choice, for each server S_i with i=2,3,...n, of whether to place a copy of the file at S_i or not. (Recall that a copy is always placed at S_1 .) The total cost of a configuration is the sum of all placement costs for servers with a copy of the file, plus the sum of all access costs associated with all n servers.

For simplicity, let W(i) denote the minimal sum of all placement costs and access costs for servers $S_1, S_2, ..., S_i$ ($1 \le i \le n$). So W(n) is the optimal solution of the entire problem.

- (1) If in the optimal solution for servers $S_1, S_2, ..., S_i$ (i>1), S_i is placed with a copy of the file. In this case, $W(i) = \underline{\qquad}$. (2%)
- (2) Assume servers S_j , S_{j+1} ,..., S_{i-1} , S_i (j < i) and only S_j has a placement of a copy of the file. Work out the total access costs of servers S_{j+1} ,..., S_i to S_j . (3分)
- (3) Design a dynamic programming algorithm to solve W(n), write down your brief idea and the complete recursive formula of W(i). (10%)
- (4) Analyze the computational complexity of your algorithm. (5分)

六、 (20分) 最大流

Let G=(V, E) be a flow network and f be the value of a flow f on G, i.e., f = f(s, V) with s being source of G.

- (1) Prove |f| = f(V, t) with t being sink of G. (5 分)
- (2) Work out the maximum flow of the following flow network, where the positive integers denote the capacities of each edge respectively. During each iteration, you should draw the <u>residue network</u>(剩余流量图) and find out an augmenting path (增广路径) (if exists). (15 分)

