Class	Teacher_	Name	
-------	----------	------	--

SYDNEY TECHNICAL HIGH SCHOOL

EXTEN SION

MATHEMATICS

Year 11 Preliminary HSC Course

ASSESSMENT TASK 3

September 2013

Time Allowed:

90 minutes

Instructions:

- Write using blue or black pen.
- Approved calculators may be used.
- Attempt all questions.
- All necessary working must be shown. Marks may not be awarded for careless or badly arranged work.
- Marks indicated are a guide only and may be varied if necessary.

Start each question on a new side of a page.

Total Marks 73

Section 1 Multiple Choice	Section 2
5 Marks	68 Marks
Answer on sheet	Allow 82 minutes for this section
Allow 8 minutes for this section	

1 What is the acute angle between the lines 2x-y-7=0 and 3x-5y-2=0?

- (A) 4°24'
- (B) 32° 28'
- (C) 57°32'
- (D) 85°36

2 If $t = \tan \frac{\theta}{2}$ which of the following expressions is equivalent to $4\sin \theta + 3\cos \theta + 5$?

- (A) $\frac{2(t+2)^2}{1-t^2}$
- (B) $\frac{(t+4)^2}{1-t^2}$
- (C) $\frac{2(t+2)^2}{1+t^2}$
- (D) $\frac{(t+4)^2}{1+t^2}$

3 The interval DE, where D is (4,5) and E is (19,-5), is divided internally in the ratio 2:3 by the point (x,y). What are the values of x and y?

- (A) (-16, 25)
- (B) (10,1)
- (C) (12,0)
- (D) (13,-1)

4 What is the solution to the inequality? $\frac{3}{x-2} \le 4$

$$(A)$$
 $x < -2$ and $x \ge -\frac{11}{4}$

(B)
$$x > -2$$
 or $x \le -\frac{11}{4}$

(C)
$$x < 2$$
 or $x \ge \frac{11}{4}$

(D)
$$x > 2$$
 and $x \le \frac{11}{4}$

5 Consider the polynomial $P(x) = 3x^3 + 3x + a$. If x-2 is a factor of P(x), what is the value of a?

- (A) -30
- (B) -18
- (C) 18
- (ည်) 30

Question 6	(11 Marks)	Start a new page	Marks
a) A tar exact	ngent to a curve ma gradient of this tar	kes an angle of 60° to the positive x axis. What is the agent.	1
b) Write	$e \sec \theta$ in terms of a	t where $t = \tan \frac{\theta}{2}$	1
c) Find a	a and b if $\frac{\sqrt{7}-5}{-2+3}$	$\frac{1}{7} = a + b\sqrt{7}$	2
prove	that the triangle for	for the tangent of the angle between pairs of lines, rmed by the intersection of these 3 lines is a must make your conclusions clear.	3
	$x - \sqrt{3}y + 5 = 0$	and	
	x - y + 10 = 0 ar	nd ·	
	$\sqrt{3}x - y + 10 = 0$		
e) Consid	er the curve with a	x-1	

e) Consider the curve with equation $y = \frac{x-1}{x+2}$.

Determine the equation(s) of any asymptotes
 State the range of the function.
 State the domain of the function.

Question 7 (11 Marks)

a) If 2x² - 9x + 9 = (ax - b)(x - b) for all values of x, find the values of a and b
b) Derive the equation sin 2θ and use this to find the exact value of cos15°sin15°
c) Find the cartesian equation of the curve:

x = sin t and y = sec t
d) Find the equation of the tangent line to the curve y = x⁴ + 3x² - 1 at x = 1.
e) Find the locus of a point P(x,y) which is equidistant from 3x + 4y = 36 and 4x + 3y = 24

Start a new page

uestion 8	(11 Marks)	Start a new page	Marks
	the auxillary angle $\theta + 8\cos\theta = 4$ for 0	e method, or otherwise, solve $^{\circ} \le \theta \le 360^{\circ}$	3
b) Differ	entiate and write in	simplest factorised form:	
	i) $(3x^2+2)^{10}$		2
	$ii) \qquad \frac{2x^2}{\sqrt{\left(x^2-4\right)}}$		2
c) By full $f(x) =$	by factorizing $f(x)$ = $x^3 - 4x^2 + 8x - 8$	(where possible), sketch the graph of identifying all key points	4

ues	stin 9	(10 M	arks) Start a new pa	age	Marks
a)) Solve	e for x:	$3^{2x} = 6(3)^{x-1} + 3$		2
b)	If α ,	eta,γ are Find:	the roots of $3x^3 - 4x^2 + 7$	x-11=0	
		i)	$\alpha + \beta + \gamma$		pend.
		ii)	αβγ		1
		iii)	$(\alpha+1)(\beta+1)(\gamma+1)$	•	2
c)	By equivalent	ing the	dentity:	d cos x, or otherwise, find constants A,B $2\cos x - \sin x$ $\equiv \sin x + 8\cos x$	2
d)	Prove	the trigo	nometric identity: $\frac{\alpha}{(\cos x)}$	$\frac{\cos 2x}{1+\sin x)^3} = \frac{\cos x - \sin x}{1+\sin 2x}.$	2

- a) Let P(x) = (x+1)(x-3) Q(x) + ax + b where Q(x) is a polynomial and a and b are real numbers. The polynomial P(x) has a factor of (x-3). When P(x) is divided by x+1 the remainder is 8.
 - i. Find the values of a and b

- 2
- ii. Find the remainder when P(x) is divided by (x^2-2x-3)
- 1
- b) From what external point are the tangents to the parabola $x^2 = 8y$ to be drawn so that 4y = 2x + 4 is the equation of the chord of contact?

2

c)

The diagram shows the graph of the parabola $x^2 = 4y$. The tangent to the parabola at $P(2p, p^2)$, p > 0, cuts the x axis at A. The normal to the parabola at P cuts the y axis at B.

i) Show that the equation of the tangent AP is $y=px-p^2$ (Show all working)

2

ii) Find the coordinates of A

1

iii) Show that B has coordinates $(0, p^2 + 2)$

1

iv) Let C be the midpoint of AB.
Find the Cartesian equation of the locus of C

2

Question 11 (12 Marks)

Start a new page

a) Find the equation of the normal to the parabola $x^2 = 12y$ at the point where x = -2

2

b) The angle of elevation of the top of a tower (T) from a point A due East of the tower is 60°. From a point B due South of A, the angle of elevation of T is 15°. A and B are at the same elevation as the base of the tower.

The distance AB = 1 km

i) Show that $3h^2 \cot^2 15^\circ = 3 + h^2$

2

ii) Find the value of h to the nearest metre

2

c) Show algebraically that the line y = x - 4 is a tangent to the circle $x^2 + y^2 = 8$ and find the coordinates of the point of contact

3

Question 11 continues over the page

- d) A piece of wire 24 metres long is cut into two parts, one of which is used to form a square, and the other to form a rectangle whose length is three times its width.
 - i) If the width of the rectangle is x show that A, the sum of the areas of the rectangle and the square is given by $A=7x^2-24x+36$
 - ii) Find the vertex of the parabola $A=7x^2-24x+36$

1

1

iii) Find the lengths of the two parts if the sum of the areas given in part (i) is a minimum.

Do not use calculus

B = 150	Team 60 = 13 team 60 = 13 Sec 0 = 14 Se	•
	(ii) $\sqrt{3}x - 3 + 10 = 0$ $M = \sqrt{3}$ M	
y = 1 - x2	$\frac{ax^{2}-ax+4}{ax^{2}-ax-b} = \frac{a-2}{ax^{2}-ax+b^{2}}$ $\frac{ax^{2}-ax+b^{2}}{ax^{2}-ax-bx+b^{2}}$ $\frac{ax^{2}-ax-bx+b^{2}}{ax^{2}-ax-bx+b^{2}}$ $\frac{ax^{2}-ax-bx+b^{2}}{ax-bx-bx+b^{2}}$ $\frac{ax^{2}-ax-bx-bx+b^{2}}{ax-bx-bx+b^{2}}$ $\frac{ax^{2}-ax-bx-bx+b^{2}}{ax-bx-bx-bx+b^{2}}$ $\frac{ax^{2}-ax-bx-bx+b^{2}}{ax-bx-bx-bx+b^{2}}$ $\frac{ax^{2}-ax-bx-bx+b^{2}}{ax-bx-bx-bx+b^{2}}$ $\frac{ax^{2}-ax-bx-bx+b^{2}}{ax-bx-bx-bx-bx+b^{2}}$ $\frac{ax^{2}-ax-bx-bx+b^{2}}{ax-bx-bx-bx-bx-bx-bx-bx-bx-bx-bx-bx-bx-bx$	
	(d) $y = x^{4} + 3x^{2} - 1$ $y = 3x^{2} + 6x$ $y = 3 = 10x - 10$ $y = 3 = 36$ $y = 3 = 10x - 10$ y	

The second of th

(a) $P(x) = (x+1)(x-3)(0)(x) + ax+b$ (b) $P(x) = (x+1)(x-3)(0)(x) + ax+b$ (c) $P(x) = (x+1)(x-3)(0)(x) + 2x+b$ (d) $P(x) = (x+1)(x-3)(0)(x) + 2x+b$ (e) $P(x) = (x+1)(x-2)(x) + 2x+b$ (e) $P(x) = (x+1)(x) + 2x+b$ (e) P
(ii) at A y=0 0=px-p2 px=p (p,0) (iii) Egh normal: m1=-1/e y-p2=-1/p(x-2e) y-p2=-1/p(x-2e) y-p2=-x+2p y-p2=-x+2p y-p3=-x+2p y-p2-p3-x+2p y-p2-p3-x+2p y-p2-p3-x+2p y-p2-p2-at y=0 y-p2-p2
(b) $x^2 = 124$ $y = \frac{1}{3}$ $y' = \frac{3}{3}$ $y' = $
(c) y=x-4 x²+y²= 8 x²+(x-4)²= 8 x²+x²-8x+16-8=0 x²-4x+4=0 (x-1)²=0 (x-2)²=0