NASA'S EXO-PLANET DATABASE ANALYSIS

By Naga Jyothi Madamanchi

INTRODUCTION

- Earth Similarity Index (ESI) measures the similarity of exo-planets to Earth.
- 5,220 confirmed planets, 9,151 candidates
- NASA Technical Reports Server (NTRS) stores the main exo-planet data
- The Deep Space Network (DSN) stores the data collected from the space probes
- Stored in a <u>relational database</u> model

- NASA's Standard ESI
- NASA's Weighted ESI
- Derived Custom ESI
- Derived Revised ESI

STANDARD ESI

PLANET B

- Measures 2 factors: stellar flux, and planet radius
- The first of NASA's ESI equations
- Earth's radius (Re) and stellar flux (Fe) serve as baseline

Standard ESI:

$$ESI(F,R) = 1 - \sqrt{\frac{1}{2} \left[\left(\frac{F - Fe}{F + Fe} \right)^2 + \left(\frac{R - Re}{R + Re} \right)^2 \right]}$$

Highest ESI: Teegarden's Star B = 0.9502

PLANET C

WEIGHTED ESI

- 5 variables: stellar flux, radius, density, escape velocity, and temperature
- Each variable has weights
- More accurate than <u>Standard ESI</u>

Weighted ESI variables:

Variables	Weights		
Flux	1		
Radius	0.57		
Density	1.07		
Escape Velocity	0.70		
Temperature	5.58		

Weighted ESI:

$$\mathrm{ESI}(F,R,D,E,T) = 1 - \sqrt{\frac{1}{5} \left[\left(\frac{F - Fe}{F + Fe} \right)^2 + (0.57) \left(\frac{R - Re}{R + Re} \right)^2 + (1.07) \left(\frac{D - De}{D + De} \right)^2 + (0.70) \left(\frac{E - Ee}{E + Ee} \right)^2 + (5.58) \left(\frac{T - Te}{T + Te} \right)^2 \right] }$$

Highest ESI: Teegarden's Star B = 0.9636

CUSTOM ESI

- First of my own derived test ESI equations
- 9 variables in total, unweighted

<u>Variables</u>: Flux, Radius, Gravity, Planet Mass, Temperature, Star Temperature, Star Mass, Orbital Period, Density.

Custom ESI:

$$\mathrm{ESI}(F,R,G,M,T,K,S,O,D) = \prod_{i\,=\,1}^9 \Biggl(1 - \left|\frac{x_i - x_{io}}{x_i + x_{io}}\right|\Biggr)$$

Highest ESI: Venus = 0.7996

REVISED ESI

- Weighted variant of the <u>Custom ESI</u>
- Accounts factors such as temperature and star mass more heavily

Revised ESI variables:

Variables	Weights		
Flux	3.2		
Radius	0.57		
Gravity	4.75		
Planet Mass	0.4		
Temperature	10.58		
Star Temperature	1		
Star Mass	1		
Orbital Period	1		
Density	2.8		

Revised ESI:

$$\mathrm{ESI}(F,R,G,M,T,K,S,O,D) = \prod_{i=1}^{9} \left(1 - \left|\frac{x_i - x_{io}}{x_i + x_{io}}\right|\right)^{\frac{wi}{9}}$$

Highest ESI: Kepler-452 B = 0.8478

CODING SETUP

- Downloaded NASA's exoplanet catalog as a .csv file
- Installed R language and R studio to process database
- Filtered out unnecessary columns, 92 was the initial amount
- Filtered out blank data to make ESI calculations possible

EXPORT INTO GABEN

- ESI equations used to create 4 sub tables from the main filtered table
- The main table and the 4 ESI tables were exported as .csv files
- The .csv files were transferred over to the "CS541" folder in the Gaben server
- Made backup of data in hard drive due to possible <u>SQL</u> data corruption

RELATIONAL DIAGRAM

- The original raw .csv file is the source of all the data
- "<u>Habitable Planets</u>" contains supplemental habitable exo-planet data
- Column names differ between
 "Habitable Planets" and the filtered
 "Data with No Blanks"
- <u>Identifying relationship</u> because of difference between those two tables

TABLE LAYOUT

INSERTION INTO SQL

```
CREATE TABLE `alldata` (
  pname` varchar(20) NOT NULL,
  `operiod` real DEFAULT NULL,
  `radius` real DEFAULT NULL,
  pmass' real DEFAULT NULL,
  `flux` real DEFAULT NULL,
  `temp` real DEFAULT NULL,
  `sttemp` real DEFAULT NULL,
  `stmass` real DEFAULT NULL,
  `density` real DEFAULT NULL,
  `velocity` real DEFAULT NULL,
  `gravity` real DEFAULT NULL,
  `standard` real DEFAULT NULL,
  `weighted` real DEFAULT NULL,
  `custom` real DEFAULT NULL,
  `revised` real DEFAULT NULL,
 PRIMARY KEY ('pname')
 ENGINE=MyISAM DEFAULT CHARSET=utf8;
BULK INSERT alldata
from 'All_Data.csv'
with (firstrow = 2,
     fieldterminator = ',',
      rowterminator='\n',
      batchsize=313,
      maxerrors=10);
                                   Scre
```

[mysql> describe alldata;								
Field	Туре	Null	Key	Default	Extra			
pname pname pname pname radius pmass flux temp sttemp stmass density velocity gravity standard weighted custom revised	varchar(20) varchar(20) double double double double double double double double double	NO YES	PRI	NULL NULL NULL NULL NULL NULL NULL NULL				
15 rows in set (0.02 sec)			S	creenshot) -			

ESI SQL QUERIES

- Added columns to the main <u>Data for Analysis</u> table
- SQL query uses planet name for the "group by" function
- Example below uses <u>Standard ESI</u> equation to create "esistandard" column

Standard ESI:

$$ESI(F,R) = 1 - \sqrt{\frac{1}{2} \left[\left(\frac{F - Fe}{F + Fe} \right)^2 + \left(\frac{R - Re}{R + Re} \right)^2 \right]}$$

R AND SQL COMPARISON

```
SELECT pname, (1-SORT((1/2)*(POWER((flux-1)/(flux+1),2)+
              POWER((radius-1)/(radius+1),2))))
              as esistandard
FROM alldata
Group by pname;
SELECT pname, 1-SQRT((1/5)*(POWER((flux-1)/(flux+1),2)+
              (0.57*POWER((radius-1)/(radius+1),2))+
              (1.07*POWER((density-5.51)/(density+5.51),2))+
              (0.7*POWER((velocity-11.186)/(velocity+11.186),2))+
              (5.58*POWER((temp-288)/(temp+288),2))))
              as esiweighted
FROM alldata
Group by pname;
SELECT pname, 1-SQRT((1/9)*(POWER((flux-1)/(flux+1),2)+
              POWER((radius-1)/(radius+1),2)+
              POWER((gravity-9.82)/(gravity+9.82),2)+
              POWER((mass-1)/(mass+1),2)+
              POWER((temp-288)/(temp+288),2)+
              POWER((sttemp-5778)/(sttemp+5778),2)+
              POWER((stmass-1)/(stmass+1),2)+
              POWER((operiod-365)/(operiod+365),2)+
              POWER((density-5.51)/(density+5.51),2)))
              as esicustom
FROM alldata
Group by pname;
SELECT pname, 1-SQRT((1/9)*(3.2*(POWER((flux-1)/(flux+1),2))+
              (0.57*POWER((radius-1)/(radius+1),2))+
              (4.75*POWER((gravity-9.82)/(gravity+9.82),2))+
              (0.2*POWER((mass-1)/(mass+1),2))+
              (10.58*POWER((temp-288)/(temp+288),2))+
              POWER((sttemp-5778)/(sttemp+5778), 2)+
              POWER((stmass-1)/(stmass+1),2)+
              POWER((operiod-365)/(operiod+365),2)+
              (2.8*POWER((density-5.51)/(density+5.51),2))))
              as esirevised
FROM alldata
Group by pname;
                         . . .
```

```
#ESI variants analysis
#ESI Standard
standard <- gravity %>% mutate(ESI Standard=
(1-sqrt((1/2)*(((Stellar Flux-1)/(Stellar Flux+1))^2+
               ((Planet Radius-1)/(Planet Radius+1))^2))))
#ESI Weighted
weighted <- standard %>% mutate(ESI_Weighted=
(1-sqrt((1/5)*(((Stellar Flux-1)/(Stellar Flux+1))^2+
         (0.57*((Planet_Radius-1)/(Planet Radius+1))^2)+
         (1.07*((Planet Density-5.51)/(Planet Density+5.51))^2)+
          (0.7*((Escape_Velocity-11.186))/(Escape_Velocity+11.186))^2)+
         (5.58*((Temperature-288)/(Temperature+288))^2)))))
#ESI Custom
custom <- weighted %>% mutate(ESI_Custom=
(1-sqrt((1/9)*(((Stellar Flux-1)/(Stellar Flux+1))^2+
               ((Planet Radius-1)/(Planet Radius+1))^2+
               ((Gravity-9.82)/(Gravity+9.82))^2+
               ((Planet Mass-1)/(Planet Mass+1))^2+
               ((Temperature-288)/(Temperature+288))^2+
               ((Star_Temperature-5778)/(Star_Temperature+5778))^2+
               ((Star Mass-1)/(Star Mass+1))^2+
               ((Orbit Period-365)/(Orbit Period+365))^2+
               ((Planet Density-5.51)/(Planet Density+5.51))^2))))
#ESI Revised
revised <- custom %>% mutate(ESI Revised=
(1-sgrt((1/9)*((3.2*((Stellar Flux-1)/(Stellar Flux+1))^2)+
               (0.57*((Planet_Radius-1))/(Planet_Radius+1))^2)+
               (4.75*((Gravity-9.82)/(Gravity+9.82))^2)+
               (0.2*((Planet_Mass-1)/(Planet_Mass+1))^2)+
               (10.58*((Temperature-288)/(Temperature+288))^2)+
               ((Star Temperature-5778)/(Star Temperature+5778))^2+
               ((Star Mass-1)/(Star Mass+1))^2+
               ((0rbit Period-365)/(0rbit Period+365))^2+
               (2.8*((Planet Density-5.51)/(Planet Density+5.51))^2)))))
```

SOFTWARE DESIGN DIAGRAM

- Initial state is the downloaded NASA data
- Final state is the generation of 4 top 10 ESI variant tables

CASE DIAGRAM

- Simple user interface
- Options include selection and comparison of the ESI variants
- Uses <u>CSS</u> to create menu
- PHP to display tables

WEBSITE DEMO

• Link: https://www.cs.sunyit.edu/~madaman1/CS541/Project/

CHALLENGES OF CODING

- No direct link to NASA's database server
- Problem connecting R to <u>Gaben</u> server
- Possible permissions restriction
- Needed to copy .csv files into Gaben
- Renamed index <u>HTML</u> file to PHP

```
#rm (remaned) #removes any unneeded table
   97
  98
       #import for exportation of data into SQL server
       #install.packages("RODBC")
   99
 100
       library(RODBC)
 101
 102
       #writes tables into SQL database
       sqlSave(revised, all_data, rownames = FALSE)
 103
       revised <- DBI::dbConnect("Driver={SQLServer}; Server=10.156.192.30; Uid=f
 104
 105
 103:1
       (Top Level) #
                  Background Jobs ×
Console
        Terminal ×
R 4,2,2 · C:/Users/Administrator/Desktop/Documents/CS541/Assignments/Project/ 
> revised <- DBI::odbcConnect("Driver={SQLServer}; Server=10.156.192.30; Uid=figu</p>
Error: 'odbcConnect' is not an exported object from 'namespace:DBI'
> #writes tables into SQL database
> sqlSave(revised, all_data, rownames = FALSE)
Error in sqlSave(revised, all_data, rownames = FALSE) :
  first argument is not an open RODBC channel
> revised <- odbDriverConnect("Driver={SQLServer}; Server=10.156.192.30; Uid=figu</p>
Error in odbDriverConnect("Driver={SQLServer}; Server=10.156.192.30; Uid=figuerc1
  could not find function "odbDriverConnect"
  #writer tabler into sou database
```

DATABASE CORRUPTION

book book_authors book_copies book_loans borrower car course department dependent dept_locations employee grade report libnary branch option option2

```
mysql> describe option2
   -> ;
 Field
              Type
                           Null Key Default Extra
              varchar(25)
 serial no
                            NO
                                   PRI
 option_name
              varchar(20)
                                  PRI
 price
              varchar(10)
                           YES
                                        NULL
3 rows in set (0.01 sec)
  price
            | varchar(10) | YES |
3 rows in set (0.01 sec)
mysql> describe option;
ERROR 1064 (42000): You have an error in your SQL syntax; chec
for the right syntax to use near 'option' at line 1
mysql>
```

WHY NO MOREATTEMPTS?

PLANET B

- Windows PC broke down
- Stuck working with Mac with limited storage

SOURCES

- [1] https://exoplanets.nasa.gov/discovery/exoplanet-catalog/
- [2] https://phl.upr.edu/projects/habitable-exoplanets-catalog
- [3] https://phl.upr.edu/projects/earth-similarity-index-esi
- [4] https://interestingengineering.com/science/earth-similarity-index-where-could-we-livebesides-earth
- [5] http://www.imatheq.com/imatheq/com/imatheq/math-equation-editor.html
- [6] https://www.upi.com/Science_News/2017/02/08/NASA-Red-dwarf-habitable-zones-maynot-be-so-habitable/2881486579322/
- [7] https://www.geeksforgeeks.org/how-to-display-data-from-csv-file-using-php/
- [8] https://www.w3schools.com/howto/howto_css_dropdown.asp
- [9] https://popsql.com/learn-sql/sql-server/how-to-import-a-csv-in-sql-server
- [10] https://stackoverflow.com/questions/7367750/average-of-multiple-columns