严正声明:

本编程器设备软硬件版权归轩微科技淘宝店注册人所有,禁止所有针对此设备的盗版行为,包括破解,反向工程.否则一切后果自负!

我们会以生命保护我们的知识产权成果!

WWW.XWOPEN.COM

ATSAM 部分

术语表

Vref:参考电压,在 ATSAM 脱机编程器中其即表示 VDDIO 线上的电压.

GND:即 0 电势点.编程器默认为黑线.目标芯片的电源负引脚.

SWDIO(JTMS):目标芯片的 SWDIO 引脚,SWD 接口的数据脚,JTAG 接口的 TMS 脚.

SWCLK(JTCK):目标芯片的 SWCLK 引脚,SWD 接口的时钟脚,JTAG 接口的 TCK 脚.

NRST:目标芯片的 RESET 引脚.

引脚配置

注意,发货时默认是黄线为 SWDIO,蓝线为 SWCLK,黑线为 GND, 红线为 VDD(Vref),绿线为 NRST

镜像配置流程:

1. 首先把设备进入镜像更新模式.并打开软件.(首次使用会自动加载驱动)

就 STM8 STM32 GD32 芯唐 AVR8 AtSam 机镜像配置 指定ROW檸除配置 FLASH数据编辑器 镜像与1	民天科 Kinetis AT89S5x 25/26xxx 24Cxx 远程主机 远程客户	固件升级 轩徽网站 版权说明 东芝
70.66.18 自正 11年20.86条本间。 12.20数据通报额 摄象与扩充程配置	自走 以 加 少心力 5 种走	
	清空芯片→> ☑ 写全片 →> ☑ 校FLASH-> □ UID算法加密A-> □	UIID算法加密B→> □ 写滚码→>
电源制品 3.34 マーノ 核量辨足切り	擦指定ROW→> □ 写指定ROW→>	(可付费定制) 口 与 次時 /
□ 芯片硬加密→> 尾部操作	无操作 🗸 -> 跳转模式 不跳转 🗸 跳转镜像号 0	~
衮 码西/罟	全球唯一ID自定义算法加密	+操作
☆ ○		
滚码始地址 0 滚码字节数 4	存放起始地址 0 存储字节数 4	载入配置文件
扁码模式: 小端常规编码 ~	输入常数 6AB85F 使用的公式 110 V ;i	周入FLASH物据
脱机造像其它配置	D[0] 4 \ D[1] 7 \ D[2] 1 \ D[3] 3 \	
● 镜像加密存储(略慢) □ 数据链路复杂化	D[4] 0	导出配置文件
○ 镜像非加密存储 ☑ VIID加密信息显示	D[8] 2 V D[9] 6 V D[10] 5 V D[11] 4 V	□ 数据改变自动重载
編程次数 6666666 	脱机编程配置日志	
5片信息	100 100 100 100 100 100 100 100 100 100	CARCONIC.
5万 信忌 目标镜像号 0 ~ 芯片: ATSAMD21E15A ~	版本软件更新,某些新知号活片有可能已加入,如需要增加新型号活片,间联系我们,我们会以最快速度免费处理	情第一时"
LASH占用:0/32768 FLASH校验和:0x00000000	2015/9/14 12:44:48 目前已添加支持AtSm系列芯片型号、43和 请随时版本软件更新,某些新型号芯片有可能已加入、如需要增加新型号芯片,间联系统们、我们会以最快量使是某代理的重要。 2015/9/14 12:44 46 已恢复抗性数以配置。 2015/9/14 15:472 AtSmales级税机源程器设备已接入、设备序列号:10	把配置好的遺像写入 脱机编程器
實際注释(将在设备上显示)		
ATSAM PROGRAM		
Sen A Mark VI. sen 1991.		读指定镜像配置
交验算法配置 脱机编程器信息		
10001号设备已接入.		-
用户说明		擦除指定的镜像
用,0/2 用以明确清潔的相关信息 此说明会随配置文件保存。		
用以明确遺像的相关信息.		
比说明会随配置文件保存。	11	
比说明会随配置文件保存。		擦除所有的镜像

2. 选择要写的芯片型号

芯片: ATSAMD21E15A ~

3. 配置目标镜像号

目标镜像号 0 🗸

(编程器可以存储很多程序镜像,用这个来决定放在哪个镜像位置里)

4. 选择电源输出值(通常保持默认即可)

电源输出 3.3V 🔻

5. 选择是否核查绑定 UID(通常用不到.可以忽略此项)

─ 核查绑定VID->

ATSAM 芯片有全球唯一 ID,在某些情况下,可能需要对某些特定的芯片进行编程,而禁止对非授权的芯片编程.这时可以用目标芯片 UID 绑定功能.本功能可以方便实现特定 UID 芯片的编程授权,同时可以方便的对整盘芯片进行授权(同盘芯片 UID 后一部分字节值是相同的).

同时此功能支持掩码配置,用以实现 UID 的模糊识别

_目标VID比对掩码配置	
☑ 检查VID 0 ☑ 检查VID 1	☑ 检查Ⅷ2
☑ 检查VID 3 ☑ 检查VID 4	☑ 检查Ⅷ 5
☑ 检查VID 6 ☑ 检查VID 7	■ 检查VID 8
■ 检查VID 9 ■ 检查VID 10	■ 检查VID 11

标ID及识别掩码————————————————————————————————————	统计信息:共3项绑定模式	
绑定的ID原始数据(与掩码结合才为最终比对数据)	比对时的模型(?号代表任意值均匹配)	
12 34 56 78 90 AB CD EF 12 34 56 78	12 34 56 78 90 AB CD EF ?? ?? ?? ??	
11 34 56 78 90 AB CD EF 12 34 56 78	11 34 56 78 90 AB CD EF ?? ?? ?? ??	
11 34 56 78 90 AB CD EF 12 34 56 78	11 34 56 78 90 AB CD EF ?? ?? ?? 78	
	绑定的ID原始数据(与掩码结合才为最终比对数据) 12 34 56 78 90 AB CD EF 12 34 56 78 11 34 56 78 90 AB CD EF 12 34 56 78	

6.	配置是合清空芯片或是合擦指定页(通常选择清空芯片	ī
----	--------------------------	---

- ☑ 清空芯片→
- □ 擦指定页→
- 7. 配置是否要写全片存储器,如需要,则要载入 FLASH 数据文件
 - ☑ 写全片 →

调入FLASH数据

8. 配置是否要校验 FLASH

- □ 校EEPROM->
- 9. 配置是否需要进行 UID 自定义算法加密,如需要,则要配置 UID 自定义算法加密相关数据.此部分详细解释见文档<<全球唯一 ID 自定义算法加密部分.pdf>>
 - □ UID算法加密A->

10. 配置是否写滚码,如需要,则要配置滚码数据

滚码可以设置存储模式为大端还是小端.大端常规编码即高字节存储在低地址,小端常规编码即高字节存储在高地址.软件默认配置为小端模式存储,即滚码的低字节存储在存储器的低地址上.

注意棕色背景框为十六进制数据.亮蓝色背景框为十进制数据.

- 11. 配置是否要给芯片加密
 - □ 芯片硬加密→
- 12. 选择尾部操作类型

建议选择无操作

13. 选择跳转模式,如需要跳转,则要配置下一跳镜像号

14. 配置此镜像可以烧录的次数

编程次数 6666666

15. 配置镜像注释信息(会显示在编程器的显示器上)

16. 如里需要以后仍使用当前配置的镜像.可以导出配置文件

导出配置文件

以后如果需要相同的配置,就不需要完全重新配置了.直接点击"载入配置文件"载入相应的配置文件即可.有时我们可能想一次性载入多个配置文件.本软件也可以实现.可以点"载入配置文件"然后把所有要载入的配置文件全部选中并点击打开即可.这样软件可以一次性把所有配置文件均打入脱机编程器.

17. 把配置好的镜像写入脱机编程器

附:

软件自带数据编辑器,可以直接对 FLASH 数据文件进行数据编辑.(输入法打到英文输入模式,否则无法编辑.

