universität freiburg

What you needa know about Yoneda

Emma Bach (she/her)

Seminar on Functional Programming and Logic, Summer Semester 2025

► A common sentiment in many cultures is the idea that people are defined by how they interact with their surroundings.

¹Quoted as a proverb in *Don Quixote*

- ► A common sentiment in many cultures is the idea that people are defined by how they interact with their surroundings.
- "Tell me your company, and I will tell you what you are." 1

¹Quoted as a proverb in *Don Quixote*

- ▶ A common sentiment in many cultures is the idea that people are defined by how they interact with their surroundings.
- ▶ "Tell me your company, and I will tell you what you are." 1
- ▶ The Yoneda Lemma is the result of applying this way of thinking to mathematical objects within the extremely general setting of *category theory*.

¹Quoted as a proverb in *Don Quixote*

- ▶ A common sentiment in many cultures is the idea that people are defined by how they interact with their surroundings.
- ▶ "Tell me your company, and I will tell you what you are." ¹
- ▶ The Yoneda Lemma is the result of applying this way of thinking to mathematical objects within the extremely general setting of *category theory*.
- As a result, a category $\mathbb C$ is often best understood by instead studying functors from that category into $\mathbb S et$.

¹Quoted as a proverb in *Don Quixote*

A category $\mathbb C$ consists of:

ightharpoonup a collection $|\mathbb{C}|$ of *objects*;

A *category* \mathbb{C} consists of:

- ▶ a collection $|\mathbb{C}|$ of *objects*;
- ▶ for all $A, B \in |\mathbb{C}|$, a collection $\mathbb{C}(A, B)$ of morphisms from A to B;

A *category* \mathbb{C} consists of:

- ightharpoonup a collection $|\mathbb{C}|$ of *objects*;
- ▶ for all $A, B \in |\mathbb{C}|$, a collection $\mathbb{C}(A, B)$ of morphisms from A to B;
- ▶ for all $A \in |\mathbb{C}|$, an *identity morphism* $id_A \in \mathbb{C}(A, A)$;

A *category* \mathbb{C} consists of:

- ightharpoonup a collection $|\mathbb{C}|$ of *objects*;
- ▶ for all $A, B \in |\mathbb{C}|$, a collection $\mathbb{C}(A, B)$ of morphisms from A to B;
- ▶ for all $A \in |\mathbb{C}|$, an *identity morphism* $id_A \in \mathbb{C}(A, A)$;
- ▶ an associative composition morphism $f \circ g \in \mathbb{C}(A, C)$ for each pair of morphisms $f \in \mathbb{C}(A, B)$, $g \in \mathbb{C}(A, B)$.

If $\mathbb{C}(A, B)$ is a set, we call it the *homset* from A to B.

Homfunctors

- For any category \mathbb{C} , a homset $\mathbb{C}(A, B)$ is a set of morphisms.
- ▶ We define a functor $\mathbb{C}(A, -) : \mathbb{C} \to \mathbb{S}et$:
 - $ightharpoonup \mathbb{C}(A,-)$ maps an Object B to the Homset $\mathbb{C}(A,B)$
 - A morphism $f: \mathbb{C}(B,C)$ is mapped to the morphism $f \circ : \mathbb{C}(A,B) \to \mathbb{C}(A,C)$

Natural Transformations

- ► A structure-preserving map between functors.
 - ▶ Let $F, G : \mathbb{C} \to \mathbb{D}$ be functors.
 - A natural transformation ϕ is an indexed family of morphisms $\phi_A \in \mathbb{D}(F(A), G(A))$ from F(A) to G(A)
 - ▶ These morphisms satisfy the following *naturality condition*:

$$\forall f \in \mathbb{C}(A, B) : \phi_B \circ F(f) = G(f) \circ \phi_A$$

ightharpoonup Given two functors F and G, we write the collection of all natural transformation between them as Nat(F, G).

▶ The naturality condition resembles an equality we saw a few weeks ago:

$$r_B \circ \mathtt{map}(a) = \mathtt{map}(a) \circ r_A$$

▶ The naturality condition resembles an equality we saw a few weeks ago:

$$r_B \circ \mathtt{map}(a) = \mathtt{map}(a) \circ r_A$$

This is the free theorem we got for a parametrically polymorphic function r ::
[X] → [X] and an arbitrary function a : A → B.

▶ The naturality condition resembles an equality we saw a few weeks ago:

$$r_B \circ \mathrm{map}(a) = \mathrm{map}(a) \circ r_A$$

- This is the free theorem we got for a parametrically polymorphic function r :: [X] → [X] and an arbitrary function a : A → B.
- ► This free theorem proves that *r* is a natural transformation from the list functor to itself.

- ▶ In general, assume we have:
 - two functors F and G,
 - ightharpoonup a parametrically polymorphic function $m r : F x \rightarrow G x$,
 - ► an arbitrary function f : A -> B.

- ▶ In general, assume we have:
 - two functors F and G,
 - ightharpoonup a parametrically polymorphic function m r : m F x -> G x,
 - ► an arbitrary function f : A -> B.
- ► Then we get the following free theorem:

r . fmap f = fmap f . r

- ▶ In general, assume we have:
 - two functors F and G,
 - ightharpoonup a parametrically polymorphic function $m r : F x \rightarrow G x$,
 - ► an arbitrary function f : A -> B.
- ► Then we get the following free theorem:

$$r$$
 . $fmap f = fmap f$. r

In categorical notation:

$$r_B \circ F(f) = G(f) \circ r_A$$

- ▶ In general, assume we have:
 - two functors F and G,
 - ightharpoonup a parametrically polymorphic function $m r : F x \rightarrow G x$,
 - ► an arbitrary function f : A -> B.
- ► Then we get the following free theorem:

$$r$$
 . $fmap f = fmap f$. r

► In categorical notation:

$$r_B \circ F(f) = G(f) \circ r_A$$

So our free theorem is a proof that any parametrically polymorphic function r is a natural transformation!

- ▶ In general, assume we have:
 - two functors F and G,
 - ightharpoonup a parametrically polymorphic function m r : m F x -> m G x,
 - ► an arbitrary function f : A -> B.
- ► Then we get the following free theorem:

$$r$$
 . $fmap f = fmap f$. r

In categorical notation:

$$r_B \circ F(f) = G(f) \circ r_A$$

- ► So our free theorem is a proof that any parametrically polymorphic function r is a natural transformation!
- ▶ It turns out that parametrically polymorphic functions correspond exactly to natural transformations between endofunctors $\$et \to \et .

▶ Let F be a functor from \mathbb{C} to $\mathbb{S}et$.

- ▶ Let F be a functor from \mathbb{C} to $\mathbb{S}et$.
- ▶ The Yoneda Lemma states that:

 $: \mathsf{Nat}(\mathbb{C}(A,-),F) \cong F(A))$

- ▶ Let F be a functor from \mathbb{C} to $\mathbb{S}et$.
- ▶ The Yoneda Lemma states that:

$$: \mathsf{Nat}(\mathbb{C}(A,-),F) \cong F(A))$$

► Furthermore, this isomorphism is a natural transformation.

- ▶ Let F be a functor from \mathbb{C} to $\mathbb{S}et$.
- ▶ The Yoneda Lemma states that:

$$: \mathsf{Nat}(\mathbb{C}(A,-),F) \cong F(A))$$

- Furthermore, this isomorphism is a natural transformation.
- ▶ So the set of natural transformations from the homfunctor $\mathbb{C}(A, -)$ is in a one-to-one correspondence with the elements of the set F(A).

Proof

. . .

Instances of the Yoneda Lemma

- Cayley's theorem in group theory
- ► Countless theorems in algebra, particulary in algebraic topology
- ▶ Proofs by indirect inequality: $b \leq a$ iff. $\forall c : (a \leq c) \implies (b \leq c)$
- Profunctor optics in functional programming

Profunctor Optics

