→ Name omkar Dhere

PRN: 202201060030

Roll no: 616

Div: F

Batch: F1

from google.colab import drive
drive.mount('/content/drive')

Mounted at /content/drive

import pandas as pd import numpy as
np import matplotlib.pyplot as plt
from pandas import Series,

DataFrame

Reading the tips.csv file
df1=pd.read_csv('/content/drive/MyDrive/Colab Notebooks/tips.csv')

df1.head()

time	0	16.99	1.01	Female	No	Sun	Dinner	2
							Dinner	
	2	21.01	3.50	Male	No	Sun	Dinner	3
	3	23.68	3.31	Male	No	Sun	Dinner	2
	4	24.59	3.61	Female	No	Sun	Dinner	4

total_bill tip sex smoker da

df1.tail()

```
total bill tip sex smoker day time size
  df1.columns
     Index(['total_bill', 'tip', 'sex', 'smoker', 'day', 'time', 'size'], dtype='object')
27.18 2.00 Female Yes Sat
        241
                  22.67 2.00
                                             Sat Dinner
                               Male
                                        Yes
df1.info
    <243class 'pandas.core.frame.DataFrame'18.78 3.00 Female No>
    Thur Dinner 2 RangeIndex: 244 entries, 0 to 243 Data columns
    (total 7 columns):
                  Non-Null Count Dtype
    0 total_bill 244 non-null
                                   float64
                  244 non-null
                                  float64
                  244 non-null
                                  object
    3 smoker
                  244 non-null
                                  object
                  244 non-null object
244 non-null object 6 size 244 non-null int64 dtypes:
    5 time
    float64(2), int64(1), object(4) memory usage: 13.5+ KB
df1.describe()
```

				total bill	tip	size				
count	244.000000	244.000000	244.000000							
mean	19.785943	2.998279	2.569672							
std	8.902412	1.383638	0.951100							
min	3.070000	1.000000	1.000000							
25%	13.347500	2.000000	2.000000							
50%	17.795000	2.900000	2.000000		50.810000	10.000000 6.000000				
75%	24.127500	3.562500	3.000000							
a=pd.DataFrame(df1['day'].value_counts())										


```
plt.scatter(df1['total_bill'],df1['tip'])
plt.show()
```



```
plt.scatter(x='total_bill',y='tip',data=df1)
fig=plt.figure(figsize=(5,4)) ax=fig.add_axes([1,1,1,1])
ax.legend(labels=('sun','mon','tue')) plt.show()
```



```
#Different types of Matplotlib
Plots #bar chart import
matplotlib.pyplot as plt import
pandas as pd

# Reading the tips.csv file data =
pd.read_csv('/content/drive/MyDrive/Colab Notebooks/tips.csv')

# initializing the
data x = data['day'] y
= data['total_bill']

# plotting the data
plt.bar(x, y)

# Adding title to the plot
plt.title("Tips Dataset")

# Adding label on the y-axis
plt.ylabel('Total Bill')
```

```
# Adding label on the x-
axis plt.xlabel('Day')
plt.show()
```



```
import matplotlib.pyplot as plt
import pandas as pd

# initializing the data
x = data['day'] y =
data['total_bill']

# plotting the data plt.bar(x, y,
color='green', edgecolor='blue',
linewidth=2)

# Adding title to the plot
plt.title("Tips Dataset")

# Adding label on the y-axis
plt.ylabel('Total Bill')

# Adding label on the x-
axis plt.xlabel('Day')
```

plt.show()


```
import matplotlib.pyplot as plt import pandas
as pd

# initializing the data x =
data['total_bill']
```

```
# plotting the data
plt.hist(x)

# Adding title to the plot
plt.title("Tips Dataset")

# Adding label on the y-axis
plt.ylabel('Frequency')

# Adding label on the x-axis
plt.xlabel('Total Bill')
plt.show()
```



```
import matplotlib.pyplot as plt
import pandas as pd

# initializing the data
x = data['total_bill']

# plotting the data plt.hist(x, bins=25,
color='green', edgecolor='blue',
linestyle='--', alpha=0.5)

# Adding title to the plot
plt.title("Tips Dataset")
```

```
# Adding label on the y-axis
plt.ylabel('Frequency')

# Adding label on the x-axis
plt.xlabel('Total Bill')
plt.show()
```



```
import matplotlib.pyplot as plt
import pandas as pd

# initializing the
data x = data['day'] y
= data['total_bill']

# plotting the data
plt.scatter(x, y)

# Adding title to the plot
plt.title("Tips Dataset")

# Adding label on the y-axis
plt.ylabel('Total Bill')

# Adding label on the x-axis
plt.xlabel('Day')
```



```
import matplotlib.pyplot as plt import pandas
as pd

# initializing the data x =
data['day'] y =
data['total_bill']

# plotting the data plt.scatter(x, y, c=data['size'],
s=data['total_bill'], marker='D', alpha=0.5)

# Adding title to the plot plt.title("Tips
Dataset")

# Adding label on the y-axis plt.ylabel('Total Bill')

# Adding label on the x-axis
plt.xlabel('Day') plt.show()
```


Creating data year = ['sat', 'sun', 'thurs', 'mon', 'tue'] production = [25, 15, 35, 30, 10]

```
# Plotting barchart
plt.bar(year, production)

# Saving the figure.
plt.savefig("output.jpg")

# Saving figure by changing parameter values
plt.savefig("output1", facecolor='y', bbox_inches="tight",
pad_inches=0.3, transparent=True)
```



```
x = np.linspace(0, 10, 100) fig =
plt.figure() plt.plot(x, np.sin(x))
plt.plot(x, np.cos(x))
fig.savefig('graph1.png')
```

