1 Conductive Polymer Aluminum Solid Capacitors

Se	ries	Features	Endurance	Voltage		Competitor's	Correspor	nding Serie	S
TEAPO	LUXON	reatures	Endurance	(VDC)	Rubycon	Chemi-con	Nichicon	LELON	ELITE
CP	СР	8 mm height & Ultra Low ESR	105°C 3000Hrs	2.5 ~25	1			-	
CG	CG	Ultra Low ESR	105°C 2000Hrs	2.5 ~25	1	PSA, PS	IS,NU,F8,N	OCR,OCRZ	GP,UP,RP
CR	CR	Ultra Low ESR & High Ripple Current	105℃ 2000Hrs	2.5 ~6.3		PSC	R7,S8,LF	OCRZ	UP,UPS
CF	CF	Super Low ESR & Large Capacitance	105°C 2000Hrs	6.3 ~35			LF		
CY	CY	Ultra Low ESR with sleeve	105°C 2000Hrs	6.3 ~16	-				
СХ	(· X	Ultra Low ESR & High Ripple Current with bright Aluminum case	105℃ 2000Hrs	2.5 ~28	1	-		1	
CZ	CZ	Ultra Low ESR with Small size	105°C 2000hrs	2.5 ~16V					
CH	CH	Ultra Low ESR & Long Life	105°C 5000hrs	2.5 ~16V	1	PSF		OCRK	
CT	CT	High Temperature	125°C 1000hrs	6.3 ~25V	1	PXH	HT	OCRU	
cs	cs	Large capacitance & Long Life & High Voltage	105℃ 5000hrs	25 ~50V	1	-		-	
VP	VP	SMD Strandard	105°C 2000hrs	2.5-25V	1	PXA		OCV	
VB	I VK	SMD & High capacitance & Super low ESR	105°C 2000hrs	2.5-16V		PXE	SS,SA,SB	OCVZ	
VS	VS	SMD & Long life and Ultra low ESR	105℃ 2000hrs	4-16V		PXS		OVK	

2 Chip Type Aluminum Electrolytic Capacitors

	2 Only Type Alaminam Electrolytic Capacitors												
Se	ries	Features	Endurance	Voltage		Competitor's	Correspon	nding Series	S				
TEAPO	LUXON	reatures	Endurance	(VDC)	Rubycon	Chemi-con	Nichicon	LELON	ELITE				
GV	GV	Low profile	85℃ 2000Hrs	4~100	JEV	MVA,MV	WX,WJ	VE					
FV	FV	Long life	85℃ 3000~5000Hrs	4~100					-				
sv	SV	Low profile	105℃ 1000Hrs	4~100	JKV	MVE,MVK	WT,WZ	VES	1				
DV	DV	Long life	105℃ 2000Hrs	6.3~100	SGV,JGV	MVE,MVK	UT	VEJ	1				
ZV	ZV	Low impedance	105℃ 1000Hrs	4~50	-		WF	VEZ	1				
EV	EV	Ultra Low impedance	105℃ 2000Hrs	6.3~35	TZV	MZA		VEH	1				
HV	HV	Higher temperature range	125℃ 2000Hrs	6.3~50	TXV	MHB	UB	VUA	1				
XV	XV	Ultra Low impedance	105°C 3000~5000Hrs	6.3~50	SJV	MVL	UD,UA,WD	VZH					
YV	YV	Low impedance V-Chip	105°C 1000~2000hrs	6.3~50		MVY							
JV	J۷	Low profile vertical chip	105°C 2000hrs	6.3~35	TZV	MZA		VEH					

3 Miniature Aluminum Electrolytic Capacitors

3 Milliature Aldininum Electrorytic Capacitors									
	ries	Features	Endurance	Voltage		Competitor's		nding Series	3
TEAPO	LUXON	i eatures	Lildurance	(VDC)	Rubycon	Chemi-con	Nichicon	LELON	ELITE
SK	GR	General purpose	85°C 2000Hrs	6.3~500	PK,WA	SMQ,SMG	VR,VK	REA	SM
SEK	SE	General purpose	105℃ 1000Hrs	6.3~450	PX,AX	PX,AX KMG,KMQ			PS
SH	SM	Miniature General purpose	105°C 2000Hrs	6.3~450	WXA,PX	KMG,KMQ		RGA,RJA	PF
TH	TH	Slim Type	105°C 2000Hrs	160~450	QXW	PAG		RGL	
TG	TG	Slim Type and long life	105°C 5000Hrs	160~450	CXW			RPL	
TP	TP	Slim Type and long life	105°C 10000Hrs	160~450	TXW	KXJ		RQL	
AH	AH	High Temperature	125°C 2000Hrs	10~63	-				
S5	FX	5 mm height	105°C 1000Hrs	4~50	MH5	KRE	MT	SSG	SB-H
H5	H5	5 mm height	105°C 2000Hrs	4~50					
S7	SX	7 & 9 mm height	105°C 1000Hrs	4~63	MH7	KMA,KRG	ST	SG	SS-H
H7	H7	7 & 9 mm height	105°C 2000Hrs	4~63	-			SJA	
SC	LZ	Low ESR and high frequency	105°C 1000~3000Hrs	6.3~100	1		PS	RXY,RXJ	ES,EL
SJ	LU	Low impedance and high ripple	105°C 1000~5000Hrs	6.3~100	ZL	KZE	HD	RZD	EM,ED
SY	LT	Low impedance and long life	105°C 2000~6000Hrs	6.3~100	YXG	LXV,LXZ	PM	RXW,RXK	EJ,EG
ST	ST	Low impedance and long life	105°C 4000~10000Hrs	6.3~63	YXJ				
SZ	LW	Ultra low ESR	105°C 1000~2000Hrs	6.3~16	-		HM	RXZ	EB
AK	I AK	High Temperature & Low ESR and Long Life	125°C 2000-5000Hrs	10~63	ZT	GXE	-	RUK	
SQ	LB	High ripple and high voltage	105°C 2000Hrs	160~450		PAG	PZ	RXC	PW,LF
SG	LC	High ripple and long life	105°C 3000~5000Hrs	160~450	CFX		PT	RXB	LL/PV
SP	SP	High ripple and long life	105°C 8000~10000Hrs	160~450	BXF	KXG	CS,CY	RXQ	
TA	TA	Low impedance and long life	105°C 4000~10000Hrs	6.3~35	YXH	KY	HE	RZW	EY

4 Large Can Type Aluminum Electrolytic Capacitors

Se	ries	Frature	Fu dimense	Voltage	Competitor's Corresponding Series							
TEAPO	LUXON	Features	Endurance	(VDC)	Rubycon	Chemi-con	Nichicon	LELON	ELITE			
LH	TW	General purpose	85°C 2000Hrs	6.3~500	USG	SMQ,SMH	LN,KG	LS,LS2,LV	GM,GR			
LG	HW	General purpose	105°C 2000Hrs	6.3~450	MXG	KMQ,KMH	AK,AQ	LSG,LVG	PL,PH			
LF	LF	Long life	85°C 3000Hrs	10~450	USC	SMM	LU,LS	-	GS,GH			
LJ	LJ	Long life	105°C 3000Hrs	10~450	MXC,MXG	KMM	GU,AD	LSM	PK,PD			
LQ	LQ	Long life	105°C 5000Hrs	160~450	VXG	LXG,LXQ		LSK	PG			

Company Profile

Established: February 1956

Factory Area: 74,950M² (Mainland China factory / Suzhou)

85,000M² (Mainland China factory / Dongguan)

Capial: US\$108,000,000

Milestones: 1956 Set-up Aluminum Capacitor Division at SAMPO Electronic

Joint venture with Elna Japan

Joint venture with Hitachi Japan

Joint venture with Shinyei Japan

1975 First development and mass production at Low ESR product in Taiwan

1978 Foundation of Teapo Electronic Corporation at current Tu-cheng factory.

1987 Certified by IECQ

1988 Tu-cheng factory certified by ISO 9002

1993 Established Teapo Thailand Factory

1998 Company stock listed in OTC market Established Teapo Dongguan Factory

2000 Tu-cheng factory certified by QS9000

2001 2001 Dongguan factory certified by ISO9001

2003 Established Teapo Suzhou Factory and certified by ISO9001

2004 Suzhou Factory certified by ISO-14000

2005 Merge G-LUXON Electronic Corporation

2

SURFACE MOUNT ALUMINUM ELECTROLYTIC CAPACITORS----53

3

MINIATURE ALUMINUM ELECTROLYTIC CAPACITORS-----79

4

LARGE ALUMINUM ELECTROLYTIC CAPACITORS------144

Systematic Diagram of Teapo Capacitor

Conductive Polymer Aluminum Solid Capacitors :Dip

Conductive Polymer Aluminum Solid Capacitors: SMD

. 🕳 🕳 🗰 🔳 Systematic Diagram of Teapo Capacitor 📕 🚃 🕳 🕳 🕳

Miniature Radial Lead Types

(General Purpose):

(Low Leakage Current):

💶 🚃 🚃 Systematic Diagram of Teapo Capacitor 📰 📺 🛮

Miniature Radial Lead Types:

(Bi/Non-polar):

(Low Impedance):

(High Ripple):

(Slim Types):

Large Can Types:

LS new 105°C, 2000hrs

Smaller size

Recommended Applications	Conductive Polymer	Chip Type	Miniature Aluminum 6.3~100V	Miniature Aluminum 160~500V	Large Can Type
Automotives	CT	HV	AK,ST	SP	LQ
Battery Charge	CF,CR,CG	Whole Series	Whole Series	Whole Series	
Display	CG	Whole Series	Whole Series	Whole Series	Whole Series
Digital Still Camera	VP,CG				
Home Appliance	CG	Whole Series	Whole Series	Whole Series	Whole Series
Lighting	CG,CF	XV,HV	SJ,SY,ST,AK	SQ,SG,SP	
MB	CR,CG,CX	Whole Series	Whole Series	Whole Series	
NB	VP	-			
Networks	CG,CF	XV,HV	SJ,SY,ST	SG,SP	
Power	CG,CF,CR,CT	Whole Series	Whole Series	Whole Series	Whole Series
TFT frame		SV,DV	SH,SC	SH	
Gaming	VP	GV,SV	SK,SH	SK,SH	LH,LG
Audio(stereo)			Whole Series	Whole Series	Whole Series
Vedio (DVD)	VP,CG		S5,S7,SK,SH,SC,SY	SK,SH	
Toys	VP		SK	SK	LH

1 Conductive Polymer Aluminum Solid Electrolytic Capacitors

TEAPO LUXON Features (+R=With ripple) Range (VDC) Page Range (UF) Page Range (VDC) CG CG Ultra Low ESR 105 °C 2000hours 2.5 -25 V 33 - 2700 25 CP CP 8 mm height & Ultra Low ESR 105 °C 3000hours 2.5 -25 V 10 - 1200 28 CY CY Ultra Low ESR with sleeve NEW 105 °C 2000hours 6.3 -16 V 150 ~ 1800 30 CZ CZ Ultra Low ESR with Small size NEW 105 °C 2000hours 2.5 -6.3 V 470 ~ 2700 32 CR CR Ultra Low ESR & Higher Ripple Current with bright Aluminum case NEW 105 °C 2000hours 2.5 -6.3 V 470 ~ 2700 34 CF CF Super Low ESR & Large Capacitance 105 °C 2000hours 2.5 -28 V 33~ 820 36 CF CF Super Low ESR & Large Capacitance 105 °C 5000hours 2.5 -50 V 56~390 40 CH CH Ultra Low ESR & Long Life NEW 105 °C 5000hours 2.5 -16 V 270 ~ 820 42	Series			Endurance	Voltage	Capacitance	
CP CP 8 mm height & Ultra Low ESR 105℃ 3000hours 2.5 ~25V 10 ~ 1200 28 CY CY Ultra Low ESR with sleeve NEW 105℃ 2000hours 6.3 ~16V 150 ~ 1800 30 CZ CZ Ultra Low ESR with Small size NEW 105℃ 2000hours 2.5 ~16V 10 ~ 2200 32 CR CR Ultra Low ESR & Higher Ripple Current with bright Aluminum case NEW 105℃ 2000hours 2.5 ~6.3V 470 ~ 2700 34 CF CF Super Low ESR & Higher Ripple Current with bright Aluminum case NEW 105℃ 2000hours 2.5 ~28V 33~ 820 36 CF CF Super Low ESR & Large Capacitance 105℃ 2000hours 6.3 ~32V 68~ 1800 38 CS CS High Voltage & Long Life NEW 105℃ 5000hours 25~50V 56~390 40 CH CH Ultra Low ESR & Long Life NEW 125℃ 1000hours 2.5 ~16V 270 ~ 820 42 CT CT High Temperature NEW 105℃ 2000hours 2.5~25V 22 ~	TEAPO	LUXON	Features		Range (VDC)		Page
CY CY Ultra Low ESR with sleeve NEW 105 °C 2000hours 6.3 ~16V 150 ~ 1800 30 CZ CZ Ultra Low ESR with Small size NEW 105 °C 2000hours 2.5 ~16V 10 ~ 2200 32 CR CR Ultra Low ESR & Higher Ripple Current with bright Aluminum case NEW 105 °C 2000hours 2.5 ~6.3V 470 ~ 2700 34 CY CY Ultra Low ESR & Higher Ripple Current with bright Aluminum case NEW 105 °C 2000hours 2.5 ~28V 33~ 820 36 CF CF Super Low ESR & Large Capacitance 105 °C 2000hours 6.3 ~32V 68~ 1800 38 CS CS High Voltage & Long Life NEW 105 °C 5000hours 25~50V 56~390 40 CH CH Ultra Low ESR & Long Life NEW 105 °C 5000hours 2.5 ~16V 270 ~ 820 42 CT CT High Temperature NEW 125 °C 1000hours 2.5 ~25V 22 ~ 1500 46 VP VP SMD Strandard NEW 105 °C 2000hours 2.5	CG	CG	Ultra Low ESR	105°C 2000hours	2.5 ~25V	33 ~ 2700	25
CZ CZ Ultra Low ESR with Small size NEW 105 °C 2000hours 2.5 ~16V 10 ~ 2200 32 CR CR Ultra Low ESR & Higher Ripple Current 105 °C 2000hours 2.5 ~6.3V 470 ~ 2700 34 CX CX Ultra Low ESR & Higher Ripple Current with bright Aluminum case NEW 105 °C 2000hours 2.5 ~28V 33~820 36 CF CF Super Low ESR & Large Capacitance 105 °C 2000hours 6.3 ~32V 68~1800 38 CS CS High Voltage & Long Life NEW 105 °C 5000hours 25~50V 56~390 40 CH Ultra Low ESR & Long Life NEW 105 °C 5000hours 2.5 ~16V 270 ~ 820 42 CT CT High Temperature NEW 125 °C 1000hours 6.3 ~25V 33 ~ 1000 44 VP VP SMD Strandard NEW 105 °C 2000hours 2.5-25V 22 ~ 1500 46	CP	СР	8 mm height & Ultra Low ESR	105°C 3000hours	2.5 ~25V	10 ~ 1200	28
CR CR Ultra Low ESR & Higher Ripple Current 105 °C 2000hours 2.5 ~6.3V 470 ~ 2700 34 CX CX Ultra Low ESR & Higher Ripple Current with bright Aluminum case NEW 105 °C 2000hours 2.5 ~28V 33~ 820 36 CF CF Super Low ESR & Large Capacitance 105 °C 2000hours 6.3 ~32V 68~ 1800 38 CS CS High Voltage & Long Life NEW 105 °C 5000hours 25~50V 56~390 40 CH CH Ultra Low ESR & Long Life NEW 105 °C 5000hours 2.5 ~16V 270 ~ 820 42 CT CT High Temperature NEW 125 °C 1000hours 6.3 ~25V 33 ~ 1000 44 VP VP SMD Strandard NEW 105 °C 2000hours 2.5-25V 22 ~ 1500 46	CY	CY	Ultra Low ESR with sleeve NEW	105°C 2000hours	6.3 ~16V	150 ~ 1800	30
CX CX Ultra Low ESR & Higher Ripple Current with bright Aluminum case NEW 105°C 2000hours 2.5 ~28V 33~ 820 36 CF CF Super Low ESR & Large Capacitance 105°C 2000hours 6.3 ~32V 68~ 1800 38 CS CS High Voltage & Long Life NEW 105°C 5000hours 25~50V 56~390 40 CH CH Ultra Low ESR & Long Life NEW 105°C 5000hours 2.5 ~16V 270 ~ 820 42 CT CT High Temperature NEW 125°C 1000hours 6.3 ~25V 33 ~ 1000 44 VP VP SMD Strandard NEW 105°C 2000hours 2.5-25V 22 ~ 1500 46	CZ	CZ	Ultra Low ESR with Small size NEW	105°C 2000hours	2.5 ~16V	10 ~ 2200	32
CF CF Super Low ESR & Large Capacitance 105°C 2000hours 2.5~28V 33~820 36 CF CF Super Low ESR & Large Capacitance 105°C 2000hours 6.3~32V 68~1800 38 CS CS High Voltage & Long Life NEW 105°C 5000hours 25~50V 56~390 40 CH CH Ultra Low ESR & Long Life NEW 105°C 5000hours 2.5~16V 270~820 42 CT CT High Temperature NEW 125°C 1000hours 6.3~25V 33~1000 44 VP VP SMD Strandard NEW 105°C 2000hours 2.5-25V 22~1500 46	CR	CR	Ultra Low ESR & Higher Ripple Current	105°C 2000hours	2.5 ~6.3V	470 ~ 2700	34
CS CS High Voltage & Long Life NEW 105°C 5000hours 25~50V 56~390 40 CH CH Ultra Low ESR & Long Life NEW 105°C 5000hours 2.5~16V 270~820 42 CT CT High Temperature NEW 125°C 1000hours 6.3~25V 33~1000 44 VP VP SMD Strandard NEW 105°C 2000hours 2.5-25V 22~1500 46	CX	CX	I NEW I	105°C 2000hours	2.5 ~28V	33~ 820	36
CH CH Ultra Low ESR & Long Life NEW 105°C 5000hours 2.5 ~16V 270 ~ 820 42 CT CT High Temperature NEW 125°C 1000hours 6.3 ~25V 33 ~ 1000 44 VP VP SMD Strandard NEW 105°C 2000hours 2.5-25V 22 ~ 1500 46	CF	CF	Super Low ESR & Large Capacitance	105°C 2000hours	6.3 ~32V	68~ 1800	38
CT CT High Temperature NEW 125°C 1000hours 6.3 ~25V 33 ~ 1000 44 VP VP SMD Strandard NEW 105°C 2000hours 2.5-25V 22 ~ 1500 46	CS	CS	High Voltage & Long Life NEW	105°C 5000hours	25~50V	56~390	40
VP VP SMD Strandard NEW 105°C 2000hours 2.5-25V 22 ~ 1500 46	СН	СН	Ultra Low ESR & Long Life	105°C 5000hours	2.5 ~16V	270 ~ 820	42
(NEW)	СТ	СТ	High Temperature NEW	125°C 1000hours	6.3 ~25V	33 ~ 1000	44
VB VB SMD Low Profile NEW 105°C 2000hours 2.5~16V 68~560 49	VP	VP	SMD Strandard NEW	105°C 2000hours	2.5-25V	22 ~ 1500	46
	VB	VB	SMD Low Profile NEW	105°C 2000hours	2.5~16V	68~560	49
VS SMD Long life and Ultra low ESR NEW 105 °C 5000hours 4~16V 39~330 51	VS	vs	SMD Long life and Ultra low ESR	105°C 5000hours	4~16V	39~330	51

2 Surface Mount Aluminum Electrolytic Capacitors

	Serie	es	Dudana	Endurance	General	Low leakage	Low Profile	Low Impedance	Long Life	Voltage Range (VDC)	Capacitance Range (uF)	D
TYPE	ТЕАРО	LUXON	Features	(+R=With ripple)	uəŊ	Fow le	Low F	Low Im	Tong			Page
	GV	GV	Low profile V-Chip	85°C 2000hours	*		*			4~100	1~1000	53
	FV	FV	Long life V-Chip	85°C 3000~5000hours					*	4~100	1~1000	55
	sv	sv	Low profile V-Chip	105°C 1000hours	*		*			4~100	1~1000	57
	DV	DV	Long life V-Chip	105°C 2000hours					*	6.3~100	1~1000	59
	ZV	ZV	Low impedance V-Chip	105°C 1000hours+R				*		4~50	1~1000	61
Vertical Chip	YV	YV	Low impedance V-Chip NEW	105°C 1000~2000hours+R				*		6.3~50	1~1500	63
Vertica	EV	EV	Ultra Low impedance V-Chip	105°C 2000hours+R				*		6.3~35	4.7~1500	65
	JV	JV	Low profile vertical chip NEW	105°C 2000hours+R				*		6.3~35	10~1800	67
	XV	XV	Ultra Low impedance V-Chip	105°C 3000~5000 hours+R				*	*	6.3~50	1~1000	69
	HV Higher temperature range V-Chip		125°C 2000hours				*		6.3~50	47~1000	71	
	CV CV Low leakage current V-Chip		85°C 2000hours		*				6.3~50	1~1000	73	
	NV NV Non-polarized V-Chip			105°C 2000 hours	*					6.3~35	1~47	75

3 Miniature Aluminum Electrolytic Capacitors

	Seri	es						4)			
TYPE	ТЕАРО	LUXON	Features	Endurance (+R=With ripple)	General	Minlature	Long Life	Low impedance	Voltage Range (VDC)	Capacitance Range (uF)	Page
/pe	SK	GR	General purpose	85°C 2000hours	*				6.3~500	1~22000	77
Gerenal Type	SE (SEK)	SE	General purpose	105°C 1000hours	*				6.3~450	1~15000	80
Ge	SH	SM	Miniature General purpose	105°C 2000hours	*				6.3~450	1~22000	83
	D5	SF	5 mm height	85°C 1000hours		*			4~50	1~330	86
	S5	FX	5 mm height	105°C 1000hours		*			4~50	1~470	88
Low Profile	Н5	Н5	5 mm height	105°C 2000hours		*	*		4~50	1~330	90
Low F	D7	SS	7 & 9 mm height	85°C 1000hours		*			4~63	1~470	92
	S7	SX	7 & 9 mm height	105°C 1000hours		*			4~63	1~470	94
	Н7	Н7	7 & 9 mm height	105°C 2000hours		*	*		4~63	1~470	96

	Serie	es	Features	Endurance	General	Miniature	Long Life	Low Impedance	High Ripple	Voltage Range	Capacitance	Page
TYPE	ТЕАРО	LUXON	reatures	(+R=With ripple)	Gen	Mini	Long	Low Im	High]	(VDC)	Range (uF)	1 age
	RN	RN	Non-polar	85°C 1000hours	*	*				4~250	1~6800	98
lar	SN	RX	Non-polar	105°C 1000hours	*	*				6.3~250	1~2200	100
Bi/Non - polar	RB	RB	Non-polar for crossover	85°C 1000hours	*					25~100	1~100	102
Bi/I	SR	BP	Bi-polar, Horizontal correction	85°C 1000hours	*					25~50	1~33	104
	BX	BX	Bi-polar, Horizontal correction	105°C 1000hours	*					25~50	1~33	106
	SB	LX	Low leakage current	105°C 1000hours	*					6.3~100	1~4700	108
	SC	LZ	Low ESR and high frequency	105°C 1000~3000hours+R				*		6.3~100	4.7~15000	112
	SJ	LU	Low impedance and high ripple	105°C 1000~5000hours+R			*	*		6.3~100	5.6~6800	115
ance	SY	LT	Low impedance and long life	105°C 2000~6000hours+R			*	*		6.3~100	22~15000	118
Low Impedance	TA	TA	Low impedance and long life NEW	105°C 4000~10000hours+R			*	*		6.3~35	33~8200	122
Lov	ST	ST	Low impedance and long life	105°C 4000~10000hours+R			*	*		6.3~63	6.8~15000	124
	SZ	LW	Ultra low ESR	105°C 1000~2000hours+R				*		6.3~16	470~3300	126
	AK	AK	High Temperature & Long Life NEW	125°C 2000-5000hours			*	*		10~450	1-4700	128
	SQ	LB	High ripple and high voltage	105°C 2000hours+R					*	160~450	2.2~220	130
High Ripple	SG	LC	High ripple and long life	105°C 3000~5000hours+R			*		*	160~450	3.3~330	132
High	SP	SP	High ripple and long life	105°C 8000~10000hours+R			*		*	160~450	3.3~330	134
	SU	SU	High ripple and long life NEW	105°C 10000~12000hours+R			*		*	160~450	3.3~330	136
itors	ТН	ТН	General purpose NEW	105°C 2000hours	*					250~450	10~150	138
Slim capacitors	TG	TG	High ripple and long life NEW	105°C 3000~5000hours+R			*		*	250~450	10~150	140
Slin	TP	TP	High ripple and long life NEW	105°C 8000~10000hours+R			*		*	160~450	10~330	142

4 Large Can Type Aluminum Electrolytic Capacitors

	Serie	es		Endurance	ral	ture	Life	Rroof	Voltage	Capacitance		
TYPE	ТЕАРО	LUXON	Features	(+R=With ripple)	General	Minlature	Long Life	Sohenl Rroof	Range (VDC)	Range (uF)	Page	
	LH	TW	General purpose	85°C 2000hours+R		*			6.3~500	56~120000	144	
	LG	HW	General purpose	105°C 2000hours+R	*				6.3~450	47~82000	149	
Snap-in	LF	LF	Long life	85°C 3000hours+R		*			10~450	56~56000	154	
Sna	LJ	LJ	Long life	105°C 3000hours+R			*		10~450	270~68000	159	
	LQ	LQ	Long life	105°C 5000hours+R			*		160~450	270~2200	164	
	LS	LS	Smaller size	105°C 2000hours+R	*			·	160~450	100~3300	167	

1-1 Precautions in Using Aluminum Electrolytic Capacitors

Please note the following recommendations when using capacitors:

- 1. Electrolytic capacitors for DC applications require polarization. Confirm the polarity before use. The circuit life may be shortened or the capacitor may be damaged if insert in reversed polarity. For use on circuits whose polarity is occasionally reversed, or whose polarity is unknown, use non-polar capacitors. Also note that the electrolytic capacitors cannot be used for AC applications.
- 2. Do not apply a voltage exceeding the capacitor's voltage rating.
 If a voltage exceeding the capacitor's voltage rating is applied, the capacitor may be damaged by increased leakage current. When using the capacitor with AC voltage do not exceed the rated voltage.
- 3. Do not allow excessive ripple current passing.
 Use the electrolytic capacitor at current value within the permissible ripple range. If the ripple exceeds the specified value, request capacitors for high ripple current applications.
- 4. Ascertain the operation temperature range .
 Use the electrolytic capacitors according to the specified operation temperature range . Use at room temperature will ensure a longer life .
- 5. The electrolytic capacitor is not suitable for circuits which are charged and discharged repeatedly.
 If used in circuits which are charged and discharged repeatedly, the capacitance value may drop or the capacitor may be damaged.
 Please consult our engineering department for assistance in these applications.
- 6. When capacitors have been left unused for long time, use them only after due voltage treatments. Long storage of capacitors tends to rise their leakage current levels. In such cases, be sure to provide the necessary voltage treatment before use.
- 7. Be careful of temperature and time when soldering . When soldering a printed circuit board with various components , care must be taken that the soldering temperature is not too high and that the dipping time is not too long . Otherwise , there will be adverse effect on the electrical characteristics and insulation sleeve of electrolytic capacitors . In the case of small -size electrolytic capacitors , nothing abnormal will be occurred if dipping is performed at less than 260°C for less than 10 seconds .

- 8. Cleaning circuit boards after soldering.
 Halogenated hydrocarbon cleaning solvents are not recommended for use in cleaning capacitors supplied with exposed end seals.
 Where cleaning with a halogenated solvent is desired, capacitors should be ordered with an Epoxy-coated end seal.
- 9. Do not apply excessive force to the lead wires or terminals. If excessive force is applied to the lead wires and terminals, they may be broken or their connections on the internal elements may be affected. (For strength of terminals, please refer to JIS C5102 and C5141.)
- 10. Keep the following clearance between the vent of the capacitor and the case of the appliance. Do not block the operation of the vent, unless otherwise described on the catalogues or product specifications. The narrower clearance may adversely affect the vent operation and result in an explosion of the capacitor.

Case diameter	Clearance
ϕ 6.3 to ϕ 16 mm	2 mm minimum
ϕ 18 to ϕ 35 mm	3 mm minimum
ϕ 40 mm & up	5 mm minimum

Fig.1-1

Attention

- The description in this catalogue is subject to change without prior notice for product improvement. Therefore, please confirm the specification before ordering products.
- The general characteristics, reliability data, etc., described in this
 catalogue should not be construed as guaranteed values, they are
 merely standard values.
- Before using the products , please read the notes in this catalogue carefully for proper use .

1-2 Technical Concepts

1. The material and structure of Electrolytic Capacitors

Electrolytic Capacitor is a simple module . It simply contains an insulator between relative conductors in an electrode. The major internal raw material contains an element constructed by an separator paper wrap around the anode foil and cathode foil , which is then impregnated with the electrolyte , inserted into an aluminum case and sealed.

Fig.1-2

2. Production Processes

- Etching: The process to increase surface area of aluminum foil by using chemical erosion or chemical corrosion method is called Etching.

 Normally chemical corrosion method uses the ripple current of electrolyte, combination of the liquid and temperature to determine the size, shape, and quantity of the dense network of microscopic channels on the aluminum foil surface.
- 2. Forming: The production process of the anode aluminum foil of electrolytic capacitors is by anodic oxidation of the etched aluminum foil . The production of the cathode aluminum foil sometimes involves oxidation in special purposes . This anodic oxidation process is called Forming . Boric acid or organic acid is used for high voltage forming and phosphoric acid or ammonium adipate is used for low voltage forming in order to obtain stable natural oxide layer of $\mathrm{Al}_2\mathrm{O}_3$.
- 3. Slitting: The cutting of the aluminum foil and separator paper according to the required length.
- 4. Winding: The stitching or cold welding of cut anode and cathode foils and tab terminal, and wrap the electrolytic paper in between the anode and cathode, then fix the end with glue or sticky tape, and attached leads is called the capacitor "element".
- 5. Impregnation: The process of eliminating water from the elements by pressurizes or vacuum in order to soak the element with the electrolyte is called Impregnation. The elements fully filled with electrolyte is then centrifuged to remove excess electrolyte.
- 6. Assembly: The elements seal with rubber to stop the leakage of electrolyte then slip into a sleeve to form the final product.
- Aging: The purpose of Aging is to repair the oxide film damage by recharging and electrolyte.

1-3 The Function of Electrolytic Capacitors

The electrolytic capacitors could be widely used in appliance (ie. TV , radio , audio equipment , washing machine and air conditioner……etc .) , computer equipment (mother board, image device & the peripherals such as the printer , drawing device, scanner…etc) , communication equipment , estate equipment , measure instrument and also the industrial instrument , airplane , firebomb , satellite…etc. as a piloting equipment.

*According to the inflict electric wave & using purpose, it basically with some classified purposes as below:

1. DC Voltage:

- a. For Momentary High Voltage: For using to the impulse generator such as the shock wave resistance test of the heavy electric machine.
- b. For High Electric Current: For using to the welding machine, X- Ray facility, copy machine and discharge processing device.
- c. For DC High Voltage: The electrolytic capacitor and rectifier composing , a special DC high voltage been happened after charged, for using to the power of electronic microscope and accelerator.
- d. For Integration & Memory: For either memory circuit or compare circuit inside the calculator.

2. The DC voltage that with alternate ingredient:

- a. For Wave Filter: Combination with the chip resistor & inductor as a internet
 , to be past by DC current or some frequency to closure or decline some
 other frequency .
- b. For Bypass: A parallel track that outside from the circuit element, the IC (integrated circuit) has been rapidly developing in this years and thus a miniaturization or chip of electrolytic capacitors for by pass was conducted.
- c. For Coupling: Combination of the electrolytic capacitor, chip resistor and inductor and thus coupling together.
- d. For Arising of Toothed Wave: Composing of RC charge/ discharge circuit through the electrolytic capacitor as well as the resistor and a toothed wave to be created by the RC charge/discharge circuit.
- e. For Reverse (Change) of Circuit : The equipment for change the AC voltage to DC voltage .

3. For AC voltage:

- a. For Power Improving : Connect the end loading of layout transporting & electrolytic capacitor for power improving .
- b. For Wave Filter: Prevention of external interference in SCR circuit, use the LC wave filter circuit to inhibit or erase the interference.
- c. For Phase Across: Phase change of the inductive electromotor (motor) with single phase.

4. Impedance (Z)

The impedance of an electrolytic capacitor results from here below circuit formed by the following individual equivalent series components:

Co = Aluminum oxide capacitance (surface and thickness of the dielectric)

 $Re = Resistance \ of \ electrolyte \ and \ paper \ mixture \ (other \ resistances \ not \ depending \ on \ the \ frequency \ are \ not \ considered: tabs \ , plates \ , and so \ on)$ $Ce = Electrolyte \ soaked \ paper \ capacitance$

L = Inductive reactance of the capacitor winding and terminals.

The impedance of an electrolytic capacitor is not a constant quantity that retains its value under all the conditions: it changes depending on the frequency and the temperature.

The impedance as a function of frequency (sinusoidal waveform) for a certain temperature can be represented as follows:

- Capacitive reactance predominates at low frequencies
- With increasing frequency, the Capacitive reactance Xc=1/ωCo decreases until it reaches the order of magnitude of the electrolyte resistance Re (A)
- At even higher frequencies , the resistance of the electrolyte predominates : Z= Re (A B)
- When the capacitor's resonance frequency is reached (ω 0) , capacitive and cancel each other $1/\omega$ Cinductive reactance mutually cancel each other $1/\omega$ Ce = ω L , ω 0=SQR(1/LCe)(C) .
- Above this frequency , the inductive reactance of the winding and its terminals (XL=Z= ω L) becomes effective and leads to an increase in impedance . Generally speaking it can be estimated that Ce $\stackrel{.}{=}$ 0.01 Co .

The impedance as a function of frequency (sinusoidal waveform) for different temperature values can be represented as follows (typical values):

Re is the most temperature dependant component of electrolytic capacitor equivalent circuit . The electrolyte resistivity will decrease if the temperature rises . In order to obtain a low impedance value all over the temperature range , Re must be as little as possible , but too low Re values means a very aggressive electrolyte and then a shorter life of the electrolytic capacitor at the high temperatures . A compromise must be reached .

5. Leakage current (L.C.)

Duetothealuminum oxidelayer that serves as adielectric , a small current will continue of flow even after a DC voltage has been applied for long periods . This current is called leakage current . A high leakage current flows after applying a voltage to the capacitor and then decreases in few minutes (e.g. after a prolonged storage without any applied voltage) . In the course of the continuous operation , the leakage current will decrease and reach an almost constant value

After avoltage free storage the oxide layer may deteriorate, especially at high temperature. Since there are no leakage current to transport oxygen ions to the anode, the oxide layer is not regenerated. The result is that ahigher thannormal leakagecurrent will flow whenavoltage applied after prolonged storage. As the oxide layer is regenerated in use, the leakage current will gradually decrease to its normal level.

The relationship between the leakage current and the voltage applied at constant temperature can be shown schematically as follows:

Fig 1-14

Where:

VF = Forming voltage

If this level is exceeded a large quantity of heat and gas will be generated and the capacitor could be damaged.

VR = Rated Voltage

This level represents the top of the linear part of the curve.

VS = Surge voltage

It lies between VR and VF: the capacitor can be subjected to VS for short periods only .

4. Impedance (Z)

The impedance of an electrolytic capacitor results from here below circuit formed by the following individual equivalent series components:

Co = Aluminum oxide capacitance (surface and thickness of the dielectric)

Re = Resistance of electrolyte and paper mixture (other resistances not

depending on the frequency are not considered : tabs , plates , and so on) Ce = Electrolyte soaked paper capacitance

L = Inductive reactance of the capacitor winding and terminals.

The impedance of an electrolytic capacitor is not a constant quantity that retains its value under all the conditions: it changes depending on the frequency and the temperature.

The impedance as a function of frequency (sinusoidal waveform) for a certain temperature can be represented as follows:

- Capacitive reactance predominates at low frequencies
- With increasing frequency, the Capacitive reactance Xc=1/\omega Co decreases until it reaches the order of magnitude of the electrolyte resistance Re (A)
- At even higher frequencies , the resistance of the electrolyte predominates : Z= Re (A B)
- When the capacitor's resonance frequency is reached (ω 0) , capacitive and cancel each other 1/ ω Cinductive reactance mutually cancel each other 1/ ω Ce = ω L , ω 0=SQR(1/LCe)(C) .
- Above this frequency , the inductive reactance of the winding and its terminals (XL=Z= ω L) becomes effective and leads to an increase in impedance . Generally speaking it can be estimated that Ce =0.01 Co .

The impedance as a function of frequency (sinusoidal waveform) for different temperature values can be represented as follows (typical values):

Re is the most temperature dependant component of electrolytic capacitor equivalent circuit . The electrolyte resistivity will decrease if the temperature rises . In order to obtain a low impedance value all over the temperature range , Re must be as little as possible , but too low Re values means a very aggressive electrolyte and then a shorter life of the electrolytic capacitor at the high temperatures . A compromise must be reached .

5. Leakage current (L.C.)

Duetothealuminum oxidelayer that serves as adielectric , a small current will continue of flow even after a DC voltage has been applied for long periods . This current is called leakage current . A high leakage current flows after applying a voltage to the capacitor and then decreases in few minutes (e.g. after a prolonged storage without any applied voltage) . In the course of the continuous operation , the leakage current will decrease and reach an almost constant value .

After avoltage free storage the oxide layer may deteriorate, especially at high temperature. Since there are no leakage current to transport oxygen ions to the anode, the oxide layer is not regenerated. The result is that ahigher thannormal leakagecurrent will flow whenavoltage applied after prolonged storage. As the oxide layer is regenerated in use, the leakage current will gradually decrease to its normal level.

The relationship between the leakage current and the voltage applied at constant temperature can be shown schematically as follows:

Fig 1-14

Where:

VF = Forming voltage

If this level is exceeded a large quantity of heat and gas will be generated and the capacitor could be damaged .

VR = Rated Voltage

This level represents the top of the linear part of the curve .

VS = Surge voltage

It lies between VR and VF: the capacitor can be subjected to VS for short periods only .

1-5 Reliability

(1)The bathtub curve:

Aluminum electrolytic capacitors feature failure rates shown by the following bathtub curve.

Fig.1-15 Bathtub curve

a. Initial failure period

Deficient Capacitors include any products before dispatch that may have some deficiency caused by the design, production process or used in inappropriate environments.

b. Random failure period

The capacitors have a low defect ratio in the period after it has been stabilized.

c. Wear out failure period

The performance of capacitors will decrease with an increase in usage period. The malfunction rate may vary due to the structural design.

1-6 Circuit Design

(1) Environmental and Mounting Conditions

★ Please make sure the environmental and mounting conditions to which the capacitor will be exposed to are within the conditions specified in TEAPO's catalog.

(2) Operating Temperature, Equivalent Series Resistance(ESR), Ripple Current and Load Life

★ MTTF(Mean-Time-TO-Failure) means the useful life at room temperature 25°C

Load life:

If the capacitor's max. operating temperature is at $105^{\circ}\mathbb{C}(85^{\circ}\mathbb{C})$, then after applying capacitor's rated voltage (WV) for L_0 hours at $105^{\circ}\mathbb{C}(85^{\circ}\mathbb{C})$, the capacitor shall meet the requirements in detail specification. where L_0 is called "load life" or "useful life (lifetime) at $105^{\circ}\mathbb{C}(85^{\circ}\mathbb{C})$ ". $L_x = L_0 \times 2^{\frac{(To \cdot Tx)}{10}} \times K^{\frac{-\Delta Tx}{5}}$

where $\triangle Tx = \triangle T_0 \times (Ix/I_0)^2$, $Ix > I_0, K=4$; $Ix \le I_0, K=2$

Ripple life:

If the capacitor's max. operating temperature is at $105^{\circ}\mathbb{C}(85^{\circ}\mathbb{C})$, then after applying capacitor's rated voltage (WV) with the ripple current for L_t hours at $105^{\circ}\mathbb{C}(85^{\circ}\mathbb{C})$, the capacitor shall meet the requirements in detail specification. where L_t is called "ripple life" or "useful ripple life (ripple lifetime) at $105^{\circ}\mathbb{C}(85^{\circ}\mathbb{C})$ ".

 $L_x = L_r \times 2^{\frac{(T_0 - T_x)}{10}} \times K^{\frac{(\Delta T_0 - \Delta T_x)}{5}}$

where $\triangle Tx = \triangle T_0 \times (Ix/I_0)^2$, $Ix>I_0,K=4$; $Ix \le I_0,K=2$

The (ripple) life expectancy at a lower temperature than the specified maximum temperature may be estimated by the following equation, but this expectancy formula does not apply for ambient below $+40^{\circ}$ C

 L_0 = Expected life period (hrs) at maximum operating temperature allowed

 $L_{\!\scriptscriptstyle T} = Expected$ ripple life period (hrs) at maximum operating temperature allowed

 L_x = Expected life period (hrs) at actual operating temperature

 $T_0 = Maximum operating temperature (^{\circ}C)$ allowed

 $T_x = Actual operating ambient temperature (°C)$

 I_x = Actual applied ripple current (mArms) at operating frequency f_0 (Hz)

 $I_0 = Rated \ maximum \ permissible \ ripple \ current \ I_R(mArms) \ x \ frequency$ multiplier (C $_f$) at f_0 (Hz)

**Ripple Current calculation: no need Temperature Multiplying Factor
**For Ripple life, Ix Should be 80% equal or more of Io, if less than 80%, calculate with 80%.

 $\triangle T_0 \leqq \! 5 ^\circ\! \mathbb{C} \! = \! Maximum \ temperature \ rise (^\circ\! \mathbb{C}) \ for \ applying \ I_0 (mArms)$

 \triangle Tc =Temperature rise (°C) of capacitor case for applying Ix (mA/rms)

 $\triangle T_x$ = Temperature rise (°C) of capacitor element for applying I_x (mArms) = $K_c\triangle T_c=K_c(T_c-T_x)$

where T_c is the surface temperature (°C) of capacitor case

T, is ditto.

 K_c is transfer coefficient between element and case of capacitor from table below:

	110111	table be	10 W •						
Dia	$\leq 8 \phi$	10ϕ	12.5ϕ	16ϕ	18ϕ	22ϕ	25ϕ	30ϕ	35ϕ
			13ϕ						
K _c	1.10	1.15	1.20	1.25	1.30	1.35	1.40	1.50	1.65

* The estimated life is limited to 15 years, if it exceeds 15 years, take 15 years as standard.

★ The formula of Equivalent Series Resistance (ESR)

The operating frequency of ESR, DF, f & C must be the same, usually, they test at 120 Hz.

ESR=DF /
$$2\pi$$
 f C·····(2)

Where DF: Dissipation Factor(tan δ)

f : Operating frequency(Hz)

C: Capacitance(F)

★ Estimation of life considering the ripple current

The ripple current affects the life of a capacitor because the internal loss (ESR) generates heat. The generated heat will be:

$$P = I^2 R$$
----(3)

Where $\ I: Ripple\ current(Arms.)$

R: ESR(Ω)

At this time the increase in the capacitor temperature will be:

$$\triangle T = I^2R / AH$$
-----(4)

Where $\triangle T$: Temperature increase in the capacitor core(degree)

I : Ripple current(Arms)

R: ESR(Ω)

A: Surface area of the capacitor (cm²)

H: Radiation coefficient(Approx.1.5~2.0×10⁻³ W/cm² °C)

The above equation (4) shows that the temperature of a capacitor increases in proportion to the square of the applied ripple current and ESR, and in inverse proportion to the surface area. Therefore, the amount of the ripple current determines the heat generation, which affects the life. The values of \triangle T varies depending on the capacitor types and operating conditions. The usage is generally desirable if \triangle T remains less than 5°C. The measuring point for temper-ature increase due to ripple current is shown below.

(3) Application

★ Aluminium Electrolytic Capacitors are normally polarized. Reverse voltage or AC Voltage should not be applied. When polarity may flip over, non-polar type capacitors should be used, but the non-polar type cannot be used for AC circuits.

(4) Applied Voltage

★ Do not exceed the rated voltage of capacitor.

(5) Insulation

- ★ Aluminum Electrolytic Capacitors should be electrically isolated from among the following points.
- a. Aluminum case, cathode lead wire, anode lead wire and circuit pattern. *
- Auxiliary terminals of snap-in type, anode terminal, outward terminal and circuit pattern.

(6) Conditions of use

- ★ Aluminum Electrolytic Capacitors must not be used under the following conditions:
 - a. Damp conditions such as water, saltwater spray, or oil spray or fumes. High humidity or humidity condensation situations
 - Ambient conditions that include toxic gasses such as hydrogen sulfide, sulfurous acid, nitrous acid, chlorine, ammonium, etc.
 - c. Ambient conditions that expose the capacitors to ozone, ultraviolet rays and radiation.
 - d. Severe vibration or shock that exceeds the conditions specified in the catalog or specifications sheets.

(7) Recommended design considerations

- ★ When designing a circuit board. Please pay attention to the following:
 - a. Make the hole spacing on the PC board match the lead space of the capacitor.
 - There should not be any circuit pattern or circuit wire above the capacitors.
 - c. In case the capacitor's vent is facing the PC board, make a gas release hole on PC board.
 - d. Do not install screw terminal capacitor with end seal side down. When you install a screw terminal capacitor in a horizontal mount, the positive terminal must be in the upper position.
 - e. Do not locate any wiring and circuit patterns directly above the capacitor's vent.

1-7 Caution for Mounting

(1) Caution before assembly

- ★ Aluminum Electrolytic Capacitors cannot be recycled after mounting and applying electricity in unit. The capacitors that are removed from PC board for the purpose of measuring electrical characteristics at a periodical inspection should only berecycled to the same position.
- \bigstar Aluminum Electrolytic Capacitors may accumulate charge naturally during storage. In this case, discharge through a 1K Ω resistor before use.
- \bigstar Leakage current of Aluminum Electrolytic Capacitors may be increase during long storage time. In this case, the capacitors should be subject to voltage treatment through a 1K Ω resistor before use.

(2) In the assembly process

- ★ Please confirm ratings before installing capacitors on the PC board.
- ★ Please confirm polarity before installing capacitors on the PC board.
- ★ Do not drop capacitors on the floor, nor use a capacitor that was dropped.
- \bigstar Be careful not to deform the capacitor during installation.
- ★ Please confirm that the lead spacing of the capacitor matches the hole spacing of the PC board prior to installation.
- ★ The snap-in type of capacitors should be mounted firmly on the PC board without a gap between the capacitor body and the surface of PC board.
- ★ Avoid excessive force when clinching lead wire during auto-insertion process.
- ★ Avoid excessive shock to capacitors by automatic insertion machine, during mounting, parts inspection or centering operations.
- ★ Please utilize supporting material such as strap or adhesive to mount capacitors to PC board when it is anticipated that vibration or shock is applied.

(3) Soldering

- ★ All TEAPO's cp wires of electrolytic capacitors are without lead (Pb).
- ★ Soldering conditions(temperatures, times) should be within the specified conditions which are described in the catalog or specification sheets.
- ★ If it is necessary that the leads must be formed due to a mismatch of the lead space to hole space on the board, bend the lead prior to soldering without applying too much stress to the capacitor.
- ★ If soldering capacitor has to be withdrawn from the PW board by soldering iron, the capacitor should be removed after the solder has melted sufficiently in order to avoid stress to the capacitor or lead wires.
- ★ Soldering iron should never touch the capacitor's body.

(4) Flow soldering

- ★ Do not dip capacitor's body into melted solder.
- ★ Din of flow soldering for the capacitors should be limited at 260°C,10sec.
- ★ Flux should not be adhered to capacitor's body but only to its terminals.
- ★ Other devices which are mounted near capacitors should not touch the capacitors

(5) Reflow soldering condition

- ★ For reflow, use a thermal condition system such as infrared radiation or hot blast. Vapor heat transfer systems are not recommended.
- ★ Observe proper soldering conditions(temperature, time, etc. Do not exceed the specified limits.
- * Repeated reflowing:
 - *Avoid reflowing twice if possible.
 - *If repeated reflowing is unavoidable, contact us after measuring the first and the second reflow profiles and reflow interval at your side.
 - *Do not attempt to reflow three times.

(6) Lead free type reflow soldering condition For Aluminum Electrolytic Capacitors

- ★ For reflow, use a thermal condition system such as infrared radiation or hot blast. Vapor heat transfer systems are not recommended.
- ★ Observe proper soldering conditions(temperature, time, etc. Do not exceed the specified limits.
- ★ Repeated reflowing:
 - *Avoid reflowing twice if possible.
 - *If repeated reflowing is unavoidable, contact us after measuring the first and the second reflow profiles and reflow interval at your side.
 - *Do not attempt to reflow three times.

Size	T	t
$\varphi 4 \sim \varphi 5$	250	10
$\varphi 4 \sim \varphi 5$ $(4V \sim 50V)$	260	5
$\varphi 6.3 \sim \varphi 10$ $(4V \sim 50V)$	250	5
$\varphi 4 \sim \varphi 10$ $63 \sim 100V$	250	5

For Conductive Polymer Aluminum Solid Capacitors

Resistance to soldering heat condition

Test condition

A) Vapor phase soldering method

Solder paste should be applied to the printed wiring boards and then the capacitors are mounted on it. After that, the capacitor should be maintained in the vapor phase bath at a temperature of 230 ± 2 °C for 75 ± 1 seconds.in the vapor phase bath at a temperature of 230 ± 2 °C for 75 ± 1 seconds.

B) Soldering iron method Temperature: 400 ±10 °C Duration: 3⁺¹₋₀ seconds

Performance: The capacitors shall meet the following specification after A or B test.

Item	Performance
Capacitance change	Within ±10 % of initial capacitance (2.5V: Within ±15 % of initial capacitance)
Tangent of loss angle	Less than or equal to 1.3 times of the value
E.S.R.	Less than or equal to 1.3 times of the value
Leakage current	Less than or equal to the value

Recommendable reflow condition

Reflow profile

Peak temperature of the top and terminals of a capacitor	250 °C or less	260 °C or less
Preheating	150°C to 180°C	90 ± 30 seconds
Time of being at 200 °C and higher	Within 60 seconds	Within 60 seconds
Time of being at 220 °C and higher	Within 50 seconds	Within 50 seconds
Time of being at 230 °C and higher	Within 40 seconds	Within 40 seconds
The number of reflow	Twice or less	Only 1 time

Note:

- *Measurement position of temperature: The top surface of capacitor and board's surface nearby terminal.
- *Measurement method: Thermo-junction is fixed on measurement position by silver paste or an adhesive of resin.
- Thermo-junction is Classification K, material CA with diameter 0.1mm.
- *An interval of reflow: In case two times reflow is necessary, CP-CAP shall be taken into reflow when its return to normal temperature.
- *Heat stress to CP-CAP will be influenced by the different of reflow equipment, board material, size, and numbers of mounting. The following action must be practice through a practical test mounting before mass-production.
- Check your reflow condition whether it is within the above TEAPO Recommendable Reflow Condition or not.
- (2) Confirm CP-CAP's electric characteristic change before and after reflow.

(7) Cleaning

- ★ Satisfied characteristic of JIS C 5101.
- ★ Aluminum Electrolytic Capacitors may be damaged by corrosion which is caused by any halogenated hydrocarbon solvents (Ex:HCH(Cl)2···). All of our products are non-solvent-proof, we recommend cleaning method as following:

Applicable : Any type, any ratings

Cleaning agents : Pine Alpha ST-100S, Clean Through

750H/750L/710M,Sanelek B-12, Aqua Cleaner 210SEP, Techno Care FRW14~17, Iso- propyl Alcohol Cleaning conditions: Total cleaning time shall be within 5 minutes by immersion, ultrasonic or other method.

(Temperature of the cleaning agent shall be 60°C or lower.) After cleaning, capacitors should be dried using hot air for minimum of 10 minutes along with the PC board.

Hot air temperature should be below the maximum operating temperature of the capacitor. Insufficient dries dry after water rinse may cause appearance problems, sleeve may shrink, or the bottom-plate may bulge, etc...

Please let us know in advance the solvent name and conditions for your PWB Cleaning .

1-8 Emergency Action

- (1) If you see smoke due to the operation of safety vent, turn off the main switch or pull out the plug from the outlet.
- (2) Do not put your face near the safety vent as gas which in over 100°C will be emitted when the safety vent operates. If the gas has entered your eyes, please flush your eyes immediately in pure water. If you breathed the gas, immediately wash out your mouth and throat with water. Do not ingest electrolyte. If your skin is exposed to electrolyte, please wash it away using soap and water.

1-9 Storage Condition

- Aluminum electrolytic capacitors should not be stored in high temperatures or where there is a high level of humidity. The suitable storage condition is 5~35°C and less than 75% in relative humidity.
- Aluminum electrolytic capacitors should not be stored in damp conditions such as water, saltwater spray or oil spray.
- (3) Do not store aluminum electrolytic capacitors in an environment full of hazardous gas (hydrogen sulfide, sulfurous acid gas, nitrous acid, chlorine gas, ammonium, etc.)
- (4) Aluminum electrolytic capacitors should not be stored under exposure to ozone, ultraviolet rays or radiation.
- (5) If a capacitor has been stored for more than one year under normal temperature (shorter if high temperature) and it shows increased leakage current, then a treatment by voltage application is recommended

1-10 Environment - Related Substances

All TEAPO's capacitors comply to RoHS (Restricition of Hazardous Substances) requirements where Chromium VI (${\rm Cr}^{+6}$),Cadmium(Cd), Mercury(Hg),Lead(pb),polybrominated biphenyls (PBBs) and Polybrominated biphenyl/diphenyl ethers (PBBEs / PBDEs) have not detected (lower than MDL(Method Detection Limit)) per SGS certification test report.

1-11 Disposal

Please dispose capacitors in either of the following ways:

- Incinerate capacitors after crushing parts of making a hole on the capacitor body.
- (2) Bury capacitors in the ground . Please have a disposal specialist do it.

The Characterisitics of Endurance Test

Capacitance Change Ratio

Dissipation Factor Change

Leakage Current Change

Part Number Instruction

1 2~3 7 8~10 4~6 11~12 13 14 15 16~17 18 SK **S1** <u>C</u> K M 11 LEAD SLEEVE CASE SIZE LENGTH OTHERS

Code 1 Type

Code	Model Type					
D	D Standard Dip Type (PVC sleeve)					
K	K Standard Dip Type (PET sleeve)					
V	SMD (V-chip) Type (Nylon coating)					
L	Snap-in Type (PVC sleeve)					
S	Snap-in Type (PET sleeve)					
P	Conductive Polymer Aluminum Solid Capacitor					

Code 2~3 Series Name (as content page 5)

Code 4~6 Capacitance

 $0.47 \,\mu\,\text{F} = 474$ $4.7 \,\mu\,\text{F} = 475$ $47 \,\mu\,\text{F} = 476$ $470 \,\mu\,\text{F} = 478$

Code 7 Tolerance

 $M = \pm 20\%$, $K = \pm 10\%$, $V = +20 \sim -10\%$

Code 8~10 Voltage

2.5V = 2R5 5V = 005 6.3V = 6R3 63V = 063 100V = 100 450V = 450

Code 11~12 Lead Process

Explanation for code 11

 $S: Standard \qquad T: Ammo tape \qquad R: Reel tape \ C: Straight cut \qquad K: Kink(Crimp)cut \qquad F: Formed cut$

Code	11&12	Description
	0	Standard SMD tyma
$\mathbf{S} = \frac{0}{1}$		Standard SMD type Standard Dip & Snap-in type
	1	Standard Dip & Shap-in type
	1	Standard ammo tape (pitch 5mm for dia .~ 13mm)
T	2	Ammo tape with straight lead (available for dia. 4~8mm)
	4	Ammo formed tape with pitch 2.5mm (available for dia.4~5mm)
	1	Standard reel tape (pitch 5mm for dia.~ 10mm)
R	2	Reel tape with straight lead (available for dia. 4~8mm)
	3	Reel formed tape with pitch 2.5mm (available for dia.4~5mm)

Code	11&12	Description				
	3	Straight cut lead with L: 3.2+/-0.2mm				
C	5	Straight cut lead with L: 4.0+/-0.2mm				
	7	Straight cut lead with L: 5.0+/-0.2mm				
K	2	Kink cut lead with L: 4.5+/-0.5mm				
TP.	6	Forming out load with L : 4.0 \ / 0.2 (Ditah : 5mm)				
F	Forming cut lead with L: 4.0+/-0.3 (Pitch: 5mm)					

Code 13 Special specification

 $\begin{tabular}{lll} $A:Standard$ & $D:Impedance$\\ $B:DF\ (tan\delta)$ & $E:Ripple\ current$\\ $C:ESR$ & $F:Leakage\ current$ \end{tabular}$

Code 14 Sleeve code

Code	Series	Color
1	SK	Dark blue with white printing
5	S5,D5,H5,S7,D7,H7,SH,SG,SP,SB,SY, SJ,RN,SN,RB, U	Black with white printing
В	SE	Brown with white printing
C	SC	Green with golden printing
Н	SZ	Royal blue with golden printing
N	GV,FV,SV,DV,RV,ZV,EV,JV,CV, CG,CP,CR,CF,CY,CZ,CT,CX,CH,VP	(SMD standard pack & POLYMER)

Code 15~17 Size code

Code 15: Case Size

CODE	A	В	С	D	E	F	G	H	J
Case Size	3	4	5	6	6.3	7	8	10	12
CODE	K	L	M	N	P	Q	R	S	T
Case Size	12.5	13	16	18	20	22	25	30	35

Code 16~17: Length

For ECAP-DIP & POLYMER-DIP & SNAP-IN

ı	CODE	05	07	09	10	11	12	1C	13	14	15
Ì	LENGTH	05	07	09	10	11	12	12.5	13	14	15
						1		I .			
	CODE	16	17	20	25	30	32	35	36	40	50
Ì	LENGTH	16	17	20	25	30	32	35	36	40	50

Note: for the part hasn't been mentioned above, the CODE is the same with LENGTH.

For V-CHIP SMD

CODE	01	02	03	04
LENGTH	5.4	6.2	10.2	7.7

For POLYMER SMD

CODE	A1	A2	A3	A4	A5	A6	A7	A8
LENGTH	5.8	6.0	6.7	7.7	10.0	10.4	12.0	12.2

e.g. (For Code15~17):

Code	Size	Description
B01	4*5.4	For V-CHIP SMD
C11	5*11	For ECAP-DIP & POLYMER-DIP
Q25	22*25	For SNAP-IN
EA1	6.3*5.8	For POLYMER SMD

Code 18 Other special instructions ("K"for TEAPO standard," 0 " for LUXON standard)

Code C5: Straight Cut

Code K2: Kink cut, & Crimping

Code T1/R1 : Ammo / Reel Tape (ϕ 4 – ϕ 6.3)

		CASE		
SYMBOL	4×5	5×5~11	TOLERANCE	
φ d	0.45	0.	45 or 0.5	±0.05
P		12	2.7	±1.0
P0		12	2.7	±0.3
P1		3.	85	±0.5
P2		6.	35	±1.0
F		5	+0.6 / -0.2	
W		18	±0.5	
W0		12.0	min	-
W1		9	.0	±0.5
W2		2.0	max	-
Н		18	3.5	±0.75
H0		16	5.0	±0.5
D0		4	.0	±0.3
△P		0.2	-	
∆h		0.2	-	
t		0	±0.3	

Code T1/R1 : Ammo / Reel Tape (ϕ 8)

	CASE SIZE				
SYMBOL	8×5~20	TOLERANCE			
φd	0.45~0.6	±0.05			
P	12.7	±1.0			
P0	12.7	±0.3			
P1	3.85	±0.7			
P2	6.35	±1.0			
P3	2.5	+0.2 / -0.5			
θ	110°	±15°			
F	5.0	+0.6 / -0.2			
W	18.0	±0.5			
W0	12.0 min	-			
W1	9.0	±0.5			
W2	2.0 max	-			
Н	18.5	±0.75			
Н0	16.0	±0.5			
D0	4.0	±0.3			
△P	0.2 max	-			
△h	0.2 max	-			
t	0.6	±0.3			

Code T1/R1 : Ammo / Reel Tape (ϕ 10)

SYMBOL	CASE SIZE	TOLERANCE		
STWIDOL	10×10~30	TOLERANCE		
φ d	0.6	±0.05		
P	12.7	±1.0		
P0	12.7	±0.3		
P1	3.85	±0.5		
P2	6.35	±1.0		
F	5.0	+0.6 / -0.2		
W	18.0	±0.5		
W0	12.0 min	-		
W1	9.0	±0.5		
W2	2.0 max	-		
Н	18.5	±0.75		
D0	4.0	±0.3		
△P	0.2 max	=		
△h	0.2 max	-		
t	0.7	±0.2		

 $Code\ T2/R2: Ammo\ /\ Reel\ Tape\ with\ straight\ lead$

SYMBOL		CAS	SE SIZE		TOLERANCE
SIMBOL	4×5~7	5×5~11	6.3×5~11	$8\times7\sim14$	TOLERANCE
φ d	0.45	0.45	or 0.5	0.6	±0.05
F	1.5	2.0	2.5	3.5	+0.6 / -0.2
P1	5.6	5.35	5.1	4.6	±0.5
P0			12.7		±0.3
P				±1.0	
P2		(6.35		±1.0
W			18.0		±0.5
W0		12	.0 min		-
W1			9.0		±0.5
W2		3.0	0 max		-
Н			18.5		±0.75
D0			±0.3		
△p		0.2	-		
t				±0.2	

Code T1 : Ammo Tape (ϕ 13~ ϕ 16)

SYMBOL CASE SIZE TOLERANCE 12.5x15~25 13x13~40 16x16~40 TOLERANCE	
12.5x15~25 13x13~40 16x16~40	
φ d 0.6 0.6 0.8 ± 0.05	
P 15.0 30.0 ±1.0	
P0 15.0 ±0.3	
P1 5.0 3.75 ±0.7	
P2 7.5 ±1.3	
F 5.0 7.5 +0.6/-0.2	
W 18 ±0.5	
W0 12.0 min -	
W1 9.0 ±0.5	
W2 2.0 max -	
H 18.5 ±0.75	
D0 4.0 ±0.3	
<u>△</u> P 0.2 max -	
<u>△</u> h 0.2 max -	
t 0.7 ±0.3	

Code T4/R3 : Ammo / Reel Formed Tape (ϕ 4 \sim ϕ 5/pitch 2.5mm)

CMMDOL	Case SI	ZE	Т-1
SYMBOL	4×5~4×7	Tolerance	
φ d	0.45	0.45 or 0.5	±0.05
P	12.7		±1.0
P0	12.7		±0.3
P1	5.1		±0.5
P2	6.35		±1.0
F	2.5	+0.6 / -0.2	
W	18.0	±0.5	
W0	12.0 m	nin	-
W1	9.0		±0.5
W2	2.0 ma	ax	-
Н	18.5		±0.75
Н0	17.0		±0.5
D0	4.0		±0.3
△P	0.2 ma	ax	-
∆h	0.2 ma	0.2 max -	
t	0.6		±0.2

V-chip Packing Specifications • Reel Dimensions in mm(not to scale)

Size	A	В	С	D	Е	W	Т	t
$4 \psi \sim 5 \psi$	380±2	50min	13.0±0.5	21.0±0.8	2.0±0.5	14±1	20±1	3.0
$6.3 \phi \sim 8 \times 6.2$	380±2	50min	13.0±0.5	21.0±0.8	2.0±0.5	18±1	24±1	3.0
8×10.2 ~ 10 φ	380±2	50min	13.0±0.5	21.0±0.8	2.0±0.5	26±1	32±1	3.0

Reel Tape

Taping Dimensions in mm (not to scale)

*Ask factory for technical specifications.

Symbol Size	W	A	В	Po±0.1	P1	P2±0.1	F	ψDo	t1	E	t2
4x5.4	12.0	4.7	4.7	4.0	8.0	2.0	5.5	1.5+0.1-0	0.4	1.75	5.8
5x5.4	12.0	5.7	5.7	4.0	12.0	2.0	5.5	1.5+0.1-0	0.4	1.75	5.8
6.3x5.4	16.0	7.0	7.0	4.0	12.0	2.0	7.5	1.5+0.1-0	0.4	1.75	5.8
6.3x7.7	16.0	7.0	7.0	4.0	12.0	2.0	7.5	1.5+0.1-0	0.4	1.75	8.3
8x6.2	16.0	8.7	8.7	4.0	12.0	2.0	7.5	1.5+0.1-0	0.4	1.75	6.8
8x10.2	24.0	8.7	8.7	4.0	16.0	2.0	11.5	1.5+0.1-0	0.4	1.75	11.0
10x10.2	24.0	10.7	10.7	4.0	16.0	2.0	11.5	1.5+0.1-0	0.4	1.75	11.0

Packaging Specification

Size (mm)	Q'ty per reel	Inner box /	measurement (mm)	Outer carton	Min. ordering amount	
4x5.4	2000	20,000	390x195x395	40,000	420x410x414	10kpcs
5x5.4	1000	10,000	390x195x395	20,000	420x410x414	10kpcs
6.3x5.4 & 6.3x7.7	1000	10,000	390x235x405	20,000	420x410x492	10kpcs
8x6.2	1000	10,000	390x235x405	20,000	420x410x492	10kpcs
8x10.2	500	4,000	390x255x405	8,000	420x410x530	8kpcs
10x10.2	500	4,000	390x255x405	8,000	420x410x530	8kpcs

PACKAGING SPECIFICATION

Miniature Aluminum Electrolytic Capacitors

For Bulk: Standard Cutting & Forming

Classification		Standar	d Bulk			Cutting &	Forming		Min. ordering amount
Case size D*L(mm)	Vinyl bag	inner box 289*168*279 (mm)	outer carton 355*297*290 (mm)	gross weight (kg)	Vinyl bag	inner box 289*168*135 (mm)	outer carton 355*297*290 (mm)	gross weight (kg)	kpcs
4×5	2,000	24,000	48,000	13	2,000	20,000	80,000	20	25
4×7	2,000	20,000	40,000	11	2,000	16,000	64,000	17	25
5×5	2,000	20,000	40,000	12	2,000	16,000	64,000	18	25
5×7	2,000	16,000	32,000	13	2,000	16,000	64,000	23	25
5×11	1,000	12,000	24,000	13	1,000	10,000	40,000	22	25
6.3×5	2,000	16,000	32,000	11	2,000	10,000	40,000	16	20
6.3×7	2,000	12,000	24,000	10	2,000	10,000	40,000	15	20
6.3×11	1,000	10,000	20,000	14	1,000	7,000	28,000	17	20
8x7	500	10,000	20,000	14	500	6,500	26,000	16	15
8×9,8×11	500	7,500	15,000	17	500	4,000	16,000	18	15
8×14	500	5,000	10,000	12	500	3,000	12,000	14	15
8×16	500	5,000	10,000	16	500	2,000	8,000	13	15
8×20	200	4,000	8,000	14	200	2,000	8,000	14	15
10×12.5	200	4,000	8,000	15	200	2,000	8,000	15	12
10×15	200	3,600	7,200	16	200	2,000	8,000	18	12
10×17	200	3,600	7,200	17	200	1,600	6,400	15	12
10×20	200	3,000	6,000	19	200	1,400	5,600	17	12
10×25	200	2,400	4,800	17	200	1,200	4,800	16	12
13×13,13×15	200	2,400	4,800	15	200	800	3,200	13	10
13×18,13×20	200	1,800	3,600	15	200	600	2,400	10	10
13×25	200	1,200	2,400	14	200	600	2,400	14	10
13×30	100	1,200	2,400	16	100	500	2,000	14	10
13×34,13×36	100	1,000	2,000	14	100	300	1,200	12	10
13×38.13×40	100	800	1,600	15	100	300	1,200	15	10

Classification		Standar	d Bulk			Cutting &	Forming		Min. ordering amount
Case size D*L(mm)	Vinyl bag	inner box (mm)	outer carton (mm)	gross weight (kg)	Vinyl bag	inner box (mm)	outer carton (mm)	gross weight (kg)	kpcs
16X15、16X20	200	1000	2000	22	200	1000	2000	22	5
16X25	200	1000	2000	24	-	500	4000	44	5
16X30、16X32、	200	800	1600	20	-	500	3000	37	5
16X36、16X40	200	600	1200	22	-	500	3000	55	5
16X45	100	500	1000	22	-	-	-	-	5
18X15、18X20	200	800	1600	21	-	-	-	-	2.5
18X22、18X25	200	800	1600	23	-	500	2000	28	2.5
18X30	100	600	1200	25	-	-	=	-	2.5
18X32、18X36、 18X40	100	500	1000	25	=	500	1000	25	2.5
18X45、18X50	100	300	600	21	-	600	1200	40	2.5
20X25	-	-	-	-	-	400	800	20	1.5
22X32	-	-	=	-	-	320	1920	55	1.5
22X30	-	-	-	-	-	400	800	25	1.5
22X35、22X40	100	300	600	21	-	400	800	27	1.5

For Taping Ammo & Reel

Classification			Ammo Tape]	Reel Tape		Min. ordering amount		
Case size D ϕ (mm)	inner box (mm)	quantity (pcs)	outer carton (mm)	quantity (pcs)	gross weight (kg)	inner carton 350*350*110 (mm)	outer carton 370*370*600 (mm)	gross weight (kg)	kpcs
4ϕ	340×275×50	3,000	355×297×290	15,000	6	3,000	15,000	8	25
5ϕ	340×230×50	2,000	355×252×290	10,000	6 ~ 7	2,400	12,000	8	25
6.3ϕ	340×275×50	2,000	355×297×290	10,000	8	2,000	10,000	6	20
$8 \psi \times 5\text{-}16 \text{L}$	340×230×50	1,000	355×252×290	5,000	7	1,600	8,000	12	15
$8 \phi \times 20L$	340×230×58	1,000	355×252×315	5,000	7	1,000	5,000	12	15
$10 \phi \times 10 \sim 17 L$	340×230×50	600	355×252×290	3,000	7				12
10 <i>φ</i> ×20~25L	340×230×58	600	355×252×315	3,000	7	-	-	-	12
$10 \phi \times 30 \text{L}$	340×230×65	600	355×252×290	2,400	7	-	1	-	12
$13 \phi \text{x} 32 \text{L} \text{ below}$	315×275×65	400	355×297×290	1,600	5	-	1	-	10
$13 \phi \times 36$ L above	315×275×74	400	355×297×337	1,600	5	-	-	-	10
$16 \psi \times 32$ L below	315×275×65	300	355×297×290	1,200	5	-	-	-	5
$16 \phi \times 36 \text{L}$ above	315×275×74	300	355×297×337	1,200	5	-	-	-	5

Note: For $10 \, \phi$ Reel Tape:

size	inner carton(pcs)	outer carton(pcs)
10 φ ×10~16L	1,200	6,000
10 φ×17~20L	1,000	5,000

Large Can Type Aluminum Electrolytic Capacitors

Dimension D×L (mm)	weighe (g/pcs)	inner box 254*254*150 (mm)	outer carton 530*270*320 (mm)	Min. ordering amount
22×25 to 30	20 ~ 25	300	1200	1.5kpcs
22×35 to 50	25 ~ 30	200	800	1.5kpcs
25×25 to 30	25 ~ 30	240	960	1.2kpcs
25×35 to 50	30 ~ 35	160	640	1.2kpcs
30×25 to 30	30 ~ 35	135	540	1.0kpcs
30×35 to 50	35 ~ 40	90	360	1.0kpcs
30 x 70	45~50	80	320	1.0kpcs
35×25 to 30	40 ~ 45	105	420	1.0kpcs
35×35to 50	45 ~ 50	70	280	1.0kpcs

Note: The dimension of 30x70 inner box is 254*254*190, the dimension of 30x70 outer carton is 530*270*400

Conductive Polymer Aluminum Solid Capacitor

For Bulk: Standard Cutting & Forming

Classification		Standard	d Bulk		Cutting & Forming				Min. ordering amount
Case size D*L(mm)	Vinyl bag	inner box 289*168*279 (mm)	outer carton 355*297*290 (mm)	gross weight (kg)	Vinyl bag	inner box 289*168*135 (mm)	outer carton 355*297*290 (mm)	gross weight (kg)	kpcs
6.3×5.4	2,000	16,000	32,000	11	2,000	10,000	40,000	16	20
6.3×8	2,000	12,000	24,000	10	2,000	10,000	40,000	15	20
6.3×10.5	1,000	10,000	20,000	14	1,000	7,000	28,000	17	20
8×8, 8×10, 8x11.5	500	7,500	15,000	17	500	4,000	16,000	18	15
10×12.5	200	4,000	8,000	15	200	2,000	8,000	15	12

For Taping Ammo & Reel

Tor Taping Animo & Recr									
Classification		Ammo Tape				Reel Tape			Min. ordering amount
Case size D ϕ (mm)	inner box (mm)	quantity (pcs)	outer carton (mm)	quantity (pcs)	gross weight (kg)	inner carton 350*350*110 (mm)	outer carton 370*370*600 (mm)	gross weight (kg)	kpcs
6.3ϕ	340×275×50	2,000	355×297×290	10,000	8	2,000	10,000	6	20
$8 \phi \times 5-16L$	340×230×50	1,000	355×252×290	5,000	7	1,600	8,000	12	15
10 φ×10~17L	340×230×50	600	355×252×290	3,000	7	1,000	5,000	14	12

CG

Ultra low ESR Series

1505 2:308

 $\label{eq:Adapter} Adapter\ ,\ SPS\ ,VCR\ ,\ camcorder\ ,\ DSC\ ,\ PDA,\ HD\ Drive\ ,MO\ Drive\ ,\\ DVD\ Drive\ ,\ Navigation\ system, Portable\ Communication\ Devices$

■ Corresponding product to RoHS

Specifications

Item		Chara	cteristics					
Category Temperature Range	-55 ~ +105°C							
Rated Voltage Range	2.5 ~ 25VDC							
Rated Capacitance Range	10 ~ 2200 µ F	10 ~ 2200 ½ F						
Capacitance Tolerance	±20% at 120Hz , 20℃	±20% at 120Hz , 20℃						
Surge Voltage	Rated voltage (V) x 1.15	Rated voltage (V) x 1.15						
	I≤0.2 CV or 300μA whichever	is greater (After ra	ted voltage applied fo	or 2 minutes)				
Leakage Current (MAX) (20℃)	I= Leakage Current (μA) C= I	Nominal Capacitano	ce (µF) V= Rated V	oltage (V)				
Dissipation Footon (MANY)	WV	2.5 ~ 10V	16~25V					
Dissipation Factor (MAX) (tanδ) (120Hz ,20°C)	$ an \delta$	0.08	0.12					
Low Temperature Stability Impedance Ratio (MAX) (20°ℂ)	WV Z(100KHz) Z-25°C / Z+20°C Z-55°C / Z+20°C	2.5 ~ 25V ≤ 1.15 ≤ 1.25						
Endurance		Capacitance Change Within ±20% of the initial value Dissipation Factor Not more than 150% of the initial specified value Equivalent Series Resistance Not more than 150% of the initial specified value						
Humidity Test	After subjecting 90 to 95% RH the capacitors shall meet the re							
Surge Voltage Test	temperature for 30 seconds thr	After subjecting to 1,000 cycles each consisting of charge with the surge voltage specified at normal temperature for 30 seconds through a protective resistor and discharge for 5 minutes 30 seconds, the capacitors shall meet the requirement as Endurance.						
Failure Rate (MAX)	1% per 1,000 hours (confidence	e level 60% at 105°	℃)					

■ Diagram of Dimensions

■ Marking : case with red printing

Size code	φDXL	Р	ϕ d	а
B01	4X5.4	1.5	0.45	1.0
C01	5X5.4	2.0	0.45	1.0
C07	5X7	2.0	0.5	1.0
E01	6.3X5.4	2.5	0.45	1.0
E08	6.3X8	2.5	0.6	1.0
E1A	6.3X10.5	2.5	0.6	1.0
G1B	8X11.5	3.5	0.6	1.0
H1A	10X10.5	5.0	0.6	1.0
H1C	10X12.5	5.0	0.6	1.0

■ Multiplier for Ripple Current

Frequency (Hz)	120≦F<1K	1K≦F<10K	10K≦F<100K	100K≦F≦500K
Coefficient	0.05	0.3	0.7	1

Ultra low ESR Series

■ Dimensions,Rated Ripple Current,Equivalent Series Resistance

0				R	ated Voltage				
Capacitance (uF)		2.5V			4V			6.3V	
(ui)	SIZE	RIPPLE	ESR	SIZE	RIPPLE	ESR	SIZE	RIPPLE	ESR
120							6.3X5.4	1810	30
150							4X7	1810	30
150							6.3X5.4	1810	30
220							5X7	3500	9
220							6.3x5.4	1810	30
270							5X7	3500	11
							5X7	3500	11
330							6.3x5.4	1810	30
							6.3X10.5	3190	28
390							6.3X10.5	3190	28
390							8X11.5	4770	12
							6.3x6	3390	22
470							6.3X10.5	3190	28
							8x11.5	5600	7
560	6.3X10.5	3160	20	6.3X10.5	3160	20	6.3X10.5	3190	28
680	6.3X10.5	3160	20	6.3X10.5	3160	20	8x11.5	5600	7
000	8x11.5	5600	7						
820	6.3X10.5	3160	20	6.3X10.5	3160	20	8x11.5	5600	7
020	8x11.5	5600	7	10X12.5	5600	7	10x12.5	5600	7
1000	8x11.5	5600	7	8x11.5	5600	7	8x11.5	5600	7
1000							10X12.5	5600	7
	8x11.5	5600	7	8x11.5	5600	7	8x11.5	5600	7
1200							10X10.5	5050	7
							10X12.5	5600	7
1500							10X10.5	5050	7
1300	8x11.5	5600	7	8x11.5	5600	7	10X12.5	5600	7
1800	10x12.5	5600	7	10X12.5	5600	7	10X12.5	5600	7
2200	10x12.5	5600	7	10X12.5	5600	7			

Conneitance				R	ated Voltage				
Capacitance (uF)		10V			16V			20V	
(ui)	SIZE	RIPPLE	ESR	SIZE	RIPPLE	ESR	SIZE	RIPPLE	ESR
10	4X5.4	1200	45						
22				6.3X5.4	2200	30			
33	5x5.4	1670	45	5X5.4	2070	45			
47				6.3X5.4	1650	35			
47				6.3X7	2610	25			
68							8X11.5	2980	30
100				6.3X5.4	2490	24	8X11.5	3320	30
100				6.3X10.5	4680	10			
120				6.3X10.5	2820	25			
150				6.3X10.5	2820	25			
				6.3X10.5	2820	25			
180	8x11.5	5600	7	8X11.5	4360	16			
				8X11.5	5000	11			
000	6.3X10.5	2820	25	6.3X10.5	2820	25			
220				8X11.5	5000	11			
270	6.3X10.5	2820	25	6.3X10.5	3100	20			
270	8x11.5	5600	7	8X11.5	5000	11			
330	6.3X10.5	2820	25	8X11.5	5000	8			
330				10X12.5	6100	10			
390	8x11.5	5600	7	10X12.5	6100	10			
470	8x11.5	5600	7	8X11.5	5000	11			
470				10X12.5	6100	10			
560	8x11.5	5600	7	10X12.5	6100	10			
560	10X12.5	6100	7						
680	10X12.5	6100	7	10X12.5	6100	10			
820	8x11.5	5600	7	10X12.5	5000	8			
1000	10X12.5	6100	7						
1200	10X12.5	6100	7						

CG

Ultra low ESR Series

■ Dimensions,Rated Ripple Current,Equivalent Series Resistance

0!				F	Rated Voltage				
Capacitance (uF)	25V								
(ui)	SIZE	RIPPLE	ESR	SIZE	RIPPLE	ESR	SIZE	RIPPLE	ESR
10	6.3X8	1200	80						
	6.3X8	1650	35						
33	6.3X10.5	1980	35						
	8X11.5	2980	30						
47	6.3X10.5	1980	35						
47	8X11.5	2980	30						
56	6.3X10.5	1980	35						
56	8X11.5	2980	30						
	8X11.5	2980	30						
100	10X12.5	2980	30						
	10X12.5	4320	30						
150	10X12.5	4320	30						

 $\ \, \text{$\stackrel{<}{\sim}$ SIZE}: \ \, \phi \, \text{DxL(mm)} \quad \ \, \text{$\stackrel{<}{\sim}$} \ \, \text{tan} \, \delta : 20^{\circ}\text{C}, 120\text{Hz}. \ \, \\ \ \, \text{$\stackrel{<}{\sim}$} \ \, \text{Ripple Current:} \\ \ \, \text{(mA/rms)}, 105^{\circ}\text{C} \, .100\text{KHz} \ \, \\ \ \, \text{$\stackrel{<}{\sim}$} \ \, \text{ESR(m}\,\Omega). \\ \ \, 20^{\circ}\text{C}. 100\text{KHz} \ \, \\ \ \, \text{$\stackrel{<}{\sim}$} \ \, \text{ESR(m}\,\Omega). \\ \ \, \text{$\stackrel{<}{\sim}$} \ \, \text{Current:} \\ \ \, \text{$\stackrel{\sim}{\sim}$} \ \, \text{C$

CP

8 mm height & Ultra low ESR Series

- Features: 105°C,3000hrs, 8mm height & Ultra Low ESR
- Recommended Applications: Motherboard, DC/DC Converter ,

Adapter , SPS ,VCR , camcorder , DSC , PDA, HD Drive , MO Drive , DVD Drive , Navigation system,

Portable Communication Devices

■ Corresponding product to RoHS

 Item		Charac	teristics					
Category Temperature Range	-55 ~ +105°C							
Rated Voltage Range	2.5 ~ 25VDC	2.5 ~ 25VDC						
Rated Capacitance Range	10 ~ 1200 <i>μ</i> F	10 ~ 1200 <u>//</u> F						
Capacitance Tolerance	±20% at 120Hz , 20℃							
Surge Voltage	Rated voltage (V) x 1.15							
Leakage Current (MAX) (20°C)	I≤0.2 CV or 300μA whichever	is greater (After rate	ed voltage applied fo	r 2 minutes)				
Leakage Current (WAX) (20 C)	I= Leakage Current (μA) C= N	Nominal Capacitanc	e (μF) V= Rated Vo	oltage (V)				
Dissipation Factor (MAX)	WV	2.5 ~ 25V						
(tan δ) (120Hz ,20 $^{\circ}$ C)	$ an \delta$	0.08						
	WV	2.5 ~ 25V						
Low Temperature Stability	Z(100KHz)							
Impedance Ratio (MAX) (20°C)	Z-25°C / Z+20°C	≦1.15						
	Z-55℃ / Z+20℃	≦1.25						
	After applying rated voltage for		Σ,					
	the capacitor shall meet the following requirement.							
	Appearance		No significant damag					
	Capacitance Change	Withi	n ±20% of the initial	value				
Endurance	Dissipation Factor		n 150% of the initial s	•				
	Equivalent Series Resistance		n 150% of the initial s	•				
	Leakage Current	Not more	than the initial speci	fied value				
	WV	2.5 ~ 6.3V	10~25V					
	Life	3000	2000					
Humidity Test	after subjecting 90 to 95% RH f	or 1000 hours at 60	℃.					
Turnicity rest	the capacitors shall meet the re							
	After subjecting to 1,000 cycles each consisting of charge with the surge voltage specified at normal							
Surge Voltage Test	temperature for 30 seconds through a protective resistor and discharge for 5 minutes 30 seconds,							
	the capacitors shall meet the re							
Failure Rate (MAX)	1% per 1,000 hours (confidence	e level 60% at 105°C	C)					

■ Diagram of Dimensions

$\phi_{D+0.5\max}$ $\psi_{D+0.5\max}$ $\psi_{D+0.5\max}$ $\psi_{D+0.5\max}$ $\psi_{D+0.5}$ $\psi_{D+0.5}$

■ Marking : case with red printing

Size code	φDXL	Р	ϕ d	а
E08	6.3X8	2.5	0.6	1.0
G08	8X8	3.5	0.6	1.5

Multiplier for Ripple Current

manufacture control out to the pro-								
Frequency (Hz)	120≦F<1K	1K≦F<10K	10K≦F<100K	100K≦F≦500K				
Coefficient	0.05	0.3	0.7	1				

CP

8 mm height & Ultra low ESR Series

■ Dimensions,Rated Ripple Current,Equivalent Series Resistance

	,									
	Rated Voltage									
Capacitance (uF)	2.5V			4V			6.3V			
	SIZE	RIPPLE	ESR	SIZE	RIPPLE	ESR	SIZE	RIPPLE	ESR	
470							8x8	5600	8	
560	6.3x8	4200	6	6.3x8	4200	7	6.3x8	4200	8	
560	8x8	5600	6	8x8	5600	7	8x8	5600	8	
820	6.3x8	4200	6							
620	8x8	5600	6				8x8	5600	8	
1200	8x8	5600	6	8x8	5600	7				

		Rated Voltage										
Capacitance (u	F)	10V			16V			25V				
	SIZE	RIPPLE	ESR	SIZE	RIPPLE	ESR	SIZE	RIPPLE	ESR			
10							6.3x8	1200	80			
33							6.3x8	1650	35			
33							8x8	1980	35			
56							8x8	1980	35			
100				6.3x8	2820	25						
150	6.3x8	2820	25	6.3x8	2820	25						
180				6.3x8	2820	25						
220	6.3x8	2820	25									
270	6.3x8	2820	25	8x8	3500	11						
270				8x8	5000	11						
330	8x8	3500	11	8x8	3500	11						
330				8x8	5000	11						
470	8x8	3500	11									
560	8x8	5000	10									

Large capacitance Series

- Features: 105°C,2000hrs, Low ESR & large capacitance
- Recommended Applications: Used switching regulator applications in computer. Especially for high frequency.

■ Specifications

Specifications						
Item		Charac	cteristics			
Category Temperature Range	-55 ~ +105°C					
Rated Voltage Range	6.3 ~16VDC					
Rated Capacitance Range	150 ~ 1800 µ F					
Capacitance Tolerance	±20% at 120Hz , 20℃					
Surge Voltage	Rated voltage (V) x 1.15					
Leakage Current (MAX) (20°C)	I≦0.2 CV (After rated voltage					
	I= Leakage Current (μA) C=	Nominal Capacitano	ce (µF) V= Rated Voltage (V)			
Dissipation Factor (MAX)	WV	6.3 ~ 16V				
(tan δ) (120Hz ,20 $^{\circ}$ C)	$ an\delta$					
	WV	0.0 401/				
Low Temperature Stability	Z(100KHz)	6.3 ~ 16V				
Impedance Ratio (MAX) (20°C)	Z-25°C / Z+20°C					
	Z-55°C / Z+20°C	≦1.25				
	After applying rated voltage for	After applying rated voltage for 2000 hours at 105 $^{\circ}$ C,				
	the capacitor shall meet the fol	lowing requirement				
	Appearance	١	No significant damage			
Endurance	Capacitance Change	Withi	n ±20% of the initial value			
	Dissipation Factor	Not more than	n 150% of the initial specified value			
	Equivalent Series Resistance	Not more than	n 150% of the initial specified value			
	Leakage Current	Not more	than the initial specified value			
Humidity Test	After subjecting 90 to 95% RH					
Training rest	the capacitors shall meet the re					
	After subjecting to 1,000 cycles each consisting of charge with the surge voltage specified at normal					
Surge Voltage Test	temperature for 30 seconds through a protective resistor and discharge for 5 minutes 30 seconds,					
	the capacitors shall meet the re	•				
Failure Rate (MAX)	0.5% per 1,000 hours (confide	nce level 60% at 10	(5°C)			

■ Diagram of Dimensions

Size code	ϕ DXL	Р	ϕ d	а
E08 6.3X8		2.5	0.6	1.0
G08	8X8	3.5	0.6	1.5
G1B	8X11.5	3.5	0.6	1.0
H1C	10X12.5	5.0	0.6	1.0

■ Multiplier for Ripple Current

Frequency (Hz) 120≤f<1K		1K≦f<10K	10K≦f<100K	100K≦f≦500K	
Coefficient	0.05	0.3	0.7	1	

Large capacitance Series

- Features: 105°C,2000hrs, Low ESR & large capacitance
- Recommended Applications: Used switching regulator applications in computer. Especially for high frequency.

■ Dimensions,Rated Ripple Current,Equivalent Series Resistance

Canacitanas				Ra	ated Voltage					
Capacitance (uF)		6.3V			10V			16V		
(ui)	SIZE	RIPPLE	ESR	SIZE	RIPPLE	ESR	SIZE	RIPPLE	ESR	
150							6.3X8	2820	30	
180							6.3X8	2820	30	
220				6.3X8	2820	30	8X8	4500	20	
270	6.3X8	3000	30	6.3X8	2820	30	8X8	4500	20	
270							8X11.5	5000	12	
330	6.3X8	3000	30	6.3X8	2820	30	8X8	4500	20	
330							8X11.5	5000	12	
470	6.3X8	3000	30	8X8	4500	20	8X11.5	5000	12	
560	8X8	5000	20	8X8	4500	20	10X12.5	5600	14	
560				8X11.5	5000	12				
680	8X8	5000	20	8X11.5	5000	12	10X12.5	5600	14	
820	8X8	5000	20	8X11.5	5000	12	10X12.5	5600	14	
020	8X11.5	5600	12							
1000	8X11.5	5600	12	10X12.5	5600	10				
1200	8X11.5	5600	12	10X12.5	5600	10				
1500	10X12.5	6100	10							
1800	10X12.5	6100	10							

CZ

Small Size & Low ESR Series

- Features: 105°C,2000hrs, Low ESR
- Recommended Applications: Used switching regulator applications in computer. Especially for high frequency.

■ Corresponding product to RoHS

Specifications

■ opecifications							
Item		Charac	cteristics				
Category Temperature Range	-55 ~ +105℃						
Rated Voltage Range	2.5 ~ 16VDC						
Rated Capacitance Range	10 ~ 2200 μ F						
Capacitance Tolerance	±20% at 120Hz , 20℃						
Surge Voltage	Rated voltage (V) x 1.15						
	I≤0.2 CV or 300μA whichever	is greater (After rat	ed voltage applied for 2 minutes)				
Leakage Current (MAX) (20°C)	I= Leakage Current (μA) C= N	Iominal Capacitanc	e (μF) V= Rated Voltage (V)				
Dissipation Factor (MAX)	WV	2.5 ~ 16V					
(tan δ) (120Hz ,20°C)	$ an\delta$ 0.12						
	WV	0 = 1011					
Low Temperature Stability	Z(100KHz)	2.5 ~ 16V					
Impedance Ratio (MAX) (20°ℂ)	Z-25°C / Z+20°C	≦1.15					
, , , - ,	Z-55℃ / Z+20℃	≦1.25					
	After applying rated voltage for 2000 hours at 105℃,						
	the capacitor shall meet the following requirement.						
	Appearance	1	No significant damage				
Endurance	Capacitance Change	Withi	in ±20% of the initial value				
	Dissipation Factor	Not more than	n 150% of the initial specified value				
	Equivalent Series Resistance	Not more than	n 150% of the initial specified value				
	Leakage Current	Not more	than the initial specified value				
Harrista Tara	after subjecting 90 to 95% RH fo	or 1000 hours at 60	°C.				
Humidity Test	the capacitors shall meet the re-		=				
			charge with the surge voltage specified a	t normal			
Surge Voltage Test	temperature for 30 seconds thro	ough a protective re	esistor and discharge for 5 minutes 30 sec	conds,			
	the capacitors shall meet the requirement as Endurance.						
Failure Rate (MAX)	1% per 1,000 hours (confidence	e level 60% at 105°	C)				

■ Diagram of Dimensions

■ Marking : case with red printing

Size code	φDXL	Р	ϕ d	а
B01	4X5.4	1.5	0.45	1.0
E01	6.3X5.4	2.5	0.45	1.0
E08	6.3X8	2.5	0.6	1.0
G08	8X8	3.5	0.6	1.5
G1B	8X11.5	3.5	0.6	1.0
H1A	10X10.5	5.0	0.6	1.0
H1C	10X12.5	5.0	0.6	1.0

■ Multiplier for Ripple Current

Frequency (Hz) 120≦F<1K		1K≦F<10K	10K≦F<100K	100K≦F≦500K	
Coefficient	0.05	0.3	0.7	1	

CZ

Small Size & Low ESR Series

■ Dimensions,Rated Ripple Current,Equivalent Series Resistance

0					Rated Voltage				
Capacitance		2.5V		4V			6.3V		
(uF)	SIZE	RIPPLE	ESR	SIZE	RIPPLE	ESR	SIZE	RIPPLE	ESR
100							6.3x8	4700	18
220							6.3x5.4	1810	80
330							6.3x8	4700	18
470							6.3x8	4700	18
470							8x8	5000	14
560	6.3x8	5000	18	6.3x8	5000	18	6.3x8	4700	18
360	8x8	5600	14	8x8	5600	14	8x8	5000	14
680	8x11.5	5600	12						
	6.3x8	5000	18				8x11.5	5600	12
820	8x8	5600	14	8x8	5600	14			
	8x11.5	5600	12	8x11.5	5600	12			
1000	8x8	5600	14	8x8	5600	14	8x8	5000	14
1000	8x11.5	5600	12	8x11.5	5600	12	8x11.5	5600	12
	8x8	5600	14	8x8	5600	14	8x11.5	5600	12
1200	8x11.5	5600	12	8x11.5	5600	12	10x12.5	5600	10
				10x12.5	5600	10			
1500	8x11.5	5600	12	8x11.5	5600	12	10x12.5	5600	10
1800	10x12.5	5600	10	10x12.5	5600	10	10x12.5	5600	10
2200	10x12.5	5600	10	10x12.5	5600	10			

Canasitanas					Rated Voltage		
Capacitance (uF)		10V			16V		
(ui)	SIZE	RIPPLE	ESR	SIZE	RIPPLE	ESR	
10	4x5.4	700	80				
100				6.3x8	2820	35	
150				6.3X8	2820	35	
180				6.3X8	2820	35	
220				6.3X10.5	2820	35	
220	6.3X8	2820	30	8X8	4500	20	
	6.3X8	2820	30	8X8	4500	20	
270				8X11.5	5000	12	
				10X10.5	4400	18	
330				8X8	4500	20	
330	6.3X8	2820	30	8X11.5	5000	12	
470	8X8	4500	20	8X11.5	5000	12	
470	8X11.5	5000	12				
560	8X8	4500	20	10X12.5	5600	14	
300	8X11.5	5000	12				
680	8X11.5	5000	12	10X12.5	5600	14	
820	8X11.5	5000	12	10X12.5	5600	14	
1000	10X12.5	5600	10				
1200	10X12.5	5600	10				

 $\ \, \text{$\stackrel{\wedge}{\simeq}$ SIZE}: \ \, \phi \, \text{DxL(mm)} \ \, \ \, \text{$\stackrel{\wedge}{\simeq}$} \tan \delta : 20^{\circ}\text{\mathbb{C}}.120 \text{Hz}. \ \, \\ \, \ \, \text{$\stackrel{\wedge}{\simeq}$ Ripple Current:(mA/rms),105$$$^{\circ}\text{\mathbb{C}}$} \ \, .100 \text{KHz} \ \, \\ \, \ \, \ \, \ \, \text{$\stackrel{\wedge}{\simeq}$} \, \text{ESR(m}\,\Omega).20^{\circ}\text{\mathbb{C}}.100 \text{KHz} \ \, \\ \, \ \, \ \, \text{$\stackrel{\wedge}{\simeq}$} \, \text{ESR(m}\,\Omega).20^{\circ}\text{\mathbb{C}}.100 \text{KHz} \ \, \\ \, \ \, \ \, \text{$\stackrel{\wedge}{\simeq}$} \, \text{ESR(m}\,\Omega).20^{\circ}\text{\mathbb{C}}.100 \text{KHz} \ \, \\ \, \ \, \ \, \ \, \text{$\stackrel{\wedge}{\simeq}$} \, \text{$\stackrel{\wedge}{\simeq}$$

CR

High ripple & low ESR Series

- Features: 105°C,2000hrs, High Ripple & Low ESR
- Recommended Applications: Motherboard, DC/DC Converter ,Adapter , SPS ,VCR Camcorder , DSC , PDA, HD Drive , MO Drive , DVD Drive , Navigation system,Portable Communication Devices

■ Corresponding product to RoHS

Specifications

Item		Character	istics			
Category Temperature Range	-55 ~ +105°C					
Rated Voltage Range	2.5 ~ 6.3VDC					
Rated Capacitance Range	470 ~ 2700 µ F					
Capacitance Tolerance	±20% at 120Hz , 20℃					
Surge Voltage	Rated voltage (V) x 1.15					
Leakage Current (MAX) (20°C)	I ≤ 0.2 CV or 500 μ A whichever is greater (After rated voltage applied for 2 minutes) I= Leakage Current (μ A) C= Nominal Capacitance (μ F) V= Rated Voltage (V)					
Dissipation Factor (MAX)	WV	2.5 ~ 6.3V				
(tanδ) (120Hz ,20°C)	$ an\delta$	0.10				
Low Temperature Stability Impedance Ratio (MAX) (20°ℂ)		2.5 ~ 6.3V ≤1.15				
	Z-55℃ / Z+20℃	≦1.25				
	After applying rated voltage for 2000 hours at 105°C, the capacitor shall meet the following requirement.					
	Appearance	1	No significant damage			
Endurance	Capacitance Change	With	in ±20% of the initial value			
	Dissipation Factor	Not more than 150% of the initial specified value				
	Equivalent Series Resistance	Not more that	n 150% of the initial specified value			
	Leakage Current	Not more than the initial specified value				
Humidity Test	after subjecting 90 to 95% RH for 1000 hours at 60°C. the capacitors shall meet the requirement as Endurance.					
	After subjecting to 1,000 cycles each consisting of charge with the surge voltage specified at normal					
Surge Voltage Test	temperature for 30 seconds through a protective resistor and discharge for 5 minutes 30 seconds,					
	the capacitors shall meet the requirement as Endurance.					
Failure Rate (MAX)	1% per 1,000 hours (confidence le	vel 60% at 105℃)				

■ Diagram of Dimensions

■ Marking : case with red printing

Size code	ϕ DXL	Р	ϕ d	а
E08	6.3X8	2.5	0.6	1.0
G08	8X8	3.5	0.6	1.5
G1B	8X11.5	3.5	0.6	1.0

■ Multiplier for Ripple Current

Frequency (Hz)	120≦F<1K	1K≦F<10K	10K≦F<100K	100K≦F≦500K
Coefficient	0.05	0.3	0.7	1

CR

High ripple & low ESR Series

■ Dimensions,Rated Ripple Current,Equivalent Series Resistance

Capacitance (uF)	Rated Voltage								
	2.5V			4V			6.3V		
	SIZE	RIPPLE	ESR	SIZE	RIPPLE	ESR	SIZE	RIPPLE	ESR
470							6.3X8	4700	8
470							8X8	5700	8
	6.3X8	5000	7	6.3X8	5000	7	6.3X8	4700	8
560	8X8	6100	7	8X8	6100	7	8X8	5700	8
				8X11.5	6100	7			
							6.3X8	4700	8
680							8x8	5700	8
680	8X8	6100	7	8X8	6100	7	8X11.5	5700	7
				8X11.5	6100	7			
	6.3X8	5000	7	8X8	6100	7	8X8	5700	8
820	8X8	6100	7				8X11.5	5700	7
	8X11.5	6100	7				10X12.5	6100	7
	8X8	6100	7	8X8	6100	7			
1000				8X11.5	6100	7	8X11.5	5700	7
	8X11.5	6100	7	10X12.5	6100	6			
1200	8X8	6100	7	8X8	6100	7	8X11.5	5700	7
1200	8X11.5	6100	7	8X11.5	6100	7			
1500	8X11.5	6100	7	8X11.5	6100	7	10X12.5	5560	10
2700	10X12.5	5560	8						

 $^{\ \, \}text{$\frac{1}{2}$ SIZE}: \ \, \phi \, \text{DxL(mm)} \quad \ \, \text{$\frac{1}{2}$ tan δ : 20°C, 120Hz. $\text{$\frac{1}{2}$ Ripple Current: (mA/rms), 105°C. 100KHz $\text{$\frac{1}{2}$ ESR(m$\Omega).} 20°C. 20°C.$

Large capacitance Series

- Features: 105°C,2000hrs, Low ESR & large capacitance
- Recommended Applications: Used switching regulator applications in computer. Especially for high frequency.

Specifications

	Item		Characteristics				
Category To	emperature Range	-55 ~ +105℃					
Rated Volta	ige Range	2.5 ~28VDC					
Rated Capa	acitance Range	33 ~ 820 µ F					
Capacitanc	e Tolerance	±20% at 120Hz , 20°ℂ					
Surge Volta	ige	2.5V~25V Rated voltage (V) x	1.15, 28V Products	is 28V at 25°	C		
Lookaga Ci	urrent (MAX) (20°ℂ)	I≤0.2 CV (After rated voltage	e applied for 2 minu	tes)			
Leakage Ci		I= Leakage Current (μA) C=	Nominal Capacitan	ce (µF) V=	Rated Voltage (V)		
Dissipation	Factor (MAX)	WV	2.5 ~ 6.3V	16 ~ 28V			
$(\tan \delta)$ (120)Hz ,20°C)	$ an \delta$	0.08	0.12			
Low Tempe	rature Stability	WV Z(100KHz)	2.5 ~ 28V		-		
Impedance	Ratio (MAX) (20°ℂ)	Z-25°C / Z+20°C	≦1.15				
		Z-55℃ / Z+20℃	≦1.25				
		After applying rated voltage for the capacitor shall meet the following					
	105°C, 2000hrs,	Appearance	N	No significant	damage		
Endurance	Rated Voltage applied	Capacitance Change	Withi	n ±20% of the	e initial value		
	(28V>25V)※1	Dissipation Factor	Not more than	n 150% of the	initial specified value		
		Equivalent Series Resistance	Not more than	150% of the	initial specified value		
		Leakage Current			al specified value		
Humidity Te	st	After subjecting 90 to 95% RH for 1000 hours at 60°C. the capacitors shall meet the requirement as Endurance.					
		After subjecting to 1,000 cycles	s each consisting of	f charge with	the surge voltage specified	l at normal	
Surge Voltage	ge Test	temperature for 30 seconds the	rough a protective r	esistor and di	scharge for 5 minutes 30 s	seconds,	
		the capacitors shall meet the re	equirement as End	urance.			
Failure Rate	(MAX)	0.5% per 1,000 hours (confide	nce level 60% at 10)5°C)			

%1Please reduce 0.15V per 1℃ from over 85℃ for 28V products

■ Diagram of Dimensions

■ Marking : case with red printing

Size code	ϕ DXL	Р	ϕ d	а
E08	6.3X8	2.5	0.6	1.0
G08	8X8	3.5	0.6	1.5

Multiplier for Ripple Current

Frequency (Hz)	120≦F<1K	1K≦F<10K	10K≦F<100K	100K≦F≦500K
Coefficient	0.05	0.3	0.7	1

Large capacitance Series

■ Dimensions,Rated Ripple Current,Equivalent Series Resistance

	-,		4	nes ivesisian							
		Rated Voltage									
Capacitance (uF)		2.5V			4V		6.3V				
	SIZE	RIPPLE	ESR	SIZE	RIPPLE	ESR	SIZE	RIPPLE	ESR		
470							8x8	5700	8		
560				6.3x8	5000	7	6.3x8	4700	8		
560				8x8	6100	7	8x8	5700	8		
820	6.3x8	5000	7								
	8x8	6100	7								

	Rated Voltage								
Capacitance (uF)	16V		16V 28V						
	SIZE	RIPPLE	ESR	SIZE	RIPPLE	ESR	SIZE	RIPPLE	ESR
33				6.3x8	1650	35			
56				8x8	1980	35			
100	6.3x8	2820	25						
270	8x8	5000	11						

 $^{\ \, \}text{$\stackrel{\wedge}{\simeq}$ SIZE}: \ \, \phi \, \text{DxL(mm)} \ \, \ \, \text{$\stackrel{\wedge}{\simeq}$} \tan \delta : 20^{\circ}\text{\mathbb{C}}.120 \text{Hz}. \ \, \\ \, \ \, \text{$\stackrel{\wedge}{\simeq}$ Ripple Current:(mA/rms),105$$$^{\circ}\text{\mathbb{C}}$} \ \, .100 \text{KHz} \ \, \\ \, \ \, \ \, \ \, \text{$\stackrel{\wedge}{\simeq}$} \, \text{ESR(m} \, \Omega).20^{\circ}\text{\mathbb{C}}.100 \text{KHz} \ \, \\ \, \ \, \ \, \text{$\stackrel{\wedge}{\simeq}$} \, \text{ESR(m} \, \Omega).20^{\circ}\text{\mathbb{C}}.100 \text{KHz} \ \, \\ \, \ \, \ \, \text{$\stackrel{\wedge}{\simeq}$} \, \text{ESR(m} \, \Omega).20^{\circ}\text{\mathbb{C}}.100 \text{KHz} \ \, \\ \, \ \, \ \, \ \, \text{$\stackrel{\wedge}{\simeq}$} \, \text{$\stackrel{$

CF

Large capacitance Series

- Features: 105°C,2000hrs, Super Low ESR & large capacitance
- Recommended Applications: Motherboard, DC/DC Converter ,

 $\label{eq:Adapter} \mbox{Adapter , SPS ,VCR , camcorder , DSC , PDA,} \\ \mbox{HD Drive , MO Drive , DVD Drive, Navigation system,} \\ \mbox{}$

Portable Communication Devices

■ Corresponding product to RoHS

Specifications

Item		Charac	teristics			
Category Temperature Range	-55 ~ +105°C					
Rated Voltage Range	2.5 ~35VDC					
Rated Capacitance Range	22 ~ 1800 µ F					
Capacitance Tolerance	±20% at 120Hz , 20°C					
Surge Voltage	Rated voltage (V) x 1.15					
Leakage Current (MAX) (20°C)	Less than or equal to the value	of Table. (After rate	d voltage applied for 2 minutes)			
Dissipation Factor (MAX) (tan δ) (120Hz ,20 $^{\circ}$ C)	Less than or equal to the value	of Table.				
Low Temperature Stability	WV Z(100KHz)	6.3 ~ 35V				
mpedance Ratio (MAX) (20°ℂ)	Z-25°C / Z+20°C	≦1.15				
	Z-55°C / Z+20°C	≦1.25				
	After applying rated voltage for 2000 hours at 105℃,					
	the capacitor shall meet the followard Appearance	• '	la significant domaga			
Endurance	Capacitance Change		lo significant damage 1 ±20% of the initial value			
Endurance	Dissipation Factor		150% of the initial value			
	Equivalent Series Resistance		150% of the initial specified value			
	Leakage Current		than the initial specified value			
Humidity Test	After subjecting 90 to 95% RH fi the capacitors shall meet the re-	or 1000 hours at 60	℃.			
			charge with the surge voltage specified at	normal		
Surge Voltage Test	temperature for 30 seconds thro	ough a protective res	sistor and discharge for 5 minutes 30 seco	onds,		
	the capacitors shall meet the re-	quirement as Endu	rance.			
Failure Rate (MAX)	0.5% per 1,000 hours (confiden	ce level 60% at 105	℃)			

■ Diagram of Dimensions

$\phi_{D+0.5\max}$ $\phi_{D+0.5\max}$ $\psi_{D+0.5\max}$ $\psi_{D+0.5\max}$ $\psi_{D+0.5}$ $\psi_{D+0.5}$

Marking : case with red printing

Size code	φDXL	Р	ϕ d	а
C09	5X9	2	0.5	1.0
E08	6.3X8	2.5	0.6	1.0
E1A	6.3X10.5	2.5	0.6	1.0
G08	8X8	3.5	0.6	1.5
G10	8X10	3.5	0.6	1.5
G1B	8X11.5	3.5	0.6	1.0
H1A	10X10.5	5.0	0.6	1.0
H1C	10X12.5	5.0	0.6	1.0

■ Multiplier for Ripple Current

Frequency (Hz)	120≦F<1K	1K≦F<10K	10K≦F<100K	100K≦F≦500K
Coefficient	0.05	0.3	0.7	1

CF

Large capacitance

STANDARD RATINGS

Size code	WV (Vdc)	Сар	$ an \delta$	ESR	Ripple current	Leakage current
Size code	vvv (vuc)	(μF)	(120Hz ,20°C)	(mΩmax/20°C,100KHz)	105°C,100KHz,(mA/rms)	(μ A max)
	0.0	330	0.08	25	2400	300
C09	6.3	390	0.08	25	2400	300
	2.5	560	0.08	7	4350	300
E08	32	22	0.08	40	990	300
	25	68	0.08	35	1500	340
E1A	6.3	680	0.08	28	2800	857
	32	82	0.08	35	1200	525
		56	0.08	30	1500	300
	25	120	0.08	35	1500	600
G08	16	330	0.08	12	3000	1056
	_	560	0.08	10	3000	1120
	10	680	0.08	10	3000	1360
	6.3	1000	0.08	9	3000	1260
	32	100	0.08	35	1600	640
	25	150	0.08	35	1980	750
G10	10	680	0.08	14	3500	1360
	6.3	820	0.08	7	4000	1033
	35	100	0.08	25	1760	700
	32	120	0.08	30	1800	768
	25	180	0.08	30	2280	900
		470		12		1504
G1B	16		0.08		4000	
	10	820 1000	0.08	12 10	4000 4860	1640 1260
	6.3	1200	0.08	10	4860	1512
	0.5	1500	0.08	10	4860	1890
	32	220	0.08	30	1800	1408
	25	180	0.08	30	3000	900
H1A	20	180	0.08	30	3000	720
	10	560	0.08	7	5000	1120
	6.3	1500	0.08	7	5000	1890
	35	270	0.08	30	2400	1890
		100	0.08	30	2400	700
	32	180	0.08	30	2400	1152
		470	0.08	30	2050	2350
	25	390	0.08	30	3000	1950
H1C	-	330	0.08	30	3000	1650
	20	220	0.08	30	3000	1100
	20	330 820	0.08	30 11	3000 4000	1320 2624
	16 10	1200	0.08	12	4360	2400
		1500	0.08	7	5000	1890
	6.3	1800	0.08	7	5000	2268

CS

Large capacitance & Long Life & High Voltage Series

■ Features: 105°C,5000hrs & Large capacitance & Long Life & High Voltage

Recommended Applications : LED Driver , LED Power Supply.

■ Corresponding product to RoHS

Specifications

Item		Characteristics				
Category Temperature Range	-55 ~ +105°C	-55 ~ +105°C				
Rated Voltage Range	25 ~50VDC					
Rated Capacitance Range	56 ~ 390 μ F					
Capacitance Tolerance	±20% at 120Hz , 20℃					
Surge Voltage	Rated voltage (V) x 1.15(at roo	m temperature or a	t 25 °C)			
Leakage Current (MAX) (20°C)	Less than or equal to the value	of Table. (After rate	ed voltage applied for 2 minutes)			
Dissipation Factor (MAX) (tan δ) (120Hz ,20 $^{\circ}$ C)	Less than or equal to the value	of Table.				
Low Temperature Stability	WV Z(100KHz)	25~50V				
Impedance Ratio (MAX) (20°C)	Z-25°C / Z+20°C	≦1.15				
	Z-55°C / Z+20°C	≦1.25				
	After applying rated voltage for	5000 hours at 105°	C			
	the capacitor shall meet the foll	lowing requirement.				
	Appearance	N	lo significant damage			
Endurance	Capacitance Change	Withi	n ±20% of the initial value			
	Dissipation Factor		150% of the initial specified value			
	Equivalent Series Resistance	Not more than	150% of the initial specified value			
	Leakage Current	Not more	than the initial specified value			
Humidity Test	After subjecting 90 to 95% RH					
Trainially 163t	the capacitors shall meet the re					
			charge with the surge voltage specified at normal			
Surge Voltage Test			esistor and discharge for 5 minutes 30 seconds,			
	the capacitors shall meet the re	•				
Failure Rate (MAX)	0.5% per 1,000 hours (confider	nce level 60% at 10	5℃)			

■ Diagram of Dimensions

$\phi_{D+0.5\max}$ $\phi_{D+0.5\max}$ $\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad$

■ Marking : case with red printing

Size code	ϕ DXL	Р	ϕ d	а
G1B	8X11.5	3.5	0.6	1.0
H1C	10X12.5	5.0	0.6	1.0

■ Multiplier for Ripple Current

Frequency (Hz)	120≦F<1K	1K≦F<10K	10K≦F<100K	100K≦F≦500K
Coefficient	0.05	0.3	0.7	1

CS

Large capacitance & Long Life & High Voltage

STANDARD RATINGS

Size code	WV (Vdc)	Сар	$ an \delta$	ESR	Ripple current	Leakage current
Size code	vvv (vuc)	(μF)	(120Hz ,20°C)	(mΩmax/20°C,100KHz)	105°C,100KHz,(mA/rms)	(μ A max)
G08	35	56	0.12	29	1500	392
G08	33	100	0.12	29	1500	700
	50	56	56 0.12 25		1760	560
	35	150	0.12	25	1760	1050
G1B	25	220	0.12	25	1760	1100
	20	270	0.12	25	1760	1350
	20	390	0.12	25	1760	1560
	50	100	0.12	25	2050	2350
	50	82	0.12	25	2050	820
H1C	35	270	0.12	25	2050	1890
1110		330	0.12	25	2050	1650
	25	390	0.12	25	2050	1950
		470	0.12	25	2050	2350

Long life & Ultra low ESR **Series**

■ Features: 105°C,5000hrs, Ultra Low ESR

■ Recommended Applications: Motherboard, DC/DC Converter ,

Adapter , SPS ,VCR , camcorder , DSC , PDA, HD Drive, MO Drive, DVD Drive, Navigation system,

Portable Communication Devices

■ Corresponding product to RoHS

Item		Charac	cteristics				
Category Temperature Range	-55 ~ +105℃						
Rated Voltage Range	2.5 ~ 16VDC						
Rated Capacitance Range	270 ~ 820 µ F						
Capacitance Tolerance	±20% at 120Hz , 20℃						
Surge Voltage	Rated voltage (V) x 1.15						
Leakage Current (MAX) (20°C)	I ≤ 0.2 CV or 300μA whichever is greater (After rated voltage applied for 2 minutes)						
Leakage Current (WAX) (20 C)	l= Leakage Current (μA)						
Dissipation Factor (MAX)	WV	2.5 ~ 16V					
(tan δ) (120Hz ,20 $^{\circ}$ C)	$ an \delta$	0.12					
	WV Z(100KHz)						
Low Temperature Stability	Z(100KHz)	2.5 ~ 16V					
Impedance Ratio (MAX) (20°C)	Z-25°C / Z+20°C	≦1.15					
, , , -,	Z-55°C / Z+20°C	≦1.25					
	After applying rated voltage for	5000 hours at 105°	O,				
	the capacitor shall meet the following requirement.						
	Appearance	No significant damage					
	Capacitance Change	Withi	in ±20% of the initial value				
Endurance	Dissipation Factor	Not more than	n 150% of the initial specified value				
	Equivalent Series Resistance	Not more than	n 150% of the initial specified value				
	Leakage Current	Not more	than the initial specified value				
	WV	2.5 ~ 16V					
	Life	5000					
Humidity Test	after subjecting 90 to 95% RH	for 1000 hours at 60)℃.				
Humlidity Test	the capacitors shall meet the requirement as Endurance.						
			charge with the surge voltage specified at normal				
Surge Voltage Test			esistor and discharge for 5 minutes 30 seconds,				
	the capacitors shall meet the re	equirement as Endu	urance.				
Failure Rate (MAX)	1% per 1,000 hours (confidence	e level 60% at 105°(C)				

■ Diagram of Dimensions

Coated case ϕ D+0.5max 15min 4min L+a max

■ Marking : case with red printing

Size code	ϕ DXL	Р	ϕ d	а
C09	5X9	2.0	0.5	1.0
E01	6.3X5.4	2.5	0.45	1.0
E08	6.3X8	2.5	0.6	1.0
G1B	8X11.5	3.5	0.6	1.0
H1C	10X12.5	5.0	0.6	1.0

■ Multiplier for Ripple Current

Frequency (Hz)	120≦F<1K	1K≦F<10K	10K≦F<100K	100K≦F≦500K
Coefficient	0.05	0.3	0.7	1

CH

Long life & Ultra low ESR Series

■ Dimensions,Rated Ripple Current,Equivalent Series Resistance

	Rated Voltage												
Capacitance (uF)	2.5V				4V		6.3V						
	SIZE	RIPPLE	ESR	SIZE	RIPPLE	ESR	SIZE	RIPPLE	ESR				
470							6.3x8	3500	7				
	5X9	4350	7										
560	6.3X5.4	3000	16										
	6.3x8	3500	7	6.3x8	3500	7	6.3x8	3500	7				
820	6.3x8	3500	7										
1200							8x11.5	3500	7				
1500							10x12.5	3500	7				
1800							10x12.5	3500	7				

	Rated Voltage										
Capacitance (uF)		10V			16V						
	SIZE	RIPPLE	ESR	SIZE	RIPPLE	ESR					
100				6.3X8	2490	12					
270				8X8	3500	10					
270				8x11.5	3500	10					
330	8x11.5	3500	10								
470				8x11.5	3500	10					
820				10x12.5	4000	11					

CT

125°C 1000hrs / 105°C 5000hrs & Low ESR Series

- Features: 125°C,1000hrs & 105°C,5000hrs,Low ESR
- Recommended Applications: Motherboard, DC/DC Converter ,Adapter , SPS ,VCR , Camcorder , DSC , PDA, HD Drive , MO Drive , DVD Drive,

Navigation system, Portable Communication Devices

■ Corresponding product to RoHS

■ Specifications

Item		Characte	ristics					
Category Temperature Range	-55 ~ +125℃							
Rated Voltage Range	6.3 ~ 25VDC							
Rated Capacitance Range	10 ~ 1000 µ F							
Capacitance Tolerance	±20% at 120Hz , 20℃							
Surge Voltage	Rated voltage (V) x 1.15							
	l≤0.2 CV or 300μA whichever is greater (After rated voltage applied for 2 minutes)							
Leakage Current (MAX) (20℃)	Please see the attached characte	Please see the attached characteristics list						
	= Leakage Current (μ A) C= Nominal Capacitance (μ F) V= Rated Voltage (V)							
Dissipation Factor (MAX)	WV	6.3 ~ 25V						
(tanδ) (120Hz ,20°C)	$ an \delta$							
Low Temperature Stability Impedance Ratio (MAX) (20°ℂ)		6.3 ~ 25V						
npedance Ratio (MAX) (20 ()	Z-25°C / Z+20°C	≦1.15	_					
	Z-55°C / Z+20°C	≦1.25						
	After applying rated voltage for 1000 hours at 125 $^{\circ}$ C & 5000 hours at 105 $^{\circ}$ C , the capacitor shall meet the following requirement.							
	Appearance		No significant damage					
Endurance	Capacitance Change	With	nin ±20% of the initial value					
	Dissipation Factor	Not more tha	n 150% of the initial specified value					
	Equivalent Series Resistance	Not more tha	n 150% of the initial specified value					
	Leakage Current	Not more	e than the initial specified value					
Llumidity Toot	after subjecting 90 to 95% RH for	1000 hours at 60°C.						
Humidity Test	the capacitors shall meet the requ	irement as Endurar	nce.					
	After subjecting to 1,000 cycles each consisting of charge with the surge voltage specified							
Surge Voltage Test	temperature for 30 seconds through a protective resistor and discharge for 5 minutes 30 seconds,							
	the capacitors shall meet the requ	the capacitors shall meet the requirement as Endurance.						
Failure Rate (MAX)	1% per 1,000 hours (confidence le	evel 60% at 105℃)						

■ Diagram of Dimensions

Size code	φDXL	Р	ϕ d	а
E08	6.3X8	2.5	0.6	1.0
G08	8X8	3.5	0.6	1.5
G1B	8X11.5	3.5	0.6	1.0
H1C	10X12.5	5	0.6	1.0

■ Marking : case with red printing

■ Multiplier for Ripple Current

Frequency (Hz)	Frequency (Hz) 120≦F<1K		10K≦F<100K	100K≦F≦500K	
Coefficient	0.05	0.3	0.7	1	

125°C 1000hrs / 105°C 5000hrs & Low ESR Series

■ Dimensions,Rated Ripple Current,Equivalent Series Resistance

					Rated	Voltage					
Capacitance			6.3V			10V					
(uF)	SIZE	RIPP	LE	ESR	LC(μ A)(max)	SIZE	RIPPLE		ESR	LC(μ A)(max)	
J.		105°C <tx≦125°c< th=""><th>Tx≦105℃</th><th>ESK</th><th>after 2mins</th><th></th><th>105°C<tx≦125°c< th=""><th>Tx≦105°C</th><th>LOIX</th><th>after 2mins</th></tx≦125°c<></th></tx≦125°c<>	Tx≦105℃	ESK	after 2mins		105°C <tx≦125°c< th=""><th>Tx≦105°C</th><th>LOIX</th><th>after 2mins</th></tx≦125°c<>	Tx≦105°C	LOIX	after 2mins	
180	6.3X8	537	1700	45	300	6.3X8	537	1700	45	360	
220	6.3X8	537	1700	45	300	8X8	810	2560	35	440	
270	8X8	810	2560	35	340	8X8	810	2560	35	540	
330	8X8	810	2560	35	416	8X11.5	1250	3950	17	660	
470	8X8	810	2560	35	592	10X12.5	1655	5230	13	705	
470	8X11.5	1332	4210	15	592						
560	8X11.5	1332	4210	15	706	10X12.5	1655	5230	13	840	
680	10X12.5	1721	5440	12	643	10X12.5	1655	5230	13	1020	
820	10X12.5	1721	5440	12	775						
1000	10X12.5	1721	5440	12	945						

		Rated Voltage										
Capacitance			16V			20V						
(uF)	SIZE	RIPP	RIPPLE		LC(μ A)(max)	SIZE	RIPPI	.E	ESR	LC(\(\mu \) A)(max)		
		105℃ <tx≦125℃< td=""><td>Tx≦105°C</td><td>ESR</td><td>after 2mins</td><td>0.22</td><td>105°C<tx≦125°c< td=""><td>Tx≦105°C</td><td></td><td>after 2mins</td></tx≦125°c<></td></tx≦125℃<>	Tx≦105°C	ESR	after 2mins	0.22	105°C <tx≦125°c< td=""><td>Tx≦105°C</td><td></td><td>after 2mins</td></tx≦125°c<>	Tx≦105°C		after 2mins		
47						6.3X8	458	1450	60	300		
56						8X8	598	1890	45	300		
68						8X8	598	1890	45	300		
82	6.3X8	512	1620	50	300	8X11.5	1050	3320	24	328		
100	6.3X8	512	1620	50	320	8X11.5	1050	3320	24	400		
120	8X8	670	2120	40	384	10X12.5	1367	4320	20	480		
150	8X8	670	2120	40	480	10X12.5	1367	4320	20	600		
180	8X11.5	1151	3640	20	576							
220	8X11.5	1151	3640	20	704							
270	10X12.5	1493	4720	16	648							
330	10X12.5	1493	4720	16	792							

					Rated \	/oltage				
Capacitance			25V							
(uF)	SIZE	RIPP	LE	ESR	LC(μ A)(max)	SIZE	RIPPLE		ESR	LC(μ A)(max)
	SIZL	105°C <tx≦125°c< th=""><th>Tx≦105°C</th><th>LOIX</th><th>after 2mins</th><th>SIZL</th><th>105°C<tx≦125°c< th=""><th>Tx≦105°C</th><th>LOIX</th><th>after 2mins</th></tx≦125°c<></th></tx≦125°c<>	Tx≦105°C	LOIX	after 2mins	SIZL	105°C <tx≦125°c< th=""><th>Tx≦105°C</th><th>LOIX</th><th>after 2mins</th></tx≦125°c<>	Tx≦105°C	LOIX	after 2mins
10	6.3X8	458	1450	60	300					
22	6.3X8	458	1450	60	300					
33	6.3X8	458	1450	60	300					
47	8X8	598	1890	45	300					
56	8X8	598	1890	45	300					
68	8X11.5	1050	3320	24	340					
82	8X11.5	1050	3320	24	410					
100	8X11.5	1050	3320	24	500					
100	10X12.5	1367	4320	20	500					
120	10X12.5	1367	4320	20	600					
150	10X12.5	1367	4320	20	750					

VP

Standard SMD type product

■ Features: 105°C,2000hrs, Standard SMD type product

■ Recommended Applications: Motherboard, DC/DC Converter ,

Adapter , SPS ,VCR , camcorder , DSC , PDA, HD Drive , MO Drive , DVD Drive, Navigation system,

Portable Communication Devices

■ Corresponding product to RoHS

Item		Characteristics								
Category Temperature Range	-55 ~ +105°C									
Rated Voltage Range	2.5 ~ 25VDC									
Rated Capacitance Range	22 ~ 1500 µ F									
Capacitance Tolerance	±20% at 120Hz , 20°ℂ									
Surge Voltage	Rated voltage (V) x 1.15									
Leakage Current (MAX) (20°C) *	Less than or equal to the value	of Table.(After ra	ated voltage applied for 2 minutes at 20°C)							
Dissipation Factor (MAX)	WV	2.5 ~ 25V								
(tan δ) (120Hz ,20℃)	$ an \delta$	0.12								
Low Temperature Stability Impedance Ratio (MAX) (20°C)	WV Z(100KHz) Z-25°C / Z+20°C	2.5 ~ 25V ≤1.15								
Impoderioo reduo (iiii ot) (20 0)	Z-55°C / Z+20°C ≦1.25									
	After applying rated voltage for	2000 hours at 10	05°C, the capacitor shall meet the following requirement.							
	Appearance No significant damage									
	Capacitance Change		Within ±20% of the initial value							
	Dissipation Factor	Not mor	e than 150% of the initial specified value							
Endurance	Equivalent Series Resistance	Not mor	e than 150% of the initial specified value							
	Leakage Current	Not	more than the initial specified value							
	WV	2.5 ~ 25V								
	Life	2000								
Humidity Test	after subjecting 90 to 95% RH f the capacitors shall meet the re									
	Capacitance Change		Within ±10% of the initial value							
Desistance to Coldering Light to	Dissipation Factor	Not mor	e than 130% of the initial specified value							
Resistance to Soldering Heat *	Equivalent Series Resistance	Not mor	e than 130% of the initial specified value							
	Leakage Current	Not	more than the initial specified value							

^{*} For any doubt about measured values, measure the leakage current again after the following voltage treatment. Voltage treatment: Applying DC rated voltage to the capacitors for 2 hours at 105 oC.

■ Diagram of Dimensions

ΦD	L	Α	Н	I	W	P	K
5	5.8	5.3	6.5 Max	2.2	0.65±0.15	1.5±0.2	0.35 +0.15 -0.2
6.3	5.8	6.6	7.8 Max	2.6	0.65±0.15	1.8±0.2	0.35 +0.15 -0.2
6.3	7.7	6.6	7.8 Max	2.6	0.65±0.15	1.8±0.2	0.35 +0.15 -0.2
8	6.7	8.3	9.5 Max	3.4	0.65±0.15	2.2±0.2	0.35 +0.15 -0.2
8	10.4	8.3	10.0 Max	3.4	0.90±0.2	3.1±0.2	0.70±0.20
10	10.0	10.3	12.0 Max	3.5	0.90±0.2	4.6±0.2	0.70±0.20
10	12.2	10.3	12.0 Max	3.5	0.90±0.2	4.6±0.2	0.70±0.20

■ Multiplier for Ripple Current

—	maniphor for this pro-									
Frequency (Hz)	120≦F<1K	1K≦F<10K	10K≦F<100K	100K≦F≦500K						
Coefficient	0.05	0.3	0.7	1						

Standard SMD type product

■ Dimensions,Rated Ripple Current,Equivalent Series Resistance

	CHSIO	is,itateu it	Rated Voltage										
Capaci	itance												
Capaci (μΓ				2.5V			4V						
(μι	7	SIZE	RIPPLE	ESR	LC(µA max/2min)	SIZE	RIPPLE	ESR	LC(µA max/2min)				
10	0					6.3x5.8	2450	26	300				
12	20					5x5.8	1490	30	300				
15	0					6.3x5.8	2450	26	300				
18	80	6.3x5.8	2200	25	300								
22	20	6.3x5.8	2500	25	300								
33	80					6.3x7.7	2650	25	300				
39	00	6.3x7.7	2720	23	300								
47	'0	6.3x7.7	2720	23	300								
82	20					8x10.4	3950	18	656				
02	.0					10x12.2	5500	10	656				
100	00	8x10.4	3950	18	500								
120	00	10x10.0	4000	12	600	10x10.0	4000	12	960				
120	00					10x12.2	5500	10	960				
150	00	10x10.0	4000	12	750								
130	00	10x12.2	5500	10	750								

Canacitanaa				Rated \	/oltage			
Capacitance (µF)			6.3V				10V	
(μι)	SIZE	RIPPLE	ESR	LC(µA max/2min)	SIZE	RIPPLE	ESR	LC(µA max/2min)
22					5x5.8	1270	40	300
33					5x5.8	1270	40	300
47	5x5.8	1380	35	300	5x5.8	1270	40	300
47					6.3x5.8	2250	31	300
56					6.3x5.8	2250	31	300
68	6.3x5.8	2400	27	300				
82	6.3x5.8	2400	27	300				
100	5x5.8	1380	35	300				
100	6.3x5.8	2400	27	300				
120	6.3x5.8	2400	27	300	6.3X7.7	2560	27	300
120					8X6.7	2800	27	300
150					6.3x7.7	2560	27	300
220	6.3x5.8	2400	27	300				
220	6.3x7.7	2650	25	300				
270	6.3x7.7	2650	25	340				
330	6.3x7.7	2650	25	416				
390					8x10.4	3020	22	780
470	6.3X7.7	2650	25	592	10x10.0	3500	14	940
470	8X10.4	3610	21	592	10x12.2	5300	12	940
560					10x12.2	5300	12	1120
	8x10.4	3610	21	857				
680	10x10.0	3650	12	857				
	10x12.2	5500	10	857				
820	10x10.0	3650	12	1033				
020	10x12.2	5500	10	1033				
1000					10x12.2	4800	13	2000

 $^{\ \, \}text{$\stackrel{<}{\sim}$ SIZE}: \ \, \phi \, \text{DxL(mm)} \quad \ \, \text{$\stackrel{<}{\sim}$} \, \text{tan} \, \delta : 20 ^{\circ} \text{$\stackrel{<}{\sim}$}, 120 \text{Hz}. \, \, \\ \ \, \text{$\stackrel{<}{\sim}$} \, \text{Ripple Current:} \\ \ \, \text{(mA/rms)}, 105 ^{\circ} \text{$\stackrel{<}{\sim}$} \, .100 \text{KHz} \, \, \\ \ \, \text{$\stackrel{<}{\sim}$} \, \text{ESR(m} \, \Omega). \\ \ \, 20 ^{\circ} \text{$\stackrel{<}{\sim}$}. 100 \text{KHz} \, \\ \ \, \text{$\stackrel{<}{\sim}$} \, \text{ESR(m} \, \Omega). \\ \ \, \text{$\stackrel{<}{\sim}$} \, \text{ESR(m} \, \Omega). \\ \ \, \text{$\stackrel{<}{\sim}$} \, \text{ESR(m} \, \Omega). \\ \ \, \text{$\stackrel{<}{\sim}$} \, \text{DxL(mm)} \, \\ \ \, \text{$\stackrel{<}{\sim}$} \, \text{ESR(m} \, \Omega). \\ \ \, \text{ESR(m} \, \Omega). \\ \ \, \text{$\stackrel{<}{\sim}$} \, \text{ESR(m} \, \Omega). \\ \ \, \text{ESR(m} \, \Omega). \\$

Standard SMD type product

■ Dimensions,Rated Ripple Current,Equivalent Series Resistance

Canacitanas				Rated \	/oltage				
Capacitance			16V		25V				
(µF)	SIZE	RIPPLE	ESR	LC(µA max/2min)	SIZE	RIPPLE	ESR	LC(µA max/2min)	
22	5x5.8	1210	45	300					
33	6.3x5.8	2050	37	300	8X10.4	2500	30	300	
39	6.3x5.8	2050	37	300					
47	6.3x5.8	1600	50	300					
82	6.3x7.7	2420	30	300					
02	8X6.7	2700	30	300					
100	6.3x7.7	2420	30	320					
180	8x10.4	3490	23	576					
220	8x10.4	3490	23	704					
220	10x12.2	5050	14	704					
270	8x10.4	3490	23	864					
330	10x10.0	3100	16	1056					
330	10x12.2	5050	14	1056			·		
680	10X12.2	5050	14	1056					

VB

High capacitance and Super low ESR

■ Recommended Applications: Motherboard, DC/DC Converter,

Adapter , SPS ,VCR , camcorder , DSC , PDA, HD Drive , MO Drive , DVD Drive , Navigation system,

Portable Communication Devices

■ Corresponding product to RoHS

Item		Characteristics					
Category Temperature Range	-55 ~ +105℃						
Rated Voltage Range	2.5 ~ 16VDC						
Rated Capacitance Range	68 ~ 1200 µ F						
Capacitance Tolerance	±20% at 120Hz , 20℃						
Surge Voltage	Rated voltage (V) x 1.15						
Leakage Current (MAX) (20°C)	Less than or equal to the value	e of Table.(After rated voltage applied for 2 minutes at $20^{\circ}\!$					
Dissipation Factor (MAX)	WV	2.5 ~ 16V					
(tan δ) (120Hz ,20 $^{\circ}$ C)	$ an \delta$	0.12					
Low Temperature Stability	WV Z(100KHz)	2.5 ~ 16V					
Impedance Ratio (MAX) (20°C)	Z-25°C / Z+20°C	≦1.15					
	$Z-55^{\circ}$ / $Z+20^{\circ}$ ≤ 1.25						
	After applying rated voltage for	r 2000 hours at 105℃, the capacitor shall meet the following requirement					
	Appearance	No significant damage					
	Capacitance Change	Within ±20% of the initial value					
	Dissipation Factor	Not more than 150% of the initial specified value					
Endurance	Equivalent Series Resistance	Not more than 150% of the initial specified value					
	Leakage Current	Not more than the initial specified value					
	WV	2.5 ~ 16V					
	Life	2000					
Humidity Test	after subjecting 90 to 95% RH for 1000 hours at 60°C. the capacitors shall meet the requirement as Endurance.						
	Capacitance Change	Within ±10% of the initial value					
Designation to Coldering Heatsk	Dissipation Factor	Not more than 130% of the initial specified value					
Resistance to Soldering Heat*	Equivalent Series Resistance	Not more than 130% of the initial specified value					
	Leakage Current	Not more than the initial specified value					

^{*}For any doubt about measured values, measure the leakage current again after the following voltage treatment. Voltage treatment: Applying DC rated voltage to the capacitors for 2 hours at 105 oC.

■ Diagram of Dimensions

ΦD	L	A	Н	I	W	P	K
6.3	5.8	6.6	7.8 Max	2.6	0.65±0.15	1.8±0.2	0.35 +0.15 -0.2
6.3	7.7	6.6	7.8 Max	2.6	0.65±0.15	1.8±0.2	0.35 +0.15 -0.2
8	6.7	8.3	9.5 Max	3.4	0.65±0.15	2.2±0.2	0.35 +0.15
8	10.4	8.3	10.0 Max	3.4	0.90±0.2	3.1±0.2	0.70±0.20
10	10.0	10.3	12.0 Max	3.5	0.90±0.2	4.6±0.2	0.70±0.20

■ Multiplier for Ripple Current

Frequency (Hz)	120≦F<1K	1K≦F<10K	10K≦F<100K	100K≦F≦500K
Coefficient	0.05	0.3	0.7	1

VB

High capacitance and Super low ESR

■ Dimensions,Rated Ripple Current,Equivalent Series Resistance

_	anaoitanaa	Rated Voltage									
Capacitance (µF)		2.5V					4V				
		SIZE	RIPPLE	ESR	LC(µA max/2min)	SIZE	RIPPLE	ESR	LC(µA max/2min)		
	270					6.3x5.8	3160	15	300		
	330					6.3x5.8	3160	15	300		
	390	6.3x5.8	3160	15	300						
		6.3x5.8	3500	16	300						
	560	6.3X7.7	3600	13	300	8X6.7	3220	22	300		
		8X6.7	4100	13	300						

Canacitanas	Rated Voltage									
Capacitance			6.3V		10V					
(µF)	SIZE	RIPPLE	ESR	LC(µA max/2min)	SIZE	RIPPLE	ESR	LC(µA max/2min)		
120	6.3x5.8	2500	24	300	6.3x5.8	2600	22	300		
150					6.3x7.7	2880	21	300		
220	6.3X5.8	3160	15	300	8X6.7	3220	22	540		
270					8X6.7	3220	22	540		
	6.3x5.8	3390	17	415						
330	6.3X7.7	3470	14	415						
	8X6.7	3950	14	415	8X10.4	4000	17	660		
390	8X10.4	4210	15	491						
470	8X10.4	4210	15	592	10x10	5025	12	940		
560	10X10	5025	12	705						
820	10X10	5025	12	1033						
1200	10X10	5025	12	1510						

	Capacitance				Rated \	/oltage			
	(µF)			16V					
	(μΓ)	SIZE	RIPPLE	ESR	LC(µA max/2min)	SIZE	RIPPLE	ESR	LC(µA max/2min)
Ī	68	6.3x5.8	2440	25	300				
Ī	100	6.3x5.8	2440	25	300				
	100	6.3x7.7	2700	24	320				

 $\ \, \text{$\stackrel{<}{\sim}$ SIZE}: \ \, \phi \, \text{DxL(mm)} \ \ \, \text{$\stackrel{<}{\sim}$} \, \text{tan} \, \delta : 20 \, ^{\circ}\!\!\!\! \text{$^{\circ}}\!\!\!\! \text{,} 120 \text{Hz.} \ \, \text{$\stackrel{<}{\sim}$} \, \text{Ripple Current:} \\ \text{(mA/rms),} 105 \, ^{\circ}\!\!\!\! \text{$^{\circ}}\!\!\!\! \text{.} 100 \text{KHz} \ \, \text{$\stackrel{<}{\sim}$} \, \text{ESR(m} \, \Omega). \\ 20 \, ^{\circ}\!\!\!\!\! \text{.} 100 \text{KHz} \ \, \text{$\stackrel{<}{\sim}$} \, \text{ESR(m} \, \Omega). \\ \text{(ma) } \, \text$

VS

Long life and Ultra low ESR

■ Features: 105°C,5000hrs, Long life and Ultra low ESR

Recommended Applications: Motherboard, DC/DC Converter ,

Adapter , SPS ,VCR , camcorder , DSC , PDA, HD Drive , MO Drive , DVD Drive, Navigation system, $\ \ \,$

Portable Communication Devices

■ Corresponding product to RoHS

Capacitance Change

Dissipation Factor

Equivalent Series Resistance

Leakage Current

Diagram of Dimensions

Resistance to Soldering Heat *

ΦD	L	Α	Н	I	W	P	K
6.3	5.8	6.6	7.8 Max	2.6	0.65±0.15	1.8±0.2	0.35 +0.15 -0.2
8	10.4	8.3	10.0 Max	3.4	0.90±0.2	3.1±0.2	0.70±0.20
10	12.2	10.3	12.0 Max	3.5	0.90±0.2	4.6±0.2	0.70±0.20

Within ±10% of the initial value

Not more than 130% of the initial specified value

Not more than 130% of the initial specified value

Not more than the initial specified value

Multiplier for Ripple Current

- manaphor io	ppio oairon	•		
Frequency (Hz)	120≦F<1K	1K≦F<10K	10K≦F<100K	100K≦F≦500K
Coefficient	0.05	0.3	0.7	1

^{*} For any doubt about measured values, measure the leakage current again after the following voltage treatment. Voltage treatment: Applying DC rated voltage to the capacitors for 2 hours at 105 oC.

VS

Long life and Ultra low ESR

■ Dimensions,Rated Ripple Current,Equivalent Series Resistance

Capacitance		Rated Voltage									
(µF)			4V		6.3V						
(μι)	SIZE	RIPPLE	ESR	LC(µA max/2min)	SIZE	RIPPLE	ESR	LC(µA max/2min)			
100					6.3x5.8	2800	22	300			
120					6.3x5.8	2800	22	300			
150	6.3x5.8	2570	22	300							
220					6.3x5.8	2800	20	277			
330	6.3x5.8	2800	20	264							

Canacitanas		Rated Voltage									
Capacitance (µF)			10V				16V				
(μι)	SIZE	RIPPLE	ESR	LC(µA max/2min)	SIZE	RIPPLE	ESR	LC(µA max/2min)			
39					6.3x5.8	2200	30	300			
56	6.3x5.8	2300	27	300							
68	6.3x5.8	2300	27	300	6.3x5.8	2200	30	300			
120	6.3x5.8	2300	27	300							
330					10x12.2	3800	14	1056			
470	8x10.4	3000	22	940							

 $^{\ \, \}text{$\stackrel{<}{\text{\triangle}}$ SIZE}: \ \, \phi \, \text{DxL(mm)} \ \ \, \text{$\stackrel{<}{\text{$\triangle$}}$ tan} \, \delta : 20^{\circ} \text{\mathbb{C}}, 120 \text{Hz.} \, \, \text{$\stackrel{<}{\text{$\triangle$}}$ Ripple Current:(mA/rms),} 105^{\circ} \text{\mathbb{C}} \, .100 \text{KHz} \, \, \text{$\stackrel{<}{\text{$\triangle$}}$ ESR(m$$\Omega$).} 20^{\circ} \text{$\mathbb{C}$} .100 \text{KHz} \, \, \text{$\stackrel{<}{\text{$\triangle$}}$ ESR(mΩ).} 20^{\circ} \text{$\stackrel{<}{\text{$\triangle$}}$ ESR(mΩ).} 20^{\circ} \text{$\stackrel{<}{\text{$\triangle$}}$ ESR(mΩ).} 20^{\circ} \text{$\stackrel{<}{\text{$\triangle$}}$ ESR(mΩ).} 20^{\circ} \text{$\stackrel{<}{\text{$\triangle$}}$ ESR(m$

General purpose Series

●Features: 85°C 2000 hours & Low profile vertical chip

■Recommended Applications: Suitable for AV(TV,Video,Audio),Monitor/Computer,

Dissipation Factor Leakage Current

Home appliance, OA/HA/Communication

Corresponding product to RoHS

Specifications

After placed at 85°C without voltage applied for 1000 hours,

the capacitor shall meet the same requirement as Endurance.

Not more than 200% of the specified value

Not more than the specified value

■ Diagram of Dimensions(mm)

Shelf Life

(): Reference size

ϕ D	L	Α	Н	I	W	Р	K
4.0	5.4	4.3	5.5 Max	1.8	0.65±0.1	1.0±0.2	0.35 ^{+0.15} _{-0.20}
5.0	5.4	5.3	6.5 Max	2.2	0.65±0.1	1.5±0.2	0.35 ^{+0.15} _{-0.20}
6.3	5.4	6.6	7.8 Max	2.6	0.65±0.1	1.8±0.2	0.35 ^{+0.15} _{-0.20}
6.3	7.7	6.6	7.8 Max	2.6	0.65±0.1	1.8±0.2	0.35 +0.15 -0.20
8.0	10.2	8.3	10.0 Max	3.4	0.90±0.2	3.1±0.2	0.70±0.20
10.0	10.2	10.3	12.0 Max	3.5	0.90±0.2	4.6±0.2	0.70±0.20

Multiplier for Ripple Current

riequency comment				
Frequency (Hz)	60	120	1K	10K
Coefficient	0.80	1.00	1.15	1.25

GV General purpose Series

■Dimensions,Max Dissipation Factor,Max Permissible Ripple Current

Capacitance					R	ated (Sur	ge) Voltage					
•		4(5)		6.3(8)				10(13)			16(20)	
(μF)	Size	$ an\delta$	Ripple	Size	$ an\delta$	Ripple	Size	$ an \delta$	Ripple	Size	$ an\delta$	Ripple
4.7										4x5.4	0.16	20
10										4x5.4	0.16	28
22				4x5.4	0.26	20	4x5.4	0.30	28	4x5.4	0.26	28
22				485.4	0.20	20	480.4	0.30	20	5x5.4	0.16	39
33	4x5.4	0.35	26	4x5.4	0.26	22	4x5.4	0.30	29	5x5.4	0.26	45
33	433.4	0.55	20	480.4	0.20	22	5x5.4	0.20	43	6.3x5.4	0.16	66
47	4x5.4	0.35	34	4x5.4	0.26	36	5x5.4	0.30	43	5x5.4	0.16	45
47	485.4	0.55	34	5x5.4	0.26	46	5X5. 4	0.30	45	6.3x5.4	0.16	70
100	5x5.4	0.35	61	5x5.4	0.26	47	6.3x5.4	0.26	70	6.3x5.4	0.20	70
100	383.4	0.55	01	6.3x5.4	0.26	71	0.585.4	0.20	70	6.3x7.7	0.20	85
220	6.3x5.4	0.35	82	6.3x5.4	0.35	74	6.3x7.7	0.26	250	6.3x7.7	0.20	162
220	0.070.4	0.55	02	6.3x7.7	0.35	235	0.587.7	0.20	230	8x10.2	0.20	280
330	6.3x5.4	0.35	80	6.3x7.7	0.35	280	8x10.2	0.26	330	8x10.2	0.20	320
330	0.070.4	0.50	00	0.587.7	0.5	200	0.710.2	0.20	330	10x10.2	0.20	380
470	6.3x7.7	0.35	200	8x10.2	0.35	380	8x10.2	0.26	390	8x10.2	0.20	350
770	0.081.1	0.55	200	UA 10.2	0.55	300	10x10.2	0.26	400	10x10.2	0.20	420
1000				8x10.2	0.35	500	10x10.2	0.26	580			
1000				10x10.2	0.35	700						
1500				10x10.2	0.35	750						

Capacitance				Rated (Surge) V	oltage			
		25(32)			35(44)			50(63)	
(μF)	Size	$\tan\delta$	Ripple	Size	$ an\delta$	Ripple	Size	$ an \delta$	Ripple
1							4x5.4	0.12	10
2.2				4x5.4	0.12	8	4x5.4	0.12	16
3.3				4x5.4	0.12	10	4x5.4	0.12	16
4.7	4x5.4	0.14	22	4x5.4	0.12	22	4x5.4	0.14	18
4.7	480.4	0.14	22	480.4	0.12	22	5x5.4	0.12	23
10	4x5.4	0.20	24	4x5.4	0.16	24	5x5.4	0.14	27
10	5x5.4	0.14	28	5x5.4	0.12	30	6.3x5.4	0.12	35
22	5x5.4	0.20	35	5x5.4	0.16	36	6.3x5.4	0.14	40
22	6.3x5.4	0.14	55	6.3x5.4	0.12	60	6.3x7.7	0.12	90
33	5x5.4	0.20	42	6.3x5.4	0.16	60	6.3x7.7	0.12	90
33	6.3x5.4	0.14	65	6.3x7.7	0.14	130	8x10.2	0.12	120
47	6.3x5.4	0.20	70	6.3x5.4	0.16	70	6.3x7.7	0.12	90
47	6.3x7.7	0.16	96	6.3x7.7	0.14	165	8x10.2	0.12	120
100	6.3x7.7	0.16	143	6.3x7.7	0.14	140	8x10.2	0.12	200
100	8x10.2	0.16	180	8x10.2	0.14	180	10x10.2	0.12	250
220	8x10.2	0.16	230	8x10.2	0.14	200	10x10.2	0.12	300
220	10x10.2	0.16	310	10x10.2	0.14	310	10110.2	0.12	300
330	8x10.2	0.16	270	10x10.2	0.14	350			
330	10x10.2	0.16	340	10310.2	0.14	350			
470	10x10.2	0.16	380						

Canacitanas		Ra	ated (Surg	ge) Voltage	2				
Capacitance (μ F)		63(79)		1	100(125)				
(μ1)	Size	Size $\tan \delta$ Ripple		Size	$ an\delta$	Ripple			
3.3				6.3x7.7	0.18	50			
4.7	6.3x5.4	0.18	20	6.3x7.7	0.18	50			
10	6.3x5.4	0.18	20	6.3x7.7	0.18	50			
10	0.383.4	0.10	20	8x10.2	0.18	55			
22	6.3x7.7	0.18	40	8x10.2	0.18	55			
22	8x10.2	0.18	40	10x10.2	0.18	85			
33	8x10.2	0.18	45	10x10.2	0.18	90			
47	8x10.2	0.18	45						
100	10x10.2	0.18	60						

FV Long Life Series

●Features: 85°C 3000~5000 hours,Longer life than GV, Low profile vertical chip

 $\blacksquare Recommended \ Applications: \ Suitable \ for \ AV(TV,Video,Audio),Monitor/Computer,$

●Corresponding product to RoHS

Specifications	-									
Item				Chara	acteristics					
Operating Temperature Range	-40 ~ +85°C									
Rated Voltage Range (WV)	4 ~ 100VDC									
Rated Capacitance Range	1 ~ 1000 <i>μ</i> F									
Capacitance Tolerance	± 20 % at 120Hz , 20℃									
Lookago Current (MAY) (20°C)	I \leq 0.01CV or 3(μ A) , w	hichever	is greate	r. (After	rated volt	age appli	ed for 2	minutes)		
Leakage Current (MAX) (20°C)	I= Leakage Current (μ	A) C= No	ominal Ca	apacitan	ce (μ F)	V= Rated	Voltage	(V)		
Dissipation Factor (MAX) (tan δ) (120Hz ,20°C)	Shown in the table of st	andard ra	ating							
Low Temperature Stability	WV Z(120HZ)	4	6.3	10	16	25	35	50	63	100
Impedance Ratio (MAX)	Z(-25°C) / Z(20°C)	7	4	3	2	2	2	2	2	2
	Z(-40°C) / Z(20°C)	15	8	6	4	4	3	3	3	3
	After applying rated volt	age for 3	000~500	0 hours	at 85℃,					
	the capacitors shall mee	et the follo	owing red	quiremer	nts.					
Endurance	Capacitance Change	Within ±	20% of th	ne initial	value			Case (ϕ)	Life tin	ne (hrs)
	Dissipation Factor	Not mov	e than 20	00% of t	he specifi	ed value		$\phi D \leq 6.3$	30	000
	Leakage Current	Not mor	e than the	e specifi	ed value			φ D ≧8	50	000
Shelf Life	After placed at 85°C with the capacitor shall meet									

■ Diagram of Dimensions(mm)

(): Reference size

ψD	L	Α	Н	ı	W	Р	K
4.0	5.4	4.3	5.5 Max	1.8	0.65±0.1	1.0±0.2	0.35 +0.15 -0.20
5.0	5.4	5.3	6.5 Max	2.2	0.65±0.1	1.5±0.2	0.35 +0.15 -0.20
6.3	5.4	6.6	7.8 Max	2.6	0.65±0.1	1.8±0.2	0.35 +0.15 -0.20
8.0	6.2	8.3	9.5 Max	3.4	0.65±0.1	2.2±0.2	0.35 +0.15 -0.20
8.0	10.2	8.3	10.0 Max	3.4	0.90±0.2	3.1±0.2	0.70±0.2
10.0	10.2	10.3	12.0 Max	3.5	0.90±0.2	4.6±0.2	0.70±0.2

■ Multiplier for Ripple Current

Frequency (Hz)	60	120	1K	10K
Coefficient	0.80	1.00	1.15	1.25

FV Long Life Series

■Dimensions,Max Dissipation Factor,Max Permissible Ripple Current

Canaaitanaa					Rat	ed (Su	rge) Volta	age				
Capacitance (µF)		4(5)		6.3(8)			10(13)			16(20)		
(μι)	Size	$\tan\delta$	Ripple	Size	$ an \delta$	Ripple	Size	$\tan\delta$	Ripple	Size	$ an \delta$	Ripple
4.7										4x5.4	0.16	20
10										4x5.4	0.16	28
22	4x5.4	0.35	19	4x5.4	0.26	20	4x5.4	0.30	28	4x5.4	0.26	27
22	485.4	0.55	19	485.4	0.20	20	485.4	0.50	20	5x5.4	0.16	39
33	4x5.4	0.35	26	5x5.4	0.26	22	4x5.4	0.30	29	5x5.4	0.26	45
33	485.4	0.55	20	383.4	0.20	22	5x5.4	0.20	43	6.3x5.4	0.16	66
47	4x5.4	0.35	34	5x5.4	0.26	46	5x5.4	0.30	43	6.3x5.4	0.16	70
100	5x5.4	0.35	61	6.3x5.4	0.26	71	6.3x5.4	0.26	70	6.3x5.4	0.20	70
220	6.3x5.4	0.35	82	6.3x7.7	0.35	250	6.3x7.7	0.26	250	8x10.2	0.20	280
330				6.3x7.7	0.35	300	8x10.2	0.26	330	10x10.2	0.20	380
470				8x10.2	0.35	380	10x10.2	0.26	400	10x10.2	0.20	420
1000				10x10.2	0.35	700	10x10.2	0.26	580			

Canacitanas				Rated (S	urge) V	/oltage)			
Capacitance (µF)	2	5(32)		3	5(44)		50(63)			
(μι)	Size	$\tan\delta$	Ripple	Size	$ an\delta$	Ripple	Size	$\tan\delta$	Ripple	
1							4x5.4	0.12	10	
2.2				4x5.4	0.12	8	4x5.4	0.12	16	
3.3				4x5.4	0.12	10	4x5.4	0.12	16	
4.7	4x5.4	0.14	22	4x5.4	0.12	22	5x5.4	0.12	23	
10	4x5.4	0.20	24	4x5.4	0.16	24	6.3x5.4	0.12	35	
10	5x5.4	0.14	28	5x5.4	0.12	30	0.585.4	0.12	33	
22	6.3x5.4	0.14	55	6.3x5.4	0.12	60	6.3x7.7	0.12	110	
33	6.3x5.4	0.14	65	6.3x7.7	0.14	130	8x10.2	0.12	120	
47	6.3x5.4	0.20	70	6.3x7.7	0.14	165	10x10.2	0.12	130	
47	6.3x7.7	0.16	96	0.387.7	0.14	103	10010.2	0.12	130	
100	8x10.2	0.16	180	10x10.2	0.14	210	10x10.2	0.12	190	
220	10x10.2	0.16	310	10x10.2	0.14	310				

Canacitanas	Rated (Surge) Voltage									
Capacitance (μF)	6	3(79)		100(125)						
(μι)	Size	ze $tan \delta$ R		Size $\tan \delta$		Ripple				
3.3				8x10.2	0.18	30				
4.7	8x10.2	0.18	25	8x10.2	0.18	80				
10	8x10.2	0.18	25	8x10.2	0.18	85				
22	8x10.2	0.18	45	10x10.2	0.18	85				
33	10x10.2	0.18	45	10x10.2	0.18	90				
47	10x10.2	0.18	55							

 $\begin{subarray}{l} \nwarrow Size: D \ \phi \ x \ L(mm). \begin{subarray}{l} \nwarrow tan \ \delta: 20 \begin{subarray}{l} \nwarrow, 120 Hz. \begin{subarray}{l} \nwarrow Ripple Current: 85 \begin{subarray}{l} \nwarrow, 120 Hz, (mA/rms). \end{subarray} \end{subarray}$

SV General Purpose Series

- Features: 105°C 1000 hours, Higher temperature range Than GV, Low profile vertical chip
- Recommended Applications: Suitable for AV(TV,Video,Audio),Monitor/Computer, OA/HA/Communication

Specifications

Specifications											
Item				Chara	cteristics						
Operating Temperature Range	-40 ~ +105°C										
Rated Voltage Range (WV)	4 ~ 100VDC										
Capacitance Range	1 ~ 1500 μ F	1 ~ 1500 μ F									
Capacitance Tolerance	± 20 % at 120Hz , 20°	2									
Leakage Current (MAX) (20°C)	I \leq 0.01CV or 3(μ A) ,	whichev	er is gre	ater. (Af	ter rated v	oltage	applied fo	or 2 min	utes)		
Leakage Current (MAX) (20 C)	I= Leakage Current (μ	A) C=	Nominal	Capacit	ance (μ F	F) V= R	ated Vol	tage (V)			
Dissipation Factor (MAX) (tan δ) (120Hz ,20 $^{\circ}$ C)		own in the table of standard rating									
Low Temperature Stability	Z(120HZ)************************************	6.3	10	16	25	35	50	63	100		
Impedance Ratio (MAX)	Z(-25°C) / Z(20°C) 7	4	3	2	2	2	2	2	2		
	Z(-40°C) / Z(20°C) 15	8	6	4	4	3	3	3	3		
	After applying rated vo	-									
Endurance	Capacitance Change			Withi	n ±20% o	f the ini	tial value)			
	Dissipation Factor		Not	more th	an 200%	of the s	specified	value			
	Leakage Current Not more than the specified value										
Shelf Life	After placed at 105°C without voltage applied for 1000 hours, the capacitor shall meet the same requirement as Endurance.										

■ Diagram of Dimensions(mm)

(): Reference size

ϕ D	L	Α	Н	- 1	W	Р		K
4.0	5.4	4.3	5.5 Max	1.8	0.65±0.1	1.0±0.2	0.35	+0.15 -0.20
5.0	5.4	5.3	6.5 Max	2.2	0.65±0.1	1.5±0.2	0.35	+0.15 -0.20
6.3	5.4	6.6	7.8 Max	2.6	0.65±0.1	1.8±0.2	0.35	+0.15 -0.20
6.3	7.7	6.6	7.8 Max	2.6	0.65±0.1	1.8±0.2	0.35	+0.15 -0.20
8.0	10.2	8.3	10.0 Max	3.4	0.90±0.2	3.1±0.2	0.70	±0.2
10.0	10.2	10.3	12.0 Max	3.5	0.90±0.2	4.6±0.2	0.70	±0.2

■ Multiplier for Ripple Current

Trequency coefficient				
Frequency (Hz)	60	120	1K	10K
Coefficient	0.85	1.00	1.15	1.25

SV General Purpose Series

■Dimensions,Max Dissipation Factor,Max Permissible Ripple Current

Canacitanas					R	ated (Sur	ge) Voltage)				
Capacitance		4(5)			6.3(8)			10(13)			16(20)	
(μF)	Size	$ an \delta$	Ripple	Size	$ an \delta$	Ripple	Size	$ an \delta$	Ripple	Size	$ an \delta$	Ripple
4.7										4x5.4	0.16	20
10							4x5.4	0.30	24	4x5.4	0.16	28
22	4x5.4	0.35	20	4x5.4	0.30	29	4x5.4	0.30	36	5x5.4	0.16	39
33	4x5.4	0.35	26	4x5.4	0.3	43	4x5.4	0.30	45	5x5.4	0.20	39
33	485.4	0.33	20	480.4	0.3	43	5x5.4	0.30	46	6.3x5.4	0.20	65
47	4x5.4	0.35	34	4x5.4	0.30	43	5x5.4	0.30	46	5x5.4	0.20	39
47	485.4	0.33	34	5x5.4	0.30	46	6.3x5.4	0.30	70	6.3x5.4	0.20	70
100	5x5.4	0.35	61	5x5.4	0.35	47	6.3x5.4	0.30	71	6.3x5.4	0.20	70
100	3X3. 4	0.33	01	6.3x5.4	0.35	71	6.3x7.7	0.30	110	6.3x7.7	0.20	130
220	6.3x5.4	0.35	82	6.3x5.4	0.35	74	6.3x7.7	0.30	115	6.3x7.7	0.20	105
220	0.383.4	0.33	02	6.3x7.7	0.35	120	8x10.2	0.26	160	8x10.2	0.20	150
330				6.3x7.7	0.35	175	8x10.2	0.26	200	8x10.2	0.20	170
330				8x10.2	0.35	230	0.10.2	0.20	200	10x10.2	0.20	230
470				8x10.2	0.35	300	8x10.2	0.26	230	8x10.2	0.20	230
470				0.10.2	0.55	300	10x10.2	0.26	270	10x10.2	0.20	340
680										10x10.2	0.20	380
1000				8x10.2	0.35	300	10x10.2	0.26	390			
1000				10x10.2	0.35	400						
1500				10x10.2	0.35	480						

Consoitones				Rated (Surge) V	oltage			
Capacitance (μ F)		25(32)			35(44)			50(63)	
(μi)	Size	$ an\delta$	Ripple	Size	$ an \delta$	Ripple	Size	$ an \delta$	Ripple
1							4x5.4	0.12	10
2.2				4x5.4	0.12	15	4x5.4	0.12	16
3.3				4x5.4	0.12	18	4x5.4	0.12	16
4.7	4x5.4	0.14	22	4x5.4	0.12	22	5x5.4	0.12	23
10	4x5.4	0.14	22	4x5.4	0.12	25	6.3x5.4	0.12	35
10	5x5.4	0.14	28	5x5.4	0.12	30	0.383.4	0.12	33
22	5x5.4	0.14	35	5x5.4	0.14	35	6 2 7 7	0.12	65
22	6.3x5.4	0.14	55	6.3x5.4	0.14	60	6.3x7.7	0.12	65
33	5x5.4	0.14	45	6.3x5.4	0.14	60	6.3x7.7	0.12	70
33	6.3x5.4	0.16	65	6.3x7.7	0.14	84	8x10.2	0.12	91
47	6.3x5.4	0.16	70	6.3x7.7	0.14	84	6.3x7.7	0.12	75
47	6.3x7.7	0.16	91	8x10.2	0.14	98	8x10.2	0.12	95
100	6.3x7.7	0.16	95	6.3x7.7	0.14	105	8x10.2	0.12	110
100	8x10.2	0.16	130	8x10.2	0.14	120	10x10.2	0.12	145
220	8x10.2	0.16	160	8x10.2	0.14	170	10x10.2	0.12	210
220	10x10.2	0.16	273	10x10.2	0.14	240	10.10.2	0.12	210
330	8x10.2	0.16	180	10x10.2	0.14	250			
330	10x10.2	0.16	340	10x10.2	0.14	230			
470	10x10.2	0.16	360						

Canacitanaa	Rated (Surge) Voltage									
Capacitance (μ F)		63(79)		1	00(125)					
(μι)	Size $\tan \delta$		Ripple	Size $\tan \delta$		Ripple				
3.3				8x10.2	0.18	30				
4.7	6.3x5.4	0.18	20	8x10.2	0.18	50				
10	6.3x5.4	0.18	20	8x10.2	0.18	55				
22	8x10.2	0.18	30	10x10.2	0.18	60				
33	8x10.2	0.18	30	10x10.2	0.18	65				
47	8x10.2	0.18	45	10x10.2	0.18	65				
100	10x10.2	0.18	60							

DV Long Life Series

● Features: 105°C 2000 hours, Longer life than SV, Low profile vertical chip

 $\blacksquare Recommended \ Applications: \ Suitable \ for \ AV(TV,Video,Audio),Monitor/Computer,$

OA/HA/Communication

■Corresponding product to RoHS

■ Specifications

Specifications										
Item			(Characteri	istics					
Operating Temperature Range	-40 ~ +105°C									
Rated Voltage Range (WV)	6.3 ~ 100VDC									
Rated Capacitance Range	1 ~ 1500 μ F	1500 μ F								
Capacitance Tolerance	± 20 % at 120Hz , 20℃	20 % at 120Hz , 20℃								
Lookaga Current (MAX) (20°C)	I \leq 0.01CV or 3(μ A), whi	0.01CV or 3(μ A) , whichever is greater. (After rated voltage applied for 2 minutes)								
Leakage Current (MAX) (20°C)	I= Leakage Current (μA)	Leakage Current (μA) C= Nominal Capacitance (μF) V= Rated Voltage (V)								
Dissipation Factor (MAX) (tan δ) (120Hz ,20°C)	Shown in the table of star	ndard ra	tings							
Low Temperature Stability	WV Z(120HZ)	6.3	10	16	25	35	50	63	100	
Impedance Ratio (MAX)	Z(-25°C) / Z(20°C)	4	3	2	2	2	2	2	2	
	Z(-40°C) / Z(20°C)	8	6	4	4	3	3	3	3	
	After applying rated voltage	ge for 2	000hrs	at 105°C,	ı					
	the capacitors shall meet	the follo	wing re	equiremer	nts.					
	Case (ϕ)		ψ 4	to <i>φ</i> 6.3			ψ 8 to	φ 10		
Endurance	Capacitance Change	Within :	±25% (of the initia	al value	Within ±2	20% of th	e initial v	/alue	
	Dissipation Factor Not more than 200% of the specified value									
	Leakage Current	Leakage Current Not more than the specified value								
Shelf Life	After placed at 105°C without voltage applied for 1000 hours, the capacitor shall meet the same requirement as Endurance.									

■ Diagram of Dimensions(mm)

(): Reference size

ϕD	L	Α	Н	_	W	Р		K
4.0	5.4	4.3	5.5 Max	1.8	0.65±0.1	1.0±0.2	0.35	+0.15 -0.20
5.0	5.4	5.3	6.5 Max	2.2	0.65±0.1	1.5±0.2	0.35	+0.15 -0.20
6.3	5.4	6.6	7.8 Max	2.6	0.65±0.1	1.8±0.2	0.35	+0.15 -0.20
6.3	7.7	6.6	7.8 Max	2.6	0.65±0.1	1.8±0.2	0.35	+0.15 -0.20
8.0	10.2	8.3	10.0 Max	3.4	0.90±0.2	3.1±0.2	0.70	±0.20
10.0	10.2	10.3	12.0 Max	3.5	0.90±0.2	4.6±0.2	0.70	±0.20

■ Multiplier for Ripple Current

Frequency (Hz)	60	120	1K	10K
Coefficient	0.85	1.00	1.15	1.25

DV Long Life Series

■ Dimensions,Max Dissipation Factor,Max Permissible Ripple Current

		-							
Consoitones				Rated	(Surge) Vo	Itage			
Capacitance (μ F)		6.3(8)			10(13)			16(20)	
(μi)	Size	$ an\delta$	Ripple	Size	$ an\delta$	Ripple	Size	$ an \delta$	Ripple
10							4x5.4	0.16	28
22	4x5.4	0.3	26	4x5.4	0.22	23	4x5.4	0.16	29
22	485.4	0.3	20	485.4	0.22	23	5x5.4	0.16	39
33	4x5.4	0.30	29	5x5.4	0.22	45	5x5.4	0.16	40
47	4x5.4	0.30	31	5x5.4	0.22	60	5x5.4	0.16	42
47	5x5.4	0.30	46	6.3x5.4	0.22	70	6.3x5.4	0.16	70
100	6.3x5.4	0.30	71	6.3x5.4	0.30	71	6.3x5.4	0.20	71
100	0.383.4	0.30	7 1	6.3x7.7	0.30	110	6.3x7.7	0.20	130
220	6.3x5.4	0.35	80	6.3x7.7	0.30	120	8x10.2	0.20	150
220	6.3x7.7	0.35	120	8x10.2	0.26	260	10x10.2	0.20	210
330	6.3x7.7	0.35	140	8x10.2	0.30	290	10x10.2	0.20	230
330	8x10.2	0.35	290	0.00.2	0.30	290	10010.2	0.20	230
470	8x10.2	0.35	290	8x10.2	0.30	320	8x10.2	0.20	240
470	10x10.2	0.35	380	10x10.2	0.26	380	10x10.2	0.20	380
1000	10x10.2	0.35	410	10x10.2	0.26	410			
1500	10x10.2	0.35	460						

Cit				Rated	(Surge) Vo	Itage			
Capacitance		25(32)			35(44)			50(63)	
(μF)	Size	$ an\delta$	Ripple	Size	$ an\delta$	Ripple	Size	$ an \delta$	Ripple
1							4x5.4	0.12	10
2.2							4x5.4	0.12	16
3.3							4x5.4	0.12	16
4.7	4x5.4	0.14	22	4x5.4	0.12	22	5x5.4	0.12	23
6.8	4x5.4	0.14	25	4x5.4	0.12	25	5x5.4	0.12	30
10	4x5.4	0.14	25	5x5.4	0.12	30	5x5.4	0.12	35
10	5x5.4	0.14	28	3,3.4	0.12	30	6.3x5.4	0.12	40
22	5x5.4	0.14	28	6.3x5.4	0.14	60	6.3x5.4	0.12	42
22	6.3x5.4	0.14	55	0.383.4	0.14	00	6.3x7.7	0.12	65
33	6.3x5.4	0.14	65	6.3x7.7	0.14	80	6.3x7.7	0.12	91
47	6.3x5.4	0.16	65	6.3x7.7	0.14	100	6.3x7.7	0.12	110
47	6.3x7.7	0.16	91	8x10.2	0.14	210	8x10.2	0.12	210
100	6.3x7.7	0.16	100	8x10.2	0.14	240	8x10.2	0.12	240
100	8x10.2	0.16	230	10x10.2	0.14	310	10x10.2	0.12	320
220	8x10.2	0.16	270	8x10.2	0.14	260	10x10.2	0.12	330
220	10x10.2	0.16	310	10x10.2	0.14	350	10.10.2	0.12	330
330	10x10.2	0.16	340	10x10.2	0.14	370			
470	10x10.2	0.16	380						

Capacitance	Rated (Surge) Voltage												
Capacitance (μF)		63(79)		100(125)									
(μι)	Size	$ an\delta$	tan δ Ripple		$ an\delta$	Ripple							
10													
22				8x10.2	0.18	100							
	8x10.2	0.18	140	8x10.2	0.18	120							
33	0.0.2	0.10	140	10x10.2	0.18	150							
47	8x10.2	0.18	170	10x10.2	0.18	170							
100	10x10.2	0.18	340										
150	10x10.2	0.18	360										

ZV Low Impedance Series

- ●Features: 105°C 1000 hours, Wide temperature range, Low profile vertical chip,Low impedance
- ■Recommended Applications: Suitable for AV(TV,Video,Audio),Monitor/Computer, Battery charger, DC/DC converter,SMPS,Noise filter

●Corresponding product to RoHS

Specifications

Item				Charac	cteristics							
Operating Temperature Range	-55~ +105°C											
Rated Voltage Range (WV)	4 ~ 50VDC											
Capacitance Range	1 ~ 1500 <i>μ</i> F	~ 1500 μ F										
Capacitance Tolerance	± 20 % at 120Hz , 20°(20 % at 120Hz , 20°ℂ										
Leakage Current (MAX) (20°C)	I \leq 0.01CV or 3(μ A) , w	$(0.01 {\rm CV}~{ m or}~3 (\mu{ m A})$, whichever is greater. (After rated voltage applied for 2 minutes)										
Leakage Current (MAX) (20 C)	I= Leakage Current (μ	Leakage Current (μ A) C= Nominal Capacitance (μ F) V= Rated Voltage (V)										
Dissipation Factor (MAX) (tan δ) (120Hz ,20 $^{\circ}$ C)	Shown in the table of s	hown in the table of standard rating										
Low Temperature Stability	WV Z(120HZ)************************************	6.3	10	16	25	35	50					
Impedance Ratio (MAX)	Z(-25°C) / Z(20°C) 4	2	2	2	2	2	2	_				
	Z(-40°C) / Z(20°C) 8	4	4	3	3	3	3					
	After applying rated vol the capacitors shall me	-				000hrs	at 105℃,					
Endurance	Capacitance Change	With	in ±20%	of the in	nitial value)						
	Dissipation Factor	Not m	ore than	200%	of the spe	cified va	alue					
	Leakage Current	Leakage Current Not more than the specified value										
Shelf Life	After placed at 105°C with the capacitor shall mee		• .	•								

■ Diagram of Dimensions(mm)

(): Reference size

$\phi \mathbf{D}$	L	Α	Н		W	Р		K
4.0	5.4	4.3	5.5 Max	1.8	0.65±0.1	1.0±0.2	0.35	+0.15 -0.20
5.0	5.4	5.3	6.5 Max	2.2	0.65±0.1	1.5±0.2	0.35	+0.15 -0.20
6.3	5.4	6.6	7.8 Max	2.6	0.65±0.1	1.8±0.2	0.35	+0.15 -0.20
6.3	7.7	6.6	7.8Max	2.6	0.65±0.1	1.8±0.2	0.35	+0.15 -0.20
8.0	10.2	8.3	10.0 Max	3.4	0.90±0.2	3.1±0.2	0.70	±0.20
10.0	10.2	10.3	12.0 Max	3.5	0.90±0.2	4.6±0.2	0.70	±0.20

■ Multiplier for Ripple Current

Frequency (Hz)	120	1K	10K	100K
Coefficient	0.7	0.8	0.9	1.0

ZV Low Impedance Series

Dimensions,Max Permissible Ripple Current,Max Impedance

Canacitanaa				-FF-		-	Rate	d (Sur	ge) Volta	ge						
Capacitance (μ F)		4(5	5)			6.3(8)			10(1	3)			16(2	20)	
(μΓ)	Size	$\tan\delta$	Ripple	Z	Size	$\tan\delta$	Ripple	Z	Size	$\tan\delta$	Ripple	Z	Size	$\tan\delta$	Ripple	Z
10	4x5.4	0.35	60	4.0					4x5.4	0.22	60	4.0	4x5.4	0.16	60	4.0
22	4x5.4	0.35	60	4.0	4x5.4	0.26	60	4.0	5x5.4	0.22	95	2.6	5x5.4	0.16	95	2.6
33	4x5.4	0.35	60	4.0	5x5.4	0.26	95	2.6	5x5.4	0.22	95	2.6	5x5.4	0.16	95	2.6
47	4x5.4	0.35	60	4.0	5x5.4	0.26	95	2.6	6.3x5.4	0.22	95	1.3	6.3x5.4	0.16	140	1.3
68	4x5.4	0.35	60	4.0	6.3x5.4	0.26	140	1.3	6.3x5.4	0.22	140	1.3	6.3x7.7	0.20	230	0.8
100	5x5.4	0.35	95	3.0	6.3x5.4	0.26	140	1.3	6.3x5.4	0.22	140	1.3	6.3x7.7	0.20	230	0.8
150	6.3x5.4	0.35	140	2.6	6.3x7.7	0.35	230	8.0	6.3x7.7	0.26	230	8.0	8x10.2	0.20	450	0.5
220	6.3x5.4	0.35	140	2.6	6.3x7.7	0.35	230	8.0	6.3x7.7	0.26	230	8.0	8x10.2	0.20	450	0.5
330					8x10.2	0.35	450	0.5	8x10.2	0.26	450	0.5	10x10.2	0.20	670	0.3
470					10x10.2	0.35	670	0.3	10x10.2	0.26	670	0.3	10x10.2	0.20	670	0.3
1000					10x10.2	0.35	670	0.3	10x10.2	0.26	670	0.3				
1500					10x10.2	0.35	670	0.3								

Canacitanas					Rate	d (Surg	e) Volta	ige				
Capacitance		25(3	32)			35(4	14)			50(6	3)	
(μF)	Size	$\tan\delta$	Ripple	Z	Size	$\tan\delta$	Ripple	Z	Size	$\tan\delta$	Ripple	Z
1					4x5.4	0.12	60	4.0	4x5.4	0.12	60	5.0
2.2					4x5.4	0.12	60	4.0	4x5.4	0.12	60	5.0
3.3					4x5.4	0.12	60	4.0	4x5.4	0.12	60	5.0
4.7	4x5.4	0.14	60	4.0	4x5.4	0.12	60	4.0	5x5.4	0.12	95	4.0
6.8	4x5.4	0.14	60	4.0	5x5.4	0.12	95	2.6	6.3x5.4	0.12	140	2.6
10	5x5.4	0.14	95	2.6	5x5.4	0.12	95	2.6	6.3x5.4	0.12	140	2.6
22	6.3x5.4	0.14	140	1.3	6.3x5.4	0.12	140	1.3	6.3x7.7	0.12	230	1.3
33	6.3x5.4	0.14	140	1.3	6.3x7.7	0.14	230	8.0	8x10.2	0.12	300	1.1
47	6.3x5.4	0.14	140	1.3	6.3x7.7	0.14	230	8.0	10x10.2	0.12	670	8.0
68	8x10.2	0.16	450	0.5	8x10.2	0.14	450	0.5	10x10.2	0.12	670	8.0
100	8x10.2	0.16	450	0.5	10x10.2	0.14	670	0.3	10x10.2	0.12	670	8.0
220	10x10.2	0.16	670	0.3	10x10.2	0.14	670	0.3	10x10.2	0.12	670	8.0
330	10x10.2	0.16	670	0.3	10x10.2	0.14	670	0.3				
470	10x10.2	0.16	670	0.3								

 $^{\tilde{\land}}$ Size:D ϕ x L(mm) $^{\tilde{\land}}$ Ripple Current: 105° C,100KHz,(mA/rms) $^{\tilde{\land}}$ Impedance: 20° C,100KHz,Z(Ω).

YV Low Impedance Series

● Features: 105°C 1000~2000 hours, Wide temperature range, Low profile vertical chip, Low impedance

■ Recommended Applications: Suitable for AV(TV,Video,Audio),Monitor/Computer, Battery charger,

DC/DC converter, SMPS, Noise filter

●Corresponding product to RoHS

Specifications

Item					С	haracteris	stics					
Operating Temperature Range	-55 ~ +105°C											
Rated Voltage Range (WV)	6.3 ~ 50VDC											
Capacitance Range	0.1 ~ 1500 μ F											
Capacitance Tolerance	± 20 % at 120Hz	% at 120Hz , 20℃										
Leakage Current (MAX) (20°C)	I ≤ 0.01CV or 3(μ	A) , wł	nicheve	r is grea	ter. (Afte	er rated vo	oltage a	pplied for 2 minutes)				
Leakage Current (W/ XX) (20 C)	I= Leakage Curre	nt (μ A) C= N	ominal (Capacita	ance (μ F)	V= Ra	ted Voltage (V)				
Dissipation Factor (MAX) (tan δ) (120Hz ,20 $^\circ$ C)	Shown in the tabl	wn in the table of standard rating										
Low Temperature Stability	WV Z(120HZ)************************************	6.3	10	16	25	35	50					
Impedance Ratio (MAX)	Z(-25°C) / Z(20°C)	2	2	2	2	2	2					
	Z(-40°C) / Z(20°C)	4	4	3	3	3	3					
	After applying rate the capacitors shall Capacitance Ch	all mee	t the fol	lowing r	equirem	ents.		00hrs at 105℃, 10-50VFWithin ±20% of the in	itial value			
Fundamen	Dissipation Fact					of the spe	•		iliai vaido			
Endurance	Leakage Curren					ecified va						
	DΦ											
	Life			10	00hrs			2000hrs				
Shelf Life	·	fter placed at 105°C without voltage applied for 1000 hours, ne capacitor shall meet the same requirement as Endurance.										

■ Diagram of Dimensions(mm)

(): Reference size

ϕ D	L	Α	Н	I	W	Р	K
4.0	5.4	4.3	5.5 Max	1.8	0.65±0.1	1.0±0.2	0.35 +0.15 -0.20
5.0	5.4	5.3	6.5 Max	2.2	0.65±0.1	1.5±0.2	0.35 +0.15 -0.20
6.3	5.4	6.6	7.8 Max	2.6	0.65±0.1	1.8±0.2	0.35 +0.15 -0.20
8.0	6.2	8.3	9.5 Max	3.4	0.65±0.1	2.2±0.2	0.35 +0.15 -0.20
8.0	10.2	8.3	10.0 Max	3.4	0.90±0.2	3.1±0.2	0.70±0.20
10.0	10.2	10.3	12.0 Max	3.5	0.90±0.2	4.6±0.2	0.70±0.20

■ Multiplier for Ripple Current

Frequency (Hz)	120	1K	10K	100K
Coefficient	0.7	0.8	0.9	1.0

Y Low Impedance Series

■Dimensions,Max Permissible Ripple Current,Max Impedance

Canacitanas	·			11	Rate	d (Surg	e) Volta	ge				
Capacitance (μF)		6.3(8)			10(1	3)			16(2	20)	
(μI)	Size	$\tan\delta$	Ripple	Z	Size	$\tan\delta$	Ripple	Z	Size	$\tan\delta$	Ripple	Ζ
10									4x5.4	0.16	60	3.0
22	4x5.4	0.26	60	3.0	5x5.4	0.22	95	1.8	5x5.4	0.16	95	1.8
33	5x5.4	0.26	95	1.8	5x5.4	0.22	95	1.8	6.3x5.4	0.16	140	1.0
47	5x5.4	0.26	95	1.8	6.3x5.4	0.22	140	1.0	6.3x5.4	0.16	140	1.0
100	6.3x5.4	0.26	140	1.0	6.3x5.4	0.22	140	1.0	6.3x5.4	0.16	140	1.0
220	6.3x5.4	0.26	140	1.0	6.3x7.7	0.22	280	0.34	6.3x7.7	0.16	280	0.34
330	6.3x7.7	0.26	280	0.34	8x10.2	0.26	450	0.3	8x10.2	0.20	450	0.3
470	8x10.2	0.35	450	0.3	8x10.2	0.26	450	0.3	8x10.2	0.20	450	0.3
680	8x10.2	0.35	450	0.3	10x10.2	0.26	670	0.15	10x10.2	0.20	670	0.15
1000	8x10.2	0.35	450	0.3	10x10.2	0.26	670	0.15				
1500	10x10.2	0.35	670	0.15								

Canacitanas					Rate	d (Surg	e) Volta	ige				
Capacitance (μF)		25(3	32)		35(44)				50(63)			
$(\mu \Gamma)$	Size	$\tan\delta$	Ripple	Z	Size	$\tan\delta$	Ripple	Z	Size	$\tan\delta$	Ripple	Z
1									4x5.4	0.12	30	5.0
2.2									4x5.4	0.12	30	5.0
3.3									4x5.4	0.12	30	5.0
4.7					4x5.4	0.12	60	3.0	5x5.4	0.12	50	3.0
10	5x5.4	0.14	95	1.8	5x5.4	0.12	95	1.8	6.3x5.4	0.12	70	2.0
22	6.3x5.4	0.14	140	1.0	6.3x5.4	0.12	140	1.0	6.3x5.4	0.12	70	2.0
33	6.3x5.4	0.14	140	1.0	6.3x5.4	0.12	140	1.0	6.3x7.7	0.12	170	1.3
47	6.3x5.4	0.14	140	1.0	6.3x5.4	0.12	140	1.0	6.3x7.7	0.12	170	1.3
68	6.3x7.7	0.14	280	0.34	6.3x7.7	0.12	280	0.34	8x10.2	0.12	300	0.6
100	6.3x7.7	0.14	280	0.34	8x10.2	0.14	450	0.3	8x10.2	0.12	300	0.6
220	8x10.2	0.16	450	0.3	8x10.2	0.14	450	0.3	10x10.2	0.12	500	0.34
330	8x10.2	0.16	450	0.3	10x10.2	0.14	670	0.15				
470	10x10.2	0.16	670	0.15								

 $^{\wedge}_{\sim}$ Size:D ϕ x L(mm) $^{\wedge}_{\sim}$ Ripple Current: 105 $^{\circ}_{\sim}$,100KHz,(mA/rms) $^{\wedge}_{\sim}$ Impedance: 20 $^{\circ}_{\sim}$,100KHz,Z(Ω).

EV Ultra Low Impedance Series

lacktriangle Features : 105 $\footnote{\circ}$ 2000 hours , Low profile vertical chip,

● Recommended Applications: AV(TV, Video, Audio) , Monitor/Computer,

OA/HA/Communication ,SMPS

■Corresponding product to RoHS

Specifications

Item				Chara	acteristics	3					
Operating Temperature Range	-55 ~ +105℃										
Rated Voltage Range (WV)	6.3 ~ 35VDC										
Capacitance Range	4.7 ~ 1500 μ F	7 ~ 1500 μ F									
Capacitance Tolerance	±20 % at 120Hz , $20^\circ\!$										
Leakage Current (MAX) (20°C)	$I \le 0.01$ CV or 3μ A which	\leq 0.01CV or 3 μ A whichever is greater(After rated voltage applied for 2 minutes)									
Leakage Current (MAX) (20 C)	I= Leakage Current (μ A	l= Leakage Current (μ A) C= Nominal Capacitance (μ F) V= Rated Voltage (V)									
Dissipation Factor (MAX) (tan δ) (120Hz ,20 $^{\circ}$ C)	Shown in the table of sta	Shown in the table of standard rating									
Low Temperature Stability	WV Z(120HZ)	6.3	10	16	25	35					
Impedance Ratio (MAX)	Z(-25°C) / Z(20°C)	2	2	2	2	2					
	Z(-40°C) / Z(20°C)	3	3	3	3	3					
	After applying rated volta the capacitor shall meet	the follo	owing re	quireme	ent.		ırs at 105 ℃,		_		
Endurance	Capacitance Change	-			tial value						
	Dissipation Factor Not more than 200% of the specified value										
	Leakage Current Not more than the specified value										
Shelf Life	After placed at 105°C without voltage applied for 1000 hours, the capacitor shall meet the same requirement as Endurance.										

■ Diagram of Dimensions(mm)

ϕ D	L	Α	Н	- 1	W	Р		K
4.0	5.4	4.3	5.5 Max	1.8	0.65±0.1	1.0±0.2	0.35	+0.15
7.0	J. T	7.0	J.J Wax	1.0	0.00±0.1	1.0±0.2	0.0	-0.20
5.0	5.4	5.3	6.5 Max	2.2	0.65±0.1	1.5±0.2	0.35	+0.15
3.0	J. 4	3.3	U.J IVIAX	2.2	0.03±0.1	1.5±0.2	0.55	-0.20
6.3	5.4	6.6	7.8 Max	2.6	0.65±0.1	1.8±0.2	0.35	+0.15
0.3	5.4	0.0	1.0 IVIAX	2.0	0.05±0.1	1.0±0.2	0.33	-0.20
6.3	7.7	6.6	7.8 Max	2.6	0.65±0.1	1.8±0.2	0.35	+0.15
0.3	7.7	0.0	7.0 IVIAX	2.0	0.05±0.1	1.0±0.2	0.55	-0.20
8.0	10.2	8.3	10.0 Max	3.4	0.90±0.2	3.1±0.2	0.70	±0.2
10.0	10.2	10.3	12.0 Max	3.5	0.90±0.2	4.6±0.2	0.70	±0.2

■ Multiplier for Ripple Current

Frequency (Hz)	120	1K	10K	100K
Coefficient	0.70	0.80	0.90	1.00

EV Ultra Low Impedance Series

\blacksquare Case Size / tan δ / Max Ripple Current / Impedance

Canacitanas					Ra	ted (Surg	je) Voltag	je				
Capacitance (μF)		6.3((8)			10(1	13)			16(2	20)	
	ϕ DxL	$\tan\delta$	RC	Z	ϕ DxL	$ an\delta$	RC	Z	ϕ DxL	$ an\delta$	RC	Z
22	4x5.4	0.26	90	1.93	4x5.4	0.19	90	1.93	4x5.4	0.16	90	1.93
22	470.4	0.20	30	1.95	470.4	0.19	90	1.33	5x5.4	0.16	160	1.00
33	4x5.4	0.26	90	1.93	4x5.4	0.19	90	1.93	5x5.4	0.16	160	1.00
33	485.4	0.20	90	1.93	5x5.4	0.19	160	1.00	383.4	0.10	100	1.00
47	4x5.4	0.26	90	1.93	6.3x5.4	0.19	190	0.52	5x5.4	0.16	160	1.00
47	5x5.4	0.26	160	1.00	6.385.4 0.19 190 0.8		0.52	6.3x5.4	0.16	240	0.52	
100	5x5.4	0.26	160	1.00	6.3x5.4	0.19	190	0.52	6.3x5.4	0.16	240	0.52
100	6.3x5.4	0.26	240	0.52	0.383.4	0.19	190	0.52	0.383.4	0.16	240	0.52
150	6.3x7.7	0.26	240	0.30	6.3x7.7	0.19	240	0.34	6.3x7.7	0.16	280	0.34
220	6 2 7 7	0.26	240	0.20	6 2 7 7	0.10	200	0.24	6.3x7.7	0.16	280	0.34
220	6.3x7.7	0.26	240	0.30	6.3x7.7	0.19	280	0.34	8x10.2	0.16	370	0.22
330	6.3x7.7	0.26	280	0.34	8x10.2	0.19	600	0.16	8x10.2	0.16	600	0.16
470	8x10.2	0.26	600	0.16	8x10.2	0.19	600	0.16	8x10.2	0.16	600	0.16
680	8x10.2	0.26	600	0.16	10x10.2	0.19	600	0.12	10x10.2	0.16	850	0.08
1000	8x10.2	0.26	600	0.16	10x10.2	0.19	850	0.08				
1500	10x10.2	0.26	850	0.08								

Capacitance			Ra	ated (Sur	ge) Voltage)				
(μF)		25(3	32)		35(44)					
	φ DxL	$ an\delta$	$\tan \delta$ RC Z		ϕ DxL	$ an\delta$	RC	Z		
4.7					4x5.4	0.12	90	1.93		
10	4x5.4	0.14	90	1.93	4x5.4	0.12	90	1.93		
10	480.4	0.14	90	1.93	5x5.4	0.12	160	1.00		
22	5x5.4	0.14	160	1.00	5x5.4	0.12	160	1.00		
33	5x5.4	0.14	160	1.00	6.3x5.4	0.12	240	0.52		
33	6.3x5.4	0.14	240	0.52	0.383.4	0.12	240	0.52		
47	6.3x5.4	0.14	240	0.52	6.3x5.4	0.12	240	0.52		
68	6.3x5.4	0.14	240	0.52	6.3x7.7	0.12	280	0.34		
100	6.3x7.7	0.14	280	0.34	6.3x7.7	0.12	280	0.34		
100	0.387.7	0.14	200	0.54	8x10.2	0.12	600	0.16		
150	8x10.2	0.14	600	0.16	8x10.2	0.12	600	0.16		
220	8x10.2	0.14	600	0.16	8x10.2	0.12	600	0.16		
330	8x10.2	0.14	600	0.16	10x10.2	0.12	850	0.08		
470	10x10.2	0.14	850	0.08						

్ద CASE SIZE : ϕ DxL(mm) 、 MAX DISSIPATION FACTOR : $\tan \delta$ / 120Hz,20 $^{\circ}$ C 、

MAX PERMISSIBLE RIPPLE CURRENT : RC(mArms) / 100 KHz, $105 ^{\circ}\text{C}$ $^{\circ}$

MAX IMPEDANCE : $Z(\Omega) / 100KHz,20^{\circ}C$

JV Ultra Low Impedance Series

●Features : 105°C 2000 hours , Low profile vertical chip, Ultra low impedance

 $\blacksquare Recommended \ Applications: \ AV(TV,Video,Audio) \ ,Monitor/Computer,$

OA/HA/Communication ,SMPS

■Corresponding product to RoHS

- opecinications											
Item				Chara	acteristics	3					
Operating Temperature Range	-55 ~ +105°C										
Rated Voltage Range (WV)	6.3 ~ 35VDC										
Capacitance Range	10~ 1800 <i>μ</i> F	0~ 1800 μ F									
Capacitance Tolerance	± 20 % at 120Hz , 20℃										
Leakage Current (MAX) (20°C)	I \leq 0.01CV or 3 μ A which	\leq 0.01CV or 3 μ A whichever is greater(After rated voltage applied for 2 minutes)									
Leakage Current (MAX) (20 C)	I= Leakage Current (μ A	= Leakage Current (μ A) C= Nominal Capacitance (μ F) V= Rated Voltage (V)									
Dissipation Factor (MAX) (tan δ) (120Hz ,20 $^{\circ}$ C)	Shown in the table of sta	ındardı	rating								
Low Temperature Stability	WV Z(120HZ)	6.3	10	16	25	35					
Impedance Ratio (MAX)	Z(-25°C) / Z(20°C)	2	2	2	2	2					
	Z(-40°C) / Z(20°C)	3	3	3	3	3					
	After applying rated volta the capacitor shall meet	the foll	owing re	quireme	ent.		ırs at 105 ℃,				
Endurance	Capacitance Change	Withi	า±30% (of the ini	tial value						
	Dissipation Factor	Not m	ore thar	200%	of the spe	cified va	alue				
	Leakage Current Not more than the specified value										
Shelf Life	After placed at 105℃ without voltage applied for 1000 hours, the capacitor shall meet the same requirement as Endurance.										

■ Diagram of Dimensions(mm)

(): Reference size

ϕ D	L	Α	Н	1	W	Р		K
4.0	5.4	4.3	5.5 Max	1.8	0.65±0.1	1.0±0.2	0.35	+0.15
	0		o.o max		0.00=0.1	1102012	0.00	-0.20
5.0	5.4	5.3	6.5 Max	2.2	0.65±0.1	1.5±0.2	0.35	+0.15
5.0	J. T	5.5	U.J IVIAX	2.2	0.00±0.1	1.0±0.2	0.55	-0.20
6.3	5.4	6.6	7.8 Max	2.6	0.65±0.1	1.8±0.2	0.35	+0.15
0.5	3.4	0.0	1.0 IVIAX	2.0	0.05±0.1	1.0±0.2	0.55	-0.20
6.3	7.7	6.6	7.8 Max	2.6	0.65±0.1	1.8±0.2	0.35	+0.15
0.5	7.7	0.0	7.0 IVIAX	2.0	0.05±0.1	1.0±0.2	0.55	-0.20
8.0	10.2	8.3	10.0 Max	3.4	0.90±0.2	3.1±0.2	0.7	'0±0.2
					3.3320.2		0	
10.0	10.2	10.3	12.0 Max	3.5	0.90±0.2	4.6±0.2	0.7	'0±0.2

■ Multiplier for Ripple Current

Frequency (Hz)	120	1K	10K	100K
Coefficient	0.70	0.80	0.90	1.00

JV Ultra Low Impedance Series

■ Case Size / $\tan \delta$ / Max Ripple Current / Impedance

0					Rate	ed (Surge) Voltag	е					
Capacitance (μ F)		6.3(8	5)			10(13	3)		16(20)				
<i>\(\)</i>	ψ DxL	$ an\delta$	RC	Z	ψ DxL	$ an\delta$	RC	Z	ψ DxL	$ an\delta$	RC	Z	
22									4x5.4	0.16	90	1.93	
33					4x5.4	0.19	90	1.93	4x5.4	0.16	90	1.93	
47	4x5.4	0.26	90	1.93	4x5.4	0.19	90	1.93	4x5.4	0.16	90	1.93	
47	485.4	0.20	90	1.93	5x5.4	0.19	160	1.00	5x5.4	0.16	160	1.00	
68	4x5.4	0.26	90	1.93	4x5.4	0.19	90	1.93	5x5.4	0.16	160	1.00	
	77.0.7	0.20	30	1.33	5x5.4	0.19	160	1.00	5X5.4	0.10	100	1.00	
100	5x5.4	0.26	160	1.00	5x5.4	0.19	160	1.00	6.3x5.4	0.16	240	0.52	
100	0X0.4	0.20	100	1.00	6.3x5.4	0.19	240	0.52	0.000.4	0.10	240	0.52	
150	5x5.4	0.26	160	1.00	5x5.4	0.19	160	1.00	6.3x5.4	0.16	240	0.52	
150	6.3x5.4	0.26	240	0.52	6.3x5.4	0.19	240	0.52	6.3x7.7	0.16	280	0.34	
220	6.3x5.4	0.26	240	0.52	6.3x5.4	0.19	240	0.52	6.3x7.7	0.16	280	0.34	
220	0.383.4	0.20	240	0.52	6.3x7.7	0.19	280	0.34	0.387.7	0.16	200	0.34	
330	6.3x5.4	0.26	240	0.52	6.3x7.7	0.19	280	0.34	6.3x7.7	0.16	280	0.34	
330	6.3x7.7	0.26	280	0.34	0.387.7	0.19	200	0.34	8x10.2	0.16	600	0.16	
470	6.3x7.7	0.26	280	0.34	6.3x7.7	0.19	280	0.34	8x10.2	0.16	600	0.16	
470	0.587.7	0.20	200	0.54	8x10.2	0.19	600	0.16	0.10.2	0.10	000	0.10	
680	8x10.2	0.26	600	0.16	8x10.2	0.19	600	0.16	8x10.2	0.16	600	0.16	
000	0.0.2	0.20	000	0.10	0.10.2	0.19	000	0.10	10x10.2	0.16	850	0.08	
1000	8x10.2	0.26	600	0.16	8x10.2	0.19	600	0.16	10x10.2	0.16	850	0.08	
1000	0.00.2	0.20	000	0.10	10x10.2	0.19	850	0.08	10.10.2	0.10	030	0.00	
1200	8x10.2	0.26	600	0.16	10x10.2	0.19	850	0.08					
1200	10x10.2	0.26	850	0.08	10.710.2	0.13	050	0.00					
1500	10x10.2	0.26	850	0.08									
1800	10x10.2	0.26	850	0.08									

Capacitance			Ra	ted (Sur	ge) Voltage			
(μ F)		25(32	2)			35(44	1)	
	φ DxL	$ an\delta$	RC	Z	φ DxL	$ an\delta$	RC	Z
10	4x5.4	0.14	90	1.93	4x5.4	0.12	90	1.93
22	4x5.4	0.14	90	1.93	5x5.4	0.12	160	1.00
22	5x5.4	0.14	160	1.00	3,3.4	0.12	100	1.00
33	5x5.4	0.14	160	1.00	5x5.4	0.14	160	1.00
33	383.4	0.14	100	1.00	6.3x5.4	0.12	240	0.52
47	5x5.4	0.14	160	1.00	6.3x5.4	0.12	240	0.52
41	6.3x5.4	0.14	240	0.52	0.383.4	0.12	240	0.52
68	6.3x5.4	0.14	240	0.52	6.3x5.4	0.12	240	0.52
08	0.383.4	0.14	240	0.52	6.3x7.7	0.12	280	0.34
100	6.3x5.4	0.14	240	0.52	6.3x7.7	0.12	280	0.34
100	6.3x7.7	0.14	280	0.34	0.387.7	0.12	200	0.34
150	6.3x7.7	0.14	280	0.34	8x10.2	0.12	600	0.16
220	8x10.2	0.14	600	0.16	8x10.2	0.12	600	0.16
330	8x10.2	0.14	600	0.16	10x10.2	0.12	850	0.08
470	10x10.2	0.14	850	0.08				
560	10x10.2	0.14	850	0.08				

☆CASE SIZE: ϕ DxL(mm)、 MAX DISSIPATION FACTOR : $\tan \delta$ / 120Hz,20°C、

MAX PERMISSIBLE RIPPLE CURRENT : $RC(mArms) / 100KHz, 105^{\circ}C$

MAX IMPEDANCE : $Z(\Omega) / 100KHz,20^{\circ}C$

XV

Ultra Low Impedance & Long Life Series

- ●Features: 105°C 3000~5000 hours, Low profile vertical chip, Ultra low impedance
- $\blacksquare Recommended \ Applications: \ AV(TV,Video,Audio) \ , Monitor/Computer,$

OA/HA/Communication ,SMPS

●Corresponding product to RoHS

Specifications

Item				Chara	acteristics	3						
Operating Temperature Range	-55 ~ +105°C											
Rated Voltage Range (WV)	6.3 ~ 50VDC											
Capacitance Range	1.0 ~ 1000 μ F											
Capacitance Tolerance	±20 % at 120Hz , $20^\circ\!\!\!\mathrm{C}$	± 20 % at 120Hz , 20°ℂ										
Leakage Current (MAX) (20°C)	$I \le 0.01 \text{CV}$ or 3μ A which	\leq 0.01CV or 3 μ A whichever is greater(After rated voltage applied for 2 minutes)										
Leakage Guireit (WAX) (20 C)	I= Leakage Current (μ A	= Leakage Current (μ A) C= Nominal Capacitance (μ F) V= Rated Voltage (V)										
Dissipation Factor (MAX) (tan δ) (120Hz ,20 $^{\circ}$ C)	Shown in the table of sta	Shown in the table of standard rating										
Low Temperature Stability	Z(120HZ) WV	6.3	10	16	25	35	50					
Impedance Ratio (MAX)	Z(-25°C) / Z(20°C)	2	2	2	2	2	2					
	Z(-40°C) / Z(20°C)	3	3	3	3	3	3					
	After applying rated volta the capacitor shall meet	•				8000~500	00 hours a	t 105 ℃,				
	Capacitance Change	Withi	n±30% (of the ini	tial value							
Endurance	Dissipation Factor	Not m	ore thar	200% (of the spe	cified va	lue					
	Leakage Current	Not m	ore thar	the spe	cified val	ue						
	DΦ 4x5.4~6.3x7.7 8x10.2~10x10.2							0x10.2				
	Life 3000hrs 5000hrs											
Shelf Life	After placed at 105°C without voltage applied for 1000 hours, the capacitor shall meet the same requirement as Endurance.											

■ Diagram of Dimensions(mm)

$\phi \mathbf{D}$	L	Α	Н	- 1	W	Р		K	
4.0	5.4	4.3	5.5 Max	1.8	0.65±0.1	1.0±0.2	0.35	+0.15	
5.0	5.4	5.3	6.5 Max 2.2 7.8 Max 2.6		0.65±0.1	1.5±0.2	0.35	±0.15	
6.3	5.4	6.6			0.65±0.1	1.8±0.2	0.35	+0.15	
6.3	7.7	6.6	7.8 Max	2.6	0.65±0.1	1.8±0.2	0.35	+0.15	
8.0	10.2	8.3	10.0 Max	3.4	0.90±0.2	3.1±0.2	0.70±0.2		
10.0	10.2	10.3	12.0 Max	3.5	0.90±0.2	4.6±0.2	0.7	0.70±0.2	

■ Multiplier for Ripple Current

Frequency (Hz)	120	1K	10K	100K
Coefficient	0.70	0.80	0.90	1.00

Ultra Low Impedance & Long Life Series

\blacksquare Case Size / tan δ / Max Ripple Current / Impedance

Canacitanas					Rate	ed (Surge	Surge) Voltage					
Capacitance (μF)	6.3(8)					10(13	3)		16(20)			
	ψDxL	$\tan \delta$	RC	Z	ψ DxL	$\tan\delta$	RC	Z	ψ DxL	$\tan\delta$	RC	Z
22	4x5.4	0.26	90	1.93	4x5.4	0.19	90	1.93	5x5.4	0.16	160	1.00
33	4x5.4	0.26	90	1.93	5x5.4	0.19	160	1.00	6.3x5.4	0.16	240	0.52
47	5x5.4	0.26	160	1.00	6.3x5.4	0.19	190	0.52	6.3x5.4	0.16	240	0.52
100	6.3x5.4	0.26	240	0.52	6.3x5.4	0.19	190	0.52	6.3x7.7	0.16	280	0.34
150	6.3x7.7	0.26	240	0.30	6.3x7.7	0.19	240	0.34	8x10.2	0.16	370	0.22
220	6.3x7.7	0.26	240	0.30	8x10.2	0.19	600	0.16	8x10.2	0.16	370	0.22
330	8x10.2	0.26	600	0.16	8x10.2	0.19	600	0.16	8x10.2	0.16	600	0.16
470	8x10.2	0.26	600	0.16	10x10.2	0.19	850	0.12	10x10.2	0.16	850	0.12
680	10x10.2	0.26	850	0.12	10x10.2	0.19	850	0.12				
1000	10x10.2	0.26	850	0.12								

Capacitance					Rate	ed (Surge	e) Voltage					
(μ F)				35(44)				50(63)				
	φ DxL	$\tan \delta$	RC	Z	φ DxL	$\tan\delta$	RC	Z	ψ DxL	$ an\delta$	RC	Z
1									4x5.4	0.12	60	5.00
2.2									4x5.4	0.12	60	5.00
3.3									4x5.4	0.12	60	5.00
4.7					4x5.4	0.12	90	1.93	5x5.4	0.12	95	4.00
10	4x5.4	0.14	90	1.93	5x5.4	0.12	160	1.00	6.3x5.4	0.12	140	2.60
22	5x5.4	0.14	160	1.00	5x5.4	0.12	160	1.00	6.3x7.7	0.12	230	1.30
33	6.3x5.4	0.14	240	0.52	6.3x5.4	0.12	240	0.52	8x10.2	0.12	350	0.50
47	6.3x5.4	0.14	240	0.52	6.3x7.7	0.12	280	0.34	10x10.2	0.12	670	0.34
68	6.3x7.7	0.14	280	0.34	6.3x7.7	0.12	280	0.34	10x10.2	0.12	670	0.34
100	6.3x7.7	0.14	300	0.34	8x10.2	0.12	600	0.16	10x10.2	0.12	670	0.34
150	8x10.2	0.14	600	0.16	10x10.2	0.12	850	0.12				
220	8x10.2	0.14	600	0.16	10x10.2	0.12	850	0.12				
330	10x10.2	0.14	850	0.12								

్దCASE SIZE : ϕ DxL(mm) 、 MAX DISSIPATION FACTOR : $\tan \delta$ / 120Hz,20 $^{\circ}$ С 、

MAX PERMISSIBLE RIPPLE CURRENT : $RC(mArms) / 100KHz, 105^{\circ}C$

MAX IMPEDANCE : $Z(\Omega) / 100KHz,20^{\circ}C$

HV Ultra Low Impedance & High temperature Series

● Features: 125°C 1000~ 2000 hours , Higher temperature range

● Recommended Applications: Automatic Mounting and Reflow Soldering

■Corresponding product to RoHS

Specifications

Item	Characteristics											
Operating Temperature Range	-40 ~ +125℃											
Rated Voltage Range (WV)	10 ~ 50VDC											
Capacitance Range	47 ~ 1000 μ F	47 ~ 1000 μ F										
Capacitance Tolerance	± 20 % at 120Hz , 20℃	± 20 % at 120Hz , 20℃										
Leakage Current (MAX) (20°ℂ)	I≦0.01CV or 3 μ A whic	hever is	greate	r(After r	ated volt	age app	lied for 2 minutes)					
Leakage Current (MAX) (20 C)	I= Leakage Current (μ A) C= Nominal Capacitance (μ F) V= Rated Voltage (V)											
Dissipation Factor (MAX) (tan δ) (120Hz ,20 $^{\circ}$ C)	Shown in the table of sta	andard r	rating									
Low Temperature Stability	Z(120HZ) WV	10	16	25	35	50						
Impedance Ratio (MAX)	Z(-25°C) / Z(20°C)	2	2	2	2	2						
	Z(-40°C) / Z(20°C)	3	3	3	3	3						
	After applying rated voltage for 1000~2000 hours at 125 °C, the capacitor shall meet the following requirement.											
	Capacitance Change	Withir	า±30%	of the in	itial valu	е						
Endurance	Dissipation Factor	Not m	ore thai	า 300%	of the sp	ecified v	/alue					
	DΦ	6.3x7.7-8x6.2					≧8x10.2					
	Life	1000hrs					2000hrs					
	Leakage Current	Not m	ore tha	n the sp	ecified va	alue						
Shelf Life	After placed at 125 °C without voltage applied for 1000 hours (500 hours for 8x6.2), the capacitor shall meet the same requirement as Endurance.											

■ Diagram of Dimensions(mm)

(): Reference size

$\phi \mathbf{D}$	L	Α	Н	- 1	W	Р	K		
8.0	6.2	8.3	9.5 Max	3.4	0.65±0.1	2 2+0 2	0.35	+0.15	
0.0	0.2	0.5	9.5 Max	J. 4	0.05±0.1	1 Z.Z±U.Z	Z.Z±0.Z	0.33	-0.20
8.0	10.2	8.3	10.0 Max	3.4	0.90±0.2	3.1±0.2	0.70±0.2		
10.0	10.2	10.3	12.0 Max	3.5	0.90±0.2	4.6±0.2	0.70±0.2		

■ Multiplier for Ripple Current

1 requency coefficient									
	Frequency (Hz)	120	1K	10K	100K				
	Coefficient	0.70	0.80	0.90	1.00				

High temperature Series

Case Size / tan \delta / Max Ripple Current

Conscitones				Rated	d (Surge) V	oltage			
Capacitance (μ F)		10(13)			16(20)			25(32)	
,	ψ DxL	$ an\delta$	RC	ψ DxL	$ an\delta$	RC	ψ DxL	$ an\delta$	RC
47				6.3x7.7	2.7.7	70	6.3x7.7	0.18	70
47				0.387.7	0.20	70	8x6.2	0.18	75
			6.3x7.7	0.00	70	6.3x7.7	0.18	70	
100	8x6.2 0.26 75 6.3x7.7 0.20	0.20		8x6.2	0.18	75			
				8x6.2	0.20	75	8x10.2	0.18	130
150	6.3x7.7	0.26	70	8x10.2	0.20	130	8x10.2	0.18	130
150	8x6.2	0.26	75	0X1U.Z	0.20	130	0X1U.2	0.16	130
220	8x10.2	0.26	130	8x10.2	0.20	130	10x10.2	0.18	180
330	8x10.2	0.26	130	8x10.2	0.20	180	10x10.2	0.18	180
470	10x10.2	0.26	180	10x10.2	0.20	180			
680	10x10.2	0.26	180						
1000	10x10.2	0.26	180						

Capacitance	Rated	d (Surge) Vo	oltage					
(μ F)		35(44)		50(63)				
	ϕ DxL	$ an\delta$	RC	ϕ DxL	$ an\delta$	RC		
22	6.3x7.7	0.14	70	8x6.2	0.12	75		
33	6.3x7.7	0.14	70	8x10.2	0.12	130		
33	8x6.2	0.14	75	0.10.2	0.12	130		
47	8x6.2	0.14	75	8x10.2	0.12	130		
47	8x10.2	0.14	130	0.10.2	0.12	130		
100	8x10.2	0.14	130	10x10.2	0.12	180		
150	10x10.2	0.14	180					
220	10x10.2	0.14	180					
330								

 $\fint CASE SIZE: \phi DxL(mm) \cdot MAX DISSIPATION FACTOR: <math>\tan \delta / 120 \text{Hz}, 20^{\circ}\text{C} \cdot \text{MAX PERMISSIPATE SUPPLY FOR A 120 M 12$

MAX PERMISSIBLE RIPPLE CURRENT: RC(mArms) / 120Hz,125°C \

CV Low Leakage Series

●Features: 85°C 2000 hours, Low profile vertical chip,

Low Leakage current ($0.5\,\mu$ A to $2.0\,\mu$ A max.)

● Recommended Applications: Security System , Backup Battery

• Corresponding product to RoHS

■ Specifications

- opecifications											
Item				Charac	cteristics						
Operating Temperature Range	-40 ~ +85°C										
Rated Voltage Range (WV)	6.3 ~ 50VDC	i.3 ~ 50VDC									
Capacitance Range	1 ~ 100 μ F	~ 100 μ F									
Capacitance Tolerance	±20 % at 120Hz , $20^\circ\!$: 20 % at 120Hz , 20°C									
Leakage Current (MAX) (20°C)	$I \leqq$ 0.002CV or 0.5 μ A w	\leq 0.002CV or 0.5 μ A whichever is greater(After rated voltage applied for 2 minutes)									
Leakage Guiterit (MAX) (20 C)	I= Leakage Current (μ A	Leakage Current (μA) C= Nominal Capacitance (μF) V= Rated Voltage (V)									
Dissipation Factor (MAX) (tan δ) (120Hz ,20 $^{\circ}$ C)	Shown in the table of sta	Shown in the table of standard rating									
Low Temperature Stability	WV Z(120HZ)	6.3	10	16	25	35	50				
Impedance Ratio (MAX)	Z(-25°C) / Z(20°C)	4	3	2	2	2	2				
	Z(-40°C) / Z(20°C)	8	6	4	4	3	3				
	After applying rated volta the capacitor shall meet	the foll	owing re	quireme	ent.						
Endurance	Capacitance Change				nitial value						
	· · · · · · · · · · · · · · · · · · ·	Dissipation Factor Not more than 200% of the specified value									
	Leakage Current Not more than the specified value										
Shelf Life		After placed at 85°C without voltage applied for 1000 hours, the capacitor shall meet the same requirement as Endurance.									

■ Diagram of Dimensions(mm)

ϕ D	L	Α	Н	- 1	W	Р		K
4.0	5.4	4.3	5.5 Max	1.8	0.65±0.1	1 0+0 2	0.35	+0.15
4.0	3.4	4.5	J.J IVIAX	1.0	0.00±0.1	1.0±0.2	0.55	-0.20
5.0	5.4	5.3	6.5 Max	2.2	0.65±0.1	1 5+0 2	0.35	+0.15
3.0	3.4	5.5	U.J IVIAX	2.2	0.05±0.1	1.3±0.2	0.55	-0.20
6.3	5.4	6.6	7.8 Max	2.6	0.65±0.1	1 0 . 0 2	0.25	+0.15
0.3	3.4	0.0	7.0 IVIAX	2.0	0.03±0.1	1.0±0.2	0.33	-0.20

■ Multiplier for Ripple Current

Trequency coefficient				
Frequency (Hz)	60	120	1K	10K
Coefficient	0.8	1.0	1.15	1.25

\blacksquare Case Size / tan δ / Max Ripple Current / ESR

0 "	Rated (Surge) Voltage										
Capacitance (μF)		6.3(8)			10(13)			16(20)			
(μι)	ϕ DxL	$ an\delta$	RC	ϕ DxL	$ an\delta$	RC	ϕ DxL	$ an\delta$	RC		
10							4x5.4	0.16	28		
22	4x5.4	0.26	20	4x5.4	0.30	28	5x5.4	0.16	39		
33	5x5.4	0.26	22	5x5.4	0.20	43	6.3x5.4	0.16	66		
47	5x5.4	0.26	46	5x5.4	0.30	43	6.3x5.4	0.16	70		
100	6.3x5.4	0.26	71	6.3x5.4	0.26	70					

0 ''				Rated	(Surge) \	√oltage			
Capacitance (μF)		25(32)			35(44)			50(63)	
	ϕ DxL	$\tan\delta$	RC	ϕ DxL	$\tan\delta$	RC	ϕ DxL	$\tan\delta$	RC
1							4x5.4	0.12	10
2.2							4x5.4	0.12	16
3.3							4x5.4	0.12	16
4.7	4x5.4	0.14	22	4x5.4	0.12	22	5x5.4	0.12	23
10	5x5.4	0.14	28	5x5.4	0.12	30	6.3x5.4	0.12	35
22	6.3x5.4	0.14	55	6.3x5.4	0.12	60			
33	6.3x5.4	0.14	65						

MAX PERMISSIBLE RIPPLE CURRENT: RC(mArms) / 120Hz,85°C \

Non-polar Series

● Features :105°C 2000 hours, Non-polarized, Low profile vertical chip, 5.5 mm height ($\leq \phi$ 6.3)

● Recommended Applications: Suitable for AV(TV,Video,Audio),Monitor/Computer,

OA/HA/Communication, Reversed polarity circuit

■Corresponding product to RoHS

Specifications

Item				Cha	racteristic	s			
Operating Temperature Range	-40 ~ +105°C								
Rated Voltage Range (WV)	6.3 ~ 35VDC								
Capacitance Range	1 ~ 47 μ F								
Capacitance Tolerance	± 20 % at 120Hz , 20℃								
Leakage Current (MAX) (20°C)	$I {\le} 0.01 CV \text{ or } 3(\mu A)$, wh	0.01CV or 3(μA) , whichever is greater. (After rated voltage applied for 2 minutes)							
Leakage Current (MAX) (20 C)	I= Leakage Current (μ A	Leakage Current (μ A) C= Nominal Capacitance (μ F) V= Rated Voltage (V)							
Dissipation Factor (MAX) (tan δ) (120Hz ,20 $^{\circ}$ C)		Shown in the table of standard rating							
Low Temperature Stability	WV Z(120HZ)	6.3	10	16	25	35	50		
Impedance Ratio (MAX)	Z(-25°C) / Z(20°C)	4	3	2	2	2	2		
	Z(-40°C) / Z(20°C)	8	6	4	4	3	3		
	After applying rated volt	age for	2000hrs	s at 105°	C,				
	the capacitors shall mee	t the fo	llowing	requiren	nents. (Th	e polar	ity shall b	e reversed every	250 hours)
Endurance	Capacitance Change			With	nin ±20% (of the ir	nitial value	е	
	Dissipation Factor		No	t more t	han 200%	of the	specified	l value	
	Leakage Current Not more than the specified value								
Shelf Life	·	After placed at 105°C without voltage applied for 1000 hours, the capacitor shall meet the same requirement as Endurance.							

■ Diagram of Dimensions(mm)

ϕ D	Ш	Α	Н	- 1	W	Р		K
4.0	5.4	4.3	5.5 Max	1.8	0.65±0.1	1.0±0.2	0.35	+0.15 -0.20
5.0	5.4	5.3	6.5 Max	2.2	0.65±0.1	1.5±0.2	0.35	+0.15 -0.20
6.3	5.4	6.6	7.8 Max	2.6	0.65±0.1	1.8±0.2	0.35	+0.15 -0.20

(): Reference size

■ Multiplier for Ripple Current

Frequency (Hz)	60	120	1K	10K
Coefficient	0.85	1.00	1.10	1.20

Non-polar Series

■Dimensions,Max Dissipation Factor,Max Permissible Ripple Current

Canacitanas					Rate	ed (Sur	ge) Volta	ige				
Capacitance (μ F)	6.3(8)		1	0(13)		1	6(20)		2	25(32)		
(μI)	Size	$\tan\delta$	Ripple	Size	$\tan\delta$	Ripple	Size	$\tan\delta$	Ripple	Size	$\tan\delta$	Ripple
2.2												
3.3										4x5.4	0.28	12
4.7							4x5.4	0.32	20	5x5.4	0.28	21
10				4x5.4	0.40	25	5x5.4	0.32	25	6.3x5.4	0.28	28
22	5x5.4	0.52	29	6.3x5.4	0.40	39	6.3x5.4	0.32	39			
33	6.3x5.4	0.52	43	6.3x5.4	0.40	43						
47	6.3x5.4	0.52	46									

Canacitanas	Rated (Surge) Voltage									
Capacitance (μ F)	3	5(44)		5	0(63)	$tan \delta$ Ripple				
(μI)	Size	$\tan\delta$	Ripple	Size	$\tan\delta$	Ripple				
1				4x5.4	0.24	10				
2.2	4x5.4	0.24	12	5x5.4	0.24	16				
3.3	5x5.4	0.24	21	5x5.4	0.24	21				
4.7	5x5.4	0.24	22	6.3x5.4	0.24	31				
10	6.3x5.4	0.24	30							

 $^{\leftarrow}$ Size:D ϕ x L(mm). $^{\leftarrow}$ tan δ :20 $^{\circ}$ C,120Hz. $^{\leftarrow}$ Ripple Current: 105 $^{\circ}$ C,120Hz,(mA/rms).

SK General purpose Series

■ Features: 85°C 2000 hours

 \blacksquare Recommended Applications: For general purpose , decoupling , by pass

and filtering circuit in entertainment electronics

■ Corresponding product to RoHS

■ Specifications

Item					Char	acteristic	cs				
Operating Temperature Range	-40~+85°C						-25~+8	5°℃			
Rated Voltage Range	6.3 ~ 100VDC						160 ~ 5	00VDC			
Rated Capacitance Range	1 ~ 22000µF						1 ~ 470	μF			
Capacitance Tolerance	± 20 % at 120Hz	., 20 ℃									
Lookaga Current (MAX) (20°C)	I=0.01CV or 3μA	whichev	er is gre	eater.			I=0.030	V+10(μΑ	4)		
Leakage Current (MAX) (20°C)	(After rated volta	ge applie	ed for 2	minutes)						
	WV	6.3	10	16	25	35	50	63	100	160~250	350~500
Dissipation Factor (MAX)	$ an \delta$										
(tan δ) (120Hz ,20°C)	When nominal ca	en nominal capacitance is over 1000uF , S shall be added 0.02 to the listed value with increase of every 1000uF .									
	$tan \delta$ shall be ac	n S shall be added 0.02 to the listed value with increase of every 1000uF •									
Low Temperature Stability	Z(120Hz)	WV 6.3 10 16 25 35~100 160~250 315~350 400~500									
Impedance Ratio (MAX)	Z-25 °C /	Z(120Hz)									15
	Z-40°C /	Z+20 ℃		10	8	6	4	3	_	_	_
	After applying ra	ted volta	ge for 2	000 houi	rs at 85°(
	the capacitors sh	nall meet	the follo	wing re	quiremer	nts.					
Endurance	the capacitors shall meet the following requirements. Capacitance Change Within ± 20 % of initial value										
	Dissipation Factor Not more than 200% of the specified value										
	Leakage Cui	rrent				initial s	pecified	value or	less		
Shelf Life	After placed at 85°C without voltage applied for 1000 hours,										
Official End	the capacitors sh	nall meet	the san	ne requir	ement a	s Endura	ance.				

■ Diagram of Dimensions

ϕ D	5	6.3	8	10	13	16	18	22
Р	2.0	2.5	3.5	5.	.0	7.	5	10.0
ϕ d	0.5	0.5	0.6	0	.6	0.	8	0.8
а	1.5	1.5	1.5	1.5	2.0	2.0	2.0	2.0

■ Multiplier for Ripple Current

Frequency coefficient				
Frequency (Hz)	120	300	1K	10K
6.3 ~ 100V Below 68 μ F	1.00	1.20	1.30	1.50
6.3 ~ 100V 100 ~ 680 μ F	1.00	1.10	1.15	1.20
6.3 ~ 100V 1000 ~ 22000 μ F	1.00	1.05	1.10	1.15
160 ~ 450V Below 220 μ F	1.00	1.25	1.40	1.40
160 ~ 450V 220 μ F Above	1.00	1.10	1.13	1.13
500V	1.00	1.05	1.10	1.10

1.0	Conneitones						R	ated (Sur	ge) Volta	age					
Size Ripple Ripple Size Ripple Size Ripple Size Ripple Siz		6.3	(8)	10 ((13)	16 ((20)	25 (32)	35 ((44)	50 (63)	63 ((79)
2.2	(μ.)	Size	Ripple	Size	Ripple	Size	Ripple	Size	Ripple	Size	Ripple	Size	Ripple	Size	Ripple
3.3	1.0											5x11	10	5x11	10
4.7	2.2											5x11	23	5x11	29
6.8	3.3											5x11	35	5x11	40
10	4.7			5x11	20	5x11	25	5x11	30	5x11	35	5x11	40	5x11	45
22 5X11 35 5x11 55 5x11 75 5x11 90 5x11 95 5x11 100 5x11 94 110	6.8											5x11	50		
33 5X11 55 5X11 80 5X11 110 5X11 115 5X11 120 5X11 105 6.3X11 136 6.3X11 136 6.3X11 147 5X11 75 5X11 95 5X11 130 5X11 135 5X11 120 6.3X11 140 6.3X11 180 140 6.3X11 180 5X11 150 5X11 145 6.3X11 185 8X11 230 10X12.5 330 150	10			5x11	35	5x11	40	5x11	50	5x11	60	5x11	65	5x11	70
33 5X11 55 5X11 80 5X11 110 5X11 115 5X11 120 5X11 105 6.3X11 134 120 6.3X11 135 5X11 130 6.3X11 135 5X11 120 6.3X11 140 6.3X11 135 130 130 130 13X25 1500 13X25 1500 13X25 1500 13X25 1500 13X25 1500 16X36 1300 13X25 1500 16X36 1900 18X36 2225 1500 16X36 1900 18X36 2225 1500 16X36 1900 18X36 2225 1500 16X36 2950 22X40 3150 22X40 3200 16X36 1500 16X36 1500 16X36 1500 16X36 2500 18X36 2950 22X40 3150 22X40 3200 16X36 2500 18X36 2950 22X40 3150 22X40 3200 16X36 18X31 18X31 18X31 18X31 18X31 18X31 18X31 18X30 18X31 18X31 18X31 18X31 18X31 18X31 18X30 18X30 18X36 22X40 18X32 1850 18X36 22X40 18X32 22X40 22X40	22	5X11	35	5x11	55	5x11	75	5x11	90	5x11	95	5x11	100	5x11	95
47 5x11 75 5x11 95 5x11 130 5x11 135 5x11 120 6.3x11 140 6.3x11 150 100 5x11 130 5x11 180 5x11 165 6.3x11 160 6.3x11 185 8x11 230 10x12.5 30 150 5x11 200 6.3x11 250 6.3x11 265 6.3x11 290 8x11 290 10x12.5 380 10x15 41 6.3x11 240 6.3x11 260 6.3x11 290 8x11 290 10x12.5 380 10x15 44 330 6.3x11 260 6.3x11 290 8x11 315 10x12.5 420 10x15 490 10x20 45 470 6.3x11 330 6.3x11 320 8x11 400 8x15 420 10x15 430 10x20 610 13x20 75 680 8x11 41														6.3x11	115
100	33	5X11	55	5x11	80	5x11	110	5x11	115	5x11	120	5x11	105	6.3x11	130
100	47	5x11	75	5x11	95	5x11	130	5x11	135	5x11	120	6.3x11	140	6.3x11	190
150	68					5x11	150	5x11	145						
220	100	5x11	130	5x11	180	5x11	165	6.3x11	160	6.3x11	185	8x11	230	10x12.5	300
220 6.3x11 240 6.3x11 265 6.3x11 290 8x11 315 10x12.5 420 10x15 490 10x20 52 470 6.3x11 330 6.3x11 320 8x11 400 8x15 420 10x15 430 10x20 610 13x20 75 680 8x11 410 8x11 410 10x12.5 510 10x15 550 10x20 550 13x25 96 1000 8x11 460 10x12.5 580 10x15 550 10x20 550 13x25 110 16x25 13 10x12.5 580 10x15 630 10x20 760 13x20 950 13x25 1100 16x25 13 2200 10x20 840 10x20 880 13x20 1100 13x25 1600 16x36 1850 18x36 22 3300 10x20 1300 13x25 1500 16x25	150					6.3x11	205								
10x20 48 10x20 49 10x20 49 10x20 49 10x20 49 10x20 49 10x20 49 10x20 54 10x20 55 10x20 1	220	5x11	200	6.3x11	250	6.3x11	260	8x11	290	8x11	290	10x12.5	380	10x15	410
330	220	6.3x11	240											10x20	490
A70	330	6.3x11	260	6.3x11	265	6.3x11	290	8x11	315	10x12.5	420	10x15	490	10x20	540
10x12.5 460	330					8x11	360								
680 8x11 410 8x11 410 10x12.5 510 10x15 550 10x20 550 13x25 96 1000 8x11 460 10x12.5 580 10x15 630 10x20 760 13x20 950 13x25 1100 16x25 13 2200 10x20 840 10x20 880 13x20 1100 13x25 1300 16x25 1600 16x36 1850 18x36 22 3300 10x20 1000 13x20 1250 13x25 1400 16x25 1660 16x36 1970 18x36 2170 22x40 25 4700 13x20 1300 13x25 1500 16x25 1800 16x32 1950 18x36 2400 22x40 2500 4700 13x25 1500 16x32 1980 18x36 2550 22x40 2600 10000 16x25 1900 16x32 1980 18x36	470	6.3x11	330	6.3x11	320	8x11	400	8x15	420	10x15	430	10x20	610	13x20	755
1000 8x11 460 10x12.5 580 10x15 630 10x20 760 13x20 950 13x25 1100 16x25 13 10x12.5 580	470							10x12.5	460						
1000 10x12.5 580 13x16 760 13x16 760 13x36 18x36 18x3	680	8x11	410	8x11	410	10x12.5	510	10x15	550	10x20	550		,	13x25	965
10x12.5 580 13x16 760	1000	8x11	460	10x12.5	580	10x15	630	10x20	760	13x20	950	13x25	1100	16x25	1310
2200 3300 10x20 1000 13x20 1250 13x25 1400 16x25 1660 16x36 1970 18x36 2170 22x40 25 4700 13x20 1300 13x25 1500 16x25 1800 16x32 1950 18x36 2400 22X40 2500 6800 13x25 1550 16x25 1900 16x32 1980 18x36 2550 22x40 2600 10000 16x25 1900 16x36 2225 18x36 2700 22x40 2800 15000 16x36 2500 18x36 2950 22x40 3150 22x40 3200	1000	10x12.5	580					13x16	760						
3300	2200	10x20	840	10x20	880	13x20	1100	13x25	1300	16x25	1600	16x36	1850	18x36	2200
18x32 2050	2200											18x32	1850		
4700 13x20 1300 13x25 1500 16x25 1800 16x32 1950 18x36 2400 22X40 2500 6800 13x25 1550 16x25 1900 16x32 1980 18x36 2550 22x40 2600 10000 16x25 1900 16x36 2225 18x36 2700 22x40 2800 15000 16x36 2500 18x36 2950 22x40 3150 22x40 3200	2200	10x20	1000	13x20	1250	13x25	1400	16x25	1660	16x36	1970	18x36	2170	22x40	2500
6800 13x25 1550 16x25 1900 16x32 1980 18x36 2550 22x40 2600 10000 16x25 1900 16x36 2225 18x36 2700 22x40 2800 15000 16x36 2500 18x36 2950 22x40 3150 22x40 3200	3300									18x32	2050				
10000 16x25 1900 16x36 2225 18x36 2700 22x40 2800 15000 16x36 2500 18x36 2950 22x40 3150 22x40 3200	4700	13x20	1300	13x25	1500	16x25	1800	16x32	1950	18x36	2400	22X40	2500		
15000 18x32 2225 1500 18x36 2950 22x40 3150 22x40 3200 15000 15000 15000 16x36 2500 18x36 2950 22x40 3150 22x40 3200	6800	13x25	1550	16x25	1900	16x32	1980	18x36	2550	22x40	2600				
18x32 2225 15000 16x36 2500 18x36 2950 22x40 3150 22x40 3200	10000	16x25	1900	16x36	2225	18x36	2700	22x40	2800						
15000	10000			18x32	2225										
	15000	16x36	2500		2950	22x40	3150	22x40	3200						
22000 18x40 3650 22x40 3700 22x40 3800	22000	18x40	3650	22x40	3700	22x40	3800								

 $[\]stackrel{\sim}{\sim}$ Size: D ϕ x L (mm) $\stackrel{\sim}{\sim}$ Ripple Current: (mA/rms). 85 $^{\circ}$ C,120Hz

SK General purpose Series

■Dimensions,Rated Ripple Current

0							Rat	ed (Sur	ge) Volta	age						
Capacitance (μF)	100 (125)	160 (200)	200 (250)	250 (300)	350 (400)	400 (4	450)	450 (500)	500(5	550)
(μ.)	Size	Ripple	Size	Ripple	Size	Ripple	Size	Ripple	Size	Ripple	Size	Ripple	Size	Ripple	Size	Ripple
1.0	5x11	21	5x11	17	5x11	19	5x11	17	6.3x11	19	6.3x11	16	8x11	19		
1.0			6.3x11	17			6.3x11	19			8x11	19				
2.2	5x11	30	6.3x11	26	6.3x11	22	6.3x11	24	8x11	33	6.3x11	20	10x12.5	33		
2.2							8x11	30			8x11	26			10x12.5	33
3.3	5x11	45	6.3x11	30	6.3x11	30	8x11	30	8x11	33	8x11	35	10X12.5	40	10x15	43
4.7	5x11	50	6.3x11	32	6.3x11	35	8x11	36	10x12.5	39	8x11	38	10X12.5	45		
4.7											10x12.5	42				
0.0	5x11	55			8x11	40	8x11	40			8x15	42	10x15	50	10x20	70
6.8										-	10x12.5	45				
40	5x11	65	8x11	50	8x11	45	10x12.5	65	10x15	70	10x15	50	10x20	58	13x20	93
10	6.3x11	75											13x20	60		
00	6.3x11	105	10x15	110	10x15	120	10x20	130	13x20	130	13x20	100	13x25	98	16x25	105
22	8x11	130														
00	8x11	140	10x15	135	10x20	160	13x20	140	13x25	170	13x25	140	16x25	145	16x25	200
33			10x20	150												
4=	10x12.5	190	10x20	160	10x20	170	13x25	210	16x25	220	16x25	180	16x32	165	18x32	185
47					13x20	200							18x25	160		
	10x15	280	13x20	200	13x25	230					16X32	250	18X32	265	18x36	370
68									****		18X25	220				
400	10x20	400	13x25	250	16x25	330	16x25	250	16x36	320	18X32	320	18x40	330		
100									18x32	300						
150	13x20	500	16x25	330			16x32	330			18X40	420	22X35	420		
222	13x25	710	16x32	450	16x32	505	18x36	540								
220					18x25	485										
	13x25	720	18x36	540	16x40	710										
330					18x32	685										
470	16x25	1100	18x40	750	18x40	750										
680	16x36	1260				 										
1000	18x40	1350														
2200																

Arr Size: D ϕ x L (mm) Arr Ripple Current: (mA/rms). 85 $^{\circ}$ C,120Hz

SE General Purpose Series

■ Features: 105°C 1000 hours

■ Recommended Applications: For general purpose coupling, decoupling, by pass, and filtering circuit in entertainment electronics

■ Specifications

Specifications										
ltem				Ch	naracteristic	cs				
Operating Temperature Range	-40~+105°C			-40~+105	5°C			-25~+10	5℃	
Rated Voltage Range	6.3 ~ 100VDC			160 ~ 250	OVDC			350 ~ 450	VDC	
Rated Capacitance Range	1 ~ 15000μF			1 ~ 470μF	=			1 ~ 150μF	=	
Capacitance Tolerance	± 20 % at 120Hz, 2	.0°C								
Leakage Current (MAX)(20°C)	I=0.01CV or 3(μ A)	,whicheve	r is greate	I=0.03C\	/+10(μ A)					
Leakage Current (WAX)(20 C)	(After rated voltage a	applied for	2 minutes	;)						
	WV	6.3	10	16	25	35	50	63~100	160~250	350~450
Dissipation Factor (MAX)	$ an\delta$	0.26	0.22	0.18	0.16	0.14	0.12	0.10	0.15	0.20
(tan ∂) (120Hz ,20°C)	When nominal capa	citance is o	over 1000	uF ,						
	$\tan\delta$ shall be added	d 0.02 to th	e listed va	alue with in	crease of	every 100	0uF ∘			
Low Temperature Stability	Z(120Hz)	WV	6.3	10	16	25	35~100	160~250	315~350	400~450
Impedance Ratio (MAX)	Z-25°C / Z+20	$\mathfrak{I}^{\mathbb{C}}$	8	6	5	3	3	7	10	15
	Z-40°C / Z+20	$\mathfrak{I}^{\mathbb{C}}$	10	8	6	4	3	7	_	_
	After applying rated	voltage for	1000 hou	irs at 105°	C					
	the capacitors shall	meet the fo	ollowing re	quirement	is.					
Endurance	Capacitance Ch	nange			With	nin ± 20 %	6 of initial v	alue		
	Dissipation Fa	ctor		1	Not more th	nan 200%	of the spe	cified valu	е	
	Leakage Curr	ent			initia	al specifie	ed value or	less		
	After leaving capacit	ors under	no load at	105°C for	500 hours					
Shelf Life	the capacitors shall	meet the s	ame requi	rement as	Endurance	€.				

■ Diagram of Dimensions

ϕD	5	6.3	8	10	13	16	18	22
Р	2.0	2.5	3.5	5.	0	7.	5	10.0
ϕ d	0.5	0.5	0.6	0	.6	0.	8	0.8
а	1.5	1.5	1.5	1.5	2.0	2.0	2.0	2.0

■ Multiplier for Ripple Current

i requericy coefficient				
Frequency (Hz)	120	300	1K	10K
6.3 ~ 100V Below 68 μ F	1.00	1.20	1.30	1.45
6.3 ~ 100V 100 ~ 680 μ F	1.00	1.10	1.15	1.25
6.3 ~ 100V 1000 ~ 22000 μ F	1.00	1.05	1.10	1.15
160 ~ 450V ALL Cap (μ F)	1.00	1.05	1.10	1.50

SE General Purpose Series

Consoitones						Ra	ated (Su	rge) Volt	age					
Capacitance (μF)	6.3	(8)	10 (13)	16 (20)	25 ((32)	35 (44)	50 (63)	63 ((79)
,	Size	Ripple	Size	Ripple	Size	Ripple	Size	Ripple	Size	Ripple	Size	Ripple	Size	Ripple
1.0											5x11	12	5x11	13
2.2											5x11	18	5x11	20
3.3											5x11	25	5x11	27
4.7							5x11	20	5x11	25	5x11	30	5x11	34
6.8							5x11	25	5x11	30	5x11	32	5x11	37
10					5x11	25	5x11	30	5x11	40	5x11	50	5x11	55
15					5x11	40	5x11	45	5x11	50	5x11	60	5x11	65
22			5x11	45	5x11	55	5x11	60	5x11	65	5x11	75	6.3x11	90
33			5x11	60	5x11	70	5x11	75	5x11	85	5x11	95	6.3x11	110
47	5X11	60	5x11	75	5x11	85	5x11	90	5x11	95	6.3x11	105	8x11	155
68	5x11	75	5x11	80	5x11	100	6.3x11	125	6.3x11	125	8x11	159		
100	5x11	100	5x11	110	5x11	110	6.3x11	145	6.3x11	150	8x11	160	8X15	230
100													10x12.5	260
150	5x11	120	5x11	110	6.3x11	175	8x11	200	8x11	200	10x12.5	289	10x15	330
220	5x11	140	6.3x11	180	6.3x11	180	8x11	200	8x11	230	10x12.5	340	10x15	400
220	6.3x11	165							10x12.5	315			10x20	460
330	6.3x11	160	6.3x11	205	8x11	285	8x11	265	8X15	345	10x20	535	10x20	520
330							8X15	320	10x12.5	380				
470	6.3x11	220	6.3x11	245	8x11	310	8X15	365	10x15	415	10x20	580	13x20	700
470			8x11	305							13x20	730		
680	8x11	255	8x11	335	10x12.5	455	10x15	650	10x20	680	13x25	860	13x25	840
000			10x12.5	420										
1000	8x11	370	8X15	450	8x20	600	10x20	680	13x20	850	13x25	930	16x25	1020
1000	10x12.5	470	10x12.5	490	10x15	590								
1500	10x15	600	10x20	750	10x20	680	13x20	880	13x25	935	16x25	1220	16x32	1300
1500														
2200	10x20	740	10x20	800	13x20	990	13x25	1030	16x25	1230	16x36	1360	18x36	1455
3300	13x20	1100	10x25	950	13x25	1140	16x25	1230	16x36	1470	18x36	1540		
3300			13x20	1050										
4700	13x25	1100	13x25	1190	16x25	1330	16x32	1420	18x36	1580				
6800	13x25	1250	16x25	1370	16x32	1580	18x36	1850						
10000	16x25	1560	16x36	1760	18x36	2150								
15000	18x32	2100	18x36	2150										

 $[\]stackrel{\wedge}{\sim}$ Size: D ϕ x L (mm) $\stackrel{\wedge}{\sim}$ Ripple Current: (mA/rms). 105 $^{\circ}$ C ,120Hz

SE General Purpose Series

Capacitance			Y		y	Ra	ated (Sur	ge) Volta	ge					
Capacitance (μF)	100 ((125)	160 ((200)	200	(250)	250	(300)	350 ((400)	400	(450)	450	(500)
	Size	Ripple	Size	Ripple	Size	Ripple	Size	Ripple	Size	Ripple	Size	Ripple	Size	Ripple
1.0	5x11	15	5x11	17	5x11	19	6.3x11	19	6.3x11	20	6.3x11	16	6.3x11	16
1.0											8x11	20	8x11	20
2.2	5x11	22	6.3x11	25	6.3x11	22	6.3x11	23	8x11	35	6.3x11	20	8x11	28
											8x11	28	10x12.5	
3.3	5x11	29	6.3x11	30	6.3x11	32	8x11	33	8x11	37	8x11	38	10x12.5	
4.7	5x11	37	6.3x11	34	8x11	40	8x11	41	8X11	47	8x11	40	10x12.5	55
											10x12.5			
6.8	5x11	46	8X11	50	8X11	56	8X11	57	***************************************		8x15	50	10x15	65
	-			······							10x12.5			
10	5x11	55	8x11	56	10x12.5	69	10x12.5	78	10x15	95	10x15	65	10x20	75
	6.3x11	65												
15	6.3x11	72	10x12.5		10x15	110	10x15	120	10x20	140	10x20	100	13X20	125
22	8x11	115	10x15	130	10x15	140	10x20	155	13x20	165	13x20	150	13x25	160
33	8x11	120	10x20	180	10x20	190	13x20	170	13x25	220	13x25	190	16x25	210
											16x20	195		
47	10x12.5	180	10X20	230	13x20	240	13x25	330	16x25	340	16x25	280	16x32	270
											18x20	275		
68	10x15	241	13X20	270	13x25	330	13x25	340			16x32	320	18x32	305
100	40.00										18x25	305		
100	10x20	385	13x25	330	16x25	410	16x25	415	18x32	430	18x32	430	18x36	380
120	40.00	444	10.05	440	10.00	400	40)/00	405	4040	400	18x32	440	-	
150	13x20	414	16x25	410	16x32	430	16X32	435	18x40	480	18X36	450		
100											18X40	460		
180	40.05	F00	40.00		40000	500	40)/00	000			18X45	480		
220	13x25	590	16x32	550	16X36	520	18X36	600		***************************************				
220	4005	600	4000	770	18x32	520								
330	13x25	600	18x36	770	18x36	705								
470 680	16x25	740	18X40	800						***************************************				******************************
	16x36	1200				~~~~			***************************************					~~~~~~~~~~
1000	18x40	1340												

[☆] Size: D ψ x L (mm) ☆ Ripple Current: (mA/rms). 105 $^{\circ}$ C,120Hz

SH Miniature and general purpose Series

■ Features: 105°C 2000 hours

■ Recommended Applications: For high quality , reliability application, high CV product

■Corresponding product to RoHS

■ Specifications

Item		Characteristics										
Operating Temperature Ran	-40~+105°C	~ 100VDC 160 ~ 450VDC 500VDC										
Rated Voltage Range	6.3 ~ 100VDC	15000μF 1 ~ 470μF 2.2~82μF										
Rated Capacitance Range	1~ 15000μF	0 % at 120Hz , 20℃										
Capacitance Tolerance	± 20 % at 120Hz	O1CV or 3(μ A) ,whichever is greater. I=0.03CV+10(μ A) I=0.04CV+100(uA)										
Leakage Current (MAX)(20°(I=0.01CV or 3(μ											
Leakage Guiterit (WAX)(20 ((After rated volta	r rated voltage applied for 2 minutes) 6.3 10 16 25 35 50 63~100 160~250 350~450 500										
	WV 6.3	10	16	25	35	50	63~100	160~250	350~450	500		
Dissipation Factor (MAX)	tan δ 0.26											
(tan δ) (120Hz ,20°ℂ)		nominal capacitance is over 1000uF , shall be added 0.02 to the listed value with increase of every 1000uF $_{\circ}$										
	tan δ shall be a	shall be added 0.02 to the listed value with increase of every 1000uF •										
Low Temperature Stability	Z(120Hz)	WV 6.3 10 16 25~100 160~250 350~450 500										
Impedance Ratio (MAX)	, ,	120Hz) 6.3 10 16 25~100 160~250 350~450 500 Z-25°C / Z+20°C 4 3 2 2 4 4 6										
	Z-40°C /	′ Z+20 °C	8	6	4	3	-	-	-			
	After applying ra	ited voltage for 2	000 hours a	at 105℃								
	the capacitors sh	hall meet the follo	owing requi	rements.								
Endurance	Capacitano	capacitors shall meet the following requirements. Capacitance Change Within ± 20 % of initial value										
	Dissipation	Dissipation Factor Not more than 200% of the specified value										
	Leakage	Current			initia	specified	value or le	ss	<u>'</u>			
Chalf Life	After leaving cap	fter leaving capacitors under no load at 105 °C for 1000 hours.										
Shelf Life	the capacitors sh	hall meet the san	ne requirem	ent as Endu	rance.							

■ Diagram of Dimensions

φD	5	6.3	8	10	13	16	18	22
р	2.0	2.5	3.5	5.	0	7.5	,	10.0
ϕd	0.5	0.5	0.6	0.	.6	0.8	3	0.8
а	1.5	1.5	1.5	1.5	2.0	2.0	2.0	2.0

■ Multiplier for Ripple Current

1 requeries coefficient				
Frequency (Hz)	120	300	1K	10K
6.3 ~ 100V Below 68 μ F	1.00	1.30	1.57	2.00
6.3 ~ 100V 100 ~ 470 μ F	1.00	1.23	1.34	1.50
6.3 ~ 100V 471 ~ 22000 μ F	1.00	1.10	1.13	1.15
160 ~ 450V ALL Cap (μ F)	1.00	1.25	1.40	1.60
500V ALL Cap (μ F)	1.00	1.05	1.10	1.15

SH Miniature and general purpose Series

Conneitones							Ra	ated (Sur	ge) Volta	ge						
Capacitance (μF)	6.3	(8)	10 ((13)	16 ((20)	25 (32)	35 ((44)	50 (63)	63 ((79)	100 ((125)
	Size	Ripple	Size	Ripple	Size	Ripple	Size	Ripple	Size	Ripple	Size	Ripple	Size	Ripple	Size	Ripple
1.0											5x11	12	5x11	12	5x11	15
2.2											5x11	18	5x11	20	5x11	22
3.3											5x11	25	5x11	27	5x11	29
4.7											5x11	30	5x11	34	5x11	37
6.8											5x11	30	5x11	37	5x11	46
10									5x11	44	5x11	50	5x11	55	6.3x11	65
15									5x11	50	5x11	50	5x11	65	6.3x11	75
22							5x11	60	5x11	65	5x11	75	6.3x11	90	8x11	115
33					5x11	70	5x11	75	5x11	85	5x11	95	6.3x11	100	8X11	140
47			5x11	75	5x11	85	5x11	90	5X11	100	6.3x11	115	8x11	155	10X12.5	185
68			5x11	80	5x11	100	6.3x11	125	6.3X11	130	8x11	159	10x12.5	198	10X15	240
100	5x11	100	5x11	110	5x11	130	6.3x11	145	6.3x11	170	8X11	200	10x12.5	260	10x20	305
150	5x11	120	5x11	120	6.3x11	175	8x11	200	8X11	220	10x12.5	289	10x15	330	13X20	370
220	6.3x11	165	6.3x11	180	6.3x11	220	8X11	240	10x12.5	315	10x12.5	360	10x20	465	13x25	520
220											10X15	415				
330	6.3X11	200	6.3x11	235	8X11	280	8X11	300	10x12.5	400	10x20	535	13x20	650	16x25	720
			8x11	255			10x12.5	355								
470	6.3x11	230	6.3x11	250	8x11	375	8X15	420	10x15	480	10x20	630	13x20	700	16x32	875
			8x11	305			10X12.5	440			13x20	730				
680	8X11	350	8x11	365	8X15	450	10x15	560	10X20	650	13x20	800	16x25	1000	16x36	1200
			10x12.5	420	10x12.5	480										
1000	8X15	445	8X15	480	10X15	640	10X20	740	13X20	900	13x25	1060	16x32	1200		
	10x12.5	470	10x12.5	540												
1500	10x15	600	10x20	800	10x20	830	13X20	920	13X25	1050	16x25	1300	16x36	1450		
2200	10X20	800	10x20	870	13x20	1050	13X25	1230	16X25	1370	16X36	1600	18X36	1650		
3300	13x20	1100	13x20	1100	13x25	1250	16x25	1500	16x36	1680	18X36	1780		,		
4700	13X20	1180	13X25	1380	16x25	1650	16X32	1800	18X36	1920						
6800	13X25	1490	16x25	1700	16X32	1900	18X36	2050								
10000	16x32	1830	16x36	1950	18X36	2070										
15000	16X36	2090	18X36	2180				,				, , , , , , , , , , , , , , , , , , , ,		,		
22000	18X40	2350														

 $[\]stackrel{\sim}{\sim}$ Size: D ϕ x L (mm) $\stackrel{\sim}{\sim}$ Ripple Current: (mA/rms). 105 $^{\circ}$ C,120Hz

Miniature and general purpose Series

Capacitance		,				,	Ra	ated (Su	rge) Volta	ge	,			,		,
Capacitance (μF)	160 (200)	200 (250) :	250 (300)	350 (400))	400 (450)		420 (470)	450	(500)	500 ((550)
(- /	Size	Ripple	Size	Ripple	Size	Ripple	Size	Ripple	Size	Ripple	Size	Ripple	Size	Ripple	Size	Ripple
1.0	5x11	17	6.3x11	17	6.3x11	17	6.3x11	16	6.3x11	17	6.3x11	17	6.3x11	18		
													8x11	22		
2.2	6.3x11	25	6.3x11	25	6.3x11	29	8x11	31	8x11	31	8x11	29	8x11	30	8x11	25
													10x12.5			
3.3	6.3x11	36	6.3x11	36	8X11	42	8x11	35	8x11	35	8x11	34	8X15	42	8X16	30
	0.0.44	40	014		0.44		0.44	45	0.44	45	40740 5		10x12.5		0)/40	- 0.4
4.7	6.3x11	43	8x11	50	8x11	52	8x11	45	8x11		10X12.5	55	10x12.5	52	8X16	34
	8X11	54	8X11	60	8x11	62			10X12.5 8X15	55 60	10X15	68	10X15	62	10X12.5 10X16	38 50
6.8	0/11	54	0/11	60	OXII	02			10X12.5		10715	00	10.15	02	10/10	50
8.2									10/12.5	00					10X20	65
	8X11	70	10X12.5	80	10x12.5	80	10x15	80	10X15	80	10X20	98	10X20	85	10X20	70
10	OXTT	70	10/12.5	- 00	10.712.0	00	10.10	00	10/(13	- 00	10/120	30	10/20	00	13x20	85
15	10X12.5	90	10x15	110	10X15	110			10X20	100	13X20	130	13X20	120	13X25	100
	10X15	115	10x20	140	10X20	140	13X20	150	13x20	150	13X25	155	13X25	150	13X25	115
22											•				16X25	130
33	10X20	160	13x20	200	13X20	200	13X25	200	13X25	200	16x25	205	16X25	210	18X25	180
47	10x20	195	13x20	220	13X25	240	16X25	260	16x25	265	16x25	235	16X25	260	16X32	180
47															18X30	230
68	13x20	255	13x25	280	13x25	290			16X32	410	16X32	400	18X32	370	18X32	250
									18x25	390	18x25	380			18X36	290
82								···•							18X40	335
100	13X25	350	16x25	350	16X25	380	18x32	400	18X32	500	18X36	490	18X36	495		
120									18X32	520	18x40	530	18X40	565		
									18x36	550						
150	16X25	435	16x32	480	16X32	420			18x40	620	18x45	570	18X45	650		
220	16x32	550	16x36	675	18X36	680										
			18X32	685												
330	18x36	800	18x36	750												
470	18x40	900														
680																

 $[\]stackrel{\sim}{\sim}$ Size: D ϕ x L (mm) $\stackrel{\sim}{\sim}$ Ripple Current: (mA/rms). 105°C ,120Hz

5mm height **Series**

■ Features: 85°C,1000hrs, Low profile/Ultra Miniature, 5mm height ■ Recommended Applications: AV(TV, Video, Audio), Monitor/Computer,

OA/HA/Communication, Small signal

■Corresponding product to RoHS

Specifications Item Characteristics **Operating Temperature Range** -40 ~ +85°C **Rated Voltage Range** 4 ~ 50VDC **Rated Capacitance Range** 1 ~ 220 μ F **Capacitance Tolerance** ± 20 % at 120Hz , 20°C $I \le 0.01 \text{CV}$ or 3(μ A) , whichever is greater. (After rated voltage applied for 2 minutes) Leakage Current (MAX) (20℃) I= Leakage Current (μ A) C= Nominal Capacitance (μ F) V= Rated Voltage (V) WV **Dissipation Factor (MAX)** 6.3 16 35 50 (tan δ) (120Hz ,20°C) 0.35 0.24 0.20 0.16 0.14 0.12 0.10 $\tan\delta$ WV 4 6.3 10 16 25 35 50 Low Temperature Stability Z(120Hz) Impedance Ratio (MAX) Z(-25°C) / Z(+20°C) 6 4 3 2 2 2 2 12 8 6 4 4 4 4 Z(-40°C) / Z(+20°C) After applying rated voltage for 1000 hours at 85 °C the capacitors shall meet the following requirements. Capacitance Change Within ± 20 % of initial value **Endurance** Dissipation Factor Not more than 200% of the specified value Leakage Current Not more than in specified value

After placed at 85°C without voltage applied for 500 hours,

the capacitors shall meet the same requirement as Endurance.

Dimensions

Shelf Life

ϕ D	4	5	6.3
Р	1.5	2	2.5
ϕ d	0.45	0.45	0.45
а	1.0	1.0	1.0

■ Multiplier for Ripple Current

Freq.(Hz)	50	120	1K	10K
4 ~ 16	0.8	1.0	1.1	1.2
25 ~ 50	0.8	1.0	1.5	1.7

D5 5mm height Series

						Rat	ed (Surge	e) Voltage						
Capacitance (µF)	4 (5)		6.3	6.3 (8) 10 ((13) 16 (20)		(20)	20) 25 (32)		35 (44)		50 (63)	
(μ.)	Size	Ripple	Size	Ripple	Size	Ripple	Size	Ripple	Size	Ripple	Size	Ripple	Size	Ripple
1													4x5	10
2.2													4x5	15
3.3													4x5	20
4.7							4x5	10	4x5	15	4x5	20	5x5	25
10			4x5	20	4x5	20	4x5	25	4x5	30	5x5	35	6.3x5	40
22	4x5	25	4x5	30	5x5	30	5x5	35	5x5	40	6.3x5	55	6.3x5	60
33	4x5	30	5x5	35	5x5	40	5x5	45	6.3x5	60				
47	5x5	35	5x5	40	6.3x5	50	6.3x5	60						
100	6.3x5	60	6.3x5	70	6.3x5	75	6.3x5	95						
220	6.3x5	80	6.3x5	95										

[☆] Size: D ϕ x L (mm) ☆ Ripple Current : mA/rms,85°C,120Hz

5mm height Series

 \blacksquare Features: 105 $^{\circ}\!\mathbb{C}$ 1000 hours , 5.0mm height

■ Recommended Applications: Applicable for VTR , Camera , Car Audio , Miniaudio and other industrial /commercial applications

D5

S5

High Temperature

■Corresponding product to RoHS

■ Specifications

- Specifications										
Item				Character	istics					
Operating Temperature Range	-40 ~ +105°C									
Rated Voltage Range	4 ~ 50VDC									
Rated Capacitance Range	1 ~ 470μF									
Capacitance Tolerance	± 20 % at 120Hz , 2	20℃								
Leakage Current (MAX) (20°C)	I=0.01CV or 3(μ A)	, whicheve	r is greater.	(After rated	voltage app	lied for 2 mir	nutes)			
Dissipation Factor (MAX)	WV	4	6.3	10	16	25	35	50		
(tan δ) (120Hz ,20 $^{\circ}$ C)	$ an \delta$	0.35	0.24	0.20	0.17	0.15	0.12	0.10		
Low Temperature Stability	WV Z(120Hz)	4	6.3	10	16	25	35	50		
Impedance Ratio (MAX)	Z(-25°C) / Z(+20°C)	6	4	3	2	2	2	2		
	Z(-40°C) / Z(+20°C)	12	8	6	4	4	3	3		
Endurance	After apply rated vo	I meet the for		uirements. \		% of initial va				
	Dissipation F	actor		Not more	e than 200%	of the speci	fied value			
	Leakage Cu	Leakage Current initial specified value or less								
Shelf Life	After placed at 105 the capacitors shall									

Dimensions

ϕ D	4.0	5.0	6.3	8.0					
Р	1.5	2.0	2.5	3.5					
ϕd		0.45							
а	1.0								

■ Multiplier for Ripple Current

1 roquonoy ocomoloni				
Frequency (Hz)	120	300	1K	10K
1~47 <i>μ</i> F	1.00	1.20	1.30	1.50
100~330 μ F	1.00	1.10	1.15	1.20

\$5 5mm height Series

■Dimensions,Rated Ripple Current

0 "						R	ated (Sur	ge) Volta	ge					
Capacitance (μF)	4	(5)	6.3 (8)		10 (13)		16 (20)		25 (32)		35 (44)		50	(63)
(μι)	Size	Ripple	Size	Ripple	Size	Ripple	Size	Ripple	Size	Ripple	Size	Ripple	Size	Ripple
1.0													4x5	9
2.2													4x5	13
3.3													4x5	17
4.7						Name of the last o	4x5	20	4x5	16	4x5	18	4x5	17
4.7													5x5	20
10			4x5	18	4x5	20	4x5	23	4x5	20	5x5	30	6.3x5	33
10									5x5	27				
22	4x5	20	4x5	28	5x5	33	4x5	29	6.3x5	42	6.3x5	48	6.3x5	55
22							5x5	37						
33	4x5	25	4x5	33	4x5	34	5x5	44	5x5	45				
33					5x5	41	6.3x5	49	6.3x5	53			***************************************	
47	5x5	30	4x5	35	5x5	46	5x5	54	5x5	55				
47			5x5	45			6.3x5	58	6.3x5	65				
68					6.3x5	54								
400	6.3x5	50	5x5	55	6.3x5	80	6.3x5	85	8x5	90				
100			6.3x5	70										
220	6.3x5	70	6.3x5	90										
330	8x5	110	8x5	115										
470			8x5	100										

 $\stackrel{\wedge}{\simeq}$ Size: D ϕ x L (mm) $\stackrel{\wedge}{\simeq}$ Ripple Current: (mA/rms), 105 $^{\circ}$ C,120H

H5 5mm height Series

■ Features:105°C 2000 hours , Higher temperature range, long life than S5 Low profile/miniature, 5mm height

■ Recommended Applications: Monitor/Computer, AV(TV,Video,Audio), OA/HA/Communication, Small signal

■Corresponding product to RoHS

■ Specifications

Item				Characte	eristics						
Operating Temperature Range	-40 ~ +105°C	40 ~ +105°C									
Rated Voltage Range	4 ~ 50VDC	~ 50VDC									
Rated Capacitance Range	1 ~ 330 μ F										
Capacitance Tolerance	± 20 % at 120Hz	, 20 ℃									
Leakage Current (MAX) (20°ℂ)	I=0.01CV or 3(μA I= Leakage Curre	•	•	•	•		,)			
D: : :: 5 ((MAN)	WV	4	6.3	10	16	25	35	50			
Dissipation Factor (MAX) (tan δ) (120Hz ,20 $^{\circ}$)	$ an \delta$	0.37	0.26	0.24	0.20	0.16	0.13	0.12			
(tair 0) (120112 ,20 C)	Down size tanδ add 3%.										
Low Temperature Stability	Z(120Hz)*****	4	6.3	10	16	25	35	50			
Impedance Ratio (MAX)	Z-25°C / Z+20°C	6	4	3	2	2	2	2			
	Z-40°C / Z+20°C	12	8	6	4	4	4	4			
	After applying rat	_									
Load Life	Capacitance	Change				% of initial v					
	Dissipation Factor Not more than 200% of the specified value										
	Leakage Current initial specified value or less										
Shelf Life	olied for 10	000 hours,									
Chair Ello	the capacitors sh	the capacitors shall meet the same requirement as load life.									

■ Diagram of Dimensions

ϕD	4.0	5.0	6.3	8.0
Р	1.5	2.0	2.5	3.5
ϕ d	0.45	0.45	0.45	0.45
а	1.0	1.0	1.0	1.0

■ Multiplier for Ripple Current

WV(VDC)	50	120	1K	10K
4~16	0.80	1.00	1.10	1.20
25~50	0.80	1.00	1.50	1.70

H5 5mm height Series

						Ra	ated (Sur	ge) Volta	age					
Capacitance (µF)	4 ((5)	6.3	6.3 (8) 10		0 (13) 16 ((20)	25 (32)		35 (44)		50 (63)	
(1)	Size	Ripple	Size	Ripple	Size	Ripple	Size	Ripple	Size	Ripple	Size	Ripple	Size	Ripple
1.0													4x5	10
2.2													4x5	15
3.3							***************************************				***************************************		4x5	15
4.7							4x5	10	4x5	15	4x5	15	5x5	20
10			4X5	15	4X5	20	4x5	20	4x5	25	5x5	30	6.3X5	35
22	4X5	20	4X5	25	5X5	25	5x5	30	6.3X5	40	6.3X5	45	6.3X5	55
33	4X5	25	5X5	30	5X5	35	5x5	40	6.3X5	50				
47	5X5	30	5X5	35	6.3X5	45	6.3X5	55						
100	6.3X5	50	6.3X5	60	6.3X5	70	6.3X5	90						
220	6.3X5	70	8X5	95										
330	8X5	110	8X5	120		-								

 $[\]stackrel{\sim}{\sim}$ Size: D ϕ x L (mm) $\stackrel{\sim}{\sim}$ Ripple Current: (mA/rms), 105 $^{\circ}$ C,120Hz

7mm/9mm height Series

■ Features: 85°C,1000hrs, Low profile/Miniature, 7mm/9mm height

■ Recommended Applications: AV(TV, Video, Audio), Monitor/Computer, OA/HA/Communication, Small signal

■Corresponding product to RoHS

Specifications

■ Specifications											
Item				Characte	ristics						
Operating Temperature Range	-40 ~ +85°C										
Rated Voltage Range	4 ~ 63VDC										
Rated Capacitance Range	1 ~ 470 μ F										
Capacitance Tolerance	± 20 % at 120Hz , 20℃	20 % at 120Hz , 20℃									
Leakage Current (MAX) (20℃)	I \leq 0.01CV or 3(μ A) , w	0.01CV or 3(μ A) , whichever is greater. (After rated voltage applied for 2 minutes)									
Leakage Current (MAX) (20 C)	I= Leakage Current (μ /	A) C= Nor	minal Capa	citance (μ	F) V= Ra	ted Voltag	ge (V)				
Dissipation Factor (MAX)	WV	4	6.3	10	16	25	35	50	63		
(tan δ) (120Hz ,20℃)	$ an \delta$	0.35	0.24	0.20	0.16	0.14	0.12	0.10	0.08		
Low Temperature Stability	WV Z(120Hz)	4	6.3	10	16	25	35	50	63		
Impedance Ratio (MAX)	Z(-25°C) / Z(+20°C)	6	4	3	2	2	2	2	2		
	Z(-40°C) / Z(+20°C)	12	8	6	4	4	4	4	4		
	After applying rated volt the capacitors shall mee	Ū									
Endurance	Capacitance Change		Within ± 2	0 % of init	ial value						
	Dissipation Factor		Not more	han 200%	of the spe	ecified val	ue				
	Leakage Current		Not more	han in spe	cified valu	ıe					
Shelf Life	After placed at 85°C with the capacitors shall mee	_									

Dimensions

ϕD	4	5	6.3	8
Р	1.5	2	2.5	3.5
ϕd	0.45	0.45	0.45	0.5
а	1.0	1.0	1.0	1.0

■ Multiplier for Ripple Current

Frequency coefficient				
WV(VDC)	50	120	1K	10K
4 ~ 16	0.8	1.0	1.1	1.2
25 ~35	0.8	1.0	1.5	1.7
50 ~ 63	0.8	1.0	1.6	1.9

D7

7mm/9mm height Series

■Dimensions,Rated Ripple Current

					F	Rated (Sur	ge) Voltag	ge				
Capacitance (μF)	4	(5)	6.3	(8)	10	10 (13) 16 (20)		(20)	25 (32)		35 (44)	
(μι)	Size	Ripple	Size	Ripple	Size	Ripple	Size	Ripple	Size	Ripple	Size	Ripple
2.2							4x7	10				
3.3							4x7	10				
4.7							4x7	20	4x7	20	4x7	25
10							4x7	30	4x7	35	4x7	40
22					4x7	35	4x7	40	5x7	50	5x7	60
33	4x7	35	4x7	40	4x7	45	4x7	50	5x7	65	6.3x7	75
47	4x7	40	4x7	50	4x7	60	5x7	70	6.3x7	75	6.3x7	80
100	5x7	65	5x7	80	5x7	90	6.3x7	110	8x7	120	8x7	145
220	6.3x7	110	6.3x7	120	6.3x7	135	8x7	180				
330			8x7	170	8x9	170	8x9	230				
470			8x9	230	8x9	240	8x9	280				

	F	Rated (Sur	ge) Volta	ge		
Capacitance (μF)	50	(63)	63 (79)			
(μ.)	Size	Ripple	Size	Ripple		
1	4x7	10	4x7	10		
2.2	4x7	20	4x7	20		
3.3	4x7	25	4x7	30		
4.7	4x7	35	5x7	40		
10	5x7	45	6.3x7	55		
22	6.3x7	70				
33	8x7	85				
47	8x7	100				

\$7 7mm height Series

■ Features : 105°C 1000 hours , 7.0/9.0mm height

 \blacksquare Recommended Applications : For Portable Micro Computer , Disk Driver ,

Small Calculator and Audio equipment...etc

■Corresponding product to RoHS

■ Specifications

Item				Cł	naracteristic	S					
Operating Temperature Range	-40 ~ +105°C										
Rated Voltage Range	4 ~ 63VDC										
Rated Capacitance Range	1 ~ 470µF	1 ~ 470μF									
Capacitance Tolerance	± 20 % at 120Hz	, 20 ℃									
Leakage Current (MAX) (20°C)	I=0.01CV or 3(μΑ	(), whichev	er is greate	r. (After rat	ed voltage a	applied for 2	minutes)				
Dissipation Factor (MAX)	WV	4	6.3	10	16	25	35	50	63		
(tan δ) (120Hz ,20°C)	$ an \delta$	0.35	0.24	0.20	0.17	0.15	0.12	0.10	0.08		
Low Temperature Stability	WV Z(120Hz)	4	6.3	10	16	25	35	50	63		
Impedance Ratio (MAX)	Z-25°C / Z+20°C	6	4	3	2	2	2	2	2		
	Z-40°C / Z+20°C	12	8	6	4	4	3	3	3		
	After applying rat the capacitors sh	•									
Endurance	Capacitance	Change			Withir	1 ± 20 % of in	nitial value				
	Dissipation	Factor		N	ot more that	n 200% of th	e specified v	/alue			
	Leakage Cı	urrent			initial	specified va	lue or less				
Shelf Life	After placed at 10	05°C without	voltage ap	plied for 50	0 hours,						
SHEII LIIE	the capacitors sh	all meet the	same requ	irement as	Endurance						

■ Diagram of Dimensions

ϕD	4.0	5.0	6.3	8.0
Р	1.5	2.0	2.5	3.5
ϕ d	0.45	0.45	0.45	0.5
а	1.0	1.0	1.0	1.0

■ Multiplier for Ripple Current

Frequency coem	Clefft				
Frequency (Hz)	50	120	300	1K	10K
1~47µF	0.75	1.00	1.20	1.30	1.50
100~330µF	0.75	1.00	1.10	1.15	1.20

\$7 7mm height Series

		Rated (Surge) Voltage														
Capacitance (µF)	4	(5)	6.3	(8)	10	(13)	16	(20)	25	(32)	35	(44)	50	(63)	63	(79)
(F.)	Size	Ripple	Size	Ripple	Size	Ripple	Size	Ripple	Size	Ripple	Size	Ripple	Size	Ripple	Size	Ripple
1.0													4x7	10	4x7	13
2.2							4x7	7					4x7	19	4x7	21
3.3							4x7	13					4x7	24	4x7	26
4.7							4x7	19	4x7	24	4x7	24	4x7	29	4x7	26
4.7											5x7	24	5x7	31	6.3x7	33
							4x7	29	4x7	33	4x7	34	4x7	37	5x7	42
10									5x7	35	5x7	36	5x7	45	6.3x7	50
							***************************************		6.3x7	35			6.3x7	45		
			4x7	37	4x7	31	4x7	36	4x7	43	5x7	48	6.3x7	65		
22					5x7	38	5x7	44	5x7	51	6.3x7	57				
									6.3x7	53						
33	4X7	30	5x7	42	4x7	39	4x7	50	5x7	55	6.3x7	70				
33					5x7	47	5x7	57	6.3x7	65						
	4X7	35	4x7	46	4x7	50	5x7	75	5x7	67	6.3x7	81				
47			5x7	55	5x7	60	6.3x7	77	6.3x7	79						
					6.3x7	60										
68							5x7	84								
100	5X7	55	5x7	75	5x7	85	5x7	94	6.3x7	120						
100			6.3x7	90	6.3x7	100	6.3x7	110	8x7	120						
150							6.3x7	120								
220	6.3X7	95	6.3x7	130	6.3x7	135	8x7	140								
220							8x9	140								
330			8x7	140			8x9	155				<u> </u>				
470					8x9	165	8x9	165				<u> </u>				

[☆] Size: D ϕ x L (mm) ☆ Ripple Current: (mA/rms), 105 $^{\circ}$,120Hz

H7 7mm/9mm height Series

■ Features : 105°C 2000 hours , Higher temperature range, Long life than S7

Low profile/miniature, 7mm/9mm height

■ Recommended Applications : Monitor/Computer, AV(TV,Video,Audio),

OA/HA/Communication, Small signal

Corresponding product to RoHS

Specifications

Item				Cl	naracteristic	S					
Operating Temperature Range	-40 ~ +105°C										
Rated Voltage Range	4 ~ 63VDC										
Rated Capacitance Range	1 ~ 470µF	~ 470µF									
Capacitance Tolerance	± 20 % at 120Hz	20 % at 120Hz , 20℃									
Leakage Current (MAX) (20°C)	I=0.01CV or 3(μΑ	.01CV or $3(\mu A)$, whichever is greater. (After rated voltage applied for 2 minutes)									
Leakage Current (MAX) (20 C)	I= Leakage Current (μ A) C= Nominal Capacitance (μ F) V= Rated Voltage (V) (20°C)										
	WV	4	6.3	10	16	25	35	50	63		
Dissipation Factor (MAX) (tan δ) (120Hz ,20 $^{\circ}$ C)	$ an \delta$	0.35	0.24	0.20	0.18	0.15	0.13	0.12	0.10		
(tail 0) (120112 ,20 C)	Down size tanō add 3%.										
Low Temperature Stability	WV Z(120Hz)	4	6.3	10	16	25	35	50	63		
Impedance Ratio (MAX)	Z-25°C / Z+20°C	6	4	3	2	2	2	2	2		
	Z-40°C / Z+20°C	12	8	6	4	4	4	4	4		
	After applying rat the capacitors sh	-									
Load Life	Capacitance	Change			Withir	1 ± 20 % of i	nitial value				
	Dissipation	Dissipation Factor Not more than 200% of the specified value									
	Leakage Ci	Leakage Current initial specified value or less									
Shelf Life	After placed at 105°C without voltage applied for1000 hours,										
OHOII EIIO	the capacitors shall meet the same requirement as load life.										

■ Diagram of Dimensions

ϕ D	4.0	5.0	6.3	8.0
Р	1.5	2.0	2.5	3.5
ϕ d	0.45	0.45	0.45	0.5
а	1.0	1.0	1.0	1.0

■ Multiplier for Ripple Current

Freq. (Hz)	50	120	1K	10K
4~16	0.8	1.0	1.1	1.2
25~35	0.8	1.0	1.5	1.7
50~63	0.8	1.0	1.6	1.9

H7 7mm/9mm height Series

		•					Ra	ated (Sur	ge) Volta	age						
Capacitance (µF)	4	(5)	6.3	(8)	10	(13)	16	(20)	25	(32)	35	(44)	50	(63)	63	(79)
(μ.)	Size	Ripple	Size	Ripple	Size	Ripple	Size	Ripple	Size	Ripple	Size	Ripple	Size	Ripple	Size	Ripple
1.0													4x7	10	4x7	10
2.2							4x7	10					4x7	20	4x7	20
3.3							4x7	10					4x7	25	4x7	25
4.7							4x7	15	4x7	20	4x7	25	4x7	30	5x7	35
10							4x7	25	4x7	30	4x7	35	5x7	35	6.3x7	50
22					4x7	30	4x7	35	5x7	50	5x7	60	6.3x7	65		
33	4X7	30	4x7	35	4x7	40	5x7	50	6.3x7	65	6.3x7	70	8x7	80		
47	4X7	35	5x7	50	5x7	60	6.3x7	70	6.3x7	70	8x7	80	8x9	100		
100	5X7	55	5x7	70	6.3x7	90	6.3x7	110	8x7	115	8x9	145				
220	6.3X7	95	6.3x7	110	6.3x7	135	8x9	180								
330			8x7	150	8x9	160	8x9	210								
470			8x9	200	8x9	210										

 $[\]stackrel{\wedge}{\sim}$ Size: D ϕ x L (mm) $\stackrel{\wedge}{\sim}$ Ripple Current: (mA/rms), 105 $^{\circ}$ C,120Hz

RN Non-polar Series

- Features: 85°C,1000hrs, Non-polarized/Polarity reversing
- Recommended Applications:

Small crossover network, Reversed polarity circuit, Coupling

Corresponding product to RoHS

■ Specifications

Specifications															
Item					(Charac	teristic	S							
Operating Temperature Range	-40 ~ +85℃					-25~+8	8 5 ℃								
Rated Voltage Range	4 ~ 100VDC					160~2	50VDC								
Rated Capacitance Range	1 ~ 6800 μ F					1~100	μ F								
Capacitance Tolerance	± 20 % at 120Hz , 20°	C													
Leakage Current (MAX) (20°C)	I≦0.03CV+4 μ A ; L=	7mm,l ≦	0.05CV	or 10 μ	A whic	hever is	greate	r (After r	ated vo	ltage ap	plied fo	r 2 minu	ites)		
Leakage Current (MAX) (20 C)	I= Leakage Current (μ	ıA) C=	Nomina	Capac	itance (μF) V=	Rated \	/oltage	(V)						
	WV	1 0.0 10 10 20 00 00 100 100 200 200													
Dissipation Factor (MAX)	$ an \delta$														
(tan δ) (120Hz ,20℃)	When nominal capaci	hen nominal capacitance is over 1000μF													
	anō shall be added 0.02 to the listed value with increase of every 1000µF.														
Low Temperature Stability	WV Z(120Hz)	4	6.3	10	16	25	35	50	63	80	100	160	200	250	
Impedance Ratio (MAX)	Z(-25°C) / Z(+20°C)	6	4	3	2	2	2	2	2	2	2	6	6	6	
	Z(-40°C) / Z(+20°C)	12	8	6	4	4	3	3	3	3	3	-	-	-	
	After applying rated vo					he capa	citors s	hall mee	et the fo	llowing	requiren	nents.			
Endurance	Capacitance Change					Within	± 20 %	of initia	l value						
	Dissipation Factor					Not mo	re than	200% c	f the sp	ecified	value				
	Leakage Current					Not mo	re than	the spe	cified v	alue					
Shelf Life	After placed at 85°C w the capacitors shall m		U			,).								

■ Diagram of Dimensions

ϕ D	4	5	6.3	8	10	13	16	18
P	1.5	2.0	2.5	3.5	5.0	5.0	7.5	7.5
ψd	0.45	(0.45) 0.5	(0.45) 0.5	0.6	0.6	0.6	0.8	0.8
а	1.0	(1.0) 1.5	(1.0) 1.5	1.5	1.5	2.0	2.0	2.0

(): L = 7

■ Multiplier for Ripple Current

Frequency coefficient				
WV(VDC)	50	120	1K	10K
4 ~ 16	0.8	1.0	1.1	1.2
25 ~35	8.0	1.0	1.5	1.7
50 ~ 100	0.8	1.0	1.6	1.9
160 ~ 250	0.8	1.0	1.5	1.6

RN Non-polar Series

■Dimensions,Rated Ripple Current

							R	ated (Sur	ge) Voltag	je						
Capacitance (µF)	4	(5)	6.3	(8)	10	(13)	16 (20)	25	(32)	35	(44)	50	(63)	63	(79)
(μι)	Size	Ripple	Size	Ripple	Size	Ripple	Size	Ripple	Size	Ripple	Size	Ripple	Size	Ripple	Size	Ripple
1.0													4x7	10	4x7	15
1.0													5x11	10	5x11	10
2.2											4x7	15	4x7	20	5x7	25
2.2													5x11	20	5x11	20
3.3									4x7	15	5x7	20	5x7	25	6.3x7	30
3.3													5x11	30	5x11	30
4.7											5x7	25	6.3x7	30	6.3x7	35
4.7							4x7	20	5x7	20	5x11	30	5x11	30	6.3x11	35
10							5x7	30	5x11	40	5x11	40				
10					4x7	25	5x11	40	6.3x7	35	6.3x7	40	6.3x11	45	6.3x11	55
22					5x7	40	5x11	55	6.3x7	50						
22			5x7	35	5x11	50	6.3x7	45	6.3x11	65	6.3x11	70	8x11	80	8x11	90
33	5x7	35	5x7	40	5x11	65	5x11	70	6.3x7	65						
			5x11	60	6.3x7	50	6.3x7	60	6.3x11	80	8x11	100	8x11	105	10x12.5	135
47			5x11	70	5x11	75	6.3x7	70								
71	5x7	40	6.3x7	50	6.3x7	60	6.3x11	95	6.3x11	95	8x11	120	8x15	140	10x16	180
100	6.3x7	60	6.3x11	115	6.3x11	125	8x11	160	8x11	160	10x16	230	10x20	265	13x20	320
220			8x11	205	8x11	215	10x12.5	275	10x16	305	13x20	410	13x25	480	16x25	575
330			8x11	265	10x16	345	10x16	375	13x20	450	13x20	505	16x25	650	16x32	750
470			10x12.5	370	10x16	410	10x20	485	13x20	540	13x25	655	16x32	835	18x36	965
1000			10x20	650	13x20	720	13x25	855	16x25	950	16x32	1140				
2200			13x25	1160	16x25	1280	16x32	1510	18x36	1620						
3300			16x25	1570	16x32	1690	18x36	1980								
4700			16x32	2020	18x36	2160										
6800			18x36	2600												

0				F	Rated (Sur	ge) Voltag	je			
Capacitance (µF)	80 (100)	100	(125)	160 (200)	200 ((250)	250 ((300)
(μι)	Size	Ripple	Size	Ripple	Size	Ripple	Size	Ripple	Size	Ripple
1			5x11	10	6.3x11	15	6.3x11	15	8x11	15
2.2	5x11	30	6.3x11	25	8x11	20	8x11	20	10x12.5	25
3.3	6.3x11	35	6.3x11	35	10x12.5	30	10x12.5	30	10x12.5	30
4.7	6.3x11	40	6.3x11	40	10x12.5	35	10x16	40	10x16	40
10	8x11	65	8x11	70	10x16	55	13x20	70	13x20	70
22	10x16	105	10x16	135	13x25	105	13x25	120	16x25	135
33	10x16	160	13x20	220	16x25	165	16x25	165	16x32	180
47	10x20	215	13x20	240	16x26	200	16x32	220	16x36	230
100	13x25	385	16x25	425	18x36	360				
220	16x32	690	18x36							
330	18x36	860								

SN Non-polar Series

■ Features: 105°C 1000 hours

SN

■Recommended Application: Non-polar miniature type for used in

↑ High Temperat

reversing polarity DC voltage circuits $\ \ RN$

■Corresponding product to RoHS

■ Specifications

Item							Cha	racteris	tics					
Operating Temperature Range	-40 ~ +	+105°C						-25~+1	10 5 C					
Rated Voltage Range	6.3 ~ 1	00VDC						160~2	50VDC					
Rated Capacitance Range	1 ~ 220	00 μF						1~100) μ F					
Capacitance Tolerance	± 20 %	at 120	Hz , 20	$^{\circ}\!\mathbb{C}$										
Leakage Current (MAX) (20°C)	I=0.030	CV+ 3μ	A (Afte	r rated	voltage	applie	d for 2 n	ninutes)					
	WV	6.3 10 16 25 35 50 63 80 100 160 200 250 0.24 0.20 0.17 0.15 0.14 0.12 0.10 0.10 0.10 0.20 0.20 0.20												
Dissipation Factor (MAX)	$\tan \delta$											0.20	0.20	
(tan δ) (120Hz ,20℃)	When r	nen nominal capacitance is over 1000uF ,												
	$tan \delta s$	\circ shall be added 0.02 to the listed value with increase of every 1000uF \circ												
Low Temperature Stability	Z(120	_	//	6.3	10	16	25	35	50	63	80	100	160-250	
Impedance Ratio (MAX)	Z-25	°C / Z+	20℃	4	3	2	2	2	2	2	2	2	6	
	Z-40	°C / Z+	20℃	10	8	6	4	3	3	3	3	3	-	
	After a	oplying	rated v	oltage	for 100	0 hours	at 105	°C,						
	(The po	olarity s	hall be	reverse	ed ever	y 250 h	rs.)							
Endurance	Capac	citance	Chang		Wi	thin ± 2	25 % of	initial v	alue					
	Dissip	ation F	actor	ı	Not moi	e than	200% c	of specif	fied val	ue				
	Leaka	ige Cur	rent		Not n	nore tha	an the s	pecified	d value					
Oh-IK Like	After pl	aced a	t 105℃	withou	t voltag	e appli	ed for 5	00 hour	ſS,					
Shelf Life	the cap	acitors	shall m	neet the	same	require	ment as	Endur	ance.					

■ Diagram of Dimensions

ϕ D	4.0	5.0	6.3	8.0	10.0	13.0	16.0	18.0
Р	1.5	2.0	2.5	3.5	5.0	5.0	7.5	7.5
ϕ d	0.45	0.5	0.5	0.6	0.6	0.6	0.8	0.8
а	1.0	1.5	1.5	1.5	1.5	2.0	2.0	2.0

■ Multiplier for Ripple Current

1 requestoy occinioletic					
Frequency (Hz)	60	120	300	1K	10K
Factor	0.75	1.00	1.20	1.32	1.65

SN Non-polar Series

Dimensio	iio,ivat	eu iti	phie C	ui i Ell				Б.		- > > / - !!								
Consoitance			1					Rat	ed (Surge	e) Volt	age						1	
Capacitance (µF)	6.3	(8)	10(1	13)	16(2	0)	25(3	2)	35(4	4)	50(6	3)	63(7	7 9)	80(10	00)	100(1	25)
\\ ,	SIZE	R.C	SIZE	R.C	SIZE	R.C	SIZE	R.C	SIZE	R.C	SIZE	R.C	SIZE	R.C	SIZE	R.C	SIZE	R.C
1											5x11	17	5x11	17	5x11	17	5x11	21
2.2											5x11	25	5x11	25	5x11	29	6.3x11	34
3.3											6.3x11	31	6.3x11	37	6.3x11	39	8x11	49
4.7									5x11	34	5x11	34	5x11	37	8x11	47	8x11	58
7.7											6.3x11	41	6.3x11	44				
10					6.3x11	45	5x11	42	6.3x11	54	6.3x11	56	8x11	74	10x12.5	88	8x11	80
10							6.3x11	50			8x11	70					10x12.5	100
			5x11	57	5x11	59	6.3x11	69	8x11	94	6.3x11	75	8x11	95	10x20	150	13x20	180
22					6.3x11	69	8x11	86			8x11	97	10x16	130				
											10x12.5	115						
33	5x11	63	6.3x11	77	8x11	98	8x11	105	10x12.5	125	8x11	110	8x11	115	13x20	205	13x20	220
											10x16	150	10x20	175				
47	6.3x11	84	6.3x11	93	8x11	115	10x12.5	140	10x16	165	8x11	130	13x20	230	13x20	245	13x25	285
											10x20	190						
	8x11	140	8x11	193	8x11	140	10x20	240	13x20	285	13x20	310	16x25	410	16x25	435	16x32	510
100					10x12.5	175												
					10x16	205												
220	10x12.5	235	10x16	255	10x20	330	13x20	390	16x25	520	16x25	570	16x32	660				
330	10x16	310	10x20	380	13x20	445	16x25	580	16x25	630	16x36	790						
470	10x20	400	13x20	470	13x25	570	16x25	690	16x32	820								
1000	13x25	690	16x25	885	16x32	1020												
2200	16x32	1250	16x36	1450														

 $[\]stackrel{\sim}{\sim}$ Size: D ϕ x L (mm) $\stackrel{\sim}{\sim}$ Ripple Current: (mA/rms). 105°C,120Hz

Canacitanas		Rate	ed (Surge	e) Vol	tage		
Capacitance (μF)	160(200)		200(2	50)	250(300)		
(μι)	SIZE	R.C	SIZE	R.C	SIZE	R.C	
1	6.3x11	21	6.3x11	21	8x11	25	
2.2	8x11	34	8x11	34	10x12.5	38	
3.3	10x12.5	49	10x12.5	49	10x12.5	49	
4.7	10x12.5	58	10x15	62	10x17	66	
10	10x17	80	13x20	100	13x20	100	
22	13x25	180	13x25	180	16x26	200	
33	16x26	220	16x26	220	16x32	250	
47	16x26	285	16x32	315	16x36	330	
100	18x36	510					

RB Non-Polar Series

- Features: 85°C,1000hrs, Non-polarized/Polarity reversing, High ripple current
- Recommended Applications: Crossover/Speaker network,Reversed polarity circuit
- ■Corresponding product to RoHS

Specifications

Rated Voltage Range 25 ~ 100 Rated Capacitance Range 1 ~ 100µ Capacitance Tolerance ± 10 % a Leakage Current (MAX) (20°C) Dissipation Factor (MAX)	3 5 °0		t.na	racteristics				
Rated Voltage Range 25 ~ 100 Rated Capacitance Range 1 ~ 100µ Capacitance Tolerance ± 10 % a Leakage Current (MAX) (20°C) Dissipation Factor (MAX)	-40 ~ +85°C							
Rated Capacitance Range 1 ~ 100μ Capacitance Tolerance ± 10 % a Leakage Current (MAX) (20℃) Dissipation Factor (MAX)	25 ~ 100VDC							
Capacitance Tolerance ± 10 % a Leakage Current (MAX) (20°C) I≤0.03C I= Leaka Dissipation Factor (MAX) I	1 ~ 100µF							
Dissipation Factor (MAX)	± 10 % at 1KHz , 20°C							
Dissipation Factor (MAX)	CV or 3µA whicheve	r is greate	(After rated vo	ltage applied fo	or 2 minutes)			
Dissipation ractor (MAN)	I= Leakage Current (μA) C= Nominal Capacitance (μF) V= Rated Voltage (V)							
	WV	25	35	50	63	80	100	
(14110) (120112,200)	$\tan\delta$ (0.17	0.15	0.15	0.12	0.10	0.10	
After app	After applying rated voltage for 1000 hours at 85 °C, the capacitors shall meet the following requirements.							
(The pol	arity shall be revers	ed every 2	50 hours)	•				
Endurance Capacita	ance Change		Within	Within ± 20 % of the initial value				
Dissipati	ion Factor		Not mo	Not more than 200% of the specified value				
Leakage	Current		Not mor	Not more than the specified value				
After pla	After placed at 85°C without voltage applied for 500 hours,							
Shalf Life	citors shall meet the	• .	•					

Dimensions

ϕD	5	6.3	8	10	13	16	18
P	2.0	2.5	3.5	5.0	5.0	7.5	7.5
ϕ d	0.5	0.5	0.6	0.6	0.6	8.0	8.0
а	1.5	1.5	1.5	1.5	2.0	2.0	2.0

■ Multiplier for Ripple Current

Freq.(Hz)	50	120	1K	10K	100K
25 ~35	0.8	0.9	1.0	1.6	1.8
50 ~ 100	0.8	0.9	1.0	1.7	2.0

RB Non-Polar Series

0 "					F	Rated (Sui	rge) Voltag	je				
Capacitance (µF)	25 (25 (32)		35 (44)		(63)	63 ((79)	80 (100)	100 ((125)
(μι)	Size	Ripple	Size	Ripple	Size	Ripple	Size	Ripple	Size	Ripple	Size	Ripple
1											6.3x11	70
1.5										***************************************	6.3x11	85
2.2									6.3x11	95	8x11	110
3.3							6.3x11	105	8x11	130	8x11	140
4.7							8x11	145	8x11	155	10x12.5	200
5.6					6.3x11	130	8x11	160	10x12.5	200	10x12.5	215
6.8					8x11	170	8x11	180	10x12.5	220	10x12.5	235
8.2					8x11	185	8x11	195	10x12.5	245	10x16	290
10			6.3x11	170	8x11	205	10x12.5	255	10x12.5	270	10x16	320
15	6.3x11	200	8x11	240	10x12.5	295	10x12.5	310	10x16	390	10x20	445
22	8x11	280	10x12.5	340	10x12.5	360	10x16	420	10x20	505	13x20	625
33	8x11	340	10x12.5	420	10x16	515	10x20	580	13x20	720	13x25	845
47	10x12.5	480	10x16	555	10x20	660	13x20	805	13x25	945	16x25	1155
56	10x12.5	520	10x16	640	13x20	835	13x20	880	13x25	1030	16x25	1260
68	10x16	635	10x16	705	13x20	920	13x25	1070	16x25	1300	16x32	1520
82	10x16	700	10x20	830	13x20	1010	13x25	1175	16x25	1430	16x36	1765
100	10x16	820	13x20	1065	13x25	1230	16x36	1480	16x36	1820	18x36	2080

SR

Bi-polar horizontal deflection Series

■ Features: 85°C 1000 hours

■Recommended Application:Non-polar capacirors for horizontal deflection circuits of TV sets,Correction at high frequency and high ripple currents

■Corresponding product to RoHS

Specifications

Item		Cha	aracteristics					
Operating Temperature Range	-40 ~ +85°C							
Rated Voltage Range	25~ 50VDC	25~ 50VDC						
Rated Capacitance Range	2.2 ~ 47 μ F							
Capacitance Tolerance	± 10 %(K) at 120Hz , 20°(± 10 %(K) at 120Hz , 20℃						
Leakage Current (MAX) (20°C)	DC Leakage current : 100µ A Max .(After 2 minutes both direction)							
Dissipation Factor (MAX)	WV	25	35	50				
(tan δ) (120Hz ,20 $^\circ$ C)	$ an\delta$	0.05	0.05	0.05				
	After applying rated voltage for 1000hrs at 85°C, (Polarity inverted every 250 hrs.)							
	the capacitors shall meet	t the following red	quirements.					
Endurance	Capacitance Change	Within ± 20 % o	of initial value					
	Dissipation Factor	Not more than	150% of specified	value				
	Leakage Current Not more than the specified value							
Shalf Life	After placed at 85°C without voltage applied for 500 hours,							
Shelf Life	the capacitors shall meet	the same require	ement as Endurand	ce.				

■ Diagram of Dimensions

ϕD	13.0	16.0 18.0		22.0
Р	5.0	7	10.0	
ϕ d	0.6	0	0.8	
а		2.0		

■ Multiplier for Ripple Current

Frequency (Hz)	Frequency (Hz) 1 60 1 120		400 ~ 1 K	15.75 K	
25~50 V	0.4	0.4	0.8	1.0	

SR

Bi-polar horizontal deflection Series

Difficusions	•		Rated (S	urge) Voltage		
Capacitance (µF)	25 (32)		35	5 (44)	50 (63)	
(r)	SIZE	RIPPLE	SIZE	RIPPLE	SIZE	RIPPLE
2.2	16X25	6	16X25	6	16X25	6
3.3	16X25	7	16X25	7	16X25	7
4.7	16X25	7	16X25	7	16X25	7
5.6	16X32	7	16X32	7	16X32	7
6.8	16X36	8	16X36	8	16X36	8
8.2	16X36	8	16X36	8	16X36	8
10	18X40	12	18X40	12	18X40	12
13	18X40	12	18X40	12	18X40	12
15	18X40	12	18X40	12	18X40	12
18	22X40	13	22X40	13	22X40	13
20	22X40	13	22X40	13	22X40	13
22	22X40	13	22X40	13	22X40	13
25	22X40	13	22X40	13	22X40	13
47	22X40	13	22X40	13	22X40	13

[☆] Size: D ϕ x L (mm) \Rightarrow Ripple Current: (Ap-p) / Sawtooth waveform 15.75KHz,85 $^{\circ}$ C

BX Bi-Polar Series

■ Features: 105°C,1000hrs, Bi-polarized/Polarity reversing

■ Recommended Applications: TV/Monitor, Horizontal deflection correction

Corresponding product to RoHS

Specifications

 Item			Cha	racteristics				
Operating Temperature Range	-40 ~ +105°C							
Rated Voltage Range	25 ~ 50VDC	25 ~ 50VDC						
Rated Capacitance Range	1 ~ 33 μF							
Capacitance Tolerance	± 10 % (K) at 120H	z , 20℃						
Leakage Current (MAX) (20℃)	I≦100μA (After rate	d voltage applied for 2 n	ninutes)					
Leakage Current (MAX) (20 C)	I= Leakage Current (μA)							
Dissipation Factor (MAX)	WV	25		35	50			
(tan δ) (120Hz ,20℃)	$ an\delta$	0.05		0.05	0.05			
	,	•		e capacitors shall meet the follow	wing requirements.			
	· · · · · · · · · · · · · · · · · · ·	e reversed every 250 ho						
Endurance	Capacitance Change	9	Within ± 15 % of the initial value					
	Dissipation Factor		Not more than 200% of the specified value					
	Leakage Current		Not more than the specified value					
Shelf Life	After placed at 105°(without voltage applied	for 500 h	ours,the capacitor shall meet the	same requirement as Enduran			

Dimensions

ϕ D	10	13	16	18	22	25
P	5.0	5.0	7.5	7.5	10.0	12.5
ϕ d	0.6	0.6	0.8	0.8	0.8	1.0
а	1.5	2.0	2.0	2.0	2.0	2.0

■ Multiplier for Ripple Current

Frequency (Hz)	Fraguency (Hz)		400 ~ 1 K	15.75 K	
25~50 V	0.4	0.4	0.8	1.0	

■Dimensions,Rated Ripple Current,Equivalent Series Resistance

Capacitance (μF)	Rated (Surge) Voltage								
	25 (32)			35 (44)			50 (63)		
	Size	Ripple	ESR	Size	Ripple	ESR	Size	Ripple	ESR
1							10x20	1.4	66.4
1.2				10x20	1.5	55.3	13x20	1.8	55.3
1.5				10x20	1.8	44.3	13x20	2.0	44.3
1.8	10x20	1.9	36.9	13x20	2.2	36.9	13x20	2.2	36.9
2.2	13x20	2.5	30.2	13x20	2.5	30.2	13x20	2.5	30.2
2.7	13x20	2.7	24.6	13x20	2.7	24.6	13x25	3.0	24.6
3.3	13x20	3.1	20.1	13x25	3.3	20.1	16x25	3.8	20.1
3.9	13x20	3.3	17	13x25	3.6	17	16x25	4.0	17.0
4.7	13x25	4.0	14.1	16x25	4.5	14.1	16x25	4.5	14.1
5.6	16x25	5.0	11.9	16x25	5.0	11.9	16x32	5.4	11.9
6.8	16x25	5.5	9.76	16x32	6.0	9.76	16x36	6.8	9.76
8.2	16x25	6.0	8.09	16x32	6.5	8.09	18x36	7.4	8.10
10	16x32	7.3	6.64	16x36	7.6	6.64	18x40	8.5	6.64
12	16x36	8.5	5.53	18x36	8.5	5.53	22x40	9.3	5.53
15	18x36	9.3	4.43	18x40	10	4.43	22x40	11	4.43
18	18x40	11	3.69	22x40	12	3.69	25x40	14	3.69
22	22x40	13	3.02	22x40	14	3.02	25x40	15	3.02
27	22x40	15	2.46	25x40	16	2.46			
33	25x40	18	2.01						

 \Leftrightarrow Size: D ϕ x L (mm) \Leftrightarrow Max Ripple Current [RC(Ap-p) / Sawtooth waveform 15.75KHz,105°C] \Leftrightarrow ESR:(Ω),120Hz,20°C

SB

Low leakage current Series

■ Features: 105°C 1000 hours

■ Recommended Applications:

in where low leakage current is essential as in coupling of pre-amplifies Remaining of very low leakage current even after prolonged storage

■ Corresponding product to RoHS

Specifications

been		Characteristics										
Item				Cna	racterist	ICS						
Operating Temperature Range	-40 ~ +105°C											
Rated Voltage Range	6.3 ~ 100VDC											
Rated Capacitance Range	1 ~ 4700 <i>µ</i> F											
Capacitance Tolerance	± 20 % at 120Hz ,	± 20 % at 120Hz , 20℃										
Leakage Current (MAX) (20°C)	I=0.002CV or 0.4 μ A ,whichever is greater. (After rated voltage applied for 2 minutes)											
	WV	6.3	10	16	25	35	50	63	80	100		
Dissipation Factor (MAX)	$ an\delta$	0.28	0.24	0.20	0.16	0.14	0.12	0.10	0.10	0.10		
(tan δ) (120Hz ,20 $^{\circ}$ C)	When nominal capacitance is over 1000 μ F,											
	$ an \delta$ shall be added 0.02 to the listed value with increase of every 1000 μ F.											
Low Temperature Stability	Z(120Hz) WV	6.3	10	16	25	35	50	63	80	100		
Impedance Ratio (MAX)	Z(-25°C)/ Z(+20°C	4	3	2	2	2	2	2	1.5	1.5		
	Z(-40°C)/ Z(+20°C	8	6	4	4	3	3	3	2	2		
	After applying rate	d voltag	e for 100	00 hours	at 105°	2,						
	the capacitors sha	II meet t	he follov	ving requ	uirement	S.						
Endurance	Capacitance Ch	nange			Withi	in ± 25 %	6 of initia	l value				
	Dissipation Fa	ctor		N	ot more	than 200	% of spe	ecified va	alue			
	Leakage Cur	rent			Not mo	re than t	he speci	fied valu	е			
	After 500 hrs at 105°C without applying rated voltage											
Ob a K 1 : K a	Capacitance Ch	nange			Withi	in ± 25 %	6 of initia	l value				
Shelf Life	Dissipation Fa	ctor		N	ot more	than 200	% of spe	ecified va	alue			
	Leakage Cur	rent		N	ot more	than 200	% of spe	ecified va	alue			

■ Diagram of Dimensions

ĺ	ϕ D	4	5	6.3	8	10	13	16	18	22
ĺ	Р	1.5	2	2.5	3.5	5	5	7.5	7.5	10
ĺ	ϕd	0.45	0.5	0.5	0.6	0.6	0.6	0.8	0.8	0.8
ĺ	а	1.0	1.5	1.5	1.5	1.5	2.0	2.0	2.0	2.0

■ Multiplier for Ripple Current

	0.0				
Frequency (Hz)	50	120	300	1K	10K
6.3 ~ 25 V	0.85	1.00	1.04	1.08	1.19
35~ 50 V	0.80	1.00	1.30	1.40	1.43
63 ~ 100 V	0.77	1.00	1.34	1.43	1.48

SB Low leakage current Series

■Dimensions,Rated Ripple Current

Dilliension	Dimensions, Rated Ripple Current													
			Rated (Sur	ge) Voltage										
Capacitance (µF)	6.3V	(8)	10V	(13)	16V (20)									
Сараскансе (µг.)	SIZE	Ripple	SIZE	Ripple	SIZE	Ripple								
1														
2.2														
3.3														
4.7														
10					5x11	40								
22			5x11	50	5x11	55								
33	5x11	55	5x11	60	5x11	70								
47	5x11	65	5x11	75	5x11	85								
100	5x11	95	5x11	110	6.3x11	140								
220	6.3x11	165	6.3x11	180	8x11	230								
330	6.3x11	195	8x11	250	8x11	280								
470	8x11	270	8x11	300	10x12.5	400								
1000	10x12.5	465	10x17	600	10x17	660								
2200	13x20	925	13x20	1000	13x25	1210								
3300	13x20	1100	13x25	1300	16x26	1610								
4700	16x26	1600	16x26	1700	16x32	2020								
6800	16x26	1810	16x32	2100	18x36	2520								
10000	16x32	2210	18x36	2630	18x40	2910								
15000	18x36													

 $\stackrel{\wedge}{\sim}$ Size: D ϕ x L (mm) $\stackrel{\wedge}{\sim}$ Ripple Current: (mA/rms). 105 $^{\circ}$ C,120Hz

SB Low leakage current Series

■Dimensions,Rated Ripple Current

	s, Kateu Kippi		Rated (Sur	ge) Voltage		
0 " (5)	25V	(32)	35V	(44)	50V	(63)
Capacitance (μF)	SIZE	Ripple	SIZE	Ripple	SIZE	Ripple
1					5x11	10
2.2					5x11	20
3.3					5x11	30
4.7	5x11	30	5x11	35	5x11	35
10	5x11	40	5x11	45	5x11	55
22	5x11	60	5x11	65	5x11	75
33	5x11	75	5x11	80	6.3x11	100
47	5x11	90	6.3x11	110	6.3x11	120
100	6.3x11	140	8x11	180	8x11	200
220	8x11	250	10x12.5	320	10x17	400
330	10x12.5	360	10x17	450	10x20	520
470	10x17	490	10x20	570	13x20	730
1000	13x20	880	13x25	1060	16x26	1330
2200	16x26	1550	16x32	1700	18x36	2100
3300	16x32	1860	18x36	2200		
4700	18x36	2380	18x40	2610		
6800	18x40	2770				
10000						
15000						

 $\stackrel{\wedge}{\sim}$ Size: D ϕ x L (mm) $\stackrel{\wedge}{\sim}$ Ripple Current: (mA/rms). 105°C,120Hz

SB Low leakage current Series

■Dimensions,Rated Ripple Current

	Rated (Surge) Voltage												
			Rated (Sur	ge) Voltage									
Capacitance (µF)	63V	(79)	80V ((100)	100V (125)								
оправланов (рг.)	SIZE	Ripple	SIZE	Ripple	SIZE	Ripple							
1					5x11	10							
2.2					5x11	20							
3.3					5x11	30							
4.7	5x11	35			5x11	40							
10	5x11	50	6.3x11	60	6.3x11	65							
22	6.3x11	80	8x11	110	8x11	115							
33	6.3x11	100	8x11	130	10x12.5	160							
47	8x11	140	10x12.5	180	10x17	230							
100	10x12.5	230	10x17	310	13x20	410							
220	10x20	430	13x20	560	16x26	750							
330	13x20	610	13x25	750	16x26	920							
470	13x25	800	16x26	10x20	16x32	1200							
1000	16x32	1460	18x36	1830									
2200													
3300													
4700													
6800													
10000													
15000													

 $[\]stackrel{\wedge}{\sim}$ Size: D ϕ x L (mm) $\stackrel{\wedge}{\sim}$ Ripple Current: (mA/rms). 105 $^{\circ}$ C,120Hz

Low Impedance and high frequency Series

■ Features: 105° C 1000~3000 hours,Low impedance , high permissible ripple currer at high frequency and high operation temperature (-40 ~ +105°C)

■ Recommended Applications: Applicable for switching regulator of computer , especially for high frequency

■Corresponding product to RoHS

■ Specifications

 Item				Chara	acteristics								
Operating Temperature Range	-40 ~ +105°C												
Rated Voltage Range	6.3 ~ 100VDC												
Rated Capacitance Range	4.7 ~ 15000 µ F												
Capacitance Tolerance	± 20 % at 120Hz ,	20 ℃											
Leakage Current (MAX)(20°C)	I=0.01CV or 3 // A	,whicheve	r is greater	. (After rate	ed voltage a	applied for 2	2 minutes)					
	WV	WV 6.3 10 16 25 35 50 63 100											
Dissipation Factor (MAX)	$ an \delta$	$ an \delta$ 0.22 0.19 0.16 0.14 0.12 0.10 0.09 0											
(tan δ) (120Hz ,20 $^{\circ}$ C)	When nominal cap	When nominal capacitance is over 1000 μ F,											
	$ an \delta$ shall be adde	an δ shall be added 0.02 to the listed value with increase of every 1000 μ F.											
Low Temperature Stability	WV Z(120Hz)	6.3	10	16	25	35	50	63	100				
	Z-25°C / Z+20°C	4	3	3	3	3	2	2	2				
Impedance Ratio (MAX)	Z-40°C / Z+20°C	8	6	4	4	4	4	4	4				
	After applying rate the capacitors shall If dimension is dow	I meet the	following re	equirement	s.		ard						
	Capacitance (Change			Within ±	= 20 % of in	itial value						
Endurance	Dissipation F	actor		No	ot more tha	n 200% of	specified v	alue					
	Leakage Cu	irrent			Not more t	han the sp	ecified valu	ie					
	Case Dia		5 x 11 ~	10 x 12.5			10 x 15	higher					
	Life		20	00			30	000					
	* If dimension is down size, Endurance will be less 1000hrs than standard.												
Shelf Life	After placed at 105	°C without	voltage ap	plied for 10	000 hours,								
Sileii Lile	the capacitors sha	I meet the	same requ	irement as	Endurance) .							

■ Diagram of Dimensions

ϕD	5	6.3	8	10	13	16	18	22
Р	2.0	2.5	3.5	5.0	5.0	7.5	7.5	10.0
ϕd	0.50	0.5	0.6	0.6	0.6	0.8	0.8	0.8
а	1.5	1.5	1.5	1.5	2.0	2.0	2.0	2.0

■ Multiplier for Ripple Current

Trequency coemic	JEHL					
Frequency (Hz)	50	120	300	1K	10K	100K
Below 4.7 μ F	0.30	0.40	0.50	0.70	0.80	1.00
5.6 ~ 33 μ F	0.40	0.50	0.60	0.80	0.90	1.00
34 ~ 330 μF	0.60	0.70	0.80	0.90	0.95	1.00
331 ~ 1000 μF	0.65	0.90	0.90	0.98	1.00	1.00
1200 <i>μ</i> F Above	0.85	0.90	0.95	0.98	1.00	1.00

Low Impedance and high frequency Series

Dimensions Rated Rinnle Current May Impedance

0 "					R	ated (Sur	ge) Voltag	е				
Capacitance		6.3V (8))		10V (13)		16V (20)		25V (32)
(µF)	SIZE	Ripple	Z	SIZE	Ripple	Z	SIZE	Ripple	Z	SIZE	Ripple	Z
4.7												
6.8												
10												
10										5x11	50	0.550
22												
33												
47										5x11	150	0.450
56							5x11	100	0.630	5x11	150	0.42
68							5x11	150	0.420	6.3x11	200	0.37
100				5x11	150	0.420	5x11	200	0.370	6.3x11	250	0.22
100												
120				5x11	200	0.370	6.3x11	250	0.320	8x11	300	0.20
150	5x11	200	0.420	6.3x11	250	0.320	6.3x11	300	0.220	8x11	550	0.14
220	6.3x11	250	0.320	6.3x11	300	0.220	8x11	550	0.140	*8x11	620	0.12
220										8x15	750	0.10
270	*6.3x11	300	0.220									
	*6.3x11	320	0.230	8x11	550	0.140	*8x11	620	0.120	*8x15	660	0.10
330	8x11	400	0.180				8x15	750	0.100	8x20	800	0.06
							10x12.5	688	0.080	10x16	900	0.08
	*6.3x11	440	0.180	*8x11	620	0.120	*8x15	730	0.093	*8x20	1000	0.06
470	8x11	550	0.140	8x15	750	0.100	10x12.5	800	0.085	*10x12.5	900	0.08
										10x16	1050	0.06
680	*8x11	580	0.120	*8x11	640	0.110	10x16	1050	0.064	10x20	1100	0.03
000	8x15	700	0.100	10x12.5	800	0.085						
820	8x20	750	0.085	10x16	1050	0.064	10x20	1100	0.044	10x20	1250	0.03
	*8x11	580	0.150	8x20	1080	0.065	*10x16	1140	0.043	*10x20	1160	0.04
1000	*8x15	670	0.085	*10x12.5	930	0.075	10x20	1250	0.039	*10x25	1310	0.04
1000	8x20	800	0.069	10x16	990	0.085				13x20	1450	0.03
	10x12.5	690	0.080	10x20	1100	0.050						
1200	10x16	1000	0.064	10x20	1250	0.044	*10x25	1310	0.042	13x25	1600	0.03
1200							13x20	1450	0.038			
	*8x15	980	0.085	10x20	1450	0.039	*10x20	1200	0.045	*13x30	1750	0.03
1500	*8x20	1070	0.051				13x20	1600	0.034	16x25	2000	0.02
1500	*10x16	1070	0.055									
	10x20	1250	0.044									
	*10x20	1220	0.051	*10x20	1330	0.047	*10x30	1780	0.032	*13x30	1810	0.02
2200	*10x25	1310	0.048	*10x25	1450	0.039	*13x20	1720	0.033	*16x25	1660	0.03
	13x20	1450	0.043	13x20	1600	0.038	13x25	2000	0.028	16x32	2200	0.02
3300	*10x25	1400	0.043	*10x30	1740	0.032	*13x40	2200	0.026	*16x36	2540	0.01
3300	13x25	1700	0.035	13x25	2000	0.028	16x25	2200	0.024	18x36	2550	0.01
3900	13x25	1750	0.032									
	*13x30	1570	0.033	*13x25	1860	0.028	16x36	2550	0.019	18x36	2800	0.01
4700	*13x25	1520	0.032	16x25	2200	0.024						
	16x25	1800	0.028									
6800	16x32	2000	0.024	16x36	2550	0.019	18x36	2800	0.019	18x36	2800	0.01
8200	16x32	2350	0.019	18x36	2800	0.019						
10000	16x36	2550	0.019									
15000	18x36	3000	0.019					-	-		-	

[☆] Size: D ψ x L (mm) ☆ Ripple Current: (mA/rms), 105°C,100KHz ☆ Impedance (Ω),20°C,100KHz * " is down size , Ripple Life is less 1000 hrs than standard

Low Impedance and high frequency

■Dimensions,Rated Ripple Current,Max Impedance

Onnacitanas			,			D (SURA	GE) VOL	ΓAGE				
Capacitance (µF)	;	35V (44))		50V (63))		63V (79))	1	00V (125	5)
(μι)	SIZE	Ripple	Z	SIZE	Ripple	Z	SIZE	Ripple	Z	SIZE	Ripple	Z
4.7	5x11	115	1.200	5x11	115	2.000	5x11	115	2.200	5x11	120	2.000
6.8	5x11	120	1.000	5x11	120	1.850	5x11	120	2.000	5x11	140	1.850
10	5x11	140	0.900	5x11	140	1.700	5x11	140	1.850	6.3x11	200	1.500
15	5x11	170	0.690	5x11	180	1.200	5x11	200	1.700	6.3x11	250	1.200
22	5x11	190	0.420	5x11	200	0.700	6.3x11	250	1.200	8x11	300	0.790
33	5x11	200	0.420	6.3x11	250	0.600	6.3x11	300	0.900	8x15	450	0.590
47	6.3x11	250	0.370	6.3x11	300	0.520	8x11	450	0.700	10x16	550	0.350
68	6.3x11	300	0.220	8x11	450	0.350	8x11	550	0.520	10x20	650	0.240
100	*6.3x11	360	0.180	*8x11	480	0.290	8x20	650	0.350	13x20	800	0.180
100	8x11	450	0.140	8x15	550	0.250						
120	8x11	550	0.130	8x20	650	0.210	10x16	800	0.300	13x25	1050	0.150
150	8x15	650	0.100	10x12.5	800	0.160	10x16	1050	0.200	13x25	1300	0.110
220	*8x15	730	0.100	*10x16	1050	0.100	10x20	1300	0.150	16x25	1400	0.071
220	10x12.5	800	0.069	10x25	1050	0.068						
330	*10x16	900	0.052	10x20	1300	0.072	13x20	1400	0.100	16x32	1550	0.049
330	10x20	1050	0.044									
470	10x20	1300	0.039	*10x20	1390	0.075	13x25	1550	0.064	18x36	1770	0.038
470				13x20	1400	0.060						
680	13x20	1400	0.038	13x25	1550	0.050	16x25	1700	0.052			
820	13x20	1550	0.034	16x25	1700	0.040	16x32	1900	0.048			
1000	13x25	1700	0.029	16x25	1900	0.039	16x32	2100	0.042			
1200	16x25	1900	0.028	16x32	2100	0.025	16x36	2550	0.036			
1500	16x25	2100	0.024	16x36	2550	0.025	18x36	2800	0.033			
2200	*16x32	2300	0.021	18x40	2800	0.025						
2200	16x36	2550	0.019									
3300	18x36	2880	0.019									
3900												
4700												
6800												
8200												
10000												
15000												

Low Impedance and High ripple **Series**

 \blacksquare Features: 105°C, 1000 \sim 5000hrs Low Impedance and High ripple

↑ High ripple

■Corresponding product to RoHS

■ Specifications

Item		Characteristics											
Operating Temperature Range	-40 ~ +105°C												
Rated Voltage Range (WV)	6.3 ~ 100VDC												
Rated Capacitance Range	5.6 ~ 6800 µF												
Capacitance Tolerance (20°C)	± 20 % at 120Hz												
	I≦0.01CV or 3μA ,whi	≤ 0.01CV or 3μA ,whichever is greater. (After rated voltage applied for 2 minutes)											
Leakage Current (MAX) (20°C)	I= Leakage Current (μΑ	- Leakage Current (μA) C= Nominal Capacitance (μF) V= Rated Voltage (V)											
	WV	WV 6.3 10 16 25 35 50 63 100											
Dissipation Factor (MAX)	$ an \delta$	0.22	0.19	0.16	0.14	0.12	0.10	0.09	0.08				
(tan δ) (120Hz ,20℃)	When nominal capacitance is over 1000µF,												
	tanδ shall be added 0.0	tanδ shall be added 0.02 to the listed value with increase of every 1000μF.											
Low Temperature Stability	Z(120Hz) WV	6.3	10	16	25	35	50	63	100				
Impedance Ratio (Max)	Z(-25°C) / Z(20°C)	2	2	2	2	2	2	2	2				
	Z(-40°C) / Z(20°C)	3	3	3	3	3	3	3	3				
	After applying rated vo	pacitor shall	meet the f	ollowing r			Case (time (hrs)				
Fadurana	Capacitance Change	Within±25%				-		_ 0.0	2000				
Endurance	Dissipation Factor	Not more that			ed value		ÀII '	-	3000				
	Leakage Current Not more than the specified value								4000				
								≧13	5000				
	*If dimension is down s												
Shelf Life	After placed at 105°C v		•		•	hours for l	_=7),						
SS 2.113	the capacitor shall meet the same requirement as Endurance.												

■ Dimensions [mm]

ϕ D	4	5	6.3	8	10	13	16	18
Р	1.5	2	2.5	3.5	5.0	5.0	7.5	7.5
ϕ d	0.45	0.5 (0.45)	0.5 (0.45)	0.6 (0.5)	0.6	0.6	0.8	8.0
а	1.0	1.5 (1.0)	1.5 (1.0)	1.5 (1.0)	1.5	2.0	2.0	2.0

(): L = 7

■ Multiplier for Ripple Current

Frequency coefficient					
Freq. (Hz)	50	120	1K	10K	100K
5.6 ~ 390	0.60	0.70	0.85	0.95	1.00
470 ~ 1000	0.65	0.75	0.90	0.98	1.00
1200 ~ 6800	0.75	0.80	0.95	1.00	1.00

SJ

Low Impedance and High ripple Series

■ Dimensions, Rated Ripple Current, Max Impedance

							Rated (S	urage) V	oltage						
Capacitance (µF)		6.3V (8)			IOV (13)			16V (20)			25V (32)			35V (44)	
(µi <i>)</i>	SIZE	Ripple	Z	SIZE	Ripple	Z	SIZE	Ripple	Z	SIZE	Ripple	Z	SIZE	Ripple	Z
10													4x7	130	0.96
15										4x7	130	0.94	5x7	190	0.57
18							4x7	130	0.92	5x7	170	0.69	5x7	210	0.47
27				4x7	130	0.89	5x7	190	0.61	5x7	210	0.46	5x11	230	0.37
33				5x7	160	0.75	5x7	210	0.45	5x11	220	0.42	5x11	250	0.30
39	4x7	130	0.85	5x7	175	0.64	5x11	220	0.43	5x11	230	0.36	6.3x7	300	0.25
47	F.v.7	475	0.7	F.v.7	100	0.50	Fv44	220	0.20	Fv44	250	0.0	6.3x11	380	0.15
47	5x7	175	0.7	5x7	190	0.53	5x11	230	0.36	5x11	250	0.3	8x7	350	0.19
56	5x7	190	0. 56	5x7	210	0.44	5x11	250	0.3	6.3x7	300	0.24	6.3x11	410	0.13
50	3.7	190	0. 50	387	210	0.44	3811	250	0.3	0.387	300	0.24	8x7	380	0.16
68	5x7	210	0.43	5x11	210	0.44	6.3x7	300	0.24	6.3x11	340	0.19	8x11	510	0.12
00	3.7	210	0.43	SXII	210	0.44	0.387	300	0.24	8x7	310	0.22	OXII	310	0.12
100	5x11	200	0.43	5x11	250	0.3	6.3x11	370	0.16	6.3x11	410	0.13	8x11	620	0.105
100	6.3x7	240	0.35	JATT	250	0.5	8x7	350	0.18	8x7	380	0.15	0.11	020	0.103
120	5x11	220	0.38	6.3x7	300	0.23	6.3x11	410	0.13	8x11	560	0.12	8x11	680	0.088
120	6.3x7	270	0.29	0.387	300	0.23	8x7	380	0.15	0.711	300	0.12	OXII	000	0.000
150	5x11	250	0.3	8x7	350	0.18	8x11	510	0.12	8x11	630	0.105	8x11	760	0.072
130	6.3x7	300	0.23	OA7	330	0.10	OXII	310	0.12	OXII	030	0.100	OXII	700	0.072
180	8x7	340	0.18	8x7	380	0.15	8x11	560	0.11	8x11	690	0.088	8x15	910	0.068
100	0.77	340	0.10	0.77	300	0.10	OXII	300	0.11	OXII	030	0.000	10x12.5	930	0.065
220	8x7	380	0.15	6.3x11	410	0.13	8x11	620	0.1	8x11	760	0.072	10x12.5	1030	0.053
220	OXI	000	0.10	0.0711	410	0.10	OXTT	020	0.1	OXTT	700	0.072	10/12.0	1000	0.000
270	6.3x11	370	0.16	8x11	580	0.12	8x11	690	0.088	8x15	900	0.068	8x20	1250	0.041
210	0.0711	010	0.10	OXII	000	0.12	OXTT	000	0.000	10x12.5	930	0.065	OAZO	-	0.041
330	6.3x11	410	0.13	8x11	640	0.1	8x11	760	0.072	10x12.5	1030	0.053	10x16	1430	0.038
470	8x11	680	0.086	8x11	760	0.072	8x15	1000	0.056	8x20	1250	0.041	10x20	1820	0.026
							10x12.5	1030	0.053	10x16	1430	0.038			
560	8x11	760	0.072	8x15	910	0.068	8x20	1140	0.049	10x20	1650	0.032	10x25	2150	0.023
				10x12.5	940	0.064	10x16	1300	0.046						<u> </u>
680	8x15	900	0.062	10x12.5	1030	0.053	8x20	1250	0.041	10x20	1820	0.026	13x20	2360	0.023
							10x16	1430	0.038						
820	8x15	1000	0.056	8x20	1130	0.05	10x20	1650	0.032	10x25	2150	0.023	13x25	2510	0.02
				10x16	1300	0.046									
1000	10x12.5	1030	0.053	8x20	1250	0.041	10x20	1820	0.026	13x20	2360	0.021	13x25	2770	0.018
				10x16	1430	0.038									<u> </u>
1200	8x20	1250	0.041	10x20	1820	0.026	10x25	2150	0.023	13x25	2510	0.02	13x30	3290	0.016
	10x16	1430	0.038										16x20	3140	0.018
1500	10x20	1820	0.026	10x25	2150	0.023	13x20	2360	0.021	13x25	2770	0.018	13x35	3400	0.015
1800	10x25	1940	0.025	13x20	2230	0.022	13x25	2510	0.02	13x30	3290	0.016	16x25	3460	0.016
2000	10.05	0450	0.000	40.00	0000	0.004	40.05	0770	0.040	16x20	3140	0.018			
2200	10x25	2150	0.023	13x20	2360	0.021	13x25	2770	0.018	13x35	3400	0.015			
2700	13x20	2230	0.022	13x25	2510	0.02	13x30	3290	0.016	16x25	3460	0.016			
2000	10.00	0000	0.004	40.05	0770	0.040	16x20	3140	0.018						
3300	13x20	2360	0.021	13x25	2770	0.018	13x35	3400	0.015						
3900	13x25	2770	0.018	13x30	3290	0.016	16x25	3460	0.016						
4700	10000	2000	0.040	16x20	3140	0.018				1			-		
4700	13x30	3290	0.016	13x35	3400	0.015				1			-		
5600	13x35	3400	0.015	16x25	3460	0.016									
0000	16x20	3140	0.018												
6800	16x25	3460	0.016												

 $\begin{tabular}{ll} \updownarrow Size: D ϕ x L (mm) $&$ \updownarrow Ripple Current : mA/rms,105°C,100KHz $&$ \updownarrow Impedance : Z(Ω),20°C,100KHz $&$ \rangle $&$

ALUMINUM ELECTROLYTIC CAPACITORS Low Impedance and High ripple

Series

Dimension	is, Rated	Rippie Cu	rrent,wax		Surage)Vo	oltage			
Capacitance		50V (63)		raica (63V (79)			100V (125	<u> </u>
(µF)	SIZE	Ripple	Z	SIZE	Ripple	Z	SIZE	Ripple	Z
5.6	4x7	130	1	OILL	тарыс	_	OILL	i appio	ı
6.8	5x7	170	0.74				5x11	125	1.4
10	5x7	210	0.5				6.3x11	170	0.95
	6.3x7	220	0.38				0.07.11		
15	5x11	215	0.48	5x11	136	1.19	6.3x 11	210	0.57
	6.3x7	300	0.26						
22	5x11	240	0.34	6.3x11	176	0.88	8x11	330	0.44
27	8x7	340	0.21	6.3x11	192	0.58	8x11	360	0.36
33	8x7	380	0.17	6.3x11	216	0.47	8x15	375	0.3
39	6.3x11	330	0.16	8x11	308	0.42	8x15	450	0.25
47	6.3x11	360	0.15	8x11	336	0.35	10x12.5	450	0.24
56	6.3x11	390	0.14	8x11	400	0.35	8x20	570	0.19
				8x15	488	0.26			
68	8x11	600	0.11	10x12.5	500	0.24	10x16	580	0.18
22	0.44	000	0.00	8x15	536	0.22	10x20	750	0.13
82	8x11	660	0.09	10x12.5	552	0.20	13x16	740	0.13
100	8x11	730	0.074	10x16	640	0.16	10x25	880	0.12
400	045	050	0.005	8x20	656	0.16	4000	4050	0.004
120	8x15	950	0.065	10x16	760	0.15	13x20	1050	0.094
150	10,40 5	000	0.004	10x20	808	0.13	10,05	1100	0.005
150	10x12.5	980	0.061	13x16	832	0.13	13x25	1100	0.085
400	000	4400	0.040	10x20	880	0.11	4005	4000	0.074
180	8x20	1190	0.046	13x16	912	0.11	13x25	1200	0.071
220	10x16	1370	0.042	10x25	1040	0.099	13x30	1410	0.063
220	100.10	1370	0.042	10,25	1040	0.099	16x20	1300	0.071
							13x35	1560	0.052
270	10x20	1580	0.03	13x20	1200	0.081	16x25	1600	0.053
							18x20	1470	0.069
330	10x25	1870	0.028	13x25	1480	0.058	13x40	1700	0.046
390	13x20	1870	0.028	13x30	1640	0.063	16x32	1750	0.041
330	10,20	1070	0.020	16x20	1448	0.073	18x25	1620	0.049
470	13x20	2050	0.027	13x30	1800	0.061	16x36	1890	0.033
470	TOXEO	2000	0.027	16x20	1592	0.061	18x32	1780	0.039
560	13x25	2410	0.023	13x35	1960	0.047	16x40	2080	0.03
			0.020	16x25	2040	0.043	18x36	2060	0.031
680	13x30	2860	0.021	13x40	2224	0.039	18x40	2570	0.028
				18x20	1960	0.051			
820	13x35	2960	0.019	16x32	2248	0.035	-		
	16x20	2730	0.023	18x25	2224	0.042			
1000	16x32	3350	0.021	16x36	2272	0.028			
				18x32	2616	0.034			
1200				16x40	2672	0.026	-		
,				18x36	2648	0.027			
1500				18x40	2736	0.024	re : 7(()) 2(

 $[\]mbox{$\stackrel{\wedge}{\simeq}$ Size: D ϕ x L (mm) } \mbox{$\stackrel{\wedge}{\simeq}$ Ripple Current : mA/rms,105 $^{\circ}_{\circ}$,100KHz } \mbox{$\stackrel{\wedge}{\simeq}$ Impedance : Z(Ω),20 $^{\circ}_{\circ}$,100KHz}$

SY

Low Impedance & Long Life Series

■ Features : Low Impedance , high permissible ripple current at high frequency and long life than SC

■ Recommended Applications:

Used switching regulator applications in computers. Especially for high frequency.

■ Corresponding product to RoHS

■ Specifications

Item				Charac	teristics							
Operating Temperature Range	-40 ~ +105°C											
Rated Voltage Range	6.3 ~ 100VDC											
Rated Capacitance Range	2.2 ~ 15000 μ F	2 ~ 15000 μ F										
Capacitance Tolerance		20% at 120Hz , 20°ℂ										
Leakage Current (MAX) (20°C)		0.01CV or 3 μ A ,whichever is greater. (After rated voltage applied for 2 minutes)										
Leakage Guirent (MAX) (20 C)	I= Leakage Curren	Leakage Current (μ A) C= Nominal Capacitance (μ F) V= Rated Voltage (V)										
	WV	6.3	10	16	25	35	50	63	100			
Dissipation Factor (MAX)	$ an \delta$	0.22	0.19	0.16	0.14	0.12	0.10	0.09	0.08			
(tan δ) (120Hz ,20 $^{\circ}$ C)	When nominal cap	en nominal capacitance is over 1000 μ F,										
	$ an \delta$ shall be adde	δ shall be added 0.02 to the listed value with increase of every 1000 μ F.										
Low Temperature Stability	Z(120Hz) WV	6.3	10	16	25	35	50	63	100			
Impedance Ratio (MAX)	Z-25°C / Z+20°C	4	3	2	2	2	2	2	2			
	Z-40°C / Z+20°C	8	6	4	3	3	3	3	3			
	After applying rated the capacitors shall	•				000 hours	at 105℃,					
	Capacitance C	hange			Within ±	25% of in	itial value					
	Dissipation F	actor		Not	more thar	1 200% of	specified	value				
Endurance	Leakage Cui	rrent		N	ot more th	nan the sp	ecified va	lue				
	D ψ 5 ψ ~	6.3ϕ	8 <i>ψ</i> ~10	ψ x12.5	10	φ x15~12	2 ψ	13 ϕ -	~18 ϕ			
	Life 3000) hrs	4000) hrs		5000 hrs		6000) hrs			
	*If dimension is dov	wn size,Eı	ndurance	will be les	s 1000 ho	ours than s	standard.					
Shelf Life	After placed at 105°C without voltage applied for 1000 hours,											
Stiell Life	the capacitors shal	the capacitors shall meet the same requirement as Endurance.										

■ Diagram of Dimensions

ϕ D	5	6.3	8	10	13	16	18
Р	2.0	2.5	3.5	5.0	5.0	7.5	7.5
ϕ d	0.5	0.5	0.6	0.6	0.6	0.8	0.8
а	1.5	1.5	1.5	1.5	2.0	2.0	2.0

■ Multiplier for Ripple Current

_	roqueries occiniolerit				
	Frequency (Hz)	120	1 K	10 K	100 K
	22 ~ 180 μF	0.40	0.75	0.90	1.00
	220 ~ 560 μF	0.50	0.85	0.94	1.00
	680 ~1800 μF	0.60	0.87	0.95	1.00
	2200 ~ 3900 μF	0.75	0.90	0.95	1.00
	4700 μ F Higher	0.85	0.95	0.98	1.00

Low Impedance & Long Life

				Rate	ed (Surge) '				
Capacitance (μ F)		6.3V (8)						16V (20)	
	SIZE	Ripple	Z	SIZE	Ripple	Z	SIZE	Ripple	Z
56							5x11	210	0.580
100				5x11	210	0.580	6.3x11	250	0.230
120							6.3x11	340	0.220
150	5x11	210	0.580						
220							6.3x11	469	0.185
				6.3x11	340	0.220	8x11	582	0.150
330	6.3x11	340	0.220				8x11	640	0.130
	6.3x11	510	0.160	8x11	640	0.130	*8x15	840	0.087
470							8x20	950	0.078
							*10x12.5	865	0.080
							10X16	1210	0.060
680	8x11	640	0.130	8x15	840	0.087	8x20	1050	0.069
000							10X16	1210	0.060
820	10x12.5	865	0.080	10x12.5	865	0.080			
	8x15	840	0.087	8x20	1050	0.069	8x20	1050	0.069
1000				10X16	1210	0.060	*10X16	1210	0.060
1000							10x20	1400	0.046
							13x16	1450	0.049
1200	8x20	1050	0.069	10x20	1400	0.046	10x25	1650	0.042
1200	10X16	1210	0.060						
	8x20	1050	0.069	10x25	1650	0.042	10x30	1910	0.031
1500	*10X16	1210	0.060	13x16	1450	0.049	13x20	1900	0.035
	10x20	1400	0.046				16x16	1940	0.042
1800	13x16	1450	0.049						
	*10x20	1400	0.046	10x30	1910	0.031	13x25	2230	0.027
2200	10x25	1650	0.042	13x20	1900	0.042	18x16	2210	0.043
				16x16	1940	0.042			
0700	10x30	1910	0.031	18x16	2210	0.043	13x30	2650	0.024
2700	16x16	1940	0.042				16x20	2530	0.027
	10x25	1650	0.042	10x30	1910	0.031			
3300	13x20	1900	0.035	13x25	2230	0.027	13X35	2880	0.020
	13x25	2230	0.027	13x30	2650	0.024	13x40	3350	0.017
3900	18x16	2210	0.043	16x20	2530	0.027	16x25	2930	0.021
							18x20	2860	0.026
	13x30	2650	0.024	13X35	2880	0.020	16x32	3450	0.017
4700			J.J_ 1			3.320	18x25	3140	0.019
	13X35	2880	0.020	13x40	3350	0.017	16X36	3610	0.015
5600	16x20	2530	0.027	16x25	2930	0.021	18x32	4170	0.015
0000	10,20	2000	0.021	18x20	2860	0.026	10/10/2		3.010
	13x40	3350	0.017	16x20	3450	0.020	16x40	4080	0.013
6800	16x25	2930	0.021	18x25	3140	0.017	10,40	-1000	0.010
0000	18x20	2860	0.021	10,20	0170	0.019			
	16x20	3450	0.020	16X36	3610	0.015	18x36	4220	0.014
8200	IUAJZ	J 4 JU	0.017	18x32	4170	0.015	10000	7440	0.012
	16X36	3610	0.015	16x32 16x40	4080	0.013	18x40	4280	0.012
10000							10340	4200	0.012
12000	18x25	3140	0.017	18x36	4220	0.014			
12000 15000	18x32 18x36	4170 4220	0.015	18x40	4280	0.012			

[☆] Size: D ϕ x L (mm) ☆ Ripple Current: (mA/rms), 105 $^{\circ}$ C,100KHz ☆ Impedance (Ω),20 $^{\circ}$ C,100KHz " * " is down size, Ripple life is less 1000 hrs than standard.

Low Impedance & Long Life Series

■Dimensions.Rated Ripple Current.Max Impedance

Dimensions,		1	.,	•	ed (Surge) V	oltage			
Capacitance (μF)		25V (32)		1 1	35V (44)	onago		50V (63)	
	SIZE	Ripple	Z	SIZE	Ripple	Z	SIZE	Ripple	Z
2.2	OIZE	Парріс		OIZE	таррю		5x11	85	2.280
4.7				5x11	95	2.400	5x11	100	2.000
10				5x11	130	1.600	5x11	135	1.200
22							5x11	180	0.700
33				5x11	210	0.580	6.3x11	245	0.490
47	5x11	210	0.580	6.3x11	275	0.390	6.3x11	300	0.520
56	0			6.3x11	340	0.220	6.3x11	295	0.300
68				6.3x11	500	0.170	0.07.11	200	0.000
82				6.3x11	540	0.160			
100	6.3x11	340	0.220	8x11	580	0.150	8x11	555	0.170
120	0.5811	340	0.220	0.711	300	0.150	8x15	730	0.170
150	8x11	640	0.160	8x11	640	0.130	10x12.5	760	0.120
	OXII	040	0.100	OXII	040	0.130			
180	044	0.40	0.400	*045	0.40	0.007	8x20	910	0.091
220	8x11	640	0.130	*8x15	840	0.087	10X16	1050	0.084
				10x12.5	865	0.080	40.00	4000	0.000
270				8x20	1050	0.069	10x20	1220	0.060
							13x16	1260	0.061
330	8x15	840	0.087	*10X16	1210	0.060	*10x20	1400	0.058
	10x12.5	865	0.080	10x20	1400	0.046	10x25	1440	0.055
	8x20	1050	0.069	10x20	1400	0.046	10x30	1690	0.043
470	*10x12.5	1050	0.070	13x16	1450	0.049	13x20	1660	0.045
	10X16	1210	0.060				16x16	1690	0.055
560				10x25	1650	0.042	13x25	1950	0.034
							18x16	1930	0.054
	10x20	1400	0.046	10x30	1910	0.031	13x30	2310	0.030
680	13x16	1450	0.049	13x20	1900	0.035			
				16x16	1940	0.042			
820	10x25	1650	0.042	13x20	1900	0.035	13X35	2510	0.025
020							16x20	2210	0.034
				13x25	2230	0.027	13x40	2920	0.021
1000	10x30	1910	0.031	18x16	2210	0.043	16x25	2555	0.025
1000	13x20	1900	0.035				18x20	2490	0.036
	16x16	1940	0.042						
4200	18x16	2210	0.043	13x30	2650	0.024	16x32	3010	0.022
1200				16x20	2530	0.027	18x25	2740	0.026
4500	*13x20	1900	0.035	13X35	2880	0.020	16X36	3150	0.019
1500	13x25	2230	0.027						
	13x30	2650	0.024	13x40	3350	0.017	16x40	3710	0.016
1800	16x20	2530	0.027	16x25	2930	0.021	18x32	3635	0.021
				18x20	2860	0.026			
0000	13X35	2880	0.020	16x32	3450	0.017	18x36	3680	0.017
2200	18x20	2860	0.026	18x25	3140	0.019			
	13x40	3350	0.017	16X36	3610	0.015	18x40	3800	0.014
2700	16x25	2930	0.021	18x32	4170	0.015			
	16x32	3450	0.017	16x40	4080	0.013			
3300	18x25	3140	0.019	18x36	4220	0.014			
3900	18x32	4170	0.015	18x40	4280	0.014			
4700	18x36	4220	0.013	100-40	-1200	0.012			
5600			0.014						
3000	18x40	4280	0.012	~ a\ 405°C 4			• (O) 20°C		

[☆] Size: D ϕ x L (mm) \Rightarrow Ripple Current: (mA/rms), 105°C,100KHz " * " is down size, Ripple life is less 1000 hrs than standard. ☆Impedance (Ω),20 $^{\circ}$ C,100KHz

SY

Low Impedance & Long Life Series

■ Dimensions,Rated Ripple Current,Max Impedance

■Dimensions,		<u></u>	-, .		d (Surge) Vo	oltage		
Capacitance (µF)		63V (79)			100V (125))		
	SIZE	Ripple	Z	SIZE	Ripple	Z		
6.8				5×11	55	2.3		
15	5×11	55	2.3	6.3×11	115	1.2		
27				8×12	232	0.63		
33	6.3×11	115	1.2					
39				8×15	300	0.45		
47				10×12.5	288	0.43		
56	8×12	232	0.63	8×20	362	0.33		
68				10×16	357	0.31		
82	8×15	300	0.45	10×20	466	0.21		
	10×12.5	288	0.43	13×16	466	0.23		
100				10×25	531	0.2		
120	8×20	362	0.33	10×30	663	0.15		
120	10×16	357	0.31	13×20	690	0.16		
150				16×16	795	0.14		
180	10×20	466	0.21	13×25	784	0.12		
100	13×16	466	0.23	18×16	920	0.12		
220	10×25	531	0.2	13×30	905	0.1		
220				16×20	1040	0.091		
	10×30	663	0.15					
270	13×20	690	0.16	13X35	1050	0.083		
	16×16	795	0.14	16×25	1250	0.073		
330	13×25	784	0.12	13×40	1180	0.071		
330				18×20	1240	0.08		
390				16×32	1570	0.054		
390	18×16	920	0.12	18×25	1490	0.057		
470	13×30	905	0.1	16×36	1790	0.045		
470	16×20	1040	0.091	18×32	1630	0.047		
500	13X35	1050	0.083					
560	16×25	1250	0.073	16×40	2020	0.04		
000	13×40	1180	0.071					
680	18×20	1240	0.08	18×36	1790	0.04		
000	16×32	1570	0.054					
820	18×25	1490	0.057	18×40	2330	0.036		
4000	16×36	1790	0.045					
1000	18×32	1630	0.047					
1200	16×40	2020	0.04					

 $[\]label{eq:size} \begin{array}{ll} \text{$\frac{1}{2}$ Size: D ϕ x L (mm)$} & \text{$\frac{1}{2}$ Ripple Current: (mA/rms), 105°C,100KHz} & \text{$\frac{1}{2}$ Impedance (Ω),20^{\circ}$C,100KHz} \\ \end{array}$

TA

Low Impedance & Long Life Series

 \blacksquare Features : 105°C 4000~10000hrs Low Impedance and long Life

■ Recommended Applications:

 $Applicable\ for\ SMPS,\ Adaptor, Charger, Monitor/Computer$

■ Corresponding product to RoHS

Specifications

Specifications												
Item				Charac	teristics							
Operating Temperature Range	-40 ~ +105°C											
Rated Voltage Range	6.3~35VDC											
Rated Capacitance Range	33 ~ 8200μF	3200μF										
Capacitance Tolerance	\pm 20 % at 120Hz , 20 $^{\circ}\mathrm{C}$	% at 120Hz , 20 $\!\!\!\!\!\!\!^{\circ}_{\circ}$										
Leekage Current (MAY) (20°C)	$I=0.01CV$ or $3(\mu A)$, wh	0.01CV or 3(μA) , whichever is greater. (After rated voltage applied for 2 minutes)										
Leakage Current (MAX) (20°C)	I= Leakage Current (μA) C= Nomir	nal Capacitar	nce (µF) V=	Rated Volta	age (V) (20℃)						
	WV	6.3	10	16	25	35						
Dissipation Factor (MAX)	tanδ	0.22	0.19	0.16	0.14	0.12						
(tanδ) (120Hz ,20°C)	When nominal capacitar	nominal capacitance is over $1000uF$, $Tan\delta$ shall be added 0.02 to the listed value with increase of every $1000uF$.										
Low Temperature Stability	Z(120Hz) WV	6.3	10	16	25	35						
Impedance Ratio (MAX)	Z-25°C / Z+20°C	4	3	2	2	2						
	Z-40°C / Z+20°C	8	6	4	3	3						
	After applying rated volt	5	• • •		00~10000h	ours at $105^\circ\!$						
	Capacitance Change			W	ithin ± 25 %	6 of initial valu	ie					
	Dissipation Factor			200%	or less of in	itial specified	value					
Endurance	Leakage Current			ir	nitial specifie	ed value or les	S					
	VDC	φ5~	6.3φ	φ8^	-10φ	φ12.5~	-18φ					
	6.3~10(V)	400	0hrs	600	0hrs	80001	nrs					
	16~100(V)	500	0hrs	700	0hrs	10000	hrs					
Shelf Life	After placed at 105°C without voltage applied for 1000 hours, the capacitors shall meet the same requirement as load life.											

■ Diagram of Dimensions

ψD	5	6.3	8	10	13	16	18
Р	2.0	2.5	3.5	5.0	5.0	7.5	7.5
ψd	0.5	0.5	0.6	0.6	0.6	0.8	0.8
a	1.5	1.5	1.5	1.5	2.0	2.0	2.0

■ Multiplier for Ripple Current

Frequency coefficient	riequency coefficient									
Freq. (Hz)	120	1K	10K	100K						
6.8 to 180	0.40	0.75	0.90	1.00						
220 to 560	0.50	0.85	0.94	1.00						
680 to 1800	0.60	0.87	0.95	1.00						
2200 to 3900	0.75	0.90	0.95	1.00						
4700μF Higher	0.85	0.95	0.98	1.00						

ALUMINUM ELECTROLYTIC CAPACITORS Low Impedance & Long Life

Series

Dimens							Rated ((Surge) V	'oltage						
Capacitance		6.3V (8))	1	0V (13)		16V (20		2	25V (32)		35V (44)
(μF)	SIZE	Ripple	Z	SIZE	Ripple	Z	SIZE	Ripple	Z	SIZE	Ripple	Z	SIZE	Ripple	Z
33													5x11	210	0.58
47										5x11	210	0.58			
56							5x11	210	0.58				6.3x11	340	0.22
100				5x11	210	0.58				6.3x11	340	0.22			
120							6.3x11	340	0.22						
150	5x11	210	0.58										8x11	640	0.13
220				6.3x11	340	0.220				8x11	640	0.13	8x15	840	0.087
220													10x12.5	865	0.080
270													8x20	1050	0.069
330	6.3x11	340	0.22				8x11	640	0.130	8x15	840	0.087	10x15	1210	0.060
330										10x12.5	865	0.080			
470				8x11	640	0.130	8x15	840	0.087	8x20	1050	0.069	10x20	1400	0.046
470							10x12.5	865	0.080	10x15	1210	0.060	13x16	1450	0.049
560													10x25	1650	0.042
680	8x11	640	0.13	8x15	840	0.087	8x20	1050	0.069	10x20	1400	0.046	10x30	1910	0.031
000				10x12.5	865	0.080	10X15	1210	0.060	13x16	1450	0.049	13x20	1900	0.035
820	10x12.5	865	0.080							10x25	1650	0.042			
1000	8x15	840	0.087	8x20	1050	0.069	10x20	1400	0.046	10x30	1910	0.031	13x25	2230	0.027
1000				10X15	1210	0.060	13x16	1450	0.049	13x20	1900	0.035			
1200	8x20	1050	0.069	10x20	1400	0.046	10x25	1650	0.042				13x30	2650	0.024
1200	10X15	1210	0.060										16x20	2530	0.027
1500	10x20	1400	0.046	10x25	1650	0.042	10x30	1910	0.031	13x25	2230	0.027	13x35	2880	0.020
1500				13x16	1450	0.049	13x20	1900	0.035						
	13x16	1450	0.049							13x30	2650	0.024	13x40	3350	0.017
1800										16x20	2530	0.027	16x25	2930	0.021
													18x20	2860	0.026
2200	10x25	1650	0.042	10x30	1910	0.031	13x25	2230	0.027	13x35	2880	0.020	16x32	3450	0.017
2200				13x20	1900	0.035				18x20	2860	0.026	18x25	3140	0.019
2700	10x30	1910	0.031				13x30	2650	0.024	13x40	3350	0.017	16x36	3610	0.015
2700							16x20	2530	0.027	16x25	2930	0.021	18x32	4170	0.015
3300	13x20	1900	0.035	13x25	2230	0.027	13x35	2880	0.020	16x32	3450	0.017	16x40	4080	0.013
3300										18x25	3140	0.019	18x36	4220	0.014
	13x25	2230	0.027	13x30	2650	0.024	13x40	3350	0.017	16x36	3610	0.015	18x40	4280	0.012
3900				16x20	2530	0.027	16x25	2930	0.021	18x32	4170	0.015			
							18x20	2860	0.026						
4700	13x30	2650	0.024	13x35	2880	0.020	16x32	3450	0.017	16x40	4080	0.013			
1, 00							18x25	3140	0.019	18x36	4220	0.014			
	13x35	2880	0.020	13x40	3350	0.017	16x36	3610	0.015	18x40	4280	0.012			
5600	16x20	2530	0.027	16x25	2930	0.021	18x32	4170	0.015						
				18x20	2860	0.026									
	13x40	3350	0.017	16x32	3450	0.017	16x40	4080	0.013						
6800	16x25	2930	0.021	18x25	3140	0.019									
	18x20	2860	0.026												
8200	16x32	3450	0.017	16x36	3610	0.015	18x36	4220	0.014						
0200				18x32	4170	0.015									

[☆] Size: D ψ x L (mm) ☆ Ripple Current: (mA/rms), 105°C,100KHz ☆ Impedance (Ω),20°C,100KHz

ST Low Impedance & Long Life Series

 \blacksquare Features : 105°C 4000~10000hrs Low Impedance and long Life

■ Recommended Applications:

 $Applicable\ for\ SMPS,\ Adaptor, Charger, Monitor/Computer$

■ Corresponding product to RoHS

■ Specifications

 Item				Charac	teristics						
Operating Temperature Range	-40 ~ +105°C										
Rated Voltage Range	6.3~63VDC	5.3~63VDC									
Rated Capacitance Range	10 ~ 15000μF	0 ~ 15000μF									
Capacitance Tolerance	± 20 % at 120Hz , 20℃	: 20 % at 120Hz , 20℃									
Leakage Current (MAX) (20°C)	I=0.01CV or 3(μA) , whi	chever is gre	eater. (After	rated voltage	e applied for	2 minutes)				
Leakage Current (MAX) (20 C)	I= Leakage Current (μΑ)	C= Nomin	al Capacitan	ce (µF) V= I	Rated Voltag	je (V) (20℃)					
	WV	6.3	10	16	25	35	50	63	1		
Dissipation Factor (MAX)	tanδ	0.22	0.19	0.16	0.14	0.12	0.14	0.14			
(tanδ) (120Hz ,20℃)	When nominal capacitan Down size tanδ add 3%.	When nominal capacitance is over 1000uF,Tanδ shall be added 0.02 to the listed value with increase of every 1000uF. Down size tanδ add 3%.									
Low Temperature Stability	Z(120Hz) WV	6.3	10	16	25	35	50	63			
Impedance Ratio (MAX)	Z-25°C / Z+20°C	4	3	2	2	2	2	2			
	Z-40°C / Z+20°C	8	6	4	3	3	3	3			
	After applying rated voltage with rated ripple current for 4000~10000hours at 105℃, the capacitors shall meet the following requirements.										
	Capacitance Change			W	ithin ± 25 %	6 of initial va	lue				
Endurance	Dissipation Factor					itial specified					
2.100101100	Leakage Current			ir	nitial specifie	d value or le	SS	_			
	VDC	φ5~	6.3φ	φ8~	_' 10φ	φ12.5	~18ф				
	6.3~10(V)	400	0hrs	600	0hrs	8000hrs					
	16~100(V)	500	0hrs	700	0hrs	1000	0hrs]			
Shelf Life	After placed at 105°C with the capacitors shall mee		• • •	,							

■ Diagram of Dimensions

ψD	5	6.3	8	10	13	16	18
Р	2.0	2.5	3.5	5.0	5.0	7.5	7.5
ψd	0.5	0.5	0.6	0.6	0.6	0.8	0.8
a	1.5	1.5	1.5	1.5	2.0	2.0	2.0

■ Multiplier for Ripple Current

Trequency coefficient								
Freq. (Hz)	120	1K	10K	100K				
6.8to180	0.40	0.75	0.90	1.00				
220to560	0.50	0.85	0.94	1.00				
680to1800	0.60	0.87	0.95	1.00				
2200to3900	0.75	0.90	0.95	1.00				
4700μF Higher	0.85	0.95	0.98	1.00				

ST

Low Impedance & Long Life Series

■Dimensions,Rated Ripple Current

C						Rated Vo	oltage(V)					
Capacitance (µF)		6.3			10			16		25		
(μι)	Size	Ripple	ESR	Size	Ripple	ESR	Size	Ripple	ESR	Size	Ripple	ESR
47										5x11	210	0.720
56							5x11	210	0.720			
100				5x11	210	0.72	6.3x11	340	0.380	6.3x11	340	0.380
150	5x11	210	0.720							8x11	640	0.200
220				6.3x11	340	0.38	8x11	640	0.200	8x11	640	0.200
330	6.3x11	340	0.380				8x15	701	0.160	8x15	840	0.160
470				8x11	640	0.200	8x15	840	0.160	10x15	1210	0.084
680	8x11	640	0.200	8x15	840	0.160	10x15	1210	0.084	10x20	1400	0.062
820	8x15	840	0.160							10x25	1650	0.052
1000	10x12	865	0.120	10x15	1210	0.084	10x20	1400	0.062	13x20	1900	0.046
1500	8x20	1050	0.110	10x20	1400	0.062	10x25	1650	0.052	13x25	2230	0.034
	10x15	1210	0.084									
2200	10x20	1400	0.062	10x25	1650	0.052	13x25	2230	0.034	13x35	2880	0.027
2700	10x25	1650	0.052	13x20	1900	0.046	13x30	2650	0.030	16x25	2930	0.028
3300	13x20	1900	0.046	13x25	2230	0.034	13x35	2880	0.027	16x32	3450	0.025
3900	13x25	2230	0.034	13x30	2650	0.030	13x40	3350	0.024	18x32	4170	0.015
4700	13x30	2650	0.030	13x35	2880	0.027	16x32	3450	0.028	18x36	4280	0.014
5600	13x35	2880	0.027	13x40	3350	0.024	16X36	3610	0.018			
3000	13833	2000	0.027	16x25	2930	0.028	18x32	4170	0.015			
6800	13x40	3350	0.024	16x32	3450	0.025	18x36	4220	0.014			
0000	16x25	2930	0.028	10332	3730	0.023						
8200	16x32	3450	0.025	16X36	3610	0.018						
10000	16X36	3610	0.018	18x36	4220	0.014						
12000	18x32	4170	0.015									
15000	18x36	4220	0.014									

Canasitanas				Ra	ted Voltage	(V)				
Capacitance (µF)		35			50			63		
(μι)	Size	Ripple	ESR	Size	Ripple	ESR	Size	Ripple	ESR	
10				5x11	120	3.50	5x11	55	2.300	
22				5x11	210	2.300				
33	5x11	210	0.720	6.3x11	340	1.200	6.3x11	115	1.200	
47	6.3x11	340	0.380	6.3x11	340	1.200				
56							8x11	232	0.630	
100				8x11	555	0.630				
120				8x15	730	0.450	10x16	357	0.310	
120							10/10	337	0.510	
150	8x11	640	0.200	8x20	910	0.330				
180							10x20	466	0.210	
220	8x15	840	0.160	10x16	1050	0.310	10x25	531	0.200	
270							10x30	663	0.150	
270							13x20	690	0.160	
330	10x20	1400	0.062	10x20	1400	0.210	13x25	784	0.120	
470	10x25	1650	0.052	10x30	1690	0.150	12,20 005	13x30 905	905	0.100
470	10,25	1030	0.032	13x20	1660	0.160	13,30	903	0.100	
560				13x25	1950	0.120	13x35	1050	0.083	
680	10x30	1910	0.044	13x30	2310	0.100	13x40	1180	0.071	
000	13x20	1900	0.046	13,30	2510	0.100	13,40	1100	0.071	
820	13x25	2230	0.034	13x35	2510	0.083	16x32	1570	0.054	
1000	13x25	2230	0.034	16x25	2555	0.073	16X36	1790	0.045	
1200	13x30	2650	0.030	16x32	3010	0.054	16x40	2020	0.040	
1500	13x35	2880	0.027	16X36	3150	0.045				
1800	13x40	3350	0.024	18x32	3635	0.047				
2200	16x32	3450	0.025	18x36	3680	0.040				
2700	16X36	3610	0.018	18x40	3800	0.036				
3300	18x36	4220	0.014							

SZ Ultra Low ESR Series

■ Features: 105°C 1000~2000 hours ,Lower ESR and higher ripple current

■ Recommended Applications: Applicable for switching regulator of computer, especially for high frequency

■ Corresponding product to RoHS

Specifications

Item		Cha	aracteristics					
Operating Temperature Range	-40 ~ +105°C							
Rated Voltage Range	6.3 ~ 16VDC							
Rated Capacitance Range	470 ~ 3300 μF							
Capacitance Tolerance	\pm 20 % at 120Hz , 20 $^{\circ}\!$							
Leakage Current (MAX)(20°C)	I=0.03CV ,(After rated volta	ge applied for 2 min	nutes)					
	WV	6.3	10	16				
Dissipation Factor (MAX)	$ an \delta$	0.22	0.19	0.16				
(tan δ) (120Hz ,20℃)	When nominal capacitance is over 1000µF,							
	$tan\delta$ shall be added 0.02 to the listed value with increase of every $1000\mu F.$							
	WV Z(120Hz)							
Low Temperature Stability	Z(120Hz)	6.3	10	16				
Impedance Ratio (MAX)	Z-25°C / Z+20°C	2	2	2				
	Z-40°C / Z+20°C	3	3	3				
	After applying rated voltage	with ripple current	for 2000 hours at 1	105℃,				
	the capacitors shall meet th	e following requirer	ments.					
Endurance	Capacitance Change	Within ± 25 % of	initial value					
Endurance	Dissipation Factor	Not more than 20	00% of specified va	lue				
	Leakage Current	Not more than the	e specified value					
	*If dimension is down size,Endurance will be less 1000 hours than standard.							
Shelf Life	After placed at 105°C witho	After placed at 105℃ without voltage applied for 1000 hours,						
Olicii Lile	the capacitors shall meet th	e same requiremer	nt as Endurance.					

■ Diagram of Dimensions

ϕ D	8	10
Р	3.5	5.0
ϕ d	0.6	0.6
а	1.5	1.5

■ Multiplier for Ripple Current

Frequency (Hz)	120	1K	10K	100K
Factor	0.5	0.8	0.9	1.0

SZ

Ultra Low ESR Series

■Dimensions,Rated Ripple Current,Equivalent Series Resistance

	Rated (S	urge) Voltage 6.3V (8)							
CAP	DxL	Ripple Current	ESR						
(,// F)	(mm)	(mA/ rms 105°C / 100KHz)	(m Ω Max 20°C / 100KHz)						
820	8 x 11	1036	43						
1200	8 x 15	1355	34						
1500	8 x 20	1740	25						
1300	10 x 12.5	1400	31						
1800	10 x 16	1818	23						
2200	10 x 20	2318	15						
3300	10 x 25	2364	14						

	Rated (Surge) Voltage 10V (13)								
CAP	DxL	Ripple Current	ESR						
(<u>//</u> F)	(mm)	(mA/ rms 105°C / 100KHz)	(m Ω Max 20 $^{\circ}$ C / 100KHz)						
680	8 x 11	1036	43						
1000	8 x 15	1355	34						
1000	10 x 12.5	1400	31						
1500	8 x 20	1700	25						
1300	10 x 16	1818	23						
1800	10 x 20	2318	16						
2200	10 x 25	2545	14						

	Rated (S	Surge) Voltage 16V (20)	
CAP	DxL	Ripple Current	ESR
(<u>//</u> F)	(mm)	(m Ω Max 20 $^{\circ}$ C / 100KHz)	
470	8 x 11	1036	43
680	8 x 15	1355	34
000	10 x 12.5	1400	31
1000	8 x 20	1700	25
1000	10 x 16	1818	23
1500	10 x 20	2318	16
1800	10 x 25	2546	14

 $\stackrel{1}{\not\sim}$ Size: D ϕ x L (mm) $\stackrel{1}{\not\sim}$ Ripple Current: (mA/rms), 105 $^{\circ}$ C,100KHz $\stackrel{1}{\not\sim}$ ESR (m Ω),20 $^{\circ}$ C,100KHz

AK Higher temperature range & Long Life Series

 \blacksquare Features : 125°C 2000~5000hrs $\,{}^{,}$ High Temperature and Long Life

■ Recommended Applications:

Applicable for Electronic Ballast, Lighting Ballast

■ Corresponding product to RoHS

Specifications

				С	haracteristi	cs					
	-40 ~ +125°C -25 ~ +125°C										
	10~63VDC								160~450VDC		
	47~ 4700 μ F								50μF		
				± 20 %	6 at 120Hz	, 20 ℃					
	I=0.010V or 2(uA), whichover is greater					I=C).1CV+40 ι	ıA (CV≦1000)			
	1–0.01CV of 3(μA), whichever is greater.								uA (CV>1000)		
				itance (μF) V= R	ated Volta	ge (V) (20°	C)			
WV	10	16	25	35	50	63	160~250	350~450			
tanδ	0.20	0.16	0.14	0.12	0.10	0.09	0.20	0.24			
When nominal ca	pacitance	e is over 1	000uF,								
$ an \delta $ shall be ad	ded 0.02	to the liste	ed value w	ith incre	ease of eve	ery 1000uF	-				
WV Z(120Hz)	10	16	25	35	50	63	160~250	350~450			
Z-25°C / Z+20°C	3	2	2	2	2	2	3	6			
Z-40°C / Z+20°C	6	4	4	4	4	3	-	-			
After applying rat	ed voltag	e for 2000	~5000hou	ırs at 12	25℃,						
the capacitors sh	all meet t	he followir	ng require	ments.							
Capacitance C	hange		Within ±	30 % o	f initial valu	ie	Wi	thin ± 20 %	of initial value		
		≦	≦300% of	f initial s	specified va	lue			itial specified value		
	rrent			pecified				≤ initial sp	ecified value		
								200	00Hrs		
	-)Hrs					
		der no loa									
							+		of initial value		
					<u> </u>				itial specified value		
Leakage Cu	rrent	≦	≦500% of	f initial s	specified va	lue	≤ 500	% of the in	itial specified value		
	I= Leakage Curre WV tanδ When nominal catan δ shall be ad WV Z(120Hz) Z-25°C / Z+20°C Z-40°C / Z+20°C After applying ratthe capacitors sh Capacitance Consistency Dissipation F Leakage Cu 8 Φ 2000Hrs After leaving cap. Capacitance Consispation F	(After rated voltage applie I= Leakage Current (μ A) WV	I=0.01CV or $3(\mu A)$ (After rated voltage applied for 2 min I= Leakage Current (μ A) C= Nomin WV 10 16 tanδ 0.20 0.16 When nominal capacitance is over 1 tan δ shall be added 0.02 to the lister δ shall be added 0.02 to the lister δ shall be added 0.02 to the lister δ and δ shall be added 0.02 to the lister δ and δ shall be added 0.02 to the lister δ and δ shall be added 0.02 to the lister δ shall be added 0.02 to the lister δ shall be added 0.02 to the lister δ and δ shall be added 0.02 to the lister δ and δ shall be added 0.02 to the lister δ shall be added 0.02 to the lister δ and δ shall be added 0.02 to the lister δ and δ shall be added 0.02 to the lister δ and δ shall be added 0.02 to the lister δ and δ are added 0.02 to the lister δ and δ and δ and δ are added 0.02 to the lister δ and δ and δ are added 0.02 to the lister δ and δ and δ are added 0.02 to the lister δ and δ and δ are added 0.02 to the lister δ and δ and δ and δ are added 0.02 to the lister δ and δ are added 0.02 to the lister δ and δ are added 0.02 to the lister δ and δ are added 0.02 to the lister δ and δ and δ are added 0.02 to the lister δ and δ are added 0.02 to the lister δ and δ are added 0.02 to the lister δ and δ are added 0.02 to the lister δ and δ are added 0.02 to the lister δ and δ are added 0.02 to the lister δ and δ are added 0.02 to the lister δ and δ are added 0.02 to the lister δ and δ are added 0.02 to the lister δ and δ are added 0.02 to the lister δ and δ are added 0.02 to the lister δ and δ are added 0.02 to the lister δ and δ are added 0.02 to the lister δ and δ are added 0.02 to the lister δ and δ are added 0.02 to the lister δ and δ are added 0.02 to the lister δ and δ are added 0.02 to the lister δ and δ are added 0.02 to the lister δ and δ are added 0.02 to the lister δ and δ are	$ 10 \sim 63 \text{VDC} \\ 47 \sim 4700 \ \mu \text{ F} \\ \hline \\ I = 0.01 \text{CV or } 3(\mu \text{A}) \text{ ,whicheve} \\ \hline \\ (After rated voltage applied for 2 minutes) \\ I = \text{Leakage Current } (\ \mu \text{A}) \ \text{C= Nominal Capacity} \\ \hline WV & 10 & 16 & 25 \\ \hline \tan \delta & 0.20 & 0.16 & 0.14 \\ \hline When nominal capacitance is over 1000 \text{uF,} \\ \tan \delta \text{ shall be added } 0.02 \text{ to the listed value w} \\ \hline \\ Z(120 \text{Hz}) & 10 & 16 & 25 \\ \hline \\ Z-25^{\circ}\text{C} \ / \ Z+20^{\circ}\text{C} & 3 & 2 & 2 \\ \hline \\ Z-40^{\circ}\text{C} \ / \ Z+20^{\circ}\text{C} & 6 & 4 & 4 \\ \hline \\ After applying rated voltage for 2000 \sim 5000 \text{how the capacitors shall meet the following require} \\ \hline \\ Capacitance Change & Within \pm \\ \hline Dissipation Factor & \leq 300\% \text{ of } \\ \hline \\ Leakage Current & \leq \text{ initial s} \\ \hline \\ & 8\Phi & 10\Phi \\ \hline \\ & 2000 \text{Hrs} & 3000 \text{Hrs} \\ \hline \\ & \text{After leaving capacitors under no load at } 125^{\circ}\text{C} \\ \hline \\ & \text{Capacitance Change} & \text{Within } \pm \\ \hline \\ & \text{Dissipation Factor} & \leq 300\% \text{ of } \\ \hline \\ & \text{Capacitance Change} & \text{Within } \pm \\ \hline \\ & \text{Dissipation Factor} & \leq 300\% \text{ of } \\ \hline \\ & \text{Capacitance Change} & \text{Within } \pm \\ \hline \\ & \text{Dissipation Factor} & \leq 300\% \text{ of } \\ \hline \\ & \text{Capacitance Change} & \text{Within } \pm \\ \hline \\ & \text{Dissipation Factor} & \leq 300\% \text{ of } \\ \hline \\ & \text{Capacitance Change} & \text{Within } \pm \\ \hline \\ & \text{Dissipation Factor} & \leq 300\% \text{ of } \\ \hline \\ \hline \\ & \text{Capacitance Change} & \text{Within } \pm \\ \hline \\ & \text{Dissipation Factor} & \leq 300\% \text{ of } \\ \hline \\ & \text{Capacitance Change} & \text{Within } \pm \\ \hline \\ & \text{Capacitance Change} & \text{Within } \pm \\ \hline \\ & \text{Capacitance Change} & \text{Within } \pm \\ \hline \\ & \text{Capacitance Change} & \text{Within } \pm \\ \hline \\ & \text{Capacitance Change} & \text{Within } \pm \\ \hline \\ & \text{Capacitance Change} & \text{Within } \pm \\ \hline \\ & \text{Capacitance Change} & \text{Within } \pm \\ \hline \\ & \text{Capacitance Change} & \text{Within } \pm \\ \hline \\ & \text{Capacitance Change} & \text{Within } \pm \\ \hline \\ & \text{Capacitance Change} & Cap$	$-40 \sim +125 ^{\circ} \mathbb{C}$ $10 \sim 63 \text{VDC}$ $47 \sim 4700 \ \mu \text{F}$ $\pm 20 ^{\circ} \mathbb{C}$ $I=0.01 \text{CV or } 3(\mu \text{A}) \text{ ,whichever is gree}$ $(After rated voltage applied for 2 \text{ minutes })$ $I= \text{Leakage Current } (\mu \text{ A}) \text{ C= Nominal Capacitance } (1000 \text{ mod } 1000 \text{ mod } 10000 \text{ mod } 100000 \text{ mod } 100000 \text{ mod } 100000 \text{ mod } 1000000 \text{ mod } 10000000 \text{ mod } 10000000 \text{ mod } 100000000000000000000000000000000000$	$-40 \sim +125 ^{\circ}\mathbb{C}$ $10 \sim 63 \text{VDC}$ $47 \sim 4700 \mu \text{F}$ $\pm 20 \% \text{ at } 120 \text{Hz}$ $I=0.01 \text{CV or } 3(\mu \text{A}) \text{ ,whichever is greater.}$ $(\text{After rated voltage applied for 2 minutes})$ $I= \text{Leakage Current } (\mu \text{A}) \mathbb{C} = \text{Nominal Capacitance } (\mu \text{F}) \mathbb{V} = \mathbb{R}$ $WV \qquad 10 \qquad 16 \qquad 25 \qquad 35 \qquad 50$ $\tan \delta \qquad 0.20 \qquad 0.16 \qquad 0.14 \qquad 0.12 \qquad 0.10$ $\text{When nominal capacitance is over } 1000 \text{uF},$ $\tan \delta \text{shall be added } 0.02 \text{ to the listed value with increase of every } 1000 \text{uF},$ $\tan \delta \text{shall be added } 0.02 \text{ to the listed value with increase of every } 2.25 ^{\circ}\mathbb{C} / 2 + 20 ^{\circ}\mathbb{C} 3 \qquad 2 \qquad$	$10{\sim}63\text{VDC}$ $47{\sim}4700\mu\text{F}$ $\pm20\%\text{at}120\text{Hz},20\%$ $I=0.01\text{CV}\text{or}3(\mu\text{A}),\text{whichever is greater}.$ $(After rated voltage applied for 2 minutes)$ $I= \text{Leakage Current}(\mu\text{A})\text{C= Nominal Capacitance}(\mu\text{F})\text{V= Rated Voltage}$ $WV \qquad 10 \qquad 16 \qquad 25 \qquad 35 \qquad 50 \qquad 63$ $\tan\delta \qquad 0.20 \qquad 0.16 \qquad 0.14 \qquad 0.12 \qquad 0.10 \qquad 0.09$ $When nominal capacitance is over 1000uF,$ $\tan\delta \text{ shall be added }0.02 \text{ to the listed value with increase of every }1000uF$ $2(120\text{Hz}) \qquad 10 \qquad 16 \qquad 25 \qquad 35 \qquad 50 \qquad 63$ $2-25\%/2+20\%3 \qquad 2 \qquad 2 \qquad 2 \qquad 2 \qquad 2$ $2-40\%/2+20\%6 \qquad 4 \qquad 4 \qquad 4 \qquad 4 \qquad 3$ $After applying rated voltage for 2000~5000hours at 125\%,$ $\text{the capacitors shall meet the following requirements.}$ $Capacitance Change \qquad Within \pm 30\%\text{of initial value}$ $Dissipation Factor \qquad \leq 300\%\text{of initial specified value or less}$ $8\Phi \qquad 10\Phi \qquad \geq 13\Phi$ $2000\text{Hrs} \qquad 3000\text{Hrs} \qquad 5000\text{Hrs}$ $After leaving capacitors under no load at 125\%\text{for }1000\text{hours}.$ $Capacitance Change \qquad Within \pm 30\%\text{of initial value}$ $Dissipation Factor \qquad \leq 300\%\text{of initial value}$ $Dissipation Factor \qquad \leq 300\%\text{of initial value}$ $Dissipation Factor \qquad \leq 300\%\text{of initial value}$	$-40 \sim +125 ^{\circ}\mathbb{C}$ $10 \sim 63 \text{VDC}$ $47 \sim 4700 \mu \text{F}$ $\pm 20 \% \text{ at } 120 \text{Hz} , 20 ^{\circ}\mathbb{C}$ $I=0.01 \text{CV or } 3(\mu \text{A}) , \text{whichever is greater.}$ $I=0.01 \text{CV or } 3(\mu \text{A}) , \text{whichever is greater.}$ $I=0.01 \text{CV or } 3(\mu \text{A}) , \text{whichever is greater.}$ $I=0.01 \text{CV or } 3(\mu \text{A}) , \text{whichever is greater.}$ $I=0.01 \text{CV or } 3(\mu \text{A}) , \text{whichever is greater.}$ $I=0.01 \text{CV or } 3(\mu \text{A}) , \text{whichever is greater.}$ $I=0.01 \text{CV or } 3(\mu \text{A}) , \text{whichever is greater.}$ $I=0.01 \text{CV or } 3(\mu \text{A}) , \text{whichever is greater.}$ $I=0.01 \text{CV or } 3(\mu \text{A}) , \text{whichever is greater.}$ $I=0.01 \text{CV or } 3(\mu \text{A}) , \text{whichever is greater.}$ $I=0.01 \text{CV or } 3(\mu \text{A}) , \text{whichever is greater.}$ $I=0.01 \text{CV or } 3(\mu \text{A}) , \text{whichever is greater.}$ $I=0.01 \text{CV or } 3(\mu \text{A}) , \text{whichever is greater.}$ $I=0.01 \text{CV or } 3(\mu \text{A}) , \text{whichever is greater.}$ $I=0.01 \text{CV or } 3(\mu \text{A}) , \text{whichever is greater.}$ $I=0.01 \text{CV or } 3(\mu \text{A}) , \text{whichever is greater.}$ $I=0.01 \text{CV or } 3(\mu \text{A}) , \text{whichever is greater.}$ $I=0.01 \text{CV or } 3(\mu \text{A}) , \text{whichever is greater.}$ $I=0.01 \text{CV or } 3(\mu \text{A}) , \text{whichever is greater.}$ $I=0.01 \text{CV or } 3(\mu \text{A}) , \text{whichever is greater.}$ $I=0.01 \text{CV or } 3(\mu \text{A}) , \text{whichever is greater.}$ $I=0.01 \text{CV or } 3(\mu \text{A}) , \text{whichever is greater.}$ $I=0.01 \text{CV or } 3(\mu \text{A}) , \text{whichever is greater.}$ $I=0.01 \text{CV or } 3(\mu \text{A}) , \text{whichever is greater.}$ $I=0.01 \text{CV or } 3(\mu \text{A}) , \text{whichever is greater.}$ $I=0.01 \text{CV or } 3(\mu \text{A}) , \text{whichever is greater.}$ $I=0.01 \text{CV or } 3(\mu \text{A}) , \text{which is a specified or } 3(\mu \text{A}) , \text{or } 3(\mu \text{A}) ,$	$-40 \sim +125 ^{\circ} \bigcirc \qquad \qquad -25 \sim \\ 10 \sim 63 \text{VDC} \qquad \qquad$		

■ Diagram of Dimensions

ψD	8	10	13	16	18
Р	3.5	5.0	5.0	7.5	7.5
ψd	0.6	0.6	0.6	8.0	8.0
а	1.5	1.5	2.0	2.0	2.0

■ Multiplier for Ripple Current

Ereguency coeffcient

Frequency of	requency coefficient									
Fr	equency (Hz)	120	1K	10K	50K~100K					
	CAP≦10	0.40	0.75	0.90	1.00					
10~63WV	10 <cap≦100< td=""><td>0.50</td><td>0.85</td><td>0.95</td><td>1.00</td></cap≦100<>	0.50	0.85	0.95	1.00					
10~03	100 <cap≦1000< td=""><td>0.60</td><td>0.88</td><td>0.96</td><td>1.00</td></cap≦1000<>	0.60	0.88	0.96	1.00					
	1000 <cap< td=""><td>0.75</td><td>0.90</td><td>0.98</td><td>1.00</td></cap<>	0.75	0.90	0.98	1.00					
160~450\\/\	CAP≤33	1.00	1.50	1.75	1.80					
100~45000	CAP≧47	1.00	1.30	1.40	1.50					

Higher temperature range & Long Life

■Dimensions,Rated Ripple Current

0						Rated V	oltage(V)					
Capacitance (µF)	10(13)			16(20)			25(32)			35(44)		
(P*)	Size	Ripple	ESR	Size	Ripple	ESR	Size	Ripple	ESR	Size	Ripple	ESR
100							8x11	340	0.200	10x12.5	340	0.140
220	8x11	340	0.200	8x11	340	0.200	10x12.5	500	0.140	10x16	500	0.090
330	10x12.5	500	0.140	10x12.5	500	0.140	10x16	630	0.090	10x20	770	0.070
470	10x16	630	0.090	10x20	770	0.070	10x20	770	0.070	13x20	920	0.042
1000	10x20	770	0.070	13x20	920	0.042	13x25	1250	0.038	16x25	1380	0.028
2200	13x25	1250	0.038	16x25	1380	0.028	16x32	1450	0.025			
3300	16x25	1380	0.028	16x32	1450	0.025						
4700	16x32	1450	0.025	18x32	1720	0.018						

	Rated Voltage(V)								
Capacitance (µF)		50(63)		63(79)					
(μ.)	Size	Ripple	ESR	Size	Ripple	ESR			
47	8x11	245	0.680	8x11	245	0.680			
100	10x12.5	415	0.360	10x15	455	0.300			
220	10x20	491	0.180	13x20	665	0.120			
330	13x20	665	0.120	13x25	995	0.100			
470	13x25	995	0.100	16x25	1000	0.084			
1000	16x32	1280	0.078						

0						Rated V	oltage(V)					
Capacitance (µF)	160(160(200) 200(2		250)	250) 250(30		300) 350(400		00) 400(450)		450(500)	
(μ.)	Size	Ripple	Size	Ripple	Size	Ripple	Size	Ripple	Size	Ripple	Size	Ripple
1.0							8x11	25	10x12.5	28	8x16	25
2.2					8x11	28	10x12.5	32	10x16	35	10x16	32
3.3	8x11	28	8x11	28	10x12.5	32	10x16	45	10x16	42	10x20	40
4.7	10x12.5	40	10x12.5	40	10x16	45	10 × 20	53	10 × 20	53	10 × 25	58
10	10x16	60	10 × 20	78	10 × 20	78	10 × 25	85	10 × 25	86	13 × 20	86
22	10 × 20	115	10 × 25	126	13 × 20	128	13 × 25	139	13 × 30	142	16 × 25	154
33	10 × 25	154	13 × 20	157	13 × 25	171	16 × 25	189	16 × 25	189	16 × 32	203
47	13 × 20	187	13 × 25	204	16 × 25	225	16 × 32	243	16 × 32	243		
68	13 × 25	245	16 × 20	250	16 × 32	292						
100	16 × 25	329	16 × 25	329								
150	16 × 32	434										

 $\stackrel{\land}{\sim}$ Size: D ϕ x L (mm) $\stackrel{\land}{\sim}$ Ripple Current: 125°C,100KHz(mA/rms) $\stackrel{،}{\sim}$ ESR(Ω):20°C,100KHz

SQ

For adapter and power supply applications Series

■ Recommended Applications :AV(TV, Video, Audio); Monitor/Computer;

OA/HA/Communication; Converter/Inverter;

Energy saving lamp; PFC circuit;

SMPS; Ballast; Adapter

■ Corresponding product to RoHS

Specifications

Specifications									
Item				Ch	aracteris	stics			
Operating Temperature Range	-40~+105℃								
Rated Voltage Range(WV)	-40~+105 C 160 ~ 450VDC								
Rated Capacitance Range	2.2 ~ 220 μ F								
Capacitance Tolerance	± 20 % at 120Hz , 20℃								
Lookers Comment (MAN) (20°C)	I≦0.03CV +10 <i>μ F</i> (After ra	ted volta	ge applie	d for 3 m	inutes)				
Leakage Current (MAX) (20°C)	I= Leakage Current (μ A)	C= Nor	ninal Cap	acitance	e (μF)	V= Rated	Voltage (V)		
Dissipation Factor (MAX)	WV	160	200	250	350	400	450		
(tan δ) (120Hz,20 $^{\circ}$ C)	$ an \delta$								
Low Temperature Stability	WV Z (120Hz)	160	200	250	350	400	450		
Impedance Ratio (MAX)	Z(-25°C) / Z(20°C)	3	3	3	3	3	3		
	Z(-40°C) / Z(20°C)	6	6	6	6	6	6		
	After apply rated voltage w	vith rated	ripple cu	rrent for	2000hrs	at 105℃ ,	<u> </u>		
	the capacitors shall meet t	he follow	ing requi	rements.					
Endurance	Capacitance Change		Wit	thin ± 20	% of ini	tial value			
	Dissipation Factor	Dissipation Factor Not more than 200% of the specified value							
	Leakage Current		Not M	ore than	the spe	cified value			
Chalf I ifa	After leaving capacitors ur	nder no lo	ad at 10	5℃ for 1	000 hou	rs,			
Shelf Life	the capacitors shall meet t	he same	requirem	ent as E	ndurano	ce.			

■ Diagram of Dimensions

ϕ D	10	13	16	18
Р	5	5	7.5	7.5
ϕ d	0.6	0.6	0.8	0.8
а	1.5	2	2	2

■ Multiplier for Ripple Current

Fred	quency (Hz)	50	120	1K	10K	100K
Coefficient	<33 μ F	0.80	1.00	1.36	1.54	1.80
Odemoient	≧33 <i>μ</i> F	0.85	1.00	1.28	1.35	1.40

Fred	quency (Hz)	50	120	1K	10K	100K
Coefficient	<33 μ F	0.45	0.55	0.75	0.85	1.00
	≧33 <i>μ</i> F	0.60	0.70	0.90	0.95	1.00

For adapter and power supply applications Series

■Dimensions, Rated Ripple Current

				Rated	l (Surge) V	oltage			
Capacitance		160(200)			200(250)			250(300)	
(μF)	/ Ded	Rip	ple	/ D. J	Rip	ple	/ DJ	Ripple	
	ϕ DxL	120Hz	100KHz	ϕ DxL	120Hz	100KHz	ϕ DxL	120Hz	100KHz
10							10x20	120	220
22	10x20	195	350	10x20	195	350	13x25	165	300
33	13x20	315	450	13x20	365	520	13x25	280	400
47	13x25	420	600	13x25	420	600	16x25	505	720
68	13x25	420	600	16x25	665	950	16x32	570	810
100	16x25	665	950	16x32	840	1200	18x36	735	1050
220	18x36	980	1400						

				Rated	I(Surge)V	oltage			
Capacitance		350(400)			400(450)		450(500)		
(μF)	ψ DxL	Rip	ple	ψ DxL	Ripple		ψ DxL	Ripple	
	φDXL	120Hz	100KHz	φDXL	120Hz	100KHz	φDXL	120Hz	100KHz
2.2	10x16	30	50	10x16	80	140	10x16	60	110
3.3	10x16	35	60	10x20	110	195	10x20	75	135
4.7	10x20	45	78	10x25	120	220	13x20	105	190
10	13x20	75	130	10x16	135	243	13x25	140	250
10				13x25	200	360			
	16x25	115	205	13x20	240	432	13x20	180	324
22				13x25	265	477	13x25	200	360
				16x25	315	570	16x32	265	480
33	16x32	180	255	16x32	490	700	16x25	350	500
33							18x36	455	650
47	18x32	225	320	16x25	350	490	16x25	380	532
47				18x32	600	860			
68				16x30	510	714	18x25	470	658
00				16x32	550	770			
82							18x36	520	720
100	18x45	370	530	18x32	680	952	18x40	620	860
120				18x32	750	1050	18x40	650	910
120	_			_			18x45	720	1000
150				18x36	800	1120			

 $\stackrel{\wedge}{\succsim}$ Size: D ϕ x L (mm) $\stackrel{\wedge}{\succsim}$ Ripple Current : mA/rms,105 $^{\circ}$ C

SG High Ripple and long life Series

■ Features: High temperature life time 5000 hours at 105°C

■ Recommended Applications : High ripple current for Electronic Ballast ,
Power Supply...etc

■ Corresponding product to RoHS

Specifications

Item			Cha	racteristic	s				
Operating Temperature Range	-40~+105℃		-25~+10	5℃					
Rated Voltage Range	160 ~ 400VDC) ~ 400VDC 450VDC							
Rated Capacitance Range	4.7 ~ 330μF	$7 \sim 330 \mu F$ $3.3 \sim 100 \mu F$							
Capacitance Tolerance	± 20 % at 120Hz , 20℃								
Leakage Current (MAX) (20℃)	I=0.06CV + 10(μ A) , (After ra	ted voltag	e applied	for 2 minu	utes)				
Dissipation Factor (MAX)	WV	160	200	250	350	400	450		
(tan δ) (120Hz ,20 $^{\circ}$ C)	$ an\delta$	0.15	0.15	0.15	0.20	0.24	0.24		
Low Temperature Stability	WV Z (120Hz)	160	200	250	350	400	450		
Impedance Ratio (MAX)	Z-25°C / Z+20°C	3	3	3	5	5	6		
	Z-40°C / Z+20°C	6	6	6	6	6	_		
	After applying rated voltage with rated ripple current for 5000 hours at 105°C , the capacitors shall meet the following requirements.								
Endurance	Capacitance Change Dissipation Factor	N		in ± 20 %			IIE		
	Leakage Current	Not more than 200% of the specified value initial specified value or less							
Shelf Life	After placed at 105℃ without the capacitors shall meet the	• .	•		•				

■ Diagram of Dimensions

ϕ D	10	13	16	18	22
Р	5.0	5.0	7.5	7.5	10.0
ϕ d	0.6	0.6	0.8	0.8	8.0
а	1.5	2.0	2.0	2.0	2.0

■ Multiplier for Ripple Current

Frequency (Hz)	50,60	120	300	1K	10K~100K
Coefficient	0.80	1.00	1.20	1.40	1.60

SG

High Ripple and long life Series

■ Dimensions, Rated Ripple Current

	Rated (Surge) Voltage									
Capacitance (μF)	160 ((200)	200 (2	250)	250 (300)					
(μι)	Size	Ripple	Size	Ripple	Size	Ripple				
10			%10x16	80	※10x16	85				
10					10X20	100				
15			%10x16	100						
22	10X20	160	10X20	160	※10x25	145				
22					13x20	160				
33	10X20	210	%10X20	160	13x20	210				
33			13x20	210						
47	13x20	260	13x20	260	13x25	270				
47					16x20	275				
68	13x25	360	13x25	360	16x25	380				
00	16x20	430	16x20	430	18x20	375				
100	16x25	475	16x25	475	16x32	520				
100	18x20	465	18x20	465	18x25	500				
150	16x32	650	18x25	650	18x32	650				
130	18x25	625								
220	16x32	750	18x32	780	18x40	820				
220	18x25	725								
330	18x32	960								

			Rated (Sur	ge) Voltage		
Capacitance (μF)	350 (400)	400 (4	450)	450 (500)
(μι)	Size	Ripple	Size	Ripple	Size	Ripple
3.3					10X20	60
4.7			※10x16	60	13x20	80
6.8			※10x16	72	※10X20	90
10	10X20	100	※10x16	85	13x20	110
10			10X20	100	13x25	110
	13x20	160	13x20	145	13x20	145
22			13x25	170	16x25	190
			16x20	200	18x20	200
	13x25	230	16x25	230	16x25	235
33	16x20	250	18x20	250	16x32	275
					18x25	280
	16x25	300	16x25	255		
47	18x20	315	16x32	300	18x32	340
			18x25	325		
	16x32	400	16x30	340	18x25	335
68	18x25	380	16x32	350	18x32	395
			18x36	420	18x40	460
100	18x32	530	18x32	465	22x40	580
100			18x40	545		
150			18x36	525		
150			22x40	650		

 $\stackrel{\iota}{\precsim}$ Size ∶ D ϕ x L (mm) $\stackrel{\iota}{\precsim}$ Ripple Current ∶ mA/rms. 105 $^{\circ}$ C ,120Hz

* Down Size: 3000 Hrs

SP

Miniature and long life Series

- Features: High temperature and long life at 105°C for 8000 to 10000 hours
- Recommended Applications: Applicable for Electronic Ballast
- Corresponding product to RoHS

Specifications

Item				Characteristi	cs				
Operating Temperature Range	-40~+105°C			-25~+105°C					
Rated Voltage Range	160 ~ 400VDC			450VDC					
Rated Capacitance Range	3.3 ~ 330μF								
Capacitance Tolerance	± 20 % at 120Hz	± 20 % at 120Hz , 20℃							
Leakage Current(MAX)(20°C)	I=0.04CV + 100(μ	I=0.04CV + 100(μA) ,(After rated voltage applied for 2 minutes)							
Dissipation Factor (MAX) (tan δ) (120Hz ,20 $^\circ$ C)	WV	16	0	200	400	450			
	$ an\delta$	0.2	20	0.20	0.24	0.24			
Low Temperature Stability	Z(120Hz) WV	16	0	200	400	450			
Impedance Ratio (MAX)	Z-25°C / Z+20°C	3		3	5	6			
	Z-40 °C / Z+20 °C	6		6	6	_			
Fudurance	The follwing sprcifications shall be satisfied when the capacitors are restored to 20°C after subjected to DC voltage with the max ripple current is applies for 10000 hours (8000 hours for ϕ 10) at 105°C.								
Endurance	Capacitance Ch	ange		Within ±	20 % of initia	l value			
	Dissipation Fa	ctor	Not more than 200% of the specified value						
	Leakage Curr	ent	initial specified value or less						
Shelf Life	After placed at 105	°C witho	ut volta	ige applied for 1	000 hours,				
Officia Life	the capacitors shal	I meet th	e same	e requirement a	s Endurance.				

■ Diagram of Dimensions

ϕ D	10	12.5	13	16	18
Р	5.0	5.0)	7.5	7.5
ϕd	0.6	0.6	6	0.8	8.0
а	1.5	2.0)	2.0	2.0

■ Multiplier for Ripple Current

Frequency (Hz)	120	1K	10K	100K
Coefficient	1.0	1.6	1.8	2.0

SP

Miniature and long life Series

■Dimensions,Rated Ripple Current

			Rated (Sura	age) Voltage			
Conneitones (UE)		160 (200)			200 (250)		
Capacitance (µF)	Size	Rip	pple	Size	Ripple		
	Size	120Hz	100KHz	Size	120Hz	100KHz	
22				10x20	220	440	
33	10x20	250	500	10x20	260	520	
33				12.5x20	290	580	
47	10x20	290	580	13x20	330	660	
41	12.5x20	330	660				
68	13x25	360	720	13x25	360	720	
	16x20	380	760	16x20	380	760	
	13x25	485	970	16x25	560	1120	
100	16x20	560	1120				
100	16x25	560	1120				
	18x20	560	1120				
	16x25	600	1200	16x32	640	1280	
150	16x32	650	1300				
	18x25	650	1300				
220	16x32	650	1300				
	18x25	650	1300				
330	18x36	690	1380				

	Rated (Surage) Voltage								
Capacitance (µF)		400 (450)			450 (500)				
Capacitance (µi)	Size	Ri	pple	Size	Rip	ople			
	Size	120Hz	100KHz	Size	120Hz	100KHz			
3.3				10x16	50	100			
4.7				10x20	70	140			
6.8 10x20	10x20	75	150	10x20	75	150			
				12.5x20	90	180			
10	10x20	90	180	12.5x20	155	310			
22	16x20	150	300	16x25	280	560			
22				18x20	275	550			
33	16x25	260	520	16x32	310	620			
				18x25	295	590			
47	16x32	350	700	16x36	440	880			
				18x32	440	880			
68	18x32	435	870						

 $\stackrel{\sim}{\sim}$ Size ∶ D ϕ x L (mm) $\stackrel{\sim}{\sim}$ Ripple Current: (mA/rms),105°C

SU Long Life Series

■ 105°C 10000~12000hrs long Life

■ Specifications

Item		Characteristics								
Category Temperature Range	-25 ~ +105℃									
Rated Voltage Range	160~450VDC	160~450VDC								
Rated Capacitance Range	3.3 ∼ 330µF	3.3 ~ 330µF								
Capacitance Tolerance	± 20 % at 120Hz , 20℃									
Leakage Current (MAX) (20℃)	I=0.04CV +100μA , whi	chever is gr	eater. (After	rated voltage	e applied for	2 minutes)				
Leakage Current (IVIAX) (20 C)	I= Leakage Current (μΑ)	I= Leakage Current (μA) C= Nominal Capacitance (μF) V= Rated Voltage (V) (20 ℃)								
Dissipation Factor (MAX)	WV	160	200	250	350	400	450			
(tanδ) (120Hz ,20°C)	tanō	0.15	0.15	0.15	0.20	0.20	0.20			
Low Temperature Stability	WV Z(120Hz)	160	200	250	350	400	450			
mpedance Ratio (MAX)	Z-25°C / Z+20°C	3	3	3	5	5	6			
	After applying rated volta	Ü	• •		00~12000hc	ours at 105 °(Ξ,			
Endurance	Capacitance Change	٧	Vithin ± 20 %	of initial val	ue		ΦD×L	Life Time(hrs)		
	Dissipation Factor	200%	or less of ini	tial specified	l value		10Ф	10000		
	Leakage Current	eakage Current initial specified value or less					≥13Φ	12000		
Shelf Life	After placed at 105℃ with the capacitors shall mee	J								

■ Diagram of Dimensions

ψD	10.0	13.0	16.0	18.0
Р	5.0	5.0	7.5	7.5
ψd	0.6	0.6	0.8	0.8
а	1.5	2.0	2.0	2.0

■ Multiplier for Ripple Current

Frequency (Hz)	120	1K	10K	100K
Coefficient	0.5	0.8	0.9	1.0

SU Long Life Series

■Dimensions,Rated Ripple Current

0		Rated Voltage(V)									
Capacitance (µF)	16	60	20	00	250						
(۳.)	Size	Ripple	Size	Ripple	Size	Ripple					
10					10×16	320					
22			10×16	500	10×20	500					
33	10×16	500	10×20	520	13×20	800					
47	10×20	580	13×20	660	13×20	980					
68	13×20	720	13×25	720							
100	13×25	970	16×25	1120	16×25	1530					
150	16×25	1120	16×32	1620	18×25	1940					
220	16×32	1300	18×32	2080	18×36	2753					
330	18×36	1380			18×50	3912					
390			18×50	3380							
470											
560	18×50	2086									

0	Rated Voltage(V)									
Capacitance (µF)	3	50	40	00	45	50				
(μι)	Size	Ripple	Size	Ripple	Size	Ripple				
6.8	10×16	280	10×16	140						
10	10×20	350	10×20	180	10×20	180				
15					13×20	380				
22	13×20	650	13×20	430	13×25	500				
33	13×25	900	16×25	520	16×25	560				
47	16×25	1000	16×32	700	16×36	880				
68	16×32	1100	18×32	870	16×36	1110				
100			18×50	1290	18×50	1560				

 $[\]stackrel{\land}{\sim}$ Size: D ψ x L (mm) $\stackrel{\land}{\sim}$ Ripple Current: 105 $^{\circ}$ C,100KHz(mA/rms)

Miniature and general purpose Series

■ Features: 105°C 2000 hours

 \blacksquare Recommended Applications: For high quality , reliability application, high CV product

■ Suitable for slim application

■Corresponding product to RoHS

Item			Chara	acteristics				
Operating Temperature Range			-25~	+105°C				
Rated Voltage Range			250 ~	450VDC				
Rated Capacitance Range	10 ~ 150μF							
Capacitance Tolerance	± 20 % at 120Hz , 20℃							
Leakage Current (MAX)(20°C)	I=0.03CV+10(μ A) ,After rated voltage applied for 2 minutes							
Dissipation Factor (MAX)	WV	250	350~450					
(tan δ) (120Hz ,20 $^{\circ}$ C)	$ an \delta$	0.15	0.20					
Low Temperature Stability	WV Z(120Hz)	250	350~450					
Impedance Ratio (MAX)	Z-25℃ / Z+20℃	4	6					
	After applying rated voltage for 20	000 hours a	at 105°C					
	the capacitors shall meet the follo	wing requi	rements.					
Endurance	Capacitance Change			Within ± 20 % of initial value				
	Dissipation Factor		Not	t more than 200% of the specified value				
	Leakage Current			initial specified value or less				
Shelf Life	After leaving capacitors under no	After leaving capacitors under no load at 105°C for 1000 hours.						
Sileli Lile	the capacitors shall meet the sam	ne requirem	nent as Endui	rance.				

■ Diagram of Dimensions

ϕ D	8	10.0	12.5
р	3.5	5.0	5.0
ϕd	0.6	0.6	0.6
а	2.0	2.0	2.5

■ Multiplier for Ripple Current

 i i i que i i g				
Frequency (Hz)	120	300	1K	10K
160 ~ 450V ALL Cap (μ F)	1.00	1.25	1.40	1.60

Miniature and general purpose Series

■Dimensions,Rated Ripple Current

Canacitanas	Rated (Surge) Voltage											
Capacitance (μ F)	250 (250 (300)		350 (400)		450)	420(470)	450 (500)			
()~ . /	Size	Ripple	Size	Ripple	Size	Ripple	Size	Ripple	Size	Ripple		
10												
12									8x30	115		
15			8x30	140	8x35	170	8x35	150	8x35	135		
20	8x30	200	8x35	180	8x40	220	8x40	195	8x42	190		
22							-		10x30	190		
07	8x35	215	8x40	210	8x45	250	8x45	220	8x45	210		
27					10x35	250	10x35	220	10x35	210		
00	8x35	240	8x42	240	8x50	295	8x50	285	8x52	290		
33					10x40	295	10x40	285	10x42	290		
20	8x40 260 10x40	280	8x52	320	10x42	310	10x45	320				
39	10x30	275			10x40	320	12.5x35	320	12.5x40	330		
47	8x45	310	10x45	325	10x45	355	10x45	350	10x50	360		
47					12.5x40	365	12.5x40	350	12.5x42	370		
56	10x40	350	10x50	380	10x50	405	10x52	390	12.5x45	415		
50					12.5x40	405	12.5x42	390				
60	10x40	400	12.5x40	430	10x55	460	12.5x45	450	12.5*50	475		
68					12.5x45	460						
82	10x45	450	12.5x45	500	12.5x50	525	12.5x52	535	12.5x55	535		
100	10x50	525	12.5x50	630	12.5x55	620				***************************************		
150	12.5x45	725			-							

 $\stackrel{\land}{\sim}$ Size: D ϕ x L (mm) $\stackrel{\land}{\sim}$ Ripple Current: (mA/rms). 105 °C ,120Hz

TG High Ripple and long life Series

■ Features: High temperature life time 5000 hours at 105°C

■ Recommended Applications : High ripple current for Electronic Ballast ,

Power Supply...etc

■ Suitable for slim application

■ Corresponding product to RoHS

Specifications

- opcomodions									
Item			Cha	racterist	ics				
Operating Temperature Range			-2	25~+105	C				
Rated Voltage Range	250 ~ 450VDC								
Rated Capacitance Range		10 ~ 150μF							
Capacitance Tolerance	±20 % at 120Hz , $20^\circ\!\!\!\!\mathrm{C}$								
Leakage Current (MAX) (20°C)	I=0.06CV + 10(μ A) , (After rated voltage applied for 2 minutes)								
Dissipation Factor (MAX)	WV	250	350	400	420 \ 450				
(tan δ) (120Hz ,20°C)	$ an \delta$	0.15	0.20	0.24	0.24				
Low Temperature Stability	WV Z (120Hz)	250	350	400	420 \ 450				
Impedance Ratio (MAX)	Z-25°C / Z+20°C	3	5	5	6				
	After applying rated voltage with the capacitors shall meet the fol Capacitance Change	-	quiremen	ts.	00 hours at				
Endurance	Dissipation Factor	N	ot more t	han 2009	% of the spe	cified value			
	Leakage Current		initi	al specif	ied value or	less			
Shelf Life	After placed at 105℃ without vote the capacitors shall meet the sa	•							

■ Diagram of Dimensions

■ Multiplier for Ripple Current

Frequency coefficient								
Frequency (Hz)	50,60	120	300	1K	10K~100K			
Coefficient	0.80	1.00	1.20	1.40	1.60			

TG

High Ripple and long life Series

Dimensions, Rated Ripple Current

		Rated (Surage) Voltage											
Capacitance (µF)	250	(300)	350	(400)	400	(450)	420	(470)	450((500)			
(р. /	Size	Ripple	Size	Ripple	Size	Ripple	Size	Ripple	Size	Ripple			
10													
12									8x35	110			
15			8x35	120	8x35	110	8x35	105	8x40	130			
22	8x30	130	8x40	150	8x40	140	8x40	135	8x45	165			
22									10x35	165			
27	8x32	150	8x45	170	8x45	165	8x45	155	8x52	195			
					10x35	165	10x35	155	10x40	195			
33	8x35	170	8x50	200	8x50	190	8x50	185	10x45	230			
33					10x40	190	10x40	185	12.5x35	230			
39	8x42	200	10x45	235	10x45	220	10x45	215	10x50	265			
39							12.5x35	215	12.5x40	265			
47	8x45	220	10x50	270	10x50	255	10x50	245	10X52	295			
47					12.5x40	255	12.5x40	245	12.5x45	310			
56	10x42	300	12.5x40	300	12.5x45	300	12.5x45	290	12.5x50	355			
68	10x45	330	12.5x45	350	12.5X50	350	12.5x50	335	12.5x55	410			
82	10x50	390	12.5x50	400	12.5x55	400	12.5x55	385					
100	12.5x42	440	12.5x55	460									
120	12.5x45	490	-										
150	12.5x50	560											

☆ Size: D ϕ x L (mm) ☆ Ripple Current: mA/rms. 105%,120Hz

Miniature and long life Series

- \blacksquare Features: High temperature and long life at 105°C for 8000 to 10000 hours
- Recommended Applications: Applicable for Electronic Ballast
- ■Suitable for slim application
- Corresponding product to RoHS

Specifications

Specifications									
Item			Characteristic	s					
Operating Temperature Range	-40~+105°C		-25~+105°C						
Rated Voltage Range	160 ~ 400VDC		450VDC						
Rated Capacitance Range	10 ~ 330μF								
Capacitance Tolerance	± 20 % at 120Hz , 20	$^{\circ}\!\mathbb{C}$							
Leakage Current(MAX)(20°C)	I=0.04CV + 100(μ A)	,(After rated)	oltage applied fo	or 2 minu	utes)				
Dissipation Factor (MAX)	WV	160	200	250	400	420 \ 450			
(tan δ) (120Hz ,20 $^{\circ}$ C)	$ an\delta$	0.20	0.20	20	0.24	0.24			
Low Temperature Stability	Z(120Hz) WV	160	200	250	400	420 \ 450			
Impedance Ratio (MAX)	Z-25°C / Z+20°C	3	3	3	5	6			
	Z-40°C / Z+20°C	6	6	6	6	_			
	The follwing sprcification	ons shall be s	atisfied when the	capacit	ors are	restored			
	to 20°C after subjecte	d to DC voltag	e with the max r	ipple cur	rent is				
Endurance	applies for 10000 hou	rs (8000 hour	s for ϕ 10) at 105	5°C.					
Endurance	Capacitance Cha	nge	Within	± 20 % c	of initial	value			
	Dissipation Fact	or	Not more than 200% of the specified value						
	Leakage Currer	Leakage Current initial specified value or less							
Chalf Life	After placed at 105℃ without voltage applied for 1000 hours,								
Shelf Life	the capacitors shall me	eet the same r	equirement as E	nduranc	e.				

■ Diagram of Dimensions

ϕ D	10	12.5
Р	5.0	5.0
ϕ d	0.6	0.6
а	2.0	2.5

■ Multiplier for Ripple Current

	Troqueriey decimalent								
Frequency (Hz)		120	1K	10K	100K				
	Coefficient	1.0	1.6	1.8	2.0				

TP

Miniature and long life Series

■Dimensions,Rated Ripple Current

	Rated (Surage) Voltage											
Capacitance (µF)	160 (200) 200		200 ((250) 250(300)		300)	400(450)		420(470)		450(500)	
	Size	Ripple	Size	Ripple	Size	Ripple	Size	Ripple	Size	Ripple	Size	Ripple
10												
22											10×40	250
27									10×40	200	10×42	270
33									10X45	235	10*45	300
20							10×45	260	10X50	270	10×50	340
39											12.5*40	350
47							12.5x40	310	12.5×42	310	12.5×45	420
56							10×52	340	12.5×45	330	12.5×50	480
50							12.5x45	360				
68							12.5×50	400	12.5x50	390	12.5×55	530
82					10x52	390	12.5×55	460	12.5X55	450		
100			10x45	330	12.5x42	470						
120			10×50	430	12.5x45	480						
150	10×45	410	12.5x45	510	12.5×50	540						
180	10×50	470	12.5x50	590	12.5×55	650						
220	12.5x45	550	12.5×52	650								
270	12.5×50	640	12.5×55	750								
330	12.5×55	740										

 $[\]stackrel{\wedge}{\bowtie}$ Size ∶ D ϕ x L (mm) $\stackrel{\wedge}{\bowtie}$ Ripple Current: (mA/rms),105 $^{\circ}$ C , 120Hz

General Purpose Series

■ Endurance : 85°C 2000 hours

■ Ideally suitable for using in Switching Power Supplies and orther

industrial /commercial applications

■ Corresponding product to RoHS

■ Specifications

Item					Charac	cteristics						
Operating Temperature Range	-40~+85°C	-25~-	+85°C									
Rated Voltage Range	6.3 ~ 100VDC	160 ~ 5	00VDC									
Capacitance Range	820 ~ 120000 μ F	47 ~ 22	200 μ F									
Capacitance Tolerance	± 20 % at 120Hz,	20 ℃										
Leakage Current (MAX)	I=0.02CV or 3(mA)	-0.02CV or 3(mA) , whichever is smaller. (After 5 minutes application of rated voltage at 20 ℃)										
Dissipation Factor (MAX)	Rated voltage(V)	6.3	10	16	25	35	50	63~100	160~400	420~500		
(tan δ) (120Hz ,20 $^{\circ}$ C)	$ an \delta$	0.60	0.55	0.55	0.45	0.35	0.30	0.25	0.15	0.20		
	Measurement frequ	Measurement frequency : 120Hz										
Low Temperature Stability	Rated voltage(V)	6.3~16	25	35	50~63	80~100	160~400	420-500				
Impedance Ratio (MAX)	Z-25°C / Z+20°C	3	3	3	2	2	4	8				
	Z-40°C / Z+20°C	12	10	8	6	5						
	After applying rated the capacitor shall	_				for 2000	nrs at 85	℃,				
Endurance	Capacitance Cha	nge	Within	± 20 %	of initial	value						
	Dissipation Facto	r	Not mor	e than 2	00% of t	he specif	ied value	;				
	Leakage Current initial specified value or less											
	After placed at 85°	without	voltage a	applied f	or 1000	hours,						
Shelf Life	the capacitor shall meet the same requirement as Endurance.											

■ Diagram of Dimensions

■ Multiplier for Ripple Current

Frequency (Hz)	50	60	120	1K	10K
6.3~100V	0.88	0.90	1.00	1.15	1.16
160~250V	0.75	0.78	1.00	1.30	1.50
350~450V	0.74	0.76	1.00	1.35	1.45
500V	0.72	0.74	1.00	1.20	1.30

General Purpose Series

■ Dimensions, Rated Ripple Current

Canaaitanaa	Rated (Surge) Voltage											
Capacitance	6.3	3 (8)	10	(13)	16	(20)	25	(32)				
(μ F)	Size	Ripple	Size	Ripple	Size	Ripple	Size	Ripple				
5600				1 1 2			22x25	2.20				
							22x30	2.40				
6800							25x25	2.45				
					22x25	2.60	22x35	2.70				
8200							25x25	2.75				
					22x30	2.70	22x40	3.10				
10000					25x25	2.75	25x30	3.15				
							30x25	3.20				
			22x25	2.40	22x30	2.90	22x45	3.50				
					25x25	2.95	25x35	3.45				
12000							30x30	3.50				
							35x25	3.55				
	22x25	2.44	22x30	2.75	22x35	3.30	22x50	4.00				
			25x25	2.75	25x30	3.45	25x40	3.95				
15000					30x25	3.50	30x35	4.00				
							35x30	4.05				
	22x30	2.60	22x35	3.15	22x40	3.70	25x45	4.45				
18000	25x25	2.62	25x25	3.05	25x35	3.75	30x35	4.45				
					30x30	3.80	35x30	4.60				
	22x30	3.06	22x40	3.55	22x50	4.35	30x40	5.20				
	25x25	3.07	25x30	3.50	25x40	4.30	35x35	5.15				
22000			30x25	3.55	30x30	4.25	30x45	5.95				
					35x25	4.20	35x40	5.90				
	22x35	3.49	22x45	4.05	25x45	4.70						
27000	25x30	3.52	25x35	4.00	30x35	4.65	30x50	6.70				
	30x25	3.57	30x30	4.05	35x30	4.65	35x45	6.75				
	22x40	3.97	22x50	4.60	30x40	5.35						
	25x35	4.02	25x40	4.55	35x30	5.40						
33000	30x30	4.05	30x30	4.50			35x50	7.55				
	35x25	4.10	35x25	4.50								
	22x50	4.56	25x45	5.10	30x45	6.00	35x45	7.56				
	25x40	4.50	30x35	5.05	35x35	5.95						
39000	30x30	4.46	35x30	5.05								
	35x25	4.51										
	25x45	5.09	25x50	5.75	30x50	6.80	35x50	8.30				
47000	30x35	5.06	30x40	5.70	35x40	6.75						
	35x30	5.03	35x30	5.65	-	_						
	25x50	5.71	30x45	6.45	35x45	7.60						
56000	30x40	5.70	35x35	6.40	-							
	35x30	5.75										
	30x45	6.48	30x50	7.05	35x50	8.00						
68000	35x35	6.42	35x40	7.10								
	30x50	7.32	35x50	7.50	35x60	8.50						
82000	35x40	7.29										
100000	35x45	8.31										
120000	35x50	8.60										

Arr Size: D ϕ x L (mm) Arr Ripple Current : A/rms. 85 $^{\circ}$,120Hz

General Purpose Series

Dimensions, Rated Ripple Current

Canacitanas	Rated (Surge) Voltage											
Capacitance	35	(44)	50	(63)	63	(79)	80 ((100)				
(μF)	Size	Ripple	Size	Ripple	Size	Ripple	Size	Ripple				
1200							22x25	1.65				
4500							22x30	1.90				
1500							25x25	1.90				
					22x25	1.85	22x35	2.20				
1800							25x30	2.20				
							30x25	2.20				
			22x25	1.90	22x30	2.30	22x40	2.45				
2200					25x25	2.30	25x30	2.45				
							30x25	2.50				
			22x30	2.10	22x35	2.45	22x45	2.80				
2700			25x25	2.20	25x30	2.45	25x35	2.80				
2700					30x25	2.50	30x30	2.85				
							35x25	2.85				
			22x30	2.35	22x40	2.60	22x50	3.15				
3300			25x25	2.35	25x30	2.65	25x40	3.20				
0000					30x25	2.70	30x30	3.20				
							35x25	3.20				
	22x25	2.20	22x35	2.65	22x45	2.95	25x45	3.60				
3900			25x30	2.65	25x35	2.95	30x35	3.60				
			30x25	2.65	30x30	3.00	35x30	3.60				
	22x30	2.40	22x40	3.00	22x50	3.40	25x50	4.05				
4700	25x25	2.40	25x35	3.00	25x40	3.35	30x40	4.05				
			30x25	2.95	30x30	3.35	35x35	4.10				
					35x25	3.40						
	22x35	2.75	22x45	3.35	25x45	3.70	30x45	4.55				
5600	25x25	2.75	25x40	3.35	30x35	3.75	35x35	4.50				
_			30x30	3.35	35x30	3.75						
			35x25	3.40								
	22x40	2.85	22x50	3.80	30x40	4.25	30x50	5.15				
0000	25x30	2.85	25x40	3.80	35x30	4.20	35x40	5.15				
6800	30x25	2.90	30x30	3.80								
			30x35	3.85								
	00.45	0.45	35x30	3.85	00.45	4.00	05.45					
0000	22x45	3.15	25x50	4.35	30x45	4.80	35x45	5.85				
8200	25x35	3.10	30x40	4.35	35x35	4.80						
	30x30	3.15	35x30	4.40	201-50	F. 50	2550	0.00				
	22x50	3.55	30x45	5.00	30x50	5.50	35x50	6.60				
10000	25x40	3.50	35x35	4.95	35x40	5.45						
	30x30	3.45										
	35x25	3.40	20,450	5.60	25,45	6 20						
	25x45 30x35	3.95 4.00	30x50 35x40	5.60	35x45	6.20						
12000			33840	5.55								
	35x30	4.05										
	25x50	4.95	35x45	6.45								
15000	30x40	4.95										
	35x35	5.00										
10000	30x45	5.50	35x50	6.70								
18000	35x40	5.55										
22000	30x50	6.00										
22000	35x45	6.05										
27000	35x50	6.90										

Arr Size: D ϕ x L (mm) Arr Ripple Current ∶ A/rms. 85°C,120Hz

General Purpose Series

Dimensions, Rated Ripple Current

Capacitance				Rated (Sur	,				
•		(125)		(200)	180	(225)	200 (250)		
(μF)	Size	Ripple	Size	Ripple	Size	Ripple	Size	Ripple	
180		• •			22x20	1.00	22x25	0.95	
220					22x25	1.10	22x25	1.10	
			22x25	1.15	22x25	1.25	22x25	1.25	
270					25x20	1.25	22x30	1.25	
							25x25	1.25	
			22x25	1.40	22x25	1.40	22x25	1.45	
330			25x20	1.35	22x30	1.40	22x30	1.45	
					25x25	1.40	25x25	1.45	
			22x30	1.55	22x30	1.60	22x30	1.60	
390			25x25	1.55	25x25	1.60	25x25	1.55	
			30x25	1.50					
			22x30	1.75	22x35	1.80	22x35	1.80	
470			25x25	1.75	25x30	1.80	25x30	1.80	
			30x25	1.70	30x25	1.80	30x25	1.80	
			22x30	1.95	22x35	2.00	22x40	2.00	
560			25x30	1.95	22x40	2.00	25x35	2.00	
300			30x25	1.90	25x30	1.95	30x25	2.00	
					30x25	2.00			
			22x40	2.20	22x45	2.25	22x45	2.35	
680			25x30	2.20	25x35	2.20	25x35	2.30	
000			30x25	2.15	30x30	2.20	30x30	2.30	
					35x25	2.20	35x25	2.30	
	22x25	1.85	22x45	2.50	22x50	2.55	25x40	2.60	
			25x35	2.55	25x40	2.55	25x45	2.60	
820			30x30	2.50	30x30	2.60	30x30	2.60	
			35x25	2.50	30x35	2.60	30x35	2.60	
					35x25	2.60	35x30	2.60	
	22x30	2.10	22x50	2.85	25x45	2.85	25x45	3.00	
	25x25	2.10	25x40	2.80	30x35	2.85	25x50	3.00	
1000			30x35	2.80	35x30	2.90	30x35	3.05	
			35x25	2.80			30x40	3.05	
							35x30	3.00	
	22x35	2.40	25x45	3.15	30x40	3.25	25x50	3.30	
	25x30	2.45	30x35	3.15	35x30	3.30	30x40	3.30	
1200			35x30	3.20	35x35	3.30	30x45	3.30	
							35x30	3.30	
							35x35	3.30	
	22x40	2.70	30x45	3.75	30x45	3.85	30x45	3.80	
1500	25x30	2.75	35x30	3.70	35x35	3.80	30x50	3.80	
_	30x25	2.75	35x35	3.70	35x40	3.80	35x35	3.80	
							35x40	3.80	
	22x45	3.10	30x50	4.20	35x40	4.30	35x40	4.35	
1800	25x35	3.15	35x40	4.20	35x45	4.30	35x45	4.35	
	30x30	3.15							
	35x25	3.15	05.40	4.00	05.45	4.00	05 45	4.5-	
	22x50	3.50	35x40	4.60	35x45	4.90	35x45	4.95	
2200	25x40	3.55	35x45	4.80	35x50	4.90	35x50	4.95	
	30x30	3.55							
	35x25	3.60	05.50	F 15					
0700	25x45	4.10	35x50	5.45					
2700	30x35	4.05							
	35x30	4.05							
2222	25x50	4.50							
3300	30x40	4.55							
	35x30	4.50							
3900	30x45	5.15							
	35x35	5.10							
4700	35x40	5.75							
5600	35x50	6.20		os 85°C 120E					

 $\stackrel{\sim}{\sim}$ Size: D ϕ x L (mm) $\stackrel{\sim}{\sim}$ Ripple Current : A/rms. 85 °C ,120Hz

General Purpose Series

■Dimensions,Rated Ripple Cu

Conneitones	Rated (Surge) Voltage											
Capacitance	250	(300)	350	(400)	400	(450)	420 (470)	450	(500)	500	(550)
(μF)	Size	Ripple	Size	Ripple	Size	Ripple	Size	Ripple	Size	Ripple	Size	Ripple
47									22x25	0.50	25x20	0.50
56					22x20	0.55			22x25	0.65		0.00
			22x20	0.55	22x25	0.60			22x25	0.67		
68				0.00	25x20	0.60			22x30	0.70		
					20/120	0.00			25x25	0.70		
			22x25	0.65	22x25	0.80			22x30	0.80		
82			25x20	0.65	25x20	0.80			25x25	0.80		
			22x30	0.90	22x25	0.85			22x30	0.85	22x40	1.00
400			25x20	0.90	22x30	0.90			22x35	0.95	30x25	0.90
100					25x25	0.90			25x30	0.95		
									30x25	0.95		
	22x20	0.78	22x30	1.00	22x30	0.95	22x30	0.95	22x30	0.95	30x30	1.00
400			25x25	1.00	22x35	1.05			22x40	1.05	35x25	1.00
120					25x25	1.05			25x30	1.05		
									30x25	1.05		
	22x25	0.90	22x35	1.15	22x35	1.15	22x35	1.05	22x35	1.05	22x50	1.40
450			25x30	1.15	25x30	1.15	25x30	1.05	22x45	1.20	30x35	1.20
150			30x25	1.15	30x25	1.15	30x25	1.05	25x35	1.20		
									30x30	1.20		
	22x25	1.05	22x40	1.30	22x40	1.20	22x40	1.35	25x40	1.35	30x40	1.40
400	25x20	1.00	25x30	1.25	22x45	1.30			30x35	1.35	35x30	1.30
180			30x25	1.25	25x35	1.30			35x25	1.35		
					30x30	1.35						
	22x30	1.15	22x45	1.45	22x50	1.50	22x45	1.40	22x45	1.40		
222	22x35	1.15	25x35	1.45	25x40	1.50	22x50	1.55	25x50	1.55	30x45	1.60
220	25x25	1.15	30x30	1.45	30x30	1.50	25x40	1.50	30x40	1.55	35x35	1.50
			35x25	1.45	35x25	1.50	25x45	1.60	35x30	1.55		
	22x30	1.30	25x40	1.65	22x50	1.60	25x40	1.50	25x50	1.55	30x50	1.80
070	25x25	1.30	30x35	1.65	25x40	1.65	30x40	1.60	30x45	1.75	35x40	1.70
270			35x25	1.65	30x35	1.65			35x35	1.70		
					35x30	1.65						
	22x30	1.50	25x50	1.80	25x45	1.75	25x45	1.75	30x40	1.75		
222	25x25	1.50	30x40	1.80	25x50	1.90	25x50	1.85	30x50	2.00	35x45	2.00
330	30x25	1.50	35x30	1.80	30x40	1.90	30x40	1.75	35x40	2.00		
					35x30	1.85	30x45	1.90				
	22x35	1.65	30x40	2.00	30x40	1.95	30x45	1.90	30x45	2.00	35x50	2.30
390	25x35	1.65	35x30	2.00	30x45	2.15			35x45	2.25		
	30x25	1.65			35x35	2.10						
	22x40	1.85	30x45	2.25	30x45	2.20	30x45	2.10	30x50	2.30		
470	25x35	1.85	35x35	2.25	30x50	2.40	30x50	2.20	35x50	2.50		
470	30x30	1.90			35x40	2.40						
	35x25	1.90			-							
	22x45	2.10	35x40	2.50	30x50	2.45	30x50	2.30	35x50	2.70		
F60	25x40	2.10			35x45	2.70	35x45	2.30				
560	30x30	2.10										
	35x25	2.10										
	25x45	2.45	35x45	2.90	35x50	2.90			35x60	2.90		
680	30x35	2.45										
	35x25	2.45										
000	30x45	2.75										
820	35x30	2.75										
4000	30x45	3.30										
1000	35x35	3.30										
						-						
1200	35x40	3.55										

 $\stackrel{\wedge}{\sim}$ Size: D ϕ x L (mm) $\stackrel{\wedge}{\sim}$ Ripple Current : A/rms. 85 $^{\circ}$ C,120Hz

LG High temperature and general purpose Series

■ Endurance : 105°C 2000 hours,high temperature than TW

 Ideally suitable for using in Switching Power Supplies and orther industrial /commercial applications

Corresponding product to RoHS

Specifications

Specifications											
Item					Charac	teristics					
Operating Temperature Range	-40 ~ +105°C	-25 ~	+105°C								
Rated Voltage Range	6.3 ~ 100VDC	160 ~ 4	50VDC								
Capacitance Range	560 ~ 82000 μ F	47 ~ 2	200 μ F								
Capacitance Tolerance	± 20 % at 120Hz	, 20 ℃									
Leakage Current (MAX)	I=0.02CV,L=20m/n Where, I :Leakage	,		•		`	- /		,		
Dissipation Factor (MAX)	Rated voltage(V)	6.3	10	16	25	35	50	63~100	160~400	420~450	
(tan δ) (120Hz ,20 $^{\circ}$ C)	$ an \delta$	0.60	0.55	0.55	0.45	0.35	0.30	0.25	0.15	0.20	
	Measurement frequ	uency: 1	20Hz								
Low Temperature Stability	Rated voltage(V)	6.3~16	25	35	50~63	80~100	160~400	420~450			
Impedance Ratio (MAX)	Z-25°C / Z+20°C	4	3	3	2	2	4	8			
	Z-40°C / Z+20°C	15	10	8	6	5					
	After applying rated the capacitor shall	_				r 2000hrs	at 105°C	,			
Endurance	Capacitance Cha	nge	Within	± 20 % of	finitial va	lue					
	Dissipation Factor	r	Not more	than 200	0% of the	specified	value				
	Leakage Current	Leakage Current initial specified value or less									
Shelf Life	•	After placed at 105°C without voltage applied for 1000 hours, the capacitor shall meet the same requirement as Endurance.									

■ Diagram of Dimensions

Multiplier for Ripple Current

Troquonoy ocon	1010116				
Frequency	50	60	120	1K	10K
6.3~100V	0.88	0.90	1.00	1.15	1.16
160~250V	0.85	0.88	1.00	1.30	1.50
315~450V	0.88	0.9	1.00	1.35	1.45

LG

High temperature and general purpose Series

■ Dimensions, Rated Ripple Current

S:	Rated (Surge) Voltage											
Capacitance	6.3	3 (8)	10	(13)	16	(20)	25 (32)					
(μ F)	Size	Ripple	Size	Ripple	Size	Ripple	Size	Ripple				
4700							22x25	1.50				
5000							22x30	1.65				
5600							25x25	1.65				
0000					22x25	1.55	22x30	1.85				
6800							25x25	1.85				
					22x30	1.70	22x35	2.10				
8200					25x25	1.70	25x30	2.10				
							30x25	2.15				
			25x25	1.55	22x30	1.95	22x40	2.40				
40000					25x25	1.95	25x35	2.40				
10000							30x30	2.40				
							35x25	2.40				
	22x25	1.55	22x30	1.75	22x35	2.20	22x45	2.70				
10000					25x30	2.25	25x40	2.75				
12000					30x25	2.30	30x30	2.70				
							35x25	2.75				
	22x30	1.70	22x30	1.90	22x40	2.55	25x45	3.15				
.=	25x25	1.70	25x25	1.90	25x35	2.60	30x35	3.15				
15000					30x30	2.60	35x30	3.25				
					35x25	2.65						
	22x30	1.95	22x35	2.20	22x45	2.90	25x50	3.55				
	25x25	1.95	25x30	2.25	25x40	2.90	30x40	3.55				
18000					30x30	2.90	35x35	3.55				
					35x25	2.95						
	22x35	2.25	22x40	2.50	25x45	3.30	30x45	4.05				
22000	25x30	2.25	25x35	2.55	30x35	3.30	35x35	3.80				
	30x25	2.25	30x25	2.45	35x30	3.30						
	22x40	2.55	22x50	2.95	25x50	3.80	35x45	4.70				
	25x35	2.55	25x40	2.90	30x40	3.75						
27000	30x30	2.55	30x30	2.85	35x30	3.75						
	35x25	2.55	35x25	2.80								
	22x45	2.90	25x45	3.30	30x45	4.30	35x50	5.40				
	25x40	2.95	30x35	3.30	35x35	4.25						
33000	30x30	2.90	35x30	3.30								
	35x25	2.95										
	25x50	3.25	25x50	3.70	30x50	4.80	35x45	5.50				
39000	30x35	3.25	30x40	3.7	35x40	4.80						
	35x30	3.30	35x30	3.65								
47000	25x50	3.70	30x45	4.20	35x45	5.45	35x50	6.00				
47000	30x40	3.70	35x35	3.80								
	30x45	4.15	30x50	4.65	35x45	5.65						
56000	35x35	4.10	35x40	4.65	-							
	30x50	4.70	35x50	5.50	35x50	6.20						
68000	35x40	4.70										
82000	35x45	5.30						1				

Arr Size: D ϕ x L (mm) Arr Ripple Current : A/rms. 105°C,120Hz

LG

High temperature and general purpose Series

Dimensions, Rated Ripple Current

	Rated Ripple Current Rated (Surge) Voltage											
Capacitance	35	(44)	50	(63)	63	(79)	80 (100)				
(μ F)	Size	Ripple	Size	Ripple	Size	Ripple	Size	Ripple				
820							22x25	1.10				
1000							22x30	1.20				
1000							25x25	1.20				
1200					22x25	1.20	22x30	1.40				
							25x25	1.40				
4=00					22x30	1.30	22x35	1.60				
1500					25x25	1.30	25x30	1.60				
				4.00			30x25	1.65				
4000			22x25	1.30	22x30	1.50	22x40	1.80				
1800					25x25	1.50	25x35	1.85				
			2020	4.55	2025	4.70	30x25	1.80				
			22x30	1.55	22x35	1.70	22x45	2.05				
2200			25x25	1.55	25x30 30x25	1.75 1.80	25x35 30x30	2.00 2.05				
					30X25	1.00	35x25	2.05				
			22x30	1.70	22x40	2.00	25x45	2.35				
2700			25x25	1.70	25x35	2.00	30x35	2.35				
2,00			ZOXZO	1.70	30x25	1.95	35x30	2.35				
	22x25	1.40	22x35	1.95	22x50	2.30	25x50	2.70				
			25x30	1.85	25x40	2.30	30x40	2.70				
3300					30x30	2.25	35x30	2.55				
					35x25	2.10						
	22x30	1.55	22x40	2.15	25x45	2.55	30x45	3.00				
3900	25x25	1.55	25x35	2.20	30x35	2.55	35x35	3.00				
			30x25	1.95	35x30	2.55						
	22x35	1.80	22x45	2.45	25x50	2.85	30x50	3.40				
4700	25x25	1.80	25x40	2.45	30x40	2.85	35x40	3.40				
4700			30x30	2.45	35x30	2.80						
			35x25	2.50								
	22x35	1.95	22x50	2.75	30x45	3.20	35x45	3.80				
5600	25x30	1.95	25x40	2.70	35x35	3.20						
0000	30x25	2.00	30x35	2.75								
			35x30	2.75								
	22x40	2.20	25x50	3.30	30x50	3.65	35x50	3.90				
6800	25x35	2.25	30x40	3.30	35x40	3.65						
	30x30	2.30	35x30	3.25								
	35x25	2.35		2.00								
•	22x50	2.55	30x45	3.60	35x45	3.90						
8200	25x40	2.50	35x35	3.55								
	30x30	2.75										
	35x25	2.75	20vE0	4.05	25vE0	4.40						
10000	25x45	2.85	30x50 35x40	4.05 4.00	35x50	4.40						
10000	30x35 35x30	2.90 2.95	JUX4U	4.00								
	25x50	3.25	35x45	4.55								
12000	30x40	3.25	JJA4J	4.55								
12000	35x30	3.25										
	30x45	3.70										
15000	35x35	3.65										
18000	35x40	4.35										
22000	35x50	4.90										

LG

High temperature and general purpose Series

Dimensions, Rated Ripple Current

Canacitanas	Rated (Surge) Voltage											
Capacitance	100	(125)	160	(200)	, 	(225)	200	(250)				
(μF)	Size	Ripple	Size	Ripple	Size	Ripple	Size	Ripple				
150							22x20	0.65				
180					22x20	0.75	22x20	0.70				
			22x20	0.80	22x25	0.85	22x25	0.80				
220							25x20	0.80				
070			22x25	1.00	22x25	0.95	22x25	0.85				
270					25x20	0.90	25x25	0.85				
			22x25	1.20	22x25	1.20	22x30	1.20				
330			25x20	1.15	22x30	1.10	25x25	1.20				
					25x25	1.10						
			22x30	1.30	22x30	1.30	22x30	1.30				
200			25x25	1.30	25x25	1.30	22x35	1.30				
390							25x30	1.30				
							30x25	1.30				
			22x30	1.30	22x30	1.30	22x35	1.40				
470			22x35	1.40	22x35	1.35	22x40	1.40				
470			25x25	1.40	25x30	1.40	25x30	1.40				
					30x25	1.40	30x25	1.50				
	22x25	1.05	22x40	1.50	22x40	1.50	22x45	1.55				
560			25x30	1.50	25x35	1.55	25x35	1.55				
			30x25	1.50	30x25	1.50	30x30	1.55				
	22x25	1.20	22x45	1.70	22x45	1.70	22x50	1.75				
			25x35	1.70	22x50	1.70	25x40	1.75				
000			30x25	1.70	25x35	1.70	30x30	1.75				
680					25x40	1.75	35x25	1.70				
					30x30	1.70						
					35x25	1.70						
	22x30	1.30	22x50	1.95	22x50	1.95	25x50	2.05				
	25x25	1.33	25x40	2.00	25x40	2.00	30x35	2.00				
820			30x30	2.00	25x45	2.00	35x30	2.05				
			35x25	1.90	30x35	2.00						
					35x25	1.90						
	22x35	1.50	25x45	2.20	25x45	2.20	30x40	2.30				
	25x30	1.50	30x35	2.20	25x50	2.20	30x45	2.30				
1000			35x30	2.20	30x35	2.25	35x30	2.30				
					30x40	2.25	35x35	2.30				
					35x30	2.25						
	22x40	1.70	25x50	2.45	25x50	2.45	30x50	2.60				
1000	25x35	1.70	30x40	2.45	30x40	2.45	35x40	2.65				
1200	30x25	1.70	35x30	2.45	30x45	2.50						
					35x35	2.50						
	22x45	1.95	30x45	2.80	30x45	2.80	35x45	3.10				
1500	25x40	2.00	35x35	2.80	30x50	2.90						
1500	30x30	1.95			35x40	2.90						
	35x25	2.00										
	25x45	2.20	30x50	3.30	30x50	3.30	35x50	3.15				
1800	30x35	2.50	35x45	3.30	35x50	3.30						
	35x30	2.45										
	25x50	2.55	35x50	3.75	35x50	3.60						
2200	30x40	2.70										
	35x30	2.55										
2700	30x45	2.90										
2700	35x35	2.85										
2200	30x50	3.25										
3300	35x40	3.25										
3900	35x45	3.70										
	30x50	3.80										
4700	35x50	3.80										

 $[\]stackrel{}{
ho}$ Size: D ϕ x L (mm) $\stackrel{}{
ho}$ Ripple Current ∶ A/rms. 105 $^{\circ}$ C,120Hz

LG

High temperature and general purpose Series

■Dimensions,Rated Ripple Curren

'anasitanas				Rated (Surge) Voltage											
apacitance	250	(300)	350	(400)	400	(450)	420	(470)	450 (500)						
(μF)	Size	Ripple	Size	Ripple	Size	Ripple	Size	Ripple	Size	Ripple					
47					22x20	0.35			22x25	0.38					
56			22x20	0.40	22x20	0.40			22x25	0.40					
			22x25	0.45	22x25	0.50			22x30	0.50					
68					25x20	0.50			25x25	0.50					
			22x25	0.55	22x25	0.52			22x30	0.52					
			25x20	0.50	22x30	0.60			22x35	0.55					
82					25x25	0.65			25x30	0.55					
									30x25	0.55					
			22x30	0.70	22x30	0.60			22x30	0.55					
			25x25	0.70	22x35	0.65			22x40	0.65					
100			20/120	00	25x30	0.65			25x30	0.60					
					ZONGO	0.00			30x25	0.65					
	22x20	0.60	22x35	0.75	22x30	0.62			22x35	0.60					
	ZZAZO	0.00	25x30	0.75	22x35	0.70			22x45	0.70					
120			30x25	0.75	25x30	0.70			25x35	0.70					
120			30,23	0.73	30x25	0.75			30x30	0.70					
					30,23	0.75			35x25	0.70					
	22x25	0.65	22x40	0.80	22x35	0.72	22x35	0.58	22x40	0.70					
	22,825	0.05													
			25x30	0.80	22x40	0.80	22x40	0.65	22x50	0.80					
150			30x25	0.85	25x30	0.85	25x30	0.70	25x40	0.80					
					25x35	0.85			30x30	0.75					
					30x30	0.85			35x25	0.75					
					35x25	0.80									
	22x25	0.80	22x45	0.90	22x40	0.81	22x40	0.68	22x45	0.75					
180	25x20	0.75	25x35	0.90	22x50	0.95	25x35	0.68	25x45	0.85					
			30x30	0.90	25x40	0.95			30x35	0.85					
					30x30	0.90			35x30	0.85					
	22x30	0.95	22x50	1.05	25x45	1.05	25x40	0.85	22x50	0.85					
220	25x25	0.95	25x40	1.05	30x35	1.05	25x45	0.95	25x50	1.00					
			30x30	1.00	35x30	1.10	30x40	0.95	30x40	1.00					
			35x25	1.05					35x30	1.00					
	22x35	1.15	25x45	1.20	25x45	1.10	25x45	1.05	25x50	1.05					
270	25x30	1.15	30x35	1.20	25x50	1.20	30x40	1.05	30x45	1.15					
2.0	30x25	1.15	35x30	1.20	30x40	1.20	35x30	1.05	35x35	1.15					
					35x35	1.20									
	22x40	1.25	30x40	1.35	25x50	1.25	25x50	1.15	30x45	1.25					
330	25x30	1.20	35x35	1.35	30x45	1.40	30x40	1.15	30x50	1.40					
	30x25	1.25			35x35	1.35	35x35	1.15	35x40	1.40					
	22x45	1.5	30x45	1.50	30x45	1.42	30x45	1.25	30x50	1.40					
390	25x35	1.50	35x35	1.50	30x50	1.55			35x45	1.55					
	30x30	1.50			35x40	1.55									
	22x50	1.55	35x40	1.70	30x45	1.45	30x50	1.40	35x45	1.68					
470	25x40	1.55			35x40	1.65	35x40	1.35	35x50	1.70					
470	30x30	1.55			30x50	1.75									
	35x25	1.55			35x45	1.75									
	25x45	1.80	35x45	1.90	35x45	1.80	35x45	1.65	35x50	1.80					
560	30x35	1.80			30x60	1.90			35x60	2.10					
	35x30	1.80			35x50	1.90									
	25x50	1.95			35x50	2.10									
680	30x40	2.00			35x60	2.15									
	35x35	2.00													
	30x45	2.15													
820	35x35	2.10													
1000	35x40	2.30													
	557.15														

 $[\]stackrel{\wedge}{\sim}$ Size: D ϕ x L (mm) $\stackrel{\wedge}{\sim}$ Ripple Current ∶ A/rms. 105 $^{\circ}$ C,120Hz

Long Life Series

■ Recommended Applications: Smoothing circuit, TV/Monitor, Adapter, SMPS

■ Corresponding product to RoHS

Specifications

- opodinoationo			
Item		Characteristics	
Operating Temperature Range	-40 ~ +85℃	-25 ~ +85℃	
Rated Voltage Range	10 ~ 100VDC	160 ~ 450VDC	
Capacitance Range	820 ~ 56000 μ F	56 ~ 2200 μ F	
Capacitance Tolerance	± 20 % at 120Hz , 20℃		
Lookaga Current (MAX) (20°C)	I≦0.02CV or 3mA which	ever is smaller(After rated voltage applied for 5 mir	nutes)
Leakage Current (MAX) (20°C)	I= Leakage Current (μ A)	C= Nominal Capacitance (μ F) V= Rated Volta	age (V)
Dissipation Factor (MAX) (tan δ) (120Hz ,20°C)	Dissipation Factor(tan δ)	shall not exceed the values showed in the table of	standard rating
	After applying rated volta	ge with rated Ripple current for 3000hrs at 85 $^{\circ}\mathrm{C}$,	
	the capacitor shall meet t	he following requirement.	
Endurance	Capacitance Change	Within±20% of the initial value	
	Dissipation Factor	Not more than 200% of the specified value	=
	Leakage Current	Not more than the specified value	
Chalf Life	After placed at 85 °C without	out voltage applied for 1000 hours,	
Shelf Life	the capacitor shall meet t	he same requirements as Endurance.	

■ Diagram of Dimensions

■ Multiplier for Ripple Current

Freq. (Hz)	50	60	120	400	1K	2.4K	5K	10K
Coefficient	0.8	0.85	1.0	1.14	1.23	1.3	1.36	1.4

Long Life Series

Dimensions, Max Dissipation Factor, Max Permissible Ripple Current, Max Equivalent Series Resistance

						Rated (S	urge) Vo	ltage				
Capacitance			10(13)					1	6(20)		
(μF)		φ[DxL		4 2	CCD		ψ[DxL		4 2	LCD.
		Ripple	Current		$ an \delta$	ESR		Ripple	Current		$tan \delta$	ESR
8200							22x25				0.55	0.089
0200							2.45				0.55	0.003
10000							22x30				0.55	0.073
10000							2.60				0.00	0.070
12000	22x25				0.55	0.061	22x35	25x25			0.55	0.061
12000	2.45				0.00	0.001	3.10	2.90			0.00	0.001
15000	22x30				0.55	0.049	22x40	25x30	30x25		0.55	0.049
10000	2.80				0.00	0.0.0	3.46	3.30	3.40		0.00	0.010
18000	22x35	25x25			0.55	0.041	22x45	25x35	30x30		0.55	0.041
10000	3.34	3.15			0.00	0.011	3.81	3.70	3.85		0.00	0.011
22000	22x40	25x30	30x25		0.55	0.033	22x50	25x45	30x30	35x25	0.55	0.033
22000	3.67	3.50	3.60		0.00	0.000	4.32	4.40	4.15	4.23	0.00	0.000
27000	22x45	25x35	30x30		0.55	0.027		25x45	30x35	35x30	0.55	0.027
	4.12	4.00	4.16		0.00	0.02.		4.65	4.65	4.79	0.00	0.02.
33000	22x50	25x40	30x30	35x25	0.55	0.022			30x40	35x35	0.55	0.022
	4.63	4.49	4.45	4.54	0.00	0.022			5.25	5.41	0.00	0.022
39000		25x45	30x35	35x30	0.55	0.019			30x45	35x35	0.55	0.019
		4.90	4.90	5.05	0.00	0.0.0			5.86	5.80	0.00	0.0.0
47000		25x50	30x40	35x30	0.55	0.016				35x40	0.55	0.016
		5.55	5.61	5.50	0.00	0.0.0				6.45	0.00	0.0.0
56000			30x45	35x35	0.55	0.013						
00000			6.11	6.05	0.00	3.0.0						

						Rated (S	urge) Vo	ltage				
Capacitance			25((32)					3	5(44)		
(μF)		φ[DxL		2 224	ESR		φ[DxL		2 004	ESR
		Ripple	Current		$tan \delta$	ESK		Ripple	Current		$tan \delta$	ESK
3900							22x25				0.40	0.136
3900							2.10				0.40	0.130
4700							22x30	25x25			0.40	0.113
4700							2.30	2.30			0.40	0.110
5600	22x25				0.45	0.107	22x35	25x30	30x25	35x25	0.40	0.095
	2.20				0.40	0.107	2.60	2.62	2.70	2.99	0.10	0.000
6800	22x30	25x25			0.45	0.088	22x40	25x35	30x30	35x25	0.40	0.078
	2.45	2.45			0.40	0.000	2.90	2.93	3.07	3.13	0.10	0.070
8200	22x35	25x30			0.45	0.073	22x45	25x35	30x30	35x25	0.40	0.065
0200	2.75	2.75			0.10	0.070	3.30	3.20	3.33	3.42	0.10	0.000
10000	22x40	25x30	30x25		0.45	0.060	22x50	25x40	30x30	35x25	0.40	0.053
	3.25	3.10	3.19		00	0.000	3.74	3.64	3.60	3.67	01.10	0.000
12000	22x45	25x35	30x30	35x25	0.45	0.050		25x45	30x35	35x30	0.40	0.044
	3.50	3.40	3.54	3.64	00	0.000		4.00	4.00	4.12	01.10	0.0
15000		25x40	30x35	35x30	0.45	0.040			30x40	35x35	0.40	0.035
		3.90	4.10	4.21					4.60	4.74		0.000
18000		25x45	30x40	35x30	0.45	0.033			30x45	35x40	0.40	0.029
		4.30	4.51	4.39					5.10	5.30		0.000
22000			30x45	35x35	0.45	0.027				35x45	0.40	0.024
			4.90	4.85						5.70		0.000
27000			30x50	35x40	0.45	0.022				35x50	0.40	0.020
			5.45	5.45						6.45		
33000				35x45	0.45	0.018						
V C. D / T		۸ ، ۷	20°C 1	6.15	V. D.:			12011				2011 (0)

L Long Life Series

■Dimensions,Max Dissipation Factor,Max Permissible Ripple Current,Max Equivalent Series Resistance

					F	Rated (Sur	ge) Volta	ge				
Capacitance			50(63)					63	3(79)		
(μF)		φ[DxL		4=== 5	ESR		φ[DxL		2 1	ESR
		Ripple	Current		$tan \delta$	ESK		Ripple	Current		$tan \delta$	ESK
1800							22x25				0.30	0.22
1000							1.80				0.50	0.22
2200	22x25				0.35	0.211	22x30	25x25			0.30	0.18
2200	1.80				0.55	0.211	2.00	2.00			0.50	0.10
2700	22x30				0.35	0.172	22x35	25x30			0.30	0.14
2700	1.95				0.00	0.172	2.30	2.30			0.00	0.14
3300	22x35	25x25			0.35	0.141	22x40	25x30	30x25		0.30	0.12
3300	2.33	2.20			0.55	0.141	2.68	2.55	2.63		0.50	0.12
3900	22x40	25x30			0.35	0.119	22x45	25x35	30x30		0.30	0.10
3300	2.52	2.40			0.55	0.113	2.88	2.80	2.91		0.50	0.10
4700	22x45	25x35	30x30	35x25	0.35	0.099	22x50	25x40	30x30	35x25	0.30	0.08
4700	2.78	2.70	2.82	2.89	0.55	0.000	3.28	3.18	3.15	3.21	0.50	0.00
5600		25x35	30x30	35x25	0.35	0.083		25x45	30x35	35x30	0.30	0.07
3000		3.00	3.12	3.21	0.55	0.003		3.50	3.50	3.60	0.50	0.07
6800		25x40	30x35	35x30	0.35	0.068		25x50	30x40	35x30	0.30	0.05
0000		3.35	3.52	3.62	0.55	0.000		3.94	3.98	3.90	0.50	0.00
8200		25x50	30x40	35x30	0.35	0.057			30x45	35x35	0.30	0.04
0200		3.74	3.77	3.70	0.55	0.007			4.39	4.35	0.50	0.04
10000			30x45	35x35	0.35	0.046			30x50	35x40	0.30	0.04
10000			4.24	4.20	0.55	0.040			4.90	4.90	0.50	0.04
12000			30x50	35x40	0.35	0.039				35x50	0.30	0.03
12000			4.65	4.65	0.55	0.000				5.45	0.00	0.03
15000				35x45	0.35	0.031						
13000				5.30	0.55	0.001						
18000				35x50	0.35	0.026						
10000				5.90	0.55	0.020						

					F	Rated (Sur	ge) Volta	ge				
Capacitance			80(1	00)					100	(125)		
(μF)		φ[DxL		2 004	ESR		ψ[DxL		ton 2	ESR
		Ripple	Current		$tan \delta$	ESK		Ripple	Current		$ an \delta$	ESK
820							22x25 1.70				0.25	0.404
1000							22x30 1.95	25x25 1.95			0.25	0.332
1200	22x25 1.70				0.25	0.276	22x35 2.15	25x30 2.15			0.25	0.276
1500	22x30 1.95	25x25 1.95			0.25	0.221	22x40 2.57	25x30 2.45	30x25 2.52		0.25	0.221
1800	22x35 2.15	25x30 2.15			0.25	0.184	22x45 2.83	25x35 2.75	30x30 2.86		0.25	0.184
2200	22x40 2.57	25x30 2.45	30x25 2.52		0.25	0.151	22x50 3.17	25x40 3.08	30x30 3.05	35x25 3.11	0.25	0.151
2700	22x45 2.83	25x35 2.75	30x30 2.86		0.25	0.123	0	25x45 3.45	30x35 3.45	35x30 3.55	0.25	0.123
3300	22x50 3.22	25x40 3.13	30x30 3.10	35x25 3.16	0.25	0.100		25x50 3.94	30x40 3.98	35x30 3.90	0.25	0.100
3900	0.22	25x45 3.40	30x35 3.40	35x30 3.50	0.25	0.085		0.01	30x45 4.34	35x35 4.30	0.25	0.085
4700		25x50 3.84	30x40 3.88	35x35 4.04	0.25	0.071			1.01	35x40 4.75	0.25	0.071
5600		0.01	30x45 4.24	35x40 4.43	0.25	0.059				35x50 5.30	0.25	0.059
6800			30x50 4.70	35x45 4.93	0.25	0.049				2.00		
8200				35x50 5.25	0.25	0.040						

 $\text{Size:D } \phi \text{ x L(mm)}.$ $\text{tan } \delta : 20^{\circ}\text{C}, 120\text{Hz}.$ $\text{tan } \delta : 20^{\circ}\text{C}, 120\text{Hz}.$ $\text{tan } \delta : 20^{\circ}\text{C}, 120\text{Hz}.$

Long Life Series

■Dimensions,Max Dissipation Factor,Max Permissible Ripple Current,Max Equivalent Series Resistance

		-				Rated (S	urge) Vo	ltage	-			
Capacitance			160((200)					18	0(225)		
(μF)			OxL		$ an \delta$	ESR			OxL		$ an \delta$	ESR
		Ripple	Current	1				Ripple	Current			
270							22x25				0.15	0.737
							1.10					
330	22x25				0.15	0.603	22x30				0.15	0.603
	1.15						1.25					
390	22x30				0.15	0.510	22x30	25x25			0.15	0.510
	1.30						1.40	1.40				
470	22x35	25x30			0.15	0.423	22x35	25x30			0.15	0.423
	1.59	1.62					1.60	1.60				
560	22x35	25x30			0.15	0.355	22x40	25x30	30x25		0.15	0.355
	1.70	1.70					1.89	1.80	1.85			
680	22x40	25x35	30x25		0.15	0.293	22x45	25x35	30x30		0.15	0.292
	1.97	1.99	1.95				2.11	2.05	2.13			
820	22x50	25x40	30x30		0.15	0.243	22x50	25x40	30x30	35x30	0.15	0.243
	2.32	2.28	2.24				2.34	2.27	2.25	2.45		
1000		25x45	30x35	35x30	0.15	0.199		25x50	30x35	35x30	0.15	0.199
		2.58	2.57	2.65				2.67	2.55	2.63		
1200		25x50	30x40	35x35	0.15	0.166			30x40	35x35	0.15	0.166
		2.78	2.80	2.92					2.85	2.93		
1500			30x45	35x40	0.15	0.133			30x50	35x40	0.15	0.130
			3.03	3.17	00	01.00			3.10	3.10	00	000
1800			30x50	35x45	0.15	0.111				35x45	0.15	0.111
1000			3.50	3.67	0.10	0				3.60	0.10	V
2200				35x50	0.15	0.090						
00				4.08	0.10	0.000						

						Rated (S	urge) Vol	ltage				
Capacitance			200(250)					25	0(300)		
(μF)		φ[DxL		$tan \delta$	ESR		ϕ [DxL		$tan \delta$	ESR
		Ripple	Current		tano	LOIX		Ripple	Current		tano	LOIX
180							22x25				0.15	1.110
100							1.00				0.10	1.110
220	22x25	25x25			0.15	0.905	22x30	25x25			0.15	0.905
220	1.00	1.08			0.10	0.505	1.15	1.15			0.10	0.505
270	22x30	25x25			0.15	0.737	22x30	25x25			0.15	0.737
210	1.15	1.15			0.10	0.737	1.30	1.30			0.10	0.737
330	22x30	25x25			0.15	0.603	22x35	25x30			0.15	0.603
330	1.29	1.30			0.10	0.000	1.45	1.45			0.15	0.000
390	22x35	25x30	30x25		0.15	0.510	22x40	25x35	30x25		0.15	0.510
390	1.45	1.45	1.51		0.13	0.510	1.62	1.63	1.60		0.13	0.510
470	22x40	25x35	30x25		0.15	0.423	22x45	25x40	30x30	35x25	0.15	0.423
470	1.67	1.68	1.65		0.10	0.420	1.80	1.84	1.80	1.85	0.10	0.425
560	22x45	25x35	30x30		0.15	0.355		25x40	30x35	35x30	0.15	0.355
300	1.94	1.87	1.96		0.13	0.555		2.00	2.10	2.20	0.13	0.55
680	22x50	25x45	30x35	35x30	0.15	0.293		25x50	30x40	35x30	0.15	0.293
000	2.14	2.21	2.20	2.27	0.13	0.233		2.32	2.35	2.30	0.13	0.293
820		25x50	30x35	35x30	0.15	0.243			30x45	35x35	0.15	0.243
020		2.32	2.22	2.30	0.10	0.240			2.57	2.55	0.15	0.240
1000			30x45	35x35	0.15	0.199			30x50	35x40	0.15	0.199
1000			2.63	2.60	0.10	0.133			2.90	2.90	0.15	0.155
1200			30x50	35x40	0.15	0.166				35x45	0.15	0.166
1200			2.90	2.90	0.13	0.100				3.25	0.15	0.100
1500				35x45	0.15	0.133						
1300				3.11	0.13	0.133						

 $\begin{tabular}{ll} $\not \simeq Size:D \ \phi \ x \ L(mm). & \begin{tabular}{ll} $\not \simeq tan \ \delta : 20 \ ^\circ C, 120 \ Hz. & \begin{tabular}{ll} $\not \simeq Ripple \ Current: 85 \ ^\circ C, 120 \ Hz, (A/rms) & \begin{tabular}{ll} $\not \simeq ESR: 20 \ ^\circ C, 120 \ Hz, (\Omega). \\ \end{tabular}$

L Long Life Series

■Dimensions,Max Dissipation Factor,Max Permissible Ripple Current,Max Equivalent Series Resistance

		-				Rated (S	urge) Vo	Itage				
Capacitance			315((365)					35	0(400)		
(μF)		φ[DxL			FOD		φ[DxL			E0D
		Ripple	Current		$tan \delta$	ESR		Ripple	Current		$tan \delta$	ESR
82							22x25				0.15	2.426
02							0.70				0.15	2.420
100	22x25				0.15	1.989	22x30				0.15	1.989
100	0.75				0.10	1.000	0.80				0.10	1.000
120	22x30				0.15	1.658	22x30	25x25			0.15	1.658
	0.80						0.85	0.85				
150	22x30	25x25			0.15	1.326	22x35	25x25			0.15	1.326
	1.00	1.00			00		1.11	1.05			01.0	
180	22x35	25x30			0.15	1.105	22x40	25x35	30x25		0.15	1.105
	1.10	1.10			00		1.16	1.17	1.15		01.0	
220	22x40	25x30	30x25		0.15	0.905	22x45	25x35	30x30	35x25	0.15	0.905
	1.31	1.25	1.29				1.34	1.30	1.35	1.39		
270	22x45	25x35	30x30	35x25	0.15	0.737		25x45	30x35	35x25	0.15	0.737
	1.44	1.40	1.46	1.50				1.51	1.49	1.45		
330	22x50	25x40	30x35	35x30	0.15	0.603		25x50	30x40	35x30	0.15	0.603
	1.63	1.60	1.68	1.74				1.67	1.68	1.65		
390		25x45	30x35	35x30	0.15	0.510			30x45	35x35	0.15	0.510
		1.75	1.75	1.80					1.87	1.85		
470			30x40	35x35	0.15	0.423			30x50	35x40	0.15	0.423
			2.00	2.06					2.10	2.10		
560			30x45	35x40	0.15	0.355				35x45	0.15	0.355
			2.20	2.29						2.30		
680				35x45	0.15	0.293				35x50	0.15	0.293
				2.50						2.60		
820				35x50	0.15	0.243						
				2.80								

						Rated (S	urge) Vo	ltage				
Capacitance			400((450)					45	0(500)		
(μF)		ϕ [DxL		$tan \delta$	ESR		φ[DxL		$ an \delta$	ESR
		Ripple	Current		lano	LOIX		Ripple	Current		lano	LOIX
56							22x25				0.25	5.921
30							0.65				0.25	0.021
68	22x25				0.15	2.926	22x30				0.25	4.876
	0.65				0.10	2.020	0.75				0.20	1.070
82	22x25				0.15	2.426	22x30	25x25			0.25	4.044
	0.75				0.10	2.120	0.85	0.85			0.20	1.011
100	22x30	25x25			0.15	1.989	22x35	25x30			0.25	3.316
100	0.85	0.85			0.10	1.000	0.90	0.90			0.20	0.010
120	22x35	25x25	30x25		0.15	1.658	22x40	25x35	30x25		0.25	2.763
120	0.99	0.93	1.04		0.10	1.000	1.11	1.12	1.10		0.20	2.700
150	22x40	25x30	30x25		0.15	1.326	22x50	25x40	30x30		0.25	2.210
100	1.15	1.10	1.13		0.10	1.020	1.25	1.21	1.20		0.20	2.210
180	22x45	25x35	30x30		0.15	1.105		25x45	30x35	35x25	0.25	1.842
100	1.24	1.20	1.25		0.10	1.100		1.40	1.39	1.35	0.20	1.012
220	22x50	25x40	30x30	35x25	0.15	0.905		25x50	30x40	35x30	0.25	1.507
	1.40	1.36	1.35	1.38	0.10	0.000		1.51	1.53	1.50	0.20	1.001
270		25x45	30x35	35x30	0.15	0.737			30x45	35x35	0.25	1.228
2.0		1.50	1.50	1.54	0.10	0.707			1.72	1.70	0.20	1.220
330		25x50	30x40	35x35	0.15	0.603			30x50	35x40	0.25	1.005
		1.70	1.70	1.77	01.10	0.000			1.90	1.90	0.20	
390			30x45	35x35	0.15	0.510				35x45	0.25	0.850
			1.92	1.90	0.10	0.010				2.10	0.20	0.000
470				35x40	0.15	0.423				35x50	0.25	0.705
				2.10	0.10	5.125				2.30	0.20	0.700
560				35x50	0.15	0.355						
000			·20°C 1′	2.30		3.000						

 $\text{$\stackrel{\wedge}{\simeq}$}$ Size:D ϕ x L(mm). $\text{$\stackrel{\wedge}{\simeq}$}$ tan δ :20°C,120Hz. $\text{$\stackrel{\wedge}{\simeq}$}$ Ripple Current: 85°C,120Hz,(A/rms) $\text{$\stackrel{\wedge}{\simeq}$}$ ESR:20°C,120Hz,(Ω).

LJ

High temperature and long life Series

Snap-in terminal, High ripple current

■ Recommended Applications: Smoothing circuit, TV/Monitor, Adapter, SMPS

■ Corresponding product to RoHS

Specifications

Item		Characteristics	
Operating Temperature Range	-40 ~ +105°C	-25 ~ +105℃	
Rated Voltage Range	10 ~ 100VDC	160 ~ 450VDC	
Capacitance Range	560 ~ 68000µF	56 ~ 2200μF	
Capacitance Tolerance	± 20 % at 120Hz , 20℃		
Leakage Current (MAX) (20°C)	I≦0.02CV or 3mA which	ever is smaller(After rated voltage applied for 5 minutes)	
Leakage Current (MAX) (20 C)	I= Leakage Current (μA)	C= Nominal Capacitance (μF) V= Rated Voltage (V)	
Dissipation Factor (MAX) (tan δ) (120Hz ,20 $^{\circ}$ C)	Dissipation Factor(tan δ)	shall not exceed the values showed in the table of standa	ard rating
	,	ge with rated Ripple current for 3000hrs at 105 $^{\circ}\!$	
Endurance	Capacitance Change	Within±20% of the initial value	
	Dissipation Factor	Not more than 200% of the specified value	
	Leakage Current	Not more than the specified value	
Shelf Life	After placed at 105°C with	nout voltage applied for 1000 hours,	
Sileli Lile	the capacitor shall meet t	the same requirements as Endurance.	

■ Diagram of Dimensions

■ Multiplier for Ripple Current

Freq. (Hz)	50	60	120	400	1K	2.4K	5K	10K
Coefficient	0.8	0.85	1.0	1.14	1.23	1.3	1.36	1.4

LJ

High temperature and long life Series

Dimensions,Max Dissipation Factor,Max Permissible Ripple Current,Max Equivalent Series Resistance

						Rated (S	urge) Vol	tage				
Capacitance	10(φ DxL Ripple Current	(13)					1	6(20)				
(μF)		ϕ [DxL		ton ?	ESR		ϕ [DxL		2 004	ESR
		Ripple	Current		$tan \delta$	ESK		Ripple	Current		$tan \delta$	ESK
6800							22x25				0.55	0.107
0000							1.80				0.55	0.107
8200							22x30	25x25			0.55	0.089
0200							2.05	2.05			0.00	0.000
10000	22x25				0.55	0.073	22x35	25x30			0.55	0.073
10000	1.80				0.00	0.070	2.45	2.45			0.00	0.070
12000	22x30	25x25			0.55	0.061	22x40	25x30	30x25		0.55	0.061
12000	2.05	2.05			0.00	0.001	2.73	2.60	2.68		0.00	0.001
15000	22x35	25x30	30x25	0.55		0.049	22x45	25x35	30x30		0.55	0.049
10000	2.45	2.45	2.55	0.55		0.010	2.99	2.90	3.02		0.00	0.010
18000	22x40	25x30	30x30	0.55		0.041	22x50	25x40	30x30	35x25	0.55	0.041
10000	2.94	2.80	3.11		0.00	0.011	3.43	3.33	3.30	3.37	0.00	0.011
22000	22x45	25x35	30x30	35x25	0.55	0.033		25x45	30x35	35x30	0.55	0.033
22000	3.24	3.15	3.28	3.37	0.00	0.000		3.70	3.70	3.81	0.00	0.000
27000		25x40	30x35	35x30	0.55	0.027			30x40	35x35	0.55	0.027
2.000		3.5	3.67	3.78	0.00	0.02.			4.15	4.27	0.00	0.02.
33000		25x45	30x40	35x30	0.55	0.022			30x50	35x40	0.55	0.022
		4.00	4.20	4.08	0.00	0.022			4.65	4.65	0.00	0.022
39000		25x50	30x45	35x35	0.55	0.019				35x45	0.55	0.019
00000		4.45	4.67	4.63	0.00	0.0.0				5.25	0.00	0.0.0
47000				35x40	0.55	0.016				35x50	0.55	0.016
				4.90	0.00	0.0.0				5.80	0.00	0.0.0
56000				35x45	0.55	0.013						
				5.50	0.00	5.5.5						
68000				35x50	0.55	0.011						
00000				6.05	0.00	3.0.1						

						Rated (S	urge) Vol	tage				
Capacitance			25(32)					3	5(44)		
(µF)			DxL		$tan \delta$	ESR			DxL		$tan \delta$	ESR
		Ripple	Current		tano	LOIX		Ripple	Current	1	tarro	Lort
2700							22x25				0.40	0.196
2.00							1.45				0.10	0.100
3300							22x30				0.40	0.161
							1.60				0.40	0.101
3900	22x25				0.45	0.153	22x30				0.40	0.136
	1.50				0.40	0.100	1.80				0.40	0.100
4700	22x30				0.45	0.127	22x35	25x25			0.40	0.113
4700	1.80				0.43	0.127	2.23	2.10			0.40	0.110
5600	22x30	25x25			0.45	0.107	22x40	25x30	30x25		0.40	0.095
3000	1.95	1.95		0.45	0.107	2.41	2.30	2.37		0.40	0.000	
6800	22x35	25x30		0.45	0.088	22x45	25x35	30x30		0.40	0.078	
0000	2.20	2.20			0.43	0.000	2.68	2.60	2.70		0.40	0.070
8200	22x40	25x35	30x25		0.45	0.073	22x50	25x40	30x30	35x25	0.40	0.065
0200	2.47	2.50	2.45		0.43	0.073	3.02	2.93	2.90	2.96	0.4	0.005
10000	22x45	25x40	30x30		0.45	0.060		25x45	30x35	35x30	0.40	0.0531
10000	2.75	2.80	2.75		0.43	0.000		3.20	3.20	3.30	0.40	0.0001
12000	22x50	25x45	30x35	35x25	0.45	0.050		25x50	30x40	35x30	0.40	0.044
12000	3.13	3.22	3.19	3.10	0.43	0.030		3.64	3.67	3.6	0.40	0.044
15000		25x50	30x40	35x30	0.45	0.040			30x45	35x35	0.40	0.035
15000		3.43	3.47	3.40	0.43	0.040			4.04	4.00	0.40	0.033
18000			30x45	35x35	0.45	0.033				35x40	0.40	0.029
10000			3.94	3.90	0.43	0.033				4.60	0.40	0.029
22000			30x50	35x40	0.45	0.027				35x50	0.40	0.024
22000			4.30	4.30	0.43	0.021				5.10	0.40	0.024
27000				35x45	0.45	0.022						
27000				4.85	0.43	0.022	10=0= 1				200= 100	

High temperature and long life Series

■Dimensions,Max Dissipation Factor,Max Permissible Ripple Current,Max Equivalent Series Resistance

					F	Rated (Sur	ge) Volta	ge				
Capacitance			50(63)					63	3(79)		
(μF)			DxL Current		$tan \delta$	ESR			OxL Current		$ an\delta$	ESR
		Kippie	Current				22.25	Kippie	Current			
1200							22x25 1.25	_			0.30	0.332
1500	22x25						22x30	25x25				
1500	1.25				0.35	0.309	1.45	1.45			0.30	0.265
1000	22x30						22x35	25x30				
1800	1.45				0.35	0.258	1.6	1.6			0.30	0.221
2200	22x30	25x25					22x40	25x30	30x25			
2200	1.6	1.6			0.35	0.211	1.89	1.8	1.85		0.30	0.181
2700	22x35	25x30					22x45	25x35	30x30			
2700	1.8	1.8			0.35	0.172	2.06	2	2.08		0.30	0.14
3300	22x40	25x30	30x25					25x40	30x30	35x25		
3300	2.05	1.95	2.01		0.35	0.141		2.32	2.3	2.35	0.30	0.12
3900	22x45	25x35	30x30					25x45	30x35	35x30		
3700	2.27	2.2	2.29		0.35	0.119		2.55	2.55	2.63	0.30	0.102
4700	22x50	25x40	30x30	35x25				25x50	30x40	35x30		
4700	2.5	2.42	2.4	2.45	0.35	0.099		2.83	2.86	2.8	0.30	0.083
5600		25x45	30x35	35x30					30x45	35x35		
3000		2.7	2.7	2.78	0.35	0.083			3.18	3.15	0.30	0.07
6800			30x40	35x30					30x50	35x40		
0000			3.06	3	0.35	0.068			3.5	3.5	0.30	0.059
8200			30x45	35x35						35x45		
0200			3.38	3.35	0.35	0.057				3.9	0.30	0.049
10000				35x40	1							
10000				3.7	0.35	0.046						
12000				35x50	0.35	0.039						
12000				4.20	0.55	0.000						

					F	Rated (Sur	ge) Volta	ge				
Capacitance			80(100)					100	(125)		
(µF)		φ[DxL		$tan \delta$	ESR		ψ[DxL		$tan \delta$	ESR
		Ripple	Current		tano	LOIX		Ripple	Current		lan o	LOIX
560							22x25				0.25	0.592
300							1.20				0.23	0.392
680							22x30				0.25	0.488
000							1.35				0.23	0.466
820	22x25				0.25	0.404	22x30	25x25			0.25	0.404
820	1.20				0.23	0.404	1.50	1.50			0.23	0.404
1000	22x30				0.25	0.332	22x35	25x30			0.25	0.332
1000	1.35				0.23	0.332	1.70	1.70			0.23	0.332
1200	22x35	25x25			0.25	0.276	22x40	25x35	30x25		0.25	0.276
1200	1.59	1.50			0.23	0.276	1.97	1.99	1.95		0.23	0.276
1500	22x40	25x30	30x25	0.2:	0.25	0.221	22x45	25x40	30x30	35x25	0.25	0.221
1300	1.78	1.70	1.75		0.23	0.221	2.15	2.19	2.15	2.21	0.23	0.221
1800	22x45	25x35	30x30		0.25	0.184		25x45	30x35	35x30	0.25	0.184
1800	2.01	1.95	2.03		0.23	0.164		2.45	2.45	2.52	0.23	0.164
2200		25x40	30x30	35x25	0.25	0.151		25x50	30x40	35x35	0.25	0.151
2200		2.17	2.15	2.19	0.23	0.131		2.75	2.75	2.86	0.23	0.131
2700		25x45	30x35	35x30	0.25	0.123			30x45	35x35	0.25	0.123
2700		2.45	2.45	2.52	0.23	0.123			3.08	3.05	0.23	0.123
3300			30x40	35x35	0.25	0.100			30x50	35x40	0.25	0.100
3300			2.75	2.83	0.23	0.100			3.45	3.45	0.23	0.100
3900			30x45	35x35	0.25	0.085				35x45	0.25	0.085
3900			3.13	3.10	0.23	0.083				3.90	0.23	0.065
4700				35x40	0.25	0.071				35x50	0.25	0.071
4700				3.40	0.23	0.071				4.30	0.23	0.071
5600				35x50 3.80	0.25	0.059						

 $\text{$\stackrel{\wedge}{\simeq}$}$ Size:D ϕ x L(mm). $\text{$\stackrel{\wedge}{\simeq}$}$ tan δ :20°C,120Hz. $\text{$\stackrel{\wedge}{\simeq}$}$ Ripple Current: 105°C,120Hz,(A/rms) $\text{$\stackrel{\wedge}{\simeq}$}$ ESR:20°C,120Hz,(Ω).

ALUMINUM ELECTROLYTIC CAPACITORS High temperature and long life

Series

■Dimensions,Max Dissipation Factor,Max Permissible Ripple Current,Max Equivalent Series Resistance

		<u> </u>		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Rated (Sur	ge) Voltag	e	•			
Capacitance			160((200)					180((225)		
(μF)			DxL		$tan \delta$	ESR			DxL		$tan \delta$	ESR
		Ripple	Current					Ripple	Current			
270	22x25				0.15	0.737	22x25				0.15	0.737
	0.85				00	00.	0.85				00	00.
330	22x30				0.15	0.603	22x30				0.15	0.603
	1.00				0.10	0.000	1.10				0.10	0.000
390	22x30	25x25			0.15	0.51	22x35	25x25			0.15	0.51
	1.15	1.15			0.10	0.01	1.32	1.25			0.10	0.01
470	22x35	25x30			0.15	0.423	22x40	25x30			0.15	0.423
410	1.30	1.30			0.10	0.420	1.47	1.40			0.10	0.420
560	22x40	25x30	30x25	0.15	0.15	0.355	22x45	25x35	30x25		0.15	0.355
000	1.57	1.50	1.54		J.000	1.70	1.63	1.60		0.10	0.000	
680	22x45	25x35	30x30		0.15	0.293	22x50	25x40	30x30	35x25	0.15	0.293
000	1.75	1.70	1.77		0.15	0.233	1.87	1.82	1.80	1.84	0.10	0.293
820	22x50	25x40	30x30	35x25	0.15	0.243		25x45	30x35	35x30	0.15	0.243
020	2.03	1.97	1.95	1.99	0.15	0.243		2.05	2.05	2.11	0.15	0.243
1000		25x45	30x35	35x30	0.15	0.199		25x50	30x40	35x30	0.15	0.199
1000		2.15	2.15	2.21	0.15	0.133		2.27	2.29	2.25	0.15	0.133
1200			30x40	35x35	0.15	0.166			30x45	35x35	0.15	0.166
1200			2.45	2.52	0.15	0.100			2.57	2.55	0.15	0.100
1500			30x50	35x40	0.15	0.133				35x40	0.15	0.133
1500			2.75	2.75	0.15	0.133				2.85	0.15	0.133
1800				35×45	0.111				35x50	0.15	0.111	
1000				3.00	0.15	0.111				3.10	0.15	0.111
2200				35x50	0.15	0.09						
2200				3.50	0.13	0.03						

					F	Rated (Sur	ge) Voltag	е				
Capacitance			200((250)					250	(300)		
(μF)			DxL		$ an \delta$	ESR			DxL		$ an \delta$	ESR
		Ripple	Current		lano	LOIX		Ripple	Current		tan o	LOIX
150							22x25				0.15	1.330
100							0.75				0.10	1.000
180							22x30				0.15	1.110
100							0.85				0.10	1.110
220	22x25				0.15	0.905	22x30	25x25			0.15	0.905
220	0.85				0.10	0.000	1.00	1.00			0.10	0.000
270	22x30				0.15	0.737	22x35	25x25			0.15	0.737
210	1.00				0.10	0.707	1.22	1.15			0.10	0.757
330	22x30	25x25			0.15	0.603	22x40	25x30			0.15	0.603
330	1.15	1.15			0.10	0.000	1.36	1.30			0.10	0.000
390	22x35	25x30			0.15	0.510	22x45	25x35	30x25	35x25	0.15	0.510
030	1.30	1.30			0.13	0.510	1.54	1.48	1.45	1.59	0.15	0.510
470	22x40	25x35	30x25		0.15	0.423	22x50	25x40	30x30	35x30	0.15	0.423
470	1.52	1.54	1.49		0.13	0.423	1.78	1.75	1.72	1.88	0.13	0.423
560	22x45	25x35	30x30		0.15	0.355		25x40	30x35	35x30	0.15	0.355
300	1.7	1.65	1.72		0.15	0.555		1.80	1.89	1.94	0.13	0.555
680		25x45	30x35	35x30	0.15	0.293		25x50	30x40	35x35	0.15	0.293
000		1.97	1.97	2.02	0.13	0.293		2.10	2.10	2.18	0.13	0.293
820		25x45	30x35	35x30	0.15	0.243			30x45	35x40	0.15	0.243
020		2.20	2.10	2.16	0.15	0.243			2.30	2.39	0.13	0.243
1000			30x45	35x35	0.15	0.199			30x50	35x45	0.15	0.199
1000			2.32	2.30	0.13	0.133			2.55	2.65	0.15	0.133
1200			30x50	35x40	0.15	0.166				35x50	0.15	0.166
1200			2.75	2.75	0.15	0.100				2.90	0.15	0.100
1500				35x45	0.15	0.133						
1500				2.90	0.15	0.133						

 $\text{$\stackrel{\wedge}{\simeq}$}$ Size:D ϕ x L(mm). $\text{$\stackrel{\wedge}{\simeq}$}$ tan δ :20°C,120Hz. $\text{$\stackrel{\wedge}{\simeq}$}$ Ripple Current: 105°C,120Hz,(A/rms) $\text{$\stackrel{\wedge}{\simeq}$}$ ESR:20°C,120Hz,(Ω).

LJ Hig

High temperature and long life Series

Dimensions, Max Dissipation Factor, Max Permissible Ripple Current, Max Equivalent Series Resistance

						Rated (S	urge) Vo	ltage	1			
Capacitance		ϕ DxL Ripple Current							35	0(400)		
(µF)		ψ [DxL		$tan \delta$	ESR			DxL		$ an \delta$	ESR
		Ripple	Current		tano	LOIX		Ripple	Current		lano	LOIX
82	22x25				0.15	2.426	22x25				0.15	2.426
02	0.55				0.13	2.720	0.60				0.15	2.720
100	22x30				0.15	1.989	22x30	25x25			0.15	1.989
100	0.65				0.10	1.000	0.70	0.70			0.10	1.000
120	22x30	25x25			0.15	1.658	22x35	25x30			0.15	1.658
120	0.75	0.75			0.10	1.000	0.80	0.80			0.10	1.000
150	22x35	25x30			0.15	1.326	22x40	25x35	30x25		0.15	1.326
100	8.0	0.80			0.10	1.020	0.86	0.87	0.85		0.10	1.020
180	22x40	25x35	30x25	0.15	1 0 15 1 1 105 -	22x45	25x40	30x30		0.15	1.105	
	1.01	1.02	1.00		0.15		1.05	1.07	1.05		0.10	1.100
220	22x45	25x40	30x30		0.15	0.905	22x50	25x45	30x35	35x25	0.15	0.905
	1.10	1.12	1.10				1.16	1.20	1.18	1.15		
270		25x45	30x35		0.15	0.737		25x50	30x40	35x30	0.15	0.737
		1.25	1.25					1.31	1.33	1.3		
330		25x50	30x40	35x30	0.15	0.603			30x45	35x35	0.15	0.603
		1.53	1.53	1.50					1.46	1.45		
390			30x45	35x30	0.15	0.510			30x50	35x40	0.15	0.510
			1.71	1.60					1.65	1.65		
470			30x50	35x35	0.15	0.423				35x45	0.15	0.423
			1.85	1.75						1.85		
560				35x40	0.15	0.355				35x50	0.15	0.355
				2.00						2.10		
680				35x45 2.20	0.15	0.293						

						Rated (S	urge) Vo	Itage				
Capacitance				(450)					45	0(500)		
(μF)			DxL		$tan \delta$	ESR			DxL		$tan \delta$	ESR
		Ripple	Current		tano	LOIX		Ripple	Current		tano	LOIX
56							22x25				0.25	5.921
							0.55				0.20	0.021
68	22x25				0.15	2.926	22x30				0.25	4.876
	0.55				0.10	2.020	0.65				0.20	1.070
82	22x30	25x25			0.15	2.426	22x35	25x25			0.25	4.044
	0.65	0.65			0.10	2.120	0.80	0.75			0.20	1.011
100	22x35	25x25			0.15	1.989	22x40	25x30			0.25	3.316
	0.79	0.75			0.10	1.000	0.89	0.85			0.20	0.010
120	22x40	25x30	30x25		0.15	1.658	22x45	25x35	30x25		0.25	2.763
120	0.89	0.85	0.87	0.15 1	1.000	0.95	0.92	0.90		0.20	2.700	
150	22x45	25x35	30x30	35x25	0.15	1.326	22x50	25x40	30x30		0.25	2.210
	0.93	0.90	0.94	0.96	0.10	1.020	1.14	1.11	1.10		0.20	2.2.0
180	22x50	25x40	30x30	35x25	0.15	1.105		25x45	30x35	35x25	0.25	1.842
100	1.14	1.11	1.10	1.12	0.10	1.100		1.25	1.24	1.20	0.20	1.012
220		25x45	30x35	35x30	0.15	0.905		25x50	30x40	35x30	0.25	1.507
		1.20	1.20	1.24	0.10	0.000		1.36	1.38	1.35	0.20	1.007
270		25x50	30x40	35x30	0.15	0.737			30x45	35x35	0.25	1.228
2.0		1.36	1.38	1.35	0.10	0.707			1.51	1.50	0.20	1.220
330			30x45	35x35	0.15	0.603			30x50	35x40	0.25	1.005
			1.51	1.50	0.10	0.000			1.70	1.70	0.20	1.000
390			30x50	35x40	0.15	0.510				35x45	0.25	0.850
333			1.70	1.70		5.0.0				1.90	J0	0.000
470				35x45	0.15	0.423				35x50	0.25	0.705
47.0				1.90	0.10	5.725				2.10	0.20	0.700

LQ

High temperature and long life Series

■ Features : 105°C 5000 hours , Wide temperature range for LF , Longer life than HW, Snap-in terminal, High ripple current

Long Life

ĹJ

■ Recommended Applications: Smoothing circuit, TV/Monitor,Adapter, SMPS

■ Corresponding product to RoHS

Specifications

Item		Characteristics -25 ~ +105°C										
Operating Temperature Range		-25 ~ +105℃										
Rated Voltage Range		160 ~ 450VDC										
Capacitance Range		56 ~ 2200μF										
Capacitance Tolerance	± 20 % at 120Hz , 20℃											
Laster Comment (MANY) (00°C)	I≦0.02CV or 3mA which	ever is smaller(After rated voltage applied for 5 minutes)										
Leakage Current (MAX) (20°C)	I= Leakage Current (μA)	= Leakage Current (μA) C = Nominal Capacitance (μF) V= Rated Voltage (V)										
Dissipation Factor (MAX) (tan δ) (120Hz ,20°C)	Dissipation Factor(tan δ)shall not exceed the values showed in the table of standard rating											
Endurance	,	rge with rated Ripple current for 5000hrs at 105 °C, the following requirement. Within±20% of the initial value Not more than 200% of the specified value										
	Leakage Current Not more than the specified value											
Shelf Life	After placed at 105℃ without voltage applied for 1000 hours, the capacitor shall meet the same requirements as Endurance.											

■ Diagram of Dimensions

■ Multiplier for Ripple Current

Freq. (Hz)	50	60	120	400	1K	2.4K	5K	10K
Coefficient	0.8	0.85	1.0	1.14	1.23	1.3	1.36	1.4

LQ

High temperature and long life Series

■Dimensions,Max Dissipation Factor,Max Permissible Ripple Current,Max Equivalent Series Resistance

		•		•	F	Rated (Sur	ge) Voltag	je	•			
Capacitance			160((200)					180	(225)		
(µF)		ϕ [DxL		$tan \delta$	ESR		φ[DxL		$tan \delta$	ESR
		Ripple	Current		lan o	LOIX		Ripple	Current		tano	LOIX
270	22x25				0.15	0.737	22x25				0.15	0.737
210	0.85				0.13	0.737	0.85				0.13	0.737
330	22x30				0.15	0.603	22x30				0.15	0.603
330	1.00				0.13	0.003	1.10				0.13	0.003
390	22x30	25x25			0.15	0.51	22x35	25x25			0.15	0.51
390	1.15	1.15			0.13	0.51	1.32	1.25			0.13	0.51
470	22x35	25x30		0.15	0.423	22x40	25x30			0.15	0.423	
470	1.30	1.30			0.13	0.423	1.47	1.40			0.13	0.423
560	22x40	25x30	30x25	0.15	0.355	22x45	25x35	30x25		0.15	0.355	
300	1.57	1.50	1.54		0.555	1.70	1.63	1.60		0.15	0.555	
680	22x45	25x35	30x30		0.15	0.293	22x50	25x40	30x30	35x25	0.15	0.293
000	1.75	1.70	1.77		0.15	0.233	1.87	1.82	1.80	1.84	0.15	0.233
820	22x50	25x40	30x30	35x25	0.15	0.243		25x45	30x35	35x30	0.15	0.243
020	2.03	1.97	1.95	1.99	0.10	0.240		2.05	2.05	2.11	0.10	0.240
1000		25x45	30x35	35x30	0.15	0.199		25x50	30x40	35x30	0.15	0.199
1000		2.15	2.15	2.21	0.10	0.100		2.27	2.29	2.25	0.10	0.100
1200			30x40	35x35	0.15	0.166			30x45	35x35	0.15	0.166
1200			2.45	2.52	0.10	0.100			2.57	2.55	0.10	0.100
1500			30x50	35x40	0.15	0.133				35x40	0.15	0.133
1000			2.75	2.75	0.10	0.100				2.85	0.10	0.100
1800				35x45	5x45 0.15	0.111				35x50	0.15	0.111
1000				3.00	5 0.111				3.10	0.10	0.111	
2200				35x50	0.15	0.09						
2200				3.50	0.10	0.00						

					F	Rated (Sur	ge) Voltag	e				
Capacitance			200((250)					250	(300)		
(µF)			DxL		$tan \delta$	ESR			DxL		$tan \delta$	ESR
		Ripple	Current		lano	LOIX		Ripple	Current		lano	LOIX
150							22x25				0.15	1.330
100							0.75				0.10	1.000
180							22x30				0.15	1.110
100							0.85				0.10	1.110
220	22x25				0.15	0.905	22x30	25x25			0.15	0.905
	0.85				0.10	0.000	1.00	1.00			0.10	0.000
270	22x30				0.15	0.737	22x35	25x25			0.15	0.737
270	1.00				0.10	0.707	1.22	1.15			0.10	0.707
330	22x30	25x25		0.15	0.15	0.603	22x40	25x30			0.15	0.603
	1.15	1.15			0.10	0.000	1.36	1.30			0.10	0.000
390	22x35	25x30			0.15	0.510	22x45	25x35	30x25	35x25	0.15	0.510
000	1.30	1.30			0.10	0.010	1.54	1.48	1.45	1.59	0.10	0.010
470	22x40	25x35	30x25		0.15	0.423	22x50	25x40	30x30	35x30	0.15	0.423
470	1.52	1.54	1.49		0.10	0.420	1.78	1.75	1.72	1.88	0.10	0.420
560	22x45	25x35	30x30		0.15	0.355		25x40	30x35	35x30	0.15	0.355
300	1.7	1.65	1.72		0.15	0.555		1.80	1.89	1.94	0.15	0.000
680		25x45	30x35	35x30	0.15	0.293		25x50	30x40	35x35	0.15	0.293
000		1.97	1.97	2.02	0.15	0.293		2.10	2.10	2.18	0.15	0.233
820		25x45	30x35	35x30	0.15	0.243			30x45	35x40	0.15	0.243
020		2.20	2.10	2.16	0.13	0.243			2.30	2.39	0.13	0.243
1000			30x45	35x35	0.15	0.199			30x50	35x45	0.15	0.199
1000			2.32	2.30	0.10	0.133			2.55	2.65	0.10	0.133
1200			30x50	35x40	0.15	0.166				35x50	0.15	0.166
1200			2.75	2.75	0.13	0.100				2.90	0.13	0.100
1500				35x45	0.15	0.122						
1500				2.90	0.15	0.133				2 2000 12		

 $\text{$\stackrel{\wedge}{\simeq}$}$ Size:D ϕ x L(mm). $\text{$\stackrel{\wedge}{\simeq}$}$ tan δ :20°C,120Hz. $\text{$\stackrel{\wedge}{\simeq}$}$ Ripple Current: 105°C,120Hz,(A/rms) $\text{$\stackrel{\wedge}{\simeq}$}$ ESR:20°C,120Hz,(Ω).

High temperature and long life Series

■Dimensions,Max Dissipation Factor,Max Permissible Ripple Current,Max Equivalent Series Resistance

	Rated (Surge) Voltage											
Capacitance			315(365)			350(400)					
(μF)		ϕ [DxL		$ an\delta$	ESR	ϕ DxL				$tan \delta$	ESR
	Ripple Current			tano	LOIX		Ripple	Current		tarro		
82	22x25				0.15	2.426	22x25				0.15	2.426
02	0.55						0.60				0.13	
100	22x30				0.15	1.989	22x30	25x25			0.15	1.989
100	0.65						0.70	0.70			0.10	1.505
120	22x30	25x25			0.15	1.658	22x35	25x30			0.15	1.658
120	0.75	0.75					0.80	0.80				1.000
150	22x35	25x30			0.15	1.326	22x40	25x35	30x25		0.15	1.326
100	8.0	0.80			1.020	0.86	0.87	0.85		ļ	1.020	
180	22x40	25x35	30x25		0.15	1.105	22x45	25x40	30x30		0.15	1.105
	1.01	1.02	1.00		0.10	11100	1.05	1.07	1.05		0.10	1.100
220	22x45	25x40	30x30		0.15 0.905 -	0.905	22x50	25x45	30x35	35x25	0.15	0.905
	1.10	1.12	1.10			1.16	1.20	1.18	1.15			
270		25x45	30x35		0.15	0.737		25x50	30x40	35x30	0.15	0.737
		1.25	1.25					1.31	1.33	1.3		
330		25x50	30x40	35x30	x30 0.15	0.603			30x45	35x35	0.15	0.603
		1.53	1.53	1.50					1.46	1.45		
390			30x45	35x30	0.15	0.510				30x50 35x40	0.15	0.510
			1.71	1.60					1.65	1.65		
470			30x50	35x35	0.15	0.423				35x45	0.15	0.423
			1.85	1.75						1.85		
560				35x40	0.15	0.355				35x50	0.15	0.355
				2.00						2.10		
680				35x45	0.15	0.293						
				2.20		' '						

		Rated (Surge) Voltage											
Capacitance			400(450)					45	0(500)			
(μF)	ϕ DxL				$tan \delta$	ESR	ϕ DxL				$tan \delta$	ESR	
		Ripple	Current		tarro	LOIX		Ripple	Current		tarro	LOIX	
56							22x25				0.25	5.921	
							0.55				0.20	0.02.	
68	22x25				0.15	2.926	22x30	-			0.25	4.876	
	0.55						0.65				0.20		
82	22x30	25x25	-		0.15	2.426	22x35	25x25			0.25	4.044	
	0.65	0.65					0.80	0.75			0.20		
100	22x35	25x25	-		0.15	1.989	22x40	25x30			0.25	3.316	
	0.79	0.75					0.89	0.85					
120	22x40	25x30	30x25		0.15	1.658	22x45	25x35	30x25		0.25	2.763	
	0.89	0.85	0.87				0.95	0.92	0.90				
150	22x45	25x35	30x30	35x25	x25 0.15	1.326	22x50	25x40	30x30		0.25	2.210	
	0.93	0.90	0.94	0.96			1.14	1.11	1.10				
180	22x50	25x40	30x30	35x25	0.15	1.105		25x45	30x35	35x25	0.25	1.842	
	1.14	1.11	1.10	1.12	00			1.25	1.24	1.20	0.20	1.012	
220		25x45	30x35	35x30	0.15	0.905		25x50	30x40	35x30	0.25	1.507	
		1.20	1.20	1.24				1.36	1.38	1.35			
270		25x50	30x40	35x30	0.15	0.737			30x45	35x35	0.25	1.228	
		1.36	1.38	1.35	00	00.			1.51	1.50	0.20		
330			30x45	35x35	0.15	0.603			30x50	35x40	0.25	1.005	
			1.51	1.50	00	0.000			1.70	1.70	0.20		
390			30x50	35x40	0.15	0.510				35x45	0.25	0.850	
			1.70	1.70	00	0.510				1.90	0.20	0.000	
470				35x45	0.15	0.423				35x50	0.25	0.705	
470				1.90	00	0.723				2.10	0.20	0.700	

High temperature and Smaller Size **Series**

■ Endurance : 105°C 2000 hours, smaller size than LG

■ Ideally suitable for using in Switching Power Supplies and orther Smaller size LG

industrial /commercial applications

■ Corresponding product to RoHS

Chapifications

Specifications											
Item				Characteristics							
Operating Temperature Range	-25 ~ +105℃										
Rated Voltage Range	160 ~ 450VDC										
Capacitance Range	100 ~ 3300 μF										
Capacitance Tolerance	± 20 % at 120Hz , 20℃										
Leakage Current (MAX)	I=0.02CV or 3mA , w	vhicheve	r is small	er.(At 20°C, After 5 minutes)							
Leakage Current (MAX)	Where, I :Leakage C	Current (μA) ; C:N	lominal Capacitance(μ F) ; \	':Rated Voltage(v)						
Dissipation Factor (MAX)	Rated voltage(V) 1	60~400	420~450								
(tan δ) (120Hz ,20°C)	$ an\delta$	0.15	0.20								
		'									
	Measurement frequency: 120Hz										
Low Temperature Stability	Rated voltage(V) 1	60~400	420~450								
Impedance Ratio (MAX)	Z-25°C / Z+20°C	4	8								
		'									
	After applying rated	voltage v	with rated	Ripple current for 2000hrs a	t 105℃,						
	the capacitor shall m	neet the f	ollowing	equirements.							
Endurance											
Endurance	Capacitance Chang	ge	Within:	£ 20 % of initial value							
	Dissipation Factor		Not more	than 200% of the specified	/alue						
	Leakage Current		initial s	pecified value or less							
	After placed at 105°C	without	voltage a	pplied for 1000 hours,							
Shelf Life	the capacitor shall m	neet the s	same req	uirement as Endurance.							

■ Diagram of Dimensions

■ Multiplier for Ripple Current

Frequency	50	60	120	1K	10K
160~250V	0.85	0.88	1.00	1.30	1.50
315~450V	0.88	0.9	1.00	1.35	1.45

ALUMINUM ELECTROLYTIC CAPACITORS High temperature and Smaller-size

Series

■Dimensions.Rated Ripple Current

Capacitance	Rated (Surge) Voltage											
μF)	160 (200)		200 (250)			(270)	250 (
(pc.)	Size	Ripple	Size	Ripple	Size	Ripple	Size	Ripple				
_												
330					22x25	1.26						
					22x30	1.34	22x30	1.08				
390							25x25	1.08				
470			22x30	1.20	22x35	1.48	22x35	1.17				
470					25x30	1.40	25x30	1.30				
	22x30	1.40	22x35	1.48	22x40	1.45	22x40	1.40				
560			25x30	1.48	25x30	1.45	25x35	1.50				
							30x25	1.26				
	22x35	1.50	22x40	1.60	22x40	1.49	22x45	1.35				
680	25x30	1.70	25x35	1.60	25x35	1.78	25x40	1.70				
					30x30	1.65	30x30	1.70				
820	22x40	2.00	22x45	1.75	22x50	1.93						
	25x35	2.00	25x40	1.75	25x40	1.93	25x45	2.00				
			30x30	1.75	30x30	1.85	30x35	2.00				
					35x25	1.93	35x30	2.00				
	22x50	2.10			25x45	2.15						
1000	25x40	2.20	25x45	2.04	30x35	2.33						
1000	30x30	2.20	30x35	2.04	35x30	2.33	25x50	2.20				
							30x40	2.20				
							35x30	2.00				
1200	25x45	2.30	25x50	2.30								
1200	30x35	2.30	30x40	2.30	30x40	2.50	30x45	2.30				
			35x30	2.30	35x30	2.12	35x35	2.20				
	25x50	2.50										
1500	30x40	2.50	30x45	2.57	30x45	2.30						
	35x30	2.50	35x35	2.57	35x35	2.25	35x40	2.30				
1800	30x45	2.70	30x50	2.41								
	35x35	2.55	35x40	2.68	35x40	2.43	35x50	2.50				
2200	30x50	2.90										
2200	35x45	2.90	35x45	2.63	35x50	2.95						
2700	35x50	3.00	35x55	3.27								
3300	35x60	3.10										

 $\stackrel{\wedge}{\sim}$ Size: D ϕ x L (mm) $\stackrel{\wedge}{\sim}$ Ripple Current ∶ A/rms. 105 $^{\circ}$ C,120Hz

High temperature and Smaller-size Series

Dimensions, Rated Ripple Current

Consilis	Rated (Surge) Voltage										
Capacitance (μ F)	400	(450)	420	(470)	450	(500)					
(μ.)	Size	Ripple	Size	Ripple	Size	Ripple					
100					22x25	0.50					
120	22x25	0.61	22x30	0.50	22x30	0.60					
150			22x35	0.58	22x35	0.72					
130			25x25	0.65	25x30	0.79					
180	22x35	0.73	22x35	0.64	22x40	0.79					
100	25x25	0.66	25x30	0.64	25x30	0.71					
	22x40	0.85	22x40	0.80	22x45	0.87					
220	25x30	0.77	25x35	0.80	25x35	0.78					
			30x25	0.80	30x30	0.89					
	22x45	1.00	22x50	1.00	22x50	0.95					
270	25x35	1.00	25x40	1.00	25x45	0.95					
270	30x30	1.00	30x30	1.00	30x35	1.05					
					35x25	0.95					
	22x50	1.04									
330	25x40	1.04	25x45	1.10	25x50	1.20					
550	30x35	1.15	30x35	1.10	30x40	1.20					
	35x25	1.04	35x30	1.10	35x30	1.20					
	25x45	1.26	25x50	1.20							
390	30x35	1.26	30x40	1.20	30x45	1.38					
	35x30	1.55	35x30	1.20	35x35	1.38					
470	30x40	1.40	30x45	1.30	30x50	1.55					
470	35x35	1.55	35x35	1.30	35x40	1.55					
560	30x50	1.63									
300	35x40	1.63	35x40	1.60	35x45	1.70					
680											
000	35x45	1.80	35x45	2.00	35x50	1.91					
820	35x50	2.00									

 $\stackrel{\wedge}{\simeq}$ Size: D ϕ x L (mm) $\stackrel{\wedge}{\simeq}$ Ripple Current ∶ A/rms. 105 $^{\circ}$ C,120Hz