Data Engineer INTERN at HACKVEDA LIMITED

AUTHOR: BANDANA PRAKASH TASK 1: Insights-Driven_sales

PURPOSE: to analyze sales transactions and derive actionable insights that can enhance sales strategies.

Specifically, the dataset contains information about customers, their demographics, purchase behaviors, and transaction details.

Here are the key objectives:

Customer Analysis: Understand customer demographics, including age, gender, marital status, and location.

Sales Performance: Analyze sales data to identify trends in orders and revenue generation.

Insight Generation: Generate insights that can inform marketing strategies and improve customer targeting.

Data Visualization: Use visual tools to present findings clearly, making it easier to interpret data trends.

Overall, the goal is to leverage this data for informed decision-making that drives sales growth and enhances customer engagement.

Steps Involved:

Import Libraries: Load essential Python libraries like numpy, pandas, matplotlib, and seaborn for data manipulation and visualization.

Load Dataset: Import the sales dataset (Insights-Driven_sales-main.csv) into a Pandas DataFrame.

Check Dataset Dimensions: Verify the shape of the dataset to understand its size (rows and columns).

Explore Data: Inspect the dataset structure, including column names and sample records, to understand its contents.

Statistical Summary: Analyze statistical metrics (count, mean, min, max, etc.) for numerical columns like Age, Orders, and Amount.

Data Cleaning: Handle missing values or anomalies in the dataset (if required).

Data Visualization: Use tools like Matplotlib and Seaborn to create graphs and charts for better insights into sales trends and customer behavior.

Generate Insights: Derive actionable insights such as top-performing products, customer demographics, and purchasing patterns.

```
# import python libraries
```

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt # visualizing data
%matplotlib inline
import seaborn as sns
```

Raw URL of the CSV file

url = 'https://raw.githubusercontent.com/bandanaprakash/finalYearProject/main/MarketMinder%7C%20Real-Time%20Market%20Analysis%20and%20Fraud%20Defense/Ta

```
# Read the CSV file
df = pd.read_csv(url, encoding='unicode_escape')
```

df.shape

→ (11251, 15)

df.head()

⇒ ▼		User_ID	Cust_name	Product_ID	Gender	Age Group	Age	Marital_Status	State	Zone	Occupation	Product_Category	0rders	Amount	Status	unnam
	0	1002903	Sanskriti	P00125942	F	26-35	28	0	Maharashtra	Western	Healthcare	Auto	1	23952.0	NaN	
	1	1000732	Kartik	P00110942	F	26-35	35	1	Andhra Pradesh	Southern	Govt	Auto	3	23934.0	NaN	
	2	1001990	Bindu	P00118542	F	26-35	35	1	Uttar Pradesh	Central	Automobile	Auto	3	23924.0	NaN	- 1
	3	1001425	Sudevi	P00237842	M	0-17	16	0	Karnataka	Southern	Construction	Auto	2	23912.0	NaN	
	4	1000588	Joni	P00057942	M	26-35	28	1	Gujarat	Western	Food Processing	Auto	2	23877.0	NaN	1

Next steps: (Generate code with df) (View recommended plots) New interactive sheet

df.info()

RangeIndex: 11251 entries, 0 to 11250 Data columns (total 15 columns): Non-Null Count Dtype # Column 0 User_ID 11251 non-null int64 Cust_name 11251 non-null object 11251 non-null object Product_ID 11251 non-null object Gender 11251 non-null object Age Group Age 11251 non-null int64 Marital_Status 11251 non-null int64 11251 non-null object State 11251 non-null object 11251 non-null object Occupation Product Category 11251 non-null object 11251 non-null int64 11 Orders 12 Amount 11239 non-null float64

0 non-null

0 non-null

float64

float64

dtypes: float64(3), int64(4), object(8)

memory usage: 1.3+ MB

13 Status

14 unnamed1

#drop unrelated/blank columns
df.drop(['Status', 'unnamed1'], axis=1, inplace=True)

#check for null values
pd.isnull(df).sum()

drop null values
df.dropna(inplace=True)

change data type
df['Amount'] = df['Amount'].astype('int')

df['Amount'].dtypes

→ dtype('int64')

df.columns

#rename column

df.rename(columns= {'Marital_Status':'Shaadi'})

$\overline{\Rightarrow}$		User_ID	Cust_name	Product_ID	Gender	Age Group	Age	Shaadi	State	Zone	Occupation	Product_Category	0rders	Amount	
	0	1002903	Sanskriti	P00125942	F	26-35	28	0	Maharashtra	Western	Healthcare	Auto	1	23952	11.
	1	1000732	Kartik	P00110942	F	26-35	35	1	Andhra Pradesh	Southern	Govt	Auto	3	23934	
	2	1001990	Bindu	P00118542	F	26-35	35	1	Uttar Pradesh	Central	Automobile	Auto	3	23924	
	3	1001425	Sudevi	P00237842	M	0-17	16	0	Karnataka	Southern	Construction	Auto	2	23912	
	4	1000588	Joni	P00057942	M	26-35	28	1	Gujarat	Western	Food Processing	Auto	2	23877	
				•••											
	11246	1000695	Manning	P00296942	M	18-25	19	1	Maharashtra	Western	Chemical	Office	4	370	
	11247	1004089	Reichenbach	P00171342	M	26-35	33	0	Haryana	Northern	Healthcare	Veterinary	3	367	
	11248	1001209	Oshin	P00201342	F	36-45	40	0	Madhya Pradesh	Central	Textile	Office	4	213	
	11249	1004023	Noonan	P00059442	M	36-45	37	0	Karnataka	Southern	Agriculture	Office	3	206	
	11250	1002744	Brumley	P00281742	F	18-25	19	0	Maharashtra	Western	Healthcare	Office	3	188	
	11239 ro	ws × 13 colu	umns												

describe() method returns description of the data in the DataFrame (i.e. count, mean, std, etc)
df.describe()

$\overline{\Rightarrow}$		User_ID	Age	Marital_Status	0rders	Amount
	count	1.123900e+04	11239.000000	11239.000000	11239.000000	11239.000000
	mean	1.003004e+06	35.410357	0.420055	2.489634	9453.610553
	std	1.716039e+03	12.753866	0.493589	1.114967	5222.355168
	min	1.000001e+06	12.000000	0.000000	1.000000	188.000000
	25%	1.001492e+06	27.000000	0.000000	2.000000	5443.000000
	50%	1.003064e+06	33.000000	0.000000	2.000000	8109.000000
	75%	1.004426e+06	43.000000	1.000000	3.000000	12675.000000
	max	1.006040e+06	92.000000	1.000000	4.000000	23952.000000

df[['Age', 'Orders', 'Amount']].describe()

\Rightarrow		Age	0rders	Amount
	count	11239.000000	11239.000000	11239.000000
	mean	35.410357	2.489634	9453.610553
	std	12.753866	1.114967	5222.355168
	min	12.000000	1.000000	188.000000
	25%	27.000000	2.000000	5443.000000
	50%	33.000000	2.000000	8109.000000
	75%	43.000000	3.000000	12675.000000
	max	92.000000	4.000000	23952.000000

Exploratory Data Analysis

→ Gender

```
# plotting a bar chart for Gender and it's count
ax = sns.countplot(x = 'Gender',data = df)
for bars in ax.containers:
    ax.bar_label(bars)
```


plotting a bar chart for gender vs total amount

sales_gen = df.groupby(['Gender'], as_index=False)['Amount'].sum().sort_values(by='Amount', ascending=False)
sns.barplot(x = 'Gender',y= 'Amount', data = sales_gen)

From above graphs we can see that most of the buyers are females and even the purchasing power of females are greater than men

✓ Age

```
ax = sns.countplot(data = df, x = 'Age Group', hue = 'Gender')
for bars in ax.containers:
    ax.bar_label(bars)
```


Total Amount vs Age Group sales_age = df.groupby(['Age Group'], as_index=False)['Amount'].sum().sort_values(by='Amount', ascending=False) sns.barplot(x = 'Age Group',y= 'Amount' ,data = sales_age)

Gender

<Axes: xlabel='Age Group', ylabel='Amount'>

From above graphs we can see that most of the buyers are of age group between 26-35 yrs female

State

```
# total number of orders from top 10 states
sales_state = df.groupby(['State'], as_index=False)['Orders'].sum().sort_values(by='Orders', ascending=False).head(10)
sns.set(rc={'figure.figsize':(18,5)})
sns.barplot(data = sales_state, x = 'State',y= 'Orders')
```



```
# total amount/sales from top 10 states
sales_state = df.groupby(['State'], as_index=False)['Amount'].sum().sort_values(by='Amount', ascending=False).head(10)
sns.set(rc={'figure.figsize':(18,5)})
sns.barplot(data = sales_state, x = 'State',y= 'Amount')
```


From above graphs we can see that most of the orders & total sales/amount are from Uttar Pradesh, Maharashtra and Karnataka respectively

Marital Status

```
ax = sns.countplot(data = df, x = 'Marital_Status')
sns.set(rc={'figure.figsize':(7,3)})
for bars in ax.containers:
    ax.bar_label(bars)
```


sales_state = df.groupby(['Marital_Status', 'Gender'], as_index=False)['Amount'].sum().sort_values(by='Amount', ascending=False)
sns.set(rc={'figure.figsize':(6,5)})
sns.barplot(data = sales_state, x = 'Marital_Status',y= 'Amount', hue='Gender')

From above graphs we can see that most of the buyers are married (women) and they have high purchasing power

Occupation

```
sns.set(rc={'figure.figsize':(25,5)})
ax = sns.countplot(data = df, x = 'Occupation')
```

for bars in ax.containers:
 ax.bar_label(bars)

sales_state = df.groupby(['Occupation'], as_index=False)['Amount'].sum().sort_values(by='Amount', ascending=False)
sns.set(rc={'figure.figsize':(20,5)})
sns.barplot(data = sales_state, x = 'Occupation',y= 'Amount')

From above graphs we can see that most of the buyers are working in IT, Healthcare and Aviation sector

Product Category

```
sns.set(rc={'figure.figsize':(30,5)})
ax = sns.countplot(data = df, x = 'Product_Category')
for bars in ax.containers:
```


sales_state = df.groupby(['Product_Category'], as_index=False)['Amount'].sum().sort_values(by='Amount', ascending=False).head(10)
sns.set(rc={'figure.figsize':(25,5)})
sns.barplot(data = sales_state, x = 'Product_Category',y= 'Amount')

From above graphs we can see that most of the sold products are from Food, Clothing and Electronics category

sales_state = df.groupby(['Product_ID'], as_index=False)['Orders'].sum().sort_values(by='Orders', ascending=False).head(10)
sns.set(rc={'figure.figsize':(20,5)})
sns.barplot(data = sales_state, x = 'Product_ID',y= 'Orders')

top 10 most sold products (same thing as above)

fig1, ax1 = plt.subplots(figsize=(12,7))
df.groupby('Product_ID')['Orders'].sum().nlargest(10).sort_values(ascending=False).plot(kind='bar')

Conclusion:

Married women age group 26-35 yrs from UP, Maharastra and Karnataka working in IT, Healthcare and Aviation are more likely to buy products from Food, Clothing and Electronics category

Thank you!