Unidades temáticas de Arquitectura de computadoras

Unidad temática 1: Fundamentos de las computadoras.

Contenidos

Historia y evolución de las computadoras, arquitectura clásica de Von Neumann

Unidad temática 2: Arquitectura de un sistema de cómputo

Contenidos

Procesador central, unidades de medición, memoria central, unidades de entrada y de salida, unidades de memoria auxiliar (secuencial, directo, óptico), multimedia, almacenamiento físico y lógico, administración de archivos, sistema operativo, interior de la computadora (tarjeta gráfica, de red, de módem), puertos, buses

Ancho de bus, arbitraje de bus, tipos de buses, proceso de inicialización, BIOS.

Unidad temática 3: Tecnologías Avanzadas

Contenidos

Arquitectura CISC, RISC, Pipeline, Taxonomía de Flynn, Multiprocesadores, Multicomputadoras, Clúster

PDA, GPS, Sistemas biométricos (reconocimiento de huella digital, voz, retina, etc., Cámara digital

Unidad temática 4: Seguridad en centros de cómputo

Contenidos

Análisis de posibles problemas, prevención de desastres, administración de riesgos y seguridad de datos, respaldos internos y externos

Bibliografía y hemerografía:

Editorial:

Libro:	Organización de computadoras, un enfoque estructurado
Autor:	Andrew Tanenbaum
Editorial:	
Libro:	Organización y arquitectura de computadoras
Autor:	William Stalling
Editorial:	
Libro:	Arquitectura de computadoras
Autor:	Behrooz Parhami
Editorial:	
Libro:	Computer systems design and architecture
Autor:	Harry Jordan, Vincent Heuring
Editorial:	
Libro:	How computer work
Autor:	Ron White

Unidad Temática 1: Fundamentos de las computadoras

1. **Historia y evolución de las computadoras**: Desde las primeras máquinas hasta la actualidad, con énfasis en los hitos importantes en la evolución tecnológica.

IMPORTANTE: LA INFORMACION DE ESTE TEMA SE OBTIENE UNICAMENTE DEL SIGUIENTE LIBRO:

Libro: Organización de computadoras, un enfoque estructurado

Autor: Andrew Tanenbaum

PAGINAS 13 – 24 TEMA 1.2

2. Arquitectura clásica de Von Neumann

- Origen y concepto básico: Explicar quién fue John von Neumann y por qué su propuesta fue revolucionaria. Introducir la idea de un sistema con una memoria única para almacenar tanto datos como instrucciones.
- Componentes principales:
 - o Unidad de Control (CU): Coordina las operaciones del sistema y ejecuta las instrucciones en el orden correcto.
 - o Unidad Aritmética Lógica (ALU): Realiza cálculos matemáticos y operaciones lógicas.
 - o **Memoria**: Describir cómo se utiliza para almacenar tanto datos como programas, destacando su carácter de memoria única.
 - o Dispositivos de Entrada/Salida: Interacción con el usuario y con otros dispositivos.
 - Buses: Explicar brevemente cómo los buses de datos, direcciones y control conectan estos componentes.
- Ciclo de instrucción: Investigar cómo se lleva a cabo la ejecución de una instrucción en esta arquitectura, incluyendo las fases de búsqueda, decodificación y ejecución.
- Ventajas y limitaciones:
 - o Ventajas: Simplicidad en diseño y flexibilidad al poder almacenar programas.
 - o Limitaciones: Problema del cuello de botella (Von Neumann Bottleneck) y cómo afecta el rendimiento en sistemas modernos.
- **Importancia histórica**: Relacionar cómo esta arquitectura sentó las bases para los sistemas de cómputo actuales, incluso en arquitecturas más avanzadas.

Unidad Temática 2: Arquitectura de un sistema de cómputo

3. Procesador central, unidades de medición y memoria central

- Procesador Central (CPU):
 - o Función principal del procesador en la ejecución de instrucciones.
 - o Componentes clave: unidad de control, unidad aritmético-lógica (ALU), registros.
 - o Conceptos básicos: velocidad del procesador (frecuencia en GHz) y número de núcleos (procesamiento en paralelo).
- Unidades de medición del desempeño:
 - o MHz y GHz: Cómo se mide la velocidad del reloj.
 - o FLOPS: Operaciones de punto flotante por segundo, indicador para tareas complejas.
- Memoria Central:
 - o **Tipos**: RAM (memoria volátil) y ROM (memoria no volátil).
 - o Memoria Caché: Pequeña, rápida y ubicada cerca del procesador; acelera el acceso a datos.
 - o Importancia de la memoria en el rendimiento general del sistema.

4. Unidades de entrada/salida, almacenamiento y componentes internos de la computadora

- Dispositivos de Entrada/Salida:
 - o Ejemplos: teclado, mouse, monitor, impresoras, pantallas táctiles.
 - Su función en la comunicación entre el usuario y la computadora.
- Unidades de almacenamiento auxiliar:
 - o Tipos:
 - Secuencial: Cintas magnéticas.
 - Directo: Discos duros (HDD), unidades de estado sólido (SSD).
 - **Óptico**: CD/DVD.
 - Multimedia: Unidades flash (USB).
 - Almacenamiento físico y lógico: Cómo los datos se representan físicamente y cómo se organizan lógicamente.
- Administración de archivos:
 - o Organización en carpetas, jerarquías y sistemas de archivos (NTFS, FAT32).
 - o Cómo los sistemas operativos gestionan archivos y datos.
- Componentes internos:
 - o Tarjeta gráfica: Procesamiento de gráficos y juegos.
 - o Tarjeta de red: Comunicación en redes locales e internet.
 - o Módem: Conversión de señales para internet.
 - o BIOS: Sistema básico de entrada/salida, inicialización de hardware.
 - o Puertos y buses: Conexión de dispositivos internos y externos, ancho de bus y arbitraje.

Unidad Temática 3: Tecnologías Avanzadas

5. Arquitectura CISC, RISC y Pipeline

• Arquitectura CISC (Complex Instruction Set Computer):

- o Características principales: conjunto de instrucciones amplio y complejo, diseñado para ejecutar operaciones en menos líneas de código.
- o Ejemplos de procesadores que utilizan esta arquitectura (e.g., Intel x86).
- o Ventajas: simplicidad en programación.
- o Desventajas: mayor complejidad en hardware y menor velocidad en ciertas operaciones.

• Arquitectura RISC (Reduced Instruction Set Computer):

- Características principales: conjunto de instrucciones reducido, optimizado para ejecutar operaciones rápidamente.
- o Ejemplos de procesadores RISC (e.g., ARM, PowerPC).
- o Ventajas: mayor eficiencia y menor consumo de energía.
- o Desventajas: puede requerir más instrucciones para realizar tareas complejas.

• Pipeline:

- Concepto básico: técnica para dividir una instrucción en etapas (búsqueda, decodificación, ejecución, etc.) que se ejecutan en paralelo.
- O Ventajas: incremento del rendimiento y mayor velocidad de procesamiento.
- o Problemas comunes: conflictos de datos y de control.

6. Taxonomía de Flynn, multiprocesadores y multicomputadoras

• Taxonomía de Flynn:

- Clasificación de arquitecturas según el flujo de datos e instrucciones:
 - SISD: Una instrucción, un dato (computadoras tradicionales).
 - SIMD: Una instrucción, múltiples datos (procesamiento paralelo).
 - MISD: Múltiples instrucciones, un dato (raro en la práctica).
 - MIMD: Múltiples instrucciones, múltiples datos (sistemas modernos, multiprocesadores).

Multiprocesadores:

- o Sistemas que incluyen dos o más CPUs en un solo equipo.
- Ventajas: ejecución simultánea de tareas, mayor rendimiento.
- o Ejemplo: servidores y estaciones de trabajo avanzadas.

• Multicomputadoras:

- o Sistemas distribuidos con múltiples computadoras conectadas en red para trabajar en conjunto.
- o Usos comunes: clústeres de alto rendimiento y computación distribuida.

• Aplicaciones prácticas:

- o Clúster PDA y GPS: cómo los sistemas avanzados aplican estas arquitecturas.
- o Introducción a los sistemas biométricos: reconocimiento de huella digital, voz y retina, y su uso en seguridad informática.

Unidad Temática 4: Seguridad en centros de cómputo

7. Análisis de problemas y administración de riesgos:

- Identificación de posibles problemas en un centro de cómputo, como fallas de hardware, ataques de software y errores humanos.
- Introducción al concepto de riesgos y su impacto en la operación de sistemas.
- Concepto básico de malware: tipos comunes (virus, gusanos, troyanos) y su relación con la seguridad de los datos.

8. Respaldos internos/externos y prevención de desastres:

- Medidas preventivas, como la implementación de políticas de seguridad, uso de contraseñas robustas y acceso restringido.
- Importancia de los respaldos de datos para proteger información crítica.
- Métodos de respaldo: interno (discos duros, servidores locales) y externo (nube, centros de datos remotos).
- Planes de prevención de desastres: ejemplos de desastres (incendios, inundaciones, fallas eléctricas) y cómo mitigar sus efectos.
- Uso de software especializado para gestionar respaldos y garantizar la recuperación de datos.