4. 找出<mark>右线性文法</mark>,能构成长度为1至3个字符且以字母为首的字符串。

其中 N={S, A, B} T={x, y} 其中 x \in {所有字母} y \in {所有的字符} P 如下:

$$S \rightarrow x$$
 $S \rightarrow xA$ $A \rightarrow y$ $A \rightarrow yB$ $B \rightarrow y$

常见错误:有同学将构成长度看成了1至5个字符,有同学的答案不符合右线性文法定义。

6. 构造上下文无关文法能够产生所有含有相同个数 0 和 1 的字符 串。

其中 N={S} T={0,1} P如下:

$$S \rightarrow \varepsilon$$
 $S \rightarrow S0S1S$ $S \rightarrow S1S0S$

常见错误:很多同学考虑不仔细,其文法无法产生<mark>所有</mark>含有相同个数 0 和 1 的字符串。

- 7. 找出由下列各组生成式产生的语言(起始符为S)
- $(1)S \rightarrow SaS \quad S \rightarrow b$
- $(2)S \rightarrow aSb S \rightarrow c$
- $(3)S \rightarrow a S \rightarrow aE E \rightarrow aS$

答: (1) b(ab)ⁿ |n≥0} 或者 L={(ba)ⁿb|n≥0}

10.设字母表 T={a,b},找出接受下列语言的 DFA:

- (1) 含有3个连续b的所有字符串集合
- (2) 以 aa 为首的所有字符串集合
- (3) 以 aa 结尾的所有字符串集合
- (4) L={ $a^n b^m a^k | n, m, k \ge 0$ }

答: (1) M=($\{q_0,q_1,q_2,q_3\},\{a,b\},\delta,q_0,\{q_3\}$),其中 δ 如下:

	a	ь
q_0	q ₀	q_1
q_1	q_0	q_2
q_2	q_0	q 3
q_3	q_3	q_3

(2) M=($\{q_0,q_1,q_2\},\{a,b\},\delta,q_0,\{q_2\}$),其中 δ 如下:

	a	ь
q_0	q_1	Ф
q_1	q_2	Φ
q_2	q_2	q_2

(3) M=($\{q_0,q_1,q_2\},\{a,b\},\delta,q_0,\{q_2\}$),其中 δ 如下:

	a	ь
q_0	q_1	q_0
q_1	q_2	q_0

q ₂	q ₂	q ₀

(4) M=($\{q_0,q_1,q_2\},\{a,b\},\delta,q_0,\{q_0,q_1,q_2\}$),其中 δ 如下:

	a	b
q_0	q_0	q_1
q_1	q_2	q_1
q_2	q_2	Ф

常见错误: 很多同学未给出 DFA 的完整五元组定义,而只是给出了转换函数表,这是不规范的。还有个别同学的转换函数无法识别要求字符串的集合。

14 构造 DFA M₁ 等价于 NFA M, NFA M 如下:

(1) M=($\{q_0,q_1,q_2,q_3\},\{a,b\},\delta,q_0,\{q_3\})$,其中 δ 如下:

$$\delta(q_0,a) = \{q_0,q_1\} \delta(q_0,b) = \{q_0\}$$

$$\delta(q_1,a) = \{q_2\} \quad \delta(q_1,b) = \{q_2\}$$

$$\delta (q_2,a) = \{q_3\} \quad \delta (q_2,b) = \Phi$$

$$\delta(q_3,a) = \{q_3\} \quad \delta(q_3,b) = \{q_3\}$$

(2) M=($\{q_0,q_1,q_2,q_3\},\{a,b\},\delta,q_0,\{q_1,q_3\}$),其中 δ 如下:

$$\delta (q_0,a) = \{q_1,q_3\} \delta (q_0,b) = \{q_1\}$$

$$\delta (q_1,a) = \{q_2\}$$
 $\delta (q_1,b) = \{q_1,q_2\}$

$$\delta (q_2,a) = \{q_3\}$$
 $\delta (q_2,b) = \{q_0\}$

$$\delta (q_3,a) = \Phi \qquad \delta (q_3,b) = \{q_0\}$$

答: (1) DFA M_1 =(Q_1 , {a,b}, δ_1 , [q_0],{ [q_0 , q_1 , q_3], [q_0 , q_2 , q_3], [q_0 , q_1 , q_2 , q_3],[q_0 , q_3]})

其中 $Q_1 = \{[q_0], [q_0,q_1], [q_0,q_1,q_2], [q_0,q_2], [q_0,q_1,q_2,q_3], [q_0,q_1,q_3], [q_0,q_2,q_3], [q_0,q_3]\}$

 δ_1 满足

	a	b
$[q_0]$	[q ₀ ,q ₁]	[q ₀]
[q ₀ ,q ₁]	[q ₀ ,q ₁ ,q ₂]	[q ₀ ,q ₂]
[q ₀ ,q ₁ ,q ₂]	[q ₀ ,q ₁ , q ₂ ,q ₃]	[q ₀ ,q ₂]
[q ₀ ,q ₂]	[q ₀ ,q ₁ , q ₃]	$[q_0]$
$[q_0,q_1,q_2,q_3]$	$[q_0,q_1,q_2,q_3]$	[q ₀ ,q ₂ , q ₃]
[q ₀ ,q ₁ , q ₃]	$[q_0,q_1,q_2,q_3]$	[q ₀ ,q ₂ , q ₃]
[q ₀ ,q ₂ , q ₃]	[q ₀ ,q ₁ , q ₃]	[q ₀ ,q ₃]
[q ₀ ,q ₃]	[q ₀ ,q ₁ , q ₃]	[q ₀ ,q ₃]

(2) DFA M_1 =({ Q_1 , {a,b}, δ_1 , [q_0], {[q_1],[q_3], [q_1 , q_2], [q_0 , q_1 , q_2], [q_1 , q_3], [q_1 , q_2 , q_3],[q_2 , q_3]})

其中 Q_1 ={[q_0],[q_1 , q_3],[q_1],[q_2],[q_0 , q_1 , q_2],[q_1 , q_2],[q_3],[q_1 , q_2 , q_3],[q_2 , q_3]} δ_1 满足

	a	b
$[q_0]$	[q ₁ ,q ₃]	$[q_1]$
[q ₁ ,q ₃]	[q ₂]	[q ₀ ,q ₁ ,q ₂]

[q ₁]	[q ₂]	[q ₁ ,q ₂]
$[q_2]$	$[q_3]$	$[q_0]$
[q ₀ ,q ₁ ,q ₂]	[q ₁ ,q ₂ ,q ₃]	[q ₀ ,q ₁ ,q ₂]
$[q_1,q_2]$	[q ₂ ,q ₃]	[q ₀ ,q ₁ ,q ₂]
[q ₃]	Φ	$[q_0]$
[q ₁ ,q ₂ ,q ₃]	[q ₂ ,q ₃]	[q ₀ ,q ₁ ,q ₂]
[q ₂ ,q ₃]	[q ₃]	$[q_0]$

常见错误:和前一题一样,很多同学未给出 DFA 的完整五元组定义,而只是给出了转换函数表,这是不规范的。

- 4. 对下列文法的生成式,找出其正则式
- (1) G=({S, A, B, C}, {a, b, c, d}, P, S), 生成式 P 如下:

$$B \rightarrow b \quad B \rightarrow bC$$

(2) G=({S, A, B, C, D}, {a, b, c, d}, P, S), 生成式 P 如下:

(1)答:由生成式得:

S=baA+B (1)

A=aS+bB ②

B=b+bC (3)

C=cB+d (4)

③④式化简消去 C, 得到 B=b+b (cB+d)

 $B = bcB + bd + b = B = (bc)^* (bd + b)$ (5)

将②⑤代入①

S=baaS+bab(bc)*(bd+b)+(bc)*(bd+b)

 $=>S=(baa)*(bab+\epsilon)(bc)*(b+bd)$

注意:答案不唯一。

(2) 由生成式得:

S=aA+B (1)

A= cC+bB ②

B=bB+a ③

C=D+abB (4)

D=d (5)

由③得 B=b*a ⑥

将56代入4 C=d+abb*a=d+ab+a 7

将607代入② A=c (d+ab⁺a)+b⁺a ⑧

将⑥⑧代入① S=a(c(d+ab⁺a)+b⁺a)+b^{*}a

= acd+acab⁺a+ab⁺a+b^{*}a

注意:答案不唯一。

15. 对下面矩阵表示的 ε -NFA

	ε	a	b	С
P(起始状	ф	{p}	{q}	{r}
态)				
q	{p}	{q}	{r}	ф
r(终止状	{q}	{r}	ф	{p}
态)				

- (1) 给出该自动机接收的所有长度为3的串
- (2) 将此 ε-NFA 转换为没有 ε 的 NFA

(2) ε-NFA: M=({p,q,r}, {a,b,c}, δ, p, r) 其中δ如表格所示。因为ε-closure(p)={p}

则设不含 ε 的 NFA M_i =({p, q, r}, {a, b, c}, δ_i , p, {r})

$$\delta_1(p, a) = \delta'(p, a) = \epsilon - closure(\delta(\delta(\delta'(p, \epsilon), a)) = \{p\}$$

$$\delta_1(p, b) = \delta'(p, b) = \epsilon - closure(\delta(\delta'(p, \epsilon), b)) = \{p, q\}$$

$$\delta_1(p, c) = \delta'(p, c) = \epsilon - closure(\delta(\delta(p, \epsilon), c)) = \{p, q, r\}$$

$$\delta_1(q, a) = \delta'(q, a) = \epsilon - closure(\delta(\delta'(q, \epsilon), a)) = \{p, q\}$$

$$\delta_1(q,b) = \delta'(q,b) = \epsilon - closure(\delta(\delta(q,\epsilon),b)) = \{p,q,r\}$$

$$\delta_1(q, c) = \delta'(q, c) = \epsilon - closure(\delta(\delta(q, \epsilon), c)) = \{p, q, r\}$$

$$\delta_1(r, a) = \delta'(r, a) = \epsilon - closure(\delta(\delta(r, \epsilon), a)) = \{p, q, r\}$$

$$\delta_1(r, b) = \delta'(r, b) = \epsilon - closure(\delta(\delta(r, \epsilon), b)) = \{p, q, r\}$$

$$\delta_1(r,c) = \delta'(r,c) = \epsilon - closure(\delta(\delta(r,\epsilon),c)) = \{p,q,r\}$$

图示如下: (r 为终止状态)

- 5. 为下列正则集,构造右线性文法:
- (2)以 abb 结尾的由 a 和 b 组成的所有字符串的集合
- (4)含有两个相继 a 或两个相继 b 的由 a 和 b 组成的所有字符串集合
- (2) 此正则集对应的正则式为(a+b)*abb

常见错误:基本都能做对,个别同学注意审题。

(4) 此正则集为{a,b}*{aa,bb} {a,b}*

或此正则集对应的正则式为(a+b)*(aa+bb)(a+b)*

右线性文法 G=({S,A}, {a,b}, P,S)

P: S→aS|bS|aaA|bbA A→aA|bA| ε

常见错误:请注意右线性文法定义与书写格式。

- 7. 设正则集为 a (ba)*
- (1) 构造右线性文法
- (2) 找出(1)中文法的有限自动机

答: (1) 右线性文法 G=({S,A}, {a,b},P,S)

P:
$$S \rightarrow aA$$
 $A \rightarrow bS$ $A \rightarrow \epsilon$

(2) 自动机如下:

常见错误:注意终止状态符号

- 17. 使用泵浦引理,证明下列集合不是正则集:
- (1) 由文法 G 的生成式 S→aSbS | c 产生的语言 L(G)
- (3) $\{0^n 1^m 2^{n+m} | n, m \ge 1\}$
- (4) $\{\omega \omega \mid \omega \in \{a, b\} *\}$

证明: (1) 在 L(G)中,a 的个数与 b 的个数相等 假设 L(G)是正则集,对于足够大的 k 取 $\omega = a^k$ (cb) k c $\omega \in L$ 且 $|\omega| > k$,令 $\omega = \omega_1 \omega_0 \omega_2$,其中 $|\omega_0| > 0$ $|\omega_1 \omega_0| \leq k$ 因为存在 ω_0 使 $\omega_1 \omega_0^{-1} \omega_2 \in L$

所以对于任意满足条件的 ω_0 只能取 ω_0 = a^n $n \in (0, k]$ 则 $\omega_1 \omega_0^i \omega_2$ = $a^{k-n} (a^n)^i (cb)^k c$,在i 不等于1 时不属于L 与假设矛盾。则L(G)不是正则集

(3)假设该集合是正则集,对于足够大的 k 取 $\omega = 0^k 1^x 2^y$ 其中 y=k+x; $\omega \in L$ 且 $|\omega| > k$,令 $\omega = \omega_1 \omega_0 \omega_2$,其中 $|\omega_0| > 0$ $|\omega_1 \omega_0| \le k$ 因为存在 ω_0 使 $\omega_1 \omega_0^i \omega_2 \in L$

所以对于任意满足条件的 ω_0 只能取 $\omega_0=0^n$ n \in (0, k],

则 $\omega_1 \omega_0^{\ i} \omega_2 = 0^{k-n} (0^n)^{\ i} 1^x 2^y$ 在 i 不等于 1 时,y 不等于 k+x, 因此不属于该集合。

与假设矛盾。则该集合不是正则集

(4) 假设该集合是正则集,对于足够大的 k 取 $\omega = a^k ba^k b$ $\omega \in L \ \underline{L} \ | \omega | > k$, 令 $\omega = \omega_1 \omega_0 \omega_2 \ \underline{L} \ + | \omega_0 | > 0 \ | \omega_1 \omega_0 | \leq k$ 因为存在 $\omega_0 \ \underline{d} \ \omega_1 \omega_0^i \omega_2 \in L$

所以对于任意满足条件的 ω_0 只能取 ω_0 = a^n $n \in (0, k]$

则 $\omega_1\omega_0^i\omega_2=a^{k-n}(a^n)^iba^kb$ 在i不等于1时不满足 ω ω 的形式,

不属于该集合

与假设矛盾。则该集合不是正则集

20. 已知 DFA 的状态转移表如下,构造最小状态的等价 DFA。

	0	1
->A	В	A
В	D	С
С	D	В
*D	D	A
Е	D	F
F	G	Е

G	F	G
Н	G	D

答:由表可得,E、F、G、H 是不可达状态,可以删除,余下的状态构成状态集 $\{A, B, C, D\}$,对该状态集划分为终止状态集 π^1 和非终止状态集 π^2 ,而 $\pi^1=\{D\}$, $\pi^2=\{A, B, C\}$ 。

对 π ¹,很显然不可再细分;

对 π^2 ={A, B, C} 经标 0 的边,可达集是 {B, D},由于 B, D 分别属于 π^1 和 π^2 ,故将 π^2 细分为 π^{21} ={A}, π^{22} ={B, C}。

对 π^{22} ={B, C} 经标 1 的边,可达集是{B, C},由于 B, C 分别同属于和 π^{22} ,故不可再细分。这样可得最后的划分为: {{A}, {B, C}, {D}},最 后可得简化了的 DFA 为:

	0	1
->A	В	A
В	D	В
*D	D	A

常见错误: 有的同学未删除不可达状态。

9.对应图(a)(b)的状态转换图写出正则式。(图略)

注意:答案不唯一。

(a) 由图可知 q₀=aq₀+bq₁+a+ε

$$q_1=aq_2+bq_1$$

$$q_2=aq_0+bq_1+a$$

$$q_1=abq_1+bq_1+aaq_0+aa\\ =(b+ab)\ q_1+aaq_0+aa\\ =(b+ab)\ *(\ aaq_0+aa)\\ q_0=aq_0+b(b+ab)\ *(\ aaq_0+aa)\ +a+\epsilon\\ =(a+b\ (b+ab)\ *aa)\ q_0+\ b(b+ab)\ *aa+a+\epsilon\\ =(a+b\ (b+ab)\ *aa)\ *(b(b+ab)\ *aa+a+\epsilon)\\ =(a+b\ (b+ab)\ *aa)\ *\\ (b)\ q_0=aq_1+bq_2+a+b\\ q_1=aq_0+bq_2+b\\ q_2=aq_1+bq_0+a\\ q_1=aq_0+baq_1+bbq_0+ba+b\\ =(ba)*(aq_0+bq_0+ba+b)\\ q_2=aaq_0+abq_2+bq_0+ab+a\\ =(ab)*(aaq_0+bq_0+ab+a)\\ q_0=a(ba)*(a+bb)q_0+a(ba)*(ba+b)+b(ab)*(aa+b)q_0+\ b(ab)*(ab+a)+a+b\\ =[a(ba)*(a+bb)+b(ab)*(aa+b)]*(a(ba)*(ba+b)+\ b(ab)*(ab+a)+a+b)$$

18. 构造米兰机和摩尔机

对于{a,b}*的字符串,如果输入以 bab 结尾,则输出 1;如果输入以 bba 结尾,则输出 2;否则输出 3。

答: 米兰机:

说明状态 q_{aa} 表示到这个状态时,输入的字符串是以 aa 结尾。其他同理。

摩尔机,状态说明同米兰机。

