Math 230a Problem Set 9

Lev Kruglyak

Due: November 6, 2024

Collaborators: AJ LaMotta, Ignasi Vicente

Problem 1. Let $\pi: P \to X$ be a principal G-bundle with connection $\Theta \in \Omega^1(P;\mathfrak{g})$.

(a). Denote the right G-action of G on P as $R: P \times G \to P$. Compute $R^*\Theta$.

Letting R_g denote right multiplication by $g \in G$. By G-equivariance of the connection form, we have the relation $R_g^* \Theta = \operatorname{Ad}_{g^{-1}} \Theta$. Letting θ_{mc} be the Maurer-Cartan form on G, we find that

$$R^*\Theta = \operatorname{Ad}_{g^{-1}}\operatorname{pr}_P^*\Theta + \operatorname{pr}_G^*\theta_{\operatorname{mc}}.$$

(b). Suppose $s: X \to P$ is a section of π and $g: X \to G$ is a function, Compute $\alpha' = (s \cdot g)^*\Theta$ in terms of $\alpha = s^*\Theta$.

Let's write the function $s \cdot g$ as a composition of

We know the pullback $\alpha' = (s \cdot g)^* \Theta = (R \circ \phi)^* \Theta = \phi^* R^* \Theta$. Plugging the map ϕ into the expression from the previous part, we get

$$\alpha' = \operatorname{Ad}_{g^{-1}} \alpha + g^* \theta_{\operatorname{mc}}.$$

(c). Write your results in matrix notation if G is a matrix group.

In a matrix group G and matrix $M \in G$, the adjoint action is conjugation, and the Maurer-Cartan form is $\theta_{\rm mc} = M^{-1} dM$. Thus, we can write the expressions from the previous parts as

$$R^*\Theta = M^{-1}(\operatorname{pr}_1^*\Theta)M + M^{-1} dM$$
 and $\alpha' = M^{-1}\alpha M + M^{-1} dM$.

Problem 2.

(a). Let G be a Lie group (not necessarily compact) and let $H \subset G$ be a closed Lie subgroup which is compact. Prove that the homogeneous manifold G/H is reductive.

1

- (b). Find an H-invariant complement \mathfrak{p} to $\mathfrak{h} \subset \mathfrak{g}$ for the homogeneous manifolds $O_{n,1}/O_n$ (hyperbolic space) and $\operatorname{Sp}_{2n}/\operatorname{U}_n$ (Siegel upper half space).
- (c). Compute the curvature of the induced linear connection on hyperbolic space. Compare to the case of the sphere.
- (d). Describe the Riemannian metric on hyperbolic space. Identify the total space of the orthonormal frame bundle.

Problem 3. Let $\pi: P \to X$ be a principal G-bundle with connection Θ . Prove that Θ is flat if and only if the holonomy group $\operatorname{Hol}_p(\Theta) \subset G$ is a discrete subgroup for all $p \in P$.

Problem 6.

(a). Fix $m \in \mathbb{Z}^{>0}$. Construct a \mathbb{C}^{\times} -action on \mathbb{CP}^m with precisely m+1 fixed points.

Consider the action

$$\begin{array}{ccc} \mathbb{C}^{\times} & \longrightarrow & \operatorname{End}(\mathbb{CP}^{m}) \\ \lambda & \longmapsto & \lambda \cdot [z_{1} : \cdots : z_{m+1}] = [\lambda z_{1} : \lambda^{2} z_{2} : \cdots : \lambda^{m+1} z_{m+1}]. \end{array}$$

(b).