First, let us show that for a policy π , if the initial and undiscounted state distributions, ρ and d_{π} , are the same, then the undiscounted and discounted state distribution are completely equivalent. The proof is based on the definition of stationary distribution and an analytical form of discounted distribution.

Proof. Recall that the stationary distribution d_{π} satisfies that

$$\sum_{s} d_{\pi}(s) \mathbb{P}_{\pi}(S' = s' | S = s) = d_{\pi}(s').$$

As known, the discounted stationary state distribution, $d_{\pi,\gamma}$ can be written as

$$d_{\pi,\gamma}(s) = (1 - \gamma) \sum_{t>0} \gamma^t \mathbb{P}_{\pi}(S_t = s).$$

Now let us consider that the initial distribution is the undiscounted distribution, that is $\mathbb{P}_{\pi}(S_0 = s) = d_{\pi}(s)$. Then, we can prove the statement by mathematical induction that for all t > 0, $\mathbb{P}_{\pi}(S_t = s) = d_{\pi}(s)$.

For t = 0, it is obvious.

For t = k + 1, let us assume the statement holds for t = k such that $\mathbb{P}_{\pi}(S_k = \bar{s}) = d_{\pi}(\bar{s})$, for all states \bar{s} .

$$\mathbb{P}_{\pi}(S_{k+1} = s) = \sum_{\bar{s}} \mathbb{P}_{\pi}(S_k = \bar{s}) \mathbb{P}_{\pi}(S' = s' | S = \bar{s})$$
$$= \sum_{\bar{s}} d_{\pi}(\bar{s}) \mathbb{P}_{\pi}(S' = s' | S = \bar{s})$$
$$= d_{\pi}(s).$$

Thus, we can rewrite the discounted state distribution as

$$d_{\pi,\gamma}(s) = (1 - \gamma) \sum_{t \ge 0} \gamma^t \mathbb{P}_{\pi}(S_t = s)$$
$$= (1 - \gamma) \sum_{t \ge 0} \gamma^t d_{\pi}(s)$$
$$= d_{\pi}(s).$$

Lemma 0.1. For any policy π , any positive constant ϵ , and any MDP where the undiscounted state stationary distribution exists, if the total variation between the initial and undiscounted state distributions, ρ and d_{π} is small, that is,

$$d_{TV}(\rho, d_{\pi}) \leq \epsilon$$
,

then the total variation between the discounted and undiscounted state distributions, d_{π} and $d_{\pi,\gamma}$, is also small, that is,

$$d_{TV}(d_{\pi,\gamma}, d_{\pi}) \le \epsilon.$$

1

Proof. Recall that the total variation equals

$$d_{TV}(\rho, d_{\pi}) = \frac{1}{2} \sum_{s} |\rho(s) - d_{\pi}(s)|.$$

Next, let us compare the discounted and undiscounted state distributions.

$$\begin{split} d_{TV}(d_{\pi,\gamma}, d_{\pi}) &= \frac{1}{2} \sum_{s'} |\sum_{s} (1 - \gamma) \sum_{t \geq 0} \gamma^{t} \rho(s) \mathbb{P}_{\pi}(S_{t} = s' | S_{0} = s) - \sum_{s} (1 - \gamma) \sum_{t \geq 0} \gamma^{t} d_{\pi}(s) \mathbb{P}_{\pi}(S_{t} = s' | S_{0} = s)| \\ &= \frac{1}{2} \sum_{s'} (1 - \gamma) \sum_{t \geq 0} \gamma^{t} |\sum_{s} (\rho(s) - d_{\pi}(s)) \mathbb{P}_{\pi}(S_{t} = s' | S_{0} = s)| \\ &\leq \frac{1}{2} \sum_{s'} (1 - \gamma) \sum_{t \geq 0} \gamma^{t} \sum_{s} \mathbb{P}_{\pi}(S_{t} = s' | S_{0} = s) |\rho(s) - d_{\pi}(s)| \\ &= \frac{1}{2} (1 - \gamma) \sum_{t \geq 0} \gamma^{t} \sum_{s} \sum_{s'} \mathbb{P}_{\pi}(S_{t} = s' | S_{0} = s) |\rho(s) - d_{\pi}(s)| \\ &= \frac{1}{2} (1 - \gamma) \sum_{t \geq 0} \gamma^{t} \sum_{s} |\rho(s) - d_{\pi}(s)| \\ &= (1 - \gamma) \sum_{t \geq 0} \gamma^{t} d_{TV}(\rho, d_{\pi}) \\ &\leq \epsilon. \end{split}$$