

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

June 29, 20**6**0

Honorable Assistant Commissioner for Patents Washington, D.C. 20231

SIR:

Transmitted herewith for filing are the specification and claims of the patent application of:

Wayne A. Hendrickson et al.	for
Inventor(s)	
CONJUGATED LIGANDS FOR THE STIMULATION OF BLOOD CELL PROLIFERATION BY EFFECTING DIMERIZATION OF THE RECEPTOR FOR STEM CELL FACTOR	
Title of Invention	
Also enclosed are:	
\underline{X} 85 sheet(s) ofinformal \underline{X} formal drawings.	
x Oath or declaration of Applicant(s). (unsigned)	
X A power of attorney	
An assignment of the invention to	
A Preliminary Amendment	
X A verified statement to establish small entity status under 37 C.F	R.

The filing fee is calculated as follows:

§1.9 and §1.27. (unsigned)

CLAIMS AS FILED, LESS ANY CLAIMS CANCELLED BY AMENDMENT

					R/	TE	_	F	EE
	NUMBER FILED		NUMBER EXTRA*		SMALL ENTITY	OTHER ENTITY		SMALL ENTITY	OTHER ENTITY
Total Claims	47 -20	-	27	x	\$ 9.00	\$18.00	=	\$ _{243.00}	\$
Independent Claims	4 -3	-	1	x	\$39.00	\$78.00	=	\$ 9.00	\$
Multiple Deper			_Yes _X	No	\$130.00	\$260.00	-	\$ ₀	\$

*If the different in Col. 1 is less than zero, enter "0" in Col. 2

BASIC FEE	\$ 345	\$ 690
TOTAL FEE	\$ 627.00	\$

THE THE TOTAL TOTAL SOLO

June 29, 2000

Letter of Transmittal Page 2

_ <u>X</u>	A check in the amoun	it of $\frac{627.00}{}$ to cover	er the filling ree.			
	Please charge Depos	it Account No	in the amount of			
_X		hereby authorized to char ed in connection with the bunt No. 03-3125:				
	X Filing fees und	ler 37 C.F.R. §1.16.				
	X Patent applicat	ion processing fees under	37 C.F.R. \$1.17.			
		set in 37 C.F.R. \$1.18 at vance, pursuant to 37 C.F.	or before mailing of the R. §1.311(b).			
	Three copies of this sheet are enclosed.					
X;	Three copies of this	s sheet are enclosed.				
	A certified copy of	previously filed foreign				
	A certified copy of filed in Applicant(s) hereby		on			
X and the second	A certified copy of filed in Applicant(s) hereby	previously filed foreign claim priority based upor under 35 U.S.C. \$119.	on n this aforementioned sailing bearing no.			
X	A certified copy of filed in Applicant(s) hereby foreign application	previously filed foreign claim priority based upor under 35 U.S.C. \$119. Express Mail Certificate of M El 807 507 584 US dated June	on			
<u>x</u> 1	A certified copy of filed in Applicant(s) hereby foreign application	previously filed foreign claim priority based upor under 35 U.S.C. \$119. Express Mail Certificate of M E1 807 507 584 US dated June figures (85 sheets), paper co	on athis aforementioned ailing bearing no. 29, 2000, a loose set of py of Sequence Listing.			
x 1	A certified copy of filed in Applicant(s) hereby foreign application	previously filed foreign claim priority based upor under 35 U.S.C. \$119. Express Mail Certificate of M E1 807 507 584 US dated June figures (85 sheets), paper co	on			
XI C) O)	A certified copy of filed in Applicant(s) hereby foreign application	previously filed foreign claim priority based upor under 35 U.S.C. \$119. Express Mail Certificate of M E1 807 507 584 US dated June figures (85 sheets), paper co	on athis aforementioned ailing bearing no. 29, 2000, a loose set of py of Sequence Listing.			
	A certified copy of filed in Applicant(s) hereby foreign application	previously filed foreign claim priority based upor under 35 U.S.C. \$119. Express Mail Certificate of M E1 807 507 584 US dated June figures (85 sheets), paper co	on athis aforementioned ailing bearing no. 29, 2000, a loose set of py of Sequence Listing.			
XI C) O)	A certified copy of filed in Applicant(s) hereby foreign application	previously filed foreign claim priority based upor under 35 U.S.C. \$119. Express Mail Certificate of M E1 807 507 584 US dated June figures (85 sheets), paper co	on athis aforementioned ailing bearing no. 29, 2000, a loose set of py of Sequence Listing.			

Respectfully submitted,

John D White Registration No. 28,678 Attorney for Applicants Cooper & Dunham LLP

Cooper & Dunham LLP 1185 Avenue of the Americas New York, New York 10036

(212) 278-0400

Applicant or Patentee: Wayne A. Hendrickson et al. Serial or Patent No.: Not Yet Known

Attorney's

Filed or Issued: Herewith

Title of Invention or Patent: CONJUGATED LICANDS FOR THE STIMULATION OF BLOOD CELL PROLIFERATION BY EFFECTING DIMERIZATION OF THE RECEPTOR FOR STEM CELL FACTOR

Docket No: 50950/JPW/EMW

VERIFIED STATEMENT (DECLARATION) CLAIMING

	eby declare that I am an official empowered to act on behalf of the nonprofit ization identified below:				
	Name of Organization: The Trustees of Columbia University in the City of New York				
Address of Organization: West 116th Street and Broadway New York, New York 10027					
TYPE	OF ORGANIZATION:				
	UNIVERSITY OR OTHER INSTITUTION OF HIGHER EDUCATION TAX EXEMPT UNDER INTERNAL REVENUE SERVICE CODE 26 U.S.C. \$§501(a) and 501(c)(3)				
	NONPROFIT SCIENTIFIC OR EDUCATIONAL UNDER STATUTE OF STATE OF THE UNITED STATES OF AMERICA NAME OF STATE:				
	CITATION OF STATUTE:				
	WOULD QUALIFY AS TAX EXEMPT UNDER INTERNAL REVENUE SERVICE CODE 26 U.S.C. \$\$501(a) and 501(c)(3) IF LOCATED IN THE UNITED STATES OF AMERICA WOULD QUALIFY AS NONPROFIT SCIENTIFIC OR EDUCATIONAL UNDER STATUTE OF STATE OF THE UNITED STATES OF AMERICA IF LOCATED IN THE UNITED STATES OF AMERICA.				
	NAME OF STATE:				
reduc	fit organization as defined in 37 C.F.R. \$1.9(e)* for purposes of payin; dd fees under 35 U.S.C. \$41(a) and 41(b), with regard to the invention entitled CATED LICANDS FOR THE STHULATION OF BLOOD CELL PROLIFERATION BY EFFECTING				
reduce CONJU	eby declare that the nonprofit organization identified above qualifies as a offic organization as defined in 37 C.F.R. \$1.9(e)* for purposes of paving				
CONJU DIMER by in	eby declare that the nonprofit organization identified above qualifies as a fit organization as defined in 37 C.F.R. §1.9(e)* for purposes of paying ad fees under 35 U.S.C. §41(a) and 41(b), with regard to the invention entitled CATED LIGANDS FOR THE STIMULATION OF BLOOD CELL PROLIFERATION BY EFFECTING IZATION OF THE RECEPTOR FOR STEW CELL FACTOR				
nonprereduce CONJU DIMER by indescript descript	by declare that the nonprofit organization identified above qualifies as a fit organization as defined in 37 C.F.R. §1.9(e)* for purposes of paying defees under 35 U.S.C. §41(a) and 41(b), with regard to the invention entitled CATED LICANDS FOR THE STIMULATION OF BLOOD CELL PROLIFERATION BY EFFECTING IZATION OF THE RECEPTOR FOR STEM CELL FACTOR ventor(s) Wayne A. Hendrickson et al.				
nonpreduce CONJU DIMER by indescript descript	by declare that the nonprofit organization identified above qualifies as a fit organization as defined in 37 C.F.R. §1.9(e)* for purposes of paying defees under 35 U.S.C. §41(a) and 41(b), with regard to the invention entitled CATED LICANDS FOR THE STIMULATION OF BLOOD CELL PROLIFERATION BY EFFECTING IZATION OF THE RECEPTOR FOR STEM CELL FACTOR ventor(s) Wayne A. Hendrickson et al.				
nonprereduce CONJU DIMER by indescript descript	beby declare that the nonprofit organization identified above qualifies as a solid organization as defined in 37 C.F.R. §1.9(e)* for purposes of paying additional paying and fees under 35 U.S.C. §41(a) and 41(b), with regard to the invention entitled SATED LIGANDS FOR THE STIMULATION OF BLOOD CELL PROLIFERATION BY EFFECTING IZATION OF THE RECEPTOR FOR STEM CELL FACTOR ventor(s) Wayne A. Hendrickson et al.				
nonpr reduc CONJU DIMER by in descr X	eby declare that the nonprofit organization identified above qualifies as a fit organization as defined in 37 C.F.R. §1.9(e)* for purposes of paying ad fees under 35 U.S.C. §41(a) and 41(b), with regard to the invention entitled CACTED LICANDS FOR THE STIMULATION OF BLOOD CELL PROLIFERATION BY EFFECTING IZATION OF THE RECEPTOR FOR STEM CELL FACTOR ventor(s) Wayne A. Hendrickson et al. libed in: the specification filed herewith application serial no filed patent no issued				
nonpreduce CONJU DIMER by indescrizing X I herewith If the concernor right of the concernor	beby declare that the nonprofit organization identified above qualifies as a strict organization as defined in 37 C.F.R. §1.9(e)* for purposes of paying and fees under 35 U.S.C. §41(a) and 41(b), with regard to the invention entitled CATED LIGANDS FOR THE STIMULATION OF BLOOD CELL PROLIFERATION BY EFFECTING IZATION OF THE RECEPTOR FOR STEM CELL FACTOR ventor(s) Wayne A. Hendrickson et al. the specification filed herewith application serial no.				
nonprreduce CONJUL DIMER by in descr X I here with If the concernor ignored organian a NOTE organian concernor ignored the concerno	beby declare that the nonprofit organization identified above qualifies as a sofit organization as defined in 37 C.F.R. §1.9(e)* for purposes of paying and fees under 35 U.S.C. §41(a) and 41(b), with regard to the invention entitled for the invention of the stribulation of BLOOD CELL PROLIFERATION BY EFFECTING IZATION OF THE RECEPTOR FOR STEM CELL FACTOR TEATION OF THE RECEPTOR FOR STEM CELL FACTOR The specification filed herewith application serial no. filed patent no. issued paper that rights under contract or law have been conveyed to and remain the nonprofit organization with regard to the above identified invention. The property of the stripping of the s				

I acknowledge the duty to file, in this application or patent, notification of any change in status resulting in loss of entitlement to small entity status prior to paying, or at the time of paying, the earliest of the issue fee or any maintenance fee due after the date on which status as a small entity is no longer appropriate. 37 C.F.R. §1.28(b)*.

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under 18 U.S.C. \$1001, and that such willful false statements may jeopardize the validity of the application, any patent issuing thereon, or any patent to which this verified statement is directed.

Name of Person Signing:	Mr. Jack M. Granowitz				
Title In Organization:	Executive Director, Columbia Innovation Enterprise				
Address: Amsterdam & 120	th Street - Suite 363 New York, New York 10027				
Signature:					
Date Of Signature:					

Dkt. 50950/JPW/EMW

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Wayne A. Hendrickson et al.

U.S. Serial No.:

Not Yet Known

Filed

For

Herewith

CONJUGATED LIGANDS FOR THE STIMULATION OF BLOOD CELL PROLIFERATION BY EFFECTING DIMERIZATION OF THE RECEPTOR FOR STEM CELL

FACTOR

1185 Avenue of the Americas New York, New York 10036

June 29, 2000

Assistant Commissioner for Patents

Washington, D.C. 20231

Box: Patent Application

EXPRESS MAIL CERTIFICATE OF MAILING FOR ABOVE-IDENTIFIED APPLICATION

"Express Mail" mailing label number: EJ 807 507 584 US Date of Deposit: ____June 29, 2000 I hereby certify that this paper or fee is being deposited with the United States Postal Service "Express Mail Post Office to Addressee" service under 37 C.F.R. §1.10 on the date indicated above and is addressed to the Assistant Commissioner for Patents, Washington, D.C. 20231.

Printed Name:

Respectfully submitted,

John (P) White

Registration No. 28,678 Attorney for Applicants Cooper & Dunham LLP

1185 Avenue of the Americas New York, New York 10036

(212) 278-0400

STESSEY, DEESON

Application for United States Tetters Patent

To all whom it may concern:

Be it known that we, Wayne A. Hendrickson, Xuliang Jiang, Keith E. Langley, Rashid Syed and Yueh-Rong Ann Hsu

have invented certain new and useful improvements in

CONJUGATED LIGANDS FOR THE STIMULATION OF BLOOD CELL PROLIFERATION BY EFFECTING DIMERIZATION OF THE RECEPTOR FOR STEM CELL FACTOR

of which the following is a full, clear and exact description.

25

CONJUGATED LIGANDS FOR THE STIMULATION OF BLOOD CELL PROLIFERATION BY EFFECTING DIMERIZATION OF THE RECEPTOR FOR STEM CELL FACTOR

Throughout this application, various references are referred to within parentheses. Disclosures of these publications in their entireties are hereby incorporated by reference into this application to more fully describe the state of the art to which this invention pertains. Full bibliographic citation for these references may be found at the end of this application, preceding the claims.

Field of the Invention

This invention relates to stem cell factor (SCF) analogs, compositions containing such analogs, and related compositions. In another aspect, the present invention relates to nucleic acids encoding the present analogs or related nucleic acids, related host cells and vectors. In another aspect, the invention relates to computer programs and apparatuses for expressing the three dimensional structure of SCF and analogs thereof. another aspect, the invention relates to methods for SCF analogs and related rationally designing In yet another aspect, the present compositions. invention relates to methods for treatment using the present SCF analogs.

1.0

5

25

3.0

Stem cell factor (SCF) is an early-acting hematopoietic cytokine which elicits multiple biological effects. SCF is dimeric and occurs in soluble and membrane-bound It transduces signals by ligand-mediated dimerization of its receptor, Kit. Kit is a receptor kinase related to the receptors tvrosine platelet-derived growth factor (PDGF) and to those for vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), macrophage colony-stimulating factor (M-CSF) and Flt-3 ligand. The kinase portions of these receptors are closely related and their ligand-binding portions all comprise immunoglobulin-like (Ig) repeats, although these vary widely in sequence and also in Determined here is the crystal structure of selenomethionyl soluble human SCF at 2.2 Å resolution by multiwavelength anomalous diffraction (MAD) phasing. SCF has the characteristic helical cytokine topology, but the structure is unique apart from core portions. dimer has a symmetric 'head-to-head' association. Potential Kit-binding sites on the SCF dimer surface are located. A superposition of this dimer onto VEGF in its complex with the Flt-1 receptor places the binding sites on SCF in positions of topographical and electrostatic complementarity with the Kit counterparts of Flt-1. Similar models can be made for the complex of PDGF with its receptor and FGF-heparin.

INTRODUCTION

Stem cell factor (SCF) is an early-acting hematopoietic

10

25

30

cytokine that binds at the cell surface to its receptor, Kit, whereby it produces other biological effects in addition to those on hematopoiesis (see reviews by Galli et al., 1994; Lev et al., 1994; Besmer et al., 1997; Broudy, 1997). SCF, which is produced by various fibroblast-type cells including bone marrow stromal cells, has also been called Kit ligand (KL), mast-cell growth factor (MGF), and steel factor. The biochemistry and molecular biology that identified SCF and Kit as a ligand-receptor pair were preceded by an array of elegant animal biology studies that anticipated the underlying molecular mechanisms responsible for the genetics (Russell, 1979). Mice with mutations in the Sl locus (gene for SCF) or in the dominant-spotting W locus (ckit, the gene for Kit) show complex phenotypes that include macrocytic anemia, sterility from a deficiency of germ cells, lack of coat pigmentation (white spotting of the skin from absences of pigment cells) and mast cell deficiency. Kit mutations in man are responsible for the autosomal dominant congenital pigmentation disorder, piebaldism. Consistent with these phenotypes, in the last 10 years, a host of in vitro and in vivo experiments have clearly established Kit-mediated roles for SCF in early stages of hematopoiesis, in gametogenesis, in melanocyte and in mast proliferation and function proliferation, maturation and activation; (Galli et al., 1994, Lev et al., 1994, Besmer et al., 1997; Broudy, 1997). SCF has potential therapeutic applications in the treatment of anemias, boosting the mobilization of hematopoietic stem/ progenitor cells to the peripheral blood for harvest and transplantation, and in increasing

25

3.0

the efficiency of gene transduction for gene therapy (Galli et al., 1994, McNiece and Briddell, 1995, Glaspy, 1996, Broudy, 1997).

SCF is expressed as membrane-associated forms of either 248 or 220 amino acid residues (Galli et al., 1994, Lev et al., 1994, Besmer et al., 1997, Broudy, 1997) The two forms are a consequence of alternative mRNA splicing that includes or excludes exon 6. Exon 6 encodes a proteolytic cleavage site such that soluble SCF1-165 is released from the 248 amino-acid precursor. 166-189 represent a tether to the membrane, residues 190-221 represent a hydrophobic transmembrane segment, and residues 222-248 represent a cytoplasmic domain. The 220 amino acid residue form lacks the cleavage site and tends to remain membrane-bound. Soluble SCF exists as a non-covalently associated dimer (Arakawa et al., 1991). Each SCF monomer contains two intra-chain disulfide bridges, Cys4-Cys 89 and Cys43-Cys138 (Langley et al, 1992). The N-terminal 141 residues of SCF have been identified as a functional core, SCF1-141, that includes the dimer interface and portions that bind and activate the receptor Kit (Langley et al., 1994).

It has been proposed that SCF is a member of the helical cytokine structural superfamily characterized by a double-crossover four-helix bundle topology (Bazan, 1991). Three-dimensional structures are known for many of the family members and, from a comparison of the structures and sequences, the members have been classified into three subgroups (Sprang and Bazan, 1993):

short-chain, long-chain and interferon-like.

The superfamily is highly divergent. Among five short-chain helical cytokines of known structure, sequence identity levels rarely exceed 20% and fewer than half of the residues constitute (41%-48%) a common framework of the fold with r.m.s. deviations ranging from 1.7 Å to 2.9Å for the 61 C_{α} positions in common. Furthermore, many identical residues adopt different side chain conformations in the various structures. Nevertheless, sequence patterns do persist from the secondary structure and SCF has been proposed to be a short-chain helical cytokine (Bazan, 1991; Rozwarski et al., 1994).

Most helical cytokines signal through members of the hematopoietic cytokine receptor superfamily, which are without intrinsic kinase activity (Heldin, 1995). SCF, in contrast, signals through a class III receptor tyrosine kinase (i.e. Kit). This class of kinases also includes the receptors for platelet-derived growth factor (PDGF), colony-stimulating factor (M-CSF), macrophage granulocyte-macrophage colony-stimulating factor (GM-CSF), and Flt-3 ligand, and it is related to class V receptor tyrosine kinases (Flt-1, Flt-1/KDR and Flt-4) for vascular endothelial growth factors (VEGFs) (Fantl et al., 1993; Heldin, 1995; Rousset et al., 1995). receptors in these classes have 'split' kinase domains intracellularly and multiple immunoglobulin(Ig)-like domains extracellularly.

DESCRIPTION OF STATE OF STATE

10

5

25

OSSISTANT, OSESISTA

10

25

30

The structures of PDGF (Oefner et al., 1992), M-CSF (Pandit et al., 1992), and VEGF (Muller et al., 1997), have all been determined by X-ray crystallography, as has the complex of VEGF with domain 2 of its receptor, Flt-1 (Wiesmann et al., 1997).

The ligands for the class III and class V receptors are all dimeric. As is the case for other ligands, SCF initiates signal transduction by dimerization of its receptor, Kit and the two juxtaposed receptors undergo tyrosine autophosphorylation (Heldin, 1995; Broudy, 1997), which initiates downstream intracellular signaling.

Here reported is the crystal structure of the core fragment of recombinant human stem cell factor, SCF¹⁻¹⁴¹, as determined at 2.2 Å resolution from multiwavelength anomalous diffraction (MAD) measurements. Incorporating data from mutagenesis and other structure-function studies, located were putative receptor-binding sites on the surface of the symmetric SCF dimer. From a comparison of these results with the structural and functional data for the related ligand-receptor systems, the complex of SCF with the receptor Kit is modeled and suggests a similar mode of association between other class III and class V receptors and their ligands.

Human SCF can be obtained and purified from a number of sources. SCF has been isolated from the rat and the mouse. Using the amino acid sequence of SCF protein isolated from the rat, the nucleic acid sequence encoding

10

the rat protein sequence was obtained from a rat cDNA library and then was cloned. The cloned nucleic acid encoding rat SCF was used to isolate, by hybridization, the nucleic acid molecule encoding human SCF from a human cDNA library. The development of recombinant DNA technology, see, for instance, U.S. Patent 4,810,643 (Souza) incorporated herein by reference, has enabled the production of commercial scale quantities of SCF in glycosylated form as a product of eukaryotic host cell expression, and of SCF in non-glycosylated form as a product of prokaryotic host cell expression.

SUMMARY OF THE INVENTION

The three dimensional structure of SCF has been determined herein to the atomic level. From this three-dimensional structure, one can now forecast with substantial certainty how changes in the composition of a SCF molecule may result in structural changes. These structural characteristics may be correlated with biological activity to design and produce SCF analogs.

This invention provides a computer based method for preparing a stem cell factor (SCF) analog comprising the steps of: (a) providing computer expression of the three dimensional structure of an SCF molecule using its crystal structure; (b) selecting from the computer expression of step (a) at least one site on the SCF molecule for alteration; (c) preparing an SCF molecule having an alteration at said at least one selected site; and (d) optionally, testing the SCF molecule for a desired characteristic.

This invention also provides an isolated SCF analog prepared according to the above-described computer based method for preparing a stem cell factor (SCF) analog comprising the steps of: (a) providing computer expression of the three dimensional structure of an SCF molecule using its crystal structure; (b) selecting from the computer expression of step (a) at least one site on the SCF molecule for alteration; (c) preparing a SCF molecule having an alteration at said at least one selected site; and (d) optionally, testing the SCF

5

10

25

10

25

30

molecule for a desired characteristic. In an embodiment the above-described SCF analog binds to SCF receptor, Kit. As used herein SCF receptor and "Kit" are used interchangeably to reflect the varied nomenclature used in the art.

This invention provides a composition comprising an isolated SCF analog prepared according to the above-described computer based method for preparing a stem cell factor (SCF) analog comprising the steps of: (a) providing computer expression of the three dimensional structure of an SCF molecule using its crystal structure; (b) selecting from the computer expression of step (a) at least one site on the SCF molecule for alteration; (c) preparing a SCF molecule having an alteration at said at least one selected site; and (d) optionally, testing the SCF molecule for a desired characteristic, effective to treat a subject and a pharmaceutically acceptable carrier.

This invention provides a method of treating a subject comprising administration of an isolated SCF analog prepared by the above-described computer based method for preparing a stem cell factor (SCF) analog comprising the steps of: (a) providing computer expression of the three dimensional structure of an SCF molecule using its crystal structure; (b) selecting from the computer expression of step (a) at least one site on the SCF molecule for alteration; (c) preparing a SCF molecule having an alteration at said at least one selected site; and (d) optionally, testing the SCF molecule for a

desired characteristic.

This invention provides a method for designing a compound (drug) capable of binding to the receptor of stem cell factor (SCF), Kit, comprising the steps of: a) determining a receptor binding site on the SCF based on the three dimensional structure of SCF or an SCF polypeptide capable of binding the receptor; and b) designing a compound comprising an entity that binds the SCF receptor. Accordingly, the designed compound is an SCF ligand analog, since a portion or part of the compound, "the entity", mimics the portion of SCF that binds to the SCF receptor, Kit. In step (a), and infra, the receptor binding site may be determined from atomic coordinates computed from X-ray diffraction data of a crystal comprising a polypeptide having an amino acid sequence portion of SCF capable of binding the receptor.

This invention provides a compound designed by the above-described method for designing a compound capable of binding to the receptor site of stem cell factor (SCF), Kit, comprising the steps of: a) determining a receptor binding site, on the SCF based on the atomic coordinates computed from X-ray diffraction data of a crystal comprising a polypeptide having an amino acid sequence portion of SCF capable of binding a ligand; and b) designing a compound comprising an entity that binds the SCF receptor. As used herein, the entity, i,.e. the portion, of the designed compound fits the ligand binding site on the SCF receptor.

10

5

25

This invention provides a method of treating a subject comprising administration of a compound designed by the above-described method for designing a compound capable of binding to the SCF receptor site.

This invention also provides a method of stimulating the production of hematopoietic calls in a subject comprising administering an isolated stem cell factor (SCF) analog or SCF ligand analogs to the subject.

This invention provides an isolated stem cell factor (SCF) molecule, which is an altered SCF, comprising any portion of amino acids 1-165 of a human SCF polypeptide, optionally comprising an N-terminal methionine before amino acid residue 1, wherein the polypeptide has an amino acid sequence portion of SCF capable of binding to the SCF receptor, Kit. Amino acid residue 1 of SCF is E, glutamic acid.

BRIEF DESCRIPTION OF THE FIGURES

Figures 1A-1C. Representative electron-density distributions in SCF. (Fig. 1A) MAD-phased experimental map calculated at 2.3 Å resolution. (Fig. 1B) The experimental map after four-fold averaging. (Fig. 1C) The current 2F_o-F_c map superimposed with the model refined at 2.2 Å resolution. Each map is contoured at 1.00. Figures were drawn by the program O (Jones et al., 1991).

Figures 2A-2B. Overall structure of an SCF dimer. (Fig. 2B) C $_{\alpha}$ 2A) Ribbon diagram. (Fig. 2B) C $_{\alpha}$ stereodiagram of the AB dimer. Figures were drawn using the program SETOR (Evans, 1993).

Structure-based sequence alignment of SCF Figure 3. with other short-chain helical cytokines of human species. The dots denote gaps. M-CSF, IL-4, GM-CSF, IL-2 and IL-5 were aligned with SCF structure through using TOSS structural superposition (Hendrickson, 1979) and O (Jones et al., 1991). C_{α} atoms were included if within 3.0 Å of their counterparts after at least three superposition and consecutive such residues are found in the fragment. The secondary structure

5

10

25

5

25

30

elements were assigned according to the output of the PROCHECK program (Laskowski et al., 1993) except the helix assignment for residues 35-38, which was identified by inspection of the hydrogen-bond pattern. Secondary structures are shown in vellow with filled boxes referring to α-helices, half-filled boxes to 310-helices and arrows to β -strands. The solvent accessibility of the SCF dimer indicated for each residue by an open circle if the fractional accessibility is >0.4, a half-filled circle if it is 0.1-0.4, and a filled circle if it is <0.1. Residues at the SCF dimer interface are identified by stars, and the N-linked glycosylation sites by red Vs above the Asn residues.

Figures 4A-4B. Comparison of SCF dimer (shades of green) and M-CSF dimer (shades of brown). (Fig. 4A) View as in Figure 2. (Fig. 4B) View perpendicular to Fig. 4A, along the diad axis of M-CSF. Symmetry axes are shown as lines in Fig. 4A and dots in Fig. 4B. When one subunit of SCF dimer is superimposed onto a subunit of the M-CSF dimer, the other subunits are translated by 3.8 Å with a rotation of 4.7° to each other. Figures were generated using the program GRASP (Nicholls et al., 1991).

10

TESUSOR CESTER

25

3.0

Sequence alignments of SCF from human, mouse, rat and dog. (Anderson et al., 1990; Huang et al., 1990; Martin et al. 1990; Shull et al., 1992) The residues that are conserved in human and dog but different from rat and mouse are shadowed in yellow. Five regions of divergent sequence are identified (Roman numerals) Dots denote gaps, and dashes indicate residues identical to the human residues.

Figures 6A-6C.

Figure 5.

Ligand (worm structures) - receptor (yellow structures) models. 6A) VEGF-Flt-1. (Fig. 6B) SCF-Kit. (Fig. 6C) PDGF-{DGF receptor. The used, without any modification, to approximate the receptor models. Receptor models are presented as yellow surfaces. The ligand models are presented as worm models. Background portions are colored light blue for one monomer and green for other: receptor-interacting identified from siteresidues directed mutagenesis experiments [VEGF (Muller et al., 1997), PDGF (Fenstermaker et al., 1993)] and other experimental data (SCF; see infra) arecolored magenta. Figures were drawn by the program GRASP (Nicholls et al., 1991).

5

No. 1 to the second sec

25

- Figures 7A-7C. Electrostatic and carbohydrate surfaces of SCF and homology-modeled receptor Kit. (Fig. 7A) Electrostatic surface of SCF and worm of D2D3(Kit). (Fig. 7B) Electrostatic surface of Kit and worm of SCF. (Fig. 8C) Negative potential is colored red and positive potential, blue, with greatest saturations at -10 and +10kT, respectively. Carbohydrate moieties are by CPK represented models β-p-N-acetylglucose (green for SCF moieties and yellow for potential Kit moieties. Figures were drawn by the program GRASP (Nicholls et al., 1991).
- X-ray crystallographic coordinates of Figure 8. truncated stem cell factor molecule comprising amino acids 1-141 of a human SCF polypeptide.
- Suggested renaming of the waters of the X-Figure 9. ray crystallographic coordinates set forth in Figure 8.
- Design for a double-headed SCF ligand Figure 10. analog. (10A) General model (10B) Embodiment of the ligand head as an The compound is oligopeptide. conjugation of a linker molecule with two ligand-head molecules. Each ligand head

10

25

3.0

is composed of up to three functional moieties, F1, F2 and F3, which serve to mimic receptor-binding sites on the surface of SCF. Each ligand head also contains a conjugation moiety, Ft, endowed with chemical reactivity for conjugation with a reactive group at the end of the linker molecule. The capping moiety, Fc, at each end of the linker molecule is endowed with chemical reactivity for conjugation with the conjugation moiety from the ligand head. Double-headed molecules of this structure can have the property of binding to the SCF receptor, Kit, in such a way as to dimerize the receptor molecules and thereby lead to Kit activation in a manner analogous to the natural activity of SCF.

Ligand heads can be designed in at least four ways. (1) Ligand heads can be synthesized as oligopeptides wherein the functional moieties (F_1, F_2, F_3) are sequence elements from the SCF polypeptide; (2) The functional moieties (F_1, F_2, F_3) on such a ligand head can be selected by bacteriophage display for optimal receptor binding; (3) Chemical mimetics of the functional moieties and connecting segments in active an oligopeptide can be substituted for the respective moieties and segments; or (4)

10

25

3.0

An appropriate chemical framework (scaffold) of connecting segments can be designed to present functional moieties $(F_1,\ F_2,\ F_3)$ which can be selected by combinatorial chemistry for optimal receptor binding from a library of chemical moieties complementary to receptor-binding sites on the surface of SCF.

When an oligopeptide embodiment of a linker head is designed in accord with option (1) it can have a sequence wherein F_1 corresponds to a segment from within the N-terminal region of SCF, residues 1-10; F_2 corresponds to a segment from within residues 79-95 (mainly located on the αC helix); F_3 is a segment from the C-terminal end of αD , near residue 127; F_L is a cysteine residue; and X_n , X_m , and X_p are connecting-peptide segments, composed from appropriate linker residues such as alanine, glycine, serine or proline, and wherein n=0-5, m=0-5 and p=3-8 residues, respectively.

Linkers can be designed from an organic polymer such as polyethylene glycol $H\left[OCH_2CH_2\right]_nOH$, where n=10-20 may suffice to separate the heads appropriately, wherein a reactive capping moiety, F_c , is appended at each end. The capping moiety may be a thiol reactive group, such as N-ethyl

maleimide, designed to bond covalently to the conjugation moiety, F_L , on the ligand head, wherein F_L may be cysteine residue or another thiol-containing group.

DETAILED DESCRIPTION OF THE INVENTION

The present determination of the three-dimensional structure to the atomic level is the most complete analysis to date, and provides important information to those wishing to design and prepare SCF analogs. For example, from the present three dimensional structural analysis, precise areas of hydrophobicity and hydrophilicity have been determined.

Relative hydrophobicity is important because it directly relates to the stability of the molecule. Generally, biological molecules, found in aqueous environments, are externally hydrophilic and internally hydrophobic; in accordance with the second law of thermodynamics provides, this is the lowest energy state and provides for stability. Although one could have speculated that SCF's internal core would be hydrophobic, and the outer areas would be hydrophilic, one would have had no way of knowing specific hydrophobic or hydrophilic areas. With presently provided knowledge of areas the with hydrophobicity/-philicity, one may forecast substantial certainty which changes to the SCF molecule will affect the overall structure of the molecule.

25

3.0

5

10

100

As a general rule, one may use knowledge of the geography of the hydrophobic and hydrophilic regions to design analogs in which the overall SCF structure is not changed, but change does affect biological activity ("biological activity" being used here in its broadest sense to denote function). One may correlate biological

activity to structure. If the structure is not changed, and the mutation has no effect on biological activity, then the mutation has no biological function. If, however, the structure is not changed and the mutation does affect biological activity, then the residue (or atom) is essential to at least one biological function. Some of the present working examples were designed to provide no change in overall structure, yet have a change in biological function.

Based on the correlation of structure to biological activity, one aspect of the present invention relates to SCF analogs. These analogs are molecules which have more, fewer, different or modified amino acid residues from the SCF amino acid sequence. The modifications may be by addition, substitution, or deletion of one or more amino acid residues. The modification may include the addition or substitution of analogs of the amino acids themselves, such as peptidomimetics or amino acids with altered moieties such as altered side groups. The SCF used as a basis for comparison may be of human, animal or recombinant nucleic acid-technology origin (although the working examples disclosed herein are based on the recombinant production of the 141 amino acid species of human SCF, optionally having an extra N-terminal methionine residue). The analogs may possess functions different from natural human SCF molecule, or may exhibit the same functions, or varying degrees of the same functions. For example, the analogs may be designed to

have a higher or lower biological activity, have a longer

shelf-life or a decrease in stability, be easier to

CTELTET CONTROL

5

10

25

formulate, or more difficult to combine with other ingredients. The analogs may bind receptor but elicit no biological activity and may therefore be useful as an antagonist against SCF effect (as, for example, in the overproduction of SCF). From time to time herein the present analogs are referred to as proteins or peptides for convenience, but contemplated herein are other types of molecules, such as peptidomimetics or chemically modified peptides.

In embodiment, the present invention relates to related compositions containing a SCF analog as an active ingredient. The term, "related composition," as used herein, is meant to denote a composition which may be obtained once the identity of the SCF analog is ascertained (such as a SCF analog labeled with a detectable label or pharmaceutical composition). Also considered a related composition are chemically modified versions of the SCF analog, such as those having attached at least one polyethylene glycol molecule.

For example, one may prepare a SCF analog to which a detectable label is attached, such as a fluorescent, chemiluminescent or radioactive molecule.

Another example is a pharmaceutical composition which may be formulated by known techniques using known materials, see, e.g., Remington's Pharmaceutical Sciences, 18th Ed. (1990, Mack Publishing Co., Easton, Pennsylvania 18042) pages 1435-1712, which are herein incorporated by reference. Generally, the formulation will depend on a

25

5

10

Distribution of the contract o

25

3.0

1.0

5

variety of factors such as administration, stability, production concerns and other factors. The SCF analog may administered bv injection or by pulmonary administration via inhalation. Enteric dosage forms may also be available for the present SCF analog compositions, and therefore oral administration may be effective. SCF analogs may be inserted into liposomes or other microcarriers for delivery, and may be formulated in gels or other compositions for sustained release. Although preferred compositions will vary depending on the use to which the composition will be put, generally, for SCF analogs having at least one of the biological activities of natural SCF, preferred pharmaceutical compositions are those prepared for subcutaneous injection or for pulmonary administration via inhalation, although the particular formulations for each type of administration will depend on the characteristics of the analog.

Another example of related composition is a receptor for the present analog. As used herein, the term "receptor" indicates a moiety which selectively binds to the present analog molecule. For example, antibodies, or fragments thereof, or "recombinant antibodies" (see Huse et al., Science 246:1275 (1989)) may be used as receptors. Selective binding does not mean only specific binding (although binding-specific receptors are encompassed herein), but rather that the binding is not a random event. Receptors may be on the cell surface or intra- or extra-cellular, and may act to effectuate, inhibit or localize the biological activity of the present analogs.

10

25

30

Receptor binding may also be a triggering mechanism for a cascade of activity indirectly related to the analog itself. Also contemplated herein are nucleic acids, vectors containing such nucleic acids and host cells containing such nucleic acids which encode such SCF analogs.

Another example of a related composition is a SCF analog with a chemical moiety attached. Generally, chemical modification may alter biological activity antigenicity of a protein, or may alter other characteristics, and these factors will be taken into account by a skilled practitioner. As noted above, one example of such chemical moiety is polyethylene glycol. Modification may include the addition of one or more hydrophilic or hydrophobic polymer molecules, fatty acid molecules, or polysaccharide molecules. Examples of modifiers include polyethylene alvcol, chemical DI-poly(amino acids), alklpolvethvlene glycols, polyvinylpyrrolidone, polyvinyl alcohol, pyran copolymer, acetic acid/acylation, proprionic acid, palmitic acid, lecithin, stearic acid, dextran, carboxymethyl cellulose, pullulan, or agarose. See, Francis, Focus on Growth Factors 3: 4-10 (May 1992) (published by Mediscript, Mountview Court, Friern Barnet Lane, London N20 OLD, UK). Also, chemical modification may include an additional protein or portion thereof, use of a cytotoxic agent, or an antibody.

In another embodiment, the present invention relates to nucleic acids encoding such analogs. The nucleic acids

may be DNAs or RNAs or derivatives thereof, and will typically be cloned and expressed on a vector, such as a phage or plasmid containing appropriate regulatory sequences. The nucleic acids may be labeled (such as using a radioactive, chemiluminescent, or fluorescent label) for diagnostic or prognostic purposes, for example. The nucleic acid sequence may be optimized for expression, such as including codons preferred for bacterial expression. The nucleic acid and its complementary strand, and modifications thereof which do not prevent encoding of the desired analog are here contemplated.

1.0

TERUSORY DELACTO

25

3.0

In another embodiment, the present invention relates to host cells containing the above nucleic acids encoding the present analogs. Host cells may be eukaryotic or prokaryotic, and expression systems may include extra steps relating to the attachment (or prevention) of sugar groups (glycosylation), proper folding of the molecule, the addition or deletion of leader sequences or other factors incident to recombinant expression.

In further embodiment the present invention relates to antisense nucleic acids which act to prevent or modify the type or amount of expression of such nucleic acid sequences. These may be prepared by known methods.

In another embodiment of the present invention, the nucleic acids encoding a present analog may be used for gene therapy purposes, for example, by placing a vector containing the analog-encoding sequence into a recipient

so the nucleic acid itself is expressed inside the recipient who is in need of the analog composition. The vector may first be placed in a carrier, such as a cell, and then the carrier placed into the recipient. expression may be localized or systemic. Other carriers include non-naturally occurring carriers, liposomes or other microcarriers or particles, which may act to mediate gene transfer into a recipient.

5

10

25

obtained from crystallographic analysis of said SCF 30 molecule, into such programs to generate a computer

The present invention also provides for computer programs for the expression (such as visual display) of the SCF or analog three dimensional structure, and further, a computer program which expresses the identity of each constituent of an SCF molecule and the precise location within the overall structure of that constituent, down to the atomic level. Set forth below is one example of such program. There are many currently available computer programs for the expression of the three dimensional structure of a molecule. Generally, these programs provide for inputting of the coordinates for the three dimensional structure of a molecule (i.e., for example, a numerical assignment for each atom of an SCF molecule along an x, y, and z axis), means to express (such as visually display) such coordinates, means to alter such coordinates and means to express an image of a molecule having such altered coordinates. One may program crystallographic information, i.e., the coordinates of the location of the atoms of an SCF molecule in three dimensional space, wherein such coordinates have been

5

10

25

30

program for the expression (such as visual display) of the SCF three dimensional structure. Also provided, therefore, is a computer program for the expression of SCF analog three dimensional structure. Preferred is the computer program Insight II, version 4, available from Biosym, San Diego, California, with the coordinates as set forth in Figure 8 input. Preferred expression means is on a Silicon Graphics 320 VGX computer, with Crystal Eyes glasses (also available from Silicon Graphics), which allows one to view the SCF molecule or its analog stereoscopically. The above-listed computer programs are only examples, and the use of such programs in the claimed methods is not limited thereto, as one of skill may use any other computer program that provides the desired three dimensional expression. Alternatively, the present SCF crystallographic coordinates and diffraction data are also deposited in the Protein Data Bank, Chemistry Department, Rutgers University, New Jersey, USA [formerly at Brookhaven National Laboratory, Upton, NY 11972]. One may use these data in preparing a different computer program for expression of the three dimensional a SCF molecule or analog thereof. Therefore, another aspect of the present invention is a computer program for the expression of the three dimensional structure of a SCF molecule. Also provided is said computer program for visual display of the three dimensional structure of an SCF molecule; and further, said program having means for altering such visual Apparatus useful for expression of such display. computer program, particularly for the visual display of the computer image of said three dimensional structure of an SCF molecule or analog thereof is also therefore here provided, as well as means for preparing said computer program and apparatus.

The computer program is useful for preparation of SCF analogs because one may select specific sites on the SCF molecule for alteration and readily ascertain the effect the alteration will have on the overall structure of the SCF molecule. Selection of said site for alteration will depend on the desired biological characteristic of the SCF analog. If one were to randomly change said SCF molecule there would be substitutions, additions or deletions, and even more analogs having multiple changes. By viewing the three dimensional structure wherein said structure is correlated with the composition of the molecule, the selection for sites for alteration may be determined rationally.

Identity of the three dimensional structure of SCF, including the placement of each constituent down to the atomic level has now yielded information regarding which moieties are necessary to maintain the overall structure of the SCF molecule. One may therefore select whether to maintain the overall structure of the SCF molecule when preparing an SCF analog of the present invention, or whether (and how) to change the overall structure of the SCF molecule when preparing a SCF analog of the present invention. Optionally, once one has prepared such analog, one may test such analog for a desired characteristic.

10

5

25

30

One may, for example, seek to maintain the overall non-altered natural structure possessed by a recombinant SCF molecule. The overall structure is presented in Figures 2A-2B, and is described in more detail below. Maintenance of the overall structure may ensure receptor binding, a necessary characteristic for an analog possessing the biologic capabilities of natural SCF (if no receptor binding, signal transduction does not result from the presence of the analog). contemplated that one class of SCF analogs will possess the three dimensional core structure of a natural or recombinant (non-altered) SCF molecule, yet possess different characteristics, such as an increased ability to selectively stimulate neutrophils. Another class of SCF analogs are those with a different overall structure which diminishes the ability of an SCF analog molecule to bind to a SCF receptor, Kit, and possesses a diminished ability to selectively stimulate hematopoiesis, for non-altered natural example, as compared to recombinant SCF.

For example, it is now known which moieties within the internal regions of the SCF molecule are hydrophobic, and, correspondingly, which moieties on the external portion of the SCF molecule are hydrophilic. Without knowledge of the overall three dimensional structure, preferably to the atomic level as provided herein, one could not forecast which alterations within this hydrophobic internal area would result in a change in the overall structural conformation of the molecule. An

overall structural change could result in a functional change, such as lack of receptor binding, for example, and therefore, diminishment of biological activity as found in non-altered SCF. Another class of SCF analogs is therefore SCF analogs which possess the hydrophobicity as (non-altered) natural or recombinant SCF. More particularly, another class of SCF analogs possesses the same hydrophobic moieties within the four helical bundle of its internal core as those hydrophobic possessed by (non-altered) natural moieties recombinant SCF yet have a composition different from said non-altered natural or recombinant SCF.

Another example relates to external loops which are structures which connect the internal core (helices) of the SCF molecule. From the three dimensional structure -- including information regarding the spatial location of the amino acid residues -- one may forecast that certain changes in certain loops will not result in overall conformational changes.

Therefore, another class of SCF analogs provided herein is that having an altered external loop but possessing the same overall structure as (non-altered) natural or recombinant SCF. More particularly, another class of SCF analogs provided herein are those having an altered external loop, said loop being selected from the loops discussed infra. More particularly, said loops, are altered to increase the half life of the molecule by stabilizing said loops. Such stabilization may be by connecting all or a portion of said loop(s) to a portion

10

5

25

of an alpha helical bundle found in the core of a SCF (or analog) molecule. Such connection may be via beta sheet, salt bridge, disulfide bonds, hydrophobic interaction or other connecting means available to those skilled in the art, wherein such connecting means serves to stabilize said external loop or loops.

Additionally, such external loops may be the site(s) for

chemical modification because in (non-altered) natural or recombinant SCF such loops are relatively flexible and tend not to interfere with receptor binding. Thus, there would be additional room for a chemical moiety to be directly attached (or indirectly attached via another chemical moiety which serves as a chemical connecting The chemical moiety may be selected from a variety of moieties available for modification of one or more function of an SCF molecule. For example, external loop may provide sites for the addition of one or more polymer which serves to increase serum half-life, a polyethylene glycol molecule. polyethylene glycol molecule(s) may be added wherein said loop is altered to include additional lysines which have reactive side groups to which polyethylene glycol moieties are capable of attaching. Other classes of chemical moieties may also be attached to one or more external loops, including but not limited to other biologically active molecules, such as receptors, other therapeutic proteins (such as other hematopoietic factors which would engender a hybrid molecule), or cytotoxic

agents (such as diphtheria toxin). This list is of

course not complete; one skilled in the art possessed of

5

10

25

the desired chemical moiety will have the means to effect attachment of said desired moiety to the desired external loop. Therefore, another class of the present SCF analogs includes those with at least one alteration in an external loop wherein said alteration provides for the addition of a chemical moiety such as at least one polyethylene glycol molecule.

Deletions, such as deletions of sites recognized by proteins for degradation of the molecule, may also be effectual in the external loops. This provides alternative means for increasing half-life of a molecule otherwise having the SCF receptor binding and signal transduction capabilities (e.g., the ability to selectively stimulate hematopoiesis). Therefore, another class of the present SCF analogs includes those with at least one alteration in an external loop wherein said alteration decreases the turnover of said analog by proteases. One may prepare an abbreviated SCF molecule by deleting a portion of the amino acid residues found in any of the the external loops (discussed infra), said abbreviated SCF molecule may have additional advantages in preparation or in biological function.

Another example relates to the relative charges between amino acid residues which are in proximity to each other. As noted above, the SCF molecule contains a relatively tightly packed four helical bundle. Some of the faces on the helices face other helices. At the point (such as a residue) where a helix faces another helix, the two amino acid moieties which face each other may have the same

5

10

25

charge, and thus tend to repel each other, which lends instability to the overall molecule. This may be eliminated by changing the charge (to an opposite charge or a neutral charge) of one or both of the amino acid moieties so that there is no repelling. Therefore, another class of SCF analogs includes those SCF analogs having been altered to modify instability due to surface interactions, such as electron charge location.

The present invention provides methods for designing SCF analogs and related compositions and the products of those methods. The end products of the methods may be the SCF analogs as defined above or related compositions. For instance, the examples disclosed herein demonstrate (a) the effects of changes in the constituents (i.e., chemical moieties) of the SCF molecule on the SCF structure and (b) the effects of changes in structure on biological function.

Accordingly, therefore, the present invention provides a computer based method for preparing a stem cell factor (SCF) analog comprising the steps of: (a) providing computer expression of the three dimensional structure of of an SCF molecule using its crystal structure; (b) selecting from the computer expression of step (a) at least one site on the SCF molecule for alteration; (c) preparing an SCF molecule having an alteration at said one said selected site; and (d) optionally, testing the SCF molecule for a desired characteristic. The SCF molecule of step (a) may be naturally occurring wild type SCF or any portion or fragment thereof which is capable

CHUCANA CHENTRO

5

10

25

of binding to SCF receptor.

5

10

1956915 16790120

25

30

In an embodiment of the above-described method the computer expression allows for display of the amino acids of the SCF molecule. In another embodiment of the method the computer expression allows for display of each atom of the SCF molecule. In a further embodiment of the method the SCF molecule is a native or a selenomethionyl SCF. In another embodiment of the method the site on the SCF molecule for alteration is a receptor binding site on the surface of the SCF molecule. In a further embodiment of the method the receptor binding site comprises amino acid residues 79-85. The SCF molecule may be a recombinant human SCF or a wild type naturally occurring human SCF. SCF wild type and recombinant may also be of other sources such as but not limited to rat or mouse. In an embodiment of the above-described method, the atomic coordinates of the crystal structure are set forth in Figure 8. In another embodiment the SCF analog comprises a polypeptide having an amino acid sequence portion of SCF capable of binding a receptor and having the overall three-dimensional conformation as shown in Figures 2A-2B, wherein the three-dimensional conformation is: a) antiparallel, double-cross over 4-alpha helical bundle with left hand twist; and b) overall dimensions of approximately 85 Å x 30 Å x 20 Å. In an embodiment the SCF analog comprises electron density distributions as set forth in Figures 1A, 1B, and 1C. In a further embodiment the SCF molecule is a native SCF or a selenomethionyl SCF.

In an embodiment the site on the SCF molecule for

10

25

30

alteration is a receptor binding site on the surface of the SCF molecule or a non-receptor site of the SCF.

Alteration of a non-receptor binding site will result in a designed SCF analog that binds to the SCF receptor but is less active such that such an analog may be used for blocking activity of the SCF.

In another embodiment the receptor binding site comprises approximately amino acid residues 79-95.

This invention provides an isolated SCF analog prepared according to the above-described method. In an embodiment the isolated SCF analog which binds to SCF receptor, Kit. In another embodiment the isolated SCF analog has an alteration in at least one atom of the atomic coordinates of the crystal structure set forth in Figure 8. In a further embodiment the SCF analog comprises a polypeptide having an amino acid sequence portion of SCF capable of binding a receptor and having the overall threedimensional conformation as shown in Figures 2A-2B, wherein the three-dimensional conformation is: a) antiparallel, double-cross over 4-alpha helical bundle with a left hand twist; and b) overall dimensions of approximately 85 Å x 30 Å x 20 Å. In an embodiment the SCF analog comprises electron density distributions altered from those set forth in Figures 1A, 1B, and 1C.

This invention provides a composition comprising an isolated SCF analog prepared according to the above-described method effective to treat a subject and a

5

25

30

This invention provides a method of treating a subject having a disorder requiring SCF comprising administration

pharmaceutically acceptable carrier. In an embodiment of composition, the isolated SCF analog has alteration in at least one atom of the atomic coordinates of the crystal structure set forth in Figure 8. In another embodiment the isolated SCF analog comprises a polypeptide having an amino acid sequence portion of SCF capable of binding a receptor and having the overall three-dimensional conformation as shown in Figures 2A-2B, or an alteration thereof, wherein the three-dimensional conformation is: a) anti-parallel, double-cross over 4alpha helical bundle with a left hand twist; and b) overall dimensions of approximately 85 Å x 30 Å x 20 Å. In a further embodiment the isolated SCF analog comprises electron density distributions as set forth in Figures 1A, 1B, and 1C. In an embodiment the isolated SCF analog comprises a native SCF1-165, a recombinant selenomethionyl SCF1-141, or a recombinant selenomethionyl SCF1-165

Any of the aforementioned SCF analogs may optionally have before the first N-terminal amino acid residue a methionine at position"-1".

In an embodiment of the composition the site on the isolated SCF molecule for alteration is a receptor binding site on the surface of the SCF molecule. In a further embodiment the receptor binding site comprises approximately amino acid residues 79-95.

5

25

30

of a composition comprising an isolated SCF analog prepared by the method of preparing a SCF analog or a compound designed by the method of designing a compound capable of binding to the SCF receptor as described infra. In an embodiment the subject has a blood disorder. In another embodiment the disorder which the subject has is anemia, myeloproliferative disorder, neoplasia, nerve damage, infertility, intestinal damage, a pigmentation disorder, or immunodeficiency. In an embodiment the administration of the isolated SCF analog is for ex vivo or in vivro production of peripheral blood progenitors, ex vivo or in vivro stem cell expansion, ex vivo or in vitro growth of epithelial cells, ex vivo or in vitro growth of stromal cells, ex vivo or in vitro dendritic cell stimulation, and in vivo cell mobilization. In an embodiment the isolated SCF analog is administered orally or by any other routes described infra. In an embodiment the isolated SCF analog has an alteration in at least one atom of the atomic coordinates of the crystal structure set forth in Figure 8. In a further embodiment the isolated SCF analog comprises a native SCF1-165 or a another recombinant selenomethionyl SCF1-141. In embodiment the site on the isolated SCF molecule for alteration is a receptor binding site on the surface of the SCF molecule. In a further embodiment the receptor binding site comprises approximately amino acid residues In an embodiment the isolated SCF comprises a native or recombinant SCF1-165 recombinant selenomethionyl SCF1-141. As used herein throughout SCF receptor is Kit.

10 0950905 05000020

5

25

30

This invention provides a method for designing a compound capable of binding to the stem cell factor (SCF) receptor site of comprising the steps of: a) determining a binding site for the SCF receptor on the SCF based on the three-dimensional structure of SCF or an SCF polypeptide or portion/fragment thereof, atomic coordinates computed from X-ray diffraction data of a crystal comprising a polypeptide having an amino acid sequence portion of SCF capable of binding the receptor; and b) designing a compound comprising an entity that binds the SCF receptor. The designed compound mimics, i.e. is a copy or simulation of the overall portion of SCF that binds to SCF receptor, Kit.

In an embodiment the design of the compound of step (b) is determined by shape complementarity or by estimated interaction energy. In another embodiment the designed compound fits an SCF receptor binding site on SCF receptor as shown in Figure 6. In a further embodiment the designed compound fits an SCF receptor binding site on SCF receptor as shown in Figures 7A or 7B. In an embodiment the designed compound has an alteration in at least one atom of the atomic coordinates of the crystal structure set forth in Figure 8. In yet another embodiment the designed compound is a double-headed SCF ligand analog having the structure set forth in Figure 10A. In a still further embodiment each ligand head of the double-headed SCF ligand analog is an oligopeptide having the structure set forth in Figure 10B. The designed compound comprises two conjugated ligands having a linker between the two ligands.

5

And the course that the course of the course

C20

25

30

In an embodiment, the ooligopeptide comprises a sequence, wherein functional moiety F_1 corresponds to a segment of amino acid residues from within N-terminal residues 1-10 of SCF, functional moiety F_2 corresponds to a segment of amino acid residues from within residues 79-95 of SCF, and functional moiety F_3 corresponds to a segment of amino acid residues located within three amino acid residues of amino acid residue 127, wherein F_1 , F_2 , and F_3 are connected by connecting peptide segments X_n , X_n , and X_p , respectively, wherein n=0-5, m=0-5 and p=3-8 amino acid residues, respectively, and the conjugation moiety F_L is a cysteine residue.

A functional moiety is defined as en entity that has a particular binding property, i.e. it mimics receptorbinding sites on the surface of SCF, i.e. the ligand portion of SCF.

The amino acid residues located within 3 amino acid residues of amino acid residue 127 may be located within 3 residues in either direction of residue 127. In further embodiments the amino acid residues may be from 4 to 10 amino acid residues in either direction of amino acid residue 127.

In another embodiment of the above-described method the functional moieties F_1 , F_2 , and F_3 on the ligand heads have been selected by bacterial phage display for optimal receptor binding. In an embodiment the functional moieties and connecting peptide segments of an active oligopeptide ligand head are replaced by chemical

5

mimetics. In another embodiment an appropriate chemical scaffold of connecting segments has been designed to comprise (present) functional moieties F1, F2, and F3 which have been selected by combinatorial chemistry for optimal receptor binding from a library of chemical moieties complementary to receptor-binding sites on the surface of SCF. In an embodiment the linker comprises an organic polymer having two ends capped at each end by a reactive capping moiety, F., which react covalently with the conjugation moiety, F., on the ligand head. In an embodiment the organic polymer is polyethyleneglycol (PEG) comprising the structure H[OCH2CH2],OH, wherein n is 10-20. In an embodiment the capping moiety, Fc, is a thiol-reactive group such as N-ethyl maleimide. In an embodiment the conjugating moiety, FL, is a thiol containing group such as cysteine.

This invention provides a compound designed by the method of claim 32.

A composition comprising the compound designed by the above described method and a pharmaceutically acceptable carrier. In an embodiment the compound comprises an isolated SCF analog, whose alteration site is a receptor-binding site on the surface of the altered SCF molecule. In another embodiment the composition comprises a double-headed receptor SCF ligand analog having the structure set forth in Figure 10A. In an embodiment each ligand head of the double-headed SCF ligand analog is an oligopeptide having the structure set forth in Figure 10B.

30

10

25

30

In another embodiment the ooligopeptide comprises a sequence, wherein functional moiety F1 corresponds to a segment of amino acid residues from within N-terminal residues 1-10 of SCF, functional moiety F2 corresponds to a segment of amino acid residues from within residues 79-95 of SCF, and functional moiety F_3 corresponds to a segment of amino acid residues located within three amino acid residues of amino acid residue 127, wherein $F_{\text{1}},\ F_{\text{2}},$ and \textbf{F}_{3} are connected by connecting peptide segements $\textbf{X}_{n},$ X_m , and X_p , respectively, wherein n=0-5, m=0-5 and p=3-8 amino acid residues, respectively, and the conjugation moiety F_L is a cysteine residue. In a further embodiment the functional moieties F_1 , F_2 , and F_3 on the ligand heads have been selected by bacterial phage display for optimal receptor binding. In an embodiment the moieties and connecting peptide segments of an active oligopeptide ligand head are replaced by chemical mimetics. In another embodiment an appropriate chemical scaffold of connecting segments has been designed to comprise (present) functional moieties F_1 , F_2 , and F_3 , which have been selected by combinatorial chemistry for optimal receptor binding from a library of chemical moieties complementary to receptor-binding sites on the surface of SCF. In another embodiment the linker comprises an organic polymer having two ends capped at each end by a reactive capping moiety, $F_{\rm c}$, which react covalently with the conjugation moiety, $\textbf{F}_{\text{L}},$ on the ligand In a further embodiment the organic polymer is head. polyethyleneglycol (PEG) comprising the structure $H[OCH_2CH_2]_nOH$, wherein n is 10-20. In another embodiment the capping moiety, F_c , is a thiol-reactive group such as N-ethyl maleimide. In an embodiment the conjugating moiety, $F_{\rm L}$, is a thiol containing group such as cysteine.

5

10

TOTAL STRUCT

25

30

This invention provides a method of treating a subject comprising administration of a compound designed by the above described method. In an embodiment the subject has a blood disorder. In a further embodiment the blood disorder is anemia or immunodeficiency. In an embodiment the compound is administered orally or any other routes. In an embodiment the compound is an isolated SCF analog. In another embodiment the compound comprises an isolated SCF analog, whose alteration site is a receptor binding site on the surface of the altered SCF molecule. In another embodiment of the method the composition comprises a double-headed receptor SCF ligand analog having the structure set forth in Figure 10A. In an embodiment each ligand head of the double-headed SCF ligand analog is an oligopeptide having the structure set forth in Figure 10B. In another embodiment ooligopeptide comprises a sequence, wherein functional moiety F_1 corresponds to a segment of amino acid residues from within N-terminal residues 1-10 of SCF, functional moiety F_2 corresponds to a segment of amino acid residues from within residues 79-95 of SCF, and functional moiety F, corresponds to a segment of amino acid residues located within three amino acid residues of amino acid residue 127, wherein F_1 , F_2 , and F_3 are connected by connecting peptide segements X_n , X_m , and X_n , respectively, wherein n=0-5, m=0-5 and p=3-8 amino acid residues, respectively, and the conjugation moiety $F_{\scriptscriptstyle L}$ is a cysteine residue. In a further embodiment the functional moieties $F_{1},\ F_{2},\ \text{and}\ F_{3}$

5

25

30

on the ligand heads have been selected by bacterial phage display for optimal receptor binding. In an embodiment the functional moieties and connecting peptide segments of an active oligopeptide ligand head are replaced by chemical mimetics. In another embodiment an appropriate chemical scaffold of connecting segments has been designed to comprise (present) functional moieties F_1 , F_2 , and F_3 , which have been selected by combinatorial chemistry for optimal receptor binding from a library of chemical moieties complementary to receptor-binding sites on the surface of SCF. In another embodiment the linker comprises an organic polymer having two ends capped at each end by a reactive capping moiety, $F_{\rm c}$, which react covalently with the conjugation moiety, $F_{\scriptscriptstyle L}$, on the ligand In a further embodiment the organic polymer is polyethyleneglycol (PEG) comprising the $H[OCH_2CH_2]_nOH$, wherein n is 10-20. In another embodiment the capping moiety, Fc, is a thiol-reactive group such as N-ethyl maleimide. In an embodiment the conjugating moiety, F_L , is a thiol containing group such as cysteine.

This invention provides a method of stimulating the production of hematopoietic cells in a subject comprising administering an isolated stem cell factor (SCF) analog. In an embodiment isolated stem cell factor (SCF) analog is prepared by the method of claim 1 or designed by the above described method. In another embodiment the administration is oral or any other route. In an embodiment the isolated SCF analog has an alteration in at least one atom of the atomic coordinates of the crystal structure as set forth in Figure 8. In another

10

25

embodiment the isolated SCF analog comprises amino acid residues of native or recombinant SCF1-165 or amino acid residues of a recombinant selenomethionyl SCF1-141. In an embodiment of this method the isolated SCF analog, comprises an isolated altered SCF molecule, whose alteration site is a receptor binding site on the surface of the altered SCF molecule. In another embodiment of the above-described the compound comprises an isolated SCF analog, whose alteration site is a receptor-binding site on the surface of the altered SCF molecule. In another embodiment of said method the composition comprises a double-headed receptor SCF ligand analog having the structure set forth in Figure 10A. In an embodiment each ligand head of the double-headed SCF ligand analog is an oligopeptide having the structure set forth in Figure 10B. In another embodiment the coligopeptide comprises a sequence, wherein functional moiety $F_{\scriptscriptstyle 1}$ corresponds to a segment of amino acid residues from within N-terminal residues 1-10 of SCF, functional moiety F_2 corresponds to a segment of amino acid residues from within residues 79-95 of SCF, and functional moiety F3 corresponds to a segment of amino acid residues located within three amino acid residues of amino acid residue 127, wherein F_{ν} , ${\tt F_2},$ and ${\tt F_3}$ are connected by connecting peptide segements ${\tt X_n},$ $X_{m},\ \mbox{and}\ X_{p},\ \mbox{respectively,}\ \mbox{wherein}\ \mbox{n=0-5,}\ \mbox{m=0-5}\ \mbox{and}\ \mbox{p=3-8}$ amino acid residues, respectively, and the conjugation moiety $F_{\scriptscriptstyle L}$ is a cysteine residue. In a further embodiment the functional moieties F_1 , F_2 , and F_3 on the ligand heads have been selected by bacterial phage display for optimal receptor binding. In an embodiment the functional moieties ligand head are replaced by chemical mimetics. In another embodiment an appropriate chemical scaffold of connecting

(present)

segments has been designed to comprise

functional moieties F_1 , F_2 , and F, which have been 5 selected by combinatorial chemistry for optimal receptor binding from a library of chemical moieties complementary to receptor-binding sites on the surface of SCF. In another embodiment the linker comprises an organic polymer having two ends capped at each end by a reactive 10 capping moiety, $F_{\rm c}$, which react covalently with the conjugation moiety, F., on the ligand head. In a further embodiment the organic polymer is polyethyleneglycol (PEG) comprising the structure H[OCH2CH2]nOH, wherein n is 10-20. In another embodiment the capping moiety, Fc, is a thiol-reactive group such as N-ethyl maleimide. In an embodiment the conjugating moiety, FL, is a thiol containing group such as cysteine.

25

30

This invention provides an isolated stem cell factor (SCF) molecule, which is an altered SCF, comprising any portion of amino acids 1-165 of a human SCF polypeptide, optionally comprising an N-terminal methionine before amino acid residue 1, wherein the polypeptide has an amino acid sequence portion of SCF capable of binding to the SCF receptor. In an embodiment of the altered isolated stem cell factor molecule an alteration is selected from the group consisting of deletion, insertion and substitution of at least one amino acid residue from the naturally occurring amino acid sequence of SCF.

In a further embodiment an alteration is a truncated SCF comprising amino acids 1-141 of a human SCF polypeptide, optionally comprising an N-terminal methionine before amino acid residue 1, E. In another embodiment the threedimensional structure is altered from the coordinates are set forth in Figure 8. In yet another embodiment the electron density distribution map is altered from the atomic coordinates are set forth in Figures 1A, 1B, or 1C. In a still further embodiment the substitution of at least one amino acid residue is selected from the group consisting of disulfide-linked dimer, SCF(D25C), SCF(K62C), SCF(K78N, N81K), SCF(R117A, I118A), SCF(E92A, S95A), and SCF(D124A, K127D). In another embodiment the overall dimensional conformation of the stem cell factor molecule has an altered three-dimensional structure of the $\alpha C \text{-}\beta 2$ loop.

5

10

25

30

This invention provides a pharmaceutical composition comprising the above described altered isolated SCF molecule and a pharmaceutically acceptable carrier. In an embodiment the altered SCF molecule molecule is a hybrid molecule of the altered stem cell factor molecule and a second protein or fragment thereof. As used herein, an SCF hybrid molecule is defined as a molecule wherein analog SCF is combined with with part or all of another protein such as another cytokine or another protein, which for example, effects signal transduction via entry through the cell through a SCF-SCF receptor transport mechanism. In an embodiment the alteration of the $\alpha C-\beta 2$ loop is a change in length of the amino acid sequence of

5

25

30

This invention will be better understood from the Experimental Details which follow. However, one skilled in the art will readily appreciate that the specific methods and results discussed are merely illustrative of the invention as described more fully in the claims which

follow thereafter.

the $\alpha C-\beta 2$ loop by a deletion or an insertion of at least one amino acid residue or a change in at least one amino acid residue from the naturally occurring amino acid residue(s) of the $\alpha C-\beta 2$ loop. In another embodiment the change in said at least one amino acid residue from the naturally occurring amino acid residue(s) is selected from the group consisting of SCF(Y26C) disulfide-linked dimer, SCF(D25C), SCF(K62C), SCF(K78N, N81K), SCF(R117A, I118A), SCF(E92A, S95A), and SCF(D124A, K127D).

Generally, for design of drugs as described in the above-described methods, certain changes are known to have certain structural effects. For example, deleting one cysteine could result in the unfolding of a molecule which is, in its unaltered state, is normally folded via a disulfide bridge. There are other known methods for adding, deleting or substituting amino acids in order to change the function of a protein.

The atomic coordinates may be determined in the above-described method by multiwave anomalous diffraction (MAD) measurements, but is not limited htereto, since any means determined suitable by one of skill in the art may also be used.

MATERIALS AND METHODS

SCF Expression, purification and analyses

Human SCF1-141 was expressed recombinantly in E. coli as described previously (Langley et al., 1994). expression of SeMet SCF1-141, the expression vector was transfected into the methionine auxotrophic E. coli strain FM5. Fermentation was carried out at 30°C in 8 liters of minimal medium consisting of ammonium sulfate (10 g/liter), glucose (5 g/liter), methionine (0.125 g/liter), phosphate salts, magnesium, citric acid, trace metals, and vitamins. When an OD600 of 3-5 was reached, a feed medium was added that consisted of the following components in a total volume of 1 liter: 100 g of ammonium sulfate, 450 g of glucose, 2 g of methionine, magnesium, trace metals, and vitamins. At an OD of 12.4, induction medium (one liter containing 100 g of ammonium sulfate, 300 g of glucose, and 1 g of selenomethionine) was added and fermentation proceeded at 30°C. Five hours later (at an OD of approximately 16), the temperature was raised to 42°C to induce SCF expression and additional selenomethionine (1 g) Cells were harvested 4 hours after the added. temperature shift (OD, of approximately 16). SCF1-141 expression was estimated as 0.5 g/liter. Both SCF1-141 and SeMetSCF 154 were purified with minor modifications to previously described procedures (Langley et al., 1992, 1994). Both retain the initiating

5

10

25

methionine (or SeMet) residue [position (-1)] (Langley et al., 1994). N-terminal amino acid sequencing was performed as described (Lu et al., 1991). About 90% SeMet was present in SeMetSCF1-141 at each of the Met positions, based on amino acid analysis and N-terminal sequencing results (i.e. lack of recovery of Met residues for SeMetSCF1-141 in comparison with SCF1-141, data not shown).

Crystallization

Crystals were obtained by the use of hanging drop vapor diffusion method under aerobic conditions. The initial crystals were grown by mixing 1 μ l of protein solution [44 mg/ml for SCF^{1-141} or 38 mg/ml for SeMet SCF^{1-141}) in 10 mM sodium phosphate pH 6.5, 80 mM NaCl] with 1 μl crystallization reservoir solution. The crystallization reservoir solution included 25% (w/w) PEG 400, 240 mM CaCl2, 100 mM HEPES pH 7.4 for SCF1-141, and 22% PEG400, 220 mM CaCl, 100 mM HEPES pH 7.2 and 5-10 mM dithiothreitol Crystallization trays were (DTT) for SeMetSCF1-141. incubated at 20° C and crystals reached full size in approximately 3 days with typical dimensions of 0.5×0.2 x 0.2 mm. Microseeding and lower concentrations of DTT solution (2 mM) wre needed to reproduce SeMetSCF1-141 crystals subsequently. An extant SeMetSCF1-141 crystal was washed with its reservoir solution and then crushed to produce microseeds, which were stored in 50 μl of a stabilizing solution of 32% (w/w) PEG400, 260 mM $CaCl_2$, 100 mM HEPES (pH 7.4) at room temperature. For microseeding experiments, the seed stock was diluted by 10-10,000-fold with crystallization reservoir solution. A 1 $\mu\mathrm{l}$ aliquot of this prepared precipitant was mixed with 1 μl of the

Note that the second se

5

10

25

10

protein solution to make the droplet. The crystal for MAD phasing was grown from a crystallization reservoir solution containing 2 mM DTT concentration.

Diffraction measurements

X-ray diffraction data from SCF1-141 crystals were recorded on two Hamlin-Xuong area detectors at 293K at a home source. The data were integrated using the UCSD software package and scaled using AGROVATA and ROTAVATA implemented in CCP4 suite (CCP4, 1994). The MAD experiments for SeMetSCF1-141 were conducted at the X4A synchrotron beam line of Brookhaven National Laboratory using Fuji image plates. A single crystal was frozen at 110K using paratone-N (Exxon) as a cryoprotectant. MAD data were collected at four wavelengths (before the edge, at the SeK edge, at the peak and after the peak) in oscillations of $1.3-1.5^{\circ}$ without overlap. The SeMetSCF1-141 crystal was oriented such that b-axis was parallel to the oscillation axis and a mirror geometry was used during data collection. The MAD data were processed using DENZO and Scalepack (Otwinowski, 1993; Gewirth, 1995) (Table I).

Table I. MAD data collection and phasing statistics.

		ret tect tons	STOT T			
m) 0100 0-11	(mre-edge)	65,810	95.1	П	18.4	6.7
	(inflection)	65.759	95.0	1	16.7	5.8
AZ=0.9/93 (III PO 0.701 (PO	(TILLECCION)	65,665	94.9		15.2	6.7
	(remote)	62,689	94.9	П	16.0	5.6
Anomalous diffraction ratios (20	fraction r	atios (20	0 - 2.6 Å)b			
	7	22	8%	λ4	f' (e)	f"(e)
71	0.035	0.051	0.042	0.035	-4.0	-0.5
72		0.052	0.033	0.051	-10.3	8.8
λ3			0.070	0.041	-8.1	5.6
λ4				0.055	-3.9	3.8

S

L

MAD data collection and phasing statistics. Table I continued.

from all the atoms. $^{0}F_{\lambda}$ is the structure factor due to normal scattering from the anomalous scatterers only, and $\Delta\Phi$ is the phase difference between $^{97}_{7}$, and $^{9}{5}_{8}$. $\Delta(\Delta\Phi)$ is the difference $_b$ Anomalous diffraction ratios = $<\!\Delta|\,P|^{\,2}\!>~\!4/\!<\!|\,F|^{\,2}\!>^5\!>~$ where $\Delta\,|\,F\,|$ is the absolute value of the ° R = Σ_{ha} Σ_{i} | | F, | - < F > | / Σ | F | . $^{\circ}$ F, is the structure factor due to normal scattering (not mmm) to distinguish Bijvoet-related reflections. Rsym = 100 x $\Sigma_{\rm Bel}$ $\Sigma_{_1}$ | I, - <F> | $/\Sigma_{\rm Bel}\Sigma_{_1}$ I, where I, is the ith Bijvoet (diagonal elements) or dispersive difference (off-diagonal elements), respectively. measurement of reflection hkl and < I> is the weighted mean of all measurements of I. 222 group are determined by point between two independent determinations of $\Delta\Phi.$

រេ

Molecular replacement attempts

Structure determination by the molecular replacement method was attempted for the home source data set. The MERLOT (Fitzgerald, 1988) and AmoRe (CCP4, 1994) programs were used with various four-helix bundle structures as search models, and a good rotation solution was obtained. The rotation solution agreed well with the orientation of helical bundles (approximately along the b-axis of unit cell) that was deduced from native Patterson maps. Dissimilarities among the helical cytokines and the multiplicity of subunits (four) hampered detection of any significant translational function peaks.

Phase evaluation

The processed MAD data were passed through the MADSYS programs (Hendrickson, 1985). Algebraic and probabilistic MAD phasing procedures (Hendrickson, 1985; Pahler et al., 1990) were applied for phase determination (Table II). Selenium sites were located by HASSP program (CCP4, 1994) in F, Patterson and difference Fourier maps and refined by MADSYS programs. The choice of enantiomer was determined by comparison of the electron density maps computed from the two enantiomorphic selenium structures to maximum Bragg spacings of 2.6 Å. The phases were improved by 4-fold non-crystallographic symmetry (NCS) averaging. The rotation-translation matrices of the NCS axes were determined by TOSS (Hendrickson, 1979) from the selenium sites and subsequently refined by LSQRHO (W.A. Hendrickson, unpublished) and RAVE (Kleywegt and Jones, 1994), and the averaging procedure by DM (CCP4, 1994).

The initial model of $SeMetSCF^{1-141}$ was built into the

Model building and refinement

averaged map at 2.3 Å by using program O (Jones et al., 1991). The model includes 98 core residues for each of the four molecules in an asymmetric unit. The remote wavelength after the SeK peak was used for the refinement with the Bijvoet difference applied to Se scattering The R-value for this model, before any refinement, was 42.1% in the resolution range of 10.0 -2.3 Å. NCS restraints were applied during the initial rounds of refinements. After several iterations of least square and simulated annealing refinement with X-PLOR (Brunger et al., 1987) and manual rebuilding against (Read, 1986) and 2 | F. | - | F. | maps.

the SeK edge. The SCF¹⁻¹⁴¹ model was obtained by subjecting the refined SeMetSCF¹⁻¹⁴¹ model to refinement against the area-detector data set from the SCF¹⁻¹⁴¹ crystal using the XPLOR program (Brünger et al., 1987). The atomic

crystallographic R-value is 19.9% for the current model (Table III). The sites of Ca²⁺ ions, a component of the crystallization medium, were located from a Bijvoet difference Patterson map at the remote wavelength before

coordinates have been deposited in the Brookhaven Protein Data Bank with accession code 1scf.

25

5

10

100

	Native
nd Refinement Statistics	COMOCOTI-141 () A)
Table II. Lattice a	

S

10

	SeMeSCF(A4)	MACTAC
Lattice		
Space group	P2,2,2,	P2,2,2,
Cell constants (a,b,c)(Å)	71.8, 82.6, 88.2	73.0, 84.7, 88.8
രൂ	4	4
Refinement ^b		
Resolution range (Å)	20.0 - 2.2	8.0 - 3.3
Completeness (%)	96.6	98.6
Unique reflections	49851	7990
R-value ^d (F >20)(%)	19.9	20.8
Rfrag (%)	24.2	27.3
Reynf (%)	5.6	15.2
Model parameter		
Total non-H atoms	3804	3502
Total residues	448	447
Total water molecules	264	0
Total metal ions	м	0
rms bond length/angle	0.016/2.5°	0.017 / 3.0°
Average B-factor $(\mathring{\mathbf{A}}^2)$	32.1	18.7
main-chain rms B (bond, angle) (Å2) 1.2/1.6	ngle) ($\mathring{\mathbf{A}}^2$) 1.2/1.6	1.9/2.2
ide-chain rms B (bond, a	ngle) (Ų) 2.1/2.4	3.0/3.3

PThe reflection data higher that the resolution range were not included in the ${}^a\boldsymbol{Z}_a$: number of molecules in the asymmetric unit.

20

25

Unique reflections are determined by point group 222 for the SeMetSCF1-141 dataset to distinguish Bijvoet-related reflections and by point group mmm for native refinement due to poor $R_{\rm sym}$ in these resolution shells.

$$^{d}R$$
-value = $\Sigma_{nk1} | |F_o| - |F_c| | / \Sigma_{nk1} |F_o|$.

Table II. continued Lattice and Refinement Statistics

"A subset of the data (6%) was excluded from the refinement and used for the free $^{\rm f}$ $R_{\rm Sym}$ for SeMetSCF¹⁻¹⁴¹ data set was calculated in the resolution range of 25-2.2 Å R-value calculation.

and for the SCF1-141 data set in the resolution range of 13-3.3 $\mathring{\mathbf{A}}$.

S

Structure analysis

5

10

25

Solvent accessibilities were defined as compared with the corresponding Gly-X-Gly peptide (Shrake and Rupley, 1973) as calculated by XPLOR (Brunger et al., 1987). Structural superimpositions were performed based on a-carbon atoms alone. The coordinates were taken from the Brookhaven Data Bank with entry codes: M-CSF, 1hmc (Pandit et al., 1992); IL-4, 1rcb (Wlodawer et al., 1992); GM-CSF, 1qmf (Diederichs et al., 1991) IL-2, 3ink (McKay, 1992); IL-5, 1hul (Milburn et al., 1993). Initial segments of equivalence between two structures were defined according to equivalent secondary structure elements. These structures were then superimposed using program TOSS (Hendrickson, 1979) and the number of equivalent atoms were extended using Lsq imp command in program O (Jones et al., 1991). A cutoff distance of 3.0 A and at least three residues in a consecutive fragment were used as the criteria of defining equivalent atom sets. Different initial equivalent segments did give different results in the structural alignment, Rozwarski et al observed in their study (Rozwarski et al., 1994). In this study, several initial sets of equivalent segments for each alignment were tried and the one that generated in the greatest number of equivalent atoms after the Lsq imp extension was retained.

RESULTS AND DISCUSSION

Structure determination

Both native and selenomethionyl (SeMet) human SCF1-141 were expressed as recombinant proteins in E. coli (Langley et al., 1994). Crystals grew in space group P2,2,2, with four SCF subunits and 39% solvent in the asymmetric unit. The attempts to solve the crystal structure of SCF1-141 by molecular replacement from other cytokine models gave good rotation solutions, but no significant translation function peaks. Experimental phases for SeMetSCF1-141 were then evaluated in a multiwavelength anomalous diffraction (MAD) experiment. Four-wavelength data were measured from a single, frozen SeMetSCF1-141 crystal and analyzed with MADSYS (Hendrickson, 1985). Twelve selenium sites were found in four congruent sets that proved to be associated with the respective SCF subunits in the A MAD-phased electron-density map calculated at 2.3Å resolution (Figure 1A) and improved by molecular averaging (Figure 1B) and refinement (Figure 1C).

An atomic model was fitted to the experimental maps and refined at 2.2Å resolution to an R-value of 0.199 (|F| > 20) with stereochemical ideality typified by the r.m.s. deviation from bond ideality of 0.016Å. There are no residues in energetically disfavored regions of the Ramachandran plot. This model for SeMetSCF¹⁻¹⁴¹ has 3804 non-hydrogen atoms from 448 amino acid residues, 264 water molecules, three Ca ions and one polyethylene glycol (PEG) moiety. All four polypeptide chains

5

10

25

5

(designated A, B, C, and D) are sufficiently disordered before residue 11 to preclude modeling of this portion, and none of them is fully ordered through to the end. Specifically, A92-103, B130-136, B139-141, C92-103, C127-141, and D91-103 and D128-141 are all disordered. This disorder is such that, of the eight disulfide bridges, only two are seen. To test whether the reducing agent used to crystallize SeMetSCF¹⁻¹⁴¹ (see Materials and Methods) might have broken these bonds and caused the disorder, the native SCF¹⁻¹⁴¹ structure which was crystallized without reducing agent was also refined. The two crystals are nearly isomorphous (differences are due to temperature at data collection), and the two structures show the same pattern of order-disorder.

Structure of SCF

The four independent SCF subunits in the crystal are similar but distinctive, and identification of the AB and CD pairs as the molecular dimers is unmistakable. None of the SCF monomer copies is complete, but each flexible portion except for the N-terminus is stabilized by lattice contacts to another monomer. Thus, through the combination of chains A and B there are images for all but residues 1-10, and the position of Cys89 to which Cys 4 must bridge, determines the approximate course of this disordered segment. The overall structure of this composite SCF dimer is shown in Figure 2A and the C_{α} backbone for the actual AB dimer is drawn in stereo in Figure 2B. Topologically, SCF structure is similar to other short-chain helical cytokines (Rozwarski et al.,

3.0

two beta strands, βI between αA and αB and $\beta 2$ between αC and αD . Apart from the tight $\beta 2-\alpha D$ connection, however, the segments outside these core elements are unique in conformation if not in length. In particular, there is

an additional one-turn helix, $\alpha B'$, between $\beta 1$ and αB , there is an exceptional hairpin loop between αB and αC at the dimer interface, and there is another extra one-turn helix, $\alpha D'$, in the C-terminal extension. The bounds of

secondary-structure elements are given in Figure 3.

5

10

ASTATUTE OFFICE OF STATE OF ST

25

The core SCF dimer has its subunits arranged in a head-to-head manner with the opposed four-helix bundle axes nearly coincident (Figure 2). This gives the molecule an elongated shape. ~ 85Å x 30Å x 20Å. Approximately 855 Å2 of surface area is buried from each protomer into the dimer interface. The interface is dominated by contacts from the C-terminal end of αA and the $\alpha A - \beta 1$ connection of one monomer to the $\alpha B - \alpha C$ loop of the other monomer (Figure 2), and the reciprocal pair is related by an approximate dyad axis of symmetry. have rotational svmmetrv operators actual 176.3° and 0.33°, translational components of respectively, for the AB dimer and 177.4° and 0.04° Å for the CD dimer. The two dimers thereby deviate significantly and similarly (with A matched to C and B matched to D) from true 2-fold symmetry. Nevertheless, since interatomic contacts at the interface are symmetric, it is presumed that thees deviations reflect

flexibility rather than inherent asymmetry.

25

30

Then the r.m.s. deviation for the $C_{\rm o}$ positions in common between the two dimers is 0.80 Å (208 $C_{\rm o}$ atoms) is comparable to that of pairwise comparisons among the four independent molecules (from 0.57 Å to 0.94 Å for 103 $C_{\rm o}$ atoms). If D alone is superimposed onto B, a rotation of 2.1° brings A and C into optimal superposition. In the contrary match-up, with D onto A, a rotation of 6.7° is needed to superimpose B and C.

The crystal structure is compatible with solution biochemistry. Consistent with the relative rates of in vitro oxidation of methionyl residues (Hsu et al. 1996), Met36 and Met48 are buried in the hydrophobic core whereas Met27 is solvent accessible. Furthermore, as predicted on the basis of fluorescence spectroscopy studies (Arakawa et al., 1991), Trp41 is buried within the hydrophobic core.

Natural SCF and Chinese hamster ovary(CHO) cell-expressed recombinant SCF are heavily glycosylated by both N-linked and O-linked carbohydrates. All four potential N-linked sites are in the SCF¹⁻¹⁶⁵ are in the SCF¹⁻¹⁴¹ portion that has been crystallized (Langley et al., 1992; Lu et al., 1992). Although the recombinant proteins expressed in bacteria are non-glycosylated, both human and rat SCF expressed in E. coli and then refolded in vitro have native structures, as judged by biophysical methods and in vitro biopotency assays (Arakawa et al., 1991; Langley et al., 1992). The crystal structure of the recombinant SCF in this study is compatible with the glycosylation pattern found for SCF expressed from mammalian cells.

25

3.0

the potential site at Asn72. which is unglycosylated in both human and rat natural expressed from mammaliam cells, is buried in the dimer interface, whereas the site at Asn120, which is fully glycosylated in both species, is accessible in the atomic model. Other sites (Asn65 in both human and rat, human Asn93 and rat Asn109) are qlycosylated in some molecules but not others. These sites are also accessible in the atomic model. Asn93 is located in the highly flexible region between αC and $\beta 2$, and its side chain is disordered.

Although natural SCF is a noncovalently associated dimer, recombinant human SCF produced in E. coli can fold alternatively in vitro into a covalently-linked dimer. dimers have Cys4-Cys89' and Cvs43-Cvs138' intermolecular disulfide bonds (Lu et al., 1996). disulfide-linked and natural non-covalently associated SCF dimers are similar with regard to biochemical and biophysical properties, biopotency and receptor-binding affinity. The disulfide-linked SCF is also biologically active with higher biopotency in supporting growth of hematopoietic cell line and stimulating hematopoietic cell colony formation but slightly lower binding affinity to c-Kit than the noncovalently associated dimer. It was proposed that the disulfide-linked dimer arises from a double-swap of αA and αD helices between the monomers (Lu et al., 1996). The crystal structure of SCF, however, suggests that a single-swap at the $\alpha B-\alpha C$ loop near residue 68 is more likely.

short-chain helical cytokines, as among other members,

characteristic features

Comparison with other short-chain helical cytokines

the

has

Although SCF

similar in structure.

both sequence and structure are highly divergent. anything, SCF resembles the others less than they resemble one another (Table III). The comparison in this study of SCF with other short-chain helical cytokine structures [granulocyte-macrophage colony-stimulsting fasctor (GM-CSF) (Diederichs et al., 1991), , M-CSF (Pandit e al., 1992), interleukin (IL)-2 (McKay, 1992), IL-4 (Wlodaver et al., 1992) , and IL-5 (Milburn et al., 1993)] shows greatest structural similarity with M-CSF or IL-4, but even here fewer than half of the residues can be superimposed (Table III). Sequence similarities are essentially random. A structure-based sequence alignment (Figure 3) of SCF with other short-chain helical cytokines has pairwise identities ranging from 6.7% to 18.8% (Table III) and not even a single residue in SCF is Moreover, the best conserved in all the others. alignment presented in Figure 3 is only valid for the

specified criteria herein, and it differs somewhat from that given by Rozwarski et al. (Rozwarski et al., 1994). Indeed, because of variability in the core structures in

this divergent superfamily, a self-consistent pairwise alignment of the family members has not been able to be achieved. Nevertheless, the core elements are remarkably

33000007 0000000 20

5

10

Structural and sequence comparisons of short-chain helical Table III. cytokines.

	SCF	M-CSF	IL-4	GM-CSF	IL-2	IL-5
SCF		14.1 (13.0)	12.7	12.5 (23.5)	18.8 (16.4)	6.7
M-CSF	64 (1.755)		14.8 (18.9)	13.8 (18.3)	17.5 (17.1)	10.5
Il-4	63 (1.578)	54 (1.820)		26.6 (25.0)	14.5 (22.2)	18.9 (18.9)
GM-CSF	48 (1.632)	58 (1.814)	64 (1.559)		9.8 (26.0)	20.4
IL-2	48 (1.700)	57 (1.581)	69 (1.330)	61 (1.482)		14.5
IL-5	45 (1.695)	38 (1.721)	53 (1.324)	49 (1.334)	62 (1.371)	

cytokines are given in the lower and upper triangles, respectively. Structural comparisons are given as the maximum number of equivalent $lpha ext{-carbon}$ atoms between two short-chain helical cytokines, and the r.m.s. deviation (\c{k}) , (in parentheses). Sequence comparisons are given as the percentage of sequence Structural comparisons and sequence comparisons between the short-chain helical identity from sequence alignment based on structural superimposition, and that based on the sequence alignment from BESTFIT program of the GCG package (in

20

Ŋ

The first state of the second state of the sec

181

Structural and sequence comparisons of short-chain helical Table III. continued cytokines. The latter alignment is based only on maximizing the percentage of identity, similarities and length of the matching sequences, and the sequences submitted to the BESTFIT program were restricted within the region as defined in the PDB files, including the disordered residues. With the advantage of the relatively large number of independent data points (15 pairs), the correlation between sequence similarity and structural deviation was analyzed. Without any restriction of structural alignment, the correlation coefficient (C) between structural deviation and sequence identity is -0.21 and the student's t probability (P) is 0.44, suggesting the structure-based sequence identity and structural deviation are weakly connected (as also observed in another highly diverged protein family, hemoglobin; Aronson et restriction of structural alignment, however, ${\cal C}$ is-0.30 and ${\cal P}$ 0.28, indicating that little correlation between a specific sequence and the tertiary fold. parentheses). al., 1994).

ш

CTECTED TO THE SERIES

25

30

Core portions aside, SCF differs markedly from other short-chain helical cytokines, as indeed they differ from one another (Figure 3: Rozwarski et al., 1994)). First, helix QA of SCF is unusually shortened at its N-terminus. disordered extension must deviate toward αC , as in M-CSF but not in the others, by virtue of the Cys4-Cys89' disulfide bridge in common with M-CSF. Secondly, the conformation of the $\alpha A-\beta 1$ connection is distinctive as required for the dimer interface, and the $\beta1-\alpha B$ connection uniquely has $\alpha B^{\,\prime}$. Again at the dimer interface, the $\alpha B-\alpha C$ loop extends out distinctively along the dyad axis. Thirdly, the unusually long $\alpha C-\beta 2$ loop of SCF is both highly flexible (only one ordered copy) and with a path of its own when ordered. Finally, the C-terminal extension after αD compares only to that of M-CSF, and then only in its general direction of exit out past αB and the β - strands.

Among the short-chain helical cytokines, SCF is most closely related to M-CSF. These two have similarities in gene structure, alternative splicing, proteolytic maturation, disulfide bridging, dimer assembly, and receptor type (these similarities also extend to the Flt-3igand; Lyman and Jacobsen, 1998). Despite negligible sequence identity, an alignment and secondary structure prediction prompted by these relationships (Bazan, 1991) fits the actual

1.0

Datordey Demark

25

3.0

structure amazingly well, except for shifts in αB and in the αC - $\beta 2$ loop. Here reality confounds logic; unexpectedly, comparable glycosylation sites (Asn120 in SCF and Asn122 in M-CSF) are displaced by one helical turn and comparable disulfide bridges (Cys43-Cys138' in SCF and Cys48-Cys139' in M-CSF) are not superimposible structurally (Figure 4).

Both were roughly correct in secondary-structure prediction for helices αA and αC , but substantial misplacements were made for helices αB and αD and strand $\beta 2$. In the study of Rozwarski et al. (Rozwarski et al., 1994), the alignment for αB is incorrect by a shift of 14 residues and that for $\beta 2$ and αD by a shift of 7 residues. Bazan's earlier sequence alignment (Bazan, 1991) fits to the structural alignment herein amazingly well, except for a shift of one residue for αB and a three-residue gap in the αC - $\beta 2$ loop.

Comparison with other cytokine dimers

Helical cytokines dimerize in various ways (Sprang and Bazan, 1993). Among the five dimeric helical cytokines for which crystal structures have been described [M-CSF, IL-5, ciliary neurotrophic factor (CNTF), interferon-y (IFN-y) and IL-10], only IFN-y and IL-10 are similar dimers. These latter two have a 'tip-to-tip' packing with helix axes approximately perpendicular. Otherwise, the only salient

10

SGETOLEY . CETOLIC

25

30

feature in common is having the subunits oriented with bundle axes aligned in parallel and helix dipoles positioned to compensate. There is 'head-to-head' packing of the four-helix bundles in M-CSF, 'tail-to-tail' packing in IL-5, and 'side-to-side' packing in CNTF. Moreover, IFN-Y, IL-10 and IL-5 are all interdigitated dimers with helices swapped between subunits. Thus, although SCF relates most closely to M-CSF, the dimer structure could not be deduced readily beforehand.

SCF in keeping with its relationship to M-CSF, is a non-interdigitated 'head-to-head' dimer (Figure The two interfaces between promoters are completely different, however. One QA-B1 loop of M-CSF is situated between the $\alpha A-\beta 1$ and $\alpha B-\alpha C$ loops of the other protomer, whereas in SCF each $\alpha A-\beta 1$ loop interacts only with $\alpha B - \alpha C$ loop of the partner. This staggered mode of M-CSF dimerization (Figure 4B) is dictated by the position of the Cys31-Cys31' intermolecular disulfide bond in M-CSF. The dyad axes are similarly oriented in the two cases (perpendicular to the bundle axis and parallel to the $\alpha A - \alpha D$ and $\alpha B - \alpha C$ helix planes), but whereas the dyad axis in SCF nearly intersects the bundle axis, that in M-CSF is offset toward the $\alpha A-\alpha D$ helix pair (Figure 4). Thus, when one protomer of an SCF dimer is superimposed onto one from M-CSF, the superimposition of the two mates requires a translation of 3.8 Å but a rotation of only 4.7°.

10

5

25

30

Location of the binding site for the receptor Kit SCF binds with high affinity (nM range) to its receptor (Philo et al., 1996; Broudy, 1997)). Various structure-function studies and analyses help to define residues of SCF that may be involved in this binding. These studies include mutagenesis experiments, immunochemical mapping, comparative inter-species ligand-receptor of analyses interactions, and analyses of glycosylation. Residues thereby implicated in receptor binding can then be mapped onto the surface of SCF as defined by the crystal structure. Although a precise definition of the receptor-binding site on SCF will require direct structural information on complex of SCF with the Kit receptor, this mapping of the binding site provides a crude picture that is useful when coupled with information on Kit and related receptors.

From studies of truncation and point mutants, Langley et al (1994) demonstrated that the N-terminal residues 1-4 and 1-10 and the Cys4-Cys89 disulfide bond are required for receptor binding and bioactivity, and that the Cys43-Cys138 disulfide bond and C-terminal residues past 127 are not required for receptor binding but may have some roles in cell proliferation activity. Moreover, alterations at Asn10 and Asn11 brought about by chemical isomerization or by mutagenesis have positive or negative effects depending on the substitution (Hsu et al., 1998). A quadruple

25

30

mutant of SCF (Arg121Asn, Asp124Asn, Lys127Asp and Asp128Lys) was found to be defective in bioactivity (Matous et al., 1996). The molecular cause of this deficiency may be specific to Lys127 or due to indirect electrostatic effects. Arg121 and Asp124 are adjacent to the main N-linked glycosylation site, which is not involved in binding (see infra), and Asp128 is absent in the 1-127 truncation mutant retains full receptor-binding activity (Langley et al., 1994). Moreover, a study of humanmurine SCF chimeras narrowed the important receptor recognition epitopes to within residues 1 to 35 and 79 to 97 (Matous et al., 1996), and the epitope of a neutralizing antibody was mapped to the region of residues 60-95 (Mendiaz et al., 1996) and 79-97 (Matous et al., 1996).

Although SCF molecules from different mammalian species are very similar (>75% identity), there are substantial differences in inter-species receptor activation. Human SCF activates murine Kit very poorly, rodent SCF has only slightly lower potency than human SCF in binding/activating human Kit (Martin et al., 1990; Lev et al., 1992), and canine SCF activates human Kit slightly better than human SCF does itself (K.E. Lang, unpublished data). It is likely that the receptor-binding regions involve residues that are different between man and mouse but conserved between man and dog. These residues can be classified into five groups in the sequence (Figure 5). Most residues in group III are buried

10

25

30

and those in group II are close to the dimer interface. The residues in groups III (45-58) are buried and those in group II (24-34) are close to the dimer interface. The results in groups I (1-15), IV (80-117) and and V (130-140) are more likely to be involved in direct receptor binding.

heavy glycosylation of natural and CHO cell-derived recombinant SCFs sheds light on the question whether residues in vicinity of αD , the equivalent of the major receptor binding site in GH, are involved in receptor binding. Human SCF expressed in CHO cells is approximately 30% by (Arakawa et al., 1991) glycosylation site is at Asn120 (Langley et al., 1992). Glycosylation at this site, which is near the center of the αD helix, does not appear to influence biological activity; therefore, the area around this residue cannot be involved in receptor binding. Glycosylation of human SCF at either Asn65 or Asn93 lowers the biological activity approximately 10-fold; therefore, these residues may be near but not directly at the binding site.

Taken together, these observations indicate that the receptor-binding site may include residues from the first few N-terminal residues, the 79-95 region (mainly located on αC helix) and the C-terminal end of αD (around 127). These regions are contiguous on the SCF surface in the atomic model provided herein. The putative receptor-binding site of M-CSF

was mapped to a similar region (Taylor et al., 1994).

Structural characteristics of SCF-Kit and related ligand-receptor complexes

Kit, the receptor for SCF, is a class III receptor tyrosine kinase. This class, which includes the receptors for PDGF and M-CSF, is also closely related to the class IV receptors for FGF and the class V receptors for VEGF, Flt-3 ligand and KDR (Fantl et al., 1993). The ligand-binding portions of these receptors are all composed immunoglobulin(Ig)-like domains and the kinase domains all include kinase insert sequences. The three classes are distinguished by the number of Ig repeats (five for class III, three for class IV and seven for class V) and by the length of kinase insert, which corresponds to an excursion between two helices of the kinase structure. These Ig-like receptors share similar signal transduction pathways, chromosomal localization and organization (Rousset et al., 1995), but their ligands come with completely unrelated topologies as typified by VEGF (cystine knot) on the one hand, versus M-CSF, SCF and Flt-3 ligand (helical cytokine) on the other. Even receptors of the same class have unrelated ligands; thus both SCF and PDGF use class III receptors and VEGF anf Flt-3 ligand use class V receptors. The amino acid sequences of the ligands are extremely dissimilar

5

10

25

even when the fold is the same, as for PDGF vs. VEGF (25% identity) and M-CSF vs SCF (14% identity).

5

10

And the first face and the first face of the face of t

25

30

Although Ig-like receptors have very similar kinase portions (70% amino acid sequence identity between III and V) and about 50% identity for III or V with their Ig-like domains are dissimilar in sequence both between repeats within a molecule and also at comparable positions between different receptors. (Rousset et al., 1995) Nevertheless, are features of the receptor-ligand interaction that the class III and class V receptors have in common. First, for every studied example, the ligand binding function has been localized to the first three Ig-like domains and, where defined, to domains D2 and D3 specifically (Heidaran et al., 1990; Blechman et al., 1993; Lev et al., 1993; Wang et al., 1993; Davis-Symyth et al., 1996; Barleon et al., 1997). Secondly, the ligands for all of these receptors are functional as dimers; M-CSF, VEGF and PDGF are covalently while SCF and Flt-3 ligand non-covalently linked dimers. In each case, signaling occurs through ligand-mediated receptor oligomerization (Heldin, 1995). For SCF-Kit, it has been shown directly by biophysical methods that complexes containing toe SCF subunits and two Kit extracellular domain molecules can form in solution (Philo et al., 1996). The genetic organization of these receptor genes has the placements and phases of introns in common (Agnes et al., 1997) and the extracellular domains can be recognized from sequence motifs as telokin-like, I-set members of the Ig superfamily (Bateman and Chothia, 1995; Harpaz and Chothia, 1994).

The structure of domain D2 of Flt-1 receptor in complex with VEGF (Wiesmann et al., 1997) provides a template for ligand interactions with PDGF-related receptors. Wiesmann et al. (1997) modeled the interaction of VEGF with D1D2D3D4(Flt-1) and discussed the likelihood that other ligand complexes with class III and class V receptors may be similar. In lightof the structure of SCF and the identified location of receptor-binding sites, the SCF-Kit complex is modeled herein.

The D2(Flt-1) domain is similar in structure to telokin, as predicted (Harpaz and Chothia, 1994), and thereby also to both domains in the structure of vascular cell adhesion molecule (VCAM)-1 (Jones et al., 1995). To test the validity of VCAM-1 as a model for D2D3(Flt-1) and D2D3 (Kit), used herein was a prediction-based threading program (Fisher and Eisenberg, 1996) to thread the sequences of the Ig-like domains of Flt-1 and Kit into the telokin and VCAM-1 structures. Fits were achieved with moderate to very high confidence of similarity. The resulting structure-based sequence alignment of D2D3(Kit) with the VCAM-1 template (five gaps) has a continuous domain boundary, and residues Cys151

5

10

25

and Cys183 in D2(Kit) are positioned properly to make an additional disulfide bridge between strands C and F.

Characteristics of the SCF-Kit interaction

Although it has been suggested (Matous et al., 1996; Mendiaz et al., 1996) that SCF may interact with its receptor in a manner analogous to the ligand-receptor interactions of another helical cytokine, growth hormone (de Vos et al., 1992), an alternative mode of interaction can be contemplated given the similarities among tyrosine-kinase receptors described above. If these similarities extend to the signaling interaction, the structure of the complex of VEGF with domain D2 of Flt-1 (Wiesmann et al., 1997) should provide a template for the interaction despite the disparate structures of the ligands.

To test this hypothesis next constructed was a model of the VEGF-D2D3(Flt-1) receptor complex from a rigid-body superposition of VEGF (Muller et al., 1997) and VCAM-1 such as to mimic the reported VEGF-D2(Flt-1) structure (Wiesmann et al., 1997). Then, keeping the dyad-symmetric receptor pair fixed, VEGF was successively replaced with the other Ig-like receptors ligands of known three-dimensional structure: PDGF (Oefner et al., 1992), M-CSF (Pandit et al., 1992), and SCF (this work). Each was placed on the dyad axis and

5

10

25

10

Salar and the sa

25

30

positioned to optimize contacts between the VEGF-binding site on the receptor and the putative receptor-binding regions of the ligands. Remarkably, these disparate dimeric ligands have similar spacings between binding sites and a satisfactory fit is possible for each (Figure 6). Also constructed were simple homology models of the various receptors with changes in the backbone only to accommodate insertions and deletions. The model for SCF with D2D3(Kit) shows a striking electrostatic complementarity between a highly negative binding surface on SCF and a positive surface on Kit (Figures 7A and 7B). glycosylation sites on both molecules are also compatible with unimpeded interaction.

The Kit receptor is activated by both soluble and membrane-bound forms of SCF, and signaling from the membrane-bound form appears to be have in vivo roles (se Lyman and Jacobsen, 1998). Moreover, as in the case of Flt-1 (Barleon et al., 1997), the D4(Kit) may be involved in inter-receptor contacts in the signaling dimer (Blechman et al., 1995) [although this proposal for Kit has been questioned (Philo et al., 1996; Lemmon et al., 1997)]. The model constructed herein for the SCF-Kit complex is compatible with these properties (Figure 7A and 7B). The C-termini of the SCF dimer are directed oppositely from those of Kit, as would be appropriate for a cell-cell contact, and the receptor units cross naturally at D4. It is

noteworthy that the ligands of other Ig-like receptors also have membrane-bound forms (M-CSF and Flt-3 ligand) or are typically complexed to the extracellular matrix (Kawasaki and Ladner, 1990; Lyman and Jacobsen, 1998).

The ligand-receptor structures that are suggested herein for the Ig-like kinase receptors are remarkable. Despite marked differences in ligand structure as typified by VEGF(cystine knot), SCF (helical cytokine) and FGF (beta trefoil), the geometrical configurations of receptor binding sites on these ligands are alike. Coupled with features in common among the receptors and in their biology, a similar mode of ligand-receptor interaction across the Ig-like subfamily of receptor tyrosine kinases seems plausible.

SECOND SERIES OF EXPERIMENTS

Based on the X-ray crystallographic structure of SCF, several analogs were made and their biological activities were measured and compared to that of SCF wild type.

Analogs Biological Activity (Approximate,

compared to wild

type SCF)

SCF(Y26C) disulfide linker 2 to 3 fold higher

SCF(D25C) 100 fold lower

SCF(K62C) 7 fold lower

These analogs were designed based on the structure of the dimer interface of SCF, which is a noncovalent dimer. Leu22, Pro23, Lys24, Asp25, Tyr26, Lys62 and Phe63 are in the dimer surface. The side chains of Leu22, Pro23, Tyr26, and Phe63 reside in the buried center of the dimerization site and are involved in hydrophobic interactions. hydrophilic side chains of Lys24, Asp25 and Lys62 from each monomer residue in the solvent accessible surface, and are involved in ionic interactions. By replacing Tyr26 with Cys, [SCF(Y26C)], it was anticipated that a dimer covalently linked by a disulfide bond between the C26 residue of each monomer would form because the distance between the β carbons of the two Cys26 rresidues would be less than 3Å.

5

30

10

Analogs	Biological Activity (Approximate, compared to wild type SCF)
SCF(K78N, N81K)	3 fold lower
SCF(R117A, I118A)	10 fold lower
SCF(E92A, S95A)	no change
SCF(D124A, K127D)	no change

These analogs were designed based on the assumption that there may be two distinct receptor binding sites, per monomer, as with growth hormone. One site would be on the face between helix A and helix C, and the other site would be on the face between helix A and helix D.

30

Agnes, F., et al. (1997) Genomic organization of the extracellular coding region of the human FGFR4 and FLT4 genes: Evolution of the genes encoding receptor tyrosine kinases with immunoglobulin-like domains. J. Mol. Evol., 45, 45-49.

Anderson, D. M., et al. (1990) Molecular cloning of mast cell growth factor, a hematopoietin that is active in both membrane bound and soluble forms. Cell, 63, 235-243.

Andre, C., et al. (1992) Genomic organization of the human c-kit gene: Evolution of the receptor tyrosine kinase subclass III. Oncogene, 7, 685-691.

Arakawa, T., et al. (1992) Molecular weights of glycosylated and nonglycosylated forms of recombinant human stem cell factor determined by low-angle laser scattering. *Analytical Biochem.*, 203, 52-57.

Arakawa, T., et al. (1991) Glycosylated and unglycosylated recombinant-derived human stem cell factor are dimeric and have extensive regular secondary structure. J. Biol. Chem., 266, 18942-18948.

Aronson, H.-E. G., et al. (1994) Quantification of tertiary structural conservation despite primary

1.0

sequence drift in the globin fold. Prot. Sci., 3, 1706-1711.

Barleon, B., et al. (1997) Mapping of the sites for ligand binding and receptor dimerization at the extracellular domain of the vascular endothelial growth factor receptor flt-1. *J. Biol. Chem.*, **272**, 10382-10388.

Bateman, A. and Chothia, C. (1995) Outline structures for the extracellular domains of the fibroblast growth factor receptors. Nature Structural Biology, 2, 1068-1074.

Bazan, J. F. (1991) Genetic and structural homology of stem cell factor and macrophage colony-stimulating factor. *Cell*, **65**, 9-10.

Bella, J., et al. (1998) The structure of the two amino-terminal domains of human ICAM-1 suggests how it functions as a rhinovirus receptor and as an LFA-1 integrin ligand. Proc. Natl. Acad. Sci. USA, 95, 4140-4145.

Besmer, P. (1997) Kit-ligand-stem cell factor. In Garland, J.M., Quesenberry, P.J. and Hilton, D.J. (eds), Colony-Stimulating Factors: Molecular and Cellular Biology, 2nd edn., Marcel Dekker, Inc., New York, NY, PP. 369-404.

Blechman, J. M., et al. (1993) Soluble c-kit

25

10

30

proteins and antireceptor monoclonal antibodies confine the binding site of the stem cell factor. J. Biol. Chem., 268, 4399-4406.

Blechman, J. M., et al. (1995) The fourth immunoglobulin domain of the stem cell factor receptor couples ligand binding to signal transduction. *Cell*, **80**, 103-113.

Broudy, V. C. (1997) Stem cell factor and hematopoiesis. Blood, 90, 1345-1364.

Brünger, A. T., et al. (1987) Crystallographic R-factor refinement by molecular dynamics. *Science*, 235, 458-460.

Casasnovas, J. M., et al. (1997) Crystal structure of ICAM-2 reveals a distinctive integrin recognition surface. *Nature*, **387**, 312-315.

Casasnovas, J. M., et al. (1998) A dimeric crystal structure for the N-terminal two domains of intercellular adhesion molecule-1. *Proc. Natl. Acad. Sci. USA*, **95**, 4134-4139.

Collaborative Computational Project Number 4 (1994)
The CCP4 suite: programs for protein crystallography. Acta Crystallogr., D, 50, 252-270.

Davis-Symyth, T., et al. (1996) The second immunoglubulin-like domain of the VEGF tyrosine

10

25

30

kinase receptor Flt-1 determines ligand binding and may initiate a signal transduction cascade. *EMBO J.*, 15, 4919-4927.

de Vos, A. M., et al. (1992) Human growth hormone and extracellular domain of its receptor: crystal structure of the complex. Science, 255, 306-312.

Diederichs, K., et al. (1991) Novel fold and putative receptor binding site of granulocyte-macrophage colony-stimulating factor. *Science*, **254**, 1779-1782.

DiGabriele, A. D., et al. (1998) Structure of a heparin-linked biologically active dimer of fibroblast growth factor. *Nature*, **393**, 812-817.

DiMario, J., et al. (1989) Fibroblast growth factor in the extracellular matrix of dystrophic (mdx) mouse muscle. *Science*, **244**, 688-690.

Ealick, S. E., et al. (1991) Three-dimensional structure of recombinant human interferon-gamma. Science, 252, 698-702.

Evans, S. V. (1993) SETOR: Hardware lighted three dimensional solid model representations of macromolecules. J. Mol. Graphics, 11, 134-138.

Fantl, W. J., et al. (1993) Signalling by receptor tyrosine kinases. Annu. Rev. Biochem., 62, 453-481.

10

Fenstermaker et al., (1993) A cationic region of the platelet-derived growth factor (PDGF) A-chain (Arg159-Lys160nLys161) is required for receptor binding and mitogenic activity of the PDGF-AA homodimer., J. Biol. Chem., 268, 10482-10489.

Fisher, D. and Eisenberg, D. (1996) Fold recognition using sequence-derived predictions. Prot. Sci., 5, 947-955.

Fitzgerald, P. M. D. (1988) MERLOT, an integrated package of computer programs for the determination of crystal structures by molecular replacement. *J. Appl. Crystallogr.*, **21**, 273-278.

Flanagan, J. G. and Leder, P. (1990) The kit ligand: a cell surface molecule altered in steel mutant fibroblasts. *Cell*, **63**, 185-194.

Fukuda, N., et al. (1997) Role of long-form PDGF A-chain in the growth of vascular smooth muscle cells from spontaneously hypertensive rats. Am. J. Hypertens., 10(10 Pt 1), 1117-1124.

Galli, S. J., et al. (1994) The kit ligand, stem cell factor. Adv. Immunol., 55, 1-96.

Gewirth, D. (1995) The HKL Manual. Yale University, New Haven, Connecticut.

Glaspy, J. (1996) Clinical applications of stem

30

Harpaz, Y. and Chothia, C. (1994) Many of the immunoglobulin superfamily domains in cell adhesion molecules and surface receptors belong to a new structural set which is close to that containing variable domains. J. Mol. Biol., 238, 528-539.

Heidaran, M. A., et al. (1990) Chimeric alpha- and growth beta-platelet-derived factor receptors define three immunoglobulin-like domains of the alpha-PDGF receptor that determine PDGF-AA binding specificity. J. Biol. Chem., 265, 18741-18744.

Heldin, C.-H. (1995) Dimerization of cell surface receptors in signal transduction. Cell, 80, 213-223.

Hendrickson, W. A. (1979) Transformations to optimize the superposition of similar structures. Acta Cryst, A, 35, 158-163.

Hendrickson, W. A. et al. (1985) Direct phase determination based on anomalous scattering. Methods Enzymology, 115, 41-55.

Houck. K. A., et al. (1991) The vascular endothelial growth factor family: identification of a fourth molecular species and characterization of alternative splicing of RNA. Mol. Endocrinol., 5,

5

10

25

1806-1814

Hsu, Y.-R., et al. (1996) In vitro methionine oxidation of Escherichia coli-derived human stem cell factor: effects on molecular structure, biological activity, and dimerization. Protein Sci., 5, 1165-1173.

Hsu, Y.-R., et al. (1998) Selective deamidation of recombinant human stem cell factor during in vitro aging: isolation and characterization of the aspartyl and isoaspartyl homodimers and heterodimers. Biochemistry, 37, 2251-2262.

Huang, E., et al. (1990) The hematopoietic growth factor KL is encoded by the *Sl* locus and is the ligand of the c-kit receptor, the product of the W locus, Cell, **63**, 225-233.

Jones, D. T., et al. (1992) A new approach to protein fold recognition. *Nature*, **358**, 86-89.

Jones, E. Y., et al. (1995) Crystal structure of integrin-binding fragment of vascular cell adhesion molecule-1 at 1.8 angstroms resolution. *Nature*, 373, 539-544.

Jones, T. A. (1992) a, yaap, asap, @#*? A set of averaging programs, In S. Bailey, Hubbard, R. & Waller, D. (ed.) Molecular Replacement, Proceedings

10

5

25

10

25

30

of the CCP4 Study Weekend, Daresbury Laboratory, Warrington, UK, pp. 92-105.

Jones, T. A., et al. (1991) Improved methods for building protein models in electron density maps and the location of errors in these models Acta Crystallogr., A, 47, 110-119.

Kawasaki, E. S. and Ladner, M. B. (1990) Molecular biology of macrophage colony-stimulating factor. Immunol. Ser., 49, 155-176.

Kelvenbach, C. G., et al. (1991) Densimetric determination of carbohydrate content glycoproteins. J. Biochem. Biophys Methods, 23, 295-300.

Kleywegt, G. J. and Jones, T. A. (1994) Halloween ... masks and bones. In Bailey, S. Hubbard, R., and Waller, D. (eds), From First Map to Final Model, Proceedings of the CCP4 Study Weekend. Daresbury Laboratory, Warrington, UK, pp 59-66.

Koths, K. (1997) Structure-function studies on human macrophage colony-stimulating factor. Mol. Reprod. Dev., 46, 31-37.

Langley, K. E., et al. (1992) Purification and characterization of soluble forms of human and rat stem cell factor recombinantly expressed by Escherichia Coli and by Chinese hamster ovary

10

25

30

cells. Arch. Biochem. Biophys., 295, 21-28.

Langley, K. E., et al. (1994) Properties of variant forms of human stem cell factor recombinantly expressed in *Escherichia coli*. Arch. Biochem. Biophys.. 311, 55-61.

Laskowski, R. A., et al. (1993) PROCHECK: a program to check stereochemical quality of protein structures. J. Appl. Crystallogr., 26, 283-291.

Lemmon, M.A., et al. (1997) Kit receptor dimerization is driven by bivalent of stem cell factor, J. Biol. Chem., 272, 6311-6317.

Lev, S., et al., (1992) Dimerization and activation of the Kit receptor by monovalent and bivalent binding of the stem cell factor. *J. Biol. Chem.*, **267**, 15970-15977.

Lev, S., et al., (1993) Interspecies molecular chimeras of Kit help define the binding site of the stem cell factor. *Mol. Cell. Biol.*, 13, 2224-2234.

Lev, S., et al., (1994) Steel factor and *c-kit* protooncogene: genetic lessons in sugnal transduction, *Crit. Rev. Oncog.*, 5, 141-168.

Lu, H. S., et al., (1991) Amino acid sequence and post-translational modification of stem cell factor isolated from buffalo rat liver cell-conditioned

10

25

3.0

Lu, H. S., et al., (1992) Post-translational processing of membrane-associated recombinant human stem cell factor expressed in Chinese hamster ovary cells. Arch. Biochem. Biophys., 298, 150-158.

Lu, H. S., et al., (1996) Isolation and characterization of a disulfide-linked human stem cell factor dimer. J. Biol. Chem., 271, 11309-11316

Lyman, S.D, and Jacobsen, S.E.W. (1998) c-Kit ligand and Flt3 ligand: stem/progenitor cell factors with overlapping yet distinct activities, Blood, 91, 1101-1134.

Martin, F. H., et al., (1990) Primary structure and functional expression of rat and human stem cell factor DNAs. Cell, 63, 203-211.

Matous, J. V., et al., (1996) Structure-function relationships of stem cell factor: an analysis based on a series of human-murine SCF chimera and the mapping of a neutralizing monoclonal antibody. Blood, 88, 437-444.

McDonald, N. Q., et al., (1995) Crystal structure of dimeric human ciliary neurotrophic factor determined by MAD phasing. EMBO J., 14, 2689-2699.

10

25

3.0

McKay, D.B. (1992) Unraveling the structure of IL-2. Science. 257. 412-413.

McNiece, I. K. and Briddell, R. A. (1995) Stem cell factor. J. Leukoc. Biol., 57, 14-22.

Mendiaz, E. A., et al. (1996) Epitope mapping and immunoneutralization of recombinant human stem cell factor. Eur. J. Biochem., 239, 842-849.

Milburn, M. V., et al. (1993) A novel dimer configuration revealed by the crystal structure at 2.4 Å resolution of human interleukin-5. *Nature*, 363, 172-176.

Muller, Y. A., et al. (1997) Vascular endothelial growth factor: crystal structure and functional mapping of the kinase domain receptor binding site. Proc. Natl. Acad. Sci. USA, 94, 7192-7197.

Neufeld, G., et al. (1994) Vascular endothelial growth factor and its receptors. Prog. Growth Factor Res., 5, 89-97.

Nicholls, A., et al. (1991) Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. *Proteins*, 11, 281-296.

Oefner, C., et al. (1992) Crystal structure of human platelet-derived growth factor BB. EMBO J., **11**, 3921-3926.

Otwinowski, Z. (1993) Oscillation data reduction program, In N.I.L. Sawyer, and S. Bailey (eds.) Data Collection and Processing, Science and Engineering Research Council, Warrington, UK, Vol. pp. 55-62.

Pähler, A., et al., (1990) A probability representation for phase information from multiwavelength anomalous dispersion. *Acta Cryst*, A, 46, 537-540.

Pandit, J., et al., (1992) Three-dimensional structure of dimeric huam recombinant macrophage colony-stimulating factor. Science, 258, 1358-1362.

Philo, J. S., et al., (1996) Human stem cell factor dimer forms a complex with two molecules of the extracellular domain of its receptor, Kit. J. Biol. Chem., 271, 6895-6902.

Qiu, F., et al., (1988) Primary structure of c-kit: relationship with the CSF-1/PDGF receptor kinase family-oncogenic activation of v-kit involves deletion of extracellular domain and C terminus. EMBO J., 7, 1003-1011.

Raines, E.W. and Ross, R. (1992) Compartmentalization of PDGF on extracellular binding sites dependent on exon-6-encoded

10

5

25

sequences. J. Cell Biol., 116, 533-543.

errors. Acta Crystallogr, A, 42, 140-149.

10

25

30

Read, R. J. (1986) Improved Fourier coefficients for maps using phases from partial structures with

Rousset, D., et al., (1995) Molecular evolution of the genes encoding receptor tyrosine kinase with immunoglobulinlike domains. J. Mol. Evol., 41, 421-430.

Rozwarski, D. A., et al., (1994) Structural comparisons among the short-chain helical cytokines. Structure, 2, 159-173.

Russell, E.S. (1979) Hereditary anemias of the mouse: a review for geneticists. Adv. Genet., 20, 357-459

Shrake, A. and Rupley, J. A. (1973) Environment and exposure to solvent of protein atoms: lysozyme and insulin. J. Mol. Biol., 79, 351-371.

Shull, R.M. et al., (1992) Canine stem cell factor (c-kit ligand) supports the survival of hematopoietic progenitors in long-term canine marro

Stanley, E. R. and Guilbert, L. J. (1981) Methods for the purification, assay, characterization and target cell binding of a colony stimulating factor (CSF-1). J. Immunol. Methods, 42, 253-284.

25

3.0

Sprang, S.R. and Bazan J.F. (1993) Cytokine structural taxonomy and mechanisms of receptor engagement, Curr. Opin. Struct. Biol., 3, 815-827.

Stein, J., et al. (1990) Direct stimulation of cells expressing receptors for macrophage colony-stimulating factor (CSF-1) by a plasma membrane-bound precursor of human CSF-1. Blood, 76, 1308-1314.

Tan, K., et al., (1998) The structure of immunoglobulin superfamily domains 1 and 2 of MAdCAM-1 reveals novel features important for integrin recognition. Structure, 6, 793-801.

Taylor, E. W., et al., (1994) Structure-function studies on recombinant human macrophage colony-stimulating factor (M-CSF). J. Biol. Chem., 269. 31171-31177.

Toksoz, D., et al., (1992) Support of human hematopoiesis in long-term bone marrow cultures by murine stromal cells selectively expressing the membrane-bound and secreted forms of the human homolog of the steel gene product, stem cell factor. Proc. Natl. Acad. Sci. USA, 89, 7350-7354.

Wang, J. H., et al., (1995) The crystal structure of an N-terminal two-domain fragment of vascular cell adhesion molecule 1 (VCAM-1): a cyclic peptide based on the domain 1 C-D loop can inhibit

25

VCAM-1-alpha 4 integrin interaction. Proc. Natl. Acad. Sci. USA, 92, 5714-5718.

Wang, Z., et al., (1993) Identification of the ligand-binding regions in the macrophage colony-stimulating factor receptor extracellular domain. *Mol. Cell. Biol.*, 13, 5348-5359.

Wiesmann, C., et al., (1997) Crystal structure at 1.7 Å resolution of VEGF in complex with domain 2 of the Flt-1 receptor. *Cell*, **91**, 695-704.

Wlodawer, A., et al., (1992) Crystal structure of human recombinant interleukin-4 at 2.25 Å, FEBS Lett., 309, 59-64.

Zdanov, A., et al., (1995) Crystal structure of interleukin-10 reveals the functional dimer with an unexpected topological similarity to interferon qamma. Structure, 3, 591-601.

Zimmer, Y., et al., (1993) Multiple structural elements determine lignad binding of fibroblast growth factor receptors: Evidence that both Ig domain 2 and 3 define receptor specificity. J. Biol. Chem., 268, 7899-7903.

What is claimed is:

- A computer based method for preparing a stem 1. cell factor (SCF) analog comprising the steps of:
 - providing computer expression of the (a) three dimensional structure of an SCF molecule using its crystal structure;
 - (b) selecting from the computer expression of step (a) at least one site on the SCF molecule for alteration;
 - (c) preparing a SCF molecule having an alteration at said at least one selected site: and
 - (d) optionally, testing the SCF molecule for a desired characteristic.
- The method of claim 1, wherein the SCF analog 2. comprises a polypeptide having an amino acid sequence portion of SCF capable of binding a receptor and having the overall threedimensional conformation as shown in Figures the three-dimensional wherein 2A-2B, conformation is:
 - anti-parallel, double-cross over 4-alpha helical bundle with a left hand twist; and
 - overall dimensions of approximately 85 Å b) x 30 Å x 20 Å.
- The method of claim 1, wherein the SCF analog 3.

5

10

25

- The method of claim 1 wherein the SCF molecule is a native SCF or a selenomethionyl SCF.
- 5. The method of claim 1 wherein the site on the SCF molecule for alteration is a receptor binding site on the surface of the SCF molecule or a non-receptor site of the SCF.
- The method of claim 5, wherein the receptor binding site comprises approximately amino acid residues 79-95.
- An isolated SCF analog prepared according to the method of claim 1.
- 8. The isolated SCF analog of claim 7, wherein the SCF analog comprises a polypeptide having an amino acid sequence portion of SCF capable of binding a receptor and having the overall three-dimensional conformation as shown in Figures 2A-2B, wherein the three-dimensional conformation is:
 - a) anti-parallel, double-cross over 4-alpha helical bundle with a left hand twist;
 and
 - b) overall dimensions of approximately 85 Å \$x\$ 30 Å \$x\$ 20 Å..

10

Terror

25

- 9. The isolated SCF analog of claim 10, wherein the SCF analog comprises electron density distributions altered from those set forth in Figures 1A, 1B, and 1C.
- 10. A composition comprising an isolated SCF analog prepared according to the method of claim 1 effective to treat a subject and a pharmaceutically acceptable carrier.
- 11. A method of treating a subject having a disorder requiring SCF comprising administration of a composition comprising an isolated SCF analog prepared by the method of claim 1 or a compound designed by the method of claim 32.
- 12. The method of claim 11, wherein the subject has a blood disorder.
- 13. The method of claim 12, wherein the disorder which the subject has is anemia, myeloproliferative disorder, neoplasia, nerve damage, infertility, intestinal damage, a pigmentation disorder, or immunodeficiency.
- 14. The method of claim 11, wherein the administration of the isolated SCF analog is for ex vivo or in vivro production of peripheral blood progenitors, ex vivo or in vivro stem cell expansion, ex vivo or in vitro

25

30

18. The method of claim 15, wherein the designed

compound fits an SCF receptor binding site on

growth of epithelial cells, ex vivo or in vitro growth of stromal cells, ex vivo or in vitro dendritic cell stimulation, and in vivo cell mobilization.

- 15. A method for designing a compound capable of binding to the stem cell factor (SCF) receptor site of comprising the steps of:
 - a) determining a binding site for the SCF receptor on the SCF based on the threedimensional structure of SCF or an SCF polypeptide or portion/fragment thereof, atomic coordinates computed from X-ray diffraction data of a crystal comprising a polypeptide having an amino acid sequence portion of SCF capable of binding the receptor; and
 - b) designing a compound comprising an entity that binds the SCF receptor.
- 16. The method of claim 15, wherein the design of the compound of step (b) is determined by shape complementarity or by estimated interaction energy.
- 17. The method of claim 15, wherein the designed compound fits an SCF receptor binding site on SCF receptor as shown in Figure 6.

SCF receptor as shown in Figures 7A or 7B.

- 19. The method of claim 15, wherein the designed compound is a double-headed SCF ligand analog having the structure set forth in Figure 10A.
- 20. The method of claim 19, wherein each ligand head of the double-headed SCF ligand analog is an oligopeptide having the structure set forth in Figure 10B.
- method of claim 20, wherein 21. ooligopeptide comprises a sequence, wherein functional moiety F, corresponds to a segment of amino acid residues from within N-terminal residues 1-10 of SCF, functional moiety F2 corresponds to a segment of amino acid residues from within residues 79-95 of SCF, and functional moiety F_3 corresponds to a segment of amino acid residues located within three amino acid residues of amino acid residue 127, wherein F_3 , F_2 , and F_3 are connected by connecting peptide segements \boldsymbol{X}_{n} , X_m , and X_p , respectively, wherein n=0-5, m=0-5 and p=3-8 amino acid residues, respectively, and the conjugation moiety $F_{\scriptscriptstyle L}$ is a cysteine residue.
- 22. The method of claim 21, wherein the functional moieties F_1 , F_2 , and F_3 on the ligand heads have been selected by bacterial phage display

5

10

25

for optimal receptor binding.

- 23. The method of claim 21, wherein the functional moieties and connecting peptide segments of an active oligopeptide ligand head are replaced by chemical mimetics.
- 24. The method of claim 15, wherein an appropriate chemical scaffold of connecting segments has been designed to comprise (present) functional moieties F_1 , F_2 , and F_3 , which have been selected by combinatorial chemistry for optimal receptor binding from a library of chemical moieties complementary to receptor-binding sites on the surface of SCF.
- 25. The method of claim 15, wherein the linker comprises an organic polymer having two ends capped at each end by a reactive capping moiety, $F_{\rm c}$, which react covalently with the conjugation moiety, $F_{\rm b}$, on the ligand head.
- 26. The method of claim 25, wherein the organic polymer is polyethyleneglycol (PEG) comprising the structure H[OCH₂CH₂]_nOH, wherein n is 10-20.
- 27. The method of claim 25, wherein the capping moiety, $F_{\rm c}$, is a thiol-reactive group such as N-ethyl maleimide.

5

10

25

3.0

- 28. The method of claim 15, wherein the conjugating moiety, F_L , is a thiol containing group such as cysteine.
- 29. A compound designed by the method of claim 15.
- 30. A composition comprising the compound designed by the method of claim 15 and a pharmaceutically acceptable carrier.
- 31. The compound of claim 30, wherein the compound comprises an isolated SCF analog, whose alteration site is a receptor-binding site on the surface of the altered SCF molecule.
- 32. A method of treating a subject comprising administration of a compound designed by the method of claim 32.
- The method of claim 32, wherein the subject has a blood disorder.
- The method of claim 33, wherein the blood disorder is anemia or immunodeficiency.
- 35. The method of claim 32, wherein the compound is an isolated SCF analog.
- 36. A method of stimulating the production of hematopoietic cells in a subject comprising administering an isolated stem cell factor

(SCF) analog.

- 37. The method of claim 36, wherein isolated stem cell factor (SCF) analog is prepared by the method of claim 1 or designed by the method of claim 32.
- 38. The method of claim 37, wherein the isolated SCF analog comprises amino acid residues of native or recombinant SCF1-165 or amino acid residues of a recombinant selenomethionyl SCF1-141.
- 39. An isolated stem cell factor (SCF) molecule, which is an altered SCF, comprising any portion of amino acids 1-165 of a human SCF polypeptide, optionally comprising an N-terminal methionine before amino acid residue 1, wherein the polypeptide has an amino acid sequence portion of SCF capable of binding to the SCF receptor.
- 40. The altered isolated stem cell factor molecule of claim 39, wherein an alteration is selected from the group consisting of deletion, insertion and substitution of at least one amino acid residue from the naturally occurring amino acid sequence of SCF.
- 41. The altered isolated stem cell factor molecule of claim 40, wherein an alteration is a

5

10

25

25

- truncated SCF comprising amino acids 1-141 of a human SCF polypeptide, optionally comprising an N-terminal methionine before amino acid residue 1.
- 42. The altered isolated stem cell factor molecule of claim 40, wherein the substitution of at least one amino acid residue is selected from the group consisting of SCF(Y26C) disulfidelinked dimer, SCF(D25C), SCF(K62C), SCF(K78N, N81K), SCF(R117A, I118A), SCF(E92A, S95A), and SCF(D124A, K127D).
- 43. A stem cell factor molecule of claim 40, wherein the overall three-dimensional conformation of the stem cell factor molecule has an altered three-dimensional structure of the αC - $\beta 2$ loop.
- 44. A pharmaceutical composition comprising the altered isolated SCF molecule of claim 39 and a pharmaceutically acceptable carrier.
- 45. A stem cell factor molecule of claim 39, wherein the molecule is a hybrid molecule of the altered stem cell factor molecule and a second protein or fragment thereof.
- 46. A stem cell factor molecule of claim 39, wherein the alteration of the αC-β2 loop is a change in length of the amino acid sequence of

the $\alpha C-\beta 2$ loop by a deletion or an insertion of at least one amino acid residue or a change in at least one amino acid residue from the naturally occurring amino acid residue(s) of the $\alpha C-\beta 2$ loop.

47. The altered isolated stem cell factor molecule of claim 46, wherein the change in said at least one amino acid residue from the naturally occurring amino acid residue(s) is selected from the group consisting of SCF(Y26C) disulfide-linked dimer, SCF(D25C), SCF(K62C), SCF(K78N, N81K), SCF(R117A, I118A), SCF(E92A, S95A), and SCF(D124A, K127D).

CONJUGATED LIGANDS FOR THE STIMULATION OF BLOOD CELL PROLIFERATION BY EFFECTING DIMERIZATION OF THE RECEPTOR FOR STEM CELL FACTOR

ABSTRACT OF THE DISCLOSURE

This invention provides a computer based method for preparing a stem cell factor (SCF) comprising the steps of: (a) providing computer expression of the three dimensional structure of an SCF molecule using its crystal structure; (b) selecting from the computer expression of step (a) least one site on the SCF molecule for alteration; (c) preparing a SCF molecule having an alteration at said at least one selected site; and (d) optionally, testing the SCF molecule for a desired characteristic. This invention also provides SCF analogs and SCF ligand analogs prepared according to the above-described method. Compositions comprising SCF analogs or SCF ligand analogs prepared according to the above-described method effective to treat a subject and a pharmaceutically acceptable carrier are provided, as are methods of treating a subject comprising administration of pharmaceutical compositions comprising the prepared SCF analogs and SCF ligand analogs prepared by the described methods. This invention also provides methods for designing compounds capable of binding to the SCF receptor site and compounds designed by the above-descibed methods.

5

Figure 1

Figure 2

Figure 3

NEWERNER PRODUCE CONTROL OF THE PROPERTY OF TH	110 110
EEV B APARSPSPST APTG	PROPERTY CONTRACTOR CO
SCF MCSF IL4 GMCSF IL2 IL5	SCF MCSF IL4 GMCSF IL2 IL5

Figure 4

Figure 5

Figure 6

Figure 7


```
HEADER
          GROWTH FACTOR
                                                                  1SCF
         HUMAN RECOMBINANT STEM CELL FACTOR
TITLE
COMPND
          MOL ID: 1;
COMPND
          2 MOLECULE: STEM CELL FACTOR:
        3 CHAIN: A, B, C, D;
4 SYNONYM: SCF, SL, MGF, MAST CELL GROWTH FACTOR;
COMPND
COMPND
        5 ENGINEERED: YES;
6 BIOLOGICAL UNIT: DIMER
COMPND
SOURCE
         MOL ID: 1;
SOURCE 2 ORGANISM SCIENTIFIC: HOMO SAPIENS;
        3 ORGANISM COMMON: HUMAN;
4 EXPRESSION SYSTEM: NULL
SOURCE
SOURCE
          HUMAN STEM CELL FACTOR, STEEL FACTOR, KIT LIGAND, MAST CELL
KEYWDS
KEYWDS
         2 GROWTH FACTOR
EXPDTA
           X-RAY DIFFRACTION
AUTHOR
          X.JIANG, O.GUREL, K.E.LANGLEY, W.A.HENDRICKSON
             AUTH X.JIANG,O.GUREL,K.E.LANGLEY,W.A.HENDRICKSON
TITL CRYSTAL STRUCTURE OF RECOMBINANT HUMAN STEM CELL
JRNL
TRNI.
JRNL
             TITL 2 FACTOR
                   TO BE PUBLISHED
JRNL
            REF
JRNL
             REFN
                                                                       0353
REMARK
REMARK
REMARK
         2 RESOLUTION. 2.2 ANGSTROMS.
REMARK
         3
         3 REFINEMENT.
REMARK
REMARK
           PROGRAM
                          : X-PLOR 3.1
REMARK
        3
             AUTHORS
                         : BRUNGER
REMARK
         3
REMARK
        3 DATA USED IN REFINEMENT.
            RESOLUTION RANGE HIGH (ANGSTROMS) : 2.2
REMARK
         3
REMARK
             RESOLUTION RANGE LOW (ANGSTROMS) : 20.0
        3
REMARK
             DATA CUTOFF
                                       (SIGMA(F)) : 2
             DATA CUTOFF HIGH
                                       (ABS(F)): 100000
REMARK 3
REMARK
         3
             DATA CUTOFF LOW
                                         (ABS(F)) : 0.1
              COMPLETENESS (WORKING+TEST) (%): 96.6
REMARK
         3
REMARK
        3
             NUMBER OF REFLECTIONS
                                                  : 49851
REMARK
         3
REMARK
         3 FIT TO DATA USED IN REFINEMENT.
            CROSS-VALIDATION METHOD
REMARK
        3
                                                 : THROUGHOUT
             FREE R VALUE TEST SET SELECTION : RANDOM
REMARK
         3
REMARK
         3
             R VALUE
                                 (WORKING SET) : 0.199
REMARK 3
             FREE R VALUE
                                                 : 0.242
             FREE R VALUE TEST SET SIZE
FREE R VALUE TEST SET COUNT
                                           (%): 6.0
REMARK
REMARK
        3
             FREE R VALUE TEST SET COUNT : 3016
ESTIMATED ERROR OF FREE R VALUE : 0.0044
REMARK
         3
REMARK
        3
REMARK
            FIT IN THE HIGHEST RESOLUTION BIN.
PEMARK
         3
             TOTAL NUMBER OF BINS USED
                                                    : 10
REMARK
             BIN RESOLUTION RANGE HIGH
                                                (A) : 2.0
        - 3
             BIN RESOLUTION RANGE LOW
REMARK 3
                                               (A) : 2.28
REMARK
         3
             BIN COMPLETENESS (WORKING+TEST) (%) : 97.0
             REFLECTIONS IN BIN (WORKING SET) : 4349
REMARK
         3
REMARK 3
             BIN R VALUE
                                    (WORKING SET) : 0.3159
             BIN FREE R VALUE TEST SET SIZE (%): 6.4
BIN FREE R VALUE TEST SET COUNT: 302
REMARK 3
                                                    : 0.3450
REMARK
         3
                                                   : 302
PEMARK
       3
REMARK 3
             ESTIMATED ERROR OF BIN FREE R VALUE : 0.0198
REMARK
         3
       3 NUMBER OF NON-HYDROGEN ATOMS USED IN REFINEMENT.
REMARK
```

```
        REMARK
        3
        PROTEIN ATOMS
        : 35

        REMARK
        3
        NUCLBIC ACID ATOMS
        : 0

        REMARK
        3
        HETEROGEN ATOMS
        : 15

        REMARK
        3
        SOLVENT ATOMS
        : 26

                                              : 3517
                                               : 19
                                               : 264
          3
REMARK
REMARK
           3
              B VALUES.
          3
               FROM WILSON PLOT
MEAN B VALUE
(OVERALL, A**2): 38.5
REMARK
REMARK
               OVERALL ANISOTROPIC B VALUE.
REMARK
         3
REMARK
            3
                B11 (A**2) : NULL
         3
REMARK
                B22 (A**2) : NULL
         3
                B33 (A**2) : NULL
REMARK
REMARK
         3
                 B12 (A**2) : NULL
                B13 (A**2) : NULL
REMARK
REMARK
          3
                B23 (A**2) : NULL
REMARK
         3
REMARK
              ESTIMATED COORDINATE ERROR.
         3
               ESD FROM LUZZATI PLOT
REMARK
                                                    (A) : NULL
REMARK
          3
               ESD FROM SIGMAA
                                                   (A) : NULL
REMARK
         3
                LOW RESOLUTION CUTOFF
                                                   (A) : NULL
REMARK
         3 CROSS-VALIDATED ESTIMATED COORDINATE ERROR.
REMARK
         3
             ESD FROM C-V LUZZATI PLOT (A) : NULL
REMARK
                ESD FROM C-V SIGMAA
REMARK
           3
REMARK
          3
REMARK
         3 RMS DEVIATIONS FROM IDEAL VALUES.
REMARK
               BOND LENGTHS
         3
                                                    (A) : 0.016
               BOND ANGLES
                                            (DEGREES) : 2.5
PEMARK
REMARK
          3
               DIHEDRAL ANGLES
                                            (DEGREES) : 22.8
                IMPROPER ANGLES
                                            (DEGREES) : 2.05
REMARK
          3
REMARK
REMARK
          3 ISOTROPIC THERMAL MODEL : RESTRAINED
          á
REMARK
               ISOTROPIC THERMAL FACTOR RESTRAINTS. RMS
REMARK
          3
                                                                        STGMA
REMARK 3
               MAIN-CHAIN BOND
                                                    (A**2) : 1.2
                                                                      ; 1.5
REMARK 3
               MAIN-CHAIN ANGLE
                                                    (A**2) : 1.6
                                                                      ; 2.0
                                                    (A**2) : 2.1 ; 2.0
(A**2) : 2.4 ; 2.5
REMARK
           3
                SIDE-CHAIN BOND
REMARK
               SIDE-CHAIN ANGLE
           3
REMARK
          3
REMARK
          3 NCS MODEL : RESTRAINTS
REMARK
           3
          3 NCS RESTRAINTS.
                                                                RMS SIGMA/WEIGHT
REMARK
REMARK 3
               GROUP 1 POSITIONAL
GROUP 1 B-FACTOR
                                                       (A) : NULL ; NULL
                                                    (A**2) : NULL ; NULL
REMARK
REMARK
REMARK 3 PARAMETER FILE 1 : PARAM19_MOD.PRO
REMARK 3 PARAMETER FILE 2 : PARAM19_SOL
REMARK 3 PARAMETER FILE 3 : HETEROPARAM19_PAR
REMARK 3 TOPOLOGY FILE 1 : TOPH19_MOD.PRO
REMARK 3 TOPOLOGY FILE 2 : TOPH19_SOL
REMARK 3 TOPOLOGY FILE 3 : TOPH19_SOL
REMARK
          3
REMARK
          3 OTHER REFINEMENT REMARKS: REFINEMENT WAS PERFORMED WITH
REMARK
          3 ANOMALOUS ON; PARAM19 MOD.PRO AND TOPH19 MOD.PRO ARE
3 MODIFIED PARAMETER AND TOPOLOGY FILES OF PARAM19.PRO AND
REMARK
REMARK
         3 TOPH19.PRO, RESPECTIVELY, FOR SELENOMETHIONYL PROTEINS.
         3 NCS RESTRAINTS WERE APPLIED ONLY DURING THE INITIAL
REMARK
REMARK
          3 REFINEMENT.
REMARK
REMARK 4 1SCF COMPLIES WITH FORMAT V. 2.3,
```

```
REMARK
         6 THE FOLLOWING RESIDUES ARE DISORDERED IN THE STRUCTURE:
 REMARK
 REMARK
         6 Al-10; A92-103; Bl-10; Bl30-136; Bl39-141; Cl-10; C92-103; 6 Cl27-141; Dl-10; D91-103; D128-141
 REMARK
 REMARK
         7 THE SIDE CHAINS OF THE FOLLOWING RESIDUES ARE DISORDERED IN 7 THE STRUCTURE: All-13,A91,A127,A133,B11,B13,B93,B96-97,
BEMARK
 REMARK
         7 B103, B128, B137, C11, C13, C39, D11, D13, D90, D106, D127
REMARK
 REMARK
         8 LYS A 91 IS LAST RESIDUE BEFORE GAP, PHE B 129 IS LAST
8 RESIDUE BEFORE GAP, LYS C 91 IS LAST RESIDUE BEFORE GAP,
REMARK
REMARK
REMARK 8 PHE C 126 IS LAST RESIDUE BEFORE GAP, VAL D 90 IS LAST
          8 RESIDUE BEFORE GAP.
REMARK
REMARK 200
REMARK 200 EXPERIMENTAL DETAILS
REMARK 200 EXPERIMENT TYPE
                                                 : X-RAY DIFFRACTION
REMARK 200 DATE OF DATA COLLECTION : REMARK 200 TEMPERATURE (KELVIN) : 110
REMARK 200 PH
                                                 : 7.4
REMARK 200 NUMBER OF CRYSTALS USED
                                                 . 1
REMARK 200
REMARK 200 SYNCHROTRON
                                          (Y/N) : Y
REMARK 200 RADIATION SOURCE
                                                 : NSLS
REMARK 200 BEAMLINE
REMARK 200 X-RAY GENERATOR MODEL
                                                 : X4A
                                                 : NULL
REMARK 200 MONOCHROMATIC OR LAUE (M/L): M
REMARK 200 WAVELENGTH OR RANGE (A): 0.
                                         (A) : 0.986
REMARK 200 MONOCHROMATOR
                                                 : SILICON CRYSTAL
REMARK 200 OPTICS
                                                 : MIRRORS
REMARK 200
REMARK 200 DETECTOR TYPE
                                                : IMAGE PLATE
REMARK 200 DETECTOR MANUFACTURER
                                                 : FUJI
REMARK 200 INTENSITY-INTEGRATION SOFTWARE : DENSO
REMARK 200 DATA SCALING SOFTWARE
                                                : SCALEPACK
REMARK 200
REMARK 200 NUMBER OF UNIQUE REFLECTIONS : 65689
REMARK 200 RESOLUTION RANGE HIGH (A): 2.0
REMARK 200 RESOLUTION RANGE LOW (A): 25
REMARK 200 REJECTION CRITERIA (SIGMA(I)): -3
REMARK 200
REMARK 200 OVERALL.
REMARK 200 COMPLETENESS FOR RANGE
                                             (%): 94.9
REMARK 200 DATA REDUNDANCY
                                                : 2.75
REMARK 200 R MERGE
REMARK 200 R SYM
                                             (I) : NULL
                                             (I): 0.056
REMARK 200 <I/SIGMA(I) > FOR THE DATA SET : 15.3
REMARK 200
REMARK 200 IN THE HIGHEST RESOLUTION SHELL.
REMARK 200 HIGHEST RESOLUTION SHELL, RANGE HIGH (A) : 2.0
REMARK 200 HIGHEST RESOLUTION SHELL, RANGE LOW (A): 2.07
REMARK 200 COMPLETENESS FOR SHELL
                                           (%): 72
REMARK 200 DATA REDUNDANCY IN SHELL
                                                 : 2.23
REMARK 200 R MERGE FOR SHELL
                                           (I) : NULL
REMARK 200 R SYM FOR SHELL
REMARK 200 <I/SIGMA(I) > FOR SHELL
                                           (I) : 0.581
                                                 : 1.6
REMARK 200
REMARK 200 DIFFRACTION PROTOCOL: NULL
REMARK 200 METHOD USED TO DETERMINE THE STRUCTURE: MAD
REMARK 200 SOFTWARE USED: MADLSQ
REMARK 200 STARTING MODEL: NULL
```

```
REMARK 200
 REMARK 200 REMARK: NULL
 REMARK 280
 REMARK 280 CRYSTAL
 REMARK 280 SOLVENT CONTENT, VS (%): NULL
REMARK 280 MATTHEWS COEFFICIENT, VM (ANGSTROMS**3/DA): NULL
 REMARK 280
 REMARK 280 CRYSTALLIZATION CONDITIONS: PROTEIN WAS CRYSTALLIZED FROM
REMARK 280 22% PEG 400, 220 MM CACL2, 100 MM HEPES, PH 7.4 AND 5MM
REMARK 280 DTT IN 20 DEGREE ROOM
REMARK 290
REMARK 290 CRYSTALLOGRAPHIC SYMMETRY
REMARK 290 SYMMETRY OPERATORS FOR SPACE GROUP: P 21 21 21
REMARK 290
REMARK 290
                  SYMOP
                            SYMMETRY
REMARK 290
REMARK 290
                  NNNMMM
                            OPERATOR
                   1555
                            X,Y,Z
REMARK 290
                    2555
                            1/2-X,-Y,1/2+Z
REMARK 290
                    3555
                            -X,1/2+Y,1/2-Z
REMARK 290
                    4555
                            1/2+X,1/2-Y,-Z
REMARK 290
REMARK 290
                WHERE NNN -> OPERATOR NUMBER
REMARK 290
                        MMM -> TRANSLATION VECTOR
REMARK 290
REMARK 290 CRYSTALLOGRAPHIC SYMMETRY TRANSFORMATIONS
REMARK 290 THE FOLLOWING TRANSFORMATIONS OPERATE ON THE ATOM/HETATM
REMARK 290 RECORDS IN THIS ENTRY TO PRODUCE CRYSTALLOGRAPHICALLY
REMARK 290 RELATED MOLECULES.
             REMARK 290
                                                                       0.00000
REMARK 290
REMARK 290
                                                                       0.00000
REMARK 290
              SMTRY1 2 -1.000000 0.000000 0.000000
                                                                     35.90922
REMARK 290
              SMTRY2 2 0.00000 -1.000000 0.000000
SMTRY3 2 0.00000 0.000000 1.000000
                                                                       0.00000
REMARK 290
                                                                     44.09560
REMARK 290
              SMTRY1
                        3 -1.000000 0.000000 0.000000
                                                                       0.00000
              SMTRY2 3 0.000000 1.000000 0.000000
SMTRY3 3 0.000000 0.000000 -1.000000
REMARK 290
REMARK 290
                                                                      41.27456
                                                                      44.09560
REMARK 290
             SMTRY1 4 1.000000 0.000000 0.000000
SMTRY2 4 0.000000 -1.000000 0.000000
SMTRY3 4 0.000000 0.000000 -1.000000
                                                                     35.90922
REMARK 290
REMARK 290
                                                                     41.27456
                                                                       0.00000
REMARK 290
REMARK 290 REMARK: NULL.
REMARK 295
REMARK 295 NON-CRYSTALLOGRAPHIC SYMMETRY
REMARK 295 THE TRANSFORMATIONS PRESENTED ON THE MTRIX RECORDS BELOW
REMARK 295 DESCRIBE NON-CRYSTALLOGRAPHIC RELATIONSHIPS AMONG ATOMS
REMARK 295 IN THIS ENTRY. APPLYING THE APPROPRIATE MTRIX
REMARK 295 TRANSFORMATION TO THE RESIDUES LISTED FIRST WILL YIELD
REMARK 295 APPROXIMATE COORDINATES FOR THE RESIDUES LISTED SECOND.
REMARK 295 CHAIN IDENTIFIERS GIVEN AS "?" REFER TO CHAINS FOR WHICH
REMARK 295 ATOMS ARE NOT FOUND IN THIS ENTRY.
REMARK 295
REMARK 295
                             APPLIED TO
                                                    TRANSFORMED TO
REMARK 295
              TRANSFORM CHAIN RESIDUES
                                                    CHAIN RESIDUES
                                                                            RMSD
REMARK 295
                SSS
REMARK 295 M 1
REMARK 295 M 2
REMARK 295 M 3
REMARK 295 M 4
REMARK 295 M 5
                            В
                                         91
                                 11 ..
                                 11 ..
                                          91
                                                           11 .. 91
11 .. 91
                                                                           1.677
                            D
                                 11 ..
                                         91
                                                    A
                                                                          1.926
                            C
                                 11 ..
                                                          11 .. 91
                                         91
                                                           11 ..
                                                                   91
                                                                           1.764
```

```
1.810
REMARK 295
              M 6
                              11 .. 91
                                                     11 .. 91
11 .. 91
REMARK 295
                              11 .. 91
                                                                    0.898
REMARK 295
REMARK 295
REMARK 295
               WHERE SSS -> COLUMNS 8-10 OF MTRIX RECORDS
REMARK 295 REMARK:
REMARK 295 TRANSFORMATION RELATES CHAIN B TO CHAIN A; INCLUDING REMARK 295 RESIDUES 11-90 AND 104-126.
REMARK 295 TRANSFORMATION RELATES CHAIN C TO CHAIN A; INCLUDING
REMARK 295
           RESIDUES 11-90 AND 104-126.
REMARK 295 TRANSFORMATION RELATES CHAIN D TO CHAIN A; INCLUDING
            RESIDUES 11-90 AND 104-126.
REMARK 295
REMARK 295 TRANSFORMATION RELATES CHAIN C TO CHAIN B; INCLUDING
REMARK 295 RESIDUES 11-90 AND 104-126.
REMARK 295 TRANSFORMATION RELATES CHAIN D TO CHAIN B; INCLUDING
REMARK 295 RESIDUES 11-90 AND 104-126.
REMARK 295 TRANSFORMATION RELATES CHAIN D TO CHAIN C; INCLUDING
REMARK 295
            RESIDUES 11-90 AND 104-126.
REMARK 295 TRANSFORMATION RELATES CHAIN CD DIMER TO CHAIN AB DIMER;
REMARK 295 INCLUDING RESIDUES All-91, Al04-126, Bl1-B90, Bl04-127,
REMARK 295 C11-91, C104-126, D11-90, D104-127
REMARK 470
REMARK 470 MISSING ATOM
REMARK 470 THE FOLLOWING RESIDUES HAVE MISSING ATOMS (M=MODEL NUMBER:
REMARK 470 RES=RESIDUE NAME; C=CHAIN IDENTIFIER; SSEQ=SEQUENCE NUMBER;
REMARK 470 I=INSERTION CODE):
            M RES CSSEQI ATOMS
REMARK 470
               ASN A 11
VAL A 12
LYS A 13
REMARK 470
                                  OD1
                                        ND2
REMARK 470
                             CG1
                                  CG2
REMARK 470
                             CG
                                  CD
                                        CE
                                             NZ
REMARK 470
               LYS A 91
                             CG
                                  CD
                                        CE
                                             NZ
               LYS A 127
                             CG
                                  CD
REMARK 470
                                        CE
                                             NZ
               SER A 133
REMARK 470
                            OG
REMARK 470
               ASN B 11
                             CG
                                  OD1
                                        ND2
REMARK 470
               LYS B 13
                             CG
                                  CD
                                        CE
                                             ΝZ
               ASN B 93
REMARK 470
                             CG
                                  OD1
                                       ND2
REMARK 470
               LYS B 96
                             CG
                                  CD
                                        CE
                                             NZ
REMARK 470
               ASP B
                     97
                             CG
                                  OD1
                                       OD2
REMARK 470
               LYS B 103
                             CG
                                  CD
                                        CE
                                             NZ
REMARK 470
               ASP B 128
                            CG
                                  OD1
                                       OD2
REMARK 470
               ASP B 137
                            CG
                                  OD1
                                        OD2
                     11
               ASN C
                             CG
REMARK 470
                                  OD1
                                       ND2
REMARK 470
               LYS C
                             CG
                                  CD
                                        CE
                                             NZ
               LEU C
REMARK 470
                     39
                             CG
                                  CD1
                                        CD2
REMARK 470
               ASN D 11
LYS D 13
                             CG
                                  OD1
                                       ND2
REMARK 470
                             CG
                                             NZ
                                  CD
                                        CE
REMARK 470
               VAL D 90
                             CG1
                                  CG2
                            CG
REMARK 470
               GLU D 106
                                  CD
                                        OE1
                                             OE2
REMARK 470
               LYS D 127
                             CG
                                  CD
                                        CE
                                             NZ
REMARK 500
REMARK 500 GEOMETRY AND STEREOCHEMISTRY
REMARK 500 SUBTOPIC: CLOSE CONTACTS
REMARK 500
REMARK 500 THE FOLLOWING ATOMS THAT ARE RELATED BY CRYSTALLOGRAPHIC
REMARK 500 SYMMETRY ARE IN CLOSE CONTACT. AN ATOM LOCATED WITHIN 0.15
REMARK 500 ANGSTROMS OF A SYMMETRY RELATED ATOM IS ASSUMED TO BE ON A
REMARK 500 SPECIAL POSITION AND IS, THEREFORE, LISTED IN REMARK 375
REMARK 500 INSTEAD OF REMARK 500. ATOMS WITH NON-BLANK ALTERNATE
REMARK 500 LOCATION INDICATORS ARE NOT INCLUDED IN THE CALCULATIONS.
REMARK 500
```

```
REMARK 500 DISTANCE CUTOFF:
        REMARK 500 2.2 ANGSTROMS FOR CONTACTS NOT INVOLVING HYDROGEN ATOMS
        REMARK 500 1.6 ANGSTROMS FOR CONTACTS INVOLVING HYDROGEN ATOMS
       REMARK 500
        REMARK 500
                                               ATM1 RES C SSEQI ATM2 RES C SSEQI SSYMOP
                                                                                                                                                                                                                                            DISTANCE
        REMARK 500
                                                CA CA 1021 O
                                                                                                                                                       VAL A 139
                                                                                                                                                                                                       3655
       REMARK 500
       REMARK 500 REMARK: NULL
        REMARK 600
       REMARK 600 HETEROGEN
       REMARK 600 1PE: ONLY PART OF THE PEG400 CHAIN IS ORDERED IN THE
       REMARK 600 STRUCTURE.
| REMARK 999 | SCUENCE | REMARK 999 | SCC | A SWS | P21583 | 1 - 35 NOT IN ATOMS LIST | REMARK 999 | SCC | A SWS | P21583 | 167 - 273 NOT IN ATOMS LIST | REMARK 999 | SCC | B SWS | P21583 | 164 - 325 NOT IN ATOMS LIST | REMARK 999 | SCC | SWS | P21583 | 164 - 325 NOT IN ATOMS LIST | REMARK 999 | SCC | C SWS | P21583 | 1 - 35 NOT IN ATOMS LIST | REMARK 999 | SCC | C SWS | P21583 | 1 - 35 NOT IN ATOMS LIST | REMARK 999 | SCC | C SWS | P21583 | 1 - 35 NOT IN ATOMS LIST | REMARK 999 | SCC | SWS | P21583 | 1 - 35 NOT IN ATOMS LIST | REMARK 999 | SCC | SWS | P21583 | 1 - 35 NOT IN ATOMS LIST | REMARK 999 | SCC | D SWS | P21583 | SCC | HUMAN | 36 | 116 | DREFF | SCC | A 11 | 91 SWS | P21583 | SCC | HUMAN | 36 | 116 | DREFF | SCC | B 11 | 129 SWS | P21583 | SCC | HUMAN | 36 | 154 | DREFF | SCC | B 11 | 129 SWS | P21583 | SCC | HUMAN | 36 | 116 | DREFF | SCC | C 11 | 91 SWS | P21583 | SCC | HUMAN | 36 | 116 | DREFF | SCC | C 11 | 91 SWS | P21583 | SCC | HUMAN | 36 | 116 | DREFF | SCC | C 11 | 91 SWS | P21583 | SCC | HUMAN | 36 | 116 | DREFF | SCC | C 11 | 91 SWS | P21583 | SCC | HUMAN | 36 | 116 | DREFF | SCC | C 11 | 91 SWS | P21583 | SCC | HUMAN | 36 | 116 | DREFF | SCC | C 11 | 91 SWS | P21583 | SCC | HUMAN | 36 | 116 | DREFF | SCC | C 14 | 126 SWS | P21583 | SCC | HUMAN | 36 | 115 | DREFF | SCC | C 14 | 127 SWS | P21583 | SCC | HUMAN | 36 | 115 | DREFF | SCC | C 14 | 127 SWS | P21583 | SCC | HUMAN | 36 | 115 | DREFF | SCC | C 14 | 127 SWS | P21583 | SCC | HUMAN | 36 | 115 | DREFF | SCC | C 14 | 127 SWS | P21583 | SCC | HUMAN | 36 | 115 | DREFF | SCC | C 14 | 127 SWS | P21583 | SCC | HUMAN | 36 | 115 | DREFF | SCC | C 14 | 127 SWS | P21583 | SCC | HUMAN | 36 | 115 | DREFF | SCC | C 14 | 127 SWS | P21583 | SCC | HUMAN | 36 | 115 | DREFF | SCC | C 14 | 127 SWS | P21583 | SCC | HUMAN | 36 | 115 | DREFF | SCC | C 14 | 127 SWS | P21583 | SCC | HUMAN | 36 | 115 | DREFF | SCC | C 14 | 127 SWS | P21583 | SCC | HUMAN | 36 | 115 | DREFF | SCC | C 14 | 127 SWS
       REMARK 999
```

SEGADV 18CF C																
SEGADV 18CF C	CEOSDI	1000			ON		21 5 0	2	onn							
SECADV SICF C																
SECADV SICF C																
SEQADV 18CF C																
SEQADV SICF C																
SEQADV SICF C																
SEGADV 18CF C																
SEGADV 1 SCF C																
SECADU SICF SWS P21583																
SEQADV 1 SCF MSE D 36 SWS P21583 MET 52 MODIFIED										1:	27 G	AP II	I PDI	B EN	rry	
SEQADV 1 SICF MSE D 36 SWS P21583 MET 61 MODIFIED														BEN'	rry	
SEQADV SICST D																
SEQADV 18CF D																
SEQADV 18CF D				48												
SEQADV 18CF D																
SEGADAV 18CF																
SEQADV SICF D SWS P21583 SER 120 GAP IN PDB ENTRY													I PDI	3 EN.	rry	
SEQADV SICF D SWS P21583 LYS 121 GAP IN PDB ENTRY																
SEQADV SICF D SWS P21583 ASP 122 GAP IN PDB ENTRY SEQADV SICF D SWS P21583 LYS 124 GAP IN PDB ENTRY SEQADV SICF D SWS P21583 LYS 125 GAP IN PDB ENTRY SEQADV SICF D SWS P21583 SER 126 GAP IN PDB ENTRY SEQADV SICF D SWS P21583 SER 126 GAP IN PDB ENTRY SEQADV SICF D SWS P21583 SER 126 GAP IN PDB ENTRY SEQADV SICF D SWS P21583 SER 126 GAP IN PDB ENTRY SEQADV SICF D SWS P21583 SER 126 GAP IN PDB ENTRY SEQADV SICF D SWS P21583 SER 126 GAP IN PDB ENTRY SEQRES 1 A 273 MET LYS LIVS THR GLIN THR TIPL LEU LITE CYS LIE TYR SEQRES 3 A 273 MET LYS LIVS THR GLIN THR TIPL LEU LITE CYS LIE TYR SEQRES 3 A 273 MET LYS LIVS AGA SAR SAV SAV SAV SAV SAV SEQRES 5 A 273 VAL THR LYS LIVE LEU VAL AS SAV SAV																
SEGADU SISCF D SWS P21583 LEU 123 GAP IN PDB ENTRY													I PDI	3 EN	rry	
SEQADV SICF D SWS P21583 LYS 124 GAP IN PDB ENTRY	SEQADV	1SCF														
SEQADU SISCF D			D				2158	3		12	23 G					
SEQADU SISCF D SWS P21583 SER 126 GAP IN PDB ENTRY												AP II	N PDI	ENT.	rry	
SEGADU SISCF D			D										N PDI	ENT	rry	
SEQARE A 273																
SECRES 1 A 273 MET LYS LYS THR GUN THR CUN THR CUN TUN LUS SLON THR GLN THR FUN LU TUN LU																
SEGRES 2 A 273 LEU GLN LEU LEU LEU PHE ASN PRO LEU VAL LYS THR GLY SEGRES 3 A 273 CLY ILE CYS ARG ASN ARG VAL THR ASN ASN VAL LYS ARG SEGRES 5 A 273 VAL THR LYS LEU VAL ALA ASN LEU PAC LYS ASP YAL LEU PAC SEGRES 6 A 273 SER HIS CYS TAR THE LYS LEU VAL ALA ASN LEU PAC LYS ASP TYR MSE SEGRES 7 A 273 SER HIS CYS TAR THE LYS LEU VAL ALA ASN LEU PAC LYS ASP VAL LEU PAC LYS LEU LYS TYR VAL PAC LYS ASP VAL LEU PAC LYS LEU LYS TYR VAL PAC LYS ASP VAL LEU LYS TYR VAL PAC LYS ASP LEU LYS TAR LYS LEU LYS TAR LYS ASP LEU LYS LYS LEU LYS LYS LEU LYS LYS ASP SER LEU LYR ASP LEU LYAL GAS LYS LEU LEU LEU LYS LYS LEU LYS LYS ASP LEU LYS LYS LYS LEU LYS LYS LYS LEU LYS LYS LEU LYS LYS LEU LYS LYS LEU LYS LYS LYS LEU LYS LYS LYS LYS LEU LYS LYS LYS LYS LYS LEU LYS	SEQADV	1SCF								12	28 G	AP II	N PDI	B EN	rry	
SEQRES 3 A 273 GLY ILE CYS ARG ASN ARG VAL THR ASN ASN VAL LYS ASP SECRES SECRES 4 273 VAL THR LYS LEU VAL ALA ASN LEU PRO LYS ASP TYR MED SECRES SECRES 5 A 273 ILE THR LEU LYS TYR VAL PRO GLY MSE ASP YAL LEU PRO SECRES SECRES 6 A 273 ILE THR LEU LYS TYR VAL PRO GLY MSE ASP VAL LEU PRO SECRES SECRES 6 A 273 SER HIS CYS TRP ILE SER GLU MEE VAL VAL GLN LEU PRO SECRES SECRES 8 A 273 ASP SER LEU THR ASP LEU LEU ASP LYS PHE SER ASN ILE SECRES SECRES 1 A 273 ASP SER GLU GLY LEU SER ASN TYR SER ILE LIA SER FILE LEU ASP LYS BER DEU SECRES 1 A 273 VAL ASN ILE VAL ASP ASP LEU LYL GLU CYS VAL LYS GLU SECRES GLU ASSN SER SER LYS ASP LEU LYL GLU CYS VAL LYS GLU SECRES GLU ASSN SER SER LYS ASP LEU LYL SER PHE LYS SER PHE LYS SER PHE VAL ASP SECRES 12 A 273 ASN SER SER LYS ASP LEU LYL LYS SER PHE LYS SER PHE LYL ASP PHE VAL ASP PHE VAL ASP PHE VAL ASP ASP SER SER SER SER SER SER ASP CYS VAL VAL SER SER LEU ARG ASN SECRES 12 A 273 ALL BER PHE SER LEU HIS TRY ALL AS ALL SER VAL THR LYS ASP SECRES 16 A 273 ASP SER SER SER SER SER ASN ARG LYS ALL SER VAL THR LYS ASP SECRES				MET	LYS	LYS	THR	GLN	THR	TRP	ILE	LEU	THR	CYS	ILE	TYR
SEGRES 4 A 273 VAL THR LYS LEU VAL ALA ASN LEU PRO LYS ASP TYR MSE SEGRES 5 A 273 SER HIS CYS TRP ILE SER GLU MSE ASP VAL LEU PRO SEGRES 6 A 273 SER HIS CYS TRP ILE SER GLU MSE ASP VAL VAL GLU LEU SER SEGRES 7 A 273 SER HIS CYS TRP ILE SER GLU MSE ASP VAL VAL GLU LEU SER SEGRES 8 A 273 SER HIS CYS TRP ILE SER SEN LEU ASP LYS HE SER ASN ILE LEE ASP LYS LEU SEGRES 8 A 273 SER GLU GLU YAL LYS GLU GLU CYS VAL LYS GLU SER	SEQRES															
SEQRES 5 A 273 ILE THR LEU LYS TYR VAL PRO GLY MSE ASP VAL LEU PRO SEQRES 6 A 273 SER HIS CYS TRP ILE SER GLU MER VAL VAL GLN LEU SER SECRES 7 A 273 SER HIS CYS TRP ILE SER GLU MER VAL VAL GLN LEU SER SECRES 8 A 273 ASP SER GLUG LYL LEU SER ASN TYR SER ILE ILE ASP LYS LEGGRES 9 A 273 VAL ASN ILE VAL ASP ASP LEU LEU ASP LYS SER GLUG LYL SER SER SER ILE ILE ASP LYS LEGGRES 10 A 273 VAL ASN ILE VAL ASP ASP LEU VAL GLU CYS VAL LYS GLU SECRES 11 A 273 GLU PRO ASK LEU PRE THE PRO GLU GLU CYS VAL LYS GLU SECRES 12 A 273 GLU PRO ASK LEU PRE THE PRO GLU GLU PRE PHE VAR ASP HEL VAS SER PRE VAL SER SER LEU ASP LYS SER PRE VAL VAL SER SER LYS SER PRE LYS SER PRE VAL VAL SER SER LYS ASP LEU VAL SER SER LYS SER PRE LYS SER PRE VAL VAL SER SER LYS ASP LYS VAL VAL SER SER LYS ASP SER SER ASP CYS VAL VAL SER SER THE LEU SECRES 14 A 273 SER PRO GLU LYS ASP SER ASP CYS VAL VAL SER SER THE LEU SECRES 16 A 273 SER PRO GLU LYS ASP SER ASP CYS VAL VAL SER SER LEU ARG ASN SEGRES 16 A 273 SER PRO GLU LYS ASP SER ASP CYS VAL VAL SER SER LEU ARG ASN SEGRES 16 A 273 SER PRO GLU LYS ASP SER ASP CYS VAL VAL SER SER LEU ARG ASN SEGRES 16 A 273 SER PRO GLU LYS ASP SER ASP CYS VAL VAL SER SER LEU ARG ASN SEGRES 16 A 273 SER PRO GLU LYS ASP SER ASP CYS VAL VAL SER SER LEU ARG ASN SEGRES 16 A 273 SER PRO GLU LYS ASP SER				GLY	ILE	CYS	ARG	ASN	ARG	VAL	THR	ASN	ASN	VAL	LYS	ASP
SEGRES 6 A 273 SER HIS CYS TRP ILE SER GLU MSE VAL VAL GLN LEU SER SEGRES 7 A 273 SER HIS CYS TRP LEU SER ASP LEU LEU ASP LYS PHE SER ASP LEU LEU SER ASP LEU LEU SER ASP LEU LEU SER ASP LEU LEU SER ASP LEU LYS LEU SER SER LYS LEU SEGRES 9 A 273 SER GLU GLU YLEU SER ASP LEU LYL GLU CYVAL LYS GLU SER SEGRES 10 A 273 SER GEU GLU FLA ASP LEU LYS LYS ER FLE LYS SER PRO SEGRES 11 A 273 SER SER LYS ASP LEU LYS LYS LEU SER SER LYS ASP LEU LYS LYS ASP PHE VAL VAL LYS CHOSEN SEGRES 11 A 273 PHE ASP ASP ASP LEU LYS LYS ASP PHE PHE ASF ALVE LYS ASP PHE VAL VAL LYS CHOSEN SEGRES 13 A 273 PHE ASP ASP ASP LEU LYS LYS SER PHE LYS ASP PHE VAL VAL LEU SEGRES 14 A 273 PHE ASP ASP ASP SER SER SER SER SER ASP ASP ASP ASP LEU LYS ASP PHE VAL VAL SER SER LYS ASP SER SER SER SER SER ASP ASP ASP ASP ASP SER ASP ASP SER ASP ASP ASP SER				VAL	THR	LYS	LEU	VAL	ALA	ASN	LEU	PRO	LYS	ASP	TYR	MSE
SEQRES 7 A 273 ASP SER LEU THR ASP LEU LEU ASP LYS PHE SER ASN ILE SEQRES 8 A 273 ASP SER GLUG LY LEU SER SAN TYR SER ILE ILA SAP LYS LEGURS SEQRES 9 A 273 VAL ASN ILE VAL ASP ASP LEU VAL GLU CYS VAL LYS GLU SEQRES 1 A 273 VAL ASN SER SER LYS ASP LEU LYS SER PHE LYS SER PHE SEQRES 1 A 273 BLE ASN AGR SER LEU ASP LEU LYS LYS SER PHE LYS SER PHE SEQRES 1 A 273 BLE ASN AGR SER LIE ASP ALD PHE LYS SER PHE LYL ASP SEQRES 1 A 273 BLE ASN AGR SER LIE ASP ALD PHE LYS ASP PHE VAL VAL SER				ILE	THR	LEU	LYS	TYR	VAL	PRO	GLY	MSE	ASP	VAL	LEU	PRO
SEGRES 8 A 273 SER GLU GLY LEU SER ASN TYR SER ILE ILE ASP LYS LEU SECRES 9 A 273 SER GLU GLY LEV SASP LEU LYS LYS SER PHE LYS SER PRO SECRES 1 A 273 ASN SER SER LYS ASP LEU LYS LYS SER PHE LYS SER PRO SECRES 1 A 273 ASN SER SER LYS ASP LEU LYS LYS SER PHE LYS SER PRO SECRES 1 A 273 PHE ASN ARG SER THE ASP ALA PHE LYS ASP PHE VAL VAL SER SECRES 1 A 273 PHE ASN ARG SER THE ASP ALA PHE LYS ASP PHE VAL VAL SER SECRES 1 A 273 SER PRO GLU LYS ASP SER ASP CYS VAL VAL SER SER ET LEU ANG RAN SEGRERS SECRES 1 A 273 SER PRO GLU LYS ASP SER ARG VAL SER VAL THE LYS PRO SECRES SECRES 1 A 273 ASP SER SER SER SER AND ARG LYS ALA LYS ASE ALE LEU ARG RAN SER SER LEU ARG AND SER SER LEU ARG AND SER				SER	HIS	CYS	TRP	ILE	SER	GLU	MSE	VAL	VAL	GLN	LEU	SER
SEQRES 9 A 273 VAL ASN ILE VAL ASP ASP EER LIV GLU VAL LIV GLU CSC VAL LIV GLU CSC VAL LIV GLU CSC VAL LIV GLU CSC VAL LIV GEU LIV SE SE CSC GEU PLE ASP ASE RE LYS SE PRE ASI ASE ASE LIV ASE ASE LIV ASE ASE LYS ASE PRE ASE ASE ASE CYS VAL VAL SES PRE ASE CU UT HS SER ASE ALL SER ASE				ASP	SER	LEU	THR	ASP	LEU	LEU	ASP	LYS	PHE	SER	ASN	ILE
SEGRES 10 A 273 ASN SER LYS ASP LEU LYS LYS ER PIE LYS SER PRO SEQRES 12 A 273 PHE ASN ARG LEU THE RAS LEU LYS LYS ASP PHE VAL VAL LYS ASP PHE VAL				SER	GLU	GLY	LEU	SER	ASN	TYR	SER	ILE	ILE	ASP	LYS	LEU
SEQRES 11 A 273 GLU PRO ARG LEU PRE THE PRO GLU GLU PRE PHE ARG ILE SEGRES 12 A 273 PHE ASN ARG SER ILE ASP ALA PHE LYS ASP PHE VAL ASP SEQRES 13 A 273 ALA SER GLU THE SER ASP CYS VAL VAL SER SER THE LEU SEGRES 15 A 273 SER PRO GLU LYS ASP SER ARG VAL SER VAL THE LYS ASP SEGRES 15 A 273 PHE MET LEU PRO PRO VAL ALA ALA SER SER LEU ARG ASN SEGRES 16 A 273 PHE MET LEU PRO PRO VAL ALA ALA SER SER LEU ARG ASN SEGRES 17 A 273 GLY ASP SER SER SER SER SER SER ASP AND ARG LY PHE ALA ALA MET ALA LEU PRO SEGRES 18 A 273 ALA LEU PRO SEGRES 18 A 273 ALA LEU PRO SEGRES 19 A 273 LEU TYR THP LYS LYS ARG GLN PRO SER LEU THR ARG ALA SEGRES 20 A 273 LEU TYR THP LYS LYS ARG GLN PRO SER LEU THR ARG ALA SEGRES 21 A 273 SER MET LEU GLI LE LEG LIG CLU GLU ASP ASN GLU ILE SEGRES 21 A 273 SER MET LEU GLI LIFE SER LEU LIE LEG GLU GLU ASP ASN GLU ILE SEGRES 21 A 273 SER MET LEU GLI LIFE SER LEU LIFE AND AGG GLU PHE GLN GLU VAL SEGRES 22 A 273 SER MET LEU GLI LIFE GLU GLU GLU ASP ASN GLU ILE SEGRES 23 B 273 SER MET LEU GLI LIFE GLU ARG GLU PHE GLN GLU VAL SEGRES 24 B 273 GLY LIE CYS SER GASN HE ARG ALA SER LEU HAR ARG GLU PHE GLN GLU VAL SEGRES 25 SEGRES SER SER SER SER SER SER SER SER SER				VAL	ASN	ILE	VAL	ASP	ASP	LEU	VAL	GLU	CYS	VAL	LYS	GLU
SEQRES 12 A 273 PHE ASN ARG SER ILE ASP ALA PHE LYS ASP PHE VAL VAL SEGORES SEQRES 13 A 273 ALA SER GUL THR SER ASP CYS VAL VAL SER SER SER THR LYS PRO SECRES SEQRES 16 A 273 SER PRO GUL LYS ASP SER ARG VAL AL SER SER LEU ARG SON SEGORES ALA ALE SER SER SER SER ASN ARG LYS ALLA LYS ASP DEPORT SEQRES 16 A 273 ASP SER SER SER SER ASN ARG LYS ALLA LYS ASP NO PRO SECRES ALA LEU PHE SER SER SER LEU HIS TRP ALA ALLA MET ALLA LEU PLO PRO PRO SECRES ALE VERLEY ALE VERLEY ALLA ALLA MET ALLA LEU PLO PRO PRO SECRES ALA LEU PHE SER SER LEU LIE ILE GLY PHE ALLA PHE GLY ALLA SECRES ALE VERLEY ALLA LYS ASP PASN GLU TLE SER SER SER LEU LIE ILE GLY PHE ALLA PHE GLY ALLA SECRES ALLA LYS ASP ASN GLU TLE TYR ALLA LYS ASP ASN GLU TLE TYR ALLA SER SER GLU THR ASP ASN GLU TLE TYR ALLA SER SER LEU THR ASP ASN GLU TLY STRE GLU TLY SER GLU TLY SE				ASN	SER	SER	LYS	ASP	LEU	LYS	LYS	SER	PHE	LYS	SER	PRO
SEQRES 1 A 273				GLU	PRO	ARG	LEU	PHE	THR	PRO	GLU	GLU	PHE	PHE	ARG	ILE
SEGRES 14 A 273 SER PRO GLU LYS ASP SER ARG VAL SER VAL THE LYS PRO SECRES 15 A 273 SER PRO GLU LYS ASP SER ARG VAL SER VAL THE LYS PRO SECRES 16 A 273 ASP SER SER SER SER ASN ARG LYS ALA SER SER LEU ARG ASS SECRES SER				PHE	ASN	ARG	SER	ILE	ASP	ALA	PHE	LYS	ASP	PHE	VAL	VAL
SEQRES 15 A 273 PHE MET LEU PRO PRO VAL ALA ALA SER SER LEU ARG ASN SEQRES 16 A 273 ASP SER				ALA	SER	GLU	THR	SER	ASP	CYS	VAL	VAL	SER	SER	THR	LEU
SEQRES 16 A 273 ASP SER SER <td></td> <td></td> <td></td> <td>SER</td> <td>PRO</td> <td>GLU</td> <td>LYS</td> <td>ASP</td> <td>SER</td> <td>ARG</td> <td>VAL</td> <td>SER</td> <td>VAL</td> <td>THR</td> <td>LYS</td> <td>PRO</td>				SER	PRO	GLU	LYS	ASP	SER	ARG	VAL	SER	VAL	THR	LYS	PRO
SEGRES 17 A 273 GLY ASP SER SER LEU HIS TRP ĀLĀ ĀLĀ MET ĀLĀ LEU PRO SECRES 19 ALĀ LEU PRO SECRES 20 A 273 LEU TYR TRP LYS LYS ARG GLN PRO GLU GLU ASP ASN GLU LYS SECRES 21 A 273 SER MET LEU GLN GLU LYS GLU ARG GLU PHE GLN GLU VAL SECRES 22 B ASR MET LEU GLN GLU LYS GLU ARG GLU PHE GLN GLU VAL SECRES 28 MET LYS LYS THR GLN THR TRP LIE LEU THE ASN PRO LEU VAL LYS THR GLN SECRES 3 B 273 LEU GLN LEU LEU LEU PHE ASN PRO LEU VAL LYS THR GLN SECRES 3 B 273 VAL THR LYS LEU VAL ALA ARG VAL THR ASN LEU PRO LYS ASP TYR MSE SECRES 6 B 273 VAL THR LYS LEU LYS TYV ALD PRO GLY MSE ASP VAL LEU PRO SECRES 4 B 273 SECRES LYS ASP LEU THR ASP LEU LY MSE AS VAL SER BLU SER SER GLU GLY LEU SER ASM TYC SER LEU THR LSS LEU VAL ASP ASP LEU LY ASP VAL LEU SER PRO LEU SECRES 18 273 ASP GLU LY LEU SER ASM TYC SER LEU LU CYS VAL LYS GLU SECRES 18 273 ASP GLU CYL LEU SER ASM TYC SER LEU LU CYS VAL LYS GLU SECRES 18 273 ASP GLU CYL LEU SER ASM TYC SER LEU				PHE	MET	LEU	PRO	PRO	VAL	ALA	ALA	SER	SER	LEU	ARG	ASN
SEQRES 18 A 273 ALA LEU PHE SER LEU ILE ILE GLY PHE ALA PHE GLY ALA SEQRES 19 A 273 LEU TYR THE LYS LYS ARG GLN PRO SER LEUT THR ARG ALA SEQRES 21 A 273 VAL GLU ASN ILE GLN ILE ASN GLU GLU ASP ASN GLU ILE SEQRES 21 A 273 SER MET LEU GLN GLU LYS GLU ASG GLU PHE GLN GLU VAL SEQRES 1 B 273 MET LYS LYS THR GLN THE TRP ILE LEU THR CYS ILE TYR SEQRES 28 273 GLY ILE CYS ARG ASN ARG VAL THR ASN ASN VAL LYS THR GLN SEGRES 3 B 273 GLY ILE CYS ARG ASN ARG VAL THR ASN ASN VAL LYS TRR GLU SEGRES 5 B 273 LLE THR LEU LYS LEU VAL ALA ASN LEU PRO LSO ASP TYR MES SEGRES 6 B 273 SER HIS CYS TRP ILE SER GLU MES VAL VAL GLN LEU PRO SEGRES 6 B 273 SER HIS CYS TRP ILE SER GLU MES VAL VAL GLN LEU PRO SEGRES 6 B 273 SER HIS CYS TRP ILE SER GLU MES VAL VAL GLN LEU PRO SEGRES 6 B 273 SER GLU GLY LEU SER SEN TYS SER ILE ILE ASP LYS LEU SEGRES 6 B 273 SER GLU GLY LEU SER ASN TYS SER ILE ILE ASP LYS LEU SEGRES 6 B 273 SASP SER GLU THE ASP ASP LEU LY LEU SER RILL SER ILE ASP LYS LEGRES SER B 273 SASP SER GLU THE ASP LEU LYS SER PRICE LYS SER PRICE SEGRES 6 B 273 SASP SER GLU THE ASP LEU LYS SER PRICE LYS SER PRICE SEGRES 6 B 273 SASP SER GLY ASP LEU LYS GRE PRICE LYS SER PRICE SEGRES 6 B 273 SASP SER LYS ASP LEU LYS GRE PRICE LYS SER PRICE SEGRES 6 B 273 SASP SER LYS ASP LEU LYS SER PRICE LYS SER PRICE SEGRES 6 B 273 SASP SER LYS ASP LEU LYS SER PRICE LYS SER PRICE SEGRES 6 B 273 SASP SER SER LYS ASP LEU LYS SER PRICE LYS SER PRICE SEGRES 6 B 273 SASP SER SER LYS ASP LEU LYS SER PRICE LYS SER PRICE SEGRES 6 B 274 SASP SER LYS ASP LEU LYS SER PRICE LYS SER PRICE SEGRES 6 LE B 274 SASP SER SER LYS ASP LEU LYS LEU PRICE SER SER LYS ASP LEU LYS SER PRICE LYS SER PRICE SEGRES 6 LE B 274 SASP SER SER LYS ASP LEU LYS SER PRICE LYS SER PRICE SEGRES 6 LE B 274 SASP SER SER LYS ASP LEU LYS SER PRICE LYS				ASP	SER	SER	SER	SER	ASN	ARG	LYS	ALA	LYS	ASN	PRO	PRO
SEQRES 19 A 273 LEU TYR TRP LYS LYS ARG GIN PRO SER LEU THR ARG ALA SEQRES 20 A 273 VAL GLU ASEN ILE GIN ILE ASEN GLU GLU ASP ASEN GLU IT SEQRES 21 A 273 SER MET LEU GLN GLU LYS GLU ARG GLU PHE GLN GLU VAL SEQRES 2 B 273 LEU GLN LEU GLU ASEN THR TRP LILE LEU THR CYS LLE TYS SEQRES 3 B 273 LEU GLN LEU LEU LEU PHE ASEN PRO LEU VAL LYS THR GLU SEQRES 4 B 273 VAL THR TYS LEU VAL ALA ASEN LEU PHO LYS ASP TYR MSE SEQRES 6 B 273 VAL THR TYS LEU VAL ALA ASEN LEU PHO LYS ASP VAL LEU PHO SEQRES 7 B 273 SEPREN LES LYS TYR VAL PRO GLY MSE ASP VAL LEU PHO SEQRES 7 B 273 SEPREN LES LYS TYR VAL PRO GLY MSE ASP VAL LEU PHO SEQRES 7 B 273 SEPREN LES LYS TYR VAL PRO GLY MSE ASP VAL LEU PHO SEQRES 7 B 273 SEPREN LEU THR ASP LEU LEU SEPREN LES LES SEQRES 8 B 273 SER GLU GLY LEU SER ASEN TYR SER LEU THE ASP LEU LEU SEPREN LES SEQRES 8 B 273 VAL ASEN LEU THE ASP LEU LEU THE ASP LEU LEU THE ASP LEU LEU THE ASP LEU THE LYS ESP PHE VAL LEU THE ASP LEU THE LYS ASP PHE VAL LEU THE ASP LEU THE LYS ASP PHE VAL LEU THE ASP LEU THE LYS ASP PHE VAL VAL CHE ASP LEU THE LYS ASP PHE VAL VAL CHE ASP LEU THE LYS ASP PHE VAL VAL CHE ASP LEU THE LYS ASP PHE VAL VAL CHE ASP LEU THE LYS ASP PHE VAL VAL CHE ASP LEU THE LYS ASP PHE VAL VAL CHE ASP LEU THE LYS ASP PHE VAL VAL CHE ASP LEU THE LYS ASP PHE VAL VAL CHE ASP LEU THE LYS ASP PHE VAL VAL CHE ASP LEU THE LYS				GLY	ASP	SER	SER	LEU	HIS	TRP	ALA	ALA	MET	ALA	LEU	PRO
SEQRES 20 A 273 VAL GLU ASN ILE GLN ILE ASN GLU GLU ASP ASN GLU ILE SEQRES 1 A 273 SER MET LIGU GLN GLU YS GLU ANG GLU PHE GLN GLU VAL SEQRES 1 B 273 MET LYS LYS THR GLN THE TRP ILE LEU THR CYS ILE TYR SEQRES 2 B 273 MET LYS LYS THR GLN THE TRP ILE LEU THR CYS ILE TYR SEQRES 3 B 273 GLY ILE CYS ARG ASN ARG VAL THR ASN ASN VAL LYS THR GLN SEGRES 4 B 273 VAL THE LYS LEU VAL ALA ASN LEU PRO LEU VAL SAS PTRY MES SEGRES 5 B 273 SER HIS CYS TRP ILE SER GLU MES VAL VAL GLN LEU PRO SEGRES 6 B 273 SER HIS CYS TRP ILE SER GLU MES VAL VAL GLN LEU PRO SEGRES 8 B 273 ASP SER LEU THE ASP LEU LEU ASP LYS PHE SER ASN ILE SEGRES 8 B 273 SER GLU GLY LEU SER NITYR SER ILE ILE ASP LYS LEGERS 10 B 273 VAL ASN ILE VAL ASP ASP LEU VAL GLU CYS VAL LYS GLU SEGRES 10 B 273 VAL ASN ILE VAL ASP ASP LEU LYS SER PHE LYS SER PHE SEGRES 10 B 273 SAN SER SER LYS ASP LEU LYS LEU YS SER PHE LYS SER PHE SEGRES 12 B 273 GLU PRO SER LYS ASP LEU LYS FAR PHE VAL VAL GLU PHE PHE ARG ILE SEGRES 12 B 273 GLU PRO SER LYS ASP LEU LYS FAR PHE VAL VAL PRO SECRES 12 B 273 GLU PRO SER LYS ASP LEU LYS FAR PHE VAL VAL PRO SECRES 12 B 274 GLU PRO SER LYS ASP LEU LYS FAR PHE VAL VAL PRO SECRES 12 B 274 GLU PRO SER LYS ASP LEU LYS FAR PHE VAL VAL PRO SECRES 12 B 274 GLU PRE PHE ASR ARG SER ILE ASP ALS PHE LYS SER PHE LYS SER PHE VAL VAL PRO SECRES 12 B 274 GLU PRE PHE VAL VAL PRO SER LEU LYS FAR PRE LYS SER PRE LYS SER PRE LYS SER PRE LYS SER PRO SER LEU LYS FAR PRE LYS SER				ALA	TEO	PHE	SER	LEU	TTE	ILE	GLY	PHE	ALA	PHE	GLY	ALA
SEQRES 21 A 273 SER MET LEU GLN GLU LYS GLU ARG GLU PHE GLN GLU VAL SEGRES 1 B 273 MET LYS LYS THR GLN THE TRP LIE LEU THE CYS LLE TYS EGGRES 2 B 273 LEU GLN LEU LEU LEU PHE ASN PRO LEU VAL LYS THR GLU SEGRES 3 B 273 LEU GLY LLE VAL ARG VAL THR ASN AND VAL LYS ASP SEGRES 5 B 273 VAL THR LYS LEU VAL ALA ASN LEU PRO LYS ASP TAL LEU PRO SEGRES 6 B 273 SER HIS CYS TRP TLE SER GLU MSE VAL VAL GLN LEU PRO SEGRES 7 B 273 ASP SER LEU THR ASP LEU LEU ASP LYS LEU SEGRES 8 B 273 ASP SER LEU THR ASP LEU LEU ASP LYS LEU SEGRES 8 B 273 SER GLU GLY LEU SER ASN TYR SER LLE LLE ASP LYS LEU SEGRES 10 B 273 VAL ASN LLE VAL ASP ASP LEU LU CYS VAL LYS GLU SEGRES 10 B 273 VAL ASN LLE VAL ASP ASP LEU LU LYS SER PHE LYS SER PLU SEGRES 10 B 273 VAL ASN LEU VAL ASP ASP LEU LYS SER PLU SER SEGRES 10 B 273 VAL ASN SER SER LYS ASP LEU LYS SER PLU SY SER PLU SER SEGRES 10 B 273 VAL ASN SER SER LYS ASP LEU LYS SER PLU SY SER PLU SEGRES PLU SEGRES 10 B 273 VAL ASN SER SER LYS ASP LEU LYS SER PLU SY SER PLU SEGRES 10 B 273 VAL ASN SER SER LYS ASP LEU LYS SER PLU SY SER PLU SEGRES PLU SEGRES PLU SER PLU SER PLU SER PLU SER PLU SEGRES PLU SEGRES PLU SER PLU SER PLU SER PLU SER PLU SER PLU SEGRES PLU SEGRES PLU SER PLU SER PLU SER PLU SER PLU SER PLU SEGRES PLU SEGRES PLU SER				LEU	TYR	TRP	LYS	LYS	ARG	GLN	PRO	SER	LEU	THR	ARG	ALA
SEQRES 1 B 273 MET LYS LYS THR GLN THE TRP ILE LEU THR CYS ILE TYR SECRES 2 B 273 LEU GILL LEU LEU LEU LEU PHE ASN PRO LEU VAL LYS THR GLN SECRES 3 B 273 GLY ILE CYS ARG ASN ARG VAL THR ASN ASN VAL LYS ASP SECRES 4 B 273 VAL THE LYS LEU VAL ALLA ASN LEU PRO LEV ASP TYR MED SECRES 5 B 273 LLE THR LEU LYS TYR VAL PRO GLY MSE ASP VAL LEU PRO SECRES 6 B 273 SER HIS CYS TRP ILE SER GLU MES VAL VAL GILL LEU PRO SECRES 7 B 273 ASP SER LEU THE ASP LEU LEU ASP LYS PHE SER ASN ILE SECRES 8 B 273 SER GLU GLY LEU SER ASN TYR SER ILE ILE ASP LYS LEU SECRES 10 B 273 VAL ASN ILE VAL ASP ASP LEU VAL GLU CYS VAL LYS GLU SECRES 10 B 273 VAL ASN ILE VAL ASP ASP LEU LYS SER PHE LYS SER PHE SER SECRES 10 B 273 GLU PRO ARG LEU PHE THE PRO GLU GLU PHE PHE ASR GLE LEGRES 12 B 273 GLU PRO ARG LEU PHE THE PRO GLU GLU PHE PHE ARG ILE SECRES 12 B 273 HE ASN ASS SER LEU HASP ASP LEU LYS LUF PHE VAL				VAL	GLU	ASN	ILE	GLN	ILE	ASN	GLU	GLU	ASP	ASN	GLU	ILE
SEORES 2 B 273 LEU GLN LEU LEU LEU PHE ASN PRO LEU VAL LYS THE GLU SECRES 3 B 273 GLY ILE CYS ARG ASN ARG VAL THR ASN ASN VAL LYS ASS SEORES 4 B 273 VAL THR LYS LEU VAL ALA ASN LEU PRO LYS ASP TYR MSE SEORES 5 B 273 VAL THR LYS LEU VAL ALA ASN LEU PRO LYS ASP TYR MSE SEORES 6 B 273 SER HIS CYS TRP ILE SER GLU MSE VALVAL GLN LEU PRO SEORES 7 B 273 ASP SER LEU THR ASP LEU LEU ASP VALVAL GLN LEU SER SEORES 8 B 273 SER GLU GLY LEU SER ASN TYR SER ILE LLE ASP LYS LEU SEORES 9 B 273 VAL ASN ILE VAL ASP ASP LEU LEU ASP LYS LEU SEORES 10 B 273 VAL ASN ILE VAL ASP ASP LEU LYL LYS SER PLE LLE LYS SER PLE SEORES 10 B 273 ASN SER SER LYS ASP LEU LLEU LY LYS SER PLE LYS SER PLE SEORES 10 B 273 GLU PRO ARG LEU PHE THR PRO GLU GLU PHE PHE ASP LYS LECORES 12 B 273 PHE ASN ARG SER ILE ASP ASP LEU LYS LEV PHE VAL				SER	MET	TEO	GLIN	GLU	LYS	GLU	ARG	GLU	PHE	GLN	GLU	VAL
SEGRES 3 8 273 GLY ILE CYS ARG AND AVAL THR ASN ASN VAL LIVS ASP SEGRES 5 5 273 ILE THR LEU LYS TYR VAL LA ASN LEU PRO SER ASP																
SECRES 4 B 273 VAL THR LYS LEU VAL ALA ALSN LEU PLO LYS TYR MSE SECRES 5 B 273 SER HIS CYS TP ILE SER LU LYS TR MSE VAL LU LU LU LYA VAL LAL LU LEU SER LU LYS TR MSE LEU LYS LYB LYB <t< td=""><td></td><td></td><td></td><td>LEU</td><td>GLN</td><td>LEU</td><td>LEU</td><td>LEU</td><td>PHE</td><td>ASN</td><td>PRO</td><td>LEU</td><td>VAL</td><td>LYS</td><td>THR</td><td>GLU</td></t<>				LEU	GLN	LEU	LEU	LEU	PHE	ASN	PRO	LEU	VAL	LYS	THR	GLU
SEGRES 5 B 273 ILE THR LEU LYS TYR VAL DRO GLY MSE ASP VAL LA GLN LEU FRO GLY MSE ASP VAL LA LEU LSE GLO MSE AL LSE BL LSE AL LSE RA MSE AL CM ASP SER LEU LH ASP LEU LEU ASP LSE RA MSE ASP LEU TH ASP LSE LEU TH ASP LSE LEU TH ASP LSE LEU LY ASP				GLY	TLE	CYS	ARG	ASN	ARG	VAL	THR	ASN	ASN	VAL	LYS	ASP
SEQRES 6 B 273 SER HIS CYS TRP ILE SER GLU MSE VAL VAL GLN LEU SER SEQRES 7 B 273 SEP SEL THA RSP LEU LEU ASP LYS PHE SER ASN ILE SEQRES 8 B 273 SER GLU GLY LEU SER ASN TYR SER ILE ILE ASP LYS LEU SEQRES 10 B 273 VAL ASN ILE VAL ASP ASP LEU VAL GLU CYS VAL LYS GLU SECRES 10 B 273 ASN SER SER LYS ASP LEU LYS LYS SER PHE LYS SER PHE SER ASN SER SER LYS ASP LEU LYS LYS SER PHE LYS SER PHE SEQRES 12 B 273 GLU PRO ARG LEU PHE THR PRO GLU GLU PHE PHE ASK AGE ILE ASP ALSP HEL LYS ASP PHE VAL VAL				VAL	THR	LYS	LEU	VAL	ALA	ASN	LEU	PRO	LYS	ASP	TYR	MSE
SEORES 7 B 273 ASP SER LEU THE ASP LEU LEU ASP LYS PHE SER ASN ILE SEORES 8 B 273 SER GLUG LY LEU SER ASN TYR SER ILE ILE ASP LYS LEU SEORES 9 B 273 VAL ASN ILE VAL ASP ASP LEU VAL GLU CYS VAL LYS GLUSEORES 10 B 273 ASN SER SER LYS ASP LEU LYS SER PHE LYS SER PHE SEAR ASP SER LEU LYS LYS SER PHE LYS SER PHE SEORES 12 B 273 GLU PRO ARG LEU PHE THE PRO GLU GLU PHE PHE ARG ILE SEORES 12 B 273 PHE ASN ARG SER ILE ASP ALA PHE LYS ASP PHE VAL VAL				ILE	THR	LEU	LYS	TYR	VAL	PRO	GLY	MSE	ASP	VAL	LEU	PRO
SEQRES 8 B 273 SER GLU GLY LEU SER ASN TYR SER ILE ILE ASP LYS LEU SEQRES 9 B 273 ANN SER SER LEU FAL FAL GLU CYS VAL LYS GLU SEQRES 10 B 273 ANN SER SER LYS ASP LEU LYS LYS SER PHE LYS SER PHE SEQRES 11 B 273 GLU PRO ARG LEU PHE THR PRO GLU GLU PHE PHE ARG IAE SEQRES 12 B 273 HE ASN ARG SER ILE ASP ALA PHE LYS ASP PHE VAL VAL				SER	HIS	CYS	TRP	TLE	SER	GLU	MSE	VAL	VAL	GLN	LEU	SER
SEGRES 9 B 273 VAL ASN ILE VAL ASP ASP LEU VAL GLU CYS VAL LYS GLU SEGRES 10 B 273 ASN SER SER LYS ASP LEU LYS LYS SER PHE LYS SER PRO SEGRES 11 B 273 GLU PRO ARG LEU PHE THE PRO GLU GLU PHE PHE ARG ILE SEGRES 12 B 273 PHE ASN ARG SER ILE ASP ALA PHE LYS ASP PHE VAL VAL				ASP	SER	LEU	THR	ASP	LEU	LEU	ASP	LYS	PHE	SER	ASN	ILE
SEÒRES 10 B 273 ASN SER SER LYS ASP LEU LYS LYS SER PHE LYS SER PRO SEÒRES 11 B 273 GLU PRO ARG LEU PHE THR PRO GLU GLU PHE PHE ARG ILE SEÒRES 12 B 273 PHE ASN ARG SER ILE ASP ALA PHE LYS ASP PHE VAL VAL				SER	GLU	GLY	LEU	SER	ASN	TYR	SER	. ILE	ILE	ASP	LYS	LEU
SEQRES 11 B 273 GLU PRO ARG LEU PHE THR PRO GLU GLU PHE PHE ARG ILE SEQRES 12 B 273 PHE ASN ARG SER ILE ASP ALA PHE LYS ASP PHE VAL VAL				VAL	ASN	TPE	VAL	ASP	ASP	LEU	VAL	GLU	CYS	VAL	LYS	GLU
SEQRES 12 B 273 PHE ASN ARG SER ILE ASP ALA PHE LYS ASP PHE VAL VAL				ASN	SER	SER	LYS	ASP	LEU	LYS	LYS	SER	PHE	LYS	SER	PRO
SEQRES 12 B 273 PHE ASN ARG SER ILE ASP ALA PHE LYS ASP PHE VAL VAL SEQRES 13 B 273 ALA SER GLU THR SER ASP CYS VAL VAL SER SER THR LEU				GTO	PRO	ARG	PEO	PHE	THR	PRO	GLU	GLU	PHE	PHE	ARG	ILE
SECRES IS B 2/3 ALA SER GLU THE SER ASP CYS VAL VAL SER SER THE LEU				PHE	ASN	AKG	SER	TLE	ASP	ALA	PHE	LYS	ASP	PHE	VAL	VAL
	SEQRES	13 B	2/3	нца	SER	GLU	THK	SEK	ASP	CIS	VAL	VAL	SER	SER	THR	TEO

MODRES 1SCF MSE C

MODRES MODRES 1SCF MSE D

1SCF MSE C

36 MET

48 MET

MET

15/85

Figure 8-8

```
SER PRO GLU LYS ASP SER ARG VAL SER VAL THR LYS PRO
               273
SEORES
       14 B
                    PHE MET LEU PRO PRO VAL ALA ALA SER SER LEU ARG
SEQRES
        15 B
               273
                                                                       ASN
SEORES
       16 B
               273
                    ASP SER SER SER SER ASN ARG LYS ALA
                                                         LYS ASN
                                                                  PRO
                                                                       PRO
                    GLY ASP SER SER LEU HIS TRP ALA
SEQRES
        17
               273
                                                     ALA MET
                                                              AT.A
                                                                  LEU
                                                                       PRO
SEORES
        18 B
               273
                    ALA LEU PHE SER LEU ILE ILE GLY PHE
                                                         ALA PHE GLY ALA
               273
                    LEU TYR TRP LYS
                                     LYS ARG GLN PRO SER
                                                          TJEST
SEQRES
       19 B
                                                              THR ARG
                                                                       ALA
               273
                    VAL GLU ASN
                                ILE GLN
                                         ILE ASN GLU GLU
                                                          ASP
                                                              ASN
SEORES
        20
                                                                  GLU
                                                                       TIE
                    SER MET LEU GLN
                                     GLU
                                         LYS GLU ARG GLU
SEORES
               273
                                                          PHE
                                                              GLN GLU
                                                                       VAL
        21
SEORES
         1 C
               273
                    MET LYS LYS THR GLN THR TRP
                                                 ILE LEU
                                                          THR
                                                              CYS ILE
                                                                       TYR
         2 C
                    LEU GLN LEU
                                LEU
                                     LEU
                                         PHE
                                             ASN
                                                      LEU
                                                              LYS THR
SEQRES
               273
                                                 PRO
                                                          VAL
                                                                       GLU
                    GLY ILE CYS ARG ASN ARG VAL THR ASN ASN
SEORES
               273
                                                              VAL LYS
                                                                       ASP
SEQRES
         4 C
5 C
               273
                    VAL THR LYS
                                LEU VAL ALA ASN LEU
                                                      PRO
                                                          LYS ASP TYR MSE
                                     TYR VAL PRO GLY
SEORES
               273
                    ILE THR LEU
                                LYS
                                                      MSE
                                                          ASP
                                                              VAL LEU
                                                                       PRO
SEQRES
         6 C
                    SER
                        HIS
                            CYS
                                     ILE
                                         SER
                                             GLU MSE
                                                      VAL
                                                          VAL
               273
                                 TRP
                                                              GLN LEU
                                                                       SER
                    ASP SER LEU
                                         LEU LEU ASP
SECRES
         7 C
               273
                                THR ASP
                                                     LYS
                                                          PHE SER ASN
                                                                       ILE
         8 C
               273
                    SER GLU GLY
                                LEU SER ASN TYR SER
                                                      ILE
                                                              ASP LYS
SEQRES
                                                          ILE
                                                                      LET
         9 0
                                                              VAL LYS
               273
                    VAL ASN ILE
                                VAL ASP ASP
                                             LEU VAL
                                                     GLU
                                                          CYS
                                                                      GLU
SECRES
       10 C
11 C
12 C
SEORES
               273
                    ASN SER SER
                                LYS ASP
                                         LEU LYS LYS SER
                                                          PHE
                                                              LYS
                                                                       PRO
               273
                    GLU PRO ARG LEU PHE THR PRO GLU GLU PHE PHE ARG
                                                                      TLE
SEQRES
              273
                    PHE ASN ARG SER ILE ASP ALA PHE LYS
                                                          ASP PHE VAL VAL
SEORES
        13 C
14 C
               273
                    ALA SER GLU
                                THR
                                     SER
                                         ASP CYS VAL
                                                      VAL
                                                          SER
                                                              SER THR
                                                                       LEU
SEQRES
              273
                    SER PRO GLU
                                LYS ASP SER ARG VAL SER
                                                          VAT.
SEORES
                                                              THR
                                                                  LYS
                                                                       PRO
        15 C
16 C
               273
                    PHE MET LEU PRO PRO VAL ALA ALA SER
                                                          SER
                                                              LEU
                                                                  ARG
                                                                      ASN
SEQRES
               273
                    ASP SER SER
                                SER SER ASN ARG LYS ALA
                                                          LYS ASN PRO
                                                                       PRO
SEORES
SEORES
        17 C
               273
                    GLY ASP SER
                                SER
                                    LEU HIS
                                             TRP ALA
                                                      ALA
                                                          MET
                                                              ALA
                                                                  LEU
                                                                       PRO
              273
                    ALA LEU PHE SER LEU ILE
        18 C
                                             ILE GLY PHE
                                                          ALA PHE GLY ALA
SECRES
                    LEU TYR TRP
                                     LYS ARG GLN PRO
              273
                                LYS
                                                      SER
                                                          LEU THR ARG ALA
SEQRES
        19 C
SEQRES
        20 C
               273
                    VAL GLU
                            ASN
                                ILE
                                     GLN
                                         ILE
                                             ASN GLU GLU
                                                          ASP
                                                              ASN
                                                                  GT-II
                                                                       TIE
        21 C
               273
                    SER MET LEU
                                GLN GLU
                                         LYS
                                             GLU ARG
                                                      GLU
                                                          PHE GLN GLU
                                                                       VAL
SEQRES
                                THR
                                     GLN THR TRP
                                                 ILE
                                                      LEU
SEORES
         1 D
              273
                    MET LYS LYS
                                                          THR CYS ILE
                                                                       TYR
SEQRES
         2 D
3 D
               273
                    LEU GLN LEU
                                LEU
                                     LEU PHE
                                             ASN
                                                 PRO
                                                      LEU
                                                          VAL
                                                              LYS
                                                                  THR
                                                                       CLU
                    GLY ILE CYS ARG ASN ARG VAL THR ASN ASN VAL LYS
SEQRES
              273
                                                                       ASP
                    VAL THR LYS LEU
SEQRES
         4 D
              273
                                     VAL ALA ASN LEU PRO LYS ASP TYR
                                                                       MSE
SEQRES
              273
                    ILE
                        THR LEU
                                LYS
                                     TYR
                                         VAL PRO GLY
                                                      MSE
                                                          ASP
                                                              VAL
                                                                  LEU
                                                                       PRO
         5 D
              273
                                     ILE SER GLU MSE
                                                      VAL VAL GLN
SEORES
         6 D
                    SER HIS
                            CYS
                                TRP
                                                                  LEU
                                                                       SER
         7 D
               273
                    ASP SER LEU THR ASP LEU LEU ASP
                                                      LYS
                                                          PHE
                                                              SER ASN
SEORES
                                                                       ILE
              273
                    SER GLU GLY
                                LEU
                                     SER ASN
                                             TYR SER
                                                      TLE
                                                          ILE ASP
                                                                  LYS
                                                                       LEU
SEORES
         8 D
         9 D
               273
                    VAL ASN
                            ILE
                                VAL
                                     ASP ASP LEU VAL GLU
                                                          CYS
                                                              VAL
                                                                  LYS
                                                                       GLU
SEORES
              273
                    ASN SER SER
                                LYS ASP
                                         LEU LYS LYS SER PHE LYS SER PRO
SEORES
        10 D
                    GLU PRO ARG
                                LEU
                                     PHE THR PRO GLU GLU
SEQRES
        11 D
              273
                                                          PHE PHE ARG ILE
SEQRES
        12 D
              273
                    PHE ASN ARG
                                SER
                                     TLE
                                         ASP
                                             ALA
                                                 PHE
                                                      LYS
                                                          ASP
                                                              PHE
                                                                  VAL
                                                                       VAL
              273
                    ALA SER GLU
                                                      VAL SER SER THR
SEQRES
        13 D
                                THR
                                     SER ASP CYS VAL
                                                                       LED
SEQRES
        14 D
              273
                    SER PRO GLU LYS ASP SER ARG VAL SER
                                                          VAL
                                                              THR
                                                                  LYS
              273
                    PHE MET LEU
                                PRO
                                     PRO
                                         VAL ALA ALA
                                                      SER
                                                          SER
                                                              LEU
                                                                  ARG
                                                                       ASN
SECRES
        15 D
                    ASP SER SER SER SER ASN ARG LYS ALA
SEORES
        16
           D
              273
                                                          LYS
                                                              ASN
                                                                  PRO PRO
        17 D
               273
                    GLY ASP SER
                                SER LEU HIS TRP ALA ALA
                                                          MET
                                                              ALA
                                                                  LEU PRO
SEQRES
                    ALA LEU PHE SER LEU ILE ILE GLY PHE ALA
              273
                                                              PHE GLY ALA
SEORES
        18 D
        19 D
               273
                    LEU TYR
                            TRP
                                LYS
                                    LYS ARG GLN PRO SER
                                                          LEU
                                                                  ARG
                                                                       ALA
SEQRES
                                                              THR
              273
                    VAL GLU ASN ILE GLN ILE ASN GLU GLU ASP ASN GLU
                                                                       TLE
SEORES
        20 D
                    SER MET LEU GLN GLU LYS GLU ARG GLU PHE GLN
SECRES
        21 D
             273
MODRES 1SCF MSE A
                     27
36
                         MET
                              SELENOMETHIONINE
                              SELENOMETHIONINE
MODRES
       1SCF MSE A
                         MET
MODRES 1SCF MSE A
                     48
                         MET
                              SELENOMETHIONINE
MODRES 1SCF MSE B
                     27
                         MET
                              SELENOMETHIONINE
MODRES 1SCF MSE B
                     36
                         MET
                              SELENOMETHIONINE
MODRES 1SCF MSE B
                     48
                         MET
                              SELENOMETHIONINE
MODRES 1SCF MSE C
                     27
                         MET
                              SELENOMETHIONINE
```

SELENOMETHIONINE

SELENOMETHIONINE

SELENOMETHIONINE

```
MODRES 1SCF MSE D
                      36 MET SELENOMETHIONINE
MODRES 1SCF MSE D
                      48 MET
                                SELENOMETHIONINE
HET
       MSE
                 27
                           8
       MSE
HET
             Α
                 36
                           8
HET
       MSE
                 48
                           8
HET
       MSE
             B
                27
                           Ř
HET
       MSE
             В
                 36
                           8
       MSE
HET
             В
                 48
                           8
HET
       MSE
             С
                 27
       MSE
             c
                           8
HET
                36
       MSE
HET
                 48
HET
       MSE
             D
                27
                           8
       MSE
             D
HET
                36
HET
       MSE
             D
                 48
                          8
        CA
              1021
HET
                          1
HET
        CA
              1022
        CA
HET
              1023
                          1
       1PE
HET
HETNAM
            MSE SELENOMETHIONINE
HETNAM
             CA CALCIUM ION
HETNAM
            1PE POLYETHYLENE GLYCOL
HETSYN
            1PE PEG400
FORMUL
         1
            MSE
                     3 (C5 H11 N1 O2 SE1)
FORMUL
         2
             MSE
                     3 (C5 H11 N1 O2 SE1)
                     3 (C5 H11 N1 O2 SE1)
FORMUL
         3
             MSE
FORMUL
         4
             MSE
                     3 (C5 H11 N1 O2 SE1)
FORMUL
         5
              CA
                     3 (CA1 2+)
FORMUL
         6
             1PE
                     C10 H22 O6
FORMUL
         7
             нон
                   *264 (H2 O1)
              1 VAL A
HELIX
         1
                         12
                             ASN A
                                      21
HELIX
         2
              2 SER A
                         41
                             CYS
                                      43
HELIX
         3
              3 SER A
                         46
                             LYS A
                                      62
HELIX
         4
              4 ASN A
                         72
                             CYS A
                                      29
HELIX
         5
              5 PRO A
                        112
                             LYS
                                  А
                                     127
                                           1
HELIX
         6
              6 VAL B
                         12
                             ASN B
                                      21
HELIX
         7
              7 SER B
                         41
                             CYS B
                                      43
                                           5
         8
              8 SER B
                         46
                             LYS B
                                           5
HELIX
                                      62
HELIX
         9
              9 ASN B
                         72
                             GLU B
                                      92
                                           1
HELIX
        10
            10 PRO B
                        112
                             LYS B
                                     127
                                           1
             11 VAL C
                             ASN C
HELIX
        11
                         12
                                      21
                                           1
                SER C
HELIX
        12
             12
                         41
                             LYS C
                                      62
            13 ASN C
                         72
HELIX
        13
                             VAL C
                                      90
                                           1
            14 PRO C
                             ASP C
HELIX
        14
                        112
                                     124
                                           1
HELIX
        15
             15
                VAL D
                         12
                             ASN D
                                      21
                                           1
            16 SER D
                             CYS D
HELIX
        16
                         41
                                      43
                                           5
HELIX
        17
             17 SER D
                         46
                             LYS D
                                      62
HELTX
        18
            18 ASN D
                         72
                             CYS D
                                      89
                                           1
HELIX
        19
            19 PRO D
                        112
                             ALA D
                                     125
                                           1
SHEET
         1
              A 2 THR A 29
                              LYS A
                                     31
                                           n
              A 2 PRO A 107
         2
                              LEU A 109
                                                 ARG A 108
SHEET
                                         -1
                                              N
                                                               0
                                                                 LEU A
SHEET
              B 2
                  THR B
                              LYS B
                                          ō
         1
                          29
                                      31
              B 2 PRO B 107
SHEET
                               LEU B 109
                                         -1
                                              N
                                                 ARG B 108
                                                                  LEU B
                                                                          30
SHEET
              C 2 THR C
                          29
                              LYS C
                                     31
                                          0
              C 2
                  PRO C 107
                              LEU C 109
SHEET
                                         -1
                                              N
                                                 ARG C 108
                                                               0
                                                                  LEU C
                                                                          30
                              LYS D 31
SHEET
         1
              D 2
                  THR D
                          29
                                           n
SHEET
         2
              D 2 PRO D 107
                              LEU D 109
                                         -1
                                              N
                                                 ARG D 108
                                                                  LEII D
                                                                          3.0
                  43
SSBOND
         1 CYS A
                           CYS A 138
SSBOND
           CYS B
                    43
                           CYS B
                                   138
LINK
              N
                  MSE A
                          27
                                               С
                                                    TYR A
                                                           26
LINK
              C
                  MSE A
                          27
                                                    ILE A
                                                            28
```

10

3

17

18

10

17

21

16

10

22

19

13

10

17

18

3

```
LINK
                  MSE A
                         36
                                                GLY A
                 MSE A
LINK
                         36
                                                 ASP A
                                                        37
LINK
                  MSE A
                         48
                                                 GLU A
                                                        47
                 MSE A
LINK
                         48
                                                 VAL A
                                                        49
LINK
                  MSE B
                         27
                                            C
                                                 TYR B
LINK
             C
                  MSE B
                         27
                                                 ILE B
LINK
             N
                  MSE B
                                                 GLY B
                         36
                                                        35
LINK
             C
                 MSE B
                         36
                                                 ASP B
                                                        37
LINK
             N
                 MSE B
                         48
                                            CNC
                                                 GLU B
                                                        47
             c
LINK
                 MSE B
                         48
                                                 VAL B
                                                        49
LINK
             N
                 MSE C
                         27
                                                 TYR C
                                                        26
                 MSE C
                                            NC
                                                ILE C
LINK
             С
                         27
                                                        28
             N
LINK
                         36
             C
                 MSE C
                                            N
                                                 ASP C
LINK
                         36
                                                        37
LINK
             Ñ
                 MSE C
                                            c
                                                GLU C
                         48
                                                        47
LINK
             C
                 MSE C
                                            N
                                                 VAL C
                         48
             N
                 MSE D
                                            Ĉ
LINK
                         27
                                                 TYR D
                                                        26
             C
                 MSE D
                                            N
LINK
                         27
                                                 ILE D
LINK
             N
                 MSE D
                         36
                                            C
                                                GLY D
                                                        35
             C
LINK
                 MSE D
                        36
                                                ASP D
                                                        37
LINK
             N
                 MSE D
                        48
                                            C
                                                 GLU D
                                                        47
LINK
             C
                 MSE D
                        48
                                            N
                                                 VAL D
                                                        49
            CA
                  CA 1021
                                            0
                                                 HOH
                                                     1024
LINK
LINK
            CA
                  CA 1021
                                            ō
                                                 нон
                                                      1025
LINK
            CA
                  CA
                       1023
                                            0
                                                 HOH
                                                      1027
                  CA
                      1023
LINK
            CA
                                            0
                                                 HOH
                                                      1028
            CA
                  CA
LINK
                      1023
                                            0
                                                 HOH
                                                      1029
CISPEP
         1 SER A
                  104
                         PRO A 105
CRYST1
         71.820
                  82.550
                         88.190 90.00
                                           90.00
                                                 90.00 P 21 21 21
                                                 0.00000
ORIGX1
            1.000000 0.000000 0.000000
ORIGX2
            0.000000
                      1.000000
                                 0.000000
                                                  0.00000
ORIGX3
            0.000000
                      0.000000
                                 1.000000
                                                  0.00000
SCALE1
            0.013924
                      0.000000
                                 0.000000
                                                  0.00000
SCALE2
            0.000000
                      0.012114
                                 0.000000
                                                  0.00000
SCALE3
            0.000000
                      0.000000
                                 0.011339
                                                  0.00000
          0.915300 0.368400
                                 0.162800
MTRIX1
                                                -10.34380
MTRIX2
        1 0.357100 -0.929200 0.095000
                                                35.55670
MTRIX3
            0.186300 -0.028800 -0.982100
                                                43.17570
MTRIX1
          -0.935658 -0.315827 -0.157471
                                                63.79985
         2 -0.265278 0.923709 -0.276386
MTRIX2
                                                17.94411
MTRIX3
          0.232747 -0.216829 -0.948058
                                                 63.68074
          -0.994700 0.088300 -0.051700
MTRIX1
                                                54.54720
MTRIX2
         3 -0.094000 -0.988400 0.119100
                                                 48.88150
MTRIX3
         3 -0.040600
                      0.123400
                                0.991500
                                                -20.54390
MTRIX1
         4 -0.991100
                     0.100500 -0.087800
                                                55.16840
MTRIX2
         4 -0.117800 -0.968000 0.221700
                                                 45.07210
        4 -0.062700 0.230100
                                0.971100
                                                -21.92400
MTRIX3
MTRIX1
          -0.951900
                     -0.248300
                                0.179700
                                                52.26270
MTRIX2
          -0.277100 0.947600 -0.158800
                                                 13.33780
MTRIX3
          -0.130900 -0.200900 -0.970800
                                                74.41510
                                                 0.55340
MTRIX1
         6
           0.984200
                     0.147100 -0.098100
MTRIX2
         6
            0.142600 -0.988400 -0.052100
                                                 52.60730
MTRIX3
          -0.104600
                     0.037300 -0.993800
                                                 86.74100
         7 -0.955400 -0.244200
                                0.166100
                                                 52.84290
MTRIX1
MTRIX2
         7 -0.269500
                     0.950900 -0.152200
                                                 12.52990
MTRIX3
         7 -0.120800 -0.190100 -0.974300
                                                 73.76110
ATOM
          1 N
                 ASN A 11
                                 10.232
                                          3.110
                                                 20.636
                                                          1.00 60.07
          2 CA
3 C
                 ASN A 11
                                  9.176
                                          3.892
ATOM
                                                  19.994
                                                          1.00 59.79
                 ASN A
                                  9.647
                                          5.204
                                                  19.309
ATOM
                         11
                                                          1.00 59.52
                 ASN A
                                  9.661
                                          6.288
                                                          1.00 59.97
ATOM
                                                  19.910
```

Figure 8-11

ATOM	5	CB	ASN	Α	11	8.	.113	4.228	R	21.038	1 00	60.46
ATOM	6	N	VAL		12		013	5.143		18.009	1.00	57.40
ATOM	7	CA	VAL		12		715	6.225		17.309	1.00	53.71
ATOM	8	C	VAL	Α	12		844	7.381		16.820	1.00	50.84
ATOM	9	0	VAL	Α	12		343	8.268		16.130	1.00	51.46
ATOM	10	CB	VAL	Α	12		541	5.65		16.126	1.00	53.25
ATOM	11	N	LYS	A	13		543	7.490		17.147	1.00	49.07
ATOM	12	CA	LYS		13		721	8.640		16.756	1.00	44.35
ATOM	13	C	LYS		13		114	9.879		17.542	1.00	42.88
ATOM	14	0	LYS	Α	13		271	10.999		17.007	1.00	41.79
ATOM	15	CB	LYS	Α	13		258	8.378		17.093	1.00	44.76
ATOM	16	N	ASP	Α	14		283	9.55		18.839	1.00	38.29
ATOM	17	CA	ASP	A	14		609	10.545		19.818	1.00	35.56
ATOM	18	C	ASP	Α	14		068	10.894		19.718	1.00	32.01
ATOM	19	0	ASP	A	14		389	12.060		19.896	1.00	30.80
ATOM	20	CB	ASP	A	14		151	10.072		21.200	1.00	38.77
ATOM	21	CG	ASP	Α	14		725	10.518		21.630	1.00	43.77
ATOM	22	OD1	ASP	Α	14		046	11.324		20.969	1.00	45.53
ATOM	23	OD2	ASP	A	14		269	10.057		22.680	1.00	47.33
ATOM	24	N	VAL	A	15		939	9.938		19.360	1.00	28.31
MOTA	25	CA	VAL	A	15	12.	335	10.224		19.089	1.00	27.35
MOTA	26	C	VAL	Α	15	12.	510	11.219) :	17.959	1.00	29.06
ATOM	27	0	VAL	Α	15	13.	265	12.166	5 :	18.138	1.00	32.49
ATOM	28	CB	VAL	Α	15	13.	191	8.976		18.792	1.00	26.33
MOTA	29	CG1	VAL	Α	15	14.	623	9.347		18.405	1.00	20.32
ATOM	30	CG2	VAL	Α	15	13.	215	8.064		800.00	1.00	24.37
ATOM	31	N	THR	A	16	11.	858	11.085	:	16.807	1.00	28.42
ATOM	32	CA	THR	Α	16	11.	968	12.085	; ;	15.758	1.00	27.97
ATOM	33	C	THR	Α	16	11.	386	13.413	3 :	16.208	1.00	25.43
ATOM	34	0	THR		16	12.		14.418	3 :	15.905	1.00	25.82
MOTA	35	CB	THR		16	11.		11.646	; ;	14.385	1.00	27.70
MOTA	36	OG1		Α	16		959	11.529		14.588	1.00	32.27
ATOM	37	CG2	THR		16	11.		10.335		L3.912	1.00	25.71
ATOM	38	N		Α	17	10.		13.459		L6.928	1.00	24.83
ATOM	39	CA		Α	17		701	14.698		L7.482	1.00	23.60
ATOM	40	C		A	17	10.		15.401		L8.410	1.00	21.54
MOTA	41	0		A	17	10.		16.624		L8.373	1.00	23.88
MOTA	42	CB		A	17		365	14.488		L8.206	1.00	27.08
ATOM	43	CG		Α	17		291	14.120		L7.198	1.00	34.84
ATOM	44	CD		A	17		881	14.040		L7.781	1.00	40.64
ATOM	45	CE		A	17		800	13.911		16.665	1.00	45.98
ATOM	46	NZ		A	17		607	12.559		16.140	1.00	48.58
ATOM	47 48	N CA	LEU	A	18	11.		14.646		19.212	1.00	19.73
ATOM ATOM	49	CA	LEU		18 18	12.		15.207 15.778		20.151	1.00	17.98
ATOM	50	Ö		A	18	13.		16.959		L9.401 L9.523	1.00	17.55
ATOM	51	CB	LEU		18	12.		14.144		21.121	1.00	17.68
ATOM	52	CG		A	18	13.		14.582		2.216	1.00	17.63 15.34
ATOM	53	CD1	LEU		18	13.		15.668		3.080	1.00	15.28
ATOM	54	CD2	LEU .		18	14.		13.389		23.032	1.00	14.40
ATOM	55	N	VAL		19	14.		14.952		18.577	1.00	18.35
ATOM	56	CA	VAL.		19	15.		15.421		17.628	1.00	19.40
ATOM	57	c	VAL .		19	14.		16.628		6.824	1.00	18.97
ATOM	58	Ö	VAL .		19	15.		17.562		6.711	1.00	22.36
ATOM	59	CB	VAL		19	15.		14.325		16.729	1.00	18.19
ATOM	60	CG1	VAL .		19	16.		14.817		5.708	1.00	20.68
ATOM	61	CG2	VAL .		19	16.		13.390		17.612	1.00	19.91
ATOM	62	N	ALA .		20	13.		16.732		16.366	1.00	18.27
ATOM	63	CA	ALA .		20	13.		17.946		5.719	1.00	17.82
ATOM	64	C	ALA .		20	12.5		19.074		6.711	1.00	
		-										_0.50

0.0

Figure 8-12

ATOM	65	0	ALA	А	20	12.977	20.244	16.352	1.00 20.70
ATOM	66	CB	ALA		20	11.777	17.661	15.059	1.00 17.70
ATOM	67	N	ASN		21	12.677	18.787	17.979	1.00 20.04
ATOM	68	CA	ASN		21	12.450	19.852	18.933	1.00 20.73
ATOM	69	С	ASN	Α	21	13.695	20.161	19.771	1.00 20.34
ATOM	70	0	ASN	A	21	13.627	20.909	20.741	1.00 21.05
ATOM	71	CB	ASN	Α	21	11.235	19.456	19.751	1.00 20.84
ATOM	72	CG	ASN	Α	21	10.409	20.664	20.103	1.00 21.87
ATOM	73	OD1	ASN	Α	21	10.157	21.501	19.250	1.00 20.51
ATOM	74	ND2	ASN	Α	21	9.983	20.853	21.359	1.00 25.03
ATOM	75	N	LEU	A	22	14.851	19.615	19.399	1.00 18.22
ATOM	76	CA	LEU	A	22	16.129	19.924	20.000	1.00 17.27
ATOM	77	C	LEU	Α	22	17.023	20.733	19.051	1.00 19.37
ATOM	78	0	LEU	Α	22	17.001	20.468	17.851	1.00 19.69
ATOM	79	CB	LEU	A	22	16.856	18.631	20.432	1.00 16.17
ATOM	80	CG	LEU	A	22	16.342	17.790	21.598	1.00 14.77
ATOM	81	CD1	LEU	A	22	17.058	16.447	21.768	1.00 14.07
ATOM	82	CD2	LEU	A	22	16.463	18.606	22.862	1.00 11.82
ATOM	83	N	PRO		23	17.833	21.728	19.457	1.00 19.42
ATOM	84	CA	PRO		23	18.655	22.511	18.537	1.00 19.17
ATOM	85	C	PRO	A	23	19.694	21.621	17.878	1.00 20.53
ATOM	86	0	PRO		23	20.318	20.832	18.575	1.00 21.23
ATOM	87	CB	PRO		23	19.341	23.488	19.459	1.00 18.21
ATOM	88	CG	PRO		23	18.549	23.480	20.755	1.00 16.10
ATOM	89	CD	PRO		23	18.206	22.015	20.846	1.00 17.73
MOTA	90	N	LYS		24	19.959	21.716	16.571	1.00 23.65
ATOM	91	CA	LYS		24	20.937	20.852	15.866	1.00 27.23
ATOM	92	С		А	24	22.388	20.847	16.370	1.00 25.36
ATOM	93	0		A	24	23.179	19.918	16.149	1.00 25.16
ATOM	94	CB		A	24	20.931	21.150	14.332	1.00 29.02
ATOM	95	CG		A	24	19.550	20.939	13.680	1.00 36.19
ATOM	96	CD	LYS		24	19.557	21.512	12.245	1.00 43.22
ATOM	97	CE	LYS		24	18.207	21.800	11.585	1.00 42.88
ATOM	98 99	NZ	LYS		24	18.433	22.694	10.448	1.00 48.02
ATOM	100	N CA	ASP ASP	A	25	22.712	21.900	17.110	1.00 26.32
ATOM	101	CA			25 25	24.060	22.087	17.653	1.00 28.70
MOTA	102	0		A A	25	25.225	22.024	19.180	1.00 26.91
ATOM	103	СВ		A	25	24.551	22.386	19.785 17.144	1.00 27.43
ATOM	104	CG	ASP		25	23.780	24.615	17.684	1.00 30.59
ATOM	105		ASP		25	22.556	24.529	17.847	1.00 33.09
ATOM	106	OD2		A	25	24.421	25.638	17.933	1.00 34.74
ATOM	107	N	TYR		26	23.122	21.605	19.808	1.00 37.33
ATOM	108	CA	TYR		26	23.165	21.289	21.189	1.00 20.96
ATOM	109	C	TYR		26	23.821	19.937	21.246	1.00 20.04
ATOM	110	ŏ	TYR		26	23.282	18.951	20.780	1.00 22.61
ATOM	111	CB	TYR		26	21.759	21.239	21.710	1.00 20.00
ATOM	112	CG	TYR		26	21.728	20.927	23.199	1.00 23.05
ATOM	113	CD1	TYR		26	22.430	21.764	24.039	1.00 20.56
ATOM	114	CD2	TYR		26	21.015	19.843	23.683	1.00 22.87
ATOM	115	CE1	TYR		26	22.421	21.541	25.376	1.00 23.76
MOTA	116	CE2	TYR		26	20.993	19.629	25.047	1.00 22.41
ATOM	117	CZ	TYR		26	21.693	20.493	25.877	1.00 23.68
ATOM	118	OH	TYR		26	21.661	20.353	27.259	1.00 22.67
HETATM	119	N	MSE	A	27	25.003	19.890	21.809	1.00 21.07
HETATM	120	CA	MSE .	A	27	25.716	18.643	22.008	1.00 21.95
HETATM	121	C			27	25.325	17.906	23.296	1.00 23.63
HETATM	122	0	MSE .	A	27	25.089	18.481	24.371	1.00 22.77
HETATM	123	CB	MSE .	A	27	27.201	18.955	22.055	1.00 27.32
HETATM	124	CG	MSE .		27	27.695	19.788	20.866	1.00 28.96

Figure 8-13

HETATM									
HETATIN 126 CE MSE A 27 28.489 17.511 19.371 1.00 22.83 ATOM 127 N LIE A 28 25.250 16.576 23.165 1.00 22.91 ATOM 128 CA LIE A 28 26.030 14.713 23.675 1.00 22.92 ATOM 130 O LIE A 28 26.030 14.713 23.870 1.00 22.92 ATOM 130 O LIE A 28 26.030 14.713 23.870 1.00 12.73 ATOM 131 CB LIE A 28 23.550 14.901 23.870 1.00 12.73 ATOM 132 CG1 LIE A 28 23.550 14.901 23.870 1.00 12.73 ATOM 131 CB LIE A 28 23.154 14.006 25.006 1.00 12.73 ATOM 134 CD1 LIE A 28 23.154 14.006 25.006 1.00 16.98 ATOM 135 N THR A 29 26.492 14.557 25.744 1.00 20.17 ATOM 136 CA THR A 29 27.065 12.315 26.319 1.00 20.16 ATOM 137 C THR A 29 27.065 12.315 26.319 1.00 20.21 ATOM 138 CB THR A 29 28.269 14.255 7.333 1.00 20.21 ATOM 130 CB THR A 29 28.269 14.255 7.333 1.00 21.22 ATOM 140 OGI THR A 29 28.555 15.655 27.048 1.00 20.21 ATOM 141 CG2 THR A 29 28.555 15.655 27.048 1.00 20.21 ATOM 142 N LEU A 30 27.462 9.976 25.766 1.00 20.21 ATOM 143 CA LEU A 30 27.462 9.976 25.766 1.00 28.65 ATOM 144 C LEU A 30 27.462 9.976 25.862 1.00 19.78 ATOM 145 C LEU A 30 27.462 9.976 25.862 1.00 17.76 ATOM 146 C LEU A 30 28.669 9.976 24.642 1.00 19.78 ATOM 146 C LEU A 30 28.669 9.976 24.642 1.00 19.78 ATOM 145 C LEU A 30 28.669 9.976 24.642 1.00 19.78 ATOM 146 C LEU A 30 28.669 9.976 24.642 1.00 19.78 ATOM 147 C LEU A 30 28.669 9.976 24.642 1.00 19.78 ATOM 147 C LEU A 30 28.669 9.976 24.642 1.00 19.78 ATOM 147 C LEU A 30 28.669 9.976 24.664 1.00 29.28 ATOM 147 C L	HETATM	125	SE	MSE A	27	27.207	18.877	19.234	1.00 37 24
ATOM 128 CA LLE A 28 25.250 16.576 23.165 1.00 22.91 ATOM 129 C LLE A 28 26.030 14.075 23.167 1.00 21.22 ATOM 130 O LLE A 28 26.530 14.075 23.571 1.00 21.22 ATOM 131 CB LLE A 28 26.530 14.075 23.571 1.00 20.97 ATOM 131 CB LLE A 28 26.530 14.075 23.571 1.00 20.97 ATOM 131 CB LLE A 28 22.372 15.818 23.534 1.00 17.37 ATOM 132 CGI LLE A 28 22.372 15.818 23.534 1.00 17.37 ATOM 133 CGZ LLE A 28 22.372 15.818 23.534 1.00 17.37 ATOM 133 CGZ LLE A 28 22.372 15.818 23.534 1.00 17.37 ATOM 134 CDI LLE A 28 22.372 15.818 23.534 1.00 17.37 ATOM 135 N THR A 29 26.492 14.597 25.744 1.00 20.17 ATOM 135 N THR A 29 27.592 13.727 26.087 1.00 16.08 ATOM 137 C THR A 29 27.592 13.727 26.087 1.00 20.16 ATOM 137 C THR A 29 27.592 13.727 26.087 1.00 20.16 ATOM 139 CB THR A 29 26.051 12.081 26.988 1.00 29.23 ATOM 139 CB THR A 29 28.515 15.655 27.033 1.00 21.22 ATOM 139 CB THR A 29 28.515 15.655 27.046 1.00 24.08 ATOM 140 CGI THR A 29 28.515 15.655 27.046 1.00 24.08 ATOM 141 CGI THR A 20 28.515 15.655 27.046 1.00 24.08 ATOM 141 CGI THR A 20 28.515 15.655 27.046 1.00 24.08 ATOM 141 C LEU A 30 27.462 9.351 25.5961 10.00 14.55 ATOM 144 C LEU A 30 28.765 9.774 25.504 10.00 15.56 ATOM 144 C LEU A 30 28.765 9.774 25.256 10.00 15.78 ATOM 146 CB LEU A 30 28.765 9.774 25.285 1.00 11.00 11.78 ATOM 146 CB LEU A 30 28.765 9.774 25.285 1.00 11.00 11.78 ATOM 146 CB LEU A 30 28.765 9.774 25.285 1.00 11.00 11.78 ATOM 146 CB LEU A 30 28.765 9.774 25.285 1.00 11.00 11.78 ATOM 146 CB LEU A 30 28.765 9.774 25.285 1.00 11.00 11.57 ATOM 146 CB LEU A 30 28.765 9.774 25.285 1.00 11.00 11.57 ATOM 146 CB LEU A 30 28.765 9.774 25.285 1.00 11.00 11.57 ATOM 146 CB LEU A 30 28.765 9.774 25.285 1.00 11.00 11.57 ATOM 146 CB LEU A 30 28.765 9.774 25.285 1.00 11.00 11.57 ATOM 150 N LYS A 31 28.966 9.774 25.285 1.00 11.00 11.57 ATOM 150 N LYS A 31 28.966 5.701 28.295 9.700 11.00 11.50 11.50 ATOM 150 N LYS A 31 28.966 5.701 28.295 9.700 11.00 12.53 ATOM 150 C LYS A 31 30.066 5.701 4.959 9.700 11.00 22.18 ATOM 150 C LYS A 31 30.066 5.701 4.509 9.700 11.00 22.58 ATOM 150 C LY									
ATOM 128 CA LLE A 28 24.860 15.666 24.240 1.00 21.29 ATOM 130 O LLE A 28 26.530 14.075 23.571 1.00 21.02 ATOM 131 CB LLE A 28 26.530 14.075 23.571 1.00 21.02 ATOM 131 CB LLE A 28 26.530 14.075 23.571 1.00 19.78 ATOM 132 CGI LLE A 28 22.372 15.818 23.550 14.00 17.737 ATOM 133 CGZ LLE A 28 22.372 15.818 23.534 1.00 17.737 ATOM 134 CDL LLE A 28 23.147 14.006 25.006 1.00 18.93 ATOM 135 N THR A 29 25.592 14.557 25.744 1.00 20.17 ATOM 136 CA THR A 29 27.055 12.315 26.319 1.00 20.21 ATOM 137 C THR A 29 27.055 12.315 26.319 1.00 20.21 ATOM 138 O THR A 29 27.055 12.315 26.319 1.00 20.21 ATOM 139 CB THR A 29 28.555 12.315 26.319 1.00 20.21 ATOM 130 CB THR A 29 28.555 12.355 27.048 1.00 20.27 ATOM 140 OGI THR A 29 28.555 15.555 27.048 1.00 21.22 ATOM 141 CGZ THR A 29 28.555 15.555 27.048 1.00 21.22 ATOM 142 N LEU A 30 27.662 9.976 25.562 10.00 23.19 ATOM 142 N LEU A 30 27.662 9.976 25.562 10.00 23.19 ATOM 144 C LEU A 30 27.662 9.976 25.562 10.00 17.76 ATOM 147 C LEU A 30 28.649 9.356 24.642 1.00 17.76 ATOM 147 C LEU A 30 28.649 9.356 24.642 1.00 17.76 ATOM 148 C D LEU A 30 28.649 9.356 24.642 1.00 17.76 ATOM 148 C D LEU A 30 28.649 9.356 24.642 1.00 17.76 ATOM 148 C D LEU A 30 28.649 9.356 24.642 1.00 17.76 ATOM 148 C D LEU A 30 28.649 9.356 24.642 1.00 17.76 ATOM 148 C D LEU A 30 28.649 9.356 24.642 1.00 17.76 ATOM 148 C D LEU A 30 28.649 9.356 24.642 1.00 17.76 ATOM 150 N LEU A 30 28.649 9.356 24.642 1.00 17.76 ATOM 151 C A LYS A 31 30.176 7.575 26.891 1.00 14.52 ATOM 152 C LYS A 31 30.176 7.575 26.916 1.00 14.52 ATOM 155 C LYS A 31 30.176 7.575 26.916 1.00 14.52 ATOM 150 N LEU A 30 30 25.762 7.042 25.606 1.00 14.52 ATOM 151 C A LYS A 31 30.176 7.575 26.918 1.00 29.83 ATOM 152 C LYS A 31 30.645 6.29 29.29 1.00 22.85 ATOM 155 C LYS A 31 30.645 6.29 29.29 1.00 22.85 ATOM 157 C LYS A 31 30.645 6.29 29.29 1.00 22.85 ATOM 157 C LYS A 31 30.647 7.575 26.918 1.00 22.52 ATOM 150 C LYS A 31 30.645 6.29 2.20 2.20 2.30 1.00 22.20 ATOM 150 C LYS A 32 30.555 5.242 2.30 1.00 22.23 ATOM 151 C LYS A 33 30.655 5.424 2.30 5.00 2.20 2.30									
ATOM 129 C ILE A 28 26.030 14.773 24.494 1.00 21.02 ATOM 131 CB ILE A 28 26.530 14.075 23.571 1.00 20.97 ATOM 131 CB ILE A 28 23.550 14.091 23.870 1.00 19.78 ATOM 132 CGI ILE A 28 22.372 15.818 23.534 1.00 17.37 ATOM 133 CGZ ILE A 28 22.372 15.818 23.534 1.00 17.37 ATOM 133 CGZ ILE A 28 22.372 15.818 23.534 1.00 17.37 ATOM 134 CDI ILE A 28 22.372 15.818 23.534 1.00 17.37 ATOM 135 N THR A 29 26.651 15.205 22.805 1.00 16.08 ATOM 135 N THR A 29 26.492 14.597 25.744 1.00 20.17 ATOM 136 CA THR A 29 27.592 13.727 26.087 1.00 20.16 ATOM 137 C THR A 29 27.592 13.727 26.087 1.00 20.16 ATOM 137 C THR A 29 27.592 13.727 26.097 1.00 20.16 ATOM 139 CB THR A 29 26.051 12.081 26.988 1.00 19.29 ATOM 139 CB THR A 29 28.515 15.655 27.048 1.00 23.18 ATOM 140 CGI THR A 29 28.515 15.655 27.048 1.00 24.08 ATOM 141 CGZ THR A 29 28.515 15.655 27.048 1.00 24.08 ATOM 141 CGZ THR A 20 28.593 13.644 27.634 1.00 24.08 ATOM 141 CGZ THR A 20 28.593 13.644 27.634 1.00 24.08 ATOM 144 C LEU A 30 27.762 9.395 25.662 1.00 18.56 ATOM 144 C LEU A 30 29.736 9.774 25.283 1.00 18.56 ATOM 146 CB LEU A 30 26.550 7.884 24.473 1.00 18.56 ATOM 146 CB LEU A 30 26.550 7.884 24.473 1.00 18.56 ATOM 146 CB LEU A 30 26.550 7.884 24.473 1.00 18.78 ATOM 149 CDZ LEU A 30 25.629 7.525 23.205 1.00 18.78 ATOM 149 CDZ LEU A 30 25.629 7.525 23.205 1.00 18.78 ATOM 149 CDZ LEU A 30 25.629 7.525 23.205 1.00 18.56 ATOM 150 N LYS A 31 28.986 5.701 25.999 1.00 21.51 ATOM 150 N LYS A 31 28.986 5.701 25.999 1.00 21.51 ATOM 150 C LYS A 31 28.986 5.701 25.999 1.00 21.51 ATOM 150 C LYS A 31 28.986 5.701 25.999 1.00 22.58 ATOM 150 C LYS A 31 30.086 5.701 25.999 1.00 22.58 ATOM 150 C LYS A 31 30.086 5.701 25.999 1.00 22.58 ATOM 150 C LYS A 31 30.086 5.701 25.999 1.00 25.85 ATOM 150 C LYS A 31 30.086 5.701 25.999 1.00 22.58 ATOM 150 C LYS A 31 30.086 5.701 25.999 1.00 22.58 ATOM 150 C LYS A 31 30.685 6.701 25.999 1.00 25.85 ATOM 150 C LYS A 31 30.086 5.701 25.999 1.00 25.85 ATOM 150 C LYS A 33 30.685 6.701 25.999 1.00 25.85 ATOM 150 C LYS A 33 30.685 6.701 25.999 1.00 25.85 ATOM 150									
ATOM 130 O LLE A 28 26.530 14.075 22.571 1.00 20.97 ATOM 131 CB LLE A 28 22.372 15.818 23.870 1.00 19.76 ATOM 132 CGI LLE A 28 22.372 15.818 23.870 1.00 19.76 ATOM 133 CGZ LLE A 28 22.372 15.818 23.534 1.00 17.37 ATOM 134 CDI LLE A 28 23.147 14.006 25.006 1.00 18.93 ATOM 135 N THR A 29 26.492 14.597 25.744 1.00 20.17 ATOM 136 CA THR A 29 27.055 12.315 26.319 1.00 20.21 ATOM 137 C THR A 29 27.055 12.315 26.319 1.00 20.21 ATOM 138 O THR A 29 27.055 12.315 26.319 1.00 20.21 ATOM 139 CB THR A 29 28.69 14.295 27.333 1.00 20.21 ATOM 130 CB THR A 29 28.555 12.315 26.319 1.00 20.21 ATOM 140 OGI THR A 29 28.555 15.655 27.048 1.00 21.22 ATOM 140 OGI THR A 29 28.555 15.555 27.048 1.00 23.19 ATOM 141 CGZ THR A 29 28.555 15.555 27.048 1.00 23.19 ATOM 142 N LEU A 30 27.767 11.369 25.708 1.00 18.56 ATOM 143 CA LEU A 30 27.767 11.369 25.708 1.00 18.56 ATOM 144 C LEU A 30 28.624 9.351 25.959 1.00 18.61 ATOM 146 CB LEU A 30 28.624 9.351 25.959 1.00 18.41 ATOM 147 CG LEU A 30 28.635 7.684 24.473 1.00 20.72 ATOM 148 CD LEU A 30 26.550 7.684 24.473 1.00 19.78 ATOM 148 CD LEU A 30 26.550 7.684 24.473 1.00 14.53 ATOM 149 CD LEU A 30 25.575 7.525 28.31 1.00 14.53 ATOM 148 CD LEU A 30 26.550 7.684 24.473 1.00 14.53 ATOM 150 CD LEU A 30 25.625 7.525 28.02 1.00 14.95 ATOM 151 CA LYS A 31 30.176 7.557 26.393 1.00 14.53 ATOM 155 CG LYS A 31 30.176 7.557 26.393 1.00 14.53 ATOM 150 CD LEU A 30 25.625 7.525 28.00 1.00 14.92 ATOM 151 CA LYS A 31 30.417 7.00 28.295 1.00 14.92 ATOM 155 CG LYS A 31 30.417 7.00 28.295 1.00 19.63 ATOM 150 CD LYS A 31 30.417 7.00 28.295 1.00 19.53 ATOM 150 CD LYS A 31 30.417 7.00 28.295 1.00 19.53 ATOM 151 CA LYS A 31 30.417 7.00 28.295 1.00 19.63 ATOM 150 CD LYS A 31 30.417 7.00 28.295 1.00 19.53 ATOM 150 CD LYS A 31 30.417 7.00 28.295 1.00 29.285 ATOM 150 CD LYS A 31 30.417 7.00 28.295 1.00 29.285 ATOM 150 CD LYS A 31 30.417 7.00 28.295 1.00 29.285 ATOM 150 CD LYS A 31 30.417 7.00 28.295 1.00 29.285 ATOM 150 CD LYS A 31 30.417 7.00 28.295 1.00 29.295 ATOM 150 CD LYS A 31 30.417 7.00 28.295 1.00 29.295 ATOM 150 CD									
ATOM 131 CB LLE A 28 23.550 14.901 23.870 1.00 15.76 ATOM 133 CG2 LLE A 28 22.372 15.818 23.554 1.00 17.37 ATOM 133 CG2 LLE A 28 22.3747 14.006 25.006 1.00 18.93 ATOM 134 CD1 LLE A 28 23.147 14.006 25.006 1.00 18.93 ATOM 135 N THR A 29 26.6492 14.557 25.744 1.00 20.17 ATOM 136 CA THR A 29 27.592 13.727 26.087 1.00 20.15 ATOM 137 C THR A 29 27.592 13.727 26.087 1.00 20.15 ATOM 138 O THR A 29 27.592 13.727 26.087 1.00 20.15 ATOM 139 CB THR A 29 27.592 15.744 1.00 20.17 ATOM 139 CB THR A 29 26.051 12.081 26.988 1.00 29.29 ATOM 140 OGI THR A 29 28.515 15.655 27.048 1.00 23.19 ATOM 141 CG2 THR A 29 28.515 15.655 27.048 1.00 24.08 ATOM 141 CG2 THR A 29 28.515 15.655 27.048 1.00 24.08 ATOM 142 N LEU A 30 27.767 11.369 25.708 1.00 24.08 ATOM 143 CA LEU A 30 27.767 11.369 25.708 1.00 18.56 ATOM 144 C LEU A 30 27.762 9.376 25.662 1.00 17.76 ATOM 146 CB LEU A 30 26.530 7.884 24.473 1.00 18.56 ATOM 146 CB LEU A 30 26.530 7.884 24.473 1.00 18.56 ATOM 148 CD LEU A 30 26.530 7.884 24.473 1.00 18.56 ATOM 149 CD2 LEU A 30 25.639 9.396 22.4267 1.00 18.78 ATOM 149 CD2 LEU A 30 25.639 7.884 24.473 1.00 18.56 ATOM 150 N LYS A 31 28.984 8.378 25.959 1.00 18.04 ATOM 151 CA LYS A 31 28.984 8.378 25.959 1.00 18.04 ATOM 152 C LYS A 31 28.984 8.378 26.833 1.00 18.64 ATOM 152 C LYS A 31 28.986 5.701 25.999 1.00 21.51 ATOM 153 O LYS A 31 28.986 6.701 25.999 1.00 21.51 ATOM 154 CB LYS A 31 30.716 7.575 6.918 1.00 29.63 ATOM 155 CG LYS A 31 30.716 7.575 6.918 1.00 29.63 ATOM 156 CD LYS A 31 30.786 6.5701 25.999 1.00 25.85 ATOM 157 CE LYS A 31 30.786 6.5701 25.999 1.00 25.83 ATOM 157 CE LYS A 31 30.786 6.5701 22.205 1.00 19.63 ATOM 160 C TYR A 32 30.559 6.5474 7.506 32.799 1.00 25.83 ATOM 165 CD LYS A 31 30.786 6.477 25.999 1.00 25.83 ATOM 165 CD LYR A 32 30.559 6.4474 1.00 23.02 ATOM 160 C TYR A 32 30.559 6.449 9.356 1.00 29.63 ATOM 161 C TYR A 32 30.569 6.5701 22.640 1.00 29.63 ATOM 163 CB TYR A 32 30.569 6.449 9.356 1.00 29.63 ATOM 160 C TYR A 32 30.559 6.449 9.356 1.00 29.63 ATOM 160 C TYR A 32 30.569 6.449 9.356 1.00 29.63 ATOM 161 C C T									
ATOM 132 CGI LLE A 28 22.372 15.818 22.534 1.00 17.37 ATOM 133 CGZ LLE A 28 23.147 14.006 25.006 1.00 18.93 ATOM 134 CDI LLE A 28 23.147 14.006 25.006 1.00 18.93 ATOM 135 N THR A 29 26.492 14.597 25.744 1.00 20.17 ATOM 136 CA THR A 29 27.055 12.315 26.319 1.00 20.21 ATOM 138 O THR A 29 27.055 12.315 26.319 1.00 20.21 ATOM 138 O THR A 29 28.269 14.295 27.333 1.00 20.21 ATOM 139 CB THR A 29 28.269 14.295 27.333 1.00 20.22 ATOM 140 0GI THR A 29 28.269 14.295 27.333 1.00 21.22 ATOM 140 0GI THR A 29 28.269 14.295 27.333 1.00 21.22 ATOM 141 CGZ THR A 29 28.515 15.655 27.048 1.00 23.19 ATOM 141 CGZ THR A 29 28.555 15.655 27.048 1.00 23.19 ATOM 142 N LEU A 30 27.767 11.369 25.708 1.00 18.56 ATOM 143 CA LEU A 30 27.767 11.369 25.708 1.00 18.56 ATOM 144 C LEU A 30 27.767 11.369 25.708 1.00 17.76 ATOM 144 C LEU A 30 28.287 9.976 25.862 1.00 17.76 ATOM 146 CB LEU A 30 28.624 9.351 25.959 1.00 18.41 ATOM 146 CB LEU A 30 26.550 7.684 24.473 1.00 20.27 ATOM 146 CB LEU A 30 26.550 7.684 24.473 1.00 14.53 ATOM 148 CD LEU A 30 25.637 7.684 24.473 1.00 14.53 ATOM 148 CD LEU A 30 25.637 7.684 24.473 1.00 14.53 ATOM 151 C C LYS A 31 28.966 7.525 28.30 1.00 14.54 ATOM 151 C C LYS A 31 28.966 5.701 26.170 10.01 16.0									
ATOM 133 CG2 LLE A 28 23.147 14.006 25.006 1.00 1E.93 ATOM 134 CD1 LLE A 28 21.207 15.120 22.005 1.00 1E.08 ATOM 135 N THR A 29 26.651 15.052 26.007 1.00 1E.08 ATOM 135 N THR A 29 27.592 13.727 26.007 1.00 20.16 ATOM 137 C THR A 29 27.592 13.727 26.007 1.00 20.16 ATOM 137 C THR A 29 27.592 13.727 26.007 1.00 20.16 ATOM 138 O THR A 29 27.592 13.727 26.007 1.00 20.16 ATOM 139 CB THR A 29 26.051 12.001 26.988 1.00 19.29 ATOM 139 CB THR A 29 28.515 15.655 27.048 1.00 23.19 ATOM 140 OGI THR A 29 28.515 15.655 77.048 1.00 24.08 ATOM 141 CG2 THR A 29 28.515 15.655 27.048 1.00 24.08 ATOM 141 CG2 THR A 29 28.515 15.655 27.048 1.00 24.08 ATOM 141 CG2 THR A 29 28.515 15.655 27.048 1.00 24.08 ATOM 141 CG2 THR A 29 28.515 15.655 27.008 1.00 18.56 ATOM 143 CA LEU A 30 27.767 11.369 25.708 1.00 18.56 ATOM 144 C LEU A 30 27.767 11.369 25.708 1.00 18.56 ATOM 145 C LEU A 30 26.629 9.351 25.559 1.00 18.41 ATOM 145 C LEU A 30 26.639 9.356 26.621 1.00 17.76 ATOM 147 CG LEU A 30 26.639 9.356 26.621 1.00 12.73 ATOM 148 CD1 LEU A 30 25.629 7.252 23.055 1.00 18.04 ATOM 149 CD2 LEU A 30 25.629 7.525 23.055 1.00 18.04 ATOM 149 CD2 LEU A 30 25.629 7.525 23.055 1.00 18.04 ATOM 150 N LYS A 31 28.964 8.378 26.833 1.00 18.64 ATOM 151 CA LYS A 31 28.966 5.701 25.999 1.00 21.51 ATOM 152 C LYS A 31 28.966 5.701 25.999 1.00 21.51 ATOM 152 C LYS A 31 30.716 5.501 10.00 12.53 ATOM 155 CG LYS A 31 30.716 5.701 25.999 1.00 21.51 ATOM 155 CG LYS A 31 30.716 6.201 77.755 20.900 12.93 ATOM 159 C LYS A 31 30.716 6.201 77.755 20.900 12.93 ATOM 159 C LYS A 31 30.716 6.201 77.755 20.900 12.93 ATOM 159 C LYS A 31 30.716 6.201 77.755 20.900 12.93 ATOM 150 C LYS A 31 30.716 7.575 50.918 1.00 20.715 ATOM 150 C LYS A 31 30.716 7.575 50.918 1.00 20.915 ATOM 150 C LYS A 31 30.716 7.575 50.918 1.00 20.915 ATOM 150 C LYS A 31 30.716 7.575 50.918 1.00 20.915 ATOM 150 C LYS A 31 30.716 7.575 50.918 1.00 20.915 ATOM 150 C LYS A 31 30.716 7.575 50.918 1.00 20.915 ATOM 150 C LYS A 31 30.716 7.575 50.918 1.00 20.915 ATOM 150 C LYS A 31 30.716 7.575 50.918 1.00 20.915 ATOM									
ATOM 134 CD1 ILE A 28 21.207 15.120 22.805 1.00 16.08 ATOM 135 N THR A 29 26.492 14.597 25.744 1.00 20.17 ATOM 136 CA THR A 29 27.592 13.727 26.087 1.00 20.17 ATOM 137 C THR A 29 27.055 12.315 26.319 1.00 20.21 ATOM 138 O THR A 29 27.055 12.315 26.319 1.00 20.21 ATOM 138 O THR A 29 28.269 14.295 77.333 1.00 20.22 ATOM 140 OGI THR A 29 28.269 14.295 77.333 1.00 21.22 ATOM 140 OGI THR A 29 28.269 14.295 77.333 1.00 21.22 ATOM 141 CG2 THR A 29 28.515 15.655 27.048 1.00 23.19 ATOM 141 CG2 THR A 29 28.515 15.655 27.048 1.00 23.19 ATOM 142 N LEU A 30 27.767 11.369 25.708 1.00 17.76 ATOM 143 CA LEU A 30 27.767 11.369 25.708 1.00 17.76 ATOM 144 C LEU A 30 27.767 11.369 25.708 1.00 17.76 ATOM 145 O LEU A 30 28.624 9.351 25.959 1.00 18.41 ATOM 145 O LEU A 30 28.624 9.351 25.959 1.00 18.41 ATOM 146 CB LEU A 30 26.550 7.884 24.473 1.00 20.72 ATOM 146 CB LEU A 30 26.550 7.884 24.473 1.00 14.53 ATOM 148 CD1 LEU A 30 25.629 7.525 23.205 1.00 14.92 ATOM 149 CD2 LEU A 30 25.629 7.525 23.205 1.00 14.92 ATOM 150 CD LEU A 30 25.629 7.525 23.205 1.00 14.92 ATOM 150 CD LEU A 30 25.629 7.525 23.205 1.00 14.92 ATOM 150 CD LEU A 30 25.629 7.525 23.205 1.00 14.92 ATOM 150 CD LEU A 30 25.629 7.525 23.205 1.00 14.92 ATOM 151 N LYA A 31 28.886 8.376 28.833 1.00 18.64 ATOM 152 CD LYS A 31 28.896 8.376 28.833 1.00 18.64 ATOM 152 CD LYS A 31 28.966 5.701 26.170 1.00 22.02 ATOM 155 CD LYS A 31 30.417 7.009 28.295 1.00 20.72 ATOM 155 CD LYS A 31 30.417 7.009 28.295 1.00 29.83 ATOM 150 CD LYS A 31 30.417 7.009 28.295 1.00 29.83 ATOM 150 CD LYS A 31 30.417 7.009 28.295 1.00 29.83 ATOM 150 CD LYS A 31 30.417 7.009 28.295 1.00 29.83 ATOM 150 CD LYS A 31 30.417 7.009 28.295 1.00 29.88 ATOM 150 CD LYS A 31 30.417 7.009 28.295 1.00 29.88 ATOM 150 CD LYS A 31 30.417 7.009 28.295 1.00 29.285 ATOM 150 CD LYS A 31 30.417 7.009 28.295 1.00 29.285 ATOM 150 CD LYS A 31 30.417 7.009 28.295 1.00 29.285 ATOM 150 CD LYS A 31 30.417 7.009 28.295 1.00 29.285 ATOM 150 CD LYS A 32 30.555 5.424 29.306 50 1.00 29.88 ATOM 150 CD LYS A 32 30.555 5.424 29.306 50 1.00 29.									
ATOM 135 N THR A 29 26.692 13.597 25.744 1.00 20.17 ATOM 136 CA THR A 29 27.592 13.727 26.087 1.00 20.18 ATOM 137 C THR A 29 27.592 13.727 26.087 1.00 20.18 ATOM 138 O THR A 29 27.592 13.727 26.087 1.00 20.18 ATOM 139 CB THR A 29 26.051 12.081 26.988 1.00 19.29 ATOM 140 OGI THR A 29 28.515 15.655 27.048 1.00 22.12 ATOM 141 CQ2 THR A 29 28.515 15.655 27.048 1.00 24.08 ATOM 141 CQ2 THR A 29 28.515 15.655 27.048 1.00 24.08 ATOM 141 CQ2 THR A 29 28.515 15.655 27.048 1.00 24.08 ATOM 141 CQ2 THR A 29 28.515 15.655 27.048 1.00 24.08 ATOM 141 CQ2 THR A 29 28.515 15.655 27.048 1.00 24.08 ATOM 141 CQ2 THR A 29 28.515 15.655 27.048 1.00 24.08 ATOM 142 N LEU A 30 27.767 11.369 25.708 1.00 18.56 ATOM 143 CA LEU A 30 27.766 9.351 25.595 1.00 18.54 ATOM 145 C LEU A 30 28.624 9.351 25.595 1.00 18.41 ATOM 145 C LEU A 30 28.624 9.351 25.959 1.00 18.41 ATOM 147 CG LEU A 30 26.635 9.304 4.673 1.00 19.78 ATOM 148 CDI LEU A 30 25.629 7.525 2.305 1.00 19.78 ATOM 148 CDI LEU A 30 25.629 7.525 2.205 1.00 19.04 ATOM 150 N LYS A 31 28.984 8.378 26.833 1.00 18.64 ATOM 151 CA LYS A 31 28.984 8.378 26.833 1.00 18.64 ATOM 151 CA LYS A 31 28.986 6.5701 25.999 1.00 21.51 ATOM 152 C LYS A 31 28.986 6.5701 25.999 1.00 21.51 ATOM 155 CG LYS A 31 30.786 6.5701 25.999 1.00 21.51 ATOM 155 CG LYS A 31 30.786 6.5701 25.999 1.00 29.83 ATOM 156 CD LYS A 31 30.786 6.5701 25.999 1.00 29.83 ATOM 156 CD LYS A 31 30.786 6.290 29.309 1.00 29.83 ATOM 156 CD LYS A 31 30.786 6.290 29.309 1.00 29.83 ATOM 156 CD LYS A 31 30.786 6.290 29.309 1.00 29.83 ATOM 156 CD LYS A 31 30.586 6.290 29.309 1.00 29.83 ATOM 156 CD LYS A 31 30.586 6.290 29.309 1.00 29.83 ATOM 156 CD LYS A 31 30.586 6.290 29.309 1.00 29.83 ATOM 156 CD LYS A 31 30.586 6.290 29.309 1.00 29.83 ATOM 156 CD LYS A 31 30.586 6.290 29.309 1.00 29.83 ATOM 156 CD LYS A 31 30.586 6.290 29.309 1.00 29.83 ATOM 156 CD LYS A 31 30.586 6.290 29.309 1.00 29.83 ATOM 156 CD LYS A 31 30.586 6.290 29.309 1.00 29.83 ATOM 156 CD LYS A 31 30.586 6.290 29.309 1.00 29.83 ATOM 156 CD LYS A 33 30.589 6.367 22.2466 1.00 29.25 2									
ATOM 136 CA THR A 29 27.592 13.727 26.087 1.00 20.21 ATOM 138 O THR A 29 27.065 12.315 26.319 1.00 20.21 ATOM 138 O THR A 29 28.269 14.295 27.333 1.00 20.22 ATOM 140 OGI THR A 29 28.269 14.295 27.333 1.00 21.22 ATOM 140 OGI THR A 29 28.269 14.295 27.333 1.00 21.22 ATOM 141 CGZ THR A 29 28.269 14.295 27.333 1.00 21.22 ATOM 142 N LEU A 30 27.462 9.976 25.862 1.00 17.76 ATOM 142 N LEU A 30 27.462 9.976 25.862 1.00 17.76 ATOM 143 CA LEU A 30 27.462 9.976 25.862 1.00 17.76 ATOM 144 C LEU A 30 28.269 9.976 25.862 1.00 17.76 ATOM 145 O LEU A 30 28.824 9.351 25.959 1.00 18.41 ATOM 145 O LEU A 30 28.624 9.351 25.959 1.00 18.41 ATOM 146 CB LEU A 30 26.649 9.396 24.642 1.00 19.78 ATOM 146 CB LEU A 30 26.550 7.884 24.473 1.00 14.53 ATOM 147 CG LEU A 30 26.550 7.884 24.473 1.00 14.53 ATOM 148 CDL LEU A 30 25.629 7.525 23.205 1.00 14.92 ATOM 149 CDZ LEU A 30 25.629 7.525 23.205 1.00 14.92 ATOM 150 CDZ LEU A 30 25.629 7.525 23.205 1.00 14.92 ATOM 150 CDZ LEU A 30 25.629 7.525 23.205 1.00 14.92 ATOM 151 CA LEX A 31 28.884 8.378 26.833 1.00 18.64 ATOM 152 CDZ LEU A 30 25.629 7.525 23.205 1.00 14.92 ATOM 152 CDZ LEU A 30 26.850 7.584 24.673 1.00 14.53 ATOM 153 CDZ LEU A 30 25.629 7.525 23.205 1.00 14.92 ATOM 155 CD LEV A 31 28.896 8.378 26.833 1.00 18.64 ATOM 155 CD LEV A 31 28.966 5.701 26.270 1.00 23.02 ATOM 155 CD LYS A 31 30.416 7.504 28.995 1.00 20.72 ATOM 155 CD LYS A 31 30.416 7.505 29.995 1.00 20.288 ATOM 157 CE LYS A 31 30.417 7.009 28.295 1.00 29.83 ATOM 150 CD LYS A 31 31.1562 8.956 5.704 28.295 1.00 29.83 ATOM 150 CD LYS A 32 31.367 4.359 23.946 1.00 22.89 ATOM 150 CD LYS A 32 31.657 5.424 23.844 1.00 22.89 ATOM 150 CD LYS A 32 31.657 6.429 20.299 1.00 29.88 ATOM 150 CD LYS A 32 31.657 6.429 20.299 1.00 29.88 ATOM 150 CD LYS A 32 31.657 6.429 20.299 1.00 29.88 ATOM 150 CD LYS A 32 31.657 6.429 20.299 1.00 29.88 ATOM 150 CD LYS A 32 31.657 6.429 20.299 1.00 29.88 ATOM 150 CD LYS A 32 31.657 6.429 20.299 1.00 29.88 ATOM 150 CD LYS A 32 31.657 6.429 20.299 1.00 29.88 ATOM 150 CD LYS A 32 31.657 6.429 20.299 1.00 29.88 A									
ATOM 137 C THR A 29 27.065 12.315 26.319 1.00 20.21 ATOM 138 O THR A 29 26.051 12.081 26.988 1.00 19.29 ATOM 140 OGI THR A 29 28.515 15.655 27.048 1.00 24.08 ATOM 141 CQZ THR A 29 28.515 15.655 27.048 1.00 24.08 ATOM 141 CQZ THR A 29 28.515 15.655 27.048 1.00 24.08 ATOM 142 N LEU A 30 27.767 11.369 25.708 1.00 18.56 ATOM 143 CA LEU A 30 27.767 11.369 25.708 1.00 18.56 ATOM 143 CA LEU A 30 27.767 11.369 25.708 1.00 18.56 ATOM 144 C LEU A 30 27.762 9.976 25.862 1.00 17.76 ATOM 145 O LEU A 30 28.824 9.351 25.959 1.00 18.41 ATOM 145 O LEU A 30 28.824 9.351 25.959 1.00 18.41 ATOM 146 CB LEU A 30 28.824 9.351 25.959 1.00 18.41 ATOM 147 CB LEU A 30 28.824 9.351 25.959 1.00 18.41 ATOM 147 CB LEU A 30 28.824 9.351 25.959 1.00 18.41 ATOM 147 CB LEU A 30 28.824 9.351 25.959 1.00 18.41 ATOM 147 CB LEU A 30 26.649 9.396 24.642 1.00 19.78 ATOM 147 CB LEU A 30 26.649 9.396 24.642 1.00 19.78 ATOM 147 CB LEU A 30 26.649 9.396 24.642 1.00 19.78 ATOM 150 N LYS A 31 28.964 8.378 26.833 1.00 18.64 ATOM 150 N LYS A 31 28.964 8.378 26.833 1.00 18.64 ATOM 151 CB LEU A 30 25.629 7.525 2.205 1.00 18.64 ATOM 152 C LYS A 31 28.966 5.701 25.999 1.00 21.51 ATOM 152 C LYS A 31 30.716 7.557 26.918 1.00 20.71 ATOM 155 CG LYS A 31 30.716 5.701 CB.170 CB.1									
ATOM 138 O THR A 29 28.6051 12.081 26.988 1.00 19.29 ATOM 140 OGI THR A 29 28.269 14.295 27.333 1.00 21.22 ATOM 141 CGZ THR A 29 28.515 15.655 27.048 1.00 24.08 ATOM 141 CGZ THR A 29 28.515 15.655 27.048 1.00 24.08 ATOM 142 N LEU A 30 27.767 11.369 25.708 1.00 18.56 ATOM 143 CA LEU A 30 27.767 11.369 25.708 1.00 17.76 ATOM 144 C LEU A 30 27.462 9.976 25.862 1.00 17.76 ATOM 145 O LEU A 30 28.624 9.351 25.959 1.00 18.41 ATOM 146 CB LEU A 30 26.567 7.884 24.473 1.00 20.72 ATOM 146 CB LEU A 30 26.649 9.396 24.642 1.00 19.78 ATOM 147 CG LEU A 30 26.567 7.884 24.473 1.00 14.53 ATOM 148 CDI LEU A 30 25.649 9.396 24.642 1.00 19.78 ATOM 149 CDZ LEU A 30 25.675 7.884 24.473 1.00 14.53 ATOM 149 CDZ LEU A 30 25.675 7.884 24.673 1.00 14.53 ATOM 150 CD LEU A 30 25.675 7.478 25.601 1.00 14.53 ATOM 151 CA LYS A 31 28.884 8.778 25.601 1.00 14.53 ATOM 152 CD LYS A 31 28.986 9.774 25.893 1.00 18.64 ATOM 153 CD LYS A 31 30.417 7.572 26.833 1.00 18.64 ATOM 155 CD LYS A 31 30.417 7.009 26.790 1.00 20.71 ATOM 155 CD LYS A 31 30.417 7.009 28.391 1.00 20.73 ATOM 155 CD LYS A 31 30.417 7.009 28.299 1.00 20.20 ATOM 155 CD LYS A 31 30.418 7.355 30.605 1.00 22.93 ATOM 157 CE LYS A 31 30.418 7.355 30.605 1.00 29.83 ATOM 157 CE LYS A 31 30.418 7.355 30.605 1.00 29.83 ATOM 158 CD LYS A 31 30.186 8.066 29.309 1.00 22.89 ATOM 159 N TYR A 32 30.655 5.424 23.844 1.00 24.83 ATOM 160 CA TYR A 32 30.655 5.424 23.844 1.00 24.83 ATOM 161 C TYR A 32 30.655 5.424 23.844 1.00 24.83 ATOM 165 CD LYS A 31 31.11607 4.359 23.767 1.00 39.63, ATOM 165 CD LYR A 32 30.655 5.424 23.844 1.00 22.31 ATOM 165 CD LYR A 32 30.655 5.424 23.844 1.00 22.31 ATOM 165 CD LYR A 32 30.655 5.424 23.844 1.00 22.32 ATOM 165 CD LYR A 32 30.655 5.424 23.844 1.00 22.32 ATOM 165 CD LYR A 32 30.655 5.424 23.844 1.00 22.32 ATOM 165 CD LYR A 32 30.655 5.424 23.844 1.00 22.32 ATOM 165 CD LYR A 32 30.655 5.424 23.844 1.00 22.32 ATOM 165 CD LYR A 32 30.655 5.424 23.844 1.00 22.32 ATOM 165 CD LYR A 32 30.655 6.449 20.689 1.00 22.66 ATOM 165 CD LYR A 32 30.655 6.449 20.689 1.00 22.66 ATOM 165									
ATOM 140 OGI THR A 29 28.515 15.655 27.048 1.00 21.02 ATOM 141 CGZ THR A 29 28.515 15.655 27.048 1.00 24.08 ATOM 141 CGZ THR A 29 28.515 15.655 27.048 1.00 24.08 ATOM 142 N LEU A 30 27.767 11.369 25.708 1.00 18.56 ATOM 143 CA LEU A 30 27.767 11.369 25.708 1.00 18.56 ATOM 144 C LEU A 30 27.762 9.976 25.862 1.00 17.76 ATOM 145 C LEU A 30 28.624 9.951 25.959 1.00 18.41 ATOM 145 C LEU A 30 28.624 9.951 25.959 1.00 18.41 ATOM 146 CB LEU A 30 28.624 9.351 25.959 1.00 18.41 ATOM 147 C LEU A 30 28.624 9.351 25.959 1.00 18.41 ATOM 147 C LEU A 30 28.624 9.351 25.959 1.00 19.78 ATOM 147 C LEU A 30 28.624 9.351 25.959 1.00 19.78 ATOM 147 C LEU A 30 28.624 9.351 25.959 1.00 19.78 ATOM 150 N LYS A 31 28.964 8.350 27.684 24.672 1.00 19.78 ATOM 151 CA LYS A 31 28.964 8.350 26.693 1.00 18.64 ATOM 152 C LYS A 31 28.964 8.350 26.930 1.00 18.64 ATOM 152 C LYS A 31 28.966 5.701 25.999 1.00 21.51 ATOM 152 C LYS A 31 30.716 5.706 28.295 1.00 19.63 ATOM 154 CB LYS A 31 30.716 5.706 29.309 1.00 22.93 ATOM 155 CG LYS A 31 30.716 5.706 29.309 1.00 25.85 ATOM 156 CD LYS A 31 31.154 7.355 30.605 1.00 29.83 ATOM 157 CE LYS A 31 31.154 7.355 30.605 1.00 29.83 ATOM 158 NZ LYS A 31 30.645 5.424 23.844 1.00 22.21 ATOM 163 C LYS A 31 30.645 5.424 23.844 1.00 22.21 ATOM 164 CB LYS A 31 30.655 5.424 23.844 1.00 22.21 ATOM 156 CD LYS A 31 31.554 7.355 30.605 1.00 29.83 ATOM 157 CE LYR A 32 30.645 5.295 20.309 1.00 25.85 ATOM 158 NZ LYS A 31 30.786 6.219 25.034 1.00 25.85 ATOM 160 C TYR A 32 30.655 5.424 23.844 1.00 22.31 ATOM 165 CD LYR A 32 30.655 5.424 23.844 1.00 22.31 ATOM 165 CD LYR A 32 30.659 5.469 20.969 1.00 24.83 ATOM 167 CE LYR A 32 30.659 5.469 20.969 1.00 24.83 ATOM 168 NZ LYR A 32 30.659 5.469 20.969 1.00 24.83 ATOM 169 CZ TYR A 32 30.659 5.469 20.969 1.00 24.83 ATOM 160 C TYR A 32 30.650 5.449 20.669 1.00 24.83 ATOM 167 CE LYR A 32 30.659 6.667 22.469 1.00 22.61 ATOM 169 CZ TYR A 32 30.659 6.667 22.469 1.00 22.61 ATOM 169 CZ TYR A 32 30.667 5.724 24 23.844 1.00 22.51 ATOM 169 CZ TYR A 32 30.667 5.724 24 23.453 1.00 22.25 ATOM 170 OH									
ATOM 140 OGI THR A 29 28.515 15.655 27.048 1.00 24.08 ATOM 141 CGZ THR A 29 28.593 13.644 27.634 1.00 24.08 ATOM 142 N LEU A 30 27.767 11.369 25.708 1.00 12.19 ATOM 142 N LEU A 30 27.462 9.976 25.862 1.00 17.76 ATOM 144 C LEU A 30 27.462 9.976 25.862 1.00 17.76 ATOM 145 O LEU A 30 28.824 9.351 25.959 1.00 18.41 ATOM 145 O LEU A 30 28.824 9.351 25.959 1.00 18.41 ATOM 146 CB LEU A 30 26.550 7.884 24.672 1.00 19.78 ATOM 147 CG LEU A 30 26.550 7.884 24.473 1.00 14.53 ATOM 147 CG LEU A 30 26.550 7.884 24.473 1.00 14.53 ATOM 148 CD1 LEU A 30 25.629 7.525 23.205 1.00 14.92 ATOM 149 CD2 LEU A 30 25.629 7.525 23.205 1.00 14.92 ATOM 150 N LYS A 31 28.984 8.378 25.691 1.00 18.64 ATOM 150 N LYS A 31 28.984 8.378 26.933 1.00 18.64 ATOM 151 CA LYS A 31 28.984 8.378 26.933 1.00 18.64 ATOM 152 C LYS A 31 28.984 8.378 26.933 1.00 20.71 ATOM 152 C LYS A 31 28.984 6.417 25.999 1.00 20.71 ATOM 155 CG LYS A 31 30.768 5.009 29.295 1.00 23.02 ATOM 155 CG LYS A 31 30.768 5.009 29.295 1.00 23.02 ATOM 155 CG LYS A 31 30.3768 8.069 29.295 1.00 23.02 ATOM 157 CE LYS A 31 31.1542 7.355 30.609 1.00 22.88 ATOM 157 CE LYS A 31 31.1562 8.305 31.675 1.00 28.83 ATOM 157 CE LYS A 31 31.1562 8.305 31.675 1.00 28.83 ATOM 157 CE LYS A 31 31.1562 8.305 31.675 1.00 28.83 ATOM 157 CE LYS A 32 30.555 5.424 23.994 1.00 28.83 ATOM 157 CE LYS A 33 31.652 8.305 31.675 1.00 28.83 ATOM 150 C LYS A 33 31.652 8.305 31.675 1.00 28.83 ATOM 150 C LYS A 33 31.652 8.305 31.675 1.00 29.89 ATOM 160 CA TYR A 32 30.565 5.424 23.946 1.00 22.18 ATOM 161 C TYR A 32 30.565 5.424 23.844 1.00 24.83 ATOM 165 CD LYR A 32 30.565 5.424 23.946 1.00 22.18 ATOM 165 CD LYR A 32 30.555 5.424 23.946 1.00 22.18 ATOM 165 CD LYR A 32 30.555 5.424 23.946 1.00 22.18 ATOM 165 CD LYR A 32 30.555 5.424 23.946 1.00 22.18 ATOM 165 CD LYR A 32 30.555 5.424 23.946 1.00 22.18 ATOM 165 CD LYR A 32 30.555 5.424 23.946 1.00 22.18 ATOM 165 CD LYR A 32 30.555 5.424 23.946 1.00 22.18 ATOM 165 CD LYR A 32 30.555 5.424 23.946 1.00 22.18 ATOM 165 CD LYR A 32 30.555 5.424 23.946 1.00 22.18 ATOM 165 CD LYR A									
ATOM 141 CG2 THR A 29 29.593 13.644 27.634 1.00 23.19 ATOM 142 N LEU A 30 27.767 11.369 25.708 1.00 18.55 ATOM 143 CA LEU A 30 27.767 11.369 25.708 1.00 18.55 ATOM 144 C LEU A 30 27.767 11.369 25.708 1.00 18.51 ATOM 144 C LEU A 30 28.824 9.351 25.959 1.00 18.41 ATOM 145 O LEU A 30 28.824 9.351 25.959 1.00 18.41 ATOM 145 O LEU A 30 28.824 9.351 25.959 1.00 18.41 ATOM 146 CB LEU A 30 25.649 9.396 24.642 1.00 19.78 ATOM 147 CG LEU A 30 25.645 7.478 25.283 1.00 20.72 ATOM 147 CG LEU A 30 25.475 7.478 25.803 1.00 19.78 ATOM 149 CDZ LEU A 30 25.475 7.478 25.601 1.00 18.04 ATOM 149 CDZ LEU A 30 25.475 7.478 25.601 1.00 18.04 ATOM 150 N LYS A 31 28.984 8.378 26.833 1.00 20.71 ATOM 151 CA LYS A 31 30.176 7.575 26.918 1.00 20.71 ATOM 152 C LYS A 31 30.176 7.575 26.918 1.00 20.71 ATOM 153 O LYS A 31 29.940 6.417 25.999 1.00 21.51 ATOM 155 CG LYS A 31 30.411 7.009 28.295 1.00 19.63 ATOM 155 CG LYS A 31 30.411 7.009 28.295 1.00 19.63 ATOM 155 CG LYS A 31 30.416 7.505 30.605 1.00 29.83 ATOM 155 CG LYS A 31 30.416 7.505 30.605 1.00 29.83 ATOM 155 CG LYS A 31 31.1552 8.305 31.675 1.00 22.88 ATOM 157 CE LYS A 31 31.1552 8.305 31.675 1.00 22.88 ATOM 159 N TYR A 32 30.645 6.219 25.034 1.00 22.89 ATOM 150 N TYR A 32 30.645 5.424 23.844 1.00 22.31 ATOM 161 C TYR A 32 30.655 5.424 23.844 1.00 22.31 ATOM 162 O TYR A 32 30.655 5.424 23.946 1.00 22.15 ATOM 163 C TYR A 32 30.655 5.424 23.946 1.00 22.15 ATOM 163 CT TYR A 32 30.655 5.424 23.946 1.00 22.16 ATOM 163 CT TYR A 32 30.655 5.424 23.946 1.00 22.16 ATOM 163 CT TYR A 32 30.655 5.424 23.844 1.00 22.31 ATOM 164 CG TYR A 32 30.655 5.424 23.844 1.00 22.31 ATOM 165 CD TYR A 32 30.655 5.424 23.844 1.00 22.31 ATOM 165 CD TYR A 32 30.655 5.424 23.844 1.00 22.31 ATOM 166 CD TYR A 32 30.655 5.424 23.844 1.00 22.31 ATOM 166 CD TYR A 32 30.655 5.424 23.844 1.00 22.31 ATOM 167 CEL TYR A 32 30.655 5.424 23.844 1.00 22.31 ATOM 166 CD TYR A 32 30.656 6.229 2.202 23.459 1.00 22.85 ATOM 169 CC TYR A 32 29.369 5.449 20.669 1.00 27.66 ATOM 170 CM TYR A 32 29.462 4.6454 1.00 22.35 ATOM 170 CM TYR A 32									
ATOM 142 N LEU A 30 27.662 9.976 25.862 1.00 18.56 ATOM 144 C LEU A 30 27.662 9.976 25.862 1.00 17.76 ATOM 144 C LEU A 30 28.824 9.351 25.959 1.00 18.41 ATOM 145 O LEU A 30 28.824 9.351 25.959 1.00 18.41 ATOM 146 CB LEU A 30 26.560 9.396 24.642 1.00 19.78 ATOM 147 CG LEU A 30 26.560 7.884 24.473 1.00 14.53 ATOM 148 CD LEU A 30 26.550 7.884 24.473 1.00 14.53 ATOM 149 CDZ LEU A 30 25.629 7.525 23.205 1.00 14.92 ATOM 150 N LYS A 31 28.984 8.378 25.691 1.00 18.64 ATOM 151 CA LYS A 31 30.176 7.575 26.918 1.00 20.71 ATOM 152 C LYS A 31 30.176 7.575 26.918 1.00 20.71 ATOM 153 C LYS A 31 30.176 7.575 26.918 1.00 20.71 ATOM 155 CG LYS A 31 30.786 8.066 29.309 1.00 23.82 ATOM 155 CG LYS A 31 30.786 8.066 29.309 1.00 23.83 ATOM 157 CE LYS A 31 31.1552 8.305 31.675 1.00 23.83 ATOM 157 CE LYS A 31 31.1552 8.305 31.675 1.00 23.83 ATOM 158 NZ LYS A 31 32.116 7.506 29.209 1.00 23.83 ATOM 159 NZ LYS A 31 32.116 7.506 29.209 1.00 23.89 ATOM 150 C CA TYR A 32 30.645 5.242 23.844 1.00 29.31 ATOM 151 CC LYS A 31 31.1552 8.305 31.675 1.00 23.89 ATOM 150 C CA TYR A 32 30.655 5.424 23.844 1.00 22.31 ATOM 151 CC LYS A 33 31 30.845 6.219 25.034 1.00 29.83 ATOM 150 C CA TYR A 32 30.655 5.424 23.946 1.00 29.51 ATOM 161 C TYR A 32 30.565 5.424 23.946 1.00 29.51 ATOM 165 CD LYS A 31 31.1562 8.305 31.675 1.00 39.63, ATOM 161 C TYR A 32 30.565 5.424 23.946 1.00 29.83 ATOM 165 CD LYR A 32 30.565 5.424 23.946 1.00 29.83 ATOM 160 CA TYR A 32 30.565 5.424 23.946 1.00 22.18 ATOM 165 CD LYR A 32 30.565 5.424 23.946 1.00 22.18 ATOM 165 CD TYR A 32 30.555 5.424 23.946 1.00 22.18 ATOM 165 CD TYR A 32 30.555 5.424 20.669 1.00 22.18 ATOM 165 CD TYR A 32 31.607 4.359 23.767 1.00 29.63 ATOM 165 CD TYR A 32 31.607 4.359 23.767 1.00 29.63 ATOM 165 CD TYR A 32 31.607 4.359 23.767 1.00 29.64 ATOM 167 CE TYR A 32 31.607 4.359 23.767 1.00 29.55 ATOM 168 CE TYR A 32 31.607 4.359 23.767 1.00 22.28 ATOM 169 C C TYR A 32 31.607 4.359 23.767 1.00 22.28 ATOM 160 C C TYR A 32 31.607 4.359 23.767 1.00 22.26 ATOM 160 C C TYR A 32 31.607 4.359 23.767 1.00 22.26 ATOM 160									1.00 24.08
ATOM 143 CA LEU A 30 27.462 9.976 25.862 1.00 17.76 ATOM 144 C LEU A 30 28.824 9.351 25.959 1.00 18.41 ATOM 145 O LEU A 30 28.824 9.351 25.959 1.00 18.41 ATOM 146 CB LEU A 30 25.649 9.396 24.642 1.00 19.78 ATOM 147 CG LEU A 30 26.649 9.396 24.642 1.00 19.78 ATOM 148 CD1 LEU A 30 26.649 9.396 24.642 1.00 19.78 ATOM 149 CD2 LEU A 30 25.475 7.478 25.801 1.00 18.04 ATOM 149 CD2 LEU A 30 25.475 7.478 25.601 1.00 18.04 ATOM 151 CA LYS A 31 30.176 7.575 26.918 1.00 20.71 ATOM 152 C LYS A 31 30.176 7.575 26.918 1.00 20.71 ATOM 153 O LYS A 31 30.176 7.575 26.918 1.00 20.71 ATOM 153 O LYS A 31 30.417 7.009 28.295 1.00 21.51 ATOM 155 CG LYS A 31 30.417 7.009 28.295 1.00 21.51 ATOM 155 CG LYS A 31 30.417 7.009 28.295 1.00 29.83 ATOM 155 CG LYS A 31 30.417 7.009 28.295 1.00 29.83 ATOM 155 CG LYS A 31 31.1552 8.305 31.675 1.00 29.83 ATOM 157 CE LYS A 31 31.1552 8.305 31.675 1.00 29.83 ATOM 158 NZ LYS A 31 32.116 7.506 32.799 1.00 29.83 ATOM 159 N TYR A 32 30.645 6.219 25.034 1.00 24.83 ATOM 150 CA TYR A 32 30.655 5.424 23.799 1.00 29.83 ATOM 160 CA TYR A 32 30.655 5.424 23.844 1.00 22.13 ATOM 161 C TYR A 32 30.655 5.424 23.844 1.00 22.31 ATOM 162 O TYR A 32 30.655 5.424 23.844 1.00 22.31 ATOM 163 CF LYS A 31 30.645 6.219 25.034 1.00 24.83 ATOM 164 CF TYR A 32 30.655 5.424 23.844 1.00 22.31 ATOM 165 CD LYR A 32 30.655 5.424 23.844 1.00 22.31 ATOM 166 CD TYR A 32 30.655 5.424 23.844 1.00 22.31 ATOM 167 CF TYR A 32 30.655 5.424 23.844 1.00 22.31 ATOM 169 C A TYR A 32 30.655 5.424 23.646 1.00 25.12 ATOM 169 C A TYR A 32 30.655 5.424 23.646 1.00 25.12 ATOM 169 C C TYR A 32 23.1607 4.359 23.767 1.00 29.85 ATOM 169 C C TYR A 32 23.1607 4.359 23.767 1.00 29.85 ATOM 169 C C TYR A 32 23.1607 4.359 23.767 1.00 29.85 ATOM 169 C C TYR A 32 23.269 5.442 20.665 1.00 27.464 ATOM 170 ON TYR A 32 29.462 4.654 1.00 25.26 ATOM 170 ON TYR A 32 29.462 4.687 1.00 27.65 ATOM 170 ON TYR A 32 29.462 4.687 1.00 27.65 ATOM 170 CO VAL A 33 32.128 2.297 -0.537 2.309 1.00 22.18 ATOM 170 C VAL A 33 32.2186 2.221 2.221 1.00 1.00 27.65 ATOM 170 C VAL A 33 32									
ATOM 144 C LEU A 30 28.824 9.351 25.959 1.00 18.41 ATOM 145 0 LEU A 30 29.738 9.774 25.283 1.00 20.72 ATOM 146 CB LEU A 30 26.350 7.884 24.673 1.00 20.72 ATOM 147 CG LEU A 30 26.350 7.884 24.673 1.00 14.53 ATOM 147 CG LEU A 30 26.350 7.884 24.473 1.00 14.53 ATOM 148 CD1 LEU A 30 25.629 7.852 32.055 1.00 14.92 ATOM 149 CD2 LEU A 30 25.629 7.525 23.205 1.00 14.92 ATOM 150 N LYS A 31 28.984 8.378 26.833 1.00 18.64 ATOM 150 N LYS A 31 28.984 8.378 26.833 1.00 18.64 ATOM 151 CA LYS A 31 28.984 8.378 26.918 1.00 20.71 ATOM 152 C LYS A 31 28.984 6.417 25.999 1.00 21.51 ATOM 153 O LYS A 31 28.984 6.417 25.999 1.00 21.51 ATOM 153 O LYS A 31 28.984 6.417 25.999 1.00 21.51 ATOM 155 CB LYS A 31 28.986 5.701 26.170 1.00 23.02 ATOM 155 CB LYS A 31 30.176 5.705 26.918 1.00 23.02 ATOM 155 CB LYS A 31 31.3652 6.305 31.675 1.00 23.02 ATOM 155 CB LYS A 31 31.31.652 6.305 31.675 1.00 25.83 ATOM 157 CE LYS A 31 31.652 6.305 31.675 1.00 25.83 ATOM 157 CE LYS A 31 32.116 7.506 23.27.99 1.00 25.83 ATOM 158 NZ LYS A 31 32.116 7.506 23.27.99 1.00 25.83 ATOM 150 CC LYR A 32 30.565 5.242 23.795 1.00 39.63 ATOM 161 C TYR A 32 30.565 5.424 23.844 1.00 24.83 ATOM 161 C TYR A 32 30.565 5.424 23.946 1.00 22.13 ATOM 162 C TYR A 32 30.565 5.424 23.946 1.00 22.13 ATOM 165 CD LYR A 32 30.555 5.242 33.946 1.00 22.13 ATOM 165 CD TYR A 32 30.555 5.242 33.946 1.00 22.13 ATOM 165 CD TYR A 32 30.555 5.242 33.946 1.00 22.13 ATOM 165 CD TYR A 32 30.555 5.242 33.946 1.00 22.13 ATOM 165 CD TYR A 32 30.555 5.242 33.946 1.00 22.13 ATOM 165 CD TYR A 32 30.555 5.242 33.946 1.00 22.13 ATOM 165 CD TYR A 32 30.555 5.242 33.946 1.00 22.13 ATOM 165 CD TYR A 32 30.555 5.242 32.3946 1.00 22.13 ATOM 165 CD TYR A 32 30.555 5.242 32.3946 1.00 22.13 ATOM 165 CD TYR A 32 30.555 5.242 32.3946 1.00 22.13 ATOM 165 CD TYR A 32 30.555 5.242 32.3946 1.00 22.13 ATOM 165 CD TYR A 32 31.677 4.599 23.946 1.00 22.13 ATOM 165 CD TYR A 32 31.677 4.599 23.946 1.00 22.13 ATOM 167 CE TYR A 32 31.670 4.599 23.946 1.00 22.23 ATOM 165 CD TYR A 32 31.670 4.599 23.946 1.00 22.23 ATOM 167 CC TY									
ATOM 145 O LEU A 30 25.738 9.774 25.283 1.00 20.72 ATOM 146 CB LEU A 30 26.649 9.396 24.642 1.00 19.78 ATOM 147 CG LEU A 30 26.649 9.396 24.642 1.00 19.78 ATOM 148 CD1 LEU A 30 26.649 7.476 25.601 1.00 19.78 ATOM 149 CD2 LEU A 30 25.475 7.478 25.601 1.00 14.53 ATOM 149 CD2 LEU A 30 25.475 7.478 25.601 1.00 14.04 ATOM 151 CA LYS A 31 30.176 7.575 26.918 1.00 20.71 ATOM 152 C LYS A 31 30.176 7.575 26.918 1.00 20.71 ATOM 153 O LYS A 31 30.176 7.575 26.918 1.00 20.71 ATOM 153 O LYS A 31 30.417 7.009 28.295 1.00 21.51 ATOM 155 CG LYS A 31 30.417 7.009 28.295 1.00 21.51 ATOM 155 CG LYS A 31 30.417 7.009 28.295 1.00 29.83 ATOM 155 CG LYS A 31 30.417 7.009 28.295 1.00 29.83 ATOM 155 CG LYS A 31 30.417 7.009 28.295 1.00 29.83 ATOM 156 CD LYS A 31 31.1552 8.305 31.675 1.00 29.83 ATOM 157 CE LYS A 31 31.1552 8.305 31.675 1.00 29.83 ATOM 158 NZ LYS A 31 32.116 7.506 32.799 1.00 29.83 ATOM 159 N TYR A 32 30.645 5.242 23.2799 1.00 29.83 ATOM 150 CA TYR A 32 30.655 5.424 23.844 1.00 24.83 ATOM 161 C TYR A 32 30.655 5.424 23.844 1.00 24.83 ATOM 162 CD TYR A 32 30.555 5.424 23.844 1.00 22.13 ATOM 163 CD LYS A 33 30.569 6.367 22.640 1.00 25.12 ATOM 163 CD TYR A 32 30.555 5.424 23.946 1.00 22.13 ATOM 164 CD TYR A 32 30.555 5.424 23.946 1.00 22.14 ATOM 165 CD LYR A 32 30.555 5.424 23.946 1.00 22.16 ATOM 165 CD TYR A 32 30.555 5.424 23.644 1.00 24.83 ATOM 165 CD TYR A 32 30.555 5.424 23.646 1.00 25.12 ATOM 165 CD TYR A 32 30.555 7.22 21.262 1.00 27.464 ATOM 165 CD TYR A 32 30.555 6.325 22.640 1.00 25.61 ATOM 165 CD TYR A 32 23.569 5.424 23.646 1.00 25.61 ATOM 165 CD TYR A 32 23.569 5.424 23.646 1.00 25.61 ATOM 170 CH TYR A 32 23.184 1.00 22.21 ATOM 170 CH TYR A 32 23.184 1.00 22.21 ATOM 170 CH TYR A 32 23.259 5.462 4.654 19.3556 1.00 27.466 ATOM 170 CH TYR A 32 23.184 1.00 22.21 ATOM 170 CH TYR A 32 23.184 1.00 22.21 ATOM 170 CH TYR A 32 23.2569 5.439 20.605 1.00 27.66 ATOM 170 CH TYR A 32 23.2569 5.439 20.605 1.00 27.65 ATOM 170 CF CRUTYR A 32 23.0567 5.722 21.262 1.00 27.65 ATOM 170 CF CRUTYR A 32 23.0567 5.722 21.262 1.00 27.65									
ATOM 146 CB LEU A 30 26.580 7.884 24.673 1.00 19.78 ATOM 147 CG LEU A 30 26.580 7.884 24.473 1.00 14.53 ATOM 148 CD1 LEU A 30 25.567 7.878 25.601 1.00 14.53 ATOM 149 CD2 LEU A 30 25.675 7.478 25.601 1.00 14.52 ATOM 149 CD2 LEU A 30 25.629 7.525 23.205 1.00 14.92 ATOM 150 N LYS A 31 28.984 8.378 26.833 1.00 18.64 ATOM 151 CA LYS A 31 28.984 8.378 26.833 1.00 18.64 ATOM 151 CA LYS A 31 28.984 8.378 26.833 1.00 18.64 ATOM 152 C LYS A 31 28.984 8.378 26.833 1.00 18.64 ATOM 152 C LYS A 31 28.984 8.378 26.918 1.00 20.71 ATOM 152 C LYS A 31 28.986 5.701 25.999 1.00 21.51 ATOM 153 O LYS A 31 28.986 5.701 25.999 1.00 21.51 ATOM 155 CG LYS A 31 30.786 8.066 28.295 1.00 19.63 ATOM 155 CG LYS A 31 30.786 8.066 28.295 1.00 19.63 ATOM 155 CG LYS A 31 30.786 8.066 28.305 1.00 25.85 ATOM 155 CG LYS A 31 31.4652 6.305 31.675 1.00 25.85 ATOM 157 CC LYS A 31 31.4652 6.305 31.675 1.00 25.85 ATOM 157 CC LYS A 31 32.116 7.506 31.675 1.00 25.85 ATOM 157 CC LYS A 31 32.116 7.506 31.675 1.00 25.85 ATOM 150 C LYS A 31 32.116 7.506 32.799 1.00 25.85 ATOM 150 C CA TYR A 32 30.555 5.242 23.795 1.00 39.63 ATOM 161 C TYR A 32 30.555 5.242 23.795 1.00 29.55 ATOM 162 C TYR A 32 30.555 5.242 23.844 1.00 24.83 ATOM 161 C TYR A 32 30.555 5.242 33.946 1.00 22.18 ATOM 162 C TYR A 32 30.555 5.242 33.946 1.00 22.18 ATOM 165 CD TYR A 32 30.555 5.242 33.946 1.00 22.18 ATOM 165 CD TYR A 32 30.555 5.242 30.945 1.00 25.12 ATOM 165 CD TYR A 32 30.555 5.242 30.945 1.00 25.12 ATOM 165 CD TYR A 32 30.555 5.242 30.946 1.00 22.18 ATOM 165 CD TYR A 32 30.555 5.242 30.946 1.00 22.18 ATOM 165 CD TYR A 32 30.555 5.242 30.555 1.00 27.66 ATOM 165 CD TYR A 32 30.555 5.242 30.557 1.00 25.61 ATOM 167 CE TYR A 32 30.557 5.725 12.62 1.00 27.56 ATOM 165 CD TYR A 32 31.670 4.589 18.787 1.00 28.61 ATOM 170 CH TYR A 32 31.871 4.860 19.452 1.00 27.56 ATOM 165 CD TYR A 32 31.670 4.589 18.787 1.00 28.61 ATOM 171 N VAL A 33 32.138 2.022 23.453 1.00 22.23 ATOM 171 N VAL A 33 32.138 2.022 23.453 1.00 22.23 ATOM 174 C CA VAL A 33 32.138 2.022 23.453 1.00 22.23 ATOM 174 C CA VAL A 33									
ATOM 147 CG LEU A 30 25.475 7.478 25.601 1.00 14.53 ATOM 148 CD1 LEU A 30 25.475 7.478 25.601 1.00 14.04 ATOM 149 CD2 LEU A 30 25.475 7.478 25.601 1.00 14.92 ATOM 150 N LYS A 31 30.576 7.575 26.918 1.00 20.71 ATOM 151 CA LYS A 31 30.176 7.575 26.918 1.00 20.71 ATOM 152 C LYS A 31 30.176 7.575 26.918 1.00 20.71 ATOM 153 O LYS A 31 28.946 5.701 26.170 1.00 21.51 ATOM 153 O LYS A 31 28.946 5.701 26.170 1.00 21.51 ATOM 155 CG LYS A 31 30.411 7.009 28.295 1.00 19.63 ATOM 155 CG LYS A 31 30.411 7.009 28.295 1.00 29.83 ATOM 156 CD LYS A 31 30.411 7.009 28.295 1.00 29.83 ATOM 155 CG LYS A 31 30.417 7.355 30.605 1.00 29.83 ATOM 157 CE LYS A 31 31.1552 8.305 31.675 1.00 29.83 ATOM 157 CE LYS A 31 31.1552 8.305 31.675 1.00 29.83 ATOM 159 NZ LYS A 31 32.116 7.506 32.799 1.00 29.83 ATOM 150 CA TYR A 32 30.565 5.424 23.299 1.00 29.83 ATOM 150 CA TYR A 32 30.565 5.424 23.844 1.00 24.83 ATOM 161 C TYR A 32 30.565 5.424 23.844 1.00 24.83 ATOM 161 C TYR A 32 30.565 5.424 23.844 1.00 22.31 ATOM 162 C TYR A 32 30.565 5.424 23.946 1.00 22.18 ATOM 163 C TYR A 32 30.565 5.424 23.946 1.00 22.18 ATOM 163 C TYR A 32 30.565 6.367 22.640 1.00 25.12 ATOM 163 C TYR A 32 30.555 5.424 23.946 1.00 22.18 ATOM 163 C TYR A 32 30.555 5.424 23.946 1.00 22.18 ATOM 163 C TYR A 32 30.555 6.367 22.640 1.00 25.12 ATOM 163 C TYR A 32 30.555 6.367 22.640 1.00 25.12 ATOM 163 C TYR A 32 30.555 6.367 22.640 1.00 25.12 ATOM 165 CD TYR A 32 30.555 6.367 22.640 1.00 25.12 ATOM 165 CD TYR A 32 30.555 6.367 22.640 1.00 25.12 ATOM 165 CD TYR A 32 30.555 6.367 22.640 1.00 25.61 ATOM 165 CD TYR A 32 30.555 6.367 22.640 1.00 25.61 ATOM 165 CD TYR A 32 29.462 4.657 23.946 1.00 25.61 ATOM 170 C TAR A 32 30.555 6.367 22.640 1.00 25.61 ATOM 170 C TAR A 32 30.555 6.367 22.640 1.00 25.61 ATOM 170 C TAR A 32 30.555 6.367 22.640 1.00 25.61 ATOM 170 C TAR A 32 30.555 6.367 22.640 1.00 25.61 ATOM 170 C TAR A 32 30.555 6.367 22.640 1.00 25.61 ATOM 170 C TAR A 32 30.555 6.367 22.640 1.00 25.61 ATOM 170 C TAR A 32 30.555 6.367 22.640 1.00 25.61 ATOM 170 C TAR A 32 30.555 6.367 22									
ATOM 149 CDL LEU A 30 25.629 7.525 23.205 1.00 14.92 ATOM 149 CDL LEU A 30 25.629 7.525 23.205 1.00 14.92 ATOM 150 N LYS A 31 28.984 8.376 26.833 1.00 18.64 ATOM 151 CA LYS A 31 28.984 8.376 26.918 1.00 20.71 ATOM 152 C LYS A 31 29.940 6.417 25.999 1.00 21.51 ATOM 152 C LYS A 31 29.940 6.417 25.999 1.00 21.51 ATOM 153 O LYS A 31 28.986 5.701 25.999 1.00 21.51 ATOM 154 CB LYS A 31 30.786 5.701 26.170 1.00 22.02 ATOM 155 CG LYS A 31 30.845 6.701 28.259 1.00 19.63 ATOM 155 CG LYS A 31 30.845 6.909 30.605 1.00 29.83 ATOM 156 CD LYS A 31 31.854 7.355 30.605 1.00 29.83 ATOM 156 CD LYS A 31 31.854 7.355 30.605 1.00 29.83 ATOM 156 CD LYS A 31 31.854 7.355 30.605 1.00 29.83 ATOM 156 CD LYS A 31 31.854 7.355 30.605 1.00 29.83 ATOM 150 CD LYS A 31 31.854 7.355 30.605 1.00 29.83 ATOM 150 CD LYS A 31 31.854 7.355 30.605 1.00 29.83 ATOM 150 CD LYS A 31 31.855 6.300 31.675 1.00 29.83 ATOM 159 NC LYS A 32 30.845 6.209 25.209 1.00 22.83 ATOM 150 CD LYS A 32 30.845 6.209 25.209 1.00 22.83 ATOM 161 C TYR A 32 30.845 6.209 25.204 1.00 22.83 ATOM 161 C TYR A 32 30.855 5.424 29.369 1.00 22.83 ATOM 162 CD TYR A 32 30.559 5.424 23.946 1.00 22.12 ATOM 163 CB TYR A 32 30.559 6.367 22.640 1.00 22.12 ATOM 165 CD TYR A 32 30.559 6.367 22.640 1.00 22.12 ATOM 165 CD TYR A 32 30.559 5.424 20.689 1.00 25.12 ATOM 165 CD TYR A 32 30.559 5.437 20.669 1.00 27.66 ATOM 165 CD TYR A 32 30.559 5.437 20.669 1.00 26.41 ATOM 166 CD TYR A 32 30.559 5.449 20.689 1.00 26.41 ATOM 166 CD TYR A 32 30.559 5.449 20.689 1.00 26.41 ATOM 167 CEL TYR A 32 30.559 5.474 9.069 1.00 26.41 ATOM 167 CEL TYR A 32 30.559 5.474 9.069 1.00 26.41 ATOM 167 CEL TYR A 32 30.559 5.474 9.069 1.00 26.41 ATOM 167 CEL TYR A 32 30.559 5.474 9.069 1.00 26.41 ATOM 167 CEL TYR A 32 30.559 6.367 22.640 1.00 22.23 ATOM 167 CEL TYR A 32 30.607 5.489 1.00 22.36 ATOM 169 CZ TYR A 32 30.507 5.489 1.00 22.23 ATOM 167 CEL TYR A 32 30.559 5.449 20.689 1.00 26.00 27.65 ATOM 169 CZ TYR A 32 30.507 5.489 1.00 22.23 ATOM 170 OH TYR A 32 30.507 5.489 1.00 22.23 ATOM 170 OH TYR A 32 30.507 5.489 1.00 22									
ATOM 149 CDZ LEU A 30									
ATOM 150 N LYS A 31 28.984 8.378 26.833 1.00 18.64 ATOM 151 CA LYS A 31 29.940 6.417 25.999 1.00 21.51 ATOM 152 C LYS A 31 29.940 6.417 25.999 1.00 21.51 ATOM 153 O LYS A 31 29.940 6.417 25.999 1.00 21.51 ATOM 153 O LYS A 31 28.986 5.701 25.999 1.00 21.51 ATOM 154 CB LYS A 31 30.786 8.066 29.309 1.00 29.83 ATOM 155 CG LYS A 31 30.788 8.066 29.309 1.00 29.83 ATOM 156 CD LYS A 31 31.854 7.355 30.605 1.00 29.83 ATOM 157 CE LYS A 31 31.8154 7.355 30.605 1.00 29.83 ATOM 158 NZ LYS A 31 31.854 7.355 30.605 1.00 29.83 ATOM 158 NZ LYS A 31 31.657 6.206 22.799 1.00 39.63 ATOM 158 NZ LYS A 32 30.607 6.246 27.99 1.00 39.63 ATOM 158 NZ LYS A 32 30.607 4.359 23.767 1.00 24.83 ATOM 161 C TYR A 32 31.607 4.359 23.767 1.00 24.83 ATOM 162 O TYR A 32 30.559 6.367 22.640 1.00 24.83 ATOM 163 CB TYR A 32 30.559 6.367 22.640 1.00 25.12 ATOM 165 CD LYR A 32 30.559 6.367 22.640 1.00 25.12 ATOM 165 CD TYR A 32 30.559 6.367 22.660 1.00 27.46 ATOM 165 CD TYR A 32 30.559 6.367 22.660 1.00 27.66 ATOM 165 CD TYR A 32 30.559 6.367 22.660 1.00 27.66 ATOM 166 CD TYR A 32 30.559 6.367 22.640 1.00 27.56 ATOM 167 CEL TYR A 32 30.559 6.367 22.640 1.00 27.56 ATOM 168 CE TYR A 32 30.559 6.367 22.640 1.00 27.56 ATOM 168 CE TYR A 32 30.559 6.377 0.613 1.00 26.10 ATOM 167 CEL TYR A 32 30.559 6.377 7.75 21.262 1.00 27.56 ATOM 169 CZ TYR A 32 30.559 6.377 7.75 0.613 1.00 26.10 ATOM 167 CEL TYR A 32 30.559 6.377 7.75 0.613 1.00 26.10 ATOM 167 CEL TYR A 32 30.559 6.377 7.75 0.613 1.00 26.10 ATOM 167 CEL TYR A 32 30.559 6.377 20.613 1.00 26.10 ATOM 167 CEL TYR A 32 30.559 6.377 20.613 1.00 26.10 ATOM 167 CEL TYR A 32 30.559 6.377 20.613 1.00 26.20 ATOM 169 CZ TYR A 32 30.507 6.367 22.640 1.00 27.36 ATOM 170 CH TYR A 32 30.607 4.589 18.787 1.00 28.61 ATOM 170 CH TYR A 32 30.607 4.607 20.608 10.00 26.10 ATOM 171 N VAL A 33 31.217 3.108 23.607 1.00 22.21 ATOM 171 N VAL A 33 32.136 2.222 23.453 1.00 22.23 ATOM 173 C VAL A 33 32.136 2.227 23.453 1.00 22.23 ATOM 176 C R VAL A 33 32.136 2.227 23.453 1.00 22.25 ATOM 177 C C VAL A 33 33 32.136 2.227 23.453 1.00 22.2									
ATOM 151 CA LYS A 31 30.176 7.575 26.918 1.00 20.71 ATOM 152 C LYS A 31 29.940 6.417 25.999 1.00 21.51 ATOM 153 O LYS A 31 28.966 5.701 26.170 1.00 21.51 O 19.63 ATOM 155 CG LYS A 31 30.411 7.009 28.295 1.00 19.63 ATOM 155 CG LYS A 31 30.411 7.009 28.295 1.00 19.63 ATOM 155 CG LYS A 31 30.417 7.355 30.605 1.00 29.83 ATOM 157 CE LYS A 31 31.1562 8.305 31.675 1.00 22.89 ATOM 157 CE LYS A 31 31.1562 8.305 31.675 1.00 22.89 ATOM 159 NZ LYS A 31 31.1562 8.305 31.675 1.00 22.89 ATOM 159 NZ LYS A 31 31.1562 8.305 31.675 1.00 22.89 ATOM 159 NZ LYS A 31 31.1562 8.305 31.675 1.00 22.89 ATOM 159 NZ LYS A 31 31.1562 8.305 31.675 1.00 22.89 ATOM 160 CA TYR A 32 30.565 5.424 23.894 1.00 24.83 ATOM 161 C TYR A 32 30.565 5.424 23.844 1.00 24.83 ATOM 161 C TYR A 32 31.507 4.359 23.767 1.00 29.55 ATOM 162 O TYR A 32 31.507 4.359 23.767 1.00 29.55 ATOM 163 CB TYR A 32 30.555 5.424 23.946 1.00 25.12 ATOM 165 CD TYR A 32 30.555 5.725 21.262 1.00 27.46 ATOM 165 CD TYR A 32 30.555 5.725 21.262 1.00 27.46 ATOM 166 CD TYR A 32 30.555 5.424 20.689 1.00 27.46 ATOM 166 CD TYR A 32 30.555 5.424 20.689 1.00 27.46 ATOM 166 CD TYR A 32 30.555 5.424 20.689 1.00 27.66 ATOM 166 CD TYR A 32 30.555 5.424 20.689 1.00 27.46 ATOM 166 CD TYR A 32 30.555 5.424 20.689 1.00 27.46 ATOM 167 CD TYR A 32 30.555 5.424 20.689 1.00 27.66 ATOM 167 CD TYR A 32 30.555 5.424 20.689 1.00 26.10 ATOM 170 OH TYR A 32 31.879 5.449 20.689 1.00 26.10 ATOM 170 OH TYR A 32 30.557 5.725 21.262 1.00 27.66 ATOM 170 CD TYR A 32 30.557 5.725 21.262 1.00 27.66 ATOM 170 CD TYR A 32 30.557 5.35 21.262 1.00 27.66 ATOM 170 CD TYR A 32 30.557 5.35 21.262 1.00 27.46 ATOM 170 CD TYR A 32 30.557 5.35 21.262 1.00 20.21 ATOM 170 CD TYR A 32 30.557 5.35 21.262 1.00 20.21 ATOM 170 CD TYR A 32 30.557 5.35 21.262 1.00 20.21 ATOM 170 CD TYR A 32 30.557 5.35 21.262 1.00 20.21 ATOM 170 CD TYR A 32 30.557 5.35 21.262 1.00 20.21 ATOM 170 CD TYR A 32 30.557 5.35 31.675 31.00 22.23 ATOM 170 CD TYR A 32 30.557 5.35 31.675 31.00 22.23 ATOM 170 CD TYR A 32 30.557 5.35 31.675 31.00 22.23 ATOM 170 CD TYR									
ATOM 152 C LYS A 31 22.940 6.417 25.999 1.00 21.51 ATOM 153 O LYS A 31 22.946 5.701 25.999 1.00 21.51 ATOM 154 CB LYS A 31 30.411 7.009 28.295 1.00 19.63 ATOM 155 CG LYS A 31 30.78B 8.066 29.309 1.00 25.85 ATOM 155 CG LYS A 31 30.78B 8.066 29.309 1.00 25.85 ATOM 156 CD LYS A 31 31.554 7.355 30.605 1.00 29.83 ATOM 157 CE LYS A 31 31.554 7.355 30.605 1.00 29.83 ATOM 158 NZ LYS A 31 31.554 7.355 30.605 1.00 29.83 ATOM 158 NZ LYS A 31 31.554 6.219 25.034 1.00 22.83 ATOM 159 N TYR A 32 30.645 6.219 25.034 1.00 24.83 ATOM 160 CA TYR A 32 30.655 5.424 23.644 1.00 24.83 ATOM 161 CA TYR A 32 30.655 5.424 23.644 1.00 24.83 ATOM 161 CA TYR A 32 30.565 5.424 23.644 1.00 25.51 ATOM 163 CB TYR A 32 30.559 6.567 22.640 1.00 25.12 ATOM 163 CB TYR A 32 30.559 6.567 22.640 1.00 25.12 ATOM 165 CD TYR A 32 30.559 6.567 22.640 1.00 25.12 ATOM 165 CD TYR A 32 30.559 6.567 22.640 1.00 25.12 ATOM 165 CD TYR A 32 30.559 6.567 22.640 1.00 25.12 ATOM 165 CD TYR A 32 30.559 6.567 20.663 1.00 27.48 ATOM 165 CD TYR A 32 30.559 6.409 20.689 1.00 26.11 ATOM 165 CD TYR A 32 30.559 6.409 20.689 1.00 26.41 ATOM 165 CD TYR A 32 30.559 6.409 20.689 1.00 26.41 ATOM 165 CD TYR A 32 30.559 6.409 20.689 1.00 26.41 ATOM 166 CD TYR A 32 30.559 6.409 20.689 1.00 26.41 ATOM 167 CEL TYR A 32 30.559 6.409 20.689 1.00 26.41 ATOM 167 CEL TYR A 32 30.559 6.409 20.689 1.00 26.41 ATOM 167 CEL TYR A 32 30.500 5.409 5.437 0.613 1.00 26.10 ATOM 167 CEL TYR A 32 30.500 5.409 5.437 0.613 1.00 26.10 ATOM 167 CEL TYR A 32 30.500 5.409 5.437 0.613 1.00 26.10 ATOM 167 CEL TYR A 32 30.500 5.409 5.437 0.600 20.20 ATOM 169 CZ TYR A 32 30.644 6.84 19.356 1.00 25.64 ATOM 167 CEL TYR A 32 30.644 6.64 19.356 1.00 26.00 20.600 ATOM 167 CEL TYR A 32 30.644 6.64 19.356 1.00 25.65 ATOM 173 C VAL A 33 32.138 2.022 23.453 1.00 22.23 ATOM 174 C VAL A 33 32.138 2.022 23.453 1.00 22.23 ATOM 174 C VAL A 33 32.138 2.022 23.453 1.00 22.23 ATOM 175 C VAL A 33 32.138 2.022 23.453 1.00 22.25 ATOM 176 C VAL A 33 32.138 2.022 23.453 1.00 22.25 ATOM 177 C CA VAL A 33 32.138 2.022 23.453 1.00 22.									
ATOM 153 O LYS A 31 28.966 5.701 26.170 1.00 22.02 ATOM 154 CB LYS A 31 30.411 7.009 28.295 1.00 19.63 ATOM 155 CG LYS A 31 30.411 7.009 28.295 1.00 19.63 ATOM 155 CG LYS A 31 30.788 8.066 29.309 1.00 29.85 ATOM 156 CD LYS A 31 31.154 7.355 30.605 1.00 29.83 ATOM 157 CE LYS A 31 31.1552 8.305 31.675 1.00 32.69 ATOM 159 NZ LYS A 31 31.1552 8.305 31.675 1.00 32.69 ATOM 159 NZ LYS A 31 32.116 7.506 32.799 1.00 39.63, ATOM 159 N TYR A 32 30.645 5.424 23.844 1.00 24.83 ATOM 161 C TYR A 32 30.655 5.424 23.844 1.00 24.83 ATOM 161 C TYR A 32 31.607 4.359 23.767 1.00 19.55 ATOM 162 O TYR A 32 31.607 4.359 23.767 1.00 19.55 ATOM 163 CB TYR A 32 30.555 5.424 23.946 1.00 22.18 ATOM 163 CB TYR A 32 30.555 5.424 23.946 1.00 25.12 ATOM 165 CD TYR A 32 30.555 5.725 21.262 1.00 27.46 ATOM 165 CD TYR A 32 30.555 5.725 21.262 1.00 27.46 ATOM 165 CD TYR A 32 30.557 5.725 21.262 1.00 27.46 ATOM 165 CD TYR A 32 31.671 4.860 19.452 1.00 27.46 ATOM 166 CD TYR A 32 31.671 4.860 19.452 1.00 27.55 ATOM 168 CD TYR A 32 31.671 4.860 19.452 1.00 27.55 ATOM 167 CD TYR A 32 31.671 4.860 19.452 1.00 27.56 ATOM 167 CD TYR A 32 31.671 4.860 19.452 1.00 26.10 ATOM 170 CD TYR A 32 31.671 4.860 19.452 1.00 27.56 ATOM 168 CD TYR A 32 31.671 4.860 19.452 1.00 27.56 ATOM 167 CD TYR A 32 31.671 4.860 19.452 1.00 27.66 ATOM 170 CD TYR A 32 31.671 4.860 19.452 1.00 27.60 ATOM 170 CD TYR A 32 31.404 4.581 18.756 1.00 22.10 27.60 ATOM 170 CD TYR A 32 31.217 4.860 19.356 1.00 22.60 ATOM 170 CD TYR A 33 32.229 2.212 22.212 1.00 27.60 ATOM 170 CD TYR A 33 32.229 2.212 22.110 1.00 22.23 ATOM 170 CD TYR A 33 32.229 2.212 23.453 1.00 22.23 ATOM 170 CD TYR A 33 32.229 2.212 22.110 1.00 22.23 ATOM 170 CD TYR A 33 32.229 2.212 22.110 1.00 22.23 ATOM 170 CD TYR A 33 32.229 2.212 22.110 1.00 22.23 ATOM 170 CD TYR A 33 32.229 2.212 22.110 1.00 22.23 ATOM 170 CD TYR A 33 32.229 2.212 22.110 1.00 22.23 ATOM 170 CD TYR A 33 32.229 2.212 22.110 1.00 22.23 ATOM 170 CD TYR A 33 32.229 2.212 22.110 1.00 22.23 ATOM 170 CD TYR A 33 32.229 2.212 22.110 1.00 22.23 ATOM 170 CD TY									
ATOM 154 CB LYS A 31 30.411 7.009 28.295 1.00 19.63 ATOM 155 CG LYS A 31 30.788 8.066 29.309 1.00 25.85 ATOM 155 CG LYS A 31 31.154 7.355 30.605 1.00 29.83 ATOM 157 CE LYS A 31 31.652 8.305 31.675 1.00 29.83 ATOM 157 CE LYS A 31 31.652 8.305 31.675 1.00 32.89 ATOM 158 NZ LYS A 31 32.616 7.506 32.799 1.00 39.63 ATOM 159 N TYR A 32 30.645 6.219 25.034 1.00 24.83 ATOM 161 C TYR A 32 30.645 6.219 23.767 1.00 24.83 ATOM 161 C TYR A 32 30.655 5.424 23.844 1.00 22.31 ATOM 162 O TYR A 32 32.759 4.667 23.946 1.00 22.18 ATOM 162 O TYR A 32 32.759 4.667 23.946 1.00 25.12 ATOM 163 CB TYR A 32 30.555 6.367 22.640 1.00 27.46 ATOM 165 CD TYR A 32 30.555 5.424 20.600 30.00 25.12 ATOM 164 CG TYR A 32 30.557 5.725 21.262 1.00 27.46 ATOM 165 CD TYR A 32 30.557 5.725 21.262 1.00 27.46 ATOM 165 CD TYR A 32 30.557 5.725 21.262 1.00 27.46 ATOM 165 CD TYR A 32 29.369 5.447 20.613 1.00 26.10 ATOM 165 CD TYR A 32 29.369 5.447 20.613 1.00 26.10 ATOM 165 CD TYR A 32 29.369 5.447 20.613 1.00 26.10 ATOM 165 CD TYR A 32 29.462 4.854 19.356 1.00 27.56 ATOM 169 CZ TYR A 32 29.462 4.854 19.356 1.00 27.56 ATOM 169 CZ TYR A 32 30.510 4.589 18.787 1.00 22.51 ATOM 170 OH TYR A 32 30.614 4.867 17.501 1.00 22.61 ATOM 170 OH TYR A 32 30.514 2.222 23.453 1.00 22.23 ATOM 173 C VAL A 33 32.229 2.212 23.453 1.00 22.23 ATOM 173 C VAL A 33 32.229 2.212 23.10 0.00 20.23 ATOM 174 O VAL A 33 32.229 2.212 23.10 0.00 22.36 ATOM 175 CB VAL A 33 32.282 2.222 23.453 1.00 22.23 ATOM 175 CB VAL A 33 32.282 2.222 23.150 0.00 22.36 ATOM 175 CB VAL A 33 32.297 -0.537 23.399 1.00 22.36 ATOM 176 CG VAL A 33 32.297 -0.537 23.399 1.00 22.36 ATOM 178 N PRO A 34 34.927 0.537 23.599 1.00 22.36 ATOM 179 CA PRO A 34 34.927 0.537 23.599 1.00 22.36 ATOM 178 N PRO A 34 34.927 0.537 23.599 1.00 22.36 ATOM 178 N PRO A 34 34.927 0.537 23.599 1.00 22.36 ATOM 180 C PRO A 34 34.927 0.537 23.599 1.00 27.77 ATOM 180 C PRO A 34 34.927 0.537 23.599 1.00 22.51 ATOM 180 C PRO A 34 34.927 0.531 2.277 3.100 2.275 3.400 2.275 3.400 3.00 2.275 3.400 3.00 2.275 3.400 3.00 2.275 3.400 3.00 2.275 3.4									
ATOM 155 CG LYS A 31 30.788 8.066 29.309 1.00 22.85 ATOM 156 CD LYS A 31 31.1562 8.305 31.675 1.00 22.83 ATOM 157 CE LYS A 31 31.652 8.305 31.675 1.00 22.83 ATOM 158 NZ LYS A 31 31.652 8.305 31.675 1.00 32.89 ATOM 159 N TYR A 32 30.645 6.219 25.034 1.00 24.83 ATOM 160 CA TYR A 32 30.645 5.424 23.844 1.00 24.83 ATOM 161 C TYR A 32 30.565 5.424 23.844 1.00 24.83 ATOM 161 C TYR A 32 31.607 4.359 23.767 1.00 19.55 ATOM 162 O TYR A 32 31.607 4.359 23.767 1.00 19.55 ATOM 163 CB TYR A 32 30.565 5.424 23.946 1.00 25.12 ATOM 164 CG TYR A 32 30.565 5.725 21.262 1.00 27.46 ATOM 165 CD TYR A 32 30.557 5.725 21.262 1.00 27.46 ATOM 165 CD TYR A 32 30.557 5.725 21.262 1.00 27.46 ATOM 165 CD TYR A 32 31.790 5.449 20.689 1.00 26.41 ATOM 165 CD TYR A 32 29.369 5.437 20.613 1.00 26.10 ATOM 165 CD TYR A 32 31.671 4.860 19.452 1.00 27.56 ATOM 165 CD TYR A 32 31.671 4.860 19.452 1.00 27.56 ATOM 168 CE TYR A 32 31.671 4.860 19.452 1.00 27.56 ATOM 169 CZ TYR A 32 31.671 4.860 19.452 1.00 27.56 ATOM 169 CZ TYR A 32 31.671 4.860 19.452 1.00 27.66 ATOM 170 CT TYR A 32 31.841 4.00 19.356 1.00 22.61 ATOM 170 CT TYR A 32 31.841 4.00 19.356 1.00 22.61 ATOM 170 CT TYR A 33 31.400 4.589 18.787 1.00 22.61 ATOM 171 CT TYR A 33 31.400 0.23 2.604 1.00 22.33 ATOM 172 CT VAL A 33 32.138 2.022 23.453 1.00 22.33 ATOM 174 O VAL A 33 32.138 2.022 23.453 1.00 22.36 ATOM 175 CB VAL A 33 32.297 -0.537 23.399 1.00 22.36 ATOM 176 CG VAL A 33 32.297 -0.537 23.599 1.00 22.36 ATOM 177 CG2 VAL A 33 32.297 -0.537 23.599 1.00 22.36 ATOM 178 N PRO A 34 34.158 2.380 22.078 1.00 27.77 ATOM 180 C PRO A 34 34.927 1.263 19.907 1.00 27.77 ATOM 180 C PRO A 34 34.927 1.263 19.907 1.00 27.77 ATOM 180 C PRO A 34 34.927 1.263 19.907 1.00 27.77 ATOM 180 C PRO A 34 34.927 1.263 19.907 1.00 27.77 ATOM 180 C PRO A 34 34.927 1.263 19.907 1.00 27.77 ATOM 180 C PRO A 34 34.927 1.263 12.373 1.00 2.954									
ATOM 156 CD LYS A 31 31.154 7.355 30.605 1.00 22.83 ATOM 157 CE LYS A 31 31.652 8.305 31.675 1.00 22.83 ATOM 158 NZ LYS A 31 32.516 7.506 32.799 1.00 32.89 3.70M 159 N TYR A 32 30.845 6.219 25.034 1.00 22.83 ATOM 160 CA TYR A 32 30.845 6.219 23.767 1.00 22.83 ATOM 161 C TYR A 32 30.655 5.424 23.844 1.00 22.31 ATOM 161 C TYR A 32 31.607 4.359 23.767 1.00 19.55 ATOM 162 O TYR A 32 32.759 4.667 23.946 1.00 22.18 ATOM 163 CB TYR A 32 30.557 5.725 21.262 1.00 27.46 ATOM 165 CD TYR A 32 30.557 5.725 21.262 1.00 27.46 ATOM 165 CD TYR A 32 30.557 5.725 21.262 1.00 27.46 ATOM 165 CD TYR A 32 30.557 5.725 21.262 1.00 27.46 ATOM 165 CD TYR A 32 30.557 5.725 21.262 1.00 27.46 ATOM 165 CD TYR A 32 29.369 5.437 20.613 1.00 26.10 ATOM 165 CD TYR A 32 29.369 5.437 20.613 1.00 26.10 ATOM 165 CD TYR A 32 29.462 4.854 19.356 1.00 29.60 ATOM 169 CZ TYR A 32 29.462 4.854 19.356 1.00 29.60 ATOM 169 CZ TYR A 32 30.510 4.589 18.787 1.00 27.56 ATOM 170 OH TYR A 32 30.614 4.807 17.501 1.00 23.61 ATOM 171 N VAL A 33 31.217 3.108 23.604 1.00 22.23 ATOM 173 C VAL A 33 32.829 2.212 23.453 1.00 22.23 ATOM 173 C VAL A 33 32.829 2.212 23.10 1.00 20.22 23 ATOM 175 CB VAL A 33 32.829 2.212 23.10 1.00 22.23 ATOM 175 CB VAL A 33 32.829 2.212 2.110 1.00 24.20 ATOM 175 CB VAL A 33 32.829 2.212 2.110 1.00 24.20 ATOM 176 CGI VAL A 33 32.829 -0.537 23.309 1.00 22.36 ATOM 178 N PRO A 34 34.927 -0.537 23.309 1.00 22.36 ATOM 178 N PRO A 34 34.927 -0.537 24.951 1.00 25.26 ATOM 178 N PRO A 34 34.927 -0.537 24.951 1.00 25.26 ATOM 178 N PRO A 34 34.927 1.263 19.907 1.00 27.77 ATOM 180 C PRO A 34 34.927 1.263 19.907 1.00 27.77 ATOM 180 C PRO A 34 34.927 1.263 19.907 1.00 27.77 ATOM 180 C PRO A 34 34.927 1.263 19.907 1.00 27.77 ATOM 180 C PRO A 34 34.927 1.263 19.907 1.00 27.77 ATOM 180 C PRO A 34 34.927 1.263 19.907 1.00 27.77 ATOM 180 C PRO A 34 34.927 1.263 19.907 1.00 27.77 ATOM 180 C PRO A 34 34.927 1.263 19.907 1.00 27.77 ATOM 180 C PRO A 34 34.927 1.263 19.907 1.00 27.95 4 ATOM 180 C PRO A 34 34.927 1.263 19.907 1.00 27.95 4 ATOM 180 C PRO A 34 34.927 1.									
ATOM 157 CE LYS A 31 31.652 8.305 31.675 1.00 32.89 ATOM 158 NZ LYS A 31 32.116 7.506 32.799 1.00 39.63, ATOM 159 N TYR A 32 30.645 5.424 23.844 1.00 24.83 ATOM 160 CA TYR A 32 30.565 5.424 23.844 1.00 24.83 ATOM 161 C TYR A 32 31.607 4.359 23.767 1.00 19.55 ATOM 161 C TYR A 32 31.607 4.359 23.767 1.00 19.55 ATOM 162 O TYR A 32 31.607 4.359 23.767 1.00 19.55 ATOM 163 CB TYR A 32 30.565 6.367 22.640 1.00 25.12 ATOM 165 CD TYR A 32 30.557 5.725 21.262 1.00 27.46 ATOM 165 CD TYR A 32 30.557 5.725 21.262 1.00 27.46 ATOM 165 CD TYR A 32 30.557 5.725 21.262 1.00 27.46 ATOM 165 CD TYR A 32 31.790 5.449 20.689 1.00 26.41 ATOM 165 CD TYR A 32 31.790 5.449 20.689 1.00 26.41 ATOM 165 CD TYR A 32 31.671 4.860 19.452 1.00 27.56 ATOM 165 CD TYR A 32 31.871 4.860 19.452 1.00 27.56 ATOM 165 CD TYR A 32 31.871 4.860 19.452 1.00 27.56 ATOM 167 CE TYR A 32 31.871 4.860 19.452 1.00 27.56 ATOM 167 CE TYR A 32 31.871 4.860 19.452 1.00 22.83 ATOM 169 CZ TYR A 32 31.871 4.860 19.452 1.00 22.83 ATOM 170 CT TYR A 32 31.841 4.081 19.356 1.00 22.61 ATOM 170 CT TYR A 32 31.841 4.081 19.356 1.00 22.61 ATOM 171 CT TYR A 33 31.400 4.589 18.787 1.00 22.83 ATOM 172 CT VAL A 33 32.238 2.222 23.453 1.00 22.33 ATOM 173 C VAL A 33 32.238 2.222 23.453 1.00 22.33 ATOM 174 C VAL A 33 32.238 2.232 2.312 23.509 1.00 22.33 ATOM 175 CB VAL A 33 32.2297 -0.537 23.509 1.00 22.36 ATOM 175 CB VAL A 33 32.2297 -0.537 23.509 1.00 22.36 ATOM 175 CB VAL A 33 32.2297 -0.537 23.509 1.00 22.36 ATOM 175 CB VAL A 33 32.2297 -0.537 23.509 1.00 22.36 ATOM 176 CG VAL A 33 32.2297 -0.537 23.509 1.00 22.36 ATOM 178 N PRO A 34 34.158 2.380 22.078 1.00 25.59 ATOM 180 C PRO A 34 34.927 1.263 19.907 1.00 27.77 ATOM 180 C PRO A 34 34.927 1.263 19.907 1.00 27.77 ATOM 180 C PRO A 34 34.927 1.263 19.907 1.00 27.77 ATOM 180 C PRO A 34 34.927 1.263 19.907 1.00 27.55 ATOM 180 C PRO A 34 34.927 1.263 19.907 1.00 27.55 ATOM 180 C PRO A 34 34.927 1.263 19.907 1.00 27.55 ATOM 180 C PRO A 34 34.927 1.263 19.907 1.00 27.55 ATOM 180 C PRO A 34 34.927 1.263 19.907 1.00 27.55 ATOM 180 C PRO A									
ATOM 158 NZ LYS A 31 32.116 7.506 32.799 1.00 39.63 , ATOM 159 N TYR A 32 30.645 6.219 25.034 1.00 24.83 ATOM 161 C TYR A 32 30.645 6.219 23.767 1.00 24.83 ATOM 161 C TYR A 32 31.607 4.359 23.767 1.00 24.83 ATOM 162 O TYR A 32 32.759 4.667 23.946 1.00 22.18 ATOM 162 O TYR A 32 32.579 4.667 23.946 1.00 22.18 ATOM 163 CB TYR A 32 30.557 5.725 21.262 1.00 27.46 ATOM 165 CD1 TYR A 32 30.557 5.725 21.262 1.00 27.46 ATOM 165 CD1 TYR A 32 30.557 5.725 21.262 1.00 27.46 ATOM 165 CD1 TYR A 32 29.369 5.449 20.689 1.00 26.10 ATOM 165 CD1 TYR A 32 29.369 5.449 20.689 1.00 26.10 ATOM 165 CD1 TYR A 32 29.369 5.437 20.613 1.00 26.10 ATOM 165 CD2 TYR A 32 29.369 5.437 20.613 1.00 27.56 ATOM 168 CEZ TYR A 32 29.462 4.854 19.356 1.00 29.60 ATOM 169 CZ TYR A 32 30.510 4.589 18.787 1.00 27.56 ATOM 170 OH TYR A 32 30.614 4.867 17.501 1.00 23.61 ATOM 171 N VAL A 33 31.217 3.108 23.604 1.00 22.23 ATOM 173 C VAL A 33 32.229 2.212 23.453 1.00 22.23 ATOM 173 C VAL A 33 32.829 2.212 23.150 0.00 20.23 ATOM 175 CB VAL A 33 32.829 2.212 2.110 1.00 24.20 ATOM 175 CB VAL A 33 32.829 2.212 2.110 1.00 24.25 ATOM 175 CB VAL A 33 32.829 -0.537 23.309 1.00 22.36 ATOM 175 CB VAL A 33 32.829 -0.537 23.309 1.00 22.36 ATOM 175 CB VAL A 33 32.829 -0.537 23.309 1.00 22.36 ATOM 178 N PRO A 34 34.158 2.380 22.078 1.00 25.26 ATOM 179 CA PRO A 34 34.921 2.477 0.634 1.00 25.26 ATOM 180 C PRO A 34 34.921 2.477 0.634 1.00 27.77 ATOM 180 C PRO A 34 34.927 1.263 19.907 1.00 27.77 ATOM 180 C PRO A 34 34.927 1.263 19.907 1.00 27.77 ATOM 180 C PRO A 34 34.927 1.263 19.907 1.00 27.77 ATOM 180 C PRO A 34 34.927 1.263 19.907 1.00 27.77 ATOM 180 C PRO A 34 34.927 1.263 19.907 1.00 27.77 ATOM 180 C PRO A 34 34.927 1.263 19.907 1.00 27.77 ATOM 180 C PRO A 34 34.927 1.263 19.907 1.00 27.77 ATOM 180 C PRO A 34 34.927 1.263 19.907 1.00 27.77 ATOM 180 C PRO A 34 34.927 1.263 19.907 1.00 27.95 1.00 27.95 1.00 27.95 1.00 27.95 1.00 27.95 1.00 27.95 1.00 27.95 1.00 27.95 1.00 27.95 1.00 27.95 1.00 27.95 1.00 27.95 1.00 27.95 1.00 27.95 1.00 27.95 1.00 27.95 1.00 27.95 1.00 27.9									
ATOM 169 N TYR A 32 30.845 6.219 25.034 1.00 24.83 ATOM 160 CA TYR A 32 30.565 5.424 23.844 1.00 22.31 ATOM 161 C TYR A 32 31.607 4.359 23.767 1.00 19.55 ATOM 162 O TYR A 32 31.607 4.359 23.767 1.00 19.55 ATOM 163 CB TYR A 32 30.569 6.367 22.640 1.00 25.12 ATOM 164 CG TYR A 32 30.559 5.725 21.262 1.00 27.46 ATOM 165 CD1 TYR A 32 30.559 5.725 21.262 1.00 27.46 ATOM 165 CD1 TYR A 32 31.790 5.449 20.669 1.00 26.41 ATOM 166 CD2 TYR A 32 31.790 5.449 20.669 1.00 26.41 ATOM 167 CE1 TYR A 32 31.790 5.449 20.699 1.00 26.41 ATOM 167 CE1 TYR A 32 31.871 4.860 19.452 1.00 27.56 ATOM 168 CE2 TYR A 32 31.871 4.860 19.452 1.00 27.56 ATOM 169 CZ TYR A 32 31.871 4.860 19.452 1.00 27.56 ATOM 169 CZ TYR A 32 31.871 4.860 19.452 1.00 25.61 ATOM 169 CZ TYR A 32 30.557 4.859 18.787 1.00 28.61 ATOM 170 OH TYR A 32 30.644 4.087 17.501 1.00 28.61 ATOM 171 N VALL A 33 31.217 3.106 23.604 1.00 20.21 ATOM 172 C VALL A 33 32.195 2.012 23.604 1.00 20.21 ATOM 174 O VALL A 33 32.195 2.012 23.604 1.00 22.36 ATOM 175 CB VALL A 33 32.195 2.202 23.604 1.00 22.36 ATOM 175 CB VALL A 33 32.195 2.202 23.604 1.00 22.36 ATOM 175 CB VALL A 33 32.297 -0.537 23.309 1.00 22.36 ATOM 176 CGI VALL A 33 32.297 -0.537 23.309 1.00 22.36 ATOM 177 CGZ VALL A 33 32.297 -0.537 23.309 1.00 22.36 ATOM 178 N PRO A 34 34.927 -0.537 24.951 1.00 25.51 ATOM 179 CA PRO A 34 34.927 -0.537 24.951 1.00 25.51 ATOM 179 CA PRO A 34 34.927 -0.537 24.951 1.00 25.51 ATOM 180 C PRO A 34 34.927 1.263 19.907 1.00 27.77 ATOM 180 C PRO A 34 34.927 1.263 19.907 1.00 27.77 ATOM 180 C PRO A 34 34.927 1.263 19.907 1.00 27.77 ATOM 180 C PRO A 34 34.927 1.263 19.907 1.00 27.77 ATOM 180 C PRO A 34 34.927 1.263 19.907 1.00 27.77 ATOM 180 C PRO A 34 34.927 1.263 19.907 1.00 27.77 ATOM 180 C PRO A 34 34.927 1.263 12.373 1.00 2.95 1									
ATOM 160 CA TYR A 32 . 30.565 5.424 23.844 1.00 22.31 ATOM 161 C TYR A 32 31.607 4.359 23.767 1.00 19.55 ATOM 162 0 TYR A 32 32.759 4.667 23.946 1.00 25.12 ATOM 163 CB TYR A 32 30.569 6.367 22.640 1.00 25.12 ATOM 164 CG TYR A 32 30.557 5.725 21.262 1.00 27.46 ATOM 165 CD1 TYR A 32 30.557 5.725 21.262 1.00 27.46 ATOM 165 CD1 TYR A 32 30.959 5.449 20.669 1.00 26.10 ATOM 167 CE1 TYR A 32 29.369 5.437 20.613 1.00 26.10 ATOM 167 CE1 TYR A 32 29.369 5.437 20.613 1.00 26.10 ATOM 168 CEZ TYR A 32 29.462 4.854 19.356 1.00 27.56 ATOM 169 CZ TYR A 32 29.462 4.854 19.356 1.00 29.60 ATOM 169 CZ TYR A 32 29.462 4.854 19.356 1.00 29.60 ATOM 169 CZ TYR A 32 30.710 4.589 18.787 1.00 28.41 ATOM 171 N VAL A 33 31.217 3.108 23.604 1.00 22.21 ATOM 171 N VAL A 33 31.217 3.108 23.604 1.00 22.23 ATOM 173 C VAL A 33 32.829 2.212 23.453 1.00 22.23 ATOM 173 C VAL A 33 32.829 2.212 21.10 1.00 24.20 ATOM 175 CB VAL A 33 32.829 2.212 21.10 1.00 24.20 ATOM 175 CB VAL A 33 32.829 2.212 23.10 0.00 22.36 ATOM 175 CB VAL A 33 32.829 7.0537 23.309 1.00 22.36 ATOM 175 CB VAL A 33 32.829 7.0537 23.309 1.00 22.36 ATOM 175 CB VAL A 33 32.829 7.0537 23.309 1.00 22.36 ATOM 176 CG1 VAL A 33 32.829 7.0537 23.309 1.00 22.36 ATOM 177 CG2 VAL A 33 32.829 7.0537 23.309 1.00 22.36 ATOM 178 N PRO A 34 34.921 7.0537 24.951 1.00 25.26 ATOM 179 CA PRO A 34 34.927 1.263 19.907 1.00 27.77 ATOM 180 C PRO A 34 34.927 1.263 19.907 1.00 27.77 ATOM 180 C PRO A 34 34.927 1.263 19.907 1.00 27.77 ATOM 180 C PRO A 34 34.927 1.263 19.907 1.00 27.77 ATOM 180 C PRO A 34 34.927 1.263 19.907 1.00 27.77 ATOM 180 C PRO A 34 34.927 1.263 19.907 1.00 27.77 ATOM 180 C PRO A 34 34.927 1.263 19.907 1.00 27.77 ATOM 180 C PRO A 34 34.927 1.263 19.907 1.00 27.77 ATOM 180 C PRO A 34 34.927 1.263 19.907 1.00 27.77 ATOM 180 C PRO A 34 34.927 1.263 19.907 1.00 27.95 ATOM 180 C PRO A 34 34.927 1.263 19.907 1.00 27.95 ATOM 180 C PRO A 34 34.927 1.263 19.907 1.00 27.95 ATOM 180 C PRO A 34 34.927 1.263 19.907 1.00 27.95 ATOM 180 C PRO A 34 34.927 1.263 19.907 1.00 27.95 ATOM 180 C PRO A 34 34.927									
ATOM 161 C TYR A 32 31.607 4.359 23.767 1.00 19.55 ATOM 162 O TYR A 32 32.759 4.667 23.946 1.00 22.18 ATOM 163 CB TYR A 32 30.559 6.367 22.640 1.00 22.18 ATOM 164 CG TYR A 32 30.557 5.725 21.262 1.00 27.46 ATOM 165 CD1 TYR A 32 31.790 5.449 20.689 1.00 26.41 ATOM 166 CD2 TYR A 32 31.790 5.449 20.689 1.00 26.41 ATOM 167 CE1 TYR A 32 31.790 5.449 20.689 1.00 26.41 ATOM 167 CE1 TYR A 32 31.871 4.860 19.452 1.00 27.56 ATOM 168 CE2 TYR A 32 31.871 4.860 19.452 1.00 27.56 ATOM 169 CZ TYR A 32 30.517 4.859 18.787 1.00 28.61 ATOM 170 OH TYR A 32 30.710 4.589 18.787 1.00 28.61 ATOM 171 N VAL A 33 31.217 3.108 23.604 1.00 22.21 ATOM 171 N VAL A 33 32.138 2.022 23.453 1.00 27.36 ATOM 172 CA VAL A 33 32.138 2.022 23.453 1.00 22.23 ATOM 174 C VAL A 33 32.138 2.022 23.453 1.00 22.23 ATOM 175 CB VAL A 33 32.286 2.222 22.11 1.00 22.61 ATOM 176 CG1 VAL A 33 32.286 2.222 22.10 1.00 22.36 ATOM 177 CG2 VAL A 33 32.286 22.22 22.10 1.00 22.36 ATOM 177 CG2 VAL A 33 32.287 0.555 24.951 1.00 22.36 ATOM 178 N PRO A 34 34.957 0.555 24.951 1.00 22.36 ATOM 179 CA PRO A 34 34.927 0.555 24.951 1.00 22.36 ATOM 179 CA PRO A 34 34.927 1.263 19.907 1.00 22.36 ATOM 179 CA PRO A 34 34.927 1.263 19.907 1.00 27.77 ATOM 182 CB PRO A 34 34.927 1.263 19.907 1.00 27.77 ATOM 182 CB PRO A 34 36.6381 2.586 21.335 1.00 2.954 ATOM 182 CB PRO A 34 36.6381 2.586 21.335 1.00 2.954									
ATOM 162 O TYR A 32 32.759 4.667 23.946 1.00 22.18 ATOM 163 CB TYR A 32 30.569 6.367 22.640 1.00 25.12 ATOM 164 CG TYR A 32 30.557 5.725 21.262 1.00 27.46 ATOM 165 CD1 TYR A 32 30.557 5.725 21.262 1.00 27.46 ATOM 165 CD1 TYR A 32 29.369 5.437 20.613 1.00 26.10 ATOM 167 CEI TYR A 32 29.369 5.437 20.613 1.00 26.10 ATOM 167 CEI TYR A 32 29.462 4.854 19.356 1.00 27.56 ATOM 169 CZ TYR A 32 29.462 4.854 19.356 1.00 29.60 ATOM 169 CZ TYR A 32 29.462 4.854 19.356 1.00 29.60 ATOM 170 OH TYR A 32 30.710 4.589 18.787 1.00 28.41 ATOM 171 N VAL A 33 31.217 3.108 23.604 1.00 22.21 ATOM 172 CA VAL A 33 31.217 3.108 23.604 1.00 22.23 ATOM 173 C VAL A 33 32.829 2.212 23.453 1.00 22.23 ATOM 174 O VAL A 33 32.829 2.212 21.10 1.00 24.20 ATOM 175 CB VAL A 33 32.829 2.212 23.10 1.00 24.20 ATOM 175 CB VAL A 33 32.829 -0.537 23.309 1.00 22.36 ATOM 176 CG1 VAL A 33 32.829 -0.537 23.509 1.00 22.36 ATOM 177 CG2 VAL A 33 30.857 -0.535 24.951 1.00 25.26 ATOM 178 N PRO A 34 34.951 2.477 20.834 1.00 25.25 ATOM 179 CA PRO A 34 34.921 2.477 20.834 1.00 25.25 ATOM 180 C PRO A 34 34.927 1.263 19.907 1.00 27.77 ATOM 181 C PRO A 34 34.927 1.263 19.907 1.00 27.77 ATOM 182 C B PRO A 34 36.6381 2.586 21.335 1.00 29.54 ATOM 182 CB PRO A 34 36.6381 2.586 21.335 1.00 29.54 ATOM 182 CB PRO A 34 36.6381 2.586 21.335 1.00 29.54									
ATOM 163 CB TYR A 32 30.569 6.367 22.640 1.00 25.12 ATOM 164 CG TYR A 32 30.557 5.725 21.262 1.00 27.46 ATOM 165 CD1 TYR A 32 31.590 5.449 20.689 1.00 26.41 ATOM 166 CD2 TYR A 32 31.790 5.449 20.689 1.00 26.41 ATOM 166 CD2 TYR A 32 31.691 4.860 19.452 1.00 27.56 ATOM 167 CE1 TYR A 32 31.871 4.860 19.452 1.00 27.56 ATOM 168 CE2 TYR A 32 30.514 4.860 19.452 1.00 27.56 ATOM 169 CZ TYR A 32 30.014 4.889 18.787 1.00 28.61 ATOM 170 OH TYR A 32 30.014 4.889 18.787 1.00 28.61 ATOM 171 N VAL A 33 31.217 31.08 23.604 1.00 20.21 ATOM 171 N VAL A 33 31.217 31.08 23.604 1.00 20.21 ATOM 172 CA VAL A 33 32.138 2.022 23.453 1.00 22.23 ATOM 172 CA VAL A 33 32.138 2.022 32.3453 1.00 22.23 ATOM 174 C VAL A 33 32.138 2.022 32.22 22.110 1.00 22.61 ATOM 174 C VAL A 33 32.227 -0.537 22.309 1.00 22.36 ATOM 177 CG2 VAL A 33 32.227 -0.537 22.309 1.00 22.36 ATOM 177 CG2 VAL A 33 32.227 -0.537 22.309 1.00 22.36 ATOM 178 N PRO A 34 34.58 2.227 24.951 1.00 25.56 ATOM 179 CA PRO A 34 34.927 1.263 19.907 1.00 22.36 ATOM 179 CA PRO A 34 34.927 1.263 19.907 1.00 27.77 ATOM 182 CB PRO A 34 34.927 1.263 19.907 1.00 27.77 ATOM 182 CB PRO A 34 34.927 1.263 19.907 1.00 27.77 ATOM 182 CB PRO A 34 34.927 1.263 19.907 1.00 27.77 ATOM 182 CB PRO A 34 34.927 1.263 19.907 1.00 27.77 ATOM 182 CB PRO A 34 34.927 1.263 19.907 1.00 27.77 ATOM 182 CB PRO A 34 34.927 1.263 19.907 1.00 27.77 ATOM 182 CB PRO A 34 36.381 2.586 21.335 1.00 29.54 ATOM 182 CB PRO A 34 36.381 2.586 21.335 1.00 29.54 ATOM 182 CB PRO A 34 36.381 2.586 21.335 1.00 29.54 ATOM 182 CB PRO A 34 36.6224 3.556 22.773 1.00 25.95									
ATOM 164 CG TYR A 32 30.557 5.725 21.262 1.00 27.46 ATOM 165 CD1 TYR A 32 29.369 5.449 20.689 1.00 26.41 ATOM 165 CD1 TYR A 32 29.369 5.437 20.613 1.00 26.510 ATOM 167 CE1 TYR A 32 29.369 5.437 20.613 1.00 27.56 ATOM 168 CEZ TYR A 32 29.462 4.854 19.356 1.00 29.60 ATOM 169 CZ TYR A 32 29.462 4.854 19.356 1.00 29.50 ATOM 169 CZ TYR A 32 30.710 4.589 18.787 1.00 28.41 ATOM 170 0H TYR A 32 30.844 4.087 17.501 1.00 28.61 ATOM 171 N VAL A 33 31.217 3.108 23.604 1.00 20.21 ATOM 172 CA VAL A 33 32.138 2.022 23.453 1.00 22.23 ATOM 173 C VAL A 33 32.829 2.212 22.110 1.00 24.20 ATOM 174 O VAL A 33 32.829 2.212 22.110 1.00 24.20 ATOM 175 CB VAL A 33 32.829 0.570 2.212 2.110 0.00 22.21 ATOM 175 CB VAL A 33 32.829 0.570 2.212 2.310 0.00 22.23 ATOM 177 CG2 VAL A 33 32.829 0.555 24.951 1.00 22.23 ATOM 177 CG2 VAL A 33 32.829 0.555 24.951 1.00 22.36 ATOM 178 N PRO A 34 34.158 2.380 22.078 1.00 25.25 ATOM 179 CA PRO A 34 34.921 2.477 20.834 1.00 25.25 ATOM 180 C PRO A 34 34.921 2.477 20.834 1.00 27.77 ATOM 180 C PRO A 34 34.927 1.263 19.907 1.00 27.77 ATOM 181 C PRO A 34 34.927 0.101 2.291 1.00 2.951 ATOM 182 CB PRO A 34 34.927 0.101 2.291 1.00 2.951 ATOM 182 CB PRO A 34 36.381 2.586 21.335 1.00 2.954 ATOM 182 CB PRO A 34 36.381 2.586 21.335 1.00 2.954 ATOM 182 CB PRO A 34 36.381 2.586 21.335 1.00 2.954 ATOM 182 CB PRO A 34 36.6381 2.586 21.335 1.00 2.954 ATOM 182 CB PRO A 34 36.6381 2.586 21.335 1.00 2.954 ATOM 182 CB PRO A 34 36.6381 2.586 21.335 1.00 2.954 ATOM 182 CB PRO A 34 36.6381 2.586 21.335 1.00 2.954 ATOM 2.00 CB PRO A 34 36.6381 2.586 21.335 1.00 2.954 ATOM 2.00 CB PRO A 34 36.6381 2.586 21.335 1.00 2.954 ATOM 2.00 CB PRO A 34 36.6381 2.586 21.335 1.00 2.954 ATOM 2.00 CB PRO A 34 36.6381 2.586 21.335 1.00 2.954 ATOM 2.00 CB PRO A 34 36.6381 2.586 21.335 1.00 2.954 ATOM 2.00 CB PRO A 34 36.6381 2.586 21.335 1.00 2.954 ATOM 2.00 CB PRO A 34 36.6381 2.586 21.335 1.00 2.954 ATOM 2.00 CB PRO A 34 36.6381 2.586 21.335 1.00 2.9554 ATOM 2.00 CB PRO A 34 36.6381 2.586 21.335 1.00 2.9554 ATOM 2.00 CB PRO A 34 36.6381 2.586 21									
ATOM 165 CD1 TYR A 32 31.790 5.449 20.689 1.00 26.41 ATOM 166 CD2 TYR A 32 29.369 5.437 20.613 1.00 26.10 ATOM 167 CEL TYR A 32 31.871 4.860 19.452 1.00 27.756 ATOM 168 CE2 TYR A 32 31.871 4.860 19.452 1.00 27.56 ATOM 169 CZ TYR A 32 30.710 4.589 18.787 1.00 28.61 ATOM 170 OH TYR A 32 30.710 4.589 18.787 1.00 28.61 ATOM 171 N VAL A 33 31.217 3.108 23.604 1.00 20.21 ATOM 171 N VAL A 33 31.217 3.108 23.604 1.00 20.21 ATOM 172 CA VAL A 33 32.138 2.022 23.453 1.00 22.23 ATOM 174 C VAL A 33 32.138 2.022 23.453 1.00 22.23 ATOM 174 C VAL A 33 32.138 2.022 22.110 1.00 24.76 ATOM 177 C VAL A 33 32.138 2.022 22.110 01.00 24.76 ATOM 177 C VAL A 33 32.138 2.022 22.110 01.00 24.76 ATOM 177 C VAL A 33 32.138 2.022 22.110 01.00 24.76 ATOM 177 C VAL A 33 32.138 2.022 22.110 01.00 24.76 ATOM 177 C VAL A 33 32.1287 -0.535 24.591 1.00 23.36 ATOM 178 N VAL A 33 32.2297 -0.535 24.591 1.00 23.36 ATOM 179 C A PRO A 34 34.158 2.380 22.078 1.00 25.25 ATOM 179 C A PRO A 34 34.921 2.477 20.634 1.00 25.19 ATOM 180 C PRO A 34 34.927 1.263 19.907 1.00 27.77 ATOM 180 C PRO A 34 34.927 1.263 19.907 1.00 27.77 ATOM 180 C PRO A 34 34.927 1.263 19.907 1.00 27.77 ATOM 180 C PRO A 34 34.927 1.263 19.907 1.00 27.77 ATOM 182 CB PRO A 34 34.927 1.263 19.907 1.00 27.77 ATOM 182 CB PRO A 34 36.381 2.586 21.335 1.00 29.54 ATOM 182 CB PRO A 34 36.381 2.586 21.335 1.00 29.54 ATOM 182 CB PRO A 34 36.381 2.586 21.335 1.00 29.54 ATOM 182 CB PRO A 34 36.381 2.586 21.335 1.00 29.54 ATOM 182 CB PRO A 34 36.381 2.586 21.335 1.00 29.54 ATOM 182 CB PRO A 34 36.381 2.586 21.335 1.00 29.54 ATOM 182 CB PRO A 34 36.381 2.586 21.335 1.00 29.54 ATOM 183 CB PRO A 34 36.381 2.586 21.335 1.00 29.54 ATOM 183 CB PRO A 34 36.224 3.556 22.773 1.00 26.93									
ATOM 166 CD2 TYR A 32 29.369 5.437 20.613 1.00 26.10 ATOM 167 CEL TYR A 32 29.462 4.854 19.356 1.00 27.56 ATOM 168 CEZ TYR A 32 29.462 4.854 19.356 1.00 29.50 ATOM 169 CZ TYR A 32 29.462 4.854 19.356 1.00 29.50 ATOM 169 CZ TYR A 32 30.710 4.589 18.787 1.00 28.41 ATOM 170 0H TYR A 32 30.844 4.087 17.501 1.00 32.61 ATOM 171 N VAL A 33 31.217 3.108 23.604 1.00 20.21 ATOM 172 CA VAL A 33 32.138 2.022 23.453 1.00 22.23 ATOM 173 C VAL A 33 32.818 2.022 23.453 1.00 22.23 ATOM 174 0 VAL A 33 32.829 2.212 22.110 1.00 24.20 ATOM 175 CB VAL A 33 32.829 2.212 22.110 1.00 24.20 ATOM 175 CB VAL A 33 32.829 0.654 23.549 1.00 22.13 ATOM 175 CB VAL A 33 32.829 0.657 23.549 1.00 22.36 ATOM 175 CB VAL A 33 32.829 0.657 23.549 1.00 22.36 ATOM 175 CB VAL A 33 32.829 0.657 23.549 1.00 22.36 ATOM 176 CG1 VAL A 33 32.829 0.657 24.951 1.00 25.25 ATOM 179 CA PRO A 34 34.158 2.380 22.078 1.00 25.25 ATOM 179 CA PRO A 34 34.921 2.477 20.834 1.00 25.19 ATOM 180 C PRO A 34 34.921 2.477 20.834 1.00 27.77 ATOM 180 C PRO A 34 34.927 1.263 19.907 1.00 27.77 ATOM 181 C PRO A 34 34.927 0.101 2.291 1.00 2.954 ATOM 182 CB PRO A 34 36.381 2.586 21.335 1.00 2.95 4 ATOM 182 CB PRO A 34 36.381 2.586 21.335 1.00 2.95 4 ATOM 182 CB PRO A 34 36.381 2.586 21.335 1.00 2.95 4 ATOM 182 CB PRO A 34 36.6381 2.586 21.335 1.00 2.95 4 ATOM 182 CB PRO A 34 36.6381 2.586 21.335 1.00 2.95 4 ATOM 182 CB PRO A 34 36.6381 2.586 21.335 1.00 2.95 4 ATOM 182 CB PRO A 34 36.6381 2.586 21.335 1.00 2.95 4 ATOM 182 CB PRO A 34 36.6381 2.586 21.335 1.00 2.95 4 ATOM 2.00 CB PRO A 34 36.224 3.056 22.773 1.00 2.95 54 ATOM 2.00 CB PRO A 34 36.224 3.056 22.773 1.00 2.95 54 ATOM 2.00 CB PRO A 34 36.224 3.056 22.773 1.00 2.95 54 ATOM 2.00 CB PRO A 34 36.624 3.056 22.773 1.00 2.95 54 ATOM 2.00 CB PRO A 34 36.224 3.056 22.773 1.00 2.95 54 ATOM 2.00 CB PRO A 34 36.224 3.056 22.773 1.00 2.95 54 ATOM 2.00 CB PRO A 34 36.224 3.056 22.773 1.00 2.95 54 ATOM 2.00 CB PRO A 34 36.224 3.056 22.773 1.00 2.95 54 ATOM 2.00 CB PRO A 34 36.224 3.056 22.773 1.00 2.95 54 ATOM 2.00 CB PRO A 34 36.224 3.05									
ATOM 167 CEL TYR A 32 31.871 4.860 19.452 1.00 27.56 ATOM 168 CEL TYR A 32 29.462 4.854 19.356 1.00 29.60 ATOM 169 CZ TYR A 32 30.710 4.589 18.787 1.00 28.61 ATOM 170 OH TYR A 32 30.014 4.087 17.501 1.00 28.61 ATOM 171 N VAL A 33 31.217 3.108 23.604 1.00 2.01 ATOM 172 CA VAL A 33 31.217 3.108 23.604 1.00 20.21 ATOM 173 C VAL A 33 32.138 2.022 23.453 1.00 22.23 ATOM 174 O VAL A 33 32.138 2.022 23.453 1.00 22.23 ATOM 174 O VAL A 33 32.138 2.022 23.453 1.00 22.23 ATOM 175 C VAL A 33 32.138 2.022 23.453 1.00 23.23 ATOM 176 C VAL A 33 32.158 2.252 23.453 1.00 23.25 ATOM 177 O VAL A 33 32.158 2.252 23.453 1.00 23.25 ATOM 177 O VAL A 33 32.158 2.252 23.453 1.00 23.25 ATOM 178 N VAL A 33 32.158 2.252 23.453 1.00 23.25 ATOM 179 C VAL A 33 32.158 2.252 23.453 1.00 23.51 ATOM 179 CA PRO A 34 34.158 2.380 22.078 1.00 25.25 ATOM 179 CA PRO A 34 34.927 0.535 24.951 1.00 25.25 ATOM 180 C PRO A 34 34.927 1.263 19.907 1.00 27.77 ATOM 181 O PRO A 34 34.927 0.101 2.0291 1.00 27.77 ATOM 181 C PRO A 34 34.927 0.101 2.291 1.00 27.55 ATOM 182 CB PRO A 34 36.381 2.586 21.335 1.00 29.54 ATOM 182 CB PRO A 34 36.381 2.586 21.335 1.00 29.54 ATOM 182 CB PRO A 34 36.381 2.586 21.335 1.00 29.54 ATOM 182 CB PRO A 34 36.381 2.586 21.335 1.00 29.54 ATOM 182 CB PRO A 34 36.381 2.586 21.335 1.00 29.54									
ATOM 168 CEZ TYR A 32 29.462 4.854 19.356 1.00 29.50 ATOM 169 CZ TYR A 32 30.710 4.589 18.787 1.00 28.41 ATOM 170 0H TYR A 32 30.844 4.087 17.501 1.00 28.41 ATOM 171 N VALA 33 31.217 3.108 23.604 1.00 20.21 ATOM 172 CA VALA 33 32.2138 2.022 23.453 1.00 22.23 ATOM 173 C VALA 33 32.818 2.022 23.453 1.00 22.23 ATOM 174 O VALA 33 32.819 2.212 2.110 1.00 24.20 ATOM 175 CB VALA 33 32.829 2.212 2.110 1.00 24.20 ATOM 175 CB VALA 33 32.829 0.576 23.549 1.00 22.36 ATOM 175 CB VALA 33 32.829 0.576 23.549 1.00 22.36 ATOM 175 CB VALA 33 32.829 0.576 23.549 1.00 22.36 ATOM 176 CG1 VALA 33 32.829 0.576 24.951 1.00 25.26 ATOM 178 N FRO A 34 34.158 2.380 22.078 1.00 25.26 ATOM 179 CA PRO A 34 34.952 1.247 20.834 1.00 25.19 ATOM 180 C FRO A 34 34.921 2.477 20.834 1.00 27.43 ATOM 180 C FRO A 34 34.927 1.263 19.907 1.00 27.77 ATOM 181 C FRO A 34 34.927 0.101 2.291 1.00 27.57 ATOM 182 CB FRO A 34 34.927 0.101 2.291 1.00 27.57 ATOM 182 CB FRO A 34 34.927 0.101 2.291 1.00 27.95 ATOM 182 CB FRO A 34 36.381 2.586 21.335 1.00 29.54 ATOM 182 CB FRO A 34 36.381 2.586 21.335 1.00 29.54 ATOM 182 CB FRO A 34 36.381 2.586 21.335 1.00 29.54 ATOM 182 CB FRO A 34 36.224 3.556 22.773 1.00 25.95									
ATOM 169 CZ TYR A 32 30.710 4.589 18.787 1.00 26.41 ATOM 170 0H TYR A 32 30.844 4.087 17.501 1.00 32.61 ATOM 171 N VAL A 33 31.217 3.108 23.604 1.00 22.21 ATOM 172 CA VAL A 33 32.138 2.022 23.453 1.00 22.23 ATOM 173 C VAL A 33 32.138 2.022 23.453 1.00 22.23 ATOM 174 O VAL A 33 32.8629 2.212 22.110 1.00 24.20 ATOM 175 CB VAL A 33 32.8629 2.221 21.078 1.00 24.20 ATOM 175 CB VAL A 33 31.400 0.676 23.549 1.00 23.11 ATOM 176 CGI VAL A 33 32.297 -0.537 23.309 1.00 23.13 ATOM 177 CGI VAL A 33 32.297 -0.537 23.309 1.00 23.36 ATOM 177 CGI VAL A 33 32.297 -0.537 24.951 1.00 25.25 ATOM 178 N PRO A 34 34.158 2.380 22.078 1.00 25.25 ATOM 179 CA PRO A 34 34.952 1.2477 20.834 1.00 27.43 ATOM 180 C PRO A 34 34.921 2.477 20.834 1.00 27.77 ATOM 180 C PRO A 34 34.921 2.477 20.834 1.00 27.77 ATOM 181 O PRO A 34 34.921 0.101 2.291 1.00 27.95 ATOM 182 CB PRO A 34 34.920 0.101 2.291 1.00 27.95 ATOM 182 CB PRO A 34 34.920 0.101 2.291 1.00 27.95 4ATOM 183 CG PRO A 34 36.524 3.556 21.335 1.00 29.54 ATOM 183 CG PRO A 34 36.524 3.556 22.773 1.00 25.95									
ATOM									
ATOM 171 N VAL A 33 31.217 3.108 23.604 1.00 20.21 ATOM 172 CA VAL A 33 32.138 2.022 23.453 1.00 22.23 ATOM 173 C VAL A 33 32.138 2.022 23.453 1.00 22.23 ATOM 174 O VAL A 33 32.138 2.022 22.110 1.00 24.25 ATOM 175 CB VAL A 33 32.156 2.231 1.078 1.00 24.75 ATOM 175 CB VAL A 33 31.400 0.676 23.549 1.00 23.11 ATOM 176 CG1 VAL A 33 32.297 -0.537 23.309 1.00 23.11 ATOM 177 CG2 VAL A 33 32.297 -0.537 23.309 1.00 23.51 ATOM 178 N PRO A 34 34.158 2.380 22.078 1.00 25.25 ATOM 178 N PRO A 34 34.952 1.2477 20.834 1.00 27.43 ATOM 180 C PRO A 34 34.921 2.477 20.834 1.00 27.77 ATOM 180 C PRO A 34 34.921 2.477 20.834 1.00 27.77 ATOM 181 O PRO A 34 34.920 0.101 2.291 1.00 27.53 ATOM 182 CB PRO A 34 34.920 0.101 2.291 1.00 27.53 ATOM 182 CB PRO A 34 36.381 2.586 21.335 1.00 29.54 ATOM 183 CG PRO A 34 36.284 3.056 22.773 1.00 26.93									
ATOM 172 CA VAL A 33 32.829 2.212 23.453 1.00 22.23 ATOM 173 C VAL A 33 32.829 2.212 2.110 1.00 24.20 ATOM 174 0 VAL A 33 32.829 2.212 21.10 1.00 24.20 ATOM 175 CB VAL A 33 32.829 -8.215 23.549 1.00 23.11 ATOM 175 CB VAL A 33 32.829 -0.537 23.549 1.00 22.15 ATOM 176 CG1 VAL A 33 32.297 -0.537 23.549 1.00 22.36 ATOM 177 CG2 VAL A 33 32.829 -0.537 24.951 1.00 25.26 ATOM 178 N FRO A 34 34.158 2.380 22.078 1.00 25.25 ATOM 179 CA PRO A 34 34.952 2.477 20.834 1.00 25.19 ATOM 180 C FRO A 34 34.921 2.477 20.834 1.00 27.43 ATOM 180 C FRO A 34 34.927 1.263 19.907 1.00 27.77 ATOM 181 0 FRO A 34 34.927 0.101 2.291 1.00 27.55 ATOM 182 CB FRO A 34 34.920 0.101 2.291 1.00 27.55 ATOM 182 CB FRO A 34 36.381 2.586 21.335 1.00 29.54 ATOM 183 CG FRO A 34 36.224 3.056 22.773 1.00 26.93									
ATOM 173 C VAL A 33 32.829 2.212 22.110 1.00 24.76 ATOM 174 O VAL A 33 32.156 2.231 21.078 1.00 24.76 ATOM 175 CB VAL A 33 31.400 0.676 23.549 1.00 23.11 ATOM 175 CG VAL A 33 31.400 0.676 23.549 1.00 23.11 ATOM 176 CG1 VAL A 33 31.400 0.676 23.549 1.00 23.11 ATOM 177 CG2 VAL A 33 30.857 0.535 24.951 1.00 22.36 ATOM 178 N PRO A 34 34.158 2.380 22.078 1.00 25.26 ATOM 179 CA PRO A 34 34.921 2.477 20.634 1.00 27.43 ATOM 180 C PRO A 34 34.921 2.477 20.634 1.00 27.43 ATOM 181 O PRO A 34 34.921 0.10 2.291 1.00 27.77 ATOM 182 CB PRO A 34 34.930 0.101 2.291 1.00 27.55 ATOM 182 CB PRO A 34 36.381 2.586 21.335 1.00 29.54 ATOM 183 CG PRO A 34 36.284 3.056 22.773 1.00 26.93									
ATOM 174 O VAL A 33 32.156 2.231 21.078 1.00 24.76 ATOM 175 CB VAL A 33 31.400 0.676 23.549 1.00 23.11 ATOM 175 CB VAL A 33 32.297 -0.537 23.549 1.00 23.13 ATOM 177 CG2 VAL A 33 32.297 -0.537 23.309 1.00 22.36 ATOM 178 N FRO A 34 34.158 2.380 22.078 1.00 25.26 ATOM 179 CA PRO A 34 34.951 2.477 20.834 1.00 25.19 ATOM 180 C FRO A 34 34.921 2.477 20.834 1.00 27.43 ATOM 180 C FRO A 34 34.927 1.263 19.907 1.00 27.77 ATOM 181 O FRO A 34 34.927 0.101 2.0291 1.00 27.53 ATOM 182 CB FRO A 34 36.381 2.586 21.335 1.00 29.54 ATOM 182 CB FRO A 34 36.381 2.586 21.335 1.00 29.54 ATOM 183 CG FRO A 34 36.224 3.056 22.773 1.00 26.93									
ATOM 175 CB VAL A 33 31.400 0.676 22.549 1.00 23.11 ATOM 176 CG1 VAL A 33 32.297 -0.537 23.309 1.00 22.36 ATOM 177 CG2 VAL A 33 30.857 0.535 24.951 1.00 22.36 ATOM 178 N PRO A 34 34.158 2.380 22.078 1.00 25.26 ATOM 179 CA PRO A 34 34.158 2.380 22.078 1.00 25.19 ATOM 180 C PRO A 34 34.727 1.263 19.907 1.00 27.77 ATOM 181 O PRO A 34 34.921 0.101 2.291 1.00 27.55 ATOM 182 CB PRO A 34 34.927 0.101 2.291 1.00 27.55 ATOM 182 CB PRO A 34 36.381 2.586 21.335 1.00 2.954 ATOM 183 CG PRO A 34 36.284 3.056 22.773 1.00 2.954 ATOM 183 CG PRO A 34 36.284 3.056 22.773 1.00 2.954									
ATOM 176 CGI VAL A 33 32.297 -0.537 23.309 1.00 22.36 ATOM 177 CGI VAL A 33 30.857 0.535 24.951 1.00 22.26 ATOM 178 N FRO A 34 34.158 2.380 22.078 1.00 25.26 ATOM 179 CA PRO A 34 34.951 2.477 20.834 1.00 25.19 ATOM 180 C PRO A 34 34.921 2.477 20.834 1.00 27.43 ATOM 180 C PRO A 34 34.727 1.263 19.907 1.00 27.77 ATOM 181 O PRO A 34 34.927 0.101 20.291 1.00 27.55 ATOM 182 CB PRO A 34 36.381 2.586 21.335 1.00 29.54 ATOM 182 CB PRO A 34 36.381 2.586 21.335 1.00 29.54 ATOM 183 CG PRO A 34 36.224 3.056 22.773 1.00 26.93									
ATOM 177 CG2 VAL A 33 30.857 0.535 24.951 1.00 25.26 ATOM 178 N PRO A 34 34.158 2.380 22.078 1.00 25.19 ATOM 179 CA PRO A 34 34.921 2.477 20.834 1.00 27.43 ATOM 180 C PRO A 34 34.727 1.263 19.907 1.00 27.77 ATOM 181 O PRO A 34 34.927 0.101 20.291 1.00 27.53 ATOM 182 CB PRO A 34 36.381 2.586 21.335 1.00 29.54 ATOM 183 CG PRO A 34 36.284 3.056 22.773 1.00 26.93									
ATOM 178 N FRO A 34 34.158 2.380 22.078 1.00 25.19 ATOM 179 CA PRO A 34 34.921 2.477 20.834 1.00 27.43 ATOM 180 C PRO A 34 34.727 1.263 19.907 1.00 27.43 ATOM 181 O PRO A 34 34.927 0.101 20.291 1.00 27.67 ATOM 182 CB PRO A 34 36.381 2.586 21.335 1.00 29.54 ATOM 183 CG PRO A 34 36.381 2.586 21.335 1.00 29.54 ATOM 183 CG PRO A 34 36.224 3.056 22.773 1.00 26.93									
ATOM 190 C PRO A 34 34.921 2.477 20.834 1.00 27.43 ATOM 180 C PRO A 34 34.927 1.263 19.907 1.00 27.75 ATOM 181 O PRO A 34 34.907 0.101 20.291 1.00 27.55 ATOM 182 CB PRO A 34 36.381 2.586 21.335 1.00 29.54 ATOM 83 CG PRO A 34 36.284 3.056 22.773 1.00 26.93 ATOM 83 CG PRO A 34 36.224 3.056 22.773 1.00 26.93									
ATOM 180 C PRO A 34 34.727 1.263 19.907 1.00 27.77 ATOM 181 O PRO A 34 34.907 0.101 20.291 1.00 27.65 ATOM 182 CB PRO A 34 36.381 2.586 21.335 1.00 29.54 ATOM 183 CG PRO A 34 36.381 2.586 21.335 1.00 29.54									
ATOM 181 O PRO A 34 34.907 0.101 20.291 1.00 27.65 ATOM 182 CB PRO A 34 36.381 2.586 21.335 1.00 29.54 ATOM 183 CG PRO A 34 36.224 3.056 22.773 1.00 26.93									
ATOM 182 CB PRO A 34 36.381 2.586 21.335 1.00 29.54 ATOM 183 CG PRO A 34 36.224 3.056 22.773 1.00 26.93									
ATOM 183 CG PRO A 34 36.224 3.056 22.773 1.00 26.93									
ATOM 184 CD PRO A 34 35.043 2.269 23.245 1.00 23.54									
	AT'UM	184	CD	PRO A	34	35.043	2.269	23.245	1.00 23.54

 $\frac{1}{10}$

Figure 8-14

ATOM	185	N	GLY	Δ	35	34.312	1.550	18.666	1.00 28.92
ATOM	186	CA	GLY		35	34.175	0.517	17.650	1.00 28.59
ATOM	187	C	GLY		35	32.886	-0.277	17.715	1.00 28.76
ATOM	188	õ	GLY		35	32.743	-1.224	16.957	1.00 29.41
HETATM	189	N	MSE		36	31.923	0.064	18.569	1.00 27.95
HETATM	190	CA	MSE		36	30.612	-0.561	18.587	1.00 28.65
HETATM	191	c.	MSE	A	36	29.809	-0.477	17.276	1.00 28.45
HETATM	192	ŏ	MSE		36	28.824	-1.189	17.098	1.00 26.26
HETATM	193	CB	MSE	A	36	29.774	0.036	19.739	1.00 32.71
HETATM	194	CG	MSE	A	36	29.232	1.427	19.485	1.00 34.05
HETATM	195	SE	MSE	A	36	27.946	2.252	20.676	1.00 36.59
HETATM	196	CE	MSE	A	36	26.309	1.728	19.841	1.00 26.94
ATOM	197	N	ASP	A	37	30.212	0.393	16.338	1.00 30.42
ATOM	198	CA	ASP	A	37	29.736	0.418	14.935	1.00 30.74
ATOM	199	C	ASP	Â	37	30.051	-0.794	14.038	1.00 27.32
ATOM	200	ŏ	ASP	A	37	29.344	-1.054	13.064	1.00 28.97
ATOM	201	CB	ASP	A	37	30.200	1.716	14.234	1.00 23.37
ATOM	202	CG	ASP	A	37	31.706	1.960	14.294	1.00 35.22
ATOM	203	OD1	ASP	A	37	32.230	2.247	15.374	1.00 42.04
ATOM	204	OD2	ASP		37	32.369	1.875	13.275	1.00 34.84
ATOM	205	N	VAL	Â	38	31.054	-1.584	14.381	1.00 23.11
	205	CA	VAL		38	31.471	-2.713	13.566	1.00 23.11
ATOM ATOM	205	CA	VAL		38	31.568	-4.045	14.389	1.00 25.69
	208	ŏ	VAL		38	31.649	-5.172	13.882	1.00 27.25
ATOM	209	CB	VAL		38	32.741	-2.089	12.936	1.00 27.25
ATOM ATOM	210	CG1	VAL	A	38	34.023	-2.366	13.647	1.00 19.85
ATOM	211	CG2			38	32.825	-2.379	11.512	1.00 19.54
ATOM	212	N N	LEU	A	39	31.464	-3.968	15.728	1.00 26.26
ATOM	213	CA.	LEU	A	39	31.505	-5.113	16.640	1.00 26.07
ATOM	214	C	LEU	A	39	30.149	-5.788	16.888	1.00 25.48
ATOM	215	õ	LEU		39	29.130	-5.109	16.842	1.00 23.47
ATOM	216	CB	LEU		39	32.061	-4.671	18.014	1.00 25.49
ATOM	217	CG	LEU	A	39	33.515	-4.307	18.156	1.00 27.97
ATOM	218	CD1	LEU	A	39	33.729	-3.645	19.510	1.00 30.79
ATOM	219	CD2	LEU		39	34.399	-5.522	17.940	1.00 23.69
ATOM	220	N	PRO		40	30.017	-7.086	17.192	1.00 25.65
ATOM	221	CA	PRO		40	28.734	-7.665	17.563	1.00 27.77
ATOM	222	C	PRO	A	40	28.061	-7.004	18.792	1.00 27.59
ATOM	223	ŏ	PRO		40	28.710	-6.411	19.658	1.00 26.55
ATOM	224	CB	PRO		40	29.102	-9.122	17.683	1.00 27.41
ATOM	225	CG		A	40	30.584	-9.150	18.015	1.00 26.93
ATOM	226	CD	PRO	Ä	40	31.076	-8.082	17.099	1.00 26.35
ATOM	227	N	SER		41	26.724	-7.026	18.830	1.00 27.40
ATOM	228	CA	SER		41	26.003	-6.235	19.806	1.00 26.79
ATOM	229	C	SER		41	26.288	-6.707	21,202	1.00 27.70
ATOM	230	ō	SER		41	26.451	-5.903	22.097	1.00 29.20
ATOM	231	CB	SER	A	41	24.540	-6.240	19.558	1.00 23.46
ATOM	232	OG	SER	A	41	24.074	-7.559	19.691	1.00 25.42
ATOM	233	N	HIS	A	42	26.526	-8.007	21.355	1.00 29.95
ATOM	234	CA		A	42	26.853	-8.594	22.636	1.00 30.32
ATOM	235	C	HIS	A	42	28.076	-7.971	23.312	1.00 29.42
ATOM	236	ō	HIS	A	42	28.270	-8.138	24.524	1.00 28.56
ATOM	237	CB	HIS	A	42	27.008	-10.109	22.451	1.00 35.10
ATOM	238	CG	HIS	A	42	28.387	-10.616	21.997	1.00 39.36
ATOM	239	ND1	HIS	A	42	29.424	-10.993	22.752	1.00 43.05
ATOM	240	CD2	HIS	A	42	28.829	-10.644	20.694	1.00 42.30
ATOM	241	CE1	HIS	A	42	30.472	-11.198	21.971	1.00 42.05
ATOM	242	NE2	HIS	A	42	30.103	-10.969	20.735	1.00 41.31
ATOM	243	N	CYS	A	43	28.888	-7.246	22.533	1.00 26.69
ATOM	244	CA	CYS	A	43	30.112	-6.657	23.037	1.00 29.55

Figure 8-15

ATOM	245	С	CYS A	4.3	29.916	-5.341	23.766	1.00 29.31
ATOM	246	0	CYS A	4.3	30.779	-4.912	24.512	1.00 31.36
ATOM	247	CB	CYS A	43	31.140	-6.395	21.915	1.00 31.15
ATOM	248	SG	CYS A	43	31.674	-7.929	21.120	1.00 35.60
ATOM	249	N	TRP A	44	28.813	-4.637	23.555	1.00 28.24
	250	CA	TRP A	44	28.704	-3.240	23.952	1.00 25.54
ATOM			TRP A	44	27.331	-2.947	24.498	
ATOM	251	C						1.00 25.35
ATOM	252	0	TRP A	44	27.173	-1.924	25.113	1.00 28.50
MOTA	253	CB	TRP A	44	28.965	-2.299	22.746	1.00 22.52
ATOM	254	CG	TRP A	44	28.207	-2.626	21.450	1.00 20.09
ATOM	255	CD1	TRP A	44	28.851	-3.316	20.455	1.00 19.03
ATOM	256	CD2	TRP A	44	26.890	-2.326	21.142	1.00 20.02
ATOM	257	NE1	TRP A	44	27.948	-3.464	19.527	1.00 20.48
ATOM	258	CE2	TRP A	44	26.791	-2.877	19.882	1.00 19.41
ATOM	259	CE3	TRP A	44	25.841	-1.609	21.652	1.00 18.83
ATOM	260	CZ2	TRP A	44	25.665	-2.678	19.127	1.00 16.33
	261	CZ3	TRP A	44	24.711	-1.431	20.910	1.00 16.81
ATOM			TRP A	44	24.617	-1.962	19.653	
ATOM	262	CH2						
ATOM	263	N	ILE A	45	26.328	-3.786	24.275	1.00 27.39
ATOM	264	CA	ILE A	45	24.934	-3.500	24.540	1.00 28.48
ATOM	265	C	ILE A	45	24.666	-3.370	26.025	1.00 29.97
ATOM	266	0	ILE A	4.5	23.770	-2.622	26.389	1.00 31.30
ATOM	267	CB	ILE A	45	24.055	-4.601	23.904	1.00 28.39
ATOM	268	CG1	ILE A	45	22.603	-4.220	23.795	1.00 28.24
ATOM	269	CG2	ILE A	45	24.152	-5.926	24.668	1.00 28.54
ATOM	270	CD1	ILE A	4.5	22.371	-2.868	23.098	1.00 30.38
ATOM	271	N	SER A	46	25.408	-4.044	26.900	1.00 30.95
ATOM	272	CA	SER A	46	25.200	-3.897	28.337	1.00 32.47
	273	C	SER A	46	25.677	-2.546	28.844	1.00 30.61
ATOM	274	Ö	SER A	46	24.974	-1.880	29.597	1.00 30.88
ATOM		CB	SER A	46	25.899	-5.016	29.106	1.00 35.61
ATOM	275							
ATOM	276	OG	SER A	46	25.387	-6.311	28.746	1.00 43.59
ATOM	277	N	GLU A	47	26.840	-2.123	28.370	1.00 28.57
ATOM	278	CA	GLU A	47	27.355	-0.823	28.680	1.00 28.90
ATOM	279	C	GLU A	47	26.567	0.306	28.090	1.00 27.44
ATOM	280	0	GLU A	47	26.383	1.323	28.735	1.00 28.17
ATOM	281	CB	GLU A	47	28.791	-0.702	28.244	1.00 30.74
ATOM	282	CG	GLU A	47	29.439	0.554	28.818	1.00 34.60
ATOM	283	CD	GLU A	47	29.550	0.665	30.351	1.00 37.52
ATOM	284	OE1	GLU A	47	28.998	-0.153	31.107	1.00 37.54
ATOM	285	OE2	GLU A	47	30.208	1.607	30.800	1.00 38.33
HETATM	286	N	MSE A	48	26.073	0.098	26.879	1.00 27.89
HETATM	287	CA	MSE A	48	25.327	1.113	26.154	1.00 28.18
HETATM	288	C	MSE A	48	23.945	1.421	26.667	1.00 26.21
	289	Ö	MSE A	48	23.580	2.578	26.606	1.00 27.02
HETATM		CB	MSE A	48	25.309	0.882	24.637	1.00 29.23
HETATM	290					1.048	24.095	1.00 28.12
HETATM	291	CG	MSE A	48	26.739			
HETATM	292	SE	MSE A	48	27.685	2.655	24.690	1.00 35.61
HETATM	293	CE	MSE A	48	26.476	3.857	23.743	1.00 22.58
ATOM	294	N	VAL A	49	23.147	0.491	27.195	1.00 27.65
ATOM	295	CA	VAL A	49	21.882	0.875	27.814	1.00 27.43
ATOM	296	C	VAL A	49	22.017	1.680	29.115	1.00 27.42
MOTA	297	0	VAL A	49	21.224	2.595	29.394	1.00 27.48
ATOM	298	CB	VAL A	49	20.884	-0.284	27.907	1.00 27.18
ATOM	299	CG1	VAL A	49	20.438	-0.478	26.452	1.00 27.08
ATOM	300	CG2	VAL A	49	21.421	-1.534	28.610	1.00 23.66
ATOM	301	N	VAL A	50	23.100	1.370	29.847	1.00 26.26
ATOM	302	CA	VAL A	50	23.469	2.060	31.068	1.00 24.75
ATOM	303	CA	VAL A	50	23.964	3.431	30.716	1.00 25.57
	304	ŏ	VAL A	50	23.485	4.384	31.320	1.00 28.77
MOTA	304	U	·MU M	50	23.403	4.554	51.520	2.00 20.77

Figure 8-16

ATOM	305	CB	VAL A	50	24.545	1.307	31.812	1.00 24.44
ATOM	306	CG1		50	25.062	2.106	32.969	1.00 23.79
ATOM	307	CG2		50	23.952	0.040	32.382	1.00 24.17
ATOM	308	N	GLN A	51	24.888	3.551	29.758	1.00 24.17
ATOM	309	CA	GLN A	51	25.315	4.841	29.294	1.00 18.59
ATOM	310	C	GLN A	51	24.226	5.698	28.700	
ATOM	311	Ö	GLN A	51	24.223	6.904	28.948	1.00 18.17
		CB						1.00 20.05
ATOM	312	CG	GLN A	51	26.474 27.676	4.707	28.320	1.00 21.19
ATOM				51			28.934	1.00 17.37
ATOM	314	CD	GLN A	51	28.072	4.720	30.240	1.00 21.56
ATOM	315	OE1	GLN A	51	27.879	5.913	30.476	1.00 23.67
ATOM	316	NE2	GLN A	51	28.662	3.969	31.152	1.00 22.77
ATOM	317	N	LEU A	52	23.291	5.106	27.959	1.00 15.38
ATOM	318	CA	LEU A	52	22.210	5.850	27.374	1.00 16.72
ATOM	319	С	LEU A	52	21.199	6.284	28.411	1.00 18.34
ATOM	320	0	LEU A	52	20.676	7.387	28.382	1.00 18.73
ATOM	321	CB	LEU A	52	21.533	5.006	26.309	1.00 15.91
ATOM	322	CG	LEU A	52	22.207	5.059	24.928	1.00 17.11
ATOM	323	CD1	LEU A	52	21.807	3.849	24.155	1.00 14.42
ATOM	324	CD2		52	21.886	6.330	24.184	1.00 12.26
ATOM	325	N	SER A	53	20.932	5.433	29.378	1.00 20.83
ATOM	326	CA	SER A	53	20.098	5.806	30.505	1.00 23.79
ATOM	327	C	SER A	53	20.716	6.966	31.295	1.00 24.20
ATOM	328	0	SER A	53	19.977	7.897	31.624	1.00 26.42
ATOM	329	CB	SER A	53	19.917	4.605	31.403	1.00 23.71
ATOM	330	OG	SER A	53	19.285	5.024	32.601	1.00 30.23
ATOM	331	N	ASP A	54	22.043	6.977	31.559	1.00 23.25
ATOM	332	CA	ASP A	54	22.687	8.036	32.308	1.00 20.61
ATOM	333	c	ASP A	54	22.659	9.325	31.572	1.00 19.02
ATOM	334	ō	ASP A	54	22.303	10.358	32.142	1.00 20.41
ATOM	335	CB	ASP A	54	24.114	7.682	32.740	1.00 25.54
ATOM	336	CG	ASP A	54	24.207	6.579	33.815	1.00 31.33
ATOM	337	OD1	ASP A	54	23.185	5.965	34.178	1.00 36.02
MOTA	338	OD2	ASP A	54	25.318	6.318	34.307	1.00 30.02
ATOM	339	N	SER A	55	22.962	9.286	30.291	1.00 16.79
ATOM	340	CA	SER A	55	22.857	10.514	29.541	1.00 17.42
ATOM	341	C	SER A	55	21.454	11.096	29.425	1.00 17.42
ATOM	342	Ö	SER A	55	21.293	12.318	29.474	1.00 15.81
ATOM	343	CB	SER A	55	23.511	10.378	28.150	1.00 17.95
ATOM	344	OG	SER A	55	24.863	9.936	28.237	1.00 22.06
	345	N	LEU A	56	20.439	10.249	29.243	
ATOM		CA	LEU A	56	19.073	10.726		
ATOM	346 347	C	LEU A	56	18.518	11.188	29.162 30.514	1.00 17.99 1.00 18.27
ATOM ATOM	348	ò	LEU A	56	17.800	12.186	30.575	
		СВ				9.712		
ATOM	349		LEU A	56	18.130		28.505	1.00 17.68
ATOM	350	CG	LEU A	56	18.061	9.584	26.983	1.00 18.44
ATOM	351	CD1	LEU A	56	17.381	8.280	26.613	1.00 19.03
ATOM	352	CD2	LEU A	56	17.392	10.764	26.321	1.00 16.39
ATOM	353	N	THR A	57	18.835	10.532	31.616	1.00 18.45
ATOM	354	CA	THR A	57	18.376	11.005	32.911	1.00 21.42
ATOM	355	С	THR A	57	18.975	12.383	33.205	1.00 21.42
ATOM	356	0	THR A	57	18.263	13.287	33.640	1.00 21.53
ATOM	357	CB	THR A	57	18.680	9.942	33.948	1.00 18.39
ATOM	358	OG1	THR A	57	18.055	8.791	33.418	1.00 20.01
ATOM	359	CG2	THR A	57	17.980	10.190	35.253	1.00 23.58
ATOM	360	N	ASP A	58	20.245	12.587	32.819	1.00 23.66
ATOM	361	CA	ASP A	58	20.908	13.867	32.971	1.00 24.99
ATOM	362	C	ASP A	58	20.269	14.969	32.162	1.00 23.11
MOTA	363	0	ASP A	58	20.243	16.133	32.567	1.00 22.89
ATOM	364	CB	ASP A	58	22.410	13.766	32.646	1.00 33.60

Figure 8-17

ATOM	365	CG	ASP A	A 58	23.101	15.151	32.595	1.00 41.66
ATOM	366	OD1			23.500	15.636	33.666	1.00 45.37
	367	OD2	ASP A		23.204	15.764	31.502	1.00 43.30
ATOM		N N	LEU Z		19.762	14.614	30.994	1.00 21.38
ATOM	368							
MOTA	369	CA	LEU A		19.106	15.568	30.124	1.00 19.63
MOTA	370	C	LEU 2		17.857	16.179	30.719	1.00 20.35
ATOM	371	0	LEU A		17.522	17.321	30.413	1.00 19.57
ATOM	372	CB	LEU 2	A 59	18.751	14.826	28.859	1.00 19.31
ATOM	373	CG	LEU A	A 59	19.006	15.498	27.551	1.00 18.41
ATOM	374	CD1	LEU 2	A 59	20.161	16.496	27.615	1.00 16.32
ATOM	375		LEU 2	A 59	19.225	14.401	26.555	1.00 17.59
ATOM	376	N	LEU 2		17,163	15.410	31.587	1.00 21.63
ATOM	377	CA.	LEU 2		15.930	15.857	32.216	1.00 20.55
	378	C	LEU 2		16.133	17.147	32.974	1.00 22.32
ATOM			LEU A		15.264	18.016	32.929	1.00 23.28
ATOM	379	0			15.389	14.796	33.145	1.00 23.28
ATOM	380	CB	LEU 2					
ATOM	381	CG	LEU 2		14.680	13.601	32.538	1.00 14.57
MOTA	382		LEU A		14.293	12.641	33.643	1.00 12.83
ATOM	383	CD2	LEU 2	A 60	13.462	14.048	31.847	1.00 8.22
MOTA	384	N	ASP A		17.338	17.285	33.558	1.00 22.42
ATOM	385	CA	ASP A	A 61	17.805	18.483	34.247	1.00 22.10
ATOM	386	C	ASP 2	A 61	17.810	19.768	33.433	1.00 20.08
ATOM	387	ō	ASP 2		17.841	20.870	33,974	1.00 20.02
ATOM	388	CB	ASP 2		19.203	18.169	34.753	1.00 28.60
ATOM	389	CG	ASP A		19.803	19,159	35.750	1.00 34.29
ATOM	390	OD1			19.459	19.073	36.931	1.00 40.97
	391	OD2	ASP Z		20.616	20.006	35.356	1.00 37.85
ATOM					17.721	19.693	32.105	1.00 19.76
ATOM	392	N CA	LYS A		17.839	20.862	31.245	1.00 16.53
ATOM	393						30.770	
MOTA	394	C	LYS A		16.485	21.335		1.00 16.75
MOTA	395	0	LYS 2		16.388	22.383	30.130	1.00 17.62
ATOM	396	CB	LYS 2		18.684	20.529	30.020	1.00 18.65
ATOM	397	CG	LYS 2		19.986	19.755	30.233	1.00 16.80
ATOM	398	CD	LYS A		20.808	20.483	31.276	1.00 18.07
ATOM	399	CE	LYS 2	A 62	22.135	19.776	31.535	1.00 23.34
ATOM	400	NZ	LYS A	A 62	22.088	18.331	31.330	1.00 28.06
ATOM	401	N	PHE 2	A 63	15.400	20.605	31.068	1.00 16.40
ATOM	402	CA	PHE 2	A 63	14.086	20.979	30.586	1.00 16.93
ATOM	403	Ċ	PHE 2	A 63	13.110	21.140	31.730	1.00 17.40
ATOM	404	ŏ	PHE A		13.294	20.626	32.826	1.00 17.50
ATOM	405	CB	PHE 2		13.576	19.942	29.574	1.00 15.08
ATOM	406	CG	PHE 2		14.424	19.850	28.325	1.00 13.39
	407	CD1	PHE 2		14.261	20.767	27.317	1.00 13.60
ATOM	408	CD2	PHE 2		15.410	18.888	28,252	1.00 14.95
ATOM		CE1	PHE 2		15.126	20.740	26.266	1.00 10.99
ATOM	409				16.305	18.889	27.207	1.00 14.45
ATOM	410	CE2	PHE A			19.832	26.229	1.00 10.95
MOTA	411	CZ	PHE 2		16.150			
MOTA	412	N	SER A		12.031	21.843	31.444	1.00 19.14
MOTA	413	CA	SER A		10.993	22.080	32.407	1.00 21.71
ATOM	414	C	SER 2		9.832	21.125	32.198	1.00 22.87
ATOM	415	0	SER A	A 64	9.431	20.758	31.098	1.00 24.09
ATOM	416	CB	SER A	A 64	10.533	23.508	32.261	1.00 22.47
ATOM	417	OG	SER A	A 64	9.408	23.881	33.049	1.00 29.46
ATOM	418	N	ASN A	A 65	9.298	20.809	33.363	1.00 23.97
ATOM	419	CA	ASN A		8.233	19.855	33.608	1.00 29.13
ATOM	420	C	ASN A		6.899	20.530	33.390	1.00 31.34
ATOM	421	ŏ		A 65	5.883	19.858	33.203	1.00 35.27
ATOM	422	CB		A 65	8.309	19.551	35.119	1.00 30.43
	423	CG	ASN A		8.097	18.117	35.514	1.00 33.16
ATOM			ASN A		7.488	17.258	34.873	1.00 41.60
MOTA	424	ODI	MOIN I	. 05	,		31.073	

Figure 8-18

ATOM	425	ND2	ASN A	65	8.641	17.823	36.656	1.00 34.77
ATOM	426	N	ILE A	66	6.892	21.862	33.561	1.00 32.62
ATOM	427	CA	ILE A	66	5.708	22.691	33.384	1.00 33.83
ATOM	428	C	ILE A	66	5.681	23.071	31.918	1.00 35.58
ATOM	429	ō	ILE A	66	6.450	23.910	31.431	1.00 36.08
ATOM	430	CB	ILE A	66	5.752	24.000	34.223	1.00 33.21
ATOM	431	CG1	ILE A	66	6.162	23.831	35.672	1.00 33.50
ATOM	432	CG2	ILE A	66	4.416	24.708	34.158	1.00 31.21
ATOM	433	CD1	ILE A	66	5.330	22.784	36.415	1.00 32.37
ATOM	434	N	SER A	67	4.782	22.424	31.201	1.00 37.23
ATOM	435	CA	SER A	67	4.669	22.650	29.771	1.00 40.50
	436	C	SER A	67	3.358	22.008	29.327	1.00 42.07
ATOM ATOM	437	0	SER A	67	3.073	20.841	29.622	1.00 43.86
		CB	SER A	67	5.892	21.985	29.075	1.00 40.62
ATOM	438	OG	SER A	67	6.244	22.539	27.815	1.00 36.76
ATOM	439			68	2.502	22.765	28.648	1.00 44.40
MOTA	440	N	GLU A		1.317	22.183	28.023	1.00 46.43
MOTA	441	CA	GLU A	68 68	1.777	21.448	26.758	1.00 46.20
MOTA	442	C			2.874	21.448	26.736	1.00 45.20
ATOM	443	0	GLU A	68	0.364	23.301	27.637	1.00 47.33
MOTA	444	CB	GLU A	68				1.00 43.01
MOTA	445	CG	GLU A	68	-1.051	22.858	27.256 28.324	1.00 56.12
MOTA	446	CD	GLU A	68	-2.066	23.229		1.00 58.12
MOTA	447	OE1	GLU A	68	-2.255	22.391	29.223 28.250	1.00 56.09
ATOM	448	OE2	GLU A	68	-2.634	24.342		
MOTA	449	N	GLY A	69	0.957	20.523	26.262	1.00 45.44 1.00 43.62
MOTA	450	CA	GLY A	69	1.228	19.834 19.130	25.021 25.029	1.00 43.62
MOTA	451	C	GLY A	69	2.561			
MOTA	452	0	GLY A	69	2.944	18.429	25.963	1.00 43.42 1.00 42.01
ATOM	453	N	LEU A	70	3.245	19.412 18.856	23.927	1.00 42.01
ATOM	454	CA	LEU A	70	4.567		24.688	
ATOM	455	C	LEU A	70	5.570 5.769	19.283	24.688	1.00 37.48 1.00 39.56
ATOM	456	0	LEU A	70		19.339	22.221	1.00 42.73
MOTA	457	CB	LEU A	70	5.069	18.753		
ATOM	458	CG	LEU A	70	6.365	17.212	21.553 21.539	
ATOM	459	CD1	LEU A	70	6.429	19.318	20.134	1.00 40.99 1.00 42.81
ATOM	460	CD2	LEU A	70	6.506		25.301	
MOTA	461	N	SER A	71	6.203	18.289 18.514	26.330	
MOTA	462	CA	SER A	71	7.187			
MOTA	463	C	SER A	71	8.394	17.653	26.032	1.00 20.06
MOTA	464	0_	SER A	71	8.282	16.449 18.160	25.900 27.653	1.00 21.51 1.00 21.80
ATOM	465	CB	SER A	71	6.519		28.756	
MOTA	466	OG	SER A	71	7.393	18.171 18.208	25.883	1.00 17.14
ATOM	467	N	ASN A	72	9.573		25.883	1.00 16.99
ATOM	468	CA	ASN A	72	10.787	17.419		
ATOM	469	C	ASN A	72	11.079	16.692	27.083 26.997	1.00 15.54 1.00 16.64
MOTA	470	0	ASN A	72	11.566	15.578 18.277	25.558	1.00 16.64
ATOM	471	CB	ASN A	72	11.982			
ATOM	472	CG	ASN A	72	11.916	18.839	24.158	
ATOM	473	OD1	ASN A	72	11.109	18.421	23.317	1.00 25.67
ATOM	474	ND2	ASN A	72	12.780	19.812	23.894	1.00 24.59
MOTA	475	N	TYR A	73	10.823	17.309	28.239	1.00 15.06
MOTA	476	CA	TYR A	73	10.835	16.579	29.507	1.00 15.26
ATOM	477	C	TYR A	73	9.986	15.319	29.443	1.00 15.85
MOTA	478	0	TYR A	73	10.538	14.262	29.740	1.00 18.32
ATOM	479	CB	TYR A	73	10.315	17.410	30.733	1.00 12.75
MOTA	480	CG	TYR A		10.760	16.862	32.082	1.00 10.27
ATOM	481	CD1	TYR A		11.940	17.306	32.624	1.00 11.84
ATOM	482	CD2	TYR A	73	9.993	15.928	32.769	1.00 14.03
ATOM	483	CE1	TYR A		12.364	16.827	33.839	1.00 12.67
MOTA	484	CE2	TYR A	73	10.412	15.419	33.979	1.00 10.24

ののののののなどののののののでののののでのののののでのののであるののののであるののののであるののののです。

Figure 8-19

ATOM	485	CZ	TYR A	73	11.592	15.891	34.491	1.00 14.02
ATOM	486	OH	TYR A	73	12.042	15.429	35.703	1.00 14.54
ATOM	487	N	SER A	74	8.682	15.323	29.087	1.00 18.48
ATOM	488	CA	SER A	74	7.947	14.076	29.034	1.00 18.74
	489	C	SER A	74	8.429	13.074	28.017	1.00 18.80
ATOM		Ö	SER A	74	8.430	11.882	28.327	1.00 18.69
ATOM	490		SER A	74	6.434	14.228	29.002	1.00 21.96
MOTA	491	CB		74	5.847	15.278	28.253	1.00 30.65
ATOM	492	OG	SER A	75	8.928	13.522	26.849	1.00 18.95
ATOM	493	N	ILE A	75	9.481	12.602	25.855	1.00 17.82
MOTA	494	CA		75	10.689	11.896	26.422	1.00 17.12
MOTA	495	C	ILE A		10.679	10.688	26.557	1.00 18.03
ATOM	496	0	ILE A	75	9.750	13.298	24.460	1.00 20.42
MOTA	497	CB	ILE A	75		13.296	23.860	1.00 19.63
MOTA	498	CG1	ILE A	75	8.440		23.471	1.00 17.30
ATOM	499	CG2	ILE A	75	10.327	12.283		
ATOM	500	CD1	ILE A	75	8.582	14.604	22.508	1.00 23.08 1.00 18.46
ATOM	501	N	ILE A	76	11.698	12.625	26.857	
ATOM	502	CA	ILE A	76	12.916	12.070	27.436	1.00 19.33
ATOM	503	C	ILE A	76	12.622	11.116	28.592	1.00 19.01
ATOM	504	0	ILE A	76	13.199	10.040	28.714	1.00 20.65
ATOM	505	CB	ILE A	76	13.816	13.253	27.900	1.00 18.88
ATOM	506	CG1	ILE A	76	14.239	14.216	26.789	1.00 17.98
ATOM	507	CG2	ILE A	76	15.057	12.732	28.600	1.00 20.53
ATOM	508	CD1	ILE A	76	14.950	15.500	27.300	1.00 15.54
ATOM	509	N	ASP A	77	11.643	11.474	29.412	1.00 19.90
ATOM	510	CA	ASP A	77	11.226	10.682	30.562	1.00 19.93
ATOM	511	C	ASP A	77	10.627	9.341	30.177	1.00 21.32
ATOM	512	ō	ASP A	77	10.832	8.318	30.830	1.00 21.41
ATOM	513	CB	ASP A	77	10.189	11.524	31.263	1.00 21.00
ATOM	514	CG	ASP A	77	9.506	10.808	32.390	1.00 23.32
ATOM	515	OD1		77	10.211	10.249	33.204	1.00 26.02
ATOM	516	OD2	ASP A	77	8.283	10.750	32.419	1.00 24.74
ATOM	517	N	LYS A	78	9.835	9.312	29.101	1.00 23.41
ATOM	518	CA	LYS A	78	9.385	8.038	28.606	1.00 23.09
ATOM	519	C	LYS A	78	10.529	7.247	27.975	1.00 24.61
	520	ŏ	LYS A	78	10.518	6.000	28.021	1.00 26.85
ATOM	521	CB	LYS A	78	8.267	8.237	27.656	1.00 25.84
ATOM	522	CG	LYS A	78	7.024	8.643	28.403	1.00 29.26
ATOM	523	CD	LYS A	78	5.882	8.766	27.362	1.00 40.97
MOTA	524	CE	LYS A	78	6.119	9.815	26.221	1.00 43.91
ATOM	525	NZ	LYS A	78	5.056	9.792	25.229	1.00 48.24
ATOM		NZ N	LEU A	79	11.559	7.936	27.437	1.00 22.19
MOTA	526	CA	LEU A	79	12.718	7.253	26.865	1.00 18.09
MOTA	527		LEU A	79	13.577	6.757	27.968	1.00 16.82
ATOM	528	C	LEU A	79	14.146	5.692	27.806	1.00 17.74
MOTA	529	0		79	13.580	8.147	25.986	1.00 16.97
MOTA	530	CB	LEU A		12.928	8.748	24.768	1.00 15.98
ATOM	531	CG	LEU A	79 79	13.984	9.540	24.058	1.00 16.93
ATOM	532	CD1	LEU A			7.721	23.857	1.00 14.76
MOTA	533		LEU A	79	12.264	7.460	29.101	1.00 16.48
ATOM	534	N	VAL A	80	13.609	6.994	30.249	1.00 13.79
MOTA	535	CA	VAL A	80	14.352	5.725	30.731	1.00 14.44
ATOM	536	C	VAL A	80	13.697	4.763	31.022	1.00 14.44
MOTA	537	0	VAL A	80	14.385			1.00 14.81
ATOM	538	CB	VAL A	80	14.382	8.054	31.331	1.00 17.12
ATOM	539	CG1		80	14.937	7.490	32.631	
ATOM	540	CG2		80	15.307	9.189	30.910	
ATOM	541	N	asn a	81	12.383	5.633	30.743	1.00 16.27
ATOM	542	CA	ASN A	81	11.696	4.398	31.081	1.00 18.71
ATOM	543	C	ASN A	81	11.852	3.174	30.176	1.00 21.49
ATOM	544	0	ASN A	81	11.945	2.060	30.691	1.00 22.57

ののないのののは、のののののでは、ないののののでは、これののののである。

Figure 8-20

ATOM	545	CB	ASN .	Α :	81	10.244	4.707	31.191	1.00 20.64
ATOM	546	CG			81	9.968	5.574	32.402	1.00 22.06
ATOM	547	OD1			81	10.652	5.475	33.422	1.00 22.22
ATOM	548	ND2			81	8.941	6.409	32.322	1.00 21.76
ATOM	549	N			82	11.898	3.339	28.846	1.00 21.86
ATOM	550	CA			82	12.226	2.270	27.917	1.00 23.02
	551	C			82	13.602	1.742	28.112	1.00 23.67
ATOM	552	Ö			82	13.728	0.536	28.067	1.00 26.85
ATOM	553	CB			82	12.089	2.768	26.497	1.00 22.79
ATOM	554	CG1			82	10.613	2.757	26.220	1.00 23.80
ATOM		CG2			82	12.854	1.951	25.474	1.00 21.98
ATOM	555	CD1			82	10.321	3.659	25.020	1.00 27.18
ATOM	556 557		VAL .		83	14.619	2.586	28.254	1.00 25.82
ATOM		N CA	VAL .		83	15.996	2.104	28.338	1.00 27.82
MOTA	558		VAL .		83	16.212	1.471	29.706	1.00 30.01
ATOM	559	C	VAL .		83	16.212	0.522	29.796	1.00 32.08
ATOM	560	0			83	17.139	3.137	28.252	1.00 26.25
MOTA	561	CB			83	18.343	2.445	27.683	1.00 28.68
ATOM	562	CG1				16.883	4.437	27.569	1.00 28.99
ATOM	563	CG2			83	15.602	1.983	30.789	1.00 30.99
ATOM	564	N			84	15.602	1.384	32.123	1.00 34.08
ATOM	565	CA			84			32.123	1.00 34.30
ATOM	566	C			84	15.125	-0.013	33.035	1.00 35.01
ATOM	567	0			84	15.666	-0.816		1.00 35.01
ATOM	568	CB			84	15.148	2.331	33.189	1.00 37.32
ATOM	569	CG			84	15.909	3.664	33.316	1.00 42.03
ATOM	570	OD1			84	16.907	3.865		1.00 43.39
ATOM	571	OD2			84	15.496	4.523	34.107	1.00 44.86
ATOM	572	N			85	14.055	-0.335	31.524	
ATOM	573	CA			85	13.554	-1.707	31.332	1.00 37.15 1.00 34.71
ATOM	574	C			85	14.655	-2.665		
ATOM	575	0			85	14.777	-3.800	31.308	1.00 33.69
ATOM	576	CB			85	12.434	-1.780	30.474	1.00 42.27
ATOM	577	CG			85	11.023	-1.216		1.00 46.16
MOTA	578				85	10.747	-0.756	31.587	
ATOM	579	OD2			85	10.197	-1.234	29.539 29.904	1.00 50.79 1.00 33.83
ATOM	580	N	LEU .		86	15.437	-2.164	29.904	1.00 33.83
ATOM	581	CA	LEU .		86	16.527	-2.886		1.00 33.71
ATOM	582	C	LEU .		86	17.747	-2.959	30.177	1.00 34.12
ATOM	583	0	LEU		86	18.440	-3.965	30.083	1.00 34.86
ATOM	584	CB	LEU		86	16.907	-2.260	27.948	
ATOM	585	CG	LEU		86	15.878	-2.198	26.829	1.00 30.75 1.00 30.54
ATOM	586	CD1	LEU		86	16.383	-1.351	26.349	1.00 30.54
ATOM	587		LEU		86	15.521	-3.581	31.039	1.00 23.89
ATOM	588	N	VAL		87	18.033	-1.973		
ATOM	589	CA	VAL		87	19.121	-2.074	32.009	1.00 35.56 1.00 40.73
MOTA	590	C	VAL		87	18.933	-3.223		
ATOM	591	0	VAL .		87	19.889	-3.890	33.493	
ATOM	592	CB	VAL		87	19.239	-0.695	32.614	1.00 31.60
ATOM	593	CG1			87	20.272	-0.634	33.703	1.00 33.57
ATOM	594	CG2	VAL		87	19.680	0.253	31.537	1.00 29.91
ATOM	595	N	GLU	A	88	17.645	-3.484	33.340	1.00 44.00
ATOM	596	CA	GLU		88	17.191	-4.563	34.217	1.00 47.21
ATOM	597	C	GLU		88	17.016	-5.918	33.542	1.00 48.21
ATOM	598	0	GLU		88	17.359	-6.909	34.169	1.00 47.84
ATOM	599	CB	GLU		88	15.868	-4.200	34.886	1.00 49.05
MOTA	600	CG	GLU		88	15.877	-2.952	35.772	1.00 52.09
ATOM	601	CD	GLU		88	16.809	-3.020	36.976	1.00 53.70
ATOM	602	OE1	GLU	A	88	16.608	-3.858	37.861	1.00 55.01
ATOM	603	OE2	GLU		88	17.744	-2.221	37.020	1.00 54.23
ATOM	604	N	CYS	A	89	16.475	-6.018	32.311	1.00 50.79

2000円ののいのでののではいいののでは、1000円ののでのであるのである。 200円では、 200円では

Figure 8-21

ATOM	605	CA	CYS I	89	16.489	-7.244	31.503	1.00 54.51
ATOM	606	C	CYS A	89	17.952	-7.703	31.459	1.00 55.09
ATOM	607	ō	CYS A		18.231	-8.791	31.961	1.00 57.42
ATOM	608	CB	CYS Z		15.903	-6.972	30.078	1.00 57.17
	609	SG	CYS I		15.060	-8.280	29.096	1.00 64.80
ATOM			VAL A		18.890	-6.838	31.002	1.00 55.69
ATOM	610	N			20.357	-7.027	31.060	1.00 55.91
MOTA	611	CA	VAL A				32.450	1.00 57.84
ATOM	612	C	VAL A		20.906	-7.397		
ATOM	613	0	VAL A		22.014	-7.924	32.546	1.00 58.27
ATOM	614	CB	VAL A	A 90	21.074	-5.738	30.480	1.00 53.45
MOTA	615	CG1	VAL A	A 90	22.542	-5.564	30.824	1.00 52.76
ATOM	616	CG2	VAL 2	90	20.965	-5.689	28.978	1.00 50.05
ATOM	617	N	LYS 2	91	20.212	-7.128	33.558	1.00 59.29
ATOM	618	CA	LYS 2	91	20.556	-7.785	34.810	1.00 62.11
ATOM	619	C	LYS 2		19.865	-9.163	34.996	1.00 63.85
ATOM	620	ō	LYS		20.517	-10.061	35.533	1.00 66.48
	621	CB	LYS		20.305	-6.837	35.993	1.00 61.39
ATOM			SER I		36.757	4.074	31.300	1.00 64.71
ATOM	622	N			36.147	4.043	29.974	1.00 64.00
MOTA	623	CA	SER I		34.723	3.416	29.904	1.00 61.57
ATOM	624	C	SER I			2.749	30.871	1.00 62.78
ATOM	625	0	SER I		34.321			
ATOM	626	CB	SER I		37.147	3.441	28.919	1.00 65.90
ATOM	627	OG	SER 2		38.150	4.399	28.533	1.00 67.30
ATOM	628	N	PRO 2		33.891	3.576	28.842	1.00 57.26
ATOM	629	CA	PRO .	A 105	34.173	4.332	27.635	1.00 53.19
ATOM	630	C	PRO .	A 105	34.452	5.801	27.827	1.00 51.76
ATOM	631	0	PRO .	A 105	34.107	6.397	28.848	1.00 53.30
ATOM	632	CB	PRO .		32.968	4.091	26.813	1.00 51.85
ATOM	633	CG	PRO .		31.869	3.765	27.755	1.00 53.45
ATOM	634	CD	PRO .		32.618	2.880	28.698	1.00 55.74
	635	N	GLU .		35.242	6.296	26.875	1.00 50.80
ATOM		CA	GLU .		35.584	7.700	26.790	1.00 47.97
ATOM	636 637	CM	GLU .		34.332	8.435	26.350	1.00 44.14
ATOM		ŏ	GLU .		33.684	8.006	25.400	1.00 42.91
MOTA	638				36.796	7.970	25.858	1.00 51.71
ATOM	639	CB	GLU .		36.873	7.196	24.509	1.00 57.13
ATOM	640	CG	GLU .			6.192	24.389	1.00 60.78
ATOM	641	CD	GLU .		38.045			
ATOM	642	OE1	GLU .		38.141	5.251	25.189	
ATOM	643	OE2	GLU .		38.874	6.338	23.482	1.00 63.52
ATOM	644	N	PRO .		33.936	9.481	27.092	1.00 41.02
MOTA	645	CA	PRO	A 107	32.846	10.386	26.770	1.00 38.74
ATOM	646	C	PRO .	A 107	33.069	11.190	25.517	1.00 37.93
ATOM	647	0	PRO .	A 107	34.148	11.749	25.271	1.00 40.00
ATOM	648	CB	PRO	A 107	32.764	11.292	27.970	1.00 39.85
ATOM	649	CG	PRO	A 107	34.162	11.290	28.542	1.00 40.91
ATOM	650	CD	PRO		34.522	9.832	28.384	1.00 41.30
ATOM	651	N		A 108	32.000	11.208	24.724	1.00 35.40
ATOM	652	CA.		A 108	32,006	11.864	23.436	1.00 33.34
	653	C		A 108	30.766	12.722	23.318	1.00 29.75
MOTA	654	ŏ	ARG		29.727	12.347	23.867	1.00 29.55
ATOM				A 108	32.102	10.859	22.297	1.00 35.14
ATOM	655	CB			33.480	10.219	22.313	1.00 39.55
MOTA	656	CG		A 108	33.460	9.386	21.057	1.00 44.05
ATOM	657	CD		A 108		8.324	21.284	1.00 45.36
ATOM	658	NE	ARG		34.715	7.376	20.373	1.00 45.36
ATOM	659	$^{\rm cz}$	ARG		34.965			1.00 46.89
MOTA	660	NH1	ARG		34.481		19.142	
MOTA	661	NH2	ARG		35.679	6.306	20.712	1.00 46.89
MOTA	662	N		A 109	30.932		22.650	1.00 26.42
ATOM	663	CA		A 109	29.833		22.334	1.00 25.17
ATOM	664	C	LEU	A 109	29.126	14.453	21.020	1.00 25.96

Figure 8-22

ATOM	665	0	LEU	Δ	1.09	29.774	14.229	20.002	1.00 26.43
ATOM	666	СВ	LEU			30.316	16.182	22.280	1.00 24.30
ATOM	667	CG	LEU		109	31.003	16.770	23.483	1.00 25.72
ATOM	668	CD1	LEU		109	31.426	18.185	23.137	1.00 26.28
ATOM	669	CD2			109	30.097	16.820	24.677	1.00 25.67
ATOM	670	N		A	110	27.794	14.427	20.988	1.00 24.52
	671	CA	PHE		110	27.019	14.004	19.822	1.00 22.36
ATOM	672	C	PHE		110	25.996	15.079	19.586	1.00 21.47
ATOM	673	ō	PHE		110	25.618	15.777	20.525	1.00 21.05
ATOM	674	CB	PHE			26.227	12.725	20.075	1.00 21.69
	675	CG	PHE		110	27.133	11.561	20.318	1.00 23.01
ATOM	676	CD1			110	27.676	10.892	19.238	1.00 24.43
MOTA	677				110	27.506	11.243	21.597	1.00 24.43
ATOM		CD2 CE1	PHE			28.614	9.897	19.463	1.00 24.92
ATOM	678	CE2			110	28.460	10.282	21.798	1.00 24.92
ATOM	679		PHE			29.017	9.597	20.746	1.00 22.08
ATOM	680	CZ N			110	25.557	15.239	18.339	1.00 20.40
ATOM	681		THR						
ATOM	682	CA	THR			24.422	16.102	18.047	1.00 19.58
ATOM	683	C	THR			23.175	15.367	18.473	1.00 15.81
ATOM	684	0	THR		111	23.239	14.150	18.603 16.578	1.00 18.63
ATOM	685	CB	THR		111	24.305	16.421	15.907	1.00 19.96 1.00 21.91
ATOM	686	OG1	THR		111	24.145	15.178	16.118	
ATOM	687	CG2	THR		111	25.487	17.252		1.00 23.08
ATOM	688	N	PRO			22.030	15.982	18.688	1.00 15.89
ATOM	689	CA	PRO		112	20.783	15.254	18.984	1.00 16.41
ATOM	690	C	PRO		112	20.500	14.089 12.954	18.025 18.431	1.00 17.10 1.00 18.32
ATOM	691	0	PRO		112	20.329			
ATOM	692	CB	PRO		112	19.794	16.375	18.870	1.00 13.89
ATOM	693	CG	PRO		112	20.581	17.559	19.386	1.00 14.36
ATOM	694	CD	PRO		112	21.876	17.424	18.685	1.00 12.46
ATOM	695	N	GLU		113	20.564	14.321	16.728 15.737	1.00 20.22 1.00 24.11
ATOM	696	CA	GLU		113	20.393	13.303	15.737	1.00 24.11 1.00 24.55
ATOM	697	C	GLU		113 113	20.963	10.982	15.866	1.00 24.55
ATOM	698	O CB	GLU		113	20.539	13.991	14.420	1.00 29.66
ATOM	699	CG	GLU			20.333	13.029	13.250	1.00 23.00
ATOM	700 701	CD	GLU		113 113	21.253	13.476	12.042	1.00 41.26
MOTA	702	OE1	GLU		113	22.475	13.694	12.197	1.00 52.84
ATOM	703	OE2	GLU		113	20.662	13.586	10.949	1.00 55.78
ATOM	704	N N	GLU		114	22.663	12.384	16.033	1.00 24.48
MOTA	705	CA	GLU		114	23.594	11.291	16.198	1.00 22.26
ATOM	706	C	GLU		114	23.398	10.486	17.471	1.00 22.20
ATOM	707	0	GLU		114	23.564	9.256	17.494	1.00 22.80
ATOM	708	CB	GLU		114	24.979	11857	16.198	1.00 26.15
ATOM	708	CG	GLU		114	25.362	12.534	14.897	1.00 32.62
ATOM	710	CD	GLU		114	26.719	13.225	15.002	1.00 32.62
ATOM	711	OE1	GLU		114	26.860	14.093	15.867	1.00 35.61
ATOM	712	OE2	GLU		114	27.646	12.893	14.242	1.00 42.28
ATOM ATOM	713	N N		A	115	23.035	11.181	18.558	1.00 42.28
	714	CA		Â	115	22.812	10.544	19.850	1.00 19.30
ATOM	715	C		Â	115	21.601	9.645	19.667	1.00 17.06
	716	Ö		A	115	21.555	8.527	20.165	1.00 17.46
ATOM ATOM	717	CB		A	115	22.586	11.623	20.103	1.00 16.68
	718	CG		A	115	22.148	11.018	22.298	1.00 13.67
ATOM	719	CD1		A	115	20.820	10.679	22.520	1.00 15.42
ATOM	720	CD1		A	115	23.081	10.752	23.261	1.00 15.56
ATOM		CE1		A	115	20.412	10.752	23.650	1.00 15.36
ATOM	721 722	CE1		A	115	22.674	10.136	24.429	1.00 16.48
ATOM	723	CZ			115	21.351	9.750	24.423	1.00 17.36
ATOM	724	N	PHE			20.581	10.135	18.981	1.00 18.29
MOTA	124	TA	PUE	м	110	20.501	10.133	10.701	1.00 10.07

 \mathbf{z}

ATOM	725	CA	PHE A	116	19.401	9.327	18.860	1.00 18.51
ATOM	726	C	PHE F	116	19.510	8.196	17.854	1.00 22.03
ATOM	727	0		116	18.768	7.213	17.892	1.00 22.83
ATOM	728	CB		116	18.204	10.195	18.687	1.00 19.13
ATOM	729	CG		116	17.735	10.764	20.021	1.00 19.41
ATOM	730			1116	17.159	9.924	20.952	1.00 19.08
ATOM	731	CD2		116	17.991	12.079	20.343	1.00 19.60
ATOM	732		PHE A		16.911	10.381	22.214	1.00 18.67
ATOM	733	CE2		1116	17.747	12.528	21.619	1.00 21.95 1.00 19.99
ATOM	734	CZ	PHE A		17.218	11.674	22.550	1.00 19.99
ATOM	735	N	ARG A		20.510	8.249	16.986 16.123	1.00 22.43
ATOM	736	CA	ARG A		20.822	7.134 6.076	16.123	1.00 21.38
ATOM	737	C	ARG I		21.453	4.946	16.841	1.00 22.56
ATOM	738	0	ARG A		21.039	7.623	15.052	1.00 27.63
ATOM	739	CB	ARG A		21.769	6.596	14.082	1.00 36.33
ATOM	740	CG	ARG A		22.329 23.135	7.255	12.971	1.00 43.02
MOTA	741	CD	ARG A		22.296	8.207	12.239	1.00 49.61
MOTA	742	NE	ARG I		22.704	9.468	12.008	1.00 54.02
ATOM	743	CZ	ARG A		23.915	9.867	12.474	1.00 53.58
ATOM	744		ARG A		21.899	10.314	11.313	1.00 53.56
ATOM	745	NH2	ILE A		22.394	6.348	17.874	1.00 19.56
ATOM	746 747	N CA	ILE A		22.944	5.328	18.746	1.00 18.66
ATOM	748	CA	ILE A		21.888	4.776	19.673	1.00 19.62
ATOM	749	0	ILE A		21.887	3.579	19.933	1.00 21.23
ATOM	750	CB	ILE A		24.054	5.970	19.533	1.00 21.60
ATOM	751	CG1	ILE A		25.121	6.479	18.593	1.00 22.63
ATOM ATOM	752	CG2	ILE A		24.665	5.002	20.534	1.00 22.20
ATOM	753	CD1	ILE A		26.178	7.330	19.285	1.00 23.90
ATOM	754	N	PHE 2		20.971	5.619	20.180	1.00 20.06
ATOM	755	CA	PHE		19.827	5.124	20.943	1.00 21.07
ATOM	756	C	PHE I		18.940	4.182	20.141	1.00 21.06
ATOM	757	0	PHE 2		18.720	3.075	20.600	1.00 22.31
ATOM	758	CB	PHE I	A 119	19.001	6.253	21.590	1.00 18.55
ATOM	759	CG	PHE A		17.726	5.856	22.342	1.00 18.55
ATOM	760	CD1		A 119	16.517	5.708	21.673	1.00 17.37
ATOM	761	CD2	PHE		17.736	5.715	23.718	1.00 21.09
ATOM	762	CE1	PHE :		15.348	5.439	22.351	1.00 16.37 1.00 19.97
ATOM	763	CE2		A 119	16.555	5.448	24.404	1.00 19.81
ATOM	764	cz		A 119	15.369	5.311 4.507	18.957	1.00 19.81
MOTA	765	N	ASN .		18.426	3.577	18.222	1.00 23.92
ATOM	766	CA		A 120	17.567 18.284	2.316	17.841	1.00 25.82
ATOM	767	C		A 120	17.653	1.274	17.841	1.00 26.73
ATOM	768	0		A 120 A 120	16.912	4.179	16.996	1.00 20.96
ATOM	769	CB		A 120	15.857	5.195	17.377	1.00 24.90
ATOM	770	OD1		A 120	14.852	4.877	18.020	1.00 30.44
ATOM	771	ND2		A 120	16.044	6.458	17.023	1.00 26.09
ATOM	772 773	ND2		A 121	19.605	2.390	17.632	1.00 29.29
ATOM	774	CA		A 121	20.447	1.234	17.314	1.00 32.15
ATOM	775	C	ARG		20.686	0.283	18.503	1.00 32.13
ATOM	776	õ		A 121	20.652	-0.949	18.369	1.00 32.27
ATOM ATOM	777	CB		A 121	21.752	1.846	16.891	1.00 36.26
ATOM	778	CG		A 121	22.606	0.988	16.001	1.00 42.80
ATOM	779	CD	ARG		24.066	1.304	16.288	1.00 45.46
ATOM	780	NE		A 121	24.730	0.026	16.469	1.00 49.59
ATOM	781	CZ		A 121	25.603	-0.473	15.599	1.00 47.62
ATOM	782	NH1			26.106	0.291	14.622	1.00 50.56
ATOM	783	NH2			25.907	-1.764	15.692	1.00 41.39
ATOM	784	N		A 122	20.925	0.856	19.695	1.00 29.65

31/85

ATOM	785	CA	SER A	A 1	.22	20.981	0.077	20.908	1.00 27.73
ATOM	786	C	SER A			19.643	-0.555	21.201	1.00 27.23
	787	ŏ	SER A			19.603	-1.652	21.716	1.00 28.27
MOTA	788	CB	SER A			21.388	0.942	22.071	1.00 25.31
ATOM			SER A			22.619	1.543	21.726	1.00 25.19
MOTA	789	OG					0.087	20.884	1.00 29.27
MOTA	790	N		A 1		18.530			
MOTA	791	CA		A 1		17.210	-0.453	21.140	1.00 31.25
ATOM	792	C		A 1		16.972	-1.618	20.207	1.00 32.43
ATOM	793	0	ILE A	A 1	.23	16.522	-2.672	20.637	1.00 32.75
ATOM	794	CB	ILE 2	A 1	.23	16.129	0.661	20.973	1.00 33.20
ATOM	795	CG1	ILE 2	A 1	.23	16.103	1.685	22.130	1.00 35.29
ATOM	796	CG2	ILE 2	A 1	.23	14.739	0.181	20.629	1.00 33.87
ATOM	797	CD1	ILE 2	A 1	23	16.243	1.313	23.627	1.00 32.91
ATOM	798	N .		A 1		17.325	-1.466	18.937	1.00 35.41
	799	CA			24	17.064	-2.502	17.973	1.00 38.41
ATOM		C	ASP A		24	17.902	-3.728	18.170	1.00 38.55
ATOM	800					17.386	-4.820	17.960	1.00 39.71
MOTA	801	0	ASP A		24		-1.951	16.562	1.00 43.19
ATOM	802	CB	ASP A		124	17.074		16.387	1.00 43.19
MOTA	803	CG	ASP .		24	15.763	-1.179		
MOTA	804	OD1			L24	14.700	-1.790	16.620	1.00 56.07
ATOM	805	OD2	ASP .		L24	15.784	0.020	16.039	1.00 54.65
ATOM	806	N	ALA .	A 1	L25	19.102	-3.546	18.739	1.00 37.63
ATOM	807	CA	ALA .	A 1	L25	20.039	-4.621	18.983	1.00 37.10
ATOM	808	C	ALA :	A 1	L25	19.555	-5.682	19.944	1.00 39.02
ATOM	809	ō	ALA.	A 1	L25	20.250	-6.667	20.151	1.00 40.94
ATOM	810	CB	ALA .			21.321	-4.035	19.500	1.00 35.16
ATOM	811	N	PHE .		126	18.374	-5.538	20.549	1.00 41.54
	812	CA	PHE		126	17.774	-6.599	21.363	1.00 45.13
ATOM	813	C	PHE .		126	16.837	-7.482	20.578	1.00 47.39
ATOM			PHE .		126	16.711	-8.660	20.900	1.00 48.19
ATOM	814	0				16.971	-6.099	22.571	1.00 45.19
MOTA	815	CB			126	10.9/1	-5.456	23.683	1.00 44.53
ATOM	816	CG			126	17.791			
MOTA	817	CD1			126	18.239	-4.150	23.568	
ATOM	818	CD2			126	18.073	-6.184	24.815	1.00 44.69
ATOM	819	CE1	PHE .		126	18.960	-3.565	24.576	1.00 41.80
MOTA	820	CE2			126	18.800	-5.597	25.822	1.00 43.70
MOTA	821	CZ	PHE	A 1	126	19.238	-4.295	25.700	1.00 43.96
ATOM	822	N	LYS	A 1	127	16.128	-6.898	19.600	1.00 50.61
ATOM	823	CA	LYS	A 1	127	15.283	-7.656	18.679	1.00 53.56
ATOM	824	C	LYS		127	16.149	-8.640	17.856	1.00 55.43
ATOM	825	ō	LYS	A 1	127	16.038	-9.876	17.922	1.00 57.14
ATOM	826	CB			127	14.546	-6.638	17.764	1.00 51.56
	827	N	ASP		128	17.077	-8.036	17.105	1.00 57.96
MOTA	828	CA			128	18.105	-8.734	16.356	1.00 59.25
ATOM					128	19.292	-9.249	17.190	1.00 59.16
ATOM	829	C		AI		20.461	-8.894	17.008	1.00 58.89
MOTA	830	0				18.492	-7.915	15.062	1.00 61.00
ATOM	831	CB			128			15.036	1.00 61.70
ATOM	832	CG			128	18.868	-6.421		1.00 63.63
ATOM	833	OD1			128	20.024	-6.078	15.330	
MOTA	834	OD2			128	18.015	-5.603	14.667	1.00 61.66
ATOM	835	N			129	18.967	-10.151	18.118	1.00 59.49
ATOM	836	CA		A 1	129	19.969	-10.719	19.002	1.00 61.20
ATOM	837	C	PHE	A 1	129	20.411	-12.103	18.503	1.00 61.55
MOTA	838	0	PHE	A 1	129	19.596	-12.979	18.179	1.00 61.67
MOTA	839	CB			129	19.410	-10.801	20.440	1.00 64.40
ATOM	840	CG			129	20.326	-10.282	21.561	1.00 67.62
ATOM	841	CD1			129	21.642	-10.721	21.686	1.00 68.55
	841	CD2			129	19.847	-9.338	22.473	1.00 69.51
ATOM	843	CE1			129	22.464	-10.192	22.672	1.00 68.84
ATOM	844		PHE			20.665	-8.823	23.472	1.00 68.79
MOTA	044	CEZ		Α.					

DAMADEZ DESERVE

Figure 8-25

ATOM	845	CZ	PHE	Α	129	2:	L.976	-9.245	23.561	1.00 69.80
ATOM	846	N	VAL	Α	130		L.737	-12.294	18.417	1.00 60.68
ATOM	847	CA	VAL	Α	130		2.337	-13.577	18.041	1.00 60.72
ATOM	848	C	VAL	Α	130		3.459	-13.949	19.040	1.00 59.57
ATOM	849	0	VAL	Α	130		1.157	-13.076	19.597	1.00 58.08
MOTA	850	CB	VAL	А	130	2:	2.937	-13.560	16.582	1.00 60.98
ATOM	851	CG1	VAL	Α	130	2:	3.051	-15.001	16.068	1.00 60.93
ATOM	852	CG2	VAL	Α	130	2:	2.229	-12.635	15.579	1.00 58.32
ATOM	853	N	VAL	Α	131	2	3.635	-15.277	19.213	1.00 57.03
ATOM	854	CA	VAL	Α	131	2	1.634	-15.872	20.101	1.00 54.98
ATOM	855	C	VAL	Α	131	2	5.059	-15.336	19.950	1.00 53.17
ATOM	856	ō	VAL	A	131	2	5.547	-15.173	18.839	1.00 51.72
ATOM	857	CB	VAL	А	131	2	4.563	-17.411	19.950	1.00 55.34
ATOM	858	CG1	VAL	Α	131	2	5.611	-18.162	20.780	1.00 55.30
ATOM	859	CG2	VAL		131	2	3.145	-17.893	20.297	1.00 54.41
ATOM	860	N	ALA	Α	132	2	5.660	-15.027	21.117	1.00 52.91
MOTA	861	CA	ALA	Α	132	2	3.022	-14.512	21.293	1.00 52.69
ATOM	862	C	ALA			2	9.161	-15.433	20.860	1.00 53.47
ATOM	863	ō	ALA	Α	132	3	0.250	-15.019	20.445	1.00 52.96
ATOM	864	CB	ALA			2	8.268	-14.176	22.771	1.00 48.84
ATOM	865	N	SER			2	8.899	-16.725	21.000	1.00 55.81
ATOM	866	CA	SER	Α	133	2	9.812	-17.748	20.533	1.00 58.09
ATOM	867	C	SER			2	9.744	-17.881	19.005	1.00 59.46
ATOM	868	ō	SER	А	133	3	0.726	-18.259	18.343	1.00 61.98
ATOM	869	CB	SER				9.348	-19.047	21.161	1.00 59.31
ATOM	870	N	GLU			2	8.556	-17.536	18.469	1.00 58.84
ATOM	871	CA	GLU			2	8.251	-17.530	17.031	1.00 57.10
ATOM	872	c	GLU			2	8.550	-16.218	16.298	1.00 54.08
ATOM	873	ŏ		Ā	134	2	8.319	-16.114	15.094	1.00 50.66
ATOM	874	CB	GLU	A		2	6.768	-17.808	16.761	1.00 58.33
ATOM	875	CG	GLU	А	134	2	6.269	-19.189	17.121	1.00 61.93
ATOM	876	CD	GLU		134		4.955	-19.558	16.436	1.00 65.28
ATOM	877	OE1	GLU	Α	134	2	4.056	-18.711	16.294	1.00 64.83
MOTA	878	OE2	GLU	А	134	2	4.853	-20.726	16.034	1.00 68.18
ATOM	879	N	THR	Α	135	2	8.999	-15.169	16.988	1.00 52.70
ATOM	880	CA	THR	Α	135		9.366	-13.953	16.291	1.00 51.61
ATOM	881	С	THR	Α	135	3	0.896	-13.856	16.192	1.00 51.35
ATOM	882	0	THR	Α	135		1.549	-14.721	15.580	1.00 52.93
ATOM	883	CB	THR	Α	135		8.621	-12.683	16.830	1.00 49.31
ATOM	884	OG1	THR	Α	135		9.039	-12.514	18.171	1.00 49.65
ATOM	885	CG2	THR		135		7.108	-12.772	16.767	1.00 48.16
ATOM	886	N	SER	Α	136		1.473	-12.828	16.825	1.00 50.88
ATOM	887	CA	SER	Α	136		2.885	-12.502	16.714	1.00 49.48
ATOM	888	C	SER		136		3.422	-12.163	18.121	1.00 47.44
ATOM	889	0	SER		136		2.624	-12.000	19.056	1.00 46.14
ATOM	890	CB	SER		136		2.966	-11.306	15.767	1.00 50.00
ATOM	891	OG	SER		136		2.146	-11.504	14.615	1.00 52.41
ATOM	892	N		Α	137		4.760	-12.051	18.314	1.00 44.90
MOTA	893	CA		Α	137		5.366	-11.578	19.566	1.00 40.01
ATOM	894	C		Α	137		5.037	-10.093	19.850	1.00 36.45
ATOM	895	0		Α	137		4.105	-9.570	19.228	1.00 35.34
MOTA	896	CB	ASP	Α	137		6.879	-11.949	19.641	1.00 40.10
ATOM	897	CG	ASP	Α	137		7.915		18.783	1.00 44.69
ATOM	898	OD1		A	137		7.617		18.252	1.00 46.41
MOTA	899	OD2	ASP		137		9.056		18.648	1.00 46.87
ATOM	900	N		А	138		5.702		20.741	1.00 32.95
ATOM	901	CA	CYS		138		5.263		21.014	1.00 31.28
ATOM	902	C	CYS	Α	138		6.311		20.838	1.00 30.73
ATOM	903	0	CYS		138		6.233		21.414	1.00 31.32
ATOM	904	CB	CYS	А	138	3	4.557	-7.854	22.361	1.00 32.08

MOTA	905	SG	CYS A	138	32.988	-8.777	22.463	1.00 37.40
ATOM	906	N	VAL A		37.258	-7.242	19.954	1.00 30.63
	907	CA	VAL A		38.333		19.599	1.00 29.74
MOTA	908	C	VAL A		38.151		18.168	1.00 28.81
MOTA	909	ō	VAL A		37.830		17.342	1.00 27.95
MOTA			VAL A		39.769		19.600	1.00 28.99
MOTA	910	CB	VAL A		40.717		20.195	1.00 29.64
ATOM	911	CG1			39.889		20.143	1.00 26.32
ATOM	912	CG2	VAL A		38.424		17.840	1.00 31.00
MOTA	913	N	VAL A				16.459	1.00 34.50
ATOM	914	CA	VAL A		38.442		16.020	1.00 36.64
ATOM	915	C	VAL A		39.899		15.323	1.00 39.48
MOTA	916	0	VAL A		40.406		16.217	1.00 36.55
ATOM	917	CB		140	37.758		14.747	1.00 36.42
MOTA	918	CG1		140	37.417			
ATOM	919	CG2		140	36.594		17.119	
ATOM	920	N	SER A		40.56		16.529	1.00 37.83
ATOM	921	CA	SER A	141	41.909		16.123	1.00 41.81
ATOM	922	C	SER A	141	41.936	-1.563	15.056	1.00 42.37
ATOM	923	0	SER A	141	43.039		14.685	1.00 43.60
ATOM	924	CB	SER A	141	42.986	-3.811	15.889	1.00 42.08
ATOM	925	OG	SER A	141	43.179	-4.693	17.008	1.00 38.01
TER	927		SER A	141				
MOTA	928	N	ASN B	11	2.66		21.946	1.00 65.93
ATOM	929	CA.	ASN B	11	1.94	36.256	22.556	1.00 66.50
ATOM	930	C	ASN B	11	2.72	35.510	23.658	1.00 66.17
ATOM	931	ŏ	ASN B	11	3.55	34.641	23.372	1.00 66.24
ATOM	932	CB	ASN B	11	1.48	35.204	21.515	1.00 66.50
ATOM	933	N	VAL B	12	2.40	35.814	24.934	1.00 65.43
ATOM	934	CA	VAL B	12	3.19	7 35.450	26.131	1.00 62.92
ATOM	935	C	VAL B	12	3.19	5 33.985	26.631	1.00 60.27
ATOM	936	ō	VAL B	12	4.14	3 33.547	27.294	1.00 59.00
ATOM	937	CB	VAL B	12	2.78		27.299	1.00 64.35
MOTA	938	CG1	VAL B	12	1.40	8 36.086	27.935	1.00 63.94
ATOM	939	CG2	VAL B	12	3.90	8 36.621	28.318	1.00 63.41
ATOM	940	N	LYS B	13	2.12	5 33.208	26.374	1.00 56.82
ATOM	941	CA	LYS B	13	2.07		26.800	1.00 51.85
	942	c	LYS B	13	3.02	1 31.001	25.927	1.00 48.88
ATOM ATOM	943	ŏ	LYS B	13	3.59	5 30.003	26.380	1.00 49.33
ATOM	944	CB	LYS B	13	0.64		26.675	1.00 52.25
ATOM	945	N	ASP B	14	3.25		24.684	1.00 44.12
	946	CA	ASP B	14	4.16		23.770	1.00 37.71
MOTA MOTA	947	C	ASP B	14	5.66		24.040	1.00 31.42
ATOM	948	õ	ASP B	14	6.41	3 30.026	23.895	1.00 30.29
	949	CB	ASP B	14	3.76		22.326	1.00 40.87
MOTA	950	CG	ASP B	14	2.49		21.803	1.00 44.08
	951	OD1		14	1.83		22.531	1.00 44.87
MOTA	952	OD2		14	2.19		20.631	1.00 45.27
MOTA	953	N	VAL B	15	6.16		24.468	1.00 25.72
ATOM		CA	VAL B	15	7.54			1.00 24.93
MOTA	954		VAL B	15	7.87			1.00 26.84
ATOM	955	C	VAL B	15	8.93			1.00 29.81
MOTA	956			15	7.91			1.00 22.45
MOTA	957	CB	VAL B VAL B	15	9.33			1.00 18.01
MOTA	958	CG1		15	7.73			1.00 21.89
ATOM	959	CG2			6.96			1.00 27.60
MOTA	960	N	THR B	16	7.04			1.00 28.70
ATOM	961	CA	THR B	16	7.19			1.00 27.24
ATOM	962	C	THR B		8.0			1.00 29.07
MOTA	963	0	THR B		5.7			
MOTA	964	CB	THR B		5.7			
MOTA	965	OGI	THR B	16	5.5	,, 51.520		

MOTA	966	CG2	THR B	16	5.605	29.577	30.304	1.00 29.47
MOTA	967	N	LYS B	17	6.385	28.387	26.979	1.00 24.02
MOTA	968	CA	LYS B	17	6.508	27.042	26.455	1.00 25.48 1.00 22.72
MOTA	969	C	LYS B	17	7.776	26.845	25.607	1.00 22.72 1.00 22.89
MOTA	970	0	LYS B	17	8.397	25.806	25.690 25.662	1.00 22.69
MOTA	971	CB	LYS B	17	5.235	26.851 25.479	25.662	1.00 29.47
MOTA	972	CG	LYS B	17	5.047	25.479	24.129	1.00 40.47
MOTA	973	CD	LYS B	17	3.820 3.432	24.008	23.742	1.00 42.23
ATOM	974	CE	LYS B	17	4.518	23.260	23.099	1.00 40.28
MOTA	975	NZ	LYS B	17 18	8.223	27.840	24.836	1.00 21.80
MOTA	976	N CA	LEU B	18	9.489	27.797	24.148	1.00 19.84
ATOM	977 978	CA	LEU B	18	10.608	27.757	25.151	1.00 19.53
ATOM	978	ō	LEU B	18	11.425	26.868	24.985	1.00 22.71
MOTA	980	CB	LEU B	18	9.660	28.989	23.206	1.00 17.63
MOTA	981	CG	LEU B	18	10.954	29.148	22.479	1.00 13.25
ATOM	982	CD1	LEU B	18	11.216	27.956	21.627	1.00 16.15
MOTA	983	CD2	LEU B	18	10.895	30.338	21.606	1.00 13.19
ATOM	984	N	VAL B	19	10.670	28.606	26.187	1.00 17.49
ATOM	985	CA	VAL B	19	11.713	28.547	27.193	1.00 15.59
MOTA	986	C	VAL B	19	11.708	27.199	27.912	1.00 16.76
MOTA	987	0	VAL B	19	12.763	26.598	28.121	1.00 18.54
ATOM	988	CB	VAL B	19	11.587	29.741	28.170	1.00 15.79
ATOM	989	CG1	VAL B	19	12.566	29.662	29.308	1.00 13.19
MOTA	990	CG2	VAL B	19	11.922	31.014	27.489	1.00 12.62 1.00 17.26
MOTA	991	N	ALA B	20	10.533	26.655	28.232 28.918	1.00 17.20
MOTA	992	CA	ALA B	20	10.415	25.384	28.075	1.00 20.20
MOTA	993	C	ALA B	20	10.866 11.185	23.166	28.578	1.00 22.02
MOTA	994	0	ALA B	20 20	8.972	25.064	29.185	1.00 18.25
MOTA	995	CB N	ASN B	21	10.854	24.390	26.763	1.00 22.32
MOTA	996 997	CA	ASN B		11.373	23.351	25.920	1.00 21.93
MOTA	998	C	ASN B	21	12.711	23.661	25.314	1.00 21.34
ATOM	999	ŏ	ASN B		13.114	22.930	24.441	1.00 23.28
ATOM	1000	CB	ASN B		10.378	23.022	24.873	1.00 26.17
ATOM	1001	CG	ASN B		9.256	22.250	25.531	1.00 31.77
ATOM	1002	OD1	ASN B	21	9.352	21.054	25.813	1.00 30.41
MOTA	1003	ND2	ASN B		8.168	22.955	25.820	1.00 34.22
MOTA	1004	N	LEU B	22	13.455	24.675	25.727	1.00 20.84
MOTA	1005	CA	LEU B		14.825	24.880	25.285	1.00 18.95 1.00 19.14
MOTA	1006	C	LEU B		15.754	24.358	26.359 27.526	1.00 19.71
ATOM	1007	0	LEU B		15.428 15.097	26.380	25.022	1.00 17.41
MOTA	1008	CB	LEU B		14.510	27.035	23.750	1.00 15.79
MOTA	1009	CG	LEU E		14.718	28.544	23.724	1.00 13.61
MOTA	1010	CD1			15.120	26.381	22.517	1.00 14.80
MOTA	1011	CD2	PRO E		16.903	23.701	26.091	1.00 18.35
MOTA	1012	CA	PRO E		17.831	23.260	27.130	1.00 17.51
ATOM	1013	CA	PRO E		18.329	24.418	28.008	1.00 17.87
MOTA MOTA	1014	Ö	PRO E		18.703	25.449	27.473	1.00 18.03
ATOM	1016	CB	PRO E		18.908	22.619	26.307	1.00 13.87
ATOM	1017	CG	PRO E		18.299	22.223	25.002	1.00 12.84
ATOM	1018	CD	PRO E		17.457	23.421	24.762	1.00 14.01
ATOM	1019	N	LYS E		18.327	24.340	29.347	1.00 18.87
ATOM	1020	CA	LYS E		18.756	25.441	30.226	1.00 21.96
MOTA	1021	C	LYS E		20.207	25.930	30.039	1.00 21.00
ATOM	1022	Ó	LYS E		20.567	27.081	30.304	1.00 21.61
MOTA	1023	CB	LYS I		18.456	25.044	31.703	1.00 23.68
MOTA	1024	CG	LYS F		16.956	25.097	32.077	
MOTA	1025	CD	LYS I	3 24	16.544	24.407	33.429	1.00 34.00

のいののいなないののいないののいないののいないののいないののいないのいのないののいのなないののいのないのです。

Figure 8-28

ATOM	1026	CE	LYS	В	24	15.010	24.526	33.777	1.00 39.45
ATOM	1027	NZ	LYS	В	24	14.493	23.773	34.927	1.00 41.87
ATOM	1028	N	ASP	В	25	21.040	25.044	29.503	1.00 19.08
ATOM	1029	CA	ASP	В	25	22.440	25.350	29.263	1.00 20.79
ATOM	1030	C	ASP	В	25	22.758	25.601	27.789	1.00 19.77
ATOM	1031	ō	ASP	В	25	23.907	25.469	27.373	1.00 20.06
MOTA	1032	CB	ASP	В	25	23.305	24.190	29.796	1.00 17.87
MOTA	1033	CG	ASP	В	25	23.063	22.836	29.175	1.00 20.81
ATOM	1034	OD1	ASP	В	25	21.975	22.598	28.651	1.00 22.64
ATOM	1035	OD2	ASP	В	25	23.964	21.991	29.214	1.00 24.79
ATOM	1036	N	TYR	В	26	21.753	25.866	26.950	1.00 19.06
ATOM	1037	CA	TYR	В	26	21.990	26.130	25.542	1.00 18.77
ATOM	1038	C	TYR	В	26	22.027	27.652	25.358	1.00 18.82
ATOM	1039	0	TYR	В	26	21.066	28.358	25.655	1.00 19.57
ATOM	1040	CB	TYR	В	26	20.900	25.477	24.712	1.00 16.23
ATOM	1041	CG	TYR		26	21.007	25.766	23.228	1.00 19.16
ATOM	1042	CD1	TYR		26	22.034	25.216	22.492	1.00 20.33
ATOM	1043	CD2		В	26	20.097	26.629	22.632	1.00 19.21
	1043	CE1		В	26	22.125	25.531	21.150	1.00 19.71
MOTA		CE2	TYR		26	20.180	26.936	21.294	1.00 18.86
ATOM	1045						26.356	20.565	
MOTA	1046	CZ	TYR		26	21.184			1.00 21.21
ATOM	1047	OH	TYR		26	21.209	26.560	19.204	1.00 23.57
HETATM	1048	N	MSE	В	27	23.136	28.207	24.891	1.00 18.02
HETATM	1049	CA	MSE	В	27	23.249	29.645	24.886	1.00 20.01
HETATM	1050	C		В	27	22.894	30.253	23.553	1.00 20.43
HETATM	1051	0	MSE	В	27	23.319	29.791	22.493	1.00 22.74
HETATM	1052	CB	MSE	В	27	24.648	30.070	25.309	1.00 21.80
HETATM	1053	CG	MSE	В	27	25.179	29.494	26.646	1.00 24.25
HETATM	1054	SE	MSE	В	27	24.219	29.995	28.260	1.00 30.76
HETATM	1055	CE	MSE	В	27	24.936	31.691	28.317	1.00 17.91
ATOM	1056	N	ILE	В	28	22.071	31.294	23.642	1.00 21.17
ATOM	1057	CA	ILE	В	28	21.690	32.092	22.507	1.00 20.03
ATOM	1058	С	ILE	В	28	22.501	33.383	22.470	1.00 20.64
ATOM	1059	ō	ILE	В	28	22.545	34.162	23.403	1.00 19.83
ATOM	1060	CB		В	28	20.168	32.289	22.522	1.00 19.56
ATOM	1061	CG1	ILE	В	28	19.489	30.935	22.719	1.00 14.81
ATOM	1062	CG2		B	28	19.653	32.893	21.195	1.00 17.30
	1062	CD1	ILE	В	28	17.993	31.054	22.978	1.00 14.38
ATOM		N	THR		29	23.235	33.585	21.364	1.00 22.56
ATOM	1064						34.777		
MOTA	1065	CA	THR	В	29	24.048	35.926	21.117	1.00 21.92 1.00 21.18
MOTA	1066	C			29	23.167	35.744	19.926	
MOTA	1067	0_	THR		29	22.235			1.00 24.05
MOTA	1068	CB		В	29	25.003	34.540	19.949	1.00 24.32
ATOM	1069	OG1	THR		29	25.751	33.393	20.310	1.00 26.19
MOTA	1070	CG2	THR		29	25.901	35.743	19.657	1.00 23.45
MOTA	1071	N	LEU		30	23.485	37.110	21.229	1.00 19.18
ATOM	1072	CA	LEU		30	22.694	38.278	20.928	1.00 19.42
ATOM	1073	C	LEU	В	30	23.612	39.444	21.123	1.00 20.84
ATOM	1074	0	LEU	В	30	24.251	39.604	22.155	1.00 22.59
ATOM	1075	CB	LEU	В	30	21.486	38.458	21.822	1.00 16.57
MOTA	1076	CG	LEU	В	30	20.712	39.739	21.692	1.00 17.65
ATOM	1077	CD1	LEU	В	30	19.907	39.690	20.405	1.00 15.54
ATOM	1078	CD2	LEU	В	30	19.875	40.004	22,946	1.00 14.12
ATOM	1079	N	LYS	В	31	23.641	40.271	20.085	1.00 21.41
ATOM	1080	CA	LYS	В	31	24.340	41.533	20,142	1.00 22.33
ATOM	1081	C	LYS	В	31	23.462	42.478	20.918	1.00 21.90
	1081	0	LYS	В	31	22.714	43.295	20.370	1.00 24.57
MOTA		CB	LYS	В	31	24.642	42.093	18.754	1.00 21.18
MOTA	1083	CG		В	31	25.844	41.479	18.111	1.00 21.18
ATOM	1084	CD	LYS		31	25.551	41.360	16.647	1.00 29.30
ATOM	1085	CD	113	D	31	20.001	41.300	10.04/	1.00 29.30

Figure 8-29

ATOM	1086	CE	LYS	В	31	26.741	40.957	15.808	1.00 31.29
ATOM	1087	NZ	LYS	В	31	27.628	42.105	15.688	1.00 39.41
ATOM	1088	N	TYR		32	23.572	42.299	22.227	1.00 21.32
		CA	TYR		32	22.800	43.101	23.138	1.00 19.60
ATOM	1089					23.198	44.586	22.981	1.00 19.96
ATOM	1090	C	TYR	В	32				
ATOM	1091	0	TYR	В	32	24.384	44.940	22.977	1.00 20.37
ATOM	1092	CB	TYR		32	23.094	42.513	24.532	1.00 17.35
ATOM	1093	CG	TYR	В	32	22.621	43.373	25.710	1.00 17.26
ATOM	1094	CD1	TYR	В	32	21.298	43.297	26.107	1.00 15.20
ATOM	1095	CD2	TYR	В	32	23.490	44.280	26.299	1.00 14.00
ATOM	1096	CE1	TYR	В	32	20.851	44.149	27.086	1.00 13.12
ATOM	1097	CE2	TYR		32	23.013	45.166	27.227	1.00 14.39
ATOM	1098	CZ	TYR		32	21.702	45.070	27.606	1.00 13.82
	1099	OH	TYR		32	21.213	45.916	28.560	1.00 18.31
ATOM		N	VAL		33	22.179	45.455	22.873	1.00 19.13
ATOM	1100						46.889	22.818	1.00 19.34
MOTA	1101	CA	VAL		33	22.376			
ATOM	1102	C	VAL		33	22.478	47.489	24.223	1.00 22.86
ATOM	1103	0	VAL		33	21.487	47.535	24.979	1.00 23.26
MOTA	1104	CB	VAL	В	33	21.220	47.609	22.071	1.00 18.33
ATOM	1105	CG1	VAL	В	33	21.607	49.014	21.732	1.00 17.72
ATOM	1106	CG2	VAL	В	33	20.868	46.933	20.772	1.00 18.88
ATOM	1107	N	PRO	в	34	23.669	48.022	24.556	1.00 23.14
ATOM	1108	CA	PRO		34	23.950	48.685	25.814	1.00 25.98
	1109	C	PRO		34	22.991	49.844	26.052	1.00 27.87
ATOM	1110	Ö	PRO		34	22.782	50.697	25.173	1.00 28.20
ATOM		CB	PRO		34	25.355	49.247	25.629	1.00 24.52
MOTA	1111						48.454	24.514	1.00 23.81
MOTA	1112	CG	PRO		34	25.947			
ATOM	1113	CD	PRO		34	24.761	48.256	23.617	1.00 23.96
MOTA	1114	N	GLY		35	22.428	49.854	27.265	1.00 27.60
ATOM	1115	CA	GLY		35	21.544	50.919	27.694	1.00 26.85
ATOM	1116	C	GLY	В	35	20.103	50.509	27.809	1.00 26.95
ATOM	1117	0	GLY	В	35	19.314	51.234	28.392	1.00 27.06
HETATM	1118	N	MSE	В	36	19.736	49.361	27.277	1.00 27.66
HETATM	1119	CA	MSE	В	36	18.444	48.762	27.502	1.00 31.16
HETATM	1120	C	MSE	В	36	17.873	48.948	28.920	1.00 33.96
HETATM	1121	ō	MSE	В	36	16.708	49.315	29.138	1.00 34.27
HETATM	1122	CB	MSE		36	18.679	47.299	27.225	1.00 34.63
HETATM	1123	CG	MSE	В	36	17.921	46.622	26.126	1.00 37.69
HETATM	1124	SE	MSE	В	36	16.954	45.030	26.682	1.00 48.87
				В	36	16.692	45.161	28.580	1.00 40.22
HETATM	1125	CE	ASP	В	37	18.753	48.712	29.902	1.00 35.95
MOTA	1126	N					48.828	31.303	1.00 37.28
ATOM	1127	CA	ASP	В	37	18.421			
MOTA	1128	C	ASP	В	37	18.228	50.272	31.758	1.00 38.57
ATOM	1129	0	ASP	В	37	17.189	50.545	32.368	1.00 42.23
ATOM	1130	CB	ASP	В	37	19.407	48.058	32.203	1.00 38.21
ATOM	1131	CG	ASP	В	37	20.907	48.280	32.005	1.00 42.18
ATOM	1132	OD1	ASP	В	37	21.288	49.092	31.150	1.00 44.69
ATOM	1133	OD2	ASP	В	37	21.709	47.641	32.708	1.00 43.60
ATOM	1134	N	VAL	B	38	19.111	51.237	31.458	1.00 36.46
ATOM	1135	CA	VAL		38	18.974	52.585	32.008	1.00 34.42
ATOM	1136	C	VAL		38	18.360	53.701	31.150	1.00 35.48
	1137	Ö	VAL		38	17.844	54.706	31.662	1.00 35.46
ATOM		CB	VAL		38	20.314	53.047	32.623	1.00 33.96
ATOM	1138					20.656	52.110	33.757	1.00 33.39
MOTA	1139	CG1	VAL		38				1.00 33.39
ATOM	1140	CG2	VAL		38	21.452	53.127	31.638	
MOTA	1141	N	LEU	В	39	18.466	53.536	29.826	1.00 34.58
ATOM	1142	CA	LEU		39	18.173	54.590	28.859	1.00 33.84
ATOM	1143	C		В	39	16.770	54.521	28.304	1.00 34.39
ATOM	1144	0	LEU	В	39	16.234	53.407	28.274	1.00 37.21
ATOM	1145	CB	LEU	В	39	19.106	54.513	27.672	1.00 31.59
					-				

Figure 8-30

ATOM	1146	CG	LEU B	39	20.516	54.934	27.836	1.00 30.49
ATOM	1147	CD1	LEU B	39	21.233	54.571	26.544	1.00 30.11
ATOM	1148	CD2	LEU B	39	20.556	56.416	28.187	1.00 28.81
ATOM	1149	N	PRO B	40	16.124	55.613	27.821	1.00 28.81
	1150	CA	PRO B	40	14.743	55.564	27.336	
ATOM					14.743		26.104	
MOTA	1151	C		40		54.656		1.00 31.61
MOTA	1152	0	PRO B	40	15.515	54.575	25.295	1.00 32.07
ATOM	1153	CB	PRO B	40	14.498	57.028	27.054	1.00 31.41
ATOM	1154	CG	PRO B	40	15.395	57.749	28.027	1.00 32.72
ATOM	1155	CD	PRO B	40	16.655	56.977	27.813	1.00 33.34
ATOM	1156	N	SER B	41	13.487	53.949	25.885	1.00 31.04
ATOM	1157	CA	SER B	41	13.422	52.973	24.819	1.00 32.48
ATOM	1158	C	SER B	41	13.785	53.436	23.428	1.00 32.31
ATOM	1159	0	SER B	41	14.301	52.651	22.638	1.00 30.86
MOTA	1160	CB	SER B	41	12.119	52.197	24.820	1.00 34.06
ATOM	1161	OG	SER B	41	10.984	53.037	24.872	1.00 39.11
ATOM	1162	N	HIS B	42	13.622	54.747	23.191	1.00 34.63
ATOM	1163	CA	HIS B	42	13.911	55.363	21.888	1.00 36.02
ATOM	1164	C	HIS B	42	15.396	55.300	21.511	1.00 36.52
MOTA	1165	0	HIS B	42	15.780	55.228	20.327	1.00 34.40
ATOM	1166	CB	HIS B	42	13.316	56.805	21.755	1.00 34.27
ATOM	1167	CG	HIS B	42	13.946	57.935	22.576	1.00 34.59
ATOM	1168	ND1	HIS B	42	13.588	58.408	23.772	1.00 36.14
ATOM	1169	CD2		42	15.013	58.687	22.154	1.00 32.00
ATOM	1170	CE1		42	14.381	59.396	24.117	1.00 32.43
ATOM	1171	NE2	HIS B	42	15.227	59.539	23.124	1.00 35.02
ATOM	1172	N	CYS B	43	16.177	55.249	22.615	1.00 35.96
ATOM	1173	CA	CYS B	43	17.627	55.122	22.565	1.00 35.90
	1174	C	CYS B	43	18.176	53.799	22.054	1.00 32.86
ATOM	1175	Ö	CYS B	43	19.347	53.782	21.649	1.00 32.86
ATOM	1176	CB	CYS B	43	18.339	55.448	23.910	1.00 40.38
ATOM	1177	SG	CYS B	43	18.099	57.127	24.542	1.00 45.68
ATOM ATOM	1178	N	TRP B	44	17.380	52.707	22.075	1.00 45.66
	1179	CA.	TRP B	44	17.913	51.374	21.831	
ATOM	1180	CA	TRP B	44	17.009	50.463	21.066	1.00 25.51
ATOM					17.544	49.594		
ATOM	1181	0		44			20.406	1.00 26.02
ATOM	1182	CB	TRP B	44	18.375	50.661	23.113	1.00 21.99
ATOM	1183	CG	TRP B	44	17.351	50.644	24.234	1.00 20.34
ATOM	1184	CD1		44	17.361	51.632	25.183	1.00 18.11
ATOM	1185	CD2	TRP B	44	16.297	49.745	24.363	1.00 19.23
ATOM	1186	NE1	TRP B	44	16.293	51.390	25.908	1.00 19.12
ATOM	1187	CE2	TRP B	44	15.635	50.281	25.471	1.00 18.20
ATOM	1188	CE3	TRP B	44	15.892	48.551	23.795	1.00 15.22
ATOM	1189	CZ2	TRP B	44	14.532	49.622	26.000	1.00 14.99
ATOM	1190	CZ3	TRP B	44	14.805	47.897	24.324	1.00 13.45
ATOM	1191	CH2	TRP B	44	14.130	48.434	25.405	1.00 15.50
ATOM	1192	N	ILE B	45	15.680	50.626	21.096	1.00 24.85
ATOM	1193	CA	ILE B	45	14.726	49.656	20.539	1.00 25.50
ATOM	1194	C	ILE B	45	14.926	49.254	19.094	1.00 26.34
ATOM	1195	0	ILE B	45	14.724	48.086	18.762	1.00 28.11
ATOM	1196	CB	ILE B	45	13.231	50.055	20.773	1.00 26.28
ATOM	1197	CG1	ILE B	45	12.358	48.838	20.592	1.00 24.31
ATOM	1198	CG2	ILE B	45	12.716	51.206	19.885	1.00 25.51
ATOM	1199	CD1	ILE B	45	12.688	47.633	21.486	1.00 19.41
ATOM	1200	N	SER B	46	15.336	50.233	18.274	1.00 28.06
ATOM	1201	CA	SER B	46	15.623	50.071	16.851	1.00 28.67
ATOM	1202	Ċ	SER B	46	16.739	49.059	16.553	1.00 27.51
ATOM	1203	0	SER B	46	16.558	48.113	15.773	1.00 26.90
ATOM	1204	CB	SER B	46	15.933	51.472	16.250	1.00 28.71
ATOM	1205	OG	SER B	46	16.259	51.414	14.871	1.00 31.35

Figure 8-31

MOTA	1206	N	GLU	В	47	17.90	2 49.21	17.203	1.00	26.77
ATOM	1207	CA	GLU	В	47	18.91			1.00	27.22
ATOM	1208	C	GLU		47	18.55			1.00	23.80
		ŏ	GLU		47	19.01			1.00	24.85
MOTA	1209									
MOTA	1210	CB	GLU	В	47	20.20			1.00	30.36
MOTA	1211	CG	GLU	В	47	21.46			1.00	31.64
MOTA	1212	CD	GLU	В	47	21.71	8 47.84	15.774	1.00	31.93
MOTA	1213	OE1	GLU	В	47	21.26	7 48.72	15.034	1.00	32.82
MOTA	1214	OE2	GLU	В	47	22.39	1 46.89	15.366	1.00	31.60
HETATM	1215	N	MSE	В	48	17.73			1.00	23.65
HETATM		CA	MSE	В	48	17.40			1.00	21.94
		C	MSE	В	48	16.51			1.00	22.24
HETATM										
HETATM		0_		В	48	16.81			1.00	24.91
HETATM	1219	CB		В	48	16.78			1.00	22.86
HETATM		CG	MSE		48	16.87			1.00	24.51
HETATM	1221	SE	MSE		48	18.59			1.00	30.61
HETATM	1222	CE	MSE	В	48	17.98	2 42.66	1 21.922	1.00	26.74
ATOM	1223	N	VAL	В	49	15.50	6 45.44	18.110	1.00	21.88
ATOM	1224	CA	VAL		49	14.66		7 17.276	1.00	20.25
MOTA	1225	C	VAL		49	15.38			1.00	20.18
MOTA	1226	ŏ	VAL		49	15.12			1.00	22.62
		СВ	VAL		49	13.35			1.00	23.22
MOTA	1227									
MOTA	1228	CG1	VAL		49	12.45	5 45.56		1.00	24.62
MOTA	1229	CG2	VAL		49	13.55			1.00	23.30
MOTA	1230	N	VAL		50	16.36			1.00	19.52
MOTA	1231	CA	VAL	В	50	17.17			1.00	19.02
MOTA	1232	C	VAL	В	50	18.00	5 42.91		1.00	19.73
MOTA	1233	0	VAL	В	50	18.09	1 41.87	2 14.232	1.00	19.76
MOTA	1234	CB	VAL	В	50	18.11	0 45.17	13.808	1.00	18.29
MOTA	1235	CG1	VAL		50	19.18			1.00	16.52
ATOM	1236	CG2	VAL		50	17.29			1.00	18.74
	1237	N	GLN		51	18.61			1.00	17.95
MOTA	1238	CA		В	51	19.44			1.00	18.39
MOTA										16.66
MOTA	1239	C	GLN	В	51	18.64			1.00	
MOTA	1240	0		В	51	19.05			1.00	18.39
MOTA	1241	CB			51	20.26			1.00	18.87
MOTA	1242	CG	GLN	В	51	21.26			1.00	18.55
MOTA	1243	CD	GLN	В	51	22.25			1.00	23.83
ATOM	1244	OE1	GLN	В	51	22.40	0 42.14	1 15.918	1.00	23.92
MOTA	1245	NE2	GLN	В	51	23.01	9 44.26	5 15.958	1.00	27.04
MOTA	1246	N	LEU		52	17.48		9 17.652	1.00	16.16
ATOM	1247	CA			52	16.61			1.00	17.66
ATOM	1248	C		В	52	16.10			1.00	18.23
	1249	õ	LEU	B	52	16.01			1.00	18.09
MOTA					52	15.41			1.00	19.12
MOTA	1250	CB		В						
MOTA	1251	CG			52	15.66			1.00	20.87
MOTA	1252	CD1		В	52	14.60			1.00	20.47
MOTA	1253	CD2	LEU	В	52	15.69			1.00	21.69
MOTA	1254	N	SER	В	53	15.79	7 40.01	4 15.717	1.00	20.42
MOTA	1255	CA	SER	В	53	15.41	0 39.37	6 14.469	1.00	18.47
MOTA	1256	C	SER	В	53	16.49	1 38.42	8 13.973	1.00	18.27
ATOM	1257	ŏ			53	16.25			1.00	17.53
ATOM	1258	СВ		В	53	15.18				21.19
		OG	SER	В	53	14.85			1.00	22.45
MOTA	1259								1.00	22.45
MOTA	1260	N		В	54	17.72				
MOTA	1261	CA	ASP	В	54	18.81			1.00	25.15
ATOM	1262	C	ASP	В	54	19.04	0 36.84		1.00	24.43
MOTA	1263	0	ASP	В	54	19.27				24.72
ATOM	1264	CB	ASP	В	54	20.17	0 38.73	1 13.462	1.00	32.20
MOTA	1265	CG	ASP	В	54	20.36	6 40.01	7 12.671	1.00	44.10
		-								

MOTA	1266	OD1	ASP B	54	19.508	40.411	11.838	1.00 48.06
ATOM	1267	OD2	ASP B	54	21.429	40.630	12.924	1.00 50.40
	1268	N	SER B	55	19.025	37.009	15.674	1.00 21.94
ATOM							16.589	
ATOM	1269	CA	SER B	55	19.197	35.872		
MOTA	1270	C	SER B	55	18.036	34.884	16.516	1.00 19.86
ATOM	1271	0	SER B	55	18.259	33.675	16.567	1.00 20.94
MOTA	1272	CB	SER B	55	19.356	36.295	18.052	1.00 18.68
MOTA	1273	OG	SER B	55	20.384	37.208	18.406	1.00 18.26
ATOM	1274	N	LEU B	56	16.789	35.362	16.374	1.00 20.32
ATOM	1275	CA	LEU B	56	15.647	34.453	16.343	1.00 20.44
ATOM	1276	C	LEU B	56	15.628	33.735	15.025	1.00 21.16
		ŏ	LEU B	56	15.299	32.552	14.968	1.00 20.64
MOTA	1277				14.335	35.169	16.568	1.00 20.64
ATOM	1278	CB		56				
MOTA	1279	CG	LEU B	56	13.967	35.545	17.993	1.00 19.76
MOTA	1280	CD1	LEU B	56	12.809	36.497	18.033	1.00 18.12
MOTA	1281	CD2	LEU B	56	13.621	34.308	18.773	1.00 17.63
MOTA	1282	N	THR B	57	16.081	34.451	13.984	1.00 22.55
ATOM	1283	CA	THR B	57	16.144	33.901	12.624	1.00 23.77
ATOM	1284	C	THR B	57	17.169	32.775	12.599	1.00 25.31
ATOM	1285	o	THR B	57	16.904	31.674	12.109	1.00 28.36
ATOM	1286	CB	THR B	57	16.420	35.019	11.581	1.00 22.83
ATOM	1287	OG1	THR B	57	15.245	35.800	11.520	1.00 20.28
		CG2	THR B	57	16.608	34.496	10.209	1.00 22.98
ATOM	1288			58		32.975	13.229	
ATOM	1289	N	ASP B		18.331			
ATOM	1290	CA	ASP B	58	19.328	31.934	13.394	1.00 25.16
MOTA	1291	C	ASP B	58	18.874	30.781	14.238	1.00 22.74
ATOM	1292	0	ASP B	58	19.128	29.640	13.909	1.00 20.50
ATOM	1293	CB	ASP B	58	20.510	32.549	14.059	1.00 32.90
ATOM	1294	CG	ASP B	58	21.367	33.343	13.098	1.00 40.22
ATOM	1295	OD1	ASP B	58	21.635	32.807	11.999	1.00 47.28
ATOM	1296	OD2	ASP B	58	21.780	34.468	13.458	1.00 42.79
ATOM	1297	N	LEU B	59	18.174	31.090	15.328	1.00 22.88
ATOM	1298	CA	LEU B	59	17.597	30.066	16.166	1.00 22.01
ATOM	1299	C	LEU B	59	16.596	29.206	15.391	1.00 22.75
ATOM	1300	ō	LEU B	59	16.642	27.981	15.498	1.00 24.25
ATOM	1301	CB	LEU B	59	16.984	30.711	17.389	1.00 21.26
	1301	CG	LEU B	59	16.544	29.703	18.408	1.00 21.05
ATOM			LEU B	59	17.733	28.955	19.020	1.00 20.13
MOTA	1303	CD1						
MOTA	1304	CD2	LEU B	59	15.718	30.419	19.413	
MOTA	1305	N	LEU B	60	15.729	29.754	14.537	1.00 22.30
ATOM	1306	CA	LEU B	60	14.838	28.912	13.776	1.00 21.18
ATOM	1307	С	LEU B	60	15.559	27.884	12.897	1.00 24.69
MOTA	1308	0	LEU B	60	15.084	26.761	12.702	1.00 27.59
MOTA	1309	CB	LEU B	60	13.949	29.829	12.982	1.00 20.34
ATOM	1310	CG	LEU B	60	12.805	29.256	12.208	1.00 15.11
ATOM	1311	CD1	LEU B	60	11.775	28.689	13.124	1.00 14.00
MOTA	1312	CD2	LEU B	60	12.216	30.351	11.405	1.00 15.62
ATOM	1313	N	ASP B	61	16.768	28.142	12.405	1.00 28.19
ATOM	1314	CA	ASP B	61	17.425	27.134	11.587	1.00 31.01
	1315	C	ASP B	61	17.898	25.925	12.380	1.00 30.42
MOTA		ŏ		61	18.293	24.903	11.836	1.00 30.78
MOTA	1316					27.766	10.638	1.00 40.38
MOTA	1317	CB	ASP B	61	18.486			
MOTA	1318	CG	ASP B	61	20.011	27.910	10.913	1.00 49.60
MOTA	1319	OD1	ASP B	61	20.632	27.086	11.630	1.00 52.10
ATOM	1320	OD2	ASP B	61	20.602	28.852	10.340	1.00 54.11
ATOM	1321	N	LYS B	62	17.841	26.023	13.706	1.00 29.72
ATOM	1322	CA	LYS B	62	18.282	24.972	14.586	1.00 26.53
ATOM	1323	C	LYS B	62	17.227	23.920	14.754	1.00 26.40
ATOM	1324	ŏ	LYS B	62	17.553	22.835	15.224	1.00 28.09
ATOM	1325	CB	LYS B	62	18.655	25.534	15.953	1.00 25.89
121014	1023	02						

Figure 8-33

MOTA	1326	CG	LYS B	62	19.865	26.451	15.996	1.00 24.99
	1327	CD	LYS B	62	21.053	25.810	15.308	1.00 26.66
MOTA				62	22.198	26.806	15.251	
ATOM	1328	CE			21.868		14.431	
MOTA	1329	NZ	LYS B	62		27.957		1.00 34.52
MOTA	1330	N	PHE B	63	15.986	24.225	14.389	1.00 26.48
MOTA	1331	CA	PHE B	63	14.862	23.316	14.568	1.00 29.27
MOTA	1332	C	PHE B	63	14.293	22.916	13.220	1.00 31.78
MOTA	1333	0	PHE B	63	14.573	23.581	12.227	1.00 34.39
MOTA	1334	CB	PHE B	63	13.744	23.920	15.427	1.00 24.13
ATOM	1335	CG	PHE B	63	14.261	24.236	16.809	1.00 23.83
MOTA	1336	CD1	PHE B	63	14.269	23.261	17.761	1.00 20.94
ATOM	1337	CD2	PHE B	63	14.811	25.488	17.066	1.00 25.00
MOTA	1338	CE1	PHE B	63	14.872	23.535	18.964	1.00 23.54
		CE2	PHE B	63	15.444	25.741	18.263	1.00 22.33
MOTA	1339	CZ		63	15.444	24.752	19.211	1.00 22.33
ATOM	1340					21.791	13.211	
ATOM	1341	N	SER B	64	13.565			1.00 35.96
ATOM	1342	CA	SER B	64	12.847	21.251	12.047	1.00 41.24
MOTA	1343	C	SER B	64	11.362	21.237	12.401	1.00 44.87
MOTA	1344	0	SER B	64	11.045	21.210	13.593	1.00 45.47
ATOM	1345	CB	SER B	64	13.299	19.810	11.723	1.00 39.81
ATOM	1346	OG	SER B	64	14.690	19.659	11.441	1.00 41.15
ATOM	1347	N	ASN B	65	10.393	21.257	11.464	1.00 50.28
MOTA	1348	CA	ASN B	65	8.980	21.293	11.878	1.00 53.31
ATOM	1349	C	ASN B	65	8.304	19.970	12.291	1.00 53.88
ATOM	1350	Ö	ASN B	65	8,619	18.877	11.815	1.00 53.27
ATOM	1351	CB	ASN B	65	8.137	22.121	10.899	1.00 55.21
	1352	CG	ASN B	65	6.847	22.674	11.525	1.00 58.28
MOTA	1352	OD1		65	5.829	22.845	10.846	1.00 62.80
ATOM	1353		ASN B	65	6.802	22.997	12.821	1.00 58.83
MOTA			ILE B	66	7.402	20.111	13.274	1.00 55.78
ATOM	1355	N		66		19.028	13.857	1.00 58.20
MOTA	1356	CA			6.604 5.128	19.413	13.732	1.00 59.99
MOTA	1357	С	ILE B	66				
MOTA	1358	0	ILE B	66	4.679	20.439	14.266	1.00 59.98
MOTA	1359	CB	ILE B	66	6.916	18.864	15.373	1.00 58.00
MOTA	1360	CG1	ILE B	66	8.393	18.635	15.673	1.00 56.77
MOTA	1361	CG2	ILE B	66	6.119	17.713	15.950	1.00 58.43
MOTA	1362	CD1	ILE B	66	8.729	18.733	17.169	1.00 53.61
MOTA	1363	N	SER B	67	4.387	18.545	13.027	1.00 62.59
MOTA	1364	CA	SER B	67	2.945	18.687	12.803	1.00 65.18
MOTA	1365	C	SER B	67	2.049	18.114	13.935	1.00 66.39
MOTA	1366	0	SER B	67	1.110	17.339	13.725	1.00 68.18
ATOM	1367	CB	SER B	67	2.632	18.133	11.385	1.00 65.71
MOTA	1368	OG	SER B	67	3.288	16.912	10.995	1.00 67.79
MOTA	1369	N	GLU B	68	2.307	18.549	15.184	1.00 66.59
ATOM	1370	CA	GLU B	68	1.793	17.929	16.415	1.00 65.52
ATOM	1371	C	GLU B	68	0.895	18.865	17.238	1.00 66.78
ATOM	1372	ŏ	GLU B	68	-0.333	18.715	17.307	1.00 67.15
	1373	CB	GLU B	68	2.977	17.471	17.301	1.00 66.40
MOTA				68	2.568	17.163	18.743	1.00 67.84
MOTA	1374	CG		68	3.745	16.736	19.622	1.00 67.84
MOTA	1375	CD			4.931	16.661	19.022	1.00 69.12
MOTA	1376	OE1	GLU B	68				
MOTA	1377	OE2	GLU B	68	3.552	16.451	20.865	1.00 71.34
MOTA	1378	N	GLY B	69	1.582	19.807	17.897	1.00 65.16
ATOM	1379	CA	GLY B	69	1.015	20.935	18.626	1.00 63.26
MOTA	1380	C	GLY B	69	2.019	22.049	18.382	1.00 60.63
MOTA	1381	0	GLY B	69	2.666	22.081	17.308	1.00 60.82
ATOM	1382	N	LEU B	70	2.179	22.963	19.355	1.00 57.50
ATOM	1383	CA	LEU B	70	3.254	23.950	19.225	1.00 53.07
ATOM	1384	C	LEU B	70	4.610	23.233	19.244	1.00 50.38
ATOM	1385	ō	LEU B	70	4.879	22.324	20.040	1.00 53.95
01.		-						

ATOM	1386	CB	LEU	R '	70	3.243	25.033	20.295	1 00	52.74
ATOM	1387	CG			70	2.243	26.184	20.332	1.00	54.01
ATOM	1388	CD1			70	2.326	26.991	19.014	1.00	54.05
ATOM	1389	CD2			70	0.834	25.683	20.698	1.00	55.75
ATOM	1390	N			71	5.437	23.543	18.271	1.00	43.22
	1391	CA			71	6.788	23.107	18.347	1.00	37.10
ATOM		C			71	7.676	24.348	18.452	1.00	35.41
MOTA	1392	0			71	7.223	25.469	18.195	1.00	34.32
ATOM	1393				71	7.030	22.242	17.147	1.00	36.36
ATOM	1394	CB								
ATOM	1395	OG			71	6.753	22.899	15.934	1.00	36.82
MOTA	1396	N			72	8.946	24.206	18.876	1.00	33.26
MOTA	1397	CA			72	9.888	25.327	18.974	1.00	28.70
MOTA	1398	C			72	10.013	26.017	17.631	1.00	25.92
ATOM	1399	0			72	10.086	27.234	17.591	1.00	25.46
MOTA	1400	CB			72	11.281	24.862	19.462	1.00	28.21
MOTA	1401	CG			72	11.365	24.292	20.880	1.00	26.47
MOTA	1402	OD1			72	10.592	24.638	21.764	1.00	25.38
ATOM	1403	ND2			72	12.284	23.373	21.160	1.00	26.66
ATOM	1404	N	TYR		73	9.968	25.221	16.547	1.00	26.29
ATOM	1405	CA	TYR :	в :	73	9.940	25.723	15.179	1.00	26.54
ATOM	1406	C	TYR	в :	73	8.760	26.639	14.993	1.00	23.80
ATOM	1407	0	TYR	в :	73	8.967	27.809	14.726	1.00	27.19
ATOM	1408	CB	TYR :	в :	73	9.881	24.631	14.075	1.00	28.15
ATOM	1409	CG	TYR	в :	73	10.162	25.129	12.647	1.00	28.60
ATOM	1410	CD1	TYR	в :	73	9.210	25.828	11.901	1.00	29.58
ATOM	1411	CD2	TYR	в :	73	11.426	24.929	12.122	1.00	30.26
ATOM	1412	CE1	TYR	в 1	73	9.566	26.391	10.690	1.00	29.50
ATOM	1413	CE2	TYR		73	11.783	25.467	10.898	1.00	31.02
ATOM	1414	CZ			73	10.855	26.215	10.209	1.00	32.38
ATOM	1415	OH	TYR		73	11.245	26.802	9.014	1.00	36.91
ATOM	1416	N	SER	в :	74	7.535	26.185	15.145	1.00	23.20
ATOM	1417	CA	SER		74	6.402	27.077	15.028	1.00	24.27
MOTA	1418	C	SER		74	6.449	28.270	15.935	1.00	23.26
ATOM	1419	ŏ			74	6.039	29.360	15.572	1.00	25.85
ATOM	1420	CB			74	5.156	26.342	15.357	1.00	25.27
ATOM	1421	OG			74	5.173	25.254	14.460	1.00	32.42
ATOM	1422	N			75	6.958	28.120	17.146	1.00	25.08
ATOM	1423	CA			75	6.913	29.248	18.057	1.00	23.59
ATOM	1424	c.			75	7.908	30.294	17.620	1.00	21.89
ATOM	1425	ŏ			75	7.509	31.437	17.519	1.00	21.19
ATOM	1426	CB			75	7.150	28.785	19.482	1.00	23.07
ATOM	1427	CG1			75	5.984	27.956	19.962	1.00	23.49
ATOM	1428	CG2	ILE :		75	7.272	29.985	20.397		22.81
ATOM	1429	CD1			75	6.254	27.309	21.343		21.59
ATOM	1430	N			76	9.149	29.881	17.347		21.79
ATOM	1431	CA			76	10.226	30.789	16.994	1.00	22.16
	1431	C			76	9.830	31.465	15.705	1.00	23.36
ATOM		ō			76	9.898	32.679	15.673	1.00	26.09
ATOM	1433	CB			76	11.611	30.123	16.831	1.00	21.17
MOTA	1434				76	12.075	29.444	18.092	1.00	19.74
ATOM	1435	CG1			76		31.169	16.489	1.00	18.62
MOTA	1436	CG2				12.661		17.846	1.00	17.66
MOTA	1437	CD1			76	13.143	28.388		1.00	23.97
ATOM	1438	N			77	9.353		14.702	1.00	
MOTA	1439	CA			77	8.866	31.293	13.456		25.97
MOTA	1440	C			77	7.856	32.411	13.657	1.00	26.70
MOTA	1441	0_			77	8.065	33.525	13.187	1.00	28.84
MOTA	1442	CB			77	8.223	30.179	12.680	1.00	28.57
ATOM	1443	CG			77	8.018	30.507	11.212	1.00	32.25
ATOM	1444	OD1			77	8.957	31.036	10.598	1.00	
MOTA	1445	OD2	ASP	В	77	6.927	30.224	10.704	1.00	32.50

ATOM	1446	N	LYS B	78	6.797	32.211	14.443	1.00 28.77
ATOM	1447	CA	LYS B	78	5.891	33,285	14.868	1.00 28.31
ATOM	1448	C	LYS B	78	6.596	34,463	15.571	1.00 26.90
ATOM	1449	ō	LYS B	78	6.221	35,629	15.449	1.00 26.22
ATOM	1450	CB	LYS B	78	4.861	32.589	15.762	1.00 32,30
ATOM	1451	CG	LYS B	78	3.767	33.491	16.290	1.00 41.29
ATOM	1452	CD	LYS B	78	2.746	32.676	17.100	1.00 49.72
ATOM	1453	CE	LYS B	78	1.564	33.546	17.666	1.00 53.37
ATOM	1454	NZ	LYS B	78	0.551	32.773	18.406	1.00 54.23
ATOM	1455	N	LEU B	79	7.663	34.218	16.330	1.00 25.35
MOTA	1456	CA	LEU B	79	8.352	35.299	17.007	1.00 23.52
ATOM	1457	c	LEU B	79	9.151	36.141	16.063	1.00 22.42
ATOM	1458	õ	LEU B	79	9.249	37.348	16.219	1.00 20.72
ATOM	1459	CB	LEU B	79	9.292	34.752	18.074	1.00 23.66
ATOM	1460	CG	LEU B	79	8.739	33.917	19.241	1.00 21.39
ATOM	1461	CD1		79	9.823	33.698	20.260	1.00 17.54
ATOM	1462	CD2	LEU B	79	7.579	34,608	19.911	1.00 21.67
ATOM	1463	N	VAL B	80	9.727	35,426	15.094	1.00 25.43
ATOM	1464	CA	VAL B	80	10.474	35,983	13.952	1.00 25.77
ATOM	1465	C.	VAL B	80	9.566	36,918	13.200	1.00 25.42
ATOM	1466	ŏ	VAL B	80	9.948	38.052	12.971	1.00 26.43
ATOM	1467	CB	VAL B	80	10.989	34.920	12.949	1.00 24.61
ATOM	1468	CG1	VAL B	80	11.693	35.588	11.801	1.00 26.74
ATOM	1469	CG2	VAL B	80	12.018	33,999	13.521	1.00 24.19
ATOM	1470	N	ASN B	81	8.352	36.466	12.893	1.00 27.82
ATOM	1471	CA	ASN B	81	7.420	37,299	12.163	1.00 29.77
ATOM	1472	C	ASN B	81	6.999	38,527	12.964	1.00 29.38
ATOM	1473	ŏ	ASN B	81	6.937	39.593	12.377	1.00 32.14
ATOM	1474	CB	ASN B	81	6.221	36,505	11.562	1.00 31.24
MOTA	1475	OG	ASN B	81	6.543	35.379	10.564	1.00 33.72
ATOM	1476	OD1	ASN B	81	7.608	35,271	9.962	1.00 34.16
ATOM	1477	ND2	ASN B	81	5.614	34.454	10.332	1.00 37.55
ATOM	1478	N	ILE B	82	6.761	38.515	14.283	1.00 30.06
MOTA	1479	CA	ILE B	82	6.418	39,713	15.057	1.00 27.77
ATOM	1480	C	ILE B	82	7.591	40.672	15.019	1.00 28.50
ATOM	1481	ŏ	ILE B	82	7.388	41.866	14.826	1.00 30.63
ATOM	1482	CB	ILE B	82	6.164	39.318	16.534	1.00 27.91
ATOM	1483	CG1	ILE B	82	4.880	38.557	16.625	1.00 29.24
ATOM	1484	CG2	ILE B	82	6.192	40,458	17,555	1.00 23.22
ATOM	1485	CD1	ILE B	82	4.796	37.771	17.958	1.00 33.77
ATOM	1486	N	VAL B	83	8.833	40.218	15.222	1.00 28.54
ATOM	1487	CA	VAL B	83	9.884	41.192	15.413	1.00 28.60
ATOM	1488	C	VAL B	83	10.348	41.752	14.061	1.00 32.57
ATOM	1489	0	VAL B	83	10.849	42.878	13.989	1.00 32.81
ATOM	1490	CB	VAL B	83	10.975	40.632	16.338	1.00 26.41
ATOM	1491	CG1	VAL B	83	11.972	39.760	15.644	1.00 26.53
ATOM	1492	CG2	VAL B	83	11.609	41.742	17.144	1.00 25.82
ATOM	1493	N	ASP B	84	10.153	40.975	12.980	1.00 33.06
ATOM	1494	CA	ASP B	84	10.383	41.446	11.632	1.00 34.79
ATOM	1495	C	ASP B	84	9.332	42.450	11.205	1.00 34.82
ATOM	1496	0	ASP B	84	9.665	43.271	10.357	1.00 36.49
ATOM	1497	CB	ASP B	84	10.391	40.329	10.601	1.00 37.40
ATOM	1498	CG	ASP B	84	11.732	39.649	10.403	1.00 41.65
ATOM	1499	OD1	ASP B	84	12.767	40.242	10.726	1.00 45.61
ATOM	1500	OD2	ASP B	84	11.746	38.524	9.895	1.00 45.89
ATOM	1501	N	ASP B	85	8.101	42.430	11.753	1.00 33.73
ATOM	1502	CA	ASP B	85	7.134	43.501	11.551	1.00 32.67
ATOM	1503	C	ASP B	85	7.527	44.753	12.304	1.00 31.61
ATOM	1504	0	ASP B	85	7.290	45.876	11.852	1.00 30.78
ATOM	1505	CB	ASP B	85	5.689	43.092	11.967	1.00 36.31

ATOM	1506	CG	ASP	B 8	4	.984	42.012	11.146	1.00 36.50
ATOM	1507	OD1		B 8		.491	41.708	10.065	1.00 34.52
ATOM	1508	OD2		B 8		. 945	41.485	11.574	1.00 37.36
ATOM	1509	N		B 8		.151	44.567	13.473	1.00 31.94
	1510	CA		B 8		.695	45.686	14.241	1.00 29.00
MOTA									
ATOM	1511	C		B 8		.945	46.335	13.646	1.00 27.01
ATOM	1512	0		B 8		.158	47.536	13.788	1.00 25.07
MOTA	1513	CB	LEU			.888	45.242	15.703	1.00 29.72
ATOM	1514	CG	LEU			.630	44.973	16.544	1.00 29.69
MOTA	1515	CD1	LEU	B 8		. 934	44.246	17.825	1.00 29.68
MOTA	1516	CD2	LEU	B 8	6	.938	46.265	16.914	1.00 29.39
ATOM	1517	N	VAL	B 8	10	.774	45.550	12.962	1.00 26.28
ATOM	1518	CA		B 8	11	.895	46.068	12.214	1.00 29.27
ATOM	1519	C	VAL	в 8		.333	47,009	11.163	1.00 32.65
MOTA	1520	ŏ		B 8		.721	48.175	11.164	1.00 35.43
ATOM	1521	CB		B 8		.725	44.966	11.523	1.00 28.93
ATOM	1522	CG1		B 8		.789	45.570	10.630	1.00 25.59
		CG2		B 8		.417	44.036	12.521	1.00 30.50
MOTA	1523						46.534		
ATOM	1524	N		B 8		.392		10.325	
MOTA	1525	CA		B 8		.820	47.291	9.217	1.00 34.18
MOTA	1526	C		B 8		.201	48.582	9.702	1.00 34.90
ATOM	1527	0		B 8		.505	49.640	9.178	1.00 35.08
ATOM	1528	CB	GLU			.789	46.446	8.468	1.00 34.62
ATOM	1529	CG	GLU	B 8	9	.361	45.233	7.725	1.00 35.13
MOTA	1530	CD	GLU	B 8	8	.360	44.218	7.145	1.00 37.81
ATOM	1531	OE1	GLU	B 8	. 7	.241	44.088	7.653	1.00 39.42
ATOM	1532	OE2	GLU	B 8	8	.696	43.539	6.176	1.00 38.59
ATOM	1533	N		B 8	8	.402	48.520	10.754	1.00 37.74
ATOM	1534	CA		B 8:		.803	49.680	11.378	1.00 41.43
ATOM	1535	C		B 8		.798	50.685	11.934	1.00 43.62
ATOM	1536	ŏ		B 8		.578	51.896	11.896	1.00 44.63
ATOM	1537	CB		B 8		.875	49.166	12.472	1.00 43.51
ATOM	1538	SG		B 8		.538	50.326	13.821	1.00 52.54
	1539	N		B 90		.907	50.205	12.473	1.00 45.45
ATOM		CA		B 9		.919	51.096	13.007	1.00 48.36
MOTA	1540					.787	51.723	11.909	1.00 48.36
ATOM	1541	C					52.768		
MOTA	1542	0	VAL			.399		12.121	
MOTA	1543	CB		B 9		.681	50.331	14.107	1.00 48.77
MOTA	1544	CG1		B 9		.903	51.039	14.582	1.00 51.24
MOTA	1545	CG2		B 90		.793	50.256	15.316	1.00 48.76
MOTA	1546	N		B 9:		.834	51.181	10.695	1.00 50.84
ATOM	1547	CA		B 9:		.492	51.870	9.600	1.00 52.46
ATOM	1548	C		B 9:		.615	52.881	8.847	1.00 53.71
ATOM	1549	0		B 9:		.139	53.730	8.127	1.00 52.07
ATOM	1550	CB		B 9:		.135	50.840	8.721	1.00 54.00
MOTA	1551	CG	LYS	B 9:	. 14	.290	50.209	9.508	1.00 59.12
ATOM	1552	CD	LYS	B 9:	14	.955	49.089	8.690	1.00 63.16
ATOM	1553	CE	LYS	B 9:	16	.176	48.420	9.367	1.00 66.55
ATOM	1554	NZ	LYS	B 9:		.631	47.252	8.605	1.00 68.43
ATOM	1555	N	GLU			.283	52.858	9.066	1.00 56.63
ATOM	1556	CA	GLU			.333	53.861	8.565	1.00 59.16
ATOM	1557	C	GLU			.366	55.130	9.381	1.00 60.82
ATOM	1558	0		B 9:		.635	56.189	8.802	1.00 61.59
	1559	CB	GLU			.852	53.434	8.599	1.00 60.60
MOTA	1560	CG	GLU			.388	52.228	7.784	1.00 63.20
ATOM		CD	GLU			.621	52.275	6.273	1.00 66.00
ATOM	1561					.843	53.369	5.709	1.00 65.65
ATOM	1562	OE1				.564	51.187	5.667	1.00 67.41
MOTA	1563	OE2							1.00 67.41
MOTA	1564	N	ASN			.061	54.977	10.698	
ATOM	1565	CA	ASN	B 9	. 9	.063	56.041	11.714	1.00 64.84

0.000

44/85

ATOM	1566	C	ASN	В	93	10.247	56.971	11.593	1.00	65.46
ATOM	1567	ō	ASN	В	93	11.368	56.721	12.018		65.03
ATOM	1568	CB	ASN	B	93	9.069	55.511	13.153		63.55
	1569	N	SER	В	94	9.868	58.041	10.904		68.52
ATOM	1570	CA		В	94	10.773	58.985	10.254		70.87
ATOM			SER	В	94		60.076	11.141		71.17
ATOM	1571	C				11.391				
ATOM	1572	0		В	94	12.292	60.821	10.689		72.46
ATOM	1573	CB	SER	В	94	10.028	59.573	9.039		71.38
ATOM	1574	OG	SER		94	8.711	60.001	9.407		73.36
ATOM	1575	N	SER	В	95	10.923	60.135	12.415		68.97
ATOM	1576	CA	SER	В	95	11.564	60.953	13.424		68.06
ATOM	1577	C	SER	В	95	13.040	60.572	13.473	1.00	67.28
ATOM	1578	0	SER	В	95	13.457	59.458	13.839	1.00	64.89
ATOM	1579	CB	SER	В	95	10.932	60.795	14.794	1.00	68.06
ATOM	1580	OG	SER	В	95	11.441	61.800	15.670		69.36
ATOM	1581	N	LYS	В	96	13.755	61.565	12.916		66.92
ATOM	1582	CA	LYS	В	96	15.199	61.518	12.771		67.27
ATOM	1583	c.	LYS	В	96	15.848	60.974	14.056		66.10
	1584	õ	LYS	В	96	16.615	59.996	14.014		64.46
ATOM		CB				15.699	62.948	12.478		67.07
ATOM	1585			В	96			15.147		64.54
MOTA	1586	N	ASP	В	97	15.289	61.560			
MOTA	1587	CA	ASP	В	97	15.657	61.369	16.562		62.82
ATOM	1588	C	ASP	В	97	15.739	59.968	17.239		60.00
MOTA	1589	0	ASP	В	97	16.792	59.674	17.852		59.90
MOTA	1590	CB	ASP	В	97	14.689	62.230	17.394		63.85
MOTA	1591	N		В	98	14.638	59.137	17.174		53.67
ATOM	1592	CA		В	98	14.641	57.690	17.447		44.35
MOTA	1593	С	LEU	В	98	15.837	57.135	16.728		40.32
ATOM	1594	0	LEU	В	98	15.868	57.109	15.497		40.10
MOTA	1595	CB	LEU	В	98	13.389	56.996	16.916		41.21
ATOM	1596	CG	LEU	В	98	13.251	55.479	17.095		40.48
MOTA	1597	CD1	LEU	В	98	11.904	55.030	17.695	1.00	39.61
MOTA	1598	CD2	LEU	В	98	13.519	54.787	15.784	1.00	37.90
ATOM	1599	N	LYS	В	99	16.815	56.840	17.593	1.00	36.84
ATOM	1600	CA	LYS	В	99	18.171	56.457	17.229	1.00	35.08
MOTA	1601	C	LYS	В	99	18.141	55.218	16.365	1.00	34.40
ATOM	1602	ō	LYS	В	99	17.600	54.164	16.712	1.00	34.91
ATOM	1603	CB		В	99	19.028	56.193	18.485		35.16
MOTA	1604	CG	LYS	В	99	20.550	56.058	18.286		37.24
ATOM	1605	CD	LYS	В	99	21.314	55.641	19.556		36.33
ATOM	1606	CE	LYS	В	99	22.817	55.994	19.594		38.98
MOTA	1607	NZ		В	99	23.617	55.657	18.428		38.67
ATOM	1608	N	LYS	В	100	18.689	55.387	15.174		34.28
ATOM	1609	CA	LYS	В	100	18.726	54.285	14.232		34.35
	1610	CA	LYS	В	100	20.147	53.964	13.811		31.26
ATOM		Ö	LYS	В	100	20.368	52.917	13.224		32.09
MOTA	1611					17.832	54.592	13.044		36.01
ATOM	1612	CB	LYS	В	100			13.349		
ATOM	1613	CG	LYS	В	100	16.335	54.635			38.72
ATOM	1614	CD	LYS	В	100	15.782	55.851	12.617		43.22
MOTA	1615	CE	LYS	В	100	14.290	55.723	12.370		43.50
ATOM	1616	NZ		В	100	13.982	55.990	10.969		43.57
ATOM	1617	N		В	101	21.120	54.814	14.159		29.00
ATOM	1618	CA	SER	В	101	22.529	54.614	13.871		28.55
ATOM	1619	C	SER	В	101	23.351	54.047	15.032		28.24
ATOM	1620	0	SER	В	101	23.732	54.783	15.943		31.98
ATOM	1621	CB	SER	В	101	23.049	55.977	13.473		27.88
ATOM	1622	OG	SER	В	101	24.459	55.979	13.457		27.09
ATOM	1623	N	PHE	В	102	23.680	52.766	15.077		27.56
ATOM	1624	CA	PHE	В	102	24.364	52.184	16.230		27.12
MOTA	1625	С	PHE	В	102	25.620	51.495	15.755	1.00	28.99

ATOM	1626	0	PHE E	102	- 2	25.613	51.001	14.627	1.00 28.31
ATOM	1627	CB	PHE B			23.538	51.127	16.945	1.00 22.35
ATOM	1628	CG	PHE E			22.247	51.672	17.462	1.00 20.73
ATOM	1629	CD1				1.206	51.877	16.608	
									1.00 22.70
ATOM	1630	CD2	PHE B			22.105	51.932	18.801	1.00 24.01
ATOM	1631	CE1	PHE B			20.007	52.325	17.098	1.00 23.86
MOTA	1632	CE2	PHE B	102	2	20.892	52.343	19.295	1.00 23.54
MOTA	1633	CZ	PHE B	102	1	19.837	52.536	18.435	1.00 23.17
ATOM	1634	N	LYS B	103	-	26.691	51.459	16.575	1.00 30.21
ATOM	1635	CA	LYS B			7.823	50.595	16.284	1.00 30.86
	1636	C	LYS B			7.374	49.171	16.550	1.00 32.14
MOTA									
MOTA	1637	0	LYS B			6.583	48.957	17.472	1.00 33.74
MOTA	1638	CB	LYS B			8.965	50.952	17.200	1.00 32.77
MOTA	1639	N	SER B			7.788	48.202	15.720	1.00 32.95
MOTA	1640	CA	SER B	104	2	7.284	46.825	15.805	1.00 33.85
ATOM	1641	С	SER B	104	2	7.695	46.249	17.145	1.00 31.14
ATOM	1642	ō	SER B			8.891	46.121	17.418	1.00 32.16
ATOM	1643	CB	SER B	104		7.812	45.908	14.692	1.00 36.29
ATOM	1644	OG	SER B	104		8.690	46.589	13.784	1.00 44.97
MOTA	1645	N		105		6.737	45.950	18.023	1.00 28.62
MOTA	1646	CA	PRO B	105		7.026	45.601	19.393	1.00 27.39
MOTA	1647	C	PRO B	105		7.816	44.315	19.472	1.00 26.85
ATOM	1648	0	PRO B	105		7.947	43.532	18.527	1.00 29.04
ATOM	1649	CB	PRO B	105	2	5.668	45.476	19.982	1.00 26.67
ATOM	1650	CG	PRO B	105	2	4.803	46.313	19.104	1.00 26.85
ATOM	1651	CD	PRO B	105	2	5.308	45,910	17.747	1.00 26.48
ATOM	1652	N	GLU B	106	2	8.426	44.160	20.628	1.00 27.12
ATOM	1653	CA	GLU B	106	2	9.240	42.982	20.897	1.00 27.97
ATOM	1654	C	GLU B	106		8.299	41.806	21.172	1.00 25.13
ATOM	1655	ō	GLU B	106		7.294	41.966	21.870	1.00 21.99
ATOM	1656	CB	GLU B	106		0.140	43.258	22.105	1.00 30.05
ATOM	1657	CG	GLU B	106		1.418	42.451	22.220	1.00 35.47
ATOM	1658	CD	GLU B	106		2.045	42.483	23.613	1.00 40.01
ATOM	1659	OE1	GLU B	106		2.162	43.570	24.198	1.00 41.10
ATOM	1660	OE2	GLU B	106		2.431	41.409	24.102	1.00 42.35
ATOM	1661	N	PRO B	107		8.564	40.640	20.578	1.00 23.74
ATOM	1662	CA	PRO B	107		7.806	39.423	20.817	1.00 24.07
ATOM	1663	C	PRO B	107		7.906	38.967	22.264	1.00 22.95
ATOM	1664	0	PRO B	107		8.989	38.920	22.832	1.00 24.47
ATOM	1665	CB	PRO B	107		8.437	38.439	19.837	1.00 24.75
ATOM	1666	CG	PRO B	107		8.949	39.309	18.715	1.00 25.17
ATOM	1667	CD	PRO B	107		9.556	40.448	19.512	1.00 24.46
ATOM	1668	N	ARG B	108	2	6.765	38.677	22.884	1.00 22.39
ATOM	1669	CA	ARG B	108	2	6.684	38.164	24.239	1.00 20.57
ATOM	1670	C	ARG B	108	2	5.904	36.865	24.227	1.00 17.43
MOTA	1671	0	ARG B	108	2	4.954	36.685	23.488	1.00 17.22
MOTA	1672	CB	ARG B	108	2	6.064	39.155	25.256	1.00 20.10
ATOM	1673	CG	ARG B	108	2	7.007	40.157	25.848	1.00 21.68
ATOM	1674	CD	ARG B	108	2	6.321	41.144	26.778	1.00 25.69
ATOM	1675	NE	ARG B	108		5.859	40.576	28.047	1.00 27.65
ATOM	1676	cz	ARG B	108		5.517	41.345	29.084	1.00 26.15
ATOM	1677	NH1	ARG B	108		5.637	42.653	29.004	1.00 26.98
	1678	NH2	ARG B	108		5.031	40.819	30.217	1.00 27.28
ATOM			LEU B	109		6.320	35.964	25.078	
ATOM	1679	N							1.00 16.44
ATOM	1680	CA	LEU B	109		5.649	34.700	25.242	1.00 19.58
MOTA	1681	C	LEU B	109		4.667	34.827	26.384	1.00 19.57
MOTA	1682	0	LEU B	109		4.963	35.423	27.418	1.00 21.90
MOTA	1683	CB	LEU B	109		6.626	33.555	25.533	1.00 18.89
MOTA	1684	CG	LEU B	109		7.661	33.129	24.491	1.00 20.14
MOTA	1685	CD1	LEU B	109	2	8.673	32.188	25.119	1.00 18.71

опроститительного под предерения п

Figure 8-39

ATOM	1686	CD2	LEU B	109	26.985	32.436	23.316	1.00 22.74
ATOM	1687	N	PHE B	110	23.477	34.293	26.119	1.00 19.30
ATOM	1688	CA	PHE B		22.372	34.322	27.050	1.00 18.85
	1689	C	PHE B		21.748	32.939	27.188	1.00 19.38
MOTA								
MOTA	1690	0	PHE B		21.676	32.205	26.207	1.00 18.43
MOTA	1691	CB	PHE B	110	21.312	35.298	26.553	1.00 17.38
MOTA	1692	CG	PHE B		21.743	36.756	26.567	1.00 19.20
ATOM	1693	CD1	PHE B	110	21.733	37.487	27.744	1.00 20.10
MOTA	1694	CD2	PHE B	110	22.198	37.350	25.408	1.00 19.07
MOTA	1695	CE1	PHE B	110	22.211	38.788	27.755	1.00 19.86
ATOM	1696	CE2	PHE B	110	22.643	38.650	25.436	1.00 15.79
ATOM	1697	CZ	PHE B	110	22.659	39.367	26.596	1.00 17.86
MOTA	1698	N	THR B		21.246	32.547	28.376	1.00 18.40
MOTA	1699	CA	THR B	111	20.431	31.336	28.505	1.00 14.95
MOTA	1700	c.	THR B		19.077	31.537	27.823	1.00 14.86
ATOM	1701	ō	THR B	111	18.720	32.705	27.696	1.00 18.62
		СВ	THR B	111	20.254	30.986	30.016	1.00 10.83
MOTA	1702					32.008	30.536	
MOTA	1703	OG1	THR B	111	19.440			
ATOM	1704	CG2	THR B	111	21.520	31.006	30.845	1.00 11.33
MOTA	1705	N	PRO B	112	18.205	30.602	27.418	1.00 14.14
MOTA	1706	CA	PRO B	112	16.903	30.899	26.832	1.00 12.85
MOTA	1707	C	PRO B	112	16.055	31.789	27.714	1.00 15.00
MOTA	1708	0	PRO B	112	15.351	32.679	27.268	1.00 16.67
MOTA	1709	CB	PRO B	112	16.297	29.536	26.730	1.00 13.18
MOTA	1710	CG	PRO B	112	17.459	28.689	26.406	1.00 11.71
ATOM	1711	CD	PRO B	112	18.482	29.179	27.402	1.00 12.63
MOTA	1712	N	GLU B	113	16.103	31.597	29.015	1.00 17.42
MOTA	1713	CA	GLU B	113	15.375	32.431	29.945	1.00 19.68
ATOM	1714	C	GLU B	113	15.802	33.888	29.901	1.00 18.59
MOTA	1715	ō	GLU B	113	14.931	34.751	29.885	1.00 21.48
MOTA	1716	CB	GLU B	113	15.546	31.841	31.328	1.00 22.92
ATOM	1717	CG	GLU B	113	14.984	32.707	32.439	1.00 32.95
ATOM	1718	CD	GLU B	113	15.763	32.704	33.770	1.00 39.93
ATOM	1719	OE1	GLU B	113	16.869	33.281	33.900	1.00 41.39
ATOM	1720	OE2	GLU B	113	15.193	32.144	34.712	1.00 44.90
ATOM	1721	N	GLU B	114	17.096	34.210	29.885	1.00 18.49
	1722	CA	GLU B	114	17.601	35.576	29.760	1.00 17.43
MOTA	1723	C	GLU B	114	17.321	36.289	28.451	1.00 16.60
MOTA		0	GLU B	114	16.910	37.449	28.404	1.00 19.48
MOTA	1724	CB	GLU B	114	19.090	35.543	29.980	1.00 19.48
MOTA	1725					35.343	31.442	1.00 23.40
MOTA	1726	CG	GLU B	114	19.486			
MOTA	1727	CD	GLU B	114	20.962	35.034	31.718	1.00 25.98
MOTA	1728	OE1	GLU B	114	21.730	34.826	30.765	1.00 25.41
MOTA	1729	OE2	GLU B	114	21.322	34.982	32.906	1.00 28.77
MOTA	1730	N	PHE B	115	17.507	35.551	27.379	1.00 14.86
MOTA	1731	CA	PHE B	115	17.212	35.998	26.023	1.00 15.76
MOTA	1732	C	PHE B	115	15.776	36.422	25.843	1.00 14.74
ATOM	1733	0	PHE B	115	15.474	37.469	25.295	1.00 16.04
ATOM	1734	CB	PHE B	115	17.513	34.865	25.012	1.00 14.37
ATOM	1735	CG	PHE B	115	17.384	35.323	23.572	1.00 16.76
ATOM	1736	CD1	PHE B	115	18.400	36.062	22.990	1.00 15.08
ATOM	1737	CD2	PHE B	115	16.217	35.063	22.881	1.00 16.51
ATOM	1738	CE1	PHE B	115	18.169	36.611	21.755	1.00 15.92
ATOM	1739	CE2	PHE B	115	16.024	35.579	21.619	1.00 13.36
ATOM	1740	CZ	PHE B	115	16.994	36.364	21.079	1.00 14.28
MOTA	1741	N	PHE B	116	14.897	35.549	26.284	1.00 15.61
MOTA	1742	CA	PHE B	116	13.497	35.810	26.150	1.00 15.94
MOTA	1743	C	PHE B	116	12.918	36.798	27.125	1.00 16.92
ATOM	1744	õ	PHE B	116	11.842	37.326	26.862	1.00 18.97
MOTA	1745	ČВ	PHE B		12.759	34.499	26.111	1.00 16.90
MIOM	1,43	CB	EIID D	110	12.755	5		2.00 20.50

0.000 0.000

Figure 8-40

ATOM	1746	CG	PHE B	116	12.962	33.796	24.776	1.00 16.87
ATOM	1747	CD1	PHE B	116	12.315	34.278	23.639	1.00 16.00
ATOM	1748	CD2	PHE B	116	13.830	32.714	24.689	1.00 17.13
ATOM	1749	CE1	PHE B	116	12.558	33.654	22.429	1.00 17.64
ATOM	1750	CE2	PHE B		14.079	32.114	23.482	1.00 16.31
ATOM	1751	CZ	PHE B		13,427	32.582	22.349	1.00 17.77
ATOM	1752	N	ARG B		13.629	37.094	28.208	1.00 17.01
ATOM	1753	CA	ARG B		13.292	38.189	29.085	1.00 18.94
ATOM	1754	C	ARG B		13.636	39.492	28.388	1.00 20.76
ATOM	1755	ŏ	ARG B		12.988	40.526	28.561	1.00 21.80
ATOM	1756	CB	ARG B		14.124	38.043	30.361	1.00 22.28
ATOM	1757	CG	ARG B	117	13.889	39.003	31.538	1.00 29.21
ATOM	1758	CD	ARG B	117	13.292	38.359	32.834	1.00 35.23
ATOM	1759	NE	ARG B	117	14.094	37.253	33.357	1.00 37.19
ATOM	1760	CZ	ARG B		15.408	37.373	33.616	1.00 42.10
ATOM	1761	NH1	ARG B	117	16.023	38.568	33.647	1.00 45.58
ATOM	1762	NH2	ARG B	117	16.151	36.268	33.794	1.00 43.18
ATOM	1763	N	ILE B	118	14.709	39.453	27.596	1.00 20.97
ATOM	1764	CA	ILE B		15.078	40.588	26.807	1.00 18.77
MOTA	1765	C	ILE B	118	14.103	40.799	25.662	1.00 20.54
ATOM	1766	ŏ	ILE B	118	13.592	41.896	25.487	1.00 20.49
ATOM	1767	CB	ILE B	118	16.498	40.364	26.385	1.00 16.96
ATOM	1768	CG1	ILE B	118	17.377	40.504	27.587	1.00 12.82
ATOM	1769	CG2	ILE B	118	16.892	41.347	25.310	1.00 15.77
ATOM	1770	CD1	ILE B	118	18.851	40.271	27.253	1.00 14.00
ATOM	1771	N	PHE B	119	13.817	39.736	24.922	1.00 22.16
ATOM	1772	CA	PHE B	119	12.840	39.717	23.864	1.00 23.96
ATOM	1773	C	PHE B	119	11.528	40.271	24.356	1.00 26.51
ATOM	1774	0	PHE B	119	10.934	41.093	23.674	1.00 29.24
ATOM	1775	CB	PHE B		12.660	38.299	23.364	1.00 22.84
ATOM	1776	CG	PHE B	119	11.555	38.173	22.327	1.00 24.88
MOTA	1777	CD1	PHE B	119	11.811	38.512	21.006	1.00 25.69
ATOM	1778	CD2	PHE B	119	10.271	37.803	22.727	1.00 24.94
MOTA	1779	CE1	PHE B	119	10.748	38.539	20.122	1.00 25.07
MOTA	1780	CE2	PHE B		9.216	37.831	21.844	1.00 24.69
ATOM	1781	CZ	PHE B	119	9.465	38.212	20.539	1.00 25.22
MOTA	1782	N	ASN B	120	11.076	39.898	25.540	1.00 29.22
MOTA	1783	CA	ASN B	120	9.863	40.470	26.094	1.00 31.04
MOTA	1784	C	ASN B	120	9.953	41.939	26.499	1.00 32.79
ATOM	1785	0	ASN B		9.018	42.684	26.204	1.00 34.41
MOTA	1786	CB	ASN B	120	9.343	39.640	27.253	1.00 29.44
ATOM	1787	CG	ASN B	120	8.856	38.301	26.738	1.00 33.04
MOTA	1788	OD1	ASN B	120	8.264	38.216	25.651	1.00 32.93
ATOM	1789	ND2	ASN B	120	9.110	37.237	27.508	1.00 31.91
MOTA	1790	N	ARG B	121	11.018	42.436	27.140	1.00 32.47
MOTA	1791	CA	ARG B	121	11.117	43.849	27.465	1.00 30.92
MOTA	1792	C	ARG B	121	11.067	44.709	26.204	1.00 29.78
MOTA	1793	0	ARG B	121	10.444	45.760	26.207	1.00 28.95
MOTA	1794	CB	ARG B	121	12.391	44.075	28.271	1.00 33.61
MOTA	1795	CG	ARG B	121	12.655	45.523	28.664	1.00 41.90
MOTA	1796	CD	ARG B	121	11.463	46.261	29.336	1.00 48.78
MOTA	1797	NE	ARG B	121	11.048	47.453	28.567 28.762	1.00 55.93
MOTA	1798	CZ	ARG B	121	11.568 12.543	48.694	29.659	1.00 59.13
ATOM	1799	NH1	ARG B	121	11.124	49.767	28.074	1.00 60.62
ATOM	1800	NH2	ARG B	121	11.124	44.225	25.121	1.00 60.62
ATOM	1801	N CA	SER B	122	11.818	44.225	23.854	1.00 27.66
ATOM	1802		SER B	122	10.512	45.006	23.054	1.00 27.66
ATOM	1803 1804	C	SER B		10.198	46.085	22.634	1.00 29.01
ATOM ATOM	1805	CB	SER B		12.808	44.195	22.954	1.00 24.91
ALON	1002	CB	JEK B	122	12.300	24.133	22.234	2.00 24.31

ATOM	1806	OG	SER B	122	14.125	44.237	23.464	1.00 21.03
ATOM	1807	N	ILE B		9.765	43.896	23.061	1.00 30.73
ATOM	1808	CA	ILE B		8.427	43.886	22.488	1.00 33.96
ATOM	1809	C	ILE B	123	7.513	44.857	23.232	1.00 38.09
			ILE B	123	6.743	45.579	22.610	1.00 38.61
ATOM	1810	0						
ATOM	1811	CB	ILE B	123	7.863	42.445	22.513	1.00 33.36
ATOM	1812	CG1	ILE B		8.567	41.492	21.559	1.00 33.77
ATOM	1813	CG2	ILE B		6.385	42.334	22.276	1.00 35.01
ATOM	1814	CD1	ILE B		8.539	41.729	20.058	1.00 31.14
ATOM	1815	N	ASP B	124	7.638	44.925	24.562	1.00 42.48
ATOM	1816	CA	ASP B	124	6.868	45.809	25.424	1.00 45.69
ATOM	1817	C	ASP B	124	7.347	47.237	25.404	1.00 45.68
ATOM	1818	ō	ASP B	124	6.592	48.118	25.836	1.00 46.88
ATOM	1819	CB	ASP B		6.915	45.381	26.912	1.00 50.45
ATOM	1820	CG	ASP B	124	6.483	43.950	27.274	1.00 56.00
	1821		ASP B	124	5.766	43.310	26.481	1.00 61.21
ATOM					6.883	43.461	28.344	1.00 56.72
ATOM	1822	OD2	ASP B					
ATOM	1823	N	ALA B	125	8.599	47.461	24.970	1.00 46.60
ATOM	1824	CA	ALA B		9.190	48.801	24.903	1.00 47.64
ATOM	1825	C	ALA B		8.420	49.664	23.926	1.00 48.60
ATOM	1826	0	ALA B		8.412	50.882	24.081	1.00 48.65
ATOM	1827	CB	ALA B	125	10.643	48.781	24.422	1.00 46.01
ATOM	1828	N	PHE B	126	7.752	49.014	22.960	1.00 50.56
ATOM	1829	CA	PHE B	126	6.834	49.695	22.055	1.00 54.13
ATOM	1830	C	PHE B	126	5.525	50.182	22.688	1.00 57.79
ATOM	1831	ō	PHE B	126	5.141	51.334	22.460	1.00 59.99
ATOM	1832	CB	PHE B	126	6.538	48.850	20.810	1.00 51.52
ATOM	1833	CG	PHE B	126	7.721	48.691	19.873	1.00 49.43
ATOM	1834	CD1	PHE B	126	8.650	47.685	20.086	1.00 48.93
	1835	CD2	PHE B		7.872	49.550	18.804	1.00 48.24
ATOM			PHE B		9.721	47.531	19.226	1.00 47.28
MOTA	1836				8.960		17.969	1.00 47.28
ATOM	1837	CE2	PHE B	126		49.402		
ATOM	1838	CZ	PHE B	126	9.882	48.401	18.174	1.00 45.91
MOTA	1839	N	LYS B	127	4.843	49.346	23.505	1.00 61.28
MOTA	1840	CA	LYS B		3.558	49.636	24.178	1.00 62.20
MOTA	1841	C	LYS B	127	3.454	50.906	25.026	1.00 62.03
ATOM	1842	0	LYS B		2.394	51.539	25.092	1.00 61.71
ATOM	1843	CB	LYS B	127	3.115	48.458	25.090	1.00 64.81
ATOM	1844	CG	LYS B	127	2.463	47.185	24.502	1.00 65.92
ATOM	1845	CD	LYS B	127	2.082	46.311	25.702	1.00 67.81
ATOM	1846	CE	LYS B	127	2.369	44.834	25.433	1.00 69.44
ATOM	1847	NZ	LYS B	127	2.594	44.129	26.691	1.00 68.14
ATOM	1848	N	ASP B		4.561	51.200	25.719	1.00 62.76
ATOM	1849	CA	ASP B	128	4.736	52.380	26.554	1.00 62.70
ATOM	1850	C	ASP B	128	5.573	53.412	25.794	1.00 63.56
ATOM	1851	ŏ	ASP B	128	6.638	53.838	26.251	1.00 64.23
ATOM	1852	CB	ASP B	128	5.480	51.925	27.833	1.00 62.32
	1853	N	PHE B		5.128	53.802	24.587	1.00 64.47
ATOM					5.813	54.828	23.801	1.00 65.58
ATOM	1854	CA	PHE B				23.900	
ATOM	1855	C	PHE B		5.172	56.224		
ATOM	1856	0	PHE B		4.145	56.473	23.258	1.00 67.17
MOTA	1857	CB	PHE B		5.971	54.368	22.338	1.00 64.56
ATOM	1858	CG	PHE B		7.424	54.230	21.907	1.00 63.61
ATOM	1859	CD1	PHE B		8.187	55.356	21.634	1.00 64.45
ATOM	1860	CD2	PHE B		7.979	52.977	21.775	1.00 62.93
ATOM	1861	CE1	PHE B		9.503	55.219	21.235	1.00 64.07
ATOM	1862	CE2	PHE B	129	9.291	52.837	21.378	1.00 63.56
ATOM	1863	CZ	PHE B		10.048	53.959	21.111	1.00 64.70
ATOM	1864	N	ASP E		17.272	62.584	24.623	1.00 55.18
ATOM	1865	CA	ASP B		18.560	63.025	24.106	1.00 54.96
ALON:	1005				20,000			

ATOM	1866	С	ASP B 137		19.597	61.931	23.769	1.00 55.95
	1867	Ö	ASP B 137		20.291	62.026	22.743	1.00 55.11
MOTA		СВ	ASP B 137		19.180	63.952	25.136	1.00 53.99
ATOM	1868		CYS B 138		19.669	60.900	24.656	1.00 55.99
ATOM	1869	N			20.594	59.741	24.665	1.00 55.50
ATOM	1870	CA	CYS B 138			59.964	25.031	1.00 55.10
MOTA	1871	С	CYS B 138		22.065		25.357	1.00 55.77
ATOM	1872	0	CYS B 138		22.723	58.973		1.00 53.77
ATOM	1873	CB	CYS B 138		20.486	58.822	23.416	
ATOM	1874	SG	CYS B 138		18.766	58.362	23.058	1.00 53.01
TER	1876		CYS B 138					
ATOM	1877	N	ASN C 11		51.574	13.978	45.345	1.00 51.40
ATOM	1878	CA	ASN C 11		50.150	14.075	45.169	1.00 50.61
	1879	C	ASN C 11		49.636	15.080	46.231	1.00 51.75
MOTA	1880	ŏ	ASN C 11		49.446	16.244	45.828	1.00 52.28
ATOM		CB	ASN C 11		49.486	12.671	45.271	1.00 48.14
ATOM	1881		VAL C 12		49.577	14.664	47.548	1.00 49.74
MOTA	1882	N			48.941	15.269	48.771	1.00 46.17
ATOM	1883	CA			49.317	16.681	49.255	1.00 43.47
ATOM	1884	C	VAL C 12				49.868	1.00 42.02
MOTA	1885	0	VAL C 12		48.526	17.397 14.271	50.044	1.00 47.02
ATOM	1886	CB	VAL C 12		49.032			
ATOM	1887	CG1			50.479	14.042	50.561	
ATOM	1888	CG2	VAL C 12		48.129	14.662	51.233	1.00 44.78
ATOM	1889	N	LYS C 13		50.588	17.052	49.054	1.00 43.09
ATOM	1890	CA	LYS C 13		51.082	18.424	49.218	1.00 39.49
ATOM	1891	C	LYS C 13		50.370	19.321	48.180	1.00 36.49
ATOM	1892	ŏ	LYS C 13		49.910	20.435	48.472	1.00 35.14
	1893	CB	LYS C 13		52.643	18.424	48.986	1.00 37.77
MOTA		N	ASP C 14		50.231	18.776	46.951	1.00 33.25
ATOM	1894	CA	ASP C 14		49.522	19.456	45.898	1.00 27.29
ATOM	1895		ASP C 14		48.042	19.262	45.991	1.00 21.51
MOTA	1896	С			47.408	20.205	45.602	1.00 20.53
MOTA	1897	0_			50.101	19.142	44.565	1.00 31.10
MOTA	1898	CB	ASP C 14		51.439	19.856	44.288	1.00 35.88
ATOM	1899	CG	ASP C 14			20.514	45.155	1.00 37.80
ATOM	1900	OD:			52.043		43.143	1.00 37.19
ATOM	1901	OD:			51.890	19.755	46.526	1.00 15.89
ATOM	1902	N	VAL C 15		47.447	18.202	46.962	1.00 16.75
ATOM	1903	CA	VAL C 15		46.073	18.270	47.938	1.00 17.73
ATOM	1904	C	VAL C 15		45.796	19.433		1.00 17.73
ATOM	1905	0	VAL C 15		44.821	20.167	47.775	
ATOM	1906	CB	VAL C 15		45.653	16.905	47.548	1.00 17.03
ATOM	1907	CG:	1 VAL C 15		44.266	16.920	48.161	1.00 15.16
ATOM	1908	CG:	2 VAL C 15	5	45.656	15.889	46.430	1.00 17.49
ATOM	1909	N	THR C 16	5	46.659	19.692	48.910	1.00 17.16
ATOM	1910	CA	THR C 16	5	46.513	20.824	49.806	1.00 16.51
ATOM	1911	C	THR C 16	5	46.660	22.151	49.096	1.00 15.07
	1912	ŏ	THR C 16		45.901	23.049	49.418	1.00 16.99
MOTA		CB	THR C 1		47.533	20.674	51.000	1.00 17.35
ATOM	1913	OG			47.059	19.546	51.734	1.00 19.10
MOTA	1914				47.615	21.868	51.934	1.00 11.74
ATOM	1915	CG			47.562	22.381	48.160	1.00 13.81
ATOM	1916	N	LYS C 1		47.496	23.602	47.390	1.00 15.88
MOTA	1917				46.197	23.789	46.541	1.00 16.97
MOTA	1918		LYS C 1			24.877		1.00 17.88
MOTA	1919		LYS C 1		45.608			1.00 18.13
MOTA	1920				48.702	23.598		1.00 21.24
ATOM	1921	. CG			50.006			
ATOM	1922				51.103		46.198	
ATOM	1923			7	52.486			1.00 28.59
ATOM	1924			7	52.730			
MOTA	1925			8	45.682			
ATOM	1926			8	44.454	22.764	45.149	1.00 11.22
ATOM	1920	, Cr		-				

Figure 8-43

ATOM	1927	С	LEU	С	18	43.333	23.111	46.047	1.00 10.78
ATOM	1928	Ó	LEU	C	18	42.612	24.032	45.691	1.00 16.08
ATOM	1929	CB	LEU	Ċ	18	44.129	21.412	44.609	1.00 12.69
ATOM	1930	CG	LEU	Ċ	18	42.973	21.312	43.632	1.00 15.70
ATOM	1931	CD1	LEU	Ċ	18	43.151	22.220	42.429	1.00 9.04
ATOM	1932	CD2	LEU	č	18	42.864	19.875	43.248	1.00 15.11
ATOM	1933	N	VAL	č	19	43.155	22.484	47.210	1.00 11.81
MOTA	1934	CA	VAL	č	19	42.092	22.868	48.138	1.00 12.12
ATOM	1935	c	VAL	č	19	42.159	24.359	48.569	1.00 13.12
ATOM	1936	ŏ	VAL	č	19	41.144	25.056	48.607	1.00 14.59
ATOM	1937	CB	VAL	č	19	42.041	21,868	49.328	1.00 12.63
ATOM	1938	CG1	VAL	č	19	40.984	22.267	50.328	1.00 11.49
ATOM	1939	CG2	VAL	č	19	41.661	20,496	48.835	1.00 12.48
ATOM	1940	N	ALA	č	20	43.362	24.909	48.821	1.00 13.02
ATOM	1941	CA	ALA	č	20	43.532	26.278	49.252	1.00 11.77
	1941	C	ALA	č	20	43.254	27.224	48.126	1.00 11.25
ATOM		õ	ALA	č	20	42.888	28.357	48.344	1.00 14.74
ATOM	1943 1944	СВ	ALA	č	20	44.975	26.452	49.635	1.00 10.68
ATOM		N	ASN	č	21	43.461	26.757	46.895	1.00 15.11
ATOM	1945		ASN	č	21	43.197	27.471	45.648	1.00 13.34
ATOM	1946	CA.	ASN	c	21	41.898	27.107	44.949	1.00 13.34
ATOM	1947			c	21	41.663	27.533	43.815	1.00 18.62
ATOM	1948	O CB	ASN ASN	c	21	44.318	27.149	44.717	1.00 12.84
ATOM	1949			č	21	45.401	28.151	44.755	1.00 12.42
ATOM	1950	CG	ASN	C	21	45.277	29.229	45.315	1.00 12.42
ATOM	1951		ASN	č	21	46.503	27.827	44.131	1.00 12.99
ATOM	1952	ND2	ASN LEU	c	22	41.041	26.311	45.536	1.00 12.99
ATOM	1953	N	LEU	č	22	39.691	26.311	45.063	1.00 12.25
ATOM	1954	CA C	LEU	č	22	38.831	27.012	45.972	1.00 12.25
ATOM	1955	0	LEU	č	22	39.216	27.109	47.126	1.00 17.11
ATOM	1956	СВ	LEU	č	22	39.202	24.755	45.039	1.00 10.06
ATOM	1957	CG	LEU	c	22	39.745	23.906	43.936	1.00 9.08
ATOM	1958 1959	CD1		č	22	39.380	22.464	44.120	1.00 8.06
ATOM			LEU	č	22	39.124	24.394	42.666	1.00 11.26
MOTA	1960 1961	N N	PRO	č	23	37.706	27.649	45.629	1.00 12.49
ATOM		CA	PRO	č	23	36.902	28.384	46.592	1.00 12.26
ATOM	1962	CA	PRO	c	23	36.214	27.457	47.604	1.00 12.26
MOTA	1963	0	PRO	c	23	35.695	26.416	47.220	1.00 13.42
ATOM	1964		PRO	č	23	35.923	29.108	45.681	1.00 13.22
ATOM	1965	CB	PRO	č	23	36.407	29.009	44.237	1.00 9.94
ATOM	1966	CD	PRO	č	23	37.094	27.667	44.292	1.00 12.73
ATOM	1967 1968	N	LYS	č	24	36.216	27.796	48.898	1.00 13.54
MOTA	1969	CA	LYS	č	24	35.515	27.039	49.919	1.00 17.03
MOTA	1970	C	LYS	č	24	34.053	26.703	49.596	1.00 17.41
MOTA	1971	ŏ	LYS	č	24	33.500	25.693	50.011	1.00 15.96
ATOM	1972	СВ	LYS	č	24	35.591	27.845	51.228	1.00 17.76
ATOM	1972	CG	LYS	č	24	36.918	27.585	51.896	1.00 22.90
ATOM		CD	LYS	č	24	37.423	28.782	52.700	1.00 24.73
MOTA	1974 1975	CE	LYS	č	24	38.893	28.608	53.191	1.00 25.32
MOTA			LYS	c	24	39.427	29.914	53.578	1.00 27.67
MOTA	1976 1977	NZ N	ASP	č	25	33.380	27.526	48.807	1.00 20.45
ATOM		CA.	ASP	č	25	31.969	27.320	48.579	1.00 20.93
ATOM	1978 1979	CA	ASP	c	25	31.690	26.924	47.164	1.00 19.35
MOTA		0	ASP	c	25	30.617	27.146	46.603	1.00 21.38
ATOM	1980	CB	ASP	c	25	31.316	28.665	48.909	1.00 23.07
ATOM	1981		ASP	c	25	31.726	29.820	48.014	1.00 28.48
ATOM	1982	CG		c	25	32.736	29.755	47.329	1.00 29.48
ATOM	1983	OD1		c	25	31.018	30.829	48.006	1.00 25.48
MOTA	1984		ASP TYR	C	26	32.684	26.330	46.570	1.00 17.08
ATOM	1985	N			26	32.486	25.784	45.270	1.00 17.08
MOTA	1986	CA	TYR	_	20	JZ.400	20.704	-3.2/0	1.00 10.09

Figure 8-44

ATOM	1987	C	TYR	C	26	3	2.066			45.47	3 1	00	20.16
ATOM	1988	0	TYR	C	26	3	2.672	23.	586	46.21		00	20.74
ATOM	1989	CB	TYR	C	26	3	3.787	25.	925	44.50	5 1	00	18.65
ATOM	1990	CG	TYR	C	26	3	3.779	25.	389	43.08	7 1	00	15.43
ATOM	1991	CD1	TYR	C	26	3	2.863	25.	870	42.18	0 1	00	14.28
ATOM	1992	CD2	TYR	С	26	3	4.687	24.	394	42.74	0 1	00	18.66
ATOM	1993	CE1	TYR		26		2.828		305	40.91		00	18.89
ATOM	1994	CE2	TYR		26		4.680		853	41.45		00	18.57
ATOM	1995	CZ	TYR		26		3.736		325	40.56		1.00	17.94
ATOM	1996	OH	TYR	č	26		3.702		844	39.29		00	20.05
HETATM	1997	N	MSE	č	27		0.992		977	44.80		1.00	22.38
HETATM	1998	CA	MSE	č	27		0.472		643	44.96		00	23.82
HETATM	1999	CA	MSE	č	27		0.902		790	43.79		00	23.07
		õ	MSE	č	27		0.675		180	42.65		L.00	22.78
HETATM	2000		MSE	č	27		88.966		685	45.02		1.00	27.76
HETATM	2001	CB	MSE	č	27		8.476		440	46.22			33.28
HETATM	2002	CG										L.00	
HETATM	2003	SE	MSE	C	27		9.250		864	47.91			47.63
HETATM	2004	CE	MSE	C	27		8.807		413	48.97			42.81
ATOM	2005	N	ILE	C	28		11.514		637	44.12			23.36
ATOM	2006	CA	ILE	C	28		1.890		552	43.19		L.00	
ATOM	2007	C	ILE	C	28		0.924		334	43.19		L.00	25.21
ATOM	2008	0	ILE	С	28		10.568		795	44.23		L.00	24.49
ATOM	2009	CB	ILE	С	28		3.364		075	43.49		L.00	21.68
ATOM	2010	CG1	ILE	С	28		4.379		215	43.45		L.00	19.99
MOTA	2011	CG2	ILE	С	28		3.796		049	42.48		L.00	19.57
ATOM	2012	CD1	ILE	С	28		5.761		859	43.99		1.00	18.85
ATOM	2013	N	THR	C	29		10.508		846	42.01		L.00	26.46
ATOM	2014	CA	THR	C	29	- 2	29.637	16.	688	41.88	8 :	1.00	26.80
ATOM	2015	C	THR	C	29	3	0.388	15.	361	41.95	7 :	1.00	27.21
ATOM	2016	0	THR	C	29	3	1.299	15.	084	41.18	2 :	1.00	26.27
ATOM	2017	CB	THR	C	29	- :	28.824	16.	736	40.58	0 :	1.00	25.22
ATOM	2018	OG1	THR	C	29		28.137	7 17.	962	40.56	6 :	1.00	28.05
ATOM	2019	CG2	THR	C	29	- 2	7.773	15.	659	40.54	5 :	1.00	26.26
ATOM	2020	N	LEU	С	30	- :	9.980	14.	498	42.87	8	1.00	27.91
ATOM	2021	CA	LEU	С	30	3	0.519	13.	157	42.94	3	1.00	29.69
ATOM	2022	C	LEU	C	30		29.354	12.	189	43.16	8	1.00	31.34
ATOM	2023	ŏ	LEU		30		8.542		362	44.08		1.00	30.99
ATOM	2024	CB	LEU	č	30		1.578		070	44.05	1	1.00	25.27
ATOM	2025	CG	LEU	č	30		2.157		727	44.43		1.00	23.15
ATOM	2026	CD1	LEU	č	30		2.879		106	43.27		1.00	22.85
ATOM	2027	CD2	LEU	č	30		3.110		943	45.57		1.00	25.04
ATOM	2027	N	LYS	č	31		9.246		172	42.30		1.00	34.65
ATOM	2029	CA	LYS	č	31		28.335		045	42.51		1.00	36.49
ATOM	2030	c	LYS	č	31		8.910		150	43.62		1.00	36.03
	2031	ŏ	LYS	č	31		29.741		287	43.37		1.00	36.42
ATOM		CB	LYS	c	31		28.121		241	41.21		1.00	36.56
MOTA	2032		LYS	č	31		27.475		966	40.05		1.00	39.42
ATOM	2033	CG		č	31		26.86		902	39.12		1.00	47.68
ATOM	2034	CD	LYS		31		25.930		427	37.99		1.00	51.31
ATOM	2035	CE	LYS	C									
ATOM	2036	NZ	LYS	C	31		4.859		496	37.60		1.00	51.86
ATOM	2037	N	TYR	C	32		28.514		411	44.86		1.00	38.89
ATOM	2038	CA	TYR	C	32		29.12		846	46.08		1.00	40.86
ATOM	2039	C	TYR	C	32		28.594		437	46.26		1.00	43.51
ATOM	2040	0	TYR		32		27.425		204	45.99		1.00	45.02
ATOM	2041	CB	TYR	С	32		28.70		747	47.22		1.00	37.67
ATOM	2042	CG	TYR	С	32		29.138		317	48.61		1.00	
ATOM	2043	CD1	TYR	С	32		30.459		438	48.98		1.00	
ATOM	2044	CD2	TYR	C	32		28.190		.877	49.53		1.00	43.18
ATOM	2045	CE1	TYR		32		30.81		.172	50.30		1.00	
ATOM	2046	CE2	TYR	C	32		28.54:	2 8	.584	50.84	17	1.00	44.09

Figure 8-45

ATOM	2047	CZ	TYR	C	32	29.862	8.758	51.230	1.00 45.88
ATOM	2048	OH		Ċ	32	30.238	8.549	52.557	1.00 49.38
ATOM	2049	N	VAL	č	33	29.391	6.459	46.718	1.00 46.10
ATOM	2050	CA	VAL	č	33	28.866	5.097	46.885	1.00 48.63
ATOM	2051	C	VAL	č	33	28.323	4.935	48.307	1.00 50.48
	2051	ō	VAL	c	33	29.088	5.086	49.265	1.00 49.75
ATOM		CB	VAL	č	33	29.900	4.000	46.501	1.00 49.75
ATOM	2053								
ATOM	2054	CG1	VAL	C	33	29.390	2.594	46.823	1.00 50.53
ATOM	2055	CG2	VAL	С	33	30.216	4.072	45.014	1.00 47.63
ATOM	2056	N	PRO	C	34	27.006	4.682	48.505	1.00 53.28
ATOM	2057	CA	PRO		34	26.385	4.695	49.834	1.00 55.66
ATOM	2058	C	PRO	C	34	27.121	3.734	50.767	1.00 58.89
ATOM	2059	0	PRO	C	34	27.426	2.568	50.448	1.00 59.22
ATOM	2060	CB	PRO	C	34	24.936	4.297	49.549	1.00 54.96
ATOM	2061	CG	PRO	C	34	24.701	4.825	48.139	1.00 51.80
ATOM	2062	CD	PRO	C	34	26.002	4.428	47.456	1.00 51.86
ATOM	2063	N	GLY	C	35	27.545	4.399	51.850	1.00 60.51
MOTA	2064	CA	GLY	C	35	28.272	3.744	52.925	1.00 62.88
MOTA	2065	C	GLY	C	35	29.632	3.266	52.457	1.00 63.14
ATOM	2066	0	GLY	C	35	29.852	2.077	52.214	1.00 64.01
HETATM	2067	N	MSE	C	36	30.521	4.240	52.301	1.00 62.92
HETATM	2068	CA	MSE	C	36	31.881	3.970	51.881	1.00 63.09
HETATM	2069	C	MSE	C	36	32.945	4.485	52.836	1.00 64.77
HETATM	2070	ō	MSE	Ċ	36	34.148	4.357	52.599	1.00 65.03
HETATM	2071	CB	MSE	Ċ	36	32.115	4.582	50.531	1.00 62.61
HETATM	2072	CG	MSE	č	36	31.973	6.068	50.551	1.00 60.55
HETATM	2073	SE	MSE	č	36	33.277	6.879	49.401	1.00 61.18
HETATM	2074	CE	MSE	Ċ	36	34.541	7.346	50.777	1.00 55.15
ATOM	2075	N	ASP	č	37	32.430	5.163	53.863	1.00 66.73
ATOM	2076	CA	ASP	č	37	33.149	5.583	55.061	1.00 67.41
ATOM	2077	c	ASP	Č	37	33.215	4.481	56.132	1.00 66.85
ATOM	2078	ŏ	ASP	Ċ	37	34.130	4.393	56.957	1.00 67.21
ATOM	2079	CB	ASP	C	37	32.478	6.867	55.589	1.00 69.00
ATOM	2080	CG	ASP	č	37	30.982	6.808	55.935	1.00 70.25
ATOM	2081		ASP	č	37	30.143	6.538	55.061	1.00 69.81
ATOM	2082	OD2	ASP	č	37	30.657	7.058	57.097	1.00 71.69
ATOM	2083	N	VAL	č	38	32.224	3.593	56.068	1.00 65.94
ATOM	2084	CA	VAL	č	38	32.091	2.461	56.960	1.00 64.55
ATOM	2085	Č.	VAL	č	38	32.395	1.200	56.170	1.00 65.94
ATOM	2086	ŏ	VAL	č	38	33.340	0.521	56.584	1.00 68.33
ATOM	2087	CB	VAL	č	38	30.694	2.475	57.631	1.00 63.05
ATOM	2088	CG1	VAL	č	38	29.960	1.135	57.787	1.00 62.73
ATOM	2089	CG2	VAL	č	38	30.915	3.097	58.990	1.00 61.39
ATOM	2090	N	LEU	č	39	31.700	0.861	55.059	1.00 64.32
ATOM	2091	CA	LEU	č	39	31.997	-0.365	54.328	1.00 63.23
ATOM	2092	C	LEU	č	39	33.487	-0.412	53.952	1.00 62.57
ATOM	2093	ŏ	LEU	č	39	34.084	0.647	53.713	1.00 63.24
ATOM	2094	CB	LEU	č	39	31.130	-0.449	53.078	1.00 62.74
ATOM	2095	N	PRO	č	40	34.161	-1.578	54.006	1.00 61.57
ATOM	2096	CA	PRO	č	40	35.608	-1.719	53.761	1.00 59.74
	2096	CA	PRO	č	40	36.009	-1.462	52.318	1.00 57.52
ATOM	2098	ŏ	PRO	c	40	35.183	-1.629	51.418	1.00 54.10
ATOM	2098	CB	PRO	č	40	35.861	-3.170	54.123	1.00 60.55
ATOM	2100	CG	PRO	č	40	34.550	-3.863	53.762	1.00 60.74
MOTA			PRO	č	40	33.546	-2.868	54.329	1.00 60.74
MOTA	2101	CD	SER		41	37.282	-1.110	52.111	1.00 56.39
MOTA	2102	N		C	41	37.282	-0.735	50.798	1.00 56.39
ATOM	2103	CA	SER	C	41	37.779	-1.553	49.602	1.00 56.41
ATOM	2104	C	SER			36.627	-0.992	48.727	1.00 56.41
ATOM	2105	O			41	39.292	-0.992	50.831	1.00 57.36
ATOM	2106	CB	SER	_	41	27.222	0.043	20.031	1.00 37.36

MOTA	2107	OG	SER C	41	39.964	-1.877	50.695	1.00 60.69
ATOM	2108	N	HIS C	42	37.404	-2.882	49.580	1.00 56.11
ATOM	2109	CA	HIS C	42	36.947	-3.739	48.482	1.00 56.80
ATOM	2110	C	HIS C	42	35.473	-3.664	48.079	1.00 56.34
				42				
ATOM	2111	0			35.062	-4.139	47.007	1.00 55.64
MOTA	2112	CB	HIS C	42	37.301	-5.217	48.795	1.00 60.78
ATOM	2113	CG	HIS C	42	36.205	-6.095	49.445	1.00 63.24
MOTA	2114	ND1	HIS C	42	35.894	-6.211	50.736	1.00 63.50
ATOM	2115	CD2	HIS C	42	35.244	-6.788	48.711	1.00 63.78
ATOM	2116	CE1	HIS C	42	34.762	-6.882	50.802	1.00 64.65
ATOM	2117	NE2	HIS C	42	34.371	-7.201	49.584	1.00 64.49
				43	34.669	-3.175	49.027	
ATOM	2118	N						1.00 56.27
MOTA	2119	CA	CYS C	43	33.239	-3.012	48.806	1.00 56.25
ATOM	2120	C	CYS C	43	32.953	-1.871	47.844	1.00 54.69
ATOM	2121	0	CYS C	43	32.104	-2.006	46.959	1.00 56.17
ATOM	2122	CB	CYS C	43	32.488	-2.787	50.120	1.00 57.47
ATOM	2123	SG	CYS C	43	31.647	-4.253	50.786	1.00 60.51
ATOM	2124	N	TRP C	44	33.695	-0.766	47.973	1.00 51.41
ATOM	2125	CA	TRP C	44	33.338	0.464	47.287	1.00 47.58
	2126	C	TRP C	44	34.349	0.946	46.300	1.00 46.08
ATOM						1.593		
ATOM	2127	0	TRP C	44	33.969		45.341	1.00 46.29
ATOM	2128	CB	TRP C	44	33.089	1.587	48.271	1.00 47.09
ATOM	2129	CG	TRP C	44	34.199	1.801	49.301	1.00 46.63
ATOM	2130	CD1	TRP C	44	34.221	1.046	50.444	1.00 47.77
ATOM	2131	CD2	TRP C	44	35.261	2.660	49.225	1.00 45.55
ATOM	2132	NE1	TRP C	44	35.307	1.419	51.078	1.00 47.46
ATOM	2133	CE2	TRP C	44	35.948	2.361	50.389	1.00 44.86
ATOM	2134	CE3	TRP C	44	35.723	3.640	48.403	1.00 42.70
ATOM	2135	CZ2	TRP C	44	37.122	2.956	50.754	1.00 43.79
ATOM	2136	CZ3	TRP C	44	36.886	4.263	48.782	1.00 43.82
ATOM	2137	CH2	TRP C	44	37.597	3.925	49.920	1.00 42.91
	2137	N	ILE C	45	35.615	0.635	46.539	1.00 45.14
ATOM			ILE C	45	36.735	1.252	45.851	1.00 47.08
ATOM	2139	CA	ILE C	45	36.657	1.198	44.329	
ATOM	2140							1.00 47.61
ATOM	2141	0	ILE C	45	36.955	2.157	43.619	1.00 48.87
MOTA	2142	CB	ILE C	45	38.085	0.681	46.427	1.00 47.91
MOTA	2143	CG1	ILE C	45	39.316	1.515	46.123	1.00 46.35
ATOM	2144	CG2	ILE C	45	38.420	-0.723	45.905	1.00 50.05
ATOM	2145	CD1	ILE C	45	39.180	2.995	46.462	1.00 43.72
ATOM	2146	N	SER C	46	36.158	0.077	43.850	1.00 47.61
ATOM	2147	CA	SER C	46	36.069	-0.245	42.437	1.00 48.09
ATOM	2148	C	SER C	46	35.166	0.685	41.595	1.00 47.26
ATOM	2149	ō	SER C	46	35.598	1.186	40.555	1.00 46.49
ATOM	2150	CB	SER C	46	35.688	-1.728	42.427	1.00 50.90
ATOM	2151	OG	SER C	46	35.093	-2.219	43.664	1.00 54.24
ATOM	2152	N	GLU C	47	33.932	0.997	42.039	1.00 46.80
		CA	GLU C	47	33.095	2.037	41.430	1.00 45.94
ATOM	2153							
MOTA	2154	C	GLU C	47	33.599	3.449	41.776	1.00 43.82
ATOM	2155	0	GLU C	47	33.532	4.348	40.947	1.00 43.16
ATOM	2156	CB	GLU C	47	31.602	1.843	41.831	1.00 47.29
ATOM	2157	CG	GLU C	47	30.478	2.752	41.246	1.00 52.00
MOTA	2158	CD	GLU C	47	29.748	2.394	39.936	1.00 54.16
ATOM	2159	OE1	GLU C	47	28.894	1.494	39.926	1.00 57.21
ATOM	2160	OE2	GLU C	47	29.989	3.052	38.922	1.00 54.36
HETATM		N	MSE C	48	34.170	3.670	42.967	1.00 43.01
HETATM		CA	MSE C	4.8	34.601	4.979	43.448	1.00 40.77
HETATM		C	MSE C	48	35.795	5.538	42.724	1.00 37.10
		Ö	MSE C	48	35.799	6.739	42.563	1.00 39.16
HETATM		СВ	MSE C	48	34.926	4.968	44.927	1.00 43.83
		CG	MSE C	48	34.526	6.334	45.551	1.00 49.60
HETATM	2166	CG	MOE C	40	Ja. 00/	0.334	*2.551	1.00 45.00

Figure 8-47

HETATM	2167	SE	MSE C	48	32.809	6.850	45.340	1.00 57.46
HETATM	2168	CE	MSE C	48	32.917	8.464	46.266	1.00 52.90
MOTA	2169	N	VAL C	49	36.793	4.773	42.266	1.00 34.29
ATOM	2170	CA	VAL C	49	37.855	5.271	41.388	1.00 30.22
ATOM	2171	C	VAL C	49	37.372	5.680	39.997	1.00 31.03
ATOM	2172	Ö	VAL C	49	37.936	6.572	39.365	1.00 30.17
			VAL C	49	39.021			
MOTA	2173	CB				4.288	41.268	1.00 27.65
ATOM	2174	CG1	VAL C	49	39.719	4.131	42.581	1.00 27.80
ATOM	2175	CG2	VAL C	49	38.591	2.924	40.828	1.00 27.38
MOTA	2176	N	VAL C	50	36.319	5.056	39.478	1.00 29.68
ATOM	2177	CA.	VAL C	50	35.727	5.548	38.255	1.00 29.53
MOTA	2178	C	VAL C	50	34.932	6.806	38.559	1.00 28.57
ATOM	2179	0	VAL C	50	35.069	7.755	37.800	1.00 30.41
ATOM	2180	CB	VAL C	50	34.904	4.446	37.554	1.00 30.06
ATOM	2181	CG1	VAL C	50	34.026	4.900	36.371	1.00 28.50
ATOM	2182	CG2	VAL C	50	35.916	3.457	37.070	1.00 29.52
ATOM	2183	N	GLN C	51	34.147	6.917	39.639	1.00 28.05
	2184	CA	GLN C	51	33.421	8.148	39.945	1.00 27.55
ATOM	2185	C	GLN C	51	34.267	9.336	40.379	
ATOM								
MOTA	2186	0_		51	33.957	10.480	40.061	1.00 27.78
MOTA	2187	CB	GLN C	51	32.276	7.962	40.944	1.00 27.95
MOTA	2188	CG	GLN C	51	31.142	7.029	40.503	1.00 31.66
ATOM	2189	CD	GLN C	51	30.518	7.274	39.121	1.00 35.14
ATOM	2190	OE1	GLN C	51	30.531	8.353	38.510	1.00 34.94
ATOM	2191	NE2	GLN C	51	29.945	6.214	38.566	1.00 36.11
ATOM	2192	N	LEU C	52	35.349	9.130	41.113	1.00 24.84
ATOM	2193	CA	LEU C	52	36.290	10.188	41.316	1.00 24.73
ATOM	2194	C	LEU C	52	36.914	10.560	40.004	1.00 25.82
MOTA	2195	ō	LEU C	52	37.061	11.752	39.750	1.00 26.91
ATOM	2196	CB	LEU C	52	37.349	9.754	42.251	1.00 25.92
ATOM	2197	CG	LEU C	52	36.831	9.701	43.653	1.00 27.26
ATOM	2198	CD1	LEU C	52	37.880	9.090	44.510	1.00 27.86
MOTA	2199	CD2	LEU C	52	36.473	11.078	44.141	1.00 27.88
		N N	SER C	53	37.211			
ATOM	2200	CA.		53		9.566	39.148	
ATOM	2201				37.788	9.790	37.838	1.00 24.69
MOTA	2202	C	SER C	53	36.859	10.558	36.918	1.00 26.00
MOTA	2203	0	SER C	53	37.336	11.388	36.166	1.00 26.97
MOTA	2204	CB	SER C	53	38.172	8.499	37.198	1.00 25.64
MOTA	2205	OG	SER C	53	38.902	8.772	36.019	1.00 24.45
MOTA	2206	N	ASP C	54	35.544	10.421	36.932	1.00 27.50
MOTA	2207	CA	ASP C	54	34.743	11.292	36.113	1.00 29.13
ATOM	2208	С	ASP C	54	34.719	12.679	36.663	1.00 27.20
ATOM	2209	0	ASP C	54	34.826	13.616	35.906	1.00 30.75
MOTA	2210	CB	ASP C	54	33.314	10.874	36.099	1.00 35.74
MOTA	2211	CG	ASP C	54	33.056	9.521	35.502	1.00 43.27
ATOM	2212	OD1		54	33.871	9.016	34.694	1.00 44.80
ATOM	2213	OD2	ASP C	54	31.996	8.988	35.876	1.00 47.24
MOTA	2214	N	SER C	55	34.554	12.829	37.966	1.00 26.41
MOTA	2215	CA	SER C	55	34.470	14.119	38.610	1.00 23.34
		C	SER C	55	35.676	14.964	38.382	1.00 19.99
MOTA	2216							
ATOM	2217	0	SER C	55	35.544	16.157	38.175	1.00 20.42
MOTA	2218	CB	SER C	55	34.306	13.948	40.105	1.00 24.40
MOTA	2219	OG	SER C	55	33.079	13.321	40.431	1.00 24.29
ATOM	2220	N	LEU C	56	36.837	14.338	38.432	1.00 19.40
MOTA	2221	CA	LEU C	56	38.082	15.062	38.245	1.00 21.98
MOTA	2222	C	LEU C	56	38.333	15.488	36.797	1.00 23.22
MOTA	2223	0	LEU C	56	38.922	16.543	36.512	1.00 21.76
MOTA	2224	CB	LEU C	56	39.301	14.271	38.793	1.00 21.06
ATOM	2225	CG	LEU C	56	39.614	14.342	40.291	1.00 19.56
ATOM	2226		LEU C	56	40.647	13.313	40.678	1.00 18.16
511	2220				201021			

 $rac{1}{10}$

Figure 8-48

n most	2227	CD3	LEU C	56	40.132	15.717	40.651	1.00 16.61
ATOM	2228	N N	THR C	57	37.873	14.624	35.881	1.00 25.77
ATOM		CA	THR C	57	37.991	14.906	34.462	1.00 28.23
ATOM	2229 2230	C	THR C	57	37.020	16.004	34.104	1.00 28.03
ATOM	2231	õ	THR C	57	37.390	16.908	33.364	1.00 31.55
ATOM	2231	CB	THR C	57	37.813	13.669	33.596	1.00 30.08
MOTA		OG1	THR C	57	38.904	12.849	33.972	1.00 32.28
ATOM	2233	CG2	THR C	57	38.044	13.945	32.109	1.00 33.98
MOTA	2234	N	ASP C	58	35.831	16.009	34.675	1.00 26.77
ATOM	2235	CA	ASP C	58	34.940	17.120	34.486	1.00 29.31
MOTA	2236	C	ASP C	58	35.387	18.422	35.173	1.00 28.49
ATOM	2237	0	ASP C	58	35.241	19.515	34.614	1.00 29.44
ATOM	2238	CB	ASP C	58	33.489	16.679	34.870	1.00 36.00
ATOM	2239	CG	ASP C	58	32.849	15.532	34.032	1.00 40.53
ATOM	2240	OD1		58	33.503	14.924	33.151	1.00 41.90
ATOM	2241	OD2	ASP C	58	31.673	15.229	34.294	1.00 42.29
ATOM	2242	N	LEU C	59	35.964	18.350	36.383	1.00 26.07
ATOM	2243	CA	LEU C	59	36.486	19.508	37.074	1.00 21.52
ATOM	2244	CA	LEU C	59	37.611	20.115	36.285	1.00 19.04
ATOM	2245	ō	LEU C	59	37.748	21.317	36.312	1.00 20.31
ATOM	2246 2247	CB	LEU C	59	37.028	19.118	38.444	1.00 19.27
ATOM	2248	CG	LEU C	59	37.519	20.223	39.377	1.00 18.52
ATOM	2249	CD1	LEU C	59	36.411	21.181	39.805	1.00 14.85
ATOM ATOM	2250	CD2		59	38.147	19.538	40.574	1.00 18.90
	2251	N	LEU C	60	38.399	19.348	35.553	1.00 19.17
MOTA	2252	CA	LEU C	60	39.549	19.854	34.840	1.00 20.10
ATOM	2253	C	LEU C	60	39.173	20.833	33.766	1.00 22.23
ATOM ATOM	2254	Ö	LEU C	60	39.912	21.768	33.474	1.00 24.00
ATOM	2255	CB	LEU C	60	40.290	18.718	34.206	1.00 18.56
ATOM	2256	CG	LEU C	60	41.582	19.115	33.520	1.00 19.76
ATOM	2257	CD1		60	42.638	19.404	34.561	1.00 17.43
ATOM	2258	CD2		60	42.018	18.002	32.555	1.00 20.53
ATOM	2259	N	ASP C	61	37.984	20.629	33.214	1.00 25.53
ATOM	2260	CA	ASP C	61	37.471	21.478	32.157	1.00 27.32
ATOM	2261	C	ASP C	61	36.950	22.809	32.666	1.00 24.92
ATOM	2262	ō	ASP C	61	36.768	23.738	31.883	1.00 26.04
ATOM	2263	CB	ASP C	61	36.365	20.729	31.389	1.00 35.92
ATOM	2264	CG	ASP C	61	36.753	19.367	30.759	1.00 45.09
ATOM	2265	OD1		61	37.808	19.241	30.086	1.00 48.21
ATOM	2266	OD2	ASP C	61	35.970	18.414	30.956	1.00 49.47
ATOM	2267	N	LYS C	62	36.733	22.956	33.979	1.00 22.12
ATOM	2268	CA	LYS C	62	36.379	24.234	34.559	1.00 18.62 1.00 17.52
ATOM	2269	C	LYS C	62	37.603	25.082	34.727	1.00 17.52 1.00 19.68
ATOM	2270	0	LYS C	62	37.491	26.205	35.176 35.888	1.00 17.21
ATOM	2271	CB	LYS C	62	35.718	24.064	35.893	1.00 20.59
ATOM	2272	CG	LYS C	62	34.590	23.302	34.802	1.00 23.94
ATOM	2273	CD	LYS C	62	33.552	22.398	34.907	1.00 27.69
ATOM	2274	CE	LYS C	62	32.302	20.990	35.112	1.00 33.53
ATOM	2275	NZ	LYS C	62	32.621	24.629	34.385	1.00 16.95
MOTA	2276	N	PHE C	63	38.792 39.980	25.398	34.650	1.00 18.75
MOTA	2277	CA	PHE C	63	40.714	25.584	33.363	1.00 20.52
MOTA	2278	C	PHE C	63	40.714	24.894	32.375	1.00 22.83
ATOM	2279	0_	PHE C	63	40.491	24.728	35.712	
ATOM	2280	CB	PHE C	63	40.890	24.720	37.109	
ATOM	2281	ÇG		63	40.280	25.931	37.893	
MOTA	2282	CD:		63 63	39.475	23.764	37.555	
ATOM	2283	CD:		63	39.475	26.070	39.078	
MOTA	2284	CE:		63	38.742	23.932		
MOTA	2285	CE:	PHE C	63	38.864	25.086		
MOTA	2286	C2	FILE C	0.3	50.501			

Figure 8-49

	2287	N	SER C	64	41.606	26.540	33.393	1.00 22.26
MOTA			SER C	64	42.458	26.748	32.268	1.00 25.03
ATOM	2288	CA	SER C	64	43.928	26.724	32.651	1.00 27.32
ATOM	2289	C			44.339	27.274	33.668	1.00 29.54
MOTA	2290	0	SER C	64	41.951	28.036	31.682	1.00 27.42
MOTA	2291	CB	SER C	64		28.782	30.987	1.00 33.90
MOTA	2292	OG	SER C	64	42.936			
ATOM	2293	N	ASN C	65	44.750	26.056	31.838	1.00 29.09
ATOM	2294	CA	ASN C	65	46.183	25.967	32.048	1.00 29.94
MOTA	2295	C	ASN C	65	46.912	27.280	31.894	1.00 31.16
MOTA	2296	0	ASN C	65	46.482	28.228	31.252	1.00 32.15
ATOM	2297	CB	ASN C	65	46.770	24.950	31.088	1.00 31.52
ATOM	2298	CG	ASN C	65	48.076	24.325	31.558	1.00 31.71
	2299	OD1		65	48.626	24.591	32.636	1.00 30.12
ATOM	2300	ND2		65	48.554	23.457	30.676	1.00 32.43
MOTA		N	ILE C	66	48.053	27.328	32.558	1.00 34.70
MOTA	2301		ILE C	66	48.822	28.549	32.743	1.00 38.02
MOTA	2302	CA		66	50.279	28.139	32.567	1.00 39.89
ATOM	2303	C	ILE C			27.095	33.077	1.00 40.56
MOTA	2304	0	ILE C	66	50.733		34.181	1.00 37.96
ATOM	2305	CB	ILE C	66	48.560	29.130 29.513	34.381	1.00 37.79
MOTA	2306	CG1	ILE C	66	47.097			1.00 37.73
ATOM	2307	CG2	ILE C	66	49.443	30.334	34.443	
ATOM	2308	CD1	ILE C	66	46.677	29.759	35.833	
ATOM	2309	N	SER C	67	50.960	29.038	31.828	1.00 41.75
MOTA	2310	CA	SER C	67	52.349	28.856	31.397	1.00 44.33
ATOM	2311	C	SER C	67	53.320	28.647	32.536	1.00 44.00
ATOM	2312	Ö	SER C	67	54.160	27.762	32.527	1.00 44.13
ATOM	2313	CB	SER C	67	52.833	30.063	30.588	1.00 45.04
ATOM	2314	OG	SER C	67	52.984	31.250	31.372	1.00 50.12
ATOM	2315	N	GLU C	68	53.150	29.510	33.517	1.00 46.29
ATOM	2316	CA	GLU C	68	53.969	29.520	34.702	1.00 49.75
	2317	C	GLU C	68	53.215	29.731	36.043	1.00 48.90
MOTA	2318	o	GLU C	68	52.374	30.624	36.267	1.00 49.09
MOTA		CB	GLU C	68	55.066	30.581	34.479	1.00 53.81
MOTA	2319	CG	GLU C	68	56.220	30.174	33.547	1.00 59.46
ATOM	2320	CD	GLU C	68	57.364	29.378	34.192	1.00 63.46
ATOM	2321		GLU C	68	57.165	28.736	35.239	1.00 65.40
MOTA	2322	OE1		68	58.477	29,413	33.642	1.00 65.78
MOTA	2323	OE2		69	53.643	28.896	36.995	1.00 46.18
ATOM	2324	N		69	52.938	28.734	38.244	1.00 41.09
MOTA	2325	CA	GLY C		52.252	27.398	38.142	1.00 37.69
ATOM	2326	С	GLY C	69	51.845	26.975	37.057	1.00 38.22
MOTA	2327	0	GLY C	69		26.712	39.279	1.00 34.58
MOTA	2328	N	TER C	70	52.181	25.484	39.399	1.00 30.54
ATOM	2329	CA	LEU C	70	51.394		39.513	1.00 28.30
MOTA	2330	C	LEU C	70	49.895	25.821	40.513	1.00 29.19
ATOM	2331	0	LEU C	70	49.411	26.367		
MOTA	2332	CB	LEU C	70	51.895	24.714	40.615	
MOTA	2333	CG	LEU C	70	51.380	23.328	40.950	1.00 27.08
ATOM	2334	CD1		70	51.749	22.340	39.816	1.00 26.63
MOTA	2335	CD2	LEU C	70	51.914	22.939	42.329	1.00 22.67
MOTA	2336	N	SER C	71	49.173	25.536	38.430	1.00 23.37
ATOM	2337	CA	SER C	71	47.795		38.342	1.00 18.79
ATOM	2338	C	SER C	71	46.961	24.732	38.737	1.00 14.59
ATOM	2339	Ö	SER C	71	47.420	23.616	38.830	1.00 13.92
	2340	СВ	SER C	71	47.499		36.929	1.00 19.04
ATOM		OG	SER C	71	47.794		36.073	1.00 21.34
MOTA	2341		ASN C	72	45.691		38.938	1.00 15.21
MOTA	2342	N	ASN C	72	44.712		39.262	1.00 16.38
MOTA	2343	CA	ASN C	72	44.530		38.120	1.00 17.89
MOTA	2344	C		72	44.330		38.358	1.00 19.68
MOTA	2345	0		72	43.395		39.627	
MOTA	2346	CB	ASN C	12	43.395	24.000	55.527	

Figure 8-50

ATOM	2347	CG	ASN C	72	43.443	25.398	40.958	1.00 16.98
ATOM	2348	OD1	ASN C	72	44.439	25.399	41.698	1.00 15.50
ATOM	2349	ND2	ASN C	72	42.348	26.051	41.315	1.00 16.58
ATOM	2350	N	TYR C	73	44.626	23.493	36.878	1.00 17.45
ATOM	2351	CA	TYR C	73	44.546	22.649	35.715	1.00 16.35
ATOM	2352	C	TYR C	73	45.628	21.603	35.846	1.00 16.88
ATOM	2353	ŏ	TYR C	73	45.388	20.407	35.803	1.00 18.90
ATOM	2354	CB	TYR C	73	44.797	23.540	34.503	1.00 14.79
ATOM	2355	CG	TYR C		44.618	22.779	33.215	1.00 18.01
ATOM	2356	CD1	TYR C		45.649	22.000	32.745	1.00 18.75
ATOM	2357	CD2	TYR C		43.428	22.809	32.544	1.00 17.80
ATOM	2358	CE1	TYR C		45.507	21.189	31.632	1.00 23.12
ATOM	2359	CE2	TYR C		43.282	22.000	31.424	1.00 23.77
ATOM	2360	CZ	TYR C		44.300	21.160	30.987	1.00 22.85
ATOM	2361	OH	TYR C		44.105	20.242	29.959	1.00 27.47
MOTA	2362	N	SER C		46.846	22.071	36.054	1.00 19.27
ATOM	2363	CA	SER C		48.037	21.234	36.196	1.00 18.80
ATOM	2364	C	SER C		47.939	20.205	37.316	1.00 18.49
ATOM	2365	ŏ	SER C		48.192	19.026	37.062	1.00 18.14
ATOM	2366	CB	SER C		49.160	22.197	36.410	1.00 19.97
ATOM	2367	OG	SER C		50.345	21.552	36.749	1.00 27.05
ATOM	2368	N	ILE C		47.536	20.603	38.532	1.00 17.15
ATOM	2369	CA	ILE C		47.360	19.670	39.640	1.00 15.78
MOTA	2370	C	ILE C	. 75	46.266	18.688	39.303	1.00 15.56
ATOM	2371	õ	ILE C	75	46.392	17.487	39.540	1.00 15.90
ATOM	2372	CB	ILE C	75	47.004	20.373	40.994	1.00 14.47
ATOM	2373	CG1	ILE C	75	48.069	21.396	41.311	1.00 15.08
ATOM	2374	CG2	ILE (46.847	19.406	42.151	1.00 9.44
ATOM	2375	CD1	ILE (75	47.662	22.494	42.334	1.00 16.06
ATOM	2376	N	ILE (76	45.174	19.165	38.739	1.00 15.87
ATOM	2377	CA	ILE C	76	44.072	18.254	38.540	1.00 16.45
ATOM	2378	C	ILE (44.423	17.278	37.416	1.00 18.42
ATOM	2379	0	ILE (76	44.047	16.107	37.479	1.00 21.96
ATOM	2380	CB	ILE (42.777	19.029	38.276	1.00 16.99
ATOM	2381	CG1	ILE (42.407	20.014	39.366	1.00 18.36
ATOM	2382	CG2	ILE (41.661	18.026	38.294	1.00 18.72
ATOM	2383	CD1			41.376	21.090	38.981	1.00 13.71 1.00 19.28
ATOM	2384	N	ASP (45.169	17.686	36.395	1.00 19.28 1.00 20.35
ATOM	2385	CA	ASP (45.673	16.806	35.340	1.00 18.75
ATOM	2386	C	ASP (46.477	15.616	35.867 35.483	1.00 20.55
ATOM	2387	0	ASP 0		46.259	14.474	34.388	1.00 20.55
ATOM	2388	CB	ASP (46.528	17.679	32.984	1.00 23.72
ATOM	2389	CG		77	46.796	17.143 16.148	32.504	1.00 29.11
ATOM	2390	OD1		77	46.195	17.723	32.239	1.00 23.11
ATOM	2391			77	47.586	15.826	36.791	1.00 18.00
ATOM	2392	N		78	47.401	14.729	37.494	1.00 19.18
MOTA	2393	CA		78	48.064 47.114	13.802	38.229	1.00 16.84
ATOM	2394	C		78	47.200	12.586	38.170	1.00 18.34
ATOM	2395	0		78	49.017	15.288	38.533	1.00 21.80
MOTA	2396	CB		78	50.492	15.453	38.249	1.00 26.26
ATOM	2397	CG		78	50.492	16.212	36.977	1.00 33.33
ATOM	2398	CD			51.977	17.190	37.154	1.00 36.36
ATOM	2399	CE			51.538	18.516	37.592	1.00 40.57
ATOM	2400	NZ			46.160	14.358	38.937	1.00 17.71
ATOM	2401	N		C 79	45.282	13.528	39.739	1.00 19.39
ATOM	2402	CA			44.465	12.641	38.836	1.00 19.34
ATOM	2403	C		C 79	44.358	11.479	39.161	1.00 22.92
MOTA	2404	0		C 79	44.412	14.342	40.708	1.00 15.20
ATOM	2405	CB	LEU		45.179	15.238	41.695	1.00 14.54
MOTA	2406	CG	пео	_ ,9	43.173	20.200		

58/85

ATOM	2407	CD1	LEU		79	44.276	15.934	42.683	1.00 15.95
MOTA	2408	CD2		C	79	46.119	14.401	42.497	1.00 14.50
ATOM	2409	N	VAL	C	80	43.974	13.115	37.694	1.00 20.79
MOTA	2410	CA	VAL	C	80	43.210	12.349	36.719	1.00 19.75
ATOM	2411	C	VAL	C	80	44.068	11.231	36.229	1.00 20.92
ATOM	2412	0	VAL	C	80	43.583	10.133	36.160	1.00 19.45
ATOM	2413	CB		С	80	42.850	13.201	35.502	1.00 20.41
ATOM	2414	CG1		Ċ	80	42.103	12.364	34.477	1.00 22.80
ATOM	2415	CG2		Ċ	80	41.915	14.311	35.902	1.00 19.35
ATOM	2416	N		ē	81	45.344	11.472	35.936	1.00 24.00
ATOM	2417	CA		č	81	46.215	10,435	35.447	1.00 24.32
ATOM	2418	C		c	81	46.460	9.366	36.474	1.00 25.83
ATOM	2419	Ö		c	81	46.405	8.188	36.168	1.00 27.41
ATOM	2420	CB		c	81	47,505	11.049	35.027	1.00 25.29
ATOM	2421	CG		c	81	47.389	11.689	33.658	1.00 27.98
ATOM	2422	OD1		c	81	47.347	10.977	32.667	1.00 30.37
	2423	ND2		c	81	47.387	13.000	33.477	1.00 27.47
ATOM	2423	ND2		č	82	46.690	9.750	37.714	1.00 27.47
ATOM				č	82		8.819		
ATOM	2425	CA C		c	82	46.839 45.586	7.971	38.814 39.042	1.00 27.48
MOTA	2426								1.00 29.22
ATOM	2427	0_		C	82	45.705	6.766	39.266	1.00 32.26
MOTA	2428	CB		C	82	47.228	9.685	40.022	1.00 26.77
ATOM	2429	CG1		C	82	48.662	10.131	39.852	1.00 24.85
ATOM	2430	CG2		C	82	47.046	8.977	41.344	1.00 26.49
MOTA	2431	CD1		C	82	49.159	11.193	40.833	1.00 24.34
MOTA	2432	N		C	83	44.371	8.547	38.968	1.00 30.80
MOTA	2433	CA		C	83	43.099	7.834	39.209	1.00 29.90
ATOM	2434	C		C	83	42.793	6.906	38.019	1.00 30.67
MOTA	2435	0		C	83	42.229	5.824	38.195	1.00 29.90
MOTA	2436	CB		C	83	41.888	8.816	39.455	1.00 27.23
MOTA	2437	CG1		C	83	40.651	8.141	39.973	1.00 28.89
ATOM	2438	CG2		C	83	42.154	9.759	40.558	1.00 28.33
MOTA	2439	N		C	84	43.174	7.298	36.797	1.00 31.05
MOTA	2440	CA		C	84	42.971	6.473	35.629	1.00 31.24
ATOM	2441	С		C	84	43.761	5.196	35.686	1.00 32.41
MOTA	2442	0		C	84	43.233	4.156	35.291	1.00 32.47
ATOM	2443	CB		C	84	43.296	7.192	34.350	1.00 31.90
MOTA	2444	CG		C	84	42.233	8.181	33.899	1.00 36.65
ATOM	2445	OD1	ASP	C	84	41.105	8.177	34.417	1.00 37.73
MOTA	2446	OD2		C	84	42.537	8.969	33.000	1.00 40.83
ATOM	2447	N		C	85	44.988	5.287	36.202	1.00 31.95
MOTA	2448	CA	ASP	C	85	45.770	4.128	36.589	1.00 34.69
ATOM	2449	C	ASP	C	85	45.189	3.114	37.564	1.00 34.70
MOTA	2450	0	ASP	C	85	45.464	1.921	37.471	1.00 34.86
ATOM	2451	CB	ASP	C	85	47.030	4.593	37.248	1.00 37.43
ATOM	2452	CG	ASP	C	85	48.101	5.028	36.290	1.00 41.26
MOTA	2453	OD1	ASP	C	85	47.860	4.978	35.077	1.00 45.93
ATOM	2454	OD2	ASP	C	85	49.169	5.423	36.776	1.00 43.39
ATOM	2455	N	LEU	C	86	44.445	3.587	38.552	1.00 34.35
ATOM	2456	CA		Ċ	86	43.783	2.717	39.498	1.00 34.80
ATOM	2457	C		С	86	42.525	2.164	38.889	1.00 34.98
ATOM	2458	ŏ		č	86	42.117	1.094	39.288	1.00 36.02
ATOM	2459	CB		č	86	43.443	3.508	40.735	1.00 35.24
ATOM	2460	CG		č	86	44.591	4.321	41.331	1.00 37.43
ATOM	2461	CD1		č	86	44.052	5.240	42.407	1.00 38.91
ATOM	2462	CD2		č	86	45.728	3.422	41.825	1.00 37.75
ATOM	2463	N N		č	87	41.886	2.866	37.939	1.00 37.73
ATOM	2464	CA		č	87	40.748	2.365	37.175	1.00 38.56
ATOM	2465	CA		č	87	41.236	1.205	36.320	1.00 41.43
ATOM	2466	ò	VAL		87	40.621	0.154	36.327	1.00 43.44
ATOM	2400	0	AMU	_	-,	.0.021	0.154	50.557	2.00 45.44

ATOM	2467	CB	VAL	С	87	40.167	3.478	36.302	1.00 36.61
ATOM	2468	CG1	VAL	С	87	39,054	2.945	35.450	1.00 37.46
ATOM	2469	CG2	VAL	č	87	39.592	4.584	37.139	1.00 35.39
			GLU	č		42.356	1.329	35.613	
ATOM	2470	N			88				
ATOM	2471	CA	GLU	С	88	42.933	0.237	34.842	1.00 50.04
ATOM	2472	C	GLU	С	88	43.480	-0.856	35.761	1.00 52.28
ATOM	2473	0	GLU	С	88	43.503	-2.015	35.374	1.00 53.46
ATOM	2474	CB	GLU	С	88	44.048	0.728	33.869	1.00 52.22
ATOM	2475	CG	GLU	č	88	43.776	1.785	32.749	1.00 56.99
			GLU	č	88	42.784	1.451	31.610	
MOTA	2476	CD							
ATOM	2477	OE1	GLU	С	88	42.853	0.348	31.046	1.00 66.19
ATOM	2478	OE2	GLU	С	88	41.926	2.286	31.266	1.00 62.89
ATOM	2479	N	CYS	С	89	43.930	-0.535	36.982	1.00 55.77
ATOM	2480	CA	CYS	С	89	44.471	-1.508	37.936	1.00 58.72
ATOM	2481	C	CYS	С	89	43.372	-2.333	38.578	1.00 60.22
	2482	ō	CYS	č	89	43.624	-3.464	39.000	1.00 61.13
ATOM						45.285	-0.819	39.048	1.00 59.69
ATOM	2483	CB	CYS	С	89				
MOTA	2484	SG	CYS	С	89	46.103	-1.924	40.239	1.00 65.48
ATOM	2485	N	VAL	С	90	42.159	-1.749	38.657	1.00 61.71
ATOM	2486	CA	VAL	С	90	40.963	-2.396	39.210	1.00 62.70
ATOM	2487	C	VAL	С	90	40.453	-3.516	38.278	1.00 64.64
ATOM	2488	ō	VAL	Ċ	90	40.010	-4.562	38.779	1.00 65.07
ATOM	2489	CB	VAL	č	90	39.934	-1.260	39.622	1.00 60.49
			VAL	č	90	38.477	-1.428	39.231	1.00 58.30
ATOM	2490	CG1							
MOTA	2491	CG2	VAL	С	90	40.023	-1.060	41.125	1.00 58.40
ATOM	2492	N	LYS	С	91	40.591	-3.348	36.938	1.00 66.41
ATOM	2493	CA	LYS	С	91	40.281	-4.402	35.971	1.00 68.79
ATOM	2494	C	LYS	C	91	41.219	-5.638	36.092	1.00 70.22
ATOM	2495	0	LYS	C	91	40.715	-6.728	36.404	1.00 72.46
ATOM	2496	CB	LYS	Ċ	91	40.233	-3.836	34.530	1.00 68.55
ATOM	2497	CG	LYS	č	91	39.560	-4.821	33.535	1.00 71.09
	2498	CD	LYS	č	91	39.779	-4.534	32.028	1.00 71.78
ATOM									
ATOM	2499	CE	LYS	C	91	39.128	-3.245	31.514	1.00 70.74
MOTA	2500	NZ	LYS	С	91	39.730	-2.834	30.259	1.00 70.64
ATOM	2501	N	SER	С	104	25.399	2.470	38.962	1.00 56.13
MOTA	2502	CA	SER	С	104	25.444	3.921	38.739	1.00 55.65
ATOM	2503	C	SER	С	104	24.850	4.688	39.939	1.00 52.95
ATOM	2504	Ó	SER	С	104	23.647	4.968	39.947	1.00 53.89
ATOM	2505	CB	SER	č	104	24.797	4.326	37.337	1.00 57.16
ATOM	2506	OG	SER	č	104	23.517	3.792	36.940	1.00 56.67
				č		25.618	5.024	41.000	1.00 49.29
ATOM	2507	N	PRO		105				
ATOM	2508	CA	PRO	С	105	25.119	5.676	42.224	1.00 46.42
ATOM	2509	C	PRO	С	105	24.631	7.146	42.171	1.00 44.43
ATOM	2510	0	PRO	С	105	24.768	7.791	41.134	1.00 42.75
ATOM	2511	CB	PRO	С	105	26.265	5.445	43.181	1.00 45.66
ATOM	2512	CG	PRO	C	105	27.467	5.523	42.277	1.00 46.43
ATOM	2513	CD	PRO	С	105	27.036	4.706	41.089	1.00 47.56
ATOM	2514	N	GLU	C	106	24.023	7.707	43.240	1.00 44.38
	2515	CA	GLU	č	106	23.436	9.055	43.238	1.00 43.85
ATOM			GLU	c	106	24.414	10.202	43.420	1.00 42.61
MOTA	2516	C							
ATOM	2517	0	GLU	С	106	25.293	10.113	44.289	1.00 42.69
ATOM	2518	CB	GLU	С	106	22.321	9.281	44.289	1.00 45.50
ATOM	2519	CG	GLU	С	106	20.936	8.664	44.035	1.00 46.22
ATOM	2520	CD	GLU	С	106	20.404	8.761	42.607	1.00 45.82
ATOM	2521	OE1	GLU	Ĉ	106	20.257	9.861	42.067	1.00 41.34
ATOM	2522	OE2	GLU		106	20.152	7.699	42.032	1.00 48.83
	2522	N	PRO	č	107	24.254	11.291	42.632	1.00 41.36
ATOM						25.096		42.637	1.00 39.50
ATOM	2524	CA	PRO	C	107		12.486		
ATOM	2525	C			107	24.873	13.318	43.850	1.00 38.28
ATOM	2526	0	PRO	C,	107	23.767	13.685	44.226	1.00 39.34

OUURUUOUUURUUOORUURUUOUURUUOUURUUOUURRUUOUURUUOUURUUOUURUUOOUURUUO

ATOM	2527	CB	PRO C	107	24.680	13.288	41.434	1.00 40.28
ATOM	2528	CG	PRO C		24.151	12.214	40.519	1.00 42.95
ATOM	2529	CD	PRO C		23.353	11.358	41.490	1.00 41.93
			ARG C		26.012	13.570		
MOTA	2530	N					44.436	1.00 35.97
MOTA	2531	CA	ARG C		26.055	14.439	45.561	1.00 35.65
MOTA	2532	C	ARG C		26.953	15.609	45.219	1.00 34.88
MOTA	2533	0	ARG C		27.707	15.585	44.244	1.00 35.60
MOTA	2534	CB	ARG C	108	26.617	13.701	46.756	1.00 39.40
ATOM	2535	CG	ARG C	108	25.710	12.742	47.530	1.00 44.75
ATOM	2536	CD	ARG C	108	25.959	12.906	49.053	1.00 48.86
MOTA	2537	NE	ARG C	108	25.401	11.801	49.824	1.00 52.47
ATOM	2538	CZ	ARG C	108	25.920	11.400	50.988	1.00 54.55
ATOM	2539	NH1	ARG C		26.919	12.095	51.582	1.00 55.13
ATOM	2540	NH2	ARG C		25.427	10.267	51.532	1.00 54.84
		N	LEU C		26.850	16.651	46.046	1.00 34.84
MOTA	2541				27.686			
MOTA	2542	CA	LEU C	109		17.851	45.949	1.00 31.31
MOTA	2543	C	LEU C	109	28.544	17.984	47.198	1.00 27.53
MOTA	2544	0	LEU C	109	28.058	17.849	48.335	1.00 29.28
ATOM	2545	CB	LEU C	109	26.876	19.173	45.813	1.00 30.72
ATOM	2546	CG	LEU C	109	25.837	19.411	44.752	1.00 29.60
MOTA	2547	CD1	LEU C	109	25.143	20.697	45.150	1.00 31.86
MOTA	2548	CD2	LEU C	109	26.433	19.432	43.347	1.00 30.24
ATOM	2549	N	PHE C	110	29.841	18.247	46.995	1.00 24.61
ATOM	2550	CA	PHE C	110	30.784	18.289	48.116	1.00 20.67
ATOM	2551	C	PHE C	110	31.579	19.548	48.013	1.00 17.66
ATOM	2552	ō	PHE C	110	31.746	20.049	46.924	1.00 19.14
MOTA	2553	CB	PHE C	110	31.721	17.098	48.021	1.00 23.08
ATOM	2554	CG	PHE C	110	31.049	15.733	48.163	1.00 22.91
ATOM	2555	CD1	PHE C	110	30.793	15.226	49.426	1.00 20.89
ATOM	2556	CD2	PHE C	110	30.737	15.008	47.024	1.00 23.49
ATOM	2557	CE1	PHE C	110	30.269	13.969	49.565	1.00 21.28
		CE2	PHE C	110	30.186	13.751	47.178	
ATOM	2558	CZ	PHE C	110	29.974	13.233	48.444	1.00 24.67
ATOM	2559		THR C	111	32.071	20.116	49.084	
MOTA	2560	N						1.00 17.78
MOTA	2561	CA	THR C	111	32.961	21.249	48.978	1.00 18.25
MOTA	2562	C	THR C	111	34.337	20.763	48.509	1.00 21.30
MOTA	2563	0	THR C	111	34.518	19.547	48.617	1.00 26.22
MOTA	2564	CB	THR C	111	33.057	21.895	50.359	1.00 19.78
ATOM	2565	OG1	THR C	111	33.780	20.989	51.199	1.00 19.58
MOTA	2566	CG2	THR C	111	31.663	22.215	50.913	1.00 18.93
ATOM	2567	N	PRO C	112	35.360	21.512	48.024	1.00 19.29
MOTA	2568	CA	PRO C	112	36.675	20.962	47.729	1.00 18.39
MOTA	2569	C	PRO C	112	37.225	20.086	48.855	1.00 21.30
MOTA	2570	0	PRO C	112	37.605	18.953	48.611	1.00 22.05
ATOM	2571	CB	PRO C	112	37.455	22.226	47.520	1.00 18.00
ATOM	2572	CG	PRO C	112	36.455	23,100	46.801	1.00 16.59
ATOM	2573	CD	PRO C	112	35.265	22.919	47.660	1.00 14.34
ATOM	2574	N	GLU C	113	37.221	20.521	50.119	1.00 22.83
ATOM	2575	CA	GLU C	113	37.717	19.735	51.235	1.00 24.32
MOTA	2576	C	GLU C	113	37.046	18.394	51.408	1.00 23.52
ATOM	2577	õ	GLU C	113	37.729	17.385	51.549	1.00 23.92
ATOM	2578	CB	GLU C	113	37.496	20.463	52.524	1.00 27.24
	2579	CG	GLU C	113	38.700	20.955	53.281	1.00 27.24
ATOM	2579	CD	GLU C	113	38.282	21.200	54.724	1.00 39.80
MOTA			GLU C	113	37.915		55.387	1.00 39.80
MOTA	2581	OE1				20.230		
MOTA	2582	OE2	GLU C	113	38.296	22.339	55.182	1.00 41.53
ATOM	2583	N	GLU C	114	35.712	18.350	51.386	1.00 23.35
ATOM	2584	CA	GLU C	114	34.968	17.107	51.535	1.00 23.29
MOTA	2585	C	GLU C	114	35.168	16.200	50.344	1.00 22.72
MOTA	2586	0	GLU C	114	35.160	14.981	50.518	1.00 23.79

Figure 8-54

ATOM	2587	CB	GLU C	114	33.470	17.344	51.622	1.00 26.84
ATOM	2588	CG	GLU C	114	32.974	18.114	52.849	1.00 31.67
ATOM	2589	CD	GLU C	114	31.578	18.736	52.701	1.00 37.47
		OE1	GLU C	114	30.884	18.533	51.681	
ATOM	2590							
ATOM	2591	OE2	GLU C	114	31.202	19.468	53.633	1.00 40.13
MOTA	2592	N	PHE C	115	35.320	16.775	49.143	1.00 20.03
ATOM	2593	CA	PHE C	115	35.606	15.979	47.971	1.00 18.15
ATOM	2594	С	PHE C	115	36.997	15.397	48.157	1.00 17.33
ATOM	2595	0	PHE C	115	37.214	14.205	48.013	1.00 18.05
ATOM	2596	CB	PHE C	115	35.524	16.833	46.705	1.00 15.90
ATOM	2597	CG	PHE C	115	35.825	16.063	45.429	1.00 17.09
ATOM	2598	CD1	PHE C	115	34.861	15.299	44.845	1.00 16.21
MOTA	2599	CD2	PHE C	115	37.094	16.093	44.890	1.00 18.64
ATOM	2600	CEI		115	35.193	14.558	43.744	1.00 19.14
	2601	CE2	PHE C	115	37.425	15.336	43.795	1.00 18.76
MOTA						14.570		
ATOM	2602	CZ		115	36.463		43.217	1.00 19.41
ATOM	2603	N	PHE C	116	38.010	16.167	48.509	1.00 19.36
ATOM	2604	CA	PHE C	116	39.361	15.618	48.454	1.00 17.90
ATOM	2605	C	PHE C	116	39.621	14.678	49.623	1.00 18.24
ATOM	2606	0	PHE C	116	40.505	13.855	49.549	1.00 19.98
ATOM	2607	CB	PHE C	116	40.376	16.744	48.162	1.00 16.33
ATOM	2608	CG	PHE C	116	40.442	17.170	46.679	1.00 15.27
ATOM	2609	CD1	PHE C	116	41.052	16.328	45.753	1.00 14.80
ATOM	2610	CD2	PHE C	116	39.806	18.324	46.240	1.00 12.85
MOTA	2611	CE1	PHE C	116	40.967	16.602	44.409	1.00 12.34
ATOM	2612	CE2	PHE C	116	39.715	18.569	44.885	1.00 14.12
MOTA	2613	CZ	PHE C	116	40.289	17.711	43.980	1.00 10.60
	2614	N	ARG C	117	38.755	14.664	50.641	1.00 20.78
ATOM		CA	ARG C	117	38.796	13.751	51.770	1.00 20.78
MOTA	2615							
MOTA	2616	C		117	38.412	12.368	51.308	1.00 20.46
ATOM	2617	0	ARG C	117	39.076	11.405	51.639	1.00 21.70
MOTA	2618	CB	ARG C	117	37.823	14.244	52.840	1.00 21.70
MOTA	2619	CG	ARG C	117	37.838	13.513	54.177	1.00 27.63
ATOM	2620	CD	ARG C	117	36.826	14.115	55.165	1.00 29.36
MOTA	2621	NE	ARG C	117	37.230	15.464	55.616	1.00 32.11
MOTA	2622	CZ	ARG C	117	36.411	16.535	55.565	1.00 32.37
MOTA	2623	NH1	ARG C	117	35.179	16.464	55.047	1.00 32.61
MOTA	2624	NH2	ARG C	117	36.836	17.701	56.025	1.00 30.98
ATOM	2625	N	ILE C	118	37.342	12.263	50.540	1.00 21.91
MOTA	2626	CA	ILE C	118	36.897	11.031	49.882	1.00 22.55
MOTA	2627	C	ILE C	118	37.944	10.504	48.890	1.00 23.60
ATOM	2628	Ó	ILE C	118	38.254	9.316	48.853	1.00 24.72
MOTA	2629	CB	ILE C	118	35.527	11.358	49,213	1.00 22.47
ATOM	2630	CG1	ILE C	118	34.467	11.506	50.293	1.00 21.67
ATOM	2631	CG2	ILE C	118	35.117	10.338	48.161	1.00 21.48
	2632	CD1	ILE C	118	33.164	12.169	49.825	1.00 21.12
ATOM				119	38.544		48.103	
ATOM	2633	N				11.402		1.00 23.86
MOTA	2634	CA	PHE C	119	39.633	11.098	47.186	1.00 22.73
MOTA	2635	C	PHE C	119	40.816	10.488	47.916	1.00 24.24
MOTA	2636	0	PHE C	119	41.233	9.416	47.511	1.00 24.28
MOTA	2637	CB	PHE C	119	40.038	12.357	46.426	1.00 15.88
ATOM	2638	CG	PHE C	119	41.297	12.224	45.624	1.00 15.30
ATOM	2639	CD1	PHE C	119	41.231	11.724	44.354	1.00 15.03
MOTA	2640	CD2	PHE C	119	42.495	12.639	46.172	1.00 12.85
ATOM	2641	CE1	PHE C	119	42.412	11.623	43,653	1.00 15.97
MOTA	2642	CE2	PHE C	119	43.675	12.526	45.473	1.00 15.16
MOTA	2643	CZ	PHE C	119	43.630	12.003	44.206	1.00 16.33
ATOM	2644	N	ASN C	120	41.396	11.145	48.936	1.00 26.61
ATOM	2645	CA	ASN C	120	42.511	10.621	49.728	1.00 27.10
ATOM	2646	C	ASN C	120	42.225	9.301	50.400	1.00 28.31
ATOM	2040	_		-20	-2.223	3.331	50.400	20.31

 σ

Figure 8-55

ATOM	2647	0	ASN	C 120	43.081	8.433	50.376	1.00 28.63
ATOM	2648	CB		C 120	42.959	11.590	50.783	1.00 24.50
ATOM	2649	CG		C 120	43.837	12.659	50.215	1.00 27.34
ATOM	2650	OD1		C 120	43.864	13.757	50.761	1.00 32.26
ATOM	2651		ASN		44.628	12.420	49.169	1.00 29.64
ATOM	2652	N		C 121	41.017	9.136	50.947	1.00 30.80
ATOM	2653	CA		C 121	40.549	7.862	51.441	1.00 35.49
ATOM	2654	C		C 121	40.514	6.767	50.357	1.00 36.43
ATOM	2655	ō		C 121	40.859	5.616	50.628	1.00 38.58
ATOM	2656	CB	ARG	C 121	39.202	8.108	52.138	1.00 37.63
ATOM	2657	CG	ARG	C 121	38.534	6.865	52.651	1.00 42.24
ATOM	2658	CD	ARG	C 121	37.240	7.194	53.373	1.00 47.82
ATOM	2659	NE	ARG	C 121	36.399	6.001	53.529	1.00 51.79
ATOM	2660	CZ	ARG	C 121	36.788	4.912	54.233	1.00 55.38
ATOM	2661		ARG	C 121	38.016	4.799	54.783	1.00 57.12
ATOM	2662	NH2	ARG	C 121	35.928	3.904	54.446	1.00 55.34
ATOM	2663	N	SER	C 122	40.171	7.089	49.106	1.00 36.49
ATOM	2664	CA	SER	C 122	40.274	6.177	47.974	1.00 36.44
ATOM	2665	C	SER	C 122	41.660	5.723	47.529	1.00 37.85
ATOM	2666	0	SER	C 122	41.874	4.556	47.235	1.00 39.23
ATOM	2667	CB	SER	C 122	39.613	6.814	46.788	1.00 34.58
ATOM	2668	OG	SER	C 122	38.286	7.132	47.155	1.00 34.47
ATOM	2669	N	ILE	C 123	42.638	6.599	47.409	1.00 38.85
ATOM	2670	CA	ILE	C 123	43.949	6.180	46.985	1.00 43.11
ATOM	2671	C	ILE	C 123	44.589	5.456	48.157	1.00 46.18
ATOM	2672	0		C 123	45.449	4.614	47.937	1.00 47.69
ATOM	2673	CB		C 123	44.843	7.378	46.505	1.00 42.65
MOTA	2674	CG1		C 123	44.147	8.410	45.599	1.00 38.38
ATOM	2675	CG2		C 123	46.146	6.866	45.872	1.00 43.09
ATOM	2676	CD1		C 123	43.242	7.872	44.489	1.00 35.80
ATOM	2677	N		C 124	44.206	5.755	49.402	1.00 50.61
MOTA	2678	CA		C 124	44.805	5.095	50.564	1.00 54.85
ATOM	2679	C		C 124	44.197	3.730	50.882	1.00 54.20
MOTA	2680	0_		C 124	44.774	2.898	51.586	1.00 54.57
MOTA	2681	CB		C 124	44.788	5.989	51.823	1.00 59.47
ATOM	2682	CG		C 124	45.794	7.151	51.915	1.00 63.36
MOTA	2683	OD1		C 124	45.935	7.919	50.949	1.00 63.45
MOTA	2684	OD2		C 124	46.414	7.295	52.988	1.00 66.94
ATOM	2685	N		C 125	43.039	3.460	50.281	1.00 54.57
MOTA	2686	CA		C 125	42.427	2.137	50.314	1.00 56.99
ATOM	2687	C	ALA		43.150 42.617	0.022	49.440 49.161	1.00 58.85 1.00 59.46
ATOM	2688	0			40.982	2.263	49.161	1.00 56.08
ATOM	2689	CB		C 125 C 126	44.343	1.552	48.975	1.00 50.00
MOTA	2690	N		C 126	45.408	0.793	48.316	1.00 60.81
MOTA	2691	CA C		C 126	46.675	0.603	49.241	1.00 64.91
ATOM	2692	0		C 126	47.801	0.492	48.731	1.00 65.88
ATOM	2693 2694	CB		C 126	45.715	1.476	46.898	1.00 60.15
ATOM	2695	CG		C 126	44.638	1.419	45.778	1.00 57.55
ATOM -	2696	CD1		C 126	43.594	2.334	45.731	1.00 56.09
MOTA	2697	CD2		C 126	44.655	0.421	44.813	1.00 56.90
ATOM ATOM	2698	CE1		C 126	42.568	2.227	44.807	1.00 52.24
ATOM	2699	CE2		C 126	43.627	0.319	43.884	1.00 54.42
ATOM	2700	CZ		C 126	42.573	1.208	43.889	1.00 52.99
TER	2702	-2		C 126	12.575	2.200	-5.005	52.55
ATOM	2702	N		D 11	47.774	44.287	38.626	1.00 52.77
ATOM	2704	CA		D 11	46.416	43.904	38.273	1.00 53.01
ATOM	2705	C		D 11	46.383	43.039	36.995	1.00 52.04
ATOM	2706	ŏ	ASN		46.673	41.852	37.139	1.00 53.30
ATOM	2707	CB	ASN		45.488	45.136	38.154	1.00 52.37
ALON	2.01							

DORGODEY CORRORD

Figure 8-56

ATOM	2708	N	VAL D	12	46.135	43.551	35.763	1.00 49.81
MOTA	2709	CA	VAL D	12	45.936	42.823	34.490	1.00 45.10
ATOM	2710	C	VAL D	12	46.697	41.529	34.194	1.00 40.73
ATOM	2711	o	VAL D	12	46.109	40.477	33.958	1.00 39.20
ATOM	2712	CB	VAL D	12	46.118	43.863	33.336	1.00 46.99
ATOM	2713	CG1	VAL D	12	46.377	43.229	31.966	1.00 47.11
ATOM	2714	CG2	VAL D	12	44.888	44.784	33.225	1.00 46.26
ATOM	2715	N	LYS D	13	48.014	41.610	34.165	1.00 37.97
ATOM	2716	CA	LYS D	13	48.844	40.432	34.132	1.00 36.45
ATOM	2717	C	LYS D	13	48.402	39.322	35.117	1.00 36.18
ATOM	2718	0	LYS D	13	48.194	38.166	34.709	1.00 37.38
ATOM	2719	CB	LYS D	13	50.258	40.905	34.451	1.00 37.38
	2720	N	ASP D	14	48.190	39.643	36.410	1.00 33.96
ATOM		CA	ASP D	14	47.703	38.684	37.372	1.00 29.22
ATOM	2721		ASP D	14	46.220	38.409	37.305	
ATOM	2722	C	ASP D	14	45.799	37.316	37.647	
ATOM	2723	0			48.158	39.126	38.726	
ATOM	2724	CB	ASP D	14				1.00 33.71
ATOM	2725	CG	ASP D	14	49.573	38.623	39.084	1.00 41.45
ATOM	2726	OD1		14	50.178	37.858	38.316	1.00 45.64
ATOM	2727	OD2	ASP D	14	50.083	38.981	40.161	1.00 44.73
ATOM	2728	N	VAL D	15	45.421	39.347	36.809	1.00 22,15
ATOM	2729	CA	VAL D	15	44.000	39.173	36.672	1.00 19.73
ATOM	2730	С	VAL D	15	43.683	38.044	35.731	1.00 21.56
ATOM	2731	0	VAL D	15	42.825	37.217	36.016	1.00 23.37
ATOM	2732	CB	VAL D	15	43.294	40.462	36.234	1.00 18.49
ATOM	2733	CG1		15	41.883	40.238	35.684	1.00 17.31
ATOM	2734	CG2	VAL D	15	43.093	41.327	37.450	1.00 17.77
ATOM	2735	N	THR D	16	44.387	37.974	34.623	1.00 22.81
ATOM	2736	CA	THR D	16	44.166	36.943	33.605	1.00 24.47
ATOM	2737	C	THR D	16	44.517	35.513	34.082	1.00 21.91
MOTA	2738	0	THR D	16	43.904	34.526	33.676	1.00 20.78
ATOM	2739	CB	THR D	16	44.991	37.520	32.381	1.00 26.36
ATOM	2740	OG1	THR D	16	44.076	38.310	31.630	1.00 28.31
MOTA	2741	CG2	THR D	16	45.721	36.529	31.530	1.00 28.93
ATOM	2742	N	LYS D	17	45.470	35.415	35.016	1.00 20.72
ATOM	2743	CA	LYS D	17	45.958	34.179	35.596	1.00 20.21
MOTA	2744	C	LYS D	17	45.019	33.719	36.683	1.00 18.63
ATOM	2745	0	LYS D	17	44.754	32.526	36.783	1.00 21.04
ATOM	2746	CB	LYS D	17	47.277	34.522	36.207	1.00 24.75
ATOM	2747	CG	LYS D	17	48.163	33.373	36.590	1.00 29.44
ATOM	2748	CD	LYS D	17	49.365	33.928	37.347	1.00 32.96
ATOM	2749	CE	LYS D	17	50.423	34.474	36.422	1.00 36.20
MOTA	2750	NZ	LYS D	17	51.313	35.272	37.230	1.00 39.87
ATOM	2751	N	LEU D	18	44.483	34.656	37.468	1.00 16.11
ATOM	2752	CA	LEU D	18	43.391	34.389	38.362	1.00 13.77
MOTA	2753	C	LEU D	18	42.158	33.926	37.636	1.00 14.10
ATOM	2754	0	LEU D	18	41.662	32.898	38.072	1.00 17.61
ATOM	2755	CB	LEU D	18	43.070	35.599	39.180	1.00 14.87
ATOM	2756	CG	LEU D	18	42.103	35.485	40.362	1.00 15.58
ATOM	2757	CD1	LEU D	18	42.567	34.568	41.470	1.00 11.31
ATOM	2758	CD2	LEU D	18	41.872	36.849	40.952	1.00 15.28
ATOM	2759	N	VAL D	19	41.617	34.544	36.561	1.00 15.42
MOTA	2760	CA	VAL D	19	40.479	34.034	35.786	1.00 13.39
ATOM	2761	C	VAL D	19	40.704	32.587	35.385	1.00 14.30
ATOM	2762	0	VAL D	19	39.824	31.744	35.542	1.00 13.93
ATOM	2763	СВ	VAL D	19	40.251	34.838	34.489	1.00 14.39
ATOM	2764	CG1	VAL D	19	39.059	34.330	33.694	1.00 11.41
ATOM	2765	CG2	VAL D	19	39.913	36.255	34.797	1.00 11.41
	2766	N	ALA D	20	41.911	32.288	34.876	1.00 14.50
ATOM	2767	CA	ALA D	20	42.319	30.924	34.543	1.00 15.90
ATOM	2/0/	CA	AUA D	20	42.313	50.524	24.243	1.00 13.90

Figure 8-57

ATOM	2768	C	ALA D	20	42.340	29.894		1.00 16.27
	2769	ō	ALA D	20	42.153	28.697	35.464	1.00 14.91
	2770	CB	ALA D	20	43.719	30.983	33.946	1.00 16.48
	2771	N	ASN D	21	42.543	30.396	36.914	1.00 16.20
	2772	CA	ASN D	21	42.665	29.549	38.081	1.00 14.59
	2773	C	ASN D	21	41.408	29.513	38.923	1.00 15.22
ATOM	2774	ŏ	ASN D	21	41.343	28.894	39.982	1.00 14.76
ATOM	2775	CB	ASN D	21	43.863	30.085	38.853	1.00 15.31
ATOM	2776	CG	ASN D	21	44.760	29.000	39.360	1.00 12.22
ATOM	2777	OD1	ASN D	21	45.002	28.023	38.669	1.00 15.31
ATOM	2778		ASN D	21	45.313	29.122	40.545	1.00 14.81
ATOM	2779	N	LEU D	22	40.364	30.201	38.493	1.00 15.62
ATOM	2780	CA	LEU D	22	39.069	30.126	39.157	1.00 15.32
ATOM	2781	C	LEU D	22	38.172	29.241	38.319	1.00 15.81
ATOM	2782	ŏ	LEU D	22	38.337	29.289	37.109	1.00 18.22
ATOM	2783	СВ	LEU D	22	38.470	31.498	39.326	1.00 11.04
ATOM	2784	CG	LEU D	22	39.203	32.454	40.210	1.00 10.12
	2785	CD1	LEU D	22	38.580	33.801	40.004	1.00 11.85
ATOM	2786	CD2	LEU D	22	39.108	32.071	41.671	1.00 10.74
ATOM	2787	N	PRO D	23	37.246	28.422	38.825	1.00 16.11
ATOM	2788	CA	PRO D	23	36.365	27.588	38.004	1.00 15.30
ATOM	2789	C	PRO D	23	35.533	28.456	37.064	1.00 16.55
ATOM	2790	õ	PRO D	23	35.044	29.485	37.502	1.00 18.78
MOTA	2791	СВ	PRO D	23	35.474	26.944	39.027	1.00 14.03
MOTA	2792	CG	PRO D	23	36.252	27.043	40.317	1.00 16.22
MOTA	2793	CD	PRO D	23	36.854	28.409	40.228	1.00 15.04
ATOM ATOM	2794	N	LYS D	24	35.319	28.105	35.785	1.00 19.22
ATOM	2795	CA	LYS D	24	34.492	28.864	34.822	1.00 19.57
ATOM	2796	C	LYS D	24	33.027	28.975	35.241	1.00 18.94
ATOM	2797	ŏ	LYS D	24	32.381	29.956	34.910	1.00 22.65
ATOM	2798	СВ	LYS D	24	34.575	28.214	33.425	1.00 20.25
ATOM	2799	CG	LYS D	24	35.853	28.425	32.655	1.00 19.83
ATOM	2800	CD	LYS D	24	36.049	27.261	31.683	1.00 20.33
ATOM	2801	CE	LYS D	24	37.542	27.297	31.291	1.00 25.04
ATOM	2802	NZ	LYS D	24	38.019	26.084	30.623	1.00 27.36
ATOM	2803	N	ASP D	25	32.490	28.011	36.007	1.00 20.97
ATOM	2804	CA	ASP D	25	31.146	27.984	36.585	1.00 20.24
ATOM	2805	C	ASP D	25	31.084	28.420	38.037	1.00 20.26
ATOM	2806	ō	ASP D	25	30.092	28.177	38.714	1.00 24.64
ATOM	2807	CB	ASP D	25	30.557	26.555	36.502	1.00 21.95
ATOM	2808	CG	ASP D	25	31.274	25.501	37.333	1.00 26.54
ATOM	2809	OD1	ASP D	25	32.429	25.721	37.693	1.00 28.24
ATOM	2810	OD2	ASP D	25	30.697	24.445	37.616	1.00 29.75
ATOM	2811	N	TYR D	26	32.109	29.038	38.591	1.00 19.65
ATOM	2812	CA	TYR D	26	31.978	29.716	39.865	1.00 19.99 1.00 20.55
ATOM	2813	C	TYR D	26	31.327	31.078	39.666	
ATOM	2814	0	TYR D	26	31.837	31.882	38.892	
MOTA	2815	CB	TYR D	26	33.388	29.886	40.446	1.00 18.93
ATOM	2816	CG	TYR D	26	33.487	30.459	41.844	1.00 18.30 1.00 17.48
ATOM	2817	CD1	TYR D	26	32.718	29.938	42.855	1.00 17.48 1.00 19.75
ATOM	2818	CD2		26	34.309	31.538	42.057	1.00 17.10
ATOM	2819	CE1	TYR D	26	32.689	30.542	44.078	
ATOM	2820	CE2			34.304	32.124	43.291	
ATOM	2821	CZ	TYR D		33.494	31.613	44.276	1.00 19.84
ATOM	2822	OH	TYR I		33.553	32.163	45.538	
HETATM		N	MSE I		30.240	31.351	40.390	
HETATM		CA	MSE I		29.563	32.640	40.409	1.00 19.68
HETATI		C	MSE I		29.972	33.547	41.554	1.00 19.24
HETATN		0	MSE I		29.844			
HETATN		CB	MSE I	27	28.030	32.478	40.470	1.00 25.00

Figure 8-58

HETATM	2828	CG	MSE :	D :	27	27.356	31.633	39.361	1.00 27.34
HETATM	2829	SE	MSE :	D :	27	28.005	31.953	37.549	1.00 33.76
HETATM	2830	CE		D :	27	27.146	33.538	37.334	1.00 29.16
ATOM	2831	N	ILE :	D:	28	30.503	34.700	41.191	1.00 18.26
MOTA	2832	CA	ILE :	D :	28	30.838	35.733	42.127	1.00 18.98
ATOM	2833	C	ILE :	D:	28	29.668	36.703	42.239	1.00 19.61
ATOM	2834	ō	ILE	D:	28	29.151	37.088	41.196	1.00 22.18
ATOM	2835	CB		D :	28	32.136	36.421	41.662	1.00 15.61
ATOM	2836	CG1			28	33.234	35.398	41.469	1.00 12.73
ATOM	2837	CG2			28	32.593	37.471	42.693	1.00 15.00
ATOM	2838	CD1			28	34.487	35.969	40.818	1.00 10.07
ATOM	2839	N			29	29.199	37.105	43.433	1.00 20.30
ATOM	2840	CA	THR		29	28.142	38.118	43.587	1.00 18.55
ATOM	2841	c			29	28.720	39.514	43.593	1.00 18.51
ATOM	2842	ō			29	29.681	39.757	44.305	1.00 20.24
ATOM	2843	CB			29	27.248	37.915	44.853	1.00 18.42
ATOM	2844	OG1			29	26.791	36.570	44.817	1.00 20.41
ATOM	2845	CG2			29	25.982	38.747	44.836	1.00 16.39
ATOM	2846	N			30	28.205	40.455	42.785	1.00 18.52
ATOM	2847	CA	LEU		30	28.610	41.845	42.783	1.00 17.78
ATOM	2848	C	LEU		30	27.305	42.598	42.724	1.00 19.35
ATOM	2849	ŏ	LEU		30	26.420	42.245	41.946	1.00 19.98
MOTA	2850	CB	LEU		30	29.390	42.149	41.505	1.00 18.28
ATOM	2851	CG			30	29.905	43.557	41.154	1.00 15.52
ATOM	2852		LEU		30	30.720	44.170	42.241	1.00 15.62
ATOM	2853				30	30.732	43.522	39.879	1.00 17.11
ATOM	2854	N			31	27.150	43.613	43.560	1.00 20.05
ATOM	2855	CA			31	26.046	44.522	43.409	1.00 21.35
ATOM	2856	C			31	26.413	45.564	42.354	1.00 23.46
ATOM	2857	ŏ	LYS		31	27.223	46.470	42.561	1.00 23.96
ATOM	2858	CB			31	25.702	45.148	44.722	1.00 21.22
ATOM	2859	CG			31	25.353	44.109	45.766	1.00 23.53
ATOM	2860	CD			31	24.738	44.814	46.976	1.00 28.13
ATOM	2861	CE	LYS		31	24.583	43.890	48.182	1.00 29.07
ATOM	2862	NZ			31	23.982	44.617	49.293	1.00 34.24
ATOM	2863	N	TYR		32	25.818	45.356	41.172	1.00 25.01
ATOM	2864	CA	TYR		32	26.219	46.004	39.925	1.00 25.06
ATOM	2865	C	TYR		32	25.377	47.248	39.752	1.00 26.53
ATOM	2866	ō	TYR	D	32	24.167	47.293	40.046	1.00 27.71
ATOM	2867	CB	TYR		32	26.050	44.978	38.778	1.00 25.42
ATOM	2868	CG	TYR		32	26.196	45.465	37.336	1.00 24.15
ATOM	2869	CD1	TYR		32	27.433	45.460	36.728	1.00 22.29
ATOM	2870	CD2			32	25.071	45.915	36.672	1.00 23.90
ATOM	2871	CE1	TYR	D	32	27.558	45.961	35.459	1.00 24.06
ATOM	2872	CE2	TYR	D	32	25.183	46.427	35.409	1.00 25.00
ATOM	2873	CZ	TYR	D	32	26.427	46.458	34.822	1.00 26.48
ATOM	2874	OH	TYR	D	32	26.533	47.012	33.558	1.00 26.81
ATOM	2875	N	VAL	D	33	26.099	48.297	39.333	1.00 28.52
ATOM	2876	CA	VAL	D	33	25.505	49.613	39.093	1.00 27.57
ATOM	2877	C	VAL	D	33	24.973	49.634	37.670	1.00 27.14
ATOM	2878	Ó	VAL	D	33	25.769	49.693	36.750	1.00 28.15
ATOM	2879	CB	VAL	D	33	26.529	50.724	39.288	1.00 26.82
ATOM	2880	CG1		D	33	25.931	52.066	38.921	1.00 25.83
MOTA	2881	CG2	VAL	D	33	26.880	50.758	40.755	1.00 25.22
ATOM	2882	N	PRO	D	34	23.674	49.548	37.434	1.00 27.51
ATOM	2883	CA	PRO		34	23.085	49.608	36.105	1.00 28.26
ATOM	2884	С	PRO		34	23.491	50.909	35.413	1.00 31.20
ATOM	2885	0	PRO		34	23.649	51.980	36.012	1.00 32.62
ATOM	2886	CB	PRO		34	21.617	49.574	36.407	1.00 27.82
ATOM	2887	CG	PRO	D	34	21.523	48.866	37.750	1.00 29.77

ATOM	2888	CD	PRO	D	34	22.668	49.494	38.488	1.00 27.97
	2889	N			35	23.756	50.780	34.117	1.00 32.89
ATOM	2890	CA			35	24.265	51.891	33.338	1.00 34.68
ATOM		CA	GLY		35	25.749	52.065	33.438	1.00 34.91
ATOM	2891				35	26.271	53.066	32.991	1.00 38.32
ATOM	2892	0	MSE		36	26.456	51.105	33.995	1.00 36.03
HETATM	2893	N			36	27.910	51.084	34.060	1.00 38.11
HETATM	2894	CA			36	28.634	51.193	32.726	1.00 38.57
HETATM	2895	C				29.741	51.717	32.594	1.00 39.99
HETATM	2896	0			36	28.255	49.744	34.622	1.00 41.60
HETATM	2897	CB			36	28.255	49.795	35.911	1.00 45.00
HETATM	2898	CG			36	30.412	48.532	35.745	1.00 54.90
HETATM	2899	SE			36	30.412	48.492	33.897	1.00 45.21
HETATM	2900	CE			36		50.571	31.760	1.00 39.01
ATOM	2901	N			37	27.956	50.371	30.370	1.00 37.84
ATOM	2902	CA			37	28.357			1.00 37.29
MOTA	2903	С			37	28.125	51.687	29.525	1.00 37.29
ATOM	2904	0			37	29.067	52.169		1.00 40.17
ATOM	2905	CB			37	27.725	49.194	29.760	
ATOM	2906	CG			37	26.258	48.854	30.083	1.00 40.62
ATOM	2907	OD1			37	25.560	49.672	30.709	1.00 39.43
ATOM	2908	OD2			37	25.813	47.752	29.705	1.00 41.13
ATOM	2909	N		D	38	26.930	52.266	29.525	1.00 36.85
ATOM	2910	CA	VAL		38	26.665	53.462	28.719	1.00 38.43
MOTA	2911	С	VAL		38	27.021	54.828	29.311	1.00 39.02
ATOM	2912	0	VAL		38	27.395	55.748	28.581	1.00 39.83
ATOM	2913	CB	VAL		38	25.212	53.466	28.171	1.00 36.76
ATOM	2914	CG1	VAL		38	25.086	52.227	27.356	1.00 36.24
ATOM	2915	CG2		D	38	24.081	53.482	29.175	1.00 36.31
ATOM	2916	N	LEU		39	26.886	54.965	30.641	1.00 39.92
ATOM	2917	CA	LEU		39	27.031	56.231	31.341	1.00 38.96
ATOM	2918	C	LEU		39	28.495	56.624	31.625	1.00 41.40
ATOM	2919	0	LEU		39	29.397	55.777	31.589	1.00 40.82
ATOM	2920	CB	LEU		39	26.208	56.247	32.637	1.00 35.81
ATOM	2921	CG	LEU		39	24.706	56.030	32.689	1.00 34.18
ATOM	2922		LEU		39	24.285	56.206	34.141	1.00 33.76
ATOM	2923	CD2			39	23.900	56.980	31.827	1.00 31.66
ATOM	2924	N	PRO		40	28.807	57.926	31.852	1.00 44.17
ATOM	2925	CA	PRO		40	30.141	58.383	32.244	1.00 44.44
ATOM	2926	C	PRO		40	30.420	58.032	33.699	1.00 42.47
ATOM	2927	0	PRO		40	29.550	58.003	34.562	1.00 42.05
ATOM	2928	CB	PRO		40	30.115	59.908	32.011	1.00 45.14 1.00 45.10
ATOM	2929	CG	PRO		40	28.674	60.256	32.263	
MOTA	2930	CD	PRO		40	27.934	59.092	31.603	1.00 46.22
ATOM	2931	N	SER		41	31.694	57.749	33.906	
ATOM	2932	CA	SER		41	32.266	57.360	35.166	1.00 39.50
ATOM	2933	C	SER		41	31.724	58.115	36.365	1.00 38.61 1.00 38.99
ATOM	2934	0		D	41	31.345	57.439	37.303	
ATOM	2935	CB		D	41	33.760	57.491	35.009	1.00 40.43
ATOM	2936	OG	SER		41	34.204	56.814	33.824	1.00 45.16 1.00 38.17
ATOM	2937	N		D	42	31.550	59.442	36.396	
ATOM	2938	CA		D	42	31.018	60.127	37.567	1.00 36.99
ATOM	2939	С		D	42	29.633	59.685	38.068	1.00 38.51
ATOM	2940	0	HIS	D	42	29.219	59.978	39.190	1.00 39.73
MOTA	2941	CB		D	42	31.062	61.646	37.328	1.00 36.53
ATOM	2942	CG		D	42	29.988	62.146	36.370	1.00 34.40
ATOM	2943	ND1		D	42	30.070	62.275	35.063	1.00 35.82
ATOM	2944	CD2	HIS	D	42	28.694	62.443	36.749	1.00 36.22
ATOM	2945	CE1	HIS	D	42	28.872	62.607	34.629	1.00 35.92
ATOM	2946		HIS		42	28.050	62.680	35.644	1.00 37.56
ATOM	2947	N	CYS	D	43	28.848	58.974	37.261	1.00 40.38

ATOM	2948	CA	CYS	D	43	27.521	58.516	37.662	1.00 40.95
ATOM	2949	C	CYS	D	43	27.545	57.165	38.394	1.00 38.66
ATOM	2950	0	CYS	D	43	26.556	56.769	39.027	1.00 38.58
ATOM	2951	CB	CYS	D	43	26.561	58.489	36.426	1.00 43.16
ATOM	2952	SG	CYS	D	43	25.889	60.126	35.971	1.00 50.07
ATOM	2953	N	TRP	D	44	28.677	56.450	38.300	1.00 34.96
ATOM	2954	CA	TRP	D	44	28.763	55.094	38.789	1.00 32.27
MOTA	2955	C	TRP	Ð	44 .	30.055	54.754	39.486	1.00 32.35
ATOM	2956	0	TRP	D	44	30.010	53.891	40.349	1.00 34.30
ATOM	2957	CB	TRP	D	44	28.502	54.045	37.688	1.00 29.74
ATOM	2958	CG	TRP	D	44	29.428	54.039	36.479	1.00 25.62
ATOM	2959	CD1	TRP	D	44	29.034	54.689	35.340	1.00 24.56
ATOM	2960	CD2	TRP	D	44	30.636	53.392	36.360	1.00 24.29
ATOM	2961	NE1	TRP	D	44	30.006	54.462	34.497	1.00 26.57
MOTA	2962	CE2	TRP	D	44	30.972	53.705	35.046	1.00 25.16
MOTA	2963	CE3	TRP	D	44	31.442	52.536	37.072	1.00 21.05
ATOM	2964	CZ2	TRP	D	44	32.119	53.210	34.446	1.00 23.57
MOTA	2965	CZ3	TRP	D	44	32.600	52.058	36.490	1.00 21.72
MOTA	2966	CH2		D	44	32.956	52.395	35.194	1.00 23.72
MOTA	2967	N	ILE	D	45	31.191	55.378	39.216	1.00 31.34
ATOM	2968	CA		D	45	32.444	54.851	39.687	1.00 34.23
ATOM	2969	C		D	45	32.627	54.719	41.206	1.00 35.04
ATOM	2970	0	ILE	D	45	33.222	53.726	41.618	1.00 36.05
MOTA	2971	CB		D	45	33.586	55.584	38.980	1.00 35.62
MOTA	2972	CG1		D	45	34.959	54.917	39.068	1.00 36.05
MOTA	2973	CG2		D	45	33.716	56.959	39.592	1.00 37.86
MOTA	2974	CD1		D	45	35.020	53.482	38.545	1.00 36.81
ATOM	2975	N	SER		46	32.100	55.591	42.080	1.00 35.07
MOTA	2976	CA	SER		46	32.421	55.538	43.500	1.00 35.85
MOTA	2977	C	SER		46	31.651	54.443	44.213	1.00 35.51
MOTA	2978	0	SER		46	32.169	53.858	45.165	1.00 38.41
ATOM	2979	CB	SER		46	32.165	56.852	44.223	1.00 36.96
MOTA	2980	OG	SER		46 47	30.786	57.005 54.185	44.534	1.00 40.12 1.00 33.93
MOTA	2981	N CA	GLU	D	47	29.656	53.051	44.230	1.00 32.65
ATOM	2982	CA	GLU		47	30.197	51.773	43.648	1.00 32.65
ATOM	2983	Ö	GLU		47	30.216	50.761	44.339	1.00 31.35
MOTA	2984 2985	CB	GLU		47	28.206	53.193	43.842	1.00 36.42
ATOM	2986	CG	GLU	Ď	47	27.306	51.989	44.164	1.00 45.32
ATOM	2987	CD	GLU	D	47	26.964	51.716	45.628	1.00 48.90
ATOM	2988	OE1	GLU		47	27.839	51.323	46.399	1.00 52.24
ATOM	2989	OE2	GLU		47	25.797	51.872	45.995	1.00 52.95
HETATM	2990	N		Ď	48	30.646	51.788	42.398	1.00 30.45
HETATM	2991	CA	MSE	D	48	31.189	50.592	41.798	1.00 31.67
HETATM	2992	C		D	48	32.499	50.155	42.444	1.00 30.88
HETATM	2993	ŏ	MSE	D	48	32.694	48.961	42.577	1.00 33.46
HETATM	2994	CB		D	48	31.394	50.777	40.342	1.00 32.74
HETATM	2995	CG	MSE	D	4.8	31.510	49.459	39.632	1.00 36.29
HETATM	2996	SE		D	4.8	29.910	48.366	39.787	1.00 47.34
HETATM	2997	CE		D	48	30.895	46.927	39.264	1.00 38.75
MOTA	2998	N	VAL		49	33.433	50.984	42.904	1.00 30.60
ATOM	2999	CA		D	49	34.605	50.504	43.671	1.00 29.47
ATOM	3000	C	VAL	D	49	34.285	50.012	45.074	1.00 27.89
MOTA	3001	0	VAL	D	49	34.967	49.128	45.596	1.00 27.63
MOTA	3002	CB	VAL		49	35.828	51.488	43.781	1.00 30.38
MOTA	3003	CG1	VAL	D	49	36.552	51.617	42.439	1.00 30.57
MOTA	3004	CG2	VAL		49	35.440	52.863	44.340	1.00 30.43
ATOM	3005	N	VAL		50	33.263	50.622	45.679	1.00 25.21
ATOM	3006	CA	VAL		50	32.754	50.149	46.945	1.00 24.70
ATOM	3007	C	VAL	D	50	32.153	48.745	46.832	1.00 24.08

Figure 8-61

ATOM	3008	0	VAL	D	50	32.438	47.921	47.699	1.00 25.08
ATOM	3009	CB		D	50	31.757	51,172	47.504	1.00 24.15
		CG1	VAL	D	50	30.945	50.583	48.650	1.00 24.85
ATOM	3010				50	32.484	52.411	47.974	1.00 21.01
ATOM	3011	CG2		D					
ATOM	3012	N		D	51	31.343	48.470	45.796	1.00 22.06
ATOM	3013	CA		D	51	30.807	47.154	45.522	1.00 22.13
ATOM	3014	C	GLN	D	51	31.810	46.099	45.123	1.00 20.89
ATOM	3015	0	GLN	D	51	31.663	44.940	45.479	1.00 21.33
ATOM	3016	CB	GLN	D	51	29.719	47.249	44.484	1.00 24.57
ATOM	3017	CG	GLN	D	51	28.496	47.999	45.018	1.00 26.12
ATOM	3018	CD		D	51	27.936	47.379	46.304	1.00 26.75
ATOM	3019	OE1	GLN	D	51	28.128	46.194	46.616	1.00 25.54
	3020	NE2		D	51	27.234	48.198	47.088	1.00 26.23
ATOM		NEZ	LEU	D	52	32.839	46.544	44.423	1.00 19.69
ATOM	3021				52	33.966	45.728	44.057	1.00 20.34
ATOM	3022	CA		D					
ATOM	3023	C		D	52	34.831	45.383	45.250	1.00 20.47
MOTA	3024	0		D	52	35.199	44.215	45.356	1.00 23.75
ATOM	3025	CB	LEU		52	34.866	46.398	42.976	1.00 19.72
ATOM	3026	CG		D	52	34.402	46.541	41.509	1.00 18.02
ATOM	3027	CD1	LEU	D	52	35.404	47.412	40.807	1.00 14.47
ATOM	3028	CD2	LEU	D	52	34.217	45.177	40.844	1.00 14.93
ATOM	3029	N	SER	D	53	35.178	46.294	46.165	1.00 21.36
ATOM	3030	CA	SER		53	35.913	45.942	47.377	1.00 22.45
ATOM	3031	C		D	53	35.173	44.873	48.166	1.00 22.70
ATOM	3032	ŏ	SER		53	35.770	43.895	48.565	1.00 24.55
ATOM	3033	CB	SER		53	36.117	47.178	48.233	1.00 25.43
		OG	SER		53	36.882	46.917	49.410	1.00 32.17
ATOM	3034	N		D	54	33.852	44.962	48.286	1.00 23.74
ATOM	3035			D	54	33.021	44.038	49.030	1.00 25.51
ATOM	3036	CA					42.633	48.500	1.00 23.51
ATOM	3037	C		D	54	33.119			
ATOM	3038	0		D	54	33.390	41.711	49.250	1.00 22.33
ATOM	3039	CB		D	54	31.565	44.500	48.963	1.00 32.00
ATOM	3040	CG		D	54	30.624	43.913	50.019	1.00 42.23
ATOM	3041	OD1		D	54	30.117	42.792	49.841	1.00 45.21
ATOM	3042	OD2	ASP	D	54	30.364	44.607	51.018	1.00 49.94
ATOM	3043	N	SER	D	55	32.943	42.520	47.192	1.00 19.99
ATOM	3044	CA	SER	D	55	32.933	41.258	46.504	1.00 16.42
ATOM	3045	C	SER	D	55	34.279	40.596	46.521	1.00 14.71
ATOM	3046	0	SER	D	55	34.395	39.393	46.693	1.00 15.83
ATOM	3047	CB	SER	D	55	32.503	41.468	45.066	1.00 16.29
ATOM	3048	OG		D	55	31.170	41.909	44.886	1.00 19.97
ATOM	3049	N		D	56	35.296	41.406	46.315	1.00 15.85
ATOM	3050	CA		D	56	36.638	40.884	46.345	1.00 17.57
ATOM	3051	C		D	56	37.034	40.485	47.744	1.00 17.75
ATOM	3052	0		D	56	37.782	39.527	47.863	1.00 19.01
				D	56	37.619	41.904	45.848	1.00 17.61
MOTA	3053	CB			56	37.813	42.091	44.344	1.00 21.27
MOTA	3054	CG		D				44.141	
MOTA	3055	CD1		D	56	38.577	43.396		
MOTA	3056	CD2		D	56	38.540	40.936	43.687	1.00 16.32
ATOM	3057	N		D	57	36.560	41.169	48.803	1.00 19.07
ATOM	3058	CA	THR	D	57	36.864	40.818	50.189	1.00 17.97
ATOM	3059	C		D	57	36.126	39.571	50.566	1.00 18.20
ATOM	3060	0	THR	D	57	36.674	38.746	51.266	1.00 20.89
ATOM	3061	CB	THR	D	57	36.521	41.984	51.099	1.00 19.37
ATOM	3062	OG1		D	57	37.503	42.932	50.741	1.00 20.91
ATOM	3063	CG2		D	57	36.778	41.786	52.575	1.00 26.13
ATOM	3064	N	ASP	D	58	34.924	39.346	50.085	1.00 18.03
ATOM	3065	CA	ASP	Ď	58	34.293	38.066	50.220	1.00 18.76
ATOM	3066	C	ASP	D	58	34.958	37.009	49.397	1.00 20.46
ATOM	3066	0	ASP		58	35.041	35.878	49.865	1.00 20.47
ATOM	3007	U	ASE	_	50	33.011	23.070		_,,,,,

 \mathfrak{o} on the nonelocation of the second of

ATOM	3068	CB	ASP D	58	32.859	38.102	49.791	1.00 21.24
ATOM	3069	CG	ASP I		32.043	39.157	50.517	1.00 26.19
ATOM	3070	OD1			32.458	39.665	51.572	1.00 26.83
	3070	OD2	ASP I		30.970	39.481	49.993	1.00 30.50
ATOM					35.449	37.324	48.197	1.00 19.65
ATOM	3072	N	LEU D					
ATOM	3073	CA	LEU D		36.099	36.331	47.383	1.00 18.09
ATOM	3074	C	LEU D		37.345	35.878	48.090	1.00 19.12
ATOM	3075	0	LEU D		37.553	34.694	48.251	1.00 23.04
ATOM	3076	CB	LEU D	59	36.392	36.893	46.028	1.00 16.75
ATOM	3077	CG	LEU D	59	36.808	35.864	45.048	1.00 17.14
ATOM	3078	CD1	LEU D	59	35.714	34.823	44.909	1.00 16.41
ATOM	3079	CD2	LEU D		37.209	36.546	43.769	1.00 16.93
ATOM	3080	N	LEU D		38.132	36.764	48.667	1.00 21.47
ATOM	3081	CA	LEU D		39.332	36.428	49.431	1.00 22.73
	3082	C	LEU I		39.173	35.401	50.564	1.00 24.38
MOTA		0	LEU I		40.084	34.626	50.853	1.00 25.12
ATOM	3083				39.852	37.726	50.017	1.00 21.70
ATOM	3084	CB	LEU I					
ATOM	3085	CG	LEU I		41.196	37.710	50.670	
ATOM	3086	CD1	LEU I		42.256	37.514	49.598	1.00 22.63
ATOM	3087	CD2	LEU I		41.446	38.985	51.425	1.00 24.99
ATOM	3088	N	ASP I		38.005	35.386	51.224	1.00 26.63
ATOM	3089	CA	ASP I	61	37.705	34.524	52.363	1.00 25.59
ATOM	3090	C	ASP I	61	37.428	33.112	51.872	1.00 22.43
ATOM	3091	0	ASP I	61	37.373	32,161	52.646	1.00 23.39
ATOM	3092	CB	ASP I	61	36.497	35.146	53.120	1.00 33.33
ATOM	3093	CG	ASP I		35.889	34.390	54.325	1.00 40.36
ATOM	3094	OD1	ASP I		36.478	34.403	55.424	1.00 44.78
ATOM	3095	OD2	ASP I		34.807	33.794	54.169	1.00 43.10
	3096	N	LYS I		37.289	32.899	50.575	1.00 17.94
MOTA			LYS I		37.048	31.574	50.058	1.00 13.29
ATOM	3097	CA			38.344	30.855	49.757	1.00 12.68
ATOM	3098	C			38.308	29.692	49.387	1.00 15.69
ATOM	3099	0	LYS I					
ATOM	3100	CB	LYS I		36.292	31.712	48.771	1.00 13.99
ATOM	3101	CG	LYS I		35.036	32.517	48.890	1.00 16.25
MOTA	3102	CD	LYS I		34.086	31.871	49.870	1.00 21.21
ATOM	3103	CE	LYS I		32.997	32.898	50.166	1.00 23.50
ATOM	3104	NZ	LYS I		32.319	33.267	48.937	1.00 30.45
ATOM	3105	N	PHE I	63	39.504	31.504	49.885	1.00 12.18
ATOM	3106	CA	PHE I	63	40.797	30.938	49.594	1.00 13.29
ATOM	3107	С	PHE I	63	41.659	30.965	50.837	1.00 16.38
ATOM	3108	0	PHE I	63	41.401	31.701	51.798	1.00 16.40
ATOM	3109	CB	PHE I	63	41.495	31.773	48.552	1.00 11.01
ATOM	3110	CG	PHE I	63	40.776	31.641	47.229	1.00 13.33
ATOM	3111	CD1	PHE I		40.917	30.478	46.491	1.00 11.26
ATOM	3112	CD2	PHE I		39.904	32.635	46.823	1.00 13.18
	3113	CE1	PHE I		40.140	30.299	45.367	1.00 9.84
ATOM		CE2	PHE I		39.126	32.436	45.690	1.00 13.90
ATOM	3114				39.251	31.264	44.964	1.00 10.53
ATOM	3115	CZ			42.725	30.164	50.773	1.00 16.82
ATOM	3116	N	SER I					
ATOM	3117	CA	SER I		43.703	30.208	51.822	
ATOM	3118	C	SER I		45.123	30.230	51.275	1.00 16.89
ATOM	3119	0	SER I		45.377	29.918	50.120	1.00 16.97
MOTA	3120	CB	SER I		43.430	29.068	52.849	1.00 18.93
ATOM	3121	OG	SER I		44.080	27.847	52.508	1.00 28.24
ATOM	3122	N	ASN I	65	46.080	30.661	52.095	1.00 16.96
ATOM	3123	CA	ASN I	65	47.479	30.684	51.746	1.00 15.98
ATOM	3124	C	ASN I	65	48.027	29.319	51.496	1.00 15.15
ATOM	3125	ō	ASN I		47.472	28.362	52.000	1.00 17.07
ATOM	3126	CB	ASN I		48.341	31.398	52.774	1.00 17.48
ATOM	3127	CG	ASN I		48.232	32.904	52.684	1.00 19.71
1100	2101							

Figure 8-63

ATOM	3128	OD1	ASN				33.551	51.752	1.00 25.73
MOTA	3129	ND2	ASN	D	65	47.621	33.560	53.640	1.00 22.21
MOTA	3130	N			66	49.077	29.253	50.672	1.00 15.61
ATOM	3131	CA			66	49.778	28.029	50.363	1.00 16.53
ATOM	3132	C			66	51.232	28.235	50.711	1.00 16.49
ATOM	3133	0		D	66	51.633	29.383	50.813	1.00 17.79
ATOM	3134	CB		D	66	49.594	27.623	48.869	1.00 16.19
MOTA	3135	CG1		D	66	50.149	28.660	47.906	1.00 16.66
MOTA	3136	CG2		D	66	48.115	27.329	48.611	1.00 12.63
MOTA	3137	CD1		D	66	50.081	28.086	46.478	1.00 18.10
MOTA	3138	N	SER		67	52.041	27.187	50.853	1.00 18.84
MOTA	3139	CA	SER		67	53.442	27.347	51.233	1.00 23.17
MOTA	3140	C	SER		67	54.305	28.078	50.214	1.00 23.34
ATOM	3141	0		D	67	55.250	28.779	50.552	1.00 25.92
ATOM	3142	CB	SER		67	54.084	26.006	51.543	1.00 23.00
ATOM	3143	OG	SER		67	53.971	25.139	50.419	1.00 30.06
MOTA	3144	N	GLU		68	53.981	27.968	48.942	1.00 25.32
ATOM	3145	CA	GLU		68	54.755	28.626	47.914	1.00 27.08
MOTA	3146	C		D	68	54.045	28.401	46.597	1.00 25.08
ATOM	3147	0	GLU		68	53.391	27.373 28.061	46.403	1.00 24.26
ATOM	3148	CB	GLU		68	56.190		47.921	1.00 30.32
MOTA	3149	CG	GLU		68	56.711	27.081 25.744	46.883	1.00 40.98
MOTA	3150	CD	GLU		68 68	56.009 55.947	24.998	46.778 47.773	1.00 46.80 1.00 50.12
MOTA	3151	OE1				55.508	25.470	45.676	1.00 50.12
ATOM	3152	OE2	GLU	D	68 69	54.121	29.389	45.723	1.00 23.65
ATOM	3153 3154	N CA	GLY		69	53.784	29.192	44.320	1.00 24.95
MOTA	3155	CM		D	69	52.580	30.012	43.952	1.00 23.05
ATOM ATOM	3156	Ö		D	69	52.270	30.941	44.691	1.00 24.04
ATOM	3157	N		D	70	51.883	29.667	42.870	1.00 22.75
ATOM	3158	CA		Ď	70	50.768	30.474	42.415	1.00 23.31
ATOM	3159	C	LEU		70	49.618	30.380	43.412	1.00 21.85
ATOM	3160	ŏ		D	70	49.170	29.262	43.689	1.00 23.27
ATOM	3161	CB		D	70	50.307	29.902	41.114	1.00 22.88
ATOM	3162	CG	LEU	D	70	49.652	30.850	40.145	1.00 22.31
ATOM	3163	CD1	LEU	D	70	49.073	29.925	39.088	1.00 24.98
ATOM	3164	CD2	LEU	D	70	48.576	31.722	40.710	1.00 21.90
ATOM	3165	N		D	71	49.143	31.526	43.918	1.00 19.05
ATOM	3166	CA	SER	D	71	48.132	31.561	44.977	1.00 16.36
ATOM	3167	C	SER	D	71	47.008	32.518	44.667	1.00 15.90
ATOM	3168	0	SER	D	71	47.262	33.701	44.521	1.00 18.19
ATOM	3169	CB	SER	D	71	48.747	32.015	46.298	1.00 15.26
MOTA	3170	OG	SER		71	47.822	32.217	47.360	1.00 16.34
ATOM	3171	N	ASN		72	45.757	32.053	44.598	1.00 17.24
ATOM	3172	CA	ASN		72	44.604	32.871	44.335	1.00 14.30
ATOM	3173	C	ASN		72	44.451	33.836	45.493	1.00 16.33
ATOM	3174	0	ASN		72	44.170	35.023	45.286	1.00 16.94
ATOM	3175	CB	ASN		72	43.399	31.967	44.208	1.00 14.51
MOTA	3176	CG	ASN		72	43.311	31.102	42.953	1.00 14.36
ATOM	3177		ASN		72	44.170	31.156	42.089	1.00 15.41
MOTA	3178	ND2	ASN		72	42.291	30.261	42.779	1.00 14.10
ATOM	3179	N	TYR		73	44.711	33.348	46.720	1.00 16.70
ATOM	3180	CA	TYR		73	44.709	34.222	47.893	1.00 17.86
MOTA	3181	C	TYR		73	45.580	35.466	47.698	1.00 17.22
ATOM	3182	0	TYR		73	45.047	36.559	47.813	1.00 19.51
MOTA	3183	CB	TYR		73	45.171 44.962	33.479 34.331	49.182 50.421	1.00 15.83
ATOM	3184	CG	TYR		73	44.962	34.331	51.064	1.00 11.11
ATOM	3185	CD1	TYR		73 73	45.932	34.297	50.823	1.00 13.95
MOTA	3186	CD2	TYR		73	43.474	35.212	52.080	1.00 15.34
ATOM	3187	CE1	TYR	U	13	23.4/4	23.104	JZ.000	T.00 TD.34

Figure 8-64

ATOM	3188	CE2	TYR	D	73	45.663	36.140	51.814	1.00 15.34
ATOM	3189	CZ		D	73	44.430	36.108	52.407	1.00 16.30
ATOM	3190	OH		Ď	73	44.123	37.051	53.334	1.00 22.01
ATOM	3191	N		Ď	74	46.888	35.357	47.402	1.00 18.57
			SER		74	47.786	36.498	47.221	1.00 17.90
ATOM	3192	CA			74				
ATOM	3193	С		D		47.420	37.417	46.121	1.00 16.44
ATOM	3194	0		D	74	47.636	38.600	46.291	1.00 18.01
ATOM	3195	CB		D	74	49.180	36.125	46.829	1.00 18.93
ATOM	3196	OG	SER		74	49.623	35.176	47.760	1.00 25.77
ATOM	3197	N		D	75	46.890	36.866	45.027	1.00 16.68
ATOM	3198	CA	ILE	D	75	46.470	37.645	43.893	1.00 16.88
ATOM	3199	C	ILE	D	75	45.256	38.493	44.244	1.00 16.78
ATOM	3200	0	ILE	D	75	45.237	39.693	43.968	1.00 20.42
ATOM	3201	CB	ILE	D	75	46.184	36.709	42.711	1.00 16.41
ATOM	3202	CG1		D	75	47.380	35.898	42.295	1.00 16.78
ATOM	3203	CG2		D	75	45.861	37.615	41.567	1.00 16.46
ATOM	3204	CD1		D	75	47.146	34.967	41.097	1.00 19.66
	3205	N		Ď	76	44.230	37.936	44.901	1.00 18.21
ATOM		CA		D	76	43.023	38.678	45.220	1.00 15.41
ATOM	3206			D	76	43.340	39.669	46.286	1.00 17.60
ATOM	3207	C				42.870	40.796		
ATOM	3208	0		D	76			46.215	1.00 20.17
ATOM	3209	CB		D	76	41.941	37.743	45.711	1.00 16.42
ATOM	3210	CG1		D	76	41.615	36.789	44.588	1.00 14.92
ATOM	3211	CG2		D	76	40.696	38.481	46.200	1.00 11.21
ATOM	3212	CD1		D	76	40.745	35.613	45.055	1.00 13.69
ATOM	3213	N		D	77	44.162	39.271	47.248	1.00 19.35
ATOM	3214	CA	ASP	D	77	44.561	40.150	48.321	1.00 21.77
ATOM	3215	C	ASP	D	77	45.248	41.436	47.858	1.00 22.56
ATOM	3216	0	ASP	D	77	44.924	42.515	48.376	1.00 22.07
ATOM	3217	CB	ASP	D	77	45.433	39.385	49.282	1.00 24.17
ATOM	3218	CG		D	77	45.713	40.148	50.571	1.00 28.55
ATOM	3219	OD1		D	77	44.842	40.889	51.067	1.00 33.63
ATOM	3220	OD2		D	77	46.822	39.988	51.073	1.00 28.53
ATOM	3221	N		D	78	46.139	41.344	46.851	1.00 22.27
ATOM	3222	CA		D	78	46.692	42.534	46.222	1.00 21.32
ATOM	3223	c		Ď :	78	45.654	43.318	45.471	1.00 19.56
	3224	ŏ		Ď	78	45.786	44.524	45.417	1.00 22.75
MOTA		CB		D	78	47.807	42.270	45.230	1.00 23.87
MOTA	3225			D	78	49.036	41.600	45.795	1.00 30.71
MOTA	3226	CG			78	50.269	41.917	44.947	1.00 30.71
ATOM	3227	CD		D	78	51.317	40.799	45.004	1.00 40.34
ATOM	3228	CE		D		50.843		44.214	1.00 44.85
ATOM	3229	NZ		D	78		39.671		
MOTA	3230	N		D	79	44.634	42.714	44.882	1.00 18.00
ATOM	3231	CA		D	79	43.570	43.462	44.247	1.00 16.42
ATOM	3232	C		D	79	42.696	44.124	45.273	1.00 18.98
MOTA	3233	0		D	79	42.215	45.218	45.035	1.00 21.86
MOTA	3234	CB		D	79	42.687	42.543	43.451	1.00 13.71
MOTA	3235	CG		D	79	43.383	41.746	42.358	1.00 13.81
MOTA	3236	CD1		D	79	42.294	41.091	41.522	1.00 14.16
ATOM	3237	CD2	LEU	D	79	44.240	42.627	41.462	1.00 11.49
ATOM	3238	N	VAL	D	80	42.438	43.524	46.430	1.00 19.01
ATOM	3239	CA	VAL	D	80	41.624	44.124	47.462	1.00 20.11
ATOM	3240	C	VAL	D	80	42.369	45.343	47.920	1.00 21.57
MOTA	3241	ō		D	80	41.759	46.389	47.987	1.00 25.14
ATOM	3242	CB		D	80	41.480	43.093	48.603	1.00 22.94
ATOM	3243	CG1		D	80	40.920	43.647	49.896	1.00 25.85
ATOM	3244	CG2		D	80	40.511	42.003	48.246	1.00 20.39
ATOM	3244	N	ASN	D	81	43.678	45.313	48.167	1.00 24.08
ATOM	3245	CA		D	81	44.375	46.498	48.626	1.00 23.59
			ASN		81	44.363	47.632	47.620	1.00 26.17
ATOM	3247	C							

Figure 8-65

ATOM	3248	0	ASN	D	81	44.334	48.756	48.114	1.00 28.26
ATOM	3249	CB	ASN	D	81	45.761	46.180	49.097	1.00 21.14
ATOM	3250	CG			81	45.684	45.257	50.278	1.00 23.73
ATOM	3251	OD1			81	44.871	45.422	51.175	1.00 23.73
ATOM	3252	ND2	ASN		81	46.490	44.231	50.357	
ATOM	3253	N	ILE	D	82	44.340	47.414	46.280	
		CA				44.088			
MOTA	3254			D	82		48.469	45.268	1.00 25.82
MOTA	3255	C	ILE	D	82	42.671	49.103	45.287	1.00 25.89
ATOM	3256	0		D	82	42.512	50.323	45.196	1.00 25.87
MOTA	3257	CB	ILE	D	82	44.444	48.002	43.847	1.00 23.39
MOTA	3258	CG1		D	82	45.885	47.557	43.751	1.00 25.26
ATOM	3259	CG2		D	82	44.317	49.150	42.894	1.00 23.94
MOTA	3260	CD1	ILE		82	46.185	46.717	42.500	1.00 24.24
MOTA	3261	N	VAL		83	41.595	48.324	45.443	1.00 27.50
ATOM	3262	CA	VAL		83	40.240	48.859	45.486	1.00 27.69
ATOM	3263	C	VAL	D	83	40.017	49.556	46.841	1.00 30.42
MOTA	3264	0	VAL	D	83	39.190	50.454	46.938	1.00 29.44
ATOM	3265	CB	VAL	D	83	39.230	47.758	45.201	1.00 23.07
MOTA	3266	CG1	VAL	D	83	37.910	48.384	44.868	1.00 24.95
ATOM	3267	CG2	VAL	D	83	39.634	47.000	43.979	1.00 23.59
ATOM	3268	N	ASP	D	84	40.772	49.192	47.892	1.00 32.89
ATOM	3269	CA	ASP	D	84	40.753	49.840	49.206	1.00 35.85
MOTA	3270	C	ASP	D	84	41.361	51.238	49.084	1.00 35.75
ATOM	3271	ŏ		D	84	40.779	52.212	49.557	1.00 35.62
ATOM	3272	CB		D	84	41.531	49.029	50.294	1.00 39.03
ATOM	3273	CG		D	84	40.827	48.006	51.221	1.00 41.67
ATOM	3274			D	84	39.593	47.858	51.172	1.00 43.23
ATOM	3275	OD2		D	84	41.536	47.352	52.008	1.00 43.54
ATOM	3276	N		Ď	85	42.500	51.382	48.417	1.00 35.24
ATOM	3277	CA		Ď	85	43.039	52.689	48.095	1.00 39.54
ATOM	3278	C	ASP	Ď	85	42.055	53.620	47.372	1.00 40.48
ATOM	3279	ŏ		D	85	41.712	54.706	47.853	1.00 42.05
ATOM	3280	СВ		D	85	44.343	52.540	47.287	1.00 41.18
ATOM	3281	CG		D	85	45.534	51.871	48.001	1.00 41.18
ATOM	3282			D	85	45.537	51.723	49.243	
ATOM	3283	OD2		D	85	46.465	51.488	47.276	1.00 41.35 1.00 42.78
ATOM	3284	N N		D	86	41.518	53.157	46.238	1.00 41.90
	3285	CA		Ď	86	40.526	53.903	45.456	
ATOM	3286	CM		Ď	86	39.249	54.172	46.203	1.00 39.57
ATOM	3287	Ö	LEU		86	38.614	55.176	45.924	1.00 38.81
ATOM			LEU			40.142			
ATOM	3288	CB			86		53.164	44.191	1.00 36.00
ATOM	3289	CG		D D	86	41.234	52.732	43.251	1.00 34.91
ATOM	3290	CD1			86	40.618	52.075	42.047	1.00 33.95
ATOM	3291	CD2		D	86	42.096	53.907	42.858	1.00 32.40
ATOM	3292	N		D	87	38.840	53.303	47.125	1.00 40.82
ATOM	3293	CA		D	87	37.680	53.589	47.958	1.00 44.87
ATOM	3294	C		D	87	37.965	54.754	48.933	1.00 47.95
ATOM	3295	0	VAL		87	37.085	55.580	49.176	1.00 49.04
ATOM	3296	CB	VAL		87	37.191	52.311	48.682	1.00 42.48
ATOM	3297	CG1		D	87	36.094	52.685	49.647	1.00 43.30
ATOM	3298	CG2		D	87	36.572	51.285	47.749	1.00 39.59
ATOM	3299	N		D	88	39.185	54.862	49.472	1.00 51.32
ATOM	3300	CA		D	88	39.548	55.935	50.387	1.00 55.88
ATOM	3301	C	GLU		88	39.807	57.235	49.672	1.00 57.32
ATOM	3302	0		D	88	39.717	58.303	50.291	1.00 59.78
ATOM	3303	CB		D	88	40.786	55.627	51.225	1.00 57.84
ATOM	3304	CG		D	88	40.534	54.935	52.572	1.00 61.46
ATOM	3305	CD		D	88	41.737	54.106	53.056	1.00 65.66
ATOM	3306	OE1		D	88	42.872	54.610	53.000	1.00 65.91
ATOM	3307	OE2	GLU	D	88	41.543	52.947	53.479	1.00 68.20

Figure 8-66

ATOM	3308	N	CYS D	89	40.14	57.130	48.382	1.00 57.61
ATOM	3309	CA	CYS D	89	40.27		47.528	1.00 58.46
ATOM	3310	C	CYS D	89	38.89		47.344	1.00 58.39
ATOM	3311	õ	CYS D	89	38.79		47.378	1.00 58.21
ATOM	3312	CB	CYS D	89	40.93		46.221	1.00 57.54
ATOM	3313	SG	CYS D	89	41.34		45.038	1.00 58.90
ATOM	3314	N	VAL D	90	37.80		47.271	1.00 58.70
ATOM	3315	CA	VAL D	90	36.45		47.150	1.00 59.63
ATOM	3316	C	VAL D	90	35.87		48.484	1.00 61.73
ATOM	3317	Ö	VAL D	90	34.68		48.763	1.00 62.80
ATOM	3318	CB	VAL D	90	35.60		46.539	1.00 58.55
ATOM	3319	N	SER D		20.66		45.909	1.00 56.19
ATOM	3320	CA	SER D		21.62		45.958	1.00 53.75
ATOM	3321	C	SER D		21.47		44.750	1.00 51.69
ATOM	3322	ŏ	SER D		20.51		43.954	1.00 53.93
ATOM	3323	CB	SER D		21.45		47.297	1.00 55.38
ATOM	3324	OG	SER D		22.50		47.610	1.00 56.37
ATOM	3325	N	PRO D		22.44	49.277	44.526	1.00 45.68
ATOM	3326	CA	PRO D		22.36		43.470	1.00 41.30
ATOM	3327	C	PRO D		22.13	46.887	43.955	1.00 37.99
ATOM	3328	ŏ	PRO D		22.52	9 46.478	45.049	1.00 38.93
ATOM	3329	СВ	PRO D		23.66		42.741	1.00 40.55
ATOM	3330	CG	PRO D		24.63	1 48.664	43.862	1.00 42.00
ATOM	3331	CD	PRO D		23.85	49.476	44.863	1.00 42.72
ATOM	3332	N	GLU I		21.45		43.075	1.00 33.70
ATOM	3333	CA	GLU I		20.97	1 44.880	43.417	1.00 32.02
ATOM	3334	C	GLU I		21.97	43.812	43.085	1.00 32.36
ATOM	3335	ō	GLU D	106	22.71	43.942	42.111	1.00 32.37
ATOM	3336	CB	GLU I	106	19.73	44.553	42.624	1.00 32.57
ATOM	3337	N	PRO D	107	22.00		43.886	1.00 32.45
ATOM	3338	CA	PRO D		22.85		43.686	1.00 31.86
ATOM	3339	C	PRO D	107	22.72		42.340	1.00 29.45
ATOM	3340	0	PRO I	107	21.62		41.911	1.00 29.62
ATOM	3341	CB	PRO D		22.40		44.801	1.00 32.83
ATOM	3342	CG	PRO I		22.04		45.904	1.00 34.59
ATOM	3343	CD	PRO I		21.29		45.165	1.00 31.98
ATOM	3344	N	ARG I		23.89		41.745	1.00 27.04
ATOM	3345	CA	ARG I		23.96		40.479	1.00 24.37
ATOM	3346	С	ARG I		25.09		40.442	1.00 22.83
ATOM	3347	0	ARG I		26.08		41.124	1.00 21.26
ATOM	3348	CB	ARG I		24.09		39.431	1.00 27.20
ATOM	3349	CG	ARG I		23.92		38.015	1.00 32.52 1.00 35.27
MOTA	3350	CD	ARG I		23.48		37.061 35.712	1.00 35.27
MOTA	3351	NE	ARG I		23.84		34.627	1.00 38.97
ATOM	3352	CZ	ARG I		23.53 22.79		34.720	1.00 34.64
ATOM	3353	NH1			23.99		33.454	1.00 39.61
ATOM	3354	NH2	ARG I		24.98		39.681	1.00 21.95
ATOM	3355	N	LEU I		25.99		39.565	1.00 20.44
ATOM	3356	CA			26.76		38.265	1.00 18.72
ATOM	3357	C	TEU I		26.19		37.175	1.00 19.50
ATOM	3358	O CB	TEA I		25.39		39.657	1.00 21.02
ATOM	3359				24.43		40.779	1.00 23.43
ATOM	3360	CG CD1	LEU I		24.43		40.648	1.00 24.08
ATOM	3361	CD1	LEU I		24.17		42.193	1.00 25.25
ATOM	3362	N CD2	PHE I		28.08		38.437	1.00 17.94
ATOM	3363 3364	CA	PHE I		29.03		37.333	1.00 17.25
ATOM ATOM	3364	CA	PHE I		30.01		37.346	1.00 16.87
ATOM	3366	Ö	PHE I		30.41		38.404	1.00 19.49
ATOM	3367	CB	PHE I		29.84		37.366	1.00 16.08
ATOM	3307	CD						

Figure 8-67

ATOM	3368	CG	PHE I	110	28.993	39.305	37.265	1.00 18.38
ATOM	3369	CD1	PHE I		28.573	39.743	36.029	1.00 19.11
ATOM	3370	CD2	PHE I		28.633	39.977	38.408	1.00 16.78
ATOM	3371	CE1	PHE I		27.802	40.874	35.946	1.00 16.78
	3372	CE2	PHE I		27.850	41.103	38.321	
ATOM								1.00 18.17
ATOM	3373	CZ	PHE I		27.445	41.553	37.081	1.00 21.53
ATOM	3374	N	THR I		30.425	35.107	36.216	1.00 15.24
ATOM	3375	CA	THR I		31.539	34.192	36.176	1.00 14.72
ATOM	3376	C	THR I		32.811	34.994	36.443	1.00 12.40
MOTA	3377	0	THR I	111	32.752	36.218	36.400	1.00 13.27
ATOM	3378	CB	THR I	111	31.579	33.435	34.828	1.00 17.12
ATOM	3379	OG1	THR I	111	31.630	34.415	33.809	1.00 17.68
ATOM	3380	CG2	THR I		30,451	32.446	34.621	1.00 14.81
ATOM	3381	N	PRO I		33,974	34.412	36.757	1.00 12.31
ATOM	3382	CA	PRO I		35.219	35.126	36.935	1.00 11.10
ATOM	3383	C	PRO I		35.594	36.046	35.783	1.00 14.02
		ŏ	PRO I		35.884	37.215	36.011	
MOTA	3384							1.00 13.17
MOTA	3385	CB	PRO I		36.189	33.965	37.074	1.00 9.39
MOTA	3386	CG	PRO I		35.413	32.952	37.854	1.00 7.72
ATOM	3387	CD	PRO I		34.151	32.972	37.061	1.00 11.01
MOTA	3388	N	GLU I		35.611	35.572	34.517	1.00 16.22
MOTA	3389	CA	GLU I	113	35.905	36.456	33.395	1.00 16.17
ATOM	3390	C	GLU I	113	35.026	37.679	33.272	1.00 13.99
ATOM	3391	0	GLU I	113	35.508	38.761	32.985	1.00 15.09
ATOM	3392	CB	GLU I	113	35.913	35.703	32.092	1.00 17.91
ATOM	3393	CG	GLU D	113	34.636	34.985	31.713	1.00 19.43
ATOM	3394	CD	GLU D	113	34.621	34.539	30.277	1.00 22.34
ATOM	3395	OE1	GLU I		35.652	34.599	29.608	1.00 23.91
MOTA	3396	OE2	GLU D		33.558	34.139	29.810	1.00 24.64
ATOM	3397	N	GLU I		33.747	37.539	33.559	1.00 14.85
ATOM	3398	CA	GLU I		32.837	38.649	33.596	1.00 15.81
ATOM	3399	C	GLU D		33.063	39.567	34.769	1.00 15.50
	3400	ŏ	GLU D		33.085	40.783	34.557	1.00 15.87
MOTA			GLU D		31.402	38.208	33.707	
ATOM	3401	CB			30.883	37.422	32.539	
MOTA	3402	CG	GLU I		29.605	36.642	32.816	
MOTA	3403	CD	GLU D					1.00 24.09
ATOM	3404	OE1	GLU D		29.017	36.697	33.897	1.00 26.51
ATOM	3405	OE2	GLU D		29.185	35.937	31.907	1.00 29.29
MOTA	3406	N	PHE D		33.204	39.041	35.990	1.00 13.99
ATOM	3407	CA	PHE D		33.464	39.892	37.125	1.00 12.83
MOTA	3408	C	PHE D		34.753	40.667	36.905	1.00 13.21
ATOM	3409	0	PHE D	115	34.827	41.855	37.193	1.00 14.99
MOTA	3410	CB	PHE D	115	33.650	39.018	38.359	1.00 10.89
MOTA	3411	CG	PHE D	115	33.982	39.867	39.569	1.00 11.83
ATOM	3412	CD1	PHE D	115	32.951	40.361	40.344	1.00 12.60
ATOM	3413	CD2	PHE D	115	35.296	40.133	39.917	1.00 14.96
ATOM	3414	CE1	PHE D		33.251	41.093	41.480	1.00 12.59
ATOM	3415	CE2	PHE D		35.605	40.892	41.033	1.00 13.04
ATOM	3416	CZ	PHE D	115	34.560	41.373	41.810	1.00 14.57
ATOM	3417	N	PHE D	116	35.833	40.025	36.477	1.00 15.07
ATOM	3418	CA	PHE D		37.102	40.718	36.297	1.00 13.94
ATOM	3419	C	PHE D		37.181	41.563	35.036	1.00 15.79
	3420	ŏ	PHE D	116	38.014	42.455	34.965	1.00 16.79
MOTA			PHE D	116	38.273	39.775	36.373	1.00 18.79
ATOM	3421	CB						
ATOM	3422	CG	PHE D	116	38.548	39.261	37.759	1.00 10.27
ATOM	3423	CD1	PHE D	116	39.105	40.100	38.692	1.00 12.82
ATOM	3424	CD2	PHE D	116	38.143	37.990	38.132	1.00 11.47
MOTA	3425	CE1	PHE D	116	39.169	39.689	40.025	1.00 14.46
MOTA	3426	CE2	PHE D		38.216	37.584	39.457	1.00 10.67
MOTA	3427	CZ	PHE D	116	38.709	38.439	40.407	1.00 11.80

Figure 8-68

ATOM	3428	N	ARG	D 11	36.361	41.405	34.011	1.00 16.57
ATOM	3429	CA		D 11		42.421	32.990	1.00 20.64
ATOM	3430	C		D 11		43.700	33.548	
ATOM	3431	0	ARG			44.803	33.174	1.00 23.89
MOTA	3432	CB	ARG			41.879	31.860	1.00 26.52
MOTA	3433	CG	ARG			42.709	30.598	1.00 31.58
ATOM	3434	CD	ARG			42.146	29.640	1.00 35.05
ATOM	3435	NE	ARG	D 11	34.394	43.021	28.483	1.00 38.58
ATOM	3436	CZ	ARG	D 11	33.828	42.656	27.326	1.00 37.56
ATOM	3437	NH1	ARG			41.506	27.170	1.00 33.95
ATOM	3438	NH2				43.473	26.286	1.00 37.95
	3439	N		D 11		43.594	34.445	
MOTA						44.753		1.00 22.03
MOTA	3440	CA		D 11			35.121	1.00 19.63
ATOM	3441	C		D 11		45.368	36.086	1.00 19.88
MOTA	3442	0		D 11		46.586	36.085	1.00 23.21
MOTA	3443	CB		D 11		44.357	35.874	1.00 20.68
MOTA	3444	CG1	ILE :	D 11	31.691	43.843	34.951	1.00 19.48
ATOM	3445	CG2	ILE :	D 11	32.255	45.562	36.619	1.00 20.52
MOTA	3446	CD1	ILE :	D 11	30.567	43.143	35.727	1.00 18.63
ATOM	3447	N	PHE :	0 11		44.577	36.908	1.00 16.07
ATOM	3448	CA		D 11:		45.059	37.683	1.00 15.72
MOTA	3449	C		0 11		45.894	36.880	1.00 17.75
	3450			0 11		47.006	37.267	
ATOM		0				43.866		
MOTA	3451	CB					38.359	1.00 12.02
ATOM	3452	CG		0 11		44.222	39.100	1.00 13.89
MOTA	3453			0 11		44.766	40.389	1.00 14.47
MOTA	3454			0 11		44.030	38.492	1.00 10.48
MOTA	3455	CE1		D 11		45.148	41.032	1.00 13.14
MOTA	3456			D 11:		44.387	39.149	1.00 10.95
ATOM	3457	CZ		D 11:	41.163	44.965	40.405	1.00 10.47
MOTA	3458	N	ASN :	12	38.349	45.343	35.779	1.00 18.18
ATOM	3459	CA		12	39.325	45.994	34.955	1.00 18.15
ATOM	3460	C		12		47.263	34.387	1.00 20.79
ATOM	3461	ō		12		48.303	34.408	1.00 22.36
ATOM	3462	СВ	ASN I			45.078	33.812	1.00 18.05
ATOM	3463	CG	ASN I			44.026	34.137	1.00 17.71
ATOM	3464	OD1		12		44.210	34.918	1.00 21.36
	3465	ND2		12		42.860	33.538	
ATOM			ARG			47.256		
ATOM	3466	N					33.941	1.00 22.71
MOTA	3467	CA	ARG I			48.438	33.431	1.00 24.59
MOTA	3468	С	ARG I			49.523	34.494	1.00 27.41
ATOM	3469	0	ARG I			50.683	34.192	1.00 30.49
MOTA	3470	CB	ARG I			47.993	32.953	1.00 26.42
ATOM	3471	CG	ARG I			49.156	32.549	1.00 33.46
MOTA	3472	CD	ARG I	12:	34.760	49.641	31.105	1.00 37.32
ATOM	3473	NE	ARG I	12	34.149	50.962	30.882	1.00 39.99
ATOM	3474	CZ	ARG I	12	32.836	51.217	31.020	1.00 39.01
ATOM	3475	NH1	ARG I			50.306	31.426	1.00 37.27
ATOM	3476	NH2	ARG I			52.439	30.747	1.00 40.47
ATOM	3477	N	SER I			49.186	35.754	1.00 28.07
ATOM	3478	CA	SER			50.153	36.820	1.00 24.66
	3479		SER I			50.758	37.250	1.00 25.38
ATOM		C						
MOTA	3480	0	SER I			51.971	37.401	1.00 24.85
ATOM	3481	CB	SER I			49.505	37.983	1.00 20.76
MOTA	3482	OG	SER I			48.886	37.591	1.00 19.10
MOTA	3483	N	ILE !			49.954	37.389	1.00 28.58
ATOM	3484	CA	ILE !			50.468	37.718	1.00 31.03
ATOM	3485	C	ILE I	12:	40.396	51.464	36.684	1.00 33.54
MOTA	3486	0	ILE I	12	40.998	52.471	37.040	1.00 33.54
ATOM	3487	CB	ILE I	12	40.821	49.267	38.041	1.00 31.69

Figure 8-69

ATOM	3488	CG1	ILE	D 123	40.899	48.877	39.544	1.00 30.91
ATOM	3489	CG2	ILE	D 123	42.262	49.504	37.583	1.00 31.27
ATOM	3490	CD1	ILE	D 123	39.609	48.826	40.377	1.00 31,19
ATOM	3491	N	ASP	D 124	40.123	51,244	35.395	1.00 36.80
ATOM	3492	CA	ASP		40.562	52.125	34.333	1.00 38.72
ATOM	3493	c	ASP		39.846	53.455	34.353	1.00 39.18
ATOM	3494	ŏ	ASP		40.487	54.491	34.186	1.00 39.94
ATOM	3495	CB	ASP		40.383	51.461	32.981	1.00 42.50
ATOM	3496	CG	ASP		40.847	52.342	31.828	1.00 47.69
ATOM	3497	OD1			42.058	52.554	31.646	1.00 50.62
ATOM	3498	OD2		D 124	39.972	52.837	31.116	1.00 50.62
ATOM	3499	N N	ALA		38.538	53.440	34.590	1.00 39.43
ATOM	3500	CA	ALA		37.731	54.649	34.586	1.00 41.04
ATOM	3501	C	ALA		38.028	55,640	35.712	1.00 44.24
ATOM	3501	0	ALA		37.580	56.792	35.729	1.00 44.24
	3502	CB	ALA		36.289	54.232	34.688	1.00 46.63
MOTA		N		D 125	38.795	55.189	36.693	
ATOM	3504					56,063		1.00 47.55
MOTA	3505	CA	PHE		39.342		37.709	1.00 52.08
ATOM	3506	C	PHE	D 126	40.409	57.058	37.208	1.00 55.06
MOTA	3507	0		D 126	40.531	58.167	37.751	1.00 57.33
ATOM	3508	CB	PHE	D 126	39.877	55.182	38.838	1.00 51.90
ATOM	3509	CG		D 126	39.154	55.489	40.124	1.00 50.92
ATOM	3510	CD1	PHE	D 126	39.155	56.780	40.620	1.00 52.88
MOTA	3511	CD2	PHE	D 126	38.437	54.505	40.745	1.00 50.11
ATOM	3512	CE1		D 126	38.390	57.105	41.721	1.00 54.34
ATOM	3513	CE2	PHE	D 126	37.688	54.827	41.851	1.00 52.08
MOTA	3514	CZ		D 126	37.653	56.117	42.336	1.00 53.64
ATOM	3515	N	LYS	D 127	41.187	56.667	36.177	1.00 56.75
ATOM	3516	CA	LYS	D 127	42.055	57.566	35.420	1.00 57.29
MOTA	3517	C		D 127	41.257	58.229	34.273	1.00 58.91
ATOM	3518	0	LYS	D 127	41.376	57.826	33.098	1.00 60.03
ATOM	3519	CB		D 127	43.225	56.735	34.882	1.00 56.61
TER	3521		LYS	D 127				
HETATM		CA	CA	1021	34.563	32.796	27.927	1.00 28.47
HETATM		CA	CA	1022	29.874	41.216	51.866	1.00 42.93
HETATM		CA	CA	1023	46.453	8.630	31.415	1.00 34.99
HETATM		OH2	1PE	1	18.016	39.096	31.870	1.00 54.04
HETATM		C12	1PE	1	19.233	39.467	31.241	1.00 52.50
HETATM		C22	1PE	1	20.344	39.764	32.285	1.00 52.87
HETATM		OH3	1PE	1	21.455	40.455	31.657	1.00 50.81
HETATM		C13	1PE	1	21.887	42.392	30.182	1.00 41.29
HETATM		C23	1PE	1	20.971	41.737	31.213	1.00 45.45
HETATM			1PE	1	23.085	42.870	30.757	1.00 37.80
HETATM		C14	1PE	1	24.265	44.731	31.534	1.00 39.00
HETATM		C24	1PE	1	22.866	44.120	31.391	1.00 35.49
HETATM		OH5	1PE	1	25.158	43.676	31.917	1.00 39.07
HETATM		C15	1PE	1	27.396	42.942	31.976	1.00 36.51
HETATM		C25	1PE	1	26.476	44.138	32.222	1.00 37.63
HETATM		OH6	1PE	1	26.797	41.817	32.602	1.00 37.94
HETATM		C16	1PE	1	28.795	40.537	32.878	1.00 44.86
HETATM		C26	1PE	1	27.405	40.589	32.251	1.00 38.90
HETATM		OH7	1PE	1	29.817	40.999	31.987	1.00 53.59
HETATM		0	HOH	1024	36.890	32.430	27.721	1.00 24.58
HETATM		0	HOH	1025	35.049	30.934	29.322	1.00 27.97
HETATM		0	HOH	1026	31.347	42.865	52.839	1.00 31.45
HETATM		0	HOH	1027	44.819	10.251	32.056	1.00 31.08
HETATM		0	HOH	1028	47.508	7.695	33.365	1.00 35.15
HETATM		0	HOH	1029	48.695	9.256	30.957	1.00 29.22
HETATM		0	HOH	1105	33.704	13.935	20.986	1.00 32.21
HETATM	3548	0	HOH	1106	22.707	17.800	13.006	1.00 51.74

Figure 8-70

HETATM	3549	0	HOH	1107	25.589	22.952	23.068	1.00 38.86
HETATM	3550	0	HOH	1108	20.410	17.104	15.299	1.00 29.07
HETATM	3551	0	HOH	1109	26.763	8.355	29.315	1.00 19.21
HETATM	3552	0	HOH	1110	25.744	13.365	30.461	1.00 32.06
HETATM	3553	0	HOH	1111	27.532	6.721	32.848	1.00 38.65
HETATM		0	HOH	1112	18.245	18.266	16.629	1.00 28.39
HETATM		0	HOH	1113	23.260	14.366	29.164	1.00 21.00
HETATM		ō	HOH	1114	15.116	22.225	22.815	1.00 19.32
HETATM		ō	HOH	1115	15.033	21.355	35.696	1.00 38.95
HETATM		ō	HOH	1116	20.651	6.306	35.427	1.00 25.08
HETATM		ŏ	HOH	1117	15.267	18.912	37.475	1.00 41.62
HETATM		ō	HOH	1118	13.693	14.872	13.312	1.00 29.91
HETATM		õ	HOH	1119	10.257	20.310	28.411	1.00 19.75
HETATM		ō	HOH	1120	17.034	0.246	35.599	1.00 32.81
HETATM		ŏ	HOH	1121	6.051	17.933	31.202	1.00 21.61
HETATM		ŏ	HOH	1122	4.997	14.576	24.993	1.00 33.94
HETATM		ŏ	HOH	1123	0.916	19.643	30.618	1.00 37.91
HETATM		Õ	HOH	1124	5.906	11.136	30.408	1.00 46.39
HETATM		ő	HOH	1125	6.559	5.604	30.508	1.00 37.39
HETATM		ŏ	HOH	1126	8.033	4.439	28.006	1.00 43.67
HETATM		ŏ	HOH	1127	5.753	3.756	33.445	1.00 43.48
HETATM		Ö	HOH	1128	44.059	26.360	36.277	1.00 22.42
HETATM		ŏ	HOH	1129	34.421	31.639	20.635	1.00 57.58
HETATM		0	HOH	1130	50.215	13.426	34.211	1.00 37.38
HETATM		Ö	HOH	1132	22.455	45.496	39.519	1.00 46.16
		ŏ	HOH	1133	13.246	35.686	8.764	1.00 63.66
HETATM		0	HOH	1134	34.029	21.538	54.154	1.00 48.71
HETATM		ő	HOH	1135	46.505	41.139	53.506	1.00 45.71
HETATM		ő	HOH	1136	14.868	40.514	7.810	1.00 46.95
HETATM		ő	HOH	1138	37.977	45.274	53.726	1.00 41.75
HETATM		ŏ	HOH	1139	10.511	41.610	30.508	1.00 54.06
HETATM		0	HOH	1140	21.928	44.651	36.769	1.00 27.65
		ő	HOH	1141	9.657	38.390	31.085	1.00 36.52
HETATM		ŏ	HOH	1142	35.556	55.905	31.455	1.00 38.52
HETATM		ő	HOH	1142	52.337	31.433	47.975	1.00 42.15
HETATM		ŏ	HOH	1144	32.915	38.699	23.494	1.00 40.84
HETATM		ŏ	HOH	1145	29.548	21.469	24.434	1.00 44.50
HETATM		0	HOH	1145	26.181	34.331	29.823	1.00 44.30
HETATM		ŏ	HOH	1147	39.069	5.943	33.085	1.00 53.70
HETATM		ŏ	HOH	1148	34.970	24.222	52.427	1.00 40.12
HETATM		ő	HOH	1149	59.825	24.478	48.580	1.00 40.98
HETATM		ŏ	HOH	1150	28.412	33.531	47.673	1.00 44.44
HETATM		ŏ	HOH	1151	25.454	33.933	32.960	1.00 35.88
HETATM		ő	HOH	1152	41.875	59.115	53.350	1.00 51.54
HETATM		ő	HOH	1153	45.977	17.661	29.654	1.00 48.44
HETATM	3594	ő	HOH	1154	16.374	19.854	15.198	1.00 26.92
		ő	HOH	1156	2.909	45.550	9.710	1.00 33.50
HETATM		ŏ	HOH	1157	27.955	42.970	52.054	1.00 42.09
					18.671			1.00 31.92
	3597	0	HOH	1158		28.692	31.947	
HETATM	3598	O	HOH	1160	31.097	11.069	39.837	1.00 22.54
HETATM HETATM	3598 3599	00	HOH	1160 1161	31.097 24.551	11.069 47.693	39.837 13.911	1.00 22.54 1.00 39.92
HETATM HETATM HETATM	3598 3599 3600	000	HOH HOH	1160 1161 1162	31.097 24.551 19.328	11.069 47.693 46.523	39.837 13.911 39.555	1.00 22.54 1.00 39.92 1.00 49.64
HETATM HETATM HETATM HETATM	3598 3599 3600 3601	0000	HOH HOH HOH	1160 1161 1162 1163	31.097 24.551 19.328 14.463	11.069 47.693 46.523 28.577	39.837 13.911 39.555 32.747	1.00 22.54 1.00 39.92 1.00 49.64 1.00 33.62
HETATM HETATM HETATM HETATM HETATM	3598 3599 3600 3601 3602	00000	HOH HOH HOH HOH	1160 1161 1162 1163 1164	31.097 24.551 19.328 14.463 42.334	11.069 47.693 46.523 28.577 34.141	39.837 13.911 39.555 32.747 31.684	1.00 22.54 1.00 39.92 1.00 49.64 1.00 33.62 1.00 25.02
HETATM HETATM HETATM HETATM HETATM HETATM	3598 3599 3600 3601 3602 3603	000000	HOH HOH HOH HOH HOH	1160 1161 1162 1163 1164 1165	31.097 24.551 19.328 14.463 42.334 26.640	11.069 47.693 46.523 28.577 34.141 35.518	39.837 13.911 39.555 32.747 31.684 34.853	1.00 22.54 1.00 39.92 1.00 49.64 1.00 33.62 1.00 25.02 1.00 25.40
HETATM HETATM HETATM HETATM HETATM HETATM HETATM	3598 3599 3600 3601 3602 3603 3604	0000000	HOH HOH HOH HOH HOH	1160 1161 1162 1163 1164 1165 1166	31.097 24.551 19.328 14.463 42.334 26.640 41.719	11.069 47.693 46.523 28.577 34.141 35.518 26.191	39.837 13.911 39.555 32.747 31.684 34.853 52.537	1.00 22.54 1.00 39.92 1.00 49.64 1.00 33.62 1.00 25.02 1.00 25.40 1.00 54.23
HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM	3598 3599 3600 3601 3602 3603 3604 3605	00000000	HOH HOH HOH HOH HOH HOH HOH	1160 1161 1162 1163 1164 1165 1166	31.097 24.551 19.328 14.463 42.334 26.640 41.719	11.069 47.693 46.523 28.577 34.141 35.518 26.191 43.370	39.837 13.911 39.555 32.747 31.684 34.853 52.537 8.564	1.00 22.54 1.00 39.92 1.00 49.64 1.00 33.62 1.00 25.02 1.00 25.40 1.00 54.23 1.00 42.64
HETATM	3598 3599 3600 3601 3602 3603 3604 3605 3606	000000000	HOH HOH HOH HOH HOH HOH HOH	1160 1161 1162 1163 1164 1165 1166 1167 1169	31.097 24.551 19.328 14.463 42.334 26.640 41.719 11.799 39.695	11.069 47.693 46.523 28.577 34.141 35.518 26.191 43.370 23.691	39.837 13.911 39.555 32.747 31.684 34.853 52.537 8.564 29.775	1.00 22.54 1.00 39.92 1.00 49.64 1.00 33.62 1.00 25.02 1.00 25.40 1.00 54.23 1.00 42.64 1.00 46.55
HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM HETATM	3598 3599 3600 3601 3602 3603 3604 3605 3606 3607	00000000	HOH HOH HOH HOH HOH HOH HOH	1160 1161 1162 1163 1164 1165 1166	31.097 24.551 19.328 14.463 42.334 26.640 41.719	11.069 47.693 46.523 28.577 34.141 35.518 26.191 43.370	39.837 13.911 39.555 32.747 31.684 34.853 52.537 8.564	1.00 22.54 1.00 39.92 1.00 49.64 1.00 33.62 1.00 25.02 1.00 25.40 1.00 54.23 1.00 42.64

Figure 8-71

HETATM	3609	0	HOH	1173	26.042	53.508	19.228	1.00 35.35
HETATM		ŏ	HOH	1174	16.723	43.317	9.437	1.00 70.54
HETATM		ŏ	HOH	1175	11.039	27.202	31.989	1.00 35.23
HETATM		ŏ	HOH	1176	26.492	54.880	14.660	1.00 45.35
		ŏ	HOH	1177	48.739	5.603	40.080	1.00 46.72
HETATM		0	HOH	1179	38.452	10.611	56.410	1.00 33.18
HETATM					25.173	41.020	50.981	1.00 37.80
HETATM		0	HOH	1180	26.009	21.500	26.306	1.00 37.33
HETATM		0	HOH	1181	32.901	61.354	32.974	1.00 47.36
HETATM		0	HOH	1185	49.199	44.404	48.616	1.00 55.72
HETATM		0	HOH	1186				
HETATM		0	HOH	1187	28.401	31.064	46.621	
HETATM		0	HOH	1189	50.488	34.252	43.662	1.00 27.11
HETATM		0	HOH	1190	25.015	38.231	32.413	1.00 46.20
HETATM		0	HOH	1191	13.328	45.647	6.880	1.00 50.19
HETATM		0	HOH	1192	9.102	28.582	30.815	1.00 28.84
HETATM		0	HOH	1194	16.216	53.125	18.778	1.00 20.19
HETATM		0	HOH	1195	48.924	37.778	50.511	1.00 41.81
HETATM		0	HOH	1196	29.151	29.120	42.414	1.00 25.51
HETATM		0	HOH	1197	10.760	56.327	24.871	1.00 25.61
HETATM		0	HOH	1198	19.161	31.540	33.429	1.00 41.50
HETATM	3629	0	HOH	1201	31.584	19.545	39.778	1.00 41.14
HETATM		0	HOH	1202	31.499	33.130	31.243	1.00 30.94
HETATM	3631	0	HOH	1203	33.475	31.251	32.729	1.00 30.16
METATM	3632	0	HOH	1204	25.323	26.251	24.066	1.00 29.38
HETATM	3633	0	HOH	1205	18.912	50.780	14.345	1.00 28.88
HETATM	3634	0	HOH	1206	28.562	46.055	22.818	1.00 37.71
HETATM	3635	0	HOH	1207	31.212	15.396	37.505	1.00 38.29
HETATM	3636	0	HOH	1208	21.188	13.368	44.376	1.00 22.37
HETATM	3637	0	HOH	1209	17.682	38.715	10.160	1.00 31.02
HETATM	3638	0	HOH	1210	50.214	11.867	37.111	1.00 50.09
HETATM	3639	0	HOH	1212	28.768	41.646	47.276	1.00 22.25
HETATM	3640	0	HOH	1214	49.993	18.233	34.806	1.00 44.55
HETATM	3641	0	HOH	1215	32.815	34.522	46.504	1.00 35.13
HETATM	3642	0	HOH	1216	39.893	28.328	41.896	1.00 12.01
HETATM	3643	0	HOH	1217	15.338	26.949	28.916	1.00 11.70
HETATM	3644	0	HOH	1218	35.548	32.617	33.681	1.00 18.33
HETATM	3645	0	HOH	1219	39.368	28.656	34.414	1.00 16.49
HETATM	3646	0	HOH	1220	10.631	22.205	16.485	1.00 23.48
HETATM	3647	0	HOH	1221	38.404	33.931	29.548	1.00 20.31
HETATM	3648	0	HOH	1222	29.170	43.940	45.652	1.00 17.85
HETATM	3649	0	HOH	1223	16.493	28.977	30.383	1.00 19.55
HETATM	3650	0	HOH	1224	50.201	26.750	43.278	1.00 23.76
HETATM	3651	0	HOH	1225	38.642	25.017	49.298	1.00 24.48
HETATM	3652	0	HOH	1226	22.132	37.260	38.648	1.00 21.90
HETATM	3653	0	HOH	1227	39.985	27.256	49.971	1.00 19.31
HETATM	3654	0	HOH	1228	46.680	26.589	41.727	1.00 24.34
HETATM	3655	0	HOH	1229	45.783	30.693	47.582	1.00 25.33
HETATM	3656	0	HOH	1230	37.132	23.521	50.764	1.00 25.39
HETATM	3657	0	HOH	1231	37.666	45.416	31.269	1.00 22.37
HETATM	3658	Ó	HOH	1232	12.017	34.217	29.751	1.00 24.35
HETATM		0	HOH	1233	26.995	45.967	27.617	1.00 23.52
HETATM	3660	0	HOH	1234	26.536	25.536	28.250	1.00 29.21
HETATM	3661	ō	HOH	1235	25.412	37.399	29.161	1.00 27.51
HETATM		ō	HOH	1236	37.339	31.390	35.413	1.00 25.38
HETATM	3663	ō	HOH	1237	49.870	32.179	49.678	1.00 25.92
HETATM		ō	HOH	1238	22.061	39.616	17.387	1.00 15.04
HETATM	3665	ō	HOH	1239	14.228	24.366	29.787	1.00 22.47
HETATM		ŏ	HOH	1240	23.022	47.566	29.327	1.00 39.50
HETATM		ō	HOH	1241	21.098	32.679	17.559	1.00 35.09
HETATM		ō	HOH	1242	23.864	37.449	16.707	1.00 37.28

Figure 8-72

HETATM	3660	0	HOH	1243	32.934	17.639	38.491	1.00 30.00
HETATM		ŏ	HOH	1244	30.081	39.275	47.475	1.00 27.25
HETATM		ő	HOH	1245	40.219	10.507	54.210	
HETAIM			HOH		20.198	57.839	14.584	1.00 42.36
		0		1246				1.00 26.12
HETATM		0	HOH	1247	22.701	31.034	19.118	1.00 26.32
HETATM		0	HOH	1248	50.529	25.000	51.117	1.00 16.36
HETATM		0	HOH	1249	27.308	27.122	38.575	1.00 29.98
HETATM	3676	0	HOH	1250	41.664	46.630	31.018	1.00 29.42
HETATM	3677	0	HOH	1251	27.841	34.202	44.699	1.00 37.98
HETATM	3678	0	HOH	1252	28.946	26,204	44.341	1.00 51.94
HETATM	3679	0	HOH	1253	26.643	43.795	23.560	1.00 23.03
HETATM		ō	HOH	1254	52.894	25.886	44.095	1.00 33.52
HETATM		ō	нон	1255	42.339	26.613	55.952	1.00 36.97
HETATM		0	HOH	1256	48.804	2.432	50.876	
								1.00 36.59
HETATM		0	HOH	1257	51.244	18.531	40.805	1.00 33.51
HETATM		0	HOH	1260	49.903	39.828	48.137	1.00 44.77
HETATM		0	HOH	1261	45.720	4.638	32.384	1.00 54.41
HETATM		0	HOH	1262	32.871	29.567	30.088	1.00 39.72
HETATM	3687	0	HOH	1263	23.890	51.918	23.175	1.00 37.61
HETATM	3688	0	HOH	1264	13.550	26.049	31.905	1.00 33.45
HETATM	3689	0	HOH	1266	10.689	31.547	31.432	1.00 47.94
HETATM		0	HOH	1269	26.086	-7.425	31.507	1.00 39.58
HETATM		õ	HOH	1271	22.022	54,673	22.853	1.00 37.03
HETATM		ŏ	HOH	1274	28.901	24.308	41.027	1.00 41.39
HETATM		Ö	HOH	1276	45.609	-2.697	31.603	1.00 41.39
					9.649			
HETATM		0	HOH	1277		26.708	34.475	1.00 36.02
HETATM		0	HOH	1279	21.970	8.818	36.303	1.00 45.69
HETATM		0	HOH	1280	7.956	56.039	27.031	1.00 55.41
HETATM		0	HOH	1281	15.342	17.025	12.461	1.00 55.13
HETATM		0	HOH	1284	12.862	44.437	3.810	1.00 49.95
HETATM	3699	0	HOH	1286	34.675	64.010	47.159	1.00 47.97
HETATM	3700	0	HOH	1287	41.049	11.857	30.681	1.00 29.94
HETATM	3701	0	HOH	1288	34.457	19.302	55.855	1.00 47.88
HETATM	3702	0	HOH	1289	28.546	31.433	28.564	1.00 47.71
HETATM		0	HOH	1291	33.220	60.645	39.548	1.00 52.03
HETATM		Ö	HOH	1292	30.910	54.312	27.471	1.00 48.06
HETATM		ō	HOH	1293	23.058	27.656	32.358	1.00 45.02
HETATM		ŏ	нон	1294	28.377	27.865	25.772	1.00 37.73
HETATM		ŏ	HOH	1295	17.651	13.033	47.051	1.00 31.43
HETATM		ŏ	HOH	1297	22.435	24.151	33.420	1.00 31.43
HETATM		0	нон	1298	29.292	20.833	37.423	1.00 52.78
HETATM		0	HOH	1299	26.196	40.554	47.655	1.00 52.83
HETATM		0	HOH	1300	6.687	28.384	34.247	1.00 45.71
HETATM		0	HOH	1303	41.624	1.272	27.661	1.00 61.55
HETATM		0	HOH	1306	24.865	48.368	49.108	1.00 53.05
HETATM		0	HOH	1308	43.375	33.196	54.115	1.00 34.68
HETATM	3715	0	HOH	1309	24.941	16.106	28.105	1.00 27.22
HETATM	3716	0	HOH	1310	48.767	36.362	53.067	1.00 39.18
HETATM		0	HOH	1311	0.897	25.934	24.841	1.00 47.80
HETATM		Ö	HOH	1312	41.531	54.883	30.082	1.00 37.92
HETATM		ō	HOH	1315	32.370	19.055	31.177	1.00 43.71
HETATM		ő	HOH	1316	19.469	15.072	45.662	1.00 48.16
HETATM		Ö	HOH	1321	10.144	48.734	5.731	1.00 39.11
					29.076	56.977		
HETATM		0	HOH	1322			42.203	1.00 46.38
HETATM		0	HOH	1326	42.727	8.091	54.610	1.00 56.42
HETATM		0	HOH	1330	41.316	20.071	29.052	1.00 39.86
HETATM		0	HOH	1331	16.596	27.837	34.825	1.00 50.15
HETATM		0	HOH	1332	19.903	45.162	47.256	1.00 52.33
HETATM	3727	0	HOH	1333	40.238	-8.133	39.062	1.00 41.11
HETATM	3728	0	HOH	1335	32.007	37,168	46.170	1.00 43.84

Figure 8-73

HETATM 3729	0	HOH	1337	8.866	32.982	29.638	1.00 51.57
HETATM 3730	0	HOH	1339	35.650	46.023	29.211	1.00 40.99
HETATM 3731	ŏ	HOH	1340	52.825	32.335	38.756	1.00 50.57
HETATM 3732	ŏ	HOH	1341	36.938	51.807	31.314	1.00 45.30
HETATM 3733	ŏ	HOH	1342	18.790	42.705	33.580	1.00 43.47
HETATM 3734	ŏ	HOH	1344	22.819	36.661	11.619	1.00 46.70
	. 0	HOH	1345	19.465	28.669	34.714	1.00 39.89
HETATM 3735		HOH	1345	40.179	23.790	53.530	1.00 47.43
HETATM 3736	0						
HETATM 3737		HOH	1353	3.487	36.484	13.806	1.00 40.41
HETATM 3738	0	HOH	1360	31.223	4.884	34.089	1.00 30.96
HETATM 3739	0	HOH	1361	19.647	3.819	14.444	1.00 26.16
HETATM 3740	0	HOH	1364	12.171	-3.712	34.829	1.00 52.07
HETATM 3741	. 0	HOH	1366	14.715	10.503	15.414	1.00 47.98
HETATM 3742	0	HOH	1370	3.284	18.073	30.684	1.00 39.22
HETATM 3743	0	HOH	1371	16.114	12.267	13.222	1.00 41.79
HETATM 3744	0	HOH	1374	26.710	-10.158	28.570	1.00 46.72
HETATM 3745	0	HOH	1376	13.842	2.095	17.391	1.00 51.23
HETATM 3746	0	HOH	1377	23.624	18.176	26.993	1.00 46.55
HETATM 3747	0	HOH	1378	17.679	9.897	14.906	1.00 29.42
HETATM 3748	O	HOH	1380	21.173	-2.881	15.825	1.00 44.25
HETATM 3749	ō	HOH	1381	25.990	6.184	14.411	1.00 40.98
HETATM 3750		HOH	1382	25.475	8.938	15.031	1.00 40.93
HETATM 3751	ŏ	HOH	1384	27.045	17.549	12.911	1.00 44.46
HETATM 3752		HOH	1387	15.174	-5.506	13.111	1.00 43.09
HETATM 3753	0	HOH	1388	3.093	25.580	28.841	1.00 47.33
	0	HOH	1389	43.833	14.822	32.665	1.00 30.09
HETATM 3754 HETATM 3755	. 0	HOH	1390	27.283	3.257	16.277	1.00 28.50
		HOH	1391	31.590	8.583	17.790	1.00 31.43
HETATM 3756		HOH	1392	28.183	8.699	15.618	1.00 37.69
HETATM 3757			1392	24.599	3.854	15.072	1.00 40.30
HETATM 3758	0	HOH	1404	39.148	30.436	32.035	1.00 40.30
HETATM 3759		HOH		0.837	22.245	22.324	1.00 55.83
HETATM 3760	0	HOH	1405				
HETATM 3761		HOH	1406	29.799 18.445	34.134 6.222	27.910 44.059	
HETATM 3762		HOH	1407		39.323	25.039	
HETATM 3763	0	HOH	1409	30.392	9.793		1.00 34.89
HETATM 3764		HOH	1410	18.490	32.748	47.086 8.629	1.00 48.51
HETATM 3765		HOH	1411	13.220			
HETATM 3766		HOH	1412	49.361	20.100	32.438	1.00 43.65
HETATM 3767		HOH	1414	51.855	33.864	41.242	1.00 64.26
HETATM 3768	0	HOH	1418	47.727	41.100	41.717	1.00 35.47
HETATM 3769		HOH	1419	24.466	54.548	43.747	1.00 53.28
HETATM 3770		HOH	1420	5.934	30.983	8.318	1.00 45.39
HETATM 3771		HOH	1421	32.399	-4.433	42.259	1.00 41.31
HETATM 3772		HOH	1422	3.024	40.996	27.927	1.00 42.40
HETATM 3773	0	HOH	1424	36.321	-0.489	35.913	1.00 41.12
HETATM 3774	. 0	HOH	1428	16.200	42.165	4.789	1.00 62.98
HETATM 3775	0	HOH	1429	4.930	40.213	24.269	1.00 53.41
HETATM 3776	0	HOH	1430	7.506	9.248	13.243	1.00 51.74
HETATM 3777	0	HOH	1434	16.093	51.978	11.936	1.00 39.24
HETATM 3778	0	HOH	1437	32.063	21.866	31.547	1.00 49.87
HETATM 3779		HOH	1438	54.621	26.247	29.147	1.00 48.62
HETATM 3780	0	HOH	1440	4.318	19.369	8.919	1.00 47.53
HETATM 3781		HOH	1441	5.136	2.358	29.831	1.00 44.25
HETATM 3782		HOH	1443	2.076	24.174	15.211	1.00 53.91
HETATM 3783		HOH	1444	15.474	42.729	30.690	1.00 38.63
HETATM 3784		HOH	1446	34.955	9.442	53.656	1.00 51.40
HETATM 3785		HOH	1447	28.597	17.387	31.041	1.00 40.53
HETATM 3786		HOH	1454	34.884	-9.534	12.912	1.00 33.84
HETATM 3787		HOH	1455	56.971	31.610	49.136	1.00 44.36
HETATM 3788		HOH	1456	29.676	11.548	53.175	1.00 41.64
				,,,			

Figure 8-74

HETATM HETATM HETATM HETATM HETATM	3789 3790 3791 3792 3793 3794 3795 3796 3797 3800 3801 3801 3803 3804 109 119	00000	HOH HOH HOH HOH HOH HOH HOH HOH HOH HOH	1457 1458 1459 1461 1462 1463 1464 1506 1507 1515 1518 1519 1521 1521 119
CONECT CONECT CONECT CONECT CONECT	122 123 124 125 126 127	121 120 123 124 125 121	124 125 126	
CONECT CONECT CONECT CONECT	187 189 190 191 192	186 187 189 190 191	188 190 191 192	189 193 197
CONECT CONECT CONECT	193 194 195 196 197	190 193 194 195 191	194 195 196	
CONECT CONECT CONECT CONECT	248 279 286 287	247 278 279 286	905 280 287 288	286 290
CONECT CONECT CONECT CONECT	288 289 290 291	287 288 287 290	289 291 292 293	294
CONECT CONECT CONECT CONECT	292 293 294 905 1038	291 292 288 248 1037	295 904 1039	1048
CONECT CONECT CONECT	1048 1049 1050 1051	1038 1048 1049 1050	1049 1050 1051	1052 1056
CONECT CONECT CONECT CONECT	1052 1053 1054 1055	1049 1052 1053 1054 1050	1053 1054 1055	
CONECT	1056 1116 1118	1115 1116	1117	1118

46.713	47.217	35.996	1.00 51.75	0
22.556	3.172	12.871	1.00 35.99	0
42.572	42.347	52.583	1.00 55.24	0
0.573	13.064	16.484	1.00 44.57	ő
50.467	6.260	32.228	1.00 46.40	0
6.167	47.337	5.349	1.00 53.27	0
24.604	-9.866	26.249	1.00 43.72	0
22.806	17.220	45.236	1.00 61.41	0
25.441	49.608	19.993	1.00 33.89	0
39.709	-9.399	16.482	1.00 30.44	ō
9.926	24.411	36.529	1.00 37.21	ō
34.731	28.232	28.355	1.00 37.81	ō
34.731				
44.323	37.583	28.523	1.00 44.08	0
30.194	-0.768	45.229	1.00 40.11	0
42.425	48.375	34.242	1.00 50.42	0
12.185	2.224	34.335	1.00 56.22	0

Figure 8-75

```
CONECT 1119 1118 1120 1122
CONECT 1120 1119 1121 1126
CONECT 1121 1120
CONECT 1122 1119 1123
CONECT 1123 1122 1124
CONECT 1124 1123 1125
CONECT 1125 1124
 CONECT 1126 1120 1127
CONECT 1177 1176 1874
CONECT 1208 1207 1209 1215
CONECT 1215 1208 1216
CONECT 1216 1215 1217 1219
CONECT 1217 1216 1218 1223
CONECT 1218 1217
CONECT 1219 1216 1220
CONECT 1220 1219 1221
CONECT 1221 1220 1222
CONECT 1222 1221
CONECT 1223 1217 1224
CONECT 1874 1177 1873
CONECT 1987 1986 1988 1997
CONECT 1997 1987 1998
CONECT 1998 1997 1999 2001
CONECT 1999 1998 2000 2005
CONECT 2000 1999
CONECT 2001 1998 2002
CONECT 2002 2001 2003
CONECT 2003 2002 2004
CONECT 2004 2003
CONECT 2005 1999 2006
CONECT 2065 2064 2066 2067
CONECT 2067 2065 2068
CONECT 2067 2065 2066
CONECT 2068 2067 2069 2071
CONECT 2069 2068 2070 2075
CONECT 2070 2069
 CONECT 2071 2068 2072
 CONECT 2072 2071 2073
CONECT 2073 2072 2074
 CONECT 2074 2073
 CONECT 2075 2069 2076
CONECT 2154 2153 2155 2161
 CONECT 2161 2154 2162
 CONECT 2162 2161 2163 2165
 CONECT 2163 2162 2164 2169
CONECT 2164 2163
 CONECT 2165 2162 2166
 CONECT 2166 2165 2167
CONECT 2167 2166 2168
 CONECT 2168 2167
 CONECT 2169 2163 2170
 CONECT 2813 2812 2814 2823
CONECT 2823 2813 2824
 CONECT 2824 2823 2825 2827
 CONECT 2825 2824 2826 2831
CONECT 2826 2825
 CONECT 2827 2824 2828
 CONECT 2828 2827 2829
CONECT 2829 2828 2830
 CONECT 2830 2829
 CONECT 2831 2825 2832
```

Figure 8-76

```
CONECT 2891 2890 2892 2893
 CONECT 2893 2891 2894
CONECT 2894 2893 2895 2897
 CONECT 2895 2894 2896 2901
 CONECT 2896 2895
 CONECT 2897 2894 2898
CONECT 2898 2897 2899
 CONECT 2899 2898 2900
 CONECT 2900 2899
CONECT 2901 2895 2902
 CONECT 2983 2982 2984 2990
CONECT 2990 2983 2991
 CONECT 2991 2990 2992 2994
CONECT 2992 2991 2993 2998
 CONECT 2993 2992
CONECT 2994 2991 2995
CONECT 2995 2994 2996
CONECT 2996 2995 2997
 CONECT 2997 2996
CONECT 2998 2992 2999
CONECT 3522 3541 3542
CONECT 3522 3541 3542
CONECT 3524 3544 3545 3546
CONECT 3525 3526
CONECT 3526 3525 3527
CONECT 3527 3526 3528
CONECT 3528 3527 3530
CONECT 3529 3530 3531
CONECT 3530 3528 3529
CONECT 3531 3529 3533
CONECT 3532 3533 3534
CONECT 3533 3531 3532
CONECT 3534 3532 3536
CONECT 3535 3536 3537
CONECT 3536 3534 3535
CONECT 3537 3535 3539
CONECT 3538 3539 3540
CONECT 3539 3537 3538
CONECT 3540 3538
CONECT 3541 3522
CONECT 3542 3522
CONECT 3544 3524
CONECT 3545 3524
CONECT 3546 3524
MASTER
                     301
                                0 16
                                               19
                                                          8
                                                                  0
                                                                          0
                                                                               27 3796
                                                                                                   4 147
```

Figure 9

submitt HETATM HETATM HETATM HETATM HETATM	4233 4234 4236 4238	0 0 0 0	HOH HOH HOH HOH	1021 1021 1022 1023 1023	36.890 35.049 31.347 44.819 47.508	32.430 30.934 42.865 10.251 7.695	27.3 29.3 52.8 32.0	322 339 356	1.00 1.00 1.00	24.58 27.97 31.45 31.08 35.15
HETATM		0	нон	1023	48.695	9.256	30.9			29.22
to this	3:									
HETATM HETATM HETATM	4234	0 0	HOH HOH HOH	1021 1022 1023	36.890 35.049 31.347	32.430 30.934 42.865	27.7 29.3 52.8	22	1.00	24.58 27.97 31.45
HETATM HETATM HETATM	4238 4239	0000	HOH HOH HOH	1024 1025 1026	44.819 47.508 48.695	10.251 7.695 9.256	32.0 33.3 30.9)56 865	1.00	31.08 35.15 29.22
The LII		e:								
LINK		CA	CA	1021		0	нон	102	4	
LINK LINK LINK		CA CA CA	CA CA CA	1021 1023 1023		0 0	HOH HOH	102 102 102	5 7 8	
LINK		CA	CA	1023		0	HOH	102	9	

Figure 10

A. General model

B. Embodiment of the ligand head as an oligopeptide

$$F_1$$
 - X_n - $F_L(Cys)$ - X_m - F_2 - X_p - F_3

DECLARATION AND POWER OF ATTORNEY

As a below-named inventor, I hereby declare that:

the specification of which:

My residence, post office address, and citizenship are as stated below next to my name.

I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the inventon emitled:

	<u>x</u>	is attached hi	ereto.					
	<u>x</u>	was filed on_	June 29, 2000		as			
	Appiı	cation Serial No	n					
	and w	as amended						
				(ıf appiıca	ble)			
including the claims. I acknowledge the duito be material to pat I hereby claim (oreign 365(b) of any foreign linernanonal Applic	I hereby state that I have reviewed and understand the contents of the above-identified specification, including the claims, as amended by any amendment referred to above. I acknowledge the duty to disclose to the U.S. Patent and Trademark Office all information known to me to be material to patentability as defined in Title 37. Code of Federal Regulations, Section 1.56. I hereby claim (oreign priority benefits under Title 35. United States Code. Section 1.19 (a)-(d) or Section 365(b) of any foreign application(s) for patent or inventor's certificate, or Section 365(a) of any PCT International Application which designated at least one country other than the United States, listed below. I have also identified below any foreign application for patent or inventor's certificate, or PCT							
ıs claımed:								
Prior Foreign Appli	cation(s)			Priority Cl	aımed			
<u>Number</u>	2	Country	Filing Date	<u>Yes</u>	<u>No</u>			
N/A								
				-				

I hereby claim the benefit under Title	35.	United States	Code.	Section	119(e)	of any	Unised	State
provisional application(s) listed below:								

Provisional Application No.	Filing Date	<u>Status</u>
N/A		
		-
I hereby claim the benefit und	er Title 35 United States Code	Continue 130 of anni 15 and Control
Application(s). or Section 365(c) listed below. Insofar as this applic in any such prior Application in Code. Section 112. I acknowledge all information known to me to	of any PCT International Applicat ation discloses and claims subject the manner provided by the first p the duty to disclose to the United be material to patentability as d ecame available between the filing	tion(s) designating the United States i matter in addition to that disclosed paragraph of Title 35. United States States Patent and Trademark Office efined in Title 37. Code of Federal date(s) of such prior Application(s)
Application(s), or Section 365(c) ilsted below. Insofar as this applic in any such prior Application in Code, Section 112, I acknowledge all information known to me to Regulations, Section 1.56, which by	of any PCT International Applicat ation discloses and claims subject the manner provided by the first p the duty to disclose to the United be material to patentability as d ecame available between the filing	tion(s) designating the United States i matter in addition to that disclosed paragraph of Title 35. United States States Patent and Trademark Office efined in Title 37. Code of Federal date(s) of such prior Application(s)

And I hereby appoint

John P. White (Reg. No. 28,678); Christopher C. Dunham (Reg. No. 22,031); Norman H. Zivin (Reg. No. 25,385); Jay H. Maioli (Reg. No. 27,213); William E. Pelton (Reg. No. 25,702); Robert D. Katz (Reg. No. 30,141); Peter J. Phillips (Reg. No. 29,691); Wendy E. Miller (Reg. No. 35,615); Richard S. Milner (Reg. No. 33,970); Robert T. Maidonado (Reg. 38,232); Paul Teng (40,837); Richard F. Jaworski (Reg. No. 33,515); Elizabeth M. Wieckowski (Reg. No. 42,226); Pedro C. Fernandez (Reg. No. 41,741); Gary J. Gershik (Reg. No. 39,992); Jane M. Love (Reg. No. 42,812); Spencer H. Schneider (Reg. No. 45,923) and Raymond A. Diperna (Reg. No. 44,063).

and each of them, all co Cooper & Dunham LLP. 1185 Avenue of the Americas, New York, New York 10036, my autorneys, each with full power of substitution and revocation, to prosecute this application, to make alterations and amendments therein, to receive the paient, to transact all business in the Patent and Trademark Office connected therewith and to file any International Applications which are based thereon under the provisions of the Patent Cooperation Treaty.

Please address all communications, and direct all telephone calls, regarding this application to

John P. White, Esq.	Reg. No	28,678	
Cooper & Dunham LLP			
1185 Avenue of the Americas			
New York, New York 10036			
T-1 (212) 278-0400			

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon

Full name of sole or first joint inventor	Wayne A. Hendricks	on
Inventor's signature_		
Citizenship		Date of signature
Residence		
Posi Office Address_		
Full name of joini inventor (if any)	Xuliang Jiang	
Inventor's signature_		
Citizenship		Date of signature
Residence		
Post Office Address_		
_		
Full name of joint inventor (if any)	Keith E. Langley	
Inventor's signature_		
Citizenship		_Date of signature
Residence		
Post Office Address_		

Declaration and Power	oj Allorney	ruge ,
Full name of joint inventor (if any)	Rashid Syed	
Inventor's signature		
Citizenship	Date of signature	
Residence		
Post Office Address		
_		
Full name of joint inventor (if any)	Yueh-Rong Ann Hsu	
Inventor's signature		
Citizenship	Date of signature	
Residence		
Post Office Address		
_		
Full name of joint inventor (if any)		
Inventor's signature		
	Date of signature	
Post Office Address		

SEQUENCE LISTING

- <110> Hendrickson, Wayne A Jiang, Xuliang Langley, Keith E Syed, Rashid Hsu, Yueh-Rong Ann
- <120> CONJUGATED LIGANDS FOR THE STIMULATION OF BLOOD CELL PROLIFERATION BY EFFECTING DIMERIZATION OF THE RECEPTOR FOR STEM CELL FACTOR
- <130> 50950/JPW/EMW
- <140> NOT YET KNOWN
- <141> 2000-06-29
- <160> 10
- <170> PatentIn Ver. 2.1
- <210> 1
- <211> 141
- <212> PRT
- <213> human
- <400> 1
- Glu Gly Ile Cys Arg Asn Arg Val Thr Asn Asn Val Lys Asp Val Thr 1 $$ 5 $$ 10 $$ 15
- Lys Leu Val Ala Asn Leu Pro Lys Asp Tyr Met Ile Thr Leu Lys Tyr $20 \hspace{1.5cm} 25 \hspace{1.5cm} 30$
- Val Pro Gly Met Asp Val Leu Pro Ser His Gln Trp Ile Ser Glu Met 35 40 45
- Val Val Gln Leu Ser Asp Ser Leu Thr Asp Leu Leu Asp Lys Phe Ser 50 55 60
- Asn Ile Ser Glu Gly Leu Ser Asn Tyr Ser Ile Ile Asp Lys Leu Val
- Asn Ile Val Asp Asp Leu Val Glu Cys Val Lys Glu Asn Ser Ser Lys 85 90 95
- Asp Leu Lys Lys Ser Phe Lys Ser Pro Glu Pro Arg Leu Phe Thr Pro $100 \\ 100 \\ 105 \\ 110$

Glu Glu Phe Phe Arg Ile Phe Asn Arg Ser Ile Asp Ala Phe Lys Asp 115 \$120\$

Phe Val Val Ala Ser Glu Thr Ser Asp Cys Val Val Ser 130 135 140

<210> 2

<211> 150 <212> PRT

<213> human

<400> 2

Glu Glu Val Ser Glu Tyr Cys Ser His Met Ile Gly Ser Gly His Leu 1 5 10 15

Gln Ser Leu Gln Arg Leu Ile Asp Ser Gln Met Glu Thr Ser Cys Gln $20 \hspace{1.5cm} 25 \hspace{1.5cm} 30 \hspace{1.5cm}$

Ile Thr Phe Glu Phe Val Asp Gln Glu Gln Leu Lys Asp Pro Val Cys $35 \hspace{1cm} 40 \hspace{1cm} 45 \hspace{1cm}$

Met Arg Phe Arg Asp Asn Thr Pro Asn Ala Ile Ala Ile Val Gln Leu 65 70 75 80

Gln Glu Leu Ser Leu Arg Leu Lys Ser Cys Phe Thr Lys Asp Tyr Glu 85 90 95

Glu His Asp Lys Ala Cys Val Arg Thr Phe Tyr Glu Thr Pro Leu Glu 100 $$105\$

Leu Leu Glu Lys Val Lys Asn Val Phe Asn Glu Thr Lys Asn Leu Leu 115 120 125

Asp Lys Asp Trp Asn Ile Phe Ser Lys Asn Cys Asn Asn Ser Phe Ala 130 135

Glu Cys Ser Ser Gln Gly 145 150

<210> 3

<211> 129

<212> PRT

<213> human

50

<400> 3 His Lys Cys Asp Ile Thr Leu Gln Glu Ile Ile Lys Thr Leu Asn Ser Leu Thr Glu Gln Lys Thr Leu Cys Thr Glu Leu Thr Val Thr Asp Ile 25 Phe Ala Ala Ser Lys Asn Thr Thr Glu Lys Glu Thr Phe Cys Arg Ala Ala Thr Val Leu Arg Gln Phe Tyr Ser His His Glu Lys Asp Thr Arg 55 50 Cys Leu Gly Ala Thr Ala Gln Gln Phe His Arg His Lys Gln Leu Ile 75 65 70 Arg Phe Leu Lys Arg Leu Asp Arg Asn Leu Trp Gly Leu Ala Gly Leu Asn Ser Cys Pro Val Lys Glu Ala Asn Gln Ser Thr Leu Glu Asn Phe 105 Leu Glu Arg Leu Lys Thr Ile Met Arg Glu Lys Tyr Ser Lys Cys Ser 120 Ser <210> 4 <211> 127 <212> PRT <213> human Ala Pro Ala Arg Ser Pro Ser Pro Ser Thr Gln Pro Trp Glu His Val 5 15 1 Asn Ala Ile Gln Glu Ala Arg Arg Leu Leu Asn Leu Ser Arg Asp Thr 20 25 Ala Ala Glu Met Asn Glu Thr Val Glu Val Ile Ser Glu Met Phe Asp 45 35

55

Leu Gln Glu Pro Thr Cys Leu Gln Thr Arg Leu Glu Leu Tyr Lys Gln

Gly Leu Arg Gly Ser Leu Thr Lys Ile Lys Gly Pro Leu Thr Met Met 65 70 75 80

Ala Ser His Tyr Lys Gln His Cys Pro Pro Thr Pro Glu Thr Ser Cys 85 90 95

Ala Thr Gln Ile Ile Thr Phe Glu Ser Phe Lys Glu Asn Leu Lys Asp $100 \hspace{1cm} 105 \hspace{1cm} 110$

Phe Leu Leu Val Ile Pro Phe Asp Cys Trp Glu Pro Val Glu Glu
115 120 125

<210> 5 <211> 132 <212> PRT

<213> human

<400> 5

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His 1 $$ 10 $$ 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys \$20\$

Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Tyr Met Pro Lys Lys $35 \hspace{1cm} 40 \hspace{1cm} 45$

Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Leu Lys Pro 50 55 60

Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu Arg 65 70 75 80

Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu Lys 85 90 95

Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala Thr 100 \$105\$

Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Cys Gln Ser Ile Ile 115 120 125

Ser Thr Leu Thr 130

<210> 6

```
<211> 115
<212> PRT
<213> human
<400> 6
Ile Pro Thr Glu Ile Pro Thr Ser Ala Leu Val Lys Glu Thr Leu Ala
Leu Leu Ser Thr His Arg Thr Leu Leu Ile Ala Asn Glu Thr Leu Arg
                                 25
Ile Pro Val Pro Val His Lys Asn His Gln Leu Cys Thr Glu Glu Ile
                              40
Phe Gln Gly Ile Gly Thr Leu Glu Ser Gln Thr Val Gln Gly Gly Thr
                                              60
                         55
     50
Val Glu Arg Leu Phe Lys Asn Leu Ser Leu Ile Lys Lys Tyr Ile Asp
                                         75
 65
                     70
Gly Gln Lys Lys Lys Cys Gly Glu Glu Arg Arg Arg Val Asn Gln Phe
                                      90
Leu Asp Tyr Leu Gln Glu Phe Leu Gly Val Met Asn Thr Glu Trp Ile
                                                     110
                                105
             100
Ile Glu Ser
        115
<210> 7
<211> 164
<212> PRT
<213> human
 <400> 7
 Glu Gly Ile Cys Arg Asn Arg Val Thr Asn Asn Val Lys Asp Val Thr
                                                           15
                                      10
                   5
   1
 Lys Leu Val Ala Asn Leu Pro Lys Asp Tyr Met Ile Thr Leu Lys Tyr
              20
                                   25
```

Val Pro Gly Met Asp Val Leu Pro Ser His Cys Trp Ile Ser Glu Met 35 40 45

Val Val Gln Leu Ser Asp Ser Leu Thr Asp Leu Leu Asp Lys Phe Ser

Asn Ile Ser Glu Gly Leu Ser Asn Tyr Ser Ile Ile Asp Lys Leu Val Asn Ile Val Asp Asp Leu Val Glu Cys Val Lys Glu Asn Ser Ser Lys 85 Asp Leu Lys Lys Ser Phe Lys Ser Pro Glu Pro Arg Leu Phe Thr Pro 105 100 Glu Glu Phe Phe Arg Ile Phe Asn Arg Ser Ile Asp Ala Phe Lys Asp 120 115 Phe Val Val Ala Ser Glu Thr Ser Asp Cys Val Val Ser Ser Thr Leu 135 Ser Pro Glu Lys Asp Ser Arg Val Ser Val Thr Lys Pro Phe Met Leu 150 155 Pro Pro Val Ala <210> 8 <211> 164 <212> PRT <213> MOUSE <400> 8 Lys Glu Ile Cys Gly Asn Pro Val Thr Asp Asn Val Lys Asp Ile Thr 5 Lys Leu Val Ala Asn Leu Pro Asn Asp Tyr Met Ile Thr Leu Asn Tyr 25 20 Val Ala Gly Met Asp Val Leu Pro Ser His Cys Trp Leu Arg Asp Met 35 40

Val Ile Gln Leu Ser Leu Ser Leu Thr Thr Leu Leu Asp Lys Phe Ser

Asn Ile Ser Glu Gly Leu Ser Asn Tyr Ser Ile Ile Asp Lys Leu Gly 65 70 75 80

Lys Ile Val Asp Asp Leu Val Leu Cys Met Glu Glu Asn Ala Pro Lys 85 90 95

Asn Ile Lys Glu Ser Pro Lys Arg Pro Glu Thr Arg Ser Phe Thr Pro 100 105 110

Glu Glu Phe Phe Ser Ile Phe Asn Arg Ser Ile Asp Ala Phe Lys Asp 115 120 125

Phe Met Val Ala Ser Asp Thr Ser Asp Cys Val Leu Ser Ser Thr Leu 130 135 140

Pro Pro Val Ala

<210> 9

<211> 164

<212> PRT

<213> rat

<400> 9

Gln Glu Ile Cys Arg Asn Pro Val Thr Asp Asn Val Lys Asp Ile Thr 1 $$ 5 $$ 10 $$ 15

Lys Leu Val Ala Asn Leu Pro Asn Asp Tyr Met Ile Thr Leu Asn Tyr $20 \hspace{1.5cm} 25 \hspace{1.5cm} 30$

Val Ala Gly Met Asp Val Leu Pro Ser His Cys Trp Leu Arg Asp Met $35 \hspace{1cm} 40 \hspace{1cm} 45$

Asn Ile Ser Glu Gly Leu Ser Asn Tyr Ser Ile Ile Asp Lys Leu Gly 65 70 75 80

Lys Ile Val Asp Asp Leu Val Ala Cys Met Glu Glu Asn Ala Pro Lys 85 90 95

Asn Val Lys Glu Ser Leu Lys Lys Pro Glu Thr Arg Asn Phe Thr Pro

Glu Glu Phe Phe Ser Ile Phe Asn Arg Ser Ile Asp Ala Phe Lys Asp 115 120 125

Phe Met Val Ala Ser Asp Thr Ser Asp Cys Val Leu Ser Ser Thr Leu 130 135 140

Ser Pro Glu Lys Asp Ser Arg Val Ser Val Thr Lys Pro Phe Met Leu

<212> PRT <213> DOG <400> 10

145

<210> 10 <211> 165

Lys Gly Ile Cys Gly Lys Arg Val Thr Asp Asn Val Lys Asp Val Thr 10

Lys Leu Val Ala Asn Leu Pro Lys Asp Tyr Lys Ile Ala Leu Lys Tyr 25

Val Pro Gly Met Asp Val Leu Pro Ser His Cys Trp Ile Ser Val Met

Val Glu Gln Leu Ser Val Ser Leu Thr Asp Leu Leu Asp Lys Phe Ser 50 55

Asn Ile Ser Glu Gly Leu Ser Asn Tyr Ser Ile Ile Asp Lys Leu Val 75 70 65

Lys Ile Val Asp Asp Leu Val Glu Cys Thr Glu Gly Tyr Ser Phe Glu 85 90

Asn Val Lys Lys Ala Pro Lys Ser Pro Glu Leu Arg Leu Phe Thr Pro 105

Glu Glu Phe Phe Arg Ile Phe Asn Arg Ser Ile Asp Ala Phe Lys Asp 120

Phe Glu Thr Val Ala Ser Lys Ser Ser Glu Cys Val Val Ser Ser Thr 140 135 130

Leu Ser Pro Asp Lys Asp Ser Arg Val Ser Val Thr Lys Pro Phe Met 160 155 145 150

Leu Pro Pro Val Ala 165