

Graphes et Recherche Opérationnelle - ESIAL 2A

Chapitre 4 : Dualité en programmation linéaire

J.-F. Scheid

2011-2012

1

Plan du chapitre

- Introduction et définitions
- 2 Propriétés et Théorèmes de dualité
- Onditions d'optimalité primal-dual (COPD)

I. Introduction et définitions

Problème du production.

Deux produits P_1 et P_2 fabriqués en quantité x_1 et x_2 , nécessitant trois ressources disponibles en quantités données. L'entreprise cherche à maximiser le bénéfice total provenant de la vente des 2 produits.

$$\max_{(x_1,x_2)} [F(x_1,x_2) = 6x_1 + 4x_2].$$

$$\begin{cases} 3x_1 + 9x_2 \le 81 \\ 4x_1 + 5x_2 \le 55 \\ 2x_1 + x_2 \le 20 \\ x_1, x_2 > 0 \end{cases}$$

3

Supposons à présent qu'un acheteur se présente pour acheter toutes les ressources de l'entreprise. Il propose à l'entreprise les prix unitaires y_1 , y_2 , y_3 pour chacune des ressources.

- L'entreprise acceptera de lui vendre toutes ses ressources uniquement si elle obtient pour chaque produit un prix de vente au moins égal au profit qu'elle ferait en vendant ses produits.
- De son côté, l'acheteur cherche à minimiser ses dépenses.

Quels prix unitaires y_1 , y_2 , y_3 l'acheteur doit-il proposer à l'entreprise en question pour qu'elle accepte de vendre toutes ses ressources ?

Programme linéaire.

$$\min_{(y_1, y_2, y_3)} [G(y_1, y_2, y_3) = 81y_1 + 55y_2 + 20y_3]$$

$$\begin{cases} 3y_1 + 4y_2 + 2y_3 \ge 6 \\ 9y_1 + 5y_2 + 1y_3 \ge 4 \\ y_1, y_2, y_3 \ge 0 \end{cases}$$

Matrice A de taille $m \times n$ Vecteurs $\mathbf{c} \in \mathbb{R}^n$ et $\mathbf{b} \in \mathbb{R}^m$.

Définition (problème dual)

Au programme linéaire primal

$$(PL) \quad \max_{\mathbf{x} \in \mathbb{R}^n} \left[F(\mathbf{x}) = \mathbf{c}^{\top} \mathbf{x} \right] \\ \begin{cases} A\mathbf{x} \le \mathbf{b} \\ \mathbf{x} \ge 0 \end{cases}$$

on associe le programme linéaire dual

$$(PLD) \quad \begin{bmatrix} \min_{\mathbf{y} \in \mathbb{R}^m} \left[G(\mathbf{y}) = \mathbf{b}^\top \mathbf{y} \right] \\ A^\top \mathbf{y} \ge \mathbf{c} \\ \mathbf{y} \ge 0 \end{bmatrix}$$

5

6

Programme linéaire primal

Programme linéaire dual

$$(PL) \begin{array}{l} \max\limits_{\mathbf{x} \in \mathbb{R}^n} \left[F(\mathbf{x}) = \mathbf{c}^{\top} \mathbf{x} \right] \\ \left\{ \begin{array}{l} A\mathbf{x} \leq \mathbf{b} \\ \mathbf{x} \geq 0 \end{array} \right. \end{array}$$

$$(PL) \begin{array}{l} \max_{\mathbf{x} \in \mathbb{R}^n} \left[F(\mathbf{x}) = \mathbf{c}^{\top} \mathbf{x} \right] \\ \left\{ \begin{array}{l} A\mathbf{x} \leq \mathbf{b} \\ \mathbf{x} \geq 0 \end{array} \right. & (PLD) \end{array} \quad \left\{ \begin{array}{l} \min_{\mathbf{y} \in \mathbb{R}^m} \left[G(\mathbf{y}) = \mathbf{b}^{\top} \mathbf{y} \right] \\ \left\{ \begin{array}{l} A^{\top} \mathbf{y} \geq \mathbf{c} \\ \mathbf{y} \geq 0 \end{array} \right. \end{array}$$

Comparaison primal/dual.

Primal

Dual

 $\max(F) \leftrightarrow \min(G)$

coefficient \mathbf{c} de $F \leftrightarrow \text{second membre } \mathbf{c}$

second membre $\mathbf{b} \leftrightarrow \text{coefficient } \mathbf{b} \text{ de } G$

m contraintes inégalités (<) \leftrightarrow m contraintes de positivité

n contraintes de positivité \leftrightarrow n contraintes inégalités (>)

Définition générale de la dualité quand le problème primal est sous forme canonique mixte

$$\max_{\mathbf{x} \in \mathbb{R}^n} \left[F(\mathbf{x}) = \mathbf{c}^\top \mathbf{x} \right] \qquad \min_{\mathbf{y} \in \mathbb{R}^m} \left[G(\mathbf{y}) = \mathbf{b}^\top \mathbf{y} \right]$$

$$\forall i \in I_1, \ \sum_{j=1}^n a_{ij} x_j \le b_i \qquad \leftrightarrow \qquad \forall i \in I_1, \ y_i \ge 0$$

$$\forall i \in I_2, \ \sum_{j=1}^n a_{ij} x_j = b_i \qquad \leftrightarrow \qquad \forall i \in I_2, \ y_i \ \text{de signe quelconque}$$

$$\forall j \in J_1, \ x_j \ge 0 \qquad \leftrightarrow \qquad \forall j \in J_1, \ \sum_{i=1}^m a_{ij} y_i \ge c_j$$

$$\forall j \in J_2, \ x_j \ \text{de signe quelconque} \qquad \leftrightarrow \qquad \forall j \in J_2, \ \sum_{i=1}^m a_{ij} y_i = c_j$$

II. Propriétés - Théorèmes de dualité

Proposition

Le dual du dual est le primal.

Preuve. Dual d'un (PL) sous forme canonique pure :

$$(PLD) \quad \begin{aligned} \min_{\mathbf{y}} \left[G(\mathbf{y}) = \mathbf{b}^{\top} \mathbf{y} \right] & \iff & \max_{\mathbf{y}} \left[-G(\mathbf{y}) = (-\mathbf{b})^{\top} \mathbf{y} \right] \\ \left\{ \begin{array}{l} A^{\top} \mathbf{y} \geq \mathbf{c} \\ \mathbf{y} \geq 0 \end{array} \right. & \iff & \left\{ \begin{array}{l} -A^{\top} \mathbf{y} \leq -\mathbf{c} \\ \mathbf{y} \geq 0 \end{array} \right. \end{aligned}$$

On prend le dual du dual :

$$\min_{\mathbf{x}} \left[(-\mathbf{c})^{\top} \mathbf{x} \right] \qquad \qquad \max_{\mathbf{x}} \left[\mathbf{c}^{\top} \mathbf{x} \right] \\
\begin{cases} (-A^{\top})^{\top} \mathbf{x} \ge (-\mathbf{b})^{\top} & \iff & \begin{cases} A\mathbf{x} \le \mathbf{b} \\ \mathbf{x} \ge 0 \end{cases} \end{cases} (PL)$$

Théorèmes de dualité

Théorème 1. Théorème faible de dualité

Soit \mathbf{x} une solution réalisable d'un (PL) sous forme canonique mixte et \mathbf{y} une solution réalisable du problème dual (PLD). Alors :

- ② Si $F(\mathbf{x}) = G(\mathbf{y})$ alors \mathbf{x} et \mathbf{y} sont des solutions optimales de (PL) et (PLD) respectivement.

Preuve. (PL) sous forme canonique pure

1 On a $A\mathbf{x} \leq \mathbf{b}$, $\mathbf{x} \geq 0$ et $A^{\top}\mathbf{y} \geq \mathbf{c}$, $\mathbf{y} \geq 0$.

$$F(\mathbf{x}) = \mathbf{c}^{\top} \mathbf{x} \le (A^{\top} \mathbf{y})^{\top} \mathbf{x} = \mathbf{y}^{\top} \underbrace{A \mathbf{x}}_{\le \mathbf{b}} \le \mathbf{y}^{\top} \mathbf{b} = G(\mathbf{y})$$

Soient \mathbf{x}^* et \mathbf{y}^* des solutions réalisables de (PL) et (PLD) telles que $F(\mathbf{x}^*) = G(\mathbf{y}^*)$. D'après 1., pour \mathbf{x} solution réalisable de (PL), on a $F(\mathbf{x}) \leq G(\mathbf{y}^*) = F(\mathbf{x}^*)$ donc \mathbf{x}^* est une solution réalisable optimale. Idem pour \mathbf{y}^* .

9

Théorème 2. Théorème fort de dualité

Si le problème primal (PL) admet une solution réalisable optimale \mathbf{x}^* alors le problème dual (PLD) admet lui aussi une solution réalisable optimale \mathbf{y}^* et on a

$$F(\mathbf{x}^*) = G(\mathbf{y}^*).$$

Preuve. On suppose (PL) mis sous forme standard.

S'il existe une solution réalisable optimale, alors il existe une solution de base réalisable optimale $\mathbf{x}_{B^*} = A_{B^*}^{-1}\mathbf{b}$. On choisit alors

$$\mathbf{y}^* = (A_{B^*}^{-1})^{\mathsf{T}} \mathbf{c}_{B^*}$$
.

On montre que \mathbf{y}^* est une solution réalisable optimale pour le dual (PLD).

• Avec $\mathbf{y}^* = \left(A_{B^*}^{-1}\right)^{\top} \mathbf{c}_{B^*}$, on a

$$A_{H^*}^{\top} \mathbf{y}^* = A_{H^*}^{\top} (A_{B^*}^{-1})^{\top} \mathbf{c}_{B^*} = (A_{B^*}^{-1} A_{H^*})^{\top} \mathbf{c}_{B^*} = \mathbf{c}_{H^*} - \mathbf{L}_{H^*}.$$

Or, à l'optimum $\mathbf{L}_{H^*} \leq 0$ donc $A_{H^*}^{\top} \mathbf{y}^* \geq \mathbf{c}_{H^*}$. Puisque $A_{B^*}^{\top} \mathbf{y}^* = \mathbf{c}_{B^*}$ on a

$$A^{\top}\mathbf{y}^* \geq \mathbf{c}$$

 \mathbf{v}^* de signe quelconque.

i.e. \mathbf{y}^* est une solution réalisable du dual (PLD) (pas de contrainte de positivité sur les variables \mathbf{y} du dual).

$$F(\mathbf{x}^*) = \mathbf{c}^{\top} \mathbf{x}^* = \mathbf{c}_{B^*}^{\top} A_{B^*}^{-1} \mathbf{b}$$

$$= \left(\underbrace{(A_{B^*}^{-1})^{\top} \mathbf{c}_{B^*}}_{\mathbf{y}^*} \right)^{\top} \mathbf{b} = G(\mathbf{y}^*)$$

Théorème faible de dualité \Rightarrow \mathbf{y}^* est optimal pour (PLD).

11

Lien primal/dual

Rappel: 3 cas possibles (et seulement 3) pour le problème primal (PL) :

- (1) il existe (au moins) une solution optimale.
- (2) l'ensemble \mathcal{D}_R des solutions réalisables n'est pas borné et l'optimum est infini.
- (3) pas de solution réalisable ($\mathcal{D}_R = \emptyset$).

Théorème 3.

Etant donnés un problème primal (PL) et son dual (PLD), une et une seule des trois situations suivantes a lieu

- (a) les deux problèmes possèdent chacun des solutions optimales (à l'optimum, les coûts sont égaux).
- (b) un des problèmes possède une solution réalisable avec un optimum infini, l'autre n'a pas de solution.
- (c) aucun des deux problèmes ne possède de solution réalisable.

Il y a donc 3 situations (au lieu de 9) qui peuvent se résumer dans le tableau suivant:

		Dual		
		(1) Solution optimale	(2) Optimum infini	(3) pas de solution
Primal	(1) Solution optimale	(a)	impossible	impossible
	(2) Optimum infini	impossible	impossible	(b)
	(3) pas de solution	impossible	(b)	(c)

13

III. Conditions d'optimalité primal-dual (COPD)

Cas (a) où les problèmes primal et dual possèdent chacun des solutions optimales (optimum fini).

Théorème 4.

Soient \mathbf{x} et \mathbf{y} des solutions réalisables respectivement du problème primal (PL) et du problème dual (PLD). Alors \mathbf{x} et \mathbf{y} sont des solutions réalisables optimales si et seulement si les conditions d'optimalité primal-dual (COPD) suivantes sont vérifiées:

- Si une contrainte est satisfaite en tant qu'<u>inégalité stricte</u> dans (PL) (resp. (PLD)) alors la variable correspondante de (PLD) (resp. (PL)) est <u>nulle</u>.
- Si la valeur d'une variable dans (PL) ou (PLD) est strictement positive alors la contrainte correspondante de l'autre programme est une égalité.

Problème primal sous forme canonique mixte.

x et **y** sont optimales pour le problème primal et le problème dual respectivement *si* et seulement *si* on a les COPD :

$$\begin{cases} \bullet \ \forall i \in I_1, \ \sum_{j=1}^n a_{ij} x_j = b_i \ \text{ou} \ y_i = 0 \\ \\ \bullet \ \forall j \in J_1, \ \sum_{i=1}^m a_{ij} y_i = c_j \ \text{ou} \ x_j = 0 \end{cases}$$

Preuve de la condition nécessaire du Théorème des COPD.

On suppose le problème primal (PL) mis sous forme canonique pure. Soient \mathbf{x} et \mathbf{y} des solutions réalisables *optimales* de (PL) et (PLD) respectivement : $A\mathbf{x} \leq \mathbf{b}$, $\mathbf{x} \geq 0$ et $A^{\mathsf{T}}\mathbf{y} \geq \mathbf{c}$, $\mathbf{y} \geq 0$.

Variables d'écart \mathbf{e} et ε respectivement pour (PL) et (PLD):

$$A\mathbf{x} + \mathbf{e} = \mathbf{b} \qquad \mathbf{et} \qquad A^{\top}\mathbf{y} - \varepsilon = \mathbf{c}$$

$$\mathbf{x} \ge 0, \ \mathbf{e} \ge 0 \qquad \mathbf{y} \ge 0, \ \varepsilon \ge 0$$

$$\Rightarrow F(\mathbf{x}) = \mathbf{c}^{\top}\mathbf{x} = (A^{\top}\mathbf{y} - \varepsilon)^{\top}\mathbf{x} = \mathbf{y}^{\top}A\mathbf{x} - \varepsilon^{\top}\mathbf{x}$$

$$G(\mathbf{y}) = \mathbf{b}^{\top}\mathbf{y} = (A\mathbf{x} + \mathbf{e})^{\top}\mathbf{y} = (A\mathbf{x})^{\top}\mathbf{y} + \mathbf{e}^{\top}\mathbf{y} = \mathbf{y}^{\top}A\mathbf{x} + \mathbf{e}^{\top}\mathbf{y}.$$

Théorème de la dualité forte
$$\Rightarrow$$
 $F(\mathbf{x}) = G(\mathbf{y})$
$$\Rightarrow \quad \boxed{\varepsilon^{\top}\mathbf{x} + \mathbf{e}^{\top}\mathbf{y} = 0}$$

15

Puisque $\mathbf{x} \geq 0$ et $\mathbf{y} \geq 0$, la relation $\varepsilon^{\top} \mathbf{x} + \mathbf{e}^{\top} \mathbf{y} = 0$ donne

$$\begin{cases} \varepsilon_i x_i = 0, & \forall i \\ e_j y_j = 0, & \forall j \end{cases}$$

$$\Rightarrow \begin{cases} \text{Si } \varepsilon_i \neq 0 \text{ alors } x_i = 0 \\ \text{Si } x_i \neq 0 \text{ alors } \varepsilon_i = 0, \end{cases} \begin{cases} \text{Si } e_j \neq 0 \text{ alors } y_j = 0 \\ \text{Si } y_j \neq 0 \text{ alors } e_j = 0. \end{cases}$$

Réciproque (condition suffisante) à partir du Théorème faible de dualité.

17

Utilisation pratique des COPD.

Elles permettent de vérifier si une solution réalisable d'un (PL) est optimale ou non, à partir de la connaissance d'une solution optimale du problème dual.

 \mathbf{x}^* et \mathbf{y}^* solutions réalisables optimales de (PL) et (PLD) respectivement.

$$\begin{cases} \bullet \sum_{j=1}^{n} a_{ij} x_{j}^{*} < b_{i} \Rightarrow y_{i}^{*} = 0 \\ \bullet \sum_{i=1}^{m} a_{ij} y_{i}^{*} > c_{j} \Rightarrow x_{j}^{*} = 0 \end{cases}$$

$$\begin{cases} \bullet y_i^* > 0 \Rightarrow \sum_{j=1}^n a_{ij} x_j^* = b_i \\ \bullet x_j^* > 0 \Rightarrow \sum_{i=1}^m a_{ij} y_i^* = c_j \end{cases}$$

Exemple. Problème de production

$$(PL) \begin{cases} \max_{\mathbf{x}} F(\mathbf{x}) = 6x_1 + 4x_2 \\ 3x_1 + 9x_2 \le 81 \\ 4x_1 + 5x_2 \le 55 \\ 2x_1 + x_2 \le 20 \\ x_1, x_2 \ge 0 \end{cases}$$

Problème dual:

$$\min_{\mathbf{y}} [G(\mathbf{y}) = 81y_1 + 55y_2 + 20y_3]$$

$$(PLD) \begin{cases} 3y_1 + 4y_2 + 2y_3 \ge 6\\ 9y_1 + 5y_2 + 1y_3 \ge 4\\ y_1, y_2, y_3 \ge 0 \end{cases}$$

19

Solution optimale de (PL):

$$e_1^* = 27/2 > 0 \quad \stackrel{\text{COPD}}{\Longrightarrow} \quad y_1^* = 0$$
 $x_1^* = 15/2 > 0 \quad \stackrel{\text{COPD}}{\Longrightarrow} \quad 3y_1^* + 4y_2^* + 2y_3^* = 6 \ (\varepsilon_1^* = 0)$
 $x_2^* = 5 > 0 \quad \stackrel{\text{COPD}}{\Longrightarrow} \quad 9y_1^* + 5y_2^* + y_3^* = 4 \ (\varepsilon_2^* = 0)$
 $e_2^* = e_3^* = 0$

⇒ Solution optimale du problème dual

$$y_1^* = 0$$
, $y_2^* = 1/3$, $y_3^* = 7/3$.