Introduzione Modello Matematico Studio del modello di coda in stato stazionario Risultati Numerici Conclusioni

# Queueing System with Potential for Recruiting Secondary Servers

Luca Lombardo

Seminario per Metodi Numerici per Catene di Markov

### Struttura del seminario

- Introduzione
- 2 Modello Matematico
- 3 Studio del modello di coda in stato stazionario
  - QBD
    - Condizione di ergodicità del processo QBD
    - Calcolo della distribuzione stazionaria del processo QBD
- A Risultati Numerici
- 6 Conclusioni

# Queueing Theory

I modelli di coda sono utilizzati per rappresentare sistemi di risorse che devono essere utilizzati da diversi utenti.

#### Code semplici

- Un solo server che attende un cliente alla volta
- Tempo discretizzato in intervalli di lunghezza fissa
- Numero casuale di clienti che si unisce al sistema durante un intervallo
- Il server rimuove un cliente dalla coda alla fine di ogni intervallo

# Queueing Theory

Dato  $\alpha_n$  il numero di nuovi arrivi durante l'intervallo [n-1,n) e  $X_n$  il numero di clienti nel sistema al tempo n, abbiamo:

Conclusioni

$$X_{n+1} = \begin{cases} X_n + \alpha_{n+1} - 1 & \text{se } X_n + \alpha_{n+1} \ge 1\\ 0 & \text{se } X_n + \alpha_{n+1} = 0 \end{cases}$$

Se  $\alpha_n$  è una collezione di variabili casuali indipendenti, allora  $X_{n+1}$  è condizionalmente indipendente da  $X_0,...,X_{n-1}$  se  $X_n$  è noto.

# Queueing Theory

Lo spazio degli stati è N e la matrice di transizione è

$$P = \begin{pmatrix} q_0 + q_1 & q_2 & q_3 & q_4 & \dots \\ q_0 & q_1 & q_2 & q_3 & \ddots \\ \vdots & q_0 & q_1 & q_2 & \ddots \\ 0 & & \ddots & \ddots & \ddots \end{pmatrix}$$

- $q_i$  è probabilità  $P[\alpha = i]$  che i nuovi clienti che entrino in coda durante un intervallo di un'unità di tempo.
- $\alpha$  denota ognuna delle possibili distribuzioni di  $\alpha_n$  identicamente distribuite.



# Obiettivi del paper

Nuovo approccio per migliorare i modelli di coda utilizzando server secondari temporanei reclutati tra i clienti stessi.

- Server secondari disponibili solo temporaneamente e servono gruppi di diversa dimensione.
- Dopo aver servito un gruppo, i server secondari lasciano il sistema.

# Obiettivi del paper

#### Due caratteristiche fondamentali

- I server secondari sono assegnati ad un gruppo e offrono i servizi uno alla volta.
- Un cliente servito da un server secondario può essere insoddisfatto.

# Markovian arrival process (MAP)

- Un MAP è un processo stocastico che descrive il comportamento degli arrivi in un sistema di coda.
- È caratterizzato dalla sua distribuzione di probabilità di interarrivo e dalla sua distribuzione di probabilità di dimensione.
- Può essere definito come un processo di Markov a tempi continui.

### Caratterizzazione del MAP

• Il generatore irriducibile del MAP è dato dalla somma delle matrici di parametro  $D_0$  e  $D_1$  di ordine m.

L'invariante di probabilità  $\delta$  soddisfa l'equazione

$$\delta(D_0 + D_1) = \mathbf{0} \qquad \delta e = 1$$

- La matrice  $D_0$  governa le transizioni del generatore sottostante che non producono arrivi.
- La matrice  $D_1$  governa quelle transizioni corrispondenti agli arrivi nel sistema

### Proprietà del MAP

### Rate medio di arrivi $(\lambda)$

$$\lambda = \delta D_1 e$$

### Varianza dei tempi interni di arrivo $(\sigma^2)$

$$\sigma^2 = \frac{2}{\lambda}\delta(-D_0)^{-1}e - \frac{1}{\lambda^2}$$

### Correlazione $(\rho_c)$ tra due successivi tempi interni di arrivo

$$\rho_c = \frac{\lambda \delta(-D_0)^{-1} D_1(-D_0)^{-1} e - 1}{2\lambda \delta(-D_0)^{-1} e - 1}$$

### Modello di coda con server principale e secondario

Il sistema ha un singolo server che offre servizi in modo FCFS.

- ullet Il server principale offre servizi esponenziali con parametro  $\mu_1.$
- Con probabilità p, un cliente servito può essere reclutato per diventare un server secondario
- Il server secondario sarà assegnato a un gruppo di i clienti dove i = min{numero nella coda, L}

#### Attenzione!

Un cliente insoddisfatto dal servizio ricevuto dal server secondario potrebbe richiedere di essere servito di nuovo con probabilità v.

# Modello di coda con server principale e secondario

- I tempi di servizio del server secondario sono esponenziali con parametro  $\mu_2$ .
- I clienti insoddisfatti sono reinseriti nel sistema.
- Quando il server secondario ha finito di servire tutti i clienti assegnati viene rilasciato dal sistema.

#### Edge case

Il caso in cui v=1 non è interessante poiché ogni cliente servito da un server secondario viene reinserito nel sistema

### Struttura del sistema



Figure: Immagine da [1]

### Due approcci possibili

#### **QBD**

Primo processo che analizzeremo in questa sezione: un caso particolare delle catena di markov a tempo continuo (CTMC)

### GI/M/1

Una GI/M/1-type Markov chain assume che il tempo tra gli arrivi e il tempo di servizio dei clienti seguano una distribuzione generica, mentre è presente un solo server.

### Introduzione al QBD

Un quasi-death-birth process (QBD) è un caso particolare di una catena di Markov a tempo continuo (CTMC). Ci sono due tipi di eventi che possono verificarsi: eventi di morte e eventi di nascita.

### Introduzione al QBD

Imponendo le restrizioni di entrambi i tipi di code M/G/1 che delle G/M/1, si vietano transizioni di più di livello alla volta, ottenendo così un processo QBD.

La matrice di transizione di tale processo è definita come segue:

$$P = \begin{pmatrix} B_0 & B_1 & & & 0 \\ A_{-1} & A_0 & A_1 & & & \\ & A_{-1} & A_0 & A_1 & & \\ & & A_{-1} & A_0 & \ddots \\ 0 & & \ddots & \ddots \end{pmatrix}, \quad A_{-1}, A_0, A_1, \in \mathbb{R}^{m \times m}, \quad B_0, B_1 \in \mathbb{R}^{m \times m}$$

Il generatore infinitesimale di un processo QBD è una matrice tridiagonale a blocchi infinita Q che descrive la probabilità di transizione del sistema da uno stato i ad uno stato j, in un dato istante di tempo t, attraverso un evento infinitesimo

Al tempo  $t \ge 0$ , indichiamo:

- $i_t \ge 0$  il numero di clienti nel sistema
- $n_t \in \{0, ..., \min(i_t, L)\}$  il numero di clienti in servizio al server secondario
- $\xi_t = 1,...,m$  lo stato del processo sottostante del *MAP* che descrive gli arrivi dei clienti

Allora, il processo stocastico  $\{\zeta_t = (i_t, n_t, \xi_t), t \ge 0\}$  che descrive il comportamento del modello in esame è un CTMC regolare e irriducibile.

Enumerando gli stati della CTMC,  $\{\zeta_t, t \geq 0\}$ , in ordine lessicografico e indicando con i il livello, per  $i \geq 0$ , definiamo l'insieme di stati come

$$\{(i,n,k): 0 \le n \le \min(i,L), 1 \le k \le m\}$$

#### **Theorem**

Il generatore infinitesimale Q del processo stocastico CTMC  $\{\zeta_t, t \ge 0\}$  ha una struttura a blocchi tridiagonale come segue:

$$Q = \begin{pmatrix} Q_{0,0} & Q_{0,1} & 0 & 0 & \dots & 0 & 0 & 0 & 0 & \dots \\ Q_{1,0} & Q_{1,1} & Q_{1,2} & 0 & \dots & 0 & 0 & 0 & 0 & \dots \\ 0 & Q_{2,1} & Q_{2,2} & Q_{2,3} & \dots & 0 & 0 & 0 & 0 & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \ddots \\ 0 & 0 & 0 & 0 & \dots & Q_{L,L-1} & Q_{L,L} & Q^+ & 0 & \ddots \\ 0 & 0 & 0 & 0 & \dots & 0 & Q^- & Q^0 & Q^+ & \dots \\ 0 & 0 & 0 & 0 & \dots & 0 & 0 & Q^- & Q^0 & Q^+ \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

Dove i blocchi  $Q_{i,i}$  sono definiti come segue:

$$Q_{0,0}=D_0$$

$$Q_{i,i} = I_{i+1} \otimes \nu \mu_2 E_i^- \otimes I_m - \left(\mu_1 \widehat{I_i} + \mu_2 \left(I_{i+1} - \overline{I_i}\right)\right) \otimes I_m \qquad 1 \le i \le L$$

$$Q_{i,i} = I_{i+1} \otimes \nu \mu_2 E_i^- \otimes I_m - \left(\mu_1 \widehat{I_i} + \mu_2 \left(I_{i+1} - \overline{I_i}\right)\right) \otimes I_m \qquad 1 \leq i \leq L$$

#### Dove:

- indica il prodotto di Kronecker per matrici
- $E_l^-$  è una matrice quadrata di dimensioni l+1 con  $(E_l^-)_{k,k-1}=1$  per  $1 \le k \le l$  e tutte le altre componenti nulle.
  - $\widehat{l}_l$  è una matrice quadrata di dimensioni l+1 con  $(\widehat{l}_l)_{k,k}=1$  per  $0 \le k \le l-1$  e tutte le altre componenti nulle.
  - $\overline{I_l}$  è una matrice quadrata di dimensioni l+1 con  $(\overline{I_l})_{0,0}=1$  e tutte le altre componenti nulle.



#### Mentre abbiamo

$$Q_{i,i+1} = E_i^+ \otimes D_1 \qquad 0 \le i \le L - 1$$

$$Q_{1,0} = (1-\nu)\mu_2 \widetilde{E}_1^- \otimes I_m + \mu_1 I_1^- \otimes I_m \qquad 1 \le i \le L$$

$$Q_{i,i-1} = (1-\nu)\mu_2 \tilde{E}_i^- \otimes I_m + q\mu_1 I_i^- \otimes I_m + (1-q)\mu_1 I_i^+ \otimes I_m \qquad 1 \le i \le L$$

#### Dove

- $E_l^+$  è una matrice di dimensioni  $(l+1) \times (l+2)$  con  $(E_l^+)_{k,k} = 0$  per  $0 \le k \le l$  e tutte le altre componenti nulle.
- $\widetilde{\mathcal{E}}_{l}^{-}$  è una matrice di dimensioni  $(l+1)\times l$  con  $(\widetilde{\mathcal{E}}_{l}^{-})_{k,k-1}=1$  per  $1\leq k\leq l$  e tutte le altre componenti nulle.
- $I_l^-$  è una matrice di dimensioni  $(l+1) \times l$  con  $(I_l^-)_{k,k} = 1$  per  $0 \le k \le l-1$  e tutte le altre componenti nulle.
- $I_{l}^{+}$  è una matrice di dimensioni  $(l+1)\times l$  con  $(I_{l}^{+})_{0,l-1}=1,(I_{l}^{+})_{k,k}=1$  per  $1\leq k\leq l-1$  e tutte le altre componenti nulle.

### Condizione di ergodicità del processo QBD

Il seguente risultato stabilisce la condizione di ergodicità del processo QBD che governa il sistema in esame.

#### $\mathsf{Theorem}$

Il processo stocastico CTMC  $\{\zeta_t,,t\geq 0\}$  è ergodico se e solo se vale la seguente disuguaglianza:

$$\lambda < \mu_1 + \mu_2 \big(1-v\big) \frac{L(1-q)\mu_1}{L(1-q)\mu_1 + \mu_2}$$

#### Dimostrazione del teorema

#### Dimostrazione

Il criterio per l'ergodicità del QBD con il generatore di forma data come nel teorema precedente soddisfa l'ineguaglianza:

$$yQ^-e > yQ^+e$$

dove il vettore y è l'unica soluzione del sistema

$$y(Q^- + Q^0 + Q^+) = \mathbf{0}, \qquad ye = 1$$

con

$$\begin{split} Q^+ &= I_{L+1} \otimes D_1, \qquad i \geq L \\ Q^- &= (1-\nu)\mu_2 E_L^- \otimes I_m + q\mu_1 I_{(L+1)m} + (1-q)\mu_1 I^+ \otimes I_m \qquad i > L \\ Q^0 &= I_{L+1} \otimes D_0 + \nu \mu_2 E_L^- \otimes I_m - (\mu_1 I_{L+1} + \mu_2 (I_{L+1} - \overline{I}_L)) \otimes I_m \qquad i > L \end{split}$$



#### Dimostrazione

Si può inoltre verificare che

$$Q^{-} + Q^{0} + Q^{+} = I_{L+1} \otimes (D_{0} + D_{1}) + S \otimes I_{m}$$

dove

$$S = \begin{pmatrix} -\mu_1(1-q) & 0 & 0 & \dots & 0\mu_1(1-q) \\ \mu_2 & -\mu_2 & 0 & \dots & 0 & 0 \\ 0 & \mu_2 & -\mu_2 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & \mu_2 & -\mu_2 \end{pmatrix}$$

#### Dimostrazione

dove usando le regole del mixed product per il prodotto di Kronecker, e ricordando che

$$\delta(D_0 + D_1) = 0, \qquad \delta e = 1$$

si verifica che

$$y = x \otimes \delta$$

dove x è soluzione del sistema

$$xS = 0$$
,  $xe = 1$ 

#### Dimostrazione

per sostituzione diretta, verifichiamo che le componenti del vettore  $x = (x_0, x_1, ..., x_L)$ , corrispondenti alle uniche soluzioni del sistema visto prima, sono date da

$$x_0 = \frac{\mu_2}{L(1-q)\mu_1 + \mu_2}, \qquad x_i = \frac{\mu_1(1-q)}{L(1-q)\mu_1 + \mu_2}, \qquad i = 1, ..., L$$

La tesi segue delle equazioni viste in precedenza assieme alla definizione di  $\lambda$ .



#### Osservazioni sulla dimostrazione

#### Osservazione 1

- La condizione di ergodicità richiede che il tasso di arrivo dei clienti per unità di tempo debba essere inferiore al tasso di servizio che i clienti ricevono per unità di tempo quando il sistema è sovraccarico.
- Il tasso di servizio medio totale nel modello di coda è dato dalla somma del tasso di servizio fornito dal server principale e del tasso di servizio fornito dal server secondario.

Possiamo esprimere il tasso di servizio medio totale come segue:

$$\mu = \mu_1 + \mu_2 (1 - v) \frac{L(1 - q)\mu_1}{L(1 - q)\mu_1 + \mu_2}$$

### Osservazioni sulla dimostrazione

#### Osservazione 2

Calcoliamo la probabilità  $x_0$  che il secondo server non sia presente nel sistema in un qualsiasi momento in cui il sistema è sovraccarico.

• Quando il sistema attiva un server secondario la durata media del server secondario continuamente presente nel sistema è data da  $\frac{L}{\mu_2}$ . Pertanto, abbiamo:

$$x_0 = \frac{\frac{1}{\mu_1(1-q)}}{\frac{1}{\mu_1(1-q)} + \frac{L}{\mu_2}} = \frac{\mu_2}{L(1-q)\mu_1 + \mu_2}$$

#### Probabilità stazionarie

La distribuzione stazionaria di una CTMC irriducibile ricorrente è la distribuzione di probabilità a cui il processo converge per valori grandi di t.

In particolare, per un processo QBD con n stati, la distribuzione stazionaria è un vettore di probabilità

$$\pi = (\pi_1, \pi_2, ..., \pi_n)$$

dove ogni  $\pi_i$  rappresenta la probabilità di trovare il sistema nello stato i.

### Probabilità stazionarie

Sotto l'assunzione che la condizione di ergodicità sia valida, esistono le seguenti probabilità stazionarie degli stati del CTMC  $\{\zeta_t, t \ge 0\}$ :

$$\pi(i, n, \xi) = \lim_{t \to \infty} P\{i_t = i, n_t = n, \xi_t = \xi\}, i \ge 0$$

Consideriamo i vettori riga delle probabilità di stato stazionario  $\pi_i$  come segue

$$\pi_i = (\pi(i,0),...,\pi(i,\min\{i,L\})), i \ge 0$$

dove

$$\pi(i, n) = (\pi(i, n, 1), ..., \pi(i, n, m))$$



#### Probabilità stazionarie

Sappiamo che i vettori di probabilità stazionari  $\pi_i$ ,  $i \ge 0$ , soddisfano il sistema di equazioni algebriche lineari (equazioni di equilibrio):

$$(\pi_0, \pi_1, \pi, \dots) Q = 0$$
  $(\pi_0, \pi_1, \pi, \dots) e = 1$ 

dove Q è la matrice di transizione del CTMC  $\{\zeta_t, t \ge 0\}$  ed  $\mathbf{e}$  è il vettore colonna di tutti gli elementi 1

# Algoritmo per risolvere il sistema di equazioni di equilibrio

#### Goal

Vediamo un algoritmo che sfrutta la struttura tridiagonale a blocchi del generatore, ma dipendente dal livello, per risolvere più efficientemente il sistema di equazioni lineari algebriche quando il numero di livelli di confine è elevato.

# Algoritmo per risolvere il sistema di equazioni di equilibrio

#### **Theorem**

I vettori  $\pi_i$ ,  $i \ge 0$ , sono trovati come soluzione del sistema di equazioni algebriche lineari:

$$\pi_i = \alpha_i \left(\sum_{l=0}^{\infty} \alpha_l e\right)^{-1}, \qquad i \ge 0$$

dove il vettore  $\alpha_0$  è calcolato come l'unica soluzione del sistema di equazioni

$$\alpha_0(Q_{0,0} + Q_{0,1}G_0) = 0, \qquad \alpha_0 e = 1$$

ed i vettori  $\alpha_i$ ,  $i \ge 1$ , sono definiti come

$$\alpha_i = \alpha_0 \prod_{l=1}^i R_l, \qquad i \ge 1$$



### Algoritmo per risolvere il sistema di equazioni di equilibrio

#### **Theorem**

Altrimenti tramite la formula ricorsiva

$$\alpha_i = \alpha_{i-1}R_i, \qquad i \ge 1$$

dove

$$R = \begin{cases} -Q_{i-1,i} \big( Q_{i,i} + Q_{i,i+1} G_i \big)^{-1} Q & 1 \leq i \leq L-1 \\ -Q_{L-1,L} \big( Q_{L,L} + Q^+ G \big)^{-1} & i = L \\ -Q^+ \big( Q^0 + Q^+ G \big)^{-1} = R & i > L \end{cases}$$

### Algoritmo per risolvere il sistema di equazioni di equilibrio

#### **Theorem**

Le matrici stocastiche  $G_i$  sono calcolate utilizzando la seguente formula ricorsiva all'indietro:

$$G_L = G$$

$$G_{L-1} = -(Q_{L,L} + Q^+ G_L)^{-1} Q_{L,L-1}$$

$$G_i = -(Q_{i+1,i+1} + Q_{i+1,i+2}G_{i+1})^{-1}Q_{i+1,i}, \qquad i = L-2, L-3, ..., 0$$

dove la matrice G è la minima soluzione non negativa dell'equazione quadratica matriciale

$$Q^+ G^2 + Q^0 G + Q^- = 0$$

## Algoritmo per risolvere il sistema di equazioni di equilibrio

- L'algoritmo proposto è una modifica dell'algoritmo per il calcolo della distribuzione stazionaria di una CTMC asintotica quasi-Toeplitz.
- Le inverse delle matrici utilizzate nell'algoritmo sono sub-generatori irriducibili e semi-stabili, il che rende stabile l'implementazione numerica dell'algoritmo.

#### Introduzione ai risultati numerici

Vedremo 3 esempi illustrativi utilizzando 5 processi di arrivo. In particolare i 5 *MAP* considerati sono:

#### 1. ERL

Erlang di ordine 5 con parametro 2.5 in ciascuno dei 5 stati. Prendiamo poi  $\lambda = 0.5, \sigma = 0.899427$  e  $\rho_c = 0$ .

#### 2. EXP

Un esponenziale con una frequenza di 0.5. Prendiamo poi  $\lambda=0.5, \sigma=2$  e  $\rho_c=0$ .

Introduzione Modello Matematico Studio del modello di coda in stato stazionario **Risultati Numerici** Conclusioni

#### 3. HEX

Distribuzione iper-esponenziale con una probabilità di mixing data da (0.5, 0.3, 0.15, 0.04, 0.01) con i corrispondenti tassi della distribuzione esponenziale pari a (1.09, 0.545, 0.2725, 0.13625, 0.068125). Qui abbiamo  $\lambda = 0.5$ ,  $\sigma = 3.3942$  e  $\rho_C = 0$ .

#### 4. NCR

MAP negativamente correlato, con matrici di rappresentazione:

dove abbiamo  $\lambda = 0.5, \sigma = 2.02454$  e  $\rho_c = -0.57855$ 

#### 5. PCR

MAP positivamente correlato, con matrici di rappresentazione:

dove abbiamo  $\lambda = 0.5, \sigma = 2.02454$  e  $\rho_c = 0.57855$ 

#### Introduzione ai risultati numerici

#### Osservazioni

- Le cinque *MAP* sopra riportate sono qualitativamente diverse.
- Il processo di arrivo PCR è ideale per situazioni di arrivi altamente irregolari con periodi di alta e bassa attività.

#### Obiettivo

Discutiamo l'impatto del parametro L su alcune misure di performance del sistema per tutti e 5 i MAPs

Fissiamo  $\mu_1 = 1$ ,  $\mu_2 = 0.5$ , q = 0.5, e v = 0.4, e variamo L da 1 a 30.

#### Lsec

Definiamo  $L_{\text{sec}}$  come il numero medio di clienti nel sistema con server secondari ad un momento arbitrario come:

$$L_{\text{sec}} = \sum_{i=1}^{\infty} \sum_{n=1}^{\min\{i,L\}} n\pi(i,n)e$$

#### $L_{\text{system}}$

Definiamo  $L_{\text{system}}$  come il numero medio di clienti nell'intero sistema come:

$$L_{\text{syste}} = \sum_{i=1}^{\infty} i \pi_i e$$



Figure: Impatto di L sul numero medio di clienti nel sistema L<sub>system</sub> per diversi MAPs



Figure: Dipendenza del numero medio di clienti con il server secondario  $L_{\text{sec}}$  al variare di L per diversi MAPs



#### $P_{\text{idle-system}}$

Definiamo la probabilità che il sistema sia in equilibrio ad un momento arbitrario come:

$$P_{\text{idle-system}} = \pi_0 e$$



Figure: Dipendenza della probabilità  $P_{\text{idle-system}}$  rispetto ad L che il sistema sia in idle ad un momento arbitrario, per diversi MAPs

#### $P_{\text{idle-busy}}$

Definiamo la probabilità che il main server sia in idle quando il server secondario è occupato come:

$$P_{\text{idle-busy}} = \sum_{n=1}^{L} \pi(n, n)e$$

#### P<sub>busy-idle</sub>

Definiamo la probabilità che il main server sia occupato quando il server secondario è in idle come:

$$P_{\text{busy-idle}} = \sum_{i=0}^{\infty} \pi(i,0)e$$





Figure: Dipendenza della probabilità  $P_{\rm idle-busy}$  rispetto ad L che il main server sia in idle quando il server secondario è in occupato, per diversi MAPs



Figure: Dipendenza della probabilità  $P_{\text{busy-idle}}$  rispetto ad L che il main server sia occupato quando il server secondario è in idle, per diversi MAPs



#### Obiettivi

L'obiettivo è valutare l'impatto dei parametri q e  $\nu$  sulla prestazione del sistema. Dove

- q è la probabilità che un cliente servito si rifiuti di agire come server secondario
- $m{v}$  è la probabilità che un cliente servito da un server secondario non sia soddisfatto e venga mandato indietro al server primario

Fissiamo il valore di L a 10 e i tassi di servizio  $\mu_1$  e  $\mu_2$  a 1 e 0.5. Si variano i valori di q e v da 0 a 1 con passo 0.05 e si analizza l'impatto sulle misure di prestazione del sistema.



Figure: Dipendenza del numero medio di clienti nel sistema  $L_{
m system}$  rispetto a q e v

#### Modifichiamo i parametri

- Si aumenta  $\lambda$  del 50% a 0.75 per testare l'importo della riduzione del numero medio di clienti nel sistema.
- Mantenendo gli altri parametri costanti, si ottiene una riduzione superiore al 52,8%.
- Ciò suggerisce che l'aggiunta di un server secondario beneficia notevolmente l'aumento del carico del sistema anche con un tasso di insoddisfazione del cliente del 50%.



Figure: Dipendenza del numero medio di clienti nel sistema  $L_{\rm sec}$  rispetto a q e v con  $\lambda = 0.75$ 



Figure: Dipendenza della probabilità  $P_{\text{idle-system}}$  che il sistema sia in idle ad un momento arbitrario rispetto a q e v.

#### Obiettivo

Analizzare l'impatto della variazione dei tassi di servizio  $\mu_1$  e  $\mu_2$  quando tutti gli altri parametri sono fissati.

- I parametri fissati sono L=10, q=0.5, v=0.4, e  $\lambda=0.5$ .
- I tassi  $\mu_1$  e  $\mu_2$  vengono variati da 0.25 a 2.0 con incrementi di 0.05, ma per soddisfare la condizione di ergodicità, il valore di  $\mu_2$  viene limitato quando  $\mu_1$  è piccolo.
- Solo per µ<sub>1</sub> ≥ 0.4, il valore di µ<sub>2</sub> può essere variato da 0.25, come originariamente indicato



Figure: Dipendenza del numero medio di clienti nel sistema  $L_{\rm system}$  rispetto a  $\mu_1$  e  $\mu_2$ 



Figure: Dipendenza del numero medio di clienti nel sistema  $L_{\text{system}}$  rispetto a  $\mu_1$  e  $\mu_2$  (zoomed-in)





Figure: Dipendenza del numero medio di clienti con server secondario  $L_{\rm sec}$  rispetto a  $\mu_1$  e  $\mu_2$ 

#### Generalizzazione del modello

- Si può rilassare l'ipotesi di avere solo un server secondario e vedere l'impatto dell'aumento a 2.
- Introdurre l'ipotesi di impazienza dei clienti
- Incorporare la possibilità di reclutare molti server secondari con due tipi di clienti, in modo che solo un tipo possa qualificarsi per agire come server secondario.