Assignment 6 - 2021.10.27

Submission deadline: 2021.11.03

- 1. Let g be a generator for Z_p^* . Suppose that x=a and x=b are both integer solutions to the congruence $g^x \equiv h \pmod{p}$. Prove that $a \equiv b \pmod{p-1}$.
- 2. Computer the following discrete logarithms. (You can write a simple program to help)
 - a). $log_2(13)$ for the prime p=23.
 - b). $log_{10}(22)$ for the prime p=47.
 - c). $\log_{627}(608)$ for the prime p=941
- 3. The group S3 consists of the following six distinct elements $e, \sigma, \sigma^2, \tau, \sigma\tau, \sigma^2\tau$, where e is the identity element and multiplication is performed using the rules

$$\sigma^3 = e$$
, $\tau^2 = 1$, $\tau \sigma = \sigma^2 \tau$

Compute the following values in the group S3:

- a) $\tau \sigma^2$
- b) $\tau(\sigma\tau)$
- c) $(\sigma\tau)(\sigma\tau)$
- d) $(\sigma\tau)(\sigma^2\tau)$

Is S3 a commutative group?

4. Let p be a prime and let q be a prime that divides p-1. Let $a \in Z_p^*$ and let $b = a^{(p-1)/q}$. Prove that either b=1 or else b has order q. (Recall that the order of b is the smallest k such that $b^k = 1$ in Z_p^* .