

Testes de Hipóteses com uma amostra: Conceitos

Prof. Fermín Alfredo Tang Montané

Definição

- Um parâmetro pode ser estimado a partir dos dados da amostra seja mediante uma estatística única (estimativa pontual) ou mediante um intervalo de valores (intervalo de confiança).
- No entanto, o objetivo de uma investigação pode não ser estimar um parâmetro, mas decidir qual das duas alegações contraditórias sobre o parâmetro está correta.
- Os métodos de decisão que compreendem esta parte da inferência estatística é chamada teste de hipóteses.
- Discutimos primeiro alguns dos conceitos básicos e a terminologia usada no teste de hipóteses.
- Depois desenvolvemos os procedimentos de decisão dos problemas de teste de hipóteses encontrados com mais frequência com base em uma amostra de uma única população.

Definição

- Uma hipótese estatística, ou simplesmente hipótese, é uma alegação ou afirmação sobre o valor de:
- um único parâmetro (característica da população ou característica de uma distribuição de probabilidade),
- sobre os valores de vários parâmetros ou sobre a forma de uma distribuição de probabilidade inteira.

Exemplos

- Temos como exemplos de hipóteses:
- u = 0.75, onde u é o diâmetro interno médio real de certo tipo de cano de PVC;
- p = 0.10, onde p é a proporção de placas de circuito com defeito dentre todas as placas de circuito produzidas por um determinado fabricante.
- Se u_1 e u_2 representam as tensões de quebra médias reais de dois tipos diferentes de barbante, uma hipótese é a expressão $u_1-u_2=0$ e outra é a de que $u_1-u_2>5$.
- A afirmação de que a distância de freada sob condições específicas tem distribuição normal.

Definição

- Em qualquer problema de teste de hipóteses, existem duas suposições contraditórias em consideração.
- Uma hipótese pode ser a definição u=0.75, e a outra, $u\neq0.75$, ou as duas expressões contraditórias podem ser $p\geq0.10$ e p<0.10.
- O objetivo é decidir, com base nas informações da amostra, qual das duas hipóteses está correta.
- Há uma analogia familiar a isso em um processo criminal. Uma alegação é a afirmação de que o acusado é inocente. No sistema judiciário essa justificativa é a considerada inicialmente verdadeira.
- Somente com a presença de forte evidência do contrário é que o júri deve desprezar tal alegação em favor da afirmação alternativa de que o acusado é culpado.
- Nesse sentido, a alegação de inocência é a hipótese favorecida ou protegida, e
 o ônus da prova recai sobre aquele que acredita na explicação alternativa.

Definição

- A hipótese nula, representada por H_0 , é a afirmação inicialmente assumida como verdadeira.
- A hipótese alternativa, representada por H_a é a afirmação contraditória a H_0 .
- A hipótese nula será rejeitada em favor da hipótese alternativa somente se a evidência da amostra sugerir que H_0 seja falsa.
- Se a amostra não contradisser fortemente H_0 , continuaremos a acreditar na verdade da hipótese nula.
- As duas conclusões possíveis de uma análise do teste de hipóteses são, então: rejeitar H_0 ou não rejeitar H_0 .

Testes de Hipóteses Procedimento do Teste

Um procedimento do teste é especificado pelo seguinte:

- I. Uma estatística de teste, uma função dos dados da amostra na qual a decisão (rejeitar H_0 ou não rejeitar H_0) se baseia;
- 2. Uma **região de rejeição**, o conjunto de todos os valores estatísticos do teste para os quais H_0 será rejeitada.

A hipótese nula será então rejeitada se, e somente se, o valor estatístico do teste calculado (ou observado) cair na região de rejeição.

Erros

- Um **erro tipo I** consiste em rejeitar a hipótese nula H_0 quando ela é verdadeira.
- Um **erro tipo II** envolve a não-rejeição de H_0 quando H_0 é falsa.
- Devemos procurar procedimentos em que os dois tipos de erro sejam improváveis de ocorrer, para o qual a probabilidade de cometer qualquer tipo de erro é pequena.
- A escolha do valor de corte de uma região de rejeição específica determina as probabilidades de erros dos tipos I e II.
- Essas probabilidades de erro são tradicionalmente representadas por α e β , respectivamente.
- Em virtude de H_0 especificar um único valor do parâmetro, existe um único valor de α . Entretanto, existe um valor diferente de β para cada valor do parâmetro consistente com H_a .

Testes de Hipóteses Exemplo 1

- Sabe-se que certo tipo de automóvel não sofre nenhum dano visível 25% das vezes, nos testes de colisão a 10 mph. Foi proposto um modelo modificado de pára-choque a fim de aumentar essa porcentagem.
- Seja p a proporção de todas as colisões a 10 mph com esse novo párachoque que resultam em nenhum dano visível.
- As hipóteses a serem testadas são:

$$H_0$$
: $p = 0.25$ (sem melhoria) versus H_a : $p > 0.25$.

- O teste será feito com base em um experimento que envolve n=20 colisões independentes com protótipos do novo modelo.
- Intuitivamente, H_0 deve ser rejeitada, se grande número de colisões não mostrar danos.

Exemplo 1

Considere o seguinte procedimento de teste:

```
Estatística de teste: X= número de colisões sem dano visível;
Região de rejeição: R_8=\{\,8,\,9,\,10,\,\ldots,\,19,\,20\,\};
rejeitar H_0 se x\geq 8, onde x é o valor observado
```

da estatística de teste.

- Essa região de rejeição é chamada de cauda superior, pois consiste somente em valores elevados da estatística de teste.
- Quando H_0 é verdadeira, X possui distribuição de probabilidade binomial com n=20 e p=0.25.
- Com isso:

```
\alpha = P(\text{erro tipo I}) = P(H_0 \text{ \'e rejeitada quando for verdadeira})
= P(X \ge 8 \text{ quando } X \sim \text{Bin}(20, 0.25)) = 1 - B(7; 20, 0.25)
= 1 - 0.898 = 0.102
```

Exemplo 1

• Utilize a tabela da Binomial Acumulada B(7; 20, 0,25) para $x \le 7$, n = 20, p = 0.25:

Tabela A.1 Probabilidades Binomiais Acumuladas (cont.)

 $B(x; n, p) = \sum_{y=0}^{x} b(y; n, p)$

d. n = 20

								i	p							
		0,01	0,05	0,10	0,20	0,25	0,30	0,40	0,50	0,60	0,70	0,75	0,80	0,90	0,95	0,99
	0	0,818	0,358	0,122	0,012	0,003	0,001	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
	1	0,983	0,736	0,392	0,069	0,024	0,008	0,001	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
	2	0,999	0,925	0,677	0,206	0,091	0,035	0,004	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
	3	1,000	0,984	0,867	0,411	0,225	0,107	0,016	0,001	0,000	0,000	0,000	0,000	0,000	0,000	0,000
	4	1,000	0,997	0,957	0,630	0,415	0,238	0,051	0,006	0,000	0,000	0,000	0,000	0,000	0,000	0,000
	5	1,000	1,000	0,989	0,804	0,617	0,416	0,126	0,021	0,002	0,000	0,000	0,000	0,000	0,000	0,000
	6	1,000	1,000	0,998	0,913	0,786	0,608	0,250	0,058	0,006	0,000	0,000	0,000	0,000	0,000	0,000
	7	1,000	1,000	1,000	0,968	0,898	0,772	0,416	0,132	0,021	0,001	0,000	0,000	0,000	0,000	0,000
	8	1,000	1,000	1,000	0,990	0,959	0,887	0,596	0,252	0,057	0,005	0,001	0,000	0,000	0,000	0,000
24	9	1,000	1,000	1,000	0,997	0,986	0,952	0,755	0,412	0,128	0,017	0,004	0,001	0,000	0,000	0,000
х	10	1,000	1,000	1,000	0,999	0,996	0,983	0,872	0,588	0,245	0,048	0,014	0,003	0,000	0,000	0,000
	11	1,000	1,000	1,000	1,000	0,999	0,995	0,943	0,748	0,404	0,113	0,041	0,010	0,000	0,000	0,000
	12	1,000	1,000	1,000	1,000	1,000	0,999	0,979	0,868	0,584	0,228	0,102	0,032	0,000	0,000	0,000
	13	1,000	1,000	1,000	1,000	1,000	1,000	0,994	0,942	0,750	0,392	0,214	0,087	0,002	0,000	0,000
	14	1,000	1,000	1,000	1,000	1,000	1,000	0,998	0,979	0,874	0,584	0,383	0,196	0,011	0,000	0,000
	15	1,000	1,000	1,000	1,000	1,000	1,000	1,000	0,994	0,949	0,762	0,585	0,370	0,043	0,003	0,000
	16	1,000	1,000	1,000	1,000	1,000	1,000	1,000	0,999	0,984	0,893	0,775	0,589	0,133	0,016	0,000
	17	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	0,996	0,965	0,909	0,794	0,323	0,075	0,001
	18	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	0,999	0,992	0,976	0,931	0,608	0,264	0,017
	19	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	0,999	0,997	0,988	0,878	0,642	0,182

Exemplo 1

O resultado obtido:

$$\alpha = 0.102$$

- Significa que a chance de acontecer um erro tipo I é de aproxidamente 10%. Quando H_0 é realmente verdadeira, em 10% dos experimentos com 20 colisões teríamos a rejeição incorreta da hipótese nula H_0 .
- Observe que esse valor depende da região de rejeição escolhida.

Testes de Hipóteses Exemplo 1

- Por outro lado, com relação ao erro tipo II, existe um β diferente para cada p diferente que excede 0,25.
- Por exemplo:

```
existe um valor de \beta para p=0,3 (caso em que X \sim \text{Bin}(20,0,3)); existe outro valor \beta para p=0,5 (caso em que X \sim \text{Bin}(20,0,5)); e assim por diante.
```

• No caso de β para p=0.3 , temos:

```
\beta(0,3) = P(\text{erro tipo II para } p = 0,3)
= P(H_0 \text{ não \'e rejeitada quando for falsa})
= P(X \le 7 \text{ quando } X \sim Bin(20, 0,3)) = B(7; 20, 0,3) = 0,772
```

- Significa que a chance de acontecer um erro tipo II é de aproxidamente 77,2% para p=0,3. Quando H_0 é realmente falsa, em 77,2% dos experimentos com 20 colisões teríamos a não-rejeição da hipótese nula H_0 .
- Sendo que p=0.3 representa um pequeno desvio de H_0 que foi assumido 0.25. Observe que esse valor depende da região de rejeição escolhida.

Exemplo 1

• Utilize a tabela da Binomial Acumulada B(7; 20, 0,25) para $x \le 7$, n = 20, p = 0.25:

Tabela A.1 Probabilidades Binomiais Acumuladas (cont.)

 $B(x; n, p) = \sum_{y=0}^{x} b(y; n, p)$

d. n = 20

								1	p							
		0,01	0,05	0,10	0,20	0,25	0,30	0,40	0,50	0,60	0,70	0,75	0,80	0,90	0,95	0,99
	0	0,818	0,358	0,122	0,012	0,003	0,001	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
	1	0,983	0,736	0,392	0,069	0,024	0,008	0,001	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
	2	0,999	0,925	0,677	0,206	0,091	0,035	0,004	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
	3	1,000	0,984	0,867	0,411	0,225	0,107	0,016	0,001	0,000	0,000	0,000	0,000	0,000	0,000	0,000
	4	1,000	0,997	0,957	0,630	0,415	0,238	0,051	0,006	0,000	0,000	0,000	0,000	0,000	0,000	0,000
	5	1,000	1,000	0,989	0,804	0,617	0,416	0,126	0,021	0,002	0,000	0,000	0,000	0,000	0,000	0,000
	6	1,000	1,000	0,998	0,913	0,786	0,608	0,250	0,058	0,006	0,000	0,000	0,000	0,000	0,000	0,000
	7	1,000	1,000	1,000	0,968	0,898	0,772	0,416	0,132	0,021	0,001	0,000	0,000	0,000	0,000	0,000
	8	1,000	1,000	1,000	0,990	0,959	0,887	0,596	0,252	0,057	0,005	0,001	0,000	0,000	0,000	0,000
24	9	1,000	1,000	1,000	0,997	0,986	0,952	0,755	0,412	0,128	0,017	0,004	0,001	0,000	0,000	0,000
X	10	1,000	1,000	1,000	0,999	0,996	0,983	0,872	0,588	0,245	0,048	0,014	0,003	0,000	0,000	0,000
	11	1,000	1,000	1,000	1,000	0,999	0,995	0,943	0,748	0,404	0,113	0,041	0,010	0,000	0,000	0,000
	12	1,000	1,000	1,000	1,000	1,000	0,999	0,979	0,868	0,584	0,228	0,102	0,032	0,000	0,000	0,000
	13	1,000	1,000	1,000	1,000	1,000	1,000	0,994	0,942	0,750	0,392	0,214	0,087	0,002	0,000	0,000
	14	1,000	1,000	1,000	1,000	1,000	1,000	0,998	0,979	0,874	0,584	0,383	0,196	0,011	0,000	0,000
	15	1,000	1,000	1,000	1,000	1,000	1,000	1,000	0,994	0,949	0,762	0,585	0,370	0,043	0,003	0,000
	16	1,000	1,000	1,000	1,000	1,000	1,000	1,000	0,999	0,984	0,893	0,775	0,589	0,133	0,016	0,000
	17	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	0,996	0,965	0,909	0,794	0,323	0,075	0,001
	18	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	0,999	0,992	0,976	0,931	0,608	0,264	0,017
	19	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	0,999	0,997	0,988	0,878	0,642	0,182

Exemplo 1

• A seguinte tabela exibe o valor de β para valores diferentes de p, considerando a mesma região de rejeição $R_8 = \{8, 9, 10, \dots, 19, 20\}$.

$$p$$
 | 0,3 | 0,4 | 0,5 | 0,6 | 0,7 | 0,8 | $\beta(p)$ | 0,772 | 0,416 | 0,132 | 0,021 | 0,001 | 0,000

- Observa-se que β diminui à medida que o valor de p se afasta do valor nulo 0,25 (muda à direita do valor nulo).
- Quanto maior o desvio de H_0 , menor a probabilidade desse desvio não ser detectado.

Exemplo 1

• O procedimento de teste proposto ainda é razoável para testar a hipótese nula mais realística de $p \le 0.25$.

$$H_0: p \le 0.25 \text{ versus } H_a: p > 0.25.$$

- Neste caso, não existe mais um único α , mas sim um α para cada p de no máximo 0,25. Por exemplo, ..., $\alpha(0,15)$, $\alpha(0,20)$, $\alpha(0,23)$, $\alpha(0,25)$.
- Pode ser verificado que $\alpha(p) < \alpha(0.25) = 0.102$ sempre que p < 0.25.
- Com isso, o menor valor de α ocorre para o valor limite de 0,25.
- Por este motivo, se adota a hipótese nula simplificada:

$$H_0$$
: $p = 0.25$ versus H_a : $p > 0.25$.

• Se α for pequeno para a hipótese nula simplificada, será igualmente pequeno ou menor para a hipótese nula H_0 mais realista.

Exemplo 2

- O tempo de secagem de certo tipo de pintura sob condições de teste especificadas é possui distribuição normal com valor médio de 75 min. e desvio padrão de 9 min.
- Químicos propuseram um novo aditivo projetado para diminuir o tempo médio de secagem. Acredita-se que os novos tempos de secagem permanecerão normalmente distribuídos com $\sigma=9$. Procura-se evidência de uma melhora no tempo médio de secagem após o uso do aditivo.
- Seja μ o tempo médio de secagem real da pintura com o aditivo. Consideram-se as seguintes hipóteses:

$$H_0$$
: $\mu = 75$ versus H_a : $\mu < 75$.

• Consideram-se n=25 dados experimentais referentes a tempos de secagem.

Exemplo 2

- Sejam X_1 , ..., X_{25} os tempos de secagem de uma amostra aleatória de tamanho 25, com distribuição normal μ e desvio padrão $\sigma = 9$.
- Considere o seguinte procedimento de teste:

Estatística de teste: $\bar{X} = \text{média amostral como distribuição normal}$

com
$$\mu_{\bar{X}} = u = 75 \text{ e } \sigma_{\bar{X}} = \sigma/\sqrt{n} = 9/\sqrt{25} = 1,80;$$

Região de rejeição: Possui a forma $\bar{X} < c$, onde o valor de corte c

deve ser escolhido adequadamente;

Considere
$$\bar{X} < c = 70.8$$

- Essa região de rejeição é chamada de cauda inferior, pois consiste somente em valores pequenos da estatística de teste.
- Quando H_0 é verdadeira, $\mu_{\bar X}=75$, e valores de $\bar X$ um tanto menores que 75 não contrariam fortemente H_0 .

Exemplo 2

- Procedemos com os cálculos de α e β .
- Para isso padronizamos a distribuição normal de \bar{X} , temos assim:

$$\alpha = P(\text{erro tipo I}) = P(H_0 \text{ \'e rejeitada quando for verdadeira})$$

$$= P(\overline{X} \le 70.8 \text{ quando } \overline{X} \sim Normal \text{ com } \mu_{\overline{X}} = 75 \text{ e } \sigma_{\overline{X}} = 1.80)$$

$$= \Phi\left(\frac{70.8 - 75}{1.80}\right) = \Phi(-2.33) = 0.01$$

- Significa que a chance de acontecer um erro tipo I é de aproxidamente 1%. Quando H_0 é realmente verdadeira, em 1% dos experimentos com 25 dados de secagem teríamos a rejeição incorreta da hipótese nula H_0 .
- Observe que esse valor depende da região de rejeição escolhida.

• A figura ilustra a região de rejeição de H_0 com $\alpha=1\%$, para o valor de corte 70,8

Exemplo 2

Tabela A.3 Área sob a Curva Normal Padronizada

z	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
-3,4	0,0003	0,0003	0,0003	0,0003	0,0003	0,0003	0,0003	0,0003	0,0003	0,0002
-3,3	0,0005	0,0005	0,0005	0,0004	0,0004	0,0004	0,0004	0,0004	0,0004	0,0003
-3,2	0,0007	0,0007	0,0006	0,0006	0,0006	0,0006	0,0006	0,0005	0,0005	0,0005
-3,1	0,0010	0,0009	0,0009	0,0009	0,0008	0,0008	0,0008	0,0008	0,0007	0,0007
-3,0	0,0013	0,0013	0,0013	0,0012	0,0012	0,0011	0,0011	0,0011	0,0010	0,0010
-2,9	0,0019	0,0018	0,0017	0,0017	0,0016	0,0016	0,0015	0,0015	0,0014	0,0014
-2,8	0,0026	0,0025	0,0024	0,0023	0,0023	0,0022	0,0021	0,0021	0,0020	0,0019
-2,7	0,0035	0,0034	0,0033	0,0032	0,0031	0,0030	0,0029	0,0028	0,0027	0,0026
-2,6	0,0047	0,0045	0,0044	0,0043	0,0041	0,0040	0,0039	0,0038	0,0037	0,0036
-2,5	0,0062	0,0060	0,0059	0,0057	0,0055	0,0054	0,0052	0,0051	0,0049	0,0038
-2,4	0,0082	0,0080	0,0078	0,0075	0,0073	0,0071	0,0069	0,0068	0,0066	0,0064
-2,3	0,0107	0,0104	0,0102	0,0099	0,0096	0,0094	0,0091	0,0089	0,0087	0,0084
-2,2	0,0139	0,0136	0,0132	0,0129	0,0125	0,0122	0,0119	0,0116	0,0113	0,0110
-2,1	0,0179	0,0174	0,0170	0,0166	0,0162	0,0158	0,0154	0,0150	0,0146	0,0143
-2,0	0,0228	0,0222	0,0217	0,0212	0,0207	0,0202	0,0197	0,0192	0,0188	0,0183
	I									

Exemplo 2

• Por outro lado, com relação ao erro tipo II, existe um β diferente para cada u diferente abaixo de 75. **Por exemplo:**

existe um valor de β para u=72, mesma região de rejeição $\bar{X}=70.8$; existe outro valor β para u=70; mesma região de rejeição $\bar{X}=70.8$.

- Para isso padronizamos a distribuição normal de \bar{X} , temos assim:
- No caso de β para u=72 , temos:

$$eta(72) = P(\text{erro tipo II para } u = 72)$$

$$= P(H_0 \text{ não \'e rejeitada quando for falsa})$$

$$= P(\bar{X} > 70.8 \text{ onde } \bar{X} \sim Normal \text{ com } \mu_{\bar{X}} = 72 \text{ e } \sigma_{\bar{X}} = 1.80)$$

$$= 1 - \Phi\left(\frac{70.8 - 72}{1.80}\right) = 1 - \Phi(-0.67) = 1 - 0.2514 = 0.7486$$

• No caso de β para u = 70 e u = 67 temos:

$$\beta(70) = 1 - \Phi\left(\frac{70,8-70}{1,80}\right) = 1 - \Phi(0,44) = 1 - 0,67 = 0,33$$

 $\beta(67) = 0,0174$

Exemplo 2

Tabela A.3 Área sob a Curva Normal Padronizada

z	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
-1,0	0,1587	0,1562	0,1539	0,1515	0,1492	0,1469	0,1446	0,1423	0,1401	0,1379
-0,9	0,1841	0,1814	0,1788	0,1762	0,1736	0,1711	0,1685	0,1660	0,1635	0,1611
-0.8	0,2119	0,2090	0,2061	0,2033	0,2005	0,1977	0,1949	0,1922	0,1894	0,1867
-0,7	0,2420	0,2389	0,2358	0,2327	0,2296	0,2266	0,2236	0,2206	0,2177	0,2148
-0.6	0,2743	0,2709	0,2676	0,2643	0,2611	0,2578	0,2546	0,2514	0,2483	0,2451
-0,5	0,3085	0,3050	0,3015	0,2981	0,2946	0,2912	0,2877	0,2843	0,2810	0,2776
-0,4	0,3446	0,3409	0,3372	0,3336	0,3300	0,3264	0,3228	0,3192	0,3156	0,3121
-0,3	0,3821	0,3783	0,3745	0,3707	0,3669	0,3632	0,3594	0,3557	0,3520	0,3482
-0,2	0,4207	0,4168	0,4129	0,4090	0,4052	0,4013	0,3974	0,3936	0,3897	0,3859
-0,1	0,4602	0,4562	0,4522	0,4483	0,4443	0,4404	0,4364	0,4325	0,4286	0,4247
-0,0	0,5000	0,4960	0,4920	0,4880	0,4840	0,4801	0,4761	0,4721	0,4681	0,4641
0,0	0,5000	0,5040	0,5080	0,5120	0,5160	0,5199	0,5239	0,5279	0,5319	0,5359
0,1	0,5398	0,5438	0,5478	0,5517	0,5557	0,5596	0,5636	0,5675	0,5714	0,5753
0,2	0,5793	0,5832	0,5871	0,5910	0,5948	0,5987	0,6026	0,6064	0,6103	0,6141
0,3	0,6179	0,6217	0,6255	0,6293	0,6331	0,6368	0,6406	0,6443	0,6480	0,6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0,6736	0,6772	0,6808	0,6844	0,6879

Exemplo 2

• No caso de β para u = 72,70~e~67, temos:

$$\beta(72) = 0,7486$$

 $\beta(70) = 0,33$
 $\beta(67) = 0,0174$

- Entretanto, a chance de acontecer um erro tipo II é:
- Bastante grande quando u = 72, aprox. 74,2%, para um desvio pequeno de H_0 ;
- Um tanto menor quando u = 70, aprox. 33%, para um desvio maior de H_0 ;
- Bastante pequeno quando u=67, aprox. 1,74%, para um desvio significativo de H_0 ;

• As figuras ilustram a regiões de aceitação para $\beta=72$ e $\beta=70$, para o valor de corte 70,8

Exemplo 2

• O procedimento de teste proposto ainda é razoável para testar a hipótese nula mais realística de $\mu \ge 75$.

$$H_0$$
: $\mu \ge 75$ versus H_a : $\mu < 75$.

- Neste caso, não existe mais um único α , mas sim um α para cada μ de no mínimo 75. Por exemplo, $\alpha(75)$, $\alpha(75,8)$, $\alpha(76,5)$, ...
- Pode ser verificado que $\alpha(75) = 0.01 > \alpha(\mu)$ sempre que $\mu > 75$.
- Com isso, o maior valor de α ocorre para o valor limite de 75, que corresponde ao pior caso.
- Por este motivo, se adota a hipótese nula simplificada:

$$H_0$$
: $\mu = 75$ versus H_a : $\mu < 75$.

• Se α for pequeno para a hipótese nula simplificada, será igualmente pequeno ou menor para a hipótese nula H_0 mais realista.

Testes de Hipóteses Valor de Corte

• Nos exemplos até agora a especificação de um valor de corte para definir a região de rejeição de H_0 foi um tanto arbitrária.

Exemplo 1B

Considere o Exemplo I com uma região de rejeição diferente, onde:

```
Estatística de teste: X= número de colisões sem dano visível;
```

```
Região de rejeição: R_9 = \{ 9, 10, \dots, 19, 20 \};
```

rejeitar H_0 se $x \ge 9$, onde x é o valor observado da estatística de teste.

- Quando H_0 é verdadeira, X possui distribuição de probabilidade binomial com n=20 e p=0.25.
- Com isso:

```
\alpha = P(H_0 \text{ \'e rejeitada quando for verdadeira } p = 0,25)
= P(X \ge 9 \text{ quando } X \sim \text{Bin}(20, 0,25)) = 1 - B(8; 20, 0,25)
= 0,041
```

- A probabilidade de erro tipo I foi reduzida, usando a nova região de rejeição.
- No entanto, existe um preço a ser pago por isso.

Exemplo 1B

• No caso de β , temos:

$$\beta(0,3) = P(H_0 \text{ não \'e rejeitada quando } p = 0,3)$$

$$= P(X \le 8 \text{ quando } X \sim Bin(20, 0,3)) = B(8; 20, 0,3) = 0,887$$

$$\beta(0,5) = B(8; 20, 0,5) = 0,252$$

- Em ambos casos os βs são maiores que os valores correspondentes 0,772 e 0,132 para R_8 .
- Observa-se que, tornar a região de rejeição menor deve, diminuir α enquanto aumenta β para qualquer valor alternativo fixo do parâmetro.

Exemplo 2B

- No exemplo 2, o uso do valor de corte c=70.8 resultou em um valor muito pequeno de α mas muito grande de β .
- Considere o Exemplo 2 com uma região de rejeição diferente, onde:

Estatística de teste: $\bar{X}=$ média amostral como distribuição normal

com
$$\mu_{\bar{X}} = u = 75 \text{ e } \sigma_{\bar{X}} = \sigma/\sqrt{n} = 9/\sqrt{25} = 1,80;$$

Região de rejeição: Considere $\bar{X} \leq 72$

• Para isso padronizamos a distribuição normal de \bar{X} , temos assim:

```
\alpha = P(\text{erro tipo I}) = P(H_0 \text{ \'e rejeitada quando for verdadeira})
= P(\bar{X} \le 72 \text{ quando } \bar{X} \sim Normal \text{ com } \mu_{\bar{X}} = 75 \text{ e } \sigma_{\bar{X}} = 1,80)
= \Phi\left(\frac{72-75}{1.80}\right) = \Phi(-1,67) = 0,0475
```

Exemplo 2B

• Enquanto os valores de β :

$$\beta(72) = P(H_0 \text{ não \'e rejeitada quando } u = 72)$$

$$= P(\overline{X} > 72 \text{ onde } \overline{X} \sim Normal \text{ com } \mu_{\overline{X}} = 72 \text{ e } \sigma_{\overline{X}} = 1,80)$$

$$= 1 - \Phi\left(\frac{72 - 72}{1,80}\right) = 1 - \Phi(0) = 0,5$$

$$\beta(70) = 1 - \Phi\left(\frac{72 - 70}{1,80}\right) = 0,1335$$

$$\beta(67) = 0,0027$$

• A mudança no valor de corte tornou a região de rejeição maior (inclui mais valores de \bar{X}), resultando em uma diminuição de β para cada u fixo menor que 75. Entretanto, α para essa nova região aumentou do valor anterior 0,01 para aproximadamente 0,05.

Proposição

- Suponha que um experimento e o tamanho de uma amostra sejam fixos, e que seja escolhida uma estatística de teste. Então, reduzir o tamanho da região de rejeição para obter um valor menor de α resulta em um valor maior de β para qualquer valor de parâmetro específico consistente com H_a .
- Não há região de rejeição que tornará, simultaneamente, α e todos os β s pequenos Uma região deve ser escolhida para cumprir um compromisso entre α e β .
- Dadas as hipóteses H_0 e H_a um erro tipo I geralmente é mais sério que um erro tipo II.
- Uma prática recomendada é especificar o valor maior de α que pode ser tolerado e encontrar uma região de rejeição que tenha esse valor de α em vez de qualquer outro menor. Isso torna β o menor possível, sujeito ao limite em α .
- O valor resultante de α geralmente é denominado **nível de significância do teste**. Os níveis tradicionais de significância são 0,10,0,05 e 0,01, embora o nível em qualquer problema específico dependa da seriedade de um erro tipo I.

Exemplo 3

• Considere a situação em que μ é o teor de nicotina médio real de cigarros da marca B. O objetivo é testar:

$$H_0$$
: $\mu = 1.5$ versus H_a : $\mu > 1.5$.

- com base em uma amostra aleatória X_1 , ..., X_{32} de teor de nicotina.
- Suponha que a distribuição do teor de nicotina seja normal com média μ e $\sigma=20$. Com isso:

Estatística de teste: $\bar{X}=$ média amostral como distribuição normal com $\mu_{\bar{X}}=$ 1,5 e $\sigma_{\bar{X}}=$ 20/ $\sqrt{32}=$ 0,0354;

• Padronizamos a distribuição normal de \bar{X} , temos:

Estatística de teste: $Z = \frac{\bar{X}-1.5}{20/\sqrt{32}} = \frac{\bar{X}-1.5}{0.0354} \sim N(0.1)$

Região de rejeição:

Exemplo 3

Como
$$Z = \frac{\bar{X}-1.5}{0.0354} \sim N(0.1)$$

- Z expressa a distância entre \bar{X} e seu valor esperado, quando H_0 é verdadeira em termos de um certo número de desvios padrão.
- Rejeitar H_0 quando x excede "consideravelmente" 1,5 equivale a rejeitar H_0 quando z excede "consideravelmente" a 0.

Região de rejeição: $z \ge c$. Vamos determinar c de modo que α = 0,05.

$$\alpha = P(\text{erro tipo I}) = P(H_0 \text{ \'e rejeitada quando for verdadeira})$$

0,05 = $P(Z \ge c \text{ quando } Z \sim N(0,1))$

O valor c deve incluir a área da cauda superior 0,05 sob a curva z.

$$P(Z \ge c) = 1 - P(Z \le c) = 1 - \Phi(c) = 0.05$$

 $\Phi(c) = 1 - 0.05 - 0.95$ $c = 1.645$

Exemplo 3

0,09	0,08	0,07	0,06	0,05	0,04	0,03	0,02	0,01	0,00	z
0,7224	0,7190	0,7157	0,7123	0,7088	0,7054	0,7019	0,6985	0,6950	0,6915	0,5
0,7549	0,7517	0,7486	0,7454	0,7422	0,7389	0,7357	0,7324	0,7291	0,7257	0,6
0,7852	0,7823	0,7794	0,7764	0,7734	0,7704	0,7673	0,7642	0,7611	0,7580	0,7
0,8133	0,8106	0,8078	0,8051	0,8023	0,7995	0,7967	0,7939	0,7910	0,7881	0,8
0,8389	0,8365	0,8340	0,8315	0,8289	0,8264	0,8238	0,8212	0,8186	0,8159	0,9
0,8621	0,8599	0,8577	0,8554	0,8531	0,8508	0,8485	0,8461	0,8438	0,8413	1,0
0,8830	0,8810	0,8790	0,8770	0,8749	0,8729	0,8708	0,8686	0,8665	0,8643	1,1
0,9015	0,8997	0,8980	0,8962	0,8944	0,8925	0,8907	0,8888	0,8869	0,8849	1,2
0,9177	0,9162	0,9147	0,9131	0,9115	0,9099	0,9082	0,9066	0,9049	0,9032	1,3
0,9319	0,9306	0,9292	0,9278	0,9265	0,9251	0,9236	0,9222	0,9207	0,9192	1,4
0,9441	0,9429	0,9418	0,9406	0,9394	0,9382	0,9370	0,9357	0,9345	0,9332	1,5
0,9545	0,9535	0,9525	0,9515	0,9505	0.9495	0,9484	0,9474	0,9463	0,9452	1,6
0,9633	0,9625	0,9616	0,9608	0,9599	0,9591	0,9582	0,9573	0,9564	0,9554	1,7
0,9706	0,9699	0,9693	0,9686	0,9678	0,9671	0,9664	0,9656	0,9649	0,9641	1,8
0,9767	0,9761	0,9756	0,9750	0,9744	0,9738	0,9732	0,9726	0,9719	0,9713	1,9
0,9817	0,9812	0,9808	0,9803	0,9798	0,9793	0,9788	0,9783	0,9778	0,9772	2,0
0,9857	0,9854	0,9850	0,9846	0,9842	0,9838	0,9834	0,9830	0,9826	0,9821	2,1
0,9890	0,9887	0,9884	0,9881	0,9878	0,9875	0,9871	0,9868	0,9864	0,9861	2,2
0,9916	0,9913	0,9911	0,9909	0,9906	0,9904	0,9901	0,9898	0,9896	0,9893	2,3
0,9936	0,9934	0,9932	0,9931	0,9929	0,9927	0,9925	0,9922	0,9920	0,9918	2,4
0,9952	0,9951	0,9949	0,9948	0,9946	0,9945	0,9943	0,9941	0,9940	0,9938	2,5
0,9964	0,9963	0,9962	0,9961	0,9960	0,9959	0,9957	0,9956	0,9955	0,9953	2,6
0,9974	0,9973	0,9972	0,9971	0,9970	0,9969	0,9968	0,9967	0,9966	0,9965	2,7
0,9981	0,9980	0,9979	0,9979	0,9978	0,9977	0,9977	0,9976	0,9975	0,9974	2,8
0,9986	0,9986	0,9985	0,9985	0,9984	0,9984	0,9983	0,9982	0,9982	0,9981	2,9
0,9990	0,9990	0,9989	0,9989	0,9989	0,9988	0,9988	0,9987	0,9987	0,9987	3,0
0,9993	0,9993	0,9992	0,9992	0,9992	0,9992	0,9991	0,9991	0,9991	0,9990	3,1
0,9995	0,9995	0,9995	0,9994	0,9994	0,9994	0,9994	0,9994	0,9993	0,9993	3,2
0,9997	0,9996	0,9996	0,9996	0,9996	0,9996	0,9996	0,9995	0,9995	0,9995	3,3
0,9998	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	3,4

Exemplo 3

Como
$$Z \ge 1,645 \Rightarrow \frac{\bar{X}-1,5}{0,0354} \ge 1,645$$

$$\Rightarrow \bar{X} \ge 1,5+0,05823$$

$$\Rightarrow \bar{X} \ge 1,55823$$

• Enquanto β é calculado como $P(\bar{X} \ge 1,56 \text{ com } \mu > 1,5)$.