Lab 7: Carry-Ripple Addition II

Adam Sumner

Illinois Institute of Technology

ECE 429-01

Lab Date: October 26th, 2015 Due Date: November 2nd, 2015

1 Introduction

The purpose of this lab is to continue the design process of the carry-ripple adder from lab 6. Specifically, the layout of the carry-ripple adder will be designed and implemented. It will then be verified using Design Rule Checking (DRC) and Layout v.s. Schematic Verification (LVS).

2 Theory/Pre-Lab

2.1 Theory

When designing the layout of a large or complex circuit, it is incredibly important to be meticulous so that too many design rules are not violated when the layout is complete. Many errors in the layout design will result in an extremely difficult process of correction. Using the reference design shown in Figure 1 as a design rule guideline, the stick diagram can easily be built with minimal errors. Figures 3 - 7 show the stick diagrams for the full adder.

Figure 1: Reference Mirror Adder Layout

2.2 Pre-Lab

Due to the size of the layout of this circuit, the sketch of the stick diagram was separated into the individual parts of the schematic. The original schematic is shown in Figure 2.

Figure 2: Mirror Adder Schematic

Figure 3: Section 1

Figure 4: Section 2

Figure 5: Section 3

Figure 7: Section 5

Figure 6: Section 4

3 Implementation

3.1 Schematics

3.2 Procedure

First the layout of the full adder was constructed. After several hours of hard meticulous work and constant DRC to make sure the design followed the guidelines, LVS was performed and any errors were corrected until the smiley face was generated.

3.3 Results

Figure 9: DRC Verification

Figure 10: LVS Verification

3.4 Discussion

While this lab did not seem to have a long procedure, the physical construction of the layout to minimize the size of the design took several hours (5+).

4 Conclusions