

## **Project Overview**

#### ► The Problem Area:

► How might we enhance the efficiency and accessibility of the bike share system in the SF Bay Area?

### Approach

Building a machine learning model to predict usage patterns, so that we can optimize bike availability through strategic redistribution, ensuring they are accessible where and when they are most needed.

#### Potential Impacts

- Better user experience and increased usage by 10%
- Cost savings on transportation by 5%
- ► Reduction in CO2 emissions by 5%

### **Dataset Overview**

#### Original Datasets:

- ▶ Station, Status, and Weather datasets
- > 71,984,434 rows; 7 columns, 4 columns, and 24 columns respectively

### Merged, Filtered, and Cleaned Dataset:

- > 7,337,194 rows; 15 columns (13 numerical and 2 datetime)
- ▶ Station ID, Date/Time, Available Bikes, Available Docks, Total Docks, and Weather Info

#### Percentage of Different Bike Station Usage Status



### ► Target Variable - Bike Usage Rate

Median: 67%

► High: 20%

**Low: 13%** 



- The lower the dock number of the station, the more likely it is to have either a higher or lower usage rate.
- This is expected, as smaller bike stations' usage rates are more sensitive to the available bike and dock numbers.



- High usage rates:
  - > 21% to 17%
- Low usage rates:
  - > 13% to 11%
- Median usage rates:
  - 65% to 70%



- 7 9 AM and 5 7 PM have the highest high bike usage rates during the day.
- 8 AM and 5PM have the lowest low bike usage rates during the day.
- ► This could be commuter influence.

## **Summary of Baseline Models**

| Model               | Train Score (%) | Test Score (%) | Elapsed Time (seconds) |
|---------------------|-----------------|----------------|------------------------|
| Logistic Regression | 39.92%          | 39.97%         | 20.41                  |
| Decision Tree       | 100.00%         | 98.02%         | 238.01                 |
| Random Forest       | 99.99%          | 98.48%         | 8055.33                |
| XGBoost             | 74.12%          | 74.10%         | 174.61                 |

## **Summary of Baseline Models**



## **Summary of Baseline Models**

#### Precision, Recall, and F1 Score Comparison for Baseline Models



## Next steps for advanced modeling

- Hyperparameter Tuning
  - Grid search
  - Cross validation
- Fit the models with the best parameters
  - ► Compare baseline models vs. tuned models
  - ► Compare ROC AUC curve for each tuned model
- Model Selection
  - Model evaluation

# Thank you