2-point	$f'(x_0) = \frac{f(x_0 + h) - f(x_0)}{h}$	$-\frac{h}{2}f''(\xi_h)$	forward diff.
	$f'(x_0) = \frac{f(x_0) - f(x_0 - h)}{h}$	$+\frac{h}{2}f''(\xi_h)$	backward diff.
3-point	$f'(x_0) = \frac{-3f(x_0) + 4f(x_0 + h) - f(x_0 + 2h)}{2h}$	$+ \frac{h^2}{3} f'''(\xi_h)$	forward diff.
	$f'(x_0) = \frac{f(x_0 + h) - f(x_0 - h)}{2h}$	$+ \frac{h^2}{6} f'''(\xi_h)$	centered diff.
	$f'(x_0) = \frac{f(x_0 - 2h) - 4f(x_0 - h) + 3f(x_0)}{2h}$	$+ \frac{h^2}{3} f'''(\xi_h)$	backward diff.
5-point	$f'(x_0) = \frac{-25f(x_0) + 48f(x_0 + h) - 36f(x_0 + 2h) + 16f(x_0 + 3h) - 3f(x_0 + 4h)}{12h}$	$+\frac{h^4}{5}f^{(5)}(\xi_h)$	forward diff. I
	$f'(x_0) = \frac{-3f(x_0 - h) - 10f(x_0) + 18f(x_0 + h) - 6f(x_0 + 2h) + f(x_0 + 3h)}{12h}$	$+\frac{h^4}{20}f^{(5)}(\xi_h)$	forward diff. II
	$f'(x_0) = \frac{f(x_0 - 2h) - 8f(x_0 - h) + 8f(x_0 + h) - f(x_0 + 2h)}{12h}$	$+\frac{h^4}{30}f^{(5)}(\xi_h)$	centered diff.
	$f'(x_0) = \frac{-f(x_0 - 3h) + 6f(x_0 - 2h) - 18f(x_0 - h) + 10f(x_0) + 3f(x_0 + h)}{12h}$	$+\frac{h^4}{20}f^{(5)}(\xi_h)$	backward diff. I
	$f'(x_0) = \frac{3f(x_0 - 4h) - 16f(x_0 - 3h) + 36f(x_0 - 2h) - 48f(x_0 - h) + 25f(x_0)}{12h}$	$+\frac{h^4}{5}f^{(5)}(\xi_h)$	backward diff. II
3-point	$f''(x_0) = \frac{f(x_0) - 2f(x_0 + h) + f(x_0 + 2h)}{h^2}$	$+O(hf^{(3)}(\xi_h))$	forward diff.
	$f''(x_0) = \frac{f(x_0 - h) - 2f(x_0) + f(x_0 + h)}{h^2}$	$+O(h^2f^{(4)}(\xi_h))$	centered diff.
4-point	$f''(x_0) = \frac{2f(x_0) - 5f(x_0 + h) + 4f(x_0 + 2h) - f(x_0 + 3h)}{h^2}$	$+O(h^2f^{(4)}(\xi_h))$	forward diff
	$f''(x_0) = \frac{2f(x_0) - 5f(x_0 - h) + 4f(x_0 - 2h) - f(x_0 - 3h)}{h^2}$	$+O(h^2f^{(4)}(\xi_h))$	backward diff
5-point	$f''(x_0) = \frac{35f(x_0) - 104f(x_0 + h) + 114f(x_0 + 2h) - 56f(x_0 + 3h) + 11f(x_0 + 4h)}{12h^2}$	$+O(h^3f^{(5)}(\xi_h))$	forward diff. I
	$f''(x_0) = \frac{11f(x_0 - h) - 20f(x_0) + 6f(x_0 + h) + 4f(x_0 + 2h) - f(x_0 + 3h)}{12h^2}$	$+O(h^3f^{(5)}(\xi_h))$	forward diff. II
	$f''(x_0) = \frac{-f(x_0 - 2h) + 16f(x_0 - h) - 30f(x_0) + 16f(x_0 + h) - f(x_0 + 2h)}{12h^2}$	$+O(h^4f^{(6)}(\xi_h))$	centered diff.