Computer Vision for HCI

Edge Detection

1

Edges in Images

- Edge pixels are pixels in an image where brightness changes sharply
 - Sharp changes in image brightness
- Interesting things happen at an edge
 - Object boundaries (light object on dark background)
 - Reflectance changes/patterns (zebra stripes, leopard spots)
 - Sharp changes in surface orientation
- Look at derivatives in image to detect edges
 - Gradients in 2-D
- Primary problem in edge detection is dealing with image noise

Gradients and Edges

- <u>High-contrast image pixels</u> can be detected by computing <u>intensity differences</u> in local image regions
- Detect high-contrasts using neighborhood templates or masks
 - Similar to approach for noise removal
- Begin study with 1-D signals, then move onto 2-D
 - A 1-D signal could be a row or column of an image

3

3

1-D Signals

Differencing 1-D Signals

• A few idealized types of 1-D edges

spike roof

• Consider 1-D <u>sampled</u> signal (roof):

.

5

Difference/Derivative Mask

$$f'(x_i) \approx \frac{f(x_i) - f(x_{i-1})}{x_i - x_{i-1}} \approx f(x_i) - f(x_{i-1})$$
Difference Masks
$$M' = \begin{bmatrix} -1 & +1 \end{bmatrix}$$

6

Smoothing

- Simple differences tend to give strong (unwanted) responses to **noise**
 - Poor way to estimate derivatives in real signals/images
- In practice, signal/image almost always smoothed before taking derivate
- Typically, <u>Gaussian</u> smoothing is used

8

Derivative of Gaussian

- Smoothing then differentiating is same as convolving with the derivative of a smoothing kernel
- Thus need only to convolve with a "derivative of the Gaussian" filter
 - Use **equation** for "derivative of Gaussian"!
- Results in smaller noise responses from derivative estimates

9

9

Derivative of Gaussian

$$g(x;\sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-x_0)^2}{2\sigma^2}} \longrightarrow$$

 $\frac{dg(x;\sigma)}{dx} = \frac{-(x-x_{\circ})}{\sqrt{2\pi}\sigma^3} e^{\frac{-(x-x_{\circ})^2}{2\sigma^2}}$

(σ controls the scale/spread)

Discrete Gaussian Derivative Mask

- Set mask size: $ceil(3\sigma)*2+1$
 - Examine values for $x = [-\text{ceil}(3\sigma) : \text{ceil}(3\sigma)]$
- For $\sigma = 1$, yields a "7-tap" filter mask = [.01, .11, .24, 0, -.24, -.11, -.01]

11

11

Second Derivative Option

- Second derivative is zero when derivative magnitude is extremal (at a peak/valley)
- To find large changes (edges), another good place to look is where second derivative makes "zero-crossings"
- Look for a change from "+ to -" or "- to +"
 Can also look for "0 to +/-" or "+/- to 0"
- Produces double-sided edges

Gaussian Second Derivative

$$\frac{\partial^2 g(x;\sigma)}{\partial x^2} = \left(\frac{(x-x_\circ)^2}{\sqrt{2\pi}\sigma^5} - \frac{1}{\sqrt{2\pi}\sigma^3}\right) \cdot e^{-\frac{(x-x_\circ)^2}{2\sigma^2}}$$

15

15

Gaussian 2nd Derivative Mask

- Set mask size: $ceil(3\sigma)*2+1$
 - Examine values for $x = [-\text{ceil}(3\sigma) : \text{ceil}(3\sigma)]$
- For $\sigma = 1$, yields a 7-tap filter
 - mask = [.04, .16, 0, -.40, 0, .16, .04]

16

2-D Signals (Images)

17

2-D Difference "Gradient" Operators

Gradient
$$\left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

$$\begin{split} \frac{\partial f}{\partial x} &\equiv f_x \approx & \frac{1}{3} [(I[x+1,y]-I[x-1,y])/2 \\ & + (I[x+1,y-1]-I[x-1,y-1])/2 \\ & + (I[x+1,y+1]-I[x-1,y+1])/2] \end{split}$$

$$\begin{split} \frac{\partial f}{\partial y} &\equiv f_y \approx & \frac{1}{3} [(I[x,y+1] - I[x,y-1])/2 \\ & + (I[x-1,y+1] - I[x-1,y-1])/2 \\ & + (I[x+1,y+1] - I[x+1,y-1])/2] \end{split}$$

$$\theta = \operatorname{atan}(f_y, f_x)$$
 $|\nabla f| = \sqrt{f_x^2 + f_y^2}$

18

Classic Gradient Masks

Prewitt:
$$F_x = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix} F_y = \begin{bmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix} / 6$$

Sobel:
$$F_x = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} F_y = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix} / 8$$

Separability

Prewitt:
$$F_x = 1/6 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \quad \boxed{ \begin{array}{c|cccc} -1 & 0 & 1 \\ \hline 1 & 1 & 1 \\ \hline \end{array}} \quad F_y = 1/6 \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \quad \boxed{ \begin{array}{c|cccc} 1 & 1 & 1 \\ \hline \end{array}}$$

Sobel:
$$F_x = 1/8$$
 $\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$ $\begin{bmatrix} -1 & 0 & 1 \end{bmatrix}$ $F_y = 1/8$ $\begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 & 2 & 1 \end{bmatrix}$

Different Gradient Magnitude Strengths

(using increasing threshold to remove weaker gradient magnitudes)

(Gradient magnitude obtained with Sobel masks)

23

23

2-D Gaussian

24

Gaussian Derivatives

$$\frac{\partial g(x, y; \sigma)}{\partial x} = \frac{-(x - x_{\circ})}{2\pi\sigma^{4}} e^{-\frac{(x - x_{\circ})^{2} + (y - y_{\circ})^{2}}{2\sigma^{2}}}$$

$$\frac{\partial g(x, y; \sigma)}{\partial y} = \frac{-(y - y_{\circ})}{2\pi\sigma^{4}} e^{-\frac{(x - x_{\circ})^{2} + (y - y_{\circ})^{2}}{2\sigma^{2}}}$$

25

25

Creating Masks

- Gx mask
 - Fill mask values with $g_x(x,y;\sigma)$ **EQUATION**
 - x-range: $[-\text{ceil}(3\sigma) : \text{ceil}(3\sigma)]$ (could use 2σ)
 - y-range: $[-\text{ceil}(3\sigma) : \text{ceil}(3\sigma)]$
- Gy mask
 - Fill mask values with $g_v(x,y;\sigma)$ **EQUATION**
 - x-range: $[-ceil(3\sigma) : ceil(3\sigma)]$ (could use 2σ)
 - y-range: $[-\text{ceil}(3\sigma) : \text{ceil}(3\sigma)]$

*** Do **NOT** make a Gaussian mask and take difference operator over the mask!

Convention: Alter to Point in Increasing Axis Dimension

$$\frac{\partial g(x, y; \sigma)}{\partial x} = \frac{(x - x_{\circ})^{2} + (y - y_{\circ})^{2}}{2\pi\sigma^{4}} e^{-\frac{(x - x_{\circ})^{2} + (y - y_{\circ})^{2}}{2\sigma^{2}}}$$

Remove negative (-) sign!

$$\frac{\partial g(x, y; \sigma)}{\partial y} = \frac{(y - y_{\circ})}{2\pi\sigma^{4}} e^{-\frac{(x - x_{\circ})^{2} + (y - y_{\circ})^{2}}{2\sigma^{2}}}$$

"Steerable" Filters

- Simple version: rotate by angle θ
 - Use G_x and G_y as basis set, and synthesize filter by linear combination of G_x and G_y

$$\cos(\theta) \cdot G_x + \sin(\theta) \cdot G_y$$

"The design and use of steerable filters", Freeman and Adelson, IEEE PAMI, Sept. 1991.

31

31

Laplacian of Gaussian

- Recall second derivative function of Gaussian
 - Zero-crossings are found at edge locations
 - Smoothing used to combat noise
- Now combine two orientations into one circular filter
 - Simply sum Gaussian second derivatives in x direction and y direction
 - Non-oriented, 2nd derivative filter
- Laplacian of Gaussian operator:

$$\nabla^2 g(x, y; \sigma) = \frac{\partial^2 g(x, y; \sigma)}{\partial x^2} + \frac{\partial^2 g(x, y; \sigma)}{\partial y^2}$$

Laplacian of Gaussian

$$\nabla^2 g(x, y; \sigma) = \frac{\partial^2 g(x, y; \sigma)}{\partial x^2} + \frac{\partial^2 g(x, y; \sigma)}{\partial y^2}$$

33

33

Zero-Crossings

 $\sigma = 2$

Selected zero-crossings

Overlay

34

Simple Laplacian Mask

• Small 3 x 3 mask approximation of LOG

$$LOG = \begin{bmatrix} 0 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 0 \end{bmatrix}$$

Canny Edge Detector

- Very/Most popular and effective method
- Produces extended contour/edge segments by "following" high gradient magnitudes within the smoothed image

37

37

Canny Edge Detection Approach

- Step 1: Smooth the image
 - Gaussian

Combine into one!

- Step 2: Compute the gradients
 - Calculate <u>magnitude</u> and <u>orientation</u> at each pixel
- Step 3: Suppress non-maximal gradients
 - Keep points where gradient magnitude is maximal along the direction of the gradient (look for "hills")
- Step 4: Follow edge contours (edge linking)
 - Use upper and lower thresholds (hysteresis thresholding)

Non-Maximal Suppression

Input image

Gradient magnitude

Do for all points/pixels in gradient magnitude image (results in a thin circle)

- Detection
 - Slice the gradient magnitude along gradient direction (perpendicular to edge)
 - Quantize gradient orientation by 45 degrees
 - Could also interpolate values
 - Mark points along slice that are maximal

39

39

Edge Linking

- Sequentially follow continuous contour segments
- Initiate only on edge pixels where gradient magnitude meets high threshold (T₁)
- A single threshold can cause many broken edge segments
- Once started, follow through connected pixels whose gradient magnitude meet a lower threshold (T_2)
 - In Matlab, the default is T_2 = .4 * T_1
- Referred to as "hysteresis thresholding"

Canny Results

Original

Canny edges

Overlay

41

41

Deep Learning Approach

Holistically-Nested Edge Detection - HED (2015)

Note: **Ground-truth** of examples required for training. There is no "training" with Canny

42

Perceptual Test: What is this???

43

43

Summary

- Interesting things happen at an edge
 - Object boundaries
- Look for derivatives/gradients in image
 - First and second derivatives/gradients
- Classic gradient operators
 - Sobel, Prewitt
 - Gaussian derivatives
- Primary problem in edge detection is dealing with image noise
 - Smoothing and hysteresis thresholding
- Canny edge detector

44