

DP prezentác

Peter Babič

Úvod

Predhovor Podnety

Riešenie

Návrh Vizualizácia Dáta

Otázky

Záver Vedúci DP

Viacúčelový systém merania elektrického výkonu dodávaný elektrickými zásuvkami

Peter Babič

Technická Univerzita v Košiciach Počítačové Modelovanie, Ing.

24.05.2016

Podnety práce

DP prezentáci

Peter Babič

Úvod

Predhovor Podnety

Riešenie

Návrh Vizualizácia Dáta Budúcnosť

Otázky

Záver Vedúci DF Odpoveď

- / Môžeme si dovoliť plytvať elektrickou energiou?
- Prečo merať výkon už pri zásuvke?
- ¿ Čo chýba meračom už zavedeným na trhu?

Merač v rozvodovej skrini a zásuvkový merač

Návrh riešenia

Peter Babič

Návrh

Vedúci DP

Recept na diplomovú prácu

Vizualizácia návrhu

DP prezentác

Peter Babič

Úvoc

Predhovo Podnety

Riešenie

Návrh

Vizualizácia

Budúcnos

Otázky

Záver Vedúci DP

Vizualizácia plošného spoja a krabičky pred zhotovením

Namerané dáta

DP prezentáci

Peter Babič

Úvod

Predhovor Podnety

Riešenie

Návrh Vizualizác

Dáta

Budúcnos

Otázky

Záver Vedúci DP

Web server zobrazujúci namerané dáta

Smerovanie projektu

DP prezentácia

Peter Babič

Úvod

Predhovo Podnety

Riešenie

Navrh Vizualizácia

Budúcnosť

Otázky

Záver Vedúci DF Odpoveď Odstrániť nedostatky

- Rozšíriť povedomie o projekte
- Merať odpadový výkon spínaných zdrojov globálne

Autorova predstava o budúcnost

Záver prezentácie

DP prezentácia

Peter Babič

Úvod

Predhovor Podnety

Riešenie

Návrh Vizualizácia Dáta

Otázky

Záver Vedúci D

Odpoveď

Ďakujem za Vašu pozornosť.

(priestor pre Vaše otázky)

Otázka vedúceho DP

Peter Babič

Vedúci DP

Znenie

V kapitole 7.2 ste popisovali príklad merania, kde ste na server posielali údaje každých 10s. V akom najkratšom časovom intervale by bolo možné posielať namerané dáta pomocou vami vytvoreného meracieho systému?

$$\frac{100 \text{ zápisov}}{15 \text{ min}} = \frac{100 \text{ zápisov}}{900 \text{ sec}} = \frac{1 \text{ zápis}}{9 \text{ sec}} \text{ max} \cong \frac{1 \text{ zápis}}{10 \text{ sec}}$$

Otázka vedúceho DP

DP prezentác

Peter Babič

Úvoc

Predhovor

Riešenie

Vizualizácia Dáta Budúcnosť

Otázky

Záver Vedúci DP Odpoveď $\frac{1767\,\text{vzoriek/sec}}{400\,\text{vzoriek/interval}} = \frac{400}{1767}\,\text{Hz} = 226.3723 \times 10^{-3}\,\text{sec} \cong 224\,\text{ms}$

Odpoveď

Použitím vlastného serveru sa odstráni limit 100 zápisov v rozmedzí 15 minút. Pri použití WebSockets spojenia merača so serverom, je možné **teoretické maximum** odosielania dát hneď ako sú dostupné, teda každých 224 ms.