A test of meta-heuristic algorithms for parameter extraction of next-generation solar cells with S-shaped current-voltage curves

Oleg Olikh

Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska Street, Kyiv, 01601, Ukraine

ARTICLE INFO

Keywords: S-shaped IV characteristics Opposed two-diode model Parameter estimation Meta-heuristic algorithms Nonparametric statistical procedure Solar cell models

ABSTRACT

Identifying the parameters of photovoltaic (PV) models based on measured current-voltage (IV) characteristic curves is crucial for simulating, evaluating, and controlling PV systems. IV characteristics of new-generation solar cells (SCs) often exhibit an S-shaped deformation. In this paper, the potential of using meta-heuristic algorithms to solve the parameter estimation problems of PV cells with S-shaped IV characteristics has been explored. The parameter estimation has been performed within the framework of the opposed two-diode model. A total of 14 algorithms from various classes were implemented to extract the SC parameters from synthetic IV curves, which were generated with a range of parameter values. The obtained results have been compared using nonparametric statistical methods, including Wilcoxon signed-rank test for pairwise comparisons, Friedman, Friedman Aligned, and Quade tests for multiple comparisons, and post-hoc Finner, Holm, Hochberg, Holland, Shaffer, and Nemenyi procedures. Research has demonstrated that utilizing a squared error-based fitness function offers clear advantages in tackling a provided problem. Comprehensive results and analyses indicate that STLBO and ADELI algorithms have highly competitive performance in terms of accuracy and reliability.