LEnsE / Institut d'Optique Graduate School

Séance 5

SÉANCE 5 / PHOTODÉTECTION

Pour ce TD, on pourra s'appuyer sur la fiche résumée : Diodes / LED / Photodiodes

Mission 5.1 - Emettre une information lumineuse

En se basant sur une **LED IR** de type SFH415.

Proposer un montage émetteur permettant d'obtenir un flux lumineux sinusoïdal sans risque pour la LED, et donner les paramètres des différentes sources utilisées et des autres éléments du montage.

Mission 5.2 - Transmettre une information par la lumière

En se basant sur une **LED IR** de type SFH415 et une **photodiode** de type SFH229, on souhaite réaliser un système de transmission d'information par la lumière.

On se propose dans un premier temps d'utiliser le montage « simple » de photodétection.

A quoi correspondent les deux montages proposés?

Donner la fonction de transfert du montage en fonction du flux lumineux reçu.

Quelle est alors la limite en fréquence d'un tel montage? Peut-on transmettre des données binaires?

Mission 5.3 - Transmettre une information par la lumière - transimpédance

En se basant sur une **LED IR** de type SFH415 et une **photodiode** de type SFH229, on souhaite réaliser un système de transmission d'information par la lumière.

On se propose dans un premier temps d'utiliser le montage de photodétection de type transimpédance.

Donner la fonction de transfert du montage en fonction du flux lumineux reçu.

Quelle est alors la limite en fréquence d'un tel montage? Peut-on transmettre des données binaires?

Mission 5.B1 - Modéliser le montage transimpédance

Dans l'exemple précédent, nous avons supposé l'amplificateur linéaire idéal.

On prendra le modèle suivant pour l'amplificateur linéaire :

$$V_S = \frac{A_0}{1 + j \cdot \frac{\omega}{\omega_0}} \cdot (V^+ - V^-)$$

Calculer la fonction de transfert $T(j\cdot\omega)=V_S/i_{PHD}$ du montage suivant :

GaAs-IR-Lumineszenzdioden GaAs Infrared Emitters Lead (Pb) Free Product - RoHS Compliant

SFH 415

Wesentliche Merkmale

- GaAs-LED mit sehr hohem Wirkungsgrad
- Hohe Zuverlässigkeit
- UL Version erhältlich
- Gute spektrale Anpassung an Si-Fotoempfänger
- SFH 415: Gehäusegleich mit SFH 300, SFH 203

Anwendungen

- IR-Fernsteuerung von Fernseh- und Rundfunkgeräten, Videorecordern, Lichtdimmern
- Gerätefernsteuerungen für Gleich- und Wechsellichtbetrieb
- Rauchmelder
- Sensorik
- Diskrete Lichtschranken

Features

- · Very highly efficient GaAs-LED
- High reliability
- UL version available
- · Spectral match with silicon photodetectors
- SFH 415: Same package as SFH 300, SFH 203

Applications

- IR remote control of hi-fi and TV-sets, video tape recorders, dimmers
- · Remote control for steady and varying intensity
- · Smoke detectors
- Sensor technology
- Discrete interrupters

Тур Туре	Bestellnummer Ordering Code	Strahlstärkegruppierung ¹⁾ ($I_{\rm F}$ = 100 mA, $t_{\rm p}$ = 20 ms) Radiant Intensity Grouping ¹⁾ $I_{\rm e}$ (mW/sr)
SFH 415	Q62702-P0296	> 25
SFH 415-U	Q62702-P1137	> 40

¹⁾ gemessen bei einem Raumwinkel Ω = 0.01 sr / measured at a solid angle of Ω = 0.01 sr

Grenzwerte ($T_{\rm A}$ = 25 °C) **Maximum Ratings**

Bezeichnung Parameter	Symbol Symbol	Wert Value	Einheit Unit
Betriebs- und Lagertemperatur Operating and storage temperature range	$T_{\sf op};T_{\sf stg}$	- 40 + 100	°C
Sperrspannung Reverse voltage	V_{R}	5	V
Durchlassstrom Forward current	I_{F}	100	mA
Stoßstrom, $t_p = 10 \mu s$, $D = 0$ Surge current	I_{FSM}	3	A
Verlustleistung Power dissipation	P_{tot}	165	mW
Wärmewiderstand Thermal resistance	R_{thJA}	450	K/W

Kennwerte ($T_A = 25$ °C) **Characteristics**

Bezeichnung Parameter	Symbol Symbol	Wert Value	Einheit Unit
Wellenlänge der Strahlung Wavelength at peak emission $I_{\rm F}$ = 100 mA, $t_{\rm p}$ = 20 ms	λ_{peak}	950	nm
Spektrale Bandbreite bei 50% von $I_{\rm max}$ Spectral bandwidth at 50% of $I_{\rm max}$ $I_{\rm F}$ = 100 mA	Δλ	55	nm
Abstrahlwinkel Half angle SFH 415	φ	± 17	Grad
Aktive Chipfläche Active chip area	A	0.09	mm ²
Abmessungen der aktiven Chipfläche Dimensions of the active chip area	$L \times B$ $L \times W$	0.3 × 0.3	mm ²
Abstand Chipoberfläche bis Linsenscheitel Distance chip front to lens top	Н	4.2 4.8	mm

2009-08-21 2

Kennwerte (T_A = 25 °C) Characteristics (cont'd)

Bezeichnung Parameter	Symbol Symbol	Wert Value	Einheit Unit
Schaltzeiten, $\rm I_e$ von 10% auf 90% und von 90% auf 10%, bei $I_{\rm F}$ = 100 mA, $R_{\rm L}$ = 50 Ω Switching times, $\rm I_e$ from 10% to 90% and from 90% to 10%, $I_{\rm F}$ = 100 mA, $R_{\rm L}$ = 50 Ω	$t_{\rm r},t_{\rm f}$	0.5	μs
Kapazität Capacitance $V_{\rm R}$ = 0 V, f = 1 MHz	Co	25	pF
Durchlassspannung Forward voltage $I_{\rm F}$ = 100 mA, $t_{\rm p}$ = 20 ms $I_{\rm F}$ = 1 A, $t_{\rm p}$ = 100 μ s	$egin{array}{c} V_{F} \ V_{F} \end{array}$	1.3 (≤ 1.5) 2.3 (≤ 2.8)	V
Sperrstrom Reverse current $V_{\rm R} = 5 {\rm V}$	I_{R}	0.01 (≤ 1)	μΑ
Gesamtstrahlungsfluss Total radiant flux $I_{\rm F}$ = 100 mA, $t_{\rm p}$ = 20 ms	Φ_{e}	22	mW
Temperaturkoeffizient von $I_{\rm e}$ bzw. $\Phi_{\rm e}$, $I_{\rm F}$ = 100 mA Temperature coefficient of $I_{\rm e}$ or $\Phi_{\rm e}$, $I_{\rm F}$ = 100 mA	TC ₁	- 0.5	%/K
Temperaturkoeffizient von $V_{\rm F},I_{\rm F}$ = 100 mA Temperature coefficient of $V_{\rm F},I_{\rm F}$ = 100 mA	TC_{V}	-2	mV/K
Temperaturkoeffizient von λ , $I_{\rm F}$ = 100 mA Temperature coefficient of λ , $I_{\rm F}$ = 100 mA	TC_{λ}	+ 0.3	nm/K

2009-08-21 3

Silizium-PIN-Fotodiode mit sehr kurzer Schaltzeit Silicon PIN Photodiode with Very Short Switching Time Lead (Pb) Free Product - RoHS Compliant

SFH 229 SFH 229 FA

SFH 229

SFH 229 FA

Wesentliche Merkmale

- Speziell geeignet für Anwendungen im Bereich von 380 nm bis 1100 nm (SFH 229) und bei 880 nm (SFH 229 FA)
- Kurze Schaltzeit (typ. 10 ns)
- 3 mm-Plastikbauform im LED-Gehäuse
- · Auch gegurtet lieferbar

Anwendungen

- Lichtschranken für Gleich- und Wechselbetrieb
- Industrieelektronik
- "Messen/Steuern/Regeln"

Typ Type	Bestellnummer Ordering Code		
SFH 229	Q62702P0215		
SFH 229 FA	Q62702P0216		

Features

- Especially suitable for applications from 380 nm to 1100 nm (SFH 229) and of 880 nm (SFH 229 FA)
- Short switching time (typ. 10 ns)
- · 3 mm LED plastic package
- · Also available on tape and reel

Applications

- Photointerrupters
- Industrial electronics
- For control and drive circuits

OSRAM

Grenzwerte Maximum Ratings

Bezeichnung Parameter	Symbol Symbol	Wert Value	Einheit Unit
Betriebs- und Lagertemperatur Operating and storage temperature range	$T_{ m op};T_{ m stg}$	- 40 + 100	°C
Sperrspannung Reverse voltage	V_{R}	20	V
Verlustleistung Total power dissipation	P_{tot}	150	mW

Kennwerte $(T_A = 25 \, ^{\circ}\,\text{C})$ Characteristics

Bezeichnung Parameter	Symbol Symbol	Wert Value		Einheit Unit
		SFH 229	SFH 229 FA	
Fotostrom Photocurrent $V_{\rm R}$ = 5 V, Normlicht/standard light A, T = 2856 K, $E_{\rm V}$ = 1000 lx $V_{\rm R}$ = 5 V, λ = 950 nm, $E_{\rm e}$ = 1 mW/cm ²	I_{P} I_{P}	28 (≥ 18) _	_ 20 (≥ 10.8)	μΑ
Wellenlänge der max. Fotoempfindlichkeit Wavelength of max. sensitivity	λ _{S max}	860	900	nm
Spektraler Bereich der Fotoempfindlichkeit $S = 10\%$ von $S_{\rm max}$ Spectral range of sensitivity $S = 10\%$ of $S_{\rm max}$	λ	380 1100	730 1100	nm
Bestrahlungsempfindliche Fläche Radiant sensitive area	A	0.3	0.3	mm ²
Abmessung der bestrahlungsempfindlichen Fläche Dimensions of radiant sensitive area	$L \times B$ $L \times W$	0.56 × 0.56	0.56 × 0.56	$mm \times mm$
Halbwinkel Half angle	φ	±17	±17	Grad deg.
Dunkelstrom, $V_{\rm R}$ = 10 V Dark current	I_{R}	50 (≤5000)	50 (≤5000)	рА
Spektrale Fotoempfindlichkeit, λ = 850 nm Spectral sensitivity	S_{λ}	0.62	0.60	A/W
Quantenausbeute, λ = 850 nm Quantum yield	η	0.90	0.88	Electrons Photon

2005-04-06 2

Kennwerte (T_A = 25 ° C) Characteristics (cont'd)

Bezeichnung Parameter	Symbol Symbol	Wert Value		Einheit Unit
		SFH 229	SFH 229 FA	
Leerlaufspannung Open-circuit voltage				
$E_{\rm v}$ = 1000 lx, Normlicht/standard light A, T = 2856 K	V_{O}	450 (≥ 400)	_	mV
$E_{\rm e} = 0.5 {\rm mW/cm^2}, \lambda = 950 {\rm nm}$	V_{O}	_	420 (≥ 370)	mV
Kurzschlußstrom Short-circuit current	7	0.7		
$E_{\rm v}$ = 1000 lx, Normlicht/standard light A, T = 2856 K	I_{SC}	27	_	μΑ
$E_{\rm e} = 0.5 \text{ mW/cm}^2, \lambda = 950 \text{ nm}$	I_{SC}	_	9	μΑ
Anstiegs- und Abfallzeit des Fotostromes Rise and fall time of the photocurrent $R_{\rm L}$ = 50 Ω ; $V_{\rm R}$ = 10 V; λ = 850 nm; $I_{\rm p}$ = 800 μ A	$t_{\rm r},\ t_{\rm f}$	10	10	ns
Durchlaßspannung, $I_{\rm F}$ = 100 mA, E = 0 Forward voltage	V_{F}	1.3	1.3	V
Kapazität, $V_{\rm R}$ = 0 V, f = 1 MHz, E = 0 Capacitance	C_0	13	13	pF
Temperaturkoeffizient von $V_{\rm O}$ Temperature coefficient of $V_{\rm O}$	TC_{V}	- 2.6	- 2.6	mV/K
Temperaturkoeffizient von $I_{\rm SC}$ Temperature coefficient of $I_{\rm SC}$ Normlicht/standard light A $\lambda=950~{\rm nm}$	TC ₁	0.18	- 0.2	%/K
Rauschäquivalente Strahlungsleistung Noise equivalent power $V_{\rm R}$ = 10 V, λ = 850 nm	NEP	6.5×10^{-15}	6.5×10^{-15}	$\frac{W}{\sqrt{Hz}}$
Nachweisgrenze, $V_{\rm R}$ = 10 V, λ = 850 nm Detection limit	D*	8.4 × 10 ¹²	8.4 × 10 ¹²	$\frac{\text{cm} \times \sqrt{\text{Hz}}}{\text{W}}$

2005-04-06 3

Relative Spectral Sensitivity

 $S_{\text{rel}} = f(\lambda)$ SFH 229

Photocurrent $I_P = f(E_e)$, $V_R = 5 \text{ V}$ Open-Circuit Voltage $V_{\rm O} = f(E_{\rm e})$ SFH 229 FA

Relative Spectral Sensitivity $S_{\text{rel}} = f(\lambda)$ SFH 229 FA

Total Power Dissipation

$$P_{\text{tot}} = f(T_{\text{A}})$$

Photocurrent $I_{\rm P}$ = f ($E_{\rm v}$), $V_{\rm R}$ = 5 V Open-Circuit Voltage $V_{\rm O}$ = f ($E_{\rm v}$) SFH 229

Dark Current

$$I_{\mathsf{R}} = f(V_{\mathsf{R}}), E = 0$$

4 2005-04-06

Capacitance

Dark Current

Directional Characteristics

$$S_{\text{rel}} = f(\varphi)$$

2005-04-06 5