Lycée BILLES

Bilingual Lycee of Excellence in Sciences Lycée Bilingue d'Excellence pour les Sciences

TS1/ Cocyclicité et Isométrie

Exercice 1

Soit ABC un triangle et (Γ) le cercle circonscrit au triangle ABC de centre O. Une droite perpendiculaire à (OA) coupent les droites (AB) et (AC) respectivement en C' et B'. Démontrer que le quadrilatère BB'CC' est inscriptible (les points B, B' C et C' sont cocycliques).

Exercice 2

Soit (C) et (C') deux cercles sécants en A et B. Soit I un point de (C) distinct de A et B et J un point de (C') distinct de A et de B tels que I, J et A ne soient pas alignés Une droite passant par B coupe (C) en M et (C') en N. On suppose que les droites (IM) et (JN) sont sécants en K. Démontrer que les points A, I, J et K sont cocycliques.

Exercice 3

Soit (C) et (C') deux cercles sécants en A et B. Une droite passant par A coupe (C) en M et (C') en M'. Soit P un point de (C) et P' un point de (C')

- 1. $(\overrightarrow{PB}, \overrightarrow{PM}) = (\overrightarrow{P'B}, \overrightarrow{P'M'}) [\pi]$
- 2. En déduire que si (PM) et (P'M') sont sécantes en N alors les points B, P, P' et N sont cocycliques.

Exercice 4

Soit ABC un triangle dont tous les angles sont aigus. On considère [AI], [BJ] et [CK] les trois hauteurs et H l'orthocentre du triangle.

- 1. Montrer que B, K, H et I sont cocycliques.
- 2. Montrer que *H*, *I*, *C* et *J* sont cocycliques.
- 3. En déduire que (AI) est bissectrice de \widehat{KII} .
- 4. Montrer que (JB) est bissectrice de \widehat{KJI} puis que (AI) est bissectrice de \widehat{IKI} .
- 5. Quelle propriété peut-on retenir de ces résultats.

Exercice 5

Soit ABCD un quadrilatère convexe dont les diagonales se coupent en *I*.

Soit P, Q, R et S les projetés orthogonaux respectifs de I sur (AB), (BC), (CD) et (DA).

- 1. Montrer que les points *A*, *P*, *I* et S sont cocycliques. Citer trois autres résultats de cocyclicité similaires.
- 2. a) Montrer que:

$$(\overrightarrow{PS}, \overrightarrow{PQ}) = (\overrightarrow{AD}, \overrightarrow{AC}) + (\overrightarrow{BD}, \overrightarrow{BC}) [\pi]$$

b) Montrer que:

$$(\overrightarrow{RQ}, \overrightarrow{RS}) = (\overrightarrow{CB}, \overrightarrow{CA}) + (\overrightarrow{DB}, \overrightarrow{DA}) [\pi]$$

3. En déduire que :

$$(\overrightarrow{PS}, \overrightarrow{PQ}) + (\overrightarrow{RQ}, \overrightarrow{RS}) = (\overrightarrow{BD}, \overrightarrow{CA}) [\pi]$$

4. Montrer que les points P, Q, S et R sont cocycliques si et seulement si les diagonales [AC], et [BD] sont perpendiculaires. Illustrer cette situation sur une figure.

Exercice 6

OAB est un triangle isocèle OA=OB. P est un point du segment [AB], $P \neq A$ et $P \neq B$. La parallèle à (OB) passant par P coupe (OA) en A', la parallèle à (OA) passant par P coupe (OB) en B'.

- 1. Montrer que OA'=BB'.
- 2. En déduire qu'il existe une unique rotation r telle que r(O) = B et r(A0) = B'. Préciser son angle Ω puis déterminer son centre.
- 3. Démontrer que les points O, A', B' et Ω sont cocycliques.

Exercice 7

Dans le plan orienté, on considère un triangle ABC, rectangle et isocèle en A, tel qu'une $(\overrightarrow{AB}, \overrightarrow{AC}) = \frac{\pi}{2}$

On appelle R la rotation de centre A, qui transforme B en C et T la translation de vecteur \overrightarrow{AB} On note I le milieu du segment [BC].

- 1. Construire J = R(I).
- 2. On pose $F_1 = RoT$ et $F_2 = ToR$.

Déterminer $F_1(J)$ et $F_2(I)$ puis en déduire la nature et les éléments caractéristiques de F_1 et F_2 .

3. Soit M un point du plan, M_1 son image par F_1 et M_2 l'image de M par F_2 . Quelle est la nature du quadrilatère BCM_1M_2 ?

Exercice 8

Dans le plan orienté, on considère deux points distincts A et B. On note R_A et R_B les rotations de centres respectifs A et B et d'angle $\frac{\pi}{2}$

Pour tout M point, on note M_1 et M_2 les images respectives de M par R_A et R_B .

- 1. On considère la transformation $T = R_B \circ R_A$.
- a) Construire le point C image du point A par T.
- b) Déterminer la nature et les éléments caractéristiques de T.
- c) En déduire la nature du quadrilatère M₁M₂CA.
- 2. On suppose que le point M décrit le cercle (Γ) de diamètre [AB].
- a) Déterminer et construire l'ensemble (Γ_2) décrit par le point M_2 quand M décrit (Γ).
- b) Soient I et J les milieux respectifs des segments [AB] et [BC]. Comparer les vecteurs \overrightarrow{II} et \overrightarrow{AC}
- c) Déterminer l'ensemble (Γ_3) décrit par le point P, milieu de [M_1M_2] quand M décrit (Γ).