

从零开始学数学建模

TOPSIS法

主讲人: 北海

b站/公众号: 数学建模BOOM

□TOPSIS法 (理想解法)

□ 简单示例

- 法外狂徒张三所在的团伙要评选盗圣, 每个人的"事迹"如表所示
- 试对这一伙人进行评估, 评选出盗圣

姓名	盗窃成功次数	盗窃总价值(万)
张 三	3	4
李四	4	3
王五	2	2
赵六	3	1

□ TOPSIS法基本概念

- 总共4人,有4种可能的结果/方案,方案集: $D = \{d_1, d_2, d_3, d_4\} = \{ \}$ 张司,李四,王五,赵六 $\}$
- 方案 d_i 的属性值(评价指标)构成向量 $[a_{i1},a_{i2}]$,代表空间中的一个点
- 例如 [a21, a22]=[4,3]代表二维空间中(4,3)这个点,现实意义是李四的盗窃成功次数和总价值

□基本概念

□ 正理想解和负理想解

- 理想中的盗圣: 成功次数4, 总价值4(集合了两条指标的最优值), 称为正理想解
- 理想中的失败者:成功次数2,总价值1(集合了两条指标的最差值),称为负理想解
- 在一个二维坐标系中,以两个评价指标作为x和y,画出每个点
- 4人中距离理想中的盗圣最近、距离理想中的失败者最远的人,为盗圣

姓名	盗窃成功次数	盗窃总价值(万)
张 三	3	4
李四	4	3
王五	2	2
赵六	3	1
正理想解	4	4
负 理想解	2	1

• 思考:如果评价指标是3个呢?4个呢?n个呢?如果评价指标不在一个数量级呢?如果评价指标有负面的(例如被逮捕次数)呢?

- ・模型简介
- ・适用赛题
- 典型例题与原理讲解
- 代码求解

□适用赛题

□ 客观评估类型题目

- 题目提供了足够的评价指标和数据
- 例如: 为了客观评价我国研究生教育的实际状况和各研究生院的教学质量,已知各单位的人均专著数、师生比、科研经费和逾期毕业率,试进行一次研究生院评估
- 数据已知,评价指标的类型差异较大(数值、比值、百分比,且有正面指标也有负面指标)

□ 模型特点

- 充分利用原始数据, 求解结果能反应各方案与理想方案差异程度
- 在评价指标较多时避免了主观性造成的复杂过程
- 数据计算简单易行, 无需数据检验

- ・模型简介
- ・适用赛题
- 典型例题与原理讲解
- 代码求解

□典型例题

□ 评价研究生教育

- 现有5所研究生院的数据, 如表所示
- 请建立模型, 客观地评价研究生教育的实际状况和各研究生院的教学质量

院校编号	人均专著(本/人)	生师比	科研经费(万元/年)	逾期毕业率 (%)
1	0.1	5	5000	4.7
2	0.2	6	6000	5.6
3	0.4	7	7000	6.7
4	0.9	10	10000	2.3
5	1.2	2	400	1.8

□ 问题分析

- 1、当前指标数据中,并不都是越大越好
- 公号:数学建模BOOM • 2、不同指标的单位不同、数量级不同,使得求点与点距离时对结果影响程度不同
- 所以使用TOPSIS法求不同方案与理想解的距离之前,先要进行数据预处理

□数据预处理

□ 指标数据并不都是越大越好

• 效益型属性: 越大越好的属性, 例如人均专著、科研经费

• 成本型属性: 越小越好的属性, 例如逾期毕业率

• 区间型属性: 在某一区间内最好, 过大或过小都不好, 例如生师比

□ 处理方法

• 效益型属性无需处理

• 成本型属性, 在代码求解时, 求正理想解时对其取最小值, 求负理想解时对其取最大值

• 区间型属性, 根据数据与最优区间的差异进行处理

院校编号	人均专著(本/人)	生师比	科研经费(万元/年)	逾期毕业率 (%)
1	0.1	5	5000	4.7
2	0.2	6	6000	5.6
3	0.4	7	7000	6.7
4	0.9	10	10000	2.3
5	1.2	2	400	1.8

□数据预处理

- □ 数据预处理:区间型属性的变换
 - 设第j个指标的最优属性区间为 $[a_j^0, a_i^*]$, a_i' 为无法容忍下限, a_i'' 为无法容忍上限, 则:

$$b_{ij} = \begin{cases} 1 - \left(a_{j}^{0} - a_{ij}\right) / \left(a_{j}^{0} - a_{j}^{'}\right), & a_{j}^{'} \leq a_{ij} < a_{j}^{0} \\ 1, & a_{j}^{0} \leq a_{ij} \leq a_{j}^{*} \\ 1 - \left(a_{ij} - a_{j}^{*}\right) / \left(a_{j}^{''} - a_{j}^{*}\right), & a_{j}^{*} < a_{ij} \leq a_{j}^{''} \\ 0, & \text{else} \end{cases}$$

院校编号	生师比
1	5
2	6
3	7
4	10
5	2

属性值 变换	

院校编号	生师比
1	1
2	1
3	0.8333
4	0.3333
5	0

□ 翻译翻译

- 在最优属性区间内(最好的情况),值设为1;超出了可接受的范围,直接设为0
- 不在最优属性区间内、但是在还可接受的范围内,按公式改为0到1的值
- 设生师比最优区间为[5,6], $a_2'=2$, $a_2''=12$, 可求得变换后的数据

数学建模BOOM

□数据预处理

- □ 数据预处理: 向量规范化

 - 变换前后,每个属性值(评价指标)中的数据的大小排序小变

无论成本型属性还是效益型属性,都用相同公式进行变换:	ν_{ij} –	\overline{m}
规范化后的数值,同一属性值(评价指标)的平方和为1	1	$\left \sum_{i=1}^{\infty} a_{ij}^2 \right $
确保不同评价指标在同一数量级(0到1之间)	\	i=1
变换前后 每个屋似值(评价指标)中的粉据的大小排序不变		

院校编号	人均专著	生师比	科研经费	逾期毕业率
1	0.1	5	5000	4.7
2	0.2	6	6000	5.6
3	0.4	7	7000	6.7
4	0.9	10	10000	2.3
5	1.2	2	400	1.8

院校编号	人均专著	生师比	科研经费	逾期毕业率
	0.0638	0.597	0.3449	0.4546
2	0.1275	0.597	0.4139	0.5417
3	0.2550	0.4975	0.4829	0.6481
4	0.5738	0.199	0.6898	0.2225
5	0.7651	0	0.0276	0.1741

区间型属性 (生师比)变换 +向量规范化

□加权处理

- □ 不同指标的重要性不同
 - · 与层次分析法的两两比较不同, TOPSIS法直接给每个指标加上权重(查文献、资料)
 - 因为TOPSIS法充分利用了数据的差异, 只要权重设置的不是太离谱, 对结果影响不会太大
- □ 加权处理
 - 设权向量为w = [0.2,0.3,0.4,0.1], 加权处理后的数据:

院校编号	人均专著	生师比	科研经费	逾期毕业率
1	0.0128	0.1791	0.1380	0.0455
2	0.0255	0.1791	0.1656	0.0542
3	0.0510	0.1493	0.1931	0.0648
4	0.1148	0.0597	0.2759	0.0222
5	0.1530	0	0.0110	0.0174

□最终求解

□ 求解思路

- 第i个方案到正理想解的距离: $s_i^* = \sqrt{\sum_{j=1}^n (c_{ij} c_j^*)^2}$
- 第i个方案到负理想解的距离: $s_i^0 = \sqrt{\sum_{j=1}^n (c_{ij} c_j^0)^2}$

□ 最终求解

- 各方案的综合评价指数: $f_i^* = s_i^0/(s_i^0 + s_i^*)$
- 显然,距离正理想解越近(s_i^* 越小)、距离负理想解越远(s_i^0 越大)越好
- 按 f_i^* 从大到小排序方案的优劣,即为所求

- ・模型简介
- ・适用赛题
- 典型例题与原理讲解
- 代码求解

□代码求解

□ 求解过程

• 输入原始数据

• 数据预处理: 区间型属性的变换

• 数据预处理: 向量规范化

• 加权处理

• 按照公式求正负理想解、各方案与正理想解的距离

• 求各方案的综合评价指数

• 接下来到文件TOPSIS.mlx讲解代码

□ 最终结果

排名	综合评价指数	对应院校
1	0.7003	4
2	0.6255	3
3	0.5787	2
4	0.5258	1
5	0.3165	5

□写出你的笔记

- □ 费曼学习法
 - 费曼学习法: 以教代学
 - 只有当你能够教会别人,才代表你真正学会了!
- □ 有奖征集:每学完一期课程,整理笔记,发布在各平台
 - 将你每节课所学到的, 整理出一套笔记
 - 尽量不要照搬或截图课程的内容
 - 可自行发布在知乎/CSDN等等各类平台

- 符合以下要求的文章, 且文章点赞超过100或浏览量超1万的, 可获取半价退款奖励(联系北海的QQ: 1980654305)
- 1、标题设为: XXXX(模型或算法)——北海数学建模课程笔记
- 2、文章首行写: 本文为北海的数模课程学习笔记, 课程出自微信公众号: 数学建模BOOM。

- □ "从零开始学数学建模"系列课程
 - 本期课程视频出自b站up: 数学建模BOOM
 - 全套课程请关注微信公众号: 数学建模BOOM, 回复"课程"

END

微信公众号:数学建模BOOM