Retomando la clase anterior

Def.: un lenguaje L es recursivamente enumerable (RE) sii existe una MT M que lo acepte, es decir L = L(M).

Def.: un lenguaje L es recursivo o decidible (R) sii existe una MT M que lo acepta y siempre se detiene.

Nota: \mathcal{L} es el conjunto de todos los lenguajes definidos sobre el alfabeto Σ , es

decir $\mathcal{L} = \rho(\Sigma^*)$

$$R \subseteq RE \subseteq \mathcal{L}$$

por las definiciones

Interrogantes: ¿Las inclusiones son propias?

Es decir
$$\begin{cases} \mathcal{L} - RE \neq \emptyset? \\ \\ \mathcal{L} - RE \neq \emptyset? \end{cases}$$

Ejercicio: Sean $L_1 \in R$ y $L_2 \in R$ $L_1 \cap L_2 \in R$?

Rta.: sí $L_1 \cap L_2 \in R$

Dem.: Sean M_1 y M_2 MT de una sola cinta $tq L_1 = L(M_1)$ y $L_2 = L(M_2)$

$$M_1 = <\!\!Q^1,\, \Sigma,\, \Gamma^1,\, \delta^1,\, q_0{}^1,\, q_A{}^1,\, q_R{}^1\!\!>$$

$$\operatorname{con} Q^1 \cap Q^2 = \emptyset$$

$$M_2 = \langle Q^2, \Sigma, \Gamma^2, \delta^2, q_0^2, q_A^2, q_R^2 \rangle$$

Se construye una MT de **dos cintas** que funciona de la siguiente manera:

- 1) Copia el string de entrada en la segunda cinta y posiciona el cabezal en el principio de la entrada en la 2da. cinta.
- 2) Simula M_1 sobre la cinta 2. Si M_1 para en q_R^1 , M para en q_R , si M_1 para en q_A^1 ir al punto 3)

Para cada
$$\delta^1(q_i^{\ 1},a_k)=(q_j^{\ 1},a_m,X)$$
 se define
$$\delta\left(q_i^{\ 1},(B,a_k)\right)=(q_j^{\ 1},(B,S),(a_m,X))$$

$$\delta(q_R^{\ 1},(B,x))=(q_R,(B,S),(x,S)) \quad \forall x\in\Gamma^1 \qquad (M_1\,Rechaza)$$

$$\delta(q_A^{\ 1},(B,x))=(q_3,(B,S),(x,S)) \quad \forall x\in\Gamma^1 \qquad (M_1\,Acepta)$$
 q_3 es el estado en el que comienza la ejecución del punto 3)

3) Borra la cinta 2

Pregunta: ¿Cómo saber cuánto borrar de la cinta 2? Tenga en cuenta que luego de simular M_1 la cinta posee cualquier string de Γ^*

- 4) Copia w de la cinta 1 a la cinta 2.
- 5) Simula M₂ sobre w en la cinta 2.

Si M₂ para en q_R², M para en q_R

Si M₂ para en q_A², M para en q_A

Demostrar como ejercicio que $L(M)=L(M_1)\cap L(M_2)$ y que M se detiene siempre. Con eso quedaría demostrado que $L_1\cap L_2\in R$.

Más definiciones

Def.: un lenguaje $L \in \text{Co-R sii } \overline{L} \in R \ (\overline{L} \text{ es el complemento de } L \text{ respecto de } \Sigma^*, \text{ es decir } \overline{L} = \Sigma^* - L)$

Def.: un lenguaje $L \in \text{Co-RE sii } \overline{L} \in \text{RE}$

Más interrogantes:

¿Qué relación habrá entre R, Co-R RE y Co-RE?

Teorema 1: $R \subseteq Co-R$

Demostración. Hay que demostrar que si $L \in R \Rightarrow L \in Co-R$, es decir que si $L \in R \Rightarrow \overline{L} \in R$.

Sea $L \in R \Rightarrow$ Existe una MT $M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_A, q_R \rangle$ tq L = L(M) y M se detiene en algún momento para toda entrada.

Se construye $\overline{M} = \langle Q, \Sigma, \Gamma, \delta, q_0, \overline{q_A}, \overline{q_R} \rangle con \overline{q_A} = q_R y \overline{q_R} = q_A$

Hay que probar que $L(\overline{M}) = \overline{L}$ y además que \overline{M} se detiene en algún momento para toda entrada.

1) Sea
$$w \in L(\overline{M}) \Leftrightarrow q_0 w \models_{\overline{M}} \alpha_1 \overline{q_A} \alpha_2 \Leftrightarrow q_0 w \models_{M} \alpha_1 q_R \alpha_2 \Leftrightarrow w \notin L(M) \Leftrightarrow w \notin L \Leftrightarrow w \in \overline{L}$$

$$def.L(\overline{M}). \qquad Constr. \qquad def.L(M) \qquad Hip. \qquad def.\overline{L}$$

Por lo tanto,
$$L(\overline{M}) = \overline{L}$$

2) \overline{M} se detiene para toda entrada?: Sí, por construcción \overline{M} se detiene cuando M se detiene y por hipótesis M se detiene para toda entrada.

De 1) y 2)
$$L \in R \Rightarrow L \in Co-R$$

Por lo tanto, $R \subseteq Co-R$

Teorema 2: Co-R \subseteq R

Sea
$$L \in \text{Co-R} \Rightarrow \overline{L} \in R \Rightarrow \overline{L} \in \text{Co-R} \Rightarrow \overline{\overline{L}} \in R \Rightarrow L \in R$$

def.Co-R teor. ant. def. Co-R prop. de compl.

Por lo tanto, $Co-R \subseteq R$

Corolario: de los dos teoremas anteriores surge que R = Co-R

Teorema 3: $R \subseteq Co-RE$

Dem.: Sea
$$L \in R \implies \overline{L} \in R \implies \overline{L} \in RE \implies L \in Co-RE$$
 teor. 1 (def.R y RE) def. Co-RE

Por lo tanto, $R \subseteq \text{Co-RE}$.

Además, como por definición $R \subseteq RE$ se tiene que $R \subseteq (RE \cap Co-RE)$

Teorema 4: $(RE \cap Co-RE) \subseteq R$

Sea $L \in (RE \cap Co-RE)$

$$\Rightarrow L \in RE \land \overline{L} \in RE$$

(por def. de \cap y de Co-RE)

 \Rightarrow existen M y \overline{M} , dos MT tq L = L(M) y \overline{L} = L(\overline{M})

Hay que construir una MT M' que reconozca L y que se detenga siempre.

 $\forall w \in \Sigma^*$ o bien \overline{M} para en q_A o bien M para en q_A (no puede darse nunca el caso que ambas "loopeen").

Por lo tanto hay que construir M' simulando en paralelo M y \overline{M} , si M para en q_A o \overline{M} para en q_R \Rightarrow M' para en q_A y si M para en q_R o \overline{M} en q_A \Rightarrow M' para en q_R .

¿Cómo simular dos máquinas en paralelo? No importa la eficiencia, en una máquina de 4 cintas:

- 1) Escribir el número 1 en la cinta 4 (sea i ese valor).
- 2) Copiar w a las cintas 2 y 3.
- 3) Simular a lo sumo i pasos de M en la cinta 2 y a lo sumo i pasos de \overline{M} en la cinta 3. si M para en q_A o \overline{M} para en $q_R \Rightarrow$ M' para en q_A y si M para en q_R o \overline{M} para en $q_A \Rightarrow$ M' para en q_R .
- 4) Borrar las cintas 2 y 3. Incrementar *i* en la cinta 4 y volver al punto 2.

Demostrar como ejercicio que L = L(M') y que M' se detiene siempre.

Pregunta: ¿Cómo se pueden simular i pasos?

Corolario: (RE \cap Co-RE) = R (por los teoremas 3 y 4)

Por lo tanto hasta ahora nuestra situación es:

