Національний технічний університет України "Київський політехнічний інститут імені Ігоря Сікорського" Факультет Електроніки Кафедра мікроелектроніки

ЗВІТ

Про виконання практичної роботи №3 з дисципліни: «Технологічні основи електроніки»

Легування напівпровідникових структур методом високотемпературної дифузії

Виконав: Студент 3-го курсу	(підпис)	_ Кузьмінський О.Р.
Перевірив:	(підпис)	Мачулянський О.В.

1. Мета роботи

Вивчити та дослідити (обчислювальний експеримент) технологічний процес легування напівпровідникових структур методом одностадійної високотемпературної дифузії.

2.Завдання

Визначити технологічні параметри $(T_1$ – температура загонки; t_1 – час технологічної операції загонки домішки) технологічного процесу формування легуючого шару глибиною x_1 , з концентрацією легуючої домішки N_1 (на рівні x_1) в напівпровідниковій пластині (Si) методом одностадійного процесу високотемпературної дифузії.

3.Порядок роботи

- 1) Задати значення $T_1({}^{\circ}C)$ одностадійного технологічного процесу високотемпературної дифузії (загонки).
- 2) Обґрунтувати вибір значення температури загонки.
- 3) Визначити значення коефіцієнту дифузії D_1 (загонки) для заданого виду домішки в напівпровідникову пластину (Si) при T_1 (пункт 1).
- 4) Визначити значення температурного впливу D_1t_1 для даної технологічної операції.
- 5) Визначити час технологічної операції загонки домішки t_1 .
- 6) Побудувати профіль розподілу домішок за визначеним значенням t_1 $(N(x,t_1)=f(x)).$
- 7) Визначити значення дози легування Q.

4.Вхідні дані

- тип підкладки напівпровідника кремній КДБ.
- глибина залягання p-n переходу $x_1 = 0.8$ мкм.
- концентрації домішки на рівні переходу $N_1 = 5.2 \cdot 10^{17} {
 m cm}^{-3}$
- вид домішки арсен (As).

4. Алгоритм роботи

Розв'язавши рівняння другого закону Фіка, розподіл концентрації домішок N(x,t) визначається за формулою:

$$N(x,t) = N_s \cdot erfc\left(\frac{X}{2\sqrt{D \cdot t}}\right),\tag{1}$$

де: erfcV=1-erfV-доповнення функції помилок erfV до одиниці, X-глибина залягання пн-переходу,

 N_s -поверхнева концентрації при загонці,

D,t-коефіцієнт дифузії та час загонки відповідно.

Визначимо температуру, поверхневу кон-цію при загонці, скориставшись наступним рисунком:

Рис.1. Залежність граничної розчинності домішки у кремній від температури.

Поверхнева концентрація майже рівна граничні розчинності. З графіку оберемо температуру загонки $T_1(^{\circ}C) = 1350^{\circ}C$, якій відповідатиме гранична розчинність (поверхнева концентрації при загонці) $N_s = N = 10^{27} \text{м}^{-3}$.

Далі визначимо значення коефіцієнту дифузії при температурі, яку ми обрали $T_1 = 1350^{\circ}C$, скориставшись наступним графіком:

Рис.2. Залежність коефіцієнту дифузії домішки у кремній від температури.

Бачимо з графіку, що значення коефіцієнта дифузії D_1 для арсену при температурі в $1350^{\circ}C$ складає порядку $10^{-18}\frac{\text{M}^2}{c}$

Функцію помилок erfV можемо знайти за такою формулою:

$$erfV = erf\left(\frac{X}{2\sqrt{D \cdot t}}\right) = \frac{N_s - N_1}{N_s}.$$
 (2)

Проводимо чисельний розрахунок. Переведемо розмірність N_s з м $^{-3}$ в см $^{-3}$:

$$N_s = 10^{27} \text{m}^{-3} = 10^{21} \text{cm}^{-3}$$

Обраховуєм значення erfV:

$$erfV = \frac{N_s - N_1}{N_s} = \frac{10^{21} - 5.2 \cdot 10^{17}}{10^{21}} = 1 - 5.2 \cdot 10^{-4} \text{ cm}^{-3}$$

Врахувавши також, що erfcV=1-erfV, маємо що:

$$erfcV = 5.2 \cdot 10^{-4} \text{ cm}^{-3}$$

Табл.1. Значення функції erfcV.

V	erfcV	V	erfcV	
0.0	1.00000	2.6	2.36×10 ⁻⁴	
0.1	0.88754	2.7	1.343×10 ⁻⁴ 7.5×10 ⁻⁵ 4.11×10 ⁻⁵ 2.21×10 ⁻⁵ 1.16×10 ⁻⁵	
0.2	0.77730	2.8		
0.3	0.67135	2.9		
0.4	0.57161	3.0		
0.5	0.47950	3.1		
0.6	0.39614	3.2	6.02×10 ⁻⁶	
0.7	0.32220	3.3 3.4 3.5	3.05×10 ⁻⁶	
0.8	0.25790		1.52×10 ⁻⁶ 7.43×10 ⁻⁷	
0.9	0.20309			
1.0	0.15730	3.6	3.55×10 ⁻⁷	
1.1	0.11979	3.7	1.67×10 ⁻⁷ 7.68×10 ⁻⁸	
1.2	0.08969			
1.3	0.06599	3.9	3.48×10 ⁻⁸	
1.4	0.04771	4.0	1.54×10 ⁻⁸	
1.5 0.03389		4.1	6.7×10 ⁻⁹	
1.6	0.02365	4.2	2.86×10 ⁻⁹	
1.7	0.01621	4.3	1.19×10 ⁻⁹	
1.8	0.01091	4.4	4.89×10 ⁻¹⁰	
1.9	0.00721	4.5	1.96×10 ⁻¹⁰	
2.0	2.0 4.678×10 ⁻³		7.74×10 ⁻¹¹	
2.1			2.99×10 ⁻¹¹	
2.2 1.863×10 ⁻³		4.8	1.13×10 ⁻¹¹	
2.3 1.143×10 ⁻³		4.9	4.21×10 ⁻¹²	
2.4	6.89×10 ⁻⁴	5.0	1.53×10 ⁻¹²	
2.5	4.07×10 ⁻⁴		ti fatigester <u>e</u> t patigester	

З таблички ми бачимо, що найближче значення функції до нашого складає $4.07 \cdot 10^{-4}$, і аргумент V який відповідає цій функції складає 2.5. Тому з формули (2), маємо,що:

$$\frac{X}{2\sqrt{D \cdot t_1}} = 2.5\tag{3}$$

З цього виразу легуо знаходимо час загонки:

$$t_1 = \frac{X^2}{25 \cdot D} \tag{4}$$

$$t_1 = \frac{X^2}{25 \cdot D} = \frac{\left(8 \cdot 10^{-7}\right)^2}{25 \cdot 10^{-18}} = 2,56 \cdot 10^4 \text{ c}$$

Обчислимо дозу легування Q за формулою:

$$Q = 1,13 \cdot N_s \sqrt{Dt}$$

$$Q = 1,13 \cdot 10^{27} \sqrt{10^{-18} \cdot 2,56 \cdot 10^4} = 1,808 \cdot 10^{20}$$
(5)

5. Графічне зображення отриманих результатів

Остаточний вираз функції розподілу домішок f(x) = N(x,t) наступний:

$$f(x) = N_s \times erfc\left(\frac{x}{2\sqrt{Dt_1}}\right) = 10^{27} \times erfc\left(\frac{x}{2\sqrt{10^{-18} \cdot 2,56 \cdot 10^4}}\right)$$

Зобразимо функцію f(x) графічно:

Рис.3.Профіль розподілу домішок за визначеним значенням t_1 $(N(x,t_1)=f(x))$.

Табл.2.Шукані параметри.

$T_1, {}^{\circ}C$	$D_1, \frac{\text{M}^2}{\text{C}}$	D_1t_1	Q	t_1, c
1350	10^{-18}	$2,56 \times 10^{-14}$	$1,808 \times 10^{20}$	$2,56 \times 10^4$

6.Висновки з виконаної роботи

Отже, в роботі було вивчено один з найпоширеніших методів легування напівпровідника- метод термічної дифузії, що являє собою тепловим рухом переміщення часток у напрямку убування їхньої концентрації. Тобто, при легуванні кремнію домішкою з певним типом провідності, частинки домішки будуть дифундувати в тіло підкладки легуючого напівпровідника, що ми і можемо побачити: концентрація домішки N_s більша ніж концентрація на рівні переходу N_1 . Тобто ми створили надлишкову концентрацію домішки- загонку, аби вона могла дифундувати. Слід зазначити, що домішка у нас п-типу оскільки арсен п'ятивалентний і для утворення зв'язків з кремнієм він застосовує свої чотири валентні електрони, а п'ятий стає незв'язаним.

Аналізуючи графік розподілу домішок при сталій температурі загонки t_1 , ми спостерігаємо його спад. З цього можна зробити висновок, що чим глибше домішка проникає вглиб легованого напівпровідника, тим менша буде її кількість.