Programare declarativă Introducere în programarea funcțională folosind Haskell

Ioana Leuştean Ana Cristina Turlea

Departamentul de Informatică, FMI, UB ioana@fmi.unibuc.ro ana.turlea@fmi.unibuc.ro

- Terminologie. Forma curry
- Operatori. Secțiuni
- 3 Definirea funcțiilor. Şabloane
- Funcții de nivel înalt

Terminologie. Forma curry

Funcții în Haskell. Terminologie

Prototipul funcției

double :: Integer -> Integer

- numele funcției
- signatura funcției

Definiția funcției

double elem = elem + elem

- numele funcției
- parametrul formal
- corpul funcției

Aplicarea funcției

double 5

- numele funcției
- parametrul actual (argumentul)

Exemplu: adunarea a doi întregi

Prototipul funcției

add :: Integer -> Integer -> Integer

- numele funcției
- signatura funcției

Definiția funcției

add elem1 elem2 = elem1 + elem2

- numele funcției
- parametrii formali
- corpul funcției

Aplicarea funcției

add 3 7

- numele funcției
- argumentele

Exemplu: funcție cu un argument de tip tuplu

Prototipul funcției

dist :: (Integer, Integer) -> Integer

- numele funcției
- signatura funcției

Definitia functiei

dist (elem1, elem2) = abs (elem1 - elem2)

- numele functiei
- parametrul formal
- corpul funcției

Aplicarea funcției

dist (2, 5)

- numele funcției
- argumentul

Funcții în matematică

- Fie $f: A \times B \to C$ o funcție. În mod uzual scriem f(x, y) = z unde $x \in A$, $y \in B$ și $z \in C$.
- Pentru $x \in A$ (arbitrar, fixat) definim

$$f_x: B \to C$$
, $f_x(y) = z$ dacă și numai dacă $f(x, y) = z$.

Funcția f_x se obține prin aplicarea parțială a funcției f.

In mod similar definim aplicarea parțială pentru orice $y \in B$

$$f^{y}: A \to C$$
, $f^{y}(x) = z$ dacă și numai dacă $f(x, y) = z$.

Funcții în matematică

Exemplu

$$A = \text{Int, } B = C = \text{String}$$

$$f(x, y) = \begin{cases} z, & |y| >= x, |z| = x, y = zw \\ y, & 0 < |y| < x \\ "", & x <= 0 \end{cases}$$

- Fie $x \in Int$ arbitrar, fixat. Atunci $f_x : String \rightarrow String$ și
 - dacă $x \le 0$, atunci $f_x(y) = ""$ oricare y

- dacă
$$x > 0$$
 atunci $f_x(y) = \begin{cases} z, & |y| >= x, |z| = x, y = zw \\ y, & 0 < |y| < x \end{cases}$

Fie y ∈String arbitrar, fixat. Atunci f^y :Int→String şi

$$f^{y}(x) = \begin{cases} z, & |y| > = x, |z| = x, y = zw \\ y, & 0 < |y| < x \\ "", & x <= 0 \end{cases}$$

Funcții în matematică

- Fie $f: A \times B \to C$ o funcție. În mod uzual scriem f(x, y) = z unde $x \in A$, $y \in B$ și $z \in C$.
- Pentru $x \in A$ (arbitrar, fixat) definim $f_x : B \to C$, $f_x(y) = z$ dacă și numai dacă f(x, y) = z.
- Dacă notăm $B \to C \stackrel{not}{=} \{h : B \to C \mid h \text{ funcție}\}$ observăm că $f_x \in B \to C$ pentru orice $x \in A$.
- Asociem lui f funcția

$$cf: A \rightarrow (B \rightarrow C), cf(x) = f_x$$

Observăm că pentru fiecare element $x \in A$, funcția cf întoarce ca rezultat funcția $f_x \in B \to C$, adică

$$cf(x)(y) = z$$
 dacă și numai dacă $f(x, y) = z$

Forma curry

Vom spune că funcția *cf* este *forma curry* a funcției *f*.

De la matematică la Haskell

```
Functia f: Int \times String \rightarrow String
f(x,y) = \begin{cases} z, & |y| >= x, |z| = x, y = zw \\ y, & 0 < |y| < x \\ "". & x <= 0 \end{cases}
poate fi definită în Haskell astfel:
f :: (Int, String) -> String
f(n,s) = take n s
Observăm că:
Prelude > let cf = curry f
Prelude > : t cf
cf :: Int -> String -> String
Prelude> f(1, "abc")
"a"
Prelude > cf 1 "abc"
"a"
```

Currying

"Currying" este procedeul prin care o funcție cu mai multe argumente este transformată într-o funcție care are un singur argument și întoarce o altă funcție.

- In Haskell toate funcțiile sunt forma curry, deci au un singur argument.
- Operatorul \rightarrow pe tipuri este asociativ la dreapta, adică tipul $a_1 \rightarrow a_2 \rightarrow \cdots \rightarrow a_n$ îl gândim ca $a_1 \rightarrow (a_2 \rightarrow \cdots (a_{n-1} \rightarrow a_n) \cdots)$.
- Aplicarea funcțiilor este asociativă la stânga, adică expresia $f x_1 \cdots x_n$ o gândim ca $(\cdots ((f x_1) x_2) \cdots x_n)$.

Funcții și mulțimi

Teoremă

Mulțimile $(A \times B) \to C$ și $A \to (B \to C)$ sunt echipotente.

Observație

Funcțiile curry și uncurry din Haskell stabilesc bijecția din teoremă:

Prelude> :t curry

curry :: ((a, b) -> c) -> a -> b -> c

Prelude> :t uncurry

uncurry :: $(a \rightarrow b \rightarrow c) \rightarrow (a, b) \rightarrow c$

Tipuri de funcții

Fie foo o funcție cu următorul tip

foo ::
$$a \rightarrow b \rightarrow [a] \rightarrow [b]$$

- are trei argumente, de tipuri a, b și [a]
- întoarce un rezultat de tip [b]

Schimbăm signatura funcției astfel:

ffoo ::
$$(a \rightarrow b) \rightarrow [a] \rightarrow [b]$$

- are două argumente, de tipuri (a -> b) și [a],
 adică o funcție de la a la b și o listă de elemente de tip a
- întoarce un rezultat de tip [b]

```
Prelude> : t map map :: (a \rightarrow b) \rightarrow [a] \rightarrow [b]
```

Operatori. Secțiuni

Operatorii sunt funcții cu două argumente

Operatorii în Haskell

- au două argumente
- pot fi apelați folosind notația infix
- pot fi definiți folosind numai "simboluri" (ex: *!*)
 - în definiția tipului operatorul este scris între paranteze
- Operatori predefiniti

```
(||) :: Bool -> Bool -> Bool
(:) :: a -> [a] -> [a]
(+) :: Num a => a -> a -> a
```

Operatori definiți de utilizator

```
(&&&) :: Bool -> Bool -> Bool -- atentie la paranteze
True &&& b = b
False &&& _ = False
```

Funcții ca operatori

```
Prelude> mod 5 2
1
Prelude> 5 'mod' 2
```

 operatorii care sunt definiți în formă infix, sunt apelați în formă prefix folosind paranteze

$$2 + 3 == (+) 23$$

 operatorii care sunt definiți în formă prefix, sunt apelați în formă infix folosind ' '

```
elem :: a \rightarrow [a] \rightarrow Bool
Prelude> 1 'elem' [1,2,3]
True
```

Precedență și asociativitate

Prelude> 3+5*4:[6]++8-2+3:[2]==[23,6,9,2]||**True==False True**

Precedence	Left associative	Non-associative	Right associative
9	!!		
8			^, ^^, **
7	*, /, 'div', 'mod',		
	'rem', 'quot'		
6	+, -		
5			:,++
4		==, /=, <, <=, >, >=,	
		'elem', 'notElem'	
3			&&
2			
1	>>, >>=		
0			\$, \$!, 'seq'

Asociativitate

Operatorul - asociativ la stanga

Operatorul: asociativ la dreapta

Operatorul ++ asociativ la dreapta

Care este complexitatea aplicării operatorului ++?

liniară în lungimea primului argument

Secțiuni ("operator sections")

Secțiunile operatorului binar op sunt (op e) și (e op). Matematic, ele corespund aplicării parțiale a funcției op.

secțiunile lui || sunt (|| e) și (e ||)

```
Prelude> :t (|| True)
(|| True) :: Bool -> Bool
Prelude> (|| True) False -- atentie la paranteze
True
Prelude> || True False
error
```

• secțiunile lui <+> sunt (<+> e) și (e <+>), unde

```
Prelude> let x \leftrightarrow y = x+y+1 -- definit de utilizator
Prelude> :t (<+> 3)
(<+> 3) :: Num a => a -> a
Prelude> (<+> 3) 4
```

Secțiuni

Secțiunile operatorului (:)

```
Prelude> (2:)[1,2]
[2,1,2]
Prelude> (:[1,2]) 3
[3,1,2]
```

Secțiunile sunt afectate de asociativitatea și precedența operatorilor.

```
Prelude> :t (+ 3 * 4)
(+ 3 * 4) :: Num a => a -> a

Prelude> :t (* 3 + 4)

error -- + are precedenta mai mica decat *

Prelude> :t (* 3 * 4)

error -- * este asociativa la stanga

Prelude> :t (3 * 4 *)

(3 * 4 *) :: Num a => a -> a
```

Functii anonime si sectiuni

Funcții anonime = lambda expresii

$\x1 x2 \cdots xn -> expresie$

Sectiunile sunt definite prin lambda expresii:

$$(x +) = \ \ y -> x+y$$
$$(+ y) = \ \ x -> x+y$$

Compunerea funcțiilor — operatorul .

Matematic

Date fiind $f: A \to B$ și $g: B \to C$, compunerea lor, notată $g \circ f: A \to C$ este dată de formula

$$(g\circ f)(x)=g(f(x))$$

În Haskell

(.) ::
$$(b \rightarrow c) \rightarrow (a \rightarrow b) \rightarrow (a \rightarrow c)$$

(g . f) $x = g$ (f x)

Exemplu

3.1622776601683795

```
Prelude > 7=1
Prelude > t=2
Prelude > sqrt(z^2+t^2)
2.23606797749979
Prelude > x = 1 :: Integer
Prelude > y = 3 :: Integer
Prelude > sqrt fromIntegral (x^2+y^2)
<interactive>:33:1: error:
Prelude > sqrt (fromIntegral (x^2+y^2))
3.1622776601683795
Prelude > sqrt . fromIntegral (x^2+y^2)
<interactive>:36:1: error:@*
Prelude > (sqrt . fromIntegral) (x^2+y^2)
```

Operatorul \$

Operatorul (\$) are precedența 0.

$$(\$)$$
 :: $(a \rightarrow b) \rightarrow a \rightarrow b$
 $f \$ x = f x$

Operatorul (\$) este asociativ la dreapta.

Prelude> sqrt \$ fromIntegral \$ x^2+y^2 3.1622776601683795

Definirea funcțiilor. Şabloane

Definirea funcțiilor folosind if

analiza cazurilor folosind expresia "if"

```
semn : Integer \rightarrow Integer
semn n = if n < 0 then (-1)
else if n=0 then 0
else 1
```

definiție recursivă în care analiza cazurilor folosește expresia "if"

```
fact :: Integer \rightarrow Integer
fact n = if n == 0 then 1
else n * fact(n-1)
```

Definirea funcțiilor folosind gărzi

Funcția semn o putem defini astfel

$$semn \ n = \left\{ \begin{array}{ll} -1, & \mbox{dacă n} < 0 \\ 0, & \mbox{dacă n} = 0 \\ 1, & \mbox{altfel} \end{array} \right.$$

În Haskell, condițiile devin gărzi:

```
semn n | n < 0 = -1  | n = 0 = 0  | otherwise = 1
```

Definirea funcțiilor folosind gărzi

Funcția fact o putem defini astfel

$$\textit{fact } n = \left\{ \begin{array}{ll} 1, & \textit{dacă } \mathbf{n} = \mathbf{0} \\ n * \textit{fact}(n-1), & \textit{altfel} \end{array} \right.$$

În Haskell, condițiile devin gărzi:

```
fact n

| n == 0 = 1

| otherwise = n * fact(n-1)
```

- variabilele și valorile din partea stângă a semnului = sunt șabloane;
- când funcția este aplelată se încearcă potrivarea parametrilor actuali cu șabloanele, ecuațiile fiind încercate *în ordinea scrierii*;
- în definiția factorialului, 0 și n sunt șabloane: 0 se va potrivi numai cu el însuși, iar n se va potrivi cu orice valoare de tip Integer.

Definirea funcțiilor folosind șabloane și ecuații

• în Haskell, ordinea ecuațiilor este importantă

Să presupunem că schimbăm ordinii ecuațiilor din definiția factorialului:

```
fact :: Integer \rightarrow Integer
fact n = n * fact(n-1)
fact 0 = 1
```

Ce se întâmplă?

Deoarece n este un pattern care se potrivește cu orice valoare, inclusiv cu 0, orice apel al funcției va alege prima ecuație. Astfel, funcția nu își va încheia execuția pentru valori pozitive.

Definirea funcțiilor folosind șabloane și ecuații

Tipul Bool este definit în Haskell astfel:

```
data Bool = True | False
```

Putem defini operația || astfel

$$(| | |)$$
 :: Bool -> Bool -> Bool

```
False || x = x
```

True || _ = True

În acest exemplu șabloanele sunt _, **True** și **False**.

Observăm că **True** și **False** sunt constructori de date și se vor potrivi numai cu ei înșiși.

Şablonul _ se numește wild-card pattern; el se potrivește cu orice valoare.

Sabloane (patterns) pentru liste

Listele sunt construite folosind constructorii (:) și []

```
[1,2,3] == 1:[2,3] -- == 1:2:[3] == 1:2:3:[]
```

Observati:

```
Prelude> let x:y = [1,2,3]
Prelude> x
1
Prelude> y
[2,3]
```

Ce s-a întâmplat?

- x:y este un şablon pentru liste
- potrivirea dintre x:y şi [1,2,3] a avut ca efect:
 - "deconstrucția" valorii [1,2,3] în 1:[2,3]
 - legarea lui x la 1 și a lui y la [2,3]

Definiții folosind șabloane

```
reverse [] = []
reverse (x:xs) = (reverse xs) ++ [x]
```

x:xs se potrivește cu liste nevide

Atentie!

Sabloanele sunt definite folosind constructori. De exemplu, operația de concatenare pe liste este (++) :: [a]-> [a] -> [a] dar [x] ++ [1] = [2,1] nu va avea ca efect legarea lui x la 2; încercând să evaluăm x vom obține un mesaj de eroare:

```
Prelude> [x] ++ [1] = [2,1]

Prelude> x

error: ...
```

Sabloane pentru tupluri

Observați că (,) este constructorul pentru perechi.

```
(u,v)=('a',[(1,'a'),(2,'b')]) -- u='a',
-- v=[(1,'a'),(2,'b')]
```

Definitii folosind şabloane

```
selectie :: Integer -> String -> String
```

```
-- case... of

selectie x s =

case (x,s) of

(0,_) -> s

(1, z:zs) -> zs

(1, []) -> []

_ -> (s ++ s)
```

```
-- stil ecuational
selectie 0 s = s
selectie 1 (_:s) = s
selectie 1 "" = ""
selectie _ s = s + s
```

Sabloanele sunt liniare

x:x:[1] = [2,2,1]

În Haskell șabloanele sunt liniare, adică o variabilă apare cel mult odată. Șabloane în care o variabilă apare de mai multe ori provoacă mesaje de eroare

```
ttail(x:x:t) = t
foo x x = x^2
error: Conflicting definitions for x
O solutie este folosirea gărzilor:
ttail (x:y:t) | (x==y) = t
                 | otherwise = ...
foo x y | (x == y) = x^2
         | otherwise = ...
```

Funcții de nivel înalt

Funcții de nivel înalt

Functiile sunt valori

Funcțiile — "cetățeni de rangul I"

Funcțiile sunt valori, care pot fi trimise ca argument sau întoarse ca rezultat

Exemplu:

flip ::
$$(a -> b -> c) -> (b -> a -> c)$$

definiția cu lambda expresii

flip
$$f = \langle x y - \rangle f y x$$

definiția folosind șabloane

flip
$$f x y = f y x$$

• flip ca valoare de tip funcție

$$flip = \flip x y -> f y x$$

```
map :: (a \rightarrow b) \rightarrow [a] \rightarrow [b]
map f | = [f x | x <- |]
```

Un exemplu mai complicat:

```
Prelude> map ($ 3) [(4 +), (10 *), (^2), sqrt]
[7.0,30.0,9.0,1.7320508075688772]
```

În acest caz:

- primul argument este o sectiune a operatorului (\$)
- al doilea argument este o lista de functii

map (\$ x) [
$$f_1,..., f_n$$
] == [f_1 x,..., f_n x]

Functii de ordin înalt

filter

```
filter :: (a -> Bool) -> [a] -> [a]
filter p | = [x | x <- |, p x]
Prelude> filter (>= 2) [1,3,4]
[3,4]
```

Compunere și aplicare

definiția compozițională (pointfree style)

```
f = map (* 3) . filter (>=2)
```

Prelude > foldr (*) 1 [1,3,4]

12

```
foldl :: (b -> a -> b) -> b -> t a -> b

foldl o z [a1, a2, a3, ..., an] ==

( ... (((z 'o' a1) 'o' a2) 'o' a3) 'o' ... an)
```

-- product [1,3,4]

```
Prelude> foldl (flip (:)) [] [1,3,4] [4,3,1] — de ce? intelegeti modul de functionare!
```

Filtrare, transformare, agregare

Suma pătratelor elementelor pozitive

Folosind descrieri de liste şi funcţii de agregare standard

```
f :: [Int] -> Int
f xs = sum [x * x | x <- xs, x > 0]
```

Folosind functii auxiliare

```
f xs = foldr (+) 0 (map sqr (filter pos xs))

where

sqr x = x * x

pos x = x > 0
```

Folosind functii anonime

Suma pătratelor elementelor pozitive

Folsind secţiuni şi operatorul \$ (parametru explicit)

```
f :: [Int] -> Int
f xs = foldr (+) 0 $ map (^ 2) $ filter (> 0) xs
```

Definiție compozițională (pointfree style)

```
f :: [Int] \rightarrow Int

f = foldr (+) 0 . map (^2) . filter (> 0)
```

Pe săptămâna viitoare!