Hoja de trabajo 4

Josué Morales 20181101

30 de Agosto del 2018

Ejercicio 1: Indicar que definiciones pertenecen al mismo conjunto:

- 1. $a := \{1, 2, 4, 8, 16, 32, 64\}$
- 2. $b := \{ n \in \mathbb{N} \mid \exists x \in \mathbb{N} : x = n/5 \}$
- 3. $c := \{ n \in \mathbb{N} \mid \exists x \in \mathbb{N} : n = x * x \}$
- 4. $d := \{ n \in \mathbb{N} \mid \exists i \in \mathbb{N} : n = 2^i \land n < 100 \}$
- 5. $e := \{ n \in \mathbb{N} \mid \exists x \in \mathbb{N} : x = \sqrt{n} \}$
- 6. $f := \{ n \in \mathbb{N} \mid \exists x \in \mathbb{N} : n = x + x + x + x + x \}$

Respuestas:

- D corresponde a A
- E corresponde a C
- B corresponde a F

Ejercicio 2: definir los siguientes conjuntos con jerga matemática

- 1. El conjunto de todos los naturales divisibles dentro de 5
- 2. El conjunto de todos los naturales divisibles dentro de 4 y 5
- 3. El conjunto de todos los naturales que son primos
- 4. El conjunto de todos los conjuntos de numeros naturales que contienen un numero divisible dentro de 15
- 5. El conjunto de todos los conjuntos de numeros naturales que al ser sumados producen 42 como resultado

Respuestas:

- 1. $A := \{ n \in \mathbb{N} \mid \exists x \in \mathbb{N} : x = n/5 \}$
- $2. \ A \cap B := \{x/x \in A \land \in B\}$

$$A := \{ n \in \mathbb{N} \mid \exists x \in \mathbb{N} : x = n/5 \}$$

$$B := \{ n \in \mathbb{N} \mid \exists x \in \mathbb{N} : x = n/4 \}$$

3.
$$C := \{ \forall \ n \in \mathbb{N} \mid \nexists x \in \mathbb{N} \ 1 < x < n \ . \ n \ mod(x) = 0 \}$$

4.
$$D := \{ n \in \mathbb{N} \mid \exists x \in \mathbb{N} : n = x * 15 \}$$

5.
$$E := \{ n \in \mathbb{N} \mid \sum_{i=1}^{|42|} n_i = 42 \}$$

Ejercicio 3:

Definir una relación llamada $S \subset \mathbb{N}_{50} \times \mathbb{N}_{50} \times \mathbb{N}_{50}$ en donde $\mathbb{N}_{30} := \{n \in \mathbb{N} \mid n \leq 30\}$. La cual relaciona a todos los numeros *semi-primos* menores a 30 con los numeros primos que lo forman. Las tripletas que pertencen al conjunto que define dicha relación deben ser de la forma $\langle \text{primo}_1, \text{primo}_2, \text{semi} - \text{primo} \rangle$, por ejemplo, para el numero 6 corresponderia la tripleta $\langle 2, 3, 6 \rangle$

Respuesta:

Definición por extensión

$$N_{30} := \left\{ \begin{bmatrix} \langle 2, 2, 4 \rangle, & \langle 2, 3, 6 \rangle, & \langle 3, 3, 9 \rangle, \\ \langle 2, 5, 10 \rangle, & \langle 2, 7, 14 \rangle, & \langle 3, 5, 15 \rangle, \\ \langle 3, 7, 21 \rangle, & \langle 2, 11, 22 \rangle, & \langle 5, 5, 25 \rangle, \\ \langle 2, 3, 26 \rangle & \end{bmatrix} \right\}$$

Ejercicio 4: Definir los conjuntos de las siguientes funciones:

- 1. $f: \mathbb{N} \to \mathbb{N}$; f(x) = x + x
- 2. $g: \mathbb{N} \to \mathbb{B}$; g(x) es verdadero si x es divisible dentro de 5, falso en caso contrario. Nota: $\mathbb{B} = \{ \texttt{true}, \texttt{false} \}$, puede definir dos conjuntos separados y definir la función como la union de ambos conjuntos.
- 3. Indicar el conjunto al que pertenece la función $f \circ g$
- 4. Definir el conjunto que corresponde a la función $f \circ g$

Respuestas:

1.
$$f = \{x \in \mathbb{N} \mid (x, x + x)\}$$

2.
$$a \cup b := \{\lambda(true, false) \in a \land \in b\}$$

$$a := \{(n, true) \mid n \in \mathbb{N} \land \exists x \in \mathbb{N} . x = n/5\}$$

$$b := \{(n, false) \mid n \in \mathbb{N} \land \exists x \in \mathbb{N} . x = \neg(n/5)\}$$

3.
$$f \circ g \in C = (n \in \mathbb{N} | 2n)$$

4.
$$D := \{(n, f(q)) \mid n \in \mathbb{N} \land f(x) \in \mathbb{N} \land g(x) \subset f(x)\}$$

Ejercicio 5: dadas las siguientes funciones que pertenecen a $\mathbb{R} \to \mathbb{R}$, indique si la función es injectiva, surjectiva o bijectiva.

1.
$$f(x) = x^2$$
 Surjectiva

2.
$$g(x) = \frac{1}{\cos(x-1)}$$
 Inyectiva

3.
$$h(x) = 2x$$
 Biyectiva

4.
$$w(x) = x + 1$$
 Biyectiva

Ejercicio 6

■
$$B1 := \{(x,y) \mid (x,y) \in \mathbb{N} > 0 \land \exists n \in \mathbb{N}. x = 2n\}$$

■
$$B2 := \{(x,y) \mid (x,y) \in \mathbb{N} > 0 \land \exists n \in \mathbb{N}. x = (2n-1)\}$$

•
$$C := \{(x,y) \mid (x,y) \in \mathbb{Z}^- \land \exists n \in \mathbb{Z}^-.x = (2n-1)\}$$

•
$$B \cup B1 \cup B2 := \{(x,y) \mid (x,y) \in \mathbb{N}\}$$