A brief overview of "A semi-supervised adaptive Markov Gaussian embedding process (SAMGEP) for prediction of phenotype event times using electronic health records (EHRs)"



by Ismail Benchekroun & Quynh (Christina) Vu 2022-12-06

## Motivation: What is a phenotype event?



A phenotype event is a set of physical and latent health outcomes caused by a medical condition.

#### Motivation: Previous methods and Drawbacks

- > Unsupervised and semi-supervised methods
  - → Reliant on a set of designated codes
  - Sensitive to sparsity
- ➤ Hidden Markov Models (HMMs) based models
  - → Not reflective or clinically relevant
- > Supervised learning methods (i.e. Reverse Time Attention Models (RETAIN))
  - → Reliant on large numbers of standardized labels for stable performance

## Motivation: Main ground for a new EHRs implementation method



Introduction: A semi-supervised adaptive Markov Gaussian embedding process (SAMGEP)

➤ A state-dependent Gaussian process



enabling on-time allocation of interventions and treatments

- $\rightarrow i^{th}$  patient,  $j^{th}$  feature,  $t^{th}$  time period
- $ightharpoonup T_i$  # of time periods for patient i:
- $ightharpoonup \mathbf{y_i} = (y_{i,1},...,y_{i,T_i})$  phenotype state sequence for patient i, collected for n patients
- $ightharpoonup C_{i,t}$  **feature vector** for patient i at time t, a p-dimensional vector, collected for N patients
- $\rightarrow H_i = \log(\text{mean healthcare encounter count per month} + 1)$ 
  - **healthcare utilization** for patient i, collected for N patients
- $\rightarrow$  n << N (ie  $\#_{labeled}$  <<  $\#_{unlabeled}$ )

- $i^{th}$  patient,  $j^{th}$  feature,  $t^{th}$  time period
  - $ightharpoonup T_i$  # of time periods for patient i:
- $ightharpoonup \mathbf{y_i} = (y_{i,1},...,y_{i,T_i})$  phenotype state sequence for patient i, collected for n patients
- $ightharpoonup C_{i,t}$  **feature vector** for patient i at time t, a p-dimensional vector, collected for N patients
- $\rightarrow H_i = \log(\text{mean healthcare encounter count per month} + 1)$ 
  - healthcare utilization for patient i, collected for N patients
- $\rightarrow$  n << N (ie  $\#_{labeled}$  <<  $\#_{unlabeled}$ )

- $\rightarrow i^{th}$  patient,  $j^{th}$  feature,  $t^{th}$  time period
- $ightharpoonup T_i$  # of time periods for patient i:
- $ightharpoonup \mathbf{y_i} = (y_{i,1},...,y_{i,T_i})$  phenotype state sequence for patient i, collected for n patients
- $ightharpoonup C_{i,t}$  **feature vector** for patient i at time t, a p-dimensional vector, collected for N patients
- $\rightarrow H_i = \log(\text{mean healthcare encounter count per month} + 1)$ 
  - **healthcare utilization** for patient i, collected for N patients
- $\rightarrow$  n << N (ie  $\#_{labeled}$  <<  $\#_{unlabeled}$ )

- $\rightarrow i^{th}$  patient,  $j^{th}$  feature,  $t^{th}$  time period
- $ightharpoonup T_i$  # of time periods for patient i:
- $ightharpoonup \mathbf{y_i} = (y_{i,1},...,y_{i,T_i})$  phenotype state sequence for patient i, collected for n patients
- $ightharpoonup C_{i,t}$  **feature vector** for patient i at time t, a p-dimensional vector, collected for N patients
- $\rightarrow H_i = \log(\text{mean healthcare encounter count per month} + 1)$ 
  - **healthcare utilization** for patient i, collected for N patients
- $\rightarrow$  n << N (ie  $\#_{labeled}$  <<  $\#_{unlabeled}$ )

## Producing patient-timepoint embeddings

$$\mathbf{X_{i,t}} = \mathbf{C_{i,t}} \mathbf{W}_{p imes p} \mathbf{V}_{m imes p}^T$$

Producing patient-timepoint embeddings

$$\mathbf{X_{i,t}} = \mathbf{C_{i,t}} \mathbf{W}_{p imes p} \mathbf{V}_{m imes p}^T$$

# Weight matrix

maximizing L1-regularized linear discriminant analysis (LDA)

$$\mathbf{D}(\mathbf{W}) = (\mu_1 - \mu_0)^{\mathbf{T}} \sum_{\mathbf{v}} (\mu_1 - \mu_0) - \lambda ||\mathbf{W}||_1^1$$

**Producing patient-timepoint embeddings** 

$$\mathbf{X_{i,t}} = \mathbf{C_{i,t}} \mathbf{W}_{p imes p} \mathbf{V}_{m imes p}^T$$

# Weight matrix

- maximizing L1-regularized linear discriminant analysis (LDA)
- **♦** Using labeled set only!!

## Patient embeddings follow a Gaussian Process

$$\mu_{i}(t) = E(X_{i,t}) = \mu_{0}(1 - Y_{i,t}) + \mu_{1}Y_{i,t} + \mu_{H}H_{i} + \mu_{YH}H_{i}Y_{i,t} + \mu_{2}t + \mu_{3}\log t + \mu_{4}Y_{i,t}t + \mu_{5}Y_{i,t}\log t$$

$$E[\epsilon_{i,t,k}|\epsilon_{i,t-1,k}] = r\tau_{k}\epsilon_{i,t-1,k}.$$

## Phenotype state follows a Markov Process

$$P(Y_{i,t} = y | Y_{i,t-1} = y_{t-1}, H_i) = expit(\lambda_0 (1 - y_{t-1}) + \lambda_1 y_{t-1} + \lambda_2 t + \lambda_3 \log t + \lambda_H H_i)$$

## Patient embeddings follow a Gaussian Process

$$\mu_{i}(t) = E(X_{i,t}) = \mu_{0}(1 - Y_{i,t}) + \mu_{1}Y_{i,t} + \mu_{H}H_{i} + \mu_{YH}H_{i}Y_{i,t} + \mu_{2}t + \mu_{3}\log t + \mu_{4}Y_{i,t}t + \mu_{5}Y_{i,t}\log t$$

$$E[\epsilon_{i,t,k}|\epsilon_{i,t-1,k}] = r\tau_{k}\epsilon_{i,t-1,k}.$$

## Phenotype state follows a Markov Process

$$P(Y_{i,t} = y | Y_{i,t-1} = y_{t-1}, H_i) = expit(\lambda_0 (1 - y_{t-1}) + \lambda_1 y_{t-1} + \lambda_2 t + \lambda_3 \log t + \lambda_H H_i)$$

We want to estimate conditional posterior  $\ \hat{p_{it}} = E[Y_{i,t}|\mathbf{X}]$ 

## **Expectation-Maximization:**

- 1. Initialize parameters
- 2. Compute probability of  $\hat{p}_{it}$
- 3. Use new  $\hat{p}_{it}$  to compute new estimates of parameters
- 4. Iterate steps 2 & 3 until convergence

### **Expectation-Maximization**

- 1. Initialize parameters (supervised learning)
- 2. Compute probability of  $\hat{p}_{it}$
- 3. Use new  $\hat{p}_{it}$  to compute new estimates of parameters
- 4. Iterate steps 2 & 3 until convergence

## Initialize parameters using MLE on <u>labeled set</u>

- ightharpoonup Logistic regression for  $Y_{it}|Y_{i(t-1),H_i,t}$
- ightharpoonup Generalised least squares for  $X_i|Y_i$ 's Gaussian process

### **Expectation-Maximization**

- 1. Initialize parameters
- 2. Compute probability of  $\hat{p}_{it}$  ( $\hat{p}_{sup}$ )
- 3. Use new  $\hat{p}_{it}$  to compute new estimates of parameters
- 4. Iterate steps 2 & 3 until convergence

## Compute probability of Pit for unlabeled set

$$\frac{\sum_{u=0}^{1} \sum_{w=0}^{1} P(Y_{i,t-1} = u) P(Y_{i,t} = 1 | Y_{i,t-1} = u) P(Y_{i,t+1} = w | Y_{i,t} = 1) f(X_{i,t-1}, X_{i,t}, X_{i,t+1} | Y_{i,t-1}, Y_{i,t}, Y_{i,t+1})}{\sum_{u=0}^{1} \sum_{w=0}^{1} \sum_{w=0}^{1} P(Y_{i,t-1} = u) P(Y_{i,t} = v | Y_{i,t-1} = u) P(Y_{i,t+1} = w | Y_{i,t} = v) f(X_{i,t-1}, X_{i,t}, X_{i,t+1} | Y_{i,t-1}, Y_{i,t}, Y_{i,t+1})}$$

## **Expectation-Maximization**

- 1. Initialize parameters
- 2. Compute probability of  $\hat{p}_{it}$  ( $\hat{p}_{sup}$ )
- 3. Use new  $\hat{p_{it}}$  to compute new estimates of parameters ( $\hat{p}_{semisup}$ )
- 4. Iterate steps 2 & 3 until convergence

## Use new $\hat{p_{it}}$ to update parameter estimates on unlabeled set

- ightharpoonup Weighted logistic regression for  $\hat{p_{i1}}|H_i|$
- ightharpoonup Generalised least squares for  $X_i|Y_i$ 's Gaussian process

### **Expectation-Maximization**

- 1. Initialize parameters
- 2. Compute probability of  $\hat{p}_{it}$  ( $\hat{p}_{sup}$ )
- 3. Use new  $\hat{p}_{it}$  to compute new estimates of parameters  $(\hat{p}_{semisup})$
- 4. Iterate steps 2 & 3 until convergence

#### No need to iterate!

- ➤ Initial parameters are consistent estimators already
- ➤ Reduces computational cost
- > Performance not sensitive to max # of iterations

## **Expectation-Maximization**

- 1. Initialize parameters
- 2. Compute probability of  $\hat{p}_{it}$  ( $\hat{p}_{sup}$ )
- 3. Use new  $\hat{p}_{it}$  to compute new estimates of parameters  $(\hat{p}_{semisup})$
- 4. Iterate steps 2 & 3 until convergence

## 4. Weighted sum of $\hat{p}_{sup}$ and $\hat{p}_{semisup}$ :

$$\hat{\mathbf{p}} = \alpha \hat{\mathbf{p}}_{\mathbf{sup}} + (\mathbf{1} - \alpha) \hat{\mathbf{p}}_{\mathbf{semisup}}$$

#### Results: About the datasets

- > Simulation experiment
  - To assess the robustness of SAMGEP to violations of model assumptions

followed by

- ➤ Analyses of real-world datasets
  - → To compare the predictive accuracies between SAMGEP and previous methods



## Results: Key findings

- > Simulation experiment
  - ≥ 150 count features
  - ≥ 1000, 5000, and 20000 unlabelled patients
  - ≥ 100 labelled patients

simulations were run with the number of standardized labels varying from 5 to 100

- Robust to model misspecification
- → Optimal performance achieved when n varies from 50 to 100 labels

## Results: Key findings

#### > Simulation experiment

∠Y|T and X|Y are correctly specified



## Results: Key findings

- > Real data analyses
  - outperformed or worked relatively as well as previous methods

esp. with a small number of labelled phenotype features



 $\Rightarrow$  successfully predicted phenotype events as a process even with n > 100

## Results: Diagnostics

- > Real data analyses
  - Y|H is a stochastic Markov process

real EHRs data align with this assumption

X|T follows a Gaussian process

using tests for normality on a finite collection of patients

## Recap

- No semisupervised methods simultaneously leveraging
  - 🔼 longitudinal data
  - some gold-standard labels
- > SAMGEP uses the few gold-standard labels to
  - obtain Weight matrix
  - initialize parameters for EM algorithm via supervised learning
- > Results show SAMGEP outperforms alternatives for
  - low n (# of gold-standard labels)
  - correct model specification

# Thanks for listening!