New epothilone derivatives useful as pharmaceuticals and in plant protection

Patent number:

DE19820599

Publication date:

1999-11-11

Inventor:

HOEFLE GERHARD (DE); LEIBOLD THOMAS (DE)

Applicant:

BIOTECHNOLOG FORSCHUNG GMBH (DE)

Classification:

- international:

C07D493/04; C07D493/00; (IPC1-7): C07D493/08;

A01N43/90; A61K31/425

- european:

C07D493/04

Application number: DE19981020599 19980508 Priority number(s): DE19981020599 19980508

Also published as:

N N E

WO9958534 (A3) WO9958534 (A2) EP1077980 (A3)

EP1077980 (A2)

US6982280 (B1)

more >>

Report a data error here

Abstract of **DE19820599**

Substituted epothilone derivatives (I) are new. Epothilone derivatives of formula (I) are new: A = group of formula (a) and R = protecting group (compound Ia); or A = group of formula (b) and R = protecting group (compound Ic); or A = group of formula (c) and R = protecting group (compound Ic); or A = group of formula (d) and R = protecting group (compound Id'); or A = group (d) and R = H (compound Id'): Hal = halogen e.g. Br or I; R<1> = H or 1-8C alkyl; X-Y = -CH2CH-OPg or -CH=CH-; Pg = protecting group; R<2> = vinyl, monocyclic aryl or 5-6 membered heteroaryl (containing O, N and/or S atom(s)) and all optionally substituted with OR<4>, NR<5>R<6>, alkyl, alkenyl and/or alkynyl; and the vinyl and aryl are also optionally substituted by halo; R<4>, R<5> and R<6> = as for R<1>. Independent claims are also included for the preparation of compounds (Ia), (Ib), (Ic), (Id') and (Id'').

Data supplied from the esp@cenet database - Worldwide

(5) Int. Cl.⁶; C 07 D 493/08

A 61 K 31/425 A 01 N 43/90

DEUTSCHES
PATENT- UND
MARKENAMT

Aktenzeichen:

198 20 599.6

② Anmeldetag:

8. 5.98

Offenlegungstag:

11. 11. 99

(7) Anmelder:

Gesellschaft für Biotechnologische Forschung mbH (GBF), 38124 Braunschweig, DE

(4) Vertreter:

Patentanwälte Dr. Boeters, Bauer, Dr. Forstmeyer, 81541 München

② Erfinder:

Höfle, Gerhard, Prof. Dr., 38124 Braunschweig, DE; Leibold, Thomas, Dr., 38124 Braunschweig, DE

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

(§) Epothilonderivate, Verfahren zu deren Herstellung und deren Verwendung

⑤ Die vorliegende Erfindung betrifft Epothilonderivate, Verfahren zu deren Herstellung und deren Verwendung zur Herstellung von Arzneimitteln und Pflanzenschutzmitteln

Beschreibung

Die vorliegende Erfindung betrifft allgemein Epothilonderivate, Verfahren zu deren Herstellung und deren Verwendung zur Herstellung von Arzneimitteln und Pflanzenschutzmitteln. Insbesondere betrifft die Erfindung Epothilonderivate der nachfolgend dargestellten allgemeinen Formeln 2 bis 6 sowie deren Verwendung als Arzneimitteln und Pflanzenschutzmittel.

HATTER TO THE TOTAL THE TOTAL THE TOTAL THE T

In den vorstehenden Formeln bedeutet:

 R^1 = ein H-Atom oder eine C_1 - bis C_8 -Alkylgruppe, vorzugsweise eine C_1 - bis C_6 -Alkylgruppe, besonders bevorzugt eine C_1 - bis C_4 -Alkylgruppe, insbesondere eine Methyl-, Ethyl-, Propyl- oder Butylgruppe,

 R^2 = ein monocyclischer Aromat, wie ein 5- oder 6-gliedriger Aromat (wie ein Phenylring) oder eine Vinylgruppe, die durch ein, zwei, drei, vier oder fünf, insbesondere ein oder zwei Halogenatome und/oder OR^4 - und/oder NR^5R^6 -Gruppen und/oder Alkyl- und/oder Alkenyl- und/oder Alkinylgruppen in ortho- und/oder meta- und/oder para-Stellung substituiert sein können, worin R^4 , R^5 und R^6 unabhängig voneinander dieselbe Bedeutung wie R^1 haben, aber von R^1 unabhängig sind, oder

 \tilde{R}^{2} = ein monocyclischer 5- oder 6-gliedriger Heteraromat, der eines oder mehrere, insbesondere ein oder zwei O- und/oder N- und/oder S-Atome im Ring aufweisen kann und/oder OR⁴- und/oder NR⁵R⁶-Gruppen und/oder Alkyl- und/oder Alkinylgruppen als Substituenten aufweisen kann, worin R⁴, R⁵ und R⁶ wie vorstehend definiert sind. Insbesondere werden bei der Definition von R² C₁-C₆ Alkyl-, bzw. C₂-C₆ Alkenyl- und Alkinylgruppen, insbesondere C₁-C₄ Alkyl-, bzw. C₂-C₄ Alkenyl- und Alkinylgruppen bevorzugt. Als Alkylgruppen werden besonders Methyl-, Ethyl-, Propyl- und Butylgruppen und als Heteroaromaten 6-gliedrige Heteroaromaten bevorzugt, Hal ein Halogenatom wie Br oder I,

X-Y = eine Gruppe der Formel -CH₂CH-OP oder -CH=CH-, und P = eine Schutzgruppe wie TMS.

Die erfindungsgemäßen Verbindungen können wie folgt hergestellt werden:

Verbindungen der Formel (2) können dadurch hergestellt werden, daß Verbindungen der Formel (1)

30

wie in der DE 195 42 986 beschrieben, umgesetzt werden, wobei die Reste wie vorstehend definiert sind. Insbesondere können dabei die folgenden Bedingungen (i), (iii) und gegebenenfalls (nach (i)) auch (ii) eingesetzt werden:

- (a) O₃ in cinem Lösungsmittel wie CH₂Cl₂, und
- (b) reduktive Aufarbeitung, z. B. mit Me₂S;
 (ii)
 50
 - (a) (CH₃CO)₂O, HCO₂H, NEt₃, DMAP;
 - (b) DBU; und
 - (c) McOH, NH3; und
- (iii) Me₃SiCl, NE₁₃.

Verbindungen der Formel (3) sind dadurch zugänglich, daß eine Verbindung der Formel (2) mit einer Verbindung der Formel IIC[B(OR)₂]₃, wie Tris(ethylendioxyboryl)methan, umgesetzt wird. Dabei kann R eine wie vorstehend definierte Alkenylgruppe sein.

Bei der Umsetzung kommt gegehenenfalls eine starke Base, wie eine C₁-C₄-Alkyl-Li-Verbindung (wie Butyllithium) oder eine Di-C₁-C₄-alkylamin-Li-Verbindung (wie eine Dimethylaminlithiumverbindung) zum Einsatz. Die Umsetzung wird in der Regel bei tiefen Temperaturen wie z. B. bei Temperaturen von weniger als von -30°C, vorzugsweise bei Temperaturen von weniger als ·50°C, besonders bevorzugt bei Temperaturen von mindestens ·-78°C durchgeführt. Weitere Reaktionsbedingungen können D. Schummer, G. Höfle in Tetrahedron 1995, 51, 11219 entnommen werden.

Beispielsweise wird eine Verbindung der Formel (2) mit Tris-(ethylendioxyboryl)methan und Butyllithium bei -78°C 60 zu einer Verbindung der Formel (3) umgesetzt.

Aus einer Verbindung der Formel (3) kann durch Umsetzung mit N-Jod- oder N-Bromsuccinimid, gegebenenfalls in einem polaren Lösungsmittel, wie Acetonitril, eine Verbindung der Formel (4) hergestellt werden. Weitere Reaktionsbe-

dingungen können der folgenden Literaturstelle entnommen werden: N. A. Petasis, I. A. Zavialor, Tetrahedron Lett. 1996, 37, 567.

Zur Herstellung einer Verbindung der Formel (5) kann eine Verbindung der Formel (3) im Rahmen einer Suzuki-Kopplung mit einer Verbindung der Formel R²-Z umgesetzt werden, wobei R² die vorstehend angegebenen Bedeutungen hat und Z ein Halogenatom oder eine Gruppe der Formel -OSO₂CF₃, -CH=CHI, -CH=CHOSO₂CF₃ sein kann. Insbesondere kann die Gruppe R²-Z die folgenden Strukturen aufweisen:

5 worin Λ¹ O, S, N oder C-Atome darstellt und die Substituenten O-, N- und C- den vorstehend beschriebenen Gruppen OR⁴-, NR⁵R⁶-, und Λlkyl-, Λlkenyl- und/oder Alkinylgruppen entsprechen.

Insbesondere werden C_1 - C_6 Alkyl-, bzw. C_2 - C_6 Alkenyl- und/oder Alkinylgruppen, insbesondere O_1 - C_4 Alkyl-, bzw. C_2 - C_4 Alkenyl- und/oder Alkinylgruppen als Substituenten "C" bevorzugt. Als Alkylgruppen werden besonders Methyl-, Ethyl-, Propyl- und Butylgruppen bevorzugt.

Alternativ kann eine Verbindung der Formel (5), dadurch hergestellt werden, daß eine Verbindung der Formel (4) durch eine Stille-Kupplung mit R²-SnR³3 umgesetzt wird, wobei R² wie vorstehend definiert ist und R³ eine C₁- bis C₆-Alkylgruppe, vorzugsweise eine C₁- bis C₄-Alkylgruppe und besonders bevorzugt eine Methyl-, Ethyl-, Propyl- oder Butylgruppe ist. Außerdem kann die Verbindung R²-SnR³3 eine der folgenden Strukturen aufweisen:

worin die Reste und Substituenten wie vorstehend definiert sind.

Erfindungsgemäß kann weiter eine Verbindung der Formel (6), dadurch hergestellt werden, daß von der Verbindung der Formel (5) die Schutzgruppe z. B. mit einer schwachen Säure, wie Zitronensäure oder Verbindungen wie TBAF, Pyridin x HF, entfernt wird. Gegebenenfalls kann dabei als Lösungsmittel ein Alkohol, wie Methanol, eingesetzt werden, wobei die Temperatur vorzugsweise auf Werte von z. B. 40 bis 60°C, bevorzugt etwa 50°C, eingestellt wird.

Insgesant kann die Verbindung der Formel (6) durch die vorstehend beschriebenen Schritte (Epothilon A oder B \rightarrow (2) \rightarrow (3) \rightarrow (4) \rightarrow (5) \rightarrow (6) oder Epothilon A oder B (2) \rightarrow (3) \rightarrow (5) \rightarrow (6)) hergestellt werden.

Weiter werden erfindungsgemäß Arzneimittel offenbart, die mindestens eine der Verbindungen (2), (3), (4), (5) oder (6) und gegebenenfalls übliche Träger, Verdünnungsmittel und Adjuvantien enthalten.

Insbesondere können derartige Verbindungen auch als Cytostatica und für den Pflanzenschutz in der Landwirtschaft und/oder Forstwirtschaft und/oder im Gartenbau eingesetzt werden, wobei sie gegebenenfalls zusammen mit einem oder mehreren üblichen Trägern, Adjuvantien und/oder Verdünnungsmitteln verwendet werden.

Beispiele

Synthese der Ketonderivate 2

Detaillierte Beschreibung siehe DE 195 42 986 A1.

Synthese der Alkenylboronsäurederivate 3

(s. auch D. Schummer, G. Höfle Tetrahedron 1995, 51, 11219)

Typisches Beispiel ($R^1 = H, X-Y = CH_2CHOTMS$):

Tris(ethylendioxyboryl)methan (0,30 g, 1,5 mmol) wurde in CH₂Cl₂/THF (1:1; 4 ml) gelöst vorgelegt und unter Inertgas auf -78°C gekühlt. Bei dieser Temperatur wurde innerhalb von 10 min Buthyllithium (1,6 M-Lsg in Hexan; 0,73 ml, 1,2 mmol) zugetropft. Nach 2 h wurde Keton 2 (81 mg, 0,15 mmol) in CH₂Cl₂/THF (1:1; 2 ml) zugegeben, auf Raumtemperatur erwärmt und 17 h lang gerührt. Nach Versetzen mit MeOII (2 ml) wurde die klare Reaktionslösung mittels präparativer HPLC (Lichroprep RP-18, CH₃CN/H₂O 75: 25) gereinigt. Es wurden 57 mg (65%) Alkenylboronsäure 3 als F//-Isomerengemisch (6:4) erhalten.

Ausgewählte typische Daten: L.C-MS (ESI-MS): 585 (M*+ H); ¹H-NMR: (300 MHz, CD₃OD): E-Isomer: 1,91 (S, 3 H), 5.16 (d, 1 H, 10 Hz), 5,49 (s, 1 H), Z-Isomer; 1,85 (d, 3 H, 1,1 Hz), 4,93 (s, 1 H), 5,26 (d, 1 H, 9,6 Hz).

Synthese der lodvinylderivate 4

(s. auch N. A. Petasis, I. A. Zavialor, Tetrahedron Lett. 1996, 37, 567). Typisches Beispiel (R¹ = H, X-Y = CH₂CH()TMS):

Bei Raumtemperatur wurde eine Lösung von Alkenylboronsäure 3 (12 mg, 21 μmol; Ε/Z 9 : 1) in CH₃CN (150 μl) unter

4

65

是是是一种的人,也是一种的人,也是一种的人,也是一种的人,也是一种的人,也是一种的人,也是一种的人,也是一种的人,也是一种的人,也是一种的人,也是一种的人,也是一种的人,

10

25

30

45

Inertgas und Lichtausschluß mit N-Iodsuccinimid (6.0 mg, 27 µmol) versetzt und 3 h gerührt. Nach Einengen wurde der Rückstand mittels präparativer Dünnschichtehromatographie (SiO₂, CH₂Cl₂/MeOH 95 : 5) gereinigt. Es wurden 9 mg (66%) des Iodvinyl-Derivats 4 als E//-Isomerengemisch (9 : 1) isoliert.

Ausgewählte (ypische Daten: LC-MS (ESI-MS): 667 (M*+ H); ¹H-NMR: (300 MHz, CDI₃): E-Isomer: 1,82 (d, 3 H, 1,1 Hz), 5,36 (d, 1 H, 11 Hz), 6,43 (s, 1 H), Z-Isomer: 1,84 (d, 3 H, 1,1 Hz), 5,54 (d, 1 H, 10,5 Hz), 6,09 (s, 1 H).

Suzuki-Kupplung der Alkenylboronsäure 3

(s. auch A. Suzuki, Acc, Chem. Res. 1982, 15, 178; A. Torrado, S. Lopez, R. Alvarez, A. R. De Lera Synthesis, 1995, 285).

10

20

25

40

55

Typisches Beispiel ($R^1 = H, X-Y = CH_2CHOTMS, R^2 = Ph$):

Eine Lösung von Alkenylboronsäure 3 (12 mg, 21 μmol; 1½Z 2:8) und Thalliumethanolat (2M-Lsg in EiOH; 12 μl, 24 μmol) in THF (150 μl) wurde 15 min bei Raumtemperatur gerühn, dann eine Lösung von Phenyliodid (4,0 μl, 6,0 mg, 29 μmol) und Tetrakis(triphenylphosphino)palladium (7,1 mg, 6,2 μmol) in THF (150 μl) in 30 min zugetropft und erneut 30 min gerühn. Nach Reinigung mittels präparativer Dünnschichtehromatographie (SiO₂, CH₂Cl₂/Et₂O 95:5) wurde das phenylanaloge Epothilon 5 (10 mg, 79%, 1½Z 2:8) als farbloser Feststoff erhalten.

Ausgewählte typische Daten: LC-MS (ESI-MS): 617 (M*+ II): ¹H-NMR: (300 NHz, CDCl₃): E-Isomer: 1,87 (d, 3 H, 1,4 Hz), 5,35 (d, 1 H, 10.7 Hz), 6,54 (s, 1 H), Z-Isomer: 1,80 (d, 3 H, 1,5 Hz), 5,61 (d, 1 H, 10.2 Hz), 6,41 (s, 1 H).

Stille-Kupplung der Iodvinylderivate 4

(s. auch K. C. Nicolaou, Y. He, F. Roschangar, N. P. King, D. Vourloumis, T. Li Angew. Chem. 1998, 110, (1/2), 89).

Patentansprüche

1. Epothilonderivat der Formel (2)

worin R^1 ein H-Atom oder eine C_1 - bis C_8 -Alkylgruppe, X-Y eine Gruppe der Formel -CH₂CH-OP oder -CH=CH-, und P eine Schutzgruppe ist.

2. Epothilonderivat der Formel (3)

worin die Reste wie in Anspruch 1 definiert sind.

3. Epothilonderivat der Formel (4)

のでは、「一般の対象を表現を表現して、1985年代の表現の表現を表現を表現を表現を表現している。 1987年に対象を表現を表現している。 1987年に対象を表現している。

worin die Reste R¹, X-Y und P wie in Anspruch 1 definiert sind, und Hal ein Halogenatom wie Br oder J ist. 4. Epothilonderivat der Formel (5)

worin die Reste R¹, X-Y und P wie in Anspruch 1 definiert sind und

R² ein monocyclischer Aromat oder eine Vinylgruppe ist, die durch Halogenatome und/oder OR⁴- und/oder NR⁵R⁶- und/oder Alkyl-, Alkenyl- und/oder Alkinylgruppen in ortho- und/oder meta- und/oder para-Stellung substituiert sein können, oder ein monocyclischer 5- oder ⑥-gliedriger Heteraromat ist, der eines oder mehrere O- und/oder N- und/oder S-Atome im Ring aufweisen kann und/oder OR⁴- und/oder NR⁵R⁶- und/oder Alkyl-, Alkenyl- und/oder Alkinylgruppen als Substituenten aufweisen kann, wobei die Reste R⁴, R⁵ und R⁶ unabhängig voneinander wie R¹ in Anspruch 1 definiert sind, aber von R¹ unabhängig sind.

5. Epothilonderivat der Formel (6)

10

15

20

25

30

35

40

45

50

55

65

是一种,我们就是一种,我们就是一种,我们就是一种,我们就是一种,我们就是一种,我们就是一种,我们们也是一种,我们们也是一种,我们们们也是一种,我们们们们们们们的

worin die Reste wie in Anspruch 4 definiert sind.

6. Epothilonderivat nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß R^1 , R^4 , R^5 und R^6 ein H-Atom oder eine C_1 - bis C_6 -Alkylgruppe, vorzugsweise eine C_1 - bis C_6 -Alkylgruppe ist.

7. Epothilonderivat nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, daß die Substituenten des monocyclischen Aromaten und/oder Heteroaromaten C₁₋₆-Alkyl- bzw. C₂₋₆-Alkenyl bzw. C₂₋₆-Alkinylgruppen, vorzugsweise C₁₋₄-Alkyl- bzw. C₂₋₄-Alkenyl bzw. C₂₋₄-Alkinylgruppen sind und die Halogenatome Fluor-, Chlor-, Brom- oder Jodatome sind.

8. Epothilonderivat nach einem der Ansprüche 4 bis 7, dadurch gekennzeichnet, daß der Λromat bzw. Heteroaromat 1, 2 oder 3 Substituenten und der Heteroaromat 1, 2 oder Heteroatome aufweist.

9. Verfahren zur Herstellung einer Verbindung der Formel (3), dadurch gekennzeichnet, daß eine Verbindung der Formel (2) mit einer Verbindung der Formel HC[B(OR)₂]₃ umgesetzt wird, wobei die Reste wie in einem der vorstehenden Ansprüche definiert sind und R wie R¹ definiert aber von R¹ unabhängig ist.

10. Verfahren zur Herstellung einer Verbindung der Formel (4), dadurch gekennzeichnet, daß eine Verbindung der Formel (3) mit N-Iod- oder N-Bromsuccinimid umgesetzt wird und die Reste wie in einem der vorstehenden Ansprüche definiert sind.

11. Verfahren zur Herstellung einer Verbindung der Formel (5), dadurch gekennzeichnet, daß eine Verbindung der Formel (3) durch eine Suzuki-Kopplung mit einer Verbindung der Formel R²-Z umgesetzt wird, wobei R² wie in einem der vorstehenden Ansprüche definiert ist und Z ein Halogenatom oder eine Gruppe der Formel -OSO₂CF₃, -CH=CHI, -CH=CHOSO₂CF₃ sein kann.

12. Versahren zur Herstellung einer Verbindung der Formel (5), dadurch gekennzeichnet, daß eine Verbindung der Formel (4) durch eine Stille-Kupplung mit R²-SnR³₃ umgesetzt wird, wobei R² wie in einem der vorstehenden Ansprüche definiert ist und R³ eine C₁- bis C6-Alkylgruppe, vorzugsweise eine C₁-4-Alkylgruppe, besonders bevorzugt eine Methyl-, Ethyl-, Propyl- oder Butylgruppe ist.

13. Verfahren zur Herstellung einer Verbindung der Formel (6), dadurch gekennzeichnet, daß von einer Verbindung der Formel (5) die Schutzgruppe entfernt wird.

14. Verfahren zur Herstellung einer Verbindung der Formel (6), dadurch gekennzeichnet, daß es die Verfahrensstufen umfaßt, die in den Ansprüchen 9, 10, 11 oder 12 und 13 offenbart sind, wobei die Reste wie in den vorstehenden Ansprüchen definiert sind.

15. Arzneimittel, das mindestens eine der in den Ansprüchen 1 bis 8 beschriebenen Verbindungen und gegebenenfalls übliche Träger, Verdünnungsmittel und/oder Adjuvantien enthält.

16. Arzneimittel nach Anspruch 15, dadurch gekennzeichnet, daß es sich um ein Cytostaticum handelt.

17. Pflanzenschutzmittel in der Landwirtschaft und/oder Forstwirtschaft und/oder im Gartenbau, das mindestens eine der in den Ansprüchen 1 bis 8 beschriebenen Verbindungen und gegebenenfalls übliche Träger, Verdünnungsmittel und/oder Adjuvantien enthält.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:	
BLACK BORDERS	
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES	
☐ FADED TEXT OR DRAWING	
BLURRED OR ILLEGIBLE TEXT OR DRAWING	
☐ SKEWED/SLANTED IMAGES	
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS	
GRAY SCALE DOCUMENTS	
LINES OR MARKS ON ORIGINAL DOCUMENT	
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY	

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.