TECHNISCHE UNIVERSITÄT MÜNCHEN

CHRISTOPH NIEHOFF AUFGABEN FREITAG FERIENKURS ELEKTRODYNAMIK
SS 2009

Aufgabe 1.

Nach einem Bankraub verlassen die Räuber in einem Fluchtfahrzeug, das sich mit $\frac{3}{4}c$ bewegt, den Ort des Verbrechens. Sie werden von einem Polizeiwagen, der sich mit $\frac{1}{2}c$ bewegt, verfolgt. Ein Polizist feuert aus diesem Wagen ein Projektil, das sich relativ zur Waffe mit $\frac{1}{3}c$ bewegt, auf die Verbrecher ab. Erreicht die Kugel das Fahrzeug der Verbrecher

- a) nach Galileo?
- b) nach Einstein?

Aufgabe 2.

Das Ereignis A geschieht am Raumpunkt $(x_A = 5, y_A = 3, z_A = 0)$ zur Zeit t_A , die gegeben ist durch $ct_A = 15$. Ein zweites Ereignis B tritt auf an (10, 8, 0) zur Zeit $ct_B = 5$. Beide werden im selben Inertialsystem K gemessen.

- a) Was ist der vierdimensionale Abstand zwischen A und B?
- b) Gibt es ein Inertialsystem, in dem beide Ereignisse *gleichzeitig* geschehen? Wenn ja, was ist die Geschwindigkeit (Betrag und Richtung) dieses Inertialsystem in Bezug auf K?
- c) Gibt es ein Inertialsystem, in dem beide Ereignisse am gleichen Ort stattfinden? Wenn ja, was ist die Geschwindigkeit (Betrag und Richtung) dieses Inertialsystem in Bezug auf K?

Aufgabe 3.

Wie ändert sich die Phase $\varphi = \omega t - \vec{\mathbf{k}} \cdot \vec{\mathbf{r}}$ einer elektromagnetischen Welle beim Übergang in ein anderes Inertialsystem? Begründung?

Aufgabe 4.

In einem Inertialsystem K herrsche ein elektrisches Feld $\vec{\mathbf{E}} = E\vec{\mathbf{e}}_z$ und ein Magnetfeld $\vec{\mathbf{B}} = B_y\vec{\mathbf{e}}_y + B_z\vec{\mathbf{e}}_z$. Mit einer Geschwindigkeit $\vec{\mathbf{v}} = v\vec{\mathbf{e}}_y$ relativ zu K bewege sich ein System K'.

- a) Berechnen Sie das elektrische Feld $\vec{\mathbf{E}}'$ und magnetische Feld $\vec{\mathbf{B}}'$ im System K'.
- b) Zeigen Sie, dass die Werte von $\vec{\mathbf{E}} \cdot \vec{\mathbf{B}}$ und $\vec{\mathbf{E}}^2 c^2 \vec{\mathbf{B}}^2$ invariant sind.

Aufgabe 5.

a) Zeigen Sie, dass der Ausdruck

$$\Box A^{\mu} - \partial^{\mu} \partial_{\nu} A^{\nu} = \mu_0 j^{\mu} \tag{1}$$

eichinvariant ist, d.h. mit A^{μ} auch $A'^{\mu}=A^{\mu}+\partial^{\mu}\chi$ eine Lösung ist. Dabei ist χ ein beliebiges skalares Feld.

b) Betrachten Sie nun den Ansatz

$$A^{\mu} = a^{\mu} \exp(-ik_{\nu}x^{\nu})$$
 mit $a^{\mu} = (a^{0}, \vec{\mathbf{a}})$.

Zeigen Sie, dass in LORENTZ-Eichung folgt:

$$a^0 = \frac{c\,\vec{\mathbf{a}}\cdot\vec{\mathbf{k}}}{\omega}.$$

c) Zeigen Sie, dass obiger Ansatz die Gl. 1 in homogener Form (d.h. $j^{\mu}=0$) erfüllt.

Aufgabe 6.

- a) Leiten Sie die Kontinuitätsgleichung aus den MAXWELL-Gleichungen her.
- b) Zeigen Sie, dass der Feldtensor schon allein aufgrund seiner Definition den homogenen MAXWELL-Gleichungen genügt.

Aufgabe 7.

In manchen Lehrbüchern wird der duale Feldstärketensor $\tilde{F}^{\mu\nu}$ definiert durch

$$\tilde{F}^{\mu\nu} := \frac{1}{2} \epsilon^{\mu\nu\alpha\beta} F_{\alpha\beta}.$$

- a) Bestimmen Sie die Matrixdarstellung von $\tilde{F}^{\mu\nu}$.
- b) Zeigen Sie, dass $\partial_{\mu} \tilde{F}^{\mu\nu} = 0$ äquivalent zu den homogenen MAXWELL-Gleichungen ist.