Assignment 5

Due: November 6, in class No late assignments accepted

Issued: October 30, 2013

Important:

- Give complete answers: Do not only give mathematical formulae, but explain what you are doing. Conversely, do not leave out critical intermediate steps in mathematical derivations.
- Write your name as well as your **Sunet ID** on your assignment. **Please staple pages together.**Points will be docked otherwise.
- Questions preceded by * are harder and/or more involved.

Problem 1

True or False? Motivate your answers clearly.

- (a) For a non-singular $n \times n$ matrix A, the Jacobi method for solving $A\vec{x} = \vec{b}$ will always converge to the correct solution, if it converges.
- (b) The Gauss-Seidel iteration used for solving $A\vec{x} = \vec{b}$ will always converge for any $n \times n$ invertible matrix A.

Problem 2

- (a) Find an invertible 2×2 matrix for which the *Jacobi* method does not converge. Please find a matrix not already shown in class or the workshop.
- (b) Find an invertible 10×10 non-diagonal matrix for which the *Jacobi* method converges very quickly. Please find a matrix not already shown in class or the workshop.

Problem 3

In this assignment, we'll be making much use of the 1-norm. We define the 1-norm of a vector \vec{x} as $\|\vec{x}\|_1 = \sum_{i=1}^n |x_i|$, i.e. the sum of the magnitudes of the entries. The 1-norm of an $m \times n$ matrix A is defined as $\|A\|_1 = \max_{1 \le j \le n} \sum_{i=1}^n |a_{ij}|$, i.e. the largest column sum. It can be shown that for these norms, $\|A\vec{x}\|_1 \le \|A\|_1 \|\vec{x}\|_1$ (we will not prove this here, but you can use it as given, whenever needed). Compute the 1-norm of the following matrices and vectors

(a)
$$\vec{x} = (1, 2, 3, \dots, n)^T$$
.

(b)
$$\vec{x} = (\frac{1}{n}, \frac{1}{n}, \frac{1}{n}, \dots, \frac{1}{n})^T$$
.

- (c) αI where I is the $n \times n$ identity matrix.
- (d) J-I where J is the $n \times n$ matrix filled with 1s and I is the $n \times n$ identity.

Problem 4

In the workshop, we will discuss page rank computations. The linear system is of the form $(I - \alpha P)\vec{x} = \vec{v}$. Here α is the fraction of a page's rank that it propagates to neighbors at each step and each entry in \vec{v} is the amount of rank we give to each page initially. For this problem, we set $\alpha = 0.85$, and all elements v_i of the vector \vec{v} equal to $v_i = 1/n$, where n is the number of total pages in the internet domain we are investigating. The matrices I and P are $n \times n$ matrices. For this problem (and also in general) we do not allow pages to link to themselves. Thus the diagonal elements of the matrix P are all 0.

- (a) As we will prove in a later part of this problem, the matrix $I \alpha P$ is invertible, so a unique solution to the pagerank system exists. We'll try to find this solution using the Jacobi iteration. Give the algorithm for the Jacobi iteration for the page rank equation.
- (b) Lets assume the answer is the vector \vec{x}^* . Analyze the distance between \vec{x}^* and successive iterates of the Jacobi iteration, that is, find the relationship between $\|\vec{x}^{(k+1)} \vec{x}^*\|_1$ and $\|\vec{x}^{(k)} \vec{x}^*\|_1$. Note that we measure distance in terms of the 1-norm here. Your analysis must hold for any $n \times n$ page rank matrix P. Form your analysis, show that α must be chosen to be smaller than 1. (Hint: first compute the 1-norm of P.)
- (c) Now, show that the matrix $I \alpha P$ is invertible for any $n \times n$ page rank matrix P. (Hint: don't forget that we have $0 < \alpha < 1$.)