Basic Set Theory

Fraenkel axioms, with the axiom of choice, are the best-known. Set theory is commonly employed as a foundational system for mathematics, particularly in the form of Zermelo-Fraenkel set theory with the axiom of choice. Beyond its foundational role, set theory is a branch of mathematics in its own right, with an active research community. Contemporary research into set theory includes a

systems were proposed in the early twentieth century, of which the Zermelo-

diverse collection of topics, ranging from the structure of the real number line to the study of the consistency of large cardinals. - wikipedia.org

important sets some mathematicians do not \mathcal{N} = natural numbers = {0,1,2,3....} consider 0 a natural number $z = integers = {...,-3,-2,-1,0,1,2,3,...}$ Z^+ = positive integers = {1,2,3,....} \mathcal{R} = set of real numbers \mathcal{R}^+ = set of positive real numbers Q = set of rational numbers $Q = \{p/q \mid p \in \mathbb{Z}, q \in \mathbb{Z}, \text{ and } q \neq 0\}$ $C = \text{set of complex numbers} \quad C = \{a+bi \mid a,b \in \mathcal{R} \}$ a,b - real numbers | variables $i = \sqrt{-1}$ - not a real number | constant boldface is being used

assignment aka definition order is irrelevant duplicates are irrelevant In the above example Set Name: F stands for Female first names. and Set Name: M stands for Male first names. $M := \{ Bob, Joe, Max, \underline{Dana} \}$ Venn Diagram Jeane , Mary , Susan Jeane Dana Mary Bob , Joe , Max Susan Sets can contain an <u>infinite</u> number of elements: $\mathcal{N} := \{ 1, 2, 3, 4, \dots \}$ ellipses . . . are used when the general pattern of the elements is obvious and reads "and so forth" $\mathcal{Z} := \{ ..., -2, -1, 0, 1, 2, ... \}$

F := { Jeane , Mary , Susan , Dana }

CS aphorism: the hardest things in CS are two things:

of enumeration

1 - name things correctly

2 - cash & validation

MNEMONIC set braces denote the beginning / end set inclusion - Jeane is a member of F element ∈/∉ set Jeane ∈ F - set exclusion - Jeane is NOT a member of F Jeane ∉ F Set Equality / Inequality { Jeane, Mary, \underline{Dana} , Susan } = F $\{ Jeane, Mary \} \neq F$ Subsets subset - ALL elements of LHS are in RHS

Operations on Sets inequality - LHS & RHS do NOT have the same elements

equality - LHS & RHS have the same elements

{ Jeane , Mary } ⊆ F proper subset - ALL elements of LHS are in RHS but NOT vice versa $\{ Jeane, Mary \} \subset F$

⊆ same as ⊂ or =

set_Diff (param1:Set1 , param2:Set2) -> Set3

Predicate is a sentence that <u>includes a variable</u> thus is <u>neither True nor False</u> statement that is T or F

thus a predicate is NOT a proposition however it can be made into one by assigning some value to it's variable or using a quantifier

Predicates $\in \not\in = \not= \subset \subseteq$ are predicate functions which return T/F \neq (M , F) \rightarrow True are sets M and F not equal? \rightarrow True \neq : set \rightarrow { T , F } if \neq is a set, T & F are its members $= (M, F) \rightarrow False$ are sets M and F equal? \rightarrow True ∉ (param1:SetMember , param2:Set) -> Bool T/F

= (param1:Set1 , param2:Set2) -> Bool T/F # (param1:Set1 , param2:Set2) -> Bool T/F (param1:Set1 , param2:Set2) -> Bool T/F ⊆ (param1:Set1 , param2:Set2) -> Bool T/F (param1:SetMember , param2:Set) -> Bool T/F

singleton set - set with only 1 member T – since there are elements in RHS that are not in LHS { Jeane } ⊂ F ? Jeane c F? F - in order to be a proper subset, member Jeane would have to be a set. ONLY a Set can be a Subset of another Set, this this notation is ILLEGAL ${Jeane} \in F$? F - LHS is a set and RHS does NOT contain LHS among its members Jeane ∈ F ? T - Jeane is a member of RHS

Jeane ⊆ F ? F - Jeane is NOT a set - notation illegal ${Jeane} \subseteq F$? T - LHS is a subset of RHS because element Jeane is contained by both LHS and RHS

set_Comp (param1:Set1 , param2:Set2) -> Set3

 $\{ \{ \text{Jeane}, \text{Mary}, \text{Susan}, \underline{\text{Dana}} \} \{ \text{Bob}, \text{Joe}, \text{Max}, \underline{\text{Dana}} \} \}$

• Set Complement - negation

_"inclusive or" aka "non-exclusive or" { Jeane } U { Jeane } = { Jeane } ?

T - since the duplicate elements count as one , and as a consequence the union of LHS && RHS flattens into a singleton set equivalent to either of the sides.

 $FUM \rightarrow \underline{Dana} \in FUM$? T-since U is inclusive Let's use a definition of ${\mathcal N}$ which does NOT include zero. We want to include zero among the elements of ${\mathcal N}$

 $\mathcal{N} \cup \{ 0 \} \longrightarrow \mathcal{N}_0 := \{ 0, 1, 2, 3, \cdots \}$

set_Intersect (param1:Set1 , param2:Set2) -> Set3

T - since LHS && RHS have NO elements in common (they are odds \cap evens = \emptyset $\emptyset \subset F$ T - empty set is a proper subset of F since F also has elements which \varnothing does not $\emptyset \subseteq F$ T - vacuously true

 $\emptyset \in F$ F - \emptyset is a not a member but a set

mutual exclusivity:

every non-empty set S has at least 2 subsets:

1 b/c $a \in \emptyset$ is always false $\emptyset \subseteq S$ for every set S

2 b/c $a \in S \rightarrow a \in S$ is true $S \subseteq S$ for every set S

 $\emptyset \notin F$ T – look above Empty Set the Empty Set or Null Set is the set with no elements "Mutually exclusive" is a statistical term describing two or symbolized Ø or {} more events that cannot occur simultaneously. For example, it is impossible to roll a five and a three on a single die at the \emptyset is a subset of any set : $\emptyset \subseteq \mathsf{A}$ In logic, two mutually exclusive propositions are propositions that logically cannot be true in the same sense at the same ingleton set: a set with one element {a},{∅}

Def: A & B are mutually exclusive if

two sets are called disjoint if their intersection is the empty set

 $A \cap B = \emptyset$

Probability

 $P(A) = 1 - P(A^{C})$

 $\neq |\Omega|$

 $P(\{T\}) = \frac{1}{2}$

 $P(\{H\}) = \frac{1}{2}$ equally likely

for $\Omega = \{ H,T \}$

 $|2^{\Omega}| = 2^{|\Omega|}$ numb of possible events

Universal Set U / domain the Universal Set U is the set containing everything currently under consideration - sometimes implicit - sometimes explicitly stated - contents depend on the context

Special Set Ω

Cartesian Plane

In probability theory and logic, a set of events is

events must occur. For example, when rolling a six-

sided die, the outcomes 1, 2, 3, 4, 5, and 6 are collectively exhaustive, because they encompass the

entire range of possible outcomes.

jointly or collectively exhaustive if at least one of the

- wikipedia.org

