HW₁

HW1A.8 - Orthogonal Plane

HW1A.8. Orthogonal plane

Consider the vector
$$\mathbf{v} = egin{bmatrix} 3 \\ 0 \\ 4 \end{bmatrix}$$
 .

We will find a set of orthogonal unit vectors whose linear combinations will fill the plane that is orthogonal to the vector \mathbf{v} .

First, give a unit vector \mathbf{x} that is *perpendicular* to \mathbf{v} . $\mathbf{x} = \begin{bmatrix} -0.8 \\ 0 \\ 0.6 \end{bmatrix}$ Now, give a unit vector \mathbf{y} that is *perpendicular* to *both* \mathbf{v} and \mathbf{x} .

- Perpendicular = orthogonal

 For perpendicular to both, y vector can be combo of 1s and 0s where the 1s match 0s from vector v and any non-zero digits from vector v would be 0 in vector y

HW1A.14 - Finding q value given the rank of a Matrix

HW1A.14. Finding q value given the rank of a Matrix

Consider the matrix
$$A = egin{bmatrix} 2 & 4 & 4 \ 2 & 6 & q \ 1 & 4 & 5 \end{bmatrix}$$

Find q such that A has rank 2.

HW₂

HW2A.5 - Rank 1 matrix factorization

- C → take first column of A
 - If two columns of A are not identical, need to take 2 columns of A (instead of one) to satisfy rank 1 condition
- R → find values that when multiplied give A

HW2A.6 - Matrix factorization 3

$$A = \begin{bmatrix} 18 & 17 & -4 & -9 \\ 10 & 21 & -8 & -5 \\ 16 & 18 & -5 & -8 \end{bmatrix}$$

$$C = \begin{bmatrix} -9 & -4 \\ -5 & -8 \\ -8 & 5 \end{bmatrix}$$

$$X = \begin{bmatrix} 2 & 5 & 5 \\ -8 & 5 \end{bmatrix}$$

$$X = \begin{bmatrix} 4 & 5 & 5 \\ -8 & 5 \end{bmatrix}$$

$$X = \begin{bmatrix} 4 & 5 & 5 \\ -8 & 5 \end{bmatrix}$$

$$X = \begin{bmatrix} 4 & 5 & 5 \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} -2 & -1 & 0 & 1 \\ 0 & -2 & 1 & 0 \end{bmatrix}$$

$$X = \begin{bmatrix} 4 & 5 & 5 \\ -2 & 1 & 1 \end{bmatrix} = \begin{bmatrix} -2 & -1 & 0 & 1 \\ 0 & -2 & 1 & 0 \end{bmatrix}$$

$$X = \begin{bmatrix} 4 & 5 & 5 \\ -2 & 1 & 1 \end{bmatrix} = \begin{bmatrix} -2 & -1 & 0 & 1 \\ 0 & -2 & 1 & 0 \end{bmatrix}$$

$$X = \begin{bmatrix} 4 & 5 & 5 \\ -2 & 1 & 1 \end{bmatrix} = \begin{bmatrix} -2 & -1 & 0 & 1 \\ 0 & -2 & 1 & 0 \end{bmatrix}$$

- Linear combinations of C with R that result in A

HW2A.7. Matrix factorization 5

HW2A.8 - Rank 1 matrix factorization

- For C: Take smallest column of A
- For R: Find which multiples of C result in columns of A

HW2A.9 - Matrix construction 4

HW2A.9. Matrix construction 4

Give a 4×4 matrix A of rank 2 and matrices C and R such that A = CR.

- Need linearly independent cols and rows for C and R respectively
 - Use 1s and 0s for easy of multiplication
- To find A, calculate CR

HW2A.12 - Transform into upper triangular matrix

HW2A.13 - Solving a linear system

1 6 3 2 14 12 5 34 28
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
3. $R_3 \rightarrow -2R_2 + R_3$ 4. transform b (1 6 3) (-33) (-33) (0 2 6
5. Solve $4x=6$ $ \begin{array}{r} $

HW2A.14 - Coefficient that forces row exchange and result in missing pivot

HW2A.14. Coefficient that forces row exchange and result in missing pivot

Consider the system of equations with an unknown coefficient m (watch out for the order of the variables):

$$4x_1 + 4x_2 + 3x_3 = 0 \ 8x_3 + 12x_1 + mx_2 = 3 \ 3x_2 - x_3 = 2$$

Give a value m_r for m that forces a row exchange.

Give a value m_s for m that makes transformation into an upper triangular matrix impossible.

$m_s = oxed{15}$	~ 100%
------------------	---------------

Mr = (R2x1/R1x1) x R1x2Ms = Mr + R3x2

For the above examples:

$$(12/3)*4 = 12$$

$$12 + 3 = 15$$

HW2A.15. Elimination roadblocks

HW2A.15. Elimination roadblocks

Consider the following system of equations:

$$ax + 18y = -72$$
$$2x + 6y = 24$$

Give a number a_p for a such that this system cannot be transformed into an upper triangular matrix. $a_p = 6$ Give a number a_t for a such that this system can be transformed into an upper triangular matrix via elimination, but after performing a row exchange. $a_t = 0$ Using a_t from above for a, solve the resulting system for x and y after performing the necessary row exchange. x = 24 x = 24

- A is scalar of the other equation
 - 18/6 = 3
 - 3 * 2 = 6
- At always = 0
- Set a=0 and solve y
 - -72/18 = -4
- Plug y into second equation and find x
 - 2x-24=24
 - x=24

HW2A.19 - Elimination matrix inverses

Inverse means positive becomes negative and vice versa

HW2A.21 - Row Operation Matrices

HW₃

HW3A.1 - Solve with LU

- First swap A so smallest numbers are top row and largest numbers bottom row; generally focus on first column of A
- Adjust P according to the row swaps
- L = E-1 (L is inverse of E)

HW3A.2 - Solving linear systems 4

HW3A.2. Solving linear systems 4

Suppose the matrix A has an LU factorization into $L=egin{bmatrix}1&0&0\\-1&1&0\\0&1&1\end{bmatrix}$ and

$$U = egin{bmatrix} 4 & 1 & 6 \ 0 & 6 & 5 \ 0 & 0 & 4 \end{bmatrix}.$$

Given
$$\mathbf{b} = egin{bmatrix} 0 \\ -11 \\ 9 \end{bmatrix}$$
 , solve $A\mathbf{x} = \mathbf{b}$.

(4 1 6 X,) 0
-9 5 -1 K2 = -11 0 6 9 (X3) 9
0 6 9 1 1 9
(1,13)
10 20 20 20 2
1. l ₂ → l, + l ₂ 2. l ₃ → - l ₂ + l ₃
(4 16)
[4 16] 065
0 6 5 0 0 4
10691
3. transform b
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
6x2+5x3=-11
L91 L201 4x3=20
C.)
$[-6]$ $[6x_2 + 25 = -1]$
$X = -6$ $6x_2 = -36$
9x,-6+30=0
$4x_1 = -24$

HW3A.4 - L and elimination

Given the matrix $L=egin{bmatrix}1&0&0\\-5&1&0\\-68&12&1\end{bmatrix}$ such that A=LU for some invertible matrix A,

give the elimination matrix $E=L^{-1}$.

** L31 should = 8

HW3A.8 - Permutation inverses 6

HW3A.8. Permutation inverses 6

Consider the 5 by 5 matrix ${f P}$ that exchanges columns 3 and 5, then columns 5 and 1.

Give the inverse of P.

Note. For this question, entries left blank will be interpreted as 0.

- The trick is for inverse P, if it says columns swap rows, and vice versa

HW3A.13 - Planes and subspaces

X-3y-2 (A)-0

W-> set y=13 7=1

V= 0

And solve for x

equation: drop the constant

HW3A.15 - Column spaces and solvability

- b> should be a linearly independent column (can always do 1 with 0s)
- b= should be linearly dependent, so you can always copy one of the existing columns

HW₄

HW4A.1. Special solutions to Rx = 0

- A trick to solving this faster is setting 0,1 and 1,0 to the free variable columns, then flipping the signs for the other variables

HW4A.2. Compute RREF

6	12	-42	66	
-12	-21	75	-120	
1	2	-7	11	
-12	-21	75	-120	
1	2	-7	11	
0	3	-9	12	
1	2	-7	11	
0	1	-3	4	
1	0	-1	3	
0	1	-3	4	

HW4A.3. Solving Rx = 0

HW4A.3. Solving Rx = 0

Find the special solutions for $R\mathbf{x}=\mathbf{0}$. Submit the special solutions as columns of a single matrix N.

N = [[6,-2,-6],[1,0,0],[0,1,0],[0,0,1],[0,0,0]]

1 1 0
X, -6x2 + 2x3+6x4=0
X5=0
1 = 10 = 10 = 10 = 10 = 10 = 10 = 10 =
×2 ×3 ×4
0 1 0 3 Special solutions
o 1 0 solutions
001
Z=-(3
[6 -2 -6]
1 0 0
0 (0
0 0 1
0 0 0
5414 7

HW4A.5. Special Solutions

Suppose the only special solution of $A\mathbf{x}=\mathbf{0}$ for a 3×4 matrix A is $\begin{bmatrix} 6\\7\\1 \end{bmatrix}$.

What is the rank of A?

What is the row reduced echelon form of A?

- rank(A) = # of pivot columns
- Last column is all the values flipped (i.e., neg/pos) except for the last value

HW4A.6. Pivot and nullity

HW4A.6. Pivot and nullity

Consider a 4×5 matrix A with 0 pivot columns.

Except for the pivot columns, you can do all zero vectors

HW4A.7. Row-reduced echelon forms 4

HW4A.7. Row-reduced echelon forms 4

Consider the matrix
$$R=\begin{bmatrix}1&0&0&17\\0&1&0&8\\0&0&1&5\end{bmatrix}$$
 , which is in row-reduced echelon form.

Show that two different matrices other than R can arrive at the same row-reduced echelon form matrix by giving two different matrices that result in R after performing elimination.

- Just scale the original matrix...douh

HW4A.10. Filling 1s given pivot columns

HW4A.10. Filling 1s given pivot columns

Note. For this question, entries left blank will be interpreted as 0.

Put as many 1's as possible in a 5×8 upper triangular matrix U whose pivot columns are 2, 3, 5.

Correct answer

Note. For this question, entries left blank will be interpreted as 0.

HW4A.12. Solvable systems 3

Consider the system of linear equations $\begin{bmatrix} 5 & 4 & 4 \\ -10 & -8 & -8 \\ 10 & 8 & 8 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}.$

You will give conditions on b_1,b_2,b_3 for the system to be solvable.

Give a condition on b_1 in terms of b_2 for the above system to be solved.

Give a condition on b_1 in terms of b_3 for the above system to be solved.

- Find equation to get R1x1

HW4A.13. Solving Ax = b completely

				b	
3	2	-13	-9	-33	
6	7	-14	0	-75	
1	0.6666667	-4.3333333	-3	-11	
6	7	-14	0	-75	
1	0.6666667	-4.3333333	-3	-11	
0	3	12	18	-9	
1	0.6666667	-4.3333333	-3	-11	
0	1	4	6	-3	
1	0	-7	-7	-9	
0	1	4	6	-3	

- First row reduce (RREF)
- Particular solution is where free variables both = 0

HW4A.14. Computing rank

$$\operatorname{Let} A = \begin{bmatrix} 18 & 54 & 0 & -3 \\ -5 & -15 & 0 & 1 \\ -8 & -24 & 1 & 0 \end{bmatrix}.$$

Compute the rank of $\cal A$.

$$\operatorname{rank}(A) = 3$$

- min(# of LI rows or cols)
- Divide the rows by scalars to reduce the #s → helps find linear dependence
 - You can divide each row by a different scalar; don't need to apply scalar operations to all rows

HW4A.15. Solving Rx = b

- For particular solution, set all free variables = 0
- For special solutions, use a combinations of 0s and 1s
- # special solutions = # free variables

HW4A.16 Solvability

- Do basic row reduction (NOT RREF) and record what you do to each row separately. Get it to b3 at the bottom.
- The biggest challenge here is keeping everything straight

HW4A.17. Solving Ax = b with some solutions

HW4A.17. Solving Ax = b with some solutions

Let
$$A=\begin{bmatrix}3&27&-18&6\\0&0&1&-3\\0&0&0&1\end{bmatrix}$$
 and $\mathbf{b}=\begin{bmatrix}-57\\-16\\7\end{bmatrix}$. Consider the linear equation $A\mathbf{x}=\mathbf{b}$.

Solve for ${\bf x}$ and give two different vectors ${\bf x}_1$ and ${\bf x}_2$ that satisfy the equation.

- Steps are:
 - Row reduce
 - Plug in values for free variables and solve

HW₅

HW5A.1. Dimension

- dimC(A) = # of pivot cols
- dimC(A) = dimC(AT)
- dimN(A) = total cols # pivot cols

HW5A.2. Rectangular matrix properties

Give an example of A.

HW5A.4. Basis for a plane

Consider the plane -6x+3y+8z=0. Give a basis for the vectors in this plane as the columns of a single matrix.

- Set y=1 and z=0 and solve for x
- Set y=0 and z=1 and solve for x

HW5A.5. Span dimension

HW5A.5. Span dimension

Consider the vectors $\begin{bmatrix} 0 \\ -14 \\ 2 \\ -6 \\ -8 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ -7 \\ 1 \\ -3 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 4 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ -2 \end{bmatrix}.$

What is the dimension of the vector space spanned by these vectors?

3 ~100%

The span of the vectors is a subspace of which vector space?

- Dimension = rank
- Rn, n = # rows

HW5A.6. Span basis

HW5A.6. Span basis

Consider the vectors $\begin{bmatrix} -2\\3\\1\\-12\\3 \end{bmatrix}, \begin{bmatrix} -6\\9\\3\\-36\\9 \end{bmatrix}, \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}.$

Give a basis for the subspace spanned by these vectors as the columns of a single matrix. Fill in any extra columns as the zero vector.

- Basis = linearly independent columns
- Set all other columns = 0

HW5A.8. Matrix subspace bases: A and R

- C(A) = pivot cols corresponding from R
- C(R) = pivot cols
- C(AT) = C(RT) = non-zero rows of R
- N(A) = N(R) = special solutions

HW5A.11. Subspace dimensions

- C(A) = C(AT) = # LI rows or cols (take the min)
- N(A) = # cols C(A)
- N(AT) = # rows C(AT)
- Rank A = C(A)

HW5A.13. Vectors in space

- 1) First value always 1 followed by 0s
- 2) Scale any row by a constant
- 3) Take a pivot column and non-pivot column and find values that would make the two columns equal to 0
 - a) E.g. if we multiplied col 2 by 2, we get -14, so col 1 would need to be multiplied by 14 to get $0 \rightarrow 14$ 14 = 0
- 4) Always 0s ending with the last row as 1

HW6A.1. Projecting a vector onto a line

 $||{\bf e}_1|| = |$

12.3

HW6A.1. Projecting a vector onto a line Let $\mathbf{b}_1=egin{bmatrix} -8\\8\\-5 \end{bmatrix}$ and $\mathbf{a}_1=egin{bmatrix} -2\\-4\\-5 \end{bmatrix}$. Python import numpy as np b1 = np.array([[-8], [8], [-5]])a1 = np.array([[-2], [-4], [-5]])copy this text Compute the projection \mathbf{p}_1 of \mathbf{b}_1 on the line passing through \mathbf{a}_1 . Give error vector e_1 for this projection. **②** ✓ 100% Give the length $||\mathbf{e}_1||$ of the error for this projection.

✓ 100%

- * different problem but same process
- * def do in excel

HW6A.2. Projecting a vector onto a line E

HW6A.2. Projecting a vector onto a line E

Let
$$\mathbf{b}=\begin{bmatrix} -2\\ -8\\ 8 \end{bmatrix}$$
 and $\mathbf{a}=\begin{bmatrix} -6\\ 6\\ -3 \end{bmatrix}$. We will compute the projection of the vector \mathbf{b} onto the

line through a.

GAD Given
$$\overrightarrow{b}$$
 and \overrightarrow{a} , find \overrightarrow{a} p and \overrightarrow{P} where $\overrightarrow{p} = \overrightarrow{a}$ as $\overrightarrow{a} = 4$ projection matrix \overrightarrow{P} :

 $\overrightarrow{GA} = 4$
 $\overrightarrow{P} = 3\overrightarrow{a}$
 $\overrightarrow{P} = 3\overrightarrow{A}$

* Different Q same process

* Solution in excel below

b	а		аТ		
-	2 -6		-6	6	-3
-	8 6				
	8 -3				
ba	-60				
aa	81				
x hat	-0.7407407				
р	4.444444				
	-4.444444				
	2.222222				
0.04	36	-36	18		
aat	-36	36	-18		
	18	-18	9		
	0.444444	-0.444444	0.222222		
	-0.444444	0.444444	-0.222222		
	0.222222	-0.222222	0.1111111		

HW6A.7. Projection onto a plane 3

HW6A.7. Projection onto a plane 3

Consider the plane x+8y-z=0. We will compute the projection of the vector

$$\mathbf{b} = egin{bmatrix} 0 \\ 1 \\ 3 \end{bmatrix}$$
 onto the plane.

- Equations needed to solve this problem:

b	n		nT		
0	1		1	8	-1
1	8				
3	-1				
bn	5				
nn	66				
x hat	0.0757576				
projn(b)	0.0757576	p	-0.0757576		
	0.6060606		0.3939394		
	-0.0757576		3.0757576		
nnt	1	8	-1		
	8	64	-8		
	-1	-8	1		
	0.0151515	0.1212121	-0.0151515		
	0.1212121	0.969697	-0.1212121		
	-0.0151515	-0.1212121	0.0151515		
_					
1	1	0	0		
	0	1	0		
	0	0	1		
_					
P	0.9848485	-0.1212121	0.0151515		
	-0.1212121	0.030303	0.1212121		
	0.0151515	0.1212121	0.9848485		

HW6A.10. Orthogonal plane using projections

HW6A.10. Orthogonal plane using projections

Consider the vectors
$$\mathbf{v}_1=\begin{bmatrix}2\\2\\1\end{bmatrix}$$
 , $\mathbf{v}_2=\begin{bmatrix}7\\2\\1\end{bmatrix}$ and $\mathbf{v}_3=\begin{bmatrix}7\\1\\3\end{bmatrix}$.

Decompose v_3 into two components: one parallel to v_1 and v_2 , and the other orthogonal to v_1 and v_2 .

Give the component that is *parallel* to ${\bf v}_1$ and ${\bf v}_2$. ${\bf v}_{3_{par}} = \begin{bmatrix} 7 & & & & \\ 2 & & & \\ & 1 & & & \end{bmatrix}$ Give the component that is *perpendicular* to ${\bf v}_1$ and ${\bf v}_2$. ${\bf v}_{3_{perp}} = \begin{bmatrix} 0 & & & \\ -1 & & & \\ 2 & & & \end{bmatrix}$

	v1	v2							
A	2			AT	2	2	1	v3	7
	2	2			7	2	1		1
	1	1							3
ATA	9	19							
	19	54							
det	54	-19		125					
	-19	9							
ATA-1	0.432	-0.152							
	-0.152	0.072							
	-0.2	0.2							
A(ATA)-1	0.56				-				
	0.28								
A(ATA)-1AT	1	0	0		7				
	0		0.4						
	0	0.4	0.2						
A(ATA)-1ATv3	7								
aka v3 par	2								
	1								
v3perp	0								
	-1								
	2								

HW6A.11. Projection onto a plane D

HW6A.11. Projection onto a plane D

Consider the plane x-2y+z=0. We will compute the projection matrix P for the plane.

		1	-2	1	
6		eeT	1	-2	1
			-2	4	1
			1	-2	1
1	-2	1			
-2	4	-2			
1	-2	1			
0.16666667	-0.3333333	0.16666667			
-0.3333333	0.66666667	-0.3333333			
0.16666667	-0.3333333	0.16666667			
1	0	0			
0	1	0			
0	0	1			
0.83333333	0.33333333	-0.1666667			
0.33333333	0.33333333	0.33333333			
-0.1666667	0.33333333	0.83333333			
	1 -2 1 0.16666667 -0.3333333 0.16666667 1 0 0 0.833333333 0.333333333	1 -2 -2 4 1 -2 0.16666667 -0.3333333 -0.3333333 0.666666667 0.16666667 -0.3333333 1 0 0 1 0 0 0 0.83333333 0.33333333 0.33333333 0.33333333	6 eeT 1 -2 1 -2 4 -2 1 -2 1 0.16666667 -0.3333333 0.166666667 -0.3333333 0.66666667 -0.3333333 0.16666667 -0.3333333 0.16666667 1 0 0 0 1 0 0 0 1 0.83333333 0.3333333 -0.16666667 0.83333333 0.33333333 0.33333333	6 eeT 1 1 -2 1 1 -2 1 -2 4 -2 1 -2 1 0.16666667 -0.3333333 0.16666667 -0.3333333 0.16666667 1 0 0 0 1 0 0 0 1 0.8333333 0.3333333 -0.1666667 0.83333333 0.3333333 0.33333333	6 eeT 1 -2 4 1 -2 1 -2 4 -2 1 -2 1 0.166666667 -0.3333333 0.166666667 -0.3333333 0.66666667 -0.3333333 0.166666667 1 0 0 0 1 0 0 0 1 0.83333333 0.33333333 -0.1666667 0.83333333 0.33333333 0.33333333

HW6A.14. Least Squares Approximations

HW6A.14. Least Squares Approximations

Suppose we want to construct a line b=C+Dt that goes through

- 1. b = 3 at t = -3,
- 2. b = 2 at t = 0,
- 3. b=1 at t=6.

Find the line that minimizes error from the given points by finding the least squares solution for ${\cal C}$ and ${\cal D}$

C =	2.21	•	~100%
D =	-0.21	0	~ 100%

Α			b		AT		
1	-3		3		1	1	1
1	0		2		-3	0	6
1	6		1				
ATA	3	3					
	3	45					
	45	-3		126	det(A)		
	-3	3		0.008	< 1/det(A)		
ATA-1	0.3571	-0.02381					
	-0.024	0.0238095					
ATb	6						
	-3						
С	2.2143	< (ATA)-1*A	tb				
D	-0.214						

HW6A.20. Orthogonality 7

HW6A.20. Orthogonality 7

Consider the pair of vectors $\mathbf{v}_1 = \begin{bmatrix} 1.25 \\ 1.00 \end{bmatrix}$ and $\mathbf{v}_2 = \begin{bmatrix} 25.25 \\ -29.00 \end{bmatrix}$. Which of the following best describes them?

Note: Due to rounding issues, orthogonal computations might not be exactly zero.

- Orthonormal
- Independent
- Orthogonal
- Dependent

check dot pro	oduct				
v1	v2				
1.25	25.25				
1	-29				
2.5625	< if not 0, th	en not orthog	gonal nor orth	onorn	nal
check indepe	endence (are t	hey scalars?)			
20.2					
-29					

HW6A.21. Orthonormal Vectors in a Plane

transform equ	ation into vecto	r				
1						
6						
1						
pick y=1, z=-1	pick y=0, z=1		orthogonlize	v2 against u1		
x+6-1=0	x+1=0		v2u2	0.76980036		
x=-5	x=-1		u1u1	1	<- bc normal	vector
v1	v2		proj_u1(v2)	-0.74074074	<v2u2(u1)< td=""><td></td></v2u2(u1)<>	
-5	-1			0.14814815		
1	0			-0.14814815		
-1	1					
			subtract abo	ve from v2 to ge	t orthogonal v	ector
orthonormaliz	e using gram-sc	hmidt		-0.25925926		
v1	5.19615242			-0.14814815		
				1.14814815		
normalize						
1/ v1	0.19245009		normalize			
			length	1.18634203		
u1	-0.96225045			0.84292723		
	0.19245009					
	-0.19245009			-0.21853669		
				-0.12487811		
				0.96780534		

HW6A.24. Orthonormal Basis K

a1	a2	b		
1	-2	3		
0	2	-4		compute v
1	2	-1	bq1	1.4142136
0	-2	3	projq1(b)	1
				0
a1	1.41421356			1
1/ a1	0.70710678			0
q1	0.70710678		bq2	-5.5
	0		Projq2(b)	2.75
	0.70710678			-2.75
	0			-2.75
				2.75
Project a2 onto	q1			
a2q1	0	< a2 is already orthogonal		
			V	3.75
normalize				-2.75
a2	4			-1.75
1/ a2	0.25			2.75
q2	-0.5			
	0.5			
	0.5			
	-0.5			

Equations to solve this problem:

$$q_1=\frac{a_1}{\|a_1\|}$$

We first make a_2 orthogonal to q_1 by subtracting its projection:

$$v_2=a_2-\operatorname{Proj}_{q_1}(a_2)$$

The projection formula:

$$\operatorname{Proj}_{q_1}(a_2) = \left(rac{a_2 \cdot q_1}{q_1 \cdot q_1}
ight) q_1$$

$$q_2=\frac{a_2}{\|a_2\|}$$

We need to compute the projection of b onto the plane:

$$v=\operatorname{Proj}_{q_1}(b)+\operatorname{Proj}_{q_2}(b)$$

Given:

$$b = \begin{bmatrix} 3 \\ -4 \\ -1 \\ 3 \end{bmatrix}$$

Projection onto q_1

$$\mathrm{Proj}_{q_1}(b) = (b \cdot q_1)q_1$$

Projection onto q_2

$$\operatorname{Proj}_{q_2}(b) = (b \cdot q_2)q_2$$

$$v = egin{bmatrix} 1 \ 0 \ 1 \ 0 \end{bmatrix} + egin{bmatrix} 2.75 \ -2.75 \ -2.75 \ 2.75 \end{bmatrix} \ = egin{bmatrix} 3.75 \ -2.75 \ -1.75 \ 2.75 \end{bmatrix}$$