K. J. SOMAIYA COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS ENGINEERING ELECTRONIC CIRCUITS OSCILLATOR CIRCUITS

 13^{th} July, 2020 Numerical

1. In Collpits oscillator, amplifier components are:

$$R_1 = 100 \mathrm{k}\Omega, \ R_2 = 18 \ \mathrm{k}\Omega, \ R_E = 1 \ \mathrm{k}\Omega, \ C_{C1} = 1 \ \mu\mathrm{F}, \ C_E = 150 \ \mu\mathrm{F}, \ C_{C2} = 1 \ \mu\mathrm{F}, \ V_{CC} = 10 \ \mathrm{V}$$

Select LC tank circuit elements such that the frequency of oscillation is close to 80 kHz

Figure 1: Circuit 1

Solution:

$$f_o = \frac{1}{2\pi\sqrt{C_{eq} \times L_3}}$$

$$C_{eq} = \frac{C_1 \times C_2}{C_1 + C_2}$$

$$L_3 = 1 \text{ mH}, f_o \approx 80 \text{ kHz}$$

$$80 \times 10^3 = \frac{1}{2\pi\sqrt{10^{-3} \times C_{eq}}}$$

$$\therefore C_{eq} = 3.957 \text{ nF}$$

Let
$$C_1 = C_2 = 2 \times 3.957 \times 10^{-9} = 7.914 \text{ nF}$$

Feedback fraction (k) =
$$\frac{C_1}{C_2}$$
 = 1

Time period of oscillations =
$$\frac{1}{f_0}$$
 = 12.5 μ s

Phase shift offered by LC tank circuit = 180°

SIMULATED RESULTS:

Above circuit is simulated using LTspice and the results are presented below:

Figure 2: Circuit schematic

The waveform for output voltage V_{out} is shown in Figure 3

Figure 3: Waveform for V_{out}

The waveforms for feedback signal \mathcal{V}_f and output signal \mathcal{V}_{out} are shown in Figure 4

Figure 4: Waveforms for V_f and V_{out}

Comparison of theoretical and simulated values:

Parameters	Theoretical	Simulated
Frequency of oscillation (f_o)	80 kHz	79.808612 kHz
Time period of oscillations	$12.5 \ \mu s$	$12.529976 \ \mu s$
Amplitude of oscillations	_	6.6959015 V
Feedback signal (V_f) amplitude and phase w.r.t. V_{out}	_	6.24089 V, 180°
Feedback fraction and phase shift offered by LC tank circuit	1, 180°	$0.932046,180^{\circ}$

2. In Collpits oscillator, amplifier components are $R_1=100 \mathrm{k}~\Omega,~R_2=1~\mathrm{k}\Omega,~R_E=1~\mathrm{k}\Omega,~C_{C1}=1~\mu\mathrm{F},~C_{C2}=1~\mu\mathrm{F},~V_{CC}=10~\mathrm{V}$ Select LC tank circuit elements such that the frequency of oscillation is close to 650 kHz

Figure 5: Circuit 1

Solution:

$$f_o = \frac{1}{2\pi\sqrt{C_{eq} \times L_3}}$$

$$C_{eq} = C_3$$

$$L_3 = 0.1 \text{ mH}, f_o \approx 650 \text{ kHz}$$

$$650 \times 10^3 = \frac{1}{2\pi\sqrt{10^{-4} \times C_3}}$$

$$C_3 = 0.5995 \text{ nF}$$

$$C_1 = C_2 = 0.01 \ \mu \text{F}$$

Feedback fraction (k) =
$$\frac{C_1}{C_2}$$
 = 1

Time period of oscillations =
$$\frac{1}{f_o}$$
 = 12.5 μ s

Phase shift offered by LC tank circuit = 180°

SIMULATED RESULTS:

Above circuit is simulated using LTspice and the results are presented below: The

Figure 6: Circuit schematic

waveform for output voltage V_{out} is shown in Figure 7

Figure 7: Waveform for V_{out}

The waveforms for feedback signal V_f and output voltage V_{out} are shown in Figure 8

Figure 8: Waveforms for V_f and V_{out}

Comparison of theoretical and simulated values:

Parameters	Theoretical	Simulated
Frequency of oscillation (f_o)	$650~\mathrm{kHz}$	$65.1387~\mathrm{kHz}$
Time period of oscillations	$1.538 \ \mu s$	$1.53711~\mu {\rm s}$
Amplitude of oscillations	_	5.4621176 V
Feedback signal (V_f) amplitude and phase w.r.t. V_{out}	_	5.433 V, 180°
Feedback fraction and phase shift offered by LC tank circuit	1, 180°	0.99466, 180°

Table 1: Numerical 1