Data Visualization

Data Science Lifecycle

What is Data Science?

Walmart Story

3

Walmart Story

Netflix Story

-

Netflix Story

Target Story

The New York Times Magazine

How Companies Learn Your Secrets

What is Data Science?

9

Data Science Lifecycle

Data Science Lifecycle

11

1. BUSINESS UNDERSTANDING

- A project starts by understanding the what, the why, and the how of your project.
- The outcome of this phase:
 - clear research goal
 - a good understanding of the context
 - well-defined deliverables
 - a plan of action with a timetable and cost estimate
- The design team should think carefully about the use scenario
 - The business problem will be mapped to data science tasks.

Problem Definition

- **Define objectives:** work with your customer to understand and identify the business problems.
- Formulate questions: convert the business goals into questions that the data science techniques can target.
- **Define the success metrics:** look for specific, measurable, achievable, relevant, and time-bound metrics.
- Identify data sources: look for the data that is relevant to the question.

13

Formulate Questions

Comparison

Description

Regression

Classification

Clustering

Anomaly Detection

Recommendation

Define Success Metric

- Most companies don't care about the fancy ML metrics.
- The sole purpose of businesses: maximize profits.
- In case of Netflix:
 - The objective is to increase revenue by 5%.
 - To increase revenue, we need to increase the customer retention rate by 8%.
 - To increase the customer retention rate, we need to increase the accuracy of the recommender system by 10%.
- Look for specific, measurable, achievable, relevant, and timebound metrics.

15

Identify Data Sources

 Internal Data: many companies will have already collected and stored the data for you.

• External Data: the data outside your organization that needs to be bought from third parties or collected.

2. DATA MINING

17

Data Collection

- **Data collection** is the process of gathering and measuring information of interest, in an established systematic fashion that enables one to answer stated research questions, test hypotheses, and evaluate outcomes.
 - What data do I need for my project?
 - Where does it live?
 - How can I obtain it?
 - What is the most efficient way to store and access all of it?

3. DATA CLEANING

19

Data Cleaning

 Data cleaning is the process of editing, correcting, and structuring data within a data set so that it's generally uniform and prepared for analysis.

Scrub for Duplicate

- Duplicates: repeated data entries.
 - It happens when data is coming from different sources or users, for any reason, submit their entry more than once.
- You should usually remove duplicates.

21

Scrub for Irrelevant Data

• Irrelevant data is the type of information that doesn't have any formal errors but is just not useful for your project.

Scrub for Incorrect Data

- Incorrect data is often easy to spot, as it's just illogical.
 - Example: you're preparing a report about the app users' average age, and you see entries like -1 or 420.
- The reason for incorrect data lies within the processing stage, be it preparation or cleaning.
 - It is usually attributed to imprecisely defined functions, and transformations data went through.
- Amend the functions that caused the wrong calculations.
 - If not possible, then remove the data.

23

Handle Missing Data

- Missing data is just unavoidable. You're likely to find even whole rows and columns of missing values in your datasets.
- There three main methods of dealing with missing data:
 - **Drop**: When the missing values in a column are few and far between, the easiest way to handle them is to drop the missing data rows.
 - Impute: Calculate the missing values based on other observations.
 - Statistical techniques like median, mean, or linear regression.
 - Replacing missing data with entries from another "similar" database.
 - Flag: Missing data can be informative, especially if there is a pattern in play. Flagging the data can help you with those subtle insights.

Visualizing Missing Values

Sample Number

Column Number

25

Check the Outliers

- Outliers are values that stand out and are significantly different from the others.
- They are not necessarily mistakes, but they can be.
- So how do you differentiate?
 - What you need to watch out for is the context.
 - Example: you're researching your app users' age, and you find entries like 72 and 2.
- Don't remove an outlier unless you know for a fact that it's a mistake.

Standardize + Normalize

- Standardization and normalization make data ripe for statistical analysis and easy to compare and analyze.
- **Standardization** is a process during which you're making sure all your values adhere to a specific standard:
 - Deciding whether to go with kilos or grams, upper or lower case, etc.
 - Example: +989121234567, 00989121234567, 989121234567, $09121234567 \rightarrow 9121234567$
- Normalization is the process of adjusting the values to a common scale.
 - Example: rescale values into the 0-1 range.

27

4. DATA EXPLORATION

Data Exploration

 Data exploration is an approach to analyze the dataset using visual techniques, in order to better understand the nature of the data.

29

Variable Identification

```
housing.info()
  <class 'pandas.core.frame.DataFrame'>
  RangeIndex: 20640 entries, 0 to 20639
  Data columns (total 10 columns):
     Column
                          Non-Null Count Dtype
                          -----
      longitude
                          20640 non-null
       latitude
                          20640 non-null
      housing_median_age 20640 non-null
      total_rooms
                          20640 non-null float64
      total_bedrooms
                          20433 non-null float64
       population
                          20640 non-null float64
       households
                          20640 non-null float64
                          20640 non-null float64
       median_income
      median_house_value 20640 non-null float64
                          20640 non-null object
      ocean_proximity
  dtypes: float64(9), object(1)
  memory usage: 1.6+ MB
```


Exploratory Data Analysis

31

Anscombe's Quartet

• For all four datasets:

Property	Value
Mean of x	9
Sample variance of x	11
Mean of y	7.50
Sample variance of y	4.125
Correlation between x and y	0.816
Linear regression line	y = 3.00 + 0.500x

I		II		III		IV	
X	У	Х	у	Х	у	Х	У
10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58
8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76
13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71
9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84
11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47
14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04
6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25
4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.50
12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.56
7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91
5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.89

Anscombe's Quartet

33

DataSaurus

dataset	mean(x)	mean(y)	var(x)	var(y)	cor(x, y)
away	54.266	47.835	281.227	725.750	-0.064
bullseye	54.269	47.831	281.207	725.533	-0.069
circle	54.267	47.838	280.898	725.227	-0.068
dino	54.263	47.832	281.070	725.516	-0.064
dots	54.260	47.840	281.157	725.235	-0.060
h_lines	54.261	47.830	281.095	725.757	-0.062
high_lines	54.269	47.835	281.122	725.763	-0.069
slant_down	54.268	47.836	281.124	725.554	-0.069
slant_up	54.266	47.831	281.194	725.689	-0.069
star	54.267	47.840	281.198	725.240	-0.063
v_lines	54.270	47.837	281.232	725.639	-0.069
wide_lines	54.267	47.832	281.233	725.651	-0.067
x_shape	54.260	47.840	281.231	725.225	-0.066

5. FEATURE ENGINEERING

35

Feature Engineering

- Feature engineering is the process of using domain knowledge to transform your raw data into informative features.
- This step requires a creative combination of domain expertise and the insights obtained from the data exploration step.
- This stage will directly influence the accuracy of the predictive model you construct in the next stage.

Feature Engineering

- Feature selection: is the process of cutting down the features that add more noise than information.
 - Filter methods: apply statistical measure to assign scoring to each feature
 - Wrapper methods: frame the selection of features as a search problem and use a heuristic to perform the search
 - **Embedded methods**: use machine learning to figure out which features contribute best to the accuracy
- Feature construction: involves creating new features from the ones that you already have.

37

Housing Dataset

Feature Combinations

- > Try out various feature combinations.
- > Example: the total number of rooms in a district is not very useful if you don't know how many households there are.
 - > The number of rooms per household is more informative.
- Create new attributes:

```
housing["rooms_per_household"] = housing["total_rooms"]/housing["households"]
housing["bedrooms_per_room"] = housing["total_bedrooms"]/housing["total_rooms"]
housing["population_per_household"]=housing["population"]/housing["households"]
```

39

6. PREDICTIVE MODELING

Predictive Modeling

- Predictive modeling is where the machine learning finally comes into your data science project.
- Depending on the type of question that you're trying to answer, there are many modeling algorithms available.
- The models that you train will be dependent on:
 - the size, type and quality of your data
 - how much time and computational resources you are willing to invest
 - the type of output you intend to derive.

41

7. DATA VISUALIZATION

Data Visualization

- Data visualization combines the fields of communication, psychology, statistics, and art, with an ultimate goal of communicating the data in a simple yet effective and visually pleasing way.
- Present your solution:
 - Highlighting what you have learned
 - Expose the model with an interface
 - Data Dashboards