Assessment Schedule - 2009

Scholarship Mathematics with Calculus (93202)

Evidence Statement

One minor error may be ignored on each part of each of the five questions (MEI)

On each question a total of 9 marks are available, with 9 dropping to 8 on any question (allowing a candidate one

incomplete part for a top mark)

Question	Evidence	Code
ONE (a)	$\frac{dy}{dx} = ka\cos(kx) - kb(\sin kx)$ $\frac{d^2y}{dx^2} = -k^2a\sin(kx) - k^2b\cos(kx)$ $= -k^2(a\sin(kx) + b\cos(kx))$	1 for any form of 2nd derivative (and 1st deriv. correct, if given)
4.)	$= -k^2 y$ [Alternative method: integrate y twice, setting integration constants to zero]	2 for required form (with y) 3 if without MEI
(b)	$s(t) = \sqrt{(1+\cos t)^2 + (-\sin t)^2}$ $= \sqrt{1+2\cos t + \cos^2 t + \sin^2 t}$ $= \sqrt{2+2\cos t}$ $= (2+2\cos t)^{1/2} = \sqrt{2}\sqrt{1+\cos t}$	1 for a simplified form of $s(t)$
	$a(t) = \frac{\mathrm{d}s}{\mathrm{d}t}$ $= \frac{-2\sin t}{2(2 + 2\cos t)^{\frac{1}{2}}}$ $= \frac{-\sin t}{\sqrt{2 + 2\cos t}} = \frac{-\sin t}{\sqrt{2}\sqrt{1 + \cos t}}$	+1 for any form of $a(t)$
	$\sqrt{2+2\cos t}$ $\sqrt{2}\sqrt{1+\cos t}$ Will be undefined when $\cos t = -1$ When $t = (2k+1)\pi$ (with k an integer), the function $a(t)$ is undefined, and so not continuous at odd multiples of π .	+1 for any $a(t)$ discontinuity (condition for cos t sufficient)
(c)	$(1+\operatorname{cis} 2\theta)(1+\operatorname{cis} 4\theta) = 1+\operatorname{cis} 2\theta+\operatorname{cis} 4\theta+\operatorname{cis} 6\theta$ $= 1+\operatorname{cos} 2\theta+\operatorname{isin} 2\theta+\operatorname{cos} 4\theta+\operatorname{isin} 4\theta+\operatorname{cos} 6\theta+\operatorname{isin} 6\theta$ $= (1+\operatorname{cos} 2\theta+\operatorname{cos} 4\theta+\operatorname{cos} 6\theta)+i(\operatorname{sin} 2\theta+\operatorname{sin} 4\theta+\operatorname{sin} 6\theta)$ $u = 1+\operatorname{cos} 2\theta+\operatorname{cos} 4\theta+\operatorname{cos} 6\theta$ $v = \operatorname{sin} 2\theta+\operatorname{sin} 4\theta+\operatorname{sin} 6\theta$	1 for separating into real and imaginary (any forms)
	$\frac{u}{v} = \frac{1 + \cos 2\theta + \cos 4\theta + \cos 6\theta}{\sin 2\theta + \sin 4\theta + \sin 6\theta}$ $= \frac{1 + 2\cos 3\theta \cos \theta + 2\cos^2 3\theta - 1}{2\sin 3\theta \cos \theta + 2\sin 3\theta \cos 3\theta}$ $= \frac{\cos 3\theta(\cos \theta + \cos 3\theta)}{\sin 3\theta(\cos \theta + \cos 3\theta)}$ $= \frac{\cos 3\theta}{\sin 3\theta}$ $= \cot 3\theta$	2 for double angle for 3θ 3 (or otherwise) arrive at answer

TWO (a)	$4\cosh x^{3} - 3\cosh x = \frac{1}{2}(e^{x} + e^{-x})^{3} - \frac{3}{2}(e^{x} + e^{-x})$ $= \frac{1}{2}\left(e^{3x} + 3e^{2x}e^{-x} + 3e^{x}e^{-2x} + e^{-3x}\right) - \frac{3}{2}e^{x} - \frac{3}{2}e^{-x}$	
	$= \frac{1}{2}e^{3x} + \frac{3}{2}e^{x} + \frac{3}{2}e^{-x} + \frac{1}{2}e^{-3x} - \frac{3}{2}e^{x} - \frac{3}{2}e^{-x}$ $= \frac{1}{2}e^{3x} + \frac{1}{2}e^{-3x} = \frac{e^{3x} + e^{-3x}}{2}$	1 expanding cubic term
	$= \cosh(3x)$	2 arrive at answer 3 without MEI
(b)	$\int_0^a \pi x^{2p} dx = \int_0^{a^p} \pi y^{2/p} dx dy$ $\left[\frac{\pi x^{2p+1}}{2p+1}\right]_0^a = \left[\frac{\pi y^{2/p+1}}{2/p+1}\right]_0^{a^p}$ $a^{2p+1} a^{2+p}$	+1 both integrals with limits
	$\frac{a^{2p+1}}{2p+1} = \frac{a^{2+p}}{2/p+1}$ $\frac{a^{2p+1}}{a^{2+p}} = \frac{2p+1}{2/p+1}$ $a^{p-1} = \frac{p(2p+1)}{2+p}$	+1 evaluate both
	$a = \sqrt[p-1]{\frac{p(2p+1)}{2+p}} = \left(\frac{p(2p+1)}{2+p}\right)^{1/(p-1)}$	+1 any form for <i>a</i> (inc. log form)
(c)	The exact form is $\int_{r}^{t} (ax^{2} + bx + c) dx = \left[\frac{1}{3} ax^{3} + \frac{1}{2} bx^{2} + cx \right]_{r}^{t}$	
	$= \frac{1}{3}a(t^3 - r^3) + \frac{1}{2}b(t^2 - r^2) + c(t - r)$ $= \frac{1}{3}at^3 + \frac{1}{2}bt^2 + ct - \frac{1}{3}ar^3 - \frac{1}{2}br^2 - cr$ The approximation is	+1 any form of integral
	$\frac{s-r}{6} \left[y_0 + 4y_1 + y_2 \right] = \frac{t-r}{6} \left[ar^2 + br + c + 4\left(a\left(\frac{t+r}{2}\right)^2 + b\frac{t+r}{2} + c\right) + at^2 + bt + c \right]$ $= \frac{t-r}{6} \left[ar^2 + br + c + a(t+r)^2 + 2b(t+r) + 4c + at^2 + bt + c \right]$	+1 any form of approximation
	$= \frac{t-r}{6} \left[2at^2 + 2ar^2 + 2atr + 3bt + 3br + 6c \right]$ $= \frac{1}{3}at^3 - \frac{1}{3}at^2r + \frac{1}{3}ar^2t - \frac{1}{3}ar^3 + \frac{1}{3}at^2r - \frac{1}{3}atr^2$	
	$ + \frac{1}{2}bt^2 - \frac{1}{2}btr + \frac{1}{2}btr - \frac{1}{2}br^2 + ct - cr $ $ = \frac{1}{3}at^3 + \frac{1}{2}bt^2 + ct - \frac{1}{3}ar^3 - \frac{1}{2}br^2 - cr $ so they are equal, as required.	3 demonstrate equality

		1	
THREE (a)	$\frac{1}{a+bi} = \frac{1}{a} + \frac{1}{bi}$ $\frac{a-bi}{a^2+b^2} = \frac{1}{a} - \frac{1}{b}i$ $\frac{1}{a+bi} = \frac{1-bi}{a^2+b^2} \text{ OR } \frac{1}{a} + \frac{1}{bi} = \frac{a+bi}{abi}$	1 rearrange either component	
	u i b u b		
	Equating real and imaginary terms:	2 rearrange for any	
	<u>a</u> _1	comparable forms	
	$\frac{a}{a^2 + b^2} = \frac{1}{a}$		
	$\frac{-b}{a^2+b^2} = \frac{-1}{b}$		
	So 2 2 12 2 2 2		
	$a^{2} = a^{2} + b^{2}$, so $b^{2} = 0$ $-b^{2} = -a^{2} - b^{2}$, so $a^{2} = 0$	3 (or otherwise) demonstrate no valid	
	$-b^2 = -a^2 - b^3, \text{ so } a^2 = 0$ So $a + bi = 0 + 0i = 0$, so there is no non-zero solution.	solution	
b(i)	The roots are $\left\{k, k \operatorname{cis} \frac{2\pi}{3}, k \operatorname{cis} \frac{4\pi}{3}, -\frac{k}{2}, \frac{k}{2} \operatorname{cis} \frac{\pi}{3}, \frac{k}{2} \operatorname{cis} \frac{5\pi}{3}\right\}$	1 for exact roots (any	
	$\left\{k, -\frac{1}{2}k \pm \frac{\sqrt{3}}{2}ki, -\frac{1}{2}k, \frac{1}{4}k \pm \frac{\sqrt{3}}{4}ki\right\}$	form) MEI if 1 missing	
	$p(x) = (x - k)(x + \frac{k}{2})q(x)$		
	$=A(x^3-k^3)\left(x^3+\left(\frac{k}{2}\right)^3\right)$	2 linear terms only	
	(· · · /	3 (or otherwise) $p(x)$ any form	
	$= A(x-k)(x+\frac{k}{2})(x^2+kx+k^2)(x^2-\frac{k}{2}x+\frac{k^2}{4})$	any form	
b(ii)	$(2, 2, 2, 3, k^3), (2, 2, 3, k^3)$	1 derivative	
, ,	$p'(x) = 3Ax^{2}(x^{3} + \frac{k^{3}}{8}) + 3Ax^{2}(x^{3} - k^{3})$	(any form) but:	
	$=3Ax^{2}(2x^{3}-\frac{7}{8}k^{3})=6Ax^{2}(x^{3}-\frac{7}{16}k^{3})$	Consistency mark NOT available if $p(x)$	
	$= 6Ax^5 - \frac{21}{8}Ak^3x^2$	is too simple	
	$p'(x) = Ax^2(6x^3 - \frac{21}{8}k^3)$		
	$x = 0$ or $6x^3 = \frac{21}{8}k^3$		
	$x^3 = \frac{7}{16}k^3$		
	The roots of $p'(x)$ are $\{0,0,\sqrt[3]{\frac{7}{16}}k,\sqrt[3]{\frac{7}{16}}k\operatorname{cis}\frac{2\pi}{3},\sqrt[3]{\frac{7}{16}}k\operatorname{cis}\frac{4\pi}{3}\}$ (and note that $\sqrt[3]{\frac{7}{16}}=\frac{\sqrt[3]{28}}{4}$)		
	1	2 for exact roots	
		(any form)	
		3 for radial positions	
		of roots	

FOUR	dy3 ½	
(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-3}{2}x^{\frac{1}{2}}$	
	$L = \int_{0}^{R^2 - 3} \sqrt{1 + \frac{9}{4}x} \mathrm{d}x$	
	$L = \int_{0}^{k^{\frac{2}{3}}} \sqrt{1 + \frac{9}{4}x} dx$ $= \left[\frac{2}{3} \frac{4}{9} \left(1 + \frac{9}{4} x \right)^{\frac{3}{2}} \right]_{0}^{k^{\frac{2}{3}}}$	+1 correct integral for line length: limits not required
	$= \frac{8}{27} \left(1 + \frac{9}{4} k^{\frac{2}{3}}\right)^{\frac{3}{2}} - \frac{8}{27}$	
	$\frac{56}{27} = \frac{1}{27} (4 + 9k^{\frac{2}{3}})^{\frac{3}{2}} - \frac{8}{27}$	+1 set equal to 56/27, with limits 0 and
	$64 = (4 + 9k^{\frac{2}{3}})^{\frac{3}{2}}$	$k^{\frac{2}{3}}$ (or <i>b</i> where used to find <i>k</i>)
	$16 = 4 + 9k^{\frac{2}{3}}$ $12 = 9k^{\frac{2}{3}}$	to find k)
	$12 = 9k^{3}$ $k^{\frac{2}{3}} = \frac{4}{3}$	
	$k = \frac{8}{3\sqrt{3}} = \frac{8}{9}\sqrt{3}$	+1 correct value in surd form
(b)	Arc length of sector of circle = $R\theta$ Volume of the cone =	
	$\begin{bmatrix} 1 & 1 & 2 \end{bmatrix}$	
	$V = \frac{\pi}{3}\pi r \ h$ Circumference of circle = arc length $2\pi r = R\theta \Rightarrow r = \frac{R\theta}{2\pi}$	1 relationship of θ to circumference or radius
	$r^2 + h^2 = R^2 \Rightarrow h = \sqrt{R^2 - r^2} = \sqrt{R^2 - \left(\frac{R\theta}{2\pi}\right)^2}$	
	Substituting	
	$V = \frac{1}{3}\pi \left(\frac{R\theta}{2\pi}\right)^2 \sqrt{R^2 - \left(\frac{R\theta}{2\pi}\right)^2}$	2 volume in terms of one variable
	$=\frac{R^3}{24\pi^2}\left(\theta^2\right)\sqrt{4\pi^2-\theta^2}$	
	$\frac{dV}{d\theta} = \frac{R^3}{24\pi^2} \left[2\theta\sqrt{4\pi^2 - \theta^2} + \theta^2 \frac{1}{2} \left(4\pi^2 - \theta^2 \right)^{-1} \left(-2\theta \right) \right] = 0$	
	$2\sqrt{4\pi^2 - \theta^2} = \theta^2 \left(4\pi^2 - \theta^2\right)^{-\frac{1}{2}}$	
	$4\pi^2 - \theta^2 = \frac{\theta^2}{2}$	3 angle for max. volume:
	$\theta = \sqrt{\frac{8}{3}}\pi$	exact not required

$$\frac{H-h}{r} = \frac{H}{R}$$

$$H - h = \frac{r}{R}H$$

1 relationship of heights/radii in cone and frustum (relative to candidate's variables)

$$V = \frac{1}{3}\pi R^{2}H - \frac{1}{3}\pi r^{2} (H - h)$$

$$= \frac{1}{3}\pi R^{2}H - \frac{1}{3}\pi r^{2} (\frac{rH}{R})$$

$$= \frac{1}{3}\pi R^{2}H - \frac{H}{3R}\pi r^{3}$$

$$\frac{\mathrm{d}V}{\mathrm{d}r} = -\frac{\pi H r^2}{R}$$

$$\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{\mathrm{d}h}{\mathrm{d}r} \times \frac{\mathrm{d}r}{\mathrm{d}V} \times \frac{\mathrm{d}V}{\mathrm{d}t}$$
$$= \frac{-H}{R} \times \frac{-R}{\pi H r^2} \times k\pi r^2 = k$$

 $R \frac{\pi}{\pi}Hr^{2}$ 2 use Chain rule to find dh/dt = k

Initially $h = \frac{1}{2}H$ at t = 0 giving $C = \frac{1}{2}H$

Then h = 0 at t = 10 giving

$$10k + \frac{1}{2}H = 0$$

$$k = -\frac{1}{20}H$$

$$h = -\frac{1}{20} Ht + \frac{1}{2} H$$

Half volume occurs at $h = H\left(1 - \frac{1}{\sqrt[3]{2}}\right)$

$$H\left(1 - \frac{1}{\sqrt[3]{2}}\right) = -\frac{1}{20}Ht + \frac{1}{2}H$$

$$1 - \frac{1}{\sqrt[3]{2}} = -\frac{1}{20}t + \frac{1}{2}$$

$$\frac{1}{20}t = \frac{1}{\sqrt[3]{2}} - \frac{1}{2}$$

$$t = \frac{20}{\sqrt[3]{2}} - 10$$

[Approximately 5.874 days]

3 correct value: exact not required

FIVE	Area of square $A_S = (\sqrt{2}b)^2 = 2b^2$		
(a)	Area of square $A_S = (\sqrt{2b})^2 = 2b^2$ Area of ellipse $A_E = \pi ab$		
	Area of empse $N_E = nab$		1 relate areas in
	$4b^2 = \pi ab$		terms of a and b
	$a = \frac{4}{\pi}b$		2 eccentricity still
	$b = \frac{\pi}{4} a$		has a or b
	$c^2 = a^2 - b^2 = a^2 - \frac{\pi^2}{16}a^2$		3 correct value (exact
	$e = \frac{c}{a} = \sqrt{1 - \frac{\pi^2}{16}}$		value not required)
	$a = \sqrt{1 - 16}$		
(b)	$\begin{bmatrix} xx_0 & yy_0 \\ \end{bmatrix}$	Altamatina (agumentatas).	
	$\left \frac{xx_0}{a^2} - \frac{yy_0}{b^2} \right = 1$	Alternative (asymptotes): 1 for a graphical understanding	of approaching
	$\frac{xx_0}{a^2} = 1 + \frac{yy_0}{b^2}$	asymptote 2 for more carefully explained	understanding
	$x = \frac{a^2}{x_0} \left(1 + \frac{y_0}{b^2} y \right)$	3 for a full explanation, including	
	$x = \frac{1}{x_0} \left(1 + \frac{1}{b^2} y \right)$	diagram	
	$x = \frac{a^2b^2 + a^2y_0y}{b^2x_0}$		
	ÿ		1 make x or y the subject of either
	Substituting into the equation for the hyperbola $b^2x^2 - a^2y^2 = a^2b^2$:		equation
	$b^{2} \left(\frac{a^{2}b^{2} + a^{2}y_{0}y}{b^{2}x_{0}} \right)^{2} - a^{2}y^{2} = a^{2}b^{2}$		
	$a^{2} \left(b^{4} + 2b^{2} y_{0} y + y_{0}^{2} y^{2}\right) - b^{2} x_{0}^{2} y^{2} = b^{4} x_{0}^{2}$		
	$y^{2} \left(a^{2} y_{0}^{2} - b^{2} x_{0}^{2}\right) + 2a^{2} b^{2} y_{0} y + b^{4} \left(a^{2} - x_{0}^{2}\right) = 0$		2 for quadratic in y
	$-a^2b^2y^2 + 2a^2b^2y_0y + b^4\left(a^2 - x_0^2\right) = 0$		or x
	$-a^2y^2 + 2a^2y_0y + b^2(a^2 - x_0^2) = 0$		
	A quadratic in y		
	$y^{2} - 2y_{0}y - b^{2} \left(1 - \frac{x_{0}^{2}}{a^{2}}\right) = 0$		
	$y^{2} - 2y_{0}y - b^{2} \left(-\frac{y_{0}^{2}}{b^{2}} \right) = 0$		
	$y^2 - 2y_0y + y_0^2 = (y - y_0)^2 = 0$		3 show (x_0, y_0) is the
	The quadratic has one (repeated) root; there are no	other points of intersection.	only solution

The question responses were awarded up to a total of 8 marks where candidates showed they were working at outstanding scholarship level.