Course 4: Deep Learning

Summary

Last session

- Unsupervised learning discover structure from unlabeled data
- 2 Clustering
- Decomposition sparse dictionary learning
- 4 Practical ethics

Today's session

- Multi-Layer Perceptron
- Convolutional Neural Networks
- Transformers

Global overview...

Global overview...

IMT-Atlantique

Global overview...

Deep Learning in a nutshell (1/3)

Definition

Using deep Artificial Neural Networks.

We generally talk about "Neural Networks instead of "Artificial Neural Networks" (but this is the most correct terminology!)

Deep Learning in a nutshell (2/3)

A major breakthrough in image classification:

Source: Kang, D. Y., Duong, H. P., & Park, J. C. (2020). Application of deep learning in dentistry and implantology. Journal of implantology and applied sciences, 24(3), 148-181.

Details for the human evaluation: Russakovsk, Dieg et al.. ImageNet Large Scale Visual Recognition Challenge, https://arxiv.org/pdf/1409.0575.pdf

Deep Learning in a nutshell (3/3)

 $Inspired from \, \verb|https://www.softwaretesting| help.com/data-mining-vs-machine-learning-vs-ai/data-mining-vs-machine-learn$

Outline

Multi-layer Perceptron

2 Convolutional Neural Networks (CNN)

3 Transformers

Perceptron

1943, implementation in 1957

Perceptron is a nonlinear operation in which weights W are trainable.

Source: By Mat the w at English Wikipedia, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=23766733

Perceptron

1943, implementation in 1957

Perceptron is a nonlinear operation in which weights W are trainable.

Figure: The arrows represent the weights *W*.

Optimizing the weights

Loss

- Prediction: $y = f\left(\sum_{d=0}^{D} x_d W_d\right)$
- Ground truth: ŷ
- Loss (one example:) $\mathcal{L}(x, W, \hat{y}) = d(y, \hat{y})$ (ex: $d(y, \hat{y}) = ||y - \hat{y}||_2^2$)
- Loss (*i* examples): $J(W) = \sum_{i} \mathcal{L}(x^{(i)}, W, \hat{y}^{(i)})$

Gradient descent

- Compute the gradient: $\frac{\partial J(W)}{\partial W}$ (high dimensional derivative)
- Update weights: $\mathbf{W} \leftarrow \mathbf{W} \eta \frac{\partial J(\mathbf{W})}{\partial \mathbf{W}}$

Gradient descent

Intuition behind the gradient descent

Update is given as: $W \leftarrow W - \eta \frac{\partial J(W)}{\partial W}$

- lacksquare $\partial J(W)$ gives the direction
- lacksquare η gives the size of the step

Adapted from https://tex.stackexchange.com/questions/561921/replicating-a-plot-using-tikz 👍 📜 👂 🔌 🔇

Gradient descent

Intuition behind the gradient descent

Update is given as: $W \leftarrow W - \eta \frac{\partial J(W)}{\partial W}$

- lacksquare $\partial J(W)$ gives the direction
- \blacksquare η gives the size of the step

Small step:

Gradient descent

Intuition behind the gradient descent

Update is given as: $W \leftarrow W - \eta \frac{\partial J(W)}{\partial W}$

- $\partial J(W)$ gives the direction
- \blacksquare η gives the size of the step

Large step:

Multi-Layer Perceptron

Multi-Layer Perceptron (= fully-connected network)

- Stacking Perceptrons.
- The *deep* term comes form this stacking
- Prediction: $y = f(W^{(L)} \cdots f(W^{(2)}f(W^{(1)}x)))$

Source: https://davidstutz.de/illustrating-convolutional-neural-networks-in-latex-with-tikz/ 😑 🕟

Definitions

$$\mathbf{y}^{(l+1)} = f(\mathbf{W}^{(l)}\mathbf{y}^{(l)} + \mathbf{b}^{(l)}) = \phi^{(l)}(\mathbf{y}^{(l)})$$

- Each building block y^(l+1) is called a layer.
- One element *i* of a layer $(y_i^{(l)})$ is called a **neuron** (both as input and output).
- The nonlinear function f is called the activation function.
- **W**^(l) are called **weights**.
- **b**(l) is called the **bias**.

Definitions

$$\mathbf{y}^{(l+1)} = f(\mathbf{W}^{(l)}\mathbf{y}^{(l)} + \mathbf{b}^{(l)}) = \phi^{(l)}(\mathbf{y}^{(l)})$$

- Each building block $\mathbf{y}^{(l+1)}$ is called a **layer**.
- One element i of a layer $(y_i^{(l)})$ is called a **neuron** (both as input and output).
- The nonlinear function f is called the activation function.
- W^(l) are called weights.
- $\mathbf{b}(l)$ is called the **bias**.

Definitions

$$\mathbf{y}^{(l+1)} = f(\mathbf{W}^{(l)}\mathbf{y}^{(l)} + \mathbf{b}^{(l)}) = \phi^{(l)}(\mathbf{y}^{(l)})$$

- Each building block $\mathbf{y}^{(l+1)}$ is called a **layer**.
- One element i of a layer $(y_i^{(l)})$ is called a **neuron** (both as input and output).
- The nonlinear function f is called the activation function.
- W^(l) are called weights.
- $\mathbf{b}(l)$ is called the bias.

Definitions

$$\mathbf{y}^{(l+1)} = f(\mathbf{W}^{(l)}\mathbf{y}^{(l)} + \mathbf{b}^{(l)}) = \phi^{(l)}(\mathbf{y}^{(l)})$$

- Each building block $\mathbf{y}^{(l+1)}$ is called a **layer**.
- One element i of a layer $(y_i^{(l)})$ is called a **neuron** (both as input and output).
- The nonlinear function f is called the activation function.
- **W**^(l) are called **weights**.
- $\mathbf{b}(l)$ is called the bias.

Definitions

$$\mathbf{y}^{(l+1)} = f(\mathbf{W}^{(l)}\mathbf{y}^{(l)} + \mathbf{b}^{(l)}) = \phi^{(l)}(\mathbf{y}^{(l)})$$

- Each building block $\mathbf{y}^{(l+1)}$ is called a **layer**.
- One element i of a layer $(y_i^{(l)})$ is called a **neuron** (both as input and output).
- The nonlinear function f is called the activation function.
- **W**^(l) are called **weights**.
- **b**(l) is called the **bias**.

Definitions

$$\mathbf{y}^{(l+1)} = f(\mathbf{W}^{(l)}\mathbf{y}^{(l)} + \mathbf{b}^{(l)}) = \phi^{(l)}(\mathbf{y}^{(l)})$$

- Each building block $\mathbf{y}^{(l+1)}$ is called a **layer**.
- One element i of a layer $(y_i^{(l)})$ is called a **neuron** (both as input and output).
- The nonlinear function f is called the activation function.
- **W**^(l) are called **weights**.
- **b**(l) is called the **bias**.

Why is it called Neural Network?

"Neurons" may be seen as **loosely** inspired from the human brain.

Attribution: Egm4313.s12 at English Wikipedia,

https://en.wikipedia.org/wiki/Neural_ network_(machine_learning)#/media/

File:Neuron3.png

Detail of one neuron in an Artificial Neural Network.

* Late note: I forgot the bias in the graphic.

This is an **analogy**, artificial neural networks are **not** following the human brain (in general).

Why is it called Neural Network?

"Neurons" may be seen as **loosely** inspired from the human brain.

Attribution: Egm4313.s12 at English Wikipedia,

https://en.wikipedia.org/wiki/Neural_ network_(machine_learning)#/media/

File:Neuron3.png

This is an **analogy**, artificial neural networks are **not** following the human brain (in general).

Gradient descent for deep neural networks

Backpropagation

- Gradient descent for all layers (chain rule).
- Simplified equation: $\frac{\partial J(W)}{\partial W} = \frac{\partial J(W)}{\partial W^{(L)}} \frac{\partial W^{(L)}}{\partial W^{(L-1)}} \frac{\partial W^{(L-1)}}{\partial W^{(L-2)}} \cdots \frac{\partial W^{(2)}}{\partial W^{(1)}}$
- The error **backpropagates** through the network (reverse path)
- Computationally efficient, but finds a local minimum (at best)

Source: http://introtodeeplearning.com/

Batch

Batch

- The *i* examples are divided in *batches* (small excerpt)
- Allows one to train without loading the whole dataset in memory
- Accelerate the learning phase

Limits of MLP

Limits of Multi-Layer Perceptrons

- Computationally heavy for large inputs
- Large number of parameters: prone to overfitting
- No notion of structure in the input: everything is a vector

Outline

1 Multi-layer Perceptron

2 Convolutional Neural Networks (CNN)

3 Transformers

Principle

- Applying a kernel to the input, on small parts of the image at a time.
- Weights of the kernel are **learned** and **shared**!
- 2D convolution was a game changer for image processing
- Translation invariance

Convolutional layer

$$\begin{pmatrix} \begin{pmatrix} w_{10} & w_{2} & w_{3} & w_{5} & 0 & 0 & 0 \\ w_{10} & w_{2} & w_{3} & 0 & 0 & 0 & 0 \\ 0 & w_{10} & w_{2} & w_{3} & 0 & 0 & 0 \\ 0 & 0 & w_{1} & w_{2} & w_{3} & 0 & 0 & 0 \end{pmatrix}$$

Example of 2D convolution:

 $Source: \verb|https://tex.stackexchange.com/questions/437007/drawing-a-convolution-with-tikz| | the convolution-with-tikz| | the convo$

Example of 2D convolution:

$$\begin{pmatrix}
0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 4 & 3 & 4 & 1 \\
1 & 2 & 4 & 3 & 3 \\
1 & 2 & 3 & 4 & 1 \\
1 & 3 & 3 & 1 & 1 \\
3 & 3 & 1 & 1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 4 & 3 & 4 & 1 \\
1 & 2 & 4 & 3 & 3 \\
1 & 2 & 3 & 4 & 1 \\
1 & 3 & 3 & 1 & 1 \\
3 & 3 & 1 & 1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 4 & 3 & 4 & 1 \\
1 & 2 & 3 & 4 & 1 \\
1 & 3 & 3 & 1 & 1 \\
3 & 3 & 1 & 1 & 0
\end{pmatrix}$$

 $Source: \verb|https://tex.stackexchange.com/questions/437007/drawing-a-convolution-with-tikz| | the convolution-with-tikz| | the convo$

Example of 2D convolution:

 $Source: \verb|https://tex.stackexchange.com/questions/437007/drawing-a-convolution-with-tikz| | the convolution-with-tikz| | the convo$

Example of 2D pooling:

1	2	3	1
1	1	1	1
2	3	1	6
8	1	4	5

Example of 2D pooling:

1	2	3	1
1	1	1	1
2	3	1	6
8	1	4	5

Example of 2D pooling:

1	2	3	1
1	1	1	1
2	3	1	6
8	1	4	5

Example of 2D pooling:

1	2	3	1
1	1	1	1
2	3	1	6
8	1	4	5

Convolutional Neural Network (4/5)

And repeat...

- Convolutional neural network: mainly Convolution + Pooling.
- ...But many other components may be added! (batch norm, dropout, skip connections, concatenation, ...)

Source: https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/

Convolutional Neural Network (5/5)

Why convolutions?

- Kernels capture important information in images
- The kernels become more and more complex with the depth of the network

What happened in 2012?

A combination of...

- Convolutional neural networks
- A very large dataset (ImageNet)
- Clever tricks (ex: data augmentation, i.e. altering image during training, very standard in Deep Learning)
- The use of GPUs for computation

Outline

1 Multi-layer Perceptron

2 Convolutional Neural Networks (CNN)

3 Transformers

What about now?

Image classification

- Image classification for a single dataset is (almost) solved
- Challenges of adapting models to unseen datasets
- Challenges when data is scarce
- Specific domains with few variability or complex classification are still challenging (ex: medical imaging)

Large Language Models

- Large Language Models caught everyone's attention (ChatGPT)
- Challenges of reducing their resources (data/power)
- May hallucinate: lack of robustness

Many other domains

Multimodal models (DALL-E, ...), Audio, Games, Video, ..

What about now?

Image classification

- Image classification for a single dataset is (almost) solved
- Challenges of adapting models to unseen datasets
- Challenges when data is scarce
- Specific domains with few variability or complex classification are still challenging (ex: medical imaging)

Large Language Models

- Large Language Models caught everyone's attention (ChatGPT)
- Challenges of reducing their resources (data/power)
- May hallucinate: lack of robustness

Many other domains
Multimodal models (DALL-E, ...), Audio, Games, Video, ...

What about now?

Image classification

- Image classification for a single dataset is (almost) solved
- Challenges of adapting models to unseen datasets
- Challenges when data is scarce
- Specific domains with few variability or complex classification are still challenging (ex: medical imaging)

Large Language Models

- Large Language Models caught everyone's attention (ChatGPT)
- Challenges of reducing their resources (data/power)
- May hallucinate: lack of robustness

Many other domains

Multimodal models (DALL-E, ...), Audio, Games, Video, ...

Focus on Large Language Models

Many models

- GPT (Open-AI)
- LLaMA (Meta)
- Gemini (Google)
- Mistral 8x7B (MistralAI)
- Many others... And more to come!

Masked Language Modeling

How are **you** doing today? \rightarrow How are ... doing today?

- The network learns to reconstruct masked words
- No supervision!
- Allows to leverage immense datasets (ex: GPT-3 was learned on an Internet scale dataset)

Focus on Large Language Models

Many models

- GPT (Open-AI)
- LLaMA (Meta)
- Gemini (Google)
- Mistral 8x7B (MistralAI)
- Many others... And more to come!

Masked Language Modeling

How are **you** doing today? \rightarrow How are ... doing today?

- The network learns to reconstruct masked words
- No supervision!
- Allows to leverage immense datasets (ex: GPT-3 was learned on an Internet scale dataset)

Focus on Large Language Models

Many models

- GPT (Open-AI)
- LLaMA (Meta)
- Gemini (Google)
- Mistral 8x7B (MistralAI)
- Many others... And more to come!

Masked Language Modeling

How are **you** doing today? \rightarrow How are ... doing today?

- The network learns to reconstruct masked words
- No supervision!
- Allows to leverage immense datasets (ex: GPT-3 was learned on an Internet scale dataset)

Large Language Models are greedy

Model sizes

- AlexNet (2012):62 Millionparameters
- GPT-3 (2020): 175 Billion parameters

Image source:

https://informationisbeautiful.

net/visualizations/

the-rise-of-generative-ai-large-langua

Transformers

Standard architecture nowadays

- No convolution
- Based on attention: what should be important for context?
- Used for text, image, audio, ...

Transformers

Standard architecture nowadays

- No convolution
- Based on attention: what should be important for context?
- Used for text, image, audio, ...

Transformer block

Based on 3 elements:

- Key
- Query
- Value

Intuition behind Transformers (1/3)

Attention: Key and Query

- Key: The current word of interest
- Query: All words which may be related

Source: Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473.

IMT-Atlantique Course 4: Deep Learning

Intuition behind Transformers (2/3)

From Attention to Self-Attention

In self-attention, Keys and Queries come from the same text: **context**.

Source:

 $\verb|https://research.google/blog/transformer-a-novel-neural-network-architecture-for-language-understanding/architecture-for-language-for-language-understanding/architecture-for-language-understanding/architecture-for-language-understanding/architecture-for-language-understanding/architecture-for-language-understanding/architecture-for-language-understanding/architecture-for-language-understanding/architecture-for-language-understanding/architecture-for-language-understanding/architecture-for-language-understanding/architecture-for-language-understanding/architecture-for-language-understanding/architecture-for-language-understanding/archi$

Intuition behind Transformers (2/3)

From Attention to Self-Attention

In self-attention, Keys and Queries come from the same text: context.

Source:

https://research.google/blog/transformer-a-novel-neural-network-architecture-for-language-understanding/

Intuition behind Transformers (3/3)

Transformer block

- Key and Query: Context
- Value: Modify the current work, to integrate context

Intuition behind Transformers (3/3)

Transformer block

- Key and Query: Context
- Value: Modify the current work, to integrate context

Transformers

Repeat Transformer blocks: Deep model

Figure 1: The Transformer - model architecture.

Deep Learning

Conclusion

- Deep Learning algorithms: powerful without feature extraction
- They require a lot of data to be trained
- The architecture plays an important role

Common criticisms

- Hard to interpret
- Reproduce biases from data
- May require massive amounts of energetic consumption

Going further

- Details and maths behind IA: https://youtu.be/aircAruvnKk
- Ethics and reflexions (french): Science4all & M.Phi

https://youtu.be/HbFadtOxs4k|https://youtu.be/_XJsAQsTOBo

Deep Learning

Conclusion

- Deep Learning algorithms: powerful without feature extraction
- They require a lot of data to be trained
- The architecture plays an important role

Common criticisms

- Hard to interpret
- Reproduce biases from data
- May require massive amounts of energetic consumption

Going further

- Details and maths behind IA: https://youtu.be/aircAruvnKk
- Ethics and reflexions (french): Science4all & M.Phi

https://youtu.be/HbFadtOxs4k|https://youtu.be/_XJsAQsTOBo

Deep Learning

Conclusion

- Deep Learning algorithms: powerful without feature extraction
- They require a lot of data to be trained
- The architecture plays an important role

Common criticisms

- Hard to interpret
- Reproduce biases from data
- May require massive amounts of energetic consumption

Going further

- Details and maths behind IA: https://youtu.be/aircAruvnKk
- Ethics and reflexions (french): Science4all & M.Phi

https://youtu.be/HbFadtOxs4k|https://youtu.be/_XJsAQsTOBo

Practical session

Lab

- Lab Pytorch: manipulating the basics of PyTorch
- Lab Modality: try a first baseline on your modality