Worksheet for the determination of the absorbed dose to water in a high-energy photon-beam

CLINICA AUNA CHICLAYO Date: User: 31/03/2025 1. Radiation treatment unit and reference conditions for $D_{w,Q}$ determination **Infinity Chiclayo** Accelerator: Nominal Acc Potential: MV 6 MU min⁻¹ Beam quality, Q (TPR 20,10) Nominal dose rate: 600.0 0.6825 Reference phantom: Set up: water Reference field size: 10 Reference distance: 100 cm x cm cm g cm⁻² Reference depth z_{ref} : 10.0 2. Ionization chamber and electrometer Ion. chamber model Serial No.: **270315003** g cm⁻² **PMMA** Chamber wall material: thickness: 0.078 g cm⁻² Waterproof sleeve material: thickness: g cm⁻² Phantom window material: thickness: Abs. dose-to-water calibration factor a 0.286 Calibration quality Q₀: Calibration depth: 5 If Q_0 is photons, give $TPR_{20,10}$: Reference conditions for calibration P₀: **101.3** kPa T_0 : 20.0 Rel. humidity: Polarizing potential V_1 : Calibration polarity: User polarity: Calibration laboratory: **LSCD IPEN** Date: 26-Jun-24 Electrometer model: PC ELECTROMETER Serial no.: 270267006 Calib. separately from chamber: Range setting: If yes Calibration laboratory: Date: 3. Dosimetry reading b and correction for influence quantities Uncorrected dosimeter reading at V_1 and user polarity: 2.344 Corresponding accelerator monitor units: 100 MU Ratio of dosimeter reading and monitor units: 0.0234 $M_1 =$ (i) P: **100.7** kPa T: **23.5** °C Rel. humidity: 50 1.018 Electrometer calibration factor Polarity correction ^a rdg at $+V_1$: 2.145 rdg at $-V_1$: 2.162 1.004

> Clinicos Sede OL: 10 Chiclayo JOSÉ VIDAL VALLADOLIO SALAZAR FISICO MÉDICO LIC. IND. IPENOTAN Nº 0922-22

Clínicas auna/Sede Chiclayo LUIS ENRIQUE QUISPE AYME Dosimetrista en Teleterapia. Lic. IPEN : 0268-20 Chricos Sede CHICLAYO RICARDO PALMA ESPARZA FÍSICO MEDICO IC. IND. IPENIOTAN N° 8970-22

(iv) Recombination correction (two-voltage method) Polarizing voltages:
$$V_1$$
 (normal) Readings at each $^{\rm e}$ V: M_1

$$V_1$$
 (normal) = -300
 M_1 = 2.145

$$V V_2 (reduced) =$$

$$M_2 = \frac{-150}{2.137}$$

Beam type:

Voltage ratio
$$V_1 / V_2 =$$

Ratio of read.
$$M_1/M_2 =$$

$$a_0 = 2.3370$$

$$a_2 = 2.2990$$

f,g 1.004 6

Corrected dosimeter reading at the voltage V_1 :

2.4047E-02

4. Absorbed dose rate to water at the reference depth, z_{ref}

Beam quality corr. factor for user quality Q:

0.9898

taken from

6.8069E-03 Gy / MU

5. Absorbed dose rate to water at the depth of dose maximum, z_{max}

Depth of dose maximum:

$$z_{max} =$$

(i) SSD set-up

Percentage depth-dose at z_{ref} for a

 $PDD(z_{ref} =$

$$10.0 \quad \text{g cm}^{-2}) =$$

14.50

Absorbed-dose rate at z_{max} :

1.0095E-02 Gy / MU

(ii) SAD set-up

TMR at z_{ref} for a 10 cm x 10 cm field size:

$$TMR(z_{ref} = 10.0 \text{ g cm}^{-2}) =$$

Absorbed-dose rate at z_{max} :

Gy / MU

Notes:

_			
VOLTAJES (nC)	-300	-150	300
	2.145	2.136	-2.163
	2.146	2.137	-2.16
	2.144	2.138	-2.162

-2.162

2.137

2.145

Clínicas auna/Sede Chiclayo LUIS ENRIQUE QUISPE AYME Dosimetrista en Teleterapia.

Lic. IPEN: 0268-20

- $^{\rm a}$ Note that if Q $_{\rm 0}$ is $^{\rm 60}{\rm Co},\,N_{\rm \it D,w,Qo}$ is denoted $N_{\rm \it D,w}$
- ^b All readings should be checked for leakage and corrected if necessary
- ^d M in the denominator of K_{pol} denotes reading at the user polarity. Preferably, each reading in the equation should be the average of the ratios of M (or M_+ or M_-) to the reading of an external monitor, M_{em} .
- ^e Strictly, readings should be corrected for polarity effect (average with both polarities). Preferably, each reading in the equation should be the average of the ratios of M_1 or M_2 to the reading of an external monitor, M_{em} .
- $^{\rm f}$ It is assumed that the calibration laboratory has performed a recombination correction. Otherwise the factor should be used instead of k_s . When Q_0 is $^{\rm 60}$ Co, k_s , $_{\rm Q0}$ (at the calibration laboratory) will normally be close to unity and the effect of not using this equation will be negligible in most cases.
- g Check that

0.004

0.004

Clinicos Sede CLICIO Chiclayo JOSÉ VIDAL VALLADOLIO SANZAR FISICO MEDICO LIC. IND. IPENIOTAN N° 0922-22

Clínicas auna/Sede Chiclayo
LUIS ENRIQUE QUISPE AYME
Dosimetrista en Teleterapia.
Lic. IPEN: 0268-20

Chincos Sede
QLITQ Chiclayo
RICARDO PALMA ESPARZA
FISICO MEDICO
LIC. IND. IPEN/OTAN N° 8970-22