Math 532: Homework 1 Due 9/4/19

Everyone turns in an individual copy.

- 1. From the textbook (2pts each), problems 1.5.4, 1.6.7, 1.9.3
- 2. (5pts) In both Cartesian and Polar coordinates, find the real and imaginary parts of $f(z) = z^4$.
- 3. (5pts) In both Cartesian and Polar coordinates, find the real and imaginary parts of $f(z) = \frac{1}{1+z^2+z^4}$.
- 4. (3pts) Show that $|e^{i\theta}| = 1$.
- 5. (3pts) Show, for $z \in \mathbb{C}$ using $z = |z|e^{i\theta}$ that $|z^m| = |z|^m$.
- 6. (3pts) Show for $z, w \in \mathbb{C}$ that $\overline{z+w} = \overline{z} + \overline{w}$.
- 7. (3pts) Show for $z, w \in \mathbb{C}$ that $\overline{zw} = \overline{z} \overline{w}$.
- 8. (5pts) (Yes, this is from the "Theory" work in class. I will frequently use Theory class problems as homework problems.) Using induction, show that for $z, w \in \mathbb{C}, m \in \mathbb{N}$

$$(z+w)^m = \sum_{l=0}^m \binom{m}{l} z^l w^{m-l}$$

9. (5pts) For $z, w \in \mathbb{C}$, show

$$|z+w| \le |z| + |w|$$