

RAJARATA UNIVERSITY OF SRI LANKA FACULTY OF APPLIED SCIENCES

B.Sc. (General) Degree

First Year - Semester I Examination - June / July 2018

CHE 1201- GENERAL CHEMISTRY

Time: Two (02) hours

Answer question No. 01 (compulsory) and any other three (03) questions.

Use of a non-programmable calculator is permitted.

Speed of light (c) $= 3.00 \times 10^8 \text{ ms}^{-1}$

Planck's constant (h) = 6.63×10^{-34} Js

Mass of electron (m_e) = 9.11×10^{-31} kg

Mass of proton (m_p) = 1.672 × 10⁻²⁷ kg

Mass of neutron (m_n) = 1.675 × 10⁻²⁷ kg

Magnitude of the electron charge = 1.60×10^{-19} C

Avogadro's number $(N_A) = 6.02 \times 10^{-23} \text{ mol}^{-1}$

Rydberg constant (R) = $1.10 \times 10^7 \text{ m}^{-1}$

- 1. A) A radio wave has a frequency of 3.6×10^{10} Hz. What is the energy (in Joule) of one photon of this radiation?
 - B) Hydrogen atom has a single electron. However, the atomic emission spectrum of hydrogen is composed of multiple lines. Briefly explain.
 - C) What is the wavenumber and wavelength (in Å), of the first transition in the Lyman series in the atomic spectra of hydrogen?

- i) Principal quantum number (n)
- ii) Angular momentum quantum number (*l*)
- iii) Magnetic quantum number (m_l)
- E) What are the possible values of spin quantum numbers (s) for an electron with l=1 and m=1? Justify your answer.
- F) Explain why the Rutherford's planetary model for the atom was a failure.
- G) Using the de Broglie's relationship, determine the wavelength in nm, associated with an electron whose velocity is $3 \times 10^7 \text{ m s}^{-1}$.

(7 × 15 marks => Maximum 100 marks)

2. A) In which of these bonding patterns does X have the electrons octet?

(a) (b) (c) (d) (e)

(24 marks)

(f)

B) Consider following molecular shapes to answer questions (a) to (c)

- i. Which has/have the most shared and unshared electron pairs around the central atom?
- ii. Which has the most unshared pairs around the central atom?
- iii. Do any have only shared pairs around the central atom? $(3 \times 12 \text{ marks})$

- C) State whether the sentence "A non-polar molecule may possess polar covalent bond" is correct or incorrect. Explain your answer with an example. (24 marks)
- Give the ideal bond angle and expected deviation in the bond angle, positive or D) negative, for each of following compound.

 $(2 \times 8 \text{ marks})$

- 3. A) Consider the following molecules.
 - (a) SF_4
- (b) NBr₃
- (c) ICl₂
- i. Deduce Lewis structures. Show all the steps required.
- ii. Use the Lewis structures to determine the shapes of each. $(3 \times 10 \text{ marks})$
- What is the hybridization of carbon in each of the following?
 - (a) CO_3^{2-} (b) $C_2O_4^{2-}$ (c) CHCl₃

 $(3 \times 5 \text{ marks})$

- Use molecular orbital diagrams and the bond orders to answer following questions. C)
 - i. Is O₂ stable?
 - ii. Is O₂ paramagnetic?
 - iii. What is the outer (valence) electron configuration of O₂?

(35 marks)

- Consider the molecules SCl₂, F₂, CS₂, CF₄ and BrCl.
 - i. Which has bonds that are the most polar?
 - ii. Which molecules have a dipole moment?

Give reasons for your choice.

 $(4 \times 5 \text{ marks})$

- B) Complete and balance the following equations
 - i. An active metal reacting with acid,

$$Al_{(s)} + HCl_{(ag)}$$
 \longrightarrow ?

ii. An alkali metal hydride reacting with water,

$$LiH_{4(s)} + H_2O_{(1)}$$
 ?

iii. Reduction of a metal halide by hydrogen to form a metal,

C) Why do the noble gases have low boiling points?

(16 marks)

- D) Explain the nature of bonding of the molecule B_2H_6 . Include the orbital picture in your answer. (20 marks)
- E) Bond length of the BF₃ molecule is shorter than the expected B-F bond length. Clarify this statement using your knowledge of backbonding. (20 marks)
- 5. A) Justify the formation of multiple oxidation states in transition elements. (30 marks)
 - B) i. Describe the term "valance state electronegativity".
 - ii. In which compound does Cr exhibit greater metallic behavior, CrF₂ or CrF₆?
 (30 marks)
 - C) Dark green manganate salts contain the MnO_4^{2-} ion. The ion is stable in basic solution but disproportionates in acid medium to $MnO_2(s)$ and MnO_4^{-} .
 - i. Write down the oxidation state of Mn in each of complex ion, MnO_4^2 , MnO_4 , and MnO_2 ?
 - ii. Write a balanced equation for the reaction of MnO_4^{2-} in acidic solution. (20 marks)
 - D) Octahedral [Ni(NH₃)₆]²⁺ is paramagnetic, whereas planar [Pt(NH₃)₄]²⁺ is diamagnetic, even though both metal ions are d⁸ species. Explain. (20 marks)

— END —