Regresión _

Regresión Lineal

Objetivo

- Características de la regresión: Marco analitico flexible para preguntas de asociación y causalidad.
- Responde a la pregunta: ¿Cómo el cambio de una variable afecta el valor de otra?
- Conjetura básica de la regresión:

Variable Dependiente Afecta Variable Independiente

Algunas definiciones

- Variable Dependiente: Objeto de estudio medido en una variable
- Variable Independiente: Posibles factores explicativos de la variable dependiente
- Error: Término residual asociado a lo no explicado por el modelo.
- Modelo: Aproximación funcional a nuestro fenómeno.
- Coeficientes: Componentes estimados del modelo que permiten aproximar características de los datos en la variable dependiente.

Regresión Lineal desde la Econometría

Conceptualizaciones de la Regresión

- Forma más simple: Tanto V.D como V.I son continuas.
- Resulta que cuando realizamos un diagrama de dispersión y agregamos esa recta de ajuste, estamos generando una regresión.
- Mediante la regresión, buscamos generar una explicación plausible de cómo V.I afecta los niveles de V.D, en promedio.

Nuestra Primera Regresión

Statsmodels

- Para implementar nuestra regresión utilizaremos el módulo ols de la librería statsmodels.
- Este genera un modelo de regresión mediante el método de mínimos cuadrados (Ordinary Least Squares).

```
import statsmodels.api as sm
import statsmodels.formula.api as smf
```

Bondad de Ajuste

- Métricas que informan sobre la capacidad explicativa y desempeño general del modelo.
 - R-squared y Adj. R-squared: ¿Cuál es la capacidad explicativa de nuestros regresores en la variabilidad de los puntajes de nuestro objetivo?
 - F-Statistic y Prob(F-Statistic): Prueba de rango de variabilidad entre partes explicadas y no explicadas

Coeficientes

- Interpretación descriptiva de los coeficientes: cómo los valores de una variable dependiente numérica varían en subpoblaciones definidas por una función lineal de atributos.
- Interpretación causal de los coeficientes: cómo el cambio en nuestra variable independiente causa cambios en nuestra variable dependiente.
- Problema de la interpretación causal: Muchos supuestos para hacerla válida.

Validez de las Estimaciones

- Método de Mínimos Cuadrados Ordinarios.
- Encontrar un estimador que reduzca la distancia residual entre los valores predichos y sus correlatos observados.

$$eta = \underset{eta \in \mathbb{R}^d}{\operatorname{argmin}} \mathbb{E} \left[(y_i - X^{\mathsf{T}} eta)^2 \right]$$

$$= \sum_{i=0}^{N} (y_i - (eta_0 + eta_1 X))^2$$

Teorema de Gauss Markov

- La media del error es 0.
- El error es independiente de las variables explicativas.
- No existe correlación entre los residuos.
- El error debe ser constante.
- El error debe distribuirse de forma normal.

Diagnósticos

 Una serie de diagnósticos de los errores nos permite determinar si el modelo satisface las condiciones de Gauss-Markov

Variantes de la Regresión

Lineal

Variables Binarias

Nuestra variable independiente toma dos valores.

$$earn_i = \beta_0 + \gamma_1 \times male_i + \varepsilon_i$$

Términos Polinomiales

• Consideramos la posible no-linealidad de nuestras variables independientes.

$$earn_i = \beta_0 + \beta_1 \times age_i + \beta_2 \times age_i^2 + \varepsilon_i$$

Múltiples Variables Independientes

• Se puede extender la cantidad de variables independientes a incluír en la ecuación, dando pie a una regresión lineal múltiple.

$$earn_i = \beta_0 + \beta_1 \times age_i + \gamma_2 \times male = 1_i + \varepsilon_i$$

Regresión Lineal desde Machine Learning

Estadística vs. Machine Learning

Estadística	Machine Learning
Modelos	Redes, Grafos
Variable Dependiente	Vector Objetivo
Variable Independiente, Covariable	Atributo
Parámetros	Pesos
Ajuste	Aprendizaje
Desempeño en Entrenamiento	Generalización

Pasos en el Flujo de Machine Learning

- Conocer los elementos:
 - Conocer qué representan.
- Determinar los objetivos de trabajo:
 - Los objetivos de trabajo determinan la arquitectura y modelos a implementar.
- Diseñar e implementar los Modelos:
 - ¿Qué esperamos como resultado?
 - ¿Qué parámetros estimaremos?
 - ¿Qué hiperparámetros consideraremos?

Importación de Módulos

- Parte del flujo de trabajo de Machine Learning depende de scikit-learn.
- Se sugiere siempre importar cada componente de scikit-learn para reducir el overhead.
- Deben existir dos imports mínimos:
 - o Uno de modelo.
 - Uno de métrica.

División de la Muestra

- Se generan dos conjuntos de datos:
 - o Training: Donde implementamos el modelo.
 - o Test: Donde probamos el modelo.

Generación de Predicciones

- Con nuestro modelo entrenado, lo que evaluamos es su capacidad de generar explicaciones en un nuevo conjunto de datos no considerados anteriormente en el entrenamiento.
- Con ello, generamos una predicción de los valores en el conjunto de prueba que podemos contrastar posteriormente.

Evaluación del desempeño

$$\mathsf{MSE}(\hat{f},\mathsf{datos}) = \frac{1}{n} \sum_{i=0}^{n} \left(y_i - \hat{f}(\mathbf{x}_i) \right)^2$$

$$\mathsf{MSE}_{\mathsf{test}}(\hat{f},\mathsf{test}) = \frac{1}{n_{\mathsf{test}}} \sum_{i \in \mathsf{test}} \left(y_i - \hat{f}(\mathbf{x}_i) \right)^2 \qquad \mathsf{MSE}_{\mathsf{train}}(\hat{f},\mathsf{train}) = \frac{1}{n_{\mathsf{train}}} \sum_{i \in \mathsf{train}} \left(y_i - \hat{f}(\mathbf{x}_i) \right)^2$$

Trueque entre Sesgo y Varianza

• Criterio de evaluación: capacidad de generalización del modelo

Curva de Validación

Evaluamos cómo se comporta el desempeño del modelo condicional a su complejidad.

Curva de Aprendizaje

Evaluamos cómo se desempeña el modelo, condicional a la cantidad de datos.

Tamaño training set →

{desafío} Academia de talentos digitales

www.desafiolatam.com