

Idée: La dérivée d'une fonction en un point (de sa courbe) est la pente de la fonction en ce point.

La dérivée généralise la notion de pente à une fonction. Elle <u>dépend du point</u>. Elle n'existe <u>pas toujours</u>. Plus précisément : On se place en un point d'abscisse a de la courbe représentative d'une fonction f. Si en faisant un zoom infini sur le point, la courbe se déforme et devient une droite (non verticale), alors :

- Cette droite est appelée tangente à la courbe représentative de f en a.
- On dit que la fonction f est **dérivable en** a, (elle admet une dérivée en a)
- La dérivée de la fonction f en a, notée f'(a) est la pente de la tangente (à f en a).

Définition. Soit *I* un intervalle. Soit $f: I \to \mathbb{R}$. Soit $a \in I$.

f est dérivable en a ssi $\lim_{h\to 0} \frac{f(a+h)-f(a)}{h}$ existe et est finie.

Si f est dérivable en a, la **dérivée de** f en a est $f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} \in \mathbb{R}$

Définition (Tangente). Si f est dérivable en a, la tangente à C_f en a est la droite passant par

A = (a; f(a)) et de coefficient directeur f'(a).

Autrement dit c'est la droite d'équation : « y = f'(a)(x - a) + f(a) »

Définition. f est dérivable sur I si elle est dérivable en tout réel x de I.

Dans ce cas, on appelle fonction dérivée de la fonction f, la fonction $f': I \to \mathbb{R}: x \mapsto f'(x)$

Définition. Composition de fonctions

La fonction **composée** de $u: I \to J$ suivie de $v: J \to \mathbb{R}$ est la fonction $v \circ u: I \to \mathbb{R}: x \mapsto (v \circ u)(x) = v(u(x))$

Dérivées usuelles. A chaque ligne, f est définie et vaut l'expression de la colonne à gauche <u>sur tout</u> D_f . On déduit que f est dérivable sur $D_{f'}$, et f'(x) vaut l'expression dans la dernière colonne <u>sur tout</u> $D_{f'}$.

Opérations sur les dérivées. A chaque ligne :

- On suppose que u et v sont dérivables.
- On déduit que f est dérivable sur I.

l'expression dans la dernière colonne sur tout $D_{f'}$.							
f(x)	Conditions	D_f	$D_{f'}$	f'(x)	f	Conditions	f'
С	$c \in \mathbb{R}$	\mathbb{R}	\mathbb{R}	0	u + v	$u, v: I \to \mathbb{R}$	u' + v'
x		\mathbb{R}	\mathbb{R}	1	u - v	$u, v: I \to \mathbb{R}$	u'-v'
ax	$a \in \mathbb{R}$	\mathbb{R}	\mathbb{R}	а	$a \times u$	$a \in \mathbb{R}, \ u: I \to \mathbb{R}$	au'
ax + b	$a,b\in\mathbb{R}$	\mathbb{R}	\mathbb{R}	а	au + b	$a,b \in \mathbb{R}, \ u:I \to \mathbb{R}$	au'
<i>x</i> ²		\mathbb{R}	\mathbb{R}	2x	$u \times v$	$u, v: I \to \mathbb{R}$	u'v + v'u
x^3		\mathbb{R}	\mathbb{R}	$3x^2$	$\frac{u}{}$	$u: I \to \mathbb{R}, \ v: I \to \mathbb{R}^*$	$\underline{u'v-v'u}$
x^n	$n \in \mathbb{Z}, n \geq 0$	\mathbb{R}	\mathbb{R}	nx^{n-1}	υ		v^2
x^n	$n \in \mathbb{Z}, n < 0$	\mathbb{R}^*	\mathbb{R}^*	nx^{n-1}	$v \circ u$	$u: I \to \underline{J} \text{ et } v: J \to \mathbb{R}$	$(v' \circ u) \times u'$
x^r	$r \in \mathbb{R}$	\mathbb{R}_+	\mathbb{R}_+^*	rx^{r-1}	u^2	$u:I\to\mathbb{R}$	2uu′
$\frac{1}{-} = x^{-1}$		\mathbb{R}^*	\mathbb{R}^*	1 _ ~ ~ ~ ~	u^n	$n \in \mathbb{Z}, n \ge 0, u: I \to \mathbb{R}$	$nu^{n-1}u'$
\mathcal{X}				$-\frac{1}{x^2} - x$	u^n	$n \in \mathbb{Z}, n < 0, u: I \to \mathbb{R}^*$	$nu^{n-1}u'$
$\sqrt{x} = x^{\frac{1}{2}}$		\mathbb{R}_+	\mathbb{R}_+^*	rx^{x-1} $-\frac{1}{x^2} = -x^{-2}$ $\frac{1}{2\sqrt{x}} = \frac{1}{2}x^{-\frac{1}{2}}$	u^r	$r \in \mathbb{R}, u: I \to \mathbb{R}_+^*$	$ru^{r-1}u'$
				$2\sqrt{x}$ 2	$\frac{1}{u} = u^{-1}$	$u:I\to\mathbb{R}^*$	-u'
e^x		\mathbb{R}	\mathbb{R}	e ^x	$\frac{\overline{u}-u}{u}$		$\overline{u^2}$
cos(x)		\mathbb{R}	\mathbb{R}	$-\sin(x)$	$\sqrt{u} = u^{\frac{1}{2}}$	$u:I\to\mathbb{R}_+^*$	$\frac{u'}{2\sqrt{u}} = \frac{1}{2}u^{-\frac{1}{2}}u'$
sin(x)		\mathbb{R}	\mathbb{R}	cos(x)	γα — α=		$\frac{1}{2\sqrt{u}} - \frac{1}{2}u^{-2}u$
ln(x)		\mathbb{R}_+^*	\mathbb{R}_+^*	1 1	e^u	$u:I\to\mathbb{R}$	$e^u u'$
				<u>x</u>	cos(u)	$u:I\to\mathbb{R}$	$-\sin(u)u'$
x		\mathbb{R}	\mathbb{R}^*	$1 \operatorname{si} x > 0$	sin(u)	$u:I\to\mathbb{R}$	$\cos(u) u'$
				$-1 \operatorname{si} x < 0$	ln(u)	$u:I\to\mathbb{R}_+^*$	u'
							$\frac{\overline{u}}{u}$