Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 3 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження ітераційних циклічних алгоритмів»

Варіант <u>14</u>

Виконав студент: ІП-15 Кондрацька Соня Леонідівна

Перевірив:

Лабораторна робота № Дослідження ітераційних циклічних алгоритмів

Мета — дослідити подання операторів повторення дій та набути практичних навичок їх використання під час складання циклічних програмних специфікацій.

Варіант 14

Задача

Із заданою точністю ε обчислити значення суми.

$$\sum_{i=0}^{\infty} \frac{(-2)^i}{i!} .$$

1) Постановка задачі

Дано цикл для знаходження суми заданого виразу. Знайти суму елементів заданої з консолі кількості з заданою користувачем точністю eps.

2) Побудова математичної моделі

Змінна	Тип	Ім'я	Призначення
Точність	Натуральне число	eps	Вхідні дані
Змінна та лічильник	Натуральне число	i	Вхідні дані
Сума	Раціональне число	sum	Результат
Факторіал	Натуральне число	fact	Вхідні дані
Вираз для перевірки умови	Дійсне число	res	Проміжні дані
Значення виразу	Раціональне число	viras	Проміжні дані

Задаємо значення змінним.

За допомогою циклу do while знаходимо значення суми елементів з введеною точністю.

Використовуємо функцію ром для знаходження числа в заданому степені.

Використовуємо функцію abs для визначення модуля різниці елементів для умови визначення кінцевої суми.

Різницю для перевірки точності визначаємо за допомогою формули |Xn-Xn-1|>=eps

3) Розв'язання

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми.

```
Крок 1. Визначимо основні дії.
Крок 2. Введення змінних. Задаємо значення змінних початкової суми, факторіала,
лічильник.
Крок 3. Деталізуємо умову визначення суми з введеною точністю.
Крок 4. Вивід нової суми.
Псевдокод
Крок 1.
  початок
     Введення початкових значень sump, fact, i.
     Цикл визначення суми з заданою точністю.
     Виведення значення нової суми.
  Кінець
Крок 2.
  початок
     sump:=0
     fact:=1
     i:=1
     Цикл визначення суми з заданою точністю.
     Виведення значення нової суми.
  кінець
Крок 3.
  початок
     sump:=0
     fact:=1
     i:=1
     virasp := 0
        повторити
          fact = fact * i;
          viras= (pow((-2), i) / fact)
          res = virasn - virasp
          sum = sum + viras
          i++;
        поки abs(res)>=eps
        все повторити
     Виведення значення нової суми.
```

кінень

```
Крок 4.

початок

sump:=0
fact:=1
i:=1
virasp := 0

повторити
fact = fact * i;
viras= (pow((-2), i) / fact);
res = virasn - virasp
sum = sum + viras;

i++;
поки abs(res)>=eps
все повторити
Виведення sum.
```


5) Випробування

Блок	Дія
	Початок
1	sump:=0 fact:=1 i:=1 virasp := 0 eps=pow(10,-3)
2	повторити fact=1*1
	virasn=pow((-2),1)/1=-2
	res=-2-0=-2 sum=0+(-2)=-2 i=2 поки abs(res)>=eps все повторити
4	повторити fact=1*2
	virasn=pow((-2),2)/2=2
	res=2-0=2 sum=-2+2=0 i=3 поки abs(res)>=eps все повторити
	повторити fact=2*3
	virasn=pow((-2),3)/2=-3
	res=-5 sum=0-3=-3 i=4 поки abs(res)>=eps все повторити
	Вивід sum
	Кінець

6) Висновки

Ми дослідили подання операторів повторення дій та набули практичних навичок їх використання під час складання циклічних програмних специфікацій.

В результаті виконання лабораторної роботи ми отримали алгоритм для визначення суми за допомогою ітераційного цикла з післяумовою, розділивши задачу на 3 кроки: визначення основних дій, введення змінних, задання значення змінним початкової суми, факторіала, лічильника, деталізуємо умову визначення суми з введеною точністю, виведення суми.