Modeling Wine Preferences via Data Mining

Dev Misra

Agenda

Background on Wine

- Wine was once viewed as a luxury good, but is now enjoyed by a wide range of consumers
- Portugal is a top ten wine exporting country
 - Exports of Vinho Verde have increased by 36% from 1997 to 2007
- Wine certifications and quality assessments are essential in the wine industry towards enhancing growth

Data Description

Two large datasets, one for red wine and one for white wine

1	Fixed Acidity	Volutile Acidity	Ctoric Aced	Sugar Sugar	Chlorides	Free soffer Dioxide	Yetur Sulfur Disocule	Density	-	Sulphotes	Alcohol	Quality
1	2.9	0.700	0.00	1.80	0.076	61	3.0	0.9978	3.51	0.34	0.4	
2	2.8	0.880	0.00	2.60	0.008	26	67	0.9068	3.70	0.00	9.6	
×	7.8	0.790	0.08	3.30	0.092	19	34	0.9970	1.26	0.65	9.6	9.
4	15.2	9.280	0.56	1.90	0.075	17	44	0.9980	3.16	0.38	9.8	
5	2.4	9,706	9.00	1.90	0.076	11	34	0.9979	3.51	6.56	9.4	9
*	2.4	0.066	0.00	1.60	0.075	111	46	0.997W	5.51	0.98	9.4	9.
-	7.8	0.600	0.04	1.60	0.069	19	10	0.9004	3.50	0.46	0.4	0.
٠	YA:	9,610	0.00	1.29	0.069	19	211	0.9946	3.59	0.47	10.0	18.
	2.6	0.580	9.88	2.00	0.073	9.	18	0.0068	3.36	0.17	9.5	19
18	2.5	0.500	0.36	6.00	0.071	1.0	102	0.9976	3.31	0.80	10.5	1
11	6.7	0.580	0.08	1.80	0.007	19	65.	0.9939	3.28	0.54	9.3	1
12	2.5	0.500	0.36	6.00	0.071	17	101	0.9979	3.33	2.80	10.5	9
13	5.6	0.643	0.00	1.60	6.089	28	38	0.9943	3.50	8.12	9.9	9
14	ZA.	0.810	0.29	1.60	6.114	9.	29	0.9974	3.29	1.16	9.1	. 9
15	8.9	0.620	638	1.60	0.176	52	143	0.9986	5.16	9.88	9.5	1.0
16.	44	0.629	6.79	1.90	0.170	51	166	5 9585	1.17	0.93	9.7	1.0

	Fixed Acadity	Volatile Actify	Clark: Acid	Residuel Sugar	Chlorides	Free sulfur Droxide	Total Sulfur Disside	Density	*	Sulphanes	Aborbal	Quality
1	7.0	8.270	0.36	30.70	0.045	45.0	179.0	1:0010	1.00	641	8.6	
2	6.3	0.300	0.34	1.60	0.049	14.0	112.0	0.9940	8.30	5.49	9.5	
	8.1	0.200	0.40	6.90	0.010	30.0	37.6	0.9011	1.29	2.64	10.1	
4	1.2	0.230	6.38	8.50	0.058	47.0	185.0	0.9936	3.19	2.40	9.0	
\$	7.8	9.230	0.32	6.50	0.058	47.0	185.0	0.9936	3.19	9.49	5.9	
	8.1	0.290	9.40	6.90	0.050	30.0	61.0	0.9911	1.29	2.44	19.1	
7	6.0	9.300	0.06	7.00	0.049	30.0	116.0	0.9949	9.58	247	1.6	
	7.0	9.275	0.36	39.70	0.045	45.0	170.0	1.0010	1.00	2.43	4.8	
,	6.3	8.300	6.54	1.60	6.049	14.0	6.513	0.9940	3.30	5.49	9.5	
	8.1	6.226	6.49	1.50	0.044	28.0	189.0	0.9910	3.22	5.43	11.0	
11	6.1	6.279	0.41	1.45	0.003	31.0	13.0	0.9908	2.59	0.50	32.6	
u	8.0	6.230	0.40	4.20	0.001	17.0	209.0	0.9947	3.54	9.59	9.7	1
11	7.0	0.180	0.37	1.26	0.040	16.0	75.0	0.9939	3.38	0.63	10.8	. 4
14	6.6	0.190	0.40	1.50	0.044	48.0	143.0	0.9912	3.54	0.52	12.4	2
13	4.0	0.420	0.62	19.25	0.040	43.0	172.0	1:0002	2.98	0.67	9.7	1.5
		0.730	0.00	1.00	4.645	76.0	2124	0.0014	2.34	***	21.4	

Red Wine White Wine

- Objective
 - Build a **model to predict wine taste preferences** based on distinct variables

Importance of Specific Variables in Wine

- Total acidity tells us the concentration of acids present in wine
- Potential of hydrogen (pH) level tells us how intense these acids taste
 - Measures the degree of relative alkalinity of a liquid on a scale of 0 to 14, with 7 being neutral
- Winemakers use pH as a way to measure ripeness in relation to acidity
 - Low pH wines will taste tart and crisp
 - Higher pH wines will taste flat and lack freshness
 - Most importantly, higher pH wines are more susceptible to bacterial growth, as bacteria thrive in higher pH environments

pH Scale

Ideal Acidity for Wine

- Ideal pH range for red wine is 3.3 3.6
- Ideal pH range for white wine is 3.0 3.4
- Warmer climates result in higher sugar and lower acidity, whereas cooler climates result in lower sugar and higher acidity
- In a less acidic environment, a winemaker needs to compensate with higher doses of sulfur dioxide (SO2) to keep bacteria away
 - E.g. a red wine with a pH of 3.9 would require about 60 mg/L of free SO2 to inhibit bacteria whereas a similar wine but with a pH of 3.2 would only require about 13 mg/L

How Winemakers Control for Acidity

- Wines of different acidity levels can be blended to increase or lower the pH
- Acid reduction using potassium bicarbonate (KHCO₃) or agents such as ACIDEX to remove acidity and raise the pH
- Cold stabilization of wine can be used to increase or decrease pH
- H₂O can be added to wine to dilute its acidity and increase the pH
- Malolactic fermentation can raise the pH and alter the acidity of wine

Multiple Linear Regression

- Response/Dependent variable(s)
 - Wine Quality
- Regressor/Independent variable(s):
 - Fixed Acidity, Volatile Acidity, Citric Acid, Residual Sugar, Chlorides, Free Sulfur Dioxide, Total Sulfur Dioxide, Density, pH, Sulphates, Alcohol
- Training and Test sets
 - Red wine
 - Red training set: [1:800,]
 - Red test set: [801:nrow(red),]
 - White wine
 - White training set: [1:2400,]
 - White test set: [2401:nrow(white),]

```
> dim(red)
[1] 1599   12
> dim(white)
[1] 4898   12
```

Assumptions for Regression

- L.I.N.E. assumptions/conditions must be met within both datasets to draw inferences from or make predictions from the model
 - Linearity
 - Relationship between dependent and independent variables is linear
 - Independence of Errors
 - No correlation between consecutive residuals
 - Each independent variable can be tested using VIF values
 - Normality of Error
 - Residuals are normally distributed
 - Equal Variance
 - Residuals have a constant variance at every level of x

```
#assumptions for multiple linear regression - red
Rm<-lm(Quality~., data=Rtrain)
plot(Rm)</pre>
```

```
#assumptions for multiple linear regression - white
Wm<-lm(Quality~., data=Wtrain)
plot(Wm)
```

Red Wine Assumptions

- Linearity
 - No significant U-shape in "Residuals vs Fitted"
- Independence of Errors
 - No cyclical patterns in "Residuals vs Leverage"
- Normality of Error
 - Residuals are normally distributed in "Normal Q-Q"
- Equal Variance
 - Inconsistent variance in "Scale-Location"

White Wine Assumptions

- Linearity
 - No significant U-shape in "Residuals vs Fitted"
- Independence of Errors
 - No cyclical patterns in "Residuals vs Leverage"
- Normality of Error
 - Residuals are normally distributed in "Normal Q-Q"
- Equal Variance
 - Inconsistent variance in "Scale-Location"

Model Fitness – Red Wine

- Adjusted R-Squared: 0.3098
 - A low adjusted R-squared indicates that the additional input variables are not adding value to the model
 - Currently, the red wine model is a bad fit
- Significance at a = 0.05
 - The model is not statistically significant at a
 = 0.05, as the p-value from the model is
 0.6358, which is greater than 0.05

```
> summary(Rm)
Call:
lm(formula = Quality ~ ., data = Rtrain)
Residuals:
    Min
-2.26520 -0.39961 -0.06639 0.44318 2.09402
Coefficients:
                         Estimate Std. Error t value Pr(>|t|)
(Intercept)
                        13.814270
                                  29.160616
                                                     0.6358
'Fixed Acidity'
                         0.037628
                                    0.035297
                                              1.066
                                                       0.2867
'Volatile Acidity'
                                   0.158995
                                              -6.438 2.10e-10 ***
                        -1.023671
'Citric Acid'
                        -0.264088
                                    0.193707
                                              -1.363
                                                       0.1732
`Residual Sugar`
                         0.002101
                                    0.022651
                                               0.093
                                                       0.9261
Chlorides
                                                       0.0192 *
                        -1.194417
                                    0.508944
                                              -2.347
                                   0.003468
                                              1.450
                                                       0.1474
`Free sulfur Dioxide`
                         0.005029
'Total Sulfur Dioxide'
                                   0.001044
                                              -4.690 3.22e-06 ***
                        -0.004895
Density
                                   29.763640
                       -10.588858
                                              -0.356
                                                       0.7221
                        -0.086864
                                   0.261459
                                              -0.332
                                                       0.7398
                         0.680155
                                    0.138437
Sulphates
                                               4.913 1.09e-06 ***
Alcohol
                                              7.975 5.36e-15 ***
                         0.267089
                                    0.033492
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.6335 on 788 degrees of freedom
Multiple R-squared: 0.3193,
                               Adjusted R-squared: 0.3098
F-statistic: 33.61 on 11 and 788 DF, p-value: < 2.2e-16
```

Improved Red Wine Model

- Best regressor(s) to incorporate into model:
 - Used *regsubsets* {leaps}
 - Fixed Acidity, Volatile Acidity, Citric Acid, Chlorides, Free Sulfur Dioxide, Total Sulfur Dioxide, Sulphates, and Alcohol
- Adjusted R-Squared: 0.312
 - Compared to the original values, the relatively higher Adjusted R-Squared indicates the regressors can add more value to the model
- Significance at a = 0.05
 - The model is statistically significant at a = 0.05, as the p-value from the model is 2e-16, which is less than 0.05

> summary(fitR)

Call:

Residuals:

Min 1Q Median 3Q Max -2.22837 -0.40410 -0.06757 0.44475 2.10794

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept)
'Fixed Acidity'
'Volatile Acidity'
                       -1.033679
'Citric Acid'
                        -0.257201
                                              -1.332
Chlorides
                        -1.160423
                                              -2.367
                                                       0.0182 *
'Free sulfur Dioxide'
                        0.004677
'Total Sulfur Dioxide' -0.004787
Sulphates
                        0.682293
Alcohol
                        0.269975
```

Residual standard error: 0.6325 on 791 degrees of freedom Multiple R-squared: 0.3189, Adjusted R-squared: 0.312 F-statistic: 46.29 on 8 and 791 DF, p-value: < 2.2e-16

Model Fitness – White Wine

- Adjusted R-Squared: 0.2787
 - A low adjusted R-squared indicates that the additional input variables are not adding value to the model
 - Currently, the white wine model is a bad fit
- Significance at a = 0.05
 - The model is statistically significant at a = 0.05, as the p-value from the model is 2.54e-15, which is less than 0.05

```
> summary(Wm)
Call:
lm(formula = Quality ~ ., data = Wtrain)
Residuals:
            10 Median
   Min
-3.5669 -0.5154 -0.0374 0.4796 3.0864
Coefficients:
                        Estimate Std. Error t value Pr(>|t|)
(Intercept)
                       2.529e+02 3.176e+01
`Fixed Acidity`
                       1.348e-01 3.295e-02
'Volatile Acidity'
                      -1.743e+00 1.652e-01 -10.547 < 2e-16 ***
'Citric Acid'
                       7.870e-02 1.305e-01
                                              0.603
                                                      0.5464
`Residual Sugar`
                       1.072e-01 1.206e-02
                                              8.886 < 2e-16 ***
Chlorides
                       -2.367e-01 7.427e-01
                                             -0.319
                                                      0.7500
                       6.113e-03 1.336e-03
`Free sulfur Dioxide`
                                              4.575 5.01e-06 ***
`Total Sulfur Dioxide` 1.077e-04 5.467e-04
                                              0.197
                                                     0.8439
Density
                       -2.551e+02 3.220e+01
                                             -7.923 3.51e-15 ***
pН
                       1.187e+00 1.624e-01
                                              7.312 3.58e-13 ***
                       8.936e-01 1.530e-01
Sulphates
                                              5.839 5.95e-09 ***
Alcohol
                       9.932e-02 4.013e-02
                                              2.475
                                                     0.0134 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.7791 on 2388 degrees of freedom
Multiple R-squared: 0.282,
                               Adjusted R-squared:
F-statistic: 85.27 on 11 and 2388 DF, p-value: < 2.2e-16
```

Improved White Wine Model

- Best regressor(s) to incorporate into model:
 - Used *regsubsets* {leaps}
 - Fixed Acidity, Volatile Acidity, Residual Sugar, Free Sulfur Dioxide, Density, pH, Sulphates, and Alcohol
- Adjusted R-Squared: 0.2795
 - Compared to the original values, the relatively higher Adjusted R-Squared indicates the regressors can add more value to the model
- Significance at a = 0.05
 - The model is statistically significant at a = 0.05, as the p-value from the model is 2e-16, which is less than 0.05

> summary(fitW)

Call:

Residuals:

Min 1Q Median 3Q Max -3.5485 -0.5163 -0.0338 0.4800 3.0869

Coefficients:

		Std. Error		
(Intercept)	2.519e+02	3.005e+01	8.383	< 2e-16 ***
'Fixed Acidity'	1.375e-01	3.180e-02	4.324	1.59e-05 ***
'Volatile Acidity'	-1.758e+00	1.607e-01	-10.934	< 2e-16 ***
'Residual Sugar'	1.073e-01	1.153e-02	9.310	< 2e-16 ***
'Free sulfur Dioxide'	6.282e-03	1.077e-03	5.834	6.16e-09 ***
Density	-2.541e+02	3.043e+01	-8.350	< 2e-16 ***
pH	1.179e+00	1.561e-01	7.551	6.12e-14 ***
Sulphates	9.008e-01	1.519e-01	5.931	3.46e-09 ***
Alcohol	1.021e-01	3.950e-02	2.584	0.00982 **
Circle andres 0 (as			0 05 ()	

Residual standard error: 0.7787 on 2391 degrees of freedom Multiple R-squared: 0.2819, Adjusted R-squared: 0.2795 F-statistic: 117.3 on 8 and 2391 DF, p-value: < 2.2e-16

Model Evaluation

- Mean Absolute Percentage Error
 (MAPE) is used to determine
 the prediction error of the models
- MAPE of red wine model = 9.5976%
- MAPE of white wine model = 10.3711%

```
MAPE<-function(pred, true)
{
   return(100*mean(abs((pred-true)/true), na.rm=T))
}

MAPE(Rpred, Rtest$Quality)

MAPE(Wpred, Wtest$Quality)

- MAPE(Rpred, Rtest$Quality)
[1] 9.597551

> MAPE(Wpred, Wtest$Quality)
[1] 10.37114
```

• Both models have a MAPE of < 10.5%, indicating that the average unsigned percentage error for each model is very low (models are good fits)

Variance Inflation Factor – Red Wine

> RVIF 'Volatile Acidity' 'Citric Acid' 8.866974 1.645710 3.184926 Residual Sugar Chlorides 'Free sulfur Dioxide' 1.627857 1.528297 2.265589 'Total Sulfur Dioxide' Density 3.438727 2.551407 4.996512 Alcohol Sulphates 1.455214 2.144835 > which(RVIF>5) `Fixed Acidity`

- Threshold for VIF: 5
- A variable with a higher VIF contributes more to the standard error of a regression

- which (RVIF>5) highlights regressors that exhibit multicollinearity
 - Fixed Acidity is highly collinear with the other regressors in the model

Variance Inflation Factor – White Wine

- Threshold for VIF: 5
- A variable with a higher VIF contributes more to the standard error of a regression

- which (RVIF>5) highlights regressors that exhibit multicollinearity
 - Residual Sugar, Density, and Alcohol are highly collinear with the other regressors in the model

Red Wine Model Robustness (K-fold CV Test)

- K-fold cross validation is a procedure used to estimate the skill of the model on new data
- Four fold Cross Validation
 - Because the performance metrics across all four folds are similar, the red wine model can be described as robust
 - In other words, the model performance stays stable when the data (in both the training and test sets) changes, thus, it is robust

```
24 dt1<-red[sample(1:nrow(red), nrow(red)), ]</pre>
   len<-floor(nrow(dt1)/K) # number of obs. in testing set
   pred<-matrix(, len, K)
   test.all<-matrix(, len, K)
    pred.err<-matrix(, len, K)
   for(k in 1:K)
      index <- ((k-1)*len+1):(k*len)
      te<-dt1[index.]
      tr<-dt1[-index.]
38
     fit <- lm(Quality~., data=red)
39
40
      pre<- predict(fit, newdata=te)</pre>
      test.all[1:len, k]<-te$Quality
      pred[1:len, k]<- pre
43
      pred.err[1:len, k]<- abs(pre-tesquality)</pre>
   boxplot(pred.err, outline = FALSE)
```

White Wine Model Robustness (K-fold CV Test)

- Because the performance metrics across all four folds are similar, the white wine model can be described as robust
- In other words, the model performance stays stable when the data (in both the training and test sets) changes, thus, it is robust

Red Wine Model Conclusion

Best model (eight regressors):

- Variable(s) most important towards determining the quality of red wine:
 - Volatile Acidity, Citric Acid, Chlorides, Free Sulfur Dioxide, Total Sulfur Dioxide, Sulphates, and Alcohol

White Wine Model Conclusion

Best model (eight regressors):

- Variable(s) most important towards determining the quality of white wine:
 - Fixed Acidity, Volatile Acidity, Free Sulfur Dioxide, pH, and Sulphates

References

https://archive.ics.uci.edu/ml/datasets/Wine+Quality

https://www.sciencedirect.com/science/article/pii/S0167923609001377?via%3Dihub

https://www.restore.ac.uk/srme/www/fac/soc/wie/research-new/srme/modules/mod3/3/index.html

https://www.wineperspective.com/wine-acidity/

https://winemakermag.com/technique/1650-monitoring-adjusting-ph

https://winemakermag.com/article/547-phiguring-out-ph

https://www.statisticssolutions.com/assumptions-of-multiple-linear-regression/

THANK YOU