

IIC1253 — Matemáticas Discretas — 1' 2017

TAREA 6

Publicación: Viernes 19 de Mayo.

Entrega: Viernes 26 de Mayo hasta las 10:15 horas.

Indicaciones

■ Debe entregar una solución para cada pregunta (sin importar si esta en blanco).

- Cada solución debe estar escrita en L⁴TEX. No se aceptarán tareas escritas a mano ni en otro sistema de composición de texto.
- Responda cada pregunta en una hoja separada y ponga su nombre en cada hoja de respuesta.
- Si usa más de una hoja para una misma pregunta corchetelas.
- Si desea juntar las respuestas a preguntas distintas, use un clip y no un corchete.
- Debe entregar una copia escrita durante la ayudantia asignada y una copia digital por el buzón del curso, ambas antes de la fecha/hora de entrega.
- Se penalizará con 1 punto en la nota final de la tarea por cada regla que no se cumpla.
- La tarea es individual.

Sea $\Sigma = \{a, b\}$ un alfabeto y Σ^* todas las palabras finitas sobre Σ . Para una letra $x \in \Sigma$ y $w \in \Sigma^*$ se define $|w|_x$ como el número de x en w. Por último, se define el conjunto R inductivamente como el menor conjunto de palabras en Σ^* que satisface las siguientes propiedades:

- $\epsilon \in R$.
- si $w \in R$, entonces $a \cdot w \cdot b \in R$.
- si $u, v \in R$, entonces $u \cdot v \in R$.

Pregunta 1

1. Demuestre por inducción sobre R que para toda palabra $w \in R$ se tiene que:

$$|w|_a = |w|_b \tag{1}$$

2. Demuestre por inducción sobre R que para toda palabra $w \in R$ se tiene que:

si
$$u$$
 es un prefijo de w , entonces $|u|_a \ge |u|_b$. (2)

Pregunta 2

Demuestre por inducción sobre el largo de $w \in \Sigma^*$, que si w satisface (1) y (2), entonces $w \in R$.

Evaluación y puntajes de la tarea

Cada **item** de cada pregunta se evaluará con un puntaje de:

- 0 (respuesta incorrecta),
- 3 (con errores menores),
- 4 (correcta).

Todas las preguntas tienen la misma ponderación en la nota final.