

دانشکدهی علوم ریاضی

نظریهی زبانها و اتوماتا ۲ مهر ۱۳۹۱

جلسهی ۳: ماشین متناهی الحالت

مدرّس: دکتر شهرام خزائی نگارنده: سیدمهدی میرکیالنگرودی

١ روشهاى نمايش ماشين متناهى الحالت

نمایش ماشین متناهی الحالت به کمک پنج تایی مرتب و توصیف دقیق تابع انتقال حالت آن فرایند زمان بری است. از این رو استفاده از گراف انتقال حالت و جدول انتقال حالت برای نمایش ماشین متناهی الحالت مناسب تر است.

١.١ گراف انتقال حالت

در جلسهی قبل به بررسی گراف انتقال حالت پرداختیم. در مثال زیر ماشن متناهی الحالت دیگری را به کمک گراف انتقال حالت آن نمایش میدهیم.

مثال ۱ زبان زیر را روی الفبای لاتین در نظر بگیرید:

 $L = \{ \text{osphip} ing | ing \text{osphip} ing \}$

گراف انتقال حالت برای زبان مورد نظر به این شکل خواهد بود:

^{&#}x27;transition diagram

^{&#}x27;transition table

برای مثال رشته های زیر توسط این ماشین متناهی الحالت پذیرفته نمی شوند:

 $\omega = \epsilon \not\in L \qquad \omega = in \not\in L \qquad \omega = ingb \not\in L$

مثال ۲ زبان زیر را روی الفبای (۱،۰) در نظر می گیریم:

 $L = \{ \text{s.i.l.} 1 \mid \text{i.i.l.} \}$

در اینجا ۳ حالت مختلف برای اتوماتای مورد نظر وجود دارد:

A: دنبالههایی که تاکنون مشاهده شده ۱۱ ندارد و به ۱ ختم نمی شود.

B: دنبالههایی که تاکنون مشاهده شده ۱۱ ندارد و به ۱ ختم می شود.

C: دنبالههایی که تاکنون مشاهده شده دارای ۱۱ میباشد.

گراف انتقال حالت برای این زبان مانند شکل زیر است:

۲.۱ جدول انتقال حالت

جدول انتقال حالت نمایشی است به شکل جدول از تابعی مانند تابع انتقال حالت که دو عضو را به عنوان ورودی خود پذیرفته و یک خروجی ارائه می دهد. سطرهای این جدول نمایش دهندهی وضعیتها و ستونهای آن نمایش دهندهی ورودی های ماشین متناهی الحالت می باشند.

جدول انتقال حالت مثال ٢ بدين گونه خواهد بود:

	•	١
$\rightarrow *A$	Α	В
*B	Α	С
С	С	С

* حالت نهایی \rightarrow حالت آغازین

براى مثال رشتهى زير توسط ماشين متناهى الحالت پذيرفته مىشود

 $\omega = 11 \circ 11 \circ 1 \in L$

٣.١ تابع انتقال حالت بسط يافته

تعریف ۱ تابع انتقال حالت بسط یافته $\hat{\delta}: Q \times \Sigma^* \to Q$ را با $\hat{\delta}: Q \times \Sigma^* \to Q$ نشان می دهیم و به طور بازگشتی به صورت زیر تعریف می کنیم:

$$\hat{\delta}(q,\epsilon)=q$$
 پایه: $\hat{\delta}(q,xa)=\delta(\hat{\delta}(q,xa),a)$ استقرا:

مثال ۳ با توجه به مثال ۲، با پردازش رشته ۱۱۰ از حالت B به چه حالتی می رویم؟

$$\begin{array}{lll} \hat{\delta}(B,011) & = & \delta(\hat{\delta}(\mathbf{B},01),1) \\ & = & \delta(\delta(\hat{\delta}(\mathbf{B},0),1),1) \\ & = & \delta(\delta(\delta(\hat{\delta}(\mathbf{B},\epsilon),0),1),1) \\ & = & C \end{array}$$

۲ زبان ماشین متناهی الحالت

تعریف ۲ زبانی که ماشین حالت متناهی A می پذیرد را با L(A) نشان داده و به صورت زیر تعریف می کنیم:

$$L(A) = \{\omega | \hat{\delta}(q_{\circ}, \omega) \in F\}$$

مثال * به طور دقیق استدلال کنید که ماشین حالت متناهی شکل صفحه قبل زبان L در مثال * را میپذیرد.

یادآوری: برای اثبات برابر بودن دو مجموعه دلخواه مانند S و T کافیست نشان دهیم:

$$T \subseteq S, S \subseteq T$$

به عبارتي:

$$(\omega \in S \Rightarrow \omega \in T) \land (\omega \in T \Rightarrow \omega \in S)$$

برهان.

دو مجموعه S و T را به صورت زیر در نظر می گیریم:

$$S = L(A)$$
 $T = \{ 11, y \in A \}$

ابتدا نشان میدهیم که رشتههایی که ماشین حالت متناهی پذیرندهی آن است زیرمجموعهی رشتههایی است که دارای دو یک متوالی نمی باشند. به عبارت دیگر باید ثابت کنیم که

$$S \subseteq T$$

[&]quot;extended transition function

با استفاده از استقرا نشان می دهیم که ویژگی فوق برقرار است. برای پایه ی استقرا کمترین طول ممکن را در نظر می گیریم. کمترین طول ممکن برای رشته ی صفر است که در نتیجه دارای دو یک متوالی نخواهد بود و بنابراین صحت پایه ی استقرا برقرار است. حال برای فرض استقرا رشته ی ω را در نظر می گیریم که می تواند به دو صورت باشد:

اگر رشته ω توسط اتوماتای A پذیرفته شود ، ω دارای ۱۱ نمیباشد.

اگر $\hat{\delta}(A,\omega)=A$ آنگاه ω ۱۱ ندارد و به یک ختم نمی شود. اگر $\hat{\delta}(A,\omega)=B$ آنگاه ω ۱۱ ندارد و به یک ختم می شود.

حال برای گام استقرا با فرض اینکه تمامی رشته ها با طول کمتر از n دارای خاصیت فوق میباشند، باید این خاصیت را برای رشته های با طول n ثابت کنیم:

حالت اول: در صورتی که $\hat{\delta}(A,\omega)=A$ باشد، رشته ی ω به شکل x است. پس خواهیم داشت:

$$\omega = x \circ \Rightarrow \hat{\delta}(A, x) = A$$

با استفاده از فرض استقرا نتیجه می گیریم که رشته ی دارای ۱۱ نیست.

$$\omega = x \circ \Rightarrow \hat{\delta}(A, x) = B$$

در این حالت نیز با استفاده از فرض استقرا نتیجه می گیریم که رشته ی ω دارای 1 نیست.

حالت دوم: در صورتی که $\hat{\delta}(A,\omega)=B$ باشد، رشته ω به شکل x است که x x است خواهیم داشت:

$$\omega = x \, \mathbf{1} \Rightarrow \hat{\delta}(A, x) = A$$

در این حالت نیز با استفاده از فرض استقرا نتیجه می گیریم که رشته ی ω دارای ۱۱ نیست.

بدین ترتیب تمامی حالات بررسی شدند و در صورتی که برای رشته ای داشته باشیم: $\hat{\delta}(A,\omega)=A$ یا $\hat{\delta}(A,\omega)=B$ رشته مورد نظر دارای ۱۱ نبوده و در نتیجه عضو مجموعه $\hat{\delta}(A,\omega)=B$

$$S \subseteq T$$

برای اثبات قسمت دوم از برهان خلف استفاده می کنیم. فرض می کنیم که رشته ی n از مجموعه ی T وجود داشته باشد که در مجموعه ی S نباشد. این بدان معناست که S S نباشد که در مجموعه ی S نباشد. این بدان معناست که S نباشد که در مجموعه ی S نباشد. از طرفی با توجه به موارد قسمت اول اثبات باید رشته ی مذکور دارای ۱۱ نباشد، این رشته نهایتا به حالت S دارای ۱۱ هستند و این مخالف فرض و تناقض است. پس حکم مورد نظر ثابت است، یعنی هر رشته ی مجموعه ی S عضو مجموعه ی S خواهد بود. پس:

$$T \subset S$$

بدین ترتیب هریک مجموعههای S و T زیرمجموعهی یکدیگر بوده و خواهیم داشت.

$$S = T$$