Max Wisniewski, Alexander Steen

Tutor : Adrian Steffens

Aufgabe 10: Berechnung von Taylorpolynomen

Bestimmen Sie die Taylorpolynome vom Grad n um den Punkt $x_0 = 0$. Die Taylorformel um den Entwicklungspunkt x_0 sieht folgender Maßen aus

$$T_n(x) = \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (x-a)^k.$$

- (i) $f(x) = \frac{1}{1+x}$: tbd
- (ii) $g(x) = \frac{1}{\sqrt{1-x}}$: tbd
- (iii) $h(x) = xe^x$ tbd

Aufgabe 11: Gleichmäßige Konvergenz von Funktionsfolgen

Bestimmen Sie für die folgenden Funktionsfolgen den punktweisen Limes

$$f(x) = \lim_{n \to \infty} f_n(x)$$

(falls er existiert) und prüfen Sie, welche der Folgen gleichmäßig konvergiert.

- (i) $f_n(x) = e^{-nx^2}$ auf [-1, 1].
- (ii) $g_n(x) = \sqrt{x^2 + \frac{1}{n}}$ auf $[0, \infty)$. tbd
- (iii) $h_n(x) = n\left(\sqrt{x + \frac{1}{n} \sqrt{x}}\right)$ tbd
- (iv) $k_n(x) = \arctan(nx)$ auf $[-\infty, \infty]$. tbd

Aufgabe 12: Gleichmäßige Konvergenz von Reihen

Untersuchen Sie folgende Funktionsreihen auf gleichmäßige Konvergenz.

- (i) $\sum_{\substack{n=1\\\text{tbd}}}^{\infty} \frac{\sin(nx)}{n^{\alpha}}$ für $x \in \mathbb{R}$ und festes $\alpha > 1$.
- (ii) $\sum_{n=1}^{\infty} \frac{x}{n(1+nx^2)} \text{ für } x \in \mathbb{R}.$

(iii)
$$\sum_{\substack{n=1\\\text{tbd}}}^{\infty} (-1)^n \frac{x^2+n}{n^2} \text{ für } x \in \mathbb{R}.$$