```
In []: import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.nn as nn
from IPython.display import Image
from prob5_AE import AE
from prob6_CAE import CAE
from prob6_CAE_skip import CAE_skip, train_log, test, main_wrapper
from torchvision import datasets
```

Problem 3

Let

$$x = egin{bmatrix} 0.05 \ 0.1 \end{bmatrix}, \ y = egin{bmatrix} 0.01 \ 0.99 \end{bmatrix}, \ W^2 = egin{bmatrix} 0.15 & 0.25 \ 0.2 & 0.3 \end{bmatrix} = egin{bmatrix} w_{1,1}^2 & w_{1,2}^2 \ w_{2,1}^2 & w_{2,2}^2 \end{bmatrix}, \ b^2 = egin{bmatrix} 0.35 \ 0.35 \end{bmatrix} = egin{bmatrix} b_1^1 \ b_2^1 \end{bmatrix}, \ W^3 = egin{bmatrix} 0.4 & 0.5 \ -0.45 & 0.55 \end{bmatrix} = egin{bmatrix} w_{1,1}^3 & w_{1,2}^3 \ w_{2,1}^3 & w_{2,2}^3 \end{bmatrix}, \ b^3 = egin{bmatrix} 0.6 \ 0.6 \end{bmatrix} = egin{bmatrix} b_1^2 \ b_2^2 \end{bmatrix}. \ \end{pmatrix}$$

```
In []: # x matrix
x = np.array([[0.05], [0.1]])

# y matrix
y = np.array([[0.01], [0.99]])

# W2 matrix
W2 = np.array([[0.15, 0.25], [0.2, 0.3]])

# b2 matrix
b2 = np.array([[0.35], [0.35]])

# W3 matrix
W3 = np.array([[0.4, 0.5], [-0.45, 0.55]])

# b3 matrix
b3 = np.array([[0.6], [0.6]])
```

Then the output of the neural network for an input x is

$$\sigma(W^2(\sigma(W^1x+b^1))+b^2).$$

The intermediate values are

```
In []: z2 = np.dot(W2, x) + b2
a2 = 1 / (1 + np.exp(-z2))
z3 = np.dot(W3, a2) + b3
a3 = 1 / (1 + np.exp(-z3))
```

We can calculate the $\delta^1, \delta^2, \delta^3$ with the central equations of the back-propagation algorithm:

$$egin{aligned} \delta^{L} &=
abla_{a} C \odot \sigma'\left(z^{L}
ight) \ \delta^{l} &= \left(\left(w^{l+1}
ight)^{T} \delta^{l+1}
ight) \odot \sigma'\left(z^{l}
ight) \end{aligned}$$

For the cross entropy-loss in combination with the sigmoid activation function, we have

$$\begin{split} \frac{\partial C}{\partial z} &= -\frac{1}{n} \sum_{x} \left(\frac{y}{\sigma(z)} - \frac{1 - y}{1 - \sigma(z)} \right) \frac{\partial \sigma}{\partial z} \\ &= -\frac{1}{n} \sum_{x} \left(\frac{y}{\sigma(z)} - \frac{1 - y}{1 - \sigma(z)} \right) \sigma(z) (1 - \sigma(z)) \\ &= -\frac{1}{n} \sum_{x} y (1 - \sigma(z)) - \sigma(z) (1 - y) \end{split}$$

Now for the intermediate values we have

Problem 4

sample input data

```
print(output.shape)
        torch.Size([1, 9, 9])
In [ ]: #max-pooling
        m = nn.MaxPool2d(kernel_size= 10, stride=2, padding = 2)
        output = m(input)
        print(output.shape)
        torch.Size([1, 23, 23])
In [ ]: #max-pooling
        m = nn.MaxPool2d(kernel size= 2, stride=1, padding = 0)
        output = m(input)
        print(output.shape)
        torch.Size([1, 49, 49])
        Problem 4.2
In [ ]: mnist_testset = datasets.MNIST(root='./data', train=False, download=True, tr
        ntest = 2000
        test data = (mnist testset.data.to(dtype=torch.float32)[:ntest]/255).view(-1
        test labels = mnist testset.targets.to(dtype=torch.long)[:ntest]
        after runnign the code we have
In [ ]: #show prob4 CNN.png
        Image(filename='prob4_CNN.png', width=800)
Out[]:
In []: Image(filename='prob4 confusion matrix.png', width=800)
```

Out[]:

1 and 7 are confused, which makes sense. 9 and 3 are confused, which makes sense.

```
In []: test_data_flat = test_data.reshape(-1, 28*28)

model = AE()
model.load_state_dict(torch.load('mnist_ae.pt'))

embedded_ae = model.encoder(test_data_flat)
embedded_ae = embedded_ae.detach().numpy()

plt.figure()
plt.scatter(embedded_ae[:,0], embedded_ae[:,1], c=test_labels, cmap='tab10')
plt.title('AE')
plt.show()
```


We see that 5 and 3 are harder to seperate which agrees with our domain knowledge. 7 is similar to 9.

For Problem 5.4,

Problem 5

Problem 5.1 1) In a classical auto encoder, bow tie architercutre the middle layer is called the bottlenec. The dimension of the bottleneck is chosen to be drastically different from the input and output layer. This way it is impossible for the NN to simply copy the input to the output. 2) By introducing regularisation/corruption, we introduce a preference for some solution compared to others. Typically this prohibits the NN from simply copying the input to the output. 3) For an input sample X, we can perturb it to $\tidle X$. We train the NN to compare the output of X to $\tidle X$. This way the NN learns to ignore the perturbations and focus on the important features of the input.

Problem 5.2 We can add gaussian noise to a sample to corrupt it.

```
In []: #generate 1000 random numbers uniformly distributed between 0 and 1
    x = np.random.rand(100)
    y = x**2
    plt.plot(x,y, 'ro')
Out[]: [<matplotlib.lines.Line2D at 0x7f965a888d60>]
```



```
In []: #add gaussian noise to x and y
x_corrupt = x + np.random.randn(100)*0.05
y_corrupt = y + np.random.randn(100)*0.05
plt.plot(x_corrupt, y_corrupt, 'ro')
```

Out[]: [<matplotlib.lines.Line2D at 0x7f965a9e4400>]

Problem 5.3 It can mathematically be shown that an autoencoder with a single linear layer is equivalent to PCA. This is because PCA is a linear transformation that tries to find

the directions of maximum variance in the data. The autoencoder with a single linear layer tries to find a subspace which preserves as much information as possible, s.t. the reconstruction loss is reduced.

Problem 5.4

Regular autoencoder

```
In []: model = AE()
    model.load_state_dict(torch.load('mnist_ae.pt'))
Out[]: <All keys matched successfully>
In []: test_data_flat = test_data.reshape(-1, 28*28)
    embedded_ae = model.encoder(test_data_flat)
    decoded = model.decoder(embedded_ae)
```

Problem 6

Convolutional auto encoder without skip connections

```
In []: model_cae = CAE()
    model_cae.load_state_dict(torch.load('mnist_cae.pt'))
Out[]: <All keys matched successfully>
In []: embedded_cae = model_cae.encoder(test_data)
    decoded_cae = model_cae.decoder(embedded_cae)

Convolutional auto encoder with skip connections
```

```
In [ ]: model_cae_skip = CAE_skip()
        model cae skip.load state dict(torch.load('mnist cae skip.pt'))
Out[ ]: <All keys matched successfully>
In [ ]: embedded_cae_skip, x4, x1 = model_cae skip.encoder(test data)
        decoded cae skip = model cae skip.decoder(embedded cae, x4, x1)
In [ ]: #plot test data and reconstructed images
         for i in range(4):
                 #original image
                 input i = test data[i].detach().numpy()
                 #ae
                 output i ae = decoded[i].detach().numpy()
                 output_i_cae = decoded_cae[i].detach().numpy()
                 #cae skip
                 output i cae skip = decoded cae skip[i].detach().numpy()
                 input i = input i.reshape(28,28)
                 output i ae = output i ae.reshape(28,28)
                 output_i_cae = output_i_cae.reshape(28,28)
                 output i cae skip = output i cae skip.reshape(28,28)
                 #plot data and output next to each other
                 plt.figure()
                 plt.subplot(2,2,1)
```

```
plt.imshow(input_i, cmap='gray')
plt.title('Original')
plt.subplot(2,2,2)
plt.imshow(output_i_ae, cmap='gray')
plt.title('AE')
plt.subplot(2,2,3)
plt.imshow(output_i_cae, cmap='gray')
plt.title('CAE')
plt.subplot(2,2,4)
plt.subplot(2,2,4)
plt.imshow(output_i_cae_skip, cmap='gray')
plt.title('CAE_skip')
plt.title('CAE_skip')
plt.show()
```



```
In []: embedded_ae = embedded_ae.detach().numpy()
    embedded_cae = embedded_cae.detach().numpy()
    embedded_cae_skip = embedded_cae_skip.detach().numpy()
In []: #plot_embedded_embedded_cae_skip.detach().numpy()
```

```
In []: #plot embedded, embedded_cae, embedded_cae_skip
    plt.figure()
    plt.subplot(2,2,1)
    plt.scatter(embedded_ae[:,0], embedded_ae[:,1], c=test_labels, cmap='tab10')
    plt.title('AE')
    plt.subplot(2,2,2)
    plt.scatter(embedded_cae[:,0], embedded_cae[:,1], c=test_labels, cmap='tab10
    plt.title('CAE')
    plt.subplot(2,2,3)
    plt.scatter(embedded_cae_skip[:,0], embedded_cae_skip[:,1], c=test_labels, c
    plt.title('CAE_skip')
    plt.show()
```


TODO write We see that 5 and 3 are harder to seperate which agrees with our domain knowledge. 7 is similar to 9.

With Corruption

```
In [ ]:
        args =
                dict(batch size=64,
                test batch size=1000,
                epochs=10,
                momentum=0.5,
                no cuda=False,
                seed=1,
                log interval=10,
                save model=True)
        kwargs = {'num workers': 1, 'pin memory': True} if not args['no cuda'] else
In [ ]: # Download the MNIST dataset
        mnist_trainset = datasets.MNIST(root='./data', train=True, download=True, tr
        mnist testset = datasets.MNIST(root='./data', train=False, download=True, tr
        # training data
        ntrain = 60000
        train_data = (mnist_trainset.data.to(dtype=torch.float32)[:ntrain]/255).view
        train_labels = mnist_trainset.targets.to(dtype=torch.long)[:ntrain]
            # testing data
        ntest = 2000
        test data = (mnist testset.data.to(dtype=torch.float32)[:ntest]/255).view(-1
        test labels = mnist testset.targets.to(dtype=torch.long)[:ntest]
            # Load into torch datasets
        train dataset = torch.utils.data.TensorDataset(train data, train labels)
        test dataset = torch.utils.data.TensorDataset(test data, test labels)
        train_loader = torch.utils.data.DataLoader(
```

```
train_dataset, batch_size=args['batch_size'], drop_last=True, shuffle=Tr
)

test_loader = torch.utils.data.DataLoader(
    test_dataset, batch_size=args['test_batch_size'], drop_last=True, shuffl
)
```

Training the autoencoder with corruption

Training the convolutional autoencoder with corruption

TTraining the convolutional autoencoder with skip with corruption

```
Train Epoch: 1 | Train set: Average loss: 0.0136
        Test set: Average loss: 1.0454
        Train Epoch: 2
                               Train set: Average loss: 0.0009
        Test set: Average loss: 0.3776
        Train Epoch:
                      3
                               | Train set: Average loss: 0.0003
        Test set: Average loss: 0.1074
                               Train set: Average loss: 0.0001
        Train Epoch: 4
        Test set: Average loss: 0.0284
                     5
                              Train set: Average loss: 0.0000
        Train Epoch:
        Test set: Average loss: 0.0089
        Train Epoch: 6
                           Train set: Average loss: 0.0000
        Test set: Average loss: 0.0036
        Train Epoch: 7
                                | Train set: Average loss: 0.0000
        Test set: Average loss: 0.0019
                              | Train set: Average loss: 0.0000
        Train Epoch: 8
        Test set: Average loss: 0.0011
                              Train set: Average loss: 0.0000
        Train Epoch:
                     9
        Test set: Average loss: 0.0006
        Train Epoch: 10
                               Train set: Average loss: 0.0000
        Test set: Average loss: 0.0004
Out[]: <All keys matched successfully>
In [ ]: embedded cae corrupt = mnist cae corrupt.encoder(test data corrupt)
        decoded cae corrupt = mnist cae corrupt.decoder(embedded cae corrupt)
In []: embedded cae skip corrupt, x4, x1 = mnist cae skip corrupt.encoder(test data
        decoded cae skip corrupt = mnist cae skip corrupt.decoder(embedded cae skip
In [ ]: #plot test data and reconstructed images
        for i in range(4):
                #original image
                input i = test data[i].detach().numpy()
                #corrupted image
                input i corrupt = test data corrupt[i].detach().numpy()
                #cae
                output i cae = decoded cae[i].detach().numpy()
                #cae skip
                output i cae skip = decoded cae skip[i].detach().numpy()
                input i = input i.reshape(28,28)
                input_i_corrupt = input_i_corrupt.reshape(28,28)
                output i cae = output i cae.reshape(28,28)
                output i cae skip = output i cae skip.reshape(28,28)
                #plot data and output next to each other
                plt.figure()
                plt.subplot(2,2,1)
                plt.imshow(input_i, cmap='gray')
                plt.title('Original')
                plt.subplot(2,2,2)
                plt.imshow(input i corrupt, cmap='gray')
                plt.title('Corrupted')
```

```
plt.subplot(2,2,3)
plt.imshow(output_i_cae, cmap='gray')
plt.title('CAE')
plt.subplot(2,2,4)
plt.imshow(output_i_cae_skip, cmap='gray')
plt.title('CAE_skip')
plt.show()
```


For most pictures, the CAE with skip conncetions performs a lot better!

```
In []: embedded_cae_corrupt = embedded_cae_corrupt.detach().numpy()
    embedded_cae_skip_corrupt = embedded_cae_skip_corrupt.detach().numpy()

In []: #plot embedded, embedded_cae, embedded_cae_skip
    plt.figure()
    plt.subplot(2,2,1)
```

```
plt.scatter(embedded_cae_corrupt[:,0], embedded_cae_corrupt[:,1], c=test_lab
plt.title('CAE corrupted')
plt.subplot(2,2,2)
plt.scatter(embedded_cae[:,0], embedded_cae[:,1], c=test_labels, cmap='tab10
plt.title('CAE')
plt.subplot(2,2,3)
plt.scatter(embedded_cae_skip[:,0], embedded_cae_skip[:,1], c=test_labels, c
plt.title('CAE_skip')
plt.subplot(2,2,4)
plt.scatter(embedded_cae_skip_corrupt[:,0], embedded_cae_skip_corrupt[:,1],
plt.title('CAE_skip corrupted')
plt.show()
```


The emdedding of the CAE with skip connections is a lot more compact than the other two.