

Kontinuirani sustav II red

### Signali i sustavi

Profesor Branko Jeren

18. travnja 2007.



Signali i sustavi školska godina 2006/2007 Predavanie 13

Profesor Branko Jeren

Kontinuirani sustav II reda

#### Vremenski kontinuirani sustav II reda

- detaljno se razmatra opći vremenski kontinuirani sustav II reda
- paralelno se analiziraju model ulaz-izlaz i model s varijablama stanja
- model ulaz-izlaz

$$\ddot{y}(t) + a_1\dot{y}(t) + a_2y(t) = b_0\ddot{u}(t) + b_1\dot{u}(t) + b_2u(t)$$

model s varijablama stanja

$$\left[\begin{array}{c} \dot{x}_1(t) \\ \dot{x}_2(t) \end{array}\right] = \left[\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array}\right] \left[\begin{array}{c} x_1(t) \\ x_2(t) \end{array}\right] + \left[\begin{array}{c} b_1 \\ b_2 \end{array}\right] u(t)$$

$$y(t) = \begin{bmatrix} c_{11} & c_{12} \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + du(t)$$



Kontinuirani

### Odziv nepobuđenog sustava II reda – model ulaz-izlaz

rješavamo homogenu jednadžbu

$$\ddot{y}(t) + a_1\dot{y}(t) + a_2y(t) = 0$$

karakteristična jednadžba je

$$s^2 + a_1s + a_2 = 0$$

• vlastite frekvencije $^1$  neka su  $s_1$  i  $s_2$  a rješenje homogene jednadžbe je

$$y_h(t) = c_1 e^{s_1 t} + c_2 e^{s_2 t}$$

• odziv nepobuđenog sustava,  $y_0(t)$ , jednak je rješenju homogene diferencijalne jednadžbe, i nalazimo ga određivanjem  $c_1$  i  $c_2$  za zadane  $y(0^-)$  i  $\dot{y}(0^-)$ 

¹razmatramo jednostruke, dakle, različite ←□ → ←♬ → ←≧ → ←≧ → → ♀ ◆ ♀ ◆ ♀

#### Odziv nepobuđenog sustava II reda – model ulaz-izlaz

iz

$$y_0(t) = c_1 e^{s_1 t} + c_2 e^{s_2 t}$$
 i  
 $\dot{y}_0(t) = s_1 c_1 e^{s_1 t} + s_2 c_2 e^{s_2 t}$ 

• slijedi za  $t = 0^-$ 

$$y_0(0^-) = y(0^-) = c_1 + c_2 \dot{y}_0(0^-) = \dot{y}(0^-) = s_1 c_1 + s_2 c_2$$
 
$$\Rightarrow \left\{ \begin{array}{l} c_1 = \frac{y(0^-)s_2 - \dot{y}(0^-)}{s_2 - s_1} \\ c_2 = \frac{\dot{y}(0^-) - y(0^-)s_1}{s_2 - s_1} \end{array} \right.$$

pa je odziv nepobuđenog sustava II reda

$$y_0(t) = \frac{y(0^-)s_2 - \dot{y}(0^-)}{s_2 - s_1} e^{s_1 t} + \frac{\dot{y}(0^-) - y(0^-)s_1}{s_2 - s_1} e^{s_2 t}$$



školska godina 2006/2007 Predavanje 13

Profesor Branko Jeren

Kontinuirani sustav II reda

## Odziv nepobuđenog sustava II reda – model s varijablama stanja

rješavamo jednadžbe

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$$

$$y(t) = \begin{bmatrix} c_{11} & c_{12} \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$$

prije je izvedeno da su odziv stanja i odziv nepobuđenog sustava

$$x(t) = e^{At}x(0^{-})$$
  
 $y_0(t) = Ce^{At}x(0^{-})$ 

 postupak određivanja fundamentalne matrice e<sup>At</sup> detaljno se studira kasnije, a ovdje odziv stanja, i odziv sustava, nalazimo rješavanjem homogenih jednadžbi stanja



sustavi školska godina 2006/2007 Predavanje 13

Profesor Branko Jeren

Kontinuirani sustav II reda

## Odziv nepobuđenog sustava II reda – model s varijablama stanja

• pretpostavljena rješenja homogenih jednadžbi  $x_1(t)=K_1e^{st}$  i  $x_2(t)=K_2e^{st}$  uvrštavamo u polazne jednadžbe, pa iz

$$\dot{x}_1(t) = a_{11}x_1(t) + a_{12}x_2(t)$$
  
 $\dot{x}_2(t) = a_{21}x_1(t) + a_{22}x_2(t)$ 

slijedi

$$sK_1e^{st} = a_{11}K_1e^{st} + a_{12}K_2e^{st}$$
  
 $sK_2e^{st} = a_{21}K_1e^{st} + a_{22}K_2e^{st}$ 

• za netrivijalno rješenje mora biti  $e^{st} \neq 0$ , pa slijede karakteristične jednadžbe

$$(a_{11} - s)K_1 + a_{12}K_2 = 0$$
  
$$a_{21}K_1 + (a_{22} - s)K_2 = 0$$

2006/2007

### Odziv nepobuđenog sustava II reda – model s varijablama stanja

• da bi sustav karakterističnih jednadžbi dao rješenja, za  $K_1$  i  $K_2$  različite od nule, mora determinanta sustava biti jednaka nuli,

$$\left| \begin{array}{cc} (a_{11} - s) & a_{12} \\ a_{21} & (a_{22} - s) \end{array} \right| = 0$$

što daje karakterističnu jednadžbu

$$s^2 - Ts + \Delta = 0$$

gdje su T, trag matrice A, a  $\Delta$ , determinanta matrice A,

$$T = a_{11} + a_{22}, \quad \Delta = a_{11}a_{22} - a_{12}a_{21}$$



sustavi školska godina 2006/2007 Predavanje 13

Profesor Branko Jeren

Kontinuirani sustav II reda

## Odziv nepobuđenog sustava II reda – model s varijablama stanja

• neka su vlastite frekvencije  $s_1$  i  $s_2$ , pa je rješenje homogenih jednadžbi stanja

$$egin{aligned} x_1(t) &= K_{11}e^{s_1t} + K_{12}e^{s_2t} \ x_2(t) &= K_{21}e^{s_1t} + K_{22}e^{s_2t} \end{aligned}$$

• konstante  $K_{11}$ ,  $K_{12}$ ,  $K_{21}$ ,  $K_{22}$  određujemo iz početnih stanja  $x_1(0^-)$  i  $x_2(0^-)$  iz

$$\begin{aligned} x_1(t) &= K_{11}e^{s_1t} + K_{12}e^{s_2t} \\ \dot{x}_1(t) &= s_1K_{11}e^{s_1t} + s_2K_{12}e^{s_2t} = a_{11}x_1(t) + a_{12}x_2(t) \\ x_2(t) &= K_{21}e^{s_1t} + K_{22}e^{s_2t} \\ \dot{x}_2(t) &= s_1K_{21}e^{s_1t} + s_2K_{22}e^{s_2t} = a_{21}x_1(t) + a_{22}x_2(t) \end{aligned}$$



sustavi školska godina 2006/2007 Predavanje 13

Profesor Branko Jeren

Kontinuirani sustav II reda

## Odziv nepobuđenog sustava II reda – model s varijablama stanja

• za  $t = 0^-$  slijedi

$$K_{11} + K_{12} = x_1(0^-)$$
  
 $s_1 K_{11} + s_2 K_{12} = a_{11} x_1(0^-) + a_{12} x_2(0^-)$   
 $K_{21} + K_{22} = x_2(0^-)$   
 $s_1 K_{21} + s_2 K_{22} = a_{21} x_1(0^-) + a_{22} x_2(0^-)$ 

• pa su

$$\begin{split} K_{11} &= \frac{(a_{11} - s_2)x_1(0^-) + a_{12}x_2(0^-)}{s_1 - s_2} \\ K_{12} &= \frac{(s_1 - a_{11})x_1(0^-) - a_{12}x_2(0^-)}{s_1 - s_2} \\ K_{21} &= \frac{a_{21}x_1(0^-) + (a_{22} - s_2)x_2(0^-)}{s_1 - s_2} \\ K_{22} &= \frac{-a_{21}x_1(0^-) + (s_1 - a_{22})x_2(0^-)}{s_1 - s_2} \end{split}$$



školska godina 2006/2007 Predavanje 13

Profesor Branko Jeren

Kontinuirani sustav II reda

# Odziv nepobuđenog sustava II reda – model s varijablama stanja

odziv stanja nepobuđenog sustava II reda je

$$\begin{aligned} x_1(t) &= \tfrac{(a_{11} - s_2)x_1(0^-) + a_{12}x_2(0^-)}{s_1 - s_2} e^{s_1 t} + \tfrac{(s_1 - a_{11})x_1(0^-) - a_{12}x_2(0^-)}{s_1 - s_2} e^{s_2 t} \\ x_2(t) &= \tfrac{a_{21}x_1(0^-) + (a_{22} - s_2)x_2(0^-)}{s_1 - s_2} e^{s_1 t} + \tfrac{-a_{21}x_1(0^-) + (s_1 - a_{22})x_2(0^-)}{s_1 - s_2} e^{s_2 t} \end{aligned}$$

• razvrstavanjem po  $x_1(0^-)$  i  $x_2(0^-)$  dolazimo do rješenja oblika  $x(t)=e^{At}x(0^-)$ 

$$\begin{array}{l} x_1(t) = (\frac{a_{11} - s_2}{s_1 - s_2}e^{s_1t} + \frac{s_1 - a_{11}}{s_1 - s_2}e^{s_2t})x_1(0^-) + (\frac{a_{12}}{s_1 - s_2}e^{s_1t} - \frac{a_{12}}{s_1 - s_2}e^{s_2t})x_2(0^-) \\ x_2(t) = (\frac{a_{21}}{s_1 - s_2}e^{s_1t} - \frac{a_{21}}{s_1 - s_2}e^{s_2t})x_1(0^-) + (\frac{a_{22} - s_2}{s_1 - s_2}e^{s_1t} + \frac{s_1 - a_{22}}{s_1 - s_2}e^{s_2t})x_2(0^-) \end{array}$$

• pa se prepoznaje fundamentalna matrica kao

$$e^{At} = \begin{bmatrix} \frac{a_{11} - s_2}{s_1 - s_2} e^{s_1 t} + \frac{s_1 - a_{11}}{s_1 - s_2} e^{s_2 t} & \frac{a_{12}}{s_1 - s_2} e^{s_1 t} - \frac{a_{12}}{s_1 - s_2} e^{s_2 t} \\ \frac{a_{21}}{s_1 - s_2} e^{s_1 t} - \frac{a_{21}}{s_2 - s_2} e^{s_2 t} & \frac{a_{22} - s_2}{s_1 - s_2} e^{s_1 t} + \frac{s_1 - a_{22}}{s_1 - s_2} e^{s_2 t} \end{bmatrix}$$

• odziv nepobuđenog sustava je

$$y_0(t) = Ce^{At}x(0^-)$$



Profesor Branko Jeren

Kontinuirani sustav II reda

### Odziv nepobuđenog sustava II reda – trajektorija stanja

- odziv stanja nepobuđenog sustava  $x(t)=e^{At}x(0^-)$  pokazuje kako sustav prelazi, iz početnog stanja  $x(0^-)$ , u stanje x(t) u trenutku t
- poznavanje stanja sustava, u bilo kojem trenutku t, određeno je poznavanjem  $x_1$  i  $x_2$
- promjenu stanja sustava II reda možemo pratiti kao trajektoriju stanja u ravnini stanja
- trajektorija stanja predstavlja parametarski zadanu funkciju

$$T = \{(x_1, x_2) | x_1 = \varphi(t), x_2 = \psi(t), t \in Realni_+\}$$

- trajektorija stanja je, dakle, skup točaka koje opisuje vrh vektora stanja
- slijedi primjer sustava za koji su izračunati odzivi stanja  $x_1(t)$  i  $x_2(t)$
- prikazani su odzivi stanja te trajektorija u ravnini stanja





Signali i sustavi školska godina 2006/2007 Predavanje 13

Profesor Branko Jeren

Kontinuirani sustav II reda

### Odziv nepobuđenog sustava II reda – trajektorija stanja











2006/2007

Kontinuirani sustav II reda

#### Odziv nepobuđenog sustava II reda – model ulaz-izlaz

 u uvodnom predavanju pokazano je kako su modeli sustava ovjesa automobila, glazbene vilice ili R-L-C električke mreže, dani diferencijalnom jednadžbom oblika

$$\ddot{y}(t) + a_1\dot{y}(t) + a_2y(t) = b_2u(t)$$

odnosno

$$\ddot{y}(t) + 2\zeta\Omega_n\dot{y}(t) + \Omega_n^2y(t) = A\Omega_n^2u(t)$$

gdje su  $\zeta$  – stupanj prigušenja,  $\Omega_n$  – neprigušena prirodna frekvencija i A konstanta



Kontinuirani sustav II reda

### Odziv nepobuđenog sustava II reda – model ulaz-izlaz

 odziv nepobuđenog sustava nalazimo rješavanjem homogene jednadžbe

$$\ddot{y}(t) + 2\zeta\Omega_n\dot{y}(t) + \Omega_n^2y(t) = 0$$

karakteristična jednadžba je

$$s^2 + 2\zeta\Omega_n s + \Omega_n^2 = 0$$

• vlastite frekvencije  $s_1$  i  $s_2$  su

$$s_{1,2} = -\zeta \Omega_n \pm \Omega_n \sqrt{\zeta^2 - 1}$$

• ovisno o koeficijentu  $\zeta$ , dakle, stupnju prigušenja, vlastite frekvencije mogu biti jednostruke ili dvostruke, te realne ili konjugirano kompleksne



Kontinuirani sustav II reda

### Odziv nepobuđenog sustava II reda – model ulaz-izlaz

- $\zeta > 1$  nadkritično prigušen nepobuđeni sustav II reda
  - vlastite frekvencije su realne, negativne, i različite

$$s_1 = -\zeta \Omega_n + \Omega_n \sqrt{\zeta^2 - 1}, \quad s_2 = -\zeta \Omega_n - \Omega_n \sqrt{\zeta^2 - 1}$$

- - vlastita frekvencije je realna, negativna, i dvostruka

$$s_1 = s_2 = -\zeta \Omega_n$$

- - vlastite frekvencije su konjugirano kompleksne

$$s_1 = -\zeta \Omega_n + j\Omega_n \sqrt{1-\zeta^2}, \quad s_2 = -\zeta \Omega_n - j\Omega_n \sqrt{1-\zeta^2}$$

- $\zeta = 0$  neprigušen nepobuđeni sustav II reda
  - vlastite frekvencije su konjugirano kompleksne

$$s_1 = j\Omega_n$$
,  $s_2 = -j\Omega_n$ 





Profesor Branko Jeren

Kontinuirani sustav II reda

#### Odziv nepobuđenog sustava II reda

- prije diskusije mogućih odziva nepobuđenog sustava II reda, za razne vrijednosti  $\zeta$ , učinimo, odgovarajućim izborom varijabli stanja, prijelaz u model s varijablama stanja
- diskusiju tada provodimo, paralelno, za oba modela



Profesor Branko Jeren

Kontinuirani sustav II reda

### Odziv nepobuđenog sustava II reda

sustav II reda, zadan s modelom ulaz-izlaz,

$$\ddot{y}(t) + 2\zeta \Omega_n \dot{y}(t) + \Omega_n^2 y(t) = A\Omega_n^2 u(t)$$

prikazujemo blokovskim dijagramom



• izlaze iz integratora, dakle, memorijskih elemenata, označavamo kao varijable stanja  $x_1(t)$  i  $x_2(t)$ 



Kontinuirani sustav II reda

### Prijelaz iz modela ulaz-izlaz u model s varijablama stanja



• izabiremo<sup>2</sup>  $x_1(t) = y(t)$  i  $x_2(t) = \dot{y}(t)$  pa vrijedi

$$\dot{x}_1(t) = x_2(t)$$
 $\dot{x}_2(t) = -\Omega_n^2 x_1(t) - 2\zeta \Omega_n x_2(t) + A\Omega_n^2 u(t)$ 
 $y(t) = x_1(t)$ 

<sup>&</sup>lt;sup>2</sup>jedan od mogućih izbora



Profesor Branko Jeren

Kontinuirani sustav II reda

### Prijelaz iz modela ulaz-izlaz u model s varijablama stanja

pisano matrično slijedi

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\Omega_n^2 & -2\zeta\Omega_n \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 0 \\ A\Omega_n^2 \end{bmatrix} u(t)$$

$$y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + 0 \cdot u(t)$$

vrijedi

$$T = a_{11} + a_{22} = -2\zeta\Omega_n$$
  
 $\Delta = a_{11}a_{22} - a_{12}a_{21} = \Omega_n^2$ 

• pa je karakteristična jednadžba

$$s^2 - Ts + \Delta = 0$$
  $\Rightarrow$   $s^2 + 2\zeta\Omega_n s + \Omega_n^2 = 0$ 

 zaključujemo kako, bez obzira na izabrani model, uvijek dolazimo do iste karakteristične jednadžbe i istih karakterističnih frekvencija



Kontinuirani sustav II reda

### Trajektorija u ravnini stanja

- ovdje se (aproksimativno) određuje jedna od mogućih trajektorija u ravnini stanja
- razmatra se sustav čije su vlastite frekvencije konjugirano kompleksne
- radi bolje preglednosti u pisanju tijekom izvoda, označimo konjugirano kompleksne vlastite frekvencije kao

$$s_1 = -\zeta \Omega_n + j\Omega_n \sqrt{1 - \zeta^2} = -\alpha + j\beta$$
  

$$s_2 = -\zeta \Omega_n - j\Omega_n \sqrt{1 - \zeta^2} = -\alpha - j\beta$$

- iz istih razloga neka je  $x_1(0^-) \neq 0$  i  $x_2(0^-) = 0$
- prije je izveden izraz za odziv stanja  $x_1(t)$  općeg sustava II reda koji uz  $x_2(0^-) = 0$  prelazi u

$$x_1(t) = \frac{-s_2 x_1(0^-)}{s_1 - s_2} e^{s_1 t} + \frac{s_1 x_1(0^-)}{s_1 - s_2} e^{s_2 t}$$



Kontinuirani sustav II reda

### Trajektorija u ravnini stanja

• za  $s_1 = -\alpha + j\beta$  i  $s_2 = -\alpha - j\beta$  slijedi

$$x_1(t) = \frac{(\alpha + j\beta)x_1(0^-)}{j2\beta}e^{(-\alpha + j\beta)t} + \frac{(-\alpha + j\beta)x_1(0^-)}{j2\beta}e^{(-\alpha - j\beta)t}$$

$$x_1(t) = e^{-\alpha t} \left[ \frac{\alpha}{\beta} \sin(\beta t) + \cos(\beta t) \right] x_1(0^-)$$

• kako je  $x_2(t) = \dot{x}_1(t)$  slijedi

$$x_2(t) = -\frac{\alpha^2}{\beta}e^{-\alpha t}\sin(\beta t)x_1(0^-) - \beta e^{-\alpha t}\sin(\beta t)x_1(0^-)$$

• odlučimo se dalje razmatrati sustave za koje vrijedi^3  $\frac{\alpha}{\beta} << 1$ 

 $<sup>^3</sup>$ sustavi čije su vlastite frekvencije blizu  $j\Omega$  osi. Ovdje, ionako, određujemo tek jednu od mogućih trajektorija pa je ovo ograničenje prihvatljivo



Kontinuirani sustav II reda

#### Trajektorija u ravnini stanja

aproksimativni izrazi za odziv stanja su tada

$$x_1(t) = e^{-\alpha t} \cos(\beta t) x_1(0^-)$$

$$x_2(t) = -\beta e^{-\alpha t} \sin(\beta t) x_1(0^-)$$

iz

$$\cos(\beta t) = \frac{x_1(t)}{e^{-\alpha t}x_1(0^-)}$$
 i  $\sin(\beta t) = \frac{x_2(t)}{-\beta e^{-\alpha t}x_1(0^-)}$ 

slijedi

$$\left(\frac{x_1(t)}{e^{-\alpha t}x_1(0^-)}\right)^2 + \left(\frac{x_2(t)}{-\beta e^{-\alpha t}x_1(0^-)}\right)^2 = 1$$



Kontinuirani sustav II reda

#### Trajektorija u ravnini stanja

i finalno

$$\left(\frac{x_1(t)}{e^{-\zeta\Omega_n t}x_1(0^-)}\right)^2 + \left(\frac{x_2(t)}{-\Omega_n \sqrt{1-\zeta^2}e^{-\zeta\Omega_n t}x_1(0^-)}\right)^2 = 1$$

- zaključujemo da je za sustav čije su vlastite frekvencije konjugirano kompleksne, trajektorija u ravnini stanja jedna spirala
- za druge parametre sustava trajektorija stanja poprima druge oblike i biti će ilustrirani nizom primjera koji slijede



2006/2007

Kontinuirani sustav II reda

#### Trajektorija u ravnini stanja

 razmatra se trajektorija za nepobuđeni sustav opisan diferencijalnom jednadžbom

$$\ddot{y}(t) + 0.2\dot{y}(t) + 0.16y(t) = 0$$

ili jednadžbama stanja

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -0.16 & -0.2 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$$

• kako je  $2\zeta\Omega_n=0.2$  i  $\Omega_n^2=0.16$  slijedi

$$\zeta = 0.25$$
 i  $\Omega_n = 0.4$ 

• neka su  $y(0^-) = x_1(0^-) \neq 0$  i  $\dot{y}(0^-) = x_2(0^-) = 0$ 



Signali i sustavi školska godina 2006/2007 Predavanje 13

Profesor Branko Jeren

Kontinuirani sustav II reda

### Trajektorija u ravnini stanja







Profesor Branko Jeren

Kontinuirani sustav II reda

- slijedi prikaz odziva sustava i prikaz trajektorije u ravnini stanja za gore zadani sustav
- neka su  $y(0^-) = x_1(0^-) = -3$  i  $\dot{y}(0^-) = x_2(0^-) = -1$
- variramo  $\zeta = 0.2$ ; 0.4; 0.6; 0.8; 1.0; 1.2; 1.4; 0.0; -0.1



Kontinuirani sustav II reda





Signali i sustavi školska godina 2006/2007 Predavanje 13

Profesor Branko Jeren

Kontinuirani sustav II reda





Kontinuirani sustav II reda





školska godina 2006/2007 Predavanje 13

Profesor Branko Jeren

Kontinuirani sustav II reda





školska godina 2006/2007 Predavanje 13 Profesor

Branko Jeren

Kontinuirani sustav II reda





Kontinuirani sustav II reda





2006/2007 Predavanje 13

Profesor Branko Jeren

Kontinuirani sustav II reda





Kontinuirani sustav II reda





Signali i sustavi školska godina 2006/2007 Predavanje 13

Profesor Branko Jeren

Kontinuirani sustav II reda





Signali i sustavi školska godina 2006/2007 Predavanje 13

Profesor Branko Jeren

Kontinuirani sustav II reda

#### Odziv sustava II reda na jedinični impuls

sustav pobuđujemo jediničnim impulsom pa je jednadžba

$$\ddot{y}(t) + 2\zeta\Omega_n\dot{y}(t) + \Omega_n^2y(t) = A\Omega_n^2\delta(t)$$

- za t > 0 jednadžba postaje homogena jednadžba pa je za t > 0 odziv sustava na jedinični impuls jednak rješenju homogene jednadžbe
- prije su izračunate vlastite frekvencije  $s_1=-\zeta\Omega_n+j\Omega_n\sqrt{1-\zeta^2}$  i  $s_2=-\zeta\Omega_n-j\Omega_n\sqrt{1-\zeta^2}$  i homogeno rješenje je

$$y_h(t) = c_1 e^{s_1 t} + c_2 e^{s_2 t}$$
  $t > 0$ 



Profesor Branko Jeren

Kontinuirani sustav II reda

#### Odziv sustava II reda na jedinični impuls

- zadani početni uvjeti  $y(0^-)$  i  $\dot{y}(0^-)$  trebaju biti definirani neposredno prije djelovanja pobude koja u ovom slučaju djeluje u t=0 i
- konstante  $c_1$  i  $c_2$  određujemo za  $t=0^+$  pa je potrebno odrediti  $y(0^+)$  i  $\dot{y}(0^+)$  uzimajući u obzir  $y(0^-)$  i  $\dot{y}(0^-)$  i djelovanje pobude
- početne uvjete  $y(0^+)$  i  $\dot{y}(0^+)$  formalno nalazimo sljedećim postupkom



Profesor Branko Jeren

Kontinuirani sustav II reda

#### Odziv sustava II reda na jedinični impuls

• integriramo dva puta polaznu diferencijalnu jednadžbu

$$\ddot{y}(t) + 2\zeta\Omega_n\dot{y}(t) + \Omega_n^2y(t) = A\Omega_n^2\delta(t)$$

$$\int_{0^{-}}^{t} \ddot{y}(\tau) d\tau + 2\zeta \Omega_{n} \int_{0^{-}}^{t} \dot{y}(\tau) d\tau + \Omega_{n}^{2} \int_{0^{-}}^{t} y(\tau) d\tau = A\Omega_{n}^{2} \int_{0^{-}}^{t} \delta(\tau) d\tau$$
(1)

$$\int_{0^{-}}^{t} \int_{0^{-}}^{\tau} \ddot{y}(\lambda) d\lambda d\tau + 2\zeta \Omega_{n} \int_{0^{-}}^{t} \int_{0^{-}}^{\tau} \dot{y}(\lambda) d\lambda d\tau + 
+ \Omega_{n}^{2} \int_{0^{-}}^{t} \int_{0^{-}}^{\tau} y(\lambda) d\lambda d\tau = A\Omega_{n}^{2} \int_{0^{-}}^{t} \int_{0^{-}}^{\tau} \delta(\lambda) d\lambda d\tau \quad (2)$$



2006/2007 Predavanje 13 Profesor Branko Jeren

Kontinuirani sustav II reda

#### Odziv sustava II reda na jedinični impuls

• za  $t=0^+$  jednadžba (1) prelazi u

$$\dot{y}(0^{+}) - \dot{y}(0^{-}) + 2\zeta\Omega_{n}[y(0^{+}) - y(0^{-})] + \Omega_{n}^{2}\underbrace{\int_{0^{-}}^{0^{+}} y(\tau)d\tau}_{=0} =$$

$$= A\Omega_n^2 \underbrace{\int_{0^-}^{0^+} \delta(\tau) d\tau} \tag{3}$$



Profesor Branko Jeren

Kontinuirani sustav II reda

#### Odziv sustava II reda na jedinični impuls

• za  $t=0^+$  jednadžba (2) prelazi u

$$y(0^{+}) - y(0^{-}) + 2\zeta\Omega_{n}\underbrace{\int_{0^{-}}^{0^{+}} \int_{0^{-}}^{\tau} \dot{y}(\lambda) d\lambda d\tau}_{=0} +$$

$$+\Omega_n^2 \underbrace{\int_{0^-}^{0^+} \int_{0^-}^{\tau} y(\lambda) d\lambda d\tau}_{=0} = A\Omega_n^2 \underbrace{\int_{0^-}^{0^+} \int_{0^-}^{\tau} \delta(\lambda) d\lambda d\tau}_{=0}$$
(4)

slijedi

$$y(0^+) = y(0^-)$$

• a iz ovoga i iz jednadžbe (3) slijedi

$$\dot{y}(0^+) = \dot{y}(0^-) + A\Omega_n^2$$



Predavanje 13

Profesor
Branko Jeren

2006/2007

Kontinuirani sustav II reda

#### Odziv sustava II reda na jedinični impuls

• do istog zaključka možemo doći uvidom u blok dijagram





Profesor Branko Jeren

Kontinuirani sustav II reda

#### Odziv sustava II reda na jedinični impuls

• iz

$$y_h(t) = c_1 e^{s_1 t} + c_2 e^{s_2 t}$$
  $t > 0$ 

za  $t = 0^+$ 

$$y(0^+) = c_1 + c_2 = y(0^-)$$
  
 $\dot{y}(0^+) = s_1c_1 + s_2c_2 = \dot{y}(0^-) + A\Omega_n^2$ 

izračunavamo

$$c_1 = \frac{y(0^-)s_2 - (\dot{y}(0^-) + A\Omega_n^2)}{s_2 - s_1}$$
$$c_2 = \frac{(\dot{y}(0^-) + A\Omega_n^2) - y(0^-)s_1}{s_2 - s_1}$$



Profesor Branko Jeren

Kontinuirani sustav II reda

#### Odziv sustava II reda na jedinični impuls

• odziv sustava II reda, s početnim uvjetima  $y(0^-)$  i  $\dot{y}(0^-)$ , pobuđenog s jediničnim impulsom je

$$y_{imp}(t) = rac{y(0^{-})s_2 - (\dot{y}(0^{-}) + A\Omega_n^2)}{s_2 - s_1}e^{s_1t} + rac{(\dot{y}(0^{-}) + A\Omega_n^2) - y(0^{-})s_1}{s_2 - s_1}e^{s_2t} \quad t \ge 0$$

• za  $y(0^-) = 0$  i  $\dot{y}(0^-) = 0$  odziv na impuls zove se impulsni odziv i označava h(t)

$$h(t) = \frac{-A\Omega_n^2}{s_2 - s_1} e^{s_1 t} + \frac{A\Omega_n^2}{s_2 - s_1} e^{s_2 t} \quad t \ge 0$$



Profesor Branko Jeren

Kontinuirani sustav II reda

### Odziv sustava II reda na jedinični impuls

• za 
$$s_1 = -\zeta \Omega_n + j\Omega_n \sqrt{1-\zeta^2}$$
 i  $s_2 = -\zeta \Omega_n - j\Omega_n \sqrt{1-\zeta^2}$  
$$h(t) = \frac{-A\Omega_n^2}{-j2\Omega_n \sqrt{1-\zeta^2}} e^{(-\zeta\Omega_n + j\Omega_n \sqrt{1-\zeta^2})t} + \frac{A\Omega_n^2}{-j2\Omega_n \sqrt{1-\zeta^2}} e^{(-\zeta\Omega_n - j\Omega_n \sqrt{1-\zeta^2})t}$$

odnosno

$$h(t) = \frac{\Omega_n A}{\sqrt{1-\zeta^2}} e^{-\zeta \Omega_n t} \sin[(\Omega_n \sqrt{1-\zeta^2})t], \quad t \ge 0$$



Profesor Branko Jeren

Kontinuirani sustav II reda

### Impulsni odziv – primjer

određuje se impulsni odziv sustava

$$\ddot{y}(t) + 0.2\dot{y}(t) + 0.16y(t) = 6.25 \cdot 0.16u(t)$$

$$\zeta = 0.25, \quad \Omega_n = 0.4, \quad A = 6.25$$

• iz prethodnog izraza za h(t) slijedi

$$h(t) = 2.582e^{-0.1t}\sin(0.3873t)$$





Profesor Branko Jeren

Kontinuirani sustav II reda

#### Impulsni odziv sustava i trajektorija stanja

 slijedi prikaz impulsnog odziva sustava i prikaz trajektorije<sup>4</sup> u ravnini stanja za sustav zadan s diferencijalnom jednadžbom

$$\ddot{y}(t) + 2\zeta\Omega_n\dot{y}(t) + \Omega_n^2y(t) = A\Omega_n^2u(t)$$

- neka su  $A = 6.25 \text{ i } \Omega_n = 0.4$
- variramo  $\zeta = 0.2$ ; 0.4; 0.6; 0.8; 1.0; 1.2; 1.4; 0.0; -0.1

<sup>&</sup>lt;sup>4</sup>trajektorija stanja sada prikazuje promjenu⊧stanja pobuđenog sustava⊘५०



Profesor Branko Jeren

Kontinuirani sustav II reda





2006/2007 Predavanje 13 Profesor Branko Jeren

Kontinuirani sustav II reda





Profesor Branko Jeren

Kontinuirani sustav II reda

