Essentials of Data Science With R Software - 1

Probability Theory and Statistical Inference

Univariate Random Variables

• • •

Lecture 25 **Expectation of Variables**

Shalabh

Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Expectation of a Random Variable: Example 1

What does expectation means?

Suppose we toss a coin – two possible outcomes –

Head (H) and Tail (T).

Suppose we decide

- if we get Head, we get a reward of Rs. 2 and
- if we get Tail, we get a reward of Rs 4.

What do we expect to get an average reward?

Note that
$$P(H) = P(T) = \frac{1}{2}$$

Expected average reward = Rs. 2
$$\times \frac{1}{2}$$
 + Rs. 4 $\times \frac{1}{2}$ = Rs. 3

Expectation of a Random Variable: Example 2

Suppose we roll a dice and following is the scheme for award based on outcomes –

Point (x)	1	2	3	4	5	6
Reward (INR)	1	2	3	4	5	6
P(X=x)	1	1	1	1	1	1
	- 6	<u>6</u>	<u>6</u>	<u>6</u>	6	<u>6</u>

Expected reward money =

Rs. 1 ×
$$\frac{1}{6}$$
 + Rs. 2 × $\frac{1}{6}$ + Rs. 3 × $\frac{1}{6}$ + Rs. 4 × $\frac{1}{6}$ + Rs. 5 × $\frac{1}{6}$ + Rs. 6 × $\frac{1}{6}$

$$= Rs. 3.50$$

Mathematical Expectation of a Continuous Random Variable:

Let X be a continuous random variable having the probability density function f(x).

Suppose g(X) is a real valued function of X.

Obviously g(X) will also be a random variable.

Then expectation of g(X) is defined as

$$E[g(X)] = \int_{-\infty}^{\infty} g(x)f(x) dx$$

provided with $\int |g(x)|f(x) dx < \infty$.

Mathematical Expectation of a Discrete Random Variable:

Let X be a discrete random variable having the probability mass

function
$$P(X = x_i) = p_i$$
.

Suppose g(X) is a real valued function of X.

Obviously g(X) will also be a random variable.

Thus X takes the values $x_1, x_2, ..., x_k, ...$, with respective probabilities $p_1, p_2, ..., p_k, ...$

Then expectation of g(X) exists and is defined as

$$E[g(X)] = \sum_{i=1}^{\infty} g(x_i)P(X = x_i) = \sum_{i=1}^{\infty} g(x_i)p_i$$

provided $\sum_{i=1}^{\infty} |g(x_i)| p_i < \infty$.

Special cases of Expectation of a Random Variable: Mean

• g(X) = X then E[g(X)] = E(X)

The *expectation* of X, i.e. E(X), is usually denoted by $\mu = E(X)$ and relates to the arithmetic mean of the distribution of the population. It reflects the central tendency of the population.

If a and b are any real constants, then

$$E(a) = a$$
 and $E[aX + b] = aE[X] + b$

• Let $g_1, g_2,...,g_r$ be r real valued functions such that $E[g_i(X)]$ exists

for all
$$i = 1,2,...,r$$
 then $E[\sum_{i=1}^{r} g_i(X)] = \sum_{i=1}^{r} E[g(X_i)]$

Special cases of Expectation of a Random Variable: Mean Example 1

Consider the continuous random variable "waiting time for the train". Suppose that a train arrives every 20 min. Therefore, the waiting time of a particular person is random and can be any time contained in the interval [0, 20].

The required probability density function is

$$f(x) = \begin{cases} \frac{1}{20} & \text{for } 0 \le x \le 20\\ 0 & \text{otherwise.} \end{cases}$$

Special cases of Expectation of a Random Variable: Mean Example 1

$$E(X) = \int_{-\infty}^{\infty} x f(x) dx$$

$$= \int_{-\infty}^{0} x f(x) dx + \int_{0}^{20} x f(x) dx + \int_{20}^{\infty} x f(x) dx$$

$$= 0 + \int_{0}^{20} x \frac{1}{20} dx + 0 = 10$$

Thus the "average" waiting time for the train is 10 min.

This means that if a person has to wait for the train every day, then the waiting time will vary randomly between 0 and 20 minutes and, on average, it will be 10 minutes.

Special cases of Expectation of a Random Variable: Mean Example 2

Suppose we roll a dice and following is the scheme for award based on outcomes –

Point (x)	1	2	3	4	5	6
Reward (INR)	1	2	3	4	5	6
P(X=x)	1	1	1	1	1	1
	- 6	<u>6</u>	<u>6</u>	<u>6</u>	- 6	<u>6</u>

$$E(X) = \text{Rs. } 1 \times \frac{1}{6} + \text{Rs. } 2 \times \frac{1}{6} + \text{Rs. } 3 \times \frac{1}{6} + \text{Rs. } 4 \times \frac{1}{6} + \text{Rs. } 5 \times \frac{1}{6} + \text{Rs. } 6 \times \frac{1}{6}$$

= Rs. 3.50

Special cases of Expectation of a Random Variable: Mean

The arithmetic mean of observations $x_1, x_2, ..., x_n$ is defined as

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

mean(x) provides the value of arithmetic mean of the data in data vector x.

Special cases of Expectation of a Random Variable: Mean Example:

Following are the marks obtained out of maximum marks 100 by 20 participants in an examination: 42, 35, 45, 88, 74, 65, 78, 68, 39, 56, 76, 75, 62, 48, 62, 67, 76, 37, 58, 68.

```
> marks = c(32, 35, 45, 83, 74, 55, 68, 38, 35, 55, 66, 65, 42, 68, 72, 84, 67, 36, 42, 58)
```

> mean(marks)

[1] 56

```
> marks
[1] 32 35 45 83 74 55 68 38 35 55 66 65 42 68 72 84 67 36 42 58
> mean(marks)
[1] 56
> |
```