Höhere Mathematik II

Mitschrift der Vorlesung von Prof. Lehn im Sommersemester 2019 an der Uni Ulm

30. Juni2019

Inhaltsverzeichnis

	$0.1 \\ 0.2$	Stetigkeit in einer Dimension							
	0.2	Zwei Sonderfalle							
1		Differentialrechnung in höheren Dimensionen							
	1.1	Topologie							
		1.1.1 Korollar							
		1.1.2 Konvention							
		1.1.3 Definition der ε -Umgebung							
		1.1.4 Topologische Grundbegriffe							
		1.1.5 Definition von offen und abgeschlossen							
		1.1.6 Beispiele							
		1.1.7 Satz							
		1.1.8 Satz							
		1.1.9 Satz							
		1.1.10 Definition von beschränkt und kompakt							
	1.2	Folgen							
		1.2.1 Definition von Konvergenz und Beschränktheit							
		1.2.2 Bemerkung							
		1.2.3 Satz von Bolzano Weierstraß							
		1.2.4 Abschließende Bemerkungen							
	1.3	Funktionsgrenzwerte und Stetigkeit							
		1.3.1 Definition							
		1.3.2 Definition Grenzwert/Limes							
		1.3.3 Korollar							
		1.3.4 Beispiel							
		1.3.5 Lemma Folgenkriterium							
		1.3.6 Satz zu Grenzwerte verketteter Funktionen							
		1.3.7 Beispiel							
		1.3.8 Definition der Stetigkeit							
		1.3.9 Bemerkung							
	1.4	Partielle Ableitungen, Richtungsableitungen							
		1.4.1 Definition der partiellen Ableitung							
		1.4.2 Beispiel							
		1.4.3 Definition der Richtungsableitung							
	1.5	Total Differenzierbarkeit							
		1.5.1 Definition der totalen Differenzierbarkeit							
		1.5.2 Beispiele							
		1.5.3 Satz							
		1.5.4 Satz							
		155 Domonlung							

		1.5.6	Satz zur Kettenregel			
	1.6	Lokale	Extremstellen und Mittelwertsätze			 22
		1.6.1	Definition lokale/globale Extremstellen			 22
		1.6.2	Satz zur notwendigen Bedingung für eine lokale Extrem	nstelle		 22
		1.6.3	Definition des kritischen Punktes			 23
		1.6.4	Mittelwertsatz			 23
		1.6.5	Definition eines Gebiets			 23
		1.6.6	Bemerkungen zu Gebieten			 24
		1.6.7	Satz			 24
		1.6.8	Definition partieller Ableitungen r 'ter Ordnung			 25
		1.6.9	Definition der Hessematrix			 25
		1.6.10	Beispiele			 25
		1.6.11	Satz von Schwarz			 26
		1.6.12	Satz von Taylor mit quadratischem Restglied			 26
		1.6.13	Definition von Definitheit			 26
		1.6.14	Beispiele			 27
		1.6.15	Satz zum Hauptminorenkriterium			 27
		1.6.16	Satz über die hinreichenden Bedingungen für lokale Ex	${ m tremst}_{f e}$	ellen	28
			Definition der Sattelpunkte			
		1.6.18	Satz für den Fall $n=2$			 28
			Beispiel			
	1.7	Extren	nstellen unter Nebenbedingungen			
			nplizite Funktionen			 29
		1.7.1	Spezialfälle			
		1.7.2	Bemerkung			 30
		1.7.3	Satz über die Umkehrfunktion			
		1.7.4	Polarkoordinaten			 32
		1.7.5	Beispiel			 32
		1.7.6	Kugelkoordinaten			 32
		1.7.7	Korollar: Gebietstreue			 33
		1.7.8	Definition impliziter Funktionen			 33
		1.7.9	Beispiel Einheitskreis			 33
		1.7.10	Hauptsatz über implizite Funktionen			
		1.7.11	Lokale Extremstellen unter Nebenbedingungen			 35
			Satz von Lagrange			35
			Bespiele			36
			Kochrezept für Lagrange			37
2		0	n mehreren Dimensionen			39
	2.1		eterintegrale			39
		2.1.1	Satz zu eigentlichen Parameterintegralen			39
		2.1.2	Satz zur Leibniz-Regel			40
		2.1.3	Definition uneigentlicher Parameterintegrale			40
		2.1.4	Satz zum Majorantenkriterium			41
		2.1.5	Satz von Fubini für uneigentliche Integrale			41
		2.1.6	Satz zur Ableitung uneigentlicher Parameterintegrale .			41
	0.5	2.1.7	Beispiel			42
	2.2		nintegrale			42
		2.2.1	Definition der Äquivalenzrelation für Kurven			 42

	2.2.2	Definition einer Kurve im \mathbb{R}^n	43
	2.2.3	Beispiele	43
	2.2.4	Eigenschaften von Parameterdarstellungen	43
	2.2.5	Bemerkung	44
	2.2.6	Beispiele	44
	2.2.7	Definition zusammen- und entgegengesetzter Kurven	45
	2.2.8	Definition von rektifizierbaren Kurven	45
	2.2.9	Satz	45
		Definition von Kurvenintegralen	46
	2.2.11	Substitutionsformel	47
	2.2.12	Beispiele	47
	2.2.13	Definition der Wegunabhängigkeit	48
	2.2.14	Erster Hauptsatz für Kurvenintegralen	49
	2.2.15	Satz	49
	2.2.16	Beispiele	49
	2.2.17	Definition einfach zusammenhängender Gebiete	50
	2.2.18	Sternförmige Gebiete	50
	2.2.19	Bemerkung	50
	2.2.20	Zweiter Hauptsatz für Kurvenintegralen	50
		Definition der Rotation	52
	2.2.22	Korollar zum zweiten Hauptsatz für Kurvenintegrale	52
	2.2.23	Nach Variablen integrieren	53
		Mittels Kurvenintegral und passendem Weg	53
2.3		hsintegrale	54
	2.3.1	Definition von Intervallen im \mathbb{R}^n	54
	2.3.2	Definition von Zerlegungen im \mathbb{R}^n	54
	2.3.3	Definition der Riemann-Summe im mehrdimensionalen	
	2.3.4	Definition Riemann integrierbarer Bereichsintegrale	
		über ein Quader	54
	2.3.5	Bemerkung	55
	2.3.6	Definition von Bereichsintegralen	
		über beliebig beschränkte Menge	55
	2.3.7	Vorgehen zum Berechnen von Bereichsintegralen	55
	2.3.8	Prinzip von Cavalieri und Satz von Fubini	55
	2.3.9	Beispiel	56
	2.3.10	Definition von messbaren Mengen	56
	2.3.11	Integrationsregeln	56
	2.3.12	Substitutionsformel für Bereichsintegrale	57
	2.3.13	Beispiele	58
2.4	Integra	alsätze in der Ebene	59
	2.4.1	Definition positiv berandeter Mengen	59
	2.4.2	Definition von Normalbereichen	59
	2.4.3	Satz von Green	60
	2.4.4	Beispiel	60
	2.4.5	Green'sche Formel	60
2.5	Oberfl	ächenintegrale und Integralsätze im Raum	60
	2.5.1	Definition von regulären Flächen im Raum	60
	2.5.2	Definition von Oberflächenintegralen	61
	2.5.3	Beispiele	61

2.5.4	Satz von Stokes	62
2.5.5	Beispiel	62
2.5.6	Gauß'scher Integralsatz oder Divergenzsatz	63
2.5.7	Beispiel	63

Einführung

Stetigkeit in einer Dimension 0.1

f ist stetig in x_0 $\Leftrightarrow \lim_{x \to x_0} f(x) = f(x_0)$ $\Leftrightarrow \forall (x_n) \text{ mit } \lim_{n \to \infty} x_n = x_0 \text{ gilt } \lim_{n \to \infty} f(x_n) = f(x_0)$ $\Leftrightarrow \forall \varepsilon > 0 \quad \exists \delta \quad \text{mit} \quad |f(x) - f(x_0)| < \varepsilon \quad \forall x \in (x_0 - \delta, x_0 + \delta)$

Bemerkung: Der Grenzwert von Funktionen ist über den Grenzwert von Folgen definiert und kann auch nur so überprüft werden.

0.2Zwei Sonderfälle

Skalarfeld

Sei $f: \mathbb{R}^2 \to \mathbb{R}$

Visualisierung durch Höhenlinien: $H_c:=\{x\in\mathbb{R}^n:f(x)=c\}$ Beispiel: $f(x,y)=x^2+y^2$

Vektorfeld

Sei $f: \mathbb{R}^2 \to \mathbb{R}^2$

Beispiel: $f(x,y) = \begin{pmatrix} x \\ y \end{pmatrix}$

Kapitel 1

Differentialrechnung in höheren Dimensionen

1.1 Topologie

Skalarprodukt

Definition: $\langle x,y \rangle := x^\top y = \sum_{k=1}^n x_k y_k$ für $x,y \in \mathbb{R}^n$

Euklidische Norm

Definition:
$$||x||_2 := \sqrt{\langle x, x \rangle} = \sqrt{\sum_{k=1}^n x_k^2}$$

1.1.1 Korollar

Sei
$$x \in \mathbb{R}^n$$
 mit $x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$

1.

$$\max_{1 \le k \le n} |x_k| \le ||x|| \le \sqrt{n} \max_{1 \le k \le n} |x_k|$$

2. Cauchy-Schwarz-Ungleichung:

$$\forall x, y \in \mathbb{R}^n : |\langle x, y \rangle| \leq ||x|| \cdot ||y||$$

Begründung (kein Beweis) durch alternative Definition:

$$\langle x, y \rangle = ||x|| \cdot ||y|| \underbrace{\cos \alpha}_{\leqslant 1}$$

Dabei ist α der Winkel der zwischen x und y eingeschlossen wird.

Daraus folgt:

 $|\langle x,y\rangle| = ||x|| \cdot ||y|| \Leftrightarrow x,y$ sind lin. abhängig $(x = \lambda y \text{ für } \lambda \in \mathbb{R})$ $\Leftrightarrow x,y$ zeigen in die gleiche oder entgegengesetzte Richtung 3. $\|\cdot\|$ ist eine Norm. Eine Norm hat folgende Eigenschaften:

(i)
$$||x|| \ge 0$$
 und $||x|| = 0 \Leftrightarrow x = 0$

- (ii) $\|\lambda x\| = |\lambda| \cdot \|x\|$
- (iii) $||x + y|| \le ||x|| + ||y||$ Dreiecksungleichung

1.1.2 Konvention

Für $A \subset \mathbb{R}^n$ gilt für das Komplement $A^c = \mathbb{R}^n \setminus A$

1.1.3 Definition der ε -Umgebung

Sei $x_0 \in \mathbb{R}^n$ und $\varepsilon > 0$, dann gilt für die ε -Umgebung $U_{\varepsilon}(x_0)$ von x_0 :

$$U_{\varepsilon}(x_0) := \{ x \in \mathbb{R}^n : ||x - x_0|| < \varepsilon \}$$

Bemerkung: Die punktierte ε -Umgebung ist definiert als: $\dot{U}_{\varepsilon} = U_{\varepsilon}(a) \setminus \{a\}$

1.1.4 Topologische Grundbegriffe

Sei $A \subset \mathbb{R}^n$, dann heißt ein Punkt $x_0 \in \mathbb{R}^n$

- (i) ein **innerer Punkt**, wenn gilt $\exists \ \varepsilon > 0$ mit $U_{\varepsilon}(x_0) \subset A$ Menge aller inneren Punkte: $\mathring{A} = \{x \in \mathbb{R}^n : \exists \ \varepsilon > 0 \text{ mit } U_{\varepsilon}(x) \subset A\}$
- (ii) ein **Berührungspunkt**, wenn $\forall \varepsilon > 0$ gilt $U_{\varepsilon}(x_0) \cap A \neq \emptyset$ abgeschlossene Hülle: $\overline{A} = \{x \in \mathbb{R}^n : \forall \varepsilon > 0 \text{ gilt } U_{\varepsilon}(x_0) \neq \emptyset\}$
- (iii) ein **Häufungspunkt**, wenn $\forall \varepsilon > 0$ gilt $(U_{\varepsilon}(x_0) \setminus \{x_0\}) \cap A \neq \emptyset$ Die Menge aller Häufungspunkte wird mit A' bezeichnet.
- (iv) ein **Randpunkt**, wenn $\forall \varepsilon > 0$ gilt $U_{\varepsilon}(x_0) \cap A \neq \emptyset$ und $U_{\varepsilon}(x_0) \cap A^c \neq \emptyset$ Menge aller Randpunkte oder auch **Rand** von A wird mit ∂A bezeichnet.

Korollar

(i) $\mathring{A} \subset A$

Beweis: Zu zeigen:
$$x \in \mathring{A} \implies x \in A$$

$$x \in \mathring{A} \implies \exists \ \varepsilon > 0 \ \text{mit} \ U_{\varepsilon}(x) \subset A \stackrel{x \in U_{\varepsilon}(x)}{\Rightarrow} x \in A$$

- (ii) $\mathring{A} \subset \overline{A}$
- (iii) $\partial A \subset \overline{A}$
- (iv) $\overline{A} = \mathring{A} \cup \partial A$
- (v) $\overline{A} = A \cup \partial A$ (schwächere Aussage als (iv))

1.1. TOPOLOGIE

1.1.5 Definition von offen und abgeschlossen

Beweis: Sei $A = U_{\varepsilon}(x_0)$ und $x \in A$ beliebig.

Eine Menge $A \subset \mathbb{R}^n$ heißt

- (i) **offen**, wenn $A = \mathring{A}$ gilt (A besteht nur aus inneren Punkten)
- (ii) **abgeschlossen**, wenn $\partial A \subset A$ gilt (wenn der Rand in der Menge enthalten ist)

1.1.6 Beispiele

1. Jede ε -Umgebung $U_{\varepsilon}(x_0 \in \mathbb{R}^n)$ ist offen

Zu zeigen: $x \in A$, respektive $\exists \delta > 0$ mit $U_{\delta}(x) \subset A$ Wähle $\delta = \varepsilon - \|x - x_0\|$, dann gilt: $\underbrace{y \in U_{\delta}(x)}_{\Leftrightarrow \|y - x\| < \delta} \Rightarrow \underbrace{y \in A}_{\Leftrightarrow \|y - x_0\| < \varepsilon}$ $\|y - x_0\| = \|y - x + x - x_0\| \overset{\Delta - \text{Ungl.}}{\leqslant} \underbrace{\|y - x\|}_{<\delta} + \|x - x_0\| < \delta + \|x - x_0\|$ $= \underbrace{\varepsilon - \|x - x_0\|}_{\delta} + \|x - x_0\| = \varepsilon$

- 2. Sei $I \subset \mathbb{R}$, dann gilt
 - (i) I ist offen, wenn I=(a,b) mit $-\infty \leqslant a \leqslant b \leqslant \infty$ für a=b gilt $I=\varnothing$ mit I offen und für $a=-\infty, b=\infty$ ist I auch offen
 - (ii) I ist abgeschlossen, wenn I=[a,b] mit $a,b\in\mathbb{R}$ oder $I=(-\infty,b]$ oder $I=[a,\infty)$ oder $I=(-\infty,\infty)=\mathbb{R}$

(die reellen Zahlen sind offen und abgeschlossen zugleich)

1.1.7 Satz

für $A \subset \mathbb{R}^n$ sind folgenden Aussagen äquivalent:

- (i) A ist abgeschlossen $A = \overline{A}$
- (ii) A enthält alle Häufungspunkte, $A' \subset A$
- (iii) A enthält alle Randpunkte, $\partial A \subset A$
- (iv) A^c ist offen

Beweis zu $(i) \Rightarrow (iv)$: Annahme: A^c ist nicht offen:

- $\Rightarrow \exists x \in A^c \text{ mit } U_{\varepsilon}(x) \not\subset A^c \quad \forall \varepsilon > 0$
- $\Rightarrow \forall \varepsilon > 0 : U_{\varepsilon}(x) \cap A \neq \emptyset$
- $\Rightarrow x$ ist Berührungspunkt von $A \Rightarrow x \in A \Rightarrow$ Widerspruch zur Annahme

Beweis zu $(iv) \Rightarrow (i)$:

$$\begin{array}{lll} A^c \text{ ist offen} & \Rightarrow & \forall \ x \in A^c : \exists \ \varepsilon > 0 \ \text{mit} \ U_\varepsilon(x) \subset A^c & \Rightarrow & U_\varepsilon(x) \cap (A^c)^c = \varnothing \\ \\ & \Rightarrow & U_\varepsilon(x) \cap A = \varnothing \ \text{und} \ U_\varepsilon(x) \cap A^c \neq \varnothing \\ \\ & \Rightarrow & \text{kein} \ x \in A^c \ \text{ist Ber\"{u}hrungspunkt von} \ A \\ \\ & \Rightarrow & A \ \text{enth\"{a}lt alle seine Ber\"{u}hrungspunkte} & \Rightarrow & A \ \text{ist abgeschlossen} \end{array}$$

1.1.8 Satz

(i) \varnothing und \mathbb{R}^n sind offen.

Beweis: Folgt direkt aus der Definition 1.1.5

(ii) Die Vereinigung beliebig vieler offene Mengen ist offen:

$$\bigcup_{j \in J} (O_j \text{ offen}) = O \text{ offen}$$

Beweis: Sei
$$A = \bigcup_{j \in J} O_j, x \in A$$
 beliebig.
Zu zeigen: Für $x \in A$ gilt $\exists \ \varepsilon > 0 : U_{\varepsilon}(x) \subset A$

$$x \in A \quad \Rightarrow \quad x \in O_j \text{für mindestens ein } j \in J$$

$$O_j \text{offen} \quad \exists \ \varepsilon > 0 : U_{\varepsilon}(x) \subset O_j \subset A$$

(iii) Der Durchschnitt endlich vieler offener Mengen ist offen:

$$\bigcap_{j=1}^{n} (O_j \text{ offen}) = O \text{ offen}$$

$$\begin{aligned} & \textbf{\textit{Beweis:}} \; \text{Sei } A = O_1 \cap O_2 \cap \ldots \cap O_n. \\ & \text{Für } x \in A \; \text{gilt } \exists \; \varepsilon > 0 : U_\varepsilon(x) \subset A \\ \\ & \Rightarrow \quad x \in O_1 \; \text{und } x \in O_2 \; \text{und } \ldots \\ & \xrightarrow{O_1, O_2, \ldots \; \text{offen}} \quad \exists \; \varepsilon_1 > 0 \; \text{mit } U_{\varepsilon_1}(x) \subset 0_1 \; \text{und } \exists \; \varepsilon_2 > 0 \; \text{mit } U_{\varepsilon_2}(x) \subset 0_2 \; \text{und } \ldots \\ & \Rightarrow \quad \text{für } \varepsilon = \min\{\varepsilon_1, \ldots, \varepsilon_n\} \; \text{gilt } U_\varepsilon(x) \subset A = O_1 \cap \ldots \cap O_n \end{aligned}$$

Bemerkung: Für unendlich viele offene Mengen gilt dies nicht immer:

$$\bigcap_{k=1}^{\infty} \left(-\frac{1}{k}, \frac{1}{k}\right) = (-1, 1) \cap \left(-\frac{1}{2}, \frac{1}{2}\right) \cap \left(-\frac{1}{3}, \frac{1}{3}\right) \cap \ldots = \{0\} \text{ abgeschlossen}$$

Beispiel

Seien A_1, A_2 zwei abgeschlossene Mengen, dann gilt

(i) $A_1 \cup A_2$ ist abgeschlossen

1.2. FOLGEN 13

Beweisidee: A_1 ist abgeschlossen $\Rightarrow A_1^c$ ist offen

$$(A_1 \cup A_2)^c \stackrel{\text{De Morgan}}{=} \underbrace{A_1^c}_{\text{offen}} \cap \underbrace{A_2^c}_{\text{offen}}$$
 ist offen wegen Satz 1.1.8
 $((A_1 \cup A_2)^c)^c = A_1 \cup A_2$ ist abgeschlossen

1.1.9 Satz

- (i) \varnothing und \mathbb{R}^n sind abgeschlossen.
- (ii) Der Durchschnitt beliebig vieler abgeschlossener Mengen ist abgeschlossen:

$$\bigcap_{j \in J} (A_j \text{ abgeschlossen}) = A \text{ abgeschlossen}$$

(iii) Die Vereinigung endlich vieler abgeschlossenen Mengen ist abgeschlossen:

$$\bigcup_{j=1}^{n} (A_j \text{ abgeschlossen}) = A \text{ abgeschlossen}$$

Bemerkung: Für unendlich viele abgeschlossene Mengen gilt dies nicht immer:

$$\bigcup_{k=1}^{\infty} \left[-1 + \frac{1}{n}, 1 - \frac{1}{n} \right] = \{0\} \cup \left[-\frac{1}{2}, \frac{1}{2} \right] \cup \left[-\frac{2}{3}, \frac{2}{3} \right] \cup \dots = (-1, 1) \text{ offen}$$

1.1.10 Definition von beschränkt und kompakt

Eine Menge $A \subset \mathbb{R}^n$ heißt:

- (i) **beschränkt** wenn $\exists c > 0$ mit $||x|| < c \quad \forall x \in A$
- (ii) kompakt, wenn A abgeschlossen und beschränkt ist.

1.2 Folgen

1.2.1 Definition von Konvergenz und Beschränktheit

Eine Folge $(a_k)_{k=1}^{\infty}$ heißt

(i) konvergent, wenn gilt

$$\exists a \in \mathbb{R}^n \quad \text{mit} \quad \forall \varepsilon > 0 \quad \exists N(\varepsilon) : \quad ||a_k - a|| < \varepsilon \quad \forall k \geqslant N(\varepsilon)$$

Dann ist a der Grenzwert der Folge:

$$a = \lim_{k \to \infty} a_k$$
 oder $a_k \stackrel{k \to \infty}{\to} a$

(ii) **beschränkt**, wenn $\exists c > 0$ mit $||a_k|| < c \quad \forall k$

1.2.2 Bemerkung

Wenn eine Folge
$$(a_k) = \begin{pmatrix} a_1^{(k)} \\ \vdots \\ a_n^{(k)} \end{pmatrix} \in \mathbb{R}^n$$
 konvergiert, so gilt

(i) \Leftrightarrow jede Komponente $\left(a_1^{(k)}\right),...,\left(a_n^{(k)}\right)$ konvergiert:

$$\lim_{k \to \infty} a_k = a \quad \Leftrightarrow \quad \lim_{k \to \infty} a_i^{(k)} = a_i \quad \text{für } i = 1, ..., n$$

(ii) \Leftrightarrow (a_k) erfüllt das Cauchy-Kriterium:

$$\forall \varepsilon > 0 \quad \exists N(\varepsilon) : \quad ||a_k - a_l|| < \varepsilon \quad \forall k, l \geqslant N(\varepsilon)$$

- (iii) \Leftrightarrow jede Teilfolge von (a_k) konvergiert gegen $a: a_{l_k} \stackrel{k \to \infty}{\to} a$ für $l_1 \geqslant 1, l_2 \geqslant 2, \dots$
- (iv) der Grenzwert a ist eindeutig.

1.2.3 Satz von Bolzano Weierstraß

Jede beschränkte Folge im \mathbb{R}^n besitzt einen konvergente Teilfolge.

Beispiele

- (i) n=1: Sei $A\leqslant (a_k)\leqslant B$ \forall k. Konstruiert man eine neue Schranke mit $\frac{A+B}{2}$ so liegen wiederum ∞ viele Elemente in der oberen und/oder unteren Hälfte.
- (ii) Sei $(a_k) = \begin{pmatrix} (x_k) \\ (y_k) \end{pmatrix}$ eine beschränkte Folge im \mathbb{R}^2 $\Rightarrow (x_k), (y_k)$ sind beschränkte Folgen Satz von Bolzano Wierstraß $\exists (x_k), (y_k)$ sind konvergent

1.2.4 Abschließende Bemerkungen

- (i) Grenzwert Rechenregeln können aus dem \mathbb{R} für \mathbb{R}^n übernommen werden. z.b. $a_k \overset{k \to \infty}{\to} a, \quad b_k \overset{k \to \infty}{\to} b \quad \Rightarrow \quad a_k^\top b_k \overset{k \to \infty}{\to} a^\top b$
- (ii) Es gibt viele Zusammenhänge zwischen den Eigenschaften von Folgen und den topologischen Eigenschaften von Mengen.

z.b. Sei $A\subset\mathbb{R}^n$ und $a\in\mathbb{R}^n$ ein Häufungspunkt

$$\Leftrightarrow \exists (a_k)_{k=1}^{\infty} \text{ mit } a_k \in A \setminus \{a\} \, \forall \, k \quad \text{ und } \quad a_k \stackrel{k \to \infty}{\to} a$$

1.3 Funktionsgrenzwerte und Stetigkeit

1.3.1 Definition

Eine Funktion $f:A\subset\mathbb{R}^n\to\mathbb{R}^m$ nennt man eine Funktion mit n-Veränderlichen.

$$f(x_1, ..., x_n) = f\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}) = \begin{pmatrix} f_1(x_1, ..., x_n) \\ \vdots \\ f_m(x_1, ..., x_n) \end{pmatrix} \quad \text{mit} \quad f_1, ..., f_m : \mathbb{R}^n \to \mathbb{R}$$

1.3.2 Definition Grenzwert/Limes

Sei $f:A\subset\mathbb{R}^n\to\mathbb{R}^m$ und $a\in\overline{A}$. Ein $b\in\mathbb{R}^m$ heißt Grenzwert von f für $x\to a$, wenn gilt:

$$\forall \varepsilon > 0 \quad \exists \ \delta(\varepsilon) > 0 : \quad ||f(x) - b|| < \varepsilon \quad \forall \ x \in \dot{U}_{\delta(\varepsilon)}(a) \cap A$$

Bemerkung: Die Funktion f muss in a nicht stetig sein, so kann z.b. gelten: $\lim_{x\to a} f(x) = b \neq f(a)$

1.3.3 Korollar

Sei $f: A \subset \mathbb{R}^n \to \mathbb{R}^m, a \in \overline{A}, b \in \mathbb{R}^m$ dann sind folgende Aussagen äquivalent:

- (i) $f(x) \stackrel{x \to a}{\to} b$
- (ii) $||f(x) b|| \stackrel{x \to a}{\to} 0 \in \mathbb{R}^1$ (Eine Norm bildet immer auf ein Skalar ab)
- (iii) $f_1(x) \stackrel{x \to a}{\to} b_1, ..., f_m(x) \stackrel{x \to a}{\to} b_m$

Zusätzlich gilt das Cauchy-Kriterium:

$$\lim_{x \to a} f(x) = b \quad \Leftrightarrow \quad \forall \ \varepsilon > 0 \ \exists \ \delta(\varepsilon) > 0 : \quad \|f(x), f(y)\| < \varepsilon \quad \forall \ x, y \in \dot{U}_{\delta(\varepsilon)}(a) \cap A$$

1.3.4 Beispiel

Sei
$$f(x,y) = \frac{xy}{x^2 + y^2}$$

$$a_k = \begin{pmatrix} x_k \\ y_k \end{pmatrix} = \begin{pmatrix} \frac{1}{k} \\ \frac{1}{k} \end{pmatrix}, \quad f(a_k) = \frac{\frac{1}{k^2}}{\frac{1}{k^2} + \frac{1}{k^2}} = \frac{1}{2} \quad \forall \ k$$

$$b_k = \begin{pmatrix} x_k \\ 0 \end{pmatrix} \text{ mit } x_k \stackrel{k \to \infty}{\to} 0, \quad f(b_k) = \frac{0}{x_k^2} \quad \forall \ k$$

Da $\lim_{k\to\infty} f(a_k) = \frac{1}{2} \neq 0 = \lim_{k\to\infty} f(b_k)$ kann der Grenzwert nicht existieren.

1.3.5 Lemma Folgenkriterium

Sei $f: A \subset \mathbb{R}^n \to \mathbb{R}^m, a \in \overline{A}$

$$\exists b \in \mathbb{R}^m \text{ mit } \lim_{x \to a} f(x) = b \\ \text{der Grenzwert } b \text{ existiert}$$
 \Leftrightarrow
$$jede \text{ Folge } (x_k)_{k=1}^{\infty} \subset A \text{ mit } x_k \neq a \ \forall \ k \text{ und } x_k \overset{k \to \infty}{\to} a \\ \Rightarrow f(x_k) \overset{k \to \infty}{\to} b$$

$$jede \text{ beliebige Folge konvergiert gegen } b$$

1.3.6 Satz zu Grenzwerte verketteter Funktionen

Sei
$$A \subset \mathbb{R}^n, B \subset \mathbb{R}^m, a \in \overline{A}, f : A \to B, g : \overline{B} \to \mathbb{R}^l$$

 $\exists b \in \overline{B} \text{ mit } \lim_{x \to a} f(x) = b, \quad \exists c \in \mathbb{R}^l \text{ mit } \lim_{y \to b} g(y) = c \quad \Rightarrow \quad \lim_{x \to a} \underbrace{g(f(x))}_{(g \circ f)(x)} = \lim_{y \to b} g(y) = c$

1.3.7 Beispiel

Sei
$$f(x,y) = e^{-x^2 + y^2} = \exp(g(x,y))$$
 mit $g(x,y) = x^2 + y^2$, dabei gilt:

$$\lim_{(x,y)^\top \to (0,0)^\top} g(x,y) = \lim_{(x,y)^\top \to (0,0)^\top} x^2 + y^2 = 0 \quad \Rightarrow \quad \lim_{z \to 0} f(z) = \lim_{z \to 0} e^z = 1$$

1.3.8 Definition der Stetigkeit

Sei $f: A \subset \mathbb{R}^n \to \mathbb{R}^m$

(i) f ist **stetig** in $a \in A$ wenn gilt:

$$\forall \ \varepsilon > 0 \ \exists \delta(\varepsilon): \quad \|f(x) - f(a)\| < \varepsilon \quad \forall \ x \in U_{\delta(\varepsilon)}(a) \cap A$$

Bemerkung: Es wird $\lim_{x\to a} f(x) = f(a)$ gefordert.

Diese Definition unterscheidet sich in der nicht punktierten ε -Umgebung und es gilt f(a) anstatt b.

(ii) f ist stetig auf A, wenn f in jedem Punkt $a \in A$ stetig ist.

1.3.9 Bemerkung

- (i) Kompositionen stetiger Funktionen sind wieder stetig: f, g stetig $\Rightarrow f + g, f g, ...$ stetig
- (ii) Das Folgenkriterium überträgt sich: Sei $(a_k)_{k=1}^{\infty}$ eine Folge in A mit $\lim_{k\to\infty} a_k = a$ \Leftrightarrow $\lim_{k\to\infty} f(a_k) = f(a)$
- (iii) Ist A kompakt, dann nimmt eine stetige Funktion $f:A\to\mathbb{R}$ immer ein Maximum und Minimum an:

$$\exists x_m, x_M \in A \text{ mit } f(x_m) = \min_{x \in A} f(x), f(x_M) = \max_{x \in A} f(x)$$

1.4 Partielle Ableitungen, Richtungsableitungen

1.4.1 Definition der partiellen Ableitung

Die Funktion $f: A \subset \mathbb{R}^n \to \mathbb{R}^m$ heißt **partielle differenzierbar** in $a \in A$ nach der k-ten Variable x_k mit $k \in \{1, ..., n\}$ wenn der folgender Grenzwert existiert:

$$\frac{\partial}{\partial x_k} f(a) = f_{x_k}(a) = \lim_{h \to 0} \frac{f(a + h \cdot e_k) - f(a)}{h}$$

Existieren alle partielle Ableitungen $f_{x_1}(a), ..., f_{x_n}(a)$, dann ist der **Gradient** von f wie folgt definiert:

$$\nabla f(a) = \begin{pmatrix} f_{x_1}(a) \\ \vdots \\ f_{x_n}(a) \end{pmatrix}$$

und die Funktion f heißt mindestens einmal partielle differenzierbar. Sind die partiellen Ableitungen $f_{x_1}(a), ..., f_{x_n}(a)$ zudem stetig, so heißt f einmal stetig differenzierbar: $f \in C^1(A, \mathbb{R}^m)$ oder kurz $f \in C^1(A)$.

1.4.2 Beispiel

Sei
$$f(x, y, z) = x^2 - xy + 3z$$

$$\frac{\partial}{\partial x} f(x, y, z) = \lim_{h \to 0} \frac{f(x + h, y, z) - f(x, y, z)}{h}$$

$$= \lim_{h \to 0} \frac{(x + h)^2 - (x + h)y + 3z - (x^2 - xy + 3z)}{h}$$

$$= \lim_{h \to 0} \frac{(x + h)^2 - x^2}{h} - \frac{(x + h)y - xy}{h} + \frac{3z - 3z}{h}$$

$$= \left(\frac{d}{dx}x^2\right) - \left(\frac{d}{dx}x\right)y + \left(\frac{d}{dx}0\right)z$$

$$= 2x - y + 0$$

$$\Rightarrow \nabla f(x, y, z) = \begin{pmatrix} 2x - y \\ -x \\ 3 \end{pmatrix}$$

1.4.3 Definition der Richtungsableitung

Sei $a, r \in \mathbb{R}^n$ mit ||r|| = 1 (normiert), $f : \mathbb{R}^n \to \mathbb{R}^m$, dann heißt der folgende Grenzwert die Richtungsableitung von f bei a in Richtung r:

$$\frac{\partial}{\partial r}f(a) = f_r(a) = \lim_{h \to 0} \frac{f(a+h \cdot r) - f(a)}{h}$$

Bemerkung

- (i) Ist $r = e_k$, dann erhalten wir gerade eine partielle Ableitung.
- (ii) Es gibt Funktionen die in a in <u>jede Richtung differenzierbar</u> sind, aber in a <u>nicht stetig</u> sind!

1.5 Total Differenzierbarkeit

Idee: Differenzierbare Funktionen sind lokal im Punkt x_0 linear approximierbar:

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \underbrace{r(x)||x - x_0||}_{\tilde{r}(x)}$$

Dabei muss der Fehler $\tilde{r}(x) = r(x)||x - x_0||$ schneller gegen Null gehen als x gegen x_0 also muss $\tilde{r}(x) = o(x - x_0)$ gelten (Landau-Notation: klein-oh).

1.5.1 Definition der totalen Differenzierbarkeit

Sei $f: A \subset \mathbb{R}^n \to \mathbb{R}^m, A$ offen, $x_0 \in A$

(i) Die Funktion f nennt man **total differenzierbar** bei x_0 , wenn eine Matrix $A \in \mathbb{R}^{m \times n}$ existiert, mit der sich die Funktion f in einer ε -Umgebung um x_0 mittels einer Hyperebene approximieren lässt:

$$f(x) = f(x_0) + A(x - x_0) + r(x)||x - x_0||$$

Dann nennt man die Matrix $A = f'(x_0) = \frac{\partial}{\partial x} f(x_0)$ die total Ableitung von f in x_0 .

(ii) Ist $f = \begin{pmatrix} f_1 \\ \vdots \\ f_m \end{pmatrix}$ partiell diff'bar, so nennt man die Ableitung **Jacobi-Matrix**:

$$f'(x_0) = \frac{\partial}{\partial x} f(x_0) = J_f(x_0) = \begin{pmatrix} \frac{\partial}{\partial x_1} f_1(x_0) & \dots & \frac{\partial}{\partial x_n} f_1(x_0) \\ \vdots & & \vdots \\ \frac{\partial}{\partial x_1} f_m(x_0) & \dots & \frac{\partial}{\partial x_n} f_m(x_0) \end{pmatrix} \in \mathbb{R}^{m \times n}$$

Bemerkung: Es gilt: $\exists f'(x_0) \Rightarrow f'(x_0) = J_f(x_0)$, nicht aber die Gegenrichtung! Es kann also sein, dass die Jacobi-Matrix J_f existiert die Funktion aber nicht total diff'bar ist.

1.5.2 Beispiele

(i)

$$f(r,\varphi) = r \cdot \begin{pmatrix} \cos \varphi \\ \sin \varphi \end{pmatrix} \quad \Rightarrow \quad J_f = \begin{pmatrix} \cos \varphi & -r \sin \varphi \\ \sin \varphi & r \cos \varphi \end{pmatrix}$$

(ii)
$$f(x) = a + b^{\top}(x - x_0), \quad f : \mathbb{R}^n \to \mathbb{R}, \quad a \in \mathbb{R}, \quad b, x_0 \in \mathbb{R}^n$$

 $\Rightarrow \quad f(x_0) = a, \quad f'(x_0) = b^{\top}$

(iii)
$$f(x) = a + A(x - x_0), \quad f: \mathbb{R}^n \to \mathbb{R}^m, \quad a \in \mathbb{R}^m, \quad A \in \mathbb{R}^{m \times n}, \quad x_0 \in \mathbb{R}^n$$

 $\Rightarrow f(x_0) = a, \quad f'(x_0) = A$

Bemerkung: Beispiel (ii) und (iii) sind lineare Funktionen.

1.5.3 Satz

Ist $f:A\subset\mathbb{R}^n\to\mathbb{R}^m$ in jedem Punkt $x_0\in A$ total differenzierbar, so ist f stetig in A.

Beweis:

$$f(x) = \underbrace{f(x_0)}_{\stackrel{x \to x_0}{\to} f(x_0)} + \underbrace{A}\underbrace{(x - x_0)}_{\stackrel{x \to x_0}{\to} 0 \in \mathbb{R}^n} + \underbrace{r(x)}_{\stackrel{x \to x_0}{\to} 0 \in \mathbb{R}^m} \underbrace{\|x - x_0\|}_{\stackrel{x \to x_0}{\to} 0 \in \mathbb{R}} \quad \text{mit } r(x) \stackrel{x \to x_0}{\to} 0$$

$$\lim_{x \to a} f(x) = f(x_0)$$

1.5.4 Satz

Sei
$$f: A \subset \mathbb{R}^n \to \mathbb{R}^m, x_0 \in A$$

- a. Ist f total differenzierbar in x_0 , so gilt
 - (i) $f'(x_0) = J_f(x_0)$
 - (ii) f ist in jede Richtung r differenzierbar mit: $\frac{\partial}{\partial r} f(x_0) = J_f(x_0) \cdot r$

Beweis: Es ist zu zeigen, dass wenn f differenzierbar in x_0 die Ableitung gerade die Form $\frac{\partial}{\partial r} f(x_0) = J_f(x_0) \cdot r$ besitzt. Für diese Ableitung muss folgendes gelten:

$$f(x) = f(x_0) + A(x - x_0) + \tilde{r}(x) \text{ mit } A = f'(x_0) \text{ und } \tilde{r} \in o(\|x - x_0\|) \Rightarrow \frac{\tilde{r}(x)}{\|x - x_0\|} \xrightarrow{x \to x_0} 0$$

$$f(x) = f(x_0 + r \cdot h) - f(x_0) = A \cdot r \cdot h + \tilde{r}(x) = f'(x_0)rh + \tilde{r}(x)$$

also muss folgendes gezeigt werden:

$$\left\| \underbrace{\frac{f(x_0 + r \cdot h) - f(x_0)}{h}}_{\text{Diff'Quotient für } \frac{\partial f}{\partial r}} - \underbrace{f'(x_0) \cdot r}_{\text{Grenzwert-kandidat}} \right\|_{h \to 0} 0$$

$$\left\| \frac{f(x_0 + r \cdot h) - f(x_0)}{h} - f'(x_0) \cdot r \right\| = \left\| \frac{f'(x_0)rh + \tilde{r}(x)}{h} - f'(x_0)r \right\| = \left\| \frac{f'(x_0)rh + \tilde{r}(x)}{h} - f'(x_0)r \right\| = \left\| \frac{\tilde{r}(x)}{h} \right\| = \left\| \frac{\tilde{r}(x)}{x - x_0} \right\|_{h \to 0}^{x \to x_0} 0$$

Ist $r = e_k$ so erhält man gerade eine Spalte der Jacobi-Matrix.

b. Existieren in x_0 alle partiellen Ableitungen (also alle Komponenten der Jacobi-Matrix) und diese stetig sind \Rightarrow f ist in x_0 total differenzierbar.

Beweis: Für den Fall n = 2, m = 1 muss folgendes gezeigt werden:

$$\exists \nabla f(x_0) \text{ und } \tilde{r}(x) \text{ mit } f(x) = f(x_0) + \nabla f(x_0)^{\top} (x - x_0) + \tilde{r}(x)$$

$$\text{oder } \left\| \frac{f(x) - f(x_0)}{x - x_0} - \nabla f(x_0) \right\| = \frac{\|f(x) - f(x_0) - \nabla f(x_0)(x - x_0)\|}{\|x - x_0\|} \xrightarrow{x \to x_0} 0$$

Sei
$$x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
 und sei $x_0 = a = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$.

Nebenrechnung: Definition zweier Hilfsfunktionen a_1, a_2

Sei
$$g_1(t) = f(t, x_2)$$
 $g_2 : \mathbb{R} \to \mathbb{R}$

MWS
$$\exists \ \xi_1 \in (a_1, x_1) \text{ mit } g_1'(\xi_1) = \frac{g_1(x_1) - g_1(a_1)}{x_1 - a_1}$$

$$= \frac{\partial}{\partial x_1} f(\xi_1, x_2) = \frac{f(x_1, x_2) - f(a_1, x_2)}{x_1 - a_1}$$

$$\Leftrightarrow \ f(x_1, x_2) - f(a_1, x_2) = \frac{\partial}{\partial x_1} f(\xi_1, x_2)(x_1 - a_1)$$
analog gilt für $g_2(t) = f(a_1, t)$ $g_2 : \mathbb{R} \to \mathbb{R}$

$$f(a_1, a_2) - f(a_1, x_2) = \frac{\partial}{\partial x_2} f(a_1, \xi_2)(x_2 - a_2)$$

Damit gilt:

$$f(x) - f(a) = f(x_1, x_2) - f(a_1, a_2) = f(x_1, x_2) \underbrace{-f(a_1, x_2) + f(a_1, x_2)}_{=0} - f(a_1, a_2)$$

$$\stackrel{\text{mit Resultat aus Neben-rechnung}}{=} \frac{\partial}{\partial x_1} f(\xi_1, x_2)(x_1 - a_1) + \frac{\partial}{\partial x_2} f(a_1, \xi_2)(x_2 - a_2)$$

$$= \begin{pmatrix} f_{x_1}(\xi_1, x_2) \\ f_{x_2}(a_1, \xi_2) \end{pmatrix}^{\top} \begin{pmatrix} x_1 - a_1 \\ x_2 - a_2 \end{pmatrix} = \begin{pmatrix} f_{x_1}(\xi_1, x_2) \\ f_{x_2}(a_1, \xi_2) \end{pmatrix}^{\top} (x - a)$$

Für $x \to a$ gilt:

$$x_1 \to a_1 \quad x_2 \to a_2$$

 $\xi_1 \to a_1 \quad \xi_2 \to a_2$

da f_{x_1}, f_{x_2} stetig, folgt:

$$f_{x_1}(\xi_1, x_2) \to f_{x_1}(a_1, a_2)$$

$$f_{x_2}(a_1, \xi_2) \to f_{x_2}(a_1, a_2)$$

$$\Rightarrow \begin{pmatrix} f_{x_1}(\xi_1, x_2) \\ f_{x_2}(a_1, \xi_2) \end{pmatrix}^{\top} \to \nabla f(a_1, a_2) = \nabla f(x_0)$$

und es gilt:

$$\frac{\left\| f(x) - f(x_0) - \overbrace{\left(\begin{array}{c} f_{x_1}(\xi_1, x_2) \\ f_{x_2}(a_1, \xi_2) \end{array} \right)^{\top}}(x - x_0) \right\|}{\|x - x_0\|} \xrightarrow{x \to x_0} 0$$

1.5.5 Bemerkung

Sei r eine Richtung mit ||r|| = 1 und $x = x_0 + r$, dann gilt:

$$f(x) \approx f(x_0) + \nabla f(x_0)^{\top} \cdot r$$

$$\Rightarrow 1. \text{ Fall}: \quad r, \nabla f(x_0) \text{ zeigen in dieselbe Richtung}:$$

$$f(x) - f(x_0) \approx \|\nabla f(x_0)\| \|r\| = \|\nabla f(x_0)\| > 0$$

$$\Rightarrow 2. \text{ Fall}: \quad r, \nabla f(x_0) \text{ zeigen in entgegengesetzte Richtungen}:$$

$$f(x) - f(x_0) \approx -\|\nabla f(x_0)\| < 0$$

In allen Fällen gilt Näherungsweise:

$$-\|\nabla f(x_0)\| < \nabla f(x_0)^{\top} r \leqslant \|\nabla f(x_0)\|$$

Fazit: Beim Reinzoomen sind die Höhenlinien parallel. Der Gradient zeigt in Richtung des steilsten Anstieges.

1.5.6 Satz zur Kettenregel

Ist $f:A\subset\mathbb{R}^n\to B\subset\mathbb{R}^m$ differenzierbar in $a\in A$ und $g:B\subset\mathbb{R}^m\to\mathbb{R}^l$ differenzierbar in $b\in B$, so gilt:

$$(g \circ f)'(a) = g'\left(\underbrace{f(a)}_{=b}\right) f'(a) = \underbrace{J_g(b)}_{\in \mathbb{R}^{l \times m}} \underbrace{J_f(a)}_{\in \mathbb{R}^{m \times n}}$$

Beweis:

$$f(x) = f(a) + f'(a)(x - a) + \underbrace{r_f(x) ||x - a||}_{\tilde{r_f}(x)}$$
$$g(y) = g(b) + g'(b)(y - b) + \underbrace{r_g(y) ||y - b||}_{\tilde{r_g}(y)}$$

mit b = f(a) und y = f(x) folgt:

$$g(f(x)) = g(f(a)) + g'(f(a)) \left(\underbrace{f(x) - f(a)}_{f'(a)(x-a) + \tilde{r_f}(x)}\right) + \tilde{r_g}(f(x))$$
$$= g(f(a)) + g'(f(a))f'(a)(x-a) + \tilde{r}(x)$$

mit $\tilde{r}(x)=g'(f(a))\tilde{r_f}(x)+\tilde{r_g}(f(x))$ und es gilt $\stackrel{\tilde{r}(x)}{\|x-a\|}\stackrel{x\to a}{\to} 0$

Beispiel aus der Strömungsmechanik: Die Funktion $f: \mathbb{R}^4 \to \mathbb{R}, f = f(x, y, z, t)$ beschreibe die Eigenschaften eines Teilchens in einer Strömung. Dabei kann die Bewegung der Position im Raum x, y, z als Abhängigkeit von der Zeit beschrieben werden. Dazu definieren wir den Weg $\gamma(t)$:

$$\gamma: \mathbb{R} \to \mathbb{R}^4, \quad \gamma(t) = \begin{pmatrix} x(t) \\ y(t) \\ z(t) \\ t \end{pmatrix} \quad \text{mit} \quad \frac{d\gamma}{dt} = \begin{pmatrix} \frac{dx}{dt} \\ \frac{dy}{dt} \\ \frac{dz}{dt} \\ 1 \end{pmatrix}$$

Nun leiten wir die verkettete Funktion $\hat{f}(t) = (f \circ \gamma)(t) = f(\gamma(t))$ nach der Zeit t ab:

$$\frac{d\hat{f}}{dt} = \left(\hat{f}(\gamma(t))\right)' = f'(h(t))\gamma'(t) = \nabla f \cdot \frac{d\gamma}{dt}$$

$$= \begin{pmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial z} \\ \frac{\partial f}{\partial t} \end{pmatrix}^{\top} \begin{pmatrix} \frac{dx}{dt} \\ \frac{dy}{dt} \\ \frac{dz}{dt} \\ 1 \end{pmatrix}$$

$$= \frac{\partial f}{\partial x} \underbrace{\frac{dx}{dt}}_{u} + \underbrace{\frac{\partial f}{\partial y}}_{v} \underbrace{\frac{dy}{dt}}_{v} + \underbrace{\frac{\partial f}{\partial z}}_{w} \underbrace{\frac{dz}{dt}}_{w} + \underbrace{\frac{\partial f}{\partial t}}_{w}$$

Dabei beschreibt der Vektor
$$\begin{pmatrix} u \\ v \\ w \end{pmatrix}$$
 die Geschwindigkeit im Raum.

1.6 Lokale Extremstellen und Mittelwertsätze

In einer Dimension gilt:

1. Mittelwertsatz

Ist f differenzierbar auf (a, b) und stetig auf [a, b], so gilt:

$$\exists \ \xi \in (a,b) \text{ mit } f'(\xi) = \frac{f(b) - f(a)}{b - a}$$

Satz von Rolle

Ist f differenzierbar auf (a, b) und stetig auf [a, b] und gilt f(a) = f(b), so gilt:

$$\exists \xi \in (a,b) \text{ mit } f'(\xi) = 0$$

1.6.1 Definition lokale/globale Extremstellen

(i) Eine Funktion $f: A \subset \mathbb{R}^n \to \mathbb{R}$ (Skalarfeld) hat bei $x_0 \in A$ ein lokales Minimum (Maximum) wenn in einer Umgebung $U = U_{\varepsilon}(x_0) \cap A$ für $\varepsilon > 0$ (offen bezüglich A) von x_0 gilt:

$$f(x_0) \stackrel{(\geqslant)}{\leqslant} f(x) \quad \forall x \in U$$

Ist bei x_0 ein lokales Minimum (Maximum) dann nennt man x_0 eine lokale Extremstelle.

(ii) f besitzt in x_0 ein globales Minimum (Maximum), wenn gilt:

$$f(x_0) \stackrel{(\geqslant)}{\leqslant} f(x) \quad \forall x \in A$$

1.6.2 Satz zur notwendigen Bedingung für eine lokale Extremstelle

Besitzt $f: A \subset \mathbb{R}^n \to \mathbb{R}$ bei $x_0 \in A$ eine lokale Extremstelle und f ist partiell differenzierbar, dann ist

$$\nabla f(x_0) = 0$$

Bemerkung: Der Rand ist ausgeschlossen da \mathring{A} (alle inneren Punkte) in der Definition verwendet wurde.

Auch gilt:

$$x_0$$
 ist eine lokale Extremstelle $\stackrel{\not=}{\Rightarrow}$ $f'(x_0) = 0$

Aus $f'(x_0)$ folgt nicht direkt die Extremstelle, denn Sattelpunkte sind keine Extremstellen.

Beweis: Sei
$$k \in \{1,...,n\}$$
 beliebig und $g(t) = f\left(\underbrace{x_0 + te_k}_{h(t)}\right)$ dann hat g in t_0 eine

lokale Extremstelle, denn

eindimensionale Extremstelle, da
$$g: \mathbb{R} \to \mathbb{R}$$
 $0 = g'(t_0) = \frac{d}{dt} f(h(t_0)) \stackrel{\text{Ketten-regel}}{=} f'(h(t_0)) h'(t_0) = \nabla f(h(t_0))^{\top} e_k$
$$= \frac{\partial}{\partial x_k} f(h(t_0)) = \frac{\partial}{\partial x_k} f(x_0)$$

1.6.3 Definition des kritischen Punktes

Ein $x_0 \in \mathbb{R}^n$ mit $\nabla f(x_0) = 0$ heißt **kritischer** oder stationärer Punkt.

1.6.4 Mittelwertsatz

Sei $f:G\subset\mathbb{R}^n\to\mathbb{R}$ differenzierbar und sei G offen und enthalte die Menge $\overline{a,b}=\{a,b\in G \text{ mit } a+t(b-a):t\in[0,1]\}$ (a,b können durch eine Gerade verbunden werden). Dann:

$$\exists \ \xi \in (0,1) \quad \text{mit} \quad f(b) = f(a) + \nabla f(a + \xi(b-a))^{\top} (b-a)$$

Bemerkung:

$$h(t) = a + t(b - a)$$
 $g(t) = f(h(t))$ (differenzierbar)
 $\Rightarrow \exists \xi \in (0, 1)$ mit $g'(\xi) = \frac{g(1) - g(0)}{1 - 0}$

Beweis: Definiere h(t) = a + t(b-a) und $g: [0,1] \to \mathbb{R}, g(t) = f(h(t))$ differenzierbar, damit gilt:

$$\exists \ \xi \in (0,1) \quad \text{mit} \quad g'(\xi) = \frac{g(1) - g(0)}{1 - 0} = g(1) - g(0) = f(a) - f(b)$$

$$g'(\xi) = \frac{d}{dt}g(t)|_{t=\xi} = \frac{d}{dt}f(h(t))|_{t=\xi}$$

$$\stackrel{\text{Ketten-regel}}{=} f'(h(t))h'(t)|_{t=\xi}$$

$$= \nabla f(a + \xi(b - a))^{\top}(b - a) = f(a) - f(b)$$

$$\Leftrightarrow f(b) = f(a) + \nabla f(a + \xi(b - a))^{\top}(b - a)$$

1.6.5 Definition eines Gebiets

(i) Ein Menge, die wie folgt konstruiert werden kann, heißt Polygonzug:

$$\overline{a_0, ..., a_k} = \bigcup_{j=1}^k \overline{a_{j-1}, a_j} \quad \text{mit} \quad a_0, ..., a_k \in \mathbb{R}^n$$

(ii) Eine Menge $M \subset \mathbb{R}^n$ heißt **kurvenweise zusammenhängend** wenn zu beliebigen $a, b \in M$ eine stetige Funktion $\gamma : [0, 1] \to M$ mit $\gamma(0) = a, \gamma(1) = b$ existiert.

(iii) Eine Menge $G \subset \mathbb{R}^n$ heißt **Gebiet**, wenn G offen und kurvenweise zusammenhängend ist

1.6.6 Bemerkungen zu Gebieten

- (i) Ein Gebiet G entspricht einem offenen Intervall $(a,b) \subset \mathbb{R}$ im Eindimensionalen: Der Rand ist nicht dabei, es hat keine Inseln.
- (ii) Man kann zeigen, dass es reicht, wenn $a,b\in G$ mit einem Polygonzug verbunden werden kann.

1.6.7 Satz

Sei $G \subset \mathbb{R}^n$ ein Gebiet, $G \neq \emptyset$, und $f: G \to \mathbb{R}$ differenzierbar, dann gilt:

$$f(x) = \text{konst.} \Leftrightarrow \nabla f(x) = 0 \quad \forall \ x \in G$$

$Beweis \Rightarrow$:

Eindimensional: Sei $f:(a,b)\to\mathbb{R}$ differenzierbar.

Zu zeigen: f konstant \Rightarrow $f'(x) = 0 \quad \forall x \in (a, b)$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \stackrel{\Rightarrow f(x+h) = f(x)}{=} 0$$

Mehrdimensional: Sei $f: G \subset \mathbb{R}^n \to \mathbb{R}$.

Zu zeigen: f konstant $\Rightarrow \frac{\partial}{\partial x_k} f(x) = 0 \quad \forall k \in \{1, ..., n\}, \forall x \in G$

$$\frac{\partial}{\partial x_k} f(x) = \lim_{h \to 0} \frac{f(x + he_k) - f(x)}{h} = \lim_{h \to 0} \frac{0}{h} = 0$$

$Beweis \Leftarrow:$

Eindimensional: Annahme: $f'(x) = 0 \quad \forall x \in (a,b)$ aber f nicht konstant, dann

$$\exists x_1, x_2 \in (a, b) \text{ mit } x_1 \neq x_2 \text{ und } f(x_1) \neq f(x_2)$$

$$\Rightarrow 0 \neq \frac{f(x_2) - f(x_1)}{x_2 - x_1} \stackrel{\text{1ter MWS}}{=} f'(\xi) = 0 \quad \Rightarrow \quad \text{Widerspruch}$$

Mehrdimensional: Annahme: $\nabla f(x) = 0$, $\forall x \in G$ aber f nicht konstant, dann $\exists a, b \in G$ mit $a \neq b$ und $f(a) \neq f(b)$ o.B.d.A sei $\overline{ab} \subset G$ (sonst muss ein Polygonzug betrachtet werden) es folgt mit h(t) = a + t(b - a): f(b) - f(a) = f(h(1)) - f(h(0)) Sei g(t) = f(h(t)), dann gilt: $\frac{g(1) - g(0)}{1 - 0} = \frac{f(b) - f(a)}{1} \neq 0$ $\begin{vmatrix} 1 \text{ter MWS} \\ = 0 \end{vmatrix} g'(\xi) = \frac{d}{dt}g(t) \Big|_{t=\xi} = \frac{d}{dt}f(h(t)) \Big|_{t=\xi} = \frac{d}{dt}f(h(t)) \Big|_{t=\xi}$ $= \nabla \underbrace{f(a + \xi(b - a))^{\top}}_{=0(\text{nach Annahme})}(b - a) = 0 \quad \Rightarrow \quad \text{Widerspruch}$

1.6.8 Definition partieller Ableitungen r'ter Ordnung

Für $f: A \subset \mathbb{R}^n \to \mathbb{R}^m$ definiert man (wenn diese auch existieren) induktiv für $x_0 \in A$ und $k_1, ..., k_r \in \{1, ..., n\}$ die partiellen Ableitungen r'ter Ordnung als:

$$\frac{\partial^n}{\partial x_{k_1} \dots \partial x_{k_r}} f(x_0) = f_{x_{k_1} \dots x_{k_r}} = \begin{cases} f(x_0) & r = 0\\ \frac{\partial}{\partial x_{k_1}} f(x_0) & r = 1\\ \frac{\partial}{\partial x_{k_1}} \left(\frac{\partial^{r-1}}{\partial x_{k_2} \dots \partial x_{k_r}} f(x_0)\right) & r > 1 \end{cases}$$

Existieren alle Ableitungen r'ter Ordnung und sind diese zudem stetig, so nennt man die Funktion f r-mal stetig differenzierbar: $f \in C^r(A; \mathbb{R}^m)$.

1.6.9 Definition der Hessematrix

Ist $f: A \subset \mathbb{R}^n \to \mathbb{R}$ 2-mal stetig differenzierbar bei $x_0 \in A$, dann ist die **Hessematrix** wie folgt definiert:

$$H_f(x_0) = \begin{pmatrix} f_{x_1,x_1}(x_0) & \dots & f_{x_1,x_n}(x_0) \\ \vdots & & & \vdots \\ f_{x_n,x_1}(x_0) & \dots & f_{x_n,x_n}(x_0) \end{pmatrix}$$

1.6.10 Beispiele

(i)

$$f(x,y) = 2xy^3 + y\log x$$

$$f(x,y) = \begin{cases} xy \frac{x^2 - y^2}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

⇒ Hessematrix ist nicht symmetrisch.

(iii)
$$A \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^{n}, c \in \mathbb{R}, Q : \mathbb{R}^{n} \to \mathbb{R}$$

$$Q(x) = x^{\top} A x + b^{\top} x + c$$

$$\nabla Q(x) = \left(A + A^{\top}\right) x + b \xrightarrow{\text{wenn } A \text{ sym.}} (= 2Ax + b)$$

$$H_{Q}(x) = A + A^{\top} \xrightarrow{\text{wenn } A \text{ sym.}} (= 2A)$$
 wenn $A \text{ sym.}$

Q wird eine quadratische Funktion genannt.

1.6.11 Satz von Schwarz

Ist $f: A \subset \mathbb{R}^n \to \mathbb{R}^n$ in x_0 2-mal stetig partielle differenzierbar $(f \in C^2(A))$, dann ist $H_f(x_0) \quad \forall x_0 \in A$ symmetrisch und es gilt:

$$f_{x_l,x_k}(x_0) = \frac{\partial}{\partial x_l \partial x_k} f(x_0) = \frac{\partial}{\partial x_k \partial x_l} f(x_0) = f_{x_k,x_l}(x_0) \quad \forall \ l, k \in \{1,...,k\}$$

1.6.12 Satz von Taylor mit quadratischem Restglied

Seien $a, b \in G \subset \mathbb{R}^n, f \in C^2(G), G$ ein Gebiet, dann:

$$\exists \ \xi \in \overline{a,b} \quad \text{mit} \quad f(b) = f(a) + \nabla f(a)^{\top} (b-a) + \frac{1}{2} (b-a)^{\top} H_f(\xi) (b-a)$$

Beweis: Definiere g(t) = f(h(t)) mit $h(t) = a + t(b - a) \Rightarrow g(0) = f(a), g(1) = f(b)$. Bei Funktionen mit einem Skalar, gilt der eindimensionale Taylor mit einer Zwischenstelle $z \in [0, 1]$:

$$\Rightarrow \underbrace{g(1)}_{f(b)} = \underbrace{g(0)}_{f(a)} + \underbrace{g'(0)(1-0)}_{g'(t) = \frac{d}{dt}f(h(t))} + \underbrace{\frac{1}{2}g''(z)(1-0)^{2}}_{g''(t) = \dots = (b-a)^{\top}H_{f}(a+t(b-a))(b-a)}$$

$$= \nabla f(a+t(b-a))^{\top}(b-a)$$

$$= (b-a)^{\top}\nabla f(a+t(b-a))$$

$$= f(a) + \nabla f(a)^{\top}(b-a) + \frac{1}{2}(b-a)^{\top}H_{f}(\underbrace{\xi}_{\epsilon = a+t(b-a)})(b-a)$$

1.6.13 Definition von Definitheit

Sei $A \in \mathbb{R}^{n \times n}$ symmetrisch $(A = A^{\top})$:

- a. Die durch $Q_A(x) = x^{\top} A x$ definierte Funktion $Q : \mathbb{R}^n \to \mathbb{R}$ heißt quadratische Form von A.
- b. Die Matrix A und ihre quadratische Form Q_A heißen:
 - (i) **positiv definit**, wenn

$$Q_A(x) = x^{\top} Ax > 0 \quad \forall \ x \in \mathbb{R}^n \text{ mit } x \neq 0$$

negativ definit, wenn

$$Q_A(x) = x^{\top} A x < 0 \quad \forall \ x \in \mathbb{R}^n \text{ mit } x \neq 0$$

oder kurz **definit** falls die Matrix A positiv oder negativ definit ist.

(ii) **semi definit** falls die Matrix A positiv semi definit oder (negativ semi definit) ist:

$$Q_A(x) = x^{\top} A x \stackrel{(\leqslant)}{\geqslant} 0 \quad \forall \ x \in \mathbb{R}^n \text{ mit } x \neq 0$$

(iii) **indefinit**, wenn ein $x_1, x_2 \in \mathbb{R}^n$ existieren mit:

$$\underbrace{x_1^\top A x_1}_{Q_A(x_1)} < 0 \quad \text{und} \quad \underbrace{x_2^\top A x_2}_{Q_A(x_2)} > 0$$

1.6.14 Beispiele

(i)
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

(ii)
$$A = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$$

(iii)
$$A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

(iv)
$$A = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$$

(v)
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

$$(vi) A = \begin{pmatrix} a & b & 0 \\ b & c & 0 \\ 0 & 0 & d \end{pmatrix}$$

(vii)
$$A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$

1.6.15 Satz zum Hauptminorenkriterium

Sei
$$A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix} \in \mathbb{R}^{n \times n}$$
 symmetrisch,

dann ist der k'te Hauptminor definiert als: $D_k = \det \begin{pmatrix} a_{11} & \dots & a_{1k} \\ \vdots & & \vdots \\ a_{k1} & \dots & a_{kk} \end{pmatrix}$

Für die Hauptminoren $D_1, ..., D_n$ gilt:

- a. A ist positiv definit $\Leftrightarrow D_1 > 0, D_2 > 0, ..., D_n > 0$ alle Hauptminoren sind positiv
- b. A ist negativ definit \Leftrightarrow $D_1 < 0, D_2 > 0, D_3 < 0, \dots$ oder $D_k = \begin{cases} < 0 & k \text{ ungerade} \\ > 0 & k \text{ gerade} \end{cases}$
- c. (i) $D_k < 0$ mit k gerade \Rightarrow A ist indefinit
 - (ii) $D_k < 0 < D_l$ mit k, l ungerade \Rightarrow A ist indefinit

Beispiele

(i)
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

(ii)
$$A = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$$

(iii)
$$A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

1.6.16 Satz über die hinreichenden Bedingungen für lokale Extremstellen

Sei $f \in C^2(U)$ in einer Umgebung U um x_0 und gilt $\nabla f(x_0) = 0$ sowie:

- (i) $H_f(x_0)$ ist positiv definit \Rightarrow x_0 ist eine lokale Minimalstelle.
- (ii) $H_f(x_0)$ ist negativ definit \Rightarrow x_0 ist eine lokale Maximalstelle.

Beweis: o.B.d.A nur für (i), denn (ii) folgt analog mit gedrehtem Ungleichungszeichen. Sei $U = U_{\varepsilon}(x_0)$ eine ε -Umgebung um den Punkt $x_0 \in \mathbb{R}^n$:

Sei
$$f \in C^2(U) \Rightarrow H_f \in C^2(U, \mathbb{R}^{n \times n})$$
 mit allen Komponenten stetig
$$\Rightarrow \tilde{g} : \mathbb{R}^n \to \mathbb{R}, \tilde{g}(x) = (x - x_0)^\top H_f(x)(x - x_0) \text{ ist stetig}$$

$$\Rightarrow g(x) = (x - x_0)^\top H_f(h(x))(x - x_0) \text{ ist stetig}$$
 ist $H_f(x_0)$ pos. def. $\Rightarrow (x - x_0)^\top H_f(x_0)(x - x_0) > 0$ für $x \neq x_0$
$$\Rightarrow (x - x_0)^\top H_f(h(x_0))(x - x_0) > 0 \text{ falls } z(x_0) \text{ nahe genug bei } x_0$$

Sei $h(x_0) = x_0 + \xi(x - x_0)$ dann gilt:

$$f(x) = f(x_0) + \underbrace{\nabla f(x_0)^{\top}}_{=0} (x - x_0) + \underbrace{\frac{1}{2} (x - x_0)^{\top}}_{=0} \underbrace{\underbrace{H_f(x_0 + \xi(x - x_0))}_{\text{pos. def. in } U_{\varepsilon}(x_0)}}_{>0 \ \forall x \in U_{\varepsilon}(x_0)} (x - x_0) \geqslant f(x_0)$$

1.6.17 Definition der Sattelpunkte

Sei $U = U_{\varepsilon}(x_0), f \in C^2(U), \nabla f(x_0) = 0, H_f(x_0)$ indefinit, dann besitzt die Funktion f bei x_0 einen **Sattelpunkt**.

Bemerkung: $\forall \varepsilon > 0$ gilt:

$$\exists x_1, x_2 \in U_{\varepsilon}(x_0) \text{ mit } f(x_1) > f(x_0) \text{ und } f(x_2) < f(x_0)$$

1.6.18 Satz für den Fall n=2

Ist $f \in C^2(U)$ für eine Umgebung U von $x_0 = \begin{pmatrix} a \\ b \end{pmatrix} \in \mathbb{R}^2$ gilt weiter $f_x(a,b) = f_y(a,b) = 0$, dann ist x_0 :

1.7. EXTREMSTELLEN UNTER NEBENBEDINGUNGENUND IMPLIZITE FUNKTIONEN29

- (i) eine lokale **Minimal**stelle, wenn $f_{xx}(a,b) > 0$ (erster Hauptminor D_1) <u>und</u> $f_{xx}(a,b)f_{yy}(a,b) 2(f_{xy}(a,b))^2 > 0$ (zweiter Hauptminor D_2)
- (ii) eine lokale **Maximal**stelle, wenn $f_{xx}(a,b) < 0$ (erster Hauptminor D_1) <u>und</u> $f_{xx}(a,b)f_{yy}(a,b) 2(f_{xy}(a,b))^2 > 0$ (zweiter Hauptminor D_2)
- (iii) ein **Sattelpunkt**, wenn $f_{xx}(a,b) < 0$ (erster Hauptminor D_1) oder $f_{xx}(a,b)f_{yy}(a,b) 2(f_{xy}(a,b))^2 < 0$ (zweiter Hauptminor D_2)

1.6.19 Beispiel

Sei $f(x, y, z) = x^2 + xy + y^2 - \cos z \in C^2(\mathbb{R}^2)$:

$$\nabla f(x, y, z) = \begin{pmatrix} 2x + y \\ x + 2y \\ \sin z \end{pmatrix} \stackrel{!}{=} 0$$

1.7 Extremstellen unter Nebenbedingungen und implizite Funktionen

 $Bisher: \mbox{ Optimierungsproblem ohne Nebenbedingungen: } \left\{ \begin{array}{l} f(x,y) \to \min \\ \left(\begin{array}{c} x \\ y \end{array} \right) \in \mathbb{R}^2 \\ \mbox{ Lösbar in drei Schritten:} \end{array} \right.$

- 1. lokale Minimalstellen bestimmen
- 2. untersuche f(x,y) für $\left\| \left(\begin{array}{c} x \\ y \end{array} \right) \right\| \to \infty$
- 3. vergleiche die Resultate aus 1. und 2.

Bemerkung: aus $f(x,y) \to \min$ wird $-f(x,y) \to \max$ darum reicht es o.B.d.A. denn Fall $\to \min$ zu betrachten.

Jetzt: Optimierungsproblem mit Nebenbedingungen: $\begin{cases} f(x,y) \to \min \\ \begin{pmatrix} x \\ y \end{pmatrix} \in A \subset \mathbb{R}^2$ Es ist bekannt, dass warp $f \in C(A)$ was larger to the second se

Es ist bekannt, dass wenn $f \in C(A)$ und $A \neq \emptyset$ kompakt (abgeschlossen und beschränkt) dann existiert sicher eine Lösung (Satz von Weierstraß: f stetig und A kompakt \Rightarrow es wird ein Minimum (Maximum) angenommen).

Es sind zwei Fälle möglich:

- (i) globale Minimalstelle liegt in \mathring{A} (im Inneren)
- (ii) globale Minimalstelle liegt in ∂A (auf dem Rand)

Wenn zusätzlich $f \in C^2(A)$ gilt, kann die Minimalstelle wie folgt gefunden werden:

1. bestimme lokale Minimalstellen mit $\nabla f(x_0) = 0$ und $H_f(x_0)$ positiv definit in Å

- 2. bestimme lokale Minimalstelle in ∂A Bemerkung: Eckpunkte müssen gesondert betrachtet werden, denn die Funktion kann an diesen Stellen nicht differenzierbar sein.
- 3. wähle das Minimum aus 1. und 2.

Wiederholung im Eindimensionalen

Eine Funktion f: X (Definitionsbereich) $\to Y$ (Bildbereich) ist:

(i) injektiv, wenn

$$x_1, x_2 \in X \text{ mit } x_1 \neq x_2 \quad \Rightarrow \quad f(x_1) \neq f(x_2)$$

Bemerkung: Von zwei verschiedenen Punkten aus dem Definitionsbereich darf nicht auf den gleichen Punkt im Bildbereich abgebildet werden.

(ii) surjektiv, wenn

$$\forall y \in Y \quad \exists x \in X \quad \text{mit} \quad f(x) = y$$

Bemerkung: Für alle Bildpunkte existiert ein Punkt im Definitionsbereich.

(iii) **bijektiv**, wenn die Funktion f injektiv und surfjektiv ist.

Beispiel

Sei $d: C^1(\mathbb{R}) \to C(\mathbb{R})$ eine Funktion mit $f \mapsto f'$ (Ableitungsoperator für alle einmal stetig differenzierbaren Funktionen). Für diese Funktion d gilt:

- (i) d ist <u>nicht</u> injektiv da: Seien $f_1(x) = x, f_2(x) = x + 1$ zwei Funktionen aus $C^1(\mathbb{R})$. Für diese gilt: $f_1 \neq f_2$ aber $d(f_1) = f'_1 = 1 = f'_2 = d(f_2)$.
- (ii) d ist surjektiv, denn nach dem Hauptsatz der Differential und Integralrechnung gilt: Alle stetigen Funktionen besitzen eine Stammfunktion.

1.7.1 Spezialfälle

- (i) f ist linear und $f: \mathbb{R}^n \to \mathbb{R}^m: f(x) = Ax$ mit $A \in \mathbb{R}^{m \times n}$ Im Fall m = n gilt: f ist bijektiv $\Leftrightarrow A$ ist invertierbar.
- (ii) Allgemeinerer Fall z.b. $f:[0,\infty)\times[-\pi,\pi)\to\mathbb{R}^2: \quad f(r,\varphi)=r\left(\begin{array}{c}\cos\varphi\\\sin\varphi\end{array}\right)$ f ist surjektiv aber <u>nicht</u> injektiv, denn $f(0,\varphi)=\left(\begin{array}{c}0\\0\end{array}\right)\quad\forall\;\varphi\in[-\pi,\pi)$

1.7.2 Bemerkung

- a. Folgende Aussagen sind äquivalent:
 - (i) A ist invertierbar (oder regulär oder nicht singulär)
 - (ii) Ax = b besitzt $\forall b \in \mathbb{R}^n$ eine eindeutige Lösung $x \in \mathbb{R}^n$
 - (iii) $\det A \neq 0$

b. Sei $f: \mathbb{R}^n \to \mathbb{R}^m$ mit $x_0 \in \mathbb{R}^n$: $f(x) = f(x_0) + A(x - x_0)$ mit det $A \neq 0$ Die Umkehrfunktion f^{-1} kann durch Äquivalenzumformungen gebildet werden:

$$f(x_0) + A(x - x_0) \stackrel{!}{=} y$$

$$\Leftrightarrow A(x - x_0) = y - f(x_0)$$

$$\Leftrightarrow x - x_0 = A^{-1}(y - f(x_0))$$

$$\Leftrightarrow x = x_0 + A^{-1}(y - f(x_0)) = f^{-1}(y)$$

Für die Ableitung der Umkehrfunktion gilt: $\frac{\partial}{\partial y}f^{-1}(y)=A^{-1}$

Kommentar: Differenzierbare Funktionen sind in einer hinreichend kleinen ε -Umgebung im Prinzip linear (nicht ganz korrekt, aber sehr anschaulich).

1.7.3 Satz über die Umkehrfunktion

Sei $f \in C^1(G; \mathbb{R}^n)$ mit $G \subset \mathbb{R}^n$ ein Gebiet, $x_0 \in G$ mit $\det f'(x_0) = \det J_f(x_0) \neq 0$. Dann gilt in einer geeigneten offenen Umgebung U um x_0 , dass

- (i) V = f(U) ist offen (das Bild V von U ist offen) und det $f'(x) \neq 0 \quad \forall x \in U$
- (ii) $f:U\to V$ ist bijektiv, das heißt: $\exists \ f^{-1}:V\to U$ (die Funktion ist lokal invertierbar)

Beweisidee: Da f stetig differenzierbar ist, gilt:

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + r(x) ||x - x_0|| \text{ mit } r(x) \xrightarrow{x \to x_0} 0$$

$$\approx f(x_0) + f'(x_0)(x - x_0)$$

$$= f(x_0) + A(x - x_0) \text{ mit } \det A \neq 0$$

Wenn \approx ein = wäre so könnte die Umkehrfunktion $f^{-1}(y)$ einfach durch Äquivalenzumformungen bestimmt werden

 \Rightarrow In einer hinreichend kleinen ε -Umgebung kann \approx als = angenommen werden.

(iii)
$$(f^{-1})'(y) = (f'(f^{-1}(y)))^{-1} \Leftrightarrow J_{f^{-1}}(y) = J_f^{-1}(f^{-1}(y))$$

Beweisidee: Wenn $f^{-1}: V \to U$ existiert, dann ist f^{-1} auch stetig diff'bar. Beispielskizze aus dem Eindimensionalen:

$$f(x) = e^{x}, \quad f'(x) = e^{x}, \quad \exists \ f^{-1}(y) = \log y$$

$$\Rightarrow \quad y = f\left(f^{-1}(y)\right)$$

$$\overset{\text{Ableiten mit}}{\Rightarrow} \quad 1 = f'\left(f^{-1}(y)\right) \cdot (f^{-1})'(y)$$

$$\Rightarrow \quad (f^{-1})'(y) = \log' y = \frac{1}{f'\left(f^{-1}(y)\right)} = \frac{1}{e^{\log y}} = \frac{1}{y}$$

Beispiel übertragen auf den allgemeinen mehrdimensionalen Fall:

$$y = f\left(f^{-1}(y)\right)$$

$$\overset{\text{Ableiten mit Kettenregel}}{\Rightarrow} 1 = \underbrace{f'\left(f^{-1}(y)\right)}_{J_{f'}(f^{-1}(y))} \cdot \frac{d}{dy} f^{-1}(y)$$

$$\Rightarrow \frac{d}{dy} f^{-1}(y) = \left(f'\left(f^{-1}(y)\right)\right)^{-1}$$

1.7.4 Polarkoordinaten

. . .

1.7.5 Beispiel

$$f: \mathbb{R}^2 \to \mathbb{R}^2 \text{ mit } f(x,y) = \begin{pmatrix} x - y^2 \\ 2y \end{pmatrix}$$

$$\Rightarrow f'(x,y) = J_f(x,y) = \begin{pmatrix} 1 & -2y \\ 0 & 2 \end{pmatrix} \quad \text{mit} \quad \det J_f \neq 0$$

Direktes Bestimmen der Umkehrfunktion (im Allgemeinen will man dies vermeiden):

$$\begin{pmatrix} u \\ v \end{pmatrix} \stackrel{!}{=} f(x,y) \quad \Leftrightarrow \quad \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} x - y^2 \\ 2y \end{pmatrix}$$

$$\Rightarrow \quad v = 2y \quad \Leftrightarrow \quad y = \frac{v}{2}$$

$$\Rightarrow \quad u = x - \left(\frac{v}{2}\right)^2 \quad \Leftrightarrow \quad x = u + \frac{v^2}{4}$$

$$\Rightarrow \quad \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} u + \frac{v^2}{4} \\ \frac{v}{2} \end{pmatrix} = f^{-1}(u,v)$$

Damit gilt für die Ableitung der Umkehrfunktion:

$$(f^{-1}(u,v))' = J_{f^{-1}}(u,v) = \begin{pmatrix} 1 & \frac{v}{2} \\ 0 & \frac{1}{2} \end{pmatrix}$$

Alternativ mit dem Satz über die Umkehrfunktion:

$$\left(f^{-1} \right)'(u,v) = \left(f' \left(f^{-1}(u,v) \right) \right)^{-1} = J_f^{-1} \left(u + \frac{v^2}{4}, \frac{v}{2} \right) = \left(\begin{array}{cc} 1 & -v \\ 0 & 2 \end{array} \right)^{-1} \overset{\text{Inv. mit}}{=} \left(\begin{array}{cc} 1 & \frac{v}{2} \\ 0 & \frac{1}{2} \end{array} \right)$$

1.7.6 Kugelkoordinaten

Sei
$$f: \mathbb{R}^3 \to \mathbb{R}^3$$

$$f(r,\varphi,\theta) = \begin{pmatrix} r\cos\varphi\cos\theta \\ r\sin\varphi\cos\theta \\ r\sin\theta \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

1.7.7 Korollar: Gebietstreue

Ist $G \subset \mathbb{R}^n$ offen und sei $f: G \to \mathbb{R}^n$ eine Funktion mit $f \in C^1(G; \mathbb{R}^n)$, dann ist f(G) offen. Ist G außerdem ein Gebiet, so ist f(G) auch ein Gebiet.

Fazit: Für f^{-1} kann man $\tilde{G} = f(G)$ definieren und $f^{-1} : \tilde{G} \to \mathbb{R}^n$ betrachten. Dabei hat \tilde{G} die gleichen Eigenschaften wie G.

1.7.8 Definition impliziter Funktionen

Sei $g: \mathbb{R}^{m+n} \to \mathbb{R}^m$ mit $n, m \in \mathbb{N}$ eine Funktion und sei

$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n, \quad y = \begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix} \in \mathbb{R}^m, \quad b = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix} \in \mathbb{R}^m \text{ konstant}$$

Man betrachte die Gleichung

$$g(x,y) = \begin{pmatrix} g_1(x_1, ..., x_n, y_1, ..., y_m) \\ \vdots \\ g_m(x_1, ..., x_n, y_1, ..., y_m) \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix}$$

und sagt

- a. die Funktion g ist bei $\begin{pmatrix} x_0 \\ y_0 \end{pmatrix}$ lokal nach y auflösbar, wenn eine Funktion f in der Umgebung von $\begin{pmatrix} x_0 \\ y_0 \end{pmatrix}$ existiert mit:
 - (i) $f(x_0) = y_0$ und
 - (ii) g(x, f(x)) = b
- b. g ist auf $A \subset \mathbb{R}^n$ global nach g auflösbar, wenn eine Funktion $f: A \to \mathbb{R}^m$
 - (i) existiert und
 - (ii) $g(x, f(x)) \quad \forall x \in A \text{ gilt}$
- c. analog gilt die Definition für auflösbar nach x mit g(f(y), y)

1.7.9 Beispiel Einheitskreis

Sei $g: \mathbb{R}^2 \to \mathbb{R}$ (also m = n = 1) mit $g(x, y) = x^2 + y^2$ und b = 1. Die Funktion g ist auflösbar bei $\begin{pmatrix} x_0 \\ y_0 \end{pmatrix}$, wenn $x_0 \neq 0$ (denn $y_0^2 = 1$ hat zwei Lösungen) gilt:

Fall
$$y_0 > 0$$
: $f_{>0}(x) = y = \sqrt{1 - x^2}$
Fall $y_0 < 0$: $f_{<0}(x) = y = -\sqrt{1 - x^2}$

1.7.10 Hauptsatz über implizite Funktionen

Seien $x_0 \in \mathbb{R}^n$, $y, b \in \mathbb{R}^m$ für eine offene Umgebung G um $\begin{pmatrix} x_0 \\ y_0 \end{pmatrix}$ und sei $g \in C^1(G; \mathbb{R}^m)$ (stetig diff'bar). Gilt weiter $g(x_0, y_0) = b$ und $\det g_y(x_0, y_0) \neq 0$ so existiert eine offene Umgebung U_0 von x_0 und V_0 von y_0 , so dass gilt:

- (i) $\det g_y(x,y) \neq 0 \quad \forall \ x \in X_0, \forall \ y \in Y_0$
- (ii) die Gleichung g(x,y) = b besitzt eine **eindeutig bestimmte Auflösung**: $f: U_0 \to V_0$ nach y mit $f(x_0) = y_0$ und $g(x, f(x)) = b \quad \forall x \in U_0$ außerdem ist diese Funktion f differenzierbar und es gilt: $f'(x) = -(g_y(x_0, f(x_0)))^{-1} g_x(x_0, f(x_0)) = -(g_y(x_0, y_0))^{-1} g_x(x_0, y_0)$
- (iii) ist $g \in C^r(G; \mathbb{R}^m)$ mit $r \geq 2$ so ist $f \in C^r(U_0; \mathbb{R}^m)$ und die höheren Ableitungen werden durch weiteres ableiten von f' in (ii) bestimmt.

Bemerkung:

$$g: \mathbb{R}^{m+n} \to \mathbb{R}^m \quad \text{mit} \quad x = \begin{pmatrix} x_1 \\ \vdots x_n \end{pmatrix} \in \mathbb{R}^n, \quad y = \begin{pmatrix} y_1 \\ \vdots y_m \end{pmatrix} \in \mathbb{R}^m$$

$$(x,y) \mapsto g(x,y) = \begin{pmatrix} g_1(x,y) \\ \vdots \\ g_m(x,y) \end{pmatrix} = \begin{pmatrix} g_1(x_1,...,x_n,y_1,...,y_m) \\ \vdots \\ g_m(x_1,...,x_n,y_1,...,y_m) \end{pmatrix}$$

$$g' = \frac{\partial}{\partial (x,y)} = J_g = \begin{pmatrix} \frac{\partial}{\partial x_1} g_1 & \cdots & \frac{\partial}{\partial x_n} g_1 & \frac{\partial}{\partial y_1} g_1 & \cdots & \frac{\partial}{\partial y_m} g_1 \\ \vdots & & \vdots & & \vdots \\ \frac{\partial}{\partial x_1} g_m & \cdots & \frac{\partial}{\partial x_n} g_m & \frac{\partial}{\partial y_1} g_m & \cdots & \frac{\partial}{\partial y_m} g_m \end{pmatrix} \in \mathbb{R}^{m \times (n+m)}$$

$$= \begin{pmatrix} \frac{\partial}{\partial x} g & \frac{\partial}{\partial y} g \end{pmatrix}$$

Beweisidee: Im Spezialfall, dass die Funktion g linear ist gilt: $g(x,y) = A \begin{pmatrix} x \\ y \end{pmatrix}$ Dabei besteht die Matrix $A \in \mathbb{R}^{m \times (m+n)}$ aus zwei Teilmatrizen $X \in \mathbb{R}^{m \times n}, Y \in \mathbb{R}^{m \times m}$ also gilt:

$$g(x,y) = \begin{pmatrix} X & Y \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = Xx + Yy \quad \text{mit} \quad \frac{\partial}{\partial x}g = X, \quad \frac{\partial}{\partial y}g = Y$$

Ist die Funktion g differenzierbar, so ist sie in einer hinreichend kleinen Umgebung näherungsweise linear, also gilt:

$$g(x,y) = b \quad \Leftrightarrow \quad Xx + Yy = b$$

$$\Leftrightarrow \quad Yy = b - Xx \stackrel{\det Y \neq 0}{=} y = Y^{-1}(b - Xx) = Y^{-1}b - Y^{-1}Xx = f(x)$$

$$\Rightarrow \quad f'(x) = -Y^{-1}X = -(g_y)^{-1}g_x$$

Bemerkung: für den Fall m=n=1

Es gilt g(x, f(x)) = b für $x \in U_0$ mit $g : \mathbb{R}^2 \to \mathbb{R}, f : \mathbb{R} \to \mathbb{R}, b \in \mathbb{R}$ konstant Setze h(x) = g(x, f(x)) mit $h : \mathbb{R} \to \mathbb{R}$ also muss $h(x) = b, \forall x \in U_0$ gelten. Da b konstant ist, gilt für die Ableitung h'(x) = 0.

$$h'(x) \stackrel{\text{Retten-regel}}{=} g'(x, f(x)) \begin{pmatrix} x \\ f(x) \end{pmatrix}' = \nabla g(x, f(x))^{\top} \begin{pmatrix} 1 \\ f'(x) \end{pmatrix}$$

$$= \begin{pmatrix} g_x(x, f(x)) & g_y(x, f(x)) \end{pmatrix} \begin{pmatrix} 1 \\ f(x) \end{pmatrix} = g_x(x, f(x)) + g_y(x, f(x))f'(x) = 0$$

$$\stackrel{g_y(x, f(x)) \neq 0}{=} f'(x) = -\frac{g_x(x, f(x))}{g_y(x, f(x))} \stackrel{f(x_0) = y_0}{\Rightarrow} -\frac{g_x(x_0, y_0)}{g_y(x_0, y_0)} = f'(x_0)$$

1.7.11 Lokale Extremstellen unter Nebenbedingungen

Seien $f, g_1, ..., g_m : G \subset \mathbb{R}^n \to \mathbb{R}$ mit G offen gegeben, sowie $b_1, ..., b_m \in \mathbb{R}$. Dann nennt man $x_0 \in G$ ein lokales Minimum (Maximum) unter den Nebenbedingungen $g_1(x) = b_1, ..., g_m(x) = b_m$ wen es eine offene Umgebung $U \subset G$ von x_0 gibt mit:

$$f(x) \overset{(\leqslant)}{\geqslant} f(x_0) \quad \forall \ x \in U \text{ mit } g(x) = b$$

1.7.12 Satz von Lagrange

Notwendige Bedingung für Extremstellen unter Nebenbedingungen.

Seien $f, g_1, ..., g_m \in C^1(U)$ für eine offene Umgebung U von $x_0 \in \mathbb{R}^n$ und seien $b_1, ..., b_m \in \mathbb{R}$ $(b \in \mathbb{R}^m)$. Ist $x_0 \in U$ eine lokale Extremstelle unter der Nebenbedingung $g_1(x_0) = b_1, ..., g_m(x_0) = b_m$ und sind die Gradienten $\nabla g_1(x_0), ..., \nabla g_m(x_0)$ linear unabhängig also det $(\nabla g_1(x_0), ..., \nabla g_m(x_0)) \neq 0$, dann existieren die Konstanten $\lambda_1, ..., \lambda_m \in \mathbb{R}$ (Lagrange-Multiplikatoren) mit:

$$\nabla f(x_0) + \underbrace{\lambda_1 \nabla g_1(x_0) + \dots + \lambda_m \nabla g_m(x_0)}_{\int_{a_1}^{a_1}} = 0$$

$$\underbrace{\left(\begin{array}{ccc} \nabla g_1(x_0) & \dots & \nabla g_m(x_0) \end{array}\right)}_{\int_{a_1}^{a_2}} \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_m \end{pmatrix}$$

Bemerkung: Der Satz von Lagrange enthält nur eine **notwendige** Bedingung: Es kann also Punkte geben mit $\nabla f(x_0) + \lambda \nabla g(x_0) = 0$ die keine Extremstelle sind (z.b. Sattelpunkte). Der Satz liefert also nur Kandidaten, welche dann durch einsetzen in die Funktion f weiter untersucht werden müssen.

Bemerkung: Anschaulich bedeutet die Bedingung $\nabla f(x_0) + \lambda \nabla g(x_0) = 0$, dass die Gradienten beider Funktionen im Punkt x_0 in die gleiche (oder entgegengesetzte) Richtung schauen müssen.

Beweis: für den Fall n=2, m=1 $f,g:U\subset\mathbb{R}^2\to\mathbb{R}, b\in\mathbb{R} \text{ und sei } \left(\begin{array}{c}x_0\\y_0\end{array}\right) \text{ eine lokale Extremstelle unter der Nebenbedingung }g(x_0,y_0)=b.$ Außerdem sei $\nabla g(x_0,y_0)$ linear unabhängig (im Fall

n=2, m=1 bedeutet dies: nicht der Nullvektor).

$$\nabla g(x_0, y_0) = \begin{pmatrix} g_x(x_0, y_0) \\ g_y(x_0, y_0) \end{pmatrix}$$

$$\Rightarrow g_x(x_0, y_0) \neq 0 \text{ oder } g_y(x_0, y_0) \neq 0 \overset{\text{o.B.d.A.}}{\Rightarrow} g_y(x_0, y_0) \neq 0$$

$$\Rightarrow \exists \text{ eine lokale Auflösung } h \text{ nach } y$$

$$h: U_0 \subset \mathbb{R} \to \mathbb{R} \text{ mit } h(x_0) = y_0 \text{ und } g(x, h(x)) = b$$

Sei nun $\hat{f}(x) = f(x, h(x))$ mit $\hat{f}: U_0 \subset \mathbb{R} \to \mathbb{R}$ und betrachte $\hat{f}(x) \to \min / \max$:

$$0 \stackrel{!}{=} \hat{f}'(x) = \frac{d}{dx} f(x, h(x)) \stackrel{\text{Ketten-regel}}{=} \nabla f(x, h(x))^{\top} \cdot \begin{pmatrix} 1 \\ h'(x) \end{pmatrix}$$
$$= \begin{pmatrix} f_x(x, h(x)) & f_y(x, h(x)) \end{pmatrix} \begin{pmatrix} 1 \\ h'(x) \end{pmatrix}$$
$$= f_x(x, h(x)) + f_y(x, h(x))h'(x)$$

Nach dem Hauptsatz über implizite Funktionen gilt $h'(x) = -\frac{g_x(x,h(x))}{g_y(x,h(x))}$, damit gilt weiter:

$$0 \stackrel{!}{=} f_x(x, h(x)) - f_y(x, h(x)) \frac{g_x(x, h(x))}{g_y(x, h(x))}$$

Bei x_0 gilt ja gerade $h(x_0) = y_0$:

$$0 \stackrel{!}{=} f_x(x_0, y_0) - f_y(x_0, y_0) \frac{g_x(x_0, y_0)}{g_y(x_0, y_0)} = f_x(x_0, y_0) g_y(x_0, y_0) - f_y(x_0, y_0) g_x(x_0, y_0)$$

Also sind die Gradienten ∇f , ∇g linear abhängig.

1.7.13 Bespiele

a.
$$\begin{cases} f(x,y) = x + y \to \min / \max \\ g(x,y) = x^2 + y^2 = b = 1 \end{cases}$$

- (i) Die Nebenbedingung g(x,y)=b beschreibt eine kompakte (beschränkt und abgeschlossene) Menge $B=\left\{\left(\begin{array}{c} x\\y\end{array}\right)$ mit $x^2+y^2=1\right\}$ und da f stetig ist gilt: Satz von Weierstraß $\exists \ x_m, x_M \in B \ \text{mit} \ f(x_m) \leqslant f(x) \leqslant f(x_M) \quad \forall \ x \in B$ (Die Funktion f nimmt auf B ein Minimum und ein Maximum an.)
- (ii) Für ein x_0 (also x_m oder x_M) muss gelten, dass: $\exists \lambda \in \mathbb{R} \text{ mit } \nabla f(x_0) + \lambda \nabla g(x_0) = 0$

Man erhält also eine Menge $\tilde{B} \subset B$ welche die Lagrange-Bedingung erfüllen:

$$\nabla g(x,y) = \begin{pmatrix} 2x \\ 2y \end{pmatrix}, \nabla f(x,y) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\nabla f(x,y) + \lambda \nabla g(x,y) \stackrel{!}{=} 0$$

$$\Leftrightarrow \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 2x \\ 2y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\Leftrightarrow \lambda \cdot 2x = -1 \begin{cases} 2 \text{ Gleichungen mit 3 Unbekannten} \\ \Rightarrow 1 \text{ Freiheitsgrad (durch } \lambda \text{ beschrieben}) \end{cases}$$

$$\text{Fall } x \neq 0, y \neq 0 \qquad -\frac{1}{2x} = \lambda = -\frac{1}{2y} \quad \Rightarrow \quad x = y$$

$$\text{Fall } x = 0, y \neq 0 \qquad 2 \cdot 0 \cdot \lambda = -1 \Rightarrow 0 = -1 \Rightarrow \text{Widerspruch, Fall nicht möglich}$$

$$\Rightarrow \text{ dasselbe gilt für die Fälle } x \neq 0, y = 0 \text{ und } x = 0, y = 0$$

$$\stackrel{\text{Einetzen in die}}{\Rightarrow} \Rightarrow b = 1 = g(x, y) = x^2 + y^2 \stackrel{x=y}{\Rightarrow} 1 = x^2 + x^2 \Leftrightarrow x_{1,2} = \pm \frac{1}{\sqrt{2}}$$

$$\Rightarrow \tilde{B} = \left\{ \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}, \begin{pmatrix} -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix} \right\}$$

$$\stackrel{\text{Satz von}}{\text{Weierstraß}} x_m, x_M \in \tilde{B}$$

(iii) Prüfen der Elemente aus \tilde{B} :

$$f\left(\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} = \sqrt{2} \quad \Rightarrow \quad \max$$
$$f\left(\left(-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right) = -\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} = -\sqrt{2} \quad \Rightarrow \quad \min$$

b.
$$\begin{cases} f(x,y) = x^2 + y^2 \to \min / \max \\ g(x,y) = x + y = b = 1 \end{cases}$$
 Die Menge $B = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \text{ mit } x + y = 1 \right\}$ ist nicht kompakt, darum gilt hier der Satz von Weierstraß nicht! In diesem konkreten Fall existiert kein Maximum.

1.7.14 Kochrezept für Lagrange

Für das Bestimmen der Kandidaten für mögliche Maximal/Minimal-Stellen der Funktion f unter der Nebenbedingung g eignet sich das folgende Vorgehen:

1. Lagrange-Funktion aufstellen:

$$L(x,\lambda) = f(x) + \lambda^{\top} g(x)$$

2. Gradient von L auf Null setzen und Gleichungen lösen:

$$\nabla L(x,\lambda) \stackrel{!}{=} 0 \quad \left\{ \begin{array}{l} L_x(x,\lambda) \stackrel{!}{=} 0 & \quad n \text{ Gleichungen} \\ L_\lambda(x,\lambda) \stackrel{!}{=} 0 & \quad m \text{ Gleichungen} \end{array} \right. \to \text{nach } x \text{ und } \lambda \text{ lösen}$$

Unbekannte sind also $\lambda_1, ..., \lambda_m$ und $x_1, ..., x_n$ (also m + n Unbekannte). Meist ist es geschickter zuerst λ zu bestimmen und danach nach x aufzulösen.

Kapitel 2

Integrale in mehreren Dimensionen

2.1 Parameterintegrale

2.1.1 Satz zu eigentlichen Parameterintegralen

Sei f(x,t) reell und stetig in $[\alpha,\beta] \times [a,b]$ (also auf $\left\{ \left(\begin{array}{c} x \\ t \end{array} \right) : \alpha \leqslant x \leqslant \beta, a \leqslant t \leqslant b \right\}$. Dann gilt für

$$F(x) = \int_{a}^{b} f(x,t) dt$$
 $F: [\alpha, \beta] \to \mathbb{R}$

- (i) F ist stetig auf $[\alpha, \beta]$
- (ii) Falls f_x stetig auf $[\alpha, \beta] \times [a, b]$ ist, so ist $F \in C^1([a, b])$ und es gilt

$$F'(x) = \int_a^b f_x(x,t) dt = \int_a^b \frac{d}{dx} f(x,t) dt$$

(iii)

$$\int_{\alpha}^{\beta} F(x)dx = \int_{\alpha}^{\beta} \left(\int_{a}^{b} f(x,t) dt \right) dx = \int_{a}^{b} \left(\int_{\alpha}^{\beta} f(x,t) dx \right) dt$$

Bemerkung: In (ii) und (iii) werden Grenzwerte vertauscht, im allgemeinen geht so etwas schief:

z.b. für $f(n,x) = x^n$ und x < 1

$$\lim_{n \to \infty} \underbrace{\lim_{x \to 1} f(n, x)}_{\lim_{x \to 1} x^n = 1} = 1 \neq 0 = \lim_{x \to 1} \underbrace{\lim_{n \to \infty} f(n, x)}_{\lim_{n \to \infty} x^n \stackrel{x \le 1}{=} 0}$$

Beispiel: Sei $f(x,t) = x \sin t, x \in [0,1], t \in [0,\pi]$

ohne Hilfe des Satzes :
$$F(x) = [-x \cos t]_0^{\pi} = x + x = 2x \rightarrow F'(x) = 2$$

mit (ii) aus dem Satz : $F'(x) = \int_0^{\pi} f_x(x,t) \ dt = \int_0^{\pi} \sin t \ dt = [-\cos t]_0^{\pi} = 2$

2.1.2 Satz zur Leibniz-Regel

Seien $f(x,t), f_x(x,t)$ stetig in $[\alpha,\beta] \times [a,b]$ und $u,v \in C^1([\alpha,\beta] \times [a,b])$, dann ist

$$F(x) = \int_{u(x)}^{v(x)} f(x,t) dt \in C^{1}([\alpha, \beta])$$
 und
$$F'(x) = \int_{u(x)}^{v(x)} f_{x}(x,t) dt + f(x, v(x))v'(x) - f(x, u(x))u'(x)$$

Beweis: Die stetige Differenzierbarkeit folgt dadurch, dass F(x) eine Verkettung von C^n Funktionen ist.

Sei $F(x) = \tilde{F}(x, u(x), v(x))$ mit $\tilde{F}(x, a, b) = \int_a^b f(x, t) \, dt$ dann ist \tilde{F} bezüglich x stetig differenzierbar wegen Satz 2.1.1 und bezüglich a, b nach dem Hauptsatz der Differentialund Integralrechnung.

 $\Rightarrow \tilde{F}$ ist stetig partiell differenzierbar

$$\Rightarrow \tilde{F}$$
 ist total differenzierbar, außerdem ist $h(x) = \begin{pmatrix} x \\ u(x) \\ v(x) \end{pmatrix}$ total differenzierbar.

 \Rightarrow durch die weitere Verkettung gilt $\tilde{F}(h(x)) = \tilde{F}(x, u(x), v(x)) = \int_{u(x)}^{v(x)} f(x, t) dt$ ist total differenzierbar

Außerdem gilt nach der Kettenregel:

$$F'(x) = \nabla \tilde{F}(\underbrace{x, u(x), v(x)}_{h(x)} \cdot \underbrace{\begin{pmatrix} 1 \\ u'(x) \\ v'(x) \end{pmatrix}}_{h'(x)}$$

$$= \begin{pmatrix} \underbrace{\tilde{F}_x(x, u(x), v(x))}_{2:1:1} \underbrace{\tilde{F}_a(x, u(x), v(x))}_{2:1:1} & \underbrace{\tilde{F}_b(x, u(x), v(x))}_{=-f(x,a)} & \underbrace{\tilde{F}_b(x, u(x), v(x))}_{=f(x,b)} \end{pmatrix} \begin{pmatrix} 1 \\ u'(x) \\ v'(x) \end{pmatrix}$$

$$= \int_a^b f_x(x, t) dt \cdot 1 - f(x, u(x))u'(x) + f(x, v(x))v'(x)$$

2.1.3 Definition uneigentlicher Parameterintegrale

Ist für $x \in M \subset \mathbb{R}$ ein Integral $\int_a^b f(x,t) dt$ definiert und ist a (oder b) ein kritischer Punkt, so ist das Integral gleichmäßig konvergent in M, wenn gilt:

$$\forall \varepsilon > 0 \quad \exists L \in (a, b) \text{ mit } \left| \int_{T_1}^{T_2} f(x, t) dt \right| < \varepsilon \quad \forall x \in M \text{ und } \forall T_1, T_2 \in (L, b)$$

$$(\text{bzw. } \forall T_1, T_2 \in (a, L))$$

Be is piele

(i) Eindimensional:

$$\int_{0 \to \text{krit.Pkt.}}^{1} \frac{1}{\sqrt{t}} dt = \lim_{a \to 0} \int_{a}^{1} \frac{1}{\sqrt{t}} dt = \lim_{a \to 0} \left[2\sqrt{t} \right]_{a}^{1} = 2\sqrt{1} - \lim_{a \to 0} 2\sqrt{a} = 2$$

(ii)

$$\int_{1}^{\infty} \frac{1}{t^2} dt$$

(iii) Sei $\alpha \in \mathbb{R}$

$$\int_{1}^{\infty} t^{\alpha} dt = \lim_{b \to \infty} \int_{1}^{b} t^{\alpha} dt \Rightarrow \begin{cases} \frac{t^{\alpha+1}}{\alpha+1} & \alpha \neq -1 \\ \log t & \alpha = -1 \end{cases}$$

$$\alpha = -1: \quad \lim_{b \to \infty} [\log t]_{1}^{b} = \infty$$

$$\alpha \neq -1: \quad \lim_{b \to \infty} \left[\frac{t^{\alpha+1}}{\alpha+1} \right]_{1}^{b} = \lim_{b \to \infty} \frac{b^{\alpha+1}}{\alpha+1} - \frac{1}{\alpha+1} = \begin{cases} \infty & \alpha > -1 \\ -\frac{1}{\alpha+1} & \alpha < -1 \end{cases}$$

$$\stackrel{b \to \infty}{\to}_{0} \text{ falls } \alpha+1 < 0$$

2.1.4 Satz zum Majorantenkriterium

Ein uneigentliches Integral $\int_a^b f(x,t)\ dt$ konvergiert gleichmäßig in $M\subset\mathbb{R}$, wenn ein konvergentes (eigentliches oder uneigentliches) Integral $\int_a^b g(t)\ dt$ existiert mit

$$|f(x,t)| \leqslant g(t)$$
 $\underbrace{\forall t \in (a,b)}_{-\infty \leqslant a \leqslant b \leqslant \infty}$ $\forall x \in M$

2.1.5 Satz von Fubini für uneigentliche Integrale

Ist f(x,t) stetig in $I \times (a,b)$ (dabei ist I ein Intervall) und konvergiert $F(x) = \int_a^b f(x,t) dt$ gleichmäßig in I, dann ist F stetig und für $I = [\alpha, \beta]$ mit $\alpha, \beta \in \mathbb{R}$ gilt:

$$\int_{\alpha}^{\beta} \left(\int_{a}^{b} f(x,t) \ dt \right) dx = \int_{a}^{b} \left(\int_{\alpha}^{\beta} f(x,t) \ dx \right) dt$$

2.1.6 Satz zur Ableitung uneigentlicher Parameterintegrale

Sind f(x,t) und $f_x(x,t)$ stetig auf $[\alpha,\beta] \times [a,b]$ und ist

$$\int_a^b f(x_0,t) \ dt \text{ konvergent für ein } x_0 \in [\alpha,\beta] \text{ und ist}$$

$$\int_a^b f_x(x,t) \ dt \text{ konvergent } \forall \ x \in [\alpha,\beta] \text{ so konvergiert}$$

$$F(x) = \int_a^b f(x,t) \ dt \text{ gleichmäßig } \forall \ x \in [\alpha,\beta] \text{ und es gilt}$$

$$F'(x) = \int_a^b f_x(x,t) \ dt \text{ also gilt } F' \in C^1([\alpha,\beta])$$

2.1.7 Beispiel

Berechne $\int_0^1 \frac{t^{\beta} - t^{\alpha}}{\log t} dt$ für $-1 < \alpha < \beta$:

definiere:
$$F(x) = \int_0^1 \underbrace{\frac{t^x - t^\alpha}{\log t}}_{f(x,t)} dt$$

sei α ein $x_0 \in [\alpha, \beta]$: $F(\alpha) = \int_0^1 \frac{t^\alpha - t^\alpha}{\log t} dt = 0 \implies \text{uneigentliches Intervall konvergiert}$

weiter gilt:
$$\int_0^1 \frac{d}{dx} \frac{e^{x \log t} - t^{\alpha}}{\log t} dt = \int_0^1 \frac{\log t \cdot t^x}{\log t} dt = \int_0^1 t^x dt$$
$$= \left[\frac{t^{x+1}}{x+1}\right]_0^1 = \frac{1}{x+1} < 1 \quad \Rightarrow \quad \int_0^1 f_x(x,t) dt \text{ konvergient}$$

also gilt:
$$F'(x) \stackrel{2.1.6}{=} \int_0^1 f_x(x,t) dt = \frac{1}{x+1}$$

wieder aufleiten : $F(x) = \log(x+1) + c$

mit:
$$F(\alpha) = \log(\alpha + 1) + c \stackrel{!}{=} 0 \Leftrightarrow c = -\log(\alpha + 1)$$

 $F(\beta) = \log(\beta + 1) + c = \log(\beta + 1) - \log(\alpha + 1)$
 $= \log\left(\frac{\beta + 1}{\alpha + 1}\right) = \int_0^1 \frac{t^\beta - t^\alpha}{\log t} dt$

2.2 Kurvenintegrale

2.2.1 Definition der Äquivalenzrelation für Kurven

Zwei stetige Funktionen $x:[a,b]\subset\mathbb{R}\to\mathbb{R}^n$ und $y:[\alpha,\beta]\subset\mathbb{R}\to\mathbb{R}^n$ heißen äquivalent $(x\sim y)$, wenn es eine streng monoton wachsende Funktion $\varphi:[a,b]\to[\alpha,\beta]$ gibt mit $y(\varphi(t))=x(t)\quad\forall\ t\in[a,b].$

Be is piel:

(i)
$$x(t) = \begin{pmatrix} \cos t \\ \sin t \end{pmatrix}$$
 $t \in [0, 2\pi]$ $y(t) = \begin{pmatrix} \cos 2t \\ \sin 2t \end{pmatrix}$ $t \in [0, \pi]$
Sei $\varphi(t) = \frac{t}{2}$ \Rightarrow $y(\varphi(t)) = y\left(\frac{t}{2}\right) = x(t) \quad \forall \ t \in [0, 2\pi]$
(ii) $x(t) = \begin{pmatrix} \cos t \\ \sin t \end{pmatrix}$ $t \in [0, 2\pi]$ $y(t) = \begin{pmatrix} \cos t \\ -\sin t \end{pmatrix}$ $t \in [0, 2\pi]$

Sei $\varphi(t) = -t$ \Rightarrow y(-t) = x(t) aber φ ist <u>nicht</u> monoton wachsend! \Rightarrow Die Kurven müssen in die gleiche Richtung zeigen.

Bemerkung:

(i) Reflexiv: $x \sim x$

Beweis: Wähle $\varphi(t) = t$

(ii) Symmetrie: $x \sim y \implies y \sim x$

Beweis: Zu jedem φ existiert ein φ^{-1} , welches ebenfalls stetig und monoton wachsend ist. Also gilt: $y(t) = x (\varphi^{-1}) \quad \forall \ t \in [\alpha, \beta]$

(iii) Transitivität: $x \sim y$ und $y \sim z \implies x \sim z$

Beweis:
$$y(\varphi(t)) = x(t), z(\psi(\tau)) = y(\tau) \implies z(\psi(\varphi(t))) = x(t)$$

2.2.2 Definition einer Kurve im \mathbb{R}^n

Ist $x : [a, b] \to \mathbb{R}^n$ stetig, so nennt man die Menge $\mathcal{K} = \{y : [\alpha, \beta] \subset \mathbb{R} \to \mathbb{R}^n : y \sim x\}$ die Kurve \mathcal{K} mit Parameterdarstellung x (dabei ist jedes $y \in \mathcal{K}$ eine äquivalente Parameterdarstellung von \mathcal{K}) mit Anfangspunkt p = x(a) und Endpunkt q = x(b).

Schreibweise: $\mathcal{K}: x(t), a \leq t \leq b$.

Die Menge $\Gamma(\mathcal{K}) = x([a,b]) = \{x(t) : a \leq t \leq b\}$ heißt **Träger** von \mathcal{K} .

Man nennt eine Kurve \mathcal{K}

- 1. **geschlossen**, wenn x(a) = x(b) gilt
- 2. einfach oder Jordankurve, wenn $\forall t, u \in [a, b] : x(t) \neq x(u) \Leftrightarrow t \neq u$ gilt (Kurve hat keine Überschneidungen)

2.2.3 Beispiele

(i)
$$x(t) = \begin{pmatrix} \cos t \\ \sin t \end{pmatrix}$$
 $t \in [0, 2\pi]$

(ii)
$$y(t) = \begin{pmatrix} \cos t^2 \\ \sin t^2 \end{pmatrix}$$
 $t \in [0, \sqrt{2\pi}]$

(iii)
$$z(t) = \begin{pmatrix} \cos -t \\ \sin -t \end{pmatrix}$$
 $t \in [0, 2\pi]$

Es gilt $x \sim y$: Gleiche Kurve mit unterschiedlicher Parameterdarstellung. Für (i) ist $\mathcal{K}: x(t), 0 \leq t \leq 2\pi$ und für (ii) ist $\mathcal{K}: y(t), 0 \leq t \leq \sqrt{2\pi}$.

Aber weiter gilt $x, y \not\sim z$, denn die Kurve beschrieben durch z(t) geht in die andere Richtung.

2.2.4 Eigenschaften von Parameterdarstellungen

- (i) Eine Parameterdarstellung $x:[a,b]\subset\mathbb{R}\to\mathbb{R}^n$ einer Kurve \mathcal{K} heißt **stückweise stetig differenzierbar**, wenn eine Zerlegung $a=t_0< t_1< ...< t_N=b$ existiert und x auf $[t_l,t_{l+1}]$ mit $l\in\{0,...,N-1\}$ stetig differenzierbar ist.
- (ii) Besitzt eine Kurve \mathcal{K} eine stückweise stetig differenzierbare Parameterdarstellung x(t) mit $t \in [a, b]$ und gilt $\dot{x}(t) \neq 0 \ \forall \ t \in [a, b]$, dann heißt die Kurve \mathcal{K} glatt oder regulär.
- (iii) Ist von \mathcal{K} eine Parameterdarstellung x stückweise stetig differenzierbar und $\dot{x}(t) \neq 0$, so heißt der Vektor

$$T(t) = \frac{\dot{x}(t)}{\|\dot{x}(t)\|}$$
 der Tangenten(einheits)vektor von \mathcal{K} bei t .

Dabei ist T wieder eine Kurve, beziehungsweise Funktion der Form $T:[a,b]\to\mathbb{R}^n$. Ist T zusätzlich ebenfalls stetig differenzierbar und gilt $\dot{T}(t)\neq 0$, so heißt

$$N(t) = \frac{\dot{T}(t)}{\|\dot{T}(t)\|}$$
 der **Hauptnormalen(einheits)vektor** von \mathcal{K} bei t

(Dabei ist N(t) die normierte zweite Ableitung von x(t)). Falls n=3 so heißt falls existent

$$B(t) = T(t) \times N(t)$$
 der **Binormalen(einheits)vektor** \mathcal{K} bei t .

2.2.5 Bemerkung

- (i) Existieren T und N, dann gilt $N(t) \perp T(t)$. Existiert auch B so gilt $N(t) \perp B(t)$, $T(t) \perp B(t)$.
- (ii) Existiert T, so hängt der Tangenteneinheitsvektor nicht von der Parameterdarstellung ab.

$$\begin{aligned} \textbf{\textit{Beweis:}} & \text{ Sei z.b. } y(\varphi(t)) = x(t), a \leqslant t \leqslant b \\ \Rightarrow & T(t) = \frac{\dot{x}(t)}{\|\dot{x}(t)\|} = \frac{\dot{y}(\varphi(t))\dot{\varphi}(t)}{\|\dot{y}(\varphi(t))\dot{\varphi}(t)\|} = \frac{\dot{y}(\varphi(t))}{\|\dot{y}(\varphi(t))\|} \underbrace{\frac{\dot{\varphi}(t)}{|\dot{\varphi}(t)|}}_{\substack{\varphi \text{ monoton wachsend} \\ \Rightarrow \dot{\varphi} > 0}} \underbrace{\frac{\dot{\varphi}(t)}{\dot{\varphi}(t)}}_{\substack{\varphi(t) \\ \varphi(t)} = 1} \\ & = \frac{\dot{y}(\varphi(t))}{\|\dot{y}(\varphi(t))\|} \stackrel{\tau = \varphi(t)}{=} \frac{\dot{y}(\tau)}{\|\dot{y}(\tau)\|} \end{aligned}$$

2.2.6 Beispiele

$$(i) \quad x(t) = \begin{pmatrix} \cos t \\ \sin t \end{pmatrix} \quad t \in [0, 2\pi]$$

$$\dot{x}(t) = \begin{pmatrix} -\sin t \\ \cos t \end{pmatrix} \stackrel{\|\dot{x}(t)\|=1}{=} \frac{\dot{x}(t)}{\|\dot{x}(t)\|} = T(t)$$

$$\ddot{x}(t) = \begin{pmatrix} -\cos t \\ -\sin t \end{pmatrix} = \dot{T}(t) \stackrel{\|\dot{T}(t)\|=1}{=} \frac{\dot{T}(t)}{\|\dot{T}(t)\|} = N(t)$$

$$\begin{aligned} \dot{x}(t) &= \begin{pmatrix} \cos 2t \\ \sin 2t \end{pmatrix} \quad t \in [0,\pi] \\ \\ \dot{x}(t) &= \begin{pmatrix} -2\sin 2t \\ 2\cos 2t \end{pmatrix} \Rightarrow \frac{\dot{x}(t)}{\|\dot{x}(t)\|} \stackrel{\|\dot{x}(t)\| = \sqrt{4} = 2}{\equiv} \frac{1}{2} \dot{x}(t) = T(t) = \begin{pmatrix} -\sin 2t \\ \cos 2t \end{pmatrix} \\ \\ \dot{T}(t) &= \begin{pmatrix} -2\cos 2t \\ -2\sin 2t \end{pmatrix} \Rightarrow \frac{\dot{T}(t)}{\|\dot{x}(T)\|} \stackrel{\|\dot{T}(t)\| = \sqrt{4} = 2}{\equiv} \frac{1}{2} \dot{T}(t) = N(t) = \begin{pmatrix} -\cos 2t \\ -\sin 2t \end{pmatrix} \end{aligned}$$

2.2.7 Definition zusammen- und entgegengesetzter Kurven

- (i) Sei $\mathcal{K}: x(t), a \leq t \leq b$ eine Kurve, dann heißt $-\mathcal{K}: y(t), a \leq t \leq b$ mit y(t) = x(a+b-t) die zu \mathcal{K} entgegengesetzte Kurve
- (ii) Sind $\mathcal{K}: x(t), a \leq t \leq b$ und $\mathcal{L}: y(t), \alpha \leq t \leq \beta$ zwei Kurven mit $x(b) = y(\alpha)$, dann heißt $\mathcal{K} + \mathcal{L}: z(t), a \leq t \leq b + \beta \alpha$ mit $z(t) = \begin{cases} x(t) & a \leq t \leq b \\ y(t-\beta+\alpha) & b \leq t \leq b + \beta \alpha \end{cases}$ die **zusammengesetzte** Kurve von \mathcal{K} und \mathcal{L} .

 Bemerkung: Der Parameterbereich von x hat die Länge b-a, der Parameterbereich von y hat die Länge $\beta-\alpha$ und der Parameterbereich von z hat die Länge $b-a+\beta-\alpha = (b+\beta-\alpha)-a$.

2.2.8 Definition von rektifizierbaren Kurven

Sei $\mathcal{K}: x(t), a \leq t \leq b$ eine Kurve, so heißt

$$l(\mathcal{K}) = \sup \left\{ \sum_{k=1}^{n} \|x(t_k) - x(t_{k-1})\| : a = t_0 < \dots < t_n = b \right\}$$

die Länge von \mathcal{K} . Ist $L(\mathcal{K}) < \infty$ so heißt die Kurve \mathcal{K} rektifizierbar.

Bemerkung: $l(\mathcal{K}) \approx l(\text{Polygonzug})$. Dabei hängt die Genauigkeit von der Feinheit der Zerlegung $a = t_0 < ... < t_n = b$ ab.

2.2.9 Satz

Sei \mathcal{K} eine Kurve mit einer Parameterdarstellung $x \in C^1$ (stetig diff'bar), so gilt

$$l(\mathcal{K}) = \int_{a}^{b} \|\dot{x}(t)\| dt \approx \sum_{k=1}^{n} \underbrace{\|\dot{x}(\xi_{k})\|(t_{k} - t_{k-1})}_{\|\dot{x}(\xi_{k})(t_{k} - t_{k-1})\|}$$

Bemerkung zu Riemann- Summen und Riemann-Integralen im Eindimensionalen

Für eine Funktion $f: \mathbb{R} \to \mathbb{R}$ und eine Zerlegung $a = t_0 < ... < t_n = b$ sowie beliebige Zwischenpunkte $\xi_1, ..., \xi_n$ mit $t_{k-1} \leqslant \xi_k \leqslant t_k$ ist die Riemann-Summe $S(f, t, \xi)$ wie folgt definiert:

$$S\left(f, \begin{pmatrix} t_0 \\ \vdots \\ t_n \end{pmatrix}, \begin{pmatrix} \xi_0 \\ \vdots \\ \xi_n \end{pmatrix}\right) = \sum_{k=1}^n f(\xi_k)(t_k - t_{k-1})$$

(Dabei ist $f(\xi_k)(t_k-t_{k-1})$ die Fläche eines Rechteckes mit Länge $f(\xi_k)$ und Breite t_k-t_{k-1} .)

Weiter ist ist die Feinheit einer Zerlegung $t = (t_0, ..., t_n)$ folgendermaßen definiert:

$$\mu(t) = \max\{t_k - t_{k-1} : k = 1, ..., n\}$$

(Maximale Breite der unterteilten Rechtecke.)

Abbildung 2.1: Funktion f(t) mit Zerlegung $t_0 < ... < t_N$ und Zwischenpunkt ξ_k .

Für eine beliebige Folge $(\vec{t_N})_{N=1}^{\infty}$ von Zerlegungen mit $\lim_{N\to\infty}\mu\left(\vec{t_N}\right)=0$ und einer beliebigen Folge mit den Zugehörigen Zwischenpunkten $\left(\vec{\xi_N}\right)_{N=1}^{\infty}$ gilt, falls der Grenzwert $\lim_{N\to\infty}S\left(f,\vec{t_n},\vec{\xi_N}\right)$ existiert, dann ist dieser für alle Folgen gleich und es gilt:

$$\int_{a}^{b} f(t) dt = \lim_{N \to \infty} S\left(f, \vec{t_n}, \vec{\xi_N}\right)$$

2.2.10 Definition von Kurvenintegralen

Gegeben sei eine Kurve $\mathcal{K} \subset \mathbb{R}^n$ und $f: \underbrace{\Gamma(\mathcal{K})}_{\text{Träger von } \mathcal{K}} \to \mathbb{R}^n$.

- a. Sei $x:[a,b]\to\mathbb{R}^n$ eine Parameterdarstellung von \mathcal{K}
 - (i) für eine Zerlegung \vec{t} : $a = t_0 < ... < t_N = b$ mit zugehörigen Zwischenpunkten $\vec{\xi} = \{\xi_1, ... \xi_N\}$ gilt für die **Riemann(zwischen)summe**:

$$S\left(f, \vec{t}, \vec{\xi}\right) = \sum_{k=1}^{N} f(\xi_k) \underbrace{\vdots}_{\substack{\text{Skalar-produkt}}} \left(x(t_k) - x(t_{k-1})\right)$$

(ii) Existiert ein $I \in \mathbb{R}$ derart, dass für alle Folgen von Zerlegungen $(\vec{t_N})_{N=1}^{\infty}$ mit beliebigen zugehörigen Zwischenpunkten $(\vec{\xi_N})_{N=1}^{\infty}$ mit der Eigenschaft $\lim_{N \to \infty} \mu(\vec{t_N}) = 0$ gilt

$$\lim_{N \to \infty} S\left(f, \vec{t_N}, \vec{\xi_n}\right) = I = \int_a^b f \cdot dx = \int_a^b f\left(x(t)\right) \cdot dx(t)$$

Dabei heißt I das **Kurvenintegral** von K längs f.

b. Existiert ein $I \in R$ wie in (ii) so heißt f längs K (Riemann)integrierbar und man schreibt

$$I = \int_{\mathcal{K}} f = \int_{\mathcal{K}} f(x) \cdot dx = \int_{\mathcal{K}} f_1(x) \ dx_1 + f_2(x) \ dx_2 + \dots + f_n(x) \ dx_n$$

2.2.11 Substitutionsformel

Ist $\mathcal{K}: x(t), a \leq t \leq b$ eine stückweise differenzierbare Kurve im \mathbb{R}^n und $f: T(\mathcal{K}) \to \mathbb{R}^n$ stetig, dann gilt:

$$\int_{\mathcal{K}} f(x) \cdot dx = \int_{a}^{b} f(x(t)) \cdot \dot{x}(t) dt$$

Beweisidee:

Nach 1
ter Mittelwertsatz $\exists \ \tilde{\xi}_k \in [t_{k-1}, t_k] : \quad x(t_k) - x(t_{k-1}) = \dot{x}(\tilde{\xi}_k)(t_k - t_{k-1})$

$$S\left(f, \vec{t}, \vec{\xi}\right) = \sum_{k=1}^{N} f(\xi_k) \cdot \left(x(t_k) - x(t_{k-1})\right) \stackrel{\text{1ter MWS}}{=} \sum_{k=1}^{N} f(\xi_k) \cdot \dot{x}(\tilde{\xi}_k)(t_k - t_{k-1})$$

Im allgemeinen gilt $\xi_k \neq \tilde{\xi_k}$. Also wird $\vec{\xi}$ gerade so gewählt, dass gilt:

$$S\left(f, \vec{t}, \vec{\xi}\right) = \sum_{k=1}^{N} f\left(\underbrace{x\left(\underbrace{t_{k}}\right)}_{\tilde{\xi}_{k}}\right) \cdot \left(x(t_{k}) - x(t_{k-1})\right)^{1 \text{ter MWS}} \sum_{k=1}^{N} f(x(t_{k})) \cdot \dot{x}(\tilde{\xi}_{k})(t_{k} - t_{k-1})$$

$$\Rightarrow \int_{a}^{b} f(x(t)) \cdot \dot{x}(t) dt$$

Bemerkung: Theoretisch können so die meisten Kurvenintegrale ausgerechnet werden. In der Praxis ist diese Methode aber meist nicht praktikabel.

2.2.12 Beispiele

(i) Kurvenintegrale sind verallgemeinerte eindimensionale (Riemann-)Integrale. Sei f: $[a,b] \to \mathbb{R}$ (eindimensionales Vektorfeld) und x(t) = a + t(b-a) (eine Kurve im \mathbb{R}^1)

$$\int_{\mathcal{K}} f = \int_{\mathcal{K}} f(x) \cdot dx \stackrel{2.2.11}{=} \int_0^1 f(x(t)) \cdot \dot{x}(t) dt$$
$$= \int_0^1 f\left(\underbrace{a + t(b - a)}_x\right) \cdot \underbrace{(b - a)dt}_{dx} = \int_0^1 f(x) dx$$

(ii) Die Länge einer Kurve kann mit einem Kurvenintegral berechnet werden. Sei \mathcal{K} : $x(t), a \leq t \leq b$ mit x stellenweise differenzierbar und $\dot{x}(t) \neq 0 \ \forall \ t \in [a, b]$

$$\int_{a}^{b} \frac{\dot{x}(t)}{\|\dot{x}(t)\|} \cdot dx(t) \stackrel{2.2.11}{=} \int_{a}^{b} \frac{\dot{x}(t)}{\|\dot{x}(t)\|} \cdot \dot{x}(t) dt$$
$$= \int_{a}^{b} \frac{\|\dot{x}(t)\|^{2}}{\|\dot{x}(t)\|} dt = \int_{a}^{b} \|\dot{x}(t)\| = l(\mathcal{K})$$

Kurvenintegrale 1. Art

Sei $K: x(t), a \leq t \leq b$ eine Kurve und sei $f: \mathbb{R}^n \to \mathbb{R}$ ein stetiges Skalarfeld, dann ist das Kurvenintegral **erster** Art definiert durch:

$$\int_{\mathcal{K}} f(x) \cdot dx = \int_{a}^{b} f(x(t)) \|\dot{x}(t)\| dt$$

Abbildung 2.2: Kurvenintegral über eine Skalarfeld $f: \mathbb{R}^2 \to \mathbb{R}$ erster Art.

Kurvenintegral 2. Art

Sei $\mathcal{K}: x(t), a \leq t \leq b$ eine Kurve und sei $f: \mathbb{R}^n \to \mathbb{R}^n$ ein stetiges Vektorfeld, dann ist das Kurvenintegral **zweiter** Art definiert durch:

$$\int_{\mathcal{K}} f(x) \cdot dx = \int_{a}^{b} f(x(t)) \cdot \dot{x}(t) \ dt$$

Abbildung 2.3: Kurvenintegral über eine Vektorfeld $f: \mathbb{R}^2 \to \mathbb{R}^2$ zweiter Art.

Bemerkung: Das Kurvenintegral entlang einer Höhenlinie ist an jeder Stelle Null. Denn da steht ja gerade der Vektor der Ableitung $\dot{x}(t)$ orthogonal zum Vektorfeld f(x) also gilt $f(x(t)) \cdot \dot{x}(t) = 0 \quad \forall t \in [a, b]$.

2.2.13 Definition der Wegunabhängigkeit

Sei $f \in C(G, \mathbb{R}^n), G \subset \mathbb{R}^n$ ein Gebiet.

- 49
- (i) Gilt für zwei beliebige Wege \mathcal{K} und \mathcal{L} in G mit gleichem Anfangs- und Endpunkt stets $\int_{\mathcal{K}} f = \int_{\mathcal{L}} f$ dann heißt das Kurvenintegral **wegunabhängig**.
- (ii) Existiert eine Funktion $F: G \to \mathbb{R}$ mit $F' = \nabla F = f$ (implizit wird F differenzierbar gefordert) auf G, dann heißt F eine **Stammfunktion** von f.

 Bemerkung: In der Praxis wird das Potential eines Vektorfeldes als P = -F definiert.
- (iii) Ein Vektorfeld f heißt **konservativ** wenn eine Stammfunktion F in G existiert.

2.2.14 Erster Hauptsatz für Kurvenintegralen

Sei f konservativ in G und F eine Stammfunktion, dann gilt für jeden Weg K in G mit Anfangspunkt p und Endpunkt q

$$\int_{\mathcal{K}} f = F(q) - F(p)$$

Also ist insbesondere das Kurvenintegral wegunabhängig.

Beweis: (o.B.d.A. nur für glatte Kurven) Sei $\mathcal{K}: x(t), a \leq t \leq b$ glatt, dann gilt

$$\int_{\mathcal{K}} f = \int_{\mathcal{K}} f(x) \cdot dx \stackrel{2.2.11}{=} \int_{a}^{b} \underbrace{f(x(t)) \cdot \dot{x}(t)}_{=F'(x(t)) \cdot \dot{x}(t)} dt = \int_{a}^{b} \left(\frac{d}{dt} F(x(t))\right) dt$$

$$= \int_{\mathcal{K}} f(x) \cdot dx \stackrel{2.2.11}{=} \int_{a}^{b} \underbrace{f(x(t)) \cdot \dot{x}(t)}_{=\frac{d}{dt} F(x(t))} dt = \int_{a}^{b} \left(\frac{d}{dt} F(x(t))\right) dt$$

Hauptsatz der Diff/Int-
$$= [F(x(t))]_a^b \stackrel{\text{Rechnung}}{=} F(x(b)) - F(x(a)) = F(q) - F(p)$$

2.2.15 Satz

Für $f \in C(G; \mathbb{R}^n), G \subset \mathbb{R}^n$ ein Gebiet, sind folgende Aussagen äquivalent:

- (i) $\int_{\mathcal{K}} f$ ist wegunabhängig
- (ii) f besitzt eine Stammfunktion F
- (iii) $\int_{\mathcal{K}} f = 0$ für jede geschlossene Kurve

Beweisansätze:

- $(ii) \Rightarrow (i)$: folgt direkt aus dem ersten Hauptsatz 2.2.14
- (i) \Leftrightarrow (iii): Seien \mathcal{K} und \mathcal{L} zwei Kurven mit gleichen Anfangs- und Endpunkt. So kann eine neue geschlossene Kurve \mathcal{M} wie folgt konstruiert werden:

$$\int_{\mathcal{M}} f = \int_{\mathcal{K}} f + \int_{-\mathcal{L}} = \int_{\mathcal{K}} f - \int_{\mathcal{L}} = 0$$

2.2.16 Beispiele

- (i) $f(x) = \frac{x}{\|x\|^3}$ mit $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in G = \mathbb{R}^2 \setminus \{0\}$ ist konservativ mit Stammfunktion $F(x) = \frac{1}{\|x\|} \dots$
- (ii) $f(x_1, x_2) = \begin{pmatrix} 2x_1x_2 \\ x_1^2 \end{pmatrix}$ ist konservativ mit $F(x_1, x_2) = x_1^2x_2 \dots$

2.2.17 Definition einfach zusammenhängender Gebiete

Ein Gebiet $G \subset \mathbb{R}^n$ heißt **einfach zusammenhängend**, wenn sich jede geschlossene Kurve in G innerhalb von G stetig auf einen Punkt zusammenziehen lässt. Beispiele im \mathbb{R}^3 :

- (i) Berliner ohne Füllung ist einfach zusammenhängend.
- (ii) Ein Donut ist es nicht.

2.2.18 Sternförmige Gebiete

Eine Menge $G \subset \mathbb{R}^n$ heißt **sternförmig** (bezüglich einem $x_0 \in G$), wenn zu jedem $x \in G$ die Strecke $\overline{x_0x} \subset G$ ist (komplett im Gebiet liegt).

2.2.19 Bemerkung

- (i) Eine sternförmige Menge ist stets auch eine einfach zusammenhängende Menge. Ein sternförmiges Gebiet ist stets auch ein sternförmiges Gebiet.
- (ii) Die Vereinigung von sternförmigen Gebieten muss nicht sternförmig sein.
- (iii) Oft kann ein einfach zusammenhängendes Gebiet als Vereinigung von sternförmigen Gebieten betrachtet werden.

2.2.20 Zweiter Hauptsatz für Kurvenintegralen

Sei $f \in C^1(G; \mathbb{R}^n)$ und G ein Gebiet, dann gilt:

(i) (notwendige Bedingung) Besitzt f eine Stammfunktion F in G, so erfüllt f in G die Integrabilitätsbedingung:

$$\frac{\partial f_k}{\partial x_l} = \frac{\partial f_l}{\partial x_k} \quad \text{in } G \quad \forall \ l,k \in \{1,...,n\}$$

Beweis: Falls F existiert (was nach Voraussetzung gegeben ist), dann ist $F \in C^2(G; \mathbb{R})$ (zweimal stetig differenzierbar) und es gilt:

$$\frac{\partial}{\partial x_i} f_j(x) \stackrel{\frac{\partial}{\partial x_j} F = f_j}{=} \frac{\partial^2}{\partial x_i x_j} F(x) \stackrel{\text{Satz von Schwarz}}{=} \frac{\partial^2}{\partial x_j x_i} F(x) \stackrel{\frac{\partial}{\partial x_i} F = f_i}{=} \frac{\partial}{\partial x_j} f_i(x)$$

(ii) (hinreichende Bedingung) Ist G einfach zusammenhängend, so besitzt f eine Stammfunktion F in G, wenn die Integrabilitätsbedingung erfüllt ist.

Beweis: Nur für den Fall, dass G sternförmig. Wenn G sternförmig, so existiert ein $a=\begin{pmatrix}a_1\\\vdots\\a_n\end{pmatrix}\in\mathbb{R}^n$. Sei weiter F(x) eine Stammfunktion und $F'(x)=f(x)=\begin{pmatrix}f_1(x)\\\vdots\\f_n(x)\end{pmatrix}$ deren Ableitung (dies muss gezeigt werden), sowie $g:[0,1]\to G, g(t)=a+t(x-a)$ eine Gerade vom Punkt

 $x \in G$ zum Punkt $a \in G$. Damit gilt:

$$F(x) = \int_{\overline{a \cdot x}} f \stackrel{\text{Subst.}}{=} \int_{0}^{1} f(g(t)) \cdot g'(t) dt = \int_{0}^{1} f(a + t(x - a)) \cdot (x - a) dt$$

$$= \int_{0}^{1} \begin{pmatrix} f_{1}(a + t(x - a)) \\ \vdots \\ f_{n}(a + t(x - a)) \end{pmatrix}^{\top} \begin{pmatrix} x_{1} - a_{1} \\ \vdots \\ x_{n} - a_{n} \end{pmatrix} dt$$

$$= \int_{0}^{1} \sum_{i=1}^{n} f_{i}(a + t(x - a))(x_{i} - a_{i}) dt$$

Es muss $\nabla F = f$ gezeigt werden: $\frac{\partial}{\partial x_k} F = f_k \quad \forall \ k = 1, ..., n$ (partielle Ableitung). Sei $k \in \{1, ..., n\}$ fest aber beliebig, dann gilt:

$$\begin{split} \frac{\partial}{\partial x_k} F(x) &= F_{x_k}(x) = \frac{\partial}{\partial x_k} \int_0^1 \sum_{i=1}^n f_i(a+t(x-a))(x_i-a_i) \ dt \\ &\overset{\mathrm{d} a}{=} \underbrace{f \in C^1} \int_0^1 \left(\frac{\partial}{\partial x_k} \sum_{i=1}^n f_i(a+t(x-a))(x_i-a_i) \right) dt \\ &\overset{\mathrm{Fallbsp.}}{=} \int_0^1 \frac{\partial}{\partial x_k} \left(f_1(a+t(x-a)) + f_2(a+t(x-a)) \right) dt \\ &\overset{\mathrm{Fallbsp.}}{=} \int_0^1 \underbrace{\frac{\partial}{\partial x_k} \left(f_1(a+t(x-a)) + f_2(a+t(x-a)) \right) dt}_{= \underbrace{\frac{\partial}{\partial x_1} f_1(a+t(x-a))(x_1-a_1)}} \\ &+ \underbrace{\frac{\partial f_2}{\partial x_1} (a+t(x-a)) \right) \ dt \\ &= \underbrace{\frac{\partial}{\partial x_1} f_2(a+t(x-a))(x_1-a_1)}_{\text{(keine Prod. Regel n\"{o}tig)}} \\ &= \int_0^1 \left(\sum_{i=1}^2 \underbrace{\frac{\partial f_i}{\partial x_k} (a+t(x-a)) \ t \ (x_i-a_i) \right) + f_1(a+t(x-a)) \ dt}_{= \underbrace{\frac{\partial f_2}{\partial x_1} f_2(a+t(x-a))(x_1-a_1)}_{\underbrace{\partial f_2} (a+t(x-a)) \ t \ (x_i-a_i) \right) + f_1(a+t(x-a)) \ dt}_{= \underbrace{\frac{\partial f_1}{\partial x_1} f_2(a+t(x-a)) \ t \ (x_i-a_i) \ t + f_k(a+t(x-a)) \ dt}_{= \underbrace{\frac{\partial f_1}{\partial x_1} f_2(a+t(x-a)) \ t \ (x_i-a_i) \ t + f_k(a+t(x-a)) \ dt}_{= \underbrace{\frac{\partial f_1}{\partial x_1} f_2(a+t(x-a)) \ t \ (x_i-a_i) \ t + f_k(a+t(x-a)) \ dt}_{= \underbrace{\frac{\partial f_1}{\partial x_1} f_2(a+t(x-a)) \ t \ dt}_{= \underbrace{\frac{\partial f_1}{\partial x_1} f_2(a+t(x-a)) \ dt}_{= \underbrace$$

Zu (*):
$$\frac{d}{dt}f_{k}(a+t(x-a)) \ t \stackrel{\text{Prod.}}{=} \left(\frac{df_{k}}{dt}(a+t(x-a))\right) \ t+f_{k}(a+t(x-a)) \frac{dt}{dt}$$

$$\begin{pmatrix}
\frac{df_{k}}{dt}(a+t(x-a)) & \frac{\text{Ketten}}{=} \nabla f_{k}(a+t(x-a)) \cdot (x-a) \\
\frac{\partial f_{k}}{\partial x_{1}}(a+t(x-a)) & \frac{\partial f_{k}}{\partial x_{1}}(a+t(x-a)) \\
= \begin{pmatrix} \frac{\partial f_{k}}{\partial x_{1}}(a+t(x-a)) \\ \vdots \\ \frac{\partial f_{k}}{\partial x_{n}}(a+t(x-a)) \end{pmatrix} & \frac{\partial f_{k}}{\partial x_{1}}(a+t(x-a))(x_{i}-a_{i})$$

$$= \sum_{i=1}^{n} \frac{\partial f_{k}}{\partial x_{i}}(a+t(x-a))(x_{i}-a_{i}) \ t+f_{k}(a+t(x-a))$$

2.2.21 Definition der Rotation

Sei $G \subset \mathbb{R}^3$ ein Gebiet und $f: G \to \mathbb{R}$ partiell differenzierbar, dann heißt die Funktion rot $f: G \to \mathbb{R}^3$ Rotation von f in G und ist folgendermaßen definiert:

$$\underbrace{\operatorname{rot} f}_{\operatorname{curl} f}(x) = \begin{pmatrix} \frac{\partial f_3}{\partial x_2} - \frac{\partial f_2}{\partial x_3} \\ \frac{\partial f_1}{\partial x_3} - \frac{\partial f_3}{\partial x_1} \\ \frac{\partial f_2}{\partial x_1} - \frac{\partial f_1}{\partial x_2} \end{pmatrix} = \vec{\nabla} \times \vec{f}$$

Bemerkung: Die Rotation gibt an ob ein Feld Wirbel enthält.

2.2.22 Korollar zum zweiten Hauptsatz für Kurvenintegrale

Sei $f \in C^1(G; \mathbb{R}^3)$ mit G ein Gebiet.

- 1. f besitzt eine Stammfunktion \Rightarrow rot f = 0
- 2. Ist G einfach zusammenhängend, dann gilt: f besitzt eine Stammfunktion \Leftrightarrow rot f = 0

Bemerkung: Zentralkraftfelder (wie z.b. Gravitationsfelder) haben keine Rotation und sind somit wegunabhängig.

Zwei Methoden zur Berechnung von Stammfunktionen:

2.2.23 Nach Variablen integrieren

$$\begin{array}{l} \textit{Beispiel} \colon \text{Sei } f(x,y,z) = \left(\begin{array}{c} y \ e^{yz} + 1 \\ x \ e^{yz} + xyz \ e^{yz} \\ xy^2 \ e^{yz} + \cos z \end{array} \right) = \left(\begin{array}{c} f_1(x,y,z) \\ f_2(x,y,z) \\ f_3(x,y,z) \end{array} \right)$$
 Gesucht ist ein F mit $\nabla F = \left(\begin{array}{c} F_x \\ F_y \\ F_z \end{array} \right) = \left(\begin{array}{c} f_1 \\ f_2 \\ f_3 \end{array} \right)$

1.
$$F(x,y,z) \stackrel{!}{=} \int f_1(x,y,z) \ dx = xy \ e^{yz} + x + c(y,z)$$

2.
$$F_y(x, y, z) = x e^{yz} + xy e^{yz} z + 0 + c_y(y, z) \stackrel{!}{=} f_2(x, y, z) = x e^{yz} + xyz e^{yz}$$

 $\Rightarrow c_y(y, z) = 0 \Rightarrow c(y, z) = \tilde{c}(z)$
 $\Rightarrow F(x, y, z) = xy e^{yz} + x + \tilde{c}(z)$

3.
$$F_z(x, y, z) = 0$$
 $e^{yz} + xy$ e^{yz} $y + 0 + \tilde{c}_z(z) \stackrel{!}{=} f_3(x, y, z) = xy^2$ $e^{yz} + \cos z$
 $\Rightarrow \tilde{c}_z(z) = \cos z \quad \Rightarrow \quad \tilde{c}(z) = \int \cos z \ dz = \sin z + c \quad \text{mit } c \in \mathbb{R}$
 $\Rightarrow F(x, y, z) = xy$ $e^{yz} + x + \sin z + c$

2.2.24 Mittels Kurvenintegral und passendem Weg

Sei $F(x) = \int_{\Gamma_x} f$, dabei ist Γ ein Weg von x_0 (fest) nach x in G.

$$\textit{Beispiel: Sei } f(x,y) = \left(\begin{array}{cc} -\frac{y}{x^2+y^2} & \frac{x}{x^2+y^2} \end{array} \right) \text{ mit } G = \mathbb{R}^2 \setminus \left\{ \left(\begin{array}{c} x \\ 0 \end{array} \right) : x \leqslant 0 \right\} \text{ (sternförmig)}$$

Sei:
$$\Gamma_1 = \begin{pmatrix} t \\ 0 \end{pmatrix}$$
, $\Gamma_2 = r \begin{pmatrix} \cos \phi \\ \sin \phi \end{pmatrix}$ und $x_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$
Es gilt: $F(x,y) = \int_{\Gamma_1} f + \int_{\Gamma_2} f$

$$= \int_1^r f(t,0) d \begin{pmatrix} t \\ 0 \end{pmatrix} + \int_0^{\phi} f(r\cos t, r\sin t) d \begin{pmatrix} r\cos t \\ r\sin t \end{pmatrix}$$

$$= \int_1^r \left(-\frac{0}{t^2 + 0^2} \frac{t}{t^2 + 0^2} \right) \left(\frac{\frac{d}{dt}t}{\frac{d}{dt}0} \right)$$

$$+ \int_0^{\phi} \left(-\frac{r\sin t}{r^2\cos^2 t + r^2\sin^2 t} \frac{r\cos t}{r^2\cos^2 t + r^2\sin^2 t} \right) \left(\frac{\frac{d}{dt}r\cos t}{\frac{d}{dt}r\sin t} \right)$$

$$= \int_1^r \left(0 + t \right) \left(\frac{1}{0} \right) dt + \int_0^{\phi} \left(-\frac{1}{r}\sin t - \frac{1}{r}\cos t \right) \left(-r\sin t \right) dt$$

$$= \int_1^r 0 \cdot 1 + t \cdot 0 dt + \int_0^{\phi} \frac{1}{r}\sin t \cdot r\sin t + \frac{1}{r}\cos t \cdot r\cos t dt$$

$$= \int_1^r 0 dt + \int_0^{\phi} \frac{r}{r} \left(\cos^2 t + \sin^2 t\right) dt = \int_1^r 0 dt + \int_0^{\phi} 1 dt$$

$$\Rightarrow F(x,y) = \phi = \arg(x,y)$$

2.3 Bereichsintegrale

2.3.1 Definition von Intervallen im \mathbb{R}^n

Für $a, b \in \mathbb{R}^n$ wird die Menge $[a, b] = [a_1, b_1] \times ... \times [a_n, b_n]$ als **kompakter Quader** oder als **kompaktes Intervall** in \mathbb{R}^n bezeichnet.

Die Differenz $b_k - a_k$ nennt man die **Kantenlänge** des Quaders.

Die Zahl

$$v\left([a,b]\right) = \begin{cases} \prod_{k=1}^{n} (b_k - a_k) & \text{falls } a_1 \leqslant b_1, ..., a_n \leqslant b_n \\ 0 & \text{sonst (negative Kantenlänge)} \end{cases}$$

nennt man das **Volumen** von [a, b].

2.3.2 Definition von Zerlegungen im \mathbb{R}^n

Ist $[a,b]=[a_1,b_1]\times...\times[a_n,b_n]$ und ist für jedes $k\in\{1,...,n\}$ mit $T^{(k)}:a_k=x_0^{(k)}<...x_{L_k}^{(k)}=b_k$ eine Zerlegung von $[a_k,b_k]$ gegeben, dann heißt die Menge mit den Elementen

$$I_{l_1,\ldots,l_n} = [x_{l_0}, x_{l_1}] \times \ldots \times [x_{l_{n-1}}, x_{l_n}]$$

eine Zerlegung T von [a, b]. Das Maß für die **Feinheit** der Zerlegung T ist

$$\mu(T) = \max_{l_1,\dots,l_n} v\left(I_{l_1,\dots,l_n}\right)$$

2.3.3 Definition der Riemann-Summe im mehrdimensionalen

Sei $T = \{I_1, ..., I_L\}$ eine Zerlegung eines mit den Zwischenpunkten $Z = \{\xi_1, ..., \xi_L\}$, dann heißt für eine Funktion $f : [a, b] \to \mathbb{R}$ die Summe

$$S(f;T;Z) = \sum_{k=1}^{L} f(\xi_k) \ v(I_k)$$

die Riemann-Summe von f bezüglich T und Z.

2.3.4 Definition Riemann integrierbarer Bereichsintegrale über ein Quader

Sei $f:[a,b]\subset\mathbb{R}^n\to\mathbb{R}$ eine Funktion und gibt es eine Zahl $J\in\mathbb{R}$, so dass für jede Folge von Zerlegungen $(T_k)_{k=1}^{\infty}$ mit $\mu(T_k)\stackrel{k\to\infty}{\to} 0$ und jede Folge mit zugehörigen Zwischenpunkten $(Z_k)_{k=1}^{\infty}$ stets gilt

$$\lim_{k \to \infty} S(f; T_k; Z_k) = J$$

dann ist $f \in R([a,b])$ und heißt **Riemann integrierbar** über [a,b]. Dabei ist J der Wert des **Bereichsintegrals** von f über [a,b]:

$$J = \int_{[a,b]} f = \int \dots \int_{[a_1,b_1] \times \dots \times [a_n,b_n]} f(x_1, \dots, x_n) \ d(x_1, \dots, x_n)$$

2.3.5 Bemerkung

Sei
$$I = [a, b] = [a_1, b_1] \times ... \times [a_n, b_n] \neq \emptyset$$

(i) ist f = 1 konstant

$$S(f;T;Z) = \sum_{k=1}^{L} \underbrace{f(\xi_k)}_{=1} v(I_k) = v(I) = \prod_{l=1}^{L} (b_l - a_l)$$

(ii) es gilt: $f \in C^1(I) \Rightarrow f \in R(I)$ (stetig differenzierbare Funktionen sind auch integrierbar, aber nicht alle integrierbaren Funktionen sind auch stetig) und es gilt:

$$\int_{I} f = \underbrace{\int_{[a_{1},b_{1}]\times...\times[a_{n},b_{n}]} f(x_{1},...,x_{n}) \ d(x_{1},...,x_{n})}_{\text{Bereichsintegral}} \underbrace{\int_{a_{1}}^{b_{1}} ... \int_{a_{n}}^{b_{n}} f(x_{1},...,x_{n}) \ dx_{n}...dx_{1}}_{\text{verschachtelte Parameterintegrale (eindim.)}}$$

2.3.6 Definition von Bereichsintegralen über beliebig beschränkte Menge

Sei $M \subset \mathbb{R}^n$ beschränkt ($\exists c > 0$ mit $||x_0 - x|| < c \ \forall x \in M$) und existiert ein $I = [a, b] \subset \mathbb{R}^n$ mit $M \subset I$, dann heißt eine Funktion $f : M \to \mathbb{R}$ Riemann integrierbar über M, wenn die Funktion

$$f_M: I \to \mathbb{R} \text{ mit } f_M(x) = \begin{cases} f(x) & \text{falls } x \in M \\ 0 & \text{sonst} \end{cases}$$

über I Riemann integrierbar ist.

2.3.7 Vorgehen zum Berechnen von Bereichsintegralen

a. Verschachtelte Parameterintegrale:

$$\int_{[a,b]} f = \int_{a_1}^{b_1} \dots \int_{a_n}^{b_n} f(x_1, \dots, x_n) \ dx_1 \dots dx_n$$

- b. (i) Salamitaktik: Satz von Cavilieri/Fubini
 - (ii) Die Menge M in ein Quader transformieren: Mehrdimensionale Substitution-Regel

2.3.8 Prinzip von Cavalieri und Satz von Fubini

Sei $M \subset \mathbb{R}^n (n > 1)$ und bezeichne

$$M' = \left\{ x \in \mathbb{R} : \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y_2 \\ \vdots \\ y_n \end{pmatrix} \in M \text{ für ein } y \in \mathbb{R}^{n-1} \right\}$$
$$M(x) = \left\{ y \in \mathbb{R}^{n-1} : \begin{pmatrix} x \\ y \end{pmatrix} \in M \right\} \text{ für } x \in \mathbb{R}$$

Dabei ist M' ist die Projektion von M auf die x-Achse und M(x) der Schnitt (Schnitz) an der Stelle x.

Dann gilt für jede Funktion $f \in C^1(\overline{M})$ (falls M, M', M(x) messbar sind), dass

$$\int_{M} f = \int_{M'} \left(\int_{M(x)} f(x, y) \ dy \right) dx$$

2.3.9 Beispiel

- (i) Funktion $f: \mathbb{R}^2 \to \mathbb{R}, f(x,y) = xy$ über oberen Einheitshalbkreis: $M = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 : x^2 + y^2 \leqslant 1, y \geqslant 0 \right\}$
- (ii) Kreisfläche f(x)=1 (konst.) des Einheitskreises $M=\left\{\left(\begin{array}{c} x\\y\end{array}\right)\in\mathbb{R}^2:x^2+y^2\leqslant1\right\}$

2.3.10 Definition von messbaren Mengen

Eine beschränkte Menge $M \subset \mathbb{R}^n$ heißt (Jordan-)messbar, wenn $\int_M 1 \ dx$ existiert. Ist dies der Fall, so nennt man

$$\operatorname{vol}(M) = \operatorname{vol}_n(M) = \int_M 1 \ dx$$

das n-dimensionale Volumen von M. Gilt

$$\operatorname{vol}(N) = 0 \quad \Leftrightarrow \quad \int_N 1 = 0$$

so nennt man N eine **Nullmenge**.

Beispiele:

(i)
$$M = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} : x^2 + y^2 = 1 \right\} \subset \mathbb{R}^2 \implies \operatorname{vol}(M) = 0$$
 (der Kreisrand des Einheitskreises ist eine Nullmenge)

(ii) Der Rand der Mandelbrotmenge ist keine Nullmenge (der Rand ist ∞ lang)

2.3.11 Integrationsregeln

Betrachtet man die Riemann-Summen, so kann man folgende Regeln herleiten:

(i) Ist M beschränkt, dann gilt (sofern alle Integrale existieren):

$$\int_{M} f + g = \int_{M} f + \int_{M} g$$

- (ii) Die Funktionen $f\cdot g$ und $\frac{f}{g}$ sind integrierbar, falls f und g integrierbar sind und $g(x)\neq 0\ \forall\ x\in M$ gilt.
- (iii) Ist f stetig und M beschränkt, so existiert das Integral $\int_M f$. \Rightarrow besteht f aus einer Verkettung stetiger Funktionen so existiert eine Stammfunktion F.

2.3.12 Substitutionsformel für Bereichsintegrale

Sei $M \subset G \subset \mathbb{R}^n$ und M eine messbare Menge, sowie G ein Gebiet. Sei $T: G \subset \mathbb{R}^n \to \mathbb{R}^n, T \in C^1(G; \mathbb{R}^n)$ und gilt $\det T'(x) \neq 0$ (T'(x) ist invertierbar und heißt **Funktional-determinante**) sowie T injektiv auf $M \setminus N$ mit einer Nullmenge N, dann gilt:

$$\int_{T(M)} f = \int_{T(M)} f(x_1, ..., x_n) \ d(x_1, ..., x_n)$$
$$= \int_M f(T(u_1, ..., u_n)) \ \det T'(u_1, ..., u_n) \ d(u_1, ..., u_n)$$

Bedeutung der Funktionaldeterminante: Sei $M \subset \mathbb{R}^2$ eine messbare Menge und seien $x, y \in M$ zwei Punkte, welche jeweils um die entsprechenden Vektoren $dx, dy \in \mathbb{R}^2$ vom Punkt $a \in M$ entfernt sind:

$$x - a = dx$$
 $y - a = dy$

Für die Fläche der Menge A welche vom Punkt a aus von den Vektoren dx, dy umschlossen wird gilt

$$\operatorname{vol}(A) = \det \underbrace{\left(\begin{array}{c} dx & dy \end{array} \right)}_{\in \mathbb{R}^{2 \times 2}}$$

Wird nun die Menge $A \subset M$ mittels einer Transformation $T: M \subset \mathbb{R}^2 \to \mathbb{R}^2$ bijektiv und differenzierbar und T' bijektiv (bis auf eine Nullmenge N) transformiert, so gilt mit dem Satz von Taylor:

$$T(x) \approx T(a) + T'(a)(x - a) \quad \Leftrightarrow \quad T(x) - T(a) \approx T'(a)\underbrace{(x - a)}_{dx}$$

$$T(y) \approx T(a) + T'(a)(y - a) \quad \Leftrightarrow \quad T(y) - T(a) \approx T'(a)\underbrace{(y - a)}_{dy}$$

$$\Rightarrow \quad \underbrace{\left(\underbrace{T(x) - T(a)}_{\in \mathbb{R}^2} \underbrace{T(y) - T(a)}_{\in \mathbb{R}^2}\right)}_{\in \mathbb{R}^2} \quad \approx \quad \underbrace{T'(a)}_{\in \mathbb{R}^{2 \times 2}} \underbrace{\left(\underbrace{dx}_{\in \mathbb{R}^{2 \times 2}}\right)}_{\in \mathbb{R}^{2 \times 2}}$$

und die von den Vektoren T(x) - T(a), T(x) - T(a) umschlossene Fläche kann wie folgt berechnet werden:

$$\det (T(x) - T(a) \quad T(y) - T(a)) \approx \det (T'(a) (dx \quad dy))$$
$$= \det T'(a) \cdot \det (dx \quad dy)$$

Also verändert sich der Wert für die Fläche A in der Transformierten Menge T(M) um

den Faktor T'(a). Weiter gilt mittels des Zusammenhangs zu den Riemann-Summen:

$$\int_{T(M)} f(\tilde{x}, \tilde{y}) = \int_{M} f(T(x, y)) |\det T'(a)| \ d(x, y)$$

$$\downarrow^{\text{Riemann-}}_{\text{Summen}}$$

$$\sum f(\tilde{\xi}_{k}) \ \text{vol}(\tilde{dx}, \tilde{dy}) = \sum f(T(\xi_{k})) \underbrace{\quad \text{vol}(T(x) - T(a), T(y) - T(a))}_{\left|\det \left(T(x) - T(a) \ T(y) - T(a)\right)\right|}$$

$$\approx |\det T'(a)| \cdot \underbrace{\left|\det \left(dx \ dy\right)\right|}_{\text{vol}(dx, dy) = d(x, y)}$$

Dabei sind $\tilde{x}, \tilde{y}, \tilde{dx}, \tilde{dy}, \tilde{\xi_k} \in T(M)$ (aus dem Bild von von T).

2.3.13 Beispiele

$$T: [0,\infty) \times [-\pi,\pi) \to \mathbb{R}^2 \quad \text{mit} \quad T(r,\varphi) = r \left(\begin{array}{c} \cos \varphi \\ \sin \varphi \end{array} \right)$$

$$T \text{ ist injektiv auf } \underbrace{[0,\infty) \times [-\pi,\pi)}_{M} \setminus \underbrace{\{0\} \times [-\pi,\pi)}_{N} \right)$$

$$T'(r,\varphi) = \left(\begin{array}{ccc} \cos \varphi & -r \sin \varphi \\ \sin \varphi & r \cos \varphi \end{array} \right) \quad \Rightarrow \quad \det T'(r,\varphi) = r \cos^2 \varphi + r \sin^2 \varphi = r \neq 0$$

$$(i) \quad M = [0,1] \times [0,\pi) \quad \Rightarrow \quad T(M) = \tilde{M} = \left\{ \left(\begin{array}{c} x \\ y \end{array} \right) : x^2 + y^2 \leqslant 1, y \geqslant 0 \right\}$$

$$\text{und } N = \{0\} \times [-\pi,\pi)$$

$$\int_{\tilde{M}} xy \ d(x,y) = \int_{T(M)} \underbrace{xy}_{f(x,y)} \ d(x,y) \stackrel{2.3.12}{=} \int_{M} \underbrace{(r \cos \varphi)(r \sin \varphi)}_{f(T(u_1,u_2))} \underbrace{r}_{\det T'} \ d(r,\varphi)$$

$$\overset{\text{Fubini und}}{\overset{2.3.8}{=}} \int_{0}^{1} \int_{0}^{\pi} r^3 \cos \varphi \sin \varphi \ d\varphi \ dr = \int_{0}^{1} r^3 \int_{0}^{\pi} \cos \varphi \sin \varphi \ d\varphi \ dr$$

$$\text{mit } \int_{0}^{\pi} \cos \varphi \sin \varphi \ d\varphi = \int_{0}^{\frac{\pi}{2}} \cos \varphi \sin \varphi \ d\varphi + \int_{\frac{\pi}{2}}^{\pi} \cos \varphi \sin \varphi \ d\varphi \ dr$$

$$\text{mit } \int_{0}^{\pi} \cos \varphi \sin \varphi \ d\varphi = \int_{0}^{\frac{\pi}{2}} \cos \varphi \sin \varphi \ d\varphi + \int_{\frac{\pi}{2}}^{\pi} \cos \varphi \sin \varphi \ d\varphi \ dr$$

$$\overset{u=\sin \varphi}{\overset{du=\cos \varphi}{\Rightarrow d\varphi = \frac{du}{d\varphi = \cos \varphi}}} \int_{0}^{1} u \ du + \int_{1}^{0} u \ du = \int_{0}^{1} u \ du - \int_{0}^{1} u \ du = 0$$

$$\Rightarrow \int_{0}^{1} r^3 \cdot 0 \ dr = 0$$

$$\text{(ii) } M = [0,1] \times [-\pi,\pi] \Rightarrow T(M) = \tilde{M} = \left\{ \left(\begin{array}{c} x \\ y \end{array} \right) : x^2 + y^2 \leqslant 1 \right\}$$

$$\text{und } N = \{0\} \times [-\pi,\pi] \cup [0,1] \times \{\pi\}$$

$$\int_{\tilde{M}} \int_{T(M)} 1 = \int_{T(M)} 1 \cdot r \ d(r,\varphi) = \int_{[0,1] \times [-\pi,\pi]} r \ d(r,\varphi)$$

$$\overset{\text{Pubini und}}{\text{Cavalieri}} \int_{0}^{1} \int_{-\pi}^{\pi} r \ d\varphi \ dr = \int_{0}^{1} r \ [\varphi]_{-\pi}^{\pi} \ dr = 2\pi \left[\frac{1}{2} r^2 \right]_{0}^{1} = \pi$$

Anwendungsbeispiel: Eindimensionales Problem wird lösbar in zwei Dimensionen.

$$I = \int_{-\infty}^{\infty} e^{-x^2} dx \stackrel{\text{sym.}}{=} 2 \int_{0}^{\infty} e^{-x^2} dx$$

$$\Rightarrow I^2 = \underbrace{\left(\int_{-\infty}^{\infty} e^{-x^2} dx\right)}_{\text{Skalar}=I} \left(\int_{-\infty}^{\infty} e^{-y^2} dy\right) = \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} e^{-x^2} dx\right) e^{-y^2} dy$$

$$\stackrel{\text{Skalar}=I}{=} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-x^2} e^{-y^2} dy dx = 4 \int_{0}^{\infty} e^{-(x^2+y^2)} dx dy$$

$$\stackrel{\text{Cavalieri}}{\underset{\text{und Fubini}}{\text{rückwärts}}} 4 \int_{[0,\infty)\times[0,\infty)} e^{-(x^2+y^2)} d(x,y)$$

$$\stackrel{\text{Subst. mit}}{\underset{\text{Polarkoordinaten}}{\text{koordinaten}}} 4 \int_{[0,\infty)\times[0,\frac{\pi}{2}]} e^{-(r^2\cos^2\varphi+r^2\sin^2\varphi)} \underbrace{r}_{\text{Funkt.Det.}} d(r,\varphi)$$

$$= 4 \int_{[0,\infty)\times[0,\frac{\pi}{2}]} r e^{-r^2} d(r,\varphi) \stackrel{\text{Cavalieri}}{\underset{\text{und Fubini}}{\text{Eubini}}} 4 \int_{0}^{\infty} \int_{0}^{\frac{\pi}{2}} r e^{-r^2} d\varphi dr$$

$$= 2\pi \int_{0}^{\infty} r e^{-r^2} dr = -\pi \int_{0}^{\infty} -2r e^{-r^2} dr = -\pi \left[e^{-r^2}\right]_{0}^{\infty} = -\pi (0-1) = \pi$$

$$\Rightarrow I = \sqrt{\pi}$$

Bemerkung: Die Substitution mittels Polarkoordinaten funktioniert nur weil über die gesamten positiven reellen Zahlen integriert wird (uneigentliches Integral). Für die Integration bis zu einem bestimmten Wert funktioniert diese Methode nicht.

2.4 Integralsätze in der Ebene

2.4.1 Definition positiv berandeter Mengen

Eine beschränkte Menge $B \subset \mathbb{R}^2$ heißt **positiv berandet** durch eine Kurve \mathcal{K} , wenn $\Gamma(\mathcal{K}) = \partial B$ ist und wenn \mathcal{K} eine stückweise stetig differenzierbare Parameterdarstellung $x : [a, b] \to \mathbb{R}^2$ besitzt mit:

- 1. $\dot{x}(t) \neq 0$ für fast alle (bis auf endliche viele Ausnahmen) $t \in [a, b]$.
- 2. der Normalvektor n zeigt nach $au\beta en$.

2.4.2 Definition von Normalbereichen

Eine Menge $B \subset \mathbb{R}^2$ heißt Normalbereich bezüglich der x-Achse (y-Achse), wenn es ein Intervall [a, b] und zwei Funktionen $\varphi, \psi \in C^1([a, b])$ gibt, mit:

$$B = \left\{ \left(\begin{array}{c} x \\ y \end{array} \right) : a \leqslant x \leqslant b, \varphi(x) \leqslant y \leqslant \psi(x) \right\}$$

Bemerkung: Die Menge B wird oben durch die Funktion $\psi(x)$ und unten durch $\varphi(x)$ beschränkt (oder links und rechts, falls bezüglich der y-Achse).

Bemerkung: Eine beliebige Menge im \mathbb{R}^2 kann in der Praxis oft in disjunkte Normalbereiche unterteilt werden.

2.4.3 Satz von Green

Sei $B \subset \mathbb{R}^2$ ein positiv berandeter Normalbereich, so gilt $\forall f \in C^1(B; \mathbb{R}^2)$:

$$\int_{B} \frac{\partial f_{2}(x,y)}{\partial x} - \frac{\partial f_{1}(x,y)}{\partial y} \ d(x,y) = \int_{B} \left(\frac{\partial f_{2}}{\partial x} - \frac{\partial f_{1}}{\partial y} \right) (x,y) \ d(x,y)$$
$$= \int_{\partial B} f(\vec{x}) \cdot d\vec{x} = \int_{\partial B} f$$

Beweis:

2.4.4 Beispiel

$$B = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} : x^2 + y^2 \leqslant r^2 \right\} \quad \partial B : x(t) = r \begin{pmatrix} \cos t \\ \sin t \end{pmatrix} \text{ mit } 0 \leqslant t \leqslant 2\pi$$

2.4.5 Green'sche Formel

Sei B ein positiv berandeter Bereich im \mathbb{R}^2 und $f \in C^1(B; \mathbb{R}^2)$ mit einer nach außen gerichteten Normale n auf ∂B . Dann gelten folgende Integralsätze

(i)

$$\int \int_{B} (\operatorname{div} f)(x, y) \ d(x, y) = \int \int_{B} \operatorname{div} f = \int_{\partial B} f \cdot n = \int_{\partial B} f(x(t)) \cdot n(t) \ ds$$

Beweis:

(ii) Bemerkung: Der Laplace-Operator ist definiert durch:

$$\Delta = \nabla \cdot \nabla = \begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \end{pmatrix} \cdot \begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \end{pmatrix} = \left(\frac{\partial}{\partial x}\right)^2 + \left(\frac{\partial}{\partial y}\right)^2$$

Gilt nun zusätzlich $f_1, f_2 \in C^2(B; \mathbb{R})$, dann gilt

$$\int \int_{B} \left(f_1 \ \Delta f_2 - f_2 \ \Delta f_1 \right) (x, y) \ d(x, y) = \int_{\partial B} \left(f_1 \frac{\partial f_2}{\partial n} - f_2 \frac{\partial f_1}{\partial n} \right) \ ds$$

2.5 Oberflächenintegrale und Integralsätze im Raum

2.5.1 Definition von regulären Flächen im Raum

Sei $B\subset\mathbb{R}^2$ kompakt (beschränkt und abgeschlossen) und sei $x:B\to\mathbb{R}^3$ eine stetig differenzierbare Funktion mit

$$x(u,v) = \begin{pmatrix} x_1(u,v) \\ x_2(u,v) \\ x_3(u,v) \end{pmatrix} \quad \frac{\partial x(u,v)}{\partial u} = x_u = \begin{pmatrix} \frac{\partial x_1}{\partial u} \\ \frac{\partial x_2}{\partial u} \\ \frac{\partial x_3}{\partial u} \end{pmatrix} \quad \frac{\partial x(u,v)}{\partial v} = x_v = \begin{pmatrix} \frac{\partial x_1}{\partial v} \\ \frac{\partial x_2}{\partial v} \\ \frac{\partial x_3}{\partial v} \end{pmatrix}$$

Dabei sind x_u, x_v linear unabhängig: $\alpha x_u + \beta x_v = 0 \quad \Leftrightarrow \quad \alpha = \beta = 0$, denn ansonsten würden sie ja gar keine Fläche aufspannen.

Dann heißt das Bild $A = \{x(u,v) : (u,v) \in B\} = x(B)$ die **reguläre Fläche** A von x unter B. Die Funktion x heißt dabei die Parameterdarstellung von A.

- (i) x_u, x_v heißen die **Tangentialvektoren** und
- (ii) $n = \frac{x_u \times x_v}{\|x_u \times x_v\|}$ heißt der **normierte Normalenvektor** bei x(u, v).

Bemerkung: Ist B positiv berandet durch $\mathcal{K}: y(t), a \leq t \leq b$ dann ist A auch positiv berandet mit $\mathcal{L}: x(y(t)), a \leq t \leq b$.

2.5.2 Definition von Oberflächenintegralen

Sei A eine reguläre Fläche in \mathbb{R}^3 mit Parameterdarstellung $x:B\subset\mathbb{R}^3\to\mathbb{R}^3$ und x sei injektiv auf $B\setminus N$ für eine Nullmenge N dann heißt für ein $f\in C^1(A;\mathbb{R})$ (skalarwertige Funktion):

(i)

$$\int \int_A f \ do = \int \int_B f(x(u,v)) \underbrace{\|(x_u \times x_v)(u,v)\|}_{\substack{\text{Inhalt der Fläche die von } \\ x_u, x_v \text{ aufgespannt wird}}} d(u,v)$$

das Oberflächenintegral von f über A.

(ii) $O(A) = \int \int_A 1 \ do$ heißt die **Oberfläche** von A

2.5.3 Beispiele

(i) Kugeloberfläche: Sei R > 0 beliebig aber fest und $x(\varphi, \theta) : \mathbb{R}^2 \to \mathbb{R}^3$ eine Parameterdarstellung mit $(\varphi, \theta) \in [0, 2\pi] \times \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

$$x(\varphi, \theta) = R \begin{pmatrix} \cos \varphi \cos \theta \\ \sin \varphi \cos \theta \\ \sin \theta \end{pmatrix} \qquad x_{\varphi} = R \begin{pmatrix} -\sin \varphi \cos \theta \\ \cos \varphi \cos \theta \\ 0 \end{pmatrix} \qquad x_{\theta} = R \begin{pmatrix} -\cos \varphi \sin \theta \\ -\sin \varphi \sin \theta \\ \cos \theta \end{pmatrix}$$

$$x_{\varphi} \times x_{\theta} = R^{2} \cos \theta \begin{pmatrix} \cos \varphi \cos \theta \\ \sin \varphi \cos \theta \\ \sin^{2} \varphi \sin \theta + \cos^{2} \varphi \sin \theta = \sin \theta \end{pmatrix} = R \cos \theta \ x(\varphi, \theta)$$

$$\Rightarrow \|x_{\varphi} \times x_{\theta}\| = R^{2} |\cos \theta|^{\theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]} R^{2} \cos \theta$$

$$\begin{split} O(A) &= \int \int_{[0,2\pi] \times \left[-\frac{\pi}{2},\frac{\pi}{2}\right]} 1 \cdot R^2 \cos\theta \ d(\theta,\varphi) \overset{\text{Cavalieri}}{=} \int_0^{2\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} R^2 \cos\theta \ d\theta \ d\varphi \\ &= R^2 \int_0^{2\pi} \underbrace{\left[\sin\theta\right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}}}_{1-(-1)=2} d\varphi = 2R^2 \left[\varphi\right]_0^{2\pi} = 4R^2 \pi \end{split}$$

(ii) Fläche eines Graphen: Sei $f:B\subset\mathbb{R}^2\to\mathbb{R}$ eine stetig differenzierbare skalarwertige Funktion auf dem kompakten Bereich B und sei

$$F(u,v) = \left\{ \begin{pmatrix} u \\ v \\ f(u,v) \end{pmatrix} : (u,v) \in B \right\} \quad F_u = \begin{pmatrix} 1 \\ 0 \\ f_u \end{pmatrix} \quad F_v = \begin{pmatrix} 0 \\ 1 \\ f_v \end{pmatrix}$$
$$\|F_u \times F_v\| = \sqrt{1 + f_u^2 + f_v^2}$$
$$O(F) = \int \int_B 1 \cdot \sqrt{1 + f_u^2 + f_v^2} d(u,v)$$

2.5.4 Satz von Stokes

Sei A eine reguläre Fläche im \mathbb{R}^3 und eine positive Randkurve ∂A berandet. Dann gilt für $f \in C^1(A; \mathbb{R}^3)$

$$\int \int_A \operatorname{rot} f \cdot n \ do = \int_{\partial A} f$$

also

$$\int \int_{B} \operatorname{rot} f(x(u,v)) \cdot \frac{(x_{u} \times x_{v})(u,v)}{\|(x_{u} \times x_{v})(u,v)\|} \|(x_{u} \times x_{v})(u,v)\| \ d(u,v) =
\int \int_{B} \operatorname{rot} f(x(u,v)) \cdot (x_{u} \times x_{v})(u,v) \ d(u,v) = \int_{\partial A} f$$

mit einer Parameterdarstellung $x: B \to \mathbb{R}^3$

2.5.5 Beispiel

Kugelkappe:

$$A = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 : x^2 + y^2 + z^2 = R^2, z \geqslant r \right\}$$

Sei $s = \sqrt{R^2 - r^2}$ dann erhält man eine Parameterdarstellung für die Randkurve:

$$\partial A: \left(\begin{array}{c} s\cos t \\ s\sin t \\ r \end{array} \right) \ \mathrm{mit} \ 0 \leqslant t \leqslant 2\pi$$

nach dem Satz von Stokes gilt:

$$\int \int_A \cot f \cdot n \ do = \int_{\partial A} f$$

sei
$$f(x,y,z)=\left(\begin{array}{c} -y\\ xz\\ yz \end{array} \right)$$
 und die nach außen gerichtete

Normale
$$n(\varphi, \theta) = \begin{pmatrix} \cos \varphi \cos \theta \\ \sin \varphi \cos \theta \\ \sin \theta \end{pmatrix}$$
 mit $\varphi \in [0, 2\pi], \theta \in [-\frac{\pi}{2}, \frac{\pi}{2}]$:

$$\int \int_A \operatorname{rot} f \cdot n \ do = \int_0^{2\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \dots = \operatorname{wird kompliziert} \dots$$

einfacher zu rechnen ist:

$$\int_{\partial A} f = \int_0^{2\pi} \underbrace{\left(\begin{array}{c} -s\sin t \\ s\cos t \ rs\sin t \ r \end{array}\right)}_{f(x(t))} \cdot \underbrace{\left(\begin{array}{c} -s\sin t \\ s\cos t \\ 0 \end{array}\right)}_{\dot{x}(t)} dt = \dots = s^2\pi + rs^2\pi$$

2.5.6 Gauß'scher Integralsatz oder Divergenzsatz

Sei $M \subset \mathbb{R}^3$ kompakt und die Oberfläche ∂M konstruiert durch Vereinigungen von endlich vielen regulären Flächen mit einem nach außen gerichtetem Normalenvektor n, dann gilt für eine Funktion $f \in C^1(M; \mathbb{R}^3)$:

$$\int \int \int_{M} \operatorname{div} f = \int \int_{\partial M} f \cdot n \ do$$

2.5.7 Beispiel

$$M = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} : x^2 + y^2 + z^2 \leqslant 1 \right\}$$
$$f(x, y, z) = \begin{pmatrix} x^3 \\ y^3 \\ z^3 \end{pmatrix} \quad \Rightarrow \quad \operatorname{div} f = 3(x^2 + y^2 + z^2)$$

wiederum zu kompliziert:

$$\int \int_{\partial M} f \cdot n \ do = \dots$$

einfacher so:

$$\int \int \int_{M} \operatorname{div} f \stackrel{\text{Kugel-}}{=} \int_{0}^{1} \int_{0}^{2\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \underbrace{\operatorname{div} f(r\cos\varphi\cos\theta, r\sin\varphi\cos\theta, r\sin\theta)}_{=3r^{2}} \underbrace{r^{2}\cos\theta}_{\text{Funkt.Det.}} d\theta \ d\varphi \ dr$$

$$= \dots = \frac{12}{5}\pi$$