Fourier Series

Fourier Series

Consider a continuous function of the domain: to [0, T]. We could also consider periodic function that repeat every T so that f(++T) = f(+) & t.

We attempt to represent this function as a sum over simpler functions. While this approach is guste general & can be used for many basis sets, we are specifically interested in sinusprids

The goestion is, what values of ZAn, Bn 3 should we choose to accorately apresent The functions, ORTHOGONALITY SAVES THE DAY! We note that

$$\int_{0}^{\infty} dt \sin\left(2\pi\frac{n}{T}t\right) \sin\left(2\pi\frac{m}{T}t\right) = \int_{0}^{\infty} dt \frac{1}{2} \left[\cos\left(2\pi\frac{n+m}{T}t\right) + \cos\left(2\pi\frac{n+m}{T}t\right)\right]$$

$$= \frac{1}{2} \left[\frac{T}{2\pi(n-m)} \sin\left(2\pi\frac{n-m}{T}t\right) - \frac{4\pi}{2\pi(n+m)} \sin\left(2\pi\frac{n+m}{T}t\right)\right]$$

= 0 iff n \ tm

Thus, we obtain:
$$\int_{0}^{\infty} dt \sin\left(\frac{2\pi n}{T}t\right) \sin\left(\frac{2\pi n}{T}t\right) = \frac{T}{2} \left[S_{nm} + S_{n-m}\right]$$

from this, we can crack the exponsion and obtain to = + jet fits An = = Jdt f(t) cos(2011t) Bn = = Tat f(t) sm (2mt)

let's try it! EXAMPLE: square pulse former server Now, we often use: (Cretifa) e-2nifat = Ances(200 fat) + Basin(200 fat) $\Rightarrow C_A = \sqrt{A_A^2 + B_A^2}$ Pa = tan-1 (BA) with this notation, we often call $|C_n|^2$ the "power in the signal at that Sregvery" Consider basic symmetries. Con we figure out which components will have power in them without nomercally calculating it? QUESTION: why are some fourier westrevents nearly zero for our square-pulse example? Let's now consider the 11mst T=00, what hopping to the frequency spreing in our senes. That's right! It becomes smaller & smaller. In the limit of functions defined over the entire real line, we usually f(k) = Jdx e-znikx f(x) Founer Transform with the associated inverse relation f(x) = Jake 200Kx f(x) Jooks like our former server Inverse Fourier Transform

Let's look @ some common behavior of the Fourier transform
-> shorp edges require many foreser components to resolve
(lum A laced)
$f(x) = \begin{cases} 0 & x < 0 \\ 1 & x \ge 0 \end{cases}$
so that
$f(x) = \int_{-\infty}^{\infty} dx e^{-2\pi i kx} f(x) = \int_{0}^{\infty} dx e^{-2\pi i kx} = \frac{1}{2\pi i k}$
(ask me about the
apper integration borned
we find a relatively fat tail to lorge forester conjugate if you've interested)
values: f x +
This can be interpreted as a statement about time-frequency
uncestainty: smaller time scales correspond to broader frequency
scales. You can derrive the Heisenberg uncertainty principle.
in assess to men for men forester course to and
in general terms for any former conjugate part
(position à monuntone are fourier conjugate in Quantum Mechanics,
50 "AX AP Z 2#)
To real functions have specific former symmetores in their former trousforme
(P 2) 14 1 2 2 14 14 14 14 14 14 14 14 14 14 14 14 14
fe R > f' = f => (Sake 2 tikx f(k)) = Sake 2 tikx f(k)
**C
Jake-snikx for (K) = Jake snikx f(K)
Jake thick fit
00
$\Rightarrow \hat{f}^*(\kappa) = \hat{f}(\kappa)$
we can also see This from counting "degrees of freedom" in some sense

-> linearty: g=f,+f2 -> g=f,+f2 Con you see why? - convolution Theorem h = g * f = Sdt f(t)g(t-t) convolution theorem = Sat Sake wikt find Jak'e wik' (+-t) & (k') = Jak'e znikit g(k') (of dke znok-ki) T f(k) = Sak entokit g(k) Sak f(k) Sate entok-k'St = 8(x-k1) (trust me, it is) = Jaki eznikt [g(ki) f(ki)] convolution in the time domain is multiplication in The frequency domain -> Parseval's theorem: Con you prove that Solt hat gets = Sak has gike)? - D differentiation is easy in The frequency domain

of f = of Sake znokx f = Jakf & eznokx = Jak & (znik) e znik

differentiation is "multiplication by K"

Discrete Fourier Transform (DFT)

The DFT is a slightly different operation, but we can think
of it as a way to numerically estimate the Fourier Transform.
However, there are some complications...

A discrete series typocally has 2 main parameters

frequency sompling rate & maximum resolvable frequency resolvation duration a brequency spacing

There are related by: At = 1/2 f Nyquist | frygoist is the max resolvable frequency

(Nyquist Sampling Muorean)

T = 1/AF

QUESTION: why is there a maximum resolvable forguency?

what happens if there are frequencies above that?

EXAMPLE: square-pulse-fft

Windows functions:

Consider a discrete sequence or an approximation to a continuous function multiplied by a top-hat window. By the convolution theorem, we know that multiplication in the time-domain is convolution in the frequency domain, so the DFT should look like a smeared-out version of the true functions soft.

sidebands NOTE: narrow windows have bood frequency support => really smeared windows with sharp corners have fat tails => side bands

	-7 10w	-pass 7 V	and-par filters	
		-pan		
		tch" filters		
		11100		
e ko				
			Carrier Sec	
		New York		