Завдання 1. Обчислити ймовірності подій

1.1.21. Комплект містить 12 виробів, 5 із яких коштують по 3 грн кожний, інші — по 1 грн. Знайдіть імовірності того, що взяті навмання 4 вироби коштують разом: а) 10 грн; б) 8 грн.

(10 грн):

$$C(12,4) = 495$$
 - всього варіантів

$$C(5,3) \times C(7,1) = 70$$
 сприятливих

$$P = 70/495 \approx 0.141$$

(8 грн):

$$C(5,2) \times C(7,2) = 210$$
 сприятливих

$$P = 210/495 \approx 0.424$$

Відповідь: а) 14.1%; б) 42.4%

Завдання 2. Обчислити геометричні ймовірності подій

1.2.21. У прямокутник $0 \le x \le e$, $0 \le y \le 1$ навмання ставиться точка. Знайдіть імовірність того, що вона потрапить в область, обмежену лініями y = 0; $y = \ln x$; x = e.

Площа прямокутника = $e \times 1$

Площа області між y=0, $y=\ln x$, x=e=e-1

$$P = (e-1)/(e \times 1) = e-1)/e \approx 0.632 = 63.2\%$$

Відповідь: (e-1)/e ≈ 0.632

Завдання 3. Виразити складні події через задані прості

2.1.21. Судно має один кермовий пристрій, 4 котли і 4 турбіни. Події $A = \{$ справність кермового пристрою $\}$, $B_j = \{$ справність j-го котла, $j = 1, 2, 3, 4 \}$, $C_k = \{$ справність k-ї турбіни, $k = 1, 2, 3, 4 \}$, $D = \{$ судно кероване $\}$. Виразіть подію D через A, B_j, C_k , якщо для керованості судна необхідна справність кермового пристрою, принаймні трьох котлів і принаймні трьох турбін.

1. Судну потрібно для керованості:

Справний кермовий пристрій

Мінімум 3 котли з 4

Мінімум 3 турбіни з 4

2. Позначення:

D = {судно кероване}

 $A = \{$ справність керма $\}$

 $Bj = \{$ справність j-го котла $\}$, j=1,2,3,4

 $Ck = \{$ справність k-ої турбіни $\}$, k=1,2,3,4

3. Для керованості потрібно:

А (керування)

AND хоча б 3 з В1,В2,В3,В4 (котли)

AND хоча б 3 з С1,С2,С3,С4 (турбіни)

Відповідь: $D = A \cap (\text{не менше 3 з Bj}) \cap (\text{не менше 3 з Ck})$

сума комбінацій по 3 і 4 елементи: D = A \cap (B1B2B3 \cup B1B2B4 \cup B1B3B4 \cup B2B3B4 \cup B1B2B3B4) \cap (C1C2C3 \cup C1C2C4 \cup C1C3C4 \cup C2C3C4 \cup C1C2C3C4)

Завдання 4. Знайти ймовірності подій, застосовуючи теореми додавання та множення ймовірностей

2.2.1. Радіостанція аеропорту надсилає 3 повідомлення для екіпажу літака. Імовірність прийому екіпажем першого повідомлення дорівнює 0,6, другого — 0,65, третього — 0,7. Знайдіть імовірність того, що екіпажем прийнято: а) тільки одне повідомлення; б) принаймні одне повідомлення.

 A_1 = перше повідомлення (p = 0.6)

 $A_2 =$ друге повідомлення (p = 0.65)

 $A_3 = \text{трет} \epsilon$ повідомлення (p = 0.7)

- а) Для прийому всіх: $P(всі) = 0.6 \times 0.65 \times 0.7 = 0.273$
- б) Для хоча б одного: P(хоча б 1) = 1 P(жодного) = 1 $(0.4 \times 0.35 \times 0.3) = 1$ 0.042 = 0.958

Відповідь: а) 27.3%; б) 95.8%

Завдання 5. Знайти ймовірності подій, застосовуючи теореми додавання та множення ймовірностей

3.21. Фабрика виготовляє однотипну продукцію на трьох потокових лініях, продуктивності яких відносяться, як 3 : 2 : 5. На першій лінії виробляється продукція тільки найвищої якості. На другій лінії продукція найвищої якості становить 90 %, на третій — 85 %. 1) Знайдіть імовірність того, що взятий навмання виріб буде

Рахуємо загальну пропорцію 3 + 2 + 5 = 10 частин всього

Ймовірність для кожної лінії: $P(\Pi i n i 1) = 3/10 P(\Pi i n i 2) = 2/10 P(\Pi i n i 3) = 5/10$

Ймовірність: P(найвища якість) = $(3/10 \times 1,00) + (2/10 \times 0,90) + (5/10 \times 0,85) =$ 3/10 + 18/100 + 42,5/100 = 0,3 + 0,18 + 0,425 = 0,905

Відповідь: 90,5%

Крок 1: Рахуємо загальну пропорцію 3 + 2 + 5 = 10 частин всього

Крок 2: Ймовірність для кожної лінії: $P(\Pi i h i n 1) = 3/10 P(\Pi i h i n 2) = 2/10 P(\Pi i h i n 3) = 5/10$

Крок 3: Обчислюємо ймовірність: Р(найвища якість) = $(3/10 \times 1,00) + (2/10 \times 0,90) + (5/10 \times 0,85) = 3/10 + 18/100 + 42,5/100 = 0,3 + 0,18 + 0,425 = 0,905$ Відповідь: Ймовірність того, що випадково вибраний виріб буде найвищої якості становить 0,905 або 90,5%

Завдання 6. Повторні незалежні випробування

- 4.21. Імовірність того, що рейс буде виконано із затримкою, дорівнює 0,04. Знайдіть імовірності того, що з 50 рейсів буде виконано з затримкою: а) рівно 4 рейси; б) не більш як 4 рейси; в) принаймні один рейс.
- а) Для рівно 4 рейсів $P_4 = C^{50}_4 \times 0,04^4 \times 0,96^{46} = 0,195$
- б) Для не більше 4 рейсів сумуємо ймовірності: $P(\le 4) = P_0 + P_1 + P_2 + P_3 + P_4 = 0.824$
- в) Для принаймні одного рейсу: $P(\ge 1) = 1 P_0 = 1 0.96^{50} = 0.870$ Відповідь: а) 19,5% б) 82,4% в) 87,0%

Завдання 7. Знайти невідомі значення у рядах розподілу дискретних випадкових величин

1.1.21. Дискретну випадкову величину задано рядом розподілу

X	0.11	BH 4 1/4 B	X3	x_4
P	0,1	p_2	0,4	0,2

Знайдіть x_3 , x_4 і p_2 , якщо $x_3 < x_4$ і відомі математичне сподівання M(X) = 0.96 та дисперсія D(X) = 0.15. Побудуйте функцію розподілу F(X) випадкової величини X та знайдіть імовірність потрапляння цієї величини у проміжок [0; 1,5).

3 ряду розподілу: Х: 0, х2, х3, х4 Р: 0.1, р2, 0.4, 0.2

сума ймовірностей має дорівнювати 1: $0.1 + p_2 + 0.4 + 0.2 = 1$ $p_2 = 1 - 0.7 = 0.3$

Дано $M(X) = 0.96\ 0 \times 0.1 + x_2 \times 0.3 + x_3 \times 0.4 + x_4 \times 0.2 = 0.96$

Дано D(X) = 0.15

 $D(X) = M(X^2) - [M(X)]^2 \ 0.15 = (0^2 \times 0.1 + x_{2}^2 \times 0.3 + x_{3}^2 \times 0.4 + x_{4}^2 \times 0.2) - 0.96^2$

 $x_3 < x_4$ система рівнянь: $x_2 = 0.5$ $x_3 = 1$ $x_4 = 2$

Відповідь: $x_2 = 0.5 x_3 = 1 p_2 = 0.3$

F(X) для проміжку [0; 1.5]: F(0) = 0.1 F(0.5) = 0.4 F(1) = 0.8 F(1.5) = 0.8

Відповідь = 80%

Завдання 8. Неперервні випадкові величини та їх характеристики

1.2.21.
$$F(x) = \begin{cases} 0, & x \le 0, \\ A(x+0.5\sin 2x), & 0 < x \le \pi/2, \\ 1, & x > \pi/2. \end{cases} (\pi/6; \pi/3).$$

При
$$x = 0$$
: Зліва: $F(0) = 0$ Справа: $A(0 + 0.5\sin(2\times0)) = 0$ томуе, $A \times 0 = 0$ \checkmark

При
$$x = \pi/2$$
: Зліва: $A(\pi/2 + 0.5\sin(\pi)) = A(\pi/2) = 1$ Справа: 1 тому: $A \times \pi/2 = 1$

A:
$$A = 2/\pi$$

:
$$F'(x) = A(1 + \cos(2x)) \ge 0$$
 для $x \in [0, \pi/2]$

Відповідь: $A = 2/\pi$

Функція F(x) є функцією розподілу, оскільки задовольняє всі необхідні умови

Завдання 9. Дискретні випадкові величини та їх характеристики

а) Дискретна випадкова величина X може приймати тільки два значення x_1 та x_2 , при цьому $x_1 < x_2$. Відомі: імовірність p_1 можливого значення x_1 , математичне сподівання M(X) та дисперсія D(X). Знайти закон розподілення цієї випадкової величини;

$$\begin{aligned} p_2 &: p_1 + p_2 = 1 \ 0.7 + p_2 = 1 \ p_2 = 0.3 \\ M(X) &= x_1 p_1 + x_2 p_2 \ 2.2 = x_1 \times 0.7 + x_2 \times 0.3 \ ... \ (1) \\ D(X) &= M(X^2) - [M(X)]^2 \ 3.36 = (x_1^2 \times 0.7 + x_2^2 \times 0.3) - 2.2^2 \ ... \ (2) \end{aligned}$$

(2):
$$3.36 = 0.7x_1^2 + 0.3((2.2 - 0.7x_1)/0.3)^2 - 4.84$$

 $2.2 = 0.7x_1 + 0.3x_2 x_2 = (2.2 - 0.7x_1)/0.3$

отримаємо:
$$x_1 = 1 \ x_2 = 5$$

Відповідь: Закон розподілу: Х: 1 5 Р: 0.7 0.3

Перевірка: $M(X) = 1 \times 0.7 + 5 \times 0.3 = 2.2 \checkmark D(X) = (1^2 \times 0.7 + 5^2 \times 0.3) - 2.2^2 = 3.36 \checkmark$

Завдання 10. Типи розподілів випадкових величин

3.01-13.30 Відомі математичне сподівання M(X) та середнє квадратичне ння $\sigma(X)$ нормально розподіленої випадкової величини X. Знайти ість попадання цієї величини у заданий проміжок $(\alpha; \beta)$.

```
M(X) = 45.0 (математичне сподівання) 
\sigma(X) = 4.5 (середнє квадратичне відхилення) 
\alpha = 32 (нижня межа) 
\beta = 78 (верхня межа)
```

функція Лапласа
$$\Phi(z)$$
 Р($\alpha < X < \beta$) = $\Phi((\beta-M)/\sigma)$ - $\Phi((\alpha-M)/\sigma)$ аргументи: $z_1 = (32 - 45)/4.5 = -2.89$ $z_2 = (78 - 45)/4.5 = 7.33$ значення функції Лапласа: $\Phi(-2.89) = -0.4981$ $\Phi(7.33) \approx 0.5$ ймовірність: $P(32 < X < 78) = \Phi(7.33)$ - $\Phi(-2.89) = 0.5$ - $(-0.4981) = 0.9981$

Відповідь: 99.81%

Завдання 11. Типи розподілів випадкових величин

2.21. При випробуванні навігаційних приладів на військових літаках враховують відхилення від точки скидання спеціального вантажу. Складіть ряд розподілу випадкової величини X — кількості відхилень, що не перевищують норму при чотирьох скиданнях, якщо в 30 % випадків це відхилення не перевищує норми. Знайдіть

Розв'язання:

р = 0.3 (ймовірність, що відхилення в межах норми)

q = 0.7 (ймовірність, що відхилення перевищує норму)

n = 4 (кількість випробувань)

m = 2 (кількість успішних випробувань)

$$C^{4}_{2} = 6$$
 (кількість комбінацій)

$$p^2 = 0.3^2 = 0.09$$

$$q^2 = 0.7^2 = 0.49$$

$$P_4(2) = 6 \times 0.09 \times 0.49 = 0.2646$$

Відповідь: 26.46%