Bifurcation of coherent structures in nonlocally coupled system

author

2016

Abstract

Motivated by models for neural fields, we study the existence of pulses bifurcating from a spatially homogeneous state in nonlocally coupled systems of equations. More specifically, we look at equations of the form $AU + K * U = N(U; \mu)$, where N encodes nonlinear terms, A is an invertible matrix, and K an even matrix convolution kernel. Assuming the presence of neutral modes, that is, solutions of the form $u \sim \exp(i\ell x)$ to the linear part, we show under appropriate assumptions on the nonlinearity and the unfolding in μ that pulses bifurcate. Such an analysis is carried out using center manifold reduction, when coupling is local, say, $K = \delta''$. Here, we rely on functional analytic methods using predictors from formal expansions and correctors obtained after preconditioning the nonlinear system.

1 Main Result

Our interest in this note concerning the equation

$$AU + K * U = N(U; \mu) \tag{1.1}$$

where U = U(x) is a vector valued (\mathbb{R}^m) function defined on \mathbb{R} , $\mu > 0$ is a real parameter, A is a m by m matrix and K = K(x) is a matrix of convolution kernels, we assume the following on A and K:

Hypothesis (On linear operator A + K*)

- (i). We require A is invertible, the entries of K are even, K(x) = K(-x), and belongs to $L^1(\mathbb{R})$, and is exponentially localized, i.e. there is $\tau > 0$ such that $\int_{\mathbb{R}} e^{\tau |x|} K(x) dx$ is finite.
- (ii). if $\hat{K}(\ell)$ denotes the Fourier transform of the convolution kernel K(x), which is a matrix depending on ℓ , we assume that $\det(A + \hat{K}(\ell)) = D\ell^2 + O(\ell^4)$ with $D \neq 0$ as $\ell \to 0$, more over we require for all $\ell \neq 0$, $A + \hat{K}(\ell)$ is invertible.

From (ii), we know $A + \widehat{K}(\ell)$ is invertible for all ℓ close to 0, while at $\ell = 0$, as a consequence of the determinant assumption, the kernel of $A + \widehat{K}(0)$ is spanned by a vector unique up to scalar multiplication, we denote $e_0 \in \mathbb{R}^m$ to be this kernel so that $\langle e_0, e_0 \rangle = 1$.

Hypothesis (On nonlinearity N)

We assume $N(u; \mu) : \mathbb{R}^m \times \mathbb{R} \to \mathbb{R}^m$ is a smooth nonlinearity, with $N(0; \mu) = 0$ for all μ , and if e_0^* denotes the dual for e_0 , we require: $\langle e_0^*, D_{u\mu} N(0; 0) e_0 \rangle \neq 0$, $\langle e_0^*, D_{uu} N(0; 0) [e_0, e_0] \rangle \neq 0$.

We can prove the following lemma which "diagonalize" the operator A + K* in the following sense:

Lemma 1.1. There exists m by m invertible matrix M_1, M_2 so that

$$M_1(A + \widehat{K}(\ell))M_2 = \begin{pmatrix} A_{00} + \widehat{K}_{00}(\ell) & A_{0h} + \widehat{K}_{0h}(\ell) \\ A_{h0} + \widehat{K}_{h0}(\ell) & A_{hh} + \widehat{K}_{hh}(\ell) \end{pmatrix}$$

where $A_{00} + \widehat{K}_{00}(\ell) = d\ell^2 + O(\ell^4)$ ($d \neq 0$) is scalar valued, $A_{0h} + \widehat{K}_{0h}(\ell) = O(\ell^2)$ and $A_{h0} + \widehat{K}_{h0}(\ell) = O(\ell^2)$ are $1 \times (m-1)$ and $(m-1) \times 1$ matrix while $A_{hh} + \widehat{K}_{hh}(\ell)$ is an invertible m-1 by m-1 matrix for all ℓ with uniform bounds on the inverse in ℓ .

Proof. When $\ell = 0$, there exist M_2 so that

$$[A+\widehat{K}(0)]M_2 = \begin{pmatrix} 0 & *\cdots * \\ \hline 0 & \\ \vdots & H \\ 0 & \end{pmatrix}$$

where * denotes generic numbers, and H is an invertible m-1 by m-1 matrix, now apply elementary matrix successively from the left reduce the first row to $(1,0\cdots 0)$, let M_1 denote the product of all such elementary matrix.

For ℓ close to 0, we expand $\widehat{K}(\ell)$ around 0, the first component must be equal to $d\ell^2$ for some $d \neq 0$ due to the determinant requirement, the other entries are of order ℓ^2 as the entries of K are assumed to be even.

Hence

$$\begin{pmatrix} A_{00} & A_{0h} \\ A_{h0} & A_{hh} \end{pmatrix} = M_1 A M_2 \text{ and } \begin{pmatrix} \widehat{K}_{00}(\ell) & \widehat{K}_{0h}(\ell) \\ \widehat{K}_{h0}(\ell) & \widehat{K}_{hh}(\ell) \end{pmatrix} = M_1 \widehat{K}(\ell) M_2$$

are the desired matrix, we remark that the Taylor expansion of the Fourier coefficients says that we have: $\int_{\mathbb{R}} K_{00}(x) + A_{00} = 0$, $\int_{\mathbb{R}} K_{0h} + A_{0h} = (0, \dots, 0)$, $\int_{\mathbb{R}} K_{h0} + A_{h0} = (0, \dots, 0)^T$, and $\int_{\mathbb{R}} x^2 K_{00}(x) = 2d \neq 0$, moreover, by the integrabbility assumption on K, we see the $M_1 \widehat{K}(\ell) M_2 \to 0$ as $\ell \to \infty$.

With lemma above we introduce a new variable $V(x) = M_2^{-1}U(x)$, we may write $V(x) = (u_0(x), u_h(x))^T$ where $u_0(x)$ is scalar-valued and $u_h(x)$ is such that $\hat{u}_h(\ell) \perp e_0$ for all ℓ .

Put $\tilde{N}(V;\mu) = M_1 N(M_2 V;\mu)$, in the new variable V, and write $\tilde{N}_0 = \langle \tilde{N}, e_0 \rangle$ with \tilde{N}_h similarly defined, equation (1.1) becomes

$$(A_{00} + K_{00}*)u_0 + (A_{0h} + K_{0h}*)u_h + \tilde{N}_0(u_0, u_h; \mu) = 0$$
(1.2)

$$(A_{h0} + K_{h0}*)u_0 + (A_{hh} + K_{hh}*)u_h + \tilde{N}_h(u_0, u_h; \mu) = 0$$
(1.3)

2

Denote $L_j = A_j + K_j * (j = 00, 0h, h0, hh$ respectively) for brevity, then write out the nonlinearity explicitly, we have

$$0 = L_{00}u_0 + L_{0h}u_h + a_{101}\mu u_0 + a_{200}u_0^2 + a_{011}\mu u_h + a_{020}u_h^2 + a_{110}u_0u_h + R_1(u_0, u_h; \mu)$$
(1.4)

$$0 = L_{hh}u_h + L_{h0}u_0 + b_{101}\mu u_0 + b_{011}\mu u_h + b_{200}u_0^2 + b_{110}u_0u_h + b_{020}u_h^2 + R_2(u_0, u_h; \mu)$$

$$(1.5)$$

where the remainder R_1, R_2 are of order $O(u_0^2 u_h, u_0 u_h^2, u_0^3, u_h^3, \mu u_0^2, \mu u_h^2, \mu u_0 u_h, \mu^2 u_0, \mu^2 u_h)$ as $(u_0, u_h) \to 0$. We change variable from u_h to u_h^1 where u_h^1 is defined to be satisfy the relation:

$$u_h = -L_{hh}^{-1}L_{h0}u_0 + u_h^1 := \phi(u_0, u_h^1),$$

the existence of L_{hh}^{-1} follows from Lemma 1.1, so in the variable u_h^1 , (1.5) is

$$0 = L_{hh}u_h^1 + b_{101}\mu u_0 + b_{011}\mu\phi + b_{200}u_0^2 + b_{110}u_0\phi + b_{020}\phi^2 + R_2(u_0, \phi; \mu)$$

We then rescale the variables according to $u_0(x) = \mu \tilde{u}_0(\sqrt{\mu}x)$ and $u_h^1(x) = \mu \tilde{u}_h^1(\sqrt{\mu}x)$, and put $\varepsilon = \sqrt{\mu}$, $L_j^{\varepsilon} = A + \varepsilon^{-1} K_j(\varepsilon^{-1})$ * for the rescaled linear operator, note that u_h has been rescaled to

$$\varepsilon^2[-(L_{hh}^{\varepsilon})^{-1}L_{h0}^{\varepsilon}\tilde{u}_0+\tilde{u}_h^1]:=\varepsilon^2\phi^{\varepsilon}(\tilde{u}_0,\tilde{u}_h^1),$$

to ease notations, we still use u_0, u_h^1 for the same variables after the rescaling, and we abbreviate u_h by ϕ^{ε} whenever it is convenient to do so.

We then get two rescaled equations, after dividing both sides of the equation by $\mu = \varepsilon^2$, we have the equation for u_0 :

$$0 = L_{00}^{\varepsilon} u_0 + L_{0h}^{\varepsilon} [\phi^{\varepsilon}] + \varepsilon^2 (a_{101} u_0 + a_{200} u_0^2 + a_{011} [\phi^{\varepsilon}] + a_{020} [\phi^{\varepsilon}]^2 + a_{110} u_0 [\phi^{\varepsilon}]) + \varepsilon^4 R_1(u_0, u_h^1; \varepsilon)$$

$$= L^{\varepsilon} u_0 + L_{0h}^{\varepsilon} u_h^1 + \varepsilon^2 B_0(u_0, u_h^1; \varepsilon) + \varepsilon^4 R_1(u_0, u_h^1; \varepsilon)$$
(1.6)

where we abbreviated $L = L_{00} - L_{0h}L_{hh}^{-1}L_{h0}$ so that $L^{\varepsilon} = L_{00}^{\varepsilon} - L_{0h}^{\varepsilon}(L_{hh}^{\varepsilon})^{-1}L_{h0}^{\varepsilon}$, and the term $B_0(u_0, u_h^1; \varepsilon)$ is equal to $a_{101}u_0 + a_{200}u_0^2 + a_{011}[\phi^{\varepsilon}] + a_{020}[\phi^{\varepsilon}]^2 + a_{110}u_0[\phi^{\varepsilon}]$.

and the equation for u_h^1 :

$$0 = L_{hh}^{\varepsilon} u_h^1 + \varepsilon^2 B_h(u_0, u_h^1; \varepsilon) + \varepsilon^4 R_2(u_0, u_h^1; \varepsilon), \tag{1.7}$$

where $B_h(u_0, u_h^1; \varepsilon) = b_{101}u_0 + b_{200}u_0^2 + b_{011}[\phi^{\varepsilon}] + b_{020}[\phi^{\varepsilon}]^2 + b_{110}u_0[\phi^{\varepsilon}].$

Now our plan is to first solve (1.7) to get u_h^1 as a function of u_0 , then plug in this function back to equation (1.6), and solve the resulting scalar equation in u_0 to get our main result.

To do so, write the right hand of (1.7) as $L_{hh}^{\varepsilon}G(u_h^1;u_0,\varepsilon)$, so that the function $G=G(v;u,\varepsilon)$ is given by $G(v;u,\varepsilon)=v+(L_{hh}^{\varepsilon})^{-1}\varepsilon^2(B_h(u,v;\varepsilon)+\varepsilon^2R_2(u,v;\varepsilon))$, we want to solve G=0 for u_h^1 , viewing u_0 and ε as parameters, the following lemma gives the precise properties we want:

Lemma 1.2. Fix k and r > 0, let $B_r \subset H^k(\mathbb{R})$ denote the closed ball of radius r in $H^k(\mathbb{R})$, there is $\varepsilon_0 > 0$ sufficiently small so that if $|\varepsilon| < \varepsilon_0$ and for any function u_0 in B_r , there exists a map $\psi(u,\varepsilon): B_r \times (-\varepsilon_0,\varepsilon_0) \to [B_r]^{m-1}$ such that $u_h^1 = \psi(u_0,\varepsilon)$ solves $G(\psi(u_0,\varepsilon);u_0,\varepsilon) = 0$, moreover, we have $\|\psi(u_0,\varepsilon)\|_{[H^k]^{m-1}} = O(\varepsilon^2)$ as $\varepsilon \to 0$, and ψ is smoothly dependent on the parameter u, if $D_u\psi: H^k \to H^k$ denotes the Frechet derivative of ψ with respect to u, then we also get $\|D_u\psi\| = O(\varepsilon^2)$ as $\varepsilon \to 0$.

Proof. We use a Newton iteration scheme: for $u_0 \in B_r$ and ε_0 small to be chosen, We show the following properties holds for G:

- $||G(0; u_0, \varepsilon)||_{[H^k(\mathbb{R})]^{m-1}} = O(\varepsilon^2)$
- G is smooth in v, and $D_vG(0; u_0, \varepsilon) : [H^k(\mathbb{R})]^{m-1} \to [H^k(\mathbb{R})]^{m-1}$ is invertible with uniform bounds for the inverse for $|\varepsilon| < \varepsilon_0$ and $u_0 \in B_r$.

To see the first bullet point, simply notice

$$G(0; u_0; \varepsilon) = \varepsilon^2 (L_{hh}^{\varepsilon})^{-1} \left(B_h(u_0, 0; \varepsilon) + \varepsilon^2 R_2(u_0, 0; \varepsilon) \right),$$

use $H^k(\mathbb{R})$ is an algebra for $k \geq 2$ and the fact that $(L_{hh}^{\varepsilon})^{-1}, L_{h0}^{\varepsilon}$ are uniformly bounded in ε , as

$$B_h(u_0, 0; \varepsilon) = b_{101}u_0 + b_{200}u_0^2 + b_{011}\phi^{\varepsilon}(u_0; 0) + b_{020}[\phi^{\varepsilon}(u_0; 0)]^2 + b_{110}u_0[\phi^{\varepsilon}(u_0; 0)]$$

where now $\phi^{\varepsilon}(u_0;0) = -(L_{hh}^{\varepsilon})^{-1}L_{h0}^{\varepsilon}u_0$, we have therefore

$$||B_h(u_0,0;\varepsilon)||_{[H^k]^{N-1}} \le C||u_0||_{[H^k]^{N-1}}^2 \le Cr^2,$$

for some constant C independent of ε . We get a similar bound for the remainder term R_2 , hence $||G(0; u_0, \varepsilon)||_{[H^k]^{N-1}}$ is $O(\varepsilon^2)$ as claimed.

For the second bullet point, it is clear that G is smooth in v, we compute the Frechet derivative of G with respect to v, we get $D_vG(0; u_0, \varepsilon)$ is of the form

$$I + \varepsilon^2 (L_{hh}^{\varepsilon})^{-1} \left(b_{011} + b_{020} [2L_{hh}^{\varepsilon} L_{h0}^{\varepsilon} u_0] + b_{110} u_0 + \varepsilon^2 D_v R_2(0; u_0, \varepsilon) \right)$$

again use $(L_{hh}^{\varepsilon})^{-1}$, L_{h0}^{ε} are uniformly bounded in ε and $||u_0||_{H^k} \leq r$, we conclude that $D_vG(0;u_0,\varepsilon)$ is a $O(\varepsilon^2)$ pertrubation of the identity as an operator from $[H^k(\mathbb{R})]^{m-1}$ to itself, thus for ε small enough, we have $D_vG(0;u_0,\varepsilon)$ is uniformly invertible in ε .

After establishing these two points, fix $\delta > 0$, let X be the ball of raidus δ around 0 in $[H^k(\mathbb{R})]^{m-1}$, we introduce a map $S(\cdot; u_0, \varepsilon) : X \to X$ as follows:

$$S(v; u_0, \varepsilon) = v - D_v G(0; u_0, \varepsilon)^{-1} [G(v; u_0, \varepsilon)]$$

then, we see

$$||S(0; u_0, \varepsilon)||_{[H^k]^{m-1}} \le ||D_v G(v; u_0, \varepsilon)^{-1}|| ||G(v; u_0, \varepsilon)||_{[H^k]^{m-1}} = O(\varepsilon^2).$$

Also, $D_v S(0; u_0, \varepsilon) = 0$ by definition, by continuity, if δ is small, then for $||v|| \in X$ we have $||D_v S|| \leq C\delta$ for some constant C.

Then we start our iteration, with $v_0 = 0$, $v_{n+1} = S(v_n; u_0, \varepsilon)$, $n \ge 0$. Suppose by induction $v_k \in X$ for $1 \le k \le n$, then

$$||v_{n+1} - v_n|| \le C\delta ||v_n - v_{n-1}||$$

by the mean value theorem, so

$$||v_{n+1}|| \le \frac{C}{1 - C\delta} ||v_1 - v_0|| = \frac{C}{1 - C\delta} ||S(0; u_0, \varepsilon)||$$

so for ε small and $u_0 \in B_r$, we get $v_{n+1} \in X$, and we that S is a contraction for δ sufficiently small, apply Banach fixed point theorem, we get $v = \psi(u_0, \varepsilon)$ as a fixed point of S, so that $\psi(u_0, \varepsilon) = S(\psi(u_0, \varepsilon); u_0, \varepsilon)$, and consequently $G(\psi(u_0, \varepsilon); u_0, \varepsilon) = 0$, note we get the estimate $\|\psi\|_{[H^k]^{m-1}} = O(\varepsilon^2)$ from the iteration.

The smooth dependence of $\psi(u_0, \varepsilon)$ on u_0 is a consequence of the uniform contraction theorem: note $G(v; u, \varepsilon)$, and therefore the map S is smooth in u by assumptions on the nonlinearity, by choosing ε small, the contraction constant for S can be chosen uniformly in $u \in B_r$, hence we get ψ depends smoothly on u_0 as well.

To get the estimate on the derivative $||D_u\psi||_{H^k\to H^k}$, we differentiate the equation $0 = G(\psi(u_0,\varepsilon); u_0,\varepsilon)$ in u_0 , we see $D_u\psi = -[D_vG]^{-1}D_uG$, but

$$D_u G(v; u_0, \varepsilon) = O(\varepsilon^2)$$

for $u_0 \in B_r$, as can be computed directly, and D_vG is uniformly invertible for ε small, hence $||D_u\psi||$ is $O(\varepsilon^2)$ as claimed.

Use this lemma, we plug in $u_h^1 = \psi(u_0, \varepsilon)$ into equation (1.6), after dividing both sides by ε^2 , we arrived at the following scalar equation in u_0 :

$$0 = \varepsilon^{-2} \left(L_{\varepsilon} u_0 + L_{0h,\varepsilon} \psi(u_0,\varepsilon) \right) + B_0(u_0, \psi(u_0,\varepsilon);\varepsilon) + \varepsilon^2 \tilde{R}_1(u_0, \psi(u_0,\varepsilon);\varepsilon)$$
(1.8)

Therefore, we need to study the behaviors of the operators L_j^{ε} as $\varepsilon \to 0$, let M^{ε} , denote the operator whose Fourier symbol is $\widehat{L}^{\varepsilon}(\ell)/(\varepsilon \ell)^2$, the next lemma summarizes the properties we need,

Lemma 1.3. Fix k, with M^{ε} defined above, and L_{j}^{ε} for j = h0, 0h, we have the following:

- (i) $M^{\varepsilon}: H^k \to H^{k-2}$ is bounded with $\|M^{\varepsilon}\|_{H^k \to H^{k-2}}$ independent in ε ;
- (ii) $M^{\varepsilon}: H^{k-2} \to H^k$ is invertible, with $(M^{\varepsilon})^{-1}: H^k \to H^{k-2}$ satisfies the estimate

$$\|(M^{\varepsilon})^{-1} - d^{-1}\|_{H^{k} \to H^{k-2}} = O(\varepsilon^{2})$$

as $\varepsilon \to 0$, we denote the operator $(M^{\varepsilon})^{-1} - d^{-1}$ by $\mathcal{J}^{\varepsilon}$;

(iii) $L_j^{\varepsilon}: H^k \to H^k$ (j = h0, 0h) is bounded with $\|L_j^{\varepsilon}\|_{H^k \to H^k}$ independent in ε ; and $L_j^{\varepsilon}: H^k \to H^{k-2}$ is bounded with $\|L_j^{\varepsilon}\|_{H^k \to H^{k-2}} = O(\varepsilon^2)$ as $\varepsilon \to 0$.

Proof. The symbol for L_{ε} equals $\widehat{L}(\varepsilon\ell) = \widehat{L}_{00}(\varepsilon\ell) - \widehat{L}_{0h}(\varepsilon\ell)(\widehat{L}_{hh}(\varepsilon\ell))^{-1}\widehat{L}_{h0}(\varepsilon\ell) = d(\varepsilon\ell)^2 + O((\varepsilon\ell)^4)$ by lemma 1.1 on the expansions about the symbols of L_{00} , L_{0h} , L_{h0} and L_{hh} . Hence $m_1(\varepsilon\ell) := \widehat{L}(\varepsilon\ell)/(\varepsilon\ell)^2 = d + O((\varepsilon\ell)^2)$ is the symbol of M_{ε} . We then define $m_2(\varepsilon\ell) := (\widehat{L}(\varepsilon\ell) - d(\varepsilon\ell)^2)/(\varepsilon\ell)^4$, again by lemma 1.1 we know m_1, m_2 are analytic, in particular, $m_1(0) = d \neq 0$.

Then $||M^{\varepsilon}||_{H^2 \to L^2} = \sup_{\ell} |m_1(\varepsilon \ell)|$, which is independent of ε by change of variable $\varepsilon \ell = \eta$, this is (i).

(ii), this is the key computation, we have:

$$\|\mathcal{J}^{\varepsilon}\|_{H^{k} \to H^{k-2}} = \sup_{\ell} \left| \frac{1}{1 + \ell^{2}} \widehat{\mathcal{J}_{\varepsilon}}(\ell) \right| = \sup_{\ell} \left| \left(\frac{d - M_{\varepsilon}(\ell)}{dM_{\varepsilon}(\ell)} \right) \frac{1}{1 + \ell^{2}} \right|$$

$$= \sup_{\ell} \left| \frac{d^{-1}(\varepsilon \ell)^{2} m_{2}(\varepsilon \ell)}{m_{1}(\varepsilon \ell)} \frac{1}{1 + \ell^{2}} \right|$$

$$= \sup_{\eta} \left| \varepsilon^{2} \frac{d^{-1} \eta^{2}}{\eta^{2} + \varepsilon^{2}} \left(\eta^{-2} + d\widehat{L}(\eta)^{-1} \right) \right|$$

where in the last step we changed variable by $\eta = \varepsilon \ell$, we shall carefully study the quantity

$$\frac{m_2(\eta)}{m_1(\eta)} = \frac{\widehat{L}(\eta) - d\eta^2}{\eta^2 \widehat{L}(\eta)} = \eta^{-2} - d\widehat{L}(\eta)^{-1}.$$

First, notice that $m_1(0) \neq 0$, hence at $\eta = 0$ this is a finite number.

Further, if at some finite η , $m_1(\eta) = 0$, this can only happen if $\widehat{L}(\eta) = 0$ for some $0 < |\eta| < \infty$, this is impossible, as a 0 of $\widehat{L}(\eta)$ corresponds to a η for which the matrix $\begin{pmatrix} \widehat{L}_{00}(\eta) & \widehat{L}_{0h}(\eta) \\ \widehat{L}_{h0}(\eta) & \widehat{L}_{hh}(\eta) \end{pmatrix}$ is singular, because of the formula

$$\det\begin{pmatrix} \widehat{L}_{00}(\eta) & \widehat{L}_{0h}(\eta) \\ \widehat{L}_{h0}(\eta) & \widehat{L}_{hh}(\eta) \end{pmatrix} = \det(\widehat{L}_{hh}(\eta)) \det(\widehat{L}_{00}(\eta) - \widehat{L}_{0h}(\eta) L_{hh}(\eta)^{-1} \widehat{L}_{h0}(\eta)) = \det(\widehat{L}_{hh}(\eta)) \widehat{L}(\eta)$$

holds, as $\widehat{L}_{hh}(\eta)$ is invertible for all η .

But our assumption says the point $\eta = 0$ is the only value this can happen, hence $\widehat{L}(\eta) \neq 0$ for all finite η .

Finally, the matrix $\begin{pmatrix} \widehat{L}_{00}(\eta) & \widehat{L}_{0h}(\eta) \\ \widehat{L}_{h0}(\eta) & \widehat{L}_{hh}(\eta) \end{pmatrix}$ converges to M_1AM_2 as $\eta \to \infty$, which invertible by assumption

and lemma 1.1, so again by the determinant formula we conclude $\widehat{L}(\eta) \neq 0$ at $\eta = \infty$.

Therefore, the quantity $\eta^{-2} - d\widehat{L}(\eta)^{-1}$ is bounded on $\eta \in \mathbb{R}$, so

$$\sup_{\eta} \left| \varepsilon^2 \frac{d^{-1} \eta^2}{\eta^2 + \varepsilon^2} \left(\eta^{-2} + d\widehat{L}(\eta)^{-1} \right) \right| \le C \varepsilon^2$$

for some constant C, this shows $\|\mathcal{J}^{\varepsilon}\|_{H^2 \to L^2}$ is of order ε^2 .

(iii). The first claim is clear, since $\sup_{\ell} |L_j^{\varepsilon}(\ell)| = \sup_{\ell} |L_j(\varepsilon \ell)|$, the conclusion follows as in (i);

The second claim follows from the straightforward computation:

$$||L_j^{\varepsilon}||_{H^2 \to L^2} \le \sup \left\| \frac{\widehat{L}_j(\varepsilon \ell)}{1 + \ell^2} \right\| = \sup_{\eta} \left\| \frac{\varepsilon^2}{\varepsilon^2 + \eta^2} \widehat{L}_j(\eta) \right\| \le \varepsilon^2 \sup_{\eta} \left\| \frac{\widehat{L}_j(\eta)}{\eta^2} \right\|$$

and we know $\widehat{L}_j(\eta) = O(\eta^2)$ as $\eta \to 0$ and $\widehat{L}_j(\eta) \to A_j$ as $\eta \to \infty$, so the supremum is finite and $\|L_j^{\varepsilon}\|_{H^k \to H^{k-2}}$ is of order ε^2 .

We are ready to state and prove our main results:

Theorem 1.4. Fix k so that $k-2 \ge 0$, then there exist ε_0 small so that for $0 < |\varepsilon| < \varepsilon_0$, a solution of the form $u_0 = u_*(\cdot) + w$ to (1.8) exists, here $w = w(\varepsilon) \in H^k_{even}(\mathbb{R})$ is an ε -dependent perturbation term such that $||w(\varepsilon)||_{H^2} = O(\varepsilon^2)$ as $\varepsilon \to 0$, and u_* is the unique solution to

$$du_*'' - u_* + u_*^2 = 0$$

which decays at both ends of the real line: $u_*(\pm \infty) = \lim_{x \to \pm \infty} u_*(x) = 0$.

Proof. We assume $a_{101} = -1$, $a_{200} = 1$ after possibly another rescaling Let $u_0 = u_* + w$ where u_* is the unique bounded solution of the equation $du'' - u + u^2 = 0$ satisfies $u_*(\pm \infty) = 0$. We determine the equation satisfied by w:

Substitute $u_0 = u_* + w$, subtract the equation $0 = du''_* - u_* + u^2_*$ from equation (1.8), we have

$$0 = (M^{\varepsilon} - d)v''_* + M^{\varepsilon}w'' - w + 2u_*w + w^2 + \mathcal{R}$$

where \mathcal{R} contains all the " ε^2 term"

$$\mathcal{R} = \mathcal{R}(u_0, \psi(u_0, \varepsilon); \varepsilon) = \varepsilon^{-2} L_{0h}^{\varepsilon} \psi(u_0, \varepsilon) + a_{011} [-(L_{hh}^{\varepsilon})^{-1} L_{h0}^{\varepsilon} u_0 + \psi(u_0, \varepsilon)]$$

$$+ a_{020} [-(L_{hh}^{\varepsilon})^{-1} L_{h0}^{\varepsilon} u_0 + \psi(u_0, \varepsilon)]^2 + a_{110} u_0 [-(L_{hh}^{\varepsilon})^{-1} L_{h0}^{\varepsilon} u_0 + \psi(u_0, \varepsilon)]$$

$$+ \varepsilon^2 R_1(u_0, \psi(u_0, \varepsilon); \varepsilon)$$

Now precondition the operator $(M^{\varepsilon})^{-1}$ to both sides of this equation:

$$0 = (1 - d(M^{\varepsilon})^{-1})u_*'' + w'' - (M^{\varepsilon})^{-1}(w - 2u_*w - w^2) + (M^{\varepsilon})^{-1}\mathcal{R},$$

We write the term $-(M^{\varepsilon})^{-1}(w-2u_*w-w^2)$ as $(-d^{-1}+d^{-1}-(M^{\varepsilon})^{-1})(w-2u_*w-w^2)$, and the equation becomes

$$0 = w'' - d^{-1}(w - 2u_*w - w^2) + (d^{-1} - (M^{\varepsilon})^{-1})(w - 2u_*w - w^2 + du_*'') + (M^{\varepsilon})^{-1}\mathcal{R}$$
(1.9)

We denote the right hand side of (1.9) as $F(w,\varepsilon)$, and the plan is to set up an Newton iteration scheme to solve the equation $F(w,\varepsilon) = 0$ for w in terms of ε as a fixed point point problem.

As in lemma 1.2, we plan to do the following:

- $||F(0,\varepsilon)||_{H^{k-2}} \to 0$ as $\varepsilon \to 0$.
- $D_wF(0,\varepsilon):H^k_{even}\to H^{k-2}_{even}$ is invertible with uniform bounds in ε on the inverse.
- (i) To show the continuity condition $||F(0,\varepsilon)||_{H^{k-2}} \to 0$ as $\varepsilon \to 0$ holds, we plug in w=0, and get:

$$F(0,\varepsilon) = (d^{-1} - (M^{\varepsilon})^{-1})du''_* + (M^{\varepsilon})^{-1}\mathcal{R}$$

since $\|d^{-1} - (M^{\varepsilon})^{-1}\|_{H^k \to H^{k-2}} = \|\mathcal{J}^{\varepsilon}\|_{H^2 \to L^2} = O(\varepsilon^2)$, we focus on \mathcal{R} ,

First, the remainder $\varepsilon^2 \| (M^{\varepsilon})^{-1} R_1 \|_{H^{k-2}}$ is of order ε^2 , just because $(M^{\varepsilon})^{-1}$ is uniformly bounded from $H^k \to H^{k-2}$.

To estimate $\varepsilon^{-2}(M^{\varepsilon})^{-1}L_{0h}^{\varepsilon}\psi(u_*+w,\varepsilon)$, we write it as

$$\varepsilon^{-2} \mathcal{J}^{\varepsilon} L_{0h}^{\varepsilon} \psi(u_* + w, \varepsilon) + \varepsilon^{-2} d^{-1} L_{0h}^{\varepsilon} \psi(u_* + w, \varepsilon)$$

for the first summand, we have

$$\|\varepsilon^{-2}\mathcal{J}^{\varepsilon}L_{0b}^{\varepsilon}\psi(u_*+w,\varepsilon)\|_{H^{k-2}} \leq \|\mathcal{J}^{\varepsilon}\|_{H^{k}\to H^{k-2}} \|\|L_{0b}^{\varepsilon}\|_{H^{k}\to H^{k}} \|\varepsilon^{-2}\psi\|_{H^{k}} = O(\varepsilon^2)$$

since $\|\psi\|_{H^k} = O(\varepsilon^2)$ by lemma (1.2);

while for the second summand, use lemma (1.3) (iii), we have

$$\|d^{-1}\varepsilon^{-2}L_{0h}^{\varepsilon}\psi\|_{H^{k-2}} \le d^{-1}\|L_{0h}^{\varepsilon}\|_{H^{k}\to H^{k-2}}\|\varepsilon^{-2}\psi\|_{H^{k}} = O(\varepsilon^{2})$$

the other terms are dealt similarly, note when estimating the H^{k-2} norm of the nonlinear term $\|-(L_{hh}^{\varepsilon})^{-1}L_{h0}^{\varepsilon}(u_*+w)+\psi(u_*+w,\varepsilon)]^2\|_{H^{k-2}}$, we use the fact that H^k embedds into L^{∞} , if we denote the term $-(L_{hh}^{\varepsilon})^{-1}L_{h0}^{\varepsilon}(u_*+w)+\psi(u_*+w,\varepsilon)$ by A, then

$$||(M^{\varepsilon})^{-1}[A]^{2}||_{H^{k-2}} \leq ||(M^{\varepsilon})^{-1} - d^{-1}||_{H^{k} \to H^{k-2}} ||A^{2}||_{H^{k}} + d^{-1}||A^{2}||_{H^{k-2}}$$

$$\leq ||\mathcal{J}^{\varepsilon}||_{H^{k} \to H^{k-2}} ||A||_{H^{k}}^{2} + d^{-1}||A||_{\infty} ||A||_{H^{k-2}}$$

and $||A||_{H^{k-2}}$ is $O(\varepsilon^2)$ because since $||\psi||_{H^{k-2}}$ is $O(\varepsilon^2)$ and

$$\|-(L_{hh}^{\varepsilon})^{-1}L_{h0}^{\varepsilon}(u_*+w)\|_{H^{k-2}} \leq \|-(L_{hh}^{\varepsilon})^{-1}\|_{H^{k-2}\to H^{k-2}}\|L_{h0}^{\varepsilon}\|_{H^k\to H^{k-2}}\|u_*+w\|_{H^{k-2}}.$$

Therefore we see $\|[-(L_{hh}^{\varepsilon})^{-1}L_{h0}^{\varepsilon}(u_*+w)+\psi(u_*+w,\varepsilon)]^2\|_{H^{k-2}}$ is of $O(\varepsilon^2)$ as well, similarly we have the same estimate for the term $u_0[-(L_{hh}^{\varepsilon})^{-1}L_{h0}^{\varepsilon}(u_*+w)+\psi(u_*+w,\varepsilon)]$.

(ii) We check F is continuously differentiable in w, first note the term

$$(M^{\varepsilon})^{-1}\mathcal{R} = (M^{\varepsilon})^{-1}\mathcal{R}(u_*, \psi(u_* + w, \varepsilon); \varepsilon)$$

is smooth in w simply because R_1 is smooth in all its variables, and $\psi(u_0, \varepsilon)$ is smooth in u_0 by lemma 1.2, and L_i^{ε} are just linear operators.

Then we only need to find the derivative of the term

$$\tilde{F}(w,\varepsilon) = w'' - d^{-1}(w - 2u_*w - w^2) + \mathcal{J}^{\varepsilon}(w - 2u_*w - w^2 + du_*'')$$

we compute the Frechet derivative, for $h \in H^k$, we find

$$D_w \tilde{F}(w,\varepsilon)h := h'' - d^{-1}(h - 2(u_* + w)h) - 2\mathcal{J}^{\varepsilon}(u_* + w)h$$

we have:

$$\|\tilde{F}(w+h,\varepsilon) - \tilde{F}(w,\varepsilon) - D_w \tilde{F}(w,\varepsilon)h\| = O(\|h\|^2)$$

So $D_w F(w,\varepsilon): H^k \to H^{k-2}$ is given by

$$D_w F(w,\varepsilon)h = h'' - d^{-1}(h - 2(u_* + w)h) - 2\mathcal{J}^{\varepsilon}(u_* + w)h + (M^{\varepsilon})^{-1}D_w \mathcal{R}$$

The continuity of $D_w F(w, \varepsilon)$ in w follows from the following: Since \mathcal{R} is smooth in w, we only need to check \tilde{F} is continuously differentiable in w, for $h \in H^k$ with $||h||_{H^k} = 1$, we have:

$$\begin{split} \|D_{w}\tilde{F}(w_{1},\varepsilon)h - D_{w}\tilde{F}(w_{2},\varepsilon)h\|_{H^{k-2}} &= \|2d^{-1}h(w_{1} - w_{2}) - \mathcal{J}^{\varepsilon}2h(w_{1} - w_{2})\|_{H^{k-2}} \\ &\leq \|2d^{-1}h(w_{1} - w_{2})\|_{H^{k-2}} + \|\mathcal{J}^{\varepsilon}\|_{H^{k} \to H^{k-2}} \|2h(w_{1} - w_{2})\|_{H^{k}} \\ &\leq (d^{-1} + \|\mathcal{J}_{\varepsilon}\|_{H^{k} \to H^{k-2}}) \|2h(w_{1} - w_{2})\|_{H^{k}} \\ &\leq C\|h\|_{H^{k}} \|w_{1} - w_{2}\|_{H^{k}} = C\|w_{1} - w_{2}\|_{H^{k}} \end{split}$$

where again we used the fact that H^k is an algebra. We therefore conclude that $D_w F(w, \varepsilon)$ is continuous in w.

Finally we claim that the remainder term \mathcal{R} satisfies

$$\|(M^{\varepsilon})^{-1}D_w\mathcal{R}(u_*+w,\psi(u_*+w,\varepsilon);\varepsilon)\|_{H^k\to H^{k-2}}=O(\varepsilon^2)$$

as $\varepsilon \to 0$.

To see this, recall from lemma 1.2 we have that

$$||D_u\psi(u_*+w,\varepsilon)||_{H^k\to H^k}$$

is $O(\varepsilon^2)$ as well, hence, for the first term in $(M^{\varepsilon})^{-1}D_w\mathcal{R}$, which is $\varepsilon^{-2}(M^{\varepsilon})^{-1}L_{0h}^{\varepsilon}D_u\psi(u_*+w,\varepsilon)$ we have

$$\|(M^{\varepsilon})^{-1}L_{0h}^{\varepsilon}\varepsilon^{-2}D_{u}\psi(u_{*}+w,\varepsilon)\|_{H^{k}\to H^{k-2}}$$

$$\leq \|\mathcal{J}^{\varepsilon}\|_{H^{k}\to H^{k-2}}\|L_{0h}^{\varepsilon}\|_{H^{k}\to H^{k}}\|\varepsilon^{-2}D_{u}\psi\|_{H^{k}\to H^{k}}+d^{-1}\|L_{0h}^{\varepsilon}\|_{H^{k}\to H^{k-2}}\|\varepsilon^{-2}D_{u}\psi\|_{H^{k}\to H^{k}}$$

$$= O(\varepsilon^{2})$$

this is essentially the same estimate we did to show $\|\mathcal{R}\|_{H^k} = O(\varepsilon^2)$, the other terms in \mathcal{R} is dealt similarly.

(iii) Now, by above estimate, we find $D_w F$ is continuous at $(w, \varepsilon) = (0, 0)$, therefore we have $D_w F(0, 0) h = h'' - d^{-1}(h - 2u_*h) := Lh$, we show this is an invertible operator from $H_{even}^k \to H_{even}^{k-2}$. This will show that $D_w F(0, \varepsilon)$ is invertible with inverse bounded uniformly in ε as $\varepsilon \to 0$.

To show the invertibility I show first that the kernel of L consists of bounded solutions (since $H^k(\mathbb{R})$ functions are bounded continuous by embedding) for the differential equation $dh'' - h + 2u_*h = 0$.

This equation is satisfied by the function $v'_*(x)$, and we claim that it is the unique element which spans the kernel of L, to see this, we rewrite the equation as a nonautonoumous linear first order system

$$\dot{Y}(x) = A(x)Y(x)$$
, with $Y(x) = \begin{pmatrix} h(x) \\ h'(x) \end{pmatrix}$ and $A(x) = \begin{pmatrix} 0 & 1 \\ d^{-1}(1 - 2u_*(x)) & 0 \end{pmatrix}$

Now, as A(x) converges to the hyperbolic matrix $A_{\infty} = \begin{pmatrix} 0 & 1 \\ d^{-1} & 0 \end{pmatrix}$ as $x \to \pm \infty$, by the robustness of exponential dichotomy, we see A(x) possess an exponential dichotomy on \mathbb{R}^+ and \mathbb{R}^- , let E_+^s denote

the image of the stable projection of the exponential dichotomy on \mathbb{R}^+ and E^u_- denote the unstable projection of the exponential dichotomy on \mathbb{R}^- . The kernel of L is isomorphic to $E^s_+ \cap E^u_-$, but E^u_- and E^s_+ are one-dimensional since the stable and unstable eigenspace of A_∞ are both 1, hence the kernel is at most one-dimensional, since u'_* already lies in the kernel, we see the dimension of the kernel is exactly one.

We show that L is Fredholm with index zero from H_{even}^k to H_{even}^{k-2} , by writing it as the compact perturbation of an invertible operator: write

$$dLh = (dh'' - h) + (2u_*)h := L_1h + L_2h,$$

We need to show $L_2: h \mapsto (2u_*)h$ is compact: write L_2h as the limit of $2\chi_{(-L,L)}(x)u_*(x)h(x) := K_Lh$ as $L \to \infty$, and show that K_L is compact. Note first $H^k(\mathbb{R})$ functions continuously differentiable by Sobolev embedding, so if h_i is a bounded sequence in H^k , they are in particular a bounded sequence in C^1 , then we need to show K_Lh_i possess a convergent subsequence, but h_i has an convergence subsequence on [-L, L] since it is a compact interval where h_i has continuous hence bounded derivative, so by Arezela-Ascoli, we see K_L is compact from H^k to H^k , finally $K_L \to L_2$ in operator norm since

$$\sup_{x \in \mathbb{R}} |2u_*(x)\chi_{(-L,L)}(x) - 2u_*(x)| \to 0$$

as $L \to \infty$ because $u_*(x) \to 0$ as $x \to \pm \infty$. Hence L_2 is the limit of the sequence of compact operators K_L in the operator norm, we conclude that L_2 is compact.

Then we need to show the second order differential operator $L_1h = dh'' - h$ is invertible as an operator from the space $H_{even}^k \to H_{even}^{k-2}$, simply solve this equation in the Fourier side:

$$-(1+d\ell^2)\hat{h}(\ell) = \hat{f}(\ell)$$

we get $h = \mathcal{F}^{-1}\{-(1+d\ell^2)^{-1}\hat{f}\}$, this is clearly bounded from H_{even}^{k-2} to H_{even}^k and is an inverse for L_2 .

With these facts of L_1 and L_2 , we conclude that L is Fredholm with zero index from H_{even}^k to H_{even}^{k-2} since the kernel consists precisely of the odd function u'_* , it is invertible from H_{even}^k to H_{even}^{k-2} .

Finally we claim $D_w F(0,\varepsilon)$ is continuous at $\varepsilon = 0$, indeed, a simple calculation shows $D_w F(0,\varepsilon) = L + \mathcal{J}^{\varepsilon} u_* h + (M^{\varepsilon})^{-1} D_w \mathcal{R}$, which is an ε^2 perturbation of L, so for ε small, we conclude that $D_w F(0;\varepsilon)^{-1}$ exists and is uniformly bounded by some constant independent of ε .

(iv) Here we set up our Newton iteration scheme again, this is analogous to lemma 1.2, we introduce a map $S(\cdot;\varepsilon):H^k\to H^k$ as

$$S(w;\varepsilon) = w - D_w F(0;\varepsilon)^{-1} [F(w;\varepsilon)]$$

based on previous calculation, we have

$$||S(0;\varepsilon)||_{H^k} \le ||D_w F(0;\varepsilon)^{-1}||_{H^{k-2}_{even} \to H^k_{even}} ||F(0;\varepsilon)||_{H^{k-2}_{even}} = O(\varepsilon^2)$$

as $\varepsilon \to 0$.

Also, S is continuously differentiable in w, and $D_wS(0;\varepsilon)=0$ by definition of S, hence, there exists $\tilde{\delta}$ and a constant \tilde{C} such that if $\|w\|_{H^k} \leq \tilde{\delta}$, then $\|D_wS(w;\varepsilon)\| \leq \tilde{C}\tilde{\delta}$, simply by continuity of $D_wS(w;\varepsilon)$ in w.

Then, we set up the iteration:

$$w_{n+1} = S(w_n; \varepsilon)$$

exactly as in lemma 1.2, again for ε small S maps $B_{\tilde{\delta}} \subset H^k(\mathbb{R})$ into itself and is a contraction, and we find $w = w(\varepsilon) = \lim_{n \to \infty} w_n$ and $w(\varepsilon) = S(w(\varepsilon); \varepsilon)$, so $F(w(\varepsilon); \varepsilon) = 0$ and $||w(\varepsilon)|| = O(\varepsilon^2)$, which is the desired properties.