Theory of Computing

Sudhan Chitgopkar

January 26, 2021

Contents

1	01.26.21							
	1.1	Closure Introduction	3					
	1.2	Closure Continued	3					
	1.3	Closure Properties of DFAs	3					
	1.4	Applying Closure Properties	4					
		1.4.1 Premise:	4					
		1.4.2 Coding	4					
		1.4.3 Conclusion	5					
2	01.21.21 5							
	2.1	Deterministic Finite Automata	5					
	2.2	Aside: On Σ and Σ^*	6					
	2.3	Recursively Testing 101	6					
		2.3.1 TODO Complete Recursion Sequence	7					
3	01.19.21							
	3.1	Tuples & DFAs	7					
	3.2	Domains & Codomains	7					
	3.3	Strings	7					
	3.4	TODO Review Recursive Definitions	8					
	3.5	Languages	8					
4	01.14.21							
	4.1	Automaton (automata)	9					
	4.2	·	9					
		4.2.1 Mathematicians & History	9					
			10					
	4.3	1 0	10					

4.4	Functions	10
4.5	\ensuremath{TODO} Types of Functions - Definition & Logical Statement .	11
4.6	Finite Automaton (Finite State Machine)	11

$1 \quad 01.26.21$

1.1 Closure Introduction

- \bullet The language recognized by a DFA, M, (L(M)) is the set of all string accepted by M
- Thus, $M = (Q, \Sigma, \delta, q_0, F)$
- And Σ^* is the universe of all possible inputs to M
- \forall strings $w \in \Sigma^*$, M either accepts or rejects w
- It follows that $L(M) \subset \Sigma^*$
- And $\neg L(M) = \Sigma^* L(M)$
- \bullet Therefore, M accepts every string in L(M) and rejects everything in \neg L(M)

1.2 Closure Continued

- A set, A, is closed under a binary operation, OP, if \forall x , y \in A [x OP y \in A]
- Ex. Natural Numbers (N)
 - 1. \mathbb{N} is closed under +
 - 2. \mathbb{N} is closed under \times
 - 3. \mathbb{N} is not closed under -
 - 4. \mathbb{N} is not closed under \setminus
- \bullet The class of all languages that are recognized by DFAs is closed under \cup

1.3 Closure Properties of DFAs

- Union (\cup)
- Intersection (\cap)
- Complement (\neg)
- Reverse

1.4 Applying Closure Properties

- If $L(M_1) \cup L(M_2)$ are DFAs, then \exists DFA, M, with $L(M) = L(M_1) \cup L(M_2)$
- The purpose of a state machine is to make a yes/no decision

1.4.1 Premise:

- $M_1 = \{Q_1, \Sigma, \delta_1, q_{0_1}, F_1\}$ and M_2 are DFAs
- M₁ accepts binary strings ending in 1
- M₂ accepts binary strings of odd length
- $L(M) = L(M_1) \cup L(M_2)$
 - Accepts binary strings that either end in 1 OR have odd length (or both)
- M_1 : q_1 , q_2 distinguished between ending in 0 and 1
- \bullet M₂: r₁, r₂ distinguished between odd and even length
- Accordingly, M must be able to distinguish between:
 - even length ending in 1
 - even length ending in 0
 - odd length ending in 1
 - odd length ending in 0

1.4.2 Coding

- $\bullet \ \ Consider \ Q = Q_1 \cdot Q_2 = \{q_1r_1, q_2r_1, q_1r_2, q_2r_2\}$
- wherein
 - $-q_1r_1 = \text{even string ending in } 0$
 - $q_1 r_2 = odd string ending in 0$
 - $-q_2r_1 = \text{even string ending in } 1$
 - $q_2 r_2 = odd string ending in 1$
- Ex. $\delta(q_1r_1,1) = q_1r_2$

• Applying this logic to a DFA, we know that

$$\begin{split} &- \ Q = \{q1r1,q1r2,q2r1,q2r2\}; \\ &- \ S = \{0,1\}; \\ &- \ d:Q \ \backslash *sigma \to Q; \\ &- \ d(q1r1,0) = q1r2; \\ &- \ d(q1r1,1) = q2r2; \\ &- \ d(q1r2,0) = q1r1; \\ &- \ d(q1r2,1) = q2r1; \\ &- \ d(q2r1,0) = q1r2; \\ &- \ d(q2r1,1) = q2r2; \\ &- \ d(q2r2,0) = q1r1; \\ &- \ d(q2r2,1) = q2r1; \\ &- \ q0 = q1r1; \\ &- \ F = \{q1r2,q2r1,q2r2\}; \end{split}$$

1.4.3 Conclusion

- Construct M and show that $L(M) = L(M_1) \cup L(M_2)$.
- $\bullet \ \mathrm{Q} = \mathrm{Q}_1 \cdot \mathrm{Q}_2$
- let $q_i \in Q_1$ and let $r_j \in Q_2.$ and let $c \in \Sigma$
- and $q_i r_i \in Q$
- thus, $\delta(q_i r_i, c) = \delta_1(q_i, c) \delta_2(r_i, c)$

$2 \quad 01.21.21$

2.1 Deterministic Finite Automata

- We know that $\delta = Q \times \Sigma \to Q_2$
- We want a function that takes a starting state and a string, then returns the state after the machine has read that string
- Let's define $\delta^* = Q \times \Sigma^* \to Q$
 - $-\delta^*$ takes a state and a string

- δ takes a state and a symbol
- Now, we need a recursive definition
 - Base case:

* Let
$$q_i \in Q$$

$$* \delta^*(q_i, \epsilon) = q_i$$

- Recursive step:

* If
$$q_i \in Q$$
, $w \in \Sigma^*$, and $c \in \Sigma$

* then
$$\delta^*(q, w \cdot c) = \delta(\delta^*(q_i, w), c)$$

2.2 Aside: On Σ and Σ^*

• Σ^* is the universe of all strings over Σ

$$-\Sigma = \{0,1\}$$

$$- \Sigma^* = \{\epsilon, 0, 1, 00, 01, 11, 10, 000, \dots\}$$

- We can see this recursively
 - Base step: $\epsilon \in \Sigma^*$
 - Recursive step:
 - Let $w \in \Sigma^*$, let $c \in \Sigma$
 - Then $w \times c \in \Sigma^*$
- We can see this recursion graphically

W	$^{\mathrm{c}}$	$\mathbf{w} \cdot \mathbf{c}$	step
ϵ		-	base
ϵ	1	1	recursive
1	0	10	recursive
10	1	101	recursive

2.3 Recursively Testing 101

- Solve $\delta^*(q_1, 101)$
- $\delta(\delta^*(q_1,10),1)$
- $\delta^*(q_1,10)$
- $\delta(\delta^*(q_1,1),0)$

2.3.1 TODO Complete Recursion Sequence

$3 \quad 01.19.21$

3.1 Tuples & DFAs

- Tuples are sequences which are always finite in length
- The deterministic finite automaton shown is a 5-tuple:
 - 1. Q: finite nonempty set of states
 - state: configuration of logic of a machine
 - 2. Σ (Sigma) input alphabet
 - alphabet: a finite, nonempty set of symbols where symbols are an object of length 1
 - 3. δ (Delta) transition function
 - 4. $Q_0 \in Q$ starting state
 - 5. F \subset Q set of final states
- For this deterministic finite automaton,

$$-\delta: \mathbb{Q} \times \Sigma \to \mathbb{Q}_2$$

Represented as a table,

Step	State	Input	Transition
1	Q_1	1	$Q_1 \to Q_2$
2	Q_2	0	$Q_2 \to Q_1$
3	Q_1	1	$Q_1 \to Q_2$
4	Q_2	1	$Q_2 \to Q_2$

3.2 Domains & Codomains

- Domain: set of all possible function inputs
- Codomain: set of all possible outputs

3.3 Strings

- In computer science, strings are character arrays
- In mathematics, strings are sequences of symbols

- Specifically a string over an alphabet, Σ , is a sequence of symbols belonging to Σ
- ϵ is the empty string
- Concatenation: If $w_1, w_2 \in \Sigma, w_1 \cdot w_2 = w_1 w_2$
- If $c \in \Sigma$, then $\epsilon \cdot c = c \cdot \epsilon = c$

3.4 TODO Review Recursive Definitions

- Base step: a step that can not be broken down any further, a fact that is always true regardless of the input
- Recursive step:
- Defining the length of a string over Σ
 - Base: $|\epsilon| = 0$
 - Recursive:
 - * let w be a string over Σ , and $c \in \Sigma$
 - * then $|\mathbf{w} \cdot \mathbf{c}| = |\mathbf{w}| + 1$
- Using this to define |1011|,
 - 1. $|1011| = |101 \cdot 1| = |101| + 1 =$
 - 2. $|10 \cdot 1| + 1 = |10| + 1 + 1 =$
 - 3. $|1 \cdot 0| + 1 + 1 = |1| + 1 + 1 + 1 =$
 - 4. $|\epsilon \cdot 1| + 1 + 1 + 1 =$
 - 5. $|\epsilon| + 1 + 1 + 1 + 1 =$
 - 6. 0+1+1+1+1=4

3.5 Languages

- Languages over Σ a set of finite strings over Σ
- \bullet Langauges recognized by an automaton, M, L(M) is the language accepted by M
- \emptyset is the empty language
- $\epsilon \neq \emptyset$

- $\epsilon \neq \{\epsilon\}$
- ϵ is not a symbol in any alphabet

$4 \quad 01.14.21$

4.1 Automaton (automata)

- Self running machine requiring a continuous power source
 - Historically used power sources include water, steam, and electricity
- Course revolves around defining the mathematics powering machines

4.2 The Mathematics of Automata

4.2.1 Mathematicians & History

- Cantor defines sets as collections of objects
- Cantor also argues that infinites can be of different magnitudes there are infinitely more real numbers than natural numbers
- Goedel eventually derives his incompleteness theorem
 - No logical system that contains the natural numbers can prove its own soundness
 - Every sound logical system containing the natural numbers contains valid statements that cannot be proved or disproved
- In 1936, Turing proves The Halting Problem is not decidable, it is impossible
 - The Halting Problem is an algorithm that can analyze any other algorithm and determine whether or not it goes into an infinite loop
- Turing creates the turing machine as an object consisting of sets and processes wherein the object can use any finite process to complete an action.
- Turing machine sets the basis for a computer, which leads to a series of important questions:

- What can & can't a machine do?
- What does it mean for a problem of be harder than another?
- What does it mean for a machine to be more powerfule than another?

4.2.2 Sequential Logic

- Sentential Logic- based on boolean results
 - Predicated on AND, OR, NOT
 - XOR, XAND, etc. can be derived using the above

4.3 Necessary Review

- Textbook Ch. 0
- Logic Statements
- Set Theory
- Functions

4.4 Functions

- Functions something that maps objects from one set to another
- Given $f: a \to b$;
 - Everything in a is mapped to something in b
 - * For every x, such that x is an element of a, there exists a y, such that y is an element of b
 - No one point in the domain can be mapped to two different points in the codomain
 - * Logically, you can't have a function that takes in one input and returns two different outputs
 - * If f maps $x \to y1$ and y2, y1 = y2
 - $\text{-}\forall~x\in A~y_1,\!y_2\in B~[f(x){=}y_1~\wedge~f(x){=}y_2~\rightarrow~y_1~=~y_2]$

4.5 TODO Types of Functions - Definition & Logical Statement

- Injective Functions
- Surjective Functions
- Proof by Induction (\forall)
- Proof by Contradiction $(\neg \exists)$

4.6 Finite Automaton (Finite State Machine)

- States are logical confirgurations
- States are generally based upon input
- Purpose of a state machine is to make a yes/no decision