Applying our knowledge to enzymes:

Invertase (\beta-fructofuranosidase)

What about (common) reversible chemistry?

$$E + S \stackrel{k_1}{\rightleftharpoons} ES \stackrel{k_2}{\rightleftharpoons} P + E$$

$$\Rightarrow v = \frac{\frac{V_{\text{max}}[S]}{K_M^S} - \frac{V_{\text{max}}[P]}{K_M^P}}{1 + \frac{[S]}{K_M^S} + \frac{[P]}{K_M^P}}$$

And for initial $v_0 \Rightarrow [P] = 0$:
Michaelis Menten!

$$V_{\text{max}}^f = k_2[E]_T$$
 $V_{\text{max}}^r = k_{-1}[E]_T$
 $K_M^S = \frac{k_{-1} + k_2}{k_1}$ $K_M^P = \frac{k_{-1} + k_2}{k_{-2}}$

$$[E]_T = [E] + [ES]$$

@ equilibrium: v = 0

$$K_{\text{eq}} = \frac{[P]_{\text{eq}}}{[S]_{\text{eq}}} = \frac{V_{\text{max}}^f K_M^P}{V_{\text{max}}^r K_M^S}$$

Haldane relationship

What if there are still more reversible steps?

$$E + S \stackrel{k_1}{\rightleftharpoons} ES \stackrel{k_2}{\rightleftharpoons} EP \stackrel{k_3}{\rightleftharpoons} P + E$$

While $[S]_0$ and $[P]_0$ can be manipulated under steady-state conditions, the resulting equations do not allow to solve for all six (or even more) unknown constants

 \Rightarrow we have to look into the black box!

In addition, steady-state kinetic measurements:

- > only yield phenomenology, not mechanism
- > cannot unambiguously establish a mechanism
- > can only rule out some alternative mechanisms

Case in point -- The hairpin ribozyme: Reversible domain docking is a crucial step on the reaction pathway

Docked (Active) Docked (Active)

Undocked (Inactive)

Undocked (Inactive)

We measured docking rate constants by single molecule FRET

Kinetic modeling then allowed us to extract the unobservable reversible chemistry rate constants

