Math.Abs Method:

In Mathematics, The Absolute Value Or Modulus Of A Real Number

Method	Definition	Example
Abs(Decimal)	Returns the absolute value of a Decimal number.	Abs(-12.69) = 12.69
Abs(Double)	Returns the absolute value of a double-precision	Abs(-19.069713) = 19.069713 Abs(-1.5058E+19) = 1.5058E+19
Abs(Int16)	Returns the absolute value of a 16-bit signed integer.	Abs(-32768)=#Error Abs(-1476) = 1476
Abs(Int32)	Returns the absolute value of a 32-bit signed integer.	Abs(-777777) = 777777 Abs (-2147483648)=#Error
Abs(Int64)	Returns the absolute value of a 64-bit signed integer.	Abs(-5555555) = 5555555 Abs(-9223372036854775808)=#Err
Abs(SByte)	Returns the absolute value of an 8-bit signed integer.	Abs(125) = 125 Abs(128)=#Error
Abs(Single)	Returns the absolute value of a single-precision floating-point number.	Abs(-3.402823E+38) =3.402823E+38

Math.Ceiling Method

Method	Definition	Example
Ceiling(Double)	Returns the smallest integral value	Math.Ceiling(6.03)=7
	based on data type range	Math.Ceiling(6.64)=7
		Math.Ceiling(0.03)=1
		Math.Ceiling(-6.03)=-6
		Math.Ceiling(-6.93)=-6
Ceiling(Decimal)	Returns the smallest integral value	Math.Ceiling(6.03)=7
	based on data type range	Math.Ceiling(6.64)=7
		Math.Ceiling(0.03)=1
		Math.Ceiling(-6.03)=-6
		Math.Ceiling(-6.93)=-6

Math.Floor Method

Method	Definition	Example
Floor(Double)	Returns the largest integral value based	Math.Floor(6.03)=6
	on data type range	Math.Floor(6.64)=6
		Math.Floor(0.03)=0
		Math.Floor(-6.03)=-7
		Math.Floor(-6.93)=-7
Floor(Decimal)	Returns the largest integral value based	Math.Floor(6.03)=6
	on data type range	Math.Floor(6.64)=6
		Math.Floor(0.03)=0
		Math.Floor(-6.03)=-7
		Math.Floor(-6.93)=-7

Math.Exp(Double) Method:

Returns e raised to the specified power. The number e raised to the power d. If d equals NaN or PositiveInfinity, that value is returned. If d equals NegativeInfinity, 0 is returned.e is a mathematical constant whose value is approximately 2.71828.

Method	Definition	Example
Exp (double d);	Returns e raised to the specified power.	Math.Exp(0.1 + 1.2) == 3.6692966676192444E+000

Math.Log Method:

Returns the logarithm of a specified number.

Method	Definition	Example
Log(double d);	Returns the logarithm of a specified	Math.log(1)=0;
	number.	