

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

MSC INTERNAL NOTE NO. 68-FM-166

October 4, 1968

FACILITY FORM 602	(ACCESSION NUMBER)	1170 35840	(THRU)
	124 (PAGES)	1	(CODE)
TMX-64482 (NASA CR OR TMX OR AD NUMBER)	07	(CATEGORY)	

BIAS EFFECTS ON POSTFLIGHT DATA

Mathematical Physics Branch

MISSION PLANNING AND ANALYSIS DIVISION

MANNED SPACECRAFT CENTER
HOUSTON, TEXAS

MSC INTERNAL NOTE NO. 68-FM-166

PROJECT APOLLO
BIAS EFFECTS ON POSTFLIGHT DATA

By Richard K. Osburn and Gary A. Ransford
Mathematical Physics Branch

October 4, 1968

MISSION PLANNING AND ANALYSIS DIVISION
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
MANNED SPACECRAFT CENTER
HOUSTON, TEXAS

Approved:

James C. McPherson, Chief
Mathematical Physics Branch

Approved:

John P. Mayer, Chief
Mission Planning and Analysis Division

FIGURES

Figure		Page
1	Ground track of the second revolution of the Apollo 5 mission	3
2	Residual patterns in USB data from the Carnarvon tracking station	
(a)	X_{30} angle residuals for -.0005-degree perturbation of longitude	4
(b)	Y_{30} angle residuals for -.0005-degree perturbation of longitude	5
(c)	Range residuals for -.0005-degree perturbation of longitude	6
(d)	Doppler residuals for -.0005-degree perturbation of longitude	7
(e)	X_{30} angle residuals for -.0005-degree perturbation of latitude	8
(f)	Y_{30} angle residuals for -.0005-degree perturbation of latitude	9
(g)	Range residuals for -.0005-degree perturbation of latitude	10
(h)	Doppler residuals for -.0005-degree perturbation of latitude	11
(i)	X_{30} angle residuals for -50-foot perturbation of altitude	12
(j)	Y_{30} angle residuals for -50-foot perturbation of altitude	13
(k)	Range residuals for -50-foot perturbation of altitude	14
(l)	Doppler residuals for -50-foot perturbation of altitude	15
(m)	X_{30} angle residuals for -.025-second perturbation of time	16
(n)	Y_{30} angle residuals for -.025-second perturbation of time	17
(o)	Range residuals for -.025-second perturbation of time	18
(p)	Doppler residuals for -.025-second perturbation of time	19

Figure		Page
3	Residual patterns in USB data from the Guaymas tracking station	
	(a) X_{30} angle residuals for -.0005-degree perturbation of longitude	20
	(b) Y_{30} angle residuals for -.0005-degree perturbation of longitude	21
	(c) Range residuals for -.0005-degree perturbation of longitude	22
	(d) Doppler residuals for -.0005-degree perturbation of longitude	23
	(e) X_{30} angle residuals for -.0005-degree perturbation of latitude	24
	(f) Y_{30} angle residuals for -.0005-degree perturbation of latitude	25
	(g) Range residuals for -.0005-degree perturbation of latitude	26
	(h) Doppler residuals for -.0005-degree perturbation of latitude	27
	(i) X_{30} angle residuals for -50-foot perturbation of altitude	28
	(j) Y_{30} angle residuals for -50-foot perturbation of altitude	29
	(k) Range residuals for -50-foot perturbation of altitude	30
	(l) Doppler residuals for -50-foot perturbation of altitude	31
	(m) X_{30} angle residuals for -.025-second perturbation of time	32
	(n) Y_{30} angle residuals for -.025-second perturbation of time	33
	(o) Range residuals for -.025-second perturbation of time	34
	(p) Doppler residuals for -.025-second perturbation of time	35
4	Residual patterns in USB data from the Bermuda tracking station	
	(a) X_{30} angle residuals for -.0005-degree perturbation of longitude	36
	(b) Y_{30} angle residuals for -.0005-degree perturbation of longitude	37

Figure		Page
(c)	Range residuals for -.0005-degree perturbation of longitude	38
(d)	Doppler residuals for -.0005-degree perturbation of longitude	39
(e)	X_{30} angle residuals for -.0005-degree perturbation of latitude	40
(f)	Y_{30} angle residuals for -.0005-degree perturbation of latitude	41
(g)	Range residuals for -.0005-degree perturbation of latitude	42
(h)	Doppler residuals for -.0005-degree perturbation of latitude	43
(i)	X_{30} angle residuals for -50-foot perturbation of altitude	44
(j)	Y_{30} angle residuals for -50-foot perturbation of altitude	45
(k)	Range residuals for -50-foot perturbation of altitude	46
(l)	Doppler residuals for -50-foot perturbation of altitude	47
(m)	X_{30} angle residuals for -.025-second perturbation of time	48
(n)	Y_{30} angle residuals for -.025-second perturbation of time	49
(o)	Range residuals for -.025-second perturbation of time	50
(p)	Doppler residuals for -.025-second perturbation of time	51

5 Residual patterns in USB-data from the Ascension tracking station

(a)	X_{30} angle residuals for -.0005-degree perturbation of longitude	52
(b)	Y_{30} angle residuals for -.0005-degree perturbation of longitude	53
(c)	Range residuals for -.0005-degree perturbation of longitude	54
(d)	Doppler residuals for -.0005-degree perturbation of longitude	55
(e)	X_{30} angle residuals for -.0005-degree perturbation of latitude	56

Figure		Page
(f)	Y_{30} angle residuals for -.0005-degree perturbation of latitude	57
(g)	Range residuals for -.0005-degree perturbation of latitude	58
(h)	Doppler residuals for -.0005-degree perturbation of latitude	59
(i)	X_{30} angle residuals for -50-foot perturbation of altitude	60
(j)	Y_{30} angle residuals for -50-foot perturbation of altitude	61
(k)	Range residuals for -50-foot perturbation of altitude	62
(l)	Doppler residuals for -50-foot perturbation of altitude	63
(m)	X_{30} angle residuals for -.025-second perturbation of time	64
(n)	Y_{30} angle residuals for -.025-second perturbation of time	65
(o)	Range residuals for -.025-second perturbation of time	66
(p)	Doppler residuals for -.025-second perturbation of time	67

6 Residual patterns in USB data from the Merritt Island tracking station

(a)	X_{30} angle residuals for -.0005-degree perturbation of longitude	68
(b)	Y_{30} angle residuals for -.0005-degree perturbation of longitude	69
(c)	Range residuals for -.0005-degree perturbation of longitude	70
(d)	Doppler residuals for -.0005-degree perturbation of longitude	71
(e)	X_{30} angle residuals for -.0005-degree perturbation of latitude	72
(f)	Y_{30} angle residuals for -.0005-degree perturbation of latitude	73
(g)	Range residuals for -.0005-degree perturbation of latitude	74
(h)	Doppler residuals for -.0005-degree perturbation of latitude	75

Figure		Page
(i)	X_{30} angle residuals for -50-foot perturbation of altitude	76
(j)	Y_{30} angle residuals for -50-foot perturbation of altitude	77
(k)	Range residuals for -50-foot perturbation of altitude	78
(l)	Doppler residuals for -50-foot perturbation of altitude	79
(m)	X_{30} angle residuals for -.025-second perturbation of time.	80
(n)	Y_{30} angle residuals for -.025-second perturbation of time.	81
(o)	Range residuals for -.025-second perturbation of time.	82
(p)	Doppler residuals for -.025-second perturbation of time.	83
7	Residual patterns in USB data from the Hawaii tracking station	
(a)	X_{30} angle residuals for -.0005-degree perturba- tion of longitude	84
(b)	Y_{30} angle residuals for -.0005-degree perturba- tion of longitude	85
(c)	Range residual for -.0005-degree perturbation of longitude.	86
(d)	Doppler residual for -.0005-degree perturba- tion of longitude	87
(e)	X_{30} angle residuals for -.0005-degree per- turbation of latitude.	88
(f)	Y_{30} angle residuals for -.0005-degree perturbation of latitude.	89
(g)	Range residuals for -.0005-degree perturba- tion of latitude.	90
(h)	Doppler residuals for -.0005-degree perturba- tion of latitude.	91
(i)	X_{30} angle residuals for -50-foot perturbation of altitude	92
(j)	Y_{30} angle residuals for -50-foot perturbation of altitude	93
(k)	Range residuals for -50-foot perturbation of altitude	94

Figure		Page
(l)	Doppler residuals for -50-foot perturbation of altitude	95
(m)	X_{30} angle residuals for -.025-second perturbation of time	96
(n)	Y_{30} angle residuals for -.025-second perturbation of time	97
(o)	Range residuals for -.025-second perturbation of time	98
(p)	Doppler residuals for -.025-second perturbation of time	99
8	Residual patterns in USB data from the Texas tracking station	
(a)	X_{30} angle residuals for -.0005-degree perturbation of longitude	100
(b)	Y_{30} angle residuals for -.0005-degree perturbation of longitude	101
(c)	Range residuals for -.0005-degree perturbation of longitude	102
(d)	Doppler residuals for -.0005-degree perturbation of longitude	103
(e)	X_{30} angle residuals for -.0005-degree perturbation of latitude	104
(f)	Y_{30} angle residuals for -.0005-degree perturbation of latitude	105
(g)	Range residuals for -.0005-degree perturbation of latitude	106
(h)	Doppler residuals for -.0005-degree perturbation of latitude	107
(i)	X_{30} angle residuals for -50-foot perturbation of altitude	108
(j)	Y_{30} angle residuals for -50-foot perturbation of altitude	109
(k)	Range residuals for -50-foot perturbation of altitude	110
(l)	Doppler residuals for -50-foot perturbation of altitude	111

Figure	Page
(m) X_{30} angle residuals for -.025-second perturbation of time	112
(n) Y_{30} angle residuals for -.025-second perturbation of time	113
(o) Range residuals for -.025-second perturbation of time	114
(p) Doppler residuals for -.025-second perturbation of time	115

BIAS EFFECTS ON POSTFLIGHT DATA

By Richard K. Osburn and Gary A. Ransford

SUMMARY

A study was made to provide the postflight analyst with a means of correlating residual patterns in earth orbit unified S-band (USB) data with errors in station location or time tagging. To accomplish this, an arc of perfect data was generated. The station locations were then perturbed and residual plots based on the new locations were obtained. These plots, together with a knowledge of the geometry of the data arc, provide a means for the postflight analyst to identify the sources of many common residual patterns.

INTRODUCTION

The exclusive use of unified S-band data for coming Apollo missions has created a need to eliminate all inherent inaccuracies from the USB system. The major error sources in the system at present appear to be errors in time tagging the measurements and station locations. It is, thus, highly desirable that a means for identifying errors of these types be available.

The residual plot is one of the strongest tools of the postflight analyst. A residual is defined as $\phi - C$, where C is the computed value of an observable (range, X_{30} -angle, Y_{30} -angle, or Doppler) and ϕ is the value observed by the tracking radar. The computed value is obtained by the orbit determination program through the following process:

1. The epoch vector input to the program is integrated forward or backward in time to obtain a trajectory which includes all times at which data was obtained.
2. From the trajectory the position and velocity of the spacecraft is obtained at the time of each observation.
3. Utilizing the position and velocity information in addition to information on station position and the earth-moon-sun ephemerides, the computed value for the observable is obtained.

The residuals obtained by differencing the observed and computed values of the observables may then be used to correct the vehicle state vector. The residuals obtained from the converged state vector should be zero if all parameters and errors were known perfectly.

ANALYSIS

The second revolution of the Apollo 5 mission (AS-204/LM-1) was chosen as the reference trajectory for the study. Figure 1 is a ground-track of the second revolution. Noise-free data from the following USB 30-ft antennae were simulated using the MSC/TRW task A-132 orbit determination program, HOPE: Carnarvon, Guaymas, Bermuda, Ascension, Merritt Island, Hawaii, and Texas.

Of interest in the study were the effects of errors in station latitude, longitude, and height, and in data time. Computer runs were made with these parameters perturbed as follows:

1. Perturb the latitude of each station -0.0005° .
2. Perturb the longitude of each station -0.0005° .
3. Perturb the height of each station -50 ft.
4. Perturb the time tag of the data from each station by -0.025 seconds.

RESULTS AND CONCLUSIONS

Figures 2 through 8 present the results of the runs described in the previous paragraph, arranged by station. From these figures and a knowledge of the geometry involved in each pass, it should be possible for the analyst to correlate patterns in USB residuals with the errors which cause them. Note that positive biases on the parameters will result in plots which are mirror images about the time axes of those caused by the negative biases presented in the figures.

Figure 1.- Ground track of the second revolution of the Apollo 5 mission.

(a) X_{30} angle residuals for -.0005-degree perturbation of longitude.

Figure 2.- Residual patterns in USB data from the Carnarvon tracking station.

(b) Y₃₀ angle residuals for -.0005-degree perturbation of longitude.

Figure 2.- Continued.

(c) Range residuals for -.0005-degree perturbation of longitude.

Figure 2.- Continued.

(d) Doppler residuals for -.0005-degree perturbation of longitude.

Figure 2.- Continued.

(e) X_{30} angle residuals for ~.0005-degree perturbation of latitude.

Figure 2.- Continued.

(f) Y_{30} angle residuals for -.0005-degree perturbation of latitude.

Figure 2.-Continued..

(g) Range residuals for -.0005-degree perturbation of latitude.

Figure 2.- Continued.

(h) Doppler residuals for -.0005-degree perturbation of latitude.

Figure 2.- Continued.

(i) X_{30} angle residuals for -50-foot perturbation of altitude.

Figure 2.- Continued.

(j) Y_{30} angle residuals for -50-foot perturbation of altitude.

Figure 2.-Continued.

(k) Range residuals for -50-foot perturbation of altitude.

Figure 2:- Continued.

(I) Doppler residuals for -50-foot perturbation of altitude.

Figure 2.- Continued.

(m) X_{30} angle residuals for -.025-second perturbation of time.

Figure 2.- Continued.

(n) Y₃₀ angle residuals for -.025-second perturbation of time.

Figure 2.- Continued.

(o) Range residuals for -.025-second perturbation of time.

Figure 2.- Continued.

(p) Doppler residuals for -.025-second perturbation of time.

Figure 2.- Concluded.

(a) X_{30} angle residuals for -.0005-degree perturbation of longitude.

Figure 3.- Residual patterns in USB data from the Guaymas tracking station.

21

(b) Y_{30} angle residuals for -.0005-degree perturbation of longitude.

Figure 3.- Continued.

(c) Range residuals for -.0005-degree perturbation of longitude.

Figure 3.- Continued.

(d) Doppler residuals for -.0005-degree perturbation of longitude.

Figure 3.-Continued.

(e) X₃₀ angle residuals for -.0005-degree perturbation of latitude.

Figure 3.- Continued.

(f) Y_{30} angle residuals for -.0005-degree perturbation of latitude.

Figure 3.- Continued.

(g) Range residuals for -.0005-degree perturbation of latitude.

Figure 3.- Continued.

(h) Doppler residuals for -.0005-degree perturbation of latitude.

Figure 3.- Continued.

(i) X_{30} angle residuals for -50-foot perturbation of altitude.

Figure 3.- Continued.

(j) Y_{30} angle residuals for -50-foot perturbation of altitude.

Figure 3.- Continued.

(k) Range residuals for -50-foot perturbation of altitude.

Figure 3.- Continued.

T2.

Figure 3.- Continued.

(m) X_{30} angle residuals for -.025-second perturbation of time.

Figure 3.- Continued.

23

(n) Y₃₀ angle residuals for -.025-second perturbation of time.

Figure 3.- Continued.

(o) Range residuals for -.025-second perturbation of time.

Figure 3.- Continued.

(p) Doppler residuals for -.025-second perturbation of time.

Figure 3.- Concluded.

(a) X_{30} angle residuals for -.0005-degree perturbation of longitude.
Figure 4.- Residual patterns in USB data from the Bermuda tracking station.

(b) Y_{30} angle residuals for -.0005-degree perturbation of longitude.

Figure 4.- Continued.

(c) Range residuals for -.0005-degree perturbation of longitude.

Figure 4.- Continued.

(d) Doppler residuals for -.0005-degree perturbation of longitude.

Figure 4.- Continued.

Figure 4.- Continued.

T_H

(f) Y₃₀ angle residuals for -.0005-degree perturbation of latitude.

Figure 4.- Continued.

(g) Range residuals for -.0005-degree perturbation of latitude.

Figure 4.- Continued.

C4

(h) Doppler residuals for -.0005-degree perturbation of latitude.

Figure 4.- Continued.

(i) X_{30} angle residuals for -50-foot perturbation of altitude.

Figure 4.- Continued.

(j) Y₃₀ angle residuals for -50-foot perturbation of altitude.

Figure 4.- Continued.

(k) Range residuals for -50-foot perturbation of altitude.

Figure 4.- Continued.

L4

(I) Doppler residuals for -50-foot perturbation of altitude.

Figure 4.- Continued.

(m) X₃₀ angle residuals for -.025-second perturbation of time.

Figure 4.- Continued.

(n) Y₃₀ angle residuals for -.025-second perturbation of time.

Figure 4.- Continued.

(o) Range residuals for -.025-second perturbation of time.

Figure 4.- Continued.

(p) Doppler residuals for -.025-second perturbation of time.

Figure 4.- Concluded.

(a) X_{30} angle residuals for -.0005-degree perturbation of longitude.

Figure 5.- Residual patterns in USB data from the Ascension tracking station.

(b) Y_{30} angle residuals for -.0005-degree perturbation of longitude.

Figure 5.- Continued.

(c) Range residuals for -.0005-degree perturbation of longitude.

Figure 5.- Continued.

(d) Doppler residuals for -.0005-degree perturbation of longitude.

Figure 5.- Continued.

(e) X_{30} angle residuals for -.0005-degree perturbation of latitude.

Figure 5.-Continued.

(f) γ_{30} angle residuals for -.0005-degree perturbation of latitude.

Figure 5.- Continued.

(g) Range residuals for -.0005-degree perturbation of latitude.

Figure 5.- Continued.

(h) Doppler residuals for -.0005-degree perturbation of latitude.

Figure 5:- Continued.

(i) X_{30} angle residuals for -50-foot perturbation of altitude.

Figure 5.- Continued.

(j) Y_{30} angle residuals for -50-foot perturbation of altitude.

Figure 5.- Continued.

(k) Range residuals for -50-foot perturbation of altitude.

Figure 5.- Continued.

(I) Doppler residuals for -50-foot perturbation of altitude.

Figure 5.- Continued.

(m) X_{30} angle residuals for -.025-second perturbation of time.

Figure 5.- Continued.

(n) Y_{30} angle residuals for -.025-second perturbation of time.

Figure 5.- Continued.

(o) Range residuals for -.025-second perturbation of time.

Figure 5.- Continued.

Figure 5.- Concluded.

(a) X_{30} angle residuals for -.0005-degree perturbation of longitude.

Figure 6.- Residual patterns in USB data from the Merritt Island tracking station.

(b) Y_{30} angle residuals for -.0005-degree perturbation of longitude.

Figure 6.- Continued.

(c) Range residuals for -.0005-degree perturbation of longitude.

Figure 6:- Continued.

(d) Doppler residuals for -.0005-degree perturbation of longitude.

Figure 6.- Continued.

(e) X_{30} angle residuals for -.0005-degree perturbation of latitude.

Figure 6.- Continued.

(f) Y_{30} angle residuals for -.0005-degree.perturbation of latitude.

Figure 6.- Continued.

(g) Range residuals for ± 0.0005 -degree perturbation of latitude.

Figure 6:- Continued.

(h) Doppler residuals for -.0005-degree perturbation of latitude.

Figure 6.- Continued.

(i) X_{30} angle residuals for -50-foot perturbation of altitude.

Figure 6.- Continued .

(j) Y_{30} angle residuals for -50-foot perturbation of altitude.

Figure 6.- Continued.

(k) Range residuals for -50-foot perturbation of altitude.

Figure 6.- Continued.

(I) Doppler residuals for -50-foot perturbation of altitude.

Figure 6.- Continued.

(m) X_{30} angle residuals for -.025-second perturbation of time.

Figure 6.- Continued.

(n) γ_{30} angle residuals for -.025-second perturbation of time.

Figure 6.- Continued.

(o) Range residuals for -.025-second perturbation of time.

Figure 6.-Continued.

(p) Doppler residuals for -.025-second perturbation of time.

Figure 6.- Concluded.

(a) X_{30} angle residuals for .0005-degree perturbation of longitude.

Figure 7.- Residual patterns in USB data from the Hawaii tracking station.

(b) Y_{30} angle residuals for ~.0005-degree perturbation of longitude.

Figure 7,- Continued.

(c) Range residual for -.0005-degree perturbation of longitude.

Figure 7.- Continued.

(d) Doppler residual for -.0005-degree perturbation of longitude.

Figure 7.- Continued.-

(e) X_{30} angle residuals for -.0005-degree perturbation of latitude.

Figure 7.- Continued.

(f) γ_{30} angle residuals for -.0005-degree perturbation of latitude.

Figure 7.- Continued.

(g) Range residuals for -.0005-degree perturbation of latitude.

Figure 7.- Continued.

(h) Doppler residuals for -.0005-degree perturbation of latitude.

Figure 7.-Continued.

(i) X_{30} angle residuals for -50-foot perturbation of altitude.

Figure 7. - Continued.

(j) Y₃₀ angle residuals for -50-foot perturbation of altitude.

Figure 7.- Continued.

(k) Range residuals for -50-foot perturbation of altitude.

Figure 7.- Continued.

(I) Doppler residuals for -50-foot perturbation of altitude.

Figure 7.-Continued.

(m) X_{30} angle residuals for -.025-second perturbation of time.

Figure 7.-Continued.

(n) Y_{30} angle residuals for -.025-second perturbation of time.

Figure 7.- Continued.

(o) Range residuals for -.025-second perturbation of time.

Figure 7.- Continued.

(p) Doppler residuals for -.025-second perturbation of time.

Figure 7.- Concluded..

(a) X_{30} angle residuals for -.0005-degree perturbation of longitude.

Figure 8.- Residual patterns in USB data from the Texas tracking station.

(b) Y_{30} angle residuals for -.0005-degree perturbation of longitude.

Figure 8.- Continued.

(c) Range residuals for -.0005-degree perturbation of longitude.

Figure 8.- Continued.

(d) Doppler residuals for -.0005-degree perturbation of longitude.

Figure 8.- Continued.

(e) X_{30} angle residuals for -.0005-degree perturbation of latitude.

Figure 8.-Continued.

(f) Y₃₀ angle residuals for -.0005-degree perturbation of latitude.

Figure 8.- Continued.

(g) Range residuals for -.0005-degree perturbation of latitude.

Figure 8.- Continued.

(h) Doppler residuals for -.0005-degree perturbation of latitude.

Figure 8. - Continued.

(i) X_{30} angle residuals for -50-foot perturbation of altitude.

Figure 8.-Continued.

(j) Y_{30} angle residuals for -50-foot perturbation of altitude.

Figure 8.- Continued.

(k) Range residuals for -50-foot perturbation of altitude.

Figure 8.- Continued.

(I) Doppler residuals for -50-foot perturbation of altitude.

Figure 8.- Continued.

(m) X_{30} angle residuals for -.025-second perturbation of time.

Figure 8.- Continued.

(n) Y₃₀ angle residuals for ~.025-second perturbation of time.

Figure 8.- Continued.

(o) Range residuals for -.025-second perturbation of time.

Figure 8.- Continued.

(p) Doppler residuals for -.025-second perturbation of time.

Figure 8.- Concluded.