Optimization of Machining Processes

Prof. S. S. Pande

Mechanical Engineering Department Indian Institute of Technology, Bombay

Outline

- Product-Process Optimization criteria
- Machining Process Optimization Objective
 - To Maximize Productivity
 - To Minimize Cost
 - To Maximize Profit rate
- Selection of Optimum Process Parameters

Product-Process Optimization Perspective

Product Design Optimization

- · Material Selection Function related
- Shape design Constraints: Size, Stress, Thermal
 Product Quality Dimensions, Tolerances

Production Process Optimization

- Optimum Plant Layout
 Product Flow in shop
- Supply Chain ; Inventory management
 Production Unit Operation
- - Selection of Optimum Process Parameters (Local optimization)

Criteria for Process Optimization

<u>Aim</u>

To select Optimum Process Parameters

Criteria

- Maximize Productivity
 Minimum Production time / job
- Minimize Cost per piece
- Maximize Profit rate

Formulating Objective Function

Nomenclature

 N_b = No of parts produced in the batch

N_t = No of Tools used for N_b

t_s = Setup time per job

 t_{m} = Machining time per job t_{ct} = Tool changing time per tool N = Spindle speed

V = cutting Speed (m/min)

f = feed rate (mm/rev)

Calculation of Production Time

Production time for batch of N_b parts

 $T = N_b.t_s + N_b.t_m + N_t.t_{ct}$

Production Time per piece t_p

 $t_p = \frac{T}{N_b} = t_s + t_m + \frac{N_t}{N_b}.t_{ct}$

 t_s = Setup time per job

t_m = Machining time per job

 $t_{\rm ct}$ = Tool changing time per tool

Calculating Setup Time t_s

Set up time is the Non Cutting (Idle) time.

It comprises of

- Set up of machine / Tool / Fixtures
- Loading/ Unloading of job
- Approach of tool to job at start
- Tool return to the start of cut

Optimization of Turning Process

Single Pass, Single Tool, Constant feed Operation

Cutting Speed $V=\frac{\pi DN}{1000}$ (m/min) Job dimensions D,L in mm Spindle speed N in RPM

Feed f in mm/rev

Machining time per job
$$t_m = rac{L}{N.f} \min$$

$$=\frac{\pi DL}{1000Vf}$$

$$t_m = \frac{K}{V}$$
 K is the Constant

Calculating Tools used

Taylor's Tool Life Equation

$$VT^n = C$$

Tool Life T = $\frac{C^{Vn}}{V^{Vn}}$

Cutting Speed V in m/min; Tool Life T in min

 $N_{\rm t}$ tools are used for producing $N_{\rm b}$ jobs $N_{\rm t}$.T = $N_{\rm b}$.t_m

Substituting

$$\frac{N_t}{N_b} = \frac{t_m}{T} = \frac{KV^{n-1}}{C^{Vn}}$$

Formulating Objective Function - t_p

Time per piece t_p

$$t_p = t_s + \frac{K}{V} + \frac{KV^{\frac{1}{n}-1}}{C^{1/n}}.\,t_{ct}$$

To maximise Productivity Minimize t_p

$$\frac{dt_p}{dv} = 0$$

 t_p varies as a function of V

Production time t_p vs V

Optimum Parameters for minimum t_p

For minimum t_p

Tool Life t_p is

$$t_p = (\frac{1}{n} - 1) t_{ct}$$

Ccutting Speed V_p

$$V_p = \frac{C}{T_p^n}$$

2

Optimizing Cost per piece C_p

C_p includes M and C_t

M = Machine Hour Rate (Rs/min)

M includes

- Price of the machine
- Amortization period
- Labor Rate
- Cost of land, power
- Overheads

 C_t = Cost of one tool / insert edge

Objective Function \mathcal{C}_p

Cost of producing N_b parts in the batch C_b = Setup + Machining + Tool cost

= M.
$$N_b$$
 . t_s + M. N_b . t_m + N_t . C_t + N_t . t_{ct} . M

Cost per piece
$$C_p = \frac{C_b}{N_b}$$

 $C_p = M. t_s + M. t_m + \frac{N_t}{N_b}.C_t + \frac{N_t}{N_b}.t_{ct}.M$
 $C_p = M. t_s + M. t_m + M \frac{N_t}{N_b}[t_{ct} + \frac{C_t}{M}]$

$$C_p = M. t_s + M. t_m + M \frac{N_t}{N_t} [t_{ct} + \frac{C_t}{M}]$$

Formulating Objective Function C_p

Substituting

$$t_m = \frac{K}{V}; \frac{N_t}{N_b} = \frac{KV_n^{\frac{1}{n}-1}}{C^{V_n}}$$

$$\begin{split} & \text{Objective Function C}_{\text{p}} \\ & \text{C}_{\text{p}} = & \text{M. t}_{\text{S}} + \text{M.} \frac{K}{V} + M \frac{KV^{\frac{1}{n}-1}}{C^{V}n} \left[t_{ct} + \frac{C_{t}}{M}\right] \end{split}$$

To minimize Cost C_p

$$\frac{dC_p}{dv} = 0$$

Optimum Parameter for minimum C_p

For minimum C_p ,

Optimum Tool Life T_c

$$T_c = (\frac{1}{n} - 1)[t_{ct} + \frac{c_t}{M}]$$

Optimum Cutting Speed V_c

$$V_c = \frac{C}{T_c^n}$$

It is seen that

$$T_c > T_p$$

So $V_c < V_p$

Calculation of Tool Cost \mathcal{C}_t

 $\frac{\text{Regrindale tools}}{N_g = \text{No of grinds}}$ $C_g = \text{Cost of grinding per regrind}$

$$C_t = \frac{N_g \times C_{g + Tool \, Cost}}{N_g + 1}$$

Throw away Carbide insert

 C_i = cost of insert N_e = No of cutting edges provided

$$C_t = \frac{C_i}{N_e}$$

For a square insert;

 N_e = 4 (positive rake on insert)

= 8 (Zero rake on insert)

Constraints in Optimization

On the *Unconstrained* Optimization , the following constraints apply

- Maximum Speed, Feed provided on machine
- Steps in Speed, Feed (or Stepless speed drve)
- Permissible Surface Finish
- Maximum Cutting Force, Power
- Shop Practices

Two Factor Optimization

Objective Function

$$t_p$$
 or $C_p = f(V, f)$

Extended Taylor's Tool Life equation

$$\mathsf{T}\, V^{n_1}\, f^{n_2} \; = \mathcal{C}^1$$

Optimization Technique

- Unconstrained
- Cconstrained