Informazione Quantistica I

Dario Balboni

18 gennaio 2018

Indice

1	\mathbf{Cos}	e generali e notazioni	2
	1.1	Stati di un sistema	2
	1.2	Stati Puri Vs. Stati Reali ed Ensemble	2
	1.3	Tipi di Operatori	2
		1.3.1 Scrittura di Operatori Unitari	3
		1.3.2 Teoremi Spettrale per operatori Normali	3
	1.4	Decomposizioni di Operatori	3
	1.5	Norme Operatoriali	3
	1.6	Operatori di Traccia	3
	1.7	Osservabili	4
	1.8	Sistemi Multipli e Prodotto Tensore	4
		1.8.1 Decomposizione di Schmidt	4
		1.8.2 Matrici di Densità di sistemi composti	4
		1.8.3 Legami tra le matrici di densità parziali e separabilità dello stato	4
		1.8.4 Purificazione di Stati	5
	1 9	Sfera di Bloch	5

Questo pdf nasce per matematici che stanno seguendo il corso di Informazione Quantistica I di Giovannetti. Serve per inquadrare più chiaramente la materia e glissa su molti aspetti, motivo per il quale è consigliabile utilizzarlo solo come spunto.

Alcune fonti consigliate per apprendere la materia sono:

- Dispense scritte da Gabriele Sicuro, studente che ha seguito il corso nel 2008
- Quantum Computation and Quantum Information, libro di M. A. Nielsen e I. L. Chuang
- Quantum Information, libro di S. Barnett
- Quantum Systems, Channels, Information, libro di A. S. Holevo, più avanzato dei precedenti

1 Cose generali e notazioni

1.1 Stati di un sistema

Gli stati che può assumere un sistema quantistico sono vettori di norma uno di uno spazio di Hilbert \mathcal{H} sui complessi \mathbb{C} . In tutto questo corso gli spazi di Hilbert saranno di dimensione finita $d = \dim \mathcal{H} < \infty$.

In realtà vorrebbero essere dei vettori del proiettificato dello spazio di Hilbert, visto che viene fatto notare che due stati che differiscono per una "fase globale" $e^{i\theta}$ con $\theta \in \mathbb{R}$ ovvero $|\psi\rangle$ e $|e^{i\theta}\psi\rangle$ rappresentano lo stesso stato fisico.

1.2 Stati Puri Vs. Stati Reali ed Ensemble

Quando si ha a che fare con apparati sperimentali "veri" è inverosimile che essi producano sempre uno stesso stato $|\psi\rangle$. In meccanica quantistica si ha bisogno di riprodurre gli esperimenti svariate volte, a causa dell'entità puramente "statistica" delle misure.

Per questo si dirà che lo "stato reale" prodotto da un apparato è un ensemble $\mathcal{E} = \{p_i, |\psi_i\rangle\}_i$ di stati, dove p_i rappresenta la probabilità che la macchina produca lo stato $|\psi_i\rangle$ e quindi $\sum_i p_i = 1$. Possiamo allora definire la "matrice di densità" di un apparato come sovrapposizione pesata dei vari stati $\rho_A = \sum_i p_i |\psi_i\rangle$. Notiamo che essa non presenta più le ambiguità dovute alla possibilità di scegliere una "fase" per ciascun vettore dell'ensemble.

In realtà più propriamente potremmo scrivere $\mathcal{E} = (\psi, d\mu) \text{ con } \psi : \Omega \to \mathcal{H}$ e μ una misura di probabilità sullo spazio. In questo modo $\rho_A = \int_{\Omega} \psi(\omega) d\mu(\omega)$.

1.3 Tipi di Operatori

Normali $\theta\theta^{\dagger} = \theta^{\dagger}\theta$

Isometrie $\theta^{\dagger}\theta = 1$

Unitari Se è un isometria normale (negli spazi finito-dimensionali isometria \implies unitario)

Hermitiani o Autoaggiunti $\theta^{\dagger} = \theta$

Antihermitiani $\theta^{\dagger} = -\theta$

Semidefiniti Positivi $\forall |\psi\rangle \in \mathcal{H} \quad \langle \psi | \theta | \psi \rangle \geq 0$

Notiamo che θ positivo implica θ hermitiano ma non vale il viceversa. Lo spazio degli operatori semidefiniti positivi è chiuso per combinazione lineare convessa.

1.3.1 Scrittura di Operatori Unitari

- Dato θ unitario $\exists \{|e_j\rangle\}_{j=1,\ldots,d}$, $\{|h_j\rangle\}_{j=1,\ldots,d}$ insiemi indipendenti ortonormali tali che $\theta = \sum_{j=1}^{d} |h_j\rangle \langle e_j|$.
- Se U è unitario, allora preserva il prodotto scalare: $(\langle \psi | U^{\dagger}) (U | \phi \rangle) = \langle \psi | \phi \rangle$.
- Se U è unitario allora $\exists H$ hermitiano tale che $U = \exp[iH]$.

1.3.2 Teoremi Spettrale per operatori Normali

• Se θ è normale allora ammette un insieme completo ortonormale di autovettori $\{|e_j\rangle\}_j$: $\theta |e_j\rangle = \lambda_j |e_j\rangle$. Inoltre si ha che θ è:

Hermitiano se e solo se $\forall j \quad \lambda_j \in \mathbb{R}$.

Unitario se e solo se $\forall j \quad \lambda_j = e^{i\alpha_j} \text{ con } \alpha_j \in \mathbb{R}, \text{ ovvero } |\lambda_j| = 1.$

Positivo se e solo se $\forall j \quad \lambda_i \in \mathbb{R}^+ \cup \{0\}.$

• Se θ è normale si può diagonalizzare unitariamente, ovvero $\exists U$ unitario tale che $U\theta U^{\dagger} = D$ diagonale.

1.4 Decomposizioni di Operatori

Decomposizione Polare Dato θ un operatore qualunque, $\exists U$ unitario e $K, J \geq 0$ tali che $\theta = UK = JU$. In tal caso si ha $K = \sqrt{\theta^{\dagger}\theta}$ e $J = \sqrt{\theta\theta^{\dagger}}$.

Singular Value Decomposition Dato θ operatore qualunque, $\exists V, W$ unitari tali che $\theta = VDW$ con D diagonale e positivo. Gli elementi sulla diagonale di D sono gli autovalori di $\sqrt{\theta^{\dagger}\theta}$.

1.5 Norme Operatoriali

Dato un operatore θ ed i suoi autovalori singolari λ_j si hanno le seguenti norme:

Norma infinito $||\theta||_{\infty} = \sup_{|v\rangle \in \mathcal{H}} \frac{||\theta|v\rangle||}{|||v\rangle||} = \max_{j} |\lambda_{j}|.$

Norma di Hilbert-Schmidt $||\theta||_2 = \sqrt{\operatorname{tr}\left(\theta^\dagger\theta\right)} = \sqrt{\sum_{j=1}^d \lambda_j^2}.$

Norma traccia $||\theta||_1 = \operatorname{tr}\left(\sqrt{\theta^\dagger \theta}\right) = \sum_j \lambda_j$

Tra esse valgono $||\theta||_{\infty} \leq ||\theta||_2 \leq ||\theta||_1$ e negli spazi in dimensione finita $||\theta||_1 \leq \sqrt{d}||\theta||_2 \leq d||\theta||_{\infty}$.

1.6 Operatori di Traccia

Dati due spazi vettoriali V e W si può definire l'operatore di traccia parziale $\operatorname{tr}_W : \mathcal{L}(V \otimes W) \to \mathcal{L}(V)$ definito da $\operatorname{tr}_W(A \otimes B) = \operatorname{tr}_V \circ \operatorname{tr}_W(A \otimes B) = \operatorname{tr}_W \circ \operatorname{tr}_W(A \otimes B)$.

1.7 Osservabili

Un osservabile è un operatore (funzione lineare) autoaggiunto sullo spazio di Hilbert degli stati $\theta: \mathcal{H} \to \mathcal{H}$. Le uniche cose che ci è dato conoscere (misurare) di un sistema quantistico sono i "valori di aspettazione" degli osservabili sugli stati, ovvero $\langle \psi | \theta | \psi \rangle$. Ciò corrisponde a tracciare la matrice di densità con l'osservabile, ovvero $\operatorname{tr}(\rho\theta)$.

1.8 Sistemi Multipli e Prodotto Tensore

Quando si considerano due sistemi quantistici "assieme", lo spazio dei loro stati è dato dal prodotto tensore degli spazi degli stati dei singoli sistemi, con il prodotto scalare prodotto. Visto che gli spazi sono finito dimensionali, anche il loro prodotto tensore è completo e quindi è uno spazio di Hilbert.

All'interno del prodotto tensore i tensori semplici vengono chiamati **stati separati**, mentre gli altri tensori vengono chiamati **stati entangled**. A livello fisico il fatto che uno stato sia **separato** ci dice che può essere preparato operando indipendentemente su ciascuno dei due sistemi.

1.8.1 Decomposizione di Schmidt

Dato un vettore $|\psi\rangle_{AB} \in \mathcal{H}_A \otimes \mathcal{H}_B$ nel prodotto tensore esistono due basi ortonormali $\{|v_j\rangle\}_j \subseteq \mathcal{H}_A$ e $\{|w_k\rangle\}_k \subseteq \mathcal{H}_B$ tali che $|\psi\rangle_{AB} = \sum_{i=1}^r \lambda_i |v_i\rangle_A \otimes |w_i\rangle_B$. I λ_i sono reali positivi, soddisfano l'equazione $\sum_i \lambda_i^2 = 1$ e vengono chiamati **coefficienti di Schmidt**.

Il numero di termini da sommare r è forse ben definito ed uno stato è separabile se e solo se r=1.

1.8.2 Matrici di Densità di sistemi composti

Abbiamo già definito le matrici di densità di un sistema singolo. Notiamo che una matrice è matrice di densità se è autoaggiunta, semidefinita positiva ed ha traccia unitaria. A livello operatoriale possiamo anche caratterizzare gli stati puri come matrici di densità tali che $\rho^2 = \rho$.

Data una matrice di densità ρ_{AB} per un sistema composto $\mathcal{H}_A \otimes \mathcal{H}_B$ possiamo ricavarne due matrici di densità (nel senso di autoaggiunte, semidefinite positive a traccia unitaria) prendendo le tracce parziali di ρ_{AB} sui due spazi \mathcal{H}_A e \mathcal{H}_B . Queste rappresentano quello che vedremmo "osservando" un singolo componente alla volta: detta infatti $\tilde{\rho}_A = \operatorname{tr}_B(\rho_{AB})$ la parziale e $\theta \in \mathcal{L}(\mathcal{H}_A)$ un osservabile di A, possiamo considerare $\theta \otimes \mathbb{1}$ per ottenere un osservabile sul prodotto degli spazi e notare che $\langle \theta_A \rangle = \operatorname{tr}_A(\tilde{\rho}_A \theta) = \operatorname{tr}_A(\operatorname{tr}_B(\rho_{AB})\theta) = \operatorname{tr}(\rho_{AB}(\theta \otimes \mathbb{1}))$.

1.8.3 Legami tra le matrici di densità parziali e separabilità dello stato

- Se $|\psi\rangle_{AB} = |\psi_1\rangle_A \otimes |\psi_2\rangle_B$ allora $\tilde{\rho}_A = |\psi_1\rangle \langle \psi_1|$.
- Se invece $|\psi\rangle_{AB}$ è uno stato generico **puro**, detti λ_j i coefficienti di Schmidt, si ha $\tilde{\rho}_A = \sum_j \lambda_j^2 \cdot |v_j\rangle \langle v_j|$ con $|v_j\rangle$ base ortonormale data dalla decomposizione ai valori singolari. Le due matrici densità parziali hanno quindi gli stessi autovalori λ_j^2 .
 - Ciò non succede quando lo stato $|\psi\rangle_{AB}$ è misto, a causa del fatto che ogni stato puro potrebbe diagonalizzarsi in una base ortogonale diversa.
- Inoltre lo stato del sistema composto è separabile se e solo se $\exists j$ t.c. $\lambda_j = 1$ e $\forall i \neq j : \lambda_i = 0$. Ovvero si ha che lo stato è entangled se e solo se $\tilde{\rho}_A$ non è pura se e solo se $\tilde{\rho}_B$ non lo è.

1.8.4 Purificazione di Stati

Data una matrice di densità ρ_A del sistema \mathcal{H}_A posso trovare un sistema \mathcal{H}_B ($\forall d = \dim \mathcal{H}_B \geq \dim \mathcal{H}_A$) ed uno stato **puro** $|\psi\rangle_{AB}$ di $\mathcal{H}_A \otimes \mathcal{H}_B$ tale che tr $_B(|\psi\rangle \langle \psi|) = \rho_A$. Questo ci dice che possiamo sempre descrivere un processo in termini di stati puri, a prescindere dall'eventuale rumore presente o dalla procedura di misura.

1.9 Sfera di Bloch

Lo stato di un qubit (\mathcal{H} di dimensione due con base $|0\rangle, |1\rangle$) può essere rappresentato da una matrice del tipo $\rho = \begin{pmatrix} p & \gamma \\ \gamma^* & 1-p \end{pmatrix}$, dove gli elementi fuori dalla diagonale soddisfano $|\gamma| \leq \sqrt{p(1-p)}$ a causa della condizione det $\rho \geq 0$. Possiamo definire alcune matrici (dette "di Pauli") che ci permettono di dare una corrispondenza tra i vettori della palla unitaria nello spazio tridimensionale ed i possibili stati di un qubit. Questo penso permetterà in seguito alcune dimostrazioni tramite disegni e supercazzole grafiche, ma spero di sbagliarmi.

$$\textbf{Matrici di Pauli:} \quad \sigma_0 = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right), \ \sigma_x = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right), \ \sigma_y = \left(\begin{array}{cc} 0 & -i \\ i & 0 \end{array}\right), \ \sigma_z = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right).$$

Vettore di Bloch: Alla matrice ρ come sopra associamo $a=(2\Re\gamma,-2\Im\gamma,2p-1)\in\mathbb{R}^3$ e $|a|\leq 1$.

Corrispondenza inversa: $\rho = \frac{1}{2} (\sigma_0 + a_x \sigma_x + a_y \sigma_y + a_z \sigma_z)$.

Stati puri: Gli stati puri corrispondono ad a nella sfera di Bloch tali che |a|=1.