

EE 240A

Final Project Presentation

Chandrahaas Vadali 12/13/2024

EE 140/240A

Contents

- Op-amp Overview
- Design Methodology
- Results and Discussion
- Potential Improvements
- Acknowledgements

Op-amp Overview

- 2-stage op-amp with Miller Compensation
- Input stage: Telescopic Cascode for high gain
- Output stage: Class-AB common source for improved slew rate

AC Results Summary

Parameter	Value			
DC Gain	86 dB			
GBW	18.54 MHz			
CMRR	70 dB			
PSRR	51 dB (VDDL) 64 dB (VDDH)			
Phase Margin	52.3 deg			

Transient Results Summary – 350 mV input

Parameter	Value				
Settling time	159.2 ns				
Avg Power Consumed	0.312 mW				
Current Efficiency (Imax/Ibias)	10.66				
SR+ Max	17.6 V/us				
SR- Max*	17.2 V/us				
FoM	20.08				

Misc. Results

Parameter	Value			
Area	970 um^2			
Mismatch	Poor			

Op-amp Overview - Schematic

High-level Specs

Spec	Value			
Settling Time	< 180 ns			
Total Error	< 0.2%			

$$f_u pprox rac{-ln(\epsilon_d)}{T_{set}} = rac{-ln(0.002 - \epsilon_s)}{T_{set}}$$
 ϵ_s - static error ϵ_d - dynamic error

$$A_0 = \frac{1}{f} \left(\frac{1 - \epsilon_s}{\epsilon_s} \right)$$

$$\frac{dV_{out}}{dt} = \frac{1.4 V}{T_{set}} = 7.76 V/\mu S$$

 A_0 - open loop DC gain

f - feedback factor

 V_{out} - output voltage

 T_{set} - settling time

- More constraints → narrower design space
- gm/ID methodology to size xtors and bias voltages
- Start design with output stage → has max constraints
- Biasing voltages of output stage give more constraints for input stage
- Compensation design → set by phase margin, sets gm of input stage
- Make Design choices in stage 1- power supply, tail VDS drop, etc.

Class AB CSA- Design

Parameter	Value			
Ln, Lp	0.7 um			
Wn	28 um			
Wp	24 um			
VGS,n	0.597 V			
[VGS,p]	0.512 V			

Source Follower – Level-shifting

Which biasing scheme to pick?

- Vout1,CM to PMOS (left)
 - → needs higher Vout1,CM→ can't use VDDL for first stage
- Vout1,CM to NMOS (right)
 → low Vout1,CM low →
 VDDL for first stage → save power!

EE 140/240/

Telescopic Cascode - Design

- Designed for high gm/ID → max gain, min power
- ΔV across tail = 100 mV
- Estimate gm using Cc (500 fF starting value)
- LUTs give sizing and biasing
- Operates in sub-threshold region for max gm/ID [1]

Parameter	Value		
Ln, Lp	2 um		
Wn (input)	36 um		
Wp (load)	6.7 um		
gm/ID (input)	≈ 22		
Ibias (tail current/2)	5 uA		
Vicm	0.5 V		

[1] F. Silveira, D. Flandre, and P.G.A. Jespers. A g/sub m//i/sub d/ based methodology for the design of cmos analog circuits and its application to the synthesis of a silicon-on-insulator micropower ota. IEEE Journal of Solid-State Circuits, 31(9):1314–1319, 1996.

Active Load Design

• Save a Vth (≈ 430 mV) drop across the load!

Tail xtor – Poor man's cascode

- Increase VDS drop across to 100 mV
- Improve CMRR

Biasing network

Branch	Purpose				
Yellow	Primary bias generator				
Red	Bias tail xtors in first stage				
Green	Bias NMOS cascode devices in first stage				
White	Bias PMOS cascode devices in first stage				

Design choices

1. Current mirror ratio = 10 from primary bias generator to other branches

2. Resistor to better match VDS across current mirror for tail xtor

3. Cascode NMOS device needs $2\Delta V + \Delta V_{tail}$

Miller Compensation

Parameter	Value
Сс	75 fF
Rc	500 ohm

- Start with Cc 500 fF
- $R_c = 1/gm_{out}$ to push the RHP from compensation to infinity
- Tune these values as necessary looking at frequency response

Frequency response

Miller Cap sets first pole

$$f_{p1} \approx \frac{f_u}{A_0 \beta} = \frac{g_{m1}}{2\pi A_0 \beta \times (C_c + C_{qs,SF})} = \frac{3 * 111.59 \ \mu S}{2\pi * 20390 * (75 + 20) \ fF} = 27.50 \ kHz$$

- If we include other parasitics, we can get a better estimate of dominant pole, unity gain freq.
- However, since Cc is smaller than parasitic caps at the output stage, second pole is before unity gain frequency!

Capacitor	Value		
C_c	75 fF		
$C_{gs,SF}$	20 fF		
$C_{GS,AB}$ (NMOS + PMOS)	288 fF		

Parameter	Value			
DC Gain	86 dB			
fu	18.54 MHz			
CMRR	70 dB			
Phase Margin	52.3 deg			
Dom pole	9.03 kHz			
Non-dom pole	1.84 MHz			
Dom zero	19.2 MHz			

LHP zero helps phase margin!

- Proven by phase bump and magnitude plot!
- Where is it coming from?

Zero from Miller compensation and its cancellation are at a very high frequency (GHz)

Maybe PMOS active load? (gm/Cgs around 4 MHz)

How does it affect transient response?

Transient Response

Parameter	5 mV input step	350 mV input step		
Rise Time	104.6 ns	152.5 ns		
Fall Time	102.9 ns	159.2 ns		
Settling Time	104.6 ns	159.2 ns		
SR+ max	-	17.6 V/us		
SR- max	-	17.2 V/us		
CE (Imax/Ibias)	-	10.66		
Error	< 0.1%	< 0.1%		
Avg Power (VDDL)	0.110 mW	0.110 mW		
Avg Power (VDDH)	0.154 mW	0.202 mW		
Avg Total Power	0.264 mW	0.312 mW		
FoM	36.10	20.08		

Potential Improvements

Improving class AB slew rate [3]

- M2/M2P biased on brink of saturation
- If they're thrown into triode (say current in branch changes), to support the tail current, their VDS drop has to increase!
- This sets a large VGS for MoP and is copied by the red branch to MoN

Better control over frequency response

- During initial sizing of xtors, width was not extracted by iteratively accounting for parasitic Cgs → underestimated parasitics and therefore, Cc
- Rc could have been tuned to control LHP zero!

$$R_c = \frac{1}{gm_{out}} \left(1 + \frac{C_L}{C_c}\right)$$

Marginal gains in Power/Area

- Self-biased current mirror at telescopic active load [2]
- Can reduce power and area by removing one biasing branch
- Resistor occupies area total savings about 6% estimated for typical values of Rb
- 6% power improvement estimated

^[2] Bhawna Aggarwal, Maneesha Gupta, and A.K. Gupta. A comparative study of various current mirror configurations: Topologies and characteristics. Microelectronics Journal, 53:134–155,2016.

Acknowledgements

- Thanks to Prof. Muller for setting us up for success with her class!
- Chun-yen and Rahul helped with the take-off on this project thanks a lot to both!
- Joosung, Sarah, Aniket thanks for enduring the endless discussions on the design!

Back up

3 Transistor and Bias Summary

Table 3 shows a summary of dimensions and operating points for each transistor in the amplifier. Table 4 summarizes the passive components used.

XTOR	Purpose	L (μ m)	W (μ m)	$I_D (\mu \mathbf{A})$	V_{GS} (V)	$g_m \; (\mu \mathbf{S})$	g_m/I_D	g_{DS} ($\mu \mathbf{S}$)
M0	Vinp	1	36	5.09	0.405	111.53	21.91	7.78
M1	NMOS cascode	1	36	5.09	0.393	111.89	21.98	3.61
M2	Vinn	1	36	5.09	0.405	111.52	21.91	7.78
M3	NMOS cascode	1	36	5.09	0.393	111.88	21.98	3.62
M8	Cascode tail	1	90	10.18	0.403	218.43	21.46	72.38
M33	Cascode tail	1	90	10.18	0.427	185.59	18.23	325.87
M34	Cascode tail	1	90	10.18	0.444	167.86	16.49	519.64
M4	PMOS cascode	1	6.7	5.09	-0.504	95.77	18.81	3.36
M5	PMOS cascode	1	6.7	5.09	-0.501	97.3	19.12	1.93
M6	PMOS cascode	1	6.7	5.09	-0.501	97.3	19.12	1.94
M7	PMOS cascode	1	6.7	5.09	-0.504	95.73	18.81	3.41
M11	Primary Bias Generator	1	1.34	3.99	-0.578	43.24	10.84	0.8
M10	Current source	1	13.4	33.37	-0.578	358.98	10.76	6.56
M12	Current source	1	13.4	32.24	-0.578	376.59	11.68	7.19
M9	Bias for tail xtor	1	90	33.37	0.444	647.59	19.41	29.53
M13	Bias for NMOS cascode	1	36	32.24	0.485	532.01	16.50	13.66
M14	Bias for NMOS cascode	1	36	32.24	0.534	361.02	11.20	493.90
M15	Bias for NMOS cascode	1	36	32.24	0.567	285.34	8.85	860.40
M16	Bias for NMOS cascode	1	36	32.24	0.592	243.47	7.55	1143.6
M17	Bias for NMOS cascode	1	45	32.24	0.61	214.01	6.64	1784
M22	Bias for PMOS cascode	1	6.7	20.61	-0.807	46.67	2.26	328
M21	Bias for PMOS cascode	1	6.7	20.61	-0.75	60.27	2.92	269
M20	Bias for PMOS cascode	1	6.7	20.61	-0.682	89.18	4.33	182.7
M19	Bias for PMOS cascode	1	6.7	20.61	-0.592	218.11	10.58	4.06
M18	Current source	1	54	20.61	0.444	397.94	19.31	15.9
M26	PMOS load for SF	4	1.8	18.20	-1.278	19.26	1.05	19.58
M27	SF PMOS	1	2.6	18.20	-0.597	121.90	6.69	2.13
M24	Class AB CSA PMOS	0.7	28	46.42	-0.628	740.66	16.08	11.28
M25	Class AB CSA NMOS	0.7	24	131.41	0.596	1411.07	10.73	24.20

Table 3: Transistor Parameters

Component	Purpose	Value	$L (\mu m)$	\mathbf{W} ($\mu \mathbf{m}$)
R3	Matching VDS for tail XTORs biasing	6000	30	1
C0	Miller Cap	30	5	5
C1	Miller Cap	30	5	5
C2	Miller Cap	15	2	5.5
R2	Resistor to cancel RHP from Miller Cap	500	2	5

Table 4: Component Parameters

PSRR

EE 140/240A

