Teoria analizy dużych zbiorów - sprawozdanie 2

Stanisław Wilczyński 18 marca 2017

Zadanie1

Table 1: Estymowane prawdopodobieństwo

-0.3	-0.2	-0.1
0.066 0.106	$0.082 \\ 0.098$	$0.080 \\ 0.092$
0.058	0.092	0.068

Table 2: L maximum			
-0.3	-0.2	-0.1	
5.821363	7.235002	8.506051	
11.928421	66.900447	92.366533	
8.262568	14.295509	55.260358	

Table 4: L średnia			
-0.3	-0.2	-0.1	
0.9685331	0.9241492	0.8547978	
1.0204883	1.1395489	1.2083638	
0.9820761	0.9929050	1.0540906	

Table 6: L kwantyl		
-0.3	-0.2	-0.1
1.542058	1.940298	2.078883
1.562513	1.913857	2.479073
1.285049	1.886485	2.008315

Table 8: L wariancja			
-0.3	-0.2	-0.1	
0.1961269	0.4068639	0.7491084	
0.3852775	10.2900006	20.1710775	
0.1527113	0.6967326	9.0027966	

Table 3: \tilde{L} maximum			
-0.3	-0.2	-0.1	
1.917252	1.935635	3.056200	
1.593625	1.953744	1.928208	
1.323524	1.693721	2.155561	

Table 5: \tilde{L} średnia			
-0.3	-0.2	-0.1	
0.8883121	0.7812610	0.6630988	
0.9052581	0.8309338	0.6804888	
0.9324116	0.8301763	0.6934497	

Table 7: \tilde{L} kwantyl		
-0.3	-0.2	-0.1
1.283830	1.267964	1.279671
1.182701	1.276407	1.220220
1.148469	1.218110	1.204317

Table 9: L wariancja			
-0.3	-0.2	-0.1	
$\begin{array}{c} 0.0437133 \\ 0.0230216 \end{array}$	$\begin{array}{c} 0.0675986 \\ 0.0544416 \end{array}$	$\begin{array}{c} 0.0991843 \\ 0.0768904 \end{array}$	
0.0128117	0.0359632	0.0696645	

W powyższych tabelkach w kolejnych wierszach mamy wartości dla odpowiednio dla p=500,50000,500000 (dla każdego p przeprowadziliśmy symulację 500 razy). Wyniki zgadzają się z teorią z wykładu: po pierwsze jeśli $\mu=(1-\epsilon)\sqrt{2\log p}$ dla $\epsilon>0$ to L i \tilde{L} powinny dążyć według prawdopodobieństwa do 1. W przypadku \tilde{L} zbieżność jest dość szybka. Zarówno maksimum, średnia i kwantyl rzędu 95% dążą do 1. W przypadku L

zbieżność nie jest tak szybka, ale tendencja jest widoczna. Oczywiście zarówno dla L jak i \tilde{L} widzimy, że kwantyl i maksimum maleją wraz ze wzrostem p co jest oczekiwanym rezultatem. Po drugie zgodnie z teorią z wykładu wariancja \tilde{L} powinna dążyć do zera, co również możemy zaobserwować patrząc na ostatnią tabelkę. Po trzecie zgodnie z teorią wyestymowane przez nas $P(L \neq \tilde{L})$ dąży do zera wraz ze wzrostem p. Jedyną własnością, której nie możemy potwierdzić jest "Jeżeli $2(1-\epsilon)^2 > 1$ to $Var(L) \to \infty$ ". Wtedy dla ostatnich dwóch kolumn wariancja L powinna dązyć do nieskończoności, co nie jest potwierdzone wynikami symulacji.

Zadanie 2

W tym zadaniu będziemy estymować wartości krytyczne dla optymalnego testu bayesowskiego w problemie igły w stogu siana. Niech p=(5000,50000). Zakładamy, że nasze zmienne X_1,\ldots,X_p pochodzą z rozkładu normalnego o wariancji 1. Dla $H_0: \mu=0$ będziemy testować alternatywy:

$$H_1: \mu^{(p)} = 1.2\sqrt{2\log p}$$

$$H_2: \mu^{(p)} = 0.8\sqrt{2\log p}$$

Jest to test ilorazu wiarygodności, więc H_0 odrzucamy dla dużych wartości statystyki $L = \frac{1}{p} \sum_{i=1}^{p} \exp\left(X_i \mu - \frac{\mu^2}{2}\right)$. Wygenerujemy naszą szatystykę 1000 razy i weźmiemy kwantyl próbkowy rzędu 95%.

Otrzymaliśmy wyniki:

- 1. Dla H_1 z p = 5000: 1.4230475.
- 2. Dla H_1 z p = 50000: 1.4728889.
- 3. Dla H_2 z p = 5000: 2.1288395.
- 4. Dla H_2 z p = 50000: 1.7329243.

Są one zgodne z oczekiwaniami - podobnie jak w zadaniu pierwszym wartości statystyki L są bliskie 1, co jest zgodne z teorią z wykładu i zbiżają się do tej wartości wraz ze wzrostem p.

Zadanie 3

Tym razem korzystając z wyników poprzedniego zadania porównamy moc testów Bonferroniego i optymalnego testu bayesowskiego dla alternatyw:

$$H_1: \mu_1 = 1.2\sqrt{2\log p}, \mu_2, \dots, \mu_p = 0$$

$$H_2: \mu_1 = 0.8\sqrt{2\log p}, \mu_2, \dots, \mu_p = 0$$

Moc obu testów szacujemy, generując zmienne z rozkładu przy alternatywie 1000 razy i sprawdzamy w jak wielu przypadkach hipoteza zerowa jest odrzucana. Otrzyaliśmy następujące wyniki:

- 1. Przy H_1 dla parametru p=5000 moc testu Neymana-Pearsona wynosi 0.788.
- 2. Przy H_1 dla parametru p = 5000 moc testu Bonferroniego wynosi 0.704.
- 3. Przy H_1 dla parametru p = 50000 moc testu Neymana-Pearsona wynosi 0.802.
- 4. Przy H_1 dla parametru p = 50000 moc testu Bonferroniego wynosi 0.788.
- 5. Przy H_2 dla parametru p=5000 moc testu Neymana-Pearsona wynosi 0.183.
- 6. Przy H_2 dla parametru $p=5000~{
 m moc}$ testu Bonferroniego wynosi 0.168.
- 7. Przy H_2 dla parametru p=50000 moc testu Neymana-Pearsona wynosi 0.238.
- 8. Przy H_2 dla parametru p = 50000 moc testu Bonferroniego wynosi 0.16.

Otrzymane wyniki zgadzają się z teorią z wykładu, jeśli sygnał jest silny, tzn. któreś $\mu = (1+\epsilon)\sqrt{2\log p}$ dla $\epsilon > 0$ to moce obu tych testów dążą do 1 wraz ze wzrostem rozmiaru próby. Kiedy jednak sygnał jest słaby $(\epsilon < 0)$ to oba testy mają małą moc, dążącą przy rozmiarze próby do czegoś mniejszego niż poziom istotności $\alpha = 0.05$, co przy danym nam rozmiarze danych nie jest jeszcze wyrażnie widoczne.