Internship on Data Science at InfraBIM

DS-01: Assignment - Descriptive Analysis on Interns Past Academic Performance

Team No.: Reg. No.: 3059

Name: Mutyala Eeswar Prasnath

Date: 19-10-2022

In [29]:

```
# Import Libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
```

Loading Dataset

In [30]:

```
# Load the CSV Data into a DataFrame
url = "https://internships-data.s3.ap-south-1.amazonaws.com/interns+data/Enrollments_28
092022.csv"
df = pd.read_csv(url)
print(df)
```

	StudentNo	DEGREE	INTERMEDIATE	SSC	INTERNSHIP
0	1001	8.10	76.0	92.0	Data Science
1	1002	8.10	76.0	92.0	MEAN Stack Web Development
2	1003	7.80	94.6	92.0	MEAN Stack Web Development
3	1004	9.03	89.5	89.0	Data Science
4	1005	8.38	87.0	90.0	MEAN Stack Web Development
			• • •		•••
292	2188	8.70	94.1	93.0	Data Science
293	2189	8.45	90.0	93.0	Data Science
294	2190	8.40	94.9	98.0	Data Science
295	2191	7.06	90.6	88.0	Cloud Computing Services (AWS)
296	2192	7.50	95.5	95.0	Cloud Computing Services (AWS)

[297 rows x 5 columns]

Q1. Identify Variables and their Types (Quantitative or Qualitative)

In [31]:

```
df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 297 entries, 0 to 296
Data columns (total 5 columns):

Column Non-Null Count Dtype ---------0 StudentNo 297 non-null int64 DEGREE 297 non-null float64 1 INTERMEDIATE 297 non-null 2 float64 3 SSC 297 non-null float64 4 INTERNSHIP 297 non-null object

dtypes: float64(3), int64(1), object(1)

memory usage: 11.7+ KB

In [32]:

```
df['StudentNo'] = df['StudentNo'].apply(str)
```

In [33]:

df.describe()

Out[33]:

	DEGREE	INTERMEDIATE	SSC
count	297.000000	297.000000	297.000000
mean	7.928081	88.662626	88.106734
std	0.785579	7.355733	9.027984
min	5.800000	65.000000	38.400000
25%	7.400000	83.000000	85.000000
50%	8.000000	90.800000	90.000000
75%	8.560000	94.600000	95.000000
max	9.530000	99.400000	99.000000

Q1. Answer

Categorical Data:StudentNo

Numerical Data:Degree, Intermediate, Ssc

Q2. Size of Data (No. of Rows and Columns)

In [34]:

df.shape

Out[34]:

(297, 5)

Q2. Answer

Rows: 297 Attributes: 5

Q3. Create Histogram

In [35]:

```
# Generate Histogram - It is a graphical representation of a grouped frequency distribu
tion with continuous classes
plt.hist(df['DEGREE'])
plt.show()
```


In [36]:

```
plt.hist(df['INTERMEDIATE'])
plt.show()
```


In [37]:

```
plt.hist(df['SSC'])
plt.show()
```


Q4. Create Pie-Chart to represent the Enrollments for each Internship Program

In [38]:

```
courses = ['Data Science','MEAN Stack Web Development ','Cloud Computing Services(AWS)'
]
students= [156,51,90]
colors = ['c','g','y']
plt.pie(students,labels=courses,colors=colors,startangle=90,explode=(0,0,0),autopct = '
%1.2f%%')
plt.axis('equal')
plt.show()
```


Q5. Find No. of Enrollments for each Internship Program

```
In [39]:
```

```
df['INTERNSHIP'].value_counts()
```

Out[39]:

Data Science 156
Cloud Computing Services (AWS) 90
MEAN Stack Web Development 51

Name: INTERNSHIP, dtype: int64

Q6. Find Measure of Central Tendency: MEAN, MEDIAN, MODE

In [40]:

```
# DEGREE
print(df.mean(numeric_only= True))
```

DEGREE 7.928081
INTERMEDIATE 88.662626
SSC 88.106734

dtype: float64

In [41]:

```
# MEDIAN
print(df.median(numeric_only= True))
```

DEGREE 8.0
INTERMEDIATE 90.8
SSC 90.0

dtype: float64

In [42]:

```
# MODE
print(df.mode(numeric_only= True))
```

DEGREE INTERMEDIATE SSC 0 7.0 95.0 95.0

Q7. Find Measure of Variance: Minimum, Maximum, Range, Mean Deviation, Standard Deviation, Coefficient of Variation

In [43]:

```
# Minimum
print(df.min(numeric_only= True))
```

DEGREE 5.8
INTERMEDIATE 65.0
SSC 38.4

dtype: float64

In [57]:

```
# Maximum
print(df.max(numeric_only= True))
```

DEGREE 9.53
INTERMEDIATE 99.40
SSC 99.00

dtype: float64

In [59]:

```
# Range
print(df.max(numeric_only= True)-df.min(numeric_only= True))
```

DEGREE 3.73
INTERMEDIATE 34.40
SSC 60.60

dtype: float64

In [60]:

```
# Standard Deviation
print(df.std(numeric_only= True))
```

DEGREE 0.785579
INTERMEDIATE 7.355733
SSC 9.027984

dtype: float64

In [64]:

```
# Co-effienct of Variation
print(df.std(numeric_only= True)/df.mean(numeric_only= True))
```

DEGREE 0.099088
INTERMEDIATE 0.082963
SSC 0.102466

dtype: float64

Q8. Measures of Position: Standard Scores, Inter-quartile Range for Degree, Inter and 10th

In [65]:

```
# 1st Quartile
print(df.quantile(q=0.25, numeric_only= True))
```

DEGREE 7.4
INTERMEDIATE 83.0
SSC 85.0

Name: 0.25, dtype: float64

In [66]:

```
# 2nd Quartile or Median
print(df.quantile(q=0.5, numeric_only= True))
```

DEGREE 8.0
INTERMEDIATE 90.8
SSC 90.0
Name: 0.5, dtype: float64

In [67]:

```
# 3rd Quartile
print(df.quantile(q=0.75, numeric_only= True))
```

DEGREE 8.56
INTERMEDIATE 94.60
SSC 95.00
Name: 0.75, dtype: float64

In [69]:

```
# Inter-Quartile = Q3 - Q1
a= df.quantile(q=0.75, numeric_only= True)-df.quantile(q=0.25, numeric_only= True)
a
```

Out[69]:

DEGREE 1.16
INTERMEDIATE 11.60
SSC 10.00

dtype: float64

Q9. Create Box Plot and Identify Outliers

In [70]:

```
plt.boxplot(df['DEGREE'])
plt.show()
```


In [71]:

```
plt.boxplot(df['INTERMEDIATE'])
plt.show()
```


In [72]:

```
plt.boxplot(df['SSC'])
plt.show()
```


Q10. Identify No. of Students with 90% percentile for Degree, Inter and 10th Class

In [73]:

```
# 90th Percentile or Quantile
def outlier(a):
    q1 = np.quantile(a,0.25)
    q3 = np.quantile(a,0.75)
    med = np.median(a)
    iqr = q3-q1
    upper_bound = q3+(1.5*iqr)
    lower_bound = q1-(1.5*iqr)
    print(iqr,upper_bound,lower_bound)
    print("Inter Quartile Range:",iqr)
    outliers = a[(a<= lower_bound) | (a>= upper_bound) ]
    print("the following are the outliers in boxplot:\n{}".format(outliers))
```

```
In [74]:
outlier(df['DEGREE'])
1.1600000000000001 10.3 5.66
Inter Quartile Range: 1.16000000000000001
the following are the outliers in boxplot:
Series([], Name: DEGREE, dtype: float64)
In [75]:
outlier(df['INTERMEDIATE'])
11.599999999999 111.99999999999 65.60000000000001
Inter Quartile Range: 11.59999999999994
the following are the outliers in boxplot:
271
       65.0
Name: INTERMEDIATE, dtype: float64
In [76]:
outlier(df['SSC'])
10.0 110.0 70.0
Inter Quartile Range: 10.0
the following are the outliers in boxplot:
       64.0
       70.0
31
       60.0
51
       68.0
       60.0
69
82
       65.6
86
       50.0
107
       64.0
236
       38.4
237
       67.0
243
       40.2
       65.0
270
288
       65.0
Name: SSC, dtype: float64
In [77]:
def func(b):
  q9 = np.quantile(b,0.9)
  li = b[b==q9]
  print("no.of students with 90% percentile:",li.count())
In [78]:
func(df['DEGREE'])
no.of students with 90% percentile: 3
In [79]:
func(df['INTERMEDIATE'])
no.of students with 90% percentile: 3
```

In [80]:

```
func(df['SSC'])
```

no.of students with 90% percentile: 19