ФГБОУ ВПО

Уфимский государственный авиационный технический университет Кафедра Информатики

100	1	2	3	4	5	6	7	8	9	10	11	12
90												
80												
70												
60												
50												
40												
30												
20												
10												

Выполнение индивидуального задания					
в MS Word					

к лабораторной работе по _информатике

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

$1308.5011XX.000\Pi3$

(обозначение документа)

Группа ХХХ	Фамилия, И., О.	Подпись	Дата	Оценка
Студент	XXXXXXXX			
Консультант	XXXXXXXX			
Принял				

Содержание

Вве	дение	. 3
1	Аппроксимация экспериментальных данных	
1.1	Подбор параметров эмпирической формулы методом наименьших	
ква	дратов	. 5
1.2	Алгоритм метода наименьших квадратов	. 5
Зак	лючение	. 7
Спи	ісок литературы	. 8

					1308.5011XX.000∏3			
Изм.	Лист	№ докум.	Подп.	Дата				
Раз	Разраб. ФИО студента					Лит.	Лист	Листов
Пров. Рецен. Н.контр.					Выполнение индивидуального задания в	Д		8
					MS Word			
		ФИО препод.				J	ТАТУ Д	YXX
Уте	3.							

Введение

В инженерной практике часто возникают задачи построения математической модели экспериментальных данных, данных наблюдений за состоянием исследуемых процессов, наблюдений за изменением параметров изучаемых объектов и т. д. Все эти задачи объединяет наличие массивов исходных данных, полученных в результате регистрации исследуемых переменных. Такие данные обычно представляются в виде таблиц. Исходными данными для такого рода задач служит массив значений x и соответствующий ему массив значений y: $\{y_i, x_i\}$.

Суть построения математических моделей по экспериментальным данным заключается в определении аналитической зависимости между переменными x и y (функции y = f(x)) по значениям x и y в заданных узловых точках $\{y_i, x_i\}$. В зависимости от того, как формируется данная функция, различают задачи аппроксимации и интерполяции [2].

Аппроксимация — это процесс подбора э*мпирической формулы*, значения которой возможно мало отличались бы от опытных данных.

Название

Рисунок 1 – Геометрическое представление аппроксимации

\Box			
Изм.	№ докум.	Подп.	Дата

1 Аппроксимация экспериментальных данных

Обычно задача аппроксимации распадается на два этапа:

- Выяснение общего вида аппроксимирующей формулы.
- Определение наилучших ее параметров.

Маркированный список

Пример. Исследовать характер изменение уровня производства некоторой продукции с течением времени и подобрать аппроксимирующую функцию. Таблица 1.1 содержит необходимые данные. Рисунок 1.1 представляет те же данные графически. **Перекрестная ссылка**

Таблица 1.1

Название

Год	1999	2000	2001	2002	2003
Производство продукции	14,6	15,2	16,3	18	20,2

Название

Рисунок 1.1 – Характер изменение уровня производства некоторой продукции с течением времени

Судя по виду графика, здесь лучше подойдет полиномиальная аппроксимирующая функция.

Изм.	№ докум.	Подп.	Дата

1.1 Подбор параметров эмпирической формулы методом наименьших квадратов Стиль Заголовок 2

Пусть заданы n+1 точка $(x_0,y_0), (x_1,y_1),...,(x_n,y_n)$ и требуется найти аппроксимирующую кривую f(x) в диапазоне $x_0 \le x \le x_n$.

Обычно стремятся свести к минимуму *сумму квадратов разностей* «теоретических» значений от соответствующих опытных значений y_i ., т е.

$$\sum_{i=0}^{n} [f(x_i) - y_i]^2 \to \min.$$
(1.1)

Как правило, функцию f(x) выбирают в виде полиномиальной функции

$$f(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_k x^k, \tag{1.2}$$

Условие (1.1) в этом случае запишется так

$$\sum_{i=0}^{n} [c_0 + c_1 x + c_2 x^2 + \dots + c_k x^k - y_i]^2 \to \min$$

Задача свелась к нахождению коэффициентов c_i полиномиальной функции.

1.2 Алгоритм метода наименьших квадратов — Стиль Заголовок 2

Рисунок 1.2 представляет блок-схему алгоритма применения метода наименьших ква/дратов для построения системы уравнений.

Перекрестная ссылка

Изм.	№ докум.	Подп.	Дата

Рисунок 1.2 – Блок-схема алгоритма метода наименьших квадратов

Название

Изм.	№ докум.	Подп.	Дата

Стиль Заголовок 1

Заключение

Задача аппроксимации (построения эмпирической формулы) отлична от задачи интерполирования. При интерполировании отыскивается такая функция (например, полиномиальная), значения которой в заданных точках x_i совпадают с табличными y_i ($i=1,\ 2,\ ...,\ n$). При аппроксимации же не требуется, чтобы значения аппроксимирующей формулы f(x) совпадали с табличными y_i , Необходимо лишь, чтобы разность $y_i-f(x_i)$ была достаточно мала x_i .

Сноска

1 Меньше некоторого заранее заданного маленького числа

Изм.	№ докум.	Подп.	Дата

Список литературы

- 1. Кабальнов Ю. С., Карчевская М. П., Рамбургер О.Л. Применение Excel в базовом курсе информатики: учебное пособие. Уфа: УГАТУ, 2006. 177с.
- 2. Шуп Т. Прикладные численные методы в физике и технике. М.: Высш. шк., 1990. 255 с.

Нумерованный список