2.5 1) Montrons par récurrence que la fonction $f(x) = x^n$ est continue pour tout $n \in \mathbb{N}$.

L'initialisation a été établie à l'exercice 2.2 : la fonction f(x) = x est continue.

Supposons que la fonction $f(x) = x^n$ est continue pour un certain $n \in \mathbb{N}$. Alors la fonction $f(x) = x^{n+1} = x^n \cdot x$ est également continue :

- (a) la fonction $f(x) = x^n$ est continue par hypothèse de récurrence;
- (b) la fonction f(x) = x est continue;
- (c) le produit de fonctions continues donne une fonction continue.
- 2) On sait que si f est une fonction continue et que $\lambda \in \mathbb{R}$, alors la fonction λf est également continue.

En appliquant cette proposition au cas où $f(x) = x^n$, on conclut aussitôt que la fonction $\lambda f(x) = \lambda x^n$ est continue pour tout $n \in \mathbb{N}$ et pour tout $\lambda \in \mathbb{R}$.

3) Soit f une fonction polynomiale.

Il existe $n \in \mathbb{N}$ et $\lambda_0, \lambda_1, \lambda_2, \ldots, \lambda_n \in \mathbb{R}$ tels que pour tout $x \in \mathbb{R}$ $f(x) = \lambda_n x^n + \ldots + \lambda_2 x^2 + \lambda_1 x + \lambda_0$.

D'après le résultat précédent, chacune des fonctions $f_0(x) = \lambda_0$, $f_1(x) = \lambda_1 x$, $f_2(x) = \lambda_2 x^2$, ..., $f_n(x) = \lambda_n x^n$ est continue.

Puisque la somme de fonctions continues donne encore une fonction continue, on déduit successivement que

la fonction $\lambda_1 x + \lambda_0$ est continue;

la fonction $\lambda_2 x^2 + \lambda_1 x + \lambda_0$ est continue;

. . .

la fonction $\lambda_n x^n + \ldots + \lambda_2 x^2 + \lambda_1 x + \lambda_0$ est continue.

En d'autres termes, la fonction polynomiale f est bien continue.

Analyse : continuité Corrigé 2.5