Proofs without words I

Exercises in METAPOST

Toby Thurston

March 2021 —

Contents

Geometry and Algebra	3
Trigonometry, Calculus, & Analytic Geometry	28
Inequalities	46
Integer sums	64
Sequences and series	105
Miscellaneous	113

Geometry and Algebra

The Pythagorean theorem I	4
The Pythagorean theorem II	5
The Pythagorean theorem III	6
The Pythagorean theorem IV	7
The Pythagorean theorem V \ldots	8
The Pythagorean theorem VI	9
A Pythagorean theorem: $aa' = bb' + cc'$	10
The rolling circle squares itself	11
On trisecting an angle	12
Trisection in an infinite number of steps	13
Trisection of a line segment	14
The vertex angles of a star sum to 180°	15
Viviani's theorem I	16
Viviani's theorem II	17
A theorem about right angles	18
Area and the projection theorem of a right triangle	19
Chords and tangents of equal length	20
Completing the square	21
Algebraic areas I	22
Algebraic areas II	23
Sum of squares identity	24
Polygonal numbers	25
The volume of a frustrum of a square pyramid	26
The volume of a homisphere via Cavalieri's Principle	27

The Pythagorean theorem I

— adapted from the Chou pei san ching

The Pythagorean theorem II

Behold!

— Bhāskara (12th century)

The Pythagorean theorem III

— based on Euclid's proof

The Pythagorean theorem IV

— H. E. Dudeney (1917)

The Pythagorean theorem \boldsymbol{V}

— James A. Garfield (1876)

The Pythagorean theorem VI

— Michael Hardy

A Pythagorean theorem: aa' = bb' + cc'

$$\frac{x}{b'} = \frac{b}{a} \implies \frac{x}{b} = \frac{b'}{a} \implies ax = bb';$$

$$\frac{y}{c'} = \frac{c}{a} \implies \frac{y}{c} = \frac{c'}{a} \implies ay = cc';$$

$$\therefore aa' = a(x + y) = bb' + cc'.$$

— Enzo R. Gentile

The rolling circle squares itself

— Thomas Elsner

On trisecting an angle

— Rufus Isaacs

Trisection in an infinite number of steps

 $\frac{1}{3} = \frac{1}{2} - \frac{1}{4} + \frac{1}{8} - \frac{1}{16} + \cdots$

— Eric Kincanon

Trisection of a line segment

 $\overline{AF} = \frac{1}{3} \cdot \overline{AB}$

— Scott Cobel

The vertex angles of a star sum to $180\ensuremath{^\circ}$

— Fouad Nakhli

Viviani's theorem I

The perpendiculars to the sides from a point on the boundary or within an equilateral triangle add up to the height of the triangle.

This shows a particular example, with C'GQ collinear, rather than the general case

— Samuel Wolf

Viviani's theorem II

The perpendiculars to the sides from a point on the boundary or within an equilateral triangle add up to the height of the triangle.

— Ken-Ichiroh Kawasaki

A theorem about right angles

The internal bisector of the right angle of a right triangle bisects the square on the hypotenuse

— Roland H. Eddy

Area and the projection theorem of a right triangle

— Sidney H. Kung

Chords and tangents of equal length

If circle C_1 passes through the center O of circle C_2 , the length of the common chord \overline{PQ} is equal to the tangent segment \overline{PR} .

— Roland H. Eddy

Completing the square

$$x^2 + ax = (x + a/2)^2 - (a/2)^2$$

— Charles D. Gallant

Algebraic areas I

$$(a+b)^2 + (a-b)^2 = 2(a^2 + b^2)$$

— Shirley Wakin

Algebraic areas II

$$(a+b+c)^{2} + (a+b-c)^{2} + (a-b+c)^{2} + (a-b-c)^{2} = (2a)^{2} + (2b)^{2} + (2c)^{2}$$

— Sam Pooley and K. Ann Drude

Sum of squares identity

$$(a^2 + b^2)(c^2 + d^2) = (ab + bc)^2 + (bd - ac)^2$$

— Diophantus of Alexandria

Polygonal numbers

The
$$k^{\text{th}}$$
 n-gonal number is $1 + (k-1)(n-1) + \frac{1}{2}(k-2)(k-1)(n-2)$

— Dave Logothetti

The volume of a frustrum of a square pyramid

$$V_{P_1} = \frac{h}{b-a} \cdot V_{P_2} = \frac{h}{b-a} \cdot \frac{1}{3} \left(b^3 - a^3 \right) = \frac{h}{3} \left(a^2 + ab + b^2 \right)$$

— The Moscow Papyrus, c. 1850 BCE

The volume of a hemisphere via Cavalieri's Principle

$$V_S = V_P = \frac{1}{3}r^2 \cdot 2\pi r = \frac{2}{3}\pi r^3$$

— Sidney H. Kung

Trigonometry, Calculus, & Analytic Geometry

Sine of the sum	29
Area and difference formulas	30
The law of cosines I	31
The law of cosines II	32
The law of cosines III (via Ptolemy's theorem)	33
The double-angle formulae	34
The half-angle tangent formulae	35
Mollweide's equation	36
Tangent, cotangent, secant, and cosecant	37
Substitution to make a rational function of sine and cosine	38
Sums of arctangents	39
The distance between a point and a line	40
The midpoint rule is better than the trapezoidal rule for concave functions	41
Integration by parts	42
The graphs of f and f^{-1} are reflections about the line $y = x \dots \dots \dots$	43
The reflection property of the parabola	44
Area under an arch of the cycloid	45

Sine of the sum

$$\sin(\alpha+\beta) = \sin\alpha\cos\beta + \cos\alpha\sin\beta \text{ for } \alpha+\beta < \pi$$

$$c = a\cos\beta + b\cos\alpha$$

$$r = 1/2 \implies \sin\gamma = \frac{c/2}{1/2} = c, \ \sin\alpha = a, \ \sin\beta = b$$

$$\sin(\alpha + \beta) = \sin(\pi - (\alpha + \beta)) = \sin\gamma = \sin\alpha\cos\beta + \sin\beta\cos\alpha$$

— Sidney H. Kung

Area and difference formulas

$$\frac{1}{2} \cdot a \cdot b \sin(\alpha - \beta) = \frac{1}{2} \cdot a \sin \alpha \cdot b \cos \beta - \frac{1}{2} \cdot a \cos \alpha \cdot b \sin \beta$$
$$\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta$$

$$\frac{1}{2} \cdot a \cdot b \cos(\alpha - \beta) = \frac{1}{2} \cdot a \cos \alpha \cdot b \cos \beta + \frac{1}{2} \cdot a \sin \alpha \cdot b \sin \beta$$
$$\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$$

— Sidney H. Kung

The law of cosines I

$$c^{2} = (b \sin \theta)^{2} + (a - b \cos \theta)^{2}$$

$$= b^{2} \sin^{2} \theta + a^{2} - 2ab \cos \theta + b^{2} \cos^{2} \theta$$

$$= a^{2} + b^{2} (\sin^{2} \theta + \cos^{2} \theta) - 2ab \cos \theta$$

$$= a^{2} + b^{2} - 2ab \cos \theta$$

— Timothy A. Sipka

The law of cosines II

$$(2a\cos\theta - b) \cdot b = (a - c) \cdot (a + c)$$
$$c^2 = a^2 + b^2 - 2ab\cos\theta$$

— Sidney H. Kung

The law of cosines III (via Ptolemy's theorem)

$$c \cdot c = b \cdot b + (a + 2b\cos(\pi - \theta)) \cdot a$$
$$c^2 = a^2 + b^2 - 2ab\cos\theta$$

— Sidney H. Kung

The double-angle formulae

$$\triangle ACD \sim \triangle ABC$$

$$CD/AC = BC/AB$$

$$AD/AC = AC/AB$$

$$\sin 2\theta/2 \cos \theta = 2\sin \theta/2$$

$$\sin 2\theta = 2\sin \theta \cos \theta$$

$$(1 + \cos 2\theta)/2 \cos \theta = 2\cos \theta/2$$

$$\cos 2\theta = 2\cos^2 \theta - 1$$

- Roger B. Nelsen

The half-angle tangent formulae

$$\tan \theta/2 = \frac{\sin \theta}{1 + \cos \theta} = \frac{1 - \cos \theta}{\sin \theta}$$

— R. J. Walker

Mollweide's equation

$$(a-b)\cos\frac{\gamma}{2} = c\sin\left(\frac{\alpha-\beta}{2}\right)$$

— H. Arthur DeKleine

Tangent, cotangent, secant, and cosecant

$$\tan^2 \theta + 1 = \sec^2 \theta$$
$$\cot^2 \theta + 1 = \csc^2 \theta$$
$$(\tan \theta + 1)^2 + (\cot \theta + 1)^2 = (\sec \theta + \csc \theta)^2$$

also
$$\tan \theta = \frac{\tan \theta + 1}{\cot \theta + 1}$$

— William Romaine

Substitution to make a rational function of sine and cosine

$$z = \tan(\theta/2) \implies \sin\theta = \frac{2z}{1+z^2}$$
 and $\cos\theta = \frac{1-z^2}{1+z^2}$

- Roger B. Nelsen

Sums of arctangents

$$\arctan \frac{1}{2} + \arctan \frac{1}{3} = \frac{\pi}{4}$$

 $\arctan 1 + \arctan 2 + \arctan 3 = \pi$

— Edward M. Harris

The distance between a point and a line

$$\frac{d}{1} = \frac{|ma+c-b|}{\sqrt{1+m^2}}$$

— R. L. Eisenman

The midpoint rule is better than the trapezoidal rule for concave functions

— Frank Burk

Integration by parts

— Richard Courant

The graphs of f and f^{-1} are reflections about the line y=x

— Ayoub B. Ayoub

The reflection property of the parabola

QF = QD and $m_1 \cdot m_2 = -1$, therefore $\alpha = \beta = \gamma$

— Ayoub B. Ayoub

Area under an arch of the cycloid

— Richard M. Beekman

Inequalities

The arithmetic mean – geometric mean inequality I 47
The arithmetic mean – geometric mean inequality II
The arithmetic mean – geometric mean inequality III
Two extremum problems
The HM-GM-AM-QM inequalities I
The HM-GM-AM-QM inequalities II
The HM-GM-AM-QM inequalities III
Five means — and their means
$e^{\pi} > \pi^e$
$A^B > B^A$ for $e \le A < B$
The mediant property
Regle des nombres moyens – two proofs
The sum of a positive number and its reciprocal is at least two 59
Aristarchus' inequalities
The Cauchy-Schwartz inequality 61
Bernoulli's inequality
Napier's inequality

The arithmetic mean – geometric mean inequality I

$$\sqrt{ab} \leq \frac{a+b}{2}$$

— Charles D. Gallant

The arithmetic mean – geometric mean inequality II

$$(a+b)^2 - (a-b)^2 = 4ab$$
$$\frac{a+b}{2} \ge \sqrt{ab}$$

— Doris Schattschneider

The arithmetic mean – geometric mean inequality III

$$\frac{a+b}{2} \ge \sqrt{ab}$$
, with equality iff $a = b$

— Roland H. Eddy

Two extremum problems

For a given product, the sum of two positive numbers is minimal when the numbers are equal.

For a given sum, the product of two positive numbers is maximal when the numbers are equal.

— Paulo Montuchi and Warren Page

The HM-GM-AM-QM inequalities I

$$PM = a$$
, $RM = b$, $a > b > 0$

$$\frac{2ab}{a+b} < \sqrt{ab} < \frac{a+b}{2} < \sqrt{\frac{1}{2}\left(a^2+b^2\right)}$$

— Roger B. Nelsen

The HM-GM-AM-QM inequalities II

$$AB = a$$
, $BC = b$, $AD = DC = \frac{a+b}{2}$
 $BE \perp AB$, $DE = AD$
 $FE \perp ED$, $FB \parallel ED$, $EG = BD = \frac{b-a}{2}$

— Sidney H. Kung

The HM-GM-AM-QM inequalities III

$$2a^{2} + 2b^{2} \ge (a+b)^{2}$$

$$\sqrt{\frac{1}{2}(a^{2} + b^{2})} \ge \frac{a+b}{2}$$

$$\left(\sqrt{a+b}\right)^2 \ge 4 \cdot \frac{1}{2} \sqrt{a} \sqrt{b}$$
$$\frac{a+b}{2} \ge \sqrt{ab}$$

$$1 \ge 4 \cdot \frac{a}{a+b} \cdot \frac{b}{a+b}$$

$$\sqrt{ab} \ge \frac{2ab}{a+b}$$

- Roger B. Nelsen

Five means — and their means

— Roger B. Nelsen

$$e^{\pi} > \pi^e$$

— Fouad Nakhli

$$A^B > B^A$$
 for $e \le A < B$

$$\begin{array}{ccc} e \leq A < B & \Longrightarrow & m_A > m_B \\ \\ \Longrightarrow & \frac{\ln A}{A} > \frac{\ln B}{B} \\ \\ \Longrightarrow & A^B > B^A \end{array}$$

— Charles D. Gallant

The mediant property

$$\frac{a}{b} < \frac{c}{d} \quad \Rightarrow \quad \frac{a}{b} < \frac{a+c}{b+d} < \frac{c}{d}$$

— Richard A. Gibbs

Regle des nombres moyens - two proofs

a,b,c,d > 0; $\frac{a}{b} < \frac{c}{d} \implies \frac{a}{b} < \frac{a+c}{b+d} < \frac{c}{d}$

I.

 $m_1 < m_3 \implies m_1 < m_2 < m_3$

— Li Changming

II.

 $\frac{a}{b} < \frac{a}{b+d} + \frac{c}{b+d} < \frac{c}{d}$

— Roger B. Nelsen

The sum of a positive number and its reciprocal is at least two

II. y

III.

IV.

— Roger B. Nelsen

Aristarchus' inequalities

$$0 < \beta < \alpha < \frac{\pi}{2} \implies \frac{\sin \alpha}{\sin \beta} < \frac{\alpha}{\beta} < \frac{\tan \alpha}{\tan \beta}$$

$$\sin \alpha < \frac{\sin \beta}{\beta} \alpha; \quad \tan \alpha > \frac{\tan \beta}{\beta} \alpha$$

$$\therefore \quad \frac{\sin \alpha}{\sin \beta} < \frac{\alpha}{\beta} < \frac{\tan \alpha}{\tan \beta}$$

- Roger B. Nelsen

The Cauchy-Schwartz inequality

$$|\langle a,b\rangle\cdot\langle x,y\rangle|\leq \|\langle a,b\rangle\|\,\|\langle x,y\rangle\|$$

$$\left(|a|+|y|\right)\left(|b|+|x|\right) \leq 2\left(\tfrac{1}{2}|a||b|+\tfrac{1}{2}|x||y|\right) + \sqrt{a^2+b^2}\sqrt{x^2+y^2}$$

$$\therefore |ax + by| \le |a||x| + |b||y| \le \sqrt{a^2 + b^2} \sqrt{x^2 + y^2}$$

— Roger B. Nelsen

Bernoulli's inequality

$$x > 0, x \neq 1, r > 1$$
: $x^{r} - 1 > r(x - 1)$

I. First semester calculus

II. Second semester calculus

$$x^{r} - 1 = \int_{1}^{x} rt^{r-1} dt > r(x - 1)$$

$$1 - x^r = \int_x^1 r t^{r-1} \, dt < r(1 - x)$$

— Roger B. Nelsen

Napier's inequality

$$b > a > 0$$
 implies $\frac{1}{b} < \frac{\ln b - \ln a}{b - a} < \frac{1}{a}$

I. First semester calculus

$$m(L_1) < m(L_2) < m(L_3)$$

II. Second semester calculus

- Roger B. Nelsen

Integer sums

Sums of integers I
Sums of integers II
Sums of odd integers I
Sums of odd integers II
Sums of odd integers III
Squares and sums of integers I
Squares and sums of integers II
Arithmetic progressions with sum equal to square of number of terms 73
Sums of squares I
Sums of squares II
Sums of squares IV
Sums of squares V
Alternating sums of squares
Sums of squares of Fibonacci numbers
Sums of cubes I
Sums of cubes II
Sums of cubes III
Sums of cubes IV
Sums of cubes V
Sums of cubes VI
Sums of integers and sums of cubes
Sums of odd cubes are triangular numbers
Sums of fourth powers
k-th powers as sums of consecutive odd numbers
Sums of triangular numbers I
Sums of triangular numbers II
Sums of triangular numbers III
Sums of oblong numbers I
Sums of oblong numbers II
Sums of pentagonal numbers
On squares of positive integers
Consecutive sums of consecutive integers

Integer sums

Count the dots			98
Identities for triangular numbers			99
A triangular identity			100
Every hexagonal number is a triangular number			101
One domino = two squares : concentric squares			102
Sums of consecutive powers of 9 are sums of consecutive integers			103
Sums of hex numbers are cubes			104

Sums of integers I

 $1 + 2 + \dots + n = \frac{1}{2}n(n+1)$

— Ancient Greek

Sums of integers II

 $1 + 2 + \dots + n = \frac{n^2}{2} + \frac{n}{2}$

— Ian Richards

Sums of odd integers I

$$1 + 3 + 5 + \dots + (2n - 1) = n^2$$

- Nichomachus of Gerasa

Sums of odd integers II

$$1 + 3 + \dots + (2n - 1) = \frac{1}{4} (2n)^2 = n^2$$

- Roger B. Nelsen

Sums of odd integers III

$$\Delta + 3 \cdot \Delta + \dots + (2n-1) \cdot \Delta = A = n^2 \cdot \Delta$$

$$\sum_{i=1}^{n} (2i-1) = n^2$$

— Jenő Lehel

Squares and sums of integers I

$$1 + 2 + 1 = 2^2$$

$$1 + 2 + 3 + 2 + 1 = 3^2$$

$$1 + 2 + 3 + 4 + 3 + 2 + 1 = 4^2$$

$$1 + 2 + \dots + (n-1) + n + (n-1) + \dots + 2 + 1 = n^2$$

— Ancient Greek

Squares and sums of integers II

$$1 + 3 + 5 + 3 + 1 = 2^2 + 3^2$$

$$1 + 3 + 5 + 7 + 5 + 3 + 1 = 3^2 + 4^2$$

:

$$1 + 3 + \dots + (2n - 1) + (2n + 1) + (2n - 1) + \dots + 3 + 1 = n^2 + (n + 1)^2$$

— Hee Sik Kim

Arithmetic progressions with sum equal to square of number of terms

$$\sum_{k=n}^{3n-2} k = (2n-1)^2; n = 1, 2, 3, \dots$$

$$n = 4$$

 $4 + 5 + 6 + 7 + 8 + 9 + 10 = 7^2$

— James O. Chilaka

Sums of squares I

$$1^2 + 2^2 + \dots + n^2 = \frac{1}{3}n(n+1)\left(n + \frac{1}{2}\right)$$

— Man-Keung Siu

Sums of squares II

$$3\left(1^2+2^2+\cdots+n^2\right) = (2n+1)\left(1+2+\cdots+n\right)$$

— Dan Kalman

Sums of squares IV

— James O.Chilaka

Sums of squares V

$$\sum_{i=1}^{n} \sum_{j=i}^{n} j = \sum_{i=1}^{n} i^2$$

— Pi-Chun Chuang

Alternating sums of squares

I.

$$\sum_{k=1}^{n} (-1)^{k+1} k^2 = (-1)^{n+1} T_n = (-1)^{n+1} \frac{n(n+1)}{2}$$

— Dave Logothetti

II.

$$n^{2} - (n-1)^{2} + \dots + (-1)^{n-1} (1)^{2} = \sum_{k=0}^{n} (-1)^{k} (n-k)^{2} = \frac{n(n+1)}{2}$$

— Steven L. Snover

Sums of squares of Fibonacci numbers

$$F_1 = F_2 = 1; F_{n+2} = F_{n+1} + F_n$$
 hence $F_1^2 + F_2^2 + \dots + F_n^2 = F_n F_{n+1}$

— Alfred Brousseau

Sums of cubes I

$$1^3 + 2^3 + 3^3 + \dots + n^3 = (1 + 2 + 3 + \dots + n)^2$$

— Solomon W.Golomb

Sums of cubes II

$$1^3 + 2^3 + 3^3 + \dots + n^3 = (1 + 2 + 3 + \dots + n)^2$$

— J. Barry Love

Sums of cubes III

$$1^3 + 2^3 + 3^3 + \dots + n^3 = (1 + 2 + 3 + \dots + n)^2$$

— Alan L. Fry

Sums of cubes IV

$$1^3 + 2^3 + 3^3 + \dots + n^3 = \frac{1}{4} (n(n+1))^2$$

— Antonella Cupillari

Sums of cubes V

— Roger Nelsen

Sums of cubes VI

— Farhood Pouryoussefi

Sums of integers and sums of cubes

$$1 + 2 + \dots + n = \frac{1}{2}n(n+1)$$

$$1^3 + 2^3 + \dots + n^3 = \left(\frac{1}{2}n(n+1)\right)^2$$

— Georg Schrage

Sums of odd cubes are triangular numbers

$$1^{3} + 3^{3} + 5^{3} + \dots + (2n-1)^{3} = 1 + 2 + 3 + \dots + (2n^{2} - 1) = n^{2} (2n^{2} - 1)$$

— Monte J. Zerger

Sums of fourth powers

$$\sum_{i=1}^{n} i^4 = \left(\sum_{i=1}^{n} i^2\right)^2 - 2\left(\sum_{k=2}^{n} \left(k^2 \sum_{i=1}^{k-1} i^2\right)\right)$$

— Elizabeth M. Markham

k-th powers as sums of consecutive odd numbers

$$n^k = (n^{k-1} - n + 1) + (n^{k-1} - n + 3) + \dots + (n^{k-1} - n + 2n - 1)$$
 for $k = 2, 3, \dots$

— N. Gopalakrishnan Nair

Sums of triangular numbers I

$$T_n = 1 + 2 + \dots + n$$
 implies $T_1 + T_2 + \dots + T_n = \frac{n(n+1)(n+2)}{6}$

$$3(T_1 + T_2 + \dots + T_n) = (n+2) \cdot T_n$$

$$T_1 + T_2 + \dots + T_n = \frac{(n+2)}{3} \cdot \frac{n(n+1)}{2} = \frac{n(n+1)(n+2)}{6}$$

— Monte J. Zerger

Sums of triangular numbers II

$$T_n = 1 + 2 + \dots + n$$
 implies $T_1 + T_2 + \dots + T_n = \frac{n(n+1)(n+2)}{6}$

— Roger B. Nelsen

Sums of triangular numbers III

 $T_n = 1 + 2 + \dots + n$ implies $T_1 + T_2 + \dots + T_n = \frac{1}{6}n(n+1)(n+2)$

Sums of oblong numbers I

$$(1\times 2) + (2\times 3) + (3\times 4) + \dots + (n-1)n = \frac{1}{3}(n-1)n(n+1)$$

— Т. С. Wu

Sums of oblong numbers II

$$3(1 \times 2 + 2 \times 3 + 3 \times 4 + \dots + n(n+1)) = n(n+1)(n+2)$$

— Sidney H. Kung

Sums of pentagonal numbers

$$\frac{1 \cdot 2}{2} + \frac{2 \cdot 5}{2} + \frac{3 \cdot 8}{2} + \dots + \frac{n(3n-1)}{2} = \frac{n^2(n+1)}{2}$$

— William A. Miller

On squares of positive integers

$$T_n = 1 + 2 + \dots + n \implies$$

$$(2n+1)^2 = 8T_n + 1$$

$$(2n)^2 = 8T_{n-1} + 4n$$

— Edwin G. Landauer

Consecutive sums of consecutive integers

- Roger B. Nelsen

Count the dots

— Warren Page

Identities for triangular numbers

$$3T_n + T_{n-1} = T_{2n}$$

$$3T_n + T_{n+1} = T_{2n+1}$$

$$T_{n-1} + 6T_n + T_{n+1} = (2n+1)^2$$

A triangular identity

$$(2k+1)^2 T_n + T_k = T_{(2k+1)n+k}$$

— Roger B. Nelsen

Every hexagonal number is a triangular number

$$\left. \begin{array}{l} H_n = 1 + 5 + \cdots + (4n - 3) \\ T_n = 1 + 2 + \cdots + n \end{array} \right\} \Longrightarrow H_n = 3T_{n-1} + T_n = T_{2n-1} = n(2n - 1) \\ \end{array}$$

One domino = two squares : concentric squares

$$1 + 4 \times 2 + 8 \times 2 + 12 \times 2 + 16 \times 2 = 9^{2}$$
$$1 + 2 \sum_{k=1}^{n} 4k = (2n+1)^{2}$$

— Shirley A. Wakin

Sums of consecutive powers of 9 are sums of consecutive integers

— Roger B. Nelsen

Sums of hex numbers are cubes

Sequences and series

A monotone sequence bounded by e
A recursively defined sequence for e
Geometric sums
Geometric series I
Geometric series II
Geometric series III
Sum of inverses of successive integer products

A monotone sequence bounded by \boldsymbol{e}

$$\begin{split} n &\geq 1 &\implies m_1 < m_2 < 1 \\ &\implies \frac{\ln(1+1/n)}{1/n} < \frac{\ln(1+1/(n+1))}{1/(n+1)} < 1 \\ &\implies \left(1 + \frac{1}{n}\right)^n < \left(1 + \frac{1}{n+1}\right)^{n+1} < e \end{split}$$

- Roger B. Nelsen

A recursively defined sequence for \boldsymbol{e}

$$x_0 > 1$$
 & $x_{n+1} = \frac{x_n}{\ln(x_n)}$ \Longrightarrow $\lim x_n = e$

— Thomas P. Dence

Geometric sums

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots = 1$$

$$r + r(1 - r) + r(1 - r)^2 + \dots = 1$$

— Warren Page

Geometric series I

$$\frac{a + ar + ar^{2} + ar^{3} + ar^{4} + \dots}{1/r} = \frac{ar}{1 - r}$$

$$a + ar + ar^{2} + ar^{3} + ar^{4} + \dots = \frac{a}{1 - r}$$

$$\sum_{n=0}^{\infty} ar^{n} = \frac{a}{1 - r}$$

— J. H. Webb

Geometric series II

$$\triangle PQR \sim \triangle TSP$$

$$\therefore 1 + r + r^2 + r^3 + \dots = \frac{1}{1 - r}$$

— Benjamin G. Klein and Irl C. Bivens

Geometric series III

$$\frac{1}{4} + \frac{1}{16} + \frac{1}{64} + \frac{1}{256} + \dots = \frac{1}{3}$$

$$(1-r)^2 + r^2(1-r)^2 + r^4(1-r)^2 + \dots = \frac{(1-r)^2}{(1-r)^2 + 2 \times r(1-r)}$$
$$1 + r^2 + r^4 + \dots = \frac{1}{(1-r)^2 + 2r(1-r)} = \frac{1}{1-r^2}$$
$$a + ar + ar^2 + \dots = \frac{a}{1-r}$$

- Sunday A. Ajose

Sum of inverses of successive integer products

— Roman W. Wong

Miscellaneous

The 1	problem	of the	calissons													11	4

The problem of the calissons

— Guy David and Carlos Tomei