RFID MODULE

Mifare Reader / Writer

SL030 User Manual

Version 2.6 Nov 2012 StrongLink

CONTENT

1. MAIN FEATURES	3
2. PINNING INFORMATION	4
3. DEVICE OPERATION	5
3-1. Clock and Data Transitions:	
3-3. Stop Condition3-4. Acknowledge	
3-5. Busy State	
3-7. Write Operations	7
4. Command Description	
4-1. Format	
4-2. Command Overview4-3. Command List	
4-3-1. Select Mifare card	
4-3-2. Login to a sector	
4-3-3. Download Key into SL030	
4-3-4. Login sector via stored key	
4-3-6. Write a data block	
4-3-7. Read a value block	
4-3-8. Initialize a value block	
4-3-9. Write master key (KeyA)	
4-3-10. Increment value	
4-3-12. Copy value	
4-3-13. Read a data page (UltraLight & NTAG203)	
4-3-14. Write a data Page (UltraLight & NTAG203)	
4-3-15. Power Down	
4-3-16. Get firmware version	13

1. MAIN FEATURES

- Tags supported: Mifare 1k, Mifare 4k, Mifare UltraLight and NFC NTAG203
- Auto-detecting tag
- Built-in antenna
- 0 to 400 KHz bit-wide I²C-bus communication
- 2.5 ~ 3.6V VDC operating, I/O pins are 5V tolerant
- Work current less than 40mA @3.3V
- Power down current less than 10uA
- Operating distance: Up to 50mm, depending on tag
- Storage temperature: $-40 \, ^{\circ}\text{C} \sim +85 \, ^{\circ}\text{C}$
- Operating temperature: $-25 \, ^{\circ}\text{C} \sim +70 \, ^{\circ}\text{C}$
- Dimension: $38 \times 38 \times 3$ mm
- The OUT pin at low level indicates tag in detective range, and high level indicating tag out

2. PINNING INFORMATION

Uint: mil 100 mil between two pads

PIN	SYMBOL	TYPE	DESCRIPTION
1	VDD	PWR	Power supply, 2.5V to 3.6VDC
2	IN	Input	Falling edge wake up SL030 from power down mode
3	SDA	Input/Output	Serial Data Line
4	SLC	Input	Serial Clock Line
5	Out	Output	Tag detect signal low level indicating tag in high level indicating tag out
6	GND	PWR	Ground
7	NC		
8	NC		
9	NC		
10	NC		

3. DEVICE OPERATION

3-1. Clock and Data Transitions:

The SDA pin is normally pulled high with an external device. Data on the SDA pin may change only during SCL low time periods. Data changes during SCL high periods will indicate a start or stop condition as defined below.

3-2. Start Condition

A high-to-low transition of SDA with SCL high is a start condition which must precede any other command

3-3. Stop Condition

A low-to-high transition of SDA with SCL high is a stop condition.

3-4. Acknowledge

All addresses and data words are serially transmitted to and from the SL030 in 8-bit words. The SL030 sends a zero to acknowledge that it is not busy, and has received each word. This happens during the ninth clock cycle.

3-5. Busy State

When the SL030 has received command, then don't acknowledge IIC bus until ends with the card communication.

3-6. Device Addressing

The SL030 devices require an 8-bit device address word following a start condition to enable the chip for a read or write operation.

The device address word consists of 7 bits addressing and 1 bit operation select bit. The first 7 bits are the SL030 addressing, is 10100xx depend on JP1 and JP2 status as below table

	JP1	JP2	Address
	no	no	1010000
	no	no	(default)
shorted	no	yes	1010001
	yes	no	1010010
	yes	yes	1010011

The eighth bit of the device address is the read/write operation select bit. A read operation is initiated if this bit is high and a write operation is initiated if this bit is low.

The first byte after the START procedure.

3-7. Write Operations

The host device send a command(refer chapter 4) to SL030 via write operation, then SL030 will carry out the order that receive. Finished time according to different order

3-8. Read Operations

The host device passes to read the operation gets the order carries out the result

4. COMMAND DESCRIPTION

4-1. FORMAT

Host Write Command to SL030:

Address	Len	Command	Data	
Address:	1 b	yte, 0xA0		
Len:	1 b	yte indicating	the numb	er of bytes from Command to the end of Data
Command	ommand: 1 byte Command code, see Table 3			
Data:	Var	iable length de	epends or	the command type

Host Read The Result:

Address	Len	Command	Status	Data	
Address:	1 b	yte, 0xA1			
Len:	1 b	yte indicating	the numb	er of byt	es from Command to the end
Command	: 1 b	yte Command	code, see	Table 3	
Status:	1 b	yte Command	status, se	e Table 4	1
Data:	Var	iable length d	epends or	the com	imand type.

4-2. Command Overview

Table 3

Command	Description
0x01	Select Mifare card
0x02	Login to a sector
0x03	Read a data block
0x04	Write a data block
0x05	Read a value block
0x06	Initialize a value block
0x07	Write master key (key A)
0x08	Increment value
0x09	Decrement value
0x0A	Copy value
0x10	Read a data page (Ultralight & NATG203)
0x11	Write a data page (Ultralight & NTAG203)
0x12	Download Key
0x13	Login sector via stored Key
0x50	Go to Power Down mode
0xF0	Get firmware version

STATUS OVERVIEW

Table 4

Status	Description
0x00	Operation succeed
0x01	No tag
0x02	Login succeed
0x03	Login fail
0x04	Read fail
0x05	Write fail
0x06	Unable to read after write
0x08	Address overflow
0x09	Download Key fail
0x0A	Collision occur
0x0C	Load key fail
0x0D	Not authenticate
0x0E	Not a value block

4-3. COMMAND LIST

4-3-1. Select Mifare card

Host Write:

Len 0x01

Host Read:

Len 0x01 Status UID Type

Status: 0x00: Operation succeed

0x01: No tag

UID: The uniquely serial number of Mifare card

Type: 0x01: Mifare 1k, 4 byte UID

0x02: Mifare 1k, 7 byte UID [1]

0x03: Mifare UltraLight or NATG203^[2], 7 byte UID

0x04: Mifare 4k, 4 byte UID 0x05: Mifare 4k, 7 byte UID [1] 0x06: Mifare DesFire, 7 byte UID

0x0A: Other

4-3-2. Login to a sector

Host Write:

Len 0x02 Sector Type Key

Sector: Sector need to login, 0x00 - 0x27

Type: Key type (0xAA: authenticate with KeyA, 0xBB: authenticate with KeyB)

Key: Authenticate key, 6 bytes

Host Read:

Len 0x02 Status

Status: 0x02: Login succeed

0x01: No tag 0x03: Login fail

0x08: Address overflow

4-3-3. Download Key into SL030

Host Write:

Len 0x12 Sector Type Key

Sector: 0x00 - 0x27

Type: Key type (0xAA: KeyA, 0xBB: KeyB)

Key: 6 bytes, stored into SL030

Host Read:

Len 0x12 Status

Status: 0x00: Operation succeed

0x08: Address overflow 0x09: Download fail

4-3-4. Login sector via stored key

Host Write:

Len 0x13 Sector Type

Sector: Sector need to login, 0x00 - 0x27Type: Key type (0xAA: KeyA, 0xBB: KeyB)

Host Read:

Len 0x13 Status

Status: 0x02: Login succeed

0x03: Login fail

0x08: Address overflow

4-3-5. Read a data block

Host Write:

Len 0x03 Block

Block: The absolute address of block to be read, 1 byte

Host Read:

Len 0x03 Status Data

Status: 0x00: Operation succeed

0x01: No tag 0x04: Read fail

0x0D: Not authenticate

Data: Block data returned if operation succeeds, 16 bytes.

4-3-6. Write a data block

Host Write:

Len 0x04 Block Data

Block: The absolute address of block to be written, 1 byte.

Data: The data to write, 16 bytes.

Host Read:

Len 0x04 Status Data

Status: 0x00: Operation succeed

0x01: No tag 0x05: Write fail

0x06: Unable to read after write

0x0D: Not authenticate

Data: Block data written if operation succeeds, 16 bytes.

4-3-7. Read a value block

Host Write:

Len 0x05 Block

Block: The absolute address of block to be read, 1 byte.

Host Read:

Len 0x05	Status	Value
----------	--------	-------

Status: 0x00: Operation succeed

0x01: No tag 0x04: Read fail

0x0D: Not authenticate 0x0E: Not a value block

Value: Value returned if the operation succeeds, 4 bytes.

4-3-8. Initialize a value block

Host Write:

Block: The absolute address of block to be initialized, 1 byte.

Value: The value to be written, 4 bytes.

Host Read:

Len 0x06 Status Value

Status: 0x00: Operation succeed 0x01: No tag

0x05: Write fail

0x06: Unable to read after write

0x0D: Not authenticate

Value: Value written if the operation succeeds, 4 bytes.

4-3-9. Write master key (KeyA)

Host Write:

	Len	0x07	Sector	Kev

Sector: The sector number to be written, 0x00 - 0x27.

Key: Authentication key, 6 bytes

Host Read:

Len	0x07	Status	Vov
Len	UXU/	Status	Key

Status: 0x00: Operation succeed

0x01: No tag 0x05: Write fail

0x08: Address overflow 0x0D: Not authenticate

Key: Authentication key written if the operation succeeds, 6 bytes.

Attention: Be sure KeyB is readable, otherwise KeyB will be change to 000000000000 after this command.

4-3-10. Increment value

Host Write:

Len	0x08	Block	Value

Block: The absolute address of block to be increased, 1 byte.

Value: The value to be increased by, 4 bytes.

Host Read:

Len	0x08	Status	Value
Ctatura	$\Omega_{rr}\Omega\Omega_{r}$	Omanat	

Status: 0x00: Operation succeed

0x01: No tag 0x05: Write fail

0x06: Unable to read after write

0x0D: Not authenticate 0x0E: Not a value block

Value: The value after increment if the operation succeeds, 4 bytes

4-3-11. Decrement value

Host Write:

Len	0x09	Block	Value
Len	UXU9	DIOCK	varue

Block: The absolute address of block to be decreased, 1 byte

Value: The value to be decreased by, 4 bytes

Host Read:

Status: 0x00: Operation succeed 0x01: No tag

0x05: Write fail

0x06: Unable to read after write

0x0D: Not authenticate 0x0E: Not a value block

Value: The value after decrement if the operation succeeds, 4 bytes

4-3-12. Copy value

Host Write:

Len	0x0A	Source	Destination
-----	------	--------	-------------

Source: The source block copy from, 1 byte Destination: The destination copy to, 1 byte

The source and destination must in the same sector

Host Read:

Len	0x0A	Status	Value

Status: 0x00: Operation succeed

0x01: No tag 0x05: Write fail

0x06: Unable to read after write

0x0D: Not authenticate

0x0E: Not a value block (Source)

Value: The value after copy if the operation succeeds, 4 bytes

4-3-13. Read a data page (UltraLight & NTAG203)

Host Write:

Len 0x10 Page

Page: The page number to be read, 1 byte

Host Read:

Len 0x10 Status Data

Status: 0x00: Operation succeed

0x01: No tag 0x04: Read fail

0x08: Address overflow

Data: Block data returned if operation succeeds, 4 bytes.

4-3-14. Write a data Page (UltraLight & NTAG203)

Host Write:

Len 0x11 Page Data

Page: The page number to be written, 1 byte.

Data: The data to write, 4 bytes.

Host Read:

Len 0x11 Status Data

Status: 0x00: Operation succeed

0x01: No tag 0x05: Write fail

0x06: Unable to read after write

0x08: Address overflow 0xF0: Checksum error

Data: page data written if operation succeeds, 4 bytes.

4-3-15. Power Down

Host Write:

Len 0x50

Host Read:

No response until falling edge at PIN2 or repower

4-3-16. Get firmware version

Host Write:

Len 0xF0
Host Read: [3]

Len 0xF0 Status Data

Status: 0x00: Operation succeed

Data: firmware version.

Remark

 $^{[1]}\,$ In order to support 7 byte UID Mifare class, the firmware of SL030 has been updated to Ver3.2 in Mar 2011.

And older firmware version (such as Ver1.0, 2.0, 2.2, etc) only supports 4 byte UID. Please refer to NXP <u>Customer Letter UID</u> for detailed information of 4 byte & 7 byte UID of Mifare products.

^[2] To support NATG203, the firmware of SL030 has been updated to Ver3.9 in May 2012. The older firmware version only supports reading/writing data page address less than 16.

[3] One sample of SL030 response

	Len	Command	Status	Data
				(Firmware version)
HEX	0B	F0	00	53 4C 30 33 30 2D 33 2E 32
ASCII				"SL030-3.2"