CS 583: PROBABILISTIC GRAPHICAL MODELS

TOPIC: JUNCTION TREE ALGORITHM CHAPTER: 10

http://www.cs.iit.edu/~mbilgic

https://twitter.com/bilgicm

MOTIVATION

- We are interested in multiple marginal/conditional probabilities
- In variable elimination, we define our target upfront and then eliminate the others
- If we need probabilities for other variables, there is no apparent way of reusing shared computations
- o In the student example, assume that I'm interested in P(G) and P(L). What are some of the shared computations?

EXAMPLE

Calculate P(H) using variable elimination

Now, calculate P(G) using variable elimination

VARIABLE ELIMINATION AS GRAPH TRANSFORMATION

- First, construct the moral graph
- Then, eliminate variables so that each elimination introduces the fewest number of edges
- Take note of the factors

EXAMPLE - MORALIZE

ELIMINATION ORDER: H, G, F, C, B, D, E, A

CLUSTER GRAPH

- A cluster graph U for a set of factors Φ over X is an undirected graph, each of whose nodes are associated with a cluster $C_i \subseteq X$.
- ο A cluster graph must be *family preserving* each factor $\phi \in \Phi$ must be associated with a cluster C_i , denoted as $\alpha(\phi)$, such that Scope $[\phi] \subseteq C_i$.
- Each edge between a pair of clusters C_i and C_j is associated with a sepset $S_{ij} \subseteq C_i \cap C_j$

RUNNING INTERSECTION PROPERTY

- Let \mathcal{T} be a cluster tree. \mathcal{T} has running intersection property if, whenever there is a variable X such that $X \in C_i$ and $X \in C_j$, then X is also in every cluster in the unique path in \mathcal{T} between C_i and C_j .
- A cluster tree that satisfies the running intersection property is also called the *join/clique/junction tree*.
- **Theorem**: A cluster tree obtained through a run of variable elimination satisfies the running intersection property; that is, it is a clique tree.

EXAMPLE CLIQUE TREE

Ç

CONSTRUCT A CLIQUE TREE

- 1. Moralize the graph
- 2. Pick a variable elimination order
- 3. Eliminate the variables, noting the maximal cliques
- 4. The cliques are the nodes of the tree
- 5. Until a tree is formed (i.e., n-1 edges are added)
 - a) Connect two disconnected components by a maximal size sepset

ELIMINATION ORDER: H, G, F, C, B, D, E, A

11

VARIABLE ELIMINATION ON JUNCTION TREE

Message passing on Junction tree

- Clusters receive from and send messages to its neighbors
- Each message pass consists of elimination of one or more variables
- A cluster C_i is ready to send a message to its neighbor C_j , when it receives messages from its *all other* neighbors
- A message from C_i to C_j is computed as follows
 - C_i multiples all the factors assigned to it, and all the messages it received from its *other* neighbors
 - It sums out $C_i \setminus S_{ij}$

A MESSAGE

$$\delta_{i \to j} = \sum_{C_i \setminus S_{ij}} \left(\left(\prod_{\phi: \alpha(\phi)=i} \phi \right) \times \left(\prod_{k \in (Nb_i - \{j\})} \delta_{k \to i} \right) \right)$$

BELIEF

$$\beta_i = \left(\prod_{\phi:\alpha(\phi)=i} \phi\right) \times \left(\prod_{k \in Nb_i} \delta_{k \to i}\right)$$