Math 104 Practice

Neo Lee

2023 Fall

Chapter 14

Proposition 1. $\sum \frac{n^4}{2^n}$ converges.

Proof. We proceed with Ratio Test.

$$\lim \left| \frac{(n+1)^4}{2^{n+1}} \cdot \frac{2^n}{n^4} \right| = \lim \frac{(n+1)^4}{2n^4}$$
$$= \lim \frac{n^4 + O(n^3)}{2n^4}$$
$$= \frac{1}{2} < 1.$$

Proposition 2. $\sum \frac{2^n}{n!}$ converges.

Proof. We proceed with Ratio Test.

$$\lim \left| \frac{2^{n+1}}{(n+1)!} \cdot \frac{n!}{2^n} \right| = \lim \frac{2}{n+1}$$
$$= 0 < 1.$$

Proposition 3. $\sum \frac{n!}{n^4+3}$ diverges.

Proof. We proceed with Ratio Test.

$$\lim \left| \frac{(n+1)!}{(n+1)^4 + 3} \cdot \frac{n^4 + 3}{n!} \right| = \lim \frac{n(n^4 + 3)}{(n+1)^4 + 3}$$
$$= \lim \frac{n^5 + 3n}{n^4 + O(n^3)}$$
$$= \infty > 1.$$

Hence,

$$\liminf \left| \frac{a_{n+1}}{a_n} \right| = \lim \left| \frac{a_{n+1}}{a_n} \right| = \infty > 1.$$

Proposition 4. $\sum \frac{\cos^2 n}{n^2}$ converges.

Proof. We proceed with Comparison Test.

$$\left|\frac{\cos^2 n}{n^2}\right| \le \frac{1}{n^2}.$$

We know $\sum \frac{1}{n^2}$ converges. Hence, $\sum \frac{\cos^2 n}{n^2}$ converges.

Proposition 5. $\sum_{n=2}^{\infty} \frac{1}{logn}$ diverges.

Proof. We proceed with Comparison Test.

$$\frac{1}{logn} \ge \frac{1}{n}.$$

We know $\sum_{n=2}^{\infty} \frac{1}{n}$ diverges to $+\infty$. Hence, $\sum_{n=2}^{\infty} \frac{1}{\log n}$ diverges to $+\infty$.

Proposition 6. Suppose $\sum a_n = A, \sum b_n = B$ where $A, B \in \mathbb{R}$. Then, $\sum (a_n + b_n) = A + B$.

Proof. Define (a'_n) as the partial sums of (a_n) , (b'_n) as the partial sums of (b_n) , and (c'_n) as the partial sums of $(a_n + b_n)$. Then

$$\sum (a_n + b_n) = \lim c'_n$$

$$= \lim (a'_n + b'_n)$$

$$= \lim a'_n + \lim b'_n$$

$$= A + B.$$

Proposition 7. Suppose $\sum a_n = A$ for $A \in \mathbb{R}$. Then, $\sum ka_n = kA$ for $k \in \mathbb{R}$.

Proof. Define (a'_n) as the partial sums of (a_n) and (c'_n) as the partial sums of (ka_n) . Then

$$\sum (ka_n) = \lim c'_n$$

$$= \lim (ka'_n)$$

$$= k \lim a'_n$$

$$= kA.$$

Proposition 8. Suppose $\sum a_n = A, \sum b_n = B$ where $A, B \in \mathbb{R}$. Then, $\sum (a_n \cdot b_n) = AB$ is not true in general.

Proof. Define $(a_n) = (1, 0, 0, 0, \dots), (b_n) = (1/2)^n$. Then A = 1, B = 2 and AB = 2. But notice $a_n \cdot b_n = 0$ for all $n \neq 0$ and $\sum (a_n \cdot b_n) = a_0 \cdot b_0 = 1 \neq AB = 2$.

Proposition 9. If $\sum |a_n|$ converges and (b_n) is a bounded sequence, then $\sum a_n b_n$ converges. Note: Corollary 14.7 that absolutely convergent series are convergent is a special case when (b_n) is taken to be 1 for all n.

Proof. Since (b_n) is bounded, we know there exists an supremum for $(|b_n|)$, denote $M = max\{\sup(|b_n|), 1\}$. Then, we know there exists $N \in \mathbb{N}$ such that for $n \geq m > N$, $\sum_{k=m}^{n} |a_k| < \frac{\epsilon}{M}$ for all $\epsilon > 0$. Now, take such N and

$$\sum_{k=m}^{n} |a_k| < \frac{\epsilon}{M}$$

$$M \sum_{k=m}^{n} |a_k| < \epsilon$$

$$\left| \sum_{k=m}^{n} a_k b_k \right| \le \sum_{k=m}^{n} |a_k| |b_k| \le \sum_{k=m}^{n} |a_k| M < \epsilon.$$

Hence, $\sum a_n b_n$ satisfies the Cauchy criterion and thus converges.

Proposition 10. If $\sum a_n$ is a convergent series of nonnegative numbers and p > 1, then $\sum a_n^p$ converges.

Proof. We know there exists N such that for $n \ge m > N$, $|\sum_{k=m}^n a_k| < \sqrt[p]{\epsilon}$ for all $\epsilon > 0$. Take some $\epsilon > 0$ and such N, then

$$\left| \sum_{k=m}^{n} a_{k} \right| < \sqrt[p]{\epsilon}$$

$$\left| \sum_{k=m}^{n} a_{k} \right|^{p} < \epsilon$$

$$\left| \sum_{k=m}^{n} a_{k}^{p} \right| \le \left| \left(\sum_{k=m}^{n} a_{k} \right)^{p} \right| < \epsilon.$$
(1)

Hence, $\sum a_n^p$ satisfies Cauchy criterion and thus converges.

Note: the left inequality in (1) is true because $a_k \ge 0$ for all k so there are simply extra nonnegative terms in $\left|\left(\sum_{k=m}^{n} a_k\right)^p\right|$.

Proposition 11. If $\sum a_n$ and $\sum b_n$ are convergent series of nonnegative numbers, then $\sum \sqrt{a_n b_n}$ converges. Hint: show $\sqrt{a_n b_n} \leq a_n + b_n$ for all n.

Proof. Notice for all n

$$a_n^2 + b_n^2 + 2a_n b_n \ge a_n b_n$$
$$(a_n + b_n)^2 \ge a_n b_n$$
$$a_n + b_n \ge \sqrt{a_n b_n}.$$

Also, we know there exists N_1 such that for $n \ge m > N_1$, $|\sum_{k=m}^n a_k| < \epsilon/2$ and N_2 such that for $n \ge m > N_2$, $|\sum_{k=m}^n b_k| < \epsilon/2$. Now we take $N = \max\{N_1, N_2\}$ for some $\epsilon > 0$. Then, for all $n \ge m > N$

$$\left| \sum_{k=m}^{n} \sqrt{a_n b_n} \right| \le \left| \sum_{k=m}^{n} a_k + b_k \right|$$

$$\le \left| \sum_{k=m}^{n} a_k + \sum_{k=m}^{n} b_k \right|$$

$$\le \left| \sum_{k=m}^{n} a_k \right| + \left| \sum_{k=m}^{n} b_k \right|$$

$$\le \epsilon.$$

Hence, $\sum \sqrt{a_n b_n}$ satisfied Cauchy criterion and thus converges.

Proposition 12. The convergence of a series does not depend on any finite number of terms, though the value of the limit does. More precisely, consider series $\sum a_n$ and $\sum b_n$ and suppose that the set $\{n \in \mathbb{N} : a_n \neq b_n\}$ is finite. Then the series both converge or else the both diverge.

Proof. Without loss of generality, we will focus on $\sum a_n$ and conclude the convergence of $\sum b_n$ based on $\sum a_n$. Also, denote $M = \max\{n \in \mathbb{N} : a_n \neq b_n\}$.

Case 1: $\sum a_n$ converges. We know $\sum a_n$ satisfies Cauchy criterion, thus we know there exists N_1 such that for all $n \geq m > N_1$, $|\sum_{k=m}^n a_k| < \epsilon$ for some $\epsilon > 0$.

Then, let $N_2 = \max\{N_1, M\}$. Since we have set N_2 to be at least M, any terms after N_2 for b_n is the same as a_n . Thus, any statement that holds true for a_n is also true for b_n after N_2 and we can conclude for all $n \ge m > N_2 |\sum_{k=m}^n b_k| < \epsilon$ for some $\epsilon > 0$.

Therefore, $\sum b_n$ satisfies Cauchy criterion too and thus converges.

Case 2: $\sum a_n$ diverges. Assume for the sake of contradiction that $\sum b_n$ converges. Then there exists N_2 for all $\epsilon > 0$ such that for $n \ge m > N_2$, $|\sum b_n| < \epsilon$. Thus, we can take $N_1 = \max\{N_2, M\}$, which will make sure that for $n \ge m > N_1$, $|\sum_{k=m}^n a_n| < \epsilon$ for each ϵ . But that contradicts that fact that $\sum a_n$ diverges. Hence, $\sum b_n$ must diverge.

Proposition 13. Let (a_n) be a sequence of nonzero real numbers such that the sequence $\left(\frac{a_{n+1}}{a_n}\right)$ of ratios is a constance sequence, then $\sum a_n$ is a geometric series.

Proof. Let $r = \frac{a_{n+1}}{a_n}$ for all n. Then we can define (a_n) recursively such that $a_{n+1} = a_n \cdot r$. Hence, $a_n = a_0 \cdot r^n$. Indeed,

$$\sum a_n = \sum_{k=0}^n a_0 \cdot r^k,$$

which is a geometric series.

Proposition 14. Let $(a_n)_{n\in\mathbb{N}}$ be a sequence such that $\liminf |a_n| = 0$, then there is a subsequence such that $\sum_{k=1}^{\infty} a_{n_k}$ converges.

Proof. Since $\liminf |a_n| = 0$, we know there exists a subsequence of $(|a_n|)$ that converges to 0. Hence, for each ϵ , the set $\{n : \mathbb{N} : |a_n| < \epsilon\}$ is infinite. Then we can construct a subsequence such that $\sum_{k=1}^{\infty} a_{n_k}$ converges.

For each k+1, choose $n_{k+1} > n_k$ such that $|a_{n_{k+1}}| < \frac{1}{2^{k+1}} = b_{k+1}$. Then, for each $k, |a_{n_k}| \le b_k$. Apparently, $\sum b_k$ is a convergent geometric series, thus by comparison test, $\sum_{k=1}^{\infty} a_{n_k}$ converges.

Proposition 15. $\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1$. Hint: $\sum_{k=1}^{n} \frac{1}{k(k+1)} = \sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{k+1}\right)$.

Proof. Notice

$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = \sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{k+1}\right)$$
$$= \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \dots + \left(\frac{1}{n} - \frac{1}{n+1}\right)$$
$$= 1 - \frac{1}{n+1}.$$

Hence,

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{k(k+1)}$$
$$= \lim_{n \to \infty} \left(1 - \frac{1}{n+1}\right)$$
$$= 1.$$

Proposition 16. $\sum_{n=1}^{\infty} \frac{n-1}{2^{n+1}} = \frac{1}{2}$. Hint: $\frac{k-1}{2^{k+1}} = \frac{k}{2^k} - \frac{k+1}{2^{k+1}}$.

Proof. Notice

$$\begin{split} \sum_{k=1}^{n} \frac{k-1}{w^{k+1}} &= \sum_{k=1}^{n} \left(\frac{k}{2^k} - \frac{k+1}{2^{k+1}} \right) \\ &= \left(\frac{1}{2} - \frac{2}{2^2} \right) + \left(\frac{2}{2^2} - \frac{3}{2^3} \right) + \dots + \left(\frac{n}{2^n} - \frac{n+1}{2^{n+1}} \right) \\ &= \frac{1}{2} - \frac{n+1}{2^{n+1}}. \end{split}$$

Hence,

$$\sum_{n=1}^{\infty} \frac{n-1}{2^{n+1}} = \lim_{n \to \infty} \sum_{k=1}^{n} \frac{k-1}{2^{k+1}}$$

$$= \lim_{n \to \infty} \left(\frac{1}{2} - \frac{n+1}{2^{n+1}}\right)$$

$$= \frac{1}{2} - \lim_{k \to \infty} \frac{k}{2^k}$$

$$= \frac{1}{2} - \lim_{k \to \infty} \left(\frac{\sqrt[k]{k}}{2}\right)^k$$

$$= \frac{1}{2}.$$

Proposition 17. Show that $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges by comparing with the series $\sum_{n=2}^{\infty} a_n$ where (a_n) is the sequence

$$(\frac{1}{2}, \frac{1}{4}, \frac{1}{4}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{16}, \frac{1}{16}, \frac{1}{16}, \frac{1}{16}, \frac{1}{16}, \frac{1}{16}, \frac{1}{16}, \frac{1}{16}, \frac{1}{16}, \frac{1}{32}, \frac{1}{32}, \cdots).$$

Note: this is also known as the Cauchy Condensation Test.

Proof. We will show that $\sum_{n=2}^{\infty} \frac{1}{n}$ diverges and thus $\sum_{n=1}^{\infty} \frac{1}{n}$, which differs only by the first term. Notice for all $2^k < n \le 2^{k+1}$, $a_n = \frac{1}{2^{k+1}} \le \frac{1}{n}$. This is true for all $k \in \mathbb{N}$. Hence, $\frac{1}{n} \le a_n$ for all n. Now observe within each interval $(2^k, 2^{k+1}]$, there are 2^k terms. Therefore, $\sum_{n=2^k}^{2^{k+1}} a_n = \frac{1}{2}$ and $\sum_{n=2}^{\infty} a_n = \lim_{k \to \infty} k\left(\frac{1}{2}\right) = \infty.$

Hence, by Comparison Test, $\sum_{n=1}^{\infty} \frac{1}{n}$ also diverges.

Chapter 15

Proposition 18. $\sum \left[sin\left(\frac{n\pi}{6}\right) \right]^n$ diverges.

Proof. Notice that when n=12k+3, $\left[\sin\left(\frac{n\pi}{6}\right)\right]^n=1$. Hence, the summation never converges.

Proposition 19. $\sum \left[\sin \left(\frac{n\pi}{7} \right) \right]^n$ converges.

Proof. We will show that the summation converges absolutely, hence converges.

Notice $\left| sin\left(\frac{n\pi}{7}\right) \right|$ is always between 0 and 1. In fact, it is bounded by above by some r < 1 such that $\left| sin\left(\frac{n\pi}{7}\right) \right| \le r < 1$ and $\left| sin\left(\frac{n\pi}{7}\right) \right|^n \le r^n < 1$. Then by Comparison Test, $\sum \left| sin\left(\frac{n\pi}{7}\right) \right|^n$ converges because $\sum r^n$ converges, which can be shown easily by Ratio Test or Root Test.

Proposition 20. $\sum_{n=2}^{\infty} \frac{1}{n(\log n)^p}$ converges if and only if p > 1.

Proof. We proceed with Integral Test with $f(x) = \frac{1}{x(\log x)^p}$. Notice f(x) is continuous, positive, and decreasing for $x \ge 2$. Also, $f(n) = a_n$. Then for $p \ne 1$

$$\lim_{n \to \infty} \int_{2}^{n} \frac{1}{x(\log x)^{p}} dx = \lim_{n \to \infty} \left[\frac{(\log x)^{1-p}}{1-p} \right]_{2}^{n}.$$
 (2)

For p = 1, we have

$$\lim_{n \to \infty} \int_2^n \frac{1}{x(\log x)} dx = \lim_{n \to \infty} \left[\log(\log x) \right]_2^n = \infty.$$
 (3)

Then for (\Rightarrow) direction, we know that if p=1, (2) goes to infinity, thus the summation diverges. If p<1, (1) goes to infinity, thus the summation diverges again. Hence, forward direction is shown by contrapositive. For (\Leftarrow) direction, we know that if p>1, (1) converges, thus the summation converges.

Proposition 21. $\sum_{n=4}^{\infty} \frac{1}{n(\log n)(\log \log n)}$ diverges.

Proof. We proceed with Integral Test with $f(x) = \frac{1}{x(\log x)(\log \log x)}$. Notice f(x) is decreasing, $f(n) = a_n$, and all a_n are nonnegative. Then

$$\lim_{n \to \infty} \int_4^n \frac{1}{x(\log x)(\log\log x)} dx = \lim_{n \to \infty} \left[\log(\log(\log x))\right]_4^n = \infty.$$

7

Proposition 22. $\sum_{n=2}^{\infty} \frac{\log n}{n^2}$ converges.

Proof. Integral Test:

We can integrate $f(x) = \frac{\log x}{x^2}$ to get

$$\lim_{n \to \infty} \int_2^n \frac{\log x}{x^2} dx = \lim_{n \to \infty} \int_2^n -(\log x) d\left(\frac{1}{x}\right)$$

$$= \lim_{n \to \infty} \left[-\frac{\log x}{x} \right]_2^n + \lim_{n \to \infty} \int_2^n \frac{1}{x^2} dx$$

$$= \lim_{n \to \infty} \left[-\frac{\log x}{x} \right]_2^n - \lim_{n \to \infty} \left[\frac{1}{x} \right]_2^n$$

$$= \frac{1}{2},$$

and conclude that $\sum_{n=2}^{\infty} \frac{\log n}{n^2}$ converges.

Comparison Test:

We know that for n > N where N is some constant, $\sqrt{n} > \log n$. This can be proved by obversing that $\sqrt{n} > \log n$ when n = 100, and we see by first derivative that \sqrt{n} has a higher increasing rate than $\log n$ for all n. Hence, we can conclude that $\sqrt{n} > \log n$ for all $n \ge 100$.

Then, we see $\frac{\log n}{n^2} < \frac{1}{n^{3/2}}$ for $n \ge 100$. We know that $\sum \frac{1}{n^{3/2}}$ converges for $p > 1 \Rightarrow \sum_{100}^{\infty} \frac{1}{n^{3/2}}$ converges $\Rightarrow \sum_{100}^{\infty} \frac{\log n}{n^2}$ converges $\Rightarrow \sum_{100}^{\infty} \frac{\log n}{n^2}$ converges.

Proposition 23. If (a_n) is a decreasing sequence of real numbers and if $\sum a_n$ converges, then $\lim na_n = 0$.

Proof. Since $\sum a_n$ converges, we know it satisfies Cauchy criterion. In other words, there exists N such that for $n \ge m > N$,

$$\left| \sum_{k=m}^{n} a_k \right| < \epsilon.$$

Then, \Box