# LEARNING BAYESIAN NETWORKS WITH EVOLUTIONARY PROGRAMMING

Tommy Moawad

# **PROBLEM:**

- WHICH NETWORK IS THE BEST?
- WHICH NODES ARE PARENTS OF OTHERS?



#### FITNESS OF A BAYESIAN NETWORK

Suppose We Want To Determine The Relationship Between 5 Variables





#### FITNESS OF A BAYESIAN NETWORK: MINIMUM DESCRIPTION LENGTH

#### Let

- D = data
- h = hypothesis
- Huff(x) = Size of huffman encoding of x

```
MDL
       = Max [Probability that this is the correct hypothesis for the data]
       = \operatorname{argmax}_h P(h|D)
       = argmax<sub>b</sub> Likelihood * Prior
       = \operatorname{argmax}_{h} P(Dlh) * P(h)
       = argmax_h [log_2P(DIH) + log_2(h)]
       = argmin_h [ -log_2P(DIH) - log_2(h) ]
       = argmin<sub>h</sub>[ length(Dlh) + length(h) ]
                                                       (Information Theory: Optimal Code Length)
       = argmin, [ Huff(Data encoded with network probabilities) + Huff(network) ]
```

#### **DIABETES DATASET**

- Pregnancies
- Glucose
- Blood Pressure
- Skin Thickness
- Insulin
- BMI
- Diabetes Pedigree Function
- Age
- Diabetes

# MDL PREFERS SIMPLE NETWORKS







# **MDL FITS OUR INTUITION**



#### **MDL FITS OUR INTUITION**



Possible sets of parents:

$$\binom{9}{0} + \binom{9}{1} + \ldots + \binom{9}{9}$$

Possible Networks:  $2^{9*9} = 2^{81}$ 

#### **EVOLUTIONARY PROGRAMMING SIMULATES SURVIVAL OF THE FITTEST**



# **DIABETES RESULTS**



Most Fit Network: Score 664445.8755865983



Worst Network: Score 30116348.996455964



# **ALARM EXAMPLE**



| 20 |              | 1000 |  |
|----|--------------|------|--|
| 1  | alarm.sample | 10)  |  |

|     | Burglary | Earthquake | Alarm | John Calls | Mary Calls |
|-----|----------|------------|-------|------------|------------|
| 51  | True     | False      | False | True       | True       |
| 146 | False    | False      | False | False      | False      |
| 62  | False    | False      | False | False      | False      |
| 52  | True     | False      | True  | True       | False      |
| 188 | False    | False      | False | False      | False      |
| 159 | False    | False      | False | False      | False      |
| 57  | False    | False      | False | False      | False      |
| 119 | False    | False      | False | False      | False      |
| 97  | False    | False      | False | False      | False      |
| 20  | False    | False      | False | False      | False      |

# **ALARM RESULTS**







# CONVERGES TO REDUNDANT NETWORKS





#### **MODIFICATIONS**

#### Favor Diversity with Increase Routine

If average distance between offspring<sub>i</sub> and all other nodes is beyond some threshold



Then keep offspring, and parent,



#### **MODIFICATIONS**

#### Favor Diversity with Increase Routine

If average distance between offspring<sub>i</sub> and all other nodes is beyond some threshold



Then keep offspring, and parent,



#### Avoid Redundancy with Decrease Routine

For every combination of network, and network





and their parents





If the children are fitter than their parents then keep fitter child







Else if the top two networks are identical remove one





# **ALARM RESULTS**



Most Fit Network: Score 309.05691664778317



