Embedding into Ditribution of Trees

Ashkan Mokarian

Max-Planck Institute of Informatics

Final Presentation for the course Random Discrete Structures, Summer 2014

Outline

- Basic Definitions
- Embedding into random trees
 - Motivation
 - Bartal's thm, $\mathcal{O}(\log n \log \Delta)$
 - [CKR01]-Cutting Scheme
 - [FRT03], *O*(log *n*)

Metric

Definition (metric)

A metric space is a pair (X,d), where X is a set of *points* and a function $d: X \times X \to \mathbb{R}^{\geq 1}$ such that

- d(x,y) = d(y,x) (symmetry)
- $d(x,y) + d(y,z) \ge d(x,z)$ (triangle-inequality)

Embedding

Definition (embedding)

Given metric spaces (X, d) and (X', d') a map $f: X \to X'$ is called an embedding. An embedding is called distance-preserving or isometric if for all $x, y \in X$, d(x, y) = d'(f(x), f(y)).

Distortion

Definition (distortion)

Let f be an embedding from the finite metric space (X, d) into another finite metric (X', d'). We define

expansion(
$$f$$
) = $\max_{x,y \in X} \frac{d'(f(x), f(y))}{d(x, y)}$

contraction(
$$f$$
) = $\max_{x,y \in X} \frac{d(x,y)}{d'(f(x),f(y))}$

the distortion of an embedding f, distortion(f), is defined as the product of expansion(f) and contraction(f). An embedding with distortion(f) = 1 is called *isometric*.

note: from here on, we'll show the distortion by D.

Distortion

notation: $(X, d) \stackrel{D}{\hookrightarrow} (X', d')$ means that there exist an embedding f from metric space (X, d) into (X', d') with distorion D and an r > 0 such that:

$$r \leq \frac{d'(f(x), f(y))}{d(x, y)} \leq Dr$$

for any $x, y \in X$.

Outline

- Basic Definitions
- Embedding into random trees
 - Motivation
 - Bartal's thm, $\mathcal{O}(\log n \log \Delta)$
 - [CKR01]-Cutting Scheme
 - [FRT03], $\mathcal{O}(\log n)$

Why trees?

- Many problems are simple on trees. Thus, embed a given metric into a tree.
- But Impossible with low distortion

Theorem

Every embedding of C_n into a tree T incurs distortion $\Omega(n)$.

remedy: embed into distribution of trees.

Why trees?

- Many problems are simple on trees. Thus, embed a given metric into a tree.
- But Impossible with low distortion

Theorem

Every embedding of C_n into a tree T incurs distortion $\Omega(n)$.

remedy: embed into distribution of trees.

Why trees?

- Many problems are simple on trees. Thus, embed a given metric into a tree.
- But Impossible with low distortion

Theorem

Every embedding of C_n into a tree T incurs distortion $\Omega(n)$.

remedy: embed into distribution of trees.

Probabilistic definition of Distortion

Definition

Suppose \mathcal{G} is a graph family. Then $(X, d) \stackrel{D}{\hookrightarrow} \operatorname{distrib}(\mathcal{G})$ means that there exist a distribution π on the graph family \mathcal{G} and an r > 0 such that:

$$r \leq \frac{E_{g \leftarrow \pi}[d_g(x, y)]}{d(x, y)} \leq Dr$$

where $g \in G$ and $x, y \in X$.

from now on we use the notation $d_{\pi}(x,y) = E_{g \leftarrow \pi}[d_g(x,y)]$.

Outline

- Basic Definitions
- Embedding into random trees
 - Motivation
 - Bartal's thm, $\mathcal{O}(\log n \log \Delta)$
 - [CKR01]-Cutting Scheme
 - [FRT03], $\mathcal{O}(\log n)$

some definitions

Definition (diameter)

The diameter of a graph G (denoted by $\operatorname{diam}(G)$) is the least δ such that for all pairs of vertices $x, y \in V(G)$, we have $d_G(x, y) \leq \delta$. In other words $\operatorname{diam}(G) = \sup_{x,y \in V(G)} d_G(x, y)$.

Definition (weak-diameter)

Given a graph G and a subgraph $G'\subseteq G$, the weak diameter of G' with respect to G (denoted by $\operatorname{weak}_G\operatorname{diam}(G')$) is the least δ such that $d_G(x,y)\leq \delta$ for all $x,y\in V(G')$.

Bartal's theorem, 1996

Theorem

Given a metric (X, d) with diameter Δ , let \mathcal{DT} be the set of all tree metrics that dominate d. Then

$$(X, d) \stackrel{\mathcal{O}(\log n \log \Delta)}{\hookrightarrow} \operatorname{distrib}(\mathcal{DT})$$

Probabilistic Decomposition (Cutting Schema)

Theorem

Given a graph G = (V, E) with edge lengths, and a parameter δ , there exists a procedure that delets edges E' such that

- Each connected component C in (V, E E') has weak diameter smaller than δ .
- ② $Pr[edge\ e\ is\ cut] \le 4\log n \times (d(e)/\delta).$

For now, assume such a randomized procedure exists and we will come back to it later.

Bartal's tree construction

Theorem

Given a metric (X,d) with diameter Δ , let \mathcal{DT} be the set of all tree metrics that dominate d. Then

$$(X, d) \stackrel{\mathcal{O}(\log n \log \Delta)}{\hookrightarrow} \operatorname{distrib}(\mathcal{DT})$$

some lemmas about the tree constructed

Lemma

consider a level j component H, and a level j+1 component H' formed by partitioning H. Let T' be the tree corresponding to H' (with root r'), and let T be the tree corresponding to H (with root r).

- length of the edge $\{r, r'\}$ in T is $\Delta/2^{j}$.
- The distance of any leaf in T from the root r is at most $2\Delta/2^{j}$.
- The diameter of T is at most $4\Delta/2^{j}$.

Lemma

Any tree constructed as above dominates d, i.e., $d_T(x,y) \ge d(x,y)$.

some lemmas about the tree constructed

Lemma

consider a level j component H, and a level j+1 component H' formed by partitioning H. Let T' be the tree corresponding to H' (with root r'), and let T be the tree corresponding to H (with root r).

- length of the edge $\{r, r'\}$ in T is $\Delta/2^{j}$.
- The distance of any leaf in T from the root r is at most $2\Delta/2^{j}$.
- The diameter of T is at most $4\Delta/2^{j}$.

Lemma

Any tree constructed as above dominates d, i.e., $d_T(x,y) \ge d(x,y)$.

Bartal's thm - proof

Theorem

Given a metric (X, d) with diameter Δ , there exist an embedding into a distribution of trees such that

- all trees constructed dominate d.
- ② The embedding has distortion $\in \mathcal{O}(\log n \log \Delta)$

Recap:

The diameter of T is at most $4\Delta/2^{j}$ (one of the properties of the tree constructed)

Pr[edge *e* is cut] $\leq 4 \log n \times (d(e)/\delta)$ (by the randomized cutting procedure).

Outline

- Basic Definitions
- Embedding into random trees
 - Motivation
 - Bartal's thm, $\mathcal{O}(\log n \log \Delta)$
 - [CKR01]-Cutting Scheme
 - [FRT03], $\mathcal{O}(\log n)$

randomized cutting procedure

Theorem

Given a graph G = (V, E) with edge lengths, and a parameter δ , there exists a procedure that delets edges E' such that

- Each connected component C in (V, E E') has weak diameter smaller than δ .
- ② $Pr[edge\ e\ is\ cut] \le 4\log n \times (d(e)/\delta).$

The procedure that is going to be explained, was first introduced in a paper of Calinescu, Karloff and Rabani(2001), and was later used by [FRT03] to achive the better bound on distortion.

Bartal uses some other method in his original paper.

CKR-cutting procedure

Algorithm

INPUT: G,δ

- Pick a radius R uniformly at random from $[\delta/4, \delta/2]$
- **2** Pick a random permutation $\sigma \in S_n$, which defines an order $<_{\sigma}$ on the vertices
- **3** For every vertex v_i , define a ball $B_i = B(v_i, R)$
- 4 Assign each vertex to the first ball it lies in. define $\hat{B}_i = B_i \bigcup_{i < \sigma^i} B_i$
- **1** Delete all edges in the cut $(\hat{B}_i, V \setminus \hat{B}_i)$

proof

Theorem

Given a graph G = (V, E) with edge lengths, and a parameter δ , there exists a procedure that deletes edges E' such that

- Each connected component C in (V, E E') has weak diameter smaller than δ .
- 2 Pr[edge e is cut] $\leq 4 \log n \times (d(e)/\delta)$.

can the bound be improved?

proof

Theorem

Given a graph G = (V, E) with edge lengths, and a parameter δ , there exists a procedure that deletes edges E' such that

- Each connected component C in (V, E E') has weak diameter smaller than δ .
- ② $Pr[edge\ e\ is\ cut] \le 4\log n \times (d(e)/\delta).$

can the bound be improved?

Outline

- Basic Definitions
- Embedding into random trees
 - Motivation
 - Bartal's thm, $\mathcal{O}(\log n \log \Delta)$
 - [CKR01]-Cutting Scheme
 - [FRT03], *O*(log *n*)

better bound for distortion

Theorem

Every metric space with n points can be embedded by a distribution of trees with distortion $\mathcal{O}(\log n)$.

Summary

- any metric space can be embedded into a distribution of trees with low distortion
- a randomized algorithm for getting decomposition of arbitrary size component upper limit has been explained

Thanks I

Yair Bartal.

Probabilistic approximations of metric spaces and its algorithmic applications.

In Proceedings of the 37th IEEE Symposium on Foundations of Computer Science (FOCS), pages 184-193, 1996

Fakcharoenphol, Rao, and Talwar.

A tight bound on approximating arbitrary metrics by tree metrics.

ACM Symposium on Theory of Computing(STOC), 2003.