Exam in Statistical Methods, 2014-12-17

Time allowed: kl: 8-12

Allowed aids: Calculator. One handwritten A4 paper (both sides) with the students own notes.

Assisting teacher: Lotta Hallberg

Grades: A=19-20 points, B=17-18p, C=14-16p, D=12-13p, E=10-11p

Provide a detailed report that shows motivation of the results.

1

Let $f(y|\alpha,\beta) = \frac{1}{\alpha}e^{\frac{-(y-\beta)}{\alpha}}$, $\beta < y < \infty$, $0 < \alpha < \infty$ be density function to the random variable Y,

lpha and eta are parameters

- a) Show that $f(y | \alpha, \beta)$ is a density function.
- b) Determine the distribution function 1p
- c) Calculate the probability $P(\beta+1 < Y \le \beta+2)$ when $\alpha=2$

2

Let the bivariate random variable (X,Y) have density function:

f(x, y) = k(x+2y) where 0 < 2y < x < 2.

- a) Determine k. 2p
- b) Calculate $E[X \mid Y = \frac{1}{2}]$ 3p

3

A company's management want to investigate the stress level of the employees. Therefore they check with 40 randomly selected employees and ask if they feel stress at work and 8 of them answered yes. Assume that the total number of employees is very large.

Estimate the proportion p of stressed employees in the company using:

- a) Method of moments.b) Maximum Likelihood method.2p
- c) Bayes method. Use the conjugate beta prior, beta(2,4) 2p
- d) Test the hypothesis $H_0: p=0.15$ against $H_a: p>0.15$ using the observation above. Use large sample theory. 10% significance level.

4

The following data are measured on 7 female runners.

Step = average number of steps per second

m/s = running speed, meters per second.

A runner are assumed to be good if the number of steps per second increase with the speed.

Step=Y	m/s=x
3.05	4.76
3.12	5.06
3.17	5.25
3.25	5.59
3.36	5.99
3.46	6.32
3.55	6.63

a) Set up the simple linear regression model and estimate the regression parameters eta_0 and eta_1 .

2p

b) Test if the slope is zero. You may use without showing any calculations that SSE= 0,00043. Use 5% significance level. Interpret your result. 2p