

Blimpin' ain't easy

Exploration of Blimp as Robotics Platform

Evan Coronado, Benjamin Danek

State of the art: UAVs

Blimp (LTA, Hybrid)	Quadcopter/Multirotor	VTOL	Fixed Wing
 Maneuverable Versatile Good flight time High payload Good take off/land Safe Challenging Controls 	 Maneuverable Versatile Predictable (complex) control Fast Poor Flight Time Quick Decision Making Limited Payload Loud 	 Strong Flight Time Good take off/land Some Maneuverability (better than FW) Cumbersome Nuanced Contro Limited Payload 	 Best Flight Time Explored discipline High payload Clumsy at low speed/altitude Difficult Takeoff/Land

Historical/Background

- Academia had 2 distinct periods
 - Prior related to
 - general aerospace/flight
 - Materials
 - Computering
- Design and Application: ~96' 03'
 - Focus on application, not platform development
 - Utility as sensor platform (sensing/mapping)
 - Development alongside robotic algorithm branches (state estimation/visual servoing)
- Control Optimization: ~04 '11
 - Application proved to be useful → need to develop platform for outdoors
 - Machine Learnt controllers
 - Trajectory optimization based off object
 - Navigation in environment

Harvesting Innovation Planted 10 years ago

- Research Field/Constraint in before subsidence of Blimp
 - Algorithm Design
 - Data driven/Robotics Approaches
 - Trajectory optimization (drone movement)
 - Computation speed + capabilities
 - Policy/decision making (dealing with environment)
 - Reinforcement Learning
- Limitations in ~11' have loosened up
- Adjacent fields grown
 - Manufacturing
 - Power systems
 - Control Architecture
 - Materials

Modern Applications

Industrial Areas	Application Example
Environment	Greenhouse gas emission detecting
	and climate change monitoring.
Disaster Rescue	Monitoring and rescue services
	in inaccessible environment.
Infrastructure	• Working platform for spiderman.
Astro Exploration	 Monitoring and service for
	planet exploration.
Transportation	Big carriages and low costs
	for the long distance transports.
Telecommunication	• Relaying the communication
	signals in remote areas.
Military Operation	Monitoring and weapon platform
	in tactics tasks.
Security	Mobile monitoring guard
	and anti-terror attack.
Science and Research	 Astro and environmental research.

Modern Applications

- Non-invasive monitoring (earth/natural)
- Olfactory Sensing/mapping
- High fidelity imaging
- Entertainment
- Disaster Relief

Lockheed@52

Modern Applications

- Non-invasive monitoring (earth/natural)
- Olfactory Sensing/mapping
- High fidelity imaging
- Entertainment
- Disaster Relief

LOCKHEED MARTIN

Platform Description

Buoyancy Force

- Buoyancy Force = ∰_{CV} ρ g (N)
 - ∘ ∰_{cv} is the total volume displaced by the object of interest
 - ρ is the density of the the fluid displaced
 - o g is the acceleration due to gravity
- The values of ρ, g change with altitude

The lift force in Newtons for 1m³ volume of displaced Earth atmosphere as a function of altitude in meters

Drag Force

- Drag Force = $0.5 \rho v^2 A C_d$
 - ρ is the density of the fluid the object is moving through
 - V is the airstream velocity
 - A is the reference area
 - C_d is the drag coefficient

Blimp Design and Assumptions

- Required values for Blimp design include:
 - Mass is 10kg
 - Altitude of flight is 450m
 - Velocity of the airstream is 2m/s and the air is assumed to be still
 - For the drag calculations the Blimp is going to be assumed a sphere

Blimp Design Calculations

- The required volume to create a buoyancy force equal to the weight is 8.52m³
- From this volume the diameter can be calculated to be 3.712m
- From the value of the diameter the Reynolds number can be calculated which is used to determine the coefficient of drag. Re = 2.044*10⁶

Blimp Design Calculations

- From the previous chart the coefficient of friction can be found to be about
 0.45
- From all the calculated values the value of the drag force can be found to be
 17N.

https://s2.smu.edu/propulsion/Pages/dragmain.htm

Further Applications: School of Earth + Space Exploration

- Application for exploration on other planets where the
 - atmosphere density
 - Weigh (m * g) ratio falls

