Subspace

Et subspace av \mathbb{R}^n er et subset V av \mathbb{R}^n , som oppfyller:

- 1. Nonemptiness: $\overrightarrow{\mathbf{0}} \in V$
- 2. Closure under addition: $\overrightarrow{\mathbf{u}}, \overrightarrow{\mathbf{k}} \in V \Leftrightarrow \overrightarrow{\mathbf{u}} + \overrightarrow{\mathbf{k}} \in V$
- 3. Closure under multiplication: $\overrightarrow{\mathbf{u}} \in V \Leftrightarrow c\overrightarrow{\mathbf{u}} \in V$ Alle subspaces er et span og alle span er et subspace

Finne ut om et subset er et subspace

- Er subsettet et span? Kan det skrives som et span?
- Kan det bli skrevet som et columnspace til en matrise?
- Kan det bli skrevet som nullspacet til en matrise
- Er det hele \mathbb{R}^n eller $\{\overrightarrow{\mathbf{0}}\}$
- Kan det skrives som en type subspace?
 - Eigenspace
 - Ortogonal complement etc...
- Kan en bekrefte de tre kravene til et subspaces er oppfylt?

Basis:

La V være et subspace av \mathbb{R}^n . En basis til V vil da være et sett av vektorer $\{\overrightarrow{\mathbf{v_1}}, \overrightarrow{\mathbf{v_2}}, \dots \overrightarrow{\mathbf{v_n}}\}$ slik at: 1. $V = Span\{\overrightarrow{\mathbf{v_1}}, \overrightarrow{\mathbf{v_2}}, \dots \overrightarrow{\mathbf{v_n}}\}$

- 2. $\{\overrightarrow{\mathbf{v_1}}, \overrightarrow{\mathbf{v_2}}, \dots \overrightarrow{\mathbf{v_n}}\}$ Er lineært uavhengig.