計量経済 I:中間試験

村澤 康友

2024年6月4日

注意:3 問とも解答すること。PC・スマホを含め,何を参照してもよいが,決して他の受験者と相談しないこと。

- 1. (20点)以下で定義される統計学・計量経済学の専門用語をそれぞれ書きなさい.
 - (a) 試行の結果によって値が決まる変数
 - (b) 考察の対象全体
 - (c) $U \sim \chi^2(m)$ と $V \sim \chi^2(n)$ が独立のときの (U/m)/(V/n) の分布
 - (d) ある条件に該当するなら 1, しないなら 0 とした変数
- 2. (30点) 回帰分析に関する以下の問いに答えなさい.
 - (a) 平均処置効果を表す回帰係数 β が負であると主張したい.検定問題を定式化しなさい.
 - (b) 回帰係数の推定値が -1.0, 標準誤差が 0.4 であったとする. 回帰係数の t 値を求めなさい.
 - (c) 有意水準 5% の検定を考える. 検定統計量の p 値が 0.01 なら検定結果はどうなるか? (次頁に続く)

3. (50 点) 安倍首相 (当時) への支持感情 (0 \sim 100 点) を賃金所得 (万円) で説明する単回帰分析を行い, 次の結果を得た.

モデル 1: 最小二乗法 (OLS), 観測: 1-4276

従属変数: abe

	係数		標準誤差			t 値	p 値	
const	43.4372		0.32	7738		132.5	0.0000	***
income	-0.0030	5935	0.000	092866	33	-3.294	0.0010	***
Mean depende	nt var	42.636	681	S.D.	depe	endent var	14.40)106
Sum squared :	resid	884349	9.4	回帰の	D標準	誤差	14.384	50
R-squared		0.002	533	Adjus	sted	R-squared	0.002	2299
F(1, 4274)		10.852	278	P-val	Lue(I	7)	0.000)995

ただし標本には賃金所得 0 の人が約 12.1 %含まれる.そこで賃金所得有りダミーを説明変数に加えて重回帰分析を行い,次の結果を得た.

モデル 2: 最小二乗法 (OLS), 観測: 1-4276

従属変数: abe

	係数		標準	誤差	t	値	р	値	
const	44.7002		0.632	2300		70.69	0	.0000	***
income	-0.00208	8615	0.00	101744	4 .	-2.050	0	.0404	**
d_income	-1.7263	6	0.739	9233		-2.335	0	.0196	**
Mean depende	nt var	42.636	381	S.D.	dep	endent	var	14	.40106
Sum squared :	resid	883222	2.1	回帰の	り標準	誤差		14.3	7701
R-squared		0.0038	304	Adjus	sted	R-squa	ared	0.0	003338
F(2, 4273)		8.1589	945	P-val	lue(F)		0.0	000291

古典的正規線形回帰モデルを仮定し、検定の有意水準を5%として、以下の問いに答えなさい.

- (a) 支持感情の標本平均と標本分散は幾らか?
- (b) モデル 1 とモデル 2 のどちらが予測モデルとして優れているか?適切な統計量を参照して説明しなさい.
- (c) モデル1とモデル2のt値は、それぞれ帰無仮説の下でどのような分布に従うか?
- (d) モデル 2 において,賃金所得から支持感情への限界効果は 0 でないと主張できるか?適切な統計量を参照して説明しなさい.
- (e) モデル2によれば、賃金所得が1000万円の人の平均支持感情は何点か?

解答例

- 1. 統計学・計量経済学の基本用語
 - (a) 確率変数
 - (b) 母集団
 - (c) 自由度 (m,n) の F 分布
 - 自由度なしは1点.
 - 記号のみは 1 点.
 - (d) ダミー変数
- 2. 回帰分析の基礎
 - (a) $H_0: \beta = 0 \text{ vs } H_1: \beta < 0.$
 - $H_0: \beta \geq 0$ vs $H_1: \beta < 0$ \mathfrak{T} \mathfrak{b} OK.
 - *H*₀, *H*₁ を併記しなければ 0 点.
 - (b) t 値=推定値/標準誤差より t 値は -1.0/0.4 = -2.5.
 - (c) p 値が 0.01 なら有意水準 0.05 を下回るので H_0 は棄却.
 - 説明なしで「H₀ は棄却」のみは1点.
 - 説明ありで「棄却」のみは1点.
- 3. 回帰分析の実践
 - (a) 標本平均は 42.63681,標本分散は $14.40106^2 \approx 207.39$.
 - 各5点.
 - 2乗の計算ミスは1点減.
 - (b) モデル 1 は $\bar{R}^2=0.002299$, モデル 2 は $\bar{R}^2=0.003338$. したがって \bar{R}^2 が大きいモデル 2 の方が予測モデルとして優れている.
 - 統計量の値を示さなければ1点.
 - R² で比較したら 0 点.
 - (c) モデル 1 の t 値は t(4274), モデル 2 の t 値は t(4273) に従う.
 - 自由度なしは 1 点.
 - (d) モデル 2 において,賃金所得の回帰係数の両側 p 値は 0.0404 < 0.05. p 値 < 有意水準より回帰係数 = 0 の帰無仮説は棄却されるので,賃金所得から支持感情への限界効果は 0 でないと主張できる.
 - ●「賃金所得」「賃金所得有りダミー」両方の有意性を示すのは1点. 賃金所得の影響と限界効果は別の話(そもそも前者はF値で判断する).
 - ●「賃金所得有りダミー」の有意性のみは0点.
 - (e) $44.7002 0.00208615 \times 1000 1.72636 = 40.88769$ 点.
 - 表の数値の読み誤りは5点.