1.1 证明Vieta定理

证: 比较 $P(x) = \sum_{k=0}^{n} a_k x^k = a_n \prod_{k=1}^{n} (x - x_k)$ 两侧 x^{n-k} 的系数得

$$a_n \sum_{m_1 < \dots < m_k} (-1)^k \prod_{j=1}^k x_{m_j} = a_{n-k}.$$

1.2 证明 $T:\mathbb{Q} \to \mathbb{Z}$,

$$T(q) = egin{cases} (m+n)^2 + n, & q = rac{n}{m}, & \gcd(m,n) = 1, \ 0, & q = 0, \ -(m+n)^2 - n, & q = -rac{n}{m}, & \gcd(m,n) = 1. \end{cases}$$

是单射.

证:若 T(q)=T(r), 由于 T(q)=-T(q) 且 $T(\mathbb{Q}_+)\subset\mathbb{N}$, 不妨设 q,r>0, 且 q=n/m, r=u/v, $\gcd(m,n)=\gcd(u,v)=1$. 注意到

$$(m+n)^2 < (m+n)^2 + n < (m+n+1)^2,$$

故
$$T(q) = T(r) \implies m + n = (u, v) \implies n = v \implies (m, n) = (u, v).$$

1.3: 代数数集可数

证: 注意到 n 次整系数多项式集与 \mathbb{Z}^{n+1} 有双射, 故 $\mathbb{Z}[x]$ 为可数个可数集之并,也可数. 将每个代数数 z 对应 $(f,n)\in\mathbb{Z}[x]\times\mathbb{N}$, 其中 f 为 z 的最小多项式, z 是第 n 个根(先按膜长再按幅角排序), 则这是单射故代数数集可数.

2.

有限个抛物线即它们开口方向围成的区域能否覆盖整个平面?

解:不能. 考虑圆 $\bar{B}(0,R)$ 与抛物线的交, 易知圆与每个抛物线交出的弧圆周角趋于0, 故有限个抛物线不能覆盖整个平面.

3.

若闭曲线 C 包含凸闭曲线 D, 则 D 的周长不小于 C.

证:熟知 Cauchy-Crofton:

$$ext{length}(\gamma) = rac{1}{2} \int_0^{2\pi} \int_{-\infty}^{\infty} n_{\gamma}(p, arphi) \, \mathrm{d}p \, \mathrm{d}arphi,$$

且易见 $n_D(p, arphi) \leqslant n_C(p, arphi)$, (由于 $n_D(p, arphi) \leqslant 2$.)

另证:先证 D 是凸多边形的情形,此时可不妨设 D 的定点都在 C 上,否则将一个顶点改为其所在的一条边与 C 的交点,周长不减.由于 D 每一边长度都不小于 C 的对应部分,命题此时成立.

一般情形,对于 D 内部的任一凸多边形 P, P 的周长不小于 C. D 的周长应当定义为 $\sup\{\operatorname{length}(P):\operatorname{polygon}P\subset D\}$, 故 D 的周长不小于 C.

给定椭圆/双曲线/抛物线 Γ 上一点 A,尺规作图做出其切线.

解:首先,对于 Γ 外任一点 P, 过 P 做三条线与 Γ 交于 UV,XY,ZW, 则 P 的极线为 $UX\cap VY,UZ\cap YW$ 的连线. 故可取 Γ 之外两点 B,C 使 ABC 共线, 找到 B,C 的极线 l_B,l_C 并取出 $D=l_B\cap l_C$, 则得到 A 的切线 AD.

5.

平面上两个不相交的椭圆,也不是一个在另一个的内部。证明:一定存在一条直线,将两个椭圆分开为一侧一个。

证:考虑 \mathbb{R}^n 上的任意两个不相交闭凸集 U_1, U_2 , 则由于 d(x,y) = |x-y| 连续,存在 $(x,y) \in U_1 \times U_2$ 使 $d(x,y) = \inf_{(u,v) \in U_1 \times U_2} d(u,v)$. 考虑 (n-1)—维平面 $M = \{z \in \mathbb{R}^n : \langle z - (x+y)/2, x-y \rangle = 0\}$, 则任意 $(u,v) \in U_1 \times U_2$, 我们证明 $[u,v] = \{\lambda u + (1-\lambda)v : \lambda \in [0,1]\}$ 与 M 相交.

先证任意 $u \in U_1$, $[x,u] \cap M = \emptyset$. 否则取 $t \in [x,u] \cap M$, 则 x,t,y 构成等腰三角形, y 在 [x,t] 上的投影属于 U_1 , 与 d(x,y) 最小矛盾.

故任意 $u\in U_1$, $[x,u]\cap M=\emptyset$, $[x,y]\cap M\neq\emptyset$, 则 $[u,y]\cap M\neq\emptyset$ (只需考虑 x,y,u 所在的平面). 同理对任意 $u\in U_1,v\in U_2$, $[u,y]\cap M\neq\emptyset$, $[v,y]\cap M=\emptyset$, 故 $[u,v]\cap M=\emptyset$, 即 U_1 与 U_2 的点均在 M 的不同侧.

(证得有些麻烦,本质依旧是平面几何)