

TEORIA DE GRAFOS

UNIDAD 4. SUBDIGRAFO

SUBDIGRAFOS

Definición: Se dice que un dígrafo simple D1 es un **subdigrafo** de un dígrafo D si y sólo si, cada vértice en D1 es también un vértice en D, asigna a cada arista de D1 un par ordenado de vértices de D1.

Ejemplo:

SUBDIGRAFO COBERTOR

Definición: Un subdigrafo D1 de un dígrafo D se llama **cobertor** si contiene a todos los vértices de D (V(D1) = V(D)).

Ejemplo:

Subdigrafo Cobertor D2

VÉRTICES-DISYUNTOS

Definición: Dos subdígrafos D1 y D2 de un dígrafo D son **VÉRTICES-DISYUNTOS**, si no poseen vértices comunes $(V(D1) \cap V(D2) = 0)$.

VÉRTICES-DISYUNTOS

Ejemplo: El subdígrafo D4 es vértice-disyunto del subdígrafo D5

D = (V, A, f)
D(V) = {B, C, D}
D(A) = {2, 3, 8}

$$F_D = \begin{cases} f_D(2) = (B, C), f_D(3) = (C, D), \\ f_D(8) = (B, D) \end{cases}$$

ARISTAS-DISYUNTOS

Definición: Dos subdígrafos D1 y D2 de un dígrafo D son **ARISTAS-DISYUNTOS**, si no poseen aristas en común $(A(D1) \cap A(D2) = 0)$.

ARISTAS-DISYUNTOS

Ejemplo: Los subdígrafos D6 y D7 son aristas-disyuntas ya que no tienen aristas en comunes

D = (V, A, f)
D(V) = {F, C, D, E}
D(A) = {11, 3, 4, 5}

$$F_D = \begin{cases} f_D(11) = (F, C), f_D(3) = (C, D) \\ f_D(4) = (D, E), f_D(5) = (F, E) \end{cases}$$

D = (V, A, f)

 $D(V) = \{A, C, D, F\}$

RESTANTE AL SUPRIMIR UN CONJUNTO DE VÉRTICES

Definición: Sea D un dígrafo con $|V| \ge 2$ y sea $v' \in V$, la operación supresión de V ' consiste en suprimir de D los vértices de V ' y las aristas incidentes en ellos. Se denota $D - \{V'\}$.

RESTANTE AL SUPRIMIR UN CONJUNTO DE ARISTAS

Definición: Sea D un dígrafo, sea A1 \neq 0 Y A1 \leq A. se llama subdigrafo restante al suprimir A1, al subdígrafo obtenido al suprimir de A las aristas de A1. se denota por D $-\{A1\}$

Ejemplo: $D - \{7, 8, 11\}$

$$D = (V, A, f)$$

$$D(V) = \{A, B, C, D, E, F\}$$

$$D(A) = \{1,2,3,4,5,6,9,10\}$$

$$F_D = \begin{cases} f_D(1) = (A, B), f_D(2) = (B, C), \\ f_D(3) = (C, D), f_D(4) = (D, E), \\ f_D(5) = (F, E), f_D(6) = (A, F), \\ f_D(9) = (E, B), f_D(10) = (D, A), \end{cases}$$