

N-Channel NexFET™ Power MOSFET

Check for Samples: CSD16404Q5A

FEATURES

- Ultralow Q_q and Q_{qd}
- Low Thermal Resistance
- Avalanche Rated
- · Pb Free Terminal Plating
- RoHS Compliant
- Halogen Free
- SON 5-mm × 6-mm Plastic Package

APPLICATIONS

- Point-of-Load Synchronous Buck Converter for Applications in Networking, Telecom and Computing Systems
- Optimized for Control FET Applications

DESCRIPTION

The NexFET™ power MOSFET has been designed to minimize losses in power conversion applications.

PRODUCT SUMMARY

V _{DS}	Drain to Source Voltage	25		V
Q_g	Gate Charge Total (4.5V)	6.5		nC
Q_{gd}	Gate Charge Gate to Drain	1.7		nC
В	Drain to Source On Resistance	$V_{GS} = 4.5V$	5.7	mΩ
R _{DS(on)}	Drain to Source On Resistance	V _{GS} = 10V	4.1	mΩ
V _{GS(th)}	Threshold Voltage	1.8		V

ORDERING INFORMATION

Device	Package	Media	Qty	Ship
CSD16404Q5A	SON 5-mm × 6-mm Plastic Package	13-Inch Reel	2500	Tape and Reel

ABSOLUTE MAXIMUM RATINGS

T _A = 2	5°C unless otherwise stated	VALUE	UNIT
V_{DS}	Drain to Source Voltage	25	٧
V_{GS}	Gate to Source Voltage	+16 / -12	٧
	Continuous Drain Current, T _C = 25°C	81	Α
I _D	Continuous Drain Current ⁽¹⁾	21	Α
I_{DM}	Pulsed Drain Current, T _A = 25°C ⁽²⁾	135	Α
P_D	Power Dissipation ⁽¹⁾	3	W
T_J , T_{STG}	Operating Junction and Storage Temperature Range	-55 to 150	ů
E _{AS}	Avalanche Energy, single pulse $I_D = 40A$, $L = 0.1 mH$, $R_G = 25\Omega$	80	mJ

- (1) $R_{\theta JA}=41^{\circ}\text{C/W}$ on 1-inch² (6.45-cm²), 2-oz. (0.071-mm thick) Cu pad on a 0.06-inch (1.52-mm) thick FR4 PCB.
- (2) Pulse duration ≤300µs, duty cycle ≤2%

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

NexFET is a trademark of Texas Instruments.

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

ELECTRICAL CHARACTERISTICS

T_A = 25°C, unless otherwise specified

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Static Cl	haracteristics					
BV _{DSS}	Drain to Source Voltage	$V_{GS} = 0V, I_D = 250\mu A$	25			V
I _{DSS}	Drain to Source Leakage Current	V _{GS} = 0V, V _{DS} = 20V			1	μΑ
I _{GSS}	Gate to Source Leakage Current	$V_{DS} = 0V, V_{GS} = +16/-12V$			100	nA
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 250\mu A$	1.4	1.8	2.1	V
D	Proin to Course On Registeres	$V_{GS} = 4.5V, I_D = 20A$		5.7	7.2	mΩ
R _{DS(on)}	Drain to Source On Resistance	$V_{GS} = 10V, I_D = 20A$		4.1	5.1	mΩ
9 _{fs}	Transconductance	$V_{DS} = 15V, I_{D} = 20A$		57		S
Dynamic	Characteristics				•	
C _{ISS}	Input Capacitance			940	1220	pF
Coss	Output Capacitance	$V_{GS} = 0V, V_{DS} = 12.5V, f = 1MHz$		810	1050	pF
C _{RSS}	Reverse Transfer Capacitance			62	80	pF
R _g	Series Gate Resistance			0.9	1.8	Ω
Q_g	Gate Charge Total (4.5V)			6.5	8.5	nC
Q_{gd}	Gate Charge Gate to Drain	V 40.5V 1 004		1.7		nC
Q _{gs}	Gate Charge Gate to Source	V _{DS} = 12.5V, I _D = 20A		3		nC
Q _{g(th)}	Gate Charge at Vth			1.5		nC
Q _{OSS}	Output Charge	$V_{DS} = 13V, V_{GS} = 0V$		16		nC
t _{d(on)}	Turn On Delay Time			7.8		ns
t _r	Rise Time	$V_{DS} = 12.5V, V_{GS} = 4.5V,$		13.4		ns
t _{d(off)}	Turn Off Delay Time	$I_D = 20A$, $R_G = 2\Omega$		8.4		ns
t _f	Fall Time			4.6		ns
Diode C	haracteristics					
V_{SD}	Diode Forward Voltage	$I_{S} = 20A, V_{GS} = 0V$		0.85	1	V
Q _{rr}	Reverse Recovery Charge	$V_{DD} = 13V$, $I_F = 20A$, $di/dt = 300A/\mu s$		20		nC
t _{rr}	Reverse Recovery Time	$V_{DD} = 13V$, $I_F = 20A$, $di/dt = 300A/\mu s$		22		ns

THERMAL CHARACTERISTICS

T_A = 25°C, unless otherwise specified

	PARAMETER	MIN	TYP	MAX	UNIT
$R_{\theta JC}$	Thermal Resistance Junction to Case ⁽¹⁾			3.3	°C/W
$R_{\theta JA}$	Thermal Resistance Junction to Ambient (1) (2)			52	°C/W

⁽¹⁾ $R_{\theta JC}$ is determined with the device mounted on a 1-inch² (6.45-cm²), 2-oz. (0.071-mm thick) Cu pad on a 1.5-inch × 1.5-inch (3.81-cm × 3.81-cm), 0.06-inch (1.52-mm) thick FR4 PCB. $R_{\theta JC}$ is specified by design, whereas $R_{\theta JA}$ is determined by the user's board design.

Product Folder Link(s): CSD16404Q5A

⁽²⁾ Device mounted on FR4 material with 1-inch² (6.45-cm²), 2-oz. (0.071-mm thick) Cu.

Max $R_{\theta JA} = 52^{\circ} C/W$ when mounted on 1 inch² (6.45 cm²) of 2-oz. (0.071-mm thick) Cu.

Max $R_{\theta JA} = 120^{\circ} C/W$ when mounted on minimum pad area of 2-oz. (0.071-mm thick) Cu.

TYPICAL MOSFET CHARACTERISTICS

 $T_A = 25$ °C, unless otherwise specified

Figure 1. Transient Thermal Impedance

G012

TYPICAL MOSFET CHARACTERISTICS (continued)

$T_A = 25$ °C, unless otherwise specified

Figure 2. Saturation Characteristics

Figure 3. Transfer Characteristics

Figure 4. Gate Charge

Figure 5. Capacitance

Figure 6. Threshold Voltage vs. Temperature

Figure 7. On-State Resistance vs. Gate to Source Voltage

TYPICAL MOSFET CHARACTERISTICS (continued)

$T_A = 25$ °C, unless otherwise specified

Figure 8. Normalized On-State Resistance vs. Temperature

Figure 9. Typical Diode Forward Voltage

Figure 10. Maximum Safe Operating Area

Figure 11. Single Pulse Unclamped Inductive Switching

Figure 12. Maximum Drain Current vs. Temperature

MECHANICAL DATA

Q5A Package Dimensions

Side View

M0135-01

DIM	MILLIMETERS			
DIM	MIN	NOM	MAX	
А	0.90	1.00	1.10	
b	0.33	0.41	0.51	
С	0.20	0.25	0.30	
D1	4.80	4.90	5.00	
D2	3.61	3.81	3.96	
E	5.90	6.00	6.10	
E1	5.70	5.75	5.80	
E2	3.38	3.58	3.78	
е		1.27 BSC		
Н	0.41	0.51	0.61	
К	1.10			
L	0.51	0.61	0.71	
L1	0.06	0.13	0.20	
θ	0°		12°	

Recommended PCB Pattern

DIM	MILLIMETERS		INC	HES
DIN	MIN	MAX	MIN	MAX
F1	6.205	6.305	0.244	0.248
F2	4.46	4.56	0.176	0.18
F3	4.46	4.56	0.176	0.18
F4	0.65	0.7	0.026	0.028
F5	0.62	0.67	0.024	0.026
F6	0.63	0.68	0.025	0.027
F7	0.7	0.8	0.028	0.031
F8	0.65	0.7	0.026	0.028
F9	0.62	0.67	0.024	0.026
F10	4.9	5	0.193	0.197
F11	4.46	4.56	0.176	0.18
		I	1	I

For recommended circuit layout for PCB designs, see application note SLPA005 – Reducing Ringing Through PCB Layout Techniques.

Q5A Tape and Reel Information

Notes: 1. 10-sprocket hole-pitch cumulative tolerance ±0.22

- 2. Camber not to exceed 1mm in 100mm, noncumulative over 250mm
- 3. Material: black static-dissipative polystyrene
- 4. All dimensions are in mm, unless otherwise specified.
- 5. A0 and B0 measured on a plane 0.3mm above the bottom of the pocket
- 6. MSL1 260°C (IR and convection) PbF reflow compatible

SLPS198B - AUGUST 2009-REVISED APRIL 2010

REVISION HISTORY

Changes from Original (August 2009) to Revision A	Page
Changed Figure 10 - Maximum Safe Operating Area, Drain Current top scale From: 100ms To: 10)0µs 5
Changes from Revision A (September 2009) to Revision B	Page
Deleted the Package Marking Information section	7

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

Tl's products are provided subject to Tl's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such Tl products. Tl's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for Tl products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated