Интерполационен полином на Лагранж. Приложения

Л. Йовков

НПМГ "Акад. Л. Чакалов"

03. 12. 2019 г.

Пример 1. Изчисляване на концентрация \boldsymbol{c} на вещество

t, [s]	c, [mol/dm³]
0	0.100
100	0.082
150	0.074
200	0.067
300	0.054

Таблица: c = c(t)

Каква е концентрацията на веществото в момента от време t = 250 s?

Пример 2. Изчисляване на специфичен топлинен капацитет $\boldsymbol{c_p}$

<i>u</i> , [° <i>C</i>]	$c_p, [J/(kg.^{\circ}C)]$
22	4181
52	4186
82	4199
100	4217

Таблица: $c_p = c_p(u)$

Каква е стойността на топлинния капацитет c_p при температура $u = 70^{\circ} C$?

Пример 3. Изчисляване на нивото на въглеродните емисии *E* в атмосферата

t , [год.]	Е , [млн. т.]				
1992	356.4				
1996	362.6				
1998	366.6				
2000	369.4				

Таблица: E = E(t)

Каква са били ориентировъчните стойности на въглеродните емисии през 1993 и 1997 година?

Интерполационна задача на Лагранж

X	<i>X</i> ₀	<i>X</i> ₁	 Xn
y	y ₀	<i>y</i> ₁	 Уn

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0, \ P(x) \in \pi_n :$$

 $P(x_i) = y_i$

Интерполационна задача на Лагранж

 \square Базисни полиноми на Лагранж $\Phi_i(x) \in \pi_n$

$$\Phi_i(x_j) = \begin{cases} 0, & j \neq i, \\ 1, & j = i \end{cases}$$

Интерполационна задача на Лагранж

$$\Phi_i(x) = a_i(x-x_0)(x-x_1)\dots(x-x_{i-1})(x-x_{i+1})\dots(x-x_n);$$

$$\Phi_i(x_i) = 1 \Rightarrow$$

$$a_i(x_i-x_0)(x_i-x_1)\dots(x_i-x_{i-1})(x_i-x_{i+1})\dots(x_i-x_n)=1$$

$$a_i = \frac{1}{(x_i - x_0)(x_i - x_1) \dots (x_i - x_{i-1})(x_i - x_{i+1}) \dots (x_i - x_n)} \Rightarrow$$

$$\Phi_i(x) = \frac{(x - x_0)(x - x_1) \dots (x - x_{i-1})(x - x_{i+1}) \dots (x - x_n)}{(x_i - x_0)(x_i - x_1) \dots (x_i - x_{i-1})(x_i - x_{i+1}) \dots (x_i - x_n)}$$

Интерполационен полином на Лагранж $L_n(f; x)$

🗆 Решение на класическата интерполационна задача

$$P_n(x) \equiv L_n(f; x) =$$

 $\sum_{i=0}^n y_i \Phi_i(x) = y_0 \Phi_0(x) + y_1 \Phi_1(x) + \dots + y_n \Phi_n(x)$

□ Единственост на решението на класическата интерполационна задача

Интерполационни полиноми в реални задачи

□ Интерполационен полином за пример 1

$$c(t) \approx L_4(f; t) \approx -0,0001783t + 0,1;$$

 $t = 250 \text{ s} \Rightarrow c \approx 0,0606 \text{ mol/dm}^3$

Интерполационни полиноми в реални задачи

□ Интерполационен полином за пример 2

$$c_p(u) \approx L_3(f; u) \approx -0.01028u^2 + 0.5184u + 4174;$$

 $u = 70^{\circ}C \Rightarrow c_p \approx 4192 J/(kg.^{\circ}C)$

Интерполационни полиноми в реални задачи

□ Интерполационен полином за пример 3

 $t = 1997 \Rightarrow E(t) \approx 364,6656$ млн. т.

$$L_3(f;\ t) pprox -0.02813t^3 + 168, 4t^2 - 3,362.10^5t + 2,237.10^8; \ t = 1993 \Rightarrow E(t) pprox 357,3030 \,$$
 млн. т.,

Задача

Да се намери интерполационният полином за функцията f(x), зададена с таблицата:

X	-1	0	2
f(x)	5	3	5

Задача

Да се намери интерполационният полином за функцията f(x), зададена с таблицата:

Х	-1	0	1	2
f(x)	3	1	1	9

Задача

Да се намери интерполационният полином за функцията $f(x) = \log_{10} x$ в интервала [0,25;1,75], като се използват данните от таблицата:

X	0, 25	0,75	1,00	1,25	1,75
f(x)	-0,6021	-0,1249	0	0,0969	0,2430

Графично да се оцени качеството на приближението. Да се извърши апроксимация на стойностите $log_{10}\,0,5,$ $log_{10}\,1,1$ и $log_{10}\,1,5.$

Задача

Да се построи интерполационният полином L(f; x) за функцията $f(x) = \sqrt{x}$ по данните от таблицата

, ,	1.0	1.4	1.8	2.0
$f(x) = \sqrt{x}$	1.0	1.1832	1.3416	1.4142

Като се използва така построеният полином, да се пресметне приближено стойността на функцията в точките $x^* = 1,65$ и $x^{**} = 5,8$. Да се направи подходящ чертеж и да се оцени грешката. Какво е качеството на приближението?

<u>Ре</u>шение

$$\Box x^* = 1,65$$

$$\max_{0 \le x \le 2} \left| f(x) - L(f; x) \right| \le 2, 2.10^{-4} \sim 10^{-4},$$

$$\sqrt{x^*} = \sqrt{1,65} \approx L(f; 1,65) \approx 1,2846;$$

$$\Box x^{**} = 5,8$$

$$\sqrt{x^{**}} = \sqrt{5,8} = 2,40831891...,$$
 $L(f; x^{**}) = L(f; 5,8) = 3,4329... \Rightarrow$
 $\left| \sqrt{5,8} - L(f; 5,8) \right| > 1$

Проблеми, свързани с екстраполирането

$$\square$$
 Функция на Рунге: $\mu(x) = \frac{1}{1 + 25x^2}, -1 \le x \le 1$

Проблеми, свързани с екстраполирането

 \square Феномен на Рунге: $\left|\mu(x)-L_n(f;x)\right| o \infty$ при $n o \infty$

Благодарности

Благодаря за вниманието!