מבוא לתורת הקבוצות

משה קמנסקי

2024 במאי 8

מבוא 1

A מטרת הקורס היא לתת מבוא המרוה של המבנים המתמטיים הכי בסיסיים, קבוצות. קבוצה ?Aשייך אוסף האיברים עשייכים אליה: לכל עצם x ניתן לשאול: האם שייך ל-x שייך אוסף אליה: לכל עצם המשאלות שייך ל-x שייך ל-x שייך ל-x שייך ל-x שייך ל-x שייך ל-אנחנו נסמן את הטענה שx שייך ל-x שייך ל-אנחנו נסמן את הטענה שייך ל-

?וות? מבנים מעניינים ניתן לתאר באמצעות קבוצות?

- 1. תכונות כתתי קבוצות
- 2. בניית קבוצות חדשות מקבוצות קיימות
 - 3. יחסים ופעולות

?חיד אינסופיות אינסופיות? איך אפשר לעבוד עם לעבוד אינסופיות?

- 1. קבוצות סופיות ואינסופיות
- 2. גדלים של קבוצות אינסופיות
- ?. על מה אפשר לעשות אינדוקציה?

?חל מהן קבוצות?

- 1. הגישה האקסיומטית
- 2. הגדרה ותכונות של קבוצות מוכרות

1.4 כמה שאלות

- ?. האם לכל מרחב וקטורי יש בסיס?
- 2. האם קיים מספר ממשי שאינו אלגברי?
- ? שהיא חיבורית אבל לא רציפה? $f:\mathbb{R} \to \mathbb{R}$ מונקציה פונקציה $f:\mathbb{R} \to \mathbb{R}$
- 4. האם אפשר להגדיר באופן סביר את האורך של כל תת-קבוצה של קטע ממשי חסום?
 - .5 האם כל פונקציה מהטבעיים לטבעיים ניתנת לחישוב על-ידי תכנית מחשב?
 - 6. האם קיימת קבוצה של נקודות במישור שכל ישר פוגש בשתי נקודות בדיוק?
 - ?. האם המישור הוא איחוד של מעגלים זרים? מה לגבי המרחב התלת-מימדי?

2 תורת קבוצות אלמנטרית (תזכורת)

2.1 פעולות בסיסיות

- 1. הכלה
- 2. חיתוך, איחוד, הפרש, הפרש סימטרי
 - 3. קבוצת חזקה

גרפים 2.2

מכפלה קרטזית, יחסים, פונקציות, תחום, תמונה, הרכבה, יחס הפוך

X יחס מעל $R\subseteq X imes X$ קבוצה ו- $R\subseteq X$ יחס מעל רה מעל הוא זוג רף הוא זוג רף הוא זוג רף כאשר א

הגדרה 2.2.2. נניח ש- $\langle A,R \rangle$ ו- $\langle B,S \rangle$ שני גרפים ו- $f:A \to B$ פונקציה. אז f נקראת העתקה העתקה (של גרפים) אם לכל aRa' אם $a,a' \in A$ אז f(a)Sf(a'). אם בנוסף גם הכיוון השני נכון (כלומר לכל aRa' אם $a,a' \in A$ אז aRa' אז aRa' אז aRa' אם העתקה שהפיכה (כלומר לכל aRa' אם $a,a' \in A$ אם גם העתקה של גרפים, אז aRa' נקראת *איזומורפיזם*.

2.3 יחסי שקילות, מנות

ייס שקילות A אס שקילות על קבוצה A הוא יחס סימטרי, טרנזיטיבי ורפלקסיבי מעל A

יחס החפיפה על A הוא יחס שווי שוקיים. שאינם במישור במישול במישור המשולשים לוגמה A קבוצת קבוצת המשולשים שקילות, וכך גם יחס הדמיון.

 mE_nk בניח על \mathbb{Z} על ידי: $A=\mathbb{Z}$ אם mE_nk מספר שלם, ו- $A=\mathbb{Z}$ גגדיר אם mE_nk על ידי: 2.3.3 נגדיר אם mE_nk על יחס החלוקה $p\mid q$ מחלוקה אם עבורו $p\mid q$ מחלוקה אם יחס החלוקה $p\mid q$ יחס שקילות (תרגיל) q=pl

אינטואיטיבית, יחס שקילות על A מבטא את הרעיון שאנחנו רוצים לזהות איברים שונים של אינטואיטיבית, יחס שקילות על אערכי פונקציה מסוימת על האיברים הללו הם זהים. A

הגרעין של f הוא היחס הנרעין $f:A \to B$ אם $A \to B$ הגדרה בגרעין אם $\ker(f) = \{\langle a_1, a_2 \rangle \in A \times A \, | \, f(a_1) = f(a_2) \}$

. שקילות של f של של הגרעין של $f:A \rightarrow B$ שלכל שלכל. הוכיחו

 $r_n:\mathbb{Z} \to C_n$ נניח ש-0 על-ידי: n>0 שלם, ונסמן n>0 שלם, נניח ש-10 על-ידי: .2.3.6 אונים m-k ב-10 ב-10 הוא השארית של m ב-11 ב-12 מרואל m-k מדוגמה ב-12 מדוגמה m-k מדוגמה ב-12 מדוגמה ב-12 מדוגמה m-k מדוגמה ב-12 מ

. בהמשך בהמחרונה בה מהדוגמה E_n ו- C_n , r_n בסימונים בסימונים נמשיך להשתמש

להיות $f:A\to B$ אם A קבוצת שאינם שווי שוקיים, נגדיר את להיות להיות המשולשים במישור את קבוצת אורכי הצלעות אלו (הבחירה במשולשים שאינם שווי הפונקציה שמתאימה לכל משולש את קבוצת אורכי הצלעות שלו (הבחירה במשולשים אורכי שוקיים היא כדי להבטיח שהקבוצה הזו היא בת שלושה איברים בדיוק, ולכן ניתן לשחזר את אורכי כל הצלעות בצורה יחידה). לפי משפט החפיפה צלע-צלע-צלע, f היא העתקת מנה עבור יחס החפיפה

יחסי שקילות מהצורה $\ker(f)$ הם נוחים במיוחד: על מנת לקבוע האם $\ker(f)$ הספולים, יחסי שקילות מספיק לחשב את הערכים $f(a_i)$. לכן, מעניין לשאול אילו יחסי שקילות הם מהצורה הזו. מסתבר שהתשובה היא: כולם.

משפט 2.3.9. לכל יחס שקילות E על קבוצה A קיימת פונקציה f:A o B שהיא על, כך ש-גווו לכל יחס היא כזו נקראת העתקת מנה עבור E.

העתקת מנה

על-מנת להוכיח את המשפט, נציג את המינוח הבא: אם Bיחס שקילות על $a\in A$ ו-, מחלקת את על-מנת להוכיח את מחלקת את השקילות ($[a]_E=\{a'\in A\mid aEa'\}$ היא הקבוצה השקילות של

$$\square$$
 . $f(a)=[a]_E$ על ידי $f:A \to B$ ו- $B=\{[a]_E \mid a \in A\}$ הוכחה. נגדיר

תרגיל $[a_1]_E = [a_2]_E$ אם היא שיקרית הנקודה את ההוכחה את השלימו את מורק אם הרגיל (a_1Ea_2

הערה 2.3.11. בניגוד למקובל במקומות אחרים, אנחנו לא נשתמש במפורש בבנייה שמופיעה בהוכחת המשפט (כלומר, בקבוצת מחלקות השקילות) אלא רק במשפט עצמו. הסיבה היא שהמידע בהוכחת המשפט (כלומר, בקבוצת מחלקות השקילות) אלא רק במשפט עצמו. הסיבה הזו מספקת אינו שימושי לרוב, ומאידך הגמישות שבבחירת העתקת מנה כלשהי היא לעתים שימושית ויותר אינטואיטיבית. למשל, ראינו את העתקת המנה r_n עבור היחס r_n שהיא יותר טבעית מהבניה בהוכחה.

Aכעל איברי שוויון של שוויון בין איברי Aעל Eיחס שקילות בין איברי לחשוב כאמור, ניתן לחשוב על איברי $f:A\to B$ מנקודת המבט הזו, העתקת מנה $f:A\to B$ מנקודת המבט הזו, העתקת לשוויון ממש: $f:A\to B$ ממשוייון המוחלש לשוויון ממש: aEa' אם ורק לשוויון ממש: לכן, ניתן לחשוב על איבר שני המוחלש המידע הרלוונטי" אודות ב $a\in A$ אודות המידע הרלוונטי" המידע הרלוונטי" אודות בא שלכל שובר להבין איזה מידע מעניין על אושרה ל-B. נדגים שלכל שלכן השימוש הבא.

שלשה שלשה a,b,c הם שלשה פתגורית היא שלשה שלשה a,b,c של מספרים טבעיים כך ש $a^2+b^2=c^2$ (לכן, הם שלשה פתגורית אורכים של צלעות משולש ישר זווית). אנחנו רוצים להוכיח את הטענה הבאה:

טענה 2.3.12. לא קיימת שלשה פיתגורית בה אורכי הניצבים a,b הם אי-זוגיים.

על מנת להוכיח את הטענה הזו, נשתמש בטענה הבאה:

טענה 2.3.13. נניח ש-n טבעי חיובי, ו-B העתקת מנה עבור π . אז קיימות פעולות בידות π 0. נניח ש- π 1 המקיימות לכל π 2 המקיימות לכל π 3 את השוויונות π 4 המקיימות לכל π 5 המקיימות לכל π 6 המקיימות לכל π 7 את השוויונות π 8 המקיימות לכל π 9 המקיימות לכל π

נוכיח את הטענה הזו בהמשך. בינתיים, נשים לב שהתנאים בטענה מאפשרים לחשב את נוכיח את בינתיים, בינתיים, נשים לב משרים למשל, כדי למשל, כדי לחשב את $b_1\oplus b_2$ את כדי למשל, כדי למשל, כדי לחשב את $\pi(a_1+a_2)$, ולחשב את לחשב את $\pi(a_1+a_2)$. הטענה מבטיחה שהתשובה אינה תלויה בבחירה של תכונות של הפעולות הללו גם ניתן להסיק מתוך הטענה. למשל:

ו- $u\odot v=v\odot u$, $u\oplus v=v\oplus u$ מתקיים $u,v,w\in B$ מתקיים שלכל .2.3.14 הוכיחו שלכל $u\odot v=v\odot u$ (במונחים של טענה $u\odot v=v\odot u$) במונחים של טענה עובה $u\odot v=v\odot u$

עבור n=4 ר-n=4 רבור" וה"כפל". אפשר בקלות לחשב את טבלת ה"חיבור" וה"כפל" עבור n=4 היברים. אנחנו בעיקר רוצים לשים לב שאם $u\in C_4$ זוגי (כלומר $u\in C_4$ אנחנו בעיקר רוצים עפשר להוכיח את טענה $u\in C_4$ ואחרת $u\odot u=0$ או עכשיו אפשר להוכיח את טענה 2.3.12

 $.a^2+b^2=c^2$ עם כך שלים מים אי-זוגיים מספרים שקיימים בשלילה נניח בשלילה. נניח מענה 2.3.12 מחשב אי-זוגיים מספרים בשלילה בשלילה נוחב איי הצדדים:

$$r_4(c) \odot r_4(c) = r_4(c \cdot c) = r_4(a \cdot a + b \cdot b) =$$

 $(r_4(a) \odot r_4(a)) \oplus (r_4(b) \odot r_4(b)) = 1 \oplus 1 = 2 \in C_4$

... מאשר שעשינו שעשינו לפני אי-זוגיים, אי-זוגיים וובע מההנחה לפני אחרון נובע מההנחה כאשר מאי-זוגיים, ומהחישו לפני אחרון נובע לסתירה, שכן אייב להיות או מראה שהגענו לסתירה, שכן אד שמאל חייב להיות או מראה שהגענו לסתירה, אייבע או מאייב להיות או מאייבע לפני אחרון וובע מהחישו המהחישו לפני אחרון וובע מהחישו לפני אודים המהחישו לפני אחרון וובע מהחישו לפני אחרון וובע מהחישו לפני אודים המהחישו למידים המהחיש למידים המהח

על-מנת להשלים את ההוכחה, עלינו להוכיח את טענה 2.3.13. נשים לב ראשית שהטענה אינה טריוויאלית: ישנן פעולות על השלמים שלא מקיימות את התכונה המקבילה.

igoplus mעבור מספרים שלמים m,k הוכיחו שלא קיימת פעולה שלה עבור $m\star k=m^{|k|}$ נסמן 2.3.15. נסמן על על $m\star k=m^{|k|}$ מתקיים על על על כך שלכל על $m,k\in\mathbb{Z}$ מתקיים על כל על בי

אנחנו נוכיח את טענה 2.3.13 כמסקנה מטענה כללית על יחסי שקילות. אנחנו מתעניינים בטענה אנחנו נוכיח את טענה 2.3.13 בטענה מהצורה הבאה: נתון יחס שקילות E על קבוצה A, עם העתקת מנה B לנו "מבנה מעניין" על A, ואנחנו מעוניינים להבין באיזה תנאי הוא "משרה" מבנה דומה על A בטענה 2.3.13 המבנה המעניין היה פעולות החיבור והכפל. באופן כללי, זה יכול להיות למשל פונקציה מ-A, תת-קבוצה של A, יחס על A וכו'.

Cכאשר (כאשר מתקד המקד האבית) אנחנו נתמקד האבית במקרה הפשוט של פונקציה. נתונה לנו פונקציה במקרה במקרה הזו "משרה" פונקציה על P אנחנו שואלים האם קיימת פונקציה קבוצה כלשהי). מתי הפונקציה הזו "משרה" פונקציה על g אנחנו שואלים מתקיים g מתקיים g מתקיים g באב בתמונה של האם הגודל g שאנחנו מודדים על איברי g תלוי בעצם רק במידע שבאמת מעניין אותנו, כלומר בתמונה של האיבר ב-g. נשים לב שאם זה המצב, ו-g שקול ל-g על הg (מ') בg(a') בg(a') שקול ל-g מעאנו תנאי המעבר שהוא גם תנאי מספיק:

-שפט 2.3.16. נניח שB יחס שקילות על קבוצה A, עם העתקת מנה B יחס שקילות על קבוצה $g:A \to C$

- $.g = \bar{g} \circ \pi$ -ע כך $\bar{g}: B \to C$ קיימת פונקציה.
- g(a)=g(a') אז aEa' אז aEa' אז aEa' אז aEa' אז aEa' אז aEa' .2

אם התנאים מתקיימים, אז \bar{g} יחידה.

סוף הרצאה 1, 1 במאי 2024

הוכחה. כיוון אחד ראינו בדיוק לפני הניסוח של המשפט. בכיוון השני, נגדיר

$$\bar{g} = \{ \langle \pi(a), g(a) \rangle \mid a \in A \}$$

למשפט יש מספר מסקנות והכללות שימושיות:

מסקנה F-ו $\pi_X: X \to \bar{X}$ מסקנה 2.3.17. נניח ש-E- יחס שקילות על X, עם העתקת מנה E- יחס שקילות על X, עם העתקת מנה X- יחס שקילות $\pi_Y: Y \to \bar{Y}$ פונקציה. אז שני התנאים הבאים שקולים:

- $\pi_X(h(y)) = \bar{h}(\pi_Y(y))$ מתקיים $y \in Y$ כך שלכל $\bar{h}: \bar{Y} \to \bar{X}$ מתקיים (1.
 - .h(y)Eh(y') אז yFy' אם $y,y'\in Y$.2

g(y)=g(y') מתקיים: $y,y'\in Y$ אז לכל $g=\pi_X\circ h$ על-ידי $g:Y\to \bar X$ מתקיים: גודיר אז פונקציה אם לכן, לפי משפט h(y)Eh(y') אם ורק אם לקיומה של פונקציה $\bar h\circ\pi_Y=g=\pi_X\circ h$ כך ש $\bar h:\bar Y\to \bar X$

 r_1 כמו r_2 בניח ש- r_2 נניח ש- r_2 ברו r_2 ברו הונה r_1 אם r_2 ברו הונה r_1 אם r_2 ברו ברוני של הונה על-ידי r_1 ברוני של r_2 אם r_2 אם r_2 אם r_2 ברוגמא 2.3.6 ברוגמא r_2 ברוני של ברוני של

אפשר אותה אוק אין המקיימת הדוגמא בין המקיימת אפשר אותה דוגמא אותה דוגמא אותה הזה, אין המקיימת אפשר אפשר בין אותה דוגמא אותה דוגמא איבדנו אותר מדי יותר הדי השארית של $\bar{h}(r_2(n))=r_6(7n)$ מידע.

-ש. $\pi: X \to \bar{X}$ מסקנה 2.3.19 עם העתקת מנה E-ש יחס שקילות על קבוצה $h: X \times X \to X$ פונקציה. אז התנאים הבאים שקולים:

מתקיים $x_1,x_2\in X$ כך שלכל $\bar{h}:\bar{X}\times\bar{X}\to\bar{X}$ (יחידה) פונקציה פונקציה .1 $.\bar{h}(\pi(x_1),\pi(x_2))=\pi(h(x_1,x_2))$

 $.h(x_1,x_2)Eh(x_1',x_2')$ אז x_2Ex_2' י x_1Ex_1' אם $x_1,x_1',x_2,x_2'\in X$ לכל 2.

לפני שנוכיח את המסקנה, נסיק ממנה את טענה 2.3.13.

הוכחת שענה 2.3.13. ניקוח $A: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ ו- $B: E=E_n$ עם $X=\mathbb{Z}$ פונקציית החיבור $ar h: B\times B \to B$ (יחידה) פונקציה מבטיח במסקנה 2.3.19 מתנאי הראשון במסקנה h(m,k)=m+k בחיבור שלכל $\pi(m+k)=\pi(h(m,k))=\bar h(\pi(m),\pi(k))$ מתקיים $\pi(m+k)=\pi(h(m,k))=\bar h(\pi(m),\pi(k))$ כלומר היא בדיוק הפונקציה שאנחנו מחפשים.

המסקנה אומרת שקיומה של הפונקציה הזו שקול לתנאי שאם mEm' וגם kEk' הזו שקיומה של הפונקציה הזו שקול מתחלק ב-m+kEm'+k' מתחלק ההנחה במקרה שלנו היא m-m'+k-k'=m+k-(m'+k') מתחלק המצב, אז גם הסכום שלהם m+k-k'=m+k-(m'+k') מתחלק ב-m+k-k'=m+k-m'+k-k'

ההוכחה עבור כפל דומה (תרגיל).

סוף הרצאה 2, 6 במאי, 2024

עכשיו נוכיח את המסקנה

 $\langle x_1,x_2 \rangle F \langle x_1',x_2' \rangle$ הנתון על-ידי $Y=X\times X$ את היחס על F- מסמן ב-2.3.19 הנתונה על- אם $\pi_Y:X\times X\to \bar X\times \bar X$ הוא הגרעין של הפונקציה אז $\pi_Y:X\times X\to \bar X\times \bar X$ הנתונה על הפרט, הוא הא הגרעין של הפרט, הוא העתקת מנה π_Y - עבור π_Y - עכשיו הטענה נובעת מיידית ממסקנה π_Y - מסקנה π_Y - עבור π_Y - עכשיו הטענה נובעת מיידית ממסקנה π_Y - מרכז אוריבים מיידית ממסקנה ב- π_Y - מרכז אוריבים מיידית ממסקנה π_Y - מרכז אוריבים מיידית ממסקנה ב- π_Y - מרכז אוריבים מיידית ממסקנה מיידית ממסקנה מיידית ממסקנה ב- π_Y - מיידית ממסקנה מיידית מיידית ממסקנה מיידית מיידית ממסקנה מיידית ממסקנה מיידית מייד

 $S\subseteq X$ - יחס שקילות על קבוצה X עם מנה X עם מנה ביח ונניח ש- $\pi:X\to X$ ונניח ש- $\pi:X\to X$ עם מר. על הבאים שקולים:

 $\pi(x)\in ar{S}$ אם ורק אם $x\in S$ מתקיים: $x\in X$ מתקיים לכל $ar{S}\subseteq ar{X}$ אם ורק אם .1

 $x' \in S$ אם ורק אם $x \in S$ אז $x \in X$ אם ורק אם $x \in S$.

אם g(x)=1 . כלומר: g(x)=1, כלומר: $g:X\to C$, ו- $C=\{0,1\}$ אם הוכחה. נגדיר ורק אם 2.3.17 לכן, לפי אותה שני שקול לתנאי השני שקול לכן, לפי אז התנאי השני $x \in S$ אותה מסקנה, הוא שקול לקיומה של פונקציה $\overline{g}: \bar{X} o C$ כך ש $g(x) = \bar{g}(\pi(x))$ לכל $x \in X$. נגדיר . אז התנאי האחרון שקול לתנאי הראשון במסקנה (תרגיל). $\bar{S} = \bar{q}^{-1}[\{1\}]$

דוגמה 2.3.21. נניח שאני יודע מהי השארית של מספר שלם m ביחס ל-7. האם אני יכול לגלות אם אהרית ביחס ל-7. זוגיות שונה, אבל אותה שארית ביחס ל-7. זהו m אם mהמקרה של מסקנה 2.3.20 בו $S\subseteq X=\mathbb{Z}$ בו מסקנה מסקנה

התשובה שונה אם מחליפים את 7 ב-6: לכל שני מספרים שההפרש ביניהם מתחלק ב-6 אותה $\bar{S}\subseteq C_6$ זוגיות. הקבוצה $\bar{S}\subseteq C_6$ מהמסקנה היא, במקרה הזה,

הערה 2.3.22. נשים לב לעקרון הכללי שהשתמשנו בו בהוכחת מסקנה 2.3.20: יש התאמה טבעית כל ידי: לכל בתונה $C:X \rightarrow \{0,1\}$ ופונקציות אל-ידי: לכל של ההתאמה בתונה על-ידי: לכל תת-קבוצה כ- $c_S(x)=1$ המוגדרת כ- $c_S:X o \{0,1\}$ אם ורק אם מתאימה מתאימה מת-קבוצה א הפנקציה המציינת $c:X \to \{0,1\}$ אם הפונקציה המציינת של $c:X \to \{0,1\}$ הפונקציה המציינת $x \in S$ $S_c = \{x \in X \mid c(x) = 1\}$ פונקציה כלשהי, מתאימה לה קבוצה

ולכל $S=S_{c_S}$ מתקיים $S\subseteq X$ שלכל (2.3.22 של הערה בסימונים של הוכיחו (בסימונים של הערה ב (כלומר, שתי ההתאמות הפוכות אחת לשנייה) $c = c_{S_c}$ מתקיים $c: X \to \{0, 1\}$

E אקילות יחס שקילות בהינת, נאמר כפי שכבר האינו, המנה והעתקת המנה והעתקת המנה על יחידות המנה והעתקת המנה. על X, ישנן לרוב הרבה העתקות מנה עבור E (וראינו שלעתים זה מועיל). למרות זאת, נסביר בתרגיל הבא שניתן לזהות כל שתיים מהן באופן יחיד.

 $\pi:X o ar{X}$ מנה מנה העתקת על קבוצה על קבוצה שקילות ש-E יחס שקילות על קבוצה אונים.

- .1. נניח ש $ar{X}
 ightarrow ar{X}$ פונקציה המקיימת $\pi = \pi$. הוכיחו ש $h: ar{X}
 ightarrow ar{X}$. נניח
- .2 נניח ש- $ar{X}_1$ ביימת פונקציה יחידה $\pi_1:X oar{X}_1$ העתקת מנה נוספת עבור רמז:) $q\circ\pi_1=\pi$ כך ש $q:\bar{X}_1 o ar{X}$ כך יחידה $f\circ\pi=\pi_1$, ופונקציה יחידה $f:\bar{X} o ar{X}_1$ משפט 2.3.16.
 - .3 הוכיחו ש-f ו-g הפוכות אחת לשניה.

בגלל התרגיל הזה, לרוב מתייחסים אל העתקת מנה שונות (עבור יחס שקילות נתון) כאל אובייקט יחיד, וקוראים לו העתקת המנה.

מנות במרחבים וקטוריים 2.3.25

נניח שL העתקה שדה M העתקה לינארית בין שני מרחבים לינארית העתקה לינארית העתקה לינארית בין שני אבל , $E=\ker(T)=\{\langle u_1,u_2\rangle\,|\,u_1,u_2\in U,T(u_1)=T(u_2)\}$ אבל יש גרעין ל-7 אבל $T(u_1 - u_2) = T(u_1) - T(u_2) = 0$ כה בנה התנאי את התנאי לרשום את הלינארי מאפשר המבנה הלינארי כלומר $\ker(T)=\{u\in U\mid T(u)=0\}\subseteq U$ כאשר, כאשר $\ker(T)=\{u\in U\mid T(u)=0\}$ כאשר כלומר

הגרעין של E-ט ביחס ל-E. אז המידע של הגרעין של בדיוק מחלקת העקות. זוהי בדיוק באלגברה לינאריות. של $\ker(T)$ שקול עבור העתקות לינאריות.

משפט 2.3.26. נניח ש-W תת-מרחב וקטורי של מרחב וקטורי U מעל שדה k. אז קיים מרחב וקטורי U והעתקה לינארי $T:U \to V$ בך ש- $T:U \to V$.

הפילות (תרגיל). לפי $u_1-u_2\in W$ אם u_1Eu_2 ידי: U על-ידי. גדיר יחס שקילות (תרגיל). לפי משפט 2.3.9, קיימת ל-E העתקת מנה $U\to V$ מנה $T:U\to V$ העתקת מנה עלינו להראות: פירוט, עלינו להראות:

מתקיים
$$u_1,u_2\in U$$
 שלכל $\oplus:V\times V\to V$ מתקיים .1
$$T(u_1+u_2)=T(u_1)\oplus T(u_2)$$

- ש- $u\in U$ המקיימת לכל ,(c בסקלר הכפלה (הכפלה בסקלר), קיימת פונקציה , $t\in U$ ש- .2 המקיימת לכל . $T(cu)=f_c(T(u))$
- ו- $c \in k$ לכל $c \cdot_V v = f_c(v)$ ידי שנתון על-ידי הכפל בסקלרים והכפל לכל $c \cdot_V v = f_c(v)$ הידי שנתון שנתוך של מהדרה של מרחב את ההגדרה של מרחב וקטורי מעל על $v \in V$

על מנת להוכיח את (1), נשתמש במסקנה 2.3.19, עבור הנתונים X=U, יחס השקילות על מנת להוכיח את (1), נשתמש במסקנה $h:X\times X\to X$ פונקציית החיבור של I. התנאי באון באותה מסקנה מבטיח שקיימת פונקציה I. און I באותה מסקנה מבטיח שקיימת פונקציה I באותה מסקנה בדיוק תנאי (1) שלנו. מסקיים (1) באותה מסקנה (1) באותה מסקנה, כלומר בדיוק תנאי (1) שלנו. את התנאי השקול באותה מסקנה, כלומר שלכל I באותה שלכל על I באותה שלכל על I באותה שלכל על I באותה פירושה ש- לכן, מספיק להוכיח את התנאי השקול באותה על I באותה פירושה ש- I באות ולכן גם I באות ולכן באות באות ולכן באות באות באות ולכן באות באות ולכן באות באות ולכן באות באות ולכן באות באות באות (2.3.13 באות באות (1) באות (2.3.13 באות באות (2.3.13 באות באות (2.3.14 באות (2.3.15 באות על באות (2.3.17 באות באות (2.3.17 באות באות (2.3.17 ב

-ש המרחב הווקטורי נובעות בקלות ממה שכבר הוכחנו. למשל, על-מנת להוכיח ש-תכונות המרחב וובעות נובעות בקלות ממה לכל על v_1 (זה אפשרי משום $v_1,v_2\in V$ לכל לכל $v_1\oplus v_2=v_2\oplus v_1$ על). אז

$$v_1 \oplus v_2 = T(u_1) \oplus T(u_2) = T(u_1 + u_2) =$$

= $T(u_2 + u_1) = T(u_2) \oplus T(u_1) = v_2 \oplus v_1$

הוכחת יתר האקסיומות דומה.

תרגיל 2.3.27. השלימו את ההוכחה

מרחב V כמו במשפט נקרא מרחב מנה של U ב-W, ומסומן ב-U/W. ההעתקה T נקראת מרחב המנה אינם יחידים, אבל הם יחידים עד כדי העתקה לינארית יחידה:

W בור שתי העתקות שתי העת $T_2:U\to V_2$ ו ו- $U:U\to V_1$ ו הין אתי שתי שתי העתקות אוכיחו איימת העתקה לינארית הפיכה הידה אוכיחו ב $S:V_1\to V_2$ ו הוכיחו שקיימת העתקה לינארית הפיכה אוכיחו שתי

8 סוף הרצאה 3, במאי, 2024