Computer Vision (CS 763)

Relative Orientation and the Fundamental Matrix

Arjun Jain

Cameras to Measure Directions

An image point in a camera image defines a ray to the object point

Image courtesy: Schindler 2

3D Perception

Multiple observations from different directions allows for estimating the 3D location of points via triangulation

Camera Pose and Point Cloud Estimation

Camera Pair

- In the first part of this course, we computed the camera orientation for single camera
- We are now considering situation in which we have two images, potentially taken from two cameras

Images from different views

Table of Contents

- 1. Orientation parameters for the camera pair and relative orientation
- 2. Coplanarity constraint for corresponding points
- 3. Derivation and key properties of the fundamental matrix

Orientation Parameters for the Camera Pair and Relative Orientation

Orientation

 The orientation of the camera pair can be described using independent orientations for each camera

How many parameters are needed?

- Calibrated cameras: ? parameters
- Uncalibrated cameras: ? parameters

Orientation

 The orientation of the camera pair can be described using independent orientations for each camera

How many parameters are needed?

- Calibrated cameras: 12 parameters
- Uncalibrated cameras: 22 parameters

Orientation with Control Points

 The orientation of the camera pair can be described using independent orientations for each camera

- Uncalibrated cameras: 22 parameters
- Can be computed via two separate DLT steps
- Requires ? known control points

Orientation with Control Points

 The orientation of the camera pair can be described using independent orientations for each camera

- Uncalibrated cameras: 22 parameters
- Can be computed via two separate DLT steps
- Requires 6 known control points

Which Parameters Can We Compute Without Additional Information About the Scene?

We start with a perfect orientation and the intersection of two corresponding rays

Coplanarity Constraint

- Consider perfect orientation and the intersection of two corresponding rays
- Both rays lie within one plane in 3D

For Calibrated Cameras

- We need 2x6=12 parameters for two calibrated cameras for the orientation
- Mapping of the calibrated camera is angle-preserving
- Angle-preserving model of the object
- Angle-preserving mapping is a 7 DoF similarity transformation
- Without additional information, we cannot obtain all 12 parameters

Which Parameters Can We Obtain?

Cameras Measure Directions

 We cannot obtain the (global) translation and rotation (if the cameras maintain their relative transformation) as well as the scale

What We Can Compute

- The rotation R of the second camera w.r.t. the first one (3 parameters)
- The direction B of the line connecting the to centers of projection
- We do not know their distance

For Calibrated Cameras

- We need 2x6=12 parameters for two calibrated cameras for the orientation
- With a calibrated camera, we obtain an angle-preserving model of the object
- Without additional information, we can only obtain 12-7 = 5 parameters (7=translation, rotation, scale)

distance between cameras

Photogrammetric Model

- Given two cameras images, we can reconstruct the object only up to a similarity transform
- Called a photogrammetric model
- The orientation of the photogrammetric model is called the absolute orientation
- For obtaining the absolute orientation, we need at least 3 points in 3D (for 7 parameters)

What do we need for computing a 3D model of the scene?

For Uncalibrated Cameras

- Straight-line preserving but not angle preserving
- Object can be reconstructed up to a straight-line preserving mapping
- Projective transform in 3D (? parameters)

For Uncalibrated Cameras

- Straight-line preserving but not angle preserving
- Object can be reconstructed up to a straight-line preserving mapping
- Projective transform (15 parameters)
- Thus, for uncalibrated cameras, we can only obtain 22-15=7 parameters given two images
- We need at least 5 points in 3D (15 coordinates) for the absolute o.

Relative and Absolute Orient.

Image courtesy: Förstner & Wrobel 26

Summary

Cameras	#params /img	#params /img pair	#params for RO	#params for AO	min #P
calibrated	6	12	5	7	3
not calibrated	11	22	7	15	5

RO = relative orientation

AO = absolute orientation

min #P = min. number of control points

Coplanarity Constraint for Straight-Line Preserving (Uncalibrated) Cameras

Coplanarity Constraint for Uncalibrated Cameras

Coplanarity can be expressed by

Scalar Triple Product

- The operator $[\cdot, \cdot, \cdot]$ is the triple product
- Dot product of one of the vectors with the cross product of the other two

$$[A, B, C] = |(A \times B) \cdot C|$$

 It is the volume of the parallelepiped of three vectors

Scalar Triple Product Properties

$$[A, B, C] = (A \times B) \cdot C = A \cdot (B \times C)$$

$$[A,B,C] = (A \times B) \cdot C = -(B \times A) \cdot C = -[B,A,C]$$

$$[A, B, C] = \det \begin{bmatrix} A_1 & A_2 & A_3 \\ B_1 & B_2 & B_3 \\ C_1 & C_2 & C_3 \end{bmatrix}$$

$$[A, A, B] = 0$$

[A,B,C]=0 means that the three vectors lie in one plane

Coplanarity Constraint for Uncalibrated Cameras

Coplanarity can be expressed by

$$\begin{bmatrix} O'X' & O'O'' & O''X'' \end{bmatrix} = 0$$

Coplanarity Constraint for Uncalibrated Cameras

• The directions of the vectors O'X' and O''X'' can be derived from the image coordinates $\mathbf{x}', \mathbf{x}''$

$$\mathbf{x}' = \mathsf{P}'\mathbf{X}$$
 $\mathbf{x}'' = \mathsf{P}''\mathbf{X}$

with the projection matrices

$$P' = K'R'[I_3| - X_{O'}]$$
 $P'' = K''R''[I_3| - X_{O''}]$

Reminder:
$$[I_3| - X_{O''}] = \begin{bmatrix} 1 & 0 & 0 & -X_{O''} \\ 0 & 1 & 0 & -Y_{O''} \\ 0 & 0 & 1 & -Z_{O''} \end{bmatrix}$$

Directions to a Point

- The directions of the vectors and are O''X''
 - $n \mathbf{x}' = (R')^{-1} (\mathbf{K}')^{-1} \mathbf{x}' \longleftarrow$ image coord.
- as the projection

$$^{n}\mathbf{x'} = [\mathbf{I}_{3}| - \mathbf{X}_{O'}]\mathbf{X}$$
 world coord.

- provides the direction to from the center of projection to the point in 3D
- Analogous:

$$^{n}\mathbf{x}'' = (R'')^{-1}(K'')^{-1}\mathbf{x}''$$

Base Vector

 The base vector O'O" directly results from the coordinates of the projection centers

$$\mathbf{b} = oldsymbol{B} = oldsymbol{X}_{O^{\prime\prime}} - oldsymbol{X}_{O^{\prime}}$$

Coplanarity Constraint

 Using the previous relations, the coplanarity constraint

$$[\mathcal{O}'\mathcal{X}' \quad \mathcal{O}'\mathcal{O}'' \quad \mathcal{O}''\mathcal{X}''] = 0$$

can be rewritten as

$$\begin{bmatrix} {}^{n}\mathbf{x'} & \mathbf{b} & {}^{n}\mathbf{x''} \end{bmatrix} = 0$$

$${}^{n}\mathbf{x'} \cdot (\mathbf{b} \times {}^{n}\mathbf{x''}) = 0$$

$${}^{n}\mathbf{x'}^{\mathsf{T}} S_{b} {}^{n}\mathbf{x''} = 0$$

skew-symmetric matrix

Derivation

• Why is this correct?

$${}^{n}\mathbf{x}' \cdot (\mathbf{b} \times {}^{n}\mathbf{x}'') = 0$$

$${}^{n}\mathbf{x}'^{\mathsf{T}} S_{b} {}^{n}\mathbf{x}'' = 0$$

Derivation

• Why is this correct?

$${}^{n}\mathbf{x}' \cdot (\mathbf{b} \times {}^{n}\mathbf{x}'') = 0$$

$${}^{n}\mathbf{x}'^{\mathsf{T}} S_{b} {}^{n}\mathbf{x}'' = 0$$

Results from the cross product as

$$\underbrace{\begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}}_{\mathbf{b}} \times \underbrace{\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}}_{\mathbf{x}} = \begin{bmatrix} -b_3x_2 + b_2x_3 \\ b_3x_1 - b_1x_3 \\ -b_2x_1 + b_1x_2 \end{bmatrix} = \underbrace{\begin{bmatrix} 0 & -b_3 & b_2 \\ b_3 & 0 & -b_1 \\ -b_2 & b_1 & 0 \end{bmatrix}}_{\mathbf{x}} \underbrace{\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}}_{\mathbf{x}}$$

with S_b being a skew-symmetric matrix

Coplanarity Constraint

- By combining ${}^{n}\mathbf{x}' = (R')^{-1}(K')^{-1}\mathbf{x}'$ and ${}^{n}\mathbf{x}'^{\mathsf{T}}S_{b}{}^{n}\mathbf{x}'' = 0$
- we obtain

$$\mathbf{x'}^{\mathsf{T}}(\mathsf{K'})^{-\mathsf{T}}(R')^{-\mathsf{T}}\mathsf{S}_b(R'')^{-1}(\mathsf{K''})^{-1}\mathbf{x''} = 0$$

Coplanarity Constraint

- By combining ${}^{n}\mathbf{x}' = (R')^{-1}(K')^{-1}\mathbf{x}'$ and ${}^{n}\mathbf{x}'^{\mathsf{T}}S_{b}{}^{n}\mathbf{x}'' = 0$
- we obtain

$$\mathbf{x'}^{\mathsf{T}} \underbrace{(\mathsf{K}')^{-\mathsf{T}}(R')^{-\mathsf{T}}\mathsf{S}_b(R'')^{-1}(\mathsf{K}'')^{-1}}_{\mathsf{F}} \mathbf{x}'' = 0$$

$$F = (K')^{-T} (R')^{-T} S_b (R'')^{-1} (K'')^{-1}$$
$$= (K')^{-T} R' S_b R''^{T} (K'')^{-1}$$

Fundamental Matrix

 The matrix F is the fundamental matrix (for uncalibrated cameras):

$$\mathsf{F} = (\mathsf{K}')^{-\mathsf{T}} R' \mathsf{S}_b R''^{\mathsf{T}} (\mathsf{K}'')^{-1}$$

 It allow for expressing the coplanarity constraint by

$$\mathbf{x'}^\mathsf{T} \mathsf{F} \mathbf{x''} = 0$$

Fundamental Matrix

 The fundamental matrix is the matrix that fulfills the equation

$$\mathbf{x'}^\mathsf{T} \mathsf{F} \mathbf{x''} = 0$$

for corresponding points

 The fundamental matrix contains the all the available information about the relative orientation of two images from uncalibrated cameras

Alternative Definition

- In the context of many images, we will call F_{ij} that fundamental matrix which yields the constraint $\mathbf{x'}_i^\mathsf{T} \mathsf{F}_{ij} \mathbf{x}_j'' = 0$
- Thus in our case, we have $F = F_{12}$
- Our definition of F is not the same as in the book of Hartley and Zisserman (CV)
- The definition in Hartley and Zisserman is based on $\mathbf{x}_i''^{\top} \mathsf{F}_{ij} \mathbf{x}_j' = 0$, i.e. $\mathsf{F} = \mathsf{F}_{21} = \mathsf{F}_{12}^{\mathsf{T}}$
- The transposition needs to be taken into account when comparing algebraic expressions

Fundamental Matrix From the Camera Projection Matrices

- If the projection matrices are given, we can derive the fundamental matrix
- Let the projection matrices be partitioned into a left 3×3 matrix and a 3-vector as P' = [A'|a']. Then, we have

$$F = (K')^{-T} R' S_b R''^{T} (K'')^{-1} = A'^{-T} S_{b'_{12}} A''^{-1}$$

with

$$\mathbf{b}_{12}' = \mathsf{A}''^{-1}\mathbf{a}'' - \mathsf{A}'^{-1}\mathbf{a}'$$
 and $S_b = \begin{bmatrix} 0 & -b_3 & b_2 \\ b_3 & 0 & -b_1 \\ -b_2 & b_1 & 0 \end{bmatrix}$

Fundamental Matrix From the Camera Projection Matrices

Fundamental matrix of the form

$$\mathsf{F} = \mathsf{A}'^{-\top} \mathsf{S}_{b_{12}'} \mathsf{A}''^{-1}$$

is a result of the projection centers

$$oldsymbol{X}_{O'} = -\mathsf{A}'^{-1}\mathbf{a}' \qquad oldsymbol{X}_{O''} = -\mathsf{A}''^{-1}\mathbf{a}''$$

- and A' = K'R', $X_{O''} = -A''^{-1}a''$
- This yields $\mathbf{b}'_{12} = \mathsf{A}''^{-1}\mathbf{a}'' \mathsf{A}'^{-1}\mathbf{a}'$

Fundamental matrix depends on the projection matrices and not the corresponding points, same for all correspondences

Next Week: Computing the Fundamental Matrix from Corresponding Points

Fundamental Matrix from Corresponding Points

- The coplanarity constraint is bilinear in the homogenous image coordinates \mathbf{x}' and \mathbf{x}'' and linear in the elements of the fundamental matrix F
- This is the basis for a simple determination of the fundamental matrix from corresponding points

Degrees of Freedom

- The fundamental F matrix has seven degrees of freedom. This is because F is homogeneous and singular, as the skew symmetric matrix S_b is singular with rank two.
- Any matrix of the form

$$\mathsf{F} = U \mathrm{Diag}(s_1, s_2, 0) \mathsf{V}^\mathsf{T} \quad \text{with } s_i > 0$$

 with orthogonal matrices U and V is a fundamental matrix

Corresponding Points

- We need 7 corresponding points to compute the fundamental matrix
- We will study a direct method that needs 8 points (next week)

The Fundamental Matrix Song

Video courtesy: Daniel Wedge http://danielwedge.com/fmatrix,

Summary

- Geometry of image pairs
- Relative orientation
- Absolute orientation
- Corresponding points
- Fundamental matrix
- Correspondence test

Literature

■ Förstner, Wrobel: Photogrammetric Computer Vision, Ch. 12.2.1 – 12.2.2