Package 'LassoNet'

January 14, 2020

Type Package

Index

Title 3CoSE Algorithm
Version 0.8.3
Date 2019-12-17
Author Jonas Striaukas [aut, trl, cre] and Matthias Weber [aut]
Maintainer Jonas Striaukas <jonas.striaukas@gmail.com></jonas.striaukas@gmail.com>
Description Contains functions to estimate a penalized regression model using 3CoSE algorithm, see Weber, Striaukas, Schumacher Binder (2018) <doi:10.2139 ssrn.3211163="">.</doi:10.2139>
License GPL (>= 2)
Imports Rcpp (>= 0.11.5)
Suggests snowfall
LinkingTo Rcpp
NeedsCompilation yes R topics documented:
LassoNet-package
beta.update.net
betanew_lasso_cpp
fastols
get.BxBy
get.signs.M
get.xi
lasso.net.fixed
lasso.net.grid
mat.to.laplacian
matrix.M.update
soft.thresh

13

2 beta.update.net

LassoNet-package

LassoNet: package for 3CoSE algorithm.

Description

LassoNet contains functions to estimate a penalized regression model using 3CoSE algorithm described in the paper Weber, Striaukas, Schumacher and Binder (2018). The main function of the package is the function lasso.net.grid, see the example below.

Details

Package: LassoNet
Type: Package
Version: 0.8.3
Date: 2019-12-16
License: Open source

Author(s)

Maintainer: Jonas Striaukas <jonas.striaukas@gmail.com>

References

Weber, M., Striaukas, J., Schumacher, M., Binder, H. "Network-Constrained Covariate Coefficient and Connection Sign Estimation" (2018) <doi:10.2139/ssrn.3211163>

See Also

Rcpp, glmnet

beta.update.net

Updates β *coefficients.*

Description

This function updates β for given penalty parameters.

Usage

```
beta.update.net(x,y,beta,lambda1,lambda2,M1,n.iter,iscpp,tol)
```

beta.update.net 3

Arguments

x input data matrix of size $n \times p$; n - number of observations; p - number of

covariates

y response vector or size $n \times 1$

beta initial value for β ; default - zero vector of size $n \times 1$

lambda1 lasso penalty parameter lambda2 network penalty parameter

M1 penalty matrix

n.iter maximum number of iterations for β step; default - 1e5

iscpp binary choice for using cpp function in coordinate updates; 1 - use C++ (default),

0 - use R

tol convergence tolerance level; default - 1e-6

Details

Updates the coefficient vector β given the data and penalty parameters $\lambda 1$ and $\lambda 2$. Convergence criterion is defined as $\sum_{i=1}^{p} |\beta_{i,j} - \beta_{i,j-1}| \le \text{to}$.

Value

beta updated β vector

convergence binary variable; 1 - yes

steps number of steps until convergence

Author(s)

Maintainer: Jonas Striaukas <jonas.striaukas@gmail.com>

References

Weber, M., Striaukas, J., Schumacher, M., Binder, H. "Network-Constrained Covariate Coefficient and Connection Sign Estimation" (2018) <doi:10.2139/ssrn.3211163>

```
p<-200
n<-100
beta.0=array(1,c(p,1))
x<-matrix(rnorm(n*p),n,p)
y<-rnorm(n,mean=0,sd=1)
lambda1<-1
lambda2<-1
M1<-diag(p)
updates<-beta.update.net(x, y, beta.0, lambda1, lambda2, M1)</pre>
```

betanew_lasso_cpp

betanew_lasso_cpp C++ subroutine that updates β coefficients.

Description

This function updates β for given penalty parameters.

Usage

```
betanew_lasso_cpp(xx, xy, beta, M, y, Lambda1, Lambda2, iter, tol)
```

Arguments

xx Bx matrix xy By vector

beta initial value for β ; default - zero vector of size $p \times 1$

M penalty matrix

y response vector or size $n \times 1$ Lambda1 lasso penalty parameter Lambda2 network penalty parameter

iter maximum number of iterations for β step

tol convergence tolerance level

Details

See beta.update.net

Value

beta updated β vector

steps number of steps until convergence

Author(s)

Maintainer: Jonas Striaukas <jonas.striaukas@gmail.com>

References

Weber, M., Striaukas, J., Schumacher, M., Binder, H. "Network-Constrained Covariate Coefficient and Connection Sign Estimation" (2018) <doi:10.2139/ssrn.3211163>

```
p<-200
n<-100
beta.0=array(1,c(p,1))
x<-matrix(rnorm(n*p),n,p)
y<-rnorm(n,mean=0,sd=1)
lambda1<-1
lambda2<-1
M1<-diag(p)
updates<-beta.update.net(x, y, beta.0, lambda1, lambda2, M1)</pre>
```

fastols 5

fastols

Fast least squares estimate.

Description

Computes least squares estimate in an efficient way.

Usage

```
fastols(y, x)
```

Arguments

y dependent variable x response variable

Author(s)

Maintainer: Jonas Striaukas < jonas.striaukas@gmail.com>

Examples

```
p<-10
n<-100
x<-matrix(rnorm(n*p),n,p)
beta<-array(5, c(p,1))
y<-x%*%beta + rnorm(n,mean=0,sd=0.1)
fastols(y,x)</pre>
```

get.BxBy

Computes decomposition elements.

Description

Computes matrices B_X^{ij} and B_y^{ij} to speed up estimation of connection signs. These matrices are stored only for indices that have non zero entries in penalty matrix M.

Usage

```
get.BxBy(x, y, M)
```

Arguments

X	Input data matrix of size $n \times p$, n - number of observations, p - number of covariates
у	y Response vector or size $n \times 1$
М	penalty matrix

6 get.signs.M

Details

Calculates matrices all for i and j indices that have non zero values in a given penalty matrix.

Value

Bx array of B_X^{ij} stored matrices. Bx[,,k] are the k-th combination of i and j non zero entry in the penalty matrix M By array of B_y^{ij} stored matrices. By[,k] are the k-th combination of i and j non zero

entry in the penalty matrix M

Author(s)

Maintainer: Jonas Striaukas <jonas.striaukas@gmail.com>

References

Weber, M., Striaukas, J., Schumacher, M., Binder, H. "Network-Constrained Covariate Coefficient and Connection Sign Estimation" (2018) <doi:10.2139/ssrn.3211163>

Examples

```
p<-200
n<-100
x<-matrix(rnorm(n*p),n,p)
y<-rnorm(n,mean=0,sd=1)
M<-diag(p)
get.BxBy(x, y, M)</pre>
```

get.signs.M

Vetorizes connection sign matrix.

Description

Stores a matrix of connection signs to a vector.

Usage

```
get.signs.M(MAT)
```

Arguments

MAT matrix of connection signs that contains -1, 1 or 0

Value

vec.out vectorized MAT matrix

Author(s)

Maintainer: Jonas Striaukas <jonas.striaukas@gmail.com>

get.xi 7

get.xi Updates the estimates of the connection signs by running mini OLS models.	get.xi	Updates the estimates of the connection signs by running mini OLS models.
--	--------	---

Description

Updates connection signs $\hat{\xi}$.

Usage

```
get.xi(Bx,By,beta,xi,M)
```

Arguments

Bx	Bx element
Ву	By element
beta	$\hat{\beta}$ estimated value
xi	$\hat{\xi}$ matrix estimated at the previous step
М	penalty matrix

Value

xi $\hat{\xi}$ matrix

Author(s)

Maintainer: Jonas Striaukas <jonas.striaukas@gmail.com>

References

Weber, M., Striaukas, J., Schumacher, M., Binder, H. "Network-Constrained Covariate Coefficient and Connection Sign Estimation" (2018) <doi:10.2139/ssrn.3211163>

 ${\tt lasso.net.fixed}$

Estimates coefficients over the grid values of penalty parameters.

Description

See lasso.net.grid

Usage

```
lasso.net.fixed(x,y,beta.0,lambda1,lambda2,M1,n.iter,iscpp,tol)
```

8 lasso.net.fixed

Arguments

Х	$n \times p$ input data matrix
у	response vector or size $n \times 1$
beta.0	initial value for β ; default - zero vector of size $n \times 1$
lambda1	lasso penalty coefficient
lambda2	network penalty coefficient
M1	penalty matrix
n.iter	maximum number of iterations for β updating; default - 1e5
iscpp	binary choice for using cpp function in coordinate updates; 1 - use C++ (default), 0 - use R.
tol	convergence in β tolerance level; default - 1e-6

Details

Function loops through the grid of values of penalty parameters $\lambda 1$ and $\lambda 2$ until convergence is reached. Warm starts are stored for each iterator. The warm starts are stored once the coordinate updating converges.

Value

beta	Matrix of β coefficients. Columns denote different $\lambda 1$ coefficients, rows - $\lambda 2$ coefficients
mse	Mean squared error value
iterations	matrix with stored number of steps for sign matrix to converge
update.steps	matrix with stored number of steps for β updates to converge. (only stores the last values from connection signs iterations)
convergence.in.grid	
	and the second s

matrix with stored values for convergence in β coefficients. If at least one β did not converge in sign matrix iterations, 0 (false) is stored, otherwise 1 (true)

Author(s)

Maintainer: Jonas Striaukas <jonas.striaukas@gmail.com>

References

Weber, M., Striaukas, J., Schumacher, M., Binder, H. "Network-Constrained Covariate Coefficient and Connection Sign Estimation" (2018) <doi:10.2139/ssrn.3211163>

```
p=200
n=100
beta.0=array(1,c(p,1))
x=matrix(rnorm(n*p),n,p)
y=rnorm(n,mean=0,sd=1)
lambda1=c(0,1)
lambda2=c(0,1)
M1=diag(p)
lasso.net.fixed(x, y, beta.0, lambda1, lambda2, M1)
```

lasso.net.grid 9

lasso.net.grid	Estimates coefficients and connection signs over the grid of values of penalty parameters $\lambda 1$ and $\lambda 2$.

Description

Fits network regressions over the grid of values of penalty parameters $\lambda 1$ and $\lambda 2$, stores connection signs, number of iterations until convergence and convergence outcome.

Usage

```
lasso.net.grid(x,y,beta.0,lambda1,lambda2,M1,m.iter,n.iter,iscpp=TRUE,tol,alt.num)\\
```

Arguments

X	$n \times p$ input data matrix
у	response vector or size $n \times 1$
beta.0	initial value for β . default - zero vector of size $n \times 1$
lambda1	lasso penalty coefficient
lambda2	network penalty coefficient
M1	penalty matrix
m.iter	maximum number of iterations for sign matrix updating; default - 100
n.iter	maximum number of iterations for β updating; default - 1e5
iscpp	binary choice for using cpp function in coordinate updates; 1 - use C++ (default),
	0 - use R
tol	convergence in β tolerance level; default - 1e-6
alt.num	alt.num remaining iterataions are stored; default - 12

Details

Fits network regression for the grid values of $\lambda 1$ and $\lambda 2$ using warm starts.

Value

beta	matrix of β coefficients, columns are for different $\lambda 1$ parameters, rows $\lambda 2$ parameters	
	Tameters	
mse	mean squared error value	
М	array of connection signs. $M[,,i,j]$ is the connection sign matrix for j-th $\lambda 1$ value and i-th $\lambda 2$ value	
iterations	matrix with stored number of steps for sign matrix to converge	
update.steps	matrix with stored number of steps for β updates to converge. (only stores the	
	last values from connection signs iterations)	
convergence.in.M		
	matrix with stored values for convergence in sign matrix	
convergence.in.grid		
	matrix with stored values for convergence in β coefficients. If at least one β did	
	not converge in sign matrix iterations, 0 (false) is stored, otherwise 1 (true)	
xi.conv	array with stored connection signs changes in each iteration	
beta.alt	array of coefficient vectors in case connection signs alternate	

10 mat.to.laplacian

Author(s)

Maintainer: Jonas Striaukas <jonas.striaukas@gmail.com>

References

Weber, M., Striaukas, J., Schumacher, M., Binder, H. "Network-Constrained Covariate Coefficient and Connection Sign Estimation" (2018) <doi:10.2139/ssrn.3211163>

Examples

```
p=200
n=100
beta.0=array(1,c(p,1))
x=matrix(rnorm(n*p),n,p)
y=rnorm(n,mean=0,sd=1)
lambda1=c(0,1)
lambda2=c(0,1)
M1=diag(p)
lasso.net.grid(x, y, beta.0, lambda1, lambda2, M1)
```

mat.to.laplacian

Computes Laplacian matrix.

Description

Computes Laplacian matrix.

Usage

```
mat.to.laplacian(M1,type)
```

Arguments

M1 $p \times p$ matrix

type Laplacian types: 1) "normalized" (default) - normalized Laplacian, 2) "combi-

natorial" - combinatorial Laplacian

Value

L Laplacian

Author(s)

Maintainer: Jonas Striaukas <jonas.striaukas@gmail.com>

matrix.M.update 11

matrix.M.update

Updates connection sign matrix.

Description

```
Updates M using relation (M)_{ij} = -\hat{\xi}_{ij}|(M_1)|_{ij}.
```

Usage

```
matrix.M.update(M, xi)
```

Arguments

M penalty matrix

xi estimated $\hat{\xi}_{ij}$ matrix

Details

Updates M

Value

М

updated M

Author(s)

Maintainer: Jonas Striaukas < jonas.striaukas@gmail.com>

References

Weber, M., Striaukas, J., Schumacher, M., Binder, H. "Network-Constrained Covariate Coefficient and Connection Sign Estimation" (2018) <doi:10.2139/ssrn.3211163>

```
p<-100
M<-diag(p)
xi<-matrix(rnorm(p*p), p, p)
matrix.M.update(M,xi)</pre>
```

12 soft.thresh

soft.thresh

Soft thresholding operator.

Description

Soft thresholding operator.

Usage

```
soft.thresh(x, kappa)
```

Arguments

```
x \beta coordinate
```

kappa κ value in general or λ_1 for covariance updating

Details

```
Soft thresholding definition: S(x,\kappa) = sign(x)(|x| - \kappa)_+
```

Value

x value after applying soft thresholding operator

Author(s)

Maintainer: Jonas Striaukas <jonas.striaukas@gmail.com>

```
kappa<-0.2
x<-0.7
soft.thresh(x, kappa)</pre>
```

Index

```
beta.update.net, 2
betanew_lasso_cpp, 4
fastols, 5
get.BxBy, 5
get.signs.M, 6
get.xi, 7
glmnet, 2
lasso.net.fixed, 7
lasso.net.grid, 9
LassoNet-package, 2
mat.to.laplacian, 10
matrix.M.update, 11
Rcpp, 2
soft.thresh, 12
```