1

ASSIGNMENT-5

R.YAMINI

1 QUESTION No-2.98 (QUADRATIC FORMS)

Find the area lying above x-axis and included between the circle $\mathbf{x}^T \mathbf{x} - 8 \begin{pmatrix} 1 & 0 \end{pmatrix} \mathbf{x} = 0$ and inside of the parabola $y^2 = 4x$.

2 Solution

Given equation of the circle $\mathbf{x}^T \mathbf{x} - 8 \begin{pmatrix} 1 & 0 \end{pmatrix} \mathbf{x} = 0$. We know that the general equation of a circle is given by

$$\mathbf{x}^T \mathbf{x} + 2\mathbf{u}^T \mathbf{x} + f = 0 \tag{2.0.1}$$

We have $\mathbf{u} = \begin{pmatrix} -4 \\ 0 \end{pmatrix}$ and f = 0. Thus we have the center and radius as $\mathbf{c} = -\mathbf{u} = \begin{pmatrix} 4 \\ 0 \end{pmatrix}$ and $r = \sqrt{\mathbf{u}^T \mathbf{u} - f} = 4$ respectively. Given equation of the parabola $\mathbf{x}^T \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} - 4 \begin{pmatrix} 0 & 1 \end{pmatrix} = 0$. The plot of the above two curves is

Fig. 2.1: Plot of the curves

Now to find the area bounded above the x-axis, the parabola and the circle. From fig.2.1 the area to be calculated is *AOBCA*.

$$Ar(AOBCA) = Ar(ACOA) + Ar(OCBO)$$
 (2.0.2)
= $A_1 + A_2$ (2.0.3)

To calculate A_1 : A_1 is the area enclosed by the parabola $y^2 = 4x$ and the line OC. Thus

$$A_1 = \frac{2}{3} (AO) (OC) \tag{2.0.4}$$

$$= \frac{2}{3}(4)(4) = \frac{32}{3} \tag{2.0.5}$$

To calculate A_2 : A_2 is one fourth of the area of the circle.

$$A_2 = \frac{1}{4} \left(\pi r^2 \right) \tag{2.0.6}$$

$$=\frac{1}{4}(16\pi)\tag{2.0.7}$$

$$=4\pi \tag{2.0.8}$$

Now substituting (2.0.5) and (2.0.8) in (2.0.3) we get

$$A_1 + A_2 = \frac{32}{3} + 4\pi \tag{2.0.9}$$

$$=4\left(\frac{8}{3} + \pi\right) \tag{2.0.10}$$

Thus (2.0.10) is the required area.