Biostat 216 Homework 7

Due Dec 3 @ 11:59pm

Submit a PDF (scanned/photographed from handwritten solutions, or converted from RMarkdown or Jupyter Notebook) to Gracescope on BruinLearn.

Positive definite matrices

Q1

Suppose C is positive definite and A has independent columns. Apply the energy test to show that A'CA is positive definite.

Q2

Show that the diagonal entries of a positive definite matrix are positive.

Q3 (Rayleigh quotient)

Suppose **S** is positive definite with eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n > 0$ with corresponding orthonormal eigenvectors $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_n$.

- 1. What are the eigenvalues of the matrix $\lambda_1 \mathbf{I} \mathbf{S}$? Is it positive semidefinite?
- 2. How does it follow that $\lambda_1 \mathbf{x}' \mathbf{x} \geq \mathbf{x}' \mathbf{S} \mathbf{x}$ for every \mathbf{x} ?
- 3. Draw the conclusion: The maximum value of the Rayleigh quotient

$$R(\mathbf{x}) = \frac{\mathbf{x}' \mathbf{S} \mathbf{x}}{\mathbf{x}' \mathbf{x}}$$

is λ_1 .

- 4. Show that the maximum value of the Rayleigh quotient subject to the condition $\mathbf{x} \perp \mathbf{u}_1$ is λ_2 . Hint: expand \mathbf{x} in eigenvectors $\mathbf{u}_1, \dots, \mathbf{u}_n$.
- 5. Show that the maximum value of the Rayleigh quotient subject to the conditions $\mathbf{x} \perp \mathbf{u}_1$ and $\mathbf{x} \perp \mathbf{u}_2$ is λ_3 .
- 6. What is the maximum value of $\frac{1}{2}\mathbf{x}'\mathbf{S}\mathbf{x}$ subject to the constraint $\mathbf{x}'\mathbf{x}=1$. Hint: write down the Lagrangian and set its derivative to zero.

Q4

Find the closest rank-1 approximation (in Frobenius norm or spectral norm) to these matrices

$$\mathbf{A} = egin{pmatrix} 3 & 0 & 0 \ 0 & 2 & 0 \ 0 & 0 & 1 \end{pmatrix}, \quad \mathbf{A} = egin{pmatrix} 0 & 3 \ 2 & 0 \end{pmatrix}, \quad \mathbf{A} = egin{pmatrix} 2 & 1 \ 1 & 2 \end{pmatrix}, \quad \mathbf{A} = egin{pmatrix} \cos \theta & -\sin \theta \ \sin \theta & \cos \theta \end{pmatrix}.$$

Q5 (Moore-Penrose inverse)

1. With singular value decomposition $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}'$, verify that

$$\mathbf{X}^+ = \mathbf{V} \mathbf{\Sigma}^+ \mathbf{U}' = \mathbf{V}_r \mathbf{\Sigma}_r^{-1} \mathbf{U}_r' = \sum_{i=1}^r \sigma_i^{-1} \mathbf{v}_i \mathbf{u}_i',$$

where $\Sigma^+ = \operatorname{diag}(\sigma_1^{-1}, \dots, \sigma_r^{-1}, 0, \dots, 0)$ and $r = \operatorname{rank}(\mathbf{X})$, satisfies the four properties of the Moore-Penrose inverse.

- 2. Show that $\operatorname{rank}(\mathbf{X}^+) = \operatorname{rank}(\mathbf{X})$.
- 3. Show that $\mathbf{X}^+\mathbf{X}$ is the orthogonal projector into $\mathcal{C}(\mathbf{X}')$ and $\mathbf{X}\mathbf{X}^+$ is the orthogonal projector into $\mathcal{C}(\mathbf{X})$.
- 4. Show that $\boldsymbol{\beta}^+ = \mathbf{X}^+ \mathbf{y}$ is a minimizer of the least squares criterion $f(\boldsymbol{\beta}) = \|\mathbf{y} \mathbf{X}\boldsymbol{\beta}\|^2$. Hint: check $\boldsymbol{\beta}^+$ satisfies the normal equation $\mathbf{X}'\mathbf{X}\boldsymbol{\beta} = \mathbf{X}'\mathbf{y}$.
- 5. Show that $oldsymbol{eta}^+ \in \mathcal{C}(\mathbf{X}')$.
- 6. Show that if another $\boldsymbol{\beta}^{\star}$ minimizes $f(\boldsymbol{\beta})$, then $\|\boldsymbol{\beta}^{\star}\| \geq \|\boldsymbol{\beta}^{+}\|$. This says that $\boldsymbol{\beta}^{+} = \mathbf{X}^{+}\mathbf{y}$ is the least squares solution with smallest ℓ_{2} norm. Hint: since both $\boldsymbol{\beta}^{\star}$ and $\boldsymbol{\beta}^{+}$ satisfy the normal equation, $\mathbf{X}'\mathbf{X}\boldsymbol{\beta}^{\star} = \mathbf{X}'\mathbf{X}\boldsymbol{\beta}^{+}$ and deduce that $\boldsymbol{\beta}^{\star} \boldsymbol{\beta}^{+} \in \mathcal{N}(\mathbf{X})$.

Q6

Let **B** be a submatrix of $\mathbf{A} \in \mathbb{R}^{m \times n}$. Show that the largest singular value of **B** is always less than or equal to the largest singular value of **A**.

Q7

Show that all three matrix norms (ℓ_2 , Frobenius, nuclear) are invariant under orthogonal transforms. That is

Optimization and multivariate calculus

Q8

- 1. Explain why the intersection $K_1 \cap K_2$ of two convex sets is a convex set.
- 2. Prove that the maximum F_3 of two convex functions F_1 and F_2 is a convex function. Hint: What is the set above the graph of F_3 ?

Q9

Show that these functions are convex:

- 1. Entropy $x \log x$.
- 2. Log-sum-exp: $\log(e^x + e^y)$.
- 3. ℓ_p norm: $\|\mathbf{x}\|_p = (|x_1|^p + |x_2|^p)^{1/p}$, $p \geq 1$.
- 4. Largest eigenvalue: $\lambda_{\max}(\mathbf{S})$ as a function of the symmetric matrix \mathbf{S} . Hint: Q3.6 and Q8.2.

Q10

Minimize $f(x_1,x_2)=rac{1}{2}\mathbf{x}'\mathbf{S}\mathbf{x}=rac{1}{2}x_1^2+2x_2^2$ subject to the constraint $\mathbf{A}'\mathbf{x}=x_1+3x_2=b$.

- 1. What is the Lagrangian $L(\mathbf{x},\lambda)$ for this problem.
- 2. What are the three equations "derivative of L=zero"?
- 3. Solve these equations to find $\mathbf{x}^{\star} = (x_1^{\star}, x_2^{\star})$ and the multiplier λ^{\star} .
- 4. Verify that the derivative of the minimum cost is $\partial f^\star/\partial b = -\lambda^\star$.

Q11 (MLE of multivariate normal)

Let $\mathbf{y}_1, \dots, \mathbf{y}_n \in \mathbb{R}^p$ be iid samples from a p-dimensional multivariate normal distribution $N(\boldsymbol{\mu}, \boldsymbol{\Omega})$, where the mean $\boldsymbol{\mu} \in \mathbb{R}^p$ and covariance $\boldsymbol{\Omega} \in \mathbb{R}^{p \times p}$ are unkonwn parameters. The log-likelihood is

$$\ell(oldsymbol{\mu}, oldsymbol{\Omega}) = -rac{n}{2} \log \det oldsymbol{\Omega} - rac{1}{2} \sum_{i=1}^n (\mathbf{y}_i - oldsymbol{\mu})' oldsymbol{\Omega}^{-1} (\mathbf{y}_i - oldsymbol{\mu}) - rac{n}{2} \log 2\pi.$$

Show that the maximum likelihood estimate (MLE) is

$$egin{aligned} \widehat{oldsymbol{\mu}} &= rac{\sum_{i=1}^n \mathbf{y}_i}{n} \ \widehat{oldsymbol{\Omega}} &= rac{\sum_{i=1}^n (\mathbf{y}_i - \hat{oldsymbol{\mu}}) (\mathbf{y}_i - \hat{oldsymbol{\mu}})'}{n}. \end{aligned}$$

That is to show that $\widehat{\mu}, \widehat{\Omega}$ maximize ℓ .

Hint: Use the first order optimality condition to find $\widehat{\mu}$ and $\widehat{\Omega}$. To check the optimality of $\widehat{\Omega}$, use its Cholesky factor.

Q12 (Smallest matrix subject to linear constraints)

Find the matrix X with the smallest Frobenius norm subject to the constraint XU = V, assuming U has full column rank.

Hint: Write down the optimization problem and use the method of Lagrange multipliers.

Q13 (Minimizing a convex quadratic form over manifold)

 $\mathbf{A} \in \mathbb{R}^{n \times n}$ is a positive semidefinite matrix. Find a matrix $\mathbf{U} \in \mathbb{R}^{n \times r}$ with orthonomal columns that maximizes $\mathrm{tr}(\mathbf{U}'\mathbf{A}\mathbf{U})$. That is to

$$\begin{array}{ll} \text{maximize} & \text{tr}(\mathbf{U}'\mathbf{A}\mathbf{U}) \\ \text{subject to} & \mathbf{U}'\mathbf{U} = \mathbf{I}_r. \end{array}$$

This result generalizes the fact that the top eigenvector of $\bf A$ maximizes $\bf u'Au$ subject to constraint $\bf u'u=1$.

Hint: Use the method of Lagrange multipliers.

Q14 (Procrustes rotation)

The Procrustes problem studies how to properly align images.

Let matrices $\mathbf{X},\mathbf{Y}\in\mathbb{R}^{n imes p}$ record n points on the two shapes. Mathematically we consider the problem

$$\text{minimize}_{\beta, \mathbf{O}, \mu} \quad \|\mathbf{X} - (\beta \mathbf{YO} + \mathbf{1}_n \mu^T)\|_{\mathrm{F}}^2,$$

where $\beta>0$ is a scaling factor, $\mathbf{O}\in\mathbb{R}^{p\times p}$ is an orthogonal matrix, and $\mu\in\mathbb{R}^p$ is a vector of shifts. Here $\|\mathbf{M}\|_{\mathrm{F}}^2=\sum_{i,j}m_{ij}^2$ is the squared Frobenius norm. Intuitively we want to rotate, stretch and shift the shape \mathbf{Y} to match the shape \mathbf{X} as much as possible.

1. Let $\bar{\mathbf{x}}$ and $\bar{\mathbf{y}}$ be the column mean vectors of the matrices and $\tilde{\mathbf{X}}$ and $\tilde{\mathbf{Y}}$ be the versions of these matrices centered by column means. Show that the solution $(\hat{\beta}, \hat{\mathbf{O}}, \hat{\mu})$ satisfies

$$\hat{\mu} = \bar{\mathbf{x}} - \hat{eta} \cdot \hat{\mathbf{O}}^T \bar{\mathbf{y}}.$$

Therefore we can center each matrix at its column centroid and then ignore the location completely.

2. Derive the solution to

$$minimize_{\beta, \mathbf{O}} \quad \|\tilde{\mathbf{X}} - \beta \tilde{\mathbf{Y}} \mathbf{O}\|_{F}^{2}$$

using the SVD of $\tilde{\mathbf{Y}}^T \tilde{\mathbf{X}}$.

Q15 (Ridge regression)

One popular regularization method in machine learning is the ridge regression, which estimates regression coefficients by minimizing a penalized least squares criterion

$$\frac{1}{2}\|\mathbf{y} - \mathbf{X}\beta\|_2^2 + \frac{\lambda}{2}\|\beta\|_2^2.$$

Here $\mathbf{y} \in \mathbb{R}^n$ and $\mathbf{X} \in \mathbb{R}^{n \times p}$ are fixed data. $\boldsymbol{\beta} \in \mathbb{R}^p$ are the regression coefficients to be estimated.

1. Show that, regardless the shape of ${\bf X}$, there is always a unique global minimum for any $\lambda>0$ and the ridge solution is given by

$$\widehat{oldsymbol{eta}}(\lambda) = (\mathbf{X}^T\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}^T\mathbf{y}.$$

- 2. Express ridge solution $\widehat{m{eta}}(\lambda)$ in terms of the singular value decomposition (SVD) of ${f X}$.
- 3. Show that (i) the ℓ_2 norms of ridge solution $\|\widehat{\boldsymbol{\beta}}(\lambda)\|_2$ and corresponding fitted values $\|\widehat{\mathbf{y}}(\lambda)\|_2 = \|\mathbf{X}\widehat{\boldsymbol{\beta}}(\lambda)\|_2$ are non-increasing in λ and (ii) the ℓ_2 norm of the residual vector $\|\mathbf{y} \widehat{\mathbf{y}}(\lambda)\|_2$ is non-decreasing in λ .
- 4. (**Optional**) Let's address how to choose the optimal tuning parameter λ . Let $\widehat{\beta}_k(\lambda)$ be the solution to the ridge problem

$$ext{minimize } rac{1}{2}\|\mathbf{y}_{-k} - \mathbf{X}_{-k}oldsymbol{eta}\|_2^2 + rac{\lambda}{2}\|eta\|_2^2,$$

where \mathbf{y}_{-k} and \mathbf{X}_{-k} are the data with the k-th observation taken out. The optimal λ can to chosen to minimize the cross-validation square error

$$C(\lambda) = rac{1}{n} \sum_{k=1}^n [y_k - \mathbf{x}_k^T \widehat{oldsymbol{eta}}_k(\lambda)]^2.$$

However computing n ridge solutions $\widehat{m{eta}}_k(\lambda)$ is expensive. Show that, using SVD ${f X}={f U}\Sigma{f V}^T$,

$$C(\lambda) = rac{1}{n} \sum_{k=1}^n \left[rac{y_k - \sum_{j=1}^r u_{kj} ilde{y}_j \left(rac{\sigma_j^2}{\sigma_j^2 + \lambda}
ight)}{1 - \sum_{j=1}^r u_{kj}^2 \left(rac{\sigma_j^2}{\sigma_j^2 + \lambda}
ight)}
ight]^2,$$

where $\tilde{\mathbf{y}} = \mathbf{U}^T \mathbf{y}$. Therefore, in practice, we only need to do SVD of \mathbf{X} and then find the optimal value λ that minimizes the leave-one-out (LOO) cross-validation error.

Q16 (Optional) (Factor analysis)

Let $\mathbf{y}_1, \dots, \mathbf{y}_n \in \mathbb{R}^p$ be iid samples from a multivariate normal distribution $N(\mathbf{0}_p, \mathbf{F}\mathbf{F}' + \mathbf{D})$, where $\mathbf{F} \in \mathbb{R}^{p \times r}$ and $\mathbf{D} \in \mathbb{R}^{p \times p}$ is a diagonal matrix with positive entries. We estimate the factor matrix \mathbf{F} and diagonal matrix \mathbf{D} by maximizing the log-likelihood function

$$\ell(\mathbf{F},\mathbf{D}) = -rac{n}{2} \ln \det(\mathbf{F}\mathbf{F}' + \mathbf{D}) - rac{n}{2} \mathrm{tr}\left[(\mathbf{F}\mathbf{F}' + \mathbf{D})^{-1}\mathbf{S}
ight] - rac{np}{2} \ln 2\pi,$$

where $\mathbf{S} = n^{-1} \sum_{i=1}^{n} \mathbf{y}_i \mathbf{y}_i'$.

- 1. We first show that, for fixed ${f D}$, we can find the maximizer ${f F}$ explicitly using SVD by the following steps.
 - \circ Step 1: Take derivative with respect to ${f F}$ and set to 0 to obtain the first-order optimality condition.
 - Step 2: Reparameterize $\mathbf{H} = \mathbf{D}^{-1/2}\mathbf{F}$ and $\tilde{\mathbf{S}} = \mathbf{D}^{-1/2}\mathbf{S}\mathbf{D}^{-1/2}$, and express the first-order optimality condition in terms of \mathbf{H} and $\tilde{\mathbf{S}}$.
 - $\circ~$ Step 3: Let ${f H}={f U}{f \Sigma}{f V}'$ be its SVD. Show that columns of ${f U}$ must be r eigenvectors of ${f ilde S}$.
 - \circ Step 4: Identify which r eigenvectors of $\tilde{\mathbf{S}}$ to use in \mathbf{U} and then derive the solution to \mathbf{F} .
- 2. Show that, for fixed ${f F}$, we can find the maximizer ${f D}$ explicitly. (Hint: first-order optimality condition.)

Combining 1 and 2, a natural algorithm for finding the MLE of factor analysis model is to alternately update $\bf F$ and $\bf D$ until convergence.