```
In [2]: import pandas as pd
In [3]: heart_dataset=pd.read_csv("heart.csv")
In [4]: heart dataset
Out[4]:
              age sex cp trestbps chol fbs restecg thalach exang oldpeak slope ca thal target
                    1 3
            0 63
                              145
                                   233
                                         1
                                                0
                                                      150
                                                              0
                                                                    2.3
                                                                           0 0
            1
               37
                    1
                        2
                              130
                                   250
                                         0
                                                1
                                                      187
                                                              0
                                                                    3.5
                                                                           0
                                                                               0
                                                                                   2
            2 41
                    0 1
                              130
                                   204
                                         0
                                                      172
                                                                    1.4
                                                                           2 0
            3
               56
                              120
                                   236
                                         0
                                                      178
                                                              0
                                                                           2
                                                                              0
                                                                                   2
                    1 1
                                                1
                                                                    8.0
                                   354
                              120
                                                      163
                                                                    0.6
                               ...
                                                       ...
          298
               57
                              140
                                   241
                                         0
                                                1
                                                      123
                                                                    0.2
                                                                           1 0
          299
               45
                    1 3
                              110
                                   264
                                         0
                                                1
                                                      132
                                                              0
                                                                    1.2
                                                                           1 0
                                                                                   3
                                                                                         (
          300
               68
                    1 0
                              144
                                   193
                                         1
                                                1
                                                      141
                                                              0
                                                                    3.4
                                                                           1 2
                                                                                   3
          301
               57
                    1 0
                              130
                                   131
                                         0
                                                1
                                                      115
                                                              1
                                                                    1.2
                                                                                   3
          302
               57
                    0 1
                              130 236
                                                      174
                                                                    0.0
                                                                           1 1
         303 rows × 14 columns
         # Basic
In [5]:
         import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt
         from matplotlib import rcParams
         from matplotlib.cm import rainbow
```

```
%matplotlib inline
import warnings
warnings.filterwarnings('ignore')

# Other libraries
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
```

Import Dataset

Info()method

oldpeak 303 non-null

dtypes: float64(1), int64(13)

303 non-null

303 non-null

303 non-null

303 non-null

slope

memory usage: 33.3 KB

11 ca

12 thal

13 target

10

```
In [8]: heart dataset.info() #Before any analysis, I just wanted to take a look
        at the data. So, I used the info() method.
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 303 entries, 0 to 302
        Data columns (total 14 columns):
                      Non-Null Count Dtype
            Column
                 303 non-null
                                     int64
            age
            sex 303 non-null
        1
                                     int64
        2
                      303 non-null
                                     int64
            ср
            trestbps 303 non-null
                                     int64
            chol
                      303 non-null
                                     int64
        5
            fbs
                      303 non-null
                                     int64
            restecg 303 non-null
                                     int64
            thalach 303 non-null
                                     int64
                      303 non-null
            exana
                                     int64
```

float64

int64

int64

int64

int64

Create PDF in your applications with the Pdfcrowd HTML to PDF API

describe() method

In [9]: heart_dataset.describe()
Out[9]:

		age	sex	ср	trestbps	chol	fbs	restecg	t
	count	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.0
	mean	54.366337	0.683168	0.966997	131.623762	246.264026	0.148515	0.528053	149.6
	std	9.082101	0.466011	1.032052	17.538143	51.830751	0.356198	0.525860	22.9
	min	29.000000	0.000000	0.000000	94.000000	126.000000	0.000000	0.000000	71.(
	25%	47.500000	0.000000	0.000000	120.000000	211.000000	0.000000	0.000000	133.
	50%	55.000000	1.000000	1.000000	130.000000	240.000000	0.000000	1.000000	153.0
	75%	61.000000	1.000000	2.000000	140.000000	274.500000	0.000000	1.000000	166.0
	max	77.000000	1.000000	3.000000	200.000000	564.000000	1.000000	2.000000	202.0

Understanding the data

Correlation Matrix

```
In [11]: rcParams['figure.figsize'] = 20, 14  #The figure size is defined to 12
    x 8 by using rcParams
    plt.matshow(heart_dataset.corr())
    plt.yticks(np.arange(heart_dataset.shape[1]), heart_dataset.columns) #U
    sing xticks and yticks,
    plt.xticks(np.arange(heart_dataset.shape[1]), heart_dataset.columns) #
    I've added names to the correlation matrix.
    plt.colorbar() # colorbar() shows the colorbar for the matrix.
```


Histogram-It just takes a Single Command To Draw the Plots

```
In [12]: heart dataset.hist() #It provides so much information in return
Out[12]: array([[<matplotlib.axes._subplots.AxesSubplot object at 0x00000208D1E5</pre>
          7688>,
                  <matplotlib.axes. subplots.AxesSubplot object at 0x00000208D1DE</pre>
          9C88>,
                  <matplotlib.axes. subplots.AxesSubplot object at 0x00000208D1EB</pre>
         64C8>,
                  <matplotlib.axes. subplots.AxesSubplot object at 0x00000208D1EE</pre>
          B248>1,
                 [<matplotlib.axes. subplots.AxesSubplot object at 0x00000208D1F1
          AF88>.
                  <matplotlib.axes. subplots.AxesSubplot object at 0x00000208D1F5</pre>
          6C88>,
                  <matplotlib.axes. subplots.AxesSubplot object at 0x00000208D1F8</pre>
         DC48>,
                  <matplotlib.axes. subplots.AxesSubplot object at 0x00000208D1FC</pre>
         4D48>],
                 [<matplotlib.axes. subplots.AxesSubplot object at 0x00000208D1FD
         0E08>,
                  <matplotlib.axes. subplots.AxesSubplot object at 0x00000208D201</pre>
          1048>,
                  <matplotlib.axes. subplots.AxesSubplot object at 0x00000208D207</pre>
         40C8>,
                  <matplotlib.axes. subplots.AxesSubplot object at 0x00000208D20B</pre>
          4E88>],
                 [<matplotlib.axes. subplots.AxesSubplot object at 0x00000208D20E
          8308>,
                  <matplotlib.axes. subplots.AxesSubplot object at 0x00000208D211</pre>
          E408>,
                  <matplotlib.axes. subplots.AxesSubplot object at 0x00000208D215</pre>
          7508>,
                  <matplotlib.axes. subplots.AxesSubplot object at 0x00000208D219</pre>
          1708>]],
                dtype=object)
```


Bar Plot for Target Class

```
In [15]: rcParams['figure.figsize'] = 8,6
    plt.bar(heart_dataset['target'].unique(), heart_dataset['target'].value
        _counts(), color = ['red', 'green'])
    #For x-axis I used the unique() values from the target column and then
    set their name using xticks.
    #For y-axis, I used value_count() to get the values for each class. I c
    olored the bars as green and red.
    plt.xticks([0, 1])
    plt.xlabel('Target Classes')
    plt.ylabel('Count')
    plt.title('Count of each Target Class')
Out[15]: Text(0.5, 1.0, 'Count of each Target Class')
```


Data Processing

```
In [16]: heart_dataset = pd.get_dummies(heart_dataset, columns = ['sex', 'cp',
    'fbs', 'restecg', 'exang', 'slope', 'ca', 'thal'])
# we use the get_dummies() method from pandas
standardScaler = StandardScaler() # we need to scale the dataset for w
hich we will use the StandardScaler
columns_to_scale = ['age', 'trestbps', 'chol', 'thalach', 'oldpeak']
heart_dataset[columns_to_scale] = standardScaler.fit_transform(heart_dataset[columns_to_scale])
# fit_transform() method of the scaler scales the data and we update the columns.
```

```
In [17]: heart dataset.head()
Out[17]:
                 age trestbps
                                 chol
                                       thalach
                                               oldpeak target sex_0 sex_1 cp_0 cp_1 ... sle
            0.952197  0.763956  -0.256334  0.015443
                                             1.087338
                                                                               0 ...
          1 -1.915313 -0.092738
                              0.072199 1.633471 2.122573
                                                                               0 ...
          2 -1.474158 -0.092738 -0.816773 0.977514 0.310912
          3 0.180175 -0.663867 -0.198357 1.239897 -0.206705
                                                                               1 ...
          4 0.290464 -0.663867 2.082050 0.583939 -0.379244
                                                               1
          5 rows × 31 columns
 In []: #The dataset is now ready. We can begin with training our models.
         #I split the dataset into 67% training data and 33% testing data.
In [18]: y = heart dataset['target']
         X = heart dataset.drop(['target'], axis = 1)
         X train, X test, y train, y test = train test split(X, y, test size =
          0.33, random state = 0)
         Random Forest Algorithm
In [20]: from sklearn.ensemble import RandomForestClassifier
In [21]: rf scores = []
         estimators = [10, 100, 200, 500, 1000]
          for i in estimators:
              rf classifier = RandomForestClassifier(n estimators = i, random sta
          te = 0)
              rf classifier.fit(X train, y train)
              rf_scores.append(rf_classifier.score(X test, y test))
```

```
In [22]: colors = rainbow(np.linspace(0, 1, len(estimators)))
    plt.bar([i for i in range(len(estimators))], rf_scores, color = colors,
        width = 0.8)
    for i in range(len(estimators)):
        plt.text(i, rf_scores[i], rf_scores[i])
    plt.xticks(ticks = [i for i in range(len(estimators))], labels = [str(estimator) for estimator in estimators])
    plt.xlabel('Number of estimators')
    plt.ylabel('Scores')
    plt.title('Random Forest Classifier scores for different number of estimators')
```


conclusion

In []: #Taking a look at the bar graph, we can see that the maximum score of 8 4% was achieved for both 100 and 500 trees.