

Birla Institute of Technology & Science, Pilani Work Integrated Learning Programmes Division First Semester 2025-2026

Digital Learning Handout

Part A: Content Design

Course Title	Artificial and Computational Intelligence		
Course No(s) AIML ZG557 /SE ZG557			
Credit Units	5		
Credit Model	1.25 - 1.5 - 2.25		
Course Author	Profs. Vimal SP, Raja vadhana Prabhakar		
Lead Instructor	Madhusudhanan B.		
Version No:	5.0		
Date:	24/02/2025		

Course Description:

Agents and environments, Task Environments, Working of agents; Uninformed Search Algorithms: Informed Search Local Search Algorithms & Optimization Problems: Genetic Algorithm; Searching with Non-Deterministic Actions, Partial Information and Online search agents, Game Playing, Constraint Satisfaction Problem, Knowledge Representation using Logics: TT-Entail for inference from truth table, Proof by resolution, Forward Chaining and Backward Chaining, Inference in FOL, Unification & Lifting, Forward chaining, Backward Chaining, Resolution; Probabilistic Representation and Reasoning: Inference using full joint distribution, Representation of Conditional Independence using BN, Reinforcement Learning; Difference between crisp and fuzzy logic, shapes of membership function, Fuzzification and defuzzification, fuzzy logic reasoning; Decision making with fuzzy information, Fuzzy Classification; Connectionist Models: Introduction to Neural Networks, Hopfield Networks, Perceptron Learning, Back propagation & Competitive Learning, Applications of Neural Net: Speech, Vision, Traveling Salesman; Genetic Algorithms - Chromosomes, fitness functions, and selection mechanisms, Genetic algorithms: crossover and mutation, Genetic programming.

Course Objectives

No	Course Objective
CO1	Identify and recall fundamental concepts and techniques for designing intelligent agents
CO2	Represent and use of knowledge in inference-based problem solving approaches
CO3	Apply probability theory to describe and model agents operating in uncertain environments
CO4	Implement optimization models of computation and processing in real world application of
	intelligent agents

Text Book(s):

T1	Stuart Russell and Peter Norvig, "Artificial Intelligence - A Modern Approach", Pearson						
Education 2006 Third Edition							

Format No: QF.02.01 Rev:3 Dt 30.12.24

Reference Book(s) & other resources:

R1	Ryszard S. Michalski, Jaime G. Carbonell and Tom M. Mitchell, "Machine Learning: An
	Artificial Intelligence Approach", Elsevier, 2014
R2	Dan W Patterson, "Introduction to AI and Expert Systems", Prentice Hall of India, New Delhi,
	2010
R3	Elaine Rich and Kevin Knight, "Artificial Intelligence", Tata McGraw Hill Publishing Company,
	New Delhi, 2003. Second Edition

Learning Outcomes: Students will be able to

LO1	Understand and recall agent-environment interactions through architectures and design PEAS descriptions of agents. Measure success by the agent's ability to perform tasks such as
	pathfinding and decision-making.
LO2	Analysing the working of uninformed search algorithms like Uniform Cost Search, Depth Limited Search and Iterative Deepening Search.
LO3	Design and implement heuristic functions in search algorithms like A* and measure its
	efficiency through the number of nodes expanded and the solution's optimality.
LO4	Design and implement the local search algorithms like Hill Climbing, simulated annealing and evolutionary techniques like Genetic algorithm, Ant Colony Optimization, particle swarm optimization for designing solution for N-Queen problem or Travelling Salesman problem.
LO5	Design static evaluation measure for building adversarial search agents in multiplayer player Games and implement Game playing using algorithms like Minimax and Alpha Beta pruning.
LO6	Apply logical inference techniques to solve problems like agent navigation in a Grid World. Measure success by the correctness and efficiency of inferred solutions.
LO7	Apply probabilistic models for decision-making under uncertainty using Bayesian networks with exact inferencing, approximate inferencing by direct sampling. Implement solution for temporal problems and infer using Hidden Markov Models.
LO8	Understand the importance of ethical considerations while designing AI solutions.

<u>Modular Content Structure</u>

- 1. Introduction
- o Artificial Intelligence: Foundations, Overview of Modern AI & Application Domains.
- Introduction to Intelligent Agents: Notion of Agents and Environments, Rationality, Nature of Environments, Structure of Agents
- 3. Problem Solving Agent using Search:
 - Problem Formulation, Uninformed Search Algorithms: Uniform cost Search, Depth
 Limited Search, Iterative Deepening Search Informed Search Algorithms: Notion of
 Heuristics, Greedy best first search, A* search, Optimality of A*
 - Heuristic Functions: Heuristic Accuracy & Algorithm performance, Admissible heuristics from relaxed problems, pattern databases & Experience
 - Local Search Algorithms & Optimization Problems: Hill Climbing Search, Simulated Annealing, Local Beam Search, Evolutionary Algorithms - Genetic Algorithm, Ant Colony Optimization, Particle Swarm Optimization
- 4. Game Playing:

Format No: QF.02.01 Rev:3 Dt 30.12.24

- o Searching to play games: Minimax Algorithm, Alpha-Beta Pruning
- Making imperfect real time decisions
- 5. Knowledge Representation using Logics:

(Pre-Reading: Logics- Propositional, Predicate, TT-Entail, Theorem Proving)

- Logic Representation of a sample agent, Proof by resolution, DPLL Algorithm, Agents based on Propositional logic
- Overview of First Order Logic semantics, Example representation, Unification & Lifting, forward chaining, Backward Chaining, Resolution
- 6. Probabilistic Representation and Reasoning
 - Inference using full joint distribution & Example, Knowledge representation using Bayesian Networks, semantics of Bayesian Networks, Representation of Conditional Independence using Bayesian Networks
 - Exact Inference by enumeration and variable elimination, Need for Approximate Inference - Direct Sampling
- 7. Reasoning over time
 - o Time and Uncertainty, Inference in temporal models
 - Hidden Morkov Models, Algorithms: Filtering, Smoothing, Finding the most likely sequence, EM algorithms for Learning the parameters of HMM
- 8. Ethics in AI
 - o Explainable AI- Logically Explained Network, Explainable Bayesian Network

Part B: Learning Plan

Contact List of Topic Title Session		Sub-Topics	Reference
1	Introduction	 What is Artificial Intelligence: Acting Humanly, Thinking humanly, Thinking rationally, Acting Rationally Foundations of AI Brief Overview of Modern AI & Application Domains. 	T1: 1.1 T1: 1.2, 1.4
2	Introduction to Intelligent Agents	 Intelligent Agents: Notion of Agents and Environments, Rationality Nature of Environments, Structure of Agents 	T1: Chapter 2
3	Problem Solving Agent using Search	 Problem Solving Agent Problem Formulation - Examples Uninformed Search Algorithms: Uniform cost Search, Depth Limited Search, Iterative Deepening Search. Notion of Heuristics Informed Search Algorithms: 	T1: Chapter 3.1-3.4, 3.5.1, 3.5.2

Format No: QF.02.01 Rev:3 Dt 30.12.24

Commented [1]: MTECH DSE:

Uninformed Search discuss only at overview level. Focus on next topics Heuristic design and informed Search

		Greedy best first search, A* search	
4	Problem Solving Agent using Search	Optimality of A* Heuristic Functions Heuristic Accuracy & Algorithm performance Admissible heuristics from relaxed problems, pattern databases. & Experience	T1: Chapter 3.5.2, 3.6
5	Problem Solving Agent using Search	 Local Search Algorithms & Optimization Problems Hill Climbing Search Simulated Annealing, Local Beam Search 	T1: Chapter 4.1
6	Problem Solving Agent using Search	Genetic Algorithm	T1: Chapter 4.1, Research papers & web resources
7	Problem Solving Agent using Search	Ant Colony OptimizationParticle Swarm Optimization	Research papers & web resources
8	Game Playing	 Searching to play games Minimax Algorithm Alpha-Beta Pruning Making imperfect real time decisions 	T1: Chapter 5.1 to 5.4
9	Knowledge Representation using Logics	 Logical Agent Logic Representation of a sample agent DPLL Algorithm, Agents based on Propositional logic Overview of First Order Logic semantics, Example representation 	T1: Chapter 7.1, 7.2, 7.5.2, 7.5.2, 7.5.3, 7.6.1, 8.1, 8.3.4
10	Knowledge Representation using Logics	 Inference in First Order Logic Unification & Lifting Forward chaining Backward Chaining 	T1: Chapter 9
11	Probabilistic Representation and Reasoning	 Resolution Probabilistic Representation and Reasoning Inference using full joint distribution & Example Knowledge representation using 	T1: Chapter 9, 13, 14.1

Format No: QF.02.01 Rev:3 Dt 30.12.24

		Bayesian Networks	
12	Probabilistic Representation and Reasoning	 Semantics of Bayesian Networks Representation of Conditional Independence using BN 	T1: 14.2, 14.3
13	Probabilistic Representation and Reasoning	 Exact Inference - by enumeration and variable elimination Need for Approximate Inference - Direct Sampling 	T1: 14.4, 14.5
14	Reasoning over time	 Reasoning over time Time and Uncertainty Inference in temporal models 	T1: Chapter 15.1, 15.2
15	Reasoning over time	 Hidden Markov Models Learning HMM Parameters using EM Algorithm Applications of HMM 	T1: Chapter , 15.3, 20.3-20.3.3
16	Ethics in AI	Explainable AI- Logically Explained Network, Explainable Bayesian Network	Research papers & web resources

Commented [2]: M Tech AIML: Focus on algorithms & problem for Filtering – Smoothing – Most Likelihood – EM for Parameter Learning

Experiential Learning Components:

1. Lab work: 7

2. Project work: 0

3. Case Study: 0

4. Simulation: 0

- 5. Work Integrated Learning Assignment- 2 Assignments
- 6. Design work/ Field work: 0

Objective of Experiential Learning Component:

Learners will implement informed/uninformed/local search algorithms, adversarial search and Bayesian networks using Python, rule-based systems in Prolog

Scope of Experiential Learning Component: Programming language – Python, Prolog

Tools and libraries: Jupyter, Numpy, Scipy, Pandas, pgmpy, nltk

Lab Infrastructure:

Google Colab, Online: https://www.swi-prolog.org/

List of Experiments:

Format No: QF.02.01 Rev:3 Dt 30.12.24

Lab No	Lab Objective	Session Reference
1	Implement Uninformed Search Algorithms like BFS/DFS	3
2	Implement A* algorithm for Informed Search	4
3	3 Implement Local Search Techniques using Genetic Algorithm	
4	4 Implement MINIMAX algorithm for Adversarial Search for game playing	
5	Represent knowledge using logics and perform reasoning using PROLOG	10
6	Experiment with Bayesian Networks and exact Inferencing	13
7	Experiment with application of Hidden Markov Model in Natural Language Processing	15

Evaluation Scheme:

Legend: EC = Evaluation Component; AN = After Noon Session; FN = Fore Noon Session

Eegenar 20	Brandanion component, in	TITTET TITTET	• • • • • • • • • • • • • • • • • • • •	1 010 1 10011 2	• • • • • • • • • • • • • • • • • • • •
Evaluation	Name (Quiz, Lab, Project,	Type (Open	Weight	Duration	Day, Date,
Component	Mid-term exam, End	book, Closed			Session, Time
	semester exam, etc.)	book,			
		Online, etc.)			
EC – 1*	Quiz I	Online	5%	1 day	September 01-10, 2025
	Lab Assignment	Online	13%	10 days	October 10-20, 2025
	Lab Assignment	Online	12 %	10 days	November 01-10, 2025
	Mid-Semester Test	Closed Book	30%	2 hours	21/09/2025
EC - 2					(AN)
	Comprehensive Exam	Open Book	40%	2 1/2 Hours	30/11/2025
EC - 3					(AN)

EC1* (30%): Quiz: 5 %, Lab Assignment/Assignment: 25%

Syllabus for Mid-Semester Test (Closed Book): Topics in Contact session: 1 to 8

Syllabus for Comprehensive Exam (Open Book): All topics

Important Links and Information:

eLearn Portal: https://elearn.bits-pilani.ac.in

Students must visit the eLearn portal regularly and stay updated with the latest announcements and deadlines.

<u>Contact Sessions:</u> Students should attend the online lectures as per the schedule provided on the eLearn portal.

Evaluation Guidelines:

Format No: QF.02.01 Rev:3 Dt 30.12.24

- EC-1 consists of either two Assignments or three Quizzes. Students will attempt them through the
 course pages on the eLearn portal. Announcements will be made on the portal in a timely manner.
- 2. For Closed Book tests: No books or reference material of any kind will be permitted.
- 3. For Open Book exams: "open book" means text/ reference books (publisher copy only) and does not include any other learning material. No other learning material will be permitted during the open book examinations. For Detailed Guidelines refer to the attached document.
 EC3 Guidelines
- 4. If a student is unable to appear for the Regular Test/Exam due to genuine exigencies, the student should follow the procedure to apply for the Make-Up Test/Exam, which will be made available on the eLearn portal. The Make-Up Test/Exam will be conducted only at selected exam centres on the dates to be announced later.

It shall be the responsibility of the individual student to be regular in maintaining the self-study schedule as given in the course handout, attend the online lectures, and take all the prescribed evaluation components such as Assignments/Quizzes, Mid-Semester Tests and Comprehensive Exams according to the evaluation scheme provided in the handout.

Format No: QF.02.01 Rev:3 Dt 30.12.24