Podstawy Fizyki

dla Informatyki

Stanisław Drożdż Katedra Informatyki WIiT PK

Literatura

[1] D. Halliday, R. Resnick, J. Walker Podstawy fizyki, część 1 i 2.

> Jearl Walker: Podstawy Fizyki – Zbiór Zadań PWN 2011

[2] M. Massalska, J. Massalski Fizyka dla inżynierów, część 1.

[3] A.A. Dietłaf, B.M Jaworski Fizyka. Poradnik encyklopedyczny.

Literatura

Wstęp

Pomiary w fizyce Układ jednostek

Ruch jednowymiarowy

Przemieszczenie i prędkość Pochodne funkcji Przyspieszenie Stałe przyspieszenie

Cele i metody fizyki

- Badanie własności ciał i istoty zjawisk fizycznych poprzez obserwacje — eksperyment
- Znajdowanie podstawowych praw przyrody teoria
- Język fizyki matematyka

Wielkości fizyczne

- Każdą dają się zmierzyć wielkość nazywamy wielkością fizyczną
- Wielkości fizyczne dzielimy na:
 - podstawowe (np. czas, długość, temperatura), wzorce dostępne i niezmienne
 - pochodne (np. objętość, prędkość, energia)
- Używamy Międzynarodowego Układu Jednostek SI (Système International)

Jednostki SI

Jednostki podstawowe

Wielkość	Jednostka	Skrót		
Długość	metr	m		
Masa	kilogram	kg		
Czas	sekunda	S		
Temperatura termodynamiczna	kelwin	K		
Natężenie prądu elektrycznego	amper	Α		
Światłość	kandela cd			
llość substancji	mol	mol		
Jednostki uzupełniające				
Kąt płaski	radian	rad		
Kat bryłowy	steradian	sr		

Definicja

 $1~{\rm metr}$ — droga jaką przebywa światło w próżni w czasie $1/2999792458~{\rm s}$

Niektóre przedrostki SI

Czynnik	Przedrostek	Symbol
10^{15}	peta	Р
10^{12}	tera	T
10^{9}	giga	G
10^{6}	mega	M
10^{3}	kilo	k
10^{2}	hekto	h
10^{1}	deka	da
10^{-1}	decy	d
10^{-2}	centy	С
10^{-3}	mili	m
10^{-6}	mikro	μ
10^{-9}	nano	n
10^{-12}	piko	р
10^{-15}	femto	f

Jednostki wielkości pochodnych

Definiujemy je poprzez jednostki podstawowe

Przykład

prędkość = przemieszczenie/czas, zatem [v] = [L]/[t] = m/s

Zmiana jednostek

Przykład

węzeł = mila morska/godzinę = 1852 m/3600 s ≈ 0.5144 m/s

Położenie i przemieszczenie

- Poruszające się ciało traktujemy jak obiekt punktowy
- Nie zajmujemy się teraz siłami powodującymi ruch
- Położenie x ciała wyznaczamy względem układu odniesienia

Definicja

Zmianę położenia od punktu x_1 do punktu x_2 nazywamy przemieszczeniem Δx :

$$\Delta x = x_2 - x_1$$

Przemieszczenie jest wielkością wektorową Wartość bezwzględna: |x|

Prędkość

Zależność przemieszczenia od czasu x(t)

Definicje

Prędkość średnia:

$$v_{\text{sr}} = \frac{\Delta x}{\Delta t} = \frac{x_2 - x_1}{t_2 - t_1}$$

Prędkość chwilowa:

$$v = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{dx}{dt}$$

Definicja i interpretacja pochodnej

Interpretacja geometryczna pochodnej funkcji y = f(x): $f'(x_0) = \operatorname{tg} \alpha$

Definicja

Pochodna f' funkcji f(x) w punkcie x_0 jest granicą ilorazu różnicowego:

$$f'(x_0) = \frac{df}{dx}(x_0) = \lim_{x \to x_0} \frac{\Delta f}{\Delta x}$$

Oznaczenia

$$f(x)$$
 — funkcja

$$\Delta f$$
, Δx — różnice