

Inteligencia Artificial: Taller 2 - 1/2023

LÓGICA, REPRESENTACIÓN DEL CONOCIMIENTO Y RAZONAMIENTO

El puzzle "Instant Insanity" consiste de cuatro cubos cuyas seis caras se encuentran coloreadas con uno de cuatro colores posibles (rojo, azul, verde o blanco). El objetivo del puzzle es apilar los cubos de tal forma que cada cara de la estructura muestre cada uno de los cuatro colores ¹.

Es posible encontrar soluciones completas a este puzzle utilizando **Teoría de Grafos** ². En este taller se pide especificar y desarrollar una solución para este puzzle mediante técnicas basadas en **CSP** (Constraint Satisfaction Problems)³, para lo cual se le pide realizar las siguientes actividades:

- 1. Diseñe una representación de un cubo mediante el uso de una estructura de datos Python.
- 2. Realice una especificación de este puzzle como un problema de satisfacción de restricciones CSP (variables, dominios y restricciones).
- 3. Implemente soluciones para este cubo utilizando:
 - 3.1 Fuerza bruta, produciendo todas las combinaciones posibles de los cuatro cubos. Considere el uso de generadores, de forma que su solución sea facilmente comprensible ⁴.
 - 3.2 miniKanren, relizando una especificación lógica del puzzle. 5 .
 - 3.3 ORTools, utilizando el CP-SAT solver proporcionado por esta suite. ⁶
- 4. La implementación propuesta debe diseñase evitando una codificación *hard-code*, de tal forma que sea simple incoporar nuevas variantes del puzzle, como las descritas en ⁷.
- 5. Realice pruebas de tiempo, utilizando la librería time de **Python**. Considere la incorporación de mas cubos al problema. Grafique los resultados obtenidos.
- 6. Concluya aspectos interesantes de la resolución de este puzzle, además incluya un análisis de los tiempos obtenidos.

¹https://en.wikipedia.org/wiki/Instant_Insanity

 $^{^2}$ https://ptwiddle.github.io/Graph-Theory-Notes/s_intro_instantinsanity.html

³https://en.wikipedia.org/wiki/Constraint_satisfaction_problem

⁴https://realpython.com/introduction-to-python-generators/

⁵https://pypi.org/project/miniKanren/

⁶https://developers.google.com/optimization

⁷https://www.jaapsch.net/puzzles/insanity.htm