

Laboratório

Cobertura de Código - Introdução

 Faça o download dos arquivos apresentados na Tabela 1 para um diretório de trabalho na kriti. Os arquivos estão disponíveis na área Moodle da disciplina.

Arquivo	Descrição
cobertura.vhd	device under verification (DUV)
cobertura_tb.vhd	Testbench
compile.do	Script

Tabela 1 - Arquivos básicos.

2. Para carregar o Modelsim, no terminal da Kriti, execute os comandos apresentados na Tabela 2:

source /soft64/source_gaph module load modelsim vsim &

Tabela 2 - Carregamento do Modelsim.

- 3. Abra o script (compile.do) e analise os comandos contidos nele.
- 4. No transcript, do Modelsim, execute o script conforme o comando apresentado na Tabela 3:

do compile.do

Tabela 3 – Execução do Script.

5. Observe a tela "Code Coverage Analysis" selecionando as abas apresentadas na Tabela 4:

Aba	
statement	
branch	
condition	
expression	
toggle	
fsm	

Tabela 4 - Arquivos básicos.

- 6. Na aba "FSM List" clique com o botão direito sobre a instância "sim:/cobertura_tb/cobertura/state" e selecione a opção "FSM View". Observe a tela que será aberta e identificando a sua função.
- 7. Edite o testbench (cobertura_tb.vhd) adicionando um sinal de clock com período de 10 ns (nanosegundos);
- 8. Execute novamente o script (compile.do) e observe as abas da Tabela 4 verificando possíveis alterações no resultado.
- 9. Na aba "FSM List" clique com o botão direito sobre a instância "sim:/cobertura_tb/cobertura/state" e selecione a opção "FSM View". Observe novamente a tela que será aberta, verificando a as mudanças.