12. Облизо уравнение на равнина. Компланарност на вектор и равнина. Взаимно положнение на две равнини.

Има аналогия менуу права в равнината и равнина в пространството. Тази аналогия е видима при аналитичното им описание.

Нека $K = 0\vec{e}_1\vec{e}_2\vec{e}_3$ е афинна координатна систена и ω е произволна равнина. Нека $M_0(x_0, y_0, z_0)$ е произволна фонкцирана тогка от ω , а $\vec{p}(p_1, p_2, p_3)$ и $\vec{q}(q_1, q_2, q_3)$ са два ненулеви некоминеарни вектори, компланарни с ω . Тогава могка M(x, y, z) леини в равнината ω могно могава, когато векторыт M_0M е компланарен с ω => векторите M_0M , \vec{p} и \vec{q} , са минейно зависими ω =>

$$x-x_0$$
 $y-y_0$ $z-z_0$ Ознатаване c $A=p_2q_3-p_3q_2$, p_1 p_2 p_3 $= 0$. $B=p_3q_1-p_1q_3$, $C=p_1q_2-p_2q_1$ p_1 p_2 p_3 p_4 p_5 p_6 p_6 p_6 p_6 p_7 p_9 p_9

12.1

Тогава уравнението

(1) $Ax + By + C \neq + D = 0$ се нарита общо уравнение на равнината х спряно K.

Всяка равнина ина уравнение от вида (1), като поне един от кое обрициентите му е размитен от нула - ако допуснен, те A = B = C = 0, то луе следва, те \overline{p} и \overline{q} са колинеарни, противореше. Така имане $A^2 + B^2 + C^2 = 0$.

Обратно. Ваяко уравнение от вида (4) с $A^2 + B^2 + C^2 \neq 0$ е общо уравнение на тотно една равнина.

Без огранитение на общносита спитане $A \neq 0$. Тотките $M_0(-\frac{D}{A}, 0, 0)$, $M_1(-\frac{B+D}{A}, 1, 0)$ и $M_2(-\frac{C+D}{A}, 0, 1)$ са пури тотки, тишто координати удовлетворяват уравнението (1) като при мова векторите $M_0M_1(-\frac{B}{A}, 1, 0)$ и $M_0M_2(-\frac{C}{A}, 0, 1)$ са некомнеарни и определят равнина х през тотката M_0

С уравнение
$$x + \frac{D}{A}$$
 $y \neq \frac{1}{A}$ y

Гравнението на координатната равнина Оух е \Rightarrow 0yz: x=0 u +a 0xz e y=0.! Компланарност на вектор с равнина Нека г е зададена с облизо уравнение фиксирана тоска от х, а М1(х, у1, 71) е такава тоска, че $M_0M_1 = \vec{p}$. Тогава \vec{p} е компланарен с \varkappa (\vec{p} II \varkappa) имотно импава, когато имотката M_1 е в равнината \varkappa – тотно тогава, когато координатите и удовлетворяват уравнението на \varkappa Axi+ By1+ (Z1+D=0. UMame p1=x1-x0, p2=y1-y0, p3=Z1-Z0 => Ax1+By1+Cz1+D=A(p1+x0)+B(p2+y0)+C(p3+Z0)+D= = Ap1 + Bp2 + Cp3 + Axo + Byo + CZo + D = Ap1 + Bp2 + Cp3. (Om MoZ2=>Axo+Byo+Czo+D=0).

Следователно векторъм \vec{p} е конпланорен с равнината о тогно $Ap_1 + Bp_2 + Cp_3 = 0$.

Взаимно положение на две равнини.

Нека спръмо $K = 0\vec{e}_1\vec{e}_2\vec{e}_3$ равнините d_1 и d_2 гимат съответно уравнения $d_1: A_1x + B_1y + C_1z + D_1 = 0$, $d_2: A_2x + B_2y + C_2z + D_2 = 0$, $A_1^2 + B_1^2 + C_1^2 + D_2 = 0$, $A_1^2 + B_1^2 + C_1^2 + D_2 = 0$, $A_1^2 + B_1^2 + C_1^2 + D_2 = 0$, $A_1^2 + B_1^2 + C_1^2 + D_2 = 0$, $A_1^2 + B_1^2 + C_1^2 + D_2 = 0$, $A_1^2 + B_1^2 + C_1^2 + D_2 = 0$, $A_1^2 + B_1^2 + C_1^2 + D_2 = 0$ има две миней
Следователно шитемата (2) $A_1\lambda + B_1\mu + C_1\nu = 0$ има две миней
но независими решения, на касто съответстват два некомняюрни вектора \vec{p} (p, p2, p3) \vec{h} \vec{q} (q1, q2, q3), конпланарни с d_1 , $d_1^2 + d_2^2$.

Известно е, те (2) има две минейно независими решения тогно могава, когато рантът на матрилуажа от коефольциентите на

Ясно е, те равнина минава през наталото на каоралнатнога M_2 е истема тот но тогава, когато свободният тлен M_2 уравнението M_3 (0, 0, 0), M_4 (0, 8, 0) и M_3 (0, 0, 0), разлитни от 0, то (4) добива M_4 (4, 0, 0), M_2 (0, 8, 0) и M_3 (0, 0, 0), разлитни от 0, то (4) добива вида M_4 (5) M_4 (6) M_4 (7) M_4 (8) M_4 (8) M_4 (9) M_4 (9) M_4 (9) M_4 (9) M_5 (9) M_5 (15) M_6 (15) M_6 (16) M_6 (16)