EECS 391 Intro to Al

Assignment Project Exam Help Inference in Bayes Nets

Add WeChat powcoder

LI4Thu Oct 25

Recap: Modeling causal relationships with belief networks

Defining the belief network

- Each link in the graph represents a conditional relationship between nodes.
- To compute the inference, we must specify the conditional probabilities.
- Let's start with the open door. What do we specify?

Now what?

Calculating probabilities using the joint distribution

- What the probability that the door is open, it is my wife and not a burglar, we see the car in the garage, and the door is not damaged?
- Mathematically, we want to compute the expression: $P(o, w, \neg b, c, \neg d) = ?$
- We can just repeatedly apply the rule relating joint and conditional probabilities.
 - P(x,y) = P(x|y) P(y)

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Summary of inference with the joint probability distribution

• The complete (probabilistic) relationship between variables is specified by the joint probability:

$$P(X_1, X_2, \dots, X_n)$$

= $P(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n)$

• All conditional and marginal distributions can be derived from this using the basic rules of probability, the sum rule and the product rule

$$P(X) = \sum_{Y} P(X,Y) \begin{tabular}{l} https://powcoder.com \\ sum rule, "marginalization" \\ Add WeChat powcoder \end{tabular}$$

$$P(X,Y) = P(Y|X)P(X) = P(X|Y)P(Y) \qquad \qquad \text{product rule}$$

$$P(Y|X) = \frac{P(X,Y)}{P(X)} \qquad \qquad \text{corollary, conditional probability}$$

$$P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)}$$
 corollary, Bayes rule

Calculating probabilities using the joint distribution

• The probability that the door is open, it is my wife and not a burglar, we see the car in the garage, and the door is not damaged.

•
$$P(o,w,\neg b,c,\neg d) = P(o|w,\neg b,c,\neg d)P(w,\neg b,c,\neg d)$$

= $P(o|w,\neg b)P(w,\neg b,c,\neg d)$
= $P(o|w,\neg b)P(c|w,\neg b,\neg d)P(w,\neg b,\neg d)$
= $P(o|w,\neg b)P(c|w)P(w,\neg b,\neg d)$
• $P(o|w,\neg b)P(c|w)P(\neg d|w,\neg b)P(w,\neg b)$
• $P(o|w,\neg b)P(c|w)P(\neg d|w,\neg b)P(w,\neg b)$
• $P(o|w,\neg b)P(c|w)P(\neg d|\neg b)P(w,\neg b)$
• $P(o|w,\neg b)P(c|w)P(\neg d|\neg b)P(w,\neg b)$
• $P(o|w,\neg b)P(c|w)P(\neg d|\neg b)P(w,\neg b)$

Calculating probabilities using the joint distribution

•
$$P(o,w,\neg b,c,\neg d) = P(o|w,\neg b)P(c|w)P(\neg d|\neg b)P(w)P(\neg b)$$

= $0.05 \times 0.95 \times 0.999 \times 0.05 \times 0.999 = 0.0024$

• This is essentially the probability that my wife is home and leaves the door open.

Calculating probabilities in a general Bayesian belief network

• Note that by specifying all the conditional probabilities, we have also specified the joint probability. For the directed graphent replaced Exam Help

$$P(A,B,C,D,E) = P(A) P(B|G)tP(G|A)-P(B|G)EP.P(E|A,C)$$

The general expression is: Add WeChat powcoder

$$P(x_1, \dots, x_n) \equiv P(X_1 = x_1 \land \dots \land X_n = x_n)$$
$$= \prod_{i=1}^n P(x_i | \text{parents}(X_i))$$

- With this we can calculate (in principle) the probability of any joint probability.
- This implies that we can also calculate any conditional probability.

For the burglar model

The structure of this model allows a simple expression for the joint probability

$$P(x_1, ..., x_n) \equiv P(X_1 = x_1 \land ... \land X_n = x_n)$$

$$= \prod_{i=1}^n P(x_i | \text{parents}(X_i))$$

$$\Rightarrow P(o, c, d, w, b) = P(c|w)P(o|w, b)P(d|b)P(w)P(b)$$

What if we want a simpler probabilistic question?

- How do we calculate P(b|o), i.e. the probability of a burglar given we see the open door?
- This is not an entry in the joint distribution. We had:

$$P(o,w,\neg b,c,\neg d) = P(o|w,\neg b)P(c|w)P(\neg d|\neg b)P(w)P(\neg b)$$

= 0.05 × 0.95 × 0.999 × 0.05 × 0.999 = 0.0024

Calculating conditional probabilities

- So, how do we compute P(b|o)?
- Repeatedly apply laws of probability (factorization, marginalization, etc).
- Using the joint we can compute any conditional probability too
- The conditional probability of any one subset of variables given another disjoint subset is

$$P(S_1|S_2) = \frac{P(S_1 \land S_2)}{P(S_2)} \underbrace{\sum_{p \in S_1} p \in S_1 \land S_2}_{p \in S_2} \text{Help}$$

https://powcoder.com

where $p \in S$ is shorthand for all the entries of the joint matching subset S. Add WeChat powcoder

How many terms are in this sum? 2^N

How many terms are in this sum?

The number of terms in the sums is exponential in the number of variables.

In fact, general querying Bayes nets is NP complete.

Variable elimination on the burglary network

• We could do straight summation:

$$p(b|o) = \alpha p(o, w, b, c, d)$$

$$= \alpha \sum_{w,c,d} p(o|w, b) p(c|w) p(d|b) p(w) p(b)$$

- But: the number of terms in the sum is exponential in the non-evidence variables.
- This is bad, and we can do much better.
 Assignment Project Exam Help
- We start by observing that we can pull out many terms from the summation. https://powcoder.com

Add WeChat powcoder

Variable elimination

When we've pulled out all the redundant terms we get:

$$p(b|o) = \alpha p(b) \sum_{d} p(d|b) \sum_{w} p(w) p(o|w, b) \sum_{c} p(c|w)$$

We can also note the last term sums to one. In fact, every variable that is not an ancestor of a query variable or evidence variable is irrelevant to the query, so we get

$$p(b|o) = \alpha \, p(b) \, \sum_{d} \text{sps(ghb)} \, \text{the projector with the pro$$

Add WeChat powcoder

Variable elimination

- We can go even further.
- If we exchange the sums we get (with all the steps):

$$\begin{split} p(b|o) &= \alpha \sum_{d} p(d|b) \sum_{w} p(w) p(o|w,b) \\ &= \alpha \sum_{d} \sum_{w} p(d|b) p(w) p(o|w,b) \\ &= \alpha \sum_{d} \sum_{w} p(d|b) p(w) p(o|w,b) \\ &= \alpha \sum_{w} \sum_{d} p(d|b) p(w) p(o|w,b) \\ &= \alpha \sum_{w} p(w) p(o|w,b) \sum_{d} \text{WeChat powcoder} \\ &= \alpha \sum_{w} p(w) p(o|w,b) \cdot 1 \end{split}$$

We could have also achieved this by a more direct path.

Variable elimination

When we've pulled out all the redundant terms we get:

$$p(b|o) = \alpha \sum_{w} p(w)p(o|w,b)$$

- which contains far fewer terms than the original expression.
- In general, complexity is **linear** in the # of CPT entries.
- This method is called variable refine in at 18 no ject Exam Help
 - = if # of parents is boundedtalso linear in the number of nodes.
 - the expressions are evaluated in right-to-left order (bottom-up in the network)
 - intermediate results are AddeWeChat powcoder
 - sums over each are done only for those expressions that depend on the variable
- Note: for multiply connected networks, variable elimination can have exponential complexity in the worst case.

General inference questions in Bayesian networks

- For queries in Bayesian networks, we divide variables into three classes:
 - evidence variables: $e = \{e_1, ..., e_m\}$ what you know
 - query variables: $x = \{x_1, ..., x_n\}$ what you want to know
 - non-evidence variables: $y = \{y_1, ..., y_l\}$ what you don't care about
- The complete set of variables in the network is $\{e \cup x \cup y\}$.
- Inferences in Bayesian networks consist of computing p(x|e), the posterior probability of the query given the evidence: https://powcoder.com

$$p(x|e) = \frac{p(x,e)}{p(e)} \text{Add we Chat } \overline{powoode}(x,e,y)$$

- This computes the marginal distribution p(x,e) by summing the joint over all values of y.
- Recall that the joint distribution is defined by the product of the conditional pdfs:

$$p(z) = \prod_{i=1} P(z_i | \text{parents}(z_i))$$

where the product is taken over all variables in the network.

Another approach: Simplify model using clustering algorithms

- Inference is efficient if you have a *polytree*, ie a singly connected network.
- But what if you don't?
- Idea: Convert a non-singly connected network to an equivalent singly connected network.

What should go into the nodes?

Clustering or join tree algorithms

F

F

0.01

F+F

0.01

So what do we do?

- The are special cases of Bayes nets for which there are fast, exact algorithms:
 - variable elimination
 - belief propagation
- There are also many approximations:
 - stochastic (MCMC) approximations
 - approximations Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

The complexity of multi-cause models

- In the models above, we specified the joint conditional density by hand.
- This specified the probability of a variable given each possible value of the causal nodes.
- Can this be specified in a more generic way?
- Can we avoid having to specify every entry in the joint conditional part ://powcoder.com
- For this we need to specify: Add WeChat powcoder
 P(X | parents(X))
- The number of parameters (table entries) scales exponentially with the number of causes

W	В	P(O W,B)	
F	F	0.01	
F	Т	0.25	
Т	F	0.05	
Т	Т	0.75	

Beyond tables: modeling causal relationships using Noisy-OR

- We assume each cause C_i can produce effect E_i with probability f_{ij} .
- The noisy-OR model assumes the parent causes of effect E_i contribute independently.
- The probability that none of them caused effect E_i is simplystig product Porbject Exam Help object (O) the probabilities that each one did not https://powcoder.com by viral cause E_i
- The probability that any of the calculation droplet (D) E_i is just one minus the above, i.e.

$$P(E_{i}|par(E_{i})) = P(E_{i}|C_{1},...,C_{n})$$

$$= 1 - \prod_{i} (1 - P(E_{i}|C_{j}))$$

$$= 1 - \prod_{i} (1 - f_{ij})$$

touch contaminated

eat contaminated food (F) catch cold (C)

$$P(C|D, O, F) = 1 - (1 - f_{CD})(1 - f_{CO})(1 - f_{CF})$$

Another noisy-OR example

Table 2. Conditional probability table for $P(Fever \mid Cold, Flu, Malaria)$, as calculated from the noisy-OR model.

Cold	Flu	Malaria	P(Fever)	$P(\neg Fever)$
F	F	Assignment Pr	oject Exam Help	1.0
F	F	https://pov	vcoder com	0.1
F	T	F F	0.8	0.2
F	T	ATAA WACI	nat poweoder	$0.02 = 0.2 \times 0.1$
T	F	Aud Wech	hat powcoder	0.6
T	F	T	0.94	$0.06 = 0.6 \times 0.1$
T	T	F	0.88	$0.12 = 0.6 \times 0.2$
T	T	T	0.988	$0.012 = 0.6 \times 0.2 \times 0.1$

A more complex model with noisy-OR nodes

A general one-layer causal network

 Could either model causes and effects

 Or equivalently stochastic binary features.

• Each input x_i encodes the probability that the important Project Exam Help input feature is present.

https://powcoder.com/

• The set of features Add WeChat powcoder represented by φj is defined by weights f_{ij} which encode the probability that feature i is an instance of φ_j.

The data: a set of stochastic binary patterns

Each columnsisi and stimut Pighted in Engine Holmany feature.

There are fivering causarfeature patterns.

Add What are they?

Add WeChat powcoder

The data: a set of stochastic binary patterns

Each columnsisi and stimut Pighted in Engine Helpary feature.

https://powcoder.com

true hidden causes of the data

This is a *learning* problem, which we'll cover in later lecture.

Hierarchical Statistical Models

A Bayesian belief network:

The joint probability of binary states is

$$P(\mathbf{S}|\mathbf{W}) = \prod_{i} P(S_i|\mathrm{pa}(S_i), \mathbf{W})$$

The probability S_i depends only on its parents:

Assignment Project Exam Help $https://powcoder.com \begin{cases} P(S_i|pa(S_i), \mathbf{W}) = \\ Help \\ h(\sum_j S_j w_{ji}) & \text{if } S_i = 1 \\ 1 - h(\sum_j S_j w_{ji}) & \text{if } S_i = 0 \end{cases}$

Add WeChat powcoder

The function h specifies how causes are combined, $h(u) = 1 - \exp(-u)$, u > 0.

Main points:

- hierarchical structure allows model to form high order representations
- upper states are priors for lower states
- weights encode higher order features