TROUGAO

Mnogougao koji ima tri stranice zove se **trougao.** Osnovni elementi trougla su :

- Temena A,B,C
- Stranice a,b,c (po dogovoru stranice se obeležavaju nasuprot temenu, npr naspram temena A je stranica a, itd)
- Uglovi, unutrašnji α, β, γ i spoljašnji $\alpha_1, \beta_1, \gamma_1$

Osnovne relacije za uglove i stranice trougla su:

- 1) Zbir unutrašnjih uglova u trouglu je 180^{0} tj. $\alpha + \beta + \gamma = 180^{0}$
- 2) Zbir spoljašnjih uglova je 360° tj. $\alpha_1 + \beta_1 + \gamma_1 = 360^{\circ}$
- 3) Spoljašnji i njemu susedni unutrašnji ugao su uporedni,tj.

$$\alpha + \alpha_1 = \beta + \beta_1 = \gamma + \gamma_1 = 180^0$$

4) Spoljašnji ugao trougla jednak je zbiru dva nesusedna unutrašnja ugla, tj

$$\alpha_1 = \beta + \gamma$$
 $\beta_1 = \alpha + \gamma$ $\gamma_1 = \alpha + \beta$

5) Svaka stranica trougla manja je od zbira a veća od razlike druge dve stranice, tj

1

$$|a-b| < c < a+b$$

$$|a-c| < b < a+c$$

$$|b-c| < a < b+c$$

6) Naspram većeg ugla nalazi se veća stranica i obrnuto.

Ako je
$$\alpha = \beta$$
 onda je $a = b$
Ako je $a = b$ onda je $\alpha = \beta$

Četiri značajne tačke trougla su:

- 1) Ortocentar (H)
- 2) Težiste (T)
- 3) Centar upisane kružnice (S)
- 4) Centar opisane kružnice (O)

Ortocentar se nalazi u preseku visina trougla h_a,h_b,h_c. (Visina je najkraće rastojanje od temena do naspramne stranice). Kod oštrouglog trougla je u trouglu, kod pravouglog u temenu pravog ugla a kod tupouglog van trougla.

 $h_a \cap h_b \cap h_c = H$ Ortocentar

Težišna duž trougla je duž koja spaja teme sa sredinom naspramne stranice. Težišne duži seku se u jednoj tački, a to je **TEŽIŠTE TROUGLA.** Težište deli težišnu duž u razmeri 2:1.

 $BT : TB_1 = 2 : 1$ $CT : TC_1 = 2 : 1$ Centar upisane kružnice je tačka preseka simetrala uglova i kod svih trouglova je u oblasti trougla.

Centar opisane kružnice je tačka preseka simetrala stranica. Kod oštrouglog trougla je u trouglu, kod pravouglog na sredini hipotenuze i kod tupouglog van trougla.

$$s_{\scriptscriptstyle AB} \cap s_{\scriptscriptstyle AC} \cap s_{\scriptscriptstyle BC} = O$$

Vrste trouglova:

Trouglovi se dele prema "stranicama" i prema "uglovima".

Prema stranicama:

Prema uglovima:

1) jednakostranični

1) oštrougli

2) jednakokraki

2) pravougli

3) nejednakostranični

3) tupougli

4

Nejednakostranični

$$O = a + b + c$$

$$P = \frac{ah_a}{2} = \frac{bh_b}{2} = \frac{ch_c}{2} \text{ ili } P = \sqrt{s(s-a)(s-b)(s-c)} \text{ ili } P = r \text{ s} \text{ ili } P = \frac{abc}{4R}$$

gde je:

s poluobim
$$s = \frac{a+b+c}{2}$$
,

r-poluprečnik upisane kružnice i

R-poluprečnik opisane kružnice.

Pravougli:

$$O = a + b + c$$

$$P = \frac{ab}{2}$$
 ili $P = \frac{ch_c}{2}$ odavde je: $h_c = \frac{a \cdot b}{c}$

$$a^2 + b^2 = c^2$$
 Pitagorina teorema

$$R = \frac{c}{2}$$
; $r = \frac{a+b-c}{2}$; $h_c = \sqrt{pq}$; $a = \sqrt{pc}$; $b = \sqrt{qc}$; $c = p+q$

Jednakokraki:

Ovde je a osnova i b krak (kraci)

$$O = a + 2b$$
 $P = \frac{ah_a}{2} = \frac{bh_b}{2}$ Primena Pitagorine teoreme: $h_a^2 + (\frac{a}{2})^2 = b^2$

Jednakostranični:

$$O = 3a \quad i \quad P = \frac{a^2 \sqrt{3}}{4}$$

Visina
$$h = \frac{a\sqrt{3}}{2}$$
; $r_y = \frac{1}{3}h = \frac{a\sqrt{3}}{6}$; $r_o = \frac{2}{3}h = \frac{a\sqrt{3}}{3}$

Kod ovog trougla sve četiri značajne tačke se nalaze u jednoj tački.

<u>Srednja linija trougla</u> (m) je duž koja spaja sredine dve stranice i uvek je jednaka polovini paralelne stranice.

Podudarnost

$$\triangle ABC \cong \triangle A_1B_1C_1 \Leftrightarrow$$

(SSS) Ako su sve stranice jednog trougla jednake odgovarajućim stranicama drugog trougla.

(SUS) Ako su dve stranice i zahvaćeni ugao jednog trougla jednaki dvema stranicama i zahvaćenom uglu drugog trougla.

(USU) Ako su stranica i na nju nalegli uglovi jednog trougla jednaki sa stranicom i na nju naleglim uglovima drugog trougla.

(SSU) Ako su dve stranice i ugao naspram veće od njih jednog trougla jednaki dvema stranicama i uglu naspram veće od njih drugog trougla.

Sličnost

$$\Delta ABC \sim \Delta A_1 B_1 C_1 \Leftrightarrow$$

$$\angle A = \angle A_1, \angle B = \angle B_1, \angle C = \angle C_1$$

$$AB: A_1 B_1 = BC: B_1 C_1 = CA: C_1 A_1$$

- Ako su dva ugla jednog trougla jednaka sa dva ugla drugog trougla.
- Ako su tri stranice jednog trougla proporcionalne trima stranicama drugog trougla.
- Ako su dve stranice jednog trougla proporcionalne dvema stranicama drugog trougla i uglovi izmedju tih stranica jednaki.
- Ako su dve stranice jednog trougla proporcionalne sa odgovarajućim stranicama drugog trougla, uglovi naspram dveju od tih odgovarajućih stranica su uglovi iste vrste (ili oštri, ili pravi, ili tupi).