Zeichen	SI-Basisgröße	Basiseinheit	Symbol	Definition
l	Länge	Meter	m	
m	Masse	Kilogramm	kg	
t	Zeit	Sekunde	S	
	Elektrische Stromstärke	Ampere	Α	
T	Temperatur	Kelvin	K	237,15K = 0 °C
n	Stoffmenge	Mol	Mol	
Ιν	Lichtstärke	Candela	cd	
Zeichen	Größe	Einheit	Symbol	Definition
f	Frequenz	Hertz	Hz	1/s
φ	Ebener Winkel	Radiant	rad	m / m = 1 ≈ 57.2958°
Ω	Raumwinkel	Steradiant	sr	$m^2 / m^2 = 1$
F	Kraft	Newton	N	$kg \cdot m / s^2 = J / m$
р	Druck, mech. Spannung	Pascal	Pa	$kg / (m \cdot s^2) = N / m^2$
E,W	Energie, Arbeit, Wärmemenge	Joule	J	$(kg \cdot m^2)/s^2 = Nm = Ws = Pa \cdot m^3$
Р	Leistung, Wärmestrom	Watt	W	$(kg \cdot m^2)/s^3 = J/s = VA$
Q	Elektrische Ladung	Coulomb	С	As
U	Elektrische Spannung	Volt	V	$kg \cdot m^2 / (s^3 \cdot A) = W / A = J / C$
С	Elektrische Kapazität	Farad	F	$s^4 \cdot A^2 / (kg \cdot m^2) = C / V = C^2 / J$
R	Elektrischer Widerstand	Ohm	Ω	$kg \cdot m^2 / (s^3 \cdot A^2) = V / A = Js / C^2$
G	Elektrischer Leitwert	Siemens	S	$s^3 \cdot A^2 / (kg \cdot m^2) = A / V = 1 / \Omega$
Ф	Magnetischer Fluss	Weber	Wb	$kg \cdot m^2 / (s^2 \cdot A) = Vs$
В	Magnetische Flussdichte	Tesla	T	$kg / (s^2 \cdot A^2) = Wb / m^2 = Vs / m^2$
L	Induktivität	Henry	Н	$kg \cdot m^2 / (s^2 \cdot A^2) = Wb / A = Vs / A$
Zeichen	abgeleitete Größe	Einheitenname	Symbol	Definition
T	T Differenz zu 273.15 K	Grad Celsius	°C	К
Ф	Lichtstrom	Lumen	lm	cd · sr
E	Beleuchtungsstärke	Lux	lx	$cd \cdot sr / m^2 = Im / m^2$

10 ²⁴	Yotta	Υ
10 ²¹	Zetta	Z
10 ¹⁸	Exa	Е
10 ¹⁵	Peta	Р
10 ¹²	Tera	Т
10 ⁹	Giga	G
10 ⁶	Mega	М
10 ³	Kilo	k
10 ²	Hekto	h
10 ¹	Deka	da

10 ⁻¹	Dezi	d
10-2	Zenti	С
10 ⁻³	Milli	m
10 ⁻⁶	Mikro	μ
10 -9	Nano	n
10 ⁻¹²	Piko	р
10 ⁻¹⁵	Femto	f
10 ⁻¹⁸	Atto	а
10 ⁻²¹	Zepto	Z
10 ⁻²⁴	Yokto	У

Zeichen	Größe	Einheit	Zeichen	Größe	Einheit
J	Massenträgheitsmoment	kg · m²	M	Drehmoment	$Nm = (kg \cdot m^2) / s^2$
ρ	Massendichte	kg / m³	L	Drehimpuls	(kg · m ²) / s
φ	(Phasenverschiebung) Winkel	rad	р	Impuls	(kg ⋅ m) / s = Ns
ω	Kreisfrequenz or Winkelgeschwindigkeit	rad / s	L	Pegel	dB
α	Winkelbeschleunigung	rad / s ²			

Zeit	1d = 24h = 1440min = 86400s, 1h = 60min = 3600s, 1min = 60s
Ebener Winkel	1 °= π/180 rad= 3600 arcsec, 1 ′= 1° /60= π/(180·60)rad, 1 ″= 1′/60= 1°/3600= π/(180·3600)rad
Kraft	$1 \text{ dyn} = 1 \cdot 10^{-5} \text{ N}, \frac{1 \text{kp}}{1 \text{ sp}} = 9.80665 \text{ N}$
Druck	TA: 1 at = 1 kp/cm ² = 98066.5 Pa, SA: 1 atm = 1013250 dyn/cm ² = 101325, Bar: 1 bar = 10^5 Pa

Diverse Konstanten		
Gravitationskonstante G	6,67 · 10 ⁻¹¹ (N · m ²) / kg ²	
Siderischen Tag	86164,0989 s	
Mittlerer Sonnentag	86400 s	

$$\frac{grad}{360} = \frac{rad}{2\pi}$$

Interpolationsgerade durch 2 Punkte:

$$y = \frac{y_2 - y_1}{x_2 - x_1} (x - x_1) + y_1$$
 $\frac{y - y_1}{x - x_1} = \frac{y_2 - y_1}{x_2 - x_1}$

Näherungsgerade durch N Punke:

$$y = bx + c$$

$$\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i, \qquad b = \frac{\sum_{i=1}^{N} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{N} (x_i - \bar{x})^2}$$

$$\bar{y} = \frac{1}{N} \sum_{i=1}^{N} y_i, \qquad c = \bar{y} - b\bar{x}$$

Differenztialrechnung:

Produktregel: $f(x) = u \cdot v \rightarrow f'(x) = u' \cdot v + u \cdot v'$

Quotientenregel: $f(x) = \frac{u}{v} \rightarrow f'(x) = \frac{u' \cdot v - u \cdot v'}{v^2}$

Kettenregel: $f(g(x)) \rightarrow f' \cdot (g(x)) \cdot g'(x)$

Korrespondenzen:

f(x)	$f^{'}(x)$	f(x)	$f^{'}(x)$
$\ln x , x \neq 0$	$\frac{1}{x}$	\sqrt{x}	$\frac{1}{2\sqrt{x}}$
$\log_b x , b > 0$	$\frac{1}{x \ln(b)}$	$\sqrt[n]{x}, n \neq 0$	$\frac{1}{n\sqrt[n]{x^{n-1}}}$
1	_ 1	e^x	e^x
\overline{x}	x^2	b^x , $b>0$	$b^x \ln(b)$
$\frac{1}{x^2}$	$-\frac{2}{x^3}$	$\arcsin(x)$	$\sqrt{1-x^2}$
$\frac{1}{x^n}$	$-\frac{n}{x^{n+1}}$	$\arccos(x)$	$\frac{-1}{\sqrt{1-x^2}}$
<i>x</i>	<i>x</i> .,,,,	$\arctan(x)$	$\frac{1}{x^2+1}$

Integralrechnung Korrespondezen:

f(x) $F(x)$	f(x)	F(x)
n 1 n+1	sin(x)	$-\cos(x)$
$x^n \qquad \frac{1}{n+1}x^{n+1}, n \neq -1$	$\cos(x)$	$\sin(x)$
1	tan(x)	$-\ln(\cos(x))$
$\frac{1}{x} \qquad \ln x , x \neq 0$	$(\sin(x))^2$	$\frac{1}{2}(x - \sin(x)\cos(x))$
$\frac{1}{x^n} - \frac{1}{(n-1)x^{n-1}}, n \neq 1$	$(\cos(x))^2$	$\frac{1}{2}(x+\sin(x)\cos(x))$
\sqrt{x} $\frac{2}{3}x^{\frac{3}{2}}$	$(\tan(x))^2$	tan(x) - x
$\frac{3}{\sqrt[n]{x}} \frac{n}{n+1} x^{\frac{n+1}{n}}, n \neq -1, n \neq 0$	$\sin(ax)\cos(ax)$	$) \qquad \frac{1}{2a}(\sin(ax))^2$
	$x\sin(ax)$	$\frac{1}{a^2}\sin(ax) - \frac{x}{a}\cos(ax)$
$ \frac{1}{\sqrt{x}} \qquad 2\sqrt{x} $ $ e^{x} \qquad e^{x} $	$x\cos(ax)$	$\frac{1}{a^2}\cos(ax) + \frac{x}{a}\sin(ax)$
xe^{ax} $\frac{ax-1}{a^2}e^{ax}$	$\arcsin(x)$	$x \arcsin(x) + \sqrt{1 - x^2}$
$e^{ax}\sin(bx) \qquad \frac{e^{ax}}{a^2 + b^2}(a\sin(bx) - b\cos(bx))$	arccos(x) x	$x \arccos(x) - \sqrt{1 - x^2}$
$\frac{a^{2}+b^{2}}{e^{ax}\cos(bx) - \frac{e^{ax}}{a^{2}+b^{2}}(a\cos(bx)+b\sin(bx))}$	$\arctan(x)$	$x\arctan(x) - \frac{1}{2}\ln(1+x^2)$
$\frac{1}{b^x} \qquad \frac{1}{\ln(b)}b^x, b > 0, b \neq 1$	$\frac{1}{x^2 + a^2}$	$\frac{1}{a}\arctan\left(\frac{x}{a}\right), a \neq 0$
$\ln(x) \qquad x(\ln(x) - 1), x > 0$	$\frac{x^2}{x^2+1}$	$x - \arctan(x)$
$\frac{\log_b(x)}{\ln(b)}x(\ln(x)-1)$		

Geometrie: Dreieckregeln:

Höhensatz: $c_1 \cdot c_2 = h_c^2$

Kathetensatz: $c \cdot c_2 = a^2$ $c \cdot c_1 = b^2$

Sinussatz: $\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma} = \frac{a \cdot b \cdot c}{2 \cdot A}$

Cosinussatz: $a^2 + b^2 - 2ab \cdot cos(\gamma) = c^2$

$$a^2 + c^2 - 2ac \cdot \cos(\beta) = b^2$$

СТ

G A G

H H A

S

$$b^2 + c^2 - 2ac \cdot \cos(\alpha) = a^2$$

Kreis:

Umfang: $U = 2 \cdot \pi \cdot r = \pi \cdot d$

Fläche: $A = \pi \cdot r^2$

Kreissektor:

Kreisbogen-Länge(φ in °): $b = 2\pi r \cdot \frac{\varphi}{360^{\circ}}$

Kreisbogen-Länge(φ in rad): $b = r \cdot \varphi$

Kreisbogen-Fläche(ϕ in °): $A = \pi r^2 \cdot \frac{\phi}{360^\circ}$

Kreisbogen-Fläche(ϕ in rad): $A = \frac{1}{2}r^2\phi = \frac{1}{2}rb$

Umrechnung Radiant und Grad: $\frac{x}{2\pi} = \frac{\alpha}{360^{\circ}}$

Trigonometrische Formeln:

$$\sin(-x) = -\sin(x) \qquad \sin(2x) = 2\sin(x)\cos(x)$$

$$\cos(-x) = \cos(x) \qquad \cos(2x) = 2(\cos x)^2 - 1$$

$$\tan(-x) = -\tan(x) \qquad \tan(2x) = \frac{2\tan(x)}{1 - (\tan x)^2}$$

$$\sin\left(\frac{\pi}{2} - x\right) = \cos(x) \qquad \sin\left(\frac{x}{2}\right) = \pm\sqrt{\frac{1}{2}(1 - \cos(x))}$$

$$\cos\left(\frac{\pi}{2} - x\right) = \sin(x) \qquad \cos\left(\frac{x}{2}\right) = \pm\sqrt{\frac{1}{2}(1 + \cos(x))}$$

$$\cot\left(\frac{\pi}{2} - x\right) = \tan(x) \qquad \tan\left(\frac{x}{2}\right) = \pm\sqrt{\frac{1 - \cos(x)}{1 + \cos(x)}}$$

$$(\cos x)^2 + (\sin x)^2 = 1 \qquad \sin(x \pm y) = \sin(x)\cos(y) \pm \cos(x)\sin(y)$$

$$\tan(x) = \frac{\sin(x)}{\cos(x)} \qquad \cos(x \pm y) = \cos(x)\cos(y) \mp \sin(x)\sin(y)$$

$$\tan(x \pm y) = \frac{\tan(x) \pm \tan(y)}{1 \mp \tan(x)\tan(y)}$$

Vektorrechnung:

Winkel zwischen Vektoren: $\varphi = \arccos \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}$

Orthogonale Projektion eines Vektor \vec{b} auf Vektor \vec{a} :

$$\vec{b}_{\vec{a}} = \frac{\vec{b} \cdot \vec{a}}{\vec{a} \cdot \vec{a}} \vec{a} = \left(\vec{b} \cdot \frac{\vec{a}}{|\vec{a}|} \right) \frac{\vec{a}}{|\vec{a}|}$$

 $|\vec{b}_{\vec{a}}| = |\vec{b}| \cos \varphi$

Mittelpunkt M zwischen Punkten A und B:

$$\vec{m} = \frac{1}{2} (\vec{a} + \vec{b})$$

Elementare Statistik:

Relative Häufigkeit: $h_i = h(E_i) = \frac{n_i}{n_i}$

Arithmetisches Mittel:
$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{n} (x_1 + x_2 + \dots + x_n)$$
 = wahrscheinlichster Wert

Geometrisches Mittel:
$$\bar{x}_G = \sqrt[n]{\prod_{i=1}^n x_i} = (x_1 x_2 \cdots x_n)^{1/n}$$

Harmonisches Mittel:
$$\bar{x}_H = \left(\frac{1}{n}\sum_{i=1}^n\frac{1}{x_i}\right)^{-1} = \frac{n}{\frac{1}{x_1}+\cdots+\frac{1}{x_n}}$$

Mittlere absolute Abweichung:
$$e_x = \frac{1}{n} \sum_{i=1}^{n} |x_i - \bar{x}|$$

Median: n ungerade:
$$\frac{n+1}{2} = x_m \rightarrow M = w_m$$

n gerade:
$$x_{m1} = \frac{n}{2}$$
 $x_{m2} = x_{m1} + 1 \rightarrow M = \frac{w_{m1} + w_{m2}}{2}$

Quantil:
$$\frac{n \cdot \%}{100} = x_Q \rightarrow Q = w_Q$$
 Modus: häufigster Wert

Wahrer Fehler:
$$\delta x_{i,w} = x_i - x_w$$
 Scheinbarer Fehler: $\delta x_i = x_i - \overline{x}$

Relativer Fehler:
$$\delta x_{i,rel} = \frac{\delta x_i}{\overline{x}}$$
 oder $\delta x_{i,w,rel} = \frac{\delta x_{i,w}}{x_w}$

(Standardabweichung von
$$\overline{x}$$
)
Unsicherheit: $u_x = \frac{s_x}{\sqrt{n}}$ Gesamtunsicherheit: $u_{x,\text{ges}} = \sqrt{u_{x,1}^2 + u_{x,2}^2 + \cdots}$

analog:
$$u=\frac{a}{\sqrt{6}}$$
 (2a = Abstand Skalenstrichen) digital: : $u=\frac{a}{\sqrt{3}}$ (2a = Auflösung)

digital: :
$$u = \frac{\sqrt{a}}{\sqrt{3}}$$
 (2a = Auflösung)

Anzahl der Wieder- Statistischer Vertrauensbere			
${\bf holungsmessungen} \; n$	68,27%	95,45%	99,73%
	$t_{0,6827}$	$t_{0,9545}$	$t_{0,9973}$
1	1,84	13,97	235,80
2	1,32	4,53	19,21
3	1,20	3,31	9,22
4	1,14	2,87	6,62
5	1,11	2,65	5,51
6	1,09	2,52	4,90
7	1,08	2,43	4,53
8	1,07	2,37	4,28
9	1,06	2,32	4,09
10	1,05	2,28	3,96
15	1,03	2,18	3,59
20	1,03	2,13	3,42
30	1,02	2,09	3,27
50	1,01	2,05	3,16
100	1,01	2,03	3,07
200	1,00	2,01	3,03
∞	1,00	2,00	3,00

Wertebereich: $\bar{x} - t_p + u_x \le x_w \le \bar{x} + t_p + u_x$

Fehlerfortpflanzung:

$$\textbf{Messabweichung:} \quad \delta y \approx \frac{\partial f}{\partial v}(\bar{v},\bar{w},\ldots) \, \delta v + \frac{\partial f}{\partial w}(\bar{v},\bar{w},\ldots) \, \delta w + \ldots$$

$$\mbox{Absolute Fehlergrenze: } \delta y_{\max} \approx \left| \frac{\partial f}{\partial v}(\bar{v}, \bar{w}, \ldots) \, \delta v_{\max} \right| + \left| \frac{\partial f}{\partial w}(\bar{v}, \bar{w}, \ldots) \, \delta w_{\max} \right| + \ldots$$

Relative Fehlergrenze: $\delta y_{\rm rel} \approx \delta y_{\rm max}/\bar{y}$

Messunsicherheit (Gaußsches Fehlerfortpflanzungsgesetz):

$$u_y \approx \sqrt{\left(\frac{\partial f}{\partial v}(\bar{v}, \bar{w}, \dots) u_v\right)^2 + \left(\frac{\partial f}{\partial w}(\bar{v}, \bar{w}, \dots) u_w\right)^2 + \dots}$$

Drehbewegung:

Frequenz:
$$f = \frac{1}{T}$$
 Kreisfrequenz: $\omega = 2\pi \cdot f = \frac{2\pi}{T}$

Winkeländerung:
$$\Delta \varphi = \varphi - \varphi_0$$
 Bogenlänge: $\Delta s = r \cdot \Delta \varphi$

Winkelgeschwindigkeit:
$$\omega = \frac{\Delta \varphi}{\Delta t}$$

Winkelbeschleunigung:
$$\alpha = \frac{\Delta \omega}{\Delta t}$$

Bahngeschwindigkeit:
$$v_t = \frac{\Delta s}{\Delta t}$$
 $v_t(t) = r \cdot \dot{\varphi}(t) = r \cdot \omega(t)$

Bahnbeschleunigung:
$$a_t(t) = r \cdot \ddot{\varphi}(t) = r \cdot \dot{\omega}(t) = r \cdot \alpha(t)$$

Gleichförmige Rotation:

$$\varphi(0) = \varphi_0 \quad \alpha(t) = 0 = const. \quad \omega(t) = \omega_0 = const.$$

$$\varphi(t) = \varphi_0 + \omega_0 \cdot t$$

Gleichmäßig beschleunigte Rotation:

$$\varphi(0) = \varphi_0 \quad \omega(0) = \omega_0 \quad \alpha(t) = \alpha_0 = const.$$

$$\omega(t) = \omega_0 + \alpha_0 \cdot t$$

$$\varphi(t) = \varphi_0 + \omega_0 \cdot t + 0.5 \cdot \alpha_0 \cdot t^2$$

$$\omega^2(t) = \omega_0^2 + 2 \cdot \alpha_0 \cdot (\varphi(t) - \varphi_0)$$

Ebene Drehbewegung: radial tangential

$$\vec{r}(t) = r(t) \cdot \overrightarrow{e_r}(t)$$

$$\vec{v}(t) = \dot{\vec{r}}(t) = \dot{\vec{r}}(t) \cdot \overrightarrow{e_r}(t) + r(t) \cdot \omega(t) \cdot \overrightarrow{e_{\omega}}(t)$$

$$\vec{a}(t) = \dot{\vec{v}}(t) = \ddot{\vec{r}}(t)$$

$$= (\ddot{r}(t) - r(t)\omega^{2}(t))\overrightarrow{e_{r}}(t) + (2\dot{r}(t)\omega(t) + r(t)\dot{\omega}(t))\overrightarrow{e_{\varphi}}(t)$$

Rückrechnung ins kartesische KS

$$\overrightarrow{e_r}(t) = \cos(\varphi(t)) \overrightarrow{e_x} + \sin(\varphi(t)) \overrightarrow{e_y}$$

$$\overrightarrow{e_\varphi}(t) = -\sin(\varphi(t)) \overrightarrow{e_x} + \sin(\varphi(t)) \overrightarrow{e_y}$$

$$\begin{bmatrix} x(t) \\ y(t) \end{bmatrix} = \begin{bmatrix} r \cdot \cos(\varphi) \\ r \cdot \sin(\varphi) \end{bmatrix}$$

Kreisbewegung:
$$t_0 = 0$$
, $\varphi_0 = \varphi(0)$, $\omega_0 = const$, $r = const$

$$\vec{r}(t) = \begin{bmatrix} x(t) \\ y(t) \end{bmatrix} = \begin{bmatrix} r \cdot \cos(\omega_0 \cdot t + \varphi_0) \\ r \cdot \sin(\omega_0 \cdot t + \varphi_0) \end{bmatrix}$$

$$\overrightarrow{v_t}(t) = \dot{\overrightarrow{r}}(t) = \begin{bmatrix} -\omega_0 \cdot r \cdot \sin(\omega_0 \cdot t + \varphi_0) \\ \omega_0 \cdot r \cdot \cos(\omega_0 \cdot t + \varphi_0) \end{bmatrix}$$

$$\mathbf{v_t} = |\overrightarrow{v_t}(t)| = \boldsymbol{\omega_0} \cdot \mathbf{r} \qquad \overrightarrow{v_t}(t) \perp \overrightarrow{r}(t)$$

$$\overrightarrow{a_r}(t) = -\omega_0^2 \cdot \overrightarrow{r}(t) = -\frac{{v_t}^2}{r^2} \cdot \overrightarrow{r}(t)$$

$$a_r = |\overrightarrow{a_r}(t)| = \omega_0^2 \cdot r = \frac{v_t^2}{r}$$

$$\varphi(t) = \varphi_0 + \omega_0 \cdot t$$

$$\Delta \varphi(t) = \varphi(t) - \varphi_0 = \omega_0 \cdot t$$

$$\Delta s(t) = r \cdot \Delta \varphi(t) = r \cdot \omega_0 \cdot t$$

$$\omega_0 = 2\pi f = \frac{2\pi}{T}$$

Mechanik starrer Körper

Verschiebung: $\Delta x = x_E - x_A$ Strecke: $\Delta s = |\Delta x_1| + |\Delta x_2| + ...$

Mittlere Geschwindigkeit: $\bar{v}_{\chi} = \frac{x_E - x_A}{t_F - t_A} = \frac{\Delta x}{\Delta t}$

Mittlerer Geschwindigkeitsbetrag: $\bar{u}_x = \left| \frac{\Delta s}{\Delta t} \right|$

Zusammenhang: $a_x(t) = \dot{v}_x(t) = \ddot{x}(t)$

$$v_x(t) = \dot{x}(t) = v_x(t_0) + \int_{t_0}^t a_x(\tau) d\tau$$

$$x(t) = x(t_0) + \int_{t_0}^t v_x(\tau) d\tau$$

Gleichförmige Bewegung: $v_x = konst.$ $a_x = 0$ (konst.)

$$x(t) = x_0 + v_x \cdot (t - t_0)$$

Gleichmäßig beschleunigte Bewegung: $a_x = konst.$

$$x(t) = x_0 + v_{0,x} \cdot (t - t_0) + \frac{1}{2} a_x \cdot (t - t_0)^2$$

$$v_{x}(t) = v_{0x} + a_{x} \cdot (t - t_{0})$$

$$v_x^2 - v_{0x}^2 = 2a_x(x - x_0)$$

$$\bar{a}_x = \frac{\Delta v_x}{\Delta t} = \frac{v_{xE} - v_{xA}}{t_E - t_A}$$

$$\Delta t = \frac{2 \cdot (x - x_0)}{(v - v_0)}$$

Freier Fall: y(0) = h $v_v(0) = v_0$ $a_v(t) = -g = konst.$

$$v_{y}(t) = v_{0} - g \cdot t$$

$$y(t) = h + v_0 \cdot t - \frac{1}{2} \cdot g \cdot t^2$$

Aufprallzeit: $t_E = t_0 + \frac{1}{g}(v_0 + \sqrt{v_0^2 + 2 \cdot g \cdot h})$

Senkrechter Wurf:

Aufpralizeit insgesamt: $t = 2 \cdot \sqrt{\frac{2 \cdot h}{g}}$

Schiefer Wurf: (2 Dimensionen)

$$\vec{r}(t) = \begin{bmatrix} x_0 + v_{x0} \cdot t \\ y_0 + v_{y0} \cdot t - 0.5gt^2 \end{bmatrix} = \begin{bmatrix} x_0 + v_0 \cdot \cos(\alpha) \cdot t \\ y_0 + v_0 \cdot \sin(\alpha) \cdot t - 0.5gt^2 \end{bmatrix}$$

$$\vec{v}(t) = \begin{bmatrix} v_x(t) \\ v_y(t) \end{bmatrix} = \begin{bmatrix} v_{x0} \\ v_{y0} - gt \end{bmatrix} = \begin{bmatrix} v_0 \cdot \cos(\alpha) \\ v_0 \cdot \sin(\alpha) - 0.5gt \end{bmatrix}$$

$$\vec{a}(t) = \begin{bmatrix} a_x(t) \\ a_y(t) \end{bmatrix} = \begin{bmatrix} 0 \\ -g \end{bmatrix}$$

Wurfparabel (nach Eliminierung von t)

$$y(x) = y_0 + \frac{v_{y0}(x - x_0)}{v_{xo}} - \frac{g(x - x_0)^2}{2v_{x0}^2}$$

$$= y_0 + \tan(\alpha) \cdot (x - x_0) - \frac{g \cdot (x - x_0)^2}{2 \cdot v_0^2 \cdot \cos^2(\alpha)}$$

Scheitelpunkt:

$$\vec{r}(t_s) = \begin{bmatrix} x_s \\ y_s \end{bmatrix} = \begin{bmatrix} x_0 + \frac{v_{x0} \cdot v_{y0}}{g} \\ y_0 + \frac{v_{y0}^2}{2g} \end{bmatrix} = \begin{bmatrix} x_0 + \frac{v_0^2}{g} \sin(\alpha)\cos(\alpha) \\ y_0 + \frac{v_0^2}{2g} \sin^2(\alpha) \end{bmatrix}$$

$$\vec{v}(t_s) = \begin{bmatrix} v_{x,s} \\ v_{y,s} \end{bmatrix} = \begin{bmatrix} v_{x0} \\ 0 \end{bmatrix} = \begin{bmatrix} v_0 \cdot \cos(\alpha) \\ 0 \end{bmatrix}$$

bei
$$t_s = \frac{v_{y0}}{g} = \frac{v_0}{g} \cdot \sin(\alpha)$$

Endpunkt y(t) = y(x) = 0

$$\vec{r}(t_E) = \begin{bmatrix} x_E \\ y_E \end{bmatrix} = \begin{bmatrix} x_0 + \frac{v_{x0}}{g} \left(v_{y0} + \sqrt{2gy_0 + v_{y0}^2} \right) \end{bmatrix}$$

$$= \begin{bmatrix} x_0 + \frac{v_0}{g}\cos(\alpha) \cdot \left(v_0 \cdot \sin(\alpha) + \sqrt{2gy_0 + v_0^2 \sin^2(\alpha)}\right) \\ 0 \end{bmatrix}$$

$$\text{Maximale Wurfweite: } \frac{\partial x_E}{\partial \alpha} = 0 \ = \frac{v_0}{g} \left\{ v_0 \cos(2\alpha) + \frac{\sin(\alpha) \left(v_0^2 \cos(2\alpha) - 2gy_0 \right)}{\sqrt{2gy_0 + v_0^2 \sin^2(\alpha)}} \right\}$$

$$\vec{v}(t_E) = \begin{bmatrix} v_{x,E} \\ v_{y,E} \end{bmatrix} = \begin{bmatrix} v_{x0} \\ -\sqrt{2gy_0 + v_{y0}^2} \end{bmatrix} = \begin{bmatrix} v_0 \cos(\alpha) \\ -\sqrt{2gy_0 + v_0^2 \cdot \sin^2(\alpha)} \end{bmatrix}$$

Aufprallgeschwindigkeit

$$|\vec{v}(t_E)| = \sqrt{v_{x0}^2 + v_{y0}^2 + 2gy_0} = \sqrt{v_0^2 + 2gy_0}$$

Aufprallwinkel zur Horizontalen

$$\beta_E = \arctan\left(\frac{2}{v_{x0}}\sqrt{2\cdot g\cdot y_0 + v_{y0}^2}\right) = \arctan\left(\sqrt{\frac{2gy_0}{v_0^2\cdot \cos(\alpha)} + tan^2(\alpha)}\right)$$

Bei
$$t_E = \frac{1}{g} \left(v_{y0} + \sqrt{2gy_0 + v_{y0}^2} \right)$$

= $\frac{1}{g} \left(v_0 \sin(\alpha) + \sqrt{2gy_0 + v_0^2 \sin^2(\alpha)} \right)$

Newtonschen Axiome

Newton 1: $\vec{a} = 0$ wenn $\vec{F} = 0$ (\bar{v} kann $\neq 0$ sein!)

Newton 2: $\frac{d}{dt}\vec{p}(t) = \overrightarrow{F_{res}}(t)$ mit $\vec{p}(t) = m(t) \cdot \vec{v}(t)$

 $m(t) \cdot \vec{a}(t) + \dot{m}(t) \cdot \vec{v}(t) = \sum_{i} \vec{F}_{i}(t)$

Bei konstanter Masse: $m \cdot \vec{a}(t) = \sum_i \vec{F}_i(t) \rightarrow F = m \cdot a$

Newton 3: Wechselwirkungsprinzip $\vec{F}_{12} = -\vec{F}_{21}$

Gravitationskraft: $\vec{F}_{G12} = -G \cdot \frac{m_1 \cdot m_2}{(r_{12})^2} \cdot \frac{\vec{r}_{12}}{r_{12}} \quad F_{G12} = G \cdot \frac{m_1 \cdot m_2}{(r_{12})^2}$

Normalkraft: $F_N = m \cdot g \cdot \cos(\alpha)$

Hangabtriebskraft: $F_H = m \cdot g \cdot \sin(\alpha)$

Reibungskraft: $\vec{F}_R = -\mu_R \cdot F_N \cdot \frac{\vec{v}(t)}{v(t)}$ $F_R = \mu_R \cdot F_N$

Luftreibung: $\vec{F}_W = -\frac{1}{2} c_w \rho A v \vec{v}$ $F_w = -\frac{1}{2} c_w \rho A v^2$

Federkraft: $F_{Zug} = k_F \cdot x$ $F_{Feder} = -k_F \cdot x$ (Hooksches Gesetz)

Zentripetalkraft: $\vec{F}_{ZP} = -m \cdot \omega^2 \cdot \vec{r}$ $F_{ZP} = m \cdot \omega^2 \cdot r$

Zeigt bei rotation zum Mittelpunkt hin, Beschleunigung auch

(Mögliche Ansätze: $F_{ZP} = F_G$ oder F_{ZP} wird durch F_R erzeugt)

Zentripedalbeschleunigung:

$$\vec{a}_{ZP} = \omega^2 \cdot r = \left(\frac{2\pi}{T}\right)^2 \cdot r = \omega \cdot v_t = \frac{2\pi}{T} \cdot v_t = \frac{v_t^2}{r}$$

Allgemein: $\vec{F} = \begin{pmatrix} (+rechts)(-links) & F_x \\ (+oben)(-unten) & F_y \end{pmatrix} \sum F_{x \ oder \ y} = 0$

Trägheits- und Scheinkräfte:

Trägheitskraft: $\vec{F}_T = -m \cdot \vec{a}_B^{\ (I)}$

Rotierenden Systemen:

Zentrifugalkraft: $\vec{F}_{ZF} = m \cdot \omega^2 \cdot \vec{r} = -\vec{F}_{ZF} = \frac{m \cdot v^2}{r}$

Zeigt vom Mittelpunkt weg

Coriolis-Kraft: $\vec{F}_{Cor} = 2m \cdot \vec{v} \times \vec{\omega} = 2 \cdot m \cdot |\vec{v}| \cdot |\vec{\omega}| \cdot sin \angle (\vec{v}, \vec{\omega})$

Coriolis-Beschleunigung:

 $\vec{a}_{Cor} = 2 \cdot v_r \cdot \omega \cdot \vec{e}_{\varphi} = 2 \cdot \vec{v} \times \vec{\omega} = 2 \cdot |\vec{v}| \cdot |\vec{\omega}| \cdot sin \angle (\vec{v}, \vec{\omega})$

 ω zeigt wie die Drehachse

Massenmittelpunkt:

$$x_S \cdot (m_1 + m_2) \cdot g = x_1 \cdot m_1 \cdot g + x_2 \cdot m_2 \cdot g$$

$$x_S = \frac{m_1 \cdot x_1 + m_2 \cdot x_2}{m_1 + m_2}$$

Massenmittelpunkt bedeutet also Hebelarm mal Masse

Massenmittelpunkt für ein System aus n Masseteilchen:

$$\vec{r}_{\mathcal{S}} = \frac{1}{m_{ges}} \sum_{i=1}^n m_i \cdot \vec{r}_i \quad \text{mit} \quad m_{ges} = \sum_{i=1}^n m_i$$

$$\vec{r}_{s neu} = m_{ges} \cdot \vec{r}_{s} + m_{zusatz} \cdot \vec{r}_{zusatz}$$

Spezialanwendung bei Kräfte:

Aufgabe Keil und Block: Scheinkraft in beschleunigten System

$$(m_1 + m_2)a_{\text{ges}} = F$$
 \Leftrightarrow $a_{\text{ges}} = \frac{F}{m_1 + m_2}$
 $F_B = -m_1 a_{\text{ges}} = -\frac{m_1}{m_1 + m_2} F$

F_B in 2 teile Zerlegen Anschlussrechnung!

Vertikale Kreisbahn Kräfteansatz:

Geschwindigkeit v ist oben und unten unterschiedlich!

$$\Delta F_S = F_{S,unten} - F_{S,oben}$$

Alternativ mit F_{ZF} statt $F_{ZP} \rightarrow$ Intuitiv richtig bei Gleichung = 0

Arbeit und Energie:

Arbeit:
$$W = \vec{F} \cdot \vec{s} = |\vec{F}| \cdot |\vec{s}| \cdot cos \angle (\vec{F}, \vec{s})$$

Hubarbeit:
$$W_H = m \cdot g \cdot h \rightarrow E_{not} = W_H$$

Beschleunigungsarbeit:
$$W_B = F_B \cdot s = \frac{1}{2} \cdot m \cdot v^2 \rightarrow E_{kin} = W_B$$

Reibungsarbeit:
$$W_R = F_R \cdot s = \mu \cdot F_N \cdot s \rightarrow E_{therm} = W_R$$

Arbeit im Kosi:
$$\Delta W = F \cdot \Delta s = \int_{c}^{s_2} F(s) ds$$
 (Fläche unt...)

$$W(t) = \frac{F^2 \cdot t^2}{2 \cdot m}$$
 oder $(\frac{1}{2} \cdot F_0 \cdot (x_{(t)}^2 - x_0^2) \text{ bei } F_x = F_0 \cdot x)$

Leistung:
$$P = \frac{dW}{dt} = \vec{F} \cdot \vec{v}$$
 (const. Kraft)

$$P(t) = \frac{F^2 \cdot t}{m}$$

Änderung der Energie:
$$\Delta E = E_{ein} - E_{aus} = W_{ext}$$

Wirkungsgrad:
$$\eta = \frac{E_{nutzen}}{E_{zu}} = \frac{P_{nutzen}}{P_{zu}} \rightarrow 0 \le \eta \le 1 = 100\%$$

Gesamtwirkungsgrad:
$$\eta_{qes} = \eta_1 \cdot \eta_2 \cdot ... \cdot \eta_n$$

Impuls:

Impuls:
$$\vec{p} = m \cdot \vec{v}$$

Gesamtimpuls:
$$\vec{p}_{aes} = \sum_{i=1}^{n} \vec{p}_{i}$$
 (Summe der einzelnen Impulse)

Ableitung:
$$\frac{d}{dt}\vec{p} = \vec{F} \rightarrow \vec{p}(t) = \vec{p}(t_0) + \int_{t_0}^t \vec{F}(\tau) d\tau$$
 (= res. Kraft)

Kraftstoß:
$$\Delta \vec{p} = m \cdot \Delta \vec{v} = \vec{F} \cdot \Delta t$$
 (const. Kraft)

Kraftstoß:
$$\Delta \vec{p} = m \cdot \Delta \vec{v} = \int_{t_1}^{t_2} \vec{F}(\tau) \ d\tau$$
 (nicht const. Kraft)

Impulserhaltung:
$$\vec{p}_{ges} = \sum_{i=1}^n \vec{p}_i = \sum_{i=1}^n m_i \cdot \vec{v}_i$$
 = const., wenn $\vec{F}_{ext} = \vec{0}$

X Stoßprozesse: Kraftwirkung bei Körper ggf. Bewegungsänderung

1. Elastischer Stoß: $(E_{kin} = E_{kin}')$

Impulserhaltung:
$$m_1v_1 + m_2v_2 = m_1v_1' + m_2v_2'$$

Energieerhaltung:
$$\frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 = \frac{1}{2}m_1v_1'^2 + \frac{1}{2}m_2v_2'^2$$

Nach Stoß:
$$v_1' = \frac{(m_1 - m_2)v_1 + 2m_2v_2}{m_1 + m_2}$$
 $v_2' = \frac{(m_2 - m_1)v_2 + 2m_1v_1}{m_1 + m_2}$

2. <u>Teilweise inelastischer Stoß</u> ($E_{kin} = E_{kin}' + \Delta W$)

Impulserhaltung:
$$m_1v_1 + m_2v_2 = m_1v'_1 + m_2v'_2$$

Energieerhaltung:
$$\frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 = \frac{1}{2}m_1v_1'^2 + \frac{1}{2}m_2v_2'^2 + \Delta W$$

3. Vollständig inelastischer bzw. plastischer Stoß zsm., $v'_1 = v'_2$, ΔW

Impulserhaltung:
$$m_1v_1 + m_2v_2 = (m_1 + m_2)v'$$

Energieerhaltung:
$$\frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 = \frac{1}{2}(m_1 + m_2)v'^2 + \Delta W$$

Nach Stoß:
$$v' = \frac{m_1 v_1 + m_2 v_2}{m_1 + m_2}$$
 $\Delta W = \frac{m_1 \cdot m_2}{2 \cdot (m_1 + m_2)} \cdot (v_1 - v_2)^2$

Kinetische Energie:
$$E_{kin} = \frac{1}{2} \cdot J \cdot \omega^2$$
 (feste Drehachse rotierenden Körpers)

Massenträgheitsmoment:
$$J = \sum_{i=1}^{n} m_i \cdot r_i^2$$

∞-viele kleine Masseteilchen
$$J = \int r^2 \cdot dm = \int r^2 \cdot \rho(\vec{r}) \cdot dV$$

Bewegung mehrere Teile: Punkt P
$$v=r_p\omega$$
 Punkt S $v_s=r\omega$

$$E_{kin} = \frac{1}{2}J_S\omega^2 + \frac{1}{2}mv_S^2$$
 $(v_s = r \cdot \omega) \rightarrow$ "zwei Teile"

$$\rightarrow E_{kin} = \frac{1}{2}J_S\omega^2 + \frac{1}{2}mr^2\omega^2 = \frac{1}{2}(J_S + mr^2)\omega^2$$

Massenträgheitsmoment:
$$J_P = J_S + mr^2$$

$$J = m \cdot r^2$$

Drehmoment: $\vec{M} = \vec{r} \times \vec{F} \rightarrow (r \cdot F)$

Selber: kein M bei konstantem
$$\omega$$

Drehimpuls/Drall: $\vec{L} = \vec{r} \times \vec{p}$

Drehimpuls (feste Achse) $\vec{L} = J \cdot \vec{\omega}$

Gesamter Drehimpuls:
$$\vec{L}_{ges} = \vec{L}_1 + \vec{L}_2 + ... + \vec{L}_n$$

Ableitung Drehimpuls:
$$\frac{d}{dt}\vec{L} = \vec{M}$$
 bzw. $J\dot{\vec{\omega}} = J\vec{\alpha} = \sum_i \vec{M}_i$

$$M = J \cdot \frac{\Delta \omega}{\Delta t} = J \cdot \alpha$$

Drehimpulserhaltung:

$$\vec{L}_{ges} = \sum_{i=1}^{n} \vec{L}_i = \sum_{i=1}^{n} J_i \vec{\omega}_i = const.$$
 $(\vec{M}_{ext} = \vec{0})$

Also:
$$J_1 \cdot \omega = (J_1 + J_{Zusatz}) \cdot \omega'$$

Bewegungsgleichung feste Drehachse: $\sum_i \vec{F}_i = m \vec{a} \quad \sum_i \vec{M}_i = J \vec{\alpha}$

$$ightarrow$$
 Statisches Gleichgewicht: $\sum_i \vec{F}_i = \vec{0}$ $\sum_i \vec{M}_i = \vec{0}$

Arbeit durch M:

$$\Delta W = M(\varphi_2 - \varphi_1)$$
 (wenn M = const.)

$$\Delta W = \int_{\varphi_1}^{\varphi_2} M(\varphi) d\varphi$$
 (wenn M \neq const.)

Momentane Leistung:
$$P = M \cdot \omega$$

Schwingungen und Wellen:

Harmonische Schwingungen

 $y(t) = y_0 \cdot \sin(\omega \cdot t + \varphi_0)$

 y_0 Amplitude

$$f = \frac{1}{T}$$
 Frequenz

$$\omega = 2\pi f = \frac{2\pi}{T}$$
 Kreisfrequenz

 $arphi_0$ Phasenverschiebung, Nullphasenwinkel

Ungedämpftes Feder-Masse-System:

$$m \cdot \ddot{y}(t) + k_F \cdot y(t) = 0 \rightarrow \ddot{y}(t) + \frac{k_F}{m} \cdot y(t) = 0 \rightarrow$$

$$\ddot{y}(t) + \omega_0^2 \cdot y(t) = 0 \text{ mit } \omega_0 = 2\pi f_0 = \frac{2\pi}{T_0} = \sqrt{\frac{k_F}{m}}$$

$$y(t) = A \cdot \cos(\omega_0 \cdot t + \delta) \rightarrow y_{max} = A$$

$$v_y(t) = -\omega_0 \cdot A \cdot \sin(\omega_0 \cdot t + \delta) \rightarrow v_{max} = A \cdot \omega_0$$

$$a_v(t) = -\omega_0^2 \cdot A \cdot \cos(\omega_0 \cdot t + \delta) \rightarrow a_{max} = A \cdot \omega_0^2$$

Amplitude: $A = \frac{y_0}{\cos(\delta)}$

Phasenverschiebung: $\delta = \arctan\left(-\frac{v_{y,0}}{v_{0}(u_0)}\right)$

Phase: $\varphi = \omega_0 \cdot t + \delta = z \rightarrow \frac{z}{2\pi} = x, rest \rightarrow rest \cdot 2\pi = \varphi_r$

Index 0 bedeutet ungedämpfte Schwingung

Feder-Masse-System vertikal:

$$m\ddot{y}(t) + k_F y(t) = m \cdot g$$

Gleichgewichtslage: y^* = Abstand was durch F_G absackt

$$\ddot{y}(t) = 0 \rightarrow y^* = \frac{m \cdot g}{k_F} = const.$$

Auslenkung: $\bar{y}(t) = y(t) - y^*$

$$\to m\ddot{\bar{y}}(t) + k_F \bar{y}(t) = 0$$

Energie des Feder-Masse-Systems

$$E_{ges} = E_{pot} + E_{kin} = E_{mech}$$

$$= \frac{1}{2} \cdot k_F (y(t))^2 + \frac{1}{2} \cdot m (v_y(t))^2 = \frac{1}{2} \cdot k_F \cdot A^2$$

Ungedämpftes Drehpendel:

Drehmoment der Torsionsfeder: $M(t) = -k_T \theta(t)$

$$M(t) = J \alpha$$

$$\Leftrightarrow$$

$$-\kappa_T \, \theta(t) = J \, t$$

$$\Leftrightarrow \qquad J \ddot{\theta}(t) + k_T \, \theta(t) = 0$$

$$\Leftrightarrow$$

$$\ddot{\theta}(t) + \frac{k_T}{J}\,\theta(t) = 0$$

Mathematisches Pendel

$$m \cdot l^2 \ddot{\theta}(t) + m \cdot g \cdot l \cdot sin(\theta(t)) = 0$$

$$\ddot{\theta}(t) + \frac{g}{l} \cdot \sin(\theta(t)) = 0$$

$$\ddot{\theta}(t) + \omega_0^2 \cdot \sin(\theta(t)) = 0$$

$$mit \ \omega_0 = 2\pi \cdot f_0 = \frac{2\pi}{T_0} = \sqrt{\frac{g}{l}}$$

Spezialfälle:

$$\Delta f = f_1 - f_0 = \frac{1}{2\pi} \cdot \left(\sqrt{\frac{g}{l_1}} - \sqrt{\frac{g}{l_0}} \right)$$
 (bei Änderungen)

lineare Näherung:

$$\ddot{\theta}(t) + \omega_0^2 \cdot \theta(t) = 0$$
 für kleine Winkel bis 20 Grad

Physikalisches Pendel:

$$J_P \cdot \ddot{\theta}(t) + m \cdot g \cdot d \cdot \sin(\theta(t)) = 0$$

$$\ddot{\theta}(t) + \frac{m \cdot g \cdot d}{I_{P}} \cdot \sin(\theta(t)) = 0$$

$$\ddot{\theta}(t) + \omega_0^2 \cdot \sin(\theta(t)) = 0$$

mit
$$\omega_0 = \sqrt{\frac{m \cdot g \cdot d}{J_P}} = \sqrt{\frac{m \cdot g \cdot d}{J_S + m \cdot d^2}}$$

Lineare Näherung: $\ddot{\theta}(t) + {\omega_0}^2 \cdot \theta(t) = 0$ für kleine Winkel

Verlustfreier elektrischer Schwingkreis:

$$L \cdot \ddot{Q}(t) + \frac{Q(t)}{C} = 0$$

$$\ddot{Q}(t) + \frac{1}{L \cdot C} \cdot Q(t) = 0$$

$$Q(t) = A \cdot \cos(\omega_0 \cdot t + \delta)$$

$$U_C(t) = \frac{1}{C} \cdot Q(t) = \frac{A}{C} \cdot \cos(\omega_0 \cdot t + \delta)$$

$$I(t) = \dot{Q}(t) = -\omega_0 \cdot A \cdot \sin(\omega_0 \cdot t + \delta)$$

$$U_{I}(t) = L\dot{I}(t) = L\ddot{Q}(t) = -\omega_{0}^{2} \cdot A \cdot L \cdot \cos(\omega_{0} \cdot t + \delta)$$

Energie des elektrischen Schwingkreises:

$$E_{ges} = E_{el} = E_{mag} = \frac{1}{2C} \cdot Q^2(t) + \frac{1}{2} \cdot L \cdot I^2(t) = \frac{1}{2C} \cdot A^2$$

Gedämpfte Schwingungen:

Feder-Masse-Dämpfer-System:

$$m\ddot{y}(t) + k_D \dot{y}(t) + k_F y(t) = 0$$

$$\ddot{y}(t) + \frac{k_D}{m}\dot{y}(t) + \frac{k_F}{m}y(t) = 0$$

$$\ddot{y}(t) + 2\delta \dot{y}(t) + \omega_0^2 y(t) = 0 \rightarrow \text{car. Gl.}$$

$$mit \ \omega_0 = 2\pi f_0 = \frac{2\pi}{T_0} = \sqrt{\frac{k_F}{m}}$$

Abklingkoeffizient: $\delta = \frac{k_D}{2m}$

Lösungsansatz: $y(t) = c \cdot e^{\lambda t}$

$$\dot{\mathbf{v}}(t) = c \cdot \lambda \cdot e^{\lambda t}$$

$$\ddot{y}(t) = c \cdot \lambda^2 \cdot e^{\lambda t}$$

Führt zu MNF → Eigenwerte der charakteritischen Gleichung:

$$\lambda_{1,2} = -\delta \pm \sqrt{\delta^2 - {\omega_0}^2} = -\omega_0 \left(D \pm \sqrt{D^2 - 1}\right) = -\delta \pm j \omega_d$$

 $\delta = \omega_0 \cdot D$

schwingfall

Kenngrößen:

Kreisfreqeunz der ungedämpften Schwingung: in $\left\lceil \frac{rad}{\varsigma} \right\rceil$

$$\omega_0 = 2\pi \cdot f_0 = \frac{2\pi}{T_0} = \sqrt{\frac{k_F}{m}} = \sqrt{\frac{g}{y^*}}$$

Kreisfequenz der gedämpften Schwingung: in $\left[\frac{rad}{s}\right]$

$$\omega_d = 2\pi \cdot f_d = \frac{2\pi}{T_d} = \sqrt{{\omega_0}^2 - \delta^2} \le \omega_0$$

Abklingkoeffizient: in $\left[\frac{1}{s}\right]$ $\delta = \frac{k_D}{2m} = \frac{\omega_0}{2.0}$

Dämpfungsgrad/ -koeffizient: in []

$$D = \frac{\delta}{\omega_0} = \frac{\Lambda}{\sqrt{4\pi^2 + \Lambda^2}} = \frac{k_D}{2\sqrt{m \cdot k_F}}$$

Güte: $Q = \frac{1}{2D} = \frac{\omega_0}{2\delta} \rightarrow$ je höher desto geringer Dämpfung D

Logarithmisches Dekrement: in [] (art Abschklingungsfaktor)

$$\Lambda = ln\left(\frac{x(t)}{x(t+T_d)}\right) = \frac{1}{n} \cdot ln\left(\frac{x(t)}{x(t+n \cdot T_d)}\right) = \frac{2 \cdot \pi \cdot \delta}{\omega_d} = \delta \cdot T_d$$

$$= \ln\left(\frac{x(t_1)}{x(t_2)}\right) = \delta \cdot (t_2 - t_1) = \ln\left(\frac{y(t)}{y(t + \Delta t)}\right) = \delta \cdot \Delta t$$

Elektrischer Reihenschwingkreis:

$$L\ddot{Q}(t) + R\dot{Q}(t) + \frac{Q(t)}{C} = 0$$

$$\ddot{Q}(t) + \frac{R}{L}\dot{Q}(t) + \frac{1}{L \cdot C}Q(t) = 0$$

$$\ddot{Q}(t) + 2\delta\dot{Q}(t) + \omega_0^2 Q(t) = 0$$

$$U_C(t) = \frac{1}{c} \cdot Q(t)$$

$$\omega_0 = \frac{1}{\sqrt{L \cdot C}}$$

$$U_R(t) = RI(t) = R\dot{Q}(t)$$

$$\delta = \frac{R}{2I}$$

$$U_L(t) = L\dot{I}(t) = L\ddot{Q}(t)$$

$$D = \frac{R}{2} \cdot \sqrt{\frac{C}{L}}$$

$$I(t) = \dot{Q}(t)$$

$$Q = \frac{1}{2D} = \frac{1}{R} \cdot \sqrt{\frac{L}{C}}$$

Erzwungene Schwingung:

$$\ddot{y}(t) + 2\delta \dot{y}(t) + \omega_0^2 y(t) = \omega_0^2 \cdot B \cdot \cos(\Omega \cdot t)$$

Resonanzkreisfrequenz: in $\left[\frac{rad}{s}\right]$ Frequenz bei größter Reaktion

$$\Omega_{res} = \omega_0 \sqrt{1 - 2D^2} = \sqrt{\omega_0^2 - 2\delta^2} = \sqrt{\left(\frac{1}{\sqrt{L \cdot C}}\right)^2 - 2 \cdot \left(\frac{R}{2L}\right)^2}$$

$$T_{res} = \frac{2\pi}{\Omega_{res}}$$
 $\Omega_{res} = 2\pi \cdot f_{res}$

Resonanzamplitude: mit B = Erregergröße → Amplitude

$$\frac{A_{res}}{B} = \frac{{\omega_0}^2}{2\delta\sqrt{{\omega_0}^2 - \delta^2}} = \frac{\omega_0 Q}{\sqrt{{\omega_0}^2 - \delta^2}} = \frac{Q}{\sqrt{1 - \frac{1}{4 \cdot Q^2}}}$$

Resonanzphase: nicht so wichtig

$$\varphi_{res} = -\frac{\omega_{res}}{\delta} = \sqrt{2 - \frac{{\omega_0}^2}{\delta^2}}$$

Wellen:

Harmonische Wellenfunktion:

$$u(z,t) = A\cos(\omega t - kz + \varphi_0)$$

$$c = \frac{\Delta z}{\Delta t} = \frac{\lambda}{T} = \lambda \cdot f = \frac{\omega}{k}$$
 in $\left[\frac{m}{s}\right]$

Wellenzahl: $k = \frac{2\pi}{\lambda}$ in $\left[\frac{1}{m}\right]$ ("räumliche Kreisfrequenz")

Wellenlänge: λ in [m]

Phasendifferenz: φ_0

Phase: $(\omega t - kz + \varphi_0)$ (das komplette Argument)

Intensität: (Flächenleistungsdichte beim Energietransport)

$$I(z) = \frac{\langle \dot{E} \rangle}{A_{\perp}(z)} = \frac{\langle P \rangle_t}{A_{\perp}(z)}$$

 $I(z) \cdot A_{\perp}(z) = const.$ (wenn kein Energieverlust)

Elektromag. Welle: $I_0 = 0.5 \cdot c \cdot \varepsilon_0 \cdot E_0^2 = 0.5 \cdot \frac{c}{\mu_0} \cdot B_0^2$

Zylinderwellen: $I(r) = I_0 \cdot \frac{r_0}{r}$

Kugelwellen: $I(r) = I_0 \cdot \frac{r_0^2}{r^2} = \frac{P_0}{4 \cdot \pi \cdot r^2}$

Pegel:
$$L=10\cdot\log_{10}\left(\frac{x}{x_0}\right)dB$$
 bei Leistung Energie Intensität $L=20\cdot\log_{10}\left(\frac{x}{x}\right)dB$ bei Spannung, Stromstärke

Differenz von Pegel:
$$\Delta L = L_2 - L_1 = 10 \cdot \log_{10} \left(\frac{x_2}{x_1}\right) dB$$

(zeitliche Stauchung bzw. Dehnung einer Welle)

Empfängergeschwindigkeit v_E:

Plus (+) bei Bewegung zum Sender, minus (-) vom Sender weg

Sendergeschwindigkeit vs:

minus (-) bei Bewegung zum Empfänger, plus (+) vom Empfänger weg

$$f_E = f_0 \cdot \frac{c \pm v_E}{c \mp v_S}$$
 $\lambda_E = \frac{c}{f_E}$

Wenn v_s > c → Mach-Wellen

Mach-Kegel:
$$\sin(\Theta) = \frac{c}{v_S} = \frac{1}{Ma}$$

Mach-Zahl: $Ma = \frac{v_S}{c}$

Superpositionsprinzip: A_{res} = Summe der einzelnen Auslenkungen

1. Überlagerung bei A, ω , k gleich und φ_x unterschiedlich:

$$\bar{y} = y_1 + y_2 = \underbrace{2A \cdot \cos\left(\frac{\varphi_1 - \varphi_2}{2}\right)}_{\bar{a}} \cdot \cos\left(\omega t - kz + \underbrace{\frac{\varphi_1 - \varphi_2}{2}}_{\bar{\omega}}\right)$$

Gangunterschied $\Delta z\colon \Delta z=rac{\varphi_1-\varphi_2}{2\pi}\cdot \lambda$ Konstruktiv bei geraden pi destruktiv bei ungeraden pi

Koordinatenarten:

Zylinderkoordinaten: (P, 4, Z)

Kugelkoordinaten Typ 1: (r, φ, θ)

Kugelkoordinate Typ 2: (r, Ψ, Ψ)

Raumwinkel: $\Omega = \frac{A}{r^2}$

Anhang:

Massenträgheitsmomente $J_{\overrightarrow{\omega}}$ eines homogenen Körpers der Masse m bzgl. der Drehachse $\vec{\omega}$

Form	Drehachse $\vec{\omega}$	$J_{\vec{\omega}}$
Punktmasse im Abstand r zu $\vec{\omega}$	beliebig	mr^2
Massiver Zylinder mit Radius r	Symmetrieachse	$rac{1}{2}mr^2$
Hohlzylinder mit Außenradius \boldsymbol{r}_a und Innenradius \boldsymbol{r}_i	Symmetrieachse	$m\frac{r_a^2 + r_i^2}{2}$
Massiver Zylinder mit Radius r und Länge l	Querachse durch Mittelpunkt	$\frac{1}{4}mr^2 + \frac{1}{12}ml^2$
Massive Kugel mit Radius \boldsymbol{r}	Achse durch Mittelpunkt	$\frac{2}{5}mr^2$
$\label{eq:controller} \mbox{Hohlkugel mit Außenradius } r_a \mbox{ und Innenradius } r_i$	Achse durch Mittelpunkt	$\frac{2}{5}m\frac{r_a^5 - r_i^5}{r_a^3 - r_i^3}$
Massiver Quader mit Kantenlängen a,b,c	Achse durch Mittelpunkt parallel zu Kanten c	$\frac{1}{12}m(a^2+b^2)$
Form	Drehachse	$J_{\vec{\omega}}$
Massiver Kreiskegel mit Bodenradius \boldsymbol{r}	Symmetrieachse	$\frac{3}{10}mr^2$ $\frac{1}{2}mr^2$
Kreiskegelmantel mit Bodenradius \boldsymbol{r}	Symmetrieachse	$\frac{1}{2}mr^2$
$\begin{array}{l} {\it Massiver \ Kreiskegelstumpf \ mit \ Bodenradius} \\ r_b \ und \ {\it Deckelradius} \ r_d \end{array}$	Symmetrieachse	$\frac{3}{10}m\frac{r_b^5 - r_d^5}{r_b^3 - r_d^3}$
Massive quadratische Pyramide mit Bodenkantenlänge l bzw. Bodenradius $r=l/\sqrt{2}$	Symmetrieachse	$rac{1}{10}ml^2$ bzw. $rac{1}{5}mr^2$
Massiver Kreistorus (Donut) mit mittlerem Radius R und halber Dicke r (d.h. Außenradius $R+r$, Außenradius $R-r$, Dicke $2r$)	Symmetrieachse	$m\left(\frac{3}{4}r^2 + R^2\right)$

MERKE: Einfach so wie es ist für J ersetzen!