Resumen de las variables aleatorias discretas

Nombre	f. de probabilidad	Interpretación	
	P(X=x)	X = x	
Bernoulli	$p^x \cdot (1-p)^{1-x}$	Mide la probabilidad de éxito o fracaso en un experimento. $(x = 0, 1)$	
Binomial	$\binom{n}{x}p^x(1-p)^{n-x}$	Número de éxitos en una serie de n ensayos independientes de Bernoulli, cada uno con una probabilidad de éxito p	
Geométrica	$(1-p)^{x-1}p$	Número de ensayos necesarios para obtener el primer éxito en una serie de ensayos de Bernoulli independientes, cada uno con una probabilidad constante <i>p</i> de éxito.	
Binomial negativa	$\binom{x+r-1}{x}(1-p)^x p^r$	Número de fracasos que preceden al <i>r</i> -ésimo éxito en experimentos de Bernoulli independientes, cada uno con la misma probabilidad de éxito.	
Hipergeométrica	$\frac{\binom{A}{x}\binom{N-A}{n-x}}{\binom{N}{n}}$	Número de éxitos en una muestra de tamaño <i>n</i> extraída sin reemplazo de una población de tamaño <i>N</i> donde hay <i>A</i> casos de éxito	
Poisson	$\frac{\lambda^x e^{-\lambda}}{x!}$	Número de eventos que ocurren en un intervalo fijo de tiempo o espacio, con una tasa promedio de eventos λ (lambda) por unidad de tiempo o espacio	

Cuadro 0.0.1: f. de probabilidad e interpretación de V.A. Discretas

Nombre	f. de probabilidad	Esperanza	Varianza
Bernoulli	$p^x \cdot (1-p)^{1-x}$	р	p(1-p)
Binomial	$\binom{n}{x}p^x(1-p)^{n-x}$	$n \cdot p$	$n \cdot p \cdot (1-p)$
Geométrica	$(1-p)^{x-1}p$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
Binomial negativa	$\binom{x+r-1}{x}(1-p)^x p^r$	$\frac{r \cdot (1-p)}{p}$	$\frac{r \cdot (1-p)}{p^2}$
Hipergeométrica	$\frac{\binom{A}{x}\binom{N-A}{n-x}}{\binom{N}{n}}$	$\frac{n \cdot A}{N}$	$\frac{n \cdot A(N-A)}{N^2} \frac{N-n}{N-1}$
Poisson	$\frac{\lambda^x e^{-\lambda}}{x!}$	λ	λ

Cuadro 0.0.2: Esperanza y varianza de algunas V.A. Discretas

Algunas propiedades de las variables aleatorias discretas

Proposition 0.0.1 Si las variables aleatorias $X_1, X_2, ..., X_n$ son independientes entre sí y cada X_i tiene una distribución de Poisson con media λ_i , entonces la variable aleatoria $X = X_1 + X_2 + \cdots + X_n$ tiene una distribución de Poisson cuya media es $\lambda_1 + \lambda_2 + \cdots + \lambda_n$

Proposition 0.0.2 Si $X \sim B(n,p)$ con un *n suficientemente* alto y un valor de p bajo, entonces X se puede aproximar por una distribución de Poisson de media np. En muchas aplicaciones se suele tomar la aproximación cuando $n \ge 30 \land p \le 0.1 \land np \le 7$

Proposition 0.0.3 Si $X_1, X_2, ..., X_n$ son unas variables aleatorias i.i.d. y cada X_i tiene una distribución geométrica con parámetro p, entonces su suma, $X \sim X_1 + X_2 + \cdots + X_r$ tiene una distribución binomial negativa con parámetros r y p.

Proposition 0.0.4 Si $X \sim Poi(\lambda)$ midiendo determinados sucesos en un intervalo de tiempo o espacio, t, si consideramos la variable Y que mide los sucesos en k intervalos de longitud t tiene una distribución $Y \sim Poi(\lambda t)$.