אותות ומערכות – תרגיל המטלב

חלק א' – מערכות

x[n] ומוצאה הוא x[n] שכניסתה היא של מערכת בדידה, המסומנת באות S, שכניסתה היא

הקשר הרקורסיבי בין כניסת המערכת למוצאה נתון על ידי משוואת ההפרשים הבאה:

$$y[n] - 4y[n-1] + 4y[n-2] = 20x[n] + 10x[n-1]$$

קבע האם המערכת הזו ליניארית, קבועה בזמן, LTI, בעלת זיכרון, הפיכה, יציבה במובן BIBO וסיבתית.

עבור כל אחת מהתכונות הנ"ל:

- אם היא מתקיימת הוכח זאת.
- אם היא לא מתקיימת הצג לה דוגמה נגדית, באמצעות מטלב. לדוגמה, לקביעת האם המערכת יציבה במובן BIBO, ניתן להכניס לה כניסה חסומה (למשל כניסה קבועה) ולבחון האם המוצא המתקבל הוא חסום.

חלק ב' – סינון באמצעות מסנן מעביר תדרים נמוכים (LPF)

בחלק זה נשתמש בקובץ LPF.mat המצורף לתרגיל זה, המכיל ארבעה מסנני LPF בחלק זה נשתמש בקובץ LPF. המצורף לתרגיל זה, המכיל ארבעה בחלק ב-נסמן ב- $h_4[n]$, $h_3[n]$, $h_3[n]$ ו- $h_4[n]$ את התגובות להלם של מסנני ה-LPF בעלי תדרי הקטעון $\frac{\pi}{4}$, $\frac{\pi}{3}$, $\frac{\pi}{4}$ ו- $\frac{\pi}{6}$, בהתאמה.

סעיף 1 – הצגת המסננים

עבור כ"א מ-4 המסננים, צייר, באמצעות מטלב, את תגובת התדר שלו (בערכו המוחלט).

סעיף 2 – העברת תדרים נמוכים

y[n] נכנס למסנן בעל תגובה להלם ובמוצאו מתקבל האות נניח שהאות x[n]

$$x[n] \longrightarrow h[n] \longrightarrow y[n]$$
המסנן הוא אחד מארבעת המסננים הנ"ל.

 $x[n] = 2\cos\left(\frac{3\pi}{10}n\right)\cos\left(\frac{\pi}{10}n\right)$ נניח שאות הכניסה הוא:

- $\mathit{X}\!\left(e^{j\omega}
 ight)$ באמצעות סכום של שני קוסינוסים ומצא את ספקטרום אות הכניסה או הבע את x[n]
 - .(בערכו המוחלט) $X(e^{j\omega})$ בייר, באמצעות מטלב, את ספקטרום אות הכניסה (ב

עבור כל אחד מארבעת המסננים הנ"ל:

- . מצא אנליטית את מוצא המסנן y[n], בהנחה שהמסנן אידיאלי כמובן.
- ד) צייר, באמצעות מטלב, את ספקטרום אות המוצא $Y(e^{j\omega})$ (בערכו המוחלט) והסבר את התוצאה שהתקבלה.
- הסבר (באותו מטלב, את מוצא המסנן y[n] בהשוואה לאות הכניסה (באותו הגרף) והסבר את התוצאה שהתקבלה.

חלק ג' – דגימה

יהי אות בזמן בדיד x(t), כמתואר במערכת דגימה T לקבלת דגימה אות בזמן הנדגם עם זמן הנדגם עם זמן הבאה:

$$x_c(t) \longrightarrow \boxed{C/D} \longrightarrow x[n]$$

סעיף 1 – אותות חסומים סרט

בסעיף זה נתמקד בארבעה אותות $x_c(t)$ חסומים סרט:

(1)
$$x_c(t) = \operatorname{sinc}\left(\frac{t}{6}\right)$$

$$(2) x_c(t) = \sin^2\left(\frac{t}{12}\right)$$

(3)
$$x_c(t) = \cos\left(\frac{\pi}{12}t\right)$$

(4)
$$x_c(t) = \cos\left(\frac{\pi}{12}t\right) + \sin\left(\frac{\pi}{6}t\right)$$

עבור כל אחד מארבעת האותות $x_c(t)$ הנ"ל:

- T המקסימלי שלו חשב את ה-FT שלו את התדר המקסימלי שלו את התדר המקסימלי את את את שלו את את את את את אות אות הדגומה אות עבורו ניתן לשחזר אותו מתוך האות הדגום x[n]
 - .T מצא ביטוי לאות הדגום x[n], כתלות בזמן הדגימה
- ג) עבור $X(e^{j\omega})$ צייר, באמצעות מטלב, את ספקטרום האות הדגום (בערכו המוחלט) והסבר T=4 את התוצאה שהתקבלה.
- רסבר (בערכו המוחלט) אות הדגום (בערכו המוחלט) איר, צייר, באמצעות מטלב, את ספקטרום האות הדגום (ד $(e^{j\omega})$ בערכו המוחלט) את התוצאה שהתקבלה.

סעיף 2 – אותות לא חסומים סרט

בסעיף זה נתמקד בשלושה אותות $x_c(t)$ שאינם חסומים סרט:

(1)
$$x_c(t) = \begin{cases} 1 & |t| \le 80 \\ 0 & else \end{cases}$$

(2) $x_c(t) = \begin{cases} 1 - \frac{|t|}{160} & |t| \le 160 \\ 0 & else \end{cases}$
(3) $x_c(t) = \begin{cases} 1 & |t| \le 80 \\ 2 - \frac{|t|}{80} & 80 < |t| \le 160 \\ 0 & else \end{cases}$

עבור כל אחד משלושת האותות $x_c(t)$ הנ"ל:

- $X_c(j\Omega)$ שלו (FT-א) א) או חשב את ה
- .T מצא ביטוי לאות הדגום x[n], כתלות בזמן הדגימה
- $\mathit{X}(e^{j\omega})$ אות ספקטרום האות הדגום ($\mathit{x}[n]$ את מטלב, את מטלב, את האות הדגום ($\mathit{x}[n]$ איר, באמצעות מטלב, את האות הדגום (בערכו המוחלט).