

Data Science Project

Project: Healthcare - Persistency of a Drug

Week 7 Deliverables

Team Name: Team Healthy Bones

Member: Jeeyeon Shon

E-mail: shon.jeeyeon@gmail.com

College/Company: Data Glacier

Batch Code: LISUM 10

Country: United States of America

Specialization: Data Science

Submission Date: July 19, 2022

Submitted to: Data Glacier

Github Link: https://github.com/shonjeeyeon/DG Week 7

Table of Contents

Problem Description	
Business Understanding	
Project Lifecycle and Deadlines	2
Data Intake Report	3
Github Repo Link	3

Problem Description

A model will be established and deployed to automate identifying persistency of a certain pharmaceutical product.

Records of 3,424 patients who take the medication will be used for analysis, and correlation between medication persistency and other factors such as patient demographics, provider attributes, clinical factors, and disease factors will be investigated. Finally, an optimal model to predict persistency based on above features will be selected and developed.

Business Understanding

Medication persistence refers to a patient's continued action of taking medications for the duration instructed by the prescriber. Therefore, persistency of a drug is a critical factor which contributes to industry profits as well as patient outcomes.

Using data in real cases, a machine learning model can learn relationships between target variables (persistence) and dependent variables, such as patient related variables, prescriber attributes, and indicators of disease severity (e.g.: DEXA scans, t-scores of the bone, and history of bone fractures) at the beginning and during the therapy. Eventually, the model will be able to predict whether the patient will be persistent in medication therapy, given the values of dependent variables.

Therefore, the prediction model will benefit the company by providing a detailed picture of persistence of the medication product, which is valuable for marketing of the product or developing of a new product.

Project Lifecycle and Deadlines

Weeks	Tasks	Due Dates
Week 7	Choose the topicAcquire the datasetPlan weekly tasks	Jul 19, 2022
Week 8	 Inspect the dataset for issues: Missing values Skewness Outliers 	Jul 26, 2022
Week 9	 Clean the data using at least 2 techniques Impute null values Resolve skewness/outlier issues 	Aug 02, 2022
Week 10	Perform EDAProvide final recommendations	Aug 09, 2022
Week 11	 Present the EDA Include model recommendation at the end of the presentation 	Aug 16, 2022
Week 12	 Explore one model from each family: Linear Models Ensembles Boosting Other models, such as stacking (Optional) 	Aug 23, 2022
Week 13	Decide the best solutionDeliver a Powerpoint presentation	Aug 30, 2022

Data Intake Report

Name: Healthcare - Persistency of Drug

Report date: July 18, 2022 Internship Batch: LISUM 10

Version:<1.0>

Data intake by: Jeeyeon Shon

Data intake reviewer: Data storage location:

https://drive.google.com/file/d/1P oMc6gOBlhw6dY5PxaqxV2swdHMUooK/vie

W

Tabular data details: Healthcare_dataset.xlsx

Total number of observations	3,424
Total number of files	1
Total number of features	69
Base format of the file	.xslx
Size of the data	898 KB

Proposed Approach:

- Remove the "Feature Description" sheet and save the data to .csv
- Ptid can be used to identify and remove duplicate observations
- Patient identifiable information had been removed already
- Most of the features are categorical; will need encoding to enable ML processing

Github Repo Link

https://github.com/shonjeeyeon/DG Week 7