MATH-F211 : Topologie TP 10 - Compacité séquentielle

Thomas Saillez, Andriy Haydys

Exercice 1. On pose $l^1(\mathbb{R})$ l'espace des suites réelles absolument sommables, ie une suite réelle $(u_n)_{n\in\mathbb{N}}$ si et seulement si $\sum_{n\in\mathbb{N}} |u_n| < +\infty$.

Démontrer que sur cet espace, l'application

$$||.||: l^1(\mathbb{R}) \to \mathbb{R}, (u_n)_{n \in \mathbb{N}} \mapsto \sum_{n \in \mathbb{N}} |u_n|$$

est une norme. Démontrer que la boule unité n'est pas (séquentiellement) compacte dans cet espace.

Exercice 2. Démontrer que tout espace métrique compact est séparable, c'est à dire qu'il existe un sous-ensemble dénombrable et dense.

Exercice 3. Démontrer que tout espace métrique compact admet une base dénombrable de la topologie.

Exercice 4. Soit γ un lacet sur S^n , $n \ge 1$, basé en pole sud tel que Im $\gamma \ne S^n$. Démontrer que γ est homotope relativement $\{0,1\}$ au lacet constant.

Exercice 5. Soit (M,d) un espace métrique. Définissons une métrique ρ sur $\Omega(M,m_0)$ par

$$\rho(\beta, \gamma) = \sup \big\{ d\big(\beta(t), \gamma(t)\big) \mid t \in I = [0, 1] \big\}.$$

Démontrer que $\beta \simeq \gamma$ rel $\{0,1\}$ si et seulement si β et γ appartiennent à la même composante connexe par arcs de $\Omega(M,m_0)$, c'est à dire que dans ce cas-là $\pi_1(M,m_0)$ est l'ensemble des composantes connexes par arcs de $\Omega(M,m_0)$.

Exercice 6. Soit X un espace topologique connexe par arcs. Démontrer que pour tout point de base x_0 et un point x_1 quelconque il existe un lacet $\gamma \in \Omega(X, x_0)$ tel que l'image de γ contient x_1 .

Exercice 7. Soit X un espace topologique et β un chemin dans X tel que $\beta(0) = x_0$ et $\beta(1) = x_1$. Démontrer que l'application

$$\Omega(X, x_0) \to \Omega(X, x_1)$$
 définie par $\gamma \mapsto \bar{\beta} * (\gamma * \beta)$

induit un isomorphisme $\pi_1(X, x_0) \to \pi_1(X, x_1)$. En particulière, si X est connexe par arcs, alors $\pi_1(X, x_0)$ et $\pi_1(X, x_1)$ sont isomorphes pour tout $x_0, x_1 \in X$.