Логика и алгоритмы 2012. Задание 3 (срок 12.10)

Вполне упорядоченные множества и аксиома выбора

- 32. Рассмотрим множества \mathbb{R}, \mathbb{Q} со стандартным отношением порядка и пусть 1 означает одноэлементное упорядоченное множество. Докажите, что:
 - (a) $\mathbb{Q} + \mathbb{Q} \cong \mathbb{Q}$; (b) $\mathbb{R} + 1 + \mathbb{R} \cong \mathbb{R}$; (c) $\mathbb{R} + \mathbb{R} \ncong \mathbb{R}$.
- 33. Для любых линейно упорядоченных множеств α, β, γ установите следующие изоморфизмы: (a) $\alpha + (\beta + \gamma) \cong (\alpha + \beta) + \gamma$; (b) $\alpha(\beta + \gamma) \cong \alpha\beta + \alpha\gamma$.
- 34. Верно ли, что: (a) $\alpha + \beta \cong \beta + \alpha$; (b) $\alpha\beta \cong \beta\alpha$; (c) $(\alpha + \beta)\gamma \cong \alpha\gamma + \beta\gamma$?
- 35. Для линейно упорядоченных множеств X докажите эквивалентность следующих утверждений:
 - (a) Всякое непустое подмножество X имеет наименьший элемент;
 - (b) Не существует бесконечной убывающей последовательности $x_0>x_1>\cdots$ элементов X.
- 36. Докажите, что 1) любое ограниченное сверху подмножество вполне упорядоченного множества X имеет наименьшую верхнюю грань; 2) всякий элемент X, отличный от наибольшего, имеет непосредственный последователь, но может не иметь непосредственного предшественника (как определить эти понятия?).
- 37. (возведение в степень) Пусть (X,<) вполне упорядоченное множество. Обозначим через $\Omega(X)$ множество всех конечных последовательностей $\langle x_1, x_2, \ldots, x_n \rangle$ элементов X таких, что $x_1 \geq x_2 \geq \cdots \geq x_n$, где n может быть произвольным.

Зададим на $\Omega(X)$ лексикографический порядок: $\langle x_1, x_2, \dots, x_n \rangle$ меньше $\langle y_1, y_2, \dots, y_m \rangle$, если для некоторого $k \leq \min(n, m) \ \forall i < k \ x_i = y_i$ и $x_k < y_k$, или же $\forall i \leq n \ x_i = y_i$ и n < m.

- (a) Доказать, что $\Omega(X)$ вполне упорядочено.
- (b) Проверить, что $\Omega(1) \cong \mathbb{N}$; $\Omega(X+1) \cong \Omega(X) \cdot \mathbb{N}$; $\Omega(X+Y) \cong \Omega(X) \cdot \Omega(Y)$.
- 38. Докажите эквивалентность аксиоме выбора следующего утверждения: для любой сюръекции $f: A \to B$ найдется отображение $g: B \to A$ такое, что $f \circ g = id_B$.

- 39. Выведите аксиому выбора непосредственно из леммы Цорна и из теоремы Цермело.
- 40. С помощью леммы Цорна докажите, что всякая цепь в частично упорядоченном множестве содержится в максимальной (по включению).
- 41. Докажите, что любой частичный порядок на множестве X можно продолжить до линейного. (Отношение R_2 продолжает R_1 , если $R_1 \subset R_2$.)
- 42. Множество $X \subset \mathbb{R}$ назовем линейно независимым над \mathbb{Q} , если для любых $e_1, \ldots, e_n \in X$ и $r_1, \ldots, r_n \in \mathbb{Q}$ равенство $r_1e_1 + \cdots + r_ne_n = 0$ имеет место лишь в случае $r_1 = \cdots = r_n = 0$.
 - (a) Докажите с помощью леммы Цорна, что существует максимальное линейно независимое над \mathbb{Q} подмножество \mathbb{R} (такое множество называется базисом Гамеля).
 - (b) Если $B \subset \mathbb{R}$ базис Гамеля, то всякое $x \in \mathbb{R}$ единственным образом (с точностью до перестановки слагаемых) представляется в виде

$$x = r_1 e_1 + \dots + r_n e_n,$$

для некоторых $r_1, \ldots, r_n \in \mathbb{Q}$ и $e_1, \ldots, e_n \in B$.

- (c) Докажите, что все базисы Гамеля имеют одинаковую мощность. Какую?
- 43. Выведите из предыдущей задачи:
 - (a) Существует функция $f: \mathbb{R} \to \mathbb{R}$ отличная от линейной и удовлетворяющая тождеству f(x+y) = f(x) + f(y) для всех $x,y \in \mathbb{R}$. Может ли такая функция иметь предел в точке x=0?
 - (b) Существует биекция между \mathbb{R} and \mathbb{C} , сохраняющая операцию сложения, то есть аддитивные группы (\mathbb{C} , +) и (\mathbb{R} , +) изоморфны. (Вместо \mathbb{C} можно взять аддитивную группу n-мерного векторного пространства \mathbb{R}^n .)