ORDER NO. KM40201774C2

Service Manual

Telephone Equipment

KX-TC1200NLB

Cordless Phone

Black Version

(for Holland)

SPECIFICATIONS

SPECIFICATIONS

General

 Modulation:
 FM, 5kHz Deviation
 Pause:
 3.5 seconds per pause

 Frequency Stability:
 ± 2.5 kHz
 Memory Capacity:
 10 telephone numbers, up

 Dial Type:
 Tone (DTMF)
 to 16 digits per station

 Redial:
 Last dialed number each time the

Last dialed number each to Redial button is pressed

	Base Unit	Handset
Power Source: (Receiver Section)	AC adaptor PQLV16CEZ (DC 12 V)	Built-in rechargeable Ni-Cd battery
Receiving Frequency:	12 channels within 39.9375 to 40.2125 MHz	12 channels within 31.0375 to 31.3125 MHz
Adjacent Channel Rejection:	40 dB	40 dB
Sensitivity: (Transmitter Section)	1dBμV for 20 dB S/N	2 dBμV for 20 dB S/N
Transmitting Frequency:	12 channels within 31.0375 to 31.3125 MHz	12 channels within 39.9375 to 40.2125 MHz
Jacks:	DC IN, Telephone line	
Antenna:	Telescopic	Rubber Flexible
Speaker:		13/16" (3 cm) dynamic
Microphone:		Condenser microphone
Dimensions (H X W X D):	2 ¹³ /92" × 4 ⁹ /92" × 8 ³ /16" (61 × 109 × 208mm)	$10^{1}/2" \times 2^{1}/e" \times 1^{3}/1c" (267 \times 54 \times 40mm)$
Weight:	0.57 lbs. (260 g)	0.29 lbs. (130g) with battery

Design and specifications are subject to change without notice.

© 2002 Kyushu Matsushita Electric Co., Ltd. All rights reserved. Unauthorized copying and distribution is a violation of law.

⚠ WARNING

This service information is designed for experienced repair technicians only and is not designed for use by the general public. It does not contain warnings or cautions to advise non-technical individuals of potential dangers in attempting to service a product. Products powered by electricity should be serviced or repaired only by experienced professional technicians. Any attempt to service or repair the product or products dealt with in this service information by anyone else could result in serious injury or death.

When you note the serial number, write down all 11 digits. The serial number may be found on the bottom of the unit.

FOR SERVICE TECHNICIANS

ICs and LSIs are vulnerable to static electricity.

When repairing, the following precautions will help prevent recurring malfunctions.

- 1. Cover plastic parts boxes with aluminum foil.
- 2. Ground the soldering irons.
- 3. Use a conductive mat on worktable.
- 4. Do not grasp IC or LSI pins with bare fingers.

Panasonic

1. BATTERY

1.1. Recharge

When the OPLADEN indicator flashes or the unit beeps intermittently, place the handset on the base unit for about 15 hours to recharge the battery.

1.2. Battery information

After your Panasonic battery is fully charged:

Operation	Approx. battery life
While in use (TALK)	Up to about 5 hours
While not in use (Stand-by)	Up to about 14 days

- Battery life may vary depending on usage conditions and ambient temperature.
- Clean the handset and the base unit charge contacts with a soft, dry cloth. Clean if the unit is subject to grease, dust or humidity. Otherwise the battery may not charge properly.
- If the battery is fully charged, you do not have to place the handset on the base unit until the OPLADEN indicator flashes. This will maximize the battery life.
- The battery cannot be overcharged.

2. BATTERY REPLACEMENT

If the OPLADEN indicator flashes after being fully charged, replace the battery with a new Panasonic P-P301 (KX-A36A) battery. When repalcing the battery, programmed information may be erased. Reprogram if necessary.

- Press the notch on the battery cover firmly and slide it as indicated by the arrow.
- 2 Replace the battery and close the cover.
 - Insert the battery plug into the connector as shown in the picture.
 - Be sure wires are free from being pressed by the battery body or the handset cover.

Make sure to charge the new battery for about 15 hours.

• Please return the rechargeable battery to your sales shop at the end of their useful life.

3. LOCATION OF CONTROLS

3.1. Base Unit

3.2. Handset

4. CONNECTION

Connect as shown.

Install the battery in the handset, and close the handset cover, locking it into place.

· Insert the battery plug into the connector as shown in the picture.

Indicator

Charge the battery for about 15 hours.

• The IN GEBRUIK/LADEN indicator lights.

- USE ONLY WITH Panasonic AC ADAPTOR PQLV16CEZ.
- The AC adaptor must remain connected at all times. (It is normal for the adaptor to feel warm during use.)
- When more than one unit is used, the units may interfere with each other. To prevent or reduce interference, please leave ample space between the base units.
- KX-TC1200NLB is not designed to be used with rotary (pulse dialling) services.

5. OPERATIONS

5.1. Making Calls

- Press .
 - The TALK indicator lights.
- **9** Dial a phone number.
- To hang up, press or place the handset on the base unit.
 - The indicator light goes out.

To redial the last number dialed

Press ♠ HERHALEN.

To select the handset receiver volume

Press **VOLUME** while talking.

 Each time you press the button, the volume level will change from LOW (preset) to HIGH.

If noise interferes with the conversation

Press **KANAAL** to select a clearer channel or move closer to the base unit.

BackLit handset keypad

The handset dialing buttons will light when you press a button or lift the handset off the base unit, or when a call is received. The lights will go out a few seconds after pressing a button, lifting the handset or answering a call.

5.2. Answering Calls

If the handset is off the base unit, press .

 You can also answer a call by pressing any dialing button ① to ⑨, ※ or ﷺ
 (—Any Key Talk).

OR

If on the base unit, just lift up.

Selecting the ringer volume

The TALK indicator light must be off.

• To select HIGH (preset) or LOW, press (BEL).

Each time you press the button, the ringer volume will change and the selected volume will ring.

- To turn the ringer OFF,
 press and hold BEL until a beep sound.
- To turn the ringer ON, press BEL.

You can store up to 10 phone numbers. The dialing buttons ((0)) to ((9)) function as memory stations.

The TALK indicator light must be off before programming.

- Press (PROGR).
 - The TALK indicator flashes.
- 2 Enter a phone number up to 16 digits.
- Press (AUTO).
- Press a memory station number (① to ③).
 - A beep sounds.
 - To store other numbers, repeat steps 1 through 4.
- If a pause is required for dialing, press
 PAUZE where needed. Pressing
 PAUZE counts as one digit.

If you misdial

Press **PROGR** to end storing. ▶

⇒ Start again from step 1.

To erase a stored number

Press PROGR → AUTO →

- ◆ the memory station number (①to⑨)
 for the phone number to be erased.
- A beep sounds.

5.4. Storing a Phone Number in the DIRECT Button

A stored in the **DIRECT** button can be dialed with a one-touch operation.

The TALK indicator light must be off before programming.

- Press PROGR
 - The TALK indicator flashes.
- 2 Enter a phone number up to 16 digits.
- Press DIRECT.

 A beep sounds.
- If a pause is required for dialing, press
 PAUZE where needed. Pressing
 PAUZE counts as one digit.

If you misdial

Press PROGR to end storing.

→ Start again from step 1.

To erase a stored number

Press **PROGR → DIRECT**.

• A beep sounds.

5.5. Dialing a Stored Number

- Press .

 The TALK indicator lights.
- Press AUTO.
- $\mathbf{9} \text{ Press the memory station number } \\ \mathbf{0} \text{ to } \mathbf{9} \text{)}.$
 - The stored number is dialed.

5.6. Dialing a Stored Number in the DIRECT Button

- Press DIRECT.

 The stored number is dialed.

5.7. Recall Button

(R) is used to access special telephone services (optional) such as call waiting. Contact your telephone company for details. Pressing (R) allows you to use special features of your host PBX such as transferring an extension call.

6. DISASSEMBLY INSTRUCTIONS

Fig. 1

Fig. 2

Show in Fig.	To remove.	Remove.
1	Lower Cabinet	Screws (2.6 × 12) (A) × 4
2	Main P.C. Board	Screws (2.6 × 6) (B) × 1
		Screws (2.6 × 6)(C) × 2
		Screws (2.6 × 12)(D) × 1
		Main P.C. Board.

Note: When opening the upper cabinet, be careful of the speaker lead wire.

Fig. 5

Show in Fig.	To remove.	Remove.
3	Rear Cabinet	Battery compartment cover.
4		Screws (2.6 × 12)(E) × 2
5	Main P. C. Board	Screw (2.6 × 12)(F) × 1
		Tape and solder.
		Main P. C. Board.

7. TROUBLESHOOTING GUIDE

MAIN

Cross Reference:

Check Power ()

Bell Reception ()

Check Battery Charge ()

Check Link ()

Check Handset Transmission ()

Check Handset Reception ()

7.1. Check Power

Base Unit

Is the AC Adaptor inserted into 230V? (AC Adaptor PQLV16CEZ)

Cross Reference:

Reset Circuit (Base Unit) ()
Power Supply Circuit ()

Note: CPU: IC2

HANDSET

Cross Reference:

Charge Circuit ()

Note: CPU: IC2

*: Each measurement points are shown in <u>CIRCUIT BOARD</u> (<u>Base Unit</u>) () or <u>CIRCUIT BOARD</u> (<u>Handset</u>) ()

7.2. Bell Reception

Cross Reference:

Check Link ()

Telephone Line Interface ()

Note: CPU: IC2

Cross Reference:

Check Link ()

- In case of the following suffix, the bell might not stop even after key was pressed to answer the call.

In this case, the Base Unit and the Handset might have been mixed up at the customer side.

Therefore, each of these units should be replaced to the original ones which have the same suffix.

*: Each measurement points are shown in <u>CIRCUIT BOARD</u> (<u>Base Unit</u>) () or <u>CIRCUIT BOARD</u> (<u>Handset</u>) ()

7.3. Check Battery Charge

Base Unit

Cross Reference:

Charge Circuit ()

Power Supply Circuit ()

Note: CPU: IC2

HANDSET

Cross Reference:

Reset Circuit (Handset) ()

Note: CPU: IC2

*: Each measurement points are shown in <u>CIRCUIT BOARD</u> (<u>Base Unit</u>) () or <u>CIRCUIT BOARD</u> (<u>Handset</u>) ()

7.4. Check Link

BASE UNIT

**: Refer to Adjustment ()

Note: CPU: IC2 RF IC: IC1

*: Each measurement points are shown in <u>CIRCUIT BOARD</u> (<u>Base Unit</u>) () or <u>CIRCUIT BOARD</u> (<u>Handset</u>) ()

**: Refer to Adjustment ().

Note: CPU: IC2 RF IC: IC1

^{*:} Each measurement points are shown in <u>CIRCUIT BOARD</u> (<u>Base Unit</u>) () or <u>CIRCUIT BOARD</u> (<u>Handset</u>) ()

7.5. Check Handset Transmission

Cross Reference:

Signal Route ()

7.6. Check Handset Reception

Cross Reference:

Signal Route ()

8. ADJUSTMENTS (BASE UNIT)

If your unit have below symptoms, adjust or confirm each item using remedy column from the table.

Symptom	Remedy*
The base unit dose not respond to a call from handset.	Make adjustments in item
The base unit dose not transmit or the transmit frequency is off.	Make adjustments in item
The transmit frequency is off.	Make confirmation in item
The transmit power output is low, and the operating distance between the base unit and	Make confirmation in item
the handset is less than normal.	
The reception sensitivity of base unit is low with noise.	Make confirmation in item
The transmit level is high or low.	Make confirmation in item
The reception level is high or low.	Make adjustments in item
The unit does not link.	Make confirmation in item

^{*:} Refer to Adjustment ().

^{*:} Each measurement points are shown in <u>CIRCUIT BOARD</u> (<u>Base Unit</u>) () or <u>CIRCUIT BOARD</u> (<u>Handset</u>) ()

8.1. Test Mode Flow Chart (Base Unit)

The operation-flow of Test mode and main check items are shown below.

Check RF characteristics**

Note:

**: Refer to the above table.

8.2. How to change the channel

When short H98' shortly, the channel will be changed as follows

CH3 → CH4 → ······ CH12 → CH1 → CH2

8.3. Adjustment

^{*:} Refer to Flow Solder Side View ().

	Adjustment Items	Test Mode	Adjustment Point	*Procedure
(A)	RX VCO Confirmation	3ch Talk	-	-Confirm so that the reading of the Digital Voltmeter is 1.5V \pm 0.5V.
(B)	TX VCO Adjustment	3ch Talk	Т6	-Adjust T6 so that the reading of the Digital Voltmeter is 0.8V \pm 0.1V.
(C)	TX Frequency Adjustment	3ch Talk	VC1	-Adjustment VC1so that the reading of the frequency counter is 31.0875MHz ± 0.1KHz.
(D)	TX Power Adjustment	3ch Talk	Т5	-Adjust T5 so that the reading of the RF VTVM is 9.0mW \pm 0.2mW.
(E)	RX Sensitivity Confirmation (2nd IF output)	3ch Talk	T2	Apply -60dBm output from S.S.G. (modulation frequency 1KHz, dev. 0KHz). Confirm that the reading of RF VTVM is the maximum value (more than 20mV)
(F)	Line Output Level Confirmation	3ch Talk	-	1. Apply -60dBm output from S.S.G. (modulation frequency 1KHz, dev. 3KHz). 2. Confirm that the reading of AF VTVM is 300mV \pm 40mV (600 Ω load).
١.	Line Input Modulation Confirmation	3ch Talk	-	 Input via loop simulator 1.0KHz, 55mV (measured at T-R) signal. Apply -60dBm output from S.S.G. (modulation frequency 1KHz, dev. 0KHz). Confirm so that the reading of FM Deviation Meter is 3.1KHz ± 0.3KHz.
(H)	Noise Squelch Confirmation	3ch Talk	-	Measure the SSG output level when the noise squelch changes from Low to High. Confirm that the SSG output level is -105dBm ~ -110dBm.

^{*:} The connection of adjustment equipment are as shown in <u>Adjustment Standard (Base Unit)</u> (). SSG Frequency: 39.9875 MHz

8.4. Adjustment Standard (Base Unit)

Note: (A) - (H) is referred to ADJUSTMENTS (BASE UNIT) ()

9. ADJUSTMENTS (HANDSET)

If your unit have below symptoms, adjust or confirm each item using remedy column from the

table.

Symptom	Remedy*
The movement of Battery Low Indicator is wrong.	Make confirmation in item
The base unit does not respond to a call from the handset.	Make adjustments in item
The base unit does not transmit or the transmit frequency is off.	Make adjustments in item
The transmit frequency is off.	Make confirmation in item
The transmit power output is low, and the operating distance between	Make confirmation in item
the base unit and	
the Handset is less than normal.	
The reception sensitivity of base unit is low with noise.	Make confirmation item (F
Does not link between the base unit and the handset.	Make confirmation in item
The reception level is high or low.	Make confirmation item (H
The transmit level is high or low.	Make adjustments in item

*: Refer to Adjustment ().

Unit condition:

- Remove the antenna lead wire from P.C Board of the handset.
 Power Supply: DC 3.9V (DC power supply)
 3. Volume: High (Whee P.C Board of handset is in test mode, volume condition is medium.
 Press "HANDSET OPROEPEN" key once.)

СН	TX Frequency	RX Frequency	
CH3	39.9875MHz	31.0875MHz	

9.1. Test Mode Flow Chart (Handset)

Note:

Refet to <u>CIRCUIT BOARD (Handset)</u> () <u>Signal Route</u> ()

9.2. How to change the channel

9.3. Adjustment

	Adjustment Items	Test Mode	Adjustment Point	Procedure
(A)	Battery Low Confirmation	3ch Talk	-	1. Adjust the power supply voltage to DC3.60V, and confirm so that the reading of oscillosope is High. 2. Adjust that power supply voltage to DC 3.40V, and confirm so that the reading coscilloscope is Low.
(B)	TX VCO Voltage	3ch Talk	T6	1. Adjust T6 so that the reading of the Digital Voltmeter is 1.0V \pm 0.1V.
(C)	RX VCO Confirmation	3ch Talk	-	-Confirm RX VCO voltage so that the reading of the Digital Voltmeter is 2.9V \pm 0.5V.
(D)	TX Frequency Adjustment	3ch Talk	VC1	-Confirm so that the reading of the frequency counter is 39.9875MHz ± 0.1KHz.
(E)	TX Power Adjustment	3ch Talk	Т5	-Output level should be over 9.0mW ± 0.2mW on RF VTVM (50 Ω load).
(F)	RX Sensitivity Confirmation (2nd IF output)	3ch Talk	Т3	Apply -60dBm output from S.S.G. (modulation frequency 1KHz, dev. 0KHz). Confirm 2nd IF output so that the reading of RF VTVM is more than 15mV.
(G)	Noise Squelch Confirmation	3ch Talk	-	Measure the SSG output level when the noise squelch changes from Low to High. (modulation frequency 1KHz, dev.3kHz) Confirm that the SSG output level is -105dBm.
(H)	Speaker Output Level confirmation	3ch Talk	-	Apply -60dBm output from S.S.G. (modulation frequency 1KHz, dev. 3KHz). Confirm that SP output level is 100mV ± 10mV. (distortion: less than 7%) (volume High).
(1)	Mic Modulation Factor Confirmation	3ch Talk	-	1. Apply a MIC signal (1KHz, 2.4mV at 600 Ω load). 2. Confirmation so that the reading FM Deviation Meter is 3.0KHz \pm 0.3KHz.
(J)	Data Modulation Confirmation	3ch Talk	-	-Confirm for 4.0KHz ~ 8.0KHz FM Deviation Meter reading.

The connections of adjustment equipment are as shown in <u>Adjustment Standard (Handset)</u> (). SSG Frequency: 31.0875 MHz

9.4. Adjustment Standard (Handset)

(Component View)

Note: (A) - (I) is referred to <u>ADJUSTMENTS (HANDSET)</u> ()

(Flow Solder Side View)

Note: (A) - (I) is refered to <u>ADJUSTMENTS (HANDSET)</u> ()

10. RF SPECIFICATION

10.1. Base Unit

Item	Value	Refer to*	Remark
TX Frequency	31.0875 MHz ± 0.1kHz	ADJUSTMENTS (BASE UNIT) (C)	at CH3
TX Power	9.0mW ± 0.2mW (3CH)	ADJUSTMENTS (BASE UNIT) (D)	at CH3
Line Modulation factor	2.8 kHz~3.4 kHz	ADJUSTMENTS (BASE UNIT) (G)	
Line Modulation factor (Max.)	4.5 kHz~8.5 kHz	_	
Data Modulation factor	3 kHz~7 kHz	_	
Line Output level	-7dBm	_	

^{*:} Refer to Adjustment ().

10.2. Handset

Item	Value	Refer to**	Remark
TX Frequency	39.9875 MHz ± 0.1kHz	ADJUSTMENTS (HANDSET) (D)	at CH3
TX Power	9.0mW ± 0.2mW (3CH)	ADJUSTMENTS (HANDSET) (E)	at CH3 (Ante
			soldering pc 50 Ω Load)
Data Modulation factor	4.0 kHz/dev~8.0 kHz/ dev	ADJUSTMENTS (HANDSET) (J)	at CH3
MIC Modulation factor	2.7 kHz/dev~3.3 kHz/ dev	ADJUSTMENTS (HANDSET) (I)	at CH3 (MIC terminal 2.4mV Input)
SP Output level	100mV ± 10mV	_	

^{**:} Refer to Adjustment ().

11. HOW TO CHECK THE HANDSET SPEAKER

- 1. Prepare the digital voltmeter, and set the selector knob to ohm meter.
- 2. Put the probes at the speaker terminals as shown below.

12. FREQUENCY TABLE (MHz)

	BASE	UNIT	PORTABLE UNIT		
Channel	Transmit Frequency	Receive Frequency	Transmit Frequency	Receive Fre	
1	31.0375	39.9375	39.9375	31.037	
2	31.0625	39.9625	39.9625	31.062	
3	31.0875	39.9875	39.9875	31.087	
4	31.1125	40.0125	40.0125	31.112	
5	31.1375	40.0375	40.0375	31.137	
6	31.1625	40.0625	40.0625	31.162	
7	31.1875	40.0875	40.0875	31.187	
8	31.2125	40.1125	40.1125	31.212	
9	31.2375	40.1375	40.1375	31.237	
10	31.2625	40.1625	40.1625	31.262	
11	31.2875	40.1875	40.1875	31.287	
12	31.3125	40.2125	40.2125	31.312	

13. EXPLANATION OF CPU DATA COMMUNICATION

13.1. STAND-BY -> TALK, TALK -> STAND-BY

Press the TALK button

- 1 The handset transmits TALK_ACK.
- The hardset transmits TALK_OK inc
 The handset transmits TALK_CMD.
 The base unit goes to off-Hook mode. Then base unit transmits ACK_OK including the channel number (Example: "3").

Press the TALK button

- ⑤ The handset transmits STANDBY_CMD at the channel.
- 6 The base unit transmits CONDITION at the TALK channel.

13.2. Ringing

^{*:} The channel is changed if the noise interferes with the conversation.

- When the bell signal is input, the base unit transmits BELL.
 The handset rings the bell on receiving BELL.

13.3. Changing the Channel

- 1 The handset transmits CHANNEL_ACK.
- ② The base unit replies with ACK_OK.
- 3 Then handset transmits CHANNEL_CMD.
- 4) The handset and base unit turn off tx power and scan the channel map for next four channel.
- 5 The handset transmits CHANNEL_MAP.
- 6 The base unit transmits CHANNEL_MAP.
- The handset and base unit moves to the "vacant channel". (Example: "6").
- The base unit transmits CALL.
- The handset transmits ACK_OK.

13.4. Ports for transmitting and receiving of data

Handset:

transmitting (TX) ... 36 Pin receiving (RX) ... 4 Pin

Base Unit:

transmitting (TX) ... 17 Pin receiving (RX) ... 10 Pin

13.5. Waveform of DATA used for cordless transmission and reception

The DATA which is transmitted from the Handset to the Base Unit is combination of DATA 0, DATA 1, PSEUD.

The DATA which is transmitted from the Base Unit to the Handset is combination of DATA 0, DATA 1, PSEUD.

13.5.1. Handset

Transmitting DATA Element Format

13.5.2. Base Unit

14. BLOCK DIAGRAM (BASE UNIT)

15. BLOCK DIAGRAM (HANDSET)

16. CIRCUIT OPERATION

16.1. Outline

Base unit consists of the following ICs as shown in BLOCK DIAGRAM.

- CPU:IC2
- Controlling the whole system
- Forming/analyzing all data signals (ACK, CMD signal etc.*)
- All interfaces (ex: LED, KEY, SP, Mic, LCD, Detector Circuit (Charge / Power Down)
 - *Refer to **EXPLANATION OF CPU DATA COMMUNICATION** ().
- RF IC:IC1
- PLL Oscillator
- Detection
- Compress/ Expander

- first/ second mixer
- Amplifier for transmission and reception
- Additionally,
- Power Supply Circuit
- Reset Circuit
- Charge Circuit
- Telephone Line Interface Circuit

Handset consist of the following ICs as shown in BLOCK DIAGRAM.

- CPU: IC2
- All data signals (forming/analyzing ACK or CMD signal*)
- All interfaces (ex; LED, Key, Buzzer, Detector Circuit, Charge, Battery Low)
- RAM for keeping the data (CH Number, ID Code, etc.)
- RF IC:IC1
- PLL Oscillator
- Detector
- Compress/Expander
- first, second mixer
- Amplifier for transmission and reception
 - *Refer to **EXPLANATION OF CPU DATA COMMUNICATION** ().

16.2. Power Supply Circuit

The power supply to the CPU (Digital, Analog) and RF IC from AC Adaptor (+12V) is shown in the diagram below.

The base unit power supply is DC12V. The handset's power is supplied from 3.6V battery (Nickel-Cadmium battery) which is

installed in the handset.

Power supply for transmitter is turned on by a press of "Talk" key on the handset. During the stand-by mode, the unit stops

transmitting but receives the signal.

Also during on-hook condition (the handset is placed on the base unit), backup power for memory of the last dialed number is

supplied through the battery (3.6V nickel-cadmium in the handset). The memory of this unit is not backed up by the current from

the telephone line.

The base unit DC power supply is regulated by Q18, the CPU power is regulated by Q19. The Q8,

detects AC Adaptor power failure and maintains the unit security code.

16.3. Reset Circuit (Base Unit)

After power supply from AC adaptor, the VREG is input for making reset signal. Refer to the below waveform.

16.4. Charge Circuit

Circuit Operation:

When charging the handset on the base unit, the charge current is as follows;

DC (JK2) \rightarrow L8 \rightarrow D6 \rightarrow L7 \rightarrow CHG+(Base) \rightarrow [CHG+(Handset) \rightarrow L4 \rightarrow Q9 \rightarrow

BATT(1)....Battery....BATT(2) → L5 →

CHG-(Handset)] \rightarrow CHG+(Base) \rightarrow L5,

In this way, the CPU on both unit detects the fact that the battery is charged.

The charge current is controlled by switching Q701 of Handset. The battery is charged in normal mode for 10 hours and then in trickle mode.

16.5. Telephone Line Interface

Function:

- Bell signal detection
- ON/OFF hook circuit
- Side tone circuit

Bell signal detection and OFF HOOK circuit:

In the idle mode, Q103 is open to cut the DC loop current and decrease the ring load. When ring voltage appears at the Tip (T)

and Ring (R) leads (When the telephone rings), the AC ring voltage is transferred as follows:

JK1 (3): T
$$\rightarrow$$
 L6 \rightarrow R144 \rightarrow IC3D (12,13 \rightarrow 14) \rightarrow C97 \rightarrow R148 \rightarrow Q20 \rightarrow IC2 (24) [BELL]

JK1 (2): R \rightarrow L4 \rightarrow R120 \rightarrow R152 \rightarrow \uparrow

When the CPU (DSP) detects a ring signal and press the TALK Key on the handset. Q6 turns on and then RY1 turns on,

thus providing an off-hook condition (active DC current flow through the circuit) and the following signal flow is for the loop current.

 $T \rightarrow R160 \rightarrow L4 \rightarrow RY1 \rightarrow R107 \rightarrow T7 \rightarrow R116 \rightarrow D5 \rightarrow L6 \rightarrow R161 \rightarrow R [OFF HOOK]$

ON HOOK Circuit:

Q6 is open, RY1 disconnected as to cut the DC loop current and to cut the voice signal. The unit is consequently in an on-hook condition.

Side Tone Circuit:

Basically this circuit prevents the TX signal from feeding back to RX signal.

As for this unit, TX signal feed back from Q11 is canceled by the cancellor circuit of AGC.

16.6. Transmitter/Receiver

Base Unit and Handset are mainly consists of RF(Radio Frequency) IC and CPU. Base Unit and Handset transmit/receive voice signal and data signal through the antenna on carrier frequency.

Signal Pass:

*Refer to CDL TX/RX in Signal Route ().

16.6.1. Base to Handset

Circuit Operation:

The voice signal input from the TEL LINE interface goes to RF IC as shown in BLOCK DIAGRAM (BASE UNIT) ().

In the talk mode (off-hook) condition, the telephone line voice signal passes through D2, D3, D4, D5, RY1 (Relay), R107 and T7.

The other party's voice signal is coupled with T7 and amplified by Q11 and led to IC3-B (OP Amplifier device).

And the signal goes through the compressor of RF IC, it is output to transmitter circuit.

The signal of the data sent to the handset is applied in the anode of the variable capacitor diode (VARICAP : DV1).

The capacitor of VARICAP is changing in accordance with the voice signal from telephone line interface or TX DATA signal from

CPU. Therefore, the carrier frequency which is generated by TXVCO will be changing, and Frequency modulated RF

signal is generated and amplified by RF AMP(Q3, Q4, T5). It pass through the Duplexer DPX1 and radiated from Antenna.

The signal is transmitted from the base unit and received by the handset antenna and amplified by RF amplifier (Q1) through

DPX1 as shown in <u>BLOCK DIAGRAM (HANDSET)</u> (). And then it is converted to 10.7 MHz and 450 KHz Intermediate frequency by RF IC and related components.

The demodulated audio signal is output from RF IC (DET OUT) and passed through "Expander" process to reduce noise, then

voice signal amplified by "Receiver amplifier" is output to receiver (REC1).

The receiver loudness is adjustable using "VOLUME" key on the handset. Q2 controls the volume. When CPU (VOL1)

becomes low, the volume becomes "HIGH".

TX data (to Handset)

CPU (VTX) becomes low to turn on the transmission power transistor Q2, and CPU (TX-data) sends data signal. It is

FM-modulated by TXVCO and driven by RF AMP, then transmitted to the handset.

16.6.2. Handset to Base

Circuit Operation:

The voice signal from the handset user is picked up by the microphone (MC1), voice signal passes through "Compressor"

process to reduce noise as shown in <u>BLOCK DIAGRAM (HANDSET)</u> (). And the voice is FM-modulated by

VARICAP (DV1).

The carrier frequency is generated by TX VCO. The transmitter power transistor Q4 is turned on/ off by CPU (VTX).

The carrier signal is amplified by RF AMP and sent to the handset duplexer and antenna.

The signal of 39MHz band (39.9375~40.2125MHz) which is input from ANT is filtered at DPX1 as shown in

BLOCK DIAGRAM (BASE UNIT) (), then it is input to RF IC.

The signal input to RF IC is converted through Mixer inside of RF IC, RF filter (CF1, CF2) and Expander.

The signal is transmitted from the handset and received by the base unit antenna and amplified by RF amplifier Q1, then

it is converted to 10.7 MHz and 450 KHz Intermediate by RF IC. The demodulated audio signal is output from RF IC

(DET OUT) and passed through "Expander" process to reduce noise, then voice signal is led to LINE AMP. The signal is

passed through TELEPHONE INTERFACE and Tel-line.

RX data (from Handset):

The data signal from handset (ex: Talk, ACK, COM) is also included in 39 MHz band same as the

voice data. After second if

filter, the data signal is made square shape by data limiting AMP of the RF IC. RX data is output to CPU (RX Data).

16.6.3. RF signal operation/control and PLL operation (RF UNIT)

Base unit radio frequency signal received by antenna passes through duplexer (DPX1). RF signal is amplified by RF AMP. RF signal received from RF IC is mixed with RX local frequency at Mixer to generate

10.7 MHz wide band IF. The reference frequency is generated by X1 11.15 MHz crystal. VC1 is the reference frequency

for adjustment. The 10.7 MHz is mixed with reference and 450KHz narrow band IF is generated. The demodulation audio signal

is adjusted to the maximum at T1. RF IC is controlled by CPU (RF_STB, DATA, CLK). The RX local frequency is generated by RXVCO.

16.7. Signal Route

Each signal route is as follows.

17. CIRCUIT OPERATION (HANDSET)

17.1. Reset Circuit (Handset)

The power of handset is supplied by battery.

Whenever the battery is recharged or inserted, the impulse at CHG+ becomes Reset signal through Q11, and sent to CPU.

Fig. 5 Charging approx. 4.6V Vcc Reset

17.2. Battery Low / Power Down Detector

Circuit Operation:

"Battery Low" and "Power Down" are detected by RF IC which check the voltage from battery. Shortly, every detected blocks are inside of RF IC. The detected voltage is as follows;

- Battery Low

Battery voltage : V(Batt) < 3.57V

The CPU detects this level and "Recharge battery" LED starts flashing.

- Power Down

Battery voltage : V(Batt) < 3.3V

The output of RF IC (P-DOWN) becomes low level, then CPU stops working to keep the data (CH number, ID Code, etc.)

18. CPU DATA (Base Unit)

18.1. IC2

Pin	Description	I/O	High	Hi-z	Low
1	NC	A.O	-	-	-
2	NC	A.I	-	-	-
3	NC	D.I	-	-	-
4	PWRDET	D.I	Active	-	Normal
5	DTMF4	D.O	Active	-	Normal
6	DTMF3	D.O	Active	-	Normal
7	DTMF2	D.O	Active	-	Normal
8	DTMF1	D.O	Active	-	Normal
9	DTMF0	D.O	Active	-	Normal
10	RXD	D.I	-	-	-
11	COUNT0	D.I	-	-	-
12	ASTB	D.O	Active	-	Normal
13	ADAT	D.O	-	-	Normal
14	NC	1	-	-	-
15	ACLK	D.O	•	-	Normal
16	PULSEMUTE	D.O	Active	-	Normal
17	TXD	D.O	Active	Normal	Active
18	CHGDET	D.I	Active	-	Normal
19	CNDET	D.I	Active	-	Normal
20	VTX	D.O	Normal	-	Active
21	HOOK	D.O	Active	-	Normal
22	PAGE	D.I	Normal	-	Active
23	COUNT1	D.I	-	-	-
24	RINGDET	D.I	-	-	-
25	CHARG-CNT	D.O	Normal	-	Active
26	LINELED	D.O	Normal	-	Active
27	NC	D.I	-	-	-
28	NC	-	-	-	-

19. CPU DATA (Handset)

19.1. IC2

Pin	Description	I/O	High	Hi-z	Low
1	ADAT	D.O	-	-	Normal
2	ACLK	D.O		-	Normal
3	VTX	D.O	Normal	-	Active
4	RXD	D.I	-	-	-
5	BACKLED	D.O	Active	-	Normal
6	LINELED	D.O	Normal	-	Active
7	LOWLED	D.O	Normal	-	Active
8	ROW3	D.I	Normal	-	Active
9	ROW2	D.I	Normal	-	Active
10	ROW1	D.I	Normal	-	Active
11	ROW0	D.I	Normal	-	Active
12	NC	D.O	Normal	-	-
13	NC	D.I	-	-	Normal
14	RESET	D.I	Normal	-	Reset
15	fc	A.I	-	-	-
16	fc	A.O	-	-	-
17	GND	_	-	-	-
18	VDD	A.I	-	-	-
19	OPTION 0	D.I	-	-	-
20	OPTION 1	D.I	-	-	-
21	OPTION 2	D.I	-	-	-
22	BATTDET	D.I	Active	-	Normal
23	CRDET	D.I	Active	-	Normal
24	NC	D.O	Normal	-	-
25	NC	D.O	Normal	-	-
26	NC	D.O	Normal	-	-
27	NC	D.O	Normal	-	-
28	NC	D.O	Normal	-	-
29	COL 0	D.O	Normal	-	Active
30	COL 1	D.O	Normal	-	Active
31	COL 2	D.O	Normal	-	Active
32	ALERT	D.O	Normal	-	Active
33	COL 3	D.O	Normal	-	Active
34	COL 4	D.O	Normal	-	Active
35	COL 5	D.O	Normal	-	Active
36	TXD	D.O	Active	Normal	Active
37	CHGDET	D.I	Active	-	Normal
38	fs	A.I	-	-	-
39	fs	A.O	-	-	-
40	NC	-	-	-	-
41	RINGVOL	D.O	Active	-	Normal
42	VOL 0	D.O	Active	-	Normal
43	VOL 1	D.O	Active	-	Normal
44	ASTB	D.O	Active	-	Normal

20. HOW TO REPLACE FLAT PACKAGE IC

20.1. Preparation

- SOLDER

Sparkle Solder 115A-1, 115B-1 or Almit Solder KR-19, KR-19RMA

- Soldering iron

Recommended power consumption will be between 30 W to 40 W. Temperature of Copper Rod $662 \pm 50^{\circ}F$ (350 \pm 10°C) (An expert may handle between 60 W to 80 W iron, but beginner might damage foil by overheating.)

- Flux HI115 Specific gravity 0.863. (Original flux will be replaced daily.)

20.2. Procedure

1. Temporary fix FLAT PACKAGE IC by soldering on two marked 2 pins.

■ - - - - - - Temporary soldering point.

*Most important matter is accurate setting of IC to the corresponding soldering foil.

2. Apply flux for all pins of FLAT PACKAGE IC.

3. Solder employing specified solder to direction of arrow, as sliding the soldering iron.

20.3. Modification Procedure of Bridge

- 1. Re-solder slightly on bridged portion.
- 2. Remove remained solder along pins employing soldering iron as shown in below figure.

21. CABINET AND ELECTRICAL PARTS LOCATION (BASE UNIT)

22. CABINET AND ELECTRICAL PARTS LOCATION (HANDET)

23. ACCESSORIES AND PACKING MATERIALS

24. REPLACEMENT PARTS LIST

Note:

1. RTL (Retention Time Limited)

The marking (RTL) indicates that the Retention Time is limited for this item.

After the discontinuation of this assembly in production, the item will continue to be available for a specific period of time. The retention period of availability depends on the type of assembly and the laws governing parts and product retention.

At the end of this period, the assembly will no longer be available.

- 2. Important safety notice
 - Components identified by the <u>A</u> mark indicates special characteristics important for safety. When replacing any of these components, only use specified manufacture's parts.
- 3. The S mark means the part is one of some identical parts. For that reason, it may be different from the installed part.
- 4. RESISTORS & CAPACITORS

Unless otherwise specified;

All resistors are in ohms (Ω) K=1000 Ω , M=1000k Ω

All capacitors are in MICRO FARADS (μ F) P= μ μ F

*Type & Wattage of Resistor

Туре									
ERC:Solid ERX:Metal		l Film PC		PQ4R:	PQ4R:Carbon				
ERD:Carbon		ERG:M	eta	l Oxide		ERS:Fu	ldiau	e Res	sistor
PQRD:Carbon		ER0:M	etal	Film		ERF:C	eme	nt Re	sistor
Wattage									
10,16:1/8W	14,25	1/4W		12:1/2W		1:1W	2:	2W	3:3W
*Type & Voltage	e of Capa	acitor							
Туре									
ECFD:Semi-C	ECFD:Semi-Conductor			ECCD,ECKD,ECBT,PQCBC : Ceramic					
ECQS:Styrol				ECQE,ECQV,ECQG : Polyester					
PQCUV:Chip				ECEA,ECSZ : Electrolytic					
ECQMS:Mica				ECQP : Polypropylene					
Voltage									,
ECQ Type	ECQG		E	CSZ Type		С	ther	s	
	ECQV 1	уре							
1H: 50V	05: 50V		OF	:3.15V	0J	:6.3V		1V	:35V
2A:100V	1:100\	/ 1A:10V		1A	:10V		50,1	H:50V	
2E:250V	2:200\	/	1\	′:35V	1C	:16V		1J	:63V
2H:500V			OJ	:6.3V	1E,	25:25V		2A	:100V

24.1. Base Unit

24.1.1. CABINET AND ELECTRICAL PARTS

Ref. No.	Part No.	Part Name & Description	Remarks
1	PQJT10180Z	CHARGE TERMINAL	
<u>2</u>	PQHR10882Z	LED LENS	
<u>3</u>	PQGT14798Z	NAME LABEL	
<u>4</u>	PQQT22392Z	CHARGE LABEL	
<u>5</u>	PQBC10349Z1	PUSH BUTTON	s
<u>6</u>	PQKE10335Z1	HOOK LEVER	s
<u>7</u>	PQKF10534Y1	LOWER CABINET	s
<u>8</u>	PQKM10509R1	UPPER CABINET	S
9	PQSA10105Y	ANTENNA	
<u>10</u>	PQQT22371Z	COVER LABEL	
11	XXLABALACE1	HOOK LABEL	

24.1.2. MAIN P.C.BOARD PARTS

Ref. No.	Part No.	Part Name & Description	Remarks
PCB1	PQWPC1200NLH	MAIN P.C.BOARD ASS'Y (RTL)	
		(ICS)	
IC1	SA133122409	IC	
IC2	SA138740526	IC	
IC3	SA110032403	IC	
		(TRANSISTORS)	
Q1	BB230024104	TRANSISTOR(SI)	
Q2	SB010390608	TRANSISTOR(SI)	
Q3	SB110390405	TRANSISTOR(SI)	
Q4	SB110390405	TRANSISTOR(SI)	
Q5	SB110390405	TRANSISTOR(SI)	
Q6	SB110390405	TRANSISTOR(SI)	
Q7	SB110390405	TRANSISTOR(SI)	
Q8	SB110390405	TRANSISTOR(SI)	
Q9	SB110390405	TRANSISTOR(SI)	
Q11	SB110390405	TRANSISTOR(SI)	
Q12	BB110004408	TRANSISTOR(SI)	
Q14	SB010390608	TRANSISTOR(SI)	
Q15	BB110004408	TRANSISTOR(SI)	
Q17	SB110390405	TRANSISTOR(SI)	
Q18	BB1G0390403	TRANSISTOR(SI)	
Q19	BB1G0390403	TRANSISTOR(SI)	
Q20	SB110390405	TRANSISTOR(SI)	
Q21	SB110390405	TRANSISTOR(SI)	
		(DIODES)	
D1	SC15L414808	DIODE(SI)	
D2	BC2G0400400	DIODE(SI)	
D3	BC2G0400400	DIODE(SI)	
D4	BC2G0400400	DIODE(SI)	
D5	BC2G0400400	DIODE(SI)	
D6	BC2G0400400	DIODE(SI)	
DV1	BC6K0025101	DIODE(SI)	
R182	SV110201203	DIODE(SI)	
ZD1	BC050474801	DIODE(SI)	
ZD10	SC4555C1506	DIODE(SI)	
ZD2	BC050474801	DIODE(SI)	
ZD3	SC4555C4V71	DIODE(SI)	
ZD5	SC4555C4V71	DIODE(SI)	
ZD8	BC4579C5V65	DIODE(SI)	
ZNR1	VA107D271K1	DIODE(SI)	
ZIVIXI	VAIOIDZI IKI	(COILS)	
1.1	BOI OZKABA I	COIL	
L1 L3	PQLQZK2R2J PQLQZM120J	COIL	
L3 L4	PQLQZM120J	COIL	
L5			
	PQLQZK120J	COIL	
L6	PQLQZK120J	COIL	
L7	PQLQZK120J	COIL	
L10	PQLQZK1R2J	COIL	
L11	PQLQZM120J	COIL	
11/4	DOTOR (COS) T	(CONNECTORS)	
JK1	DC72P120018	JACK/SOCKET	
JK2	DC71P120023	JACK/SOCKET	
		(CERAMIC FILTERS)	

Ref. No.	Part No.	Part Name & Description	Remarks
CF2	BDFL0450E01	CERAMIC FILTER	
		(CRYSTAL OSCILLATORS)	
X1	BD1R1115003	CRYSTAL OSCILLATOR	
X2	PQVCK7952N4Z	CRYSTAL OSCILLATOR	
		(TRANSFORMERS)	
T1	CLIP1200053	TRANSFORMER	
T2	CLIP1200100	TRANSFORMER	
T5	CLIP1200096	TRANSFORMER	
T6	CLIP1200142	TRANSFORMER	
T7	DG0P1200019	TRANSFORMER	
		(FUSES)	
FS1	DC0T0602606	FUSE	
L9	DC0T0602606	FUSE	
		(OTHERS)	
BZ1	CK15HC12G10	BUZZER	
C95	CB114714205	CERAMIC CAPACITOR	
DPX1	BDFL0123103	COIL	
LED1	SC5E0192115	LED	
MIC1	CGAP1200019	MICROPHONE	
RY1	DCR000105H7	RELAY	
SW1	DETP1200017	PUSH SWITCH	
VC1	CR00020RRT5	TRIMMER CAPACITOR	
VO 1	CKOOOZOKKTS	(RESISTORS)	
R1	ERJ3GEYJ470	47	
R2	ERJ3GEYJ331	330	
R3	ERJ3GEYJ153	15k	
R4		8.2k	
	ERJ3GEYJ822	-	
R5	ERJ3GEYJ103	10k	
R6	ERJ3GEYJ103	10k	
R7	ERJ3GEYJ334	330k	
R8	ERJ3GEYJ103	10k	
R10	ERJ3GEYJ392	3.9k	
R11	ERJ3GEYJ102	1k	
R12	ERJ3GEYJ101	100	
R13	ERJ3GEYJ513	51k	
R14	ERJ3GEYJ103	10k	
R15	ERJ3GEYJ562	5.6k	
R16	ERJ3GEYJ153	15k	
R17	ERJ3GEY0R00	0	
R20	ERJ3GEYJ623	62k	
R21	ERJ3GEYJ513	51k	
R21	ERJ3GEYJ563	56k	
R22	ERJ3GEYJ472	4.7k	
R24	ERJ3GEYJ103	10k	
R26	ERJ3GEYJ154	150k	
R30	ERJ3GEYJ104	100k	
R31	ERJ3GEYJ473	47k	
R35	ERJ3GEYJ101	100	
R36	ERJ3GEYJ224	220k	
R37	ERJ3GEYJ101	100	
R38	ERJ3GEYJ104	100k	
R40	ERJ3GEYJ223	22k	
R42	ERJ3GEYJ103	10k	

Ref. No.	Part No.	Part Name & Description	Remarks
R44	ERJ3GEYJ104	100k	
R45	ERJ3GEYJ224	220k	
R46	ERJ3GEYJ222	2.2k	
R48	ERJ3GEYJ223	22k	
R50	ERJ3GEYJ822	8.2k	
R51	ERJ3GEYJ272	2.7k	
R52	ERJ3GEYJ475	4.7M	
R53	ERJ3GEYJ153	15k	
R54	ERJ3GEYJ153	15k	
R55	ERJ3GEYJ681	680	
R56	ERJ3GEYJ222	2.2k	
R57	ERJ3GEYJ224	220k	
R58	ERJ3GEYJ511	510	
R59	ERJ3GEYJ104	100k	
R60	ERJ3GEYJ223	22k	
R61	ERJ3GEYJ224	220k	
R62	ERJ3GEYJ104	100k	
R64	ERDS2TJ103	10k	
R68	ERJ3GEYJ104	100k	
R74	ERJ3GEY0R00	0	
R75	ERJ3GEYJ103	10k	
R77	ERJ3GEYJ203	20k	
R78	ERJ3GEYJ392	3.9k	
R79	ERJ3GEYJ823	82k	
R80	ERJ3GEYJ222	2.2k	
R81	ERJ3GEYJ164	160k	
R82	ERJ3GEYJ103	10k	
R83	ERJ3GEYJ103	10k	
R84	ERJ3GEYJ103	10k	
R85	ERJ3GEYJ103	10k	
R86	ERJ3GEYJ473	47k	
R87	ERJ3GEYJ103	10k	
R88	ERJ3GEYJ103	10k	
R89	ERJ3GEYJ103	10k	
R90	ERJ3GEYJ274	270k	
R91	ERJ3GEYJ154	150k	
R92	ERJ3GEYJ103	10k	
R94	ERJ3GEYJ623	62k	
R95	ERJ3GEYJ392	3.9k	
R97	ERJ3GEYJ822	8.2k	
R98	ERJ3GEYJ104	100k	
R99	ERJ3GEYJ823	82k	
R100	ERJ3GEYJ104	100k	
R103	ERJ3GEYJ223	22k	
R104	ERJ3GEYJ472	4.7k	
R105	ERJ3GEYJ363	36k	
R106	ERDS2TJ220	22	
R107	CQ63120R525	120	
R108	ERJ3GEYJ472	4.7k	
R109	ERJ3GEYJ334	330k	
R111	ERJ3GEYJ681	680	
R114	ERJ3GEYJ223	22k	
R115	ERJ3GEYJ563	56k	
R118	ERDS1TJ151	150	

Ref. No.	Part No.	Part Name & Description	Remarks
R119	ERJ3GEYJ823	82k	
R120	ERJ3GEY0R00	0	
R122	ERJ3GEYJ132	1.3k	
R124	ERJ3GEYJ270	27	
R130	ERJ3GEYJ270	27	
R131	ERJ3GEYJ104	100k	
R132	ERJ3GEYJ222	2.2k	
R133	ERJ3GEYJ560	56	
R137	ERJ3GEYJ182	1.8k	
R138			
	ERJ3GEYJ152	1.5k	
R141	ERJ3GEYJ512	5.1k	
R142	ERDS2TJ220	22	
R143	ERJ3GEYJ514	510k	
R144	ERDS2TJ206	20M	
R145	ERJ3GEYJ102	1k	
R146	ERJ3GEYJ153	15k	
R148	ERJ3GEYJ103	10k	
R149	ERJ3GEYJ182	1.8k	
R150	ERJ3GEYJ624	620k	
R152	ERDS2TJ206	20M	
R153	ERJ3GEYJ104	100k	
R153	ERJ3GEYJ105	1M	
R154	ERJ3GEYJ470	47	
R155	ERJ3GEYJ470	47	
R156	ERJ3GEYJ470	47	
R158	ERJ3GEYJ104	100k	
R160	PQ4R10XJ000	0	s
R161	PQ4R10XJ000	0	s
R166	ERJ3GEYJ470	47	
R167	ERJ3GEYJ103	10k	
	ERJ3GEYJ103	1k	
R170			
R171	ERJ3GEYJ102	1k	
R172	ERDS2TJ105	1M	
R173	ERDS2TJ102	1k	
R174	ERDS2TJ102	1k	
R176	ERJ3GEY0R00	0	
R180	ERJ3GEYJ563	56k	
R181	ERJ3GEYJ331	330	
L8	ERJ3GEY0R00	0	
		(CAPACITORS)	
C1	ECEA1EK470	47	S
C2	ECUV1H473MDV	0.047	S
C4	ECUV1H103KBV	0.01	
C6	ECUV1C104ZFV	0.1	
C7	ECUV1H102KBV	0.001	
C8	ECUV1C104ZFV	0.1	
C9	ECUV1H471JCV	470p	
C10	ECUV1H471JCV	470p	
C11	ECUV1H473MDV	0.047	s
C12	ECUV1H103KBV	0.01	s
C15	ECEA1HKA2R2	2.2	-
C16	ECUV1H270JCV	27p	
C17	ECEA1CKA100	10	
C18	ECUV1C473KBV	0.047	

Ref. No.	Part No.	Part Name & Description	Remarks
C19	ECUV1H102KBV	0.001	
C20	ECEA1HKA2R2	2.2	
C22	ECUV1H103KBV	0.01	s
C23	ECUV1H103KBV	0.01	s
C24	ECUV1E223KBV	0.022	
C25	ECUV1H123KBV	0.012	
C26	ECUV1H070CCV	7p	
C27	ECUV1H103KBV	0.01	
C28	ECUV1H153KBV	0.015	
C29	ECUV1C104KBV	0.1	
C30	ECEA1HKA2R2	2.2	
C31	ECUV1H103KBV	0.01	
C32	ECEA1HU2R2	2.2	
C33	ECUV1H101JCV	100p	
C34	ECUV1H151JCV	150p	
C35	ECUV1H180JCV	18p	
C36	ECUV1H101JCV	100p	
C37	ECUV1H151JCV	150p	+
C38	ECEA1HU100	10	s
C39	ECUV1H103KBV	0.01	s
C40	ECUV1H270JCV	27p	
C42	ECEA1HU2R2	2.2	
C43	ECUV1C104KBV	0.1	
C44	ECUV1H332KBV	0.0033	
C44	ECUV1H472KBV	0.0047	
C45	ECUV1H333KDV	0.033	s
C45	ECUV1H102KBV	0.001	-
C40	ECUV1H103KBV	0.01	s
C47	ECUV1H103KBV		S
		0.022	S
C49	ECUV1H103KBV	0.01	S
C50	ECEA1HU220	0.01	S
C51	ECUVALIZACION		
C52	ECUV1H223KBV	0.022	S
C54	ECUV1H020CCV	2p	
C54	ECUV1H050CCV	5p	
C55	ECUV1H103KBV	0.01	S
C56	ECUV1H050CCV	5p	
C58	ECUV1H682KBV	0.0068	
C59	ECUV1H390JCV	39p	
C60	ECUV1H270JCV	27p	
C61	ECUV1C104ZFV	0.1	
C62	ECUV1H390JCV	39p	
C63	ECUV1H103KBV	0.01	S
C64	ECUV1C104ZFV	0.1	
C65	ECUV1H220JCV	22p	
C65	ECUV1H390JCV	39p	
C66	ECEA1AU221	220	
C67	ECUV1H220JCV	22p	
C68	ECEA1HKAR47	0.47	
C69	ECUV1H271JCV	270p	
C70	ECUV1H223KBV	0.022	S
C71	ECUV1C104ZFV	0.1	
C73	ECUV1C104ZFV	0.1	
C74	ECUV1C104ZFV	0.1	

Ref. No.	Part No.	Part Name & Description	Remarks
C76	ECKD2H681KB	680p	s
C77	ECUV1H151JCV	150p	
C78	ECEA1AU471	470	
C80	ECKD2H681KB	680p	s
C82	ECUV1C104ZFV	0.1	
C90	ECUV1C683KBV	0.068	
C91	ECEA1HU2R2	2.2	
C92	ECUV1C104KBV	0.1	
C93	ECUV1H562KBV	0.0056	
C94	ECEA1CK101	100	s
C96	ECUV1H103KBV	0.01	s
C97	ECEA1HKA4R7	4.7	
C98	ECEA1CKS220	22	s
C99	ECUV1H103KBV	0.01	s
C101	ECUV1H562KBV	0.0056	
C102	ECEA1EU221	220	
C103	ECEA1AU470	47	
C104	ECFD1C104KD	0.1	s
C105	ECEA1AKA101	100	
C106	ECUV1A105ZFV	1	
C107	ECUV1C104ZFV	0.1	
C108	ECUV1C104KBV	0.1	
C109	ECUV1H182KBV	0.0018	
C123	ECUV1C104KBV	0.1	
C124	ECUV1C473KBV	0.047	
C125	ECUV1H100DCV	10p	s

24.2. Handset

24.2.1. CABINET AND ELECTRICAL PARTS

Ref. No.	Part No.	Part Name & Description	Remarks
<u>101</u>	PQJT10182Z	CHARGE TERMINAL	
<u>102</u>	PQGT14799ZA	NAME LABEL	
<u>103</u>	PQKF10535Y1	REAR CABINET	S
<u>104</u>	PQKK10124Z1	BATTERY COVER	S
<u>105</u>	PQKM10510R1	FRONT CABINET	S
<u>106</u>	PQSA10084U	ANTENNA	
<u>107</u>	PQSX10191Y	KEYBOARD SWITCH	
<u>108</u>	PQXA36ASVC	BATTERY	
<u>109</u>	FH1T1200011	CUSHION, URETHANE FORM	
<u>110</u>	CG2P1200012	SPEAKER	
<u>111</u>	FE4T1200019	SP PHONE	
<u>112</u>	FH2T1200012	BUZZER SHEET	
<u>113</u>	PQHR10896Z	LIGHT PIPE	
114	PQQT22439Z	BATTERY LABEL	

24.2.2. MAIN P.C.BOARD PARTS

Ref. No.	Part No.	Part Name & Description	Remarks
PCB100	PQWPC1200NLR	MAIN P.C.BOARD ASS'Y (RTL)	
		(ICS)	
IC1	SA133122409	IC	
IC2	SA138780722	IC	
		(TRANSISTORS)	
Q1	BB230024104	TRANSISTOR(SI)	
Q2	SB110390405	TRANSISTOR(SI)	
Q4	SB010390608	TRANSISTOR(SI)	
Q5	SB110390405	TRANSISTOR(SI)	
Q6	SB110390405	TRANSISTOR(SI)	
Q7	SB010390608	TRANSISTOR(SI)	
Q8	SB110390405	TRANSISTOR(SI)	
Q9	SB110390405	TRANSISTOR(SI)	
Q11	SB110390405	TRANSISTOR(SI)	
		(DIODES)	
D1	SC15L414808	DIODE(SI)	
D2	SC15L414808	DIODE(SI)	
D3	SC15L414808	DIODE(SI)	
DV1	BC6K0025101	DIODE(SI)	
ZD1	BC4579C1005	DIODE(SI)	
ZD3	SC455C5V601	DIODE(SI)	
		(LEDS)	
LED1	SC5E0192115	LED	
LED2	SC5E0192115	LED	
LED3	SC5E0192115	LED	
LED4	SC5E0192115	LED	
LED5	SC5E0192115	LED	
LED6	SC5E0192123	LED	
	00020102120	(COILS)	
L1	DC000600501	COIL	
L2	PQLQZM120J	COIL	
 L3	PQLQZM120J	COIL	
L4	PQLQZK120J	COIL	
L5	PQLQZK120J	COIL	
L6	PQLQZK1R8J	COIL	
L7	SH590121N75	COIL	
DPX1	BDFL0123111	COIL	
DI XI	BDI E0123111	(CERAMIC FILTERS)	
CF1	BDFL107MJ51	CERAMIC FILTER	
CF2	BDFL0450E01	CERAMIC FILTER	
012	BDI 20430201	(CRYSTAL OSCILLATORS)	
X1	BD7R1115004	CRYSTAL OSCILLATOR	
X2	BD8R3276805	CRYSTAL OSCILLATOR	
X3	PQVCJ3991N9Z	CRYSTAL OSCILLATOR	
Λ3	FQVC33991N9Z		
T1	CLIP1200053	(TRANSFORMERS) TRANSFORMER	
T3	CLIP1200053 CLIP1200126	TRANSFORMER	
T5	CLIP1200126 CLIP1200151		
	-	TRANSFORMER	
T6	CLIP1200134	TRANSFORMER	
DATT:	DO IDODAOZ	(OTHERS)	
BATT1	PQJP2D13Z	CONNECTOR	
E101	CK15HC12G10	RINGER	
E102	CGAP1200019	MICROPHONE	

Ref. No.	Part No.	Part Name & Description	Remarks
VC1	CR00020RRT5	TRIMMER CAPACITOR	
		(RESISTORS)	
R1	ERJ3GEYJ331	330	
R2	ERJ3GEYJ153	15k	
R3	ERJ3GEYJ682	6.8k	
R5	ERJ3GEYJ103	10k	
R6	ERJ3GEYJ103	10k	
R8	ERJ3GEYJ224	220k	
R9	ERJ3GEYJ823	82k	
R10	ERJ3GEYJ331	330	
R11	ERJ3GEYJ562	5.6k	
R12	ERJ3GEYJ224	220k	
R13	ERJ3GEYJ823	82k	
R14	ERJ3GEYJ153	15k	
R15	ERJ3GEY0R00	0	
R16	ERJ3GEYJ103	10k	
R17	ERJ3GEYJ432	4.3k	
R18	ERJ3GEYJ103	10k	
R19	ERJ3GEYJ472	4.7k	
R21	ERJ3GEYJ273	27k	
R23	ERJ3GEYJ623	62k	
R24	ERJ3GEYJ472	4.7k	
R25	ERJ3GEYJ913	91k	
R26	ERJ3GEYJ103	10k	
R28	ERJ3GEYJ334	330k	
R29	ERJ3GEYJ152	1.5k	
R30	ERJ3GEYJ182	1.8k	
R34	ERJ3GEYJ224	220k	
R35	ERJ3GEYJ473	47k	
R36	ERJ3GEYJ202	2k	
R37	ERJ3GEYJ102	1k	
R38	ERJ3GEY0R00	0	
R39	ERJ3GEYJ224	220k	
R40	ERJ3GEYJ101	100	
R41	ERJ3GEYJ623	62k	
R42	ERJ3GEYJ223	22k	
R43	+		
	ERJ3GEYJ104	100k	
R44	ERJ3GEYJ393	39k	
R45	ERJ3GEYJ104	100k	
R47	ERJ3GEYJ222	2.2k	
R48	ERJ3GEYJ223	22k	
R49	ERJ3GEYJ473	47k	
R50	ERJ3GEYJ822	8.2k	
R51	ERJ3GEYJ272	2.7k	
R52	ERJ3GEYJ102	1k	
R53	ERJ3GEYJ820	82	
R54	ERJ3GEYJ104	100k	
R55	ERJ3GEYJ390	39	
R56	ERJ3GEYJ222	2.2k	
R57	ERJ3GEYJ102	1k	
R58	ERJ3GEYJ470	47	
R59	ERJ3GEYJ222	2.2k	
R60	ERJ3GEYJ222	2.2k	
	ERJ3GEYJ331	330	

Ref. No.	Part No.	Part Name & Description	Remarks
R62	ERJ3GEYJ222	2.2k	
R63	ERJ3GEYJ103	10k	
R64	ERJ3GEYJ103	10k	
R65	ERJ3GEYJ331	330	
R66	ERJ3GEYJ222	2.2k	
R67	ERJ3GEYJ222	2.2k	
R68	ERJ3GEYJ103	10k	
R69	ERJ3GEYJ222	2.2k	
R70	ERJ3GEYJ222	2.2k	
R71	ERJ3GEYJ105	1M	
R73	ERJ3GEYJ105	1M	
R74	ERJ3GEYJ104	100k	
R75	ERJ3GEYJ104	100k	
R76	ERJ3GEYJ104	100k	
R77	ERJ3GEYJ103	10k	
R78	ERJ3GEYJ104	100k	
R79	ERJ3GEYJ105	1M	
R80	ERJ3GEYJ105	1M	
R82	ERJ3GEY0R00	0	
R83	ERJ3GEY0R00	0	
R84	ERJ3GEYJ105	1M	
R85	ERJ3GEYJ102	1k	
R86	ERJ3GEYJ104	100k	
R87	ERJ3GEYJ104	100k	
R91	ERJ3GEY0R00	0	
	ERJ3GEYJ103	10k	
R93			
R94	ERJ3GEYJ334	330k	
R95	ERJ3GEYJ393	39k	
R96	ERJ3GEY0R00	4501-	
R97	ERJ3GEYJ154	150k	
R98	ERJ3GEYJ475	4.7M	
R99	ERJ3GEYJ472	4.7k	
R101	ERJ3GEY0R00	0	
R102	ERJ3GEYJ153	15k	
R103	ERJ3GEYJ125	1.2M	
R105	ERJ3GEYJ103	10k	
R106	ERJ3GEYJ820	82	
R107	ERJ3GEYJ222	2.2k	
R108	ERJ3GEYJ102	1k	
R109	ERJ3GEYJ102	1k	
R110	ERJ3GEYJ102	1k	
R111	ERJ3GEYJ102	1k	
R112	ERJ3GEYJ102	1k	
		(CAPACITORS)	
C1	ECEA1EK470	47	S
C2	ECUV1C473KBV	0.047	
C5	ECUV1C103KBV	0.01	
C6	ECUV1H102KBV	0.001	
C7	ECUV1C103KBV	0.01	
C8	ECUV1C473KBV	0.047	
C9	ECUV1H103KBV	0.01	
C12	ECEA1HKA2R2	2.2	
C13	ECUV1H270JCV	27p	
C14	ECUV1H103KBV	0.01	

Ref. No.	Part No.	Part Name & Description	Remarks
C15	ECEA1CKA100	10	
C16	ECUV1C473KBV	0.047	
C17	ECUV1H102KBV	0.001	
C18	ECEA1HKA2R2	2.2	
C21	ECUV1H223KBV	0.022	S
C22	ECUV1H103KBV	0.01	
C23	ECUV1H102KBV	0.001	
C24	ECUV1H220JCV	22p	
C26	ECUV1H103KBV	0.01	
C27	ECUV1C103KBV	0.01	
C28	ECUV1H182KBV	0.0018	
C29	ECEA1HKA2R2	2.2	
C30	ECUV1C103KBV	0.01	
C31	ECUV1H103KBV	0.01	
C32	ECUV1C103KBV	0.01	
C33	ECUV1C104KBV	0.1	
C34	ECUV1H681JCV	680p	
C35	ECUV1H151JCV	150p	
C36	ECUV1H180JCV	18p	
C37	ECEA1CKA100	10	
C38	ECUV1H101JCV	100p	
C39	ECUV1H151JCV	150p	
C40	ECUV1H103KBV	0.01	
C41	ECUV1H270JCV	27p	
C42	ECEA1EK470	47	s
C43	ECEA1HKA2R2	2.2	
C44	ECUV1A105ZFV	1	
C45	ECUV1C393KBV	0.039	
C46	ECUV1H103KBV	0.01	
C47	ECUV1H333KBV	0.033	s
C48	ECEA1EK470	47	s
C49	ECUV1H223KBV	0.022	s
C50	ECUV1H103KBV	0.01	
C51	ECEA1CKA100	10	
C52	ECUV1H103KBV	0.01	
C53	ECUV1H223KBV	0.022	s
C54	ECUV1H020CCV	2p	
C54	ECUV1H220JCV	22p	
C55	ECUV1H103KBV	0.01	
C56	ECUV1H020CCV	2p	
C57	ECUV1H120JCV	12p	
C58	ECUV1H103KBV	0.01	
C59	ECUV1H390JCV	39p	
C60	ECUV1H390JCV	-	
C61	ECUV1C103KBV	56p 0.01	
C62	ECUV1C103KBV		
C62	ECEA1AKA101	39p 100	
C64	ECUV1H103KBV	0.01	
	ECUV1H103KBV		
C65		15p	
C66	ECUV1H150JCV	15p	
C68	ECUV1C103KBV	0.01	
C69	ECUVIC103KBV	0.01	
C70	ECUV1H330JCV	33p	
C71	ECUV1H330JCV	33p	

Ref. No.	Part No.	Part Name & Description	Remarks
C72	ECUV1C103KBV	0.01	
C73	ECUV1C103KBV	0.01	
C74	ECUV1C473KBV	0.047	
C75	ECUV1H103KBV	0.01	
C76	ECUV1H471JCV	470p	
C77	ECUV1H471JCV	470p	
C84	ECUV1C103KBV	0.01	
C85	ECUV1A105ZFV	1	
C86	ECUV1C103KBV	0.01	
C88	ECUV1C103KBV	0.01	

24.3. ACCESSORIES AND PACKING MATERIALS

Ref. No.	Part No.	Part Name & Description	Remarks
<u>A1</u>	PQLV16CEZ	AC ADAPTOR	Δ
<u>A2</u>	PQQX13189Z	INSTRUCTION BOOK	
<u>A3</u>	PQJA10147Z	TEL CORD	
<u>P1</u>	PQPP10090Z	POLY BAG (for Base Unit)	
<u>P2</u>	PQPP10091Z	POLY BAG (for Handset)	
<u>P3</u>	PQPP10092Z	POLY BAG	
<u>P4</u>	PQPK13691Z	GIFT BOX	

25. FOR SCHEMATIC DIAGRAM

25.1. Base Unit (SCHEMATIC DIAGRAM (Base Unit))

- 1. DC voltage measurements are taken with an oscilloscope or a tester with a ground.
- 2. The schematic diagrams and circuit board may be modified at any time with the development of new technology.

Important Safety Notice:

Components identified by \(\triangle \) mark have special characteristics important for safety. When replacing any of these components, use only the manufacturer's specified parts.

25.2. Handset (SCHEMATIC DIAGRAM (Handset))

- 1. DC voltage measurements are taken with an oscilloscope or a tester with a ground.
- 2. The schematic diagrams and circuit board may be modified at any time with the development of new technology.

26. SCHEMATIC DIAGRAM (Base Unit)

26.1. Base Unit

- 26.2. RF Unit (Base Unit)
- 27. SCHEMATIC DIAGRAM (Handset)
- 27.1. Handset
- 27.2. RF Unit (Handset)
- 28. CIRCUIT BOARD (Base Unit)
- 28.1. Component View
- 28.2. Flow Solder Side View
- 29. CIRCUIT BOARD (Handset)
- 29.1. Component View
- 29.2. Flow Solder Side View
- H.M / KX-TC1200NLB

KX-TC1200NLB BLOCK DIAGRAM (BASE UNIT)

KX-TC1200NLB SCHEMATIC DIAGRAM (Handset)

