ring-constituting carbon atom.

V represents nitrogen atom, or carbon atom substituted with Zx, Zx is any one of fluorine atom, methyl group, hydroxyl group, amino group, N·methylamino group, or N,N·dimethylamino group,

Rs represents 'D'Rx and D represents a single bond. Rx is butyl group, isobutyl group, 2-ethylbutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclopentylmethyl group, cyclohexylmethyl group, phenyl group, 2-methylphenyl group, 3-methylphenyl group, 4-methylphenyl group, 2,3-dimethylphenyl group, 3,5-dimethylphenyl group, 2-methoxyphenyl group, 3-methoxyphenyl group, 4-methoxyphenyl group, 2-fluorophenyl group, 3-fluorophenyl group, 4-fluorophenyl group, 2-chlorophenyl group, 3-chlorophenyl group, 4-chlorophenyl group, 2,3-difluorophenyl group, 2,4-difluorophenyl group, 2,5-difluorophenyl group, 3,4-difluorophenyl group, 2,3-dichlorophenyl group, 2.4-dichlorophenyl group, 2,5-dichlorophenyl group, 2,6-dichlorophenyl group, 3.4-dichlorophenyl group, 3.5-dichlorophenyl group, 2-trifluoromethylphenyl group, 3-trifluoromethylphenyl group, 4-trifluoromethylphenyl group, 4-(N,N-dimethylamino)phenyl group, indan-2-yl group, 4-methylindan-2-yl group, 5-methylindan-2-yl group, 4,7-dimethylindan-2-yl group, 5,6-dimethylindan-2-yl group, 4-fluoroindan-2-yl group, 5-fluoroindan-2-yl group, 4,7-difluoroindan-2-yl group, 5,6-difluoroindan-2-yl group, 4-chloroindan-2-yl group, 5-chloroindan-2-yl group, 4.7-dichloroindan-2-yl group, 5,6-dichloroindan-2-yl group, 4-methoxyindan-2-yl group, 5-methoxyindan-2-yl group, 4,7-dimethoxyindan-2-yl group, 5.6-dimethoxyindan-2-vl group, furan-2-vl group, furan-3-vl group, thiophen-2-yl group, thiophen-3-yl group, pyridin-2-yl group, pyridin-3-yl group, nyridin-4-yl group, naphthalen-1-yl group, naphthalen-2-yl group, 1H-indol-5-yl group, 1-methyl-1H-indol-5-yl group, 1H-indazol-5-yl group, 1-methyl-1H-indazol-5-yl group, biphenyl-2-yl group, biphenyl 3-yl group,

binhenyl-4-yl group, 1-phenylethyl group, 1-(2-fluorophenyl)ethyl group,

- 1-(3-fluorophenyl)ethyl group, 1-(4-fluorophenyl)ethyl group,
- 1-(2-chlorophenyl)ethyl group, 1-(3-chlorophenyl)ethyl group,
- $\hbox{$1\cdot(4$-chlorophenyl)$ethyl group, 2-methyl phenylmethyl group, 3-methyl phenylmethyl group, 2-methyl phenylmethyl group, 2-methyl phenylmethyl group, 2-methyl phenylmethyl group, 2-methyl group,$
- ${\tt group, 4-methylphenylmethyl group, 2,3-dimethylphenylmethyl group,}$
- 3,5-dimethylphenylmethyl group, 2-fluorophenylmethyl group,
- ${\small 3-fluorophenylmethyl\ group,\ 4-fluorophenylmethyl\ group,\ 2-chlorophenylmethyl\ group,\ 2$
- group, 3-chlorophenylmethyl group, 4-chlorophenylmethyl group,
- 2,3-difluorophenylmethyl group, 2,4-difluorophenylmethyl group,
- 2,5-difluorophenylmethyl group, 3,4-difluorophenylmethyl group,
- 2,3-dichlorophenylmethyl group, 2,4-dichlorophenylmethyl group,
- 2,5-dichlorophenylmethyl group, 2,6-dichlorophenylmethyl group,
- 3.4-dichlorophenylmethyl group, 3.5-dichlorophenylmethyl group,
- 2-(trifluoromethyl)phenylmethyl group, 3-(trifluoromethyl)phenylmethyl group,
- 4-(trifluoromethyl)phenylmethyl group, 2-(2-methylphenyl)ethyl group,
- 2-(3-methylphenyl)ethyl group, 2-(4-methylphenyl)ethyl group,
- 2-(2-methoxyphenyl)ethyl group, 2-(3-methoxyphenyl)ethyl group,
- 2-(4-methoxyphenyl)ethyl group, 2-(2-fluorophenyl)ethyl group,
- 2-(3-fluorophenyl)ethyl group, 2-(4-fluorophenyl)ethyl group,
- 2-(2-chlorophenyl)ethyl group, 2-(3-chlorophenyl)ethyl group,
- 2-(4-chlorophenyl)ethyl group, 2-[2-(trifluoromethyl)phenyl]ethyl group,
- 2-[3-(trifluoromethyl)phenyllethyl group, 2-[4-(trifluoromethyl)phenyllethyl group,
- 2-[4-(N.N-dimethylamino)phenyl]ethyl group, 2-phenyloxyethyl group,
- 2-(2-chlorophenyloxy)ethyl group, 2-(3-chlorophenyloxy)ethyl group,
- 2-(4-chlorophenyloxy)ethyl group, 2-(phenylthio)ethyl group,
- 2-(N-phenyl-N-methylamino)ethyl group, or 2-(N-ethyl-N-phenylamino)ethyl group,

AR is naphthalen-2-yl group, 6-hydroxynaphthalen-2-yl group,

```
6-methoxynaphthalen-2-yl group, 6-(2-hydroxyethyloxy)naphthalen-2-yl group,
6-aminonaphthalen-2-vl group, 6-(N-methylamino)naphthalen-2-vl group,
6-(N,N-dimethylamino)naphthalen-2-yl group,
6-(2-hydroxyethylamino)naphthalen-2-yl group, benzo[b]furan-5-yl group,
2-methylbenzo[b]furan-5-yl group, 3-methylbenzo[b]furan-5-yl group,
2,3-dimethylbenzo[b]furan-5-yl group, benzo[b]thiophen-5-yl group,
2-methylbenzo[b]thiophen-5-yl group, 3-methylbenzo[b]thiophen-5-yl group,
2,3-dimethylbenzo[b]thiophen-5-yl group, 1H-indol-5-yl group,
2-methyl-1H-indol-5-vl group, 3-methyl-1H-indol-5-vl group,
2,3-dimethyl-1H-indol-5-yl group, 1-methyl-1H-indol-5-yl group,
1,2-dimethyl-1H-indol-5-yl group, 1,3-dimethyl-1H-indol-5-yl group,
1.2.3-trimethyl-1H-indol-5-yl group, 1-ethyl-1H-indol-5-yl group,
1-ethyl-2-methyl-1H-indol-5-yl group, 1-ethyl-3-methyl-1H-indol-5-yl group,
1-ethyl-2,3-dimethyl-1H-indol-5-yl group, 1-propyl-1H-indol-5-yl group,
2-methyl-1-propyl-1H-indol-5-yl group, 3-methyl-1-propyl-1H-indol-5-yl group,
2.3-dimethyl-1-propyl-1H-indol-5-yl group, 1-(2-hydroxyethyl)-1H-indol-5-yl group,
1-(2-hydroxyethyl)-2-methyl-1H-indol-5-yl group,
1-(2-hvdroxyethyl)-3-methyl-1H-indol-5-yl group,
2.3-dimethyl-1-(2-hydroxyethyl)-1H-indol-5-yl group, benzothiazol-6-yl group,
2-methylbenzothiazol-6-yl group, 2-methoxybenzothiazol-6-yl group,
2-aminobenzothiazol-6-yl group, 2-oxo-2,3-dihydrobenzothiazol-6-yl group,
2-oxo-3-methyl-2,3-dihydrobenzothiazol-6-yl group,
2-thioxo-2.3-dihydrobenzothiazol-6-vl group.
2-thioxo-3-methyl-2,3-dihydrobenzothiazol-6-yl group, quinolin-3-yl group,
quinolin-6-yl group, 2-oxo-1,2-dihydroquinolin-6-yl group, benzo[d]isothiazol-5-yl
group, 1H-indazol-5-yl group, 1-methyl-1H-indazol-5-yl group,
```

1-ethyl-1H-indazol-5-yl group, 1-propyl-1H-indazol-5-yl group,

1-(2-hydroxyethyl)-1H-indazol-5-yl group, 3-hydroxy-1H-indazol-5-yl group,
3-hydroxy-1-methyl-1H-indazol-5-yl group, 1-ethyl-3-hydroxy-1H-indazol-5-yl group,
imidazo[1,2-a]pyridin-6-yl group, 1H-pyrrolo[2,3-b]pyridin-5-yl group,
1-methyl-1H-pyrrolo[2,3-b]pyridin-5-yl group, 1-ethyl-1H-pyrrolo[2,3-b]pyridin-5-yl
group, 1-propyl-1H-pyrrolo[2,3-b]pyridin-5-yl group,
1-(2-hydroxyethyl)-1H-pyrrolo[2,3-b]pyridin-5-yl group, isoquinolin-6-yl group,
1-oxo-1,2-dihydroisoquinolin-6-yl group, cinnolin-6-yl group, or benzoxazol-5-yl
group, and

Y is hydrogen atom, methyl group, or ethyl group.

In another particularly preferred embodiment of the present invention, the compound represented by the formula (I) or a salt thereof satisfies all of the following requirements.

Link represents -(CH2)n-, symbol n represents an integer of 2.

C³ represents carbon atom to which AR bonds, C⁴ represents carbon atom to which Rs bonds, C⁵ may be replaced with V, and C² and C⁶ represent unsubstituted ring constituting carbon atom.

V represents nitrogen atom, or carbon atom substituted with Zx, Zx is any one of fluorine atom, methyl group, hydroxyl group, amino group, N·methylamino group, or N,N·dimethylamino group,

Rs represents 'D'Rx and D' represents a single bond. Rx is phenyl group, 2-methylphenyl group, 3-methylphenyl group, 4-methylphenyl group, 2,3-dimethylphenyl group, 2,3-dimethylphenyl group, 2-methoxyphenyl group, 3-methoxyphenyl group, 4-methoxyphenyl group, 2-fluorophenyl group, 3-chlorophenyl group, 3-chlorophenyl group, 3-chlorophenyl group, 4-chlorophenyl group, 2,3-difluorophenyl group, 2,4-difluorophenyl group, 2,5-difluorophenyl group, 2,3-dichlorophenyl group, 2,4-dichlorophenyl group, 2,4-dichlorophenyl group, 2,5-dichlorophenyl group, 2,6-dichlorophenyl group, 2,6-dichloro

3,4-dichlorophenyl group, 3,5-dichlorophenyl group, 2-trifluoromethylphenyl group,
3-trifluoromethylphenyl group, 4-trifluoromethylphenyl group,
4-(N,N-dimethylamino)phenyl group, indan-2-yl group, 4-methylindan-2-yl group,
5-methylindan-2-yl group, 4,7-dimethylindan-2-yl group, 5,6-dimethylindan-2-yl group, 4-fluoroindan-2-yl group, 5-fluoroindan-2-yl group, 5-fluoroindan-2-yl group, 5-fluoroindan-2-yl group, 5-fluoroindan-2-yl group, 5-fluoroindan-2-yl group, 5-fluoroindan-2-yl group, 4,7-dichloroindan-2-yl group, 5-fluoroindan-2-yl group, 4-fluoroindan-2-yl group, 5-fluoroindan-2-yl group, 4-fluoroindan-2-yl group, 5-fluoroindan-2-yl group, 4-fluoroindan-2-yl group, 5-fluoroindan-2-yl group, 5-fluoroindan-2-yl group, fluoroindan-2-yl group, fluoroindan-2-yl group, pyridin-2-yl group, pyridin-3-yl group,
pyridin-4-yl group, naphthalen-1-yl group, naphthalen-2-yl group, 1H-indol-5-yl group, 1-methyl-1H-indol-5-yl group, 6-flydroxynaphthalen-2-yl group,
AR is naphthalen-2-yl group, 6-flydroxynaphthalen-2-yl group,

6-methoxynaphthalen-2-yl group, 6-(2-hydroxyethyloxy)naphthalen-2-yl group,
6-aminonaphthalen-2-yl group, 6-(N-methylamino)naphthalen-2-yl group,
6-(N,N-dimethylamino)naphthalen-2-yl group,
6-(2-hydroxyethylamino)naphthalen-2-yl group,
6-(2-hydroxyethylamino)naphthalen-2-yl group,
2-methylbenzo[b]furan-5-yl group, 3-methylbenzo[b]furan-5-yl group,
2-methylbenzo[b]furan-5-yl group, 3-methylbenzo[b]thiophen-5-yl group,
2-methylbenzo[b]thiophen-5-yl group, 1-methyl-1-findol-5-yl group,
2-methyl-1-findol-5-yl group, 3-methyl-1-findol-5-yl group,
2-methyl-1-findol-5-yl group, 1-methyl-1-findol-5-yl group,
1,2-dimethyl-1-findol-5-yl group, 1,3-dimethyl-1-findol-5-yl group,
1,2-3-trimethyl-1-findol-5-yl group, 1-ethyl-1-findol-5-yl group,
1-ethyl-2-methyl-1-findol-5-yl group, 1-ethyl-3-methyl-1-findol-5-yl group,

```
1-ethyl-2,3-dimethyl-1H-indol-5-yl group, 1-propyl-1H-indol-5-yl group,
2-methyl-1-propyl-1H-indol-5-yl group, 3-methyl-1-propyl-1H-indol-5-yl group,
2,3-dimethyl-1-propyl-1H-indol-5-yl group, 1-(2-hydroxyethyl)-1H-indol-5-yl group,
1-(2-hydroxyethyl)-2-methyl-1H-indol-5-yl group,
1-(2-hydroxyethyl)-3-methyl-1H-indol-5-yl group.
2,3-dimethyl-1-(2-hydroxyethyl)-1H-indol-5-yl group, benzothiazol-6-yl group.
2-methylbenzothiazol-6-yl group, 2-methoxybenzothiazol-6-yl group,
2-aminobenzothiazol-6-yl group, 2-oxo-2,3-dihydrobenzothiazol-6-yl group,
2-oxo-3-methyl-2.3-dihydrobenzothiazol-6-yl group,
2-thioxo-2,3-dihydrobenzothiazol-6-yl group,
2-thioxo-3-methyl-2.3-dihydrobenzothiazol-6-yl group, quinolin-3-yl group,
quinolin-6-yl group, 2-oxo-1,2-dihydroquinolin-6-yl group, benzo[d]isothiazol-5-yl
group, 1H-indazol-5-vl group, 1-methyl-1H-indazol-5-yl group,
1-ethyl-1H-indazol-5-yl group, 1-propyl-1H-indazol-5-yl group,
1-(2-hvdroxyethyl)-1H-indazol-5-vl group, 3-hydroxy-1H-indazol-5-yl group,
3-hydroxy-1-methyl-1H-indazol-5-yl group, 1-ethyl-3-hydroxy-1H-indazol-5-yl group,
imidazo[1.2-a]pyridin-6-vl group, 1H-pyrrolo[2,3-b]pyridin-5-yl group,
1-methyl-1H-pyrrolo[2,3-b]pyridin-5-yl group, 1-ethyl-1H-pyrrolo[2,3-b]pyridin-5-yl
group, 1-propyl-1H-pyrrolo[2,3-b]pyridin-5-yl group,
1-(2-hydroxyethyl)-1H-pyrrolo[2,3-b]pyridin-5-yl group, isoquinolin-6-yl group,
1.oxo-1.2-dihydroisoguinolin-6-yl group, cinnolin-6-yl group, or benzoxazol-5-yl
group, and
```

Y is hydrogen atom, methyl group, or ethyl group.

In another particularly preferred embodiment of the present invention, the compound represented by the formula (I) or a salt thereof satisfies all of the following requirements.

Link represents -(CH2)n-, symbol n represents an integer of 2.

 ${
m C}^3$ represents carbon atom to which AR bonds, ${
m C}^4$ represents carbon atom to which Rs bonds, and ${
m C}^2$, ${
m C}^5$, and ${
m C}^6$ represent unsubstituted ring constituting carbon atom.

Rs represents 'D'Rx and D' represents a single bond. Rx is phenyl group, 2-methylphenyl group, 3-methylphenyl group, 4-methylphenyl group, 2,3-dimethylphenyl group, 2-methoxyphenyl group, 3-methoxyphenyl group, 4-methoxyphenyl group, 2-fluorophenyl group, 3-fluorophenyl group, 4-fluorophenyl group, 2-chlorophenyl group, 3-chlorophenyl group, 3-chlorophenyl group, 3-chlorophenyl group, 2,5-difluorophenyl group, 2,4-difluorophenyl group, 2,5-difluorophenyl group, 2,4-dichlorophenyl group, 3,4-dichlorophenyl group, 2,5-dichlorophenyl group, 3,4-dichlorophenyl group, 3,5-dichlorophenyl group, 2,5-dichlorophenyl group, 3-trifluoromethylphenyl group, 3-trifluoromethylphenyl group, 3-trifluoromethylphenyl group, 4-fluoromethylphenyl group, 4-fluoromethylphenyl group, pyridin-3-yl group, pyridin-4-yl group, naphthalen-1-yl group, naphthalen-2-yl group, th-indazol-5-yl group, to 1-methyl-1H-indazol-5-yl group, or

AR is naphthalen-2-yl group, 6-hydroxynaphthalen-2-yl group,
6-methoxynaphthalen-2-yl group, 6-(2-hydroxyethyloxy)naphthalen-2-yl group,
6-aminonaphthalen-2-yl group, 6-(N.methylamino)naphthalen-2-yl group,
6-(N,N-dimethylamino)naphthalen-2-yl group,
6-(2-hydroxyethylamino)naphthalen-2-yl group, benzo[b]furan-5-yl group,
2-methylbenzo[b]furan-5-yl group, 3-methylbenzo[b]furan-5-yl group,
2,3-dimethylbenzo[b]furan-5-yl group, 3-methylbenzo[b]thiophen-5-yl group,
2-methylbenzo[b]thiophen-5-yl group, 3-methylbenzo[b]thiophen-5-yl group,
2,3-dimethylbenzo[b]thiophen-5-yl group, 1H-indol-5-yl group,

```
2-methyl-1H-indol-5-vl group, 3-methyl-1H-indol-5-vl group,
```

- 2.3-dimethyl-1H-indol-5-yl group, 1-methyl-1H-indol-5-yl group,
- 1,2-dimethyl-1H-indol-5-yl group, 1,3-dimethyl-1H-indol-5-yl group,
- 1.2.3-trimethyl-1H-indol-5-yl group, 1-ethyl-1H-indol-5-yl group,
- 1-ethyl-2-methyl-1H-indol-5-yl group, 1-ethyl-3-methyl-1H-indol-5-yl group,
- 1-ethyl-2.3-dimethyl-1H-indol-5-yl group, 1-propyl-1H-indol-5-yl group,
- 2-methyl-1-propyl-1H-indol-5-yl group, 3-methyl-1-propyl-1H-indol-5-yl group,
- 2.3-dimethyl-1-propyl-1H-indol-5-yl group, 1-(2-hydroxyethyl)-1H-indol-5-yl group,
- 1-(2-hydroxyethyl)-2-methyl-1H-indol-5-yl group,
- 1-(2-hvdroxyethyl)-3-methyl-1H-indol-5-vl group,
- 2.3-dimethyl-1-(2-hydroxyethyl)-1H-indol-5-yl group, benzothiazol-6-yl group,
- 2-methylbenzothiazol-6-yl group, 2-methoxybenzothiazol-6-yl group,
- 2-aminobenzothiazol-6-yl group, 2-oxo-2,3-dihydrobenzothiazol-6-yl group,
- 2-oxo-3-methyl-2,3-dihydrobenzothiazol-6-yl group,
- 2-thioxo-2.3-dihydrobenzothiazol-6-vl group,
- 2-thioxo-3·methyl-2,3·dihydrobenzothiazol-6·yl group, quinolin-3·yl group, quinolin-6·yl group, 2·oxo-1,2·dihydroquinolin-6·yl group, benzo[d]isothiazol-5·yl group, 1H·indazol-5·yl group, 1·methyl-1H·indazol-5·yl group,
- 1-ethyl-1H-indazol-5-vl group, 1-propyl-1H-indazol-5-vl group,
- 1-(2-hydroxyethyl)-1H-indazol-5-yl group, 3-hydroxy-1H-indazol-5-yl group,
- $3\cdot hydroxy\cdot 1\cdot methyl\cdot 1H\cdot indazol\cdot 5\cdot yl\ group,\ 1\cdot ethyl\cdot 3\cdot hydroxy\cdot 1H\cdot indazol\cdot 5\cdot yl\ group,$
- imidazo[1,2-a]pyridin-6-vl group, 1H-pyrrolo[2,3-b]pyridin-5-yl group,
- 1-methyl-1H-pyrrolo[2,3-b]pyridin-5-yl group, 1-ethyl-1H-pyrrolo[2,3-b]pyridin-5-yl group, 1-propyl-1H-pyrrolo[2,3-b]pyridin-5-yl group,
- 1-(2-hydroxyethyl)-1H-pyrrolo[2,3-b]pyridin-5-yl group, isoquinolin-6-yl group,
- 1-oxo-1,2-dihydroisoquinolin-6-yl group, cinnolin-6-yl group, or benzoxazol-5-yl group, and

Y is hydrogen atom, methyl group, or ethyl group.

Compound (I) of the present invention may have one or more asymmetric carbons depending on types of substituents. For example, as for a compound wherein the group Rs contains one or more asymmetric carbons, two kinds of optical isomers exist when the number of asymmetric carbon is 1, and when the number of asymmetric carbons is 2, four kinds of optical isomers and two kinds of diastereomers exist. Pure stereoisomers including optical isomers and diastereoisomers, any mixtures thereof, racemates and the like of the stereoisomers fall within the scope of the present invention. Further, Compound (I) of the present invention may exist as geometrical isomers based on a cycloalkyl ring structure, and any geometrical isomers in pure forms, and any mixtures of the geometrical isomers also fall within the scope of the present invention. Mixtures such as racemates may sometimes be preferred from a viewpoint of easiness for manufacture.

As a salt of Compound (I) of the present invention, a pharmaceutically acceptable salt is preferred. It is meant that, when at least one of the conditions (1) to (3) is satisfied: (1) Y is hydrogen atom; (2) the group AR contains carboxyl group or phenolic hydroxyl group; (3) the group Zx is phenolic hydroxyl group, and the like, then the compound forms 1 to 3 alkali salts depending on the number of acidic groups. Examples the alkali salts include, for example, salts with inorganic bases such as sodium and ammonia and salts with organic bases such as triethylamine.

Alternatively, it is meant that, when at least one of the conditions (1) to (4) is satisfied: (1) the group Rs has properties as a base as in a compound wherein Rs contains a substituted or unsubstituted amino group and the like; (2) AR itself is a cyclic substituent having properties as a base; (3) the group Ar contains a substituted or unsubstituted amino group; (4) any carbon atom in the aromatic ring (E) is replaced with V, and V is nitrogen atom, V is carbon atom substituted with Zx, and Zx is a substituted or unsubstituted amino group and the like, then the

compound forms 1 to 4 acidic salts depending on the number of basic groups.

Examples of the acidic salts include, for example, salts with inorganic acids such as hydrochloric acid and sulfuric acid and salts with organic acids such as acetic acid and citric acid.

C², C³, C⁴, C⁶, and C⁶ in the aromatic ring (E') in the aforementioned formula (II) each represent a ring constituting carbon atom. Among them, any ring constituting carbon atom to which Rs' and G do not bind may be replaced with V. The substitution positions of Rs', G, and V are similar to those described in the explanations of the substitution positions of Rs (corresponding to the position of Rs'), AR (corresponding to the position of the group G), and V (corresponding to the position of V') in the aforementioned formula (I).

V' represents nitrogen atom, or represents carbon atom substituted with Zx'.

Zx' has the same meaning as that of Zx, provided that when Zx contains hydroxyl
group (OH), the hydroxyl group may be protected with Rp1, and when Zx contains
amino group (NH), the amino group may be protected with Rp2.

Rs' represents 'D·Rx' or 'N(Ry')(Rz'). 'D·Rx' and 'N(Ry')(Rz') have the same meanings as those of 'D·Rx and 'N(Ry)(Rz) mentioned above, respectively. Provided that when 'D·Rx and 'N(Ry)(Rz) contain hydroxyl group, the hydroxyl group may be protected with Rp^1 , and when 'D·Rx and 'N(Ry)(Rz) contains amino group (NH), the amino group may be protected with Rp^2 .

Rp¹ represents, for example, a silyl group substituted with 3 of identical or different linear or branched saturated alkyl groups having 1 to 4 carbon atoms or phenyl groups, tetrahydropyranyl group, tetrahydrofuryl group, allyl group, propargyl group, benzyl group which may be substituted with one T¹ or two or more identical or different T¹, ·CH₂·U·Rp³, ·C(O)Rp³, ·C(O)ORp³, or the like. U represents oxygen atom, or sulfur atom, and Rp³ represents hydrogen atom, a linear or branched saturated alkyl group having 1 to 4 carbon atoms, trimethylsilylethyl

group, chloromethyl group, trichloromethyl group, trifluoromethyl group,
9-fluorenylmethyl group, adamantyl group, allyl group, -A⁶-Qp, or the like. Rp²
represents, for example, benzyl group which may be substituted with one of T¹ or two
or more of identical or different T¹, -C(O)Rp³, -C(O)ORp³, or the like. However, the
protective groups of hydroxyl group and amino group are not limited to these, and
they can be chosen by referring and examining methods for introduction of protective
groups and deprotection described in usual publications in the chemical field, for
example, Protective Groups In Organic Synthesis, THIRD EDITION, published by
John Wiley & Sons or the references cited therein.

G represents chlorine atom, bromine atom, iodine atom, mesylate group, triflate group, or an arenesulfonate group of which aromatic moiety may be substituted with one of T^1 or two or more identical or different T^1 . Examples of the arenesulfonate group include, for example, benzenesulfonate group, p-toluenesulfonate group, mesitylenesulfonate group,

2,5 dichlorobenzenesulfonate group, 3 (trifluoromethyl)benzenesulfonate group, pentafluorobenzenesulfonate group, 2 nitrobenzenesulfonate group,

2,4,6-triisopropylbenzenesulfonate group, 4-fluorobenzenesulfonate group,

2,4-dinitrobenzenesulfonate group, and the like. Preferred examples of G include chlorine atom, bromine atom, iodine atom, triflate group, and the like, and bromine atom and iodine atom are particularly preferred examples.

Y represents a lower alkyl group having 1 to 4 carbon atoms. Examples of the lower alkyl group having 1 to 4 carbon atoms include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, trbutyl group, and the like. Among these, methyl group, and ethyl group are particularly preferred examples.

In the aforementioned formula (II), ${\bf n}$ and ${\bf D}$ have the same meaning as defined above.

In a preferred embodiment, the compound represented by the formula (II) satisfies all of the following requirements.

Symbol n represents an integer of 1 to 3.

The group G binds to C^{g} , Rs' binds to any of the atoms C^{g} , C^{g} and C^{g} , and a ring constituting carbon atom to which Rs' does not bind among C^{g} , C^{g} , and C^{g} may be substituted with V'.

V' represents nitrogen atom, or carbon atom substituted with Zx', and Zx'
represents any one of fluorine atom, chlorine atom, bromine atom, nitro group,
methyl group, hydroxyl group, methoxy group, amino group, N-methylamino group,
N-ethylamino group, N-propylamino group, N-isopropylamino group,
N,N-dimethylamino group, N,N-diethylamino group, formylamino group,
acetylamino group, carbamoylamino group, mesylamino group, and
N,N-dimethylsulfamoylamino group, provided that when Zx' contains hydroxyl
group, the hydroxyl group may be protected with Rp¹, and when the substituted Zx'
contains amino group, the amino group may be protected with Rp².

Rs' represents 'D·Rx' or 'N(Ry')(Rz'). D represents oxygen atom or sulfur atom. Rx' represents butyl group, isobutyl group, 2-ethylbutyl group, cyclopentyl group, cyclohexyl group, cyclohexyl group, cyclohexyl group, cyclohexylethyl group, or 2-cyclohexylethyl group, or represents Rb or Rc. Q in Rb represents a group as any one of phenyl group, thienyl group, furyl group, pyridyl group, oxazolyl group, naphthyl group, tetrahydronaphthyl group, indanyl group, indolyl group, and dihydrobenzodioxyl group. A² represents a single bond, oxygen atom, sulfur atom, 'N(methyl)-, or 'N(ethyl)- (provided that when A² represents oxygen atom, sulfur atom, 'N(methyl)-, or 'N(ethyl)-, A¹ represents ethylene). R² and R³ independently represent hydrogen atom, methyl group, fluorine atom, chlorine atom, trifluoromethyl group, methoxy group, dimethylamino group, acetylamino group, or methylsulfonylamino group

(provided that when Q represents phenyl group, A1 represents a single bond, or unsubstituted methylene, and A2 represents a single bond, one of R2 and R3 represents a substituent other than hydrogen atom). Symbol p in Rc represents an integer of 2 or 3, and A4 represents a single bond or methylene. A5 represents -C(O)-, -C(S)-, or -S(O)2-. Rd represents hydrogen atom, or a group as any one of methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, cyclopropyl group, cyclopropylmethyl group, cyclopentyl group, cyclopentylmethyl group, cyclohexyl group, cyclohexylmethyl group, phenyl group, 4-methylphenyl group, 4-chlorophenyl group, 4-fluorophenyl group, benzyl group, 4-chlorophenylmethyl group, 4-fluorophenylmethyl group, pyridin-2-yl group, pyridin-3-yl group, and pyridin-4-yl group. Re represents any one of methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, t-butyl group, cyclopropyl group, cyclopentyl group, cyclohexyl group, cyclopentylmethyl group, cyclohexylmethyl group, phenyl group, 4-methylphenyl group, 4-chlorophenyl group, 4-fluorophenyl group, phenylmethyl group, 4-chlorophenylmethyl group, 4-fluorophenylmethyl group, pyridin-2-yl group, pyridin-3-yl group, pyridin-4-yl group, furan-2-yl group, furan-3-yl group, thiophen-2-yl group, thiophen-3-yl group, methoxy group, ethoxy group, propyloxy group, isopropyloxy group, butyloxy group, isobutyloxy group, t-butyloxy group, cyclopropyloxy group, cyclopentyloxy group, cyclohexyloxy group, cyclopentylmethyloxy group, cyclohexylmethyloxy group, phenyloxy group, 4-methylphenyloxy group, 4-chlorophenyloxy group, 4-fluorophenyloxy group, thiomethoxy group, amino group, N-methylamino group, N.N-dimethylamino group, N-ethylamino group, N,N-diethylamino group, N-propylamino group, N-isopropylamino group, N-butylamino group, N-isobutylamino group, N-t-butylamino group, N-cyclopropylamino group, N-cyclopentylamino group, N-cyclohexylamino group, N-phenylamino group, N-(4-methylphenyl)amino group, N-(4-chlorophenyl)amino group,

N-(4-fluorophenyl)amino group, N-(pyridin-2-yl)amino group, N-(pyridin-3-yl)amino group, N-(pyridin-4-yl)amino group, N-(furan-2-yl)amino group, N-(furan-3-yl)amino group, N-(thiophen-2-yl)amino group, N-(thiophen-3-yl)amino group, pyrrolidino group, piperidino group, morpholino group, methyloxycarbonylamino group, and ethyloxycarbonylamino group. Rz' represents any one of butyl group, isobutyl group, 2-ethylbutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclopentylmethyl group, cyclohexylmethyl group, 2-methylphenyl group, 4-methylphenyl group, 2-fluorophenyl group, 3-fluorophenyl group, 4-fluorophenyl group, 2-chlorophenyl group, 3-chlorophenyl group, 4-chlorophenyl group, indan-2-yl group, 4-methylindan-2-yl group, 5-methylindan-2-yl group, 4,7-dimethylindan-2-yl group, 5,6 dimethylindan 2-yl group, 4 fluoroindan 2-yl group, 5 fluoroindan 2-yl group, 4,7-difluoroindan-2-yl group, 5,6-difluoroindan-2-yl group, 4-chloroindan-2-yl group, 5-chloroindan-2-vl group, 4,7-dichloroindan-2-vl group, 5.6-dichloroindan-2-vl group, 4-methoxyindan-2-vl group, 5-methoxyindan-2-vl group, 4.7-dimethoxyindan-2-vl group, 5.6-dimethoxyindan-2-vl group, 1-phenylethyl group, 1-(2-fluorophenyl)ethyl group, 1-(3-fluorophenyl)ethyl group, 1-(4-fluorophenyl)ethyl group, 1-(2-chlorophenyl)ethyl group, 1-(3-chlorophenyl)ethyl group, 1-(4-chlorophenyl)ethyl group, 2-methylphenylmethyl group, 3-methylphenylmethyl group, 4-methylphenylmethyl group, 2.3-dimethylphenylmethyl group, 3.5-dimethylphenylmethyl group, 2-fluorophenylmethyl group, 3-fluorophenylmethyl group, 4-fluorophenylmethyl group, 2-chlorophenylmethyl group, 3-chlorophenylmethyl group, 4-chlorophenylmethyl group, 2,3-difluorophenylmethyl group, 2,4-difluorophenylmethyl group, 2,5-difluorophenylmethyl group, 3,4-difluorophenylmethyl group, 2,3-dichlorophenylmethyl group, 2.4-dichlorophenylmethyl group, 2,5-dichlorophenylmethyl group, 2.6-dichlorophenylmethyl group, 3.4-dichlorophenylmethyl group,

- 3.5-dichlorophenylmethyl group, 3,6-dichlorophenylmethyl group,
- 2-(trifluoromethyl)phenylmethyl group, 3-(trifluoromethyl)phenylmethyl group,
- 4-(trifluoromethyl)phenylmethyl group, 2-(2-methylphenyl)ethyl group,
- 2-(3-methylphenyl)ethyl group, 2-(4-methylphenyl)ethyl group,
- 2-(2-methoxyphenyl)ethyl group, 2-(3-methoxyphenyl)ethyl group,
- 2-(4-methoxyphenyl)ethyl group, 2-(2-fluorophenyl)ethyl group,
- 2-(3-fluorophenyl)ethyl group, 2-(4-fluorophenyl)ethyl group,
- 2-(2-chlorophenyl)ethyl group, 2-(3-chlorophenyl)ethyl group,
- 2-(4-chlorophenyl)ethyl group, 2-[2-(trifluoromethyl)phenyl]ethyl group,
- 2-[3-(trifluoromethyl)phenyl]ethyl group, 2-[4-(trifluoromethyl)phenyl]ethyl group,
- 2-[4-(N.N-dimethylamino)phenyllethyl group, 2-phenyloxyethyl group,
- 2-(2-chlorophenyloxy)ethyl group, 2-(3-chlorophenyloxy)ethyl group,
- 2-(4-chlorophenyloxy)ethyl group, 2-(phenylthio)ethyl group,
- 2-(N-phenyl-N-methylamino)ethyl group, 2-(N-ethyl-N-phenylamino)ethyl group, isobutyryl group, isopropylthiocarbonyl group, isopropylsulfonyl group, valeryl group, butylthiocarbonyl group, isovaleryl group, isobutylthiocarbonyl group,
- pivaloyl group, t-butylthiocarbonyl group, cyclopropylcarbonyl group,
- $cyclopropyl thio carbonyl\ group,\ cyclopentyl carbonyl\ group,\ cyclopentyl thio carbonyl\ group,\ cyclopentyl\ group,\ cyclopentyl thio carbonyl\ group,\ cyclopentyl\ group,\ g$
- group, cyclohexylcarbonyl group, cyclohexylthiocarbonyl group,
- cyclopentylmethylcarbonyl group, cyclopentylmethylthiocarbonyl group,
- cyclohexylmethylcarbonyl group, cyclohexylmethylthiocarbonyl group, benzoyl
- group, thiobenzoyl group, phenylsulfonyl group, 4-methylphenylcarbonyl group,
- 4-methylphenylthiocarbonyl group, 4-methylphenylsulfonyl group,
- 4-chlorophenylcarbonyl group, 4-chlorophenylthiocarbonyl group,
- 4-fluorophenylcarbonyl group, 4-fluorophenylthiocarbonyl group,
- isopropyloxycarbonyl group, N-isopropylcarbamoyl group, N-isopropylthiocarbamoyl group, butyloxycarbonyl group, N-butylcarbamoyl group, N-butylthiocarbamoyl

group, isobutyloxycarbonyl group, N-isobutylcarbamoyl group, N-isobutylthiocarbamoyl group, t-butyloxycarbonyl group, N-t-butylcarbamoyl group, N-t-butylthiocarbamoyl group, cyclopropyloxycarbonyl group, N-cyclopropylcarbamoyl group, N-cyclopropylthiocarbamoyl group, cyclopentyloxycarbonyl group, N-cyclopentylcarbamoyl group, N-cyclopentylthiocarbamoyl group, cyclohexyloxycarbonyl group. N-cyclohexylcarbamoyl group, N-cyclohexylthiocarbamoyl group, cyclopentylmethyloxycarbonyl group, cyclohexylmethyloxycarbonyl group, phenyloxycarbonyl group, N-phenylcarbamoyl group, N-phenylthiocarbamoyl group, 4-methylphenyloxycarbonyl group, N-(4-methylphenyl)carbamoyl group, N-(4-methylphenyl)thiocarbamoyl group, 4-chlorophenyloxycarbonyl group, N-(4-chlorophenyl)carbamoyl group, N-(4-chlorophenyl)thiocarbamoyl group, 4-fluorophenyloxycarbonyl group, N-(4-fluorophenyl)carbamoyl group, N-(4-fluorophenyl)thiocarbamoyl group, (pyrrolidino-1-yl)carbonyl group, (piperidino-1-yl)carbonyl group, and (morpholino-4-yl)carbonyl group. Ry' represents hydrogen atom, methyl group, ethyl group, or isobutyl group, or binds to Rz' to form pyrrolidino group, piperidino group, piperazino group, morpholino group, pyrrol-1-yl group, imidazol-1-yl group, or pyrazol-1-yl group together with the nitrogen atom to which they bonds. Provided that when 'D'Rx' or 'N(Ry')(Rz') contains hydroxyl group (OH), the hydroxyl group may be protected with Rp1, and when -D-Rx' or -N(Ry')(Rz') contains amino group, the amino group may be protected with Rp2.

The group G represents chlorine atom, bromine atom, iodine atom, or triflate group.

The group Y' represents methyl group, or ethyl group.

In another preferred embodiment, the compound represented by the formula (II) satisfies all of the following requirements.

Symbol n represents an integer of 1 to 3.

The group G binds to C^{g} , Rs' binds to any of the atoms C^{g} , C^{g} , and C^{g} , and a ring-constituting carbon atom to which Rs' does not bind among C^{g} , C^{g} and C^{g} may be replaced with V'.

V represents nitrogen atom, or carbon atom substituted with Zx', and Zx' represents any one of fluorine atom, chlorine atom, bromine atom, nitro group, methyl group, hydroxyl group, methoxy group, amino group, N methylamino group, N tothylamino group, N propylamino group, N isopropylamino group, N,N dimethylamino group, N,N diethylamino group, formylamino group, acetylamino group, carbamoylamino group, mesylamino group, and N,N dimethylsulfamoylamino group, provided that when Zx' contains hydroxyl group, the hydroxyl group may be protected with Rp1, and when the substituted Zx' contains amino group, the amino group may be protected with Rp2.

Rs' represents 'D·Rx', or 'N(Ry')(Rx'). D represents oxygen atom or sulfur atom. Rx' represents butyl group, isobutyl group, 2-ethylbutyl group, cyclopentyl group, cyclohexyl group, cyclohexyl group, cyclohexyl group, cyclohexyl group, cyclohexylethyl group, or 2-cyclohexylethyl group, or represents Rb or Rc. Q in Rb represents a group as any one of phenyl group, thienyl group, furyl group, pyridyl group, oxazolyl group, naphthyl group, tetrahydronaphthyl group, indanyl group, indolyl group, and dihydrobenzodioxyl group. A² represents a single bond, oxygen atom, sulfur atom, 'N(methyl)', or 'N(ethyl)' (provided that when A² represents oxygen atom, sulfur atom, 'N(methyl)', or 'N(ethyl)', A¹ represents ethylene). R² and R³ independently represent hydrogen atom, methyl group, fluorine atom, chlorine atom, trifluoromethyl group, methoxy group, dimethylamino group, acetylamino group, or methylsulfonylamino group (provided that when Q represents phenyl group, A¹ represents a single bond, or unsubstituted methylene, and A² represents a single bond, one of R² and R³

represents a substituent other than hydrogen atom). Symbol p in Rc represents an integer of 2 or 3, and A4 represents a single bond or methylene. A5 represents -C(O)-, -C(S)-, or -S(O)2-. Rd represents hydrogen atom, or a group as any one of methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, cyclopropyl group, cyclopropylmethyl group, cyclopentyl group, cyclopentylmethyl group, cyclohexyl group, cyclohexylmethyl group, phenyl group, 4-methylphenyl group, 4-chlorophenyl group, 4-fluorophenyl group, benzyl group, 4-chlorophenylmethyl group, 4-fluorophenylmethyl group, pyridin-2-yl group, pyridin-3-yl group, and pyridin-4-yl group. Re represents any one of methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, t-butyl group, cyclopropyl group, cyclopentyl group, cyclohexyl group, cyclopentylmethyl group, cyclohexylmethyl group, phenyl group, 4-methylphenyl group, 4-chlorophenyl group, 4-fluorophenyl group, phenylmethyl group, 4-chlorophenylmethyl group, 4-fluorophenylmethyl group, pyridin-2-yl group, pyridin-3-yl group, pyridin-4-yl group, furan-2-yl group, furan-3-yl group, thiophen-2-yl group, thiophen-3-yl group, methoxy group, ethoxy group, propyloxy group, isopropyloxy group, butyloxy group, isobutyloxy group, t-butyloxy group, cyclopropyloxy group, cyclopentyloxy group, cyclohexyloxy group, cyclopentylmethyloxy group, cyclohexylmethyloxy group, phenyloxy group, 4-methylphenyloxy group, 4-chlorophenyloxy group, 4-fluorophenyloxy group, thiomethoxy group, amino group, N-methylamino group, N.N-dimethylamino group, N-ethylamino group, N,N-diethylamino group, N-propylamino group, N-isopropylamino group, N-butylamino group, N-isobutylamino group, N-t-butylamino group, N-cyclopropylamino group, N-cyclopentylamino group, N-cyclohexylamino group, N-phenylamino group, N-(4-methylphenyl)amino group, N-(4-chlorophenyl)amino group, N-(4-fluorophenyl)amino group, N-(pyridin-2-yl)amino group, N-(pyridin-3-yl)amino group, N-(pyridin-4-yl)amino group, N-(furan-2-yl)amino group, N-(furan-3-yl)amino

group, N-(thiophen-2-yl)amino group, N-(thiophen-3-yl)amino group, pyrrolidino group, piperidino group, morpholino group, methyloxycarbonylamino group, and ethyloxycarbonylamino group. Rz' represents any one of butyl group, isobutyl group, 2-ethylbutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclopentylmethyl group, cyclohexylmethyl group, 2·methylphenyl group, 4-methylphenyl group, 2-fluorophenyl group, 3-fluorophenyl group, 4-fluorophenyl group, 2-chlorophenyl group, 3-chlorophenyl group, 4-chlorophenyl group, indan-2-yl group, 4-methylindan-2-yl group, 5-methylindan-2-yl group, 4,7-dimethylindan-2-yl group, 5,6-dimethylindan-2-yl group, 4-fluoroindan-2-yl group, 5-fluoroindan-2-yl group, 4.7-difluoroindan-2-yl group, 5,6-difluoroindan-2-yl group, 4-chloroindan-2-yl group, 5-chloroindan-2-vl group, 4,7-dichloroindan-2-yl group, 5.6-dichloroindan-2-yl group, 4-methoxyindan-2-yl group, 5-methoxyindan-2-yl group, 4,7-dimethoxyindan-2-yl group, 5,6-dimethoxyindan-2-yl group, 1-phenylethyl group, 1-(2-fluorophenyl)ethyl group, 1-(3-fluorophenyl)ethyl group, 1-(4-fluorophenyl)ethyl group, 1-(2-chlorophenyl)ethyl group, 1-(3-chlorophenyl)ethyl group, 1-(4-chlorophenyl)ethyl group, 2-methylphenylmethyl group, 3-methylphenylmethyl group, 4-methylphenylmethyl group, 2.3-dimethylphenylmethyl group, 3,5-dimethylphenylmethyl group, 2-fluorophenylmethyl group, 3-fluorophenylmethyl group, 4-fluorophenylmethyl group, 2-chlorophenylmethyl group, 3-chlorophenylmethyl group, 4-chlorophenylmethyl group, 2,3-difluorophenylmethyl group, 2.4-difluorophenylmethyl group, 2.5-difluorophenylmethyl group, 3.4-difluorophenylmethyl group, 2,3-dichlorophenylmethyl group, 2,4-dichlorophenylmethyl group, 2,5-dichlorophenylmethyl group, 2.6-dichlorophenylmethyl group, 3.4-dichlorophenylmethyl group, 3.5-dichlorophenylmethyl group, 3,6-dichlorophenylmethyl group,

2-(trifluoromethyl)phenylmethyl group, 3-(trifluoromethyl)phenylmethyl group,

4-(trifluoromethyl)phenylmethyl group, 2-(2-methylphenyl)ethyl group,

- 2-(3-methylphenyl)ethyl group, 2-(4-methylphenyl)ethyl group,
- $\hbox{$2$-(2-methoxyphenyl)$ethyl group, 2-(3-methoxyphenyl)$ethyl group, 2-(3-metho$
- 2-(4-methoxyphenyl)ethyl group, 2-(2-fluorophenyl)ethyl group,
- 2-(3-fluorophenyl)ethyl group, 2-(4-fluorophenyl)ethyl group,
- 2-(2-chlorophenyl)ethyl group, 2-(3-chlorophenyl)ethyl group,
- 2-(4-chlorophenyl)ethyl group, 2-[2-(trifluoromethyl)phenyl]ethyl group,
- 2-[3-(trifluoromethyl)phenyl]ethyl group, 2-[4-(trifluoromethyl)phenyl]ethyl group,
- 2-[4-(N.N-dimethylamino)phenyllethyl group, 2-phenyloxyethyl group,
- 2-(2-chlorophenyloxy)ethyl group, 2-(3-chlorophenyloxy)ethyl group,
- 2-(4-chlorophenyloxy)ethyl group, 2-(phenylthio)ethyl group,
- 2-(N-phenyl-N-methylamino)ethyl group, 2-(N-ethyl-N-phenylamino)ethyl group, isobutyryl group, isopropylthiocarbonyl group, isopropylsulfonyl group, valeryl

group, butylthiocarbonyl group, isovaleryl group, isobutylthiocarbonyl group,

pivaloyl group, t-butylthiocarbonyl group, cyclopropylcarbonyl group,

 ${\it cyclopropylthiocarbonyl\ group,\ cyclopentyl carbonyl\ group,\ cyclopentyl thiocarbonyl\ group,\ cyclopentyl\ group,\ gro$

 ${\tt group, cyclohexylcarbonyl\ group, cyclohexylthiocarbonyl\ group,}$

cyclopentylmethylcarbonyl group, cyclopentylmethylthiocarbonyl group, cyclohexylmethylcarbonyl group, cyclohexylmethylcarbonyl group, benzoyl

group, thiobenzoyl group, phenylsulfonyl group, 4-methylphenylcarbonyl group,

- 4-methylphenylthiocarbonyl group, 4-methylphenylsulfonyl group,
- $\hbox{$4$-chlorophenyl carbonyl group, 4-chlorophenyl thio carbonyl group,}\\$
- 4-fluorophenylcarbonyl group, 4-fluorophenylthiocarbonyl group,

 $is opropyl carbonyl\ group,\ N\ -is opropyl carbamoyl\ group,\ N\ -is opropyl thio carbamoyl\$

 ${\tt group,\,butyloxycarbonyl\,group,\,N-butylcarbamoyl\,group,\,N-butylthiocarbamoyl\,group}$

group, isobutyloxycarbonyl group, N-isobutylcarbamoyl group,

N-isobutylthiocarbamoyl group, t-butyloxycarbonyl group, N-t-butylcarbamoyl

group, N-t-butylthiocarbamoyl group, cyclopropyloxycarbonyl group, N-cyclopropylcarbamoyl group, N-cyclopropylthiocarbamoyl group, cyclopentyloxycarbonyl group, N-cyclopentylcarbamoyl group, N-cyclopentylthiocarbamoyl group, cyclohexyloxycarbonyl group, N-cyclohexylcarbamoyl group, N-cyclohexylthiocarbamoyl group, cyclopentylmethyloxycarbonyl group, cyclohexylmethyloxycarbonyl group, phenyloxycarbonyl group, N-phenylcarbamoyl group, N-phenylthiocarbamoyl group, 4-methylphenyloxycarbonyl group, N-(4-methylphenyl)carbamoyl group, N-(4-methylphenyl)thiocarbamoyl group, 4-chlorophenyloxycarbonyl group, N-(4-chlorophenyl)carbamoyl group, N-(4-chlorophenyl)thiocarbamoyl group, 4-fluorophenyloxycarbonyl group, N-(4-fluorophenyl)carbamoyl group, N-(4-fluorophenyl)thiocarbamoyl group, (pyrrolidino-1-yl)carbonyl group, (piperidino-1-vl)carbonyl group, and (morpholino-4-yl)carbonyl group. Ry' represents hydrogen atom, methyl group, ethyl group, or isobutyl group, or binds to Rz' to form pyrrolidino group, piperidino group, piperazino group, morpholino group, pyrrol-1-yl group, imidazol-1-yl group, or pyrazol-1-yl group together with nitrogen atom. Provided that when 'D'Rx' or 'N(Ry')(Rz') contains hydroxyl group, the hydroxyl group may be protected with Rp1, and ·D·Rx' or ·N(Ry')(Rz') contains amino group, the amino group may be protected with Rp2.

The group G represents chlorine atom, bromine atom, iodine atom, or triflate group.

The group Y' represents methyl group, or ethyl group.

In a particularly preferred embodiment, the compound represented by the formula (II) satisfies all of the following requirements.

Symbol n represents an integer of 2.

 C^{gr} represents carbon atom to which the group G bonds, C^{gr} represents carbon atom to which Rs' binds, C^{gr} may be replaced with V, and C^{gr} and C^{gr} represent

an unsubstituted ring-constituting carbon atom.

V' represents nitrogen atom, or carbon atom substituted with Zx', and Zx' represents any one of fluorine atom, methyl group, hydroxyl group, amino group, N'methylamino group, and N,N'dimethylamino group, provided that when Zx' contains hydroxyl group, the hydroxyl group may be protected with Rp1, and when the substituted Zx' contains amino group, the amino group may be protected with Rp2.

Rs' represents O-Rx'. Rx' represents any one of butyl group, isobutyl group, 2-ethylbutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclopentylmethyl group, cyclohexylmethyl group, 2-methylphenyl group, 4-methylphenyl group, 2-fluorophenyl group, 3-fluorophenyl group, 4-fluorophenyl group, 2-chlorophenyl group, 3-chlorophenyl group, 4-chlorophenyl group, indan-2-yl group, 4-methylindan-2-yl group, 5-methylindan-2-yl group, 4,7-dimethylindan-2-yl group, 5.6 dimethylindan-2-yl group, 4-fluoroindan-2-yl group, 5-fluoroindan-2-yl group, 4,7-difluoroindan-2-yl group, 5,6-difluoroindan-2-yl group, 4-chloroindan-2-yl group, 5-chloroindan-2-yl group, 4,7-dichloroindan-2-yl group, 5.6-dichloroindan-2-yl group, 4-methoxyindan-2-yl group, 5-methoxyindan-2-yl group, 4,7-dimethoxyindan-2-yl group, 5,6-dimethoxyindan-2-yl group, 1-phenylethyl group, 1-(2-fluorophenyl)ethyl group, 1-(3-fluorophenyl)ethyl group, 1-(4-fluorophenyl)ethyl group, 1-(2-chlorophenyl)ethyl group, 1-(3-chlorophenyl)ethyl group, 1-(4-chlorophenyl)ethyl group, 2-methylphenylmethyl group, 3-methylphenylmethyl group, 4-methylphenylmethyl group, 3-dimethylphenylmethyl group, 3,5-dimethylphenylmethyl group, 2-fluorophenylmethyl group, 3-fluorophenylmethyl group, 4-fluorophenylmethyl group, 2-chlorophenylmethyl group, 3-chlorophenylmethyl group, 4-chlorophenylmethyl group, 2,3-difluorophenylmethyl group,

2.4-diffuorophenylmethyl group, 2.5-diffuorophenylmethyl group,

- 3.4-difluorophenylmethyl group, 2,3-dichlorophenylmethyl group,
- 2.4-dichlorophenylmethyl group, 2,5-dichlorophenylmethyl group,
- 2,6-dichlorophenylmethyl group, 3,4-dichlorophenylmethyl group,
- 3.5-dichlorophenylmethyl group, 3,6-dichlorophenylmethyl group,
- 2-(trifluoromethyl)phenylmethyl group, 3-(trifluoromethyl)phenylmethyl group,
- 4-(trifluoromethyl)phenylmethyl group, 2-(2-methylphenyl)ethyl group,
- 2-(3-methylphenyl)ethyl group, 2-(4-methylphenyl)ethyl group,
- 2-(2-methoxyphenyl)ethyl group, 2-(3-methoxyphenyl)ethyl group,
- 2-(4-methoxyphenyl)ethyl group, 2-(2-fluorophenyl)ethyl group,
- 2-(3-fluorophenyl)ethyl group, 2-(4-fluorophenyl)ethyl group,
- 2-(2-chlorophenyl)ethyl group, 2-(3-chlorophenyl)ethyl group,
- 2-(4-chlorophenyl)ethyl group, 2-[2-(trifluoromethyl)phenyl]ethyl group,
- 2-[3-(trifluoromethyl)phenyl]ethyl group, 2-[4-(trifluoromethyl)phenyl]ethyl group,
- 2-[4-(N,N-dimethylamino)phenyl]ethyl group, 2-phenyloxyethyl group,
- 2-(2-chlorophenyloxy)ethyl group, 2-(3-chlorophenyloxy)ethyl group,
- 2-(4-chlorophenyloxy)ethyl group, 2-(phenylthio)ethyl group,
- 2-(N-phenyl-N-methylamino)ethyl group, and 2-(N-ethyl-N-phenylamino)ethyl group.

The group G represents bromine atom, or iodine atom.

The group Y' represents methyl group, or ethyl group.

In another particularly preferred embodiment, the compound represented by the formula (II) satisfies all of the following requirements.

Symbol n represents an integer of 2.

 C^g represents carbon atom to which the group G bonds, C^g represents carbon atom to which Rs^s binds, C^g may be replaced with V, and C^g and C^g represent an unsubstituted ring constituting carbon atom.

V' represents nitrogen atom, or carbon atom substituted with Zx', and Zx'

represents any one of fluorine atom, methyl group, hydroxyl group, amino group, N·methylamino group, and N,N·dimethylamino group, provided that when Zx' contains hydroxyl group, the hydroxyl group may be protected with Rp¹, and when the substituted Zx' contains amino group, the amino group may be protected with Rp².

Rs' represents -O-Rx'. Rx' represents any one of butyl group, isobutyl group, 2-ethylbutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclopentylmethyl group, cyclohexylmethyl group, 2-methylphenyl group, 4-methylphenyl group, 2-fluorophenyl group, 3-fluorophenyl group, 4-fluorophenyl group, 2-chlorophenyl group, 3-chlorophenyl group, 4-chlorophenyl group, indan-2-yl group, 4-methylindan-2-yl group, 5-methylindan-2-yl group, 4,7-dimethylindan-2-yl group, 5,6-dimethylindan-2-yl group, 4-fluoroindan-2-yl group, 5-fluoroindan-2-yl group, 4,7-difluoroindan-2-yl group, 5,6-difluoroindan-2-yl group, 4-chloroindan-2-yl group, 5-chloroindan-2-vl group, 4,7-dichloroindan-2-yl group, 5,6-dichloroindan-2-yl group, 4-methoxyindan-2-yl group, 5-methoxyindan-2-yl group, 4,7-dimethoxyindan-2-yl group, 5,6-dimethoxyindan-2-yl group, 1-phenylethyl group, 1-(2-fluorophenyl)ethyl group, 1-(3-fluorophenyl)ethyl group, 1-(4-fluorophenyl)ethyl group, 1-(2-chlorophenyl)ethyl group, 1-(3-chlorophenyl)ethyl group, 1-(4-chlorophenyl)ethyl group, 2-methylphenylmethyl group, 3-methylphenylmethyl group, 4-methylphenylmethyl group, 2,3-dimethylphenylmethyl group, 3,5-dimethylphenylmethyl group, 2-fluorophenylmethyl group, 3-fluorophenylmethyl group, 4-fluorophenylmethyl group, 2-chlorophenylmethyl group, 3-chlorophenylmethyl group, 4-chlorophenylmethyl group, 2,3-difluorophenylmethyl group, 2,4-difluorophenylmethyl group, 2,5-difluorophenylmethyl group, 3.4-difluorophenylmethyl group, 2,3-dichlorophenylmethyl group,

2,4-dichlorophenylmethyl group, 2,5-dichlorophenylmethyl group,

- 2.6-dichlorophenylmethyl group, 3,4-dichlorophenylmethyl group,
- 3.5-dichlorophenylmethyl group, 3,6-dichlorophenylmethyl group,
- 2-(trifluoromethyl)phenylmethyl group, 3-(trifluoromethyl)phenylmethyl group,
- 4-(trifluoromethyl)phenylmethyl group, 2-(2-methylphenyl)ethyl group,
- 2-(3-methylphenyl)ethyl group, 2-(4-methylphenyl)ethyl group,
- 2-(2-methoxyphenyl)ethyl group, 2-(3-methoxyphenyl)ethyl group,
- 2-(4-methoxyphenyl)ethyl group, 2-(2-fluorophenyl)ethyl group,
- 2-(3-fluorophenyl)ethyl group, 2-(4-fluorophenyl)ethyl group,
- $\hbox{$2$-(2-chlorophenyl)$ethyl group, 2-(3-chlorophenyl)$ethyl group,}\\$
- 2-(4-chlorophenyl)ethyl group, 2-[2-(trifluoromethyl)phenyl]ethyl group,
- 2-[3-(trifluoromethyl)phenyl]ethyl group, 2-[4-(trifluoromethyl)phenyl]ethyl group,
- 2-[4-(N.N-dimethylamino)phenyllethyl group, 2-phenyloxyethyl group,
- 2-(2-chlorophenyloxy)ethyl group, 2-(3-chlorophenyloxy)ethyl group,
- 2-(4-chlorophenyloxy)ethyl group, 2-(phenylthio)ethyl group,
- $\begin{tabular}{ll} $2-(N-phenyl-N-methylamino)$ ethyl group, and $2-(N-ethyl-N-phenylamino)$ ethyl group. \end{tabular}$

The group G represents bromine atom, or iodine atom.

The group Y' represents methyl group, or ethyl group.

In another particularly preferred embodiment, the compound represented by the formula (II) satisfies all of the following requirements.

Symbol n represents an integer of 2.

C* represents carbon atom to which the group G bonds, C* represents carbon atom to which Rs' binds, and C*, C* and C* represent an unsubstituted ring constituting carbon atom.

Rs' represents -O-Rx'. Rx' represents any one of butyl group, isobutyl group, 2-ethylbutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclopentylmethyl group, cyclohexylmethyl group, 2-methylphenyl group,

4-methylphenyl group, 2-fluorophenyl group, 3-fluorophenyl group, 4-fluorophenyl group, 4-fluorophenyl group, 3-chlorophenyl group, 4-chlorophenyl group, indan-2-yl group, 4-methylindan-2-yl group, 5-methylindan-2-yl group, 4,7-dimethylindan-2-yl group, 5,6-dimethylindan-2-yl group, 5-fluoroindan-2-yl group, 5-fluoroindan-2-yl group, 4-fluoroindan-2-yl group, 4-chloroindan-2-yl group, 5-chloroindan-2-yl group, 4-fluoroindan-2-yl group, 4-chloroindan-2-yl group, 5-chloroindan-2-yl group, 4-fluoroindan-2-yl g

- 5,6-dichloroindan-2-yl group, 4-methoxyindan-2-yl group, 5-methoxyindan-2-yl group, 4,7-dimethoxyindan-2-yl group, 5,6-dimethoxyindan-2-yl group,
- 1-phenylethyl group, 1-(2-fluorophenyl)ethyl group, 1-(3-fluorophenyl)ethyl group,
- 1-(4-fluorophenyl)ethyl group, 1-(2-chlorophenyl)ethyl group,
- 1-(3-chlorophenyl)ethyl group, 1-(4-chlorophenyl)ethyl group, 2-methylphenylmethyl group, 3-methylphenylmethyl group, 4-methylphenylmethyl group,
- 2,3-dimethylphenylmethyl group, 3,5-dimethylphenylmethyl group,
- 2-fluorophenylmethyl group, 3-fluorophenylmethyl group, 4-fluorophenylmethyl group, 2-chlorophenylmethyl group, 3-chlorophenylmethyl group,
- 4-chlorophenylmethyl group, 2,3-difluorophenylmethyl group,
- 2,4-difluorophenylmethyl group, 2,5-difluorophenylmethyl group,
- 3,4-difluorophenylmethyl group, 2,3-dichlorophenylmethyl group,
- 2.4-dichlorophenylmethyl group, 2.5-dichlorophenylmethyl group,
- 2,6-dichlorophenylmethyl group, 3,4-dichlorophenylmethyl group,
- 3.5-dichlorophenylmethyl group, 3,6-dichlorophenylmethyl group,
- 2-(trifluoromethyl)phenylmethyl group, 3-(trifluoromethyl)phenylmethyl group,
- 4-(trifluoromethyl)phenylmethyl group, 2-(2-methylphenyl)ethyl group,
- 2-(3-methylphenyl)ethyl group, 2-(4-methylphenyl)ethyl group,
- 2-(2-methoxyphenyl)ethyl group, 2-(3-methoxyphenyl)ethyl group,
- 2-(4-methoxyphenyl)ethyl group, 2-(2-fluorophenyl)ethyl group,
- 2-(3-fluorophenyl)ethyl group, 2-(4-fluorophenyl)ethyl group,

- 2-(2-chlorophenyl)ethyl group, 2-(3-chlorophenyl)ethyl group,
- 2-(4-chlorophenyl)ethyl group, 2-[2-(trifluoromethyl)phenyl]ethyl group,
- 2-[3-(trifluoromethyl)phenyl]ethyl group, 2-[4-(trifluoromethyl)phenyl]ethyl group,
- 2-[4-(N.N-dimethylamino)phenyl]ethyl group, 2-phenyloxyethyl group,
- 2-(2-chlorophenyloxy)ethyl group, 2-(3-chlorophenyloxy)ethyl group,
- 2-(4-chlorophenyloxy)ethyl group, 2-(phenylthio)ethyl group,
- 2-(N-phenyl-N-methylamino)ethyl group, and 2-(N-ethyl-N-phenylamino)ethyl group.

The group G represents bromine atom, or iodine atom.

The group Y' represents methyl group, or ethyl group.

In another particularly preferred embodiment, the compound represented by the formula (II) satisfies all of the following requirements.

Symbol n represents an integer of 2.

C3' represents carbon atom to which the group G bonds, C4' represents carbon atom to which Rs' binds, C5' represents nitrogen atom, and C2' and C6' represent an unsubstituted ring-constituting carbon atom.

Rs' represents -O-Rx'. Rx' represents any one of butyl group, isobutyl group, 2-ethylbutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclopentylmethyl group, cyclohexylmethyl group, 2 methylphenyl group, 4-methylphenyl group, 2-fluorophenyl group, 3-fluorophenyl group, 4-fluorophenyl group, 2-chlorophenyl group, 3-chlorophenyl group, 4-chlorophenyl group, indan-2-yl group, 4-methylindan-2-yl group, 5-methylindan-2-yl group, 4,7-dimethylindan-2-yl group, 5,6-dimethylindan-2-yl group, 4-fluoroindan-2-yl group, 5-fluoroindan-2-yl group, 4,7-difluoroindan-2-yl group, 5,6-difluoroindan-2-yl group, 4-chloroindan-2-yl group, 5-chloroindan-2-yl group, 4,7-dichloroindan-2-yl group, 5.6-dichloroindan-2-yl group, 4-methoxyindan-2-yl group, 5-methoxyindan-2-yl

group, 4,7-dimethoxyindan-2-yl group, 5,6-dimethoxyindan-2-yl group,

1-phenylethyl group, 1-(2-fluorophenyl)ethyl group, 1-(3-fluorophenyl)ethyl group,

- 1-(4-fluorophenyl)ethyl group, 1-(2-chlorophenyl)ethyl group,
- 1-(3-chlorophenyl)ethyl group, 1-(4-chlorophenyl)ethyl group, 2-methylphenylmethyl

group, 3-methylphenylmethyl group, 4-methylphenylmethyl group,

- 2.3-dimethylphenylmethyl group, 3,5-dimethylphenylmethyl group,
- 2-fluorophenylmethyl group, 3-fluorophenylmethyl group, 4-fluorophenylmethyl

group, 2-chlorophenylmethyl group, 3-chlorophenylmethyl group,

- 4-chlorophenylmethyl group, 2,3-difluorophenylmethyl group,
- 2,4-difluorophenylmethyl group, 2,5-difluorophenylmethyl group,
- 3,4-difluorophenylmethyl group, 2,3-dichlorophenylmethyl group,
- 2.4-dichlorophenylmethyl group, 2,5-dichlorophenylmethyl group,
- 2,6-dichlorophenylmethyl group, 3,4-dichlorophenylmethyl group,
- 3.5-dichlorophenylmethyl group, 3,6-dichlorophenylmethyl group,
- 2-(trifluoromethyl)phenylmethyl group, 3-(trifluoromethyl)phenylmethyl group,
- 4-(trifluoromethyl)phenylmethyl group, 2-(2-methylphenyl)ethyl group,
- 2-(3-methylphenyl)ethyl group, 2-(4-methylphenyl)ethyl group,
- 2-(2-methoxyphenyl)ethyl group, 2-(3-methoxyphenyl)ethyl group,
- 2-(4-methoxyphenyl)ethyl group, 2-(2-fluorophenyl)ethyl group,
- 2-(3-fluorophenyl)ethyl group, 2-(4-fluorophenyl)ethyl group,
- 2-(2-chlorophenyl)ethyl group, 2-(3-chlorophenyl)ethyl group,
- 2-(4-chlorophenyl)ethyl group, 2-[2-(trifluoromethyl)phenyl]ethyl group,
- 2-[3-(trifluoromethyl)phenyllethyl group, 2-[4-(trifluoromethyl)phenyllethyl group,
- 2-[4-(N.N-dimethylamino)phenyl]ethyl group, 2-phenyloxyethyl group,
- 2-(2-chlorophenyloxy)ethyl group, 2-(3-chlorophenyloxy)ethyl group,
- 2-(4-chlorophenyloxy)ethyl group, 2-(phenylthio)ethyl group,
- 2-(N-phenyl-N-methylamino)ethyl group, and 2-(N-ethyl-N-phenylamino)ethyl group.

The group G represents bromine atom, or iodine atom.

The group Y' represents methyl group, or ethyl group.

In another particularly preferred embodiment, the compound represented by the formula (II) satisfies all of the following requirements.

Symbol n represents an integer of 2.

 C^{gr} represents carbon atom to which the group G bonds, C^{gr} represents carbon atom to which Rs' binds, C^{gr} represents carbon atom substituted with Zx', and C^{gr} and C^{gr} represent an unsubstituted ring constituting carbon atom.

Zx' represents any one of fluorine atom, methyl group, hydroxyl group, amino group, N-methylamino group, and N,N-dimethylamino group, provided that when Zx' contains hydroxyl group, the hydroxyl group may be protected with Rp¹, and when the substituted Zx' contains amino group, the amino group may be protected with Rp².

Rs' represents ·O·Rx'. Rx' represents any one of butyl group, isobutyl group, 2-ethylbutyl group, cyclopentyl group, cyclohexyl group, cyclohexyl group, cyclohexyl group, cyclohexyl group, 2-methylphenyl group, 4-methylphenyl group, 2-fluorophenyl group, 3-fluorophenyl group, 4-fluorophenyl group, 4-fluorophenyl group, 4-fluorophenyl group, indan·2-yl group, 4-methylindan·2-yl group, 5-methylindan·2-yl group, 4,7-dimethylindan·2-yl group, 5-fluoroindan·2-yl group, 5-fluoroindan·2-yl group, 5-fluoroindan·2-yl group, 5-fluoroindan·2-yl group, 4-fluoroindan·2-yl group, 5-fluoroindan·2-yl group, 5-fluoroindan·2-yl group, 5-fluoroindan·2-yl group, 4-fluoroindan·2-yl group, 5-fluoroindan·2-yl group, 5-fluoroindan·2-yl group, 5-fluoroindan·2-yl group, 5-fluoroindan·2-yl group, 5-fluoroindan·2-yl group, 5-fluoroindan·2-yl group, 5-fluorophenyl group, 1-fluorophenyl group, 1-fluorophenyl group, 1-fluorophenyl group, 1-fluorophenyl group, 1-fluorophenyl)ethyl group, 1-fluorophenyl group, 2-methylphenylmethyl group, 1-fluorophenylethyl group, 2-methylphenylmethyl

group, 3-methylphenylmethyl group, 4-methylphenylmethyl group,

- 2,3-dimethylphenylmethyl group, 3,5-dimethylphenylmethyl group,
- 2-fluorophenylmethyl group, 3-fluorophenylmethyl group, 4-fluorophenylmethyl
- group, 2-chlorophenylmethyl group, 3-chlorophenylmethyl group,
- 4-chlorophenylmethyl group, 2,3-difluorophenylmethyl group,
- 2.4-difluorophenylmethyl group, 2,5-difluorophenylmethyl group,
- 3,4-difluorophenylmethyl group, 2,3-dichlorophenylmethyl group,
- 2,4-dichlorophenylmethyl group, 2,5-dichlorophenylmethyl group,
- 2,6-dichlorophenylmethyl group, 3,4-dichlorophenylmethyl group,
- 3,5-dichlorophenylmethyl group, 3,6-dichlorophenylmethyl group,
- 2-(trifluoromethyl)phenylmethyl group, 3-(trifluoromethyl)phenylmethyl group,
- 4-(trifluoromethyl)phenylmethyl group, 2-(2-methylphenyl)ethyl group,
- 2-(3-methylphenyl)ethyl group, 2-(4-methylphenyl)ethyl group,
- 2-(2-methoxyphenyl)ethyl group, 2-(3-methoxyphenyl)ethyl group,
- 2-(4-methoxyphenyl)ethyl group, 2-(2-fluorophenyl)ethyl group,
- 2-(3-fluorophenyl)ethyl group, 2-(4-fluorophenyl)ethyl group,
- 2-(2-chlorophenyl)ethyl group, 2-(3-chlorophenyl)ethyl group,
- 2-(4-chlorophenyl)ethyl group, 2-[2-(trifluoromethyl)phenyl]ethyl group,
- 2-[3-(trifluoromethyl)phenyl]ethyl group, 2-[4-(trifluoromethyl)phenyl]ethyl group,
- 2-[4-(N,N-dimethylamino)phenyllethyl group, 2-phenyloxyethyl group,
- 2-(2-chlorophenyloxy)ethyl group, 2-(3-chlorophenyloxy)ethyl group,
- 2-(4-chlorophenyloxy)ethyl group, 2-(phenylthio)ethyl group,
- 2-(N-phenyl-N-methylamino)ethyl group, and 2-(N-ethyl-N-phenylamino)ethyl group.

The group G represents bromine atom, or iodine atom.

The group Y' represents methyl group, or ethyl group.

In another particularly preferred embodiment, the compound represented by

the formula (II) satisfies all of the following requirements.

Symbol n represents an integer of 2.

C^y represents carbon atom to which the group G bonds, C^y represents carbon atom to which Rs' binds, C^y represents carbon atom substituted with Zx', or unsubstituted carbon atom, and C^y and C^y represent an unsubstituted ring constituting carbon atom.

Zx' represents any one of fluorine atom, methyl group, hydroxyl group, amino group, N·methylamino group, and N,N·dimethylamino group, provided that when Zx' contains hydroxyl group, the hydroxyl group may be protected with Rp1, and when the substituted Zx' contains amino group, the amino group may be protected with Rp2.

Rs' represents -S-Rx'. Rx' represents any one of butyl group, isobutyl group, 2-ethylbutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclopentylmethyl group, cyclohexylmethyl group, 2-methylphenyl group, 4 methylphenyl group, 2-fluorophenyl group, 3-fluorophenyl group, 4-fluorophenyl group, 2-chlorophenyl group, 3-chlorophenyl group, 4-chlorophenyl group, indan-2-yl group, 4-methylindan-2-yl group, 5-methylindan-2-yl group, 4,7-dimethylindan-2-yl group, 5,6-dimethylindan-2-yl group, 4-fluoroindan-2-yl group, 5-fluoroindan-2-yl group, 4,7-difluoroindan-2-yl group, 5,6-difluoroindan-2-yl group, 4-chloroindan-2-yl group, 5-chloroindan-2-yl group, 4,7-dichloroindan-2-yl group, 5,6-dichloroindan-2-yl group, 4-methoxyindan-2-yl group, 5-methoxyindan-2-yl group, 4,7-dimethoxyindan-2-yl group, 5,6-dimethoxyindan-2-yl group, 1-phenylethyl group, 1-(2-fluorophenyl)ethyl group, 1-(3-fluorophenyl)ethyl group, 1-(4-fluorophenyl)ethyl group, 1-(2-chlorophenyl)ethyl group, 1-(3-chlorophenyl)ethyl group, 1-(4-chlorophenyl)ethyl group, 2-methylphenylmethyl group, 3-methylphenylmethyl group, 4-methylphenylmethyl group, 2,3-dimethylphenylmethyl group, 3,5-dimethylphenylmethyl group,

2-fluorophenylmethyl group, 3-fluorophenylmethyl group, 4-fluorophenylmethyl group, 2-chlorophenylmethyl group, 3-chlorophenylmethyl group,

- 4-chlorophenylmethyl group, 2,3-difluorophenylmethyl group,
- 2,4-difluorophenylmethyl group, 2,5-difluorophenylmethyl group,
- 3.4-difluorophenylmethyl group, 2,3-dichlorophenylmethyl group,
- 2,4-dichlorophenylmethyl group, 2,5-dichlorophenylmethyl group,
- 2,6-dichlorophenylmethyl group, 3,4-dichlorophenylmethyl group,
- 3,5-dichlorophenylmethyl group, 3,6-dichlorophenylmethyl group,
- 2-(trifluoromethyl)phenylmethyl group, 3-(trifluoromethyl)phenylmethyl group,
- 4-(trifluoromethyl)phenylmethyl group, 2-(2-methylphenyl)ethyl group,
- 2-(3-methylphenyl)ethyl group, 2-(4-methylphenyl)ethyl group,
- 2-(2-methoxyphenyl)ethyl group, 2-(3-methoxyphenyl)ethyl group,
- 2-(4-methoxyphenyl)ethyl group, 2-(2-fluorophenyl)ethyl group,
- 2-(3-fluorophenyl)ethyl group, 2-(4-fluorophenyl)ethyl group,
- 2-(2-chlorophenyl)ethyl group, 2-(3-chlorophenyl)ethyl group,
- 2-(4-chlorophenyl)ethyl group, 2-[2-(trifluoromethyl)phenyllethyl group,
- 2-[3-(trifluoromethyl)phenyl]ethyl group, 2-[4-(trifluoromethyl)phenyl]ethyl group,
- 2-[4-(N.N-dimethylamino)phenyllethyl group, 2-phenyloxyethyl group,
- 2-(2-chlorophenyloxy)ethyl group, 2-(3-chlorophenyloxy)ethyl group,
- 2-(4-chlorophenyloxy)ethyl group, 2-(phenylthio)ethyl group,
- 2-(N-phenyl-N-methylamino)ethyl group, and 2-(N-ethyl-N-phenylamino)ethyl group.

The group G represents bromine atom, or iodine atom.

The group Y' represents methyl group, or ethyl group.

In another particularly preferred embodiment, the compound represented by the formula (II) satisfies all of the following requirements.

Symbol n represents an integer of 2.

Cs' represents carbon atom to which the group G bonds, Cs' represents carbon atom to which Rs' binds, Cs' represents carbon atom substituted with Zx', or unsubstituted ring constituting carbon atom, and Cs' and Cs' represent an unsubstituted ring constituting carbon atom.

Zx' represents any one of fluorine atom, methyl group, hydroxyl group, amino group, N·methylamino group, and N,N·dimethylamino group, provided that when Zx' contains hydroxyl group, the hydroxyl group may be protected with Rp¹, and when the substituted Zx' contains amino group, the amino group may be protected with Rp².

Rs' represents -N(Ry')(Rz'). Rz' represents any one of butyl group, isobutyl group, 2-ethylbutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclopentylmethyl group, cyclohexylmethyl group, 2-methylphenyl group, 4-methylphenyl group, 2-fluorophenyl group, 3-fluorophenyl group, 4-fluorophenyl group, 2-chlorophenyl group, 3-chlorophenyl group, 4-chlorophenyl group, indan-2-yl group, 4-methylindan-2-yl group, 5-methylindan-2-yl group, 4,7-dimethylindan-2-yl group, 5,6-dimethylindan-2-yl group, 4-fluoroindan-2-yl group, 5-fluoroindan-2-yl group, 4.7-difluoroindan-2-yl group, 5,6-difluoroindan-2-yl group, 4-chloroindan-2-yl group, 5-chloroindan-2-yl group, 4,7-dichloroindan-2-yl group, 5.6-dichloroindan-2-yl group, 4-methoxyindan-2-yl group, 5-methoxyindan-2-yl group, 4,7-dimethoxyindan-2-yl group, 5,6-dimethoxyindan-2-yl group, 1-phenylethyl group, 1-(2-fluorophenyl)ethyl group, 1-(3-fluorophenyl)ethyl group, 1-(4-fluorophenyl)ethyl group, 1-(2-chlorophenyl)ethyl group, 1-(3-chlorophenyl)ethyl group, 1-(4-chlorophenyl)ethyl group, 2-methylphenylmethyl group, 3-methylphenylmethyl group, 4-methylphenylmethyl group, 2,3-dimethylphenylmethyl group, 3,5-dimethylphenylmethyl group, 2-fluorophenylmethyl group, 3-fluorophenylmethyl group, 4-fluorophenylmethyl

group, 2-chlorophenylmethyl group, 3-chlorophenylmethyl group,

- 4-chlorophenylmethyl group, 2,3-difluorophenylmethyl group,
- 2.4-difluorophenylmethyl group, 2,5-difluorophenylmethyl group,
- 3.4-difluorophenylmethyl group, 2,3-dichlorophenylmethyl group,
- 2.4-dichlorophenylmethyl group, 2.5-dichlorophenylmethyl group,
- 2.6-dichlorophenylmethyl group, 3,4-dichlorophenylmethyl group,
- 3,5-dichlorophenylmethyl group, 3,6-dichlorophenylmethyl group,
- 2-(trifluoromethyl)phenylmethyl group, 3-(trifluoromethyl)phenylmethyl group,
- 4-(trifluoromethyl)phenylmethyl group, 2-(2-methylphenyl)ethyl group,
- 2-(3-methylphenyl)ethyl group, 2-(4-methylphenyl)ethyl group,
- 2-(2-methoxyphenyl)ethyl group, 2-(3-methoxyphenyl)ethyl group,
- 2-(4-methoxyphenyl)ethyl group, 2-(2-fluorophenyl)ethyl group,
- 2-(3-fluorophenyl)ethyl group, 2-(4-fluorophenyl)ethyl group,
- 2-(2-chlorophenyl)ethyl group, 2-(3-chlorophenyl)ethyl group,
- 2-(4-chlorophenyl)ethyl group, 2-[2-(trifluoromethyl)phenyl]ethyl group,
- 2-[3-(trifluoromethyl)phenyllethyl group, 2-[4-(trifluoromethyl)phenyllethyl group,
- 2-[4-(N.N-dimethylamino)phenyl]ethyl group, 2-phenyloxyethyl group,
- 2-(2-chlorophenyloxy)ethyl group, 2-(3-chlorophenyloxy)ethyl group,
- 2-(4-chlorophenyloxy)ethyl group, 2-(phenylthio)ethyl group,
- 2-(N-phenyl-N-methylamino)ethyl group, 2-(N-ethyl-N-phenylamino)ethyl group,

isobutyryl group, isopropylthiocarbonyl group, isopropylsulfonyl group, valeryl

group, butylthiocarbonyl group, isovaleryl group, isobutylthiocarbonyl group,

pivaloyl group, t-butylthiocarbonyl group, cyclopropylcarbonyl group,

cyclopropylthiocarbonyl group, cyclopentylcarbonyl group, cyclopentylthiocarbonyl

group, cyclohexylcarbonyl group, cyclohexylthiocarbonyl group,

cyclopentylmethylcarbonyl group, cyclopentylmethylthiocarbonyl group,

cyclohexylmethylcarbonyl group, cyclohexylmethylthiocarbonyl group, benzoyl

group, thiobenzoyl group, phenylsulfonyl group, 4-methylphenylcarbonyl group,

4-methylphenylthiocarbonyl group, 4-methylphenylsulfonyl group, 4-chlorophenylcarbonyl group, 4-chlorophenylthiocarbonyl group, 4-fluorophenylcarbonyl group, 4-fluorophenylthiocarbonyl group, isopropyloxycarbonyl group, N-isopropylcarbamoyl group, N-isopropylthiocarbamoyl group, butyloxycarbonyl group, N-butylcarbamoyl group, N-butylthiocarbamoyl group, isobutyloxycarbonyl group, N-isobutylcarbamoyl group, N-isobutylthiocarbamoyl group, t-butyloxycarbonyl group, N-t-butylcarbamoyl group, N-t-butylthiocarbamoyl group, cyclopropyloxycarbonyl group, N-cyclopropylcarbamoyl group, N-cyclopropylthiocarbamoyl group, cyclopentyloxycarbonyl group, N-cyclopentylcarbamoyl group, N-cyclopentylthiocarbamoyl group, cyclohexyloxycarbonyl group, N-cyclohexylcarbamoyl group, N-cyclohexylthiocarbamoyl group, cyclopentylmethyloxycarbonyl group, cyclohexylmethyloxycarbonyl group, phenyloxycarbonyl group, N-phenylcarbamoyl group, N-phenylthiocarbamoyl group, 4-methylphenyloxycarbonyl group, N-(4-methylphenyl)carbamoyl group, N-(4-methylphenyl)thiocarbamoyl group, 4-chlorophenyloxycarbonyl group, N-(4-chlorophenyl)carbamoyl group, N-(4-chlorophenyl)thiocarbamoyl group, 4-fluorophenyloxycarbonyl group, N-(4-fluorophenyl)carbamoyl group, N-(4-fluorophenyl)thiocarbamoyl group, (pyrrolidino-1-yl)carbonyl group, (piperidino-1-vl)carbonyl group, and (morpholino-4-yl)carbonyl group. Ry' represents hydrogen atom, methyl group, ethyl group, or isobutyl group, or binds to Rz' to form pyrrolidino group, piperidino group, or morpholino group together with the nitrogen atom to which they bonds. Provided that when 'N(Ry')(Rz') contains hydroxyl group, the hydroxyl group may be protected with Rp1, and when Ry' or Rz' contains amino group, the amino group may be protected with Rp2.

The group G represents bromine atom, or iodine atom.

The group Y represents methyl group, or ethyl group.

In another particularly preferred embodiment, the compound represented by the formula (II) satisfies all of the following requirements.

Symbol n represents an integer of 2.

C^g represents carbon atom to which the group G bonds, C^g represents carbon atom to which Rs' binds, C^g represents carbon atom substituted with Zx', and C^g and C^g represent an unsubstituted ring constituting carbon atom.

Zx' represents any one of N-methylamino group, N-ethylamino group,
N-propylamino group, N-isopropylamino group, N,N-dimethylamino group,
N,N-diethylamino group, formylamino group, acetylamino group, carbamoylamino
group, mesylamino group, and N,N-dimethylsulfamoylamino group. Provided that
when the substituted Zx' contains amino group (NH), the amino group may be
protected with Rp².

Rs' represents ·O·Rx'. Rx' represents any one of butyl group, isobutyl group, 2-ethylbutyl group, cyclopentyl group, cyclohexyl group, cyclohexyl group, cycloheptyl group, cyclopentylmethyl group, cyclohexylmethyl group, 2-methylphenyl group, 4-methylphenyl group, 2-fluorophenyl group, 3-fluorophenyl group, 4-fluorophenyl group, 4-fluorophenyl group, indan·2-yl group, 4-methylindan·2-yl group, 5-methylindan·2-yl group, 4,7-dimethylindan·2-yl group, 5-fluoroindan·2-yl group, 5-fluoroindan·2-yl group, 5-fluoroindan·2-yl group, 5-fluoroindan·2-yl group, 4-fluoroindan·2-yl group, 4-fluoroindan·2-yl group, 5-fluoroindan·2-yl group, 5-fluorophenyl group, 1-fluorophenyl)ethyl group, 1-fluorophenyl)ethyl group, 1-fluorophenyl)ethyl group, 2-methylphenylmethyl group, 3-methylphenylmethyl group, 4-methylphenylmethyl group, 3-methylphenylmethyl group, 4-methylphenylmethyl group,

- 2,3-dimethylphenylmethyl group, 3,5-dimethylphenylmethyl group,
- 2-fluorophenylmethyl group, 3-fluorophenylmethyl group, 4-fluorophenylmethyl
- group, 2-chlorophenylmethyl group, 3-chlorophenylmethyl group,
- 4-chlorophenylmethyl group, 2,3-difluorophenylmethyl group,
- 2.4-difluorophenylmethyl group, 2,5-difluorophenylmethyl group,
- 3.4-difluorophenylmethyl group, 2,3-dichlorophenylmethyl group,
- 2.4-dichlorophenylmethyl group, 2,5-dichlorophenylmethyl group,
- 2,6-dichlorophenylmethyl group, 3,4-dichlorophenylmethyl group,
- 3,5-dichlorophenylmethyl group, 3,6-dichlorophenylmethyl group,
- 2-(trifluoromethyl)phenylmethyl group, 3-(trifluoromethyl)phenylmethyl group,
- 4-(trifluoromethyl)phenylmethyl group, 2-(2-methylphenyl)ethyl group,
- 2-(3-methylphenyl)ethyl group, 2-(4-methylphenyl)ethyl group,
- 2-(2-methoxyphenyl)ethyl group, 2-(3-methoxyphenyl)ethyl group,
- 2-(4-methoxyphenyl)ethyl group, 2-(2-fluorophenyl)ethyl group,
- 2-(3-fluorophenyl)ethyl group, 2-(4-fluorophenyl)ethyl group,
- 2-(2-chlorophenyl)ethyl group, 2-(3-chlorophenyl)ethyl group,
- 2-(4-chlorophenyl)ethyl group, 2-[2-(trifluoromethyl)phenyl]ethyl group,
- 2-[3-(trifluoromethyl)phenyl]ethyl group, 2-[4-(trifluoromethyl)phenyl]ethyl group,
- 2-[4-(N,N-dimethylamino)phenyllethyl group, 2-phenyloxyethyl group,
- 2-(2-chlorophenyloxy)ethyl group, 2-(3-chlorophenyloxy)ethyl group,
- 2-(4-chlorophenyloxy)ethyl group, 2-(phenylthio)ethyl group,
- 2-(N-phenyl-N-methylamino)ethyl group, and 2-(N-ethyl-N-phenylamino)ethyl group.

The group G represents bromine atom, or iodine atom.

The group Y' represents methyl group, or ethyl group.

In another particularly preferred embodiment, the compound represented by the formula (II) satisfies all of the following requirements.

Symbol n represents an integer of 2.

C^{3'} represents carbon atom to which the group G bonds, C^{3'} represents carbon atom to which Rs' binds, C^{3'} represents carbon atom substituted with Zx', or unsubstituted carbon atom, and C^{3'} and C^{6'} represent an unsubstituted ring constituting carbon atom.

Zx' represents any one of fluorine atom, methyl group, hydroxyl group, amino group, N·methylamino group, and N,N·dimethylamino group, provided that when Zx' contains hydroxyl group, the hydroxyl group may be protected with Rp¹, and when the substituted Zx' contains amino group, the amino group may be protected with Rp².

Rs' represents -O-Rx'. Rx' have the same meaning as that of Rc, provided that when Rc contains hydroxyl group (OH), the hydroxyl group may be protected with Rp1. p in Rc represents an integer of 2, and A4 represents a single bond or methylene. As represents -C(O)-, -C(S)-, or -S(O)2-. Rd represents a group as any one of methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, cyclopropyl group, cyclopentyl group, cyclohexyl group, phenyl group, 4-methylphenyl group, 4-chlorophenyl group, 4-fluorophenyl group, benzyl group, 4-chlorophenylmethyl group, and 4-fluorophenylmethyl group. Re represents a group as any one of isopropyl group, butyl group, isobutyl group, t-butyl group, cyclopropyl group, cyclopentyl group, cyclohexyl group, cyclopentylmethyl group, cyclohexylmethyl group, phenyl group, 4-methylphenyl group, 4-chlorophenyl group, 4-fluorophenyl group, propyloxy group, isopropyloxy group, butyloxy group, isobutyloxy group, t-butyloxy group, cyclopropyloxy group, cyclopentyloxy group, cyclohexyloxy group, cyclopentylmethyloxy group, cyclohexylmethyloxy group, phenyloxy group, 4-methylphenyloxy group, 4-chlorophenyloxy group, 4-fluorophenyloxy group, N-propylamino group, N-isopropylamino group, N-butylamino group, N-isobutylamino group, N-t-butylamino group,

N-cyclopropylamino group, N-cyclopentylamino group, N-cyclohexylamino group, N-phenylamino group, N-(4-methylphenyl)amino group, N-(4-chlorophenyl)amino group, N-(4-fluorophenyl)amino group, pyrrolidino group, piperidino group, and morpholino group.

The group G represents bromine atom, or iodine atom.

The group Y' represents methyl group, or ethyl group.

C2', C2', C4', C5', and C6' in the aromatic ring (E') in the aforementioned formula (III) each represent a ring constituting carbon atom. Any ring constituting carbon atom to which Rs' and AR' do not bond among them may be replaced with V'. The substitution positions of Rs', AR', and V' are similar to those described in the explanations of the substitution positions of Rs (corresponding to the position of Rs'), AR (corresponding to the position of the group AR'), and V (corresponding to the position of V') in the aforementioned formula (I).

AR' has the same meaning as that of AR mentioned above, provided that when AR contains hydroxyl group, the hydroxyl group may be protected with Rp¹. In this case, the hydroxyl group includes OH in carboxyl group (COOH). When the substituted AR contains amino group, the amino group represents a substituent, which may be protected with Rp². Examples of the amino group, which may be protected include NH present in a ring constituting AR, for example, as in indole ring, indazole ring, and the like.

Rs', V', n, and D in the aforementioned formula (III) have the same meanings as those defined above. Rp^1 , and Rp^2 also have the same meanings as those defined above.

In a preferred embodiment, the compound represented by the formula (III) satisfies all of the following requirements.

AR' binds to C^{g} , $R_{s'}$ binds to any of the atoms C^{g} , C^{g} , and C^{g} , and a ring constituting carbon atom to which $R_{s'}$ does not bind among C^{g} , C^{g} , and C^{g} may

be replaced with V'.

V' represents nitrogen atom, or carbon atom substituted with Zx', and Zx' represents any one of fluorine atom, chlorine atom, bromine atom, nitro group, methyl group, hydroxyl group, methoxy group, amino group, N-methylamino group, N-ethylamino group, N-ricopropylamino group, N,N-dimethylamino group, N,N-diethylamino group, formylamino group, acetylamino group, carbamoylamino group, mesylamino group, and N,N-dimethylsulfamoylamino group, provided that when Zx' contains hydroxyl group, the hydroxyl group may be protected with Rp1, and when the substituted Zx' contains amino group, the amino group may be protected with Rp2.

Rs' represents -D-Rx' or -N(Ry')(Rz'). D represents oxygen atom or sulfur atom. Rx' represents butyl group, isobutyl group, 2-ethylbutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclopentylmethyl group, cyclohexylmethyl group, 2-cyclopentylethyl group, or 2-cyclohexylethyl group, or represents Rb or Rc. Q in Rb represents a group as any one of phenyl group, thienyl group, furyl group, pyridyl group, oxazolyl group, naphthyl group, tetrahydronaphthyl group, indanyl group, indolyl group, and dihydrobenzodioxyl group. A2 represents a single bond, oxygen atom, sulfur atom, 'N(methyl)', or -N(ethyl)- (provided that when A2 represents oxygen atom, sulfur atom, N(methyl)-, or 'N(ethyl)', A1 represents ethylene). R2 and R3 independently represent hydrogen atom, methyl group, fluorine atom, chlorine atom, trifluoromethyl group, methoxy group, dimethylamino group, acetylamino group, or methylsulfonylamino group (provided that when Q represents phenyl group, A1 represents a single bond, or unsubstituted methylene, and A2 represents a single bond, one of R2 and R3 represents a substituent other than hydrogen atom). Symbol p in Rc represents an integer of 2 or 3, and A4 represents a single bond or methylene. A5 represents -C(O)-, -C(S)-, or -S(O)2-. Rd represents hydrogen atom, or a group as any one of

methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, cyclopropyl group, cyclopropylmethyl group, cyclopentyl group, cyclopentylmethyl group, cyclohexyl group, cyclohexylmethyl group, phenyl group, 4-methylphenyl group, 4-chlorophenyl group, 4-fluorophenyl group, benzyl group, 4-chlorophenylmethyl group, 4-fluorophenylmethyl group, pyridin-2-yl group, pyridin-3-yl group, and pyridin-4-yl group. Re represents any one of methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, t-butyl group, cyclopropyl group, cyclopentyl group, cyclohexyl group, cyclopentylmethyl group, cyclohexylmethyl group, phenyl group, 4 methylphenyl group, 4 chlorophenyl group, 4-fluorophenyl group, phenylmethyl group, 4-chlorophenylmethyl group, 4-fluorophenylmethyl group, pyridin-2-yl group, pyridin-3-yl group, pyridin-4-yl group, furan-2-yl group, furan-3-yl group, thiophen-2-yl group, thiophen-3-yl group, methoxy group, ethoxy group, propyloxy group, isopropyloxy group, butyloxy group, isobutyloxy group, t-butyloxy group, cyclopropyloxy group, cyclopentyloxy group, cyclohexyloxy group, cyclopentylmethyloxy group, cyclohexylmethyloxy group, phenyloxy group, 4-methylphenyloxy group, 4-chlorophenyloxy group, 4-fluorophenyloxy group, thiomethoxy group, amino group, N-methylamino group, N,N-dimethylamino group, N-ethylamino group, N,N-diethylamino group, N-propylamino group, N-isopropylamino group, N-butylamino group, N-isobutylamino group, N-t-butylamino group, N-cyclopropylamino group, N-cyclopentylamino group, N-cyclohexylamino group, N-phenylamino group, N-(4-methylphenyl)amino group, N-(4-chlorophenyl)amino group, N-(4-fluorophenyl)amino group, N-(pyridin-2-yl)amino group, N-(pyridin-3-yl)amino group, N-(pyridin-4-yl)amino group, N-(furan-2-yl)amino group, N-(furan-3-yl)amino group, N-(thiophen-2-yl)amino group, N-(thiophen-3-yl)amino group, pyrrolidino group, piperidino group, morpholino group, methyloxycarbonylamino group, and ethyloxycarbonylamino group. Rz' represents butyl group, isobutyl group,

2-ethylbutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclopentylmethyl group, cyclohexylmethyl group, 2-methylphenyl group, 4-methylphenyl group, 2-fluorophenyl group, 3-fluorophenyl group, 4-fluorophenyl group, 2-chlorophenyl group, 3-chlorophenyl group, 4-chlorophenyl group, indan-2-yl group, 4-methylindan-2-yl group, 5-methylindan-2-yl group, 4,7-dimethylindan-2-yl group, 5.6-dimethylindan-2-yl group, 4-fluoroindan-2-yl group, 5-fluoroindan-2-yl group, 4,7-difluoroindan-2-yl group, 5,6-difluoroindan-2-yl group, 4-chloroindan-2-yl group, 5-chloroindan-2-vl group, 4.7-dichloroindan-2-vl group, 5.6-dichloroindan-2-yl group, 4-methoxyindan-2-yl group, 5-methoxyindan-2-yl group, 4,7-dimethoxyindan-2-yl group, 5,6-dimethoxyindan-2-yl group, 1-phenylethyl group, 1-(2-fluorophenyl)ethyl group, 1-(8-fluorophenyl)ethyl group, 1-(4-fluorophenyl)ethyl group, 1-(2-chlorophenyl)ethyl group, 1-(3-chlorophenyl)ethyl group, 1-(4-chlorophenyl)ethyl group, 2-methylphenylmethyl group, 3-methylphenylmethyl group, 4-methylphenylmethyl group, 2,3-dimethylphenylmethyl group, 3,5-dimethylphenylmethyl group, 2-fluorophenylmethyl group, 3-fluorophenylmethyl group, 4-fluorophenylmethyl group, 2-chlorophenylmethyl group, 3-chlorophenylmethyl group, 4-chlorophenylmethyl group, 2,3-difluorophenylmethyl group, 2.4-difluorophenylmethyl group, 2.5-difluorophenylmethyl group, 3,4-difluorophenylmethyl group, 2,3-dichlorophenylmethyl group, 2.4-dichlorophenylmethyl group, 2,5-dichlorophenylmethyl group, 2,6-dichlorophenylmethyl group, 3,4-dichlorophenylmethyl group,

- 3,5-dichlorophenylmethyl group, 3,6-dichlorophenylmethyl group,
- 2-(trifluoromethyl)phenylmethyl group, 3-(trifluoromethyl)phenylmethyl group,
- 4-(trifluoromethyl)phenylmethyl group, 2-(2-methylphenyl)ethyl group,
- 2-(3-methylphenyl)ethyl group, 2-(4-methylphenyl)ethyl group,
- 2-(2-methoxyphenyl)ethyl group, 2-(3-methoxyphenyl)ethyl group,

- 2-(4-methoxyphenyl)ethyl group, 2-(2-fluorophenyl)ethyl group,
- 2-(3-fluorophenyl)ethyl group, 2-(4-fluorophenyl)ethyl group,
- 2-(2-chlorophenyl)ethyl group, 2-(3-chlorophenyl)ethyl group,
- 2-(4-chlorophenyl)ethyl group, 2-[2-(trifluoromethyl)phenyl]ethyl group,
- 2-[3-(trifluoromethyl)phenyl]ethyl group, 2-[4-(trifluoromethyl)phenyl]ethyl group,
- 2-[4-(N,N-dimethylamino)phenyl]ethyl group, 2-phenyloxyethyl group,
- 2-(2-chlorophenyloxy)ethyl group, 2-(3-chlorophenyloxy)ethyl group,
- 2-(4-chlorophenyloxy)ethyl group, 2-(phenylthio)ethyl group,
- 2-(N-phenyl-N-methylamino)ethyl group, 2-(N-ethyl-N-phenylamino)ethyl group,

isobutyryl group, isopropylthiocarbonyl group, isopropylsulfonyl group, valeryl

group, butylthiocarbonyl group, isovaleryl group, isobutylthiocarbonyl group,

pivalovl group, t-butylthiocarbonyl group, cyclopropylcarbonyl group,

 $cyclopropyl thio carbonyl\ group,\ cyclopentyl carbonyl\ group,\ cyclopentyl thio carbonyl$

group, cyclohexylcarbonyl group, cyclohexylthiocarbonyl group,

cyclopentylmethylcarbonyl group, cyclopentylmethylthiocarbonyl group,

cyclohexylmethylcarbonyl group, cyclohexylmethylthiocarbonyl group, benzoyl

 ${\tt group, thiobenzoyl \ group, \ phenyl sulfonyl \ group, \ 4-methyl phenyl \ carbonyl \ group,}$

 ${\it 4-methylphenylthiocarbonyl\ group,\ 4-methylphenylsulfonyl\ group,}$

4-chlorophenylcarbonyl group, 4-chlorophenylthiocarbonyl group,

4-fluorophenylcarbonyl group, 4-fluorophenylthiocarbonyl group,

isopropyloxycarbonyl group, N-isopropylcarbamoyl group, N-isopropylthiocarbamoyl group, butyloxycarbonyl group, N-butylcarbamoyl group, N-butylthiocarbamoyl

group, isobutyloxycarbonyl group, N-isobutylcarbamoyl group,

N-isobutylthiocarbamoyl group, t-butyloxycarbonyl group, N-t-butylcarbamoyl

 ${\tt group, N-t-butylthiocarbamoyl\ group,\ cyclopropyloxycarbonyl\ group,}$

 ${\tt N-cyclopropylcarbamoyl\ group,\ N-cyclopropylthiocarbamoyl\ group,}$

 ${\it cyclopentyloxy} carbonyl\ {\it group,\ N-cyclopentylcarbamoyl\ group,}$

N-cyclopentylthiocarbamoyl group, cyclohexyloxycarbonyl group, N-cyclohexylcarbamoyl group, N-cyclohexylthiocarbamoyl group, cyclopentylmethyloxycarbonyl group, cyclohexylmethyloxycarbonyl group, phenyloxycarbonyl group, N-phenylcarbamoyl group, N-phenylthiocarbamoyl group, 4-methylphenyloxycarbonyl group, N-(4-methylphenyl)carbamoyl group, N-(4-methylphenyl)thiocarbamoyl group, 4-chlorophenyloxycarbonyl group, N-(4-chlorophenyl)carbamoyl group, N-(4-chlorophenyl)thiocarbamoyl group, 4-fluorophenyloxycarbonyl group, N-(4-fluorophenyl)carbamoyl group, N-(4-fluorophenyl)thiocarbamoyl group, (pyrrolidino-1-yl)carbonyl group, (piperidino-1-yl)carbonyl group, and (morpholino-4-yl)carbonyl group. Ry' represents hydrogen atom, methyl group, ethyl group, or isobutyl group, or binds to Rz to form pyrrolidino group, piperidino group, piperazino group, morpholino group, nvrrol-1-vl group, imidazol-1-yl group, or pyrazol-1-yl group together with the nitrogen atom to which they bond. However, 'D-Rx' or 'N(Ry')(Rz') contains hydroxyl group, the hydroxyl group may be protected with Rp1, and when ·D·Rx' or -N(Ry')(Rz') contains amino group, the amino group may be protected with Rp2.

AR' represents any one of naphthalen-2-yl group, naphthalen-1-yl group, benzofuran-5-yl group, benzofuran-4-yl group, benzofuran-2-yl group, benzoflithiophen-5-yl group, benzoflithiophen-2-yl group, indol-5-yl group, indol-6-yl group, benzothiazol-6-yl group, benzothiazol-6-yl group, benzothiazol-6-yl group, benzothiazol-4-yl group, dihydro-3H-benzothiazol-6-yl group, dihydro-3H-benzothiazol-5-yl group, dihydro-3H-benzothiazol-5-yl group, dihydro-3H-benzothiazol-4-yl group, quinolin-6-yl group, quinolin-6-yl group, quinolin-5-yl group, dihydro-1H-quinolin-5-yl group, benzofdlisothiazol-6-yl group, benzofdlisothiazol-6-yl group, benzofdlisothiazol-6-yl group, benzofdlisothiazol-6-yl group, benzofdlisothiazol-4-yl group, H-indazol-6-yl group, benzofdlisothiazol-4-yl group,

1H-indazol-6-yl group, benzo[c]isothiazol-5-yl group, benzo[c]isothiazol-4-yl group, benzo[clisothiazol-6-yl group, benzo[clisothiazol-7-yl group, 2H-indazol-5-yl group, 2H-indazol-4-yl group, 2H-indazol-6-yl group, imidazo[1,2-a]pyridin-6-yl group, imidazo[1,2-a]pyridin-7-yl group, 1H-pyrrolo[2,3-b]pyridin-5-yl group, 1H-pyrrolo[2,3-b]pyridin-4-yl group, isoquinolin-6-yl group, isoquinolin-3-yl group, isoquinolin-5-yl group, isoquinolin-7-yl group, dihydro-2H-isoquinolin-6-yl group, dihydro-2H-isoquinolin-5-yl group, cinnolin-6-yl group, cinnolin-5-yl group, quinazolin-6-yl group, quinazolin-7-yl group, quinazolin-5-yl group, quinoxalin-2-yl group, quinoxalin-6-yl group, quinoxalin-5-yl group, 1H-benzimidazol-5-yl group, 1H-benzimidazol-4-yl group, benzoxazol-5-yl group, benzoxazol-6-yl group, benzoxazol-4-yl group, benzoxazol-7-yl group, 1H-pyrrolo[3,2-b]pyridin-5-yl group, 1H-pyrrolo[3,2-b]pyridin-6-yl group, benzo[1,2,5]thiadiazol-5-yl group, henzo[1.2.5]thiadiazol-4-vl group, 1H-benzotriazol-5-vl group, 1H-benzotriazol-4-vl group, 1.3-dihydropyrrolo[2,3-b]pyridin-5-yl group, 1,3-dihydropyrrolo[2,3-b]pyridin-4-yl group, 1,3-dihydrobenzimidazol-5-yl group, 1.3-dihydrobenzimidazol-4-yl group, dihydro-3H-benzoxazol-6-yl group, dihydro-3H-benzoxazol-7-yl group, dihydro-3H-benzoxazol-5-yl group, dihydro-3H-benzoxazol-4-yl group, phthalazin-6-yl group, phthalazin-5-yl group, [1,8]naphthalidin-3-yl group, [1,8]naphthalidin-4-yl group, [1,5]naphthalidin-3-yl group, [1,5]naphthalidin-4-yl group, 1H-pyrrolo[3,2-c]pyridin-6-yl group, 1H-pvrrolo[3,2-c]pvridin-4-vl group, 1H-pvrrolo[2,3-c]pvridin-5-yl group, 1H-pyrrolo[2,3-c]pyridin-4-yl group, 1H-pyrazolo[4,3-b]pyridin-5-yl group, 1H-pyrazolo[4,3-b]pyridin-6-yl group, 1H-pyrazolo[4,3-c]pyridin-6-yl group, 1H-pyrazolo[4,3-c]pyridin-4-yl group, 1H-pyrazolo[3,4-c]pyridin-5-yl group, 1H-pyrazolo[3,4-clpyridin-4-vl group, 1H-pyrazolo[3,4-blpyridin-5-vl group, 1H-pyrazolo[3,4-b]pyridin-4-yl group, [1,2,4]triazolo[4,3-a]pyridin-6-yl group, [1,2,4]triazolo[4,3-a]pyridin-7-yl group, thieno[3,2-c]pyridin-2-yl group,

thieno[3.2-c]pyridin-3-yl group, thieno[3,2-c]pyridin-6-yl group, thieno[3,2-b]pyridin-2-yl group, thieno[3,2-b]pyridin-3-yl group, thieno[3,2-b]pyridin-5-yl group, thieno[3,2-b]pyridin-6-yl group, 1H-thieno[3,2-c]pyrazol-5-yl group, 1H-thieno[3,2-c]pyrazol-4-yl group, benzo[d]isoxazol-5-yl group, benzo[d]isoxazol-4-yl group, benzo[d]isoxazol-6-yl group, benzo[d]isoxazol-7-yl group, benzo[c]isoxazol-5-yl group, benzo[c]isoxazol-4-yl group, henzo[c]isoxazol-6-yl group, henzo[c]isoxazol-7-yl group, indolizin-7-yl group, indolizin-6-vl group, indolizine-8-vl group, 1,3-dihydroindol-5-yl group, 1.3-dihydroindol-4-yl group, 1.3-dihydroindol-6-yl group, 1H-pyrazolo[3,4-d]thiazol-5-yl group, 2H-isoindol-5-yl group, 2H-isoindol-4-yl group, [1,2,4]triazolo[1,5-a]pyrimidin-6-yl group, 1H-pyrazolo[3,4-b]pyrazin-5-yl group, 1H-imidazo[4.5-b]pyrazin-5-yl group, 7H-purin-2-yl group, 4H-chromen-6-yl group, and 4H-chromen-5-yl group (the aforementioned groups may be substituted with one of Xa or two or more of identical or different Xa). The substituent Xa represents a group as any one of oxo group, thioxo group, fluorine atom, chlorine atom, trifluoromethyl group, methyl group, ethyl group, propyl group, 2-hydroxyethyl group, carboxymethyl group, 2-carboxyethyl group, N,N-dimethylcarbamoylmethyl group, hydroxyl group, methoxy group, 2-hydroxyethyloxy group, carboxymethyloxy group, 2-carboxyethyloxy group, N.N-dimethylcarbamoylmethyloxy group, amino group, methylamino group, dimethylamino group, 2-hydroxyethylamino group, carbamovlamino group, acetylamino group, furan-2-carboxyamino group, 2-hydroxyacetylamino group, 2-aminoacetylamino group, methylsulfonylamino group, (N,N-dimethylsulfamoyl)amino group, methanesulfonyl group, sulfamoyl group, N-methylsulfamoyl group, N,N-dimethylsulfamoyl group, carboxyl group, acetyl group, carbamoyl group, and N,N-dimethylcarbamoyl group. Provided that when AR' contains hydroxyl group, the hydroxyl group may be protected with Rp1, and when substituted AR' contains amino group, the amino group may be protected

with Rp2.

In another preferred embodiment, the compound represented by the formula (III) satisfies all of the following requirements.

AR' binds to \mathbb{C}^y , Re' binds to any of the ring-constituting carbon atoms \mathbb{C}^s , \mathbb{C}^s , and \mathbb{C}^e , and a ring-constituting carbon atom to which Rs' does not bind among \mathbb{C}^s , \mathbb{C}^v , and \mathbb{C}^e may be replaced with \mathbb{V}^s .

V represents nitrogen atom, or carbon atom substituted with Zx', and Zx' represents any one of fluorine atom, chlorine atom, bromine atom, nitro group, methyl group, hydroxyl group, methoxy group, amino group, N methylamino group, N ethylamino group, N forpylamino group, N isopropylamino group, N,N dimethylamino group, N,N diethylamino group, formylamino group, acetylamino group, carbamoylamino group, mesylamino group, and N,N dimethylsulfamoylamino group, provided that when Zx' contains hydroxyl group, the hydroxyl group may be protected with Rp1, and when the substituted Zx' contains amino group, the amino group may be protected with Rp2.

Rs' represents 'D-Rx' or 'N(Ry)(Rz'). D represents oxygen atom or sulfur atom. Rx' represents butyl group, isobutyl group, 2-ethylbutyl group, cyclopentyl group, cyclohexyl group, cyclohexyl group, cyclohexyl group, cyclohexyl group, cyclohexyl group, cyclohexylethyl group, or 2-cyclohexylethyl group, or represents Rb or Rc. Q in Rb represents a group as any one of phenyl group, thienyl group, furyl group, pyridyl group, oxazolyl group, naphthyl group, tetrahydronaphthyl group, indanyl group, indolyl group, and dihydrobenzodioxyl group. A² represents a single bond, oxygen atom, sulfur atom, 'N(methyl)-, or 'N(ethyl)- (provided that when A² represents oxygen atom, sulfur atom, 'N(methyl)-, or 'N(ethyl)-, A¹ represents ethylene). R² and R³ independently represent hydrogen atom, methyl group, fluorine atom, chlorine atom, trifluoromethyl group, methoxy group, dimethylamino group, acetylamino group, or methylsulfonylamino group

(provided that when Q represents phenyl group, A1 represents a single bond, or unsubstituted methylene, and A2 represents a single bond, one of R2 and R3 represents a substituent other than hydrogen atom). Symbol p in Rc represents an integer of 2 or 3, and A4 represents a single bond or methylene. A5 represents -C(O)-, -C(S)-, or -S(O)2-. Rd represents hydrogen atom, or a group as any one of methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, cyclopropyl group, cyclopropylmethyl group, cyclopentyl group, cyclopentylmethyl group, cyclohexyl group, cyclohexylmethyl group, phenyl group, 4-methylphenyl group, 4-chlorophenyl group, 4-fluorophenyl group, benzyl group, 4-chlorophenylmethyl group, 4-fluorophenylmethyl group, pyridin 2-yl group, pyridin-3-yl group, and pyridin-4-yl group. Re represents any one of methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, t butyl group, cyclopropyl group, cyclopentyl group, cyclohexyl group, cyclopentylmethyl group, cyclohexylmethyl group, phenyl group, 4 methylphenyl group, 4 chlorophenyl group, 4-fluorophenyl group, phenylmethyl group, 4-chlorophenylmethyl group, 4-fluorophenylmethyl group, pyridin-2-yl group, pyridin-3-yl group, pyridin-4-yl group, furan-2-yl group, furan-3-yl group, thiophen-2-yl group, thiophen-3-yl group, methoxy group, ethoxy group, propyloxy group, isopropyloxy group, butyloxy group, isobutyloxy group, t-butyloxy group, cyclopropyloxy group, cyclopentyloxy group, cyclohexyloxy group, cyclopentylmethyloxy group, cyclohexylmethyloxy group, phenyloxy group, 4-methylphenyloxy group, 4-chlorophenyloxy group, 4-fluorophenyloxy group, thiomethoxy group, amino group, N-methylamino group, N.N-dimethylamino group, N-ethylamino group, N,N-diethylamino group, N-propylamino group, N-isopropylamino group, N-butylamino group, N-isobutylamino group, N-t-butylamino group, N-cyclopropylamino group, N-cyclopentylamino group, N-cyclohexylamino group, N-phenylamino group, N-(4-methylphenyl)amino group, N-(4-chlorophenyl)amino group,

N-(4-fluorophenyl)amino group, N-(pyridin-2-yl)amino group, N-(pyridin-3-yl)amino group, N-(pyridin-4-yl)amino group, N-(furan-2-yl)amino group, N-(furan-3-yl)amino group, N-(thiophen-2-yl)amino group, N-(thiophen-3-yl)amino group, pyrrolidino group, piperidino group, morpholino group, methyloxycarbonylamino group, and ethyloxycarbonylamino group. Rz' represents any one of butyl group, isobutyl group, 2-ethylbutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclopentylmethyl group, cyclohexylmethyl group, 2-methylphenyl group, 4-methylphenyl group, 2-fluorophenyl group, 3-fluorophenyl group, 4-fluorophenyl group, 2-chlorophenyl group, 3-chlorophenyl group, 4-chlorophenyl group, indan-2-yl group, 4-methylindan-2-yl group, 5-methylindan-2-yl group, 4,7-dimethylindan-2-yl group, 5,6-dimethylindan-2-yl group, 4-fluoroindan-2-yl group, 5-fluoroindan-2-yl group, 4.7-difluoroindan-2-yl group, 5,6-difluoroindan-2-yl group, 4-chloroindan-2-yl group, 5-chloroindan-2-yl group, 4,7-dichloroindan-2-yl group, 5,6-dichloroindan-2-yl group, 4-methoxyindan-2-yl group, 5-methoxyindan-2-yl group, 4,7-dimethoxyindan-2-yl group, 5,6-dimethoxyindan-2-yl group, 1-phenylethyl group, 1-(2-fluorophenyl)ethyl group, 1-(3-fluorophenyl)ethyl group, 1-(4-fluorophenyl)ethyl group, 1-(2-chlorophenyl)ethyl group, 1-(3-chlorophenyl)ethyl group, 1-(4-chlorophenyl)ethyl group, 2-methylphenylmethyl group, 3-methylphenylmethyl group, 4-methylphenylmethyl group, 2,3-dimethylphenylmethyl group, 3,5-dimethylphenylmethyl group, 2-fluorophenylmethyl group, 3-fluorophenylmethyl group, 4-fluorophenylmethyl group, 2-chlorophenylmethyl group, 3-chlorophenylmethyl group. 4-chlorophenylmethyl group, 2,3-difluorophenylmethyl group, 2.4-difluorophenylmethyl group, 2,5-difluorophenylmethyl group, 3,4-difluorophenylmethyl group, 2,3-dichlorophenylmethyl group, 2.4-dichlorophenylmethyl group, 2,5-dichlorophenylmethyl group, 2.6-dichlorophenylmethyl group, 3,4-dichlorophenylmethyl group,

- 3,5-dichlorophenylmethyl group, 3,6-dichlorophenylmethyl group,
- 2-(trifluoromethyl)phenylmethyl group, 3-(trifluoromethyl)phenylmethyl group,
- 4-(trifluoromethyl)phenylmethyl group, 2-(2-methylphenyl)ethyl group,
- 2-(3-methylphenyl)ethyl group, 2-(4-methylphenyl)ethyl group,
- 2-(2-methoxyphenyl)ethyl group, 2-(3-methoxyphenyl)ethyl group,
- 2-(4-methoxyphenyl)ethyl group, 2-(2-fluorophenyl)ethyl group,
- 2-(3-fluorophenyl)ethyl group, 2-(4-fluorophenyl)ethyl group,
- 2-(2-chlorophenyl)ethyl group, 2-(3-chlorophenyl)ethyl group,
- 2-(4-chlorophenyl)ethyl group, 2-[2-(trifluoromethyl)phenyl]ethyl group,
- 2-[3-(trifluoromethyl)phenyl]ethyl group, 2-[4-(trifluoromethyl)phenyl]ethyl group,
- 2-[4-(N,N-dimethylamino)phenyl]ethyl group, 2-phenyloxyethyl group,
- 2-(2-chlorophenyloxy)ethyl group, 2-(3-chlorophenyloxy)ethyl group,
- 2-(4-chlorophenyloxy)ethyl group, 2-(phenylthio)ethyl group,
- 2-(N-phenyl-N-methylamino)ethyl group, 2-(N-ethyl-N-phenylamino)ethyl group, isobutyryl group, isopropylthiocarbonyl group, isopropylsulfonyl group, valeryl

group, butylthiocarbonyl group, isovaleryl group, isobutylthiocarbonyl group,

pivaloyl group, t-butylthiocarbonyl group, cyclopropylcarbonyl group,

 $cyclopropyl thio carbonyl\ group,\ cyclopentyl carbonyl\ group,\ cyclopentyl thio carbonyl\ group,\ cyclopentyl\ group,\ group,\$

group, cyclohexylcarbonyl group, cyclohexylthiocarbonyl group,

 ${\tt cyclopentylmethylcarbonyl\ group,\ cyclopentylmethylthiocarbonyl\ group,}$

 ${\it cyclohexylmethylcar} bonyl\ {\it group,\ cyclohexylmethylthiocarbonyl\ group,\ benzoyl}$

group, thiobenzoyl group, phenylsulfonyl group, 4-methylphenylcarbonyl group,

- 4-methylphenylthiocarbonyl group, 4-methylphenylsulfonyl group,
- 4-chlorophenylcarbonyl group, 4-chlorophenylthiocarbonyl group,
- 4-fluorophenylcarbonyl group, 4-fluorophenylthiocarbonyl group,

isopropyloxycarbonyl group, N-isopropylcarbamoyl group, N-isopropylthiocarbamoyl group, butyloxycarbonyl group, N-butylcarbamoyl group, N-butylthiocarbamoyl

group, isobutyloxycarbonyl group, N-isobutylcarbamoyl group, N-isobutylthiocarbamoyl group, t-butyloxycarbonyl group, N-t-butylcarbamoyl group, N-t-butylthiocarbamoyl group, cyclopropyloxycarbonyl group, N-cyclopropylcarbamoyl group, N-cyclopropylthiocarbamoyl group, cyclopentyloxycarbonyl group, N-cyclopentylcarbamoyl group, N-cyclopentylthiocarbamoyl group, cyclohexyloxycarbonyl group, N-cyclohexylcarbamoyl group, N-cyclohexylthiocarbamoyl group, cyclopentylmethyloxycarbonyl group, cyclohexylmethyloxycarbonyl group, phenyloxycarbonyl group, N-phenylcarbamoyl group, N-phenylthiocarbamoyl group, 4-methylphenyloxycarbonyl group, N-(4-methylphenyl)carbamoyl group, N-(4-methylphenyl)thiocarbamoyl group, 4-chlorophenyloxycarbonyl group, N-(4-chlorophenyl)carbamoyl group, N-(4-chlorophenyl)thiocarbamoyl group, 4-fluorophenyloxycarbonyl group, N-(4-fluorophenyl)carbamoyl group, N-(4-fluorophenyl)thiocarbamoyl group, (pyrrolidino-1-yl)carbonyl group, (piperidino-1-yl)carbonyl group, and (morpholino-4-yl)carbonyl group. Ry' represents hydrogen atom, methyl group, ethyl group, or isobutyl group, or binds to Rz' to form pyrrolidino group, piperidino group, piperazino group, morpholino group, nyrrol-1-vl group, imidazol-1-vl group, or pyrazol-1-yl group together with nitrogen atom. Provided that when 'D'Rx' or 'N(Ry')(Rz') contains hydroxyl group, the hydroxyl group may be protected with Rp1, and when -D-Rx' or -N(Ry')(Rz') contains amino group, the amino group may be protected with Rp2.

AR' represents any one of naphthalen-2-yl group, naphthalen-1-yl group, benzofuran-5-yl group, benzofuran-4-yl group, benzofuran-2-yl group, benzofblthiophen-5-yl group, benzofblthiophen-2-yl group, indol-5-yl group, indol-4-yl group, indol-6-yl group, benzothiazol-6-yl group, benzothiazol-6-yl group, benzothiazol-7-yl group, dihydro-3H-benzothiazol-7-yl group,

dihydro-3H-benzothiazol-5-yl group, dihydro-3H-benzothiazol-4-yl group, quinolin-6-yl group, quinolin-3-yl group, quinolin-5-yl group, quinolin-7-yl group, dihydro-1H-quinolin-6-vl group, dihydro-1H-quinolin-5-yl group, henzoldlisothiazol-5-yl group, benzoldlisothiazol-4-yl group, benzoldlisothiazol-6-yl group, benzo[d]isothiazol-7-yl group, 1H-indazol-5-yl group, 1H-indazol-4-yl group, 1H-indazol-6-yl group, benzolclisothiazol-5-yl group, benzolclisothiazol-4-yl group, benzo[c]isothiazol-6-yl group, benzo[c]isothiazol-7-yl group, 2H-indazol-5-yl group, 2H-indazol-4-yl group, 2H-indazol-6-yl group, imidazo[1,2-a]pyridin-6-yl group, imidazo[1,2-a]pyridin-7-yl group, 1H-pyrrolo[2,3-b]pyridin-5-yl group, 1H-pyrrolo[2,3-b]pyridin-4-vl group, isoquinolin-6-yl group, isoquinolin-3-yl group, isoquinolin-5-yl group, isoquinolin-7-yl group, dihydro-2H-isoquinolin-6-yl group. dihydro-2H-isoquinolin-5-yl group, cinnolin-6-yl group, cinnolin-5-yl group, quinazolin-6-yl group, quinazolin-7-yl group, quinazolin-5-yl group, quinoxalin-2-yl group, quinoxalin-6-yl group, quinoxalin-5-yl group, 1H-benzimidazol-5-yl group, 1H-benzimidazol-4-yl group, benzoxazol-5-yl group, benzoxazol-6-yl group, benzoxazol-4-yl group, benzoxazol-7-yl group, 1H-pyrrolo[3,2-b]pyridin-5-yl group, 1H-pyrrolo[3,2-b]pyridin-6-yl group, benzo[1,2,5]thiadiazol-5-yl group, benzo[1,2,5]thiadiazol-4-yl group, 1H-benzotriazol-5-yl group, 1H-benzotriazol-4-yl group, 1,3-dihydropyrrolo[2,3-b]pyridin-5-yl group, 1,3-dihydropyrrolo[2,3-b]pyridin-4-yl group, 1,3-dihydrobenzimidazol-5-yl group, 1.3-dihydrobenzimidazol-4-yl group, dihydro-3H-benzoxazol-6-yl group, dihydro-3H-benzoxazol-7-yl group, dihydro-3H-benzoxazol-5-yl group, dihydro-3H-benzoxazol-4-yl group, phthalazin-6-yl group, phthalazin-5-yl group, [1,8]naphthalidin-3-yl group, [1,8]naphthalidin-4-yl group, [1,5]naphthalidin-3-yl group, [1,5]naphthalidin-4-yl group, 1H-pyrrolo[3,2-c]pyridin-6-yl group, 1H-pyrrolo[3,2-c]pyridin-4-yl group, 1H-pyrrolo[2,3-c]pyridin-5-yl group, 1H-pyrrolo[2,3-c]pyridin-4-yl group, 1H-pyrazolo[4,3-b]pyridin-5-yl group,

1H-pyrazolo[4,3-b]pyridin-6-yl group, 1H-pyrazolo[4,3-c]pyridin-6-yl group, 1H-pyrazolo[4,3-c]pyridin-4-yl group, 1H-pyrazolo[3,4-c]pyridin-5-yl group, 1H-pyrazolo[3,4-c]pyridin-4-vl group, 1H-pyrazolo[3,4-b]pyridin-5-yl group, 1H-pyrazolo[3,4-h]pyridin-4-yl group, [1,2,4]triazolo[4,3-a]pyridin-6-yl group, [1,2,4]triazolo[4,3-a]pyridin-7-yl group, thieno[3,2-c]pyridin-2-yl group, thieno[3,2-c]pyridin-3-yl group, thieno[3,2-c]pyridin-6-yl group, thieno[3,2-b]pyridin-2-yl group, thieno[3,2-b]pyridin-3-yl group, thieno[3,2-b]pyridin-5-yl group, thieno[3,2-b]pyridin-6-yl group, 1H-thieno[3,2-c]pyrazol-5-vl group, 1H-thieno[3,2-c]pyrazol-4-vl group, benzo[d]isoxazol-5-yl group, benzo[d]isoxazol-4-yl group, benzo[d]isoxazol-6-yl group, benzo[d]isoxazol-7-yl group, benzo[c]isoxazol-5-yl group, benzo[c]isoxazol-4-yl group, benzo[c]isoxazol-6-yl group, benzo[c]isoxazol-7-yl group, indolizin-7-yl group, indolizin-6-yl group, indolizine-8-yl group, 1,3-dihydroindol-5-yl group, 1,3-dihydroindol-4-yl group, 1,3-dihydroindol-6-yl group, 1H-pyrazolo[3,4-d]thiazol-5-yl group, 2H-isoindol-5-yl group, 2H-isoindol-4-yl group, [1.2.4] triazolo [1.5-a] pyrimidin-6-yl group, 1H-pyrazolo [3,4-b] pyrazin-5-yl group, 1H-imidazo[4.5-b]pyrazin-5-yl group, 7H-purin-2-yl group, 4H-chromen-6-yl group, and 4H-chromen-5-yl group (the aforementioned groups may be substituted with one of Xa or two or more of identical or different Xa). The substituent Xa represents a group as any one of oxo group, thioxo group, fluorine atom, chlorine atom, trifluoromethyl group, methyl group, ethyl group, propyl group, 2-hydroxyethyl group, carboxymethyl group, 2-carboxyethyl group, N,N-dimethylcarbamoylmethyl group, hydroxyl group, methoxy group, 2-hydroxyethyloxy group, carboxymethyloxy group, 2-carboxyethyloxy group, N.N-dimethylcarbamoylmethyloxy group, amino group, methylamino group, dimethylamino group, 2-hydroxyethylamino group, carbamovlamino group, acetylamino group, furan-2-carboxyamino group, 2-hydroxyacetylamino group, 2-aminoacetylamino group, methylsulfonylamino

group, (N,N-dimethylsulfamoyl) amino group, methanesulfonyl group, sulfamoyl group, N-methylsulfamoyl group, N,N-dimethylsulfamoyl group, carboxyl group, acetyl group, carbamoyl group, and N,N-dimethylcarbamoyl group. Provided that when AR' contains hydroxyl group, the hydroxyl group may be protected with Rp1, and when substituted AR' contains amino group, the amino group may be protected with Rp2.

In a particularly preferred embodiment, the compound represented by the formula (III) satisfies all of the following requirements.

C² represents carbon atom to which AR' binds, C² represents carbon atom to which Rs' binds, C² may be replaced with V', and C² and C² represent an unsubstituted ring constituting carbon atom.

V' represents nitrogen atom, or carbon atom substituted with Zx', and Zx' represents any one of fluorine atom, methyl group, hydroxyl group, amino group, N'methylamino group, and N,N'dimethylamino group, provided that when Zx' contains hydroxyl group, the hydroxyl group may be protected with Rp!, and when the substituted Zx' contains amino group, the amino group may be protected with Rp².

Rs' represents 'O-Rx'. Rx' represents any one of butyl group, isobutyl group, 2-ethylbutyl group, cyclopentyl group, cyclohexyl group, cyclohexyl group, cyclohexyl group, cyclohexyl group, 2-methylphenyl group, 4-methylphenyl group, 2-fluorophenyl group, 3-fluorophenyl group, 4-fluorophenyl group, 3-fluorophenyl group, 4-chlorophenyl group, indan 2-yl group, 4-methylindan 2-yl group, 5-methylindan 2-yl group, 5-fluoroindan 2-yl group, 5-fluoroindan 2-yl group, 4-fluoroindan 2-yl group, 4-fluoroindan 2-yl group, 5-fluoroindan 2-yl group, 5-chloroindan 2-yl group, 4-fluoroindan 2-yl group, 5-chloroindan 2-yl group, 5-fluoroindan 2-yl group, 5-fluoroindan 2-yl group, 5-fluoroindan 2-yl group, 5-fluoroindan 2-yl group, 5-methoxyindan 2-yl

group, 4.7-dimethoxyindan-2-yl group, 5,6-dimethoxyindan-2-yl group,

- 1-phenylethyl group, 1-(2-fluorophenyl)ethyl group, 1-(3-fluorophenyl)ethyl group,
- 1-(4-fluorophenyl)ethyl group, 1-(2-chlorophenyl)ethyl group,
- $1\hbox{-}(3\hbox{-}chlorophenyl) ethyl group, 1\hbox{-}(4\hbox{-}chlorophenyl) ethyl group, 2\hbox{-}methyl phenyl methyl group, 2\hbox{-}methyl phenyl methyl group, 2\hbox{-}methyl phenyl methyl group, 2\hbox{-}methyl phenyl methyl group, 2\hbox{-}methyl group, 2\hbox{-}methyl$
- group, 3-methylphenylmethyl group, 4-methylphenylmethyl group,
- 2,3-dimethylphenylmethyl group, 3,5-dimethylphenylmethyl group,
- $\hbox{2-fluorophenylmethyl group, 3-fluorophenylmethyl group, 4-fluorophenylmethyl}$
- group, 2-chlorophenylmethyl group, 3-chlorophenylmethyl group,
- 4-chlorophenylmethyl group, 2,3-difluorophenylmethyl group,
- 2.4-difluorophenylmethyl group, 2,5-difluorophenylmethyl group,
- 3,4-difluorophenylmethyl group, 2,3-dichlorophenylmethyl group,
- 2.4-dichlorophenylmethyl group, 2,5-dichlorophenylmethyl group,
- 2,6-dichlorophenylmethyl group, 3,4-dichlorophenylmethyl group,
- 3.5-dichlorophenylmethyl group, 3,6-dichlorophenylmethyl group,
- 2-(trifluoromethyl)phenylmethyl group, 3-(trifluoromethyl)phenylmethyl group,
- 4-(trifluoromethyl)phenylmethyl group, 2-(2-methylphenyl)ethyl group,
- 2-(3-methylphenyl)ethyl group, 2-(4-methylphenyl)ethyl group,
- 2-(2-methoxyphenyl)ethyl group, 2-(3-methoxyphenyl)ethyl group,
- 2-(4-methoxyphenyl)ethyl group, 2-(2-fluorophenyl)ethyl group,
- 2-(3-fluorophenyl)ethyl group, 2-(4-fluorophenyl)ethyl group,
- 2-(2-chlorophenyl)ethyl group, 2-(3-chlorophenyl)ethyl group,
- 2-(4-chlorophenyl)ethyl group, 2-[2-(trifluoromethyl)phenyl]ethyl group,
- 2-[3-(trifluoromethyl)phenyllethyl group, 2-[4-(trifluoromethyl)phenyl]ethyl group,
- 2-[4-(N.N-dimethylamino)phenyllethyl group, 2-phenyloxyethyl group,
- 2-(2-chlorophenyloxy)ethyl group, 2-(3-chlorophenyloxy)ethyl group,
- 2-(4-chlorophenyloxy)ethyl group, 2-(phenylthio)ethyl group,
- 2-(N-phenyl-N-methylamino)ethyl group, and 2-(N-ethyl-N-phenylamino)ethyl

group.

```
AR' represents any one of naphthalen-2-yl group, 6-hydroxynaphthalen-2-yl
group, 6-methoxynaphthalen-2-yl group, 6-(2-hydroxyethyloxy)naphthalen-2-yl
group, 6-aminonaphthalen-2-yl group, 6-(N-methylamino)naphthalen-2-yl group,
6-(N,N-dimethylamino)naphthalen-2-yl group,
6-(2-hydroxyethylamino)naphthalen-2-yl group, benzo[b]furan-5-yl group,
2-methylbenzo[b]furan-5-yl group, 3-methylbenzo[b]furan-5-yl group,
2.3-dimethylbenzo[b]furan-5-yl group, benzo[b]thiophen-5-yl group,
2-methylbenzo[b]thiophen-5-yl group, 3-methylbenzo[b]thiophen-5-yl group,
2,3-dimethylbenzo[b]thiophen-5-yl group, 1H-indol-5-yl group,
2-methyl-1H-indol-5-yl group, 3-methyl-1H-indol-5-yl group,
2.3-dimethyl-1H-indol-5-yl group, 1-methyl-1H-indol-5-yl group,
1.2-dimethyl-1H-indol-5-yl group, 1,3-dimethyl-1H-indol-5-yl group,
1.2.3-trimethyl-1H-indol-5-yl group, 1-ethyl-1H-indol-5-yl group,
1-ethyl-2-methyl-1H-indol-5-yl group, 1-ethyl-3-methyl-1H-indol-5-yl group,
1-ethyl-2,3-dimethyl-1H-indol-5-yl group, 1-propyl-1H-indol-5-yl group,
2-methyl-1-propyl-1H-indol-5-yl group, 3-methyl-1-propyl-1H-indol-5-yl group,
2.3-dimethyl-1-propyl-1H-indol-5-yl group, 1-(2-hydroxyethyl)-1H-indol-5-yl group,
1-(2-hydroxyethyl)-2-methyl-1H-indol-5-yl group,
1-(2-hydroxyethyl)-3-methyl-1H-indol-5-yl group,
2.3-dimethyl-1-(2-hydroxyethyl)-1H-indol-5-yl group, benzothiazol-6-yl group,
2-methylbenzothiazol-6-yl group, 2-methoxybenzothiazol-6-yl group,
2-aminobenzothiazol-6-yl group, 2-oxo-2,3-dihydrobenzothiazol-6-yl group,
2-oxo-3-methyl-2,3-dihydrobenzothiazol-6-yl group,
2-thioxo-2.3-dihydrobenzothiazol-6-yl group,
2-thioxo-3-methyl-2,3-dihydrobenzothiazol-6-yl group, quinolin-3-yl group,
 quinolin-6-yl group, 2-oxo-1,2-dihydroquinolin-6-yl group, benzold]isothiazol-5-yl
```

group, 1H-indazol-5-yl group, 1-methyl-1H-indazol-5-yl group,
1-ethyl-1H-indazol-5-yl group, 1-propyl-1H-indazol-5-yl group,
1-(2-hydroxyethyl)-1H-indazol-5-yl group, 3-hydroxy-1H-indazol-5-yl group,
3-hydroxy-1-methyl-1H-indazol-5-yl group, 1-ethyl-3-hydroxy-1H-indazol-5-yl group,
imidazol[1,2-alpyridin-6-yl group, 1H-pyrrolo[2,3-b]pyridin-5-yl group,
1-methyl-1H-pyrrolo[2,3-b]pyridin-5-yl group, 1-ethyl-1H-pyrrolo[2,3-b]pyridin-5-yl
group, 1-propyl-1H-pyrrolo[2,3-b]pyridin-5-yl group,
1-(2-hydroxyethyl)-1H-pyrrolo[2,3-b]pyridin-5-yl group,
1-oxo-1,2-dihydroisoquinolin-6-yl group, cinnolin-6-yl group, and benzoxazol-5-yl
group. Provided that when AR' contains hydroxyl group, the hydroxyl group may be
protected with Rp-1, and when substituted AR' contains amino group, the amino

In another particularly preferred embodiment, the compound represented by the formula (III) satisfies all of the following requirements.

group may be protected with Rp2.

C^g represents carbon atom to which AR' binds, C^g represents carbon atom to which Rs' binds, C^g may be replaced with V', and C^g and C^g represent an unsubstituted ring constituting carbon atom.

V' represents nitrogen atom, or carbon atom substituted with Zx', and Zx' represents any one of fluorine atom, methyl group, hydroxyl group, amino group, N'methylamino group, and N,N'dimethylamino group. Provided that when Zx' contains hydroxyl group, the hydroxyl group may be protected with Rp¹, and when the substituted Zx' contains amino group, the amino group may be protected with Rp².

Rs' represents 'O'Rx'. Rx' represents any one of butyl group, isobutyl group,
2-ethylbutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group,
cyclopentylmethyl group, cyclohexylmethyl group, 2-methylphenyl group,
4-methylphenyl group, 2-fluorophenyl group, 3-fluorophenyl group, 4-fluorophenyl

group, 2-chlorophenyl group, 3-chlorophenyl group, 4-chlorophenyl group, indan-2-yl group, 4-methylindan-2-yl group, 5-methylindan-2-yl group, 4,7-dimethylindan-2-yl group, 5,6-dimethylindan-2-yl group, 4-fluoroindan-2-yl group, 5-fluoroindan-2-yl group, 4,7-difluoroindan-2-yl group, 4-chloroindan-2-yl group, 5-chloroindan-2-yl group, 4,7-dichloroindan-2-yl group, 4-chloroindan-2-yl group, 4,7-dichloroindan-2-yl group,

5,6-dichloroindan-2-yl group, 4-methoxyindan-2-yl group, 5-methoxyindan-2-yl group, 4,7-dimethoxyindan-2-yl group, 5,6-dimethoxyindan-2-yl group,
1-phenylethyl group, 1-(2-fluorophenyl)ethyl group, 1-(3-fluorophenyl)ethyl group,

- 1-(4-fluorophenyl)ethyl group, 1-(2-chlorophenyl)ethyl group,
- 1-(3 chlorophenyl)ethyl group, 1-(4 chlorophenyl)ethyl group, 2 methylphenylmethyl group, 3 methylphenylmethyl group, 4 methylphenylmethyl group,
- 2.3-dimethylphenylmethyl group, 3.5-dimethylphenylmethyl group,
- 2-fluorophenylmethyl group, 3-fluorophenylmethyl group, 4-fluorophenylmethyl group, 2-chlorophenylmethyl group, 3-chlorophenylmethyl group,
- 4-chlorophenylmethyl group, 2,3-difluorophenylmethyl group,
- 2.4-difluorophenylmethyl group, 2,5-difluorophenylmethyl group,
- 3,4-difluorophenylmethyl group, 2,3-dichlorophenylmethyl group,
- 2,4-dichlorophenylmethyl group, 2,5-dichlorophenylmethyl group,
- 2,6-dichlorophenylmethyl group, 3,4-dichlorophenylmethyl group,
- $3, 5\hbox{-}dichlorophenylmethyl group, } 3, 6\hbox{-}dichlorophenylmethyl group,}$
- 2-(trifluoromethyl)phenylmethyl group, 3-(trifluoromethyl)phenylmethyl group,
- 4-(trifluoromethyl)phenylmethyl group, 2-(2-methylphenyl)ethyl group,
- 2-(3-methylphenyl)ethyl group, 2-(4-methylphenyl)ethyl group,
- 2-(2-methoxyphenyl)ethyl group, 2-(3-methoxyphenyl)ethyl group,
- 2-(4-methoxyphenyl)ethyl group, 2-(2-fluorophenyl)ethyl group,
- 2-(3-fluorophenyl)ethyl group, 2-(4-fluorophenyl)ethyl group,
- 2-(2-chlorophenyl)ethyl group, 2-(3-chlorophenyl)ethyl group,

```
2-(4-chlorophenyl)ethyl group, 2-[2-(trifluoromethyl)phenyl]ethyl group,
2-[3-(trifluoromethyl)phenyllethyl group, 2-[4-(trifluoromethyl)phenyllethyl group,
2-[4-(N.N-dimethylamino)phenyllethyl group, 2-phenyloxyethyl group,
2-(2-chlorophenyloxy)ethyl group, 2-(3-chlorophenyloxy)ethyl group,
2-(4-chlorophenyloxy)ethyl group, 2-(phenylthio)ethyl group,
2-(N-phenyl-N-methylamino)ethyl group, and 2-(N-ethyl-N-phenylamino)ethyl
group.
        AR' represents any one of naphthalen-2-yl group, 6-hydroxynaphthalen-2-yl
group, 6-methoxynaphthalen-2-yl group, 6-(2-hydroxyethyloxy)naphthalen-2-yl
group, 6-aminonaphthalen-2-yl group, 6-(N-methylamino)naphthalen-2-yl group.
6-(N.N-dimethylamino)naphthalen-2-yl group,
6-(2-hydroxyethylamino)naphthalen-2-yl group, benzo[b]furan-5-yl group, ...
2-methylbenzo[b]furan-5-yl group, 3-methylbenzo[b]furan-5-yl group,
2,3-dimethylbenzo[b]furan-5-yl group, benzo[b]thiophen-5-yl group,
2-methylbenzo[b]thiophen-5-yl group, 3-methylbenzo[b]thiophen-5-yl group,
2.3-dimethylbenzo[b]thiophen-5-vl group, 1H-indol-5-vl group,
```

- 2-methyl-1H-indol-5-yl group, 3-methyl-1H-indol-5-yl group, 2.3-dimethyl-1H-indol-5-yl group, 1-methyl-1H-indol-5-yl group,
- 1,2-dimethyl-1H-indol-5-yl group, 1,3-dimethyl-1H-indol-5-yl group,
- 1,2,3-trimethyl-1H-indol-5-yl group, 1-ethyl-1H-indol-5-yl group,
- 1-ethyl-2-methyl-1H-indol-5-yl group, 1-ethyl-3-methyl-1H-indol-5-yl group,
- 1-ethyl-2,3-dimethyl-1H-indol-5-yl group, 1-propyl-1H-indol-5-yl group,
- 2-methyl-1-propyl-1H-indol-5-yl group, 3-methyl-1-propyl-1H-indol-5-yl group,
- 2,3-dimethyl-1-propyl-1H-indol-5-yl group, 1-(2-hydroxyethyl)-1H-indol-5-yl group,
- 1-(2-hydroxyethyl)-2-methyl-1H-indol-5-yl group,
- 1-(2-hydroxyethyl)-3-methyl-1H-indol-5-yl group,
- 2,3-dimethyl-1-(2-hydroxyethyl)-1H-indol-5-yl group, benzothiazol-6-yl group,

2-methylbenzothiazol-6-yl group, 2-methoxybenzothiazol-6-yl group, 2-aminobenzothiazol-6-yl group, 2-oxo-2,3-dihydrobenzothiazol-6-yl group, 2-oxo-3-methyl-2.3-dihydrobenzothiazol-6-yl group, 2-thioxo-2,3-dihydrobenzothiazol-6-yl group, 2-thioxo-3-methyl-2,3-dihydrobenzothiazol-6-yl group, quinolin-3-yl group, quinolin-6-yl group, 2-oxo-1,2-dihydroquinolin-6-yl group, benzo[d]isothiazol-5-yl group, 1H-indazol-5-yl group, 1-methyl-1H-indazol-5-yl group, 1-ethyl-1H-indazol-5-yl group, 1-propyl-1H-indazol-5-yl group, 1-(2-hydroxyethyl)-1H-indazol-5-yl group, 3-hydroxy-1H-indazol-5-yl group, 3-hydroxy-1-methyl-1H-indazol-5-yl group, 1-ethyl-3-hydroxy-1H-indazol-5-yl group, imidazo[1,2-a]pyridin-6-yl group, 1H-pyrrolo[2,3-b]pyridin-5-yl group, 1-methyl-1H-pyrrolo[2,3-b]pyridin-5-yl group, 1-ethyl-1H-pyrrolo[2,3-b]pyridin-5-yl group, 1-propyl-1H-pyrrolo[2,3-b]pyridin-5-yl group, 1-(2-hydroxyethyl)-1H-pyrrolo[2,3-b]pyridin-5-yl group, isoquinolin-6-yl group, 1-oxo-1,2-dihydroisoquinolin-6-yl group, cinnolin-6-yl group, and benzoxazol-5-yl group. Provided that when AR' contains hydroxyl group, the hydroxyl group may be protected with Rp1, and when substituted AR' contains amino group, the amino

In another particularly preferred embodiment, the compound represented by the formula (III) satisfies all of the following requirements.

group may be protected with Rp2.

C° represents carbon atom to which AR' binds, C° represents carbon atom to which Rs' binds, and C°, C° and C° represent an unsubstituted ring constituting carbon atom.

Rs' represents -O·Rx'. Rx' represents any one of butyl group, isobutyl group, 2-ethylbutyl group, cyclohentyl group, cyclohexyl group, cyclohexyl group, cyclohexylmethyl group, 2-methylphenyl group, 4-fluorophenyl group, 3-fluorophenyl group, 4-fluorophenyl

- 5,6-dichloroindan-2-yl group, 4-methoxyindan-2-yl group, 5-methoxyindan-2-yl group, 4,7-dimethoxyindan-2-yl group, 5,6-dimethoxyindan-2-yl group,
- 1-phenylethyl group, 1-(2-fluorophenyl)ethyl group, 1-(3-fluorophenyl)ethyl group,
- 1-(4-fluorophenyl)ethyl group, 1-(2-chlorophenyl)ethyl group,
- 1-(3-chlorophenyl)ethyl group, 1-(4-chlorophenyl)ethyl group, 2-methylphenylmethyl group, 3-methylphenylmethyl group, 4-methylphenylmethyl group,
- 2.3-dimethylphenylmethyl group, 3,5-dimethylphenylmethyl group,
- 2-fluorophenylmethyl group, 3-fluorophenylmethyl group, 4-fluorophenylmethyl group, 2-chlorophenylmethyl group, 3-chlorophenylmethyl group,
- 4-chlorophenylmethyl group, 2,3-difluorophenylmethyl group,
- 2,4-difluorophenylmethyl group, 2,5-difluorophenylmethyl group,
- 3.4-difluorophenylmethyl group, 2,3-dichlorophenylmethyl group,
- 2,4-dichlorophenylmethyl group, 2,5-dichlorophenylmethyl group,
- 2.6-dichlorophenylmethyl group, 3,4-dichlorophenylmethyl group,
- $3, 5\hbox{-}dichlorophenylmethyl\ group,}\ 3, 6\hbox{-}dichlorophenylmethyl\ group,}$
- 2-(trifluoromethyl)phenylmethyl group, 3-(trifluoromethyl)phenylmethyl group,
- 4-(trifluoromethyl)phenylmethyl group, 2-(2-methylphenyl)ethyl group,
- 2-(3-methylphenyl)ethyl group, 2-(4-methylphenyl)ethyl group,
- 2-(2-methoxyphenyl)ethyl group, 2-(3-methoxyphenyl)ethyl group,
- 2-(4-methoxyphenyl)ethyl group, 2-(2-fluorophenyl)ethyl group,
- 2-(3-fluorophenyl)ethyl group, 2-(4-fluorophenyl)ethyl group,
- 2-(2-chlorophenyl)ethyl group, 2-(3-chlorophenyl)ethyl group,

```
2-(4-chlorophenyl)ethyl group, 2-[2-(trifluoromethyl)phenyl]ethyl group,
```

- 2-[3-(trifluoromethyl)phenyl]ethyl group, 2-[4-(trifluoromethyl)phenyl]ethyl group,
- 2-[4-(N.N-dimethylamino)phenyl]ethyl group, 2-phenyloxyethyl group,
- 2-(2-chlorophenyloxy)ethyl group, 2-(3-chlorophenyloxy)ethyl group,
- 2-(4-chlorophenyloxy)ethyl group, 2-(phenylthio)ethyl group,
- 2-(N-phenyl-N-methylamino)ethyl group, and 2-(N-ethyl-N-phenylamino)ethyl group.

AR' represents any one of naphthalen-2-yl group, 6-hydroxynaphthalen-2-yl group, 6-methoxynaphthalen-2-yl group, 6-(2-hydroxyethyloxy)naphthalen-2-yl group, 6-aminonaphthalen-2-yl group, 6-(N-methylamino)naphthalen-2-yl group, 6-(N,N-dimethylamino)naphthalen-2-yl group. 6-(2-hydroxyethylamino)naphthalen-2-yl group, benzo[b]furan-5-yl group, 2-methylbenzo[b]furan-5-yl group, 3-methylbenzo[b]furan-5-yl group, 2.3-dimethylbenzo[b]furan-5-yl group, benzo[b]thiophen-5-yl group, 2-methylbenzo[b]thiophen-5-yl group, 3-methylbenzo[b]thiophen-5-yl group, 2.3-dimethylbenzo[b]thiophen-5-yl group, 1H-indol-5-yl group, 2-methyl-1H-indol-5-yl group, 3-methyl-1H-indol-5-yl group, 2,3-dimethyl-1H-indol-5-yl group, 1-methyl-1H-indol-5-yl group, 1.2-dimethyl-1H-indol-5-yl group, 1,3-dimethyl-1H-indol-5-yl group, 1,2,3-trimethyl-1H-indol-5-yl group, 1-ethyl-1H-indol-5-yl group, 1-ethyl-2-methyl-1H-indol-5-yl group, 1-ethyl-3-methyl-1H-indol-5-yl group, 1-ethyl-2,3-dimethyl-1H-indol-5-yl group, 1-propyl-1H-indol-5-yl group, 2-methyl-1-propyl-1H-indol-5-yl group, 3-methyl-1-propyl-1H-indol-5-yl group, 2,3-dimethyl-1-propyl-1H-indol-5-yl group, 1-(2-hydroxyethyl)-1H-indol-5-yl group, 1-(2-hydroxyethyl)-2-methyl-1H-indol-5-yl group,

361

2,3-dimethyl-1-(2-hydroxyethyl)-1H-indol-5-yl group, benzothiazol-6-yl group,

1-(2-hydroxyethyl)-3-methyl-1H-indol-5-yl group,

2-methylbenzothiazol-6-yl group, 2-methoxybenzothiazol-6-yl group, 2-aminobenzothiazol-6-yl group, 2-oxo-2,3-dihydrobenzothiazol-6-yl group, 2-oxo-3-methyl-2.3-dihydrobenzothiazol-6-yl group, 2-thioxo-2,3-dihydrobenzothiazol-6-yl group, 2-thioxo-3-methyl-2,3-dihydrobenzothiazol-6-yl group, quinolin-3-yl group, quinolin-6-yl group, 2-oxo-1,2-dihydroquinolin-6-yl group, benzo[d]isothiazol-5-yl group, 1H-indazol-5-yl group, 1-methyl-1H-indazol-5-yl group, 1-ethyl-1H-indazol-5-yl group, 1-propyl-1H-indazol-5-yl group, 1-(2-hydroxyethyl)-1H-indazol-5-yl group, 3-hydroxy-1H-indazol-5-yl group, 3-hydroxy-1-methyl-1H-indazol-5-yl group, 1-ethyl-3-hydroxy-1H-indazol-5-yl group, imidazo[1,2-a]pyridin-6-yl group, 1H-pyrrolo[2,3-b]pyridin-5-yl group, 1-methyl-1H-pyrrolo[2,3-b]pyridin-5-yl group, 1-ethyl-1H-pyrrolo[2,3-b]pyridin-5-yl group, 1-propyl-1H-pyrrolo[2,3-b]pyridin-5-yl group, 1-(2-hydroxyethyl)-1H-pyrrolo[2,3-b]pyridin-5-yl group, isoquinolin-6-yl group, 1-oxo-1,2-dihydroisoquinolin-6-yl group, cinnolin-6-yl group, and benzoxazol-5-yl group. Provided that when AR' contains hydroxyl group, the hydroxyl group may be

In another particularly preferred embodiment, the compound represented by the formula (III) satisfies all of the following requirements.

protected with Rp1, and when substituted AR' contains amino group, the amino

group may be protected with Rp2.

C^g represents carbon atom to which AR' binds, C^g represents carbon atom to which Rs' binds, C^g represents nitrogen atom, and C^g and C^g represent an unsubstituted ring constituting carbon atom.

Rs' represents -O-Rx'. Rx' represents any one of butyl group, isobutyl group,
2-ethylbutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group,
cyclopentylmethyl group, cyclohexylmethyl group, 2-methylphenyl group,
4-methylphenyl group, 2-fluorophenyl group, 3-fluorophenyl group, 4-fluorophenyl

group, 2-chlorophenyl group, 3-chlorophenyl group, 4-chlorophenyl group, indan-2-yl group, 4-methylindan-2-yl group, 5-methylindan-2-yl group, 4,7-dimethylindan-2-yl group, 5,6-dimethylindan-2-yl group, 4-fluoroindan-2-yl group, 5-fluoroindan-2-yl group, 4-chloroindan-2-yl group, 4-chloroindan-2-yl group, 5-chloroindan-2-yl group, 4,7-dichloroindan-2-yl group, 4-chloroindan-2-yl group, 4-dichloroindan-2-yl group, 4-dichloroindan-2-yl group,

- 5,6-dichloroindan-2-yl group, 4-methoxyindan-2-yl group, 5-methoxyindan-2-yl group, 4,7-dimethoxyindan-2-yl group, 5,6-dimethoxyindan-2-yl group,
- 1-phenylethyl group, 1-(2-fluorophenyl)ethyl group, 1-(3-fluorophenyl)ethyl group,
- 1-(4-fluorophenyl)ethyl group, 1-(2-chlorophenyl)ethyl group,
- 1-(3-chlorophenyl)ethyl group, 1-(4-chlorophenyl)ethyl group, 2-methylphenylmethyl group, 3-methylphenylmethyl group, 4-methylphenylmethyl group,
- 2,3-dimethylphenylmethyl group, 3,5-dimethylphenylmethyl group,
- 2-fluorophenylmethyl group, 3-fluorophenylmethyl group, 4-fluorophenylmethyl group, 3-chlorophenylmethyl group, 3-chlorophenylmethyl group,
- 4-chlorophenylmethyl group, 2,3-difluorophenylmethyl group,
- 2.4-difluorophenylmethyl group, 2,5-difluorophenylmethyl group,
- 3.4-difluorophenylmethyl group, 2,3-dichlorophenylmethyl group,
- 2.4-dichlorophenylmethyl group, 2.5-dichlorophenylmethyl group,
- 2,6-dichlorophenylmethyl group, 3,4-dichlorophenylmethyl group,
- 3,5-dichlorophenylmethyl group, 3,6-dichlorophenylmethyl group,
- 2-(trifluoromethyl)phenylmethyl group, 3-(trifluoromethyl)phenylmethyl group,
- 4-(trifluoromethyl)phenylmethyl group, 2-(2-methylphenyl)ethyl group,
- 2-(3-methylphenyl)ethyl group, 2-(4-methylphenyl)ethyl group,
- 2-(2-methoxyphenyl)ethyl group, 2-(3-methoxyphenyl)ethyl group,
- 2-(4-methoxyphenyl)ethyl group, 2-(2-fluorophenyl)ethyl group,
- 2-(3-fluorophenyl)ethyl group, 2-(4-fluorophenyl)ethyl group,
- 2-(2-chlorophenyl)ethyl group, 2-(3-chlorophenyl)ethyl group,

```
2-(4-chlorophenyl)ethyl group, 2-[2-(trifluoromethyl)phenyllethyl group,
```

- 2-[3-(trifluoromethyl)phenyl]ethyl group, 2-[4-(trifluoromethyl)phenyl]ethyl group,
- 2-[4-(N,N-dimethylamino)phenyl]ethyl group, 2-phenyloxyethyl group,
- 2-(2-chlorophenyloxy)ethyl group, 2-(3-chlorophenyloxy)ethyl group,
- 2-(4-chlorophenyloxy)ethyl group, 2-(phenylthio)ethyl group,
- 2-(N-phenyl-N-methylamino)ethyl group, and 2-(N-ethyl-N-phenylamino)ethyl group.

AR' represents any one of naphthalen-2-yl group, 6-hydroxynaphthalen-2-yl group, 6-methoxynaphthalen-2-yl group, 6-(2-hydroxyethyloxy)naphthalen-2-yl group, 6-aminonaphthalen-2-yl group, 6-(N-methylamino)naphthalen-2-yl group, 6-(N,N-dimethylamino)naphthalen-2-yl group, 6-(2-hydroxyethylamino)naphthalen-2-yl group, benzo[b]furan-5-yl group, 2-methylbenzo[b]furan-5-yl group, 3-methylbenzo[b]furan-5-yl group, 2,3-dimethylbenzo[b]furan-5-yl group, benzo[b]thiophen-5-yl group, 2-methylbenzo[b]thiophen-5-yl group, 3-methylbenzo[b]thiophen-5-yl group, 2.3-dimethylbenzo[b]thiophen-5-yl group, 1H-indol-5-yl group, 2-methyl-1H-indol-5-yl group, 3-methyl-1H-indol-5-yl group, 2.3-dimethyl-1H-indol-5-yl group, 1-methyl-1H-indol-5-yl group, 1,2-dimethyl-1H-indol-5-yl group, 1,3-dimethyl-1H-indol-5-yl group, 1,2,3-trimethyl-1H-indol-5-yl group, 1-ethyl-1H-indol-5-yl group, 1-ethyl-2-methyl-1H-indol-5-yl group, 1-ethyl-3-methyl-1H-indol-5-yl group, 1-ethyl-2,3-dimethyl-1H-indol-5-yl group, 1-propyl-1H-indol-5-yl group, 2-methyl-1-propyl-1H-indol-5-yl group, 3-methyl-1-propyl-1H-indol-5-yl group, 2,3-dimethyl-1-propyl-1H-indol-5-yl group, 1-(2-hydroxyethyl)-1H-indol-5-yl group, 1-(2-hvdroxyethyl)-2-methyl-1H-indol-5-yl group,

364

2,3-dimethyl-1-(2-hydroxyethyl)-1H-indol-5-yl group, benzothiazol-6-yl group,

1-(2-hydroxyethyl)-3-methyl-1H-indol-5-yl group,

2-methylbenzothiazol-6-yl group, 2-methoxybenzothiazol-6-yl group, 2-aminobenzothiazol-6-yl group, 2-oxo-2,3-dihydrobenzothiazol-6-yl group, 2-oxo-3-methyl-2,3-dihydrobenzothiazol-6-yl group, 2-thioxo-2.3-dihydrobenzothiazol-6-yl group, 2-thioxo-3-methyl-2,3-dihydrobenzothiazol-6-yl group, quinolin-3-yl group, quinolin-6-yl group, 2-oxo-1,2-dihydroquinolin-6-yl group, benzo[d]isothiazol-5-yl group, 1H-indazol-5-yl group, 1-methyl-1H-indazol-5-yl group, 1-ethyl-1H-indazol-5-yl group, 1-propyl-1H-indazol-5-yl group, 1-(2-hydroxyethyl)-1H-indazol-5-yl group, 3-hydroxy-1H-indazol-5-yl group, 3-hydroxy-1-methyl-1H-indazol-5-yl group, 1-ethyl-3-hydroxy-1H-indazol-5-yl group, imidazo[1,2-a]pyridin-6-yl group, 1H-pyrrolo[2,3-b]pyridin-5-yl group, 1-methyl-1H-pyrrolo[2,3-b]pyridin-5-yl group, 1-ethyl-1H-pyrrolo[2,3-b]pyridin-5-yl group, 1-propyl-1H-pyrrolo[2,3-b]pyridin-5-yl group, 1-(2-hydroxyethyl)-1H-pyrrolo[2,3-b]pyridin-5-yl group, isoquinolin-6-yl group, 1-oxo-1,2-dihydroisoquinolin-6-yl group, cinnolin-6-yl group, and benzoxazol-5-yl group. Provided that when AR' contains hydroxyl group, the hydroxyl group may be protected with Rp1, and when substituted AR' contains amino group, the amino

In another particularly preferred embodiment, the compound represented by the formula (III) satisfies all of the following requirements.

group may be protected with Rp2.

C^g represents carbon atom to which AR' binds, C^g represents carbon atom to which Rs' binds, C^g represents carbon atom substituted with Zx', and C^g and C^g represent an unsubstituted ring constituting carbon atom.

Zx' represents any one of fluorine atom, methyl group, hydroxyl group, amino group, N·methylamino group, and N,N·dimethylamino group, provided that when Zx' contains hydroxyl group, the hydroxyl group may be protected with Rp¹, and when the substituted Zx' contains amino group, the amino group may be

protected with Rp2.

Rs' represents -O-Rx'. Rx' represents any one of butyl group, isobutyl group, 2-ethylbutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclopentylmethyl group, cyclohexylmethyl group, 2-methylphenyl group, 4-methylphenyl group, 2-fluorophenyl group, 3-fluorophenyl group, 4-fluorophenyl group, 2-chlorophenyl group, 3-chlorophenyl group, 4-chlorophenyl group, indan-2-yl group, 4-methylindan-2-yl group, 5-methylindan-2-yl group, 4,7-dimethylindan-2-yl group, 5,6-dimethylindan-2-yl group, 4-fluoroindan-2-yl group, 5-fluoroindan-2-yl group, 4,7-difluoroindan-2-yl group, 5,6-difluoroindan-2-yl group, 4-chloroindan-2-yl group, 5-chloroindan-2-yl group, 4,7-dichloroindan-2-yl group, 5.6-dichloroindan-2-yl group, 4-methoxyindan-2-yl group, 5-methoxyindan-2-yl group, 4,7-dimethoxyindan-2-yl group, 5,6-dimethoxyindan-2-yl group, 1-phenylethyl group, 1-(2-fluorophenyl)ethyl group, 1-(3-fluorophenyl)ethyl group, 1-(4-fluorophenyl)ethyl group, 1-(2-chlorophenyl)ethyl group, 1-(3-chlorophenyl)ethyl group, 1-(4-chlorophenyl)ethyl group, 2-methylphenylmethyl group, 3-methylphenylmethyl group, 4-methylphenylmethyl group, 2,3-dimethylphenylmethyl group, 3,5-dimethylphenylmethyl group, 2-fluorophenylmethyl group, 3-fluorophenylmethyl group, 4-fluorophenylmethyl group, 2-chlorophenylmethyl group, 3-chlorophenylmethyl group, 4-chlorophenylmethyl group, 2,3-difluorophenylmethyl group, 2.4-difluorophenylmethyl group, 2,5-difluorophenylmethyl group,

- 3,4-diffuorophenylmethyl group, 2,3-dichlorophenylmethyl group,
- 2,4-dichlorophenylmethyl group, 2,5-dichlorophenylmethyl group,
- 2,6-dichlorophenylmethyl group, 3,4-dichlorophenylmethyl group,
- 3,5-dichlorophenylmethyl group, 3,6-dichlorophenylmethyl group,
- 2-(trifluoromethyl)phenylmethyl group, 3-(trifluoromethyl)phenylmethyl group,
- 4-(trifluoromethyl)phenylmethyl group, 2-(2-methylphenyl)ethyl group,

- 2-(3-methylphenyl)ethyl group, 2-(4-methylphenyl)ethyl group,
- 2-(2-methoxyphenyl)ethyl group, 2-(3-methoxyphenyl)ethyl group,
- 2-(4-methoxyphenyl)ethyl group, 2-(2-fluorophenyl)ethyl group,
- 2-(3-fluorophenyl)ethyl group, 2-(4-fluorophenyl)ethyl group,
- 2-(2-chlorophenyl)ethyl group, 2-(3-chlorophenyl)ethyl group,
- 2-(4-chlorophenyl)ethyl group, 2-[2-(trifluoromethyl)phenyllethyl group,
- $\hbox{$2$-[3-(trifluoromethyl)phenyl]ethyl group, 2-[4-(trifluoromethyl)phenyl]ethyl group, 2-[4-(trifluorom$
- 2-[4-(N,N-dimethylamino)phenyl]ethyl group, 2-phenyloxyethyl group,
- 2-(2-chlorophenyloxy)ethyl group, 2-(3-chlorophenyloxy)ethyl group,
- 2-(4-chlorophenyloxy)ethyl group, 2-(phenylthio)ethyl group,
- 2-(N-phenyl-N-methylamino)ethyl group, and 2-(N-ethyl-N-phenylamino)ethyl group.

AR' represents any one of naphthalen-2-yl group, 6-hydroxynaphthalen-2-yl group, 6-methoxynaphthalen-2-yl group, 6-(2-hydroxyethyloxy)naphthalen-2-yl group, 6-(N-methylamino)naphthalen-2-yl group, 6-(N,N-dimethylamino)naphthalen-2-yl group,

- 6-(2-hydroxyethylamino)naphthalen-2-yl group, benzo[b]furan-5-yl group,
- 2-methylbenzo[b]furan-5-yl group, 3-methylbenzo[b]furan-5-yl group,
- 2,3-dimethylbenzo[b]furan-5-yl group, benzo[b]thiophen-5-yl group,

2-methylbenzo[b]thiophen-5-yl group, 3-methylbenzo[b]thiophen-5-yl group,

- 2,3-dimethylbenzo[b]thiophen-5-yl group, 1H-indol-5-yl group,
- $\hbox{2-methyl-1H-indol-5-yl\ group,\ 3-methyl-1H-indol-5-yl\ group,}$
- 2,3-dimethyl-1H-indol-5-yl group, 1-methyl-1H-indol-5-yl group,
- 1,2-dimethyl-1H-indol-5-yl group, 1,3-dimethyl-1H-indol-5-yl group,
- 1,2,3-trimethyl-1H-indol-5-yl group, 1-ethyl-1H-indol-5-yl group,
- $1\hbox{-ethyl-}2\hbox{-methyl-}1H\hbox{-indol-}5\hbox{-yl group, }1\hbox{-ethyl-}3\hbox{-methyl-}1H\hbox{-indol-}5\hbox{-yl group,}$
- 1-ethyl-2,3-dimethyl-1H-indol-5-yl group, 1-propyl-1H-indol-5-yl group,

```
2-methyl-1-propyl-1H-indol-5-yl group, 3-methyl-1-propyl-1H-indol-5-yl group,
2,3-dimethyl-1-propyl-1H-indol-5-yl group, 1-(2-hydroxyethyl)-1H-indol-5-yl group,
1-(2-hvdroxyethyl)-2-methyl-1H-indol-5-yl group,
1-(2-hvdroxyethyl)-3-methyl-1H-indol-5-yl group,
2.3-dimethyl-1-(2-hydroxyethyl)-1H-indol-5-yl group, benzothiazol-6-yl group,
2-methylbenzothiazol-6-yl group, 2-methoxybenzothiazol-6-yl group,
2-aminobenzothiazol-6-yl group, 2-oxo-2,3-dihydrobenzothiazol-6-yl group,
2-oxo-3-methyl-2.3-dihydrobenzothiazol-6-yl group,
2-thioxo-2.3-dihydrobenzothiazol-6-yl group,
2-thioxo-3-methyl-2,3-dihydrobenzothiazol-6-yl group, quinolin-3-yl group,
quinolin-6-yl group, 2-oxo-1,2-dihydroquinolin-6-yl group, benzo[d]isothiazol-5-yl
group, 1H-indazol-5-yl group, 1-methyl-1H-indazol-5-yl group,
1-ethyl-1H-indazol-5-yl group, 1-propyl-1H-indazol-5-yl group,
1-(2-hydroxyethyl)-1H-indazol-5-yl group, 3-hydroxy-1H-indazol-5-yl group,
3-hydroxy-1-methyl-1H-indazol-5-yl group, 1-ethyl-3-hydroxy-1H-indazol-5-yl group,
imidazo[1,2-a]pyridin-6-yl group, 1H-pyrrolo[2,3-b]pyridin-5-yl group,
1-methyl-1H-pyrrolo[2,3-b]pyridin-5-yl group, 1-ethyl-1H-pyrrolo[2,3-b]pyridin-5-yl
group, 1-propyl-1H-pyrrolo[2,3-b]pyridin-5-yl group,
1-(2-hydroxyethyl)-1H-pyrrolo[2,3-b]pyridin-5-yl group, isoquinolin-6-yl group,
1-oxo-1,2-dihydroisoquinolin-6-yl group, cinnolin-6-yl group, and benzoxazol-5-yl
group. Provided that when AR' contains hydroxyl group, the hydroxyl group may be
protected with Rp1, and when substituted AR' contains amino group, the amino
group may be protected with Rp2.
        In another particularly preferred embodiment, the compound represented by
```

In another particularly preferred embodiment, the compound represented by the formula (III) satisfies all of the following requirements..

C^{gr} represents carbon atom to which AR' binds, C^{gr} represents carbon atom to which Rs' binds, C^{gr} represents carbon atom substituted with Zx', and C^{gr} and C^{gr}

represent an unsubstituted ring-constituting carbon atom.

Zx' represents any one of N-methylamino group, N-ethylamino group, N-propylamino group, N-isopropylamino group, N,N-dimethylamino group, group, formylamino group, acetylamino group, carbamoylamino group, mesylamino group, and N,N-dimethylsulfamoylamino group. Provided that when the substituted Zx' contains amino group (NH), the amino group may be protected with Rp².

Rs' represents -O-Rx'. Rx' represents any one of butyl group, isobutyl group, 2-ethylbutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclopentylmethyl group, cyclohexylmethyl group, 2-methylphenyl group, 4-methylphenyl group, 2-fluorophenyl group, 3-fluorophenyl group, 4-fluorophenyl group, 2-chlorophenyl group, 3-chlorophenyl group, 4-chlorophenyl group, indan-2-yl group, 4-methylindan-2-yl group, 5-methylindan-2-yl group, 4,7-dimethylindan-2-yl group, 5,6-dimethylindan-2-yl group, 4-fluoroindan-2-yl group, 5-fluoroindan-2-yl group, 4,7-difluoroindan-2-yl group, 5,6-difluoroindan-2-yl group, 4-chloroindan-2-yl group, 5-chloroindan-2-yl group, 4,7-dichloroindan-2-yl group, 5.6-dichloroindan-2-yl group, 4-methoxyindan-2-yl group, 5-methoxyindan-2-yl group, 4.7-dimethoxyindan-2-yl group, 5,6-dimethoxyindan-2-yl group, 1-phenylethyl group, 1-(2-fluorophenyl)ethyl group, 1-(3-fluorophenyl)ethyl group, 1-(4-fluorophenyl)ethyl group, 1-(2-chlorophenyl)ethyl group, 1-(8-chlorophenyl)ethyl group, 1-(4-chlorophenyl)ethyl group, 2-methylphenylmethyl group, 3-methylphenylmethyl group, 4-methylphenylmethyl group, 3-dimethylphenylmethyl group, 3,5-dimethylphenylmethyl group, 2-fluorophenylmethyl group, 3-fluorophenylmethyl group, 4-fluorophenylmethyl group, 2-chlorophenylmethyl group, 3-chlorophenylmethyl group, 4-chlorophenylmethyl group, 2,3-difluorophenylmethyl group, 2.4-difluorophenylmethyl group, 2.5-difluorophenylmethyl group,

- 3.4-difluorophenylmethyl group, 2,3-dichlorophenylmethyl group.
- 2.4-dichlorophenylmethyl group, 2,5-dichlorophenylmethyl group,
- $2,6 \hbox{-} dichlorophenylmethyl group, } 3,4 \hbox{-} dichlorophenylmethyl group,}$
- 3.5-dichlorophenylmethyl group, 3,6-dichlorophenylmethyl group,
- 2-(trifluoromethyl)phenylmethyl group, 3-(trifluoromethyl)phenylmethyl group,
- 4-(trifluoromethyl)phenylmethyl group, 2-(2-methylphenyl)ethyl group,
- 2-(3-methylphenyl)ethyl group, 2-(4-methylphenyl)ethyl group,
- 2-(2-methoxyphenyl)ethyl group, 2-(3-methoxyphenyl)ethyl group,
- 2-(4-methoxyphenyl)ethyl group, 2-(2-fluorophenyl)ethyl group,
- 2-(3-fluorophenyl)ethyl group, 2-(4-fluorophenyl)ethyl group,
- 2-(2-chlorophenyl)ethyl group, 2-(3-chlorophenyl)ethyl group,
- 2-(4-chlorophenyl)ethyl group, 2-[2-(trifluoromethyl)phenyl]ethyl group,
- $2\cdot [3\cdot (trifluoromethyl)phenyl] ethyl group, \\ 2\cdot [4\cdot (trifluoromethyl)phenyl] ethyl group, \\$
- 2-[4-(N,N-dimethylamino)phenyllethyl group, 2-phenyloxyethyl group,
- 2-(2-chlorophenyloxy)ethyl group, 2-(3-chlorophenyloxy)ethyl group,
- 2-(4-chlorophenyloxy)ethyl group, 2-(phenylthio)ethyl group,
- 2·(N·phenyl·N·methylamino)ethyl group, and 2·(N·ethyl·N·phenylamino)ethyl group.

AR' represents any one of naphthalen-2-yl group, 6-hydroxynaphthalen-2-yl group, 6-methoxynaphthalen-2-yl group, 6-(2-hydroxyethyloxy)naphthalen-2-yl group, 6-(N-methylamino)naphthalen-2-yl group, 6-(N,N-dimethylamino)naphthalen-2-yl group,

- 6-(2-hydroxyethylamino)naphthalen-2-yl group, benzolblfuran-5-yl group,
- 2-methylbenzo[b]furan-5-yl group, 3-methylbenzo[b]furan-5-yl group,
- 2,3-dimethylbenzo[b]furan-5-yl group, benzo[b]thiophen-5-yl group,
- 2-methylbenzo[b]thiophen-5-yl group, 3-methylbenzo[b]thiophen-5-yl group,
- 2.3-dimethylbenzo[b]thiophen-5-yl group, 1H-indol-5-yl group,

```
2-methyl-1H-indol-5-yl group, 3-methyl-1H-indol-5-yl group,
```

- 2.3-dimethyl-1H-indol-5-yl group, 1-methyl-1H-indol-5-yl group,
- 1.2-dimethyl-1H-indol-5-yl group, 1,3-dimethyl-1H-indol-5-yl group,
- 1.2.3-trimethyl-1H-indol-5-yl group, 1-ethyl-1H-indol-5-yl group,
- 1-ethyl-2-methyl-1H-indol-5-yl group, 1-ethyl-3-methyl-1H-indol-5-yl group,
- 1-ethyl-2,3-dimethyl-1H-indol-5-yl group, 1-propyl-1H-indol-5-yl group,
- 2-methyl-1-propyl-1H-indol-5-yl group, 3-methyl-1-propyl-1H-indol-5-yl group,
- 2,3-dimethyl-1-propyl-1H-indol-5-yl group, 1-(2-hydroxyethyl)-1H-indol-5-yl group,
- 1-(2-hvdroxyethyl)-2-methyl-1H-indol-5-yl group,
- 1-(2-hydroxyethyl)-3-methyl-1H-indol-5-yl group,
- 2.3-dimethyl-1-(2-hydroxyethyl)-1H-indol-5-yl group, benzothiazol-6-yl group,
- 2-methylbenzothiazol-6-yl group, 2-methoxybenzothiazol-6-yl group,
- 2-aminobenzothiazol-6-yl group, 2-oxo-2,3-dihydrobenzothiazol-6-yl group,
- 2-oxo-3-methyl-2,3-dihydrobenzothiazol-6-yl group,
- 2-thioxo-2.3-dihydrobenzothiazol-6-vl group,
- 2-thioxo-3-methyl-2,3-dihydrobenzothiazol-6-yl group, quinolin-3-yl group,
- quinolin-6-yl group, 2-oxo-1,2-dihydroquinolin-6-yl group, benzoldlisothiazol-5-yl
- group, 1H-indazol-5-vl group, 1-methyl-1H-indazol-5-yl group,
- 1-ethyl-1H-indazol-5-yl group, 1-propyl-1H-indazol-5-yl group,
- 1-(2-hydroxyethyl)-1H-indazol-5-yl group, 3-hydroxy-1H-indazol-5-yl group,
- 3-hydroxy-1-methyl-1H-indazol-5-yl group, 1-ethyl-3-hydroxy-1H-indazol-5-yl group,
- imidazo[1,2-a]pyridin-6-yl group, 1H-pyrrolo[2,3-b]pyridin-5-yl group,
- 1-methyl-1H-pyrrolo[2,3-b]pyridin-5-yl group, 1-ethyl-1H-pyrrolo[2,3-b]pyridin-5-yl
- group, 1-propyl-1H-pyrrolo[2,3-b]pyridin-5-yl group,
- 1-(2-hvdroxyethyl)-1H-pyrrolo[2,3-b]pyridin-5-yl group, isoquinolin-6-yl group,
- 1-oxo-1.2-dihydroisoquinolin-6-yl group, cinnolin-6-yl group, and benzoxazol-5-yl
- group. Provided that when AR' contains hydroxyl group, the hydroxyl group may be

protected with Rp^1 , and when substituted AR' contains amino group, the amino group may be protected with Rp^2 .

In another particularly preferred embodiment, the compound represented by the formula (III) satisfies all of the following requirements.

C^g represents carbon atom to which AR' binds, C^g represents carbon atom to which Rs' binds, C^g represents carbon atom substituted with Zx', or an unsubstituted ring constituting carbon atom, and C^g and C^g represent an unsubstituted ring constituting carbon atom.

Zx' represents any one of fluorine atom, methyl group, hydroxyl group, amino group, N'methylamino group, and N,N'dimethylamino group, provided that when Zx' contains hydroxyl group, the hydroxyl group may be protected with Rp¹, and when the substituted Zx' contains amino group, the amino group may be protected with Rp².

Re' represents ·O·Rx'. Rx' have the same meaning as that of Rc, provided that when Rc contains hydroxyl group, the hydroxyl group may be protected with Rp¹. p in Rc represents an integer of 2, and A⁴ represents a single bond or methylene. A⁵ represents ·C(O)·, ·C(S)·, or ·S(O)₂·. Rd represents a group as any one of methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, cyclopropyl group, cyclopentyl group, cyclohexyl group, phenyl group, 4·chlorophenyl group, 4·fluorophenyl group, benzyl group, 4·chlorophenylmethyl group, and 4·fluorophenylmethyl group. Re represents a group as any one of isopropyl group, butyl group, isobutyl group, t-butyl group, cyclopropyl group, cyclopentyl group, cyclohexyl group, cyclopentylmethyl group, t-fluorophenyl group, t-fluorophenyl group, phenyl group, t-methylphenyl group, 4·chlorophenyl group, t-fluorophenyl group, t-butyloxy group, isopropyloxy group, butyloxy group, isobutyloxy group, cyclopentyloxy group, c

phenyloxy group, 4-methylphenyloxy group, 4-chlorophenyloxy group,
4-fluorophenyloxy group, N-propylamino group, N-isopropylamino group,
N-butylamino group, N-isobutylamino group, N-t-butylamino group,
N-cyclopropylamino group, N-cyclopentylamino group, N-cyclohexylamino group,
N-phenylamino group, N-(4-methylphenyl)amino group, N-(4-chlorophenyl)amino
group, N-(4-fluorophenyl)amino group, pyrrolidino group, piperidino group, and
morpholino group.

AR' represents any one of naphthalen-2-vl group, 6-hydroxynaphthalen-2-yl group, 6-methoxynaphthalen-2-yl group, 6-(2-hydroxyethyloxy)naphthalen-2-yl group, 6-aminonaphthalen-2-yl group, 6-(N-methylamino)naphthalen-2-yl group, 6-(N.N-dimethylamino)naphthalen-2-yl group, 6-(2-hydroxyethylamino)naphthalen-2-yl group, benzo[b]furan-5-yl group, 2-methylbenzo[b]furan-5-yl group, 3-methylbenzo[b]furan-5-yl group, 2,3-dimethylbenzo[b]furan-5-yl group, benzo[b]thiophen-5-yl group, 2-methylbenzo[b]thiophen-5-yl group, 3-methylbenzo[b]thiophen-5-yl group, 2,3-dimethylbenzo[b]thiophen-5-yl group, 1H-indol-5-yl group, 2-methyl-1H-indol-5-vl group, 3-methyl-1H-indol-5-vl group, 2.3-dimethyl-1H-indol-5-yl group, 1-methyl-1H-indol-5-yl group, 1,2-dimethyl-1H-indol-5-yl group, 1,3-dimethyl-1H-indol-5-yl group, 1.2,3-trimethyl-1H-indol-5-yl group, 1-ethyl-1H-indol-5-yl group, 1-ethyl-2-methyl-1H-indol-5-yl group, 1-ethyl-3-methyl-1H-indol-5-yl group, 1-ethyl-2.3-dimethyl-1H-indol-5-yl group, 1-propyl-1H-indol-5-yl group, 2-methyl-1-propyl-1H-indol-5-yl group, 3-methyl-1-propyl-1H-indol-5-yl group, 2.3-dimethyl-1-propyl-1H-indol-5-yl group, 1-(2-hydroxyethyl)-1H-indol-5-yl group, 1-(2-hydroxyethyl)-2-methyl-1H-indol-5-yl group, 1-(2-hydroxyethyl)-3-methyl-1H-indol-5-yl group,

2.3-dimethyl-1-(2-hydroxyethyl)-1H-indol-5-yl group, benzothiazol-6-yl group,

2-methylbenzothiazol-6-yl group, 2-methoxybenzothiazol-6-yl group, 2-aminobenzothiazol-6-yl group, 2-oxo-2,3-dihydrobenzothiazol-6-yl group, 2-oxo-3-methyl-2.3-dihydrobenzothiazol-6-yl group, 2-thioxo-2.3-dihydrobenzothiazol-6-yl group, 2-thioxo-3-methyl-2,3-dihydrobenzothiazol-6-yl group, quinolin-3-yl group, quinolin-6-yl group, 2-oxo-1,2-dihydroquinolin-6-yl group, benzo[d]isothiazol-5-yl group, 1H-indazol-5-vl group, 1-methyl-1H-indazol-5-yl group, 1-ethyl-1H-indazol-5-yl group, 1-propyl-1H-indazol-5-yl group, 1-(2-hydroxyethyl)-1H-indazol-5-yl group, 3-hydroxy-1H-indazol-5-yl group, 3-hydroxy-1-methyl-1H-indazol-5-yl group, 1-ethyl-3-hydroxy-1H-indazol-5-yl group, imidazo[1,2-a]pyridin-6-yl group, 1H-pyrrolo[2,3-b]pyridin-5-yl group, 1-methyl-1H-pyrrolo[2,3-b]pyridin-5-yl group, 1-ethyl-1H-pyrrolo[2,3-b]pyridin-5-yl group, 1-propyl-1H-pyrrolo[2,3-b]pyridin-5-yl group, 1-(2-hydroxyethyl)-1H-pyrrolo[2,3-b]pyridin-5-yl group, isoquinolin-6-yl group, 1-oxo-1.2-dihydroisoquinolin-6-yl group, cinnolin-6-yl group, and benzoxazol-5-yl group. Provided that when AR' contains hydroxyl group, the hydroxyl group may be protected with Rp1, and when substituted AR' contains amino group, the amino group may be protected with Rp2. Compound (I) of the present invention can be produced by, for example,

Compound (I) of the present invention can be produced by, for example, employing the reactions according to the following various methods.

[Preparation Method 1] (Step a-1)

As shown in the following scheme 1:

a compound of the present invention represented by the formula (Ia') wherein Y represents a lower alkyl group having 1 to 4 carbon atoms, and Rs, AR, and V on or in the aromatic ring (E) may be protected [hereinafter simply referred to as "Compound (Ia')"], which falls within the scope of Compound (I) of the present invention, can be prepared by reacting a compound represented by the formula (II) [simply referred to as "Compound (II)" hereinafter] with a boronic acid derivative represented by the formula (IV) [hereinafter simply referred to as "Compound (IV)"]. n, C2' to C6', Rs', AR', Y' and G in the formulas have the same meanings as defined above. In the formula of Compound (IV), L1 and L2 independently represent hydroxyl group, an alkoxyl group having 1 to 8 carbon atoms (e.g., methoxy group, ethoxy group, propoxy group, isopropoxy group, cyclohexyloxy group), or a substituted or unsubstituted phenyloxy group, or L1 and L2 bind to each other to represent a 5- or 6-membered cyclic ester of an arylboric acid (e.g., 9borabicyclo[3,3,1]nonane, 1,3,2-dioxaborolane, 4,4,5,5-tetramethyl-1,3,2dioxaborolane), which forms a ring containing boron atom [this ring may be saturated or unsaturated, may be a ring containing a heteroatom other than boron (e.g., oxygen atom), and may be further substituted].

Further, as shown in the following scheme 2:

Rs'
$$C_{N}^{5} = C_{N}^{5}$$
 (CH₂)_n—COOY' $= \frac{1-a-1}{AR'}$

an example of the method for preparing Compound (Ia') includes a method of reacting a combination of a compound represented by the formula (V) [hereinafter simply referred to as "Compound (V)"] and a compound represented by the formula (VI) [hereinafter simply referred to as "Compound (VI)"].

Examples include a method of preparing Compound (Ia') by performing the Suzuki reaction described in, for example, Jikken Kagaku Koza, 4th Edition (edited by Chemical Society of Japan, published by Maruzen Co., Ltd.), vol. 25, p.403 with a combination mentioned either in the scheme 1 or scheme 2 or the both. A specific example includes a reaction of Compound (II) [or Compound (V)] with Compound (IV) [or Compound (VI)] in a solvent in the presence of a commercially available palladium catalyst or a catalyst prepared from a palladium complex and a ligand, and a base.

As the palladium catalyst, a commercially available catalyst such as tetrakis(triphenylphosphine)palladium, tetrakis(methyldiphenylphosphine)palladium, dichlorobis(triphenylphosphine)palladium, dichlorobis(trivotolylphosphine)palladium, dichlorobis(tricyclohexylphosphine)palladium, dichlorobis(tricyclohexylphosphine)palladium, dichlorobis(tricyclohexylphosphine)palladium, dichlorobis(tricyclohexylphosphine)palladium, dichlorobis(tricyclohexylphosphine)palladium, dichlorobis(tricyclohexylphosphine)palladium, palladium acetate, palladium chloride,

bis(acetonitrile)palladium chloride, tris(dibenzylideneacetone)dipalladium and bis(diphenylphosphinoferrocene)palladium chloride may be purchased and added to the reaction system, per se, or a catalyst may be added which is separately prepared from palladium acetate, tris(dibenzylideneacetone)dipalladium or the like and arbitrary ligands and isolated. Further, a catalyst considered to actually participate in the reaction may also be prepared by mixing palladium acetate, tris(dibenzylideneacetone)dipalladium or the like and arbitrary ligands in the reaction system. The valence of palladium may be 0 or may be +2. Examples of the ligand include phosphine ligands such as trifurylphosphine, tri(otolyl)phosphine, tri(cyclohexyl)phosphine, tri(t-butyl)phosphine, dicyclohexylphenylphosphine, 1,1'-bis(di-t-butylphosphino)ferrocene, 2dicyclohexylphosphino-2'-dimethylamino-1,1'-biphenyl and 2-(di-tbutylphosphino)biphenyl and phosphine mimic ligands such as imidazol-2vlidenecarbenes. Chemical equivalents of the palladium catalyst may be one equivalent or a catalytic amount, and the amount may preferably be 0.01 to 20.0 mol %, and most preferably be 0.10 to 10.0 mol %.

Examples of the base include sodium carbonate, potassium carbonate, cesium carbonate, cesium fluoride, potassium fluoride, potassium phosphate, potassium acetate, triethylamine, potassium hydroxide, sodium hydroxide, sodium methoxide, lithium methoxide and the like. The reaction temperature is, for example, preferably 20°C to 150°C, and particularly preferable examples include 20°C to 120°C.

The reaction system may be either a two-phase system of water and an organic solvent, or a homogeneous system of a water-containing organic solvent or an organic solvent. As for the organic solvent, examples include uses of hydrocarbon-type solvents such as toluene, xylene and hexane, halogen-type solvents such as methylene chloride, sulfoxide-type solvents such as dimethyl

sulfoxide, amide-type solvents such as dimethylformamide, ether-type solvents such as tetrahydrofuran, dioxane and diglyme, alcohol-type solvents such as methanol and ethanol, nitrile-type solvents such as acetonitrile, ketone-type solvents such as acetone and cyclohexanone, ester-type solvents such as ethyl acetate, heterocyclic-type solvents such as pyridine and the like. Two or more kinds of organic solvents may be mixed and used.

For the reaction conditions, Miyaura, N., Suzuki, A., Chemical Review, 1995, vol. 95, p.2457; Snieckus, V., Chemical Review, 1990, vol. 90, p.879 and the like and references cited therein can be referred to.

When hydroxyl group or amino group reactive under the aforementioned reaction conditions or inhibiting the reactions exists in the group AR', Rs' or V' in the aromatic ring (E'), this substituent is preferably protected.

When a protective group of hydroxyl group or amino group exist in the group AR', Rs' or V' in the aromatic ring (E') of the compound (Ia') prepared as described above, such a protective group can be eliminated during or after the preparation of Compound (Ia') to convert the compound into Compound (I) of the present invention. As for selection, introduction and deprotection of these protective groups of hydroxyl group and amino group, ordinary chemical publications, for example, Protective Groups In Organic Synthesis THIRD EDITION, John Wiley & Sons) and references cited therein can be referred to. [Preparation Method 1] (Step a-2)

As Compound (IV), a compound commercially available as a reagent may be used, or as shown in the following scheme 3:

$$AR'-B$$

$$L^{2}$$

$$(IV)$$

$$(Scheme 3)$$

$$L^{1-a-2}$$

$$AR'-G$$

$$(VI)$$

the compound can be produced from Compound (VI), which is commercially available or can be synthesized by a known method or a similar method thereto, according to the method described in the aforementioned reference (Chemical Review, vol. 95, p.2457, 1995) or the method described in Satoh, Y. et al., SYNTHESIS, p.1146, 1994 or according to the references cited therein.

For example, examples include a method of preparing Compound (VI) by converting Compound (VI) into a lithio-compound using an alkyl lithium such as n-butyl lithium and t-butyl lithium, then reacting the product with a trialkyl borate and treating the product with a mineral acid such as hydrochloric acid, sulfuric acid, and phosphoric acid; and a method of to preparing Compound (VI) by performing a cross-coupling reaction of Compound (VI) and an (alkoxyl)diboron in the presence of a palladium catalyst and a base.

An example of the preparation method of Compound (V) includes a method of subjecting Compound (II) to a reaction similar to that of the aforementioned Step a 2, as shown in the following scheme 4:

[Preparation Method 1] (Step b)

As shown in the following scheme 5:

a compound represented by the formula (IIh) (hereinafter simply referred to as "Compound (IIh)"), which correspond to the compounds (II) wherein G represents a halogen atom such as chlorine atom, bromine atom or iodine atom, can be prepared by halogenating a compound represented by the formula (VII) [this compound is simply referred to as "Compound (VII)"], which is commercially available or can be prepared by a known method or a method similar thereto. In the formula of Compound (IIh), the group Hal represents a halogen atom, which may be any of

chlorine atom, bromine atom and iodine atom. As for the halogenation, examples of chlorination include a preparation method described in ordinary publications in the filed of chemistry, for example, Shin Jikken Kagaku Koza (edited by Chemical Society of Japan, published by Maruzen Co., Ltd.), vol. 14, p.354. Examples of the method include a method utilizing chlorine (Cl2), a method utilizing sulfuryl chloride, and the like. Examples of bromination include a preparation method described in ordinary publications in the filed of chemistry, for example, Shin Jikken Kagaku Koza (edited by Chemical Society of Japan, published by Maruzen Co., Ltd.), vol. 14, p.354. Examples of the method include a method utilizing bromine (Br2), a method utilizing N-bromosuccinimide, and the like. Examples of iodination include a preparation method described in ordinary publications in the filed of chemistry, for example, Shin Jikken Kagaku Koza (edited by Chemical Society of Japan, published by Maruzen Co., Ltd.), vol. 14, p.423. Examples of the method include a method utilizing iodine (I2), a method utilizing potassium triiodide, and the like.

[Preparation Method 1] (Step c)

As shown in the following scheme 6:

a compound represented by the formula (IIs) (this compound is hereinafter simply referred to as "Compound (IIs)"), which corresponds to Compound (II) wherein G represents mesylate group, triflate group, or an arenesulfonate group, can be prepared by converting a compound represented by the formula (VIII) (this compound is simply referred to as "Compound (VIII)"), which is commercially available or can be prepared by a known method or a method similar thereto, into a sulfonic acid ester. In the formula of Compound (IIs), the group Su represents methanesulfonyl group, trifluoromethanesulfonyl group, or arenesulfonyl group of which aromatic ring may be substituted with one of T¹ or two or more of identical or different T¹. Examples of the method for the conversion into sulfonic acid ester include a preparation method described in ordinary publications in the filed of chemistry, for example, Shin Jikken Kagaku Koza (edited by Chemical Society of Japan, published by Maruzen Co., Ltd.), vol. 14, p.1793. Examples of the method include a method utilizing sulfonyl chloride, a method utilizing sulfonic anhydride, and the like.

[Preparation Method 2] (Step d)

As shown in the following scheme 7:

Rs'
$$C^5 = C^5$$
 $(CH_2)_n - COOH$ $2-d$

AR' $C^3 - C^3$ (Ib')

Rs' $C^5 = C^5$ $(CH_2)_n - COOY$

AR' $(C^3 - C^3)$ (Ia')

(Scheme 7)

a compound represented by the formula (Ib') wherein Y represents hydrogen atom,

and Rs, AR, and V on or in the aromatic ring (E) may be protected (this compound is hereinafter simply referred to as "Compound (Ib)"), which constitutes a part of the scope of Compound (I) of the present invention, can be prepared by hydrolyzing Compound (Ia) so as to convert the group OY into hydroxyl group.

For the reaction of converting Compound (Ia') into Compound (Ib'), in general, the compound is preferably reacted in a base. Further, for the reaction of converting Compound (Ia') to Compound (Ib'), in general, the compound is preferably reacted in an inert medium that does not inhibit the reaction, preferably a polar solvent.

Examples of the base used in the above reaction include, for example, alkali metal bases such as sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium methoxide and potassium trbutoxide and organic bases such as triethylamine. As for amounts of the bases, generally 1 to 20 moles, preferably 1 to 10 moles, for alkali metal bases, or 1 to a large excess moles for organic bases based on Compound (Ia').

Examples of the polar solvent include water, methanol, ethanol, tetrahydrofuran, dioxane and the like, and these solvents may be used as a mixture as required. As the reaction temperature, an appropriate temperature of, for example, from room temperature to a refluxing temperature of solvent is chosen. The reaction time is, for example, generally 0.5 to 72 hours, preferably 1 to 48 hours, when an alkali metal base is used, or generally 5 hours to 14 days when an organic base is used. Since progress of the reaction can be monitored by thin layer chromatography (TLC), high performance liquid chromatography (HPLC) or the like, the reaction can generally be terminated appropriately so as to maximize the yield of Compound (Ib).

For collection of Compound (Ib') obtained as described above from the reaction solution as a free carboxylic acid, operations may preferably be carried out

by, when the polar solvent is a water soluble solvent, evaporating the solvent, neutralizing the residue with an inorganic acid such as aqueous hydrochloric acid, dissolving the residue in a water insoluble solvent, then washing the solution with a weakly acidic aqueous solution, water or the like, and evaporating the solvent. When the polar solvent is a water insoluble solvent, operations may preferably carried out by neutralizing the reaction solution with an inorganic acid, washing the solution with a weakly acidic aqueous solution, water or the like, and then evaporating the solvent.

Further, when Compound (Ib') forms a salt with the base used after the reaction to give a solid, the salt of Compound (Ib') can be obtained by isolation and purification of the solid in a conventional manner.

When a protective group of hydroxyl group or amino group exists in the group AR', Rs' or V' in the aromatic ring (E') of Compound (Ia') prepared as described above, Compound (Ia') can be converted into Compound (I) of the present invention by removing the protective group during or after the preparation of Compound (Ia').

[Preparation Method 3] (Step e)

As shown by the following scheme 8:

Rs'
$$C^{5} = C^{6}$$

 $C^{4}_{0}(E')$ $(CH_{2})_{n}$ $-COOY''$ $3-e$
 AR' $C^{3} - C^{2}$ (Ic')
 $C^{4}_{0}(E')$ $-COOH$
 AR' $C^{3} - C^{2}$ (Ib')
(Scheme8)

a compound represented by the formula (Ic') [hereinafter simply referred to as "Compound (Ic')"] as Compound (I) of the present invention wherein the group Y represents Y", and Rs, AR, and V in the aromatic ring (E) may be protected, can be produced by esterifying the carboxyl group (COOH) of Compound (Ib') in a conventional manner. In the formula of Compound (Ib'), Y" represents a lower alkyl group having 1 to 4 carbon atoms, a '(CH₂)_mNR¹⁸R¹⁹ group, or C(R²⁰)₂OC(O)A³R²¹.

Examples of the method for producing Compound (Ic') include a method of allowing Compound (Ib') to react with an inorganic halide without solvent or in an inert solvent to convert the compound into an acid halide and then allowing the acid halide per se or the same dissolved in an inert solvent to react with an excess amount of hydroxide of the targeted Y". Examples of the inorganic halide used in this method include thionyl chloride, phosphoryl chloride, phosphorus pentachloride, phosphorus trichloride and the like, and thionyl chloride is a preferred example. Examples of an amount used include generally an equimolar to a large excess amount, preferably 1.5 to 5 moles based on Compound (Ib'). Examples of the inert solvent used in this reaction include, for example, halogenated hydrocarbons such as dichloromethane, chloroform and 1,2 dichloroethane, ethers such as tetrahydrofuran and dioxane, and benzene compounds such as benzene, toluene, xylene and chlorobenzene. These solvents can be used, for example, each alone or as a mixed solvent. In order to promote the reaction, a catalytic amount of N,N-dimethylformamide may be added. As a reaction temperature, an appropriate temperature of from room temperature to a refluxing temperature of the solvent is generally chosen. Examples of the reaction time include generally 0.5 to 24 hours, preferably 1 to 6 hours.

Examples of the inert solvent used for the reaction with hydroxide of the $targeted\ Y''$ include, for example, halogenated hydroxarbons such as

dichloromethane, chloroform and 1,2 dichloroethane, ethers such as tetrahydrofuran and dioxane, and benzene compounds such as benzene, toluene, and xylene. The reaction can also be performed with an excess amount of the hydroxide of the targeted Y" without using a solvent. As the reaction temperature, an appropriate temperature of from 10°C to room temperature is chosen.

Examples of the reaction time include generally 0.5 to 24 hours, preferably 0.5 to 6 hours.

Other methods for producing Compound (Ic) include, for example, the
"esterification using an alcohol" described in Shin Jikken Kagaku Koza (edited by
the Chemical Society of Japan, published by Maruzen Co., Ltd.), vol. 14, p.1002,
"esterification using an O-alkylating agent", ibid, the same volume, p.1002,
"esterification using an alkyl halide", ibid, the same volume, p.1008, "esterification using a dehydrating agent", ibid, vol. 22, p.45 and the like.

When hydroxyl group or amino group reactive under the aforementioned reaction conditions or inhibiting the reactions exists in AR', Rs' or V' in the aromatic ring (E'), this substituent is preferably protected.

When a protective group of hydroxyl group or amino group exist in AR', Rs' or V' in the aromatic ring (E') of the compound (Ic') prepared as described above, such a protecting group can be eliminated during or after the preparation of Compound (Ic') to convert the compound into Compound (I) of the present invention.

[Preparation Method 4]

As shown in the following scheme 9:

a compound represented by the formula (Id') (hereinafter this compound is simply referred to as "Compound (Id')") as Compound (I) of the present invention wherein n in the methylene moiety is an integer of 2, and wherein Rs, AR, and V in the aromatic ring (E) may be protected, can also be prepared by the method shown below.

[Preparation Method 4] (Step f)

Compound (Id') can be prepared by reducing the double bond of a compound represented by the formula (IX) (hereinafter this compound is simply referred to as "Compound (IX)") using a reduction reaction described in ordinary publications in the filed of chemistry. Examples of the reaction include a method of converting the double bond of Compound (IX) into a single bond by hydrogenation using a hydrogen source such as hydrogen gas, ammonium formate, and hydrazine hydrate in a single solvent or a mixed solvent of alcoholic-type solvents such as methanol, ester-type solvents such as ethyl acetate in the presence of a catalyst such as palladium/carbon powder, platinum oxide (PtO2), and activated nickel.

When hydroxyl group or amino group reactive under the aforementioned reaction conditions or inhibiting the reactions exists in AR', Rs' or V' in the aromatic ring (E'), this substituent is preferably protected.

When a protective group of hydroxyl group or amino group exist in AR', Rs'

or V' in the aromatic ring (E') of the compound (Id') prepared as described above, such a protecting group can be eliminated during or after the preparation of Compound (Id') to convert the compound into Compound (I) of the present invention.

[Preparation Method 4] (Step g)

Compound (IX) can be prepared from a compound represented by the formula (III) [hereinafter this compound is simply referred to as "Compound (III)"]. Examples of the preparation method include a method utilizing the Horner-Emonds reaction described in Shin Jikken Kagaku Koza (edited by Chemical Society of Japan, published by Maruzen Co., Ltd.), vol. 14, p.238. Specifically, the compound can be obtained by reacting Compound (III) with a commercially available dialkylphosphonoacetic acid ester in an inert solvent, for example, an alcohol-type solvent such as methanol and ethanol or ether-type solvent such as tetrahydrofuran and dimethoxyethane in the presence of a base such as sodium hydride and sodium alkoxide. As the reaction temperature, an appropriate temperature of from ·10℃ to a refluxing temperature of a solvent is generally chosen, and preferred examples include a temperature of from 0°C to room temperature. The reaction time is generally 1 to 16 hours, preferably 2 to 8 hours. Since progress of the reaction can be monitored by thin layer chromatography (TLC), high performance liquid chromatography (HPLC) or the like, the reaction can generally be terminated appropriately so as to maximize the yield of Compound (IX).

As shown in the following scheme 10:

[Preparation Method 4] (Step a)

Compound (III) can be prepared by introducing the substituent AR into a compound represented by the formula (X) [hereinafter this compound is simply referred to as "Compound (X)"] according to any of the methods described in the step a-1 of the preparation method 1 mentioned above.

[Preparation Method 5]

As shown in the following scheme 11:

a compound represented by the formula (Ie') [hereinafter this compound is simply referred to as "Compound (Ie')"], as Compound (I) of the present invention wherein n in the methylene moiety is an integer of 1, Y represents hydrogen atom, and Rs, AR, and V in the aromatic ring (E) may be protected, can also be prepared by the method shown below.

[Preparation Method 7] (Step d)

Specifically, Compound (Ie') can be prepared by hydrolyzing nitrile group of a compound represented by the formula (XI) [hereinafter this compound is simply referred to as "Compound (XI)"] into carboxyl group according to a method similar to the method shown in the step d of the preparation method 2 mentioned above.

When a protective group of hydroxyl group or amino group exist in AR', Rs' or V' in the aromatic ring (E') of the compound (Ie') prepared as described above, such a protecting group can be eliminated during or after the preparation of Compound (Ie') to convert the compound into Compound (I) of the present invention. [Preparation Method 5] (Step h)

Compound (XI) can be produced from Compound (III) mentioned above.

For example, Compound (III) is reacted with a trimethylsilyl cyanide using a Lewis acid, particularly zinc iodide, as a catalyst in an inert solvent such as tetrahydrofuran as described in Jikken Kagaku Koza, 4th Edition (edited by Chemical Society of Japan, published by Maruzen Co., Ltd.), vol. 20, p.445. Then, the reduction reaction using a hydrosilane described in Jikken Kagaku Koza, 4th Edition (edited by Chemical Society of Japan, published by Maruzen Co., Ltd.), vol. 26, p.197 is performed. Examples of the method of the reduction reaction include a method of performing the reduction with a hydrosilane such as triethylsilane and a protonic acid such as trifluoroacetic acid or a Lewis acid such as boron trifluoride in a halogenated solvent such as dichloromethane.

The preparation method of Compound (I) is not limited to the methods described herein. For example, the compounds of the present invention can be produced by modifying or converting a substituent of a compound serving as a precursor of the compounds according to a method or a combination of methods described in ordinary publications in the filed of chemistry.

Examples of the preparation method for Compound (I) of the present invention which contains an asymmetric carbon in the substituent Rs include a method of using a starting material in which a moiety corresponding to the asymmetric carbon in the substituent Rs is already optically active, which is commercially available (or can be prepared by a known method or a method similar thereto). A method is also available in which the compound of the present

invention or a precursor thereof is separated as an optically active isomer in a conventional manner. Examples of such method include, for example, a method utilizing high performance liquid chromatography (HPLC) using a chiral column, a method comprising condensation with an optically active regent to form a diastereomer, successive separation and purification, followed by decomposition.

When a precursor is separated to obtain an optical isomer, optically active Compound (I) of the present invention can then be prepared by performing the aforementioned preparation methods.

When Compound (I) of the present invention contains an acidic functional group such as carboxyl group or phenolic hydroxyl group, the compound can be converted into pharmaceutically acceptable salt (e.g., inorganic salts with sodium, ammonia and the like, or organic salts with triethylamine and the like) by a known means. For example, when an inorganic salt is to be obtained, it is preferable to dissolve Compound (I) of the present invention in water containing at least 1 equivalence of hydroxide, carbonate, bicarbonate or the like corresponding to a desired inorganic salt. For the reaction, an inactive water miscible organic solvent such as methanol, ethanol, acetone, and dioxane may be mixed. For example, by using sodium hydroxide, sodium carbonate, or sodium hydrogencarbonate, a solution of sodium salt can be obtained.

When Compound (I) of the present invention contains a basic functional group such as amino group, or when Compound (I) of the present invention contains an aromatic ring which itself has properties of base (e.g., pyridine ring), the compound can be converted into a pharmaceutically acceptable salt (e.g., salt with inorganic acids such as hydrochloric acid and sulfuric acid, or salts with organic acids such as acetic acid and citric acid) by a known means. For example, when an inorganic salt is to be obtained, it is preferable to dissolve Compound (I) of the present invention in water containing at least 1 equivalence of a desired inorganic

acid. For the reaction, an inactive water miscible organic solvent such as methanol, ethanol, acetone, and dioxane may be mixed. For example, by using hydrochloric acid, a solution of hydrochloride can be obtained.

When a solid salt is desired, a solution may be evaporated, or a water miscible organic solvent having polarity to some extent, such as butanol or ethyl methyl ketone, can be added to obtain a solid salt thereof.

The various compounds disclosed by the present invention can be purified by known methods such as recrystallization, and variety of chromatography techniques (column chromatography, flash column chromatography, thin layer chromatography, high performance liquid chromatography).

Compound (f) of the present invention and pharmaceutically acceptable salts thereof have an action of suppressing the production of both of prostaglandins and leukotrienes. The action of suppressing the production of prostaglandins and/or leukotrienes includes, for example, an action of suppressing PGE2 production, observed when cultured cells of MG-63 which is a human osteosarcoma cell line are stimulated with IL-1\$\beta\$ and/or PGD2 and LTB4 production observed when cultured cells of RBL-2H3 which is a rat mastocytoma cell line are stimulated with IgE, by 10% or more, preferably 30% or more, most preferably 50% or more, compared with a positive control at a concentration of the compound not having cytotoxicity. As for a mode of action at a molecular level, it is considered that the compound of the present invention inhibits both of COX-1 and/or COX-2, which produce prostaglandins, and 5-LO, which produces leukotrienes. It is also considered that the compound of the present invention suppresses the production of arachidonic acid by inhibiting enzymatic activity of type 2A, 4, or 5 PLA2 involved in prostaglandin and leukotrien production.

It is considered that, in these molecular action mechanisms, Compound (I) of the present invention inhibits the enzymatic activity of type 4 PLA2. For the

judgment, for example, the enzyme inhibitory action against type 4 PLA2 can be examined, and known methods for measuring the enzymatic activity of type 4 PLA2 are preferably utilized [Clark et al., Proceeding of National Academy of Science USA (Proc. Natl. Acad. Sci. USA), 1990, vol. 87, p.7708; Gronich et al., Biochemical Journal (Biochem. J.), 1990, vol. 271, p.37; Clark et al., Cell, 1991, vol. 65, p.1043; Kramer et al., Journal of Biological Chemistry (J. Biol. Chem), 1991, vol. 266, p.5268]. The type 4 PLA2 inhibitory action of the compounds of the present invention can be elucidated by employing these methods.

Compounds (I) of the present invention and pharmaceutically acceptable salts thereof inhibited mouse inflammatory edema, allergic edema, acetic acid writhing reaction, and rat adjuvant arthritis by oral administration at a dose of 0.1 to 500 mg/kg, and caused no death of the mice by oral administration at a dose of 500 mg/kg/day for 3 days. Therefore, they are safe compounds as drugs for mammals, preferably humans, pets or companion animals such as dogs and cats, and farm animals, and they are useful substances as active ingredients of medicaments. Preferred examples of the medicaments for mammals, preferably humans, pets or companion animals such as dogs and cats, and farm animals include agents for prophylactic and/or therapeutic treatment of various conditions, various diseases, and pathological conditions in which an acute or chronic inflammatory reaction resulted from production of prostaglandin and/or leukotriene is observed, specifically inflammatory diseases, allergic diseases, autoimmune diseases, and pain.

More specifically, the conditions or diseases include arthritis, chronic rheumatoid arthritis, malignant rheumatoid arthritis, juvenile rheumatoid arthritis, Felty's syndrome, adult Still's disease, osteoarthritis, synovitis, gout, slack of artificial joint implant, fervescence, common cold, algesia, burn, thermal injury, keloplasty, menstrual pain, dysmenorrhea, menstrual cramp, allergic

reaction, allergic contact hypersensitivity, allergic rhinitis, pollinosis, allergic conjunctivitis, hypersensitivity pneumonitis, allergic bronchopulmonary mycosis, emphysema, acute respiratory distress syndrome, asthma, bronchitis, chronic obstructive pulmonary disease, chronic bronchitis, pulmonary emphysema, diffuse panbronchiolitis, respiratory obstruction, graft versus host syndrome, urticaria, ultraviolet radiation dermatitis, atopic dermatitis, cancer, myelogenous leukemia, sarcomata, brain tumor, cachexia, tissue ulcer, digestive ulcer, gastritis, acute and chronic pancreatitis, regional enteritis, ulcerative colitis, diverticulitis, recurrent gastroenteric disorder, gastroenteric bleeding, inflammatory bowel disease, Crohn's disease, intestinal tract type Behcet's disease, infectious enteritis, ischemic enteritis, radiation enteritis, drug-induced enteritis, irritable bowel syndrome, hepatic diseases (hepatopathies, liver failures) such as acute hepatitis, fulminant hepatitis, chronic hepatitis, hepatic cirrhosis, fatty liver, alcoholic liver injury, drug liver injury (drug-induced hepatitis), congestive hepatitis, autoimmune hepatitis, primary biliary cirrhosis and hepatic porphyria, coagulation, anemia, ankylosing spondilitis, restenosis, periodontosis, epidermolysis bullosa, atherosclerosis, aortic aneurysm, periarteritis nodosa, congestive cardiac failure, arrhythmia, myocardial infarction, cerebral infarction, attack, cerebral ischemia, head injury, spinal cord injury, myelopathic muscular atrophy, neuralgia, neurodegenerative disease, Alzheimer's disease, Lewy body disease, Shy-Drager syndrome, Reye's syndrome, progressive supranuclear palsy, progressive multifocal leukoencephalopathy, normal pressure hydrocephalus, subacute sclerosing panencephalitis, frontal lobe type dementia, acute anterior poliomyelitis (poliomyelitis), poliomyelitis neurosis, viral encephalitis, Creutzfeldt-Jakob disease, Kuru disease, bovine spongiform encephalopathy (mad cow disease), scrapie, epilepsy, cerebral amyloid angiopathy, autoimmune disease, Huntington's disease, Parkinson's disease, migraine, depression, mania, manic-depressive psychosis, hereditary cerebellar ataxia,

peripheral neuropathy, glaucoma, pain, gingivitis, postoperative pain, amyotrophic lateral sclerosis, osteoporosis, multiple sclerosis, ocular angiogenesis, cornea damage, macular degeneration, conjunctivitis, abnormal wound healing, sprain or strain of muscle or joint, tendinitis, skin disease, psoriasis vulgaris, pustular psoriasis, erythroderma psoriaticum, arthritic psoriasis, myasthenia gravis, multiple myositis, myositis, bursitis, diabetes mellitus, tumor invasion, tumor growth, tumor metastasis, cornea scar, scleritis, immunodeficiency disease, pachydermia, eosinophilic fasciitis, sepsis, endotoxin shock, premature delivery, hypoprothrombinemia, hemophilia, thyroiditis, sarcoidosis, Behcet's syndrome, hypersensitivity, renal disease, rickettsial infectious disease, protozoal disease, reproduction disease, sepsis shock and the like. Other specific conditions and diseases include toothache, pain after tooth extraction, back or low back pain, periarthritis humeroscapularis, cervico-omo-brachial syndrome, tenosynovitis, acute upper respiratory inflammation, herpes zoster, fibrosis, pulmonary fibrosis, pneumoconiosis, chronic interstitial pneumonia, granulomatous interstitial pneumonia, fibrosing interstitial pneumonia, renal fibrosis, nephropyelitis, various types of secondary contracted kidney, glomerular nephritis, chronic nephritis, glomerulosclerosis, hepatic fibrosis, cardiac fibrosis after myocardial infarction, idiopathic cardiomyopathy, pancreatic sclerosis, pancreatic fibrosis, pancreatolithiasis, Takayasu's arteritis, chronic thyroiditis, dermatomyositis, multiple myositis, myelofibrosis, Banti disease, retroperitoneal fibrosis, various radiation injuries and the like. Further, the medicament comprising Compound (I) of the present invention as an active ingredient can be used for the aforementioned conditions or diseases of mammals, preferably humans, pets or companion animals such as dogs and cats or farm animals together with or in combination with one or more kinds of other prophylactic or therapeutic drugs.

Examples of the drugs that can be used together or in combination include,

for example, the following drugs: immunomodulation-type antirheumatic drugs and antimetabolite used as therapeutic drugs for rheumatoid arthritis, specifically, gold preparations, bucillamine, lobenzarit, salazosulfapyridine, methotrexate, azathiopurin, mizoribine, leflunomide, tacrolimus, cyclosporin and the like and preparations containing the same; anti-cytokine antibody preparations directed to cytokines such as interleukin (IL) 1, IL-6, and tumor necrosis factor (TNF)- a or preparations of soluble receptors for those cytokines, which are biological preparations, specifically, infliximab, etanercept and the like and preparations containing the same; steroid preparations, specifically, dexamethasone, betamethasone, prednisolone, fluticasone, beclometasone and the like and preparations containing the same; bronchodilators used as therapeutic agents for chronic bronchial asthma, specifically, salmeterol and salbutamol, which are adrenalin β 2 stimulants, ipratropium, which is an anticholinergic drug, and the like and preparations containing the same; therapeutic drugs for allergic diseases, for example, theophyline, which is a xanthine analogue drug, and the like, fexoquinadine, epinastatine, cetirizine, ketotifen, disodium cromoglycate, pemirolast and the like, which are antiallergic agents, fexoquinadine, cetirizine and the like, which are antihistaminic agents, and preparations containing the same; irinotecan, 5-fluorouracil and the like, which are antitumor agents, and preparations containing the same. Further, the medicament comprising Compound (I) of the present invention as an active ingredient is used, for example, together with or in combination with radiotherapy.

In order to use Compound (f) of the present invention or pharmaceutically acceptable salts thereof for the medicaments described above, an effective amount of Compound (f) of the present invention or a pharmaceutically acceptable salt thereof, per se, may be used, or the substance may be mixed with a pharmaceutically acceptable carrier to form a pharmaceutical composition. The

carrier may be, for example, a suspending agent such as carboxymethylcellulose, or purified water, physiological saline or the like, if desired. Other known carriers can also be used. Examples include a method of dissolving Compound (I) of the present invention or a pharmaceutically acceptable salt thereof in purified water containing 0.5% carboxymethylcellulose and using the solution.

Examples of formulations for preparing the aforementioned pharmaceutical composition include tablet, powder, granule, syrup, suspension, capsule, and injection. For the manufacture of these formulations, various carriers suitable for these preparations are used. For example, examples of the carrier for oral preparations include excipients, binders, lubricants, fluid accelerators, and colorants.

When the compound of the present invention is formulated as a parenteral preparation such as an injection, water for injection, physiological saline, glucose aqueous solution, vegetable oil for injection, propylene glycol, polyethylene glycol and the like can generally be used as a diluent. Disinfectants, antiseptics, stabilizers, isotonic agents, soothing agents and the like may be further added, as required.

When the compound of the present invention is administered to a mammal, e.g., human, the compound can be administered in the form of a tablet, a powder, a granule, a suspension, a capsule or the like. The compound can also be parenterally administered in the form of a suppository, a gel, a lotion, an ointment, a cream, or a spray. A dose thereof varies depending on a disease to be applied, administration route, age, weight, degree of symptom of a patient and the like. Examples of the dose include generally an administration at a dose of 1 to 1,000 mg per day for an adult once to three times a day. Every day administration for a period of several days to two months is commonly applied. The daily dose and the administration period may be increased or decreased depending on symptoms of a

patient.

Fibrosis, which is a disease characterized by fibrosing of tissues, is known as a severe disease which is often mortal. Fibrosing of tissues is caused by proliferation of interstitial cells, which represented by fibroblasts, and production of extracellular matrix such as collagen. Fibrosing is considered a repair mechanism against tissue affections in organs. Excessive fibrosing causes fibrosing diseases of organs, and further progression of fibrosing causes sclerotic diseases. Many of such sclerotic diseases are intractable, progressive and irreversible. Although fibrosing varies in various organs, etiological hypotheses of fibrosing have many similarities. That is, a certain inflammatory lesion precedes, and in its healing process, various kinds of cytokines and growth factors are produced mainly from immunocompetent cells and platelets as well as interstitial cells such as fibroblasts themselves involved in the healing, and activated to cause deposition of extracellular matrix (Takehara, Molecular Medicine, 2001, vol. 38, p.854).

Among fibroses, pulmonary fibrosis is one of the representative diseases. Pulmonary fibrosis is a disease in which disruption of alveolar structure is caused by chronic inflammation and increase of collagenic fibers in alveolar walls, and which eventually leads to respiratory failure and death. For example, pulmonary fibrosis occurs following infectious pneumonia and the like. Examples of the infectious pneumonia include severe acute respiratory syndrome (SARS) and influenzal pneumonia. It has been reported that, in SARS, in particular, severe inflammation is caused in pulmonary stroma, and as a result, it highly likely to develop into pulmonary fibrosis (Antonino et al., Radiology, 2003). In addition, pulmonary fibrosis is also caused by various medicaments.

In recent years, with increase of medicaments used for diagnosis,
prophylactic and therapeutic treatments of various kinds of diseases, drug induced

pulmonary fibrosis caused by such drugs is increasing. Drug induced pulmonary fibrosis is a severe disease that eventually leads to death, and it causes serious problems in the apeutic treatments of various diseases. Therefore, prophylactic and the apeutic treatments of drug induced pulmonary fibrosis constitute a particularly important subject of concern.

Against drug induced pulmonary fibrosis, steroid therapy is currently used. However, effective rate of the steroid therapy is low and the effect is only partial and transient, and thus lesions often remain [Igaku no Ayumi, 2001, vol. 197, p.313]. Further, side effect of steroid agents and acute aggravation due to decrease of doses or termination of their administrations are also often observed, which remains clinically far unsatisfactory level.

As a recent finding, it was reported that administration of pirfenidone was effective against pulmonary fibrosis in clinical tests in the United States (Raghu et al., American Journal of Respiratory and Critical Care Medicine, 1999, vol. 159, p.1061) and Japan (Nagai et al., Internal Medicine, 2002, vol. 41, p.1118).

However, development of novel prophylactic and/or therapeutic agents highly effective for these diseases is desired at all events.

The medicament provided by the present invention is useful as a medicament containing a type 4 PLA2 inhibitor as an active ingredient for prophylactic and/or therapeutic treatment of fibrosis, preferably pulmonary fibrosis, further preferably drug induced pulmonary fibrosis.

As described above, fibrosis, in particular, pulmonary fibrosis, is a severe disease and is an important object of prophylactic and/or therapeutic treatment.

As for pulmonary fibrosis, more than 100 kinds of factors including toxic gases and various medicaments have been elucidated as the causes of early alveolopathy. As described above, with the increase of medicaments used for diagnosis, prophylactic and therapeutic treatments of various kinds of diseases, drug-induced pulmonary

fibrosis caused by such drugs is increasing.

As for drug-induced pulmonary fibrosis, causality between expression of pathological conditions such as coughing, difficulty of breathing, or fervescence and the administration of medicaments is suspected, and it is considered that a diffuse interstitial shadow appears on a thoracic X-ray photograph simultaneously with or slightly after the administration of medicaments.

As medicaments reported to cause drug-induced pulmonary fibrosis, anticancer agents, anti-rheumatic agents, immunosuppressants, antibiotics, chemotherapeutants, antihypertensive agents, diuretics, anti-inflammatory/analgesic agents, biologics, Chinese medicines are known (Inooka et al., Therapeutics, 1995, vol. 29, p.1295). Typical medicaments are shown in Table 1.

Table 1

Classification	Examples of agent
1) Anticancer agent,	${\bf Peplomycin,bleomycin,cychlophosphamide,nitrosourea,}$
immunosuppressant	busulfan, methotrexate, azathioprine, mitomycin-C,
	tegafur, carmofur, tegafur/uracil preparation, cisplatin,
	doxorubicin, 6 mercaptopurine, daunomycin, vincristine,
	vinblastine, vindesine, procarbazine, neocarzinostatin,
	melphalan, thiotepa, nimustine, cytarabine, zinostatin
1-1	stimalamer, chlorambucil, carmustine, lomustine,
	semustine, teniposide, etoposide, Taxol, taxotere,
	irinotecan, gefitinib, tamoxifen and the like.
2) Antihypertensive	α-methyldopa, trichlormethiazide, hydrochlorothiazide,
agent, diuretic	enalapril, hexamethonium, mecamylamine, pentolinium,

	practolol, pindolol, propranolol, acebutolol, hydralazine
3) Antibiotic,	Cephem antibiotics (cephaloridine, cephalothin,
chemotherapeutant	cephalexin, cefradine, cefazolin, cefaclor, cefmenoxime,
	cefmetazole, cefoperazone, cefotiam, cefroxadin,
	ceftizoxime, latamoxef and the like), tetracyclines
	(minocycline, oxycycline), antituberculous agents
	(isoniazid, paraaminosalicylic acid, rifampicin,
	streptomycin), penicillin antibiotics (ampicillin,
	piperacillin, vastcillin, pentcillin, amoxicillin),
	aminoglycoside antibiotics (streptomycin), macrolide
	antibiotics (midecamycin), phosphomycin,
	aminoglycosides (tobramycin, Micromycin), new
	quinolone drugs (enoxacin, ofloxacin, norfloxacin),
	antifungal agents (amphotericin) and the like
4) Others	Inhalants (cromoglicic acid and the like), gold
	preparations (aurothiomalic acid and the like),
	psychotropic agents and nervines (aminotriptyline,
	diphenylhydantoin, carbamazepine, phenobarbital,
	valproate salt, imipramine, mephenesin, meprobamate),
	antiphlogistic and analgesics (naproxen, acetaminophen,
	acetylsalicylic acid, phenacetin, diclofenac, loxoprofen,
	fenbufen, nabumetone, aluminoprophen and the like),
	antiarrhythmic agents (amiodarone, procainamide,
	aprindine), antidiabetic agents (chlorpropamide),
	antithyroid agents (thiouracil), proteolytic enzymes
	(serrapeptidase), antiparkinsonic agents (levodopa,

bromocriptine), antirheumatic agents (bucillamine, auranofin, actarit), sho-saiko-to, chai-ling-tang, rikkunshi-to, interferon, warfarin, salazosulfapyridine, dichloroferamide, fominoben, D-penicillamine, propylthiouracil, corticosteroid, flavoxate, allopurinol, ethoxysclerol and the like

In therapeutic treatment of rheumatoid arthritis, for example, agents that cause pulmonary fibrosis at high frequency such as methotrexate and sodium aurothiomalate are used as disease modifying antirheumatic drugs. Further, disease modifying antirheumatic drugs that may cause pulmonary fibrosis at a relatively low frequency, such as actarit, bucillamine, auranofin, salazosulfapyridine, and D-penicillamine are also used. Although these disease modifying antirheumatic drugs are useful agent in the rheumatoid arthritis treatment system, pulmonary fibrosis caused as a side effect is a factor of restricting use of these drugs. In recent years, methotrexate, in particular, has come to be used as an antirheumatic agent, and onset of pulmonary fibrosis that is also histopathologically called interstitial pneumonia as the side effect of methotrexate becomes a problem in the rheumatoid arthritis treatment system.

Further, in cancer therapy, cychlophosphamide, Taxol, etoposide, cisplatin, vincristine, vinblastine, irinotecan, gefitinib, and bleomycin are useful as anticancer agents. However, because all of these anticancer agents cause pulmonary fibrosis that is also histopathologically called as interstitial pneumonia as a side effect at a high frequency, they have a problem in the therapeutic treatment system. Bleomycin, gefitinib, irinotecan, and cisplatin are used for therapeutic treatment of lung cancer. However, if patients with lung cancer develop pulmonary fibrosis, the condition is most likely for the patients to be fatal.

Among these drugs, bleomycin suffers from a problem that it causes pulmonary fibrosis at a high frequency.

Preferred objects of application of the medicament of present invention are drug-induced pulmonary fibroses caused by these drugs.

In present invention, the type 4 PLA2 inhibitor is not particularly limited so long as the inhibitor has type 4 PLA2 inhibitory activity. For example, known type 4 PLA2 inhibitors can be chosen. Examples of the known type 4 PLA2 inhibitors include the following inhibitors: the compounds described in U.S. Patent No. 5,462,954, preferably 2-phenyl-4-ethyl-5-[6-(2H-tetrazol-5-yl)-6methylheptyloxylphenol, 8-propyl-7-{3-[4-(4-fluorophenyl)-2-ethyl-5hydroxyphenyloxy]propyloxy}-3,4-dihydro-2H-1-benzopyran-2-carboxylic acid, and 2-{3-[3-([5-ethyl-2-hydroxy(1,1'-biphenyl)-4-yl]oxy)propyloxy]-2propylphenyloxylpropionic acid; the compounds described in WO99/43654, preferably 4-(1-benzhydryl-6-chloro-1H-indol-3-ylmethyl)-3-methoxybenzoic acid; the compounds described in WO98/33797, preferably N-{4-(biphenyl-2-ylmethylisobutylamino)-1-[2-(4-fluorobenzoyl)benzoyl]pyrrolidin-2-ylmethyl}-3-[4-(2,4dioxothiazolidin-5-ylidenemethyl) phenyllacrylamide and the like; the compounds described in WO01/30387, preferably N-{1-[2-(2,4-difluorobenzoyl)benzoyl]-4tritylsulfanylpyrrolidin-2-ylmethyl}-4-(2,4-dioxothiazolidin-5-ylidenemethyl)benzoic acid amide and the like; the compounds described in WO99/15129, preferably 4-{4-[2-(2-[bis(4-chlorophenyl)methoxylethylsulfonyl)ethoxylphenyl}-1,1,1-trifluoro-2butanone and the like; the compounds described in WO98/05637, preferably 1-{2-[4-(carboxymethyl)phenoxylethyl}-3-dodecanoylindole-2-carboxylic acid and the like; the compounds described in Japanese Patent Unexamined Publication (Kokai) No. 2002-80368, preferably 4-methyl-2-oxo-5-(5,6,7,8-tetrahydronaphthalen-2vl)oxazolidine-3-carboxylic acid (6-methoxytetrahydropyran-2-yl)amide, 4-methyl-2oxo-5-(4-methylphenyl)thiazolidine-3-carboxylic acid (tetrahydropyran-2-yl)amide

and the like; and the type 4 PLA2 inhibitors selected from the compounds described in WO98/08818, the compounds described in WO99/43651, the compounds described in WO99/43672, the compounds described in WO03/048122, the compounds described in WO95/10508, the compounds described in WO97/05135, the compounds described in Japanese Patent Unexamined Publication No. 7-126166, the compounds described in Japanese Patent Unexamined Publication No. 7-224076, the compounds described in Japanese Patent Unexamined Publication No. 7-224076, the compounds described in Japanese Patent Unexamined Publication No. 2000-119292, the compounds described in Japanese Patent Unexamined Publication No. 2000-109432, the compounds described in Japanese Patent Unexamined Publication No. 7-223997, the compounds described in the U.S. Patent No. 5,994,398, the compounds described in WO00/27824, the compounds described in Japanese Patent Unexamined Publication No. 2000-38380, the compounds described in WO00/71118, the compounds described in Japanese Patent No. 3107613, the compounds described in WO03/031414, the compounds described in U.S. Patent No. 5,453,443, and the compounds described in WO02/038575. Examples further include the following known type 4 PLA2 inhibitors described in references: arachidonyl trifluoromethyl ketone (Street et al., Biochemistry, 1993, vol. 32, p.5935); methyl arachidonyl fluorophosphate (Kennedy et al., Mediators of Inflammation, 1994, vol. 3, p.337); β -lactam derivatives (Burke et al., J. Enzyme Inhibition, 1998, vol. 13, p.195); choline derivatives (Burke et al., J. Biol.Chem., 1999, vol. 274, p.18864); 1,3-disubstituted propan-2-one derivatives, especially 4-[3-(4-decyloxyphenyloxy)-2oxopropyloxylbenzoic acid (Connolly et al., J. Med.Chem., 2002, vol. 45, p.1348); Surfactin (Kim et al., Biochem. Pharmacol., 1998, vol. 55, p.975); 1,1,1trifluorononadeca-10,13,16-trien-2-one and 1,1,1-trifluorononadeca-10,13-dien-2one (Amandi-Burgermeister et al., Eur. J. Pharmacol., 1997, vol. 326, p.237); and 2oxoamide derivatives (Kokotos et al., J. Med. Chem., 2002, vol. 45, p.2891).

In the present invention, preferred examples of type 4 PLA₂ inhibitor further include the compounds represented by the aforementioned formula (I) and pharmacologically acceptable salts thereof. Various combinations of the compounds represented by the formula (I) and pharmacologically acceptable salts thereof described in the specification can also be arbitrarily chosen.

When a medicament comprising a type 4 PLA2 inhibitor as an active ingredient is used as a prophylactic and/or therapeutic agent for fibrosis, as for Compound (I) of the present invention, for example, Compound (I) of the present invention or a pharmaceutically acceptable salt thereof, per se, may be used in an effective amount, or the substance may be used after preparation of a pharmaceutical composition in the form of solid, liquid or gel by mixing the substance with a pharmaceutically acceptable carrier. As for the pharmaceutically acceptable carrier, known information and the information about carriers described in this specification can be referred to. As for known type 4 PLA2 inhibitors, a known type 4 PLA2 inhibitor or a pharmaceutically acceptable salt thereof, per se, may be used in an effective amount, or as mentioned above, the inhibitors may be used after preparation of a pharmaceutical composition by mixing the inhibitor with a pharmaceutically acceptable carrier.

It would be readily understood by those skilled in the art that progressionpreventing agents, that is used for preventing progression of pathological conditions, occasionally fall within the scope of the agent for prophylactic and/or therapeutic treatment of the present invention.

Examples of the dosage form for preparation of the aforementioned pharmaceutical composition, tablet, powder, granule, syrup, suspension, capsule, inhalant, injection, and the like, and in order to prepare the compositions, various carriers are used depending on the type of the composition. Examples of the carrier for oral agents include, for example, excipients, binders, lubricants,

flowability improvers, and colorants. When an inhalant is prepared (examples of administration method include a method of inhaling powder of the pharmaceutical composition or a solution obtained by dissolving or suspending the pharmaceutical composition in a solvent, per se, a method of inhaling mist of the composition prepared by using a sprayer called atomizer or nebulizer), the preparation the aforementioned pharmaceutical composition in the form of solid can be referred to for preparation of a powder for the inhalation, and a powder obtained is preferably further made into micropowder. When the composition is inhaled as a liquid, preferred examples of the preparation method include a method of dissolving a solid pharmaceutical composition, which is prepared by referring to the above explanation, in distilled water or a suitable solvent to obtain a solution of medicament upon use, and a method of preparing a liquid pharmaceutical composition prepared by referring the above explanation to obtain a solution of medicament. As for a size of the aforementioned powder or mist of a solution of a medicament to be inhaled, a particle size may be suitable for inhalation. For example, an upper limit is preferably 100 μ m or less, further preferably 50 μ m or less, most preferably $10 \,\mu$ m or less. A lower limit is not particularly limited, and a smaller particle size is more preferred. When an injection and the like are prepared, distilled water for injection, physiological saline, glucose solution, vegetable oil for injection, propylene glycol, polyethylene glycols and the like can generally be used as diluents. Further, antimicrobial agents, antiseptics. stabilizers, isotonic agents, soothing agents, and the like may be added, as required.

When the aforementioned prophylactic and/or therapeutic agent is administered, a suitable dosage form can be chosen and administered via a suitable route. For example, the agent can be orally administered in the form of a tablet, a powder, a granule, a syrup, a suspension, or a capsule. The agent can also be administered via transairway route in the form of an inhalant. Further, the agent

can be administered subcutaneously, intradermally, intravascularly, intramuscularly or intraperitoneally in the form of injection including a drip infusion. Furthermore, the agent can be transmucosally administered in the form of a sublingual agent or a suppository, and can be transdermally administered in the form of a gel, a lotion, an ointment, a cream, or a spray.

A dose thereof varies depending on the dosage form, and the age, weight, degree of symptoms of a patient and the like. Examples of the dose include generally an administration at a dose of 1 to 1,000 mg per day for an adult once to three times a day. Every day administration for a period of several days to two months is commonly applied. The daily dose and the administration period may be increased or decreased depending on symptoms of a patient.

As for the application of the aforementioned prophylactic and/or therapeutic agent, the agent may be administered to patients with pulmonary fibrosis as explained above. In addition, the prophylactic and/or therapeutic agent of the present invention containing a type PLA2 inhibitor as an active ingredient may preferably be administered after the administration of, most preferably immediately after the administration of an agent, which may possibly induces pulmonary fibrosis as an adverse reaction. Furthermore, as for the administration time, the prophylactic and/or therapeutic agent of the present invention may be administered simultaneously with an agent which may possibly induces pulmonary fibrosis as an adverse reaction, or the agent of the present invention may be administered beforehand.

Examples

The present invention will be further specifically explained with reference to examples. However, the scope of the present invention is not limited to the following examples. In the examples, for thin layer chromatography (TLC),

Precoated Silica Gel 60 F254 (produced by Merck, product number: 5715-1M)) was used. After development with chloroform:methanol (1:0 to 1:1), acetonitrile:acetic acid:water (200:1:1 to 100:4:4) or ethyl acetate:hexane (1:0 to 0:1), spots were observed by UV irradiation (254 nm) or color development with ninhydrine or dinitrophenylhydrazine solution in hydrochloric acid. For drying organic solvent, anhydrous magnesium sulfate or anhydrous sodium sulfate was used. As for column chromatography, the indication of "Quad" means use of Quad 1 preparative chromatography system (produced by Biotage), and one or several columns selected from cartridge columns KP-Sil-12M, 40S and 40M produced by the same manufacturer were used depending on the amount of sample. For flash column chromatography, Silica gel 60N (spherical shape, neutral, 40 to 100 µm, produced by Kanto Chemicals) was used. Preparative thin layer chromatography (hereinafter abbreviated as "PTLC") was performed by using one or several plates of PLC Plate Silica Gel 60 F254 (20 x 20 cm, thickness: 2 mm, concentration zone: 4 cm, produced by Merck, product number: 13793-1M) were used depending on the amount of sample.

The indication of "LCMS" means that mass spectrum was measured by liquid chromatography mass spectrometry (LC·MS). Platform·LC type mass spectrometry apparatus (produced by Micromass) was used as the mass spectrometer, and the measurement was performed by the electrospray ionization (ESI) method. As a liquid chromatography apparatus, an apparatus produced by GILSON was used. As a separation column, Mightysil RP-18 GP 50-4.6 (produced by Kanto Chemicals) was used. Elution was generally performed at a flow rate of 2 ml/minute, and Solution A = water [containing 0.1% (v/v) acetic acid] and Solution B = acetonitrile [containing 0.1% (v/v) acetic acid] were used as solvents.

In the tables mentioned below, data indicated by "LCMS" mean data of liquid chromatography mass spectrometry spectra. In the columns of "Mass", data

of mass spectrometry were shown (the indication "N.D" means that no molecular ion peak was detected). In the columns of "method", elution conditions of the liquid chromatography are described. In the columns of "RTime", retention times in the liquid chromatography are shown. For the indication of retention time in the liquid chromatography, the indication "A" for elution condition means that measurement was performed by elution with a linear gradient of 5 to 100% (v/v) Solution B from 0 minute to 5 minutes and then with 100% Solution B until 6 minutes. Similarly, the indication "B" for elution condition means that measurement was performed by elution with 30% (v/v) Solution B from 0 minute to 0.5 minute, then with a linear gradient of 30 to 95% (v/v) Solution B from 0.5 minute to 4 minutes and then with 95% (v/v) Solution B until 6 minutes. For the compounds with the indication C in the columns of elution conditions, data of mass spectrometry measured by fast atomic bombardment mass spectrometry (FAB-MS) using JEOL-JMS-SX102 (produced by JEOL Co., Ltd.) were mentioned in the columns of "Mass". Further, for the compounds with the indication D in the elution conditions, an apparatus manufactured by Waters Ltd. was used as a liquid chromatography apparatus. As a column for separation, Develosil C30·UG-5 (50 x 4.6 mm, Nomura Kagaku Co., Ltd.) was used. Measurement was performed under elution condition with a linear gradient of 5 to 98% (v/v) Solution B from 0 minute to 4 minutes and then with 100% Solution B until 6 minutes.

In the columns indicated as "Exp.", compound numbers are shown. When the tables include a column indicated as "position", substituting positions of substituents are indicated in the column. The abbreviations used in the tables have the following meanings.

n: normal, i: iso, s: secondary, t: tertiary, c: cyclo, D: di, Me: methyl, Et: ethyl, Pr: propyl, Bu: butyl, Pen: pentyl, Hex: hexyl, Hep: heptyl, Ph: phenyl, Bn: benzyl, Py: pyridyl, Indan: indanyl, Ac: acetyl, CHO: formyl, COOH: carboxyl, NO2: nitro.

DMA: dimethylamino, NH2: amino, CF3: trifluoromethyl, F: fluoro, Cl: chloro, Br: bromo, OMe: methoxy, OH: hydroxy, TFA: trifluoroacetyl, SO2: sulfonyl, CO: carbonyl, Nap: naphthyl, Ind: 1H-indolyl, 1HIdz: 1H-indazolyl, 2HIdz: 2H-indazolyl, Bzt: benzofhiazole, 2ABzt: 2-aminobenzothiazole, BF: benzofuranyl, BT: benzofblthienyl, Qu: Quinolyl, IQ: isoquinolyl

The numbers given before the substituents indicate substituting positions.

The numbers given with hyphens before abbreviations of aromatic rings indicate substituting positions of the aromatic rings. (S) indicates optically active substances with S-configuration, and (R) indicates optically active substances with R-configuration. Representative examples of the substituents shown in the tables with abbreviations are listed in Table 2 mentioned below.

Table 2

Structure	abbreviation	Structure	abbreviation	Structure	abbreviation
000	cPenMeO	\$	cHexMeO	~°	iBuO
>>∘	2EtBuO	├ ~	2,3DMeBuO	Φ.	cPenO
۵.	cHexO	O.	сНерО	000	BnO
O,	(R)1PhEtO	چ چ	2ClBnO	,©^°	4FBnO
€.	2-IndanO	⁵ 0	2(4FPh)EtO	₩©~°	2(4DMAPh)EtO
10~°	2(3-Py)EtO		2(PhO)EtO	F Meo	3F,4(OMe)BnO
			2-Nap	†	1-Nap
10°	5-Ind		1Me-5-Ind		5~1Hldz
'CO'	1Me-5-1Hldz		5-Bzt	H ₂ N - S - S - S - S - S - S - S - S - S -	5-2ABzt
-%1©%	2Me-5-Bzt	₹©*	5-BT	100	5-BF
	3-Qu		6-IQ		

The manufacturers of the regents used may sometimes be indicated with the following abbreviations.

TCI: Tokyo Kasei Kogyo Co., Ltd., Ald: Aldrich Co., KANTO: Kanto Kagaku, WAKO:
Wako Pure Chemical Industries, Ltd., LANC: Lancaster Synthesis, MAYB:
Maybridge, plc.

Example A-1

Synthesis of methyl 3-(4-hydroxyphenyl)propionate (Intermediate 1)

A solution obtained beforehand by adding thionyl chloride (18.3 ml, WAKO) dropwise to methanol (250 ml) and mixing the mixture under ice cooling was added dropwise with a solution of 3-(4-hydroxyphenyl)propionic acid (16.6g, TCI) in methanol (50 ml) under ice cooling, stirred for 30 minutes, warmed to room temperature, and further stirred for 1.5 hours. The reaction mixture was concentrated under reduced pressure, and then extracted with diethyl ether (200 ml). The organic layer was washed successively with saturated aqueous sodium hydrogencarbonate, saturated aqueous ammonium chloride and saturated brine. The organic layer was dried, and then the solvent was evaporated under reduced pressure to obtain the title compound (Intermediate 1, 17.95 g).

Synthesis of methyl 3-(4-cyclopentylmethyloxyphenyl)propionate (Intermediate 2)

A solution of cyclopentane methanol (4.05 ml, Ald) in anhydrous tetrahydrofuran (abbreviated as "THF" hereinafter, 40 ml) was added with triethylamine (6.49 ml, WAKO), added dropwise with methanesulfonyl chloride (3.48 ml, WAKO) under ice cooling, and stirred for 30 minutes. The reaction mixture was added with water (50 ml), and extracted with diethyl ether (80 ml x 2). The organic layer was washed with saturated brine and dried, and then the solvent was evaporated under reduced pressure. A solution obtained beforehand by adding 60% sodium hydride (1.15 g, KANTO) to a solution of Intermediate 1 (4.50 g) in

N,N dimethylformamide (abbreviated as "DMF" hereinafter, 35 ml) under ice cooling and stirring the solution for 15 minutes was added with a solution of the aforementioned residue in DMF (10 ml) under ice cooling. The reaction mixture was stirred for 15 minutes, then warmed to room temperature, stirred for 45 minutes, and further stirred at 60°C for 15 hours. The reaction mixture was added with water (100 ml) and diethyl ether (200 ml) for extraction. The organic layer was successively washed with saturated aqueous sodium hydrogencarbonate, saturated aqueous ammonium chloride, and saturated brine and dried, and then the solvent was evaporated under reduced pressure. The residue was purified by flash column chromatography (hexane isopropyl ether = 9:1) to obtain the title compound (Intermediate 2, 5.58 g).

Synthesis of methyl 3-(3-bromo-4-cyclopentylmethyloxyphenyl)propionate (Compound No. A-1)

A solution of Intermediate 2 (1.31 g) in acetonitrile (50 ml) was added with N-bromosuccinimide (hereinafter abbreviated as "NBS", 979 mg, KANTO), stirred at room temperature for 2 hours, then warmed to 40°C, and stirred for 3 hours. The reaction mixture was concentrated under reduced pressure, then added with ethyl acetate (200 ml) and washed successively with saturated aqueous ammonium chloride, 5% aqueous sodium sulfite, saturated aqueous sodium hydrogencarbonate and saturated brine. The organic layer was dried, and then the solvent was evaporated under reduced pressure to obtain the title compound (Compound No. A-1, 1.69 g).

[Example A-2]

Synthesis of 3-(3-bromo-4-methoxyphenyl)propionic acid (Intermediate 3)

According to the procedure described in the synthesis method of Compound No. A·1 provided that the reaction was carried out under ice cooling for 30 minutes and at room temperature for 3 hours, 3·(4·methoxyphenyl)propionic acid (27.0 g.

TCI) and NBS (29.4 g) were reacted and treated to obtain the title compound (Intermediate 3, 35.1 g).

Synthesis of 3-(3-bromo-4-hydroxyphenyl)propionic acid (Intermediate 4)

According to a procedure described in a literature (Carreno, M.C., J. Org. Chem., 1995, vol. 60, p.5328), a 1 M solution of boron tribromide in methylene chloride (200 ml, Fluka) was added dropwise with a solution of Intermediate 4 (23.5 g) in methylene chloride (200 ml) at '78°C, warmed to room temperature after 30 minutes, and further stirred for 1.5 hours. The reaction mixture was poured into ice water (750 ml), and stirred at room temperature for 1 hour. The reaction mixture was added with diethyl ether (750 ml)) for extraction. The organic layer was added with 2 N aqueous sodium hydroxide (250ml x 2) for extraction, and then the aqueous layer was made acidic with 5 N aqueous hydrochloric acid under ice cooling, and extracted with diethyl ether (375 ml x 2) again. The organic layer was washed with saturated brine and dried, and then the solvent was evaporated under reduced pressure. The organic layer was washed with saturated brine and dried, and then the solvent was evaporated under reduced pressure to obtain the title compound (Intermediate 4, 23.5 g).

Synthesis of methyl 3-(3-bromo-4-hydroxyphenyl)propionate (Intermediate 5)

According to the procedure described in the synthesis method of Intermediate 1 provided that the purification was performed by flash column chromatography (hexane:ethyl acetate = 4:1), Intermediate 4 (21.15 g) and thionyl chloride (15.0 ml) were reacted and treated in methanol to obtain the title compound (Intermediate 5, 20.36 g).

Synthesis of methyl (3-bromo-4-cyclohexylmethyloxyphenyl)propionate (Compound No. A-2)

A solution of Intermediate 5 (1.29 g) in DMF (25 ml) was added with notassium carbonate (0.86 g) and bromomethylcyclohexane (1.05 ml, TCD, stirred

under argon atmosphere at room temperature for 2 hours, then warmed to 60°C, and stirred for 17 hours. The reaction mixture was poured into ice water, and extracted with isopropyl ether (200 ml). The organic layer was successively washed with saturated aqueous sodium hydrogenearbonate, saturated aqueous ammonium chloride, and saturated brine and dried, and then the solvent was evaporated under reduced pressure. The residue was purified by flash column chromatography (hexane:isopropyl ether = 9:1) to obtain the title compound (Compound No. A.2, 1.45 g).

[Example A-5]

Synthesis of methyl 3-(3-bromo-4-cyclopentyloxyphenyl)propionate (Compound No. A-5)

A solution of Intermediate 5 (4.50 g) in DMF (20 ml) was added with 60% sodium hydride (440 mg, KANTO) under ice cooling. The reaction mixture was stirred for 10 minutes, then added with bromocyclopentane (1.61 ml, TCI), warmed to room temperature, stirred for 1.5 hours, then warmed to 60°C, and further stirred for 16 hours. The reaction mixture was added with water (50 ml) and isopropyl ether (300 ml)) for extraction. The organic layer was successively washed with saturated aqueous sodium hydrogencarbonate, saturated aqueous ammonium chloride, and saturated brine and dried, and then the solvent was evaporated under reduced pressure. The residue was purified by flash column chromatography (hexane:isopropyl ether = 7:1) to obtain the title compound (Compound No. A-5, 2.50 g).

[Example A-6]

Synthesis of methyl 3-(3-bromo-4-cyclohexyloxyphenyl)propionate (Compound No. A-6)

A solution of Intermediate 5 (2.06 g), triphenylphosphine (hereinafter abbreviated as "PhsP", 6.28 g, WAKO) and cyclohexanol (2.53 ml, WAKO) in

anhydrous THF (60 ml) was added dropwise with a 40% solution of diisopropylazodicarboxylic acid ester in toluene (hereinafter abbreviated as "40% DIAD", 11.35 ml, WAKO) under ice cooling over 10 minutes. The reaction mixture was stirred for 10 minutes, then warmed to room temperature, and stirred for 18.5 hours. The reaction mixture was added with water (50 ml) and ethyl acetate (200 ml)) for extraction. The organic layer was successively washed with saturated aqueous sodium hydrogenearbonate, saturated aqueous ammonium chloride and saturated brine and dried, and then the solvent was evaporated under reduced pressure. The residue was purified by column chromatography (Quad, hexane isopropyl ether = 8:1) to obtain the title compound (Compound No. A 6, 2.35 g).

[Example A-20]

Synthesis of methyl 3-(3-bromo-5-chloro-4-hydroxyphenyl)propionate (Intermediate 6)

A solution of Intermediate 5 (516mg) in chloroform (5 ml) was added with sulfuryl chloride (177 \(\mu \) 1), and stirred at room temperature for 21 hours. The reaction mixture was poured into aqueous saturated sodium hydrogenearbonate (20 ml), and extracted with ethyl acetate. The organic layer was successively washed with saturated aqueous sodium hydrogenearbonate, saturated aqueous ammonium chloride, and saturated brine and dried, and then the solvent was evaporated under reduced pressure. The residue was purified by column chromatography (Quad, hexane:ethyl acetate = 10:1) to obtain the title compound (Intermediate 6, 290mg). Synthesis of methyl 3:(3:bromo-5-chloro-4-cyclopentylmethyloxyphenyl)propionate (Compound No. A:20)

According to the procedure described in the synthesis method of Compound No. A-6 provided that the purification was performed by column chromatography (Quad, hexane-ethyl acctate = 30:1), Intermediate 6 (278 mg), PhaP (747 mg),

cyclopentane methanol (308 μ l), and 40% DIAD (1.34 ml) were reacted and treated to obtain the title compound (Compound No. A-20, 337mg).

[Example A-21]

Synthesis of ethyl 3-(3-fluoro-4-methyloxyphenyl)acrylate (Intermediate 7)

A solution of 3-fluoro-4-methoxybenzaldehyde (2.20 g, Ald) in 1,2diethoxyethane (5 ml) was added with ethyl diethylphosphonoacetate (3.12 ml, TCI)
and added with 60% sodium hydride (624mg) under ice cooling. After being stirred
for 10 minutes, the reaction mixture was warmed to room temperature, and stirred
for 5 hours. The reaction mixture was added with ethyl acetate (90 ml), and
washed successively with saturated aqueous sodium hydrogencarbonate, saturated
aqueous ammonium chloride and saturated brine. The organic layer was dried,
and then the solvent was evaporated under reduced pressure. The residue was
purified by flash column chromatography (Quad, hexane-ethyl acetate = 10:1) to
obtain the title compound (Intermediate 7, 3.16 g).

Synthesis of ethyl 3-(3-fluoro-4-methoxyphenyl)propionate (Intermediate 8)

A solution of Intermediate 7 (3.01 g) in ethyl acetate (50 ml) and methanol (25 ml) was added with 10% palladium/carbon (300 mg, Merck), and stirred at room temperature for 2 hours under hydrogen atmosphere. The reaction mixture was filtered, and the solvent of the filtrate was evaporated under reduced pressure to obtain the title compound (Intermediate 8, 3.02 g).

Synthesis of 3-(3-fluoro-4-methoxyphenyl)propionic acid (Intermediate 9)

A solution of Intermediate 8 (2.97 g) in methanol (40.0 ml) was added with 2 N aqueous sodium hydroxide (15.0 ml) and stirred at 60°C for 16 hours. The reaction mixture was concentrated under reduced pressure, then made acidic with aqueous 5% hydrochloric acid under ice cooling, and extracted with ethyl acetate (200 ml). The organic layer was washed with saturated brine and dried, and then the solvent was evaporated under reduced pressure to obtain the title compound

(Intermediate 9, 2.40 g).

Synthesis of 3-(3-fluoro-4-hydroxyphenyl)propionic acid (Intermediate 10)

A pyridine/hydrochloric acid complex prepared by mixing pyridine (30 ml) and concentrated hydrochloric acid (30 ml) and heating the mixture at 190°C for 1 hour was added with Intermediate 9 (2.40 g) and stirred at 190°C for 1.5 hours.

The reaction mixture was poured into 1 N hydrochloric acid (100 ml) cooled with ice, and extracted with ethyl acetate (200 ml). The organic layer was washed with saturated brine and dried, and then the solvent was evaporated under reduced pressure to obtain the title compound (Intermediate 10, 1.98 g).

Synthesis of methyl 3-(3-fluoro-4-hydroxyphenyl)propionate (Intermediate 11)

According to the procedure described in the synthesis method of Intermediate 1, Intermediate 10 (1.77 g) and thionyl chloride (1.65 ml) were reacted and treated in methanol to obtain the title compound (Intermediate 11, 1.85 g). Synthesis of methyl 3-(3-bromo-5-fluoro-4-hydroxyphenyl)propionate (Intermediate 12)

According to the procedure described in the synthesis method of Compound No. A·1 with the modifications that the reaction was carried out for 2 hours under ice cooling, and the purification was performed by column chromatography (Quad, hexane-ethyl acetate = 10:1), Intermediate 11 (1.84 g) and NBS (1.74 g) were reacted and treated to obtain the title compound (Intermediate 12, 1.74 g).

Synthesis of methyl 3·(3·bromo·4·cyclopentylmethyloxy·5·fluorophenyl)propionate (Compound No. A·21)

According to the procedure described in the synthesis method of Compound No. A·6 with the modifications that the reaction was carried out for 22 hours, and the purification was performed by column chromatography (Quad, hexane:ethyl acetate = 50:1), Intermediate 11 (310 mg), tributylphosphine (hereinsfter abbreviated as "aBusP", 405 µ1, WAKO) instead of PhsP, cyclopentane methanol

(176 μ D, and N,N,N',N'-tetramethylazodicarboxamide (hereinafter abbreviated as "TMAD", 279 mg, TCI) instead of 40% DIAD were reacted and treated to obtain the title compound (Compound No. A-21, 386 mg).

[Example A-24]

Synthesis of 4-cyclopentyloxy-3-methylbenzaldehyde (Intermediate 13)

According to the procedure described in the synthesis method of Compound No. A·2 with the modifications that the reaction was carried out for 16 hours, and the purification was performed by column chromatography (Quad, hexane ethyl acetate = 9:1), 4·hydroxy·3·methylbenzaldehyde (283 mg, TCI), potassium carbonate (578 mg) and bromocyclopentane (430 µ1) were reacted and treated to obtain the title compound (Intermediate 13, 350 mg).

Synthesis of ethyl 3-(4-cyclopentyl-3-methylphenyl)acrylate (Intermediate 14)

According to the procedure described in the synthesis method of Intermediate 7 with the modifications that the reaction was carried out for 2 hours, and the purification was performed by column chromatography (Quad, hexane:ethyl acetate = 9:1), Intermediate 13 (342 mg), ethyl diethylphosphonoacetate (408 \(mu\)1) and 60% sodium hydride (82 mg) were reacted and treated to obtain the title compound (Intermediate 14, 450 mg).

Synthesis of ethyl 3-(4-cyclopentyl-3-methylphenyl)propionate (Intermediate 15)

According to the procedure described in the synthesis method of Intermediate 8, Intermediate 14 (446 mg) and 10% palladium/carbon (20 mg) were reacted and treated under hydrogen gas atmosphere to obtain the title compound (Intermediate 15, 439 mg).

Synthesis of ethyl 3-(3-bromo-4-cyclopentyl-5-methylphenyl)propionate (Compound No. A-24)

According to the procedure described in the synthesis method of Compound No. A. I. Intermediate 15 (437 mg) and NBS (320 mg) were reacted and treated to

obtain the title compound (Compound No. A-24, 545 mg).

[Example A-25]

 $Synthesis \ of \ 3\text{-}bromo \cdot 4\text{-}(t\text{-}butyldimethylsilyloxy})\text{-}5\text{-}methoxybenzaldehyde}$ (Intermediate 16)

A solution of 3-bromovanillin (1.16 g, TCI) in anhydrous DMF (20 ml) was added with imidazole (408 mg, TCI), added dropwise with a solution of 4-(N,N-dimethylamino)pyridine (25 mg) and t-butyldimethylsilyl chloride (904 mg, TCI) in DMF (15 ml) under ice cooling, stirred 30 minutes, then warmed to room temperature, and further stirred 3 hours. The reaction mixture was added with water (100 ml), and extracted with ethyl acetate (100 ml). The organic layer was washed with saturated brine and dried, and then the solvent was evaporated under reduced pressure. The residue was purified by flash column chromatography (hexane:ethyl acetate = 9:1) to obtain the title compound (Intermediate 16, 1.75 g). Synthesis of ethyl 3-[3-bromo-4-(t-butyldimethylsilyloxy)-5-methoxyphenyllacrylate (Intermediate 17)

According to the procedure described in the synthesis method of Intermediate 7 with the modifications that the reaction was carried out for 1.5 hours, and the purification was performed by flash column chromatography (hexane:ethyl acetate = 9:1), Intermediate 16 (910 mg), ethyl diethylphosphonoacetate (530 μ 1) and 60% sodium hydride (120 mg) were reacted and treated to obtain the title compound (Intermediate 17, 937 mg). Synthesis of ethyl 3-[3-bromo-4-(t-butyldimethylsilyloxy)-5-methoxyphenyllpropionate (Intermediate 18)

According to the procedure described in the synthesis method of Intermediate 8, Intermediate 17 (945 mg) and 10% palladium/carbon (95 mg) were reacted and treated under hydrogen gas atmosphere to obtain the title compound (Intermediate 18, 760 mg).

Synthesis of ethyl 3-(3-bromo-4-hydroxy-5-methoxyphenyl)propionate (Intermediate 19)

A solution of Intermediate 18 (750 mg) in THF (50 ml) was added with a 1 M solution of tetrabutylammonium fluoride in THF (5 ml, TCI), and stirred for 1.5 hours. The reaction mixture was added with saturated aqueous sodium hydrogencarbonate (30 ml), and extracted with ethyl acetate (50 ml). The organic layer was washed with saturated brine and dried, and then the solvent was evaporated under reduced pressure. The residue was purified by flash column chromatography (hexane:ethyl acetate = 4:1) to obtain the title compound (Intermediate 19, 542 mg).

Synthesis of ethyl 3·(3·bromo·4·cyclopentyloxy·5·methoxyphenyl)propionate (Compound No. A·25)

According to the procedure described in the synthesis method of Compound No. A·6 with the modifications that the reaction was carried out for 16 hours, and the purification was performed by column chromatography (Quad, hexane:ethyl acetate = 7·1), Intermediate 19 (400 mg), PhsP (1.31 g), cyclopentanol (450 µ l), and TMAD (860 mg) were reacted and treated to obtain the title compound (Compound No. A·25, 376 mg).

[Example A-26]

Synthesis of methyl 3-(3-bromo-4-cyclopentylmethyloxy-5-nitrophenyl) propionate (Compound No. A-26)

A solution obtained beforehand by adding 70% nitric acid (3.9 ml) to acetic anhydride (30 ml) under ice cooling and stirring the mixture for 10 minutes was added with a solution of Compound No. A-1 (5.12 g) in acetonitrile (25 ml) at -15°C over 15 minutes, and stirred further for 15 minutes. The reaction mixture was poured into 1 N aqueous sodium hydroxide (500 ml) containing ice, and extracted with diethyl other (300 ml x 2). The organic layer was successively washed with

saturated aqueous sodium hydrogencarbonate, saturated aqueous ammonium chloride, and saturated brine and dried, and then the solvent was evaporated under reduced pressure. The residue was purified by column chromatography (Quad, hexane:ethyl acetate = 10:1) to obtain the title compound (Compound No. A-26, 3.68 g).

[Example A-31]

Synthesis of methyl 3-(3-bromo-4-phenoxyphenyl)propionate (Compound No. A-31)

A solution of Intermediate 5 (3.08 g) in anhydrous N methylpyrrolidone (9.5 ml, WAKO) was successively added with cesium carbonate (3.58 g, WAKO), iodobenzene (1.4 ml, TCI), dipivaloylmethane (0.12 ml, TCI) and copper(I) chloride (275 mg, WAKO), and stirred 120°C for 16 hours under argon gas atmosphere. The reaction mixture was added with t-butyl methyl ether (25 ml), and insoluble solids were removed by filtration. The filtrate was washed successively with 2 N aqueous hydrochloric acid and saturated brine and dried, and then the solvent was evaporated under reduced pressure. The residue was purified by flash column chromatography (hexane-ethyl acetate = 1:10) to obtain the title compound (Compound No. A:31, 1.00 g).

[Example B-96]

Synthesis of methyl 3-(3-bromo-4-methoxyphenyl)propionate (Intermediate 20)

According to the procedure described in the synthesis method of Intermediate 1 provided that the purification was performed by flash column chromatography (hexane-ethyl acetate = 6:1), Intermediate 3 (1.60 g) and thionyl chloride (1.44 ml) were reacted and treated in methanol to obtain the title compound (Intermediate 20, 1.63 g).

Synthesis of methyl 3-(3-bromo-4-methoxy-5-nitrophenyl)propionate (Intermediate 21)

A solution of Intermediate 20 (3.20 g) in acetic anhydride (25 ml) was added

with potassium nitrate (1.30 g) under ice cooling and stirred for 10 minutes, and the solution was added dropwise with concentrated sulfuric acid (730 μ 1) over 10 minutes. The reaction mixture was stirred for 10 minutes for 10 minutes at the same temperature, then warmed to room temperature, and further stirred for 30 minutes. The reaction mixture was poured into 1 N aqueous sodium hydroxide (250 ml) containing ice, and extracted with isopropyl ether (200 ml x 2). The organic layer was successively washed with saturated aqueous sodium hydrogenearbonate, saturated aqueous ammonium chloride, and saturated brine and dried, and then the solvent was evaporated under reduced pressure. The residue was purified by column chromatography (Quad, hexane ethyl acetate = 10:1) to obtain the title compound (Intermediate 21, 2.73 g).

Synthesis of 3-(3-bromo-4-methoxy-5-nitrophenyl)propionic acid (Intermediate 22)

According to the procedure described in the synthesis method of Intermediate 9 provided that the reaction was carried out for 1 hour, Intermediate 21 (12.73 g) and 2 N aqueous sodium hydroxide (40 ml) were reacted and treated to obtain the title compound (Intermediate 22, 11.53 g).

Synthesis of 3-(3-bromo-4-hydroxy-5-nitrophenyl)propionic acid (Intermediate 23)

According to the procedure described in the synthesis method of Intermediate 4 provided that the reaction was carried out for 2 hours, Intermediate 22 (11.53 g) and a 1 M solution of boron tribromide in methylene chloride (100 ml) were reacted and treated to obtain the title compound (Intermediate 23, 10.68 g). Synthesis of methyl 3-(3-bromo-4-hydroxy-5-nitrophenyl)propionate (Intermediate 24)

According to the procedure described in the synthesis method of Intermediate 1 provided that the reaction was carried out for 17.5 hours, Intermediate 23 (10.68 g) and thionyl chloride (8.06 ml) were reacted and treated to obtain the title compound (Intermediate 24, 8.27 g).

Synthesis of methyl 3-[3-bromo-4-(indan-2-yloxy)-5-nitrophenyl]propionate (Compound No. B-96)

According to the procedure described in the synthesis method of Compound No. A·6 with the modifications that the reaction was carried out for 15 hours, and the purification was performed by column chromatography (Quad, hexane ethyl acetate = 19:1), Intermediate 24 (151 mg), PhaP (260 mg), 2-hydroxyindane (133 mg, TCI) and 40% DIAD (470 μ l) were reacted and treated to obtain the title compound (Compound No. B·96, 192 mg).

[Example B-99]

Synthesis of methyl 3-(3-amino-5-bromo-4-cyclopentyloxyphenyl)propionate (Compound No. B-99)

A solution of Compound No. A·28 (416 mg) in a mixture of THF (5 ml) and methanol (5 ml) was added with Raney 2800 nickel (230 mg, Ald) and stirred at room temperature for 6 hours under hydrogen atmosphere. The reaction mixture was filtered, and the solvent of the filtrate was evaporated under reduced pressure. The residue was purified by column chromatography (Quad, hexane-ethyl acetate = 5:2) to obtain the title compound (Compound No. B·99, 143 mg).

Example B-103

Synthesis of methyl 3-[4-benzyloxy-5-bromo-3-(2,2,2trifluoroacetylamino)phenyllpropionate (Compound No. B-103)

A solution of Compound No. B-100 (58.7 mg) in methylene chloride (2 ml) was added with triethylamine (76 μ l), added dropwise trifluoroacetic anhydride (91 μ l, TCI) under ice cooling, stirred for 30 minutes, then warmed to room temperature, and further stirred for 2 hours. The reaction mixture was added with water (5 ml), and extracted with methylene chloride (20 ml). The organic layer was washed with saturated brine and dried, and then the solvent was evaporated under reduced pressure. The residue was purified by column

chromatography (Quad, hexane:ethyl acetate = 3:1) to obtain the title compound (Compound No. $B\cdot 103$, 59.1 mg).

[Example B·105]

Synthesis of methyl 3-[4-benzyloxy-5-bromo-3-(N-methylamino)phenyl]propionate (Compound No. B-105)

A solution of Compound No. B-100 (105 mg) in DMF (3 ml) was added with 60% sodium hydride (20 mg) under ice cooling, and stirred for 10 minutes. This reaction mixture was added dropwise with methyl iodide (32 µ l), stirred for 10 minutes, then warmed to room temperature, and further stirred for 2 hours. The reaction mixture was poured into water, and added with ethyl acetate (30 ml) for extraction. The organic layer was successively washed with saturated aqueous sodium hydrogencarbonate, saturated aqueous ammonium chloride, and saturated brine and dried, and then the solvent was evaporated under reduced pressure.

The residue was purified by column chromatography (Quad, hexane ethyl acetate = 6:1) to obtain the title compound (Compound No. B-105, 17 mg).

[Example B-109]

Synthesis of 3-[4-benzyloxy-5-bromo-3-(N,N-dimethylamino)phenyl]propionic acid (Compound No. B-109)

A solution of Compound No. B-100 (105 mg) in DMF (3 ml) was added with 60% sodium hydride (40 mg) under ice cooling, and stirred for 10 minutes. This reaction mixture was added dropwise with methyl iodide (300 μ 1), stirred for 10 minutes, then warmed to room temperature, and further stirred for 16 hours. The reaction mixture was poured into water, and added with ethyl acetate (30 ml) for extraction. The organic layer was successively washed with saturated aqueous sodium hydrogenearbonate, saturated aqueous ammonium chloride, and saturated brine and dried, and then the solvent was evaporated under reduced pressure. The residue was purified by column chromatography (Quad, hexane:ethyl acetate =

6:1) to obtain the title compound (Compound No. B-109, 88 mg).

[Examples B-113 and B-114]

Syntheses of 3-(3-bromo-4-cyclopentyloxy-5-hydroxyphenyl)propionic acid

(Compound No. B-113) and 3-(5-acetoxy-3-bromo-4-cyclopentyloxyphenyl)propionic

acid (Compound No. B-114)

A solution of Compound No. B-99 (415 mg) in acetic acid (1.5 ml) was added with 20% sulfuric acid (1.0 ml). This reaction mixture was added dropwise with an aqueous solution (0.5 ml) of sodium nitrite (78 mg) over 10 minutes, while the temperature of the reaction mixture was maintained below 10°C, and further stirred for 5 minutes. This reaction mixture was added dropwise to a solution of sodium acetate (348 mg) in acetic acid (3.5 ml) heated and stirred at 100°C beforehand over 5 minutes, and further stirred for 10 minutes with heating. The reaction solution was poured into ice water (50 ml), and extracted with isopropyl ether (100 ml x 2). The organic layer was successively washed with saturated aqueous sodium hydrogenearbonate, saturated aqueous ammonium chloride and saturated brine and dried, and then the solvent was evaporated under reduced pressure. The residue was purified by column chromatography (Quad, hexane:ethyl acetate = 10:1) to obtain the title compounds (Compound No. B-113, 47mg and Compound No. B-114, 105 mg).

[Example B-117]

Synthesis of methyl 3-(3,5-dibromo-4-cyclopentylmethyloxyphenyl)propionate (Compound No. B-117)

A solution of Intermediate 1 (670 mg) in acetonitrile (30 ml) was added with NBS (990 mg), stirred at room temperature for 2 hours, then warmed to 40°C, and stirred for 18 hours. The reaction mixture was concentrated under reduced pressure, then added with ethyl acetate (100 ml), and washed successively with saturated aqueous ammonium chloride, 5% aqueous sodium sulfite, saturated

aqueous sodium hydrogencarbonate and saturated brine. The organic layer was dried, and then the solvent was evaporated under reduced pressure. According to the procedure described in the synthesis method of Compound No. A-6 with the modifications that the reaction was carried out for 18 hours under ice cooling, and the purification was performed by column chromatography (Quad, hexane-ethyl acetate = 10:1), the residue was reacted with PhaP (1460 mg), cyclopentane methanol (560 mg) and 40% DIAD (2.6 ml) and treated to obtain the title compound (Compound No. B-117, 710 mg).

[Examples A-1 to A-33]

Typical examples of the compounds of the present invention that can be obtained by reacting and treating corresponding starting compounds using any of the methods described in the present specification including the examples described above are shown in Table A-1. The compounds were prepared according to the preparation methods of the compound numbers (e.g., "A-1") or the intermediate numbers (e.g., "Int 2") shown in the columns of "Syn" in the tables. "Int" means an intermediate compound number. When the preparation required a plurality of steps, a plurality of compound numbers or intermediate compound numbers are mentioned in the columns of "Syn". For example, an indication of "Int 2, A-1" in a column of "Syn" means that "the compound is prepared from a compound prepared according to the procedure described in the synthesis method of Intermediate 2 according to the procedure described in the synthesis method of Compound No. A-1." When the compounds were synthesized according to the procedure described in the synthesis method of Compound No. A-6, TMAD or di-t-butyl azodicarboxylate (hereinafter abbreviated as "DBAB") was sometimes used instead of 40% DIAD.

Zx'	
Rx'-0-	$\gamma^{0\gamma}$

Table-A-1

Exp.	Rx'O	Ϋ́	Zx'	G	Syn	LCMS			
Exp.	HX U	, T	x	G	Syn	method	RTime	Mass	
A-1	cPenMeO	Me	Н	Br	A-1	С		341 (M+1)	
A-2	cHexMeO	Me	Н	Br	A-2	С		354 (M ⁺)	
A-3	iBuO	Me	Н	Br	A-2	Α	5.34	N.D	
A-4	2EtBuO	Me	H	Br	A-2				
A-5	cPenO	Me	H	Br	A-5	С		326 (M ⁺)	
A-6	cHexO	Me	Н	Br	A-6	С		340 (M*)	
A-7	сНерО	Me	Н	Br	A-6				
A-8	BnO	Me	Н	Br	A-2				
A-9	1PhEtO	Me	Н	Br	A-2				
A-10	2FBnO	Me	Н	Br	A-2				
A-11	4FBnO	Me	_ Н	Br	A-2				
A-12	2ClBnO	Me	Н	Br	A-2				
A-13	4ClBn0	Me	H	Br	A-2	Α	4.85	N.D	
A-14	4MeBnO	Me	Н	Br	A-2				
A-15	4CF3BnO	Ме	Н	Br	A-2				
A-16	2(4DMAPh)EtO	Me	Н	Br	A-6				
A-17	2(PhO)EtO	Me	Н	Br	A-6	Α	5.04	N.D	
A-18	1(2FPh)EtO	Me	Н	Br	A-6				
A-19	1(4CIPh)EtO	Me	Н	Br	A-6	Α	4.82	N.D	
A-20	cPenMeO	Me	CI	Br	A-20	С		375 (M*+1)	
A-21	cPenMeO	Me	F	Br	A-21				
A-22	cPenO	Me	F	Br	A-21	С		345 (M+1)	
A-23	ćHexO	Me	F	Br	A-21				
A-24	cPenO	Et	Me	Br	A-24		5.82	N.D	
A-25	cPenO *	Et	OMe	Br	A-25				
A-26	cPenMeO	Me	NO2	Br	A-26	С		340 (M+1)	
A-27	cHexMeO	Me	NO2	Br	A-26				
A-28	cPenO	Me	NO2	Br	A-26	С		372 (M+1)	
A-29	cHexO	Me	NO2	Br	A-26				
A-30	2-IndanO	Me	NO2	Br	A-26	Α	5.03	N.D	
A-31	PhO	Me	Н	Br	A-31	Α	5.15	O.N	
A-32	4CIPhO	Me	Н	Br	A-31	Α	5,47	N.D	
A-33	4Me OPh O	Me	Н	Br	A-31	Α	5.02	N.D	

[Examples B·1 to B·119]

Typical examples of the compounds of the present invention that can be obtained by reacting and treating corresponding starting compounds using any of the methods described in the present specification including the examples described above are shown in Table B-1 to Table B-3.

Table-B-1

Table-	B-1								
Exp.	Rx'O	Y'	Zx'	G	Syn	LCMS			
						method	RTime	Mass	
B-1	nPr0	Me	H	Br	A-2	С		279 (M ⁺)	
B-2	iPrO	Me	Н	Br	A-2				
B-3	sBu0	Me	H	Br	A~6				
B-4	iPen0	Me	Н	Br	A-6				
B-5	1,3DMeBuO	Me	Н	Br	A-6				
B-6	2MeBuO	Me	Н	Br	A-6				
B-7	المحال	Me	Н	Br	A-6				
B-8	├ .。	Me	Н	Br	A-6				
B-9	2,3DMeBuO	Me	Н	. Br	A-6				
B-10	cPenO	Me	н	CI	A-6	С		361 (M ⁺ +1)	
B-11	trans2Me,cPenO	Me	Н	Br	A-6				
B-12	3Me,cPenO	Me	Н	Br	A-6				
B-13	trans2Me,cHexO	Me	H	Br	A-6				
B-14	cis2Me,cHexO	Me	Н	Br	A-6				
B-15	3Me,cHexO	Me	Н	Br	A-6	C		354 (M*+1)	
B-16	4Me.cHexO	Me	Н	Br	A-6				
B-17	2.3DMe.cHexO	Me	Н	Br	A-6				
B-18	3,4DMe,cHexO	Me	н	Br	A-6	С		368 (M*+1)	
B-19	3,5DMe,cHexO	Me	н	Br	A-6				
B-20	> ∴	Me	Н	Br	A-6				
B-21	⅓	Me	Ξ	Br	A-6				
B-22	Æ.	Me	Н	Br	A-6				
B-23	1PhPr0	Me	Н	Br	A-6				
B-24	(S)1PhPrO	Me	Н	Br	A-6				
B-25	BenzhydrylO	. Me	Н	Br	A-6				
B-26	@ _K	Me	Н	Br	A-6	С	8	391 (M ⁺ +1)	
B-27	MeO-(2)(°	Me	Н	Br	A-6				
B-28	· 2Ph,1MeEtO	Me	Н	Br	A-6				
B-29	2Ph,2MeEtO	Me	Н	Br	A-6				
B-30	2(2FPh),1MeEtO	Me	Н	Br	A-6				
B-31	2(3CF ₃ Ph),1MeEtO	Me	H	Br	A-6				
B-32	3PhBuO	Me	Н	Br	A-6				
B-33	50Me-2-Indan0	Me	Н	Br	A-6				
B-34	5,6D(OMe)-2-IndanO	Me	Н	Br	A-6				
B-35	5F-2-IndaneO	Me	Н	Br	A-6				
B-36	1-IndaneO	Me	H	Br	A-6				
B-37	œ.	Me	Н	Br	A-6				
	~~~			L		لـــــا			

Table-	B-2							
B-38	٥, _د ه	Ме	Н	Br	A-6			
B-39	3FBnO	Me	Н	Br	A-6			
B-40	2MeBnO	Me	Н	Br	A-6	С		363 (M+1)
B-41	3MeBnO	Me	Н	Br	A-6			
B-42	3,5DMeBnO	Me	Н	Br	A-6			
B-43	4tBuBnO	Me	H	Br	A-6			
B-44	2CF ₃ BnO	Me	Н	Br	A-6			
B-45	4CF ₃ BnO	Me	Н	Br	A-6			
B-46	3(CF ₃ O)BnO	Me	H	Br	A-6			
B-47	4(CF ₃ O)BnO	Me	_ H	Br	A-6			
B-48	4(nBuQ)BnO	Me	н	Br	A-6			
B-49	() ()	Ме	Н	Br	A-6	С		406 (M ⁺ +1)
B-50	3,4DFBnO	Me_	Ή	Br	A-6			
B-51	2,4DFBnO	Ме	Н	Br.	A-6			
B-52	4Br,2FBnO	Me	Н	Br	A-6			
B-53	2,4DClBnO	Me	Н	Br	A-6			
B-54	3,4DClBnO	Ме	Н	Br	A-6			
B-55	2,3DClBnO	Me	Н	Br	A-6			
B-56	2,6DClBnO	Me	Н	Br	A-6			
B-57	3,5DClBnO	Ме	Н	Br	A-6			
B-58	2-NapMeO	Me	н	Br	A-6	С		399 (M+1)
B-59	1-NapMeO	Me	Н	Br	A-6			
B-60	\$∕°	Ме	Н	Br	A-6			
B-61	<b>°</b>	Ме	Н	Br	A-6			
B-62	<b>%</b>	Ме	Н	Br	A-6	С		339 (M ⁺ +1)
B-63	2PhBnO	Me	H	Br	A-6			
B-64	4PhBnO	Me	Н	Br	A-6			
B-65	2PhEtO	Me	H	Br	A-6			
B-66	2(2MePh)EtO	Ме	Н	Br	A-6			
B-67	2(3MePh)EtO	Me	Н	Br	A-6			
B-68	2(4MePh)EtO	Ме	H	Br	A-6			
B-69	2(3FPh)EtO	Me	Н	Br	A-6			
B-70	2(3CIPh)EtO	Me	Н	Br	A-6			
B-71	2(2CF ₃ Ph)EtO	Me	Н	Br	A-6			
B-72	2(4CF ₃ Ph)EtO	Me	Н	Br	A-6			
B-73	2(20MePh)EtO	Me	H	Br	A-6			
B-74	2(2-Nap)EtO	Me	Н	Br	A-6	С	L	413 (M+1)
B-75	2(3-Ind)EtO	Me	. Н	Br	A-6		L	
B-76	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Ме	Н	Br	A-6			
B-77	2(PhO)EtO	Me	Н	Br	A-6		L	
B-78	2(2ClPhO)EtO	Me	Н	Br	A-6		L	
B-79	2(4CIPhO)EtO	Me	H	Br	A-6		L	J

Table-	B-3							
B-80	۵۴۰	Ме	н	Br	A-6	С		407 (M*+1)
B-81	©h~o	Ме	Н	Br	A-6			
B-82	۵ ₁ /~°	, Me	н	Br	A-6			
B-83	Qu.	Ме	н	Br	A-6			
B-84	2(PhS)EtO	Me	Н	Br	A-6	С		379 (M+1)
B-85	2-BztO	Me	Н	Br	A-6			
B-86	(60Me-2-Bzt)O	Me	Н	Br	A-6			
B-87	cPen0	Me	CI	Br	A-20			
B-88	1(4FPh)EtO	Me	CI	Br	A-20			
B-89	1PhEtO	Me	F	Br	A-21			
B-90	1(4FPh)EtO	Me	F	Br	A-21			T
B-91	1PhEtO	Et	Me	Br	A-24			
B-92	1(4FPh)EtO	Et	Me	Br	A-24			Γ
B-93	1PhEtO	Me	OMe	Br	A-25			
B-94	1(4FPh)EtO	Me	OMe	Br	A-25			
B-95	BnO	Me	NO2	Br	A-26			
B-96	2-IndanO	Me	NO2	Br	A-26	A	4.44	N.D
B-97	50Me-2-Indan0	Me	NO2	Br	A-26			
B-98	4CF3Bn0	Me	NO2	Br	A-26		1	
B-99	cPenO	Me	NH2	Br	B-99	С		342 (M+1)
B-100	BnO	Me	NH2	Br	B-99			
B-101	1PhEtO	Me	NH2	Br	B-99			
B-102	50Me-2-IndanO	Me	NH2	Br	B-99			
B-103	BnO	Me	NHTFA	Br	B-103			
B-104	cPen0	Ме	NHTFA	Br	B-103	С		438 (M+1)
B-105	BnO	Me	NHMe	Br	B-105			
B-106	cPen0	Me	NHMe	Br	B-105	С		356 (M+1)
B-107	1PhEtO	Ме	NHMe	Br	B-105			
B-108	1(4FPh)EtO	Me	NHMe	Br	B-105			
B-109	BnO	Ме	NMe2	Br	B-109			
B-110	cPenO	Me	NMe2	Br	B-109	С		370 (M*+1)
B-111	1PhEtO	Me	NMe2	Br	B-109			
B-112	1(4FPh)EtO	Me	NMe2	Br	B-109			
B-113	cPen0	Ме	OH	Br	B-113	С		343 (M*+1)
B-114	cPen0	Me	OCOM _e	Br	B-114			
B-115	1(4FPh)EtO	Me	OH	Br	B-113			
B-116	1(4FPh)EtO	Me	OCOMe	Br	B-114			
B-117	cPenMeO	Me	Br	. Br	B-117			
B-118	cPenO	Me	Br	Br	B-117	Α	5.98	N,D
B-119	1(4FPh)EtO	Me	Br	Br	B-117			

[Example C-1]

 ${\bf Synthesis~of~3\cdot bromo\cdot 4\cdot cyclohexylmethyloxybenzaldehyde~(Intermediate~25)}$ 

According to the procedure described in the synthesis method of Compound

No. A-2 provided that the purification was performed by flash column chromatography (hexane: isopropyl ether = 5:1), 3-bromo·4-hydroxybenzaldehyde (17.4 g), potassium carbonate (23.9 g) and bromomethylcyclohexane (36.2 ml) were reacted and treated to obtain the title compound (Intermediate 25, 18.7 g).

Synthesis of 4-cyclohexylmethyloxy·3-(naphthalen·2-yl)benzaldehyde (Compound No. C-1)

A solution of 2-naphthaleneboronic acid (535 mg) in methanol (5.0 ml), Intermediate 25 (1.16 g), and 2 M aqueous sodium carbonate (0.9 ml) were added with toluene (10.0 ml) and tetrakistriphenylphosphinepalladium(0) [hereinafter abbreviated as "(PhaP)4Pd"] (116 mg, Nakarai Tecs), and stirred at 80°C for 17 hours. The reaction mixture was added with ethyl acetate (100 ml), and washed successively with saturated aqueous sodium hydrogenearbonate, saturated aqueous ammonium chloride and saturated brine. The organic layer was dried, and then the solvent was evaporated under reduced pressure. The residue was purified by flash column chromatography (hexane-ethyl acetate = 10:1) to obtain the title compound (Compound No. C-1, 345 mg).

[Example D-10]

Synthesis of 3-bromo-4-hydroxy-5-nitrobenzaldehyde (Intermediate 26)

A solution of 3-bromo-4-hydroxybenzaldehyde (6.30 g) in acetic acid (45 ml) was added dropwise with 70% nitric acid (5.85 ml) on a water bath, then added with sodium nitrite (62 mg), and further stirred for 2 hours. The reaction mixture was poured into ice water (300 ml), and precipitates were taken by filtration, and washed with water (50ml x 3). The precipitates were dried under reduced pressure for 24 hours to obtain the title compound (Intermediate 26, 5.88 g).

Synthesis of 3-bromo-4-cyclohexylmethyloxy-5-nitrobenzaldehyde (Intermediate 27)

According to the procedure described in the synthesis method of Compound No. A·2 provided that the purification was performed by flash column

chromatography (hexane:ethyl acetate = 7:1), Intermediate 26 (5.5 g), potassium carbonate (3.94 g) and bromomethylcyclohexane (3.94 m) were reacted and treated to obtain the title compound (Intermediate 27, 5.2 g).

 $Synthesis of 4-cyclohexylmethyloxy-3-(naphthalen-2-yl)-5-nitrobenzaldehyde \\ (Compound No. D-10)$ 

According to the procedure described in the synthesis method of Compound No. C·1 with the modifications that the reaction was carried out for 15 hours at 80°C, and the purification was performed by column chromatography (Quad, hexane:ethyl acetate = 7:1), Intermediate 27 (2.65 g), 2-naphthaleneboronic acid (3.01 g), 2 M aqueous sodium carbonate (7.5 ml) and (PhsP)₄Pd (960 mg) were reacted and treated to obtain the title compound (Compound No. D·10, 2.96 g).

[Examples C·1 to C·8]

Typical examples of the compounds of the present invention that can be obtained by reacting and treating corresponding starting compounds using any of the methods described in the present specification including the examples described above are shown in Table C-1.

Exp Rx'0 Zx' AR' Syn Positio Mass C-1 C-1 cHexMeO 2-Nap cHexMeO Н 1-Nap C-1 cHexMeO Н 20Me-6-Nap C-1 c 374(M⁺) 4 cHexMeO 4 Н 5-Ind 5 C-1 _ 4 Н 2-Nap 5 C-1 cPenMeO -4 Н 5 C-1 cPenMeO -5-Ind C-7 cPenO 4 Н 2-Nap 5 C-1 C 316(M*) 4 Н 5-Ind 5 C-1 С C-8 cPenO 305(M*

[Examples D-1 to D-29]

Table-C-1

Typical examples of the compounds of the present invention that can be obtained by reacting and treating corresponding starting compounds using any of the methods described in the present specification including the examples described above are shown in Table D-1.

		Rx'—O	ZX'										
		4	X-1-)	>-сно									
	AR												
Table-	D-1	AIN	3 2										
Ехр.	Rx'O	Rx'O	Zx'	Zx'	AR'	AR'	Syn		LCM				
Exp.	RX U	Position	Z.X	Position		Position		method	RTime	Mass			
D-1	cHexMeO	4	H	_	2-BT	3	C-1	C		350 (M [†] )			
D-2	oHexMeO	4	Н	-	2-BF	3	C-1						
D-3	cHexMeO	4	Н	-	1Me-5-Ind	3	C-1	С		316(M ⁺ )			
D-4	cHexMeO	4	Н	-	5-1Hldz	3	C-1						
D-5	cHexMeO	4	Н		1Me-5-1HIdz	3	C-1						
D-6	2(2FPh)EtO	4	Н	-	2-Nap	3	C-1						
D-7	2(2FPh)EtO	4	Н	_	5-Ind	3	C-1						
D-8	2-IndanO	4	Н		5-Ind	. 3	C-1						
D-9	2-IndanO	4	Н		5-1HIdz	3	<del>-</del>						
D-10	cPenMeO	4	NO2	5	2-Nap	3	D-10	C		330 (M+1)			
D-11	cPenMeO	4	NO2	5	5-Ind	. 3	D-10						
D-12	cHexMeO	4	NO2	5	2-Nap	3	D-10						
D-13	cHexMeO	4	NO2	5	2-BF	3	D-10						
D-14	cPen0	4	NO2	- 5	2-Nap	3	D-10						
D-15	cPenO ·	4	NO2	5	5-Ind	3	D-10	C		350(M ⁺ )			
D-16	2(2FPh)EtO	4	NO2	5	2-Nap	3	D-10						
D-17	2(2FPh)EtO	4	NO2	5	5-Ind	3	D-10						
D-18	2-IndanO	4	NO2	5	5-Ind	3	D-10						
D-19	2-IndanO	4	NO2	5	1Me-5-1Hldz	3	D-10	Α	3.85	414 (M+1)			
D-20	cPenO	2	Н	-	2-Nap	5	C-1	C		316(M ⁺ )			
D-21	cPen0	2	Н	-	5-Ind	5	C-1	С		305(M ⁺ )			
D-22	cPen0	3	Н	-	2-Nap	5	C-1						
D-23	cPenO	3	Н	-	5-Ind	5	C-1						
D-24	cPenO	5	Ĥ		2-Nap	2	0-1						
D-25	cPenO	5	Н	-	5-Ind	2	C-1						
D-26	cPen0	4	Н	-	2-Nap	2	C-1						
D-27	cPenO	4	Н	-	5-Ind	2	C-1						
D-28	cPenO	3	Н	-	2-Nap	2	C-1						
D-29	cPen0	3	Н	-	5-Ind	2	C-1						

[Example E-1]
Synthesis of 5-bromo-2-cyclopentylmethyloxypyridine (Intermediate 28)

A solution of potassium t-butoxide (550.6 mg, WAKO) in dehydrated THF (10 ml) was added with cyclopentane methanol (450  $\mu$  l), and then added with a solution of 2.5-dibromopyridine (982.8 mg, TCI) in dehydrated THF (15 ml) under

ice cooling. The reaction mixture was stirred for 30 minutes, then warmed to room temperature, and stirred for 11 hours. The reaction mixture was added with water (100 ml) and ethyl acetate (60 ml) for extraction. The organic layer was washed successively with saturated aqueous sodium hydrogenearbonate and saturated brine sequentially, and dried, and then the solvent was evaporated under reduced pressure. The residue was purified by column chromatography (Quad, hexane:ethyl acetate = 15:1) to obtain the title compound (Intermediate 28, 896 mg). Synthesis of 2 cyclopentylmethyloxypyridine 5 carbaldehyde (Intermediate 29)

A solution of Intermediate 28 (895 mg) in anhydrous THF (10 ml) was added dropwise with a 1.6 M solution of n-butyllithium in hexane (2.70 ml, Ald) over 5 minutes with cooling at ~78°C under argon gas atmosphere, and stirred for 20 minutes. This reaction mixture was added with dehydrated DMF (330  $\mu$ 1, WAKO) over 3 minutes, stirred for 30 minutes, then warmed to room temperature, and further stirred for 1 hour. The reaction mixture was added with water (10 ml), and extracted with ethyl acetate (30ml x 3). The organic layer was washed with saturated brine and dried, and then the solvent was evaporated under reduced pressure. The residue was purified by column chromatography (Quad, hexane-ethyl acetate = 10:1) to obtain the title compound (Intermediate 29, 1.04 g). Synthesis of ethyl 3-(2-cyclopentylmethyloxypyridin-5-yl)acrylate (Intermediate 30)

According to the procedure described in the synthesis method of Intermediate 7 with the modification that the reaction was carried out for 1 hour, Intermediate 29 (450 mg), ethyl diethylphosphonoacetate (530  $\mu$ 1) and 60% sodium hydride (120 mg) were reacted and treated to obtain the title compound (Intermediate 30, 394 mg). Synthesis of ethyl 3-(2-cyclopentylmethyloxypyridine-5-yl)propionate (Intermediate

According to the procedure described in the synthesis method of

31)

Intermediate 8 with the modifications that the reaction was carried out for 1 hour, and the purification was performed by column chromatography (Quad, hexane:ethyl acetate = 15:1), Intermediate 30 (392 mg) and 10% palladium/carbon (30 mg) were reacted and treated to obtain the title compound (Intermediate 31, 246 mg).

Synthesis of ethyl 3-(3-bromo-2-cyclopentylmethyloxypyridin-5-yl)propionate (Compound No. E-1)

A solution of Intermediate 31 (5.20 g) in acetonitrile (50 ml) was warmed to 35°C, added dropwise with bromine (1.1 ml, WAKO), then added with NBS (3.72 g), and stirred at room temperature for 2 hours. The reaction mixture was concentrated under reduced pressure, then added with ethyl acetate (200 ml), and washed successively with saturated aqueous ammonium chloride, 5% aqueous sodium sulfite, saturated aqueous sodium hydrogencarbonate and saturated brine. The organic layer was dried, and then the solvent was evaporated under reduced pressure. The residue was purified by column chromatography (Quad, hexane:ethyl acetate = 10:1) to obtain the title compound (Compound No. E·1, 6.51 g).

[Example E-7]

Synthesis of 2-benzyloxy-5-bromopyridine (Intermediate 32)

According to the procedure described in the synthesis method of Intermediate 28 provided that the reaction was carried out for 1 hour, potassium to butoxide (3.13 g), benzyl alcohol (3.10 ml) and 2,5 dibromopyridine (4.79 g) were reacted and treated to obtain the title compound (Intermediate 32, 5.36 g). Synthesis of 2-benzyloxypyridine-5-carbaldehyde (Intermediate 33)

According to the procedure described in the synthesis method of Intermediate 29, Intermediate 32 (5.10 g), a 1.6M solution of n butyllithium in hexane (15.5 ml) and dehydrated DMF (1.9 ml) were reacted and treated to obtain the title compound (Intermediate 33, 2.75 g).

Synthesis of ethyl 3-(2-benzyloxypyridin-5-yl)acrylate (Intermediate 34)

According to the procedure described in the synthesis method of Intermediate 7, Intermediate 33 (2.74 g), ethyl diethylphosphonoacetate (3.12 ml) and 60% sodium hydride (635 mg) were reacted and treated to obtain the title compound (Intermediate 34, 2.12 g).

Synthesis of ethyl 3-(2-hydroxypyridin-5-yl)propionate (Intermediate 35)

According to the procedure described in the synthesis method of Intermediate 8 provided that the reaction was carried out for 2.5 hours, Intermediate 54 (2.12 g) and 10% palladium/carbon (120 mg) were reacted and treated to obtain the title compound (Intermediate 35, 1.26 g).

Synthesis of ethyl 3-(3-bromo-2-hydroxypyridin-5-yl)propionate (Intermediate 36)

According to the procedure described in the synthesis method of Compound No. E·1 with the modifications that the reaction was carried out for 2.5 hours, and the purification was performed by column chromatography (Quad, hexane ethyl accetate = 1:2), Intermediate 35 (1.23 g), bromine (340 \(mu\)1) and NBS (1.19 g) were reacted and treated to obtain the title compound (Compound No. 36, 1.42 g).

Synthesis of ethyl 3·[5-bromo·6·[(S)·1-phenylethyloxylpyridin·3-yllpropionate (Compound No. E·7)

According to the procedure described in the synthesis method of Compound No. A·6 with the modifications that the reaction was carried out for 11 hours, and the purification was performed by column chromatography (Quad, hexane-ethyl acetate = 4:1), Intermediate 36 (137 mg), Ph₃P (273 mg), (R)·1-phenylethanol (150  $\mu$  I, TCI) and 40% DIAD (400  $\mu$  I) were reacted and treated to obtain the title compound (Compound No. E·7, 167 mg).

[Example E-13]

Synthesis of ethyl 3·(5·bromo·6·(4-trifluoromethylbenzyloxy)pyridin·3·yl)propionate (Compound No. E·13)

A solution of Intermediate 36 (71.5 mg) in chloroform (7 ml) was added with 4-trifluoromethylbenzyl bromide (109.2 mg, TCI) and silver carbonate (120 mg, WAKO), and stirred at room temperature for 11 hours under light shielding. The reaction mixture was filtered, and the solvent was evaporated under reduced pressure. The residue was purified by column chromatography (Quad, hexane:ethyl acetate = 6:1) to obtain the title compound (Compound No. E-13, 114 mg).

## [Example E-1 to 16]

Typical examples of the compounds of the present invention that can be obtained by reacting and treating corresponding starting compounds using any of the methods described in the present specification including the examples described above are shown in Table-E-1.

	Rx-O-V-O-Y											
Table-		<u>G</u>				LCM	8					
Exp.	Rx'O	Y'	Ġ	Syn	method		Mass					
E-1	cPenMeO	Et	Br	E-1	Α	5.98	356(M ⁺ )					
E-2	cHexMeO	Et	Br	E-1								
E-3	iBuO	Et	Br	E-1	Α	5.57	N.D					
E-4	2EtBuO	Et	Br	E-1								
E-5	cPenO	Et	Br	E-1	A	5.62	342 (M ⁺ )					
E-6	cHexO	Et	Br	E-1								
E-7	(R)1PhEtO	Et	Br	E-7	Α	5.60	N.D					
E-8	2(4DMAPh)EtO	Et	Br	E-7								
E-9	2(2FPh)EtO	Et	Br	E-7								
E-10	2(3FPh)EtO	Et	Br	E-7								
E-11	2(4CIPh)EtO	Et	Br	E-7								
E-12	2(PhO)EtO	Et	Br	E-7								
E-13	4CF ₃ BnO	Et	Br	E-13	Α	5.78	432 (M ⁺ )					
E-14	2MeBnO	Et	Br	E-13								
E-15	2ClBnO	Et	Br	E-13								
E-16	1(4FPh)EtO	Et	Br	E-7								

[Example F-1]
Synthesis of 4-(3-bromo-4-methoxyphenyl)butyric acid (Intermediate 37)

According to the procedure described in the synthesis method of Compound No. A·1 provided that the reaction was carried out under ice cooling for 30 minutes and for 20 hours at room temperature, 4-(4-methoxyphenyl)butyric acid (11.64 g, Ald) and NBS (11.21 g) were reacted and treated to obtain the title compound (Intermediate 37, 16.30 g).

Synthesis of methyl 4-(3-bromo-4-hydroxyphenyl)butyrate (Intermediate 38)

According to the procedure described in the synthesis method of Intermediate 4, Intermediate 37 (12.51 g) and a 1 M solution of boron tribromide in methylene chloride (100 ml) were reacted and treated, and the obtained residue was reacted with thionyl chloride (8.4 ml) in methanol and treated according to the procedure described in the synthesis method of Intermediate 1 to obtain the title compound (Intermediate 38, 10.48 g).

Synthesis of methyl 4-(3-bromo-4-cyclopentylmethyloxyphenyl)butyrate (Compound No. F-1)

According to the procedure described in the synthesis method of Compound No. A-6 provided that the purification was performed by column chromatography (Quad, hexane:isopropyl alcohol = 10:1), Intermediate 38 (2.72 g), Ph₃P (7.86 g), cyclopentane methanol (3.24 ml) and 40% DIAD (14.2 ml) were reacted and treated to obtain the title compound (Compound No. F-1, 3.33 g).

[Examples F-1 to F-4]

Typical examples of the compounds of the present invention that can be obtained by reacting and treating corresponding starting compounds using any of the methods described in the present specification including the examples described above are shown in Table F-1.

	Zx Rx ⁻ O- CH₂)₁COOY'											
Table-F	Table-F-1 G											
Exp.	Rx'O	γ.	Zx'	_	Gn	n Syn	LCMS					
Exp.	RX U	T	L ZX	G			method	RTime	Mass			
F-1	cPenMeO	Me	Н	Br	3	F-1	С		354(M*)			
F-2	cPenO	Me	Н	Br	3	F-1						
F-3	cHexO	Me H Br 3 F-1 C 354(M ⁺ )										
F-4	1(4FPh)EtO	Me	Н	Br	3	F-1						

[Example G-1]
Synthesis of methyl 3-[4-methoxy-3-(naphthalen-2-yl)phenyl]propionate
(Intermediate 39)

According to the procedure described in the synthesis method of Compound No. C-1 with the modifications that the reaction was carried out for 2 hours, and the purification was performed by flash column chromatography (hexane:isopropyl ether = 8:1), Intermediate 20 (460 mg), 2-naphthaleneboronic acid (886 mg), 2 M aqueous sodium carbonate (1.6 ml) and (PhsP)4Pd (298 mg) were reacted and treated to obtain the title compound (Intermediate 39, 580 mg).

Synthesis of 3-[4-methoxy-3-(naphthalen-2-yl)phenyl]propionic acid (Intermediate 40)

According to the procedure described in the synthesis method of Intermediate 9 provided that the reaction was carried out for 2 hours, Intermediate 39 (773 mg) and 2 N aqueous sodium hydroxide (2.3 ml) were reacted and treated to obtain the title compound (Intermediate 40, 674 mg).

Synthesis of methyl 3-[4-hydroxy-3-(naphthalen-2-yl)phenyl]propionate (Intermediate 41)

According to the procedure described in the synthesis method of Intermediate 10, pyridine (5 ml), concentrated hydrochloric acid (5 ml), and Intermediate 40 (551 mg) were reacted and treated to obtain crude powder

substance. This substance was reacted with thionyl chloride (282 µ l) in methanol and treated according to the procedure described in the synthesis method of Intermediate 1 to obtain the title compound (Intermediate 41, 531 mg).

Synthesis of methyl 3-[4-cyclopentyloxy-3-(naphthalen-2-yl)phenyl]propionate (Compound No. G-1)

According to the procedure described in the synthesis method of Compound No. A-6 with the modifications that the reaction was carried out for 15 hours, and the purification was performed by flash column chromatography (hexane:isopropyl ether = 6:1), Intermediate 41 (100 mg), PhaP (262 mg), cyclopentanol (91  $\mu$ l, TCI) and 40% DIAD (473  $\mu$ l) were reacted and treated to obtain the title compound (Compound No. G-1, 120 mg).

[Example G-2]

Synthesis of 3·[4·cyclopentyloxy-3·(naphthalen-2·yl)phenyl]propionic acid (Compound No. G-2)

According to the procedure described in the synthesis method of Intermediate 9 provided that the reaction was carried out for 4 hours, Compound No. G-1 (115 mg), and 2 N aqueous sodium hydroxide (0.75 ml) were reacted and treated to obtain the title compound (Compound No. G-2, 108 mg).

[Example G-3]

 $Synthesis of methyl 3-[4-cyclopentyloxy\cdot3-(1H-indol\cdot5-yl)] phenyl [propionate (Compound No. G-3)]$ 

According to the procedure described in the synthesis method of Compound No. C·1 with the modifications that the reaction was carried out for 3 hours, and the purification was performed by flash column chromatography (hexane:ethyl acetate = 4:1), Compound No. A·5 (833 mg), 5·indoleboronic acid (657 mg), 2 M aqueous sodium carbonate (2.4 ml) and (PhsP) Pd (233 mg) were reacted and treated to obtain the title compound (Compound No. G·3, 900 mg).

[Example G-4]

Synthesis of 3-[4-cyclopentyloxy-3-(1H-indole-5-yl)phenyl]propionic acid (Compound No. G-4)

According to the procedure described in the synthesis method of Intermediate 9 provided that the reaction was carried out for 2 hours, Compound No. G-3 (144 mg) and 2 N aqueous sodium hydroxide (420 µl) were reacted and treated to obtain the title compound (Compound No. G-4, 127 mg).

[Example G-9]

Synthesis of methyl 3-[4-benzyloxy-5-(1-methyl-1H-indazol-5-yl)phenyl]propionate (Compound No. G-9)

According to the procedure described in the synthesis method of Compound No. C·1 with the modifications that the reaction was carried out at 80°C for 6 hours, and the purification was performed by column chromatography (Quad, hexane-ethyl acetate = 4:1), Compound No. A·8 (349 mg), 1·methyl·1H·indazole·5·boronic acid (283 mg), 2 M aqueous sodium carbonate (0.9 ml) and (PhaP)4Pd (94.3 mg) were reacted and treated to obtain the title compound (Compound No. G·9, 370 mg).

[Example G-10]

Synthesis of 3·[4·benzyloxy-5·[1·methyl·1H·indazol·5·yl)phenyl]propionic acid

Synthesis of 3·[4-benzyloxy-5-(1-methyl-1H-indazol-5-yl)phenyllpropionic acid (Compound No. G-10)

According to the procedure described in the synthesis method of Intermediate 9 provided that the reaction was carried out for 4 hours, Compound No. G-9 (80 mg) and 2 N aqueous sodium hydroxide (0.20 ml) were reacted and treated to obtain the title compound (Compound No. G-10, 71 mg).

Synthesis of methyl 3-[4-hydroxy-5-(1-methyl-1H-indazol-5-yl)phenyl]propionate (Intermediate 42)

A solution of Compound No. G·9 (314 mg) in a mixture of ethyl acetate (3 ml) and methanol (3 ml) was added with 10% palladium/carbon (12 mg), and stirred

at room temperature for 16 hours under hydrogen atmosphere. The reaction mixture was filtered, and the solvent of the filtrate was evaporated under reduced pressure to obtain the title compound (Intermediate 48, 288 mg).

[Example G-23]

Synthesis of methyl 3·(3·bromo·4·t·butyldimethylsilyloxyphenyl)propionate (Intermediate 43)

According to the procedure described in the synthesis method of Intermediate 16 provided that the reaction was carried out for 16 hours, Intermediate 5 (5.18 g), imidazole (2.04 g) and t-butyldimethylsilyl chloride (4.52 g) were reacted and treated to obtain the title compound (Intermediate 43, 8.42 g). Synthesis of methyl 3-l4-(t-butyldimethylsilyloxy-3-(1H-indol-5-v))phenylpropionate (Intermediate 44)

According to the procedure described in the synthesis method of Compound No. C-1 with the modifications that reaction was performed for 12.5 hours, and the purification was performed by flash column chromatography (hexane:ethyl acetate = 9:1), 5-indolebronic acid (4.83 g), Intermediate 34 (7.46 g), 2 M aqueous sodium carbonate (18 ml) and (Ph₃P)₄Pd (1.62 g) were reacted and treated to obtain the title compound (Intermediate 44, 5.04 g).

Synthesis of methyl 3-[4-hydroxy-3-(1H-indol-5-yl)phenyllpropionate (Intermediate 45)

According to the procedure described in the synthesis method of Intermediate 19 with the modifications that the reaction was carried out for 2 hours, and the purification was performed by column chromatography (Quad, hexane:ethyl acetate = 3:1), Intermediate 35 (5.04 g), acetic acid (2.8 ml) and a 1 M solution of tetrabutylammonium fluoride in THF (49 ml, TCI) were reacted and treated to obtain the title compound (Intermediate 45, 3.13 g).

Synthesis of methyl 3:[3:(1H:indol·5:yl)-4:(4-methylphenylmethyloxy)phenyl]

propionate (Compound No. G-23)

According to the procedure described in the synthesis method of Compound No. A·2 with the modifications that the reaction was carried out for 15 hours, and the purification was performed by column chromatography (Quad, hexane-ethyl acetate = 5:1), Intermediate 45 (80 mg), potassium carbonate (114 mg) and 4· methylbenzyl bromide (54  $\mu$ l, TCI) were reacted and treated to obtain the title compound (Compound No. G-23, 104 mg).

[Example G-24]

Synthesis of 3-[3-(1H-indol-5-yl)-4-(4-methylphenylmethyloxy)phenyllpropionic acid (Compound No. G-24)

According to the procedure described in the synthesis method of Intermediate 9 provided that the reaction was carried out for 3 hours, Compound No. G-23 (99 mg) and 2 N aqueous sodium hydroxide (500  $\mu$  l) were reacted and treated to obtain the title compound (Compound No. G-24, 84 mg).

[Example G-106]

Synthesis of N·[2-(t-butyldiphenylsilyloxy)ethyl]aniline (Intermediate 46)

A solution of 2 anilinoethanol (5.82 g, TCI) in anhydrous DMF (50 ml) was added with imidazole (3.23 g, TCI), added dropwise with a solution of thutyldiphenylsilyl chloride (12.48 g, TCI) in DMF (50 ml) under ice cooling, stirred for 30 minutes, then warmed to room temperature, and further stirred for 3.5 hours. The reaction mixture was added with water (100 ml), and extracted with ethyl acetate (100 ml). The organic layer was washed successively with water and saturated brine, and dried, and then the solvent was evaporated under reduced pressure. The residue was purified by flash column chromatography (hexane:ethyl acetate = 9:1) to obtain the title compound (Intermediate 46, 15.61 g).

Synthesis of N-benzyl-N-[2-(t-butyldiphenylsilyloxy)ethyllaniline (Intermediate 47)

According to the procedure described in the synthesis method of Compound

No. A·2 with the modifications that the reaction was carried out for 15 hours, and the purification was performed by column chromatography (Quad, hexane:ethyl acetate = 5:1), Intermediate 46 (15.60 g), potassium carbonate (8.91 g) and benzyl bromide (6.05 ml, TCI) were reacted and treated to obtain the title compound (Intermediate 47, 19.23 g).

Synthesis of 2-(N-benzyl-N-phenylamino)ethanol (Intermediate 48)

According to the procedure described in the synthesis method of Intermediate 9 with the modifications that the reaction was carried out for 1 hour, and the purification was performed by flash column chromatography (hexane ethyl acetate = 5:1), Intermediate 47 (19.22 g) and a 1 M solution of tetrabutylammonium fluoride in THF (86 ml) were reacted and treated to obtain the title compound (Intermediate 48, 9.06 g).

Synthesis of methyl 3-{4-[2-(N-benzyl-N-phenylamino)ethyloxyl-3-(naphthalen-2yl)phenyllpropionate (Compound No. G-106)

According to the procedure described in the synthesis method of Compound No. A 6 with the modifications that the reaction was carried out for 15 hours, and the purification was performed by column chromatography (Quad, hexane ethyl acetate = 7:1), Intermediate 41 (1.26 g), PhaP (1.34 g), Intermediate 48 (1.01 g) and DBAB (1.18 g) instead of 40% DIAD were reacted and treated to obtain the title compound (Compound No. G-106, 1.39 g).

[Example G·107]

Synthesis of methyl 3-{3-(naphthalen-2-yl)-4-{2-(Nphenylamino)ethyloxy|phenyl}propionate (Compound No. G-107)

A solution of Compound No. G-106 (1.39 g) in a mixture of THF (10 ml) and methanol (20 ml) was added with concentrated hydrochloric acid (75 µl, WAKO) and 10% palladium/carbon (142 mg), and stirred at room temperature for 3 hours under hydrogen gas atmosphere. The reaction mixture was filtered, and the

solvent of the filtrate was evaporated under reduced pressure to obtain the title compound (Compound No. G-107, 842 mg).

[Example G-108]

Synthesis of 3-f3-(naphthalen-2-yl)-4-[2-(phenylamino)ethyloxy]phenyllpropionic acid (Compound No. G-108)

According to the procedure described in the synthesis method of Intermediate 9 provided that the reaction was carried out for 2 hours, Compound No. G-107 (46 mg) and 2 N aqueous sodium hydroxide (0.25 ml) were reacted and treated to obtain the title compound (Compound No. G-108, 41 mg).

[Examples G-1 to G-121]

Typical examples of the compounds of the present invention that can be obtained by reacting and treating corresponding starting compounds using any of the methods described in the present specification including the examples described above are shown in Table-G-1 to Table-G-4.

Table-0	3-1	AF	ŧ .					
Exp.	RxO	Υ	Zx	AR	Syn		LCMS	
EXP.	RXO	'		AN	Syli	method	RTime	Mass
G-1	cPenMeO	Me	Н	2-Nap	G-1	С		388(M ⁺ )
G-2	cPenMeO	Н	Н	2-Nap	G-2	С		375 (M+1)
G-3	cPenMeO	Me	Н	5-Ind	G-3			
G-4	cPenMeO	Н	Н	5-Ind	G-4	С		363 (M ⁺ )
G-5	cPenMeO	Me	Н	1Me-5-Ind	G-3			
G-6	cPenMeO	Н	Н	1Me-5-Ind	G-4	Α		391 (M+1)
G-7	oPenMeO	Me	Η.	5-1HIdz	G-3			
G-8	cPenMeO	Н	Н	5-1HIdz	G-4			
G-9	BnO	Me	Н	1Me-5-1HIdz	G-9			
G-10	BnO	Н	H	1Me-5-1HIdz	G-10			
G-11	oPenMeO	Me	Н	1Me-5-1HIdz	G-3			
G-12	cPenMeO	Н	H	1Me=5-1HIdz	G-4			
G-13	2EtBuO	н	Н	2-Nap	G-1,G-2	Α		377 (M°+1)
G-14	2EtBuO	Н	Н	5-Ind	G-3,G-4			
G-15	4Me,cHexO	Н	Н	2-Nap	G-1,G-2			
G-16	4Me,cHexO	Н	Н	5-Ind	G-3,G-4	D	5.46	378 (M+1)
G-17	Ą	Н	Н	2-Nap	G-1,G-2			
G-18	ħ,	Н	н	5-Ind	G-3,G-4			
G-19	cHepO	Н	Н	5-Ind	G-3,G-4			
G-20	3PhPrO	Н	Н	2-Nap	G-1,G-2			
G-21	4PhBuO	Н	Н	5-Ind	G-3,G-4			
G-22	3	н	н	2-Nap	G-1,G-2	D	5.40	414 (M*+1)
G-23	4MeBn0	Me	H	5-Ind	G-23			
G-24	4MeBnO	Н	Н	5-Ind	G-24			
G-25	2(4MePh)EtO	Н	Н	2-Nap	G-1,G-2			
G-26	2(4MePh)EtO	Н	Н	5-Ind	G-1,G-2			
G-27	4ClBnO	Н	Н	2-Nap	G-23,G-24			
G-28	4CF ₃ BnO	H	Н	5-Ind	G-23,G-24			
G-29	3F,4(OMe)BnO	Н	H	2-Nap	G-1,G-2			
G-30	3F,4(OMe)BnO	H	Н	5-Ind	G-1,G-2			
G-31	\\`\\`	н	н	2-Nap	G-1,G-2			
G-32	_ملن_	н	н	5-Ind	G-1,G-2			
G-33	$\bigcirc \downarrow \uparrow \circ$	н	н	2-Nap	G-1,G-2			
G-34	Ç.,	н	н	5-Ind	G-1,G-2			
G-35	مان	н	н	2−Nap	G-1,G-2			
G-36	0	Н	Н	5-Ind	G-1,G-2			

Table-G-2 G-37 398 (M++1) 1IndanO Н н 5-Ind G-1.G-2 5.19 G-38 2IndanO Н 2-Nap G-1.G-2 G-39 2IndanO 5-Ind G-1,G-2 G-40 50Me-2-IndanO Н Н 2-Nap G-1.G-2 С 439(M+1) G-41 5.6D(OMe)-2-IndanO н н 5-Ind G-1.G-2 C 458(M*+1) G-1.G-2 G-42 5F-2-IndanO Н н 2-Nap 5F-2-IndanO G-1.G-2 c G-43 Н Н 5-Ind 416(M+1) a, G-1,G-2 G-44 Н 2-Nap G-45 н 5-Ind G-1.G-2 5.46 412 (M+1) G-46 Н Н 2-Nan G-1.G-2 G-47  $\alpha$ Н Н 5-1HInd G-1.G-2 G-48 2(2MePh)FtO н 2-Nan G-1.G-2 5-Ind 2(2MePh)EtO G-1,G-2 G-49 Н 2(3FPh)EtO 2-Nap G-1,G-2 G-50 Н G-1.G-2 G-51 2(2CIPh)EtO н 2-Nap G-52 2(3CIPh)EtO н 5-Ind G-1.G-2 2(2CF₃Ph)EtO н 5-Ind G-1,G-2 G-53 4(CF₃Ph)EtO G-1,G-2 G-54 н н 2-Nap G-55 2(20MePh)EtO Н н 2-Nap G-1.G-2 С 427 (M+1) G-56 2(40MePh)EtO H 5-Ind G-1,G-2 2(1-NapEt)O 2-Nap G-1.G-2 G-57 Н Н G-58 2(2-Nap)EtO Н н 2-Nap G-1,G-2 5-Ind G-1.G-2 435 (M+) G-59 2(2-Nap)EtO Н 2(4CIPh)EtO 2-Nap G-1.G-2 G-60 Н Н G-61 Н 5-Ind G-1,G-2 D 5.11 430 (M+1) G-62 н 1Me-5-1HIdz G-1.G-2 2(PhS)EtO н 2-Nap G-1.G-2 Α 402 (M+1) G-63 G-64 2(PhS)EtO н Н 5-Ind G-1,G-2 G-1,G-2 5-Ind G-65 3PhPrO н G-66 2ClBnO н 2-Nap G-1,G-2 2BrBnO G-1.G-2 450 (M⁺) н н 5-Ind G-67 G-1,G-2 G-68 3.5DMeBnO Н 5-Ind G-69 4tBuBnO Н н 2-Nap G-1.G-2

2-Nap

5-Ind

5-Ind

2-Nap

5-Ind

2-Nap

5-Ind

G-1,G-2

G-1,G-2

G-1.G-2

G-1,G-2

G-1,G-2

G-1,G-2

G-1,G-2 A

448 (M+1)

G-70

G-71

G-72

G-73

G-74

G-75

G-76

2CF₃BnO

4CF₃BnO

4nBuBnO

35DCIBnO

2.3DClBnO

2PhBnO

4PhBnO

H H

H H

H H

Н

нін

н

H

Table-0	G-3						
G-77	0~\\\\	Н	н	2-Nap	G-1,G-2		
G-78		Н	Н	5~Ind	G-1,G-2		
G-79	Zhu o	Н	Н	2-Nap	G-1,G-2		
G-80	ZZ-	Н	Н	5-Ind	G-1,G-2		
G-81	□N~_0	Н	Н	2-Nap	G-1,G-2	С	386 (M ⁺ +1)
G-82	0.0	н	н	5-Ind	G-1,G-2		
G-83	× 0	Н	Н	2-Nap	G-1,G-2		
G-84	4	Н	Н	5-Ind	G-1,G-2		
G-85	-2h°	Н	Н	2-Nap	G-1,G-2		
G-86	-\$h°	Н	π	5-Ind	G-1,G-2		
G-87	<u>ئ</u> ير	Н	Н	2-Nap	G-1,G-2		
G-88	چېر بېري	н	Н	5-Ind	G-1,G-2		
G-89	Ç	н	H	2-Nap	G-1,G-2		
G-90	Ç,	н	Н	5-Ind	G-1,G-2		
G-91	/N_~0	Н	Н	2-Nap	G-1,G-2		
G-92	<b>N</b>	н	Н	5-Ind	G-1,G-2		
G-93	F ₃ C ₁ N ₀	Н	Н	2-Nap	G-1,G-2		
G-94	100	Н	Н	2-Nap	G-1,G-2	С	384 (M ⁺ +1)
G-95	100	н	н	5-Ind	G-1,G-2		
G-96	<b>₽</b> >~°	н	Н	2-Nap	G-1,G-2		 
G-97	W~°	Н	Н	5-Ind	G-1,G-2		

Tab	In=C-4	

G-98	W~o	н	н	2-Nap	G-1,G-2			
G-99	₩,	Н	Н	5-Ind	G-1,G-2			
G-100	∞,	Н	Н	2-Nap	G-1,G-2			
G-101	₩°	Н	Н	5-Ind	G-1,G-2	С		423 (M ⁺ +1)
G-102	₩ <del>~</del> ~	Н	Н	2-Nap	G-1,G-2			
G-103	W.	Н	Н	5-Ind	G-1,G-2			
G-104	Ja Co	Н	Н	2-Nap	G-1,G-2			
G-105	Na Co	Н	Н	5-Ind	G-1,G-2			
G-106	2(Ph,BnN)EtO	Me	Н	2-Nap	G-106			
G-107	2(PhNH)EtO	Me	Ι	2-Nap	G-107			
G-108	2(PhNH)EtO	H	н	2−Nap	G-108	C		412(M ⁺ +1)
G-109	2(PhNH)EtO	Me	Н	5-Ind	G-107			
G-110	2(PhNH)EtO	H	Н	5-Ind	G-108			
G-111	2(PhNH)EtO	Me	H	1Me-5-Ind	G-107			
G-112	2(PhNH)EtO	H_	н	1Me-5-Ind	G-108	С		415(M+1)
G-113	2(PhNH)EtO	Me	Н	5-1HIdz	G-107			
G-114	2(PhNH)EtO	H	H	5-1 HIdz	G-108			
G-115	2(PhNH)EtO	Me	Н	1Me-5-1HIdz	G-107	A	4.76	430(M ⁺ +1)
G-116	2(PhNH)EtO	Н	Н	1Me-5-1HIdz	G-108	C		416(M*+1)
G-117	iBuQ	Н	Н	1Me-5-Ind	G-1,G-2	С		352(M++1)
G-118	iBuO	Н	Н	1Me-5-1HIdz	G-1,G-2	О		353(M*+1)
G-119	PhO	Н	Н	1Me-5-1HIdz	G-3,G-4	Α	4.10	373(M*+1)
G-120	4CIPhO	Н	Н	1Me-5-1HIdz	G-3,G-4	Α	4.46	407(M*+1)
G-121	4MeOPhO	Н	Н	1Me-5-1HIdz	G-3,G-4	Α	4.12	403(M*+1)

## [Examples H-1 to H-32]

Typical examples of the compounds of the present invention that can be obtained by reacting and treating corresponding starting compounds using any of the methods described in the present specification are shown in Table H·1 and Table H·2.

Rx-O-O-Y

Table-H-1 LCMS RxO Zx AR Ехр. Syn method RTime Mass H-1 Me н 2-Nap G-1 H-2 н н 2-Nap G-2 H-3 Me 5-Ind G-1 С 375 (M+1) H-4 н н 5-Ind G-2 G-1 H-5 Me 1Me-5-Ind H-6 н н 1 Me-5-Ind G-2 H-7 Ме н 5-1HIdz G-1 5-1HIdz G-2 H-8 н H-9 Me 1Me-5-1HIdz G-1 н н 1Me-5-1HIdz G-2 С 454 (M+1) H-10 0-O-VCM 2-Nap G-1,G-2 H-11 н  $\sim$ 1Me-5-Ind H-12 н н G-1,G-2 С 452 (M+1) н 2-Nap G-1.G-2 H-13 Н 1Me-5-Ind H-14 н G-1.G-2 464 (M*+1) H-15 н н 2-Nap G-1.G-2 С H-16 н н 1Me-5-Ind G-1.G-2 H-17 н н 2-Nap G-1.G-2 С 450 (M*+1) н 1Me-5-Ind G-1,G-2 H-18 н

Table-I	<del>1</del> –2						
H-19	C. C.	Н	н	2-Nap	G-1,G-2		
H-20		Н	Н	1Me-5-Ind	G-1,G-2		
H-21	00	Н	н	2-Nap	G-1,G-2		
H-22	00	Н	Н	1Me-5-Ind	G-1,G-2	С	471 (M ⁺ +1)
H-23	46	Н	н	2-Nap	G-1,G-2		
H-24	46	Н	Н	1Me-5-Ind	G-1,G-2		
H-25	0,000	Н	Н	2-Nap	G-1,G-2		
H-26	٥٩٩٠٠	Н	Н	1Me-5-Ind	G-1,G-2		
H-27	\$P\$	Н	Н	2-Nap	G-1,G-2		
H-28	ATS-O	Н	н	1Me-5-Ind	G-1,G-2	С	460 (M ⁺ +1)
H-29	Ç.	Н	н	2-Nap	G-1,G-2		
H-30	250	Н	н	1Me-5-Ind	G-1,G-2		
H-31	Ocho	Н	Н	2-Nap	G-1,G-2	O	452 (M*+1)
H-32	00%	Н	н	1Me-5-Ind	G-1,G-2		

[Example J·1]

Synthesis of methyl 3-[4-cyclopentylmethyloxy-3-fluoro-5-(1H-indol-5yl)phenyllpropionate (Compound No. J·1)

According to the procedure described in the synthesis method of Compound No. C-1 with the modifications that the reaction was carried out for 13 hours, and the purification was performed by column chromatography (Quad, hexane:ethyl acetate = 10:1), Compound No. A-21 (154 mg), 5-indoleboronic acid (100 mg), 2 M aqueous sodium carbonate (1.5 ml) and (PhsP)4Pd (50 mg) were reacted and treated to obtain the title compound (Compound No. J-1, 125 mg).

[Example J-2]

Synthesis of 3-[4-cyclopentylmethyloxy-3-fluoro-5-(1H-indol-5-yl)phenyl]propionic acid (Compound No. J-2)

According to the procedure described in the synthesis method of Intermediate 9 provided that the reaction was carried out for 2 hours, Compound No. J-1 (124 mg) and 2 N aqueous sodium hydroxide (630  $\mu$ l) were reacted and treated to obtain the title compound (Compound No. J-2, 97 mg).

[Example J-3]

Synthesis of methyl 3-[3-chloro-4-cyclopentylmethyloxy-5-(1H-indol-5-yl)phenyllpropionate (Compound No. J-3)

According to the procedure described in the synthesis method of Compound No. C·1 with the modifications that the reaction was carried out for 13 hours, and the purification was performed by column chromatography (Quad, hexane:ethyl acetate = 10:1), Compound No. A·20 (151 mg), 5·indoleboronic acid (97 mg), 2 M aqueous sodium carbonate (1.5 ml) and (PhsP) Pd (46 mg) were reacted and treated to obtain the title compound (Compound No. J·3, 160 mg).

[Example J-4]

Synthesis of 3-[3-chloro-4-cyclopentylmethyloxy-5-(1H-indol-5-yl)phenyl]propionic acid (Compound No. J-4)

According to the procedure described in the synthesis method of Intermediate 9 provided that the reaction was carried out for 2 hours, Compound No. J-3 (135 mg) and 2 N aqueous sodium hydroxide (660  $\,\mu$  l) were reacted and treated to obtain the title compound (Compound No. J-4, 97 mg).

[Examples J-1 to J-92]

Typical examples of the compounds of the present invention that can be obtained by reacting and treating corresponding starting compounds using any of the methods described in the present specification including the examples described above are shown in Table J-1 to Table J-3

Rx-0 O-Y

T 11 1 4

Table-	J-1		AR					
Exp.	RxO	Υ	Zx	AR	Svn		LCM	S
Ехр.	RXU	_ T	ZX	AR	Syn	method	RTime	Mass
J-1	cPenMeO	Me	F	5-Ind	J-1	Α		396 (M+1)
J-2	cPenMeO	Н	F	5–Ind	J-2			
J-3	cPenMeO	Me	CI	5-Ind	J-3			
J-4	cPenMeO	н	CI	5-Ind	J-4	С		398 (M*+1)
J-5	cPenMeO	Me	F	2-Nap	J-1			
J-6	cPenMeO	Н	F	2-Nap	J-2			
J-7	cPenMeO	Me	F	1Me-5-Ind	J-1			
J-8	cPenMeO	Н	F	1Me-5-Ind	J-2			
J-9	cPenMeO	Me	F	5-1HIdz	J-1			
J-10	cPenMeO	н	F	5-1HIdz	J-2			
J-11	cPenMeO	Me	F	1Me-5-1HIdz	J-1			
J-12	cPenMeO	н	F	1Me-5-1HIdz	J-2	С		397 (M+1)
J-13	2EtBuO	Н	F	2-Nap	G-1,G-2			
J-14	2EtBuO	Н	F	5-Ind	G-1,G-2			
J-15	4Me,cHexO	н	F	2-Nap	G-1,G-2			
J-16	4Me,cHexO	Н	F	1Me-5-Ind	G-1,G-2			
J-17	\\psi_o	н	F	2-Nap	G-1,G-2			
J-18	\$°	Н	F	1Me-5-Ind	G-1,G-2	С		452 (M ⁺ +1)
J-19	сНерО	Н	F	2-Nap	G-1,G-2			
J-20	3PhPrO	H	F	1Me-5-Ind	G-1,G-2			
J-21	4PhBuO	Н	F	2-Nap	G-1,G-2			
J-22	- Q	н	F	1Me-5-Ind	G-1,G-2			
J-23	1(4MePh)EtO	Н	F	2-Nap	G-1,G-2			
J-24	4ClBnO	Н	F	1 Me-5-Ind	G-1,G-2			
J-25	4CF3BnO	Н	F	2-Nap	G-1,G-2			
J-26	3F,4(OMe)BnO	Н	F	1Me-5-Ind	G-1,G-2			
J-27	₩°	н	F	2-Nap	G-1,G-2	С		429 (M ⁺ +1)
J-28	010	н	F	1Me-5-Ind	G-1,G-2			
J-29	CÇ;°°	н	F	1Me-5-Ind	G-1,G-2			
J-30	Ç	н	F	2-Nap	G-1,G-2			
J-31	ماره	н	F	2-Nap	G-1,G-2			

Table-	J-2						
J-32	1-IndanO	Н	F	2-Nap	G-1.G-2		
J-33	2-IndaneO	Н	F	1Me-5-Ind	G-1,G-2		
J-34	2-IndaneO	Н	F	2-Nap	G-1,G-2	1	
J-35	50Me-2-IndanO	Н.	F	1Me-5-Ind	G-1,G-2		
J-36	5.6D(OMe)-2-IndanO	Н	F	2-Nap	G-1.G-2		
J-37	5F-2-IndanO	Н	F	2-Nap	G-1,G-2		
J-38	5F-2-IndanO	H	F	1Me-5-Ind	G-1,G-2		
J-39	α.	н	F	2-Nap	G-1,G-2	С	441 (M*+1)
J-40	ಯೆ	н	F	1Me-5-Ind	G-1,G-2		
J-41	2(3MePh)EtO	H	F	2-Nap	G-1,G-2		
J-42	2(4MePh)EtO	H	F	1Me-5-Ind	G-1,G-2		
J-43	2(2CIPh)EtO	Н	F	1Me-5-Ind	G-1,G-2		
J-44	2(3CIPh)EtO	H	F	2-Nap	G-1,G-2		
J-45	2(2CF ₃ Ph)EtO	Н	F	2-Nap	G-1,G-2		
J-46	2(20MePh)EtO	H	F	1Me-5-Ind	G-1,G-2		
J-47	2(40MePh)EtO	Н	F	2-Nap	G-1,G-2		
J-48	2(2-Nap)EtO	H	F	1Me-5-Ind	G-1,G-2		
J-49	ಯೊ	н	F	2-Nap	G-1,G-2	С	458 (M+1)
J-50	ಯೆಂ	н	F	1Me-5-1Hldz	G-1,G-2		
J-51	2(PhS)EtO	Н	F	1Me-5-Ind	G-1,G-2		
J-52	3PhPr0	Н	F	2-Nap	G-1,G-2		
J-53	2ClBn0	Н	F	1Me-5-Ind	G-1,G-2		
J-54	2BrBn0	Н	F	2-Nap	G-1,G-2		
J-55	3,5DMeBnO	Н	F	2-Nap	G-1,G-2		
J-56	4tBuBnO	Ξ	F	1Me-5-Ind	G-1,G-2	С	460 (M ⁺ +1)
J-57	2CF ₃ BnO	Н	F	1Me-5-Ind	G-1,G-2		
J-58	4CF ₃ BnO	Н	F	2-Nap	G-1,G-2		
J-59	4nBuOBnO	Н	F	2−Nap	G-1,G-2		
J-60	3,5DClBnO	Н	F	1Me-5-Ind	G-1,G-2		
J-61	2,3DClBnO	Н	F	2-Nap	G-1.G-2		
J-62	2-NapMeO	H	F	2−Nap	G-1,G-2	С	451 (M ⁺ +1)
J-63	1-NapMeO	Н	F	1Me-5-Ind	G-1,G-2		
J-64	2PhBnO	Н	F	1Me-5-Ind	G-1,G-2		
J-65	4PhBn0	Н	F	1Me-5-Ind	G-1,G-2		
J-66	50Me-2-IndanO	Н	F	2-Nap	G-1,G-2		
J-67	50Me=2=IndanO	Н	F	1Me-5-Ind	G-1,G-2		
J-68	5,6D(OMe)-2-IndanO	H	F	2-Nap	G-1,G-2		
J-69	5,6D(OMe)-2-IndanO	H	F	1Me-5-Ind	G-1,G-2		
J-70	5F-2-IndanO	H	F	2-Nap	G-1,G-2		
J-71	5F-2-IndanO	Н	F	1Me-5-Ind	G-1,G-2		l

Table-	.I-3						
J-72	0~C)	Н	F	1Me-5-Ind	G-1,G-2		
J-73	0,0	н	F	2−Nap	G-1,G-2	С	481 (M ⁺ +1)
J-74	-MN	Н	F	1Me-5-Ind	G-1,G-2		
J-75	ON-70	Н	F	2-Nap	G-1,G-2		
J-76	The same	н	F	1Me-5-Ind	G-1,G-2		
J-77	~w°	н	F	1Me=5-1HIdz	G-1,G-2	С	410 (M ⁺ +1)
J-78	3%	Н	F	1 Me-5-Ind	G-1,G-2		
J-79	03,	н	F	2-Nap	G-1,G-2		
J-80	700	н	F	1Me-5-Ind	G-1,G-2		
J-81	~X	н	F	2-Nap	G-1,G-2		
J-82	F ₃ C N O	Н	F	1Me-5-Ind	G-1,G-2		
J-83	100	н	F	1Me-5-Ind	G-1,G-2		
J-84	00°°	н	F	1Me-5-Ind	G-1,G-2		
J-85	N0	н	F	1 Me-5-Ind	G-1,G-2	С	419 (M*+1)
J-86	1000°	Н	F	1 Me-5-Ind	G-1,G-2		
J-87	0000	н	F	2-Nap	G-1,G-2		
J-88	₩°	н	F	1 Me-5-Ind	G-1,G-2		
J-89	K ^S ∕₀	н	F	2-Nap	G-1,G-2	С	436 (M ⁺ +1)
J-90	N.S.	н	F	1Me-5-Ind	G-1,G-2		

[Example K-11]

Synthesis of methyl 3-[3-bromo-4-cyclopentylmethyloxy-5-(naphthalen-2-

2-Nap

1Me-5-Ind

yl)phenyl]propionate (Compound No. K-11)

н

н

According to the procedure described in the synthesis method of Compound

G-1,G-2

G-1,G-2

No. C-1 with the modifications that the reaction was carried out for 15 hours, and the purification was performed by column chromatography (Quad, hexane-ethyl acetate = 9:1), Compound No. B-117 (306 mg), 2-naphthaleneboronic acid (163 mg), 2 M aqueous sodium carbonate (689  $\mu$ 1) and (Ph₃P)₄Pd (74.2 mg) were reacted and treated to obtain the title compound (Compound No. K-11, 261 mg).

Synthesis of 3-[3-bromo-4-cyclopentylmethyloxy-5-(1H-indol-5-yl)phenyl]propionic acid (Compound No. K-12)

According to the procedure described in the synthesis method of Intermediate 9 provided that the reaction was carried out for 2 hours, Compound No. K·11 (131 mg) and 2 N aqueous sodium hydroxide (400  $\mu$ l) were reacted and treated to obtain the title compound (Compound No. K·12, 109 mg).

[Example K-13]

Synthesis of methyl 3-[3-bromo-4-cyclopentylmethyloxy-5-(1H-indol-5-yl)phenyl]propionate (Compound No. K-13)

According to the procedure described in the synthesis method of Compound No. C·1 with the modifications that the reaction was carried out for 13 hours, and the purification was performed by column chromatography (Quad, hexane-ethyl acetate = 5:1), Compound No. B·117 (102 mg), 5 indoleboronic acid (97 mg), 2 M aqueous sodium carbonate (1.5 ml) and (PhsP)4Pd (46 mg) were reacted and treated to obtain the title compound (Compound No. K·13, 85 mg).

[Example K-14]

Synthesis of 3·[3·bromo·4-cyclopentylmethyloxy·5·(1H·indol·5·yl)phenyllpropionic acid (Compound No. K·14)

According to the procedure described in the synthesis method of Intermediate 9 provided that the reaction was carried out for 2 hours, Compound No. K-13 (85 mg) and 2 N aqueous sodium hydroxide (200  $\mu$  I) were reacted and treated to obtain the title compound (Compound No. K-14, 79 mg).

[Example K-17]

Synthesis of methyl 3-[3-bromo-4-cyclopentyloxy-5-(1-methyl-1H-indazol-5-yl)phenyl]propionate (Compound No. K-17)

According to the procedure described in the synthesis method of Compound No. C·1 with the modifications that the reaction was carried out for 14 hours at 80°C, and the purification was performed by column chromatography (Quad, hexane:ethyl acetate = 4:1), Compound No. B·118 (306 mg), 1·methyl·1H·indazole·5-boronic acid (175 mg), 2 M aqueous sodium carbonate (0.68 ml) and (Ph₃P)₄Pd (70.1 mg) were reacted and treated to obtain the title compound (Compound No. K·17, 148 mg).

[Examples K-1 to K-40]

Typical examples of the compounds of the present invention that can be obtained by reacting and treating corresponding starting compounds using any of the methods described in the present specification including the examples described above are shown in Table-K-1 and Table-K-2.

Rx-O OY

Table-I	K-1	A)	Ŕ	U				
Exp.	RxO	Υ	Zx	AR	Syn		LCM:	
Exp.		Ŀ		Ait	- Oyn	method	RTime	Mass
K-1		Ме	F	2-Nap	G-1			
K-2	ON NEW S	н	F	2-Nap	G-2			
K-3		Me	F	5Ind	G-1			
K-4	O'N'S	н	F	5-Ind	G-2	С		457(M*+1)
K-5	On S	Ме	F	1Me-5-Ind	G-1			
K-6	O No.	н	F	1Me-5-Ind	G-2	С		471(M ⁺ +1)
K-7	On S	Me	F	5-1Hldz	G-1			
K-8	000	н	F	5-1 Hldz	G-2			
K-9	Onco	Me	F	1Me-5-1Hldz	G-1			
K-10	010	н	F	1Me-5-1Hldz				
K-11	cPenMeO	Me	Br	2-Nap	K-11			
K-12	cPenMeO	H	Br	2-Nap	K-12			
K-13	cPenMeO	Me	_Br	2-Nap	K-13			
K-14	cPenMeO	н	Br	5-Ind	Int50,K~13	С		456(M ⁺ )
K-15	cPenO	Ŧ	Br	2−Nap	K-11,K-12			
K-16	cPenO	Н	Br	1Me-5-Ind				
K-17	cPenO	Me	Br	1Me-5-1HIdz	K-11,K-12			
K-18	cPenO	н	Br	1Me-5-1HIdz	K-11,K-12	A	4.78	443(M ⁺ )
K-19	$\sim$	н	F	2-Nap	G-1,G-2			
K-20	\$\b\cdot_\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	н	F	1Me-5-Ind	G-1,G-2			
K-21	800	н	F	2-Nap	G-1,G-2			
K-22	800	н	F	1Me-5-Ind	G-1,G-2			
K-23	のま	н	F	2-Nap	G-1,G-2			
K-24	Onto	Н	F	1Me-5-Ind	G-1,G-2	С		485(M ⁺ +1)
K-25	0-24°	Н	F	2-Nap	G-1,G-2			
K-26	0-5h°	н	F	1Me-5-Ind	G-1,G-2			

Table-							
K-27	Co Co	Н	F	2-Nap	G-1,G-2		
K-28	C NO	Н	F	1Me-5-Ind	G-1,G-2		
K-29	000	Н	F	2-Nap	G-1,G-2		
K-30	Crô	Н	F	1Me-5-Ind	G-1,G-2		
K-31	43,	Н	F	2-Nap	G-1,G-2	С	486(M+1)
K-32	46	Н	F	1Me-5-Ind	G-1,G-2		
K-33	مہث	Н	F	2-Nap	G-1,G-2		
K-34	مہہ	Н	F	1Me-5-Ind	G-1,G-2	С	511(M*+1)
K-35	NTS-0	Н	F	2-Nap	G-1,G-2		
K-36	WITS-0	Н	F	1Me-5-Ind	G-1,G-2	-	
K-37	(3 ² )	Н	F	2-Nap	G-1,G-2		
K-38	(Z)	Н	F	1Me-5-Ind	G-1,G-2		
K-39	3	Н	F	2-Nap	G-1,G-2		
K-40	35	Н	F	1Me-5-Ind	G-1,G-2		

[Example L·1]

Synthesis of 3-[4-cyclopentyloxy-3-methyl-5-(naphthalen-2-yl)phenyl]propionic acid

(Compound No. L-1)

According to the procedure described in the synthesis method of Compound No. C·1 with the modifications that the reaction was carried out at 80°C for 6 hours, and the purification was performed by column chromatography (Quad, hexane-ethyl acetate = 20:1), Compound A·24 (63 mg), 2-naphthaleneboronic acid (67 mg), 2 M aqueous sodium carbonate (130  $\mu$ 1) and (Ph₃P)₄Pd (18 mg) were reacted and treated. The obtained substance was reacted with 2 N aqueous sodium hydroxide (200  $\mu$ 1) and treated according to the procedure described in the synthesis method of Intermediate 9 to obtain the title compound (Compound No. L·1, 25 mg).

Example L-21

Synthesis of methyl 3·[4-cyclopentyloxy-3-methyl-5-(1-methyl-1H-indazol-5-yl)phenyl]propionate (Compound No. L-2)

According to the procedure described in the synthesis method of Compound No. C-1 with the modifications that the reaction was carried out at 80°C for 12 hours, and the purification was performed by column chromatography (Quad, hexane ethyl acetate = 4:1), Compound No. K-17 (115 mg), methylboronic acid (66 mg, Ald), 2 M aqueous sodium carbonate (0.40 ml) and (PhaP)4Pd (39.4 mg) were reacted and treated to obtain the title compound (Intermediate 52, 84 mg).

[Example L-3]

Synthesis of 3-[4-cyclopentyloxy-3-methyl-5-(1-methyl-1H-indazol-5-yl)phenylpronionic acid (Compound No. L-3)

According to the procedure described in the synthesis method of Intermediate 9 provided that the reaction was carried out for 1.5 hours, Compound No. L-2 (82 mg) and 2 N aqueous sodium hydroxide (0.26 ml) were reacted and treated to obtain the title compound (Compound No. L-3, 62 mg).

[Examples L-1 to L-95]

Typical examples of the compounds of the present invention that can be obtained by reacting and treating corresponding starting compounds using any of the methods described in the present specification including the examples described above are shown in Table L-1 to Table-L-3.

Table-1-1

Table-I								
Exp.	RxO	lγ	Zx	AR	Svn		LCMS	
						method	RTime	Mass
L-1	cPenO	H	Me	2-Nap	L-1	Α	5.65	375(M*+1)
L-2	cPenO	Me	Me	1Me-5-1Hldz	L-2			
L-3	cPenO	Н	Me	1Me-5-1HIdz	L-3	A	4.50	379(M ⁺ +1)
L-4	2EtBuO	Me	Me	2-Nap	L-2			
L-5	2EtBuO	н	Me	2-Nap	L-3	С		391(M*+1)
L-6	2EtBuO	H	Me	6-OMe-2-Nap	L-2,L-3			
L-7	2EtBuO	Me	Me	5-Ind	L-2			
L-8	2EtBuO	Н	Me	5-Ind	L-3			
L-9	2EtBuO	Me	Me	1Me-5-Ind	L-2			
L-10	2EtBuO	Н	Me	1Me-5-Ind	L-3			
L-11	2EtBuO	Me	Me	5-1Hldz	L-2			
L-12	2EtBuO	H	Me	5-1Hldz	L-3			
L-13	2EtBuO_	Me	Me	1Me-5-1Hldz	L-2			
L-14	2EtBuO	Н	Me	1Me-5-1HIdz	L-3	С		395(M*+1)
L-15	2EtBuO	Me	Me	5-Bzt	L-2			
L-16	2EtBuO	H	Me	5-Bzt	L-3			
L-17	2EtBuO	Me	Me	5-2ABzt	L-2			
L-18	2EtBuO	Н	Me	5-2ABzt	L-3			
L-19	2EtBuO	Me	Me	2Me-5-Bzt	L-2			
L-20	2EtBuO	Н	Me	2Me-5-Bzt	L-3			
L-21	4Me,cHexO	Н	Me	1Me-5-Ind	G-1,G-2			
L-22	\$°	н	Ме	2-Nap	G-1,G-2			
L-23	cHepO	H	Me	2−Nap	G-1,G-2			
L-24	cHepO	Н	Me	1Me−5−Ind	G-1,G-2	С		406(M ⁺ +1)
L-25	3PhPrO	Н	Me	2-Nap	G-1,G-2			
L-26	4PhBuO	Н	Me	1Me-5-Ind	G-1,G-2			
L-27	g)	Н	Me	2-Nap	G-1,G-2			
L-28	1(4MePh)EtO	Н	Me	1Me-5-Ind	G-1,G-2	Ç		428(M+1)
L-29	4ClBnO	H	Me	2-Nap	G-1,G-2			
L-30	4CF ₃ BnO	H	Me	1Me-5-Ind	G-1,G-2			
L-31	3F.4(OMe)BnO	H	Me	2-Nap	G-1,G-2		<b></b>	
L-32	O	н	Ме	1Me-5-Ind	G-1,G-2			
L-33	010	н	Me	2-Nap	G-1,G-2			
L-34	Çǰ°	н	Me	2-Nap	G-1,G-2			
L-35	Ş-,	н	Me	1Me=5-Ind	G-1,G-2			

Table-I -2

Table-	L-2						
L-36	000	н	Ме	1Me-5-Ind	G-1,G-2		
L-37	0,0	н	Me	1Me-5-Ind	G-1,G-2		
L-38	1-IndanO	Н	Me	2∸Nap	G-1,G-2		
L-39	2-IndanO	Н	Me	2-Nap	G-1,G-2	С	423(M+1)
L-40	2-IndanO	Н	Me	1Me-5-Ind	G-1,G-2		
L-41	50Me-2-Indan0	Н	Me	1Me-5-Ind	G-1,G-2		
L-42	5,6D(OMe)-2-IndenO	Н	Me	2-Nap	G-1,G-2		
L-43	5F-2-IndaneO	Н	Me	2-Nap	G-1,G-2		
L-44	5F-2-IndaneO	Н	Me	1Me-5-Ind	G-1,G-2		
L-45	00.	Н	Me	1Me-5-Ind	G-1,G-2		
L-46	$\hat{\otimes}$	н	Ме	2-Nap	G-1,G-2		
L-47	2(3MePh)EtO	Н	Me	2-Nap	G-1,G-2		
L-48	2(3FPh)EtO	н	Me	1Me-5-Ind	G-1,G-2	С	432(M ⁺ +1)
L-49	2(2CIPh)EtO	Н	Me	1Me-5-Ind	G-1,G-2		
L-50	2(4CF ₃ Ph)EtO	H	Me	1Me-5-Ind	G-1,G-2		
L-51	2(20MePh)EtO	Н	Me	2-Nap	G-1,G-2	С	441(M++1)
L-52	2(40MePh)EtO	Н	Me	1Me-5-Ind	G-1,G-2		
L-53	2(2-Nap)EtO	H	Me	2-Nap	G-1,G-2		
L-54	2(2-Nap)EtO	Н	Me	1Me-5-Ind	G-1,G-2		
L-55	<del>رئ</del> ې٠	н	Ме	1Me-5-Ind	G-1,G-2		
L-56	ಭ್	Н	Me	1Me-5-1HIdz	G-1,G-2	С	459(M ⁺ +1)
L-57	2(PhS)EtO	H	Me	2-Nap	G-1,G-2		
L-58	3PhPrO	Н	Me	1Me-5-Ind	G-1,G-2		
L-59	2CIBnO	H	Me	2-Nap	G-1,G-2		
L-60	2BrBnO	Н	Me	1Me−5−Ind	G-1,G-2		
L-61	3,5DMeBnO	Н	Me	2-Nap	G-1,G-2		
L-62	4tBuBnO	Н	Me	2-Nap	G-1,G-2		
L-63	20F ₃ BnO	Н	Me	· 2-Nap	G-1,G-2		
L-64	4tBuBnO	H	Me	1Me-5-Ind	G-1,G-2		
L-65	4nBuBnO	Н	Me	2-Nap	G-1,G-2		453(M ⁺ +1)
L-66	3,5DCIBnO	Н	Me	2-Nap	G-1,G-2		
L-67	2,3DCIBnO	Н	Me	1Me-5-Ind	G-1,G-2		
L-68	2-NapMeO	H	Me	1Me-5-Ind	G-1,G-2		
L-69	1-NapMeO	Н	Me	2-Nap	G-1,G-2		
L-70	2PhBn0	Н	Me	1Me-5-Ind	G-1,G-2		
L-71	4PhBnO	Н	Me	2-Nap	G-1,G-2	С	476(M ⁺ +1)
L-72	50Me-2-Indan0	_H_	Me	1Me-5-Ind	G-1,G-2		
L-73	5F-2-IndaneO	H	Ме	2-Nap .	G-1.G-2		

Table-	L-3						
L-74	0 N	Н	Ме	2-Nap	G-1,G-2	С	401(M [†] +1)
L-75	Á.	Н	Me	1Me-5-Ind	G-1,G-2		
L-76	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	Н	Me	2-Nap	G-1,G-2		
L-77	__\\\	Н	Ме	1Me-5-Ind	G-1,G-2		
L-78	3	Н	Ме	2-Nap	G-1,G-2		
L-79	~~~~	Н	Ме	1Me-5-Ind	G-1,G-2	-	
L-80	Ş	н	Me	2-Nap	G-1,G-2		
L-81	Q.	Н	Ме	1Me-5-Ind	G-1,G-2		
L-82	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	Н	Me	2-Nap	G-1,G-2	С	412(M ⁺ +1)
L-83	$\gtrsim$	н	Ме	1Me-5-Ind	G-1,G-2		
L-84	F ₃ C N O	Н	Ме	2-Nap	G-1,G-2		
L-85	Ş	н	Me	1Me-5-Ind	G-1,G-2		
L-86	₹ }	Н	Me	2-Nap	G-1,G-2		
L-87	N~o	Н	Ме	1Me-5-Ind	G-1,G-2		
L-88	\\ \ \	Н	Me	2-Nap	G-1,G-2		
L-89	N>0	Н	Ме	1Me-5-Ind	G-1,G-2	С	415(M ⁺ +1)
L-90	\?\ \?	Н	Ме	2-Nap	G-1,G-2		
L-91	8	Н	Me	1Me-5-Ind	G-1,G-2		
L-92	₩°°	Н	Ме	2-Nap	G-1,G-2		
L-93	N O	Н	Ме	1Me-5-Ind	G-1,G-2	С	435(M ⁺ +1)
L-94	NS CO	Н	Me	2-Nap	G-1,G-2		
L-95	(F)	Н	Me	1Me-5-Ind	G-1,G-2		

[Examples M-1 to M-32]

Typical examples of the compounds of the present invention that can be

obtained by reacting and treating corresponding starting compounds using any of the methods described in the present specification are shown in Table-M·1 and Table-M·2.

		Zx	Ъ¬ .	~0Y				
T-L1-		Rx-O⊸ AR		6				
Table-		-					LCM	
Exp.	RxO	Υ	Zx	AR	Syn	method		Mass .
M-1	0	Ме	Me	2-Nap	G-1	С		478(M ⁺ +1)
M-2	0	Н	Ме	2-Nap	G-2	С		464(M*+1)
M-3		Ме	Me	5-Ind	G-1			
M-4	\$ (	Н	Me	5-Ind	G-2			
M-5	\$7 0	Me	Me	1Me-5-Ind	G-1			
M-6	\${\bar{\psi}{\phi}}	Н	Me	1Me-5-Ind	G-2	С		467(M ⁺ +1)
M-7		Ме	Ме	5-1Hldz	G-1			
M-8	\$ 0	н	Me	5-1Hldz	G-2			
M-9	\$\frac{2}{5}\$	Ме	Me	1Me-5-1Hldz	G-1			
M-10		н	Me	1Me-5-1Hldz	G-2			
M-11		н	Ме	2-Nap	G-1,G-2	С		463(M ⁺ +1)
M-12	\$\frac{1}{2}\$	Н	Me	1Me-5-Ind	G-1,G-2			
M-13		н	Ме	2-Nap	G-1,G-2			
M-14	Q.	Н	Me	1Me-5-Ind	G-1,G-2	С		465(M ⁺ +1)
M-15	O'N'Y'S	Н	Ме	2-Nap	G-1,G-2			
M-16	0 m	Н	Ме	1Me-5-Ind	G-1,G-2			
M-17		Н	Ме	2-Nap	G-1,G-2	С		464(M ⁺ +1)
M-18	000	н	Me	1Me-5-Ind	G-1,G-2			
M-19	(3 to	Н	Me	2-Nap	G-1,G-2			
M-20	(2 %)	Н	Me	1Me-5-Ind	G-1,G-2			
M-21	Q;	Н	Me	2-Nap	G-1,G-2			

Table-	M-2						
M-22	Ö,	н	Me	1Me-5-Ind	G-1,G-2		
M-23	9	н	Me	2-Nap	G-1,G-2		
M-24	6	н	Ме	1Me-5-Ind	G-1,G-2	С	486(M ⁺ +1)
M-25		н	Ме	2-Nap	G-1,G-2		
M-26	\$	Н	Ме	1Me-5-Ind	G-1,G-2		
M-27	\$ 100 mg	Н	Ме	2-Nap	G-1,G-2		
M-28	W.S.	н	Ме	1Me-5-Ind	G-1,G-2		
M-29	Ç.	Н	Ме	2Nap	G-1,G-2		
M-30	3	Н	Ме	1Me-5-Ind	G-1,G-2	С	472(M ⁺ +1)
M-31	₩°	Н	Ме	2-Nap	G-1,G-2		
M-32	₩°;	Н	Ме	1Me−5−Ind	G-1,G-2		

[Example N-1]

Synthesis of methyl 3-{4-[2-(N-acetyl-N-phenylamino)ethyloxyl-3-(naphthalen-2yl)phenyllpropionate (Compound No. N-1)

A solution of Compound No. G-107 (32 mg) in methylene chloride (1 ml) was added with pyridine (24  $\mu$ 1, TCI) and acetyl chloride (21  $\mu$ 1, TCI), and stirred for 17 hours. The reaction mixture was added with water (3 ml), and extracted with methylene chloride (10 ml). The organic layer was washed with saturated brine and dried, and then the solvent was evaporated under reduced pressure. The residue was purified by column chromatography (Quad, hexane-ethyl acetate = 2:1) to obtain the title compound (Compound No. N-1, 28.1 mg).

## [Example N·2]

Synthesis of 3-{4-[2-(N-acetyl-N-phenylamino)ethyloxy]-3-(naphthalen-2-yl)phenyl}propionic acid (Compound No. N-2)

According to the procedure described in the synthesis method of Intermediate 9 provided that the reaction was carried out for 3 hours, Compound

No. N·1 (28 mg) and 2 N aqueous sodium hydroxide (0.25 ml) were reacted and treated to obtain the title compound (Compound No. N·2, 22 mg).

[Example N-29]

Synthesis of methyl 3-{4-[2-(N-methoxycarbonyl-N-phenylamino)ethyloxy]-3-(naphthalen-2-yl)phenyllpropionate (Compound No. N-29)

According to the procedure described in the synthesis method of Compound No. N·1, Compound No. G-107 (32 mg), pyridine (23  $\mu$ 1) and methyl chloroformate (23  $\mu$ 1, TCI) were reacted and treated to obtain the title compound (Compound No. N·29, 17.3 mg).

[Example N-30]

Synthesis of 3·44·[2·(N·methoxycarbonyl·N·phenylamino)ethyloxyl·3·(naphthalen·2·yl)phenyl}propionic acid (Compound No. N·30)

According to the procedure described in the synthesis method of Intermediate 9 provided that the reaction was carried out for 3 hours, Compound No. N-29 (17 mg) and 2 N aqueous sodium hydroxide (0.25 ml) were reacted and treated to obtain the title compound (Compound No. N-30, 10.1 mg).

[Example N-48]

Synthesis of methyl 3-{4-[2-(N-methylsulfonyl-N-phenylamino)ethyloxy]-3-(naphthalen-2-yl)phenyl}propionate (Compound No. N-48)

According to the procedure described in the synthesis method of Compound No. N-1, Compound No. G-107 (32 mg), pyridine (24  $\mu$  l) and methanesulfonyl chloride (23  $\mu$  l) were reacted and treated to obtain the title compound (Compound No. N-48, 32,3 mg).

[Example N-49]

Synthesis of 3-{4-[2-(N-methylsulfonyl-N-phenylamino)ethyloxy]-3-(naphthalen-2yl)phenyl}propionic acid (Compound No. N-49)

According to the procedure described in the synthesis method of

Intermediate 9 provided that the reaction was carried out for 3 hours, Compound No. N-48 (32 mg) and 2 N aqueous sodium hydroxide (0.25 ml) were reacted and treated to obtain the title compound (Compound No. N-49, 17 mg).

[Example N-55]

Synthesis of methyl 3-{4-!2-(3-ethyl-1-phenylureido)ethyloxyl-3-(naphthalen-2-yl)phenyl}propionate (Compound No. N-55)

According to the procedure described in the synthesis method of Compound No. N·1 provided that the reaction was carried out for 41 hours, Compound No. G-107 (32 mg), pyridine (24  $\mu$ l) and ethyl isocyanate (24  $\mu$ l, Nakarai Tecs) were reacted and treated to obtain the title compound (Compound No. N·55, 31.2 mg). [Example N·56]

Synthesis of 3-{4-[2-(3-ethyl-1-phenylureido)ethyloxy]-3-(naphthalen-2vl)phenyloropionic acid (Compound No. N-56)

According to the procedure described in the synthesis method of Intermediate 9 provided that the reaction was carried out for 3 hours, Compound No. N·55 (31 mg) and 2 N aqueous sodium hydroxide (0.25 ml) were reacted and treated to obtain the title compound (Compound No. N·56, 15 mg).

[Example N-64]

Synthesis of methyl 3-{4-[2-(3-ethyl-1-phenylthioureido)ethyloxyl-3-(naphthalen-2-yl)phenylpropionate (Compound No. N-64)

According to the procedure described in the synthesis method of Compound No. N·1 provided that the reaction was carried out for 41 hours, Compound No. G-107 (32 mg), pyridine (24  $\mu$  l) and ethyl isothiocyanate (21  $\mu$  l, Nakarai Tees) were reacted and treated to obtain the title compound (Compound No. N·64, 27.4 mg). [Example N·65]

Synthesis of 3-{4-[2-(3-ethyl-1-phenylthioureido)ethyloxy]-3-(naphthalen-2yl)phenyl}propionic acid (Compound No. N-65)

According to the procedure described in the synthesis method of Intermediate 9 provided that the reaction was carried out for 3 hours, Compound No. N·64 (27 mg) and 2 N aqueous sodium hydroxide (0.25 ml) were reacted and treated to obtain the title compound (Compound No. N·65, 8.9 mg).

[Examples N·1 to N·74]

Typical examples of the compounds of the present invention that can be obtained by reacting and treating corresponding starting compounds using any of the methods described in the present specification including the examples described above are shown in Table N-1 and Table N-2.

Zx 0-Y 0-Y

Table-I	N-1	Re A5	AF	~ "				
Exp.	A ⁵ Re	Τy	- Zx	AD	0		LCMS	3
Exp.	A*Re	۲	L ZX	AR	Syn	method	RTime	Mass
N-1	COMe	Me	Н	2-Nap	N-1			
N-2	COMe	H	Н	2-Nap	N-2			
N-3	COMe	Me	Н	5~Ind	N-1			
N-4	COMe	H	Н	5-Ind	N-2	С		457(M+1)
N-5	COMe	Me	Н	1Me-5-Ind	N-1			
N-6	COMe	Н	H	1Me-5-Ind	N-2			
N-7	COMe	Me	Н	5-1 HIdz	N-1			
N-8	COMe	Н	Н	5-1 HIdz	N-2			
N-9	COMe	Me	Н	1Me-5-1HIdz	N-1			
N-10	COMe	Н	H	1Me-5-1HIdz	N-2			
N-11	COPh	H	н	2-Nap	N-1,N-2	С		516(M*+1)
N-12	COPh	Н	Н	1Me-5-Ind	N-1,N-2			
N-13	COtBu	Н	H	2-Nap	N-1,N-2			
N-14	COtBu	Н	H	1Me-5-Ind	N-1,N-2			
N-15	COiPr	Н	Н	2-Nap	N-1,N-2	С		496(M+1)
N-16	COiPr	Н	Н	1Me-5-Ind	N-1.N-2			
N-17	COCH(Et)nBu	Н	Н	2-Nap	N-1,N-2			
N-18	COCH(Et)nBu	Н	Н	1Me-5-Ind	N-1,N-2			
N-19	COCH₂OMe	Н	Н	2-Nap	N-1,N-2			
N-20	COCH₂OMe	Н	Н	1Me-5-Ind	N-1.N-2			
N-21	COCH=CHMe	Н	Н	2-Nap	N-1,N-2			
N-22	COCH=CHMe	Н	Н	1Me-5-Ind	N-1.N-2	С		483(M*+1)
N-23	COiBu	H	н	2-Nap	N-1.N-2			
N-24	COiBu	Н	Н	1Me-5-Ind	N-1,N-2			
N-25	COcPr	Н	Н	2-Nap	N-1,N-2			
N-26	COcPr	Н	Н	1Me-5-Ind	N-1,N-2	С		483(M+1)
N-27	CO(CH ₂ ) ₂ cPen	Н	Н	2-Nap	N-1,N-2			
N-28	CO(CH ₂ ) ₂ cPen	Н	Н	1Me-5-Ind	N-1.N-2			
N-29	COOMe	Me	н	2-Nap	N-29			
N-30	COOMe	Н	Н	2-Nap	N-30			
N-31	COOMe	H	Н	1Me-5-Ind	N-29,N-30			
N-32	COOPh	Н	Н	2-Nap	N-29,N-30	С		516(M*+1)
N-33	COOPh	Н	Н	1Me-5-Ind	N-29,N-30			
N-34	CONMe ₂	Н	Н	2-Nap	N-29,N-30	С		483(M+1)
N-35	CONMe	Н	Н	1Me-5-Ind	N-29,N-30			
N-36	COOiBu	H	H	2-Nap	N-29.N-30			
N-37	COOiBu	H	H	1Me-5-Ind	N-29,N-30			
N-38	C(O)SMe	H	H	2-Nap	N-29,N-30			
N-39	C(O)SMe	H	H	1Me-5-Ind	N-29,N-30			
N-40	32-100	Н	Н	2-Nap	N-29,N-30			
N-41	%~○	Н	н	1Me-5-Ind	N-29,N-30	С		528(M*+1)

Table-I	N-2						
N-42	, r.	Н	н	2-Nap	Int53,N-29		
N-43	Ç.√	Н	н	1Me-5-Ind	Int53,N-29		
N-44	COO(CH ₂ ) ₂ OMe	Н	Н	2-Nap	Int53,N-29		
N-45	COO(CH ₂ ) ₂ OMe	Н	Н	1Me-5-Ind	Int53,N-29		
N-46	% ()	н	Н	2-Nap	Int53,N-29		
N-47		н	н	1Me-5-Ind	Int53,N-29		
N-48	SO ₂ Me	Me	Н	2-Nap	N-48		
N-49	SO ₂ Me	Н	Н	2-Nap	N-49		
N-50	SO ₂ Me	Н	Н	1Me-5-Ind	N-48,N-49	С	493(M++1)
N-51	SO ₂ Ph	Н	Н	2-Nap	N-48.N-49		
N-52	SO₂Ph	Н	н	1Me-5-Ind	N-48.N-49		
N-53	SO ₂ NMe ₂	Н	Н	2-Nap	N-48.N-49	С	519(M*+1)
N-54	SO ₂ NMe ₂	Н	Н	1Me-5-Ind	N-48,N-49		
N-55	CONHET	Me	H	2-Nap	N-55		
N-56	CONHET	Н	Н	2-Nap	N-56	С	483(M+1)
N-57	CONHET	Н	Н	1Me-5-Ind	N-55.N-56		
N-58	CONHPh	H	H	2-Nap	N-55.N-56		
N-59	CONHPh	H	Н	1Me-5-Ind	N-55,N-56		
N-60	CONHcHex	Н	Н	2-Nap	N-55,N-56		
N-61	CONHcHex	Н	Н	1Me-5-Ind	N-55,N-56	0	540(M*+1)
N-62	CONHBn	H	н	2-Nap	N-55,N-56		
N-63	CONHBn	Н	Н	1Me-5-Ind	N-55,N-56		
N-64	CSNHMe	Me	Н	2-Nap	N-64		
N-65	CSNHMe	Н	Н	2-Nap	N-65		
N-66	CSNHMe	Н	H	1Me-5-Ind	N-64,N-65		
N-67	CSNHPh	H	Н	2-Nap	N-64,N-65		
N-68	CSNHPh	Н	Н	1Me-5-Ind	N-64,N-65		
N-69	CSNH(3-Py)	H_	н	2-Nap	N-64,N-65	С	548(M ⁺ +1)
N-70	CSNH(3-Py)	Н	Н	1Me-5-Ind	N-64,N-65		
N-71	CSNHiPr	Н	Н	2-Nap	N-64,N-65		
N-72	CSNHiPr	н	Н	1Me-5-Ind	N-64,N-65	С	516(M ⁺ +1)
N-73	CSNHBn	Н	Н	2-Nap	N-64,N-65		
N-74	CSNHBn	Н	Н	1Me-5-Ind	N-64,N-65		

[Example P-1]

Synthesis of ethyl 3-[2-cyclopentylmethyloxy-3-(naphthalen-2-yl)pyridin-5-yl)propionate (Compound No. P-1)

According to the procedure described in the synthesis method of Compound No. C-1 with the modifications that the reaction was carried out for 14 hours, and the purification was performed by column chromatography (Quad, hexane:ethyl acetate = 5:1), 2-naphthaleneboronic acid (119 mg), Compound No. E-1 (83 mg), 2 M

aqueous sodium carbonate (0.3 ml) and (Ph₃P)₄Pd (38.1 mg) were reacted and treated to obtain the title compound (Compound No. P-1, 76 mg).

[Example P-2]

Synthesis of 3-[2-cyclopentylmethyloxy-3-(naphthalen-2-yl)pyridin-5-yl]propionic acid (Compound No. P-2)

According to the procedure described in the synthesis method of Intermediate 9 provided that the reaction was carried out for 2 hours, Compound No. P-1 (47.8 mg) and 2 N aqueous sodium hydroxide (0.2 ml) were reacted and treated to obtain the title compound (Compound No. P-2, 20 mg).

[Example P-36]

Synthesis of ethyl 3-{3-(naphthalen-2-yl)-2-[(R)-1-phenylethyloxy]pyridin-5yl}propionate (Compound No. P-36)

According to the procedure described in the synthesis method of Compound No. C-1 with the modifications that the reaction was carried out for 2 hours, and the purification was performed by column chromatography (Quad, hexane ethyl acetate = 6:1), 2-naphthaleneboronic acid (44 mg), Compound No. E-7 (73.3 mg), 2 M aqueous sodium carbonate (120  $\mu$ 1) and (PhsP) $_4$ Pd (21.3 mg) were reacted and treated to obtain the title compound (Compound No. P-36, 44 mg).

[Example P-37]

Synthesis of 3-{3-(naphthalen-2-yl)-2-[(R)-1-phenylethyloxy]pyridin-5-yl}propionic acid (Compound No. P-37)

According to the procedure described in the synthesis method of Intermediate 9, Compound No. P-36 (41.2 mg) and 2 N aqueous sodium hydroxide (0.1 ml) were reacted and treated to obtain the title compound (Compound No. P-37, 38 mg).

Example P-42

Synthesis of ethyl 3-{3-(naphthalen-2-yl)-2-[4-

(trifluoromethyl)phenylmethyloxylpyridin-5-yl}propionate (Compound No. P-42)

According to the procedure described in the synthesis method of Compound No. C·1 with the modifications that the reaction was carried out for 2 hours, and the purification was performed by column chromatography (Quad, hexane-ethyl acetate = 6:1), 2-naphthaleneboronic acid (37.4 mg), Compound No. E·13 (42.4 mg), 2 M aqueous sodium carbonate (90  $\mu$ 1) and (Ph₃P)₄Pd (21.4 mg) were reacted and treated to obtain the title compound (Compound No. P·42, 30.4 mg).

[Example P-43]

Synthesis of 3-(3-(naphthalen-2-yl)-2-[4-(trifluoromethyl)phenylmethyloxylpyridin-5-yl}propionic acid (Compound No. P-43)

According to the procedure described in the synthesis method of
Intermediate 9, Compound No. P-42 (29.5 mg) and 2 N aqueous sodium hydroxide
(0.15 ml) were reacted and treated to obtain the title compound (Compound No. P43, 24.1 mg).

[Examples P-1 to P-50]

Typical examples of the compounds of the present invention that can be obtained by reacting and treating corresponding starting compounds using any of the methods described in the present specification including the examples described above are shown in Table P-1 and Table P-2.

Rx-O-N-	~ <b>₀</b> •
A D	-

Table-I	P-1	AR					_
Exp.	RxO	Υ	AR	Svn		LCMS	S
Exp.	RXU	'	An		method	RTime	Mass
P-1	cPenMeO	Et	2-Nap	P-1			
P-2	cPenMeO	Н	2-Nap	P-2	Α	5.60	376(M+1)
P-3	cPenMeO	Et	5-Ind	P-1	Α	5.37	393(M++1)
P-4	cPenMeO	Н	5-Ind	P-2			
P-5	cPenMeO	Et	1Me-5-Ind	P-1			
P-6	cPenMeO	Н	1Me-5-Ind	P-2	Α	4.90	379(M++1)
P~7	cPenMeO	Et	1Me-5-Ind	P-1			
P-8	cPenMeO	Н	5-1HIdz	P-2			
P-9	cPenMeO	Et	5-1Hldz	P-1			
P-10	cPenMeO	Н	1Me-5-1HIdz	P-2			
P-11	cPenMeO	Et	5-Bzt	P-1			
P-12	cPenMeO	Н	5-Bzt	P-2			
P-13	cPenMeO	Et	5-2ABzt	P-1			
P-14	cPenMeO	Н	5-2ABzt	P-2			
P-15	cPenMeO	н	6-IQ	P-1,P-2	С		377(M ⁺ +1)
P-16	cPenO	Н	2-Nap	P-1,P-2			
P-17	cPen0	Н	5-Ind	P-1,P-2	C		351(M+1)
P-18	cPen0	Н	1Me-5-Ind	P-1.P-2			
P-19	cPen0	Н	5-1HIdz	P-1,P-2			
P-20	cPen0	H	1Me-5-1HIdz	P-1,P-2			
P-21	cPenO	Н	5-Bzt	P-1,P-2			
P-22	cPenO	Н	5-2ABzt	P-1,P-2			
P-23	cHexO	Н	2-Nap	P-1,P-2	Α	5.51	376(M*+1)
P-24	cHexO,	Н	5-Ind	P-1.P-2			
P-25	cHexO	Н	1Me-5-Ind	P-1,P-2			
P-26	cHexO	Н	1Me-5-1Hldz	P-1,P-2			
P-27	2EtBuO	Н	2-Nap	P-1,P-2	A	5.68	378(M ⁺ +1)
P-28	2EtBuO	Н	5-Ind	P-1,P-2			
P-29	2EtBuO	Н	1Me-5-Ind	P-1,P-2			
P-30	iBuO	Н	2-Nap	P-1,P-2	Α	5.13	350(M+1)
P-31	iBuO	Н	5-Ind	P-1,P-2			
P-32	iBuO	Н	1Me-5-Ind	P-1,P-2			
P-33	iBuO	Н	1Me-5-1Hldz	P-1.P-2			
P-34	BnO	Н	2-Nap	P-1,P-2			
P-35	BnO	Н	1Me-5-Ind	P-1,P-2			
P-36	(R)1PhEtO	Et	2-Nap	P-36			
P-37	(R)1PhEtO	Н	2-Nap	P-37			
P-38	(S)1PhEtO	Н	2-Nap	P-36,P37	Α	5.31	398(M++1)
P-39	(S)1PhEtO	Н	1Me-5-Ind	P-36,P37	Α	4.75	401(M+1)
P-40	2MeBnO	Н	2-Nap	P-1,P-2			
P-41	2MeBnO	Н	1Me-5-Ind	P-1,P-2			

Table D 0

(Intermediate 49)

l able-i	P-2						
P-42	4CF3BnO	Et	2-Nap	P-42			
P-43	4CF3BnO	Н	2-Nap	P-43	Α	5.52	452(M+1)
P-44	4CF3BnO	Н	1Me-5-Ind	P-1,P-2			
P-45	3PhBuO	Н	1Me-5-Ind	P-1,P-2			
P-46	2(2-Nap)EtO	Н	2-Nap	P-1,P-2			
P-47	2(2-Nap)EtO	н	1Me-5-Ind	P-1,P-2			
P-48	2(2FPh)EtO	Н	2-Nap	P-1,P-2			
P-49	2(2FPh)EtO	Н	5-Ind	P-1,P-2	Α	4.18	405(M*+1)
P-50	2(2FPh)EtO	Н	1Me-5-Ind	P-1,P-2			

 $[Example \ Q\cdot 1]$  Synthesis of methyl 3-[4-methoxy-3-(naphthalen-2-yl)-5-nitrophenyl] propionate

According to the procedure described in the synthesis method of Compound No. C·1 with the modifications that the reaction was carried out at 80°C for 15 hours, and the purification was performed by column chromatography (Quad, hexane:ethyl acetate = 10:1), Intermediate 21 (2.65 g), 2·naphthaleneboronic acid (2.87 g), 2 M aqueous sodium carbonate (7.5 ml) and (PhsP)4Pd (960 mg) were reacted and treated to obtain the title compound (Intermediate 49, 2.47 g).

Synthesis of 3·[4·methoxy·3·(naphthalen·2·yl)·5·nitrophenyllpropionic acid (Intermediate 50)

According to the procedure described in the synthesis method of Intermediate 9 provided that the reaction was carried out for 40 minutes, Intermediate 49 (2.45 g) and 2 N aqueous sodium hydroxide (6.7 ml) were reacted and treated to obtain the title compound (Intermediate 60, 1.96 g).

Synthesis of methyl 3-[4-hydroxy-3-(naphthalen-2-yl)-5-nitrophenyl]propionate (Intermediate 51)

According to the procedure described in the synthesis method of

Intermediate 10 provided that the reaction was carried out for 3 hours, pyridine (10
ml), concentrated hydrochloric acid (10 ml), and Intermediate 50 (1.00 g) were
reacted and treated to obtain crude powder substance. This substance was reacted

with thionyl chloride (282 µ) in methanol and treated according to the procedure described in the synthesis method of Intermediate 1 to obtain the title compound (Intermediate 51, 306 mg).

Synthesis of methyl 3·[4·cyclopentyloxy-3·(naphthalen·2·yl)·5· nitrophenyl|propionate (Compound No. Q·1)

According to the procedure described in the synthesis method of Compound No. A-6 with the modifications that the reaction was carried out for 15.5 hours, and the purification was performed by column chromatography (Quad, hexane ethyl acetate = 19:1), Intermediate 51 (84 mg), PhiP (125 mg), cyclopentanol (50  $\mu$ 1) and 40% DIAD (224  $\mu$ 1) were reacted and treated to obtain the title compound (Compound No. Q-1, 90 mg).

[Example Q-2]

Synthesis of methyl 3-[3-amino-4-cyclopentyloxy-5-(naphthalen-2vl)phenylloropionate (Compound No. Q-2)

A solution of Compound No. Q-1 (59.1 mg) in methanol (5 ml) was added with platinum oxide (5 mg, Ald), and stirred at room temperature for 30 minutes under hydrogen atmosphere. The reaction mixture was filtered, and the solvent of the filtrate was evaporated under reduced pressure. The residue was purified by column chromatography (Quad, hexane:ethyl acetate = 4:1) to obtain the title compound (Compound No. Q-2, 49 mg).

Example Q-3

Synthesis of 3-[3-amino-4-cyclopentyloxy-5-(naphthalen-2-yl)phenyllpropionic acid (Compound No. Q-3)

According to the procedure described in the synthesis method of Intermediate 9 provided that the reaction was carried out for 2 hours, Compound No. Q-2 (40 mg) and 2 N aqueous sodium hydroxide (150  $\mu$ 1) were reacted and treated to obtain the title compound (Compound No. Q-3, 38 mg).

[Example Q-4]

Synthesis of methyl 3-[4-cyclopentyloxy-3-(1H-indol-5-yl)-5-nitrophenyl]propionate (Compound No. Q-4)

According to the procedure described in the synthesis method of Compound No. C-1 with the modifications that the reaction was carried out at 80°C for 16 hours, and the purification was performed by column chromatography (Quad, hexane:ethyl acetate = 4:1), Compound No. A-28 (187 mg), 5 indoleboronic acid (143 mg), 2 M aqueous sodium carbonate (400  $\mu$  I) and (PhsP)4Pd (51 mg) were reacted and treated to obtain the title compound (Compound No. Q-4, 192 mg).

[Example Q-5]

Synthesis of methyl 3-[3-amino-4-cyclopentyloxy-5-(1H-indol-5-yl)phenyl]propionate (Compound No. Q-5)

According to the procedure described in the synthesis method of Compound No. Q-2 with the modification that the purification was performed by column chromatography (Quad, hexane ethyl acetate = 2:1), Compound No. Q-4 (59.1 mg) and platinum oxide (5 mg) were reacted and treated to obtain the title compound (Compound No. Q-5. 49.3 mg).

[Example Q-6]

Synthesis of 3-[3-amino-4-cyclopentyloxy-5-(1H-indol-5-yl)phenyllpropionic acid (Compound No. Q-6)

According to the procedure described in the synthesis method of Intermediate 9, Compound No. Q-5 (44 mg) and 2 N aqueous sodium hydroxide (150  $\mu$  I) were reacted and treated to obtain the title compound (Compound No. Q-6, 41 mg).

[Example Q-8]

Synthesis of methyl 3·[4-cyclopentyloxy-3-(1-methyl-1H-indazol-5-yl)-5nitrophenyllpropionate (Compound No. Q-8)

According to the procedure described in the synthesis method of Compound No. C-1 with the modifications that the reaction was carried out at 80% for 16 hours, and the purification was performed by column chromatography (Quad, hexane-ethyl acetate = 3:1), Compound No. A-28 (182 mg), 1-methyl-5-indazoleboronic acid (152 mg), 2 M aqueous sodium carbonate ( $400~\mu$ 1) and ( $PhsP)_4Pd$  (58.9 mg) were reacted and treated to obtain the title compound (Compound No. Q-8, 181 mg).

[Example Q-9]

Synthesis of methyl 3·[3·amino·4·cyclopentyloxy·5·(1·methyl·1H·indazol·5· yl)phenyl|propionic acid (Compound No. Q-9)

A solution of Compound No. Q.8 (578 mg) in a mixture of ethyl acetate (2 ml) and methanol (5 ml) was added with Raney 2800 nickel (230 mg) and stirred at room temperature for 6 hours under hydrogen atmosphere. The reaction mixture was filtered, and the solvent of the filtrate was evaporated under reduced pressure. The residue was purified by column chromatography (Quad, hexano-ethyl acetate = 2:1) to obtain the title compound (Compound No. Q.9, 484 mg).

[Example Q-10]

 $Synthesis of 3-[3-amino\cdot 4-cyclopentyloxy\cdot 5-(1H-indazol\cdot 5-yl)phenyl] propionic acid (Compound No. Q\cdot 10)$ 

According to the procedure described in the synthesis method of Intermediate 9, Compound No. Q-9 (56 mg) and 2 N aqueous sodium hydroxide (200  $\mu$  1) were reacted and treated to obtain the title compound (Compound No. Q-10, 50 mg).

[Example Q-47]

Synthesis of methyl 3-[4-benzyloxy-3-(naphthalen-2-yl)-5-nitrophenyl]propionate (Comeound No. Q-47)

According to the procedure described in the synthesis method of Compound

No. C-1 with the modifications that the reaction was carried out at 80°C for 12 hours, and the purification was performed by column chromatography (Quad, hexane:ethyl acetate = 8:1), Compound No. B-95 (6.00 g), 2-naphthaleneboronic acid (4.11 g), 2 M aqueous sodium carbonate (13.5 ml) and (Ph3P)4Pd (1.36 g) were reacted and treated to obtain the title compound (Compound No. Q-47, 5.81 g).

[Example Q-48]

Synthesis of methyl 3-[3-amino-4-benzyloxy-5-(naphthalen-2-yl)phenyl)propionate

(Compound No. Q·48)

According to the procedure described in the synthesis method of Compound

No. Q-9 with the modifications that the reaction was carried out for 20 hours, and the purification was performed by column chromatography (Quad, hexane:ethyl acetate = 2:1), Compound No. Q-47 (5.04 g) and Raney 2800 nickel (2.50 g) were reacted and treated to obtain the title compound (Compound No. Q-48, 4.21 g).

[Example Q-1 to Q-52]

Typical examples of the compounds of the present invention that can be obtained by reacting and treating corresponding starting compounds using any of the methods described in the present specification including the examples described above are shown in Table Q-1.

Rx O O Y

Table	-Q-1		AR	0				
Exp.	RxO	Y	Zx	AR	Syn		LCMS	
		_			-	method	RTime	Mass
Q-1	cPenO-	Me	NO2	2-Nap	Q-1			
Q-2	cPenO	Me	NH2	2-Nap	Q-2			
Q-3	cPenO	H	NH2	2-Nap	Q-3	Α	4.78	376(M ⁺ +1)
Q-4	cPen0	Me	NO2	5-Ind	Q-4			
Q-5	cPenO	Me	NH2	5-Ind	Q-5			
Q-6	cPenO	Н	NH2	5-Ind	Q-6	Α	3.75	365(M+1)
Q-7	cPenO	H	NH2	1Me-5-ind	Q-4,Q-5,Q-6	Α	4.19	379(M+1)
Q-8	cPen0	Me	NO2	1Me-5-1Hldz	o O			
Q-9	cPenO .	Me	NH2	1Me-5-1HIdz	Q-9			
Q-10	cPenO	H	NH2	1Me-5-1HIdz	Q-10			
Q-11	cPenO	Н	NH2	5-1Hldz	Q-8,Q-9,Q-10			
Q-12	cPen0	I	NH2	5-Bzt	Q-8,Q-9,Q-10			
Q-13	cPenO	H	NH2	5-2ABzt	Q-8,Q-9,Q-10			
Q-14	cPenO	Н	NH2	2Me-5-Bzt	Q-8,Q-9,Q-10			
Q-15	cHexO	Н	NH2	2-Nap	Q-1,Q-2,Q-3	Α	5.66	404(M+1)
Q-16	cHexO	н	NH2	1Me-5-Ind	Q-4,Q-5,Q-6			
Q-17	cHexO	H	NH2	1Me-5-1HIdz	Q-8,Q-9,Q-10			
Q-18	2EtBuO	н	NH2	2-Nap	Q-1,Q-2,Q-3		400	2016/2 11
Q-19	2EtBuO	Н	NH2	5-Ind	Q-4,Q-5,Q-6	Α	4.26	381(M ⁺ +1)
Q-20	2EtBuO	н	NH2	1Me-5-Ind	Q-4,Q-5,Q-6			
Q-21	2EtBuO	H	NH2	5-1Hldz	Q-8,Q-9,Q-10			
Q-22	2EtBuO	H	NH2	1Me-5-1Hldz	Q-8,Q-9,Q-10			
Q-23 Q-24	2EtBuO 2EtBuO	H	NH2 NH2	5-Bzt 5-2ABzt	Q-8,Q-9,Q-10 Q-8,Q-9,Q-10			
Q-25	2EtBuO	H	NH2	2Me-5-Bzt	Q-8,Q-9,Q-10			
Q-26	iBuO	Н	NH2	2-Nap	Q-1,Q-2,Q-3	A	4.82	364(M ⁺ +1)
Q-27	iBuO	H	NH2	1Me-5-Ind	Q-4,Q-5,Q-6		4.02	304(M +1)
Q-28	iBuO		NH2	1Me=5=Irid 1Me=5=1HIdz	Q-8,Q-9,Q-10	Α	3.66	000014.43
								368(M*+1)
Q-29	(S)1PhEtO	Τ	NH2	2-Nap	Q-1,Q-2,Q-3	Α	4.87	412(M+1)
Q-30	(S)1PhEtO	Н	NH2	1Me-5-Ind	Q-4,Q-5,Q-6	Α	4.31	415(M°+1)
Q-31	(S)1PhEtO	Н	NH2	1Me-5-1HIdz	Q-8,Q-9,Q-10	Α	3.76	416(M*+1)
Q-32	4CF ₃ BnO	Н	NH2	2-Nap	Q-1,Q-2,Q-3	A	5.26	466(M*+1)
Q-33	4CF ₃ BnO	Η	NH2	1Me-5-Ind	Q-4.Q-5.Q-6	Α	4.20	455(M+1)
Q-34	4CF₃BnO	Н	NH2	1Me-5-1HIdz	Q-8,Q-9,Q-10			
Q-35	2-IndanO	Н	NH2	2-Nap	Q-1,Q-2,Q-3	Α	5.10	424(M*+1)
Q-36	2-IndanO	Н	NH2	1Me-5-Ind	Q-4,Q-5,Q-6	A	4.63	427(M ⁺ +1)
Q-37	2-IndanO	н	NH2	1Me-5-1Hldz	Q-8,Q-9,Q-10	A	4.14	428 (M+1)
Q-38	50Me-2-IndanO	H	NH2	2-Nap	Q-1,Q-2,Q-3		4.14	428 (M +1)
Q-38 Q-39	5,6(OMe)-2-IndanO	규	NH2	1Me-5-Ind	Q-4,Q-5,Q-6			
Q-40	5F-2-IndanO	H	NH2	1Me-5-1HIdz	Q-8,Q-9,Q-10			
Q-41	2(4FPh)EtO	H	NH2	2-Nap	Q-1,Q-2,Q-3			
Q-42	2(4FPh)EtO	H	NH2	1Me-5-Ind	Q-4,Q-5,Q-6			
Q-43	2(4FPh)EtO	н	NH2	1Me-5-1HIdz	Q-8,Q-9,Q-10	Α	4.48	448(M*+1)
Q-44	2(4DMAPh)EtO	H	NH2	2-Nap	Q-1,Q-2,Q-3	A	4.28	448(M +1) 455(M+1)
Q-45	2(4DMAPh)EtO	H	NH2	2=Nap 1Me=5=Ind	Q-1,Q-2,Q-3 Q-4,Q-5,Q-6	_^	4.20	400(M +1)
			NH2 NH2	1Me-5-Ind 1Me-5-1Hldz		A	3.12	450(11)
Q-46	2(4DMAPh)EtO	Τ,			Q-8,Q-9,Q-10	_ A	3.12	459(M*+1)
Q-47 Q-48	BnO BnO	Me Me	NO2 NH2	2-Nap 2-Nap	Q-47 Q-48			
Q-48 Q-49	BnO	H	NH2	2-Nap 2-Nap	Q-48 Q-3			
Q-50	BnO	Me	NO2	1Me-5-1HIdz	Q-47	_		
Q-51	BnO	Me	NH2	1Me 5 1Hdz	Q-48			
Q-52		H	NH2	1Me-5-1HIdz	Q-10			

[Example S-1]

Synthesis of methyl 3-{4-benzyloxy-3-(naphthalen-2-yl)-5-[N-(2,2,2-trifluoroacetyl)amino]phenyl}propionate (Intermediate 52)

According to the procedure described in the synthesis method of Compound No. B:103 with the modifications that the reaction was carried out for 1.5 hours, and the purification was performed by column chromatography (Quad, hexane:ethyl acetate = 4:1), Compound No. Q:48 (4.18 g), triethylamine (4.65 ml) and trifluoroacetic anhydride (7.40 ml) were reacted and treated to obtain the title compound (Intermediate 52, 4.72 g).

Synthesis of methyl 3-{4-hydroxy-3-(naphthalen-2-yl)-5-[N-(2,2,2-trifluoroacetyl)amino]phenyl}propionate (Intermediate 53)

A solution of Intermediate 52 (3.20 g) in a mixture of ethyl acetate (50 ml) and methanol (25 ml) was added with 10% palladium/carbon (98 mg), and stirred at room temperature for 2 hours under hydrogen atmosphere. The reaction mixture was filtered, and the solvent of the filtrate was evaporated under reduced pressure to obtain the title compound (Intermediate 53, 2.39 g).

Synthesis of methyl 3·{4·cyclopentyloxy·3·(naphthalen·2·yl)·5·[N·(2,2,2·trifluoroacetyl)amino]phenyl}propionate (Intermediate 54)

According to the procedure described in the synthesis method of Compound No. A-6 with the modifications that the reaction was carried out for 15.5 hours, and the purification was performed by column chromatography (Quad, hexane-ethyl acetate = 19:1), Intermediate 53 (84 mg), PhaP (125 mg), cyclopentanol (50  $\mu$  I) and 40% DIAD (224  $\mu$  I) were reacted and treated to obtain the title compound (Intermediate 54. 90 mg).

Synthesis of methyl 3-{4-cyclopentyloxy-3-[N-methyl-N-{2,2,2-trifluoroacetyl}aminol-5-(naphthalen-2-yl)phenyl}propionate (Intermediate 55)

A solution of Intermediate 54 (208 mg) in DMF (5 ml) was added with 60%

sodium hydride (21 mg) under ice cooling, and stirred for 20 minutes. This reaction mixture was added dropwise with methyl iodide (150  $\mu$  l), stirred for 10 minutes, then warmed to room temperature, and further stirred for 1 hour. The reaction mixture was poured into ice water, and ethyl acetate (100 ml) was added for extraction. The organic layer was successively washed with saturated aqueous sodium hydrogenearbonate, saturated aqueous ammonium chloride, and saturated brine and dried, and then the solvent was evaporated under reduced pressure. The residue was purified by column chromatography (Quad, hexane:ethyl acetate = 5:1) to obtain the title compound (Intermediate 55, 200 mg). Synthesis of 3-[4-cyclopentyloxy-3-(N-methylamino)-5-(naphthalen-2-yl)phenyllpropionic acid (Compound No. S-1)

According to the procedure described in the synthesis method of Intermediate 9 provided that the reaction was carried out for 6 hours, Intermediate 55 (198 mg) and 2 N aqueous sodium hydroxide (800  $\mu$  I) were reacted and treated to obtain the title compound (Compound No. S-1, 38 mg).

## [Example S-3]

Synthesis of methyl 3-[3-acetylamino-4-cyclopentyloxy-5-(naphthalen-2-yl)phenyl]propionate (Compound No. 5-3)

A solution of Compound No. Q·2 (81 mg) in methylene chloride (2 ml) was added with N·methylmorpholine (33  $\mu$ 1, WAKO), and added with acetyl chloride (22  $\mu$ 1) under ice cooling. The reaction mixture was stirred for 10 minutes, then warmed to room temperature, and further stirred for 18 hours. The reaction mixture was poured into aqueous sodium hydrogenearbonate (100 ml), and added with ethyl acetate (150 ml) for extraction. The organic layer was successively washed with saturated aqueous sodium hydrogenearbonate, saturated aqueous ammonium chloride, and saturated brine and dried, and then the solvent was evaporated under reduced pressure. The residue was purified by column

chromatography (Quad, hexane:ethyl acetate = 6:1) to obtain the title compound (Compound No. S:3. 85 mg).

[Example S-4]

Synthesis of 3-[3-acetylamino-4-cyclopentylmethyloxy-5-(naphthalen-2vl)phenyllpropionic acid (Compound No. S-4)

According to the procedure described in the synthesis method of Intermediate 9 provided that the reaction was carried out for 15 hours, Compound No. S·3 (80 mg) and 2 N aqueous sodium hydroxide (400 µ l) were reacted and treated to obtain the title compound (Compound No. S·4, 75 mg).

Example S.5]

Synthesis of 3-[4-cyclopentyloxy-3-formylamino-5-(naphthalen-2yl)phenyl]propionic acid (Compound No. S-5)

A solution of Compound No. Q·2 (90 mg) in DMF (5 ml) was added with a mixture of formic acid (200  $\mu$  l) and acetic anhydride (100  $\mu$  l) under ice cooling. The reaction mixture was stirred 10 minutes, then warmed to room temperature, and further stirred for 18 hours. The reaction mixture was poured into aqueous sodium hydrogenearbonate (100 ml), and added with ethyl acetate (150 ml) for extraction. The organic layer was successively washed with saturated aqueous sodium hydrogenearbonate, saturated aqueous ammonium chloride, and saturated brine and dried, and then the solvent was evaporated under reduced pressure. The residue was purified by column chromatography (Quad, hexane-ethyl acetate = 5:1). The obtained substance was reacted and treated with 2N aqueous sodium hydroxide (400  $\mu$ 1) according to the procedure described in the synthesis method of Intermediate 9 to obtain the title compound (Compound No. S·5, 65 mg).

[Example S-6]

Synthesis of methyl 3-[3-(2-acetoxyacetylamino)-4-cyclopentyloxy-5-(naphthalen-2yl)phenyllpropionate (Compound No. S-6)

According to the procedure described in the synthesis method of Intermediate 70, Compound No. Q-2 (88 mg), N-methylmorpholine (36  $\mu$  1) and acetoxyacetyl chloride (35  $\mu$  1, Ald) were reacted and treated to obtain the title compound (Compound No. S-6, 75 mg).

[Example S-7]

Synthesis of 3·[4-cyclopentyloxy-3-(2-hydroxyacetylamino)-5-(naphthalen-2-yl)phenyllpropionic acid (Compound No. S-7)

According to the procedure described in the synthesis method of Intermediate 9 provided that the reaction was carried out for 15.5 hours, Compound No. S-6 (102 mg) and 2 N aqueous sodium hydroxide (500  $\mu$  l) were reacted and treated to obtain the title compound (Compound No. S-7, 80 mg). [Example S-8] Synthesis of 3-[3-carbamoylamino-4-cyclopentyloxy-5-(naphthalen-2-

Synthesis of 3·[3·carbamoylamino·4·cyclopentyloxy·5·(naphthalen·2 yl)phenyl]propionic acid (Compound No. S·8)

A solution of Compound No. Q·2 (100 mg) in a mixture of acetic acid (2 ml) and purified water (0.4 ml) was added with potassium cyanate (45 mg, Wako Pure Chemical Industries), and stirred at room temperature for 1 hour. The reaction mixture was poured into water (50 ml) containing ice, and extracted with isopropyl ether (150 ml x 2). The organic layer was successively washed with saturated aqueous sodium hydrogenearbonate, saturated aqueous ammonium chloride, and saturated brine and dried, and then the solvent was evaporated under reduced pressure. The obtained substance was reacted with 2 N aqueous sodium hydroxide (300  $\mu$ 1) and treated according to the procedure described in the synthesis method of Intermediate 9 to obtain the title compound (Compound No. S·8, 70 mg).

[Example S-9]

Synthesis of methyl 3-[4-cyclopentyloxy-3-methylsulfonylamino-5-(naphthalen-2yl)phenyl|propionate (Compound No. S-9)

A solution of Compound No. Q-2 (81 mg) in methylene chloride (2 ml) was added with pyridine (300  $\mu$  l), and then added with methanesulfonyl chloride (40  $\mu$  l) under ice cooling. The reaction mixture was stirred for 10 minutes, then warmed to room temperature, and further stirred for 2 hours. The reaction mixture was poured into 1 N hydrochloric acid, and added with ethyl acetate (150 ml) for extraction. The organic layer was washed successively with saturated aqueous sodium hydrogenearbonate, and saturated brine, and dried, and then the solvent of the organic layer was evaporated under reduced pressure. The residue was purified by column chromatography (Quad, hexane-ethyl acetate = 13:2) to obtain the title compound (Compound No. S-9, 96 mg). Synthesis of 3-[4 cyclopentyloxy-3 methylsulfonylamino-5 (naphthalen-2 yl)phenyllpropionic acid (Compound No. S-10)

According to the procedure described in the synthesis method of Intermediate 9 provided that the reaction was carried out at room temperature for 17.5 hours and at 60°C for 3 hours, Compound No. S-9 (81 mg) and 2 N aqueous sodium hydroxide (400  $\mu$  l) were reacted and treated to obtain the title compound (Compound No. S-10, 80 mg).

[Example S-11]

Synthesis of 3-[4-cyclopentyloxy-3-(N,N-dimethylsulfamoylamino)-5-(naphthalen-2yl)phenyllpropionic acid (Compound No. S-11)

A solution of Compound No. Q-2 (163 mg) in pyridine (5 ml) was successively added with 4 dimethylaminopyridine (104 mg, TCI) and dimethylsulfamoyl chloride (520  $\mu$ l, TCI), and stirred for 5 days. The reaction mixture was added with water (30 ml) and ethyl acetate (90 ml) for extraction. The organic layer was washed with saturated brine and dried, and then the solvent was evaporated under reduced pressure. The residue was purified by column chromatography (Quad, hexane-ethyl acetate = 6:1). The obtained substance was

reacted with 2 N aqueous sodium hydroxide (300  $\,\mu$  1) and treated according to the procedure described in the synthesis method of Intermediate 9 to obtain the title compound (Compound No. S-11, 105 mg).

[Example S-12]

Synthesis of 3·[4-cyclopentyloxy-3-(N,N-dimethylamino)-5-(naphthalen·2-yl)phenyllpropionic acid (Compound No. S·12)

A solution of Compound No. Q-2 (60 mg) in DMF (3 ml) was added with 60% sodium hydride (26 mg) under ice cooling, and stirred for 10 minutes. The reaction mixture was added with methyl iodide (100  $\mu$  l), stirred for 10 minutes, then warmed to 60°C, and further stirred for 2 hours. The reaction mixture was poured into water (20 ml), and ethyl acetate (50 ml) was added for extraction. The organic layer was successively washed with saturated aqueous sodium hydrogencarbonate, saturated aqueous ammonium chloride, and saturated brine and dried, and then the solvent was evaporated under reduced pressure. The residue was purified by column chromatography (Quad, hexane ethyl acetate = 8:1). The obtained substance was reacted with 2 N aqueous sodium hydroxide (150  $\mu$  l) and treated according to the procedure described in the synthesis method of Intermediate 9 to obtain the title compound (Compound No. S-12, 46 mg).

Synthesis of methyl 3-(4-benzyloxy-3-(1-methyl-1H-indazol-5-yl)-5-[N-(2,2,2-trifluoroacetyl)aminolphenyllpropionate (Intermediate 56)

According to the procedure described in the synthesis method of Compound No. B·103 with the modifications that the reaction was carried out for 1.5 hours, and the purification was performed by column chromatography (Quad, hexane:ethyl acetate = 3:1), Compound No. Q·51 (2.09 g), triethylamine (3.70 ml) and trifluoroacetic anhydride (2.35 ml) were reacted and treated to obtain the title compound (Intermediate 56, 2.36 g).

Synthesis of methyl 3-{4·hydroxy·3·(1-methyl·1H·indazol·5·yl)·5·[N·(2,2,2·4]).

trifluoroacetyl)aminolphenyl}propionate (Intermediate 57)

A solution of Intermediate 56 (1.62 g) in a mixture of ethyl acetate (10 ml) and methanol (3 ml) was added with 10% palladium/carbon (29 mg), and stirred at room temperature for 17 hours under hydrogen atmosphere. The reaction mixture was filtered, and the solvent of the filtrate was evaporated under reduced pressure to obtain the title compound (Intermediate 57, 1.19 g).

[Examples S·1 to S·73]

Typical examples of the compounds of the present invention that can be obtained by reacting and treating corresponding starting compounds using any of the methods described in the present specification including the examples described above are shown in Table-S-1 and Table-S-2.

Rx-O O-Y

Table	-S-1		AR						
Exp.	RxO	Υ	Zx	AR	Syn	LCMS			
						method	RTime	Mass	
S-1	cPenO	Н	NHMe	2-Nap	S-1				
S-2	cPen0	Н	NHEt	2-Nap	S-1				
S-3	cPenO	Me	NHAc	2-Nap	S-3				
S-4	cPenO	H	NHAc	2-Nap	S-4	С		421(M+1)	
S-5	¢PenO	Н	NHCHO	2-Nap	S-5	С		407(M ⁺ +1)	
S-6	cPenO	Н	NHCOCH ₂ OAc	2-Nap	S-6				
S-7	cPenO	н	NHCOCH₂OH	2-Nap	S-7	С		437(M+1)	
S-8	cPenO	Н	NHCONH₂	2-Nap	S-8	С		422(M+1)	
S-9	cPenO	Me	NHSO₂Me	2-Nap	S-9				
S-10	cPenO	Н	NHSO₂Me	2-Nap	S-10	С		456(M ⁺ )	
S-11	cPenO	Н	NHSO ₂ NMe ₂	2-Nap	S-11	С		483(M+1)	
S-12	cPenO	Н	NMe ₂	2-Nap	S-12				
S-13	cPenO	Н	NHMe	1Me-5-Ind	S-1				
S-14	cPenO	Н	NMe ₂	1Me-5-Ind	S-12	С		407(M+1)	
S-15	cPenO	Н	NHMe	1Me-5-1Hldz	S-1	С		394(M+1)	
S-16	cPenO	н	NMe ₂	1Me-5-1HIdz	S-12				
S-17	cPenO	Н	NHMe	5-Bzt	S-1				
S-18	cPenO	Н	NMe ₂	5-Bzt	S-12				
S-19	cPenO	Н	NHMe	5-2ABzt	S-1				
S-20	cPenO	Н	NMe ₂	5-2ABzt	S-12				
S-21	cPenO	Н	NHMe	2Me-5-Bzt	S-1				
S-22	cPenO	Н	NMe ₂	2Me-5-Bzt	S-12				
S-23	cPenMeO	Н	NHMe	1Me-5-Ind	S-1				
S-24	cPenMeO	Н	NMe ₂	1Me-5-Ind	S-12				
S-25	cPenMeO	Н	NHMe	1Me-5-1HIdz	S-1				
S-26	cPenMeO	Н	NMe ₂	1Me-5-1HIdz	S-12				
S-27	cHexO	H	NHMe	2-Nap	S-1				
S-28	cHexO	н	NMe ₂	2-Nap	S-12				
S-29	cHexO	Н	· NHMe	1Me-5-Ind	S-1	С		421(M+1)	
S-30	cHexO	Н	NMe ₂	1Me-5-Ind	S-12				
S-31	cHexO	Н	NHMe	1Me-5-1Hldz	S-1				
S-32	cHexO	Н	NMe ₂	1Me-5-1HIdz	S-12				
S-33	2EtBuO	Н	NHMe	2-Nap	S-1	С		406(M+1)	
S-34	2EtBuO	Н	NHMe	6-OMe-2-Nap	S-1				
S-35	2EtBuO	H	NHMe	1Me-5-Ind	S-1				
S-36	2EtBuO	Н	NHMe	5-Bzt	S-1				
S-37	2EtBuO	Н	NHMe	1Me-5-1Hldz	S-1				
S-38	iBuO	Н	NHMe	2-Nap	S-1		ļ		
S-39	iBuO	Н	NMe ₂	2-Nap	S-12	С		392(M*+1)	
S-40	iBu0	Н	NHMe	1Me-5-Ind	S-1	С		381(M*+1)	
S-41	iBuO	Н	NMe ₂	1Me-5-Ind	S-12				
S-42	iBuO	Н	NHMe	1Me-5-1HIdz	S-1				
S-43	iBuO	Н	NMe ₂	1Me-5-1HIdz	S-12				
S-44	1PhEtO	Н	NHMe	2-Nap	S-1	С		426(M+1)	
S-45	1PhEtO	Н	NMe ₂	2-Nap	S-12				

Table	-S-2							
S-46	1PhEtO	Ή	NHMe	1Me-5-Ind	S-1			
S-47	1PhEtO	Ξ	NMe ₂	1Me-5-Ind	S-12	С		443(M ⁺ +1)
S-48	1PhEtO	Н	NHMe	1Me-5-1HIdz	S-1	С		429(M+1)
S-49	1PhEtO	Н	NMe ₂	1Me-5-1HIdz	S-12			
S-50	4CF ₃ BnO	Н	NHMe	2-Nap	S-1			
S-51	4CF ₃ BnO	Н	NMe ₂	2-Nap	S-12			
S-52	4CF₃BnO	Н	NHMe	1Me-5-Ind	S-1			
S-53	4CF ₃ BnO	Н	NMe ₂	1Me-5-Ind	S-12	С		497(M*+1)
S-54	4CF₃BnO	Н	NHMe	1Me-5-1HIdz	S-1			
S-55	4CF₃BnO	Н	NMe ₂	1Me-5-1HIdz	S-12			
S-56	2-IndanO	Н	NHMe	2-Nap	S-1			
S-57	2-IndanO	H	NMe ₂	2-Nap	S-12			
S-58	2-IndanO	Н	NHMe	1Me-5-Ind	S-1	С		441(M*+1)
S-59	2-IndanO	Н	NMe ₂	1Me-5-Ind	S-12			
S-60	2-IndanO	Н	NHMe	1Me-5-1HIdz	S-1	Α	4.16	442(M+1)
S-61	2-IndanO	H	NMe ₂	1Me-5-1HIdz	S-12	Α	4.18	456(M*+1)
S-62	2(4FPh)EtO	Н	NHMe	2-Nap	S-1			
S-63	2(4FPh)EtO	Н	NMe ₂	2-Nap	S-12	С		458(M*+1)
S-64	2(4FPh)EtO	Н	NHMe	1Me-5-Ind	S-1	С		447(M+1)
S-65	2(4FPh)EtO	Н	NMe ₂	1Me-5-Ind	S-12			
S-66	2(4FPh)EtO	Н	NHMe	1Me-5-1HIdz	S-1			
S-67	2(4FPh)EtO	Н	NMe ₂	1Me-5-1HIdz	S-12			1
S-68	2(4DMAPh)EtO	Н	NHMe	2-Nap	S-1	С	<u> </u>	469(M ⁺ +1)
S-69	2(4DMAPh)EtO	Н	NMe ₂	2-Nap	S-12			
S-70	2(4DMAPh)EtO	Н	NHMe	1Me-5-Ind	S-1			
S-71	2(4DMAPh)EtO	Н	NMe ₂	1Me-5-Ind	S-12	С		486(M ⁺ +1)
S-72	2(4DMAPh)EtO	Н	NHMe	1Me-5-1HIdz	S-1	С		473(M+1)
S-73	2(4DMAPh)EtO	Н	NMe ₂	1Me-5-1HIdz	S-12			

[Example T-1]

Synthesis of 3-[4-cyclopentylmethyloxy-3-hydroxy-5-(naphthalen-2-yl)phenyllpropionic acid (Compound No. T-1)

A solution of Compound No. Q-2 (408 mg) in acetic acid (1.5 ml) was added with 20% sulfuric acid (1.0 ml). This reaction mixture was added dropwise with an aqueous solution (0.5 ml) of sodium nitrite (76 mg) over 10 minutes while keeping the temperature of the reaction mixture below 10°C, and further stirred for 5 minutes. This reaction solution was added to a solution of sodium acetate (328 mg) in acetic acid (3.5 ml) heated and stirred at 100°C beforehand, and further stirred for 10 minutes with heating. The reaction solution was poured into ice

water (50 ml), and extracted with isopropyl ether (100 ml x 2). The organic layer was washed successively with saturated aqueous sodium hydrogenearbonate, saturated aqueous ammonium chloride and saturated brine and dried, and then the solvent was evaporated under reduced pressure. The residue was purified by column chromatography (Quad, hexane ethyl acetate = 10:1). The obtained substance was reacted with 2 N aqueous sodium hydroxide (500  $\mu$ 1) and treated according to the procedure described in the synthesis method of Intermediate 9 to obtain the title compound (Compound No. T-1, 78 mg).

Example T-21

Synthesis of ethyl 3-[3-acetoxy-4-cyclopentyloxy-5-(naphthalen-2yl)phenyllpropionate (Intermediate 58)

According to the procedure described in the synthesis method of Compound No. C-1 with the modifications that the reaction was carried out for 13 hours, and the purification was performed by column chromatography (Quad, hexane-ethyl acetate = 9:1), Compound No. B-114 (160 mg), 2-naphthaleneboronic acid (382 mg, Ald), 2 M aqueous sodium carbonate (0.7 ml) and (PhaP)4Pd (105 mg) were reacted and treated to obtain the title compound (Intermediate 58, 152 mg).

Synthesis of 3-[4-cyclopentyloxy-3-hydroxy-5-(naphthalen-2-yl)phenyl]propionic acid (Compound No. T-2)

According to the procedure described in the synthesis method of Intermediate 9 provided that the reaction was carried out for 2 hours, Intermediate 58 (146 mg) and 2 N aqueous sodium hydroxide (0.35 ml) were reacted and treated to obtain the title compound (Compound No. T-2, 135 mg).

[Example T-31]

Synthesis of ethyl 3-[4-cyclopentyloxy-3-methoxy-5-(naphthalen-2-yl)phenyl|propionate (Compound No. T-31)

According to the procedure described in the synthesis method of Compound

No. C·1 with the modifications that the reaction was carried out for 14 hours, and the purification was performed by column chromatography (Quad, hexane-ethyl acetate = 9:1), Compound No. A·25 (210 mg), 2·naphthaleneboronic acid (184 mg), 2 M aqueous sodium carbonate (0.5 ml) and (Ph₃P)₄Pd (65.3 mg) were reacted and treated to obtain the title compound (Compound No. T·31, 181 mg).

[Example T-32]

Synthesis of 3-[4-cyclopentyloxy-3-methoxy-5-(naphthalen-2-yl)phenyl]propionic acid (Compound No. T-32)

According to the procedure described in the synthesis method of Intermediate 9 provided that the reaction was carried out for 2 hours, Compound No. T-31 (166 mg) and 2 N aqueous sodium hydroxide (0.45 ml) were reacted and treated to obtain the title compound (Compound No. T-32, 135 mg).

[Example T-33]

Synthesis of 4-(t-butyldimethylsilyloxy)-3-(1H-indol-5-yl)-5-methoxybenzaldehyde (Intermediate 59)

According to the procedure described in the synthesis method of Compound No. C-1 with the modifications that the reaction was carried out for 12.5 hours, and the purification was performed by flash column chromatography (hexane:ethyl acetate = 7:1), 5 indoleboronic acid (1.29 g), Intermediate 16 (1.75 g), 2 M aqueous sodium carbonate (4.8 ml) and (Ph₂P)₄Pd (400 mg) were reacted and treated to obtain the title compound (Intermediate 59, 910 mg).

Synthesis of ethyl 3-[4-(t-butyldimethylsilyloxy)-3-(1H-indol-5-yl)-5methoxyphenyllacrylate (Intermediate 60)

According to the procedure described in the synthesis method of Intermediate 7 with the modifications that the reaction was carried out for 1.5 hours, and the purification was performed by flash column chromatography (hexane:ethyl acetate = 3:1), Intermediate 59 (910 mg), ethyl

diethylphosphonoacetate (500 µl) and 60% sodium hydride (100 mg) were reacted and treated to obtain the title compound (Intermediate 60, 945 mg).

Synthesis of ethyl 3-[4-(t-butyldimethylsilyloxy)-3-(1H-indol-5-yl)-5-methoxyphenyllpropionate (Intermediate 61)

According to the procedure described in the synthesis method of Intermediate 8, Intermediate 60 (945 mg) and 10% palladium/carbon (95 mg) were reacted and treated under hydrogen gas atmosphere to obtain the title compound (Intermediate 61, 940 mg).

Synthesis of ethyl 3-[4-hydroxy-3-(1H-indol-5-yl)-5-methoxyphenyl]propionate (Intermediate 62)

According to the procedure described in the synthesis method of Intermediate 19 with the modifications that the reaction was carried out for 1.5 hours, and the purification was performed by flash column chromatography (hexane:ethyl acetate = 2:1), Intermediate 61 (750 mg) and a 1 M solution of tetrabutylammonium fluoride in THF (5.0 ml) were reacted and treated to obtain the title compound (Intermediate 62, 555 mg).

Synthesis of ethyl 3-[4-cyclopentyloxy-3-(1H-indol-5-yl)-5methoxyphenyl]propionate (Compound No. T-33)

According to the procedure described in the synthesis method of Compound No. A-6 with the modifications that the reaction was carried out for 16 hours, and the purification was performed by column chromatography (Quad, hexane:ethyl acetate = 7:1), Intermediate 62 (340 mg), Ph₃P (1.31 g), cyclopentanol (450  $\mu$  l) and TMAD (860 mg) were reacted and treated to obtain the title compound (Compound No. T-33, 376 mg).

[Example T-34]

Synthesis of 3-[4-cyclopentyloxy-3-(1H-indol-5-yl)-5-methoxyphenyllpropionic acid (Compound No. T-34)

According to the procedure described in the synthesis method of Intermediate 9 provided that the reaction was carried out for 2 hours, Compound No. T 33 (99 mg) and 2 N aqueous sodium hydroxide (500  $\mu$  l) were reacted and treated to obtain the title compound (Compound No. T 34, 76 mg). [Examples T 1 to T 61]

Typical examples of the compounds of the present invention that can be obtained by reacting and treating corresponding starting compounds using any of the methods described in the present specification including the examples described above are shown in Table T-1 and Table T-2.

Rx-O-O-Y

Table-	Γ- <u>1</u>		AR							
Exp. RxO		Υ	Zx	AR	Syn	LCMS				
LAP.	100					method		Mass		
T-1	cPenMeO	Н	ОН	2-Nap	T-1	Α	5.03	382(M ⁺ +1)		
T-2	cPenO	Н	OH	2-Nap	T-2					
T-3	-3 cPenO		OH	5-Ind	Int73,T-2	С		366(M ⁺ +1)		
T-4	cPenO	Н	OH	1Me~5-Ind	Int73,T-2					
T-5	cPenO	Н	ОН	5-1HIdz	Int73,T-2					
T-6	cPenO	Н	ОН	1Me-5-Idz	1Me-5-Idz Int73,T-2			381(M*+1)		
T-7	cHexO	Н	ОН	2-Nap	T-1					
T-8	cHexO	Н	ОН	1Me-5-Ind	T-1					
T-9	cHexO	Н	ОН	1Me-5-Idz	T-1					
T-10	2EtBuO	Н	ОН	2-Nap	T-1	C		393(M ⁺ +1)		
T-11	2EtBuO	Н	ОН	1Me-5-Ind	T-1					
T-12	2EtBuO	Н	ОН	1Me-5-Idz	T-1					
T-13	iBuO	Н	OH	2-Nap	T-1					
T-14	iBuO	Н	OH	1Me-5-Ind	T-1					
T-15	lBuO	Н	ОН	1Me-5-Idz	T-1					
T-16	1PhEtO	Н	OH	2-Nap	T-1					
T-17	1PhEtO	Н	ОН	1Me-5-Ind	T-1	С		416(M*+1)		
T-18	1PhEtO	Н	ОН	1Me-5-Idz	T-1					
T-19	4CF ₃ BnO	Н	ОН	2-Nap	T-1					
T-20	4CF ₃ BnO	Н	ОН	1Me-5-Ind	T-1					
T-21	4CF ₃ BnO	Н	ОН	1Me-5-Idz	T-1					
T-22	2-IndanO	H	OH	2-Nap	T-1					
T-23	2-IndanO	Н	ОН	1Me-5-Ind	T-1					
T-24	2-Indan0	Н	ОН	1Me−5-Idz	T-1	A	3.91	429(M+1)		
T-25	2(4FPh)EtO	Н	ОН	2-Nap	T-1					
T-26	2(4FPh)EtO	Н	ОН	1Me-5-Ind	T-1					
T-27	2(4FPh)EtO	Н	ОН	1Me-5-ldz	T-1					
T-28	2(4DMAPh)EtO	Н	ОН	2-Nap	T-1					
T-29	2(4DMAPh)EtO	Н	OH	1Me-5-Ind	T-1	С		459(M*+1)		
T-30	2(4DMAPh)EtO	н	ОН	1Me-5-Idz	T-1					
T-31	cPenO	Et	OMe	2-Nap	T-31					
T-32	cPenO	Н	OMe	2-Nap	T-32					
T-33	cPenO	Et	OMe	5-Ind	T-33					
T-34	cPenO	Н	OMe	5-Ind	T-34					
T-35	cPenO	Н	OMe	1Me-5-Ind	T-33,T-34	Α	4.72	394(M ⁺ +1)		
T-36	cPenO	Н	OMe	5-1HIdz	T-31,T-32					
T-37	cPenO	H	OMe	1Me-5-Idz	T-31,T-32					
T-38	cHexO	н	OMe	2-Nap	T-31,T-32	С		405(M ⁺ +1)		
T-39	cHexO	Н	OMe	1Me-5-Ind	T-33,T-34					
T-40	cHexO	Н	OMe	1Me-5-Idz	T-31,T-32					
T-41	2EtBuO	Н	OMe	2-Nap	T-31,T-32					
T-42	2EtBuO	Н	OMe	1Me-5-Ind	T-33,T-34					
T-43	2EtBuO	Н	OMe	1Me-5-Idz	T-31,T-32	1				

Table-	T-2						
T-44	iBu0	Н	OMe	2-Nap	T-31,T-32		
T-45	iBuO	Н	OMe	1Me-5-Ind	T-33,T-34	C	382(M ⁺ +1)
T-46	iBu0	Н	OMe	1Me-5-1HIdz	T-31,T-32		
T-47	1PhEtO	Н	OMe	2-Nap	T-31,T-32		
T-48	1PhEtO	Н	OMe	1Me-5-Ind	T-33,T-34		
T-49	1PhEt0	Н	OMe	1Me-5-1HIdz	T-31,T-32	С	431(M ⁺ +1)
T-50	4CF ₃ BnO	Н	OMe	2-Nap	T-31,T-32		
T-51	4CF ₃ BnO	Н	OMe	1Me-5-Ind	T-33,T-34		
T-52	4CF ₃ BnO	Н	OMe	1Me-5-1HIdz	T-31,T-32		
T-53	2-IndanO	Н	OMe	2-Nap	T-31,T-32		
T-54	2-IndanO	H	OMe	1Me-5-Ind	T-33,T-34		
T-55	2-IndanO	Н	OMe	1Me-5-1HIdz	T-31,T-32	С	443(M+1)
T-56	2(4FPh)EtO	Н	OMe	2-Nap	T-31,T-32		
T-57	2(4FPh)EtO	Н	OMe	1Me-5-Ind	T-33,T-34	С	448(M ⁺ +1)
T-58	2(4FPh)EtO	I	OMe	1Me-5-1Hldz	T-31,T-32		
T-59	2(4DMAPh)EtO	Н	OMe	2-Nap	T-31,T-32	С	470(M*+1)
T-60	2(4DMAPh)EtO	Н	OMe	1Me-5-Ind	T-33,T-34		
T-61	2(4DMAPh)EtO	Н	OMe	1Me-5-1HIdz	T-31,T-32		

[Example U-1]
Synthesis of 4-cyclohexylmethyloxy-3-(naphthalen-2-yl)phenylacetonitrile
(Intermediate 63)

A solution of Compound No. C-1 (172 mg) in dehydrated THF (5 ml) was added successively with trimethylsilylnitrile (133  $\mu$ l, TCI) under ice cooling and zinc iodide (16 mg, WAKO) under argon gas atmosphere, stirred for 15 minutes, then warmed to room temperature, and further stirred for 27 hours. The reaction mixture was added with ethyl acetate (90 ml), and washed successively with saturated aqueous sodium hydrogencarbonate, saturated aqueous ammonium chloride and saturated brine. The organic layer was dried, and then the solvent was evaporated under reduced pressure. A solution of the residue in anhydrous methylene chloride (5 ml) was added with triethylsilane (240  $\mu$ l, TCI) under ice cooling and boron trifluoride diethyl ether complex (366  $\mu$ l, TCI) under argon gas atmosphere, warmed to room temperature, and stirred for 3.5 hours. The reaction mixture was poured into ice water (50 ml), and extracted with ethyl acetate (90 ml).

hydrogenearbonate, saturated aqueous ammonium chloride, and saturated brine and dried, and then the solvent was evaporated under reduced pressure. The residue was purified by column chromatography (Quad, hexane ethyl acetate = 10:1) to obtain the title compound (Intermediate 63, 116 mg).

Synthesis of 4 cyclohexylmethyloxy 3 (naphthalen-2-yl)phenylacetic acid (Compound No. U-1)

According to the procedure described in the synthesis method of Intermediate 9 with the modifications that the reaction was carried out for 24 hours under reflux by heating, and the purification was performed by column chromatography (Quad, hexane ethyl acetate = 2:1), Intermediate 63 (110 mg) and 5 N aqueous sodium hydroxide (900  $\mu$ l) were reacted and treated to obtain the title compound (Compound No. U-1, 62 mg).

[Example U-10]

Synthesis of methyl 4-[4-cyclopentylmethyloxy-3-(naphthalen-2-yl)phenyl]butyrate (Compound No. U-10)

According to the procedure described in the synthesis method of Compound No. C-1 with the modifications that the reaction was carried out for 18 hours, and the purification was performed by column chromatography (Quad, hexane:isopropyl ether = 8:1), Compound No. F-1 (355 mg), 2-naphthaleneboronic acid (344 mg), 2 M aqueous sodium carbonate (2.1 ml) and (PhsP)4Pd (115 mg) were reacted and treated to obtain the title compound (Compound No. U-10, 392 mg).

[Example U-11]

Synthesis of 4-[4-cyclopentylmethyloxy·3·(naphthalen·2·yl)phenyl]butyric acid (Compound No. U·11)

According to the procedure described in the synthesis method of Intermediate 9 provided that the reaction was carried out for 3.5 hours, Compound No. U-10 (380 mg) and 2 N aqueous sodium hydroxide (1.0 ml) were reacted and

treated to obtain the title compound (Compound No. U-11, 342 mg).
[Examples U-1 to U-18]

Typical examples of the compounds of the present invention that can be obtained by reacting and treating corresponding starting compounds using any of the methods described in the present specification including the examples described above are shown in Table-U-1.

	Zx
	Rx-O-√_)-(CH₂) _⊓ COOY
Table-U-1	AŔ

-	RxO	Υ	Zx	n AR Syn	C		LCM:	S	
Ехр.	RXO	1	ZX	n	AR	Oyn	method	RTime	Mass
U-1	cHexMeO	Н	Н	1	2-Nap	U-1	С		374(M ⁺ )
U-2	cHexMeO	Н	Н	1	1Me-5-Ind	Int63,U-1			
U-3	cHexMeO	H	H	1_	1Me-5-Idz	Int63,U-1			
U-4	cPenMeO	Н	Н	1_	2-Nap	Int63,U-1	C		360(M ⁺ )
U-5	cPenMeO	Н	Н	1	1Me-5-Ind	Int63,U-1			
U-6	cPenO	Н	H	1_	2-Nap	Int63,U-1			
U-7	cPen0	Н	Н	1	1Me-5-Ind	Int63,U-1	C		349(M ⁺ )
U-8	2(4FPh)EtO	Н	Н	1	2-Nap	Int63,U-1			
U-9	2(4FPh)EtO	Н	Н	1	1Me-5-Ind	Int63,U-1			
U-10	cPenMeO	Me	Н	3	2-Nap	U-10	С		374(M*)
U-11	cPenMeO	Н	H	3	2-Nap	U-11	С		374(M ⁺ )
U-12	cPenMeO	Н	Н	3	1Me-5-Ind	U-10,U-11			
U-13	cPenO	Н	Н	3_	2-Nap	U-10,U-11			
U-14	cPenO	Н	Н	3	1Me-5-Ind	U-10,U-11	С		377(M ⁺ )
U-15	cHexO	Н	Н	3	2-Nap	U-10,U-11			
U-16	cHexO	Н	Н	3	1Me-5-Ind	U-10,U-11			
U-17	2(4FPh)EtO	Н	Н	3		U-10,U-11			
U-18	2(4FPh)EtO	H	Н	3	1Me-5-Ind	U-10.U-11			

## [Example V-1] Synthesis of ethyl 3-[4-cyclohexylmethyloxy-3-(naphthalen-1-yl)phenyl]acrylate (Intermediate 64)

According to the procedure described in the synthesis method of Intermediate 7 provided that the reaction was carried out for 1 hour, Compound No. C-2 (361 mg), ethyl diethylphosphonoacetate (240  $\mu$  I), 60% sodium hydride (69 mg) were reacted and treated to obtain the title compound (Intermediate 64, 377 mg). Synthesis of ethyl 3-[4-cyclohexylmethyloxy-3-(naphthalen-1-yl)phenyl]propionate

(Compound No. V-1)

According to the procedure described in the synthesis method of Intermediate 8 with the modifications that the reaction was carried out for 1.5 hours, and the purification was performed by flash column chromatography (hexane:ethyl acetate = 10:1), Intermediate 64 (361 mg) and 10% palladium/carbon (49 mg) were reacted under hydrogen atmosphere and treated to obtain the title compound (Compound No. V-1, 344 mg).

[Example V-2]

Synthesis of 3-[4-cyclohexylmethyloxy-3-(naphthalen-1-yl)phenyllpropionic acid (Compound No. V-2)

According to the procedure described in the synthesis method of Intermediate 9 provided that the reaction was carried out for 1.5 hours, Compound No. V-1 (332 mg) and 2 N aqueous sodium hydroxide (900  $\mu$  1) were reacted and treated to obtain the title compound (Compound No. V-2, 295 mg).

[Example V-3]

Synthesis of methyl 3-[4-cyclopentylmethyloxy-3-(6-hydroxynaphthalen-2vl)phenyllpropionate (Compound No. V-3)

A solution of 2-bromo-6-hydroxynaphthalene (243 mg, TCI) in anhydrous THF (10 ml) was cooled to -78°C, added dropwise with a 1.6 M solution of n-butyllithium in hexane (1.18 ml) over 20 minutes under argon gas atmosphere, and stirred for 30 minutes. The reaction mixture was added dropwise with (PrO)₃B (1.73 ml) over 10 minutes, stirred for 30 minutes, then warmed to room temperature, and further stirred for 2 hours. The reaction mixture was added with 0.5 M aqueous sulfuric acid (2 ml), and extracted with diethyl ether (40 ml x 3). The organic layer was washed with saturated brine and dried, and then the solvent was evaporated under reduced pressure to obtain crude 6-hydroxy-2-naphthaleneboronic acid (378 mg). A solution of this substance in ethanol (1 ml),

Compound No. A-1 (230 mg), and 2 M aqueous sodium carbonate (2.4 ml) were added with toluene (3 ml) and (PhaP)aPd (115 mg) and stirred at 100°C for 13 hours. The reaction mixture was added with ethyl acetate (100 ml), and washed successively with saturated aqueous sodium hydrogenearbonate, saturated aqueous ammonium chloride and saturated brine. The organic layer was dried, and then the solvent was evaporated under reduced pressure. The residue was purified by flash column chromatography (hexane-ethyl acetate = 6:1) to obtain the title compound (Compound No. V-3, 270 mg).

Example V-4]

Synthesis of 3-[4-cyclopentylmethyloxy-3-(6-hydroxynaphthalen-2yl)phenyl]propionic acid (Compound No. V-4)

According to the procedure described in the synthesis method of Intermediate 9 provided that the reaction was carried out for 14 hours, Compound No. V-3 (149 mg) and 2 N aqueous sodium hydroxide (370  $\,\mu$ 1) were reacted and treated to obtain the title compound (Compound No. V-4, 117 mg).

[Example V-5]

Synthesis of methyl 3-[4-cyclopentylmethyloxy-3-(5-hydroxynaphthalen-2yl)phenyllpropionate (Compound No. V-5)

2-Amino-5-hydroxynaphthalene (4.80 g, TCI) was dissolved in 6 N hydrochloric acid (300 ml), added dropwise with an aqueous solution (22.5 ml) of sodium nitrite (2.25 g) over 30 minutes under ice cooling, and stirred for 30 minutes. The reaction mixture was added dropwise with an aqueous solution (75 ml) of potassium iodide (9.90 g, WAKO), stirred for 30 minutes, then warmed to room temperature, and further stirred for 3.5 hours. The reaction mixture was neutralized with aqueous ammonia, and then filtered through a Celite layer. The filtrate was added with ethyl acetate (90 ml x 2) for extraction. The organic layer was washed successively with saturated aqueous sodium hydrogenearbonate,

saturated aqueous ammonium chloride and saturated brine, and dried, and then the solvent was evaporated under reduced pressure. The residue was purified by column chromatography (Quad, hexane:ethyl acetate = 10:1) to obtain 1-hydroxy-6iodonaphthalene (1.48 g). A solution of this substance (539 mg) in anhydrous THF (10 ml) was added with 60% sodium hydride (171 mg) under ice cooling, and stirred for 1 hour. The reaction mixture was cooled to '78°C under argon gas atmosphere, added dropwise with a 1.6 M solution of n-butyllithium in hexane (3.75 ml) over 10 minutes, and stirred for 30 minutes. The reaction mixture was added dropwise with (PrO)3B (1.16 ml) over 10 minutes, stirred for 30 minutes, then warmed to room temperature, and further stirred for 3 hours. The reaction mixture was added with water (3 ml) and 0.5 M aqueous sulfuric acid (7 ml), and extracted with diethyl ether (100 ml x 3). The organic layer was washed with saturated brine and dried, and then the solvent was evaporated under reduced pressure to obtain crude 7-hydroxy-2-naphthaleneboronic acid. A solution of this substance in ethanol (1 ml), Compound No. A-1 (350 mg), 2 M aqueous sodium carbonate (2.4 ml) and (PhsP)4Pd (116 mg) were reacted and treated according to the procedure described in the synthesis method of Compound No. V-3 with the modifications that the reaction was carried out for 14 hours, and the purification was performed by column chromatography (Quad, hexane:ethyl acetate = 6:1) to obtain the title compound (Compound No. V-5, 388 mg).

[Example V-6]

Synthesis of 3-[4-cyclopentylmethyloxy-3-(5-hydroxynaphthalen-2yl)phenyl]propionic acid (Compound No. V-6)

According to the procedure described in the synthesis method of Intermediate 9 provided that the reaction was carried out for 12 hours, Compound No. V-5 (355 mg) and 2 N aqueous sodium hydroxide (1.75 ml) were reacted and treated to obtain the title compound (Compound No. V-6, 158 mg).

[Example V-7]

Synthesis of methyl 3-[4-cyclopentylmethyloxy-3-(7-hydroxynaphthalen-2yl)phenyl]propionate (Compound No. V-7)

According to the procedure described in the synthesis method of Compound No. V-5 with the modifications that the reaction was carried out for 4 hours, and the purification was performed by flash column chromatography (hexane-ethyl acetate = 6:1), crude 7-hydroxy-2-naphthaleneboronic acid prepared from 2-bromo-7-hydroxynaphthalene (559 mg, MAYB), a 1.6M solution of n-butyllithium in hexane (3.91 ml) and (PrO)₃B (1.16 ml), Compound No. A-1 (386 mg), 2 M aqueous sodium carbonate (4.0 ml) and (Ph₃P)₄Pd (195 mg) were reacted and treated to obtain the title compound (Compound No. V-7, 460 mg).

[Example V-8]

Synthesis of 3·[4-cyclopentylmethyloxy-3-(7-hydroxynaphthalen-2yl)phenyl]propionic acid (Compound No. V-8)

According to the procedure described in the synthesis method of Intermediate 9 provided that the reaction was carried out for 27 hours, Compound No. V-7 (176 mg) and 2 N aqueous sodium hydroxide (436  $\mu$  I) were reacted and treated to obtain the title compound (Compound No. V-8, 109 mg).

[Example V-11]

Synthesis of methyl 3-(4-cyclohexylmethyloxy-3-(6-(N,N-dimethylcarbamoylmethyloxy)naphthalen-2-yllphenyllpropionate (Compound No. V-11)

A solution of Compound No. V-3 (185 mg) in DMF (5 ml) was added with potassium carbonate (274 mg), and 2-chloro-N,N-dimethylacetamide (411  $\mu$  l, KANTO), and stirred at 50°C for 18 hours. The reaction mixture was added with ethyl acetate (90 ml), and washed with saturated brine. The organic layer was dried, and then the solvent was evaporated under reduced pressure. The residue

was purified by PTLC (chloroform:methanol = 10:1) to obtain the title compound (Compound No. V-11, 213 mg).

[Example V-12]

Synthesis of 3-{4-cyclohexylmethyloxy-3-[6-(N,N-

dimethylcarbamoylmethyloxy)naphthalen·2-yllphenyllpropionic acid (Compound No. V-10)

According to the procedure described in the synthesis method of Intermediate 9 with the modifications that the reaction was carried out at room temperature for 18 hours and at 60°C for 8 hours, and the purification was performed by PTLC (chloroform:methanol = 10:1), Compound No. V-11 (213 mg) and 2 N aqueous sodium hydroxide (420 \(mu 1\)) were reacted and treated to obtain the title compound (Compound No. V-12, 115 mg).

[Example V-13]

Synthesis of methyl 3·[3·(6·aminonaphthalen·2·yl)·4· cyclopentylmethyloxyphenyl]propionate (Compound No. V-13)

According to a known method described in a publication (Anderson, L.C. et al., J. Am. Chem. Soc, 1943, vol. 65, p.241), a solution of 2-amino-6-bromonaphthalene (223 mg) obtainable from commercially available 2-bromo-6-hydroxynaphthalene (TCI) in anhydrous THF (10 ml) was added with 30% potassium hydride (191 mg, Ald) under ice cooling, and stirred for 1 hour. The reaction mixture was cooled to '78°C under argon gas atmosphere, added dropwise with a 1.7 M solution of t-butyllithium in pentane (1.88 ml) over 10 minutes, and stirred for 30 minutes. This reaction mixture was added dropwise with (PrO)₃B (0.92 ml) over 10 minutes, stirred for 30 minutes, then warmed to room temperature, and further stirred for 3 hours. The reaction mixture was added with water (3 ml) and 0.5 M aqueous sulfuric acid (4 ml), and extracted with diethyl ether (100 ml x 3). The organic layer was washed with saturated brine and dried,

and then the solvent was evaporated under reduced pressure to obtain crude 6amino-2-naphthaleneboronic acid (402 mg). A solution of this substance in ethanol
(0.5 ml), Compound No. A-1 (119 mg), 2 M aqueous sodium carbonate (1.5 ml) and
(Ph₃P)₄Pd (61 mg) were reacted and treated according to the procedure described in
the synthesis method of Compound No. V-3 with the modifications that the reaction
was carried out for 13 hours, and the purification was performed by flash column
chromatography (hexane-ethyl acetate = 4:1) to obtain the title compound
(Compound No. V-13, 129 mg).

[Example V-14]

Synthesis of 3·[3·(6·aminonaphthalen·2·yl)·4·cyclopentylmethyloxyphenyllpropionic acid (Compound No. V·14)

According to the procedure described in the synthesis method of Intermediate 9 provided that the reaction was carried out for 14 hours, Compound No. V-13 (120 mg) and 2 N aqueous sodium hydroxide (1.75 ml) were reacted and treated to obtain the title compound (Compound No. V-14, 89 mg).

Example V-16

Synthesis of methyl 3-[3-{fe-[2-(acetyloxy)acetylamino)naphthalen-2-yl}-4cyclopentylmethyloxyphenyl)propionate (Intermediate 65)

A solution of Compound No. V-13 (151 mg) in dichloromethane (4 ml) was added with N·methylmorpholine (50  $\mu$  l), and then added with acetyloxyacetyl chloride (48.3  $\mu$  l) under ice cooling. The reaction mixture was stirred for 10 minutes, then warmed to room temperature, and further stirred for 4 hours. The reaction mixture was poured into aqueous sodium hydrogencarbonate (100 ml), and ethyl acetate (150 ml) was added for extraction. The organic layer was successively washed with saturated aqueous sodium hydrogencarbonate, saturated aqueous ammonium chloride, and saturated brine and dried, and then the solvent was evaporated under reduced pressure. The residue was purified by PTLC

(hexane:cthyl acetate = 1:1) to obtain the title compound (Intermediate 88, 136 mg).

Synthesis of 3-(4-cyclopentylmethyloxy-3-{6-[2-(hydroxyacetyl)amino]naphthalen-2yllphenyl)propionic acid (Compound No. V-16)

According to the procedure described in the synthesis method of Intermediate 9 provided that the reaction was carried out at room temperature for 5 hours and at 60°C for 1 hour, Intermediate 65 (135 mg) and 2 N aqueous sodium hydroxide (1.12 ml) were reacted and treated to obtain the title compound (Compound No. V-16, 102 mg).

[Example V-18]

Synthesis of methyl 3·[4-cyclopentylmethyloxy·3·(6methylsulfonylaminonaphthalen·2·yl)phenyllpropionate (Compound No. V·18)

A solution of Compound No. V-13 (149.1 mg) in 1,2-dichloroethane (5 ml) was added successively with pyridine (500  $\mu$  l) and methanesulfonyl chloride (62  $\mu$  l) under ice cooling, stirred for 1.5 hours, then warmed to room temperature, and stirred for 12 hours. The reaction mixture was added with water (30 ml) and ethyl acetate (90 ml) for extraction. The organic layer was successively washed with saturated aqueous sodium hydrogenearbonate, saturated aqueous ammonium chloride, and saturated brine and dried, and then the solvent was evaporated under reduced pressure. The residue was purified by PTLC (hexane:ethyl acetate = 2:1) to obtain the title compound (Compound No. V-18, 126 mg).

[Example V-19]

Synthesis of 3·[4-cyclopentylmethyloxy·3·(6·methylsulfonylaminonaphthalen·2·yl)phenyllpropionic acid (Compound No. V·19)

According to the procedure described in the synthesis method of Intermediate 9 provided that the reaction was carried out at room temperature for 3 hours and at 60°C for 1 hour, Compound No. V-18 (129 mg) and 2 N aqueous sodium hydroxide (535 µ l) were reacted and treated to obtain the title compound

(Compound No. V-19, 98 mg).

[Example V-20]

Synthesis of methyl 3-{4-cyclopentylmethyloxy-3-[6-(N,N-

dimethylsulfamoylamino)naphthalen-2-yllphenyl}propionate (Compound No. V-20)

A solution of Compound No. V-13 (165 mg) in pyridine (5 ml) was added successively with 4 dimethylaminopyridine (104 mg, TCI) and dimethylsulfamoyl chloride (520  $\mu$ 1, TCI), stirred for 5 days, and then further stirred at 50°C for 4 hours. The reaction mixture was added with water (30 ml) and ethyl acetate (90 ml)) for extraction. The organic layer was washed with saturated brine and dried, and then the solvent was evaporated under reduced pressure. The residue was purified by column chromatography (Quad, hexane-ethyl acetate = 6:1) to obtain the title compound (Compound No. V-20, 125 mg).

[Example V-21]

Synthesis of 3-{4-cyclopentylmethyloxy-3-[6-(N,N-

dimethylsulfamoylamino)naphthalen-2-yl]phenyl}propionic acid (Compound No. V-21)

According to the procedure described in the synthesis method of Intermediate 9 provided that the reaction was carried out for 1.5 hours, Compound No. V-20 (118 mg) and 2 N aqueous sodium hydroxide (460  $\,\mu$  l) were reacted and treated to obtain the title compound (Compound No. V-21, 87 mg).

[Example V-22]

Synthesis of 2-bromo-6-sulfamovlaminonaphthalene (Intermediate 66)

A solution of chlorosulfonyl isocyanate (870  $\mu$  l, WAKO) in benzene (10 ml) was added dropwise with formic acid (377  $\mu$  l, WAKO) under ice cooling, warmed to room temperature, stirred and for 19.5 hours, then warmed to 40°C, and further stirred for 4 hours. The reaction mixture was added dropwise with a solution of 2-amino-6-bromonaphthalene (443 mg) in benzene (5 ml) under ice cooling, warmed to

room temperature, and stirred 21.5 hours. The reaction mixture was filtered to obtain solid, and the solid was added with ethyl acetate, mixed and filtered again. The solvent of the filtrate was evaporated under reduced pressure. The residue was purified by column chromatography (Quad, hexane:ethyl acetate = 2:1) to obtain the title compound (Intermediate 66, 158 mg).

Synthesis of methyl 3-14-cyclopentylmethyloxy-3-(6-sulfamoylaminonaphthalen-2-yl)phenylpropionate (Compound No. V-22)

According to a procedure described in literature (Miyaura, N. et al., Tetrahedron.Lett., 1997, p.3447), Compound No. A·1 (209 mg),

bis(pinacolate)diboron (177 mg, Ald), [1,1'-

bis(diphenylphosphono)ferrocene]palladium(II) dichloride (hereinafter abbreviated as "PdCl2(dppD", 28 mg, TCI) and potassium acetate (182.3 mg, Ald) were added to DMF (6 ml), and heated to 80°C with stirring under argon gas atmosphere for 5 hours. The reaction mixture was cooled to room temperature, then added with Intermediate 91 (130 mg), PdCl2(dppD (30 mg) and 2 M aqueous sodium carbonate (0.9 ml), and heated to 80°C for 21 hours with stirring under argon gas atmosphere. The reaction mixture was added with ethyl acetate (100 ml), washed with saturated brine and dried, and then the solvent was evaporated under reduced pressure. The residue was purified by column chromatography (Quad, hexane-ethyl acetate = 3:1) to obtain the title compound (Compound No. V-22, 46 mg).

[Example V-23]

Synthesis of 3-[4-cyclopentylmethyloxy-3-(6-sulfamoylaminonaphthalen-2yl)phenyllpropionic acid (Compound No. V-23)

According to the procedure described in the synthesis method of Intermediate 9 provided that the reaction was carried out for 24 hours, Compound No. V-22 (41 mg) and 2 N aqueous sodium hydroxide (340  $\mu$  I) were reacted and treated to obtain the title compound (Compound No. V-23, 22 mg).

[Example V-27]

Synthesis of methyl 3-[4-cyclopentyloxy-3-(1H-indol-5-yl)phenyllpropionate (Compound No. V-27)

According to the procedure described in the synthesis method of Compound No. C·1 with the modifications that the reaction was carried out at 80°C for 5 hours, and the purification was performed by flash column chromatography (hexane:ethyl acetate = 5:1), Compound No. A·5 (367 mg), 5-indoleboronic acid (310 mg, Frontier), 2 M aqueous sodium carbonate (0.9 ml) and (PhsP)4Pd (132 mg) were reacted and treated to obtain the title compound (Compound No. V·27, 340 mg).

[Example V-28]

Synthesis of 3-[4-cyclopentyloxy-3-(1H-indol-5-yl)phenyl]propionic acid (Compound No. V-28)

According to the procedure described in the synthesis method of Intermediate 9 provided that the reaction was carried out for 2 hours, Compound No. V-27 (330 mg) and 2 N aqueous sodium hydroxide (1.40 ml) were reacted and treated to obtain the title compound (Compound No. V-28, 310 mg).

[Example V-29]

Synthesis of methyl 3-[4-cyclopentyloxy-3-(1-methyl-1H-indol-5-yl)phenyl]propionate (Compound No. V-29)

A solution of Compound No. V-27 (123 mg) in DMF (5 ml) was added with 60% sodium hydride (19 mg) under ice cooling, and stirred for 10 minutes. The reaction mixture was added dropwise with methyl iodide (100  $\mu$  l), stirred for 10 minutes, then warmed to room temperature, and further stirred for 1 hour. The reaction mixture was poured into ice water, and ethyl acetate (100 ml) was added for extraction. The organic layer was successively washed with saturated aqueous sodium hydrogenearbonate, saturated aqueous ammonium chloride, and saturated brine and dried, and then the solvent was evaporated under reduced pressure.

The residue was purified by flash column chromatography (hexane-ethyl acetate = 8:1) to obtain the title compound (Compound No. V-29, 126 mg).

[Example V-30]

Synthesis of 3-[4-cyclopentyloxy-3-(1-methyl-1H-indol-5-yl)phenyl]propionic acid (Compound No. V-30)

According to the procedure described in the synthesis method of Intermediate 9 provided that the reaction was carried out for 1 hour, Compound No. V-29 (123 mg) and 2 N aqueous sodium hydroxide (330  $\mu$  I) were reacted and treated to obtain the title compound (Compound No. V-30, 110 mg).

[Example V-31]

Synthesis of methyl 3·[4·cyclopentylmethyloxy·3·(1H-indol·4·yl)phenyllpropionate (Compound No. V-31)

According to the procedure described in the synthesis method of Compound No. C·1 with the modifications that the reaction was carried out for 21 hours, and the purification was performed by column chromatography (Quad, hexane:ethyl acetate = 6:1), Compound No. A·1 (200 mg), 4-indoleboronic acid (170 mg) obtainable from 4-bromoindole (TCI) according to a known method described in a publication (Doll, M. et al., J. Org. Chem, 1999, vol. 64, p.1372), 2 M aqueous sodium carbonate (550 µ l) and (PhsP)4Pd (60 mg) were reacted and treated to obtain the title compound (Compound No. V·31, 214 mg).

[Example V-32]

Synthesis of 3·[4-cyclopentylmethyloxy·3·(1H-indol·4-yl)phenyllpropionic acid (Compound No. V-32)

According to the procedure described in the synthesis method of Intermediate 9 provided that the reaction was carried out for 1 hour, Compound No. V-31 (210 mg) and 2 N aqueous sodium hydroxide (0.60 ml) were reacted and treated to obtain the title compound (Compound No. V-32, 173 mg).

[Example V-33]

Synthesis of 4-bromo-1-methyl-1H-indole (Intermediate 67)

According to the procedure described in the synthesis method of Compound No. V-29 with the modifications that the reaction was carried out for 30 minutes, and the purification was performed by column chromatography (Quad, hexane ethyl acetate = 10:1), 4-bromoindole (5 g), 60% sodium hydride (1.14 g) and methyl iodide (3.18 ml, TCI) were reacted and treated to obtain the title compound (Intermediate 67, 4.95 g).

Synthesis of 1-methyl-1H-indole-4-boronic acid (Intermediate 68)

A solution of Intermediate 67 (4.90 g) in anhydrous THF (30 ml) was cooled to '78°C under argon gas atmosphere, then added dropwise with a 1.62 M solution of t-butyllithium in pentane (28.8 ml) over 30 minutes, and stirred for 30 minutes. This reaction mixture was added dropwise with (PrO)3B (10.77 ml) over 10 minutes, stirred for 1 hour, then warmed to room temperature, and further stirred for 2.5 hours. The reaction mixture was poured into 1.2 N aqueous phosphoric acid (250 ml) containing ice, and extracted with diethyl ether (200 ml x 3). The organic layer was extracted with 0.4 N aqueous sodium hydroxide (150 ml x 3), and the aqueous layer was made acidic with 5 N hydrochloric acid under ice cooling, and extracted with diethyl ether (200 ml x 3) again. The organic layer was washed with saturated brine and dried, and then the solvent was evaporated under reduced pressure. The residue was washed with hexane to obtain the title compound (Intermediate 68, 3.17 g).

Synthesis of methyl 3-[4-cyclopentylmethyloxy-3-(1-methyl-1H-indol-4vlbhenyl|propionate (Compound No. V-33)

According to the procedure described in the synthesis method of Compound No. C-1 with the modifications that the reaction was carried out for 18 hours, and the purification was performed by column chromatography (Quad, hexane-ethyl

acetate = 9:1), Compound No. A·1 (200 mg), Intermediate 68 (185 mg), 2 M aqueous sodium carbonate (550  $\mu$  I) and (PhsP)4Pd (60 mg) were reacted and treated to obtain the title compound (Compound No. V·33, 208 mg).

[Example V-34]

Synthesis of 3·[4-cyclopentylmethyloxy·3·(1-methyl·1H-indol·4-yl)phenyllpropionic acid (Compound No. V·34)

According to the procedure described in the synthesis method of Intermediate 9 provided that the reaction was carried out for 3 hours, Compound No. V-33 (200 mg) and 2 N aqueous sodium hydroxide (0.60 ml) were reacted and treated to obtain the title compound (Compound No. V-34, 182 mg).

[Example V-43]

Synthesis of 3-(4-cyclopentylmethyloxy-3-[1-(2-hydroxyethyl)-1H-indol-5yl]phenyl}propionic acid (Compound No. V-43)

According to the procedure described in the synthesis method of Compound No. V-29 with the modifications that the reaction was carried out for 1.5 hours, and the purification was performed by column chromatography (Quad, hexane-ethyl acetate = 8:1), Compound No. V-27 (144mg), 60% sodium hydride (38 mg) and ethyl bromoacetate (160  $\mu$ l, TCl) were reacted and treated to obtain an oily substance. This substance was reacted with 2 N aqueous sodium hydroxide (300  $\mu$ l) and treated according to the procedure described in the synthesis method of Intermediate 9 provided that the reaction was carried out for 1 hour to obtain the title compound (Compound No. V-43, 36 mg).

[Example V-44]

Synthesis of methyl 3-[4-cyclopentylmethyloxy-3-(3-formyl-1H-indol-5vl)phenyl|propionate (Compound No. V-44)

A solution of Compound No. V-27 (75 mg) in DMF (6 ml) was added dropwise with phosphoryl chloride (30  $\mu$  l, TCD) under ice cooling, stirring for 1

hour, then warmed to  $35^{\circ}$ C, and further stirred for 1 hour. The reaction mixture was added with 1 N aqueous sodium hydroxide (3 ml) containing ice, and extracted with ethyl acetate (90 ml). The organic layer was washed with saturated brine and dried, and then the solvent was evaporated under reduced pressure. The residue was purified by flash column chromatography (hexane:ethyl acetate = 5:1) to obtain the title compound (Compound No. V-44, 86 mg).

[Example V-45]

Synthesis of 3-[4-cyclopentylmethyloxy-3-(3-formyl-1H-indol-5-yl)phenyl]propionic acid (Compound No. V-45)

According to the procedure described in the synthesis method of Intermediate 9 provided that the reaction was carried out for 3 hours, Compound No. V-44 (86 mg) and 2 N aqueous sodium hydroxide (110  $\,\mu$ l) were reacted and treated to obtain the title compound (Compound No. V-45, 60 mg).

[Example V-47]

Synthesis of methyl 3·[3·(3·acetyl·1H·indol·5·yl)·4·cyclopentylmethyloxyphenyllpropionate (Compound No. V·47)

A solution of Compound No. V-27 (98 mg) in methylene chloride (2 ml) was added with aluminum chloride (81 mg, Ald) and acetyl chloride (60  $\mu$  l), and stirred for 4 hours. The reaction mixture was added with 1 N hydrochloric acid (2 ml), and extracted with methylene chloride (60 ml). The organic layer was washed with saturated brine and dried, and then the solvent was evaporated under reduced pressure. The residue was purified by flash column chromatography (hexane:ethyl acetate = 4:1) to obtain the title compound (Compound No. V-47, 47 mg).

[Example V-48]

Synthesis of 3-[3-(3-acetyl·1H-indol·5·yl)-4-cyclopentylmethyloxyphenyllpropionic acid (Compound No. V-48)

According to the procedure described in the synthesis method of

Intermediate 9 provided that the reaction was carried out for 4 hours, Compound No. V-47 (45 mg) and 2 N aqueous sodium hydroxide (110  $\,\mu$  l) were reacted and treated to obtain the title compound (Compound No. V-48, 44 mg).

[Example V-50]

Synthesis of methyl 3-[4-cyclopentylmethyloxy-3-(3-methyl-1H-indol-5vl)phenyl|propionate (Compound No. V-50)

According to the procedure described in the synthesis method of Intermediate 95 with the modifications that the reaction was carried out for 13 hours, and the purification was performed by flash column chromatography (hexane ethyl acetate = 4:1), 5-bromo 3-methylindole (1.63 g) obtainable from 5-bromoindole (TCI) by a known method described in a publication (Wayland, E.N., J. Org. Chem, 1967, vol. 32, p.828) was reacted with 30% potassium hydride (1.08 g), a 1.7 M solution of t-butyllithium in pentane (9.7 ml) and (PrO)₈B (3.75 ml) and treated to obtain crude 3-methyl-5-indoleboronic acid. This compound was reacted with Compound No. A-1 (803 mg), 2 M aqueous sodium carbonate (2 ml) and (PhsP)₄Pd (241 mg) and treated to obtain the title compound (Compound No. V-50, 552 mg).

[Example V-51]

Synthesis of 3-[4-cyclopentylmethyloxy-3-(3-methyl-1H-indol-5-yl)phenyl]propionic acid (Compound No. V-51)

According to the procedure described in the synthesis method of Intermediate 9 provided that the reaction was carried out for 2 hours, Compound No. V-50 (130 mg) and 2 N aqueous sodium hydroxide (370  $\,\mu$ 1) were reacted and treated to obtain the title compound (Compound No. V-51, 127 mg).

[Example V-54]

Synthesis of 4-bromo-1H-indazole (Intermediate 69)

According to a known method described in a publication (Schumann, P. et

al., Bioorg. Med. Chem. Lett., 2001, vol. 11, p.1153), the title compound (Intermediate 69, 1.68 g) was obtained from commercially available 3bromotoluidine (4.51 g, Ald).

Synthesis of methyl 3·[4-cyclopentyloxy-3-(1H-indazol-4-yl)phenyl]propionate (Compound No. V-54)

According to the procedure described in the synthesis method of Compound No. V-22 provided that the purification was performed by flash column chromatography (hexane-ethyl acetate = 2:1), Compound No. A-5 (328 mg), bis(pinacolate)diboron (281 mg), PdCl₂(dppf) (61 mg) and potassium acetate (303 mg) were reacted at 80°C for 4 hours, and then this reaction mixture was added with Intermediate 105 (161 mg), PdCl₂(dppf) (64 mg) and 2 M aqueous sodium carbonate (1.5 ml), reacted at 80°C for 9 hours and treated to obtain the title compound (Compound No. V-54, 111 mg).

[Example V-55]

Synthesis of 3-[4-cyclopentyloxy-3-(1H-indazol-4-yl)phenyl]propionic acid (Compound No. V-55)

According to the procedure described in the synthesis method of Intermediate 9 provided that the reaction was carried out for 2 hours, Compound No. V-54 (108 mg) and 2 N aqueous sodium hydroxide (400 µ1) were reacted and treated to obtain the title compound (Compound No. V-55, 99 mg).

[Example V-57]

Synthesis of  $4 \cdot (4,4,5,5 \cdot \text{tetramethyl-1},3,2 \cdot \text{dioxaborolan-} 2 \cdot \text{yl}) \cdot 2 \cdot \text{methylnitrobenzene}$  (Intermediate 70)

According to the procedure described in the synthesis method of Compound No. V-22, 5-bromo-2-nitrotoluene (4.30 g) synthesized by nitrating 3-bromotoluene (WAKO) by a known method, bis(pinacolate)diboron (5.59 g), PdCl₂(dppf) (440 mg) and potassium acetate (6.09 g) were heated with stirring at 80°C for 3 hours under

argon gas atmosphere. The reaction mixture was added with ethyl acetate (300 ml), and washed successively with saturated aqueous sodium hydrogencarbonate, saturated aqueous ammonium chloride and saturated brine. The organic layer was dried, and then the solvent was evaporated under reduced pressure. The residue was purified by flash column chromatography (hexane:ethyl acetate = 8:1) to obtain the title compound (Intermediate 70, 4.21 g).

Synthesis of 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-methylaniline

Synthesis of  $4\cdot(4,4,5,5\cdot$  tetramethyl-1,3,2·dioxaborolan-2·yl)-2·methylaniline (Intermediate 71)

According to the procedure described in the synthesis method of Compound No. Q-2 with the modification that the reaction was carried out for 30 minutes, Intermediate 70 (4.20 g) and platinum oxide (50 mg) were added, then reacted and treated under hydrogen atmosphere to obtain the title compound (Intermediate 71, 2.81 g).

 $\label{eq:control_sym} Synthesis of methyl 3\cdot (4^{+}amino\cdot 6\cdot cyclopentyloxy\cdot 3^{+}methlbiphenyl\cdot 3\cdot yl) propionate (Intermediate 72)$ 

According to the procedure described in the synthesis method of Compound No. C-1 with the modifications that the reaction was carried out for 15.5 hours, and the purification was performed by column chromatography (Quad, hexane:ethyl acetate = 6:1), Compound No. A-5 (701mg), Intermediate 71 (604mg), 2 M aqueous sodium carbonate (1.8ml), and (PhsP)aPd (182mg) were reacted and treated to obtain the title compound (Intermediate 72, 762 mg).

Synthesis of methyl 3-[4-cyclopentyloxy-3-(1H-indazol-5-yl)phenyl]propionate (Compound No. V-57)

A solution of Intermediate 72 (760 mg) in acetic acid (4 ml) was added with an aqueous solution (0.7 ml) of sodium nitrite (156 mg) under ice cooling, and stirred for 30 minutes. This reaction mixture was added with urea (350 mg), warmed to room temperature, stirred for 30 minutes, then added with toluene (8

ml) and water (4 ml), and further stirred for 60 hours. The reaction mixture was extracted with toluene (50 ml x 2). The organic layer was washed successively with saturated aqueous sodium hydrogenearbonate, and saturated brine and dried, and then the solvent was evaporated under reduced pressure. The residue was purified by column chromatography (Quad, hexane:ethyl acetate = 6:1) to obtain the title compound (Compound No. V-57, 411 mg).

[Example V-58]

Synthesis of 3-[4-cyclopentyloxy-3-(1H-indazol-5-yl)phenyl]propionic acid (Compound No. V-58)

According to the procedure described in the synthesis method of Intermediate 9 provided that the reaction was carried out for 2.5 hours, Compound No. V-57 (86 mg) and 2 N aqueous sodium hydroxide (250  $\,\mu$  I) were reacted and treated to obtain the title compound (Compound No. V-58, 82 mg).

[Example V-66]

Synthesis of 5-bromo-3-methyl-1H-indazole (Intermediate 73)

According to the procedure described in the synthesis method of Compound No. V-57 provided that the reaction was carried out for 121 hours, 4-bromo-2-ethylaniline (5.01 g, LANC) and sodium nitrite (1.918 g) were reacted and treated to obtain the title compound (Intermediate 73, 3.30 g).

Synthesis of methyl 3·[4·cyclopentyloxy·3·(3·methyl·1H·indazol·5·yl)phenyl]propionate (Compound No. V·66)

According to the procedure described in the synthesis method of Compound No. V·22 provided that the purification was performed by column chromatography (Quad, hexane-ethyl acetate = 5:2), Compound No. A·5 (434 mg), bis(pinacolate)diboron (367 mg), PdCls(dppf) (101 mg), and potassium acetate (339 mg) were reacted at 80°C for 4 hours, and then this reaction mixture was added with Intermediate 108 (273 mg). PdCls(dppf) (104 mg) and 2 M aqueous sodium

carbonate (1.1 ml), reacted at 80°C for 18 hours and treated to obtain the title compound (Compound No. V·66, 98 mg).

[Example V-67]

Synthesis of 3-[4-cyclopentyloxy-3-(3-methyl-1H-indazol-5-yl)phenyl|propionic acid (Compound No. V-67)

According to the procedure described in the synthesis method of Intermediate 9 provided that the reaction was carried out for 2 hours, Compound No. V-66 (97 mg) and 2 N aqueous sodium hydroxide (400  $\,\mu$  l) were reacted and treated to obtain the title compound (Compound No. V-67, 54 mg).

Example V-68

Synthesis of methyl 3-[4-cyclopentyloxy-3-(1,3-dimethyl-1H-indazol-5vl)phenyllpropionate (Compound No. V-68)

According to the procedure described in the synthesis method of Compound No. V-29 with the modifications that the reaction was carried out for 16 hours, and the purification was performed by column chromatography (Quad, hexane ethyl acetate = 3:1), Compound No. V-66 (112 mg), 60% sodium hydride (24 mg) and methyl iodide (95 \(mu\)1) were reacted and treated to obtain the title compound (Intermediate 110, 45 mg).

[Example V-69]

Synthesis of 3-[4-cyclopentyloxy-3-(1,3-dimethyl-1H-indazol-5-yl)phenyl]propionic acid (Compound No. V-69)

According to the procedure described in the synthesis method of Intermediate 9 provided that the reaction was carried out for 3 hours, Compound No. V-68 (45 mg) and 2 N aqueous sodium hydroxide (120  $\mu$ 1) were reacted and treated to obtain the title compound (Compound No. V-69, 42 mg).

[Example V-73]

Synthesis of methyl 3-[3-(benzo[b]thiophen-5-yl)-4-

cyclopentylmethyloxyphenyllpropionate (Compound No. V-73)

According to the procedure described in the synthesis method of Compound No. V-22 provided that the purification was performed by column chromatography (Quad, hexane-ethyl acetate = 10:1), Compound No. A-1 (371 mg), bis(pinacolate)diboron (294 mg), PdCl₂(dppf) (67 mg) and potassium acetate (308 mg) were reacted at 80°C for 10 hours, and then this reaction mixture was added with 5-bromobenzolb]thiophene (301.4 mg) obtainable from 4-bromothiophenol (TCl) by a known method described in a publication (Seed, A.J., J. Mater. Chem., 2000, vol. 10, p.2069), PdCl₂(dppf) (65 mg) and 2 M aqueous sodium carbonate (0.9 ml), reacted at 80°C for 16 hours and treated to obtain the title compound (Compound No. V-73, 97 mg).

[Example V-74]

Synthesis of 3-[3-(benzo[b]thiophen-5-yl)-4-cyclopentylmethyloxyphenyllpropionic acid (Compound No. V-74)

According to the procedure described in the synthesis method of Intermediate 9 provided that the reaction was carried out for 3 hours, Compound No. V-73 (95 mg) and 2 N aqueous sodium hydroxide (250  $\mu$  l) were reacted and treated to obtain the title compound (Compound No. V-74, 93 mg).

[Example V-77]

Synthesis of (3-bromophenyl)thiourea (Intermediate 74)

A solution of 3-bromoaniline (10.89 ml, TCI) in 20% aqueous hydrochloric acid (18.2 ml) was added with ammonium thiocyanate (8.02 g, WAKO) and sodium hydrogensulfite (701 mg, WAKO), and stirred at 100°C for 22 hours. The reaction mixture was added with chloroform (20 ml) for extraction, and the organic layer was dried. Then, the solvent was evaporated under reduced pressure. The residue was purified by column chromatography (Quad, hexane:ethyl acetate = 2:1) to obtain the title compound (Intermediate 74, 4.45 g).

Synthesis of 2-amino-5-bromobenzothiazole (Intermediate 75)

A solution of Intermediate 74 (1.29 g) in chloroform (12 ml) was added dropwise with a solution of bromine (272  $\,\mu$ 1, WAKO) in chloroform (1.5 ml), refluxed by heating for 2.5 hours, and stirred at room temperature for 16 hours. The reaction mixture was concentrated under reduced pressure, neutralized with 5% aqueous ammonia, and then added with water (50 ml) and methylene chloride (150 ml) for extraction. The organic layer was dried, and then the solvent was evaporated under reduced pressure. The residue was purified by column chromatography (Quad, hexane-ethyl acetate = 2:1) to obtain the title compound (Intermediate 75, 609 mg).

Synthesis of methyl 3-[3-(2-aminobenzothiazol-5-yl)-4cyclopentylmethyloxyphenyl]propionate (Compound No. V-77)

A solution of Intermediate 75 (459.1 mg) in anhydrous THF (30 ml) was added with N,N,N',N'-tetramethylethylenediamine (1.51 ml, WAKO), cooled to '78°C under argon gas atmosphere, then added dropwise with a 1.62 M solution of the butyllithium in pentane (7.06 ml), and stirred for 30 minutes. The reaction mixture was added dropwise with (PrO)₂B (2.77 ml), stirred for 30 minutes, then warmed to room temperature, and further stirred for 1.5 hours. The reaction mixture was added with 0.5 M aqueous sulfuric acid (7.5 ml) and extracted with diethyl ether (50 ml x 3). The organic layer was washed with saturated brine and dried, and then the solvent was evaporated under reduced pressure to obtain crude 2-amino-5-benzothiazoleboronic acid. This compound was reacted with Compound No. A·1 (344 mg), 2 M aqueous sodium carbonate (4.5 ml) and (Ph₂P)₄Pd (179 mg) and treated according to the procedure described in the synthesis method of Compound No. V·3 with the modifications that the reaction was carried out for 12 hours, and the purification was performed by flash column chromatography (hexane:ethyl acetate = 2:1) to obtain the title compound (Compound No. V·77, 76

mg).

[Example V-78]

Synthesis of 3-[3-(2-aminobenzothiazol-5-yl)-4-

cyclopentylmethyloxyphenyllpropionic acid (Compound No. V-78)

According to the procedure described in the synthesis method of Intermediate 9 provided that the reaction was carried out for 2.5 hours, Compound No. V-77 (77 mg) and 2 N aqueous sodium hydroxide (380  $\mu$ 1) were reacted and treated to obtain the title compound (Compound No. V-78, 69 mg).

[Example V-79]

Synthesis of ethyl 3-[3-(benzothiazol-5-yl)-4-

cyclopentylmethyloxyphenyllpropionate (Compound No. V-79)

A solution of Compound No. V-77 (215 mg) in acetonitrile (10 ml) was added with 30% aqueous hypophosphorous acid (3 ml, WAKO), cooled to 0°C, added dropwise with an aqueous solution (1 ml) of sodium nitrite (187 mg), stirred for 30 minutes, then warmed to room temperature, and further stirred for 20 hours. The reaction mixture was poured into water (50 ml), neutralized by addition of 2 N aqueous sodium hydroxide, and added with ethyl acetate (90 ml x 3) for extraction. The organic layer was washed with saturated brine and dried, and then the solvent was evaporated under reduced pressure. The residue was purified by column chromatography (Quad, hexane ethyl acetate = 10:1) to obtain the title compound (Compound No. V-79, 78 mg).

[Example V-80]

Synthesis of 3-[3-(benzothiazol-5-yl)-4-cyclopentylmethyloxyphenyllpropionic acid (Compound No. V-80)

According to the procedure described in the synthesis method of Intermediate 9 provided that the reaction was carried out for 2 hours, Compound No. V-79 (75 mg) and 2 N aqueous sodium hydroxide (500  $\,\mu$  I) were reacted and

treated to obtain the title compound (Compound No. V-80, 66 mg).

[Example V-81]

Synthesis of methyl 3-[4-cyclopentylmethyloxy-3-(2-methylbenzothiazol-5vl)phenyl|propionate (Compound No. V-81)

According to the procedure described in the synthesis method of Compound No. V-13 with the modifications that the reaction was carried out for 13 hours, and the purification was performed by flash column chromatography (hexane-ethyl acetate = 5:1), crude 2-methyl-5-benzothiazoleboronic acid prepared from 5-bromo-2-methylbenzothiazole (684 mg, TCI), a 1.7 M solution of t-butyllithium in pentane (7.06 ml) and (PrO)₃B (3.46 ml), Compound No. A-1 (515 mg), 2 M aqueous sodium carbonate (6.5 ml) and (Ph₃P)₄Pd (258 mg) were reacted and treated to obtain the title compound (Compound No. V-81, 240 mg).

[Example V-82]

Synthesis of 3-[4-cyclopentylmethyloxy-3-(2-methylbenzothiazol-5-yl)phenyllpropionic acid (Compound No. V-82)

According to the procedure described in the synthesis method of Intermediate 9 provided that the reaction was carried out for 4 hours, Compound No. V-81 (227 mg) and 2 N aqueous sodium hydroxide (1.11 ml) were reacted and treated to obtain the title compound (Compound No. V-82, 132 mg).

Example V-831

Synthesis of ethyl 3-{4-cyclopentylmethyloxy-3-[2-(N,N-dimethylamino)benzothiazol-6-yllphenyl}propionate (Compound No. V-83)

According to the procedure described in the synthesis method of Compound No. V-29 with the modifications that the reaction was carried out for 4 hours, and the purification was performed by column chromatography (Quad, hexane-ethyl acetate = 7:1), Compound No. V-77 (155 mg), 60% sodium hydride (16 mg) and methyl iodide (68.5 µ 1) were reacted and treated to obtain the title compound

(Compound No. V-83, 48 mg).

[Example V-84]

Synthesis of 3-[4-cyclopentylmethyloxy-3-[2-(N,N-dimethylamino)benzothiazol-6yllphenyllpropionic acid (Compound No. V-84)

According to the procedure described in the synthesis method of Intermediate 9 provided that the reaction was carried out for 3 hours, Compound No. V-83 (47 mg) and 2 N aqueous sodium hydroxide (200  $\,\mu$  l) were reacted and treated to obtain the title compound (Compound No. V-84, 35 mg).

[Example V-88]

Synthesis of ethyl 3·[3·(2·bromobenzothiazol·6·yl)·4· cyclohexylmethyloxyphenyl]propionate (Intermediate 76)

A solution obtained beforehand by adding t-butyl nitrite (178  $\mu$  l, TCI) and copper(I) bromide (241 mg, WAKO) to acetonitrile (10 ml) and mixing them was added dropwise with a solution of Compound No. V-83 (381 mg) in acetonitrile (5 ml) and stirred at room temperature for 1.5 hours. The solvent of the reaction mixture was concentrated under reduced pressure, and the residue was purified by column chromatography (Quad, hexane-ethyl acetate = 10:1) to obtain the title compound (Intermediate 76, 341 mg).

Synthesis of 3-[4-cyclopentylmethyloxy-3-(2-methoxybenzothiazol-6vl)phenyllpropionic acid (Compound No. V-88)

According to the procedure described in the synthesis method of Intermediate 9 provided that the reaction was carried out for 18 hours, Intermediate 76 (169 mg) and 2 N aqueous sodium hydroxide (500  $\mu$  I) were reacted and treated to obtain the title compound (Compound No. V-88, 114 mg). [Example V-89]

Synthesis of 3·[4-cyclopentylmethyloxy-3-(2-oxo-2,3-dihydrobenzothiazol-6-yl)phenyllpropionic acid (Compound No. V-64)

A solution of Intermediate 76 (202 mg) in ethanol (8 ml) was added with 5 N aqueous hydrochloric acid (1.5 ml), and stirred at 80°C for 18.5 hours. The reaction mixture was concentrated under reduced pressure, and added with water (20 ml) and ethyl acetate (80 ml) for extraction. The organic layer was washed with saturated brine and dried, and then the solvent was evaporated under reduced pressure. The residue was added with 2 N aqueous sodium hydroxide (1.0 ml), reacted and treated according to the procedure described in the synthesis method of Intermediate 9 provided that the reaction was carried out for 2 hours to obtain the title compound (Compound No. V-89, 250 mg).

[Example V-91]

Synthesis of 3·[4-cyclopentylmethyloxy·3·(2-thioxo·2,3-dihydrobenzothiazol·6yl)phenyl]propionic acid (Compound No. V·91)

A solution obtained beforehand by adding thiourea (52 mg, WAKO) to 1 M sulfuric acid (5 ml) and mixing them was added with a solution of Intermediate 76 (101 mg) in acetonitrile (5 ml), and stirred at 90°C for 20 hours. The reaction mixture was poured into water (20 ml), neutralized by addition of 1 N aqueous sodium hydroxide under ice cooling, and then extracted with ethyl acetate (80 ml x 3). The organic layer was washed with saturated brine and dried, and then the solvent was evaporated under reduced pressure. The residue was purified by column chromatography (Quad, methylene chloride:ethanol = 30:1) to obtain the title compound (Compound No. V-91, 46 mg).

Synthesis examples for compounds used for preparation of the compounds mentioned in the examples are shown below.

Syntheses of 4-bromo·1-methyl-1H-indazole (Intermediate 77) and 4-bromo·2-methyl-2H-indazole (Intermediate 78)

According to the procedure described in the synthesis method of Compound

No. V-29 with the modifications that the reaction was carried out for 8 hours, and

the purification was performed by column chromatography (Quad, bexane:ethyl acetate = 5:1), Intermediate 69 (600 mg), 60% sodium hydride (191 mg), and methyl iodide (379  $\mu$ l) were reacted and treated to obtain the title compounds (Intermediate 119, 432mg and Intermediate 120, 164 mg). Synthesis of 5-bromo-1H-indazole (Intermediate 79)

The title compound (Intermediate 121, 0.91 g) was obtained from commercially available 4-bromotoluidine (3.33 g, Ald) by a method known from the aforementioned literature (Bioorg. Med. Chem. Lett., 2001, vol. 11, p.1153).

Syntheses of 5-bromo-1-methyl-1H-indazole (Intermediate 80) and 5-bromo-2-methyl-2H-indazole (Intermediate 81)

According to the procedure described in the synthesis method of Compound No. V-29 with the modifications that the reaction was carried out for 4.5 hours, and the purification was performed by column chromatography (Quad, hexane:ethyl acetate = 5:1), Intermediate 79 (300 mg), 60% sodium hydride (80 mg), and methyl iodide (161  $\mu$  I) were reacted and treated to obtain the title compounds (Intermediate 80, 201mg and Intermediate 81, 87 mg).

According to the procedure described in the synthesis method of Compound No. V-3, Intermediate 80 (1.69 g), a 1.6 M solution of n-butyllithium in hexane (7.50 ml) and (PrO)₃B (3.23 ml) were reacted and treated to obtain the title compound (Intermediate 82, 1.39 g).

Synthesis of 1-methyl-1H-indazole-5-boronic acid (Intermediate 82)

Syntheses of 5-bromo·1·ethyl·1H-indazole (Intermediate 83) and 5-bromo·2·ethyl·2H-indazole (Intermediate 84)

According to the procedure described in the synthesis method of Compound No. V-29 with the modifications that the reaction was carried out for 2 hours, and the purification was performed by column chromatography (Quad, hexane-ethyl acetate = 5:1). Intermediate 79 (420 mg), 60% sodium hydride (111 mg), and ethyl

iodide (375  $\,\mu$  I) were reacted and treated to obtain the title compounds (Intermediate 83, 250mg and Intermediate 84, 127 mg). Synthesis of 6-brome-1H-indazole (Intermediate 85)

The title compound was obtained from commercially available 5-bromotoluidine (3.33 g, Ald) by the method known from the aforementioned literature (Bioorg. Med. Chem. Lett., 2001, vol. 11, p.1153) to obtain the title compound (Intermediate 85, 0.42 g).

Syntheses of 6-bromo-1-methyl-1H-indazole (Intermediate 86) and 6-bromo-2methyl-2H-indazole (Intermediate 87)

According to the procedure described in the synthesis method of Compound No. V-29 with the modifications that the reaction was carried out for 2.5 hours, and the purification was performed by column chromatography (Quad, hexane-ethyl acetate = 5:1), Intermediate 85 (277 mg), 60% sodium hydride (86 mg), and methyl iodide (175  $\mu$  I) were reacted and treated to obtain the title compounds (Intermediate 86, 196 mg and Intermediate 87, 89 mg).

Synthesis of 5-bromo-2-t-butylthiobenzaldehyde (Intermediate 88)

A solution of 5-bromo-2-fluorobenzaldehyde (4.06 g, Avocado) in 2-propanol (20 ml) was added with 2-methyl-2-propanethiol (2.26 ml, Ald) and potassium carbonate (3.04 g), and heated with stirring for 18 hours. The reaction mixture was cooled to room temperature, then poured into water (50 ml), and extracted with chloroform (75 ml x 3). The organic layer was washed twice with saturated brine and dried, and then the solvent was evaporated under reduced pressure. The residue was purified by flash column chromatography (hexane:ethyl acetate = 20:1) to obtain the title compound (Intermediate 88, 754 mg).

Synthesis of 5-bromobenzo[d]isothiazole (Intermediate 89)

A solution obtained beforehand by mixing 2 N aqueous sodium hydroxide (2.19 ml) in an aqueous solution (5 ml) of hydroxylamine hydrochloride (308 mg,

WAKO) was added dropwise to a solution of Intermediate 88 (401 mg) in ethanol (5 ml) at room temperature over 15 minutes. The reaction mixture was refluxed by heating for further 2 hours, then cooled to room temperature, poured into water (30 ml), and extracted with ethyl acetate (100 ml x 3). The organic layer was washed successively with aqueous saturated ammonium chloride aqueous, saturated aqueous sodium hydrogenearbonate, and saturated brine and dried, and then the solvent was evaporated under reduced pressure. The residue was added with polyphosphoric acid (21.4 g), and heated with stirring at 100°C for 2 hours. The reaction mixture was poured into ice water (100 ml), neutralized with 5 N aqueous sodium hydroxide under ice cooling, and then extracted with ethyl acetate (100 ml x 3). The organic layer was washed twice with saturated brine and dried, and then the solvent was evaporated under reduced pressure. The residue was purified by flash column chromatography (hexane-ethyl acetate = 20:1) to obtain the title compound (Intermediate 89, 143 mg).

Synthesis of 5-bromobenzo[c]isothiazole (Intermediate 90)

A solution of methanesulfonamide (5.34 g, TCI) in dehydrated benzene (9 ml) was added with thionyl chloride (6.0 ml) under ice cooling, and refluxed by heating for 24 hours. The reaction mixture was concentrated under reduced pressure, and a solution of the residue in dehydrated benzene (4 ml) was added dropwise to a solution of 4-bromotoluidine (1.49 g) in dehydrated benzene (40 ml) under ice cooling. This mixture was added dropwise with a solution of pyridine (0.97 ml) in dehydrated benzene (4 ml) under ice cooling, and refluxed by heating for 80 hours under argon gas atmosphere. The reaction mixture was cooled to room temperature, poured into water (100 ml), and extracted with chloroform (100 ml x 3). The organic layer was dried, and then the solvent was evaporated under reduced pressure. The residue was purified by flash column chromatography (hexane-ethyl acetate = 10:1) to obtain the title compound (Intermediate 90, 618

mg).

Synthesis of 6-bromoimidazo[1,2-a]pyridine (Intermediate 91)

The title compound (Intermediate 91, 3.36 g) was obtained from commercially available bromoacetaldehyde diethylacetal (4.7 ml, WAKO) and 2-amino 5-bromopyridine (4.32 g, Ald) by a known method described in a publication (Yamanaka, M. et al., Chem. Pharm. Bull., 1991, vol. 39, p.1556).

Synthesis of 5-bromo-1H-pyrrolo[2,3-b]pyridine (Intermediate 92)

The title compound (Intermediate 92, 182 mg) was obtained from commercially available 1H-pyrrolo[2,3-b]pyridine (1.3 g, TCI) by a known method described in a publication (Mazeas, D. et al, Heterocycles, 1999, vol. 50, p.1065).

Synthesis of 5-bromo-1-methyl-1H-pyrrolo[2,3-b]pyridine (Intermediate 93)

According to the procedure described in the synthesis method of Compound No. V-29 with the modifications that the reaction was carried out for 2 hours, and the purification was performed by column chromatography (Quad, hexane ethyl acetate = 15:1), Intermediate 92 (98 mg), 60% sodium hydride (33 mg), and methyl iodide (53 µ l) were reacted and treated to obtain the title compound (Intermediate 93.88 mg).

Synthesis of 6-bromoisoquinoline (Intermediate 94)

The title compound (Intermediate 94, 1.46 g) was obtained from commercially available 4-bromobenzaldehyde (15.0 g, WAKO) by a known method described in a publication (Nerenz, H. et al., J. Chem. Soc. Perkin Trans. 2, 1998, p.437].

Synthesis of 6-bromo-2H-isoquinolin-1-one (Intermediate 95)

A solution of Intermediate 94 (1.04 g) in methylene chloride (3 ml) was added with a solution of 3-chloroperbenzoic acid (2.16 g) in methylene chloride (3 ml), and stirred for 20 hours. The reaction mixture was added with methylene chloride (200 ml), and washed successively with saturated aqueous sodium

hydrogenearbonate, saturated aqueous ammonium chloride and saturated brine. The organic layer was dried, and then the solvent was evaporated under reduced pressure. A solution of the residue in acetic anhydride (10 ml) was refluxed by heating for 5 hours. The reaction mixture was concentrated under reduced pressure, and then the residue was added with 2.5 N aqueous sodium hydroxide (20 ml), and stirred at 100°C for 1 hour. The reaction mixture was cooled to room temperature, and neutralized with 5 N aqueous hydrochloric acid under ice cooling to obtain the precipitated title compound (Intermediate 95, 623 mg).

[Examples V-1 to V-115]

Typical examples of the compounds of the present invention that can be obtained by reacting and treating corresponding starting compounds using any of the methods described in the present specification including the examples described above are shown in Table V-1 to Table V-3.

Table-V-1

Table-		Y	-7	40			LCM	S
Ехр.	RxO		Zx	AR	Syn	method	RTime	Mass
V-1	cHexMeO	Et	H	1-Nap	V-1_			
V-2	cHexMe0	H	Н	1-Nap	V-2	С		375 (M+1)
V-3	cPenMeO	Me.	H	6OH-2-Nap	V-3			
V-4	cPenMe0	Н	Н	6OH-2-Nap	V-4			
V-5	cPenMe0	Me	H	50H-2-Nap	V-5			
V-6	cPenMeO	H	Н	50H-2-Nap	V-6			
V-7	cPenMe0	Me	Ŧ	70H-2-Nap	V-7			
V-8	cPenMeO	H	H	70H-2-Nap	V-8			
V-9	cPenMe0	Me	Н	6OMe-2-Nap	V-1			
V-10	cPenMeO	Н	Н	6OMe-2-Nap	V-2	С		418(M*)
V-11	cPenMe0	Ме	Ŧ	6(OCH ₂ CONMe ₂ )-2-Nap	V-11			
V-12	cPenMe0	Н	H	6(OCH ₂ CONMe ₂ )-2-Nap	V-12			
V-13	cPenMe0	Me	Н	6NH ₂ -2-Nap	V-13			
V-14	cPenMeO	Н	Н	6NH ₂ -2-Nap	V-14			
V-15	oPenMe0	Н	Η	6(NMe ₂ )-2-Nap	V-13,V-14	С		418(M*+1)
V-16	cPenMe0	H	Н	6(NHCOCH ₂ OH)-2-Nap	V-16			
V-17	cPenMe0	н	Н	6(NHCO-2-Furan)-2-Nap	V-16	С		484(M*+1)
V-18	cPenMeO	Me	Н	6(NHSO ₂ Me)-2-Nap	V-18			
V-19	cPenMeO	Н	Н	6(NHSO ₂ Me)-2-Nap	V-19			
V-20	cPenMeO	Me	Н	6(NHSO ₂ NMe ₂ )-2-Nap	V-20			
V-21	cPenMeO	Н	H	6(NHSO ₂ NMe ₂ )-2-Nap	V-21			
V-22	cPenMeO	Me	Н	6(NHSO ₂ NH ₂ )-2-Nap	V-22			
V-23	cPenMeO	Н	H	6(NHSO ₂ NH ₂ )-2-Nap	V-23			
V-24	cPenMeO	н	Н	6(SO ₂ Me)-2-Nap	V-22,V-23	С		452(M*)
V-25	cPenMeO	H	Н	6(SO ₂ NH ₂ )-2-Nap	V-22.V-23	0		453(M ⁺ )
V-26	cPenMe0	H	Н	6(SO ₂ NHMe)-2-Nap	V-22,V-23	С		468(M+1)
V-27	cPenO	Me	Н	5-Ind	V-27			
V-28	cPenO	Н	H	5-Ind	V-28			
V-29	cPen0	Me	H	1Me-5-Ind	V-29			
V-30	cPen0	Н	Н	1Me-5-Ind	V-30			
V-31	cPenMe0	Me	L H	4-Ind	V-31			
V-32	cPenMe0	H	Н	4-Ind	V-32			
V-33	cPenMe0	Me	H	1Me-4-Ind	V-33			
V-34	cPenMe0	Н	Н	1Me-4-Ind	V-34			
V-35	cPenMe0	Н	H	6-Ind	V-31,V-32	С		377(M ⁺ )
V-36	cPenMeO	Н	H	1-Me-6-Ind	V-33.V-34			
V-37	cPenMeO	Н	H	2-Ind	V-31,V-32	Α	5.35	364(M+1)
V-38	cPenMeO	Н	Н	1Me-2-Ind	V-29,V-30			
V-39	cPenMeO	H	H	3-Ind	V-31,V-32			
V-40	cPenMeO	Н	Н	1 Me-3-Ind	V-29,V-30			363(M+1)
V-41	cPenMeO	Н	Н	1iPr-5-Ind	V-29,V-30	С		405(M ⁺ )_
V-42	cPenMeO	Н	Н	1 cPen-5-Ind	V-29,V-30	С		431(M ⁺ )
V-43	cPenMeO	H	Н	1-(20HEt)-5-Ind	V-43			

Table-	V-2							
V-44	cPenMeO	Me	Н	3CHO-5-Ind	V-44			
V-45	oPenMeO	Н	Н	3CHO-5-Ind	V-45			
V-46	oPenMeO	Н	Н	3CHO,1Me-5-Ind	V-29.V-30	C		406(M+1)
V-47	cPenMeO	Me	Н	3Ac-5-Ind	V-47			
V-48	cPenMeO	Н	Н	3Ac-5-Ind	V-48			
V-49	cPenMeO	Н	Н	3Ac,1Me-5-Ind	V-29,V-30	С		420(M+1)
V-50	cPenMeO	Me	Н	3Me-5-Ind	V-50			
V-51	cPenMeO	Н	Н	3Me-5-Ind	V-51			
V-52	cPenMeO	Н	Н	1,3DMe-5ind	V-29,V-30	С		391(M ⁺ )
V-53	cPenMeO	Н	Н	1,2,3triMe-5Ind	V-22,V-29,V-30	С		405(M*)
V-54	cPenO	Me	Н	4-1 HIdz	V-54			
V-55	cPenO	Н	Н	4-1HIdz	V-55			
V-56	cPenO	Н	H	1Me-4-1Hldz	V-29,V-30			
V-57	cPenO '	Me	Н	5-1 HIdz	V-57			
V-58	cPenO	Н	Н	5-1HIdz	V-58			
V-59	cPenO	Н	Н	1Me-5-1Hldz	V-29,V-30			
V-60	cPenO	Н	H	1Et-5-1Hldz	V-29,V-30			
V-61	cPenO	Н	Н	1Pr-5-1HIdz	V-29,V-30			
V-62	cPenO	Н	I	2Me-5-2HIdz	V-29,V-30			l
V-63	cPenMeO	Н	Н	6-1HIdz	V-57,V-58			
V-64	cPenMeO	Н	H	1Me-6-1Hldz	V-29,V-30			
V-65	cPenMeO	H	Н	1Et-5-1HIdz	V-29,V-30			
V-66	cPenO	Me	Ή	3Me-5-1HIdz	V-66			
V-67	cPenO	Н	Н	3Me-5-1HIdz	V-67			
V-68	cPenO	Me	Н	1,3DMe-5-1HIdz	V-68_			
V-68	cPenO	Н	H	1,3DMe-5-1HIdz	V-69			
V-69	cPenO	Н	Н	3(CHO)-5-1HIdz	V-22,V-23			
V-70	cPenO	Н	Н	3(CHO),1 Me-5-1 HIdz	V-22,V-23	Α	4.38	365(M*+1)
V-71	cPenO	Н	Н	3OH-5-1HIdz	V-22.V-23			
V-72	cPenO	Н	Н	30H,1Me-5-1Hldz	V-22,V-23	Α	3.71	381(M ⁺ +1)
V-73	cPenMeO	Me	H	5-BT	V-73			
V-74	cPenMeO	Н	Н	5-BT	V-74			
V-75	cPenMeO	Н	H	5-BF	V-22,V-23	C		378(M ⁺ )
V-76	cPenMeO	Н	Н	2,3DMe-5-BF	V-22,V-23	C		406(M ⁺ )_
V-77	cPenMeO	Me	H	5-2ABzt	V-77			
V-78	cPenMeO	Н	Н	5-2ABzt	V-78			
V-79	cPenMeO	Et	Н	5-Bzt	V-79			
V-80	cPenMeO	H	Н	5-Bzt	V-80			
V-81	cPenMeO	Me	H	2Me-5-Bzt	V-81			
V-82	cPenMeO	H	H	2Me-5-Bzt	V-82			
V-83	cPenMeO	Et	H	2,2DMe-5-2ABzt	V-83			
V-84	cPenMeO	Н	Н	2,2DMe-5-2ABzt	V-84			
V-85	cPenMeO	Н	Н	6-2ABzt	V-77,V-78			397(M ⁺ +1)
V-86	cPenMeO	Н	Н	6-Bzt	V-79,V-80	С		453(M ⁺ +1)
V-87	cPenMeO	н	Н	2Me-6-Bzt	V-81,V-82	C_		410(M+1)
V-88	cPenMeO	Н	Н	MeO-S	V-88			
V-89	cPenMeO	Н	н	~\O`	V-89			

Table-\	/-3							
V-90	cPenMeO	н	Н	~\T\)	V-29,V-30	С		412(M ⁺ +1)
V-91	cPenMeO	н	Н	=\\(\frac{1}{2}\)	V-91	С		414(M ⁺ +1)
V-92	cPenMeO	Н	Н	NSO'	V-29,V-30	С		425(M ⁺ +1)
V-93	cPenO	Н	Н	r\$CCX	V-22,V-23	В	3.87	368(M ⁺ +1)
V-94	cPenO	н	Н	S T	V-22,V-23	В	3.58	368(M ⁺ +1)
V-95	cPenO ·	Н	Н	(10)	V-22,V-23	Α	2.57	315(M*+1)
V-96	cPenO	н	Н	Ŧ	V-22,V-23	Α	3.84	351(M ⁺ +1)
V-97	cPenO	Н	Н	(A)	V-29,V-30	Α	4.28	365(M*+1)
V-98	cPenMeO	Н	Н	3-Qu	V-22,V-23	С		376(M*+1)
V-99	cPenMeO	Н	Н	6-Qu	V-22,V-23	С		376(M+1)
V-100	cPenO	Н	Н	6-IQ	V-22,V-23	Α .	2.15	452(M°+1)
V-101	cPenO	Н	Н	HI TO	V-22,V-23	Α	3.74	378(M*+1)
V-102	cPenMeO	Н	Н	3	V-22,V-23	С		378(M ⁺ +1)
V-103	cHexMeO	Et	Н	+\$\$	V-33	С		406(M ⁺ )
V-104	cHexMeO ·	Н	Н	\$	V-34	С		378(M ⁺ +1)
V-105	cHexMeO	Et	Н	+ <u>\$</u> \$\$	V-33	С		422(M ⁺ )
V-106	cHexMeO	Н	Н	+ÇX)	V-34	С		394(M [†] )
V-107	cHexMeO	Н	н	HQ HA	V-22,V-23	С		455(M ⁺ +1)
V-108	cHexMeO	Н	Н	SHAP Y	V-22,V-23	С		495(M ⁺ +1)
V-109	cHexMeO	н	Н		V-22,V-23	С		487(M ⁺ +1)
V-110	cPenO	Н	Н	3(COOH),1Me-7-1Hldz	V-22,V-23	Α	3.99	409(M+1)
V-111	cPenO	Н	Н	3(COOH),1Me-5-1HIdz	V-22,V-23	Α	3.75	409(M+1)
V-112	cPenO	Н	Н	3(COOH),2Me-5-2HIdz	V-22,V-23	Α	3.96	409(M+1)
V-113	cPenO	Н	Н	3(COOH),2Me-7-2HIdz	V-22,V-23	Α	3.80	409(M+1)
V-114	cPenO	Н	Н	3(COOH)-7-1Hldz	V-22,V-23	Α	3.66	395(M*+1)
V-115	cPenO	Н	Н	3(OOOH)-5-1Hldz	V-22,V-23	Α	3.49	395(M+1)

[Examples W-1 to W-25]

Synthesis of 6-bromocinnoline (Intermediate 96)

The title compound (Intermediate 96, 134 mg) was obtained from commercially available 4-bromo-2-iodoaniline (711 mg, Ald) by a method known from literature (Kimball, D. et al., Organic Letter, 2000, p.3825).

Synthesis of 7-bromoquinazoline (Intermediate 97)

The title compound (Intermediate 97, 921 mg) was obtained from commercially available quinazoline (2.11 g, WAKO) by a known method described in a publication (Dalby, B. et al., Synthesis, 2002, p.83).

Typical examples of the compounds of the present invention that can be obtained by reacting and treating corresponding starting compounds using any of the methods described in the present specification are shown in Table-W-1 and Table-W-2.

Table-W-1

Table-\		-					LCMS	3
Exp.	RxO	Υ	Zx	AR	Syn	method	RTime	Mass
W-1	cPenMeO	Н	Н		V-22,V-23	С		366(M ⁺ +1)
W-2	cPenMeO	Н	Н	s\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	V-22,V-23	С		383(M ⁺ +1)
W-3	cPenMeO	н	н		V-22,V-23	С		365(M ⁺ +1)
W-4	cPenMeO	Н	н	We-AND.	V-22,V-23	С		380(M ⁺ +1)
W-5	cPenMeO	Н	Н		V-22,V-23	С		366(M ⁺ +1)
W-6	cPenMeO	Н	Ĥ	Me N	V-22,V-23	С		380(M°+1)
W-7	cPenMeO	Н	Н	H≥N-N-N-T	V-22,V-23	С		381(M*+1)
W-8	cPenMeO	Н	н		V-22,V-23	С		398(M ⁺ +1)
W-9	cPenMeO	Н	н	-50	V-22,V-23	С		382(M ⁺ +1)
W-10	cPenMeO	н	н	ÇO"	V-22,V-23	С		366(M ⁺ +1)
W-11	cPenMeO	н	Н		V-22,V-23	С		377(M ⁺ +1)
W-12	cPen0	н	н		V-22,V-23	A	3.97	363(M ⁺ +1)
W-13	cPenO	Н	н		V-22,V-23	A	4.06	363(M*+1)
W-14	oPenMeO	Н	Н	HW- CO	V-22,V-23	С		380(M*+1)
W-15	cPen0	н	Н	\D``	V-22,V-23	С		355(M ⁺ +1)
W-16	cPenMeO	Н	Н	= C)	V-22,V-23	С		397(M ⁺ +1)
W-17	cPenMeO	Н	Н	-LO's	V-22,V-23	С		381(M*+1)
W-18	cPenMeO	н	Н	-\$\$\$	V-22,V-23	С		380(M*+1)

Table-	N-2						
W-19	cPenMeO	н	н	H ₂ N-CYZY	V-22,V-23	С	381(M ⁺ +1)
W-20	cPenMeO	н	н	2=\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	V-22,V-23	С	398(M ⁺ +1)
W-21	cPenMeO	н	Н	- D	V-22,V-23	С	382(M ⁺ +1)
W-22	cPen0	Н	н	PD'	V-22,V-23	С	351(M ⁺ +1)
W-23	cPen0	н	н	, The	V-22,V-23	c	353(M ⁺ +1)
W-24	cPen0 '	Н	Н	N.K.	V-22,V-23	С	353(M ⁺ +1)
W-25	cPen0	н	н	-\T)	V-22,V-23	С	367(M ⁺ +1)

[Example X-1]
Synthesis of ethyl 3-[2-cyclopentyloxy-5-(naphthalen-2-yl)phenyl]acrylate
(Intermediate 98)

According to the procedure described in the synthesis method of Intermediate 7 provided that the reaction was carried out for 1 hour, Compound No. D·20 (396 mg), ethyl diethylphosphonoacetate (288  $\mu$  I), and 60% sodium hydride (59 mg) were reacted and treated to obtain the title compound (Intermediate 98, 428 mg).

Synthesis of ethyl 3-[2-cyclohexylmethyloxy-5-(naphthalen-1-yl)phenyl]propionate (Compound No. X-1)

According to the procedure described in the synthesis method of Intermediate B-99 with the modifications that the reaction was carried out at 50°C for 5 hours, and the purification was performed by column chromatography (Quad, hexane-ethyl acetate = 10:1), Intermediate 98 (361 mg) and Raney 2800 nickel (380 mg) were reacted and treated to obtain the title compound (Compound No. X·1, 397 mg).

## [Example X-2]

Synthesis of 3-[2-cyclohexylmethyloxy-5-(naphthalen-1-yl)phenyl]propionic acid (Compound No. X-2)

According to the procedure described in the synthesis method of Intermediate 9 provided that the reaction was carried out for 2.5 hours, Compound No. X·1 (390 mg) and 2 N aqueous sodium hydroxide (1.1 ml) were reacted and treated to obtain the title compound (Compound No. X·2, 338 mg).

[Examples X·1 to X·4]

Typical examples of the compounds of the present invention that can be obtained by reacting and treating corresponding starting compounds using any of the methods described in the present specification including the examples described above are shown in Table X-1.

[Reference Examples: Intermediates Aa·1 to Aa·47]

Synthesis of methyl 3·[3·(naphthalen·2·yl)·4-trifluoromethanesulfonylphenyllpropionate (Intermediate Aa·1)

A solution of Intermediate 41 (4.34 g) in dehydrated pyridine (120 ml) was added with trifluoromethanesulfonic anhydride (2.6 ml, ALD) under ice cooling, then warmed to room temperature, and stirred for 4 hours. The reaction mixture was concentrated under reduced pressure, and then extracted with ethyl acetate (800 ml). The organic layer was washed successively with 1 N hydrochloric acid, saturated agueous ammonium chloride and saturated brine, and dried, and then

the solvent was evaporated under reduced pressure. The residue was purified by flash column chromatography (hexane ethyl acetate = 6:1) to obtain the title compound (Intermediate Aa·1, 4.98 g).

Typical examples of the reaction intermediates including those mentioned above, that can be obtained by reacting and treating corresponding starting compounds according to the synthesis method of Intermediate Aa·1, are shown in Table·Aa·1.

In the column indicated as "Mass" in the table, data of mass spectra measured by fast atom bombardment mass spectrometry (FAB-MS) are shown.

	F ₃ CSOO-Me												
Table-A		AR											
Exp.	AR	Mass	Exp.	AR	Mass								
Aa−1	2-Nap	439 (M*+1)	Aa-25	1Me-4-1HIdz	443 (M*+1)								
Aa−2	5-Ind	428 (M*+1)	Aa-26	5-1HIdz	429 (M*+1)								
Aa-3	1Me-5-Ind	442 (M*+1)	Aa-27	1Me-5-1Hldz	443 (M ⁺ +1)								
Aa-4	5-1Hldz	429 (M*+1)	Aa-28	1Et-5-1HIdz	457 (M ⁺ +1)								
Aa-5	1 Me-5-1 HIdz	443 (M*+1)	Aa-29	1Pr-5-1HIdz	471 (M*+1)								
Aa-6	5-BF	432 (M*+1)	Aa-30	2Me-5-2HIdz	443 (M*+1)								
Aa-7	3-Qu	440 (M*+1)	Aa-31	6-1HIdz	429 (M*+1)								
Aa-8	1-Nap	439 (M*+1)	Aa-32	1Me-6-1Hldz	443 (M*+1)								
Aa-9	6(MeO)-2-Nap	469 (M+1)	Aa-33	3Me-5-1HIdz	443 (M*+1)								
Aa-10	6(NMe ₂ )-2-Nap	482 (M*+1)	Aa-34	1,3DMe-5-1HIdz	457 (M'+1)								
Aa-11	4-Ind	428 (M*+1)	Aa-35	5-BT	445 (M+1)								
Aa-12	1Me-4-Ind	442 (M°+1)	Aa-36	2,3DMe-5-BF	457 (M+1)								
Aa-13	6-Ind	428 (M*+1)	Aa-37	5-2ABzt	461 (M*+1)								
Aa-14	1Me-6-Ind	442 (M*+1)	Aa-38	5-Bzt	456 (M+1)								
Aa-15	2-Ind	428 (M*+1)	Aa-39	2Me-5-Bzt	460 (M+1)								
Aa-16	1Me-2-Ind	442 (M*+1)	Aa-40	2,2DMe-5-2ABzt	489 (M*+1)								
Aa-17	3-Ind	428 (M*+1)	Aa-41	6-2ABzt	461 (M*+1)								
Aa-18	1Me-3-Ind	442 (M*+1)	Aa-42	6-Bzt	456 (M+1)								
Aa-19	1iPr-5-Ind	470 (M*+1)	Aa-43	2Me-6-Bzt	460 (M+1)								
Aa-20	1cPen-5-Ind	496 (M*+1)	Aa-44	6-Qu	440 (M*+1)								
Aa-21	3Me-5-Ind	442 (M°+1)	Aa-45	6-IQ	440 (M*+1)								
Aa-22	1,3DMe-5Ind	456 (M*+1)	Aa-46	2-BF	429 (M*+1)								
Aa-23	1,2,3triMe-5Ind	470 (M*+1)	Aa-47	2-BT	445 (M+1)								
Aa-24	4-1HIdz	429 (M*+1)											

Example Ca-1]

Synthesis of methyl 3-[4-(phenyl)-3-(naphthalen-2-yl)phenyl]propionate (Compound No. Ca-1)

Compound No. Aa·1 (138.4 mg, corresponding to the substance mentioned in the column of SM1 in Table·Ca·1 mentioned later), phenylboronic acid (71.3 mg, corresponding to the substance mentioned in the column of SM 2 mentioned in Table·Ca·1 mentioned later), cesium carbonate (254.9 mg), PdCl:(dppf) (25.6 mg) were added with toluene (600  $\mu$ l), methanol (1.2 ml), and water (1.2 ml), and stirred at 80°C for 17 hours under nitrogen atmosphere. The reaction mixture was added with ethyl acetate (30 ml), washed successively with water and saturated brine. The organic layer was dried, and then the solvent was evaporated under reduced pressure. The residue was purified by flash column chromatography (hexane:ethyl acetate = 8:1) to obtain the title compound (Compound No. Ca·1, 140.6 mg).

[Example Ca-2]

Synthesis of 3-[4-phenyl-3-(naphthalen-2-yl)phenyllpropionic acid (Compound No. Ca-2)

A solution of Compound Ca-1 (137.7 mg) in methanol (4.0 ml) was added with 2 N aqueous sodium hydroxide (720  $\mu$  l), and stirred at 60°C for 16 hours. The reaction mixture was concentrated under reduced pressure, then made acidic with 5% aqueous hydrochloric acid under ice cooling, and extracted with ethyl acetate (50 ml). The organic layer was washed with saturated brine, and dried, and then the solvent was evaporated under reduced pressure to obtain the title compound (Compound No. Ca-2, 108 mg).

[Examples Ca-1 to Ca-270 and Examples Cb-1 to Cb-95]

Typical examples of the compounds of the present invention including those mentioned in the examples described above, that can be obtained by reacting and treating corresponding starting compounds according to the methods described in

Examples Ca·1 and Ca·2, are shown in Table-Ca·1 to Table-Ca·5, Table-Cb·1 and Table-Cb·2.

The substances mentioned in the columns of "SM1" in the tables correspond to reaction intermediates, and those mentioned in the columns of "SM2" in the tables correspond to the boronic acid reagent used in Example Ca·1. The boronic acid reagents shown with the symbols of "BRA (number)" mentioned in the columns of "SM2" are those mentioned in Table Ba·1 and Table Ba·2. The regents for which cells of the columns of "Manufacturer" in the tables are blank are synthesized according to a method described in ordinary chemical literatures.

Table-Ba-1

				Name of reagent	Manufacturer
BRA1	Naphthalene-2-boronic acid	TCI		Cyclopropyl boronic acid	
BRA2	(1H-Indol-5-yl) boronic acid	Frontier	BRA24	6-Ethoxynaphthalene-2- boronic acid	Ald
BRA3	(1-Methyl-1H-indol- 5-yl) boronic acid	Frontier	BRA25	Benzo[b]thiophene- 2-boronic acid	LANC
BRA4	(1-Ethyl-1H-indol- 5-yl) boronic acid		BRA26	Pyridine-4-boronic acid	ALD
BRA5	(1H-Indazol-5-yl) boronic acid		BRA27	Dibenzofuran-2-boronic acid	Ald
BRA6	(1-Methyl-1H-indazol- 5-yl ) boronic acid		BRA28	Cyclopentyl boronic acid	LANC
BRA7	(1-Ethyl-1H-indazol- 5-yl) boronic acid			4-Methylphenyl boronic acid	Ald
BRA8	(2-Methyl-2H-indazol- 5-yl) boronic acid			4-Chlorophenyl boronic aoid	Ald
BRA9	Benzothiazole-6-yl- 4,4,5,5-tetramethyl- 1,3,2-dioxaborolan		BRA31	1-n-Butyl boronic acid	Ald
BRA10	Quinoline-3-boronic acid	Frontier	BRA32	2-Fluorophenyl boronic acid	Ald
BRA11	Quinoline-6-yl-4,4,5,5- tetramethyl- 1,3,2-dioxaborolan	Ald	BRA33	3-Fluorophenyl boronic acid	Ald
BRA12	Isoquinoline=6-yl- 4,4,5,5-tetramethyl- 1,3,2-dioxaborolan		BRA34	4-Fluorophenyl boronic acid	Ald
BRA13	Methyl boronic acid	Ald	BRA35	2-Furyl boronic acid	Ald
BRA14	Phenyl boronic acid	Ald	BRA36	2-Thienyl boronic acid	Ald
BRA15	4-Hydroxyphenyl boronic acid	Ald		3-Methoxyphenyl boronic acid	Ald
BRA16	Naphthalene-1-boronic acid	Ald	I	2-Methoxyphenyl boronic acid	
BRA17	3.5-Bis(trifluoromethyl) phenyl boronic acid	TCI		2-(Trifluoromethyl) phenyl boronic acid	
BRA18	Benzo[b]furan-2-boronic acid		l	3-(Trifluoromethyl) phenyl boronic acid	
	4-Methoxypheny boronic acid	Ald		4-(Trifluoromethyl) phenyl boronic acid	
BRA20	2-Methylpropyl boronic acid	Ald		Indan-2-yl-4,4,5,5-tetramethyl- 1,3,2-dioxaborolane	
BRA21	4-(Dimethylamino) phenyl boronic acid			4-Methylindan-2-yl-4,4,5,5- tetramethyl-1,3,2-dioxaborolane	
BRA22	4-Fluorophenyl boronic acid	TCI	BRA44	5-Methylindan-2-yl-4,4,5,5- tetramethyl-1,3,2-dioxaborolane	

Table-Ba-2

Reagent	Name of reagent	Manufacture	Reagent		Manufacture
	4.7-Dimethylindan-2-vl-4.4.5.5-		BRA67	3-Furyl boronic acid	Ald .
	tetramethyl-1,3,2-dioxaborolane			•	
BRA46	5.6-Dimethylindan-2-vl-4.4.5.5-		BRA68	3-Thienyl boronic	Ald
D10170	tetramethyl-1,3,2-dioxaborolane			acid	
BRA47	5-Fluoroindan-2-yl-4,4,5,5-		BRA69	Pyridine-2-yl-	
DICATI	tetramethyl-1,3,2-dioxaborolane			4.4.5.5-tetramethyl-	
	Containedity 1,0,2 dioxaborolano	1		1.3.2-dioxaborolane	
BRA48	4-Fluoroindan-2-yl-4,4,5,5-		BRA70	Pyridine-3-boronic	Ald
DIVAMO	tetramethyl-1,3,2-dioxaborolane	1	5.00,70	acid	/ ··-
BRA49	4.7-Difluoroindan-2-yl-4,4,5,5-		BRA71	2.3-Dimethylphenyl	Ald
DIVITO	tetramethyl-1,3,2-dioxaborolane	İ	510071	boronic acid	/
BRA50	5.6-Difluoroindan-2-vl-4,4,5,5-		BRA72	2.5-Dimethylphenyl	Ald
		1	DIVATE	boronic acid	,
	tetramethyl-1,3,2-dioxaborolane 4-Chloroindan-2-yl-4,4,5,5-		BRA73	3.5-Dimethylphenyl	Ald
BRASI			DRA/3	boronic acid	Aid
D D 1 D 2	tetramethyl-1,3,2-dioxaborolane	ļ	BRA74	2,3-DiChlorophenyl	Ald
BRA52	5-Chloroindan-2-yl-4,4,5,5-	Į.	BKA/4		Ala
	tetramethyl-1,3.2-dioxaborolane			boronic acid	Ald
BRA53	4.7-Dichloroindan-2-yl-4,4,5,5-	1	BRA75	2,4-DiChlorophenyl	Aid
	tetramethyl-1,3,2-dioxaborolane			boronic acid	Ald
BRA54	5,6-Dichloroindan-2-yl-4,4,5,5-		BRA76	2,5-DiChlorophenyl	Ald
	tetramethyl-1,3.2-dioxaborolane			boronic acid	<u> </u>
BRA55	4-Methoxyindan-2-yl-4,4,5,5-	i	BRA77	2,6-DiChlorophenyl	Acros
	tetramethyl-1,3,2-dioxaborolane			boronic acid	
BRA56	5-Methoxyindan-2-yl-4,4,5,5-	l	BRA78	3,4-DiChlorophenyl	Ald
	tetramethyl-1,3,2-dioxaborolane			boronic acid	<u> </u>
BRA57	5,6-Dimethoxyindan-2-yl-	1	BRA79	3,5-DiChlorophenyl	Ald
	4.4.5.5-tetramethyl-1.3.2-			boronic acid	
BRA58	Cyclohexyl boronic acid	Ald	BRA80	2,3-Difluorophenyl	Ald
				boronic acid	
BRA59	2-Methylphenyl boronic acid	Ald	BRA81	2,4-Difluorophenyl	Ald
			i	boronic acid	
BRA60	3-Methylphenyl boronic acid	Ald	BRA82	2,5-Difluorophenyl	Ald
		1		boronic acid	
BRA61	2-Chlorophenyl boronic acid	Ald	BRA83	2,6-Difluorophenyl	Ald
		1	l	boronic acid	
BRA62	3-Chlorophenyl boronic acid	Ald	BRA84	3.4-Difluorophenyl	Ald
DIVIOL	o onior opniony. Der onio della	r		boronic acid	i .
BRA63	2.3-Bis(trifluoromethyl) phenyl		BRA85	3.5-Difluorophenyl	Ald
51.5703	boronic acid	1		boronic acid	
BRA64	2.4-Bis(trifluoromethyl) phenyl		BRA86	2-(Dimethylamino)	Digital
DRAU4	boronic acid	1	15, 1, 100	phenyl boronic acid	1 -3
BRA65	2,5-Bis(trifluoromethyl) phenyl	<del> </del>	BRA87	3-(Dimethylamino)	Digital
DRAUD		1	المحاددا	phenyl boronic acid	
BRA66	boronic acid 3,4-Bis(trifluoromethyl) phenyl		BRA88	4-Phenoxy phenyl	Ald
BKA66			BUAGO	boronic acid	7.10
	boronic acid	I	<u> </u>	IDOLOUIC SCIG	I

Zx	
Rx-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	r
AR U	

			سر	Ö					
Table-Ca-1		A	<u> </u>						
Exp.	Rx	Y	Zx	AR	SM1	SM2		LOMS	
Δ		╝.			-		method	RTime	Mass
Ca-1	Ph	Me	H	2-Nap	Aa-1	BRA14	D		N.D
Ca-2	Ph	H	H	2-Nap	Ca-1	-	С		353 (M ⁺ +1)
Ca-3	Ph	Me	Н	5-Ind	Aa-2	BRA14	С		356 (M+1)
Ca-4	Ph	H	Н	5-Ind	Ca-3	-	С		342 (M*+1)
Ca-5	Ph	Me	H	1Me-5-Ind	Aa-3	BRA14	С		370 (M*+1)
Ca-6	Ph	Н	Н	1Me-5-Ind	Ca-5	-	С		356 (M+1)
Ca-7	Ph	H	I	5-1Hldz	Aa~4	BRA14	C		343 (M+1)
Ca-8	Ph	Me	I	1Me-5-1Hldz	Aa-5	BRA14	0		371 (M ⁺ +1)
Ca-9	Ph	Н	н	1Me-5-1Hldz	Ca-8	-	С		357 (MT+1)
Ca-10	Ph'	Н	Η.	5-BF	Aa-6	BRA14	c		342 (M+1)
Ca-11	Ph	Н	H	3-Qu	Aa-7	BRA14	0		354 (M+1)
Ca-12	Ph	Н	H	1-Nap	Aa-8	BRA14	o		353 (M ⁺ +1)
Ca-13	Ph	H	H	6(OMe)-2-Nap	Aa-9	BRA14	С		383 (M*+1)
Ca-14	Ph	Н	н	6(NMe2)-2-Nap	Aa-10	BRA14	С		396 (M+1)
Ca-15	Ph	H	н	4-Ind	Aa-11	BRA14	О		342 (M+1)
Ca-16	Ph	Н	Н	1Me-4-Ind	Aa-12	BRA14	С		356 (M+1)
Ca-17	Ph	н	н	6-Ind	Aa-13	BRA14	С		342 (M+1)
Ca-18	Ph	H	н	1Mc-6-Ind	Aa-14	BRA14	С		356 (M+1)
Ca-19	Ph	Н	н	2-Ind	Aa-15	BRA14	С		342 (M*+1)
Ca-20	Ph	н	Н	1Me-2-Ind	Aa-16	BRA14	С		356 (M*+1)
Ca-21	Ph	H	н	3-Ind	Aa-17	BRA14	С		342 (M+1)
Ca-22	Ph	Н	н	1Me-3-Ind	Aa-18	BRA14	С		356 (M+1)
Ca-23	Ph	н	Н	1iPr-5-Ind	Aa-19	BRA14	С		384 (M*+1)
Ce-24	Ph	Н	Н	1cPen-5-Ind	Aa-20	BRA14	0		410 (M*+1)
Ca-25	Ph	Н	н	3Me-5-Ind	Aa-21	BRA14	С		356 (M*+1)
Ca-26	· Ph	Н	Н	1,3DMe-5Ind	Aa-22	BRA14	С		370 (M°+1)
Ca-27	Ph	H	Н	1.2.3triMe-5Ind	Aa-23	BRA14	С		384 (M*+1)
Ca-28	Ph	H	H	4-1HIdz	As-24	BRA14	С		343 (MT+1)
Ca-29	Ph	Н	н	1Me-4-1HIdz	Aa-25	BRA14	0		357 (M*+1)
Ca-30	Ph	Н	н	5-1Hldz	Aa-26	BRA14	С		343 (M*+1)
Ca-31	Ph	H	н	1Me-5-1HIdz	Aa-27	BRA14	С		357 (M*+1)
Ca-32	´Ph	H	Н	1Et-5-1Hldz	Aa-28	BRA14	C		371 (M*+1)
Ca-33	Ph	Н	Н	1Pr-5-1Hldz	Aa-29	BRA14	С		385 (M*+1)
Ca-34	Ph	H	Н	2Me-5-2Hldz	Aa-30	BRA14	C-		357 (M*+1)
Ga-35	Ph	H	н	6-1HIdz	Aa-31	BRA14	C		343 (M*+1)
Ca-36	Ph	H	н	1Me-6-1Hldz	Aa-32	BRA14	C		357 (M*+1)
Ga-37	Ph	H	H	3Me-5-1HIdz	Aa-33	BRA14	C		357 (M+1)
Ga-38	Ph	H	H	1.3DMe=5=1HIdz	Aa-34	BRA14	o		371 (M*+1)
Ga-39	Ph	H	H	5-BT	Aa-35	BRA14	C		359 (M*+1)
Ca-40	Ph	H	H	2.3DMe-5-BF	Aa-36	BRA14	C		387 (M*+1)
Ga-41	Ph	H	H	5-2ABzt	Aa-37	BRA14	c		375 (M+1)
Ga-42	Ph	H	H	5-Bzt	Aa-38	BRA14	Ö		360 (M+1)
Ga-43	Ph	H	H	2Me-5-Bzt	Aa-39	BRA14	o		374 (M*+1)
Ca-44	Ph	H	H	2,2DMe-5-2ABzt	Aa-40	BRA14	C		403 (M*+1)
Ca-45	Ph	H	H	6-2ABzt	Aa-41	BRA14	Č		375 (M*+1)
Ca-46	Ph	T H	H	6-Bzt	Aa-42	BRA14	Ö		360 (M*+1)
Ca-47	Ph	H	H	2Me-6-Bzt	Aa-43	BRA14	Č		374 (M+1)
Ca-47	Ph	18	H	6-Qu	Aa-44	BRA14	č		354 (M*+1)
Ca-48	Ph	1 #	н	6-IQ	Aa-45	BRA14	ö		354 (M*+1)
Ca-49	Ph	<del>  유</del>	유	2-BF	Aa-46	BRA14	<del>- č</del>		342 (M*+1)
O8-00	PII		_^	2 DF	/1a-40	DIMIT			10-15 (M - 1)

Table-Ca-2

Table-C	a-2	_	_					LCMS
Exp.	Rx	Y	Zx	AR	SM1	SM2	method	RTime Mass
Ca-51	Ph	Н	н	2-BT	Aa-47	BRA14	С	359 (M*+1
Ca-52	4MeOPh	н	H	2-Nap	Aa-1	BRA19	С	383 (M ⁺ +1
Ca-53	4MeOPh	н	H	1Me-5-Ind	Aa~3	BRA19	c	386 (M*+1
Ca-54	4MeOPh	Н	Н	5-1HIdz	Aa-4	BRA19	c	373 (M*+1
Ca-55	4MeOPh	н	Н	1Me-5-1HIdz	Aa-5	BRA19	С	387 (M*+1
Ca-56	4MeOPh	н	Н	3-Qu	Aa-7	BRA19	c	384 (M ⁺ +1
Ca-57	4MeOPh	н	Н	1Et-5-1Hldz	Aa-28	BRA19	С	401 (M*+1
Ca-58	3MeOPh	н	Н	5-Ind	An-2	BRA37	C	372 (M*+1
Ca-59	3MeOPh	Н	Н	1Me-5-Ind	Aa-3	BRA37	C	386 (M°+1
Ca-60	3MeOPh	н	H	5-1HIdz	Aa-4	BRA37	С	373 (M*+1
Ca-61	3MeOPh	н	H	1Me-5-1Hldz	Aa-5	BRA37	C	387 (M+1
Ca-62	3MeOPh	H	H	3-Qu	Aa-7	BRA37	c	384 (M*+1
Ca-63	3MeOPh	H	H	1Et-5-1Hidz	Aa-28	BRA37	C	401 (M*+1
Ca-64	2MeOPh	H	H	2-Nap	Aa-1	BRA38	č	383 (M*+1
Ca-65	2MeOPh	н	H	5-Ind	Aa-2	BRA38	Č	372 (M*+1
		H	유	1Me-5-Ind	Aa-3	BRA38	6	386 (M*+1
Ca-66	2MeOPh 2MeOPh	H	유	5-1HIdz	Aa-4	BRA38	Ö	373 (M*+1
Ca-67				1Me-5-1HIdz	Aa-4 Aa-5	BRA38	0	387 (M ⁺ +1
Ca-68	2MeOPh	Н	H		Aa-38	BRA38	8	390 (M*+1
Ca-69	2MeOPh_	Н		5-Bzt		BRA38	6	384 (M*+1
Ca-70	2MeOPh_	Н	H	3-Qu	Aa-7			401 (M*+1
Ca-71	2MeOPh_	Н	H	1Et-5-1HIdz	Aa-28	BRA38	0	
Ca-72	2MePh	H	н	2-Nap	Aa-1	BRA59	С	367 (MT+1
Ca-73	2MoPh	Н	H	5-Ind	Aa-2	BRA59	<u> </u>	356 (M ⁺ +1
Ca-74	2MePh	Н	H	1Me-5-Ind	Aa-3	BRA59	C	370 (MT+1
Ca-75	2MePh	Н	Н	5-1HIdz	Aa-4	BRA59	С	357 (M ⁺ +1
Ca-76	2MePh	Н	Н	1Me-5-1Hidz	Aa-5	BRA59	С	371 (M ⁺ +1
Ca-77	2MePh	Н	Н	5-Bzt	Aa-38	BRA59	С	374 (M*+1
Ca-78	3MePh	Н	Н	2-Nap	Aa-1	BRA60	0	367 (M*+1
Ca-79	3MePh	Н	Н	5-Ind	Aa-2	BRA60	С	356 (M"+1
Ca-80	3MePh	Н	H	5-1HIdz	Aa-4	BRA60	С	357 (M*+1
Ca-81	3MePh	H	Н	1Me-5-1HIdz	Aa-5	BRA80	0	371 (M*+1
Ca-82	3MePh	Н	Н	5-Bzt	Aa-38	BRA60	o	374 (M*+1
Ca-83	3MePh	Н	H	1Et-5-1Hldz	Aa-28	BRA60	С	385 (M°+1
Ca-84	4MePh	Н	H	2-Nap	Aa-1	BRA29	С	367 (M*+1
Ca-85	4MePh	H	Н	5-Ind	Aa-2	BRA29	С	356 (M*+1
Ca-86	4MePh	H	Н	1Me-5-Ind	Aa-3	BRA29	C	370 (M*+1
Ca-87	4MePh	H	H	5-1HIdz	Aa-4	BRA29	C	357 (M*+1
Ca-88	4MePh	H	H	1Me-5-1HIdz	Aa-5	BRA29	c	371 (M"+1
Ca-89	4MePh	H	H	5-Bzt	Aa-38	BRA29	č	374 (M*+1
Ca-90	4MePh	H	H	3-Qu	Aa-7	BRA29	č	368 (M*+1
Ca-91	4MePh	H	H	1Et-5-1Hidz	Aa-28	BRA29	č	385 (M*+1
Ca-91	2.3DMePh	유	H	5-Ind	Aa-2	BRA71	č	370 (M*+1
Ca-92	2,3DMePh 2.3DMePh	뮤	유	1Me-5-Ind	Aa-3	BRA71	č	384 (M*+1
Ca-93	2,3DMePh 2.3DMePh	뉴	H	5-1HIdz	Aa-4	BRA71	c	371 (M*+1
		뀨	쀼	1Me-5-1HIdz	Aa-5	BRA71	6	385 (M+1
Ca-95	2,3DMePh	끊			Aa-28	BRA71	6	399 (M+1
Ca-96	2,3DMePh		H	1Et-5-1Hldz			6	381 (M*+1
Ca-97	2,5DMePh	H	H	2-Nap	Aa-1	BRA72		381 (M+1
Ca-98	2,5DMePh	H	H	1Me-5-Ind	Aa-3	BRA72	C	
Ca-99	2,5DMePh	Н	H	5-1HIdz	Aa-4	BRA72	0_	371 (M*+1
Ca-100	2,5DMePh	Н	Н	1Me-5-1HIdz	Aa-5	BRA72	С	385 (M*+1
Ca-101	2,5DMePh	H	H	1Et-5-1Hldz	Aa-28	BRA72	С_	399 (M*+1
Ca-102	3,5DMePh	Н	Н	2-Nap	Aa-1	BRA73	0_	381 (M*+1
Ca-103	3,5DMePh	Н	H	1 Me-5-Ind	Aa-3	BRA73	0	384 (M*+1
Ca-104	3,5DMePh	Н	H	1Me-5-1Hldz	Aa-5	BRA73	С	385 (M*+1
Ca-105	2CF ₃ Ph	H	H	2-Nap	Aa−1	BRA39	С	421 (M'+1

Table-Ca-3

Table-Ga-		_	_					LCMS	3
Exp.	Rx	Y	Zx	AR	SM1	SM2	method		Mass
Ca-106	2CF ₁ Ph	Н	н	5-Ind	Aa-2	BRA39	С		410 (M +1)
Ca-107	2CF ₃ Ph	H	н	1Me-5-1HIdz	Aa-5	BRA39	С		425 (M*+1)
Ca-108	2CF ₂ Ph	Н	Н	5-Bzt	Aa-38	BRA39	С		428 (M°+1)
Ca-109	2CF ₂ Ph	н	Н	3-Qu	Aa-7	BRA39	С		422 (M*+1)
Ca-110	2CF _a Ph	Н	н	1Et-5-1Hldz	Aa-28	BRA39	C		439 (M°+1)
Ca-111	3CF ₃ Ph	Н	Н	2-Nap	Aa-1	BRA40	С		421 (M*+1)
Ca-112	3CF ₃ Ph	H	Н	5-Ind	Aa-2	BRA40	С		410 (M*+1)
Ca-113	3CF ₃ Ph	H	Н	1Me~5~Ind	Aa-3	BRA40	С		424 (M*+1)
Ca-114	3CF ₃ Ph	н	Н	1Me-5-1Hldz	Aa-5	BRA40	С		425 (M*+1)
Ca-115	3CF₃Ph	н	Н	5-Bzt	Aa-38	BRA40	С		428 (M*+1)
Ca-116	3CF ₃ Ph	H	H	3-Qu	Aa-7	BRA40	С		422 (M'+1)
Ca-117	4CF ₂ Ph	H	H	5-Ind	Aa-2	BRA41	С		410 (M*+1)
Ca-118	4CF _s Ph	H	Н	5-1 HIdz	Aa-4	BRA41	С		411 (M*+1)
Ca-119	4CF₃Ph	H	Н	1Me-5-1HIdz	Aa-5	BRA41	0		425 (M*+1)
Ca-120	4CF₃Ph	H	н	5-Bzt	Aa-38	BRA41	С		428 (M°+1)
Ca-121	4CF ₃ Ph	Н	Н	3-Qu	Aa-7	BRA41	С		422 (M*+1)
Ca-122	4CF₃Ph	H	H	1Et-5-1Hldz	Aa-28	BRA41	С		439 (M*+1)
Ca-123	2CIPh	Н	Н	5-Ind	Aa-2	BRA61	С		376 (M*+1)
Ca-124	2CIPh	H	H	5-1HIdz	Aa-4	BRA61	С		377 (M ⁺ +1)
Ca-125	2CIPh	H	H	1Me-5-1HIdz	Aa-5	BRA61	0		391 (M*+1)
Ca-126	2ClPh	Н	Н	3-Qu	Aa-7	BRA61	C		388 (M*+1)
Ca-127	3ClPh	H	Н	2-Nap	Aa-1	BRA62	С		387 (M*+1)
Ca-128	3CIPh	H	H	1Me-5-Ind	Aa-3	BRA62	С		390 (M*+1)
Ca-129	3OIPh	H	н	5-1Hldz	Aa-4	BRA62	С		377 (MT+1)
Ca-130	3CIPh	Н	Н	1Me-5-1Hldz	Aa-5	BRA62	С		391 (M*+1)
Ca-131	30lPh	H	H	5-Bzt	Aa-38	BRA62	С		394 (M*+1)
Ca-132	4CIPh	H	Н	5~Ind	Aa-2	BRA30	С	1	376 (M*+1)
Ca-133	4CIPh	Н	Н	1Me-5-Ind	Aa-3	BRA30	О		390 (M+1)
Ca-134	40iPh	H	Н	1Me-5-1Hldz	Aa-5	BRA30	C		391 (M*+1)
Ca-135	4CIPh	Н	Н	5-Bzt	Aa-38	BRA30	0		394 (M*+1)
Ca-136	2,3DCIPh.	H	H	5-Ind	Aa-2	BRA74	С		411 (M*+1)
Oa-137	2.3DClPh	Н	Н	1Me-5-Ind	Aa-3	BRA74	С		425 (M+1)
Ca-138	2.3DClPh	Н	Н	1Me-5-1Hldz	Aa-5	BRA74	С		426 (M+1)
Ca-139	2,4DGIPh	Н	Н	5-Ind	Aa-2	BRA75	С		411 (M ⁺ +1)
Ca-140	2,4DCIPh	Н	Н	1Me-5-1Hldz	Aa-5	BRA75	С	1	426 (M°+1)
Ca-141	2,4DCIPh	н	H	5-Bzt	Aa-38	BRA75	С		429 (M*+1)
Ca-142	2,5DClPh	Н	Н	1Me-5-Ind	Aa-3	BRA76	С		425 (M*+1)
Ca-143	2,5DClPh	Н	Н	1Me-5-1Hldz	Aa-5	BRA76	С		426 (M*+1)
Ca-144	2,6DCIPh	Н	Н	1Me-5-1HIdz	Aa-5	BRA77	С		426 (M*+1)
Ca-145	3,4DCiPh	Н	Н	2-Nap	Aa-1	BRA78	С		421 (M*+1)
Ca-146	3,4DOIPh	Н	Н	5 <b>~i</b> nd	Aa-2	BRA78	0	ļ	411 (M*+1)
Ca-147	3,4DClPh	Н	Н	1Me-5-Ind	Aa-3	BRA78	C		425 (M+1)
Ca-148	3,4DCiPh	Н	Н	1Me-5-1HIdz	Aa-5	BRA78	С		426 (M*+1)
Ca-149	3,5DCIPh	Н	Н	2-Nap	Aa-1	BRA79	0		421 (M*+1
Ca-150	3,5DClPh	Н	Н	1Me-5-Ind	Aa-3	BRA79	С		425 (M°+1
Ca-151	3,5DCiPh	Н	Н	1Me-5-1HIdz	Aa-5	BRA79	С	<del>  </del>	426 (M*+1
Ca-152	2FPh	Н	Н	2-Nap	Aa-1	BRA32	С	<u> </u>	371 (M*+1
Ca-153	2FPh	Н	Н	1Me-5-Ind	Aa-3	BRA32	С	—	374 (M*+1
Ca-154	2FPh	Н	Н	5-1HIdz	Aa-4	BRA32	С		361 (M*+1)
Ca-155	2FPh	Н	Н	1Me-5-1Hidz	Aa-5	BRA32	C	├──	375 (M*+1
Ca-156	2FPh	Н	Н	5-Bzt	Aa-38	BRA32	C		378 (M*+1
Ca-157	2FPh	Н	Н	3-Qu	Aa-7	BRA32	C		372 (M+1
Ca-158	3FPh	Н	Н	5-Ind	Aa-2	BRA33	С	-	360 (M+1)
Ca-159	3FPh	Н	H	5-1HIdz	Aa-4	BRA33	C		361 (M*+1
Ca-160	3FPh	Н	TH	1Me-5-1Hldz	Aa-5	BRA33	С	1	375 (M°+1)

Table-Ca-4

Table-0		Y	Zx		SM1	SM2	LCMS		
Exp.	Rx	1	ZX	AR	SMI	SIVIZ	method	RTime	Mass
Ca-161	3FPh	н	Н	3-Qu	Aa-7	BRA33	С		372 (M*+1)
Ca-162	4FPh	Н	Н	2-Nap	Aa-1	BRA34	С		371 (M*+1)
Ca-163	4FPh	Н	Н	5-Ind	Aa-2	BRA34	С		360 (M*+1)
Ca-164	4FPh ·	н	Н	5-1HIdz	Aa-4	BRA34	С		361 (M+1)
Ca-165	4FPh	Н	Н	1Me-5-1HIdz	Aa-5	BRA34	С		375 (M*+1)
Ca-166	4FPh	н	Н	3-Qu	Aa-7	BRA34	C :		372 (M*+1)
Ca-167	2,3DFPh	н	н	2-Nap	Aa-1	BRA80	С		389 (M*+1)
Ca-168	2.3DFPh	Н	Н	5-Ind	Aa-2	BRA80	С		378 (M*+1)
Ca-169	2.3DFPh	H	Н	1Me-5-1HIdz	Aa-5	BRA80	О		393 (M*+1)
Ca-170	2.4DFPh	H	H	2-Nap	Aa-1	BRA81	С		389 (M*+1)
Ca-171	2,4DFPh	Н	H	5-Ind	Aa~2	BRA81	С		378 (M+1)
Ca-172	2,4DFPh	H	H	1Me-5-Ind	Aa-3	BRA81	С		392 (M*+1)
Ca-173	2.4DFPh	H	H	1Me-5-1Hldz	Aa-5	BRA81	C		393 (M+1)
Ca-174	2.5DFPh	H	Н	2-Nap	Aa-1	BRA82	С		389 (M ⁺ +1)
Ga-175	2.5DFPh	H	Ĥ	1Me-5-ind	Aa-3	BRA82	С		392 (M+1)
Ca-176	2,5DFPh	H	H	1Me-5-1Hldz	Aa-5	BRA82	C		393 (M+1)
Ca-177	2,6DFPh	H	H	2-Nap	Aa-1	BRA83	C		389 (M*+1)
Ca-178	2,6DFPh	H	H	1Me-5-Ind	Aa-3	BRA83	0		392 (M°+1)
Ca-179	2,6DFPh	H	H	5-1HIdz	Aa-4	BRA83	C		379 (M"+1)
Ca-180	2,6DFPh	H	H	1Me-5-1Hldz	Aa-5	BRA83	c		393 (MT+1)
Ca-181	3.4DFPh	H	ΙĤ	2-Nap	Aa-1	BRA84	C		389 (M°+1)
Ca-182	3.4DFPh	H	H	5-Ind	Aa-2	BRA84	С		378 (M*+1)
Ca-183	3.4DFPh	H	H	1Me-5-1HIdz	Aa-5	BRA84	C		393 (M*+1)
Ca-184	3.5DFPh	H	H	2-Nap	Aa-1	BRA85	C		389 (M+1)
Ca-185	3.5DFPh	T H	H	1Me-5-Ind	Aa-3	BRA85	C		392 (M*+1)
Ca-186	3.5DFPh	H	H	5-1Hdz	Aa-4	BRA85	C	<del></del>	379 (M*+1)
Ca-187	3.5DFPh	<del>  ii</del>	H	1Me-5-1HIdz	Aa-5	BRA85	C		393 (M+1)
Ca-188	2,3(OF ₃ ) ₂ Ph	H	Η̈́	2-Nap	Aa-1	BRA63	C		489 (M*+1)
Ca-189	2,3(CF ₃ ) ₂ Ph	H	H	1Me-5-Ind	Aa-3	BRA63	С		492 (M'+1)
Ca-190	2,3(OF ₃ ) ₂ Ph	H	H	1Me-5-1Hidz	Aa-5	BRA63	С		493 (M+1)
Ca-191	2,4(OF ₃ ) ₂ Ph	H	H	2-Nap	Aa-1	BRA84	C		489 (M*+1)
Ca-192	2,4(CF ₃ ) ₂ Ph	<del>l ii</del>	H	1Me-5-1Hidz	Aa-5	BRA64	C		493 (M*+1)
Ca-193	2,5(OF ₃ ) ₂ Ph	<del>l ii</del>	H	2-Nap	Aa-1	BRA65	C		489 (M*+1)
Ga-194	2,5(GF ₃ ) ₂ Ph	<del>  ji</del>	H	5-Ind	Aa-2	BRA65	C	<del>                                     </del>	478 (M*+1)
Ca-195	2,5(CF ₃ ) ₂ Ph	<del>  H</del>	H	1Me-5-1Hldz	Aa-5	BRA65	C		493 (M°+1)
Ga-196	2,5(OF ₂ ) ₂ Ph	<del>                                     </del>	Η̈́	3-Qu	Aa-7	BRA65	C		490 (M*+1)
Ca-197	3,4(OF ₃ ) ₂ Ph	+#	뉴	2-Nap	Aa-1	BRA66	Ğ	<del></del>	489 (M*+1)
Ca-197	3,4(CF ₂ ) ₂ Ph	<del>       </del>	뷰	1Me-5-Ind	Aa-3	BRA66	č		492 (M°+1)
Ca-198	3,4(OF ₃ ) ₂ Ph 3,4(OF ₂ ) ₂ Ph	H	<del>                                     </del>	5-1Hidz	Aa-4	BRA66	C	<del></del>	479 (M*+1)
Ca-200	3,4(OF ₃ ) ₂ Ph 3,4(OF ₃ ) ₂ Ph	+#	뷰	1Me-5-1HIdz	Aa-5	BRA66	l č	+	493 (M+1)
Ga-200	3,4(CF ₃ ) ₂ Pn 3,5(CF ₃ ) ₂ Ph	<del>  H</del>	H	5-Ind	Aa-2	BRA17	<del>  č</del>	-	478 (M*+1)
		H	<del>  H</del>	5-1Hidz	Aa-4	BRA17	<del>l č</del>	+	479 (M*+1)
Ca-202	3,5(OF ₃ ) ₂ Ph 3,5(OF ₃ ) ₂ Ph	1 #	H	1Me-5-1Hidz	Aa-5	BRA17	1 0	+	493 (M +1)
Ca-203			H	2-Nap	Aa-1	BRA35	- 6	+	343 (M*+1)
Ca-204	2-Furyl	H			Aa-1 Aa-2	BRA35	l c	+	332 (M°+1)
Ca-205	2-Furyl	H	H	5-Ind 1Me-5-1Hidz	Aa-2 Aa-5	BRA35	- č		347 (M*+1)
Ca-206	2-Furyl	H		3-Qu	Aa-5 Aa-7	BRA35	0	+	344 (M*+1)
Ca-207	2-Furyl	H	H			BRA67	1 0	+	346 (M+1)
Ca-208	3-Furyl	H	H	1Me 5 Ind	Aa-3 Aa-4	BRA67	1 c	+	333 (M+1)
Ca-209	3-Furyl	Н	H	5-1Hidz		BRA67	1 6	+	347 (M+1)
Ca-210	3-Furyl	H	H	1Me-5-1HIdz	Aa-5		1 6	+	359 (M+1)
Ca-211	2-Thienyl	H	Н	2-Nap	Aa-1	BRA36	0		362 (M*+1)
Ca-212	2-Thienyl	Н	Н	1Me-5-Ind	Aa-3	BRA36	0	+	362 (M+1)
Ca-213	2-Thienyl	Н	H	1Me-5-1Hldz	Aa-5	BRA36			363 (M +1)
Ca-214	2-Thienyl	Н	Тн	1Et-5-1Hldz	Aa-28	BRA36	C		
Ca-215	3-Thienyl	H	H	5-Ind	Aa-2	BRA68	C		348 (M°+1)

Table-Ca-5

Table 0	Rx	Υ	Zx	4.5	SM1	SM2		LCMS	3
Exp.	HX	<u>'</u>	ZX	AR	SMI	OMZ	method	RTime	
Ca-216	3-Thienyl	Н	Н	1Me-5-Ind	Aa-3	BRA68	С		362 (M'+1)
Ca-217	3-Thienyl	Н	Н	5-1HIdz	Aa-4	BRA68	С		349 (M+1)
Ca-218	3-Thienyl	Н	Н	1Me-5-1Hidz	Aa-5	BRA68	С		363 (M ⁺ +1)
Ca-219	3-Thienyl	Н	Н	5-Bzt	Aa-38	BRA68	С		366 (M+1)
Ca-220	3-Thienyl	Н	Н	3-Qu	Aa-7	BRA68	С		360 (M+1)
Ca-221	3-Thienyl	Н	H	1Et-5-1Hldz	Aa-28	BRA68	c		377 (M*+1)
Ca-222	2-Py	Н	Н	5-ind	Aa-2	BRA69	С		343 (M'+1)
Ca-223	2-Py	Н	Н	1Me~5~1HIdz	Aa-5	BRA69	С		358 (M+1)
Ca-224	2-Py	Н	Н	5-Bzt	Aa-38	BRA69	С		361 (M ⁺ +1)
Ca-225	3-Py	Н	Н	2-Nap	Aa-1	BRA70	С		354 (M+1)
Ca-226	3-Py	Н	Н	5-Ind	Aa-2	BRA70	C		343 (M+1)
Ca-227	3-Py	H	Н	1Me-5-Ind	Aa-3	BRA70	0		357 (M+1)
Ca-228	3-Py	Н	Н	1Me-5-1Hidz	Aa-6	BRA70	С		358 (M+1)
Ca-229	3-Py	Н	Н	1Et-5-1Hldz	Aa-28	BRA70	0		372 (M+1)
Ca-230	4-Py	Н	Н	2-Nap	Aa-1	BRA26	c		354 (M+1)
Ca-231	4-Py	H	H	5-Ind	Aa-2	BRA26	С		343 (M*+1)
Ca-232	4-Py	Н	Н	1Me-5-Ind	Aa-3	BRA26	С		357 (M+1)
Ca-233	4-Py	Н	H	5-1HIdz	Aa-4	BRA26	О		344 (M+1)
Ca-234	4-Py	H	Н	1Me-5-1HIdz	Aa-5	BRA26	С		358 (M+1)
Ca-235	4-Py	Н	Н	5-Bzt	Aa-38	BRA26	С		361 (M'+1)
Ca-236	4-Py	Н	Н	3-Qu	Aa-7	BRA26	O		355 (M+1)
Ca-237	4-Py	Н	Н	1Et-5-1Hldz	Aa-28	BRA26	c		372 (M+1)
Ca-238	2DMAPh	Н	Н	2-Nap	Aa-1	BRA86	С		396 (M*+1)
Oa-239	2DMAPh	Н	Н	5-Ind	Aa-2	BRA86	С		385 (M+1)
Ca-240	2DMAPh	Н	Н	1Me-5-1Hldz	Aa-5	BRA86	o		400 (M+1)
Ca-241	2DMAPh	Н	Н	5-Bzt	Aa-38	BRA86	С		403 (M ⁺ +1)
Oa-242	2DMAPh	H	Н	1Et-5-1HIdz	Aa-28	BRA86	С		414 (M+1)
Ca-243	3DMAPh	H	Н	1Me-5-Ind	Aa-3	BRA87	C		399 (M+1)
Ca-244	3DMAPh	H	Н	5-1HIdz	Aa-4	BRA87	0		386 (M+1)
Ca-245	3DMAPh	Н	Н	1Me-5-1HIdz	Aa-5	BRA87	С		400 (M*+1)
Ca-246	3DMAPh_	H	H	5-Bzt	Aa-38	BRA87	С		403 (M*+1)
Ca-247	3DMAPh	Н	Н	3-Qu	Aa-7	BRA87	C		397 (M*+1)
Ca-248	4DMAPh	H	Н	2-Nap	Aa-1	BRA21	С		396 (M+1)
Ca-249	4DMAPh	Н	Н	1Me-5-Ind	Aa-3	BRA21	C		399 (M*+1)
Ca-250	4DMAPh	Н	Н	1Me-5-1HIdz	Aa-5	BRA21	0		400 (M*+1)
Ca-251	4DMAPh .	Н	Н	3-Qu	Aa-7	BRA21	C		397 (M*+1)
Ca-252	4DMAPh	H	Н	1Et~5~1HIdz	Aa-28	BRA21	С		414 (M+1)
Ca-253	1-Nap	H	H	2-Nap	Aa-1	BRA16	0		403 (M+1)
Ca-254	1-Nap	H	Н	5-Ind	Aa-2	BRA16	C		392 (M*+1)
Ca-255	1-Nap	H	H	1Me-5-1HIdz	Aa-5	BRA16	C		407 (M*+1)
Ca-256	1-Nap	H	H	5-Bzt	Aa-38	BRA16	0		410 (M+1)
Ca-257	2-Nap	H	Н	2-Nap	Aa-1	BRA1	C		403 (M*+1)
Ca-258	2-Nap	H	H	1Me-5-ind	Aa-3	BRA1	С		406 (M*+1)
Ca-259	2-Nap	H	H	5-1HIdz	Aa-4	BRA1	0		393 (MT+1)
Ca-260	2-Nap	H	Н	1Me-5-1HIdz	Aa-5	BRA1	С		407 (M*+1)
Ca-261	2-Nap	Н	H	5-Bzt	Aa-38	BRA1	C	-	410 (M*+1)
Ca-262	5-Ind	H	H	2-Nap	Aa-1	BRA2			392 (M*+1)
Ca-263	5-Ind	H	Н	5-Ind	Aa-2	BRA2	<u>c</u>		381 (M*+1)
Ca-264	5-Ind	H	H	1Me-5-1HIdz	Aa-5	BRA2	C	├	396 (M*+1)
Ca-265	5-Ind	Н	H	3-Qu	Aa-7	BRA2	C		393 (M*+1)
Ca-266	5-Ind	H	H	1Et-5-1Hidz	Aa-28	BRA2	<u>c</u>		410 (M°+1)
Ca-267	1Me-5-1HIdz	H	H	2-Nap	Aa-1	BRA6	C		407 (M*+1)
Ca-268	1Me-5-1HIdz	H	H	1Me-5-ind	Aa-3	BRA6	C		410 (M*+1) 411 (M*+1)
Ca-269	1Me-5-1HIdz	H	H	1Me-5-1HIdz	Aa-5	BRA6			
Ca-270	1Me-5-1Hldz	H	H	5-Bzt	Aa-38	BRA6	0	1	414 (M*+1)

Zx	
Rx-()	~\0Y
A-7-	Ö

Table-C		T T 1			T		LCMS			
Exp.	Rx	Y	Zx	AR	SM1	SM2	method	RTime	Mass	
Cb-1	cPen	Н	Н	2-Nap	Aa-1	BRA28	С		345 (M+1	
Cb-2	cPen	Н	Н	5-Ind	Aa-2	BRA28	C		334 (M+1	
Cb-3	cPen	Н	Н	1Me-5-Ind	Aa-3	BRA28	С		348 (M+1	
Cb-4	cPen	Н	Н	5-1Hldz	Aa-4	BRA28	С		335 (M+1	
Cb-5	cPen	Н	Н	1Me-5-1Hldz	Aa-5	BRA28	С		349 (M*+1	
Cb-6	cPen	Н	Н	5-Bzt	Aa-38	BRA28	С		352 (M+1	
Cb-7	cPen	Н	Н	3-Qu	Aa-7	BRA28	C .		346 (M+1	
Cb-8	cPen	Н	Н	1Et-5-1Hldz	Aa-28	BRA28	С		363 (M*+1	
Cb-9	nBu	Н	Н	2-Nap	Aa-1	BRA31	С		333 (M*+1	
Cb-10	nBu	Н	H	5-Ind	Aa-2	BRA31	С		322 (M°+1	
Cb-11	nBu	Н	H	1Me-5-1HIdz	Aa-5	BRA31	С		337 (M*+1	
Cb-12	iBu	H	Н	2-Nap	Aa-1	BRA20	С		333 (M+1	
Cb-13	iBu	Н	Н	1Me-5-Ind	Aa-3	BRA20	С		336 (M+1	
Cb-14	iBu	H	H	1Me-5-1HIdz	Aa-5	BRA20	С		337 (M*+1	
Cb-15	iBu	Н	H	5-Bzt	Aa-38	BRA20	С		340 (M+1	
Cb-16	iBu	Н	Н	1Et-5-1HIdz	Aa-28	BRA20	0		351 (M*+1	
Cb-17	2-Indan	Н	Н	2-Nap	Aa-1	BRA42	С		393 (M*+1	
Cb-18	2-Indan	Н	Н	5-Ind	Aa-2	BRA42	С		382 (M+1	
Cb-19	2-Indan	Н	Н	1Me-5-Ind	Aa-3	BRA42	С		396 (MT+1	
Cb-20	2-Indan	H	Н	5-1Hldz	Aa-4	BRA42	С		382 (M+1	
Cb-21	2-Indan	Н	Н	1Me-5-1Hldz	Aa-5	BRA42	С		397 (M+1	
Cb-22	2-Indan	Н	H	5-Bzt	Aa-38	BRA42	С		400 (M+1	
Cb-23	2-Indan	H	H	3-Qu	Aa-7	BRA42	С		394 (M+1	
Cb-24	2-Indan	Н	H	1Et-5-1HIdz	Aa-28	BRA42	С		411 (M*+1	
Cb-25	4Me-2-Indan	H	Н	5-Ind	Aa-2	BRA43	С		396 (M*+1	
Cb-26	4Me-2-Indan	H	н	5-1Hldz	Aa-4	BRA43	С		397 (M*+1	
Cb-27	4Me-2-Indan	Н	Н	1Me-5-1HIdz	Aa-5	BRA43	С		411 (M+1	
Cb-28 Cb-29	4Me-2-Inden 5Me-2-Inden	H	H	3-Qu 2-Nap	Aa-7 Aa-1	BRA43 BRA44	C		408 (M*+1 407 (M*+1	
Cb-30	5Me-2-Indan	H	H	2-Nap 5-Ind	Aa-2	BRA44	Ċ		396 (M*+1	
Cb-31	5Me-2-Indan	н	H	5-1HIdz	Aa-4	BRA44	č		397 (M*+1	
Cb-31	5Me-2-Indan	H	Н	1Me-5-1HIdz		BRA44	ö		411 (M*+1	
Cb-33	5Me-2-Indan	H	H	5-Bzt	Aa-5 Aa-38	BRA44	c		414 (M*+1	
Cb-34	5Me-2-Indan	н	H	1Et-5-1HIdz	Aa-38	BRA44	c		425 (M*+1	
Cb-35	4,7DMe=2=Indan	H	H	5-Ind	Aa-20	BRA45	c		410 (M+1	
Cb-36	4.7DMe=2-Indan	н	H	5-1Hldz	Aa-4	BRA45	c		411 (M*+1	
Cb-37	4,7DMe=2=Indan	H	H	1Me-5-1HIdz	Aa-5	BRA45	c		425 (M*+1	
Cb-38	5.6DMe=2-Indan	н	н	2-Nap	Aa-1	BRA46	c		421 (M+1	
Cb-39	5,6DMe=2-Indan	H	H	1Me-5-1HIdz	Aa-5	BRA46	С		425 (M+1	
Cb-40	5F-2-Indan	Н	Н	2-Nap	Aa-1	BRA47	С		411 (M*+1	
Cb-41	5F-2-Indan	Н	H	5-Ind	Aa-2	BRA47	С		400 (M+1	
Cb-42	5F-2-Indan	H	н	5-1HIdz	Aa~4	BRA47	С		401 (M+1	
Cb-43	5F-2-Indan	н	H	1Me-5-1HIdz	Aa-5	BRA47	С		415 (M+1	
Cb-44	5F-2-Indan	Н	Н	5-Bzt	Aa-38	BRA47	С		418 (M+1	
Cb-45	5F-2-Indan	Н	Н	3-Qu	Aa-7	BRA47	С		412 (M+1	
Cb-46	5F-2-Indan	Н	н	1Et-5-1Hidz	Aa-28	BRA47	c		429 (M+1	
Cb-47	4F-2-Indan	Н	H	2-Nap		BRA48			411 (M+1	
					Aa-1		С			
Cb-48	4F-2-Indan	Н	H	1Me-5-Ind	Aa-3	BRA48	С		414 (M*+1	
Cb-49	4F-2-Indan	Н	H	1Me-5-1HIdz	Aa-5	BRA48	С		415 (M+1	
Cb-50	4,7DF-2-Indan	н	н	2-Nap	Aa-1	BRA49	С		429 (M+1	

Toble-Ch-2

Exp.	Rx	Y	Zx	AR	SM1	SM2	LCMS			
		L.		AR	SMI	SMZ	method RTime			ass
Cb-51	4,7DF-2-Indan	H	H	1Me-5-Ind	Aa-3	BRA49	С			(M*+1
Cb-52	4,7DF-2-Indan	Н	H	1Me-5-1HIdz	Aa-5	BRA49	С			(M+1
Cb-53	5,6DF-2-Indan	Н	H	2-Nap	Aa-1	BRA50	0			(M+1
Cb-54	5,6DF-2-Indan	H	H	5-Ind	Aa-2	BRA50	С			(M+1
Cb-55	5,6DF-2-Indan	Н	Н	1Me-5-Ind	Aa-3	BRA50	С			(M*+1
Cb-56	5,6DF-2-Indan	Н	Н	5-1Hldz	Aa-4	BRA50	С			(M*+1
Cb-57	5.6DF-2-Indan	Н	H	1Me-5-1HIdz	Aa-5	BRA50	С			(M*+1
Cb-58	5,6DF-2-Indan	Н	H	5-Bzt	Aa-38	BRA50	С			(M*+1
Cb-59	5,6DF-2-Indan	н	Н	3-Qu	Aa-7	BRA50	С			(M*+1
Cb-60	5,6DF-2-Indan	H	Н	1Et-5-1HIdz	Aa-28	BRA50	0			(M*+1
Cb-61	4Cl-2-Indan	Н	Н	5-Ind	Aa-2	BRA51	C			(M*+1
Cb-62	4Cl-2-Indan	н	Н	1Me-5-1HIdz	Aa-5	BRA51	С			(M*+1
Cb-63	4Cl-2-Indan	Н	н	5-Bzt	Aa-38	BRA51	С			(M*+1
Ob-64	5 CI-2-Indan	Н	Н	2-Nap	Aa-1	BRA52	С			(M*+1
Cb-65	5Cl-2-Indan	Н	Н	5-Ind	Aa-2	BRA52	c			(M*+1
Cb-66	5Cl-2-Indan	H	Н	1Me~5-1HIdz	Aa-5	BRA52	С			(M*+1
Cb-67	5Cl-2-Indan	Н	H	3-Qu	Aa-7	BRA52	0		428	(M+1
Cb-68	501-2-Indan	Н	Н	1Et-5-1HIdz	Aa-28	BRA52	0			(M+1
Cb-69	4,7DCI-2-Indan	Н	Н	2-Nap	Aa-1	BRA53	0		462	(M*+1
Cb-70	4,7DCI-2-Indan	H	н	5-Ind	Aa-2	BRA53	С		451	(M*+1
Cb-71	4,7DCl-2-Indan	Н	Н	1Me-5-1HIdz	Aa-5	BRA53	С		466	(M+1
Ob-72	5,6DCl-2-Indan	Н	Н	2-Nap	Aa-1	BRA54	С			(M+1
Cb-73	5,6DCI-2-Indan	Н	Н	1Me-5-Ind	Aa-3	BRA54	С		465	(M*+1
Cb-74	5,6DCl-2-Indan	Н	H	1Me-5-1HIdz	Aa-5	BRA54	О		466	(M*+1
Cb-75	5,6DCl-2-Indan	н	н	5-Bzt	Aa-38	BRA54	C		469	(M+1
Cb-76	5,6DCI-2-Indan	Н	н	3−Qu	Aa~7	BRA54	С		463	(M+1
Ob-77	5,6DCl-2-Indan	Н	н	1Et-5-1HIdz	Aa-28	BRA54	0		480	(M*+1)
Cb-78	4MeO-2-Indan	Н	н	5-Ind	Aa-2	BRA55	C		412	(M*+1)
Cb-79	4MeO-2-Indan	Н	Н	5-1HIdz	Aa-4	BRA55	С		413	(M*+1)
Cb-80	4MeO-2-Indan	Н	н	1Me-5-1HIdz	Aa-5	BRA55	С		427	(M*+1
Cb-81	5MeO-2-Indan	н	Н	2-Nap	Aa-1	BRA56	С		423	(M*+1)
Cb-82	5MeO-2-Indan	H	н	5-Ind	Aa-2	BRA56	С		412	(M*+1)
Cb-83	5MeO-2-Indan	н	н	1Me-5-1HIdz	Aa-5	BRA56	С		427	(M*+1
Cb-84	5MeO-2-Indan	н	н	5-Bzt	Aa-38	BRA56	С		430	(M*+1
Cb-90	5,6DMeO-2-Indan	н	Н	2-Nap	Aa-1	BRA57	C			(M°+1
Cb-91	5.6DMeO-2-Indan	Н	Ĥ	1Me-5-Ind	Aa-3	BRA57	Č			(M*+1
Cb-92	5,6DMeO-2-Indan	н	Н	1Me-5-1HIdz	Aa-5	BRA57	C			(M*+1
Cb-93	5,6DMeO-2-Indan	H	H	5-Bzt	Aa-38	BRA57	C			(M*+1
Cb-94	5,6DMeO-2-Indan	H	Ĥ	3-Qu	Aa-7	BRA57	c			(M*+1
Cb-95	5,6-DMeO-2-Indan	H	H	1Et-5-1HIdz	Aa-28	BRA57	Č			(M+1
Cb-85	cHex	Н	H	2-Nap	Aa-1	BRA58	Č			(M*+1
Cb-86	cHex	H	Ħ	5-Ind	Aa-2	BRA58	Č			(M+1
Cb-87	cHex	H	H	1Me-5-Ind	Aa-3	BRA58	G			(M*+1
Cb-88	cHex	H	H	5-1HIdz	Aa-4	BRA58	ŏ			(M +1
Cb-89	cHex	H	H	1Me-5-1Hidz	Aa-5	BRA58	č			(M +1

[Reference Examples: Intermediate Ab-1 to Ab-47]

Synthesis of methyl 3-[4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3-

(naphthalen-2-yl)phenyllpropionate (Intermediate Ab-1)

Compound No. Aa-1 (253.2 mg), bispinacolate diboron (202.6mg, Ald),

PdCl2(dppf) (43.4 mg) and potassium acetate (289 mg) were added to DMF (5.7 ml),

and stirred with heating at 80°C for 20 hours under argon gas atmosphere. The reaction mixture was added with ethyl acetate (200 ml), washed with saturated brine, and dried, and then the solvent was evaporated under reduced pressure.

The residue was purified by column chromatography (Quad, hexane-ethyl acetate = 4:1) to obtain the title compound (Intermediate Ab-1, 194.6 mg).

Typical examples of the compounds of the present invention including those mentioned above that can be obtained by reacting and treating corresponding starting compounds according to the synthesis method of Intermediate Ab-1 are shown in Table Ab-1.

In the column indicated as "Mass" in the table, data of mass spectra measured by fast atom bombardment mass spectrometry (FAB-MS) are shown.

D-Me

	/ 0/	- 0			
Table-A	b-1 AR				
Exp.	AR	Mass	Exp.	AR	Mass
Ab-1	2-Nap	417 (M*+1)	Ab-25	1Me-4-1HIdz	421 (M*+1)
Ab-2	5-Ind	406 (M*+1)	Ab-26	5-1HIdz	407 (M ⁺ +1)
Ab-3	1Me−5–Ind	420 (M*+1)	Ab-27	1Me-5-1HIdz	421 (M*+1)
Ab-4	5-1HIdz	407 (M*+1)	Ab-28	1Et-5-1HIdz	435 (M ⁺ +1)
Ab-5	1Me-5-1HIdz	421 (M*+1)	Ab-29	1Pr-5-1Hldz	449 (M ⁺ +1)
Ab-6	5-BF	410 (M*+1)	Ab-30	2Me-5-2HIdz	421 (M*+1)
Ab-7	3-Qu	418 (M*+1)	Ab-31	6-1HIdz	407 (M+1)
Ab-8	1-Nap	417 (M+1)	Ab-32	1Me-6-1HIdz	421 (M*+1)
Ab-9	6MeO-2-Nap	447 (M*+1)	Ab-33	3Me-5-1HIdz	421 (M*+1)
Ab-10	6(Me ₂ N)-2-Nap	460 (M*+1)	Ab-34	1,3DMe-5-1HIdz	435 (M*+1)
Ab-11	4−Ind	406 (M*+1)	Ab-35	5-BT	423 (M+1)
Ab-12	1 Me-4-Ind	420 (M*+1)	Ab-36	2,3DMe-5-BF	435 (M+1)
Ab-13	6-Ind	406 (M*+1)	Ab-37	5-2ABzt	439 (M+1)
Ab-14	1Me-6-Ind	420 (M*+1)	Ab-38	5-Bzt	434 (M*+1)
Ab-15	2-Ind	406 (M*+1)	Ab-39	2Me-5-Bzt	438 (M*+1)
Ab-16	1Me-2-Ind	420 (M*+1)	Ab~40	2,2DMe-5-2ABzt	467 (M+1)
Ab-17	3-Ind	406 (M*+1)	Ab-41	6-2ABzt	439 (M+1)
Ab-18	1Me-3-Ind	420 (M*+1)	Ab-42	6-Bzt	434 (M*+1)
Ab-19	1iPr~5-Ind	448 (M*+1)	Ab-43	2Me-6-Bzt	438 (M+1)
Ab-20	1cPen-5-Ind	474 (M+1)	Ab-44	6-Qu	418 (M+1)
Ab-21	3Me-5-Ind	420 (M*+1)	Ab-45	6-IQ	418 (M+1)
Ab-22	1,3DMe-5Ind	434 (M+1)	Ab-46	2-BF	407 (M*+1)
Ab-23	1,2,3triMe-5Ind	448 (M*+1)	Ab-47	2-BT	423 (M*+1)
Ab-24	4-1HIdz	407 (M*+1)			

[Example Da-1]

Synthesis of methyl 3-[4-(phenylmethyl)-3-(naphthalen-2-yl)phenyl]propionate
(Compound No. Da-1)

According to a procedure described in literature (S. Chowdhury et al., Tetrahedron. Lett., 1999, p.7599), (PhaP)₄Pd (14.8 mg) and a solution of benzyl bromide (corresponding to the substance mentioned in the column of SM2 in Table-Da-1 mentioned later) in dimethoxyethane (1.3 ml) were stirred with heating at 50°C for 10 minutes under argon atmosphere, then added with Compound Ab-1 (52.4 mg, corresponding to the substance mentioned in the column of SM1 in Table-Da-1 mentioned later), and 2 N sodium carbonate (160  $\mu$  l), and refluxed by heating for 58 hours. The reaction mixture was added with ethyl acetate (60 ml), washed successively with saturated aqueous sodium hydrogencarbonate and saturated brine, dried, and then concentrated under reduced pressure. The residue was purified by flash column chromatography (hexane-ethyl acetate = 8:1) to obtain the title compound (Compound No. Da-1, 33.2 mg).

[Example Da-2]

Synthesis of 3-[4-(phenylmethyl)-3-(naphthalen-2-yl)phenyllpropionic acid (Compound No. Da-2)

According to the procedure described in the synthesis method of Compound Ca·2 provided that the reaction was performed for 3 hours, Compound No. Da·1 (28.2 mg) and 2 N aqueous sodium hydroxide (38  $\mu$  I) were reacted and treated to obtain the title compound (Compound No. Da·2, 23.7 mg).

[Examples Da-1 to Da-70]

Typical examples of the compounds of the present invention including those mentioned in the examples described above, that can be obtained by reacting and treating corresponding starting compounds according to the methods described in Examples Da-1 and Da-2, are shown in Table-Da-1 and Table-Da-2.

The substances mentioned in the columns of "SM1" in the tables correspond

to reaction intermediates, and those mentioned in the columns of "SM2" in the tables correspond to the acid halide mentioned in Example Da·1. The halide reagents mentioned in the columns of "SM2" with the symbols of "HAL (number))" are those mentioned in Table·Ha. The regents for which cells of the columns of "Manufacturer" are blank in the tables are synthesized according to a method described in ordinary chemical literature.

## Table-Ha

Reagent	Name of reagent	Manufacturer
	Benzyl bromide	Ald
HAL-2	4-Methoxybenzyl	Ald
	bromide	
HAL-3	3-Methoxybenzyl	Ald
	bromide	
	2-Methoxybenzyl	Ald
	bromide	
	4-Methylbenzyl bromide	
	3-Methylbenzyl bromide	
	2-Methylbenzyl bromide	
	4-Trifluoromethylbenzyl	Ald
	bromide	
	3-Trifluoromethylbenzyl	Ald
	bromide	
	2-Trifluoromethylbenzyl	Ald .
	bromide	411
HAL-11	4-Chlorobenzyl bromide	
HAL-12		Ald
	2-Chlorobenzyl bromide 4-Fluorobenzyl bromide	Ald
	3-Fluorobenzyl bromide	Ald
HAL-18	2-Fluorobenzyl bromide	Ald
	1-Bromo-2-phenyl	Ald
	ethane	^iu
HAI -18	1-Bromo-2-(4-chloro	Ald
	phenyl) ethane	/Nu
HAL-19	1-Bromo-2-(3-chloro	
	phenyl) ethane	i
HAI -20	1-Bromo-2-(2-chloro	
	phenyl) ethane	
HAL-21	1-Bromo-2-(4-dimethyl	
	aminophenyl) ethane	
HAL-22	Benzoyl chloride	TCI
HAL-23	Acetyl chloride	WAKO
	i-Butyryl chloride	Ald
	Cyclohexylcarbonyl	Ald
1 1	chloride	
HAL-26	4-Methoxybenzoyl	TCI
	chloride	
HAL-27	4-Methylbenzoyl	Ald
	chloride	
HAL-28	4-Chlorobenzoyl	TCI
	chloride	
HAL-29	Phenylacetyl chloride	WAKO
HAL-30	2-Phenylpropionyl	TCI
	chloride	

Table-Da-1 LOMS Exp. Rx Υ Zx AR SM1 SM₂ RTime Mana Ab-1 HAL-1 D N.D Da-1 Me H 2-Nap 367 (M+1 Da-2 HH 2-Nap Da-1 Ph Me H Ab-2 HAL-1 Da-3 5-Ind Ph H H 5-Ind Da-3 Da-4 384 (M+1 Da-5 Ph Me H 1 Me-5-Ind Ab-3 Ha-1 C Da-6 Ph HH 1Me-5-Ind Da-5 C 369 (MT+1 Ph Me H Ab-4 Da-7 5-1HIdz Ha-1 Ph Da-8 н Н 5-1HIdz Da-7 Da-9 Ph Ph Me H 1Me-5-1Hldz Ab-5 HAL-1 C 385 (M+1) 370 (M+1) н Н 1Me-5-1Hldz Da-9 __ Da-10 HAL-2 Da-11 4MeOPh HH 2-Nap Ab-1 HAL-2 Da-12 4MeOPh н Н 5-Ind Ab-2 Da-13 4MeQPh н Н 1Me-5-1HIdz Ab-5 HAL-2 HAL-3 c 397 (M+1) Da-14 3MeOPh Н н 2-Nap Ab-1 Ħ 5-Ind Da-15 3MeOPh н Ab-2 Ab-5 HAL-3 Da-16 3MeOPh HAL-3 Н H 1Me-5-1HIdz н 2-Nap Ab-1 HAL-4 Da-17 2MeOPh н Ab-2 HAL-4 Da-18 2MeOPh н Н 5-Ind 1Me-5-1Hldz Ab-5 HAL-4 Da-19 2MeOPh н Н Ab-1 HAL-5 381 (M*+1) 4MaDh н н 2-Nap С Da-20 H 5-Ind Ab-2 HAL-5 Da-21 4MePh н Н Н 1Me-5-1Hldz Ab-5 HAL-5 Da-22 4MePh 2-Nap 3MePh Н Ab-1 HAL-6 Da-23 H н 5-Ind Ab-2 HAL-6 Da-24 3MePh Н 3MePh н Н 1Me-5-1Hldz Ab-5 HAL-6 Da-25 HAI-7 Ab−1 c 381 (MT+1) Da-26 2MePh Н Н 2-Nap H 5-Ind 370 (M*+1) н Ab-2 HAI-7 Da-27 2MePh 1Me-5-1Hldz 2-Nap HAI-7 2MePh н H Ab-5 Da-28 Ab-1 HAL-8 4CF₂Ph H Da-29 4CF₃Ph н Н 5-Ind Ab-2 HAL-8 Da-30 4CF₃Ph 3CF₃Ph Da-31 н н 1Me-5-1HIdz Ab-5 HAL-8 Da-32 Н н 2-Nap HAL-9 3CF₃Ph 3CF₃Ph Ab-2 HAI-9 Da-33 н Н 1Me-5-1Hldz Ab-5 HAL-9 Da-34 н H Da-35 2CF₃Ph н H 2-Nap Ab-1 HAL-10 2CF₃Ph Da-36 н н 5-Ind Ab-2 HAL-10 1Me-5-1HIdz Ab-5 HAL-10 Da-37 2CF₁Ph н Н Ab-1 HAL-11 401 (M+1) 4CIPh н н 2-Nap Da-38 HAL-11 390 (M+1) Da-39 4CIPh н н 5-Ind Ab-2 1Me-5-1HIdz Da-40 4CIPh н н Ab-5 HAL-11 Da-41 3CIPh Н Н 2-Nap Ab-1 HAL-12 Ab-2 HAL-12 Da-42 3CIPh н Н 5-Ind HAL-12 Da-43 3CIPh н 1Me-5-1Hldz Ab-5 2CIPh HAL-13 н Da-44 н 2-Nap Ab-1 5-Ind Ab-2 HAL-13 2CIPh Н н Da-45 2CIPh Da-46 Н Н 1Me-5-1HIdz Ab-5 HAL-13 HAI-14 385 (M+1) Da-47 4FPh н н 2-Nap Ab-1 н Ab-2 HAL-14 Da-48 4FPh н 1Me-5-1HIdz 2-Nap Ab-5 389 (M+1) Da-49 4FPh н Н HAL-14

Ab-1 HAL-15

Da-50

3FPh

н Н

Table-Da-2

Exp. Rx		Y	Zx	AR	SM1	SM2	LOMS			
Exp.	HX	١,	ZX	AR	SMI	OMZ	method	RTime	Mass	
Da-51	3FPh	H	Н	5-Ind	Ab-2	HAL-15				
Da-52	3FPh	н	Ξ	1Me-5-1Hidz	Ab-5	HAL-15				
Da-53	2FPh	H	H	2-Nap	Ab-1	HAL-16				
Da-54	2FPh	Н	Н	5-Ind	Ab-2	HAL-16				
Da-55	2FPh	Н	н	1Me-5-1HIdz	Ab~5	HAL-16				
Da-56	Bn	H	H	2-Nap	Ab-1	HAL-17	C		381 (M++	
Da-57	Bn	Н	н	5~Ind	Ab-2	HAL-17				
Da-58	Bn	H	Н	1Me-5-1Hldz	Ab-5	HAL-17	C		419 (M+	
Da-59	4GlBn	H	н	2-Nap	Ab-1	HAL-18				
Da-60	4GIBn	Н	Н	5-Ind	Ab-2	HAL-18				
Da-61	4ClBn	Н	Н	1Me-5-1Hldz	Ab-5	HAL-18	С		385 (M++	
Da-62	3ClBn	H	H	2-Nap	Ab-1	HAL-19	C		415 (M++	
Da-63	3GIBn	H	H	5-Ind	Ab-2	HAL-19				
Da-64	3GlBn	Н	Н	1Me-5-1HIdz	Ab-5	HAL-19				
Da-65	2GIBn	H	Н	2-Nap	Ab-1	HAL-20				
Da-66	2ClBn	H	Н	5-Ind	Ab-2	HAL-20				
Da-67	2ClBn	H	Н	1Me-5-1HIdz	Ab~5	HAL-20				
Da-68	4DMABn	Н	Н	2-Nap	Ab-1	HAL-21	0		424 (M+	
Da-69	4DMABn	Н	H	5-Ind	Ab-2	HAL-21	С		413 (M*+	
Da-70	4DMABn	H	Н	1Me-5-1HIdz	Ab-5	HAL-21				

[Example Ea·1]

Synthesis of methyl 3·[4·(phenylcarbonyl)·3·(naphthalen·2·yl)phenyl]propionate (Compound No. Ea·1)

According to a procedure described in literature (Y. Urawa et al., Tetrahedron. Lett., 2003, p.271), Compound Ab-1 (112.1mg, corresponding to the substance mentioned in the column of SM1 in Table Ea-1 mentioned later), dichlorobis(triphenylphosphine)palladium (18.9 mg, KANTO), and a solution of potassium phosphate (147.1 mg) in toluene (2.6 ml) were added with benzoyl chloride (47  $\mu$ g, corresponding to the substance mentioned in the column of SM2 in Table Ea-1), and stirred with heating at 110°C for 48 hours under nitrogen atmosphere. The reaction mixture was washed successively with saturated aqueous sodium hydrogencarbonate, water and saturated brine, dried, and then concentrated under reduced pressure. The residue was purified by flash column chromatography (hexane-ethyl acctate = 7:1) to obtain the title compound (Compound No. Ea-1, 88.3 mg).

[Example Ea-2]

Synthesis of 3-[4-phenylcarbonyl-3-(naphthalen-2-yl)phenyl]propionic acid (Compound No. Ea-2)

According to the procedure described in the synthesis method of Compound Ca·2 with the modification that the reaction was carried out for 3 hour, Compound No. Ea·1 (82.6 mg) and 2 N aqueous sodium hydroxide (105 ml) were reacted and treated to obtain the title compound (Compound No. Ea·2, 70.7 mg).

[Examples Ea-1 to Ea-34]

Typical examples of the compounds of the present invention including those mentioned in the examples described above, that can be obtained by reacting and treating corresponding starting compounds according to the methods described in Examples Ea·1 and Ea·2, are shown in Table Ea·1.

The substances mentioned in the column of "SM1" in the table correspond to reaction intermediates, and those mentioned in the column of "SM2" in the table correspond to acid chlorides mentioned in Table Ea 1. The acid chlorides mentioned with the symbols of "HAL (number)" in the column of "SM2" are those mentioned in Table Ha.

Table-Ea-		1 1	_		2044	SM2		LCMS		
Exp.	Rx	Υ	Zx	AR	SM1		method	RTime		ass
Ea-1	Ph	Me	Н	2-Nap	Ab−1	HAL-22	C			(M*+1
Ea-2	Ph	Н	Н	2-Nap	Ea-1		С		381	(M*+1
Ea-3	Ph	Me	Н	5-Ind	Ab-2	HAL-22				
Ea-4	Ph	Н	н	5-Ind	Ea-3					
Ea-5	Ph	Me	Н	1Me-5-Ind	Ab-3	HAL-22	С			(M*+1
Ea-6	Ph	H	Н	1Me-5-Ind	Ea-5	-	С		384	(M*+1
Ea-7	Ph	Me	H	5-1Hidz	Ab-4	HAL-22				
Ea-8	Ph	H	Н	5-1HIdz	Ea-7					
Ea-9	Ph	Me	Н	1Me-5-1HIdz	Ab-5	HAL-22	С			(M°+1
Ea-10	Ph	H	Н	1Me-5-1HIdz	Ea-9	-	О			(M*+1
Ea-11	Me	Н	Н	2-Nap	Ab-1	HAL-23	C			(M*+1
Ea-12	Me	Н	Н	5-Ind	Ab-2	HAL-23	0		308	(M*+1
Ea-13	Me	H	Н	1Me-5-1Hldz	Ab-5	HAL-23				
Ea-14	iBu	H	H	2-Nap	Ab-1	HAL-24	C		361	(M°+1
Ea-15	iBu	Н	Н	5-Ind	Ab-2	HAL-24				
Ea-16	iBu	Н	Н	1Me-5-1Hldz	Ab-5	HAL-24	0			(M,+.
Ea-17	cHex	H	H	2-Nap	Ab-1	HAL-25	С		386	(M +
Fa-18	cHex	H	H	5-Ind	Ab-2	HAL-25				
Ea-19	cHex	Н	Н	1Me-5-1Hidz	Ab-5	HAL-25				
Ea-20	4MeOPh	Н	Н	2-Nap	Ab-1	HAL-26	C		411	(M*+
Ea-21	4MeOPh	Н	Н	5-Ind	Ab-2	HAL-26	С		400	(M°+
Ea-22	4MeOPh	Н	Н	1Me-5-1HIdz	Ab-5	HAL-26				
Ea-23	4MePh	H	H	2-Nap	Ab-1	HAL-27				
Ea-24	4MePh	H	H	5-Ind	Ab-2	HAL-27				
Ea-25	4MePh	H	H	1Me-5-1Hldz	Ab-5	HAL-27				
Ea-26	40lPh	H	Н	2-Nap	Ab-1	HAL-28	С		415	(M"+
Ea-27	4QIPh	H	н	5-Ind	Ab-2	HAL-28				_
Ea-28	4GIPh	H	H	1Me-5-1HIdz	Ab-5	HAL-28				
Ea-29	Bn	H	H	2-Nap	Ab-1	HAL-29	0		395	(M,+.
		+ -:-	_		A). A	LIAL OO			т	

[Reference Examples: Intermediate Ac-1 and Ac-2]

Synthesis of t-butyldimethylsilyl 3-[3-bromo-4-(tbutyldimethylsilyloxy)phenyl]acrylate (Intermediate Ac-1)

According to the procedure described in the synthesis method of Intermediate 43, 3-[3-bromo-4-hydroxylphenyllacrylic acid (12.01 g) obtainable from 4-hydroxybenzaldehyde (TCI) by a method known from literature (Y. Nagao et al., Tetrahedron Lett., 1980, p.4931) was reacted with imidazole (16.01 g) and t-butyldimethylsilyl chloride (7.43 g) and treated to obtain the title compound (Intermediate Ac-1, 17.43 g).

Synthesis of 3-[3-bromo-4-(t-butyldimethylsilyloxy)phenyl]acrylic acid

## (Intermediate Ac-2)

A solution of Compound Ac-1 (17.43 g) in methanol (100 ml) was added with 1 N hydrochloric acid (5 ml), and stirred at room temperature for 3 hours. The reaction solution was extracted with ethyl acetate (500 ml), and washed with saturated brine. The organic layer was dried, and then the solvent was evaporated under reduced pressure. The residue was purified by flash column chromatography (hexane:ethyl acetate = 6:1) to obtain the title compound (Compound No. Ac-2, 14.60 g).

[Example Ga-1]

Synthesis of methyl 3-[3-(1H-indol-5-yl)-4-(3-pyridinemethyloxy)phenyllacrylate (Compound No. Ga-1)

(Step 1)

A solution of Compound Ac-2 (3.06 g), disopropyl carbodiimide

(henceforth abbreviated as "DIC", 1.33 ml) and dimethylaminopyridine (86.8 mg) in

DMF (100 ml) was added with SynPhase-PS-D-series Lantern,

Hydroxymethylphenoxy Linker (henceforth abbreviated as "PSL", 0.035 mmol per

lantern, 81 lanterns, Mimotopes), and left standing at room temperature for 16

hours. After the reaction mixture was removed, PSL was washed successively

with DMF (100 ml), methanol (100 ml), dichloromethane (100 ml), and THF (100

ml) three times for each, and dried under reduced pressure.

PSL (81 lanterns mentioned above) was added to a solution of tetrabutylammonium fluoride (8.5 ml, Ald, 1 N THF solution) in THF (80 ml), and left standing at room temperature for 23 hours. After the reaction mixture was removed, PSL was successively washed with DMF (100 ml) three times, alternately with DMF:water:acetic acid (75:25:1, 100 ml) and methanol:water:acetic acid (75:25:1, 100 ml) twice for each, alternately with DMF:water (4:1, 100 ml) and methanol:water (4:1, 100 ml) twice for each, and with THF (100 ml), chloroform

(100 ml), DMF (100 ml), and chloroform (100 ml) twice for each, and then dried under reduced pressure to obtain PLS-1 (81 lanterns).

PSL·1 (3 lanterns out of those mentioned above) was added to a mixed solution of 3-pyridinemethanol (147.6  $\mu$  l, corresponding to the substance mentioned in the column of SM1 in Table Ga·1 mentioned later), DBAB (242.1mg, Sigma) and PhaP (275.6 mg, KANTO) in dehydrated THF (3.24 ml), and left standing at room temperature for 15 hours. After the reaction mixture was removed, PSL was successively washed with THF (3.5 ml) and DMF (3.5 ml) four times for each, alternately with methanol (3.5 ml) and DMF (3.5 ml) twice for each, alternately with DMF (3.5 ml) and dichloromethane (3.5 ml) twice for each, with dichloromethane (3.5 ml) twice, and dried under reduced pressure to obtain PSL·2 (3 vials).

(Step 3)

(Step 2)

PSL-2 (1 lantern out of those mentioned above) was added to a mixed solution of 1H-indole-5-boronic acid (11.3 mg, corresponding to the substance mentioned in the column of SM2 in Table-Ga-1 mentioned later), (PhaP)4Pd (8.1 mg), and 2 N aqueous cesium carbonate (176 µ!) in DMF (800 µ!), and heated at 80℃ for 18 hours under argon atmosphere. After the reaction mixture was removed, PSL was successively washed with DMF (1.0 ml) four times, with methanol (1.0 ml) twice, alternately with DMF (1.0 ml) and methanol (1.0 ml) twice for each, alternately with DMF (1.0 ml) and dichloromethane (1.0 ml) twice for each, and with dichloromethane (1.0 ml) twice, and dried under reduced pressure. This PSL was added to a solution of sodium methoxide (175 µ!, WAKO, 1 N solution in methanol) in THF:methanol (2:1, 1.5 ml), and left standing at room temperature for 19 hours. After the reaction, PSL was removed, and the reaction solution was added with water (500 µ!), and stirred with heating at 60℃ for 3 hours. The

reaction solution was concentrated under reduced pressure, then added with water (200  $\,\mu$  I) and chloroform (1 ml), and passed through a diatomaccous earth column, and the obtained filtrate was concentrated under reduced pressure to obtain the title compound (Compound No. Ga-1, 10.6 mg).

Typical examples of the compounds of the present invention including those mentioned in the examples described above, that can be obtained by reacting and treating corresponding starting compounds according to the method described in

Example Ga-1, are shown in Table-Ga-1 and Table-Ga-2.

[Examples Ga-1 to Ga-55]

The substances mentioned in the columns of "SM1" in the tables correspond to the alcohol reagent mentioned in Example Ga·1, and those mentioned in the columns of "SM2" in the tables correspond to the boronic acid reagent mentioned in Table Ga·1. The alcohol reagents mentioned in the columns of "SM1" with the symbols of "ALC (number))" are those mentioned in Table I. The boronic acid reagents mentioned with the symbols of "BRA (number))" in the columns of "SM2" are those mentioned in Table Ba·1 and Table Ba·2.

## Table-I

Reagent	Name of reagent	Manufacture	Reagent	Name of reagent	Manufacture
ALC-1	Cyclopentanol	KANTO	ALC-16	2-Phenylthio ethanol	TCI
ALC-2	Cyclohexanol	Ald		5-(2-Hydroxyethyl)- 4-methylthiazol	TCI
ALC-3	Benzyl Alcohol	Ald	ALC-18	1-Butanol	TCI
ALC-4	2-Methyl-1-propyl alcohol	TCI	ALC-19	2-Hydroxyethyl acetate	TCI
ALC-5	4-Fluorophenetyl alcohol	Ald	ALC-20	N-(2-Hydroxyethyl) morpholine	TCI
ALC-6	1-Phenylethanol	WAKO	ALC-21	2-(2- Dimethylaminoethoxy)	TCI
ALC-7	2-(N-Methylanilino) ethanol	TCI	ALC-22	Methyl glycolate	TCI
ALC-8	2-Hydroxy indane	TCI	ALC-23	1-Phenyl ethanol	TCI
ALC-9	2-Hydroxymethyl- 1,4-benzodioxane	TCI	ALC-24	2-Chlorobenzyl alcohol	TCI
ALC-10	2-(4-Dimethyl) phenyl ethanol	Ald .	ALC-25	3-Chlorobenzyl alcohol	TCI
ALC-11	3-Pyridine methanol	TCI	ALC-26	4-Chlorobenzyl alcohol	TCI
ALC-12	m-Chlorobenzyl alcohol	TOI	ALC-27	2-Methoxybenzyl alcohol	TCI
ALC-13	4-n-Butoxybenzyl alcohol	TCI	ALC-28	3-Methoxybenzyl alcohol	TCI
ALC-14	2-Hydroxyacetophenone	TCI	ALC-29	4-Methoxybenzyl alcohol	TCI
ALC-15	2-Phenoxy ethanol	TCI			

Table-G	a-1	AR							
Exp.	RxO	Υ	Zx	AR	SM1	SM2		LCMS	
			-				method	RTime	Mass
Ga-1	3PyMeO_	F	Ŧ	5-Ind	ALC-11	BRA2	Α	3.27	371 (M ⁺ +1)
Ga-2	2(PhS)EtO	н	Н	5-Ind	ALC-16	BRA2			
Ga−3	√S ^o	н	Н	5–Ind	ALC-17	BRA2	A	3.07	405 (M ⁺ +1)
Ga-4	nBuO	H	H	5-Ind	ALC-18	BRA2			
Ga-5	M~6~0	н	н	5-Ind	ALC-21	BRA2			
Ga-6	cPen0	Н	Н	5-Ind	ALC-1	BRA2			
Ga-7	OxeHo	Н	Н	5-Ind	ALC-2	BRA2			
Ga-8	PhMeO	Н	Н	5-Ind	ALC-3	BRA2	A	3.79	358 (M*+1)
Ga-9	cPenO	Н	Н	2-BF	ALC-1	BRA18			
Ga-10	cHexO	н	н	2-BF	ALC-2	BRA18			
Ga-11	2-IndanO	Н	Н	2-BF	ALC-8	BRA18	A	3.85	397 (M+1)
Ga-12	3PyMeO	н	Н	2-BF	ALC-11	BRA18			
Ga-13	2(PhS)EtO	н	Н	2-BF	ALC-16	BRA18	A	3.61	417 (M+1)
Ga-14	1500	н	Н	2-BF	ALC-17	BRA18			
Ga-15	nBuO	н	Н	2-BF	ALC-18	BRA18			
Ga-16	M~~~	н	Н	2-BF	ALC-21	BRA18			
Ga-17	cPenO	Н	Н	1Me-5-1Hldz	ALC-1	BRA6			
Ga-18	cHexO	H	H	1Me-5-1Hidz	ALC-2	BRA6	A	3.74	377 (M*+1)
Ga-19	2-IndanO	H	H	1 Me-5-1HIdz	ALC-8	BRA6			
Ga-20	3PvMeO	Н	Ħ	1Me-5-1HIdz	ALC-11	BRA6			
Ga-21	2(PhS)EtO	Н	Ĥ	1Me-5-1HIdz	ALC-16	BRA6			
Ga-22	\rangle \sigma_s \rangl	H	н	1Me=5=1HIdz	ALC-17	BRA6			
Ga-23	nBuO	Н	Н	1Me-5-1HIdz	ALC-18	BRA6			
Ga-24	M~~~	Н	н	1 Me-5-1 HIdz	ALC-21	BRA6			
Ga-25	3PyMeO	Н	H	1-Nap	ALC-11	BRA16			
Ga-26	2(PhS)EtO	Н	Н	1-Nap	ALC-16	BRA16	С		427 (M+1)
Ga-27	150	н	н	1-Nap	ALC-17	BRA16			
Ga-28	nBuO	Н	Н	1-Nap	ALC-18	BRA16			
Ga-29	M~~0~0	Н	н	1-Nap	ALC-21	BRA16			
Ga-30	1PhEtO	Н	H	5-Ind	ALC-6	BRA2			

Table-Ga-2

- 1	D.O.	Y	7.		014	SM2		LCMS	
Exp.	RxO	,	Zx	AR	SM1		method	RTime	Mass
Ga-31	1PhEtO	Н	H	2-BF	ALC-6	BRA18			
Ga-32	1PhEtO	Н	Н	1Me-5-1HIdz	ALC-6	BRA6	A	3.55	399 (M*+1
Ga-33	1PhEtO	H	Н	1-Nap	ALC-6	BRA16			
Ga-34	1PhEtO	H	H	2-Nap	ALC-6	BRA1			
Ga-35	1PhEtO	H	H	2-Nap	ALC-6	BRA1	С		395 (M*+1
Ga-36	1PhEtO	Н	Н	5-Ind	ALC-6	BRA2			
Ga-37	2CIPhMeO	Н	н	2-Nap	ALC-24	BRA1			
Ga-38	2CIPhMeO	Н	H	5-Ind	ALC-24	BRA2			
Ga-39	3OIPhMeO	Н	Н	2-Nap	ALC-25	BRA1	С		415 (M+)
Ga-40	3CIPhMeO	Н	Н	5-Ind	ALC-25	BRA2			
Ga-41	4CIPhMeO	Н	H	2-Nap	ALC-26	BRA1			
Ga-42	4CIPhMeO	H	H	5-Ind	ALC-26	BRA2	С		404 (MT+1
Ga-43	2MeOPhMeO	Н	Н	2-Nap	ALC-27	BRA1			
Ga-44	2MeOPhMeO	H	Н	5-Ind	ALC-27	BRA2			
Ga-45	3MeOPhMeO	H	Н	2-Nap	ALC-28	BRA1			
Ga-46	3MeOPhMeO	H	H	5-Ind	ALC-28	BRA2			
Ga-47	4MeOPhMeO	Н	H	2-Nap	ALC-29	BRA1			
Ga-48	4MeOPhMeO	Н	Н	5-Ind	ALC-29	BRA2			
Ga-49	nBuO	Н	H	3-Qu	ALC-18	BRA10	С		348 (M+1
Ga-50	nBuO	Н	H	3-Thienyl	ALC-18	BRA36			
Ga-51	nBuO	Н	H	4-Py	ALC-18				
Ga-52	nBuO	Н	Н	cPen	ALC-18	BRA28			
Ga-53	nBuO	Н	Н	2FPh	ALC-18	BRA32	С		315 (M"+1
Ga-54	nBuO	Н	Н	3FPh	ALC-18	BRA33			
Ga-55	nBuO	Н	Н	4FPh	ALC-18	BRA34			

[Reference Examples: Intermediate s-1 to s-52]

Synthesis of methyl 3-[4-(4-methylphenylthio)-3-nitrophenyl]acrylate (Intermediate s-1) (Synthesis method SF)

A solution of 3-[4-(4-methylphenylthio)-3-nitrophenyl]acrylic acid (631 mg, MAYB) in a mixture of methanol (12.6 ml), ethyl acetate (6.3 ml) and THF (6.3 ml) was added dropwise to methanol (12.6 ml) beforehand under ice cooling, and then the mixture was added with a solution of thionyl chloride (735  $\mu$  1, KANTO) in methanol (50 ml) under ice cooling, stirred for 30 minutes, then warmed to room temperature, and further stirred for 15.5 hours. The reaction mixture was poured into aqueous sodium hydrogencarbonate (50 ml) for neutralization, and extracted with ethyl acetate (50 ml), and the organic layer was washed with saturated brine. The organic layer was dried, and then the solvent was evaporated under reduced pressure to obtain the title compound (Intermediate s-1, 659 mg). Synthesis of methyl 3-[4-(4-methylphenylthio)-3-nitrophenyllpropionate

(Intermediate s-2) (Synthesis method SD1)

A solution of Intermediate s-1 (494 mg) in ethyl acetate (75 ml) was added with 10% palladium hydroxide/carbon (150 mg, NE CHEMCAT), and stirred at room temperature for 14 hours under hydrogen atmosphere. The reaction mixture was filtered, and the solvent of the filtrate was evaporated under reduced pressure. The residue was dissolved in methanol (75 ml) again, added with 5 N hydrochloric acid (600  $\mu$ l) and 10% palladium hydroxide/carbon (151 mg), and stirred at room temperature for 22 hours under hydrogen atmosphere. The reaction mixture was filtered, and the solvent of the filtrate was evaporated under reduced pressure to obtain the title compound (Intermediate s-2, 419 mg).

Synthesis of methyl 3-[3-bromo-4-(4-methylphenylthio)phenyllpropionate (Intermediate s-3) (Synthesis method SE1)

A solution of hydrobromic acid (690  $\,\mu$  l) in methanol (3.2 ml) was added with a solution of Intermediate s·2 (362 mg) in methanol (3.2 ml) under ice cooling. This mixture was added dropwise with an aqueous solution (320  $\,\mu$  l) of sodium nitrite (84 mg. WAKO).

An aqueous solution (3.2 ml) of copper(II) bromide (270 mg, WAKO) was heated to 40°C, added dropwise with the previously obtained solution over 20 minutes, and stirred at the same temperature for 1.5 hours.

The reaction mixture was extracted with ethyl acetate (40 ml). The organic layer was washed successively with water and saturated brine, and dried, and then the solvent was evaporated under reduced pressure. The residue was purified by flash column chromatography (hexane:ethyl acetate = 9:1) to obtain the title compound (Intermediate s:3, 167 mg).

Synthesis of methyl 3-(3-bromo-4-fluorophenyl)acrylate (Intermediate s-4) (Synthesis method SF)

According to the procedure described in the synthesis method of

Intermediate n·1 (Synthesis method SF) provided that the reaction was performed for 1 hour, 3·bromo·4·fluorocinnamic acid (3.30 g, LANC) and thionyl chloride (1.5 ml, WAKO) were reacted and treated to obtain the title compound (Intermediate n·25, 3.47 g).

Synthesis of methyl 3·[3-bromo·4·(4-methoxyphenylthio)phenyllacrylate (Intermediate s·5) (Synthesis method SC)

A solution of Intermediate s-4 (259.1 mg) in DMSO (4 ml) was added with potassium carbonate (156.9 mg) and p-methoxythiophenol (148  $\mu$  I, TCI), and stirred at 70°C for 16 hours. The reaction mixture was extracted with ethyl acetate (30 ml), and then the organic layer was washed successively with water and saturated brine, and dried. Then, the solvent was evaporated under reduced pressure. The residue was purified by column chromatography (Quad, hexane:ethyl acetate = 8:1) to obtain the title compound (Intermediate s-5, 283.3 mg).

Synthesis of methyl 3·[3·bromo·4·(4·methoxyphenylthio)phenyl)propionate (Intermediate s·6) (Synthesis method SD2)

According to a procedure described in literature [D.J. Hart et al., Journal of Organic Chemistry (J. Org. Chem.), 1987, vol. 52, p.4665], a solution of Intermediate s·5 (579.1 mg) in dimethoxyethane (40 ml) was added with p·toluenesulfonhydrazide (1.99 g, TCl), and refluxed by heating at 110°C. Then, the reaction mixture was added dropwise with an aqueous solution (40 ml) of sodium acetate (1.54 g, WAKO) over 1 hour, and further stirred for 3 hours. The reaction mixture was extracted with dichloromethane (150 ml), and the organic layer was washed with water, and dried. Then, the solvent was evaporated under reduced pressure. The residue was purified by column chromatography (Quad, hexane; ethyl acetate = 7:1) to obtain the title compound (Intermediate s·6, 583.5 mg).

Synthesis of 3-bromo-4-(cyclopentylthio)benzaldehyde (Intermediate s-23) (Synthesis method SC)

A solution of 3-bromo-4-fluorobenzaldehyde (517.4 mg) in DMSO (8 ml) was added with potassium carbonate (514.9 mg) and cyclopentanethiol (250  $\mu$  1, TCI), and stirred at 90°C for 17 hours. The reaction mixture was extracted with ethyl acetate (50 ml), and the organic layer was washed successively with water and saturated brine, and dried. Then, the solvent was evaporated under reduced pressure. The residue was purified by column chromatography (Quad, hexane-ethyl acetate = 8:1) to obtain the title compound (Intermediate S-23, 644.7 mg).

Synthesis of ethyl 3·[3·bromo·4·(cyclopentylthio)phenyllacrylate (Intermediate s-24) (Synthesis method SE2)

A solution of Intermediate s-23 (243.7 mg) in 1,2-dimethoxyethane (8 ml) was added with ethyl diethylphosphonoacetate (300 µl, TCl), and added with 60% sodium hydride (49.8 mg) under ice cooling. The reaction mixture was stirred for 10 minutes, then warmed to room temperature, and stirred for 1 hour. The reaction mixture was added with water (5 ml) for quenching, added with dichloromethane (30 ml) for extraction, and washed with saturated brine. The organic layer was dried, and then the solvent was evaporated under reduced pressure. The residue was purified by column chromatography (Quad, hexane:ethyl acetate = 4:1) to obtain the title compound (Intermediate s-24, 286.2 mg).

Typical examples of the intermediates including those mentioned above that can be obtained by reacting and treating corresponding starting compounds using any of the methods described in the present specification are shown in Table. Int. S·1 and Table-Int. S·2. In the tables, intermediate numbers are mentioned in the columns indicated as "Exp". In the tables, used methods among those

described above are mentioned in the columns of "Syn" with symbols, the starting compounds 1 are mentioned in the columns of "SM1", and the starting compounds 2 are mentioned in the columns of "SM2". Further, the compounds indicated as "Single" in the columns of "Single or Double" in Table-Int.S-1 are compounds in which two of the carbon atoms binding the benzene ring and carbonyl group in the compounds are bound with a single bond, and those indicated as "Double" in the same are compounds in which two of the carbon atoms binding the benzene ring and carbonyl group in the compounds are bound with a double bond.

Table-Int.S-1

F		SM1	SM2	Rx-S	Υ	Single or		LCMS	3
Ехр.	Syn.	SMI	SIVIZ	RX-3	'	Double	method	RTime	Mass
Int.s-5	SC	Int.s-4	4MeOPhSH	4MeOPhS	Me	Double	D	5.87	378(M+1)
Int.s-6	SD2	Int.s-5		4MeOPhS	Me	Single	С		380(M ⁺ +1)
Int.s-7	SC		2MeOPhSH	2MeOPhS	Me	Double	С		378(M+1)
Int.s-8	SD2	Int.s-7		2MeOPhS	Me	Single	С		380(M ⁺ +1)
Int.s-9	SC	Int.s-4	3MeOPhSH	3MeOPhS	Me	Double	С		378(M+1)
Int.s-10	SD2	Int.s-9		3MeOPhS	Ме	Single	С		380(M+1)
Int.s-11	SC	Int.s-4	2MePhSH	2MePhS	Ме	Double	С		368(M+1)
Int.s-12	SD2	Int.s-11		2MePhS	Me	Single	D	5.70	N.D
Int.s-13	SC	Int.s-4	3MePhSH	3MePhS	Me	Double	С		368(M+1)
Int.s-14	SD2	Int.s-13		3MePhS	Me	Single	С		366(M+1)
Int.s-15	SC	Int.s-4	4MePhSH	4MePhS	Me	Double	С		368(M+1)
Int.s-16	SD2	Int.s-15		4MePhS	Me	Single	c		366(M+1)
Int.s-17	SC	Int.s-4	2FPhSH	2FPhS	Ме	Double	С		368(M+1)
Int.s-18	SD2	Int.s-17		2FPhS	Ме	Single	С		370(M*+1)
Int.s-19	SC	Int.s-4	3FPhSH	3FPhS	Me	Double	С		368(M+1)
Int.s-20	SD2	Int.s-19		3FPhS	Ме	Single	С		370(M+1)
Int.s-21	SC	Int.s-4	4FPhSH	4FPhS	Ме	Double	С		368(M ² +1)
Int.s-22	SD2	Int.s-21		4FPhS	Ме	Single	С		370(M*+1)
Int.s-24	SE2	Int.s-23		oPenS	Ме	Double	D	6.35	340(M+1)
Int.s-25	SD2	Int.s-24		oPenS	Ме	Single	c		342(M*+1)
Int.s-27	SE2	Int.s-26		cHexS	Ęţ	Double	С		354(M+1)
Int.s-28	SD2	Int.s-27		cHexS	Д	Single	С		356(M*+1)
Int.s-30	SE2	Int.s-29		nPrS	Et	Double	С		328(M+1)
Int.s-31	SD2	Int.s-30		nPrS	Εt	Single	С		330(M*+1)
Int.s-33	SE2	Int.s-32		iPrS	Et	Double	С		328(M*+1)
Int.s-34	SD2	Int.s-33		iPrS	Et	Single	C		330(M*+1)
Int.s-36	SE2	Int.s-35		nBuS	Ħ	Double	С		328(M*+1)
Int.s-37	SD2	Int.s-36		nBuS	Et	Single	С		330(M+1)
Int.s-39	SE2	Int.s-38		iBuS	Me	Double	D	5.86	330(M ⁺ +1)
Int.s-40	SD2	Int.s-39		iBuS .	Me	Single	D	6.23	330(M ⁺ +1)
Int.s-42	SE2	Int.s-41		2PhEtS	Me	Double	D	6.18	376 (M ⁺ )
Int.s-43	SD2	Ints-42		2PhEtS	Me	Single	D	6.21	378 (M*)
Int.s-45	SE2	Int.s-44		4MeOBnS	Et	Double	С		393 (M*+1)
Int.s-46	SD2	Int.s-45		4MeOBnS	Et	Single	С		395 (M*+1)
Int.s-48	SE2	Int.s-47		4FBnS	Et	Double	С		381 (M*+1)
Ints-49	SD2	Int.s-48		4FBnS	Et	Single	С		383 (M++1)
Int.s-51	SE2	Int.s-50		2MeBnS	Et	Double	С		377 (M++1)
Int.s-52	SD2	Int.s-51		2MeBnS	Et	Single	C		379 (M+1)

	Rx-S-CHO
Table=Int.S=2	Br

F	C	SM1	SM2	Rx-S		LCMS	3
Exp.	Syn.	OWI	SIVIZ	rx-s	method	RTime	Mass
Int.s-23	SC		cPenSH	cPenS	С		286 (M+1)
Int.s-26	SO		cHexSH	cHexS	С		300 (M+1)
Int.s-29	sc		nPrSH	nPrS	С		260 (M+1)
Int.s-32	so		iPrSH	iPrS	С		260 (M+1)
Int.s-35	so		nBuSH	nBuS	С		274 (M ⁺ +1)
Int.s-38	sc		iBuSH	iBuS	С		274 (M+1)
Int.s-41	SC		2PhEtSH	2PhEtS	С		322 (M+1)
Int.s-44	SC		4MeOBnSH	4MeOBnS	С		322 (M+1)
Int.s-47	SC		4FBnSH	4FBnS	С		326 (M+1)
Int.s-50	so		2MeBnSH	2MeBnS	С		322 (M+1)

[Example S-a-1]

Synthesis of methyl 3-[3-(naphthalen-2-yl)-4-(4-

methylphenylthio)phenyllpropionate (Compound No. N-a-1) (Synthesis method SB)

A solution of Intermediate s·3 (146 mg) in toluene (2 ml) was added with 2-naphthaleneboronic acid (132.3 mg, TCI), 2 M aqueous sodium carbonate (600  $\mu$  ml), methanol (500  $\mu$  l), and tetrakistriphenylphosphine palladium(0) (henceforth abbreviated as "(Ph₂P)₄Pd", 38 mg, Nacalai Tesque), and stirred at 80°C for 14.5 hours. The reaction mixture was added with ethyl acetate (40 ml), and washed successively with saturated aqueous sodium hydrogenearbonate, saturated aqueous ammonium chloride and saturated brine. The organic layer was dried, and then the solvent was evaporated under reduced pressure. The residue was purified by flash column chromatography (hexane-ethyl acetate = 4:1) to obtain the title compound (Compound No. S·a·1, 78 mg).

## [Example S-a-2]

Synthesis of 3·[3-(naphthalen·2·yl)·4·(4·methylphenylthio)phenyllpropionic acid (Compound No. S·a·2) (Synthesis method SA)

A solution of the compound of Example S-a-1 (51 mg) in methanol (5.0 ml) was added with 2 N aqueous sodium hydroxide (130  $\mu$  D, and stirred at 60°C for 2

hours. The reaction mixture was concentrated under reduced pressure, then made acidic with 5% aqueous hydrochloric acid under ice cooling, and then extracted with ethyl acetate (30 ml). The organic layer was washed with saturated brine, and dried, and then the solvent was evaporated under reduced pressure to obtain the title compound (Compound No. S a 2, 47 mg).

[Example S-c-1]

vl)phenyl]propionate

 $\textbf{Synthesis of methyl 3-[4-(4-methoxyphenylthio)-3-(naphthalen-2-methyl 3-[4-(4-methyl 3-[4-(4-methyl 3-(4-methyl  

(Compound No. S-c-1) (Synthesis method SD2)

According to the procedure described in the synthesis method of
Intermediate s·6 (Synthesis method), the compound of Example S·b·1 (3.01 g), ptoluenesulfonhydrazide (430.1 mg), and sodium acetate (380.4 mg) were reacted
and treated to obtain the title compound (Compound No. S·c·1, 95.1 mg).

[Examples S·a·1 to S·a·24, S·b·1 to S·b·138 and S·c·1 to S·c·138]

Typical examples of the compounds of the present invention that can be obtained by reacting and treating corresponding starting compounds using any of the methods described in the present specification including the examples described above are shown in Table·S·A·1, Table·S·B·1 to Table·S·B·3 and Table·S·C·1 to Table·S·C·3. In the tables, the compound numbers are mentioned in the columns indicated as "Exp.". In the tables, used methods among the aforementioned synthesis methods are shown in the columns of "Syn" with symbols, the starting compounds 1 are mentioned in the columns of "SM1", and the starting compounds 2 are mentioned in the columns of "SM2". The boronic acid reagents shown with the symbols of "BRA (number)" in the columns of "SM2" are those mentioned in Table·Ba·1 and Table·Ba·2.

Rx-S-Q-Y

Table-S-A-1 LCMS SM1 SM2 Rx Υ AR Ехр. Svn method RTime Mass S-a-1 SB Int.s-3 S-a-2 SA S-a-1 S-a-3 SB Int.s-3 S-a-4 SA S-a-3 BRA1 4MePh Me 2-Nap 413 (M+1) 4MePh Н 2-Nap 399 (M+1) BRA2 4MePh Me 5-Ind 402 (M+1) 4MePh н 5-Ind 388 (M+1) S-a-5 SB Int.s-3 BRA3 4MePh Me 1Me-5-Ind 416 (M+1) S-a-6 SA S-a-5 4MePh S-a-7 SB Int.s-3 BRA4 4MePh н 1Me-5-Ind С 402 (M+1) Me 1Et-5-Ind С 430 (M+1) S-a-8 SA S-a-7 4MePh S-a-9 SB Int.s-3 BRA5 4MePh н 1Et-5-Ind C 416 (M+1) Me 5-1HIdz c 403 (M+1) S-a-10 SA S-a-9 4MePh 5-1HIdz c н 389 (M+1) S-a-11 SB Int.s-3 BRA6 4MePh 1Me-5-1HIdz Me С 417 (M+1) S-a-12 SA S-a-11 4MePh H 1Me-5-1HIdz C 403 (M+1) S-a-13 SB Int.s-3 BRA7 4MePh 431 (M+1) Me 1Et-5-1HIdz С S-a-14 SA S-a-13 4MePh н 1Et-5-1HIdz С 417 (M+1) S-a-15 SB Int.s-3 BRA8 4MePh Me С 417 (M+1) 2Me-5-2HIdz S-a-16 SA S-a-15 4MePh 2Me-5-2HIdz н 403 (M+1) S-a-17 SB Int.s-3 BRA9 4MePh Me 5-Bzt 420 (M+1) S-a-18 SA S-a-17 406 (M+1) 4MePh 5-Bzt н S-a-19 SB Int.s-3 BRA10 4MePh S-a-20 SA S-a-19 4MePh Me 3−Qu 414 (M*+1) н 3−Qu 400 (M+1) S-a-21 SB Int.s-3 BRA11 4MePh Me 6-Qu 414 (M*+1) S-a-22 SA S-a-21 4MePh Н 6-Qu 400 (M*+1) S-a-23 SB Int.s-3 BRA12 4MePh Me 6-IQ C 414 (M+1) 4MePh 6-10 C 400 (M+1) S-a-24 SA | N-a-23 н

Rx-S-\(\sigma\)O-Y

Table-S	-B-1		AR	0						
Exp.	Syn	SM1	SM2	Rx	Y	AR		LCM		
LAp.		0.1,1		I LX	•		method	RTime		ass
S-b-1	SB	Int.s-5	BRA1	4MeOPh	Me	2-Nap	С		427	(M ⁺ +1)
S-b-2	SA	S-b-1		4MeOPh	H	2-Nap	С		413	(M ⁺ +1)
S-p-3	SB	Int.s-5	BRA2	4MeOPh	Me	5-Ind	С		416	(M ⁺ +1)
S-b-4	SA	S-b-3		4MeOPh	H	5-Ind	С		402	(M ² +1)
S-b-5	SB	Int.s-5	BRA3	4MeOPh	Me	1Me-5-Ind	С		430	(M*+1)
S-b-6	SA	S-b-5		4MeOPh	Н	1Me-5-Ind	С		416	(M+1)
S-b-7	SB	Int.s-5	BRA4	4MeOPh	Me	1Et-5-Ind	C		444	(M ⁺ +1)
S-b-8 S-b-9	SA	S-b-7	BRA5	4MeOPh 4MeOPh	H Me	1Et-5-Ind 5-1HIdz	C		430	(M ⁺ +1) (M ⁺ +1)
S-b-10	SA	Int.s-5 S-b-9	DRAO	4MeOPh	H	5-1Hldz	Ö		403	(M+1)
S-b-10	SB	Int.s-5	BRA6	4MeOPh	Me	1Me-5-1Hidz	č		431	(M+1) (M+1)
S-b-12	SA	S-b-11	DIVAG	4MeOPh	H	1Me-5-1Hidz	č		417	(M*+1)
S-b-13	SB	Int.s-5	BRA7	4MeOPh	Me	1Et-5-1Hldz	č		445	(M+1)
S-b-14	SA	S-b-13	DIVA	4MeOPh	Ĥ	1Et-5-1Hldz	č		431	(M+1)
S-b-15	SB	Int.s-5	BRA8	4MeOPh	Me	2Me-5-2HIdz	č		431	(M*+1)
S-b-16	SA	S-b-15	Dioto	4MeOPh	H	2Me-5-2Hldz	č		417	(M*+1)
S-b-17	SB	Int.s-6	BRA9	4MeOPh	Me	5-Bzt	Č		434	(M*+1)
S-b-18	SA	S-b-17		4MeOPh	Н	5-Bzt	C		420	(M ⁺ +1)
S-b-19	SB	Int.s-5	BRA10	4MeOPh	Me	3-Qu	С		428	(M ⁺ +1)
S-b-20	SA	S-b-19		4MeOPh	Н	3-Qu	С		414	(M+1)
S-b-21	SB	Int.s-5	BRA11	4MeOPh	Me	6-Qu	С		428	(M*+1)
S-b-22	SA	S-b-21		4MeOPh	Н	6-Qu	С		414	(M ⁺ +1)
S-b-23	SB	Int.s-5	BRA12	4MeOPh	Me	6-IQ	С		428	(M ⁺ +1)
S-b-24	SA	S-b-23		4MeOPh	Н	6-IQ	С		414	(M ⁺ +1)
S-b-25	SB	Int.s-7	BRA1	2MeOPh	Me	2-Nap	С		427	(M ⁺ +1)
S-b-26	SA	S-b-25		2MeOPh	Н	2-Nap	С		413	(M ⁺ +1)
S-b-27	SB	Int.s-7	BRA2	2MeOPh	Me	5-Ind	С		416	(M ⁺ +1)
S-b-28	SA	S-b-27		2MeOPh	Н	5-Ind	С		402	(M ⁺ +1)
S-b-29	SB	Int.s-7	BRA5	2MeOPh	Me	5-1HIdz	С		417	(M++1)
S-b-30	SA	S-b-29		2MeOPh	H	5-1HIdz	С		403	(M ⁺ +1)
S-b-31	SB	Int.s-7	BRA10	2MeOPh	Me	3-Qu	С		428	(M+1)
S-b-32	SA	S-b-31		2MeOPh	Н	3−Qu	С		414	(M ⁺ +1)
S-b-33	SB	Int.s-9	BRA1	3MeOPh	Me	2−Nap	С		427	(M+1)
S-b-34	SA	S-b-33		3MeOPh	Н	2-Nap	С		413	(M+1)
S-b-35	SB	Int.s-9	BRA3	3MeOPh	Me	1Me-5-Ind	С		430	(M+1)
S-b-36	SA	S-b-35		3MeOPh	Н	1Me-5-Ind	О		416	(M+1)
S-b-37	SB	Int.s-9	BRA6	3MeOPh	Me	1Me-5-1HIdz	0		431	(M+1)
S-b-38	SA	S-b-37		3MeOPh	H	1Me-5-1Hldz	С		417	(M+1)
S-b-39	SB	Int.s-9	BRA11	3MeOPh	Me	6-Qu	С		428	(M ⁺ +1)
S-b-40	SA	S-b-39		3MeOPh	Н	6-Qu	С		414	(M*+1)
S-b-41	SB	Int.s-11	BRA2	2MePh	Me	5-Ind	С		400	(M ⁺ +1)
S-b-42	SA	S-b-41		2MePh	Н	5-Ind	С		386	(M ⁺ +1)
S-b-43	SB	Int.s-11	BRA3	2MePh	Me	1Me-5-Ind	С		414	(M ⁺ +1)
S-b-44	SA	S-b-43		2MePh	Н	1Me-5-Ind	С		400	(M*+1)
S-b-45	SB	Int.s-11	BRA5	2MePh	Me	5-1HIdz	С		401	(M*+1)
S-b-46	SA	S-b-45		2MePh	Н	5−1HIdz	С		387	(M*+1)

Table-S-B-2

Table-S	B-2				_			1.014		
Exp.	Svn	SM1	SM2	Rx	Υ	AR	<u> </u>	LCM		
Exp.	Syli	SWII	SWIZ	ıw.	٠.	^"	method	RTime	N	lass
S-b-47	SB	Int.s-13	BRA3	3MePh	Me	1Me-5-Ind	С		414	(M++1)
S-b-48	SA	N-b-47		3MePh	Н	1Me-5-Ind	C		400	(M+1)
S-b-49	SB	Ints-13	BRA6	3MePh	Me	1Me-5-1HIdz	С		415	(M+1)
S-b-50	SA	N-b-49		3MePh	Н	1Me-5-1HIdz	С		401	(M*+1)
S-b-51	SB	Int.s-13	BRA9	3MePh	Me	5-Bzt	С		418	(M+1)
S-b-52	SA	N-b-51		3MePh	H	5-Bzt	С		404	$(M^{+}+1)$
S-b-53	SB	Int.s-15	BRA1	4MePh	Me	2-Nap	С		411	(M ⁺ +1)
S-b-54	SA	N-b-53		4MePh	H	2-Nap	С		397	$(M^{+}+1)$
S-b-55	SB	Int.s-15	BRA2	4MePh	Me	5-Ind	С		400	(M+1)
S-b-56	SA	N-b-55		4MePh	Н	5-Ind	С		386	(M ⁺ +1)
S-b-57	SB	Int.s-15	BRA3	4MePh	Me	1Me-5-Ind	С		418	(M+1)
S-b-58	SA	N-b-57		4MePh	Н	1Me-5-Ind	_C_		404	(M*+1)
S-b-59	SB	Int.s-17	BRA5	2FPh	Me	5-1Hldz	С		404	(M ⁺ +1)
S-b-60	SA	N-b-59		2FPh	H	5-1HIdz	C		390	(M+1)
S-b-61	SB	Int.s-17	BRA6	2FPh	Ме	1Me-5-Ind	C		418	(M+1)
S-b-62	SA	N-b-61	55114	2FPh	H	1Me-5-Ind	C		404	(M ⁺ +1)
S-b-63	SB	Int.s-17	BRA11	2FPh	Me	6-Qu	C_		415	(M+1)
S-b-64	SA	N-b-63		2FPh	H	6-Qu	C		415	(M ⁺ +1)
S-b-65	SB	Int.s-19	BRA1	3FPh	Me H	2-Nap 2-Nap	č		401	(M ⁺ +1)
S-b-66 S-b-67	SA	N-b-65 Int.s-19	BRA2	3FPh 3FPh	Me	5-Ind	č		403	(M+1)
S-b-68	SA	N-b-67	BRAZ	3FPh	H	5-Ind	c		389	(M+1)
S-b-69	SB	Int.s-19	BRA6	3FPh	Me	1Me-5-1HIdz	č		418	(M+1)
S-b-70	SA	N-b-69	BRAU	3FPh	Н	1Me-5-1HIdz	c		404	(M*+1)
S-b-71	SB	Int.s-21	BRA3	4FPh	Me	1Me-5-Ind	č		418	(M++1)
S-b-72	SA	N-b-71	DIVIO	4FPh	Н	1Me-5-Ind	c		404	(M*+1)
S-b-73	SB	Int.s-21	BRA5	4FPh	Me	5-1Hidz	c		404	(M+1)
S-b-74	SA	N-b-73	BRAU	4FPh	H	5-1HIdz	ő		390	(M*+1)
S-b-75	SB	Int.s-21	BRA10	4FPh	Me	3-Qu	c		415	(M*+1)
			BRAID	4FPh	Н	3-Qu	č		401	(M*+1)
S-b-76	SA	N-b-75	2014		_		c	_		
S-b-77	SB	Int.s-24	BRA1	cPen	Me	2-Nap			389	(M*+1)
S-b-78	SA	N-b-77		cPen	н	2-Nap	С		375	(M*+1)
S-b-79	SB	Int.s-24	BRA2	cPen	Me	5-Ind	С		378	(M*+1)
S-b-80	SA	N-b-79		cPen	н	5-Ind	С		364	(M*+1)
S-b-81	SB	Int.s-24	BRA6	cPen	Me	1Me-5-1Hldz	С		407	(M ⁺ +1)
S-b-82	SA	N-b-81		cPen	Ŧ	1Me-5-1HIdz	С		393	(M ⁺ +1)
S-b-83	SB	Int,s-27	BRA3	cHex	Et	1Me-5-Ind	С		406	(M*+1)
S-b-84	SA	N-b-83		cHex	H	1Me-5-Ind	С		392	(M*+1)
S-b-85	SB	Int,s-27	BRA5	cHex	Et	5-1HIdz	С		393	(M*+1)
S-b-86	SA	N-b-85		cHex	H	5-1Hldz	С		379	(M ⁺ +1)
S-b-87	SB	Int,s-27	BRA12	oHex	Et	6-Qu	С		363	(M+1)
S-b-88	SA	N-b-87		cHex	Н	6-Qu	С		349	(M+1)
S-b-89	SB	Int.s-30	BRA1	nPr	Et	2−Nap	С		362	(M+1)
S-b-90	SA	N-b-89		nPr	Ξ	2-Nap	С		348	(M ⁺ +1)
S-b-91	SB	Int.s-30	BRA2	nPr	Et	5-Ind	С		351	(M++1)
S-b-92	SA	N-b-91		nPr	Н	5-Ind	С	l	337	(M+1)

Table-S-B-3

							LCMS			
Exp.	Syn	SM1	SM2	Rx	Υ	AR	method	RTime		lass
S-b-93	SB	Int.s-30	BRA6	nPr	Et	1Me-5-1HIdz	С		366	(M+1)
S-b-94	SA	N-b-93		nPr	H	1Me-5-1HIdz	С		352	(M+1)
S-b-95	SB	Int.s-33	BRA1	iPr	Et	2-Nap	C		362	(M*+1)
S-b-96	SA	N-b-95	5516	iPr iPr	H	2-Nap	C		348 365	(M*+1)
S-b-97 S-b-98	SB	Int.s-33 N-b-97	BRA3	iPr	Et H	1Me-5-Ind 1Me-5-Ind	C		351	(M ⁺ +1) (M ⁺ +1)
S-b-99	SB	Int.s-33	BRA5	iPr	Et	5-1HIdz	č		352	(M+1)
S-b-100	SA	N-b-99	DIVIS	iPr	H	5-1Hidz	č		338	(M+1)
S-b-101	SB	Int.s-36	BRA2	nBu	Et	5-Ind	Č		366	(M +1)
S-b-102	SA	N-b-101	D. C.E.	nBu	H	5-Ind	Č		352	(M+1)
S-b-103	SB	Int.s-36	BRA5	nBu	Et	5-1HIdz	С		366	$(M^{+}+1)$
S-b-104	SA	N-b-103		nBu	Н	5-1HIdz	С		352	(M +1)
S-b-105	SB	Int.s-36	BRA11	nBu	Et	6−Qu	С		378	$(M^{+}+1)$
S-b-106	SA	N-b-105		nBu	Н	6-Qu	С		364	(M+1)
S-b-107	SB	Int.s-39	BRA1	iBu	Me	2-Nap	C		377	(M ⁺ +1)
S-b-108	SA	N-b-107		iBu	Н	- 2-Nap	С		363	(M+1)
S-b-109	SB	Int.s-39	BRA3	iBu	Me	1Me-5-Ind	C		380	(M ⁺ +1)
S-b-110 S-b-111	SA	N-b-109	2045	iBu	H	1Me-5-Ind 5-1HIdz	- C		366 366	(M+1)
S-b-112	SB	Int.s-39 N-b-111	BRA5	iBu iBu	Me H	5-1HIdz	č	_	352	(M+1) (M+1)
S-b-112	SB		DDAC	iBu	Me	1Me-5-1HIdz	c			
		Int.s-39	BRA6			1Me-5-1HIdz	-0	_	381	(M ⁺ +1)
S-b-114	SA	N-b-113		iBu	Н				367	(M ⁺ +1)
S-b-115	SB	Int.s-42	BRA1	PhEt	Me	2-Nap	С		425	(M ⁺ +1)
S-b-116	SA	N-b-115		PhEt	Н	2-Nap	С		411	(M+1)
S-b-117	SB	Int.s-42	BRA2	PhEt	Ме	5-Ind	С		414	(M ⁺ +1)
S-b-118	SA	N-b-117		PhEt	Н	5-Ind	С		400	(M ⁺ +1)
S-b-119	SB	Int.s-42	BRA3	PhEt	Me	1Me-5-Ind	C		428	(M++1)
S-b-120	SA	N-b-119		PhEt	Η	1Me-5-Ind	c		414	(M+1)
S-b-121	SB	Int.s-45	BRA1	4MeOBn	Et	2-Nap	С		441	(M++1)
S-b-122	SA	N-b-121		4McOBn	Н	2-Nap	C		427	(M*+1)
S-b-123	SB	Int.s-45	BRA5	4MeOBn	Et	5-1Hldz	С		431	(M+1)
S-b-124	SA	N-b-123		4MeOBn	н	5-1HIdz	C		417	(M++1)
S-b-125	SB	Int.s-45	BRA6	4MeOBn	Et	1Me-5-1HIdz	С		431	(M++1)
S-b-126	SA	N-b-125		4MeOBn	Н	1Me-5-1HIdz	C		417	(M+1)
S-b-127	SB	Int.s-48	BRA1	4FBn	Et	2-Nap	C		429	(M ⁺ +1)
S-b-128	SA	N-b-127	-1011	4FBn	н	2-Nap	c		415	(M ⁺ +1)
S-b-129	SB	Ints-48	BRA2	4FBn	Et	5-Ind	C		418	(M+1)
S-b-130	SA	N-b-129		4FBn	Н	5-Ind	C		404	(M+1)
S-b-131	SB	Int.s-48	BRA6	4FBn	Et	1Me-5-1HIdz	Ċ		418	(M ⁺ +1)
S-b-132	SA	N-b-131	51410	4FBn	Н	1Me-5-1HIdz	c		404	(M+1)
S-b-133	SB	Int.s-51	BRA3	2MeBn	Et	1Me-5-Ind	ō		428	(M+1)
S-b-134	SA	N-b-133	51010	2MeBn	Н	1Me-5-Ind	c		414	(M+1)
S-b-135	SB	Int.s-51	BRA5	2MeBn	Et	5-1HIdz	c		415	(M+1)
S-b-136	SA	N-b-135	2.510	2MeBn	Н	5-1HIdz	c		401	(M ⁺ +1)
S-b-137	SB	Int.s-51	BRA10	2MeBn	Et	3-Qu	c		426	(M+1)
S-b-138	SA	N-b-137		2MeBn	H	3-Qu	C		412	(M+1)

Table-S-C-1 Rx-S O

Table-5		A						LCM	S	
Ехр.	Syn	SM1	SM2	Rx	Υ	AR	method	RTime	M	ass
S-c-1	SB	Int.s-6	BRA1	4MeOPh	Me	2-Nap	С		429	(M ⁺ +1)
S-c-2	SA	S-c-1		4MeOPh	H	2-Nap	C		415	(M ⁺ +1)
S-o-3	SB	Int.s-6	BRA2	4MeOPh	Me	5-Ind	С		418	(M ⁺ +1)
S-c-4	SA	S-c-3		4MeOPh	Н	5-Ind	C		404	(M*+1)
S-c-5	SB	Int.s-6	BRA3	4MeOPh	Me	1Me-5-Ind	_ <u>c</u>		432	(M+1)
S-c-6	SA	S-c-5		4MeOPh	H	1Mc-5-Ind	C		418	(M*+1)
S-c-7	SB	Int.s-6	BRA4	4MeOPh	Me	1Et-5-Ind	C C		446	(M+1)
S-c-8	SA	S-c-7	BRA5	4MeOPh 4MeOPh	H Me	1Et-5-Ind 5-1HIdz	C		432 419	(M*+1)
S-c-9 S-c-10	SB	Int.s=6 S=c=9	DRAD	4MeOPh	H	5-1HIdz	ö		405	(M ⁺ +1) (M ⁺ +1)
S-c-11	SB	Int.s-6	BRA6	4MeOPh	Me	1Me-5-1HIdz	č		433	(M+1)
S-c-12	SA	S-c-11	DITAU	4MeOPh	H	1Me-5-1Hldz	Ö		419	(M+1)
S-c-13	SB	Int.s-6	BRA7	4MeOPh	Me	1Et-5-1HIdz	č		447	(M+1)
S-o-14	SA	S-c-13	5,00	4MeOPh	Н	1Et-5-1Hldz	Č		433	(M+1)
S-c-15	SB	Int.s-6	BRAB	4MeOPh	Me	2Me-5-2HIdz	c		433	(M+1)
S-c-16	SA	S-c-15		4MeOPh	Н	2Me-5-2HIdz	Ċ		419	(M+1)
S-c-17	SB	Int.s-6	BRA9	4MeOPh	Me	5-Bzt	С		436	(M+1)
S-c-18	SA	S-o-17		4MeOPh	Н	5-Bzt	С		422	(M+1)
S-c-19	SB		BRA10	4McOPh	Me	3-Qu	С		430	(M+1)
S-c-20	SA	S-c-19		4MeOPh	Н	3-Qu	o		416	(M ⁺ +1)
S-c-21	SB	Int.s-6	BRA11	4MeOPh	Me	6-Qu	О		430	(M+1)
S-c-22	SA	S-c-21		4MeOPh	Н	6-Qu	С		416	(M+1)
S-c-23	SB	Int.s-6	BRA12	4MeOPh	Ме	6-IQ	С		430	(M+1)
S-c-24	SA	S-c-23		4MeOPh	Н	6-IQ	С		416	(M ⁺ +1)
S-c-25	SB	Int.s-8	BRA1	2MeOPh	Me	2-Nap	С		429	(M ⁺ +1)
S-c-26	SA	S-c-25		2MeOPh	Н	2-Nap	С		415	(M+1)
S-c-27	SB	Int.s-8	BRA3	2MeOPh	Me	1Me-5-Ind	c		431	(M+1)
S-c-28	SA	S-c-27		2MeOPh	Н	1Me-5-Ind	С		418	(M+1)
S-c-29	SB	Int.s-8	BRA5	2MeOPh	Me	5-1HIdz	С		419	(M++1)
S-c-30	SA	S-c-29	Dioto	2MeOPh	Н	5-1Hidz	c		405	(M++1)
S-c-31	SB	Int.s-8	BRA10	2MeOPh	Me	3-Qu	c		430	(M+1)
S-c-32	SA	S-c-31	Diotio	2MeOPh	Н	3-Qu	C		416	(M+1)
S-c-33	SB	Int.s-10	BRA1	3MeOPh	Me	2-Nap	C		429	(M+1)
S-o-34	SA	S-o-33	DIVAL	3MeOPh	Н	2-Nap	c		415	(M+1)
	_	_	DDAG				0			
S-c-35	SB	Int.s-10	BRA2	3MeOPh	Me	5-Ind			418	(M ⁺ +1)
S-c-36	SA	S-c-35		3MeOPh	Н	5-Ind	О		403	(M+1)
S-c-37	SB	Int.s-10	BRA6	3MeOPh	Me	1Me-5-1HIdz	0		433	(M ⁺ +1)
S-c-38	SA	S-c-37		3MeOPh	Н	1Me-5-1HIdz	С		419	(M ⁺ +1)
S-c-39	SB	Ints-10	BRA11	3MeOPh	Me	6-Qu	С		430	(M ⁺ +1)
S-c-40	SA	S=c=39		3MeOPh	н	6−Qu	С		416	(M ⁺ +1)
S-c-41	SB	Int.s-12	BRA3	2MePh	Me	1-Me-5-Ind	С		402	(M+1)
S-c-42	SA	S-c-41		2MePh	Н	1-Me-5-Ind	С		388	(M*+1)
S-c-43	SB	Int.s-12	BRA5	2MePh	Me	5-1Hldz	С		416	(M++1)
S-c-44	SA	S-c-43		2MePh	Н	5-1Hldz	С		402	(M ⁺ +1)
S-c-45	SB	Int.s-12	BRA6	2MePh	Me	1-Me-5-1HIdz	С		417	(M*+1)
S-c-46	SA	S-c-45		2MePh	Н	1-Me-5-1HIdz	С		403	(M+1)

Table-S-C-2

Table-S	- <u>C-2</u>									
_	_			_				LCM	S	
Ехр.	Syn	SM1	SM2	Rx	Υ	AR	method	RTime	N	lass
S-c-47	SB	Int.s-14	BRA3	3MePh	Me	1-Me-5-Ind	C		416	$(M^{+}+1)$
S-c-48	SA	N-c-47		3MePh	H	1-Me-5-Ind	С		402	(M ⁺ +1)
S-c-49	SB	Int.s-14	BRA6	3MePh	Ме	1-Me-5-1HIdz	С		417	(M+1)
S-c-50	SA	N-c-49		3MePh	Н	1-Me-5-1HIdz	С		403	(M ⁺ +1)
S-c-51	SB	Int.s-14	BRA9	3MePh	Me	5-Bzt	o		420	(M + 1)
S-c-52	SA	N-c-51		3MePh	н	5-Bzt	С		406	(M ⁺ +1)
S-c-53	SB	Int.s-16	BRA1	4MePh	Me	2-Nap	С		413	(M+1)
S-c-54	SA	N-c-53		4MePh	Н	2-Nap	C		399	$(M^{+}+1)$
S-c-55	SB	Ints-16	BRA2	4MePh	Me	5-ind	C		402	(M+1)
S-c-56	SA	N-c-55		4MePh	Н	5-Ind	C		388	(M ⁺ +1)
S-c-57	SB	Int:s-16	BRA3	4MePh	Me	1Me-5-Ind	С		420	(M+1)
S-c-58	SA	N-c-57		4MePh	H	1Me-5-Ind	C		406	(M+1)
S-c-59	SB	Int.s-18	BRA5	2FPh	Me	5-1HIdz	C		406 392	(M*+1)
S-c-60	SA	N-c-59		2FPh	H	5-1HIdz	C		420	(M+1)
S-c-61	SB	Int.s-18	BRA6	2FPh	Me	1Me-5-1HInd 1Me-5-1HInd	C		406	(M ⁺ +1)
S-c-62	SA	N-c-61	55444	2FPh	H Me	6-Qu	Ċ		418	(M+1)
S-c-63	SB	Int.s-18	BRA11	2FPh 2FPh	H	6-Qu	č		404	(M+1)
S-c-64 S-c-65	SA	N-c-63 Int.s-20	BRA1	3FPh	Me	2-Nap	č	_	417	(M ±1)
S-c-65 S-c-66	SA	N-c-65	DIVAL	3FPh	H	2-Nap	č		403	(M+1)
S-c-67	SB	Int.s-20	BRA2	3FPh	Me	5-Ind	č		405	(M+1)
S-c-68	SA	N-c-67	DRAZ	3FPh	H	5-Ind	č		391	(M+1)
S-c-69	SB	Int.s-20	BRA6	3FPh	Me	1Me-5-1HIdz	č		421	(M+1)
S-c-70	SA	N-c-69	Dievo	3FPh	Н	1Me-5-1HIdz	č		407	(M*+1)
S-c-71	SB	Int.s-22	BRA3	4FPh	Me	1Me-5-Ind	c		420	(M ⁺ +1)
S-c-72	SA	N-c-71		4FPh	Н	1Me-5-Ind	c		406	(M*+1)
S-c-73	SB	Int.s-22	BRA5	4FPh	Me	5-1HIdz	С		406	(M++1)
S-c-74	SA	N-c-73		4FPh	н	5-1HIdz	С		392	(M*+1)
S-c-75	SB	Int.s-22	BRA10	4FPh	Me	3−Qu	С		418	(M*+1)
S-c-76	SA	N-c-75		4FPh	Н	3-Qu	С		404	(M*+1)
S-c-77	SB	Int.s-25	BRA1	cPen	Et	2-Nap	С		391	(M+1)
S-c-78	SA	N-c-77		cPen	н	2-Nap	С		377	(M*+1)
S-c-79	SB	Int.s-25	BRA2	cPen	Et	5-Ind	С		380	(M*+1)
S-c-80	SA	N-c-79		cPen	Τ	5-Ind	С		366	(M*+1)
S-c-81	SB	Int.s-25	BRA6	cPen	Et	1Me-5-1HIdz	С		409	(M ⁺ +1)
S-c-82	SA	N-c-81		cPen	н	1Me-5-1HIdz	С		395	(M+1)
S-c-83	SB	Int,s-28	BRA3	cHex	Et	1Me-5-Ind	С		408	(M ⁺ +1)
S-c-84	SA	N-c-83		cHex	Н	1Me-5-Ind	С		394	(M ⁺ +1)
S-c-85	SB	Int,s-28	BRA5	cHex	Et	5-1HIdz	С		395	(M ⁺ +1)
S-c-86	SA	N-c-85		cHex	Н	5-1Hldz	С		381	(M ⁺ +1)
S-c-87	SB	Int,s-28	BRA12	cHex	Et	6-Qu	С		365	(M+1)
S-c-88	SA	N-c-87		cHex	Н	6−Qu	C		351	(M ⁺ +1)
S-c-89	SB	Int.s-31	BRA1	nPr	Et	2-Nap	С		365	(M ⁺ +1)
S-c-90	SA	N-c-89		nPr	Н	2-Nap	С		351	(M*+1)
S-c-91	SB	Int.s-31	BRA2	nPr	Et	5-Ind	С		353	(M*+1)
S-c-92	SA	N-c-91		nPr	H	5–Ind	С		339	(M*+1)

Table-S-C-3

S-0-94         SA         N-0-93         nPr         H         1Me-5-1Hldz         C         3!           S-0-95         SB         Ints-34         BRA3         iPr         Et         1Me-5-Ind         C         3:           S-0-96         SA         N-0-95         iPr         H         1Me-5-Ind         C         3:           S-0-97         SB         Ints-34         BRA5         iPr         Et         5-IHldz         C         3:	M 368 354	ass (M ⁺ +1)
Sro-93   SB   Ints-31   BRA6   nPr   Et   IMe-5-IHIdz   C   33	368 354	
S-0-94         SA         N-0-93         nPr         H         1Me-5-1Hldz         C         3!           S-0-95         SB         Ints-34         BRA3         iPr         Et         1Me-5-Ind         C         3:           S-0-96         SA         N-0-95         iPr         H         1Me-5-Ind         C         3:           S-0-97         SB         Ints-34         BRA5         iPr         Et         5-IHldz         C         3:	354	$(M^{+}+1)$
S-c-95   SB   Int.s-34   BRA3   iPr   Et   1Me-5-Ind   C   3   S-c-96   SA   Nc-95   iPr   H   1Me-5-Ind   C   3   S-c-97   SB   Int.s-34   BRA5   iPr   Et   5-1Hldz   C   3		
S-c-96         SA         N-c-95         iPr         H         1Me-5-Ind         C         33           S-c-97         SB         Int.s-34         BRA5         iPr         Et         5-1HIdz         C         33		$(M^{+}1)$
S-c-97 SB Int.s-34 BRA5 iPr Et 5-1HIdz C 3	368	$(M^{+}1)$
		(M+1)
C . 00 CA N . 07   10 H   6-1414- 0   12.		(M'+1)
	340	(M+1)
		(M+1)
		(M+1)
	379	(M*+1)
	365	(M+1)
	368	(M +1)
	354 383	(M+1)
	369	(M ⁺ +1)
		(M ⁺ +1)
	365	(M+1)
	382	(M°+1)
	368	(M+1)
	369	(M*+1)
	355	(M+1)
	383	(M++1)
	369	(M*+1)
0 0 111 011	427	(M+1)
	413	(M+1)
	416	(M ⁺ +1)
	402	(M++1)
S-c-119 SB Int.s-43 BRA6 PhEt Et 1Me-5-1HIdz C 4	431	(M+1)
S-c-120 SA N-c-119 PhEt H 1Me-5-1HIdz C 4	417	$(M^{+}+1)$
	443	(M+1)
	429	(M++1)
0 0 122 011 11 0 121	446	(M++1)
	432	(M+1)
	419	(M*+1)
0 0 120 G/V IV 0 120	405	(M+1)
	431_	(M*+1)
	417	$(M^{2}+1)$
S-c-129 SB Int.s-49 BRA2 4FBn Et 5-Ind C 4	420	$(M^{+}+1)$
	406	(M+1)
	406	(M+1)
C G TOT GB INTEG TO DITTO	392	(M ⁺ +1)
	430	(M+1)
	_	
	416	(M ⁺ 1)
	431	(M +1)
S-c-136 SA N-c-135 2MeBn H 1Me-5-1HIdz C 4	417	(M ⁺ +1)
S-c-137 SB Int.s-52 BRA11 2MeBn Et 6-Qu C 4	428	(M°+1)
	414	(M ⁺ +1)

[Example S-d-1]

 $Synthesis\ of\ ethyl\ 3\hbox{-}\{4\hbox{-}[(4\hbox{-}methoxyphenyl)methylsulfinyl]\hbox{-}3\hbox{-}(naphthalen-2\hbox{-}2)\}$ 

vl)phenvl}propionate (Compound No. S-d-1) (Synthesis method SG)

A solution of the compound of Example S·c·121 (130.9 mg) in dichloromethane (4 ml) was added with 3·chloroperoxybenzoic acid (60.0 mg, TCI), and stirred at room temperature for 1.5 hours. The reaction mixture was added with water (10 ml), extracted with dichloromethane (20 ml), and then washed with saturated brine. The organic layer was dried, and then the solvent was evaporated under reduced pressure. The residue was purified by column chromatography (Quad, chloroform:methanol = 30:1) to obtain the title compound (Compound No. S·d·1, 108.7 mg).

[Example S-d-7]

Synthesis of ethyl 3-{4-[(4·methoxyphenyl)methylsulfonyl]·3-(naphthalen·2yl)phenyl}propionate (Compound No. S·d·7) (Synthesis method SG)

A solution of the compound of Example S-c-121 (58.1 mg) in dichloromethane (3 ml) was added with 3-chloroperoxybenzoic acid (74.5 mg, TCD), and stirred at room temperature for 5 hours. The reaction mixture was added with water (10 ml), extracted with dichloromethane (20 ml), and then washed with saturated brine. The organic layer was dried, and then the solvent was evaporated under reduced pressure. The residue was purified by column chromatography (Quad, hexane:ethyl acetate = 4:1) to obtain the title compound (Compound No. S-d-7, 48.1 mg).

[Examples S-d-1 to S-d-36]

Typical examples of the compounds of the present invention that can be obtained by reacting and treating corresponding starting compounds using any of the methods described in the present specification including the examples described above are shown in Table S-D-1. In the tables, the compound numbers are mentioned in the columns indicated as "Exp.". In the tables, used methods among the aforementioned synthesis methods are shown in the columns of "Syn" with

symbols, and the starting compounds 1 are mentioned in the columns of "SM1".

Table-S	-D-1	Ar	•					
		2111	DO(a)			LCMS		
Exp.	Syn	SM1	RS(O)n	Υ	AR	method	RTime	Mass
S-d-1	SG	S-c-121	4MeOBnSO	Et	2-Nap	C		473 (M+1)
S-d-2	SA	S-d-1	4MeOBnSO	Н	2-Nap	C		445 (M+1)
S-d-3	SG	S-o-123	4MeOBnSO	Et	1Me-5-Ind	С		476 (M+1)
S-d-4	SA	S-d-3	4MeOBnSO	Н	1Me-5-Ind	С		448 (M*+1)
S-d-5	SG	S-c-125	4MeOBnSO	Et	5-1HIdz	С		463 (M+1)
S-d-6	SA	S-d-5	4MeOBnSO	Н	5-1HIdz	С		435 (M°+1)
S-d-7	SG	S-c-121	4MeOBnSO2	Et	2-Nap	С		489 (M ⁺ +1)
S-d-8	SA	S-d-7	4MeOBnSO2	Н	2-Nap	С		461 (M*+1)
S-d-9	SG	S-c-123	4MeOBnSO2	Et	1Me-5-Ind	c		492 (M ⁺ +1)
S-d-10	SA	S-d-9	4McOBnSO2	Н	1Me-5-Ind	С		464 (M°+1)
S-d-11	SG	S-c-125	4MeOBnSO2	Et	5-1HIdz	С		479 (M+1)
S-d-12	SA	S-d-11	4MeOBnSO2	Н	5-1HIdz	c		451 (M+1)
S-d-13	SG	S-c-77	cPenSO	Et	2-Nap	О		421 (M*+1)
S-d-14	SA	S-d-13	cPenSO	Н	2-Nap	С		393 (M*+1)
S-d-15	SG	S-c-79	cPenSO	Et	5-Ind	С		410 (M ⁺ +1)
S-d-16	SA	S-d-15	cPenSO	Н	5-Ind	С		381 (M*+1)
S-d-17	SG	S-c-81	oPenSO	Et	1Me-5-1HIdz	С		425 (M+1)
S-d-18	SA	S-d-17	cPenSO	H	1Me-5-1HIdz	C		397 (M+1)
S-d-19	SG	S-c-77	cPenSO2	Et	2-Nap	С		437 (M+1)
S-d-20	SA	S-d-19	cPenSO2	Н	2-Nap	С		409 (M+1)
S-d-21	SG	S-c-79	cPenSO2	Et	5-Ind	С		426 (M ⁺ +1)
S-d-22	SA	S-d-21	cPenSO2	Н	5-Ind	C		397 (M+1)
S-d-23	SG	S-c-81	cPenSO2	Et	1Me-5-1HIdz	С		441 (M ⁺ +1)
S-d-24	SA	S-d-23	cPenSO2	Н	1Me-5-1HIdz	С		413 (M+1)
S-d-25	SG	S-c-101	nBuSO	Et	2-Nap	С		409 (M*+1)
S-d-26	SA	S-d-25	nBuSO	H	2-Nap	С		377 (M+1)
S-d-27	SG	S-c-103	nBuSO	Et	5-Ind	С		398 (M+1)
S-d-28	SA	S-d-27	nBuSO	Н	5-Ind	С		365 (M+1)
S-d-29	SG	S-c-105	nBuSO	Et	1Me-5-1HIdz	С		413 (M*+1)
S-d-30	SA	S-d-29	nBuSO	Н	1Me-5-1HIdz	С		381 (M+1)
S-d-31	SG	S-c-101	nBuSO2	Et	2-Nap	С		425 (M ⁺ +1)
S-d-32	SA	S-d-31	nBuSO2	H	2-Nap	С		397 (M ⁺ +1)
S-d-33	SG	S-c-103	nBuSO2	Et	5-Ind	С		410 (M*+1)
S-d-34	SA	S-d-33	nBuSO2	Н	5-Ind	С		385 (M*+1)

[Reference Examples: Intermediates An-1 to An-5]

Synthesis of ethyl 3-[2-hydroxy-3-(naphthalen-2-yl)pyridin-5-yl]propionate (Intermediate Ah-1)

A solution of the compound of Example P-42 (452 mg) in a mixture of ethyl acetate (5 ml) and methanol (2.5 ml) was added with 10% palladium/carbon (50 mg), and stirred at room temperature for 2 hours under hydrogen atmosphere. The

reaction mixture was filtered, and the solvent of the filtrate was evaporated under reduced pressure to obtain the title compound (Intermediate Ah-1, 321 mg). Mass (FAR): 322 (M*+1).

Synthesis of ethyl 3-[3-(naphthalen-2-yl)-2-(trifluoromethanesulfonyl)pyridin-5yllpropionate (Intermediate An-1)

According to the procedure described in the synthesis method of Intermediate Aa-1, Intermediate Ah-1 (310 mg) and trifluoromethanesulfonic anhydride (170  $\mu$ 1) were reacted and treated to obtain the title compound (Intermediate An-1, 355 mg). Mass (FAB): 454 (M*+1).

Typical examples of the reaction intermediates that can be obtained by reacting and treating corresponding starting compounds according to the method described above are shown below.

Intermediate An·2: ethyl 3-[3-(1H-indol-5-yl)-2-(trifluoromethanesulfonyl)pyridin-5yllpropionate

Intermediate An-3: ethyl 3-[3-(1-methyl-1H-indol-5-yl)-2-(trifluoromethanesulfonyl)pyridin-5-yl]propionate Intermediate An-4: ethyl 3-[3-(1H-indazol-5-yl)-2-(trifluoromethanesulfonyl)pyridin-5-yl]propionate Intermediate An-5: ethyl 3-[3-(1-methyl-1H-indazol-5-yl)-2-(trifluoromethanesulfonyl)pyridin-5-yl]propionate

Typical examples of the compounds of the present invention that can be obtained by reacting and treating corresponding starting compounds according to the methods described in Examples Ca·1 and Ca·2 are shown in Table-Cn·1.

In the table, the substances mentioned in the column of "SM1" correspond to reaction intermediates, and the substances mentioned in the column of "SM2" correspond to the boronic acid reagent used in Example Ca·1. The boronic acid

reagents indicated with the symbols of "BRA (number)" in the columns of "SM2" are those mentioned in Table Ba-1 and Table Ba-2.

	R:	x⊸N=	} <b>0-Y</b>					
Table-C	n-1	AR -	ďÓ					
-		1				LCMS		
Exp.	Rx	Y	AR	SM1	SM2	method	RTime	Mass
Cn-1	Ph	Et	2-Nap	An-1	BRA14	D		382 (M*+1)
Cn-2	Ph	Н	2-Nap	Cn-1	-	С		354 (M*+1)
Cn-3	Ph	Et	5-ind	An-2	BRA14	С		371 (M+1)
Cn-4	Ph	Н	5-Ind	On-3	-	С		343 (M+1)
Cn-5	Ph	Et	1Me-5-Ind	An-3	BRA14	C		385 (M+1)
Cn-6	Ph	H	1Me-5-Ind	Cn-5	-	C		357 (M+1)
Cn-7	Ph	Et	5-1HIdz	An-4	BRA14	С		372 (M+1)
Cn-8	Ph	Н	5-1Hldz	Cn-7	-	С		344 (M+1)
Cn-9	Ph	Et	1Me-5-1Hldz	An-5	BRA14	С		386 (M*+1)
Cn-10	Ph	Н	1Me=5=1HIdz	Cn-9		С		358 (M*+1)
Cn-11	4MeOPh	Н	2-Nap	An-1	BRA19	С		384 (M+1)
Cn-12	4MeOPh	H	5-Ind	An-2	BRA19	С		373 (M*+1)
Cn-13	4MeOPh	H	5-1Hidz	An-4	BRA19	С		374 (M ⁺ +1)
Cn-14	4Me OPh	Н	1Me-5-1Hldz	An-5	BRA19	С		388 (M*+1)
Cn-15	3MeOPh	Н	2-Nap	An-1	BRA37	С		384 (M*+1)
Cn-16	2MeOPh	Н	2-Nap	An-1	BRA38	С		384 (M*+1)
On-17	2MeOPh	Н	1Me-5-Ind	An-3	BRA38	С		387 (M+1)
Cn-18	2MeOPh	Н	1Me-5-1HIdz	An-5	BRA38	С		388 (M*+1)
Cn-19	2MePh	Н	2-Nap	An-1	BRA59	C		368 (M+1)
Cn-20	2MePh	Н	1Me-5-Ind	An-3	BRA59	С		371 (M+1)
Cn-21	2MePh	Н	1Me-5-1HIdz	An-5	BRA59	С		372 (M+1)
Cn-22	3MePh	Н	2-Nap	An-1	BRA60	С		368 (M*+1)
Cn-23	3MePh	Н	5-1HIdz	An-4	BRA60	С		358 (M*+1)
Cn-24	4MePh *	Н	2-Nap	An-1	BRA29	С		368 (M+1)
Cn-25	4MePh	Н	5-Ind	An-2	BRA29	0		357 (M+1)
Cn-26	4MePh	H	1Me-5-Ind	An-3	BRA29	С		371 (M*+1)
Cn-27	4MePh	Н	5-1 HIdz	An-4	BRA29	С		358 (M+1)
Cn-28	4MePh	Н	1Me-5-1HIdz	An-5	BRA29	С		372 (M+1)
Cn-29	4CF ₃ Ph	Н	5-ind	An-2	BRA41	О		411 (M+1)
Cn-30	4CF₃Ph	Н	5-1HIdz	An-4	BRA41	С		412 (M*+1)
Cn-31	4CF ₃ Ph	Н	1Me-5-1HIdz	An-5	BRA41	С		426 (M ⁺ 1)
Cn-32	4CIPh	Н	5-Ind	An-2	BRA30	С		377 (M+1)
Cn=33	4CIPh	Н	1Me-5-Ind	An-3	BRA30	С		391 (M+1)
On-34	4CIPh	Н	1Me-5-1HIdz	An-5	BRA30	С		392 (M*+1)
Cn-35	2FPh	Н	2-Nap	An-1	BRA32	С		372 (M+1)
Cn-36	2FPh	Н	1Me-5-Ind	An-3	BRA32	С		375 (M*+1)
Cn-37	2FPh	Н	5-1HIdz	An-4	BRA32	С		362 (M+1)
Cn-38	2FPh	Н	1Me-5-1HIdz	An-5	BRA32	С		376 (M+1)
Cn-39	3FPh	Н	5-Ind	An-2	BRA33	C		361 (M+1)
Cn-40	3FPh	Н	5-1HIdz	An-4	BRA33	С		362 (M*+1)
Cn-41	3FPh	Н	1Me-5-1HIdz	An-5	BRA33	С		376 (M*+1)
Cn-42	4FPh	Н	2-Nap	An-1	BRA34	С		372 (M+1)
Cn-43	4FPh	Н	5-Ind	An-2	BRA34	С		361 (M*+1)
Cn-44	4FPh	Н	5-1Hldz	An-4	BRA34	C		362 (M*+1)

[Reference Examples: Intermediates Int. n-1 to Int. n-115]

Synthesis of methyl 3-(4-aminophenyl)propionate (Intermediate Int. n-1) (Synthesis

method NL)

A solution obtained beforehand by adding thionyl chloride (6.7 ml, WAKO) dropwise to methanol (50 ml) under ice cooling and mixing them was added dropwise with a solution of 4-aminohydrocinnamic acid (9.97 g, TCI) in methanol (50 ml) under ice cooling, stirred for 30 minutes, then warmed to room temperature, and further stirred for 16.5 hours. The reaction mixture was concentrated under reduced pressure, and then extracted with ethyl acetate (200 ml), and the organic layer was washed successively with saturated aqueous sodium hydrogencarbonate, saturated aqueous ammonium chloride and saturated brine. The organic layer was dried, and then the solvent was evaporated under reduced pressure to obtain the title compound (Intermediate Int. n·1, 13.13 g).

Synthesis of methyl 3-(4-amino-3-bromophenyl)propionate (Intermediate Int. n·2)

Synthesis of methyl 3·(4·amino·3·bromophenyl)propionate (Intermediate Int. n·2 (Synthesis method NK)

A solution of Intermediate Int. n·1 (9.93 g) in acetic acid (55 ml) was added with potassium bromide (6.60 g, WAKO) and sodium tungstenate(IV) dihydrate (18.23 g, WAKO), stirred for 5 minutes, then added dropwise with aqueous hydrogen peroxide (3.5 ml, WAKO) at 0°C over 5 minutes, warmed to room temperature, and then stirred for 1 hour. The reaction mixture was poured into 5% aqueous ammonia containing ice, thereby adjusted to pH of about 6, and then added with dichloromethane (200 ml) for extraction. The organic layer was washed successively with saturated aqueous ammonium chloride, saturated aqueous sodium hydrogenearbonate and saturated brine, and then dried, and the solvent was evaporated under reduced pressure. The residue was purified by column chromatography (Quad, hexane ethyl acetate = 3:1) to obtain the title compound (Intermediate Int. n·2, 3.07 g).

Synthesis of methyl 3-(4-benzylamino-3-bromophenyl)propionate (Intermediate Int. n-3) (Synthesis method NC1)

A solution of Intermediate Int. n. 2 (10.97 g) in methanol (30 ml) was added with benzaldehyde (5.25 ml, TCI) and anhydrous sodium sulfate (6.49 g, WAKO), and stirred at 60°C for 13 hours. The reaction mixture was added with sodium cyanotrihydoridoborate (2.73 g, WAKO), and further stirred for 5 hours. The reaction mixture was concentrated under reduced pressure, and then extracted with dichloromethane (150 ml), and the organic layer was washed with saturated brine, and dried. Then, the solvent was evaporated under reduced pressure. The residue was purified by column chromatography (Quad, hexane-ethyl acetate = 4:1) to obtain the title compound (Intermediate Int. n. 3, 13.45 g).

Synthesis of methyl 3-[3-bromo-(4-fluorobenzylamino)phenyl]propionate

Synthesis of methyl 3-[3-bromo·(4-fluorobenzylamino)phenyl]propionat (Intermediate Int. n-4) (Synthesis method NC2)

A solution of Intermediate Int. n.2 (5.80 g) in dichloromethane (100 ml) was added with p-fluorobenzaldehyde (2.83 ml, TCI), sodium triacetoxyborohydride (7.14 g, Ald) and acetic acid (1.4 ml), and stirred at room temperature for 19 hours. The reaction mixture was extracted with dichloromethane (300 ml), and the organic layer was washed with saturated brine, and dried, and then the solvent was evaporated under reduced pressure. The residue was purified by column chromatography (Quad, hexane-ethyl acetate = 4:1) to obtain the title compound (Intermediate Int. n.4, 7.51 g).

Synthesis of methyl  $3 \cdot [4 \cdot amino \cdot 3 \cdot (naphthalen \cdot 2 \cdot y])$  phenyll propionate (Intermediate Int. n · 7) (Synthesis method ND1)

A solution of the compound of Example N-a-1 (3.01 g) in a mixture of methanol (40 ml) and THF (20 ml) was added with 10% palladium/carbon (410.3 mg, Merck) and one drop of concentrated hydrochloric acid, and stirred at room temperature for 5 hours under hydrogen atmosphere. The reaction mixture was filtered, and the solvent of the filtrate was evaporated under reduced pressure.

The residue was added with ethyl acetate (200 ml), and washed successively with

saturated aqueous sodium hydrogencarbonate and saturated brine, and then dried, and the solvent was evaporated under reduced pressure to obtain the title compound (Intermediate Int. n.7, 2.58 g).

Synthesis of methyl 3-[3-nitro-4-(piperazin-1-yl)phenyllacrylate (Intermediate Int. n-19) (Synthesis method NJ)

A solution of methoxycarbonylmethyl(triphenyl)phosphonium bromide (1.1 g, TCI) in THF (12.5 ml) was added with sodium hydride (115 mg, WAKO) under ice cooling, warmed to room temperature, then added dropwise with a solution of 3 nitro-4-(piperazin-1-yl)benzaldehyde (550.6 mg, MAYB) in THF (12.5 ml), and stirred at the same temperature for 16.5 hours. The reaction mixture was poured into brine (40 ml), and extracted with ethyl acetate (100 ml). The organic layer was washed successively with saturated aqueous sodium hydrogenearbonate and saturated brine, and dried, and then the solvent was evaporated under reduced pressure. The residue was purified by flash column chromatography (hexane:ethyl acetate = 5:1) to obtain the title compound (Intermediate Int. n-19, 511 mg).

Synthesis of methyl 3-[3-amino-4-(piperazin-1-yl)phenyl]propionate (Intermediate Int. n-20) (Synthesis method ND1)

According to the procedure described in the synthesis method of Intermediate Int. n·7 (Synthesis method NDI) provided that the reaction was carried out in ethyl acetate for 13 hours, Intermediate Int. n·19 (505 mg) and 10% palladium/carbon (50 mg) were reacted and treated to obtain the title compound (Intermediate Int. n·20, 658.9 mg).

Synthesis of methyl 3·[3·bromo·4·(piperazin·1·yl)phenyl]propionate (Intermediate Int. n·21) (Synthesis method NI)

A solution of hydrobromic acid (570  $\mu$  I) in methanol (2.3 ml) was added dropwise with a solution of Intermediate Int. n·20 (235 mg) in methanol (2.3 ml) over 10 minutes under ice cooling. This reaction mixture was added with an

aqueous solution (250 µ l) of sodium nitrite (69 mg, WAKO). The reaction mixture was added dropwise with an aqueous solution (2.3 ml) of copper(II) bromide (222 mg, WAKO) heated to 50°C over 15 minutes, stirred for 4 hours at the same temperature, and then further stirred at room temperature for 12.5 hours. The reaction mixture was poured into aqueous sodium hydrogencarbonate (20 ml), and extracted with ethyl acetate (40 ml). The organic layer was washed with saturated brine, and dried, and then the solvent was evaporated under reduced pressure. The residue was purified by flash column chromatography (hexane-ethyl acetate = 4:1) to obtain the title compound (Intermediate Int. n·21, 89 mg). Synthesis of methyl 4-fluoro 3-bromocinnamate (Intermediate Int. n·25) (Synthesis method NL)

According to the procedure described in the synthesis method of Intermediate Int. n·1 (Synthesis method NL) provided that the reaction was carried out for 1 hour, 3-bromo 4-fluorocinnamic acid (3.30 g, LANC) and thionyl chloride (1.5 ml) were reacted and treated to obtain the title compound (Intermediate Int. n· 25, 3.47 g)

Synthesis of methyl 3-[3-bromo-4-(piperidin-1-yl)phenyl]cinnamate (Intermediate Int. n-26) (Synthesis method NG)

A solution of Intermediate Int. n·25 (136.4 mg) in DMSO (5 ml) was added with potassium carbonate (109.8 mg) and piperidine (84.8 µ l, TCI), and stirred at 90°C for 15 hours. The reaction mixture was extracted with ethyl acetate (50 ml), and then the organic layer was washed successively with saturated aqueous sodium hydrogencarbonate, saturated aqueous ammonium chloride and saturated brine, and dried. Then, the solvent was evaporated under reduced pressure. The residue was purified by column chromatography (Quad, hexane:isopropyl ether = 6:1) to obtain the title compound (Intermediate Int. n·26, 120.4 mg).

Synthesis of methyl 3-[3-bromo-4-(piperidin-1-yl)phenyllpropionate (Intermediate

Int. n-27) (Synthesis method ND2)

According to a procedure described in literature [D.J. Hart et al., Journal of Organic Chemistry (J. Org. Chem.), 1987, vol. 52, p.4665], a solution of Intermediate Int. n·26 (690.6 mg) in dimethoxyethane (100 ml) was added with producesulfonhydrazide (2.97g, TCI), and refluxed by heating at 110°C. Then, the reaction mixture was added dropwise with an aqueous solution (100 ml) of sodium acetate (2.85 g, WAKO) over 2 hours, and further stirred for 1 hour. The reaction mixture was extracted with dichloromethane (450 ml), and the organic layer was washed with water, and dried, and then the solvent was evaporated under reduced pressure. The residue was purified by column chromatography (Quad, hexane:ethyl acetate = 6:1) to obtain the title compound (Intermediate Int. n·27, 648.2 mg).

Synthesis of 3-bromo-(4-imidazol-1-yl)benzaldehyde (Intermediate Int. n-32) (Synthesis method NG)

According to the procedure described in the synthesis method of Intermediate Int. n·26 (Synthesis method NG) provided that the reaction was performed for 20 hours, and the column chromatography was performed with chloroform-methanol = 100·1, 3·bromo·4·fluorobenzaldehyde (1.246 g, TCI), potassium carbonate (825.1 mg) and imidazole (444 mg, TCI) were reacted and treated to obtain the title compound (Intermediate Int. n·32, 986.1 mg).

Synthesis of ethyl 3·[3·bromo·(4·imidazol·1·yl)phenyllacrylate (Intermediate Int. n·33) (Synthesis method NJ)

A solution of Intermediate Int. n-32 (986.1 mg) and ethyl diethylphosphonoacetate (705 µ l) in 1,2-dimethoxyethane (8 ml) was added with 60% sodium hydride (180.2 mg) under ice cooling, stirred for 10 minutes, then warmed to room temperature, and stirred for 1 hour. The reaction mixture was added with dichloromethane (60 ml) for extraction, and the organic layer was

washed with saturated brine, and dried. Then, the solvent was evaporated under reduced pressure. The residue was purified by column chromatography (Quad, dichloromethane:methanol = 100:1) to obtain the title compound (Intermediate Int. n.33, 1.00 g).

Synthesis of methyl 3-(4-cyclopentylaminophenyl)propionate (Intermediate Int. n-38) (Synthesis method NC1)

According to the procedure described in the synthesis method of Intermediate Int. n·3 provided that the reaction was carried out for 6 hours, Intermediate Int. n·1 (1.03 g), cyclopentanone (450  $\mu$ 1, TCI), sodium triacetoxyborohydride (1.56 g) and acetic acid (350  $\mu$ 1) were reacted and treated to obtain the title compound (Intermediate Int. n·37, 1.21 g). Synthesis of methyl 3·(4·cyclopentylamino·3,5·dibromophenyl)propionate (Intermediate Int. n·39) (Synthesis method NK)

A solution of Intermediate Int. n·37 (1.21 g) in acetonitrile was warmed to 35°C, then added with N-bromosuccinimide (2.44 g, TCI), and stirred for 1 hour. The reaction mixture was concentrated under reduced pressure, then added with ethyl acetate (150 ml), washed successively with aqueous sodium thiosulfate, saturated aqueous sodium hydrogencarbonate, saturated aqueous ammonium chloride and saturated brine, and dried, and then the solvent was evaporated under reduced pressure. The residue was purified by column chromatography (Quad, hexane:ethyl acetate = 6:1) to obtain the title compound (Intermediate Int. n·38, 1.41 g).

Synthesis of 2-bromopyridine-5-carbaldehyde (Intermediate Int. n·44) (Synthesis method NM)

According to a procedure described in literature (Xin Wang et al.,

Tetrahedron. Lett., 2000, vol. 41, p.4335], a solution of 2,5-dibromopyridine (3.17 g)

in anhydrous diethyl ether (140 ml) was added dropwise with a 1.6 M solution of n-

butyl lithium in hexane (11 ml) with cooling at 78°C under argon gas atmosphere over 5 minutes, and stirred for 20 minutes. This reaction mixture was added dropwise with dehydrated DMF (1 ml) over 3 minutes, stirred for 30 minutes, then warmed to room temperature, and further stirred for 1 hour. The reaction mixture was added with water (20 ml), and extracted with ethyl acetate (30 ml x 2). The organic layer was washed with saturated brine, and dried, and then the solvent was evaporated under reduced pressure. The residue was purified by column chromatography (Quad, hexane ethyl acetate = 6:1) to obtain the title compound (Intermediate Int. n-44, 1.46 g).

Synthesis of ethyl 3·(2·bromopyridin·5·yl)acrylate (Intermediate Int. n·45) (Synthesis method NJ)

According to the procedure described in the synthesis method of Intermediate n·7 provided that the reaction was carried out for 15 minutes, Intermediate Int. n·44 (1.45 g), ethyl diethylphosphonoacetate (2.1 ml) and 60% sodium hydride (355 mg) were reacted and treated to obtain the title compound (Intermediate Int. n·45, 1.87 g).

Synthesis of ethyl 3-[2-(piperidin-1-yl)pyridin-5-yl]acrylate (Intermediate Int. n-46) (Synthesis method NG)

Intermediate Int. n·45 (565.7 mg) was added with potassium carbonate (286.4 mg) and piperidine (3 ml), and stirred at 90°C for 21 hours. The reaction mixture was added with ethyl acetate (50 ml), washed successively with saturated aqueous sodium hydrogencarbonate, saturated aqueous ammonium chloride and saturated brine, and dried, and then the solvent was evaporated under reduced pressure. The residue was purified by column chromatography (Quad, hexane:ethyl acetate = 4:1) to obtain the title compound (Intermediate Int. n·46, 165.9 mg).

 $\textbf{Synthesis of ethyl 3-[2-(piperidin-1-yl)pyridin-5-yl]propionate (Intermediate Int. n-1-yl)pyridin-5-yl]} \\ \textbf{Propionate (Int. n-1-yl)pyridin-5-yl)pyridin-5-yl]} \\ \textbf{Propionate (Int. n-1-yl)pyridin-5-yl)pyridin-5-yl]} \\ \textbf{Propionate (Int. n-1-yl)pyridin-5-yl)pyridin-5-yl)pyridin-5-yl)pyridin-5-yl)pyridin-5-yl)pyridin-5-yl)pyridin-5-yl)pyridin-5-yl)pyridin-5-yl)pyridin-5-yl)pyridin-5-yl)pyridin-5-yl)pyridin-5-yl)pyridin-5-yl)pyridin-5-yl)pyridin-5-yl)pyridin-5-yl)pyridin-5-yl)pyridin-5-yl)pyridin-5-yl)pyridin-5-yl)pyridin-5-yl)pyridin-5-yl)pyridin-5-yl)pyridin-5-yl)pyridin-5-yl)pyridin-5-yl)pyridin-5-yl)pyridin-5-yl)pyridin-5-yl)pyridin-5-yl)pyridin-5-yl)pyridin-5-yl)pyridin-5-yl)pyridin-5-yl)pyridin-5-yl)pyridin-5-yl)pyridin-5-yl)pyridin-5-yl)pyridin-5-yl)pyridin-5-yl)pyridin-5-yl)pyridin-5-yl)pyridin-5-yl)pyridin-5-yl)pyridin-5-yl)pyridin-5-yl)pyridin-5-yl)pyridin-5-yl)pyridin-5-yl)pyridin-5-yl)pyridin-5-yl)pyridin-5-yl)pyridin-5-yl)pyridin-5-yl)pyridin-5-yl)pyridin-5-yl)pyridin-5-yl)pyridin-5-yl)pyridin-5-yl)pyridin-5-yl)pyridin-5-yl)pyridin-5-yl)pyridin-5-yl)pyridin-5-yl)pyridin-5-yl)pyridin-5-yl)pyridin-5-yl)pyridin-5-yl)pyridin-5-yl)pyridin-5-yl)pyridin-5-yl)pyridin-5-yl)pyridin-5-yl)pyridin-5-yl)pyridin-5-yl)pyridin-5-yl)pyridin-5-yl)pyridin-5-yl)pyridin-5-yl)pyridin-5-yl)pyridin-5-yl)py$ 

47) (Synthesis method ND1)

According to the procedure described in the synthesis method of
Intermediate Int. n·7 with the modifications that the reaction was carried out for 1
hour, and the purification was performed by column chromatography (Quad,
hexane ethyl acetate = 6:1), Intermediate Int. n·46 (392 mg) and 10%
palladium/carbon (30 mg) were reacted and treated to obtain the title compound
(Intermediate Int. n·47: 246 mg).

Synthesis of ethyl 3-[3·bromo·2·(piperidin·1·yl)pyridin·3·yl]propionate (Intermediate Int. n·48) (Synthesis method NK2)

A solution of Intermediate Int. n·47 (242 mg) in acetonitrile was added with bromine (84  $\mu$  I), and stirred at 40°C for 1 hour. The reaction mixture was concentrated under reduced pressure, then added with ethyl acetate (50 ml), washed successively with aqueous sodium thiosulfate, saturated aqueous sodium hydrogencarbonate, saturated aqueous ammonium chloride and saturated brine, and dried, and then the solvent was evaporated under reduced pressure. The residue was purified by column chromatography (Quad, hexane-ethyl acetate = 6:1) to obtain the title compound (Intermediate Int. n·48, 224 mg). Synthesis of 2-benzylaminopyridine-5-carbaldehyde (Intermediate Int. n·59) (Synthesis method NG)

Intermediate Int. n·44 (102.0 mg) was added with benzylamine (1 ml, TCI), and stirred at 120°C for 39 hours. The reaction mixture was added with ethyl acetate (50 ml), washed successively with saturated aqueous sodium hydrogenearbonate, saturated aqueous ammonium chloride and saturated brine, and dried, and then the solvent was evaporated under reduced pressure. The residue was purified by column chromatography (Quad, hexane:ethyl acetate = 4:1) to obtain the title compound (Intermediate Int. n·59, 58.3 mg).

Synthesis of 2-benzylamino 3-bromopyridine·5-carbaldehyde (Intermediate Int. n·

60) (Synthesis method NK)

A solution of Intermediate Int. n·59 (56.8 mg) in acetonitrile was added with N·bromosuccinimide (134 mg), and stirred at room temperature for 14 hours. The reaction mixture was concentrated under reduced pressure, then added with ethyl acetate (50 ml), washed successively with aqueous sodium thiosulfate, saturated aqueous sodium hydrogenearbonate, saturated aqueous ammonium chloride and saturated brine, and dried, and then the solvent was evaporated under reduced pressure. The residue was purified by column chromatography (Quad, hexane:ethyl acetate = 4·1) to obtain the title compound (Intermediate Int. n·60, 50 mg).

Synthesis of ethyl 3-(2-benzylamino-3-bromopyridin-5-yl)acrylate (Intermediate Int. n-61) (Synthesis method NJ)

According to the procedure described in the synthesis method of Intermediate Int. n·7 provided that the reaction was carried out for 30 minutes, Intermediate Int. n·60 (49.1 g), ethyl diethylphosphonoacetate (92  $\,\mu$ 1) and 60% sodium hydride (30 mg) were reacted and treated to obtain the title compound (Intermediate Int. n·61, 28 mg).

Synthesis of ethyl 3-(2-benzylamino-3-bromopyridin-5-yl)propionate (Intermediate Int. n-62) (Synthesis method ND2)

According to the procedure described in the synthesis method of Intermediate Int. n·27 provided that the reaction was carried out for 4 hours, Intermediate Int. n·60 (49.1 mg), p·toluenesulfonhydrazide (320.6 mg) and sodium acetate (412.4 mg) were reacted and treated to obtain the title compound (Intermediate Int. n·62, 38.9 mg).

Synthesis of methyl 3-(4-amino-3-bromo-5-nitrophenyl)propionate (Intermediate Int. n·76) (Synthesis method NM)

A solution obtained by adding potassium nitrate (1.10 g) to a solution of

Intermediate Int. n·2 (2.57 g) in acetic anhydride (20 ml) under ice cooling and stirring them for 10 minutes was added dropwise with concentrated sulfuric acid (700 µl) over 10 minutes. The reaction mixture was stirred for 10 minutes at the same temperature, then warmed to room temperature, and further stirred for 30 minutes. The reaction mixture was poured into 1 N aqueous sodium hydroxide (250 ml) containing ice, and extracted with isopropyl ether (200 ml x 2). The organic layer was washed successively with saturated aqueous sodium hydrogencarbonate and saturated brine, and dried, and then the solvent was evaporated under reduced pressure. The residue was purified by column chromatography (Quad, hexane-ethyl acetate = 3:1) to obtain the title compound (Intermediate Int. n·76, 0.72 g).

Typical examples of the intermediates for synthesizing the compounds of the present invention that can be obtained by reacting and treating corresponding starting compounds using any of the methods described in the present specification are shown in Table-Int. N-1 to Table-Int. N-8. In the tables, the intermediate numbers "Int. n-(number)" are mentioned in the columns indicated as "Exp.". In the tables, used methods among the aforementioned synthesis methods are shown in the columns of "Syn" with symbols, the starting compounds 1 are mentioned in the columns of "SM1", and the starting compounds 2 are mentioned in the columns of "SM2". Further, the compounds indicated as "Single" in the columns of "Single or Double" in the tables are compound in which two of the carbon atoms binding the benzene ring and carbonyl group in the compounds are bound with a single bond, and those indicated as "Double" in the same are compounds in which two of the carbon atoms binding the benzene ring and carbonyl group in the compounds are bound with a double bond. The aldehydes and ketones used for the synthesis of the compounds are mentioned in Table-Carb, and amines used for the same are mentioned in Table-AMN.

Table-Carb

Reagent	Aldehyde or Ketone	Manufacture
CHO1	НСНО	WAKO
CHO2	CH₃CHO	Aldlich
CHO3	CH₃CH₂CHO	TCI
CHO4	nPrCHO	TCI .
CHO5	Acetone	WAKO
CHO6	nBuCHO	TCI
CHO7	iPrCHO	TCI
CHO8	BnCHO	TCI
CHO9	4FBnCHO	TCI
CHO10	2FBnCHO	TCI
CHO11	3FBriCHO	TCI
CHO12	2ClBnCHO	TCI
CHO13	2BrBnCHO	TCI
CHO14	2,3DFBnCHO	TCI
CHO15	3,4DFBnCHO	TCI
CHO16	4PhBnCHO	TCI
CHO17	2CF ₃ BnCHO	TCI
CHO18	2,3DCIBnCHO	TCI
CHO19	2-ThiofeneCHO(2-TFCHO)	TCI
CHO20	3-ThiofeneCHO(3-TFCHO)	
CHO21	2-FuranCHO(2-FRCHO)	TCI
CHO22	Cyclopentanone	TCI
CHO23	Cyclohexanone	TCI
CHO24	2(Me)cHexanone	TCI
CHO25	2-Indanone	Aldlich

Table-AMN

Reagent	Amine	Manufacture
AMN1	○NH	тсі
AMN2	о⊜ин	тсі
AMN3	NH	TCI
AMN4	— ЛН	TCI
AMN5	ONH	TCI
AMN6	<b>N</b> ⊙NH	TCI
AMN7	□ NH	TCI
AMN8	EtMeNH	Aldrich
AMN9	Et₂NH	Aldrich
AMN10	nPrMeNH	Aldrich
AMN11	iPrMeNH	Aldrich
AMN12	nBuMeNH	Aldrich
AMN13	nBuEtNH	Aldrich
AMN14	iBuMeNH	Aldrich
AMN15	4MeBnNH ₂	Aldrich
AMN16	3MeBnNH ₂	Aldrich
AMN17	2MeBnNH ₂	Aldrich
AMN18	4FBnNH ₂	Aldrich
AMN19	3FBnNH₂	Aldrich
AMN20	2FBnNH ₂	Aldrich
AMN21	3MeOBnNH ₂	Aldrich
AMN22	4MeOBnNH ₂	Aldrich
AMN23	2MeOBnNH ₂	Aldrich
AMN24	4CF ₃ BnNH ₂	Aldrich
AMN25	2EtOBnNH ₂	Aldrich
AMN26	3iPrOBnNH ₂	Sigma-Aldrich
AMN27	3,5DFBnNH ₂	Aldrich

Rz-H	O-Me
n)	Ö

Table-Int.N-1 Br

Exp.	Svn SM1		SM2 Rz	Sun CM1 CM2 D-			LCMS	
ехр.	Syn	SMI	SWIZ	rcz	method	RTime	Mass	
Int.n-5	NC2	Int.n-2	CHO10	2FBn	O		366 (M ⁺ )	
Int.n-6	NC1	Int.n-2	CHO11	3FBn	С		366 (M ⁺ )	
Int.n-12	NC2	Int.n-2	CHO2	Et	С		386 (M ⁺ )	
Int.n-13	NC2	Int.n-2	CHO3	nPr	D	5.02	300 (M ⁺ )	
Intn-14	NC2	Int.n-2	CHO5	iPr	D	5.38	341(M ¹ )	
Intn-15	NC2	Int.n-2	CHO7	iBu	D	5.50	400 (M ⁺ )	
Int.n-16	NC2	Int.n-2	CHO22	cPen	C		326 (M ⁺ )	
Intn-17	NC2	Int.n-2	CHO23	cHex	С		340(M ⁺ )	
Intn-18	NC2	Int.n-2	CHO24	2(Me)cHex	С		354 (M ⁺ )	

H₂N-O-Me

Table-Int.N-2 AR O

F	0	SM1	SM1 AR	LCMS			
Exp.	Syn	SMI	Art	method	RTime	Mass	
Int.n-8	ND1	N-a-3	5-Ind	С		295 (M*+1)	
Int.n-9	ND1	N-a-5	1Me-5-Ind	C		309 (M*+1)	
Intn-10	ND1	N-a-7	5-11dz	0		296 (M*+1)	
Int.n-11	ND1	N-a-9	1Me-5-1HIdz	C		310(M+1)	

Rs-COOMe

III. TANK

	I able III	L.14 Q						
	Exp.	Syn.	Rs	G	Single or		LCMS	
1	Exp.	Syn.	r\s	L u	Double	method	RTime	Mass
	Int.n-22	NJ	<b>o</b> _N−	NO2	Double	Α	3.91	293 (M*+1)
	Int.n-23	ND1	<b>o</b> _N−	NH2	Single	Α	2.97	265(M+1)
	Int.n-24	NI	Q N-	Br	Single	А	4.31	328 (M*)

RZ S/D COOMe

Table-Int.N-4 Br									
Exp.	Syn	SM1	RzRyN	Single or		LCMS			
LAP.		C.m.	rangir	Double	method	RTime	Mass		
Int.n-28	NC2	Int.n-25	$\bigcirc$	Double	Α	6.54	338(M ⁺ )		
Int.n-29	NC1	Int.n-28	<b>\(\frac{1}{2}\)</b>	Single	Α	6.01	342 (M ⁺ +1)		
Int.n-30	NG2	Int.n-25	Õ	Double	Α	6.29	340(M ⁺ +1)		
Int.n-31	NC1	Int.n-30	Ŏ	Single	Α	6.12	342 (M ⁺ +1)		
Int.n-33	NC2	Int.n-32	N)	Double	С		307 (M ⁺ )		
Int.n-35	NG2	Int.n-32	N	Double	С		306 (M ⁺ )		
Int.n=36	NC2	Int.n-25	Ŋ	Double	Α	5.60	310 (M ⁺ )		
Int.n-37	NC2	Int.n-32	dOn	Double	С		326 (M ⁺ )		

Rz Ry_ CHO

Table-Int.		Br		LCMS			
Exp.	Syn .	SM1	RzRyN	method	RTime	Mass	
Int.n-32	NC2	Int.n-25	NN	С		351 (M ⁺ )	
Int.n-34	NC2	Intn-25	(N	С		250 (M ⁺ )	

Rz-HN O-Me

Table-Int.N-6

	Table III.II C									
I	Exp.	0	SM1	SM2	D-	7,	II au Du		LCMS	
١	Exp.	Syn	SM1	SWIZ	rtz.	1	Z' H or Br	method	RTime	Mass
I	Int.n-40	NC1	Int.n-1	CHO3	nPr	Н	Н	С		222 (M+1)
Ì	Intn-41	NK	Int.n-40		nPr	Br	Br	О		380 (M+1)
Į	Int.n-42	NC1	Int.n-1	CHO5	iPr	Н	Н	С		222 (M+1)
١	Int.n-43	NK	Intn-42		iPr	Br	Br	С		380 (M+1)

Rz N⊸	∿ .O-Et
N	~,∪Et
Rv' >	1
Ry _ /	0

Tah	lo-In	t.N-7

F 10-		RzRvN			LCMS	
Exp.	Syn	RZHyN		method	RTime	Mass
Int.n-48	NG	cHe	x	О		327 (M ⁺ )
Int.n-49	NG	cPe	n	С		313(M ⁺ )
Int.n-50	NG	4(Me)c	Hex	С		341 (M ⁺ )
Int.n-51	NG	þ	N .	С		343 (M ⁺ )
Int.n-52	NG	cHe	p	C		355 (M ⁺ )
Exp.	Syn	Rz	Rv		LCMS	
Ехр.	Syn	, NZ	113	method	RTime	Mass
Int.n-53	NG	Et	Me	С		301 (M*)
Int.n-54	NG	Et	Et	С		315 (M ⁺ )
Int.n-55	NG	nPr	Me	С		315 (M ⁺ )
Int.n-56	NG	iPr	Me	C.		315 (M ⁺ )
Int.n-57	NG	nBu	Me	С		329 (M ⁺ )
Int.n-58	NG	iBu	Me	С		329 (M ⁺ )
Int.n-63	NG	4MeBn	Н	С		363 (M ⁺ )
Int.n=64	NG	3MeBn	Н	С		363 (M ⁺ )
Int.n-65	NG	2MeBn	Н	С		363 (M ⁺ )
Int.n-66	NG	4FBn	Н	С		368 (M+1)
Int.n-67	NG	3FBn	Н	С		368 (M+1)
Int.n-68	NG	2FBn	Н	О		368 (M+1)
Int.n=69	NG	4MeOPh	Н	О		365 (M ⁺ )
Int.n-70	NG	3MeOPh	Н	О		365 (M ⁺ )
Int.n-71	NG	2MeOPh	Н	С		365 (M ⁺ )
Int.n-72	NG	4CF3Ph	Н	С		403 (M ⁺ )
Int.n-73	NG	2Et0Ph	Н	С		380 (M+1)
Int.n-74	NG	3iPr0Ph	Н	С		393 (M*)
Int.n-75	NG	3,5DFPh	Н	С		372 (M+1)

Ry Ry Ry

Table-In	t.N-8	Br						
Exp.	Syn	SM1	SM2	Rz	Ry		LCMS	
					Ľ	method	RTime	Mass
Int.n-77	NC2	Int.n-76	CHO22	cPen	Н	С		371 (M ⁺ )
Int.n-78	NC2	Int.n-76	CHO3	nPr	н	С		345 (M ⁺ )
Int.n-79	NC2	Int.n-76	CHO5	iPr	Н	С		345 (M ⁺ )
Int.n-80	NC2	Int.n-76	CHO25	2-Indane	Н	С		419 (M ⁺ )
Int.n-81	NC2	Int.n-76	CHO23	cHex	н	С		385 (M*)
Int.n-82	NC2	Int.n-76	CHO24	2(Me)cHex	н	С		399 (M ⁺ )
Int.n-83	NC1	Int.n=77	CHO1	cPen	Мe	С		385 (M ⁺ )
Int.n-84	NC1	Intn-78	CHO1	nPr	Me	С		359(M ⁺ )
Int.n-85	NC1	Int.n-79	CHO1	iPr	Me	С		359(M ⁺ )
Int.n-86	NC1	Int.n-80	CHO1	2-Indane	Me	С		433 (M ⁺ )
Int.n-87	NC1	Int.n-81	CHO1	cHex	Me	С		399 (M*)
Int.n-88	NC1	Int.n-82	CHO1	2(Me)cHex	Me	С		413 (M ⁺ )
Int.n-89	NC1	Int.n-76	CHO8	Bn ·	Н	С		393 (M ⁺ )
Int.n=90	NC1	Int.n-76	CHO9	4FBn	Н	С		411 (M ⁺ )
Int.n-91	NC2	Int.n-76	CHO10	2FBn	н	С		411 (M ⁺ )
Intn-92	NC2	Intn-76	CHO11	3FBn	Н	С		411 (M*)
Int.n=93	NG2	Int.n-76	CHO14	2,3DFBn	Н	С	,	429 (M ⁺ )
Int.n-94	NG2	Int.n-76	CHO15	3,4DFBn	н	С		429 (M ⁺ )
Int.n-95	NC2	Int.n-76	CHO16	4PhBn	н	С		469 (M*)
Int.n-96	NG2	Int.n-76	CHO17	2CF3Bn	Н	С		461 (M ⁺ )
Int.n-97	NC2	Int.n-76	CHO19	2-TF	н	С		399 (M ⁺ )
Int.n-98	NC2	Int.n-76	CHO20	3-TF	Н	С		399 (M*)
Int.n-99	NG2	Int.n-76	CHO21	2-FR	Н	С		383 (M*)
Int.n-100	NC1	Int.n-89	OHO1	Bn	Me	С		407 (M*)
Int.n-101	NC1	Int.n-90	CHO1	4FBn	Ме	С		428 (M ¹ )
Int.n-102	NC1	Int.n=91	CHO1	2FBn	Ме	С		425 (M ⁺ )
Int.n-103	NC1	Int.n=92	CHO1	3FBn	Me	С		425 (M*)
Int.n-104	NC1	Int.n=93	CHO1	2,3DFBn	Ме	С		443 (M ⁺ )
Int.n-105	NC1	Int.n-94	CHO1	3,4DFBn	Me	С		443 (M ⁺ )
Int.n-106	NC1	Int.n-95	CHO1	4PhBn	Me	C		483 (M ⁺ )
Int.n-107	NC1	Int.n-96	CH01	2CF3Bn	Me	С		475 (M*)
Int.n-108	NC1	Int.n-97	CHO1	2-TF	Me	С		413 (M ⁺ )
Int.n-109	NC1	Int.n-98	CHO1	3-TF	Ме	С		413 (M ⁺ )
Int.n-110	NC1	Int.n-99	CHO1	2-FR	Me	С		397 (M ⁺ )
Com	6	SM1	SM2	RzRyN			LCMS	
Exp.	Syn	SMI	SMZ	HZRYN	٠	method	RTime	Mass
Int.n=111	NM	Intn-21		(N		С		357 (M [†] )
Int.n-112	NM	Int.n-24		Q_N		С		373 (M ⁺ )
Int.n-113	NM	Int.n-27		O		С		371 (M [†] )
Int.n-114	NM	Int.n-29		-(N	1	С		385 (M [†] )
Int.n-115	NM	Int.n-31		O		С		385 (M ¹ )

[Example N-a-1]

Synthesis of methyl 3-[4-benzylamino-3-(naphthalen-2-yl)phenyl]propionate (Compound No. N-a-1) (Synthesis method NB1)

A solution of Intermediate n·3 (8.18 g) in toluene (60 ml) was added with 2naphthaleneboronic acid (5.04 g, TCI), 2 M aqueous sodium carbonate (21.6 ml),
methanol (24 ml) and tetrakistriphenylphosphine palladium(0) (henceforth
abbreviated as "(PhiP)4Pd", 1.94 g, Nacalai Tesque), and stirred at 90°C for 15
hours. The reaction mixture was added with ethyl acetate (300 ml), and washed
successively with saturated aqueous sodium hydrogencarbonate, saturated aqueous
ammonium chloride, and saturated brine. The organic layer was dried, and then
the solvent was evaporated under reduced pressure. The residue was purified by
flash column chromatography (hexane-ethyl acetate = 3:1) to obtain the title
compound (Compound No. N-a·1, 5.70 g).

[Example N-a-2]

Synthesis of 3-[4-benzylamino-3-(naphthalen-2-yl)phenyllpropionic acid (Compound No. N-a-2) (Synthesis method NA)

A solution of the compound of Example N-a·1 (51 mg) in methanol (5.0 ml) was added with 2 N aqueous sodium hydroxide (130  $\mu$  l), and stirred at 60°C for 2 hours. The reaction mixture was concentrated under reduced pressure, then neutralized with 5% aqueous hydrochloric acid under ice cooling, and then extracted with ethyl acetate (30 ml). The organic layer was washed with saturated brine, and dried, and then the solvent was evaporated under reduced pressure to obtain the title compound (Compound No. N-a-2, 47 mg).

[Example N-a-25]

Synthesis of methyl 3-[4-(N-benzyl-N-methylamino)-3-(naphthalen-2yl)phenyl]propionate (Compound No. N-a-25) (Synthesis method NC1)

According to the procedure described in the synthesis method of

Intermediate n°3 provided that the reaction was carried out for 5 hours, the compound of Example N°a°1 (234.2 mg), 30% aqueous solution of formaldehyde (208.8  $\mu$ 1, WAKO) and sodium cyanotrihydoridoborate (140.9 mg) were reacted and treated to obtain the title compound (Compound No. N°a°25, 176.3 mg).

[Example N-A-137]

Synthesis of methyl 3-{3-(1-methyl-1H-indol-5-yl)-4-[N-(1-

phenylethyl)amino]phenyl}propionate (Compound No. N-a-137) (Synthesis method NEI)

According to a procedure described in literature [Shin-Shyong Tseng et al., Journal of Organic Chemistry (J. Org. Chem.), 1979, vol. 44, p.4113], a solution of Intermediate n-9 (630.7 mg) in methylene chloride (10 ml) was added with triethylamine (405 µ l, Kokusan Chemical), cooled to -78°C, then added dropwise with trifluoromethanesulfonyl chloride (426  $\,\mu$  l, TCI), and stirred for 1.5 hours. The reaction mixture was poured into ice water (10 ml), and added with dichloromethane (30 ml) for extraction. The organic layer was washed with saturated brine, and dried, and then the solvent was evaporated under reduced pressure to obtain a crude product. A solution of the obtained crude product in DMF (15 ml) was added with potassium carbonate (394.2 mg) and (1bromoethyl)benzene (386.4  $\mu$  l, TCI), and stirred at room temperature for 13 hours. The reaction mixture was extracted with ethyl acetate (100 ml), and the organic layer was washed successively with saturated aqueous sodium hydrogencarbonate, saturated aqueous ammonium chloride and saturated brine, and dried. Then, the solvent was evaporated under reduced pressure. The residue was purified by column chromatography (Quad, hexane:ethyl acetate = 4:1) to obtain the title compound (Compound No. N-a-137, 310.3 mg).

[Example N-a-141]

Synthesis of methyl 3-[3-(1-methyl-1H-indol-5-yl)-4-{N-[2-(4-

fluorophenyl)ethyl|amino}phenyl|propionate (Compound No. N·a·141) (Synthesis method NE2)

A solution of Intermediate n-9 (210.1 mg) in methylene chloride (10 ml) was added with triethylamine (135 µl, Kokusan Chemical), cooled to -78℃, then added dropwise with trifluoromethanesulfonyl chloride (143  $\mu$  l, TCI), and stirred for 1.5 hours. The reaction mixture was poured into ice water (10 ml), and added with dichloromethane (15 ml) for extraction. The organic layer was washed with saturated brine, and dried, and then the solvent was evaporated under reduced pressure to obtain a crude product. A solution of the obtained crude product in anhydrous DMF (15 ml) was added with triphenylphosphine (485.9 g, WAKO), di-tbutyl azodicarboxylate (299.8 mg, Ald) and 4-fluorophenylethyl alcohol (357  $\mu$  l, TCI), and stirred at room temperature for 12 hours. The reaction mixture was added with water (10 ml) and ethyl acetate (10 ml) for extraction, and the organic layer was washed successively with saturated aqueous sodium hydrogencarbonate, saturated aqueous ammonium chloride, and saturated brine, and dried. Then, the solvent was evaporated under reduced pressure. The residue was purified by column chromatography (Quad, hexane:ethyl acetate = 4:1) to obtain the title compound (Compound No. N-a-141, 63.5 mg).

[Example N-a-143]

Synthesis of methyl 3-[4-(N-acetyl-N-benzylamino)-3-(1-methyl-1H-indol-5yl)phenyllpropionate (Compound No. N-a-143) (Synthesis method NF)

A solution of Compound No. N-a·5 (32 mg) in methylene chloride (3 ml) was added with pyridine (49.6  $\mu$ l, TCI) and acetyl chloride (50  $\mu$ l, TCI), and stirred for 13 hours. The reaction mixture was added with water (1 ml), and the solvent was evaporated. The residue was purified by column chromatography (Quad, hexane-ethyl acetate = 4:1) to obtain the title compound (Compound No. N-a·143, 20.3 mg).

[Example N-a-153]

Synthesis of methyl 3-[4-benzoylamino-3-(1-methyl-1H-indol-5-yl)phenyl|propionate (Compound No. N-a-153) (Synthesis method NF)

According to the procedure described in the synthesis method of the compound of Example N·a·143 provided that the reaction was carried out for 16 hours, Intermediate Int. n·9 (26.5 mg), pyridine (23.8  $\mu$  I) and benzoyl chloride (30  $\mu$  I, WAKO) were reacted and treated to obtain the title compound (Compound No. N·a·153, 18.4 mg).

[Examples N-a-1 to N-a-166]

Typical examples of the compounds of the present invention that can be obtained by reacting and treating corresponding starting compounds using any of the methods described in the present specification including the examples described above are shown in Table N·A·1 to Table ·N·A·4. In the tables, the compound numbers are mentioned in the columns indicated as "Exp.". In the tables, used methods among the aforementioned synthesis methods are shown in the columns of "Syn" with symbols, the starting compounds 1 are mentioned in the columns of "SM1", and the starting compounds 2 are mentioned in the columns of "SM2".

RZ ZX RV OY

Table-N-A-

Table-N	-A-1		AR									
Exp.	Svn	SM1	SM2	Rz	Ry	Υ	Zx	AR		LCM		
LAP.		O.M.							method	RTime	_	ass
N-a-1	NB1	Int.n-3	BRN1	Bn	Н	Me	Н	2-Nap	С		396	(M ⁺ +1)
N-a-2	NA	N-a-1		Bn	Н	Н	Н	2-Nap	С		382	(M+1)
N-a-3	NB1	Int.n-3	BRN2	Bn	Н	Me	Н	5-1Ind	С		385	(M+1)
N-a-4	NA	N-a-3		Bn	н	Н	H	5-1Ind	С		371	(M ⁺ +1)
N-a-5	NB1	Int.n-3	BRN3	Bn	H	Me	Н	1Me5-Ind	С		399	(M+1)
N-a-6	NA	N-a-5		Bn	H	Н	Н	1Me-5-Ind	С		385	(M++1)
N-a-7	NB1	Int.n-3	BRN4	Bn	Н	Me	Н	1Et-5-Ind	С		413	(M ⁺ +1)
N-a-8	NA	N-a-7		Bn	Н	Н	H	1Et-5-Ind	С		399	(M*+1)
N-a-9	NB1	Int.n-3	BRN5	Bn	Н	Me	Н	5-1HIdz	С		386	(M+1)
N-a-10	NA	N-a-9		Bn	Н	H	H	5-1HIdz	С		372	(M+1)
N-a-11	NB1	Int.n=3	BRN6	Bn	н	Me	H	1Me-5-1HIdz	С		400	(M+1)
N-a-12	NA	N-a-11		Bn	Н	Н	Н	1Me-5-1HIdz	С		386	(M*+1)
N-a-13	NB1	Int.n-3	BRN7	Bn	Н	Me	Н	1Et-5-1HIdz	С		414	(M*+1)
N-a-14	NA	N-a-13		Bn	Н	н	H	1Et-5-1HIdz	С		400	(M*+1)
N-a-15	NB1	Int.n-3	BRN8	Bn	Н	Me	н	2Me-5-2Hldz	С		400	(M*+1)
N-a-16	NA	N-a-15		Bn	н	Н	Н	2Me-5-2HIdz	С		386	(M+1)
N-a-17	NB1	Int.n-3	BRN9	Bn	H	Me	Н	5-Bzt	С		403	(M+1)
N-a-18	NA	N-a-17		Bn	H	н	Н	5-Bzt	С		389	(M*+1)
N-a-19	NB1	Int.n-3	BRN10	Bn	Н	Me	Н	3-Qu	С		397	(M*+1)
N-a-20	NA	N-a-19		Bn	Н	Н	Н	3-Qu	С		383	(M+1)
N-a-21	NB1	Int.n-3	BRN11	Bn	Н	Me	Н	6−Qu	С		397	(M+1)
N-a-22	NA	N-a-21		Bn	Н	Н	Н	6−Qu	С		383	(M*+1)
N-a-23	NB1	Intn-3	BRN12	Bn	H	Me	Н	6-1Q	С		397	(M+1)
N-a-24	NA	N-a-23		Bn	Н	Н	Н	6-IQ	С		383	(M+1)
N-a-25	NC1	N-a-1	CHO1	Bn	Ме	Me	Н	2-Nap	С		410	(M+1)
N-a-26	NA	N-a-25		Bn	Me	Н	Н	2-Nap	С		396	(M ⁺ +1)
N-a-27	NC1	N-a-1	CHO2	Bn	Et	Me	Н	2-Nap	С		424	(M*+1)
N-a-28	NA	N-a-27		Bn	Et	н	Н	2-Nap	С		410	(M*+1)
N-a-29	NC1	N-a-3	CH01	Bn	Me	Me	H	5-1Ind	С		399	(M ⁺ +1)
N-a-30	NA	N-a-29		Bn	Me	Н	Н	5-1Ind	С		384	(M ⁺ +1)
N-a-31	NC1	N-a-5	CHO1	Bn	Me	Me	Н	1Me-5-Ind	С		413	(M*+1)
N-a-32	NA	N-a-31		Bn	Me	Н	Н	1Me-5-Ind	С		399	(M*+1)
N-a-33	NB1	Int.n-4	BRA1	4FBn	Н	Me	Н	2-Nap	0.		414	(M*+1)
N-a-34	NA	N-a-33		4FBn	Н	Н	Н	2-Nap	C ·		400	(M+1)
N-a-35	NB1	Int.n-4	BRA2	4FBn	Н	Me	Н	5-1Ind	D	5.20	403	(M+1)
N-a-36	NA.	N-a-35		4FBn	H	Н	H	5-1Ind	D	4.73	389	(M+1)
N-a-37	NB1	Int.n-4	BRA3	4FBn	H	Me	H	1Me-5-Ind	D	5,51	417	(M++1)
N-a-38	NA	N-a-37	5.00	4FBn	H	Н	Н	1Me-5-Ind	D	4.78	403	(M ⁺ +1)
N-a-39	NB1	Int.n=4	BRA5	4FBn	H	Me	H	5-1HIdz	D	4.60	404	(M+1)
			DIO(3	4FBn	H	Н	뉴	5-1Hidz	c	1.00	390	(M+1)
N a 40	NA	N-a-39	DDAG	4FBn	H	-	H	1Me-5-1HIdz	A	4.85	418	(M+1)
N-a-41	NB1	Int.n-4	BRA6			Me						
N-a-42	NA	N-a-41		4FBn	H	H	H	1Me-5-1HIdz	A	4.14	404	(M°+1)
N-a-43	NB1	Int.n-4	BRA10	4FBn	Н	Ме	Н	3-Qu	D	4.72	415	(M"+1)
N-a-44	NA	N-a-43	1	4FBn	Н	H	Н	3-Qu	С		401	(M ⁺ +1)

Table-N-A-2

Table-IV										LCM	S	
Exp.	Syn	SM1	SM2	Rz	Ry	Υ	Zx	AR	method	RTime	N.	Mass
N-a-45	NC2	N-a-35	CHO1	4FBn	Me	Me	H	5-Ind	D	4.17	417	(M+1)
N-a-46	NA	N-a-45		4FBn	Me	Н	н	5-Ind	D	3.38	403	(M+1)
N-a-47	NC2	N-a-37	CHO1	4FBn	Me	Me	Η	1Me-5-Ind	O		431	(M+1)
N-a-48	NA	N-a-47		4FBn	Me	Н	Н	1 Me-5-Ind	С		418	(M+1)
N-a-49	NC2	N-a-41	CHO1	4FBn	Me	Me	Н	1Me-5-1HIdz	С		432	$(M^{+}+1)$
N-a-50	NA	N-a-49		4FBn	Me	Ι	Н	1Me-5-1HIdz	С		418	(M+1)
N-a-51	NC2	N-a-37	CHO2	4FBn	Et	Me	Н	1Me-5-Ind	С		445	$(M^{+}+1)$
N-a-52	NA	N-a-51		4FBn	Et	H	Н	1Me-5-Ind	O		431	$(M^{+}1)$
N-a-53	NC2	N-a-39	CHO2	4FBn	Et	Me	Н	5-1Idz	С		433	(M+1)
N-a-54	NA	N-a-53		4FBn	Et	Н	Ι	5-1Idz	С		419	(M+1)
N-a-55	NB1	Int.n-5		2FBn	Н	Me	Н	2-Nap	С		414	(M ⁺ +1)
N-a-56	NA	N-a-55		2FBn	Н	Ι	Η	2-Nap	С		400	(M + 1)
N-a-57	NB1	Int.n-5		2FBn	н	Ме	Н	1Me-5-Ind	С		417	(M+1)
N-a-58	NA	N-a-57		2FBn	Н	Н	Η	1Me-5-Ind	С		403	(M+1)
N-a-59	NB1	Int.n-5		2FBn	Н	Ме	Н	1Me-5-1HIdz	С		418	(M+1)
N-a-60	NA	N-a-59		2FBn	Н	Н	Η	1Me-5-1HIdz	С		404	(M ⁺ +1)
N-a-61	NC2	N-a-59	CHO1	2FBn	Ме	Ме	Н	1Me-5-1HIdz	С		432	(M ⁺ +1)
N-a-62	NA	N-a-61		2FBn	Ме	Н	H	1Me-5-1HIdz	С		418	(M+1)
N-a-63	NB1	Int.n-6		3FBn	Н	Me	Ξ	2-Nap	С		414	(M ⁺ +1)
N-a-64	NA	N-a-63		3FBn	Н	H	Η	2-Nap	С		400	(M ⁺ +1)
N-a-65	NB1	Int.n-6		3FBn	Н	Me	Н	5-1Ind	С		403	(M*+1)
N-a-66	NA	N-a-65		3FBn	Н	H	I	5-1Ind	С		389	(M ⁺ +1)
N-a-67	NB1	Int.n-6		3FBn	Н	Me	Η	1Me-5-Ind	С		417	(M*+1)
N-a-68	NA	N-a-67		3FBn	Н	Н	H	1Me-5-Ind	С		403	(M*+1)
N-a-69	NC2	N-a-67	CHO1	3FBn	Me	Me	Н	1Me-5-Ind	С		431	(M ⁺ +1)
N-a-70	NA	N-a-69		3FBn	Me	Н	Н	1Me-5-Ind	С		417	(M ⁺ +1)
N-a-71	NC1	Int.n-7	CHO12	2ClBn	Н	Ме	Н	2-Nap	С		430	(M*+1)
N-a-72	NA	N-a-71		2ClBn	Н	Н	H	2-Nap	С		416	(M ⁺ +1)
N-a-73	NC1	Int.n-7	CHO13	2BrBn	Н	Me	Н	2-Nap	С		475	(M ⁺ +1)
N-a-74	NA	N-a-73		2BrBn	Н	Н	H	2-Nap	С		461	(M*+1)
N-a-75	NC1	Int.n-7	CHO14	2,3DFBn	н	Ме	Н	2-Nap	С		432	(M ⁺ +1)
N-a-76	NA	N-a-75		2,3DFBn	Н	Н	Н	2-Nap	С		418	(M*+1)
N-a-77	NC1	Int.n-7	CHO21	2-FR	H	Me	H	2-Nap	С		386	(M ⁺ +1)
N-a-78	NA	N-a-77		2-FR	Н	Н	Н	2-Nap	0		372	(M*+1)
N-a-79	NC1	Intn-7	CHO20	3-TF	Н	Ме	Н	2-Nap	С		402	(M*+1)
N-a-80	NA	N-a-79		3-TF	Н	Н	Н	2-Nap	. C		388	(M*+1)
N-a-81	NC1	Int.n-7	CHO17	2CF3Bn	H	Ме	Н	2-Nap	С		464	(M++1)
N-a-82	NA	N-a-80		2CF3Bn	H	н	Н	2-Nap	С		450	(M ⁺ +1)
N-a-83	NC1	Int.n-8	CHO12	2CIBn	H	Me	Н	5-1Ind	С		302	(M+1)
N-a-84	NA	N-a-80		2CIBn	Н	Н	Н	5-1Ind	С		288	(M ⁺ +1)
N-a-85	NC2	N-a-80	CHO1	2CIBn	Me	Ме	Н	5-1Ind	С		316	(M+1)
N-a-86	NA	N-a-85		2CIBn	Ме	н	Н	5-1Ind	С		302	(M ⁺ +1)
N-a-87	NC1	Int.n-8	CH014		H	Me	H	5-1Ind	С		304	(M++1)
N-a-88	NA	N-a-87		2,3DFBn	H	Н	H	5-1Ind	С		290	(M+1)
N-a-89	NC1	Int.n-8	CHO16		Н	Me	Н	5-1Ind	С		344	(M ⁺ +1)
N-a-90	NA	N-a-89	L	4PhBn	Н	Н	Н	5-1Ind	C		330	$(M^{+}+1)$

Table-N-A-3

	-A-3	2744	2112		_		_	AR		LCM	IS	
Exp.	Syn	SM1	SM2	Rz	Ry	Υ	Zx	AR	method	RTime	N	Mass
N-a-91	NC1	Int.n-8	CHO19	2-TF	Н	Me	H	5-Ind	С		391	$(M^{+}+1)$
N-a-92	NA	N-a-91		2-TF	Н	Н	Τ	5-Ind	С		377	(M ⁺ +1)
N-a-93	NC1	Int.n-8	CHO17	2CF3Bn	Н	Ме	Η	5-Ind	С		453	(M+1)
N-a-94	NA	N-a-93		2CF3Bn	Н	Н	Ξ	5-Ind	С		439	(M+1)
N-a-95	NC1	Int.n-8	CHO18	2.3DClBn	Н	Ме	Τ	5-Ind	С		454	(M ⁺ +1)
N-a-96	NA	N-a-71		2,3DClBn	Н	Н	Η	5-Ind	С		440	(M ⁺ +1)
N-a-97	NC1	Int.n-9	CHO13	2BrBn	Н	Me	Ξ	1Me-5-Ind	С		478	(M ⁺ +1)
N-a-98	NA	N-a-97		2BrBn	Н	Н	Н	1Me-5-Ind	С		464	$(M^{+}+1)$
N-a-99	NC1	Int.n-9	CHO15	3,4DFBn	Н	Ме	Ŧ	1Me-5-Ind	С		435	(M ⁺ +1)
N-a-100	NA	N-a-99		3,4DFBn	Н	Н	Н	1Me-5-Ind	С		421	(M ⁺ +1)
N-a-101	NC1	Int.n-9	CHO16	4PhBn	Н	Me	H	1Me-5-Ind	С		475	$(M^{+}+1)$
N-a-102	NA	N-a-101		4PhBn	Н	Н	Н	1Me-5-Ind	С		461	$(M^{+}+1)$
N-a-103	NC1	Int.n-9	CHO21	2-FR	Н	Ме	Н	1Me-5-Ind	С		389	(M+1)
N-a-104	NA	N-a-103		2-FR	Н	Н	Н	1Me-5-Ind	c		375	(M+1)
N-a-105	NC1	Intn-9	CHO20	3-TF	H	Me	Н	1Me-5-Ind	c		405	(M+1)
N-a-106	NA	N-a-105		3-TF	н	Н	Н	1Me-5-Ind	О		391	$(M^++1)$
N-a-107	NC1	Int.n-9	CHO18	2,3DClBn	н	Ме	H	1Me-5-Ind	O		468	(M+1)
N-a-108	NA	N-a-107		2,3DClBn	Н	Н	Н	1Me-5-Ind	C		454	(M+1)
N-a-109	NO1	Int.n-10	CHO13	2BrBn	Н	Me	Н	5-1HIdz	С		465	(M+1)
N-a-110	NA	N-a-109		2BrBn	Н	Н	Н	5-1HIdz	С		451	(M+1)
N-a-111	NC1	Int.n-10	CHO15	3,4DFBn	Н	Ме	Н	5-1HIdz	c		422	(M+1)
N-a-112	NA	N-a-111		3,4DFBn	н	H	Н	5-1HIdz	С		408	(M++1)
N-a-113	NG2	N-a-111	CHO1	3,4DFBn	Me	Me	Н	5-1HIdz	С		436	(M*+1)
N-a-114	NA	N-a-113		3,4DFBn	Me	н	Н	5-1HIdz	С		422	(M ⁺ +1)
N-a-115	NC1	Int.n-10	CHO21	2-FR	Н	Me	Н	5-1HIdz	О		376	(M*+1)
N-a-116	NA	N-a-115		2-FR	н	Н	Н	5-1HIdz	С	l	362	(M++1)
N-a-117		Int.rr-10	CHO20	3-TF	н	Me	Н	5-1HIdz	С		392	(M*+1)
N-a-118	NA	N-a-116		3-TF	н	н	н	5-1HIdz	С		378	(M°+1)
N-a-119		Int.n-10	CHO17	2CF3Bn	Н	Me	Н	5-1HIdz	С		454	(M+1)
N-a-120		N-a-120		2CF3Bn	Н	Н	н	5-1HIdz	С		440	(M+1)
N-a-121	NC1	Int.n-10	CHO18	2,3DCiBn	Н	Me	Н	1Me-5-1HIdz	С		469	(M ⁺ +1)
N-a-122	NA	N-a-122		2,3DCIBn	Н	Н	Н	1Me-5-1HIdz	С	l	455	(M ⁺ +1)
N-a-123	NC1	Int.n-11	CHO12	2ClBn	Н	Me	Н	1Me-5-1HIdz	c		434	(M*+1)
N-a-124		N-a-123		2ClBn	н	Н	Н	1Me-5-1HIdz	С		420	(M++1)
		N-a-123	CHO1	2ClBn	Me	Me	Н	1Me-5-1HIdz	О		448	(M++1)
N-a-126		N-a-125		2ClBn	Me	Н	Н	1Me-5-1HIdz	С		434	(M++1)
N-a-127		Int.n-11	CHO14	2.3DFBn	H	Me		1Me-5-1HIdz	C		436	(M+1)
N-a-128		N-a-127		2,3DFBn	Н	Н		1Me-5-1HIdz	С		422	(M ⁺ +1)
N-a-129		Int.n-11	CHO15	3,4DFBn	H	Me		1Me-5-1HIdz	С	T	436	(M++1)
N-a-130		N-a-129		3,4DFBn	Н	Н		1Me-5-1HIdz	С		422	(M+1)
N-a-131		Int.n-11	CHO16	4PhBn	Н	Me		1Me-5-1HIdz	С		476	(M*±1)
N-a-132		N-a-131		4PhBn	Н	Н		1Me-5-1HIdz	C		462	(M++1)
N-a-133		Intn-11	CHO19	2-TF	Н	Me	н		C		406	(M+1)
N-a-134	NA	N-a-133		2-TF	Н	н	H	1Me-5-1HIdz	C		392	(M+1)
N-a-135	-	Int.n-11	CHO17	2CF3Bn	н	Me	н		С		468	(M+1)
100	NA	N-a-135	2017	2CF3Bn	Н	Н		1Me-5-1HIdz	C		454	(M*+1)

Table-N-A-4

Table 1	_			1		_	_			LCN	18
Exp.	Syn	SM1	SM2	Rz	Ry	Y	Zx	AR	meuno		Mass
	-		·	<del></del>		-	-				WILLOO .
N-a-137	NE1	Int.n-9	C) OH	Op	н	Me	н	1Me-5-Ind	С		413 (M+1)
	-		<u> </u>	1		$\vdash$	Н				410 (W 11)
N-a-138	NA	N-a-137	1	04	н	н	н	1Me-5-Ind	С		399 (M+1)
N-a-139	NC1	T-4 - 11	CY OH	بار	Н	Me	н	1Me-5-1HIdz	D	5.06	
N-8-198	INE	Inc.n-11	Ú on	Q,	П	Me	_	IME-3-Inidz	D	0.00	414 (M+1)
N-9-140	NA	N-a-139		4	н	н	н	1Me-5-1HIdz	D	4.30	
				0.			_				400 (M+1)
			2(4FPh)EtOH		Н	Me	Н	1Me-5-1HIdz	D	5.08	432 (M+1)
		N-a-141		2(4FPh)Et		Н		1Me-5-1HIdz	D	4.25	418 (M+1)
N-a-143			AcCl	Bn	Ac	Me		1Me-5-1HIdz	С		444 (M ⁺ +1)
N-a-144	NA	N-a-143		Bn	Ac	Н	Н	1Me-5-1HIdz	С		430 (M ⁺ +1)
N-a-145	NF	N-a-5	PhCOCI	Bn	PhC(O)	Me	Н	1Me-5-Ind	С		504 (M+1)
N-a-146	NA	N-a-145		Bn	PhC(O)	н	Н	1Me-5-Ind	0		490 (M°+1)
N-a-147	NF	N-a-5	MeOCH2COCI	Bn	MeOCH ₂ C(O)	Me	Н	1Me-5-Ind	С		472 (M+1)
N-a-148	NA	N-a-147		Bn	MeOCH ₂ C(O)	Н	Н	1Me-5-Ind	c		458 (M+1)
N-a-149	NF	N-a-5	MeOCOCI	Bn	MeOC(O)	Me	Н	1Me-5-Ind	С		458 (M+1)
N-a-150	NA	N-a-149		Bn	MeOC(O)	Н	Н	1Me-5-Ind	С		444 (M+1)
N-a-151	NF	N-a-5	Phococi	Bn	Ph00(0)	Me	Н	1Me-5-Ind	С		520 (M+1)
N-a-152	NA	N-a-151		Bn	PhO0(0)	Н	Н	1Me-5-Ind	0		506 (M+1)
N-a-153	NF	N-a-5	NMe2COCI	Bn	Me ₂ NC(O)	Me	Н	1Me-5-Ind	С		471 (M+1)
N-a-154	NA	N-a-153		Bn	Me ₂ NC(O)	н	Н	1Me-5-ind	C		457 (M*+1)
N-a-155	NF	N-a-11	AcCl	Bn	Ao	Me	Н	1Me-5-Ind	С		442 (M+1)
N-a-156	NA	N-a-155		Bn	Ac	Н	Н	1Me-5-Ind	С		428 (M+1)
N-a-157	NF	N-a-5	AcCI	4FBn	Ac	Me	Н	1Me-5-Ind	С		461 (M+1)
N-a-158	NA	N-a-157		4FBn	Ac	н	Н	1Me-5-Ind	0		447 (M+1)
N-a-159	NF	N-a-5	MeGCH2GGGI	4FBn	MeOCH ₂ O(O)	Me	Н	1Me-5-Ind	С		491 (M+1)
		N-a-159		4FBn	MeOCH ₂ C(O)	Н	Н	1Me-5-Ind	0		477 (M+1)
		N-a-5	MeOCOCI	4FBn	MeOC(O)	Me	Н	1Me-5-Ind	C		477 (M+1)
N-a-162				4FBn	MeOC(O)	Н	Н	1Me-5-Ind	Ċ		463 (M ⁺ +1)
N-a-163			AcCl	4FBn	Ac	Me	H	1Me-5-1HIdz	Č		462 (M+1)
		N-a-163		4FBn	Ac	Н	Н	1Me-5-1HIdz	Č		448 (M+1)
N-a-165			MeOCOCI	4FBn	MeOC(O)	Me	Н	1Me-5-1HIdz	C		478 (M+1)
N-a-166				4FBn	MeOC(O)	Н		1Me-5-1HIdz	c		464 (M+1)

[Example N-b-1]

Synthesis of methyl 3·[4·(N·methylamino)·3·(naphthalen·2·yl)phenyl]propionate (Compound No. N·b·1) (Synthesis method ND1)

According to the procedure described in the synthesis method of Intermediate Int. n·7 (Synthesis method ND1) provided that the reaction was carried out for 2 hours, the compound of Example N·a·25 (100.3 mg) and 10% palladium/carbon (10.2 mg) were reacted and treated to obtain the title compound (Compound No. N·b·1, 89.7 mg).

[Example N-b-35]

Synthesis of methyl 3·[4·(N·ethylamino)·3·(naphthalen·2·yl)phenyl]propionate (Compound No. N·b·35) (Synthesis method NB1)

According to the procedure described in the synthesis method of the compound of Example N-a-1 (Synthesis method NB1) provided that the reaction was carried out for 17 hours, Intermediate n-12 (99.87 mg), 2-naphthaleneboronic acid (87.3 mg), 2 M aqueous sodium carbonate (350  $\mu$  1) and (PhaP)4Pd (59.6 mg) were reacted and treated to obtain the title compound (Compound No. N-b-35, 103.5 mg).

[Example N-b-79]

Synthesis of methyl 3·[4·(N·n·butylamino)·3·(naphthalen·2·yl)phenyl]propionate (Compound No. N·b·79) (Synthesis method NC2)

According to the procedure described in the synthesis method of Intermediate n·3 provided that the reaction was carried out for 13 hours, Intermediate n·7 (164.7 mg) and n·butylaldehyde (38.5  $\mu$  l, KANTO), sodium triacetoxyborohydride (138.6 mg) and acetic acid (75  $\mu$  l) were reacted and treated to obtain the title compound (Compound No. N·b·79, 161.3 mg).

Example N-b-183

Synthesis of methyl 3-[4-(N-acetyl-N-methylamino)-3-(naphthalen-2vl)nhenvllpropionate (Compound No. N-b-183) (Synthesis method NF)

According to the procedure described in the synthesis method of the compound of Example N-a-143 provided that the reaction was carried out for 18 hours, the compound of Example N-b-1 (22.7 mg), pyridine (23.8  $\mu$ 1) and acetyl chloride (40  $\mu$ 1) were reacted and treated to obtain the title compound (Compound No. N-b-183, 16.3 mg).

[Example N-b-197]

Synthesis of 3·[4-(N-benzoyl-N-methylamino)·3·(naphthalen·2-yl)phenyllpropionic acid (Compound No. N-b-197) (Synthesis method NF)

According to the procedure described in the synthesis method of the compound of Example N-a-143 provided that the reaction was carried out for 14 hours, the compound of Example N-b-1 (21.8 mg), pyridine (23.8  $\mu$ 1) and benzoyl chloride (345  $\mu$ 1) were reacted and treated. A solution of the obtained residue in methanol (3 ml) was added with 2 N aqueous sodium hydroxide (100  $\mu$ 1), and stirred at 60°C for 2 hours. The reaction mixture was concentrated under reduced pressure, then made acidic with 5% aqueous hydrochloric acid under ice cooling, and extracted with dichloromethane (5 ml). The organic layer was washed successively with saturated brine, and dried, and then the solvent was evaporated under reduced pressure to obtain the title compound (Compound No. N-b-197, 13.5 mg).

## [Examples N-b-1 to N-b-212]

Typical examples of the compounds of the present invention that can be obtained by reacting and treating corresponding starting compounds using any of the methods described in the present specification including the examples described above are shown in Table-N-B-1 to Table-N-B-5. In the tables, the compound numbers are mentioned in the columns indicated as "Exp.". In the tables, used methods among the aforementioned synthesis methods are shown in the columns of "Syn" with symbols, the starting compounds 1 are mentioned in the columns of "SM1", and the starting compounds 2 are mentioned in the columns of "SM2".

RZ NOY

Table-N	ble-N-B-1 AR											
Exp.	Syn	SM1	SM2	Rz	Rv	Υ	Zx	AR		LCM		
Lxp.	Oyn	OMI	OMZ	112		<u>'</u>		All	method	RTime		Mass
N-b-1	ND1	N-a-25		Me	I	Me	Н	2-Nap	С		320	(M+1)
N-b-2	NA	N-b-1		Me	Ι	Н	Н	2-Nap	С		306	(M ⁺ +1)
N-b-3	ND1	N-a-29		Me	Н	Me	Н	5-Ind	С		309	(M ⁺ +1)
N-b-4	NA	N-b-3		Me	н	Н	н	5-Ind	С		295	(M+1)
N-b-5	ND1	N-a-31		Me	Н	Me	Н	1Me-5-Ind	С		323	(M+1)
N-b-6	NA	N-b-5		Me	Н	Н	Н	1Me-5-Ind	С		309	(M+1)
N-b-7	ND1	N-a-69		Me	Н	Me	Н	5-1Hldz	С		310	$(M^{+}+1)$
N-b-8	NA	N-b-7		Me	H	Н	Н	5-1HIdz	С		296	(M+1)
N-b-9	ND1	N-a-49		Me	Н	Me	Н	1Me-5-1HIdz	С		324	$(M^{+}+1)$
N-b-10	NA	N-b-9		Me	Н	Н	Н	1Me-5-1HIdz	С		310	(M+1)
N-b-11	NC2	N-b-1	CHO1	Me	Me	Me	Н	2-Nap	С		334	(M+1)
N-b-12	NA	N-b-11		Me	Me	H·	Н	2-Nap	С		320	(M+1)
N-b-13	NC2	N-b-1	CHO2	Me	Et	Me	Н	2-Nap	С		348	(M ⁺ +1)
N-b-14	NA	N-b-13		Me	Et	Н	Н	2−Nap	С		334	(M+1)
N-b-15	NC2	N-b-3	CHO1	Me	Me	Me	Н	5-Ind	С		323	(M+1)
N-b-16	NA	N-b-15		Me	Me	Н	Н	5-Ind	С		309	(M ⁺ +1)
N-b-17	NC2	N-b-5	CHO1	Me	Me	Н	Н	1Me-5-Ind	С		337	(M ⁺ +1)
N-b-18	NA	N-b-17		Me	Me	Н	Н	1Me-5-Ind	С		323	(M+1)
N-b-19	NC2	N-b-9	CHO1	Me	Me	Me	Н	1Me-5-1HIdz	С		338	(M+1)
N-b-20	NA	N-b-19		Me	Me	Н	Н	1Me-5-1HIdz	С		324	(M++1)
N-b-21	NB1	Int.n-12	BRA1	Et	Η	Me	Н	2-Nap	С		334	(M+1)
N-b-22	NA	N-b-21		Et	Ι	Н	Н	2-Nap	С		320	(M*+1)
N-b-23	NB1	Int.n-12	BRA2	Et	Н	Me	Н	5-Ind	С		323	(M ⁺ +1)
N-b-24	NA	N-b-23		Et	Н	Н	Н	5-Ind	С		309	(M ⁺ +1)
N-b-25	NB1	Int.n-12	BRA3	Et	н	Me	Н	1Me-5-Ind	С		337	(M+1)
N-b-26	NA	N-b-25		Et	Н	H	Н	1Me-5-Ind	С		323	(M ⁺ +1)
N-b-27	NB1	Int.n-12	BRA4	Et	LH_	Me	H	1Et-5-Ind	С		351	(M+1)
N-b-28	NA	N-b-27		Et	Н	Н	Н	1Et-5-Ind	С		337	(M ⁺ +1)
N-b-29	NB1	Int.n-12	BRA5	Et	Н	Me	Н	5-1HIdz	С		324	(M ⁺ +1)
N-b-30	NA	N-b-29		Et	Н	Н	Н	5-1HIdz	С		310	(M ⁺ +1)
N-b-31	NB1	Int.n-12	BRA6	Et	Н	Me	Н	1Me-5-1HIdz	С		338	(M ⁺ +1)
N-b-32	NA	N-b-31		Et	Н	н	Н	1Me-5-1HIdz	С		324	(M ⁺ +1)
N-b-33	NB1	Int.n-12	BRA7	Et	Н	Me	Н	1Et-5-Idz	. С		352	(M ⁺ +1)
N-b-34	NA	N-b-33		Et	Н	H	Н	1Et-5-Idz	C		338	(M*+1)
N-b-35	NB1	Int.n-12	BRA8	Et	Н	Me	Н	2Me-5-Idz	С		338	(M ⁺ +1)
N-b-36	NA	N-b-35		Et	Н	н	Н	2Me-5-Idz	С		324	(M*+1)
N-b-37	NB1	Int.n-12	BRA9	Et	Н	Me	Н	5-Bzt	С		341	(M*+1)
N-b-38	NA	N-b-37		Et	Н	Н	Н	5-Bzt	С		327	(M ⁺ +1)
N-b-39	NB1	Int.n-12	BRA10	Et	Н	Me	Н	3-Qu	С		335	(M*+1)
N-b-40	NA	N-b-39		Et	Н.	Н	Н	3-Qu	С		321	(M*+1)
N-b-41	NB1	Int.n-12	BRA11	Et	Н	Me	Н	6-Qu	С		335	(M+1)
N-b-42	NA	N-b-41		Et	Н	Н	Н	6-Qu	С		321	(M ⁺ +1)
N-b-43	NC2	N-b-21	CHO ₂	Et	Et	Me	Н	2-Nap	С		362	(M*+1)
N-b-44	NA	N-b-43		Et	Et	Н	Н	2-Nap	С		348	(M*+1)

Table-N-B-2

l able-N				T_	-		_			LCM	S	
Ехр.	Syn.	SM1	SM2	Rz	Ry	Υ	Zx	AR	method	RTime	N.	lass
N-b-45	NC2	N-b-25	CHO2	Et	Et	Me	Н	1Me-5-Ind	С		365	$(M^{+}+1)$
N-b-46	NA	N-b-45		Et	Et	H	Н	1Me-5-Ind	С		351	(M++1)
N-b-47	NB1	Int.n-13		nPr	н	Me	Н	5-Ind	С		337	(M*+1)
N-b-48	NA	N-b-47		nPr	Н	Н	Н	5-Ind	С		323	(M++1)
N-b-49	NB1	Int.n-13		nPr	Н	Me	Н	1Me-5-Ind	С		351	(M++1)
N-b-50	NA	N-b-49		nPr	Н	Н	Н	1Me-5-Ind	С		337	(M+1)
N-b-51	NB1	Int.n-13		nPr	Н	Me	Н	5-1HIdz	С		338	(M+1)
N-b-52	NA	N-b-51		nPr	Н	Н	Н	5-1HIdz	С		324	(M++1)
N-b-53	NB1	Int.n-13		nPr	Н	Me	Н	1Me-5-1HIdz	С		352	$(M^{+}+1)$
N-b-54	NA	N-b-53		nPr	Н	Η	Ι	1Me-5-1HIdz	С		338	(M++1)
N-b-55	NC2	N-b-47	CHO1	nPr	Me	Me	Н	5-Ind	С		351	$(M^{+}+1)$
N-b-56	NA	N-b-55		nPr	Me	Τ	Н	5-Ind	С		337	$(M^{+}+1)$
N-b-57	NC2	N-b-49	CHO1	nPr	Me	Me	Н	1Me-5-Ind	С		365	$(M^{+}+1)$
N-b-58	NA	N-b-57		nPr	Me	Ξ	Н	1Me-5-Ind	С		351	(M*+1)
N-b-59	NC2	N-b-51	CHO1	nPr	Ме	Me	Н	5-1HIdz	С		352	(M+1)
N-b-60	NA	N-b-59		nPr	Me	Н	Н	5-1HIdz	С		338	(M+1)
N-b-61	NC2	N-b-53	CHO1	nPr	Me	Me	Н		С		366	(M ⁺ +1)
N-b-62	NA	N-b-61		nPr	Ме	H	Н	1Me-5-1HIdz	С		352	(M*+1)
N-b-63	NB1	Int.n-14	BRA2	iPr	Н	Me	H	5-Ind	С		337	(M+1)
N-b-64	NA	N-b-63		iPr	Н	H	Н	5-Ind	С		323	(M*+1)
N-b-65	NB1	Int.n-14	BRA3	iPr	H	Me	Н	1Me-5-Ind	С		351	(M*+1)
N-b-66	NA	N-b-65		iPr	Н	Τ	Н	1Me-5-Ind	C		337	(M*+1)
N-b-67	NB1	Int.n-14	BRA5	iPr	Н	Me	Н	5-1Hldz	С		338	(M ⁺ +1)
N-b-68	NA	N-b-67		iPr	Н	Н	Н	5-1H(dz	С		324	(M+1)
N-b-69	NB1	Int.n-14	BRA6	iPr	Н	Me	Н	1Me-5-1HIdz	c		352	(M*+1)
N-b-70	NA	N-b-69		iPr	Н	H	Н	1Me-5-1HIdz	o		338	(M*+1)
N-b-71	NC2	N-b-63	CHO1	iPr	Ме	Me	Н	5-Ind	С		351	(M ⁺ +1)
N-b-72	NA	N-b-71		iPr	Ме	Н	Н	5-Ind	C		337	(M*+1)
N-b-73	NC2	N-b-65	CHO1	iPr	Me	Me	Н	1Me-5-Ind	С		365	(M*+1)
N-b-74	NA	N-b-73		iPr	Me	Τ	Н	1Me-5-Ind	С		351	(M*+1)
N-b-75	NC1	N-b-67	CHO1	iPr	Ме	Ме	Н	5-1HIdz	С		352	(M*+1)
N-b-76	NA	N-b-75		iPr	Me	Н	Н	5-1HIdz	С		338	(M+1)
N-b-77	NC1	N-b-69	CHO1	iPr	Me	Me	H	1Me=5-1HIdz	С		366	(M*+1)
N-b-78	NA	N-b-77		iPr	Ме	ᆂ	Н	1Me-5-1HIdz	С		352	(M*+1)
N-6-79	NB1	Int.n-7	BRA1	nBu	H	Me	H	2-Nap	С		362	(M*+1)
N-b-80	NA	N-b-79		nBu	Н	H	H	2-Nap	C		348	(M*+1)
N-b-81	NB1		BRA2	nBu	Н	Me	H	5-Ind	С		351	(M*+1)
N-b-82	NA	N-b-81		nBu	Н	Н	H	5-Ind	C		337	(M+1)
N-b-83	NB1	Int.n-10	BRA5	nBu	Н	Me	Н	5-1HIdz	С		352	(M*+1)
N-b-84	NA	N-b-83		nBu	Н	Ξ	Н	5-1Hldz	С		338	(M*+1)
N-b-85	NB1	Int.n-11	BRA6	nBu	Н	Me	Н	1Me-5-1HIdz	С		366	(M++1)
N-b-86	NA	N-b-85		nBu	Н	Н	Н	1Me-5-1HIdz	С		352	(M+1)
N-b-87	NC1	N-b-79	CHO1	nBu	Me	Me	Н	2-Nap	С		376	(M*+1)
N-b-88	NA	N-b-87		nBu	Me	H	H	2-Nap	С		351	(M*+1)
N-b-89	NC1	N-b-81	CHO1	nBu	Ме	Me	Н	5-Ind	С		365	(M+1)
N-b-90	NA	N-b-89		nBu	Me	H	H	5-Ind	С		351	(M++1)

Table-N-B-3

l able-IV	<del>     </del>			_	_	_				LCM	10	
Ехр.	Syn	SM1	SM2	Rz	Ry	Υ	Zx	AR	mathod	RTime		lass
N-b-91	NC1	N-b-83	CHO1	nBu	Me	Ме	н	5-1HIdz	C	TATIMIE	366	(M ⁺ +1)
N-b-92	NA	N-b-91	01101	nBu	Me	Н	н	5-1HIdz	Č		352	(M+1)
N-b-93	NC1	N-b-85	CHO1	nBu	Me	Me	Н	1Me-5-1HIdz	c		380	(M+1)
N-b-94	NA.	N-b-93	01101	nBu	Me	Н	H	1Me-5-1HIdz	Č		366	(M+1)
N-b-95	NC2	N-b-81	CHO2	nBu	Et	Me	Н	5-Ind	c		379	(M+1)
N-b-96	NA	N-b-95	OHOL	nBu	Et	H	H	5-Ind	c		365	(M*+1)
N-b-97	NG2	N-b-85	CHO2	nBu	Et	Me	н	1Me-5-1Hldz	c		394	(M+1)
N-b-98	NA	N-b-97	OHOZ	nBu	Et	Н	H	1Me-5-1HIdz	c		380	(M+1)
N-b-99	NC2	Int.n-9	CHO7	iBu	H	Me	H	1Me-5-Ind	Č		365	(M+1)
N-b-100	NA	N-b-99	01107	iBu	H	Н	H	1Me-5-Ind	c		351	(M+1)
N-b-101			CHO7	iBu	H	Me	H	5-1HIdz	č		352	(M+1)
N-b-102	NA	N-b-101	01107	iBu	H	Н	н	5-1HIdz	č		338	(M*+1)
N-b-103			CHO7	iBu	H	Ме	Н	1Me-5-1HIdz	c		366	(M+1)
N-b-104	NA	N-b-103	01107	iBu	H	Н	H	1Me-5-1HIdz	č		352	(M*+1)
N-b-105			BRA11	iBu	H	Me	Н	6-Qu	č		363	(M*+1)
N-b-106	NA	N-b-105	DIGATI	iBu	H	Н	Н	6-Qu	č		349	(M+1)
N-b-107	NC1	N-b-99	CHO1	iBu	Me	Me	н	1Me-5-Ind	Č		379	(M*+1)
N-b-108	NA	N-b-107	01101	iBu	Me	Н	Н	1Me-5-Ind	č		365	(M*+1)
N-b-109			CHO1	iBu	Me	Me	н	1Me-5-1HIdz	c		380	(M*+1)
N-b-110		N-b-109	01101	iBu	Me	Н	н	1Me-5-1HIdz	C		366	(M+1)
N-b-111	NC1	N-b-105	CHO1	iBu	Me	Me	н	6-Qu	C		377	(M+1)
N-b-112	NA	N-b-111	0,,0,	iBu	Me	Н	Н	6-Qu	Ċ		363	(M*+1)
N-b-113	NC2		CHO2	iBu	Et	Me	н	1Me-5-Ind	Ċ		393	(M ⁺ +1)
N-b-114	NA	N-b-113	UNUL	iBu	Et	Н	н	1Me-5-Ind	c		379	(M*+1)
N-b-115			CHO2	iBu	Et	Me	Н	5-1HIdz	Č		380	(M*+1)
N-b-116	NA	N-b-115	UIIUE	iBu	Et	Н	н	5-1HIdz	c		366	(M*+1)
		N-b-103	CHO2	iBu	Et	Me	Н	1Me-5-1HIdz	C		394	(M+1)
N-b-118	NA	N-b-117		iBu	Et	Н	Н	1Me-5-1Hldz	C		380	(M+1)
N-b-119			BRA1	cPen	Н	Me	Н	2-Nap	C		374	(M*+1)
N-b-120	NA	N-b-119		cPen	Н	Н	Н	2-Nap	С		360	(M++1)
N-b-121	NB1	Int.n-16	BRA2	cPen	Н	Me	Н	5-Ind	C		363	(M ⁺ +1)
N-b-122	NA	N-b-121		cPen	н	н	н	5-Ind	C		349	(M++1)
N-b-123	NB1	Int.n-9	BRA3	cPen	Н	Me	Н	1Me-5-Ind	С		377	(M++1)
N-b-124	NA	N-b-123		cPen	Н	Н	Н	1Me-5-Ind	C		363	(M++1)
	NB1	Int.n-16	BRA5	cPen	H	Me	Н	5-1HIdz	С		364	(M ⁺ +1)
N-b-126	NA	N-b-125		cPen	H	н	Н	5-1HIdz	C		350	(M+1)
N-b-127	NB1	Int.n-11	BRA6	cPen	Н	Me	Н	1Me-5-1HIdz	C		378	(M++1)
N-b-128	NA	N-b-127		cPen	Н	Н	Н	1Me-5-1HIdz	C		364	(M+1)
N-b-129		Int.n-16	BRA11	cPen	H	Me	н	6-Qu	Ċ		375	(M+1)
N-b-130	NA	N-b-129		cPen	Н	Н	Н	6-Qu	С		361	(M++1)
N-b-131	NB1	Int.n-16	BRA9	cPen	Н	Me	Н	5-Bzt	С		381	(M++1)
N-b-132	NA	N-b-131		cPen	Н	Н	Н	5-Bzt	С		367	(M++1)
N-b-133	NC1	N-b-121	CHO1	cPen	Me	Me	Н	5-Ind	C		377	(M+1)
N-b-134	NA	N-b-133		cPen	Me	Н	Н	5-Ind	С		363	(M+1)
N-b-135	NC1	N-b-123	CHO1	cPen	Me	Me	Н	1Me-5-Ind	C		391	(M+1)
N-b-136		N-b-135		cPen			Н	1Me-5-Ind	С		377	(M ⁺ +1)

Table-N-R-4

l able-N	D 4									LCN	1S	
Exp.	Syn.	SM1	SM2	Rz	Ry	Υ	Zx	AR	method	RTime	٨	lass
N-b-137	NC1	N-b-127	CHO1	cPen	Me	Me	Н	1Me-5-1HIdz	С		392	$(M^{+}+1)$
N-b-138	NA	N-b-137		cPen	Me	Н	Н	1Me-5-1HIdz	С		378	$(M^{+}+1)$
N-b-139	NC2	N-b-123	CHO2	cPen	Et	Me	Н	1Me-5-Ind	С		405	(M+1)
N-b-140	NA	N-b-139		cPen	Et	н	Η	1Me-5-Ind	С		391	(M*+1)
N-b-141	NC2	N-b-131	CHO2	cPen	Et	Me	Η	5-Bzt	С		409	(M*+1)
N-b-142	NA	N-b-141		cPen	Et	Ξ	Ξ	5-Bzt	С		395	(M+1)
N-b-143	NB1	Int.n-17	BRA1	cHex	Н	Me	Н	2-Nap	С		388	$(M^{+}+1)$
N-b-144	NA	N-b-143		cHex	Ι	Ξ	I	2-Nap	С		374	(M+1)
N-b-145	NB1	Int.n-17	BRA2	cHex	Ι	Ме	Ι	5-Ind	С		377	$(M^{+}+1)$
N-b-146	NA	N-b-145		cHex	Τ	I	Η	5-Ind	С		363	$(M^{+}+1)$
N-b-147	NB1	Int.n-9	BRA3	cHex	Ξ	Me	Ξ	1Me-5-Ind	С		391	$(M^*+1)$
N-b-148	NA	N-b-147		cHex	I	Τ	Η	1Me-5-Ind	С		377	$(M^{+}+1)$
N-b-149	NB1	Int.n-17	BRA5	cHex	Ι	Ме	Ξ	5-1HIdz	С		378	$(M^{+}+1)$
N-b-150	NA	N-b-149		cHex	·H	Η	Ξ	5-1HIdz	С		364	$(M^{+}+1)$
N-b-151	NB1	Int.n-17	BRA6	cHex	Ή	Me	Н	1Me-5-1Hldz	С		392	(M+1)
N-b-152	NA	N-b-151		cHex	Н	Н	Н	1Me-5-1HIdz	С		378	(M*+1)
N-b-153	NB1	Int.n-17	BRA10	cHex	Ξ	Me	Н	3−Qu	. с		389	(M*+1)
N-b-154	NA	N-b-153		cHex	Ξ	Ξ	Н	3-Qu	С		375	(M*+1)
N-b-155	NC1	N-b-143	CHO1	cHex	Me	Ме	Η	2-Nap	С		402	(M+1)
N-b-156	NA	N-b-155		cHex	Me	Η	Н	2-Nap	С		388	(M+1)
N-b-157	NC1	N-b-147	CHO1	cHex	Me	Ме	Η	1Me-5~Ind	С		405	(M+1)
N-b-158	NA	N-b-157		cHex	Me	Н	Η	1Me-5-Ind	С		391	(M*+1)
N-b-159	NC1	N-b-149	CHO1	cHex	Me	Me	Н	5-1HIdz	_ C		392	(M*+1)
N-b-160	NA	N-b-159		cHex	Me	Н	Н	5-1HIdz	С		378	(M*+1)
N-b-161	NC1	N-b-151	CHO1	cHex	Me	Me	Н	1Me-5-1Hidz	С		406	(M ⁺ +1)
N-b-162	NA	N-b-161		cHex	Me	Η	Н	1Me-5-1HIdz	С		392	(M*+1)
N-b-163	NC2	N-b-143	CHO2	cHex	Et	Me	Н	2-Nap	С		416	(M ⁺ +1)
N-b-164	NA	N-b-163		cHex	Et	н	Н	2-Nap	С		402	(M*+1)
N-b-165		N-b-153	CHO2	cHex	Et	Ме	Н	3-Qu	С		417	(M*+1)
N-b-166	NA	N-b-165		cHex	Et	Н	H	3-Qu	С		403	(M*+1)
N-b-167	NB1	Int.n-18	BRA2	2(Me)cHex	Н	Ме	Η	5-Ind	С		391	(M*+1)
N-b-168	NA	N-b-167		2(Me)cHex	Н	Н	Н	5-Ind	С	<u> </u>	377	(M ⁺ +1)
N-b-169	NB1	Int.n-18	BRA3	2(Me)cHex	H	Me	Н	1Me-5-Ind	С	<u> </u>	405	(M ⁺ +1)
N-b-170	NA	N-b-169		2(Me)cHex	H	H	H	1Me-5-Ind	С		391	(M*+1)
N-b-171	NB1	Int.n-18	BRA5	2(Me)cHex	Н	Me	Н	5-1 HIdz	_C_		392	(M*+1)
N-b-172	NA	N-b-171		2(Me)cHex	Н	H	Н	5-1HIdz	_C_		378	(M*+1)
N-b-173	NB1	Int.n-18	BRA6	2(Me)cHex	H	Me	H	1Me-5-1HIdz	С		406	(M [*] +1)
N-b-174	NA	N-b-173		2(Me)cHex	H	H	Н	1Me-5-1HIdz	С		392	(M*+1)
N-b-175	NC2		CHO25	2-Indane	LH.	Me	H	5-Ind	С		411	(M*+1)
N-b-176	NA	N-b-175		2-Indane	H	Н	Н	5-Ind	С	ļ	397	(M*+1)
N-b-177	NC2	Int.n-9	CHO25	2-Indane	H	Me	H	1Me-5-Ind	С		425	(M*+1)
N-b-178	NA	N-b-177		2-Indane	Н	H	H	1Me-5-Ind	C		411	(M ⁺ +1)
N-b-179	NC2	Int.n-10	CHO25	2-Indane	H	Me	H	5-1Hldz	С		412	(M*+1)
N-b-180	NA	N-b-179		2-Indane	H	Н	H	5-1HIdz	С		398	(M*+1)
N-b-181	NC2	Int.n-11	CHO25	2-Indane	Н	Me	H	1Me-5-1HIdz	C		426	(M ⁺ +1)
N-b-182	NA	N-b-181		2-Indane	H	Н	H	1Me-5-1HIdz	C_		412	(M ⁺ +1)

Table-N-B-5

l able-N	БЗ									LCN	AS.	
Exp.	Syn	SM1	SM2	Rz	Ry	Υ	Zx	AR	method	RTime	N	lass
N-b-183	NF	N-b-1	AcCl	Me	Ac	Me	н	2-Nap	С		364	(M*+1)
N-b-184	NA	N-b-183		Me	Ac	Н	Ή	2-Nap	С		350	(M++1)
N-b-185	NF	N-b-5	AcCl	Ме	Ac	Ме	Ξ	1Me-5-Ind	С		367	(M ⁺ +1)
N-b-186	NA	N-b-185		Me	Ac	Ι	Ξ	1Me-5-Ind	С		353	$(M^*+1)$
N-b-187	NF	N-b-11	AcCl	Ме	Ac	Ме	Η	1Me-5-1Hldz	С		368	$(M^*+1)$
N-b-188	NA	N-b-187		Ме	Ac	Н	Ή	1Me-5-1Hldz	О		354	(M ⁺ +1)
N-b-189	NF	Int.n-11	AcCl	Ac	Ac	Ме	Ξ	1Me-5-1Hldz	С		394	(M++1)
N-b-190	NA	N-b-189		Ac	Ac	Ή	Ή	1Me-5-1Hldz	С		380	(M°+1)
N-b-191	NF	Int.n-18	MeOCOCI	Me	McOC(O)	Ме	Н	2-Nap	С		380	$(M^{+}1)$
N-b-192	NA	N-b-167		Me	McOC(O)	Н	Н	2-Nap	С		366	(M ⁺ +1)
N-b-193	NF	Int.n-18	MeOCOCI	Ме	MeOC(O)	Ме	Ξ	1Me~5~Ind	С		383	(M ⁺ +1)
N-b-194	NA	N-b-169		Me	MeOC(O)	Η	Н	1Me-5-Ind	С		369	(M ⁺ +1)
N-b-195	NF	Int.n-18	MeOCOCI	Me	MeOC(O)	Ме	Н	1Me-5-1Hldz	С		384	(M ⁺ +1)
N-b-196	NA	N-b-171		Me	McOC(O)	Н	Н	1Me-5-1Hldz	С		370	(M ⁺ +1)
N-b-197	NF- NA	N-b-1	BzCl	Ме	Bz	н	Ξ	2-Nap	С		396	(M*+1)
N-b-198	NF- NA	N-b-3	BzCl	Ме	Bz	H	I	5-Ind	O		399	(M ⁺ +1)
N-b-199	NF- NA	N-b-5	BzCl	Ме	Bz	Н	н	1Me-5-Ind	С		399	(M*+1)
N-b-200	NF- NA	N-b-9	BzCl	Me	Bz	Н	Н	5-1Hldz	С		386	(M ⁺ +1)
N-b-201	NF- NA	N-b-11	BzCl	Me	Bz	Н	Н	1Me-5-1HIdz	С		400	(M*+1)
N-b-202	NF- NA	N-b-1	Phococi	Ме	S S	Н	н	2-Nap	С		412	(M*+1)
N-b-203	NF- NA	N-b-5	Phococi	Ме	So So	н	н	1Me-5-Ind	С		415	(M+1)
N-b-204	NF- NA	N-b-1	cPenCH2COCI	Ме	₽\$	н	Н	2-Nap	С		402	(M*+1)
N-b-205	NF-	N-b-3	cPenCH2COCI	Ме	الان الان	н	н	1Me-5-Ind	С		405	(M*+1)
N-b-206	NF- NA	N-b-1	₽°a	Ме	<u></u>	н	Н	2-Nap	С		403	(M ⁺ +1)
N-b-207	NF- NA	N-b-5	H.C.	Ме	₽,	н	н	1Me-5-Ind	С		406	(M*+1)
N-b-208	NF- NA	N-b-1	PhNCO	Ме	PhNHC(0)	Н	Н	2-Nap	С		411	(M ⁺ +1)
N-b-209	NF- NA	N-b-5	PhNCO	Ме	PhNHC(0)	н	н	1Me-5-Ind	0		414	(M ⁺ +1)
N-b-210	NF- NA	N-b-1	oHexNCO	Me	oHexNHC(O)	Н	Н	2-Nap	С		417	(M ⁺ +1)
N-b-211	NF- NA	N-b-5	cHexNCO	Me	cHexNHC(O	н	Н	1Me-5-Ind	С		420	(M ⁺ +1)
N-b-212	NF- NA	N-b-1	oHexNCS	Ме	PhNHC(S)	Н	н	2-Nap	С		430	(M ⁺ +1)

[Example N-c-51]

 $Synthesis\ of\ ethyl\ 3\hbox{-}[4\hbox{-}(imidazol\hbox{-}1\hbox{-}yl)\hbox{-}3\hbox{-}(naphthalen\hbox{-}2\hbox{-}yl)phenyl] acrylate}$ 

(Compound No. N-c-51) (Synthesis method NB1)

According to the procedure described in the synthesis method of the

compound of Example N-a-1 (Synthesis method NB1) provided that the reaction was carried out for 16 hours, and the column chromatography was performed with chloroform-methanol =100:1, Intermediate n-33 (300.4 mg), 2-naphthaleneboronic acid (208.3 mg), 2 M aqueous sodium carbonate (900  $\mu$  I) and (PhaP)4Pd (108.3 mg) were reacted and treated to obtain the title compound (Intermediate N-c-51, 304.2 mg).

[Example N-c-52]

Synthesis of 3-[4-(imidazol-1-yl)-3-(naphthalen-2-yl)phenyllacrylic acid (Compound No. N-c-51) (Synthesis method NA)

According to the procedure described in the synthesis method of the compound of Example N-a-2 (Synthesis method NA) provided that the reaction was carried out for 2 hours, the compound of Example N-c-51 (301.2 mg) and 2 N aqueous sodium hydroxide (980  $\mu$  I) were reacted and treated to obtain the title compound (Compound No. N-c-52, 286.4 mg).

[Examples N-c-1 to N-c-64]

Typical examples of the compounds of the present invention that can be obtained by reacting and treating corresponding starting compounds using any of the methods described in the present specification including the examples described above are shown in Table-N-C-1 to Table-N-C-3. In the tables, the compound numbers are mentioned in the columns indicated as "Exp.". In the tables, used methods among the aforementioned synthesis methods are shown in the columns of "Syn" with symbols, the starting compounds 1 are mentioned in the columns of "SM1", and the starting compounds 2 are mentioned in the columns of "SM2".

Rz Zx O-Y

Table-N-C-1

lable-N	0 1		AK			_			1.01	16	
Exp.	Syn	SM1	SM2	NRzRy	Υ	Zx	AR	method	LCM RTime		lass
N-c-1	NB1	Int.n=36	BRA1	()N	Me	н	2-Nap	C	Kilme	358	(M ⁺ +1)
			Dieti	$\frac{\sim}{\sim}$		-					
N-c-2	NA	N-c-1		ĹŅ	н	н	2∸Nap	С		344	(M ⁺ +1)
N-c-3	NB1	Int.n-36	BRA2	()v	Ме	н	5~Ind	С		347	(M ⁺ +1)
N-c-4	NA	N-c-3		○N	н	н	5-ind	С		333	(M ⁺ +1)
N-c-5	NB1	Int.n-36	BRA3	()v	Ме	н	1Me~5~Ind	C		361	(M ⁺ +1)
N-c-6	NA	N-c-5		()v	Ĥ	н	1Me-5-Ind	c		347	(M ⁺ +1)
N-c-7	NB1	Int.n-36	BRA5	Ŋ	Ме	н	5-1HIdz	С		348	(M*+1)
N-c-8	NA	N-c-7		()v	н	н	5-1HIdz	С		334	(M ⁺ +1)
N-c-9	NB1	Int.n-36	BRA6	ΩN	Ме	н	1Me-5-1HIdz	С		362	(M ⁺ +1)
N-c-10	NA	N-c-9		Ωv	Н	н	1Me-5-1HIdz	С		348	(M ⁺ +1)
N-c-11	NB1	Int.n=36	BRA9	Ŋ	Me	Н	5-Bzt	С		365	(M ⁺ +1)
N-c-12	NA	N-c-11		Ŋ	н	н	5-Bzt	С		351	(M ⁺ +1)
N-c-13	NB1	Int.n-36	BRA10	()v	Me	н	3-Qu	С		359	(M*+1)
N-c-14	NA	N-c-13		()v	н	н	3-Qu	С		345	(M*+1)
N-c-15	NB1	Int.n-36	BRA11	Ŋ	Me	н	6–Qu	С		359	(M*+1)
N-c-16	NA	N-c-15		()N	н	н	6-Qu	С		345	(M*+1)
N-c-17	NB1	Int.n=37	BRA1	O_N	Me	н	2-Nap	С		374	(M ⁺ +1)
N-c-18	NA	N-c-17		QΝ	Н	н	2-Nap	С		360	(M*+1)
N-c-19	NB1	Int.n-37	BRA2	O _N	Me	н	5–Ind	С		363	(M ⁺ +1)
N-c-20	NA	N-c-19		o⊜v	н	н	5-Ind	С		349	(M ⁺ +1)
N-c-21	NB1	Int.n-37	BRA3	Q)N	Me	н	1Me-5-Ind	С		377	(M ⁺ +1)
N-c-22	NA	N-c-21		QΩν	н	н	1Me-5-Ind	С		363	(M*+1)

Table-N-C-2

Ехр.	Syn.	SM1	SM2	NRzRy	Υ	Zx	AR		LCM		
Exp.	Oyn.	Civil	O	741427-0			7411	method	RTime	N	lass
N-c-23	NB1	Int.n-37	BRA5	ďν	Ме	Н	5-1HIdz	С		364	(M ⁺ +1)
N-c-24	NA	N-c-23		o◯n	Н	Н	5-1 HIdz	С		350	(M*+1)
N-c-25	NB1	Int.n-37	BRA6	Ö	Me	н	1Me-5-1Hldz	С		378	(M*+1)
N-c-26	NA	N-c-25		Q)N	н	Н	1Me-5-1HIdz	С		364	(M++1)
N-c-27	NB1	Int.n-26	BRA1	2	Ме	Н	2-Nap	С		372	(M*+1)
N-c-28	NA	N-c-27		N	Н	н	2-Nap	O		358	(M*+1)
N-c-29	NB1	Int.n-26	BRA2	\ <u>\</u>	Ме	н	5-Ind	С		361	(M*+1)
N-c-30	NA	N-c-29		N	Ĥ	Η	5-Ind	c		347	(M*+1)
N-c-31	NB1	Int.n-26	BRA3	<b>⊘</b> ν	Me	н	1Me-5-Ind	С		375	(M*+1)
N-c-32	NA	N-c-31		<b>⊘</b> ν	Н	н	1Me-5-Ind	С		361	(M ⁺ +1)
N-c-33	NB1	int.n-26	BRA5	○N	Me	н	5-1 HIdz	С		362	(M*+1)
N-c-34	NA	N-c-33		Ŋ	Н	н	5-1 HIdz	С		348	(M ⁺ +1)
N-c-35	NB1	Int.n-26	BRA6		Me	н	1Me-5-1HIdz	С		376	(M ⁺ +1)
N-c-36	NA	N-c-35		\(\rangle\)	Н	н	1Me-5-1HIdz	C		362	(M ⁺ +1)
N-c-37	NB1	Int.n-28	BRA1	$-\bigcirc$ v	Me	н	2-Nap	С		386	(M*+1)
N-c-38	NA	N-c-37			Н	Н	2-Nap	С		372	(M ⁺ +1)
N-c-39	NB1	Int.n-28	BRA3	-\(\rangle\)	Me	н	1Me-5-Ind	С		389	(M ⁺ +1)
N-c-40	NA	N-c-39		$\bigvee$	н	н	1Me-5-Ind	С		375	(M*+1)
N-c-41	NB1	Int.n-28	BRA5	Ą	Me	н	5-1HIdz	С		376	(M ⁺ +1)
N-c-42	NA	N-c-41		N	Н	Н	5-1HIdz	С		362	(M*+1)
N-c-43	NB1	Int.n-28	BRA6	N	Me	н	1Me-5-1HIdz	С		390	(M ⁺ +1)
N-c-44	NA	N-c-43		—()и	Н	н	1Me-5-1Hldz	С		376	(M ⁺ +1)

Teble-N-C-3

Table-N				ND D	.,				LCM	Ś	
Ехр.	Syn	SM1	SM2	NRzRy	Υ	Zx	AR	method	RTime	M	ass
N-c-45	NB1	Int.n-30	BRA3	Ò	Ме	н	1Me-5-Ind	С		389	(M ⁺ +1)
N-c-46	NA	N-c-45		Ò	н	Н	1Me-5-Ind	С		375	(M°+1)
N-c-47	NB1	Int.n-30	BRA5	O	Ме	н	5-1Hldz	С		376	(M ⁺ +1)
N-c-48	NA	N-c-47		Ò	н	н	5-1HIdz	С		362	(M ⁺ +1)
N-c-49	NB1	Int.n-30	BRA6	Ò	Me	н	1Me-5-1HIdz	С		390	(M*+1)
N-c-50	NA	N-c-49		Ŏ	н	н	1Me-5-1HIdz	С		376	(M ⁺ +1)
N-c-51	NB1	Int.n-33	BRA1	Ź	Et	н	2-Nap	С		369	(M*+1)
N-c-52	NA	N~c−51		Ň	Ĥ	н	2-Nap	С		341	(M*+1)
N-c-53	NB1	Int.n-33	BRA3	N N	Et	н	1Me-5-Ind	С		372	(M ⁺ +1)
N-c-54	NA	N-c-53		2	н	н	1Me-5-Ind	С		344	(M ⁺ +1)
N-c-55	NB1	Int.n-33	BRA6	2	Et	н	1Me-5-1HIdz	С		373	(M ⁺ +1)
N-c-56	NA	N-c-55		<u>~</u>	н	н	1Me-5-1Hidz	С		345	(M ⁺ +1)
N-c-57	NB1	Int.n-35	BRA1	Š	Et	н	2-Nap	С		368	(M ⁺ +1)
N-c-58	NA	N-c-57		_ \^	н	н	2-Nap	С		340	(M ⁺ +1)
N-c-59	NB1	Int.n-35	BRA3	Š	Et	н	1Me-5-Ind	С		371	(M*+1)
N-c-60	NA	N-c-59		Š	н	н	1Me-5-Ind	С		343	(M*+1)
N-c-61	NB1	Int.n35	BRA5	Š	Et	н	5-1HIdz	С		358	(M ⁺ +1)
N-c-62	NA	N-o-61		(N	Н	н	5-1HIdz	С		330	(M ⁺ +1)
N-c-63	NB1	Int.n-35	BRA6	(N	Et	н	1Me-5-1HIdz	C		372	(M ⁺ +1)
N-c-64	NA	N-c-63		(N	Н	н	1Me-5-1HIdz	О		344	(M ⁺ +1)

[Example N·d·61]

 $\label{eq:compound} Synthesis of ethyl $3 \cdot [4 \cdot (imidazol \cdot 1 \cdot yl) \cdot 3 \cdot (naphthalen \cdot 2 \cdot yl) phenyl| propionate $$(Compound No. N \cdot d \cdot 51) (Synthesis method ND1)$$ 

According to the procedure described in the synthesis method of Intermediate n-7 (Synthesis method ND1) provided that the reaction was carried

out for 6 hours, the compound of Example N-c·51 (301.5 mg) and 10% palladium/carbon (67.3 mg) were reacted and treated to obtain the title compound (Compound No. N·d·61, 143.5 mg).

[Example N-d-62]

Synthesis of 3-[4-(imidazol-1-yl)-3-(naphthalen-2-yl)phenyl]propionic acid (Compound No. N-d-62) (Synthesis method NA)

According to the procedure described in the synthesis method of the compound of Example N-a-2 (Synthesis method NA) provided that the reaction was carried out for 3 hours, the compound of Example N-d-61 (140.3 mg) and 2 N aqueous sodium hydroxide (600  $\mu$  I) were reacted and treated to obtain the title compound (Compound No. N-d-62, 100.4 mg).

[Examples N-d-1 to N-d-74]

Typical examples of the compounds of the present invention that can be obtained by reacting and treating corresponding starting compounds using any of the methods described in the present specification including the examples described above are shown in Table N-D-1 to Table N-D-4. In the tables, the compound numbers are mentioned in the columns indicated as "Exp.". In the tables, used methods among the aforementioned synthesis methods are shown in the columns of "Syn" with symbols, the starting compounds 1 are mentioned in the columns of "SM1", and the starting compounds 2 are mentioned in the columns of "SM2".

RZ N O Y

Table-N	-D-1	Ry	AR	9							
Exp.	Syn	SM1	SM2	NRzRy	Y	Zx	AR		LCM		
	-,				ļ.			method	RTime		lass
N-d-1	NB1	Int.n-21	BRA1	□)v	Me	н	2-Nap	С		360	(M*+1)
N-d-2	NA	N-d-1		Š	н	н	2-Nap	С		346	(M*+1)
N-d-3	NB1	Int.n~21	BRA2	Ŋ	Ме	н	5–Ind	D	4.79	349	(M ⁺ +1)
N-d-4	NA	N-d-3		Ŋ	Н	н	5–Ind	D	3.54	335	(M*+1)
N-d-5	NB1	Int.n-21	BRA3	Ŋ	Me	Н	1Me-5-Ind	D	5.72	363	(M*+1)
N-d-6	NA	N-d-5		Š	Ĥ	н	1Me-5-Ind	D	4.31	349	(M*+1)
N-d-7	NB1	Int.n-21	BRA5	Ŋ	Me	н	5-1HIdz	С		350	(M ⁺ ÷1)
N-d-8	NA	N-d-7		Š	н	н	5-1 HIdz	С		336	(M*+1)
N-d-9	NB1	Int.n-21	BRA6	Ŋ	Me	н	1Me-5-1HIdz	С		364	(M ⁺ +1)
N-d-10	NA	N-d-9		Š	н	н	1Me-5-1HIdz	О		350	(M ⁺ +1)
N-d-11	NB1	Int.n-21	BRA9	Š	Me	н	5-Bzt	О		367	(M ⁺ +1)
N-d-12	NA	N-d-11		Õ	Н	н	5-Bzt	С		353	(M ⁺ +1)
N-d-13	NB1	Int.n-21	BRA10	Š	Ме	н	3–Qu	С		361	(M*+1)
N-d-14	NA	N-d-13		Õ	Н	н	3−Qu	С		347	(M*+1)
N-d-15	NB1	Int.n-21	BRA11	Š	Ме	н	6−Qu	С		361	(M*+1 _. )
N-d-16	NA	N-d-15		Ŋ	н	н	6−Qu	С		347	(M*+1)
N-d-17	NB1	Int.n-24	BRA1	O	Ме	н	2-Nap	С		376	(M*+1)
N-d-18	NA	N-d-17		O _N	н	н	2-Nap	С		362	(M ⁺ +1)
N-d-19	NB1	Int.n-24	BRA2	o(_)N	Ме	н	5-Ind	С		365	(M ⁺ +1)
N-d-20	NA	N-d-19		Q_N	н	н	5-Ind	С		351	(M*+1)
N-d-21	NB1	Int.n-24	BRA3	Q_N	Ме	н	1Me-5-Ind	С		379	(M ⁺ +1)
N-d-22	NA	N-d-21		Q _N	н	н	1Me-5-Ind	С		365	(M ⁺ +1)

Table-N-D-2

Table-N		SM1	0140	ND-D	\ v	7.	AR		LCN	IS	
Ехр.	Syn	SMI	SM2	NRzRy	Υ	Zx	AR	method	RTime	- 1	Mass
N-d-23	NB1	Int.n-24	BRA5	<b>σ</b> _)ν	Ме	н	5-1Hldz	С		366	(M*+1)
N-d-24	NA	N-d-23		Q_N	н	н	5-1Hldz	С		352	(M ⁺ +1)
N-d-25	NB1	Int.n-24	BRA6	<b>o</b> ◯N	Ме	н	1Me-5-1HIdz	С		380	(M*+1)
N-d-26	NA	N-d-25		<b>o</b> ∑N	н	Н	1Me-5-1Hldz	С		366	(M ⁺ +1)
N-d-27	NB1	Int _. n-24	BRA9	oΩν	Ме	н	5-Bzt	С		383	(M ⁺ +1)
Nd-28	NA	N-d-27		o⊜v	Н	н	5-Bzt	С		369	(M ⁺ +1)
N-d-29	NB1	Int.n-24	BRA11	QΝ	Me	н	6–Qu	С		377	(M ⁺ +1)
N-d-30	NA	N-d-29		Ø,	H	н	6-Qu	С		363	(M ⁺ +1)
N-d-31	NB1	Int.n-27	BRA1	O	Ме	н	2-Nap	С		374	(M ⁺ +1)
N-d-32	NA	N-d-31		O	н	н	2-Nap	С		360	(M*+1)
N-d-33	NB1	Int.n-27	BRA2	_\v	Ме	н	5-Ind	С		363	(M ⁺ +1)
N-d-34	NA	N-d-33		Ои	Н	н	5-Ind	С		349	(M ⁺ +1)
N-d-35	NB1	Int.n-27	BRA3	O	Ме	н	1Me-5-Ind	С		377	(M ⁺ +1)
N-d-36	NA	N-d-35		O	Н	н	1Me-5-Ind	O		363	(M*+1)
N-d-37	NB1	Int.n-27	BRA5	○n	Ме	н	5-1Hldz	С		364	(M ⁺ +1)
N-d-38	NA	N-d-37		Q	н	н	5-1Hldz	С		350	(M*+1)
N-d-39	NB1	Int.n-27	BRA6	Ол	Ме	н	1Me-5-1HIdz	С		378	(M*+1)
N-d-40	NA	N-d-39		_N	Н	н	1Me-5-1HIdz	С		364	(M*+1)
N-d-41	NB1	Int.n-27	BRA11	○N	Me	н	6-Qu	С		375	(M ⁺ +1)
N-d-42	NA	N-d-41		○N	н	н	6-Qu	С		361	(M ⁺ +1)
N-d-43	NB1	Int.n-27	BRA9		Me	н	5-Bzt	С		381	(M*+1)
N-d-44	NA	N-d-43		N	н	н	5-Bzt	С		367	(M*+1)

Table-N-D-3

Exp.		SM1	SM2	NRzRy	Y	Zx	AR		LCN	IS	
LAP.	Syn	OWIT	SIVIZ	MAZIN	Ľ	<u></u>	An	method	RTime		Mass
N-d-45	NB1	Int.n-29	BRA1	$-\bigcirc$ N	Ме	н	2-Nap	С		388	(M ⁺ +1)
N-d-46	NA	N-d-45		$\bigvee_{\mathbf{N}}$	н	н	2-Nap	С		374	(M*+1)
N-d-47	NB1	Int.n-29	BRA3	-	Ме	н	1Me-5-Ind	С		391	(M ⁺ +1)
N-d-48	NA	N-d-47		$-\bigcirc$ V	н	Н	1Me-5-Ind	С		377	(M*+1)
N-d-49	NB1	Int.n-29	BRA5	<u></u> —⊘ν	Ме	н	5-1Idz	С		378	(M ⁺ +1)
N-d-50	NA	N-d-49		$\overline{-0}$	Н	Н	5-1Idz	С		364	(M ⁺ +1)
N-d-51	NB1	Int.n-29	BRA6	$-\bigcirc$	Me	н	1Me-5-1HIdz	С		392	(M ⁺ +1)
N-d-52	NA	N-d-51		$-\bigcirc$	н	н	1Me-5-1HIdz	С		378	(M ⁺ +1)
N-d-53	NB1	Int.n-29	BRA10	$-\bigcirc$	Ме	н	3-Qu	С		389	(M*+1)
N-d-54	NA	N-d-53		$-\bigcirc$	Н	н	3−Qu	С		375	(M ⁺ +1)
N-d-55	NB1	Int.n-31	BRA3	O ₁	Ме	Η	1Me-5-Ind	С		391	(M ⁺ +1)
N-d-56	NA	N-d-55		_O ₁	Н	н	1Me-5-Ind	С		377	(M+1)
N-d-57	NB1	Int.ņ-31	BRA5	O ₁	Ме	Н	5-11dz	С		378	(M*+1)
N-d-58	NA	N-d-57		$\bigcirc$	Ξ	Ξ	5-1Idz	С		364	(M*+1)
N-d-59	NB1	Int.n-31	BRA6	O	Ме	Н	1Me-5-1HIdz	С		392	(M ⁺ +1)
N-d-60	NA	N-d-59		Q	н	Н	1Me-5-1HIdz	С		378	(M++1)
N-d-61	ND1	N-c-51		ΝÇΝ	Et	Н	2-Nap	С		371	(M*+1)
N-d-62	NA	N-d-61		N)	н	Η	2-Nap	С		343	(M ⁺ +1)
N-d-63	ND1	N-c-53		N_N	Et	Н	1Me-5-Ind	С		374	(M ⁺ +1)
N-d-64	NA	N-d-63		N_N	Н	Н	1Me-5-Ind	С		346	(M ⁺ ÷1)
N-d-65	ND1	N-c-55		N_N	Et	H	1Me-5-1HIdz	С		375	(M ⁺ +1)
N-d-66	NA	N-d-65		N_N	н	Н	1Me-5-1HIdz	С		347	(M ⁺ +1)

Table-N-D-4

Exp.	Syn.	SM1	SM2	NRzRv	Y	Zx	AR		LCN	AS.	
Ехр.	Syn.	SMI	SIVIZ	INTERTY	<u>'</u>	ZX	AR	method	RTime	٨	lass
N-d-67	ND1	N-c-57		()N	Et	Н	2-Nap	С		370	(M*+1)
N-d-68	NA	Nd-45		□N	н	н	2-Nap	С		342	(M*+1)
N-d-69	ND1	N-c-59		□N	Et	н	1Me-5-Ind	С		373	(M ⁺ +1)
N-d-70	NA	N-d-47		Ŋ.	Н	н	1Me-5-Ind	С		345	(M*+1)
N-d-71	ND1	N-c-61		○N	Et	н	5-1Idz	С		360	(M*+1)
N-d-72	NA	N-d-49		Ž	н	н	5-1Idz	С		332	(M ⁺ +1)
N-d-73	ND1	N-c-63		□N	Et	н	1Me-5-1HIdz	С		374	(M*+1)
N-d-74	NA	N-d-51		Ž	н	н	1Me-5-1HIdz	С		346	(M*+1)

## [Examples N-e-1 to N-e-204]

Typical examples of the compounds of the present invention that can be obtained by reacting and treating corresponding starting compounds using any of the methods described in the present specification are shown in Table N·E·1 to Table N·E·7. In the tables, the compound numbers are mentioned in the columns indicated as "Exp.". In the tables, corresponding methods among the aforementioned synthesis methods are shown in the columns of "Syn" with symbols, the starting compounds 1 are mentioned in the columns of "SM1", and the starting compounds 2 are mentioned in the columns of "SM2".

RZ N-N-O'Y

Table-N-	-E-1		AR							
Exp.	Syn	SM1	SM2	NRzRy	Y	AR		LCM		
LAP.	0,	J					method	RTime	N	ass
N-e-1	NB1	Int.n-48	BRA1	Oν	Et	2-Nap	С		389	(M ⁺ +1)
N-e-2	NA	N-e-1		\ \	н	2-Nap	С		375	(M*+1)
N-e-3	NB1	Int.n-48	BRA2	(N	Et	5-Ind	С		378	(M*+1)
N-e-4	NA	N-e-3		_N_	н	5-Ind	С		364	(M ⁺ +1)
N-e-5	NB1	Int.n-48	BRA3	◯N	Et	1Me-5-Ind	С		392	(M*+1)
N-e-6	NA	N-e-5		□N_	н	1Me-5-Ind	С		378	(M ⁺ +1)
N-e-7	NB1	Int.n-48	BRA5	_N_	Et	5-1HIdz	С		379	(M ⁺ +1)
N-e-8	NA	N-e-7		O	н	5-1HIdz	С		365	(M ⁺ +1)
N-e-9	NB1	Int.n-48	BRA6	$\bigcirc$ N	Et	1Me-5-1HIdz	С		393	(M ⁺ +1)
N-e-10	NA	N-e-9		\(\mathbb{N}\)	н	1Me-5-1Hldz	С		379	(M*+1)
N-e-11	NB1	Int.n-48	BRA10	N	Et	3-Qu	С		390	(M ⁺ +1)
N-e-12	NA	N-e-11		\(\mathbb{N}\)	н	3–Qu	С		376	(M ⁺ +1)
N-e-13	NB1	Int.n-48	BRA11	(N	Et	6−Qu	С		390	(M ⁺ +1)
N-e-14	NA	N-e-13		_N	н	6–Qu	С		376	(M ⁺ +1)
N-e-15	NB1	Int.n-48	BRA12	(N	Et	6-IQ	С		390	(M*+1)
N-e-16	NA	N-e-15		Ö	Н	6-IQ	C		376	(M*+1)
N-e-17	NB1	Int.n-49	BRA1	□N	Et	2Nap	С		375	(M ⁺ +1)
N-e-18	NA	N-e-17		()v	н	2Nap	С		361	(M ⁺ +1)
N-e-19	NB1	Int.n-49	BRA2	○N	Et	5–Ind	С		364	(M ⁺ +1)
N-e-20	NA	N-e-19		()N	н	5-Ind	С		350	(M*+1)
N-e-21	NB1	Int.n-49	BRA3	○N	Et	1Me-5-Ind	С		378	(M ⁺ +1)
N-e-22	NA	N-e-21		□()v	н	1Me-5-Ind	С		364	(M*+1)

Table-N-F-2

Table-N								LCM	s	
Exp.	Syn	SM1	SM2	NRzRy	Υ	AR	method	RTime	N	lass
N-e-23	NB1	Int.n-49	BRA5	Š	Et	5-1 HIdz	С		365	(M*+1)
N-e-24	NA	N-e-23		Ó	Н	5-1HIdz	С		351	(M*+1)
N-e-25	NB1	Int.n-49	BRA6	Š	Et	1Me-5-1Hldz	С		379	(M*+1)
N-e-26	NA	N-e-25		Õ	H	1Me-5-1HIdz	С		365	(M*+1)
N-e-27	NB1	Int.n-50	BRA1	-	Et	2-Nap	С		403	(M ⁺ +1)
N-e-28	NA	N-e-27		$-\bigcirc$ N	Н	2-Nap	С		389	(M*+1)
N-e-29	NB1	Int.n-50	BRA2	$\bigcirc$	Et	5-Ind	С		392	(M*+1)
N-e-30	NA	N-e-29		$\overline{-\bigcirc}$	Н	5-Ind	С		378	(M ⁺ +1)
N-e-31	NB1	Int.n-50	BRA3	$-\bigcirc$	Et	1 Me-5-Ind	С		406	(M ⁺ +1)
N-e-32	NA	N-e-31		$-\bigcirc$	Н	1Me-5-Ind	С		392	(M*+1)
N-e-33	NB1	Int.n-50	BRA5	-	Et	5-1HIdz	С		393	(M*+1)
N-e-34	NA	N-e-33		$-\bigcirc$	н	5-1HIdz	С		379	(M*+1)
N-e-35	NB1	Int.n-50	BRA6	$-\bigcirc$	Et	1Me-5-1HIdz	С		407	(M ⁺ +1)
N-e-36	NA	N-e-35		$-\bigcirc$	Н	1Me-5-1HIdz	С		393	(M ⁺ +1)
N-e-37	NB1	Intn-51	BRA1	Q_N	Et	2-Nap	С		391	(M ⁺ +1)
N-e-38	NA	N-e-37		<b>o</b> ⊘v	Н	2-Nap	С		377	(M ⁺ +1)
N-e-39	NB1	Int.n-51	BRA3	Q_N	Et	1Me-5-Ind	С		394	(M ⁺ +1)
N-e-40	NA	N-e-39		QЛ	н	1Me-5-Ind	О		380	(M ⁺ +1)
N-e-41	NB1	Int.n-51	BRA5	<b>Q</b> N	Et	5-1HIdz	С		381	(M ⁺ +1)
N-e-42	NA	N-e-41		<b>Q</b> N	н	5–1HIdz	С	-	367	(M ⁺ +1)
N-e-43	NB1	Int.n-51	BRA6	Q_N	Et	1Me-5-1HIdz	С		395	(M*+1)
N-e-44	NA	N-e-43		Q_N	Н	1Me-5-1HIdz	С		381	(M ⁺ +1)

Table-N-E-3

F	Syn	SM1	SM2	NRzRv	Υ	AR		LCM	S	
Exp.	Syn	SWII	SWZ	INITIZITY	_	An	method	RTime	M	ass
N-e-45	NB1	Int.n-52	BRA1	O	Et	2-Nap	С		403	(M ⁺ +1)
N-e-46	NA	N-e-45		O	Н	2-Nap	С		389	(M ⁺ +1)
N-e-47	NB1	Int.n-52	BRA3	O	Et	1Me-5-Ind	С		406	(M ⁺ +1)
N-e-48	NA	N-e-47		O	Н	1Me-5-Ind	С		392	(M ⁺ +1)
N-e-49	NB1	Int.n-52	BRA5	Õ	Et	51HIdz	С		393	(M ⁺ +1)
N-e-50	NA	N-e-49		O	Н	5-1Hldz	С		379	(M ⁺ +1)
N-e-51	NB1	Int.n-52	BRA6	O	Eţ	1Me-5-1HIdz	С		407	(M*+1)
N-e-52	NA	N~e~51		O	Н	1Me-5-1HIdz	С		393	(M ⁺ +1)

Table-N-E-4 Ry AR OOY

Exp.	Syn	SM1	SM2	Rz	Rv	Υ	AR		LCM		
					Ľ			method	RTime		lass
N-e-53		Int.n-53	BRA1	Et	Me	Et	2-Nap	С		363	(M ⁺ +1)
N-e-54	NA	N-e-53		Et	Me	Н	2-Nap	С		335	(M*+1)
N-e-55	NB1	Int.n-53	BRA2	Et	Me	Et	5-Ind	С		352	(M++1)
N-e-56	NA	N-e-55		Et	Me	н	5-Ind	С		324	(M+1)
N-e-57	NB1	Int.n-53	BRA3	Et	Me	Et	1Me-5-Ind	С		366	(M ⁺ +1)
N-e-58	NA	N-e-57		Et	Me	Н	1Me-5-Ind	С		338	$(M^{+}+1)$
N-e-59	NB1	Int.n-53	BRA5	Et	Ме	Et	5-1Hidz	С		353	(M++1)
N-e-60	NA	N-e-59		Et	Me	Н	5-1Hidz	С		325	(M+1)
N-e-61	NB1	Int.n-53	BRA6	Et	Me	Et	1Me-5-1Hldz	С		367	(M+1)
N-e-62	NA	N-e-61		Ĕ	Ме	н	1Me-5-1Hidz	С		339	(M++1)
N-e-63	NB1	Int.n-54	BRA1	Ħ	Et	Et	2-Nap	О		377	(M++1)
N-e-64	NA	N-b-63		É	Et	Н	2-Nap	С		349	(M++1)
N-e-65	NB1	Int.n-54	BRA2	Ħ	Et	Et	5-Ind	С		366	(M+1)
N-e-66	NA	N-b-65		Et	Et	Н	5-Ind	С		338	(M++1)
N-e-67	NB1	Int.n-54	BRA3	Et	Et	Et	1Me-5-Ind	O		380	(M ⁺ +1)
N-e-68	NA	N-b-67		Et	Et	Н	1Me-5-Ind	o		352	(M+1)
N-e-69	NB1	Int.n-54	BRA5	ť	Et	Et	5-1HIdz	C		367	(M ⁺ +1)
N-e-70	NA	N-b-69		Et	Et	Н	5-1HIdz	c		339	(M++1)
N-e-71	NB1	Int.n-54	BRA6	Et	Et	Et	1Me-5-1HIdz	С		381	(M++1)
N-e-72	NA	N-b-71		Et	Et	Н	1Me-5-1HIdz	С		353	(M++1)
N-e-73	NB1	Int.n-55	BRA1	nPr	Me	Et	2-Nap	С		377	(M ⁺ +1)
N-e-74	NA	N-b-73		nPr	Me	Н	2-Nap	C		349	(M++1)
N-e-75	NB1	Int.n-55	BRA2	nPr	Me	Et	5-Ind	С		366	(M ⁺ +1)
N-e-76	NA	N-b-75		пPr	Me	Н	5-Ind	C		338	(M++1)
N-e-77	NB1	Int.n-55	BRA3	nPr	Me	Et	1Me-5-Ind	С		380	(M++1)
N-e-78	NA	N-b-77		nPr	Ме	Н	1Me-5-Ind	0		352	(M ⁺ +1)
N-e-79	NB1	Int.n-55	BRA5	nPr	Me	Et	5-1HIdz	O		367	(M++1)
N-e-80	NA	N-b-79		nPr	Me	Н	5-1HIdz	O		339	(M++1)
N-e-81	NB1	Int.n-55	BRA6	nPr	Me	Et	1Me-5-1HIdz	O		381	(M+1)
N-e-82	NA	N-b-81		nPr	Me	Н	1Me-5-1HIdz	O		353	(M+1)
N-e-83	NB1	Int.n-56	BRA1	iPr	Ме	Et	2-Nap	С		377	(M ⁺ +1)
N-e-84	NA	N-b-83		iPr	Me	Η	2-Nap	С		349	(M ⁺ +1)
N-e-85	NB1	Int.n-56	BRA2	iPr	Me	Et	5-Ind	С		366	(M++1)
N-e-86	NA	N-b-85		iPr	Me	н	5-Ind	С		338	(M++1)
N-e-87	NB1	Int.n-56	BRA3	iPr	Me	Et	1Me-5-Ind	С		380	(M ⁺ +1)
N-e-88	NA	N-b-87		iPr	Me	Н	1Me-5-Ind	C		352	(M++1)
N-e-89	NB1	Int.n-56	BRA5	iPr	Me	Et	5-1Hldz	С		367	(M++1)
N-e-90	NA	N-b-89		iPr	Me	н	5-1HIdz	С		339	(M+1)
N-e-91	NB1	Int.n-56	BRA6	iPr	Me	Et	1Me-5-1HIdz	С		381	(M+1)
N-e-92	NA	N-b-91		iPr	Me	Н	1Me-5-1HIdz	С		353	(M++1)
N-e-93	NB1	Int.n-57	BRA1	nBu	Me	Et	2-Nap	С		391	(M+1)
N-e-94	NA	N-b-93		nBu	Me	Н	2-Nap	С		363	(M+1)
N-e-95	NB1	Int.n-57	BRA2	nBu	Me	Et	5-Ind	С		380	(M++1)
N-e-96	NA	N-b-95		nBu	Me	Н	5-Ind	С		352	(M++1)

Table-N-E-5

Exp.	Svn	SM1	SM2		[ n	Y	AR		LCM	S	
Ехр.	Syn	SIVI	SMZ	Rz	Ry	7	AR	method	RTime	٨	ass
N-e-97	NB1	Int.n-57	BRA3	nBu	Me	Et	1Me-5-Ind	С		394	(M°+1)
N-e-98	NA	N-e-97		nBu	Me	Ή	1Me-5-Ind	С		366	(M+1)
N-e-99	NB1	Int.n-57	BRA5	nBu	Me	Et	5-1Hldz	С		381	(M+1)
N-e-100	NA	N-e-99		nBu	Me	Н	5-1Hldz	С		353	(M+1)
N-e-101	NB1	Int.n-57	BRA6	nBu	Me	Et	1Me-5-1HIdz	С		395	(M*+1)
N-e-102	NA	N-e-101		nBu	Ме	H	1Me-5-1HIdz	С		367	(M+1)
N-e-103	NB1	Int.n-58	BRA1	iBu	Me	Et	2-Nap	С		391	(M+1)
N-e-104	NA	N-e-103		iBu	Me	Н	2~Nap	С		363	(M+1)
N-e-105	NB1	Int.n-58	BRA2	iBu	Me	Et	5-Ind	С		380	(M+1)
N-e-106	NA	N-e-105		iBu	Me	Н	5-ind	С		352	(M+1)
N-e-107	NB1	Int.n-58	BRA3	iBu	Me	Et	1Me-5-Ind	С		394	(M+1)
N-e-108	NA	N-e-107		iBu	Me	Н	1Me-5-Ind	С		366	(M+1)
N-e-109	NB1	Int.n-58	BRA5	iBu	Me	Et	5-1HIdz	С		381	(M+1)
N-e-110	NA	N-e-109		iBu	Me	Н	5-1HIdz	С		353	(M+1)
N-e-111	NB1	Int.n-58	BRA6	iBu	Me	Et	1Me-5-1 HIdz	С		395	(M+1)
N-e-112	NA	N-e-111		iBu	Me	Н	1Me-5-1Hidz	С		367	(M+1)
N-e-113	NB1	Int.n-62	BRA1	Bn	Н	Et	2-Nap	С		411	(M+1)
N-e-114	NA	N-e-113		Bn	Н	H	2-Nap	С		383	(M*+1)
N-e-115	NB1	Int.n-62	BRA2	Bn	Н	Et	5-Ind	С		400	(M+1)
N-e-116	NA	N-e-115		Bn	Н	Н	5-Ind	С		372	(M+1)
N-e-117	NB1	Int.n-62	BRA3	Bn	Н	Et	1Me-5-Ind	С		414	(M ⁺ +1)
N-e-118	NA	N-e-117		Bn	Н	н	1Me-5-Ind	С		386	(M*+1)
N-e-119	NB1	Int.n-62	BRA5	Bn	н	Et	5-1HIdz	С		401	(M++1)
N-e-120	NA	N-e-119		Bn	Н	Н	5-1Hldz	С		373	(M ⁺ +1)
N-e-121	NB1	Int.n=62	BRA6	Bn	Н	Et	1Me-5-1HIdz	С		415	(M*+1)
N-e-122	NA	N-e-121		Bn	Н	Н	1Me-5-1HIdz	С		387	(M+1)
N-e-123	NB1	Int.n=63	BRA1	4MeBn	Н	Et	2-Nap	С		425	(M+1)
N-e-124	NA	N-e-123		4MeBn	Н	Н	2-Nap	С		397	(M++1)
N-e-125	NB1	Int.n=63	BRA2	4MeBn	Me	Et	5-Ind	С		414	(M++1)
N-e-126	NA	N-e-125		4MeBn	Me	н	5-Ind	С		386	(M+1)
N-e-127	NB1	Int.n-63	BRA5	4MeBn	Me	Et	5-1Hldz	С		415	(M++1)
N-e-128	NA	N-e-127		4MeBn	Me	Н	5-1Hldz	С		387	(M++1)
N-e-129	NB1	Int.n-64	BRA2	3MeBn	Me	Et	5-Ind	С		414	(M++1)
		N-e-129		3MeBn	Me	Н	5-Ind	С		386	(M*+1)
N-e-131	NB1	Int.n-64	BRA3	3MeBn	Me	Et	1Me-5-Ind	С		428	(M*+1)
N-e-132	NA	N-e-131		3MeBn	Me	н	1Me-5-Ind	С		400	(M++1)
N-e-133		Int.n-64	BRA5	3MeBn	Me	Et	5-1Hldz	c		415	(M*+1)
N-e-134	NA	N-e-133		3MeBn	Me	н	5-1HIdz	c		387	(M ⁺ +1)
N-e-135		Int.n-65	BRA1	2MeBn	Me	Et	2-Nap	C		425	(M+1)
N-e-136		N-e-135		2MeBn	Me	Н	2-Nap	c		397	(M*+1)
N-e-137		Int.n-65	BRA3	2MeBn	Me	Et	1Me-5-Ind	C		428	(M*+1)
N-e-138	NA	N-e-137	7.0	2MeBn	Me	Н	1Me-5-Ind	c		400	(M*+1)
N-e-139		Int.n-65	BRA6	2MeBn	Me	Et	1Me-5-1HIdz	c		429	(M*+1)
N-e-140		N-e-139		2MeBn	Me	Н	1Me-5-1HIdz	c		401	(M*+1)

. Taele-N-E-6

Taele-N-E					_				LCM	S	
Exp.	Syn	SM1	SM2	Rz	Ry	Υ	AR	method	RTime		ass
N-e-141	NB1	Int.n=66	BRA1	4FBn	Н	Et	2-Nap	С		429	(M+1)
N-e-142	NA	N-e-141		4FBn	I	Ι	2-Nap	С		401	(M ⁺ +1)
N-e-143	NB1	Int.n-66	BRA3	4FBn	Н	Et	1Me-5-Ind	С		432	(M+1)
N-e-144	NA	N-e-143		4FBn	Н	н	1Me-5-Ind	С		404	(M+1)
N-e-145	NB1	Int.n=66	BRA6	4FBn	н	Et	1Me-5-1HIdz	С		433	(M+1)
N-e-146	NA	N-e-145		4FBn	. н	н	1Me-5-1HIdz	С		405	(M+1)
N-e-147	NB1	Int.n=67	BRA1	3FBn	н	Et	2-Nap	С		429	(M*+1)
N-e-148	NA	N-e-147		3FBn	Н	Н	2-Nap	С		401	(M+1)
N-e-149	NB1	Int.n=67	BRA2	3FBn	Н	Et	5-Ind	С		418	(M+1)
N-e-150	NA	N-e-149		3FBn	Н	н	5-Ind	С		390	(M+1)
N-e-151	NB1	Int.n=67	BRA3	3FBn	H	Et	1Me-5-Ind	С		432	(M*+1)
N-e-152	NA	N-e-151		3FBn	Н	Н	1Me-5-Ind	С		404	(M*+1)
N-e-153	NB1	Int.n=68	BRA3	2FBn	Н	Et	1Me-5-Ind	С		432	(M+1)
N-e-154	NA	N-e-153		2FBn	H	Н	1Me-5-Ind	С		404	(M+1)
N-e-155	NB1	Int.n=68	BRA5	2FBn	Ŧ	Et	5-1Hldz	С		419	(M*+1)
N-e-156	NA	N-e-155		2FBn	Н	Н	5-1HIdz	С		391	(M*+1)
N-e-157	NB1	Int.n=68	BRA6	2FBn	H	Et	1Me-5-1HIdz	С		433	(M ⁺ +1)
N-e-158	NA	N-e-157		2FBn	Н	Н	1Me-5-1HIdz	С		405	(M++1)
N-e-159	NB1	Int.n=69	BRA1	4MeOPh	Н	Et	2-Nap	С		427	(M*+1)
N-e-160	NA	N-e-159		4MeOPh	Н	Н	2-Nap	С		399	(M*+1)
N-e-161	NB1	Int.n=69	BRA2	4MeOPh	Н	Et	5-Ind	С		416	(M*+1)
N-e-162	NA	N-e-161		4MeOPh	н	н	5-Ind	С		388	(M+1)
N-e-163	NB1	Int.n=69	BRA3	4MeOPh	Н	Et	1Me-5-Ind	С		430	(M ⁺ +1)
N-e-164	NA	N-e-163		4MeOPh	Н	H	1Me-5-Ind	С		402	(M°+1)
N-e-165	NB1	Int.n-69	BRA5	4MeOPh	Н	Et	5-1HIdz	С		417	(M*+1)
N-e-166	NA	N-e-165		4MeOPh	Н	Н	5-1HIdz	С		389	(M ⁺ +1)
N-e-167	NB1	Int.n-70	BRA1	3MeOPh	н	Et	2-Nap	С		427	(M++1)
N-e-168	NA	N-e-167		3MeOPh	Н	Н	2-Nap	С		399	(M ⁺ +1)
N-e-169	NB1	Int.n-70	BRA3	3MeOPh	н	Et	1Me-5-Ind	С		430	(M ⁺ +1)
N-e-170	NA	N-e-169		3MeOPh	Н	Н	1Me-5-Ind	С		402	(M+1)
N-e-171	NB1	Int.n-70	BRA6	3MeOPh	Н	Et	1Me-5-1Hldz	С		431	(M ⁺ +1)
N-e-172	NA	N-e-171		3MeOPh	Н	Н	1Me-5-1Hldz	С		403	(M+1)
N-e-173	NB1	Int.n-71	BRA5	2MeOPh	Н	Et	5-1HIdz	С		417	(M+1)
N-e-174	NA	N-e-173		2MeOPh	Н	Н	5-1HIdz	С		389	(M++1)
N-e-175	NB1	Int.n-71	BRA6	2MeOPh	н	Et	1Me-5-1HIdz	С		431	(M+1)
N-e-176	NA	N-e-175		2MeOPh	H	H	1Me-5-1Hldz	C		403	(M++1)
N-e-177	NB1	Int.n-71	BRA11	2MeOPh	H	Et	6-Qu	C		428	(M*+1)
N-e-178	NA	N-e-177	310411	2MeOPh	Н.	Н	6-Qu	C	l	400	(M+1)
N-e-179	NB1	Int.n=72	BRA1	4CF3Ph	H	Et	2-Nap	c		465	(M*+1)
N-e-180	NA	N-e-179	BIONI	4CF3Ph	H	Н	2-Nap	C		437	(M+1)
N-e-181	NB1	Int.n=72	DDAT	4CF3Ph	H	Et	1Me-5-Ind	c		468	(M+1)
	NA	N-e-181	BRA3	4CF3Ph	H	H	1Me-5-Ind	c		440	(M+1)
N-e-182	_		-		H	Et	5-1Hidz	C		455	(M+1) (M+1)
N-e-183	NB1	Int.n-72	BRA5	4CF3Ph					<u> </u>		
N-e-184	NA	N-e-183		40F3Ph	H	Н	5-1HIdz	0		427	(M ⁺ +1)
N-e-185	NB1	Int.n-72	BRA6	4CF3Ph	Н	Et	1Me-5-1HIdz	С		469	(M*+1)
N-e-186	NA	N-e-185		4CF3Ph	н	н	1Me-5-1HIdz	С		441	(M++1)

Table-N-E-7

Exp.	Syn	SM1	SM2	Rz	Ry	Υ	AR		LCM	S
Ехр.	Syn	OMI	SWIZ	RZ.	rty	1	AR	method.	RTime	Mass
N-e-187	NB1	Int.n-73	BRA1	2EtOPh	Н	Et	2-Nap	С		441 (M+1
N-e-188	NA	N-e-187		2EtOPh	Н	Н	2-Nap	С		413 (M*+1
N-e-189	NB1	Int.n-73	BRA3	2EtOPh	Н	Et	1Me-5-Ind	С		444 (M+1
N-e-190	NA	N-e-189		2EtOPh	Н	н	1Me-5-Ind	С		416 (M+1
N-e-191	NB1	Int.n-73	BRA6	2EtOPh	Н	Et	1Me-5-1HIdz	С		445 (M+1
N-e-192	NA.	N-e-191		2EtOPh	Н	Н	1Me-5-1HIdz	С		417 (M+1
N-e-193	NB1	Int.n-74	BRA1	3iPrOPh	Н	Et	2-Nap	С		455 (M++1
N-e-194	NA	N-e-193		3iPrOPh	н	Н	2-Nap	С		427 (M+1
N-e-195	NB1	Int.n-74	BRA2	3iPrOPh	Н	Et	5-Ind	С		444 (M+1
N-e-196	NA	N-e-195		3iPrOPh	Н	Н	5-Ind	С		416 (M+1
N-c-197	NB1	int.n-74	BRA3	3iPrOPh	Н	Et	1Me-5-Ind	С		458 (M++1
N-e-198	NA	N-b-197		3iPrOPh	н	Н	1Me-5-Ind	С		430 (M+1
N-c-199	NB1	Int.n-75	BRA3	3,5DFPh	Н	Et	1Me-5-Ind	С		436 (M+1
N-e-200	NA	N-b-199		3,5DFPh	Н	Н	1Me-5-Ind	С		408 (M+1
N-e-201	NB1	Int.n-75	BRA5	3,5DFPh	Н	Et	5-1 HIdz	С		423 (M+1
N-e-202	NA	N-b-201		3,5DFPh	н	Н	5-1HIdz	С		395 (M ⁺ +1
N-c-203	NB1	Int.n-75	BRA6	3,5DFPh	H	Et	1Me-5-1HIdz	С		437 (M+1
N-e-204	NA	N-b-203		3,5DFPh	Ŧ	H	1Me-5-1Hldz	С		409 (M+1

## [Example N-f-1]

Synthesis of methyl 3·[3·(naphthalen·2·yl)·4·(N·phenylamino)phenyllpropionate (Compound No. N·f·1) (Synthesis method NB2)

A solution of Intermediate n.7 (306.1 mg) in dehydrated toluene (1 ml) was added with aniline (1 ml, TCl), palladium acetate (20.2 mg, WAKO), 2-(di-t-butylphosphine)biphenyl (39 mg, Across) and cesium carbonate (863.4 mg, WAKO), and stirred at 90°C for 18 hours. The reaction mixture was added with ethyl acetate (40 ml), and washed successively with saturated aqueous sodium hydrogencarbonate, saturated aqueous ammonium chloride and saturated brine. The organic layer was dried, and then the solvent was evaporated under reduced pressure. The residue was purified by column chromatography (Quad, hexane-ethyl acetate = 4:1) to obtain the title compound (Compound No. N·f·1, 101.4 mg).

# [Examples N-f-1 to N-f-92]

Typical examples of the compounds of the present invention that can be obtained by reacting and treating corresponding starting compounds using any of

the methods described in the present specification including the examples described above are shown in Table·N·F·1 and Table·N·F·2. In the tables, the compound numbers are mentioned in the columns indicated as "Exp.". In the tables, corresponding methods among the aforementioned synthesis methods are shown in the columns of "Syn" with symbols, the starting compounds 1 are mentioned in the columns of "SM1", and the starting compounds 2 are mentioned in the columns of "SM2".

Ry D OY

Table-N-F-1

Table-N	1		AN			_					
F	ا ۔ ۔ ا	SM1	SM2	Rz	٦.	γ	AR		LCN	S	
Ехр.	Syn	SMI	SMZ	HZ	Ry	Y	AR	method	RTime	N	ass
N-f-1	NB2	Int.n-7	BRA14	Ph	H	Me	2-Nap	С		383	(M++1)
N-f-2	NA	N-f-1		Ph	H	Н	2-Nap	С		369	(M++1)
N-f-3	NB2	Int.n-8	BRA14	Ph	Н	Me	5-Ind	С		372	(M+1)
N-f-4	NA	N-f-3		Ph	Н	Н	5-Ind	С		358	(M++1)
N-f-5	NB2	Int.n-9	BRA14	Ph	Н	Me	1Me-5-Ind	С		386	(M+1)
N-f-6	NA	N-f-5		Ph	Н	Н	1Me-5-Ind	С		372	(M+1)
N-f-7	NB2	Int.n-10	BRA14	Ph	Н	Me	5-1HIdz	С		373	(M*+1)
N-f-8	NA	N-f-7		Ph	Н	Н	5-1HIdz	С		359	(M+1)
N-f-9	NB2	Int.n-11	BRA14	Ph	Н	Me	1Me-5-1HIdz	c		387	(M*+1)
N-f-10	NA	N-f-9		Ph	Н	Н	1Me-5-1HIdz	c		373	$(M^{+}+1)$
N-f-11	NB2	N-f-1	CHO1	Ph	Me	Me	2-Nap	С		397	(M++1)
N-f-12	NA	N-f-11		Ph	Me	٩H	2-Nap	c		383	(M+1)
N-f-13	NB2	N-f-3	CHO1	Ph	Me	Me	1Me-5-Ind	С		400	(M*+1)
N-f-14	NA	N-f-13		Ph	Me	Н	1Me-5-Ind	С		386	(M+1)
N-f-15	NB2	N-f-5	CHO1	Ph	Me	Me	1Me-5-1HIdz	С		401	(M+1)
N-f-16	NA	N-f-15		Ph	Me	Н	1Me-5-1HIdz	С		387	(M*+1)
N-f-17	NB2	Int.n-7	BRA29	4MePh	Н	Me	2-Nap	С		397	(M+1)
N-f-18	NA	N-f-17		4MePh	Н	Н	2-Nap	С		383	(M++1)
N-f-19	NB2	Int.n-9	BRA29	4MePh	Н	Me	1Me-5-Ind	С		400	(M++1)
N-f-20	NA	N-f-19		4MePh	Н	Н	1Me-5-Ind	С		386	(M++1)
N-f-21	NB2	Int.n-11	BRA29	4MePh	Н	Me	1Me-5-1HIdz	C		401	(M*+1)
N-f-22	NA	N-f-21	Divide	4MePh	H	Н	1Me-5-1HIdz	С		387	(M*+1)
N-f-23	NB2	Int.n-7	BRA60	3MePh	H	Me	2-Nap	C		397	(M+1)
N-f-24	NA.	N-f-23	DIGNOO	3MePh	H	Н	2-Nap	c		383	(M+1)
N-f-25	NB2	Int.n-9	BRA60	3MePh	H	Me	1Me-5-Ind	Ċ		400	(M+1)
N-f-26	NA.	N-f-25	DIMOU	3MePh	H	Н	1Me-5-Ind	C		386	(M+1)
N-f-27	NB2	Int.n-11	BRA60	3MePh	H	Me	1Me-5-1HIdz	č		401	(M+1)
			BRAGU		H	Н	1Me-5-1HIdz	c		387	(M+1)
N-f-28	NA	N-f-27		3MePh						397	
N-f-29	NB2	Int.n-7	BRA59	2MePh	H	Me	2-Nap	C			(M*+1)
N-f-30	NA	N-f-29		2MePh	H	Н	2-Nap			383	(M ⁺ +1)
N-f-31	NB2	Int.n-8	BRA59	2MePh	H	Me	5-Ind	C		386	(M ⁺ +1)
N-f-32	NA	N-f-31		2MePh	Н	Н	5-Ind	С		372	(M+1)
N-f-33	NB2	Int.n-10	BRA59	2MePh	H	Me	5-1HIdz	С		387	(M+1)
N-f-34	NA	N-f-33		2MePh	H	H	5-1HIdz	С		373	(M ⁺ +1)
N-f-35	NB2	Int.n-7	BRA22	4FPh	H	Me	2-Nap	С		401	(M +1)
N-f-36	NA	N-f-35		4FPh	Н	H	2-Nap	С		387	(M+1)
N-f-37	NB2	Int.n-8	BRA22	4FPh	Н	Me	5-Ind	С		390	(M++1)
N-f-38	NA	N-f-37		4FPh	Н	Н	5-Ind	_c		376	(M+1)
N-f-39	NB2	Int.n-9	BRA22	4FPh	Н	Me	1Me-5-Ind	С		404	(M++1)
N-f-40	NA	N-f-39		4FPh	Н	Н	1Me-5-Ind	С		390	(M++1)
N-f-41	NB2	Int.n-7	BRA33	3FPh	Н	Me	2-Nap	С		401	(M*+1)
N-f-42	NA	N-f-41		3FPh	Н	Н	2-Nap	С		387	(M ⁺ +1)
N-f-43	NB2	Int.n-10	BRA33	3FPh	Н	Me	5-1HIdz	С		391	(M++1)
N-f-44	NA	N-f-43		3FPh	Н	Н	5-1HIdz	С		377	(M++1)
N-f-45	NB2	Int.n-11	BRA33	3FPh	Н	Me	1Me-5-1HIdz	С		405	(M*+1)
N-f-46	NA	N-f-45	1	3FPh	Н	Н	1Me-5-1HIdz	C		391	(M+1)
14 1-40	LAM	14 1 49		Lorra	٠:-		1, 0 1,1102	<u> </u>		, 551	(m · 1)

Table-N-F-2

l able-N	$\overline{}$		Γ		Г	_	Т		LCM	IS	
Ехр.	Syn	SM1	SM2	Rz	Ry	Y	AR	method	RTime	N	lass
N-f-47	NB2	Int.n-7	BRA32	2FPh	Н	Me	2-Nap	С		401	(M*+1)
N-f-48	NA	N-f-47		2FPh	Н	Н	2-Nap	С		387	(M+1)
N-f-49	NB2	Int.n-8	BRA32	2FPh	Н	Ме	5-Ind	С		390	(M*+1)
N-f-50	NA	N-f-49		2FPh	Н	Н	5-Ind	С		376	(M*+1)
N-f-51	NB2	Int.n-11	BRA32	2FPh	Н	Me	1Me-5-1HIdz	С		405	$(M^{+}+1)$
N-f-52	NA	N-f-51		2FPh	H	Н	1Me-5-1HIdz	С		391	$(M^{+}+1)$
N-f-53	NB2	Int.n-8	BRA19		Н	Ме	5-Ind	С		402	(M ⁺ +1)
N-f-54	NA	N-f-53		4MeOPh	Н	Н	5-Ind	С		388	$(M^{+}+1)$
N-f-55	NB2	Int.n-10	BRA19		H	Ме	5-1HIdz	С		403	(M ⁺ +1)
N-f-56	NA	N-f-55		4MeOPh	H	H	5-1HIdz	С		389	(M+1)
N-f-57	NB2	Int.n-11	BRA19		Me		1Me-5-1HIdz	С		417	(M+1)
N-f-58	NA	N-f-57		4MeOPh	Ме	Н	1Me-5-1HIdz	С		403	(M*+1)
N-f-59	NB2	Int.n-9	BRA37	3MeOPh	Me	Me	1Me-5-Ind	С		416	(M*+1)
N-f-60	NA	N-f-59		3MeOPh	Me	Н	1Me-5-Ind	С		402	(M ⁺ +1)
N=f-61	NB2	Int.n-10	BRA37	3MeOPh	Me	Me	5-1HIdz	С		403	(M*+1)
N-f-62	NA	N <del>-f</del> -61		3MeOPh	Me	н	5-1HIdz	С		389	(M++1)
N-f-63	NB2	Int.n-11	BRA37	3MeOPh	Н	Me	1Me-5-1HIdz	С		417	(M*+1)
N-f-64	NA	N-f-63	-	3MeOPh	Ξ	Н	1Me-5-1HIdz	С		403	(M ⁺ +1)
N-f-65	NB2	Int.n-7	BRA38	2MeOPh	Ξ	Ме	2-Nap	С		413	(M++1)
N-f-66	NA	N-f-65		2MeOPh	Н	H	2-Nap	С		399	$(M^{+}+1)$
N-f-67	NB2	Int.n-8	BRA38	2MeOPh	Н	Me	5-Ind	С		402	(M+1)
N-f-68	NA	N-f-67		2MeOPh	Н	н	5-Ind	С		388	(M ⁺ +1)
N-f-69	NB2	Int.n-11	BRA38	2MeOPh	Н	Ме	1Me-5-1HIdz	С		417	(M++1)
N-f-70	NA	N-f-69		2MeOPh	Н	Н	1Me-5-1HIdz	С		403	(M+1)
N-f-71	NB2	Int.n-7	BRA41	4CF3Ph	Н	Me	2-Nap	С		451	(M ⁺ +1)
N-f-72	NA	N <del>-f-</del> 71		40F3Ph	Н	Н	2-Nap	С		437	(M*+1)
N-f-73	NB2	Int.n-9	BRA41	4CF3Ph	Н	Me	1Me-5-Ind	С		454	(M*+1)
N-f-74	NA	N-f-73		40F3Ph	Н	н	1Me-5-Ind	С		440	(M++1)
N-f-75	NB2	Int.n-11	BRA41	4CF3Ph	Н	Me	1Me-5-1HIdz	С		455	(M*+1)
N-f-76	NA	N-f-75		4CF3Ph	Н	Н	1Me-5-1HIdz	С		441	(M++1)
N-f-77	NB2	Int.n-8	BRA88	4PhOPh	Н	Me	5-Ind	С		464	(M ⁺ +1)
N-f-78	NA	N-f-77		4PhOPh	Н	Н	5-Ind	C		450	(M ⁺ +1)
N-f-79	NB2	Int.n-9	BRA88	4PhOPh	Н	Me	1Me-5-Ind	C		478	(M+1)
N-f-80	NA	N-f-79		4PhOPh	Н	Н	1Me-5-Ind	Č		464	(M+1)
N-f-81	NB2		BRA88	4PhOPh	Н	Me	5-1HIdz	č		465	(M [†] +1)
N-f-82	NA	N-f-81		4PhOPh	Н	Н	5-1HIdz	Č		451	(M+1)
N-f-83	NB2		BRA61	2CIPh	H	Me	2-Nap	č		417	(M+1)
N-f-84	NA	N-f-83	_,,,,,,,,,	2CIPh	H	Н	2-Nap	c		403	(M+1)
N-f-85	NB2		BRA61	2CIPh	H	Me	1Me-5-Ind	C		420	(M+1)
N-f-86	NA	N-f-85	210101	2CIPh	н	Н	1Me-5-Ind	č		406	(M+1) (M+1)
N-f-87	NB2	Int.n-10	BRA61	2CIPh	н	Me	5-1HIdz	c		407	(M+1) (M+1)
N-f-88	NA	N-f-87	D10401	2CIPh	н	Н	5-1Hidz	c		393	(M+1) (M+1)
N-f-89	NB2	Int.n-7	BDA79	3,5DMePh	н	Me	2-Nap	c		411	(M+1) (M+1)
N-f-90	NA	N-f-89	PLWAY	3,5DMePh	Н	Н	2⊣Nap 2−Nap	- c		397	
N-f-90 N-f-91	NB2		DDATO	3,5DMePh	н	Me	1Me-5-Ind	c		414	(M*+1)
			PLW13								(M*+1)
N-f-92	NA	N-f-91		3,5DMePh	Н	Н	1Me-5-Ind	С		400	(M ⁺ +1)

[Example N-g-33]

Synthesis of methyl 3-[4-cyclopentylamino·3·methyl·5-(naphthalen·2· yl)phenyllpropionate (Compound No. N·e·33) (Synthesis method NB1)

According to the procedure described in the synthesis method of the compound of Example N a 1 (Synthesis method NB) provided that the reaction was carried out for 18 hours, and the column chromatography was performed with hexane ethyl acetate = 4:1), the compound of Example N g 1 (91.6 mg), methyl boronate (140.0 mg, Ald), 2 M aqueous sodium carbonate (300  $\mu$  1) and (Ph₃P)₄Pd (75.5 mg) were reacted and treated to obtain the title compound (Compound No. N-g 33, 41.3 mg).

[Example N-g-251]

Synthesis of methyl 3-[4-(N·methyl·N·cyclopentylamino)·3-(N·methylamino)·5-(naphthalen-2-yl)phenyl]propionate (Compound No. N·g-251) (Synthesis method NNI)

A solution of Compound No. N·g·131 (102 mg) in DMF (3 ml) was added with 60% sodium hydride (7 mg) under ice cooling, and stirred for 10 minutes. This reaction mixture was added with methyl iodide (17  $\mu$  l), stirred for 10 minutes, then warmed to room temperature, and further stirred for 2 hours. The reaction mixture was poured into water, and added with ethyl acetate (30 ml) for extraction. The organic layer was washed successively with saturated aqueous sodium hydrogencarbonate, saturated aqueous ammonium chloride and saturated brine, and dried, and then the solvent was evaporated under reduced pressure. The residue was purified by column chromatography (Quad, hexane-ethyl acetate = 3:1) to obtain the title compound (Compound No. N·g-251, 30 mg).

[Example N-g-285]

Synthesis of methyl 3-[3-(N-dimethylamino)-4-(N-methyl-N-cyclopentylamino)-5(naphthalen-2-yl)phenyl|propionate (Compound No. N-g-285) (Synthesis method

NN2)

A solution of Compound No. N·g-131 (102 mg) in DMF (3 ml) was added with 60% sodium hydride (20 mg) under ice cooling, and stirred for 10 minutes. This reaction mixture was added dropwise with methyl iodide (100  $\mu$  I), stirred for 10 minutes, then warmed to room temperature, and further stirred for 16 hours. The reaction mixture was poured into water, and added with ethyl acetate (30 ml) for extraction. The organic layer was washed successively with saturated aqueous sodium hydrogenerarbonate, saturated aqueous ammonium chloride and saturated brine, and dried, and then the solvent was evaporated under reduced pressure. The residue was purified by column chromatography (Quad, hexane-ethyl acetate = 3:1) to obtain the title compound (Compound No. N·g-285, 80 mg). [Examples N·g-1 to N·g-318]

Typical examples of the compounds of the present invention that can be obtained by reacting and treating corresponding starting compounds using any of the methods described in the present specification including the examples described above are shown in Table N·G·1 to Table N·G·7. In the tables, the compound numbers are mentioned in the columns indicated as "Exp.". In the tables, used methods among the aforementioned synthesis methods are shown in the columns of "Syn" with symbols, the starting compounds 1 are mentioned in the columns of "SM1", and the starting compounds 2 are mentioned in the columns of "SM2".

Zx	
Rz _N	OY
Ry D	Ō

Tablg-N	-G-1	Ry	AR	Ö								
					_	Υ	Zx	AR		LCM	S	
Exp.	Syn	SM1	SM2	Rz	Ry	,	ZX	AR	method	RTime	_	Mass
N-g-1	NB1	Int.n-39	BRA1	cPen	Н	Ме	Br	2-Nap	С		452	(M ⁺ )
N-g-2	NA	N-g-1		cPen	Н	Н	Br	2-Nap	C		438	(M [*] )
N-g-3	NB1	Int.n-39	BRA2	cPen	Н	Ме	Br	5-Ind	С		441	(M ⁺ )
N-g-4	NA	N-g-3		cPen	Н	Н	Br	5-Ind	С		427	(M ⁺ )
N-g-5	NB1	Int.n-39	BRA3	cPen	Н	Me	Br	1Me-5-Ind	С		455	(M ⁺ )
N-g-6	NA	N-g-5		cPen	Н	н	Br	1Me-5-Ind	С		441	(M ⁺ )
N-g-7	NB1	Int_n-39	BRA5	cPen	н	Me	Br	5-1Hldz	С		442	(M*)
N-g-8	NA	N-g-7		cPen	н	Н	Br	5-1HIdz	С		428	(M ⁺ )
N-g-9	NB1	Int.n-39	BRA6	cPen	н	Me	Br	1Me-5-1HIdz	С		456	(M ⁺ )
N-g-10	NA	N-g-9_		cPen	Н	Н	Br	1Me-5-1HIdz	С		442	(M ⁺ )
N-g-11	NB1	Int.n-39	BRA11	cPen	н	Ме	Br	6−Qu	С		453	(M ⁺ )
N-g-12	NA	N-g-11		cPen	Н	H	Br	6Qu	С		439	(M*)
N-g-13	NG2	N-g-1	CHO1	cPen	Me	Me	Br	2-Nap	_ c		466	(M ⁺ )_
N-g-14	NA	N-g-13		cPen	Me	Н	Br	2-Nap	C		452	(M*)
N-g-15	NC2	N-g-5	CH01	cPen	Me	Me	Br	1Me-5-Ind	С		455	(M ⁺ )_
N-g-16	NA	N-g-15		cPen	Ме	Н	Br	1Me-5-Ind	C		441	(M ⁺ )
N-g-17	NB1	Int.n-41	BRA2	nPr	Н	Me	Br	5-Ind	c		415	(M ⁺ )
N-g-18	NA	N-g-17		nPr	Н	Н	Br	5-Ind	С		401	(M ⁺ )_
N-g-19	NB1	Int.n-41	BRA3	nPr	Н	Me	Br	1Me-5-Ind	C		429	(M ⁺ )
N-g-20	NA	N-g-19		nPr	H	н	Br	1Me-5-Ind	С		415	(M ⁺ )
N-g-21	NB1	Int.n-41	BRA5	nPr	Н	Me	Br	5-1HIdz	С		416	(M ⁺ )_
N-g-22	NA	N-g-21		nPr	H	Н	Br	5-1HIdz	С		402	(M ⁺ )_
N-g-23	NB1	Int.n-41	BRA11	nPr	Н	Me	Br	6-Qu	C.		427	(M ⁺ )
N-g-24	NA	N-g-23		nPr	Н	Н	Br	6-Qu	С		413	(M ⁺ )
N-g-25	NB1	Int.n-43	BRA1	iPr	Н	Me	Br	2-Nap	C	ļ	426	(M ⁺ )
N-g-26	NA	N-g-25		iPr	Н	Н	Br	2-Nap	C		412	(M [†] )
N-g-27	NB1	Int.n-43	BRA2	iPr	H.	Me	Br	5-Ind	C		415	(M [†] )
N-g-28	NA	N-g-27		iPr	H	Н	Br	5-Ind	C		401	(M ⁺ )
N-g-29	NB1	Int.n-43	BRA6	iPr	H	Me	Br	1Me-5-1HIdz	C	-	430	(M [†] )
N-g-30	NA	N-g-29		iPr	H	H	Br	1Me-6-1HIdz	<u>°</u>		416	(M ⁺ )
N-g-31	NB1	Int.n-43	BRA10	iPr	H	Me	Br	3-Qu	C		427	(*M) (*M)
N-g-32	NA	N-g-31	-	iPr	H	H	Br	3-Qu	C		388	(M) (M ⁺ +1)
N-g-33	NB1	N-g-1	BRA13	cPen	H	Me	Me	2-Nap	C	-	374	(M+1) (M+1)
N-g-34	NA	N-g-33	2014-	cPen	H	H	Me	2-Nap	c	-	377	(M+1) (M+1)
N-g-35	NB1	N-g-3	BRA13	cPen	H	Me	Me	5-Ind 5-Ind	c	-	363	(M+1) (M+1)
N-g-36	NA	N-g-35	1	cPen	H	H	Me		C	-	391	(M+1)
N-g-37	NB1	N-g-5	BRA13	cPen	H	Me	Me	1Me-5-Ind	c		377	(M+1)
N-g-38	NA	N-g-37	5544	cPen	H	H	Me	1Me-5-Ind 5-1HIdz	c		378	(M*1)
N-g-39	NB1	N-g-7	BRA13	cPen	H	Me	Me	5-1HIdz	c		364	(M*+1)
N-g-40	NA.	N-g-39	DDAGE	cPen	H	H Me	Me	1Me-5-1Hldz	0		392	(M+1)
N-g-41	NB1	N-g-9	BRA13	cPen	뷰	H	Me	1Me-5-1HIdz	c	-	378	(M+1)
N-g-42	NA	N-g-41	01104	cPen	_	-	-		c		405	(M+1)
N-g-43	NC2	N-g-37	CHO1	cPen	Me	Me	Me	1Me-5-Ind	_	-	391	(M+1) (M+1)
N-g-44	NA	N-g-43		cPen	Me	H	Me	1Me-5-Ind	C		1391	(M +1)

Tablg-N-G-2

Table IV			2114	_	_		-	AR		LCM	is	
Exp.	Syn	SM1	SM2	Rz	Ry	Y	Zx	AR	method	RTime	N	ass
N-g-45	NB1	Int.n-77	BRA1	cPen	н	Me	NO2	2-Nap	С		419	(M*+1)
N-g-46		N-g-45		cPen	н	н	NO2	2-Nap	С		405	(M+1)
		Int.n-77	BRA2	cPen	Н	Me	NO2	5-Ind	С		408	(M*+1)
N-e-48		N-g-47		cPen	н	Н	NO2	5-Ind	С		394	(M+1)
N-g-49		Int.n-77	BRA3	cPen	Н	Me	NO2	1Me-5-Ind	c		422	(M++1)
N-g-50		N-g-49		cPen	н	Н	NO2	1Me-5-Ind	С		408	(M++1)
N-g-51	NB1	Int.n-77	BRA5	cPen	н	Me	NO2	5-1HIdz	С		409	(M+1)
N-g-52	NA	N-g-51		cPen	н	Н	NO2	5-1HIdz	С		395	(M+1)
N-g-53	NB1	Int.n-77	BRA6	cPen	н	Me	NO2	1Me-5-1HIdz	c		423	(M ⁺ +1)
N-g-54	NA	N-g-53		oPen	Н	Н	NO2	1Me-5-1Hldz	С		409	(M*+1)
N-g-55	NB1	Int.n-78	BRA1	nPr	Н	Me	NO2	2-Nap	С		393	(M ⁺ +1)
N-g-56	NA	N-g-55		nPr	H	Ŧ	NO2	2-Nap	С		379	(M ⁺ +1)
N-g-57	NB1	Int.n-78	BRA2	nPr	Н	Ме	NO2	5-Ind	С		382	(M+1)
N-g-58	NA	N-g-57		nPr	H	Ŧ	NO2	5-Ind	С		368	(M+1)
N-g-59	NB1	Int.n-78	BRA3	nPr	Н	Me	NO2	1Me-5-Ind	С		396	(M+1)
N-g-60	NA	N-g-59		nPr	Ħ	Ŧ	NO2	1Me-5-Ind	С		382	$(M^{+}+1)$
N-g-61		Int.n-78	BRA5	nPr	H	Me	NO2	5-1Hldz	С		383	(M+1)
N-g-62		N-g-61		nPr	Ξ	H	NO2	5-1HIdz	С		369	(M ⁺ +1)
N-g-63	NB1	Int.n-78	BRA6	nPr	н	Me	NO2	1Me-5-1HIdz	С		397	(M+1)
N-g-64	NA	N-g-63		nPr	н	Н	NO2		С		383	(M+1)
N-g-65		Int.n-79	BRA1	iPr	Ή	Me	NO2	2-Nap	С		393	(M ⁺ +1)
N-g-66	NA	N-g-65		iPr	Ή	H	NO2	2-Nap	C		379	(M*+1)
N-g-67		Int.n-79		iPr	н	Me	NO2	5-Ind	С		382	(M+1)
N-g-68		N-g-67		iPr	H	H	NO2	5-Ind	С		368	(M+1)
N-g-69		Int.n-79	BRA3	iPr	H	Me	NO2	1Me-5-Ind	С		396	(M ⁺ +1)
N-g-70	NA	N-g-69		iPr	н	H	NO2	1Me-5-Ind	С		382	(M+1)
N-g-71		Int.n-79	BRA5	iPr	н	Ме	NO2	5-1 HIdz	С		383	(M*+1)
N-g-72	NA	N-g-71		iPr	н	H	NO2	5-1 HIdz	С		369	(M*+1)
N-g-73	NB1	Int.n-79	BRA6	iPr	H	Me	NO2	1Me-5-1Hldz	С		397	(M*+1)
N-g-74		N-g-73		iPr	Н	Н	NO2	1Me-5-1HIdz	С		383	(M*+1)
N-g-75		Int.n-83	BRA1	cPen	Me	Me	NO2	2-Nap	С		433	(M*+1)
N-g-76		N-g-75		cPen	Me	н	NO2	2-Nap	C		419	(M*+1)
N-g-77		Int.n-83	BRA3	cPen	Me	Me	NO2	1Me-5-Ind	С		436 422	(M+1)
N-g-78	NA	N-g-77		cPen	Me	Н	NO2	1Me-5-Ind	C		437	(M+1)
N-g-79		Int.n-83		cPen	Me	Me	NO2		C		423	(M++1)
N-g-80		N-g-79		cPen	Me	H.	NO2				407	(M+1)
N-g-81		Int.n-84	BRA1	nPr	Ме	Me	NO2	2-Nap	C		393	(M ⁷ +1)
N-g-82	NA	N-g-81	5514	nPr	Me	H	NO2	2-Nap 5-Ind	c	<del></del>	393	(M+1) (M+1)
N-g-83		Int.n-84	BRA2	nPr	Me	Me	NO2	5-Ind	6		382	(M+1)
N-g-84	NA	N-g-83	DOAG	nPr	Me	H			- 6		410	(M+1) (M+1)
N-g-85		Int.n-84	BHA3	nPr	Me		NO2	1Me-5-Ind 1Me-5-Ind	6	<del>                                     </del>	396	(M+1) (M+1)
N-g-86	NA	N-g-85	DDAE	nPr nPr	Me	H Me	NO2	5-1Hldz	Ö	<del> </del>	397	(M+1)
N-g-87	NB1	Int.n-84	BKA5		Me	H	NO2	5-1Hidz	ö		383	(M+1)
N-g-88		N-g-87	BRA6	nPr nPr	Me	Me		1Me-5-1Hldz	ö		411	(M+1)
N-g-89		Int.n-84	BRAG	nPr			NO2	1Me-5-1Hidz	6		397	(M+1)
N-g-90		N-g-89	BRA1	iPr	Me	Me	NO2	2-Nap	č		407	(M*+1)
N-g-91 N-g-92		Int.n-85	DRAI	iPr	Me	H	NO2	2-Nap	č		393	(M°+1)
N-g-92	NA	N-g-91		I IPT	l utc		1102	Z Nap			330	Vin T I

Table-N-G-3

Exp.	Syn	SM1	SM2	Rz	Ry	Υ	Zx	AR		LCA		
Exp.									method	RTime		Mass
N-g-93	NB1	Int.n-85	BRA2	iPr	Me	Me	NO2	5-Ind	С		396	(M ⁺ +1)
N-g-94	NA	N-g-93		iPr	Me	Н	NO2	5-Ind	С		382	(M ⁺ +1)
N-g-95	NB1	Int.n-85	BRA3	iPr	Me	Me	NO2	1Me-5-Ind	o		410	(M ⁺ +1)
N-e-96	NA	N-g-95		iPr	Me	н	NO2	1Me-5-Ind	C		396	(M+1)
N-g-97	NB1	Int.n-85	BRA5	iPr	Me	Me	NO2	5-1Hldz	С		397	(M++1)
N-g-98	NA	N-g-97		iPr	Me	н	NO2	5-1Hldz	С		383	(M ⁺ +1)
N-g-99	NB1	Int.n-85	BRA6	iPr	Me	Me	NO2	1Me-5-1Hldz	С		411	(M +1)
N-g-100	NA	N-g-99		iPr	Me	н	NO2	1Me-5-1Hldz	С		397	(M*+1)
N-e-101	ND1	N-g-45		cPen	H.	Me	NH2	2-Nap	С		389	(M*+1)
N-g-102	NA	N-g-101		cPen	Н	Н	NH2	2-Nap	С		375	(M*+1)
N-g-103	ND1	N-g-47		cPen	Н	Me	NH2	5-Ind	С		378	(M*+1)
N-g-104	NA	N-g-103		cPen	Н	н	NH2	5-Ind	С		364	(M*+1)
N-g-105	ND1	N-g-49		cPen	н	Me	NH2	1Me-5-Ind	С		392	(M*+1)
N-g-106		N-g-105		oPen .	н	Н	NH2	1Me-5-Ind	С		378	(M*+1)
N-g-107		N-g-51		cPen	н	Me	NH2	5-1Hldz	С		379	(M+1)
N-g-108		N-g-107		cPen	н	Н	NH2	5-1Hldz	0		365	(M*+1)
N-g-109		N-g-53		cPen	н	Me	NH2	1Me-5-1Hldz	С		393	(M*+1)
N-g-110		N-g-109		¢Pen	н	н	NH2	1Me-5-1Hldz	О		379	(M*+1
N-g-111		N-g-55		nPr	Н	Me	NH2	2-Nap	С		363	(M+1
N-g-112		N-g-111		nPr	н	Н	NH2	2-Nap	С		349	(M*+1
N-g-113		N-g-57		nPr	н	Me	NH2	5-Ind	С		352	(M*+1
N-g-114		N-g-113		nPr	Н	Н	NH2	5-Ind	С		338	(M+1
N-g-115		N-g-59		nPr	Н	Me	NH2	1Me-5-Ind	С		366	(M*+1
N-g-116		N-g-115		nPr	H	н	NH2	1Me-5-Ind	С		352	(M*+1
N-g-117	ND1	N-g-61		nPr	Н	Me	NH2	5-1Hldz	С		353	(M*+1
N-g-118		N-g-117		nPr	н	Н	NH2	5-1Hldz	С		339	(M*+1
N-g-119		N-g-63		nPr	Н	Me	NH2	1Me-5-1Hldz	C		367	(M+1
N-g-120		N-g-119		nPr	н	н	NH2	1Me-5-1Hldz	0		353	(M+1
N-g-121		N-g-65		iPr	Н	Me	NH2	2-Nap	С		363	(M*+1)
N-g-122		N-g-121		iPr	н	Н	NH2	2-Nap	С		349	(M*+1)
N-g-123		N-g-67		iPr	H	Me	NH2	5-Ind	С		352	(M+1)
N-g-124		N-g-123		iPr	н	Н	NH2	5-Ind	0		338	(M*+1
N-g-125		N-g-69		iPr	Н	Me	NH2	1Me-5-ind	С		366	(M+1
N-g-126		N-g-125	·	iPr	Н	н	NH2	1Me-5-Ind	0		352	(M+1
N-g-127		N-g-71		iPr	Н	Me	NH2	5-1Hldz	C		353	(M++1
N-g-128		N-g-127		iPr	H	Н	NH2	5-1Hldz	C		339	(M+1
N-g-129		N-g-73	i	iPr	H	Me	NH2	1Me-5-1Hldz	c	1	367	(M*+1
N-g-130		N-g-129	<del>                                     </del>	iPr	H	Н	NH2	1Me-5-1Hldz	ō		353	(M+1
N-g-131		N-e-75		cPen	Me	Me	NH2	2-Nap	č		389	(M+1
N-g-132		N-g-131		cPen	Me	н	NH2	2-Nep	ō	1	375	(M+1
N-g-133		N-g-77		cPen	Me	Me	NH2	1Me-5-Ind	č	1	392	(M*+1
N-g-134		N-g-133	<del>                                     </del>	cPen	Me	H	NH2	1Me-5-Ind	č		378	(M+1
N-g-135		N-g-79		cPen	Me	Me	NH2	5-1 Hldz	č	1	379	(M*+1
N-g-135 N-g-136		N-g-135		oPen	Me	H	NH2	5-1Hldz	č	1	365	(M+1
N-g-130		N-g-81	-	cPen	Me	Me	NH2	1Me-5-1HIdz	Č	1	393	(M*+1
		N-g-137			Me	H	NH2	1Me-5-1HIdz	Ö	<del>                                     </del>	379	(M*+1
N-g-138	NA	IN-g-137		cPen	Me		I NH2	IME=3=1F102		L	0/9	101 +1

g-N-G-4

- Table IV				_	_	T.,	Zx	AR		LCN	//S	
Ехр.	Syn	SM1	SM2	Rz	Ry	Y	ZX		method	RTime		Mass
N-g-139	ND1	N-g-83		nPr	Me	Me	NH2	2-Nap	C		363	(M ⁺ +1)
N-g-140	NA	N-g-139		nPr	Me	H	NH2	2-Nap	С		349	(M ⁺ +1)
N-g-141	ND1	N-g-85		nPr	Me	Me	NH2	5-Ind	С		352	(M ⁺ +1)
N-g-142	NA	N-g-141		nPr	Me	H	NH2	5-Ind	С_		338	(M ⁺ +1)
N-g-143		N-g-87		nPr	Me	Me	NH2	1Me-5-Ind	c		366	(M+1)
N-g-144	NA	N-g-143		nPr	Me	H	NH2	1Me-5-Ind	C		352	(M+1)
N-g-145		N-g-89		nPr	Me	Me	NH2	5-1HIdz	C		353	(M ⁷ +1)
N-g-146		N-g-145		nPr	Me	H	NH2	5-1Hldz	_ C		339	(M ⁺ +1)
N-g-147		N-g-91		nPr	Me	Me	NH2	1Me-5-1HIdz	С		367	(M ⁺ +1)
N-g-148		N-g-147		nPr	Me	Н	NH2	1Me-5-1HIdz	С		353	(M+1)
N-g-149	ND1	N-g-93		iPr	Me	Me	NH2	2-Nap	С		363	(M+1)
N-g-150		N-g-149		iPr	Me	H	NH2	2-Nap	С		349	(M+1)
N-g-151		N-g-95		iPr	Me	Me	NH2	1Me-5-Ind	С		366	(M ⁺ +1)
N-g-152		N-g-151		iPr	Me	Н	NH2	1Me-5-Ind	С		352	(M*+1)
N-g-153		N-g-97		iPr	Mo	Me	NH2	5-1Hldz	С		353	(M ⁺ +1)
N-g-154		N-g-153		iPr	Me	Н	NH2	5-1Hldz	C		339	(M*+1)
N-g-155		N-g-99		iPr_	Me	Me	NH2	1Me-5-1HIdz	C	_	367	(M*+1)
N-g-156		N-g-155		iPr	Me	Н	NH2	1Me-5-1Hldz	С		353	(M*+1)
N-g-157		Int.n-80	BRA1	2-Indane	H	Me	NO2	2-Nap	<u> </u>		467	(M ⁺ +1)
N-g-158		N-g-157		2~Indane	Н	H	NO2	2-Nap	С		453	(M ⁺ +1)
N-g-159		Int.n-80	BRA2	2-Indane	H	Me	NO2	5-Ind	C		456	(M*+1)
N-g-160		N-g-159		2-Indane	Н	H	NO2	5-Ind	C		442	(M*+1)
N-g-161		Int.n-80	BRA3	2-Indane	H	Me	NO2	1Me-5-Ind	C		470	(M+1)
N-g-162		N-g-161		2-Indane	Н	Н	NO2	1Me-5-Ind	C	_	456	(M ⁺ +1)
N-g-163		Int.n-80	BRA5	2-Indane	H	Me	NO2	5-1HIdz	C	⊢	457	(M*+1)
N-g-164		N-g-163		2-Indane	H	H	NO2	5-1Hldz	C	-	443	(M ⁺ +1)
N-g-165		Int.n=80	BRA6	2-Indane	H	Me	NO2	1Me-5-1HIdz	C		457	(M ⁺ +1)
N-g-166		N-g-165		2-Indane	Н	Н	NO2	1Me-5-1HIdz	C		422	(M*+1)
N-g-167		Int.n-81	BRA2	cHex	Н	Me	NO2	5-Ind	C		408	(M ⁺ +1)
N-g-168		N-g-167		cHex	H	H	NO2	5-Ind	C	-	436	(M+1)
N-g-169		Int.n=81	BRA3	cHex	H	Me	NO2	1Me-5-Ind	č	<del></del>	422	(M ⁺ +1) (M ⁺ +1)
N-g-170		N-g-169		cHex	H	H	NO2	1Me-5-Ind			423	
N-g-171		Int.n-81	BRA5	cHex	H	Me	NO2 NO2	5-1Hldz 5-1Hldz	C	-	409	(M*+1) (M*+1)
N-g-172		N-g-171		cHex	H		NO2	1Me-5-1Hldz	6	-	437	(M*+1)
N-g-173		Int.n-81		cHex	H	Me	NO2	1Me-5-1HIdz	č	<del></del>	423	(M+1)
N-g-174		N-g-173		cHex	H	Me	NO2	2-Nap	<del>  </del>	-	447	(M+1)
N-g-175		Int.n-82	BRA1	2(Me)cHex	H	H	NO2	2-Nap	- 6		433	(M+1)
N-g-176		N-g-175	5546	2(Me)cHex	H			2-Nap 5-Ind	Ö		436	(M+1)
N-g-177		Int.n-82	BRA2	2(Me)cHex		Me	NO2	5-Ind	8	-	422	(M+1)
N-g-178		N-g-177		2(Me)cHex	H.	H	NO2	1Me-5-Ind	c	-	450	(M+1)
N-g-179		Int.n-82	BRA3	2(Me)cHex	<u>  #</u>	Me	NO2 NO2	1Me-5-Ind	6	<del> </del>	436	(M+1).
N-g-180		N-g-179	2016	2(Me)cHex	井	Me	NO2	5-1Hldz	č		437	(M+1)
N-g-181		Int.n-82	BRA5	2(Me)cHex				5-1Hldz	č		423	(M+1)
N-g-182		N-g-181	0046	2(Me)cHex	H	H Me	NO2 NO2	1Me-5-1Hldz	c		451	(M+1)
N-g-183		Int.n-82		2(Me)cHex				1Me-5-1Hldz	c	-	437	(M ⁺ +1)
N-g-184	NA	N-g-183		2(Me)cHex	Н	Н	NO2	I IME-0-IFIGE			1 707	(W + )

Tablg-N-G-5

T T T		0114		-	_	T	-			LCN	MS.	
Exp.	Syn	SM1	SM2	Rz	Ry	Y	Zx	AR	method	RTime		Mass
N-g-185	NB1	Int.n-86	BRA1	2-Indane	Me	Me	NO2	2-Nap	C		481	(M+1)
N-g-186	NA	N-g-185		2-Indane	Me	н	NO2	2-Nap	С		467	(M ⁺ +1)
N-g-187	NB1	Int.n-86	BRA3	2-Indane	Me	Me	NO2	1Me-5-Ind	C		484	(M+1)
N-g-188	NΑ	N-g-187		2-Indane	Me	Н	NO2	1Me-5-ind	c		470	(M+1)
N-g-189	NB1	Intn-86	BRA5	2-Indane	Me	Me	NO2	5-1Hldz	C		471	(M*+1)
N-g-190	NA	N-g-189		2-Indane	Me	н	NO2	5-1Hldz	С		457	(M+1)
N-g-191	NB1	Int.n-86	BRA6	2-Indane	Me	Me	NO2	1Me-5-1Hldz	С		485	(M ⁺ +1)
N-g-192	NA	N-g-191		2-Indane	Me	н	NO2	1Me-5-1HIdz	С		471	(M+1)
N-g-193	NB1	Int.n-87	BRA1	cHex	Me	Me	NO2	2-Nap	С		447	(M+1)
N-g-194	NA	N-g-193		cHex	Me	н	NO2	2-Nap	С		433	(M ⁺ +1)
N-g-195	NB1	Int.n=87	BRA3	cHex	Me	Me	NO2	1Me-5-Ind	С		450	(M*+1)
N-g-196	NA	N-g-195		cHex	Me	н	NO2	1Me-5-Ind	С		436	(M+1)
N-g-197		Int.n-87	BRA5	cHex	Me	Me	NO2	5-1HIdz	c		437	(M*+1)
N-g-198	NA	N-g-197		cHex	Me	н	NO2	5-1HIdz	С		423	(M+1)
N-g-199	NB1	Int.n-87	BRA6	cHex	Me	Me	NO2	1Me-5-1HIdz	C		451	(M ⁺ +1)
N-g-200		N-g-199		cHex	Me	н	NO2	1Me-5-1Hidz	C		437	(M+1)
N-g-201	NB1	Int.n-88	BRA1	4(Me)cHex	Me	Me	NO2	2-Nap	c		461	(M*+1)
N-g-202	NA	N-g-201		4(Me)cHex	Me	н	NO2	2-Nap	C		447	(M++1)
N-g-203		Int.n-88	BRA3	4(Me)cHex	Me	Me	NO2	1Me-5-Ind	Ċ		464	(M+1)
N-g-204	NA	N-g-203		4(Me)cHex	Me	н	NO2	1Me-5-Ind	C		450	(M++1)
N-g-205		Int.n-88	BRA6	4(Me)cHex	Me	Me	NO2	1Me-5-1Hldz	C		465	(M*+1)
N-g-206		N-g-205		4(Me)cHex	Me	н	NO2	1Me-5-1Hidz	C		451	(M+1)
N-g-207		N-g-159		2-Indane	Н	Me	NH2	5-Ind	С		426	(M+1)
N-g-208	NA	N-g-207		2-Indane	Н	н	NH2	5-Ind	С		412	(M+1)
N-g-209	ND1	N-g-161		2~Indane	Н	Me	NH2	1Me-5-Ind	С		440	(M+1)
N-g-210	NA	N-g-209		2-Indane	Н	н	NH2	1Me-5-Ind	0		426	(M*+1)
N-g-211	ND1	N-g-163		2-Indane	Н	Me	NH2	5-1Hldz	С		427	(M+1)
N-g-212	NA	N-g-211		2-Indane	Н	н	NH2	5-1Hldz	o		413	(M+1)
N-g-213	ND1	N-g-165		2-Indane	Н	Me	NH2	1Me-5-1HIdz	C		441	(M ⁺ +1)
N-g-214	NA	N-g-213		2-Indane	Н	н	NH2	1Me-5-1Hldz	С		427	(M*+1)
N-g-215	ND1	N-g-167		cHex	Н	Me	NH2	5-Ind	С		392	(M*+1)
N-g-216	NA	N-g-215		cHex ·	н	н	NH2	5-Ind	О		378	(M+1)
N-g-217	ND1	N-g-169		cHex	Н	Me	NH2	1Me-5-Ind	С		406	(M+1)
N-g-218	NA	N-g-217		oHex	Н	н	NH2	1Me-5-Ind	. O		392	(M ⁺ +1)
N-g-219	ND1	N-g-171		cHex	Н	Me	NH2	5-1 HIdz	C		393	(M*+1)
N-g-220	NA	N-g-219		cHex	н	н	NH2	5-1HIdz	С		379	(M*+1)
N-g-221	ND1	N-g-173		cHex	Н	Me	NH2	1Me-5-1HIdz	С		407	(M+1)
N-g-222	NA	N-g-221		cHex	н	н	NH2	1Me-5-1Hldz	С		393	(M+1)
N-g-223	ND1	N-g-177		4(Me)cHex	Н	Me	NH2	5-Ind	О		406	(M+1)
N-g-224	NA	N-g-223		4(Me)cHex	Н	н	NH2	5-Ind	С		392	(M*+1)
N-g-225		N-g-179		4(Me)cHex	Н	Me	NH2	1Me-5-Ind	С		420	(M+1)
N-g-226	NA	N-g-225		4(Me)cHex	н	н	NH2	1Me-5-Ind	С		406	(M+1)
N-g-227	ND1	N-g-181		4(Me)cHex	Н	Me	NH2	5-1HIdz	С		407	(M+1)
N-g-228	NA	N-g-227		4(Me)cHex	Н	н	NH2	5-1HIdz	С		393	(M+1)
N-g-229	ND1	N-g-183		4(Me)cHex	Н	Me	NH2	1Me-5-1HIdz	C		421	(M ⁺ +1)
N-g-230	NA	N-g-229		4(Me)cHex	н	Н	NH2	1Me=5=1HIdz	С		407	(M++1)

Table-N-G-6

Table IV			SM2		_	Y	-	AR		LCN	AS.	
Exp.	Syn	SM1	SM2	Rz	Ry	ľ	Zx		method	RTime		Mass
N-g-231	ND1	N-g-185		2-Indane	Me	Me	NH2	2-Nap	o		451	(M*+1)
N-g-232	NA	N-g-231		2-Indane	Mc	Н	NH2	2-Nap	С		437	(M+1)
N-g-233		N-g-187		2-Indane	Me	Me	NH2	1Me-5-ind	_ c		454	(M ⁺ +1)
N-g-234		N-g-233		2-Indane	Me	Н	NH2	1Me-5-Ind	С_		440	(M+1)
N-g-235	ND1	N-g-191		2-Indane	Me	Me	NH2	1Me=5-1HIdz	С		455	(M+1)
N-g-236	NA	N-g-235		2-Indane	Me	н	NH2	1Me-5-1HIdz	С		441	(M ⁺ +1)
N-g-237		N-g-193		cHex	Me	Me	NH2	2-Nap	С		417	(M ⁺ +1)
N-g-238		N-g-237		cHex	Me	Н	NH2	2-Nap	С		403	(M*+1)
N-g-239		N-g-195		cHex	Me	Me	NH2	1Me-5-Ind	С		420	(M ⁺ +1)
N-g-240	NA	N-g-239		cHex	Me	Н	NH2	1Me-5-Ind	С		406	(M*+1)
N-g-241		N-g-197		cHex	Me	Me	NH2	5-1HIdz	С		407	(M ⁺ +1)
N-g-242		N-g-241		cHex	Me	Н	NH2	5-1HIdz	c		393	(M*+1)
N-g-243		N-g-199		cHex	Me	Me	NH2	1Me-5-1HIdz	С		421	(M+1)
N-g-244	NA	N-g-243		cHex	Me	Н	NH2	1Me-5-1HIdz	С		407	(M ⁺ +1)
N-g-245		N-g-201		4(Me)cHex	Me	Me	NH2	2Nap	С		431	(M*+1)
N-g-246	NA	N-g-245		4(Me)cHex	Me	H	NH2	2-Nap	С		417	(M ⁺ +1)
N-g-247	ND1	N-g-203		4(Me)cHex	Me	Me	NH2	1Me-5-Ind	С		434	(M ⁺ +1)
N-g-248	NA	N-g-247		4(Me)cHex	Me	H	NH2	1Me-5-Ind	С		420	(M+1)
N-g-249	ND1	N-g-205		4(Me)cHex	Me	Me	NH2	1Me-5-1Hldz	С		435	(M ⁺ +1)
N-g-250	NA	N-g-249		4(Me)cHex	Me	H	NH2	1Me-5-1HIdz	С		421	(M ⁺ +1)
N-g-251		N-g-131	CH3I	oPen	Me	Me	NHMe	2-Nap	С		417	(M ⁺ +1)
N-g-252	NA	N-g-251		cPen	Me	H	NHMe	2-Nap	С		403	(M ⁺ +1)
N-g-253		N-g-133	CH3I	cPen	Мо	Me	NHMe	1Me-5-Ind	C		420	(M+1)
N-g-254	NA	N-g-253		cPen	Me	H	NHMe	1Me-5-Ind	С		406	(M ⁺ +1)
N-g-255		N-g-137	CH ₃ I	cPen	Me	Me	NHMe	1Me-5-1HIdz	С		421	(M ⁺ +1)
N-g-256		N-g-255		cPen	Me	H	NHMe	1Me-5-1HIdz	С		407	(M ⁺ +1)
N-g-257	NN1	N-g-139	CH ₃ I	nPr	Me	Me	NHMe	2-Nap	C_		391	(M*+1)
N-g-258	NA	N-g-257		nPr	Me	H	NHMe	2-Nap	С		377	(M+1)
N-g-259	NN1	N-g-143	CH ₃ I	nPr	Me	Me	NHMe	1Me-5-Ind	С		394	(M ⁺ +1)
N-g-260	NA	N-g-259		nPr	Me	Н	NHMe	1Me-5-Ind	0		380	(M ⁺ +1)
N-g-261	NN1	N-g-147	CH3I	nPr ·	Me	Me	NHMe	1Me-5-1HIdz	c		395	(M+1)
N-g-262	NA	N-g-261		nPr	Me	Н	NHMe	1Me-5-1Hldz	C		381	(M*+1)
N-a-263	NN1	N-g-149	CH ₃ I	iPr	Me	Me	NHMe	2-Nap			391	(M+1)
N-g-264	NA	N-g-263		iPr	Me	H	NHMe	2-Nap	С	<u> </u>	-377	(M+1)
N-g-265		N-g-151	CH ₃ I	iPr	Me	Me	NHMe	1Me-5-Ind	С		394	(M*+1)
N-g-266	NA	N-g-265		iPr	Me	Н	NHMe	1Me-5-Ind	С		380	(M+1)
N-g-267	NN1	N-g-155	CH ₃ I	iPr	Me	Ме	NHMe	1Me-5-1Hldz	C	-	395	(M*+1)
N-g-268	NA.	N-g-267		iPr	Me	Н	NHMo	1Me-5-1Hldz	C_		381	(M*+1)
N-g-269		N-g-231	OH ₃ I	2-Indane	Me	Me	NHMe	2-Nap	С		465	(M ⁺ +1)
N-g-270	NA	N-g-269		2-Indane	Mo	Н	NHMe	2-Nap	<u>c</u>		451	(M*+1)
N-g-271	NN1	N-g-233	CH3I	2-Indane	Me	Me	NHMe	1Me-5-Ind	0	<u> </u>	468	(M+1)
N-g-272	NA.	N-g-271		2-Indane	Me	H	NHMe	1Me-5-Ind	С		454	(M*+1)
N-g-273	NN1	N-g-235	CHJ	2-Indane	Me	Me	NHMe	1Me-5-1Hldz	С		469	(M°+1)
N-g-274	NA	N-g-273		2-Indane	Me	H	NHMe	1Me-5-1Hldz	С		455	(M*+1)
N-g-275	NN1	N-g-237	CH ₃ I	cHex	Me	Me	NHMe	2-Nap	С		431	(M*+1)
N-g-276	NA	N-g-275		cHex	Me	H	NHMe	2-Nap	C		417	(M ⁺ +1)

Tablg-N-G-7

Table IV		0144	2242		_	T.,	-	40	Γ	LCN	AS .	
Exp.	Syn	SM1	SM2	Rz	Ry	Υ	Zx	AR	method	RTime		lass
N-g-277	NN1	N-g-239	CH3I	cHex	Me	Me	NHMe	1Me-5-Ind	С		434	(M+1)
N-g-278	NA	N-g-277		cHex	Me	H	NHMe	1Me-5-Ind	0		420	(M ⁺ +1)
N-g-279		N-g-245	CH3I	4Me-cHex	Me	Me	NHMe	2-Nap	С		445	(M*+1)
N-g-280		N-g-279		4Me-cHex	Me	н	NHMe	2-Nap	С		431	(M*+1)
N-g-281		N-g-247	CH ₃ I	4Me-cHex	Me	Ме	NMe ₂	1Me-5-Ind	С		448	(M ⁺ +1)
N-g-282		N-g-281		4Me-cHex	Ме	н	NMe ₂	1Me-5-Ind	С		434	(M*+1)
N-g-283		N-g-249	CH3I	4Me~cHex	Me	Me	NMc ₂	1Me-5-1HIdz	0		449	(M*+1)
N-g-284	NA	N-g-283		4Me-cHex	Me	Н	NMe ₂	1Me-5-1HIdz	С		435	(M ⁺ +1)
N-g-285		N-g-131	CH ₃ I	cPen	Me	Me	NMe ₂	2-Nap	С		431	(M*+1)
N-g-286		N-g-285		cPen	Me	Н	NMe ₂	2-Nap	0		417	(M*+1)
N-g-287		N-g-133	CH3I	cPen	Me	Me	NMe ₂	1Me-5-Ind	С		434	(M°+1)
N-g-288		N-g-287		cPen	Me	Н	NMe ₂	1Me-5-Ind	С		420	(M*+1)
N-g-289		N-g-137	CH ₃ I	oPen .	Me	Me	NMe ₂	1Me-5-1HIdz	С		435	(M*+1)
N-g-290		N-g-289		cPen	Me	Н	NMe ₂	1Me-5-1HIdz	С		421	(M+1)
N-g-291		N-g-139	CH ₂ I	nPr	Me	Me	NMc ₂	2-Nap	С		405	(M+1)
N-g-292		N-g-291		nPr	Me	Н	NMe ₂	2-Nap	С		391	(M ⁺ +1)
N-g-293		N-g-143	CH ₃ I	nPr	Me	Me	NMe ₂	1Me-5-Ind	С		408	(M+1)
V-g-294		N-g-293		nPr	Me	Н	NMe ₂	1Me-5-Ind	C		394	(M+1)
V-g-295	NN2	N-g-147	CH3I	nPr	Me	Me	NMe ₂	1Me-5-1HIdz	C		409	(M ⁺ +1)
V-g-296		N-g-295		nPr	Me	н	NMe ₂	1Me-5-1HIdz	0		395	(M*+1)
V-g-297	NN2	N-g-149	CH3I	iPr	Me	Me	NMe ₂	2-Nap	C		405	(M+1)
N-g-298	NA	N-g-297		iPr	Ме	Н	NMe ₂	2-Nap	0		391	(M ⁺ +1)
N-g-299	NN2	N-g-151	CH ₃ I	iPr	Me	Me	NMe ₂	1Me-5-Ind	С		408	(M*+1)
N-g-300	NA	N-g-299		iPr	Me	Н	NMe ₂	1Me-5-Ind	o		394	(M*+1)
N-g-301	NN2	N-g-155	CH3	iPr	Ме	Me	NMe ₂	1Me-5-1HIdz	О		409	(M*+1)
N-g-302	NA	N-g-301		iPr	Me	Н	NMe ₂	1Me-5-1HIdz	0		395	(M+1)
N-g-303	NN2	N-g-231	CH3	2Indane	Me	Me	NMe ₂	2-Nap	0		479	(M ⁺ +1)
N-g-304		N-g-303		2Indane	Me	Н	NMe ₂	2-Nap	С		465	(M ⁺ +1)
N-g-305	NN2	N-g-233	CH3I	2Indane	Me	Me	NMc ₂	1Me-5-Ind	С		482	(M+1)
N-g-306		N-g-305		2Indane	Ме	Н	NMe ₂	1Me-5-Ind	О		468	(M+1)
N-g-307		N-g-235	CH ₃ I	2Indane	Me	Me	NMe ₂	1Me-5-1HIdz	С		483	(M*+1)
N-g-308		N-g-307		2Indane	Me	Н	NMe ₂	1Me-5-1HIdz	О		469	
N-g-309	NN2	N-g-237	CH3I	cHex	Мс	Mc	NMe ₂	2-Nap	С		445	(M ⁺ +1)
N-g-310	NA	N-g-265		cHex	Me	Ξ	NMe ₂	2-Nap	С		431	(M*+1)
N-g-311	NN2	N-g-239	CH ₃ I	cHex	Ме	Ме	NMe ₂	1Me-5-Ind	О		448	(M ⁺ +1)
N-g-312	NA	N-g-267		cHex	Me	Н	NMe ₂	1Me-5-Ind	С		434	(M*+1)
N-g-313	NN2	N-g-245	CH ₃ I	4Me-cHex	Me	Me	NMe ₂	2-Nap	О		459	(M*+1)
N-g-314		N-g-269		4Me-cHex	Me	Н	NMe ₂	2-Nap	0		445	(M*+1)
N-g-315	NN2	N-g-247	CH ₃ I	4Me-cHex	Me	Me	NMe ₂	1Me-5-Ind	С		462	(M°+1)
N-g-316		N-g-271		4Me~cHex	Me	Н	NMez	1Me-5-Ind	0		448	(M++1)
N-g-317	NN2	N-g-249		4Me-cHex	Me	Me	NMez	1Me-5-1HIdz	С		463	(M*+1)
N-g-318		N-g-273		4Me~cHex	Me	Н	NMe ₂	1Me-5-1HIdz	C		449	(M+1)

# [Examples N-h-1 to N-h-458]

Typical examples of the compounds of the present invention that can be obtained by reacting and treating corresponding starting compounds using any of the methods described in the present specification are shown in Table N·H·1 to Table N·H·10. In the tables, the compound numbers are mentioned in the columns indicated as "Exp.". In the tables, corresponding methods among the aforementioned synthesis methods are shown in the columns of "Syn" with symbols,

the starting compounds 1 are mentioned in the columns of "SM1", and the starting compounds 2 are mentioned in the columns of "SM2".

Rz ZX O Y Ry AR

Exp. Syn SM1 SM2 Rz. Ry Y Zx					
	AR		LCM		
		method	RTime		Mass
N-h-1 NB1 Int.n-89 BRA1 Bn H Me NO2	2-Nap	_ C		441	(M*+1)
N-h-2 NA N-h-1 Bn H H NO2	2-Nap	C		427	(M ⁺ +1)
N-h-3 NB1 Int.n-89 BRA2 Bn H Me NO2	5-Ind	0		430	_(M+1)
N-h-4 NA N-h-3 Bn H H NO2	5-Ind	C		416	(M+1)
N-h-5 NB1 Int.n-89 BRA3 Bn H Me NO2	1Me-5-Ind	0		444	(M+1)
N-h-6 NA N-h-5 Bn H H NO2	1Me-5-Ind	С		430	(M+1)
N-h-7 NB1 Int.n-89 BRA5 Bn H Me NO2	5-1Hldz	O		431	(M+1)
N-h-8 NA N-h-7 Bn H H NO2	5-1 HIdz	С		417	(M*+1)
	1Me-5-1Hldz	С		445	(M*+1)
	1Me-5-1Hidz	С		431	(M ⁺ +1)
N-h-11 NB1 Intn-89 BRA10 Bn H Me NO2	3-Qu	С		442	(M ⁺ +1)
N-h-12 NA N-h-11 Bn H H NO2	3-Qu_	О		428	(M ⁺ +1)
N-h-13 NB1 Intn-89 BRA11 Bn H Me NO2	6-Qu	C		442	(M*+1)
N-h-14 NA N-h-13 Bn H H NO2	6-Qu	0		428	(M++1)
N-h-15 NB1 Int.n-89 BRA12 Bn H Mc NO2	6-IQ	С		442	(M ⁺ +1)
N-h-16 NA N-h-15 Bn H H NO2	6-IQ	С		428	(M+1)
N-h-17 NB1 Intn-90 BRA1 4FBn H Me NO2	2-Nap	0		459	(M+1)
N-h-18 NA N-h-17 4FBn H H NO2	2-Nap	C		445	(M*+1)
N-h-19 NB1 Intn-90 BRA2 4FBn H Me NO2	5-Ind	0		448	(M++1)
N-h-20 NA N-h-19 4FBn H H NO2	5-Ind	С		434	(M*+1)
N-h-21 NB1 Int.n-90 BRA3 4FBn H Me NO2	1Me-5-Ind	С		462	(M+1)
N-h-22 NA N-h-21 4FBn H H NO2	1Me-5-Ind	С		448	(M*+1)
N-h-23 NB1 Intn-90 BRA5 4FBn H Me NO2	5-1HIdz	0		449	(M+1)
N-h-24 NA N-h-23 4FBn H H NO2	5-1HIdz	0		435	(M+1)
N-h-25 NB1 Int.n-90 BRA6 4FBn H Me NO2	1Me-5-1Hldz	С		463	(M*+1)
N-h-26 NA N-h-25 4FBn H H NO2	1Me-5-1Hldz	С		449	(M*+1)
N-h-27 NB1 Int.n-91 BRA2 2FBn H Me NO2	5-Ind	С		448	(M*+1)
N-h-28 NA N-h-27 2FBn H H NO2	5-Ind	0		434	(M ⁺ +1)
N-h-29 NB1 Int.n-91 BRA3 2FBn H Me NO2	1Me-5-Ind	С		462	(M*+1)
N-h-30 NA N-h-29 2FBn H H NO2	1Me-5-Ind	С		448	(M*+1)
N-h-31 NB1 Intn-91 BRA5 2FBn H Me NO2	5-1HIdz	С		449	(M°+1)
N-h-32 NA N-h-31 2FBn H H NO2	5-1HIdz	С		435	(M ⁺ +1)
N-h-33 NB1 Int.n-91 BRA6 2FBn H Me NO2	1Ma-5-1Hldz	С		463	(M+1)
	1Me=5-1Hldz	С		449	(M*+1)
N-h-35 NB1 Int.n-92 BRA2 3FBn H Me NO2	5-Ind	C		448	(M++1)
N-h-36 NA N-h-35 3FBn H H NO2	5-Ind	C		434	(M+1)
N-h-37 NB1 Int.n-92 BRA3 3FBn H Me NO2	1Me-5-Ind	C		462	(M*+1)
N-h-38 NA N-h-37 3FBn H H NO2	1Me-5-Ind	C		448	(M°+1)
N-h-39 NB1 Int.n-92 BRA5 3FBn H Me NO2	5-1HIdz	C		449	(M*+1)
N-h-40 NA N-h-39 3FBn H H NO2	5-1HIdz	č		435	(M*+1)
	1Me-5-1Hldz	c		463	(M*+1)
	1Me-5-1Hldz	č		449	(M+1)
N-h-43 NB1 Intn-93 BRA1 2,3DFBn H Me NO2	2-Nap	C.		477	(M+1)
N-h-44 NA N-h-43 23DFBn H H NO2	2-Nap	č		463	(M*+1)
N-h-45 NB1 Intn-93 BRA3 2.3DFBn H Me NO2	1Me-5-Ind	C		480	(M*+1)
N-h-46 NA N-h-45 2,3DFBn H H NO2	1Me-5-Ind	č		466	(M°+1)

## Table-N-H-2

F		SM1	SM2	Rz	Rv	Y	Zx	AR		LCh	1S	
Exp.	Syn	SWI	Omz	I TZ	rty	١ ١	LX	An	method	RTime	, b	Mass
N-h-47	NB1	Int.n-93	BRA5	2,3DFBn	Н	Me	NO2	5-1Hldz	C		467	(M ⁺ +1)
N-h-48	NA	N-h-47		2,3DFBn	H	Н	NO2	5-1Hldz	С		453	(M ⁺ +1)
N-h-49	NB1	Int.n-93	BRA6	2,3DFBn	H	Me	NO2	1Me-5-1HIdz	С		481	(M ⁺ +1)
N-h-50	NA	N-h-49		2,3DFBn	Н	Н	NO2	1Me-5-1Hldz	С		467	(M+1)
N-h-51	NB1	Intn-94	BRA2	3,4DFBn	H	Me	NO2	5-Ind	С		466	(M+1)
N-h-52	NA	N-h-51		3,4DFBn	Н	Н	NO2	5-Ind	C		452	(M+1)
N-h-53	NB1	Int.n-94	BRA3	3,4DFBn	H	Me	NO2	1Me-5-Ind	C		480	(M ⁺ +1)
N-h-54	NA	N-h-53		3,4DFBn	H	Н	NO2	1Me-5-Ind	С		466	(M ⁺ +1)
N-h-55	NB1	Int.n-94	BRA6	3,4DFBn	H	Me	NO2	1Me-5-1Hldz	С		481	(M ⁺ +1)
N-h-56	NA	N-h-55		3,4DFBn	Н	H	NO2	1Me-5-1Hldz	C		467	(M+1)
N-h-57	NB1	Int.n-95	BRA1	4PhBn	H	Me	NO2	2-Nap	C		517	(M ⁺ +1)
N-h-58	NA	N-h-57		4PhBn	H	Н	NO2	2-Nap	С		503	(M+1)
N-h-59	NB1	Intn-95	BRA2	4PhBn	H	Me	NO2	5-Ind	С		506	(M ⁺ +1)
N-h-60	NA	N-h-59		4PhBn	H	Н	NO2	5-Ind	О		492	(M+1)
N-h-61	NB1	Int.n-95	BRA3	4PhBn	Н	Me	NO2	1Me-5-Ind	С		520	(M +1)
N-h-62	NA	N-h-61		4PhBn	H	Н	NO2	1Me-5-Ind	С		506	(M++1)
N-h-63	NB1	Int.n-95	BRA5	4PhBn	Н	Me	NO2	5-1Hldz	C		507	(M+1)
N-h-64	NA.	N-h-63		4PhBn	Н	,H	NO2	5-1Hldz	0		493	(M ⁺ +1)
N-h-65	NB1	Int.n-96	BRA1	2CF3Bn	Н	Me	NO2	2-Nap	С		509	(M++1)_
N-h-66	NA	N-h-65		2CF3Bn	H	Н	NO2	2-Nap	С		495	(M++1)
N-h-67	NB1	Int.n-96	BRA2	2CF3Bn	Н	Me	NO2	5-Ind	С_		498	(M'+1)
N-h-68	NA	N-h-67	-	20F3Bn	H	H	NO2	5- <b>i</b> nd	C		484	$(M^{+}1)$
N-h-69	NB1	Int.n-96	BRA3	2CF3Bn	H	Me	NO2	1Me-5-Ind	C		512	(M++1)
N-h-70	NA	N-h-69		2CF3Bn	Н	Н	NO2	1Me-5-Ind	0_		498	(M+1)
N-h-71	NB1	Int.n-96	BRA5	2CF3Bn	Н	Me	NO2	5-1HIdz	0_		499	(M ⁺ +1)
N-h-72	NA	N-h-71		2CF3Bn	Н	Н	NO2	5-1HIdz	C		485	(M++1)
N-h-73	NB1	Int.n-97	BRA2	2-TF	H	Me	NO2	5-Ind	0		436	(M+1)
N-h-74	NA	N-h-73		2-TF	H	Н	NO2	5-Ind	0		422	(M++1)
N-h-75	NB1	Int.n-97	BRA3	2-TF	Н	Me	NO2	1Me-5-Ind	C		450	(M*+1)
N-h-76	NA	N-h-75		2-TF	H	Н	NO2	1Me-5-Ind	С		436	(M ⁺ +1)
N-h-77	NB1	Int.n-97	BRA6	2-TF	H	Me	NO2	1Me-5-1HIdz	С		451	(M*+1)
N-h-78	NA	N-h-77		2-TF	H	H	NO2	1Me-5-1HIdz	C_		437	(M*+1)
N-h-79	NB1	Int.n=98	BRA2	3-TF	H	Me	NO2	5-Ind	0		436	(M ⁺ +1)
N-h-80	NA	N-h-79		3-TF	H	Н	NO2	5-Ind	С		422	(M°+1)
N-h-81	NB1	Int.n-98	BRA3	3-TF	Н	Me	NO2	1Me-5-Ind	0_		450	(M ⁺ +1)
N-h-82	NA	N-h-81		3-TF	Н	Н	NO2	1Me-5-Ind	С		436	(M*+1)
N-h-83	NB1	Int.n-98	BRA5	3-TF	Н	Me	NO2	5-1Hldz	С		437	(M*+1)
N-h-84	NA	N-h-83		3-TF	Н	Н	NO2	5-1HIdz	C		423	(M+1)
N-h-85	NB1	Int.n-98	BRA6	3-TF	Н	Me	NO2	1Me-5-1HIdz	C		451	(M*+1)
N-h-86	NA	N-h-85		3-TF	Н	Н	NO2	1Me-5-1HIdz	0_		437	(M+1)
N-h-87	NB1	Int.n-99	BRA1	2-FR	Н	Me	NO2	2Nap	С		459	(M ⁺ +1)
N-h-88	NA	N-h-87		2-FR	Н	Н	NO2	2Nap	С		445	(M ⁺ +1)
N-h-89	NB1	Int.n-99	BRA2	2-FR	H	Me	NO2	5-Ind	С		420	(M ⁺ +1)
N-h-90	NA	N-h-89		2-FR	Н	Н	NO2	5-Ind	С		406	(M*+1)
N-h-91	NB1	Int.n-99	BRA6	2-FR	Н	Me	NO2	1Me-5-1Hldz	С		434	(M ⁺ +1)
N-h-92	NA	N-h-91		2-FR	Н	Н	NO2	1Me-5-1HIdz	С		420	(M ⁺ +1)

Table-N-H-3

Exp.	Svn	SM1	SM2	Rz	Rv	Υ	Zx	AR		LCN	AS .	
Exp.	oyn	2MI	SMZ	rtz.	пу	' '	2.0	AN	method	RTime		Mass
N-h-93	NB1	Int.n-100	BRA1	Bn	Me	Me	NO2	2-Nap	С		455	(M+1)
N-h-94	NA	N-h-93		Bn	Me	H	NO2	2-Nap	С		427	(M+1)
N-h-95	NB1	Int.n-100	BRA2	Bn	Ме	Me	NO2	5-Ind	0		430	(M+1)
N-h-96	NA	N-h-95		Bn	Me	H	NO2	5-Ind	С		416	(M*+1)
N-h-97	NB1	Int.n=100	BRA3	Bn	Me	Me	NO2	1Me-5-Ind	С		444	(M ⁺ +1)
N-h-98	NA	N-h-97		Bn	Me	Н	NO2	1Me-5-Ind	С		430	(M*+1)
N-h-99	NB1	Int.n-100	BRA5	Bn	Me	Ме	NO2	5-1HIdz	С		431	(M*+1)
N-h-100	NA	N-h-99		Bn	Me	Н	NO2	5-1HIdz	С		417	(M+1)
N-h-101	NB1	Int.n-100	BRA6	Bn	Me	Ме	NO2	1Me-5-1Hldz	С		445	(M*+1)
N-h-102	NA	N-h-101		Bn	Me	Н	NO2	1Me-5-1Hldz	С		431	(M*+1)
N-h-103	NB1	Int.n-100	BRA10	Bn	Me	Me	NO2	3-Qu	С	<u> </u>	442	(M ⁺ +1)
N-h-104	NA	N-h-103		Bn	Me	Н	NO2	3-Qu	С		428	(M*+1)
N-h-105	NB1	Int.n-100	BRA11	Bn	Me	Me	NO2	6-Qu	С		442	(M+1)
N-h-106	NA	N-h-105		Bn	Me	Н	NO2	6-Qu	0		428	$(M^++1)$
N-h-107	NB1	Int.n-100	BRA12	Bn	Me	Me	NO2	6-IQ	С		442	(M*+1)
N-h-108	NA	N-h-107		Bn	Me	Н	NO2	6-IQ	0		428	(M*+1)
N-h-109	NB1	Int.n-101	BRA1	4FBn	Me	Me	NO2	2-Nap	О		459	(M*+1)
N-h-110	NA	N-h-109		4FBn	Me,	H	NO2	2-Nap	0		445	(M+1)
N-h-111	NB1	Int.n-101	BRA2	4FBn	Me	Me	NO2	5-Ind	С		448	(M+1)
N-h-112	NA	N-h-111		4FBn	Мс	Н	NO2	5-Ind	0		434	(M*+1)
N-h-113	NB1	Int.n-101	BRA3	4FBn	Me	Me	NO2	1Me-5-Ind	С		462	(M*+1)
N-h-114	NA	N-h-113		4FBn	Me	Н	NO2	1Me-5-Ind	С		448	(M*+1)
N-h-115	NB1	Int.n-101	BRA5	4FBn	Me	Me	NO2	5-1Hldz	С		449	(M+1)
N-h-116	NA	N-h-115		4FBn	Me	Н	NO2	5-1Hldz	С		435	(M+1)
N-h-117	NB1	Int.n-101	BRA6	4FBn	Me	Me	NO2	1Me-5-1HIdz	0		463	(M++1)
N-h-118	NA	N-h-117		4FBn	Me	Н	NO2	1Me-5-1HIdz	С	I	449	(M+1)
N-h-119	NB1	Int.n-102	BRA1	2FBn	Me	Me	NO2	2-Nap	0	1	448	(M+1)
N-h-120	NA	N-h-119		2FBn	Me	Н	NO2	2-Nap	С		434	(M+1)
N-h-121	NB1	Int.n-102	BRA3	2FBn	Me	Me	NO2	1Me-5-Ind	0		462	(M+1)
N-h-122	NA	N-h-121		2FBn	Me	Н	NO2	1Me-5-Ind	С		448	(M+1)
N-h-123	NB1	Intro-102	BRA5	2FBn	Mo	Me	NO2	5-1HIdz	С		449	(M ⁺ +1)
N-h-124	NA	N-h-123		2FBn	Me	Н	NO2	5-1HIdz	С		435	(M*+1)
N-h-125	NB1	Int.n=102	BRA6	2FBn	Me	Me	NO2	1Me-5-1Hldz	C		463	(M ⁺ +1).
N-h-126	NA	N-h-125		2FBn	Me	Н	NO2	1Me-5-1Hldz	C		449	(M+1)
N-h-127	NB1	Int.n-103	BRA1	3FBn	Me	Me	NO2	2-Nap	C		448	(M*+1)
N-h-128	NA	N-h-127		3FBn	Me	Н	NO2	2-Nap	С		434	(M*+1)
N-h-129	NB1	Intn-103	BRA3	3FBn	Me	Me	NO2	1Me-5-Ind	c		462	(M*+1)
N-h-130	NA	N-h-129		3FBn	Me	Н	NO2	1Me-5-Ind	0		448	(M*+1)
N-h-131	NB1	Int.n-103	BRA5	3FBn	Me	Me	NO2	5-1Hldz	C		449	(M+1)
N-h-132	NA	N-h-131		3FBn	Me	Н	NO2	5-1HIdz	0	1	435	(M ⁺ +1)
N-h-133	NB1	Int.n-103	BRA6	3FBn	Me	Me	NO2	1Me-5-1HIdz	C		463	(M+1)
N-h-134	NA.	N-h-133	2.5.0	3FBn	Me	H	NO2	1Me-5-1HIdz	C		449	(M++1)
N-h-135	NB1	Int.n-104	BRA1	2.3DFBn	Me	Me	NO2	2-Nap	C		477	(M+1)
N-h-136	NA	N-h-135	2.931	2.3DFBn	Me	H	NO2	2-Nap	C		463	(M+1)
N-h-137	NB1	Int.n-104	BRA3	2,3DFBn	Me	Me	NO2	1Me-5-Ind	c	1	480	(M+1)
N-h-138	NA	N-h-137	2.00	2.3DFBn			NO2		ō	1	466	(M+1)

Table-N-H-4

-		0141	SM2	D. 1			-	4.0		LCN	AS.	
Exp.	Syn .	SM1		Rz	Ry	Υ	Zx	AR	method	RTime	_	Aass
N-h-139	NB1	Int.n-104	BRA5	2,3DFBn	Me	Me	NO2	5-1HIdz	С		481	(M ⁺ +1)
N-h-140	NA	N-h-139		2,3DFBn	Me	н	NO2	5-1HIdz	С		467	(M+1)
N-h-141	NB1	Int.n-104	BRA6	2,3DFBn	Me	Me	NO2	1Me-5-1HIdz	C		495	(M ⁺ +1)
N-h-142	NA	N-h-141		2,3DFBn	Me	H	NO2	1Me-5-1HIdz	G		481	_(M*+1)
N-h-143		Int.n-105	BRA1	3,4DFBn	Me	Me	NO2	2-Nap	С		480	(M+1)
N-h-144	NA	N-h-143		3,4DFBn	Me	H	NO2	2-Nap	C		466	(M ⁺ +1)
N-h-145	NB1	Int.n=105	BRA3	3,4DFBn	Me	Me	NO2	1Me-5-Ind	C		494	(M ⁺ +1)
N-h-146	NA	N-h-145		3,4DFBn	Me	H	NO2	1Me-5-Ind	С		480	(M+1)
N-h-147	NB1	Int.n-105	BRA6	3,4DFBn	Me	Me	NO2	1Me-5-1HIdz	C		495	(M+1)
N-h-148	NA	N-h-147		3,4DFBn	Me	Н	NO2	1Me-5-1HIdz	С		481	(M ⁺ +1)
N-h-149	NB1	Int.n-106	BRA1	4PhBn	Me	Me	NO2	2-Nap	С		531	(M+1)
N-h-150	NA	N-h-149		4PhBn	Me	Н	NO2	2-Nap	С		517	(M ⁺ +1)
N-h-151	NB1	Int.n-106	BRA2	4PhBn	Me	Me	NO2	5-Ind	С		520	_(M+1)
N-h-152	NA	N-h-151		4PhBn	Me	H	NO2	5-Ind	С		506	(M+1)
N-h-153	NB1	Int.n-106	BRA3	4PhBn	Me	Me	NO2	1Me-5-Ind	С		534	(M ⁺ +1)
N-h-154	NA	N-h-153		4PhBn	Me	н	NO2	1Me-5-Ind	С		520	(M ⁺ +1)
N-h-155	NB1	Int.n-106	BRA6	4PhBn	Me	Me	NO2	1Me-5-1HIdz	С		521	$(M^++1)$
N-h-156	NA	N-h-155		4PhBn	Me	H	NO2	1Me-5-1HIdz	С		507	$(M^{+}+1)$
N-h-157	NB1	Int.n-107	BRA1	2CF3Bn	Me	Me	NO2	2-Nap	С		523	(M ⁺ +1)
N-h-158	NA	N-h-157		2CF3Bn	Me	H	NO2	2-Nap	C		509	(M+1)
N-h-159	NB1	Int.n-107	BRA2	2CF3Bn	Me	Me	NO2	5-Ind	o		512	(M ⁺ +1)
N-h-160	NA	N-h-159		2CF3Bn	Me	Н	NO2	5-Ind	С		498	(M ⁺ +1)
N-h-161	NB1	Int.n-107	BRA3	2CF3Bn	Me	Me	NO2	1Me-5-Ind	o		526	(M+1)
N-h-162	NA	N-h-161		2CF3Bn	Me	Н	NO2	1Me-5-Ind	C		512	$(M^{+}+1)$
N-h-163	NB1	Int.n-107	BRA5	2CF3Bn	Me	Me	NO2	5-1Hldz	О		513	(M+1)
N-h-164	NA	N-h-163		2CF3Bn	Me	Н	NO2	5-1HIdz	С		499	$(M^{+}+1)$
N-h-165	NB1	Int.n-108	BRAI	2-TF	Me	Me	NO2	2-Nap	0		450	(M ⁺ +1)
N-h-166	NA	N-h-165		2-TF	Me	Н	NO2	2-Nap	С		436	(M+1)
N-h-167	NB1	Int.n-108	BRA3	2-TF	Me	Me	NO2	1Me-5-Ind	С		464	(M+1)
N-h-168	NA	N-h-167		2-TF	Me	Н	NO2	1Me-5-Ind	С		450	(M++1)
N-h-169	NB1	Int.n-108	BRA6	2-TF	Me	Me	NO2	1Me-5-1HIdz	С		465	(M+1)
N-h-170		N-h-169		2-TF	Me	Н	NO2	1Me-5-1HIdz	С		451	(M+1)
N-h-171	NB1	Int.n-109	BRA1	3-TF	Me	Me	NO2	2-Nap	С		450	(M+1)
N-h-172	NA	N-h-171		3-TF	Me	H	NO2	2-Nap	С		436	(M+1)
N-h-173	NB1	Int.n-109	BRA2	3-TF	Me	Me	NO2	5-Ind	С		464	(M+1)
N-h-174	NA	N-h-173		3-TF	Me	Н	NO2	5-Ind	С		450	(M*+1)
N-h-175		Int.n-109	BRA3	3-TF	Me	Me	NO2	1Me-5-Ind	c		451	(M+1)
N-h-176	NA	N-h-175		3-TF	Me	Н	NO2	1Me-5-Ind	С		437	(M+1)
N-h-177	NB1	Int.n=110	BRA6	3-TF	Me	Me	NO2	1Me-5-1HIdz	C		465	(M+1)
N-h-178	NA	N-h-177	0.0	3-TF	Me	H	NO2	1Me-5-1HIdz	C		451	(M+1)
N-h-179		Int.n=110	BRA1	2-FR	Me	Me	NO2	2-Nap	C		473	(M ⁺ +1)
N-h-180		N-h-179		2-FR	Me	Н	NO2	2-Nap	Č		459	(M*+1)
N-h-181		Int.n-110	BRA2	2-FR	Me	Me	NO2	5-Ind	č		434	(M+1)
N-h-182	NA	N-h-181	DIONE	2-FR	Me	H	NO2	5-Ind	ŏ		420	(M +1)
N-h-183		Int.n=109	BRA6	2-FR	Me	Me	NO2	1Me-5-1HIdz	č		448	(M+1)
N-h-184		N-h-183	D.VAU	2-FR	Me	H	NO2		č		434	(M*+1)

Table-N-H-5

Exp.	Syn	SM1	SM2	Rz	Ry	Y	Zx	AR		LCN	18	
			31/12		Ŀ				method	RTime		Mass
N-h-185	ND1	N-h-1		Bn	Н	Ме	NH2	2-Nap	С		411	(M ⁺ +1)
N-h-186	NA	N-h-185	L	Bn	Н	Н	NH2	2-Nap	С		397	(M ⁺ +1)
N-h-187	ND1	N-h-3		Bn	Н	Me	NH2	5~Ind	С		400	(M*+1)
N-h-188	NA	N-h-187		Bn	H	H	NH2	5-Ind	С		386	(M ⁺ +1)
N-h-189	ND1	N-h-5	_	Bn	Н	Me	NH2	1Me-5-Ind	С		414	(M ⁺ +1)
N-h-190	NA	N-h-189	_	Bn	H	H	NH2	1Me-5-Ind	С		400	(M*+1)
N-h-191 N-h-192	ND1	N-h-7 N-h-191		Bn	н	Me	NH2	5-1HIdz	C		401	(M*+1)
N-h-192 N-h-193	NA ND1	N-h-191	-	Bn Bn	H	H Me	NH2 NH2	5-1HIdz 1Me-5-1HIdz	C		387 415	(M*+1)
N-h-194	NA	N-h-193		Bn	H	H	NH2	1Me-5-1Hldz	- C		401	(M*+1)
N-h-194		N=h-11		Bn	H	Me	NH2	3-Qu	c		412	(M*+1) (M*+1)
N-h-196	NA	N-h-195		Bn	н	H	NH2	3-Qu	č		398	(M+1)
N-h-197	ND1	N-h-13	-	Bn	н	Me	NH2	6-Qu	0		412	(M+1)
N-h-198	NA	N-h-197		Bn	H	H	NH2	6-Qu	0		398	(M+1)
N-h-199	ND1	N-h-17		4FBn	H	Me	NH2	2-Nap	Č		429	(M+1) (M+1)
N-h-200	NA	N-h-199		4FBn	H	Н	NH2	2-Nap	- 6		415	(M+1)
N-h-201	ND1	N-h-19	_	4FBn	H	Me	NH2	5-Ind	c		418	(M+1)
N-h-202	NA	N-h-201	_	4FBn	Ħ	H	NH2	5-Ind	Ġ.		404	(M+1)
N-h-203	ND1	N-h-21		4FBn	н	Me	NH2	1Me-5-Ind	Ö		432	(M+1)
N-h-204	NA	N-h-203		4FBn	Н	Н	NH2	1Me-5-Ind	C		418	(M+1)
N-h-205	ND1	N-h-23		4FBn	н	Me	NH2	5-1HIdz	Ö	-	419	(M+1)
N-h-206	NA	N-h-205		4FBn	H	Н	NH2	5-1HIdz	o o		405	(M+1)
N-h-207	ND1	N-h-25		4FBn	н	Me	NH2	1Me-5-1Hldz	C		433	(M°+1)
N-h-208	NA	N-h-207		4FBn	Н	Н	NH2	1Me-5-1Hldz	О		419	(M*+1)
N-h-209	ND1	N-h-27		2FBn	н	Me	NH2	5-Ind	С		418	(M*+1)
N-h-210	NA	N-h-209		2FBn	н	Н	NH2	5-Ind	С		404	(M*+1)
N-h-211	ND1	N-h-29		2FBn	Н	Me	NH2	1Me-5-Ind	С		432	(M*+1)
N-h-212	NA	N-h-211		2FBn	Н	Н	NH2	1Me-5-Ind	С		418	(M*+1)
N-h-213		N-h-31		2FBn	Н	Me	NH2	5-1HIdz	С		419	(M*+1)
N-h-214	NA	N-h-213		2FBn	н	Н	NH2	5-1HIdz	С		405	(M ⁺ +1)
N-h-215		N-h-33		2FBn	Н	Me	NH2	1Me-5-1HIdz	С		433	(M*+1)
N-h-216	NA	N-h-215		2FBn	Н	Н	NH2	1Me-5-1HIdz	С		419	(M ⁺ +1)
N-h-217		N-h-35		3FBn	Н	Me	NH2	5-Ind	С		418	(M ⁺ +1)
N-h-218	NA	N-h-217		3FBn	Н	H	NH2	5–Ind	С		404	(M ⁺ +1)
N-h-219		N-h-37		3FBn	Н	Me	NH2	1Me-5-Ind	С		432	(M ⁺ +1)
N-h-220	NA	N-h-219		3FBn	Н	Н	NH2	1Me-5-Ind	С		418	(M+1)
N-h-221	ND1	N-h-39	-	3FBn	Н	Me	NH2	5-1HIdz	С		419	(M+1)
N-h-222	NA	N-h-221	_	3FBn	Н	Н	NH2	5-1Hidz	С		405	(M+1)
N-h-223	ND1	N-h-41		3FBn	H	Me	NH2	1Me-5-1HIdz	С		433	(M ⁺ +1)
N-h-224	NA	N-h-223		3FBn	H	Н	NH2	1Me-5-1HIdz	C		419	(M ⁺ +1)
N-h-225	ND1	N-h-43		2,3DFBn	Н	Me	NH2	2-Nap	C		447	(M+1)
N-h-226	NA	N-h-225		2,3DFBn	н	н	NH2	2-Nap	C		433	(M ⁺ +1)
N-h-227	ND1	N-h-45		2,3DFBn	Н	Me	NH2	1Me-5-Ind	0		450	(M ⁺ +1)
N-h-228	NA	N-h-227	_	2,3DFBn	Н	Н	NH2	1Me-5-Ind	С		436	(M+1)
N-h-229	ND1	N-h-47		2,3DFBn	Н	Me	NH2	5-1HIdz	C		437	(M ⁺ +1)
N-h-230	NA	N-h-229		2,3DFBn	н	H	NH2	5-1HIdz	С		423	(M ⁺ +1)

Table=N-H-6

Exp.	Syn	SM1	SM2	Rz	Ry	Υ	Zx	AR		LCN	IS	
<u> </u>			SIVIZ						method	RTime		Mass
N-h-231	ND1	N-h-49		2,3DFBn	H	Me	NH2	1Me-5-1HIdz	С		451	(M+1)
N-h-232	NA	N-h-231		2,3DFBn	H	H	NH2	1Me-5-1HIdz	С		437	(M ⁺ +1)
N-h-233		N-h-51		3,4DFBn	H	Me	NH2	5-Ind ·	С		436	$(M^{+}+1)$
N-h-234	NA	N-h-233		3,4DFBn	H	H	NH2	5-Ind	С		422	(M+1)
N-h-235	ND1	N-h-53		3,4DFBn	Н	Me	NH2	1Me-5-Ind	C		450	(M ⁺ +1)
N-h-236	NA	N-h-235		3,4DFBn	H	H	NH2	1Me-5-Ind	С		436	(M+1)
N-h-237		N-h-55		3,4DFBn	Н	Me	NH2	1Me-5-1HIdz	C		451	(M+1)
N-h-238	NA	N-h-237		3,4DFBn	Н	Н	NH2	1Me-5-1HIdz	С		437	(M+1)
N-h-239	ND1	N-h-57		4PhBn	H	Me	NH2	2-Nap	c		487	(M+1)
N-h-240	NA	N-h-239		4PhBn	Н	Н	NH2	2-Nap	С		473	(M*+1)
N-h-241	ND1	N-h-59		4PhBn	Н	Me	NH2	5-Ind	С		476	(M++1)
N-h-242	NA	N-h-241		4PhBn	H	Н	NH2	5-Ind	С		462	(M++1)
N-h-243		N-h-61		4PhBn	Н	Me	NH2	1Me-5-Ind	С		490	(M++1)
N-h-244	ŅΑ	N-h-243		4PhBn	H	H	NH2	1Me-5-Ind	c		476	(M+1)
N-h-245	ND1	N-h-63		4PhBn	Н	Me	NH2	5-1HIdz	С		477	(M+1)
N-h-246	NA	N-h-245		4PhBn	·H	H	NH2	5-1HIdz	С		463	(M+1)
N-h-247		N-h-65		2CF3Bn	Н	Me	NH2	2-Nap	С		479	(M++1)
N-h-248	NA	N-h-247		2CF3Bn	H	Н	NH2	2-Nap	С		465	(M+1)
N-h-249		N-h-67		2CF3Bn	Ξ	Me	NH2	5-Ind	С		468	(M++1)
N-h-250	NA	N-h-249		2CF3Bn	Η	Η	NH2	5-Ind	С		454	(M++1)
N-h-251		N-h-69		2CF3Bn	Ŧ	Me	NH2	1Me-5-Ind	C		482	(M*+1)
N-h-252	NA	N-h-251		2CF3Bn	Н	Ŧ	NH2	1Me-5-Ind	С		468	(M*+1)
N-h-253		N-h-71		2CF3Bn	π	Ме	NH2	5-1HIdz	С		469	(M+1)
N-h-254	NA.	N-h-253		2CF3Bn	Н	Н	NH2	5-1Hldz	С		455	(M+1)
N-h-255	ND1	N-h-73		2-TF	Н	Me	NH2	5-Ind	С		406	(M+1)
N-h-256	NA	N-h-255		2-TF	Н	I	NH2	5-Ind	С		392	(M ⁺ +1)
N-h-257		N-h-75		2-TF	Н	Me	NH2	1Me-5-Ind	С		420	(M++1)
N-h-258	NA	N-h-257		2-TF	н	Н	NH2	1Me-5-Ind	С		406	(M+1)
N-h-259	ND1	N-h-77		2-TF	H	Me	NH2	1Me-5-1HIdz	С		421	(M*+1)
N-h-260	NA	N-h-259		2-TF	Н	H.	NH2	1Me-5-1HIdz	C		407	(M++1)
N-h-261	ND1	N-h-79		3-TF	Н	Me	NH2	5-Ind	С		406	(M++1)
N-h-262	NA	N-h-261		3-TF	H	Н	NH2	5-Ind	С		392	(M*+1)
N-h-263		N-h-81		3-TF	Н	Me	NH2	1Me-5-Ind	С		420	(M++1)
N-h-264	NA	N-h-263		3-TF	н	Н	NH2	1Me-5-Ind	C		406	(M+1)
N-h-265	ND1	N-h-83		3-TF	Н	Me	NH2	5-1HIdz	С		407	(M+1)
N-h-266	NA	N-h-265		3-TF	Н	H	NH2	5-1Hldz	С .		393	(M++1)
N-h-267		N-h-85		3-TF	н	Me	NH2	1Me-5-1HIdz	С		421	(M++1)
N-h-268	NA	N-h-267		3-TF	Н	Н	NH2	1Me-5-1HIdz	С		407	(M++1)
	ND1	N-h-87		2-FR	Н	Me	NH2	2Nap	С		401	(M++1)
N-h-270	NA	N-h-269		2-FR	Н	Н	NH2	2Nap	С		387	(M++1)
N-h-271	ND1	N-h-89		2-FR	Н	Me	NH2	5-Ind	С		390	(M+1)
N-h-272	NA	N-h-271		2-FR	Н	Н	NH2	5-Ind	С		376	(M++1)
N-h-273		N-h-91		2-FR	Н	Me	NH2	1Me=5=1Hldz	С		405	(M+1)
N-h-274	NA	N-h-273		2-FR	Н	Н	NH2	1Me-5-1HIdz	С		391	(M+1)

Tah		

Exp.	Syn	SM1	SM2	Rz	Rv	Y	Zx	AR		LCI		
	<u> </u>								method	RTime		Mass
N-h-275	ND1	N-h-93	├—	Bn	Me	Me	NH2	2-Nap	C		425	(M*+1
N-h-276	NA	N-h-275		Bn	Ме	Н	NH2	2-Nap	C		411	(M ⁺ +1
N-h-277	ND1	N-h-95	-	Bn	Me	Me	NH2	5-Ind	С		414	(M ⁺ +1
N-h-278	NA	N-h-277		Bn	Me	H	NH2	5-Ind	C		400	(M ⁺ +1
N-h-279	ND1	N-h-97		Bn	Me	Me	NH2	1Me-5-Ind	C		428	(M ⁺ +1
N-h-280	NA	N-h-279		Bn	Me	H	NH2	1Me-5-Ind	С		414	(M+1
N-h-281	ND1	N-h-99	-	Bn	Me	Me	NH2	5-1Hldz	C		415	(M*+1
N-h-282	NA	N-h-281	_	Bn	Me	Н	NH2	5-1HIdz			401	(M+1
N-h-283	ND1	N-h-101		Bn	Me	Me	NH2	1Me-5-1HIdz	<u>c</u>		429	(M ⁺ +1
N-h-284	NA	N-h-283		Bn	Me	H	NH2	1Me-5-1Hldz	С		415	(M+1
N-h-285	ND1	N-h-103		Bn	Me	Me	NH2	3-Qu	С		426	(M*+1
N-h-286	NA	N-h-285		Bn	Me	H	NH2	3-Qu	С		412	(M*+1
N-h-287	ND1	N-h-105		Bn	Me	Me	NH2	6-Qu	С		426	(M ² +1
N-h-288	NA	N-h-287		Bn	Me	H	NH2	6-Qu	C		412	(M*+1
N-h-289	ND1	N-h-107	_	Bn	Me	Me	NH2	6-IQ	0		426	(M*+1
N-h-290	NA	N-h-289	_	Bn	Me	H	NH2	6-IQ	С		412	(M*+1
N-h-291	ND1	N-h-109		4FBn	Me	Me	NH2	2-Nap	С		443	(M*+1
N-h-292	NA	N-h-291		4FBn	Me	H.	NH2	2-Nap	С		429	(M*+1
N-h-293	ND1	N-h-111	_	4FBn	Me	Me	NH2	5-Ind	_ C		432	(M ⁺ +1
N-h-294	NA	N-h-293	_	4FBn	Me	H	NH2	5-Ind	C_	_	418	(M ⁺ +1
N-h-295	ND1	N-h-113	_	4FBn	Me	Me	NH2	1Me-5-Ind	С		446	(M*+1
N-h-296	NA	N-h-295		4FBn	Me	H	NH2	1Me-5-Ind			432	(M*+1
N-h-297 N-h-298	ND1	N-h-115 N-h-297	-	4FBn 4FBn	Me	Ме	NH2	5-1Hldz 5-1Hldz	C		433	(M+1
N-h-298 N-h-299	NA ND1	N-h-117	-		Me	H	NH2		C			(M+1
N-h-300	NA	N-h-117	-	4FBn	Me	Me		1Me-5-1HIdz	C C		447	(M+1
N-h-301	ND1	N-h-119	_	2FBn			NH2	1Me-5-1HIdz 2-Nap			433	(M*+1
N-h-302	NA	N-h-301	_	2FBn	Me	Me	NH2	2-Nap 2-Nap	C_		443	(M*+1
N-h-302	ND1			2FBn	Me	H	NH2		C		429	(M+1
N-h-303		N-h-121	_		Me	Ме	NH2 NH2	1Me-5-Ind	C		446	(M ⁺ +1
N-h-304 N-h-305	NA	N-h-303 N-h-123	-	2FBn	Me	H	NH2	1Me-5-Ind 5-1HIdz				(M+1
N-h-306	ND1 NA	N-h-123 N-h-305		2FBn 2FBn	Me	Me	NH2	5-1HIdz 5-1HIdz	C		433	(M++1
	ND1				Me	H					447	(M+1
N-h-307 N-h-308	NA.	N-h-125 N-h-307	_	2FBn 2FBn	Me	Me	NH2 NH2	1Me-5-1HIdz 1Me-5-1HIdz	C		433	(M+1
N-h-308 N-h-309	ND1	N-h-307		2FBn	Me	Me	NH2	2-Nap	6		443	(M+1
N-h-310	NA NA	N-h-127 N-h-309	-	3FBn	Me		NH2	2-Nap 2-Nap	C	_	443	(M+1
N-h-310	ND1	N-h-129	<u> </u>		Me	Me						(M++1
N-h-311 N-h-312	NA	N-h-129 N-h-311	-	3FBn 3FBn	Me	Me H	NH2	1Me-5-Ind 1Me-5-Ind	C		446	(M*+1
N-h-312 N-h-313			_		Me			1Me-5-Ind 5-1HIdz				(M°+1
	ND1 NA	N-h-131		3FBn		Me	NH2		C		433	(M*+1
N-h-314		N-h-313	-	3FBn	Me	H	NH2	5-1HIdz	C		419	(M+1
N-h-315 N-h-316	ND1	N-h-133		3FBn	Me	Me	NH2	1Me-5-1HIdz	C			(M+1
	NA	N-h-315	$\vdash$	3FBn	Me	H	NH2	1Me-5-1HIdz	С		433	(M*+1
N-h-317	ND1	N-h-135	_	2,3DFBn	Me	Me	NH2	2-Nap	C		461	(M+1
N-h-318	NA.	N-h-317		2,3DFBn	Me	H	NH2	2-Nap	С		447	(M ⁺ +1
N-h-319	ND1	N-h-137		2,3DFBn	Me	Me	NH2	1Me-5-Ind	C		464	(M*+1
N-h-320	NA	N-h-319		2.3DFBn	Me	H	NH2	1Me-5-Ind	C		450	. (M°+1

Table-N-H-8

Exp.	Syn	SM1	SM2	Rz	Rv	Y	Zx	AR	1	LCI	MS	
			SIVIZ		1	<u> </u>			method	RTime		Mass
N-h-321	ND1	N-h-139		2,3DFBn		Me	NH2	5-1HIdz	C		451	(M'+1)
N-h-322	NA	N-h-321		2,3DFBn		H	NH2	5-1HIdz	C		437	(M+1)
N-h-323		N-h-141		2,3DFBn		Me	NH2	1Me-5-1HIdz	C		465	(M ⁺ +1)
N-h-324	NA	N-h-323		2,3DFBn		Н	NH2	1Me-5-1HIdz	С		451	(M*+1)
N-h-325		N-h-143		3,4DFBn		Me	NH2	2-Nap			461	(M*+1)
N-h-326	NA	N-h-325		3,4DFBn		Н	NH2	2-Nap	С		447	(M ⁺ +1)
N-h-327	ND1	N-h-145		3,4DFBn	Me	Me	NH2	1Me-5-Ind	С		464	(M ⁺ +1)
N-h-328	NA	N-h-327		3,4DFBn		Н	NH2	1Me-5-Ind	С		450	(M ⁺ +1)
N-h-329		N-h-147		3,4DFBn	Me	Me	NH2	1Me-5-1Hldz	С		465	(M+1)
N-h-330	NA	N-h-329		3,4DFBn	Me	Н	NH2	1Me-5-1HIdz	С		451	$(M^{+}+1)$
N-h-331	ND1	N-h-149		4PhBn	Me	Me	NH2	2-Nap	С		501	(M ⁺ +1)
N-h-332	NA	N-h-331		4PhBn	Ме	H	NH2	2-Nap	С		487	(M ² +1)
N-h-333	ND1	N-h-151		4PhBn	Me	Me	NH2	5-Ind	С		490	(M*+1)
N-h-334	NA	N-h-333		4PhBn	Me	H	NH2	5-Ind	С		476	(M*+1)
N-h-335		N-h-153		4PhBn	Me	Me	NH2	1Me-5-Ind	C		504	(M*+1)
N-h-336	NA.	N-h-335		4PhBn	Me	Н	NH2	1Me-5-Ind	О		490	(M+1)
N-h-337	ND1	N-h-155		4PhBn	Me	Me	NH2	1Me-5-1HIdz	o		505	(M*+1)
N-h-338	NA	N-h-337		4PhBn	Me	Ŧ	NH2	1Me-5-1Hldz	c		491	(M+1)
N-h-339	ND1	N-h-157		2CF3Bn	Me	Me	NH2	2-Nap	С		493	(M+1)
N-h-340	NA	N-h-339		2CF3Bn	Me	H	NH2	2-Nap	С		479	(M+1)
N-h-341	ND1	N-h-159		2CF3Bn	Me	Me	NH2	5-Ind	С		482	(M+1)
N-h-342	NA	N-h-341		2CF3Bn	Me	Н	NH2	5-Ind	Ĉ		468	(M+1)
N-h-343		N-h-161		2CF3Bn	Me	Me	NH2	1Me-5-Ind	С		496	(M*+1)
N-h-344	NA.	N-h-343		2CF3Bn	Me	Н	NH2	1Me-5-Ind	С		482	(M*+1)
N-h-345		N-h-163		2CF3Bn	Me	Me	NH2	5-1Hldz	С		483	(M*+1)
N-h-346	NA	N-h-345		2CF3Bn	Me	H	NH2	5-1Hldz	С		469	(M°+1)
N-h-347	ND1	N-h-165		2-TF	Me	Me	NH2	2-Nap	С		431	(M*+1)
N-h-348	NA	N-h-347		2-TF	Ме	I	NH2	2-Nap	С		417	(M*+1)
N-h-349		N-h-167		2-TF	Me	Me	NH2	1Me-5-Ind	С		434	(M++1)
N-h-350	NA	N-h-349		2-TF	Me	H	NH2	1Me-5-Ind	С		420	(M+1)
	ND1	N-h-169		2-TF	Me	Me	NH2	1Me-5-1HIdz	c		435	(M+1)
N-h-352	NA	N-h-351		2-TF	Me	Н	NH2	1Me-5-1HIdz	С		421	(M ⁺ +1)
N-h-353	ND1	N-h-171		3-TF	Me	Me	NH2	2-Nap	С		431	(M+1)
N-h-354	NA.	N-h-353		3-TF	Me	н	NH2	2-Nap- ·-	C-	-	417	(M+1)
N-h-355	ND1	N-h-173		3-TF	Me	Me	NH2	5-Ind	С		420	(M++1)
N-h-356	NA	N-h-355		3-TF	Me	Н	NH2	5-Ind	C		406	(M++1)
N-h-357	ND1	N-h-175		3-TF	Me	Me	NH2	1Me-5-Ind	С		434	(M+1)
N-h-358	NA	N-h-357		3-TF	Me	н	NH2	1Me-5-Ind	С		420	(M+1)
N-h-359	ND1	N-h-177		3-TF	Me	Me	NH2	1Me-5-1HIdz	C		435	(M*+1)
N-h-360	NA	N-h-359		3-TF	Me	H	NH2	1Me-5-1HIdz	Ċ		421	(M*+1)
	ND1	N-h-179		2-FR	Me	Me	NH2	2-Nap	č		415	(M*+1)
N-h-362	NA	N-h-361		2-FR	Me	Н	NH2	2-Nap	Č		401	(M++1)
	ND1	N-b-181		2-FR	Me	Me	NH2	5-Ind	c	-	404	(M+1)
N-h-364	NA	N-h-363		2-FR	Me	н	NH2	5-Ind	č	$\overline{}$	390	(M+1)
		N-h-183		2-FR	Me	Me	NH2	1Me-5-1HIdz	Č		419	(M +1)
N-h-366	NA	N-h-365		2-FR	Me	Н	NH2	1Me-5-1HIdz	C	_	405	(M+1)

#### Table-N-H-9

Table N		0144	SM2	-	- n	T.,	-	AR		LC	AS.	
Exp.	Syn	SM1		Rz	Ry	Y	Zx		method	RTime		Mass
N-h-367	NN1	N-h-275	CH ₃ I	Bn	Me	Me	NHMe	2-Nap	С		439	(M ⁺ +1)
N-h-368	NA	N-h-367		Bn	Me	Н	NHMe	2-Nap	С		425	(M*+1)
N-h-369	NN1	N-h-279	CH3I	Bn	Me	Me	NHMe	1Me-5-Ind	С		442	(M+1)
N-h-370	NA	N-h-369		Bn	Me	Н	NHMe	1Me-5-Ind	С		428	(M ⁺ +1)
N-h-371	NN1	N-h-283	CH³I	Bn	Me	Me	NHMe	1Me-5-1HIdz	С		443	(M ⁺ +1)
N-h-372	NA	N-h-371		Bn	Me	Н	NHMe	1Me-5-1HIdz	С		429	(M+1)
N-h-373	NN1	N-h-285	CH3I	Bn	Me	Me	NHMe	3-Qu	С		440	(M+1)
N-h-374	NA	N-h-373		Bn	Me	Н	NHMe	3-Qu	0		426	(M+1)
N-h-375	NN1	N-h-289	CH ₃ I	Bn	Me	Me	NHMe	6-IQ	С		440	(M ⁺ +1)
N-h-376	NA	N-h-375		Bn	Me	Н	NHMe	6-IQ	С		426	(M+1)
N-h-377	NN1	N-h-291	CH ₃ I	4FBn	Me	Me	NHMe	2-Nap	C		457	(M+1)
N-h-378	NA	N-h-377	L	4FBn	Me	Н	NHMe	2-Nap	O		443	(M+1)
N-h-379		N-h-295	CH ₃ I	4FBn	Me	Me	NHMe	1Me-5-Ind	С		460	(M*+1)
N-h-380	NA	N-h-379	L	4FBn	Me	H	NHMe	1Me-5-Ind	С		446	(M+1)
N-h-381	NN1	N-h-299	CH ₃ I	4FBn	Me	Me	NHMe	1Me-5-1HIdz	C		461	(M ⁺ +1)
N-h-382	NA	N-h-381	L	4FBn	Me	Н	NHMe	1Me-5-1Hldz	С		447	(M ⁺ +1)
N-h-383		N-h-301	CH3I	2FBn	Me	Me	NHMe	2-Nap	O		457	(M ⁺ +1)
N-h-384	NA	N-h-383		2FBn	Me	H	NHMe	2-Nap	C		443	(M ⁺ +1)
N-h-385	NN1	N-h-303	CH ₃ I	2FBn	Me	Me	NHMe	1Me-5-Ind	С		460	(M ⁺ +1)
N-h-386	NA	N-h-385		2FBn	Me	H	NHMe	1Me-5-Ind	С		446	(M+1)
N-h-387	NN1	N-h-307	CH3I	2FBn	Me	Me	NHMe	1Me-5-1Hldz	С		461	(M ⁺ +1)
N-h-388	NA	N-h-387	<u> </u>	2FBn	Me	H	NHMe	1Me-5-1Hldz	С		447	(M ⁺ +1)
N-h-389		N-h-309	CH3I	3FBn	Me	Me	NHMe	2-Nap	C		457	(M+1)
N-h-390	NA	N-h-389	L	3FBn	Me_	н	NHMe	2-Nap	C		443	(M+1)
N-h-391		N-h-311	CH3I	3FBn	Me	Мс	NHMe	1Me-5-Ind	С		460	(M ⁺ +1)
N-h-392	NA	N-h-391		3FBn	Me	Н	NHMo	1Me-5-Ind	<u>c</u>		446	(M*+1)
N-h-393		N-h-317	CH3I	2,3DFBn	Me	Me	NHMe	2-Nap	О		475	(M+1)
N-h-394	NA	N-h-393	L	2,3DFBn	Me	Ξ	NHMe	2-Nap	C		461	(M+1)
N-h-395		N-h-323	CH3I	2,3DFBn	Me	Me	NHMe	1Me-5-1HIdz	0		479	(M ⁺ +1)
N-h-396	NA	N-h-395		2,3DFBn	Me	Н	NHMe	1Me-5-1HIdz	С		465	(M ⁺ +1)
N-h-397		N-h-327	CH ₃ I		Me	Me	NHMe	1Me-5-Ind	С		478	(M ⁺ +1)
N-h-398	NA	N-h-397	l	3,4DFBn	Me	H	NHMe	1Me-5-Ind	C		464	(M ⁺ +1)
N-h-399		N-h-331	CH3I	4PhBn	Me	Me	NHMe	2-Nap	C		515	(M+1)
N-h-400	NA	N-h-399		4PhBn	Me	Н	NHMe	2-Nap	О		501	(M ⁺ +1)
N-h-401	NN1	N-h-337	CH3I	4PhBn	Me	Mo	NHMe	1Me-5-1HIdz	C		519	(M ⁺ +1)
N-h-402	NA	N-h-401		4PhBn	Me	H	NHMe	1Me-5-1Hldz	С		505	(M ⁺ +1)
N-h-403	NN1	N-h-339	CH3I	2CF3Bn	Me	Me	NHMe	2-Nap	С		507	(M ⁺ +1)
N-h-404	NA	N-h-403		2CF3Bn	Me	Н	NHMe	2-Nap	0		493	(M ⁺ +1)
N-h-405		N-h-343	CH3I	2CF3Bn	Me	Me	NHMe	1Me-5-Ind	_ C		510	(M ⁺ +1)
N-h-406.	NA	N-h-405	<del></del>	2CF3Bn	Me	H	NHMe	1Me-5-Ind	0		496	(M+1)
N-h-407	NN1	N-h-347	CH3I	2-TF	Me	Me	NHMe	2-Nap	С		445	(M*+1)
N-h-408	NA	N-h-407		2-TF	Me	Н	NHMo	2-Nap	С		431	(M ⁺ +1)
N-h-409	NN1	N-h-357	CH3I	3-TF	Me	Me	NHMe	1Me-5-Ind	С		448	(M+1)
N-h-410	NA	N-h-409		3-TF	Me	Н	NHMe	1Me-5-Ind	С		434	(M+1)
N-h-411	NN1	N-h-365	CH3I	2-FR	Me	Me	NHMe	1Me-5-1Hldz	C		433	(M ⁺ +1)
N-h-412	NA	N-h-411		2-FR	Me	H	NHMe	1Me-5-1Hldz	C	1	419	(MT+1)

Table-N-H-10

Exp.	Svn	SM1	SM2	Rz	Rv	Y	Zx	AR		LC		
Exp.	Ŀ					_ '	ZX		method	RTime	_ N	Mass
N-h-413	NN2	N-h-275	CH3I	Bn	Me	Me	NMe2	2-Nap	С		453	(M ⁺ +1)
N-h-414	NA	N-h-413		Bn	Me	H	NMe2	2-Nap	С		439	(M*+1)
N-h-415	NN2	N-h-279	CH ₃ I	Bn	Me	Me	NMe2	1Me-5-Ind	c		456	(M*+1)
N-h-416	NA	N-h-415		Bn	Me	H	NMc2	1Me-5-Ind	С		442	(M°+1)
N-h-417	NN2	N-h-283	CH3I	Bn	Me	Me	NMe2	1Me-5-1HIdz	C		457	(M ⁺ +1)
N-h-418	NA	N-h-417		Bn	Me	Н	NMe2	1Me=5-1Hldz	С		443	(M+1)
N-h-419	NN2	N-h-285	CH31	Bn	Me	Me	NMe2	3-Qu	С		454	$(M^{+}+1)$
N-h-420	. NA	N-h-419		Bn	Me	Н	NMc2	3-Qu	С		440	$(M^{+}+1)$
N-h-421	NN2	N-h-289	CH ₃ I	Bn	Me	Me	NMe2	6-IQ	С		454	(M ⁺ +1)
N-h-422	NA_	N-h-421		Bn	Me	Н	NMe2	6-JQ	С		440	$(M^{+}+1)$
N-h-423	NN2	N-h-291	CH3I	4FBn	Me	Me	NMe2	2-Nap	С		471	(M ⁺ +1)
N-h-424	NA	N-h-423		4FBn	Me	Н	NMe2	2-Nap	С		457	(M++1)
N-h-425	NN2	N-h-295	CH ₃ I	4FBn	Me	Me	NMe2	1Me-5-Ind	С		474	(M ⁺ +1)
N-h-426	NA	N-h-425		4FBn	Me	Н	NMc2	1Me-5-Ind	С		460	(M+1)
N-h-427	NN2	N-h-299	CH3I	4FBn	Me	Me	NMe2	1Me-5-1Hldz	C		475	(M ⁺ +1)
N-h-428	NA.	N-h-427		4FBn	Ме	Н	NMe2	1Me-5-1Hldz	С		461	(M ⁺ +1)
N-h-429	NN2	N-h-301	CH3I	2FBn	Me	Me	NMe2	2-Nap	o		471	(M+1)
N-h-430	NA	N-h-429		2FBn	Me	H	NMe2	2-Nap	С		457	(M+1)
N-h-431	NN2	N-h-303	CH3I	2FBn	Me	Ме	NMe2	1Me-5-Ind	С		474	(M+1)
N-h-432	NA	N-h-431		2FBn	Me	Н	NMe2	1Me-5-Ind	c		460	(M*+1)
N-h-433	NN2	N-h-307	CH3I	2FBn	Me	Me	NMe2	1Me-5-1HIdz	С		475	(M*+1)
N-h-434	NA	N-h-433		2FBn	Me	Н	NMe2	1Me-5-1Hldz	o		461	$(M^*+1)$
N-h-435	NN2	N-h-309	CH3I		Me	Ме	NMe2	2-Nap	С		471	(M+1)
N-h-436	NA	N-h-435		3FBn	Me	Н	NMe2	2-Nap	C		457	(M*+1)
N-h-437	NN2	N-h-311	CH3I		Me	Me	NMe2	1Me-5-Ind	С		474	(M*+1)
N-h-438	NA	N-h-437		3FBn	Me	Н	NMe2	1Me-5-Ind	C		460	(M*+1)
N-h-439	NN2	N-h-317	CH ₃ I	2.3DFBn	Me	Me	NMe2	2-Nap	С		489	(M*+1)
N-h-440	NA	N-h-439		2,3DFBn	Me	Н	NMe2	2-Nap	С		475	(M ⁺ +1)
N-h-441	NN2	N-h-323	CH3I	2,3DFBn	Me	Me	NMe2	1Me-5-1Hldz	С		493	(M*+1)
N-h-442	NA	N-h-441		2,3DFBn	Me	Н	NMe2	1Me-5-1Hldz	0		479	(M+1)
N-h-443	NN2	N-h-327	CH3I	3.4DFBn	Me	Me	NMe2	1Me-5-Ind	o		492	(M+1)
N-h-444	NA	N-h-443		3,4DFBn	Me	Н	NMe2	1Me-5-Ind	С		478	(M*+1)
N-h-445	NN2	N-h-331	CH ₃ I	4PhBn	Me_	Me	NMe2	2-Nap	o		529	(M*+1)
N-h-446	NA	N-h-445		4PhBn	Ме	H	NMe2	2-Nap	С		515	(M+1)
N-h-447	NN2	N-h-337	CH ₃ I		Me	Me	NMe2	1Me-5-1HIdz	c		533	(M+1)
N-h-448	NA	N-h-447		4PhBn	Мо	Н	NMe2	1Me-5-1HIdz	С		519	(M*+1)
N-h-449	NN2	N-h-339	CH ₃ I	2CF3Bn	Me	Me	NMe2	2-Nap	c		521	(M+1)
N-h-450	NA	N-h-449		2CF3Bn	Me	Н	NMe2	2-Nap	О		507	(M+1)
N-h-451	NN2	N-h-343	CH ₃ I		Ме	Me	NMe2	1Me-5-Ind	C		524	(M ⁺ +1)
N-h-452	NA	N-h-451		2CF3Bn	Me	Н	NMe2	1Me-5-Ind	С		510	(M+1)
N-h-453	NN2	N-h-347	CH ₃ I	2-TF	Ме	Mo	NMe2	2-Nap	С		459	(M*+1)
N-h-454	NA	N-h-453		2-TF	Me	Н	NMe2	2-Nap	C		445	(M++1)
N-h-455	NN2	N-h-357	CH₃I	3-TF	Me	Me	NMe2	1Me-5-Ind	С		462	(M*+1)
N-h-456	NA	N-h-455		3-TF	Me	Н	NMe2	1Me-5-Ind	С		448	(M+1)
N-h-457	NN2	N-h-365	CH₃I	2-FR	Me	Me	NMe2	1Me-5-1Hldz	С		447	(M*+1)
N-h-458	NA	N-h-457		2-FR	Me	Н	NMe2	1Me-5-1Hldz	C		433	(M+1)

# [Examples N-i-1 to N-i-138]

Typical examples of the compounds of the present invention that can be obtained by reacting and treating corresponding starting compounds using any of the methods described in the present specification are shown in Table N·I·1 to Table N·I·8. In the tables, the compound numbers are mentioned in the columns indicated as "Exp.". In the tables, used methods among the aforementioned

synthesis methods are shown in the columns of "Syn" with symbols, the starting compounds 1 are mentioned in the columns of "SM1", and the starting compounds 2 are mentioned in the columns of "SM2".

Pz Zx	
N-(-)-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\	
Rý>⊸ ô	

Table-N	-1-1	AF									
Exp.	Syn	SM1	SM2	NRzRy	Υ	Zx	AR	<u> </u>	LCM		
	_	-	-		⊢	├-		method	RTime		Aass
N-i-1	NB1	Int.n- 111	BRA1	()N	Ме	NO2	2-Nap	С		405	(M ⁺ +1)
N-i-2	NA	N-i-1		○N	Н	NO2	2-Nap	С		391	(M ⁺ +1)
N-i-3	NB1	Int.n- 111	BRA2	□N	Мо	NO2	5-1Ind	С		394	(M ⁺ +1)
N-i-4	NA	N-i-3		Ŏ	н`	NO2	5-1Ind	С		380	(M*+1)
N-i-5	NB1	Int.n- 111	BRA3	Õ	Me	NO2	1Me-5-Ind	С		408	(M*+1)
N-i-6	NA	N-i-5		Õ	Н	NO2	1Me-5-Ind	С		394	(M ⁺ +1)
N-i-7	NB1	Int.n- 111	BRA5	Õ	Ме	NO2	5-1 HIdz	С		395	(M*+1)
N-i-8	NA	N-i-7		Õ	н	NO2	5-1HIdz	С		381	(M*+1)
N-i-9	NB1	Int.n- 111	BRA6	Š	Ме	NO2	1Me-5-1Hidz	С		409	(M ⁺ +1)
N-i-10	NA	N-i-9		Õ	Н	NO2	1Me-5-1Hidz	С		395	(M ⁺ +1)
N-i-11	NB1	Int.n- 111	BRA9	Š	Me	NO2	5-Bzt	С		412	(M*+1)
N-i-12	NA	N-i-11		Ŋ.	Н	NO2	5-Bzt	С		398	(M++1)
N-i-13	NB1	Int.n- 111	BRA 10	Š	Ме	NO2	3-Qu	С		406	(M ⁺ +1)
N-i-14	NA	N-i-13		Ŋ.	Н	NO2	3-Qu	С		392	(M ⁺ +1)
N-i-15	NB1	Int.n- 111	BRA 11	Ŋ.	Me	NO2	6-Qu	С		406	(M ⁺ +1)
N—16	NA	N-i-15		Õ	Н	NO2	6−Qu	С		392	(M ⁺ +1)
N- <del>i</del> -17	NB1	Int.n- 112	BRA1	O_N	Me	NO2	2-Nap	O		421	(M ⁺ +1)
N-i-18	NA	N-i-17		оОν	Н	NO2	2-Nap	С		407	(M*+1)
N-i-19	NB1	Int.n- 112	BRA2	оОν	Me	NO2	5-1 Ind	С		410	(M ⁺ +1)
N-i-20	NA	N-i-19		O_N	н	NO2	5-1Ind	С		396	(M*+1)
N-i-21	NB1	Int.n- 112	BRA3	O_N	Me	NO2	1Me-5-Ind	С		424	(M++1)
N-i-22	NA	N-i-21		o⊜N	н	NO2	1Me-5-Ind	С		410	(M ⁺ +1)

Tak	N	1_1	_2

lable-N	-1-2										
Exp.	Syn	SM1	SM2	NRzRv	Y	Zx	AR		LON		
LAP.	5,.1		J2	· · · · · · · · · · · · · · · · · · ·	Ľ.		, u,	method	RTime		/lass
N-i-23	NB1	Int.n- 112	BRA5	o(_)N	Ме	NO2	5-1HIdz	С		411	(M*+1)
N-i-24	NA	N-i-23		o(_)N	н	NO2	5-1HIdz	С		397	(M*+1)
N-i-25	NB1	Int.n- 112	BRA6	Q_N	Ме	NO2	1Me-5-1Hldz	С	-	425	(M ⁺ +1)
N-i-26	NA	N-i-25		Q_N	Н	NO2	1Me-5-1HIdz	С		411	(M ⁺ +1)
N-i-27	NB1	Int.n- 113	BRA1	Õ	Ме	NO2	2-Nap	С		419	(M ⁺ +1)
N-i-28	NA	N-i-27		Õ	Н	NO2	2-Nap	С		405	(M ⁺ +1)
N-i-29	NB1	Int.n- 113	BRA2	ď	Ме	NO2	5-1Ind	С		408	(M ⁺ +1)
N-i-30	NA	N-i-29		Õ	H	NO2	5-11nd	O		394	(M*+1)
N-i-31	NB1	Int.n- 113	BRA3	Õ	Ме	NO2	1Me-5-Ind	С		422	(M*+1)
N-i-32	NA	N-i-31		Õ	н	NO2	1Me-5-Ind	С		408	(M ⁺ +1)
N-i-33	NB1	Int.n- 113	BRA5	Õ	Ме	NO2	5-1HIdz	С		409	(M ⁺ +1)
N-i-34	NA	N-i-33		Ž	н	NO2	5-1HIdz	С		395	(M ⁺ +1)
N-i-35	NB1	Intn- 113	BRA6	Š	Ме	NO2	1Me-5-1HIdz	С		423	(M+1)
N-i-36	NA	N-i-35		Õ	Н	NO2	1Me-5-1HIdz	С		409	(M ⁺ +1)
N-i-37	NB1	Int.n- 113	BRA11	Õ	Ме	NO2	6-Qu	С		420	(M ⁺ +1)
N-i-38	NA	N-i-37		Õ	н	NO2	6~Qu	С		406	(M++1)
N-i-39	NB1	Int.n- 114	BRA1	Õ	Ме	NO2	2-Nap	С		433	(M ⁺ +1)
N-i-40	NA	N-i-39		(Ť	H	NO2	2-Nap	0		419	(M ⁺ +1)
N-i-41	NB1	Int.n- 114	BRA3	Õ	Ме	NO2	1Me-5-Ind	С		437	(M++1)
N-i-42	NA	N−i−41		Õ	Н	NO2	1Me-5-Ind	С		423	(M*+1)
N−i~43	NB1	Int.n- 114	BRA5	Õ	Ме	NO2	5-1 HIdz	С		423	(M*+1)
N-i-44	NA	N-i-43		Ž	н	NO2	5-1HIdz	С		409	(M*+1)

Table-N-I-3

Exp.	Syn	SM1	SM2	NRzRy	Υ	Zx	AR		LCA	/IS	
LXD.	Jyn	31911	OWIZ	INFIZITY		L	AR	method	RTime	N	Mass
N-i-45	NB1	Int.n- 114	BRA6	-(_)и	Ме	NO2	1Me-5-1HIdz	О		437	(M ⁺ +1)
N-i-46	NA	N−i-45		—()и	Н	NO2	1Me-5-1HIdz	С		423	(M ⁺ +1)
N-i-47	NB1	Int.n- 115	BRA3	Ò	Ме	NO2	1Me-5-Ind	С		436	(M ⁺ +1)
N-i-48	NA	N–i-47		Ŏ	н	NO2	1Me-5-Ind	С		422	(M ⁺ +1)
N-i-49	NB1	Int.n- 115	BRA5	Ŏ	Ме	NO2	5-1HIdz	О		423	(M ⁺ +1)
N-j-50	NA	N-i-49		Ŏ	Н	NO2	5-1 HIdz	С		409	(M ⁺ +1)
N- <del>i-</del> 51	NB1	Int.n- 115	BRA6	Õ	Me	NO2	1Me-5-1HIdz	·c		437	(M*+1)
N-i-52	NA	N-i-51		Ŏ	H	NO2	1Me-5-1HIdz	С		423	(M*+1)
N-j-53	ND1	N-i-1		Ŋ.	Me	NH2	2-Nap	С		375	(M ⁺ +1)
N-i-54	NA .	N-j-53		Ŋ.	Н	NH2	2-Nap	С		361	(M*+1)
N- <b>;</b> -55	ND1	N-i-3		O ₁	Ме	NH2	5-1Ind	С		364	(M ⁺ +1)
N- <del>i-</del> 56	NA	N-i-55		()v	Н	NH2	5-1Ind	С		350	(M*+1)
N-i-57	ND1	N-i-5		○N	Ме	NH2	1 Me-5-Ind	С		378	(M ⁺ +1)
N-i-58	NA	N-i-57		□N	Н	NH2	1Me-5-Ind	С		364	(M*+1)
N-i-59	ND1	N-i-7		□N	Ме	NH2	5-1 Hldz	С		365	(M*+1)
N-i-60	NA	N-i-59		()v	н	NH2	5-1Hldz	С		351	(M ⁺ +1)
N-i-61	ND1	N-j-9		○v	Ме	NH2	1Me-5-1HIdz	С		379	(M++1)
N-i-62	NA	N-i-61		()v	н	NH2	1Me-5-1HIdz	С		365	(M ⁺ +1)
N-i-63	ND1	N-i-11		Ŋ.	Ме	NH2	5-Bzt	С		382	(M ⁺ +1)
N-i-64	NA	N-i-63		()	Н	NH2	5-Bzt	С		368	(M ⁺ +1)
N-i-65	ND1	N-i-13		○N	Me	NH2	3-Qu	С		376	(M*+1)
N-i-66	NA	N-i-65		()N	Н	NH2	3-Qu	С		362	(M ⁺ +1)

Table-N-I-4

Exp.	Syn	SM1	SM2	NRzRy	Υ	Zx	AR		LCM	AS.	
EAp.	3,,,	Cimi	CINE	Tertizity	Ļ.	<u>-^</u>	An	method	RTime		Mass
N-i-67	ND1	N-i-15		□N	Me	NH2	6-Qu	С		376	(M ⁺ +1)
N-i-68	NA	N-i-67		○N	Н	NH2	6-Qu	С		362	(M*+1)
N-i-69	ND1	N-i-17		oΩv	Me	NH2	2-Nap -	С		391	(M*+1)
N-i-70	NA	N-i-69		o⊜v	Н	NH2	2-Nap	С		377	(M*+1)
Ni71	ND1	N-i-19		oO _N	Me	NH2	5-1Ind	С		380	(M*+1)
N-i-72	NA	N <del>-i-</del> 71		O_N	Н	NH2	5-1Ind	С		366	(M*+1)
N-i-73	ND1	N-i-21		o⊜n	Ме	NH2	1Me-5-Ind	С		394	(M*+1)
N-i-74	NA	N-i-73		oΩν	н	NH2	1Me-5-Ind	С		380	(M*+1)
N-i-75	ND1	N-i-23		QΝ	Мө	NH2	5-1Hldz	С		381	(M*+1)
N-i-76	NA	N-j-75		oΩN	н	NH2	5-1HIdz	С		367	(M*+1)
N-i-77	ND1	N-i-25		o⊜v	Me	NH2	1Me-5-1HIdz	С		395	(M ⁺ +1)
N-i-78	NA	N-j-77		oOn_	н	NH2	1Me-5-1HIdz	С		381	(M ⁺ +1)
N-i-79	ND1	N-i-27		\(\sqrt{\rm\}\)	Me	NH2	2-Nap	С		389	(M ⁺ +1)
N-i-80	NA	N-i∸79			Н	NH2	2-Nap	С		375	(M ⁺ +1)
N-i-81	ND1	N-i-29		Üи	Me	NH2	5-1Ind	С		378	(M ⁺ +1)
N-i-82	NA	N <del>-i-</del> 81		_N_	н	NH2	5-1 Ind	С		364	(M*+1)
N-i-83	ND1	N-i-31		¹ <b>◯</b> N	Me	NH2	1Me-5-Ind	С		392	(M ⁺ +1)
N-i-84	NA	N <del>-i-</del> 83		N	н	NH2	1Me-5-Ind	С		378	(M ⁺ +1)
N-i-85	ND1	N-i-33		_)ν	Me	NH2	5-1HIdz	С		379	(M++1)
N-i-86	NA	N-i-85			н	NH2	5-1HIdz	С		365	(M++1)
N-i-87	ND1	N-j-35		Oи	Me	NH2	1Me-5-1HIdz	С		393	(M ⁺ +1)
N-i-88	NA	N-i-87		◯v	Н	NH2	1Me-5-1HIdz	С		379	(M ⁺ +1)

Table-N	-1-5										
					T				LCI	us	
Exp.	Syn	SM1	SM2	NRzRy	Y	Zx	AR	method			lass
N-i-89	ND1	N-i-37			Me	NH2	6−Qu	С		390	(M ⁺ +1)
N-i-90	NA	N-i-89		O	н	NH2	6-Qu	С		376	(M ⁺ +1)
N-i-91	ND1	N-i-39		-(_)v	Me	NH2	2-Nap	С		403	(M+1)
N-I-92	NA	N-j-91		-{\n'	Н	NH2	2-Nap	С		389	(M ⁺ +1)
N-i-93	ND1	N-i-41		-()v	Me	NH2	1Me-5-Ind	С		406	(M ⁺ +1)
N-i-94	NA	N-i-93		-()v	н	NH2	1Me-5-Ind	С		392	(M*+1)
N-i-95	ND1	N-i-43		$-\bigcirc$ v	Ме	NH2	5-11dz	С		393	(M ⁺ +1)
N-i-96	NA	N-i-95		-()и	н	NH2	5-11dz	С		379	(M*+1)
N-i-97	ND1	N-i-45		- <b></b> ○N	Ме	NH2	1Me-5-1Hldz	С		407	(M ⁺ +1)
N-i-98	NA	N-i-97		(_)N	Н	NH2	1Me-5-1HIdz	С		393	(M*+1)
N-I-99	ND1	N-i-47		O	Ме	NH2	1Me-5-Ind	С		406	(M*+1)
N-i-100	NA	N-i-99		O	н	NH2	1Me-5-Ind	С		392	(M*+1)
N-i-101	ND1	N-i-49		Ŏ	Мо	NH2	5-11dz	С		393	(M*+1)
N-i-102	NA	N-i-101		O	н	NH2	5-11dz	С		379	(M ⁺ +1)
N-i-103	ND1	N-i-51		Ŏ	Me	NH2	1Me-5-1Hldz	С		407	(M*+1)
N-i-104	NA	N-i-103		Ò	Н	NH2	1Me-5-1HIdz	С		393	(M ⁺ +1)
N-i-105	NN1	N-i-53	CH3I	□()v	Me	NHMe	2-Nap	С		389	(M+1)
N-i-106	NA	N-i-105		ÛN .	н	NHMe	2-Nap	С		375	(M ⁺ +1)
N-i-107	NN1	N-1-57	CH3I	()v	Me	NHMe	1Me-5-Ind	С		392	(M ⁺ +1)
N-i-108	NA	N-i-107		()N	н	NHMe	1Me-5-Ind	С		378	(M ⁺ +1)
N-i-109	NN1	N-i-61	CH₃I	○N	Me	NHMe	1Me-5-1Hldz	С		393	(M ⁺ +1)
N-i-110	NA	N-i-109		[]N	Н	NHMe	1Me-5-1Hldz	С		379	(M*+1)

Table-N-1-6

Ехр.	Svn	SM1	SM2	NRzRv	Υ	Zx	AR		LCN	AS .	
	Cyn	J.WI	U.WZ		Ľ.		AN	method	RTime	N	Mass
N <del>-i-</del> 111	NN1	N-I-63	CH3I	□N	Me	NHMe	5-Bzt	С		396	(M ⁺ +1)
N-i-112	NA	N-i-111		□N	н	NHMe	5-Bzt	С		382	(M*+1)
N-i-113	NN1	N-i-65	CH3I	○N	Me	NHMe	3-Qu	С		390	(M ⁺ +1)
N-i-114	NA	N-i-113		○N	Н	NHMe	3-Qu	С		376	(M*+1)
N-i-115	NN1	N-i-67	CH3I	○N	Me	NHMe	6-Qu	С		390	(M*+1)
N-i-116	NA	N-i-115		○N	Н	NHMe	6-Qu	c		376	(M ⁺ +1)
N-i-117	NN1	N-i-69	CH3I	Q_N	Me	NHMe	2-Nap	С		405	(M ⁺ +1)
N-i-118	NA	N-i-117		Q_N	н	NHMe	2-Nap	С		391	(M*+1)
N-;-119	NN1	N-i-73	CH3I	Q_N	Me	NHMe	1Me-5-Ind	С		408	(M+1)
N-i-120	NA	N-i-119		Q	н	NHMe	1Me-5-Ind	С		394	(M ⁺ +1)
N-i-121	NN1	N-i-77	CH3I	OΝ	Me	NHMe	1Me-5-1HIdz	С		409	(M ⁺ +1)
N-i-122	NA	N-i-121		QΝ	Н	NHMe	1Me-5-1HIdz	С		395	(M ⁺ +1)
N-i-123	NN1	N-i-79	CH3I	Õ	Me	NHMe	2-Nap	С		403	(M ⁺ +1)
N-i-124	NA	N-i-123		Š	Н	NHMe	2-Nap	С		389	(M ⁺ +1)
N-i-125	NN1	N-i-83	CH3I	Õ	Ме	NHMe	1Me-5-Ind	С		406	(M++1)
N-i-126	NA	N-i-125		Š	Н	NHMe	1Me-5-Ind	С		392	(M ⁺ +1)
N-i-127	NN1	N-i-87	CH3I	Õ	Me	NHMe	1Me-5-1HIdz	С		407	(M ⁺ +1)
N-i-128	NA	N-i-127		Õ	Н	NHMe	1Me-5-1HIdz	С		393	(M ⁺ +1)
N-i-129	NN1	N-i-91	CH₃I	\( \)	Me	NHMe	2-Nap	С		417	(M ⁺ +1)
N-i-130	NA	N-i-129		N	Н	NHMe	2-Nap	С		403	(M ⁺ +1)
N-i-131	NN1	N-i-93	CH₃I	N	Me	NHMe	1Me-5-Ind	С		420	(M ⁺ +1)
N-i-132	NA	N-i-131		\ \ \	Н	NHMe	1Me-5-Ind	С		406	(M ⁺ +1)

Table-N-I-7

Table-N					T.,	_			LCM	MS .	
Exp.	Syn	SM1	SM2	NRzRy	Y	Zx	AR	method	RTime		Mass
N−i−133	NN1	N-i-97	CH ³ I	$\sim$	Ме	NHMe	1Me-5-1Hldz	С		421	(M ⁺ +1)
N-I-134	NA	N-i-133		<b>~</b>	н	NHMe	1Me-5-1Hldz	С		407	(M+1)
N-i-135	NN1	N-i-99	CH³I	Õ	Me	NHMe	1Me-5-Ind	c		420	(M ⁺ +1)
N-i-136	NA	N-i-135		Ŏ	н	NHMe	1Me-5-Ind	С		406	(M*+1)
N-i-137	NN1	N-i-103	CH3I	Õ	Me	NHMe	1Me-5-1HIdz	O		421	(M ⁺ +1)
N-;-138	NA	N-i-137		Õ	Н	NHMe	1Me-5-1Hldz	С		407	(M*+1)
N-i-139	NN2	N~i~53	CH3I	Õ	Me	NMe2	2-Nap	O		403	(M ⁺ +1)
N-i-140	NA	N <del>-i-</del> 139		Š	Н,	NMe2	2-Nap	С		389	(M*+1)
N-i-141	NN2	N-i-57	CH³I	Õ	Me	NMe2	1Me-5-Ind	С		406	(M ⁺ +1)
N-I-142	NA	N-i-141		Š	Н	NMe2	1Me-5-Ind	C		392	(M ⁺ +1)
N-i-143	NN2	N~i−61	CH₃I	Š	Me	NMe2	1Me-5-1Hldz	С		407	(M++1)
N-I-144	NA	N-i-143		Š	н	NMe2	1Me-5-1Hldz	O		393	(M ⁺ +1)
N-i-145	NN2	N-i-63	CH3I	Õ	Me	NMe2	5-Bzt	С		410	(M+1)
N-i-146	NA	N <del>-i-</del> 145		Š	н	NMe2	5-Bzt	С		396	(M ⁺ +1)
N-i-147	NN2	N-i-65	CH₃I	Õ	Me	NMe2	3-Qu	С		404	(M*+1)
N-i-148	NA	N-i-147		Š	Н	NMe2	3−Qu	С		390	(M ⁺ +1)
N-i-149	NN2	N-i-67	CH₃I	Ŋ	Me	NMe2	6-Qu	C		404	(M+1)
N-i-150	NA	N-i-149		Š	н	NMe2	6-Qu	C		390	(M ⁺ +1)
N-i-151	NN2	N-i-69	CH₃I	Q∫N .	Ме	NMe2	2-Nap	С		419	(M ⁺ +1)
N-i-152	NA	N-i-151		o()v	н	NMe2	2−Nap	С		405	(M*+1)
N-i-153	NN2	N-i-73	CH³I	o()v	Me	NMe2	1Me-5-Ind	С		422	(M ⁺ +1)
N-i-154	NA	N-1-153		Q_N	Н	NMe2	1Me-5-Ind	С		408	(M*+1)

Table-N-I-8

Exp.	Syn	SM1	SM2	NRzRy	Y	Zx	AR		LCA		
<u> </u>	-			/ /	Ļ.	<del>-</del>		method	RTime		lass
N-i-121	NN2	N−i-77	CH31	Q_N	Ме	NMe2	1Me-5-1HIdz	С		423	(M ⁺ +1)
N-i-122	NA	N-i-121		Q_N	н	NMe2	1Me-5-1HIdz	С		409	(M++1)
N-i-123	NN2	N-i-79	CH3I	Ο'n	Me	NMe2	2-Nap	С		417	(M*+1)
N-i-124	NA	N−i−123		Ο'n	Н	NMe2	2-Nap	С		403	(M*+1)
N−i−125	NN2	N-i-83	CH31	○N	Me	NMe2	1Me-5-Ind	С		420	(M+1)
N-j-126	NA	N−i−125		Ŋ	Н	NMe2	1Me-5-Ind	С		406	(M ⁺ +1)
N-i-127	NN2	N-i-87	CH31	Ον	Me	NMe2	1Me-5-1Hldz	С		421	(M ⁺ +1)
N-i-128	NA	N−i−127		O	Η.	NMe2	1Me-5-1Hldz	С		407	(M ⁺ +1)
N-i-129	NN2	N-i-91	CH3I	ď	Me	NMe2	2-Nap	С		431	(M*+1)
N-i-130	NA	N-i-129		Å	н	NMe2	2-Nap	С		417	(M*+1)
N-i-131	NN2	N-i-93	CH3I	Ž	Me	NMe2	1Me-5-Ind	С		434	(M ⁺ +1)
N-i-132	NA	N-i-131		Ž	н	NMe2	1Me-5-Ind	С		420	(M++1)
N-i-133	NN2	N-i-97	CH3I	$\sim$	Me	NMe2	1Me-5-1HIdz	C		435	(M ⁺ +1)
N-i-134	NA	N-i-133		Š	Н	NMe2	1Me-5-1HIdz	С		421	(M+1)
N-i-135	NN2	N-i-99	CH3I	Õ	Me	NMe2	2−Nap	С		431	(M*+1)
N-i-136	NA	N-i-135		Ŏ	н	NMe2	2-Nap	С		417	(M*+1)
N-i-137	NN2	N-i-103	CH3I	Q	Me	NMe2	1Me-5-1HIdz	С		435	(M*+1)
N-i-138	NA	N-i-137		Q	н	NMe2	1Me-5-1HIdz	С		421	(M*+1)

# [Test Examples]

1. Suppressing Action on PGE2 production from IL-1 β -stimulated MG-63 cells

## (1) Method for measurement

An action of suppressing PGE2 production caused by interleukin (IL)  $1\,\beta\,$  as an inflammatory stimulant was studied by the following method. Cells of MG-63, which is a human osteosarcoma cell line (purchased from Dainippon

Pharmaceutical), were suspended in EMEM medium (GIBCO) containing 10% fetal

bovine serum (BioFluid), and then inoculated to each well of 96 well culture plate at a density of 2 x  $10^4$  cells/well and cultured overnight. The medium was changed to EMEM medium containing 0.5% fetal bovine serum, and then a test compound was added to each well. Human interleukin  $1\beta$  (ENDOGEN) was further added as an inflammatory stimulant at a final concentration of 1 ng/ml. The cells were further cultured for 18 hours. Then, the culture supernatant was collected, and the PGE2 concentration in the culture supernatant was measured by using EIA kit (CAYMAN). By using a well which was not added with the stimulant as a negative control and a well which was added only with the stimulant as a positive control, suppression ratio on PGE2 production was calculated from the produced amount of PGE2 in the well added with the test compound using the following equation.

[Equation 1]

 $PGE_2$  production suppression ratio =  $[1 - (C - B)/(A - B)] \times 100$ 

- A: PGE2 production amount of positive control
- B: PGE2 production amount of negative control
- C: PGE2 production amount in well added with test compound

Further, cytotoxicity of the compounds was studied by using the cells after the collection of the supernatant according to the methylene blue uptake method. Specifically, the cells remained after the collection of the supernatant were fixed with glutaraldehyde and stained with a 0.05% methylene blue solution, then methylene blue taken up by the cells was extracted with 0.3 N hydrochloric acid, and absorbance of the extract was measured at 670 nm. The absorbance of the well of the aforementioned positive control was taken as 100%, and a test compound that gave absorbance in well of less than 80% was judged to be positive in cytotoxicity.

#### (2) Measurement results

The test compounds (Compound Nos. G-1 to G-121, H-1 to H-32, J-1 to J-92,

K-1 to K-40, L-1 to L-95, M-1 to M-32, N-1 to N-74, P-1 to P-50, Q-1 to Q-52, S-1 to S-73, T-1 to T-61, U-1 to U-18, V-1 to V-109, and W-1 to W-13) suppressed the PGE₂ production caused by IL-1β by 50% or more at 1.0 μ M. Moreover, all the test compounds did not exhibit evtotoxicity at that concentration.

The test compounds (Compound Nos. Ca-1 to Ca-203) suppressed the PGE₂ production caused by IL-1 $\beta$  by 50% or more at 1.0  $\mu$ M. None of the test compounds exhibited cytotoxicity at that concentration.

The test compounds (Compound Nos. S-a·1 to S-a·24, S-b·1 to S-b·138, and S-c·1 to S-c·138) suppressed the PGE₂ production caused by IL·1 $\beta$  by 50% or more at 1.0  $\mu$  M. None of the test compounds exhibited cytotoxicity at that concentration.

Further, the test compounds (Compound Nos. N a 1 to N a 142, N b 1 to N b 182, N c 1 to N c 64, N d 1 to N d 74, N c 1 to N c 186 and N g 1 to N g 44) suppressed the PGE₂ production caused by IL 1 $\beta$  by 50% or more at 1.0  $\mu$  M. None of the test compounds exhibited cytotoxicity at that concentration.

Therefore, the novel substituted phenylalkanoic acid derivatives or salts thereof according to the present invention are useful as agents for suppressing inflammatory prostaglandin production.

Suppressing action on PGD₂ and LTB₄ production from IgE-stimulated RBL-2H8 cells

#### (1) Method for measurement

Suppressing action on PGD₂ and LTB₄ production caused by IgE as an allergic stimulant was investigated by the following method. Cells of RBL-2H3, which is a rat mastocytoma cell line (purchased from ATCC), were suspended in DEMEM medium (GIBCO) containing 10% fetal bovine serum (BioFluid), inoculated to each well of 48-well culture plate at a density of 2 x 10⁴ cells/well and cultured overnight. Then, IgE antiserum directed to dinitrophenylated BSA

(hereinafter abbreviated as "DNP-BSA") was further added to each well, and the cells were cultured for 30 minutes. Then, the medium was changed to DEMEM medium containing 0.5% fetal bovine serum, a test compound was added to each well, and DNP-BSA was further added at a final concentration of 100 ng/ml as a stimulant. Ten minutes after the stimulant was added, the culture supernatant was collected, and the PGD2 concentration and LTB4 concentration in the culture supernatant were measured by using EIA kit (CAYMAN). By using a well which was not added with the stimulant as a negative control and a well which was added only with the stimulant as a positive control, suppressing ratios on mediator production were calculated from the production amounts of the mediators in the well added with the test compound using the following equation 2.

### [Equation 2]

PGD₂ or LTB₄ production suppression ratio =  $[1 - (C - B)/(A - B)] \times 100$ 

A: PGD2 or LTB4 production amount of positive control

B: PGD2 or LTB4 production amount of negative control

C: PGD2 or LTB4 production amount in well added with test compound

Cytotoxicity of the compounds was studied in the same manner as those described above, by using the cells after the collection of the supernatant according to the methylene blue uptake method.

#### (2) Measurement results

Representative compounds of the objective Compounds (I) described in the specification suppressed the PGD2 and LTB4 production caused by IgE stimulation by 50% or more at 1.0  $\mu$  M. Moreover, all the test compounds did not exhibit cytotoxicity at that concentration. Thus, the novel substituted phenylalkanoic acid derivatives or salts thereof according to the present invention exhibit suppressing action on the allergic prostaglandin and leukotriene production, and are useful as suppressing agents for the production thereof.

3. Suppressing effect on mouse zymosan-stimulated footpad edema reaction

#### (1) Method for measurement

A suppressing effect on footpad edema caused by zymosan as an inflammatory stimulant was studied by the following method. Groups of ICR female mice (6- to 7-week old) each consisting of eight mice were used for the test. A test compound was suspended or dissolved in purified water containing 0.5% methylcellulose and orally administered to the test animals at 0.1 to 500 mg/10 ml/kg. To the control group, purified water containing 0.5% methylcellulose was administered in a similar manner, which was not added with a test compound. One hour after the administration of the test compound, 0.02 ml of a suspension of zymosan suspended in physiological saline (Otsuka Pharmaceutical) at 1 mg/ml was subcutaneously administered to right hind leg footpad of each mouse. One and two hours after the administration of the zymosan suspension, volume of the right hind leg footpad was measured by using an apparatus for measuring a volume of mouse hind leg footpad edema (Unicom). A difference of the volume of footpad measured above and the footpad volume before the administration of the test compound measured beforehand was regarded as a volume of the edema.

For the volume of the edema at 1 hour or 2 hours after the zymosan administration, a graph was prepared by indicating time in abscissa and the edema volume in ordinate, and an edema volume AUC (area under the curve) was obtained up to 2 hours by calculation using the following equation.

Equation 3

Edema volume AUC ( $\mu$  l*hour) = 1/2 x 1 x A + 1 x (A + B)/2

- A: Edema volume 1 hour after zymosan administration
- B: Edema volume 2 hour after zymosan administration

A suppression ratio on edema of test compound was obtained by calculation using the following equation.

Equation 4

Edema suppression ratio (%) = [1 - B/A] x 100

A: Edema volume AUC of positive control

B: Edema volume AUC of test compound administered group

#### (2) Measurement results

Representative compounds of the objective Compounds (f) described in the specification more effectively suppressed footpad edema caused by subcutaneous administration of zymosan compared with the positive control group by oral administration at 0.1 to 500 mg/kg.

Therefore, the novel substituted phenylalkanoic acid derivatives or salts thereof according to the present invention exhibit a suppressing action on footpad edema caused by zymosan as an inflammatory stimulant, and thus they are useful as agents for prophylactic and/or therapeutic drugs for inflammatory diseases.

4. Suppressing effect on mouse IgE stimulated footpad edema reaction

#### (1) Method for measurement

Suppression on footpad edema caused by IgE antibody as an allergic stimulant was studied by the following method. Groups of C57BL/6 male mice (9 to 11 week old) each consisting of five mice were used for the test. Anti-DNP-BSA IgE scrum was subcutaneously administered in a volume of  $20~\mu$ 1 to right hind leg footpad of each mouse one day before the test. A test compound was suspended or dissolved in purified water containing 0.5% methylcellulose and orally administered to the test animals at 0.1 to 500 mg/10 ml/kg. To the control group, purified water containing 0.5% methylcellulose was administered in a similar manner, which was not added with any test compound. Two hours after the administration of the test compound, 0.2 ml of a solution of DNP-BSA dissolved in physiological saline (Otsuka Pharmaccutical) at 2.5  $~\mu$  g/ml was intravenously administered. The thickness of right hind leg footpad was measured by using a

digital thickness gauge (MITSUTOYO) 10, 15, 20, and 30 minutes after the administration of DNP-BSA. A difference of the thickness of footpad measured above and the thickness before the administration of the test compound measured beforehand was regarded as a thickness of edems.

For the thickness of the edema at 10, 15, 20 and 30 minutes after the DNP-BSA administration, a graph was prepared indicating time in abscissa and the edema thickness in ordinate, and edema thickness AUC up to 2 hours was obtained by calculation according to the following equation.

[Equation 5]

Edema thickness AUC (mm·minute) = 
$$1/2 \times 10 \times A + 5 \times (A + B)/2$$

$$+5 \times (B + C)/2 + 10 \times (C + D)/2$$

- A: Edema thickness 10 minutes after DNP-BSA administration
- B: Edema thickness 15 minutes after DNP-BSA administration
- C: Edema thickness 20 minutes after DNP-BSA administration
- D: Edema thickness 30 minutes after DNP-BSA administration

A suppressing ratio on edema of a test compound was obtained by calculation in accordance with the following equation.

[Equation 6]

Edema suppression ratio (%) =  $[1 - B/A] \times 100$ 

- A: Edema thickness AUC of positive control
- B: Edema thickness AUC of test compound administered group
- (2) Measurement results

Representative compounds of the objective Compounds (I) described in the specification suppressed the footpad edema caused by IgE stimulation, i.e., footpad edema observed when DNP-BSA was administered to the mice sensitized with the anti-DNP-BSA IgE serum, compared with the positive control group by oral administration of 0.1 to 500 mg/kg.

Therefore, the novel substituted phenylalkanoic acid derivatives or salts thereof according to the present invention exhibit suppressing action on footpad edema caused by IgE antibody, which is an allergic stimulant, and thus they are useful as prophylactic and/or therapeutic drugs for allergic diseases.

5. Suppressing effect on mouse acetic acid writhing reaction

#### (1) Method for measurement

A suppressing effect on acetic acid writhing reaction, which is an acute pain model, was studied by the following method. Groups of ICR female mice (6-week old) each consisting of eight mice were used for the test. A test compound was suspended or dissolved in purified water containing 0.5% methylcellulose and orally administered to the test animals at 0.1 to 500 mg/10 ml/kg. To the control group, purified water containing 0.5% methylcellulose was administered in a similar manner, which was not added with any test compound. One hour after the administration of the test compound, 0.9% aqueous acetic acid was intraperitoneally administered to the mice in a volume of 5 ml/kg, and number of writhing reactions during 15 minutes immediately after the administration of acetic acid was counted. Suppression ratio relative to the control group was obtained by calculation according to the following equation.

[Equation 7]

Writhing suppression ratio (%) = [1 - B/A] x 100

A: Writhing number of positive control group

B: Writhing number of test compound administered group

### (2) Measurement results

The representative compounds of the objective Compounds (I) described in the specification suppressed writhing caused by administration of aqueous acetic acid compared with the positive control group at oral administration of 0.1 to 500 mg/kg.

It has been elucidated that a writhing reaction caused by intraperitoneal administration of acetic acid is caused due to production of prostaglandin [Matsumoto et al., European Journal of Pharmacology (Eur. J. Pharmacol), 1998, vol. 352, p.47; Ueno et al., Biochemical Pharmacology (Biochem. Pharmacol), 2001, vol. 15, p.157].

Therefore, the novel substituted phenylalkanoic acid derivatives or salts thereof according to the present invention are useful as prophylactic and/or therapeutic agents for acute pain caused by prostaglandins.

Prophylactic and therapeutic effects for rat adjuvant arthritis

# (1) Method for measurement

A suppressing effect on footpad edema observed in rat adjuvant arthritis, which is a disease model of rheumatoid arthritis as being one of autoimmune diseases and also a chronic inflammatory disease, was studied by the following method. Groups of Lewis female rats (8-week old) each consisting of six mice were used for the test. The test animals were immunized by subcutaneously administering, to right hind leg footpads,  $50 \mu l$  of liquid paraffin containing 10 mg/ml of M. tuberclulosis H37 RA (DIFCO) as an adjuvant. A test compound was suspended or dissolved in purified water containing 0.5% methylcellulose and orally administered to the test animals at 0.1 to 500 mg/5 ml/kg. The test compound was administered twice a day for 14 days, from the 12th day after the immunization. To the control group, purified water containing 0.5% methylcellulose was administered in a similar manner, which was not added with any test compound. Every 2 or 3 days after the administration of adjuvant, volume of left hind leg footpad, which was not administered with the adjuvant, was measured by using an apparatus for measuring a volume of edema of a rat hind leg footpad (Unicom). A suppression ratio on edema was obtained by calculation using the following equation.

[Equation 8]

Edema suppression ratio (%) =  $\{1 - I(D - C)/CI/I(B - A)/A\}$  x 100

A: Left hind leg footpad volume of positive control immediately before

 $\mathbf{B}$ : Left hind leg footpad volume of positive control on each measurement day

C: Left hind leg footpad volume of test compound administered group immediately before administration of adjuvant

D: Left hind leg footpad volume of test compound administered group on each measurement day

### (2) Measurement results

The representative compounds of the objective Compound (I) described in the specification suppressed footpad edema in adjuvant arthritis compared with the positive control group.

Therefore, the novel substituted phenylalkanoic acid derivatives or salts thereof according to the present invention are useful as agents for prophylactic and/or therapeutic drugs for rheumatoid arthritis and autoimmune diseases.

#### 7. Effect on rat pulmonary fibrosis

### (1) Method for measurement

A suppressing effect on pulmonary fibrosing in a bleomycin induced rat pulmonary fibrosis model, which is a pathological model of pulmonary fibrosis, was studied by the following method. Groups of BN female rats (7-week old) each consisting of seven rats were used for the test. The test animals were anesthetized with ketamine and xylazine, and the tracheae were exposed. Then, a  $125~\mu$  g/0.1 ml solution of bleomycin (Nippon Kayaku) dissolved in physiological saline (Ohtsuka Pharmaceutical Factory) was injected into the tracheae by using a svringe. The negative control group was administered with 0.1 ml of saline into

the tracheae.

Each test compound was suspended or dissolved in purified water containing 0.5% methylcellulose, and orally administered to the test animals at doses of 10, 30, 100 and 300 mg/5 ml/kg. The administration of the test compounds was started from the day of the bleomycin administration and performed once or twice a day for 21 days. The positive control group was administered with purified water containing 0.5% methylcellulose not added with any test compound in a similar manner. On the 21st day after the administration of bleomycin, the rats were sacrificed, and lungs were fixed with neutral buffered formalin to prepare histopathological samples. Staining of the histopathological samples was performed by the Azan method.

The histopathological samples of lungs were examined, and degree of fibrosing was represented with the following scores on the basis of formation of granulation tissues and proliferation of collagen fibers as indicators, i.e., : no abnormality, ±: extremely mild change, +: mild change, ++: moderate change, and +++: significant change.

### (2) Measurement results

The fibrosing score of the negative control group was minus (·), and no pulmonary fibrosing was observed. The median of the fibrosing score of the positive control group was from ++ to +++, and pulmonary fibrosing was observed. The medians of the fibrosing score of the groups of rats administered with the test compounds (Compound Nos. G-2, G-4 and V-40) were from ± to +, and thus the fibrosing was milder compared with the positive control group. The median of the fibrosing score of the group administered with the other test compounds (Compound Nos. G118 and V-59) was from ± to +, and thus pulmonary fibrosing was milder that that observed in the positive control group. Accordingly, the compounds of the present invention are useful as a prophylactic and/or therapeutic agent for

pulmonary fibrosis, and type 4 PLA2 inhibitor compounds are useful as a prophylactic and/or therapeutic agent (including a progression preventing agent) for pulmonary fibrosis.

Further, known cPLA2 inhibitory compounds, arachidonyl trifluoromethyl ketone, 4-(1-benzhydryl-6-chloro-1H-indol-3-ylmethyl)-3-methoxybenzoic acid, N-{1-[2-(2,4-difluorobenzoyl)benzoyl]-4-tritylsulfanylpyrrolidin-2-ylmethyl}-4-(2,4-dioxothiazolidin-5-ylidenemethyl)benzoic acid amide and 4-{4-[2-(2-[bis(4-chlorophenyl)methoxylethylsulfonyl)ethoxylphenyl}-1,1,1-trifluoro-2-butanone, are intraperitoneally or orally administered in a similar manner. Fibrosing is mild also in the groups administered with these known type 4 PLA2 inhibitory compounds.

## Industrial Applicability

The compounds of the present invention have superior suppressing action on prostaglandin production and leukotriene production, and they are useful as active ingredients of medicaments for prophylactic and/or therapeutic treatment of various inflammatory diseases, autoimmune diseases, allergic diseases, pain, fibrosis and the like caused by these lipid mediators.

## CLAIMS

1. A compound represented by the formula (I):

Rs 
$$C^5 = C^6$$
  
 $C^4$  (E) Link COOY  
AR  $C^3 - C^2$  (I)

In the formula, Link represents a saturated or unsaturated straight hydrocarbon chain having I to 3 carbon atoms.

C², C³, C⁴, C⁵, and C⁶ in the aromatic ring (E) independently represent a ring constituting carbon atom. One of the ring constituting carbon atoms to which Rs and AR do not bind may be replaced with V.

V represents nitrogen atom, or carbon atom substituted with Zx. Zx represents a linear or branched saturated alkyl group having 1 to 4 carbon atoms, fluorine atom, chlorine atom, bromine atom, nitro group, 'OR', or 'N(Rn')(Rn'). R' represents hydrogen atom, a lower alkyl group having 1 to 4 carbon atoms, or 'A'.

Qp, wherein A' represents a single bond or methylene, Qp represents phenyl group, and the phenyl group may be substituted with one of T' or two or more of the same or different T'. T' represents a linear or branched saturated alkyl group having 1 to 4 carbon atoms, hydroxyl group, fluorine atom, chlorine atom, bromine atom, trifluoromethyl group, nitro group, an alkoxy group having 1 to 4 carbon atoms, or a mono or dialkylamino group having 1 to 4 carbon atoms. Rn' represents hydrogen atom or a linear or branched saturated alkyl group having 1 to 4 carbon atoms, Rn2 has the same meaning as Rn1, or represents 'COR' or 'SO2R' or 'SO2R', or binds to Rn1 to form a 3- to 6 membered ring together with the nitrogen atom to which they bind to form a saturated nitrogen containing cycloalkyl group or morpholino group. R23 represents hydrogen atom, a lower alkyl group having 1 to 4 carbon

atoms, a lower alkoxy group having 1 to 4 carbon atoms,  $\cdot O \cdot A^4 \cdot Qp$ , or  $\cdot N(R^{26})(R^{26})$ .  $R^{25}$  represents hydrogen atom, or a linear or branched saturated alkyl group having 1 to 4 carbon atoms.  $R^{26}$  has the same meaning as  $R^{26}$ , or binds to  $R^{25}$  to form a 3-to 6-membered ring together with the nitrogen atom to which they bind to form a saturated nitrogen-containing cycloalkyl group or morpholino group.  $R^{24}$  represents a lower alkyl group having 1 to 4 carbon atoms, amino group, or a monor dialkylamino group having 1 to 4 carbon atoms.

Rs represents -D-Rx or -N(Ry)(Rz).

D represents a single bond, oxygen atom, sulfur atom,  $\cdot S(O)$ -,  $\cdot S(O)_2$ -, or  $\cdot C(O)$ -.

Rx represents a linear or branched saturated alkyl group having 3 to 8 carbon atoms, Ra represented by the following formula:

Rb represented by the following formula:

$$R^2$$
 $Q$ 
 $A^2-A^1-$ 
(Rb)

or Rc represented by the following formula.

Symbol k in Ra represents 0 or an integer of 1 to 3. R¹ represents a saturated cyclic alkyl group having 3 to 7 carbon atoms, or a condensed saturated cyclic alkyl group having 6 to 8 carbon atoms, and R¹ may be substituted with one of lower alkyl group having 1 to 4 carbon atoms or two or more of the same or different

lower alkyl groups having 1 to 4 carbon atoms. Q in Rb represents a partially unsaturated or completely unsaturated monocyclic or condensed bicyclic carbon ring or a heterocyclic ring (q), and binds to A2 at an arbitrary position on the ring. The heterocyclic ring (q) contains the same or different 1 to 4 ring-constituting heteroatoms selected from the group consisting of nitrogen atom, oxygen atom, and sulfur atom. A1 represents a single bond or an alkylene (a) having 1 to 3 carbon atoms, and the alkylene (a) may be substituted with a lower alkyl group having 1 to 4 carbon atoms or phenyl group. A2 represents a single bond, oxygen atom, sulfur atom, -S(O)-, -S(O)2-, or -N(R4)- (provided that when A2 represents oxygen atom, sulfur atom, -S(O)-, -S(O)2- or -N(R4)-, A1 represents ethylene or trimethylene). R2 and R3 independently represent hydrogen atom, a linear or branched saturated alkyl group having 1 to 4 carbon atoms, oxo group, thioxo group, fluorine atom, chlorine atom, bromine atom, trifluoromethyl group, -OR5, -N(R6)(R6), -NHCOR7, -NHSO₂R⁸, or -A⁶-Qa, or they bind to each other to represent methylenedioxy group. Qa represents a partially unsaturated or completely unsaturated monocyclic or condensed bicyclic carbon ring or a heterocyclic ring (qa), binds to A6 at an arbitrary position on the ring, and may be substituted with one of T1 or two or more of the same or different T1. The heterocyclic ring (qa) contains the same or different 1 to 4 ring constituting heteroatoms selected from the group consisting of nitrogen atom, oxygen atom, and sulfur atom. R4 and R6 independently represent hydrogen atom or a lower alkyl group having 1 to 4 carbon atoms. R5 and R7 independently represent hydrogen atom, a lower alkyl group having 1 to 4 carbon atoms, or -A6-Qa. R8 represents a lower alkyl group having 1 to 4 carbon atoms. R6 has the same meaning as R6, or binds to R6 to form a 3- to 6-membered ring together with the nitrogen atom to which they bind to represent a saturated nitrogen-containing cycloalkyl group or morpholino group. Symbol p in Rc represents an integer of 2 to 4. A4 represents a single bond, methylene, or

ethylene. A⁵ represents ·C(O)·, ·C(S)·, or ·S(O)₂·. Rd represents hydrogen atom, an alkyl group having 1 to 8 carbon atoms, ·A⁶·Qa, ·(CH₂);R¹⁴, ·OR²⁸, ·SR²⁸, or ·N(R²⁹)(R²⁰). Symbol i represents an integer of 1 to 3, R¹⁴ represents hydroxyl group, an alkoxy group having 1 to 4 carbon atoms, carboxyl group, or an N,N·dialkylcarbamoyl group having 1 to 4 carbon atoms. R²⁸ represents an alkyl group having 1 to 8 carbon atoms, or ·A⁶·Qa. R²⁹ represents an alkyl group having 1 to 8 carbon atoms, an alkoxycarbonyl group having 1 to 4 carbon atoms, or ·A⁶·Qa. R³⁰ represents hydrogen atom or a lower alkyl group having 1 to 4 carbon atoms, or binds to R²⁹ to form a 3· to 6·membered ring together with the nitrogen atom to which they bind to represent a saturated nitrogen containing cycloalkyl group or morpholino group.

Rz has the same meaning as Rx, or Rz represents methyl group, ethyl group, or A5-Re. Ry represents hydrogen atom, an alkyl group having 1 to 8 carbon atoms, or A5-Qp, or Ry may bind to Rz to form, together with a nitrogen atom to which they bind, a saturated or unsaturated 3 to 7 membered nitrogen containing cyclic group, wherein said nitrogen containing cyclic group may optionally be substituted with one or two lower alkyl groups having 1 to 4 carbon atoms wherein said two alkyl groups may be the same or different.

AR represents a partially unsaturated or completely unsaturated condensed bicyclic carbon ring or a heterocyclic ring (ar), and may be substituted with one of Xa or two or more of the same or different Xa. The heterocyclic ring (ar) contains the same or different 1 to 4 ring constituting heteroatoms selected from the group consisting of nitrogen atom, oxygen atom, and sulfur atom. Xa represents a linear or branched saturated alkyl group having 1 to 4 carbon atoms, a saturated cyclic alkyl group having 3 to 7 carbon atoms, oxo group, thioxo group, fluorine atom, chlorine atom, trifluoromethyl group, '(CH2):R¹⁴, 'OR¹⁰, 'N(R¹¹)(R¹²).

·SO₂R¹⁸, or ·COR²⁷. R¹⁰ represents hydrogen atom, a lower alkyl group having 1 to 4 carbon atoms, or ·(CH₂)₁R¹⁴. R¹¹ represents hydrogen atom or a lower alkyl group having 1 to 4 carbon atoms. R¹² represents hydrogen atom, a lower alkyl group having 1 to 4 carbon atoms, a hydroxyalkyl group having 2 to 4 carbon atoms, ·COR¹⁵, or ·SO₂R¹⁶, or binds to R¹¹ to form a 3 · to 6-membered ring together with the nitrogen atom to which they bind to represent a saturated nitrogen containing cycloalkyl group or morpholino group. R¹⁵ represents a lower alkyl group having 1 to 4 carbon atoms, a mino group, a mono or dialkylamino group having 1 to 4 carbon atoms, amino group, or a mono or dialkylamino group having 1 to 4 carbon atoms. R²⁷ represents hydrogen atom, hydroxyl group, an alkoxy group having 1 to 4 carbon atoms, a lower alkyl group having 1 to 4 carbon atoms, a lower alkyl group having 1 to 4 carbon atoms, a nino group, or a mono or dialkylamino group having 1 to 4 carbon atoms, a lower alkyl group having 1 to 4 carbon atoms, a nino group, or a mono or dialkylamino group having 1 to 4 carbon atoms, a nino group, or a mono or dialkylamino group having 1 to 4 carbon atoms, a nino group, or a mono or dialkylamino group having 1 to 4 carbon atoms.

Y represents hydrogen atom, a lower alkyl group having 1 to 4 carbon atoms,  ${}^{\circ}(CH_2)_mN(R^{19})(R^{19})$ , or  ${}^{\circ}C(R^{20})_2OC(O)A^3R^{21}$ . Symbol m represents an integer of 2 or 3.  $R^{18}$  is the same as  $R^{19}$ , or binds to  $R^{19}$  to form a 3- to 6-membered ring together with the nitrogen atom to which they bind to represent a saturated nitrogen containing cycloalkyl group or morpholino group.  $R^{19}$  represents methyl group, ethyl group, or propyl group.  $R^{20}$  represents hydrogen atom, methyl group, ethyl group, or propyl group.  $R^{21}$  represents a lower alkyl group having 1 to 4 carbon atoms, a cyclic saturated alkyl group having 3 to 6 carbon atoms, or phenyl group, and  $A^2$  represents a single bond, or oxygen atom.] or a salt thereof.

2. The compound or salt thereof according to claim 1, wherein Link is · (CH2)a, n is an integer of 1 to 3, Rz has the same meaning as that of Rx or represents ·A⁵·Re when Rs is ·N(Ry)(Rz), and Ry is hydrogen atom, an alkyl group having 1 to 8 carbon atoms, or A⁶·Qp, or Ry binds to Rz to form, together with a

nitrogen atom to which they bind, a saturated or unsaturated 3 to 7-membered nitrogen-containing cyclic group.

- 3. The compound or salt thereof according to claim 2, wherein AR is a residue of naphthalene, benzofuran, benzo[b]thiophene, indole, benzothiazole, dihydro-3H-benzothiazole, quinoline, dihydro-1H-quinoline, benzo[d]isothiazole, 1H-indazole, benzo[c]isothiazole, 2H-indazole, imidazo[1,2-a]pyridine, 1Hpyrrolo[2,3-b]pyridine, isoquinoline, dihydro-2H-isoquinoline, cinnoline, quinazoline, quinoxaline, 1H-benzimidazole, benzoxazole, 1H-pyrrolo[3,2-b]pyridine, benzo[1,2,5]thiadiazole, 1H-benzotriazole, 1,3-dihydropyrrolo[2,3-b]pyridine, 1,3dihydrobenzimidazole, dihydro-3H-benzoxazole, phthalazine, [1,8]naphthalidine, [1.5]naphthalidine, 1H-pyrrolo[3,2-c]pyridine, 1H-pyrrolo[2,3-c]pyridine, 1Hpyrazolo[4,3-b]pyridine, 1H-pyrazolo[4,3-c]pyridine, 1H-pyrazolo[3,4-c]pyridine, 1Hpyrazolo[3,4-b]pyridine, [1,2,4]triazolo[4,3-a]pyridine, thieno[3,2-c]pyridine, thieno[3,2-b]pyridine, 1H-thieno[3,2-c]pyrazole, benzo[d]isoxazole, benzo[c]isoxazole, indolizine, 1,3-dihydroindole, 1H-pyrazolo[3,4-d]thiazole, 2Hisoindole, [1,2,4]triazolo[1,5-a]pyrimidine, 1H-pyrazolo[3,4-b]pyrazine, 1Himidazo[4.5-b]pyrazine, 7H-purine, or 4H-chromene (the aforementioned residue may be substituted with one of Xa or two or more of the same or different Xa).
- 4. The compound or salt thereof according to claim 2, wherein AR is naphthalen-2-yl group, naphthalen-1-yl group, benzofuran-5-yl group, benzofuran-4-yl group, benzofuran-2-yl group, benzofblthiophen-4-yl group, benzofblthiophen-2-yl group, indol-6-yl group, indol-4-yl group, indol-6-yl group, benzothiazol-6-yl group, benzothiazol-6-yl group, benzothiazol-5-yl group, benzothiazol-4-yl group, dihydro-3H-benzothiazol-6-yl group, dihydro-3H-benzothiazol-4-yl group, dihydro-3H-benzothiazol-4-yl group, quinolin-6-yl group, quinolin-5-yl group, quinolin-7-yl group, dihydro-1H-quinolin-6-yl group, dihydro-

vl group, benzo[d]isothiazol-5-yl group, benzo[d]isothiazol-4-yl group, benzo[d]isothiazol-6-yl group, benzo[d]isothiazol-7-yl group, 1H-indazol-5-yl group, 1H-indazol-4-yl group, 1H-indazol-6-yl group, benzo[c]isothiazol-5-yl group, benzo[c]isothiazol-4-yl group, benzo[c]isothiazol-6-yl group, benzo[c]isothiazol-7-yl group, 2H-indazol-5-yl group, 2H-indazol-4-yl group, 2H-indazol-6-yl group, imidazo[1,2-a]pyridin-6-yl group, imidazo[1,2-a]pyridin-7-yl group, 1H-pyrrolo[2,3blpvridin-5-vl group, 1H-pvrrolo[2,3-b]pvridin-4-yl group, isoquinolin-6-yl group, isoquinolin-3-yl group, isoquinolin-5-yl group, isoquinolin-7-yl group, dihydro-2Hisoquinolin-6-yl group, dihydro-2H-isoquinolin-5-yl group, cinnolin-6-yl group, cinnolin-5-yl group, quinazolin-6-yl group, quinazolin-7-yl group, quinazolin-5-yl group, quinoxalin-2-yl group, quinoxalin-6-yl group, quinoxalin-5-yl group, 1Hbenzimidazol-5-yl group, 1H-benzimidazol-4-yl group, benzoxazol-5-yl group, benzoxazol-6-vl group, benzoxazol-4-vl group, benzoxazol-7-vl group, 1Hpyrrolo[3,2-b]pyridin-5-yl group, 1H-pyrrolo[3,2-b]pyridin-6-yl group, benzo[1,2,5]thiadiazol-5-yl group, benzo[1,2,5]thiadiazol-4-yl group, 1Hbenzotriazol-5-vl group, 1H-benzotriazol-4-vl group, 1,3-dihydropyrrolo[2,3b]pyridin-5-yl group, 1,3-dihydropyrrolo[2,3-b]pyridin-4-yl group, 1,3dihydrobenzimidazol-5-yl group, 1,3-dihydrobenzimidazol-4-yl group, dihydro-3Hbenzoxazol-6-vl group, dihydro-3H-benzoxazol-7-yl group, dihydro-3H-benzoxazol-5vl group, dihydro-3H-benzoxazol-4-yl group, phthalazin-6-yl group, phthalazin-5-yl group, [1.8]naphthalidin-3-vl group, [1.8]naphthalidin-4-yl group, [1,5]naphthalidin-3-yl group, [1,5]naphthalidin-4-yl group, 1H-pyrrolo[3,2c]pyridin-6-yl group, 1H-pyrrolo[3,2-c]pyridin-4-yl group, 1H-pyrrolo[2,3-c]pyridin-5-yl group, 1H-pyrrolo[2,3-c]pyridin-4-yl group, 1H-pyrazolo[4,3-b]pyridin-5-yl group, 1H-pyrazolo[4,3-b]pyridin-6-yl group, 1H-pyrazolo[4,3-c]pyridin-6-yl group, 1H-pyrazolo[4,3-c]pyridin-4-yl group, 1H-pyrazolo[3,4-c]pyridin-5-yl group, 1Hpyrazolo[3,4-c]pyridin-4-yl group, 1H-pyrazolo[3,4-b]pyridin-5-yl group, 1H-

pyrazolo[3,4-b]pyridin-4-yl group, [1,2,4]triazolo[4,3-a]pyridin-6-yl group, [1,2,4]triazolo[4,3-a]pyridin-7-yl group, thieno[3,2-c]pyridin-2-yl group, thieno[3,2-c]pyridin-3-yl group, thieno[3,2-c]pyridin-5-yl group, thieno[3,2-b]pyridin-3-yl group, thieno[3,2-b]pyridin-5-yl group, thieno[3,2-b]pyridin-6-yl group, thieno[3,2-c]pyrazol-5-yl group, 1H-thieno[3,2-c]pyrazol-4-yl group, benzo[d]isoxazol-5-yl group, 1H-thieno[3,2-c]pyrazol-4-yl group, benzo[d]isoxazol-6-yl group, benzo[d]isoxazol-6-yl group, benzo[d]isoxazol-6-yl group, benzo[d]isoxazol-7-yl group, indolizin-7-yl group, indolizin-6-yl group, benzo[c]isoxazol-7-yl group, indolizin-7-yl group, indolizin-6-yl group, 1,3-dihydroindol-5-yl group, 1,3-dihydroindol-6-yl group, 1,3-dihydroindol-6-yl group, 1H-pyrazolo[3,4-d]thiazol-5-yl group, 2H-isoindol-5-yl group, 2H-isoindol-4-yl group, 1H-pyrazolo[3,4-b]pyrazin-5-yl group, 1H-imidazo[4,5-b]pyrazin-5-yl group, 7H-purin-2-yl group, 4H-chromen-6-yl group, or 4H-chromen-6-yl group (the aforementioned groups may be substituted with one of Xa or two or more of the same or different Xa).

5. The compound or salt thereof according to any one of claims 2 to 4 mentioned above, wherein Rs is 'D·Rx or 'N(Ry)(Rz), D is a single bond, oxygen atom, sulfur atom, 'S(O)-, 'S(O)-, or 'C(O)-, Rx is a linear or branched saturated alkyl group having 3 to 8 carbon atoms, or Ra, Rb, or Rc, k in Ra is 0 or an integer of 1 to 3, R¹ is a saturated cycloalkyl group having 3 to 7 carbon atoms or a condensed saturated cycloalkyl group having 3 to 7 carbon atoms or a condensed saturated cycloalkyl group having 6 to 8 carbon atoms, R¹ may be substituted with one of lower alkyl group having 1 to 4 carbon atoms or two or more of the same or different lower alkyl groups having 1 to 4 carbon atoms, Q in Rb is phenyl group, thienyl group, furyl group, pyrrolyl group, pyridyl group, oxazolyl group, isoxazolyl group, thiazolyl group, isoxazolyl group, thiazolyl group, thiadiazolyl group, triazolyl group, tetrazolyl group, naphthyl group, tetrahydronaphthyl group, indanyl group, indenyl group,

quinolyl group, isoquinolyl group, indolyl group, benzofuryl group, benzothienyl group, benzimidazolyl group, benzoxazolyl group, benzothiazolyl group, indazolyl group, 4H-chromenyl group, dihydrobenzodioxyl group, benzoisoxazolyl group, pyrrolopyridinyl group, pyrazolopyridinyl group, triazolopyridinyl group, thienopyridinyl group, thienopyrazolyl group, 1,3-dihydrobenzimidazole group, dihydro-3H-benzoxazole group, or dihydro-3H-benzothiazole group (the aforementioned groups bond to A2 at an arbitrary position on the rings), A1 is a single bond or an alkylene (a) having 1 to 3 carbon atoms, the alkylene (a) may be substituted with a lower alkyl group having 1 to 4 carbon atoms or phenyl group, A2 is a single bond, oxygen atom, sulfur atom, -S(O)-, -S(O)2-, or -N(R4)- (provided that when A2 represents oxygen atom, sulfur atom, -S(O)-, -S(O)2-, or -N(R4)-, A1 represents ethylene or trimethylene), R2 and R3 independently represent hydrogen atom, a linear or branched saturated alkyl group having 1 to 4 carbon atoms, oxo group, thioxo group, fluorine atom, chlorine atom, bromine atom, trifluoromethyl group, -OR5, -N(R6)(R6), -NHCOR7, -NHSO2R8, or -A6-Qa, or they bind to each other to represent methylenedioxy group, Qa is phenyl group, pyridyl group, oxazolyl group, isoxazolyl group, thiazolyl group, isothiazolyl group, imidazolyl group, pyrazolyl group, oxadiazolyl group, thiadiazolyl group, triazolyl group, tetrazolyl group, naphthyl group, indanyl group, indenyl group, quinolyl group, isoquinolyl group, indolyl group, benzofuryl group, benzothienyl group, benzimidazolyl group, benzoxazolyl group, benzothiazolyl group, or indazolyl group (the aforementioned groups may be substituted with one of T1 or two or more of the same or different T1, and bind to A6 at an arbitrary position on the rings), R4 and R6 independently represent hydrogen atom or a lower alkyl group having 1 to 4 carbon atoms, R5 and R7 independently represent hydrogen atom, a lower alkyl group having 1 to 4 carbon atoms, or -A6-Qa, R8 is a lower alkyl group having 1 to 4 carbon atoms, R6' has the same meaning as R6, or binds to R6 to form a 3- to 6-membered ring

together with the nitrogen atom to which they bind to form a saturated nitrogencontaining cycloalkyl group or morpholino group, p in Rc is an integer of 2 to 4, A4 is a single bond or methylene or ethylene, A5 is -C(O)-, -C(S)-, or -S(O)2-, Rd is hydrogen atom, an alkyl group having 1 to 8 carbon atoms, or Qa, Re is an alkyl group having 1 to 8 carbon atoms, -A6-Qa, -(CH2)iR14, -OR28, -SR28, or -N(R29)(R30), i is an integer of 1 to 3, R¹⁴ is hydroxyl group, an alkoxy group having 1 to 4 carbon atoms, carboxyl group, or an N,N-dialkylcarbamoyl group having 1 to 4 carbon atoms. R²⁸ is an alkyl group having 1 to 8 carbon atoms or -A⁶-Qa, R²⁹ is an alkyl group having 1 to 8 carbon atoms, an alkoxycarbonyl group having 1 to 4 carbon atoms, or A6-Qa group, R30 is hydrogen atom or a lower alkyl group having 1 to 4 carbon atoms, or binds to R29 to form a 3- to 6-membered ring together with the nitrogen atom to which they bind to form a saturated nitrogen-containing cycloalkyl group or morpholino group, Rz has the same meaning as Rx, or is 'A5-Re, and Ry is hydrogen atom, an alkyl group having 1 to 8 carbon atoms, or -A6-Qp, or binds to Rz to form a saturated or unsaturated nitrogen containing cyclic substituent having 3 to 7 atoms together with nitrogen atom to which they binds.

- 6. The compound or salt thereof according to any one of claims 2 to 5, wherein Rs is  $^{\circ}$ O-Rx.
- 7. The compound or salt thereof according to claim 2, wherein AR binds to C³ in the aromatic ring (E), and Rs binds to one of the ring constituting carbon atoms C⁴, C⁵, and C⁶.
- 8. The compound or salt thereof according to claim 2, wherein AR binds to C² in the aromatic ring (R), and Rs binds to one of the ring constituting carbon atoms C³, C⁴, and C⁵.
- The compound or salt thereof according to claim 7, wherein Rs is 'O'Rx, and all of C², C³, C⁴, C⁵, and C⁶ in the aromatic ring (E) are not replaced with V.
  - 10. The compound or salt thereof according to claim 8, wherein n is an

integer of 2, and Y is hydrogen atom or a lower alkyl group having 1 to 4 carbon atoms.

- 11. The compound or salt thereof according to claim 7, wherein Rs binds to the ring constituting carbon atom C⁵ or C⁵ in the aromatic ring (E).
- 12. The compound or salt thereof according to claim 11, wherein Rs is -O-Rx, and all of C2, C3, C4, C5, and C6 in the aromatic ring (E) are not replaced with V.
- 13. The compound or salt thereof according to claim 12, wherein n is an integer of 2, and Y is hydrogen atom or a lower alkyl group having 1 to 4 carbon atoms.
- 14. The compound or salt thereof according to claim 7, wherein Rs binds to C4 in the aromatic ring (B), and C5 is replaced with V.
- 15. The compound or salt thereof according to claim 14, wherein n is an integer of 2, V is carbon atom substituted with Zx, D is oxygen atom, and Y is hydrogen atom or a lower alkyl group having 1 to 4 carbon atoms.
- 16. The compound or salt thereof according to claim 7, wherein Rs binds to C⁴ in the aromatic ring (E), C⁵ is nitrogen atom, and C² and C⁶ are unsubstituted ring constituting carbon atoms.
- 17. The compound or salt thereof according to claim 16, wherein n is an integer of 2, Rs is -O·Rx, and Y is hydrogen atom or a lower alkyl group having 1 to 4 carbon atoms.
- 18. The compound or salt thereof according to claim 7, wherein Rs binds to C⁴ in the aromatic ring (E), C⁵ is a ring-constituting carbon atom substituted with Zx, or an unsubstituted ring-constituting carbon atom, C² and C⁶ are unsubstituted ring-constituting carbon atom, Rs is 'N(Ry)(Rz).
- 19. The compound or salt thereof according to claim 1, wherein Link is  $(CH_2)_n$ , n is an integer of 1 to 3,  $C^2$  and  $C^6$  in the aromatic ring (E) are unsubstituted ring constituting carbon atoms, AR binds to  $C^3$  in the aromatic ring

(E), and Rs is -N(Rv)(Rz) and binds to C4 in the aromatic ring (E).

20. The compound or salt thereof according to claim 19, wherein n is 2, and  $C^{\circ}$  is carbon atom substituted with Zx or unsubstituted ring constituting carbon atom.

21. The compound or salt thereof according to claim 19 or 20, wherein AR is naphthalen-2-yl group, naphthalen-1-yl group, benzofuran-5-yl group, benzofuran-4-yl group, benzofuran-2-yl group, benzo[b]thiophen-5-yl group, benzo[b]thiophen-4vl group, henzolblthiophen-2-vl group, indol-5-vl group, indol-4-vl group, indol-6-vl group, benzothiazol-6-yl group, benzothiazol-7-yl group, benzothiazol-5-yl group, benzothiazol-4-yl group, dihydro-3H-benzothiazol-6-yl group, dihydro-3Hbenzothiazol-7-vl group, dihydro-3H-benzothiazol-5-yl group, dihydro-3Hhenzothiazol-4-vl group, quinolin-6-vl group, quinolin-3-vl group, quinolin-5-vl group, quinolin-7-yl group, dihydro-1H-quinolin-6-yl group, dihydro-1H-quinolin-5yl group, benzo[d]isothiazol-5-yl group, benzo[d]isothiazol-4-yl group, benzo[d]isothiazol-6-vl group, benzo[d]isothiazol-7-yl group, 1H-indazol-5-yl group, 1H-indazol-4-yl group, 1H-indazol-6-yl group, benzo[clisothiazol-5-yl group, benzo[c]isothiazol-4-vl group, benzo[c]isothiazol-6-vl group, benzo[c]isothiazol-7-yl group, 2H-indazol-5-yl group, 2H-indazol-4-yl group, 2H-indazol-6-yl group, imidazo[1,2-a]pyridin-6-yl group, imidazo[1,2-a]pyridin-7-yl group, 1H-pyrrolo[2,3blpvridin-5-yl group, 1H-pyrrolo[2,3-b]pyridin-4-yl group, isoquinolin-6-yl group, isoquinolin-3-yl group, isoquinolin-5-yl group, isoquinolin-7-yl group, dihydro-2Hisoquinolin-6-yl group, dihydro-2H-isoquinolin-5-yl group, cinnolin-6-yl group, cinnolin-5-yl group, quinazolin-6-yl group, quinazolin-7-yl group, quinazolin-5-yl group, quinoxalin-2-yl group, quinoxalin-6-yl group, quinoxalin-5-yl group, 1Hbenzimidazol-5-yl group, 1H-benzimidazol-4-yl group, benzoxazol-5-yl group, benzoxazol-6-yl group, benzoxazol-4-yl group, benzoxazol-7-yl group, 1Hpvrrolo[3,2-b]pvridin-5-vl group, 1H-pvrrolo[3,2-b]pvridin-6-vl group,

benzo[1,2,5]thiadiazol-5-yl group, benzo[1,2,5]thiadiazol-4-yl group, 1Hbenzotriazol-5-yl group, 1H-benzotriazol-4-yl group, 1,3-dihydropyrrolo[2,3blpyridin-5-yl group, 1,3-dihydropyrrolo[2,3-blpyridin-4-yl group, 1,3dihydrobenzimidazol-5-yl group, 1,3-dihydrobenzimidazol-4-yl group, dihydro-3Hbenzoxazol-6-yl group, dihydro-3H-benzoxazol-7-yl group, dihydro-3H-benzoxazol-5vl group, dihydro-3H-benzoxazol-4-yl group, phthalazin-6-yl group, phthalazin-5-yl group, [1.8]naphthalidin-3-vl group, [1,8]naphthalidin-4-yl group, [1,5]naphthalidin-3-yl group, [1,5]naphthalidin-4-yl group, 1H-pyrrolo[3,2clpyridin-6-yl group, 1H-pyrrolo[3,2-c]pyridin-4-yl group, 1H-pyrrolo[2,3-c]pyridin-5-yl group, 1H-pyrrolo[2,3-c]pyridin-4-yl group, 1H-pyrazolo[4,3-b]pyridin-5-yl group, 1H-pyrazolo[4,3-b]pyridin-6-yl group, 1H-pyrazolo[4,3-c]pyridin-6-yl group, 1H-pyrazolo[4,3-c]pyridin-4-yl group, 1H-pyrazolo[3,4-c]pyridin-5-yl group, 1Hpyrazolo[3,4-c]pyridin-4-yl group, 1H-pyrazolo[3,4-b]pyridin-5-yl group, 1Hpyrazolo[3,4-b]pyridin-4-yl group, [1,2,4]triazolo[4,3-a]pyridin-6-yl group, [1,2,4]triazolo[4,3-a]pyridin-7-yl group, thieno[3,2-c]pyridin-2-yl group, thieno[3,2clpyridin-3-vl group, thieno[3,2-c]pyridin-6-yl group, thieno[3,2-b]pyridin-2-yl group, thieno[3,2-b]pyridin-3-yl group, thieno[3,2-b]pyridin-5-yl group, thieno[3,2blpvridin-6-vl group, 1H-thieno[3,2-c]pyrazol-5-yl group, 1H-thieno[3,2-c]pyrazol-4vl group, benzo[d]isoxazol-5-yl group, benzo[d]isoxazol-4-yl group, benzo[d]isoxazol-6-vl group, benzo[dlisoxazol-7-vl group, benzo[clisoxazol-5-yl group, benzo[c]isoxazol·4·yl group, benzo[c]isoxazol·6·yl group, benzo[c]isoxazol·7·yl group, indolizin-7-yl group, indolizin-6-yl group, indolizine-8-yl group, 1,3-dihydroindol-5yl group, 1,3-dihydroindol-4-yl group, 1,3-dihydroindol-6-yl group, 1H-pyrazolo[3,4dlthiazol-5-yl group, 2H-isoindol-5-yl group, 2H-isoindol-4-yl group, [1,2,4]triazolo[1,5-a]pyrimidin-6-yl group, 1H-pyrazolo[3,4-b]pyrazin-5-yl group, 1H-imidazo[4,5-b]pyrazin-5-yl group, 7H-purin-2-yl group, 4H-chromen-6-yl group, or 4H-chromen-5-yl group, wherein these groups may be substituted with one of Xa

or two or more of the same or different Xa.

22. The compound or salt thereof according to any one of claim 19 to 21, wherein Rz is a linear or branched saturated alkyl group having 1 to 8 carbon atoms, or Rz is Ra. Rb. or Rc. k in Ra is 0 or an integer of 1 to 3, R1 is a saturated cyclic alkyl group having 3 to 7 carbon atoms or a condensed saturated cyclic alkyl group having 6 to 8 carbon atoms, R1 may be substituted with one of lower alkyl group having 1 to 4 carbon atoms or two or more of the same or different lower alkyl groups having 1 to 4 carbon atoms, Q in Rb is phenyl group, thienyl group, furyl group, pyrrolyl group, pyridyl group, oxazolyl group, isoxazolyl group, thiazolyl group, isothiazolyl group, imidazolyl group, pyrazolyl group, oxadiazolyl group, thiadiazolyl group, triazolyl group, tetrazolyl group, naphthyl group, tetrahydronaphthyl group, indanyl group, indenyl group, quinolyl group, isoquinolyl group, indolyl group, benzofuryl group, benzothienyl group, benzimidazolyl group, benzoxazolyl group, benzothiazolyl group, indazolyl group, 4H-chromenyl group, dihydrobenzodioxyl group, benzoisoxazolyl group, pyrrolopyridinyl group, pyrazolopyridinyl group, triazolopyridinyl group, thienopyridinyl group, thienopyrazolyl group, 1,3-dihydrobenzimidazole group, dihydro-3H-benzoxazole group, or dihydro-3H-benzothiazole group (the aforementioned groups binds to  $A^2$  at an arbitrary position),  $A^1$  is a single bond or an alkylene (a) having 1 to 3 carbon atoms, the alkylene (a) may be substituted with a lower alkyl group having 1 to 4 carbon atoms or phenyl group,  $A^2$  is a single bond, oxygen atom, sulfur atom, -S(O)-, -S(O)2-, or -N(R4)- (provided that when A2 represents oxygen atom, sulfur atom, -S(O)-, -S(O)2-, or -N(R4)-, A1 represents ethylene or trimethylene). R2 and R3 independently represent hydrogen atom, a linear or branched saturated alkyl group having 1 to 4 carbon atoms, oxo group, thioxo group, fluorine atom, chlorine atom, bromine atom, trifluoromethyl group, OR5, -N(R6)(R6), -NHCOR7, -NHSO2R8, or -A6-Qa, or they bind to each other to

represent methylenedioxy group, Qa is phenyl group, pyridyl group, oxazolyl group, isoxazolyl group, thiazolyl group, isothiazolyl group, imidazolyl group, pyrazolyl group, oxadiazolyl group, thiadiazolyl group, triazolyl group, tetrazolyl group, naphthyl group, indanyl group, indenyl group, quinolyl group, isoquinolyl group, indolyl group, benzofuryl group, benzothienyl group, benzimidazolyl group, benzoxazolyl group, benzothiazolyl group, or indazolyl group (these groups may be substituted with one of T1 or two or more of the same or different T1, and bind to A6 at an arbitrary position on the ring), R4 and R6 independently represent hydrogen atom or a lower alkyl group having 1 to 4 carbon atoms, R5 and R7 independently represent hydrogen atom, a lower alkyl group having 1 to 4 carbon atoms, or -A6-Qa, R⁸ is a lower alkyl group having 1 to 4 carbon atoms, R⁶ has the same meaning as R6, or binds to R6 to form a 3- to 6-membered ring together with the nitrogen atom to which they bind to form a saturated nitrogen-containing cycloalkyl group or morpholino group, p in Rc is an integer of 2 to 4, A4 is a single bond or methylene or ethylene, A5 is C(O), C(S), or S(O)2, Rd is hydrogen atom, an alkyl group having 1 to 8 carbon atoms, or Qa. Re is an alkyl group having 1 to 8 carbon atoms, 'A6-Qa, (CH₂):R¹⁴. -OR²⁸. -SR²⁸, or -N(R²⁹)(R³⁰), i is an integer of 1 to 3, R¹⁴ is hydroxyl group, an alkoxy group having 1 to 4 carbon atoms, carboxyl group, or an N,Ndialkylcarbamoyl group having 1 to 4 carbon atoms, R28 is an alkyl group having 1 to 8 carbon atoms or -A6-Qa, R29 is an alkyl group having 1 to 8 carbon atoms, an alkoxycarbonyl group having 1 to 4 carbon atoms, or -A6-Qa group, R30 is hydrogen atom or a lower alkyl group having 1 to 4 carbon atoms, or binds to R29 to form a 3to 6 membered ring together with the nitrogen atom to which they bind to form a saturated nitrogen-containing cycloalkyl group or morpholino group, and Ry is hydrogen atom, an alkyl group having 1 to 8 carbon atoms, or binds to Rz to form a saturated or unsaturated nitrogen-containing cyclic substituent having 3 to 7 atoms together with nitrogen atom to which they binds and said nitrogen containing cyclic

substituent may be substituted with one or two lower alkyl groups having 1 to 4 carbon atoms wherein said two alkyl groups may be the same or different.

- 23. The compound or salt thereof according to claim 7, wherein Rs binds to  $C^4$  in the aromatic ring (E),  $C^5$  is a ring constituting carbon atom substituted with Zx, or an unsubstituted ring-constituting carbon atom,  $C^2$  and  $C^6$  are unsubstituted ring-constituting carbon atoms, Rs is 'D'Rx, and D is a single bond, sulfur atom, 'S(O)-, 'S(O)x-, or 'C(O)-.
- 24. The compound or salt thereof according to claim 7, wherein n is an integer of 2, Rs binds to C⁴ in the aromatic ring (E), C⁵ is carbon atom substituted with 'N(Rn¹)(Rn²) (provided that one of Rn¹ and Rn² is a substituent other than hydrogen atom), C² and C⁵ are unsubstituted ring constituting carbon atoms, Rs is O·Rx, and Y is hydrogen atom or a lower alkyl group having 1 to 4 carbon atoms.
- 25. The compound or salt thereof according to claim 7, wherein n is an integer of 2, Rs binds to C⁴ in the aromatic ring (E), C⁵ is a ring-constituting carbon atom substituted with the substituent Zx, or an unsubstituted ring-constituting carbon atom, C² and C⁵ are unsubstituted ring-constituting carbon atoms, Rs is -O-Rc, and Y is hydrogen atom or a lower alkyl group having 1 to 4 carbon atoms.
- 26. A medicament containing the compound according to any one of claims 1 to 25 or a pharmacologically acceptable salt thereof as an active ingredient.
- 27. An agent for suppressing production of a prostaglandin and/or leukotriene, which comprises the compound according to any one of claims 1 to 25 or a pharmacologically acceptable salt thereof as an active ingredient.
- 28. The medicament according to claim 26, which is for prophylactic and/or therapeutic treatment of a disease caused by production of a prostaglandin and/or leukotriene.
  - 29. A compound represented by the formula (II):

Rs' 
$$C^{5_1} = C^{6_1}$$
  
 $C^{4_1} (E')$  (CH₂)_n—COOY  
 $C^{3_1} - C^{2_1}$  (II)

In the formula, C², C³, C⁴, C⁵, and C⁶ in the aromatic ring (E') independently represent a ring constituting carbon atom, any one of them to which Rs' and G do not bind may be replaced with V'.

V' represents nitrogen atom, or carbon atom substituted with Zx', Zx' has
the same meaning as Zx mentioned above, provided that when Zx contains hydroxyl
group, the hydroxyl group may be protected with Rp1, and when Zx contains amino
group, the amino group may be protected with Rp2,

Rs' represents ·D·Rx' or ·N(Ry')(Rz'),

·D·Rx' and ·N(Ry)'(Rz') have the same meanings as ·D·Rx and ·N(Ry)(Rz)
mentioned above, respectively, provided that when ·D·Rx or ·N(Ry)(Rz) contains
hydroxyl group, the hydroxyl group may be protected with Rp1, and when ·D·Rx or ·
N(Ry)(Rz) contains amino group, the amino group may be protected with Rp2,

G represents chlorine atom, bromine atom, iodine atom, mesylate group, triflate group, or an arenesulfonate group of which aromatic portion may be substituted with one of T1 or two or more of the same or different T1, and

Y' represents a lower alkyl group having 1 to 4 carbon atoms].

30. A compound represented by the formula (III):

[In the formula, C2', C3', C4', C5' and C6' in the aromatic ring (E') independently

represent a ring constituting carbon atom, any one of these ring constituting carbon atoms to which Rs' and AR' do not bind may be replaced with V', and AR' has the same meaning as that of AR, provided that when AR contains hydroxyl group, the hydroxyl group may be protected with Rp1, and when AR contains amino group, the amino group may be protected with Rp2.

#### INTERNATIONAL SEARCHREPORT

International application No. PCT/JP 2004/11952

#### A. CLASSIFICATIONOFSUBJECTMATTER

Int.Cl7 C07C59/64, 59/68, 59/72, 69/734, 205/44, 205/56, 217/18, 217/76, 229/42,

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int.Cl7 C07C59/64, 59/68, 59/72, 69/734, 205/44, 205/56, 217/18, 217/76, 229/42,

Documentation scarched other than minimum documentation to the extent that such documents are included in the fields searched Japaneser Utility Model Gasette 1923-1996, Japaneser Publication of Tenexamined Utility Model Applications 1971-2004, Japanese Regintered Utility Model Gasette 1994-2004, Japaneser Gasette Containing the Utility Model, 1906-2004

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

CAPLUS (STN), REGISTRY (STN)

#### C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
x	WO 93/12095 A(PFIZER LIMITED), 1993.06.24,	1-3,5-7,9,
A	Claims, Example 10-12 & EP 628032 A & US 5482941 A & JP 7-502029 A	11-13,26
^	& BF 020032 A & 05 3402341 A & 0F /-302023 A	14-25,27-30
x	GB 1379526 A(MERCK & CO INC.), 1975.01.02,	1-3,5,6,26
A	Claims, Example 74-76,81-83,102-105,111,112	4,7-25,27-30
	& US 3816443 A & DE 2307828 A1	
	& FR 2181743 A1 & JP 48-86863 A	
x	TAMURA Y. et al., "Nonsteroidal	1,2,6,7,9,
	Antiinflammatory Agents. 1.", J. Med. Chem.,	11,12,26
A	1977, Vol.20, No.5, pp.709-714 (Compound 5g,	3-5,8,10,
	6n)	13-25,27-30
.x	DE 2046992 A1 (MERCK PATENT GMBH), 1972.03.30,	1,2,26
X A	Claims, Example 1 (Family: none)	3-25,27-30

	A	Antiinflammatory Agents. 1 1977, Vol.20, No.5, pp.709 6n)	-714 (Compound 5g, 3	11,12,26 3-5,8,10, 13-25,27-30	
-	X A	DE 2046992 A1(MERCK PATENT, Claims, Example 1 (Family		1,2,26 3-25,27-30	
	Further documents are listed in the continuation of Box C. See patent family annex.				
	"A" docum	categories of cited documents: ont defining the general state of the art which is not red to be of particular relevance	"T" later document published after the inte priority date and not in conflict with the understand the principle or theory under	rnational filing date or application but cited to rlying the invention	
	nationa	application or patent but published on or after the inter- filing date	be considered novel or cannot be con	sidered to involve an	
	is cited	nt which may throw doubts on priority claim(s) or which to establish the publication date of another citation or other reason (as specified)		aimed invention cannot	
		ent referring to an oral disclosure, use, exhibition or other	be considered to involve an inventive sta combined with one or more other a combination being obvious to a person	uch documents, such	
	"P" docume than th	nt published prior to the international filing date but later e priority date claimed	"&" document member of the same patent f	amily	
	Date of the a	ctual completion of the international search	Date of mailing of the international search r	eport	
		01.11.2004	16.11.2004		
	Name and mailing address of the ISA/JP		Authorized officer	4H 9546	
		Japan Patent Office	Naoko Matsumoto		

3-4-3, Kasumigaseki, Chiyoda-ku, Tokyo 100-8915, Japan Telephone No. +81-3-3581-1101 Ext. 3443

# INTERNATIONALSEARCHREPORT

International application No. PCT/JP2004/11952

	1.0.	
C (Continua	tion). DOCUMENTS CONSIDERED TO BE RELEVANT	
Category*	Citation of document, with indication, where appropriate, of the relevant pass	ages Relevant to claim No.
X A	JP 39-6668 B1(KAMETANI TETSUJI), 1964.05.0 p.1 Figure (Family: none)	7, 29 1-28,30
X A	JP 50-58087 A (SHIONOGI AND CO., LTD.), 1975.05.20, Example, Compound (II) (Family: none)	29 1-28,30
X A	WO 96/32379 A1 (FUJISAWA PHARMACEUTICAL CO. LTD.), 1996.10.17, Preparation 17 & EP 820441 A1 & US 6069156 A & JP 11-5034	1-28,30
, A	WO 02/28853 A1(TANABE SEIYAKU CO., LTD.), 2002.04.11, Claim 8, pp.31-34, pp.43-49 & JP 2002-220386 A	30
X A	WO 01/39773 A1 (SMITHKLINE BEECHAM CORPORATION), 2001.06.07, Scheme 2, Exampl & EP 124446 A1 & US 2003/83361 A1 & JP 2003-515560 A	30 1-29
P,X	WO 03/70686 A1(ASAHI KASEI KABUSHIKI KAISH 2003.08.28, Claims, Examples, Scheme 4, 11 & US 2004/44258 A1	
٠		
÷		

# Continuation of A. CLASSIFICATION OF SUBJET MATTER

COTC233/25, 233/54, 323/12, 47/575, COTD207/30, 209/08, 209/46, 213/30, A61K31/192, 31/216, 31/341, 31/343, 31/357, 31/36, 31/381, 31/40, 31/4163, 31/416, 31/4164, 31/4164, 31/4174, 31/4035, 31/404, 31/415, 31/416, 31/4162, 31/4164, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4174, 31/4

# Continuation of B. FIELDS SEARCHED

C07C233/25, 233/54, 323/12, 47/575, C07D207/30, 209/08, 209/46, 213/30, A61K31/192, 31/216, 31/314, 31/343, 31/357, 31/36, 31/381, 31/40, 31/4035, 31/404, 31/415, 31/416, 31/4162, 31/4164, 31/4174, 31/4178, 31/4184, 31/4192, 31/42, 31/422, 31/422, 31/423, 31/428, 31/426, 31/4403, 31/4409, 31/4409, 31/4453, 31/475, 31/4704, 31/4709, 31/478, 31/470, 31/4704, 31/4709, 31/470, 31/470, 31/470, 31/4709, 31/470, 31/470, 31/470, 31/470, 31/470, 31/470, 31/470, 31/470, 31/470, 31/470, 31/470, 31/470, 31/470, 31/470, 31/470, 31/470, 31/470, 31/470, 31/470, 31/470, 31/470, 31/470, 31/470, 31/470, 31/470, 31/470, 31/470, 31/470, 31/470, 31/470, 31/470, 31/470, 31/470, 31/470, 31/470, 31/470, 31/470, 31/470, 31/470, 31/470, 31/470, 31/470, 31/470, 31/470, 31/470, 31/470, 31/470, 31/470, 31/470, 31/470, 31/470, 31/470, 31/470, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/40, 31/