- 1 RH: LANDERER ET AL.— Estimating genetic load
- Phylogenetic model of stabilizing selection is more
- informative about site specific selection than
- extrapolation from laboratory estimates
- 5 CEDRIC LANDERER^{1,2,*}, BRIAN C. OMEARA^{1,2}, AND MICHAEL
- A. GILCHRIST^{1,2}

- ⁷ Department of Ecology & Evolutionary Biology, University of Tennessee, Knoxville, TN 37996-
- s 1610
- ⁹ National Institute for Mathematical and Biological Synthesis, Knoxville, TN 37996-3410
- *Corresponding author. E-mail: cedric.landerer@gmail.com

Version dated: November 20, 2018

11 Introduction

15

19

20

21

22

23

25

26

27

28

30

31

32

33

- Incorporating selection into phylogenetic frameworks is already a long lasting endeavor.
- Phylogenetic inference of sequence relationship was long only focused on substitution rates and fixation probabilities.
 - Importance of site specific equilibrium frequencies has long been noted.
- Such models however, tend to be unfeasible as they are very parameter rich.
- Incorporating selection from experimental sources therefore seems like an attractive option.
 - empirical fitness estimates greatly reduces number of parameters that have to be estimated from phylogenetic data.
 - * site specific amino acid preferences acknowledge the heterogeneity of selection along the protein sequence.
 - * It allows for the fitting complex site specific models to smaller data sets.
 - * DMS allows to estimate empirical selection on amino acids for a wide range of mutations.
 - Quality of DMS depends on many factors like initial library of mutants and applied selection.
 - * Extensive mutation libraries lead to heterogeneous competing population.
 - * DMS experiments are limited to proteins and organisms that can be manipulated under laboratory conditions.
 - * Greatly limiting application of experimentally informed phylogenetic models.
 - Even when empirical selection estimates are available, their application for phylogenetic inference is questionable.
 - * In this study, we assess the ability of experimentally inferred site specific selection to inform phylogenetic models and offer an alternative approach.

- * We used the class A β -lactamase TEM found in gram-negative bacteria like

 E. coli for which empirical selection estimates are available.
 - * The applied selection pressure was limited to ampicillin and focused on the sequence variant TEM-1.
 - * TEM can confer resistance to a wide range of antibiotics.
 - We assessed model fit of two codon models of site specific stabilizing selection with (SelAC+DMS, phydms) and without (SelAC) experimentally inferred selection and compared the models fits to 227 other codon and nucleotide models.
 - Models fits informed by experimentally inferred selection improve model fit over conventional codon and nucleotide models but can be improved upon using a hierarchical phylogenetic framework of stabilizing selection: SelAC.
 - Simulations highlight the inadequacy of experimentally inferred selection.
 - Comparison between SelAC and empirical estimates of selection show that they
 are comparable when site specific selection is captured adequately by the experiment.
 - Furthermore, we show that extrapolating experimentally inferred selection between homologous proteins (TEM and SHV) can be inadequate.

Results

- 54 Site Specific Stabilizing Selection on Amino Acids Improves Model
- 55 Fit

56

57

38

39

40

42

43

44

48

51

- We compared models of site specific selection to 227 other codon and nucleotide models.
 - Models of site specific selection improved model fit to 49 observed TEM sequences.

- Number of parameters estimated from phylogenetic data differs between SelAC,
 and SelAC+DMS and phydms, resulting in slightly worse AICc for SelAC.
 - However, SelAC outperforms phydms (Table 1).

Table 1: Model selection, shown are the three models of stabilizing site specific amino acid selection (SelAC, SelAC+DMS, phydms) and the best performing codon and nucleotide model (??). Reported are the log-likelihood log(L), the number of parameters estimated n, AIC, Δ AIC, AICc, and Δ AICc values. See Table X for results from all models we tested.

Model	$\log(L)$	n	AIC	$\Delta { m AIC}$	AICc	$\Delta { m AICc}$
SelAC+DMS	-1768	111	3758	14	3760	0
SelAC	-1498	374	3744	0	3766	6
phydms	-2061	102	4326	582	4328	568
SYM+R2	-2230	102	4663	919	4694	934
GY94 + F1X4 + R2	-2243	102	4690	946	4821	1061

- We observe differences in topology.
- SelAC is to slow for a topology search, therefore unclear if the difference in topology can be attributes to the experimentally inferred selection.
 - GY94 is outperformed by several nucleotide model e.g. SYM+R2, potentially indicating that negative frequency dependent selection is inappropriate for TEM.
- Results indicate shift in the evolution from the tips (SelAC) to internal branches (SelAC+DMS, phydms, GY94).

488 Assessing Adequacy of Laboratory and SelAC Inferences of Site

Specific Selection

59

61

63

70

- Assessing model adequacy as sequence similarity.
 - Experimentally inferred selection is inconsistent with observed sequences.
- Experimentally inferred sequence of selectively favored amino acids has only 52% sequence similarity with the observed consensus sequence.

- SelAC inferred sequence of selectively favored amino acids has 99\% sequence similarity with the observed consensus sequence. 75
 - The average sequence similarity between the 49 observed sequences is 98%.
 - Assessing model adequacy as genetic load.

77

80

81

82

83

88

89

93

94

95

lection

- Simulations under experimentally and SelAC inferred selection were used to es-78 tablish a baseline expectation. 79
 - Assuming the site specific selection estimated by DMS, the observed TEM sequences represent an average sequence specific genetic load of 17.88 and an average site specific load of 0.065.
 - Simulated sequences showed an average sequence specific load of 6.68 and an average site specific genetic load of 0.025
- Assuming the site specific selection estimated by SelAC, the observed TEM se-85 quences represent an average sequence specific genetic load of 6.4×10^{-5} and an 86 average site specific load of 2.4×10^{-7} . 87
 - Simulated sequences showed an average sequence specific load of 1.3×10^{-5} and an average site specific genetic load of 4.8×10^{-8} .

Comparing Laboratory and SelAC Inferences of Site Specific Se-

- Distribution of genetic load differs between experimentally inferred site specific selection and SelAC inferred site specific selection.
 - Assuming the site specific selection estimated by DMS, 111 sites do not carry a genetic load.
- Assuming the site specific selection estimated by SelAC, 207 sites do not carry a genetic load.

- The selection estimates from DMS and SelAC agree for 107 sites that no genetic load is carried.
- Thus, for 100 sites *SelAC* does not estimate a genetic load but DMS does, while the inverse is true for four sites.
 - For the 52 sites where both, DMS and SelAC, estimate a non-zero genetic load we find a correlation of $\rho = 0.247$, explaining 6% of the variation in the empirical selection estimates.

Comparing SelAC Inferences of Site Specific Selection for Homologous Sequences TEM and SHV

- Site specific G terms for TEM and SHV are only weakly correlated ($\rho = 0.17$), despite similar α_G (Figure ??a).
 - Greatest difference is observed in the physicochemical properties, specifically α (which PC is that?) (Figure ??b).
 - Role of secondary structures?

102

103

104

109

110

Table 2: Efficacy of selection (G) and genetic load for TEM and SHV, and separated by secondary structure. G was estimated as a truncated variable with an upper bound of 300.

			G		Genetic Load L_i	
Protein	Secondary Structure	# Residues	Mean	SE	Mean	SE
TEM		263	219.3	7.5	15.9×10^{-8}	6.5×10^{-8}
	Helix	113	206.1	12.4	17.5×10^{-8}	13.1×10^{-8}
	β -Sheet	48	238.6	15.8	6.8×10^{-8}	2.9×10^{-8}
	Unstructured	102	224.8	11.4	18.6×10^{-8}	8.1×10^{-8}
	Active/Binding Sites	5	202.6	62.2	0.01×10^{-8}	0.01×10^{-8}
SHV		263	244.9	6.8	4.0×10^{-8}	1.9×10^{-8}
	Helix	102	234.6	11.5	7.3×10^{-8}	4.8×10^{-8}
	β -Sheet	66	253.1	12.8	2.1×10^{-8}	1.1×10^{-8}
	Unstructured	95	224.7	11.4	1.5×10^{-8}	0.6×10^{-8}
	Active/Binding Sites	5	239.9	60.0	1.5×10^{-8}	1.5×10^{-8}

Discussion

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

- We evaluated how well experimental selection estimates from DMS experiments explain natural sequence evolution and compared it to a novel phylogenetic framework, SelAC.
 - Previous work has shown that DMS selection estimates can improve model fit over classical approaches like GY94 and our work confirms this.
 - Model selection favored the SelAC model fit and the corresponding fitness estimates over the DMS estimates using both, SelAC and phyDMS (Table 1).
 - Adequacy of the DMS selection has previously not been assessed.
 - The amino acid with the cumulative highest fitness experimentally estimated with
 DMS only has 49% concordance with the observed alignment.
 - In contrast, the SelAC estimate has 99% concordance (Figure ??).
 - Estimates of selection coefficients do not represent evolution.
 - * Due to artificial selection environment; Heterogeneous population, very large s.
 - * Only one antibiotic used, maybe a mixture of antibiotics would better reflect natural evolution.
 - * Lack of repeatability between labs introduces further problems (Firnberg et al 2014 vs. Stifler et al. 2016).
 - Assuming that the DMS selection inference adequately reflects natural evolution, the observed TEM sequences are either mal-adapted or where unable to reach a fitness peak.
 - $E.\ coli$ has a large effective population size, estimates are on the order of 10^8 to 10^9 (Ochman and Wilson 1987, Hartl et al 1994).

- The large N_e would allow E. coli to effectively "explore" the sequence space, thus suggesting that the TEM sequences are mal-adapted according to the DMS estimates.
 - Our simulations of sequence evolution with various N_e values and the DMS fitness values in contrast show that we would expect higher adaptation even with much smaller N_e (Figure ??).
 - Estimates of selection coefficients do not represent evolution.

139

140

141

142

145

146

147

150

151

152

153

154

155

156

157

158

- Due to artificial selection environment; Heterogeneous population, very large s.
- Only one antibiotic used, maybe a mixture of antibiotics would better reflect natural evolution.
 - Lack of repeatability between labs introduces further problems (Firnberg et al 2014 vs. Stifler et al. 2016).
 - Still better than models without site specific equilibrium frequencies.
- DMS estimates of the observed TEM variants predict them to be mal-adapted while

 SelAC predicts most TEM variants to be well adapted.
 - Given E. coli's large effective population size, the efficacy of selection should be very large.
 - We therefore expect the observed sequence variants to be at the selection-mutationdrift barrier, which in turn can expected to be near the optimum.
 - We find the majority of sequences near the optimum, therefore the SelAC estimates are consistent with theoretical population genetics results.
 - In contrast, finding strong selection against the observed TEM variants indicates
 that DMS is not consistent with theoretical population genetics expectations.
 - This is consistent when thinking about that DMS only reflects the selection on the TEM sequence with regards to one antibiotic, which seems appropriate to

- model selection in modern hospital environments but not when the interest lies in the natural evolution of TEM.
- We find that SelAC produces similar selection against the observed TEM variants if
 we assume the fitness peaks (optimal AA) that are estimated by DMS.
 - This shows that DMS and SelAC can provide consistent estimates of selection against amino acids.
 - SelAC has the advantage that it can be applied to any protein coding sequence alignment.
 - This removes the need for extrapolation e.g. from TEM to SHV.

165

166

167

168

169

170

171

174

175

176

177

178

179

180

181

182

- SelAC has the advantage that it can be applied to any protein coding sequence alignment.
 - This removes the need for extrapolation e.g. from TEM to SHV.
- Difference in selection parameters between TEM and SHV indicate that extrapolation is not a good idea.
 - The difference in the site specific strength of selection shows that TEM and SHV
 are facing different selection pressures.
 - this is also highlighted by the differences in physicochemical weightings between the two proteins.
 - SelAC outperforms DMS, but is not without flaws itself
 - Like DMS and most phylogenetic models, SelAC assumes site independence.
 - SelAC is a model of stabilizing selection, in contrast to e.g. GY94 which is a model of frequency dependent selection.
 - * Since TEM plays a role in the chemical warfare with conspecifics and other microbes, some sites may be under negative frequency dependent selection.

- SelAC assumes the same G distribution across all sites.
 - * Different G distribution for each type of secondary structure
 - * active sites may not follow distribution.

186

187

188

189

190

191

192

193

194

195

196

197

- SelAC assumes that selection is proportional to distance in physicochemical space.
 - * We used Grantham (1974) properties, however many other distances are available which may an even better model fit.
- Low sequence variation in the TEM may be cause for concern as it could be misinterpreted by the model as stabilizing selection because of the short branches.
 - However, provided our simulations support that TEM is actually under stabilizing selection
- In conclusion, DMS experiments have been proposed to supplement information on selection on amino acids in phylogenetic studies.
 - This study shows that information on selection can be extracted from alignments of protein coding sequences.
- This highlights the limitations of DMS to explain natural evolution.