Search in CP

Constraint Solver

- Enumerates all possible variable-value combinations via a systematic backtracking tree search.
 - Guesses a value for each variable.

Backtracking Search Tree (BTS)

- Node \rightarrow variable X_i
- Branch \rightarrow decision on X_i
 - Labelling with single values from $D(X_i)$.

Domain partitioning of D(X_i). $X_i \in S$ $X_i \in S_1$ $X_i \in S_k$ $X_i \in S_2$...

 X_i and (set of) values are chosen by the search heuristics.

Backtracking Tree Search (BTS)

- Instantiates the variables sequentially.
- By default depth-first traversal.
- Whenever all the variables of a constraint is instantiated, checks the validity of the constraint.
 - In case of dead-end, retracts the most recently posted branching decision (chronological backtracking).
- Systematic search.
 - Eventually finds a solution or proves unsatisfiability.
 - Complexity O(dⁿ), exponential!

Constraint Solver

- Instantiates the variables sequentially.
- By default depth-first traversal.
- Whenever all the variables of a constraint is instantiated, checks the validity of the constraint.
 - In case of dead-end, retracts the most recently posted branching decision (chronological backtracking).
- Systematic search.
 - Eventually finds a solution or proves unsatisfiability.
 - Complexity O(dⁿ), exponential!

Constraint Solver

- Instantiates the variables sequentially.
- By default depth-first traversal.
- Examines the constraints to remove inconsistent values from the domains of the future (unexplored) variables, via propagation.
 - Shrinks the domains of the future variables.
 - The propagation mechanism propagates all the constraints before search, and only the necessary ones at each search decision.
- Systematic search.
 - Eventually finds a solution or proves unsatisfiability.
 - Complexity O(dⁿ), exponential!

BTS

BTS interleaved with Propagation

Propagation

$$C_2$$
: $D(X_2) = \{1,2,3\}, D(X_3) = \{1,2,3\}$

Propagation

$$C_1: D(X_2) = \{1,2\}$$

 $C_2: D(X_3) = \{2,3\}$

BTS interleaved with Propagation

search tree size

BTS for 4-Queens

BTS + AC Propagation

Search Heuristics

- Guide the search decisions.
 - Which variable next? Which value(s) next?
- Problem specific vs generic heuristics.
- Static heuristics
 - Order is known before search. E.g.,
 - $X_1, X_2, ... X_n$, exploring the domains in increasing order.
 - Low cost.
- Dynamic heuristics
 - Order is decided during dynamically during search.
 - Considers the current search state.

Search Heuristics

- For feasible problems, choose variables and values that are likely to yield a solution.
 - In general, no guarantee of feasibility.
- What if we make a mistake?
 - Infeasible sub-problem!
 - We need to explore the whole sub-tree before backtracking!
 - We should explore the sub-tree as quickly as possible.

Heuristics for Infeasible Problems

- Fail-first (FF) principle: Try first where you are most likely to fail so as to backtrack immediately.
- How do we know if a CSP is feasible or not?
- Trade-off:
 - choose next the variable that is most likely to cause failure;
 - choose next the value that is most likely to be part of a solution (least constrained value).
- Main focus on Variable Ordering Heuristics (VOHs).
 - To backtrack from an infeasible sub-problem, we need to explore all the values in the domain of a variable.

Generic Dynamic VOHs based on FF

- Minimum domain
 - Choose next the variable with minimum domain size.
 - Idea: minimize the search tree size.

• Consider the order X₁, X₂, X₃.

$$X_1 \in \{0, 1, 2, 3\}, X_2 \in \{0, 1, 2\}, X_3 \in \{0, 1\}$$

• Consider the order X₃, X₂, X₁.

$$X_3 \in \{0, 1\}$$
, $X_2 \in \{0, 1, 2\}$, $X_1 \in \{0, 1, 2, 3\}$

• If propagation prunes a value at depth 1...

• ...the effect is much stronger with the second ordering!

Generic Dynamic VOHs based on FF

- Minimum domain
 - Choose next the variable with minimum domain size.
 - Idea: minimize the search tree size.
- Most constrained (max degree)
 - Choose next the variable involved in most number of constraints.
 - Idea: maximize constraint propagation.

Most Constrained Variables

Generic Dynamic VOHs based on FF

- Minimum domain
 - Choose next the variable with minimum domain size.
 - Idea: minimize the search tree size.
- Most constrained (max degree)
 - Choose next the variable involved in most number of constraints.
 - Idea: maximize constraint propagation.
- Combination
 - Minimize domain size / degree

Weighted Degree Heuristic

- Constraints are weighted.
 - Initially set to 1.
- During the propagation of a constraint c, its weight w(c) is incremented by 1 if the constraint fails.
- The weighted degree w(X_i) of a variable X_i:

$$w(X_i) = \sum_{c \ s.t.X_i \in X(c)} w(c)$$

- Domain over weighted degree heuristic (domWdeg):
 - Choose the variable X_i with minimum $|D(X_i)| / w(X_i)$.

- Given a collection of instances of a problem, we often observe some exceptionally hard instances that take exceptionally longer time to solve.
 - Large impact on the runtime distributions for a given set of instances.

- Not a characteristic of the instance!
 - The same behaviour is observed if we run several times the same instance while varying some parameter (like the variable ordering) of the solver.
 - For some combination instance + solver parameters, we get trapped into an exponential subtree.
- Intuitive reason:
 - If we make a mistake early during search, we get stuck in a subtree.
 - Remember the puzzle example!
 - Different heuristics lead to "bad" mistakes on different instances.
- Observation: such mistakes are seemingly random.

Randomization

- Add some randomized parameter in search. E.g.,
 - Pick (some) variables/values at random.
 - Break ties randomly.
- Given the same random seed the solver will explore the same tree, however it will never explore two identical subproblems in the same way.

Restarting

- Restart the search, after certain amount of resources are consumed.
 - Usually in the form of search steps, such as the number of visited nodes.
- In the subsequent runs, search differently.
 - Introduce randomization.
 - Learn from the accumulated experiences of previous runs.

- Randomization + restarts eliminates the huge variance in solver performance.
- Without randomization + restarts

With randomization + restarts

Restart Strategies

- Constant restart
 - Restart after using L resources.
- Geometric restart
 - Restart after L resources, with the new limit α^*L .
 - Ends up being L, α^*L , $\alpha^{2*}L$, $\alpha^{3*}L$, ...
- Luby restart
 - Restart after s[i]*L resources where s[i] is the ith number in the Luby sequence = [1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8, ...], which repeats two copies of the sequence ending in 2ⁱ before adding the number 2ⁱ⁺¹.

domWdeg & Restarts

- domWdeg heuristic works well with restart.
 - Collected fail counts are carried over to subsequent runs.
- domWdeg combined with random choice of values can be very effective!

Constraint Optimization Problems (COPs)

- CSP enhanced with an optimization criterion, e.g.:
 - minimum cost;
 - shortest distance;
 - fastest route;
 - maximum profit.
- Formally, <X,D,C,f> where f is the formalization of the optimization criterion as an objective function. Goal: minimize f (maximize -f).

Branch & Bound Algorithm

- Solves a sequence of CSPs to solve a COP and incorporates bounding in the search.
- How?
 - Each time a feasible solution is found, posts a new bounding constraint which ensures that a future solution must be better than it.
 - Backtracks to the last decision and looks for a new solution with the additional bounding constraint, using the same search tree.
 - Repeats until infeasible: the last solution found is optimal.

Optimal Map Colouring

- What is the minimum number of colours to colour a map?
- Variables and Domains
 - X_i for each of n regions with domain {1,...,n}

- X_i ≠ X_j for each neighbour region i and j
- Objective function

$$- f(X) = max(X_i)$$

- Objective
 - min f(X)

Solving Optimal Map Colouring with Branch & Bound

 $\max_{i=0..7}(x_i) \in \{1..8\}$

Solving Optimal Map Colouring with Branch & Bound

Solving Optimal Map Colouring with Branch & Bound

Complementary Strengths

CP

- + A generic complete approach with a focus on constraints and feasibility.
- + Easy modelling and control of search.
- Poor in optimization with loose bounds on the objective function.
- Cannot scale to large optimization problems.

Heuristic Search

- + Scales to large optimization problems.
- + Effective in finding good-quality solutions quickly.
- Neighborhoods are problem-specific.
- Constraints are handled inefficiently, i.e., often by penalizing infeasible assignments in the objective function.
- Finding an initial good solution and exploring a large neighborhood can be a challenge.

Large Neighbourhood Search

- A hybrid CP-HS method combining the benefits of both worlds, by our invited speaker P. Shaw (1998).
- Use CP to find an initial solution s.
- Define a problem-independent generic large neighbourhood.
 - Given the initial solution s:
 - fix part of the variables to the values they have in s (called fragment);
 - relax the remaining variables.

- Explore the large neighbourhood with CP!
 - View the exploration of a neighbourhood as the solution of a subproblem;
 - use propagation and advanced search techniques of CP to exhaustively and efficiently explore it.

Advantages over HS and CP

- Efficient neighbourhood exploration.
 - Thanks to propagation and advanced search techniques of CP.
- LNS is easier to develop than HS.
 - Easy and generic neighbourhood definition.
- More scalable than using only CP on the problem.
 - Subproblems are typically much smaller.
 - We can control the subproblem size.
 - The fixed-variables reduce the domain sizes.
 - Propagation works best when domains are small.

Advanced Search

- Other forms of search tree traversal.
 - Best-first search algorithms (limited discrepancy search, ...)
- Sophisticated dynamic variable ordering heuristics.
 - Impact-based, activity-based, regrets, ...
- Non-chronological backtracking.
 - Conflict-based, no-good learning, ...
- Specific approaches for optimization problems.
 - Schedule-or-postpone search, ...
 - Integration of ILP models for obtaining lower bounds, cost-based propagation, ...