4.4 Applications of s-t flows

4.4.1 Arc-connectivity

Definition 4.17: k-arc-connectivity

A directed graph G=(V,A) is k-arc-connected if for any two vertices $s,t\in V,s\neq t$, there are at least k arc-disjoint s-t paths in G.

Algorithm 4: Determining maximum number of arc-disjoint s-t paths.

Input: A directed graph G = (V, A) and vertices $s, t \in V$, $s \neq t$.

Output: Maximum number of arc-disjoint s-t paths in G.

- 1. Define unit capacities $u \colon A \to \mathbb{Z}_{\geq 0}$, i.e., $u(a) = 1 \ \forall a \in A$.
- 2. Compute a maximum s-t flow f in G with capacities given by u.
- 3. **return** $\nu(f)$, the value of f.

Algorithm 4 is efficient:

(i) Step 1 takes O(m) time.

(ii) Step 2 takes O(d(m+n)) time, where a is the value of a maximum set flow.

By weak max-flow min-cut theorem $d \leq u(\delta^{\dagger}(s)) \leq m$

=) Running time is O(m(m+n)).

Correctness of Algorithm 4

We will show:

Let f be a maximum s-t flow in 6 with unit capacities and let $k \in \mathbb{Z}_{\geq 0}$ be the largest number of arc-disjoint s-t paths. Then y(f) = k

Will show $\nu(f) \ge k$ and $\nu(f) \le k$.

Proof of $\nu(f) \ge k$

Observation 4.18: From arc-disjoint paths to flows

Let G=(V,A) be a directed graph and $s,t\in V$ with $s\neq t$. Let $u\colon A\to \mathbb{Z}_{\geq 0}$ be unit capacities, i.e., $u(a)=1\ \forall a\in A$. If there are k arc-disjoint s-t paths $P_1,\ldots,P_k\subseteq A$ in G, then an s-t flow f of value k is obtained by setting

$$f(a) := \begin{cases} 1 & \text{if } a \in \bigcup_{i=1}^k P_i \\ 0 & \text{otherwise} \end{cases},$$

Proof of v(f) ≤ k Whoy, assume $v(f) \ge 1$ (If v(f) = 0, then we clearly have $v(f) \le k$) Moreover, we assume that f is integral, i.e., $f \in \mathbb{Z}_{20}^{k}$. (see Thm 4.16) Let $U = \{ \alpha \in A : f(\alpha) = 1 \}$ Find s.t path P=u in (V,u) (this could be done with BFS) ·Claim (Be cause V(f) ≥1, such a path exists. Let S= (veV: Is-v path in (V,4)} Assume by sake of contradiction that t&S Lemma 4.3 $V(f) = f(\delta^*(S)) - f(\delta^-(S)) \leq 0$ Now consider the s-t flow f': A > (0,1) defined by f'(a) =1 \ \ a ∈ U\P

f'(a) = 0 otherwise

f' is an s-t flow, and $\nu(f') = \nu(f) - 1$.

- Repeat above procedure V(f) many times -> we get v(f) arc-disjoint set paths in 6.