SUPERPOSE- An Excel Visual Basic Program for Fracture Modeling Based on Stress Superposition Method

Sait Ozkaya

STEP BY STEP QUICK RUN

Place the grid data file in your work folder.

Make sure that the file is a text file. Otherwise open the file with pspad or wordpad programs and save as text file.

Open the SUPERPOSE Excel template

Place the data file in your work directory. Make sure the file is a text file. If in doubt, open it with pspad or wordpad program and save as text file.

The format of the file must conform the example (1) with the specific key words and data (see User Guide for details).

Evport						This alter		
- Export	amala					option. Tl		
Grid: ex	•	on Oat 171	0.22.50 46	T 2011		following		
Done by	/ Sait on ivi	on Oct 17 1	.U:23:59 AS	1 2011				
NAA DUINUT	_				Coordina			
MAPUNITS	>					User mus		
METRES /						and speci		
MAPAXES						according		
	3026777.9	9 323485.3°	7 3027777.	9 324485.3		_		
GRIDUNIT								
METRES /								
SPECGRID								
139 198 1 3	LF/							
COORD								
0.0000000	0.0000000	2627.3430	0.000000	0.00000	00 2628.3	430		
105.97949	66.225585	5 2627.129	9 105.9794	9 66.2255	35 2628.1	299		
211.96289	132.45117	7 2626.883	1 211.9628	9 132.451	17 2627.8	831		
317.94531	198.67480	2626.415	0 317.9453	1 198.674	80 2627.4	150		
423.92773	264.90039	9 2625.767	1 423.9277	3 264.900	39 2626.7	67		

This alternative format uses mapaxes option. The coordinates are specified following the mapaxes keyword. Coordinates are given as increments. User must decide the axis orientation and specify xdir and ydir keywords accordingly.

Open the grdecl tab. Place import parameters (1) and click on the icon to run the GRDECL import program (2). The results (data and parameters) are placed as shown (4).

		U	U	U	- 7		U	- 11		
1										
2			$(\circ \circ)$							
3	1									
4	_		SUPERPOS	E						
5										
6	nxmax	38		Original grid	size in x d	irection ou	tput from i	red		
7	nymax	151		original grid size in y direction out from red						
8	nxin	38		Maximum number of x cells limit for this run						
9	nyin	151	\ \	Maximum nu	Maximum number of y cells limit for this run					
10	xmin	299877	UTM	UTME of orig	UTME of origin					
11	ymin	273000	UTM	JTMN of orig	JTMN of origin					
12	zmir	2100	m	epth to origin						T
13	zmax	22651	n	Nax depth						T
14	nxpts	5		Number of cells in x direction						\top
15	nypts	5		Number of cells in ydirection						\top
16	E	15000	Мра	Young modulus						T
17	thick	30	m	La yer thickne	Layer thickness					\top
18	Sxx	60	Мра	Regional horizontal maximum stress						\top
19	Syy	10	MPa	Regional horizontal minimum stress						\top
20	alfax	30	deg	s max angle from x (counter clockwise positive)						\top
21	phi	30	deg	Internal frictionangle						+
22	UCS	25	MPa	nconfined compressive strength						\top
23	m Hoek	10		coefficient of Hoek-Brown failure envelope						\top
24	lendek	50		length multiplier tensile						\top
25	lendshr	8		shear fractures						\top
26	cizlimex	4		plot every kciz tensile						\top
27	cizlimsh	8		plot every kciz shear fracture						\top
28	fltregime	2		1 normal 2 st	trike slip 3	show both				\top
29	_	1		1 hoek 2 Cou						\top
30	·									TE
31		х	у	z	1					Le
32		utme	utmn	m		J				m
33	>	299877	2792699	2578.54712	1	1				1
34		300277	2792699	2568.64404	2	1				3
35				2554.96777	3	1				3
36		301077	2792699	2539.5144	4	1				3
37		301477	2792699	2520.46143	5	1				5
38		301877	2792699	2504.3252	6	1				7
39		302277	2792699	2488.90552	7	1				1
40		302677	2792699	2471 71777	8	1				4

Open the superpose tab in the Excel template. Fill in the input parameters and copy and paste grid data from ZMAP or GRDECL tabs (1). Click on the icon to run the SUPERPOSE program (2).

The fracture stick data for tensile fractures is placed at column J and U. Copy the contour map to the SUPERPOSE tab(1). Copy and paste the data onto the contour map (2) and change color chosen for tensile fractures.

The fracture stick data for shear fractures is placed at columns Y and AU Copy and paste the data onto the contour map and change color chosen for shear fractures.

Fractures