

Solution

$$\sum_{n=1}^{\infty} \frac{(8x-5)^{2n+1}}{\frac{3}{n^{\frac{3}{2}}}}$$
: Radius of convergence is $\frac{1}{8}$, Interval of convergence is $\frac{1}{2} \le x \le \frac{3}{4}$

Steps

$$\sum_{n=1}^{\infty} \frac{(8x-5)^{2n+1}}{n^{\frac{3}{2}}}$$

Use the Ratio Test to compute the convergence interval

Hide Steps

$$\sum_{n=1}^{\infty} \frac{(8x-5)^{2n+1}}{n^{\frac{3}{2}}}$$

Series Ratio Test:

If there exists an N so that for all $n \geq N$, $a_n \neq 0$ and $\lim_{n \to \infty} |\frac{a_{n+1}}{a_n}| = L$:

If L < 1, then $\sum a_n$ converges

If L > 1, then $\sum a_n$ diverges

If L = 1, then the test is inconclusive

$$\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{\frac{(8x-5)^{2(n+1)+1}}{(n+1)^{\frac{3}{2}}}}{\frac{(8x-5)^{2n+1}}{n^{\frac{3}{2}}}} \right|$$

Compute
$$L = \lim_{n \to \infty} \left\{ \left| \frac{\frac{(8x-5)^{2(n+1)+1}}{(n+1)^{\frac{3}{2}}}}{\frac{(8x-5)^{2n+1}}{n^{\frac{3}{2}}}} \right| \right|$$

Hide Steps 🖨

$$L = \lim_{n \to \infty} \left(\frac{\frac{(8x - 5)^{2(n+1)+1}}{(n+1)^{\frac{3}{2}}}}{\frac{(8x - 5)^{2n+1}}{n^{\frac{3}{2}}}} \right)$$

Simplify
$$\frac{\frac{(8x-5)^{2(n+1)+1}}{(n+1)^{\frac{3}{2}}}}{\frac{(8x-5)^{2n+1}}{\frac{2^{\frac{3}{2}}}{3}}}: \frac{n^{\frac{3}{2}}(8x-5)^2}{(n+1)^{\frac{3}{2}}}$$

Hide Steps 🖨

$$\frac{(8x-5)^{2(n+1)+1}}{(n+1)^{\frac{3}{2}}}$$
$$\frac{(8x-5)^{2n+1}}{n^{\frac{3}{2}}}$$

Divide fractions:
$$\frac{\frac{a}{b}}{\frac{c}{d}} = \frac{a \cdot d}{b \cdot c}$$

$$=\frac{(8x-5)^{2(n+1)+1}n^{\frac{3}{2}}}{(n+1)^{\frac{3}{2}}(8x-5)^{2n+1}}$$

Apply exponent rule:
$$\frac{x^a}{x^b} = x^{a-b}$$

$$\frac{(8x-5)^{2(n+1)+1}}{(8x-5)^{2n+1}} = (8x-5)^{2(n+1)+1-(2n+1)}$$

$$=\frac{n^{\frac{3}{2}}(8x-5)^{2(n+1)+1-(2n+1)}}{(n+1)^{\frac{3}{2}}}$$

Add similar elements:
$$2(n+1) + 1 - (2n+1) = 2$$

$$=\frac{n^{\frac{3}{2}}(8x-5)^2}{(n+1)^{\frac{3}{2}}}$$

$$L = \lim_{n \to \infty} \left(\left| \frac{n^{\frac{3}{2}} (8x - 5)^{2}}{(n+1)^{\frac{3}{2}}} \right| \right)$$

$$L = \left| (8x - 5)^2 \right| \cdot \lim_{n \to \infty} \left(\left| \frac{n^{\frac{3}{2}}}{(n+1)^{\frac{3}{2}}} \right| \right)$$

$$\lim_{n\to\infty} \left(\left| \frac{n^{\frac{3}{2}}}{(n+1)^{\frac{3}{2}}} \right| \right) = 1$$

Hide Steps 🧲

$$\lim_{n\to\infty} \left(\left| \frac{n^{\frac{3}{2}}}{(n+1)^{\frac{3}{2}}} \right| \right)$$

$$\frac{\frac{3}{n^2}}{(n+1)^{\frac{3}{2}}} \text{ is positive when } n \to \infty. \text{ Therefore } \left| \frac{\frac{3}{n^2}}{(n+1)^{\frac{3}{2}}} \right| = \frac{n^{\frac{3}{2}}}{(n+1)^{\frac{3}{2}}}$$

$$= \lim_{n \to \infty} \left(\frac{n^{\frac{3}{2}}}{(n+1)^{\frac{3}{2}}} \right)$$

Simplify
$$\frac{n^{\frac{3}{2}}}{(n+1)^{\frac{3}{2}}}$$
: $\left(\frac{n}{n+1}\right)^{\frac{3}{2}}$

Hide Steps 🖨

$$\frac{n^{\frac{3}{2}}}{(n+1)^{\frac{3}{2}}}$$

Apply exponent rule: $\frac{a^c}{b^c} = \left(\frac{a}{b}\right)^c$

$$\frac{n^{\frac{3}{2}}}{(n+1)^{\frac{3}{2}}} = \left(\frac{n}{n+1}\right)^{\frac{3}{2}}$$

$$= \left(\frac{n}{n+1}\right)^{\frac{3}{2}}$$

$$=\lim_{n\to\infty}\left(\left(\frac{n}{n+1}\right)^{\frac{3}{2}}\right)$$

 $\lim_{x \to a} [f(x)]^b = [\lim_{x \to a} f(x)]^b$ With the exception of indeterminate form

$$= \left(\lim_{n \to \infty} \left(\frac{n}{n+1}\right)\right)^{\frac{3}{2}}$$

Divide by highest denominator power: $\frac{1}{1+\frac{1}{2}}$

Hide Steps

 $\frac{n}{n+1}$

Divide by n

$$= \frac{\frac{n}{n}}{\frac{n}{n} + \frac{1}{n}}$$

Refine

$$= \frac{1}{1 + \frac{1}{n}}$$

$$= \left(\lim_{n \to \infty} \left(\frac{1}{1 + \frac{1}{n}}\right)\right)^{\frac{3}{2}}$$

$$\lim_{x \to a} \left[\frac{f(x)}{g(x)} \right] = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}, \quad \lim_{x \to a} g(x) \neq 0$$

With the exception of indeterminate form

$$= \left(\frac{\lim_{n \to \infty} (1)}{\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)}\right)^{\frac{3}{2}}$$

 $\lim_{n\to\infty} (1) = 1$

Hide Steps

 $\lim_{n\to\infty} (1)$

 $\lim_{x \to a} c = c$

= 1

$$\lim_{n\to\infty} \left(1 + \frac{1}{n}\right) = 1$$

Hide Steps

$$\lim_{n\to\infty} \left(1+\frac{1}{n}\right)$$

 $\lim_{x \to a} [f(x) \pm g(x)] = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x)$

With the exception of indeterminate form

$$= \lim_{n \to \infty} \left(1 \right) + \lim_{n \to \infty} \left(\frac{1}{n} \right)$$

 $\lim_{n\to\infty} (1) = 1$

Hide Steps

 $\lim_{n\to\infty} (1)$

$$\lim_{x \to a} c = c$$

= 1

$$\lim_{n\to\infty} \left(\frac{1}{n}\right) = 0$$

Hide Steps

$$\lim_{n\to\infty} \left(\frac{1}{n}\right)$$

Apply Infinity Property: $\lim_{x\to\infty} \left(\frac{c}{a}\right) = 0$

=0

= 1 + 0

Simplify

=1

$$= \left(\frac{1}{1}\right)^{\frac{3}{2}}$$

Simplify $\left(\frac{1}{1}\right)^{\frac{3}{2}}$: 1

Hide Steps 🖨

 $\left(\frac{1}{1}\right)^{\frac{3}{2}}$

Apply rule $\frac{a}{1} = a$

$$\frac{1}{1} = 1$$

$$\begin{vmatrix} =1^{\frac{1}{2}} \\ 1^{\frac{1}{2}} = 1 \cdot 1^{\frac{1}{2}} \\ 1^{\frac{1}{2}} \\ 1^{\frac{1}{2}} = 1^{1+\frac{1}{2}} \\ =1^{1+\frac{1}{2}} \\ \text{Apply exponent rule:} \quad x^{a+b} = x^a x^b \\ =1^1 \cdot 1^{\frac{1}{2}} \\ \text{Refine} \\ =1 \cdot 1^{\frac{1}{2}} \\ =1^1 \cdot 1^{\frac{1}{2}} \\ \text{Multiply:} \quad 1 \cdot 1^{\frac{1}{2}} = 1^{\frac{1}{2}} \\ =1^{\frac{1}{2}} \\ \text{Apply rule } 1^a = 1 \\ =1 \\ =1 \\ \end{bmatrix}$$

$$L = |(8x-5)^2| \cdot 1$$
Simplify
$$L = |8x-5|^2$$
The power series converges for $L < 1$
$$|8x-5|^2 < 1$$
Find the radius of convergence of a power series $\sum_{n=0}^{\infty} c_n (x-a)^n$ solve for $|x-a|$
$$|8x-5|^2 < 1 : |x-\frac{5}{8}| < \frac{1}{8}$$

Take the square root of both sides of an inequality $\sqrt{|8x-5|^2} < \sqrt{1}$ Simplify |8x - 5| < 1Divide both sides by 8 $\frac{|8x-5|}{8} < \frac{1}{8}$ Simplify $\left|x - \frac{5}{8}\right| < \frac{1}{8}$ Therefore Radius of convergence is $\frac{1}{8}$ Radius of convergence is $\frac{1}{\alpha}$ Hide Steps 🖨 Find the interval of convergence To find the interval of convergence of a power series $\sum_{n=0}^{\infty} c_n (x-a)^n$ solve for xHide Steps $|8x-5|^2 < 1$: $\frac{1}{2} < x < \frac{3}{4}$ $|8x-5|^2 < 1$ Hide Steps Find positive and negative intervals Find intervals for |8x - 5|Hide Steps $8x - 5 \ge 0$: $x \ge \frac{5}{8}$, |8x - 5| = 8x - 5Hide Steps $8x - 5 \ge 0$: $x \ge \frac{5}{8}$ $8x - 5 \ge 0$ Add 5 to both sides $8x - 5 + 5 \ge 0 + 5$ Simplify $8x \ge 5$

 $|8x-5|^2 < 1$

Divide both sides by 8 $\frac{8x}{8} \geq \frac{5}{8}$ Simplify $x \ge \frac{5}{8}$ Hide Steps Rewrite |8x - 5| for 8x - 5 > 0: |8x - 5| = 8x - 5Apply absolute rule: If u > 0 then |u| = u|8x - 5| = 8x - 5Hide Steps $8x-5 < 0: x < \frac{5}{8}, \quad |8x-5| = -(8x-5)$ Hide Steps 8x - 5 < 0 : $x < \frac{5}{8}$ 8x - 5 < 0Add 5 to both sides 8x - 5 + 5 < 0 + 5Simplify 8x < 5Divide both sides by 8 $\frac{8x}{8} < \frac{5}{8}$ Simplify $x < \frac{5}{8}$ Hide Steps Rewrite |8x - 5| for 8x - 5 < 0: |8x - 5| = -(8x - 5)Apply absolute rule: If u < 0 then |u| = -u|8x-5| = -(8x-5)

Identify the intervals:

$$x < \frac{5}{8}, \ x \ge \frac{5}{8}$$

 $x < \frac{5}{8}$ $x \ge \frac{5}{8}$ |8x - 5|

$$x < \frac{5}{8}, \ x \ge \frac{5}{8}$$

$$x < \frac{5}{8}, \ x \ge \frac{5}{8}$$

Solve the inequality for each interval

Hide Steps

$$x < \frac{5}{8}, \ x \ge \frac{5}{8}$$

For $x < \frac{5}{8}$: $\frac{1}{2} < x < \frac{5}{8}$

Hide Steps

For
$$x < \frac{5}{8}$$
 rewrite $\left| 8x - 5 \right|^2 < 1$ as $\left(-\left(8x - 5 \right) \right)^2 < 1$

$$(-(8x-5))^2 < 1 : \frac{1}{2} < x < \frac{3}{4}$$

Hide Steps

$$(-(8x-5))^2 < 1$$

For $u^n < a$, if n is even then $-\sqrt[n]{a} < u < \sqrt[n]{a}$

$$-1 < -(8x - 5) < 1$$

If a < u < b then a < u and u < b

$$-1 < -(8x-5)$$
 and $-(8x-5) < 1$

$$-1 < -(8x - 5)$$
 : $x < \frac{3}{4}$

Hide Steps

$$-1 < -(8x - 5)$$

Switch sides

$$-(8x-5) > -1$$

Multiply both sides by -1 (reverse the inequality)

$$(-(8x-5))(-1)<(-1)(-1)$$

Simplify

$$8x - 5 < 1$$

Add 5 to both sides

$$8x - 5 + 5 < 1 + 5$$

Simplify

Divide both sides by 8

$$\frac{8x}{8} < \frac{6}{8}$$

Simplify

$$x < \frac{3}{4}$$

$$-(8x-5) < 1 : x > \frac{1}{2}$$

Hide Steps

$$-(8x-5)<1$$

Multiply both sides by -1 (reverse the inequality)

$$(-(8x-5))(-1) > 1 \cdot (-1)$$

Simplify

$$8x - 5 > -1$$

Add 5 to both sides

$$8x - 5 + 5 > -1 + 5$$

Simplify

8x > 4

Divide both sides by 8

$$\frac{8x}{8} > \frac{4}{8}$$

Simplify

$$x > \frac{1}{2}$$

Combine the intervals

$$x < \frac{3}{4}$$
 and $x > \frac{1}{2}$

Merge Overlapping Intervals

Hide Steps 🖨

The intersection of two intervals is the set of numbers which are in both intervals $x < \frac{3}{4}$ and $x > \frac{1}{2}$

$$\frac{1}{2} < x < \frac{3}{4}$$

$$\frac{1}{2} < x < \frac{3}{4}$$

Combine the intervals

$$\frac{1}{2} < x < \frac{3}{4}$$
 and $x < \frac{5}{8}$

Merge Overlapping Intervals

Hide Steps

The intersection of two intervals is the set of numbers which are in both intervals $\frac{1}{2} < x < \frac{3}{4}$ and $x < \frac{5}{8}$

$$\frac{1}{2} < x < \frac{5}{8}$$

$$\frac{1}{2} < x < \frac{5}{8}$$

For
$$x \ge \frac{5}{8}$$
: $\frac{5}{8} \le x < \frac{3}{4}$

Hide Steps

For $x \ge \frac{5}{8}$ rewrite $\left| 8x - 5 \right|^2 < 1$ as $\left(8x - 5 \right)^2 < 1$

$$(8x-5)^2 < 1$$
 : $\frac{1}{2} < x < \frac{3}{4}$

Hide Steps

$$(8x-5)^2 < 1$$

For $u^n < a$, if n is even then $-\sqrt[n]{a} < u < \sqrt[n]{a}$

$$-1 < 8x - 5 < 1$$

If a < u < b then a < u and u < b

-1 < 8x - 5 and 8x - 5 < 1

-1 < 8x - 5 : $x > \frac{1}{2}$

Hide Steps 🖨

-1 < 8x - 5

Switch sides

8x - 5 > -1

Add 5 to both sides

8x - 5 + 5 > -1 + 5

Simplify

8x > 4

Divide both sides by 8

 $\frac{8x}{8} > \frac{4}{8}$

Simplify

 $x > \frac{1}{2}$

8x - 5 < 1 : $x < \frac{3}{4}$

Hide Steps 🖨

8x - 5 < 1

Add 5 to both sides

8x - 5 + 5 < 1 + 5

Simplify

8x < 6

Divide both sides by 8

 $\frac{8x}{8} < \frac{6}{8}$

Simplify

 $x < \frac{3}{4}$

Combine the intervals

 $x > \frac{1}{2}$ and $x < \frac{3}{4}$

Merge Overlapping Intervals

Hide Steps 🖨

The intersection of two intervals is the set of numbers which are in both intervals $x>\frac{1}{2}$ and $x<\frac{3}{4}$

$$\frac{1}{2} < x < \frac{3}{4}$$

$$\frac{1}{2} < x < \frac{3}{4}$$

Combine the intervals

$$\frac{1}{2} < x < \frac{3}{4} \quad \text{and} \quad x \ge \frac{5}{8}$$

Merge Overlapping Intervals

Hide Steps 🖨

The intersection of two intervals is the set of numbers which are in both intervals $\frac{1}{2} < x < \frac{3}{4}$ and $x \ge \frac{5}{8}$

$$\frac{5}{8} \le x < \frac{3}{4}$$

$$\frac{5}{8} \le x < \frac{3}{4}$$

Combine the intervals

$$\frac{1}{2} < x < \frac{5}{8}$$
 or $\frac{5}{8} \le x < \frac{3}{4}$

$$\frac{1}{2} < x < \frac{5}{8}$$
 or $\frac{5}{8} \le x < \frac{3}{4}$

Merge Overlapping Intervals

Hide Steps 🖨

The union of two intervals is the set of numbers which are in either interval $\frac{1}{2}$ and $\frac{5}{2}$ are $\frac{5}{2}$ and $\frac{3}{2}$

$$\frac{1}{2} < x < \frac{5}{8}$$
 or $\frac{5}{8} \le x < \frac{3}{4}$

$$\frac{1}{2} < x < \frac{3}{4}$$

The union of two intervals is the set of numbers which are in either interval

$$\frac{1}{2} < x < \frac{3}{4}$$
 or $x = \frac{1}{2}$

$$\frac{1}{2} \le x < \frac{3}{4}$$

The union of two intervals is the set of numbers which are in either interval

$$\frac{1}{2} \le x < \frac{3}{4} \quad \text{or} \quad x = \frac{3}{4}$$

$$\frac{1}{2} \le x \le \frac{3}{4}$$

$$\frac{1}{2} \le x \le \frac{3}{4}$$

$$\frac{1}{2} < x < \frac{3}{4}$$

Check the interval end points: $x = \frac{1}{2}$:converges, $x = \frac{3}{4}$:converges

Hide Steps 🖨

For
$$x = \frac{1}{2}$$
, $\sum_{n=1}^{\infty} \frac{\left(8\left(\frac{1}{2}\right) - 5\right)^{2n+1}}{n^{\frac{3}{2}}}$: converges

$$\sum_{n=1}^{\infty} \frac{\left(8\left(\frac{1}{2}\right) - 5\right)^{2n+1}}{n^{\frac{3}{2}}}$$

Refine

$$=\sum_{n=1}^{\infty}-\frac{1}{n^{\frac{3}{2}}}$$

Apply the constant multiplication rule: $\sum c \cdot a_n = c \cdot \sum a_n$

$$= -\sum_{n=1}^{\infty} \frac{1}{n^{\frac{3}{2}}}$$

Apply p – Series Test: converges

Hide Steps 🖨

$$\sum_{n=1}^{\infty} \frac{1}{n^{\frac{3}{2}}}$$

p – Series Test:

If the series is of the form $\sum_{n=1}^{\infty} \frac{1}{n^p}$, where p > 0

If p > 1, then the p – series converges If 0 , then the p – series diverges

 $p=rac{3}{2},\;p>1,$ by the p – Series test criteria

- = converges
- = -converges
- = converges

For $x = \frac{3}{4}$, $\sum_{n=1}^{\infty} \frac{\left(8\left(\frac{3}{4}\right) - 5\right)^{2n+1}}{n^{\frac{3}{2}}}$: converges

$$\sum_{n=1}^{\infty} \frac{\left(8\left(\frac{3}{4}\right) - 5\right)^{2n+1}}{n^{\frac{3}{2}}}$$

Refine

$$=\sum_{n=1}^{\infty}\frac{1}{n^{\frac{3}{2}}}$$

Apply p – Series Test: converges

Hide Steps 🖨

$$\sum_{n=1}^{\infty} \frac{1}{n^{\frac{3}{2}}}$$

p – Series Test:

If the series is of the form $\sum_{n=1}^{\infty} \frac{1}{n^p}$, where p > 0

If p > 1, then the p – series converges If 0 , then the p – series diverges

$$p=\frac{3}{2},\;p>1,$$
 by the p – Series test criteria

= converges

 $= {\sf converges}$

$$x = \frac{1}{2}$$
:converges, $x = \frac{3}{4}$:converges

Therefore

Interval of convergence is $\frac{1}{2} \le x \le \frac{3}{4}$

Interval of convergence is $\frac{1}{2} \le x \le \frac{3}{4}$

Radius of convergence is $\frac{1}{8}$, Interval of convergence is $\frac{1}{2} \leq x \leq \frac{3}{4}$