GGGGCTTCGGCGCCAGCGCCAGCGCTAGTCGGTCTGGTAAGGATTTACAAAAGGTGCAGGTATG AGCAGGTCTGAAGACTAACATTTTGTGAAGTTGTAAAACAGAAAACCTGTTAGAAATGTGGTGGT TTCAGCAAGGCCTCAGTTTCCTTCCTTCAGCCCTTGTAATTTGGACATCTGCTGCTTTCATATTT TCATACATTACTGCAGTAACACTCCACCATATAGACCCGGCTTTACCTTATATCAGTGACACTGG TACAGTAGCTCCAGAAAAATGCTTATTTGGGGCAATGCTAAATATTGCGGCAGTTTTATGCATTG CTACCATTTATGTTCGTTATAAGCAAGTTCATGCTCTGAGTCCTGAAGAAACGTTATCATCAAA TTAAACAAGGCTGGCCTTGTACTTGGAATACTGAGTTGTTTAGGACTTTCTATTGTGGCAAACTT CCAGAAAACAACCCTTTTTGCTGCACATGTAAGTGGAGCTGTGCTTACCTTTGGTATGGGCTCAT TATATATGTTTGTTCAGACCATCCTTTCCTACCAAATGCAGCCCAAAATCCATGGCAAACAAGTC TTCTGGATCAGACTGTTGTTGGTTATCTGGTGTGGAGTAAGTGCACTTAGCATGCTGACTTGCTC ATCAGTTTTGCACAGTGGCAATTTTGGGACTGATTTAGAACAGAAACTCCATTGGAACCCCGAGG ACAAAGGTTATGTGCTTCACATGATCACTACTGCAGCAGAATGGTCTATGTCATTTTCCTTCTTT GGTTTTTTCCTGACTTACATTCGTGATTTTCAGAAAATTTCTTTACGGGTGGAAGCCAATTTACA GAGATATT**TGA**TGAAAGGATAAAATATTTCTGTAATGATTATGATTCTCAGGGATTGGGGAAAGG TTCACAGAAGTTGCTTATTCTTCTGAAATTTTCAACCACTTAATCAAGGCTGACAGTAACACT GATGAATGCTGATAATCAGGAAACATGAAAGAAGCCATTTGATAGATTATTCTAAAGGATATCAT CAAGAAGACTATTAAAAACACCTATGCCTATACTTTTTTTATCTCAGAAAATAAAGTCAAAAGACT ATG

<subunit 1 of 1, 266 aa, 1 stop</pre>

<MW: 29766, pI: 8.39, NX(S/T): 0

MWWFQQGLSFLPSALVIWTSAAFIFSYITAVTLHHIDPALPYISDTGTVAPEKCLFGAMLNIAAV LCIATIYVRYKQVHALSPEENVIIKLNKAGLVLGILSCLGLSIVANFQKTTLFAAHVSGAVLTFG MGSLYMFVQTILSYQMQPKIHGKQVFWIRLLLVIWCGVSALSMLTCSSVLHSGNFGTDLEQKLHW NPEDKGYVLHMITTAAEWSMSFSFFGFFLTYIRDFQKISLRVEANLHGLTLYDTAPCPINNERTR LLSRDI

Important features:

Type II transmembrane domain:

amino acids 13-33

Other Transmembrane domains:

amino acids 54-73, 94-113, 160-180, 122-141

N-myristoylation sites.

amino acids 57-63, 95-101, 99-105, 124-130, 183-189

GTGTGAGGGGGCCTGTGGCCCCAGCGTGCTGTGGCCTCGGGGAGTGGGAAGTGGAGGCAGGAGCCTTC $\tt CTTACACTTCGCC{\color{blue}ATGAGTTTCCTCATCGACTCCAGCATCATGATTACCTCCCAGATACTATTTTTTG}$ GATTTGGGTGGCTTTTCTTCATGCGCCAATTGTTTAAAGACTATGAGATACGTCAGTATGTTGTACAG GTGATCTTCTCCGTGACGTTTGCATTTTCTTGCACCATGTTTGAGCTCATCATCTTTGAAATCTTAGG AGTATTGAATAGCAGCTCCCGTTATTTTCACTGGAAAATGAACCTGTGTGTAATTCTGCTGATCCTGG TTTTCATGGTGCCTTTTTACATTGGCTATTTTATTGTGAGCAATATCCGACTACTGCATAAACAACGA CTGCTTTTTTCCTGTCTCTTATGGCTGACCTTTATGTATTTCTTCTGGAAACTAGGAGATCCCTTTCC CATTCTCAGCCCAAAACATGGGATCTTATCCATAGAACAGCTCATCAGCCGGGTTGGTGATTGGAG TGACTCTCATGGCTCTTCTTCTGGATTTGGTGCTGTCAACTGCCCATACACTTACATGTCTTACTTC CTCAGGAATGTGACTGACACGGATATTCTAGCCCTGGAACGGCGACTGCTGCAAACCATGGATATGAT CATAAGCAAAAAGAAAGGATGGCAATGGCACGGAGAACAATGTTCCAGAAGGGGGAAGTGCATAACA AACCATCAGGTTTCTGGGGAATGATAAAAAGTGTTACCACTTCAGCATCAGGAAGTGAAAATCTTACT ATATGCTACCAAGGAGAGAATAGAATACTCCAAAACCTTCAAGGGGAAATATTTTAATTTTCTTGGTT ACTTTTTCTCTATTTACTGTGTTTTGGAAAATTTTCATGGCTACCATCAATATTGTTTTTGATCGAGTT GGGAAAACGGATCCTGTCACAAGAGGCATTGAGATCACTGTGAATTATCTGGGAATCCAATTTGATGT TGCTGATCACTCTTACCAAGTTCTTTTATGCCATCTCTAGCAGTAAGTCCTCCAATGTCATTGTCCTG CTATTAGCACAGATAATGGGCATGTACTTTGTCTCCTCTGTGCTGATCCGAATGAGTATGCCTTT AGAATACCGCACCATAATCACTGAAGTCCTTGGAGAACTGCAGTTCAACTTCTATCACCGTTGGTTTG ATGTGATCTTCCTGGTCAGCGCTCTCTCTAGCATACTCTTCCTCTATTTGGCTCACAAACAGGCACCA ${\tt GAGAAGCAAATGGCACCT} \underline{{\tt TGA}} {\tt ACTTAAGCCTACTACAGACTGTTAGAGGCCAGTGGTTTCAAAATTTA}$ ATTTTTCACCTTCATAGCATACTCCTTCCCCGTCAGGTGATACTATGACCATGAGTAGCATCAGCCAG AACATGAGAGGGAGAACTAACTCAAGACAATACTCAGCAGAGAGCATCCCGTGTGGATATGAGGCTGG TGTAGAGGCGGAGAGGCCAAGAAACTAAAGGTGAAAAATACACTGGAACTCTGGGGCCAAGACATGT CTATGGTAGCTGAGCCAAACACGTAGGATTTCCGTTTTAAGGTTCACATGGAAAAGGTTATAGCTTTG ACTCTAGAGTCGACCTGCAGAAGCTTGGCCGCCATGGCCCAACTTGTTTATTGCAGCTTATAATG

MSFLIDSSIMITSQILFFGFGWLFFMRQLFKDYEIRQYVVQVIFSVTFAFSCTMFELIIFEILGV
LNSSSRYFHWKMNLCVILLILVFMVPFYIGYFIVSNIRLLHKQRLLFSCLLWLTFMYFFWKLGDP
FPILSPKHGILSIEQLISRVGVIGVTLMALLSGFGAVNCPYTYMSYFLRNVTDTDILALERRLLQ
TMDMIISKKKRMAMARRTMFQKGEVHNKPSGFWGMIKSVTTSASGSENLTLIQQEVDALEELSRQ
LFLETADLYATKERIEYSKTFKGKYFNFLGYFFSIYCVWKIFMATINIVFDRVGKTDPVTRGIEI
TVNYLGIQFDVKFWSQHISFILVGIIIVTSIRGLLITLTKFFYAISSSKSSNVIVLLLAQIMGMY
FVSSVLLIRMSMPLEYRTIITEVLGELQFNFYHRWFDVIFLVSALSSILFLYLAHKQAPEKQMAP

Important features:

Signal peptide:

amino acids 1-23

Potential transmembrane domains:

amino acids 37-55, 81-102, 150-168, 288-311, 338-356, 375-398, 425-444

N-glycosylation sites.

amino acids 67-70, 180-183 and 243-246

Eukaryotic cobalamin-binding proteins

amino acids 151-160

AGAACTCTCCATCCGGACTAGTTATTGAGCATCTGCCTCTCATATCACCAGTGGCCATCTGAGGT $\tt GTTTCCCTGGCTCTGAAGGGGTAGGCACG\underline{ATG} GCCAGGTGCTTCAGCCTGGTGTTGCTTCTCACT$ GTCATGCAGAATTATGGGGATCACCCTTGTGAGCAAAAAGGCGAACCAGCAGCTGAATTTCACAG AAGCTAAGGAGGCCTGTAGGCTGCTGGGACTAAGTTTGGCCGGCAAGGACCAAGTTGAAACAGCC TTGAAAGCTAGCTTTGAAACTTGCAGCTATGGCTGGGTTGGAGATGGATTCGTGGTCATCTCTAG GCCGACAGTTTGCAGCCTATTGTTACAACTCATCTGATACTTGGACTAACTCGTGCATTCCAGAA CAGTGACAGTACCTACTCGGTGGCATCCCCTTACTCTACAATACCTGCCCCTACTACTACTCCTC GAAACTAGCACCATGTCTACAGAAACTGAACCATTTGTTGAAAATAAAGCAGCATTCAAGAATGA CAGCAGAAGGAAATGATCGAAACCAAAGTAGTAAAGGAGGAGAAGGCCAATGATAGCAACCCTAA TGAGGAATCAAAGAAAACTGATAAAAACCCAGAAGAGTCCAAGAGTCCAAGCAAAACTACCGTGC GATGCCTGGAAGCTGAAGTT**TAG**ATGAGACAGAAATGAGGAGACACACCTGAGGCTGGTTTCTTT CATGCTCCTTACCCTGCCCCAGCTGGGGAAATCAAAAGGGCCCAAAGAACCAAAGAAGAAGTCCA CCCTTGGTTCCTAACTGGAATCAGCTCAGGACTGCCATTGGACTATGGAGTGCACCAAAGAGAAT TTCTAGCCTGGCTATGTCCTAATAATATCCCACTGGGAGAAAGGAGTTTTGCAAAGTGCAAGGAC CTAAAACATCTCATCAGTATCCAGTGGTAAAAAGGCCTCCTGGCTGTCTGAGGCTAGGTGGGTTG AAAGCCAAGGAGTCACTGAGACCAAGGCTTTCTCTACTGATTCCGCAGCTCAGACCCTTTCTTCA GCTCTGAAAGAGAAACACGTATCCCACCTGACATGTCCTTCTGAGCCCGGTAAGAGCAAAAGAAT GGCAGAAAAGTTTAGCCCCTGAAAGCCATGGAGATTCTCATAACTTGAGACCTAATCTCTGTAAA GCTAAAATAAAGAAATAGAACAAGGCTGAGGATACGACAGTACACTGTCAGCAGGGACTGTAAAC CTTACTTTTTCTGGTCTCTACCACTGCTGATATTTTCTCTAGGAAATATACTTTTACAAGTAACA AAAATAAAAACTCTTATAAATTTCTATTTTTATCTGAGTTACAGAAATGATTACTAAGGAAGATT AAGTGCTGTGCAAGGTATTACACTCTGTAATTGAATATTATTCCTCAAAAAATTGCACATAGTAG AACGCTATCTGGGAAGCTATTTTTTTCAGTTTTGATATTTCTAGCTTATCTACTTCCAAACTAAT TTTTATTTTTGCTGAGACTAATCTTATTCATTTTCTCTAATATGGCAACCATTATAACCTTAATT TATTATTAACATACCTAAGAAGTACATTGTTACCTCTATATACCAAAGCACATTTTAAAAGTGCC ATTAACAAATGTATCACTAGCCCTCCTTTTTCCAACAAGAAGGGACTGAGAGATGCAGAAATATT TGTGACAAAAAATTAAAGCATTTAGAAAACTT

MARCFSLVLLLTSIWTTRLLVQGSLRAEELSIQVSCRIMGITLVSKKANQQLNFTEAKEACRLLG LSLAGKDQVETALKASFETCSYGWVGDGFVVISRISPNPKCGKNGVGVLIWKVPVSRQFAAYCYN SSDTWTNSCIPEIITTKDPIFNTQTATQTTEFIVSDSTYSVASPYSTIPAPTTTPPAPASTSIPR RKKLICVTEVFMETSTMSTETEPFVENKAAFKNEAAGFGGVPTALLVLALLFFGAAAGLGFCYVK RYVKAFPFTNKNQQKEMIETKVVKEEKANDSNPNEESKKTDKNPEESKSPSKTTVRCLEAEV

Signal sequence:

amino acids 1-16

Transmembrane domain:

amino acids 235-254

N-glycosylation site.

amino acids 53-57, 130-134, 289-293

Casein kinase II phosphorylation site.

amino acids 145-149, 214-218

Tyrosine kinase phosphorylation site.

amino acids 79-88

N-myristoylation site.

amino acids 23-29, 65-71, 234-240, 235-239, 249-255, 253-259

APP_ID=10063730

CGCCGCGCTCCCGCACCCGCGCCCGCCCACCGCGCCGCTCCCGCATCTGCACCCGCAGCCCGGC GGCCTCCCGGCGGGAGCGAGCAGATCCAGTCCGGCCCGCAGCGCAACTCGGTCCAGTCGGGGCGG CGGCGGTCCCCACGGCCCCCGCGCCCGCTCCGACGGCGACCTCGGCTCCAGTCAAGCCCGGCCCG GCTCTCAGCTACCCGCAGGAGGAGGCCACCCTCAATGAGATGTTCCGCGAGGTTGAGGAACTGAT GGAGGACACGCAGCACAAATTGCGCAGCGCGGTGGAAGAGATGGAGGCAGAAGAAGCTGCTGCTA AAGCATCATCAGAAGTGAACCTGGCAAACTTACCTCCCAGCTATCACAATGAGACCAACACAGAC ACGAAGGTTGGAAATAATACCATCCATGTGCACCGAGAAATTCACAAGATAACCAACAACCAGAC TGGACAAATGGTCTTTTCAGAGACAGTTATCACATCTGTGGGAGACGAAGAAGGCAGAAGGACCC ACGAGTGCATCATCGACGAGGACTGTGGGCCCAGCATGTACTGCCAGTTTGCCAGCTTCCAGTAC GCTGTGTGTCTGGGGTCACTGCACCAAAATGGCCACCAGGGGCAGCAATGGGACCATCTGTGACA ACCAGAGGGACTGCCAGCCGGGGCTGTGCTGTGCCTTCCAGAGAGGCCTGCTGTTCCCTGTGTGC ACACCCCTGCCCGTGGAGGGCGAGCTTTGCCATGACCCCGCCAGCCGGCTTCTGGACCTCATCAC CCCACAGCCAGGCTGTGTGTGTGTGCAAGCCGACCTTCGTGGGGAGCCGTGACCAAGATGGG GAGATCCTGCTGCCCAGAGAGGTCCCCGATGAGTATGAAGTTGGCAGCTTCATGGAGGAGGTGCG CCAGGAGCTGGAGGACCTGAGGAGCCTGACTGAAGAGATGGCGCTGGGGGAGCCTGCGGCTG $\tt CCGCCGCTGCACTGCTGGGAGGGGAAGAGATT{\color{red}{TAG}} ATCTGGACCAGGCTGTGGGTAGATGTGCAA{\color{red}{CAG}} ATCTGGACCAGGCTGTGGGGTAGATGTGCAA{\color{red}{CAG}} ATCTGGACCAGGCTGTGGGGTAGATGTGCAA{\color{red}{CAG}} ATCTGGACCAGGCTGTGGGGTAGATGTGCAA{\color{red}{CAG}} ATCTGGACCAGGCTGTGGGGTAGATGTGCAA{\color{red}{CAG}} ATCTGGACCAGGCTGTGGGGTAGATGTGCAA{\color{red}{CAG}} ATCTGGACCAGGCTGTGGGGTAGATGTGCAA{\color{red}{CAG}} ATCTGGACCAGGCTGTGGGACAGATGTGTAGATGTGTAGATGTAGATGTGTAGATGTAGATGTGTAGATGTGTAGA$ TAGAAATAGCTAATTTATTTCCCCAGGTGTGTGCTTTAGGCGTGGGCTGACCAGGCTTCTTCCTA CATCTTCTTCCCAGTAAGTTTCCCCTCTGGCTTGACAGCATGAGGTGTTGTGCATTTGTTCAGCT GGAGCAGTTTGCCACCCTGTCCAGATTATTGGCTGCTTTGCCTCTACCAGTTGGCAGACAGCCG TTTGTTCTACATGGCTTTGATAATTGTTTGAGGGGAGGAGATGGAAACAATGTGGAGTCTCCCTC TGATTGGTTTTGGGGAAATGTGGAGAAGAGTGCCCTGCTTTGCAAACATCAACCTGGCAAAAATG CAACAAATGAATTTTCCACGCAGTTCTTTCCATGGGCATAGGTAAGCTGTGCCTTCAGCTGTTGC AGATGAAATGTTCTGTTCACCCTGCATTACATGTGTTTATTCATCCAGCAGTGTTGCTCAGCTCC TACCTCTGTGCCAGGGCAGCATTTTCATATCCAAGATCAATTCCCTCTCTCAGCACAGCCTGGGG AGGGGGTCATTGTTCTCCTCGTCCATCAGGGATCTCAGAGGCTCAGAGACTGCAAGCTGCTTGCC CAAGTCACACAGCTAGTGAAGACCAGAGCAGTTTCATCTGGTTGTGACTCTAAGCTCAGTGCTCT TTTTCTTGAGGCATGCACATCTGGAATTAAGGTCAAACTAATTCTCACATCCCTCTAAAAGTAAA CTACTGTTAGGAACAGCAGTGTTCTCACAGTGTGGGGCAGCCGTCCTTCTAATGAAGACAATGAT ATTGACACTGTCCCTCTTTGGCAGTTGCATTAGTAACTTTGAAAGGTATATGACTGAGCGTAGCA TACAGGTTAACCTGCAGAAACAGTACTTAGGTAATTGTAGGGCGAGGATTATAAATGAAATTTGC AAAATCACTTAGCAGCAACTGAAGACAATTATCAACCACGTGGAGAAAATCAAACCGAGCAGGGC TGTGTGAAACATGGTTGTAATATGCGACTGCGAACACTGAACTCTACGCCACTCCACAAATGATG TTTTCAGGTGTCATGGACTGTTGCCACCATGTATTCATCCAGAGTTCTTAAAGTTTAAAGTTGCA CATGATTGTATAAGCATGCTTTCTTTGAGTTTTAAATTATGTATAAACATAAGTTGCATTTAGAA

MQRLGATLLCLLLAAAVPTAPAPAPTATSAPVKPGPALSYPQEEATLNEMFREVEELMEDTQHKL RSAVEEMEAEEAAAKASSEVNLANLPPSYHNETNTDTKVGNNTIHVHREIHKITNNQTGQMVFSE TVITSVGDEEGRRSHECIIDEDCGPSMYCQFASFQYTCQPCRGQRMLCTRDSECCGDQLCVWGHC TKMATRGSNGTICDNQRDCQPGLCCAFQRGLLFPVCTPLPVEGELCHDPASRLLDLITWELEPDG ALDRCPCASGLLCQPHSHSLVYVCKPTFVGSRDQDGEILLPREVPDEYEVGSFMEEVRQELEDLE RSLTEEMALGEPAAAAAALLGGEEI

Signal sequence:

amino acids 1-19

N-glycosylation site.

amino acids 96-100, 106-110, 121-125, 204-208

Casein kinase II phosphorylation site.

amino acids 46-50, 67-71, 98-102, 135-139, 206-210, 312-316, 327-331

N-myristoylation site.

amino acids 202-208, 217-223

Amidation site.

amino acids 140-144

GGCCCACCTTGTGAACTCCTCGTGCCCAGGGCTGATGTGCGTCTTCCAGGGCTACTCATCCAAAG GCCTAATCCAACGTTCTGTCTTCAATCTGCAAATCTATGGGGTCCTGGGGCTCTTCTGGACCCTT AACTGGGTACTGGCCCTGGGCCAATGCGTCCTCGCTGGAGCCTTTGCCTCCTTCTACTGGGCCTT CCACAAGCCCCAGGACATCCCTACCTTCCCCTTAATCTCTGCCTTCATCCGCACACTCCGTTACCACACTGGGTCATTGGCATTTGGAGCCCTCATCCTGACCCTTGTGCAGATAGCCCGGGTCATCTTG GAGTATATTGACCACAAGCTCAGAGGAGTGCAGAACCCTGTAGCCCGCTGCATCATGTGCTGTTT CAAGTGCTGCCTCTGGTGTCTGGAAAAATTTATCAAGTTCCTAAACCGCAATGCATACATĆATGA TCGCCATCTACGGGAAGAATTTCTGTGTCTCAGCCAAAAATGCGTTCATGCTACTCATGCGAAAC GGTCGGAGGCGTGGGGGTCCTGTCCTTCTTTTTTTCTCCGGTCGCATCCCGGGGCTGGGTAAAG ACTTTAAGAGCCCCACCTCAACTATTACTGGCTGCCCATCATGACCTCCATCCTGGGGGCCTAT GTCATCGCCAGCGGCTTCTTCAGCGTTTTCGGCATGTGTGGGACACGCTCTTCCTCTGCTTCCT GGAAGACCTGGAGCGGAACAACGGCTCCCTGGACCGGCCCTACTACATGTCCAAGAGCCTTCTAA $\tt CCCTGATCCAGGACTGCACCCCACCCCACCGTCCAGCCATCCAACCTCACTTCGCCTTACAGGT$ CTCCATTTGTGGTAAAAAAGGTTTTAGGCCAGGCGCCGTGGCTCACGCCTGTAATCCAACACT TTGAGAGGCTGAGGCGGATCACCTGAGTCAGGAGTTCGAGACCAGCCTGGCCAACATGGTG AAACCTCCGTCTCTATTAAAAATACAAAAATTAGCCGAGAGTGGTGGCATGCACCTGTCATCCCA GCTACTCGGGAGGCTGAGGCAGGAGAATCGCTTGAACCCGGGAGGCAGAGGTTGCAGTGAGCCGA AAGATTTTATTAAAGATATTTTGTTAACTC

RTRGRTRGGCEKVPINTSCNPTAHLVNSSCPGLMCVFQGYSSKGLIQRSVFNLQIYGVLGLFWTL
NWVLALGQCVLAGAFASFYWAFHKPQDIPTFPLISAFIRTLRYHTGSLAFGALILTLVQIARVIL
EYIDHKLRGVQNPVARCIMCCFKCCLWCLEKFIKFLNRNAYIMIAIYGKNFCVSAKNAFMLLMRN
IVRVVVLDKVTDLLLFFGKLLVVGGVGVLSFFFFSGRIPGLGKDFKSPHLNYYWLPIMTSILGAY
VIASGFFSVFGMCVDTLFLCFLEDLERNNGSLDRPYYMSKSLLKILGKKNEAPPDNKKRKK

Important features:

Transmembrane domains:

amino acids 57-80 (type II), 110-126, 215-231, 254-274

N-glycosylation sites.

amino acids 16-20, 27-31, 289-293

Hypothetical YBR002c family proteins.

amino acids 276-288

Ammonium transporters proteins.

amino acids 204-231

N-myristoylation sites.

amino acids 60-66, 78-84

Amidation site.

amino acids 306-310

TCCCTGCTCAGCTGCGCTCCTGCCTCTGCGGCTCTGCCCCCTGCATCCTGTGCAGCTGCTGCCCCGC CAGCCGCAACTCCACCGTGAGCCGCCTCATCTTCACGTTCTTCCTCTTCCTGGGGGTGCTGGTGTCCA GGGATCCCCACCGTCCTGCAGGGCCACATCGACTGTGGCTCCCTGCTTGGCTACCGCGCTGTCTACCG GCCGGGACCCCGGGCTGCCATCCAGAATGGGTTTTGGTTCTTTAAGTTCCTGATCCTGGTGGGCCTC CTCCTTCCTCTTCATCCTCATCCAGCTGGTGCTCCTCATCGACTTTGCGCACTCCTGGAACCAGCGGT GGCTGGGCAAGGCCGAGGAGTGCGATTCCCGTGCCTGGTACGCAGGCCTCTTCTTCTTCACTCTCCTC CGAGGGCAAGGTCTTCATCAGCCTCAACCTCACCTTCTGTGTCTGCGTGTCCATCGCTGCTGTCCTGC $\tt CCAAGGTCCAGGACGCCCAGCCCAACTCGGGTCTGCTGCAGGCCTCGGTCATCACCCTCTACACCATG$ GGGCAACGAGACAGTTGTGGCAGGCCCCGAGGGCTATGAGACCCAGTGGTGGGATGCCCCGAGCATTG TGGGCCTCATCATCTTCCTCCTGTGCACCCTCTTCATCAGTCTGCGCTCCTCAGACCACCGGCAGGTG AACAGCCTGATGCAGACCGAGGAGTGCCCACCTATGCTAGACGCCACACAGCAGCAGCAGCAGCAGGT GGCAGCCTGTGAGGGCCGGGCCTTTGACAACGAGCAGGACGGCGTCACCTACAGCTACTCCTTCTCC ACTTCTGCCTGGTGCTGGCCTCACTGCACGTCATGATGACGCTCACCAACTGGTACAAGCCCGGTGAG ACCCGGAAGATGATCAGCACGTGGACCGCCGTGTGGGTGAAGATCTGTGCCAGCTGGGCAGGGCTGCT ${\tt CAGCCTGCCATCTGGTGCCTCCTGCCACCTGGTGCCTCTGGCTGACAGCCAACCTGCCCCTC}$ CCCACACCAATCAGCCAGGCTGAGCCCCCACCCCTGCCCCAGGTCCAGGACCTGCCCCTGAGCCGGGC ACCCACACGGTGGAGCTGCCTCTTCCTTCCCTCCTCCTGTTGCCCATACTCAGCATCTCGGATGAA AGGGCTCCCTTGTCCTCAGGCTCCACGGGAGCGGGGCTGCTGGAGAGAGCGGGGAACTCCCACCACAG TGGGGCATCCGGCACTGAAGCCCTGGTGTTCCTGGTCACGTCCCCCAGGGGACCCTGCCCCCTTCCTG

MGACLGACSLLSCASCLCGSAPCILCSCCPASRNSTVSRLIFTFFLFLGVLVSIIMLSPGVESQL
YKLPWVCEEGAGIPTVLQGHIDCGSLLGYRAVYRMCFATAAFFFFFFTLLMLCVSSSRDPRAAIQ
NGFWFFKFLILVGLTVGAFYIPDGSFTNIWFYFGVVGSFLFILIQLVLLIDFAHSWNQRWLGKAE
ECDSRAWYAGLFFFTLLFYLLSIAAVALMFMYYTEPSGCHEGKVFISLNLTFCVCVSIAAVLPKV
QDAQPNSGLLQASVITLYTMFVTWSALSSIPEQKCNPHLPTQLGNETVVAGPEGYETQWWDAPSI
VGLIIFLLCTLFISLRSSDHRQVNSLMQTEECPPMLDATQQQQQQVAACEGRAFDNEQDGVTYSY
SFFHFCLVLASLHVMMTLTNWYKPGETRKMISTWTAVWVKICASWAGLLLYLWTLVAPLLLRNRD
FS

Signal sequence:

amino acids 1-20

Transmembrane domains:

amino acids 40-58, 101-116, 134-150, 162-178, 206-223, 240-257, 272-283, 324-340, 391-406, 428-444

CGGGCCAGCCTGGGGCGGCCAGGAACCACCCGTTAAGGTGTCTTCTCTTTAGGGATGGTGA GGTTGGAAAAAGACTCCTGTAACCCTCCTCCAGGATGAACCACCTGCCAGAAGACATGGAGAACG CTCTCACCGGGAGCCAGAGCTCCCATGCTTCTCTGCGCAATATCCATTCCATCAACCCCACACAA TTTCTGTTTGTCACCTTTGACCTCTTATCGTAACATTACTGTGGATAATAGAGTTAAATG TGAATGGAGGCATTGAGAACACATTAGAGAAGGAGGTGATGCAGTATGACTACTATTCTTCATAT TTTGATATATTTCTTCTGCAGTTTTTCGATTTAAAGTGTTAATACTTGCATATGCTGTGTGCAG CTTGCCTGGATTGAGACGTGGTTCCTGGATTTCAAAGTGTTACCTCAAGAAGCAGAAGAAGAAAAA GTCAGTTTTATTCCCCTCCTGAATCCGAAGCAGGATCTGAAGAAGCTGAAGAAAAACAGGACAGT GAGAAACCACTTTTAGAACTATGAGTACTACTTTTGTTAAATGTGAAAAACCCTCACAGAAAGTC ATCGAGGCAAAAAGAGGCAGGCAGTGGAGTCTCCCTGTCGACAGTAAAGTTGAAATGGTGACGTC CATATCCATGCACATTTAGTTGCCTGCCTGTGGCTGGTAAGGTAATGTCATGATTCATCCTCTCT TCAGTGAGACTGAGCCTGATGTGTTAACAAATAGGTGAAGAAAGTCTTGTGCTGTATTCCTAATC AAAAGACTTAATATTGAAGTAACACTTTTTTAGTAAGCAAGATACCTTTTTATTTCAATTCAC AGAATGGAATTTTTTTTTTCATGTCTCAGATTTATTTTGTATTTCTTTTTTAACACTCTACATT TCCCTTGTTTTTTAACTCATGCACATGTGCTCTTTGTACAGTTTTAAAAAGTGTAATAAAATCTG ACATGTCAATGTGGCTAGTTTTATTTTTTTTTTTTGTTTTTGCATTATGTGTATGGCCTGAAGTGTTGGA CTTGCAAAAGGGGAAGAAAGGAATTGCGAATACATGTAAAATGTCACCAGACATTTGTATTATTT TTATCATGAAATCATGTTTTTCTCTGATTGTTCTGAAATGTTCTAAATACTCTTATTTTGAATGC ACAAAATGACTTAAACCATTCATATCATGTTTCCTTTGCGTTCAGCCAATTTCAATTAAAATGAA CTAAATTAAAAA

MNHLPEDMENALTGSQSSHASLRNIHSINPTQLMARIESYEGREKKGISDVRRTFCLFVTFDLLF VTLLWIIELNVNGGIENTLEKEVMQYDYYSSYFDIFLLAVFRFKVLILAYAVCRLRHWWAIALTT AVTSAFLLAKVILSKLFSQGAFGYVLPIISFILAWIETWFLDFKVLPQEAEEENRLLIVQDASER AALIPGGLSDGQFYSPPESEAGSEEAEEKQDSEKPLLEL

Important features of the protein:

Signal peptide:

amino acids 1-20

Transmembrane domains:

amino acids 54-72, 100-118, 130-144, 146-166

N-myristoylation sites.

amino acids 14-20, 78-84, 79-85, 202-208, 217-223

ACTCGAACGCAGTTGCTTCGGGACCCAGGACCCCTCGGGCCCGACCCGCCAGGAAAGACTGAGG CCGCGGCCTGCCCGGCCCGGCTCCCTGCGCCGCCGCCTCCCGGGACAGAAGATGTGCTCCAG GGTCCCTCTGCTGCCGCTGCTCCTGCTACTGGCCCTGGGGCCTGGGGTGCAGGGCTGCCCAT CGAGACGTGCCACCCGACACGGTGGGGCTGTACGTCTTTGAGAACGGCATCACCATGCTCGACGC AGGCAGCTTTGCCGGCCTGCCGGGCCTGCAGCTCCTGGACCTGTCACAGAACCAGATCGCCAGCC TGCCCAGCGGGTCTTCCAGCCACTCGCCAACCTCAGCAACCTGGACCTGACGGCCAACAGGCTG CATGAAATCACCAATGAGACCTTCCGTGGCCTGCGGCGCCTCGAGCGCCTCTACCTGGGCAAGAA CCGCATCCGCCACATCCAGCCTGGTGCCTTCGACACGCTCGACCGCCTCCTGGAGCTCAAGCTGC AGGACAACGAGCTGCGGGCACTGCCCCGCTGCGCCCCGCCTGCTGCTGCTGCTGGACCTCAGC CACAACAGCCTCCTGGCCCTGGAGCCCGGCATCCTGGACACTGCCAACGTGGAGGCGCTGCGGCT GGCTGGTCTGGGGCTGCAGCAGCTGGACGAGGGGCTCTTCAGCCGCTTGCGCAACCTCCACGACC TGGATGTGTCCGACAACCAGCTGGAGCGAGTGCCACCTGTGATCCGAGGCCTCCGGGGCCTGACG TCTTCCCCCGCCTGCGGCTGCTGGCAGCTGCCCGCAACCCCTTCAACTGCGTGTGCCCCCTGAGC TGGTTTGGCCCTGGGTGCGCGAGAGCCACGTCACACTGGCCAGCCCTGAGGAGACGCGCTGCCA CTTCCCGCCCAAGAACGCTGGCCGGCTGCTCCTGGAGCTTGACTACGCCGACTTTGGCTGCCCAG CCACCACCACAGCCACAGTGCCCACCACGAGGCCCGTGGTGCGGGAGCCCACAGCCTTGTCT CACTGCCCCACCGACTGTAGGGCCTGTCCCCCAGCCCCAGGACTGCCCACCGTCCACCTGCCTCA ATGGGGGCACATGCCACCTGGGGACACGGCACCACCTGGCGTGCTTGTGCCCCGAAGGCTTCACG GGCCTGTACTGTGAGAGCCAGATGGGGCAGGGGACACGGCCCAGCCCTACACCAGTCACGCCGAG GCCACCACGGTCCCTGACCCTGGGCATCGAGCCGGTGAGCCCCACCTCCCTGCGCGTGGGGCTGC AGCGCTACCTCCAGGGGAGCTCCGTGCAGCTCAGGAGCCTCCGTCTCACCTATCGCAACCTATCG GCGAGGAGGCCTGCGGGGAGGCCCATACACCCCCAGCCGTCCACTCCAACCACGCCCCAGTCACC CCAGGCCGAAGGCAACAGAGGGCGGTGGAGAGGCCCTGCCCAGCGGGTCTGAGTGTGAGGTGCC ACTCATGGGCTTCCCAGGGCCTGGCCTCCAGTCACCCCTCCACGCAAAGCCCTACATC<u>TAA</u>GCCA GAGAGAGACAGGCCAGCCGGGCCTCTCAGCCAGTGAGATGGCCAGCCCCCTCCTGCTGCC ACACCACGTAAGTTCTCAGTCCCAACCTCGGGGATGTGTGCAGACAGGGCTGTGTGACCACAGCT GGGCCCTGTTCCCTCTGGACCTCGGTCTCCTCATCTGTGAGATGCTGTGGCCCAGCTGACGAGCC CTAACGTCCCCAGAACCGAGTGCCTATGAGGACAGTGTCCGCCCTGCCCTCCGCAACGTGCAGTC CCTGGGCACGGCGGCCCTGCCATGTGCTGGTAACGCATGCCTGGGTCCTGCTGGGCTCTCCCAC TCCAGGCGGACCCTGGGGGCCAGTGAAGGAAGCTCCCGGAAAGAGCAGAGGGAGAGCGGGTAGGC GGCTGTGTGACTCTAGTCTTGGCCCCAGGAAGCGAAGGAACAAAAGAAACTGGAAAGGAAGATGC GGGAAGATGTTTTCAAACTCAGAGACAAGGACTTTGGTTTTTGTAAGACAAACGATGATATGAA GGCCTTTTGTAAGAAAAAATAAAAGATGAAGTGTGAAA

APP ID=10063730

MCSRVPLLLPLLLLALGPGVQGCPSGCQCSQPQTVFCTARQGTTVPRDVPPDTVGLYVFENGIT
MLDAGSFAGLPGLQLLDLSQNQIASLPSGVFQPLANLSNLDLTANRLHEITNETFRGLRRLERLY
LGKNRIRHIQPGAFDTLDRLLELKLQDNELRALPPLRLPRLLLLDLSHNSLLALEPGILDTANVE
ALRLAGLGLQQLDEGLFSRLRNLHDLDVSDNQLERVPPVIRGLRGLTRLRLAGNTRIAQLRPEDL
AGLAALQELDVSNLSLQALPGDLSGLFPRLRLLAAARNPFNCVCPLSWFGPWVRESHVTLASPEE
TRCHFPPKNAGRLLLELDYADFGCPATTTTATVPTTRPVVREPTALSSSLAPTWLSPTAPATEAP
SPPSTAPPTVGPVPQPQDCPPSTCLNGGTCHLGTRHHLACLCPEGFTGLYCESQMGQGTRPSPTP
VTPRPPRSLTLGIEPVSPTSLRVGLQRYLQGSSVQLRSLRLTYRNLSGPDKRLVTLRLPASLAEY
TVTQLRPNATYSVCVMPLGPGRVPEGEEACGEAHTPPAVHSNHAPVTQAREGNLPLLIAPALAAV
LLAALAAVGAAYCVRRGRAMAAAAQDKGQVGPGAGPLELEGVKVPLEPGPKATEGGGEALPSGSE
CEVPLMGFPGPGLQSPLHAKPYI

Important features:

Signal peptide:

amino acids 1-23

Transmembrane domain:

amino acids 579-599

EGF-like domain cysteine pattern signature.

amino acids 430-442

Leucine zipper pattern.

amino acids 197-219, 269-291

N-glycosylation sites.

amino acids 101-105, 117-121, 273-277, 500-504, 528-532

Tyrosine kinase phosphorylation sites.

amino acids 124-131, 337-345

N-myristoylation sites.

amino acids 23-29, 27-33, 70-76, 142-148, 187-193, 348-354, 594-600, 640-646

APP ID=10063730 Page 170 of 322

 $\tt GCAGCGGCGAGGCGGTGGTGGCTGAGTCCGTGGTGGCAGAGGCGAAGGCGACAGCTC{\color{red} ATC} CGTGGTGGCAGAGGCGAAGGCGACAGCTC{\color{red} ATC} CGTGGTGGCAGAGGCGAAGGCGAAGGCGACAGCTC{\color{red} ATC} CGTGGTGGCAGAGGCGAAGGCGACAGCTC{\color{red} ATC} CGTGGTGGCAGAGGCGAAGGCAAGGCGAAGGCGAAGGCGAAGGCGAAGGCGAAGGCGAAGGCGAAGGCGAAGGCGAAGGCAAGGCAAGGCAAGGCGAAGGCGAAGGCGAAGGCAAGGCGAAGGCAAGGCAAGGCAAGGCAAGGCAAGGCAAGGCAAGGCAAGGCAAGGCAAGGCAAGGCAAGGCAAGGCAAGGCAAGGCAAGGCAAGGCAAGGAAGGCAAGGAAGGCAAGGCAAGGAAGGCAAGGCAAGGCAAGGCAAGGCAAGGCAAGGA$ GGTCCGGATAGGGCTGACGCTGCTGTGTGCGGTGCTGCTGAGCTTGGCCTCGGCGTCCTCGG ATGAAGAAGCCAGCCAGGATGAATCCTTAGATTCCAAGACTACTTTGACATCAGATGAGTCAGTA AAGGACCATACTGCAGGCAGAGTAGTTGCTGGTCAAATATTTCTTGATTCAGAAGAATCTGA ATTAGAATCCTCTATTCAAGAAGAGGAAGACAGCCTCAAGAGCCAAGAGGGGGAAAGTGTCACAG CGGAAACCAGCTTTGACCGCCATTGAAGGCACAGCACATGGGGAGCCCTGCCACTTCCCTTTTCT CTACAACCTATGACTACAAAGCAGATGAAAAGTGGGGCTTTTGTGAAACTGAAGAAGAGGCTGCT AAGAGACGCAGATGCAGGAAGCAGAAATGATGTATCAAACTGGAATGAAAATCCTTAATGGAAG GCAGCGAGAGATGTTTGAGAAGCTGACTGAGGAAGGCTCTCCCAAGGGACAGACTGCTCTTGG CTTTCTGTATGCCTCTGGACTTGGTGTTAATTCAAGTCAGGCAAAGGCTCTTGTATATTATACAT $\tt TTGGAGCTCTTGGGGGCAATCTAATAGCCCACATGGTTTTGGTAAGTAGACTT{\color{red}{TAG}}TGGAAGGCT{\color{red}{T$ AATAATATTAACATCAGAAGAATTTGTGGTTTATAGCGGCCACAACTTTTTCAGCTTTCATGATC AACACATGGAATCTACATGTAAATGAAAGTTGGTGGAGTCCACAATTTTTCTTTAAAATGATTAG TTTGGCTGATTGCCCCTAAAAAGGAGATCTGATAAATGGCTCTTTTTAAATTTTCTCTGAGTTG GAATTGTCAGAATCATTTTTTACATTAGATTATCATAATTTTAAAAATTTTTCTTTAGTTTTTCA AAATTTTGTAAATGGTGGCTATAGAAAAACAACATGAAATATTATACAATATTTTGCAACAATGC CCTAAGAATTGTTAAAATTCATGGAGTTATTTGTGCAGAATGACTCCAGAGAGCTCTACTTTCTG TTTTTTACTTTTCATGATTGGCTGTCTTCCCATTTATTCTGGTCATTTATTGCTAGTGACACTGT GCCTGCTTCCAGTAGTCTCATTTTCCCTATTTTGCTAATTTGTTACTTTTCTTTGCTAATTTGG

MRVRIGLTLLLCAVLLSLASASSDEEGSQDESLDSKTTLTSDESVKDHTTAGRVVAGQIFLDSEESEL ESSIQEEEDSLKSQEGESVTEDISFLESPNPENKDYEEPKKVRKPALTAIEGTAHGEPCHFPFLFLDK EYDECTSDGREDGRLWCATTYDYKADEKWGFCETEEEAAKRROMQEAEMMYOTGMKILNGSNKKSQKR EAYRYLQKAASMNHTKALERVSYALLFGDYLPQNIQAAREMFEKLTEEGSPKGQTALGFLYASGLGVN SSQAKALVYYTFGALGGNLIAHMVLVSRL

Important features:

Signal peptide:

amino acids 1-21

N-glycosylation sites.

amino acids 195-199, 217-221, 272-276

Tyrosine kinase phosphorylation site.

amino acids 220-228

N-myristoylation sites.

amino acids 120-126, 253-259, 268-274, 270-274, 285-291, 289-295

Glycosaminoglycan attachment site.

amino acids 267-271

Microbodies C-terminal targeting signal.

amino acids 299-303

Type II fibronectin collagen-binding domain protein.

amino acids 127-169

Fructose-bisphosphate aldolase class-II protein.

amino acids 101-119

AATTCAGATTTTAAGCCCATTCTGCAGTGGAATTTCATGAACTAGCAAGAGGACACCATCTTCTT GTATTATACAAGAAAGGAGTGTACCTATCACACACAGGGGGAAAAATGCTCTTTTGGGTGCTAGG CCTCCTAATCCTCTGTGGTTTTCTGTGGACTCGTAAAGGAAAACTAAAGATTGAAGACATCACTG ATAAGTACATTTTTATCACTGGATGTGACTCGGGCTTTGGAAACTTGGCAGCCAGAACTTTTGAT AAAAAGGGATTTCATGTAATCGCTGCCTGTCTGACTGAATCAGGATCAACAGCTTTAAAGGCAGA CCCAGTGGGTGAAGAACCAAGTTGGGGAGAAAGGTCTCTGGGGTCTGATCAATAATGCTGGTGTT CCCGGCGTGCTGGCTCCCACTGACTGGCTGACACTAGAGGACTACAGAGAACCTATTGAAGTGAA CCTGTTTGGACTCATCAGTGTGACACTAAATATGCTTCCTTTGGTCAAGAAAGCTCAAGGGAGAG ${\tt TATGCAGTGGAAGGTTTCAATGACAGCTTAAGACGGGACATGAAAGCTTTTGGTGTGCACGTCTC}$ TCGCCATTTGGGAGCAGCTGTCTCCAGACATCAAACAACAATATGGAGAAGGTTACATTGAAAAA AGTCTAGACAAACTGAAAGGCAATAAATCCTATGTGAACATGGACCTCTCTCCGGTGGTAGAGTG CATGGACCACGCTCTAACAAGTCTCTTCCCTAAGACTCATTATGCCGCTGGAAAAGATGCCAAAA TTTTCTGGATACCTCTGTCTCACATGCCAGCAGCTTTGCAAGACTTTTTATTGTTGAAACAGAAA GCAGAGCTGGCTAATCCCAAGGCAGTG**TGA**CTCAGCTAACCACAAATGTCTCCTCCAGGCTATGA AATTGGCCGATTCAAGAACACATCTCCTTTTCAACCCCATTCCTTATCTGCTCCAACCTGGACT CATTTAGATCGTGCTTATTTGGATTGCAAAAGGGAGTCCCACCATCGCTGGTGGTATCCCAGGGT CCCTGCTCAAGTTTTCTTTGAAAAGGAGGGCTGGAATGGTACATCACATAGGCAAGTCCTGCCCT GTATTTAGGCTTTGCCTGCTTGGTGTGATGTAAGGGAAATTGAAAGACTTGCCCATTCAAAATGA TCTTTACCGTGGCCTGCCCCATGCTTATGGTCCCCAGCATTTACAGTAACTTGTGAATGTTAAGT AAAAAAAAAAA

MLFWVLGLLILCGFLWTRKGKLKIEDITDKYIFITGCDSGFGNLAARTFDKKGFHVIAACLTESG STALKAETSERLRTVLLDVTDPENVKRTAQWVKNQVGEKGLWGLINNAGVPGVLAPTDWLTLEDY REPIEVNLFGLISVTLNMLPLVKKAQGRVINVSSVGGRLAIVGGGYTPSKYAVEGFNDSLRRDMK AFGVHVSCIEPGLFKTNLADPVKVIEKKLAIWEQLSPDIKQQYGEGYIEKSLDKLKGNKSYVNMD LSPVVECMDHALTSLFPKTHYAAGKDAKIFWIPLSHMPAALQDFLLLKQKAELANPKAV

Important features of the protein:

Signal peptide:

amino acids 1-17

Transmembrane domain:

amino acids 136-152

N-glycosylation sites.

amino acids 161-163, 187-190 and 253-256

Glycosaminoglycan attachment site.

amino acids 39-42

N-myristoylation sites.

amino acids 36-41, 42-47, 108-113, 166-171, 198-203 and 207-212

CACTCGCTTTCCAGCACCTCAACACGGACTCGGACACGGAAGGTTTTCTTCTTGGGGAAGTAAAA GGTGAAGCCAAGAACAGCATTACTGATTCCCAAATGGATGTTGAAGTTGTTTATACAATTGA CATTCAGAAATATATTCCATGCTATCAGCTTTTTAGCTTTTATAATTCTTCAGGCGAAGTAAATG AGCAAGCACTGAAGAAAATATTATCAAATGTCAAAAAGAATGTGGTAGGTTGGTACAAATTCCGT CGTCATTCAGATCAGATCATGACGTTTAGAGAGAGGCTGCTTCACAAAAACTTGCAGGAGCATTT TTCAAACCAAGACCTTGTTTTTCTGCTATTAACACCAAGTATAATAACAGAAAGCTGCTCTACTC ATCGACTGGAACATTCCTTATATAAACCTCAAAAAGGACTTTTTCACAGGGTACCTTTAGTGGTT GCCAATCTGGGCATGTCTGAACACTGGGTTATAAAACTGTATCAGGTTCCTGTATGTCCACTGG TTTTAGCCGAGCAGTACAAACACACCTCTAAATTTTTTGAAGAAGATGGATCCTTAAAGGAGG TACATAAGATAAATGAAATGTATGCTTCATTACAAGAGGAATTAAAGAGTATATGCAAAAAAGTG GAAGACAGTGAACAAGCAGTAGATAAACTAGTAAAGGATGTAAACAGATTAAAACGAGAAATTGA GAAAAGGAGAGCACAGATTCAGGCAGCAAGAGAGAACATCCAAAAAGACCCTCAGGAGA ATGTCTTTAAAAAATAGACATGTTTCTAAAAGTAGCTGTAACTACAACCACCATCTCGATGTAGT AGACAATCTGACCTTAATGGTAGAACACACTGACATTCCTGAAGCTAGTCCAGCTAGTACACCAC AAATCATTAAGCATAAAGCCTTAGACTTAGATGACAGATGGCAATTCAAGAGATCTCGGTTGTTA GATACAAGACAACGATCTAAAGCAAATACTGGTAGTAGTAACCAAGATAAAGCATCCAAAAT GAGCAGCCCAGAAACAGATGAAGAAATTGAAAAGATGAAGGGTTTTGGTGAATATTCACGGTCTC ATTTCTATTGTTTTTACTATGTTGAGCTACTTGCAGTAAGTTCATTTGTTTTTACTATGTTCACC TGTTTGCAGTAATACACAGATAACTCTTAGTGCATTTACTTCACAAAGTACTTTTTCAAACATCA GATGCTTTTATTTCCAAACCTTTTTTTCACCTTTCACTAAGTTGTTGAGGGGAAGGCTTACACAG ACACATTCTTTAGAATTGGAAAAGTGAGACCAGGCACAGTGGCTCACACCTGTAATCCCAGCACT TAGGGAAGACAAGTCAGGAGGATTGATTGAAGCTAGGAGTTAGAGACCAGCCTGGGCAACGTATT GAGACCATGTCTATTAAAAAATAAAATGGAAAAGCAAGAATAGCCTTATTTTCAAAATATGGAAA GAAATTTATATGAAAATTTATCTGAGTCATTAAAATTCTCCTTAAGTGATACTTTTTTAGAAGTA CATTATGGCTAGAGTTGCCAGATAAATGCTGGATATCATGCAATAAATTTGCAAAACATCATCT AAAAATTTAAAAAAAAAAAAAAAAAAAAAA

MEGESTSAVLSGFVLGALAFQHLNTDSDTEGFLLGEVKGEAKNSITDSQMDDVEVVYTIDIQKYI
PCYQLFSFYNSSGEVNEQALKKILSNVKKNVVGWYKFRRHSDQIMTFRERLLHKNLQEHFSNQDL
VFLLLTPSIITESCSTHRLEHSLYKPQKGLFHRVPLVVANLGMSEQLGYKTVSGSCMSTGFSRAV
QTHSSKFFEEDGSLKEVHKINEMYASLQEELKSICKKVEDSEQAVDKLVKDVNRLKREIEKRRGA
QIQAAREKNIQKDPQENIFLCQALRTFFPNSEFLHSCVMSLKNRHVSKSSCNYNHHLDVVDNLTL
MVEHTDIPEASPASTPQIIKHKALDLDDRWQFKRSRLLDTQDKRSKANTGSSNQDKASKMSSPET
DEEIEKMKGFGEYSRSPTF

Important features:
Signal peptide:
amino acids 1-19

N-glycosylation sites. amino acids 75-79, 322-326

N-myristoylation site. amino acids 184-154

Growth factor and cytokines receptors family. amino acids 134-150

GCGTCCCCGCCTCGCCGGCCAGTCAGCTTGCCGGGTTCGCTGCCCCGCGAAACCCCGAGGTCACCAGCCCGCGCCTCT GCTTCCCTGGGCCGCCGCCGCCTCCACGCCCTCCTTCTCCCCTGGCCCGGCGCCCTGGCACCGGGGACCGTTGCCTGA CGCGAGGCCCAGCTCTACTTTCGCCCGGGTCTCCTCCGCCTGCTCGCCTCTTCCACCAACTCCAACTCCTTCTCCC ${\tt TCCAGCTCGCTAGTCCCCGACTCCGCCAGCCCTCGGCCGGTAGCGCCGCTTCCCGTCCGGTCCCAAA}$ AGCGCCGCGCTGCTGGCTGCCGAGCTCAAGTCGAAAAGTTGCTCGGAAGTGCGACGTCTTTACGTGTCCAAAGGCTTC AACAAGAACGATGCCCCCCTCCACGAGATCAACGGTGATCATTTGAAGATCTGTCCCCAGGGTTCTACCTGCTCTCT CAAGAGATGGAGGAGAAGTACAGCCTGCAAAGTAAAGATGATTTCAAAAGTGTGGTCAGCGAACAGTGCAATCATTTG CAAGCTGTCTTTGCTTCACGTTACAAGAAGTTTGATGAATTCTTCAAAGAACTACTTGAAAAATGCAGAGAAATCCCTG AATGATATGTTTGTGAAGACATATGGCCATTTATACATGCAAAATTCTGAGCTATTTAAAGATCTCTTCGTAGAGTTG AAACGTTACTACGTGGTGGGAAATGTGAACCTGGAAGAAATGCTAAATGACTTCTGGGCTCGCCTCCTGGAGCGGATG TTCCGCCTGGTGAACTCCCAGTACCACTTTACAGATGAGTATCTGGAATGTGTGAGCAAGTATACGGAGCAGCTGAAG CCCTTCGGAGATGTCCCTCGCAAATTGAAGCTCCAGGTTACTCGTGCTTTTGTAGCAGCCCGTACTTTCGCTCAAGGC TTAGCGGTTGCGGGAGATGTCGTGAGCAAGGTCTCCGTGGTAAACCCCACAGCCCAGTGTACCCATGCCCTGTTGAAG ATGATCTACTGCTCCCACTGCCGGGGTCTCGTGACTGTGAAGCCATGTTACAACTACTGCTCAAACATCATGAGAGGC TGTTTGGCCAACCAAGGGGATCTCGATTTTGAATGGAACAATTTCATAGATGCTATGCTGATGGTGGCAGAGAGGCTA GAGGGTCCTTTCAACATTGAATCGGTCATGGATCCCATCGATGTGAAGATTTCTGATGCTATTATGAACATGCAGGAT AATAGTGTTCAAGTGTCTCAGAAGGTTTTCCAGGGATGTGGACCCCCCAAGCCCCTCCCAGCTGGACGAATTTCTCGT TCCATCTCTGAAAGTGCCTTCAGTGCTCGCTTCAGACCACATCACCCCGAGGAACGCCCAACCACAGCAGCTGGCACT AGTTTGGACCGACTGGTTACTGATGTCAAGGAGAAACTGAAACAGGCCAAGAAATTCTGGTCCTCCCTTCCGAGCAAC GTTTGCAACGATGAGGAGGATGGCTGCAGGAAACGGCAATGAGGATGACTGTTGGAAATGGGAAAGGCAAAAGCAGGTAC CTGTTTGCAGTGACAGGAAATGGATTAGCCAACCAGGGCAACAACCCAGAGGTCCAGGTTGACACCAGCAAACCAGAC ATACTGATCCTTCGTCAAATCATGGCTCTTCGAGTGATGACCAGCAAGATGAAGAATGCATACAATGGGAACGACGTG CAGGCCTACCTCCTCACTGTCTTCTGCATCTTGTTCCTGGTTATGCAGAGAGTGGAGATAATTCTCAAACTCTGAG AAAAAGTGTTCATCAAAAAGGTTAAAAGGCACCAGTTATCACTTTTCTACCATCCTAGTGACTTTTGCTTTTTAAATGAA ${\tt TGGACAACAATGTACAGTTTTACTATGTGGCCACTGGTTTAAGAAGTGCTGACTTTGTTTTCTCATTCAGTTTTGGG}$ AGGAAAAGGGACTGTGCATTGAGTTGGTTCCTGCTCCCCAAACCATGTTAAACGTGGCTAACAGTGTAGGTACAGAA

APP_ID=10063730 Page 177 of 322

MARFGLPALLCTLAVLSAALLAAELKSKSCSEVRRLYVSKGFNKNDAPLHEINGDHLKICPQGST
CCSQEMEEKYSLQSKDDFKSVVSEQCNHLQAVFASRYKKFDEFFKELLENAEKSLNDMFVKTYGH
LYMQNSELFKDLFVELKRYYVVGNVNLEEMLNDFWARLLERMFRLVNSQYHFTDEYLECVSKYTE
QLKPFGDVPRKLKLQVTRAFVAARTFAQGLAVAGDVVSKVSVVNPTAQCTHALLKMIYCSHCRGL
VTVKPCYNYCSNIMRGCLANQGDLDFEWNNFIDAMLMVAERLEGPFNIESVMDPIDVKISDAIMN
MQDNSVQVSQKVFQGCGPPKPLPAGRISRSISESAFSARFRPHHPEERPTTAAGTSLDRLVTDVK
EKLKQAKKFWSSLPSNVCNDERMAAGNGNEDDCWNGKGKSRYLFAVTGNGLANQGNNPEVQVDTS
KPDILILRQIMALRVMTSKMKNAYNGNDVDFFDISDESSGEGSGSGCEYQQCPSEFDYNATDHAG
KSANEKADSAGVRPGAQAYLLTVFCILFLVMQREWR

Important features:

Signal peptide:

amino acids 1-22

ATP/GTP-binding site motif A (P-loop).

amino acids 515-524

N-glycosylation site.

amino acids 514-518

Glycosaminoglycan attachment sites.

amino acids 494-498, 498-502

N-myristoylation sites.

amino acids 63-69, 224-230, 276-282, 438-444, 497-503, 531-537

Glypicans proteins.

amino acids 54-75, 105-157, 238-280, 309-346, 423-460, 468-506

 ${\tt MKVLISSLLLLPLMLMSMVSSSLNPGVARGHRDRGQASRRWLQEGGQECECKDWFLRAPRRKFM} \\ {\tt TVSGLPKKQCPCDHFKGNVKKTRHQRHHRKPNKHSRACQQFLKQCQLRSFALPL} \\$

Important features:
Signal peptide:
amino acids 1-22

N-myristoylation sites. amino acids 27-33, 46-52

GGACGCCAGCGCCTGCAGAGGCTGAGCAGGGAAAAAGCCAGTGCCCCAGCGGAAGCACAGCTCAG CCTGCACCTCATGGCTCTGCTGGGCTGCTGCAGCCCCTGTGCAAAAGCTACTTCCCCTACCTGA TGGCCGTGCTGACTCCCAAGAGCAACCGCAAGATGGAGAGCAAGAAACGGGAGCTCTTCAGCCAG ATAAAGGGGCTTACAGGAGCCTCCGGGAAAGTGGCCCTACTGGAGCTGGGCTGCGGAACCGGAGC CAACTTTCAGTTCTACCCACCGGGCTGCAGGGTCACCTGCCTAGACCCAAATCCCCACTTTGAGA AGTTCCTGACAAAGAGCATGGCTGAGAACAGGCACCTCCAATATGAGCGGTTTGTGGTGGCTCCT GGAGAGGACATGAGACAGCTGGCTGATGGCTCCATGGATGTGGTGGTCTGCACTCTGGTGCTGTG CTCTGTGCAGAGCCCAAGGAAGGTCCTGCAGGAGGTCCGGAGAGTACTGAGACCGGGAGGTGTGC TCTTTTCTGGGAGCATGTGGCAGAACCATATGGAAGCTGGGCCTTCATGTGGCAGCAAGTTTTC GAGCCCACCTGGAAACACATTGGGGATGGCTGCTGCCTCACCAGAGAGACCTGGAAGGATCTTGA GGCCCCACATCATGGGAAAGGCTGTCAAACAATCTTTCCCAAGCTCCAAGGCACTCATTTGCTCC CCAGAATGAGAGAAGACATTCATGTACCACCTACTAGTCCCTCTCTCCCCAACCTCTGCCAGGGC AATCTCTAACTTCAATCCCGCCTTCGACAGTGAAAAAGCTCTACTTCTACGCTGACCCAGGGAGG AAACACTAGGACCCTGTTGTATCCTCAACTGCAAGTTTCTGGACTAGTCTCCCAACGTTTGCCTC CCAATGTTGTCCCTTCGTTCCCATGGTAAAGCTCCTCTCGCTTTCCTCCTGAGGCTACAC CCATGCGTCTCTAGGAACTGGTCACAAAAGTCATGGTGCCTGCATCCCTGCCAAGCCCCCCTGAC CCTCTCTCCCCACTACCACCTTCTTCCTGAGCTGGGGGCACCAGGGAGAATCAGAGATGCTGGGG ACCACG

MDILVPLLQLLVLLITLPLHLMALLGCWQPLCKSYFPYLMAVLTPKSNRKMESKKRELFSQIKGL TGASGKVALLELGCGTGANFQFYPPGCRVTCLDPNPHFEKFLTKSMAENRHLQYERFVVAPGEDM RQLADGSMDVVVCTLVLCSVQSPRKVLQEVRRVLRPGGVLFFWEHVAEPYGSWAFMWQQVFEPTW KHIGDGCCLTRETWKDLENAQFSEIQMERQPPPLKWLPVGPHIMGKAVKQSFPSSKALICSFPSL QLEQATHQPIYLPLRGT

Important features:

Signal peptide:

amino acids 1-23

Leucine zipper pattern.

amino acids 10-32

N-myristoylation sites.

amino acids 64-70, 78-84, 80-86, 91-97, 201-207

 $\verb|MLLLTLLLLLLKGSCLEWGLVGAQKVSSATDAPIRDWAFFPPSFLCLLPHRPAMTCSQAQPRG|\\$ $\verb|EGEKVGDG|$

Important features:

Signal peptide:

amino acids 1-15

Growth factor and cytokines receptors family:

amino acids 3-18

GTTTGAATTCCTTCAACTATACCCACAGTCCAAAAGCAGACTCACTGTGTCCCAGGCTACCAGTT CCTCCAAGCAAGTCATTTCCCTTATTTAACCGATGTGTCCCTCAAACACCTGAGTGCTACTCCCT ATTTGCATCTGTTTTGATAAATGATGTTGACACCCTCCACCGAATTCTAAGTGGAATCATGTCGG GAAGAGATACAATCCTTGGCCTGTGTATCCTCGCATTAGCCTTGTCTTTGGCCATGATGTTTACC TTCAGATTCATCACCACCCTTCTGGTTCACATTTTCATTTCATTTGGTTATTTTGGGATTGTTGTT TGTCTGCGGTGTTTTATGGTGGCTGTATTATGACTATACCAACGACCTCAGCATAGAATTGGACA CAGAAAGGGAAAATATGAAGTGCGTGCTGGGGTTTGCTATCGTATCCACAGGCATCACGGCAGTG CTGCTCGTCTTGATTTTTGTTCTCAGAAAGAGAATAAAATTGACAGTTGAGCTTTTCCAAATCAC AAATAAAGCCATCAGCAGTGCTCCCTTCCTGCTGTTCCAGCCACTGTGGACATTTGCCATCCTCA TTTTCTTCTGGGTCCTCTGGGTGGCTGTGCTGCTGAGCCTGGGAACTGCAGGAGCTGCCCAGGTT ATGGAAGGCGGCCAAGTGGAATATAAGCCCCTTTCGGGCATTCGGTACATGTGGTCGTACCATTT AATTGGCCTCATCTGGACTAGTGAATTCATCCTTGCGTGCCAGCAAATGACTATAGCTGGGGCAG TGGTTACTTGTTATTTCAACAGAAGTAAAAATGATCCTCCTGATCATCCCATCCTTTCGTCTCTC TCCATTCTCTTCTTCTACCATCAAGGAACCGTTGTGAAAGGGTCATTTTTAATCTCTGTGGTGAG GATTCCGAGAATCATTGTCATGTACATGCAAAACGCACTGAAAGAACAGCAGCATGGTGCATTGT CCAGGTACCTGTTCCGATGCTGCTACTGCTGTTTCTGGTGTCTTGACAAATACCTGCTCCATCTC AACCAGAATGCATATACTACAACTGCTATTAATGGGACAGATTTCTGTACATCAGCAAAAGATGC ATTCAAAATCTTGTCCAAGAACTCAAGTCACTTTACATCTATTAACTGCTTTGGAGACTTCATAA TTTTTCTAGGAAAGGTGTTAGTGGTGTTTTCACTGTTTTTTGGAGGACTCATGGCTTTTAACTAC CCATAGTTTTTATCTGTGTTTGAAACTGTGCTGGATGCACTTTTCCTGTGTTTTGCTGTTGATC TGGAAACAAATGATGGATCGTCAGAAAAGCCCTACTTTATGGATCAAGAATTTCTGAGTTTCGTA AAAAGGAGCAACAAATTAAACAATGCAAGGGCACAGCAGGACAAGCACTCATTAAGGAATGAGGA GGGAACAGAACTCCAGGCCATTGTGAGA**TAG**ATACCCATTTAGGTATCTGTACCTGGAAAACATT TCCTTCTAAGAGCCATTTACAGAATAGAAGATGAGACCACTAGAGAAAAGTTAGTGAATTTTTTT TTAAAAGACCTAATAAACCCTATTCTTCCTCAAAA

MSGRDTILGLCILALASLAMMFTFRFITTLLVHIFISLVILGLLFVCGVLWWLYYDYTNDLSIE
LDTERENMKCVLGFAIVSTGITAVLLVLIFVLRKRIKLTVELFQITNKAISSAPFLLFQPLWTFA
ILIFFWVLWVAVLLSLGTAGAAQVMEGGQVEYKPLSGIRYMWSYHLIGLIWTSEFILACQOMTIA
GAVVTCYFNRSKNDPPDHPILSSLSILFFYHQGTVVKGSFLISVVRIPRIIVMYMQNALKEQQHG
ALSRYLFRCCYCCFWCLDKYLLHLNQNAYTTTAINGTDFCTSAKDAFKILSKNSSHFTSINCFGD
FIIFLGKVLVVCFTVFGGLMAFNYNRAFQVWAVPLLLVAFFAYLVAHSFLSVFETVLDALFLCFA
VDLETNDGSSEKPYFMDQEFLSFVKRSNKLNNARAQQDKHSLRNEEGTELQAIVR

Important features:

Signal peptide:

amino acids 1-20

Putative transmembrane domains:

amino acids 35-54, 75-97, 126-146, 185-204, 333-350, 352-371

N-glycosylation sites.

amino acids 204-208, 295-299, 313-317

N-myristoylation sites.

amino acids 147-153, 178-184, 196-202, 296-275, 342-348

GTTCGATTAGCTCCTCTGAGAAGAAGAGAAAAGGTTCTTGGACCTCTCCCTGTTTCTTCCTTAGA GAAAATTTTTTGAAAAAAAATTGCCTTCTTCAAACAAGGGTGTCATTCTGATATTTATGAGGAC TGTTGTTCTCACTATGAAGGCATCTGTTATTGAAATGTTCCTTGTTTTTGCTGGTGACTGGAGTAC ATTCAAACAAGAAACGGCAAAGAAGATTAAAAGGCCCAAGTTCACTGTGCCTCAGATCAACTGC GATGTCAAAGCCGGAAAGATCATCGATCCTGAGTTCATTGTGAAATGTCCAGCAGGATGCCAAGA TACACAGTGGTGTGCTTGATAATTCAGGAGGGAAAATACTTGTTCGGAAGGTTGCTGGACAGTCT GGTTACAAAGGGAGTTATTCCAACGGTGTCCAATCGTTATCCCTACCACGATGGAGAGAATCCTT TATCGTCTTAGAAAGTAAACCCAAAAAGGGTGTAACCTACCCATCAGCTCTTACATACTCATCAT CGAAAAGTCCAGCTGCCCAAGCAGGTGAGACCACAAAAGCCTATCAGAGGCCACCTATTCCAGGG ACAACTGCACAGCCGGTCACTCTGATGCAGCTTCTGGCTGTCACTGTAGCTGTGGCCACCCCCAC CACCTTGCCAAGGCCATCCCCTTCTGCTGCTTCTACCACCAGCATCCCCAGACCACAATCAGTGG GCCACAGGAGCCAGGAGATGGATCTCTGGTCCACTGCCACCTACACAAGCAGCCAAAACAGGCCC AGAGCTGATCCAGGTATCCAAAGGCAAGATCCTTCAGGAGCTGCCTTCCAGAAACCTGTTGGAGC GGATGTCAGCCTGGGACTTGTTCCAAAAGAAGAATTGAGCACAGTCTTTGGAGCCAGTATCCC TGGGAGATCCAAACTGCAAAATTGACTTGTCGTTTTTAATTGATGGGAGCACCAGCATTGGCAAA CGGCGATTCCGAATCCAGAAGCAGCTCCTGGCTGATGTTGCCCAAGCTCTTGACATTGGCCCTGC CGGTCCACTGATGGGTGTTGTCCAGTATGGAGACAACCCTGCTACTCACTTTAACCTCAAGACAC ACACGAATTCTCGAGATCTGAAGACAGCCATAGAGAAAATTACTCAGAGAGGAGGACTTTCTAAT GTAGGTCGGCCATCTCCTTTGTGACCAAGAACTTCTTTTCCAAAGCCAATGGAAACAGAAGCGG GGCTCCCAATGTGGTGGTGGTGGTGGTGGATGGCTGGCCCACGGACAAAGTGGAGGAGGCTTCAA GACTTGCGAGAGGTCAGGAATCAACATTTTCTTCATCACCATTGAAGGTGCTGCTGAAAATGAG AAGCAGTATGTGGTGGAGCCCAACTTTGCAAACAAGGCCGTGTGCAGAACAAACGGCTTCTACTC GCTCCACGTGCAGAGCTGGTTTGGCCTCCACAAGACCCTGCAGCCTCTGGTGAAGCGGGTCTGCG ACACTGACCGCCTGGCCTGCAGCAAGACCTGCTTGAACTCGGCTGACATTGGCTTCGTCATCGAC GGCTCCAGCAGTGTGGGGACGGGCAACTTCCGCACCGTCCTCCAGTTTGTGACCAACCTCACCAA AGAGTTTGAGATTTCCGACACGGACACGCGCATCGGGGCCGTGCAGTACACCTACGAACAGCGGC TGGAGTTTGGGTTCGACAAGTACAGCAGCAAGCCTGACATCCTCAACGCCATCAAGAGGGTGGGC TACTGGAGTGGTGCACCAGCACGGGGGCTGCCATCAACTTCGCCCTGGAGCAGCTCTTCAAGAA GTCCAAGCCCAACAGAGGAAGTTAATGATCCTCATCACCGACGGGAGGTCCTACGACGACGTCC GGATCCCAGCCATGGCCGCTCTGAAGGGAGTGATCACCTATGCGATAGGCGTTGCCTGGGCT GCCCAAGAGGGGCTAGAAGTCATTGCCACTCACCCCGCCAGAGACCACTCCTTCTTTGTGGACGA GTTTGACAACCTCCATCAGTATGTCCCCAGGATCATCCAGAACATTTGTACAGAGTTCAACTCAC AGCCTCGGAACTCAATTCAGAGCAGGCAGGCACCAGCAAGTGCTGCTTTACTAACTGACGTGTT GGACCACCCCACCGCTTAATGGGGCACGCACGGTGCATCAAGTCTTGGGCAGGGCATGGAGAAAC AAATGTCTTGTTATTATTCTTTGCCATCATGCTTTTTCATATTCCAAAACTTGGAGTTACAAAGA TGATCACAAACGTATAGAATGAGCCAAAAGGCTACATGATGATGAGGGTGCTGGAGATTTTACAT TTTGACAATTGTTTTCAAAATAATGTTCGGAATACAGTGCAGCCCTTACGACAGGCTTACGTAG AGCTTTTGTGAGATTTTTAAGTTGTTATTTCTGATTTGAACTCTGTAACCCTCAGCAAGTTTCAT

MRTVVLTMKASVIEMFLVLLVTGVHSNKETAKKIKRPKFTVPQINCDVKAGKIIDPEFIVKCPAG
CQDPKYHVYGTDVYASYSSVCGAAVHSGVLDNSGGKILVRKVAGQSGYKGSYSNGVQSLSLPRWR
ESFIVLESKPKKGVTYPSALTYSSSKSPAAQAGETTKAYQRPPIPGTTAQPVTLMQLLAVTVAVA
TPTTLPRPSPSAASTTSIPRPQSVGHRSQEMDLWSTATYTSSQNRPRADPGIQRQDPSGAAFQKP
VGADVSLGLVPKEELSTQSLEPVSLGDPNCKIDLSFLIDGSTSIGKRRFRIQKQLLADVAQALDI
GPAGPLMGVVQYGDNPATHFNLKTHTNSRDLKTAIEKITQRGGLSNVGRAISFVTKNFFSKANGN
RSGAPNVVVMVDGWPTDKVEEASRLARESGINIFFITIEGAAENEKQYVVEPNFANKAVCRTNG
FYSLHVQSWFGLHKTLQPLVKRVCDTDRLACSKTCLNSADIGFVIDGSSSVGTGNFRTVLQFVTN
LTKEFEISDTDTRIGAVQYTYEQRLEFGFDKYSSKPDILNAIKRVGYWSGGTSTGAAINFALEQL
FKKSKPNKRKLMILITDGRSYDDVRIPAMAAHLKGVITYAIGVAWAAQEELEVIATHPARDHSFF
VDEFDNLHQYVPRIIQNICTEFNSQPRN

Important features:

Signal peptide:

amino acids 1-26

Transmembrane domain:

amino acids 181-200

N-glycosylation sites.

amino acids 390-394, 520-524

N-myristoylation sites.

amino acids 23-29, 93-99, 115-121, 262-268, 367-373, 389-395, 431-437, 466-472, 509-515, 570-576, 571-577, 575-581, 627-633

Amidation site.

amino acids 304-308

 $\tt CCGAGCACAGGAGATTGCCTGCGTTTAGGAGGTGGCTGCGTTGTGGGAAAAGCTATCAAGGAAGAAATTGC$ ACAGAAAACAACAAAAAACTTAAGCTTTAATTTCATCTGGAATTCCACAGTTTTCTTAGCTCCCTGGACCC GGTTGACCTGTTGGCTCTTCCCGCTGCTGTCTATCACGTGGTGCTCTCCGACTACTCACCCCGAGTGTA AAGAACCTTCGGCTCGCGTGCTTCTGAGCTGCTGTGGATGGCCTCGGCTCTCTGGACTGTCCTTCCGAGTA GGATGTCACTGAGATCCCTCAAATGGAGCCTCCTGCTGCTGTCACTCCTGAGTTTCTTTGTGATGTGGTAC CTCAGCCTTCCCCACTACAATGTGATAGAACGCGTGAACTGGATGTACTTCTATGAGTATGAGCCGATTTA CAGACAAGACTTTCACTTCACACTTCGAGAGCATTCAAACTGCTCTCATCAAAATCCATTTCTGGTCATTC TGGTGACCTCCACCCTTCAGATGTGAAAGCCAGGCAGTCATTAGAGTTACTTGGGGTGAAAAAAAGTCT TGGTGGGGATATGAGGTTCTTACATTTTTCTTATTAGGCCAAGAGGCTGAAAAGGAAGACAAAATGTTGGC ATTGTCCTTAGAGGATGAACACCTTCTTTATGGTGACATAATCCGACAAGATTTTTTAGACACATATAATA ACCTGACCTTGAAAACCATTATGGCATTCAGGTGGGTAACTGAGTTTTGCCCCAATGCCAAGTACGTAATG AAGACAGACACTGATGTTTTCATCAATACTGGCAATTTAGTGAAGTATCTTTTAAACCTAAACCACTCAGA GAAGTTTTTCACAGGTTATCCTCTAATTGATAATTATTCCTATAGAGGATTTTTACCAAAAAACCCATATTT $\tt CTTACCAGGAGTATCCTTCAAGGTGTTCCCTCCATACTGCAGTGGGTTGGGTTATATAATGTCCAGAGAT$ TTGGTGCCAAGGATCTATGAAATGATGGGTCACGTAAAACCCATCAAGTTTGAAGATGTTTATGTCGGGAT ATTTGGATGTCTGTCAACTGAGACGTGTGATTGCAGCCCATGGCTTTTCTTCCAAGGAGATCATCACTTTT TGGCAGGTCATGCTAAGGAACACCACATGCCATTATTAACTTCACATTCTACAAAAAGCCTAGAAGGACAG GATACCTTGTGGAAAGTGTTAAATAAAGTAGGTACTGTGGAAAATTCATGGGGAGGTCAGTGTGCTGGCTT ACACTGAACTGAAACTCATGAAAAACCCAGACTGGAGGCTTGAGGGTTACACTTGTGATTTATTAGTCAGG CCCTTCAAAGATGATATGTGGAGGAATTAAATATAAAGGAATTGGAGGTTTTTGCTAAAGAAATTAATAGG ACCAAACAATTTGGACATGTCATTCTGTAGACTAGAATTTCTTAAAAGGGTGTTACTGAGTTATAAGCTCA CTAGGCTGTAAAAACAAACAATGTAGAGTTTTATTTATTGAACAATGTAGTCACTTGAAGGTTTTGTGTA TATCTTATGTGGATTACCAATTTAAAAATATATGTAGTTCTGTGTCAAAAAACTTCTTCACTGAAGTTATA CTGAACAAAATTTTACCTGTTTTTGGTCATTTATAAAGTACTTCAAGATGTTGCAGTATTTCACAGTTATT ATTATTTAAAATTACTTCAACTTTGTGTTTTTTAAATGTTTTGACGATTTCAATACAAGATAAAAAGGATAG TGAATCATTCTTTACATGCAAACATTTTCCAGTTACTTAACTGATCAGTTTATTATTGATACATCACTCCA TTAATGTAAAGTCATAGGTCATTATTGCATATCAGTAATCTCTTGGACTTTGTTAAATATTTTACTGTGGT AATATAGAGAAGAATTAAAGCAAGAAAATCTGAAAA

MASALWTVLPSRMSLRSLKWSLLLLSLLSFFVMWYLSLPHYNVIERVNWMYFYEYEPIYRQDFHF
TLREHSNCSHQNPFLVILVTSHPSDVKARQAIRVTWGEKKSWWGYEVLTFFLLGQEAEKEDKMLA
LSLEDEHLLYGDIIRQDFLDTYNNLTLKTIMAFRWVTEFCPNAKYVMKTDTDVFINTGNLVKYLL
NLNHSEKFFTGYPLIDNYSYRGFYQKTHISYQEYPFKVFPPYCSGLGYIMSRDLVPRIYEMMGHV
KPIKFEDVYVGICLNLLKVNIHIPEDTNLFFLYRIHLDVCQLRRVIAAHGFSSKEIITFWQVMLR
NTTCHY

Important features:

Type II transmembrane domain:

amino acids 20-39

N-glycosylation sites.

amino acids 72-76, 154-158, 198-202, 212-216, 326-330

Glycosaminoglycan attachment site.

amino acids 239-243

Ly-6 / u-PAR domain proteins.

amino acids 23-37

N-myristoylation site.

amino acids 271-277

AATATGATCAGATTGAGTGCGTCTGCCCCGGAAAGAGGGAAGTCGTGGGTTATACCATCCCTTGCTGCAGGAATGAGGAGAA ACCTTGGATGACTTCTATGTGAAGGGGTTCTACTGTGCAGAGTGCCGAGCAGGCTGGTACGGAGGAGACTGCATGCGATGTG GCCAGGTTCTGCGAGCCCCAAAGGGTCAGATTTTGTTGGAAAGCTATCCCCTAAATGCTCACTGTGAATGGACCATTCATGC TAAACCTGGGTTTGTCATCCAACTAAGATTTGTCATGTTGAGTCTGGAGTTTGACTACATGTGCCAGTATGACTATGTTGAG GTTCGTGATGGAGACAACCGCGATGGCCAGATCATCAAGCGTGTCTGTGGCAACGAGCGCCAGCTCCTATCCAGAGCATAG ATGCTCCTCATCCCCTTGTTTCCATGACGGCACGTGCGTCCTTGACAAGGCTGGATCTTACAAGTGTGCCTGCTTGGCAGGC TCTTAGTGGCAATGAGAAAGAACTTGCCAGCAGAATGGAGAGTGGTCAGGGAAACAGCCCATCTGCATAAAAGCCTGCCGA GAACCAAAGATTTCAGACCTGGTGAGAAGGAGGGTTCTTCCGATGCAGGTTCAGTCAAGGGAGACACCATTACACCAGCTAT ATACCAACATCTGCATACCCAGCTCCAGTATGAGTGCATCTCACCCTTCTACCGCCGCCTGGGCAGCAGCAGCAGGAGGACATGT CTGAGGACTGGGAGTGGGCGGGCACCATCCTGCATCCCTATCTGCGGGAAAATTGAGAACATCACTGCTCCAAAGA CCCAAGGGTTGCGCTGGCCGTGGCAGCCATCTACAGGAGGACCAGCGGGGTGCATGACGGCAGCCTACACAAGGGAGC GTCACCATGATCAAGACAGCAGCCTGAAAGTTGTTTTGGGGAAAATTCTACCGGGATGACCGGGATGAGAAGACCATCC AGAGCCTACAGATTTCTGCTATCATTCTGCATCCCAACTATGACCCCATCCTGCTTGATGCTGACATCGCCATCCTGAAGCT TGTTTCTGTATATCCGTCTGTACGTGTGTCATTGCGTGAAGCAGTGTGGCCTGAAGTGTGATTTGGCCTGTGAACTTGGCT GTGCCAGGGCTTCTGACTTCAGGGACAAAACTCAGTGAAGGGTGAGTAGACCTCCATTGCTGGTAGGCTGATGCCGCGTCCA CTCCACTGACCTGGTGGTCTTCCCCAACTTTCAGTTATACGAATGCCATCAGCTTGACCAGGGAAGATCTGGGCTTCATGAG GCCCCTTTTGAGGCTCTCAAGTTCTAGAGAGCTGCCTGTGGGACAGCCCAGGGCAGCAGAGCTGGGATGTGCTGCCTT

MELGCWTQLGLTFLQLLLISSLPREYTVINEACPGAEWNIMCRECCEYDQIECVCPGKREVVGYT
IPCCRNEENECDSCLIHPGCTIFENCKSCRNGSWGGTLDDFYVKGFYCAECRAGWYGGDCMRCGQ
VLRAPKGQILLESYPLNAHCEWTIHAKPGFVIQLRFVMLSLEFDYMCQYDYVEVRDGDNRDGQII
KRVCGNERPAPIQSIGSSLHVLFHSDGSKNFDGFHAIYEEITACSSSPCFHDGTCVLDKAGSYKC
ACLAGYTGQRCENLLEERNCSDPGGPVNGYQKITGGPGLINGRHAKIGTVVSFFCNNSYVLSGNE
KRTCQQNGEWSGKQPICIKACREPKISDLVRRRVLPMQVQSRETPLHQLYSAAFSKQKLQSAPTK
KPALPFGDLPMGYQHLHTQLQYECISPFYRRLGSSRRTCLRTGKWSGRAPSCIPICGKIENITAP
KTQGLRWPWQAAIYRRTSGVHDGSLHKGAWFLVCSGALVNERTVVVAAHCVTDLGKVTMIKTADL
KVVLGKFYRDDDRDEKTIQSLQISAIILHPNYDPILLDADIAILKLLDKARISTRVQPICLAASR
DLSTSFQESHITVAGWNVLADVRSPGFKNDTLRSGVVSVVDSLLCEEQHEDHGIPVSVTDNMFCA
SWEPTAPSDICTAETGGIAAVSFPGRASPEPRWHLMGLVSWSYDKTCSHRLSTAFTKVLPFKDWI
ERNMK

Important features of the protein:

Signal peptide:

amino acids 1-23

EGF-like domain cysteine pattern signature.

amino acids 260-272

N-glycosylation sites.

amino acids 96-100, 279-283, 316-320, 451-455, 614-618 N-myristoylation sites.

amino acids 35-41, 97-103, 256-262, 284-290, 298-304, 308-314, 474-480, 491-497, 638-644, 666-672

Amidation site.

amino acids 56-60

Serine proteases, trypsin family.

amino acids 489-506

CUB domain proteins profile.

amino acids 150-167

GGTTCCTACATCCTCTCATCTGAGAATCAGAGAGCATAATCTTCTTACGGGCCCGTGATTTATTAACGTGGCTTAATC TGAAGGTTCTCAGTCAAATTCTTTGTGATCTACTGATTGTGGGGGGCATGGCAAGGTTTGCTTAAAGGAGCTTGGCTGG ${\tt TTTGGGCCCTTGTAGCTGACAGAAGGTGGCCAGGGAGAATGCAGCACACTGCTCGGAGAATGAAGGCGCTTCTGTTGC}$ TGGTCTTGCCTTGGCTCAGTCCTGCTAACTACATTGACAATGTGGGCAACCTGCACTTCCTGTATTCAGAACTCTGTA AAGGTGCCTCCCACTACGGCCTGACCAAAGATAGGAAGAGGCGCTCACAAGATGGCTGTCCAGACGGCTGTGCGAGCC TCACAGCCACGGCTCCCCCAGAGGTTTCTGCAGCTGCCACCATCTCCTTAATGACAGACGAGCCTGGCCTAGACA GGACAAAGAGCGGGAGTGCAGTTGCCAACCATGCCGACCAGGGCAGGGAAAATTCTGAAAAACACCACTGCCCCTGAAG TCTTTCCAAGGTTGTACCACCTGATTCCAGATGGTGAAATTACCAGCATCAAGATCAATCGAGTAGATCCCAGTGAAA TGATCGCCAGAGACGCCGGCTACTGCCAGGAGACATCATTCTAAAGGTCAACGGGATGGACATCAGCAATGTCCCTC ACAACTACGCTGTGCGTCTCCTGCGGCAGCCCTGCCAGGTGCTGTGACTGTGATGCGTGAACAGAAGTTCCGCA GCAGGAACAATGGACAGCCCCGGATGCCTACAGACCCCGAGATGACAGCTTTCATGTGATTCTCAACAAAAGTAGCC GCCCAGAAAGTGCGGCTCATCTGATTCAGGCCAGTGAAAGACGTGTTCACCTCGTCGTGTCCCGCCAGGTTCGGCAGC GGAGCCCTGACATCTTTCAGGAAGCCGGCTGGAACAGCAATGGCAGCTGGTCCCCAGGGCCAGGGGAGAGGAGCAACA CTCCCAAGCCCCTCCATCCTACAATTACTTGTCATGAGAAGGTTGGTAAATATCCAAAAAAGACCCCGGTGAATCTCTCG GGAGTGAGGCAGTGGCATTATTGAAAAGAACATCATCCTCGATAGTACTCAAAGCTTTGGAAGTCAAAGAGTATGAGC $\tt CCCAGGAAGACTGCAGCAGCCCAGCAGCCCTGGACTCCAACCACAACATGGCCCCACCAGTGACTGGTCCCCATCCT$ GGGTCATGTGGCTGGAATTACCACGGTGCTTGTATAACTGTAAAGATATTGTATTACGAAGAAACACAGCTGGAAGTC TGGGCTTCTGCATTGTAGGAGGTTATGAAGAATACAATGGAAACCATTTTTTCATCAAATCCATTGTTGAAGGAA ${\tt CACCAGCATACAATGATGGAAGAATTAGATGTGGTGATATTCTTCTTGCTGTCAATGGTAGAAGTACATCAGGAATGA}$ TACATGCTTGCCAAGACTGCTGAAAGAACTTAAAGGAAGAATTACTCTAACTATTGTTTCTTGGCCTGGCACTT TTTTATAGAATCAATGATGGGTCAGAGGAAAACAGAAAAATCACAAATAGGCTAAGAAGTTGAAACACTATATTTATC

MKALLLVLPWLSPANYIDNVGNLHFLYSELCKGASHYGLTKDRKRRSQDGCPDGCASLTATAPS
PEVSAAATISLMTDEPGLDNPAYVSSAEDGQPAISPVDSGRSNRTRARPFERSTIRSRSFKKINR
ALSVLRRTKSGSAVANHADQGRENSENTTAPEVFPRLYHLIPDGEITSIKINRVDPSESLSIRLV
GGSETPLVHIIIQHIYRDGVIARDGRLLPGDIILKVNGMDISNVPHNYAVRLLRQPCQVLWLTVM
REQKFRSRNNGQAPDAYRPRDDSFHVILNKSSPEEQLGIKLVRKVDEPGVFIFNVLDGGVAYRHG
QLEENDRVLAINGHDLRYGSPESAAHLIQASERRVHLVVSRQVRQRSPDIFQEAGWNSNGSWSPG
PGERSNTPKPLHPTITCHEKVVNIQKDPGESLGMTVAGGASHREWDLPIYVISVEPGGVISRDGR
IKTGDILLNVDGVELTEVSRSEAVALLKRTSSSIVLKALEVKEYEPQEDCSSPAALDSNHNMAPP
SDWSPSWVMWLELPRCLYNCKDIVLRRNTAGSLGFCIVGGYEEYNGNKPFFIKSIVEGTPAYNDG
RIRCGDILLAVNGRSTSGMIHACLARLLKELKGRITLTIVSWPGTFL

Important features:

Signal peptide:

amino acids 1-15

N-glycosylation sites.

amino acids 108-112, 157-161, 289-293, 384-388

Tyrosine kinase phosphorylation sites.

amino acids 433-441, 492-500

N-myristoylation sites.

amino acids 51-57, 141-147, 233-239, 344-350, 423-429, 447-453, 467-473, 603-609

ACCAGGCATTGTATCTTCAGTTGTCATCAAGTTCGCAATCAGATTGGAAAAGCTCAACTTGAAGCTTT $\tt CTTGCCTGCAGTGAAGCAGAGAGATAGATATTATTCACGTAATAAAAAAC{\color{red} ATG}{ATG}{GGCTTCAACCTGACT}$ CACCAGTAACTACTTCGTGGGTGCCATTCAAGAGATTCCTAAAGCAAAGGAGTTCATGGCTAATTTCC ATAAGACCCTCATTTTGGGGAAGGGAAAAACTCTGACTAATGAAGCATCCACGAAGAAGGTAGAACTT GACAACTGTCCTTCTGTGTCTCCTTACCTCAGAGGCCAGAGCAAGCTCATTTTCAAACCAGATCTCAC TTTGGAAGAGGTACAGGCAGAAATCCCAAAGTGTCCAGAGGCCGGTATCGCCCTCAGGAATGTAAAG CTTTACAGAGGGTCGCCATCCTCGTTCCCCACCGGAACAGAGAAACACCTGATGTACCTGCTGGAA TAAAAAGTTTAATCGAGCCAAACTCTTGAATGTGGGCTATCTAGAAGCCCTCAAGGAAGAAAATTGGG ACTGCTTTATATTCCACGATGTGGACCTGGTACCCGAGAATGACTTTAACCTTTACAAGTGTGAGGAG CATCCCAAGCATCTGGTGGTTGGCAGGAACAGCACTGGGTACAGGTTACGTTACAGTGGATATTTTGG GGGTGTTACTGCCCTAAGCAGAGAGCAGTTTTTCAAGGTGAATGGATTCTCTAACAACTACTGGGGAT GGGGAGGCGAAGACGATGACCTCAGACTCAGGGTTGAGCTCCAAAGAATGAAAATTTCCCGGCCCCTG CCTGAAGTGGGTAAATATACAATGGTCTTCCACACTAGAGACAAAGGCAATGAGGTGAACGCAGAACG GATGAAGCTCTTACACCAAGTGTCACGAGTCTGGAGAACAGATGGGTTGAGTAGTTGTTCTTATAAAT TGGATCTTTTGGTGATGTTTTGGAAGAACTGATTCTTTGTTTTGCAATAATTTTTGGCCTAGAGACTTCAA ATAGTAGCACACATTAAGAACCTGTTACAGCTCATTGTTGAGCTGAATTTTTCCTTTTTGTATTTTCT TAGCAGAGCTCCTGGTGATGTAGAGTATAAAACAGTTGTAACAAGACAGCTTTCTTAGTCATTTTGAT CATGAGGGTTAAATATTGTAATATGGATACTTGAAGGACTTTATATAAAAGGATGACTCAAAGGATAA AAAAGGCCACAGGAAATAAGACTGCTGAATGTCTGAGAGAACCAGAGTTGTTCTCGTCCAAGGTAGAA AGGTACGAAGATACAATACTGTTATTCATTTATCCTGTACAATCATCTGTGAAGTGGTGGTGTCAGGT GAGAAGGCGTCCACAAAAGAGGGGAGAAAAGGCGACGAATCAGGACACAGTGAACTTGGGAATGAAGA GGTAGCAGGAGGGTGGAGTGTCGGCTGCAAAGGCAGCAGTAGCTGAGCTGGTTGCAGGTGCTGATAGC $\tt CTTCAGGGGAGGACCTGCCCAGGTATGCCTTCCAGTGATGCCCACCAGAGAATACATTCTCTATTAGT$ TTTTAAAGAGTTTTTGTAAAATGATTTTGTACAAGTAGGATATGAATTAGCAGTTTACAAGTTTACAT ATTAACTAATAATAATATGTCTATCAAATACCTCTGTAGTAAAATGTGAAAAAGCAAAA

MGFNLTFHLSYKFRLLLLTLCLTVVGWATSNYFVGAIQEIPKAKEFMANFHKTLILGKGKTLTN
EASTKKVELDNCPSVSPYLRGQSKLIFKPDLTLEEVQAENPKVSRGRYRPQECKALQRVAILVPH
RNREKHLMYLLEHLHPFLQRQQLDYGIYVIHQAEGKKFNRAKLLNVGYLEALKEENWDCFIFHDV
DLVPENDFNLYKCEEHPKHLVVGRNSTGYRLRYSGYFGGVTALSREQFFKVNGFSNNYWGWGGED
DDLRLRVELQRMKISRPLPEVGKYTMVFHTRDKGNEVNAERMKLLHQVSRVWRTDGLSSCSYKLV
SVEHNPLYINITVDFWFGA

Important features:

Signal peptide:

amino acids 1-27

N-glycosylation sites.

amino acids 4-8, 220-224, 335-339

Xylose isomerase proteins.

amino acids 191-202

 ${\tt MALSSQIWAACLLLLLLASLTSGSVFPQQTGQLAELQPQDRAGARASWMPMFQRRRRDTHFPICIFCCGCCHRSKCGMCCKT}$

Important features:

Signal peptide:

amino acids 1-24

 $\mathtt{cAMP-}$ and $\mathtt{cGMP-} dependent$ protein kinase phosphorylation site.

amino acids 58-59

N-myristoylation site.

amino acids 44-50

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 1-12

 $\tt GTGGCTTCATTTCAGTGGCTGACTTCCAGAGAGCAAT \underline{ATG} GCTGGTTCCCCAACATGCCTCACCC$ TCATCTATATCCTTTGGCAGCTCACAGGGTCAGCAGCCTCTGGACCCGTGAAAGAGCTGGTCGGT TCCGTTGGTGGGGCCGTGACTTTCCCCCTGAAGTCCAAAGTAAAGCAAGTTGACTCTATTGTCTG GACCTTCAACACACCCCTCTTGTCACCATACAGCCAGAAGGGGGCACTATCATAGTGACCCAAA ATCGTAATAGGGAGAGTAGACTTCCCAGATGGAGGCTACTCCCTGAAGCTCAGCAAACTGAAG AAGAATGACTCAGGGATCTACTATGTGGGGATATACAGCTCATCACTCCAGCAGCCCTCCACCCA GGAGTACGTGCTGCATGTCTACGAGCACCTGTCAAAGCCTAAAGTCACCATGGGTCTGCAGAGCA ATAAGAATGGCACCTGTGTGACCAATCTGACATGCTGCATGGAACATGGGGAAGAGAGATGTGATT TATACCTGGAAGGCCCTGGGGCAAGCAGCCAATGAGTCCCATAATGGGTCCATCCTCCCCATCTC CTGGAGATGGGGAGAAAGTGATATGACCTTCATCTGCGTTGCCAGGAACCCTGTCAGCAGAAACT TCTCAAGCCCCATCCTTGCCAGGAAGCTCTGTGAAGGTGCTGCTGATGACCCAGATTCCTCCATG GTCCTCCTGTGTCTCCTGTTGGTGCCCCTCCTGCTCAGTCTCTTTGTACTGGGGCTATTTCTTTG GTTTCTGAAGAGAGAGACAAGAAGAGTACATTGAAGAGAAGAAGAGAGTGGACATTTGTCGGG AAACTCCTAACATATGCCCCCATTCTGGAGAGAACACAGAGTACGACAATCCCTCACACTAAT AGAACAATCCTAAAGGAAGATCCAGCAAATACGGTTTACTCCACTGTGGAAATACCGAAAAAAGAT GGAAAATCCCCACTCACTGCTCACGATGCCAGACACACCAAGGCTATTTGCCTATGAGAATGTTA TCTAGACAGCAGTGCACTCCCCTAAGTCTCTGCTCA

MAGSPTCLTLIYILWQLTGSAASGPVKELVGSVGGAVTFPLKSKVKQVDSIVWTFNTTPLVTIQP
EGGTIIVTQNRNRERVDFPDGGYSLKLSKLKKNDSGIYYVGIYSSSLQQPSTQEYVLHVYEHLSK
PKVTMGLQSNKNGTCVTNLTCCMEHGEEDVIYTWKALGQAANESHNGSILPISWRWGESDMTFIC
VARNPVSRNFSSPILARKLCEGAADDPDSSMVLLCLLLVPLLLSLFVLGLFLWFLKRERQEEYIE
EKKRVDICRETPNICPHSGENTEYDTIPHTNRTILKEDPANTVYSTVEIPKKMENPHSLLTMPDT
PRLFAYENVI

Important features:

Signal peptide:

amino acids 1-22

Transmembrane domain:

amino acids 224-250

Leucine zipper pattern.

amino acids 229-251

N-glycosylation sites.

amino acids 98-102, 142-146, 148-152, 172-176, 176-180, 204-208, 291-295

MTCCEGWTSCNGFSLLVLLLLGVVLNAIPLIVSLVEEDQFSQNPISCFEWWFPGIIGAGLMAIPA
TTMSLTARKRACCNNRTGMFLSSFFSVITVIGALYCMLISIQALLKGPLMCNSPSNSNANCEFSL
KNISDIHPESFNLQWFFNDSCAPPTGFNKPTSNDTMASGWRASSFHFDSEENKHRLIHFSVFLGL
LLVGILEVLFGLSQIVIGFLGCLCGVSKRRSQIV

Important features:

Transmembrane domains:

amino acids 10-31 (type II), 50-72, 87-110, 191-213

N-glycosylation sites.

amino acids 80-84, 132-136, 148-152, 163-167

cAMP- and cGMP-dependent protein kinase phosphorylation site. amino acids 223-227

N-myristoylation sites.

amino acids 22-28, 54-60, 83-89, 97-103, 216-222

Prokaryotic membrane lipoprotein lipid attachment site. amino acids 207-218

TNFR/NGFR family cysteine-rich region protein.

amino acids 4-12

ATCCGTTCTCTGCGCTGCCAGCTCAGGTGAGCCCTCGCCAAGGTGACCTCGCAGGACACTGGTGA
AGGAGCAGTGAGGAACCTGCAGAGTCACACAGTTGCTGACCAATTGAGCTGTGAGCCTGGAGCAG
ATCCGTGGGCTGCAGACCCCCGCCCCAGTGCCTCTCCCCCTGCAGCCCTCGCACTGTGA
CATGGAGAGAGTGACCCTTGCTCCTACTGGCAGGCCTGACTGCCTTGGAAGCCAATGACC
CATTTGCCAATAAAGACGATCCCTTCTACTATGACTGGAAAAACCTGCAGCTGAGCGGACTGATC
TGCGGAGGGCTCCTGGCCATTGCTGGGATCGCGGCAGTTCTGAGTGGCAAATACAAGAG
CAGCCAGAAGCAGCACAGTCCTGTACCTGAGAAGGCCATCCCACTCATCACTCCAGGCTCTGCCA
CTACTTGCTGAGCACAGGACTGGCCTCCAGGGATGGCCTAACACTGGCCCCCAGCACC
TCCTCCCCTGGGAGGCCTTATCCTCAAGGAAGGACTTCTCTCCAAGGGCAGGCTGTTAGGCCCCT
TTCTGATCAGGAGGCTTCTTTATGAATTAAACTCGCCCCCACCCCCCTCA

 ${\tt MERVTLALLLLAGLTALEANDPFANKDDPFYYDWKNLQLSGLICGGLLAIAGIAAVLSGKCKYKS} \\ {\tt SQKQHSPVPEKAIPLITPGSATTC}$

Important features:

Signal peptide:

amino acids 1-16

Transmembrane domain:

amino acids 36-59

N-myristoylation sites.

amino acids 41-47, 45-51, 84-90

Extracellular proteins SCP/Tpx-1/Ag5/PR-1/Sc7.

amino acids 54-67

AGGACAGGGAGTCGGAAGGAGGAGGACAGAGGGCACAGAGACGCAGAGCAAGGGCGAAGG AGGAGACCCTGGTGGGAGGAGACACTCTGGAGAGAGGGGGGCTGGGCAGAGATGAAGTTCCAG GGGCCCTGGCTGCCTGCTGGCCCTCTGCCTGGGCAGTGGGGAGGCTGGCCCCCTGCAGAG CGGAGAGGAAAGCACTGGGACAAATATTGGGGAGGCCCTTGGACATGGCCTGGGAGACGCCCTGA GCGAAGGGTGGGAAAGGCCATTGGCAAAGAGGCCGGAGGGGCAGCTGGCTCTAAAGTCAGTGAG AGCAGATGCTTTGGGCAACAGGGTCGGGGAAGCAGCCCATGCTCTGGGAAACACTGGGCACGAGA TTGGCAGACAGGCAGAAGATGTCATTCGACACGGAGCAGATGCTGTCCGCGGCTCCTGGCAGGGG GTGCCTGGCCACAGTGGTGCTTGGGAAACTTCTGGAGGCCATGGCATCTTTGGCTCTCAAGGTGG CCTTGGAGGCCAGGGCAATCCTGGAGGTCTGGGGACTCCGTGGGTCCACGGATACCCCG GAAACTCAGCAGGCAGCTTTGGAATGAATCCTCAGGGAGCTCCCTGGGGTCAAGGAGGCAATGGA GGGCCACCAAACTTTGGGACCAACACTCAGGGAGCTGTGGCCCAGCCTGGCTATGGTTCAGTGAG AGCCAGCAACCAGAATGAAGGGTGCACGAATCCCCCACCATCTGGCTCAGGTGGAGGCTCCAGCA ACTCTGGGGGAGCAGCGGCTCACAGTCGGGCAGCAGTGGCAGCAATGGTGACAACAAC TGGCGCAGCAGTGGCAGCAGTGGCAACAGTGGCAGCAGAGGTGACAGCGGCAGTGAGT CCTCCTGGGGATCCAGCACCGGCTCCTCCTCCGGCAACCACGGTGGGAGCGGCGGAGGAAATGGA CATAAACCCGGGTGTGAAAAGCCAGGGAATGAAGCCCGCGGGGAGCGGGGAATCTGGGATTCAGGG CTTCAGAGGACAGGGAGTTTCCAGCAACATGAGGGAAATAAGCAAAGAGGGCAATCGCCTCCTTG GAGGCTCTGGAGACAATTATCGGGGGGCAAGGGTCGAGCTGGGGCAGTGGAGGAGGTGACGCTGTT GGTGGAGTCAATACTGTGAACTCTGAGACGTCTCCTGGGATGTTTAACTTTGACACTTTCTGGAA GAATTTTAAATCCAAGCTGGGTTTCATCAACTGGGATGCCATAAACAAGGACCAGAGAAGCTCTC GCATCCCG<u>TGA</u>CCTCCAGACAAGGAGCCACCAGATTGGATGGGAGCCCCCACACTCCCTTAA AACACCACCCTCTCATCACTAATCTCAGCCCTTGCCCTTGAAATAAACCTTAGCTGCCCCACAAA

MKFQGPLACLLLALCLGSGEAGPLQSGEESTGTNIGEALGHGLGDALSEGVGKAIGKEAGGAAGSKVS
EALGQGTREAVGTGVRQVPGFGAADALGNRVGEAAHALGNTGHEIGRQAEDVIRHGADAVRGSWQGVP
GHSGAWETSGGHGIFGSQGGLGGQGQGNPGGLGTPWVHGYPGNSAGSFGMNPQGAPWGQGGNGGPPNF
GTNTQGAVAQPGYGSVRASNQNEGCTNPPPSGSGGGSSNSGGGSGSQSGSSGSGSNGDNNNGSSSGGS
SSGSSSGSSSGGSSGGSSGGSSGNSGGSRGDSGSSSSGSGSNGDNNNGSSSGGS
ARGSGESGIQGFRGQGVSSNMREISKEGNRLLGGSGDNYRGQGSSWGSGGGDAVGGVNTVNSETSPGM
FNFDTFWKNFKSKLGFINWDAINKDQRSSRIP

Signal peptide:

amino acids 1-21

N-glycosylation site.

amino acids 265-269

Glycosaminoglycan attachment site.

amino acids 235-239, 237-241, 244-248, 255-259, 324-328, 388-392

Casein kinase II phosphorylation site.

amino acids 26-30, 109-113, 259-263, 300-304, 304-308

N-myristoylation site.

```
amino acids 17-23, 32-38, 42-48, 50-56, 60-66, 61-67, 64-70, 74-80,
                 130-136, 140-146, 149-155,
                                               152-158,
90-96, 96-102,
159-165, 163-169, 178-184, 190-196, 194-200, 199-205, 218-224,
                                               246-252,
                                                         249-252,
236-242, 238-244, 239-245, 240-246,
                                      245-251,
253-259,
        256-262, 266-272,
                                      271-277,
                            270-276,
                                               275-281,
                                                         279-285,
283-289,
         284-290,
                   287-293,
                            288-294,
                                      291-297,
                                                292-298,
                                                         295-301,
                                      319-325,
298-304, 305-311, 311-317,
                            315-321,
                                               322-328,
                                                         323-329,
325-331, 343-349, 354-360, 356-362,
                                      374-380, 381-387,
                                                         383-389.
387-393, 389-395, 395-401
```

Cell attachment sequence.

amino acids 301-304

GGAGAAGAGGTTGTGTGGGACAAGCTGCTCCCGACAGAAGGATGTCGCTGCTGAGCCTGCCCTGG $\tt CTGGGCCTCAGACCGGTGGCAATGTCCCCATGGCTACTCCTGCTGCTGGTTGTGGGCTCCTGGCT$ ACTCGCCCGCATCCTGGCTTGGACCTATGCCTTCTATAACAACTGCCGCCGGCTCCAGTGTTTCC CACAGCCCCCAAAACGGAACTGGTTTTGGGGTCACCTGGGCCTGATCACTCCTACAGAGGAGGGC CATCCCCTTCATCGTTTTATGCCACCCTGACACCATCCGGTCTATCACCAATGCCTCAGCTGCCA GAAGTCCTATATAACGATCTTCAACAAGAGTGCAAACATCATGCTTGACAAGTGGCAGCACCTGG CCTCAGAGGGCAGCAGTCGTCTGGACATGTTTGAGCACATCAGCCTCATGACCTTGGACAGTCTA CAGAAATGCATCTTCAGCTTTGACAGCCATTGTCAGGAGAGGCCCAGTGAATATATTGCCACCAT CTTGGAGCTCAGTGCCCTTGTAGAGAAAAGAAGCCAGCATATCCTCCAGCACATGGACTTTCTGT ATTACCTCTCCCATGACGGGCGGCGCTTCCACAGGGCCTGCCGCCTGGTGCATGACTTCACAGAC GCTGTCATCCGGGAGCGCGTCGCACCCTCCCCACTCAGGGTATTGATGATTTTTTCAAAGACAA AGCCAAGTCCAAGACTTTGGATTTCATTGATGTGCTTCTGCTGAGCAAGGATGAAGATGGGAAGG CATTGTCAGATGAGGATATAAGAGCAGAGGCTGACACCTTCATGTTTGGAGGCCATGACACCACG GCCAGTGGCCTCTCCTGGGTCCTGTACAACCTTGCGAGGCACCCAGAATACCAGGAGCGCTGCCG ACAGGAGGTGCAAGAGCTTCTGAAGGACCGCGATCCTAAAGAGATTGAATGGGACGACCTGGCCC AGCTGCCCTTCCTGACCATGTGCGTGAAGGAGACCTGAGGTTACATCCCCCAGCTCCCTTCATC TCCCGATGCTGCACCCAGGACATTGTTCTCCCAGATGGCCGAGTCATCCCCAAAGGCATTACCTG CCTCATCGATATTATAGGGGTCCATCACAACCCAACTGTGTGGCCGGATCCTGAGGTCTACGACC CCTTCCGCTTTGACCCAGAGAACAGCAAGGGGAGGTCACCTCTGGCTTTTATTCCTTTCTCCGCA GGGCCCAGGAACTGCATCGGCCAGGCGTTCGCCATGGCGGAGATGAAAGTGGTCCTGGCGTTGAT GCTGCTGCACTTCCGGTTCCTGCCAGACCACACTGAGCCCCGCAGGAAGCTGGAATTGATCATGC $\tt GCGCCGAGGGCGGCTTTGGCTGCGGGTGGAGCCCCTGAATGTAGGCTTGCAG{\color{red}{\textbf{TGA}}}CTTTCTGAC$ CCATCCACCTGTTTTTTTGCAGATTGTCATGAATAAAACGGTGCTGTCAAA

MSLLSLPWLGLRPVAMSPWLLLLLVVGSWLLARILAWTYAFYNNCRRLQCFPQPPKRNWFWGHLG
LITPTEEGLKDSTQMSATYSQGFTVWLGPIIPFIVLCHPDTIRSITNASAAIAPKDNLFIRFLKP
WLGEGILLSGGDKWSRHRRMLTPAFHFNILKSYITIFNKSANIMLDKWQHLASEGSSRLDMFEHI
SLMTLDSLQKCIFSFDSHCQERPSEYIATILELSALVEKRSQHILQHMDFLYYLSHDGRRFHRAC
RLVHDFTDAVIRERRRTLPTQGIDDFFKDKAKSKTLDFIDVLLLSKDEDGKALSDEDIRAEADTF
MFGGHDTTASGLSWVLYNLARHPEYQERCRQEVQELLKDRDPKEIEWDDLAQLPFLTMCVKESLR
LHPPAPFISRCCTQDIVLPDGRVIPKGITCLIDIIGVHHNPTVWPDPEVYDPFRFDPENSKGRSP
LAFIPFSAGPRNCIGQAFAMAEMKVVLALMLLHFRFLPDHTEPRRKLELIMRAEGGLWLRVEPLN
VGLQ

Important features:

Transmembrane domains:

amino acids 13-32 (type II), 77-102

Cytochrome P450 cysteine heme-iron ligand signature. amino acids 461-471

N-glycosylation sites.

amino acids 112-116, 168-172

 ${\tt MGPVKQLKRMFEPTRLIATIMVLLCFALTLCSAFWWHNKGLALIFCILQSLALTWYSLSFIPFAR} \\ {\tt DAVKKCFAVCLA}$

Important features:

Signal peptide:

amino acids 1-33

Type II fibronectin collagen-binding domain protein.

amino acids 30-72

 ${\tt CGGCTCGAGCTCGAGCCGAATCGGCTCGAGGGGCAGTGGAGCACCCAGCAGCAGCCGAAC{\tt ATG}{\tt CTCTGTCTGTCCCTG}}$ TACGTGCCGGTCATCGGGGAAGCCCAGACCGAGTTCCAGTACTTTGAGTCGAAGGGGCTCCCTGCCGAGCTGAAGTCC ggagataaggaccttgatgggcagctagactttgaagaatttgtccattatctccaagatcatgagaagaagctgagg $\tt CTGGTGTTTAAGATTTTGGACAAAAAGAATGATGGACGCATTGACGCGCAGGAGATCATGCAGTCCCTGCGGGACTTG$ GGAGTCAAGATATCTGAACAGCAGGCAGAAAAAATTCTCAAGAGCATGGATAAAAACGGCACGATGACCATCGACTGG AACGAGTGGAGAGACTACCACCTCCTCCACCCCGTGGAAAACATCCCCGAGATCATCCTCTACTGGAAGCATTCCACG ATCTTTGATGTGGGTGAGAATCTAACGGTCCCGGATGAGTTCACAGTGGAGGAGGGGAGACGGGGATGTGGTGGAGA ${\tt CAGGTCCATGCCTCCCGCAGCAACAACATGGGCATCGTTGGTGGCTTCACTCAGATGATTCGAGAAGGAGGGGCCCAGGCCAGGCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCAGGCCAGGCCAGGCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCA$ TCACTCTGGCGGGGCAATGGCATCAACGTCCTCAAAATTGCCCCCGAATCAGCCATCAAATTCATGGCCTATGAGCAG ATCGCCCAGAGCAGCATCTACCCAATGGAGGTCCTGAAGACCCGGATGGCGCTGCGGAAGACAGGCCAGTACTCAGGA $\tt CCCCTGGCCCTAGTCAGGACCCGGATGCAGGCGCAAGCCTCTATTGAGGGCGCTCCGGAGGTGACCATGAGCAGCCTC$ $\tt TTCAAACATATCCTGCGGACCGAGGGGGCCTTCGGGCTGTACAGGGGGGCTGGCCCCCAACTTCATGAAGGTCATCCCA$ CGCCCGGCAGTGGACTCGCTGATCCTGGGCCGCAGCCTGGGGTGTGCAGCCATCTCATTCTGTGAATGTGCCAACACT $\tt GTCCTGCTGACCCCAGCAGACCCTCCTGTTGGTTCCAGCGAAGACCACAGGCATTCCTTAGGGTCCAGGGTCAGCAGG$ CCTCTTGCTGCCTGCCTGTCTGAGGTAAGGTGGGAGGAGGGCTACAGCCCACATCCCACCCCTCGTCCAATCCC $\tt CTTGGGAGTGCAGGGGGCTGCCTGGCCTGGCTGCACAGAAGGCAAGTGCTGGGGGCTCATGGTGCTCTGAGCT$ ACTGTTGGGAAAAGGGTTTTGTCCAGAAGGACAAGCCGGACAAATGAGCGACTTCTGTGCTTCCAGAGGAAGACGAGG GAGCAGGAGCTTGGCTGACTGCTCAGAGTCTGTTCTGACGCCCTGGGGGTTCCTGTCCAACCCCAGCAGGGGCGCAGC ${\tt AACTATTTTATAGATTTGTTTAATTAATTAGCTTGTCATTTTCAAGTTCATTTTTTTATTCATATTTATGTTCATGGTT$ GATTGTACCTTCCCAAGCCCGCCCAGTGGGATGGGAGGAGGAGGAGGAGGGGGGCCTTGGGCCGCTGCAGTCACATCT GTCCAGAGAAATTCCTTTTGGGACTGGAGGCAGAAAAGCGGCCAGAAGGCAGCCCTGGCTCCTTTCCTTTGGCAG AACCTTGAAGGTGGAATCCAGTTATTTCCTGCGCTGCGAGGGTTTCTTTATTTCACTCTTTTCTGAATGTCAAGGCAG CTTCTGCTGCCCTTGCTTAACAATGCCGGCCAACTGGCGACCTCACGGTTGCACTTCCATTCCACCAGAATGACCTGA TGAGGAAATCTTCAATAGGATGCAAAGATCAATGCAAAAATTGTTATATATGAACATATAACTGGAGTCGTCAAAAAG CAAATTAAGAAAGAATTGGACGTTAGAAGTTGTCATTTAAAGCAGCCTTCTAATAAAGTTGTTTCAAAGCTGAAAAAA

MLCLCLYVPVIGEAQTEFQYFESKGLPAELKSIFKLSVFIPSQEFSTYRQWKQKIVQAGDKDLDG
QLDFEEFVHYLQDHEKKLRLVFKILDKKNDGRIDAQEIMQSLRDLGVKISEQQAEKILKSMDKNG
TMTIDWNEWRDYHLLHPVENIPEIILYWKHSTIFDVGENLTVPDEFTVEERQTGMWWRHLVAGGG
AGAVSRTCTAPLDRLKVLMQVHASRSNNMGIVGGFTQMIREGGARSLWRGNGINVLKIAPESAIK
FMAYEQIKRLVGSDQETLRIHERLVAGSLAGAIAQSSIYPMEVLKTRMALRKTGQYSGMLDCARR
ILAREGVAAFYKGYVPNMLGIIPYAGIDLAVYETLKNAWLQHYAVNSADPGVFVLLACGTMSSTC
GQLASYPLALVRTRMQAQASIEGAPEVTMSSLFKHILRTEGAFGLYRGLAPNFMKVIPAVSISYV
VYENLKITLGVQSR

Important features:

Signal peptide:

amino acids 1-16

Putative transmembrane domains:

amino acids 284-304, 339-360, 376-394

Mitochondrial energy transfer proteins signature.

amino acids 206-215, 300-309

N-glycosylation sites.

amino acids 129-133, 169-173

Elongation Factor-hand calcium-binding protein.

amino acids 54-73, 85-104, 121-140

GGAAGGCAGCGCAGCTCCACTCAGCCAGTACCCAGATACGCTGGGAACCTTCCCCAGCC**ATG**GC CACTCATCATTGGCTTTGGTATTTCAGGGAGACACTCCATCACAGTCACTACTGTCGCCTCAGCT GGGAACATTGGGGAGGATGGAATCCTGAGCTGCACTTTTGAACCTGACATCAAACTTTCTGATAT CGTGATACAATGGCTGAAGGAAGGTGTTTTAGGCTTGGTCCATGAGTTCAAAGAAGGCAAAGATG AGCTGTCGGAGCAGGATGAAATGTTCAGAGGCCGGACAGCAGTGTTTGCTGATCAAGTGATAGTT GGCAATGCCTCTTTGCGGCTGAAAAACGTGCAACTCACAGATGCTGGCACCTACAAATGTTATAT CATCACTTCTAAAGGCAAGGGGAATGCTAACCTTGAGTATAAAACTGGAGCCTTCAGCATGCCGG AAGTGAATGTGGACTATAATGCCAGCTCAGAGACCTTGCGGTGTGAGGCTCCCCGATGGTTCCCC CAGCCCACAGTGGTCTGGGCATCCCAAGTTGACCAGGGAGCCAACTTCTCGGAAGTCTCCAATAC CAGCTTTGAGCTGAACTCTGAGAATGTGACCATGAAGGTTGTGTCTGTGCTCTACAATGTTACGA TCAACACACATACTCCTGTATGATTGAAAATGACATTGCCAAAGCAACAGGGGATATCAAAGTG ACAGAATCGGAGATCAAAAGGCGGAGTCACCTACAGCTGCTAAACTCAAAGGCTTCTCTGTGTGT CTCTTCTTTCCTTTGCCATCAGCTGGGCACTTCTGCCTCTCAGCCCTTACCTGATGCTAAAATAAT GTGCCTTGGCCACAAAAAAGCATGCAAAGTCATTGTTACAACAGGGATCTACAGAACTATTTCAC CACCAGATATGACCTAGTTTTATATTTCTGGGAGGAAATGAATTCATATCTAGAAGTCTGGAGTG AGCAAACAAGAGCAAGAAACAAAAGAAGCCAAAAGCAGAAGGCTCCAATATGAACAAGATAAAT CTATCTTCAAAGACATATTAGAAGTTGGGAAAATAATTCATGTGAACTAGACAAGTGTGTTAAGA CACCTGGGGAGTGAGGACAGGATAGTGCATGTTCTTTGTCTCTGAATTTTTAGTTATATGTGC TGTAATGTTGCTCTGAGGAAGCCCCTGGAAAGTCTATCCCAACATATCCACATCTTATATTCCAC AAATTAAGCTGTAGTATGTACCCTAAGACGCTGCTAATTGACTGCCACTTCGCAACTCAGGGGCG GCTGCATTTTAGTAATGGGTCAAATGATTCACTTTTTATGATGCTTCCAAAGGTGCCTTGGCTTC TCTTCCCAACTGACAAATGCCAAAGTTGAGAAAAATGATCATAATTTTAGCATAAACAGAGCAGT

MASLGQILFWSIISIIIILAGAIALIIGFGISGRHSITVTTVASAGNIGEDGILSCTFEPDIKLS DIVIQWLKEGVLGLVHEFKEGKDELSEQDEMFRGRTAVFADQVIVGNASLRLKNVQLTDAGTYKC YIITSKGKGNANLEYKTGAFSMPEVNVDYNASSETLRCEAPRWFPQPTVVWASQVDQGANFSEVS NTSFELNSENVTMKVVSVLYNVTINNTYSCMIENDIAKATGDIKVTESEIKRRSHLQLLNSKASL CVSSFFAISWALLPLSPYLMLK

Important features:

Signal peptide:

amino acids 1-28

Transmembrane domain:

amino acids 258-281

N-glycosylation sites.

amino acids 112-116, 160-164, 190-194, 196-200, 205-209, 216-220, 220-224

N-myristoylation sites.

amino acids 52-58, 126-132, 188-194

TGACGTCAGAATCACCATGGCCAGCTATCCTTACCGGCAGGGCTGCCCAGGAGCTGCAGGACAAG CACCAGGAGCCCCTCCGGGTAGCTACTACCCTGGACCCCCAATAGTGGAGGGCAGTATGGTAGT GGGCTACCCCCTGGTGGTGGTTATGGGGGTCCTGCCCCTGGAGGGCCTTATGGACCACCAGCTGG TGGAGGGCCCTATGGACACCCCAATCCTGGGATGTTCCCCTCTGGAACTCCAGGAGGACCATATG GCGGTGCAGCTCCCGGGGGCCCCTATGGTCAGCCACCTCCAAGTTCCTACGGTGCCCAGCAGCCT GGGCTTTATGGACAGGGTGGCGCCCCTCCCAATGTGGATCCTGAGGCCTACTCCTGGTTCCAGTC GGTGGACTCAGATCACAGTGGCTATATCTCCATGAAGGAGCTAAAGCAGGCCCTGGTCAACTGCA ATTGGTCTTCATTCAATGATGAGACCTGCCTCATGATGATAAACATGTTTGACAAGACCAAGTCA GGCCGCATCGATGTCTACGGCTTCTCAGCCCTGTGGAAATTCATCCAGCAGTGGAAGAACCTCTT CCAGCAGTATGACCGGGACCGCTCGGGCTCCATTAGCTACACAGAGCTGCAGCAAGCTCTGTCCC AAATGGGCTACAACCTGAGCCCCCAGTTCACCCAGCTTCTGGTCTCCCGCTACTGCCCACGCTCT GCCAATCCTGCCATGCAGCTTGACCGCTTCATCCAGGTGTGCACCCAGCTGCAGGTGCTGACAGA GGCCTTCCGGGAGAAGGACACAGCTGTACAAGGCAACATCCGGCTCAGCTTCGAGGACTTCGTCA CCATGACAGCTTCTCGGATGCTATGACCCAACCATCTGTGGAGAGTGGAGTGCACCAGGGACCTT TCCTGGCTTCTTAGAGTGAGAAGTATGTGGACATCTCTTTTTTCCTGTCCCTCTAGAAGAAC ATTCTCCCTTGCTTGATGCAACACTGTTCCAAAAGAGGGTGGAGAGTCCTGCATCATAGCCACCA AATAGTGAGGACCGGGGCTGAGGCCACACAGATAGGGGCCTGATGGAGGAGGAGGATAGAAGTTGA ATGTCCTGATGGCCATGAGCAGTTGAGTGGCACAGCCTGGCACCAGGAGCAGGTCCTTGTAATGG AGTTAGTGTCCAGTCAGCTGAGCTCCACCCTGATGCCAGTGGTGAGTGTTCATCGGCCTGTTACC GTTAGTACCTGTGTTCCCTCACCAGGCCATCCTGTCAAACGAGCCCATTTTCTCCAAAGTGGAAT CTGACCAAGCATGAGAGAGATCTGTCTATGGGACCAGTGGCTTGGATTCTGCCACACCCATAAAT $\tt CCTTGTGTGTTAACTTCTAGCTGCCTGGGGCTGGCCCTGCTCAGACAAATCTGCTCCCTGGGCAT$ ATTTGGGGCCAAAAGTCCAGTGAAATTGTAAGCTTCAATAAAAGGATGAAACTCTGA

MASYPYRQGCPGAAGQAPGAPPGSYYPGPPNSGGQYGSGLPPGGGYGGPAPGGPYGPPAGGGPYG HPNPGMFPSGTPGGPYGGAAPGGPYGQPPPSSYGAQQPGLYGQGGAPPNVDPEAYSWFQSVDSDH SGYISMKELKQALVNCNWSSFNDETCLMMINMFDKTKSGRIDVYGFSALWKFIQQWKNLFQQYDR DRSGSISYTELQQALSQMGYNLSPQFTQLLVSRYCPRSANPAMQLDRFIQVCTQLQVLTEAFREK DTAVOGNIRLSFEDFVTMTASRML

Important features of the protein:

Signal peptide:

amino acids 1-19

N-glycosylation site.

amino acids 147-150

Casein kinase II phosphorylation sites.

amino acids 135-138, 150-153, 202-205, 271-274

N-myristoylation sites.

amino acids 9-14, 15-20, 19-24, 33-38, 34-39, 39-44, 43-48, 61-66, 70-75, 78-83, 83-88, 87-92, 110-115

 $\texttt{CAGG} \underline{\textbf{ATG}} \texttt{CAGGGGCCGCGTGGCAGGGAGCTGCGCTCCTCTGGGCCTGCTCCTGGTCTTCATC}$ TCCCAGGCCTCTTTGCCCGGAGCATCGGTGTTGTGGAGGAGAAAGTTTCCCAAAACTTCGGGACC AACTTGCCTCAGCTCGGACAACCTTCCTCCACTGGCCCCTCTAACTCTGAACATCCGCAGCCCGC ${\tt TCTGGACCCTAGGTCTAATGACTTGGCAAGGGTTCCTCTGAAGCTCAGCGTGCCTCCATCAGATGAGGTTCCTCTGAAGCTCAGCGTGCCTCCATCAGATGAGGTTCCTCTGAAGCTCAGCGTGCCTCCATCAGATGAGGTTCCTCTGAAGCTCAGCGTGCCTCCATCAGATGAGGTTCCTCTGAAGCTCAGCGTGCCTCCATCAGATGAGGTTCCTCTGAAGCTCAGCGTGCCTCCATCAGATGAGGTTCCTCTGAAGCTCAGCGTGCCTCCATCAGATGAGGTTCCTCTGAAGCTCAGCGTGCCTCCATCAGATGAGGTTCCTCTGAAGCTCAGCGTGCCTCCATCAGATGAGGTTCCTCTGAAGCTCAGCGTGCCTCCATCAGATGAGGTTCCTCTGAAGCTCAGCGTGCCTCCATCAGATGAGGTTCCTCTGAAGCTCAGCGTGCCTCCATCAGATGAGTTCAGATGAGTTCAGAGAGTTCAGAGAGTTC$ GCTTCCCACCTGCAGGAGGTTCTGCAGTGCAGAGGTGGCCTCCATCGTGGGGGCCTGCCATG GATTCCTGGCCCCTGAGGATCCTTGGCAGATGATGGCTGCTGCGGCTGAGGACCGCCTGGGGGA AGCGCTGCCTGAAGAACTCTCTTACCTCTCCAGTGCTGCGGCCCTCGCTCCGGGCAGTGGCCCTT TGCCTGGGGAGTCTTCTCCCGATGCCACAGGCCTCTCACCTGAGGCTTCACTCCTCCACCAGGAC CCCTCCTGGTCTCTCATCCACAGGGTTCTGCCTGATCACCCCTGGGGTACCCTGAATCCCAGTG TGTCCTGGGGAGGTGGAGGCCCTGGGACTGGTTGGGGAACGAGGCCCATGCCACACCCTGAGGGA ATCTGGGGTATCAATAATCAACCCCCAGGTACCAGCTGGGGAAATATTAATCGGTATCCAGGAGG CAGCTGGGGAAATATTAATCGGTATCCAGGAGGCAGCTGGGGGAATATTAATCGGTATCCAGGAG $\tt GCAGCTGGGGGAATATTCATCTATACCCAGGTATCAATAACCCATTTCCTCCTGGAGTTCTCCGC$ CCTCCTGGCTCTTCTTGGAACATCCCAGCTGGCTTCCCTAATCCTCCAAGCCCTAGGTTGCAGTG GGGCTAGAGCACGATAGAGGGAAACCCAACATTGGGAGTTAGAGTCCTGCTCCCGCCCCTTGCTG TGTGGGCTCAATCCAGGCCCTGTTAACATGTTTCCAGCACTATCCCCACTTTTCAGTGCCTCCCC

APP_ID=10063730 Page 217 of 322

MQGRVAGSCAPLGLLLVCLHLPGLFARSIGVVEEKVSQNFGTNLPQLGQPSSTGPSNSEHPQPAL
DPRSNDLARVPLKLSVPPSDGFPPAGGSAVQRWPPSWGLPAMDSWPPEDPWQMMAAAAEDRLGEA
LPEELSYLSSAAALAPGSGPLPGESSPDATGLSPEASLLHQDSESRRLPRSNSLGAGGKILSQRP
PWSLIHRVLPDHPWGTLNPSVSWGGGPGTGWGTRPMPHPEGIWGINNQPPGTSWGNINRYPGGS
WGNINRYPGGSWGNINRYPGGSWGNIHLYPGINNPFPPGVLRPPGSSWNIPAGFPNPPSPRLQWG

Important features of the protein:

Signal peptide:

amino acids 1-26

Casein kinase II phosphorylation sites.

amino acids 56-59, 155-158

N-myristoylation sites.

amino acids 48-53, 220-225, 221-226, 224-229, 247-252, 258-263, 259-264, 269-274, 270-275, 280-285, 281-286, 305-310

 ${\tt MGSGLPLVLLLTLLGSSHGTGPGMTLQLKLKESFLTNSSYESSFLELLEKLCLLLHLPSGTSVTL}\\ {\tt HHARSQHHVVCNT}$

Important features:

Signal peptide:

amino acids 1-19

N-glycosylation site.

amino acids 37-41

N-myristoylation sites.

amino acids 15-21, 19-25, 60-66

 ${\tt MANPGLGLLLALGLPFLLARWGRAWGQIQTTSANENSTVLPSSTSSSSDGNLRPEAITAIIVVFS} \\ {\tt LLAALLLAVGLALLVRKLREKRQTEGTYRPSSEEQFSHAAEARAPQDSKETVQGCLPI}$

Important features:

Signal peptide:

amino acids 1-19

Transmembrane domain:

amino acids 56-80

N-glycosylation site.

amino acids 36-40

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 86-90

Tyrosine kinase phosphorylation site.

amino acids 86-94

N-myristoylation sites.

amino acids 7-13, 26-32

GATGAAAAAATAATTGAACAAATAGAGGATATGGTGACTACAGCTTCTACGTACCTGTTTGAAGCCACAGAAAAAAGA AACCATAAACATGCTGATGTTATAGTTGCACCACCTACACTCCCAGGTAGAGATGAACCATACACCAAGCAGTTCACA GAATGTGGAGAAAAGGCGAATACATTCACTTCACCCCTGACCTTCTACTTGGAAAAAAACAAAATGAATATGGACCA CCAGGCAAACTGTTTGTCCATGAGTGGGCTCACCTCCGGTGGGGAGTGTTTGATGAGTACAATGAAGATCAGCCTTTC TACCGTGCTAAGTCAAAAAAATCGAAGCAACAAGGTGTTCCGCAGGTATCTCTGGTAGAAATAGAGTTTATAAGTGT CAAGGAGGCAGCTGTCTTAGTAGAGCATGCAGAATTGATTCTACAACAAAACTGTATGGAAAAGATTGTCAATTCTTT CCTGATAAAGTACAAACAGAAAAAGCATCCATAATGTTTATGCAAAGTATTGATTCTGTTGTTGAATTTTGTAACGAA AAAACCCATAATCAAGAAGCTCCAAGCCTACAAAACATAAAGTGCAATTTTAGAAGTACATGGGAGGTGATTAGCAAT TCTGAGGATTTTAAAAACACCATACCCATGGTGACACCACCTCCTCCACCTGTCTTCTCATTGCTGAAGATCAGTCAA AATAAGCTAATCCAAATAAAAAGCAGTGATGAAAGAAACACACTCATGGCAGGATTACCTACATATCCTCTGGGAGGA ACTTCCATCTGCTCTGGAATTAAATATGCATTTCAGGTGATTGGAGAGCTACATTCCCAACTCGATGGATCCGAAGTA CTGCTGCTGACTGATGGGGAGGATAACACTGCAAGTTCTTGTATTGATGAAGTGAAACAAAGTGGGGCCATTGTTCAT TTTATTGCTTTGGGAAGAGCTGCTGATGAAGCAGTAATAGAGATGAGCAAGATAACAGGAGGAAGTCATTTTTATGTT TCAGATGAAGCTCAGAACAATGGCCTCATTGATGCTTTTGGGGCTCTTACATCAGGAAATACTGATCTCTCCCAGAAG TCCCTTCAGCTCGAAAGTAAGGGATTAACACTGAATAGTAATGCCTGGATGAACGACACTGTCATAATTGATAGTACA GTGGGAAAGGACACGTTCTTTCTCATCACATGGAACAGTCTGCCTCCCAGTATTTCTCTCTGGGATCCCAGTGGAACA ATAATGGAAAATTTCACAGTGGATGCAACTTCCAAAATGGCCTATCTCAGTATTCCAGGAACTGCAAAGGTGGGCACT TGGGCATACAATCTTCAAGCCAAAGCGAACCCAGAAACATTAACTATTACAGTAACTTCTCGAGCAGCAAATTCTTCT GTGCCTCCAATCACAGTGAATGCTAAAATGAATAAGGACGTAAACAGTTTCCCCAGCCCAATGATTGTTTACGCAGAA ATTCTACAAGGATATGTACCTGTTCTTGGAGCCAATGTGACTGCTTTCATTGAATCACAGAATGGACATACAGAAGTT TTGGAACTTTTGGATAATGGTGCAGGCGCTGATTCTTTCAAGAATGATGGAGTCTACTCCAGGTATTTTACAGCATAT ACAGAAAATGGCAGATATAGCTTAAAAGTTCGGGCTCATGGAGGAGCAAACACTGCCAGGCTAAAATTACGGCCTCCA CTGAATAGAGCCGCGTACATACCAGGCTGGGTAGTGAACGGGGAAATTGAAGCAAACCCGCCAAGACCTGAAATTGAT GAGGATACTCAGACCACCTTGGAGGATTTCAGCCGAACAGCATCCGGAGGTGCATTTGTGGTATCACAAGTCCCAAGC CTTCCCTTGCCTGACCAATACCCACCAAGTCAAATCACAGACCTTGATGCCACAGTTCATGAGGATAAGATTATTCTT ACATGGACAGCACCAGGAGATAATTTTGATGTTGGAAAAGTTCAACGTTATATCATAAGAATAAGTGCAAGTATTCTT GATCTAAGAGACAGTTTTGATGATGCTCTTCAAGTAAATACTACTGATCTGTCACCAAAGGAGGCCAACTCCAAGGAA AGCAATTTGACATCAAAAGTATCCAACATTGCACAAGTAACTTTGTTTATCCCTCAAGCAAATCCTGATGACATTGAT CCTACACCTACTCCTACTCCTACTCCTGATAAAAGTCATAATTCTGGAGTTAATATTTCTACGCTGGTATTG TCTGTGATTGGGTCTGTTGTAATTGTTAACTTTATTTTAAGTACCACCATT<u>TGA</u>ACCTTAACGAAGAAAAAATCTTC ATCCTTTTTCATACTGATACCTGGTTGTATATTATTTGATGCAACAGTTTTCTGAAATGATATTTCAAATTGCATCAA

MGLFRGFVFLLVLCLLHQSNTSFIKLNNNGFEDIVIVIDPSVPEDEKIIEQIEDMVTTASTYLFE
ATEKRFFFKNVSILIPENWKENPQYKRPKHENHKHADVIVAPPTLPGRDEPYTKQFTECGEKGEY
IHFTPDLLLGKKQNEYGPPGKLFVHEWAHLRWGVFDEYNEDQPFYRAKSKKIEATRCSAGISGRN
RVYKCQGGSCLSRACRIDSTTKLYGKDCQFFPDKVQTEKASIMFMQSIDSVVEFCNEKTHNQEAP
SLQNIKCNFRSTWEVISNSEDFKNTIPMVTPPPPPVFSLLKISQRIVCLVLDKSGSMGGKDRLNR
MNQAAKHFLLQTVENGSWVGMVHFDSTATIVNKLIQIKSSDERNTLMAGLPTYPLGGTSICSGIK
YAFQVIGELHSQLDGSEVLLLTDGEDNTASSCIDEVKQSGAIVHFIALGRAADEAVIEMSKITGG
SHFYVSDEAQNNGLIDAFGALTSGNTDLSQKSLQLESKGLTLNSNAWMNDTVIIDSTVGKDTFFL
ITWNSLPPSISLWDPSGTIMENFTVDATSKMAYLSIPGTAKVGTWAYNLQAKANPETLTITVTSR
AANSSVPPITVNAKMNKDVNSFPSPMIVYAEILQGYVPVLGANVTAFIESQNGHTEVLELLDNGA
GADSFKNDGVYSRYFTAYTENGRYSLKVRAHGGANTARLKLRPPLNRAAYIPGWVVNGEIEANPP
RPEIDEDTQTTLEDFSRTASGGAFVVSQVPSLPLPDQYPPSQITDLDATVHEDKIILTWTAPGDN
FDVGKVQRYIIRISASILDLRDSFDDALQVNTTDLSPKEANSKESFAFKPENISEENATHIFIAI
KSIDKSNLTSKVSNIAQVTLFIPQANPDDIDPTPTPTPTPDKSHNSGVNISTLVLSVIGSVVI

Signal peptide:

amino acids 1-21

Putative transmembrane domains:

amino acids 284-300, 617-633

Leucine zipper pattern.

amino acids 469-491, 476-498

N-glycosylation site.

amino acids 20-24, 75-79, 340-344, 504-508, 542-546, 588-592, 628-632, 811-815, 832-836, 837-841, 852-856, 896-900

CTCCTTAGGTGGAAACCCTGGGAGTAGAGTACTGACAGCAAAGACCGGGAAAGACCATACGTCCCCGGGCAGGGGTGA CAACAGGTGTCATCTTTTTGATCTCGTGTGTGGCTGCCTTCCTATTTCAAGGAAAGACGCCAAGGTAATTTTGACCCA GAGGAGCAATGATGTAGCCACCTCCTAACCTTCCCTTCTTGAACCCCCAGTTATGCCAGGATTTACTAGAGAGTGTCA ACTCAACCAGCAAGCGGCTCCTTCGGCTTAACTTGTGGTTGGAGGAGAACCTTTGTGGGGCTGCGTTCTCTTAGCA GTGCTCAGAAGTGACTTGCCTGAGGGTGGACCAGAAGAAAGGAAAGGTCCCCTCTTGCTGTTGGCTGCACATCAGGAA AGTAGAGAAGCTGCTCTGTGTGGTGGTTAACTCCAAGAGGCAGAACTCGTTCTAGAAGGAAATGGATGCAAGCAGCTC CGGGGGCCCCAAACGCATGCTTCCTGTGGTCTAGCCCAGGGAAGCCCTTCCGTGGGGGCCCCGGCTTTGAGGGATGCC ACCGGTTCTGGACGCATGGCTGATTCCTGA**ATG**ATGATGGTTCGCCGGGGGCTGCTTGCGTGGATTTCCCGGGTGGTG GTTTTGCTGGTGCTCTCTGTGCTATCTCTGTCCTGTACATGTTGGCCTGCACCCCAAAAGGTGACGAGGAGCAG CGCAACTACGTGAGCAGCCTGAAGCGGCAGATCGCACAGCTCAAGGAGGAGCTGCAGGAGAGAGGAGCAGCTCAGG AATGGGCAGTACCAAGCCAGCGATGCTGCTGGCCTGGGTCTGGACAGGAGCCCCCCAGAGAAAACCCAGGCCGACCTC CCTTTCGATAGCTTTACTCTACAGAAGGTGTACCAGCTGGAGACTGGCCTTACCCGCCACCCCGAGGAGAAGCCTGTG AGGAAGGACAAGCGGGATGAGTTGGTGGAAGCCATTGAATCAGCCTTGGAGACCCTGAACAATCCTGCAGAGAACAGC CCCAATCACCGTCCTTACACGGCCTCTGATTTCATAGAAGGGATCTACCGAACAGAAAGGGACAAAGGGACATTGTAT GAGCTCACCTTCAAAGGGGACCACAAACACGAATTCAAACGGCTCATCTTATTTCGACCATTCAGCCCCATCATGAAA GTGAAAAATGAAAAGCTCAACATGGCCAACACGCTTATCAATGTTATCGTGCCTCTAGCAAAAAAGGGTGGACAAGTTC CGGCAGTTCATGCAGAATTTCAGGGAGATGTGCATTGAGCAGGATGGGAGAGTCCATCTCACTGTTGTTTACTTTGGG AAAGAAGAAATAAATGAAGTCAAAGGAATACTTGAAAACACTTCCAAAGCTGCCAACTTCAGGAACTTTACCTTCATC CAGCTGAATGGAGAATTTTCTCGGGGAAAGGGACTTGATGTTGGAGCCCGCTTCTGGAAGGGAAGCAACGTCCTTCTC TTTTTCTGTGATGTGGACATCTACTTCACATCTGAATTCCTCAATACGTGTAGGCTGAATACACAGCCAGGGAAGAAG $\tt TTCATCAATATAGGTGGGTTTGATCTGGACATCAAAGGCTGGGGCGGAGAGGATGTGCACCTTTATCGCAAGTATCTC$ CACAGCAACCTCATAGTGGTACGGACGCCTGTGCGAGGACTCTTCCACCTCTGGCATGAGAAGCGCTGCATGGACGAG CTGACCCCGAGCAGTACAAGATGTGCATGCAGTCCAAGGCCATGAACGAGGCATCCCACGGCCAGCTGGGCATGCTG GAAGGATTGTGGGAGACACTTTTTCTTTCCTTTTGCAATTACTGAAAGTGGCTGCAACAGAGAAAAAGACTTCCATAAA GGACGACAAAAGAATTGGACTGATGGGTCAGAGATGAGAAAGCCTCCGATTTCTCTCTGTTGGGCTTTTTACAACAGA AATCAAAATCTCCGCTTTGCCTGCAAAAGTAACCCAGTTGCACCCTGTGAAGTGTCTGACAAAGGCAGAATGCTTGTG AGATTATAAGCCTAATGGTGTGGAGGTTTTGATGGTGTTTACAATACACTGAGACCTGTTGTTTTTGTGTGCTCATTGA AGTGAGTACATTAAGTAAAATAAAATGGACCAGAAAAGAAAAGAAACCATAAATATCGTGTCATATTTTCCCCAAGAT TTTTTTCCCTTGTGAGTTATAGTCTGCTTATTTAATTACCACTTTGCAAGCCTTACAAGAGAGCACAAGTTGGCCTAC ATTTTTATATTTTTTAAGAAGATACTTTGAGATGCATTATGAGAACTTTCAGTTCAAAGCATCAAATTGATGCCATAT AATACAGACGTACAGATACTTTCTCTGAAGAGTATTTTCGAAGAGGGGGCAACTGAACACTGGAGGAAAAGAAAATGAC ACTTTCTGCTTTACAGAAAAGGAAACTCATTCAGACTGGTGATATCGTGATGTACCTAAAAGTCAGAAACCACATTTT GAAAGATCAATCCATCTGCCAGAATCTAGTGGGATGGAAGTTTTTGCTACATGTTATCCACCCCAGGCCAGGTGGAAG TAACTGAATTATTTTTAAATTAAGCAGTTCTACTCAATCACCAAGATGCTTCTGAAAATTGCATTTTATTACCATTT ATGCATGAGCTAATTATCTCTTTGAGTCCTTGCTTCTGTTTGCTCACAGTAAACTCATTGTTTAAAAAGCTTCAAGAAC CCATGAATGGAAGGTGGTATTGCACAGCTAATAAAATATGATTTGTGGATATGAA

MMMVRRGLLAWISRVVVLLVLLCCAISVLYMLACTPKGDEEQLALPRANSPTGKEGYQAVLQEWE EQHRNYVSSLKRQIAQLKEELQERSEQLRNGQYQASDAAGLGLDRSPPEKTQADLLAFLHSQVDK AEVNAGVKLATEYAAVPFDSFTLQKVYQLETGLTRHPEEKPVRKDKRDELVEAIESALETLNNPA ENSPNHRPYTASDFIEGIYRTERDKGTLYELTFKGDHKHEFKRLILFRPFSPIMKVKNEKLNMAN TLINVIVPLAKRVDKFRQFMQNFREMCIEQDGRVHLTVVYFGKEEINEVKGILENTSKAANFRNF TFIQLNGEFSRGKGLDVGARFWKGSNVLLFFCDVDIYFTSEFLNTCRLNTQPGKKVFYPVLFSQY NPGIIYGHHDAVPPLEQQLVIKKETGFWRDFGFGMTCQYRSDFINIGGFDLDIKGWGGEDVHLYR KYLHSNLIVVRTPVRGLFHLWHEKRCMDELTPEQYKMCMQSKAMNEASHGQLGMLVFRHEIEAHL RKQKQKTSSKKT

Important features:

Signal peptide:

amino acids 1-27

N-glycosylation sites.

amino acids 315-319, 324-328

N-myristoylation sites.

amino acids 96-102, 136-142, 212-218, 311-317, 339-345, 393-399

Amidation site.

amino acids 377-381

GAGACTGCAGAGGGAGATAAAGAGAGAGGGCAAAGAGGCAGCAAGAGATTTGTCCTGGGGATCCA GAAACCCATGATACCCTACTGAACACCGAATCCCCTGGAAGCCCACAGAGACAGAGACAGCAAGA CCTCCCTCTCTCTCTGCCTGTCCTAGTCCTCTAGTCCTCAAATTCCCAGTCCCCTGCACCCCTTC GTCAACACTGGACGTATGAGGGCCCACATGGTCAGGACCATTGGCCAGCCTCTTACCCTGAGTGT TGCTCTGCAGCCCCACGGATATGACCAGCCTGGCACCGAGCCTTTGGACCTGCACAACAATGGCC ACACAGTGCAACTCTCTCTGCCCTCTACCCTGTATCTGGGTGGACTTCCCCGAAAATATGTAGCT GCCCAGCTCCACCTGCACTGGGGTCAGAAAGGATCCCCAGGGGGGTCAGAACACCAGATCAACAG TGAAGCCACATTTGCAGAGCTCCACATTGTACATTATGACTCTGATTCCTATGACAGCTTGAGTG AATATAGCTTATGAACACATTCTGAGTCACTTGCATGAAGTCAGGCATAAAGATCAGAAGACCTC AGTGCCTCCCTTCAACCTAAGAGAGCTGCTCCCCAAACAGCTGGGGCAGTACTTCCGCTACAATG GCTCGCTCACAACTCCCCCTTGCTACCAGAGTGTGCTCTGGACAGTTTTTTATAGAAGGTCCCAG ATTTCAATGGAACAGCTGGAAAAGCTTCAGGGGACATTGTTCTCCACAGAAGAGGAGCCCTCTAA GCTTCTGGTACAGAACTACCGAGCCCTTCAGCCTCTCAATCAGCGCATGGTCTTTGCTTCTTTCA TGTCTCTGCCTTCTCCTGGCTGTTTATTTCATTGCTAGAAAGATTCGGAAGAAGAGGCTGGAAAA CCGAAAGAGTGTGGTCTTCACCTCAGCACAAGCCACGACTGAGGCA**TAA**ATTCCTTCTCAGATAC CATGGATGTGGATGACTTCCCTTCATGCCTATCAGGAAGCCTCTAAAATGGGGTGTAGGATCTGG CCAGAAACACTGTAGGAGTAGTAAGCAGATGTCCTCCTTCCCCTGGACATCTCTTAGAGAGGAAT GGACCCAGGCTGTCATTCCAGGAAGAACTGCAGAGCCTTCAGCCTCTCCAAACATGTAGGAGGAA ATGAGGAAATCGCTGTTGTTAATGCAGAGANCAAACTCTGTTTAGTTGCAGGGGAAGTTTGGG ATATACCCCAAAGTCCTCTACCCCCTCACTTTTATGGCCCTTTCCCTAGATATACTGCGGGATCT CTCCTTAGGATAAAGAGTTGCTGTTGAAGTTGTATATTTTTGATCAATATATTTTGGAAATTAAAG TTTCTGACTTT

MLFSALLLEVIWILAADGGQHWTYEGPHGQDHWPASYPECGNNAQSPIDIQTDSVTFDPDLPALQ
PHGYDQPGTEPLDLHNNGHTVQLSLPSTLYLGGLPRKYVAAQLHLHWGQKGSPGGSEHQINSEAT
FAELHIVHYDSDSYDSLSEAAERPQGLAVLGILIEVGETKNIAYEHILSHLHEVRHKDQKTSVPP
FNLRELLPKQLGQYFRYNGSLTTPPCYQSVLWTVFYRRSQISMEQLEKLQGTLFSTEEEPSKLLV
QNYRALQPLNQRMVFASFIQAGSSYTTGEMLSLGVGILVGCLCLLLAVYFIARKIRKKRLENRKS
VVFTSAQATTEA

Important features of the protein:

Signal peptide:

amino acids 1-15

Transmembrane domain:

amino acids 291-310

N-glycosylation site.

amino acids 213-216

Eukaryotic-type carbonic anhydrases proteins amino acids 197-245, 104-140, 22-69

APP ID=10063730

TGCCGCTGCCGCCGCTGCTGTTGCTCCTGGCGGCGCCTTGGGGACGGGCAGTTCCCTGTGTC TCTGGTGGTTTGCCTAAACCTGCAAACATCACCTTCTTATCCATCAACATGAAGAATGTCCTACA ATTGGCCCACCAGAGGTGGCACTGACTACAGATGAGAAGTCCATTTCTGTTGTCCTGACAGCTCC AGAGAAGTGGAAGAGAATCCAGAAGACCTTCCTGTTTCCATGCAACAAATATACTCCAATCTGA ACGCTGGTGCTCACCTGGCTGGAGCCGAACACTCTTTACTGCGTACACGTGGAGTCCTTCGTCCC CAGAGTTCAAGGCTAAAATCATCTTCTGGTATGTTTTGCCCATATCTATTACCGTGTTTCTTTTT TCTGTGATGGGCTATTCCATCTACCGATATATCCACGTTGGCAAAGAGAAACACCCCAGCAAATTT GATTTTGATTTATGGAAATGAATTTGACAAAAGATTCTTTGTGCCTGCTGAAAAAATCGTGATTA ACTTTATCACCCTCAATATCTCGGATGATTCTAAAATTTCTCATCAGGATATGAGTTTACTGGGA AAAAGCAGTGATGTATCCAGCCTTAATGATCCTCAGCCCAGCGGGAACCTGAGGCCCCCTCAGGA GGAAGAGGAGGTGAAACATTTAGGGTATGCTTCGCATTTGATGGAAATTTTTTTGTGACTCTGAAG AAAACACGGAAGGTACTTCTCTCACCCAGCAAGAGTCCCTCAGCAGAACAATACCCCCGGATAAA ACAGTCATTGAATATGAATATGATGTCAGAACCACTGACATTTGTGCGGGGCCTGAAGAGCAGGA TCTTGGGCCCGCAAACGTTACAGTACTCATACACCCCTCAGCTCCAAGACTTAGACCCCCTGGCG CAGGAGCACACAGACTCGGAGGAGGGGCCGGAGGAAGAGCCATCGACGACCCTGGTCGACTGGGA TCCCCAAACTGGCAGGCTGTGTATTCCTTCGCTGTCCAGCTTCGACCAGGATTCAGAGGGCTGCG CCAGACAGGCCACCAGGAGAAAATGAAACCTATCTCATGCAATTCATGGAGGAATGGGGGTTATA TGTGCAGATGGAAAACTGATGCCAACACTTCCTTTTGCCTTTTGTTTCCTGTGCAAACAAGTGAG TCACCCCTTTGATCCCAGCCATAAAGTACCTGGGATGAAAGAAGTTTTTTCCAGTTTGTCAGTGT GGTCTCTTAACAATGATGGTGGGCCTCTGGAGTCCAGGGGCTGGCCGGTTGTTCTATGCAGAGAA

MSYNGLHQRVFKELKLLTLCSISSQIGPPEVALTTDEKSISVVLTAPEKWKRNPEDLPVSMQQIY
SNLKYNVSVLNTKSNRTWSQCVTNHTLVLTWLEPNTLYCVHVESFVPGPPRRAQPSEKQCARTLK
DQSSEFKAKIIFWYVLPISITVFLFSVMGYSIYRYIHVGKEKHPANLILIYGNEFDKRFFVPAEK
IVINFITLNISDDSKISHQDMSLLGKSSDVSSLNDPQPSGNLRPPQEEEEVKHLGYASHLMEIFC
DSEENTEGTSLTQQESLSRTIPPDKTVIEYEYDVRTTDICAGPEEQELSLQEEVSTQGTLLESQA
ALAVLGPQTLQYSYTPQLQDLDPLAQEHTDSEEGPEEPSTTLVDWDPQTGRLCIPSLSSFDQDS
EGCEPSEGDGLGEEGLLSRLYEEPAPDRPPGENETYLMQFMEEWGLYVQMEN

Important features:

Signal peptide:

amino acids 1-28

Transmembrane domain:

amino acids 140-163

N-glycosylation sites.

amino acids 71-74, 80-83, 89-92, 204-207, 423-426

GAGGAGCGGGCCGAGGACTCCAGCGTGCCCAGGTCTGGCATCCTGCACTTGCTGCCCTCTGACAC CTGGGAAGATGGCCGGCCCGTGGACCTTCACCCTTCTCTGTGGTTTGCTGGCAGCCACCTTGATC CAAGCCACCCTCAGTCCCACTGCAGTTCTCATCCTCGGCCCAAAAGTCATCAAAGAAAAGCTGAC ACAGGAGCTGAAGGACCACAACGCCACCAGCATCCTGCAGCAGCTGCCGCTGCTCAGTGCCATGC GGGAAAAGCCAGCCGGAGGCATCCCTGTGCTGGGCAGCCTGGTGAACACCGTCCTGAAGCACATC ATCTGGCTGAAGGTCATCACAGCTAACATCCTCCAGCTGCAGGTGAAGCCCTCGGCCAATGACCA GGAGCTGCTAGTCAAGATCCCCCTGGACATGGTGGCTGGATTCAACACGCCCCTGGTCAAGACCA TCGTGGAGTTCCACATGACGACTGAGGCCCAAGCCACCATCCGCATGGACACCAGTGCAAGTGGC CCCACCGCCTGGTCCTCAGTGACTGTGCCACCAGCCATGGGAGCCTGCGCATCCAACTGCTGTA TAAGCTCTCCTGGTGAACGCCTTAGCTAAGCAGGTCATGAACCTCCTAGTGCCATCCCTGC CTCCTGCAGCTGGTGAAGGTGCCCATTTCCCTCAGCATTGACCGTCTGGAGTTTGACCTTCTGTA TCCTGCCATCAAGGGTGACACCATTCAGCTCTACCTGGGGGCCAAGTTGTTGGACTCACAGGGAA AGGTGACCAAGTGGTTCAATAACTCTGCAGCTTCCCTGACAATGCCCACCCTGGACAACATCCCG TTCAGCCTCATCGTGAGTCAGGACGTGGTGAAAGCTGCAGTGGCTGCTGTGCTCTCCCAGAAGA ATTCATGGTCCTGTTGGACTCTGTGCTTCCTGAGAGTGCCCATCGGCTGAAGTCAAGCATCGGGC TGATCAATGAAAAGGCTGCAGATAAGCTGGGATCTACCCAGATCGTGAAGATCCTAACTCAGGAC ACTCCCGAGTTTTTTATAGACCAAGGCCATGCCAAGGTGGCCCAACTGATCGTGCTGGAAGTGTT TCCCTCCAGTGAAGCCCTCCGCCCTTTGTTCACCCTGGGCATCGAAGCCAGCTCGGAAGCTCAGT TTTACACCAAAGGTGACCAACTTATACTCAACTTGAATAACATCAGCTCTGATCGGATCCAGCTG ATGAACTCTGGGATTGGCTGGTTCCAACCTGATGTTCTGAAAAACATCATCACTGAGATCATCCA CTCCATCCTGCTGCCGAACCAGAATGGCAAATTAAGATCTGGGGTCCCAGTGTCATTGGTGAAGG CCTTGGGATTCGAGGCAGCTGAGTCCTCACTGACCAAGGATGCCCTTGTGCTTACTCCAGCCTCC $\tt TTGTGGAAACCCAGCTCTCCTGTCTCCCAG{\color{red}{\textbf{TGA}}} AGACTTGGATGGCAGCCATCAGGGAAGGCTGG$ CCTGTGAAAAA

MAGPWTFTLLCGLLAATLIQATLSPTAVLILGPKVIKEKLTQELKDHNATSILQQLPLLSAMREK
PAGGIPVLGSLVNTVLKHIIWLKVITANILQLQVKPSANDQELLVKIPLDMVAGFNTPLVKTIVE
FHMTTEAQATIRMDTSASGPTRLVLSDCATSHGSLRIQLLYKLSFLVNALAKQVMNLLVPSLPNL
VKNQLCPVIEASFNGMYADLLQLVKVPISLSIDRLEFDLLYPAIKGDTIQLYLGAKLLDSQGKVT
KWFNNSAASLTMPTLDNIPFSLIVSQDVVKAAVAAVLSPEEFMVLLDSVLPESAHRLKSSIGLIN
EKAADKLGSTQIVKILTQDTPEFFIDQGHAKVAQLIVLEVFPSSEALRPLFTLGIEASSEAQFYT
KGDQLILNLNNISSDRIQLMNSGIGWFQPDVLKNIITEIIHSILLPNQNGKLRSGVPVSLVKALG
FEAAESSLTKDALVLTPASLWKPSSPVSQ

Important features of the protein:
Signal peptide:

amino acids 1-21

N-glycosylation sites.

amino acids 48-51, 264-267, 401-404

Glycosaminoglycan attachment site.

amino acids 412-415

LBP / BPI / CETP family proteins.

amino acids 407-457

GAGAGAAGTCAGCCTGGCAGAGAGACTCTGAAATGAGGGATTAGAGGTGTTCAAGGAGCAAGAGC TTCAGCCTGAAGACAAGGGAGCAGTCCCTGAAGACGCTTCTACTGAGAGGTCTGCCATGGCCTCT CTTGGCCTCCAACTTGTGGGCTACATCCTAGGCCTTCTGGGGCTTTTGGGCACACTGGTTGCCAT GCTGCTCCCCAGCTGGAAAACAAGTTCTTATGTCGGTGCCAGCATTGTGACAGCAGTTGGCTTCT ACCCTTCTGGGCCTGCCCGCTGACATCCAGGCTGCCCAGGCCATGATGGTGACATCCAGTGCAAT CTCCTCCCTGGCCTGCATTATCTCTGTGGTGGGCATGAGATGCACAGTCTTCTGCCAGGAATCCC GAGCCAAAGACAGAGTGGCGGTAGCAGGTGGAGTCTTTTTCATCCTTGGAGGCCTCCTGGGATTC ATTCCTGTTGCCTGGAATCTTCATGGGATCCTACGGGACTTCTACTCACCACTGGTGCCTGACAG CATGAAATTTGAGATTGGAGAGGCTCTTTACTTGGGCATTATTTCTTCCCTGTTCTCCCTGATAG CTGGAATCATCCTCTGCTTTTCCTGCTCATCCCAGAGAAATCGCTCCAACTACTACGATGCCTAC CAAGCCCAACCTCTTGCCACAAGGAGCTCTCCAAGGCCTGGTCAACCTCCCAAAGTCAAGAGTGA GTTCAATTCCTACAGCCTGACAGGGTATGTGTGAAGAACCAGGGGCCAGAGCTGGGGGGTGGCTG GGTCTGTGAAAAACAGTGGACAGCACCCCGAGGGCCACAGGTGAGGGACACTACCACTGGATCGT GTCAGAAGGTGCTGAGGATAGACTGACTTTGGCCATTGGATTGAGCAAAGGCAGAAATGGGG GCTAGTGTAACAGCATGCAGGTTGAATTGCCAAGGATGCTCGCCATGCCAGCCTTTCTGTTTTCC TCACCTTGCTGCTCCCTGCCCTAAGTCCCCAACCTCAACTTGAAACCCCATTCCCTTAAGCCA GGACTCAGAGGATCCCTTTGCCCTCTGGTTTACCTGGGACTCCATCCCCAAACCCACTAATCACA GCTGGGGATGGGAAGGAAGCAGTGGCTTTTGTGGGCATTGCTCTAACCTACTTCTCAAGCTTC CCTCCAAAGAAACTGATTGGCCCTGGAACCTCCATCCCACTCTTGTTATGACTCCACAGTGTCCA GACTAATTTGTGCATGAACTGAAATAAAACCATCCTACGGTATCCAGGGAACAGAAAGCAGGATG CAGGATGGGAGGACAGGAAGGCAGCCTGGGACATTTAAAAAAATA

MASLGLQLVGYILGLLGLLGTLVAMLLPSWKTSSYVGASIVTAVGFSKGLWMECATHSTGITQCD
IYSTLLGLPADIQAAQAMMVTSSAISSLACIISVVGMRCTVFCQESRAKDRVAVAGGVFFILGGL
LGFIPVAWNLHGILRDFYSPLVPDSMKFEIGEALYLGIISSLFSLIAGIILCFSCSSQRNRSNYY
DAYQAQPLATRSSPRPGQPPKVKSEFNSYSLTGYV

Important features of the protein:

Signal peptide:

amino acids 1-24

Transmembrane domains:

amino acids 82-102, 117-140, 163-182

N-glycosylation site.

amino acids 190-193

PMP-22 / EMP / MP20 family proteins.

amino acids 46-59

CCCGCGTTCTCTTCCACCTTTCTCTTCTCCCACCTTAGACCTCCCTTCCTGCCCTCCTTTCCT GCCCACCGCTGCTTCCTGGCCCTTCTCCGACCCCGCTCTAGCAGCAGACCTCCTGGGGTCTGTGG $\mathtt{ACCAGCGGCCTGACCCTGGGGAAAGG}$ \mathtt{ATG} $\mathtt{GTTCCCGAGGTGAGGGTCCTCTCCTCCTTGCTGGGAACG}$ CCATGGGAAGAGATACTCCCCCGGCGAGAGCTGGCACCCCTACTTGGAGCCACAAGGCCTGATGT ACTGCCTGCGCTGTACCTGCTCAGAGGGCGCCCATGTGAGTTGTTACCGCCTCCACTGTCCGCCT GTCCACTGCCCCCAGCCTGTGACGGAGCCACAGCAATGCTGTCCCAAGTGTGTGGAACCTCACAC TCCCTCTGGACTCCGGGCCCCACCAAAGTCCTGCCAGCACAACGGGACCATGTACCAACACGGAG AGATCTTCAGTGCCCATGAGCTGTTCCCCTCCCGCCTGCCCAACCAGTGTGTCCTCTGCAGCTGC ACAGAGGGCCAGATCTACTGCGGCCTCACAACCTGCCCCGAACCAGGCTGCCCAGCACCCCTCCC ACTGCCAGACTCCTGCCAAGCCTGCAAAGATGAGGCAAGTGAGCAATCGGATGAAGAGGACA GTGTGCAGTCGCTCCATGGGGTGAGACATCCTCAGGATCCATGTTCCAGTGATGCTGGGAGAAAG AGAGGCCCGGGCACCCCACCGGCCTCAGCGCCCCTCTGAGCTTCATCCCTCGCCACTT CAGACCCAAGGGAGCAGCACAACTGTCAAGATCGTCCTGAAGGAGAAACATAAGAAAGCCT GTGTGCATGGCGGGAAGACGTACTCCCACGGGGAGGTGTGGCACCCGGCCTTCCGTGCCTTCGGC CCCTTGCCCTGCATCCTATGCACCTGTGAGGATGGCCGCCAGGACTGCCAGCGTGTGACCTGTCC CACCGAGTACCCCTGCCGTCACCCCGAGAAAGTGGCTGGGAAGTGCTGCAAGATTTGCCCAGAGG ACAAAGCAGACCCTGGCCACAGTGAGATCAGTTCTACCAGGTGTCCCAAGGCACCGGGCCGGGTC CTCGTCCACACATCGGTATCCCCAAGCCCAGACAACCTGCGTCGCTTTGCCCTGGAACACGAGGC CTCGGACTTGGTGGAGATCTACCTCTGGAAGCTGGTAAAAGATGAGGAAACTGAGGCTCAGAGAG GTGAAGTACCTGGCCCAAGGCCACACAGCCAGAATCTTCCACTTGACTCAGATCAAGAAAGTCAG GAAGCAAGACTTCCAGAAAGAGGCACAGCACTTCCGACTGCTCGCTGGCCCCCACGAAGGTCACT GGAACGTCTTCCTAGCCCAGACCCTGGAGCTGAAGGTCACGGCCAGTCCAGACAAAGTGACCAAG ACATAACAAAGACC**TAA**CAGTTGCAGATATGAGCTGTATAATTGTTGTTATTATATAATAAAA

MVPEVRVLSSLLGLALLWFPLDSHARARPDMFCLFHGKRYSPGESWHPYLEPQGLMYCLRCTCSE
GAHVSCYRLHCPPVHCPQPVTEPQQCCPKCVEPHTPSGLRAPPKSCQHNGTMYQHGEIFSAHELF
PSRLPNQCVLCSCTEGQIYCGLTTCPEPGCPAPLPLPDSCCQACKDEASEQSDEEDSVQSLHGVR
HPQDPCSSDAGRKRGPGTPAPTGLSAPLSFIPRHFRPKGAGSTTVKIVLKEKHKKACVHGGKTYS
HGEVWHPAFRAFGPLPCILCTCEDGRQDCQRVTCPTEYPCRHPEKVAGKCCKICPEDKADPGHSE
ISSTRCPKAPGRVLVHTSVSPSPDNLRRFALEHEASDLVEIYLWKLVKDEETEAQRGEVPGPRPH
SQNLPLDSDQESQEARLPERGTALPTARWPPRRSLERLPSPDPGAEGHGQSRQSDQDITKT

Signal peptide:

amino acids 1-25

GACAGCTGTGTCTCGATGGAGTAGACTCTCAGAACAGCGCAGTTTGCCCTCCGCTCACGCAGAGCCTCTCC ${\tt TCCGTTTCCATGCCGTGAGGTCCATTCACAGAACACATCCATGGCTCATGCTCAGTTTTGGTTCTGAGTC}$ TCCTCAAGCTGGGATCAGGGCAGTGGCAGGTGTTTGGGCCAGACAAGCCTGTCCAGGCCTTGGTGGGGGAG GACGCAGCATTCTCCTGTTTCCTGTCTCCTAAGACCAATGCAGAGGCCATGGAAGTGCGGTTCTTCAGGGG $\tt CCAGTTCTCTAGCGTGGTCCACCTCTACAGGGACGGGAAGGACCAGCCATTTATGCAGATGCCACAGTATC$ AAGGCAGGACAAAACTGGTGAAGGATTCTATTGCGGAGGGGCGCATCTCTCTGAGGCTGGAAAACATTACT GTGTTGGATGCTGGCCTCTATGGGTGCAGGATTAGTTCCCAGTCTTACTACCAGAAGGCCATCTGGGAGCT ACAGGTGTCAGCACTGGGCTCAGTTCCTCTCTCATTTCCATCACGGGATATGTTGATAGAGACATCCAGCTAC TCTGTCAGTCCTCGGGCTGGTTCCCCCGGCCCACAGCGAAGTGGAAAGGTCCACAAGGACAGGATTTGTCC ACAGACTCCAGGACAAACAGAGACATGCATGCCTGTTTGATGTGGAGATCTCTCTGACCGTCCAAGAGAA CGCCGGGAGCATATCCTGTTCCATGCGGCATGCTCATCTGAGCCGAGAGGTGGAATCCAGGGTACAGATAG GAGATACCTTTTTCGAGCCTATATCGTGGCACCTGGCTACCAAAGTACTGGGAATACTCTGCTGTGGCCTA TTTTTTGGCATTGTTGGACTGAAGATTTTCTTCTCCAAATTCCAGTGGAAAATCCAGGCGGAACTGGACTG GAGAAGAAAGCACGGACAGGCAGAATTGAGAGACGCCCGGAAACACGCAGTGGAGGTGACTCTGGATCCAG AGACGGCTCACCCGAAGCTCTGCGTTTCTGATCTGAAAACTGTAACCCATAGAAAAGCTCCCCAGGAGGTG CCTCACTCTGAGAAGAGATTTACAAGGAAGAGTGTGGTGGCTTCTCAGAGTTTCCAAGCAGGAAACATTA CTGGGAGGTGGACGGACACAATAAAAGGTGGCGCGTGGGAGTGTGCCGGGATGATGTGGACAGGAGGA AGGAGTACGTGACTTTGTCTCCCGATCATGGGTACTGGGTCCTCAGACTGAATGGAGAACATTTGTATTTC ACATTAAATCCCCGTTTTATCAGCGTCTTCCCCAGGACCCCACCTACAAAAATAGGGGTCTTCCTGGACTA AAGGCTTATTGAGGCCCTACATTGAGTATCCGTCCTATAATGAGCAAAATGGAACTCCCATAGTCATCTGC CCAGTCACCCAGGAATCAGAGAAGAGGCCTCTTGGCAAAGGGCCTCTGCAATCCCAGAGACAAGCAACAG TGAGTCCTCCTCACAGGCAACCACGCCCTTCCTCCCCAGGGGTGAAATGTAGGATGAATCACATCCCACAT TCTTCTTTAGGGATATTAAGGTCTCTCCCAGATCCAAAGTCCCGCAGCAGCCGGCCAAGGTGGCTTCCA GATGAAGGGGGACTGGCCTGTCCACATGGGAGTCAGGTGTCATGGCTGCCCTGAGCTGGGAGGAAGAAGG AACCGTCAGGAATTCCCATCTCACAGGCTGTGGTGTAGATTAAGTAGACAAGGAATGTGAATAATGCTTAG ATCTTATTGATGACAGAGTGTATCCTAATGGTTTGTTCATTATATTACACTTTCAGTAAAAAAA

MALMLSLVLSLLKLGSGQWQVFGPDKPVQALVGEDAAFSCFLSPKTNAEAMEVRFFRGQFSSVVH
LYRDGKDQPFMQMPQYQGRTKLVKDSIAEGRISLRLENITVLDAGLYGCRISSQSYYQKAIWELQ
VSALGSVPLISITGYVDRDIQLLCQSSGWFPRPTAKWKGPQGQDLSTDSRTNRDMHGLFDVEISL
TVQENAGSISCSMRHAHLSREVESRVQIGDTFFEPISWHLATKVLGILCCGLFFGIVGLKIFFSK
FQWKIQAELDWRRKHGQAELRDARKHAVEVTLDPETAHPKLCVSDLKTVTHRKAPQEVPHSEKRF
TRKSVVASQSFQAGKHYWEVDGGHNKRWRVGVCRDDVDRRKEYVTLSPDHGYWVLRLNGEHLYFT
LNPRFISVFPRTPPTKIGVFLDYECGTISFFNINDQSLIYTLTCRFEGLLRPYIEYPSYNEQNGT
PIVICPVTQESEKEASWQRASAIPETSNSESSSQATTPFLPRGEM

Signal peptide:

amino acids 1-17

Transmembrane domain:

amino acids 239-255

 ${\tt AACAGACGTTCCCTCGCGGCCCTGGCACCTCTAACCCCAGAC{\color{red} {\bf ATG}}{\tt CTGCTGCTGCTGCCCCT}}$ GCTCTGGGGGAGGGAGGGCGGAAGGACAGACAAGTAAACTGCTGACGATGCAGAGTTCCGTGA CGGTGCAGGAAGGCCTGTGTGTCCATGTGCCCTGCTCCTTCTCCTACCCCTCGCATGGCTGGATT TACCCTGGCCCAGTAGTTCATGGCTACTGGTTCCGGGAAGGGGCCAATACAGACCAGGATGCTCC AGTGGCCACAAACAACCCAGCTCGGGCAGTGTGGGAGGAGACTCGGGACCGATTCCACCTCCTTG GGGACCCACATACCAAGAATTGCACCCTGAGCATCAGAGATGCCAGAAGAAGTGATGCGGGGAGA TACTTCTTTCGTATGGAGAAAGGAAGTATAAAATGGAATTATAAACATCACCGGCTCTCTGTGAA TGTGACAGCCTTGACCCACAGGCCCAACATCCTCATCCCAGGCACCCTGGAGTCCGGCTGCCCCC AGAATCTGACCTGCTCTGTGCCCTGGGCCTGTGAGCAGGGGACACCCCCTATGATCTCCTGGATA GGGACCTCCGTGTCCCCCCTGGACCCCTCCACCACCGCTCCTCGGTGCTCACCCTCATCCCACA GCCCCAGGACCATGGCACCAGCCTCACCTGTCAGGTGACCTTCCCTGGGGCCAGCGTGACCACGA ACAAGACCGTCCATCTCAACGTGTCCTACCCGCCTCAGAACTTGACCATGACTGTCTTCCAAGGA GACGGCACAGTATCCACAGTCTTGGGAAATGGCTCATCTCTGTCACTCCCAGAGGGCCAGTCTCT GCGCCTGGTCTGTGCAGTTGATGCAGTTGACAGCAATCCCCCTGCCAGGCTGAGCCTGAGCTGGA GAGGCCTGACCCTGTGCCCCTCACAGCCCTCAAACCCGGGGGTGCTGGAGCTGCCTTGGGTGCAC CTGAGGGATGCAGCTGAATTCACCTGCAGAGCTCAGAACCCTCTCGGCTCTCAGCAGGTCTACCT GAACGTCTCCCTGCAGAGCCAAAGCCACATCAGGAGTGACTCAGGGGGTGGTCGGGGGAGCTGGAG CCACAGCCCTGGTCTTCCTGTCCTTCTGCGTCATCTTCGTTGTAGTGAGGTCCTGCAGGAAGAAA TCGGCAAGGCCAGCAGCGGGCGTGGGAGATACGGGCATAGAGGATGCAAACGCTGTCAGGGGTTC AGCCTCTCAGGGGCCCCTGACTGAACCTTGGGCAGAAGACAGTCCCCCAGACCAGCCTCCCCCAG CTTCTGCCCGCTCCTCAGTGGGGGAAGGAGCTCCAGTATGCATCCCTCAGCTTCCAGATGGTG AAGCCTTGGGACTCGCGGGGACAGGAGGCCACTGACACCGAGTACTCGGAGATCAAGATCCACAG ATGAGAAACTGCAGAGACTCACCCTGATTGAGGGATCACAGCCCCTCCAGGCAAGGGAGAAGTCA GAGGCTGATTCTTGTAGAATTAACAGCCCTCAACGTGATGAGCTATGATAACACTATGAATTATG TGCAGAGTGAAAAGCACACAGGCTTTAGAGTCAAAGTATCTCAAACCTGAATCCACACTGTGCCC TCCCTTTTATTTTTTAACTAAAAGACAGACAAATTCCTA

MLLLLPLLWGRERAEGQTSKLLTMQSSVTVQEGLCVHVPCSFSYPSHGWIYPGPVVHGYWFREG
ANTDQDAPVATNNPARAVWEETRDRFHLLGDPHTKNCTLSIRDARRSDAGRYFFRMEKGSIKWNY
KHHRLSVNVTALTHRPNILIPGTLESGCPQNLTCSVPWACEQGTPPMISWIGTSVSPLDPSTTRS
SVLTLIPQPQDHGTSLTCQVTFPGASVTTNKTVHLNVSYPPQNLTMTVFQGDGTVSTVLGNGSSL
SLPEGQSLRLVCAVDAVDSNPPARLSLSWRGLTLCPSQPSNPGVLELPWVHLRDAAEFTCRAQNP
LGSQQVYLNVSLQSKATSGVTQGVVGGAGATALVFLSFCVIFVVVRSCRKKSARPAAGVGDTGIE
DANAVRGSASQGPLTEPWAEDSPPDQPPPASARSSVGEGELQYASLSFQMVKPWDSRGQEATDTE
YSEIKIHR

Signal peptide:

amino acids 1-15

Transmembrane domain:

amino acids 351-370

 ${\tt CCAAGGAAAGTGCAGCTGAGACTCAGACAAGATTACA} {\tt ATG} {\tt AACCAACTCAGCTTCCTGCTGTTTC}$ TCTTCGTCTCCATCTCTGCCCAGAAGCTGCAAGGAAATCAAAGACGAATGTCCTAGTGCATTTGA TGGCCTGTATTTTCTCCGCACTGAGAATGGTGTTATCTACCAGACCTTCTGTGACATGACCTCTG GGGGTGGCGGCTGGACCCTGGTGGCCAGCGTGCATGAGAATGACATGCGTGGGAAGTGCACGGTG GGCGATCGCTGGTCCAGTCAGCAGGGCAGCAAAGCAGACTACCCAGAGGGGGACGGCAACTGGGC CAACTACAACACCTTTGGATCTGCAGAGGCGGCCACGAGCGATGACTACAAGAACCCTGGCTACT ACGACATCCAGGCCAAGGACCTGGGCATCTGGCACGTGCCCAATAAGTCCCCCATGCAGCACTGG AGAAACAGCTCCCTGCTGAGGTACCGCACGGACACTGGCTTCCTCCAGACACTGGGACATAATCT GTTTGGCATCTACCAGAAATATCCAGTGAAATATGGAGAAAGGGAAAGTGTTGGACTGACAACGGCC CGGTGATCCCTGTGGTCTATGATTTTGGCGACGCCCAGAAAACAGCATCTTATTACTCACCCTAT GGCCAGCGGGAATTCACTGCGGGATTTGTTCAGTTCAGGGTATTTAATAACGAGAGAGCAGCCAA CGCCTTGTGTGCTGGAATGAGGGTCACCGGATGTAACACTGAGCATCACTGCATTGGTGGAGGAG GATACTTTCCAGAGGCCAGTCCCCAGCAGTGTGGAGATTTTTCTGGTTTTGATTGGAGTGGATAT GGAACTCATGTTGGTTACAGCAGCAGCCGTGAGATAACTGAGGCAGCTGTGCTTCTATTCTATCG CAACTTACCCAGTAGCTAGAATGTTAATGGCAGAAGAGAAAACAATAAATCATATTGACTCAAGA AAAAA

MNQLSFLLFLIATTRGWSTDEANTYFKEWTCSSSPSLPRSCKEIKDECPSAFDGLYFLRTENGVI
YQTFCDMTSGGGGWTLVASVHENDMRGKCTVGDRWSSQQGSKADYPEGDGNWANYNTFGSAEAAT
SDDYKNPGYYDIQAKDLGIWHVPNKSPMQHWRNSSLLRYRTDTGFLQTLGHNLFGIYQKYPVKYG
EGKCWTDNGPVIPVVYDFGDAQKTASYYSPYGQREFTAGFVQFRVFNNERAANALCAGMRVTGCN
TEHHCIGGGGYFPEASPQQCGDFSGFDWSGYGTHVGYSSSREITEAAVLLFYR

Important features:

Signal peptide:

amino acids 1-16

N-glycosylation site.

amino acids 163-167

Glycosaminoglycan attachment sites.

amino acids 74-78, 289-293

N-myristoylation sites.

amino acids 76-82, 115-121, 124-130, 253-259, 292-298

CTAGATTTGTCGGCTTGCGGGGAGACTTCAGGAGTCGCTGTCTCTGAACTTCCAGCCTCAGAGAC
CGCCGCCCTTGTCCCCGAGGGCCATGGGCCGGGTCTCAGGGCTTGTGCCCTCTCGCTTCCTGACG
CTCCTGGCGCATCTGGTGGTCGTCATCACCTTATTCTGGTCCCGGGACAGCAACATACAGGCCTG
CCTGCCTCTCACGTTCACCCCCGAGGAGTATGACAAGCAGGACATTCAGCTGGTGGCCGCGCTCT
CTGTCACCCTGGGCCTCTTTGCAGTGGAGCTGGCCGGTTTCCTCTAGGAGTCTCCATGTTCAAC
AGCACCCAGAGCCTCATCTCCATTGGGGCTCACTGTAGTGCATCCGTGGCCCTGTCCTTCTTCAT
ATTCGAGCGTTGGGAGTGCACTACGTATTGGTACATTTTTGTCTTCTGCAGTGCCCTTCCAGCTG
TCACTGAAATGGCTTTATTCGTCACCGTCTTTGGGCTGAAAAAGAAACCCTTCTGATTACCTTCA
TGACGGGAACCTAAGGACGAAGCCTACAGGGGCAAGGGCCGCTTCGTATTCCTGGAAGAAGAAG
GCATAGGCTTCGGTTTTCCCCTCGGAAACTGCTTCTGCTGGAGGATATGTTTTGGAATAATTACCA
TCTTGAGTCTGGGATTATCCGCATTGTATTTAGTGCTTTTGTAATAAAATATGTTTTTGTAGTAACA

 ${\tt MGRVSGLVPSRFLTLLAHLVVVITLFWSRDSNIQACLPLTFTPEEYDKQDIQLVAALSVTLGLFA} \\ {\tt VELAGFLSGVSMFNSTQSLISIGAHCSASVALSFFIFERWECTTYWYIFVFCSALPAVTEMALFV} \\ {\tt TVFGLKKKPF} \\$

Transmembrane domain:

amino acids 12-28 (type II), 51-66, 107-124

TCGCTGCTGCTTCGTGTTCCTGGTGCAGGGTAGCCTCTATCTGGTCATCTGTGGCCAGGATGATG GTCCTCCCGGCTCAGAGGACCCTGAGCGTGATGACCACGAGGGCCAGCCCCGGGCCCCGGGTGCCT CGGAAGCGGGCCACATCTCACCTAAGTCCCGCCCCATGGCCAATTCCACTCTCCTAGGGCTGCT GGCCCGCCTGGGGAGGCTTGGGGCATTCTTGGGCAGCCCCCAACCGCCCGAACCACAGCCCCC CACCCTCAGCCAAGGTGAAGAAAATCTTTGGCTGGGGGGGACTTCTACTCCAACATCAAGACGGTG GCCCTGAACCTGCTCGTCACAGGGAAGATTGTGGACCATGGCAATGGGACCTTCAGCGTCCACTT CCAACACAATGCCACAGGCCAGGGAAACATCTCCATCAGCCTCGTGCCCCCCAGTAAAGCTGTAG AGTTCCACCAGGAACAGCAGATCTTCATCGAAGCCAAGGCCTCCAAAATCTTCAACTGCCGGATG GAGTGGGAGAAGGTAGAACGGGGCCGCCGGACCTCGCTTTGCACCCACGACCCAGCCAAGATCTG CTCCCGAGACCACGCTCAGAGCTCAGCCACCTGGAGCTGCTCCCAGCCCTTCAAAGTCGTCTGTG TCTACATCGCCTTCTACAGCACGGACTATCGGCTGGTCCAGAAGGTGTGCCCAGATTACAACTAC CATAGTGATACCCCTACTACCCATCTGGGTGACCCGGGGCCAGGCCACAGAGGCCAGGCCAGGGC TGGAAGGACAGGCCTGCCCATGCAGGAGACCATCTGGACACCGGGCAGGGAAGGGGTTGGGCCTC AGGCAGGGAGGGGGGGGGAGACGAGGAGATGCCAAGTGGGGCCAGGGCCAAGTCTCAAGTGGCAG AGAAAGGGTCCCAAGTGCTGGTCCCAACCTGAAGCTGTGGAGTGACTAGATCACAGGAGCACTGG AGGAGGAGTGGGCTCTCTGTGCAGCCTCACAGGGCTTTGCCACGGAGCCACAGAGAGATGCTGGG TCCCGAGGCCTGTGGGCAGGCCGATCAGTGTGGCCCCAGATCAAGTCATGGGAGGAAGCTAAGC GCCTGTCAACTTAGGATGGATGGCTGAGAGGGCTTCCTAGGAGCCAGTCAGCAGGGTGGGGTGGG GCCAGAGGAGCTCTCCAGCCCTGCCTAGTGGGCCCCTGAGCCCCTTGTCGTGTGCTGAGCATGG CATGAGGCTGAAGTGGCAACCCTGGGGTCTTTGATGTCTTGACAGATTGACCATCTGTCTCCAGC CAGGCCACCCCTTTCCAAAATTCCCTCTTCTGCCAGTACTCCCCCTGTACCACCCATTGCTGATG GCACACCCATCCTTAAGCTAAGACAGGACGATTGTGGTCCTCCCACACTAAGGCCACAGCCCATC CGCGTGCTGTGTCCCCCTCTTCCACCCCAACCCCTGCTGGCTCCTCTGGGAGCATCCATGTCCCG GAGAGGGGTCCCTCAACAGTCAGCCTCACCTGTCAGACCGGGGTTCTCCCGGATCTGGATGGCGC CGCCCTCTCAGCAGCGGGCACGGGTGGGGCGGGGCGGGCCGCAGAGCATGTGCTGGATCTGTTC TGTGTGTCTGTCTGTGGGTGGGGGGAGGGGAAGTCTTGTGAAACCGCTGATTGCTGACTTT TGTGTGAAGAATCGTGTTCTTGGAGCAGGAAATAAAGCTTGCCCCGGGGCA

MQLTRCCFVFLVQGSLYLVICGQDDGPPGSEDPERDDHEGQPRPRVPRKRGHISPKSRPMANSTL LGLLAPPGEAWGILGQPPNRPNHSPPPSAKVKKIFGWGDFYSNIKTVALNLLVTGKIVDHGNGTF SVHFQHNATGQGNISISLVPPSKAVEFHQEQQIFIEAKASKIFNCRMEWEKVERGRRTSLCTHDP AKICSRDHAQSSATWSCSQPFKVVCVYIAFYSTDYRLVQKVCPDYNYHSDTPYYPSG

Important features of the protein:

Signal peptide:

amino acids 1-14

N-glycosylation sites.

amino acids 62-65, 127-130, 137-140, 143-146

2-oxo acid dehydrogenases acyltransferase amino acids 61-71

MTAAVFFGCAFIAFGPALALYVFTIAIEPLRIIFLIAGAFFWLVSLLISSLVWFMARVIIDNKDG PTQKYLLIFGAFVSVYIQEMFRFAYYKLLKKASEGLKSINPGETAPSMRLLAYVSGLGFGIMSGV FSFVNTLSDSLGPGTVGIHGDSPQFFLYSAFMTLVIILLHVFWGIVFFDGCEKKKWGILLIVLLT HLLVSAQTFISSYYGINLASAFIILVLMGTWAFLAAGGSCRSLKLCLLCQDKNFLLYNQRSR

Important features of the protein:

Signal peptide:

amino acids 1-19

Transmembrane domains:

amino acids 32-51, 119-138, 152-169, 216-235

Glycosaminoglycan attachment site.

amino acids 120-123

Sodium:neurotransmitter symporter family protein amino acids 31-65

AATTTTTCACCAGAGTAAACTTGAGAAACCAACTGGACCTTGAGTATTGTACATTTTGCCTCGTG ${\tt GACCCAAAGGTAGCAATCTGAAAC{\textbf{ATG}}AGGAGTACGATTCTACTGTTTTGTCTTCTAGGATCAAC}$ GAACACTACCAAACCAACAGCAGTCAAATCAGGTCTTTCCTTCTTTAAGTCTGATACCATTAACA CAGATGCTCACACTGGGGCCAGATCTGCATCTGTTAAATCCTGCTGCAGGAATGACACCTGGTAC CCAGACCCACCCATTGACCCTGGGAGGGTTGAATGTACAACAGCAACTGCACCCACATGTGTTAC CAATTTTTGTCACACAACTTGGAGCCCAGGGCACTATCCTAAGCTCAGAGGAATTGCCACAAATC TAATCCAGATGTCCAGGATGGAAGCCTTCCAGCAGGAGGAGCAGGTGTAAATCCTGCCACCCAGG GAACCCCAGCAGGCCGCCTCCCAACTCCCAGTGGCACAGATGACGACTTTGCAGTGACCACCCCT GCAGGCATCCAAAGGAGCACACATGCCATCGAGGAAGCCACCACAGAATCAGCAAATGGAATTCA GTAAGCTGTTTCAAATTTTTTCAACTAAGCTGCCTCGAATTTGGTGATACATGTGAATCTTTATC TACCTGAAAATATTCTTGAAATTTCAGAAAATATGTTCTATGTAGAGAATCCCAACTTTTAAAAA CAATAATTCAATGGATAAATCTGTCTTTGAAATATAACATTATGCTGCCTGGATGATATGCATAT

 $\label{thm:mastillecligstrslpqlkpalglpptklapdqgtlpnqqqsnqvfpslslipltqm $$ LTLGPDLHLLNPAAGMTPGTQTHPLTLGGLNVQQQLHPHVLPIFVTQLGAQGTILSSEE $$ LPQIFTSLIIHSLFPGGILPTSQAGANPDVQDGSLPAGGAGVNPATQGTPAGRLPTPSG TDDDFAVTTPAGIQRSTHAIEEATTESANGIQ$

Signal peptide:

amino acids 1-16

GCTCAAGTGCCCTGCCTTGCCCCACCCAGCCCAGCCTGGCCAGAGCCCCCTGGAGAAGGAGCTCT GTCCCTGCCTGGCTGTGCTTTGTGTCTCCGTCCCCCAGGCTCTCCCCAAGGCCCAGCCTGC AGAGCTGTCTGTGGAAGTTCCAGAAAACTATGGTGGAAATTTCCCTTTATACCTGACCAAGTTGC CGCTGCCCGTGAGGGGGCTGAAGGCCAGATCGTGCTGTCAGGGGACTCAGGCAAGGCAACTGAG GGCCCATTTGCTATGGATCCAGATTCTGGCTTCCTGCTGGTGACCAGGGCCCTGGACCGAGAGGA GCAGGCAGAGTACCAGCTACAGGTCACCCTGGAGATGCAGGATGGACATGTCTTGTGGGGTCCAC AGCCTGTGCTTGTGCACGTGAAGGATGAGAATGACCAGGTGCCCCATTTCTCTCAAGCCATCTAC AGAGCTCGGCTGAGCCGGGGTACCAGGCCTGGCATCCCCTTCCTCTTCCTTGAGGCTTCAGACCG GGATGAGCCAGGCACAGCCAACTCGGATCTTCGATTCCACATCCTGAGCCAGGCTCCAGCCCAGC CTTCCCCAGACATGTTCCAGCTGGAGCCTCGGCTGGGGGCTCTGGCCCTCAGCCCCAAGGGGAGC ACCAGCCTTGACCACGCCCTGGAGAGGACCTACCAGCTGTTGGTACAGGTCAAGGACATGGGTGA $\tt CCAGGCCTCAGGCCACCAGGCCACCGTGGAAGTCTCCATCATAGAGAGCACCTGGGTGT$ CCCTAGAGCCTATCCACCTGGCAGAGAATCTCAAAGTCCTATACCCGCACCACATGGCCCAGGTA CACTGGAGTGGGGGTGATGTGCACTATCACCTGGAGAGCCATCCCCCGGGACCCTTTGAAGTGAA AGGTGCGGGCTCAGAATTCCCATGGCGAGGACTATGCGGCCCCTCTGGAGCTGCACGTGCTGGTG ATGGATGAGAATGACAACGTGCCTATCTGCCCTCCCCGTGACCCCACAGTCAGCATCCCTGAGCT ATTCCCACGTTGTGTATCAGCTCCTGAGCCCTGAGCCTGAGGATGGGGTAGAGGGGAGAGCCTTC CAGGTGGACCCCACTTCAGGCAGTGTGACGCTGGGGGTGCTCCCACTCCGAGCAGGCCAGAACAT CCTGCTTCTGGTGCTGGCCATGGACCTGGCAGGCGCAGAGGGTGGCTTCAGCAGCACGTGTGAAG TCGAAGTCGCAGTCACAGATATCAATGATCACGCCCCTGAGTTCATCACTTCCCAGATTGGGCCT ATAAGCCTCCCTGAGGATGTGGAGCCCGGGACTCTGGTGGCCATGCTAACAGCCATTGATGCTGA CCTCGAGCCCGCCTTCCGCCTCATGGATTTTGCCATTGAGAGGGGAGACACAGAAGGGACTTTTG GCCTGGATTGGGAGCCAGACTCTGGGCATGTTAGACTCAGACTCTGCAAGAACCTCAGTTATGAG GCAGCTCCAAGTCATGAGGTGGTGGTGGTGGTGCAGAGTGTGGCGAAGCTGGTGGGGCCAGGCCC AGGCCCTGGAGCCACCGCCACGGTGACTGTGCTAGTGGAGAGAGTGATGCCACCCCCAAGTTGG ACCAGGAGAGCTACGAGGCCAGTGTCCCCATCAGTGCCCCAGCCGGCTCTTTCCTGCTGACCATC CTGCATTGAGAAATTCTCCGGGGAGGTGCACACCGCCCAGTCCCTGCAGGGCGCCCAGCCTGGGG ACACCTACACGGTGCTTGTGGAGGCCCAGGATACAGCCCTGACTCTTGCCCCTGTGCCCTCCCAA TACCTCTGCACACCCCGCCAAGACCATGGCTTGATCGTGAGTGGACCCAGCAAGGACCCCGATCT GGCCAGTGGGCACGGTCCCTACAGCTTCACCCTTGGTCCCAACCCCACGGTGCAACGGGATTGGC GCCTCCAGACTCTCAATGGTTCCCATGCCTACCTCACCTTGGCCCTGCATTGGGTGGAGCCACGT GAACACATAATCCCCGTGGTGGTCAGCCACAATGCCCAGATGTGGCAGCTCCTGGTTCGAGTGAT CGTGTGTCGCTGCAACGTGGAGGGGCAGTGCATGCGCAAGGTGGGCCGCATGAAGGGCATGCCCA ATTTTCACCCACTGGACCATGTCAAGGAAGAAGGACCCGGATCAACCAGCAGACAGCGTGCCCCT GAAGGCGACTGTCTGAATGGCCCAGGCAGCTCTAGCTGGGAGCTTGGCCTCTGGCTCCATCTGAG TCCCCTGGGAGAGACCCAGCACCCAAGATCCAGCAGGGGACAGGACAGAGTAGAAGCCCCTCCA TCTGCCCTGGGGTGGAGGCACCATCACCATCACCAGGCATGTCTGCAGAGCCTGGACACCAACTT TATGGACTGCCCATGGGAGTGCTCCAAATGTCAGGGTGTTTGCCCAATAATAAAGCCCCAGAGAA

MVPAWLWLLCVSVPQALPKAQPAELSVEVPENYGGNFPLYLTKLPLPREGAEGQIVLSGDSGKAT
EGPFAMDPDSGFLLVTRALDREEQAEYQLQVTLEMQDGHVLWGPQPVLVHVKDENDQVPHFSQAI
YRARLSRGTRPGIPFLFLEASDRDEPGTANSDLRFHILSQAPAQPSPDMFQLEPRLGALALSPKG
STSLDHALERTYQLLVQVKDMGDQASGHQATATVEVSIIESTWVSLEPIHLAENLKVLYPHHMAQ
VHWSGGDVHYHLESHPPGPFEVNAEGNLYVTRELDREAQAEYLLQVRAQNSHGEDYAAPLELHVL
VMDENDNVPICPPRDPTVSIPELSPPGTEVTRLSAEDADAPGSPNSHVVYQLLSPEPEDGVEGRA
FQVDPTSGSVTLGVLPLRAGQNILLLVLAMDLAGAEGGFSSTCEVEVAVTDINDHAPEFITSQIG
PISLPEDVEPGTLVAMLTAIDADLEPAFRLMDFAIERGDTEGTFGLDWEPDSGHVRLRLCKNLSY
EAAPSHEVVVVVQSVAKLVGPGPGPGGATATVTVLVERVMPPPKLDQESYEASVPISAPAGSFLLT
IQPSDPISRTLRFSLVNDSEGWLCIEKFSGEVHTAQSLQGAQPGDTYTVLVEAQDTALTLAPVPS
QYLCTPRQDHGLIVSGPSKDPDLASGHGPYSFTLGPNPTVQRDWRLQTLNGSHAYLTLALHWVEP
REHIIPVVVSHNAQMWQLLVRVIVCRCNVEGQCMRKVGRMKGMPTKLSAVGILVGTLVAIGIFLI
LIFTHWTMSRKKDPDOPADSVPLKATV

Signal peptide:

amino acids 1-18

Transmembrane domain:

amino acids 762-784

GGCTGACCGTGCTACATTGCCTGGAGGAAGCCTAAGGAACCCAGGCATCCAGCTGCCCACGCCTG AGTCCAAGATTCTTCCCAGGAACACAAACGTAGGAGACCCACGCTCCTGGAAGCACCAGCCTTTA TCTCTTCACCTTCAAGTCCCCTTTCTCAAGAATCCTCTGTTCTTTGCCCTCTAAAGTCTTGGTAC ATCTAGGACCCAGGCATCTTGCTTTCCAGCCACAAAGAGACAGATGAAGATGCAGAAAGGAAATG TTCTCCTTATGTTTGGTCTACTATTGCATTTAGAAGCTGCAACAAATTCCAATGAGACTAGCACC TCTGCCAACACTGGATCCAGTGTGATCTCCAGTGGAGCCAGCACACCCAACTCTGGGTCCAG TGTGACCTCCAGTGGGGTCAGCACAGCCACCATCTCAGGGTCCAGCGTGACCTCCAATGGGGTCA GCATAGTCACCAACTCTGAGTTCCATACAACCTCCAGTGGGATCAGCACAGCCAACCTCTGAG TTCAGCACAGCGTCCAGTGGGATCAGCATAGCCACCAACTCTGAGTCCAGCACAACCTCCAGTGG GGCCAGCACCACCAACTCTGAGTCCAGCACCCCTCCAGTGGGGCCAGCACAGTCACCAACT CTGGGTCCAGTGTGACCTCCAGTGGAGCCAGCACTGCCACCAACTCTGAGTCCAGCACAGTGTCC AGTAGGGCCAGCACTCTGAGTCTAGCACACTCTCCAGTGGGGCCAGCACACCAC CAACTCTGACTCCAGCACAACCTCCAGTGGGGCTAGCACAGCCACCAACTCTGAGTCCAGCACAA CCTCCAGTGGGGCCAGCACCCAACTCTGAGTCCAGCACAGTGTCCAGTAGGGCCAGCACT GCCACCAACTCTGAGTCCAGCACAACCTCCAGTGGGGCCAGCACACCCAACTCTGAGTCCAG AACGACCTCCAATGGGGCTGGCACAGCCACCAACTCTGAGTCCAGCACGACCTCCAGTGGGGCCA GCACAGCCACCAACTCTGACTCCAGCACAGTGTCCAGTGGGGCCAGCACTGCCACCAACTCTGAG TCCAGCACGACCTCCAGTGGGGCCAGCACCACCCAACTCTGAGTCCAGCACGACCTCCAGTGG GGCTAGCACAGCCAACTCTGACTCCAGCACAACCTCCAGTGGGGCCGGCACAGCCAACCT CTGAGTCCAGCACAGTGTCCAGTGGGATCAGCACAGTCACCAATTCTGAGTCCAGCACACCCTCC AGTGGGGCCAACAGCCACCAACTCTGAGTCCAGTACGACCTCCAGTGGGGCCAACACACCAC CAACTCTGAGTCCAGCACAGTGTCCAGTGGGGCCAGCACTGCCACCAACTCTGAGTCCAGCACAA CCTCCAGTGGGGTCAGCACAGCCACCAACTCTGAGTCCAGCACAACCTCCAGTGGGGCTAGCACA GCCACCAACTCTGACTCCAGCACAACCTCCAGTGAGGCCAGCACACCCAACTCTGAGTCTAG CACAGTGTCCAGTGGGATCAGCACAGTCACCAATTCTGAGTCCAGCACAACCTCCAGTGGGGCCA ACACAGCCACCAACTCTGGGTCCAGTGTGACCTCTGCAGGCTCTGGAACAGCAGCTCTGACTGGA GCCGTGGGAAATCTTCCTCATCACCCTGGTCTCGGTTGTGGCGCCCGTGGGGCTCTTTGCTGGGC TCTTCTTCTGTGTGAGAAACAGCCTGTCCCTGAGAAACACCTTTAACACAGCTGTCTACCACCCT CATGGCCTCAACCATGGCCTTGGTCCAGGCCCTGGAGGGAATCATGGAGCCCCCCACAGGCCCAG GTGGAGTCCTAACTGGTTCTGGAGGAGACCAGTATCATCGATAGCCATGGAGATGAGCGGGAGGA AATCTTGAAGAAGGTATTCCTCACCTTTCTTGCCTTTACCAGACACTGGAAAGAGAATACTATAT CCCCGGGGTGGGTATCTAGCTCTGAGATGAACTCAGTTATAGGAGAAAACCTCCATGCTGGACTC **ААААААААААААААААААААААААААААА**

MKMQKGNVLLMFGLLLHLEAATNSNETSTSANTGSSVISSGASTATNSGSSVTSSGVSTATISGS
SVTSNGVSIVTNSEFHTTSSGISTATNSEFSTASSGISIATNSESSTTSSGASTATNSESSTPSS
GASTVTNSGSSVTSSGASTATNSESSTVSSRASTATNSESSTLSSGASTATNSDSSTTSSGASTA
TNSESSTTSSGASTATNSESSTVSSRASTATNSESSTTSSGASTATNSESRTTSNGAGTATNSES
STTSSGASTATNSDSSTVSSGASTATNSESSTTSSGASTATNSESSTTSSGASTATNSDSSTTSS
GAGTATNSESSTVSSGISTVTNSESSTPSSGANTATNSESSTTSSGANTATNSESSTVSSGASTA
TNSESSTTSSGVSTATNSESSTTSSGASTATNSDSSTTSSEASTATNSESSTVSSGISTVTNSES
STTSSGANTATNSGSSVTSAGSGTAALTGMHTTSHSASTAVSEAKPGGSLVPWEIFLITLVSVVA
AVGLFAGLFFCVRNSLSLRNTFNTAVYHPHGLNHGLGPGPGGNHGAPHRPRWSPNWFWRRPVSSI
AMEMSGRNSGP

Signal peptide:

amino acids 1-20

Transmembrane domain:

amino acids 510-532

GGCCGGACGCCTCCGCGTTACGGGATGAATTAACGGCGGGTTCCGCACGGAGGTTGTGACCCCTA CGGAGCCCAGCTTGCCCACGCACCCCACTCGCGCGCGCGTGCCCTGCTTGTCACAGGTG GGAGGCTGGAACTATCAGGCTGAAAAACAGAGTGGGTACTCTCTTCTGGGAAGCTGGCAACAAAT GGATGATGTGATATATCCATTCCAGGGGAAGGGAAATTGTGGTGCTTCTGAACCCATGGTCAATT AACGAGGCAGTTTCTAGCTACTGCACGTACTTCATAAAGCAGGACTCTAAAAGCTTTGGAATCAT GGTGTCATGGAAAGGGATTTACTTTATACTGACTCTGTTTTTGGGGAAGCTTTTTTGGAAGCATTT TCATGCTGAGTCCCTTTTTACCTTTGATGTTTGTAAACCCATCTTGGTATCGCTGGATCAACAAC CGCCTTGTGGCAACATGGCTCACCCTACCTGTGGCATTATTGGAGACCATGTTTGGTGTAAAAGT GATTATAACTGGGGATGCATTTGTTCCTGGAGAAAGAAGTGTCATTATCATGAACCATCGGACAA GAATGGACTGGATGTTCCTGTGGAATTGCCTGATGCGATATAGCTACCTCAGATTGGAGAAAATT ATATTCACGAACCACTTCAACTCCTCATATTCCCAGAAGGGACTGATCTCACAGAAAACAGCAAG TCTCGAAGTAATGCATTTGCTGAAAAAAATGGACTTCAGAAATATGAATATGTTTTACATCCAAG AACTACAGGCTTTACTTTTGTGGTAGACCGTCTAAGAGAAGGTAAGAACCTTGATGCTGTCCATG ATATCACTGTGGCGTATCCTCACAACATTCCTCAATCAGAGAAGCACCTCCTCCAAGGAGACTTT CCCAGGGAAATCCACTTTCACGTCCACCGGTATCCAATAGACACCCTCCCCACATCCAAGGAGGA CCTTCAACTCTGGTGCCACAAACGGTGGGAAGAGAAGAAGAGAGGCTGCGTTCCTTCTATCAAG GGGAGAAGATTTTTATTTTACCGGACAGAGTGTCATTCCACCTTGCAAGTCTGAACTCAGGGTC $\tt CTTGTGGTCAAATTGCTCTCTATACTGTATTGGACCCTGTTCAGCCCTGCAATGTGCCTACTCAT$ ATATTTGTACAGTCTTGTTAAGTGGTATTTTATAATCACCATTGTAATCTTTGTGCTGCAAGAGA GAATATTTGGTGGACTGGAGATCATAGAACTTGCATGTTACCGACTTTTACACAAACAGCCACAT TTAAATTCAAAGAAAATGAGTAAGATTATAAGGTTTGCCATGTGAAAACCTAGAGCATATTTTG GAAATGTTCTAAACCTTTCTAAGCTCAGATGCATTTTTGCATGACTATGTCGAATATTTCTTACT GCCATCATTATTTGTTAAAGATATTTTGCACTTAATTTTGTGGGAAAAATATTGCTACAATTTTT TTTAATCTCTGAATGTAATTTCGATACTGTGTACATAGCAGGGAGTGATCGGGGTGAAATAACTT GGGCCAGAATATTATTAAACAATCATCAGGCTTTTAAA

MHSRGREIVVLLNPWSINEAVSSYCTYFIKQDSKSFGIMVSWKGIYFILTLFWGSFFGSIFMLSP
FLPLMFVNPSWYRWINNRLVATWLTLPVALLETMFGVKVIITGDAFVPGERSVIIMNHRTRMDWM
FLWNCLMRYSYLRLEKICLKASLKGVPGFGWAMQAAAYIFIHRKWKDDKSHFEDMIDYFCDIHEP
LQLLIFPEGTDLTENSKSRSNAFAEKNGLQKYEYVLHPRTTGFTFVVDRLREGKNLDAVHDITVA
YPHNIPQSEKHLLQGDFPREIHFHVHRYPIDTLPTSKEDLQLWCHKRWEEKEERLRSFYQGEKNF
YFTGQSVIPPCKSELRVLVVKLLSILYWTLFSPAMCLLIYLYSLVKWYFIITIVIFVLQERIFGG
LEIIELACYRLLHKQPHLNSKKNE

Important features of the protein:

Signal peptide:

amino acids 1-22

Transmembrane domains:

amino acids 44-63, 90-108, 354-377

CGGCTCGAGCGGCTCGAGTGAAGAGCCTCTCCACGGCTCCTGCGCCTGAGACAGCTGGCCTGACC TCCAAATCATCCACCCCTGCTGTCATCTGTTTTCATAGTGTGAGATCAACCCACAGGAATA TCCATGGCTTTTGTGCTCATTTTGGTTCTCAGTTTCTACGAGCTGGTGTCAGGACAGTGGCAAGT CACTGGACCGGGCAAGTTTGTCCAGGCCTTGGTGGGGGAGGACGCCGTGTTCTCCTGCTCCCTCT TTCCTGAGACCAGTGCAGAGGCTATGGAAGTGCGGTTCTTCAGGAATCAGTTCCATGCTGTGGTC CACCTCTACAGAGATGGGGAAGACTGGGAATCTAAGCAGATGCCACAGTATCGAGGGAGAACTGA GTTTGTGAAGGACTCCATTGCAGGGGGGGGCGTGTCTCTCTAAGGCTAAAAAAACATCACTCCCTCGG ACATCGGCCTGTATGGGTGCTGGTTCAGTTCCCAGATTTACGATGAGGAGGCCACCTGGGAGCTG GTTACTCTGCCTGTCCTCAGGCTGGTTCCCCCAGCCCAAGCCAAGTGGAAAGGTCCACAAGGAC AGGATTTGTCTTCAGACTCCAGAGCAAATGCAGATGGGTACAGCCTGTATGATGTGGAGATCTCC GGTGGAATCCAAGGTATTGATAGGAGAGACGTTTTTCCAGCCCTCACCTTGGCGCCTGGCTTCTA TTTTACTCGGGTTACTCTGTGGTGCCCTGTGTGTGTTGTCATGGGGATGATAATTGTTTTCTTC AAATCCAAAGGGAAAATCCAGGCGGAACTGGACTGGAGAAGAAAGCACGGACAGGCAGAATTGAG AGACGCCCGGAAACACGCAGTGGAGGTGACTCTGGATCCAGAGACGGCTCACCCGAAGCTCTGCG TTTCTGATCTGAAAACTGTAACCCATAGAAAAGCTCCCCAGGAGGTGCCTCACTCTGAGAAGAGA TTTACAAGGAAGAGTGTGGTGGCTTCTCAGGGTTTCCAAGCAGGGAGACATTACTGGGAGGTGGA CGTGGGACAAAATGTAGGGTGGTATGTGGGAGTGTCGGGATGACGTAGACAGGGGGAAGAACA ATGTGACTTTGTCTCCCAACAATGGGTATTGGGTCCTCAGACTGACAACAGAACATTTGTATTTC ACATTCAATCCCCATTTTATCAGCCTCCCCCCCAGCACCCCTCCTACACGAGTAGGGGTCTTCCT TGACATGTCAGTTTGAAGGCTTGTTGAGACCCTATATCCAGCATGCGATGTATGACGAGGAAAAG GGGACTCCCATATTCATATGTCCAGTGTCCTGGGGATGAGACAGAGAAGACCCTGCTTAAAAGGGC CCCACACCACAGACCCAGACACAGCCAAGGGAGAGTGCTCCCGACAGGTGGCCCCAGCTTCCTCT CCGGAGCCTGCGCACAGAGAGTCACGCCCCCCACTCTCCTTTAGGGAGCTGAGGTTCTTCTGCCC TGAGCCCTGCAGCAGCGGCAGTCACAGCTTCCAGATGAGGGGGGGATTGGCCTGACCCTGTGGGAG TCAGAAGCCATGGCTGCCCTGAAGTGGGGACGGAATAGACTCACATTAGGTTTAGTTTGTGAAAA CTCCATCCAGCTAAGCGATCTTGAACAAGTCACAACCTCCCAGGCTCCTCATTTGCTAGTCACGG ACAGTGATTCCTGCCTCACAGGTGAAGATTAAAGAGACAACGAATGTGAATCATGCTTGCAGGTT TGAGGGCACAGTGTTTGCTAATGATGTTTTTTATATTATACATTTTCCCACCATAAACTCTGTT TGCTTATTCCACATTAATTTACTTTTCTCTATACCAAATCACCCATGGAATAGTTATTGAACACC TGCTTTGTGAGGCTCAAAGAATAAAGAGGAGGTAGGATTTTTCACTGATTCTATAAGCCCAGCAT TACCTGATACCAAAACCAGGCAAAGAAAACAGAAGAAGAAGAAGGAAGGAAAACTACAGGTCCATATCC CTCATTAACACAGACACAAAAATTCTAAATAAAATTTTAACAAATTAAACTAAACAATATATATTA AAGATGATATATAACTACTCAGTGTGGTTTGTCCCACAAATGCAGAGTTGGTTTAATATTTAAAT

MAFVLILVLSFYELVSGQWQVTGPGKFVQALVGEDAVFSCSLFPETSAEAMEVRFFRNQFHAVVH
LYRDGEDWESKQMPQYRGRTEFVKDSIAGGRVSLRLKNITPSDIGLYGCWFSSQIYDEEATWELR
VAALGSLPLISIVGYVDGGIQLLCLSSGWFPQPTAKWKGPQGQDLSSDSRANADGYSLYDVEISI
IVQENAGSILCSIHLAEQSHEVESKVLIGETFFQPSPWRLASILLGLLCGALCGVVMGMIIVFFK
SKGKIQAELDWRRKHGQAELRDARKHAVEVTLDPETAHPKLCVSDLKTVTHRKAPQEVPHSEKRF
TRKSVVASQGFQAGRHYWEVDVGQNVGWYVGVCRDDVDRGKNNVTLSPNNGYWVLRLTTEHLYFT
FNPHFISLPPSTPPTRVGVFLDYEGGTISFFNTNDQSLIYTLLTCQFEGLLRPYIQHAMYDEEKG
TPIFICPVSWG

Signal peptide:

amino acids 1-17

Transmembrane domains:

amino acids 131-150, 235-259

TTTGTTGGGAACCCTGGGTTATCGGCCTCGTCATCTTCATATCCCTGATTGTCCTGGCAGTGTGCATTGGA CTCACTGTTCATTATGTGAGATATAATCAAAAGAAGACCTACAATTACTATAGCACATTGTCATTTACAAC TGACAAACTATATGCTGAGTTTGGCAGAGAGGCTTCTAACAATTTTACAGAAATGAGCCAGAGACTTGAAT CAATGGTGAAAAATGCATTTTATAAATCTCCATTAAGGGAAGAATTTGTCAAGTCTCAGGTTATCAAGTTC AGTCAACAGAAGCATGGAGTGTTGGCTCATATGCTGTTGATTTGTAGATTTCACTCTACTGAGGATCCTGA AACTGTAGATAAAATTGTTCAACTTGTTTTACATGAAAAGCTGCAAGATGCTGTAGGACCCCCTAAAGTAG ACACGAAGAAGTAAAACTCTAGGTCAGAGTCTCAGGATCGTTGGTGGGACAGAAGTAGAAGAGGGTGAATG TTGTGAGTGCTCCTCTTTTTACAACATATAAGAACCCTGCCAGATGGACTGCTTCCTTTGGAGTAACA ATAAAACCTTCGAAAATGAAACGGGGTCTCCGGAGAATAATTGTCCATGAAAAATACAAACACCCATCACA TGACTATGATATTTCTCTTGCAGAGCTTTCTAGCCCTGTTCCCTACACAAATGCAGTACATAGAGTTTGTC TCCCTGATGCATCCTATGAGTTTCAACCAGGTGATGTGATGTTTTGTGACAGGATTTGGAGCACTGAAAAAT GATGGTTACAGTCAAAATCATCTTCGACAAGCACAGGTGACTCTCATAGACGCTACAACTTGCAATGAACC TCAAGCTTACAATGACGCCATAACTCCTAGAATGTTATGTGCTGGCTCCTTAGAAGGAAAAACAGATGCAT GCCAGGGTGACTCTGGAGGACCACTGGTTAGTTCAGATGCTAGAGATATCTGGTACCTTGCTGGAATAGTG AGCTGGGGAGATGAATGTGCGAAACCCAACAAGCCTGGTGTTTATACTAGAGTTACGGCCTTGCGGGACTG GGTGTGGAGGCCATTTTTAGAGATACAGAATTGGAGAAGACTTGCAAAACAGCTAGATTTGACTGATCTCA ATAAACTGTTTGCTTGATGCATGTATTTTCTTCCCAGCTCTGTTCCGCACGTAAGCATCCTGCTTCTGCCA GATCAACTCTGTCATCTGTGAGCAATAGTTGAAACTTTATGTACATAGAGAAATAGATAATACAATATTAC ATTACAGCCTGTATTCATTTGTTCTCTAGAAGTTTTGTCAGAATTTTGACTTGTTGACATAAATTTGTAAT GCATATATACAATTTGAAGCACTCCTTTTCTTCAGTTCCTCAGCTCCTCTCATTTCAGCAAATATCCATTT TCAAGGTGCAGAACAAGGAGTGAAAGAAAATATAAGAAGAAAAAATCCCCTACATTTTATTGGCACAGAA AAGTATTAGGTGTTTTTCTTAGTGGAATATTAGAAATGATCATATTCATTATGAAAGGTCAAGCAAAGACA ATATATCCTTATTTCATTTCCAAACAACTACTATGATAAATGTGAAGAAGATTCTGTTTTTTTGTGACCT TTACTGAGGATGTCAACATATAACAATAAAATATAAATCACCCA

MMYRPDVVRARKRVCWEPWVIGLVIFISLIVLAVCIGLTVHYVRYNQKKTYNYYSTLSFTTDKLY
AEFGREASNNFTEMSQRLESMVKNAFYKSPLREEFVKSQVIKFSQQKHGVLAHMLLICRFHSTED
PETVDKIVQLVLHEKLQDAVGPPKVDPHSVKIKKINKTETDSYLNHCCGTRRSKTLGQSLRIVGG
TEVEEGEWPWQASLQWDGSHRCGATLINATWLVSAAHCFTTYKNPARWTASFGVTIKPSKMKRGL
RRIIVHEKYKHPSHDYDISLAELSSPVPYTNAVHRVCLPDASYEFQPGDVMFVTGFGALKNDGYS
QNHLRQAQVTLIDATTCNEPQAYNDAITPRMLCAGSLEGKTDACQGDSGGPLVSSDARDIWYLAG
IVSWGDECAKPNKPGVYTRVTALRDWITSKTGI

Transmembrane domain:

amino acids 21-40 (type II)

AGAGAAGAAGCGTCTCCAGCTGAAGCCAATGCAGCCCTCCGGCTCTCCGCGAAGAAGTTCCCTG GCCGACGATCGCTGCCGTTTTGCCCTTGGGAGTAGGATGTGGTGAAAGGATGGGGCTTCTCCCTT TCTGCTCTTTTGGTTAATGTCCATCAGTGTGTTGGCAGTTTCTGCTTGGATGAGGGACTACCTAA GTGGTTCATCCGGTCATGATTGCTGTTTGCTGTTTCCTTATCATTGTGGGGATGTTAGGATATTG TGGAACGGTGAAAAGAAATCTGTTGCTTCTTGCATGGTACTTTGGAAGTTTGCTTGTCATTTTCT GTGTAGAACTGGCTTGTGGCGTTTGGACATATGAACAGGAACTTATGGTTCCAGTACAATGGTCA GATATGGTCACTTTGAAAGCCAGGATGACAAATTATGGATTACCTAGATATCGGTGGCTTACTCA AAATGACAGAGATGGACTGGCCCCCAGATTCCTGCTGTTTAGAGAATTCCCAGGATGTTCCAAA CAGGCCCACCAGGAAGATCTCAGTGACCTTTATCAAGAGGGTTGTGGGAAGAAAATGTATTCCTT TTTGAGAGGAACCAAACAACTGCAGGTGCTGAGGTTTCTGGGAATCTCCATTGGGGTGACACAAA TCCTGGCCATGATTCTCACCATTACTCTGCTCTGGGCTCTGTATTATGATAGAAGGGAGCCTGGG ACAGACCAAATGATGTCCTTGAAGAATGACAACTCTCAGCACCTGTCATGTCCCTCAGTAGAACT GTTGAAACCAAGCCTGTCAAGAATCTTTGAACACACATCCATGGCAAACAGCTTTAATACACACT TTGAGATGGAGGAGTTATAAAAAGAAATGTCACAGAAGAAAACCACAAACTTGTTTTATTGGACT TGTGAATTTTTGAGTACATACTATGTGTTTCAGAAATATGTAGAAATAAAAATGTTGCCATAAAA TAACACCTAAGCATATACTATTCTATGCTTTAAAATGAGGATGGAAAAGTTTCATGTCATAAGTC ACCACCTGGACAATAATTGATGCCCTTAAAATGCTGAAGACAGATGTCATACCCACTGTGTAGCC TGTGTATGACTTTTACTGAACACAGTTATGTTTTGAGGCAGCATGGTTTGATTAGCATTTCCGCA TCCATGCAAACGAGTCACATATGGTGGGACTGGAGCCATAGTAAAGGTTGATTTACTTCTACCAA CTAGTATAAAGTACTAATTAAATGCTAACATAGGAAGTTAGAAAATACTAATAACTTTTATTA CTCAGCGATCTATTCTTCTGATGCTAAATAAATTATATATCAGAAAACTTTCAATATTGGTGACT ACCTAAATGTGATTTTTGCTGGTTACTAAAATATTCTTACCACTTAAAAGGGCAAGCTAACACAT TTCAGTTCTGATAATGTTAAGAATAACCATTATGAAAAGGAAAATTTGTCCTGTATAGCATCATT ATTTTTAGCCTTTCCTGTTAATAAAGCTTTACTATTCTGTCCTGGGCTTATATTACACATATAAC TGTTATTTAAATACTTAACCACTAATTTTGAAAATTACCAGTGTGATACATAGGAATCATTATTC AGAATGTAGTCTGGTCTTTAGGAAGTATTAATAAGAAAATTTGCACATAACTTAGTTGATTCAGA AAGGACTTGTATGCTGTTTTTCTCCCAAATGAAGACTCTTTTTGACACTAAACACTTTTTAAAAA GCTTATCTTTGCCTTCTCCAAACAAGAAGCAATAGTCTCCAAGTCAATATAAATTCTACAGAAAA TAGTGTTCTTTTTCTCCAGAAAAATGCTTGTGAGAATCATTAAAACATGTGACAATTTAGAGATT CTTTGTTTTATTTCACTGATTAATATACTGTGGCAAATTACACAGATTATTAAATTTTTTTACAA GAGTATAGTATATTTGTAAATGGGAAAAGTGCATTTTACTGTATTTTGTGTATTTTGTTTAT

MAREDSVKCLRCLLYALNLLFWLMSISVLAVSAWMRDYLNNVLTLTAETRVEEAVILTYFPVVHP
VMIAVCCFLIIVGMLGYCGTVKRNLLLLAWYFGSLLVIFCVELACGVWTYEQELMVPVQWSDMVT
LKARMTNYGLPRYRWLTHAWNFFQREFKCCGVVYFTDWLEMTEMDWPPDSCCVREFPGCSKQAHQ
EDLSDLYQEGCGKKMYSFLRGTKQLQVLRFLGISIGVTQILAMILTITLLWALYYDRREPGTDQM
MSLKNDNSQHLSCPSVELLKPSLSRIFEHTSMANSFNTHFEMEEL

Signal peptide:

amino acids 1-33

Transmembrane domains:

amino acids 12-35, 57-86, 94-114, 226-248

CCAAGGCCAGAGCTGTGGACACCTTATCCCACTCATCCTCATCCTCTCTGATAAAGCCCCTACCAGTGCT ${\tt CCAGTATTAAGAGGATTTTCCAGTGTTTCTGGCAGTTGGTCCAGAAGGATGCCTCCATTCCTGCTTCTCACCTG}$ CCTCTTCATCACAGGCACCTCCGTGTCACCCGTGGCCCTAGATCCTTGTTCTGCTTACATCAGCCTGAATGAGC $\tt CCTGGAGGAACACTGACCACCAGTTGGATGAGTCTCAAGGTCCTCTATGTGACAACCATGTGAATGGGGAG$ TGGTACCACTTCACGGGCATGGCGGGAGATGCCATGCCTACCTTCTGCATACCAGAAAACCACTGTGGAACCCA TCAATGGGAACTGCTGTCTCTGGAACACCACGGTGGAAGTCAAGGCTTGCCCTGGAGGCTACTATGTGTATCGT $\tt CTGACCAAGCCCAGCGTCTGCTTCCACGTCTACTGTGGTCATTTTTATGACATCTGCGACGAGGACTGCCATGG$ ATGAAAATGAATGTGAGCAAAACAACGGTGGCTGCAGTGAGATCTGTGTGAACCTCAAAAAACTCCTACCGCTGT GAGTGTGGGGTTGGCCGTGTGCTAAGAAGTGATGGCAAGACTTGTGAAGACGTTGAAGGATGCCACAATAACAA CTGAGGATAACCACACTTGCCAAGTCCCTGTGTTGTGCAAATCAAATGCCATTGAAGTGAACATCCCCAGGGAG CTGGTTGGTGGCCTGGAGCTCTTCCTGACCAACACCTCCTGCCGAGGAGTGTCCAACGGCACCCATGTCAACAT $\verb|CCTCTTCTCTCAAGACATGTGGTACAGTGGTCGATGTGGTGAATGACAAGATTGTGGCCAGCAACCTCGTGA| \\$ ACCTGCGAGTTTCCACGCCTGTACACCATTTCTGAAGGATACGTTCCCAACCTTCGAAACTCCCCACTGGAAAT CATGAGCCGAAATCATGGGATCTTCCCATTCACTCTGGAGATCTTCAAGGACAATGAGTTTGAAGAGCCTTACC GGGAAGCTCTGCCCACCCTCAAGCTTCGTGACTCCCTCTACTTTGGCATTGAGCCCGTGGTGCACGTGAGCGGC TTGGAAAGCTTGGTGGAGAGCTGCTTTGCCACCCCCACCTCCAAGATCGACGAGGTCCTGAAATACTACCTCAT CCGGGATGGCTGTGTTCAGATGACTCGGTAAAGCAGTACACATCCCGGGATCACCTAGCAAAGCACTTCCAGG TCCCTGTCTTCAAGTTTGTGGGCAAAGACCACAAGGAAGTGTTTCTGCACTGCCGGGTTCTTGTCTGTGGAGTG TTGGACGAGCGTTCCCGCTGTGCCCAGGGTTGCCACCGGCGAATGCGTCGTGGGGCAGGAGGAGGAGGACTCAGC $\tt CGGTCTACAGGGCCAGACGCTAACAGGCGGCCCGATCCGCATCGACTGGGAGGACTAGTTCGTAGCCATACCTC$ GAGTCCCTGCATTGGACGGCTCTGCTCTTTGGAGCTTCTCCCCCCACCGCCCTCTAAGAACATCTGCCAACAGC CAGGTCACAGCACTGCTGAACAATGTGGCCTGGGTGGGGTTTCATCTTTCTAGGGTTGAAAACTAAACTGTCCA CACAAAATCAGAAGCTGGGTATAATATTTCAAGTTACAAACCCTAGAAAAATTAAACAGTTACTGAAATTATGA CTTAAATACCCAATGACTCCTTAAATATGTAAATTATAGTTATACCTTGAAATTCAAATCAAATGCAGACTAA TTATAGGGAATTTGGAAGTGTATCAATAAAACAGTATATAATTTT

MPPFLLTCLFITGTSVSPVALDPCSAYISLNEPWRNTDHQLDESQGPPLCDNHVNGEWYHFTGMAGDAMP
TFCIPENHCGTHAPVWLNGSHPLEGDGIVQRQACASFNGNCCLWNTTVEVKACPGGYYVYRLTKPSVCFHV
YCGHFYDICDEDCHGSCSDTSECTCAPGTVLGPDRQTCFDENECEQNNGGCSEICVNLKNSYRCECGVGRV
LRSDGKTCEDVEGCHNNNGGCSHSCLGSEKGYQCECPRGLVLSEDNHTCQVPVLCKSNAIEVNIPRELVGG
LELFLTNTSCRGVSNGTHVNILFSLKTCGTVVDVVNDKIVASNLVTGLPKQTPGSSGDFIIRTSKLLIPVT
CEFPRLYTISEGYVPNLRNSPLEIMSRNHGIFPFTLEIFKDNEFEEPYREALPTLKLRDSLYFGIEPVVHV
SGLESLVESCFATPTSKIDEVLKYYLIRDGCVSDDSVKQYTSRDHLAKHFQVPVFKFVGKDHKEVFLHCRV
LVCGVLDERSRCAQGCHRRMRRGAGGEDSAGLQGQTLTGGPIRIDWED

Important features of the protein:

Signal peptide:

amino acids 1-16

N-glycosylation sites.

amino acids 89-93, 116-120, 259-263, 291-295, 299-303

Tyrosine kinase phosphorylation sites.

amino acids 411-418, 443-451

N-myristoylation sites.

amino acids 226-232, 233-239, 240-246, 252-258, 296-302, 300-306, 522-528, 531-537

Aspartic acid and asparagine hydroxylation site.

amino acids 197-209

ZP domain proteins.

amino acids 431-457

Calcium-binding EGF-like proteins.

amino acids 191-212, 232-253

CCTGCTGCCTTGGGGTGACAATCTCAGCTCCAGGCTACAGGGAGACCGGGAGGATCACAGAGCCAGCATGT TACAGGATCCTGACAGTGATCAACCTCTGAACAGCCTCGATGTCAAACCCCTGCGCAAACCCCGTATCCCC ATGGAGACCTTCAGAAAGGTGGGGATCCCCATCATCATAGCACTACTGAGCCTGGCGAGTATCATCATTGT GGTTGTCCTCATCAAGGTGATTCTGGATAAATACTACTTCCTCTGCGGGCAGCCTCTCCACTTCATCCCGA GGAAGCAGCTGTGTGACGGAGAGCTGGACTGTCCCTTGGGGGAGGACGAGGAGCACTGTGTCAAGAGCTTC AGGGAACTGGTTCTCCCTGTTTCGACAACTTCACAGAAGCTCTCGCTGAGACAGCCTGTAGGCAGATGG GCTACAGCAGAGCTGTGGAGATTTGGCCCAGACCAGGATCTGGATGTTGTTGAAATCACAGAAAAACAGCCAG GAGCTTCGCATGCGGAACTCAAGTGGGCCCTGTCTCTCAGGCTCCCTGGTCTCCCTGCACTGTCTTGCCTG TGGGAGGCCTGAAGACCCCCCGTGTGGTGGGTGGGGAGGAGGCCTCTGTGGATTCTTGGCCTTGGCAGG GCCCACTGCTTCAGGAAACATACCGATGTGTTCAACTGGAAGGTGCGGGCAGGCTCAGACAAACTGGGCAG CTTCCCATCCTGGCTGTGGCCAAGATCATCATCATTGAATTCAACCCCATGTACCCCAAAGACAATGACA GATGAGGAGCTCACTCCAGCCACCCCACTCTGGATCATTGGATGGGGCTTTACGAAGCAGAATGGAGGGAA GATGTCTGACATACTGCTGCAGGCGTCAGTCCAGGTCATTGACAGCACACGGTGCAATGCAGACGATGCGT ACCAGGGGAAGTCACCGAGAAGATGATGTGTGCAGGCATCCCGGAAGGGGGTGTGGACACCTGCCAGGGT GACAGTGGTGGGCCCCTGATGTACCAATCTGACCAGTGGCATGTGGTGGGCATCGTTAGCTGGGGCTATGG CTGCGGGGGCCCGAGCACCCCAGGAGTATACACCAAGGTCTCAGCCTATCTCAACTGGATCTACAATGTCT GGGGATCCCCCAAAGTCAGACACAGAGCAAGAGTCCCCTTGGGTACACCCCTCTGCCCACAGCCTCAGCAT TTCTTGGAGCAGCAAAGGGCCTCAATTCCTGTAAGAGACCCTCGCAGCCCAGAGGCCCCAGAGGAAGTCA GCAGCCCTAGCTCGGCCACACTTGGTGCTCCCAGCATCCCAGGGAGAGACACCCCACTGAACAAGGTCT CAGGGGTATTGCTAAGCCAAGAAGGAACTTTCCCACACTACTGAATGGAAGCAGGCTGTCTTGTAAAAGCC CAGATCACTGTGGGCTGGAGAGGAGAAGGAAAGGGTCTGCGCCAGCCCTGTCCGTCTTCACCCATCCCCAA GCCTACTAGAGCAAGAAACCAGTTGTAATATAAAATGCACTGCCCTACTGTTGGTATGACTACCGTTACCT AAAA

MLQDPDSDQPLNSLDVKPLRKPRIPMETFRKVGIPIIIALLSLASIIIVVVLIKVILDKYYFLCG
QPLHFIPRKQLCDGELDCPLGEDEEHCVKSFPEGPAVAVRLSKDRSTLQVLDSATGNWFSACFDN
FTEALAETACRQMGYSRAVEIGPDQDLDVVEITENSQELRMRNSSGPCLSGSLVSLHCLACGKSL
KTPRVVGGEEASVDSWPWQVSIQYDKQHVCGGSILDPHWVLTAAHCFRKHTDVFNWKVRAGSDKL
GSFPSLAVAKIIIIEFNPMYPKDNDIALMKLQFPLTFSGTVRPICLPFFDEELTPATPLWIIGWG
FTKQNGGKMSDILLQASVQVIDSTRCNADDAYQGEVTEKMMCAGIPEGGVDTCQGDSGGPLMYQS
DQWHVVGIVSWGYGCGGPSTPGVYTKVSAYLNWIYNVWKAEL

Transmembrane domain:

amino acids 32-53 (typeII)

GGCTGGACTGGAACTCCTGGTCCCAAGTGATCCACCCGCCTCAGCCTCCCAAGGTGCTGTGATTA TAGGTGTAAGCCACCGTGTCTGGCCTCTGAACAACTTTTTCAGCAACTAAAAAAGCCACAGGAGT TGTTTTTTGTTCTCTTGTAACTAGCCTTTACCTTCCTAACACAGAGGATCTGTCACTGTGGCTCT GGCCCAAACCTGACCTTCACTCTGGAACGAGAACAGAGGTTTCTACCCACACCGTCCCCTCGAAG $\tt CCGGGGACAGCCTCACCTTGCTGGCCTCTCGCTGGAGCAGTGCCCTCACCAACTGTCTCACGTCT$ GGAGGCACTGACTCGGGCAGTGCAGGTAGCTGAGCCTCTTGGTAGCTGCGGCTTTCAAGGTGGGC CTTGCCCTGGCCGTAGAAGGGATTGACAAGCCCGAAGATTTCATAGGCGATGGCTCCCACTGCCC AGGCATCAGCCTTGCTGTAGTCAATCACTGCCCTGGGGCCAGGACGGCCGTGGACACCTGCTCA GAAGCAGTGGGTGAGACATCACGCTGCCCGCCCATCTAACCTTTTCATGTCCTGCACATCACCTG CAGAAGGGGTCTGCTTAGACCACCTGGTTTATGTGACAGGACTTGCATTCTCCTGGAACATGAGG GAACGCCGGAGGAAAGCAAAGTGGCAGGGAAGGAACTTGTGCCAAATTATGGGTCAGAAAAGATG GAGGTGTTGGGTTATCACAAGGCATCGAGTCTCCTGCATTCAGTGGACATGTGGGGGAAAGGGCTG CCGATGCCCATGACACACTCGGGACTCACCTCTGGGGCCATCAGACAGCCGTTTCCGCCCCGAT CCACGTACCAGCTGCTGAAGGGCAACTGCAGGCCGATGCTCTCATCAGCCAGGCAGCCAAAA CTCCTTCCCTCTGAGAGGCCCTCCTATGTCCCTACTAAAGCCACCAGCAAGACATAGCTGACAGG GGCTAATGGCTCAGTGTTGGCCCAGGAGGTCAGCAAGGCCTGAGAGCTGATCAGAAGGGCCTGCT GTGCGAACACGGAAATGCCTCCAGTAAGCACAGGCTGCAAAATCCCCAGGCAAAGGACTGTGTGG CTCAATTTAAATCATGTTCTAGTAATTGGAGCTGTCCCCAAGACCAAAGGAGCTAGAGCTTGGTT CAAATGATCTCCAAGGGCCCTTATACCCCAGGAGACTTTGATTTGAATTTGAAACCCCAAATCCA AACCTAAGAACCAGGTGCATTAAGAATCAGTTATTGCCGGGTGTGGTGGCCTGTAATGCCAACAT TTTGGGAGGCCGAGGCGGTAGATCACCTGAGGTCAGGAGTTCAAGACCAGCCTGGCCAACATGG TGAAACCCCTGTCTCTACTAAAAATACAAAAAACTAGCCAGGCATGGTGGTGTGTGCCTGTATC CCAGCTACTCGGGAGGCTGAGACAGGAGAATTACTTGAACCTGGGAGGTGAAGGAGGCTGAGACA TGGTTATTTGTAA

 ${\tt MLWWLVLLLLPTLKSVFCSLVTSLYLPNTEDLSLWLWPKPDLHSGTRTEVSTHTVPSKPGTASPC} \\ {\tt WPLAGAVPSPTVSRLEALTRAVQVAEPLGSCGFQGGPCPGRRD} \\ {\tt Construction} \\ {\tt$

Signal peptide:

amino acids 1-15

 ${\tt CAGCAGTGGTCTCTCAGTCCTCTCAAAGCAAGGAAAGAGTACTGTGTGCTGAGAGACC{\color{red} {\bf ATG}}{\tt GCAA}}$ AGAATCCTCCAGAGAATTGTGAAGACTGTCACATTCTAAATGCAGAAGCTTTTAAATCCAAGAAA ATATGTAAATCACTTAAGATTTGTGGACTGGTGTTTGGTATCCTGGCCCTAACTCTAATTGTCCT GTTTTGGGGGAGCAAGCACTTCTGGCCGGAGGTACCCAAAAAAGCCTATGACATGGAGCACACTT TCTACAGCAATGGAGAGAAGAAGATTTACATGGAAATTGATCCTGTGACCAGAACTGAAATA TTCAGAAGCGGAAATGGCACTGATGAAACATTGGAAGTGCACGACTTTAAAAACGGATACACTGG CATCTACTTCGTGGGTCTTCAAAAATGTTTTATCAAAACTCAGATTAAAGTGATTCCTGAATTTT ATTTGGGTCCCAGCAGAAAAGCCTATTGAAAACCGAGATTTTCTTAAAAATTCCAAAATTCTGGA GATTTGTGATAACGTGACCATGTATTGGATCAATCCCACTCTAATATCAGTTTCTGAGTTACAAG AGAACTTCCAATAAATGACTATACTGAAAATGGAATAGAATTTGATCCCATGCTGGATGAGAGAG GTTATTGTTGTATTTACTGCCGTCGAGGCAACCGCTATTGCCGCCGCGTCTGTGAACCTTTACTA GGCTACTACCCATATCCATACTGCTACCAAGGAGGACGAGTCATCTGTCGTGTCATCATGCCTTG TAACTGGTGGGTGGCCCGCATGCTGGGGAGGGTCTAATAGGAGGTTTGAGCTCAAATGCTTAAAC TGCTGGCAACATATAATAAATGCATGCTATTCAATGAATTTCTGCCTATGAGGCATCTGGCCCCT GGTAGCCAGCTCTCCAGAATTACTTGTAGGTAATTCCTCTTCATGTTCTAATAAACTTCTACA TTATCACCAAAAAAAAAAAAAAAAA

MAKNPPENCEDCHILNAEAFKSKKICKSLKICGLVFGILALTLIVLFWGSKHFWPEVPKKAYDME HTFYSNGEKKKIYMEIDPVTRTEIFRSGNGTDETLEVHDFKNGYTGIYFVGLQKCFIKTQIKVIP EFSEPEEEIDENEEITTTFFEQSVIWVPAEKPIENRDFLKNSKILEICDNVTMYWINPTLISVSE LQDFEEEGEDLHFPANEKKGIEQNEQWVVPQVKVEKTRHARQASEEELPINDYTENGIEFDPMLD ERGYCCIYCRRGNRYCRRVCEPLLGYYPYPYCYQGGRVICRVIMPCNWWVARMLGRV

Important features of the protein:

Signal peptide:

amino acids 1-40

Transmembrane domain:

amino acids 25-47 (type II)

N-glycosylation sites.

amino acids 94-97, 180-183

Glycosaminoglycan attachment sites.

amino acids 92-95, 70-73, 85-88, 133-136, 148-151, 192-195, 239-242

N-myristoylation sites.

amino acids 33-38, 95-100, 116-121, 215-220, 272-277

Microbodies C-terminal targeting signal.

amino acids 315-317

Cytochrome c family heme-binding site signature.

amino acids 9-14

GAGCTCCCCTCAGGAGCGCGTTAGCTTCACACCTTCGGCAGCAGGAGGGCGGCAGCTTCTCGCAGGCGGCA $\tt GGGCGGGCCAGGATC \underline{\textbf{ATG}} TCCACCACCACATGCCAAGTGGTGGCGTTCCTCTGTCCATCCTGGGGCT$ GGCCGGCTGCATCGCGGCCACCGGGATGGACATGTGGAGCACCCAGGACCTGTACGACAACCCCGTCACCT CCGTGTTCCAGTACGAAGGGCTCTGGAGGAGCTGCGTGAGGCAGAGTTCAGGCTTCACCGAATGCAGGCCC GGGTGCCATTGGCCTCCTGGTATCCATCTTTGCCCTGAAATGCATCCGCATTGGCAGCATGGAGGACTCTG CCAAAGCCAACATGACACTGACCTCCGGGATCATGTTCATTGTCTCAGGTCTTTGTGCAATTGCTGGAGTG TCTGTGTTTGCCAACATGCTGGTGACTAACTTCTGGATGTCCACAGCTAACATGTACACCGGCATGGGTGG GATGGTGCAGACTGTTCAGACCAGGTACACATTTGGTGCGGCTCTGTTCGTGGGCTGGGTCGCTGGAGGCC TCACACTAATTGGGGGTGTGATGATGTGCATCGCCTGCCGGGGCCTGCCACAGAAGAAACCAACTACAAA GCCGTTTCTTATCATGCCTCAGGCCACAGTGTTGCCTACAAGCCTGGAGGCTTCAAGGCCAGCACTGGCTT TGGGTCCAACACCAAAAACAAGAAGATATACGATGGAGGTGCCCGCACAGAGGACGAGGTACAATCTTATC CTTCCAAGCACGACTATGTGTAATGCTCTAAGACCTCTCAGCACGGGCGGAAGAAACTCCCGGAGAGCTCA CCCAAAAAACAAGGAGATCCCATCTAGATTTCTTCTTGCTTTTGACTCACAGCTGGAAGTTAGAAAAGCCT CGATTTCATCTTTGGAGAGGCCAAATGGTCTTAGCCTCAGTCTCTGTCTCTAAATATTCCACCATAAAACA GCTGAGTTATTTATGAATTAGAGGCTATAGCTCACATTTTCAATCCTCTATTTCTTTTTTAAATATAACT TTCCTCCTAGTCAATAAACCCATTGATGATCTATTTCCCAGCTTATCCCCAAGAAAACTTTTGAAAGGAAA GAGTAGACCCAAAGATGTTATTTTCTGCTGTTTGAATTTTTGTCTCCCCACCCCCAACTTGGCTAGTAATAA ACACTTACTGAAGAAGCAATAAGAGAAAGATATTTGTAATCTCTCCAGCCCATGATCTCGGTTTTCTT ACACTGTGATCTTAAAAGTTACCAAACCAAAGTCATTTTCAGTTTGAGGCAACCAAACCTTTCTACTGCTG TTGACATCTTCTTATTACAGCAACACCATTCTAGGAGTTTCCTGAGCTCTCCACTGGAGTCCTCTTTCTGT AATAAATAATGTTTTAGTAAAATGATACACTATCTCTGTGAAATAGCCTCACCCCTACATGTGGATAGAAG GAAATGAAAAATAATTGCTTTGACATTGTCTATATGGTACTTTGTAAAGTCATGCTTAAGTACAAATTCC TCGAGACTAGCCTGGGCAACATGGAGAAGCCCTGTCTCTACAAAATACAGAGAGAAAAAATCAGCCAGTCA TGGTGGCATACACCTGTAGTCCCAGCATTCCGGGAGGCTGAGGTGGGAGGATCACTTGAGCCCAGGGAGGT AATAAAAATAATGGAACACAGCAAGTCCTAGGAAGTAGGTTAAAACTAATTCTTTAA

MSTTTCQVVAFLLSILGLAGCIAATGMDMWSTQDLYDNPVTSVFQYEGLWRSCVRQSSGFTECRP
YFTILGLPAMLQAVRALMIVGIVLGAIGLLVSIFALKCIRIGSMEDSAKANMTLTSGIMFIVSGL
CAIAGVSVFANMLVTNFWMSTANMYTGMGGMVQTVQTRYTFGAALFVGWVAGGLTLIGGVMMCIA
CRGLAPEETNYKAVSYHASGHSVAYKPGGFKASTGFGSNTKNKKIYDGGARTEDEVQSYPSKHDY
V

Signal peptide:

amino acids 1-23

Transmembrane domains:

amino acids 81-100, 121-141, 173-194

GGAAAAACTGTTCTCTTGTGGCACAGAGAACCCTGCTTCAAAGCAGAAGTAGCAGTTCCGGAGTCC AGCTGGCTAAAACTCATCCCAGAGGATAATGGCAACCCATGCCTTAGAAATCGCTGGGCTGTTTCTTG GTGGTGTTGGAATGGTGGCACAGTGGCTGTCACTGTCATGCCTCAGTGGAGAGTGTCGGCCTTCATT CATCAGGATGCAGTGCAAAATCTATGATTCCCTGCTGGCTCTTTCTCCGGACCTACAGGCAGCCAGAG GACTGATGTGTGCTGCTTCCGTGATGTCCTTCTTGGCTTTCATGATGGCCATCCTTGGCATGAAATGC ACCAGGTGCACGGGGGACAATGAGAAGGTGAAGGCTCACATTCTGCTGACGGCTGGAATCATCTTCAT CATCACGGGCATGGTGGTGCTCATCCCTGTGAGCTGGGTTGCCAATGCCATCATCAGAGATTTCTATA ACTCAATAGTGAATGTTGCCCAAAAACGTGAGCTTGGAGAAGCTCTCTACTTAGGATGGACCACGGCA $\tt CTGGTGCTGATTGTTGGAGGAGCTCTGTTCTGCTGCGTTTTTTGTTGCAACGAAAAGAGCAGTAGCTA$ CAGATACTCGATACCTTCCCATCGCACAACCCAAAAAAAGTTATCACACCGGAAAGAAGTCACCGAGCG TCTACTCCAGAAGTCAGTATGTGTAGTTGTGTATGTTTTTTAACTTTACTATAAAGCCATGCAAATG ACAAAAATCTATATTACTTTCTCAAAATGGACCCCAAAGAAACTTTGATTTACTGTTCTTAACTGCCT AATCTTAATTACAGGAACTGTGCATCAGCTATTTATGATTCTATAAGCTATTTCAGCAGAATGAGATA TTAAACCCAATGCTTTGATTGTTCTAGAAAGTATAGTAATTTGTTTTCTAAGGTGGTTCAAGCATCTA $\tt CTCTTTTTATCATTTACTTCAAAATGACATTGCTAAAGACTGCATTATTTTACTACTGTAATTTCTCC$ ACGACATAGCATTATGTACATAGATGAGTGTAACATTTATATCTCACATAGAGACATGCTTATATGGT ATCATGGATAGGGTTGAAGAAGGTTACTATTAATTGTTTAAAAACAGCTTAGGGATTAATGTCCTCCA TTTATAATGAAGATTAAAATGAAGGCTTTAATCAGCATTGTAAAGGAAATTGAATGGCTTTCTGATAT $\tt CTTGTGTATTAAATTAACATTTTTAAAACGCAGATATTTTGTCAAGGGGCTTTGCATTCAAACTGCTT$ TTCCAGGGCTATACTCAGAAGAAGATAAAAGTGTGATCTAAGAAAAAGTGATGGTTTTAGGAAAGTG TGTCTTGGTTTTCATTTGCTTACCAAAAAAACAACAACAAAAAAAGTTGTCCTTTGAGAACTTCACCT CCATTTCTGTTTAGTTTTACTAAAATCTGTAAATACTGTATTTTTCTGTTTATTCCAAATTTGATGAA TATACATTTATATTAATAAATTGTACATTTTTCTAATT

MATHALEIAGLFLGGVGMVGTVAVTVMPQWRVSAFIENNIVVFENFWEGLWMNCVRQANIRMQCK IYDSLLALSPDLQAARGLMCAASVMSFLAFMMAILGMKCTRCTGDNEKVKAHILLTAGIIFIITG MVVLIPVSWVANAIIRDFYNSIVNVAQKRELGEALYLGWTTALVLIVGGALFCCVFCCNEKSSSY RYSIPSHRTTQKSYHTGKKSPSVYSRSQYV

Signal peptide:

amino acids 1-17

Transmembrane domains:

amino acids 82-101, 118-145, 164-188

GGAGAGAGGCGCGGGTGAAAGGCGCATTGATGCAGCCTGCGGCGGCCTCGGAGCGCGGCGGAG $\verb|CCAGACGCTGACCACGTTCCTCTCGGTCTCCTCCGCCTCCAGCTCCGCGCTGCCCGGCAGCC|\\$ GGGAGCCATGCGACCCCAGGGCCCCGCCGCCTCCCCGCAGCGGCTCCGCGGCCTCCTGCTGCTCC TGCTGCTGCAGCTGCCCGCCCCTCGAGCGCCTCTGAGATCCCCAAGGGGAAGCAAAAGGCGCAG CTCCGGCAGAGGGGGGGGGGGGCCTGTATAATGGAATGTGCTTACAAGGGCCAGCAGGAGTGCC TGGTCGAGACGGGAGCCCTGGGGCCAATGTTATTCCGGGTACACCTGGGATCCCAGGTCGGGATG GATTCAAAGGAGAAAAGGGGGAATGTCTGAGGGAAAGCTTTGAGGAGTCCTGGACACCCAACTAC AAGCAGTGTTCATGGAGTTCATTGAATTATGGCATAGATCTTGGGAAAATTGCGGAGTGTACATT TACAAAGATGCGTTCAAATAGTGCTCTAAGAGTTTTGTTCAGTGGCTCACTTCGGCTAAAATGCA GAAATGCATGCTGTCAGCGTTGGTATTTCACATTCAATGGAGCTGAATGTTCAGGACCTCTTCCC ATTGAAGCTATAATTTATTTGGACCAAGGAAGCCCTGAAATGAATTCAACAATTAATATTCATCG CACTTCTTCTGTGGAAGGACTTTGTGAAGGAATTGGTGCTGGATTAGTGGATGTTGCTATCTGGG ATTATTGAAGAACTACCAAAATAAATGCTTTAATTTTCATTTGCTACCTCTTTTTTTATTATGCC CTAAATATGTTTACAGACCAAAGTGTGATTTCACACTGTTTTTAAATCTAGCATTATTCATTTTG CTTCAATCAAAAGTGGTTTCAATATTTTTTTTTAGTTGGTTAGAATACTTTCTTCATAGTCACATT CTCTCAACCTATAATTTGGAATATTGTTGTGGTCTTTTGTTTTTCTCTTAGTATAGCATTTTTA TAAATAAAAATTATTTCCAACA

MRPQGPAASPQRLRGLLLLLLLQLPAPSSASEIPKGKQKAQLRQREVVDLYNGMCLQGPAGVPGR DGSPGANVIPGTPGIPGRDGFKGEKGECLRESFEESWTPNYKQCSWSSLNYGIDLGKIAECTFTK MRSNSALRVLFSGSLRLKCRNACCQRWYFTFNGAECSGPLPIEAIIYLDQGSPEMNSTINIHRTS SVEGLCEGIGAGLVDVAIWVGTCSDYPKGDASTGWNSVSRIIIEELPK

Signal peptide:

amino acids 1-30

Transmembrane domain:

amino acids 195-217

GCTGAGCGTGTGCGCGGTACGGGGCTCTCCTGCCTTCTGGGCTCCAACGCAGCTCTGTGGCTGAA CTGGGTGCTCATCACGGGAACTGCTGGGCTATGGAATACAGATGTGGCAGCTCAGGTAGCCCCAA ACCGCCCCCCCCCCCCAAAAAAACTGTAAAGATGCAAAAACGTAATATCCATGAAGATCC TGTTCTGCGTGGCTGGCAAAGAATAATGTTCCAAAATCGGTCCATCTCCCAAGGGGTCCAATTTT TCTTCCTGGGTGTCAGCGAGCCCTGACTCACTACAGTGCAGCTGACAGGGGCTGTCATGCAACTG GCCCCTAAGCCAAAGCAAAAGACCTAAGGACGACCTTTGAACAATACAAAGGATGGTTTCAATG TAATTAGGCTACTGAGCGGATCAGCTGTAGCACTGGTTATAGCCCCCACTGTCTTACTGACAATG CTTTCTTCTGCCGAACGAGGATGCCCTAAGGGCTGTAGGTGTGAAGGCAAAATGGTATATTGTGA ATCTCAGAAATTACAGGAGATACCCTCAAGTATATCTGCTGGTTGCTTAGGTTTGTCCCTTCGCT ATAACAGCCTTCAAAAACTTAAGTATAATCAATTTAAAGGGCTCAACCAGCTCACCTGGCTATAC CTTGACCATAACCATATCAGCAATATTGACGAAAATGCTTTTAATGGAATACGCAGACTCAAAGA GCTGATTCTTAGTTCCAATAGAATCTCCTATTTTCTTAACAATACCTTCAGACCTGTGACAAATT TACGGAACTTGGATCTGTCCTATAATCAGCTGCATTCTCTGGGATCTGAACAGTTTCGGGGCTTG CGGAAGCTGCTGAGTTTACATTTACGGTCTAACTCCCTGAGAACCATCCCTGTGCGAATATTCCA AGACTGCCGCAACCTGGAACTTTTGGACCTGGGATATAACCGGATCCGAAGTTTAGCCAGGAATG CTGGCCCTTTTTCCAAGGTTGGTCAGCCTTCAGAACCTTTACTTGCAGTGGAATAAAATCAGTGT CATAGGACAGACCATGTCCTGGACCTGGAGCTCCTTACAAAGGCTTGATTTATCAGGCAATGAGA TCGAAGCTTTCAGTGGACCCAGTGTTTTCCAGTGTGTCCCGAATCTGCAGCGCCTCAACCTGGAT TCCAACAAGCTCACATTTATTGGTCAAGAGATTTTGGATTCTTGGATATCCCTCAATGACATCAG TCTTGCTGGGAATATATGGGAATGCAGCAGAAATATTTGCTCCCTTGTAAACTGGCTGAAAAGTT TTAAAGGTCTAAGGGAGAATACAATTATCTGTGCCAGTCCCAAAGAGCTGCAAGGAGTAAATGTG ATCGATGCAGTGAAGAACTACAGCATCTGTGGCAAAAGTACTACAGAGAGGTTTGATCTGGCCAG GGCTCTCCCAAAGCCGACGTTTAAGCCCAAGCTCCCCAGGCCGAAGCATGAGAGCAAACCCCCTT TGCCCCGACGGTGGGAGCCACAGAGCCCGGCCCAGAGACCGATGCTGACGCCGAGCACATCTCT TTCCATAAAATCATCGCGGGCAGCGTGGCGCTTTTCCTGTCCGTGCTCGTCATCCTGCTGGTTAT CTACGTGTCATGGAAGCGGTACCCTGCGAGCATGAAGCAGCTGCAGCAGCGCTCCCTCATGCGAA GGCACAGGAAAAAGAAAAGACAGTCCCTAAAGCAAATGACTCCCAGCACCCAGGAATTTTATGTA GATTATAAACCCACCAACACGGAGACCAGCGAGATGCTGCTGAATGGGACGGGACCCTGCACCTA TAACAAATCGGGCTCCAGGGAGTGTGAGGTA**TGA**ACCATTGTGATAAAAAGAGCTCTTAAAAGCT TTCCCTCTCCCTCTCACTTTGGTGGCAAGATCCTTCCTTGTCCGTTTTAGTGCATTCATAATACT GAACTCCGGTTTAATATAATACCTATTGTATAAGACCCTTTACTGATTCCATTAATGTCGCATTT

MGFNVIRLLSGSAVALVIAPTVLLTMLSSAERGCPKGCRCEGKMVYCESQKLQEIPSSISAGCLG
LSLRYNSLQKLKYNQFKGLNQLTWLYLDHNHISNIDENAFNGIRRLKELILSSNRISYFLNNTFR
PVTNLRNLDLSYNQLHSLGSEQFRGLRKLLSLHLRSNSLRTIPVRIFQDCRNLELLDLGYNRIRS
LARNVFAGMIRLKELHLEHNQFSKLNLALFPRLVSLQNLYLQWNKISVIGQTMSWTWSSLQRLDL
SGNEIEAFSGPSVFQCVPNLQRLNLDSNKLTFIGQEILDSWISLNDISLAGNIWECSRNICSLVN
WLKSFKGLRENTIICASPKELQGVNVIDAVKNYSICGKSTTERFDLARALPKPTFKPKLPRPKHE
SKPPLPPTVGATEPGPETDADAEHISFHKIIAGSVALFLSVLVILLVIYVSWKRYPASMKQLQQR
SLMRRHRKKKRQSLKQMTPSTQEFYVDYKPTNTETSEMLLNGTGPCTYNKSGSRECEV

Important features of the protein:

Signal peptide:

amino acids 1-33

Transmembrane domain:

amino acids 420-442

N-glycosylation sites.

amino acids 126-129, 357-360, 496-499, 504-507

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 465-468

Tyrosine kinase phosphorylation site.

amino acids 136-142

N-myristoylation sites.

amino acids 11-16, 33-38, 245-250, 332-337, 497-502, 507-512

 $\texttt{CCGTTATCGTCTTGCGCTACTGCTGA} \underline{\textbf{ATG}} \\ \texttt{TCCGTCCCGGAGGAGGAGGAGGAGGCTTTTGCCGCTG} \\$ ACCCAGAGATGCCCCGAGCGAGCAAATTCCTACTGTCCGGCTGCGCGGCTACCGTGGCCGAGCT AGCAACCTTTCCCCTGGATCTCACAAAAACTCGACTCCAAATGCAAGGAGAAGCAGCTCTTGCTC GGTTGGGAGACGGTGCAAGAGAATCTGCCCCCTATAGGGGAATGGTGCGCACAGCCCTAGGGATC ATTGAAGAGGAAGGCTTTCTAAAGCTTTGGCAAGGAGTGACACCCGCCATTTACAGACACGTAGT GTATTCTGGAGGTCGAATGGTCACATATGAACATCTCCGAGAGGTTGTGTTTGGCAAAAGTGAAG ATGAGCATTATCCCCTTTGGAAATCAGTCATTGGAGGGATGATGGCTGGTGTTATTGGCCAGTTT AAAACCATTGCGATTTCGTGGTGTACATCATGCATTTGCAAAAATCTTAGCTGAAGGAGGAATAC GAGGGCTTTGGGCAGGCTGGGTACCCAATATACAAAGAGCAGCACTGGTGAATATGGGAGATTTA ACCACTTATGATACAGTGAAACACTACTTGGTATTGAATACACCACTTGAGGACAATATCATGAC TCACGGTTTATCAAGTTTATGTTCTGGACTGGTAGCTTCTATTCTGGGAACACCAGCCGATGTCA ACTGACTGCTTGATTCAGGCTGTTCAAGGTGAAGGATTCATGAGTCTATATAAAGGCTTTTTTACC TGAGTGGAGTCAGTCCATTTTAA

MSVPEEEERLLPLTQRWPRASKFLLSGCAATVAELATFPLDLTKTRLQMQGEAALARLGDGARES
APYRGMVRTALGIIEEEGFLKLWQGVTPAIYRHVVYSGGRMVTYEHLREVVFGKSEDEHYPLWKS
VIGGMMAGVIGQFLANPTDLVKVQMQMEGKRKLEGKPLRFRGVHHAFAKILAEGGIRGLWAGWVP
NIQRAALVNMGDLTTYDTVKHYLVLNTPLEDNIMTHGLSSLCSGLVASILGTPADVIKSRIMNQP
RDKQGRGLLYKSSTDCLIQAVQGEGFMSLYKGFLPSWLRMTPWSMVFWLTYEKIREMSGVSPF

Transmembrane domains:

amino acids 25-38, 130-147, 233-248

CGCGGATCGGACCCAAGCAGGTCGGCGGCGGCGGCGGAGAGAGCGGCCGGGCGTCAGCTCCTCGAC CGGGCCCTGGTCCAGCAGGGACTGAAGGTGGTGGGCTGCGCCCGCACTGTGGGCAACATCGAGGA GCTGGCTGCTGAATGTAAGAGTGCAGGCTACCCCGGGACTTTGATCCCCTACAGATGTGACCTAT CAAATGAAGAGGACATCCTCTCCATGTTCTCAGCTATCCGTTCTCAGCACAGCGGTGTAGACATC TGCATCAACAATGCTGGCCTGGCCCGGCCTGACACCCTGCTCTCAGGCAGCACCAGTGGTTGGAA GGACATGTTCAATGTGAACGTGCTGGCCCTCAGCATCTGCACACGGGAAGCCTACCAGTCCATGA AGGAGCGGAATGTGGACGATGGGCACATCATTAACATCAATAGCATGTCTGGCCACCGAGTGTTA CCCCTGTCTGTGACCCACTTCTATAGTGCCACCAAGTATGCCGTCACTGCGCTGACAGAGGGACT GAGGCAAGAGCTTCGGGAGGCCCAGACCCACATCCGAGCCACGTGCATCTCTCCAGGTGTGGTGG AGACACAATTCGCCTTCAAACTCCACGACAAGGACCCTGAGAAGGCAGCTGCCACCTATGAGCAA ATGAAGTGTCTCAAACCCGAGGATGTGGCCGAGGCTGTTATCTACGTCCTCAGCACCCCCGCACA CATCCAGATTGGAGACATCCAGATGAGGCCCACGGAGCAGGTGACCTAGTGACTGTGGGAGCTCC TCCTTCCCTCCCACCCTTCATGGCTTGCCTCCTGCCTCTGGATTTTAGGTGTTGATTTCTGGAT TCATCTTGTCAAATTGCTTCAGTTGTAAATGTGAAAAATGGGCTGGGGAAAGGAGGTGGTGTCCC TAATTGTTTACTTGTTACTTGTTCTTGTGCCCCTGGGCACTTGGCCTTTGTCTCAGTG TCTTCCCTTTGACATGGGAAAGGAGTTGTGGCCAAAATCCCCATCTTCTTGCACCTCAACGTCTG TGGCTCAGGGCTGGGGTGGCAGAGGGAGGCCTTCACCTTATATCTGTGTTGTTATCCAGGGCTCC AGCCCAGTCTTGGCTTCTTGTCCCCTCCTGGGGTCATCCCTCCACTCTGACTCTGACTATGGCAG CAGAACACCAGGGCCTGGCCCAGTGGATTTCATGGTGATCATTAAAAAAGAAAAATCGCAACCAA AAAAAAAAA

MARPGMERWRDRLALVTGASGGIGAAVARALVQQGLKVVGCARTVGNIEELAAECKSAGYPGTLI
PYRCDLSNEEDILSMFSAIRSQHSGVDICINNAGLARPDTLLSGSTSGWKDMFNVNVLALSICTR
EAYQSMKERNVDDGHIININSMSGHRVLPLSVTHFYSATKYAVTALTEGLRQELREAQTHIRATC
ISPGVVETQFAFKLHDKDPEKAAATYEQMKCLKPEDVAEAVIYVLSTPAHIQIGDIQMRPTEQVT

Important features of the protein:

Signal peptide:

amino acids 1-17

N-myristoylation sites.

amino acids 18-24, 21-27, 22-28, 24-30, 40-46, 90-96, 109-115, 199-205

Short-chain alcohol dehyrogenase.

amino acids 30-42, 104-114

 ${\tt AACTTCTAC} \underline{{\tt ATG}} {\tt GGCCTCCTGCTGCTGGTGGTCTTCCTCAGCCTCCTGCCGGTGGCCTACACCAT}$ CATGTCCCTCCCACCCTCCTTTGACTGCGGGCCGTTCAGGTGCAGAGTCTCAGTTGCCCGGGAGC ACCTCCCCTCCCGAGGCAGTCTGCTCAGAGGGCCTCGGCCCAGAATTCCAGTTCTGGTTTCATGC CAGCCTGTAAAAGGCCATGGAACTTTGGGTGAATCACCGATGCCATTTAAGAGGGTTTTCTGCCA GGATGGAAATGTTAGGTCGTTCTGTGTCTGCGCTGTTCATTTCAGTAGCCACCAGCCACCTGTGG TTAATTTTTAACTGATAGTTGTACATATTTGGGGGTACATGTGATATTTGGATACATGTATACAA TTAGACAGAGTCTCACTCTGTCACCCAGGCTGGAGTGCAGTGGTGCCATCTCAGCTTACTGCAAC CTCTGCCTGCCAGGTTCAAGCGATTCTCATGCCTCCACCTCCCAAGTAGCTGGGACTACAGGCAT GCACCACAATGCCCAACTAATTTTTGTATTTTTAGTAGAGACGGGGTTTTGCCATGTTGCCCAGG CTGGCCTTGAACTCCTGGCCTCAAACAATCCACTTGCCTCGGCCTCCCAAAGTGTTATGATTACA GGCGTGAGCCACCGTGCCTGGCCTAAACATTTATCTTTTCTTTGTGTTGGGAACTTTGAAATTAT ACAATGAATTATTGTTAACTGTCATCTCCCTGCTGTGCTATGGAACACTGGGACTTCTTCCCTCT ATCTAACTGTATATTTGTACCAGTTAACCAACCGTACTTCATCCCCACTCCTCTCTATCCTTCCC AACCTCTGATCACCTCATTCTACTCTCTACCTCCATGAGATCCACTTTTTTAGCTCCCACATGTG AGTAAGAAAATGCAATATTTGTCTTTCTGTGCCTGGCTTATTTCACTTAACATAATGACTTCCTG TTCCATCCATGTTGCTGCAAATGACAGGATTTCGTTCTTAATTTCAATTAAAATAACCACACATG **GCAAAAA**

 ${\tt MGLLLLVLFLSLLPVAYTIMSLPPSFDCGPFRCRVSVAREHLPSRGSLLRGPRPRIPVLVSCQPV} \\ {\tt KGHGTLGESPMPFKRVFCQDGNVRSFCVCAVHFSSHQPPVAVECLK} \\$

Important features of the protein: Signal peptide: amino acids 1-18

N-myristoylation site. amino acids 86-92

Zinc carboxypeptidases, zinc-binding region 2 signature. amino acids 68-79

 $\verb|TTCTGAAGTAACGGAAGCTACCTTGTATAAAGACCTCAACACTGCTGACCATGATCAGCGCAGCCTGGAGC|$ ATCTTCCTCATCGGGACTAAAATTGGGCTGTTCCTTCAAGTAGCACCTCTATCAGTTATGGCTAAATCCTG ${\tt TCCATCTGTGTGTCGCTGCGATGCGGGTTTCATTTACTGTAATGATCGCTTTCTGACATCCATTCCAACAG}$ TTGAAAAACTTGCTGAAAGTAGAAAGAATATACCTATACCACAACAGTTTAGATGAATTTCCTACCAACCT CCCAAAGTATGTAAAAGAGTTACATTTGCAAGAAAATAACATAAGGACTATCACTTATGATTCACTTTCAA AAATTCCCTATCTGGAAGAATTACATTTAGATGACAACTCTGTCTCTGCAGTTAGCATAGAAGAGGGAGCA TTCCGAGACAGCAACTATCTCCGACTGCTTTTCCTGTCCCGTAATCACCTTAGCACAATTCCCTGGGGTTT GCCCAGGACTATAGAAGAACTACGCTTGGATGATAATCGCATATCCACTATTTCATCACCATCTCTTCAAG GTCTCACTAGTCTAAAACGCCTGGTTCTAGATGGAAACCTGTTGAACAATCATGGTTTAGGTGACAAAGTT TTCTTCAACCTAGTTAATTTGACAGAGCTGTCCCTGGTGCGGAATTCCCTGACTGCTGCACCAGTAAACCT CTTATCTAAGGCAGCTCTATCGACTGGATATGTCCAATAATAACCTAAGTAATTTACCTCAGGGTATCTTT GATGATTTGGACAATATAACACAACTGATTCTTCGCAACAATCCCTGGTATTGCGGGTGCAAGATGAAATG AGGTTCGTGGGATGGCTATTAAGGATCTCAATGCAGAACTGTTTGATTGTAAGGACAGTGGGATTGTAAGC ACCATTCAGATAACCACTGCAATACCCAACACAGTGTATCCTGCCCAAGGACAGTGGCCAGCTCCAGTGAC CAAACAGCCAGATATTAAGAACCCCAAGCTCACTAAGGATCAACAAACCACAGGGAGTCCCTCAAGAAAAA CAATTACAATTACTGTGAAGTCTGTCACCTCTGATACCATTCATATCTCTTGGAAACTTGCTCTACCTATG ACTGCTTTGAGACTCAGCTGGCTTAAACTGGGCCATAGCCCGGCATTTGGATCTATAACAGAAACAATTGT AACAGGGGAACGCAGTGAGTACTTGGTCACAGCCCTGGAGCCTGATTCACCCTATAAAGTATGCATGGTTC CCATGGAAACCAGCAACCTCTACCTATTTGATGAAACTCCTGTTTTGTATTGAGACTGAAACTGCACCCCTT $\tt TTTGGCTGCCATCATTGGTGGGGCTGTGGCCCTGGTTACCATTGCCCTTCTTGCTTTAGTGTGTTTGGTATG$ TTCATAGGAATGGATCGCTCTTCTCAAGGAACTGTGCATATAGCAAAGGGAGGAGAAGAAAGGATGACTAT GCAGAAGCTGGCACTAAGAAGGACAACTCTATCCTGGAAATCAGGGAAACTTCTTTTCAGATGTTACCAAT ACAAAAACAATCACAGTGAAAGCAGTAGTAACCGAAGCTACAGAGACAGTGGTATTCCAGACTCAGATCAC GT

MISAAWSIFLIGTKIGLFLQVAPLSVMAKSCPSVCRCDAGFIYCNDRFLTSIPTGIPEDATTLYL QNNQINNAGIPSDLKNLLKVERIYLYHNSLDEFPTNLPKYVKELHLQENNIRTITYDSLSKIPYL EELHLDDNSVSAVSIEEGAFRDSNYLRLLFLSRNHLSTIPWGLPRTIEELRLDDNRISTISSPSL QGLTSLKRLVLDGNLLNNHGLGDKVFFNLVNLTELSLVRNSLTAAPVNLPGTNLRKLYLQDNHIN RVPPNAFSYLRQLYRLDMSNNNLSNLPQGIFDDLDNITQLILRNNPWYCGCKMKWVRDWLQSLPV KVNVRGLMCQAPEKVRGMAIKDLNAELFDCKDSGIVSTIQITTAIPNTVYPAQGQWPAPVTKQPD IKNPKLTKDQQTTGSPSRKTITITVKSVTSDTIHISWKLALPMTALRLSWLKLGHSPAFGSITET IVTGERSEYLVTALEPDSPYKVCMVPMETSNLYLFDETPVCIETETAPLRMYNPTTTLNREQEKE PYKNPNLPLAAIIGGAVALVTIALLALVCWYVHRNGSLFSRNCAYSKGRRRKDDYAEAGTKKDNS ILEIRETSFQMLPISNEPISKEEFVIHTIFPPNGMNLYKNNHSESSSNRSYRDSGIPDSDHSHS

Important features of the protein:

Signal peptide:

amino acids 1-28

Transmembrane domain:

amino acids 531-552

N-glycosylation sites.

amino acids 226-229, 282-285, 296-299, 555-558, 626-629, 633-636

Tyrosine kinase phosphorylation site.

amino acids 515-522

N-myristoylation sites.

amino acids 12-17, 172-177, 208-213, 359-364, 534-539, 556-561, 640-645

Amidation site.

amino acids 567-570

Leucine zipper pattern.

amino acids 159-180

Phospholipase A2 aspartic acid active site.

amino acids 34-44

CCGTCATCCCCTGCAGCCACCCTTCCCAGAGTCCTTTGCCCAGGCCACCCCAGGCTTCTTGGCA GCCCTGCCGGGCCACTTGTCTTCATGTCTGCCAGGGGGAGGTGGGAAGGAGGTGGGAGGAGGGCG TGCAGAGGCAGTCTGGGCTTGGCCAGAGCTCAGGGTGCTGAGCGTGTGACCAGCAGTGAGCAGAG GCCGGCCATGGCCAGCCTGGGGCTGCTCCTGCTCTTACTGACAGCACTGCCACCGCTGTGGT CCTCCTCACTGCCTGGGCTGGACACTGCTGAAAGTAAAGCCACCATTGCAGACCTGATCCTGTCT GCGCTGGAGAGCCACCGTCTTCCTAGAACAGAGCTGCCTGAAATCAACCTGGATGGCATGGT GGGGGTCCGAGTGCTGGAAGAGCAGCTAAAAAGTGTCCGGGAGAAGTGGGCCCAGGAGCCCCTGC TGCAGCCGCTGAGCCTGCGCGTGGGGATGCTGGGGGAGAAGCTGGAGGCTGCCATCCAGAGATCC CTCCACTACCTCAAGCTGAGTGATCCCAAGTACCTAAGAGAGTTCCAGCTGACCCTCCAGCCCGG GTTTTGGAAGCTCCCACATGCCTGGATCCACACTGATGCCTCCTTGGTGTACCCCACGTTCGGGC CCCAGGACTCATTCTCAGAGGAGAGAGTGACGTGTGCCTGGTGCAGCTGCTGGGAACCGGGACG GACAGCAGCGAGCCCTGCGGCCTCTCAGACCTCTGCAGGAGCCTCATGACCAAGCCCGGCTGCTC AGGCTACTGCCTGTCCCACCAACTGCTCTTCTTCCTCTGGGCCAGAATGAGGGGATGCACACAGG GACCACTCCAACAGAGCCAGGACTATATCAACCTCTTCTGCGCCAACATGATGGACTTGAACCGC AGAGCTGAGGCCATCGGATACGCCTACCCTACCCGGGACATCTTCATGGAAAACATCATGTTCTG TGGAATGGGCGGCTTCTCCGACTTCTACAAGCTCCGGTGGCTGGAGGCCATTCTCAGCTGGCAGA AACAGCAGGAAGGATGCTTCGGGGAGCCTGATGCTGAAGATGAAGAATTATCTAAAGCTATTCAA TATCAGCAGCATTTTTCGAGGAGAGTGAAGAGGCGAGAAAAACAATTTCCAGATTCTCGCTCTGT $\tt TGCTCAGGCTGGAGTACAGTGGCGCAATCTCGGCTCACTGCAACCTTTGCCTCCTGGGTTCAAGC$ AATTCTCTTGCCTCATCCTCCCGAGTAGCTGGGACTACAGGAGCGTGCCACCATACCTGGCTAAT TTTTATATTTTTTAGTAGAGACAGGGTTTCATCATGTTGCTCATGCTGGTCTCGAACTCCTGAT CTCAAGAGATCCGCCCACCTCAGGCTCCCAAAGTGTGGGATTATAGGTGTGAGCCACCGTGTCTG GCTGAAAAGCACTTTCAAAGAGACTGTGTTGAATAAAGGGCCAAGGTTCTTGCCACCCAGCACTC GTGGCTTCCTATACATCCTGGCAGAATACCCCCCAGCAAACAGAGAGCCACACCCATCCACACCG CCACCAGCAGCAGCCGCTGAGACGGACGGTTCCATGCCAGCTGCCTGGAGGAGGAACAGACCCC TTTAGTCCTCATCCCTTAGATCCTGGAGGGCACGGATCACATCCTGGGAAGAAGGCATCTGGAGG ATAAGCAAAGCCACCCGACACCCAATCTTGGAAGCCCTGAGTAGGCAGGGCCAGGGTAGGTGGG

MSARGRWEGGGRRACRGSLGLARAQGAERVTSSEQRPAMASLGLLLLLLLTALPPLWSSSLPGLD
TAESKATIADLILSALERATVFLEQRLPEINLDGMVGVRVLEEQLKSVREKWAQEPLLQPLSLRV
GMLGEKLEAAIQRSLHYLKLSDPKYLREFQLTLQPGFWKLPHAWIHTDASLVYPTFGPQDSFSEE
RSDVCLVQLLGTGTDSSEPCGLSDLCRSLMTKPGCSGYCLSHQLLFFLWARMRGCTQGPLQQSQD
YINLFCANMMDLNRRAEAIGYAYPTRDIFMENIMFCGMGGFSDFYKLRWLEAILSWQKQQEGCFG
EPDAEDEELSKAIQYQQHFSRRVKRREKQFPDSRSVAQAGVQWRNLGSLQPLPPGFKQFSCLILP
SSWDYRSVPPYLANFYIFLVETGFHHVAHAGLELLISRDPPTSGSQSVGL

Important features of the protein:

Signal peptide:

amino acids 1-26

Transmembrane domain:

amino acids 39-56

Tyrosine kinase phosphorylation sites.

amino acids 149-156, 274-282

N-myristoylation sites.

amino acids 10-16, 20-26, 63-69, 208-214

Amidation site.

amino acids 10-14

Glycoprotein hormones beta chain signature 1.

amino acids 230-237

MAAALWGFFPVLLLLLLSGDVQSSEVPGAAAEGSGGSGVGIGDRFKIEGRAVVPGVKPQDWISAA RVLVDGEEHVGFLKTDGSFVVHDIPSGSYVVEVVSPAYRFDPVRVDITSKGKMRARYVNYIKTSE VVRLPYPLQMKSSGPPSYFIKRESWGWTDFLMNPMVMMMVLPLLIFVLLPKVVNTSDPDMRREME QSMNMLNSNHELPDVSEFMTRLFSSKSSGKSSSGSSKTGKSGAGKRR

Important features of the protein:

Signal sequence:

amino acids 1-23

Transmembrane domain:

amino acids 161-182

N-glycosylation site.

amino acids 184-187

Glycosaminoglycan attachment sites.

amino acids 37-40, 236-239

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 151-154

N-myristoylation sites.

amino acids 33-38, 36-41, 38-44, 229-234

Amidation site.

amino acids 238-241

ATP/GTP-binding site motif A (P-loop).

amino acids 229-236

GATGGCGCAGCCACAGCTTCTGTGAGATTCGATTTCTCCCCAGTTCCCCTGTGGGTCTGAGGGGA ${\tt CCAGAAGGGTGAGCTACGTTGGCTTTCTGGAAGGGGAGGCTAT} {\tt ATG} {\tt CGTCAATTCCCCAAAACAA}$ GTTTTGACATTTCCCCTGAAATGTCATTCTCTATCTATTCACTGCAAGTGCCTGCTGTTCCAGGC CTTACCTGCTGGGCACTAACGGCGGAGCCAGGATGGGGACAGAATAAAGGAGCCACGACCTGTGC TTTTCTTACTCCTGTGGTCTCCAGATTTCAGGCCTAAGATGAAAGCCTCTAGTCTTGCCTTCAGC CTTCTCTCTGCTGCGTTTTATCTCCTATGGACTCCTTCCACTGGACTGAAGACACTCAATTTGGG AAGCTGTGTGATCGCCACAAACCTTCAGGAAATACGAAATGGATTTTCTGAGATACGGGGCAGTG TGCAAGCCAAAGATGGAAACATTGACATCAGAATCTTAAGGAGGACTGAGTCTTTGCAAGACACA AAGCCTGCGAATCGATGCTGCCTCCTGCGCCATTTGCTAAGACTCTATCTGGACAGGGTATTTAA AAACTACCAGACCCCTGACCATTATACTCTCCGGAAGATCAGCAGCCTCGCCAATTCCTTTCTTA CCATCAAGAAGGACCTCCGGCTCTCTCATGCCCACATGACATGCCATTGTGGGGAGGAAGCAATG AAGAAATACAGCCAGATTCTGAGTCACTTTGAAAAGCTGGAACCTCAGGCAGCAGTTGTGAAGGC TTTGGGGGAACTAGACATTCTTCTGCAATGGATGGAGGAGACAGAA**TAG**GAGGAAAGTGATGCTG CTGCTAAGAATATTCGAGGTCAAGAGCTCCAGTCTTCAATACCTGCAGAGGAGGCATGACCCCAA CTTCCTTGCATGATTGTCTTTATGCATCCCCAATCTTAATTGAGACCATACTTGTATAAGATTTT ATGTATTTATTTTTTTACTTGGACATGAAACTTTAAAAAAATTCACAGATTATATTTATAACCTG CTAGGGGGGTTATTCATTTGTATTCAACTAAGGACATATTTACTCATGCTGATGCTCTGTGAGAT ATTTGAAATTGAACCAATGACTACTTAGGATGGGTTGTGGAATAAGTTTTGATGTGGAATTGCAC ATCTACCTTACAATTACTGACCATCCCCAGTAGACTCCCCAGTCCCATAATTGTGTATCTTCCAG AAAAAAAAAA

MRQFPKTSFDISPEMSFSIYSLQVPAVPGLTCWALTAEPGWGQNKGATTCATNSHSDSELRPEIF SSREAWQFFLLLWSPDFRPKMKASSLAFSLLSAAFYLLWTPSTGLKTLNLGSCVIATNLQEIRNG FSEIRGSVQAKDGNIDIRILRRTESLQDTKPANRCCLLRHLLRLYLDRVFKNYQTPDHYTLRKIS SLANSFLTIKKDLRLSHAHMTCHCGEEAMKKYSQILSHFEKLEPQAAVVKALGELDILLQWMEET E

Important features of the protein:

Signal peptide:

amino acids 1-42

cAMP- and cGMP-dependent protein kinase phosphorylation sites. amino acids 192-195, 225-228

N-myristoylation sites.

amino acids 42-47, 46-51, 136-141

TAGCGTGTCCACGATGCGGCTGGGCTCCGGGACTTTCGCTACCTGTTGCGTAGCGATCGAGGTGC CACGGAGCGGAGCCCCAGCGCCCGAACCCTCGGCTGGAGCCAGTTCTAACTGGACCACGCTGCC ACCACCTCTCTGAGTAAAGTTGTTATTGTTCTGATAGATGCCTTGAGAGATGATTTTGTGTTTG GGTCAAAGGGTGTGAAATTTATGCCCTACACAACTTACCTTGTGGAAAAAGGAGCATCTCACAGT TTTGTGGCTGAAGCAAAGCCACCTACAGTTACTATGCCTCGAATCAAGGCATTGATGACGGGGAG CCTTCCTGGCTTTGTCGACGTCATCAGGAACCTCAATTCTCCTGCACTGCTGGAAGACAGTGTGA TAAGACAAGCAAAAGCAGCTGGAAAAAGAATAGTCTTTTATGGAGATGAAACCTGGGTTAAATTA TTCCCAAAGCATTTTGTGGAATATGATGGAACAACCTCATTTTTCGTGTCAGATTACACAGAGGT GGATAATAATGTCACGAGGCATTTGGATAAAGTATTAAAAAGAGGAGATTGGGACATATTAATCC TCCACTACCTGGGGCTGGACCACATTGGCCACATTTCAGGGCCCAACAGCCCCCTGATTGGGCAG GACGCCTTTACCCAATTTGCTGGTTCTTTTGTGGTGACCATGGCATGTCTGAAACAGGAAGTCACG GGGCCTCCTCCACCGAGGAGGTGAATACACCTCTGATTTTAATCAGTTCTGCGTTTGAAAGGAAA CCCGGTGATATCCGACATCCAAAGCACGTCCAA<u>TAG</u>ACGGATGTGGCTGCGACACTGGCGATAGC CAATGAGAGCAGTTGAGATTTTTACATTTGAATACAGTGCAGCTTAGTAAACTGTTGCAAGAG AATGTGCCGTCATATGAAAAAGATCCTGGGTTTGAGCAGTTTAAAATGTCAGAAAGATTGCATGG GAACTGGATCAGACTGTACTTGGAGGAAAAGCATTCAGAAGTCCTATTCAACCTGGGCTCCAAGG TTCTCAGGCAGTACCTGGATGCTCTGAAGACGCTGAGCTTGTCCCTGAGTGCACAAGTGGCCCAG TTCTCACCCTGCTCCTGCTCAGCGTCCCACAGGCACTGCACAGAAAGGCTGAGCTGGAAGTCCCA GCCTTTCGTTTACCAGACTCTGGTTGAACACCTGGTGTGCCCAAGTGCTGGCAGTGCCCTGGAC AGGGGGCCTCAGGGAAGGACGTGGAGCAGCCTTATCCCAGGCCTCTGGGTGTCCCGACACAGGTG TTCACATCTGTGCTGTCAGGTCAGATGCCTCAGTTCTTGGAAAGCTAGGTTCCTGCGACTGTTAC CAAGGTGATTGTAAAGAGCTGGCGGTCACAGAGGAACAAGCCCCCCAGCTGAGGGGGTGTGTGAA TCGGACAGCCTCCCAGCAGAGGTGTGGGAGCTGCAGCTGAGGGAAGAAGAGAGACAATCGGCCTGGA CACTCAGGAGGGTCAAAAGGAGACTTGGTCGCACCACTCATCCTGCCACCCCCAGAATGCATCCT GCCTCATCAGGTCCAGATTTCTTTCCAAGGCGGACGTTTTCTGTTGGAATTCTTAGTCCTTGGCC TCGGACACCTTCATTCGTTAGCTGGGGGGTGGTGGTGAGGCAGTGAAGAAGAGGCGGATGGTCAC ACTCAGATCCACAGAGCCCAGGATCAAGGGACCCACTGCAGTGGCAGCAGGACTGTTGGGCCCCC ACCCCAACCCTGCACAGCCCTCATCCCCTCTTGGCTTGAGCCGTCAGAGGCCCTGTGCTGAGTGT CTGACCGAGACACTCACAGCTTTGTCATCAGGGCACAGGCTTCCTCGGAGCCAGGATGATCTGTG CTGCACACAGTATGTAGTTACCAAAAGAATAAACGGCAATAATTGAGAAAAAAA

MRLGSGTFATCCVAIEVLGIAVFLRGFFPAPVRSSARAEHGAEPPAPEPSAGASSNWTTLPPPLF SKVVIVLIDALRDDFVFGSKGVKFMPYTTYLVEKGASHSFVAEAKPPTVTMPRIKALMTGSLPGF VDVIRNLNSPALLEDSVIRQAKAAGKRIVFYGDETWVKLFPKHFVEYDGTTSFFVSDYTEVDNNV TRHLDKVLKRGDWDILILHYLGLDHIGHISGPNSPLIGQKLSEMDSVLMKIHTSLQSKERETPLP NLLVLCGDHGMSETGSHGASSTEEVNTPLILISSAFERKPGDIRHPKHVQ

Important features of the protein:

Signal peptide:

amino acids 1-34

Transmembrane domain:

amino acids 58-76

N-glycosylation sites.

amino acids 56-60, 194-198

N-myristoylation sites.

amino acids 6-12, 52-58, 100-106, 125-131, 233-239, 270-276, 275-281, 278-284

Amidation site.

amino acids 154-158

Cell attachment sequence.

amino acids 205-208

MLLLLLEYNFPIENNCQHLKTTHTFRVKNLNPKKFSIHDQDHKVLVLDSGNLIAVPDKNYIRPEI FFALASSLSSASAEKGSPILLGVSKGEFCLYCDKDKGQSHPSLQLKKEKLMKLAAQKESARRPFI FYRAQVGSWNMLESAAHPGWFICTSCNCNEPVGVTDKFENRKHIEFSFQPVCKAEMSPSEVSD

cAMP- and cGMP-dependent protein kinase phosphorylation site. amino acids 33-36

N-myristoylation site. amino acids 50-55, 87-92

Interleukin-1
amino acids 37-182

Important features of the protein: Signal peptide: amino acids 1-25

N-glycosylation sites.
amino acids 117-121, 139-143

N-myristoylation site. amino acids 9-15

CACCTGAGCTGGTGGTGGCCACTGTCTGCATGCTGCTCTTCAGCCACCTCTCTGCGGTCCA GACGAGGGCCATCAAGCACAGAATCAAGTGGAACCGGAAGGCCCTGCCCAGCACTGCCCAGATCA GACTTCGGAGCCGAGGGCAACAGGTACTACGAGGCCAACTACTGGCAGTTCCCCGATGGCATCCA CTACAACGGCTGCTCTGAGGCTAATGTGACCAAGGAGGCATTTGTCACCGGCTGCATCAATGCCA CCCAGGCGGCGAACCAGGGGGGAGTTCCAGAAGCCAGACAACAAGCTCCACCAGCAGGTGCTCTGG ${\tt TCGGGTCACCATGCACCAGCCAGTGCTCCTCTGCCTTCTGGCTTTGATCTGGCTCATGGTGAAAT}$ **AA**GCTTGCCAGGAGGCTGGCAGTACAGAGCGCAGCAGCGAGCAAATCCTGGCAAGTGACCCAGCT CTTCTCCCCCAAACCCACGCGTGTTCTGAAGGTGCCCAGGAGCGGCGATGCACTCGCACTGCAAA TGCCGCTCCCACGTATGCGCCCTGGTATGTGCCTGCGTTCTGATAGATGGGGGACTGTGGCTTCT CCGTCACTCCATTCTCAGCCCCTAGCAGAGCGTCTGGCACACTAGATTAGTAGTAAATGCTTGAT GAGAAGAACACATCAGGCACTGCCCCCCTGCTTCACAGTACTTCCCAACAACTCTTAGAGGTAG GTGTATTCCCGTTTTACAGATAAGGAAACTGAGGCCCAGAGAGCTGAAGTACTGCACCCAGCATC ACCAGCTAGAAAGTGGCAGAGCCAGGATTCAACCCTGGCTTGTCTAACCCCAGGTTTTCTGCTCT GTCCAATTCCAGAGCTGTCTGGTGATCACTTTATGTCTCACAGGGACCCACATCCAAACATGTAT

 $\label{thm:mrkalpstaqiteaqvaenrpgafikqgrk} $$\operatorname{MRKHLSWWWLATVCMLLFSHLSAVQTRGIKHRIKWNRKALPSTAQITEAQVAENRPGAFIKQGRK$$$\operatorname{LDIDFGAEGNRYYEANYWQFPDGIHYNGCSEANVTKEAFVTGCINATQAANQGEFQKPDNKLHQQVLWRLVQELCSLKHCEFWLERGAGLRVTMHQPVLLCLLALIWLMVK$$$

Important features of the protein:

Signal peptide:

amino acids 1-26

Transmembrane domain:

amino acids 157-171

N-glycosylation sites.

amino acids 98-102, 110-114

Tyrosine kinase phosphorylation site.

amino acids 76-83

N-myristoylation sites.

amino acids 71-77, 88-94, 93-99, 107-113, 154-160

Amidation site.

amino acids 62-66

 ${\tt MFRSSLLFWPPLCLLSLFLLILISSIYSESCKLEIFHFACQWGRSLSLSFYFLKFQLSDSGGTCE} \\ {\tt GLFYEYIA}$

Important features of the protein: Signal peptide: amino acids 1-25

N-myristoylation site. amino acids 62-68

GTCTCCGCGTCACAGGAACTTCAGCACCCACAGGGCGGACAGCGCTCCCCTCTACCTGGAGACTTGAC TCCCGCGCGCCCCAACCCTGCTTATCCCTTGACCGTCGAGTGTCAGAGATCCTGCAGCCGCCCAGTCC ACAAAAGCTACAGCTCCAGGAGCCCAGCGCCGGGCTGTGACCCAAGCCGAGCGTGGAAGAATGGGGTT CCTCGGGACCGGCACTTGGATTCTGGTGTTAGTGCTCCCGATTCAAGCTTTCCCCAAACCTGGAGGAA GCAGAAGAAGACAAGATTAAAAAAACATATCCTCCAGAAAACAAGCCAGGTCAGAGCAACTATTCTTT TAAGAAGCTCCCCACTTGATAATAAGTTGAATGTGGAAGATGTTGATTCAACCAAGAATCGAAAACTG ATCGATGATTATGACTCTACTAAGAGTGGATTGGATCATAAATTTCAAGATGATCCAGATGGTCTTCA TCAACTAGACGGGACTCCTTTAACCGCTGAAGACATTGTCCATAAAATCGCTGCCAGGATTTATGAAG AAAATGACAGAGCCGTGTTTGACAAGATTGTTTCTAAACTACTTAATCTCGGCCTTATCACAGAAAGC CAAGCACATACACTGGAAGATGAAGTAGCAGAGGTTTTACAAAAATTAATCTCAAAGGAAGCCAACAA TTATGAGGAGGATCCCAATAAGCCCACAAGCTGGACTGAGAATCAGGCTGGAAAAATACCAGAGAAAG TGACTCCAATGGCAGCAATTCAAGATGGTCTTGCTAAGGGAGAAAACGATGAAACAGTATCTAACACA TTAACCTTGACAAATGGCTTGGAAAGGAGAACTAAAACCTACAGTGAAGACAACTTTGAGGAACTCCA ${\tt CACTGATTACTATCATGAAAACACTGATTGACTTTGTGAAGATGATGGTGAAATATGGAACAATATCT}$ CCAGAAGAAGTGTTTCCTACCTTGAAAACTTGGATGAAATGATTGCTCTTCAGACCAAAAACAAGCT AGAAAAAATGCTACTGACAATATAAGCAAGCTTTTCCCAGCACCATCAGAGAAGAGTCATGAAGAAA CAGACAGTACCAAGGAAGAAGCAGCTAAGATGGAAAAGGAATATGGAAGCTTGAAGGATTCCACAAAA GATGATAACTCCAACCCAGGAGGAAAGACAGATGAACCCAAAGGAAAAACAGAAGCCTATTTGGAAGC CATCAGAAAAAATATTGAATGGTTGAAGAAACATGACAAAAAGGGGAAATAAAGAAGATTATGACCTTT CAAAGATGAGAGACTTCATCAATAAACAAGCTGATGCTTATGTGGAGAAAGGCATCCTTGACAAGGAA ${\tt GAAGCCGAGGCCATCAAGCGCATTTATAGCAGCCTG} {\tt TAA} {\tt AAAATGGCAAAAGATCCAGGAGTCTTTCAA}$ CTGTTTCAGAAAACATAATATAGCTTAAAACACTTCTAATTCTGTGATTAAAATTTTTTTGACCCAAGG GTTATTAGAAAGTGCTGAATTTACAGTAGTTAACCTTTTACAAGTGGTTAAAACATAGCTTTCTTCCC

MGFLGTGTWILVLVLPIQAFPKPGGSQDKSLHNRELSAERPLNEQIAEAEEDKIKKTYPPENKPG
QSNYSFVDNLNLLKAITEKEKIEKERQSIRSSPLDNKLNVEDVDSTKNRKLIDDYDSTKSGLDHK
FQDDPDGLHQLDGTPLTAEDIVHKIAARIYEENDRAVFDKIVSKLLNLGLITESQAHTLEDEVAE
VLQKLISKEANNYEEDPNKPTSWTENQAGKIPEKVTPMAAIQDGLAKGENDETVSNTLTLTNGLE
RRTKTYSEDNFEELQYFPNFYALLKSIDSEKEAKEKETLITIMKTLIDFVKMMVKYGTISPEEGV
SYLENLDEMIALQTKNKLEKNATDNISKLFPAPSEKSHEETDSTKEEAAKMEKEYGSLKDSTKDD
NSNPGGKTDEPKGKTEAYLEAIRKNIEWLKKHDKKGNKEDYDLSKMRDFINKQADAYVEKGILDK
EEAEAIKRIYSSL

N-glycosylation sites:

amino acids 68-71, 346-349, 350-353

Casein kinase II phosphorylation site:

amino acids 70-73, 82-85, 97-100, 125-128, 147-150, 188-191, 217-220, 265-268, 289-292, 305-308, 320-323, 326-329, 362-365, 368-341, 369-372, 382-385, 386-389, 387-390

N-myristoylation sites:

amino acids 143-148, 239-244

CGGCTCGAGGCTCCCGCCAGGAGAAAGGAACATTCTGAGGGGAGTCTACACCCTGTGGAGCTCAA GATGGTCCTGAGTGGGGCGCTGTGCTTCCGAATGAAGGACTCGGCATTGAAGGTGCTTTATCTGC ATAATAACCAGCTTCTAGCTGGAGGGCTGCATGCAGGGAAGGTCATTAAAGGTGAAGAGATCAGC GTGGTCCCCAATCGGTGGCTGGATGCCAGCCTGTCCCCCGTCATCCTGGGTGTCCAGGGTGGAAG CCAGTGCCTGTCATGTGGGGTGGGGCAGGAGCCGACTCTAACACTAGAGCCAGTGAACATCATGG AGCTCTATCTTGGTGCCAAGGAATCCAAGAGCTTCACCTTCTACCGGCGGGACATGGGGCTCACC TCCAGCTTCGAGTCGGCTGCCTACCCGGGCTGGTTCCTGTGCACGGTGCCTGAAGCCGATCAGCC TGTCAGACTCACCCAGCTTCCCGAGAATGGTGGCTGGAATGCCCCCATCACAGACTTCTACTTCC AGCAGTGTGACTAGGGCAACGTGCCCCCCAGAACTCCCTGGGCAGAGCCAGCTCGGGTGAGGGGT GAGTGGAGGAGCCCATGGCGGACAATCACTCTCTCTGCTCTCAGGACCCCCACGTCTGACTTAG TGGGCACCTGACCACTTTGTCTTCTGGTTCCCAGTTTGGATAAATTCTGAGATTTGGAGCTCAGT CCACGGTCCTCCCCCACTGGATGGTGCTACTGCTGTGGAACCTTGTAAAAACCATGTGGGGTAAA TAATGGTAACTGACAAGTGTTACCCTGAGCCCCGCAGGCCAACCCATCCCCAGTTGAGCCTTATA GAGTCAGGGATCTATGGCCCTTGGCCCAGCCCCACCCCTTCCCTTTAATCCTGCCACTGTCATA TGCTACCTTTCCTATCTCTCCCTCATCATCTTGTTGTGGGCATGAGGAGGTGGTGATGTCAGAA GAAATGGCTCGAGCTCAGAAGATAAAAGATAAGTAGGGTATGCTGATCCTCTTTTAAAAACCCAA GATACAATCAAAATCCCAGATGCTGGTCTCTATTCCCATGAAAAAGTGCTCATGACATATTGAGA TCTTTATAGAAAAAGTCTGGAAGAGTTTACTTCAATTGTAGCAATGTCAGGGTGGTGGCAGTAT AGGTGATTTTTCTTTTAATTCTGTTAATTTATCTGTATTTCCTAATTTTTCTACAATGAAGATGA ATTCCTTGTATAAAAATAAGAAAAGAAATTAATCTTGAGGTAAGCAGAGCAGACATCATCTCTGA TTGTCCTCAGCCTCCACTTCCCCAGAGTAAATTCAAATTGAATCGAGCTCTGCTGCTCTGGTTGG TTGTAGTAGTGATCAGGAAACAGATCTCAGCAAAGCCACTGAGGAGGAGGCTGTGCTGAGTTTGT GTGGCTGGAATCTCTGGGTAAGGAACTTAAAGAACAAAAATCATCTGGTAATTCTTTCCTAGAAG GATCACAGCCCCTGGGATTCCAAGGCATTGGATCCAGTCTCTAAGAAGGCTGCTGTACTGGTTGA ATTGTGTCCCCCTCAAATTCACATCCTTCTTGGAATCTCAGTCTGTGAGTTTATTTGGAGATAAG GTCTCTGCAGATGTAGTTAGTTAAGACAAGGTCATGCTGGATGAAGGTAGACCTAAATTCAATAT GACTGGTTTCCTTGTATGAAAAGGAGAGGACACAGAGACAGAGAGACGCGGGGAAGACTATGTA AAGATGAAGGCAGAGATCGGAGTTTTGCAGCCACAAGCTAAGAAACACCAAGGATTGTGGCAACC ATCAGAAGCTTGGAAGAGGCAAAGAAGAATTCTTCCCTAGAGGCTTTAGAGGGATAACGGCTCTG CTGAAACCTTAATCTCAGACTTCCAGCCTCCTGAACGAAGAAGAATAAATTTCGGCTGTTTTAA GCCACCAAGGATAATTGGTTACAGCAGCTCTAGGAAACTAATACAGCTGCTAAAATGATCCCTGT CTCCTCGTGTTTACATTCTGTGTGTCCCCTCCCACAATGTACCAAAGTTGTCTTTGTGACCAA TAGAATATGGCAGAAGTGATGGCATGCCACTTCCAAGATTAGGTTATAAAAGACACTGCAGCTTC AAGCTAGCTGCCATGCTATGAGCAGGCCTATAAAGAGACTTACGTGGTAAAAAATGAAGTCTCCT

 ${\tt MVLSGALCFRMKDSALKVLYLHNNQLLAGGLHAGKVIKGEEISVVPNRWLDASLSPVILGVQGGS}$$ QCLSCGVGQEPTLTLEPVNIMELYLGAKESKSFTFYRRDMGLTSSFESAAYPGWFLCTVPEADQP VRLTQLPENGGWNAPITDFYFQQCD$

N-myristoylation sites.

amino acids 29-34, 30-35, 60-65, 63-68, 73-78, 91-96, 106-111

Interleukin-1 signature.

amino acids 111-131

Interleukin-1 proteins.

amino acids 8-29, 83-120, 95-134, 64-103

CCTGCAGAAATCTGTGAGCTCTTTCCTTATGGGGACCCTGGCCACCAGCTGCCTCCTTCTCTGG TTCCAGCAGCCCTATATCACCAACCGCACCTTCATGCTGGCTAAGGAGGCTAGCTTGGCTGATAA ATCTGATGAAGCAGGTGCTGAACTTCACCCTTGAAGAAGTGCTGTTCCCTCAATCTGATAGGTTC CAGCCTTATATGCAGGAGGTGGTGCCCTTCCTGGCCAGGCTCAGCAACAGGCTAAGCACATGTCA TATTGAAGGTGATGACCTGCATATCCAGAGGAATGTGCAAAAGCTGAAGGACACAGTGAAAAAGC TTGGAGAGAGTGGAGAGTCAAAGCAATTGGAGAACTGGATTTGCTGTTTATGTCTCTGAGAAAT CAATTAGATGCCCCAAAGCGATTTTTTTTAACCAAAAGGAAGATGGGAAGCCAAACTCCATCATG ATGGGTGGATTCCAAATGAACCCCTGCGTTAGTTACAAAGGAAACCAATGCCACTTTTGTTTATA AGACCAGAAGGTAGACTTTCTAAGCATAGATATTTATTGATAACATTTCATTGTAACTGGTGTTC TATACACAGAAAACAATTTATTTTTTAAATAATTGTCTTTTTCCATAAAAAAGATTACTTTCCAT AGAAACATCATTCGATATTGCTACTTGAGTGTAAGGCTAATATTGATATTTATGACAATAATTAT AGAGCTATAACATGTTTATTTGACCTCAATAAACACTTGGATATCCC

 $\label{thm:construction} $$ MAALQKSVSSFLMGTLATSCLLLLALLVQGGAAAPISSHCRLDKSNFQQPYITNRTFMLAKEASL$$ ADNNTDVRLIGEKLFHGVSMSERCYLMKQVLNFTLEEVLFPQSDRFQPYMQEVVPFLARLSNRLS$$ TCHIEGDDLHIQRNVQKLKDTVKKLGESGEIKAIGELDLLFMSLRNACI$$$

Important features of the protein:
Signal peptide:

amino acids 1-33

N-glycosylation sites.

amino acids 54-58, 68-72, 97-101

N-myristoylation sites.

amino acids 14-20, 82-88

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 10-21

GGCTTGCTGAAAATAAAATCAGGACTCCTAACCTGCTCCAGTCAGCCTGCTTCCACGAGGCCTGT CAGTCAGTGCCCGACTTGTGACTGAGTGTGCAGTGCCCAGCATGTACCAGGTCAGTGCAGAGGGC $\tt TGCCAGGTTTGGGGCTGGGGGCCAAGTGGAGTGAGAAACTGGGATCCCAGGGGGAGGGTGCAG{\bf AT}$ GAGGGAGCGACCCAGATTAGGTGAGGACAGTTCTCTCATTAGCCTTTTCCTACAGGTGGTTGCAT TCTTGGCAATGGTCATGGGAACCCACACCTACAGCCACTGGCCCAGCTGCTGCCCCAGCAAAGGG CAGGACACCTCTGAGGAGCTGCTGAGGTGGAGCACTGTGCCTGTGCCTCCCCTAGAGCCTGCTAG GCCCAACCGCCACCCAGAGTCCTGTAGGGCCAGTGAAGATGGACCCCTCAACAGCAGGGCCATCT CCCCTGGAGATATGAGTTGGACAGAGACTTGAACCGGCTCCCCCAGGACCTGTACCACGCCCGT TGCCTGTGCCCGCACTGCGTCAGCCTACAGACAGGCTCCCACATGGACCCCCGGGGCAACTCGGA GCTGCTCTACCACAACCAGACTGTCTTCTACAGGCGGCCATGCCATGGCGAGAAGGGCACCCACA GTGATGGGCTAGCCGGACCTGCTGGAGGCTGGTCCCTTTTTGGGAAACCTGGAGCCAGGTGTACA ACCACTTGCCATGAAGGGCCAGGATGCCCAGATGCTTGGCCCCTGTGAAGTGCTGTCTGGAGCAG CAGGATCCCGGGACAGGATGGGGGGCTTTGGGGGAAAACCTGCACTTCTGCACATTTTGAAAAGAG CAGCTGCTGCTTAGGGCCGCCGGAAGCTGGTGTCCTGTCATTTTCTCTCAGGAAAGGTTTTCAAA GTTCTGCCCATTCTGGAGGCCACCACTCCTGTCTCTTTTCCCATCCCCTGCTACCCTG GCCCAGCACAGGCACTTTCTAGATATTTCCCCCTTGCTGGAGAAGAAGAGCCCCTGGTTTTATT $\tt TGTTTGTTTACTCATCACTCAGTGAGCATCTACTTTGGGTGCATTCTAGTGTAGTTACTAGTCTT$ CTTTATTTAAAAATGAAAAA

MRERPRLGEDSSLISLFLQVVAFLAMVMGTHTYSHWPSCCPSKGQDTSEELLRWSTVPVPPLEPA RPNRHPESCRASEDGPLNSRAISPWRYELDRDLNRLPQDLYHARCLCPHCVSLQTGSHMDPRGNS ELLYHNQTVFYRRPCHGEKGTHKGYCLERRLYRVSLACVCVRPRVMG

Important features of the protein:
Signal peptide:

amino acids 1-32

N-glycosylation site.

amino acids 136-140

Tyrosine kinase phosphorylation site.

amino acids 127-135

N-myristoylation sites.

amino acids 44-50, 150-156

 $\verb|CCGGCGATGTCGCTGCTGCTAAGCCTGGCCGCGCTGTGCAGGAGCGCCGTACCCCGAGAGCC|\\$ GACCGTTCAATGTGGCTCTGAAACTGGGCCATCTCCAGAGTGGATGCTACAACATGATCTAATCC CCGGAGACTTGAGGGACCTCCGAGTAGAACCTGTTACAACTAGTGTTGCAACAGGGGACTATTCAATTTTGATGAATGTAAGCTGGGTACTCCGGGCAGATGCCAGCATCCGCTTGTTGAAGGCCACCAA GATTTGTGTGACGGCCAAAAGCAACTTCCAGTCCTACAGCTGTGTGAGGTGCAATTACACAGAGG CCTTCCAGACTCAGACCCAGACCCTCTGGTGGTAAATGGACATTTTCCTACATCGGCTTCCCTGTA CCCTTCCATGTCTGTGAATTTCACCTCACCAGGCTGCCTAGACCACATAATGAAATATAAAAAAA AGTGTGTCAAGGCCGGAAGCCTGTGGGATCCGAACATCACTGCTTGTAAGAAGAATGAGGAGACA TATCATCGGGTTTTCTCAGGTGTTTGAGCCACACCAGAAGAACAAACGCGAGCTTCAGTGGTGA TTCCAGTGACTGGGGATAGTGAAGGTGCTACGGTGCAGCTGACTCCATATTTTCCTACTTGTGGC AGCGACTGCATCCGACATAAAGGAACAGTTGTGCTCTGCCCACAAACAGGCGTCCCTTTCCCTCT CATGGGTGCTGGCAGGGATCTATCTAATGTGGAGGCACGAAAGGATCAAGAAGACTTCCTTT TCTACCACCACTACTGCCCCCCATTAAGGTTCTTGTGGTTTACCCATCTGAAATATGTTTCCA TCACÁCAATTTGTTACTTCACTGAATTTCTTCAAAACCATTGCAGAAGTGAGGTCATCCTTGAAA AGTGGCAGAAAAAGAAATAGCAGAGATGGGTCCAGTGCAGTGCCTTGCCACTCAAAAGAAGGCA GCAGACAAAGTCGTCTTCCTTCTTTCCAATGACGTCAACAGTGTGTGCGATGGTACCTGTGGCAA GAGCGAGGCCAGTCCCAGTGAGAACTCTCAAGACCTCTTCCCCCTTGCCTTTAACCTTTTCTGCA GTGATCTAAGAAGCCAGATTCATCTGCACAAATACGTGGTGGTCTACTTTAGAGAGATTGATACA AAAGACGATTACAATGCTCTCAGTGTCTGCCCCAAGTACCACCTCATGAAGGATGCCACTGCTTT CTGTGCAGAACTTCTCCATGTCAAGCAGCAGGTGTCAGCAGGAAAAAGATCACAAGCCTGCCACG ATGGCTGCTGCTCCTTGTAG

MSLVLLSLAALCRSAVPREPTVQCGSETGPSPEWMLQHDLIPGDLRDLRVEPVTTSVATGDYSILMNVSWV LRADASIRLLKATKICVTGKSNFQSYSCVRCNYTEAFQTQTRPSGGKWTFSYIGFPVELNTVYFIGAHNIP NANMNEDGPSMSVNFTSPGCLDHIMKYKKKCVKAGSLWDPNITACKKNEETVEVNFTTTPLGNRYMALIQH STIIGFSQVFEPHQKKQTRASVVIPVTGDSEGATVQLTPYFPTCGSDCIRHKGTVVLCPQTGVPFPLDNNK SKPGGWLPLLLLSLLVATWVLVAGIYLMWRHERIKKTSFSTTTLLPPIKVLVVYPSEICFHHTICYFTEFL QNHCRSEVILEKWQKKKIAEMGPVQWLATQKKAADKVVFLLSNDVNSVCDGTCGKSEGSPSENSQDLFPLA FNLFCSDLRSQIHLHKYVVVYFREIDTKDDYNALSVCPKYHLMKDATAFCAELLHVKQQVSAGKRSQACHD GCCSL

Important features of the protein:

Signal peptide:

amino acids 1-14

Transmembrane domain:

amino acids 290-309

N-glycosylation sites.

amino acids 67 - 71, 103 - 107, 156 - 160, 183 - 187, 197 - 201 and 283 - 287

cAMP- and cGMP-dependent protein kinase phosphorylation sites.

amino acids 228 - 232 and 319 - 323

Casein kinase II phosphorylation sites.

amino acids 178 - 182, 402 - 406, 414 - 418 and 453 - 457

N-myristoylation site.

amino acids 116-122

Amidation site.

amino acids 488-452

 ${\tt MTVKTLHGPAMVKYLLLSILGLAFLSEAAARKIPKVGHTFFQKPESCPPVPGGSMKLDIGIINEN}$ ${\tt QRVSMSRNIESRSTSPWNYTVTWDPNRYPSEVVQAQCRNLGCINAQGKEDISMNSVPIQQETLVV}$ ${\tt RRKHQGCSVSFQLEKVLVTVGCTCVTPVIHHVQ}$

Signal sequence:

amino acids 1-30

N-glycosylation site.

amino acids 83-87

N-myristoylation sites.

amino acids 106-111, 136-141

ACACTGGCCAAACAAAAACGAAAGCACTCCGTGCTGGAAGTAGGAGGAGGAGTCAGGACTCCCAGG ACAGAGAGTGCACAAACTACCCAGCACAGCCCCCTCCGCCCCTCTGGAGGCTGAAGAGGGATTC ${\tt AGGGCCTCAGGCCTGGGTGCCACCTGGCACCTAGAAG{\tt ATG}{\tt CCTGTGCCCTGGTTCTTGCTGTCCT}}$ TGGCACTGGGCCGAAGCCCAGTGGTCCTTTCTCTGGAGAGGCCTTGTGGGGCCTCAGGACGCTACC AGAAGGAGACCGACTGTGACCTCTGTCTGCGTGTGGCTGTCCACTTGGCCGTGCATGGGCACTGG GAAGAGCCTGAAGATGAGGAAAAGTTTGGAGGAGCAGCTGACTCAGGGGTGGAGGAGCCTAGGAA TGGAGGTGCAAGTGCCTGCTGCCCTTGTGCAGTTTGGTCAGTCTGTGGGCTCTGTGGTATATGAC TGCTTCGAGGCTGCCCTAGGGAGTGAGGTACGAATCTGGTCCTATACTCAGCCCAGGTACGAGAA ACGTGCATCTGGTTCTGAATGTCTCTGAGGAGCAGCACTTCGGCCTCTCCCTGTACTGGAATCAG GTCCAGGGCCCCCAAAACCCCGGTGGCACAAAAACCTGACTGGACCGCAGATCATTACCTTGAA CCACACAGACCTGGTTCCCTGCTCTGTATTCAGGTGTGGCCTCTGGAACCTGACTCCGTTAGGA CGAACATCTGCCCCTTCAGGGAGGACCCCCGCGCACACCAGAACCTCTGGCAAGCCGCCCGACTG $\tt CGACTGCTGACCCTGCAGAGCTGGCTGCTGGACGCACCGTGCTCGCTGCCCGCAGAAGCGGCACT$ GTGCTGGCGGGCTCCGGGTGGGGACCCCTGCCAGCCACTGGTCCCACCGCTTTCCTGGGAGAACG TCACTGTGGACAAGGTTCTCGAGTTCCCATTGCTGAAAGGCCACCCTAACCTCTGTGTTCAGGTG AACAGCTCGGAGAAGCTGCAGCTGCAGGAGTGCTTGTGGGCTGACTCCCTGGGGCCTCTCAAAGA CGATGTGCTACTGTTGGAGACACGAGGCCCCCAGGACAACAGATCCCTCTGTGCCTTGGAACCCA CAAGACCTGCAGTCAGGCCAGTGTCTGCAGCTATGGGACGATGACTTGGGAGCGCTATGGGCCTG CCCCATGGACAAATACATCCACAAGCGCTGGGCCCTCGTGTGGCCTGGCCTACTCTTTGCCG CTGCGCTTTCCCTCATCCTCCTTCTCAAAAAGGATCACGCGAAAGGGTGGCTGAGGCTCTTGAAA CAGGACGTCCGCTCGGGGGCCGCCAGGGGCCGCCGCGCTCTGCTCCTCTACTCAGCCGATGA CTCGGGTTTCGAGCGCCTGGTGGGCGCCCTGGCGCCTGTGCCAGCTGCCGCTGCG CCGTAGACCTGTGGAGCCGTCGTGAACTGAGCGCGCAGGGGCCCGTGGCTTGGTTTCACGCGCAG GTGCAGCGAGTGGCTACAGGATGGGGTGTCCGGGCCCGGGGCGCACGCCCGCACGACGCCTTCC GCGCCTCGCTCAGCTGCTGCCCGACTTCTTGCAGGGCCGGGCGCCCGGCAGCTACGTGGGG GCCTGCTTCGACAGGCTGCTCCACCCGGACGCCGTACCCGCCCTTTTCCGCACCGTGCCCGTCTT CACACTGCCCTCCCAACTGCCAGACTTCCTGGGGGCCCTGCAGCAGCCTCGCGCCCCGCGTTCCG CATCCCCGGGGACTCCCGCGCGGGACGCGGGGTGGGACCAGGGGCGGGACCTGGGGCGGGGGA ${\tt CGGGACT} \underline{{\tt TAA}} {\tt ATAAAGGCAGACGCTGTTTTTCTAAAAAAA}$

MPVPWFLLSLALGRSPVVLSLERLVGPQDATHCSPGLSCRLWDSDILCLPGDIVPAPGPVLAPTHLQTELV LRCQKETDCDLCLRVAVHLAVHGHWEEPEDEEKFGGAADSGVEEPRNASLQAQVVLSFQAYPTARCVLLEV QVPAALVQFGQSVGSVVYDCFEAALGSEVRIWSYTQPRYEKELNHTQQLPALPWLNVSADGDNVHLVLNVS EEQHFGLSLYWNQVQGPPKPRWHKNLTGPQIITLNHTDLVPCLCIQVWPLEPDSVRTNICPFREDPRAHQN LWQAARLRLLTLQSWLLDAPCSLPAEAALCWRAPGGDPCQPLVPPLSWENVTVDKVLEFPLLKGHPNLCVQ VNSSEKLQLQECLWADSLGPLKDDVLLLETRGPQDNRSLCALEPSGCTSLPSKASTRAARLGEYLLQDLQS GQCLQLWDDDLGALWACPMDKYIHKRWALVWLACLLFAAALSLILLLKKDHAKGWLRLLKQDVRSGAAARG RAALLLYSADDSGFERLVGALASALCQLPLRVAVDLWSRRELSAQGPVAWFHAQRRQTLQEGGVVVLLFSP GAVALCSEWLQDGVSGPGAHGPHDAFRASLSCVLPDFLQGRAPGSYVGACFDRLLHPDAVPALFRTVPVFT LPSQLPDFLGALQQPRAPRSGRLQERAEQVSRALQPALDSYFHPPGTPAPGRGVGPGAGPGAGDGT

Signal sequence:

amino acids 1-20

Transmembrane domain.

amino acids 453-475

N-glycosylation sites.

amino acids 118-121, 186-189, 198-201, 211-214, 238-241, 248-251, 334-337, 357-360, 391-394

Glycosaminoglycan attachment site.

amino acids 583-586

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 552-555

N-myristoylation sites.

amino acids 107-112, 152-157, 319-324, 438-443, 516-521, 612-617, 692-697, 696-701, 700-705

 ${\tt GGGAGGGCTCTGTGCCAGCCCCG} {\color{red} {\bf ATG}} {\color{blue} {\bf AGGACGCTGCTGACCATCTTGACTGTGGGATCCCTGGCT} \\$ GCTCACGCCCTGAGGACCCCTCGGATCTGCTCCAGCACGTGAAATTCCAGTCCAGCAACTTTGA AAACATCCTGACGTGGGACAGCGGGCCAGAGGGCACCCCAGACACGGTCTACAGCATCGAGTATA AGACGTACGGAGAGGGACTGGGTGGCAAAGAAGGGCTGTCAGCGGATCACCCGGAAGTCCTGC AACCTGACGGTGGAGACGGCCAACCTCACGGAGCTCTACTATGCCAGGGTCACCGCT GTCAGTGCGGGAGGCCGGTCAGCCACCAAGATGACTGACAGGTTCAGCTCTCTGCAGCACACTAC CCTCAAGCCACCTGATGTGACCTGTATCTCCAAAGTGAGATCGATTCAGATGATTGTTCATCCTA CCCCCACGCCAATCCGTGCAGGCGATGGCCACCGGCTAACCCTGGAAGACATCTTCCATGACCTG TTCTACCACTTAGAGCTCCAGGTCAACCGCACCTACCAAATGCACCTTGGAGGGAAGCAGAGAGA ATATGAGTTCTTCGGCCTGACCCCTGACACAGAGTTCCTTGGCACCATCATGATTTGCGTTCCCA CCTGGGCCAAGGAGAGTGCCCCCTACATGTGCCGAGTGAAGACACTGCCAGACCGGACATGGACC TACTCCTTCTCCGGAGCCTTCCTGTTCTCCATGGGCTTCCTCGTCGCAGTACTCTGCTACCTGAG CTACAGATATGTCACCAAGCCGCCTGCACCTCCCAACTCCCTGAACGTCCAGCGAGTCCTGACTT TCCAGCCGCTGCGCTTCATCCAGGAGCACGTCCTGATCCCTGTCTTTGACCTCAGCGGCCCCAGC AGTCTGGCCCAGCCTGTCCAGTACTCCCAGATCAGGGTGTCTGGACCCAGGGAGCCCGCAGGAGC ${\tt TCCACAGCGGCATAGCCTGTCCGAGATCACCTACTTAGGGCAGCCAGACATCTCCATCCTCCAGC}$ CCTCCAACGTGCCACCTCCCCAGATCCTCTCCCCACTGTCCTATGCCCCAAACGCTGCCCCTGAG GTCGGGCCCCATCCTATGCACCTCAGGTGACCCCCGAAGCTCAATTCCCATTCTACGCCCCACA GGCCATCTCTAAGGTCCAGCCTTCCTCCTATGCCCCTCAAGCCACTCCGGACAGCTGGCCTCCCT CCTATGGGGTATGCATGGAAGGTTCTGGCAAAGACTCCCCCACTGGGACACTTTCTAGTCCTAAA CACCTTAGGCCTAAAGGTCAGCTTCAGAAAGAGCCACCAGCTGGAAGCTGCATGTTAGGTGGCCT TTCTCTGCAGGAGGTGACCTCCTTGGCTATGGAGGAATCCCAAGAAGCAAAATCATTGCACCAGC CCCTGGGGATTTGCACAGACAGACATCTGACCCAAATGTGCTACACAGTGGGGAGGAAGGGACA CCACAGTACCTAAAGGGCCAGCTCCCCCTCTCTCTCTCAGTCCAGATCGAGGGCCACCCCATGTC CCTCCCTTTGCAACCTCCTTCCGGTCCATGTTCCCCCTCGGACCAAGGTCCAAGTCCCTGGGGCC TGCTGGAGTCCCTTGTGTGTCCCAAGGATGAAGCCAAGAGCCCAGCCCCTGAGACCTCAGACCTG ${\tt GAGCAGCCCACAGAACTGGATTCTCTTTTCAGAGGCCTGGCCCTGACTGTGCAGTGGGAGTCC} {\tt TG}$ AGGGGAATGGGAAAGGCTTGGTGCTTCCTCCCTGTCCCTACCCAGTGTCACATCCTTGGCTGTCA ATCCCATGCCTGCCCATGCCACACACTCTGCGATCTGGCCTCAGACGGGTGCCCTTGAGAGAAAGC AGAGGGAGTGCCATGCGCCCTGCCATGGGTGCGCTCCTCACCGGAACAAGCAGCATGATA AGGACTGCAGCGGGGGGGCTCTGGGGGAGCAGCTTGTGTAGACAAGCGCGTGCTCGCTGAGCCCTG CAAGGCAGAAATGACAGTGCAAGGAGGAAATGCAGGGAAACTCCCGAGGTCCAGAGCCCCACCTC CTAACACCATGGATTCAAAGTGCTCAGGGAATTTGCCTCTCCTTGCCCCATTCCTGGCCAGTTTC ACAATCTAGCTCGACAGAGCATGAGGCCCCTGCCTCTTCTGTCATTGTTCAAAGGTGGGAAGAGA GCCTGGAAAAGAACCAGGCCTGGAAAAGAACCAGAAGGAGGCTGGGCAGAACCAGAACCAGCTGC TTCCCAGCCAGGCAACTGCCTGACGTTGCACGATTTCAGCTTCATTCCTCTGATAGAACAAAGC ATCCTGAGAATGGGGTTTGAAAGGAAGGTGAGGGCTGTGGCCCCTGGACGGTACAATAACACAC TGTACTGATGTCACAACTTTGCAAGCTCTGCCTTGGGTTCAGCCCATCTGGGCTCAAATTCCAGC CTCACCACTCACAAGCTGTGTGACTTCAAACAAATGAAATCAGTGCCCAGAACCTCGGTTTCCTC ATCTGTAATGTGGGGATCATAACACCTACCTCATGGAGTTGTGGTGAAGATGAAATGAAGTCATG TCTTTAAAGTGCTTAATAGTGCCTGGTACATGGGCAGTGCCCAATAAACGGTAGCTATTTAAAAA AAAAAAA

MRTLLTILTVGSLAAHAPEDPSDLLQHVKFQSSNFENILTWDSGPEGTPDTVYSIEYKTYGERDW VAKKGCQRITRKSCNLTVETGNLTELYYARVTAVSAGGRSATKMTDRFSSLQHTTLKPPDVTCIS KVRSIQMIVHPTPTPIRAGDGHRLTLEDIFHDLFYHLELQVNRTYQMHLGGKQREYEFFGLTPDT EFLGTIMICVPTWAKESAPYMCRVKTLPDRTWTYSFSGAFLFSMGFLVAVLCYLSYRYVTKPPAP PNSLNVQRVLTFQPLRFIQEHVLIPVFDLSGPSSLAQPVQYSQIRVSGPREPAGAPQRHSLSEIT YLGQPDISILQPSNVPPPQILSPLSYAPNAAPEVGPPSYAPQVTPEAQFPFYAPQAISKVQPSSY APQATPDSWPPSYGVCMEGSGKDSPTGTLSSPKHLRPKGQLQKEPPAGSCMLGGLSLQEVTSLAM EESQEAKSLHQPLGICTDRTSDPNVLHSGEEGTPQYLKGQLPLLSSVQIEGHPMSLPLQPPSGPC SPSDQGPSPWGLLESLVCPKDEAKSPAPETSDLEQPTELDSLFRGLALTVQWES

Signal sequence.

amino acids 1-17

Transmembrane domain.

amino acids 233-250

N-glycosylation sites.

amino acids 80-83, 87-90, 172-175

N-myristoylation sites.

amino acids 11-16, 47-52, 102-107, 531-536, 565-570

TCGGATCTCAGCCACGGACGCGTTTCTCGGACCTCAAAGTGTGCGGGGACGAAGAGTGCAGCAT GTTAATGTACCGTGGGAAAGCTCTTGAAGACTTCACGGGCCCTGATTGTCGTTTTTGTGAATTTTA AAAAAGGTGACGATGTATATGTCTACTACAAACTGGCAGGGGGATCCCTTGAACTTTGGGCTGGA AGTGTTGAACACAGTTTTGGATATTTTCCAAAAGATTTGATCAAGGTACTTCATAAATACACGGA AGAAGAGCTACATATTCCAGCAGATGAGACAGACTTTGTCTGCTTTGAAGGAGGAAGAGATGATT TTAATAGTTATAATGTAGAAGAGCTTTTAGGATCTTTGGAACTGGAGGACTCTGTACCTGAAGAG TCGAAGAAAGCTGAAGAAGTTTCTCAGCACAGAGAGAAATCTCCTGAGGAGTCTCGGGGGCGTGA ACTTGACCCTGTGCCTGAGCCCGAGGCATTCAGAGCTGATTCAGAGGATGGAGAAGGTGCTTTCT CAGAGAGCACCGAGGGGCTGCAGGGACAGCCCTCAGCTCAGGAGAGCCACCCTCACACCAGCGGT CCTGCGGCTAACGCTCAGGGAGTGCAGTCTTCGTTGGACACTTTTGAAGAAATTCTGCACGATAA ATTGAAAGTGCCGGGAAGCGAAAGCAGAACTGGCAATAGTTCTCCTGCCTCGGTGGAGCGGAGA AGACAGATGCTTACAAAGTCCTGAAAACAGAAATGAGTCAGAGAGGAAGTGGACAGTGCGTTATT AAAAAAAAAAAAAAAAA

MAAAPGLLFWLFVLGALWWVPGQSDLSHGRRFSDLKVCGDEECSMLMYRGKALEDFTGPDCRFVN FKKGDDVYVYYKLAGGSLELWAGSVEHSFGYFPKDLIKVLHKYTEEELHIPADETDFVCFEGGRD DFNSYNVEELLGSLELEDSVPEESKKAEEVSQHREKSPEESRGRELDPVPEPEAFRADSEDGEGA FSESTEGLQGQPSAQESHPHTSGPAANAQGVQSSLDTFEEILHDKLKVPGSESRTGNSSPASVER EKTDAYKVLKTEMSQRGSGQCVIHYSKGFRWHQNLSLFYKDCF

Important features of the protein:

Signal peptide:

amino acids 1-22

N-glycosylation site.

amino acids 294-298

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 30-34

Tyrosine kinase phosphorylation site.

amino acids 67-76

N-myristoylation sites.

amino acids 205-211, 225-231, 277-283

Amidation site.

amino acids 28-32

CCAGGACCAGGGCGCACCGGCTCAGCCTCTCACTTGTCAGAGGCCGGGGAAGAAGCAAAGCGC AACGGTGTGGTCCAAGCCGGGGCTTCTGCTTCGCCTCTAGGACATACACGGGACCCCCTAACTTC AGTCCCCAAACGCGCACCTCGAAGTCTTGAACTCCAGCCCCGCACATCCACGCGCGCACAGG CGCGGCAGGCGGCAGGTCCCGGCCGAAGGCGATGCGCGCAGGGGGTCGGGCAGCTGGGCTCGGGC GGCGGGAGTAGGGCCCGGCAGGGAGGCAGGGAGGCTGCATATTCAGAGTCGCGGGCTGCGCCCTG GGCAGAGGCCGCCTCGCTCCACGCAACACCTGCTGCTGCCACCGCGCCGCGATGAGCCGCGTGG TCTCGCTGCTGCTGGCGCCGCGCTGCTCTGCGGCCACGGAGCCTTCTGCCGCCGCGTGGTCAGC GGCCAAAAGGTGTGTTTTGCTGACTTCAAGCATCCCTGCTACAAAATGGCCTACTTCCATGAACT GCCTTGAGAATGAAGCAGAACAGAAGTTAATAGAGAGCATGTTGCAAAAACCTGACAAAACCCGGG ACAGGGATTTCTGATGGTGATTTCTGGATAGGGCTTTGGAGGAATGGAGATGGGCAAACATCTGG TGCCTGCCCAGATCTCTACCAGTGGTCTGATGGAAGCAATTCCCAGTACCGAAACTGGTACACAG CTTGGGGGTCCCTACCTTTACCAGTGGAATGATGACAGGTGTAACATGAAGCACAATTATATTTG CAAGTATGAACCAGAGATTAATCCAACAGCCCCTGTAGAAAAGCCTTATCTTACAAATCAACCAG GAGACACCCATCAGAATGTGGTTGTTACTGAAGCAGGTATAATTCCCCAATCTAATTTATGTTGTT ATACCAACAATACCCCTGCTCTTACTGATACTGGTTGCTTTTTGGAACCTGTTGTTTCCAGATGCT GCATAAAAGTAAAGGAAGAACAAAAACTAGTCCAAACCAGTCTACACTGTGGATTTCAAAGAGTA ${\tt CCAGAAAAGAAGTGGCATGGAAGTA}{\tt TAA}{\tt TAACTCATTGACTTGGTTCCAGAATTTTGTAATTCT}$ GGATCTGTATAAGGAATGGCATCAGAACAATAGCTTGGAATGGCTTGAAATCACAAAGGATCTGC AAGATGAACTGTAAGCTCCCCCTTGAGGCAAATATTAAAGTAATTTTTATATGTCTATTATTTCA TTTAAAGAATATGCTGTGCTAATAATGGAGTGAGACATGCTTATTTTGCTAAAGGATGCACCCAA ACTTCAAACTTCAAGCAAATGAAATGGACAATGCAGATAAAGTTGTTATCAACACGTCGGGAGTA TGTGTGTTAGAAGCAATTCCTTTTATTTCTTTCACCTTTCATAAGTTGTTATCTAGTCAATGTAA TGTATATTGTATTGAAATTTACAGTGTGCAAAAGTATTTTACCTTTGCATAAGTGTTTGATAAAA ATGAACTGTTCTAATATTTTTTTTTTTTTTGGCATCTCATTTTTCAATACATGCTCTTTTTGATTAAAG AAACTTATTACTGTTGTCAACTGAATTCACACACACACAAATATAGTACCATAGAAAAAGTTTGT TTTCTCGAAATAATTCATCTTTCAGCTTCTCTGCTTTTGGTCAATGTCTAGGAAATCTCTTCAGA AATAAGAAGCTATTTCATTAAGTGTGATATAAACCTCCTCAAACATTTTACTTAGAGGCAAGGAT TGTCTAATTTCAATTGTGCAAGACATGTGCCTTATAATTATTTTTTAGCTTAAAATTAAACAGATT TTGTAATATGTAACTTTGTTAATAGGTGCATAAACACTAATGCAGTCAATTTGAACAAAAGAAG TGACATACACAATATAAATCATATGTCTTCACACGTTGCCTATATAATGAGAAGCAGCTCTCTGA GGGTTCTGAAATCAATGTGGTCCCTCTCTTGCCCACTAAACAAGATGGTTGTTCGGGGTTTTGGG ATTGACACTGGAGGCAGATAGTTGCAAAGTTAGTCTAAGGTTTCCCTAGCTGTATTTAGCCTCTG ACTATATTAGTATACAAAGAGGTCATGTGGTTGAGACCAGGTGAATAGTCACTATCAGTGTGGAG ACAAGCACACACACACATTTTAGGAAGGAAAGGAACTACGAAATCGTGTGAAAATGGGTTGG AACCCATCAGTGATCGCATATTCATTGATGAGGGTTTGCTTGAGATAGAAAATGGTGGCTCCTTT CTGTCTTATCTCCTAGTTTCTTCAATGCTTACGCCTTGTTCTTCTCAAGAGAAAGTTGTAACTCT CTGGTCTTCATATGTCCCTGTGCTCCTTTTAACCAAATAAAGAGTTCTTGTTTCTGGGGGAAAAA ΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑ

MSRVVSLLLGAALLCGHGAFCRRVVSGQKVCFADFKHPCYKMAYFHELSSRVSFQEARLACESE GGVLLSLENEAEQKLIESMLQNLTKPGTGISDGDFWIGLWRNGDGQTSGACPDLYQWSDGSNSQ YRNWYTDEPSCGSEKCVVMYHQPTANPGLGGPYLYQWNDDRCNMKHNYICKYEPEINPTAPVEK PYLTNQPGDTHQNVVVTEAGIIPNLIYVVIPTIPLLLLILVAFGTCCFQMLHKSKGRTKTSPNQ STLWISKSTRKESGMEV

Important features of the protein:

Signal peptide:

amino acids 1-21

Transmembrane domain:

amino acids 214-235

N-glycosylation sites.

amino acids 86-89, 255-258

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 266-269

N-myristoylation sites.

amino acids 27-32, 66-71, 91-96, 93-98, 102-107, 109-114, 140-145, 212-217