Exercice 1.

- 1. Déterminer le degré ainsi que le coefficient dominant de chacun des polynômes suivants :
 - (a) $P = (3X^2 + 5X 1)(-3X^3 + 2)$
 - (b) $Q = (iX^4 5) + ((iX)^2 + 2X)iX^2$
- 2. Soit $C = X^2 + 2X 1$ et D = X 3. Déterminer $\deg(C \circ D)$. Calculer $C \circ D$ et $D \circ C$. A-t-on l'équlité entre les deux résultats?

Exercice 2.

Déterminer pour chacun des cas suivants si l'un des polynômes divise l'autre :

- 1. $P = X^2 + 2X + 1$ et Q = X + 1
- 2. P = X i et $Q = X^2 + 1$ (supp.)
- 3. $P = X^2 + 1$ et $Q = 2X^2 + 2$. La relation de divisibilité dans $\mathbb{R}[X]$ est-elle antisymétrique?

Exercice 3.

Effectuer la division euclidienne de A par B dans les cas suivants :

1.
$$A = 2X^3 - X^2 - 2X + 1$$
 et $B = X^2 + X + 1$

2.
$$A = X^4 - X^2 - 2X + 2$$
 et $B = X^2 + 2X + 2$

3.
$$A = X^4 - 3X^2 + 2$$
 et $B = X^2 + 2X + 2$ (supp.)

4.
$$A = X^5 - 4X^4 + 6X^3 - 6X^2 + 5X - 2$$
 et $B = X^3 + 2X^2 + X + 1$ (supp.)

5.
$$A = (i+1)X^3 + iX^2 - 2X + 1$$
 et $B = X - 1$

6.
$$A = X^4 + iX^2 - i$$
 et $B = iX^3 - 1$

Existe-t-il, parmi les exemples précédents, un polynôme B qui divise le polynôme A correspondant?

Exercice 4.

Déterminer le PGCD des polynômes dans les cas suivants et déduire ceux qui sont premiers entre eux.

1.
$$P = X^5 - 2X^4 + 6X^3 - 11X^2 + 7X - 1$$
 et $Q = X^3 - X^2 - X + 1$

2.
$$P = X^4 + 3X^3 - 3X^2 + 6X - 10$$
 et $Q = X^2 + 3X - 5$

3.
$$P = -X^2 - 3iX + 2$$
 et $Q = X - i$

4.
$$P = iX^3 + 2X^2 - iX$$
 et $Q = X + 1$ (supp.)

Exercice 5.

Factoriser les polynômes suivants dans l'anneau correspondant

1.
$$P = X^3 - X^2 - 14X + 24 \ dans \ \mathbb{R}[X]$$

2.
$$Q = X^3 + 2X^2 + 2X + 1 \ dans \ \mathbb{R}[X]$$

3.
$$R = 3X^4 - 4X^3 + 1 \ dans \ \mathbb{C}[X]$$

4.
$$S = X^5 - 7X^4 + 19X^3 - 25X^2 + 16X - 4 \ dans \ \mathbb{R}[X]$$
. (supp.)

5.
$$T = X^6 + 3X^5 - 2X^4 - 16X^3 - 21X^2 - 11X - 2 \ dans \ \mathbb{R}[X]$$
. (supp)