Unit No. 8

Logic

Review Exercise No. 8

Question No. 1

Four options are given against each statement. Encircle the correct option.

- (i). Which of the following expressions is often related to inductive reasoning?
- (a) based on repeated experiments
- (b) if and only if statements
- (c) Statement is proven by a theorem
- (d) based on general principles
- (ii) Which of the following sentences describe deductive reasoning?
- (a) general conclusions from a limited number of observations
- (b) based on repeated experiments
- (c) based on units of information that are accurate
- (d) draw conclusion from well-known facts
- (iii) Which one of the following statements is true?
- (a) The set of integers is finite.
- (b) The sum of the interior angles of any quadrilateral is always 180°.
- (c) 22/7 ∉ Q
- (d) All isosceles triangles are equilateral triangles.
- (iv) Which of the following statements is the best to represent the negation of the statement "The stove is burning"?
- (a) the stove is not burning.
- (b) the stove is dim.
- (c) the stove is turned to low heat.
- (d) it is both burning and not burning.
- (v) The conjunction of two statements p and q is true when:
- (a) both p and q are false.

(b) both p and q are true.
(c) only q is true.
(d) only p is true.
(vi) A conditional is regarded as false only when:
(a) antecedent is true and consequent is false.
(b) consequent is true and antecedent is false.
(c) antecedent is true only.
(d) consequent is false only.
(vii) Contrapositive of p⇒q is:
(a) $q \Longrightarrow p$
$(b) \sim q \Longrightarrow p$
(b) $\sim q \Longrightarrow p$ (c) $\sim p \Longrightarrow \sim q$ (d) $\sim q \Longrightarrow \sim p$
$(d) \sim q \Longrightarrow \sim p$
(viii) The statement "Every integer greater than 2 is a sum of two prime numbers" is:
(a) theorem
(b) conjecture
(c) axiom
(d) postulates
(ix) The statement "A straight line can be drawn between any two points" is:
(a) theorem
(b) conjecture
(c) axiom
(d) logic
(x) The statement "The sum of the interior angle of a triangle is 180° " is:
(a) converse
(b) theorem
(c) axiom
(d) conditional

Question No. 2

Write the converse, inverse and contrapositive of the following conditionals:

(i)
$$p \Rightarrow q$$

Solution:

- \bullet Inverse: $p \rightarrow \sim q$
- \diamond Contrapositive: $\sim q \rightarrow p$

(ii)
$$q \Rightarrow p$$

Solution:

- **♦** Inverse: $\sim q \rightarrow \neg p$
- **\(\ldot\)** Contrapositive: $\sim p \rightarrow \sim q$

(iii)
$$\sim p \Longrightarrow q$$

Solution:

- $\bullet \quad \text{Inverse: } p \to q$
- \diamond Contrapositive: $q \rightarrow p$

(iv)
$$\sim q \implies p$$

Solution:

- **\Leftrightarrow** Converse: $\sim p \rightarrow \sim q$
- $\text{Inverse: } q \to p$
- \bullet Contrapositive: $p \rightarrow q$

Question No. 3

Write the truth table of the following:

(i)
$$\sim$$
(pVq)V(\sim q)

Solution:

р	q	$p \vee q$	$\sim (p \lor q)$	~q	$\sim (p \lor q) \lor (\sim q)$
T	T	T	F	F	F
T	F	T	F	T	Т
F	T	T	F.	F	F
F	F	F	T	T	Т

(ii) ~(q∨~p)

Solution:

p	q	~p	~q	~av~n	~(qv~p)
T	Т	F	F	F	T
T	F	F	Т	T	F
F	T	T	F	Т	F
F	F	T	T	Т	F

(iii) (pVq)⇔(p∧q)

Solution:

р	q	p∨q	$p \wedge q$	$(p \lor q) \leftrightarrow (p \land q)$
T	T	Т	Т	Т
T	F	Т	F	F
F	Т	Т	F	F
F	F	F	F	T

Question No. 4

Differentiate between a mathematical statement and its proof. Given two examples.

Solution:

Mathematical Statement:

A sentence or mathematical expression which may be true or false but not both is called a statement.

This is correct so far as mathematics and other sciences are concerned. For instance, the statement a = b can be either true or false.

Proof: A logical argument that demonstrates the truth of a mathematical statement. It uses definitions, axioms, previously proven theorems, and logical rules to establish the validity of the statement.

Example 1: "The sum of the interior angles of a triangle is 180 degrees."

Proof of Triangle Angle Sum: Using geometric constructions and properties of parallel lines.

Example 2: "For any real numbers a and b, a + b = b + a."

Proof of Commutative Property of Addition: Using diagrams or algebraic manipulations.

Question No. 5

What is the difference between an axiom and a theorem? Give examples of each.

Solution:

Axiom:

A fundamental assumption or self-evident truth that is accepted without proof. Axioms form the basis of a mathematical system.

Example 1: Euclid's Postulates (e.g., "A straight line can be drawn between any two points.")

Example 2: Peano Axioms (e.g., "Every natural number has a successor.")

Theorem:

A mathematical statement that has been proven to be true using logical reasoning and previously established facts (axioms, definitions, other proven theorems).

Example 1: Pythagorean Theorem

Example 2: Fundamental Theorem of Arithmetic

Question No. 6

What is the importance of logical reasoning in mathematical proofs? Give an example to illustrate your point.

Solution:

Importance: Logical reasoning is essential for constructing valid mathematical proofs. It ensures that each step in the proof follows logically from previous statements and established principles.

Example: In proving the Pythagorean Theorem, we use logical reasoning, geometric constructions, and previously established properties of similar triangles.

Question No. 7

Indicate whether it is an axiom, conjecture or theorem and explain your reasoning.

(i) There is exactly one straight line through any two points.

Solution:

Axiom:

This is a fundamental assumption in geometry, often considered a postulate or axiom. It is accepted without proof.

(ii) Every even number greater than 2 can be written as the sum of two prime numbers."

Solution:

Conjecture:

This is the Goldbach Conjecture, which is a famous unproven statement in number theory. It is believed to be true but has not yet been proven mathematically.

(iii) The sum of the angles in a triangle is 180°.

Solution:

Theorem:

This statement has been rigorously proven in Euclidean geometry. It is not an axiom because it requires a proof. It is not a conjecture because it has been proven true.

Question No. 8

Formulate simple deductive proofs for each of the following algebraic expressions, prove that the L.H.S is equal to the R.H.S:

(i) prove that
$$(x-4)^2 + 9 = x^2 - 8x + 25$$

Solution:

$$(x-4)^2 + 9 = x^2 - 8x + 25$$

Solving L.H.S:

$$(x-4)^2+9$$

$$=(x)^2-2(x)(4)+(4)^2+9$$

$$=x^2-8x+16+9$$

$$= x^2 - 8x + 25 = R.H.S$$

Hence proved that:

$$(x-4)^2 + 9 = x^2 - 8x + 25$$

(ii) prove that
$$(x+1)^2 - (x-1)^2 = 4x$$

Solution:

$$(x+1)^2 - (x-1)^2 = 4x$$

Solving L.H.S:

$$(x+1)^2 - (x-1)^2$$

$$= [(x)^2 + 2(x)(1) + (1)^2] - [(x)^2 - 2(x)(1) + (1)^2]$$

$$=(x^2+2x+1)-(x^2-2x+1)$$

$$= x^2 + 2x + 1 - x^2 + 2x - 1$$

$$=4x = R.H.S$$

Hence proved that:

$$(x+1)^2 - (x-1)^2 = 4x$$

(iii) prove that
$$(x+5)^2 - (x-5)^2 = 20x$$

Solution:

$$(x+5)^2 - (x-5)^2 = 20x$$

Solving L.H.S:

$$(x+5)^2 - (x-5)^2$$

$$= [(x)^2 + 2(x)(5) + (5)^2] - [(x)^2 - 2(x)(5) + (5)^2]$$

$$=(x^2+10x+25)-(x^2-10x+25)$$

$$= x^2 + 10x + 25 - x^2 + 10x - 25$$

$$=20x = R.H.S$$

Hence proved that:

$$(x+5)^2 - (x-5)^2 = 20x$$

Question No. 9

Prove the following by justifying each step:

(i)
$$\frac{4+16x}{4} = 1 + 4x$$

Solution:

$$\frac{4 + 16x}{4} = 1 + 4x$$

By solving L.H.S:

$$\frac{4+16x}{4}$$

$$= \frac{4}{4} + \frac{16x}{4}$$
 (: Distributive law)

$$= 1 + 4x$$
 (: Cancellation property of real numbers)

Hence proved that:

$$\frac{4+16x}{4} = 1 + 4x$$

(ii)
$$\frac{6x^2 + 18x}{3x^2 - 27} = \frac{2x}{x - 3}$$

Solution:

$$\frac{6x^2 + 18x}{3x^2 - 27} = \frac{2x}{x - 3}$$

By solving L.H.S:

$$\frac{6x^2 + 18x}{3x^2 - 27}$$

$$= \frac{6x(x+3)}{3(x^2-9)}$$
 (: factorization of numerator and denominator)

$$= \frac{2x(x+3)}{(x^2-3^2)}$$
 (: Cancellation property of real numbers and factorization of denominator)

$$= \frac{2x}{(x-3)}$$
 (: Cancellation property of real numbers)

Hence proved that:

$$\frac{6x^2 + 18x}{3x^2 - 27} = \frac{2x}{x - 3}$$

(iii)
$$\frac{x^2 + 7x + 10}{x^2 - 3x - 10} = \frac{x + 5}{x - 5}$$

Solution:

$$\frac{x^2 + 7x + 10}{x^2 - 3x - 10} = \frac{x + 5}{x - 5}$$

By solving L.H.S:

$$\frac{x^2 + 7x + 10}{x^2 - 3x - 10}$$

$$= \frac{x^2 + 5x + 2x + 10}{x^2 - 5x + 2x - 10}$$
 (: factorization of numerator and denominator)

$$= \frac{x(x+5)+2(x+5)}{x(x-5)+2(x-5)}$$
 (: taking common)

$$=\frac{(x+5)(x+2)}{(x-5)(x+2)}$$

$$= \frac{(x+5)}{(x-5)}$$
 (: Cancellation property of real numbers)

Hence proved that:

$$\frac{x^2 + 7x + 10}{x^2 - 3x - 10} = \frac{x + 5}{x - 5}$$

Question No. 10

Suppose x is an integer. If x is odd, then 9x + 4 is odd.

Solution:

Part 1: If x is odd, then 9x + 4 is odd.

If x is odd, we can express it as;

x = 2k + 1, where k is an integer. Substitute x into the expression 9x + 4:

$$9(2k+1)+4$$

$$= 18k + 9 + 4$$

$$= 18k + 13$$

$$=2(9k+6)+1$$

Since 9k + 6 is an integer, 2(9k + 6) + 1 is an odd integer.

Part 2: If 9x + 4 is odd, then x is odd.

Solution:

If 9x + 4 is odd, we can express it as;

9x + 4 = 2m + 1, where m is an integer.

$$9x = 2m - 4 + 1$$

$$9x = 2m - 3$$

$$\chi = \frac{(2m-3)}{9}$$

Since 2m - 3 is always odd, and 9 is odd,

(2m - 3) / 9 will be an odd integer. Therefore, x is odd if and only if 9x + 4 is odd.

Question No. 11

Suppose x is an integer. If x is odd, then 7x + 5 is even.

Solution:

If x is an odd integer, we can represent it as;

x = 2k + 1, where k is any integer.

Substitute this value of x into the expression 7x + 5:

$$=7(2k+1)+5$$

$$= 14k + 7 + 5$$

$$= 14k + 12$$

$$=2(7k+6)$$

Since k is an integer, 7k + 6 is also an integer.

Therefore, 7x + 5 can be expressed in the form;

2m, where m = 7k + 6 is an integer.

Hence, if x is an odd integer, then 7x + 5 is even.

Question No. 12

Prove the following statements:

(a) If x is an odd integer, then show that $x^2 - 4x + 6$ is odd.

Solution:

Proof:

If x is an odd integer,

we can represent it as x = 2k + 1, where k is any integer.

Substitute this value of x into the expression $x^2 - 4x + 6$:

$$=(2k + 1)^2 - 4(2k + 1) + 6$$

$$= (2k)^2 + 2(2k)(1) + (1)^2 - 8k - 4 + 6$$

$$=4k^2+4k+1-8k+2$$

$$=4k^2-4k+3$$

$$=4k(k-1)+3$$

Since k and k - 1 are consecutive integers, one of them must be even.

Therefore, 4k(k-1) is always divisible by 2. Thus, 4k(k-1) is divisible by $4 \times 2 = 8$.

So, 4k(k-1) can be expressed in the form 2m+1, where m is an integer.

Hence, if x is an odd integer, then

$$x^2 - 4x + 6$$
 is odd.

(b) If x is an even integer, then show that $x^2 + 2x + 4$ is even.

Solution:

Proof:

If x is an even integer,

we can represent it as x = 2k, where k is any integer.

Substitute this value of x into the expression $x^2 + 2x + 4$:

$$=(2k)^2+2(2k)+4$$

$$=4k^2+4k+4$$

$$=2(2k^2+2k+2)$$

Since k is an integer, $2(2k^2 + 2k + 2)$

is also an integer.

Hence, if x is an even integer, then

$$x^2 + 2x + 4$$
 is even.

Question No. 13

Prove that for any two non-empty sets A and B, $(A \cap B)' = A' \cup B'$.

Solution:

$$L.H.S. = (A \cap B)'$$

Let
$$x \in (A \cap B)'$$

By definition;

$$\Rightarrow$$
 x \notin A \cap B

$$\Rightarrow$$
 x \notin A and x \notin B

$$\Rightarrow$$
 x \in A' or x \in B'

$$\Rightarrow$$
 x \in A' \cup B'

$$\Rightarrow$$
 (A \cap B)' \subseteq A' \cup B' ...(1)

Now R.H.S;

Let
$$x \in A' \cup B'$$

$$\Rightarrow$$
 x \in A' or x \in B'

$$\Rightarrow$$
 x \notin A and x \notin B

$$\Rightarrow$$
 x \notin A \cap B

$$\Rightarrow$$
 x \in (A \cap B)'

$$\Rightarrow$$
 A' \cup B' \subseteq (A \cap B)' ...(2)

Conclusion:

From (1) and (2) we get;

$$(A \cap B)' = A' \cup B'$$

Similarly, we can prove that;

$$(A \cup B)' = A' \cap B'$$

Question No. 14

If x and y are positive real numbers and $x^2 < y^2$ then x < y.

Solution:

Since x and y are positive real numbers, we can take the square root of both sides of the inequality $x^2 < y^2$ without changing the direction of the inequality.

This gives us:

$$\sqrt{x^2} < \sqrt{y^2}$$

$$|\mathbf{x}| < |\mathbf{y}|$$

As x and y are positive,

$$|\mathbf{x}| = \mathbf{x}$$
 and $|\mathbf{y}| = \mathbf{y}$.

Therefore, x < y.

Question No. 15

The sum of the interior angles of a triangle is 180°.

Solution:

Draw a triangle PQR.

Draw a line AB || QR

(construction)

$$\angle 3 + \angle 4 + \angle 5 = 180^{\circ}$$

angles) $\angle 2 = \angle 5$

(straight angle) $\angle 4 = \angle 1$ (alternate interior angles) So,

(alternate interior

$$\angle 1 + \angle 2 + \angle 3 = 180^{\circ}$$

Conclusion:

So proved that The sum of the interior angles of a triangle is 180°.

Question No. 16

If a, b and c are non-zero real numbers, prove that:

$$(a) \frac{a}{b} = \frac{c}{d} \Leftrightarrow ad = bc$$

Proof:

$$\frac{a}{b} = \frac{c}{d} \iff ad = bc$$

$$\frac{a}{b} \times (d \times \frac{1}{d}) = \frac{c}{d} \times (b \times \frac{1}{b})$$

(: Multiplicative inverse)

$$\frac{a \times d}{b \times d} = \frac{c \times b}{d \times b}$$

$$\frac{ad}{bd} = \frac{cb}{db}$$

(: Rule of multiplication of fraction)

$$\frac{\mathrm{ad}}{\mathrm{bd}} \times \mathrm{bd} = \frac{\mathrm{cb}}{\mathrm{db}} \times \mathrm{bd}$$

(: Multiplicative property of real numbers)

ad = cb (: Cancellation property)

ad = bc (: Commutative property)

Conclusion:

So proved that $\frac{a}{b} = \frac{c}{d} \iff ad = bc$

(b)
$$\frac{a}{b} \cdot \frac{c}{d} \iff \frac{ac}{bd}$$

Proof:

$$\frac{a}{b} \cdot \frac{c}{d} \Longleftrightarrow \frac{ac}{bd}$$

By solving L.H.S:

$$=\frac{a}{b}\cdot\frac{c}{d}$$

$$=\frac{ac}{bd}$$

(: Rule of multiplication of fractions $\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$)

Conclusion:

So proved that $\frac{a}{b} \cdot \frac{c}{d} \Longleftrightarrow \frac{ac}{bd}$

$$(c)\frac{a}{b} + \frac{c}{b} \Longleftrightarrow \frac{a+c}{b}$$

Proof:

$$\frac{a}{b} + \frac{c}{b} \Longleftrightarrow \frac{a+c}{b}$$

By solving L.H.S:

$$\frac{a}{b} + \frac{c}{b}$$

$$= a \times \frac{1}{b} + c \times \frac{1}{b} \qquad (\because a \times \frac{1}{b} = \frac{a}{b})$$

$$(\because a \times \frac{1}{b} = \frac{a}{b})$$

$$=(a+c)\times\frac{1}{b}$$

 $= (a + c) \times \frac{1}{b}$ (: Distributive property)

$$=\frac{a+c}{b}$$

Thus;

$$=\frac{a}{b}+\frac{c}{b}$$

Conclusion:

So proved that $\frac{a}{b} + \frac{c}{b} \Leftrightarrow \frac{a+c}{b}$