TP: Analyse du Diabète avec les Arbres de Décision

Contexte

Le diabète est une maladie chronique qui affecte la capacité du corps à réguler le taux de sucre dans le sang. Le **Pima Indian Diabetes dataset** fournit des données médicales permettant d'analyser les facteurs influençant le développement du diabète chez les femmes amérindiennes Pima.

Objectifs

- Appliquer un arbre de décision pour prédire la présence de diabète en fonction des caractéristiques médicales.
- Comprendre le **fonctionnement** et l'**interprétation** des arbres de décision.
- Évaluer la **performance** du modèle à l'aide de métriques adaptées.

Jeu de Données : Pima Indian Diabetes

Le **Pima Indian Diabetes dataset** est un jeu de données médical utilisé pour la classification du diabète. Il contient des informations sur **768 femmes amérindiennes Pima** âgées de plus de 21 ans. Chaque observation inclut **8 caractéristiques médicales** comme la glycémie, l'IMC et l'âge, ainsi qu'une variable cible indiquant la présence ou l'absence du diabète.

Source: National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). Accéder au dataset sur Kaggle

1. Importation des bibliothèques

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.tree import DecisionTreeClassifier
from sklearn import metrics
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.lines import Line2D
from sklearn.tree import plot_tree
```

```
C:\Users\YOUNESS\AppData\Local\Temp\ipykernel_14560\3286314737.py:1: DeprecationWarn
ing:
Pyarrow will become a required dependency of pandas in the next major release of pan
das (pandas 3.0),
(to allow more performant data types, such as the Arrow string type, and better inte
roperability with other libraries)
but was not found to be installed on your system.
If this would cause problems for you,
please provide us feedback at https://github.com/pandas-dev/pandas/issues/54466

import pandas as pd
```

2. Chargement et exploration des données

Out[]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	вмі	DiabetesPedigreeFunc
	0	6	148.0	72.0	35.0	0.0	33.6	C
	1	1	NaN	66.0	29.0	0.0	26.6	(
	2	8	183.0	64.0	0.0	0.0	23.3	(
	3	1	89.0	66.0	23.0	94.0	28.1	(
	4	0	137.0	40.0	35.0	168.0	43.1	10

In []: data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Pregnancies	768 non-null	int64
1	Glucose	691 non-null	float64
2	BloodPressure	691 non-null	float64
3	SkinThickness	691 non-null	float64
4	Insulin	691 non-null	float64
5	BMI	691 non-null	float64
6	DiabetesPedigreeFunction	768 non-null	float64
7	Age	768 non-null	int64
8	Outcome	768 non-null	int64

dtypes: float64(6), int64(3)
memory usage: 54.1 KB

```
In [ ]: data.describe()
```

Out[]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	Dia
	count	768.000000	691.000000	691.000000	691.000000	691.000000	691.000000	
	mean	3.845052	130.706223	68.816208	20.740955	81.497829	32.919103	
	std	3.369578	58.344869	19.402960	15.841087	117.298175	8.611362	
	min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
	25%	1.000000	100.000000	62.000000	0.000000	0.000000	27.600000	
	50%	3.000000	119.000000	72.000000	23.000000	36.000000	32.500000	
	75%	6.000000	145.000000	80.000000	32.000000	130.000000	37.050000	
	max	17.000000	537.000000	122.000000	99.000000	846.000000	68.800000	
	4							•
In []:	data.i	snull().sum()					
Out[]:	SkinTh Insuli BMI Diabet Age Outcom	se Pressure nickness .n :esPedigreeFu	7 7 7 7 Inction	0 7 7 7 7 9 0				

3. Prétraitement des données

```
In [ ]: data.fillna(data.mean(), inplace=True)
In [ ]: data.isnull().sum()
Out[]: Pregnancies
                                    0
        Glucose
                                    0
        BloodPressure
                                    0
        SkinThickness
                                    0
        Insulin
                                    0
        BMI
                                    0
        DiabetesPedigreeFunction
                                    0
        Age
                                    0
        Outcome
                                    0
        dtype: int64
In [ ]: sns.heatmap(data.corr())
Out[ ]: <Axes: >
```


On a décidé de supprimer les features **DiabetesPedigreeFunction**, **BloodPressure** et **SkinThickness** car elles présentent une corrélation très faible avec la variable cible (Outcome). Cela permettra de simplifier le modèle tout en conservant les features les plus pertinentes pour la prédiction du diabète.

Out[]:		Pregnancies	Glucose	Insulin	ВМІ	Age	Outcome
	0	6	148.000000	0.0	33.6	50	1
	1	1	130.706223	0.0	26.6	31	0
	2	8	183.000000	0.0	23.3	32	1
	3	1	89.000000	94.0	28.1	21	0
	4	0	137.000000	168.0	43.1	33	1
	•••			•••			
	763	10	101.000000	180.0	32.9	63	0
	764	2	122.000000	0.0	36.8	27	0
	765	5	121.000000	112.0	26.2	30	0
	766	1	126.000000	0.0	30.1	47	1
	767	1	93.000000	0.0	30.4	23	0

768 rows × 6 columns

4. Séparation des données (Train/Test)

5. Construction et entraînement de l'arbre de décision

```
min_samples_leaf=min_samples_leaf,
    random_state=42
scores = cross_val_score(model, X_train, y_train, cv=5)
mean_accuracy = np.mean(scores)
resultats.append({
    'max_depth': max_depth,
    'min_samples_split': min_samples_split,
    'min_samples_leaf': min_samples_leaf,
    'accuracy': mean_accuracy
})
if mean_accuracy > best_accuracy:
    best_accuracy = mean_accuracy
    best_params = {
        'max_depth': max_depth,
        'min_samples_split': min_samples_split,
        'min_samples_leaf': min_samples_leaf
    }
```

6. Évaluation du modèle

```
In [ ]: | %matplotlib widget
        max_depths = [r['max_depth'] for r in resultats]
        min_samples_splits = [r['min_samples_split'] for r in resultats]
        accuracies = [r['accuracy'] for r in resultats]
        best_index = np.argmax(accuracies)
        colors = ['blue'] * len(accuracies) # Tous les points en bleu
        colors[best_index] = 'red' # Meilleure précision en rouge
        # Créer le graphique en 3D
        fig = plt.figure(figsize=(10, 8))
        ax = fig.add_subplot(111, projection='3d')
        scatter = ax.scatter(max_depths, min_samples_splits, accuracies, c=colors, s=100)
        ax.set_xlabel('Max Depth')
        ax.set_ylabel('Min Samples Split')
        ax.set_zlabel('Accuracy')
        legend_elements = [
            Line2D([0], [0], marker='o', color='w', label='Autres modèles',
                   markerfacecolor='blue', markersize=10),
            Line2D([0], [0], marker='o', color='w', label='Meilleur modèle',
                   markerfacecolor='red', markersize=10)
        ax.legend(handles=legend_elements, loc='upper right')
```

```
plt.title('Performance des modèles en fonction des hyperparamètres')
plt.show()
```

Figure


```
In [ ]: print(f"Meilleurs paramètres : {best_params}")
    print(f"Meilleure précision : {best_accuracy:.4f}")

Meilleurs paramètres : {'max_depth': 4, 'min_samples_split': 5, 'min_samples_leaf': 2}
    Meilleure précision : 0.7374
```

7. Visualisation et interprétation de l'arbre de décision

Exécution du Code Commenté pour l'Installation

Exécutez le code commenté ci-dessous pour installer les bibliothèques nécessaires.

```
In [ ]: # ! pip install graphviz pydotplus

In [ ]: # Meilleurs hyperparamètres trouvés
best_params = {
    'max_depth': 4,
    'min_samples_split': 5,
```

```
'min_samples_leaf': 2
}

# Entraîner le modèle final avec les meilleurs hyperparamètres
best_model = DecisionTreeClassifier(
    max_depth=best_params['max_depth'],
    min_samples_split=best_params['min_samples_split'],
    min_samples_leaf=best_params['min_samples_leaf'],
    random_state=42
)
best_model.fit(X_train, y_train)
```

Out[]:

DecisionTreeClassifier

DecisionTreeClassifier(max_depth=4, min_samples_leaf=2, min_samples_split=
5,

random_state=42)

Figure

