Similaridad Semántica

¿25?

0 _____ 100

¿felicidad?

amor — comida

Similaridad Semántica

Corpus de textos

La semántica de una palabra puede deducirse de su contexto

- Sarabaraban aparece de noche
- Cuando hay un peligro aparece sarabaraban
- Sarabaraban puede ayudarte
- Sarabaraban es un científico

La semántica de una pala deducirse de su cor

- Sarabaraban aparece de noch
- Cuando hay un peligro apared
- Sarabaraban puede ayudarte
- Sarabaraban es un científico

J. R. Firth 1957

Word-embeddings

Corpus de textos


```
melon banana
                       tangeria pe plum
                               mango
Strawberry
             sheep<sub>uck</sub> watermelonach
                                              violet
                                          green red
                             pear
elephanmel
                                               yellowue
                                       black
            anticipation
                                                   purple
                                             brown
                                                 pink
   trust sadness joy
                         mouth nose
            disgust
     anger
                           foot
                                   toe
                      lea
                                head
                              hand
```

Podemos calcular cercanías entre palabras

Vector Space Models

Vector Space Model

Term-Document matrix

	Doc 1	Doc2	Doc 3	Doc 4	Doc 5	Doc 6	 Doc N
choripan	1	0	3	2	0	0	 0
vino	0	2	0	0	0	0	 0
chimichurri	0	1	2	1	0	0	 0
uva	1	0	0	0	0	2	 1
pera	0	0	0	0	3	0	 1
kiwi	0	0	0	0	1	2	 0

Vector Space Model

Term-Document matrix

	Doc 1	Doc2	Doc 3	Doc 4	Doc 5	Doc 6		Doc N
choripan	1	0	3	2	0	0	•••	0
vino	0	2	0	0	0	0	•••	0
chimichurri	0	1	2	1	0	0		0
uva	1	0	0	0	0	2		1
pera	0	0	0	0	3	0	•••	1
kiwi	0	0	0	0	1	2		0

Transformación TF-IDF

$$tf$$
-idf $(t,d) = tf(t,d)$. idf (t)

 $\operatorname{idf}(t) = \log rac{1 + |D|}{1 + |\{d: t \in d\}|} + 1$

Número de documentos en los que aparece el término *t*

Número de documentos en el set

Vector Space Model

Term-Document matrix

	Doc 1	Doc2	Doc 3	Doc 4	Doc 5	Doc 6		Doc N
choripan	0.83	0	0.37	0.72	0	0	•••	0
vino	0	0.02	0	0	0	0	•••	0
chimichurri	0	0.91	0.22	0.31	0	0		0
uva	0.01	0	0	0	0	0.55		0.18
pera	0	0	0	0	0.13	0	•••	0.11
kiwi	0	0	0	0	0.41	0.22		0

Vector Space Model

Term-Document matrix

		Doc 1	Doc2	Doc 3	Doc 4	Doc 5	Doc 6		Doc N
	choripan	0.83	0	0.37	0.72	0	0	•••	0
	vino	0	0.02	0	0	0	0		0
$\left(\right]$	chimichurri	0	0.91	0.22	0.31	0	0		0
	uva	0.01	0	0	0	0	0.55		0.18
	pera	0	0	0	0	0.13	0	•••	0.11
	kiwi	0	0	0	0	0.41	0.22	•••	0

Similaridad coseno

$$ext{cossim}\left(ec{v}_1,ec{v}_2
ight) = ext{cos}(lpha) = rac{ec{v}_1.ec{v}_2}{|ec{v}_1|.|ec{v}_2|}$$

Similaridad coseno

$$egin{aligned} & ext{cossim} \left(ec{v}_1, ec{v}_2
ight) = ext{cos}(lpha) = rac{ec{v}_1.ec{v}_2}{|ec{v}_1|.|ec{v}_2|} \ & ext{cossim} \left(ec{v}_1, ec{v}_2
ight) = rac{\sum_{i=1}^N v_{1,i}.v_{2,i}}{\sqrt{\sum_{i=1}^N v_{1,i}^2} \sqrt{\sum_{i=1}^N v_{2,i}^2}} \ & ext{cossim} \left(ec{v}_1, ec{v}_2
ight) \in [-1, 1] \end{aligned}$$

Ejemplo

$$egin{array}{lll} ec{v}_1 & = & (0,5,1) \ ec{v}_2 & = & (1,0,2) \ & \cosh{(ec{v}_1.\,ec{v}_2)} & = & rac{0x1+5x0+1x2}{\sqrt{0^2+5^2+1^2}\sqrt{1^2+0^2+2^2}} pprox 0.175 \end{array}$$

Vector Space Model

Term-Document matrix

	Doc 1	Doc2	Doc 3	Doc 4	Doc 5	Doc 6		Doc N		
choripan	0.83	0	0.37	0.72	0	0		0		
vino	0	0.02	0	0	0	0		0		
chimichurri	0	0.91	0.22	0.31	0	0		0		
uva	0.01	0	0	0	0	0.55		0.18		
pera	0	0	0	0	0.13	0		0.11		
kiwi	0	0	0	0	0.41	0.22		0		

Information-Retrieval

Query: "El chimichurri es un condimento típico de Argentina..."

Entreno el TF-ID en el dataset

Aplico los pesos entrenados

	Doc 1	Doc2	Doc 3	Doc 4	Doc 5	Doc 6	 Doc N
choripan	0.83	0	0.37	0.72	0	0	 0
vino	0	0.02	0	0	0	0	 0
chimichurri	0	0.91	0.22	0.31	0	0	 0
uva	0.01	0	0	0	0	0.55	 0.18
pera	0	0	0	0	0.13	0	 0.11
kiwi	0	0	0	0	0.41	0.22	 0

Query
0.15
0
0.74
0
0.09
0

Term-context matrix

sliding window (size=2)

Choripan. The Argentine choripán consists of a sausage made out of beef and pork, hot off the grill, split down the middle, and served on a roll. The chorizo may be used whole or cut in half lengthwise, in which case it is called a mariposa (butterfly). It is customary to add sauces on the bread, most likely chimichurri.

Term-context matrix

	choripan	vino	chimichurri	uva	pera	 kiwi
choripan	1	54	23	5	2	 1
vino	54	1	17	21	3	 4
chimichurri	23	17	0	1	1	 0
uva	5	21	1	0	20	 19
pera	2	3	1	20	1	 11
				•••		
kiwi	1	4	0	19	11	 0

Term-context matrix

	choripan	vino	chimichurri	uva	pera	 kiwi	
choripan	1	54	23	5	2	 1	$\Big]$
vino	54	1	17	21	3	 4	
chimichurri	23	17	0	1	1	 0	$\Big] \Big)$
uva	5	21	1	0	20	 19	
pera	2	3	1	20	1	 11	
kiwi	1	4	0	19	11	 0	

Term-Document matrix

- First-order co-occurrence
- Syntagmatic associations
- Ejemplo: mostaza - hamburguesa

Term-Context matrix

- Second-order co-occurrence
- Paradigmatic associations
- Ejemplo: mostaza - ketchup

Similaridad semántica

Qué está más asociado al choripan, el vino o el chimichurri?

Term-context matrix

	W\C	choripan	vino	chimichurri	en
	choripan	0	10	10	30
f =	vino	10	5	5	50
•	chimichurri	10	5	0	10
	en	30	50	10	100

Pointwise Mutual Information (PMI)

PMI
$$(w,c) = \log\left(rac{P(w,c)}{P(w) \cdot P(c)}
ight)$$

W\C	choripan	vino	chimichurri	en
choripan	0	10	10	30
vino	10	5	5	50
chimichurri	10	5	0	10
en	30	50	10	100

Ejemplo

	W\C	choripan	vino	chimichurri	en	$N_{\rm C}$
	choripan	0	10	10	30	50
f =	vino	10	5	5	50	70
· —	chimichurri	10	5	0	10	25
	en	30	50	10	100	180
	N _W	50	70	25	190	335

$$p_{ij} = rac{\left[f_{ij}
ight]}{\sum_{i=1}^{W}\sum_{j=1}^{C}f_{ij}}$$

$$p_{ist} = rac{\left\lfloor \sum_{j=1}^C f_{ij}
ight
floor}{\sum_{i=1}^W \sum_{j=1}^C f_{ij}}$$

$$p_{*j} = rac{\sum_{i=1}^W f_{ij}}{\sum_{i=1}^W \sum_{j=1}^C f_{ij}}$$

PMI
$$(w,c) = \log\left(rac{p_{ij}}{p_{i*}p_{*j}}
ight)$$

PMI
$$(w=chimi,c=chori)=\log\left(rac{rac{10}{335}}{rac{25}{335}rac{50}{335}}
ight)pprox 1.422$$

Ejemplo

PMI
$$(w,c) = \log\left(rac{P(w,c)}{P(w) \cdot P(c)}
ight)$$

	W\C	choripan	vino	chimichurri	en
	choripan	-	-0.044	1.422	0.081
PMI =	vino	-0.044	-1.549	-0.063	0.333
	chimichurri 1.422 -0.063	-	-0.504		
	en	0.081	0.333	-0.504	-0.108

Otra forma de verlo

$$PMI(w,c) = log \left(\frac{P(w,c)}{P(w) \cdot P(c)} \right)$$

PMI
$$(w, c)$$
 = $\log \left(\frac{P(c|w)P(w)}{P(w) \cdot P(c)} \right)$ = $\log \left(\frac{P(c|w)}{P(c)} \right)$

W\C	choripan	vino	chimichurri	en	N _C
choripan	0	10	10	30	50
vino	10	5	5	50	70
chimichurri	10	5	0	10	25
en	30	50	10	100	190
N _W	50	70	25	190	335

$$= \log\left(rac{P(c=chori|w=chimi)}{P(c=chori)}
ight) = \log\left(rac{10/25}{50/335}
ight) pprox 1.422$$

¿Que significa un PMI negativo?

PMI
$$(w,c) = \log\left(rac{P(w,c)}{P(w)\cdot P(c)}
ight)$$

Si P(w)=P(c)=
$$10^{-6}$$

Para que PMI<0 — P(w,c)< 10^{-12}

Se suele usar el Positive-PMI (PPMI)

PPMI
$$(w,c) = \max\left(0,\log\left(rac{P(w,c)}{P(w)\cdot P(c)}
ight)
ight)$$

	W / C	choripan	vino	chimichurri	en
	choripan	0	0	1.422	0.081
PPMI =	vino	0	0	0	0.333
	chimichurri	1.422	0	0	0
	en	0.081	0.333	0	0

Cuidado!

PPMI
$$(w,c) = \max\left(0,\log\left(rac{P(w,c)}{P(w)\cdot P(c)}
ight)
ight)$$

En el caso límite donde 2 palabras están totalmente correlacionadas como por ejemplo (hocus pocus): P(w,c)=P(w)=P(c):

PMI
$$(w,c) = \log\left(rac{P(w,c)}{P(w) \cdot P(c)}
ight) = \log\left(rac{1}{P(w,c)}
ight) = -\log(P(w,c))$$

CAUTION

P(w,c) chicos dan PPMIs mas grandes!

PPMI
$$(w,c) = \max\left(0,\log\left(rac{P(w,c)}{P(w)\cdot P(c)}
ight)
ight)$$

➤ Filtrar f_{ii} <k

PPMI
$$(w,c) = \max\left(0,\log\left(rac{P(w,c)}{P(w)\cdot P(c)}
ight)
ight)$$

- ➤ Filtrar f_{ii} <k
- \succ Aumentar P(c), Levy et al. (2015) $P_{lpha}(c) = rac{count(c)^{lpha}}{\sum_{c} counts(c)^{lpha}}$

PPMI
$$(w,c) = \max\left(0,\log\left(rac{P(w,c)}{P(w)\cdot P(c)}
ight)
ight)$$

- Filtrar f_{ii} <k
- Aumentar P(c), Levy et al. (2015) $P_{lpha}(c) = rac{count(c)^{lpha}}{\sum_{c} counts(c)^{lpha}}$
- Add-k smoothing

	choripan	vino	chimichurri	en
choripan	30+k	10+k	10+k	30+k
vino	10+k	45+k	5+k	50+k
chimichurri	10+k	5+k	20+k	10+k
en	30+k	50+k	10+k	500+k

PPMI
$$(w,c) = \max\left(0,\log\left(rac{P(w,c)}{P(w)\cdot P(c)}
ight)
ight)$$

- Filtrar f_{ii} <k
- Aumentar P(c), Levy et al. (2015) $P_{lpha}(c) = rac{count(c)^{lpha}}{\sum_{counts(c)^{lpha}}}$

$$P_{lpha}(c) = rac{\sum_{c} counts(c)^{lpha}}{\sum_{c} counts(c)^{lpha}}$$

- Add-k smoothing
- Normalized-PMI, Bouma (2009)

NPMI
$$(w,c) = rac{\log\left(rac{P(w,c)}{P(w) \cdot P(c)}
ight)}{-\log(P(w,c))}$$

	choripan	vino	chimichurri	en
choripan	30+k	10+k	10+k	30+k
vino	10+k	45+k	5+k	50+k
chimichurri	10+k	5+k	20+k	10+k
en	30+k	50+k	10+k	500+k

Levy et al (2015) Improving distributional similarity with lessons learned from word-embeddings Jurafsky and Martin (2017) Speech and Language Processing, 3rd editions Bouma (2009) Normalized Pointwise Mutual Information in Collocation Extraction

Aplicaciones: Collocations (expresiones)

Tokenización:

- "Las tardecitas de Buenos Aires tiene ese qué sé yo, viste?
- "Spinetta era de villa urquiza"

Aplicaciones: Collocations (expresiones)

Tokenización:

- "Las tardecitas de Buenos Aires tiene ese qué sé yo, viste?
- "Spinetta era de villa urquiza"

Más ejemplos:

- martin fierro
- salud mental
- ping pong
- susana gimenez

Identificación de collocations

Opciones:

- Usar listas de collocation
- Buscar bigramas en un corpus con un alto PPMI

Choripan. The Argentine choripán consists of a sausage made out of beef and pork, hot off the grill, split down the middle, and served on a roll. The chorizo may be used whole or cut in half lengthwise, in which case it is called a mariposa (butterfly). It is customary to add sauces on the bread, most likely chimichurri.

Otras opciones:

- Implementación de Gensim: NPMI
- Implementación de NLTK: PMI

Choripan. The Argentine choripán consists of a sausage made out of beef and pork, hot off the grill, split down the middle, and served on a roll. The chorizo may be used whole or cut in half lengthwise, in which case it is called a mariposa (butterfly). It is customary to add sauces on the bread, most likely chimichurri.

Observatorio del cine

"Brilliance = males" stereotype

A) Story about a really really smart person

B) Story about a really really **nice** person

Bian et al. (2017) Gender stereotypes about intellectual ability emerge early and influence children's interests

Cuales son las fuentes de estereotipos?

Hipótesis:

- Tratamiento diferencial de padres y maestras/os
- Falta de roles modelos
- Exposición a productos culturales que refuerzan el estereotipo

"Brilliance = males" stereotype in films subtitles

Análisis

"Brilliance" related words:

ingenious, genius, ingeniousness, ingeniously, bright, brightness, brightly, brilliant, brilliance, brilliantly, clever, cleverness, cleverly, intelligent, intelligence, intelligently.

Pronombres femeninos:

she, hers, her, herself.

Pronombres masculinos:

he, his, he, himself.

Quantifying "brilliance=male" stereotype in films

$$PMI(w,c) = log\left(\frac{p(w,c)}{p(w)p(c)}\right)$$

w = pronombres
c = "brilliance" related words

Quantifying "brilliance=male" stereotype in films

$$PMI(w,c) = log\left(\frac{p(w,c)}{p(w)p(c)}\right)$$

w = pronombres
c = "brilliance" related words

- Asociación sintagmática: 1st order co-occurrences
- > Facil interpretacion

Quantifying "brilliance=male" stereotype in films

$$PMI(w,c) = log\left(\frac{p(w,c)}{p(w)p(c)}\right)$$

Asociación sintagmática: 1st order co-occurrences

w = pronombres
c = "brilliance" related words

> Facil interpretacion

Gender bias brilliance-male association brilliance-female association
$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \\ \Delta PMI \ = \ PMI(w_m,c) - PMI(w_f,c)$$

Sliding time-window to compute co-occurrence

SubRip File

The process is repeated for every word in every subtitle under analysis.

Unifico filas y columnas de pronombres y estereotipos

- Female pronouns = {she, hers, her, herself }
- ➤ Male pronouns = {he, his, him, himself }

	he	dancer	pilot	 table
she	100	40	15	 50
he	200	10	300	 50
•••				 •••
bus	40	5	25	 5
cup	20	9	5	 45

	he	dancer	estereo	 table
F pron	200	125	50	 80
M pron	400	30	500	 90
		•••		
bus	40	5	1	 5
cup	20	9	2	 45

"brilliance = male" stereotype

$$\Delta PMI = log\left(\frac{p(c|w_m)}{p(c|w_f)}\right) = 0.33$$

$$\frac{p(c|w_m)}{p(c|w_f)} = 1.26$$

Test de significancia

Ejemplo: Odd ratio

Contingency table

	c	not c	total
w_f	c_f	nc_f	c_f + nc_f
w_m	c_m	nc_m	c_m + nc_m

"brilliance = male" stereotype

$$\Delta PMI = log\left(\frac{p(c|w_m)}{p(c|w_f)}\right) = 0.33$$

$$\frac{p(c|w_m)}{p(c|w_f)} = 1.26$$

$$\Delta PMI = 0.4
\frac{p(c|w_m)}{p(c|w_f)} = 1.32$$

"brilliance = male" stereotype

Roles estereotipados

- Feminine stereotyping roles dancer, decorator, designer, dietician, florist, homemaker, housekeeper, model, nanny, typist...
- Masculine stereotyping roles engineer, programmer, physicist, architect, detective, pilot, firefighter, inventor, mechanic, officer...
- non-stereotyping roles assistant, cashier, editor, poet, reporter, worker, doctor, lawyer, servant...

Stereotyping roles

Frecuencias:

Gálvez R., Tiffemberg V. and Altszyler E. (2018) Half a century of stereotyping associations between gender and intellectual ability in films53

cuándo hacerlo y cómo sentirse al respecto.

Son las películas las que realmente han estado

moviendo todo en Estados Unidos desde que fueron

inventadas. Te muestran qué hacer, cómo hacerlo,

Andy Warhol