POLARIS PROJECT

IDALab, Gachon University

PART 0 CONTENTS

POLARIS Project

Social Media Contents based Sentiment Analysis and Prediction System (Polaris)

SoYeop Yoo, Jeln Song, and OkRan Jeong

Social Media Contents based Sentiment Analysis and Prediction System

1 Motivation

Social Media Contents based Sentiment Analysis and Prediction System

1 Motivation

> Polaris: Social media contents based sentiment analysis and prediction system

Efficiency on cost

Use AsterixDB to handle social media contents efficiently

Sentimental path

Enable a user can obtain insight at a glance by analyzing trajectory and sentiment together

Deep learning on sentimental pathUse recent deep learning techniques
(CNN and LSTM)

PART 2 POLARIS

Social Media Contents based Sentiment Analysis and Prediction System

1 Polaris

- > Polaris is the name of our proposed system
- > It is a novel system for analyzing and predicting users' sentimental trajectories for events and showing the results

PART 2 POLARIS

Social Media Contents based Sentiment Analysis and Prediction System

1 Polaris

> Overall Structure

Social Media Contents based Sentiment Analysis and Prediction System

2 Event Detection and Trajectory Analysis

- > Event detection
 - Use social media contents as a sensor of event detection
 - Seed words are used for event detection;{ crime, disaster, accident }

PART 2 POLARIS

Social Media Contents based Sentiment Analysis and Prediction System

2 Event Detection and Trajectory Analysis

- > Detect event based on 'Crime, Disaster, Accident' events
 - Seed words: { crime, disaster, accident }
 - "TEDAS: a Twitter based Event Detection and Analysis System" (Li, Rui, et al. 2012)
- > Make event-word-set using word2vec model
- > Then, weight on some features
 - Has number? (ex. 5 people died)
 - Has time? (ex. 14:30 am)
 - Has @ or #?

Social Media Contents based Sentiment Analysis and Prediction System

2 Event Detection and Trajectory Analysis

- > Trajectory analysis
 - Event trajectories are the results of analysis of the paths which events are propagated through the analysis of the time and area where certain events are occurred

PART 2 POLARIS

Social Media Contents based Sentiment Analysis and Prediction System

2 Sentiment Analysis

- > Sentiment analysis
 - We use machine learning to analyze the sentiment of users for the events occurred
 - The sentiment classification model is trained using the CNN (Convolutional Neural Networks) for sentence classification (Kim, 2014)
- > Training CNN
 - Training set: 700,000 positive, 700,000 negative
 - Data source: Sentiment140

PART 2 POLARIS

Social Media Contents based Sentiment Analysis and Prediction System

3 Sentiment Prediction

- > Sentiment prediction
 - The concept of time window is used for sentimental path prediction
 - We set the window size to 7 days

We predict users' sentiment based on LSTM (Long <u>Shor</u>t-Term Memory)

Social Media Contents based Sentiment Analysis and Prediction System

1 Implementation Environment and Data Set

- > Environment
 - Ubuntu 14.04
 - Intel Xeon CPU E5-2620 v3 (X 2)
 - 500GB SSD
 - 32G memory
 - GTX970 GPU
- > Data set
 - US tweet data
 - → 40 million tweets
 - → 04/01/2016 ~ 04/30/2016
 - Sentiment 140
 - → 800,000 positive data
 - → 800,000 negative data

Social Media Contents based Sentiment Analysis and Prediction System

2 Implementation

> Event detection result

Social Media Contents based Sentiment Analysis and Prediction System

2 Implementation

> Sentimental path analysis result for 'snow'

Social Media Contents based Sentiment Analysis and Prediction System

2 Implementation

> Sentimental path analysis result for 'tornado'

Social Media Contents based Sentiment Analysis and Prediction System

3 Experiments

- > Experiment on sentiment analysis
 - Accuracy according to vocabulary size

Vocabulary Size	Epoch 1	Epoch 2	Epoch 3	Epoch 4	Epoch 5
20000	0.8050	0.8318	0.7611	0.7802	0.7489
30000	0.7818	0.8311	0.7921	0.7695	0.7667
40000	0.8173	0.8456	0.8012	0.7937	0.7875
50000	0.8095	0.8329	0.7808	0.7746	0.7699
60000	0.7886	0.8329	0.7749	0.7842	0.7743

Comparison result of sentiment analysis model with other machine learning methods

Model	Naïve-Bayes	SVM	Random Forest	Proposed Model
Precision	0.76	0.77	0.76	0.839
Recall	0.76	0.77	0.76	0.845
F-1 Score	0.75	0.77	0.76	0.841

Social Media Contents based Sentiment Analysis and Prediction System

3 Experiments

- > Experiment on sentiment prediction
 - Left side: training data
 - Right side: test data
 - Blue line: answer of positive
 - Green line: prediction of positive
 - Orange line: answer of negative
 - Red line: prediction of negative

PART 4 CONCLUSION

Social Media Contents based Sentiment Analysis and Prediction System

1 Conclusion

- > We propose a system to analyze social media contents in real time
- > We use AsterixDB to efficiently manage the social media contents
- > We propose and implement Polaris that finds events in real time to analyze and predict users' sentimental paths

2 Usage

- Polaris can be utilized for disaster notice service for earthquakes and tsunamis or real time traffic accident informing service
- > It also can be applied to social events too, it can be used for diverse marketing programs

SoYeop Yoo, and OkRan Jeong

"Automating the Expansion of a Knowledge Graph," Expert Systems with Applications, Vol. 141, 2020.

PolarisX: Automating the Expansion of a Knowledge Graph

1 Introduction

- > Object of research
 - Expand the knowledge graph automatically not only to rapidly expand the knowledge base for any human language, but also to support neologisms
- > Limitations of the existing knowledge graphs
 - The existing knowledge base is rather limited in size and scope for most of the human languages
 - It is not able to support in timely manner neologisms that form a part of the human common sense
 - Example neologisms

Word	Past	Now
Apple	a kind of fruit	IT brand
Ford	a location where a stream is shallow	motor company
Gangnam style	lifestyle associated with the Gangnam district of Seoul	K-pop by PSY
Trump	playing card	the 45 th president of the United States
Google	company name	search for information on the Web

PolarisX: Automating the Expansion of a Knowledge Graph

1 Introduction

- > Our approaches
 - Three major components
 - → The social crawler to expand data resource
 - → The semantic analyzer to determine new relationships using the fine-tuned BERT
 - → The knowledge miner to build and extend the knowledge graph

PolarisX: Automating the Expansion of a Knowledge Graph

2 Motivation

Input: selfie

Existing Knowledge Graph-based System Finding 'selfie' in the existing knowledge graph

PolarisX-based System:

Auto-growing Knowledge Graph-based System

Finding 'selfie' in PolarisX(An Auto-growing Knowledge Graph)

{ selfie, *IsA*, self-portraits } { selfie, *RelatedTo*, travel }

PolarisX: Automating the Expansion of a Knowledge Graph

1 Knowledge Graph: ConceptNet

- > ConceptNet
 - A freely-available semantic network, designed to help computers understand the meanings of words that people use

> Problem of ConceptNet

Core Languages		Common Languages		
Language	Num. of Words	Language	Num. of Words	
English	1,803,873	Czech	129,183	
French	3,023,144	Filipino	17,620	
Italian	1,078,629	Korean	47,268	
Japanese	363,663	Slovak	29,768	
Chinese	242,746	Turkish	65,892	

PART 2 POLARISX

PolarisX: Automating the Expansion of a Knowledge Graph

2 Architecture

PolarisX: Automating the Expansion of a Knowledge Graph

3

Semantic Analyzer using the fine-tuned BERT model

PolarisX: Automating the Expansion of a Knowledge Graph

4

Expanding the ConceptNet Knowledge Graph using PolarisX

PART 3 **EXPERIMENTS**

PolarisX: Automating the Expansion of a Knowledge Graph

1 Experiment Result

- > Experiment on extension of knowledge graph
 - Using data
 - → Tweets: 2.5 million (2018/08/08 ~ 2018/08/14)
 - → News: 35,000
 - Comparison result of with the existing knowledge graphs

Knowledge Graphs	# of Relations	# of Edges
DBpedia (English)	2,813	176,043,129
YAGO	77	25,946,870
NELL	425	432,845
OpenCyc	18,526	2,413,894
Probase	1	20,757,545
PolarisX (+ ConceptNet)	40	32,871,573

PART 3 **EXPERIMENTS**

PolarisX: Automating the Expansion of a Knowledge Graph

1 Experiment Result

- > Experiment on accuracy of semantic analyzer
 - TACRED data
 - We use 'BERT-Base, Multilingual Cased' model
 - Environment: Google colab TPU
 - Comparison result on TACRED dataset

Models	Precision	Recall	F1 score
Logistic Regression (Y. Zhang, Qi, and Manning 2018)	73.5	49.9	59.4
PA-LSTM (Y. Zhang et al. 2017)	65.7	64.5	65.1
C-GCN+PA-LSTM (Y. Zhang, Qi, and Manning 2018)	71.3	65.4	68.2
BERT-based model (our model)	79.1	72.6	75.7

PolarisX-Bot

SoYeop Yoo, and OkRan Jeong

PolarisX-Bot

1 Introduction

- > PolarisX-bot
 - An automatic extended knowledge graph-based intelligent chatbot
- > Major layers
 - Knowledge graph layer
 - → Auto-growing knowledge graph using BERT (PolarisX)
 - Chatbot layer
 - → Google DialogFlow

PART 2 POLARISX-BOT

PolarisX-Bot

1 Overall Structure

PolarisX-Bot

1 Dataset

Data	Size	Collection method
Twitter	About 15 million tweets	FeedAdapter(AsterixDB)
News	About 102,000 articles	News API
TACRED	About 106,000 sentences	Linguistic Data Consortium

2 Experiment

> Result on BERT-based relation extraction model

BERT model	Dataset	Evaluation set	Accuracy	Loss
bert_cased_L-12_H-768_A-12	TACRED	dev set	0.7528	1.2011
		test set	0.7885	1.1412

PolarisX-Bot

3 Implementation

SoYeop Yoo, DaeHo Kim, SungMin Yang and OkRan Jeong

Polaris Project for Disease Detection

1 Overall Structure

PART 2 POLARIS FOR DISEASE DETECTION

Polaris Project for Disease Detection

1 Real-time Disease Detection

- > 15 diseases
 - coronary artery disease (CAD), stroke, flu, pneumonia, bronchitis, diabetes mellitus,
 Alzheimer's, tuberculosis, cirrhosis, cancer, AIDS, malaria, depressive disorder, measles,
 MERS
 - (ref) ICD-11 from WHO, https://list25.com/25-deadliest-diseases-in-human-history/
- > Real-time detection
 - Apache Kafka
 - Apache AsterixDB
 - → Feed Adapter to crawl Twitter streaming data
 - → UDF (User Defined Function) to detect diseases

PART 2 POLARIS FOR DISEASE DETECTION

Polaris Project for Disease Detection

2 Disease History

- > History
 - Save the detected tweets into history
 - Get results of the specific time

PART 2 POLARIS FOR DISEASE DETECTION

Polaris Project for Disease Detection

3 Disease Analysis

- > Semantic analysis
 - Analysis opinions using semantic (PolarisX)

Future Work for POLARIS Project

SoYeop Yoo, DaeHo Kim, SungMin Yang, and OkRan Jeong

PART 1 FUTURE WORK

Future Work for POLARIS Project

1 Polaris & PolarisX

- > PolarisX as an open source knowledge graph
- > Improve opinion mining using machine learning and PolarisX

PART 1 FUTURE WORK

Future Work for POLARIS Project

2 Conversational Al Framework

> Based on PolarisX

