

# MATHEMATICAL PROGRAMMING CO3

**NON-LINEAR PROGRAMMING: QUADRATIC PROGRAMS** 

DR. VUDA SREENIVASA RAO











### LINEAR PROGRAMMING

VERSUS

#### NONLINEAR PROGRAMMING

LINEAR PROGRAMMING

NONLINEAR PROGRAMMING

A method to achieve the best outcome in a mathematical model whose requirements are represented by linear relationships

A process of solving an optimization problem where the constraints or the objective functions are nonlinear

Helps to find the best solution to a problem using constraints that are linear Helps to find the best solution to a problem using constraints that are nonlinear

Visit www.PEDIAA.com









## **NLPP**

## Mon Linear Programming Problem (NLPP)

An optimisation problem in which objective function z or some/all constraints are non linear [Higher power of x, x2 tar than one ] is called NLPP.

Types: i) with no constraints

- 11) with Equality Constraints -> Lagrange's method
- 11) with inequality constraints. -> Kuhn-Tucker conditions.









## Types of Nonlinear Programming problems

Unconstrained optimization

min or max  $f(x_1,...,x_n)$ 

No functional constraints.

- Linearly constrained optimization
  - Objective function nonlinear
  - Functional constraints linear

Extensions of simplex method can be applied.

Quadratic programming

Special case of linearly constrained optimization when the objective function is quadratic.













## **Quadratic Programming**

The quadratic programming problem differs from the linear programming problem only in that the objective function also includes  $x_i^2$  and  $x_j^2$   $x_i x_j$   $(i \neq j)$  terms.

The matrix form of a quadratic programming problem is

Maximize 
$$f(\mathbf{x}) = \mathbf{c}\mathbf{x} - \frac{1}{2}\mathbf{x}^T\mathbf{Q}\mathbf{x}$$
, subject to  $\mathbf{A}\mathbf{x} \leq \mathbf{b}$  and  $\mathbf{x} \geq \mathbf{0}$ ,

where **c** is a row vector, **x** and **b** are column vectors, **Q** and **A** are matrices, and the superscript T denotes the transpose (see Appendix 4). The  $q_{ij}$  (elements of Q) are given constants such that  $q_{ij} = q_{ji}$ , say, **Q** is a symmetrical matrix.

The algebraic form of the objective function of this quadratic programming problem is

$$f(\mathbf{x}) = \mathbf{c}\mathbf{x} - \frac{1}{2}\mathbf{x}^T\mathbf{Q}\mathbf{x} = \sum_{j=1}^n c_j x_j - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n q_{ij} x_i x_j.$$

If i = j in this double summation, then  $x_i x_j = x_j^2$ .











### **Example:**

To illustrate the notation, consider the following example of a quadratic programming problem.

Maximize 
$$f(x_1, x_2) = 15x_1 + 30x_2 + 4x_1x_2 - 2x_1^2 - 4x_2^2$$
, subject to  $x_1 + 2x_2 \le 30$   $x_1 \ge 0$ ,  $x_2 \ge 0$ .

Maximize  $f(\mathbf{x}) = \mathbf{c}\mathbf{x} - \frac{1}{2}\mathbf{x}^T\mathbf{Q}\mathbf{x}$ , subject to  $\mathbf{A}\mathbf{x} \leq \mathbf{b}$  and  $\mathbf{x} \geq \mathbf{0}$ ,

In this case,  $f(x_1, x_2)$  can be rewritten as

$$f(x_1, x_2) = 15x_1 + 30x_2 - \frac{1}{2}(4x_1^2 - 4x_2x_1 - 4x_1x_2 + 8x_2^2)$$

$$\mathbf{c} = \begin{bmatrix} 15 & 30 \end{bmatrix}, \ \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \ \mathbf{Q} = \begin{bmatrix} 4 & -4 \\ -4 & 8 \end{bmatrix}, \ \mathbf{A} = \begin{bmatrix} 1 & 2 \end{bmatrix}, \ \mathbf{b} = \begin{bmatrix} 30 \end{bmatrix}.$$
Note that  $\mathbf{x}^T \mathbf{Q} \mathbf{x} = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 4 & -4 \\ -4 & 8 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ 

$$= \begin{bmatrix} (4x_1 - 4x_2) & (-4x_1 + 8x_2) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$= 4x_1^2 - 4x_2x_1 - 4x_1x_2 + 8x_2^2$$
  
=  $q_{11}x_1^2 + q_{21}x_2x_1 + q_{12}x_1x_2 + q_{22}x_2^2$ .









## **EXAMPLE**

- $\Rightarrow$  Let objective function  $f(x) = 3x_1^2 + 4x_2^2 + 2x_1x_2 2x_1 3x_2$
- ⇒ Constraint:
  - $3x_1 + 2x_2 < 6$
  - $x_1 + x_2 < 2$
  - $x_1, x_2 \ge 0$
- ⇒ Problem representation

$$min\{f(x)\} = [x_1 \ x_2] \begin{bmatrix} 3 & 1 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + [-2 & -3] \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$\begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \le \begin{bmatrix} 6 \\ 2 \end{bmatrix}$$

$$\Rightarrow x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, Q = \begin{bmatrix} 3 & 1 \\ 1 & 4 \end{bmatrix}, b = \begin{bmatrix} 6 \\ 2 \end{bmatrix}, A = \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix}, c = \begin{bmatrix} -2 \\ -3 \end{bmatrix}$$











## Positive semi-definite and symmetric

$$\Rightarrow Q = \begin{bmatrix} 3 & 1 \\ 1 & 4 \end{bmatrix} \rightarrow [q_{ij}]_{2\times 2}$$
, if  $q_{ij} = q_{ji} \rightarrow \mathsf{Symmetric}$ 

 $\Rightarrow$  If  $det|Q| \ge 0 \rightarrow$  Positive semi-definite

## Solution by graphical method:

- $\Rightarrow$  Let objective function  $f(x) = (x_1 2)^2 + (x_2 1)^2$
- ⇒ Constraint:
  - $x_1 + x_2 \leq 2$
  - $x_1, x_2 \geq 0$











## **QUADRATIC PROGRAMMING**

- An NLP problem with non-linear objective function and linear constraints. Such an NLP problem is called quadratic programming problem.
- The general mathematical model of quadratic programming problem is as follows:

Optimize (Max or Min) 
$$Z = \left\{ \sum_{j=1}^{n} c_j x_j + \frac{1}{2} \sum_{j=1}^{n} \sum_{k=1}^{n} x_j d_{jk} x_k \right\}$$
 subject to the constraints 
$$\sum_{j=1}^{n} a_{ij} x_j \leq b_i$$
 and 
$$x_j \geq 0 \text{ for all } i \text{ and } j$$











## CONT...

In matrix notations, QP problem is written as:

Optimize (Max or Min) 
$$Z = \mathbf{cx} + \frac{1}{2}\mathbf{x}^T \mathbf{Dx}$$
  
subject to the constraints
$$\mathbf{Ax} \le \mathbf{b}$$
and
$$\mathbf{x} \ge 0$$
where
$$\mathbf{x} = (x_1, x_2, \dots, x_n)^T; \quad \mathbf{c} = (c_1, c_2, \dots, c_n); \quad \mathbf{b} = (b_1, b_2, \dots, b_m)^T$$

$$\mathbf{D} = [d_{jk}] \text{ is an } n \times n \text{ symmetric matrix, i.e. } d_{jk} = d_{kj}; \quad \mathbf{A} = [a_{ij}] \text{ is an } m \times n \text{ matrix}$$

10









## CONT...

- 1. If the objective function in QP problem is of minimization, then matrix D is symmetric and positive definite.
- 2. if the objective function is of maximization, then matrix D is symmetric and negative-definite.
- 3. If matrix D is null, then the QP problem reduces to the standard LP problem.









## CONT...

- 1. Non-Linear Programming:
  - Quadratic programs Constrained quadratic programming problems,
    - Beale's method,
    - Wolfe method,
    - Karush-Kuhn Tucker (KKT) Conditions.











1. The necessary and sufficient Kuhn-Tucker conditions to get an optimal solution to the maximization QP problem subject to linear constraints.











## For ONE inequality Constraint:

## **Kuhn-Tucker Conditions**

If, f - objective function; g - constaint;  $\lambda$  - Lagrangian Multiplier

14

Let, 
$$K = f - \lambda \cdot g$$

Find  $x_1, x_2$  and  $\lambda$  by solving the equations,

$$\frac{\partial K}{\partial x_1} = 0, \qquad \frac{\partial K}{\partial x_2} = 0, \qquad \frac{\partial K}{\partial \lambda} = 0$$









#### Kuhn-Tucker conditions are:

1. 
$$K_{x_1} = f_{x_1} - \lambda \cdot g_{x_1} = 0$$

2. 
$$K_{x_2} = f_{x_2} - \lambda \cdot g_{x_2} = 0$$

3. 
$$\lambda \cdot g = 0$$

4. 
$$g \leq 0$$

5. 
$$\lambda \geq 0$$
 (if Z is max)

6. 
$$x_1, x_2 \ge 0$$

In equation (3), either  $\lambda = 0$  or g = 0.

#### NOTE:

For, Maximize: consider  $\lambda \geq 0$ 

For, Minimize: consider  $\lambda \leq 0$ 



From solving these different cases, & verify whether all above conditions are satisfied.





Solve the following NLPP using the Kuhn-Tucker method:

Maximize: 
$$z = 2x_1^2 - 7x_2^2 + 12x_1x_2 \leftarrow f$$
  
sub. to,  $2x_1 + 5x_2 \leq 98 \leftarrow g$   
 $x_1, x_2 \geq 0$   $g = 2n_1 + 5x_2 - 48$ 

Let, 
$$K = f - \lambda \cdot g = 2x_1^2 - 7x_2^2 + 12x_1x_2 - \lambda(2x_1 + 5x_2 - 98)$$

$$\frac{\partial K}{\partial x_1} = 4x_1 + 12x_2 - 2\lambda = 0 \Rightarrow 2x_1 + 6x_2 - \lambda = 0 \dots \dots (1)$$

$$\frac{\partial K}{\partial x_2} = -14x_2 + 12x_1 - 5\lambda = 0 \Rightarrow 12x_1 - 14x_2 - 5\lambda = 0 \dots (2) \Rightarrow 2. \quad K_{x_2} = f_{x_2} - \lambda \cdot g_{x_2} = 0$$

$$\lambda \cdot g = \lambda \cdot (2x_1 + 5x_2 - 98) = 0 \dots (3)$$

$$g \le 0 \Rightarrow (2x_1 + 5x_2 - 98) \le 0 \dots (4)$$

$$\lambda \geq 0 \dots (5)$$

$$x_1, x_2 \geq 0 \dots (6)$$

Now,  $\lambda \cdot g = \lambda \cdot (2x_1 + 5x_2 - 98) = 0$ 

**№r ONE inequality Constraint:** 

$$f$$
 – objective function;

$$g-constaint;$$

$$\lambda - Lagrangian Multiplier$$

Let, 
$$K = f - \lambda \cdot g$$

 $nd x_1, x_2$  and  $\lambda$  by solving the equations,

$$\frac{\partial K}{\partial x_1} = 0, \frac{\partial K}{\partial x_2} = 0, \frac{\partial K}{\partial \lambda} = 0$$

Kuhn-Tucker conditions are:

$$\rightarrow 1. \quad K_{x_1} = f_{x_1} - \lambda \cdot g_{x_1} = 0$$

2. 
$$K_{x_2} = f_{x_2} - \lambda \cdot g_{x_2} = 0$$

3. 
$$\lambda \cdot g = 0$$

• 4. 
$$g \leq 0$$

5. 
$$\lambda \geq 0$$
 (if Z is max)

6. 
$$x_1, x_2 \geq 0$$

► In equation (3), either  $\lambda = 0$  or g = 0.

From solving these different cases, & verify whether all above conditions are satisfied

Now,  $\lambda \cdot g = \lambda \cdot (2x_1 + 5x_2 - 98) = 0$ 

Case 1:

If 
$$\lambda = 0$$
,

$$2x_1 + 6x_2 - \lambda = 0 \dots (1)$$

$$12x_1 - 14x_2 - 5\lambda = 0 \dots (2)$$

$$x_1 + 3x_2 = 0$$

$$6x_1 - 7x_2 = 0$$

$$\Rightarrow x_1 = x_2 = 0$$

$$Z = 2x_1^2 - 7x_2^2 + 12x_1x_2$$

$$Z = 0$$

Hence, this case, does not created feasible solutio

Therefore, assumption of  $\lambda = 0$  is not correct.

Therefore, we need to REJECT, these values at  $\lambda$ 

Case 2:

$$If \ 2x_1 + 5x_2 - 98 = 0,$$

$$10x_1 + 30x_2 - 5\lambda = 0$$

$$12x_1 - 14x_2 - 5\lambda = 0$$

$$-2x_1 + 44x_2 = 0 4 2 1 + 512 = 98$$

$$x_1 = 44 \text{ and } x_2 = 2$$

$$2(44) + 6(2) - \lambda = 0 \Rightarrow \lambda = 100 \ge 0$$

These, values satisfies all the necessary conditions

The optimal solution is:

 $\rightarrow x_1 = 44$ ,  $x_2 = 2$ 

$$Z_{max} = 2(44)^2 - 7(2)^2 + 12(44 \times 2) = 4900$$



### Solve the following NLPP using the Kuhn-Tucker method:

Minimize: 
$$z = x_1^3 - 4x_1 - 2x_2 \rightarrow 1$$
  
sub. to,  $x_1 + x_2 \le 1 \rightarrow 3$   
 $x_1, x_2 \ge 0$ 

Let, 
$$K = f - \lambda \cdot g = x_1^3 - 4x_1 - 2x_2 - \lambda(x_1 + x_2 - 1)$$

$$\frac{\partial K}{\partial x_1} = 3x_1^2 - 4 - \lambda = 0 \dots (1)$$

$$\frac{\partial K}{\partial x_2} = -2 - \lambda = 0 \Rightarrow \lambda = -2 \dots (2)$$

$$\lambda \cdot g = \lambda \cdot (x_1 + x_2 - 1) = 0 \dots (3)$$

$$g \le 0 \Rightarrow (x_1 + x_2 - 1) \le 0 \Rightarrow x_1 + x_2 \le 1 \dots (4)$$

$$\lambda \leq 0 \dots (5)$$

$$x_1, x_2 \geq 0 \dots (6)$$

Now, 
$$\lambda \cdot g = \lambda \cdot (x_1 + x_2 - 1) = 0$$

#### For ONE inequality Constraint:

$$f$$
 – objective function;

$$g-constaint;$$

Let, 
$$K = f - \lambda \cdot g$$

Find  $x_1, x_2$  and  $\lambda$  by solving the equations,

$$\frac{\partial K}{\partial x_1} = 0, \frac{\partial K}{\partial x_2} = 0, \frac{\partial K}{\partial \lambda} = 0$$

#### Kuhn-Tucker conditions are:

$$-1. K_{x_1} = f_{x_1} - \lambda \cdot g_{x_1} = 0$$

$$72. K_{x_2} = f_{x_2} - \lambda \cdot g_{x_2} = 0$$

$$\rightarrow$$
 3.  $\lambda \cdot g = 0$ 

$$\rightarrow$$
 4.  $g \leq 0$ 

5. 
$$\lambda \leq 0$$
 (if Z is min)

6. 
$$x_1, x_2 \ge 0$$

In equation (3), either  $\lambda = 0$  or g = 0.

From solving these different cases, & verify whether all above conditions are satisfied





These, values satisfies all the necessary conditions

The optimal solution is:

$$Z_{min} = x_1^3 - 4x_1 - 2x_2 = (0.8165)^3 - 4(0.8165) - 2(1 - 0.8165) = -3.0887$$







