

planetmath.org

Math for the people, by the people.

proof of partial order with chain condition does not collapse cardinals

 ${\bf Canonical\ name} \quad {\bf ProofOfPartialOrderWithChainConditionDoesNotCollapseCardinals}$

Date of creation 2013-03-22 12:53:43 Last modified on 2013-03-22 12:53:43

Owner Henry (455) Last modified by Henry (455)

Numerical id 4

Author Henry (455)

Entry type Proof

Classification msc 03E35

Outline:

Given any function f purporting to violate the theorem by being surjective (or cofinal) on λ , we show that there are fewer than κ possible values of $f(\alpha)$, and therefore only $\max(\alpha, \kappa)$ possible elements in the entire range of f, so f is not surjective (or cofinal).

Details:

Suppose $\lambda > \kappa$ is a cardinal of \mathfrak{M} that is not a cardinal in $\mathfrak{M}[G]$.

There is some function $f \in \mathfrak{M}[G]$ and some cardinal $\alpha < \lambda$ such that $f: \alpha \to \lambda$ is surjective. This has a name, \hat{f} . For each $\beta < \alpha$, consider

$$F_{\beta} = \{ \gamma < \lambda \mid p \Vdash \hat{f}(\beta) = \gamma \} \text{ for some } p \in P$$

 $|F_{\beta}| < \kappa$, since any two $p \in P$ which force different values for $\hat{f}(\beta)$ are incompatible and P has no sets of incompatible elements of size κ .

Notice that F_{β} is definable in \mathfrak{M} . Then the range of f must be contained in $F = \bigcup_{i < \alpha} F_i$. But $|F| \le \alpha \cdot \kappa = \max(\alpha, \kappa) < \lambda$. So f cannot possibly be surjective, and therefore λ is not collapsed.

Now suppose that for some $\alpha \geq \lambda > \kappa$, $cf(\alpha) = \lambda$ in \mathfrak{M} and for some $\eta < \lambda$ there is a cofinal function $f : \eta \to \alpha$.

We can construct F_{β} as above, and again the range of f is contained in $F = \bigcup_{i < \eta} F_i$. But then $|\operatorname{range}(f)| \le |F| \le \eta \cdot \kappa < \lambda$. So there is some $\gamma < \alpha$ such that $f(\beta) < \gamma$ for any $\beta < \eta$, and therefore f is not cofinal in α .