MATH 135 - Algebra for Honours Mathematics

Winter 2014

Contents

1	Inje	ctions and Bijections	2
	1.1	Injective(One-to-One)	2
		1.1.1 Definition	2
		1.1.2 Simple Example	2
		1.1.3 Hard Example	2
		1.1.4 Frequently Asked Questions	2
	1.2	Surjective	3
		1.2.1 Definition	3
	1.3	Bijections	3
		1.3.1 Definition	3
		1.3.2 Simple Example	3
	1.4	Summary	3
2	Cou	inting	4
	2.1	Bijection and Cardinality	4
			4
			4
	2.2	Finite Sets	4
		2.2.1 Definitions	4
			4
		2.2.3 Example	5
	2.3	Infinite Sets	5
			5
		232 Evample	S

Chapter 1

Injective, Surjective and Bijections

1.1 Injective(One-to-One)

1.1.1 Definition

Injective: Let S and T be two sets. A function $f: S \to T$ is **one-to-one**(or **injective**) iff for every $x_1 \in S$, $f(x_1) = f(x_2)$ implies that $x_1 = x_2$ and $|S| \leq |T|$. When trying to prove that a function is one-to-one, start off with $f(x_1) = f(x_2)$ and try to use algebraic manipulation to obtain $x_1 = x_2$.

1.1.2 Simple Example

Proposition: Let $m \neq 0$ and b be fixed real numbers. The function $f: \Re \to \Re$ defined by f(x) = mx + b is one to one

Proof: Let $x_1, x_2 \in S$. Suppose that $f(x_1) = f(x_2)$. Now we show that $x_1 = x_2$. Since $f(x_1) = f(x_2)$, $mx_1 + b = mx_2 + b$. Subtracting b from both sides and dividing by m gives $x_1 = x_2$ as required.

1.1.3 Hard Example

Proposition: Let $f: T \to U$ and $g: S \to T$ be one-to-one functions. Then $f \circ g$ is a one-to-one function.

Proof: Let $x_1, x_2 \in S$. Suppose that $(f \circ g)(x_1) = (f \circ g)(x_2)$. Since $(f \circ g)(x_1) = (f \circ g)(x_2)$, we know that $f(g(x_1)) = f(g(x_2))$. Since f is one-to-one, we know that $g(x_1) = g(x_2)$. And since g is one-to-one, $x_1 = x_2$ as required.

1.2 Surjective

1.2.1 Definition

Surjective: A function $f: S \to T$ is **surjective**(or **onto**) if and only if for every $y \in T$ there exists an $x \in S$ so that f(x) = y. This implies that $|S| \ge |T|$.

When trying to prove that a function is onto, try to find a function g(x) such that f(g(x)) = y to prove that each y in the codomain is mapped to.

1.3 Bijections

1.3.1 Definition

Bijection: A function $f: S \to T$ is **bijective** iff f is both surjective and injective.

1.3.2 Simple Example

We have already shown that for $m \neq 0$ and b a fixed real number, the function $f: \Re \to \Re$ defined by f(x) = mx + b is both surjective and injective. Hence, f is bijective.

1.4 Summary

- $f: S \to T$ is a function iff $\forall s \in S \exists ! t \in T, f(s) = t$ where ! means unique
- $f: S \to T$ is surjective iff $\forall t \in T \exists s \in S, f(s) = t$, meaning for each element $t \in T$, there is at least one element $s \in S$ so that f(s) = t
- $f: S \to T$ is injective iff $\forall x_1 \in S \forall x_2 \in S, f(x_1) = f(x_2) \Rightarrow x_1 = x_2$ or $x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$, meaning for each element $t \in T$, there is at most one element $s \in S$ so that f(s) = t

1.4.1 Frequently Asked Questions

Questions to be added

Chapter 2

Counting

2.1 Bijection and Cardinality

2.1.1 Definition

Cardinality: If there exists a bijection between the sets S and T, we say that the sets have the same and we write |S| = |T|.

Number of Elements, Finite, Infinite: If there exists a bijection between a set S and \natural_n , we say that the **number of elements** in S is n and we write |S| = n. Moreover, we also say that S is a **finite set**. If no bijection exists between a set S and \natural_n for any n, we say that S is an **infinite set**.

Countable: A set S is countable if there exists an injective function f from S to the natural numbers \natural

2.1.2 Guidelines

Proposition: Let S = ... Let T = ... Then there exists a bijection $f: S \to T$. Hence, |S| = |T|.

To do this, we must prove that f is both surjective and injective.

Consider the function $f: S \to T$ defined by $f(s) = \dots$ We show that f is surjective. Let $t \in T$. Consider $s = \dots$ We show that $s \in S$ Now we show that f(s) = t.

We then show that f is injective. Let $s_1, s_2 \in S$ and suppose that $f(s_1) = f(s_2)$. Now we show that $s_1 = s_2$.

Hence, $f: S \to T$ is a bijection and |S| = |T|.

2.2 Finite Sets

2.2.1 Definitions

Disjoint: Set S and T are **disjoint** if $S \cap T = \emptyset$

2.2.2 Propositions

Cardinality of Intersecting Sets(CIS): If S and T are any finite sets, then $|S \cup T| = |S| + |T| - |S \cap T|$

Cardinality of Disjoint Sets(CDS): If S and T are disjoint finite sets, then $|S \cup T| = |S| + |T|$

2.2.3 Example

Proof of CDS:

- 1. Since S is a finite set, there exists a bijection $f: S \to \natural_m$ for some non negative integer m, and |S| = m
- 2. Since T is a finite set, there exists a bijection $f: T \to \natural_n$ for some non negative integer m, and |T| = n
- 3. Construct function $h: S \cup T \to \natural_{m+n}$ as follows: h(x) = f(x) if $x \in S$ else g(x) + m if $x \in T$
- 4. To show that h is surjective, let $y \in \natural_{m+n}$. If $y \leq m$, then because f is surjectivethere exists an element $x \in S$ so that f(x) = y, hence h(x) = y. If $m+1 \leq y \leq m+n$, then because g is surjective, there exists an element $x \in T$ so that g(x) = y m and so h(x) = (y m) + m = y.
- 5. To show that h is injective, let $x_1, x_2 \in S \cup T$ and suppose that $h(x_1) = h(x_2)$. If $h(x) \leq m$ then h(x) = f(x) so if $h(x_1) \leq m$ we have $h(x_1) = h(x_2) \Rightarrow f(x_1) = f(x_2)$

But since f is a bijection $f(x_1) = f(x_2)$ implies $x_1 = x_2$ as needed. If h(x) > m then h(x) = g(x) so if $h(x_1) > m$ we have

$$h(x_1) = h(x_2) \Rightarrow g(x_1) + m = g(x_2) + m \Rightarrow g(x_1) = g(x_2)$$

But since g is a bijectoin $g(x_2) = g(x_2)$ implies $x_1 = x_2$ as needed. Since h is a function which is both injective and surjective, h is bijective.

6. Thus

$$|S \cup T| = |\natural_{m+n}| = m + n = |\natural_m| + |\natural_n| = |S| + |T|$$

If it wasn't clear, f(x) is mapped to 1,2..m and g(x) + m is mapped to m + 1, m + 2,...m + n.

2.3 Infinite Sets

2.3.1 Propositions

Cardinality of Subsets of Finite Sets(CSFS): If S and T are finite sets, and $S \subset T$, then |S| < |T|

 $|\natural|=|2\natural|$: Let $2\natural$ be the set of positive even natural numbers. Then $|\natural|=|2\natural|$ $|\natural x \natural|=|\natural|$

Even-Odd Factorization of Natural Numbers (EOFNN): Any natural number n can be written uniquely as $n = 2^i q$ where i is a non-negative integer and q is an odd natural number. Note: use EOFNN to prove $|\xi x\xi| = |\xi|$. Note: Not all infinite sets have the same size

2.3.2 Example

Proof of $|\natural| = |2\natural|$

We want to prove that there's a bijection between both sets

- 1. Consider the function $f: \natural \to 2\natural$ defined by f(s) = 2s
- 2. We show that f is surjective. Let $t \in 2\natural$. Consider $s = \frac{1}{2}t$. We show that $s \in \natural$ since $f(\frac{1}{2}t) = t$ and therefore is surjective
- 3. We show that f is injective. Let $s_1, s_2 \in \natural$ and suppose that $f(s_1) = f(s_2)$. Now we show that $s_1 = s_2$. Since $f(s_1) = 2s_1$ and $f(s_2) = 2s_2$, $s_1 = s_2$.
- 4. Hence, $f: \natural \to 2\natural$ is a bijection and $|\natural| = |2\natural|$.