A Major Project Report

On

"Enhancing Medical Diagnosis Through Multimodal Medical Image Fusion"

Submitted in partial fulfillment of the

Requirements for the award of the degree of

Bachelor of Technology

In

Computer Science & Engineering –
Artificial Intelligence & Machine Learning

By

Kolli Meghana - 20R21A6625 Linga Bhargavi - 20R21A6628 C Sai Shreeya - 20R21A6611 Veeranki Tiruneswar - 20R21A6653

Under the guidance of **Dr. K. SAI PRASAD Associate Professor & HOD of AIML department**

Department of Computer Science & Engineering – Artificial Intelligence & Machine Learning

CERTIFICATE

This is to certify that the project entitled "Enhancing Medical Diagnosis Through Multimodal Medical Image Fusion" has been submitted by Kolli Meghana (20R21A6625), Linga Bhargavi (20R21A6628), C Sai Shreeya (20R21A6611), Veeranki Tiruneswar (20R21A6653) in partial fulfilment of the requirements for the award of degree of Bachelor of Technology in Computer Science & Engineering — Artificial Intelligence & Machine Learning from Jawaharlal Nehru Technological University, Hyderabad. The results embodied in this project have not been submitted to any other University or Institution for the award of any degree or diploma.

Internal Guide Head of the Department

Project coordinator External Examiner

DECLARATION

We hereby declare that the project entitled "Enhancing Medical Diagnosis Through Multimodal Medical Image Fusion" is the work done during the period from January 2024 to May 2024 and is submitted in partial fulfilment of the requirements for the award of degree of Bachelor of Technology in Computer Science & Engineering – Artificial Intelligence & Machine Learning from Jawaharlal Nehru Technology University, Hyderabad. The results embodied in this project have not been submitted to any other university or Institution for the award of any degree or diploma.

Kolli Meghana – 20R21A6625

Linga Bhargavi – 20R21A6628

C Sai Shreeya – 20R21A6611

Veeranki Tiruneswar – 20R21A6653

ACKNOWLEDGEMENT

The satisfaction and euphoria that accompany the successful completion of any task would be incomplete without the mention of people who made it possible, whose constant guidance and encouragement crowned our efforts with success. It is a pleasant aspect that we now have the opportunity to express our guidance for all of them.

First of all, we would like to express our deep gratitude towards our internal guide **Dr. K Sai Prasad,** Associate Professor and HOD, Dept. of CSE-AIML for his support in the completion of our dissertation. We wish to express our sincere thanks to principal **Dr. K. SRINIVAS RAO** for providing the facilities to complete the dissertation.

We would like to thank all our faculty and friends for their help and constructive criticism during the project period. Finally, we are very much indebted to our parents for their moral support and encouragement to achieve goals.

Kolli Meghana – 20R21A6625

Linga Bhargavi – 20R21A6628

C Sai Shreeya – 20R21A6611

Veeranki Tiruneswar – 20R21A6653

ABSTRACT

The diagnosis of patients and the effectiveness of treatment are significantly impacted by the timely and accurate detection of brain tumors. This application utilizes wavelet transform techniques to incorporate MRI (Magnetic Resonance Imaging) and CT (Computed Tomography) scan images from multimodal medical imaging. Procrustes analysis guarantees alignment in CT and MRI imaging techniques. The fused images offer a thorough understanding of both neuroanatomy and functionalities. The CNN (Convolutional Neural Network) analyses these combined images to detect and pinpoint tumors. The deep learning model utilizes merged images to enable quicker and more precise detection of tumors. After detecting them, it categorizes tumors as either glioma, meningioma, or pituitary tumor subtype. Precise identification of tumor sub-types aids in targeted treatment, decreases the chance of adverse reactions, enhances treatment effectiveness, and ultimately betters the quality of life for patients. This Flask-based tool offers a user-friendly interface and convenient access, allowing healthcare providers to easily navigate the diagnostic process and accurately analyse outcomes. This platform streamlines radiology procedures and fosters cooperation between imaging experts, cancer specialists, and brain surgeons, ultimately enhancing the quality of patient treatment.

APPENDIX-1 LIST OF FIGURES

LIST OF FIGURES

Fig No	Description of Figure	Page No
Fig 1	CNN Architecture	127
Fig 2	Proposed Architecture	130
Fig 3	Workflow of Image Registration Process	132
Fig 4	Workflow of Image Fusion	133
Fig 5	Use Case Diagram	135
Fig 6	Class Diagram	136
Fig 7	Sequence Diagram	137
Fig 8	Activity Diagram	137
Fig 9	Website Home page	172
Fig 10	Landmark-Based Registration	172
Fig 11	Selecting Co-ordinates for Registration Process	173
Fig 12	Registered Images	173
Fig 13	Fused Image	174
Fig 14	Classified Image	174
Fig 15	Proposed Model loss and Accuracy	175
Fig 16	Confusion Matrix	175
Fig 17	Proposed System Evaluation Metrics	175

APPENDIX-2 LIST OF TABLES

LIST OF TABLES

Table No	Description of Figure	Page No
Table 2.2	Comparison table	93
Table 2.3	Work Evaluation table	97
Table. 3.1	Requirements for developing and deploying the application	121

APPENDIX-3 LIST OF ABBREVIATIONS

ABBREVIATIONS

MRI Magnetic Resonance Imaging

CT Computed Tomography

CNN Convolutional Neural Network

DWT Discrete Wavelet Transforms

PET Post Emission Tomography

APPENDIX-4 REFERENCES

References

- [1] N. Zsoter et al., "PET-CT based automated lung nodule detection," 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, USA, 2012, pp. 4974-4977, Doi: 10.1109/EMBC.2012.6347109.
- [2] C. Hima Bindu and K. Veera Swamy, "Medical image fusion using content based automatic segmentation," International Conference on Recent Advances and Innovations in Engineering (ICRAIE-2014), Jaipur, India, 2014, pp. 1-5, Doi: 10.1109/ICRAIE.2014.6909206.
- Himanshi, V. Bhateja, A. Krishn and A. Sahu, "An improved medical image fusion approach using PCA and complex wavelets," 2014 International Conference on Medical Imaging, m-Health and Emerging Communication Systems (MedCom), Greater Noida, India, 2014, pp. 442-447, Doi: 10.1109/MedCom.2014.7006049.
- [4] Z. Guo, X. Li, H. Huang, N. Guo and Q. Li, "Medical image segmentation based on multi-modal convolutional neural network: Study on image fusion schemes," 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), Washington, DC, USA, 2018, pp. 903-907, Doi: 10.1109/ISBI.2018.8363717.
- [5] M. B. Abdulkareem, "Design and Development of Multimodal Medical Image Fusion using Discrete Wavelet Transform," 2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT), Coimbatore, India, 2018, pp. 1629-1633, Doi: 10.1109/ICICCT.2018.8472997.
- [6] K. Vanitha, D. Satyanarayana and M. N. G. Prasad, "Multimodal Medical Image Fusion Based on Hybrid L1- L0 Layer Decomposition Method," 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Kanpur, India, 2019, pp. 1-5, Doi: 10.1109/ICCCNT45670.2019.8944896.
- [7] Jiaxin Li, Houjin Chen, Yanfeng Li, and Yahui Peng. 2019. A Novel Network Based on Densely Connected Fully Convolutional Networks for Segmentation of Lung Tumors on Multi-Modal MR Images. In Proceedings of the 2019 International Conference on Artificial Intelligence and Advanced Manufacturing (AIAM 2019). Association for Computing Machinery, New York, NY, USA, Article 69, 1–5. https://doi.org/10.1145/3358331.3358400
- [8] K. S. Asish Reddy, K. Kalyan Kumar, K. N. Kumar, V. Bhavana and H. K. Krishnappa, "Multimodal Medical Image Fusion Enhancement Technique for Clinical Diagnosis," 2019 3rd International Conference on Computing Methodologies and Communication (ICCMC), Erode, India, 2019, pp. 586-589, Doi: 10.1109/ICCMC.2019.8819840.

- [9] H. Yan and Z. Li, "A Multi-modal Medical Image Fusion Method in Spatial Domain," 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), Chengdu, China, 2019, pp. 597-601, Doi: 10.1109/ITNEC.2019.8729143.
- [10] V. A. Rani and S. Lalitha Kumari, "A Hybrid Fusion Model for Brain Tumor Images of MRI and CT," 2020 International Conference on Communication and Signal Processing (ICCSP), Chennai, India, 2020, pp. 1312-1316, Doi: 10.1109/ICCSP48568.2020.9182371.
- [11] Kaur M, Singh D, Multi-modality medical image fusion technique using multi-objective differential evolution based deep neural networks. J Ambient Intell Human Comput 12, 2483–2493 (2021). Doi: https://doi.org/10.1007/s12652-020-02386-0
- [12] L. Wang, J. Zhang, Y. Liu, J. Mi and J. Zhang, "Multimodal Medical Image Fusion Based on Gabor Representation Combination of Multi-CNN and Fuzzy Neural Network," in IEEE Access, vol. 9, pp. 67634-67647, 2021, Doi: 10.1109/ACCESS.2021.3075953.
- [13] C. Gao, C. Song, Y. Zhang, D. Qi and Y. Yu, "Improving the Performance of Infrared and Visible Image Fusion Based on Latent Low-Rank Representation Nested with Rolling Guided Image Filtering," in IEEE Access, vol. 9, pp. 91462-91475, 2021, Doi: 10.1109/ACCESS.2021.3090436.
- [14] X. Fu, L. Bi, A. Kumar, M. Fulham and J. Kim, "Multimodal Spatial Attention Module for Targeting Multimodal PETCT Lung Tumor Segmentation," in IEEE Journal of Biomedical and Health Informatics, vol. 25, no. 9, pp. 3507- 3516, Sept. 2021, Doi: 10.1109/JBHI.2021.3059453.
- [15] K. Kusram, S. Transue and M. -H. Choi, "Two-Phase Multimodal Image Fusion Using Convolutional Neural Networks," 2021 IEEE International Conference on Image Processing (ICIP), Anchorage, AK, USA, 2021, pp. 1874-1878, Doi: 10.1109/ICIP42928.2021.9506703.
- [16] Barrett J., & Emp; Viana, T. (2022). EMM-LC Fusion: Enhanced Multimodal Fusion for Lung Cancer Classification. AI, 3(3), 659–682. Doi: https://doi.org/10.3390/ai3030038
- [17] Y. Zhang, H. Zhang, L. Xiao, Y. Bai, V. D. Calhoun and Y. -P. Wang, "Multi-Modal Imaging Genetics Data Fusion via a Hypergraph-Based Manifold Regularization: Application to Schizophrenia Study," in IEEE Transactions on Medical Imaging, vol. 41, no. 9, pp. 2263-2272, Sept. 2022, Doi: 10.1109/TMI.2022.3161828.
- [18] Das K. P., & Das K. P.,

- [19] Maha M. Althobaiti, Amal Adnan Ashour, Nada A. Alhindi, Asim Althobaiti, Romany F. Mansour, Deepak Gupta, Ashish Khanna, "Deep Transfer Learning-Based Breast Cancer Detection and Classification Model Using Photoacoustic Multimodal Images", BioMed Research International, vol. 2022, Article ID 3714422, 13 pages,2022. Doi: https://doi.org/10.1155/2022/3714422
- [20] Haribabu M., & Emproyed Multimodal Medical Image Fusion Approach Using Intuitionistic Fuzzy Set and Intuitionistic Fuzzy Cross-Correlation. Diagnostics, 13(14), 2330. Doi: https://doi.org/10.3390/diagnostics13142330.

INDEX

Certificate	1
Declaration	ii
Acknowledgment	iii
Abstract	iv
List of Figures	vi
List of Tables	viii
List of Abbreviations	X
References	xii
Chapter 1	
Introduction	1
1.1 Overview	1
1.2 Purpose of the Project	1
1.3 Motivation	2
Chapter 2	
Literature Survey	3
2.1 Existing System	93
2.2 Comparison Table	97
2.3 Work Evaluation Table	
Chapter 3	
Proposed System	120
3.1 Proposed System	120
3.2 Objectives of Proposed System	120
3.3 Advantages of Proposed System	120
3.4 System Requirements	
3.4.1 Software Requirements	122
3.4.2 Hardware Requirements	122
3.4.3 Functional Requirements	123
3.4.4 Non- Functional Requirements	123
3.5 Implementation Technologies	
3.5.1 Procrustes Analysis:	123
3.5.2 Wavelet Transforms:	125
3.5.3 Convolutional Neural Networks (CNN):	127

Chapter 4

System Design	
4.1 Proposed System Architecture	130
4.2 Application Modules	
4.2.1 Image Registration Module	131
4.2.2 Image Fusion Module	132
4.2.3 Image Classification Module	134
4.3 UML Diagrams	
4.3.1 Use Case Diagram	134
4.3.2 Class Diagram	135
4.3.3 Sequence Diagram	137
4.3.4 Activity Diagram	137
Chapter 5	
Implementation	
5.1 Source Code	138
Image Registration Process	138
Image Fusion Process	140
Detection and Classification Process	148
HTML FILES	154
CSS FILES	165
Chapter 6	
Results	172
Chapter 7	
Conclusion	176
Future Enhancements and Discussions	176

CHAPTER 1

INTRODUCTION

1.1 OVERVIEW

Brain tumors are abnormal growths of cells within the brain or surrounding tissues. These tumors represent a significant health challenge, with varying degrees of severity and complexity. Timely and accurate analysis is essential in identifying the precise treatment plan and enhancing patient results. Advanced imaging techniques, like CT and MRI, are combined in multimodal clinical imaging to provide a radical expertise of mind tumors. CT scans use X-rays to acquire targeted anatomical facts, showing the vicinity, size, and any structural modifications of the tumor in the brain. On the opposite hand, MRI uses robust magnetic fields and radio waves to produce special images of tender tissue, presenting precious data on tumor features along with kind, grade, and how far it has spread into close by areas of the brain. Through advanced algorithms and techniques, the combination of different imaging modalities can provide a complete view of the brain's shape and tumor traits, assisting in precise diagnosis and customized treatment techniques. Furthermore, following tumor detection, their types are similarly labeled as glioma, a tumor that comes from glial cells inside the brain or spinal cord; meningioma, which originates from the meninges of the brain or spinal cord; and pituitary tumors, observed within the pituitary gland at the base of the brain, offering greater precise insights at the particular pathology for more targeted remedy options.

1.2 PURPOSE OF THE PROJECT

The purpose of the project is to develop innovative solution that combines multimodal medical imaging with artificial intelligence for accurate and rapid diagnosis of brain tumors, improving patient care and outcomes. Its significance lies in overcoming the limitations of traditional methods, with a comprehensive and reliable diagnostic tools that facilitate clinical decision-making, and moreover, have the potential to open new insights into brain tumor pathology, research breakthroughs, and personalized treatment strategies.

1.3 MOTIVATION

The motivation for this project arises from the critical challenges posed through brain tumor diagnosis and its profound effect on patient outcomes. Conventional diagnostic strategies often lack the sensitivity and specificity required, leading to potential misdiagnoses or delays in detection, which could have extreme results. Accurately distinguishing and characterizing tumor types is vital for guiding suitable remedy strategies, yet present methods may fall short in imparting the needful stage of precision. This challenge pursuits to cope with those barriers by using combining the strengths of magnetic resonance imaging (MRI) and computed tomography (CT) imaging modalities with artificial intelligence algorithms. The choice of MRI and CT is pushed by their capability to provide complementary and comprehensive insights into tumor characteristics. The driving force behind this solution is the dedication to improving patient care and outcomes with the aid of addressing the complexities of brain tumor diagnosis through multidisciplinary collaboration and modern technologies. This project seeks to redefine diagnostic requirements in neuro-oncology, enabling personalized and powerful remedy strategies for those devastating conditions, ultimately improving quality of life patients and their families.

CHAPTER 2

LITERATURE SURVEY

An extensive literature survey has been conducted by studying existing systems of Certificate verification and generation. A good number of research papers, journals, and publications have also been referred before formulating this survey.

2.1 EXISTING SYSTEM

Multimodal medical image fusion is a technique that combines images from different imaging modalities like MRI, CT, PET, and SPECT. It involves feature extraction to extract tumor characteristics from each modality, merging these features into a single representation. This aids in tumor localization, characterization, and accurate diagnostic decisions. Different fusion techniques have been developed to address the challenges of tumor identification across multiple imaging modalities which include wavelet, contourlet transform, deep learning-based fusion, multiscale fusion, and pixel, feature, and decision-level fusion methods where each fusion technique leverages the strengths of multiple imaging modalities to provide a more accurate representation of tumors than individual modalities alone.

The responses to various research articles are documented below by the order of the number that have been used to specify them in the references in the end.

1			
Reference in APA	N. Zsoter et al., "PET-CT ba	ased automated lung nodule detection,"	
format	2012 Annual International C	Conference of the IEEE Engineering in	
	Medicine and Biology Soci	ety, San Diego, CA, USA, 2012, pp.	
	4974-4977, Doi: 10.1109/EMBC.2012.6347109.		
URL of the Reference	Authors Names and	Keywords in this Reference	
URL of the Reference	Authors Names and Emails	Keywords in this Reference	
PET-CT based		Keywords in this Reference PET-CT, lung nodule detection,	
	Emails	·	

Conference Publication	Bundschuh, Julia Dinges,	connectedness, image analysis,
IEEE Xplore	Laszlo Papp	mathematical morphology
The Name of the	The Goal (Objective) of	What are the components of it?
Current Solution	this Solution & What is	
(Technique/ Method/	the problem that need to	
Scheme/ Algorithm/	be solved	
Model/ Tool/		
Framework/etc)		
PET-CT based	Goal: To provide an	This paper presents an automated
automated lung nodule	automated method for	method for detecting lung nodules in
detection	detecting lung nodules in	PET-CT images, which includes
	PET-CT images and	lung affinity map generation, nodule
	improve accuracy and	detection, nodule classification, and
	efficiency of nodule	post-processing, resulting in an
	detection.	accurate and efficient method.
	Problem: The time	
	consuming and subjective	
	nature of manual	
	evaluation of PET-CT	
	images for lung nodules	
	which can lead to	
	misdiagnosed nodule.	
The Process (Mecha	nism) of this Work. Means	How the Problem has Solved &

The Process (Mechanism) of this Work; Means How the Problem has Solved & Advantage & Disadvantage of Each Step in This Process

The proposed model provides a single fused image of different modalities like PET, MRI and CT which contains more comprehensive and reliable data for better clinical diagnosis.

Process Steps	Advantage	Disadvantage
		(Limitation)

1	Image acquisition and	The use of attenuation and	Preprocessing can be time
	preprocessing of the PET-	SUV correction improves	consuming as requires
	CT images.	the accuracy of the PET	specialized knowledge.
		images, while Hounsfield	
		correction improves the	
		accuracy of the CT images.	
2	Adaptive fuzzy	The automatic detection of	
	segmentation generates four	the lungs inside of the CT	
	fuzzy affinity maps, which	images, which can improve	
	are used to detect lung	the accuracy of nodule	
	nodules in the PET-CT	detection.	
	images.		
3	The initial nodule detection	The multiple fuzzy-based	The need for manual
	and classification.	tissue/organ segmentation	intervention in the nodule
		enhances nodule detection	detection.
		and prevents merging of	
		nearby nodules.	
4	The post-processing	Reduces the number of	The potential for false
	involves merging nearby	false positives and merging	positives and false
	nodules and filtering out	of nearby nodules, which	negatives, and the need
	false positives	can improve the accuracy	for further validation in
		of the final results.	larger patient cohorts.

Major Impact Factors in this Work

Dependent	Independent	Moderating	Mediating
Variable	Variable	variable	(Intervening)
			variable
Lung nodule	Foreground and	Post processing step	CT image and Lung
detection	background mean	(Split-up): It	segmentation: The
effectiveness: It is	ratio: It is used	moderates the	CT image is used to
influenced by the use	independently for	relationship between	classify the detected
of foreground and	each nodule to detect	the mean ratio-based	lesions, and lung

background mean	the region of nodules	detection and the	segmentation helps
ratio and the	properly in PET-CT	final classification	to build the basis for
subsequent steps in	studies.	step, particularly in	this classification.
the algorithm.		cases where nearby	These variables
		and similar nodules	mediate the
		are merged into one.	relationship between
			the mean ratio and
			the nodule detection
			effectiveness.

Relationship Among the Above 4 Variables in This article

The mean ratio, CT image, and lung segmentation all play a crucial role in lung nodule detection, with a more accurate ratio enhancing detection effectiveness. Post-processing steps also refine detection results.

Input and Output		Feature of	This So	olution	Contr		& The V	alue
						of This	s Work	
Input	Output	The use of	multiple	e fuzzy	This	work	develops	an
PET-CT image of the torso of the body which always fully includes the lungs.	A set of detected lung nodules which are represented as 3D regions of interest (ROIs) in	based tists segmentation automatically lungs inside which can be accuracy of detection.	detection of CT elp impr	ct the images,	nodule images, efficien physicia potentia	detection, improvency, as an ally imp		Γ-CT aracy, ucing aload, atient
	the PET-CT image.							
Positive Impact of this Solution in This Project Domain		Neg		pact of the		tion in Tl	nis	

This work presents an automated method for lung nodule detection in PET-CT images, which can improve accuracy, reduce physician workload, and be integrated into existing clinical workflows as it could lead to earlier detection of lung cancer and other diseases.

The method may not be effective for detecting very small nodules or nodules that are located in difficult-to-reach areas of the lung, which could limit its utility in some cases.

automated method for detecting lung nodules in PET-CT images, improving accuracy and efficiency. Validated on real clinical cases, it has potential for clinical practice. However, limitations include initial lung segmentation accuracy and potential for small or	Analyse This Work by Critical Thinking	The Tools That Assessed this Work	What is the Structure of this Paper			
Diagram/Flowchart	automated method for detecting lung nodules in PET-CT images, improving	evaluation software and various mathematical and image analysis methods such as fuzzy connectedness, morphological dilation, and multiple fuzzy-based tissue/organ segmentation	I. IntroductionII. Materials and methodsIII. ResultsIV. Conclusion and future			
	Diagram/Flowchart					

---End of Paper 1---

2			
Reference in APA	C. Hima Bindu and K. Veera Swamy, "Medical image fusion using		
format	content based automatic segmentation," International Conference		
	on Recent Advances and Innovations in Engineering (ICRAIE-		
	2014), Jaipur, India, 2014, pp. 1-5, doi:		
	10.1109/ICRAIE.2014.6909206.		

URL of the Reference	Authors Names and	Keywords in this Reference
	Emails	
https://ieeexplore.ieee.or	Ch. Hima Bindu, K. Veera	Image segmentation, Biomedical
g/document/6909206	Swamy	imaging, PSNR, Computers,
		Magnetic resonance imaging
The Name of the	The Goal (Objective) of	What are the components of it?
Current Solution	this Solution & What is	
(Technique/ Method/	the problem that needs	
Scheme/ Algorithm/	to be solved	
Model/ Tool/		
Framework/ etc)		
Medical Image Fusion	The goal of this solution is	The proposed solution consists of a
using Content Based	to achieve less complex	multi-modal convolutional neural
Automatic Segmentation	fusion and improve the	network approach for medical
	performance of image	image segmentation, which includes
	fusion methods compared	three schemes for fusing
	to existing methods. The	information from different image
	problem that needs to be	modalities: fusing at feature level,
	solved is the limitations of	fusing at classifier level, and fusing
	pixel level image fusion	at decision level.
	methods such as sensitivity	
	to noise, blurring effects,	
	and miss registration.	
The Process (Macha	nism) of this Work. Magne 1	How the Problem has Solved &

The Process (Mechanism) of this Work; Means How the Problem has Solved & Advantage & Disadvantage of Each Step in This Process

The proposed MS-DAYOLO framework improves the robustness and accuracy of object detection in cross-domain scenarios, making it a promising solution for real-world applications.

Process	Steps	Advantage	Disadvantage
			(Limitation)

1	Conceptual design for	it provides a unified	it may not be suitable for
	image fusion schemes,	framework for multi-	all scenarios, and some
	including fusing at feature	modal image processing,	modifications may be
	level, fusing at classifier	which can guide the	necessary.
	level, and fusing at decision	methodology design for	
	level.	various applications.	
2	Preprocessing of the multi-	it can improve the quality	it may introduce bias or
	modal soft tissue sarcoma	of the input data and reduce	errors if not done
	imaging dataset.	noise and artifacts.	carefully.
3	Training and testing of the	it can optimize the model	it requires a large amount
	three image segmentation	parameters and improve	of labeled data and
	models based on the	the accuracy and	computational resources.
	Convolutional Neural	robustness of the	rr
	Network (CNN) structure.	segmentation.	
	, ,		
4	Evaluation of the	it can provide insights into	it may not be able to
	performance difference	the performance difference	capture all aspects of the
	across different fusion	across different fusion	problem and may require
	schemes and the cause	schemes and the cause	further investigation.
	thereof.	thereof.	

Major Impact Factors in this Work

This work's major impact factors include the use of multi-modal image fusion, a novel conceptual image fusion architecture, the use of Convolutional Neural Networks (CNNs), and the evaluation of performance differences across different fusion schemes, contributing to improved medical image segmentation.

Dependent	Independent	Moderating	Mediating
Variable	Variable	variable	(Intervening)
			variable
The dependent	The independent	it does use cross-	The study focuses on
variable in this study	variable in this paper	validation and	optimizing the multi-
is the accuracy of	is the type of multi-	multiple evaluation	modal image fusion
medical image	modal image fusion	metrics to control for	architecture for

segmentation,	scheme used for	potential	medical image
measured by the	medical image	confounding factors	
Dice similarity	segmentation, which	and provide a	than examining the
coefficient (DSC)	includes three	comprehensive	underlying
and the Hausdorff	different fusion	assessment of the	mechanisms or
distance (HD),	architectures: early	segmentation	processes that may
which reflect the	fusion, late fusion,	accuracy.	mediate the
overlap and distance	and hybrid fusion.	,	relationship between
between predicted			the input images and
and ground truth	combine the		the segmentation
segmentation masks,	information from		output.
respectively.	MRI, CT, and PET		1
	images at different		
	stages of the deep		
	learning pipeline to		
	optimize the		
	accuracy and		
	robustness of the		
	segmentation		
	algorithm.		

Relationship Among The Above 4 Variables in This article

the relationship among mediating (intervening) variables, moderating variables, dependent variables, and independent variables. The study focuses on optimizing the multi-modal image fusion architecture for medical image segmentation, with the segmentation accuracy as the dependent variable and the multi-modal image fusion architecture as the independent variable. The study does not examine the underlying mechanisms or processes that may mediate or moderate the relationship between the input images and the segmentation output.

Input and Output	Feature of This Solution	Contribution & The Value
		of This Work

Input	Output
The input of	The output
this paper is	is a
the use of	generalized
deep	framework
learning to	of image
optimize the	fusion for
multi-modal	supervised
image	learning in
fusion	biomedical
architecture	image
for medical	
image	
segmentatio	
n for MRI,	
CT, and	
PET	
images.	

solution features the use of multi-modal image fusion, a novel conceptual image fusion architecture, the use of Convolutional Neural Networks (CNNs), and the evaluation of performance differences across different fusion schemes. These features contribute improved accuracy robustness of medical image segmentation.

Our work contributes a novel multi-modal image fusion architecture for medical image segmentation using Convolutional Neural Networks (CNNs), which has the potential to improve the accuracy and robustness of medical image segmentation. This work advances the stateof-the-art in medical image analysis by providing comprehensive evaluation of different fusion schemes and their impact on segmentation performance, and by providing insights into the characteristics of the feature learning and impact of errors on the learning process.

Positive Impact of this Solution in This Project Domain

The proposed multi-modal image fusion architecture for medical image segmentation has the potential to improve the accuracy and efficiency of soft tissue sarcoma detection, which can ultimately lead to better patient outcomes.

Negative Impact of this Solution in This Project Domain

The feature-level fusion scheme in the proposed image segmentation system based on deep Convolutional Neural Network (CNN) can suffer from decreased robustness due to the presence of large errors in one or more image modalities.

Analyse This Work By Critical Thinking	The Tools That Assessed this Work	What is the Structure of this Paper
The analysis reveals	CT -MRl and MRl-PET	I. Introduction
noteworthy aspects of the		II. Image Fusion

work. The study presents an		III.	Proposed Method
innovative approach to		IV.	Experimental
multi-modal medical image			Results
segmentation, but its limited		V.	Conclusion
scope and lack of			
comprehensive comparative			
analysis may restrict the			
generalizability of the			
proposed image fusion			
schemes.			
	Diagram/Flowchart		
C		1	
Vo.	- A-3		

---End of Paper 2---

3				
Referer	nce in APA	Himanshi, V. Bhateja, A. Krishn and A. Sahu, "An improved		
fo	rmat	medical image fusion approach using PCA and complex wavelets,"		
		2014 International Conference on Medical Imaging, m-Health and		
		Emerging Communication Systems (MedCom), Greater Noida,		
		India, 2014, pp. 442-447, doi: 10.1109/MedCom.2014.7006049.		
URL of the	he Reference	Authors Names and	Keywords in this Reference	
		Emails		
https://ieee	explore.ieee.o	Emails Himanshi, Vikrant Bhateja,	CT-Scan, DTCWT, Entropy, MRI	
	explore.ieee.o		CT-Scan, DTCWT, Entropy, MRI and PCA.	

The Name of the	The Goal (Objective) of	What are the components of it?
Current Solution	this Solution & What is	
(Technique/ Method/	the problem that need to	
Scheme/ Algorithm/	be solved	
Model/ Tool/		
Framework/ etc)		
Improved medical	Goal is to combine MR and	Gray scale conversion, DTCWT
image fusion approach	CT-scan images to create a	decomposition, PCA and image
using PCA and Complex	single image that contains	fusion.
Wavelets.	more information than	
	either of the original	
	images.	
	Problem is to solve the	
	limited information	
	available in individual	
	medical images for the	
	doctors to make accurate	
	diagnosis.	

The Process (Mechanism) of this Work; Means How the Problem has Solved & Advantage & Disadvantage of Each Step in This Process

The process includes converting MRI and CT-scan images to grayscale, decomposing with DTCWT, using PCA for resolution improvement, and fusing to create an information-rich single image.

	Process Steps	Advantage	Disadvantage
			(Limitation)
1	Conversion the MRI and	Simplifies the image	May result in some loss of
	CT-scan images from RGB	processing by reducing the	information, particularly
	scale to Gray scale to ensure	dimensionality of the	if the original images
	that the images have the	images.	contain important color
	same color space and can be		information
	processed together.		

2	Decomposing the source	DTCWT provides shift	DTCWT is
	images using Dual Tree	invariance and improved	computationally intensive
	Complex Wavelet	directionality along with	and may require more
	Transform (DTCWT) into	preservation of spectral	processing power than
	frequency bands, including a	content.	other wavelet transforms.
	lower-frequency band and		
	other higher-frequency		
	bands.		
3	The decomposed images are	PCA can reduce the	PCA may result in some
	then processed using	dimensionality of the	loss of information,
	Principal Component	images and remove	particularly if the original
	Analysis (PCA) based	redundant information,	images contain important
	fusion rule to improve upon	resulting in a more efficient	features that are not
	the resolution and reduce	and effective fusion	captured by the PCA.
	redundancy.	process.	
4	Fusing the processed images	The fused image provides a	The fusion process may
	to create a single fused	more complete picture of	result in some loss of
	image that contains more	the patient's condition,	information, particularly
	information than either of	which can help doctors	if the original images
	the original images.	make more accurate	contain important features
		diagnoses.	that are not captured by
			the fusion process.

Major Impact Factors in this Work

Dependent	Independent	Moderating	Mediating
Variable	Variable	variable	(Intervening)
			variable
The dependent	The combination of	Factors influencing	The shift invariance
variable in this work	Principal Component	the performance of	and high
is the visual quality	Analysis (PCA) and	the proposed fusion	directionality
and fusion metrics of	Dual Tree Complex	approach in	property of DTCWT,
the fused medical	Wavelet (DTCWT)	comparison to other	along with the feature

image	obtained	constitutes	the	methods	serve	as	enhancem	ent
through the	proposed	independent va	ıriable.	moderatin	g		property of	of PCA, act
PCA and I	Dual Tree			variables.			as	mediating
Complex	Wavelet						variables.	
(DTCWT)	fusion							
approach.								

Relationship Among The Above 4 Variables in This article

The PCA and DTCWT fusion approach, as the independent variable, is anticipated to impact the visual quality and fusion metrics of the fused medical image (dependent variable), with the comparison to other approaches moderating this relationship. The success of the fusion process depends on mediating variables like shift invariance, directionality, and feature enhancement properties.

Feature of This Solution

Contribution & The Value

Input and Output

medical diagnoses.

		1 04041 0 01		of This Work	
		The use of DTCWT and PCA		Contribution and the value of	
Input Output		helps to improve the visual quality of the fused image and		this work lies in the proposed improved fusion approach for	
MR and CT- scan images	A fused image	increase the effectiveness of the fusion process.		medical images using PCA and DTCWT. The approach	
images				demonstrates an improvement in visual quality of the fused image supported by higher values of fusion metrics.	
Positive Impa	act of this Solu	ition in This	Negative Im	pact of this Solution in This	
Pı	roject Domain	1]	Project Domain	
The proposed	approach enl	nances visual	Challenges such	as the computational intensity	
quality, increases fusion process		of DTCWT, po	tentially increasing processing		
effectiveness with DTCWT and PCA, and			time and cost, a	and the risk of information loss	
improves efficiency through PCA-based			during fusion, ir	npacting diagnosis accuracy.	
fusion rules, contributing to more accurate					

Analyse This Work By Critical Thinking	The Tools That Assessed this Work	What is the Structure of this					
Critical Thinking	tills vvork	Paper					
This approach combines	Entropy (E) and Fusion	Abstract					
DTCWT and PCA, showing	Factor (FF) are used as fusion	I. Introduction					
promise for enhanced visual	metrics.	II. Proposed Fusion					
quality and effectiveness in		Approach					
medical image fusion.		III. Experimental					
However, computational		Results and					
complexity and possible		Discussions					
information loss are		IV. Conclusion					
limitations, requiring further							
research for validation and							
addressing these challenges.							
Diagram/Flowchart							
Quality Evaluation of Fused Image (IDTCWT) Preprocessing Decomposition using DTCWT PCA Fusion Rule							
End of Donor 2							

--End of Paper 3—

	Emails		
URL of the Reference	Authors Names and	Keywords in this Reference	
	DC, USA, 2018, pp. 903-907, doi: 10.1109/ISBI.2018.8363717.		
	Symposium on Biomedical Imaging (ISBI 2018), Washington,		
	Study on image fusion sche	Study on image fusion schemes," 2018 IEEE 15th International	
format	segmentation based on multi-modal convolutional neural network:		
Reference in APA	Z. Guo, X. Li, H. Huang,	N. Guo and Q. Li, "Medical image	
4			

https://ieeexplore.ieee.or	Zhe Guo, Xiang Li	medical image segmentation,
g/document/8363717		biomedical imaging, medical
		applications, lesion segmentation,
		multimodality images
The Name of the	The Goal (Objective) of	What are the components of it?
Current Solution	this Solution & What is	-
(Technique/ Method/	the problem that needs to	
Scheme/ Algorithm/	be solved	
Model/ Tool/		
Framework/ etc)		
,		
Medical image	This solution aims to	The proposed solution consists of a
segmentation based on	propose a generalized	multi-modal convolutional neural
multi-modal	framework of image fusion	network approach for medical image
convolutional neural	for supervised learning in	segmentation, which includes three
network: study on image	biomedical image analysis	schemes for fusing information from
fusion schemes	and implement the fusion	different image modalities: fusing at
	schemes based on deep	feature level, fusing at classifier
	convolutional neural	level, and fusing at decision level.
	network to improve the	
	accuracy and robustness of	
	medical image	
	segmentation using multi-	
	modal convolutional neural	
	networks. The problem that	
	needs to be solved is	
	improving the accuracy and	
	robustness of medical	
	image segmentation.	

The Process (Mechanism) of this Work; Means How the Problem has Solved & Advantage & Disadvantage of Each Step in This Process

The proposed MS-DAYOLO framework improves the robustness and accuracy of object detection in cross-domain scenarios, making it a promising solution for real-world applications.

	Process Steps	Advantage	Disadvantage	
			(Limitation)	
1	Conceptual design for image	it provides a unified	it may not be suitable for	
	fusion schemes, including	framework for multi-modal	all scenarios, and some	
	fusing at feature level,	image processing, which	modifications may be	
	fusing at classifier level, and	can guide the methodology	necessary.	
	fusing at decision level.	design for various		
		applications.		
2	Preprocessing of the multi-	it can improve the quality	it may introduce bias or	
	modal soft tissue sarcoma	of the input data and reduce	errors if not done	
	imaging dataset.	noise and artifacts.	carefully.	
3 Training and testing of the		it can optimize the model	it requires a large amount	
	three image segmentation	parameters and improve the	of labeled data and	
	models based on the	accuracy and robustness of	computational resources.	
	Convolutional Neural	the segmentation.		
	Network (CNN) structure.			
4	Evaluation of the	it can provide insights into	it may not be able to	
	performance difference	the performance difference	capture all aspects of the	
	across different fusion	across different fusion	problem and may require	
	schemes and the cause.	schemes and the cause	further investigation.	
		thereof.		

Major Impact Factors in this Work

This work's major impact factors include the use of multi-modal image fusion, a novel conceptual image fusion architecture, the use of Convolutional Neural Networks (CNNs), and the evaluation of performance differences across different fusion schemes, contributing to improved medical image segmentation.

Dependent Variable	Dependent Variable Independent		Mediating
	Variable	variable	(Intervening)
			variable
The dependent	The independent	it does use cross-	The study focuses on
variable in this study	variable in this paper	validation and	optimizing the multi-
is the accuracy of	is the type of multi-	multiple evaluation	modal image fusion
medical image	modal image fusion	metrics to control for	architecture for
segmentation,	scheme used for	potential	medical image
measured by the Dice	medical image	confounding factors	segmentation, rather
similarity coefficient	segmentation, which	and provide a	than examining the
(DSC) and the	includes three	comprehensive	underlying
Hausdorff distance	different fusion	assessment of the	mechanisms or
(HD), which reflect	architectures: early	segmentation	processes that may
the overlap and	fusion, late fusion,	accuracy.	mediate the
distance between	and hybrid fusion.		relationship between
predicted and ground	These architectures		the input images and
truth segmentation	combine the		the segmentation
masks, respectively.	information from		output.
	MRI, CT, and PET		
	images at different		
	stages of the deep		
	learning pipeline to		
	optimize the		
	accuracy and		
	robustness of the		
	segmentation		
	algorithm.		
Dalati	onship Among the Aho	4 V	4-1-

Relationship Among the Above 4 Variables in This article

the relationship among mediating (intervening) variables, moderating variables, dependent variables, and independent variables. The study focuses on optimizing the multi-modal image fusion architecture for medical image segmentation, with the segmentation accuracy as the dependent variable and the multi-modal image fusion architecture as the independent variable. The study does not examine the underlying mechanisms or processes that may mediate or moderate the relationship between the input images and the segmentation output.

Input and Output Feature			This Solution	Contribution & The Value
input and Output		r cature or	This Solution	of This Work
		solution feat	ures the use of	Our work contributes a novel
Input Ou	tput	multi-modal	image fusion, a	multi-modal image fusion
TDI : 4 C TDI		novel cond	ceptual image	architecture for medical image
	1	fusion archite	ecture, the use of	segmentation using
this paper is is	a	Convolutiona	ıl Neural	Convolutional Neural
the use of genera		Networks (C	CNNs), and the	Networks (CNNs), which has
deep frame	work	evaluation of	of performance	the potential to improve the
learning to of	image	differences	across different	accuracy and robustness of
optimize the fusion	n for	fusion sch	nemes. These	medical image segmentation.
multi-modal superv	vised	features	contribute to	This work advances the state-
image learni	ng in		accuracy and	of-the-art in medical image
fusion biome	edical	•	f medical image	analysis by providing a
architecture image	•	segmentation	•	comprehensive evaluation of
for medical		segmentation	•	different fusion schemes and
image				
segmentatio				their impact on segmentation
n for MRI,				performance, and by providing
CT, and PET				insights into the characteristics
images.				of the feature learning and
mages.				impact of errors on the
				learning process.
Positive Impact of t	his Solu	tion in This	Negative Imp	pact of this Solution in This
Project 1	Domain		l	Project Domain
The proposed multi-	modal i	image fusion	The feature-leve	el fusion scheme in the proposed
architecture for	medic	_		ation system based on deep

segmentation has the potential to improve the accuracy and efficiency of soft tissue sarcoma detection, which can ultimately lead to better patient outcomes.

Convolutional Neural Network (CNN) can suffer from decreased robustness due to the presence of large errors in one or more image modalities.

Analyse This Work By	The Tools That Assessed	What is the Structure of
Critical Thinking	this Work	this Paper
The analysis reveals	TensorFlow, Open CV,	I. abstract
noteworthy aspects of the	Dataset, Matplotlib	II. Introduction
work. The study presents an		III. Related Work
innovative approach to multi-		IV. Experiments
modal medical image		V. Conclusion
segmentation, but its limited		
scope and lack of		
comprehensive comparative		
analysis may restrict the		
generalizability of the		
proposed image fusion		
schemes.		
	Diagram/Flowchart	
PET		_
ст	2×2×3 2×2 3×2 2×2 2×2 2×2 2×2 2×2 2×2 2×	Soft-10
TZ- MR		(a)
PET	2×2 2×2 2×2 2×3 Avg conv conv conv conv Pool 16 36 64 144 23	_
ст	2×2 2×2 2×2 2×2 2×2 2×2 4×3 FC FC FC 200V 16 864 23 FG FC 200V 200V 200V 200V 200V 200V 200V 200	max 1
T2- MR	2×2 2×2 2×2 2×2 4×g conv conv conv conv loo 144 23	(b)
PET	2=2x3	
ст	2×2x3 2×2 2×2 2×2 2×2 2×2 4×g Pool FC FC FC Suff ma.	
T2- MR	2×2×3 2×2 2×2 2×2 4vg FC FC FC Soft senv Pool 964 298 2 ma	10 d (c)

---End of Paper 4---

5

Reference in APA	M. B. Abdulkareem, "Desi	gn and Development of Multimodal	
format	Medical Image Fusion using Discrete Wavelet Transform," 2018		
	Second International Conference on Inventive Communication		
	and Computational Technol	logies (ICICCT), Coimbatore, India,	
	2018, pp. 1629-1633, doi: 10.1109/ICICCT.2018.8472997.		
URL of the Reference	Authors Names and	Keywords in this Reference	
	Emails		
https://ieeexplore.ieee.o	Mohammed Basil	Resonance Imaging (MRI), Positron	
rg/document/8472997	Abdulkareem	Emission Tomography (PET),	
		Multi-modal, medical, discrete	
		wavelet transform (DWT), fusion	
		and Alzheimer's	
The Name of the	The Goal (Objective) of	What are the components of it?	
Current Solution	this Solution & What is		
(Technique/ Method/	the problem that need to		
Scheme/ Algorithm/	be solved		
Scheme/ Algorithm/ Model/ Tool/	be solved		
	be solved		
Model/ Tool/	be solved Goal is to enhance the	1. Preprocessing of input images	
Model/ Tool/ Framework/ etc)		 Preprocessing of input images Decomposition of input images 	
Model/ Tool/ Framework/ etc) A multi-modal medical	Goal is to enhance the		
Model/ Tool/ Framework/ etc) A multi-modal medical image fusion method	Goal is to enhance the quality of medical images	2. Decomposition of input images	
Model/ Tool/ Framework/ etc) A multi-modal medical image fusion method based on Discrete	Goal is to enhance the quality of medical images for clinical diagnosis through image fusion techniques. Problem is to	2. Decomposition of input images using Discrete Wavelet Transform (DWT)	
Model/ Tool/ Framework/ etc) A multi-modal medical image fusion method based on Discrete Wavelet Transform	Goal is to enhance the quality of medical images for clinical diagnosis through image fusion techniques. Problem is to address the need for precise	2. Decomposition of input images using Discrete Wavelet Transform (DWT)3. Fusion of decomposed images	
Model/ Tool/ Framework/ etc) A multi-modal medical image fusion method based on Discrete Wavelet Transform	Goal is to enhance the quality of medical images for clinical diagnosis through image fusion techniques. Problem is to address the need for precise information in the	 Decomposition of input images using Discrete Wavelet Transform (DWT) Fusion of decomposed images using a fusion rule 	
Model/ Tool/ Framework/ etc) A multi-modal medical image fusion method based on Discrete Wavelet Transform	Goal is to enhance the quality of medical images for clinical diagnosis through image fusion techniques. Problem is to address the need for precise information in the diagnosis and treatment of	 Decomposition of input images using Discrete Wavelet Transform (DWT) Fusion of decomposed images using a fusion rule Inverse Discrete Wavelet 	
Model/ Tool/ Framework/ etc) A multi-modal medical image fusion method based on Discrete Wavelet Transform	Goal is to enhance the quality of medical images for clinical diagnosis through image fusion techniques. Problem is to address the need for precise information in the diagnosis and treatment of disorders, utilizing various	 Decomposition of input images using Discrete Wavelet Transform (DWT) Fusion of decomposed images using a fusion rule Inverse Discrete Wavelet Transform (IDWT) to obtain the 	
Model/ Tool/ Framework/ etc) A multi-modal medical image fusion method based on Discrete Wavelet Transform	Goal is to enhance the quality of medical images for clinical diagnosis through image fusion techniques. Problem is to address the need for precise information in the diagnosis and treatment of disorders, utilizing various modalities of medical	 Decomposition of input images using Discrete Wavelet Transform (DWT) Fusion of decomposed images using a fusion rule Inverse Discrete Wavelet Transform (IDWT) to obtain the fused image 	
Model/ Tool/ Framework/ etc) A multi-modal medical image fusion method based on Discrete Wavelet Transform	Goal is to enhance the quality of medical images for clinical diagnosis through image fusion techniques. Problem is to address the need for precise information in the diagnosis and treatment of disorders, utilizing various	 Decomposition of input images using Discrete Wavelet Transform (DWT) Fusion of decomposed images using a fusion rule Inverse Discrete Wavelet Transform (IDWT) to obtain the 	

The proposed image processing workflow involves preprocessing with Gaussian filters, decomposition using Discrete Wavelet Transform (DWT) for multi-resolution representation, fusion through a weighted average method, obtaining the fused image via Inverse DWT (IDWT), and post-processing with a color dilation method.

	Process Steps	Advantage	Disadvantage
			(Limitation)
1	Gaussian filters of spatial	Improves the quality of the	It may introduce some
	filtering techniques are	input images, making them	blurring in the images.
	applied for preprocessing to	more suitable for further	
	enhance the quality of the	processing	
	input images which are		
	degraded and non- readable.		
2	The enhanced images are	Provides a multi-resolution	It may introduce some
	decomposed using DWT,	representation of the input	artifacts in the
	which is a mathematical	images, which can capture	decomposed images.
	technique for signal	both the fine and coarse	
	processing.	details of the images.	
3	Decomposed images are	Provides a more accurate	The choice of fusion rule
	fused using a weighted	and comprehensive	may affect the quality of
	average fusion rule,	diagnosis by combining the	the fused image.
	combining information	information from different	
	from different modalities of	modalities.	
	medical images.		
4	The fused image is obtained	Provides a high-quality	It may introduce some
	by applying IDWT to the	fused image that preserves	artifacts in the fused
	fused decomposed images.	both the spectral and	image.
		anatomical data	

5	The fused image undergoes	The quality of the fused	it may introduce some
	post-processing to further	image is improved	color distortion in the
	enhance quality through a		fused image.
	color dilation method		

Dependent	Independent	Moderating	Mediating	
Variable	Variable	variable	(Intervening)	
			variable	
The quality of the	The application of	Color Dilution in the	The use of pre-	
fused medical	Gaussian filters for	fusion process plays	processing	
images, particularly	spatial filtering in the	a moderating role in	techniques,	
in terms of enhanced	pre-processing stage	achieving accurate	including Gaussian	
anatomical and	and the use of DWT	outcomes.	filters and DWT, acts	
spectral information,	for fusing different		as an intervening	
serves as the	brain regions		variable influencing	
dependent variable.	constitute the		the quality of the	
	independent		enhanced images	
	variables.			

Relationship Among The Above 4 Variables in This article

The application of pre-processing techniques (independent variable) influences the quality of enhanced images (mediating variable), which, in turn, affects the quality of the fused medical images (dependent variable). The moderating variable, color dilution, also plays a role in achieving accurate outcomes.

Input and Output		Feature of This Solution	Contribution in This Work
		Utilizes Discrete Wavelet	Contribution lies in the
Input Output		Transform (DWT) for image	experimental results of the
_		1	proposed method using DWT
PET and	A fused	fusion rule for combining	has demonstrated that the
MRI images	image	information from diverse	proposed method outperforms
of brain		modalities, and incorporates	other existing techniques in
		post-processing techniques to	terms of image quality and

	enhance the	fused image	preservati	on of important	
	quality.		features.	33. 33. 33. F 33. 33. 33. 33. 33. 33. 33	
Positive Impact of this Solu	ition in This	Negative Imp	pact of this	s Solution in This	
Project Domain	1	1	Project Do	main	
It achieves high accuracy o	utcomes and	It may introduce	e some arti	facts and distortions	
preserves both the spectral an	d anatomical	in the processed	images.		
data, making it a valuable too	ol for medical				
image processing.					
Analyse This Work by	The Tools	That Assessed	What is t	he Structure of this	
Critical Thinking	this	Work		Paper	
The proposed solution,	Root mean	square error	Abstract		
using Discrete Wavelet	(RMSE), per	centage fit error	I.	Introduction	
Transform (DWT),	(PFE), signa	l to noise ratio	II.	Related Work	
significantly enhances	(SNR), pea	ak signal to	III.	Proposed Fusion	
medical image quality for	interference	ratio (PSNR),		Approach	
clinical diagnosis, achieving	correlation c	oefficient (CC),	IV.	Experimental	
90-95% more accuracy.	mutual info	ormation (MI),		Analysis	
Tested on Alzheimer's and	universal	quality index	V.	Conclusion	
normal brain image	(UQI), struc	tural similarity			
datasets, DWT improves	index measur	re (SSIM)			
fused image quality, with					
effectiveness depending on					
specific datasets and					
performance measures.					
	Diagram/Flowchart				
Diagram/Flowchart Source images Multiscale Fused Image MRI DWT DWT IDWT					

--End of Paper 5--

Reference in APA	K. Vanitha, D. Satyanarayana and M. N. G. Prasad, "Multimodal		
format	Medical Image Fusion Based on Hybrid L1- L0 Layer		
	Decomposition Method," 2019 10th International Conference on		
	Computing, Communication and Networking Technologies		
	(ICCCNT), Kanpur, India, 2019, pp. 1-5, doi:		
	10.1109/ICCCNT45670.2019.8944896.		
URL of the Reference	Authors Names and Keywords in this Referen		
	Emails		
https://ieeexplore.ieee.o	K.Vanitha,	Multimodal medical image fusion,	
rg/document/8944896	Dr.D.Satyanarayana and	hybrid 11-10 decomposition, base	
	Dr.M.N.Giri Prasad	layer, detail layer.	
The Name of the	The Goal (Objective) of	What are the components of it?	
Current Solution	this Solution & What is		
(Technique/ Method/	the problem that need to		
Scheme/ Algorithm/	be solved		
Model/ Tool/			
Framework/ etc)			
Multimodal medical	The seal of this are doing	1. Hybrid 11-10 decomposition model	
limago tugion that	The goal of this work is to	_	
image fusion that	develop a new method for	Weighted average fusion rule	
combines multiscale decomposition and		_	
combines multiscale	develop a new method for multimodal medical image	2. Weighted average fusion rule	
combines multiscale decomposition and	develop a new method for multimodal medical image fusion that can provide a	2. Weighted average fusion rule3. Average fusion rule4. Linear combination	
combines multiscale decomposition and hybrid 11-10	develop a new method for multimodal medical image fusion that can provide a more complete and accurate	2. Weighted average fusion rule3. Average fusion rule	
combines multiscale decomposition and hybrid 11-10	develop a new method for multimodal medical image fusion that can provide a more complete and accurate representation of the	2. Weighted average fusion rule3. Average fusion rule4. Linear combination	
combines multiscale decomposition and hybrid 11-10	develop a new method for multimodal medical image fusion that can provide a more complete and accurate representation of the underlying anatomy or	2. Weighted average fusion rule3. Average fusion rule4. Linear combination	
combines multiscale decomposition and hybrid 11-10	develop a new method for multimodal medical image fusion that can provide a more complete and accurate representation of the underlying anatomy or pathology.	2. Weighted average fusion rule3. Average fusion rule4. Linear combination	
combines multiscale decomposition and hybrid 11-10	develop a new method for multimodal medical image fusion that can provide a more complete and accurate representation of the underlying anatomy or pathology. Problem: Medical images	2. Weighted average fusion rule3. Average fusion rule4. Linear combination	
combines multiscale decomposition and hybrid 11-10	develop a new method for multimodal medical image fusion that can provide a more complete and accurate representation of the underlying anatomy or pathology. Problem: Medical images often have poor contrast	2. Weighted average fusion rule3. Average fusion rule4. Linear combination	

accurate diagnosis or treatment planning.

The Process (Mechanism) of this Work; Means How the Problem has Solved & Advantage & Disadvantage of Each Step in This Process

The proposed method uses a hybrid 11-10 decomposition model and weighted average fusion rule to combine detailed information, average fusion rule for base layers, and a linear combination for the final fused image, evaluated with objective criteria for performance comparison.

	Process Steps	Advantage	Disadvantage
			(Limitation)
1	Hybrid 11-l0 decomposition	It can preserve edges and	It may not be suitable for
	model is used to decompose	contours while reducing	all types of images and
	the source images into base	noise and artifacts in the	may require careful
	and detail layers, which	image.	tuning of parameters.
	contain information about		
	edges, boundaries, and		
	contours.		
2	Weighted average fusion	It can preserve fine details	It may also introduce
	rule is used to identify the	and textures in the image,	artifacts or noise if the
	detailed information in the	which may be important for	weights are not carefully
	source images and combine	accurate diagnosis or	chosen.
	it into a single fused image	treatment planning	
3	Average fusion rule is used	It can highlight edges,	It may also smooth out or
	to combine the base layers of	boundaries, and contours in	blur important details in
	the source images into a	the image, which may be	the image.
	single fused image.	important for visual	
		interpretation.	
4	The final fused image is	It can balance the	it may also introduce
	obtained by combining the	contributions of the detail	artifacts or noise if the
	detail and base layers using	and base layers to obtain a	weights are not carefully
	a linear combination.		chosen.

		fused image that is both	
		detailed and informative.	
5	The proposed method is	It provides a quantitative	It may not capture all
	evaluated using objective	measure of the quality of	aspects of image quality
	criteria such as mean,	the fused image, which can	that are important for
	standard deviation, and	be used to compare	clinical applications.
	mutual information to	different methods.	
	compare its performance		
	with existing methods.		

Dependent Independen		Moderating	Mediating
Variable	Variable	variable	(Intervening)
			variable
The effectiveness	The components of	Factors that moderate	The transfer of the
and performance of	the method,	the relationship	most important
the proposed two-	including the hybrid	between the	information from the
scale decomposition	L1-L0	independent variable	source to the fused
based multimodal	decomposition	and the dependent	image acts as a
medical image fusion	model, the weighted	variable include the	mediating variable.
method, as measured	average fusion rule	reduction of	
by objective criteria	for detailed	information loss and	
serve as the	information, and the	fusion artifacts.	
dependent variable.	average fusion rule		
	for base layers,		
	constitute the		
D.L.«	independent variable.	4.87	

Relationship Among the Above 4 Variables in This article

The proposed method's performance (dependent variable) is influenced by the hybrid L1-L0 decomposition model and fusion rules (independent variable), with information loss reduction and fusion artifacts moderation (moderating variable). The transfer of important information

(mediating variable) is crucial, highlighting the overall efficiency and simplicity of the method.

Input and	Output	Feature of 7	This Solution	Contribution & The Value	
				of This Work	
		The main f	eature of this	The contribution of this work	
Input	Output	solution is th	e use of hybrid	is the development of a novel	
_	_	11-10 decomp	osition model to	method for multimodal	
CT and MRI	A fused .	decompose th	e source images	medical image fusion that	
images of	image	into base an	d detail layers,	combines several techniques to	
brain		which conta	in information	obtain a more complete and	
		about edges,	boundaries, and	accurate representation of the	
		contours. The	detail layers are	underlying anatomy or	
		then combi	ned using a	pathology. Additionally, the	
		weighted ave	rage fusion rule,	objective evaluation criteria	
		while the base layers are		used in this work can help	
		combined using an average		researchers compare and	
		fusion rule. The final fused		benchmark different methods	
		image is	obtained by	for medical image fusion,	
		combining the	e detail and base	which can lead to further	
		layers usir	ng a linear	improvements in the field.	
		combination.			
Positive Impa	ct of this Solu	tion in This	Negative Im	pact of this Solution in This	
Pı	oject Domain	1		Project Domain	
The proposed	multimodal m	edical image	Potential negat	ive impacts of the proposed	
fusion method	improves in	nage quality,	solution includ	e complexity due to multiple	
reduces noise and artifacts using a hybrid			steps and parar	neters requiring careful tuning,	
11-10 decomposition model, and employs			sensitivity to	image characteristics, such as	
objective criteria for quantitative			modality and re	esolution, and a potentially high	
evaluation in the medical imaging.			computational c	cost for large or high-resolution	
			images, impac	cting practicality in certain	
			settings.		
			settings.		

Analyse This Work By Critical Thinking	The Tools That Assessed this Work	What is the Structure of this Paper
The proposed method represents a promising approach to multimodal medical image fusion that combines several techniques to obtain a more complete and accurate representation of the image	The performance of the method is evaluated using objective criteria such as mean, standard deviation.	Abstract I. Introduction II. Related Works III. Proposed Method IV. Experimental Results V. Conclusion
I.	Base Images Fusion of Base images Hybrid Island Base images (x, y) Superposition Fusion rule Pusion of Detail images Fusion of Detail images	F U S E D I M A G E

--End of Paper 6--

7		
Reference in APA	Jiaxin Li, Houjin Chen, Ya	nfeng Li, and Yahui Peng. 2019. A
format	Novel Network Based on De	ensely Connected Fully Convolutional
	Networks for Segmentation	of Lung Tumors on Multi-Modal MR
	Images. In Proceedings of the 2019 International Conference on	
	Artificial Intelligence and Advanced Manufacturing (AIAM 2019).	
	Association for Computing Machinery, New York, NY, USA,	
	Article 69, 1–5. https://doi.or	rg/10.1145/3358331.3358400
URL of the Reference	Authors Names and	Keywords in this Reference
	Emails	

https://dl.acm.org/doi/a	Jiaxin Li, Houjin Chen,	MR Image segmentation; lung
<u>bs/10.1145/3358331.33</u>	Yanfeng Li and Yahui Peng	tumour segmentation; multi-modal
<u>58400</u>		fusion; fully convolutional
		networks; Hyper-DenseNet
The Name of the	The Goal (Objective) of	What are the components of it?
Current Solution	this Solution & What is	
(Technique/ Method/	the problem that need to	
Scheme/ Algorithm/	be solved	
Model/ Tool/		
Framework/ etc)		
A Novel Network Based	The goal is to improve the	A densely connected fully
on Densely Connected	accuracy of lung tumor	convolutional network and a hyper-
Fully Convolutional	segmentation on multi-	densely connected CNN model for
Networks for	modal MR images, which is	multi-modality fusion
Segmentation of Lung	important for the benign	
Tumors on Multi-Modal	and malignant	
MR Images	classification of tumors and	
	the choice of subsequent	
	therapy plans. The problem	
	that needs to be solved is	
	the difficulty in accurately	
	segmenting lung tumors	
	due to the complex and	
	diverse appearance of	
	tumors on different	
	modalities.	

The proposed solution in this paper uses a deep learning approach to accurately segment lung tumors on multi-modal MR images achieving a high performance.

	Process Steps		A	dvantage		Disadvant	age
						(Limitatio	on)
1	The preprocessin	g of data by	Ensures	data consistency	Potent	tial los	ss of
	selecting slices a	at the same	for deep	learning model	inforn	nation if i	mportant
	location for both	modalities	training.		slices	are exclude	ed during
	and resizing the	images to a			resizir	ng.	
	consistent resolu	tion.					
2	A novel	network	The nov	vel architecture	Comp	lexity	and
	architecture is u	used which	accurately	segments lung	interp	retability	
	combines a	densely	tumors, a	chieving state-of-	challe	nges; si	gnificant
	connected	fully	the-art per	formance.	compi	utational	resources
	convolutional ne	twork and a			may b	e required.	
	hyper-densely	connected					
	CNN model	for multi-					
	modality fusion.						
3	The network is tr	ained using	Binary c	ross-entropy and	Potent	tial diffic	culty in
	a combination of binary		Dice loss	combination aids	tuning	g hyperpa	rameters,
	cross-entropy los	ss and Dice	in effectiv	e training.	especi	ially ł	alancing
	loss.				betwe	en the t	wo loss
					functi	ons.	
4	Dice Similarity	Coefficient	DSC is	a widely used	Limite	ed in capt	uring all
	(DSC) to qu	antitatively	metric,	providing a	aspect	ts of segn	nentation
	evaluate the performance of		quantitati	ve measure of	perfor	mance;	
	the network.		segmentat	ion accuracy.	compa	arability	across
					datase	ets mag	y be
					challe	nging.	
		Major I	mpact Fac	tors in this Work			
	Dependent	Indepe	ndent	Moderating		Media	ting
	Variable	Varia	ble	variable		(Interve	ning)
						varia	ble

Segmentation	Multi-Modal fusion	The comparison	The effectiveness of
accuracy of lung	strategy and	serves as a	the proposed method
tumors from multi-	Hyper-DenseNet and	moderating variable,	is mediated by how
modal MR images,	U-Net architectures	influencing the	well the multi-modal
measured by the Dice	acts as independent	evaluation of the	fusion strategy and
Similarity	variables	proposed method's	the combination of
Coefficient (DSC).		effectiveness in	Hyper-DenseNet and
		overcoming	U-Net architectures
		deficiencies	contribute to
		observed in single-	improving
		modal images.	segmentation results.

Relationship Among the Above 4 Variables in This article

The independent variables that include multi-modal fusion and network architectures impact lung tumor segmentation accuracy, assessed through comparison to single-modal methods. The effectiveness of the fusion and architecture combination is crucial, emphasizing the proposed method's design in achieving accurate segmentation from multi-modal MR images.

Input and Output		Feature of This Solution	Contribution & The Value	
			of This Work	
Input	Output	Key features include	The method achieves higher	
MR images	Binary	combining MR imaging modalities for anatomical and	accuracy and better performance in terms of DSC	
of lung tumors,	segmentatio n mask that	functional information,	score, sensitivity, and	
specifically	identifies	utilizing a novel network	specificity. The value of this	
T2- weighted	the tumor region in the	architecture blending U-Net and densely connected CNN	work lies in its potential to improve the accuracy and	
imaging	images.	characteristics, and assessing	efficiency of lung tumor	
(T2W) and		performance with Dice Similarity Coefficient (DSC).	segmentation, which is a critical step in the diagnosis	
diffusion- weighted			and treatment of lung cancer.	
imaging				
(DWI)				

Positive Impact of this Solution in This Negative Impact of this Solution in This Project Domain Project Domain The method enhances accuracy and The method's practical application might be efficiency in lung tumor segmentation, a hindered in certain settings due to its potential crucial step in lung cancer diagnosis and for increased computational demands and longer treatment, with potential applicability to processing times other medical image analysis tasks, improving treatment planning and patient outcomes. **Analyse This Work By** The Tools That Assessed What is the Structure of this this Work **Critical Thinking Paper** The method Use of Dice Similarity Abstract proposed combines Coefficient fully (DSC) as I. Introduction convolutional and hyperquantitative evaluation II. Methodology densely connected CNN metric to measure the III. **Experiments** models for automated lung performance of the proposed IV. Conclusions tumor segmentation on MR network. images. However, limitations include the need computational for more resources, longer processing time, and etc. Overall, it contributes significantly to medical image analysis and enhancing lung tumor segmentation's accuracy

Diagram/Flowchart

and efficiency.

--End of Paper 7--

((þ		
i	ľ	١	١	ı	

8					
Reference in APA	K. S. Asish Reddy, K. Kalyan Kumar, K. N. Kumar, V. Bhavana				
format	and H. K. Krishnappa, "I	Multimodal Medical Image Fusion			
	Enhancement Technique f	for Clinical Diagnosis," 2019 3rd			
	International Conference	on Computing Methodologies and			
	Communication (ICCMC), l	Erode, India, 2019, pp. 586-589, Doi:			
	10.1109/ICCMC.2019.8819	840.			
URL of the Reference	Authors Names and	Keywords in this Reference			
	Emails				
Multimodal Medical	K Sai Asish Reddy, K	Discrete Wavelet Transform			
<u>Image</u> Fusion	Kalyan Kumar, K Naveen	(DWT), Image Fusion, Principal			
Enhancement	Kumar, Bhavana V,	Component Analysis (PCA)			
Technique for Clinical	Krishnappa H. K				
Diagnosis IEEE					
Conference Publication					
IEEE Xplore					
The Name of the	The Goal (Objective) of	What are the components of it?			
Current Solution	this Solution & What is				
(Technique/ Method/	the problem that need to				
Scheme/ Algorithm/	be solved				

Model/ Tool/		
Framework/ etc)		
Multimodal Medical	Goal: To enhance the	The components of the proposed
Image Fusion	accuracy of clinical	solution include the use of Discrete
Enhancement	diagnosis through the	wavelet transform (DWT), Principal
Technique for Clinical	fusion of multimodal	Component Analysis (PCA) for
Diagnosis.	medical images.	image fusion.
	Problem: The accurate	
	detection and diagnosis of	
	severe disease cases such	
	as cancer and brain tumor.	

The proposed model provides a single fused image of different modalities like PET, MRI and CT which contains more comprehensive and reliable data for better clinical diagnosis.

	Process Steps	Advantage	Disadvantage
			(Limitation)
1	Collection of multiple	Different modalities	Collecting multiple
	medical images from	provide more	images can be time
	different modalities, such as	comprehensive view as	consuming and expensive
	PET, MRI, and CT.	they capture different	as they may contain
		aspects of the medical	different resolution and
		conditions.	image quality which can
			affect the accuracy of
			fusion process.
2	Preprocessing of input	Preprocessing can improve	Preprocessing can be time
	images to remove noise and	quality of images and	consuming and require
	artifacts.	reduce the amount of data	specialized knowledge as
		required for diagnosis.	it can remove important
			details from the images.

3	Applying DWT and PCA	These algorithms can	These algorithms can be
	algorithms to extract fine	extract fine details from the	complex and the accuracy
	details from the images.	images and are widely used	of these algorithms can be
		in medical image	affected by the quality of
		processing.	the images.
4	Fusing the extracted details	Fusion can combine the	The choice of fusion rule
	into single image using	strengths of different	can affect the accuracy of
	fusion rule.	modalities and algorithms	diagnosis as it introduces
		to reduce the amount of	artifacts and distortions
		data required for diagnosis.	into the image.
5	Post processing of the fused	Post processing can	Post preprocessing can be
	image to enhance its quality	improve quality of the final	time consuming and
	and remove artifacts.	image as it removes the	require specialized
		artifacts which can reduce	knowledge as it can
		the risk of misdiagnosis.	remove important details
			from the final image.

Dependent	Independent	Moderating	Mediating
Variable	Variable	variable	(Intervening)
			variable
Information Content	DWT and PCA	Performance	Source input image
in final fused image:	image fusion: This	Parameters:	information: The
It represents the	method combines	Performance	fusion process aims
outcome of the	information from	parameters, such as	to preserve and
image fusion process	multiple images into	entropy, mean, and	enhance this
and is influenced by	a single enhanced	standard deviation,	information during
the choice of fusion	image.	serve as moderating	DWT and PCA
method (DWT and		variables which	fusion, ensuring the
PCA).		moderate the	final image is more
		relationship between	informative.
		dependent and	

	independent	
	variables.	

Relationship Among the Above 4 Variables in This article

The choice of DWT and PCA image fusion directly influences the final fused image's information content, with the source input image information mediating the relationship. Performance parameters, such as entropy, mean, and standard deviation, moderate this relationship.

Input and	Output	Feature of This Solution	Contribution & The Value
			of This Work
Input	Output	This solution merges	This work presents a solution
Medical	A single	multiple medical images	for improving clinical
images from	fused image		diagnosis accuracy, reducing
different	that	a single image, providing	data requirements, being
modalities	provides	accurate, informative data for	reliable, applicable to multiple
such as	more	clinical diagnosis using	imaging modalities, and
PET, MRI	comprehens	advanced algorithms like	potentially gaining wider
and CT.	ive and	DWT and PCA.	adoption, ultimately leading to
	reliable data		improved patient outcomes
	for clinical		and improved healthcare
	diagnosis.		delivery.

Positive Impact of this Solution in This Negative Impact of this Solution in This Project Domain Project Domain The proposed solution for image fusion in The proposed solution, involving complex medical imaging, using DWT and PCA, algorithms like DWT and PCA, may be complex, costly, time-consuming, and limited improves diagnostic accuracy, reduces data size, is reliable, robust, and scalable. applicability, potentially limiting It also has potential for future research to accessibility, cost, and applicability in certain prevent diseases in their early stages. healthcare settings, despite its potential benefits.

Analyse This Work By	The Tools That Assessed	What is the Structure of this			
Critical Thinking	this Work	Paper			
The proposed approach of fusing PET, CT and MRI images using DWT and PCA has a potential to improve diagnostic accuracy for severe diseases like cancer and brain tumor. However, more experimental validation and details about the evaluation metrics is needed to strengthen the paper.	Discrete wavelet transforms (DWT), Principal component analysis (PCA) and fusion metrics for evaluating the effectiveness of the image fusion.	Abstract I. Introduction II. Related Work III. Image Fusion Process IV. Parameter Test V. Result VI. Conclusion VII. Future Scope			
	Diagram/Flowchart				
MRI Fusion rule DWT DWT CT/PET image	CT/PET image Fused image (F) MRI image	Principle component analysis Fused image			

---End of Paper 8---

9		
Reference in APA	H. Yan and Z. Li, "A Multi-1	modal Medical Image Fusion Method
format	in Spatial Domain," 2019 IEEE 3rd Information Technology,	
	Networking, Electronic an	d Automation Control Conference
	(ITNEC), Chengdu, Chi	ina, 2019, pp. 597-601, doi:
	10.1109/ITNEC.2019.87291	43.
URL of the Reference	Authors Names and	Keywords in this Reference
	Emails	

https://ieeexplore.ieee.or	Huibin Yan and Zhongmin	Multi-modal medical image fusion;
g/document/8729143	Li	spatial domain; moving frame-
		based decomposition framework;
		weight map
The Name of the	The Goal (Objective) of	What are the components of it?
Current Solution	this Solution & What is	•
(Technique/ Method/	the problem that need to	
Scheme/ Algorithm/	be solved	
Model/ Tool/		
Framework/ etc)		
A multi-modal medical	The goal of the proposed	1. Moving Frame Based
image fusion method	solution in this paper is to	Decomposition Framework
based on multi-scale	develop a fast and efficient	(MFDF) for decomposing the input
transform (MST).	multi-modal medical image fusion method that can achieve high contrast, retain more edge and texture information, and produce fused images that are more in line with human vision. The problem that needs to be solved is the fusion of multi-modal medical images, which is important for clinical	images into texture and approximation components. 2. Weight Map Refined Strategy based on image properties and guide filtering (GF) for fusing the texture components. 3. Approximation Component Fusion for fusing the approximation components. 4. MFDF Reconstruction for reconstructing the fused image.
	applications	

The authors had adopted a moving frame-based decomposition framework to decompose source images to texture components and approximation components. In addition, the fused texture and approximation components are then combined using the MFDF Reconstruction method to obtain the final fused image.

	Process Steps	Advantage	Disadvantage		
			(Limitation)		
1	The input images are	It can separate the texture	The decomposition		
	decomposed into texture	and approximation	process may introduce		
	and approximation	components of the input	some artifacts and noise		
	components using the	images, which is important			
	Moving Frame Based	for preserving the edge and			
	Decomposition Framework	texture information during			
	(MFDF).	the fusion process.			
2	The texture components of	It can effectively preserve	The guide filtering -based		
	the input images are fused	the edge and texture	method may under-		
	using a Weight Map	information of the input	sharpen the image details		
	Refined Strategy based on	images, which is important	such as texture		
	image properties and guide	for clinical applications.	information.		
	filtering (GF).				
3	The approximation	It can effectively preserve	It may not be able to		
	components of the input	the overall structure and	preserve the edge and		
	images are fused using a	intensity information of the	texture information of the		
	simple averaging method.	input images.	input images.		
4	The fusion texture and	It can combine the texture	The reconstruction		
	approximation components	and approximation	process may introduce		
	are combined using MFDF	components to produce a	some artifacts and noise.		
	Reconstruction method to	high-quality fused image.			
	obtain the final fused image				
	 Maior I	mpact Factors in this Work			
	major impact ractors in this work				

Dependent	Independent	Moderating	Mediating
Variable	Variable	variable	(Intervening)
			variable
The quality of multi-	The components of	Factors that may	The decomposition
modal medical	the proposed	influence the	of source images into
image fusion, as	method, including	performance of the	texture and
measured by the	the moving frame-	image fusion	approximation
effectiveness and	based decomposition	method, such as the	components, as well
accuracy of the	framework and the	characteristics of the	as the application of
proposed method in	novel weight map	input medical	the weight map
achieving promising	refined strategy	images, imaging	refined strategy to
results.	based on image	modalities involved,	fuse the
	properties and guide	and the complexity	approximation
	filtering.	of the medical	components, can be
		scenarios.	seen as intervening
			processes that
			contribute to the
			overall effectiveness
			of the image fusion.

Relationship Among the Above 4 Variables in This article

The components of the proposed method (independent variable) affect image fusion quality, with this relationship influenced by mediating processes (decomposition and weight map strategy) and moderated by external factors (input image characteristics, imaging modalities, and medical scenario complexity).

Input and	d Output	Feature of This Solution	Contribution & The Value
			of This Work
		It achieves a quick and	
Input	Output	efficient image fusion via	proposes a rapid and efficient
_	_	single-level decomposition,	multi-modal medical image
A set of multi-modal	A fused	surpassing methods with	fusion method, enhancing
illuiti-illodai	image	multiple levels. By utilizing a	contrast and preserving edge
		Moving Frame Based	and texture information

medical	Decomposition Framework, through a novel weight	map
images	it effectively preserves edge refined strategy. This	work
	and texture information, has the potential to im-	prove
	yielding high-contrast medical image f	usion
	images that closely align accuracy and effici	ency,
	with human vision, crucial offering valuable applica	ations
	for clinical applications. in disease diagnosis, treat	tment
	planning.	
Positive Impact of the	s Solution in This Negative Impact of this Solution in T	hic

Negative Impact of this Solution in This
Project Domain
Absence of comparative analysis with existing
methods are notable weaknesses

Analyse This Work By	The Tools That Assessed	What is the Structure of
Critical Thinking	this Work	this Paper
The multi-modal medical image fusion method holds promise with innovative techniques, but lacks detailed insight into the weight map strategy and comparative analysis with existing methods, limiting its overall robustness.	The authors use objective evaluation metrics, including contrast (SD), gradient-based metric GQ, similarity-based metric WQ and EQ, and the visual information fidelity fusion (VIFF) metric to compare the proposed method with other state-of-	I. Introduction II. Several Basic Theories III. The Proposed Fusion Method IV. Experiments and Discussion V. Conclusion
	the-art methods. Diagram/Flowchart	

---End of Paper 9--

10			
Reference in APA	V. A. Rani and S. Lalitha Kumari, "A Hybrid Fusion Model for		
format	Brain Tumor Images of MRI and CT," 2020 International		
	Conference on Communication and Signal Processing (ICCSP),		
	Chennai, India, 202	20, pp. 1312-1316, Doi:	
	10.1109/ICCSP48568.2020.9	9182371.	
URL of the Reference	Authors Names and	Keywords in this Reference	
	Emails		
A Hybrid Fusion Model	V. Amala Rani and S.	CT, image fusion, MRI, discrete	
for Brain Tumor Images	Lalitha Kumari	wavelet transforms	
of MRI and CT IEEE			
Conference Publication			
IEEE Xplore			
The Name of the	The Goal (Objective) of	What are the components of it?	
Current Solution	this Solution & What is		
(Technique/ Method/	the problem that need to		
Scheme/ Algorithm/	be solved		
Model/ Tool/			
Framework/ etc)			
A Hybrid Fusion Model	Goal: Develop a hybrid	The proposed hybrid image fusion	
for Brain Tumor Images	image fusion technique that	algorithm consists of two main	
of MRI and CT	can effectively combine the	components: Empirical mode	
	MRI and CT images of		

brain to provide high	decomposition (EMD) and discrete
quality fused images with	wavelet transform (DWT).
no distortion.	
Problem: The manual	
interpretation of	
multimodal medical images	
that can be time consuming	
and prone to errors.	

The proposed model uses a hybrid image fusion technique to effectively combine the MRI and CT images of brain and provide high quality fused images with minimal or no distortion.

	Process Steps	Advantage	Disadvantage (Limitation)
1	The input MRI and CT images are decomposed into intrinsic mode function using empirical mode decomposition	Empirical mode decomposition is used as it can adapt to the local frequency characteristics of input image and preserve all the information details.	Empirical mode decomposition is sensitive to noise and artifacts in the input images and it is computationally complex.
2	The input images are decomposed into sub-bands using discrete wavelet transform.	Discrete wavelet transform can capture the global frequency characteristics of the input images and reduce noise and artifacts.	Discrete wavelet transform is sensitive to the choice of wavelet basis and its potential loss of information in the high frequency sub-bands.
3	The intrinsic mode function and sub-bands are combined using weighted average	Weighted average method balances the functional and structural information of	Weighted average method is sensitive to the choice of weighted factors and its potential

method to obtain a fused	the input images and reduce	loss of information in
image	distortion.	overlapping regions of
		input images.
The fused image is	The quality and	Relying solely on
evaluated using various	information content of the	performance metrics for
performance metrics to	fused image is assessed.	evaluating the fused
assess its quality and		image may overlook
information content.		essential contextual
		aspects and subjective
		interpretations.
	The fused image is evaluated using various performance metrics to assess its quality and	image distortion. The fused image is evaluated using various information content of the performance metrics to fused image is assessed.

Dependent	Independent	Moderating	Mediating
Variable	Variable	variable	(Intervening)
			variable
Fused image quality:	Empirical Mode	Hybrid Fusion	Spatial
It reflects the overall	Decomposition	Response: It	Characteristics of the
quality of the fused	(EMD) of images	represents the overall	Original Image: The
image obtained	and discrete wavelet	outcome of the	method claims to
through the EMD	transform (DWT)	proposed approach as	retain the spatial
and DWT-based	method: It represents	it moderates the	characteristics of the
fusion method.	the methods used for	contribution of both	original image in the
	multimodal image	EMD and DWT in	fused result,
	fusion.	the image fusion	indicating a
		process.	mediating role in
			preserving the
			structural
			information during
			the fusion process.

Relationship Among the Above 4 Variables in This article

The quality of a fused image is influenced by the methods of image decomposition (EMD) and fusion (DWT), with spatial characteristics from original images contributing positively. The hybrid fusion response, which indicates the dominance of results, reflects the overall success of the fusion method.

Input and Output		Feature of 7	This Solution	Contribution in This Work
Input MRI and CT images of the brain.	Output A fused image and various performance metrics that evaluate quality and information content of fused image.	functional information CT images enhancing acc hybrid fusion on empi	n and discrete	The contribution lies in developing a hybrid fusion algorithm merging empirical mode decomposition and discrete wavelet transform to enhance accuracy and completeness of brain image analysis, providing a comprehensive representation for improved medical diagnosis.
_	nct of this Solu			pact of this Solution in This Project Domain
AI-powered medical imaging er diagnosis accuracy, reduces manual and improves image quality across revolutionizing healthcare t efficient and reliable disease detect treatment.		nanual errors, cross organs, e through	imaging tasks of and task contex for validation addressing com	's effectiveness in medical lepends on input image quality t, necessitating further research across diverse datasets and aplex computational steps and nentation challenges.
			That Assessed Work	What is the Structure of this Paper
The hybrid employing EM for multimodal fusion enhance but faces chall	I brain image ces accuracy	(RMSE), Po Noise Ra Entropy, Star	Square Error eak Signal to atio (PSNR), and and Deviation al Information	Abstract I. Introduction II. Related Works III. Proposed Work

		~ 1		
to input quality sensitivity	(MI), and	Structural	IV.	Experiment
and computational	Similarity (SSIM)			Results and
complexity, requiring				Discussions
further validation for real-			V.	Conclusion
world applicability.				
	Diagram/Flo	wchart		
CT → EMD →	DWT Low freq coeffs High freq coeffs	Fusion	Fused coeffs	
MRI → EMD →	DWT Low freq coeffs High freq coeffs	Fusion Rule		IDWT ded Image

---End of Paper 10---

11			
Reference in APA format	Kaur, M., Singh, D. Multi-modality medical image fusion technique using multi-objective differential evolution based deep		
	neural networks. <i>J Ambient Intell Human Comput</i> 12, 2483–2493 (2021). https://doi.org/10.1007/s12652-020-02386-0		
URL of the Reference	Authors Names and Emails	Keywords in this Reference	
	Emans		
https://link.springer.com /article/10.1007/s12652- 020-02386-0#citeas	Manjit Kaur & Dilbag Singh	Fusion, Diagnosis, CNN, Multi-modality, Differential evolution.	

(Technique/ Method/	the problem that need to	
Scheme/ Algorithm/	be solved	
Model/ Tool/		
Framework/ etc)		
Multi-modality medical	Goal: To fuse multi-	The proposed approach combines
image fusion technique	modality medical images to	non-subsampled contourlet
using multi-objective	obtain a more informative	transform (NSCT) decomposition,
differential evolution	and accurate representation	Xception-based feature extraction,
based deep neural	of the underlying anatomy	multi-objective differential evolution
networks.	or pathology.	for feature selection, and coefficient
	Problem: The challenge of integrating information from multiple imaging modalities, such as CT, MRI, and PET, which provide complementary information but have different strengths and limitations.	of determination and energy loss- based fusion functions to construct superior multi-modality medical images compared to competitive methods.

	Process Steps	Advantage	Disadvantage
			(Limitation)
1	Pre-processing of input	The non-subsampled	The pre-processing step
	images using the non-	contourlet transform is a	may increase the
	subsampled contourlet	powerful tool for multi-	computational complexity
	transform and other image	scale and multi-directional	of the overall approach
	processing techniques.	image analysis, which can	and require additional
		help to extract more	computational resources.
		informative features from	
		the input images.	

2	Feature extraction using an	The Inception architecture	The use of a deep neural
		•	_
	extreme version of the	is a state-of-the-art deep	network for feature
	Inception neural network	neural network that has	extraction may require
	architecture.	been shown to be effective	significant computational
		in various computer vision	resources and may be
		tasks, including feature	sensitive to the choice of
		extraction from medical	hyper-parameters.
		images.	
3	Feature selection using a	The multi-objective	The feature selection step
	multi-objective differential	differential evolution	may require extensive
	evolution algorithm.	algorithm is a powerful	hyper-parameter tuning
		optimization technique that	and may be sensitive to
		can help to select the most	the choice of optimization
		informative features from	algorithm.
		the input images, which can	
		improve the accuracy and	
		efficiency of the overall	
		approach.	
4	F 1 (C'' '		
4	Fused coefficient	The use of coefficient of	
	computation using	determination and energy	functions may affect the
	coefficient of determination		
	and energy loss based fusion	can help to combine the	approach and may require
	functions.	most informative features	extensive experimentation
		from the input images and	and validation.
		obtain a more accurate and	
		informative representation	
		of the underlying anatomy	
		or pathology.	
5	Fused image computation	The inverse non-	The inverse non-
	using the inverse non-	subsampled contourlet	subsampled contourlet
	subsampled contourlet	transform can help to	transform may be
	transform.	reconstruct the fused image	computationally complex

from the fused coefficients	and require significant
and obtain a more	computational resources.
informative and accurate	
representation of the	
underlying anatomy or	
pathology.	

Dependent	Independent	Moderating	Mediating	
Variable	Variable	variable	(Intervening)	
			variable	
The quality of the	proposed Multi-	Multi-objective	Feature Extraction	
resulting fused image	modality Image	Differential	Using Extreme	
obtained through the	Fusion Approach	Evolution	Inception (Xception)	
proposed approach,	Represents the	optimization	Plays a mediating	
serving as the	innovative technique	algorithm moderates	role in the	
dependent variable.	utilized for	the relationship	relationship between	
	combining	between the	the proposed	
	information from	independent variable	approach and fused	
	different medical	(proposed approach)	image quality, as it	
	images, acting as the	and the dependent	extracts relevant	
	independent variable.	variable (fused image	features from the	
		quality), aiding in the	source images.	
		selection of optimal		
		features.		

Relationship Among The Above 4 Variables in This article

The proposed Multi-modality Image Fusion Approach is influenced by Feature Extraction using Xception, moderated by Multi-objective Differential Evolution, resulting in enhanced Fused Image Quality, outperforming other multi-modality fusion methods.

Input and Output	Feature of This Solution	Contribution & The Value
		of This Work

		The propose	d solution is a	A multi-objective differential
Input	Output	multi-modalit	ty medical	evolution and Xception model
medical images	multi- modality medical images	combines	deep neural do optimization to obtain and accurate and of the anatomy or	based multi-modality biomedical fusion model is proposed. The value of this work lies in its ability to provide a more accurate and informative representation of the underlying anatomy or pathology in multi-modality
				medical images
Positive Impact of this Solution in This Project Domain			Negative Im	pact of this Solution in This
]	Project Domain
The positive is	mpact of this valical profession and decisions are	work is that it nals to make	The use of techniques, espe	advanced image processing cially in the medical field, raises patient privacy and data security,
The positive is can help med more informed patient outcomes	dical profession ed decisions	vork is that it nals to make and improve	The use of techniques, especoncerns about prequiring care	advanced image processing cially in the medical field, raises patient privacy and data security,
The positive is can help med more informed patient outcomes	dical profession and decisions and decisions and decisions and decisions and decisions and decisions are also decisions and decisions are also dec	vork is that it nals to make and improve	The use of techniques, especoncerns about prequiring care information.	advanced image processing cially in the medical field, raises patient privacy and data security, eful handling of sensitive
The positive is can help med more informed patient outcome. Analyse The	dical profession decisions a nes. is Work By Thinking	vork is that it nals to make and improve The Tools this	The use of techniques, especancerns about prequiring care information.	advanced image processing cially in the medical field, raises patient privacy and data security, aful handling of sensitive

Analyse This Work By	The Tools That Assessed	What is the Structure of this
Critical Thinking	this Work	Paper
The proposed advanced	TensorFlow or PyTorch for	1) Abstract
multi-modality image fusion	Xception,numpy and scipy.	2) Introduction
approach, integrating NSCT		3) Literature Review
and Xception, presents		4) Experimental Analysis
promising diagnostic		5) Conclusion
enhancements, but critical		6) References
considerations include		
computational complexity,		
interpretability challenges,		
and the need for transparent		

---End of Paper 11---

12					
Reference in APA		L. Wang, J. Zhang, Y. Liu, J. Mi and J. Zhang, "Multimodal			
format		Medical Image Fusion Based on	Gabor Representation		
		Combination of Multi-CNN and Fuzzy Neural Network," in IEEE			
		Access, vol. 9, pp. 67634	-67647, 2021, Doi:		
		10.1109/ACCESS.2021.3075953.			
URL of the Reference		Authors Names and Emails	Keywords in this		
			Reference		
Multimodal Me	<u>edical</u>	Lifang wang, Jin Zhang, Yang Liu, Jia	Medical image fusion, G-		
Image Fusion Base	ed on	Mi, Jiong Zhang	CNNs, Gabor		
Gabor Representation			representation,		
Combination of Multi-		convolutional neural			
CNN and Fuzzy N	<u>leural</u>		network, fuzzy neural		
Network]	<u>IEEE</u>		network.		

Journals & Magazine IEEE Xplore			
The Name of the	The Goal (Objective) of this Solution	What are the	
Current Solution	& What is the problem that need to	components of it?	
(Technique/ Scheme/	be solved		
Algorithm/ Model/			
Tool/ Framework/			
etc)			
Multimodal Medical	Goal: To improve the quality of	Author used Gabor	
Image Fusion Based on	multimodal medical image fusion	representation, multi-	
Gabor Representation	Problem: to effectively integrate the	CNNs and fuzzy neural	
Combination of Multi-	rich texture features and clear edge	networks for obtaining	
CNN and Fuzzy Neural	information of different modalities into	fused images.	
Network.	a single fused image to get accurate		
	information.		

The proposed model integrates rich texture feature and clear edge information, enhancing the quality of medical image fusion and assists doctors in disease diagnosis by providing a fused image that combines useful information from multiple modalities.

		Process Steps	Advantage	Disadvantage
				(Limitation)
1	1	Gabor filter banks are used	Gabor representations have	Gabor representation may
		to obtain Gabor	multiple detail texture and	increase computational
		representation of CT and	edge information int	complexity.
		MR images, capturing	different directions and	
		complex textures and edge	scales to enhance the	
		information. These filtered	texture feature of the source	
		images are used to train 16	images.	
		corresponding CNNs.		

	2	Fuzzy neural network	The fuzzy neural network	A Fuzzy neural network
		effectively fuses the outputs	effectively fuses the	may require more training
		of G-CNNs, improving	outputs of G-CNNs,	data and longer training
		image fusion quality.	leading to improve image	time.
			fusion quality.	
_	3	The proposed fusion method	Objective evaluation	The performance
	5	The proposed fusion method	Objective evaluation	The performance
		is compared with nine recent	provides quantitative	comparison may depend
		state-of-the-art multimodal	measures of performance.	on the datasets used for
		fusion methods using	Comparative analysis helps	evaluation. Sensitivity to
		mutual information, spatial	assess the proposed method	metric choice: Different
		frequency, standard	against existing	metrics may provide
		deviation, and edge	approaches.	varying perspectives on
		retention information.		the method's
				performance.

<Find all main factors and variables that are related to each solution. Then find the relationship between factors. (Independent variable) causes a change in (Dependent Variable) and it isn't possible that (Dependent Variable) could cause a change in (Independent Variable).</p>

Dependent	Independent	Moderating	Mediating
Variable	Variable	variable	(Intervening)
			variable
Fused image quality	Gabor representation	G-CNNs: They acts	Fuzzy neural
(Performance	of multi-CNN	as mediating variable	network: It takes
metrics): It is	combination: It	between Gabor	multiple outputs
assessed using	represents the use of	representation and	from G-CNNs and
various performance	Gabor filters and	Fused image quality	fuses them to obtain
metrics like mutual	convolutional neural	as they are trained to	the final fused
information, spatial	networks to process	generate preliminary	image. It moderates
frequency, standard	and extract features	fusions of Gabor	the contribution of
deviation, and edge	from CT and MRI	representations.	individual G-CNNs
	images.		to enhance the

retention		overall fused image
information.		quality.

The process involves training G-CNNs using CT and MR images, which are then fused by a fuzzy neural network. The final fused image quality is influenced by the performance of the G-CNNs, which are then further processed by the network. This improvement in fused image quality enhances medical image fusion, aiding in disease diagnosis.

Input and Output		Feature of This	Contribution & The
		Solution	Value of this Work
Input CT and MR images of brain.	Output Identification of brain tumor disease in the fused image to determinate grade and boundary of brain tumor.	It outperforms nine recent states of the art multimodal fusion methods in terms of average mutual information, spatial frequency, standard deviation, and edge retention	
Positive Impact	of this Solution in Th	information.	Negative Impact of this
1 ostive impact (or this solution in Th	ns i roject Domain	Solution in This
			Project Domain
The method outperforms other fusion methods in objective			
evaluation and visual quality, with significant improvements,			
spatial frequency, information.	spatial frequency, standard deviation and edge retention information.		

Analyse This Work by Critical	The Tools That	What is the		
Thinking	Assessed this Work	Structure of this Paper		
The proposed method effectively combines Gabor representation, multi-CNNs, and fuzzy neural network to enhance the quality of fused images, providing valuable assistance in disease diagnosis.	The proposed method is evaluated using quantitative metrics to measure various aspects of fused images, comparing it to other advanced fusion methods.	I. Introduction II. Related work III. Multimodal medical image fusion based on the combination of G-CNNs and Fuzzy neural network IV. Experimental results and analysis		
Diagra	am/Flowchart	V. Conclusion		
G-CNNs Construction Gabor filter 1 Gabor filter 2 Gabor filter 36 Gabo				
Computing Gabor Representation pairs of CT and MR MR FIGURE 2. Multimodal medical image fusion process based on	G-CNNs G-CNNs G-CNNs G-CNNs Input Hidd G-CNNs and fuzzy neural network.	CT/MR		

---End of Paper 12---

Reference in APA
C. Gao, C. Song, Y. Zhang, D. Qi and Y. Yu, "Improving the Performance of Infrared and Visible Image Fusion Based on Latent Low-Rank Representation Nested with Rolling Guided Image

	Filtering," in IEEE Access, vol. 9, pp. 91462-91475, 2021, doi: 10.1109/ACCESS.2021.3090436.		
URL of the Reference	Authors Names and Emails	Keywords in this Reference	
https://ieeexplore.ieee.or g/document/9459693	C. Gao, C. Song Ce Gao	Feature extraction, Image fusion, Image edge detection, Information filters, Image reconstruction, Frequency measurement	
The Name of the Current Solution (Technique/ Method/ Scheme/ Algorithm/ Model/ Tool/ Framework/ etc)	The Goal (Objective) of this Solution & What is the problem that needs to be solved	What are the components of it?	
Improving the Performance of Infrared and Visible Image Fusion Based on Latent Low- Rank Representation Nested With Rolling Guided Image Filtering	Objective: To improve the performance of infrared and visible image fusion by using a novel method that combines LatLRR (Latent Low-Rank Representation) with RGIF (Recursive Guided Image Filtering). The problem that needs to be solved is improving the performance of infrared and visible image fusion methods in terms of image contrast, sharpness, and richness of detailed information.	The proposed method for infrared and visible image fusion consists of five components: image decomposition, acquisition of a detail-enhanced layer, fusion of low-rank sublayers, fusion of saliency sublayers, and image reconstruction. These components work together to enhance image contrast, sharpness, and richness of detailed information.	

the proposed method shows promising results in terms of preserving image details, contrast, and overall structural similarity. However, there are still some areas where further improvements can be made to address the limitations mentioned above.

	Process Steps	Advantage	Disadvantage
			(Limitation)
1	, the input image is smoothed using a Gaussian	It can effectively preserve texture detail information,	While the proposed method has many
	filter to remove small	resulting in sharper and	advantages, there are also
	structures. The smoothed	more distinct features in the	some limitations. In
	image is then used as a	fused image. It also	certain cases, such as the
	guidance image for the next	provides high contrast and	fusion of images with tree
	step.	good overall structural	canopies or figures,
		similarity between the	artifacts may appear on
		fused image and the source	the edges of the contours.
		image. Additionally, the	The fused images may
		proposed method can	also have less contrast
		preserve rich and effective	information compared to
		information, making it	other methods.
		suitable for various types of	Additionally, the sky
		image processing tasks.	background of the fused
			image may appear dark,
			affecting the acquisition
			of information.
2	edge recovery is performed	it can handle non-linear	increased computational
	through an iterative	deformations	complexity.
	operation using an edge-		
	preserving filter such as		
	guided image filtering (GIF)		

or the weighted least squares	
filter.	

Major Impact Factors in this Work

The proposed method in this work has the highest average values for six objective evaluation metrics: EN, MI, MS_SSIM, Qabf, SCD, and SD. It also has the third highest average values for two other metrics: AG and VIF.

Dependent Variable	Independent	Moderating	Mediating
	Variable	variable	(Intervening)
			variable

Relationship Among The Above 4 Variables in This article

	of this Work
An image The reconstructe d fused image and local structure representation capabilities for image decomposition, nested with RGIF for image enhancement. It employs a two-level decomposition and three-layer fusion approach, allowing for flexible fusion of infrared and visible images.	erforms state-of-the-art

Positive Impact of this Solution in This Project Domain

The proposed method for infrared and visible image fusion based on LatLRR nested with RGIF has shown positive impact in terms of preserving rich and effective information, providing high contrast, and producing a good overall structural similarity between the fused image and the source image. It has also demonstrated improvements in image contrast, sharpness, and richness of detailed

information compared to other fusion

methods.

Negative Impact of this Solution in This Project Domain

Limited improvement in image sharpness and richness: While the proposed method aims to improve image contrast, sharpness, and richness of detailed information, the comparison of fusion methods suggests that there is still room for improvement in these aspects. This indicates that the proposed method may not fully address the challenges in the project domain related to image quality enhancement.

Analyse This Work By	The Tools That Assessed	What is the Structure of		
Critical Thinking	this Work	this Paper		
The proposed method	information entropy (EN),	I. Introduction		
demonstrates improvements	mutual information (MI),	II. Technical		
in infrared and visible image	multiscale structural	Background		
fusion by effectively	similarity (MS-SSIM),	III. Proposed Fusion		
preserving texture detail	standard deviation (SD),	Method		
information, enhancing	average gradient (AG), edge-	IV. Experimental		
image sharpness and	based similarity (Qabf), sum	Results and		
contrast, and achieving good	of the correlations of	Analysis		
fusion performance. The	differences (SCD), and visual	V. Conclusion		
combination of LatLRR and	information fidelity (VIF).			
RGIF proves to be a				
promising approach for				
image fusion.				
Diagram/Flowchart				

---End of Paper 13---

-	
п	1
	4
	-

Reference in APA	X. Fu, L. Bi, A. Kumar, M. Fulham and J. Kim, "Multimodal		
format	Spatial Attention Module for Targeting Multimodal PET-CT Lung		
	Tumor Segmentation," in IEEE Journal of Biomedical and Health		
	Informatics, vol. 25, no. 9	9, pp. 3507-3516, Sept. 2021, Doi:	
	10.1109/JBHI.2021.3059453	3.	
URL of the Reference	Authors Names and	Keywords in this Reference	
	Emails		
Multimodal Spatial	Xiaohang Fu, Lei Bi,	Convolutional Neural Network	
Attention Module for	Ashnil Kumar, Michael	(CNN), Multimodal Image	
Targeting Multimodal	Fulham and Jinman Kim	Segmentation, Positron Emission	
PET-CT Lung Tumor	T umum und Jimman IXIII	Tomography-Computed	
Segmentation IEEE		Tomography (PET-CT)	
Journals & Magazine		Tomography (LT-CT)	
IEEE Xplore			
The Name of the	The Goal (Objective) of	What are the components of it?	
The Name of the Current Solution	The Goal (Objective) of this Solution & What is	What are the components of it?	
		What are the components of it?	
Current Solution	this Solution & What is	What are the components of it?	
Current Solution (Technique/ Method/	this Solution & What is the problem that need to	What are the components of it?	
Current Solution (Technique/ Method/ Scheme/ Algorithm/	this Solution & What is the problem that need to	What are the components of it?	
Current Solution (Technique/ Method/ Scheme/ Algorithm/ Model/ Tool/	this Solution & What is the problem that need to	What are the components of it? The proposed deep learning	
Current Solution (Technique/ Method/ Scheme/ Algorithm/ Model/ Tool/ Framework/etc)	this Solution & What is the problem that need to be solved		
Current Solution (Technique/ Method/ Scheme/ Algorithm/ Model/ Tool/ Framework/etc) Multimodal Spatial	this Solution & What is the problem that need to be solved Goal: To improve the	The proposed deep learning	
Current Solution (Technique/ Method/ Scheme/ Algorithm/ Model/ Tool/ Framework/etc) Multimodal Spatial Attention Module for	this Solution & What is the problem that need to be solved Goal: To improve the accuracy of tumor	The proposed deep learning framework uses a multimodal spatial	
Current Solution (Technique/ Method/ Scheme/ Algorithm/ Model/ Tool/ Framework/etc) Multimodal Spatial Attention Module for Targeting Multimodal	this Solution & What is the problem that need to be solved Goal: To improve the accuracy of tumor segmentation in PET-CT	The proposed deep learning framework uses a multimodal spatial attention module and a convolutional	
Current Solution (Technique/ Method/ Scheme/ Algorithm/ Model/ Tool/ Framework/etc) Multimodal Spatial Attention Module for Targeting Multimodal PET-CT Lung Tumor	this Solution & What is the problem that need to be solved Goal: To improve the accuracy of tumor segmentation in PET-CT images using a deep-	The proposed deep learning framework uses a multimodal spatial attention module and a convolutional neural network backbone to segment	
Current Solution (Technique/ Method/ Scheme/ Algorithm/ Model/ Tool/ Framework/etc) Multimodal Spatial Attention Module for Targeting Multimodal PET-CT Lung Tumor	this Solution & What is the problem that need to be solved Goal: To improve the accuracy of tumor segmentation in PET-CT images using a deep- learning based framework	The proposed deep learning framework uses a multimodal spatial attention module and a convolutional neural network backbone to segment PET-CT images, focusing on tumor-	
Current Solution (Technique/ Method/ Scheme/ Algorithm/ Model/ Tool/ Framework/etc) Multimodal Spatial Attention Module for Targeting Multimodal PET-CT Lung Tumor	this Solution & What is the problem that need to be solved Goal: To improve the accuracy of tumor segmentation in PET-CT images using a deep- learning based framework with a multimodal special	The proposed deep learning framework uses a multimodal spatial attention module and a convolutional neural network backbone to segment PET-CT images, focusing on tumor-	
Current Solution (Technique/ Method/ Scheme/ Algorithm/ Model/ Tool/ Framework/etc) Multimodal Spatial Attention Module for Targeting Multimodal PET-CT Lung Tumor	this Solution & What is the problem that need to be solved Goal: To improve the accuracy of tumor segmentation in PET-CT images using a deep- learning based framework with a multimodal special attention module.	The proposed deep learning framework uses a multimodal spatial attention module and a convolutional neural network backbone to segment PET-CT images, focusing on tumor-	

tumor regions in PET-CT images.

The Process (Mechanism) of this Work; Means How the Problem has Solved & Advantage & Disadvantage of Each Step in This Process

The proposed framework consists of several steps, each with its advantages and disadvantages:

	Process Steps	Advantage	Disadvantage
			(Limitation)
1	Preprocessing the PET-CT	It can improve the accuracy	It can be computationally
	images to remove noise,	of the segmentation results.	expensive.
	artifacts and normalize		
	intensity values.		
2	Using a CNN backbone to	It can capture complex	It can be sensitive to noise
	learn the features of the	spatial and temporal	and artifacts in the input
	input image and generate an	relationships in the input	data, which can affect the
	initial segmentation map.	data and generate accurate	accuracy of the
		segmentation maps.	segmentation results.
3	Using a multimodal spatial	It can improve the accuracy	It can be computationally
	attention module to refine	of the segmentation results	expensive and may
	the segmentation map	by focusing on tumor	require a large amount of
	generated by CNN	region.	training data to achieve
	backbone.		optimal performance.
4	Evaluating the accuracy of	It provides a quantitative	It may not capture all
	the segmented results using	measure foe the accuracy of	aspects of segmentation
	Dice similarity coefficient	the segmentation results.	performance.
	metrics.		

Major Impact Factors in this Work

Dependent Variable	Independent	Moderating	Mediating
	Variable	variable	(Intervening)
			variable
Effectiveness of	Multimodal spatial	Type of cancer: The	Spatial attention
Multimodal PET-CT	attention module: It	experimental results	maps: The MSAM
Segmentation: It is	learns to emphasize	are conducted on	generates spatial
influenced by the use	regions related to	PET-CT datasets of	attention maps that
of the MSAM in the	tumor and suppress	different cancer	automatically
segmentation	normal regions with	types, indicating that	emphasize regions
process.	physiologic high	the performance may	related to tumors and
	uptake from the PET	vary across different	suppress normal
	input.	cancer types.	regions.

The MSAM directly influences the effectiveness of multimodal PET-CT segmentation, mediating the creation of spatial attention maps that guide the CNN backbone. The type of cancer may moderate this relationship, affecting segmentation performance.

Input and Output		Feature of This Solution	Contribution & The Value
			of This Work
Input	Output	The proposed solution uses	This work presents a
A multimodal PET-CT image, which consists of PET and CT image.	A segmentatio n map that identifies tumor regions in the image.	PET and CT modalities for improved tumor segmentation accuracy. It can handle varied anatomical and functional features. The framework outperforms stateof-the-art methods in segmentation accuracy.	

Positive Impact of this Solution in This Negative Impact of this Solution in This Project Domain Project Domain The proposed solution improves tumor The proposed solution faces potential negative delineation accuracy, aiding in diagnosis, impacts, including overfitting, computational treatment planning, and personalized requirements, limited generalizability, and medicine. This could enhance clinical reliance on high-quality images which could practice, reduce manual segmentation, and affect the accuracy and reliability, and may improve patient care. affect the applicability of the framework to specific patient populations. **Analyse This Work by** The Tools That Assessed What is the Structure of this this Work **Critical Thinking Paper** The paper proposes a deep deep learning-based Abstract A learning-based system for framework for multimodal I. Introduction multimodal PET-CT PET-CT segmentation using II. Methods segmentation which uses TensorFlow. III. Results CNN and a multimodal IV. Discussion spatial attention module. V. Conclusion Using two PET-CT datasets, assessed study framework and compared it to cutting-edge techniques. Despite certain drawbacks, makes a substantial addition to the field of medical picture analysis.

Diagram/Flowchart

---End of Paper 14---

	_
	-
_	\sim

Reference in APA format	K. Kusram, S. Transue and	d MH. Choi, "Two-Phase
	Multimodal Image Fusion	Using Convolutional Neural
	Networks," 2021 IEEE Inter	national Conference on Image
	Processing (ICIP), Anchorage,	AK, USA, 2021, pp. 1874-1878,
	doi: 10.1109/ICIP42928.2021.9	9506703.
IIDI -£ 4l	A41 N 1 E 2	V
URL of the	Authors Names and Emails	Keywords in this Reference
Reference		
https://ieeexplore.ieee.org/	Ch. Hima Bindu, K. Veera	Coarse Fusion Network (CFN),
document/9506703	Swamy	Refining Fusion Network
		(RFN), Depth and Thermal
		Synchronized Streams, Image-
		space Transformations
The Name of the Current	The Goal (Objective) of this	What are the components of
	Solution & What is the	it?
Solution (Technique/		10.5
Method/ Scheme/	problem that needs to be	
Algorithm/ Model/ Tool/	solved	
Framework/ etc)		
Two-phase multimodal	Goal: To present a novel	The components of the
image fusion using	method for fusing multiple	proposed solution include a
convolutional neural	imaging modalities at a per-	hypergraph-based manifold
networks	pixel level. By employing a	regularization, a multi-modal

two-phase non-linear registration method.

The Problem: fusion multiple imaging modalities at a per-pixel level, challenging due to the variations in sensor and lens intrinsics. Traditional calibration methods have achieving limitations in accurate alignment.

feature selection method, and a multi-linear multi-task regression model for predicting cognitive scores. The solution also involves integrating SNP, methylation, DNA and functional magnetic resonance imaging (fMRI) data improve classification biomarker accuracy and detection.

The Process (Mechanism) of this Work; Means How the Problem has Solved & Advantage & Disadvantage of Each Step in This Process

The proposed MS-DAYOLO framework improves the robustness and accuracy of object detection in cross-domain scenarios, making it a promising solution for real-world applications.

	Process Steps	Advantage	Disadvantage
			(Limitation)
1	This is the first stage of the proposed method, where a shared feature space is used to perform a global rigid alignment of the input	It reduces the computational complexity of the registration process.	it may not be able to handle non-linear deformations.
	images.		
2	This is the second stage of	it can handle non-linear	increased computational
	the proposed method, where per-pixel displacements are predicted to refine the alignment obtained in the first stage.	deformations	complexity.

3	The proposed method		
	assumes the provision of		
	depth and thermal images		
	that are synchronized for		
	training. Image-space		
	transformations are used to		
	generate training data for		
	the CFN and RFN.		
4	Edge-based correspondence		
	methods such as CPD and		
	ICP are used to generate		
	training data for the CFN.		
	Dense optical flow is used		
	to generate training data for		
	the RFN. The RFN predicts		
	per-pixel displacements that		
	are used to refine the		
	alignment obtained in the		
	first stage		
5.	The proposed method		
	achieves a per-pixel level		
	fusion of the input images,		
	resulting in an efficient and		
	accurate image registration.		
	The proposed method		
	requires a large amount of		
	training data to achieve		
	accurate registration.		
	Maior Im	pact Factors in this Work	

Major Impact Factors in this Work

This work proposes a novel method for multimodal image fusion using convolutional neural networks, which achieves an increase of 18% in average accuracy over global registration. The

method involves a two-phase non-linear registration method that performs per-pixel transformations.

Dependent Variable	Independent	Moderating	Mediating
	Variable	variable	(Intervening)
			variable
The dependent	The independent	moderating variable	The study focuses on
variable in this work	variables in this work	in this work is the	the focus is on
is the accuracy of	are the input and	focus is on	developing a novel
image registration,	expected data during	developing a novel	method for
which is measured	training, which	method for	multimodal image
using displacement	include depth and	multimodal image	fusion using
error calculated using	thermal data	fusion using	convolutional neural
Hausdorff distance.	integrated into spatial	convolutional neural	networks.
The goal is to	point-cloud data. The	networks.	
minimize this	method also involves		
distance as much as	a two-phase non-		
possible.	linear registration		
	method that performs		
	per-pixel		
	transformations.		

Relationship Among The Above 4 Variables in This article

the relationship among mediating (intervening) variables, moderating variables, dependent variables, and independent variables. The study focuses on optimizing the multi-modal image fusion architecture for medical image segmentation, with the segmentation accuracy as the dependent variable and the multi-modal image fusion architecture as the independent variable. The study does not examine the underlying mechanisms or processes that may mediate or moderate the relationship between the input images and the segmentation output.

Input and Output	Feature of This Solution	Contribution & The
		Value of This Work

Input	Output
The input of	The output is
the paper is	a fused image
the	that combines
development	multiple
of a two-	imaging
phase	modalities at
multimodal	a per-pixel
image fusion	level,
method using	resulting in an
convolutional	efficient and
neural	accurate
networks.	image
	registration.

the feature of this solution is its ability to fuse multiple imaging modalities at a per-pixel level using a two-phase non-linear registration method, resulting in an efficient and accurate image registration. The contribution of this work is the development of a deep learning-based approach for multimodal image fusion that outperforms traditional calibration methods. The value of this work lies in its potential to improve machine vision applications that require accurate image registration, such medical imaging and autonomous driving.

Positive Impact of this Solution in This Project Domain

the positive impact of this solution in the project domain is the potential to improve the accuracy and efficiency of machine vision applications that require multimodal image fusion, such as facial authentication, autonomous vehicles, remote sensing, medical imaging, and environmental reconstruction.

Negative Impact of this Solution in This Project Domain

the negative impact of this solution. However, it is possible that the implementation of this solution may require significant computational resources, which could be a potential limitation for some applications. Additionally, the accuracy of the method may be affected by factors such as image distortion and resolution, which could impact its performance in certain scenarios.

Analyse This Work By	The Tools That Assessed this	What	is	the
Critical Thinking	Work	Structure of	this I	Paper

the authors present a promising	deep learning frameworks,	I.	abstract
approach to multimodal image	image processing libraries, and	II.	Introduction
fusion using deep learning	statistical analysis tools	III.	Related
techniques, which could have			Work
significant implications for a		IV.	Experiments
wide range of applications in		V.	Conclusion
machine vision.			

Diagram/Flowchart

---End of Paper 15---

	ce in APA mat	Barrett, J., & Viana, T. (2022). EMM-LC Fusion: Enhanced Multimodal Fusion for Lung Cancer Classification. <i>AI</i> , <i>3</i> (3),	
URL of the	e Reference	Authors Names and Keywords in this Reference Emails	
https://www 673-2688/3/	v.mdpi.com/2 /3/38	James Barrett and Thiago Viana	Lung cancer, Diagnosis, Machine learning, classification, multimodal, fusion.
Current (Techniqu	me of the Solution ne/ Method/ Algorithm/	The Goal (Objective) of this Solution & What is the problem that need to be solved	What are the components of it?

Model/ Tool/ Framework/ etc)			
Enhanced Multimodal	Enhanced lung	cancer	Pre-processing, feature extraction
Fusion for Lung Cancer	classification	using	from pre trained Aligned eXception
Classification.	multimodal fusion.		network.
			Fusion of multiple modalities using a deep neural network. Training of deep neural networks using extracted features. Evaluation evaluation of the trained model using various evaluation metrics such as sensitivity, specificity, accuracy, and F1 score.

	Process Steps	Advantage	Disadvantage
			(Limitation)
1	Pre-processing involves	Noise reduction, improved	Potential loss of
	standard techniques for pre-	contrast, and better feature	information and the need
	processing CT scans, such	extraction.	for careful selection of
	as thresholding,		parameters.
	binarization, and		
	morphological operations.		
2	Extraction of intermediate	Ability to capture high-	Need for careful selection
	features from a pre-trained	level features and reduce	of features.
	Aligned Xception network.	the dimensionality of the	
		data.	
3	Fusion of multiple	Ability to combine	Potential for overfitting
	modalities using a deep	complementary	and the need for careful
	neural network architecture.	information from different	

		modalities and improve the	selection	of	fusion
		accuracy of the model.	methods.		
4	Training of the deep neural	Learn complex patterns and			
	network using the extracted	improve the accuracy of the			
	features and fusion	model.			
	approach.				
5	Evaluation of the trained	Ability to assess the			
	model using various	performance of the model			
	evaluation metrics such as	and compare it to other			
	sensitivity, specificity,	models.			
	accuracy, and F1 score.				

Major Impact Factors in this Work

<Find all main factors and variables that are related to each solutions. Then find the relationship between factors. (Independent variable) causes a change in (Dependent Variable) and it isn't possible that (Dependent Variable) could cause a change in (Independent Variable).</p>

Dependent	Independent	Moderating	Mediating
Variable	Variable	variable	(Intervening)
			variable
Lung Cancer	EMM-LC Fusion	Previous Fusion	Intermediate
Classification	Model is the primary	Method variable	Features act as a
Performance Metrics	factor that is	moderates the	mediator between the
Like F1 score,	manipulating in this	relationship between	EMM-LC Fusion
average precision,	study. It represents	the independent	model and its impact
AUC are dependent	the intervention or	variable (EMM-LC	on lung cancer
on the application of	treatment designed to	Fusion) and the	classification
the EMM-LC Fusion	improve lung cancer	dependent variables	performance.
model	detection.	(Lung Cancer	
		Classification	
		Performance	
		Metrics).	

EMM-LC Fusion model (independent variable) affects lung cancer classification performance metrics (dependent variables) through the mediating role of intermediate features. The influence of the previous fusion method (moderating variable) on this relationship is considered, providing insights into the specific conditions under which the EMM-LC Fusion model performs better than the previous method.

Input and Output		Feature of 7	This Solution	Contribution & The Value
				of This Work
Input Set of pre- processed CT scans of the lung.	Output Classificatio n of the CT scan as either malignant or benign.	fusion ap combines in multiple mode CT scans and	a multimodal oproach that formation from alities, including clinical data, to accuracy of lung on.	
Positive Impact of this Solut Project Domain				pact of this Solution in This Project Domain
It's potential to improve the lung cancer det	accuracy of		It is important to carefully consider the potential benefits and limitations of the approach in the context of specific healthcare settings are patient populations.	
Analyse This Work by Critical Thinking			That Assessed Work	What is the Structure of this Paper

This provides a valuable	EMM-LC model,	1) Abstract		
contribution to lung cancer	performance metrics like F1	2) <u>Introduction</u>		
detection. It is important to	score, AP, AUC.	3) <u>Literature Review</u>		
carefully consider the		4) Materials and Methods		
potential benefits and		5) <u>Implementation</u>		
limitations of the approach		6) <u>Results</u>		
in the context of specific		7) <u>Discussion</u>		
healthcare settings and		8) <u>Limitations</u>		
patient populations.		9) <u>Future Work</u>		
		10) <u>Conclusions</u>		
Diagram/Flowchart				
(4)	To complete the second of the			

---End of Paper 16--

17	
Reference in APA format	Y. Zhang, H. Zhang, L. Xiao, Y. Bai, V. D. Calhoun and YP.
	Wang, "Multi-Modal Imaging Genetics Data Fusion via a
	Hypergraph-Based Manifold Regularization: Application to
	Schizophrenia Study," in IEEE Transactions on Medical
	Imaging, vol. 41, no. 9, pp. 2263-2272, Sept. 2022, doi:
	10.1109/TMI.2022.3161828.
URL of the	Authors Names and Emails Keywords in this Reference
Reference	Rey words in this reference

https://ieeexplore.ieee.org/d	Y. Zhang, H. Zhang	Data integration, Data models,
ocument/9740146		Imaging, Manifolds, Feature
		extraction, Genetics,
		Multitasking
The Name of the Current	The Goal (Objective) of this	What are the components of
Solution (Technique/	Solution & What is the	it?
Method/ Scheme/	problem that needs to be	
Algorithm/ Model/ Tool/	solved	
Framework/ etc)		
Multi-Modal Imaging	The goal of this solution is to	The components of the
Genetics Data Fusion via a	develop a novel algorithm	proposed solution include a
Hypergraph-Based	called HMF that combines	hypergraph-based manifold
Manifold Regularization:	information from diverse	regularization, a multi-modal
Application to	sources for improved accuracy	feature selection method, and a
Schizophrenia Study	in diagnosing complex brain	multi-task multi-linear
	disorders. The problem that	regression model for
	needs to be solved is the	predicting cognitive scores.
	accurate diagnosis of complex	The solution also involves
	brain disorders by integrating	integrating SNP, DNA
	information from multiple	methylation, and functional
	imaging and genetics data	magnetic resonance imaging
	types.	(fMRI) data to improve
		classification accuracy and
		biomarker detection.

The proposed MS-DAYOLO framework improves the robustness and accuracy of object detection in cross-domain scenarios, making it a promising solution for real-world applications.

Process Steps	Advantage	Disadvantage
		(Limitation)

1	This step involves defining a	it can incorporate both	it may require more
	hypergraph-based similarity	structural information and	computational resources
	matrix to better characterize	complex interactions	and time.
	high-order structural	among subjects, which can	
	relationships between	circumvent the overfitting	
	subjects than a simple graph	problem in high dimension	
	representation.	but low sample data.	
2	This step involves jointly	it can integrate	it may require more
	learning common features	complementary	complex algorithms and
	from multi-modal data to	information from multiple	may be more difficult to
	extract more discriminative	data types, resulting in	interpret the results.
	features and improve	better performance	
	classification accuracy.	compared to several	
		existing models.	
3	This step involves predicting	it can predict multiple	it may require more data
	cognitive scores using a	cognitive scores	and may be more complex
	multi-task multi-linear	simultaneously, which can	to implement.
	regression model.	save time and resources.	
4	This step involves	it can provide a more	it may require more data
	integrating information from	comprehensive	and may be more complex
	multiple data types to	understanding of the	to implement.
	improve classification	disease and its underlying	
	accuracy and biomarker	mechanisms.	
	detection.		

Major Impact Factors in this Work

This work introduces a novel algorithm called HMF that combines information from diverse sources for improved accuracy in diagnosing complex brain disorders, using hypergraph-based manifold regularization to capture high-order relationships among subjects and validate the approach on both synthetic data and real samples from a schizophrenia study.

Dependent Variable	Dependent Variable Independent		Mediating	
Variable		variable	(Intervening)	
			variable	
The dependent	The independent	The study focuses on	The study focuses on	
variable in this study	variable in this paper	the authors focused	the authors focused	
is the authors used	is the proposed	on developing and	on developing and	
multi-modal data	hypergraph-based	validating the HMF	validating the HMF	
fusion to identify	multi-modal data	method for multi-	method for multi-	
biomarkers and	fusion method, HMF.	modal data fusion in	modal data fusion in	
improve	The authors used	the context of	the context of	
understanding of the	HMF to integrate	schizophrenia	schizophrenia	
disorder.	imaging and genetics	diagnosis.	diagnosis.	
	datasets and identify			
	risk genes and			
	abnormal brain			
	regions associated			
	with schizophrenia.			

the relationship among mediating (intervening) variables, moderating variables, dependent variables, and independent variables. The study focuses on optimizing the multi-modal image fusion architecture for medical image segmentation, with the segmentation accuracy as the dependent variable and the multi-modal image fusion architecture as the independent variable. The study does not examine the underlying mechanisms or processes that may mediate or moderate the relationship between the input images and the segmentation output.

Input and Output		Feature of This Solution	Contribution & The Value of This Work
Input	Output	This solution introduces a novel	The contributions of this
The input	The output is	algorithm called HMF that	work include combining
used in this	the validate	combines information from	complementary
research	their	diverse sources for improved	information from multi-
paper	approach on	accuracy in diagnosing complex	
		brain disorders. The method	hypergraph-based

includes both synthetic data and real imaging and genetics samples from datasets. The schizophrenia paper introduces a study and novel show that algorithm **HMF** called HMF outperforms that combines several information competing from these methods. diverse sources for improved accuracy in diagnosing complex brain disorders.

uses hypergraph-based manifold regularization capture high-order relationships among subjects and enforce regularization based on both interand intra-modality relationships.

similarity matrix to better characterize highorder structural relationships, employing novel manifold regularization incorporate term to structural information both within and across modalities, and incorporating both sparsity and manifold regularization circumvent the overfitting problem. The value of this work lies in its potential to improve the accuracy of complex diagnosing brain disorders and identify potential biomarkers associated with these disorders, which could lead to better treatment and management strategies for patients.

Positive Impact of this Solution in This	Negative Impact of this Solution in This		
Project Domain	Project Domain		
The positive impact of this solution in this	one potential limitation is that the algorithm		
project domain is that it provides a more	is still based on linear regression and may		
accurate and comprehensive approach to	not capture the complex non-linear		

diagnosing complex brain disorders by integrating information from multiple sources.

This can lead to better treatment and management strategies for patients and potentially identify new biomarkers associated with these disorders.

relationship between imaging genomics markers and phenotypes.

with these disorders.					
Analyse This Work By	The Tools Th	nat Assess	sed this	What is	the Structure
Critical Thinking	V	Vork		of this Pa	aper
the authors used various	false discove	ery rate	(FDR),	I.	Introduction
statistical and machine learning	MTL, SNF	-SVM,	MMN,	II.	Methods
tools to develop and validate	gCAM-CCL, I	MRMF, ar	nd GSSL	III.	Results
their algorithm, including				IV.	Discussion
hypergraph-based manifold				V.	Conclusion
regularization, multiple					
regression, and false discovery					
rate (FDR) analysis. They also					
compared their method with					
several other competing models,					
including MTL, SNF-SVM,					
MMN, gCAM-CCL, MRMF,					
and GSSL, using a 10-fold					
cross-validation approach.					
	 Diagram/Fl	owchart			
			<u> </u>		

---End of Paper 17--

Reference in APA format	Das, K. P., & Chandra, J. (2022). Multimodal Classification on PET/CT Image Fusion for Lung Cancer: A Comprehensive Survey. ECS Transitions, 107(3649).		
URL of the Reference	Authors Names and	Keywords in this Reference	
ORL of the Reference	Emails	Key words in this Reference	
https://iopscience.iop.or	Kaushik Pratim Das and	PET&CT imaging, Medical image	
g/article/10.1149/10701.	Chandra J	fusion, Lung cancer diagnosis,	
3649ecst/pdf		Multimodalarity imaging	
The Name of the	The Goal (Objective) of	What are the components of it?	
Current Solution	this Solution & What is		
(Technique/ Method/	the problem that need to		
Scheme/ Algorithm/	be solved		
Model/ Tool/			
Framework/ etc)			
Multimodal	The goal of medical image	multiple medical images, image	
Classification on	fusion is to combine	registration techniques, image fusion	
PET/CT Image Fusion	multiple medical images to	algorithms, and image quality	
for Lung Cancer	produce a single image that	assessment methods.	
	contains more		
	comprehensive and		
	accurate information. This		
	is done to overcome the		
	limitations of individual		
	medical images and		
	improve the accuracy and		
	reliability of medical		
	diagnosis and treatment.		

	Process Steps	Advantage	Disadvantage	
			(Limitation)	
1	Image acquisition	improved accuracy of diagnosis due to complementary information from different modalities.	Need for specialized equipment.	
2	Image registration	Improved accuracy of diagnosis due to precise spatial alignment.		
3	Feature extraction	Extraction of relevant information from the images, such as texture, shape, and intensity.	Need for domain expertise.	
4	Image fusion	Creation of a single, fused image that contains all the relevant information from each modality.	Need for careful selection of fusion algorithms.	

Major Impact Factors in this Work

	Dependent Variable	Independent	Moderating	Mediating
		Variable	variable	(Intervening)
				variable
_	Efficiency of	Medical Image	Clinical Setting	Deep Learning
	Medical Image	Fusion Techniques	Challenges	Techniques: This
	Fusion: The	are the primary factor	associated with	variable plays a
	effectiveness and	manipulated or	medical image fusion	mediating role in the
	efficiency of the	investigated in the	in a clinical setting,	relationship between
	medical image fusion	study. It represents	such as time	medical image fusion

techniques, measured	the diverse methods	consumption and	techniques and their
in terms of accuracy,	and technologies	technical complexity.	impact.
speed, and clinical	employed for fusing		
applicability.	medical images,		
Image Quality: The	specifically focusing		
quality of the fused	on PET and CT		
images, assessing	imaging for lung		
how well the fusion	cancer diagnosis.		
techniques preserve			
essential clinical			
information while			
enhancing overall			
image quality			

The efficiency of medical image fusion techniques is influenced by the incorporation of deep learning methods. Deep learning acts as a mediator, enhancing the overall performance of fusion techniques. Challenges in a clinical setting, such as time consumption and technical complexity, moderate the impact of medical image fusion techniques on efficiency and image quality

Input and Output		Feature of 7	This Solution	Contribution in This Work
Input Output		Comprehensi	ve coverage of	The authors' work provides a
Multiple	Classified	medical i	mage fusion	valuable resource for
PET and CT	Lung cancer	techniques for	or lung cancer	researchers, medical
images	multimodal	diagnosis, in	ncluding recent	professionals, and anyone
	images	advances and	d the impact of	interested in medical image
		deep learning	techniques.	fusion for lung cancer
				diagnosis.
Positive Impact of this Solution in T		ition in This	Negative Im	pact of this Solution in This
Project Domain]	Project Domain	

This solution has the potential to make a positive impact on the field of medical imaging and improve patient outcomes in the domain of lung cancer diagnosis and treatment.

Registering images from different modalities can introduce errors, leading to misalignment of anatomical structures.

Analyse This Work By	The Tools T	That Assessed	What is the Structure of this
Critical Thinking		Work	Paper
The provided information is	TensorFlow	or PyTorch,	1) Abstract
very useful and the detailed	openCv		2) Introduction
explanation of process helps			3) Literature Review
to build efficient model.			4) Discussions
			5) Conclusion
	Diagran	n/Flowchart	
	(a) Pixel based fined images	Feature	ompetation and Clinical aftermation Evaluation
PET and CT Images	(h)Multi- source extracted features	Feature level	nempotation and Clinical aformation Evaluation
	(c)Frature Extraction	Multi- decisions based on extracted features	Decision- based fusion
			Computation ind Clinical Information Evaluation

--End of Paper 18—

	Emails
URL of the Refe	rence Authors Names and Keywords in this Reference
	pages, 2022. https://doi.org/10.1155/2022/3714422
	BioMed Research International, vol. 2022, Article ID 3714422, 13
	Classification Model Using Photoacoustic Multimodal Images",
	"Deep Transfer Learning-Based Breast Cancer Detection and
format	Althobaiti, Romany F. Mansour, Deepak Gupta, Ashish Khanna,
Reference in A	PA Maha M. Althobaiti, Amal Adnan Ashour, Nada A. Alhindi, Asim
Defenence in A	DA Maka M Alabahaiti Amal Adnan Ashann Nada A Albindi Asim

https://www.hindawi.c om/journals/bmri/2022/ 3714422/	Maha M. Althobaiti, Amal Adnan Ashour, Nada A. Alhindi, Asim Althobaiti, Romany F. Mansour, Deepak Gupta,and Ashish Khanna	Biosynthesis, gold nanoparticles, living platelets, multimodal biomedical imaging, colloids, surfaces, and bio interfaces.
The Name of the	The Goal (Objective) of	What are the components of it?
Current Solution	this Solution & What is the	
(Technique/ Method/	problem that need to be	
Scheme/ Algorithm/	solved	
Model/ Tool/		
Framework/ etc)		
Social Engineering	Aim is to detect and	Preprocessing using bilateral
Bottu Engineering	Ann is to detect and	Preprocessing using bilateral
Optimization with	categorize the presence of	filtering, image segmentation using
Optimization with	categorize the presence of breast cancer using	filtering, image segmentation using
Optimization with Deep Transfer	categorize the presence of breast cancer using	filtering, image segmentation using LEDNet model, feature extraction
Optimization with Deep Transfer Learning-Based Breast	categorize the presence of breast cancer using	filtering, image segmentation using LEDNet model, feature extraction using ResNet-18 model, image
Optimization with Deep Transfer Learning-Based Breast Cancer Detection and	categorize the presence of breast cancer using	filtering, image segmentation using LEDNet model, feature extraction using ResNet-18 model, image classification using RNN and
Optimization with Deep Transfer Learning-Based Breast Cancer Detection and Classification Model	categorize the presence of breast cancer using	filtering, image segmentation using LEDNet model, feature extraction using ResNet-18 model, image classification using RNN and hyperparameter tuning using SEO

The technique combines various image processing and deep learning techniques to detect and classify the presence of breast cancer using ultrasound images. It can accurately classify the presence of breast cancer but requires a large amount of data and computational resources.

	Process Steps	Advantage	Disadvantage
			(Limitation)
1	Pre-processing using	It preserves the edges while	It may not be effective in
	bilateral filtering which	smoothing the image.	removing all types of
	smoothens the images		noise.
	without changing the edges.		

2	Ground truth which	It provides a reference for	It requires manual	
	involves labeling the images	the classification model.	labeling, which can be	
	as benign, malignant, or		time-consuming and	
normal.			prone to errors.	
3	Image segmentation using	It reduces the complexity	It may not be effective in	
	LEDNet model segments	of the image and focuses on	segmenting all types of	
	the breast region from the	the region of interest.	breast tissue.	
	ultrasound image.			
4	Feature extraction process	It can capture complex	It may require a large	
	using CNN-based ResNet-	patterns and features that	amount of data and	
	18 model from the	are difficult to detect	computational resources.	
	segmented image using a	manually.		
	deep learning model.	·		
	1 0	T. 11 .1 .1 .1		
5	Training images (BUSI	It allows the model to learn	The dataset may not be	
	dataset) which involves	from a large amount of	representative of all types	
	training the classification	data.	of breast tissue.	
	model using a dataset of			
	ultrasound images.			
6	Image classification using	It can accurately classify	It may require a large	
	recurrent neural network	the presence of breast	amount of data and	
	that classifies the ultrasound	cancer.	computational resources.	
	image as benign, malignant,			
	or normal			
7	Hyperparameter tuning	It can improve the	It may require a large	
	using SEO algorithm that	performance of the model.	number of computational	
	optimizes the		resources.	
	hyperparameters of the			
	classification model using a			
	social engineering			
	optimization algorithm.			
Major Impact Factors in this Work				

Dependent	Independent	Moderating	Mediating
Variable	Variable	variable	(Intervening)
			variable
The outcome	Biomedical Imaging	Biomedical Image	Bilateral Filtering
variable indicating	Modalities:	Segmentation:	(BF)acts as a
whether breast	Magnetic Resonance	LEDNet ModelActs	mediating variable in
cancer is detected	Imaging (MRI),	as a moderating	the image
and classified using	Ultrasonic Imaging,	variable in the	preprocessing stage,
the proposed	Optical Imaging:	segmentation of	facilitating noise
SEODTL-BDC	These are	biomedical images.	removal.
model.	independent	Residual Network	
	variables as they are	(ResNet-18): Acts as	
	the diverse imaging	a moderating	
	modalities employed	variable in extracting	
	in the study.	features from	
	Photoacoustic	biomedical images.	
	Multimodal Imaging		
	(PAMI):		
	This is a specific		
	modality that		
	combines optics and		
	ultrasonic systems,		
	considered an		
	independent		
	variable.		

The connection is found in the way that different biomedical imaging modalities are used to generate Photoacoustic Multimodal Imaging (PAMI). Under the direction of bilateral filtering and deep learning models, PAMI improves breast cancer detection and classification by combining various imaging data and enhancing image quality.

Input and Output	Feature of This Solution	Contribution & The Value
		of This Work

Input	Output
Photoacous	Classificati
tic	on of the
multimodal	input image
images of	as benign,
breast	malignant,
tissue	or normal

Developing a highly advanced and accurate solution for breast cancer detection and classification, which has the potential to significantly improve the diagnosis and treatment of breast cancer.

The development of a novel SEODTL-BDC model that achieves high accuracy in breast cancer detection and classification, while the value lies in its potential to improve breast cancer diagnosis and treatment through the use of deep transfer learning and multimodal imaging.

Positive Impact of this Solution in This Project Domain

It's potential to significantly improve breast cancer diagnosis and treatment, ultimately leading to better patient outcomes.

Negative Impact of this Solution in This Project Domain

Challenges may arise in integrating the SEODTL-BDC model into existing healthcare systems and workflows, and concerns about false positives or false negatives in breast cancer diagnosis may need to be addressed.

Analyse This Work By	The Tools That Assessed	What is the Structure of
Critical Thinking	this Work	this Paper
This work gives a	TensorFlow, openCv,social	1) Abstract
promising approach to	engineering optimizer	2) Introduction
breast cancer detection and		3) Literature review
classification using		4) The proposed model
advanced technologies.		5) Results and
However, further research		discussions
is needed to address the		6) Conclusion
challenges of integrating		7) References
this technology into clinical		
practice and to ensure that		
ethical considerations are		
adequately addressed.		

--End of Paper 19--

20			
Reference in APA	Haribabu, M., & Guruviah, V. (2023). An Improved Multimodal		
format	Medical Image Fusion App	broach Using Intuitionistic Fuzzy Set	
	and Intuitionistic Fuzzy Cro	oss-Correlation. <i>Diagnostics</i> , 13(14),	
	2330. https://doi.org/10.3390/diagnostics13142330		
	2330. https://doi.org/10.3330/dragnostics13142330		
URL of the Reference	Authors Names and	Keywords in this Reference	
	Emails		
https://www.mdpi.com/	Maruturi Haribabu and	Medical imaging, image fusion,	
2075-4418/13/14/2330	Velmathi Guruvaiah	disease diagnosis, intuitionistic	
		fuzzy set, intuitionistic fuzzy image,	
		subjective and objective analysis.	
		subjective and objective analysis.	
The Name of the	The Goal (Objective) of	What are the components of it?	
Current Solution	this Solution & What is		
(Technique/ Method/	the problem that need to		
Scheme/ Algorithm/	be solved		
Model/ Tool/			
Framework/ etc)			
ŕ			
An Improved	Goal or objective: To	The proposed solution uses	
Multimodal Medical	propose an improved	Intuitionistic Fuzzy Set and	
Image Fusion Approach	approach to multimodal	Intuitionistic Fuzzy Cross-	
using Intuitionistic	medical image fusion using	Correlation.	

Fuzzy Set and	intuitionistic fuzzy set and	
Intuitionistic Fuzzy	intuitionistic fuzzy cross-	
Cross-Correlation	correlation.	
	Problem: The need for	
	better quality medical	
	images that can aid in the	
	diagnostic process.	

	Process Steps	Advantage	Disadvantage
			(Limitation)
1	Fuzzification of registered	It helps to handle the	may lead to a loss of
	input images	uncertainty and	information.
		imprecision in the input	
		images.	
2	Creation of intuitionistic	It helps to enhance the	may lead to a loss of
	fuzzy images	intensity levels of the input	spatial information.
		images	
3	Fusing the intuitionistic	It helps to obtain a single	may lead to a loss of some
	fuzzy images	fused image with more	information during the
		complementary	fusion process.
		information and better	
		quality.	
4	Defuzzification of the final	It helps to obtain a crisp	may lead to a loss of some
	enhanced fused image	image that can be easily	information during the
		interpreted by medical	defuzzification process
		professionals.	
	Major I	mnact Factors in this Work	

Major Impact Factors in this Work

Dependent	Independent	Moderating	Mediating
Variable	Variable	variable	(Intervening)
			variable
The quality of the	Fuzzy Set-Based	The choice of	Calculating
fused image obtained	Multimodal Medical	various medical	Intuitionistic Fuzzy
after the proposed	Image Fusion (IFS-	image datasets for	Entropy variable
IFS-MMIF method,	MMIF) Approach:	testing and	influences the quality
assessed subjectively	The primary	evaluation moderates	of the fused image by
and objectively.	intervention or	the relationship	mediating the
	treatment in this	between the	process of
	study is the	independent variable	identifying the ideal
	suggested fusion	(IFS-MMIF) and the	membership, non-
	method, which	dependent variables,	membership, and
	serves as the	as different medical	hesitation degrees
	independent variable.	images may exhibit	within the
		varied	Intuitionistic Fuzzy
		characteristics.	Set.

The Intuitionistic Fuzzy Set-Based Multimodal Medical Image Fusion (IFS-MMIF) method, as the independent variable, influences enhanced fused image quality (dependent variable) through the mediating role of intuitionistic fuzzy entropy, with the choice of medical image datasets moderating the evaluation process.

Input and Output		Feature of This Solution	Contribution & The Value
			of This Work
Input	Output	The proposed approach helps	The proposed approach uses
Medical images such as CT scans, MRI scans, related to	Generation of fused medical image	to obtain a single fused image with more complementary information and better quality compared to the individual input images.	intuitionistic fuzzy set and intuitionistic fuzzy cross-correlation to handle the uncertainty and imprecision in the input images. This can be valuable for medical
lung cancer.			professionals in dealing with

Positive Impact of this Solution in This Project Domain The proposed approach can help medical professionals make more accurate diagnoses by providing a better quality fused image with more complementary information. The inherent uncertainty imprecision in medical imprecision in The Solution in The Solution has challenges which increased computational complexity difficulty in interpretation.					
Analyse This Work By Critical Thinking		That Assessed Work	What is the Structure of this Paper		
The proposed solution presents a well-researched and detailed approach to medical image fusion that has the potential to improve the accuracy of diagnoses and treatment decisions.	These to MATLAB, SPSS.	ools include ImageJ, and	 Abstract Introduction Related Works Materials and Methods Proposed Fusion Method Experimental Results and Conclusions References 		
	Diagrai	m/Flowchart			
MRI Image → Fuzzification → Fuzzification → CT Image	Calculate intuition fuzzy image Calculate intuition fuzzy image	→ Decomposition	of each image block		

--End of Paper 20—

2.2 COMPARISION TABLE:

Author	Year	Approach	Description
Zsoter N, Bandi P,	2012	Lung affinity map	An automated method for
Szabo G, Toth Z,		generation, nodule	detecting lung nodules in PET-CT
Bundschuh R. A.,		detection, nodule	studies, significantly reducing
Dinges J, Papp L.		classification.	localization time and proving
			effective in clinical evaluation for
			oncology practices.
Ch. Hima Bindu	2014	Automatic	Feature-level image fusion method
and Dr. K. Veera		Segmentation Process,	using content-based automatic
Swamy		Feature-Level Fusion	segmentation, enhancing
		and Performance	multimodal image information
		Evaluation Metrics	into a meaningful and informative
			fused image.
Himanshi, V.	2014	Gray scale conversion,	Decomposing the source images
Bhateja, A.		PCA, DTCWT	using DTCWT and applying PCA
Krishn and A.		decomposition, and	in the complex wavelet domain to
Sahu		image fusion	fuse the images.
Z. Guo, X. Li, H.	2018	Deep Convolutional	CNN-based segmentation system
Huang, N. Guo		Neural Network	for soft tissue sarcoma detection
and Q. Li		(CNN), Multi-Modality	from multi-modal medical images,
		image processing and	investigating diverse fusion
		Fusion Techniques.	schemes for improved accuracy in
			biomedical imaging analysis.
M B	2018	DWT and Inverse DWT	Preprocessing of images,
Abdulkareem			decomposition using DWT,
			obtaining the fused image via
			Inverse DWT and postprocessing
			the image
K. Vanitha, D.	2019	Hybrid 11-10	A hybrid L1-L0 decomposition-
Satyanarayana		decomposition model,	based two-scale fusion method for
and M. N. G.		Weighted average	multimodal medical images,
Prasad		fusion rule, Average	aiming to enhance information

		fusion rule, Linear	preservation and produce superior
		combination and	fused images, assessed through
		Objective criteria	objective criteria.
Jiaxin Li, Houjin	2019	Densely connected	Uses a deep learning approach to
Chen, Yanfeng Li		fully convolutional	accurately segment lung tumors on
and Yahui Peng		network and hyper-	multi-modal MR images.
		densely connected	
		CNN model	
K. S. Asish	2019	Discrete wavelet	An enhanced medical image fusion
Reddy, K. Kalyan		transforms (DWT),	technique using DWT and PCA,
Kumar, K. N.		Principal Component	aiming to improve brain tumor
Kumar, V.		Analysis (PCA)	detection and other cancer
Bhavana and H.			diagnoses, offering more
K. Krishnappa			informative and accurate fused
			images for clinical diagnosis.
H Yan and Z. Li	2019	MFDF, Weight map	Performs one level image
		and guide filtering	decomposition and generates a
			weight map to single fused image.
V. Amala Rani	2020	Empirical mode	A hybrid image fusion framework
and S. Lalitha		decomposition (EMD)	combining empirical mode
Kumari		and discrete wavelet	decomposition and discrete
		transform (DWT).	wavelet transform for MRI and CT
			brain tumor images, aiming for
			enhanced functional and structural
			information preservation without
			image distortion.
Manjit Kaur and	2020	Multi-objective	A novel technique using deep
Dilbag Singh		differential evolution	neural networks and multi-
		algorithm and Inception	objective differential evolution for
		model-based deep	superior multi-modality medical
		neural network that uses	image fusion, outperforming
		a non-subsampled	existing approaches.
		contourlet transform	

Lifang Wang, Jin	2021	Gabor representation,	Multimodal medical image fusion
Zhang, Yang Liu,		multi-CNNs and fuzzy	technique based on Gabor
Jia Mi and Jiong		neural networks	representation combined with
Zhang			multi-CNN and fuzzy neural
			network, showcasing superior
			performance compared to state-of-
			the-art methods.
C. Gao, C. Song,	2021	Latent Low-Rank	An infrared and visible image
Y. Zhang, D. Qi		Representation, Rolling	fusion technique employing Latent
and Y. Yu		Guided Image Filtering,	Low-Rank Representation nested
		CNN based Fusion	with Rolling Guided Image
		Rules, Improved Visual	Filtering, demonstrating superior
		Saliency Mapping	performance compared to existing
		Image Filtering and	methods.
		Laplacian Pyramid	
		Decomposition	
X. Fu, L. Bi, A.	2021	Multimodal spatial	A deep learning-based approach to
Kumar, M.		attention module and	learn about the features of the
Fulham and J.		convolutional neural	image and generate segmentation
Kim		network backbone	map which is refined by MSAM by
			emphasizing regions related to
			tumors and suppressing normal
			regions.
K. Kusram, S.	2021	Coarse Fusion Network	AccuFusion, a two-phase CNN-
Transue and M		(CFN), Refining Fusion	based method for per-pixel
H. Choi		Network (RFN),	multimodal image fusion,
		Nonlinear Image	overcoming limitations in global
		Registration, Depth-	alignment and significantly
		Thermal Fusion and	enhancing accuracy.
		Two-Phase CNN	
James Barrett and	2022	Training Deep neural	An EMM-LC Fusion model that
Thiago Viana		networks; extracted	leverages multimodal data fusion
		features and Evaluation	and intermediate feature extraction

		using various	via machine learning for improved
		evaluation metrics such	lung cancer detection.
		as sensitivity,	
		specificity, accuracy,	
		and F1 score.	
Y. Zhang, H.	2022	Hypergraph	Hypergraph-based Multi-modal
Zhang, L. Xiao,		Representation, Inter-	data Fusion (HMF) algorithm for
Y. Bai, V. D.		and Intra-Modality	integrating imaging and genetics
Calhoun and Y		Relationships and HMF	data, enhancing schizophrenia
P. Wang		Algorithm	classification accuracy by
			capturing complex interactions
			among risk genes, environmental
			factors, and abnormal brain
			regions.
Kaushik Pratim	2022	Multiple medical	Efficient medical image fusion
Das and Chandra J		images, image	techniques, explores recent
		registration techniques,	advancements, and assesses the
		image fusion	impact of deep learning in
		algorithms, and image	automating the process for
		quality assessment	enhanced image quality and
		methods	clinical information retention.
Maha M.	2022	Preprocessing: bilateral	A highly advanced and accurate
Althobaiti, Amal		filtering, LEDNet	solution for breast cancer detection
Adnan Ashour,		model for image	and classification, which has the
Nada A. Alhindi,		segmentation,x Feature	potential to significantly improve
Asim Althobaiti,		extraction: ResNet-18	the diagnosis and treatment of
Romany F.		model, Image	breast cancer.
Mansour, Deepak		classification: RNN and	
Gupta and Ashish		hyperparameter tuning	
Khanna		with SEO algorithm	
Haribabu, M., and	2023	Intuitionistic Fuzzy Set	An intuitionistic fuzzy set
Guruviah, V		and Intuitionistic Fuzzy	and intuitistic fuzzy cross-
		Cross-Correlation	correlation to handle the

uncertainty and imprecision in
input images. This can be valuable
for medical professionals
in dealing with the inherent
uncertainty and imprecision in
medical images.

2.3 WORK EVALUATION TABLE:

	Work	System'	System'	Features	Performa	Advant	Limitat	Results
	Goal	S	S	/Charac	nce	ages	ions	
		Compo	Mecha	teristics			/Disadv	
		nents	nism				antages	
LIFA	The	Author	The	The	The	Integrat	The	The
NG	goal of	used	system	proposed	proposed	es the	propose	proposed
WAN	the	Gabor	uses	solution	solution	rich	d	solution
G,	propos	represe	Gabor	outperfor	achieved	texture	solution	outperform
JIN	ed	ntation,	represe	ms nine	better	features	has the	s methods
ZHA	solutio	multi-	ntation,	recent	performa	and	disadva	by
NG,	n is to	CNNs	multi-	states of	nce than	clear	ntage of	significantl
YAN	impro	and	CNN,	the art	other	edge	increase	у
G	ve the	fuzzy	and	multimo	comparati	informa	d	enhancing
LIU,	quality	neural	fuzzy	dal	ve fusion	tion of	comput	objective
JIA	of	network	neural	fusion	methods	differen	ational	evaluation
MI,	multi	s for	network	methods	in	t images	comple	and visual
AND	modal	obtainin	techniq	in terms	objective	into a	xity and	quality
JION	medica	g fused	ues to	of	evaluatio	single	longer	measures,
G	1	images.	enhance	average	n and	fused	training	achieving
ZHA	image		the	mutual	visual	image,	time.	up to 13%
NG	fusion.		texture	informati	quality.	which		improveme
2021			features	on,		improve		nt in
			and	spatial		s the		mutual
			edge	frequenc		quality		informatio

			informa	y,		of		n, 20% in
			tion of	standard		image		spatial
			the	deviation		fusion		frequency,
			source	, and		and		14.4% in
			images	edge		assists		standard
			and	retention		doctors		deviation,
			generat	informati		in		and 43% in
			e a	on.		disease		edge
			high-			diagnos		retention.
			quality			is.		
			fused					
			image.					
Ch.	The	image	Propose	the use	The	it	it may	The output
Hima	goal of	fusion	d	of multi-	proposed	provide	not be	is a
Bindu	this	using a	method	modal	image	s a	suitable	generalized
, K.	solutio	propose	focuses	image	fusion	unified	for all	framework
Veera	n is to	d	on	fusion, a	method	framew	scenario	of image
Swam	achiev	region-	region-	novel	utilizes	ork for	s, and	fusion for
у	e less	based	based	conceptu	region-	multi-	some	supervised
	compl	fusion	fusion,	al image	based	modal	modific	learning in
	ex	method	merging	fusion	feature	image	ations	biomedical
	fusion	with	selected	architect	level	processi	may be	image
	and	evaluati	regions	ure, the	fusion,	ng,	necessa	
	impro	on	to	use of	overcomi	which	ry.	
	ve the	based	reconstr	Convolut	ng the	can		
	perfor	on	uct the	ional	drawback	guide		
	mance	Fusion	final	Neural	s of pixel-	the		
	of	Symmet	fused	Network	level	method		
	image	ry and	image.	S	methods.	ology		
	fusion	Peak	Evaluati	(CNNs),	It	design		
	metho	Signal	on of	and the	achieves	for		
	ds		the	evaluatio	better	various		
	compa		method	n of	performa			

existin Ratio. metrics nce existing ions.	
g like differenc methods,	
metho fusion es across as	
ds. symmet different evidenced	
ry and fusion by higher	
peak schemes. Fusion	
signal- These Symmetr	
to-noise features y and	
ratio contribut Peak	
(PSNR) e to Signal to	
for improve Noise	
perform d Ratio	
ance accuracy (PSNR)	
assessm and values.	
ent. robustne The	
ss of method is	
medical visually	
image and	
segment quantitati	
ation. vely	
evaluated	
with CT-	
MRI and	
MRI-PET	
images,	
demonstr	
ating its	
effectiven	
ess in	
medical	
diagnostic	
S.	

Hima	То	Gray	Decom	Shift	Reported	Improv	Comput	A fused
nshi,	presen	scale	posing	invarianc	to be	ed	ational	image with
Vikra	t an	convers	the	e, high	satisfactor	visual	intensit	higher
nt	impro	ion,	source	direction	y, with	quality	y of	fusion
Bhatej	ved	DTCW	images	ality, and	higher	of fused	DTCW	metric
a,	fusion	T	using	feature	values of	images	T,	values
Abhin	approa	decomp	DTCW	enhance	fusion		potentia	
av	ch for	osition,	T and	ment	metrics		lly	
Krish	medica	PCA	applyin	propertie	supportin		increasi	
n and	1	and	g PCA	S	g the		ng	
Akan	images	image	in the		improvem		processi	
ksha	using	fusion	comple		ent in		ng time	
Sahu	PCA		X		visual		and	
	and		wavelet		quality of		cost,	
	DTC		domain		the fused		and the	
	WT.		to fuse		image.		risk of	
			the				informa	
			images.				tion loss	
							during	
							fusion	
Z.	a	a multi-	Concept	multi-	The paper	it	it may	The output
Guo,	genera	modal	ual	modal	proposes	provide	not be	is a
X. Li,	lized	convolu	design	image	a	s a	suitable	generalized
H.	frame	tional	for	fusion, a	generalize	unified	for all	framework
Huan	work	neural	image	novel	d	framew	scenario	of image
g, N.	of	network	fusion	conceptu	framewor	ork for	s, and	fusion for
Guo	image	approac	scheme	al image	k for	multi-	some	supervised
and	fusion	h for	s,	fusion	image	modal	modific	learning in
Q. Li	for	medical	includin	architect	fusion in	image	ations	biomedical
	superv	image	g fusing	ure, the	biomedic	processi	may be	image.
	ised	segment	at	use of	al image	ng,	necessa	
	learnin	ation,	feature	Convolut	analysis	which	ry.	
	g to	which	level,	ional	using	can		

	imple	includes	fusing	Neural	deep	guide		
	ment	three	at	Network	convoluti	the		
	the	scheme	classifie	s	onal	method		
	fusion	s for	r level,	(CNNs),	neural	ology		
	schem	fusing	and	and the	networks.	design		
	es	informa	fusing	evaluatio	The	for		
	based	tion	at	n of	fusion	various		
	on	from	decision	performa	networks	applicat		
	deep	differen	level.	nce	outperfor	ions.		
	CNN	t image		differenc	m single-			
	to	modaliti		es across	modality			
	impro	es:		different	counterpa			
	ve the	fusing		fusion	rts on the			
	accura	at		schemes.	TCIA			
	cy and	feature		These	Soft-			
	robust	level,		features	tissue-			
	ness of	fusing		contribut	Sarcoma			
	medica	at		e to	dataset,			
	1	classifie		improve	demonstr			
	image	r level,		d	ating their			
	segme	and		accuracy	potential			
	ntation	fusing		and	for multi-			
	using	at		robustne	modal			
	multi-	decision		ss of	medical			
	modal	level.		medical	image			
	CNN.			image	analysis.			
				segment				
				ation.				
Moha	То	DWT	Preproc	Preservat	Achieves	Preserv	May	A fused
mmed	enhanc	and	essing	ion of	around	ation of	introduc	image with
Basil	e the	Inverse	of	both the	90-95%	both the	e some	accurate
Abdul	quality	DWT	images,	spectral	more	spectral	artifacts	outcomes
	of		decomp	and	accurate	and	and	preserving

karee	medica		osition	anatomic	outcomes	anatomi	distortio	both
m	1		using	al data,	and	cal data	ns in the	spectral
	images		DWT,	and the	preserves	and	process	and
	for		obtainin	ability to	both the	provide	ed	anatomical
	clinica		g the	dilute the	spectral	s a	images.	data
	1		fused	color	and	multi-		
	diagno		image	change.	anatomica	resoluti		
	sis		via		1 data	on		
	throug		Inverse			represe		
	h		DWT			ntation		
	image		and					
	fusion		post-					
	techni		processi					
	que		ng the					
			image					
K.Van	То	Hybrid	uses a	Evaluati	outperfor	can	-	A fused
itha,	develo	11-10	11-10	on using	ms	provide		image
Dr.D.	p a	decomp	decomp	objective	existing	a more		which
Satya	new	osition	osition	criteria	methods	complet		helps
naray	metho	model,	model	such as	in terms	e and		researchers
ana	d for	Weight	and	mean,	of image	accurate		compare
and	multi	ed	weighte	standard	quality	represe		and
Dr.M.	modal	average	d	deviation	and	ntation		benchmark
N.Giri	medica	fusion	average	, and	objective	of the		different
Prasa	1	rule,	fusion	mutual	evaluatio	underlyi		methods
d	image	Averag	rule to	informati	n.	ng		for medical
	fusion	e fusion	combin	on,		anatom		image
	that	rule,	e	which		y or		fusion,
	can	Linear	detailed	allows		patholo		which can
	provid	combin	informa	for a		gy, even		lead to
	e a	ation	tion,	quantitat		when		further
	more	and	average	ive		source		improveme
	compl	Objecti	fusion	assessme		images		

	ete and	ve	rule for	nt of its		have		nts in the
	accurat	criteria	base	performa		poor		field.
	e		layers,	nce.		contrast		
	represe		and a					
	ntation		linear					
	of the		combin					
	underl		ation for					
	ying		the final					
	anato		fused					
	my or		image,					
	pathol		evaluate					
	ogy		d with					
			objectiv					
			e					
			criteria					
			for					
			perform					
			ance					
			compari					
			son.					
Jiaxin	То	A	Uses a	Combini	Efficient	Segmen	Practica	Binary
Li,	impro	densely	deep	ng MR	tumor	ting	1	segmentati
Houji	ve the	connect	learning	imaging	segmentat	lung	applicat	on mask
n	accura	ed fully	approac	modaliti	ion and	tumors	ion	that
Chen,	cy of	convolu	h to	es for	assessing	due to	might	identifies
Yanfe	lung	tional	accurate	anatomic	performa	the	be	the tumor
ng Li	tumor	network	ly	al and	nce with	comple	hindere	region in
and	segme	and a	segment	function	Dice	x and	d in	the images.
Yahui	ntation	hyper-	lung	al	Similarity	diverse	certain	
Peng	on	densely	tumors	informati	Coefficie	appeara	settings	
	multi-	connect	on	on,	nt (DSC)	nce of		
	modal	ed CNN	multi-	utilizing		tumors		
	MR	model	modal	a novel		on		

	images	for	MR	network		differen		
	, which	multi-	images.	architect		t		
	is	modalit		ure		modaliti		
	import	y fusion		blending		es.		
	ant for			U-Net				
	the			and				
	classifi			densely				
	cation			connecte				
	of			d CNN				
	tumors			character				
				istics				
	_							
K SAI	То	The	The .	This	The	The	The	The results
ASIS	enhanc	compon	extracti	solution	proposed	advanta	limitati	of this
h	e the	ents of	on of	merges	solution	ges of	ons of	work show
RED	accura	the	fine	multiple	provides	this	this	that the
DY,	cy of	propose	details	medical	more	process	process	fusion
K	clinica	d	from the	images	accurate	include	include	process
KAL	1	solution	input	from	and	improve	comple	provides
YAN	diagno	include	images	PET,	informati	d	xity,	more
KUM	sis	the use		MRI,	ve	accurac	processi	accurate
AR,	throug	of	DWT	and CT	medical	у,	ng time,	and
K.	h the	Discrete	and	into a	images	reduced	and	informativ
NAV	fusion	wavelet	PCA	single	for	data,	sensitivi	e images
EEN	of	transfor	algorith	image,	clinical	applica	ty to	for clinical
KUM	multi	m	ms,	providin	diagnosis,	bility to	input	diagnosis,
AR,	modal	(DWT),	followe	g	which can	multiple	quality.	which can
BHA	medica	Principa	d by the	accurate,	lead to	modaliti		lead to
VAN	1	1	fusion	informati	better	es, and		better
A. V,	images	Compo	of the	ve data	patient	reliabili		patient
KRIS	•	nent	extracte	for	outcomes	ty		outcomes
HNA		Analysi	d details	clinical	and			and

PPA		s (PCA)	into a	diagnosi	improved			improved
H.K		for	single	s using	healthcare			healthcare
2019		image	image	advance	delivery.			delivery.
_017		fusion.	using a	d				
			fusion	algorith				
			rule.	ms like				
			The	DWT				
			fused	and				
			image is	PCA.				
			then					
			post-					
			process					
			ed to					
			enhance					
			its					
			quality					
			and					
			remove					
			any					
			artifacts					
Huibi	to	MFDF,	perform	High	The fused	fast and	Someti	A fused
n Yan	provid	Weight	s one-	contrast,	images	efficient	mes	image
and	e a fast	map and	level	retain	are more	, and	may not	
Zhong	and	guide	image	more	in line	does not	be able	
min	efficie	filtering	decomp	edge and	with	have the	to	
Li	nt		osition	texture	human	problem	preserv	
	solutio		and	informati	vision	of	e the	
	n for		generat	on	with high	selectin	edge	
	multi-		es a		contxxxx	g the	and	
	modal		weight		xrast.	number	texture	
	medica		map			of	informa	
	1		which is			decomp	tion of	
	image		used to				the	

	fusion		single			osition	input	
	in		fused			levels.	images.	
	spatial		image.					
	domai							
	n.							
V.	Devel	The	The	The	The	The	The	The fusion
AMA	op a	propose	system	method	performa	method	algorith	results
LA	hybrid	d hybrid	decomp	focuses	nce of the	claims	m's	obtained
RANI	image	image	oses	on	proposed	to retain	effectiv	are
AND	fusion	fusion	input	preservin	method is	function	eness in	observed
S.	techni	algorith	images	g	claimed	al	medical	and
LALI	que	m	using	function	to	informa	imaging	quantitativ
THA	that	consists	EMD to	al	demonstr	tion,	tasks	ely
KUM	can	of two	extract	informati	ate the	spatial	depends	analysed,
ARI	effecti	main	relevant	on while	dominanc	characte	on input	indicating a
2020	vely	compon	features	maintain	e of the	ristics,	image	favourable
	combi	ents:	and then	ing	obtained	and	quality	hybrid
	ne the	Empiric	employ	spatial	fusion	produce	and task	fusion
	MRI	al mode	s DWT-	character	results.	distortio	context,	response in
	and	decomp	based	istics		n-free	necessit	combining
	CT	osition	fusion	from the		fused	ating	MRI and
	images	(EMD)	to	original		images,	further	CT images
	of	and	combin	images		addressi	research	of the
	brain	discrete	e these	without		ng	for	brain.
	to	wavelet	features	introduci		storage	validati	
	provid	transfor	,	ng any		issues	on	
	e high	m	ensurin	distortio		and	across	
	quality	(DWT).	g the	n in the		offering	diverse	
	fused		retentio	final		a hybrid	datasets	
	images		n of			fusion	and	

	with		function	fused		approac	addressi	
	no		al	image.		h.	ng	
	distorti		details				comple	
	on.		and				X	
			spatial				comput	
			characte				ational	
			ristics				steps	
			without				and	
			introduc				practica	
			ing				1	
			distortio				implem	
			n into				entation	
			the				challen	
			fused				ges.	
			image.					
Manji	The	it	It uses a	The	_	The	The	to fuse
t Kaur	goal is	consists	multi-	Xception		multi-	choice	multi-
Dilba	to	of a	objectiv	model is		objectiv	of	modality
g	impro	multi-	e	a deep		e	fusion	medical
Singh	ve the	objectiv	differen	neural		differen	function	images to
2020	accura	e	tial	network		tial	s may	obtain a
2020	cy and	differen	evolutio	that has		evolutio	affect	more
	reliabil	tial	n	been		n	the	informativ
	ity of	evolutio	algorith	shown to		algorith	perform	e and
	medica	n	m to	perform		m is a	ance of	accurate
	1	algorith	optimiz	well on		powerfu	the	representat
	imagin	m and	e the	image		1	overall	ion of the
	g for	an	weights	classifica		optimiz	approac	underlying
	diagno	Xceptio	of an	tion		ation	h and	anatomy or
	sis and	n	Xceptio	tasks.		techniq	may	pathology.
	treatm	model-	n	Addition		ue that	require	
	ent of	based	model-	ally, we		can help	extensiv	
	variou	deep	based	use a		to select	e	

	S	neural	deep	non-		the most	experim	
	medica	network	neural	subsamp		informa	entation	
	1	that	network	led		tive	and	
	conditi	uses a	. It the	contourl		features	validati	
	ons,	non-	decomp	et		from the	on.	
	leadin	subsam	osed	transfor		input		
	g to	pled	subband	m		images,t		
	better	contourl	s of the	(NSCT)		0		
	patient	et	medical	to		improve		
	outco	transfor	images	decompo		the		
	mes	m to	obtaine	se the		accurac		
	and	decomp	d using	input		y and		
	impro	ose	a non-	images		efficien		
	ved		subsam	into		cy of		
	quality		pled	subbands		the		
	of life		contourl			approac		
			et			h.		
			transfor					
			m as					
			input					
			and					
			produce					
			s a					
			fused					
			image					
LIFA	The	Author	The	The	The	Integrat	The	The
NG	goal of	used	system	proposed	proposed	es the	propose	proposed
WAN	the	Gabor	uses	solution	solution	rich	d	solution
G,	propos	represe	Gabor	outperfor	achieved	texture	solution	outperform
JIN	ed	ntation,	represe	ms nine	better	features	has the	s methods
ZHA	solutio	multi-	ntation,	recent	performa	and	disadva	by
NG,	n is to	CNNs	multi-	states of	nce than	clear	ntage of	significantl
YAN	impro	and	CNN,	the art	other	edge	increase	у

G	ve the	fuzzy	and	multimo	comparati	informa	d	enhancing
LIU,	quality	neural	fuzzy	dal	ve fusion	tion of	comput	objective
JIA	of	network	neural	fusion	methods	differen	ational	evaluation
MI,	multi	s for	network	methods	in	t images	comple	and visual
AND	modal	obtainin	techniq	in terms	objective	into a	xity and	quality
JION	medica	g fused	ues to	of	evaluatio	single	longer	measures,
G	1	images.	enhance	average	n and	fused	training	achieving
ZHA	image		the	mutual	visual	image,	time.	up to 13%
NG	fusion.		texture	informati	quality.	which		improveme
2021			features	on,		improve		nt in
			and	spatial		s the		mutual
			edge	frequenc		quality		informatio
			informa	y,		of		n, 20% in
			tion of	standard		image		spatial
			the	deviation		fusion		frequency,
			source	, and		and		14.4% in
			images	edge		assists		standard
			and	retention		doctors		deviation,
			generat	informati		in		and 43% in
			e a	on.		disease		edge
			high-			diagnos		retention.
			quality			is.		
			fused					
			image.					
C.	the	The	the	The	The paper	It can	While	The
Gao,	perfor	propose	propose d	proposed	proposes	effectiv	the	proposed
C.	mance	d	method	fusion	a fusion	ely	propose	method for
Song,	of	method	shows promisi	method	method	preserv	d	infrared
Y.	infrare	for	ng	uses	based on	e	method	and visible
Zhang	d and	infrared	results in terms	LatLRR	LatLRR	texture	has	image
, D.	visible	and	of	with	nested	detail	many	fusion is
Qi	image	visible	preservi ng	denoisin	with	informa	advanta	based on
	fusion	image	image	g and	RGIF. It	tion,	ges,	LatLRR

and	by	fusion	details,	local	outperfor	resultin	there	nested with
Y. Yu	using a	consists	contrast , and	structure	ms other	g in	are also	RGIF. It
	novel	of five	overall	represent	methods	sharper	some	involves a
	metho	compon	structur al	ation	in visual	and	limitati	two-level
	d that	ents:	similarit	capabiliti	quality	more	ons. In	decomposit
	combi	image	y. Howeve	es for	and	distinct	certain	ion and
	nes	decomp	r, there	image	objective	features	cases,	three-layer
	LatLR	osition,	are still some	decompo	evaluatio	in the	such as	fusion
	R	acquisit	areas	sition,	n metrics.	fused	the	approach.
	(Latent	ion of a	where further	nested	The fused	image.	fusion	The
	Low-	detail-	improve	with	images	It also	of	method
	Rank	enhance	ments can be	RGIF for	exhibit	provide	images	utilizes
	Repres	d layer,	made to	image	high	s high	with	LatLRR for
	entatio	fusion	address the	enhance	sharpness	contrast	tree	image
	n) with	of low-	limitati	ment. It	and	and	canopie	decomposit
	RGIF	rank	ons mention	employs	effectivel	good	s or	ion and
	(Recur	sublaye	ed	a two-	y preserve	overall	figures,	RGIF for
	sive	rs,	above.	level	important	structur	artifacts	image
	Guide	fusion		decompo	informati	al	may	enhanceme
	d	of		sition	on.	similarit	appear	nt. It also
	Image	saliency		and		у	on the	incorporate
	Filteri	sublaye		three-		between	edges of	S
	ng).	rs, and		layer		the	the	convolutio
	The	image		fusion		fused	contour	nal neural
	solutio	reconstr		approach		image	s. The	network
	n aims	uction.		,		and the	fused	(CNN)
	to	These		allowing		source	images	based
	enhanc	compon		for		image.	may	fusion rules
	e	ents		flexible		Additio	also	for detail
	image	work		fusion of		nally,	have	layer
	contra	together		infrared		the	less	fusion and
	st,	to		and		propose	contrast	adaptive
	sharpn	enhance				d	informa	weighting

ess,	image	visible	method	tion	of regional
and	contrast	images.	can	compar	energy
richne	,		preserv	ed to	features for
ss of	sharpne		e rich	other	saliency
detaile	ss, and		and	method	sublayer
d	richness		effectiv	s.	fusion.
inform	of		e	Additio	
ation,	detailed		informa	nally,	
provid	informa		tion,	the sky	
ing	tion.		making	backgro	
better			it	und of	
fusion			suitable	the	
results			for	fused	
compa			various	image	
red to			types of	may	
other			image	appear	
metho			processi	dark,	
ds.			ng	affectin	
			tasks.	g the	
				acquisit	
				ion of	
				informa	
				tion.	

XIAO	To	The	A deep	The	The	Improv	The	The results
HAN	impro	propose	learning	proposed	proposed	es the	propose	demonstrat
G FU,	ve the	d deep	-based	solution	framewor	accurac	d	e that the
LEI	accura	learning	approac	uses PET	k	y and	framew	proposed
BI,	cy of	framew	h is	and CT	outperfor	reliabili	ork can	framework
ASH	tumor	ork uses	used to	modaliti	ms state-	ty of	be	outperform
NIL	segme	a	learn	es for	of-the-art	tumor	comput	s state-of-
KUM	ntation	multim	the	improve	methods	segment	ationall	the-art
AR,	in	odal	features	d tumor	in terms	ation in	У	methods in
MICH	PET-	spatial	of the	segment	of	PET-	expensi	terms of
EAL	CT	attentio	image	ation	segmentat	CT	ve and	segmentati
FULH	images	n	and	accuracy	ion	images,	may	on
AM,	using a	module	generat	. It can	accuracy,	doesn't	require	accuracy,
AND	deep-	and a	e	handle	as	require	a large	as
JINM	learnin	convolu	segment	varied	measured	tumor	amount	measured
AN	g	tional	ation	anatomic	by the	boundar	of	by the Dice
KIM	based	neural	map	al and	Dice	ies /	training	similarity
2021	frame	network	which is	function	similarity	initializ	data to	coefficient
	work	backbo	refined	al	coefficien	ation	achieve	(DSC).
	with a	ne to	by	features.	t (DSC).	seeds to	optimal	
	multi	segment	MSAM	The		be pre-	perform	
	modal	PET-	by	framewo		defined,	ance.	
	special	CT	emphasi	rk		and can		
	attenti	images,	zing	outperfor		handle		
	on	focusin	regions	ms state-		more		
	modul	g on	related	of-the-		varied,		
	e.	tumor-	to	art		challen		
		related	tumors	methods		ging		
		regions.	and	in		anatomi		
			suppres	segment		cal and		
			sing	ation		function		
			normal	accuracy		al		
			regions.			features		

K.	metho	The	The	the	RFN	It	it may	The output
Kusra	d for	compon	propose	feature	approach	reduces	not be able to	of the paper is a fused
m, S.	fusing	ents	d	of this	improves	the	handle	image that
Trans	multip	include	method	solution	edge	comput	non- linear	combines multiple
ue and	le	a	assumes	is its	accuracy	ational	deforma	imaging
M	imagin	hypergr	the	ability to	by 18%	comple	tions.	modalities
H.	g	aph-	provisio	fuse	over	xity of		at a per- pixel level,
Choi	modali	based	n of	multiple	traditional	the		resulting in an efficient
	ties at	manifol	depth	imaging	methods,	registrat		and
	a per-	d	and	modaliti	showcasi	ion		accurate
	pixel	regulari	thermal	es at a	ng	process.		image registration
	level,	zation, a	images	per-pixel	enhanced			. The authors
	resulti	multi-	that are	level	alignment			achieve
	ng in	modal	synchro	using a	in diverse			this by developing
	an	feature	nized	two-	scenarios.			a two-
	efficie	selectio	for	phase	AccuFusi			phase non- linear
	nt and	n	training	non-	on			registration
	accurat	method,	. Image-	linear	method			method using
	e	and a	space	registrati	and			convolutio
	image	multi-	transfor	on	efficient			nal neural networks.
	registr	task	mations	method,	system			networks.
	ation.	multi-	are used	resulting	configurat			
	Ву	linear	to	in an	ion enable			
	emplo	regressi	generat	efficient	real-time			
	ying a	on	e	and	multimod			
	two-	model	training	accurate	al fusion			
	phase	for	data for	image	on GPU,			
	non-	predicti	the	registrati	promising			
	linear	ng	CFN	on.	precise			
	registr	cognitiv	and		alignment			
	ation	e	RFN.		for			
	metho	scores.			various			
	d, they	It also						

	achiev	involve		applicatio			
	e an	S		ns.			
	increas	integrati					
	e of	ng SNP,					
	18% in	DNA					
	averag	methyla					
	e	tion,					
	accura	and					
	cy	fMRI					
	over	data to					
	global	improve					
	registr	classific					
	ation.	ation					
		accurac					
		y and					
		biomark					
		er					
		detectio					
		n.					
Barret	Enhan	Trainin _	The use	_	Ability	Potentia	classificati
t, J.,	ced	g of	of a		to	l loss of	on of lung
&	lung	deep	multimo		combin	informa	cancer
Viana,	cancer	neural	dal		e	tion and	
T.	classifi	network	fusion		comple	the need	
(2022	cation	s using	approach		mentary	for	
)	using	extracte	that		informa	careful	
	multi	d	combine		tion	selectio	
	modal	features	s		from	n of	
	fusion		informati		differen	paramet	
		Evaluati	on from		t	ers.	
		on	multiple		modaliti		
		evaluati	modaliti		es and		
			es,		improve		

		on of		includin		the		
		the		g CT		accurac		
		trained		scans		y of the		
		model		and		model.		
		using		clinical				
		various		data, to				
		evaluati		improve				
		on		the				
		metrics		accuracy				
		such as		of lung				
		sensitivi		cancer				
		ty,		detection				
		specific						
		ity,						
		accurac						
		y, and						
		F1						
		score.						
Y.	develo	The	The	HMF	The	it can	it may	The output
Zhang	p a	HMF	system	that	proposed	incorpo	require	is the
, H.	novel	model	utilizes	combine	Hypergra	rate	more	validate
Zhang	algorit	for	hypergr	S	ph-Based	both	comput	their
	hm	multi-	aph-	informati	Manifold	structur	ational	approach
	called	modal	based	on from	Regulariz	al	resourc	on both
	HMF	data	manifol	diverse	ation	informa	es and	synthetic
	that	fusion	d	sources	algorithm	tion and	time.	data and
	combi	using	regulari	for	demonstr	comple		real
	nes	hypergr	zation	improve	ates	X		samples
	inform	aph-	to	d	superior	interacti		from a
	ation	based	incorpo	accuracy	performa	ons		schizophre
	from	manifol	rate	in	nce in	among		nia study
	divers	d	subject	diagnosi	classifyin	subjects		and show
	e		relation	ng	g	, which		that HMF

source	regulari	ships	complex	schizophr	can	outperform
s for	zation.	for	brain	enia and	circumv	s several
impro		multi-	disorders	identifyin	ent the	competing
ved		modal		g	overfitti	methods.
accura		joint		significan	ng	
cy in		learning		t	problem	
diagno		. It		biomarker	in high	
sing		optimiz		S	dimensi	
compl		es the		compared	on but	
ex		objectiv		to other	low	
brain		e		models.	sample	
disord		function		Ву	data.	
ers.		iterative		integratin		
		ly,		g multi-		
		updatin		modal		
		g the		data and		
		weight		incorporat		
		vector		ing high-		
		based		order		
		on		relationsh		
		subject		ips, the		
		similarit		algorithm		
		ies		overcome		
		within		S		
		and		overfittin		
		across		g in high-		
		modaliti		dimensio		
		es and		nal data		
		terminat		analysis.		
		es when				
		the				
		relative				
		error is				

			satisfied					
Das,	the	multiple		Compreh		Improv	Need	genertaes
K. P.,		medical	_	ensive	_	ed	for	combined
	goal of							medical
& Chand	medica	images,		coverage		accurac	comput	
Chand	1	image		of		y of	ationall	image
ra, J.	image	registrat		medical		diagnos	у 	
	fusion	ion		image		is due to	intensiv	
	is to	techniq		fusion		precise	е	
	combi	ues,		techniqu		spatial	algorith	
	ne	image		es for		alignme	ms	
	multip	fusion		lung		nt.		
	le	algorith		cancer				
	medica	ms, and		diagnosi				
	1	image		S,				
	images	quality		includin				
	to	assessm		g recent				
	produc	ent		advances				
	e a	method		and the				
	single	s.		impact				
	image			of deep				
	that			learning				
	contai			techniqu				
	ns			es.				
	more							
	compr							
	ehensi							
	ve and							
	accurat							
	e							
	inform							
	ation.							

Maha	Aim is	Preproc	Develo _	It can	Need _	detect and
M.	to	essing	ping a	capture	for	categorized
Altho	detect	using	highly	complex	comput	the
baiti,	and	bilateral	advance	patterns	ationall	presence of
Amal	catego	filtering	d and	and	у	cancer
Adna	rize	, image	accurate	features	intensiv	
n	the	segment	solution	that are	e	
Ashou	presen	ation	for	difficult	algorith	
r,	ce of	using	breast	to detect	ms.	
Nada	breast	LEDNe	cancer	manually.		
A.	cancer	t model,	detectio			
Alhin	using	feature	n and			
di,	ultraso	extracti	classific			
Asim	und	on	ation,			
Altho	images	using	which			
baiti,		ResNet-	has the			
Roma		18	potentia			
ny F.		model,	1 to			
Mans		image	signific			
our,		classific	antly			
Deepa		ation	improve			
k		using	the			
Gupta		RNN	diagnos			
,		and	is and			
Ashis		hyperpa	treatme			
h		rameter	nt of			
Khan		tuning	breast			
na,		using	cancer.			
		SEO	Į.			
		algorith				
		m.				
		111.				

Marut	The	The	It uses	The	It helps to	may	-	Provides
uri	goal is	propose	intuitio	proposed	obtain a	lead to a		multimodal
Harib	to	d	nistic	approach	single	loss of		medical
abu	propos	solution	fuzzy	helps to	fused	informa		image
and	e an	uses	set and	obtain a	image	tion.		
Velm	impro	Intuitio	fuzzy	single	with more			
athi	ved	nistic	cross-	fused	complem			
Guruv	approa	Fuzzy	correlati	image	entary			
aiah	ch to	Set and	on to	with	informati			
2023	multi	Intuitio	handle	more	on and			
	modal	nistic	the	complem	better			
	medica	Fuzzy	uncertai	entary	quality.			
	1	Cross-	nty and	informati				
	image	Correlat	impreci	on and				
	fusion	ion.	sion in	better				
	using		the	quality				
	intuiti		input	compare				
	onistic		images	d to the				
	fuzzy		for	individu				
	set and		medical	al input				
	intuiti		professi	images.				
	onistic		onals in					
	fuzzy		dealing					
	cross-		with the					
	correla		inherent					
	tion.		uncertai					
			nty and					
			impreci					
			sion in					
			medical					
			images.					

CHAPTER 3

PROPOSED SYSTEM

3.1 PROPOSED SYSTEM

The primary objective of the proposed system is to revolutionize the diagnostic process for brain tumors by integrating multimodal medical imaging data and leveraging advanced computational techniques. At its core, the system seeks to enhance the diagnostic capabilities by fusing MRI and CT images of the brain to generate a comprehensive and detailed representation of brain anatomy and pathology. By automating processes such as image registration, fusion, and tumor classification, the system aims to streamline the diagnostic workflow, providing clinicians with timely and accurate results.

3.2 OBJECTIVES OF PROPOSED SYSTEM

The objectives of the proposed system include the following:

- Implement a reliable image registration technique, such as Procrustes analysis, to align MRI and CT images accurately.
- Appling wavelet transforms to the registered images, decomposing them into sub-bands for further processing.
- Develop an effective image fusion algorithm that combines information from the different sub-bands, producing a high-quality fused image.
- Designing an intuitive user interface for inputting medical images, displaying the fused image, and interacting with the system.
- Implement a robust tumor identification mechanism using the CNN model, providing accurate results for further analysis.

3.3 ADVANTAGES OF PROPOSED SYSTEM

The proposed system has the following advantages:

- Combination of MRI and CT images improves image quality, providing a clearer view of the brain.
- Procrustes analysis ensures accurate alignment of images, reducing errors.
- Wavelet transforms capture diverse features from both modalities, improving representation.
- Separate fusion of different frequency components enhances feature preservation.
- Integrated CNN accurately identifies tumor types like glioma, meningioma, or pituitary tumors.
- Fused images and tumor type predictions provide comprehensive diagnostic support.
- Automated processes save time for medical professionals, enabling quicker decisionmaking.
- Non-invasive imaging reduces the need for invasive procedures like biopsies.
- Early detection and precise diagnosis lead to better patient outcomes.
- High-quality images and accurate classifications support research into brain tumors, leading to treatment advancements.

3.4 SYSTEM REQUIREMENTS

The system requirements for the development and deployment of the project as an application are specified in this section. These requirements are not be confused with the end-user system requirements.

S.NO	Requirements	Requirement type	Explanation
1.	Python	Programming language	Used to write the code and
			run.
2.	Visual Studio Code	Development	Environment to write and
		Environment	execute the code.

3.	Wavelet Transforms	Used for fusion process	Wavelet transforms is used
			to capture and fuse
			components.
4.	Convolutional Neural	Used for classification	The CNN model is trained
	Network		to classify tumors into
			specific types

Table 3.4.1 Requirements for developing and deploying the application.

3.4.1 SOFTWARE REQUIREMENTS

Below are the software requirements for application development:

• Operating System : Windows, MacOS, or Linux distributions.

• Programming Language : Python for implementing image processing and deep

learning models.

• Development : PyCharm, Visual Studio Code, or Jupyter Notebook.

Environment

• Libraries : OpenCV, Numpy, TensorFlow or PyTorch, tensorFlow,

Scikit-learn, Matplotlib.

3.4.2 HARDWARE REQUIREMENTS

Below are the hardware requirements for the application development:

• Processor : intel i3(minimum)

• Ram : 4 GB (minimum)

• Hard Disk : 250GB (minimum)

• Input Devices : Keyboard and mouse.

3.4.3 FUNCTIONAL REQUIREMENTS

- 1. Input: The system should accept MRI and corresponding CT images of the brain as input.
- 2. Image Registration: Implement Procrustes analysis to align MRI and CT images based on selected coordinates.
- 3. Image Fusion: Utilize wavelet transforms to decompose registered images into sub-bands (LL, LH, HL, HH) for fusion.
- 4. Tumor Classification: Develop a trained CNN model capable of identifying the type of tumor (glioma, meningioma, pituitary) from the fused MRI and CT images.
- 5. Output: Display the fused image as the output of the fusion process, along with the predicted tumor type by the CNN model.

3.4.4 NON-FUNCTIONAL REQUIREMENTS

1. Reliability:

- a. The system should be reliable, producing consistent results in tumor classification across multiple executions.
- b. It should handle errors gracefully and provide informative error messages to users.

2. Security:

- a. The system should ensure the confidentiality and integrity of patient data throughout processing.
- b. It should implement appropriate access controls to prevent unauthorized access to sensitive information.

3. Accuracy:

- a. The image registration and fusion processes should be accurate to ensure reliable tumor classification.
- b. The CNN model should achieve high accuracy in tumor classification, minimizing misclassification errors.

3.5 IMPLEMENTATION TECHNOLOGIES

3.5.1 PROCRUSTES ANALYSIS:

Shape correspondence is an important aspect of imaging. Understanding shape is the basis of any correspondence. The correspondence and analysis of shapes plays a vital role, not only in determining correspondence, but also determining the validity of the algorithms used to place the landmarks in accurate locations. The analysis should be well defined so that it is unbiased and thorough in its evaluation. Procrustes analysis is a rigid shape analysis that uses isomorphic scaling, translation, and rotation to find the "best" fit between two or more landmarked shapes.

Procrustes analysis has many variations and forms. Of these forms, the generalized orthogonal Procrustes analysis is the most useful in shape correspondence, because of the orthogonal nature of the rotation matrix. Gower played an important role in the introduction and derivation of the generalized orthogonal Procrustes analysis in 1971-75. Though Hurley and Cattell first used the term Procrustes analysis in 1962 with a method that did not limit the transformation to an orthogonal matrix.

Shape and landmarks:

Shape and landmarks are two important concepts involved with generalized orthogonal Procrustes analysis. Both shape and landmarks have their own role in the process of aligning shapes. The following is an overview of shape and landmarks to give a foundation for the generalized orthogonal Procrustes analysis.

Shape: "All the geometrical information that remains when location, scale and rotational effects are filtered out from an object." By this definition of shape, there exists transforms that allow the shape to move so that the differences may be removed between two shapes while preserving the angles and parallel lines, and therefore preserving the shape itself. Isomorphic scaling, translation, and rotation are the three transforms used to align shapes. These shape-preserving transforms are called Euclidean similarity transforms.

Landmarks: Shape can be described as a finite number of points along the outline of the shape. These points are called landmarks.

There consists of three types of landmarks:

 Anatomical landmarks: expert (i.e. Doctor) assigned points that represent a biological object or objects.

- Mathematical landmarks: points assigned by some mathematical property (i.e. high curvature).
- Pseudo-landmarks: point located between the other two types of landmarks or points around the outline.

Generalized Orthogonal Procrustes Analysis: Procrustes analysis is the comparison of two sets of configurations (shapes). Therefore, Procrustes analysis is limited in its application. Generalized orthogonal Procrustes analysis (GPA) is the evaluation of k sets of configurations. With GPA the k sets can be aligned to one target shape or aligned to each other. This paper will discuss the latter, since it is easily adapted to one target shape.

Algorithm for generalized orthogonal Procrustes analysis:

- 1. Select one shape to be the approximate mean shape (i.e. the first shape in the set).
- 2. Align the shapes to the approximate mean shape.
 - a. Calculate the centroid of each shape (or set of landmarks).
 - b. Align all shapes centroid to the origin.
 - c. Normalize each shapes centroid size.
 - d. Rotate each shape to align with the newest approximate mean.
- 3. Calculate the new approximate mean from the aligned shapes.
- 4. If the approximate mean from steps 2 and 3 are different the return to step 2, otherwise you have found the true mean shape of the set

3.5.2 WAVELET TRANSFORMS:

Wavelet transforms are mathematical tools for analysing data where features vary over different scales. For signals, features can be frequencies varying over time, transients, or slowly varying trends. For images, features include edges and textures. Wavelet transforms were primarily created to address limitations of the Fourier transform. While Fourier analysis consists of decomposing a signal into sine waves of specific frequencies, wavelet analysis is based on decomposing signals into shifted and scaled versions of a wavelet. A wavelet, unlike a sine wave, is a rapidly decaying, wave-like oscillation. This enables wavelets to represent data across multiple scales. Different wavelets can be used depending on the application.

Audio signals, time-series financial data, and biomedical signals typically exhibit piecewise smooth behaviour punctuated by transients. Similarly, images typically include homogenous, piecewise smooth regions separated by transients, which appear as edges. For both signals and images, the smooth regions and transients can be sparsely represented with wavelet transforms.

Wavelet transforms can be classified into two broad classes:

- Continuous wavelet transforms (CWT)
- Discrete wavelet transforms (DWT).

Continuous wavelet transforms (CWT):

The continuous wavelet transform is a time-frequency transform, which is ideal for analysis of non-stationary signals. A signal being nonstationary means that its frequency-domain representation changes over time. CWT is similar to the short-time Fourier transform (STFT). The STFT uses a fixed window to create a local frequency analysis, while CWT tiles the time-frequency plane with variable-sized windows. The window widens in time, making it suitable for low-frequency phenomena, and narrows for high-frequency phenomena. The continuous wavelet transform can be used to analyse transient behaviour, rapidly changing frequencies, and slowly varying behaviour.

Discrete wavelet transforms (DWT):

Any wavelet transforms involving a discrete sampling of wavelets is called a DWT. It records location and frequency information. Among image fusion techniques, the method based on Discrete Wavelet Transform (DWT) is straightforward. The first step is multilayer decomposition of the source images, where the frequency content is used to separate the images into upper and lower sub-bands after which the pixels with the highest wavelet coefficients are selected for further processing. By converting the image from the spatial domain to the frequency domain, the DWT can recover the relevant frequency information. This approach allows flexibility in the fusion process to vary the fusion operator at different decom-position levels. In this project initially MRI and CT images are preprocessed to ensure concordance and homogeneity. Images are then decomposed into multiple frequency bands or scales using the DWT algorithm to extract relevant features of tumor morphology, size, and location and these decomposed coefficients from both methods are then subjected to fusion, where fusion rules are used to combine information

efficiently. Different techniques such as averaging or maximum selection can be used, depending on the specific application. Fused multipliers reduce noise to increase the signal-to-noise ratio of the final image, resulting in optimal quality. Once the fusion is completed, the inverse DWT algorithm reconstructs the fused image in the spatial domain, combining the relevant features of the MRI and CT scans.

With the discrete wavelet transform scales are discretized more coarsely than with CWT. This makes DWT useful for compressing and denoising signals and images while preserving important features. You can use discrete wavelet transforms to perform multiresolution analysis and split signals into physically meaningful and interpretable components.

3.5.3 CONVOLUTIONAL NEURAL NETWORKS (CNN):

A Convolutional Neural Network (CNN) is a type of Deep Learning neural network architecture commonly used in Computer Vision. Computer vision is a field of Artificial Intelligence that enables a computer to understand and interpret the image or visual data. When it comes to Machine Learning, Artificial Neural Networks perform really well. Neural Networks are used in various datasets like images, audio, and text. Different types of Neural Networks are used for different purposes, for example for predicting the sequence of words we use Recurrent Neural Networks more precisely an LSTM, similarly for image classification we use Convolution Neural networks. In this blog, we are going to build a basic building block for CNN. Convolutional Neural Network (CNN) is the extended version of artificial neural networks (ANN) which is predominantly used to extract the feature from the grid-like matrix dataset. For example: visual datasets like images or videos where data patterns play an extensive role.

CNN architecture

Convolutional Neural Network consists of multiple layers like the input layer, Convolutional layer, Pooling layer, and fully connected layers.

Figure 1: CNN Architecture

The Convolutional layer applies filters to the input image to extract features, the Pooling layer downsamples the image to reduce computation, and the fully connected layer makes the final prediction. The network learns the optimal filters through backpropagation and gradient descent.

How Convolutional Layers works

Convolution Neural Networks or covnets are neural networks that share their parameters. Imagine you have an image. It can be represented as a cuboid having its length, width and height.

Now imagine taking a small patch of this image and running a small neural network, called a filter or kernel on it, with say, K outputs and representing them vertically. Now slide that neural network across the whole image, as a result, we will get another image with different widths, heights, and depths. Instead of just R, G, and B channels now we have more channels but lesser width and height. This operation is called **Convolution**. If the patch size is the same as that of the image it will be a regular neural network. Because of this small patch, we have fewer weights.

Now let's talk about a bit of mathematics that is involved in the whole convolution process.

- Convolution layers consist of a set of learnable filters (or kernels) having small widths and heights and the same depth as that of input volume (3 if the input layer is image input).
- During the forward pass, we slide each filter across the whole input volume step by step where each step is called stride (which can have a value of 2, 3, or even 4 for high-dimensional images) and compute the dot product between the kernel weights and patch from input volume.
- As we slide our filters, we'll get a 2-D output for each filter and we'll stack them together as a result, we'll get output volume having a depth equal to the number of filters. The network will learn all the filters.

Layers used to build ConvNets

A complete Convolution Neural Networks architecture is also known as covnets. A covnets is a sequence of layers, and every layer transforms one volume to another through a differentiable

function.

Types of layers:

Let's take an example by running a covnets on of image of dimension 32 x 32 x 3.

- **Input Layers:** It's the layer in which we give input to our model. In CNN, Generally, the input will be an image or a sequence of images. This layer holds the raw input of the image with width 32, height 32, and depth 3.
- Convolutional Layers: This is the layer, which is used to extract the feature from the input dataset. It applies a set of learnable filters known as the kernels to the input images. The filters/kernels are smaller matrices. it slides over the input image data and computes the dot product between kernel weight and the corresponding input image patch. The output of this layer is referred as feature maps.
- Activation Layer: By adding an activation function to the output of the preceding layer, activation layers add nonlinearity to the network. it will apply an element-wise activation function to the output of the convolution layer. Some common activation functions are RELU: max (0, x), Tanh, Leaky RELU, etc. The volume remains unchanged hence output volume will have dimensions 32 x 32 x 12.
- **Pooling Layer:** This layer is periodically inserted in the covnets and its main function is to reduce the size of volume which makes the computation fast reduces memory and also prevents overfitting. Two common types of pooling layers are **max pooling** and **average pooling**. If we use a max pool with 2 x 2 filters and stride 2, the resultant volume will be of dimension 16x16x12.
- **Flattening:** The resulting feature maps are flattened into a one-dimensional vector after the convolution and pooling layers so they can be passed into a completely linked layer for categorization or regression.x
- Fully Connected Layers: It takes the input from the previous layer and computes the final classification or regression task.
- Output Layer: The output from the fully connected layers is then fed into a logistic function for classification tasks like sigmoid or softmax which converts the output of each class into the probability score of each class.

CHAPTER 4

SYSTEM DESIGN

4.1 PROPOSED SYSTEM ARCHITECTURE

The proposed system encompasses the development of a specialized Flask-based web application tailored for multimodal medical image fusion.

Figure 2: Proposed Architecture

4.2 APPLICATION MODULES

On The application on an overall involves Three main modules, which cater to the three main functions of this application, i.e., to generate Registered image, provide fused image and to Classify tumor.

4.2.1 Image Registration Module

The process of Image registration plays a pivotal function in clinical imaging, particularly while integrating pictures from one-of-a-kind modalities or received at one-of-a-kind times. This work focuses on the crucial project of registering brain MRI (Magnetic Resonance Imaging) and CT (Computed Tomography) scans, aiming to as it should be aligning these pics for comprehensive evaluation and prognosis. The registration method starts by means of identifying and extracting key anatomical functions or landmarks from both MRI and CT scans. These landmarks' function points of coherence, enabling the system to set up correspondences among the snap shots. The extracted landmarks are prepared into a matrix structure, where every row represents a landmark, and every column denotes coordinates in distinct dimensions (e.g., x, y, z). To ensure translational invariance for the duration of registration, the suggest is extracted from every measurement, and the matrix is targeted. This normalization step ensures that the registration procedure focuses entirely on modifications to variables and scales, enhancing the accuracy of the alignment. Procrustes analysis is then hired to compute the foremost transformation that minimizes the disparity between corresponding landmarks within the MRI and CT pics. This transformation encompasses adjustments in translation, rotation, and scaling to reap the first-rate feasible alignment. The Procrustes set of rules iteratively refines the transformation parameters until the alignment standards are glad, effectively minimizing the overall discrepancy between corresponding landmarks and ensuring a sturdy match among the 2 pictures. Once the greatest transformation is decided, it is carried out to a new set of landmarks to align a new configuration of pics. This registration system lays the muse for next fusion techniques, enabling the seamless integration of multimodal scientific snap shots and facilitating improved visualization, diagnostic accuracy, and medical decision-making within the medical domain. Through meticulous landmark-primarily based registration, this device empowers healthcare specialists with the equipment to correctly examine and interpret complex medical pix, in the end enhancing affected person care and outcomes.

Figure 3: Workflow of Image Registration process

4.2.2 Image Fusion Module

The system commences with the MRI and CT photographs that have gone through registration, making sure spatial alignment and correct insurance of corresponding anatomical functions. This fusion system involves amalgamating categorized MRI and CT pictures, maintaining the maximum applicable functions from every modality. To gain this, the discrete wavelet transform (DWT) technique is hired for photo fusion. During DWT, registered MRI and CT pictures are decomposed into a couple of frequency bands, ensuing in 4 subbands: LL (low-low), LH (low-low).

high), HL (excessive-low), and HH (high-high), every containing unique frequency information. From those subbands, the LL sub-band, representing lower structural records, and the HH sub-band, containing higher transcriptional information, are selected from each MRI and CT pics. These subbands are deemed extra suitable for brain anatomy depiction. Subsequently, the selected LL and HH sub-bands from the registered MRI and CT photographs are blended to form a fused image. This fusion procedure integrates low-degree structural information with repetitive transcriptional functions from each modality, making sure a complete illustration of brain anatomy. Furthermore, to enhance the fused image and extract problematic functions, the VGG19 version, a deep convolutional neural network (CNN), is integrated. VGG19 is gifted in recognizing photo sequences and discerning objects, as a result facilitating the extraction of great and meaningful capabilities from the fused pix. This permits precise anatomical imaging of the brain across MRI and CT modalities. The output of the picture fusion module is a composite image that offers a complete and informative depiction of brain anatomy. This fused photo serves as a valuable enter for subsequent diagnostic duties, which includes tumor detection and category, improving the accuracy and effectiveness of diagnostic techniques in clinical imaging.

Figure 4: Workflow of Image Fusion

4.2.3 Image Classification Module

Following the Image fusion procedure, the module capitalizes at the fused picture to engage superior class techniques geared toward discerning and categorizing capability tumors within the Brain. Beginning with preprocessing steps to optimize the data, the fused image is then inputted into a convolutional neural network (CNN) architecture explicitly tailor-made for scientific photo analysis. This CNN structure, meticulously crafted and best-tuned for the intricacies of medical imaging, undergoes schooling on a meticulously curated and classified dataset comprising various times of mind tumors. As the fused Image propagates through the layers of the CNN, the community leverages it's found-out features and styles to carry out an exhaustive evaluation. Each layer of the CNN extracts increasingly more summary representations, discerning complex details and diffused variations within the photo. Through the convolutional and pooling layers, the network correctly captures spatial hierarchies and invariant capabilities vital for tumor detection and classification. Trained on complete datasets encompassing diverse tumor types and anatomical variations, the CNN's type prowess extends beyond mere identity to unique categorization. The community distinguishes among distinctive tumor sorts, delineating between gliomas, meningiomas, and pituitary tumors with outstanding accuracy. This nuanced type enables clinicians to now not simplest pick out the presence of tumors but additionally to apprehend their particular nature and traits, important for devising tailored remedy techniques and prognostic checks.

4.3 UML Diagrams

UML stands for Unified Modelling Language. UML is a standardized fashionable-cause modelling language in the subject of object-oriented software engineering. In its modern shape, UML comprises of two essential components: a Meta-model and a notation. The Unified Modelling Language is a standard language for specifying, Visualization, Constructing and documenting the artifacts of software program machine, in addition to for commercial enterprise modelling and other non-software systems. The UML uses more often than not graphical notations to express the design of software program projects.

4.3.1 Use Case Diagram

In the Unified Modeling Language (UML), a use case diagram is a behavioral diagram that stems from use-case analysis. Its number one objective is to provide a visual summary of a gadget's capability, showcasing actors, their objectives (portrayed as use cases), and any relationships

amongst those use cases. The fundamental aim of a use case diagram is to demonstrate which device capabilities are accomplished for each actor worried, while additionally illustrating the jobs played via these actors within the gadget.

Figure 5: Use case Diagram

4.3.2 Class Diagram

In software engineering, a class diagram within the Unified Modeling Language (UML) is a static shape diagram that delineates the architecture of a machine. It achieves this by using illustrating

the training within the gadget, inclusive of their attributes, operations (or techniques), and the connections between those classes. This diagram elucidates the distribution of statistics among lessons and clarifies which elegance is responsible for housing unique records.

Figure 6: Class Diagram

4.3.3 Sequence Diagram

Figure 7: Sequence Diagram

4.3.4 Activity Diagram

Figure 8: Activity Diagram

CHAPTER 5

IMPLEMENTATION

5.1 SOURCE CODE

Image Registration Process:

```
def procrustes(X, Y, scaling=True, reflection='best'):
  n,m = X.shape
  ny,my = Y.shape
  muX = X.mean(0)
  muY = Y.mean(0)
  X0 = X - muX
  Y0 = Y - muY
  ssX = (X0**2.).sum()
  ssY = (Y0**2.).sum()
  print(ssX)
  print(ssY)
  # centred Frobenius norm
  normX = np.sqrt(ssX)
  normY = np.sqrt(ssY)
  # scale to equal (unit) norm
  X0 = normX
  Y0 /= normY
  if my < m:
     Y0 = np.concatenate((Y0, np.zeros(n, m-my)),0)
  # optimum rotation matrix of Y
  A = np.dot(X0.T, Y0)
  U,s,Vt = np.linalg.svd(A,full_matrices=False)
  \overline{V} = Vt.T
  T = np.dot(V, U.T)
  if reflection is not 'best':
     have_reflection = np.linalg.det(T) < 0
     if reflection != have reflection:
       V[:,-1] *= -1
       s[-1] *= -1
       T = np.dot(V, U.T)
  traceTA = s.sum()
  if scaling:
     # optimum scaling of Y
     b = traceTA * normX / normY
     # standarised distance between X and b*Y*T + c
     d = 1 - traceTA**2
```

```
# transformed coords
    Z = normX*traceTA*np.dot(Y0, T) + muX
  else:
    b = 1
    d = 1 + ssY/ssX - 2 * traceTA * normY / normX
    Z = normY*np.dot(Y0, T) + muX
  # transformation matrix
  if my < m:
    T = T[:my,:]
  c = muX - b*np.dot(muY, T)
  tform = {'rotation':T, 'scale':b, 'translation':c}
  return d, Z, tform
import numpy as np
import cv2
import imageio
import scipy.ndimage as ndi
ct = cv2.imread('jpg/ct.jpg', 0)
ct_points=[]
mri_points=[]
n=int(input())
# Define Click Function
def click_event_ct(event, x, y, flags, param):
  if event == cv2.EVENT_LBUTTONDOWN:
    print(x,y)
    ct_points.append([x,y])
cv2.imshow('Image CT', ct)
cv2.setMouseCallback('Image CT', click_event_ct)
cv2.waitKey(0)#press any key to close all windows
cv2.destroyAllWindows()
ct_points
# Define Click Function
def click_event_mri(event, x, y, flags, param):
  if event == cv2.EVENT_LBUTTONDOWN:
    print(x,y)
    mri_points.append([x,y])
mri_registered = cv2.imread('jpg/mri.jpg',0)
cv2.imshow('Image MRI', mri_registered)
cv2.setMouseCallback('Image MRI', click_event_mri)
cv2.waitKey(0)#press any key to close all windows
cv2.destroyAllWindows()
mri_points
X_{pts} = np.asarray(ct_points)
Y_pts = np.asarray(mri_points)
```

```
print(X_pts)
d,Z pts,Tform = procrustes(X pts,Y pts)
R = np.eye(3)
Tform
R[0:2,0:2] = Tform['rotation']
S = np.eye(3) * Tform['scale']
S[2,2] = 1
t = np.eye(3)
t[0:2,2] = Tform['translation']
M = np.dot(np.dot(R,S),t.T).T
h=ct.shape[0]
w=ct.shape[1]
tr_Y_{img} = cv_{2.warpAffine(mri_registered,M[0:2,:],(h,w))}
cv2.imwrite("jpg/mri_registered.jpg", tr_Y_img)
aY_{pts} = np.hstack((Y_{pts}, np.array(([[1,1,1,1,1]])).T))
tr_Y_pts = np.dot(M,aY_pts.T).T
plt.figure()
plt.subplot(1,3,1)
plt.imshow(ct,cmap=cm.gray)
plt.plot(X_pts[:,0],X_pts[:,1],'bo',markersize=5)
plt.subplot(1,3,3)
plt.imshow(tr_Y_img,cmap=cm.gray)
plt.plot(tr_Y_pts[:,0],tr_Y_pts[:,1],'gx',markersize=5)
plt.show()
```

Image fusion Process:

```
import argparse
import cv2
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision.models.vgg import vgg19
class VGG19(torch.nn.Module):
  def __init__(self, device='cpu'):
     super(VGG19, self).__init__()
     features = list(vgg19().features)
     if device == "cuda":
       self.features = nn.ModuleList(features).cuda().eval()
     else:
       self.features = nn.ModuleList(features).eval()
  def forward(self, x):
     feature_maps = []
```

```
for idx, layer in enumerate(self.features):
       x = layer(x)
       if idx == 3:
         feature_maps.append(x)
    return feature_maps
class Fusion:
  def __init__(self, input):
    self.input_images = input
    self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    self.model = VGG19(self.device)
  def fuse(self):
    A top level method which fuse self.images
    # Convert all images to YCbCr format
    self.normalized_images = [-1 for img in self.input_images]
    self.YCbCr_images = [-1 for img in self.input_images]
    for idx, img in enumerate(self.input_images):
       if not self._is_gray(img):
         self.YCbCr_images[idx] = self._RGB_to_YCbCr(img)
         self.normalized_images[idx] = self.YCbCr_images[idx][:, :, 0]
       else:
         self.normalized_images[idx] = img / 255.
    # Transfer all images to PyTorch tensors
    self. tranfer to tensor()
    # Perform fuse strategy
    fused img = self. fuse()[:, :, 0]
    # Reconstruct fused image given rgb input images
    for idx, img in enumerate(self.input_images):
       if not self._is_gray(img):
         self.YCbCr_images[idx][:, :, 0] = fused_img
         fused_img = self._YCbCr_to_RGB(self.YCbCr_images[idx])
         fused_img = np.clip(fused_img, 0, 1)
    return (fused_img * 255).astype(np.uint8)
    # return fused_img
  def _fuse(self):
    Perform fusion algorithm
    with torch.no_grad():
```

```
imgs sum maps = [-1 for tensor img in self.images to tensors]
    for idx, tensor_img in enumerate(self.images_to_tensors):
      imgs_sum_maps[idx] = []
      feature_maps = self.model(tensor_img)
      for feature map in feature maps:
         sum_map = torch.sum(feature_map, dim=1, keepdim=True)
         imgs_sum_maps[idx].append(sum_map)
    max_fusion = None
    for sum_maps in zip(*imgs_sum_maps):
      features = torch.cat(sum_maps, dim=1)
      weights = self._softmax(F.interpolate(features,
                    size=self.images_to_tensors[0].shape[2:]))
      weights = F.interpolate(weights,
                    size=self.images_to_tensors[0].shape[2:])
      current_fusion = torch.zeros(self.images_to_tensors[0].shape)
      for idx, tensor_img in enumerate(self.images_to_tensors):
         current_fusion += tensor_img * weights[:,idx]
      if max fusion is None:
         max_fusion = current_fusion
      else:
         max_fusion = torch.max(max_fusion, current_fusion)
    output = np.squeeze(max_fusion.cpu().numpy())
    if output.ndim == 3:
      output = np.transpose(output, (1, 2, 0))
    return output
def _RGB_to_YCbCr(self, img_RGB):
    A private method which converts an RGB image to YCrCb format
    img_RGB = img_RGB.astype(np.float32) / 255.
    return cv2.cvtColor(img_RGB, cv2.COLOR_RGB2YCrCb)
def _YCbCr_to_RGB(self, img_YCbCr):
    A private method which converts a YCrCb image to RGB format
    img_YCbCr = img_YCbCr.astype(np.float32)
    return cv2.cvtColor(img_YCbCr, cv2.COLOR_YCrCb2RGB)
```

```
def _is_gray(self, img):
       A private method which returns True if image is gray, otherwise False
       if len(img.shape) < 3:
         return True
       if img.shape[2] == 1:
         return True
       b, g, r = img[:,:,0], img[:,:,1], img[:,:,2]
       if (b == g).all() and (b == r).all():
         return True
       return False
  def _softmax(self, tensor):
       A private method which compute softmax ouput of a given tensor
       tensor = torch.exp(tensor)
       tensor = tensor / tensor.sum(dim=1, keepdim=True)
       return tensor
  def _tranfer_to_tensor(self):
       A private method to transfer all input images to PyTorch tensors
       self.images_to_tensors = []
       for image in self.normalized images:
         np_input = image.astype(np.float32)
         if np_input.ndim == 2:
            np_input = np.repeat(np_input[None, None], 3, axis=1)
         else:
            np_input = np.transpose(np_input, (2, 0, 1))[None]
         if self.device == "cuda":
            self.images_to_tensors.append(torch.from_numpy(np_input).cuda())
            self.images_to_tensors.append(torch.from_numpy(np_input))
pip install PyWavelets
import numpy as np
import matplotlib.pyplot as plt
import pywt
import pywt.data
# Load MRI image
                 cv2.imread('C:/Users/sivav/OneDrive/Documents/Final_year_proj/multimodal-
mri image =
image-fusion-to-detect-brain-tumors-master/dataset/Patient Data/p11/mri_registered.jpg')
```

```
mri_image = cv2.cvtColor(mri_image, cv2.COLOR_BGR2GRAY)
# Wavelet transform of image, and plot approximation and details
titles = ['Approximation', 'Horizontal detail',
      'Vertical detail', 'Diagonal detail']
coeffs2 = pywt.dwt2(mri image, 'haar')
LL, (LH, HL, HH) = coeffs2
fig = plt.figure(figsize=(12, 3))
for i, a in enumerate([LL, LH, HL, HH]):
  ax = fig.add\_subplot(1, 4, i + 1)
  ax.imshow(a, interpolation="nearest", cmap=plt.cm.gray)
   path='C:/Users/sivav/OneDrive/Documents/Final_year_proj/Testing_phase/Testing_MRI11_
+str(i)+'.jpg'
  cv2.imwrite(path,a)
  ax.set_title(titles[i], fontsize=10)
  ax.set xticks([])
  ax.set_yticks([])
fig.tight_layout()
plt.show()
# Load CT Image
                 cv2.imread('C:/Users/sivav/OneDrive/Documents/Final_year_proj/multimodal-
ct_image
image-fusion-to-detect-brain-tumors-master/dataset/Patient Data/p11/ct.jpg')
ct_image = cv2.cvtColor(ct_image, cv2.COLOR_BGR2GRAY)
# Wavelet transform of image, and plot approximation and details
titles = ['Approximation', 'Horizontal detail',
      'Vertical detail', 'Diagonal detail']
coeffs2 = pywt.dwt2(ct_image, 'haar')
LL, (LH, HL, HH) = coeffs2
fig = plt.figure(figsize=(12, 3))
for i, a in enumerate([LL, LH, HL, HH]):
  ax = fig.add\_subplot(1, 4, i + 1)
  ax.imshow(a, interpolation="nearest", cmap=plt.cm.gray)
   path='C:/Users/sivav/OneDrive/Documents/Final_year_proj/Testing_phase/Testing_CT11_'+s
tr(i)+'.jpg'
  cv2.imwrite(path,a)
  ax.set_title(titles[i], fontsize=10)
  ax.set_xticks([])
  ax.set_yticks([])
```

```
fig.tight_layout()
plt.show()
# Load CT Image
ct image
                 cv2.imread('C:/Users/sivav/OneDrive/Documents/Final_year_proj/multimodal-
image-fusion-to-detect-brain-tumors-master/dataset/Patient Data/p11/ct.jpg')
ct image = cv2.cvtColor(ct image, cv2.COLOR BGR2GRAY)
# Wavelet transform of image, and plot approximation and details
titles = ['Approximation', 'Horizontal detail',
      'Vertical detail', 'Diagonal detail']
coeffs2 = pywt.dwt2(ct_image, 'haar')
LL, (LH, HL, HH) = coeffs2
fig = plt.figure(figsize=(12, 3))
for i, a in enumerate([LL, LH, HL, HH]):
  ax = fig.add\_subplot(1, 4, i + 1)
  ax.imshow(a, interpolation="nearest", cmap=plt.cm.gray)
  path='C:/Users/sivav/OneDrive/Documents/Final_year_proj/Testing_phase/Testing_CT11_'+s
tr(i)+'.jpg'
  cv2.imwrite(path,a)
  ax.set_title(titles[i], fontsize=10)
  ax.set_xticks([])
  ax.set_yticks([])
fig.tight layout()
plt.show()
# Calling the methods for Siamese on LL Images
input_images = []
mri
cv2.imread('C:/Users/sivav/OneDrive/Documents/Final year proj/Testing phase/Testing MRI1
1_{0.jpg'}
mri = cv2.cvtColor(mri, cv2.COLOR_BGR2GRAY)
ct
cv2.imread('C:/Users/sivav/OneDrive/Documents/Final_year_proj/Testing_phase/Testing_CT11
_{0.jpg'}
ct = cv2.cvtColor(ct, cv2.COLOR_BGR2GRAY)
input_images.append(mri)
input_images.append(ct)
# Compute fusion image
```

```
FU = Fusion(input_images)
fusion img = FU.fuse()
# Write fusion image
cv2.imwrite('C:/Users/sivav/OneDrive/Documents/Final_year_proj/Testing_phase/Testing_fusio
n_0.jpg', fusion_img)
# Calling the methods for Siamese on LH Images
input_images = []
mri
cv2.imread('C:/Users/sivav/OneDrive/Documents/Final_year_proj/Testing_phase/Testing_MRI1
mri = cv2.cvtColor(mri, cv2.COLOR_BGR2GRAY)
ct
cv2.imread('C:/Users/sivav/OneDrive/Documents/Final_year_proj/Testing_phase/Testing_CT11
_1.jpg')
ct = cv2.cvtColor(ct, cv2.COLOR_BGR2GRAY)
input_images.append(mri)
input_images.append(ct)
# Compute fusion image
FU = Fusion(input_images)
fusion img = FU.fuse()
# Write fusion image
cv2.imwrite('C:/Users/sivav/OneDrive/Documents/Final year proj/Testing phase/Testing fusio
n_1.jpg', fusion_img)
# Calling the methods for Siamese on LV Images
input_images = []
mri
cv2.imread('C:/Users/sivav/OneDrive/Documents/Final_year_proj/Testing_phase/Testing_MRI1
1_2.jpg')
mri = cv2.cvtColor(mri, cv2.COLOR_BGR2GRAY)
ct
cv2.imread('C:/Users/sivav/OneDrive/Documents/Final_year_proj/Testing_phase/Testing_CT11
_2.jpg')
ct = cv2.cvtColor(ct, cv2.COLOR_BGR2GRAY)
input_images.append(mri)
input_images.append(ct)
```

```
# Compute fusion image
FU = Fusion(input images)
fusion_img = FU.fuse()
# Write fusion image
cv2.imwrite('C:/Users/sivav/OneDrive/Documents/Final_year_proj/Testing_phase/Testing_fusio
n_2.jpg', fusion_img)
# Calling the methods for Siamese on LD Images
input_images = []
cv2.imread('C:/Users/sivav/OneDrive/Documents/Final_year_proj/Testing_phase/Testing_MRI1
1_3.jpg')
mri = cv2.cvtColor(mri, cv2.COLOR BGR2GRAY)
ct
cv2.imread('C:/Users/sivav/OneDrive/Documents/Final_year_proj/Testing_phase/Testing_CT11
ct = cv2.cvtColor(ct, cv2.COLOR_BGR2GRAY)
input images.append(mri)
input_images.append(ct)
# Compute fusion image
FU = Fusion(input images)
fusion_img = FU.fuse()
# Write fusion image
cv2.imwrite('C:/Users/sivav/OneDrive/Documents/Final_year_proj/Testing_phase/Testing_fusio
n_3.jpg', fusion_img)
fusion 0
cv2.imread('C:/Users/sivav/OneDrive/Documents/Final year proj/Testing phase/Testing fusion
_0.jpg')
fusion_0 = cv2.cvtColor(fusion_0, cv2.COLOR_BGR2GRAY)
fusion 1
cv2.imread('C:/Users/sivav/OneDrive/Documents/Final_year_proj/Testing_phase/Testing_fusion
 _1.jpg')
fusion_1 = cv2.cvtColor(fusion_1, cv2.COLOR_BGR2GRAY)
fusion 2
cv2.imread('C:/Users/sivav/OneDrive/Documents/Final_year_proj/Testing_phase/Testing_fusion
 2.jpg')
fusion_2 = cv2.cvtColor(fusion_2, cv2.COLOR_BGR2GRAY)
```

```
fusion_3 = cv2.imread('C:/Users/sivav/OneDrive/Documents/Final_year_proj/Testing_phase/Testing_fusion_3.jpg')
fusion_3 = cv2.cvtColor(fusion_3, cv2.COLOR_BGR2GRAY)
coeffs=(fusion_0,(fusion_1,fusion_2,fusion_3))
fusion=pywt.idwt2(coeffs,'haar')
cv2.imwrite('C:/Users/sivav/OneDrive/Documents/Final_year_proj/Testing_phase/Testing_final_fusion.jpg',fusion)
```

Detection and Classification Process:

```
pip install seaborn
import os
import itertools
import numpy as np
import pandas as pd
import seaborn as sns
sns.set_style('darkgrid')
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix, classification_report
import cv2 as cv
# import Deep learning Libraries
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras.models import Sequential
from tensorflow.keras.optimizers import Adamax
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense
import warnings
warnings.filterwarnings('ignore')
train data dir
                       'C:/Users/sivav/OneDrive/Documents/Final_year_proj/multimodal-image-
fusion-to-detect-brain-tumors-master/archive/Training'
filepaths = []
labels = []
folds = os.listdir(train_data_dir)
for fold in folds:
  foldpath = os.path.join(train_data_dir, fold)
  filelist = os.listdir(foldpath)
  for file in filelist:
     fpath = os.path.join(foldpath, file)
```

```
filepaths.append(fpath)
     labels.append(fold)
# Concatenate data paths with labels into one dataframe
Fseries = pd.Series(filepaths, name= 'filepaths')
Lseries = pd.Series(labels, name='labels')
train_df = pd.concat([Fseries, Lseries], axis= 1)
train_df
# Generate data paths with labels
train data dir
                       'C:/Users/sivav/OneDrive/Documents/Final_year_proj/multimodal-image-
fusion-to-detect-brain-tumors-master/archive/Testing'
filepaths = []
labels = []
folds = os.listdir(train_data_dir)
for fold in folds:
  foldpath = os.path.join(train_data_dir, fold)
  filelist = os.listdir(foldpath)
  for file in filelist:
     fpath = os.path.join(foldpath, file)
     filepaths.append(fpath)
     labels.append(fold)
# Concatenate data paths with labels into one dataframe
Fseries = pd.Series(filepaths, name= 'filepaths')
Lseries = pd.Series(labels, name='labels')
ts_df = pd.concat([Fseries, Lseries], axis= 1)
ts df
data_balance = train_df.labels.value_counts()
def custom_autopct(pct):
  total = sum(data_balance)
  val = int(round(pct*total/100.0))
  return "\{:.1f\}%\n(\{:d\})".format(pct, val)
# pie chart for data balance
plt.pie(data_balance, labels = data_balance.index,
                                                           autopct=custom_autopct,
                                                                                        colors
["#2092E6","#6D8CE6","#20D0E6","#A579EB"])
plt.title("Training data balance")
plt.axis("equal")
```

```
plt.show()
# valid and test dataframe
valid_df, test_df = train_test_split(ts_df, train_size= 0.5, shuffle= True, random_state= 42)
# crobed image size
batch size = 16
img_size = (224, 224)
tr_gen = ImageDataGenerator()
ts_gen = ImageDataGenerator()
train_gen = tr_gen.flow_from_dataframe( train_df, x_col= 'filepaths', y_col= 'labels', target_size=
img_size, class_mode= 'categorical',
                      color_mode= 'rgb', shuffle= True, batch_size= batch_size)
valid_gen = ts_gen.flow_from_dataframe( valid_df, x_col= 'filepaths', y_col= 'labels',
target_size= img_size, class_mode= 'categorical',
                      color_mode= 'rgb', shuffle= True, batch_size= batch_size)
test_gen = ts_gen.flow_from_dataframe( test_df, x_col= 'filepaths', y_col= 'labels', target_size=
img_size, class_mode= 'categorical',
                      color_mode= 'rgb', shuffle= False, batch_size= batch_size)
g_dict = train_gen.class_indices
classes = list(g dict.keys())
images, labels = next(train_gen)
plt.figure(figsize= (20, 20))
for i in range (16):
  plt.subplot(4, 4, i + 1)
  image = images[i] / 255
  plt.imshow(image)
  index = np.argmax(labels[i])
  class_name = classes[index]
  plt.title(class_name, color= 'black', fontsize= 16)
  plt.axis('off')
plt.tight_layout()
plt.show()
# Create Model Structure
img_size = (224, 224)
channels = 3
img_shape = (img_size[0], img_size[1], channels)
```

```
class count = len(list(train gen.class indices.keys()))
model = Sequential()
model.add(Conv2D(filters=32,
                                                         padding="same",
                                                                              activation="relu",
                                   kernel size=(3,3),
input_shape= img_shape))
model.add(MaxPooling2D())
model.add(Conv2D(filters=64, kernel_size=(3,3), padding="same", activation="relu"))
model.add(MaxPooling2D())
model.add(Flatten())
model.add(Dense(64,activation = "relu"))
model.add(Dense(32,activation = "relu"))
model.add(Dense(class_count, activation = "softmax"))
model.compile(Adamax(learning_rate= 0.001), loss= 'categorical_crossentropy',
                                                                                       metrics=
['accuracy'])
model.summary()
epochs = 10
history = model.fit(train_gen, epochs= epochs, verbose= 1, validation_data= valid_gen, shuffle=
False)
# Define needed variables
tr acc = history.history['accuracy']
tr_loss = history.history['loss']
val_acc = history.history['val_accuracy']
val_loss = history.history['val_loss']
index_loss = np.argmin(val_loss)
val lowest = val loss[index loss]
index_acc = np.argmax(val_acc)
acc_highest = val_acc[index_acc]
Epochs = [i+1 \text{ for } i \text{ in range}(len(tr_acc))]
loss_label = f'best epoch = {str(index_loss + 1)}'
acc_label = f'best epoch= {str(index_acc + 1)}'
# Plot training history
plt.figure(figsize= (20, 8))
plt.style.use('fivethirtyeight')
plt.subplot(1, 2, 1)
```

```
plt.plot(Epochs, tr_loss, 'r', label= 'Training loss')
plt.plot(Epochs, val_loss, 'g', label= 'Validation loss')
plt.scatter(index_loss + 1, val_lowest, s= 150, c= 'blue', label= loss_label)
plt.title('Training and Validation Loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.subplot(1, 2, 2)
plt.plot(Epochs, tr_acc, 'r', label= 'Training Accuracy')
plt.plot(Epochs, val_acc, 'g', label= 'Validation Accuracy')
plt.scatter(index_acc + 1, acc_highest, s= 150, c= 'blue', label= acc_label)
plt.title('Training and Validation Accuracy')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.legend()
plt.tight_layout
plt.show()
train score = model.evaluate(train gen, verbose= 1)
valid_score = model.evaluate(valid_gen, verbose= 1)
test_score = model.evaluate(test_gen, verbose= 1)
print("Train Loss: ", train_score[0])
print("Train Accuracy: ", train_score[1])
print('-' * 20)
print("Validation Loss: ", valid_score[0])
print("Validation Accuracy: ", valid_score[1])
print('-' * 20)
print("Test Loss: ", test_score[0])
print("Test Accuracy: ", test_score[1])
preds = model.predict(test_gen)
y_pred = np.argmax(preds, axis=1)
g_dict = test_gen.class_indices
classes = list(g_dict.keys())
cm = confusion_matrix(test_gen.classes, y_pred)
cm
plt.figure(figsize= (10, 10))
plt.imshow(cm, interpolation= 'nearest', cmap= plt.cm.Blues)
plt.title('Confusion Matrix')
plt.colorbar()
tick_marks = np.arange(len(classes))
```

```
plt.xticks(tick_marks, classes, rotation= 45)
plt.yticks(tick marks, classes)
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
  plt.text(j, i, cm[i, j], horizontalalignment= 'center', color= 'white' if cm[i, j] > thresh else 'black')
plt.tight_layout()
plt.ylabel('True Label')
plt.xlabel('Predicted Label')
plt.show()
# Classification report
print(classification_report(test_gen.classes, y_pred, target_names= classes))
#Save the model
model.save('C:/Users/sivav/OneDrive/Documents/Final_year_proj/multimodal-image-fusion-to-
detect-brain-tumors-master/Brain Tumor.h5')
loaded_model = tf.keras.models.load_model('Brain Tumor.h5', compile=False)
loaded_model.compile(Adamax(learning_rate= 0.001), loss= 'categorical_crossentropy', metrics=
['accuracy'])
image_path = 'C:/Users/sivav/OneDrive/Documents/Final_year_proj/multimodal-image-fusion-
to-detect-brain-tumors-master/dataset/Patient Data/p37/mri.jpg'
image = cv.imread(image_path)
# Preprocess the image
shape array=image.shape
img=cv.resize(image,(224,224))
\#img = image.resize((224, 224))
img_array = tf.keras.preprocessing.image.img_to_array(img)
img_array = tf.expand_dims(img_array, 0)
# Make predictions
predictions = loaded model.predict(img array)
class_labels = ['Glioma', 'Meningioma', 'No Tumor', 'Pituitary']
print(f"{class_labels[np.argmax(predictions)]}")
plt.imshow(img,cmap='gray')
#plt.title(predicted)
plt.axis('off')
def classification():
  loaded_model = tf.keras.models.load_model('Brain Tumor.h5', compile=False)
     loaded_model.compile(Adamax(learning_rate= 0.001), loss= 'categorical_crossentropy',
metrics= ['accuracy'])
    image=cv.imread('C:/Users/sivav/OneDrive/Documents/Final_year_proj/multimodal-image-
fusion-to-detect-brain-tumors-master/dataset/Patient Data/p38/mri.jpg')
```

```
# Preprocess the image
shape_array=image.shape
img=cv.resize(image,(224,224))
#img = image.resize((224, 224))
img_array = tf.keras.preprocessing.image.img_to_array(img)
img_array = tf.expand_dims(img_array, 0)

# Make predictions
predictions = loaded_model.predict(img_array)
class_labels = ['Glioma', 'Meningioma', 'No Tumor', 'Pituitary']
print(f" {class_labels[np.argmax(predictions)]}")
plt.imshow(img,cmap='gray')
#plt.title(predicted)
plt.axis('off')
classification()
```

HTML FILES:

base.html

form.html

```
<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <title>MMMIF</title>
```

```
link
                                                                            rel="stylesheet"
href="https://stackpath.bootstrapcdn.com/bootstrap/4.4.1/css/bootstrap.min.css"
                                                                          integrity="sha384-
Vkoo8x4CGsO3+Hhxv8T/Q5PaXtkKtu6ug5TOeNV6gBiFeWPGFN9MuhOf23Q9Ifjh"
crossorigin="anonymous">
  <link rel="stylesheet" href="../static/css/form.css">
</head>
<body>
  <div class="container-fluid">
    <div class="landing-content text-center">
       <h1><font size="20">Welcome to Diagnose Support Hub</font></h1>
                                    style="border:4px
                                                         solid
                                                                  Gray;"><font
                                                                                   size="6"
                             <p
style="background:MediumSeaGreen;">Providing
                                                          Comprehensive
                                                                                    Medical
Solutions</font>
    </div>
  </div>
  <div class="container">
    <div class="row justify-content-center">
       <div class="col-lg-6 col-md-8 col-sm-10">
         <div style="background: rgba(0, 0, 0, 0.7); padding: 20px; border-radius: 10px;">
           <h3 class="text-center">Landmark-Based Registration</h3>
                  <form id="upload-form" action="{{ url_for('upload') }}" method="POST"
enctype="multipart/form-data">
              <div class="form-group">
                <label for="mri">Select MRI Image :</label>
                <input type="file" name="mri" id="mri" accept="image/*" class="form-control"
required>
              </div>
              <div class="form-group">
                <label for="ct">Select CT Image :</label>
                  <input type="file" name="ct" id="ct" accept="image/*" class="form-control"</pre>
required>
              </div>
              <div class="form-group">
                 <label for="points">Enter Number of Points for Registration (Min 5, Max 10)
:</label>
                <input type="number" name="points" min="5" max="10" class="form-control"</pre>
required>
              </div>
```

```
<input type="submit" value="Upload Files" class="btn btn-primary btn-block">
           </form>
         </div>
      </div>
    </div>
  </div>
  <div class="container-fluid text-center mt-5">
    <div class="quote-text">
      <br/>
<br/>
<br/>
dockquote class="blockquote">
         <font size="6">"The art of medicine consists of amusing the patient
while nature cures the disease." - Voltaire</font>
      </blockquote>
    </div>
  </div>
  <script src="https://code.jquery.com/jquery-3.4.1.slim.min.js"</pre>
                                                                         integrity="sha384-
J6qa4849blE2+poT4WnyKhv5vZF5SrPo0iEjwBvKU7imGFAV0wwj1yYfoRSJoZ+n"
    crossorigin="anonymous"></script>
  <script src="https://cdn.jsdelivr.net/npm/popper.js@1.16.0/dist/umd/popper.min.js"</pre>
                                                                         integrity="sha384-
Q6E9RHvbIyZFJoft+2mJbHaEWldlvI9IOYy5n3zV9zzTtmI3UksdQRVvoxMfooAo"
    crossorigin="anonymous"></script>
  <script src="https://stackpath.bootstrapcdn.com/bootstrap/4.4.1/js/bootstrap.min.js"</pre>
                                                                         integrity="sha384-
wfSDF2E50Y2D1uUdj0O3uMBJnjuUD4Ih7YwaYd1iqfktj0Uod8GCExl3Og8ifwB6"
    crossorigin="anonymous"></script>
</body>
</html>
```

registration.html

```
{% extends 'base.html' %}

{% block link %}

link

href="https://stackpath.bootstrapcdn.com/bootstrap/4.4.1/css/bootstrap.min.css"

integrity="sha384-Vkoo8x4CGsO3+Hhxv8T/Q5PaXtkKtu6ug5TOeNV6gBiFeWPGFN9MuhOf23Q9Ifjh"

crossorigin="anonymous">

k url_for('static',filename='css/registration.css') }}">
```

```
{% endblock %}
{% block script %}
<script src="https://code.jquery.com/jquery-3.4.1.min.js"</pre>
               integrity="sha256-CSXorXvZcTkaix6Yvo6HppcZGetbYMGWSFlBw8HfCJo="
crossorigin="anonymous"></script>
<script type="text/javascript" src="{{ url_for('static',filename='js/coord.js') }}"></script>
<script src="https://cdn.jsdelivr.net/npm/popper.js@1.16.0/dist/umd/popper.min.js"</pre>
                                                                          integrity="sha384-
Q6E9RHvbIyZFJoft+2mJbHaEWldlvI9IOYy5n3zV9zzTtmI3UksdQRVvoxMfooAo"
  crossorigin="anonymous"></script>
<script src="https://stackpath.bootstrapcdn.com/bootstrap/4.4.1/js/bootstrap.min.js"</pre>
                                                                          integrity="sha384-
wfSDF2E50Y2D1uUdj0O3uMBJnjuUD4Ih7YwaYd1iqfktj0Uod8GCExl3Og8ifwB6"
  crossorigin="anonymous"></script>
{% endblock %}
{% block body %}
<!DOCTYPE html>
<html lang="en">
<head>
  <meta charset="UTF-8">
  <title>MMMIF</title>
</head>
<body>
  <div class="container">
    <div class="row">
       <div class="col-lg-12">
         <center>
               <h2 style="margin-top:40px;margin-bottom:20px"><font size="10">Select Co-
ordinates for Registration Process</font></h2>
         </center>
       </div>
    </div>
    <div class="row">
       <div class="col-lg-6 col-md-12 col-sm-12">
            <div style="display: flex;flex-direction: column;align-items:center; justify-content:</pre>
space-between;min-height:662px;">
           <h2 style="margin-top: 20px;">MRI Image</h2>
           <img src="{{ url_for('static',filename='mri.jpg') }}" id="mri" alt="MRI" class="mri"</pre>
```

```
style="border:2px solid #87857f;padding:15px; border-radius:10px;">
           <div>
             MRI X:<span id="mriX"></span>
             MRI Y:<span id="mriY"></span>
           </div>
         </div>
      </div>
      <div class="col-lg-6 col-md-12 col-sm-12">
                <div style="display: flex;flex-direction: column;align-items: center;justify-</pre>
content:space-between;min-height: 662px;">
           <h2 style="margin-top: 20px;">CT Image</h2>
           <img src="{{ url_for('static',filename='ct.jpg') }}" id="ct" alt="CT" class="ct"</pre>
             style="border:2px solid #87857f;padding:15px; border-radius:10px;">
           <div>
             CT X:<span id="ctX"></span>
             CT Y:<span id="ctY"></span>
           </div>
         </div>
      </div>
    </div>
    <div class="row">
      <div class="col-lg-12">
         <center>
           <button onclick="sendParameters()" class="btn btn-primary" style="margin-bottom:</pre>
40px;">Submit
             Data</button>
         </center>
      </div>
    </div>
  </div>
  <script type="text/javascript">
    var myImgMri = document.getElementById("mri");
    var points = {{ points }};
    myImgMri.onclick = GetCoordinatesMri;
    var myImgCt = document.getElementById("ct");
    myImgCt.onclick = GetCoordinatesCt;
  </script>
</body>
</html>
```

imageregistration.html

```
<!DOCTYPE html>
<html lang="en">
<head>
  <meta charset="UTF-8">
  <title>MMMIF</title>
                                                link
                                                                             rel="stylesheet"
href="https://stackpath.bootstrapcdn.com/bootstrap/4.4.1/css/bootstrap.min.css"
                                                                          integrity="sha384-
Vkoo8x4CGsO3+Hhxv8T/Q5PaXtkKtu6ug5TOeNV6gBiFeWPGFN9MuhOf23Q9Ifjh"
crossorigin="anonymous">
  rel="stylesheet" href="{{ url_for('static',filename='css/registered.css') }}">
  <style>
  @keyframes page-load {
    from {
    width: 0;
    to {
    width: 100%;
     }
  .page-loading::before {
    content: " ";
    display: block;
    position: fixed;
    z-index: 10;
    height: 5px;
    width: 100%;
    top: 0;
    left: 0;
    background-color: #06D;
    animation: page-load ease-out 2s;
  </style>
  <script>
  document.addEventListener("DOMContentLoaded", function () {
    var linksToAnimate = document.querySelectorAll(".load-animation-link");
    linksToAnimate.forEach(function (link) {
       link.addEventListener("click", function (e) {
```

```
document.body.classList.add("page-loading");
       window.addEventListener("DOMContentLoaded", function () {
         document.body.classList.remove("page-loading");
         });
       });
     });
    window.addEventListener("beforeunload", function () {
       document.body.classList.add("page-loading");
     });
  });
</script>
</head>
<body>
  <div class="container">
    <div class="jumbotron">
       <h1 class="display-4"> <font size="10">Image Registration </font></h1>
    </div>
    <div class="row">
       <div class="col-lg-6 col-md-12 col-sm-12 content">
         <h2><font size="6">Registered MRI Image</font></h2>
         <center>
            <img src="{{ url_for('static',filename='mri_registered.jpg') }}" id="mri" alt="MRI"</pre>
class="mri"
              style="border:2px solid #87857f;padding:15px; border-radius:10px;">
         </center>
       </div>
       <div class="col-lg-6 col-md-12 col-sm-12 content">
         <h2><font size="6">Registered CT Image</font></h2>
         <center>
            <img src="{{ url_for('static',filename='ct.jpg') }}" id="ct" alt="CT" class="ct"</pre>
              style="border:2px solid #87857f;padding:15px; border-radius:10px;">
         </center>
       </div>
    </div>
    <div class="row" style="margin-bottom: 40px;">
       <div class="col-lg-12 col-md-12 col-sm-12">
```

```
<center>
           <form action="{{ url for('fusion') }}" method="GET">
             <input type="submit" value="View The Fused Image" class="btn btn-primary btn-
blink" class="load-animation-link">
           </form>
         </center>
      </div>
    </div>
  </div>
  <script src="https://code.jquery.com/jquery-3.4.1.slim.min.js"</pre>
                                                                        integrity="sha384-
J6qa4849blE2+poT4WnyKhv5vZF5SrPo0iEjwBvKU7imGFAV0wwj1yYfoRSJoZ+n"
    crossorigin="anonymous"></script>
  <script src="https://cdn.jsdelivr.net/npm/popper.js@1.16.0/dist/umd/popper.min.js"</pre>
                                                                        integrity="sha384-
Q6E9RHvbIyZFJoft+2mJbHaEWldlvI9IOYy5n3zV9zzTtmI3UksdQRVvoxMfooAo"
    crossorigin="anonymous"></script>
  <script src="https://stackpath.bootstrapcdn.com/bootstrap/4.4.1/js/bootstrap.min.js"</pre>
                                                                        integrity="sha384-
wfSDF2E50Y2D1uUdj0O3uMBJnjuUD4Ih7YwaYd1iqfktj0Uod8GCExl3Og8ifwB6"
    crossorigin="anonymous"></script>
</body>
</html>
```

fusion.html

```
width: 0;
    }
    to {
    width: 100%;
  .page-loading::before {
    content: " ";
    display: block;
    position: fixed;
    z-index: 10;
    height: 5px;
    width: 100%;
    top: 0;
    left: 0:
    background-color: #06D;
    animation: page-load ease-out 2s;
  </style>
  <script>
  document.addEventListener("DOMContentLoaded", function () {
    var linksToAnimate = document.querySelectorAll(".load-animation-link");
    linksToAnimate.forEach(function (link) {
       link.addEventListener("click", function (e) {
       document.body.classList.add("page-loading");
       window.addEventListener("DOMContentLoaded", function () {
         document.body.classList.remove("page-loading");
         });
       });
    });
    window.addEventListener("beforeunload", function () {
       document.body.classList.add("page-loading");
    });
  });
</script>
</head>
<body>
  <div class="container">
    <div class="jumbotron">
       <h1 class="display-4"> <font size="10">Image Registration </font></h1>
```

```
</div>
    <div class="row">
       <div class="col-lg-6 col-md-12 col-sm-12 content">
         <h2><font size="6">Registered MRI Image</font></h2>
         <center>
            <img src="{{ url_for('static',filename='mri_registered.jpg') }}" id="mri" alt="MRI"</pre>
class="mri"
              style="border:2px solid #87857f;padding:15px; border-radius:10px;">
         </center>
       </div>
       <div class="col-lg-6 col-md-12 col-sm-12 content">
         <h2><font size="6">Registered CT Image</font></h2>
         <center>
            <img src="{{ url_for('static',filename='ct.jpg') }}" id="ct" alt="CT" class="ct"</pre>
              style="border:2px solid #87857f;padding:15px; border-radius:10px;">
         </center>
       </div>
    </div>
    <div class="row" style="margin-bottom: 40px;">
       <div class="col-lg-12 col-md-12 col-sm-12">
         <center>
            <form action="{{ url_for('fusion') }}" method="GET">
              <input type="submit" value="View The Fused Image" class="btn btn-primary btn-</pre>
blink" class="load-animation-link">
            </form>
         </center>
       </div>
    </div>
  </div>
  <script src="https://code.jquery.com/jquery-3.4.1.slim.min.js"</pre>
                                                                           integrity="sha384-
J6qa4849blE2+poT4WnyKhv5vZF5SrPo0iEjwBvKU7imGFAV0wwj1yYfoRSJoZ+n"
    crossorigin="anonymous"></script>
  <script src="https://cdn.jsdelivr.net/npm/popper.js@1.16.0/dist/umd/popper.min.js"</pre>
                                                                           integrity="sha384-
Q6E9RHvbIyZFJoft+2mJbHaEWldlvI9IOYy5n3zV9zzTtmI3UksdQRVvoxMfooAo"
    crossorigin="anonymous"></script>
  <script src="https://stackpath.bootstrapcdn.com/bootstrap/4.4.1/js/bootstrap.min.js"</pre>
```

classification.html

```
<!DOCTYPE html>
<html lang="en">
<head>
  <meta charset="UTF-8">
  <title>MMMIF</title>
                                               link
                                                                           rel="stylesheet"
href="https://stackpath.bootstrapcdn.com/bootstrap/4.4.1/css/bootstrap.min.css"
                                                                         integrity="sha384-
Vkoo8x4CGsO3+Hhxv8T/Q5PaXtkKtu6ug5TOeNV6gBiFeWPGFN9MuhOf23Q9Ifjh"
crossorigin="anonymous">
  rel="stylesheet" href="{{ url_for('static',filename='css/classified.css') }}">
</head>
<body>
  <div class="container">
    <div class="row">
      <div class="col-lg-12 col-md-12 col-sm-12 content">
         <div class="jumbotron">
       <h1> </h1>
                       <h1 class="display-4" style="color:white;"><font size="10">Image
Classification</font></h1>
         </div>
             <img src="{{ url_for('static',filename='classified.jpg') }}" id="fusion" alt="Fused</pre>
Image"
                      class="fusion" style="border:2px solid #87857f;padding:15px; border-
radius:10px;">
       <h3 style="color:white;"> {{predicted_text}}</h3>
```

```
</div>
    </div>
  </div>
  <script src="https://code.jquery.com/jquery-3.4.1.slim.min.js"</pre>
                                                                        integrity="sha384-
J6qa4849blE2+poT4WnyKhv5vZF5SrPo0iEjwBvKU7imGFAV0wwj1yYfoRSJoZ+n"
    crossorigin="anonymous"></script>
  <script src="https://cdn.jsdelivr.net/npm/popper.js@1.16.0/dist/umd/popper.min.js"</pre>
                                                                        integrity="sha384-
Q6E9RHvbIyZFJoft+2mJbHaEWldlvI9IOYy5n3zV9zzTtmI3UksdQRVvoxMfooAo"
    crossorigin="anonymous"></script>
  <script src="https://stackpath.bootstrapcdn.com/bootstrap/4.4.1/js/bootstrap.min.js"</pre>
                                                                        integrity="sha384-
wfSDF2E50Y2D1uUdj0O3uMBJnjuUD4Ih7YwaYd1iqfktj0Uod8GCExl3Og8ifwB6"
    crossorigin="anonymous"></script>
</body>
</html>
```

CSS FILES:

classified.css

```
*{
    padding: 0;
    margin:0;
    font-family: serif;
}

.content{
    margin-top: 40px;
    margin-bottom: 40px;
}
.jumbotron .display-4{
    font-size: 40px;
}
.heading{
    font-size: 25px;
    text-align: center;
}

body {
```

```
background-image: url(../images/generated_4.png);
background-size: cover;
background-position: center;

}

.jumbotron {
background-color: transparent;
color: black;
}
```

form.css

```
padding: 0;
  margin:0;
  font-family: serif;
div.content{
  height: 100vh;
body {
  animation: backgroundAnimation 10s infinite;
  color: white;
  font-family: Arial, sans-serif;
@keyframes backgroundAnimation {
  background-image: url(../images/medical30.png);
  33% {
  background-image: url(../images/medical29.jpeg);
  66% {
  background-image: url(../images/medical28.png);
  100% {
  background-image: url(../images/medical30.png);
```

```
.container-fluid {
  display: flex;
  justify-content: center;
  align-items: center;
  height: 100vh;
.landing-content {
  animation: fadeInAnimation 2s ease-in;
@keyframes fadeInAnimation {
  0% {
    opacity: 0;
  100% {
    opacity: 1;
.quote-text {
  animation: blinkAnimation 1s infinite;
@keyframes blinkAnimation {
  0% {
    opacity: 0;
  50% {
    opacity: 1;
  100% {
    opacity: 0;
div.landing-content{
  margin:75px auto;
  z-index: 1;
  color:#fff;
```

```
div.landing-content h2{
  font-weight: 700;
  text-shadow: 2px 2px #474242;
  text-align: center;
}

div.landing-content p{
  font-weight: 600;
  padding: 30px;
  font-size: 20px;
  color:#00011a;
}
```

fusion.css

```
padding: 0;
  margin:0;
  font-family: serif;
.content{
  margin-top: 40px;
  margin-bottom: 40px;
.jumbotron .display-4{
  font-size: 28px;
.heading{
  font-size: 22px;
  text-align: center;
body {
  background-image: url(../images/generated_2.png);
  background-size: cover;
.jumbotron {
  background-color: transparent;
  color: #ffffff;
  animation: slideInDown 1s ease-in-out;
```

```
@keyframes slideInDown {
    from {
        transform: translateY(-100%);
        opacity: 0;
    }
    to {
        transform: translateY(0);
        opacity: 1;
    }
}.content {
    animation: fadeIn 1s ease-in-out;
}

@keyframes fadeIn {
    from {
        opacity: 0;
    }
    to {
        opacity: 1;
    }
}
```

registered.css:

```
*{
  padding: 0;
  margin:0;
  font-family: serif;
}
.content{
  margin-bottom: 20px;
  margin-top: 20px;
}

h2{
  font-size: 22px;
  text-align: center;
}
.jumbotron{
```

```
margin-top: 40px;
.jumbotron .display-4{
  font-size: 28px;
body {
  background-image: url(../images/fusion.jpeg);
  background-size: cover;
.jumbotron {
  background-color: transparent;
  color: #ffffff;
  animation: zoomIn 1s ease-in-out;
@keyframes zoomIn {
  from {
    opacity: 0;
    transform: scale(0.5);
  to {
    opacity: 1;
     transform: scale(1);
.content h2 {
  color:rgba(35, 142, 92, 0.751);
  animation: fadeInRight 1s ease-in-out;
@keyframes fadeInRight {
  from {
    opacity: 0;
     transform: translateX(-50px);
  to {
    opacity: 1;
    transform: translateX(0);
```

```
@keyframes blink {
    0% { opacity: 1; }
    50% { opacity: 0; }
    100% { opacity: 1; }
}
.btn-blink {
    animation: blink 1s infinite;
}
```

registration.css

```
margin: 0;
  padding: 0;
  font-family: serif;
h2{
  font-size: 22px;;
body {
  background-image: url(../images/medical24.jpeg);
  background-size: cover;
h2 {
  animation: shake 0.5s infinite alternate;
@keyframes shake {
  from {
    transform: translateX(0);
    transform: translateX(5px);
.btn-primary:hover {
  background-color: green;}
```

CHAPTER 6

RESULTS

Figure 9: Website Home page

Figure 10: Landmark-Based Registration

Figure 11: Selecting Co-ordinates for Registration Process

Figure 12: Registered Image

Figure 13: Fused Image

Figure 14: Classified Image

Figure 15: Proposed Model Loss and Accuracy

Figure 16: Confusion Matrix

	precision	recall	f1-score	support
gliona	8.96	0.89	0.92	151
meningiona	0.89	0.91	0.90	164
notumor	8.97	1.00	8.99	192
pituitary	0.97	8.99	0.98	149
accuracy			8.95	656
macro avg	0.95	8.95	0.95	656
weighted avg	0.95	8.95	0.95	656

Figure 17: Proposed System Evaluation Metrics

CHAPTER 7

CONCLUSION

In Conclusion, this study emphasizes the transformative ability of multimodal fusion techniques in revolutionizing scientific imaging, especially within the critical area of brain tumor detection. By integrating records from various resources which include brain CT scans and MRI, and employing state-of-the-art fusion techniques like landmark-based totally photo registration and wavelet remodel-primarily based fusion, the evolved Flask-based totally utility offers a holistic solution that enhances diagnostic accuracy and aids in medical choice-making. Moreover, the incorporation of convolutional neural network (CNN) fashions for automated tumor detection and classification represents a significant soar forward, simplifying evaluation approaches and elevating performance standards. Consequently, these improvements no longer best refine diagnostic precision however additionally hold the promise of placing new benchmarks for medical results, thereby positively impacting affected person care. Looking to the destiny, sustained exploration and refinement of multimodal fusion strategies are vital for advancing clinical imaging practices and unlocking in addition innovations. By always pushing the boundaries of generation and collaboration, we can aspire to redefine diagnostic standards, ultimately leading to progressed healthcare consequences and better patient experiences.

FUTURE ENHANCEMENTS AND DISCUSSIONS

In terms of future improvements and discussions, several avenues provide the capability for advances in clinical imaging and diagnostics, specifically inside the detection of mind tumors. First, exploring the integration of superior imaging methods including positron emission tomography (PET) or functional MRI (fMRI) may want to provide extra insights for complete tumor characterization and treatment planning. Second, delving into greater state-of-the-art fusion strategies past existing strategies, including landmark-based registration and wavelet transforms, can yield even greater robust integration of multimodal information, thereby growing diagnostic accuracy and reliability. Moreover, the continuous refinement and exploration of deep getting to know architectures, together with new processes along with transformer-based models, keep promise for enhancing the performance of computerized tumor detection and class. In addition, conducting massive-scale medical trials to affirm the effectiveness and reliability of developed packages in a actual-world healthcare setting is essential for their significant adoption and integration into habitual medical exercise.