Power flow feasibility problem

Sergei Volodin under supervision of Y. Maximov

Skolkovo Insitute of Science and Technology

The problem

- Large-scale power grids
- Need to know if a regime of the grid is «normal», «safe»
- **3** Ohm's law \Rightarrow quadratic equations:

$$y_i = f_i(x) = x^T A_i x + 2b_i^T x$$

y (regime) known, x is not

• Need to determine if $\exists x : y = f(x)$ (means «safe»)

This problem is known as Power Flow Feasibility problem. To solve it, the image $f(\mathbb{R}^n)$ must be examined

The solution

Given: the map $f: \mathbb{R}^n \to \mathbb{R}^m$, $f_i(x) = x^T A_i x + 2b_i^T x$, $A_i^T = A_i$ Proposed algorithm for examining $F = f(\mathbb{R}^n)$:

- Input: $y^0 \in F$, direction c_+ : $c_+ \cdot A > 0$
- Output: value z_{max} s.t. the cut $Q(c_+, z_{max}, F)$ is convex

Solution overview:

- ① Discovering boundary nonconvexities $\{F_i\}$ close to y^0
- 2 Projecting to c_+ : (F_i, c_+)
- 3 Calculating $z_{\text{max}} = \inf_{i} \inf_{y \in F_i} (c_+, y)$

 $Q(c_+,z,F)=\{y\big|(y-y^*,c_+)\in[0,z]\}\cap F$, y^* — touching point of hyperplane c_+

The solution

Solution in details:

- Using the Gradient projection method
- $oldsymbol{\circ}$ Special technique for projection using geometry of c_{bad}

Numerical experiment

An example: $f: \mathbb{R}^4 \to \mathbb{R}^4$

- 4 local minima
- Global minimum found

Results

Algorithm for examining the set of «safe» regimes was proposed:

- Can determine if the whole subset is «safe» at one run
- 2 Cuts convex parts of the image F
- General case when the set of nonconvexities is a continuum was considered
- lacktriangle Algorithm was tested on a number of maps f

Plan:

- lacksquare $\Bbb C$ case
- 2 Testing for higher dimensions

