

Set 10: Representation and Description

Lecturer Arto Kaarna

Lappeenranta University of Technology (LUT)
School of Engineering Science (LENS)
Machine Vision and Pattern Recognition (MVPR)

Arto.Kaarna@lut.fi
http://www.lut.fi/web/en/school-of-engineeringscience/research/machine-vision-and-pattern-recognition

Contents

- Representation schemes
- Boundary descriptors
- Regional descriptors
- Morphology: dilation, erosion, closing, opening
- Principal components
- Relational descriptors

Task: Describe the region based on the chosen representation

Image acquisition => digital image

Preprocessing => better image

Segmentation => basic features

Representation and description => advanced features

Object recognition (classification, clustering)

Representation Schemes

- Schemes that compact data into representations that are more useful in the computation of descriptors (features)
- Schemes:
 - Chain codes
 - Polygonal approximation
 - Signatures
 - Boundary segments
 - Skeletons

- Chain codes are used to represent a boundary by a connected sequence of straight-line segments of the specified length and direction
- 4-directional chain and 8-directional chain codes
- The chain code of the boundary depends on the starting point
 - Redefine the starting point so that the resulting sequence of numbers forms an integer of minimum magnitude
 - Normalization for rotation: the first difference of the chain code instead of the code itself

 4- and 8-directional chain code (make unambiguos by selecting starting point so that the magnitude of the resulting integer is minimal)

Steps in creating the chain code

© 1992-2008 R. C. Gonzalez & R. E. Woods

 First difference: count direction changes between consequtive chain codes → rotation invariance, e.g.

CC FD

01 1

02 2

03 3

 For a noisy image, the first step is to remove noise, then threshold, find the boundary, sample the boundary, and finally connect the points in the sampled boundary

- A digital boundary can be approximated with arbitrary accuracy by a polygon
- Minimum perimeter polygons
 - A polygon of minimum perimeter fitted to the object boundary enclosed by cells
- Splitting techniques
 - Subdivision of a segment successively into two parts until a given criterion is satisfied

Maximal inscribed polygon

RS: Polygonal approximation

 Finding cells, defining the minimum-perimeter polygon by following the corners/inner/outer corners of the cells

- Minimum perimeter polygon (MPP)
- © 1992–2008 R. C. Gonzalez & R. E. Woods

 Convex (W) and concave (B) vertices.

- A signature is a 1-D functional representation of a boundary
- To reduce the boundary representation to a 1-D function
- Invariance:
 - Rotation (if starting point is selected suitably)
 - Translation
 - Scaling

RS: Boundary segments

- Decomposing a boundary into segments
- The convex hull H of an arbitrary set S is the smallest convex set containing S
- The set H S is called the convex deficiency D of the set S

RS: Skeleton of a Region

- To reduce the structural shape to a graph
- The skeleton is obtained with a thinning algorithm
- Medial axis transformation (MAT) of a region R with border B is as follows:
 - For each point p in R find the closest neighbor in B.
 - If *p* has more than one such neighbor it is said to belong to the medial axis (skeleton) of *R*.
- MAT depends on the choice of a distance measure (e.g., Euclidean distance) and it is also computationally expensive => many other thinning algorithms have been proposed

RS: Skeleton of a Region

Medial axis of some regions

© 1992-2008 R. C. Gonzalez & R. E. Woods

Boundary descriptors

- Simple descriptors
 - Length of a contour: number of pixels along the contour
 - Diameter of a boundary B(D = distance measure): $Diam(B) = \max[D(p_i, p_i)]$, p_i, p_i are points on boundary
 - Curvature: the rate of change of slope
- Shape numbers: the first difference of the smallest magnitude (from the chain code) (order: number of digits in the representation)
- Fourier descriptors
- Moments: the shape of boundary segments described by moments (mean value and variance of a 1-D function)

BS: Shape Numbers

 Shape number of a boundary is defined as the first difference of the smallest magnitude (the code depends on the starting point)

 Shape numbers for some simple shapes, orders: 4,6, and 8 Chain code: 0 3 2 1 0 0 3 2 2 1

Difference: 3 3 3 3 3 3 0 3 3 0 3 3

Shape no.: 3 3 3 3 0 3 3 0 3 3

BS: Shape Numbers

- Steps in finding the shape number
 - 1. Find the chain code
 - 2. Find the first differences
 - 3. Select the first difference with the smallest magnitude.

Chain code: 0 0 0 0 3 0 0 3 2 2 3 2 2 2 1 2 1 1

Difference: 3 0 0 0 3 1 0 3 3 0 1 3 0 0 3 1 3 0

Shape no.: 0 0 0 3 1 0 3 3 0 1 3 0 0 3 1 3 0 3

BS: Fourier Descriptors

- The boundary is described as a complex number s(k) = x(k) + jy(k)
- The DFT of s(k) is a(u), k = 0, K 1
- An approximation is obtained when we set

$$a(u) = 0 \text{ for } u > P - 1, P < K$$

The descriptors are then

Transformation	Boundary	Fourier Descriptor
Identity	s(k)	a(u)
Rotation	$s_r(k) = s(k)e^{j\theta}$	$a_r(u) = a(u)e^{j\theta}$
Translation	$s_t(k) = s(k) + \Delta_{xy}$	$a_t(u) = a(u) + \Delta_{xy}\delta(u)$
Scaling	$s_s(k) = \alpha s(k)$	$a_s(u) = \alpha a(u)$
Starting point	$s_p(k) = s(k - k_0)$	$a_p(u) = a(u)e^{-j2\pi k_0 u/K}$

BS: Fourier Descriptors

- Approximation, originally 2868 points on the boundary
- 50, 10, 5, 2.5, 1.25, 0,63, 0.28% of the points used

Regional Descriptors

- Simple descriptors
 - Area, perimeter, compactness, principal axes
- Topological descriptors
 - Holes, connected components, Euler number (e.g. the number of objects minus the number of holes in the objects in a binary image)
- Texture
- Moments

Dots 34

Area 94.15 ± 22.75

 Stretch
 6.93 ± 5.59

 Consistency
 100.00 ± 0.00

 Regularity1
 97.78 ± 1.71

 Regularity2
 102.09 ± 3.02

 Coarseness
 106.73 ± 2.20

RD: Simple Descriptors of a Region

- Area = the number of pixels contained within its boundary
- Perimeter = the length of its boundary
- Compactness = $perimeter^2/A$
- Circularity = A_R/A_C , two objects with the same perimeter
- Elongatedness = $A_R/(2d)^2$
 - d = erosion steps before the region totally disappears
- Eccentricity (of the ellipse that has the same second moments as the region) = $(\mu_{20} \mu_{02} + 4\mu_{11})^2/\mu_{00}$
- Principal axes ratio = major axis / minor axis.

RD: Simple Descriptors of a Region

- Eccentricity: ratio of major and minor axes
- Elongatedness: ratio between length and width of bounding rectangle

Figure 6.25 Compactness: (a) Compact, (b) non-compact.

Figure 6.24 Elongatedness: (a) Bounding rectangle gives acceptable results, (b) bounding rectangle cannot represent elongatedness.

RD: Topological Descriptors

- Topology is the study of properties a figure that are unaffected by any deformation, as long as there is no tearing or joining of the figure (also called rubber-sheet distortions)
- Euler number E = C H.
 - Number of holes in a region *H*.
 - Number of connected components C.
- 2 holes and 3 connected components

RD: Topological Descriptors

Euler number 0 and -1

© 1992-2008 R. C. Gonzalez & R. E. Woods

 In more general case (for 3D objects) the vertices V, edges Q and faces F, (and bodies,) are also included

$$V-Q+F=C-H=E$$

• E.g. object above: 7-11+2=1-3=-2

RD: Texture

- Texture content of a region
- Texture descriptor provides measures of properties such as smoothness, coarseness, and regularity
- Three approaches:
 - Statistical approach: moments, co-occurrence matrix
 - Structural approach: texture primitives
 - Rules similar to productions in parsing, e.g S->aS
 - For detecting similar structures in the texture
 - Spectral approach: Fourier spectrum

RD: Texture

- Statistical measures for texture
- E.g. smoothness $R = 1 1/(\sigma^2(z))$

Texture	Mean	Standard deviation	R (normalized)	Third moment	Uniformity	Entropy
Smooth	82.64	11.79	0.002	-0.105	0.026	5.434
Coarse	143.56	74.63	0.079	-0.151	0.005	7.783
Regular	99.72	33.73	0.017	0.750	0.013	6.674

RD: Texture, Co-occurrence matrix

- Original image (upper left): skin, leaves, brick, stone
- Segmentation based on:

 Contrast (upper right),
 Homogeneity (lower left),
 Standard deviation (lower right)

© 1992–2008 R. C. Gonzalez & R. E. Woods

Some properties found from the cooccurrence matrix

RD: Texture, Co-occurrence matrix

Descriptor	Explanation	Formula
Maximum probability	Measures the strongest response of G . The range of values is $[0, 1]$.	$\max_{i,j}(p_{ij})$
Correlation	A measure of how correlated a pixel is to its neighbor over the entire image. Range of values is 1 to -1, corresponding to perfect positive and perfect negative correlations. This measure is not defined if either standard deviation is zero.	$\begin{split} \sum_{i=1}^K \sum_{j=1}^K \frac{(i-m_r)(j-m_c)p_{ij}}{\sigma_r \sigma_c} \\ \sigma_r \neq 0; \sigma_c \neq 0 \end{split}$
Contrast	A measure of intensity contrast between a pixel and its neighbor over the entire image. The range of values is 0 (when G is constant) to $(K-1)^2$.	$\sum_{i=1}^{K} \sum_{j=1}^{K} (i-j)^2 p_{ij}$
Uniformity (also called Energy)	A measure of uniformity in the range [0, 1]. Uniformity is 1 for a constant image.	$\sum_{i=1}^K \sum_{j=1}^K p_{ij}^2$
Homogeneity	Measures the spatial closeness of the distribution of elements in G to the diagonal. The range of values is $[0,1]$, with the maximum being achieved when G is a diagonal matrix.	$\sum_{i=1}^{K} \sum_{i=1}^{K} \frac{p_{ij}}{1 + i - j }$
Entropy	Measures the randomness of the elements of G . The entropy is 0 when all p_{ij} 's are 0 and is maximum when all p_{ij} 's are equal. The maximum value is $2 \log_2 K$. (See Eq. (11.3-9) regarding entropy).	$-\sum_{i=1}^K \sum_{i=1}^K p_{ij} \log_2 p_{ij}$

RD: Texture, Co-occurrence matrix

Effect of the horizontal offset vs. correlation

RD: Texture, Fourier signatures

- Fourier signatures
- Original images with DFTs
- S(R)

 $S(\theta)$

RD: Moments

- Image moment: a certain weighted average of the image pixel intensities (e.g. centroid can be found with moments)
- For image f(x, y), the central moment of order (p + q) is

$$\mu_{pq} = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} (x - \bar{x})^p (y - \bar{y})^q f(x, y)$$

- Then invariant moments can be derived from the second and third moments
 - Translation, scaling, rotation, mirroring

RD: Moments

• Typical invariant moments, $\eta_{pq} = \frac{\mu_{pq}}{\mu_{00}^{\gamma}}$, $\gamma = \frac{p+q}{2} + 1$

$$\phi_{1} = \eta_{20} + \eta_{02}$$

$$\phi_{6} = (\eta_{20} - \eta_{02})[(\eta_{30} + \eta_{12})^{2} - (\eta_{21} + \eta_{03})^{2}]$$

$$\phi_{2} = (\eta_{20} - \eta_{02})^{2} + 4\eta_{11}^{2}$$

$$+ 4\eta_{11}(\eta_{30} + \eta_{12})(\eta_{21} + \eta_{03})$$

$$\phi_{3} = (\eta_{30} - 3\eta_{12})^{2} + (3\eta_{21} - \eta_{03})^{2}$$

$$\phi_{4} = (\eta_{30} + \eta_{12})^{2} + (\eta_{21} + \eta_{03})^{2}$$

$$\phi_{5} = (\eta_{30} - 3\eta_{12})(\eta_{30} + \eta_{12})[(\eta_{30} + \eta_{12})^{2}]$$

$$\phi_{11} = (\eta_{20} - \eta_{02})[(\eta_{30} + \eta_{12})(\eta_{21} + \eta_{03})]$$

$$\phi_{12} = (\eta_{21} - \eta_{02})(\eta_{21} + \eta_{02})^{2}$$

$$- 3(\eta_{21} + \eta_{03})^{2}] + (3\eta_{12} - \eta_{30})(\eta_{21} + \eta_{03})$$

$$\phi_{5} = (\eta_{30} - 3\eta_{12})(\eta_{30} + \eta_{12})[(\eta_{30} + \eta_{12})^{2}]$$

$$[3(\eta_{30} + \eta_{12})^{2} - (\eta_{21} + \eta_{03})^{2}]$$

© 1992–2008 R. C. Gonzalez & R. E. Woods

 $-3(\eta_{21}+\eta_{03})^2]+(3\eta_{21}-\eta_{03})(\eta_{21}+\eta_{03})$

 $[3(\eta_{30} + \eta_{12})^2 - (\eta_{21} + \eta_{03})^2]$

RD: Moments

- Examples on moments
- Original image and the processed images

The corresponding moments

Moment Invariant	Original Image	Translated	Half Size	Mirrored	Rotated 45°	Rotated 90°
ϕ_1	2.8662	2.8662	2.8664	2.8662	2.8661	2.8662
ϕ_2	7.1265	7.1265	7.1257	7.1265	7.1266	7.1265
ϕ_3	10.4109	10.4109	10.4047	10.4109	10.4115	10.4109
ϕ_4	10.3742	10.3742	10.3719	10.3742	10.3742	10.3742
ϕ_5	21.3674	21.3674	21.3924	21.3674	21.3663	21.3674
ϕ_6	13.9417	13.9417	13.9383	13.9417	13.9417	13.9417
ϕ_7	-20.7809	-20.7809	-20.7724	20.7809	-20.7813	-20.7809

Image Morphology

- A tool for extracting image components that are useful in the presentation and description of region such as boundaries, skeletons, the convex hull
- Also useful in pre- and post processing such as morphological filtering, thinning, and pruning
- Dilation: expand the region using an structural element.
- Erosion: shrink the region using an structural element

Image Morphology

Basic definitions

$$A(x) = \{c | c = a + x, for \ a \in A\}$$
 (translation of set A by point x) $\hat{B} = \{x | x = -b, for \ b \in B\}$ (reflection of set B)

Dilation

$$A + B = \left\{ x \middle| (\widehat{B})_{x} \cap A \neq \emptyset \right\} = \left\{ x \middle| [(\widehat{B})_{x} \cap A] \subseteq A \right\}$$

- The dilation of A by B is the set of all x displacements such that \widehat{B} and A overlap by at least one nonzero element
- Erosion

$$A + B = \left\{ x \middle| (\widehat{B})_{x} \text{ belongs to the subset of } A \right\}$$

 The erosion of A by B is the set of all points x such that B, translated by x, is contained in A

Opening

$$A \circ B = (A - B) + B$$

Closing

$$A \cdot B = (A + B) - B$$

 To cope with distortions (e.g, to fill gaps) and noise (e.g., to remove isolated large noise areas).

Image Morphology

- Hit or miss (points found in A with B1 and in the complement of A with B2)
- Boundary extraction
- Connected components
- Convex hull
- Thinning
- Thickening
- Skeletons

Pruning ("sophisticated" thinning and skeletonizing)

Principal Components

- Principal components of the data are found as eigenvalues and eigenvectors of the covariance matrix of the data values
- The approximation for the covariance matrix is

$$C_x = \frac{1}{K} \sum_{k=1}^{K} x_k x_k^T - m_k m_k^T, \quad m_x = \frac{1}{K} \sum_{k=1}^{K} x_k$$

- · The principal components are used in
 - Spectral imaging for image compression
 - Color imaging for feature detection
 - etc

Principal Components

Spectral imaging

 λ_2

2966

 λ_1

10344

Principal Components

- Gray-scale images
- Points (x_1, x_2) from the region or from the boundary
- If matrix A contains the eigenvectors as rows, then

$$y = A(x - m_x)$$

$$\mathbf{m}_{\mathbf{x}} = \begin{bmatrix} 3 \\ 3 \end{bmatrix} \qquad \mathbf{C}_{\mathbf{x}} = \begin{bmatrix} 3.333 & 2.00 \\ 2.00 & 3.333 \end{bmatrix}$$
$$\mathbf{e}_{1} = \begin{bmatrix} 0.707 \\ 0.707 \end{bmatrix} \quad \mathbf{e}_{2} = \begin{bmatrix} -0.707 \\ 0.707 \end{bmatrix}$$

Relational descriptors

- To organize components to exploit any structural relationships that may exist between them.
 - Primitive elements.

$$\rightarrow a \downarrow b$$

- Rewriting rules with productions, variables and primitives
 - (1) $S \rightarrow aA$ (a followed by A)
 - (2) $A \rightarrow bS$ (b followed by S)
 - (3) $A \rightarrow b$ (A derives b)
- In principle the transformation reduces a 2D image to a 1D string

Relational descriptors

Example of derivations

- (2) $A \rightarrow bS$, and
- (3) $A \rightarrow b$,

Output: list of productions used

- Head-tail connections for the primitives in the image
- Also operations +,-,*, x defined

$$a+b$$
 $(a+b)*c$

$${d + [c + (\sim d)]} * [(a + b) * c]$$

Relational descriptors

- A tree-structure is constructed on a specific rule, e.g. the rule "inside of"
- Information in the tree (root \$, subtrees T)
 - A node contains a description related to that node
 - Information how the nodes are related (connected)

Example applications

- Medical image processing.
 - Diabetes and retinal image analysis using machine vision
 - http://www.it.lut.fi/project/imageret/
- Industrial machine vision.
 - Paper and board printability tests by machine vision in the paper making and printing industry.
 - http://www.it.lut.fi/project/papvision/
- Biometrics.
 - Image-based biometric person authentication.
 - http://www.it.lut.fi/project/facedetect/

Summary

Task: Describe the region based on the chosen representation

Image acquisition => digital image

↓

Preprocessing => better image

↓

Segmentation => basic features

↓

Representation and description => advanced features

Object recognition (classification, clustering)