Math League Contest Problem Set 12117 Target Round Problem 4

David Sun

Math League, LLC

Identify our objective.

An equiangular but not equilateral hexagon has three times the area of a regular hexagon with side length 1. If both hexagons have whole number side lengths, then what is the perimeter of the larger hexagon?

0

Find the perimeter of an equiangular (non-equilateral) hexagon that has thrice the area of a regular hexagon with side length 1.

Area

Area

Area =
$$6 \cdot \frac{1}{2} \cdot 1 \cdot \frac{\sqrt{3}}{2}$$

Area =
$$6 \cdot \frac{1}{2} \cdot 1 \cdot \frac{\sqrt{3}}{2} = \frac{3}{2} \cdot \sqrt{3}$$

$$\mathsf{Area} = \tfrac{3}{2} \cdot \sqrt{3}$$

Area
$$= \frac{3}{2} \cdot \sqrt{3} + 3 \cdot \sqrt{3} = \frac{9}{2} \cdot \sqrt{3}$$

Area
$$= \frac{3}{2} \cdot \sqrt{3} + 3 \cdot \sqrt{3} = \frac{9}{2} \cdot \sqrt{3}$$
, Perimeter $= 2 \cdot 4 + 4 \cdot 1 = \boxed{12}$

Review the key concepts we used.

Key Concepts

Area of an Equilateral Triangle

Key Concepts

- Area of an Equilateral Triangle
- Area of a Rectangle

Key Concepts

- Area of an Equilateral Triangle
- Area of a Rectangle
- Area of a Regular Hexagon

