Laboratoire-cours de réglages échantillonnés 4EI-EO 2018

Première séance

1) Calcul de l'expression récurrente d'un premier ordre par les 4 méthodes de discrétisation

$$H(s) = \frac{1}{s+1}$$
 Discrétisé avec la période h (forme littérale)

- Euler 1
- Euler 2
- Bilinéaire
- équivalent échantillonné bloqué
- 2) Edition d'un script Matlab qui montre:
 - les réponses temporelles des quatre expressions trouvées comparées avec la réponse exacte du système continu.
 - monter l'influence de la période d'échantillonnage....
 - montrer quelle(s) méthode(s) de discrétisation rend(ent) le système discrétisé instable.
 - Comparer les réponses fréquentielles.

Utilisation des fonctions matlab c2d et bilinear.

- 3) Calcul du gain critique d'un système du premier ordre bouclé avec un régulateur P
 - en continu
 - en discret
 - conclusions sur l'influence de la période d'échantillonnage.
 - comparaison avec la valeur du gain critique obtenu par voie analytique.

Vérification avec matlab (Margin)

4) Déplacement des zéros du système échantillonné avec la période d'échantillonnage

$$H(s) = \frac{1}{(s+1)^3}$$

Script matlab et usage de ZOH.

Deuxième séance

Soit
$$H(s) = \frac{7(s+1)}{s(3s+1)}$$

- 1) Synthétiser un régulateur continu tel qu'en boucle fermée
 - il n'y ait pas de dépassement.
 - le temps de réponse à 95% (3T) soit égal à 5.

Conseils:

- concevoir un régulateur de compensation R(s) (simplification pôle/zéro en conservant l'intégrateur du système).
 - Calcul du gain du régulateur pour respecter le temps de réponse imposé.
- 2) Discrétiser le régulateur continu avec les périodes d'échantillonnage
 - h=0.01
 - h=0.5
 - h=2

Conseils: A partir deR(s), réécrire l'équation différentielle et discrétiser par les différences **finies à gauche**.

3) Par simulation comparer les performances du régulateur continu avec les trois régulateurs discrets. Tirer les conclusions.

Conseils: Utiliser Simulink et le bloc "filter"

- 4) Commettez volontairement l'erreur d'exécuter la loi de réglage discrète avec une période d'échantillonnage différente de celle utilisée pour effectuer la synthèse.
- 5) A partir de la transmittance discrète du système obtenue par la méthode de l'équivalent échantillonné-bloqué de H(s) avec h=1 effectuez la synthèse discrète d'un régulateur discret de compensation qui impose un temps de réponse à 95% du système continu équivalent de 5.
- 6) Comparer la réponse du régulateur discret avec celle du régulateur continu.

Commandes Matlab utiles aux 2 premières séances:

help	margin
help control	rlocus
c2d	step
tf	bode
tfdata('v')	pzmap
zpkdata	dcgain
zpk	
minreal	