Prelab 2

$$Z_{1} = j\omega L \qquad Z_{C} = j\omega C \qquad Z_{R} = R,$$

$$H(j\omega) = \frac{Vout}{Vont} = \frac{j\omega C}{j\omega L + R + j\omega C}$$

$$= -\frac{1}{1C\omega^{2} + j\omega CR + 1}$$

$$\Rightarrow H(s) = \frac{1}{1Cs^{2} + CRs + 1}$$

(b)		Peak freq. (kHz)	3dB BW (kHz)	Quality Factor
	C = 100 pF	514	3.32	१८५
	C = 30 pF	938	14.9	62.9

Table from equation

	Peak freq. (kHz)	3dB BW (kHz)	Quality Factor
C = 100 pF	521	18.4	157
C = 30 pF	954	40.2	640

Table from plot

(a)

$$\frac{V_{A}}{R^{2}} + \frac{V_{A} \cdot V_{O}}{\frac{1}{j \omega c}} + \frac{V_{A}}{\frac{1}{j \omega c}} = \frac{V_{I} \cdot V_{A}}{R_{I}}$$

$$\frac{V_{A}}{\frac{1}{j \omega c}} = \frac{-V_{O}}{R_{B}}$$
LF356N

$$\Rightarrow \frac{-V_0}{R_2 R_3} (\frac{1}{\hat{J} UOC})^2 + \frac{-V_0}{R_3} (\frac{1}{\hat{J} UOC} - V_0) + \frac{-V_0}{R_3} \frac{1}{\hat{J} UOC}$$

$$= \frac{1}{R_1} V_1 \frac{1}{\hat{J} WOC} + \frac{V_0}{R_1 R_3} (\frac{1}{\hat{J} UOC})^2$$

$$\Rightarrow V_0(-\frac{1}{R_1R_3} - \frac{1}{R_2R_3} - \frac{2}{R_3}\hat{J}\omega C - (\hat{J}\omega C)^2) = \frac{\hat{J}\omega C}{R_1}V_1$$

$$\frac{V_0}{V_1} = \frac{-\frac{SC}{R1}}{S^2C^2 + \frac{R}{R1}R3 + \frac{2SC}{R3}} \implies C_1 = -\frac{R_2R_3C}{R_1 + R_2} = -\frac{\frac{120}{10^2 + 120}}{\frac{10^2 + 120}{10^2 + 120}} = -\frac{1.61 \times 10^{-6}}{10^2 + 120}$$

$$C_2 = \frac{C^2R_1R_2R_3}{R_1 + R_2} = \frac{(\frac{12}{10^3 + 120})^2 \cdot \frac{10^3 \cdot 120 \cdot \frac{12}{10^3 + 120}}{\frac{10^3 + 120}{10^3 + 120}} = \frac{3.41 \times 10^{-7}}{10^3 + 120}$$

$$C_3 = \frac{2R_1R_2C}{R_1 + R_2} = \frac{2 \cdot \frac{10^3 \cdot 120 \cdot \frac{1}{10^3 + 120}}{\frac{10^3 + 120}{10^3 + 120}} = \frac{3.21 \times 10^{-7}}{\frac{10^3 \cdot 120 \cdot \frac{1}{10^3 + 120}}{\frac{10^3 \cdot 120 \cdot \frac{1}{10^3 + 120}}{\frac{10^3$$

(b)
$$H(s) = \frac{R_1 + R_2}{R_1 R_2 R_3 C^2} \frac{-R_1 R_3 C^3}{2(R_1 + R_2)} \frac{\frac{1}{R_3 C} \cdot S}{S^2 + \frac{2}{R_3 C} \cdot S + \frac{R_1 + R_2}{R_1 R_2 R_3 C^2}}$$

$$= \frac{-R_3}{2R_1} \frac{\frac{2S}{R_3 C}}{S^2 + \frac{2S}{R_3 C} + \frac{R_1 + R_2}{R_1 R_2 R_3 C^2}} \cdot Since H(s) = H_0 \cdot \frac{\beta \cdot S}{S^2 + \beta s + 4000^2}$$

$$|Ho|=\frac{Rs}{2RI}=5$$

$$\omega_0^2 = \frac{R_1 + R_2}{R_1 R_2 R_3 C^2} \Rightarrow \int_0^2 \frac{2\Pi}{\log^2} = 1.03 \times 10^5 \text{ Hz}$$

(C) According to the equation:
$$f_0 = 1.03 \times 10^5 \text{ Hz}$$
,
 $BW_3dB = 2.12 \times 10^4 \text{ Hz}$
 $|H_0| = 5$

According to the plot: $f_0 = 1.02 \times 10^5 \text{ Hz}$ $BW_3dB = 2.11 \times 10^6 \text{ Hz}$ $|H_0| = S$

(a)
$$f_{101} = f_{c} + f_{1F} = 1600 + 100 = 1700 \text{ Hz}$$

 $f_{102} = f_{c} - f_{1F} = 1600 - 100 = 1500 \text{ Hz}$

(b).
$$f_{101} = f_{c+} f_{1F} = 530 + 100 = 630 \text{ kHz}$$

 $f_{imag} = f_{1F+} f_{101} = 100 + 630 = 730 \text{ kHz}$
 $f_{102} = f_{c-} f_{1F} = 530 - 100 = 430 \text{ kHz}$
 $f_{imag} = |f_{1F} - f_{012}| = |100 - 430| = 330 \text{ kHz}$

f_c (KHz)	f_{LO1} (KHz)	f_{LO2} (KHz)	f_{image1} (KHz)	f_{image2} (KHz)
1600	1700	1500	1800	1400
530	630	430	730	3 30

Using LD to Mix into IF Band when \$10 = fc-fit, fce (\$127. fix)

