BERT を用いた原文と要約文の 分散表現の最適な統合手法の検討

創発ソフトウェア研究室 高山裕成

研究背景

■大規模言語モデル (Large Language Models, LLM) の進化

Transformer 構造を持つ BERT や GPT (Generative Pre-trained Transformer) などを 活用した LLM の商業利用への需要拡大

⇒文章全体の適切な分散表現を得るための

従来研究

- CLS-Average Pooling (CAP) 層の導入 [Hidenori Yamato, 2023]

学習可能なパラメータ $p, q (\geq 0)$ を用いて $E_{[CLS]}$ 及び, E_{Avg} の重み付き和 $pE_{[CLS]} + qE_{Avg}$ を文の分散表現とする

⇒テキスト分類タスクにおいて, $E_{[CLS]}$, E_{Avg} のみを 用いた場合よりも高い性能を発揮

提案手法

•CAP 層における要約ベクトル項 E_{sum} の追加

学習可能なパラメータ p, q, r(≥ 0) を用いて $E_{[CLS]}$, E_{Avg} , 及び E_{sum} の重み付き和 $pE_{[CLS]} + qE_{Avg} + rE_{sum}$ を文の分散表現とする

実験設定

【livedoor ニュースコーパスデータセットを用いたテキスト分類】

データセットに含まれる各記事データ D は 記事タイトル $title_D$, 記事本文 $body_D$, カテゴリーラベル $label_D \in \{0, 1, ..., 8\}$ を持つ

•要約文 summary_D の生成

• データ分割

各カテゴリの記事を訓練データ、検証データ、テストデータ として 8:1:1 に分割(全データ数: 7367件)

- への入力とする
- それぞれの BERT モデルの最終層の出力から $E_{[CLS]}$, E_{Avg} , 及び E_{sum} を算出し、提案手法であるプーリング層への入力とする
- 分類器は 1 層の全結合層とし、各 BERT は最終層のみ fine-tuning
- ⇒従来手法(CAP)との分類精度比較を行う(9 値分類)

今後の課題

- 要約文の妥当性, 生成手法改善の検討
- 他のデータセットやタスクを用いた提案手法の有効性の検討
- 最適な学習パラメータやアーキテクチャの探索

	label 0	label 1	label 2	label 3	label 4	label 5	label 6	label 7	label 8	Total
訓練	684	695	690	421	700	645	713	716	631	5895
検証	88	80	88	42	93	100	77	105	63	736
テスト	98	95	86	48	77	97	80	79	76	736

● label 0:独女通信 (870 件)

● label 1: IT ライフハック (870 件)

● label 2:家電チャンネル (864 件)

• label 3: livedoor HOMME (511 件)

• label 4: MOVIE ENTER (870 件)

• label 5: Peachy (842 件)

● label 6: エスマックス (870 件)

• label 7: Sports Watch (900 件)

• label 8: トピックニュース (770 件)