

Figure 2.11 A weighted summer capable of implementing summing coefficients of both signs.

EXERCISES

D2.7 Design an inverting op-amp circuit to form the weighted sum v_0 of two inputs v_1 and v_2 . It is required that $v_Q = -(v_1 + 5v_2)$. Choose values for R_1 , R_2 , and R_f so that for a maximum output voltage of 10 V the current in the feedback resistor will not exceed 1 mA.

Ans. A possible choice: $R_1 = 10 \text{ k}\Omega$, $R_2 = 2 \text{ k}\Omega$, and $R_f = 10 \text{ k}\Omega$

D2.8 Use the idea presented in Fig. 2.11 to design a weighted summer that provides

$$v_0 = 2v_1 + v_2 - 4v_3$$

Ans. A possible choice: $R_1 = 5 \text{ k}\Omega$, $R_2 = 10 \text{ k}\Omega$, $R_a = 10 \text{ k}\Omega$, $R_b = 10 \text{ k}\Omega$, $R_3 = 2.5 \text{ k}\Omega$, $R_c = 10 \,\mathrm{k}\Omega$

2.3 The Noninverting Configuration

The second closed-loop configuration we shall study is shown in Fig. 2.12. Here the input signal v_I is applied directly to the positive input terminal of the op amp while one terminal of R_1 is connected to ground.

2.3.1 The Closed-Loop Gain

Analysis of the noninverting circuit to determine its closed-loop gain (v_0/v_1) is illustrated in Fig. 2.13. Again the order of the steps in the analysis is indicated by circled numbers. Assuming that the op amp is ideal with infinite gain, a virtual short circuit exists between its two input terminals. Hence the difference input signal is

$$v_{Id} = \frac{v_O}{A} = 0$$
 for $A = \infty$

Thus the voltage at the inverting input terminal will be equal to that at the noninverting input terminal, which is the applied voltage v_I . The current through R_1 can then be determined as v_I/R_1 . Because of the infinite input impedance of the op amp, this current will flow through R_2 , as shown in Fig. 2.13. Now the output voltage can be determined from

$$v_O = v_I + \left(\frac{v_I}{R_1}\right) R_2$$

Figure 2.12 The noninverting configuration.

Figure 2.13 Analysis of the noninverting circuit. The sequence of the steps in the analysis is indicated by the circled numbers.

which yields

$$\frac{v_O}{v_I} = 1 + \frac{R_I}{R_2} \tag{2.9}$$

Further insight into the operation of the noninverting configuration can be obtained by considering the following: Since the current into the op-amp inverting input is zero, the circuit composed of R_1 and R_2 acts in effect as a voltage divider feeding a fraction of the output voltage back to the inverting input terminal of the op amp; that is,

$$v_1 = v_o \left(\frac{R_1}{R_1 + R_2} \right) \tag{2.10}$$

Then the infinite op-amp gain and the resulting virtual short circuit between the two input terminals of the op amp forces this voltage to be equal to that applied at the positive input terminal; thus,

$$v_O\left(\frac{R_1}{R_1 + R_2}\right) = v_I$$

which yields the gain expression given in Eq. (2.9).

This is an appropriate point to reflect further on the action of the negative feedback present in the noninverting circuit of Fig. 2.12. Let v_I increase. Such a change in v_I will cause v_{Id} to increase, and v_O will correspondingly increase as a result of the high (ideally infinite) gain of the op amp. However, a fraction of the increase in v_O will be fed back to the inverting input terminal of the op amp through the (R_1, R_2) voltage divider. The result of this feedback will be to counteract the increase in v_{Id} , driving v_{Id} back to zero, albeit at a higher value of v_O that corresponds to the increased value of v_I . This degenerative action of negative feedback gives it the alternative name **degenerative feedback**. Finally, note that the argument above applies equally well if v_I decreases. A formal and detailed study of feedback is presented in Chapter 11.

2.3.2 Effect of Finite Open-Loop Gain

As we have done for the inverting configuration, we now consider the effect of the finite op-amp open-loop gain A on the gain of the noninverting configuration. Assuming the op amp to be ideal except for having a finite open-loop gain A, it can be shown that the closed-loop gain of the noninverting amplifier circuit of Fig. 2.12 is given by

$$G \equiv \frac{v_O}{v_I} = \frac{1 + (R_2/R_1)}{1 + \frac{1 + (R_2/R_1)}{A}}$$
(2.11)

Observe that the denominator is identical to that for the case of the inverting configuration (Eq. 2.5). This is no coincidence; it is a result of the fact that both the inverting and the noninverting configurations have the same feedback loop, which can be readily seen if the input signal source is eliminated (i.e., short-circuited). The numerators, however, are different, for the numerator gives the ideal or nominal closed-loop gain $(-R_2/R_1)$ for the inverting configuration, and $1 + R_2/R_1$ for the noninverting configuration). Finally, we note (with reassurance) that the gain expression in Eq. (2.11) reduces to the ideal value for $A = \infty$. In fact, it approximates the ideal value for

$$A \gg 1 + \frac{R_2}{R_1}$$

This is the same condition as in the inverting configuration, except that here the quantity on the right-hand side is the nominal closed-loop gain. The expressions for the actual and ideal values of the closed-loop gain G in Eqs. (2.11) and (2.9), respectively, can be used to determine the percentage error in G resulting from the finite op-amp gain A as

Percent gain error
$$= -\frac{1 + (R_2/R_1)}{A + 1 + (R_2/R_1)} \times 100$$
 (2.12)

Thus, as an example, if an op amp with an open-loop gain of 1000 is used to design a noninverting amplifier with a nominal closed-loop gain of 10, we would expect the closed-loop gain to be about 1% below the nominal value.

2.3.3 Input and Output Resistance

The gain of the noninverting configuration is positive—hence the name noninverting. The input impedance of this closed-loop amplifier is ideally infinite, since no current flows into the positive input terminal of the op amp. The output of the noninverting amplifier is taken at the terminals of the ideal voltage source $A(v_2 - v_1)$ (see the op-amp equivalent circuit in Fig. 2.3), and thus the output resistance of the noninverting configuration is zero.

2.3.4 The Voltage Follower

The property of high input impedance is a very desirable feature of the noninverting configuration. It enables using this circuit as a buffer amplifier to connect a source with a high impedance to a low-impedance load. We discussed the need for buffer amplifiers in Section 1.5. In many applications the buffer amplifier is not required to provide any voltage gain; rather, it is used mainly as an impedance transformer or a power amplifier. In such cases we may make $R_2 = 0$ and $R_1 = \infty$ to obtain the **unity-gain amplifier** shown in Fig. 2.14(a). This circuit is commonly referred to as a voltage follower, since the output "follows" the input. In the ideal case, $v_0 = v_I$, $R_{\rm in} = \infty$, $R_{\rm out} = 0$, and the follower has the equivalent circuit shown in Fig. 2.14(b).

Figure 2.14 (a) The unity-gain buffer or follower amplifier. (b) Its equivalent circuit model.

Since in the voltage-follower circuit the entire output is fed back to the inverting input, the circuit is said to have 100% negative feedback. The infinite gain of the op amp then acts to make $v_{Id} = 0$ and hence $v_O = v_I$. Observe that the circuit is elegant in its simplicity!

Since the noninverting configuration has a gain greater than or equal to unity, depending on the choice of R_2/R_1 , some prefer to call it "a follower with gain."

EXERCISES

2.9 Use the superposition principle to find the output voltage of the circuit shown in Fig. E2.9. Ans. $v_0 = 6v_1 + 4v_2$

Figure E2.9

- **2.10** If in the circuit of Fig. E2.9 the 1-k Ω resistor is disconnected from ground and connected to a third signal source v_3 , use superposition to determine v_0 in terms of v_1, v_2 , and v_3 .

 Ans. $v_0 = 6v_1 + 4v_2 9v_3$
- D2.11 Design a noninverting amplifier with a gain of 2. At the maximum output voltage of 10 V the current in the voltage divider is to be $10 \,\mu\text{A}$.

Ans. $R_1 = R_2 = 0.5 \text{ M}\Omega$

2.12 (a) Show that if the op amp in the circuit of Fig. 2.12 has a finite open-loop gain A, then the closed-loop gain is given by Eq. (2.11). (b) For $R_1 = 1 \text{ k}\Omega$ and $R_2 = 9 \text{ k}\Omega$ find the percentage deviation ϵ of the closed-loop gain from the ideal value of $(1 + R_2/R_1)$ for the cases $A = 10^3, 10^4$, and 10^5 . For $v_1 = 1 \text{ V}$, find in each case the voltage between the two input terminals of the op amp. Ans. $\epsilon = -1\%, -0.1\%, -0.01\%$; $v_2 - v_1 = 9.9 \text{ mV}$, 1 mV, 0.1 mV