

Multiples Testen -Step Down Tests-

Dr. Martin Scharpenberg

MSc Medical Biometry/Biostatistics

WiSe 2019/2020

Simultane Test-Prozeduren (STP)

- Zum Testen von h Nullhypothesen $H_0^1, \dots H_0^h$
- Benutze für jedes H_0^j eine Teststatistik T_j , $j=1,\ldots,h$
- Bestimme d_{α} , so dass für $H_0 = H_0^1 \cap \cdots \cap H_0^h$

$$P_{H_0}(\max_{l=1}^h T_l \ge d_\alpha) = \alpha$$

- Verwerfe H_0^j , falls $T_j \geq d_{\alpha}$
- Wir haben gesehen: Bei Teilmengen-Pivotalität haben wir starke Kontrolle der FWER
- Wir gehen im Folgenden von Teilmengen-Pivotalität aus

STP als Abschlusstest (mit 3 Hypothesen)

Verbesserung des STP durch Abschlusstest-Prinzip

Verbesserung im einfachen Fall $d_{\alpha}^{J} = d_{k,\alpha}$ (k = |J|)

Verbesserung einer STP durch Abschlusstest

- Für $J \subseteq J_0 = \{1, \dots, h\}$ sei wieder $H_0^J = \cap_{l \in J} H_0^l$
- Bestimme für jedes $J\subseteq J_0$ die kritische Grenze d^J_{α} mit

$$P_{H_0^J}(\max_{I\in J}T_I\geq d_\alpha^J)=\alpha$$

Verwende den Abschlusstest mit

$$\varphi_J^{\alpha} = \mathbf{1}(\max_{I \subseteq J} T_I \ge d_{\alpha}^J)$$
 für H_0^J , $J \subseteq J_0$

• D.h., wir verwerfen H_0^i , wenn

$$\max_{l \in J} T_l \geq d_\alpha^J \qquad \text{ für alle } J \subseteq J_0 \text{ mit } i \in J$$

Eigenschaften

- Die Verbesserung ist kohärent (weil Abschlusstest)
- Die Verbesserung ist konsonant, weil die krit. Grenzen monoton sind:

$$d_{\alpha}^{J} \leq d_{\alpha}^{J'}$$
 für alle $J \subseteq J'$

• Die Monotonie von d_{α}^{J} folgt aus Teilmengen-Pivotalität:

$$\begin{aligned} P_{H_0^{J}}(\max_{l \in J} T_l \geq d_{\alpha}^{J'}) &= P_{H_0^{J'}}(\max_{l \in J} T_l \geq d_{\alpha}^{J'}) \\ &\leq P_{H_0^{J'}}(\max_{l \in J'} T_l \geq d_{\alpha}^{J'}) = \alpha \end{aligned}$$

und somit: $P_{H_0^J}(\max_{l \in J} T_l \ge d_\alpha^J) = \alpha \quad \Rightarrow \quad d_\alpha^J \le d_\alpha^{J'}$

Konsonanz der verbesserten STP

$$T_1 = \max(T_1, T_2, T_3) = \max(T_1, T_j) \ge d_{\alpha}^{\{1,2,3\}} \ge d_{\alpha}^{\{1,j\}} \ge d_{\alpha}^{\{1\}} \quad \text{für } j = 2,3$$

Lokale Konsonanz (Brannath & Bretz, 2010)

Definition – Lokale Konsonanz

Gegeben seien die Hypothesen H_0^1, \ldots, H_0^h . Ein multipler Test φ^{α} auf dem Abschuss $\mathcal{H} = \mathcal{C}(H_0^1, \ldots, H_0^h)$ heißt **lokal konsonant**, falls für alle $J \subseteq \{1, \ldots, h\}$

$$\{\varphi_J^\alpha=1\}=\bigcup_{i\in J}\{\min_{i\in J'\subseteq J}\varphi_{J'}^\alpha=1\}$$

- Lokale Konsonanz bedeutet, dass für jedes $J \subseteq J_0$ der (lokale) Abschlusstest auf $\mathcal{C}(H_0^j: j \in J)$ konsonant ist
- Eine STP ist nicht nur konsonant, sondern auch lokal konsonant!
- **Bemerkung:** Die Orginal-Definition von *Konsonanz* von Gabriel (1969) ist stärker als *lokale Konsonanz* und schwächer als unsere vereinfachte Definition von Konsonanz aus der VL-Einheit 6

Lokale Konsonanz der verbesserten STP

$$T_1 = \max(T_1, T_2, T_4) = \max(T_1, T_j) \ge d_{\alpha}^{\{1,2,4\}} \ge d_{\alpha}^{\{1,j\}} \ge d_{\alpha}^{\{1\}} \quad \text{für } j = 2,4$$

Abkürzung lokal-konsonanter Abschlusstests

 $T_1 = \max(T_1, T_2, T_3) \ge d_{\alpha}^{\{1,2,3\}} \Rightarrow \text{müssen rote Hypothesen nicht testen!}$

Abkürzung lokal-konsonanter Abschlusstests

Bertrachten lokal konsonanten Abschlusstest für H_0^1, \ldots, H_0^h

1. Wenn $\varphi_{J_0}^{\alpha} = 0$ akzeptiere alle H_0^1, \dots, H_0^h .

Wenn $\varphi_{J_0}^{\alpha} = 1$, dann gibt es ein i_1 , so dass $H_0^{i_1}$ verworfen wird, d.h.

$$arphi_J^lpha=1$$
 für alle $i_1\in J\subseteq J_0$

- \Rightarrow wir müssen kein H_0^J mit $i_1 \in J \subseteq J_0$ mehr betrachten.
- 2. Betrachte $J_1 = J_0 \setminus \{i_1\}$:

Wenn $\varphi_{J_1}^{\alpha}=0$, dann akzeptiere alle H_0^I für $I\in J_1$

Wenn $\varphi_{J_1}^{\alpha} = 1$, dann gibt es ein $i_2 \in J_1$, das verworfen wird, d.h.

$$arphi_J^lpha=1$$
 für alle $\emph{i}_2\in \emph{J}\subseteq \emph{J}_1$

- \Rightarrow wir müssen kein H_0^J für J mit $i_2 \in J \subseteq J_1$ mehr betrachten.

Step-Down Test (Abkürzung des STP-Abschlusstests)

Ordne die Teststatistiken für H_0^1, \ldots, H_0^h : $T_{i_1} \geq \ldots \geq T_{i_h}$.

- 1. Wenn $T_{i_1} < d^{J_0}_{\alpha}$ stoppe und akzeptiere alle H^1_0, \ldots, H^h_0 . Wenn $T_{i_1} \geq d^{J_0}_{\alpha}$, dann verwerfe $H^{i_1}_0$ und gehe zu Schritt 2.
- 2. Betrachte $J_1=J_0\setminus\{i_1\}$: Wenn $T_{i_2}< d_{\alpha}^{J_1}$, stoppe und akzeptiere alle H_0^I für $I\in J_1$ Wenn $T_{i_2}\geq d_{\alpha}^{J_1}$, dann verwerfe $H_0^{i_2}$ und gehe zu Schritt 3.
- 3. Betrachte $J_2 = J_0 \setminus \{i_1, i_2\}$:

Step-Down Test mit adjustierten p-Werten

- Bezeichnen mit t_1, \ldots, t_h die beobachteten Werte von T_1, \ldots, T_h
- Für $i \in J \subseteq J_0$ betrachte den adjustierten p-Wert von i relativ zu J:

$$p_i^J = P_{H_0^J}(\max_{I \in J} T_I \ge t_i)$$

- Ordne die Teststatistiken: $t_{i_1} \geq \ldots \geq t_{i_h}$
 - 1. Wenn $p_{i_1}^{J_0} > \alpha$ stoppe und akzeptiere alle H_0^1, \ldots, H_0^h Wenn $p_{j_0}^{J_0} \leq \alpha$, dann verwerfe $H_0^{i_1}$ und gehe zu Schritt 2
 - 2. Betrachte $J_1 = J_0 \setminus \{i_1\}$: Wenn $p_{i_2}^{J_1} > \alpha$, stoppe und akzeptiere alle H_0^I für $I \in J_1$ Wenn $p_{i_2}^{J_1} \leq \alpha$, dann verwerfe $H_0^{i_2}$ und gehe zu Schritt 3.

Beispiel: Effektivität von Eniporide

Vergleich von 4 Dosen Eniporide zu Plazebo bei akutem Herzinfarkt in randomisierter Studie mit ingesamt 430 Patienten

- Gruppe 1: Placebo (88 Pat.)
- **Gruppe 2:** 50 mg Eniporide (86 Pat.)
- **Gruppe 3:** 100 mg Eniporide (91 Pat.)
- **Gruppe 4:** 150 mg Eniporide (74 Pat.)
- **Gruppe 5:** 200 mg Eniporide (91 Pat.)

Primärer Endpunkt: α -HBDH AUC (0 bis 72 Stunden)

Negative Werte des Endpunkts (und Teststatistik) sind günstig!

Dunnett-Methode - Beispiel Eniporide mit R

```
> zeymer2 <- read.table('ZeymerS2.dat',header=T)</pre>
> library(multcomp)
> bmod <- aov(HBDH ~ group, data=zeymer2)
> bmod glht <- glht(bmod, linfct = mcp( group="Dunnet") )</pre>
> summary(bmod glht, test=adjusted("free"))
        Simultaneous Tests for General Linear Hypotheses
Multiple Comparisons of Means: Dunnett Contrasts
Fit: aov(formula = HBDH ~ group, data = zeymer2)
Linear Hypotheses:
                                     step-down
                                                single-step
          Estimate Std. Error t value p value
                                                p value
                                                            p raw
1 - 0 == 0
             1.100
                        3.938
                               0.279 0.7801
                                              0.9960
                                                           0.780
2 - 0 == 0 -4.000
                        3.883 -1.030 0.4828 0.6921
                                                         0.303
3 - 0 == 0 -10.300
                        4.096 -2.515 0.0425 * 0.0425 * 0.012
4 - 0 == 0 -9.600
                        3.883 -2.473 0.0425 * 0.0477 * 0.014
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
(Adjusted p values reported - free method)
```