Departamento de Matemática da Universidade de Aveiro

Cálculo II - Agrupamento 4

Folha de exercícios

Ano letivo 2016/2017 (2º Semestre)

1.5 Extremos locais

- 1. Determine e classifique os pontos críticos das seguintes funções:
 - (a) $f(x,y) = 3xy^2 + x^3 3x$;
 - (b) $f(x,y) = xe^{-x^2-y^2}$;
 - (c) $f(x,y) = 3x^2 xy + 3y^2$;
 - (d) $f(x,y) = x^2 + y^2 + x^2y + 4$;
 - (e) $f(x,y) = x^3y + 12x^2 8y$;
 - (f) f(x,y) = (1+xy)(x+y);
 - (g) $f(x,y) = xy + \frac{1}{x} + \frac{1}{y}$;
 - (h) $f(x,y) = (x^2 + y^2)e^{y^2 x^2}$;
 - (i) $f(x,y) = \frac{1}{x^2 + y^2 1}$;
 - (j) $f(x,y,z) = x^2 + 5y^2 + 2z^2 + 4xy 2x 4y 8z + 2$.
- 2. Seja $f: \mathbb{R}^2 \to \mathbb{R}$ definida por

$$f(x,y) = x^3 - 3xy + y^3.$$

- (a) Determine os extremos locais da função f.
- (b) O que pode afirmar sobre os extremos absolutos de f? Justifique.
- 3. Mostre que (1,1) é minimizante local de $f(x,y)=x^2+xy+y^2+\frac{3}{x}+\frac{3}{y}+5$.
- 4. Mostre que (1,2) é minimizante local de $f(x,y)=x^2+y^2-2x-4y$.
- 5. Mostre que $(\frac{1}{4}, \frac{1}{4})$ é maximizante local de $f(x, y) = x + 2y 2xy x^2 3y^2$.
- 6. Mostre que a função $f(x,y)=2(y^3+x^2+xy)$ tem um mínimo local em $\left(-\frac{1}{12},\frac{1}{6}\right)$.

1