Исследование работы батарей с применением Long short-term memory recurrent neyral network

Лысов Александр Васильевич Епрев Артем Евгеньевич

Санкт-Петербургский государственный университет Математико-механический факультет Кафедра информатики 342 группа

May 31, 2017

- Введение
- 3 Заключение

Введение

Цель

Целью нашей работы является исследование работы батарей.

Зачем?

Литий-ионный батареи используются везде: от наручных часов до электрических автомобилей, поэтому их исследования очень важны.

Исходные данные

Набор данных был взят с сайта ti.arc.nasa.gov и был представлен в расширении .mat.

Набор из четырех литий-ионных батарей (№ 5, 6, 7 и 18) 2 цикла:

Заряд

Разряд

Как можно решить эту проблему?

Идеи методов

Наш метод решения данной проблемы состоит из нескольких этапов:

Реализация

Язык и библиотеки

Программа написана на языке Python 2, и в ней использовались библиотеки keras, sklearn, numpy, pandas, matplotlib, os, scipy.

Загрузка данных

При помощи метода loadmat из scipy.io был загружен изначальный набор данных циклов батарей. Структура была неудобна для дальнейшего использования, а именно, имела вид:

dataset[fileName][0,0][0][0][i][3][0][0][k][0][j],

где i — номер цикла, k — номер вектора в цикле, j — номер параметра в векторе.

Выбор тренировочного и тестового датасетов

Так как батареи 6 и 18 разряжались до одинакового напряжения (2.5 В), было решено выбрать батарею 6 в качестве тренировочного датасета, а 18 в качестве тестового датасета.

Построение модели

В ходе построения LSTM рекуррентной нейросети были использованы слои:

```
keras.layers.Dense(60, input_shape=(60,))
keras.layers.Reshape((60,1)))
keras.layers.LSTM(60, return_sequences=True)
keras.layers.LSTM(60, dropout=0.31, recurrent_dropout=0.32)
keras.layers.Dense(1)
```

Подбор параметров

В качестве функции потерь (loss) была выбрана среднеквадратическая ошибка, в качестве оптимизатора (optimizer) был выбран adam, поскольку они оказались наиболее подходящими для решения поставленной задачи. Помимо выбора непосредственно структуры сети, требовалось подобрать оптимальные параметры такие как:

Epochs. В качестве оптимального было выбрано значение 21.

Dropout B качестве оптимального было выбрано значение 0.31.

В качестве recurrent dropout было выбрано 0.32.

Заключение

Что получилось?

В итоге обученная рекуррентная нейронная сеть предсказала результаты со среднеквадратической ошибкой на тестовых данных, равной 0.000784

Исходный код:

https://github.com/lysa0/coursework

Исследование работы батарей с применением Long short-term memory recurrent neyral network

Лысов Александр Васильевич Епрев Артем Евгеньевич

Санкт-Петербургский государственный университет Математико-механический факультет Кафедра информатики 342 группа

May 31, 2017