ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ВЫСШЕЕ УЧЕБНОЕ ЗАВЕДЕНИЕ «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Математико-механический факультет

Специальность «математика»

Кафедра высшей алгебры и теории чисел

Дипломная работа

студента 511 группы Воробьева Сергея Эдуардовича

Гипероктаэдральные комбинаторные типы

К защите допущен»:	
Зав. кафедрой высшей алгебры и теории чисел,	
профессор, д.фм.н.	 Яковлев А.В.
Научный руководитель,	
доцент, к.фм.н.	 Пименов К.И
Рецензент,	
профессор, д.фм.н.	 Яковлев А.В.

г. Санкт-Петербург, 2012

Содержание

Глава	I. Введение	3
1.1.	Комбинаторные виды	3
1.2.	Композиция комбинаторных видов	5
Глава	II. Гипероктаэдральные комбинаторные виды	11
2.1.	Определение	11
2.2.	Вложение species в h-species	12
2.3.	Сложение и умножение h-species	12
2.4.	Аналитический функтор для h-species	12
2.5.	Декатегорификация аналитического функтора	13
2.6.	Цикленный индекс species, вложенных в h-species	17
2.7.	Сумма и произведение цикленных индексов	18
2.8.	Цикленный индекс композиции	19
2.9.	Применение цикленного индекса к решению задачи о раскрасках	22
Списон	к литературы	24

Глава I. Введение

1.1. Комбинаторные виды

Комбинаторные виды (species) были введены Жуаялем в 1980 году [1]. Они дают универсальный аппарат изучения помеченных (labeled) и непомеченных (unlabeled) структур, и являются развитием идеи производящих функций. О комбинаторных видах можно говорить на нескольких языках: категорном, комбинаторном и на языке теории представлений. Последний наиболее часто встречается в литературе, хотя автору он кажется наимение выразительным. Во введении изложено начало теории комбинаторных видов. Основным источником информации про комбнаторные виды является [3].

1.1.1. Определение

Рассмотрим категорию \mathcal{B} — группоид конечных множеств. Она эквивалентна группоиду, объекты которого пронумерованы неотрицательными цельми числами и $Hom(n,n)=S_n$.

Определение 1. Комбинаторным видом (species) называется функтор

$$F: \mathcal{B} \to Set$$

Задать такой функтор, это то же самое что для каждого $n \in \mathbb{N}$ задать множество F[n] с действием группы S_n . В комбинаторике такая ситуация возникает, когда мы рассматриваем явно определнные каким-либо образом структуры на конечных множествах. Например: линейные порядки, циклические порядки, деревья. Действие S_n ествественно возникает из перестановок исходных точек.

Пример 1. Вид **E** — вид множесто (без дополнительной структуры). Он сопоставляет набору точек одно множество, состоящие из этих точек, $\mathbf{E}[n] = \{*\}$. Все элементы S_n переходят в тождественное отображение.

Пример 2. C — циклический порядок. Сопоставляет набору из n точек (n-1)! возможных циклических порядков на них.

Пример 3. Линейный порядок ${\bf L}$ сопоставляет n! линейных порядков.

Рис. 1.1. корневые деревья с 3 вершинами

Пример 4. \mathbf{E}_{e} — сужение \mathbf{E} на четные множества. То есть для четных n, совпадает с \mathbf{E} , а для нечетных \emptyset . Аналогично \mathbf{E}_{o} — сужение на нечетные.

Пример 5. На картинке 1.1 изображен вид «корневые деревья с 3 вершинами» (без какого-либо порядка на потомках).

Можно рассмотреть функтор $I: Set \to Vect$, который сопоставляет множеству векторное пространство, базис которого это множество. Тогда $F \circ I: \mathcal{B} \to Vect$ — сопоставляет каждому n перестановочное представление группы S_n . При таком подходе, значение характера этого представления $\chi(\sigma)$, это количество структур, неподвижных относительно $\sigma \in S_n$.

1.1.2. Сложение комбинаторных видов

Сумму двух species F и G определим как поточечную сумму функторов. На комбинаторном языке это будет означать «либо структура типа F, либо структура типа G». $(F+G)[n]=F[n]\coprod G[n]$ с покомпонентным действием S_n .

Пример 6. $\mathbb{E} = \mathbb{E}_e + \mathbb{E}_o$

Пример 7. Любой вид F можно разложить в такую сумму $F = F_1 + F_2 + F_3 + \ldots$, где F_i — сужение F на $i \in \mathcal{B}$. Значение F_i на $j \neq i$ равно \emptyset .

1.1.3. Произведение комбинаторных видов

Определим произведение по Коши комбинаторных видов. По определению задать на конечном множестве структуру типа $F \cdot G$ означает разбить множество точек на две части (всевозможные) и на первом ввести структуру типа F, на втором — типа G.

$$(F \cdot G)[X] = \coprod_{X_1 \coprod X_2 = X} F[X_1] \times G[X_2]$$

С категорной точки зрения произведение по Коши возникает из тензорного произведения на категории \mathcal{B} , которое на объектах задается как $n\otimes m=(n+m)$, на морфизмах при помощи вложения $S_n\times S_m\hookrightarrow S_{n+m}$ (все такие вложения сопряжены). Известна конструкция свертки функторов из \mathcal{C} в Set, где \mathcal{C} — моноидальная категория с копроизведениями [Day convolution [8]].

На языке теории представлений F[n+m] как множество с действием группы S_{n+m} равно индуцированному представлению $Ind \uparrow_{S_n \times S_m}^{S_{n+m}} F[n] \times F[m]$.

Пример 8. $\mathbf{E} \times \mathbf{E}_1$ — множество с выделенной точкой.

Пример 9. ${f C}^2$ — (упорядоченная) пара циклов.

1.2. Композиция комбинаторных видов

Кроме сложения и умножения на species можно ввести операцию композиции. По определению задать на конечном множестве структуру типа $F \circ G$ означает разбить множество точек на части (всевозможные), на частях (как новых точках) ввести структуру типа F, а на каждой части — типа G. Иначе говоря, «раздуть» каждую точку структуры типа F в структуру типа G.

$$(F \circ G)[X] = \coprod_{\coprod_{i} X_{i} = X} F[\{X_{i}\}_{i}] \times (\coprod_{i} G[X_{i}])$$

Замечание 2. Определение species не предполагает конечности F[n], однако цикленный индекс (см. раздел 1.2.4) можно писать только для таких видов. Класс таких species не замкнут относительно композиции. Поскольку при подстановке species F, для котогоро $F[0] \neq \emptyset$ можно выделить сколько угодно пустых частей. Поэтому в дальнейшем в записи $F \circ G$, мы будем неявно предполагать что внутренний операнд «сужен» на \mathbb{N}_+ .

Пример 10. $\mathbf{E}_1 \circ F = F, \ F \circ \mathbf{E}_1 = F. \ \mathbf{E}_1$ является нейтральным элементом в моноиде species по композиции.

Пример 11. $\mathbf{E}_2 \circ \mathbf{C}$ — (неупорядоченная) пара циклов.

Пример 12. $\mathbf{E} \circ \mathbf{E} -$ структура разбиения множества.

Пример 13. $\mathbf{E} \circ \mathbf{C} = \mathbf{S}$ — структура перестановки. Буквально перестановка — это набор циклов.

Для того, чтобы ввести композицию на категорном языке нам понадобится дополнительная конструкция: аналитический функтор.

1.2.1. Аналитический функтор комбинаторных видов

Аналитический функтор (введен Жуаялем в [2]) \mathcal{F} соответствует species F. Вводить его можно разными способами, мы ограничимся универсальным свойством и явной конструкцией.

Определение 3. Аналитический функтор является левым расширением по Кану функтора F относительно i.

Эта диаграмма не является коммутативной, а коммутативна лишь настолько, насколько может быть коммутативной диаграмма подобного вида. А именно, существует естественное преобразование $\kappa\colon F\to i\circ\mathcal{F}$, обладающее следующим универсальным свойством: для любого функтора $M\colon Set\to Set$ и морфизма функторов $\eta\colon F\to i\circ M$ этот морфизм пропускаеться через \mathcal{F} при помощи κ .

Явная конструкция для аналитического функтора. Доказательство см. в [3].

$$\mathcal{F}(A) = \coprod_{n} F[n] \times A^{n} / S_{n} \tag{1.1}$$

Замечание 4. У аналитического функтора для типа структуры F имеется прозрачная комбинаторная интерпретация. Если трактовать множество A как набор цветов, то значение аналитического функтора $\mathcal{F}(A)$ трактуется как

множество структур типа F раскрашенных в цвета из A. Будем называть их A-раскрашенными структурами.

1.2.2. Композиция аналитических функторов комбинаторных видов

Теорема 5. Композиция аналитических функторов $\mathcal{F} \circ \mathcal{G}$ является аналитическим функтором для $F \circ G$.

Доказательство. Рассмотрим $\mathcal{F}(\mathcal{G}(A))$. Согласно замечанию 4, это множество G(A)-раскрашенных структур типа F. То есть, расскрашенных в цвета из множества: «A-раскрашенные структуры типа G».

С другой стороны, рассмотрим аналитический функтор \mathcal{X} отвечающий species $F \circ G$. Множество $\mathcal{X}(A)$ — это набор A-раскрашенных структур типа $F \circ G$. Их, по определению, можно рассмотреть как множество F-структур, введеных на A-раскрашенных G-структурах (как новых точках). А это то же самое, что и G(A)-раскрашенные структуры типа F.

Более строгое доказательство см. в [11] (Lemma 2.5).

1.2.3. Правильный взгляд на композицию аналитических функторов

Дело в том, что композиция комбинаторных видов — это в некотором смысле частный случай аналитического функтора, только не со значениями в Set, а со значениями в $Species = \hat{\mathcal{B}}$.

А именно, для любой симметрической моноидальной категории \mathcal{D} и объекта A из \mathcal{D} , функтор из \mathcal{B} в \mathcal{D} , который 1 отправляет в A, а n отправляет в $A^{\otimes n}$. Если в \mathcal{D} существуют всевозможные копределы, то этот функтор можно «продолжить по непрерывности» (расширение Кана) до функтора из категории предпучков на \mathcal{B} со значениями в \mathcal{D} (см. например заметку [10], предложение 1.9). В работе Дурова [9] этот функтор обозначается Φ_A .

В случае когда $\mathcal{C} = Set$, получаем $\Phi_A(F) = \mathcal{F}(A)$. В случае, когда $\mathcal{C} = Species$, получаем $\Phi_G(F) = F \circ G$. То есть можно определить композицию, как функтор $G \mapsto F \circ G$ при помощи Φ_G . При таком взгляде на подстановку теорема о композиции становится почти тавтологией.

1.2.4. Цикленный индекс

Будем рассматривать только species, конечные в смысле замечания 2. Хочется используя идею подсчета с весом, написать аналог производящей функции для покрашенных (в смысле замечания 4) структур. Цветам сопоставим переменные x_1, x_2, x_3, \ldots Раскрашенной структуре с раскраской $\{x_{i_1}, x_{i_2}, \ldots, x_{i_k}\}$ сопоставим моном $x_{i_1}x_{i_2} \ldots x_{i_k}$. Например, расскраске в которой 2 первых цвета и 1 второй соответсвует моном $x_1^2x_2$. Суммируя по всем расскрашенным структурам из формулы 1.1, мы получим симметрическую (от x_1, x_2, x_3, \ldots) функцию. Коэффициент при каждом мономе — это число раскрашенных структур с заданной расскраской.

Введем некоторые обозначения $\lambda = (\lambda_1, \lambda_2, \lambda_3, \dots) \vdash n$ — разбиение. σ — перестановка цикленного типа λ . z_{λ} — индекс класса сопряженности σ . χ — характер (перестановочного) представления заданного F. $\psi^{\lambda} = (x_1^{\lambda_1} + x_2^{\lambda_1} + x_3^{\lambda_1} + \dots)(x_1^{\lambda_2} + x_2^{\lambda_2} + x_3^{\lambda_2} + \dots)(x_1^{\lambda_3} + x_2^{\lambda_3} + x_3^{\lambda_3} + \dots)\dots$

Утверждение 6. Фробениусовой характеристикой или цикленным индексом species F будем называть симметрическую функцию:

$$\mathcal{Z}_F = \sum_n \frac{1}{n!} \sum_{\sigma \in S_n} \chi(\sigma) \psi^{\lambda(\sigma)} = \sum_{n, \lambda \vdash n} \chi(\sigma_\lambda) \frac{\psi^\lambda}{z_\lambda}$$
 (1.2)

Коэффициент при мономе $x_{i_1}x_{i_2}\dots x_{i_k}$ равен числу раскрашенных структур с расскраской $\{x_{i_1}, x_{i_2}, \dots, x_{i_k}\}.$

Доказательство. По Лемме Бернсайда количество орбит равно усредненному по всем элементам группы числу неподвижных точек. Чтобы раскрашенная структура была неподвижна под действием перестановки σ нужно, чтобы во-первых она была неподвижна как нераскрашенная структура, а во-вторых расскраска должна переходить в себя. Тогда первое условие дает нам сомножитель $\chi(\sigma)$. Второе условие требует покраски каждого цикла в один и тот же цвет.

Пример 14. $\mathcal{Z}_{\mathbf{E}_1} = \psi^1$

Пример 15.
$$\mathcal{Z}_{\mathbf{E}_2} = \frac{1}{2}((\psi^1)^2 + \psi^2)$$

Пример 16. $\mathcal{Z}_{\mathbf{E}}=e^{(\psi^1+\frac{\psi^2}{2}+\frac{\psi^3}{3}+\dots)}$. Доказательство смотри в [3].

1.2.5. Плетизм цикленных индексов

Теорема 7. Композиции аналитических функторов соответствует плетизм цикленных индексов.

Чудесный факт заключается в том, что в декатегорификации композиция соответствует простой формуле подстановки. Сейчас мы ее напишем и приведем набросок доказательства. В качестве множества цветов A рассмотрим счетный набор цветов x_1, x_2, x_3, \ldots Цикленный индекс запишем относительно базиса кольца симметрических функций $\psi^1, \psi^2, \psi^3, \ldots$

Утверждение 8.

$$\mathcal{Z}_{F \circ G}(\psi^{1}, \psi^{2}, \psi^{3}, \dots) = \\ \mathcal{Z}_{F}(\mathcal{Z}_{G}(\psi^{1}, \psi^{2}, \psi^{3}, \dots), \mathcal{Z}_{G}(\psi^{2}, \psi^{4}, \psi^{6}, \dots), \mathcal{Z}_{G}(\psi^{3}, \psi^{6}, \psi^{9}, \dots), \dots)$$
(1.3)

Доказательство. В композиции двух аналитических функторов получается, что цвета в которые мы красим структуру F это структуры типа G. То есть $\mathcal{Z}_{F\circ G}=\mathcal{Z}_F(\psi_g^1,\psi_g^2,\psi_g^3,\dots)$, где $\psi_g^i=(g_1^i+g_2^i+g_3^i+\dots)$, где g_i — перечисление всех структур типа G. Нужно раскрыть переменные g_i — написать их относительно начальных цветов. Формулу $\psi_g^i=\mathcal{Z}_G(\psi^i,\psi^{2i},\psi^{3i},\dots)$ легко понять в переменных x_1,x_2,x_3,\dots Мы должны покрасить i кусков в одну и ту же G-структуру. Значит каждый цвет x_j в \mathcal{Z}_G при подстановке в ψ^i заменяется на x_j^i .

Замечание 9. Формулу 1.3 можно специализировать для подсчета labeled-структур. То есть покрашенных структур у которых нет двух одинаковых цветов в расскраске. Соответсвующие мономы (в базисе x_1, x_2, x_3, \ldots) возникают только при раскрытии мономов вида $c(\psi^1)^k$ и коэффициент в них равен ck! — такой же как при мономе с точностью до факториала. Этот факториал приводит к необходимости рассматривать экспоненциальные производящие функции вместо обычных. Можно занулить все остальные мономы подстановкой $\psi^1 = t, \psi^2 = 0, \psi^3 = 0, \psi^4 = 0$. Формула 1.3 примет вид $\mathcal{Z}_{F\circ G}(t,0,0,\ldots) = \mathcal{Z}_F(\mathcal{Z}_G(t,0,0,\ldots),0,0,\ldots)$. А значит для экспоненциальных производящих функции labeled-структур справедливо равенство

$$(f \circ g)(t) = f(g(t)) \tag{1.4}$$

Пример 17. (Экспоненциальная) производящая функция для **E** это $e^x=1+x+\frac{1}{2!}x^2+\frac{1}{3!}x^3+\ldots$ А производящая функция для непустых циклов **C** это $-log(1-x)=x+\frac{1}{2}x^2+\frac{1}{3}x^3+\ldots$ А для **S** производящая функция это $\frac{1}{1-x}=1+x+x^2+x^3+\ldots$ И действительно $e^{-log(1-x)}=\frac{1}{1-x}$.

Глава II. Гипероктаэдральные комбинаторные виды

2.1. Определение

Рассмотрим категорию HSet. В ней объекты это множества, снабженные дополнительным действием — инволюцией. А стрелки, это морфизмы, сохраняющие инволюцию. Рассмотрим категорию $H\mathcal{B}$ — группоид конечных множеств с инволюциями без неподвижных точек. Функтор $F:H\mathcal{B}\to HSet$ — гипероктаэдральный (или кубический) комбинаторный вид. Мы будем так же для краткости употреблять термин h-species. Группоид $H\mathcal{B}$ эквивалентен группоиду, объекты которого $\bar{n}=\{-n,-n+1,\ldots,-1,1,2,\ldots,n-1,n\}$, инволюция - смена знака. \bar{n} мы интрепретируем как грани куба, на которых действует гипероктаэдральная группа B_n — группа движений n-мерного куба. Эта же группа действует на множестве $F[\bar{n}]$, которое мы интрепретируем как множество структур на множестве граней куба. Действие B_n возникает из перестановок граней.

Замечание 10. При работе со species, мы имели мощную комбинаторную интуицию, которая мотивировала категорные конструкции. В случае h-species мы переносим категорные конструкции species на новый контекст и пытаемся дать комбинаторную интерпретацию получившимся результатам.

Пример 18. Вид **H** — структура куб. Он сопоставляет \bar{n} одно множество. Действие B_n тривиально.

Пример 19. \S — неразличимая пара граней (\mathbf{H}_1). \S — различимая пара граней. Оба они принимают значение \emptyset на всем, кроме $\bar{1}$. Второе соответствует действию B_1 на 2-х точечном множестве.

Пример 20. \square — куб размерности 2 (\mathbf{H}_2). \square — куб размерности 2 с различимыми противоположными гранями. Второе соответствует действию B_2 на 4-х точечном множестве.

Пример 21. Структура $\stackrel{\circ}{\bullet} \times \stackrel{\circ}{\bullet}$. Это не то же самое что \square , поскольку это «упорядоченная пара $\stackrel{\circ}{\bullet}$ ».

2.2. Вложение species в h-species

Обычные комбинаторные виды можно «вложить» в гипероктаэдральные. Это вложение задается функторами $I_1: H\mathcal{B} \to \mathcal{B} \ (\pm i \mapsto i)$ и $I_2: Set \to HSet$ (к множеству добавляется тождественная инволюция). В композиции с F они дают $I_1 \circ F \circ I_2: H\mathcal{B} \to HSet$. Комбинаторно: species рассмотреть как структуру не на точках, а на парах (неразличимых) граней.

2.3. Сложение и умножение h-species

Сложение и умножение определяются полностью аналогично species. Они введены в работе Бержерона [4].

2.4. Аналитический функтор для h-species

Хочется построить аналог аналитического функтора для h-species. Мы считаем, что правильная версия гипероктаэдрального аналитического функтора действует из HSet в HSet. По аналогии с обычным случаем строим \mathcal{F} как левое расширение Кана:

Аргумент \mathcal{F} будем называть множеством цветов (в действительности это множество с инволюцией, подробнее в замечании 11).

$$\mathcal{F}(A) = \coprod_{n} F[\bar{n}] \times A^{\bar{n}}/B_{n} \tag{2.1}$$

Явная конструкция, это расписанная формула из пункта 1.4 в заметке [10].

 $A^{\bar{n}}$ — это отображения (раскраски), сохраняющие инволюцию. По аналогии с обычными species, мы мыслим $\mathcal{F}(A)$, как множество F-структур, раскрашеных в цвета из A.

Замечание 11. В новой ситуации множество цветов A уже является не просто множеством, а множеством с инволюцией. Пара элементов (-i,i) отображается либо в один и тот же элемент (a,a) (который инволюцией переводится

в себя), либо в пару элементов (b, \bar{b}) , сопряженных инволюцией. Будем называть первый случай моноцветом, второй — бицветом.

На $F[\bar{n}] \times A^{\bar{n}}$ действует группа $B_n \times \mathbb{Z}_2$, второй сомножитель соответствует инволюции на цветах. После факторизации по B_n , мы получаем объект из HSet.

2.4.1. Композиция аналитических функторов h-species

Теорема 12. Композиция аналитических функторов h-species $\mathcal{F} \circ \mathcal{G}$ является аналитическим функтором для h-species, этот h-species будем называть $F \circ G$.

Доказательство. Общее рассуждение из пункта 1.2.3. Теперь мы работаем в симметрической моноидальной категории с инволюцией. Инволюция в моноидальной категории — это инволютивное естественное преобразование тождественного функтора. Композиция $F \circ G$ определяется, как $\Phi_G(F)$. Здесь $\Phi_G : \bar{n} \mapsto A^{\otimes n}$, инволюция действует покомпонентно.

2.5. Декатегорификация аналитического функтора

Можно действовать наивно: написать производящую функцию для числа раскрасок (1.2), по аналогии с классическим случаем. Такая формула (2.2) рассматривалась (в контексте теории представлений группы $S_n \wr G$) в работе [12] (см. также приложение В во втором анлгийском издании книги Макдональда [7]). При таком подходе определяются операции сложения и умножения по Коши для цикленных индексов. Но попытки определить гиперокта-эдральных плетизм оказываются безуспешны. Выяснилось, что правильный аналог цикленного индекса должен помнить информацию о следующем свойстве раскрашенной структуры.

В качестве множества цветов рассмотрим счетное множество моноцветов x_1, x_2, x_3, \ldots объединенное с счетным множеством бицветов y_1, y_2, y_3, \ldots

Предложение 13. Покрашенные структуры сами по себе можно рассматривать как моноцвет, либо бицвет. Это по–прежнему определяется длинной орбиты инволюции на A (уже после факторизации по B_n). Будем разделять раскрашенные структуры на моноструктуры и биструктуры.

Предложение 14. Гипероктаэдральный цикленный индекс (аналог 1.2) определим как пару симметрических (от $\{x_i\}, \{y_j\}$) функций $(\mathcal{Z}^{(1)}, \mathcal{Z}^{(2)})$. Коофициент при мономе $x_{i_1} \dots x_{i_k} y_{j_1} \dots y_{j_l}$ в $\mathcal{Z}^{(1)}$ равен количеству моноструктур с раскраской $\{x_{i_1}, \dots, x_{i_k}, y_{j_1}, \dots, y_{j_l}\}$. Коофициент при том же мономе в $\mathcal{Z}^{(2)}$ равен количеству биструктур с такой раскраской.

Пример 23.
$$[\mathcal{Z}^{(1)},\mathcal{Z}^{(2)}](\mathring{\bullet}) = [(x_1 + x_2 + x_3 + \dots), (y_1 + y_2 + y_3 + \dots)]$$

Утверждение 15. Количество орбит под действием $B_n \times \mathbb{Z}_2$ соответствует $\mathcal{Z}^{(1)} + \mathcal{Z}^{(2)}$, а под действием только B_n соответствует $\mathcal{Z}^{(1)} + 2\mathcal{Z}^{(2)}$.

Доказательство. В первом случае каждая моноструктура и биструктура будет посчитана 1 раз. А во втором каждая биструктура будет посчитан два раза, т.к. действие инволюции «склеивающей» две части биструктуры не учтено.

2.5.1. Подсчет цикленного индекса

Замечание 16. Циклы в каждом элементе B_n бывают двух типов: ∂ *линные* — каждая грань входит в цикл вместе со своей противоположной гранью. Пример длинного цикла:

И короткие — пара граней лежит в симметричных, различных циклах. Пример короткого цикла:

Введем обозначения. Пусть λ, μ — разбиения. $|\lambda| + |\mu| = n$. λ — цикленный тип коротких перестановок, μ — цикленный тип длинных перестановок. σ — перестановка цикленного типа (λ, μ) . $z_{\lambda\mu}$ — индекс класса сопряженности σ . χ — характер (перестановочного) представления заданного F.

Посчитаем количество неподвижных точек для B_n .

Утверждение 17. Неподвижные раскрашенные структуры, это в точности те, у которых длинный цикл покрашен в моноцвету, а пара симметричных коротких может быть покрашена либо в моноцвет, либо в бицвет. Причем для каждой пары коротких циклов есть ровно 2 способа их покрасить в выбранный бицвет (эти два способа сопряжены инволюцией на цветах).

Под покрашенным циклом мы подразумеваем покраску всех его элементов в этот цвет (такая покрашенная структура будет неподвижна относительно действия этого элемента B_n).

Утверждение 18. Справедлива формула:

$$\mathcal{Z}_{F}^{(1)} + 2\mathcal{Z}_{F}^{(2)} = \sum_{n} \frac{1}{2^{n} n!} \sum_{\sigma \in B_{n}} \chi(\sigma) \psi_{x,y,y}^{\lambda(\sigma)} \psi_{x}^{\mu(\sigma)} = \sum_{n,\lambda+\mu \vdash n} \chi(\sigma_{\lambda\mu}) \frac{\psi_{x,y,y}^{\lambda} \psi_{x}^{\mu}}{z_{\lambda\mu}}$$

$$(2.2)$$

Здесь нижний индекс ψ означает переменные по которым берется степенная сумма. Например $\psi_{x,y,y}^2 = (x_1^2 + x_2^2 + x_3^2 + \dots + y_1^2 + y_2^2 + y_3^2 + \dots + y_1^2 + y_2^2 + y_3^2 + \dots) = (x_1^2 + x_2^2 + x_3^2 + \dots + 2y_1^2 + 2y_2^2 + 2y_3^2 + \dots)$. При этом удвоенное y в $\psi_{x,y,y}$ (то есть коофициент 2 у y_i^k) отражает тот факт, что можно красить в бинвет 2-мя способами.

Посчитаем количество неподвижных точек для $B_n \times Z_2$. Разобъем сумму на две части — $(h,\bar{0})$ и $(h,\bar{1})$. Для первой формула будет аналогична 2.2, только из-за того что порядок группы в 2 раза больше, появится коофициент $\frac{1}{2}$. Во второй части по-прежнему можно красить и длинные и короткие циклы в моноцвет. А вот с бицветом происходит любопытная вещь — предположим мы красим в него цикл (пару циклов, в случае короткого). Тогда реальный цикл от $(h,\bar{1})$ будет получатся из циклов h добавлением «смены грани» на каждом шаге. Значит для циклов нечетной длинны сменится свойство короткий—длинный. Ниже два поясняющих примера.

Пример 24. Пусть перестановка
$$h_e = \bullet \leftrightarrow \bullet$$
. Тогда $(h_e, \bar{1}) = \bullet$

Пример 25. Пусть перестановка
$$h_o=$$
 . Тогда $(h_o,\bar{1})=$

Утверждение 19. Справедлива формула:

$$\mathcal{Z}_{F}^{(1)} + \mathcal{Z}_{F}^{(2)} = \frac{1}{2} \sum_{n,\lambda+\mu\vdash n} \chi(\sigma_{\lambda\mu}) \frac{\psi_{x,y,y}^{\lambda} \psi_{x}^{\mu}}{z_{\lambda\mu}} + \frac{1}{2} \sum_{n,\lambda_{o}+\mu_{o}+\lambda_{e}+\mu_{e}\vdash n} \chi(\sigma_{\lambda_{o}\mu_{o}\lambda_{e}\mu_{e}}) \frac{\psi_{x,y,y}^{\lambda_{e}+\mu_{o}} \psi_{x}^{\mu_{e}+\lambda_{o}}}{z_{\lambda_{o}\mu_{o}\lambda_{e}\mu_{e}}} \tag{2.3}$$

Где λ_o, μ_o — разбиения соответствующие коротким и длинным циклам нечетной длинны, λ_e, μ_e — четной.

Из формул 2.2, 2.3 легко получить

$$\mathcal{Z}_F^{(1)} = \sum_{n,\lambda_o + \mu_o + \lambda_e + \mu_e \vdash n} \chi(\sigma_{\lambda_o \mu_o \lambda_e \mu_e}) \frac{\psi_{x,y,y}^{\lambda_e + \mu_o} \psi_x^{\mu_e + \lambda_o}}{z_{\lambda_o \mu_o \lambda_e \mu_e}}$$
(2.4)

$$\mathcal{Z}_{F}^{(2)} = \frac{1}{2} \sum_{n,\lambda+\mu\vdash n} \chi(\sigma_{\lambda\mu}) \frac{\psi_{x,y,y}^{\lambda} \psi_{x}^{\mu}}{z_{\lambda\mu}} - \frac{1}{2} \sum_{n,\lambda_{o}+\mu_{o}+\lambda_{e}+\mu_{e}\vdash n} \chi(\sigma_{\lambda_{o}\mu_{o}\lambda_{e}\mu_{e}}) \frac{\psi_{x,y,y}^{\lambda_{e}+\mu_{o}} \psi_{x}^{\mu_{e}+\lambda_{o}}}{z_{\lambda_{o}\mu_{o}\lambda_{e}\mu_{e}}} \tag{2.5}$$

2.5.2. Примеры вычисления цикленного индекса

Посчитаем цикленные индексы для простых h-species. Здесь мы будем писать Z(A) вместо Z_A . Это не должно вызывать путаницу, поскольку вместо A будут использоваться схематические картинки. Их никак не перепутать с переменными, от которых считается цикленный индекс.

Замечание 20. Формулы 2.2 и 2.3 подсказывают, что в практических вычислениях в качестве симметричного базиса можно брать не $\{\psi_x^i, \psi_y^j\}$ а $\{\psi_x^i, \psi_{x,y,y}^j\}$. Или другую линейную комбинацию, например $\{\psi_x^i, \psi_{x,y}^j\}$.

Пример 26.

$$[\mathcal{Z}^{(1)} + 2\mathcal{Z}^{(2)}](\S) = \frac{1}{2}(\psi_{x,y,y}^1 + \psi_x^1) = \psi_{x,y}^1$$
$$\mathcal{Z}^{(1)}(\S) = \frac{1}{2}(\psi_x^1 + \psi_{x,y,y}^1) = \psi_{x,y}^1$$

Значит

$$\mathcal{Z}^{(2)}(\stackrel{\diamond}{\circ}) = 0$$

Пример 27.

$$[\mathcal{Z}^{(1)} + 2\mathcal{Z}^{(2)}](\stackrel{\diamond}{\bullet}) = \frac{1}{2}(2\psi_{x,y,y}^1 + 0\psi_x^1) = \psi_{x,y,y}^1$$
$$\mathcal{Z}^{(1)}(\stackrel{\diamond}{\bullet}) = \frac{1}{2}(2\psi_x^1 + 0\psi_{x,y,y}^1) = \psi_x^1$$

Значит

$$\mathcal{Z}^{(2)}(\overset{\circ}{\bullet}) = \psi_y^1$$

Пример 28.

$$[\mathcal{Z}^{(1)} + 2\mathcal{Z}^{(2)}](\Box) = \frac{1}{8}((\psi_{x,y,y}^1)^2 + (\psi_x^1)^2 + 2\psi_x^2 + 2(\psi_x^1\psi_{x,y,y}^1) + 2\psi_{x,y,y}^2)$$

3десь коофициенты — не характеры (характер при каждом слагаемом = 1).

$$\mathcal{Z}^{(1)}(\Box) = \frac{1}{8}((\psi_x^1)^2 + (\psi_{x,y,y}^1)^2 + 2\psi_{x,y,y}^2 + 2(\psi_{x,y,y}^1\psi_x^1) + 2\psi_x^2) = [\mathcal{Z}^{(1)} + 2\mathcal{Z}^{(2)}](\Box)$$

Последнее следовало и из общих соображений: легко видеть что $\mathcal{Z}^{(2)}(\Box) = 0$.

Пример 29.

$$[\mathcal{Z}^{(1)} + 2\mathcal{Z}^{(2)}](\square) = \frac{1}{8} (4(\psi_{x,y,y}^1)^2 + 0(\psi_x^1)^2 + 0\psi_x^2 + 0(\psi_x^1\psi_{x,y,y}^1) + 2 \times 2\psi_{x,y,y}^2)$$
$$\mathcal{Z}^{(1)}(\square) = \frac{1}{8} (4(\psi_x^1)^2 + 2 \times 2\psi_{x,y,y}^2)$$

Откуда

$$\mathcal{Z}^{(2)}(\square) = \frac{1}{2}([\mathcal{Z}^{(1)} + 2\mathcal{Z}^{(2)}](\square) - \mathcal{Z}^{(1)}(\square)) = \frac{1}{2}(\psi_{y,y}^1\psi_x^1 + \frac{1}{2}(\psi_{y,y}^1)^2) = \psi_y^1\psi_x^1 + (\psi_y^1)^2$$

2.6. Цикленный индекс species, вложенных в h-species

Утверждение 21. Пусть G — обычный species, вложенный в h-species. \mathcal{Z}_G — его цикленный индекс.

$$(\mathcal{Z}_G^{(1)}, \mathcal{Z}_G^{(2)})(\psi_x^1, \psi_x^2, \psi_x^3, \dots, \psi_y^1, \psi_y^2, \psi_y^3, \dots) = (\mathcal{Z}_G(\psi_{x,y}^1, \psi_{x,y}^2, \psi_{x,y}^3, \dots), 0)$$

Доказательство. Очевидно, поскольку при таком вложении бицвет и моноцвет ничем не отличаются с точки зрения итоговой раскрашенной структуры.

Они оба являются просто цветом.

2.7. Сумма и произведение цикленных индексов

2.7.1. Сумма

Сумма цикленных индексов соответсвует поточечной сумме аналитических функторов и здесь нет никаких сюрпризов:

$$\mathcal{Z}_{A+B}^{(1)} = \mathcal{Z}_A^{(1)} + \mathcal{Z}_B^{(1)}$$

$$\mathcal{Z}_{A+B}^{(2)} = \mathcal{Z}_{A}^{(2)} + \mathcal{Z}_{B}^{(2)}$$

2.7.2. Произведение

Для произведения уже не совсем так.

Утверждение 22. Моноструктура получается в произведении двух моноструктур. А биструктура получается, если один из сомножителей биструктура. Причем в случае, когда оба сомножителя — биструктуры, получается две различных биструктуры.

То есть

$$\begin{split} \mathcal{Z}_{A*B}^{(1)} &= \mathcal{Z}_A^{(1)} * \mathcal{Z}_B^{(1)} \\ \mathcal{Z}_{A*B}^{(2)} &= \mathcal{Z}_A^{(1)} * \mathcal{Z}_B^{(2)} + \mathcal{Z}_A^{(2)} * \mathcal{Z}_B^{(1)} + 2(\mathcal{Z}_A^{(2)} * \mathcal{Z}_B^{(2)}) \end{split}$$

Откуда следует

$$(\mathcal{Z}_{A*B}^{(1)} + 2\mathcal{Z}_{A*B}^{(2)}) = (\mathcal{Z}_A^{(1)} + 2\mathcal{Z}_A^{(2)}) * (\mathcal{Z}_B^{(1)} + 2\mathcal{Z}_B^{(2)})$$

Замечание 23. Это логично, поскольку $(\mathcal{Z}_F^{(1)} + 2\mathcal{Z}_F^{(2)})$ — это цикленный индекс для цветов, с «забытой» инволюцией.

2.7.3. Примеры цикленных индексов произведений

Посчитаем произведение уже известных h-структур и их цикленных индексов. Пример 30. Структура $\$ \times \$$.

$$\mathcal{Z}^{(1)}({}^{\lozenge} \times {}^{\lozenge}) = \mathcal{Z}^{(1)}({}^{\lozenge}) \times \mathcal{Z}^{(1)}({}^{\lozenge}) = (\psi^1_{x,y})^2$$

Пример 31. Структура $\stackrel{\circ}{\bullet} \times \stackrel{\circ}{\bullet}$.

$$[\mathcal{Z}^{(1)} + 2\mathcal{Z}^{(2)}](\mathring{\bullet} \times \mathring{\bullet}) = [\mathcal{Z}^{(1)} + 2\mathcal{Z}^{(2)}](\mathring{\bullet}) \times [\mathcal{Z}^{(1)} + 2\mathcal{Z}^{(2)}](\mathring{\bullet}) = (\psi^1_{x,y,y})^2$$

Легко получить эту же формулу и прямым подсчетом по формуле 2.2, как $\frac{1}{8}(8(\psi^1_{x,y,y})^2)$.

$$\mathcal{Z}^{(1)}({}^{\lozenge}_{\bullet}\times{}^{\lozenge}_{\bullet})=\mathcal{Z}^{(1)}({}^{\lozenge}_{\bullet})\times\mathcal{Z}^{(1)}({}^{\lozenge}_{\bullet})=(\psi^1_x)^2$$

2.8. Цикленный индекс композиции

Попробуем написать плетизм цикленных индексов для h-species, по аналогии с обычными species.

Задача 1. Выразить

$$\mathcal{Z}_{F \circ G}^{(i)}(\psi_x^1, \psi_x^2, \psi_x^3, \dots, \psi_y^1, \psi_y^2, \psi_y^3, \dots)$$

Ответ будет дан в основной теореме 24. Рассмотрим доказательство утверждения 8. В нем мы «красили» каждую точку F-структуры в раскрашенную G-структуру. Сейчас у нас появились бицвета и моноцвета. Исходя из определения биструктуры, будем доказывать, что бицвета в цикленном индексе $\mathcal{Z}_F^{(i)}$ нужно заменить на цикленные индексы $\mathcal{Z}_G^{(2)}$, отвечающие биструктурам G. А моноцвета заменить на цикленные индексы $\mathcal{Z}_G^{(1)}$.

Теорема 24 (О гипероктаэдральном плетизме). Справедлив аналог утвер-

ждения 8:

Формула громоздкая, поэтому напишем ее на уровне членов:

$$\psi_x^i \circ (\mathcal{Z}_G^{(1)}, \mathcal{Z}_G^{(2)}) = \mathcal{Z}_G^{(1)}(\psi_x^i, \psi_x^{2i}, \psi_x^{3i}, \dots, \psi_y^{i}, \psi_y^{2i}, \psi_y^{3i}, \dots)$$

$$(2.7)$$

$$\psi_y^i \circ (\mathcal{Z}_G^{(1)}, \mathcal{Z}_G^{(2)}) = \mathcal{Z}_G^{(2)}(\psi_x^i, \psi_x^{2i}, \psi_x^{3i}, \dots, \psi_y^i, \psi_y^{2i}, \psi_y^{3i}, \dots)$$

$$(2.8)$$

Доказательство. Рассмотрим моном $\psi_x^{\lambda}\psi_y^{\mu} = \psi_x^{\lambda_1}\psi_x^{\lambda_2}\dots\psi_x^{\lambda_k}\psi_y^{\mu_1}\psi_y^{\mu_2}\dots\psi_y^{\mu_r}$ из $\mathcal{Z}_F^{(i)}$. Во что он превратится в $\mathcal{Z}_{F\circ G}^{(i)}$? Композиция аналитических функторов — замена набора цветов на набор раскрашенных структур. Согласно этому, моноцвета $\{x_1, x_2, x_3, \dots\}$ заменятся на моноструктуры из $\mathcal{Z}^{(1)}$. Значит ψ_x^1 превратится в $\mathcal{Z}^{(1)}(\psi_x^1, \psi_x^2, \psi_x^3, \dots, \psi_y^1, \psi_y^2, \psi_y^3, \dots)$. А во что превратится ψ_x^2 ? Каждая моноструктура должна встречатся 2 раза. Значит, количество каждого цвета удвоится. Это соответствует замене в $\mathcal{Z}^{(1)}$ каждого ψ_x^i на ψ_x^{2i} , ψ_y^i на ψ_y^{2i} . То же самое для любого l: ψ_x^i на ψ_x^{li} , ψ_y^i на ψ_y^{li} . Так получается формула 2.7.

Это рассуждение дословно повторяется для ψ_y^l , с заменой моноцвета на бицвет, моноструктуры на биструктуру и $\mathcal{Z}^{(1)}$ на $\mathcal{Z}^{(2)}$. Так получается формула 2.8.

По мультипликативности результат продолжается до формулы 2.6.

Замечание 25. Если сделать в 2.6 подстановку

$$\psi_x^1 = t, \psi_x^k = 0, k > 1$$

$$\psi_y^1 = s, \psi_y^k = 0, k > 1$$

То получится формула

$$\tilde{\mathcal{Z}}_{F \circ G}^{(i)}(t,s) = \tilde{\mathcal{Z}}_{F}^{(i)}(\tilde{\mathcal{Z}}_{G}^{(1)}(t,s), \tilde{\mathcal{Z}}_{G}^{(2)}(t,s))$$

Таким образом аналог 1.4 справедлив для экспоненциальных производящих функций bilabeled-структур.

2.8.1. Примеры цикленного индекса композиции

Пример 32. Посчитаем $(\mathcal{Z}^{(1)}, \mathcal{Z}^{(2)})(\stackrel{\diamond}{\bullet} \circ \stackrel{\diamond}{\circ})$

$$\mathcal{Z}^{(1)}({}^{\lozenge}_{\bullet} \circ {}^{\lozenge}) = \psi^1_x \circ \psi^1_{x,y} = \psi^1_{x,y} = \mathcal{Z}^{(1)}({}^{\lozenge}_{\bullet})$$

$$\mathcal{Z}^{(2)}({}^{\Diamond}_{\bullet} \circ {}^{\Diamond}) = \psi^1_y \circ 0 = 0 = \mathcal{Z}^{(2)}({}^{\Diamond}_{\bullet})$$

Пример 33. Да и вобще, справедливо

$$\mathcal{Z}^{(i)}(\stackrel{\diamond}{\bullet} \circ A) = \mathcal{Z}^{(i)}(A)$$

$$\mathcal{Z}^{(i)}(A \circ \stackrel{\diamond}{\bullet}) = \mathcal{Z}^{(i)}(A)$$

Пример 34. Интересно посмотреть на композицию с

$$[\mathcal{Z}^{(1)} + 2\mathcal{Z}^{(2)}](\square \circ \lozenge) = \frac{1}{2} (\frac{1}{2} (\psi_{x,y,y}^1 + \psi_x^1))^2 + \frac{1}{2} (\frac{1}{2} (\psi_{x,y,y}^2 + \psi_x^2)) = \frac{1}{8} ((\psi_x^1)^2 + (\psi_{x,y,y}^1)^2 + 2\psi_{x,y,y}^2 + 2(\psi_{x,y,y}^1 \psi_x^1) + 2\psi_x^2) = [\mathcal{Z}^{(1)} + 2\mathcal{Z}^{(2)}](\square)$$
(2.9)

Замечание 27. Отсюда можно сделать предположение, что $\square \circ \S = \square$. То есть подстановка $\S -$ это «стирание различий между противоположными гранями».

Пример 35. Посчитаем для структуры V «вершина куба».

$$[\mathcal{Z}^{(1)} + 2\mathcal{Z}^{(2)}](V) = \prod_{i} \frac{1}{1 - x_i} \prod_{j} \frac{1}{(1 - y_j)^2} = e^{\psi_{x,y,y}^1 + \frac{\psi_{x,y,y}^2}{2} + \frac{\psi_{x,y,y}^3}{3} + \dots}$$

Коофициент при мономе $x_1^{i_1}x_2^{i_2}x_3^{i_3}\dots y_1^{j_1}y_2^{j_2}y_3^{j_3}\dots$ должен равнятся $(j_1+1)(j_2+1)(j_3+1)\dots$, поскольку для моноцвета нет вариантов, а для бицвета количество вариантов это количество способов разбить кратность этого цвета на два сомножителя (поскольку каждая пара граней отличима). Остальное доказывается явным вычислением, аналогичным с $\mathcal{Z}_{\mathbf{E}}$ (обычный species).

$$\mathcal{Z}^{(1)}(V) = \prod_{i} \frac{1}{1 - x_i} \prod_{j} \frac{1}{(1 - y_j^2)} = e^{(\psi_x^1 + \frac{\psi_x^2}{2} + \frac{\psi_x^3}{3} + \dots) + (\psi_y^2 + \frac{\psi_y^4}{2} + \frac{\psi_y^6}{3} + \dots)}$$

Для структуры H «куб» (см. утверждение 21).

$$[\mathcal{Z}^{(1)} + 2\mathcal{Z}^{(2)}](H) = \mathcal{Z}^{(1)}(H) = e^{\psi_{x,y}^1 + \frac{\psi_{x,y}^2}{2!} + \frac{\psi_{x,y}^3}{3!} + \dots}$$

Тогда $\mathcal{Z}^{(i)}(V \circ \S) = \mathcal{Z}^{(i)}(H)$, поскольку при специализации всех y в 0, они равны.

2.9. Применение цикленного индекса к решению задачи о раскрасках

Задача 2. Посчитать количество способов покрасить n-мерный куб в k цветов с точностью до изометрий. Иными словами, посчитать количество орбит при действии B_n на множестве всевозможно раскрашенных кубов [13].

$$\cdots + \frac{k(k-1)}{2}t + \frac{k(k-1)}{2}t^2 + \frac{k(k-1)}{2}t^3 + \dots) = exp(\frac{k(k+1)}{2}t + \frac{k(k+1)}{2}t^2 + \frac{k(k+1)}{2}t^3 + \dots) = (exp(\log(\frac{1}{1-t})))^{\frac{k(k+1)}{2}} = \frac{1}{1-t}^{\frac{k(k+1)}{2}}$$

Список литературы

- 1. André Joyal, Une théorie combinatoire des séries formelles, Adv. Math 42 (1981), 1–82
- 2. André Joyal, Foncteurs analytiques et espèces des structures, in Combinatoire Énumérative, Lecture Notes in Mathematics 1234, Springer, Berlin, (1986), pp. 126–159
- 3. F. Bergeron, Gilbert Labelle, Pierre LeRoux, Combinatorial Species and Tree-Like Structures, Cambridge University Press, (1998)
- 4. N. Bergeron, P. Choquette, *Hyperoctahedral species*, Sém. Lothar. Combin. 61A (2009/10), доступно на http://arxiv.org/abs/0810.4089
- 5. Hetyei, Gábor, Labelle, Gilbert, Leroux, Pierre *Cubical species and nonassociative algebras* Adv. in Appl. Math. (1998), no. 3
- 6. I. G. Macdonald, *Polynomial functors and wreath products*, J. Pure Appl. Algebra, 18(2):173–204, (1980)
- 7. I. G. Macdonald, Symmetric functions and Hall polynomials, Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York, second edition, (1995)
- 8. nLab, Day convolution, http://nlab.mathforge.org/nlab/show/Day+convolution
- 9. Н. В. Дуров, *Классифицирующие вектоиды и классы операд*, Санкт-Петербургское отделение Математического института им. В. А. Стеклова РАН, Санкт-Петербург, Россия (2009), доступно (английский) на http://arxiv.org/abs/1105.3114
- 10. Akhil Mathew, The Dold-Kan correspondence between simplicial abelian groups and chain complexes, Expository writings (2011), доступно на http://people.fas.harvard.edu/~amathew/doldkan.pdf
- 11. Leopold Travis, Graphical Enumeration: A Species-Theoretic Approach, Dissertation (1999), доступно на http://arxiv.org/pdf/math/9811127v1. pdf
- 12. Anthony Mendes, Jeffrey Remmel, Jennifer Wagner, A λ -ring Frobenius Characteristic for $G \wr S_n$, The electronic journal of combinatorics 11 (2004), #R56, доступно на http://www.combinatorics.org/ojs/index.php/eljc/article/download/v11i1r56/pdf
- 13. Задача обсуждается на http://math.stackexchange.com/questions/ 5697/coloring-the-faces-of-a-hypercube