22 Groups of order pq (11/13)

We need the following theorem as a black box.

Theorem 22.1. If p is a prime number, then $(\mathbf{Z}/p)^{\times}$ is cyclic.

Proof. This proof will be given in the second or third quarters of this course.

Remark 22.2. It turns out that $(\mathbf{Z}/p)^{\times}$ is isomorphic to the group of elements of the complex plane \mathbf{C} of the form $e^{\frac{2\pi k}{p-1}}$ where $k=0,\ldots,p-2$. I do not know of a truly elementary proof of Theorem 22.1, i.e., which does not use certain polynomials in a crucial way.

Corollary 22.3. If p is a prime number, then $(\mathbf{Z}/p)^{\times} \cong \mathbf{Z}/(p-1)$.

Proof. We already know that $(\mathbf{Z}/p)^{\times}$ has p-1 elements; by Theorem 22.1, the corollary follows.

Example 22.4. We call an element $i \in (\mathbf{Z}/n)^{\times}$ a multiplicative generator if $(\mathbf{Z}/n)^{\times}$ is cyclic **and** it is generated by i. For example,

- $(\mathbf{Z}/3)^{\times}$ is multiplicatively generated by 2;
- $(\mathbf{Z}/5)^{\times}$ is multiplicatively generated by 2 or 8;
- $(\mathbf{Z}/7)^{\times}$ is multiplicatively generated by 3 or 5.

Example 22.5 (Groups of order pq). Let p < q be distinct primes. There is a unique abelian group of order pq, up to isomorphism, which is $\mathbf{Z}/(pq) \cong \mathbf{Z}/q \times \mathbf{Z}/p$. When is there a non-abelian group of order pq? This occurs if and only if $p \mid q-1$. Indeed, we know that a group G of order pq has a normal q-Sylow subgroup, say N, which is isomorphic to \mathbf{Z}/q . The quotient of G by N is isomorphic to \mathbf{Z}/p . So, G is an extension of \mathbf{Z}/p by \mathbf{Z}/q . This extension is in fact split. Indeed, G has an element of order p which must map to a non-zero element of the quotient \mathbf{Z}/p . By Proposition 21.12, G is isomorphic to $\mathbf{Z}/q \rtimes_{\varphi} \mathbf{Z}/p$. Now, $\mathrm{Aut}(\mathbf{Z}/q)$ is a group of order (q-1). If p does not divide q-1, then the only group homomorphism $\mathbf{Z}/p \to \mathrm{Aut}(\mathbf{Z}/q)$ is the identity and it follows, from Exercise 21.2, that in this case G is the product $\mathbf{Z}/q \times \mathbf{Z}/p$. On the other hand, if p does divide (q-1), then by Cayley's theorem there is an element of $\mathrm{Aut}(\mathbf{Z}/q)$ of order p and hence a non-trivial homomorphism $\varphi \colon \mathbf{Z}/p \to \mathbf{Z}/q$. The associated semidirect product $\mathbf{Z}/q \rtimes_{\varphi} \mathbf{Z}/p$ is non-abelian.

Example 22.6. There are no non-abelian groups of order 15.

22.1 Exercises

Exercise 22.1. Find multiplicative generators of $\mathbb{Z}/11$ and $\mathbb{Z}/13$.

Exercise 22.2. Show that if p is a prime number, then $(\mathbf{Z}/p^2)^{\times}$ is cyclic.

Exercise 22.3. Find an integer n > 1 such that $(\mathbf{Z}/n)^{\times}$ is not cyclic.

Exercise 22.4. Make a list of the first 10 primes. Then, make a list of all products pq where p and q are on your list such that every group of order pq is abelian. For example, every group of order 15 is abelian.