PLSC 503 – Spring 2021 Maximum Likelihood: Theory and Optimization

March 17, 2021

A Model

$$Y \sim N(\mu, \sigma^2)$$

$$E(Y) = \mu$$
$$Var(Y) = \sigma^2$$

Some Data

```
Y = 64
63
59
71
68
```

Probabilities, Marginal

 $Y \sim N(\mu, \sigma^2)$ implies:

$$Pr(Y_i = y_i) = \frac{1}{\sqrt{2\pi\sigma^2}} exp\left[-\frac{(Y_i - \mu)^2}{2\sigma^2}\right]$$

So:

$$Pr(Y_1 = 64) = \frac{1}{\sqrt{2\pi\sigma^2}} exp \left[-\frac{(64 - \mu)^2}{2\sigma^2} \right]$$

$$Pr(Y_2 = 63) = \frac{1}{\sqrt{2\pi\sigma^2}} exp \left[-\frac{(63 - \mu)^2}{2\sigma^2} \right]$$

. . .

Recall that:

$$Pr(A, B | A \perp B) = Pr(A) \times Pr(B)$$

So:

$$\Pr(Y_1 = 64, Y_2 = 63) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(64 - \mu)^2}{2\sigma^2}\right] \times \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(63 - \mu)^2}{2\sigma^2}\right]$$

More generally:

$$Pr(Y_i = y_i \,\forall i) \equiv L(Y|\mu, \sigma^2)$$

$$= \prod_{i=1}^{N} \frac{1}{\sqrt{2\pi\sigma^2}} exp\left[-\frac{(y_i - \mu)^2}{2\sigma^2}\right]$$

Likelihood

The likelihood is:

$$L(\hat{\mu}, \hat{\sigma}^2 | Y) \propto \Pr(Y | \hat{\mu}, \hat{\sigma}^2)$$

For $\hat{\mu}=68$ and $\hat{\sigma}=4$, that means:

$$\begin{array}{rcl} L & = & \frac{1}{\sqrt{2\pi 16}} \exp \left[-\frac{(64-68)^2}{32} \right] \times \\ & & \frac{1}{\sqrt{2\pi 16}} \exp \left[-\frac{(63-68)^2}{32} \right] \times \\ & & \frac{1}{\sqrt{2\pi 16}} \exp \left[-\frac{(59-68)^2}{32} \right] \times \dots \\ & = & \text{some reeeeeally small number}... \end{array}$$

What a Likelihood Looks Like

Log-Likelihood

$$\begin{aligned} \ln L(\hat{\mu}, \hat{\sigma}^{2} | Y) &= & \ln \prod_{i=1}^{N} \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp\left[-\frac{(Y_{i} - \mu)^{2}}{2\sigma^{2}}\right] \\ &= & \sum_{i=1}^{N} \ln\left\{\frac{1}{\sqrt{2\pi\sigma^{2}}} \exp\left[-\frac{(Y_{i} - \mu)^{2}}{2\sigma^{2}}\right]\right\} \\ &= & -\frac{N}{2} \ln(2\pi) - \left[\sum_{i=1}^{N} \frac{1}{2} \ln \sigma^{2} + \frac{1}{2\sigma^{2}} (Y_{i} - \mu)^{2}\right] \end{aligned}$$

What a Log-Likelihood Looks Like

The "Maximum" Part

For $L = f(Y, \theta)$:

- Calculate $\frac{\partial \ln L}{\partial \theta}$,
- Set $\frac{\partial \ln L}{\partial \theta} = 0$, solve for $\hat{\theta}$,
- Calculate $\frac{\partial^2 \ln L}{\partial \theta^2}$,
- Verify $\frac{\partial^2 \ln L}{\partial \theta^2} < 0$.

Example: Normal Y

$$\ln L(\hat{\mu}, \hat{\sigma}^2 | Y) = -\frac{N}{2} \ln(2\pi) - \left[\sum_{i=1}^{N} \frac{1}{2} \ln \sigma^2 + \frac{1}{2\sigma^2} (Y_i - \mu)^2 \right]$$

Means:

$$\frac{\partial \ln L}{\partial \mu} = \frac{1}{\sigma^2} \sum_{i=1}^{N} (Y_i - \mu)$$

$$\frac{\partial \ln L}{\partial \sigma^2} = \frac{-N}{2\sigma^2} + \frac{1}{2} \sigma^4 \sum_{i=1}^{N} (Y_i - \mu)^2$$

Example: Normal Y (continued)

Solving yields:

$$\hat{\mu}_{MLE} = \frac{1}{N} \sum_{i=1}^{N} Y_i$$

$$\hat{\sigma}_{MLE}^2 = \frac{1}{N} \sum_{i=1}^{N} (Y_i - \bar{Y})^2$$

Compare with:

$$\hat{\sigma}^2 = \frac{1}{N-1} \sum_{i=1}^{N} (Y_i - \bar{Y})^2$$

Example: Linear Regression

Model:

$$E(Y) \equiv \mu = \beta_0 + \beta_1 X_i$$

$$Var(Y) = \sigma^2$$

Likelihood:

$$L(\beta_0, \beta_1, \sigma^2 | Y) = \prod_{i=1}^{N} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(Y_i - \beta_0 - \beta_1 X_i)^2}{2\sigma^2}\right]$$

Log-likelihood:

$$\ln L(\beta_0, \beta_1, \sigma^2 | Y) = -\frac{N}{2} \ln(2\pi) - \sum_{i=1}^{N} \left[\frac{1}{2} \ln \sigma^2 + \frac{1}{2\sigma^2} (Y_i - \beta_0 - \beta_1 X_i)^2 \right]$$

"Kernel":

$$-\sum_{i=1}^{N} \left[\frac{1}{2} \ln \sigma^2 + \frac{1}{2\sigma^2} (Y_i - \beta_0 - \beta_1 X_i)^2 \right]$$

MLE in General

$$\Pr(Y) = f(\mathbf{X}, \theta)$$

$$L = \prod_{i=1}^{N} f(Y_i | \mathbf{X}_i, \theta)$$

$$\ln L = \sum_{i=1}^{N} \ln f(Y_i | \mathbf{X}_i, \theta)$$

$$\ln L(\hat{\theta} | Y, \mathbf{X}) = \max_{\theta} \{ \ln L(\theta | Y, \mathbf{X}) \}$$

Digression: Taylor Series Approximation

For a k + 1-times differentiable function f(x), we can approximate the function at a with a *Taylor series approximation*:

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n = f(a) + \frac{f'(a)}{1!} (x-a) + \frac{f''(a)}{2!} (x-a)^2 + \frac{f'''(a)}{3!} (x-a)^3 + \cdots$$

Special cases: First-order / linear:

$$f(x) \approx f(a) + \frac{f'(a)}{11}(x-a)$$

Second-order / quadratic:

$$f(x) \approx f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2$$

Taylor Series, Illustrated

The Gradient

The gradient is:

$$\mathbf{g}(\hat{\theta}) = \frac{\partial \ln L(\hat{\theta})}{\partial \hat{\theta}}$$

First-order Taylor series approximation at θ :

$$\frac{\partial \ln L}{\partial \hat{\theta}} \approx \frac{\partial \ln L}{\partial \theta} + \frac{\partial^2 \ln L}{\partial \theta^2} (\hat{\theta} - \theta)$$

Yields:

$$\hat{\theta} - \theta = \left(-\frac{\partial^2 \ln L}{\partial \theta^2} \right)^{-1} \frac{\partial \ln L}{\partial \theta}$$
$$= -\mathbf{H}(\theta)^{-1} \mathbf{g}(\theta)$$

Need

$$\mathsf{plim}(\hat{\theta} - \theta) = 0$$

So:

- Assume $\mathbf{H}(\theta) \stackrel{\mathsf{a}}{\to} \mathbf{A} < \infty$
- Show $E[\mathbf{g}(\theta)] \to \mathbf{0}$ as $N \to \infty$

Yields:

$$\begin{split} \mathsf{E}[\mathbf{g}(\theta)] &= \frac{1}{N} \, \mathsf{E}\left(\frac{\partial \ln L_1}{\partial \theta} + \frac{\partial \ln L_2}{\partial \theta} + \ldots + \frac{\partial \ln L_N}{\partial \theta}\right) \\ &= \frac{1}{N} \, \left[\mathsf{E}\left(\frac{\partial \ln L_1}{\partial \theta}\right) + \mathsf{E}\left(\frac{\partial \ln L_2}{\partial \theta}\right) + \ldots\right] \\ &\stackrel{=}{=} \quad \mathbf{0} \end{split}$$

Efficiency

Cramer-Rao say:

$$\mathsf{Var}(\hat{ heta}) \geq \left[-\mathsf{E}\left(rac{\partial^2 \mathsf{In}\, L(heta)}{\partial heta^2}
ight)
ight]^{-1}$$

Efficiency, continued

$$\begin{aligned} \mathsf{Var}(\hat{\theta}) &= \mathsf{E}[(\hat{\theta} - \theta)(\hat{\theta} - \theta)'] \\ &= \mathsf{E}\left[\left(-\frac{\partial^2 \ln L}{\partial \theta^2}\right)^{-1} \frac{\partial \ln L}{\partial \theta} \frac{\partial \ln L'}{\partial \theta} \left(-\frac{\partial^2 \ln L}{\partial \theta^2}\right)^{-1}\right] \end{aligned}$$

For MIF:

$$\mathsf{E}\left[\frac{\partial \ln L}{\partial \theta} \frac{\partial \ln L'}{\partial \theta}\right] \quad = \quad \mathsf{E}\left[\frac{\partial^2 \ln L}{\partial \theta^2}\right]$$

So,

$$Var(\hat{\theta}) = \left[-E\left(\frac{\partial^2 \ln L}{\partial \theta^2}\right) \right]^{-1}$$
$$= [I(\theta)]^{-1}$$

Normality

By the Law of Large Numbers:

$$rac{\hat{ heta} - heta}{\sqrt{ extsf{I}(heta)^{-1}}} \sim extsf{N}(extsf{0}, extsf{1})$$

Or, equivalently:

$$\hat{ heta} \sim \textit{N}(heta, \textbf{I}(heta)^{-1})$$

Invariance: Parameters

For

$$\gamma = h(\theta)$$

$$\hat{\gamma}_{ML} = h(\hat{ heta}_{ML})$$

Suppose

$$\phi^2 = 1/\sigma^2$$

so that

$$Y \sim N(\mu, \phi^2)$$
.

Invariance: Example

Then:

$$\ln L(\hat{\mu}, \hat{\phi}^2) = -\left[\sum_{i=1}^N \frac{1}{2} \ln \phi^2 - \frac{1}{2\phi^2} (Y_i - \mu)^2\right]$$

and:

$$\frac{\partial \ln L}{\partial \phi^2} = \frac{-N}{2\phi^2} + \frac{1}{2}\phi^4 \sum_{i=1}^{N} (Y_i - \mu)^2$$

and:

$$\hat{\phi}^2 = \frac{N}{\sum_{i=1}^{N} (Y_i - \bar{Y})^2}$$
$$= \frac{1}{\hat{\sigma}^2}$$

Summary

MLEs:

- Maximize $L(\theta|Y, \mathbf{X})$
- Are consistent in N
- Are asymptotically efficient
- Are asymptotically Normal
- Are invariant to (injective) transformations and varying sampling methods

Optimization

Optimization: Stuff We Won't Cover

- Grid search / "hill climbing"
- Genetic algorithms
- Annealing methods
- Local search methods (tabu, etc.)
- many others...

Find

$$\max_{\hat{oldsymbol{eta}} \in \mathbb{R}^k} \ln L(\hat{oldsymbol{eta}}|Y,\mathbf{X})$$

Unconstrained optimization problem...

Intuition:

- Start with \hat{eta}_0
- Adjust:

$$\hat{oldsymbol{eta}}_1 = \hat{oldsymbol{eta}}_0 + oldsymbol{\mathsf{A}}_0$$

• Repeat.

More Specifically...

$$\boldsymbol{\hat{eta}}_{\ell} = \boldsymbol{\hat{eta}}_{\ell-1} + \boldsymbol{\mathsf{A}}_{\ell-1}$$

$$\hat{oldsymbol{eta}} = \hat{oldsymbol{eta}}_{\ell}
i \hat{oldsymbol{eta}}_{\ell} - \hat{oldsymbol{eta}}_{\ell-1} (\equiv oldsymbol{\mathsf{A}}_{\ell}) < au$$

Key Question: What's A?

One alternative:

$$\mathbf{A} = f[\mathbf{g}(\hat{\boldsymbol{\beta}})]$$

- ullet $\mathbf{g}(\hat{oldsymbol{eta}})=$ "directionality" of change
 - $\cdot \mathbf{g}(\hat{\beta}_k) < 0 \rightarrow A_k < 0$
 - $\cdot \mathbf{g}(\hat{\beta}_k) > 0 \rightarrow A_k > 0$

"Steepest Ascent"

$$\mathbf{A}_{\ell} = \frac{\partial \ln L}{\partial \hat{\boldsymbol{\beta}}_{\ell}}$$

$$\hat{\boldsymbol{\beta}}_{\ell} = \hat{\boldsymbol{\beta}}_{\ell-1} + \frac{\partial \ln L}{\partial \hat{\boldsymbol{\beta}}_{\ell-1}}$$

A Challenge

"Step Size"

$$\hat{\boldsymbol{\beta}}_{\ell} = \hat{\boldsymbol{\beta}}_{\ell-1} + \lambda_{\ell-1} \boldsymbol{\Delta}_{\ell-1}$$

- $\Delta \rightarrow direction$
- $\lambda \rightarrow amount$ ("step size")

Key: Hessian

$$\mathbf{H}(\hat{\boldsymbol{\beta}}) = \frac{\partial^2 \ln L}{\partial \hat{\boldsymbol{\beta}}^2}$$

How?

Newton-Raphson

$$\begin{split} \hat{\boldsymbol{\beta}}_{\ell} &= \hat{\boldsymbol{\beta}}_{\ell-1} - \left(\frac{\partial^2 \ln L}{\partial \hat{\boldsymbol{\beta}}_{\ell-1}^2}\right)^{-1} \frac{\partial \ln L}{\partial \hat{\boldsymbol{\beta}}_{\ell-1}} \\ &= \hat{\boldsymbol{\beta}}_{\ell-1} - \left[\mathbf{H}(\hat{\boldsymbol{\beta}}_{\ell-1})^{-1} \mathbf{g}(\hat{\boldsymbol{\beta}}_{\ell-1})\right] \end{split}$$

Newton-Raphson vs. Steepest Ascent

(Source)

Sidebar: Newton-Raphson, re-revealed

Taylor series, anyone?

$$f(X) \approx f(a) + f'(a)(x - a)$$

Here,

$$\frac{\partial \ln L}{\partial \hat{\beta}_{\ell}} \approx \frac{\partial \ln L}{\partial \hat{\beta}_{\ell-1}} + \frac{\partial^2 \ln L}{\partial \hat{\beta}_{\ell-1}^2} (\hat{\beta}_{\ell} - \hat{\beta}_{\ell-1})$$

But we really want:

$$\frac{\partial \ln L}{\partial \hat{\beta}_{\ell}} = \mathbf{0}$$

So:

$$\mathbf{0} \approx \frac{\partial \ln L}{\partial \hat{\beta}_{\ell-1}} + \frac{\partial^2 \ln L}{\partial \hat{\beta}_{\ell-1}^2} (\hat{\beta}_{\ell} - \hat{\beta}_{\ell-1})$$

$$\hat{eta}_{\ell} pprox \hat{eta}_{\ell-1} - \left(rac{\partial^2 \ln L}{\partial \hat{eta}_{\ell-1}^2}
ight)^{-1} rac{\partial \ln L}{\partial \hat{eta}_{\ell-1}}$$
 $pprox \hat{eta}_{\ell-1} - \mathbf{H}(\hat{eta}_{\ell-1})^{-1} \mathbf{g}(\hat{eta}_{\ell-1})$

Newton-Raphson

- Uses $\mathbf{H}(\hat{eta})^{-1}$ so
- Calculates $\mathbf{H}(\hat{\boldsymbol{\beta}})^{-1}$ at every iteration...

Alternatives

"Modified Marquardt":

- Used when $\mathbf{H}(\hat{\boldsymbol{\beta}})$ isn't invertable
- Adds a constant **C** to diag[$\mathbf{H}(\hat{\beta})$]
- Variants: Add $C(h_k)$

"Method of Scoring":
$$\hat{\beta}_{\ell} = \hat{\beta}_{\ell-1} - \left[\mathbb{E} \left(\frac{\partial^2 \ln L}{\partial \hat{\beta}_{\ell-1}^2} \right)^{-1} \right] \frac{\partial \ln L}{\partial \hat{\beta}_{\ell-1}}$$

$$= \hat{\beta}_{\ell-1} - \left\{ \mathbb{E} [\mathbf{H}(\hat{\beta}_{\ell-1})] \right\}^{-1} \mathbf{g}(\hat{\beta}_{\ell-1})$$
(-2)

- Due to Fisher
- Advantages:

 - <u>Can</u> be faster/simpler

More Alternatives

Berndt, Hall², and Hausman ("BHHH"):

$$\hat{\boldsymbol{\beta}}_{\ell} = \hat{\boldsymbol{\beta}}_{\ell-1} - \left(\sum_{i=1}^{N} \frac{\partial \ln L}{\partial \hat{\boldsymbol{\beta}}_{\ell-1}} \frac{\partial \ln L}{\partial \hat{\boldsymbol{\beta}}_{\ell-1}}\right)^{-1} \frac{\partial \ln L}{\partial \hat{\boldsymbol{\beta}}_{\ell-1}}$$

Advantages:

- (Relatively) very easy to compute
- Reasonably accurate...

Other "Newton Jr.s":

- Davidson-Fletcher-Powell ("DFP")
- Broyden et al. ("BFGS")
- They are:
 - Very fast/efficient
 - Pretty bad at getting $-\left(\mathbf{H}(\hat{\boldsymbol{\beta}})\right)^{-1}$

Summary

Method	"Step size" (∂^2) matrix	Variance-Covariance Estimate
Newton	Inverse of the observed	Inverse of the negative
	second derivative (Hessian)	Hessian
Scoring	Inverse of the expected	Inverse of the negative
	value of the Hessian	information matrix
	(information matrix)	
BHHH	Outer product approximation	Inverse of the outer
	of the information matrix	product approximation

Software Issues: R

Lots of optimizers:

- maxLik package: options for Newton-Raphson, BHHH, BFGS, others
- optim (in stats) quasi-Newton, plus others
- nlm (in stats) nonlinear minimization "using a Newton-type algorithm"
- newton (in Bhat) Newton-Raphson solver
- solveLP (in linprog) linear programming optimizer

R: Using maxLik

- Must provide log-likelihood function
- Can provide $\mathbf{H}(\hat{\boldsymbol{\beta}})$, $\mathbf{g}(\hat{\boldsymbol{\beta}})$, both, or neither
- Choose optimizer (Newton, BHHH, BFGS, etc.)
- Returns an object of class maxLik

R: Examples

Rayleigh distribution:

$$\Pr(X) = \frac{x}{b^2} \exp\left[\frac{-x^2}{2b^2}\right]$$

Some Rayleighs

R: What We Like To See

```
> library(maxLik,distr)
> set.seed(7222009)
> U<-runif(100)
> rayleigh<-3*sqrt(-2*log(1-U))
> loglike <- function(param) {
+    b <- param[1]
+    l1 <- (log(x)-log(b^2)) + ((-x^2)/(2*b^2))
+    l1
+ }</pre>
```

R: What We Like To See

```
> x<-rayleigh
> hats <- maxLik(loglike, start=c(1))</pre>
> summary(hats)
Maximum Likelihood estimation
Newton-Raphson maximisation, 8 iterations
Return code 2: successive function values within tolerance limit
Log-Likelihood: -195.7921
1 free parameters
Estimates:
    Estimate Std. error t value Pr(> t)
[1.] 2.9168 0.1459 20 <2e-16 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```

R : What We *Don't* Like To See

```
> Y < -c(0,0,0,0,0,1,1,1,1,1,1)
> X<-c(0,1,0,1,0,1,1,1,1,1)
> xtabs(~X+Y)
    0 1
  0 3 0
  1 2 5
> logL <- function(param) {</pre>
    b0<-param[1]
    b1<-param[2]
    11 < -Y * log(exp(b0+b1*X)/(1+exp(b0+b1*X))) +
+
        (1-Y)*log(1-(exp(b0+b1*X)/(1+exp(b0+b1*X))))
    11
+ }
```

R : What We *Don't* Like To See

```
> Bhat<-maxLik(logL,start=c(0,0))</pre>
> summary.maxLik(Bhat)
Maximum Likelihood estimation
Newton-Raphson maximisation, 9 iterations
Return code 1: gradient close to zero
Log-Likelihood: -4.187887
2 free parameters
Estimates:
    Estimate Std. error t value Pr(> t)
[1,] -104.3
                   Inf
[2.] 105.2 Inf
```

Potential Problems

Enemy # 1: Noninvertable $\mathbf{H}(\hat{\beta})$

- "Non-concavity," "non-invertability," etc.
- (Some part of) the likelihood is "flat"
- Why? (Bob Dole...)

Other Potential Problems

Identification

- Possible due to functional form alone...
- "Fragile"
- Manifestation: parameter instability

Poor Conditioning

- Numerical issues
- Potentially:
 - Collinearity
 - Other weirdnesses (nonlinearities)

Practical Optimization

Potential Causes of Problems:

- · Bad specification!
- Missing data
- Variable scaling
- Typical Pr(Y)

Hints:

- T-h-i-n-k!
- Know thy data
- Keep an eye on your iteration logs...
- Don't overreach