- the pores of the porous components comprise a uniform multimodal pore size distribution through the entire polymeric structure.
- 22. The porous self-supporting structure of claim 21 wherein the structure comprises a polymer obtainable by polymerisation of monomers having at least two polymerisable moieties or two types of monomers the first monomer type having one polymerisable moiety and the other monomer type is able to crosslink polymer chains obtained by polymerisation of the first monomer.
- 23. The porous self-supporting structure of claim 21, wherein the surfaces of the pores are modified with functional groups, hydrophobic moieties, reactive groups for covalently binding of ligands, enzymes, immunoglobulins, antigens, lectins, sugars, nucleic acids cell organelles, or dyes.
- 24. The porous self-supporting structure of claim 23, wherein the functional groups are ion-exchange groups, and wherein the ligands are affinity ligands.
- 25. The porous self-supporting structure of claim 24, wherein the affinity ligands are proteins

- 26. The porous self-supporting structure of claim 22, wherein the monomers are polyvinyl monomers or polyvinyl monomers plus monovinyl monomers.
- 27. The porous self-supporting structure of claim 26, wherein the polyvinyl monomers are divinylbenzene, divinylnaphthalene, divinylpyridine, alkylene dimethacrylates, hydroxyalkylene dimethacrylates, hydroxyalkylene, diacrylates, oligoethylene glycol diacrylates, vinyl polycarboxylic acids, divinyl ether, pentaerythritol di-, tri-, or tetra methacrylate or acrylate, trimethylolpropane trimethylacrylate or acrylate, alkylene bis acrylamides or methacrylamides, or mixtures thereof.
- 28. The porous self-supporting structure of claim 26, wherein the monovinyl monomers are styrene, ring substituted styrenes wherein the substitutions are chloromethyl, alkyl with up to 18 carbon atoms, hydroxyl, t-butyloxycarbonyl, halogen, nitro-, amino- groups, protected hydroxyls or amino groups, vinylnaphthalene, acrylates, methacrylates, vinylacetate, or pyrrolidone, or mixtures thereof.
- 29. The porous self-supporting structure of claims 26, wherein the polyvinyl monomers or polyvinyl monomers plus the monovinyl monomers are present in the polymerisation mixture in an amount of 20 to 60%.

- 30. The porous self-supporting structure of claim 21, wherein the first component B comprises a tube like structure having an inner lumen (10) with an inner diameter (12) and an outer diameter (11), the lumen (10) is able to take up the second component A having an inner lumen (20) with an outer diameter (21) and an inner diameter (22) with the proviso that the outer diameter (21) of component A matches the inner diameter (12) of component B and component A fits in component B.
- 31. The porous self-supporting structure of claim 30, wherein the inner lumen (20) of component A is a sample collector.
- 32. An article comprising the porous self-supporting structure according to claim 21 and means for carrying out chromatographic processes.
- 33. The article according to claim 32, wherein the article is a chromatographic unit (30) column or cartridge or a bioconversion reactor or matrix for peptide or oligonucleotides synthesis.
- 34. The article of claim 33 comprising a housing (36) providing a sample distributor 23 in which component D is arranged, the housing (36) having at least one inlet (41) and at least one outlet (40), an inner surface (42) and an outer surface (43) and a channel like structure or channel like structures (72) forming a sample distributor (23) on its inner surface (42).

- 35. The article of claim 34, wherein the channel like structure (72) is a helical groove (25) starting at the area of and being in direct contact with the inlet (41) of the chromatographic unit (30) and terminating after at least one complete turn but not in direct connection with the outlet (40) of the chromatographic unit (30).
- 36. The article of claim 33, wherein the chromatographic unit (30) further comprises a first end-fitting (32) and a second end-fitting (38), having O-rings (33,34,35,37) and tightening nuts (31,39).
- The article of claim 36, wherein the second end-fitting (38) has a top part (52), a bottom part (53) and a casing, the second end-fitting (38) is essentially of cylindrical shape, the second end-fitting (38) comprises a collar (5) dividing the cylindrically shaped end-fitting (38) into two parts, whereby the part of the end-fitting (38) nearest to the collar (51) is the top part (52) comprising a connector (50) in connection with a dead-end central bore (54) communicating with a bore (55) which is perpendicular to the dead-end central bore (54), the bore (55) starts in a ring-like groove (56) at the surface of the casing of the second end-fitting (38) and leads into the dead end central bore (54).

- The article of claim 36, wherein the first end-fitting (32) has a top part (62), a bottom part (63) and a casing, the first end-fitting (32) is essentially of cylindrical shape, the first end-fitting (32) comprises a collar (61) dividing the cylindrically shaped end-fitting (32) into two parts (62,63), whereby the part of the end-fitting (32) nearest to the collar (61) is the bottom part (62) comprising a connector (60) in connection with a central bore (6) extending through the entire first end-fitting (32) and an O-ring (35) placed in a ring-like groove in the casing at the area of the top part (63) of the first end-fitting (32).
- 39. A housing (36) for use in the article of claim 34 providing a sample distributor (23) wherein the channel like structure (72) is a helical groove (25).
- 40. A first end-fitting (32) or a second end-fitting (38) for use in the article of claim 36.
- 41. A collecting element (80) for use in the article of claim 32.
- Process for manufacturing a porous self supporting structure of claim 21 comprising the steps of
 - mixing monovinyl and polyvinyl monomers together with porogens and optionally with polymerisation initiators,