Complex Analysis

Aamod Varma

MATH - 4320, Fall 2024

Contents

1	Complex Numbers	2
	1.12 Regions in the Complex Plane	2
2	Analytic functions	4

Chapter 1

Complex Numbers

1.12 Regions in the Complex Plane

Definition 1.1 (Epsilon neighborhood). An epsilon neighborhood around a point z_0 is the set of all z such that,

$$|z-z_0|<\varepsilon$$

Definition 1.2 (Deleted neighborhood). A deleted neighborhood around a point z_0 is the set of all z such that,

$$0 < |z - z_0| < \varepsilon$$

Remark. A deleted neighborhood is essentially an epsilon neighborhood but does not include the point z_0

Definition 1.3 (Interior point). z_0 is an interior point when there exists a neighborhood of z_0 that contains only points of S

Definition 1.4 (Exeterior point). z_0 is an exterior point when there exists a neighborhood of z_0 that contains no points of S

Definition 1.5 (Boundary point). z_0 is a boundary point otherwise, i.e. all of the neighborhoods of z_0 contains a point in S and a point not in S

Definition 1.6 (Open set). S is an open set if $\forall z \in S, \exists \varepsilon \text{ s.t. } B_{\varepsilon}(z) \subset S$

Remark. We can also say that an open set does not contain any of its boundary points.

Definition 1.7 (Closed set). A set is closed if it doesn't contain its boundary points.

Definition 1.8 (Connected Set). An open set is connected if z_1, z_2 can be joined by a polygonal line, consisting of finite number of line segments, joined end to end.

Definition 1.9 (domain). A non empty open set that is connected is called a domain

Definition 1.10 (region). A domain together with some, none, or all of its boundary points is referred to as a region

Definition 1.11 (accumulation point). An accumulation point or limit point of a set S is z_0 if, each deleted neighborhood of z_0 contains at least one point of S

Remark. A closed set contains all of its accumulation points, but the opposite may not be true.

Remark. Every boundary point is not an accumulation point.

Example. Consider the set, $S = 5 \cup (0,1)$

Here, the boundary points are 5,0 and 1 because they ε -neighborhood defined around these points contains both inerior points and exterior points.

However 5 is not an accumulation point because the deleted-neighborhood does not contain any interior points (as it removes 5).

Chapter 2

Analytic functions

13. Functions and Mappings

A translation translate a complex number to another location preserving direction and magnitude.

Example.
$$f(z) = z_0 + z$$

A rotation rotates the complex number changing magnitude or direction.

Example. $f(z) = z_0 z$ This function rotates z by multiplying it with z_0 . We can see this when representing it in euler notation as follows,

$$z_0 z = r r_0 e^{i(\theta + \theta_0)}.$$

 \Diamond

Example.
$$f(z) = z^2$$

$$z=re^{i\theta}$$

$$z^2 = r^2 e^{2i\theta}$$

So magnitude is squared and angle is doubled

A reflection will reflect z along the x axis.

Example. $f(z) = \bar{z}$ reflects z along the x axis.

An analytic function is a differentiable function in the complex space.

$$f(z) = w$$
.

$$f(x+iy) = u + iv.$$

$$= u(x, y) + iv(x, y).$$

$$u(z) = iv(z).$$

15. Limits

If a function f is defined at all points z in some deleted neighborhood of point z_0 . Then, f(z) has a limit w_0 as z approaches z_0 , or

$$\lim_{z \to z_0} f(z) = w_0.$$

Essentially this means that the point w = f(z) can be made arbitrary close to w_0 if we choose a point z close enough to z_0 but distinct from it (deleted neighborhood).

Definition 2.1 (Limit). The limit of a function f(z) as z goes to z_0 is w_0 if, $\forall \varepsilon > 0, \exists \delta > 0, s.t.$

$$|f(z) - w_0| < \varepsilon$$
 whenever, $0 < |z - z_0| < \delta$.

Remark. Essentially this menas that for every ε -neighborhood, $|f(z)-w_0|<\varepsilon$ there is a deleted-neighborhood, $0<|z-z_0|<\delta$ of z_0 such that every point z in it has an image w in the ε -neighborhood

Remark. All points in the deleted-neighborhood are to be considered but their images need not fill up the ε -neighborhood

Theorem 2.2. When a limit of a function f(z) exists at a point z_0 , it is unique.

Proof. Suppose,

$$\lim_{z \to z_0} f(z) = w_0$$
 and $\lim_{z \to z_0} f(z) = w_1$.

This means that,

$$|f(z) - w_0| < \varepsilon \text{ when } 0 < |z - z_0| < \delta_0.$$

$$|f(z) - w_1| < \varepsilon \text{ when } 0 < |z - z_1| < \delta_1.$$

So,

$$|f(z) - w_0| + |f(z) - w_1| < 2\varepsilon.$$

We know that,

$$w_1 - w_0 = (f(z) - w_0) - (f(z) - w_1) \le |f(z) - w_0| - |f(z) - w_1|$$

So,

 $w_1 - w_0 < 2\varepsilon$, where ε can be chosen arbitrary small.

Hence,

$$w_1 - w_0 = 0$$
, or, $w_1 = w_0$.

Example. Show that, $f(z) = \frac{i\bar{z}}{2}$ in the open disk |z| < 1, then

$$\lim_{z \to 1} f(z) = \frac{i}{2}$$

$$i \mid |i\bar{z} \quad i| \quad |z - \bar{z}|$$

$$\left|f(z) - \frac{i}{2}\right| = \left|\frac{i\overline{z}}{2} - \frac{i}{2}\right| = \frac{|z - 1|}{2}.$$

Hence, for any z and ε .

$$\left|f(z) - \frac{i}{2}\right| < \varepsilon \text{ when } 0 < |z - 1| < 2\varepsilon.$$

Example. $f(z) = \frac{z}{\overline{z}}$ The limit,

$$\lim_{z \to 0} f(z).$$

does not exist.

Assume that it exists, that implies that by letting the point z = (x, y) we can approach the point, (0,0) in any manner and we would get the same limit. Now if we approach the point from the x-axis where z = (x,0) we get,

$$\lim_{x \to 0} f((x,0)) = \frac{x+0i}{x-0i} = 1.$$

But if we approach it from the y- axis where, z = (0, y) we get,

$$\lim_{y \to 0} f((0,y)) = \frac{0+iy}{0-iy} = -1.$$

But we know that the limit should be unique, hence this implies that the limit does not exist. \diamond

19. Derivatives

Theorem 2.3. If a function f(z) is continuous and non-zero at a point z_0 then, there exists a neighborhood where, $f(z) \neq 0$ throughout.

Proof. We know that f(z) is continuous which means that, $\varepsilon > 0, \exists \delta$ such that,

$$|f(z) - f(z_0)| < \varepsilon$$
, when $0 < |z - z_0| < \delta$.

But if we take, $\varepsilon = \frac{f(z_0)}{2}$ then we have,

$$|f(z) - f(z_0)| < \frac{|f(z_0)|}{2}.$$

However, if f(z) = 0 for this neighborhood then we have,

$$|f(z_0)| < \frac{|f(z_0)|}{2}.$$

 \Diamond

which is a contradiction.

Theorem 2.4. f is continuous on R which is closed and bounded, $\exists M > 0$, real $|f(z)| \leq M, \forall z \in R$ equality holds for at least one z.

Definition 2.5 (Derivative). f is differntiable at z_0 when $f'(z_0)$ exists where,

$$f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

Remark. Can also solve,

$$\lim_{z_0 \to 0} \frac{f(z + z_0) - f(z)}{z_0}$$

.

Example. Find derivative of, $f(z) = \frac{1}{z}$

$$\lim_{z_0 \to 0} \left(\frac{1}{z + z_0} - \frac{1}{z}\right) \frac{1}{z_0}$$

$$\lim_{z_0 \to 0} \frac{z - z - z_0}{z(z + z_0)} \frac{1}{z_0}$$

$$\lim_{z_0 \to 0} \frac{-1}{z(z + z_0)}$$

$$= \frac{-1}{z^2}$$

Ç

Example. $f(z) = \bar{z}$

$$\lim_{z_0\to 0}\frac{z\bar{+}z_0-\bar{z}}{z_0}$$

Go from x and y axis.

From x,

$$\lim_{x_0 \to 0} \frac{\bar{z} + x_0 - \bar{z}}{x_0} = 1.$$

Similarly if we go from y we get -1, so the derivative doesn't exist.

 \Diamond

If we have a function f(z) = u(x, y) + iv(x, y) then,

$$z_0 = x_0 + iy_0.$$

$$\Delta z = \Delta x + i \Delta y.$$

We have to show the following exist,

$$\lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z}.$$

$$=\frac{u(x_0 + \Delta x, y_0 + \Delta y) + iv(x_0 + \Delta x, y_0 + \Delta y) - (u(x_0, y_0) + iv(x_0, y_0))}{\Delta x + i\Delta y}$$

Horizontally, $\Delta y = 0$.

So,

$$\frac{u(x_0 + \Delta x, y_0) - u(x_0, y_0)}{\Delta x} + \frac{i(v(x_0 + \Delta x, y_0) - v(x_0, y_0))}{\Delta x}.$$

$$= u_x + iv_x.$$

Similary, if we go vertically, $\Delta x = 0$ and we get,

$$= v_y - iu_y.$$

Theorem 2.6. If, f(z) = u + iv, f'(z) exists at, $z_0 = x_0 + iy_0$. Then, u_x, u_y, v_x, v_y exists at (x_0, y_0) and must satisfy the Cauchy-Reimann equation.

$$f'(z_0) = u_x + iv_x$$
 at (x_0, y_0) .

Theorem 2.7. f(z) = u(x,y) + iv(x,y) defined throughout the ε -neighborhood of $z_0 = x_0 + iy_0$,

- (a) u_x, u_y, v_x, v_y exists everywhere in the neighborhood
- (b) u_x, u_y, v_x, v_y continuous at (x_0, y_0) and satisfy the Cauchy-Remainn equations

$$u_x = v_y, u_y = -v_x \text{ at } (x_0, y_0)$$

Then $f'(z_0)$ exists and,

$$f'(z_0) = u_x + iv_x$$
 at (x_0, y_0) .

Proof. We need to show,

$$\lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z}.$$

$$= \lim_{\Delta z \to 0} \frac{u(x_0 + \Delta x, y_0 + \Delta y) + iv(x_0 + \Delta x, y_0 + \Delta y) - (u(x_0, y_0) + iv(x_0, y_0))}{\Delta z}$$

Using taylor expansion we know,

$$f(x + \Delta x) = f(x) + \Delta x f'(x) + \frac{(\Delta x)^2}{2} f''(x).$$

$$u(x_0 + \Delta x, y_0 + \Delta y) - u(x_0, y_0) =$$

$$=u(x_0,y_0)+\Delta x u_x(x_0,y_0)+\frac{(\Delta x)^2}{2}u_{xx}(x_0,y_0)+\Delta y u_y(x_0,y_0)+\frac{(\Delta y)^2}{2}u_{yy}(x_0,y_0).$$

We can write the limit as,

$$\frac{u_x(x_0, y_0)\Delta x + u_y(x_0, y_0)\Delta y + \varepsilon_1(\Delta x^2) + \varepsilon_2(\Delta y^2)}{\Delta z} +$$

$$i\frac{v_x(x_0,y_0)\Delta x + v_y(x_0,y_0)\Delta y + \varepsilon_3(\Delta x) + \varepsilon_4(\Delta y)}{\Delta z}.$$
 We know $u_x(x_0,y_0) = v_y(x_0,y_0)$ and $u_y(x_0,y_0) = -v_x(x_0,y_0)$, so,
$$\frac{u_x(x_0,y_0)\Delta x + -v_x(x_0,y_0)\Delta y + \varepsilon_1(\Delta x^2) + \varepsilon_2(\Delta y^2)}{\Delta z} + i\frac{v_x(x_0,y_0)\Delta x + u_x(x_0,y_0)\Delta y + \varepsilon_3(\Delta x) + \varepsilon_4(\Delta y)}{\Delta z}.$$

$$= \frac{u_x(x_0,y_0)(\Delta x + i\Delta y) + u_y(x_0,y_0)(\Delta y - i\Delta x) + \varepsilon_4}{\Delta z}.$$
 and $\Delta z = \Delta x + i\Delta y$
$$= \frac{u_x(x_0,y_0)(\Delta x + i\Delta y) + u_y(x_0,y_0)(\Delta y - i\Delta x) + \varepsilon_4}{\Delta x + i\Delta y}.$$

Definition 2.8 (Analytic function). A function f is analytic in an open set S, if f has derivative everywhere in S. It is analytic at a point z_0 if it is analytic in some neighborhood of z_0

Remark. Analytic functino has to be on an open set.

Remark. For it to be analytic at z_0 derivative should exist in the neighborhood of z_0 (not just the point z_0)

Example.
$$f(z)=(|z|)^2=\sqrt{x^2+y^2}^2$$

$$u=x^2+y^2, v=0$$

$$u_x=2x, u_y=2y.$$

$$v_x=0, v_y=0.$$

So the Cauchy-Reimann equation is only satisfied at (0,0) f'(0) = 0 and it exists.

Remark. $f(z) = |z|^2$ is not analytic anywhere. So even if the derivative exists at z = 0. The function is not analytic at z = 0 (or at any point)

Because, (1). f'(z) exists at z=0

- (2). u_x, u_y, v_x, v_y exists $\not\Rightarrow f'(z)$
- (3). f(z) is continuous $\not\Rightarrow f'(z)$

Essentially it only exists for z = 0 and not in the neighborhood around it.

Definition 2.9 (Entire function). A function f is analytic at each point in the entire plane.

Definition 2.10 (Singular point). z_0 is a singular point if f fails to be analytic at z_0 but is analytic at some point in every neighborhood at z_0

Example. $f(z) = 2 + 3z^2 + z^3$

Is analytic everywhere so it is an entire function

Example. $f(z) = \frac{1}{z}$ Is analytic at all non-zero, but z=0 is a sigular point

Example. $f(z) = |z|^2 = x^2 + y^2$

Is not analytic, no singular points either.

Harmonic Function

Definition 2.11 (Harmonic function). A real valued functino of H(x,y) is said to be harmonic if in a given domain of the x,y plane, it has a continuous partial derivative of the first and second order $(H_x, H_y, H_{xx}, H_{yy}, H_{xy})$ and satisfies,

 $H_{xx}(x,y) + H_{yy}(x,y) = 0$ Laplace equation.

Theorem 2.12. If f = u(x, y) + i(x, y) is analytic in a domain D, then u, vare harmonic in D

 \Diamond

Elementary Functions

Exponential Function

The exponential function is e^z . But we can write this as

$$e^z = e^{x+iy} = e^x e^{iy} = e^x (\cos(y) + i\sin(y))$$

We can also write,

$$e^z = \rho e^{i\phi}$$
 where $\rho = |e^x|$ and $\phi = y$

For a function, $e^{z_1}e^{z_2}$ we can write,

$$e^{z_1}e^{z_2} = e^{x_1+iy_1}e^{x_2+iy_2}$$
$$= e^{x_1+x_2}e^{i(y_1+y_2)}.$$
$$= e^{z_1+z_2}.$$

The derivative if e^z is an entire function

$$\frac{d}{dx}e^z = e^z$$
 which is an entire function.

$$e^{z+2} = e^z + e^2 = e^z$$

Log Function

The log function is f(z) = log(z) = w = u + iv. We know

$$e^w = z = e^{u+iv} = e^u e^{iv}.$$

We see that $r = e^u$ and $\theta = v + 2n\pi$

$$r = e^u \Rightarrow ln(r) = u$$

Similarly,

$$\theta = v + 2n\pi.$$

So we have,

$$f(z) = \log(z) = \ln|z| + i\arg(z).$$

and the principal direction is,

$$f(z) = \log(z) = \ln|z| + i\theta, \quad -\pi < \theta < \pi.$$

Some properties are, (1).
$$e^{\log z} = z$$
, $(z \neq 0)$
(2). $|e^z| = e^x$

$$(2).|e^z| = e^z$$

(3).
$$\log(e^z) = \ln|e^z| + i \arg(e^z)$$

=
$$\ln |e^x| + i(y + 2n\pi), n = 0, \pm 1, \pm 2.$$

= $\ln e^x + iy + i2n\pi.$
= $z + 2n\pi.$

Branches

The principal branch is

$$\log z = \ln r + i\theta$$
 where $r > 0, -\pi < \theta < \pi$.

A branch cut is a portion of a line or curve that is introduced in order to deifne a branch F of a multiple-valued function f.

Points on the branch cut for F are singular points of F and any point that is common to all branches of f are called branch points.

Example.

$$\frac{d}{dz}\log z = \frac{1}{z}$$
, where $|z| > 0$

The branches can be $\alpha < \arg z < \alpha + 2\pi$

 \Diamond