HNCO

Influence of the learning rate on the performances of PBIL

October 17, 2016

Abstract

PBIL is applied many times to the same collection of fitness functions, each time with a different learning rate taken from a finite set of values. All learning rates are ranked according to their median fitness over 20 independent runs, first for each fitness function, then across the entire collection of fitness functions. The mean and standard deviation of fitness are also plotted as a function of the learning rate.

Contents

1	Default parameters	2
2	Plan	2
3	Rankings	5
4	Function one-max	5
5	Function lin	6
6	Function leading-ones	8
7	Function ridge	9
8	Function jmp-5	10
9	Function jmp-10	12
10	Function djmp-5	13
11	Function djmp-10	14
12	Function fp-5	16
13	Function fp-10	17
14	Function quad	18
15	Function nk	20
16	Function max-sat	21
17	Function labs	22
18	Function ep	24
19	Function cancel	25
20	Function trap	26
21	Function hiff	28
22	Function plateau	29

1 Default parameters

```
# algorithm = 100
# bm_mc_reset_strategy = 1
# bm_num_gs_cycles = 1
# bm_num_gs_steps = 100
# bm_sampling = 1
# budget = 10000
# bv_size = 100
\# ea_lambda = 100
\# ea_mu = 10
# exhaustive_neighborhood = 0
# fun_num_traps = 10
# fun_threshold = 10
# function = 0
# ga_crossover_probability = 0.5
# ga_tournament_size = 10
# hea_binary_dynamics = 0
\# hea_delay = 10000
# hea_num_par_updates = 1
# hea_num_seq_updates = 100
# hea_rate_strategy = 0
# hea_reset_period = 0
# hea_sampling_method = 0
# hea_time_constant = 1000
# hea_weight = 1
# learning_rate = 0.001
# map = 0
# map_input_size = 100
# map_path = nopath
# neighborhood = 0
# noise_stddev = 1
# num_iterations = 0
# path = nopath
# patience = 50
# plugin_function_name = nofunction
# population_size = 10
# radius = 2
# sa_initial_acceptance_probability = 0.6
# sa_num_transitions = 50
# sa_num_trials = 100
# sa_rate = 1.2
# scaled_mutation_probability = 1
\# seed = 0
# selection_size = 1
# print_default_parameters
# last_parameter
# exec_name = hnco
\# version = 1.13
# Generated from hnco.json
2
    Plan
{
    "exec": "hnco",
    "opt": "--no-header -s 100 --map 1 --map-random -i 0 -b 200000 --print-performances",
    "num_runs": 20,
    "results": "results",
    "graphics": "graphics",
    "report": "report",
    "parameter": {
        "id": "learning-rate",
        "values": [ 1e-4, 2e-4, 5e-4, 1e-3, 2e-3, 5e-3, 1e-2, 2e-2, 5e-2, 1e-1, 2e-1, 5e-1, 1 ],
```

```
"logscale": true,
    "boxwidth": "($1*0.3)"
},
"functions": [
    {
        "id": "one-max",
        "opt": "-F 0 --stop-on-maximum",
        "col": ">{{\\nprounddigits{0}}}N{3}{0}"
    },
        "id": "lin",
        "opt": "-F 1 -p instances/lin.100",
        "col": ">{{\\nprounddigits{2}}}}N{2}{2}"
    },
        "id": "leading-ones",
        "opt": "-F 10 --stop-on-maximum",
        "col": ">{{\\nprounddigits{0}}}N{3}{0}"
    },
        "id": "ridge",
        "opt": "-F 11 --stop-on-maximum",
        "col": ">{{\\nprounddigits{0}}}N{3}{0}"
    },
        "id": "jmp-5",
        "opt": "-F 30 --stop-on-maximum -t 5",
        "col": ">{{\\nprounddigits{0}}}N{3}{0}"
    },
        "id": "jmp-10",
        "opt": "-F 30 --stop-on-maximum -t 10",
        "col": ">{{\\nprounddigits{0}}}N{3}{0}"
    },
        "id": "djmp-5",
        "opt": "-F 31 --stop-on-maximum -t 5",
        "col": ">{{\\nprounddigits{0}}}N{3}{0}"
    },
        "id": "djmp-10",
        "opt": "-F 31 --stop-on-maximum -t 10",
        "col": ">{{\\nprounddigits{0}}}N{3}{0}"
    },
        "id": "fp-5",
        "opt": "-F 40 --stop-on-maximum -t 5",
        "col": ">{{\\nprounddigits{0}}}N{3}{0}"
    },
        "id": "fp-10",
        "opt": "-F 40 --stop-on-maximum -t 10",
        "col": ">{{\\nprounddigits{0}}}N{3}{0}"
    },
        "id": "quad",
        "opt": "-F 50 -p instances/quad.100 --cache",
        "col": ">{{\\nprounddigits{2}}}N{3}{2}"
    },
        "id": "nk",
        "opt": "-F 60 -p instances/nk.100.4",
        "col": ">{{\\nprounddigits{2}}}N{1}{2}"
```

```
},
    {
        "id": "max-sat",
        "opt": "-F 70 -p instances/ms.100.3.1000 --cache",
        "col": ">{{\\nprounddigits{0}}}}N{3}{0}"
    },
        "id": "labs",
        "opt": "-F 80",
        "col": ">{{\\nprounddigits{2}}}N{1}{2}"
    },
        "id": "ep",
        "opt": "-F 90 -p instances/ep.100",
        "reverse": true,
        "logscale": true,
        "col": ">{{\\nprounddigits{2}}}N{1}{2}"
   },
        "id": "cancel",
        "opt": "-F 100 -s 99",
        "reverse": true,
        "col": ">{{\\nprounddigits{2}}}N{1}{2}"
    },
        "id": "trap",
        "opt": "-F 110 --stop-on-maximum --fun-num-traps 10",
        "col": ">{{\\nprounddigits{0}}}N{3}{0}"
   },
        "id": "hiff",
        "opt": "-F 120 --stop-on-maximum -s 128",
        "col": ">{{\\nprounddigits{0}}}N{3}{0}"
    },
        "id": "plateau",
        "opt": "-F 130 --stop-on-maximum",
        "col": ">{{\\nprounddigits{0}}}N{3}{0}"
    }
"algorithms": [
    {
        "id": "pbil",
        "opt": "-A 500 -x 10 -y 1"
    }
```

],

]

}

3 Rankings

algorithm	ran	k di	strik	outio	on								
	1	2	3	4	5	6	7	8	9	10	11	12	13
pbil-1	12	0	0	0	2	1	0	2	0	2	0	0	0
pbil-0.002	8	4	2	0	0	0	0	2	3	0	0	0	0
pbil-0.005	8	3	3	2	0	1	1	1	0	0	0	0	0
pbil-0.01	8	1	3	2	2	1	0	1	1	0	0	0	0
pbil-0.02	8	1	0	2	4	3	1	0	0	0	0	0	0
pbil-0.05	8	1	0	0	2	2	1	1	1	2	0	0	1
pbil-0.001	7	2	0	1	1	2	0	0	0	5	0	0	1
pbil-0.0005	5	1	2	0	0	0	0	1	0	1	8	1	0
pbil-0.1	5	1	0	1	0	2	3	3	2	0	1	1	0
pbil-0.2	4	2	0	2	0	2	1	3	2	1	1	1	0
pbil-0.5	4	2	0	1	1	3	2	2	1	2	0	1	0
pbil-0.0001	0	0	0	1	0	0	0	0	0	2	0	1	15
pbil-0.0002	0	0	0	0	0	1	0	1	2	0	1	13	1

4 Function one-max

algorithm	min	Q_1	med .	Q_3	max	rk
pbil-0.0001	81	82	83	84	86	13
pbil-0.0002	91	92	93	93	95	12
pbil-0.0005	100	100	100	100	100	1
pbil-0.001	100	100	100	100	100	1
pbil-0.002	100	100	100	100	100	1
pbil-0.005	100	100	100	100	100	1
pbil-0.01	100	100	100	100	100	1
pbil-0.02	100	100	100	100	100	1
pbil-0.05	100	100	100	100	100	1
pbil-0.1	100	100	100	100	100	1
pbil-0.2	100	100	100	100	100	1
pbil-0.5	100	100	100	100	100	1
pbil-1	100	100	100	100	100	1

5 Function lin

algorithm	min	Q_1	med .	Q_3	max	rk
pbil-0.0001	44.60	45.18	45.56	45.96	47.17	13
pbil-0.0002	49.56	49.95	50.27	50.42	51.50	12
pbil-0.0005	53.15	53.15	53.15	53.15	53.15	1
pbil-0.001	53.15	53.15	53.15	53.15	53.15	1
pbil-0.002	53.15	53.15	53.15	53.15	53.15	1
pbil-0.005	53.15	53.15	53.15	53.15	53.15	1
pbil-0.01	53.15	53.15	53.15	53.15	53.15	1
pbil-0.02	53.15	53.15	53.15	53.15	53.15	1
pbil-0.05	53.15	53.15	53.15	53.15	53.15	1
pbil-0.1	53.15	53.15	53.15	53.15	53.15	1
pbil-0.2	53.15	53.15	53.15	53.15	53.15	1
pbil-0.5	53.15	53.15	53.15	53.15	53.15	1
pbil-1	53.15	53.15	53.15	53.15	53.15	1

6 Function leading-ones

algorithm	min	Q_1	med .	Q_3	max	rk
pbil-0.0001	20	21	22	22	27	13
pbil-0.0002	26	27	28	28	30	12
pbil-0.0005	43	45	46	47	49	11
pbil-0.001	66	70	71	72	74	10
pbil-0.002	100	100	100	100	100	1
pbil-0.005	100	100	100	100	100	1
pbil-0.01	100	100	100	100	100	1
pbil-0.02	100	100	100	100	100	1
pbil-0.05	100	100	100	100	100	1
pbil-0.1	100	100	100	100	100	1
pbil-0.2	100	100	100	100	100	1
pbil-0.5	100	100	100	100	100	1
pbil-1	100	100	100	100	100	1

leading-ones: Mean fitness as a function of learning-rate

leading-ones: Standard deviation of fitness as a function of learning-rate

7 Function ridge

algorithm	min	Q_1	med .	Q_3	max	rk
pbil-0.0001	81	82	83	84	86	13
pbil-0.0002	91	92	93	93	95	12
pbil-0.0005	102	102	102	102	103	11
pbil-0.001	105	106	106	106	107	10
pbil-0.002	112	113	113	114	114	9
pbil-0.005	134	136	136	136	138	7
pbil-0.01	170	171	172	173	175	5
pbil-0.02	200	200	200	200	200	1
pbil-0.05	200	200	200	200	200	1
pbil-0.1	200	200	200	200	200	1
pbil-0.2	179	190	200	200	200	4
pbil-0.5	143	156	166	170	179	6
pbil-1	119	122	125	129	136	8

8 Function jmp-5

algorithm	min	Q_1	med .	Q_3	max	rk
pbil-0.0001	81	82	82	83	84	13
pbil-0.0002	92	92	92	93	95	12
pbil-0.0005	100	100	100	100	100	1
pbil-0.001	100	100	100	100	100	1
pbil-0.002	100	100	100	100	100	1
pbil-0.005	100	100	100	100	100	1
pbil-0.01	100	100	100	100	100	1
pbil-0.02	100	100	100	100	100	1
pbil-0.05	100	100	100	100	100	1
pbil-0.1	95	99	100	100	100	8
pbil-0.2	95	95	95	95	100	9
pbil-0.5	95	95	95	95	95	10
pbil-1	95	95	95	95	95	10

jmp-5: Mean fitness as a function of learning-rate

jmp-5: Standard deviation of fitness as a function of learning-rate

9 Function jmp-10

algorithm	min	Q_1	med .	Q_3	max	rk
pbil-0.0001	81	82	82	83	86	13
pbil-0.0002	90	90	90	90	90	6
pbil-0.0005	90	90	100	100	100	3
pbil-0.001	90	100	100	100	100	1
pbil-0.002	90	100	100	100	100	1
pbil-0.005	90	90	90	100	100	4
pbil-0.01	90	90	90	100	100	4
pbil-0.02	90	90	90	90	90	6
pbil-0.05	90	90	90	90	90	6
pbil-0.1	90	90	90	90	90	6
pbil-0.2	90	90	90	90	90	6
pbil-0.5	90	90	90	90	90	6
pbil-1	90	90	90	90	90	6

jmp-10: Mean fitness as a function of learning-rate

jmp-10: Standard deviation of fitness as a function of learning-rate

10 Function djmp-5

algorithm	\min	Q_1	med .	Q_3	max	rk
pbil-0.0001	86	87	88	89	91	13
pbil-0.0002	96	97	97	98	100	12
pbil-0.0005	105	105	105	105	105	1
pbil-0.001	105	105	105	105	105	1
pbil-0.002	105	105	105	105	105	1
pbil-0.005	105	105	105	105	105	1
pbil-0.01	105	105	105	105	105	1
pbil-0.02	105	105	105	105	105	1
pbil-0.05	105	105	105	105	105	1
pbil-0.1	100	100	105	105	105	8
pbil-0.2	100	100	100	100	105	9
pbil-0.5	100	100	100	100	100	10
pbil-1	100	100	100	100	100	10

djmp-5: Mean fitness as a function of learning-rate

djmp-5: Standard deviation of fitness as a function of learning-rate

11 Function djmp-10

algorithm	min	Q_1	med .	Q_3	max	rk
pbil-0.0001	91	93	93	94	95	13
pbil-0.0002	100	100	100	100	100	8
pbil-0.0005	100	100	110	110	110	3
pbil-0.001	100	110	110	110	110	1
pbil-0.002	100	108	110	110	110	2
pbil-0.005	100	100	100	110	110	4
pbil-0.01	100	100	100	100	110	5
pbil-0.02	100	100	100	100	110	5
pbil-0.05	100	100	100	100	110	5
pbil-0.1	100	100	100	100	100	8
pbil-0.2	100	100	100	100	100	8
pbil-0.5	100	100	100	100	100	8
pbil-1	100	100	100	100	100	8

djmp-10: Mean fitness as a function of learning-rate

djmp-10: Standard deviation of fitness as a function of learning-rate

12 Function fp-5

algorithm	min	Q_1	med .	Q_3	max	\overline{rk}
pbil-0.0001	116	118	119	120	124	13
pbil-0.0002	122	123	124	126	130	12
pbil-0.0005	134	137	139	140	142	11
pbil-0.001	156	162	164	166	169	10
pbil-0.002	185	193	194	194	194	8
pbil-0.005	194	194	194	194	194	1
pbil-0.01	194	194	194	194	194	1
pbil-0.02	194	194	194	194	194	1
pbil-0.05	194	194	194	194	194	1
pbil-0.1	100	194	194	194	194	6
pbil-0.2	100	194	194	194	194	6
pbil-0.5	100	171	194	194	194	9
pbil-1	194	194	194	194	194	1

fp-5: Mean fitness as a function of learning-rate

fp-5: Standard deviation of fitness as a function of learning-rate

13 Function fp-10

algorithm	\min	Q_1	med .	Q_3	max	rk
pbil-0.0001	112	113	115	116	119	10
pbil-0.0002	118	120	121	121	125	9
pbil-0.0005	135	137	138	139	141	8
pbil-0.001	160	161	162	163	164	6
pbil-0.002	185	189	189	189	189	3
pbil-0.005	189	189	189	189	189	1
pbil-0.01	189	189	189	189	189	1
pbil-0.02	135	189	189	189	189	4
pbil-0.05	100	100	153	189	189	7
pbil-0.1	100	100	100	189	189	11
pbil-0.2	100	100	100	100	189	12
pbil-0.5	100	100	100	100	189	12
pbil-1	100	100	189	189	189	5

fp-10: Mean fitness as a function of learning-rate

fp-10: Standard deviation of fitness as a function of learning-rate

14 Function quad

algorithm	min	Q_1	med .	Q_3	max	rk
pbil-0.0001	291.88	304.90	310.28	329.77	368.73	13
pbil-0.0002	301.85	311.09	329.86	355.17	417.47	12
pbil-0.0005	448.69	462.13	479.51	492.37	554.00	11
pbil-0.001	592.01	638.04	648.51	657.42	681.01	6
pbil-0.002	607.82	626.01	661.15	672.85	687.95	2
pbil-0.005	610.02	637.59	657.46	670.67	689.91	3
pbil-0.01	579.33	619.02	640.10	653.15	689.91	9
pbil-0.02	597.07	639.26	648.63	667.65	698.66	5
pbil-0.05	570.71	609.95	636.72	642.91	679.64	10
pbil-0.1	602.94	628.83	646.90	657.67	666.83	7
pbil-0.2	612.73	630.55	641.61	668.93	689.12	8
pbil-0.5	582.86	641.16	653.99	671.84	701.81	4
pbil-1	647.75	672.07	681.88	687.14	701.81	1

quad: Standard deviation of fitness as a function of learning-rate

15 Function nk

algorithm	min	Q_1	med .	Q_3	max	rk
pbil-0.0001	0.45	0.48	0.49	0.50	0.60	13
pbil-0.0002	0.49	0.51	0.53	0.55	0.58	12
pbil-0.0005	0.74	0.76	0.76	0.77	0.83	11
pbil-0.001	0.90	0.91	0.91	0.92	0.93	5
pbil-0.002	0.89	0.91	0.92	0.93	0.94	3
pbil-0.005	0.87	0.90	0.92	0.93	0.96	2
pbil-0.01	0.89	0.91	0.92	0.92	0.95	4
pbil-0.02	0.86	0.90	0.91	0.93	0.95	6
pbil-0.05	0.78	0.84	0.87	0.92	0.96	9
pbil-0.1	0.81	0.86	0.89	0.90	0.95	7
pbil-0.2	0.81	0.84	0.86	0.88	0.91	10
pbil-0.5	0.82	0.85	0.89	0.92	0.95	8
pbil-1	0.84	0.89	0.92	0.95	0.99	1

nk: Mean fitness as a function of learning-rate

nk: Standard deviation of fitness as a function of learning-rate

0.05

0.04

0.02

0.01

10-4

10-3

10-2

10-1

100

learning-rate

16 Function max-sat

algorithm	min	Q_1	med .	Q_3	max	rk
pbil-0.0001	921	923	924	926	927	13
pbil-0.0002	929	931	931	932	936	12
pbil-0.0005	952	953	953	954	955	11
pbil-0.001	957	958	959	959	959	10
pbil-0.002	957	959	959	959	964	9
pbil-0.005	958	959	959	961	964	8
pbil-0.01	957	960	960	963	964	3
pbil-0.02	956	959	960	961	964	6
pbil-0.05	958	959	960	961	964	5
pbil-0.1	956	959	960	962	964	4
pbil-0.2	954	961	961	964	965	2
pbil-0.5	950	959	960	962	965	7
pbil-1	961	962	963	965	965	1

17 Function labs

algorithm	min	Q_1	med .	Q_3	max	rk
pbil-0.0001	2.30	2.34	2.41	2.44	2.56	10
pbil-0.0002	2.24	2.34	2.40	2.45	2.61	11
pbil-0.0005	2.25	2.33	2.38	2.44	2.66	12
pbil-0.001	2.27	2.33	2.38	2.46	2.69	13
pbil-0.002	2.32	2.38	2.41	2.48	2.71	9
pbil-0.005	3.46	3.72	3.95	4.08	4.39	3
pbil-0.01	3.40	3.73	3.83	3.99	4.44	8
pbil-0.02	3.65	3.83	3.92	4.21	5.40	5
pbil-0.05	3.13	3.62	3.86	4.06	4.50	6
pbil-0.1	3.45	3.66	3.83	4.06	4.49	7
pbil-0.2	3.37	3.77	3.92	4.28	4.67	4
pbil-0.5	3.74	4.07	4.22	4.39	4.95	2
pbil-1	4.44	4.65	4.78	4.93	5.24	1

labs: Standard deviation of fitness as a function of learning-rate

18 Function ep

algorithm	min	Q_1	med.	Q_3	max	rk
pbil-0.0001	7.50×10^{-29}	1.12×10^{-27}	3.73×10^{-27}	7.86×10^{-27}	2.72×10^{-26}	4
pbil-0.0002	2.39×10^{-28}	2.92×10^{-27}	7.12×10^{-27}	1.76×10^{-26}	2.61×10^{-26}	9
pbil-0.0005	5.84×10^{-28}	3.93×10^{-27}	8.38×10^{-27}	1.55×10^{-26}	4.58×10^{-26}	10
pbil-0.001	4.00×10^{-28}	1.19×10^{-27}	2.96×10^{-27}	9.54×10^{-27}	4.65×10^{-26}	2
pbil-0.002	2.93×10^{-28}	3.09×10^{-27}	5.93×10^{-27}	1.14×10^{-26}	2.64×10^{-26}	8
pbil-0.005	7.98×10^{-29}	1.83×10^{-27}	4.80×10^{-27}	6.40×10^{-27}	1.86×10^{-26}	6
pbil-0.01	1.19×10^{-28}	1.21×10^{-27}	3.01×10^{-27}	4.85×10^{-27}	1.51×10^{-26}	3
pbil-0.02	5.94×10^{-28}	4.51×10^{-27}	5.78×10^{-27}	1.09×10^{-26}	2.91×10^{-26}	7
pbil-0.05	1.37×10^{-28}	4.93×10^{-27}	2.03×10^{-26}	2.81×10^{-26}	7.07×10^{-26}	13
pbil-0.1	2.38×10^{-27}	1.53×10^{-26}	1.83×10^{-26}	3.14×10^{-26}	8.09×10^{-26}	12
pbil-0.2	1.16×10^{-27}	3.77×10^{-27}	1.03×10^{-26}	3.65×10^{-26}	5.18×10^{-26}	11
pbil-0.5	2.95×10^{-28}	1.61×10^{-27}	4.21×10^{-27}	7.15×10^{-27}	2.49×10^{-26}	5
pbil-1	2.75×10^{-28}	6.83×10^{-28}	2.13×10^{-27}	4.03×10^{-27}	1.60×10^{-26}	1

ep: Mean fitness as a function of learning-rate

ep: Standard deviation of fitness as a function of learning-rate

19 Function cancel

algorithm	min	Q_1	med .	Q_3	max	rk
pbil-0.0001	2.59	3.74	3.95	4.31	4.62	12
pbil-0.0002	3.21	3.96	4.14	4.34	4.55	13
pbil-0.0005	3.14	3.57	3.75	3.98	4.15	11
pbil-0.001	0.89	1.61	2.05	2.23	2.74	10
pbil-0.002	0.05	0.06	0.07	0.09	0.14	1
pbil-0.005	0.05	0.06	0.07	0.15	0.72	2
pbil-0.01	0.06	0.12	0.15	0.24	0.76	3
pbil-0.02	0.09	0.27	0.47	0.77	1.36	4
pbil-0.05	0.09	0.48	1.07	2.08	2.56	8
pbil-0.1	0.34	0.88	1.65	1.90	2.25	9
pbil-0.2	0.12	0.60	0.88	1.43	2.90	7
pbil-0.5	0.10	0.36	0.73	1.49	2.61	6
pbil-1	0.06	0.11	0.67	1.40	2.64	5

cancel: Mean fitness as a function of learning-rate

20 Function trap

algorithm	min	Q_1	med .	Q_3	max	rk
pbil-0.0001	71	72	73	73	75	13
pbil-0.0002	81	82	83	83	85	12
pbil-0.0005	90	90	90	90	90	2
pbil-0.001	90	90	90	90	90	2
pbil-0.002	90	90	90	90	90	2
pbil-0.005	90	90	90	90	90	2
pbil-0.01	90	90	90	90	90	2
pbil-0.02	90	90	90	90	90	2
pbil-0.05	90	90	90	90	90	2
pbil-0.1	90	90	90	90	90	2
pbil-0.2	90	90	90	90	90	2
pbil-0.5	90	90	90	90	90	2
pbil-1	90	90	90	90	91	1

trap: Standard deviation of fitness as a function of learning-rate

21 Function hiff

algorithm	min	Q_1	med .	Q_3	max	rk
pbil-0.0001	288	296	300	305	312	13
pbil-0.0002	292	296	301	305	316	12
pbil-0.0005	300	315	323	331	338	11
pbil-0.001	512	527	540	564	632	4
pbil-0.002	496	538	544	560	610	2
pbil-0.005	508	530	544	568	632	3
pbil-0.01	472	515	530	560	584	6
pbil-0.02	464	514	532	556	596	5
pbil-0.05	448	476	493	517	568	10
pbil-0.1	444	471	496	505	584	9
pbil-0.2	458	485	496	517	608	8
pbil-0.5	456	488	508	528	656	7
pbil-1	572	610	638	660	736	1

hiff: Mean fitness as a function of learning-rate

hiff: Standard deviation of fitness as a function of learning-rate

22 Function plateau

algorithm	min	Q_1	med .	Q_3	max	rk
pbil-0.0001	81	82	83	84	86	13
pbil-0.0002	92	92	92	93	94	12
pbil-0.0005	101	101	101	101	101	1
pbil-0.001	101	101	101	101	101	1
pbil-0.002	101	101	101	101	101	1
pbil-0.005	101	101	101	101	101	1
pbil-0.01	101	101	101	101	101	1
pbil-0.02	101	101	101	101	101	1
pbil-0.05	101	101	101	101	101	1
pbil-0.1	101	101	101	101	101	1
pbil-0.2	101	101	101	101	101	1
pbil-0.5	101	101	101	101	101	1
pbil-1	101	101	101	101	101	1

