

CS2013
Programación III
Unidad 3: Semana 7
Guía para el análisis asintótico.

Rubén Rivas

Finalidad de la sesión

Definir reglas generales que ayudan determinar el tiempo de un algoritmo

Orden de Crecimiento

Bucles

 El tiempo de ejecución de un bucle usualmente dura el tiempo de ejecución de las instrucciones ejecutado por el número de iteraciones.

```
1 for (int i = 0; i < n; ++i) // n iteraciones
2  m = m + 2;  // tiempo constante = C</pre>
3
```

$$Big O = C \times n = Cn = O(n)$$

Bucles anidados

 Se analiza desde la instrucción más interna hasta el bucle más externo y se calcula multiplicado las instrucciones internas por el número de iteraciones de cada bucle.

Big
$$O = C \times n \times n = Cn^2 = O(n^2)$$

Instrucciones consecutivas

• Se adiciona el tiempo de cada instrucción.

$$Big \ O = C_o + C_1 n + C_2 n^2 = O(n^2)$$

If/else

Se elabora la función de tiempo sumando el número de instrucciones de todos sus componentes y se calcula el $Big\ O$.

Big
$$O = C_0 + C_1 + (C_2 + C_3)n = C_4 + C_5n = O(n)$$

Logarítmica

Ocurre cuando a un tiempo constante de cada interacción de un bucle el número de instrucciones se reduce a una fracción de número anterior (usualmente ½).

```
1 for (int i = 1; i < n; i *= 2) // Ejemplo 1
2    cout << i;
3 for (int i = n; i > 1; i /= 2) // Ejemplo 2
4    cout << i;
5 // si n = 8 → las funciones imprimen 3 veces ≈ log(n)
6 // si n = 20 → las funciones imprimen 4 veces ≈ log(n)
7</pre>
```


$$Big \ O = O(log \ n)$$

Exponencial

Ocurre cuando a un input n el numero de instrucciones crece en forma exponencial.

```
1 int fibonacci(int n) {
2    if (n <= 1) return n; // constante C_0 = O(1)
3    return fibonacci(n-1) + fibonacci(n-2); // recursiva
4 }
5 // Complejidad es: T(n) = O(1) + T(n-1) + T(n-2)
6</pre>
```


$$Big O = O(2^n)$$

Factorial

Ocurre cuando para n instrucciones el tiempo crece de forma factorial.

```
1 void fact(int n) {
2    for (int i = 0; i < n; ++i) // n
3    fact(n-1); // b
4 }
5 // Complejidad es: O(n*b) \rightarrow O(n*(n-1)*b') \rightarrow O(n*(n-1)*(n-2)* b")
6</pre>
```


$$Big O = O(n!)$$

Recursividad – función decreciente

```
1 void fun1(int n) {
 2 // condicion basica
 3 if (n == 1) return;
 4 // condicion recursiva
 5 fun1(n + 1);
 7 // T(n) = C + T(n - 1)
 8 // O(n)
10 void fun2(int n) {
11 // condicion basica
12 if (n == 1) return;
13 // condicion iterativa
14 int a = 0:
15 for (int i = 0; i < n; ++i)
16 a += i:
17 // condicion recursiva
18 fun2(n - 1);
19 }
20 // T(n) = C + n + T(n - 1)
21 // O(n^2)
```

```
5 int \alpha = 0:
 6 for (int i = 0; i < n; ++i)
7 for (int j = 0; j < n; ++j)
     a += i + j;
     // condición recursiva
      fun3(n - 1):
11 }
12 // T(n) = C + n^2 + T(n - 1)
13 // O(n^3)
15 void fun4(int n) {
16 // condicion basica
17 if (n == 1) return;
18 // condicion iterativa
19 int \alpha = 0:
     for (int i = 0; i < n; ++i)
21 for (int j = 0; j < n; ++j)
     \alpha += i + j;
     // condicion recursiva
     fun4(n - 1);
      fun4(n - 1);
26 }
27 // T(n) = C + n^2 + 2 T(n - 1)
28 // 0(2<sup>n</sup> * n<sup>2</sup>)
```

1 void fun3(int n) {

2 // condición básica
3 if (n == 1) return;

4 // condición iterativa

Teorema master de función decreciente

Dada un función f que satisfaga el siguiente patrón recursivo:

$$f(n) = \mathbf{a}f(n-\mathbf{b}) + \mathbf{c}n^{\mathbf{d}}$$

$$if \ a < 1 \Rightarrow O(n^d)$$

 $if \ a = 1 \Rightarrow O(n * n^d)$
 $if \ a > 1 \Rightarrow O(a^{n/b} * n^d)$

Recursividad – función dividida

```
1 void fun1(int n) {
 2 // condicion basica
 3 if (n == 1) return;
 4 // condicion recursiva
 5 fun1(n/2):
 6 }
 7 // T(n) = C + T(n/2)
 8 // O(log(n))
 9
10 void fun2(int n) {
11 // condicion basica
12 if (n == 1) return:
13 // condicion iterativa
14 int \alpha = 0;
15 for (int i = 0; i < n; ++i)
    a += i:
17 // condicion recursiva
18 fun2(n/2);
19 }
20 // T(n) = C + n + T(n/2)
21 // O(n)
22
```

```
1 void fun3(int n) {
 2 // condicion basica
 3 if (n == 1) return;
 4 // condicion iterativa
 5 int \alpha = 0:
 6 for (int i = 0; i < n; ++i)
    for (int j = 0; j < n; ++j)
    \alpha += i + j;
 9 // condicion recursiva
10 fun3(n/2);
11 }
12 // T(n) = C + n^2 + T(n/2)
13 // O(n^2)
14
15 void fun4(int n) {
16 // condicion basica
17 if (n == 1) return;
18 // condicion iterativa
19 int \alpha = 0;
20 for (int i = 0; i < n; ++i)
21 \alpha += i + j;
22 // condicion recursiva
23 fun4(n/2);
24 fun4(n/2);
26 // T(n) = C + n + 2 T(n/2)
27 // O(nlog2(n))
```


Teorema master de función división

Dada un función f que satisfaga el siguiente patrón recursivo:

$$f(n) = af(n/b) + cn^d$$

• Siendo $n=b^k$ donde k es un número entero positivo, $a\geq 1$, b es un entero mayor que 1 y c y d son números real, siendo c y d positivo, entonces:

$$f(n) = \begin{cases} O(n^d) \sin a < b^d \\ O(n^d \log n) \sin a = b^d \\ O(n^{\log_b a}) \sin a > b^d \end{cases}$$

Serie Aritmética:

$$\sum_{k=1}^{n} k = 1 + 2 + \dots + n = \frac{n(n-1)}{2}$$

Serie Geométrica:

$$\sum_{k=1}^{n} x^{k} = 1 + x + x^{2} \dots + x^{n} = \frac{x^{n+1} - 1}{x - 1} \ (x \neq 1)$$

Serie Geométrica genérica:

a = valor inicial

r = ratio

 $s = a, ar, ar^2, ar^3, ar^4, ... ar^n, t_n = ar^{n-1}$

$$\sum_{i=1}^{n} ar^{i} = a + ar + ar^{2} \dots + ar^{n} = a \left(\frac{1 - r^{n}}{1 - r} \right) = a \left(\frac{r^{n} - 1}{r - 1} \right)$$

Serie Armónica:

$$\sum_{k=1}^{n} \frac{1}{k} = 1 + \frac{1}{2} + \dots + \frac{1}{n} \approx \log n$$

Otras formulas:

$$\sum_{k=1}^{n} k^{p} = 1^{p} + 2^{p} \dots + n^{p} \approx \frac{1}{p-1} \ (x \neq 1)$$

Otras formulas:

$$\sum_{k=1}^{n} \log k = n \log n$$

¿Cuál es el tiempo de ejecución de fun()?

```
1 int fun(int n) {
2 int count = 0;
3 for (int i = 0; i < n; ++i) {
4 for(int j = 0; j < n; ++j) {
5 count += 1;
   return count;
10
```



```
1 int fun(int n) {
                // constante C_0
2 int count = 0;
3 for (int i = 0; i < n; ++i) { // n iteraciones
  for(int j = 0; j < n; ++j) { // n iteraciones
5 count += 1;
                 // constante C_1
   return count;
                              // constante C 2
9 }
10
```


$$Big \ O = C_0 + C_1 n^2 + C_2 = O(n^2)$$

Cual es el tiempo de ejecución del siguiente algoritmo?

```
1 void recursive(int n) {
2  if (n <= 1) return;
3  cout << "utec ";
4  recursive(n/2);
5  recursive(n/2);
6 }
7</pre>
```


Solución

Solución:

La función se puede expresar como:

$$T(n) + C + 2T(n/2)$$

Sigue el patrón:

$$f(n) = \mathbf{a}f(n/\mathbf{b}) + \mathbf{c}$$

donde $c=\mathcal{C}$, a=2 y b=2 por tanto $O(n^{\log_b a})$ si a>1 seria:

$$\therefore O(n^{\log_2 2}) = O(n)$$

Determinar el big O del algoritmo

```
1 void loop(int n, int k) {
2  for (int i = 0; i < n; ++i) {
3   for (int j = 1; j < n; j = j*k) {
4    cout << "utec ";
5  }
6  }
7  cout << endl;
8 }
9</pre>
```


Solución

```
1 void loop(int n, int k) {
 2 for (int i = 0; i < n; ++i) { // O(n)
 3 for (int j = 1; j < n; j *= k) { // O(logk(n))
 4 cout << "utec ";
 7 cout << endl;</pre>
 8 }
10 // La ecuación es: O(n) * O(\log k(n)) + C
11 // O(n*logk(n))
12
```

