Assignment 3: Part 2

- 1. Consider a relation schema R with attributes ACBDEFGHIJ with functional dependencies S. $S = \{A \rightarrow E, BC \rightarrow AE, C \rightarrow ACF, DE \rightarrow A, EFG \rightarrow AB, I \rightarrow J, J \rightarrow AI\}$
 - (a) State which of the given FDs violate BCNF.

Performing the closure test for each of the FDs yields the following results:

- \bullet $A^+ = AE$
- $BC^+ = ABCEF$
- $C^+ = ACEF$
- $DE^+ = ADE$
- $EFG^+ = ABEFG$
- $\bullet \ I^+ = AIJ$
- $J^+ = AIJ$

Since none of the functional dependencies are trivial, and none of the LHS are superkeys, all of them violate BCNF.

(b) Decompose R into BCNF using a lossless-join decomposition into a set of relations in BCNF using the BCNF algorithm given in class.

Decomposing R based on the FD $A \to E$ yields $A^+ = AE$, which gives the following two relations:

- $R_1 = \{AE\}$
- $R_2 = \{ABCDFGHIJ\}$

Projecting S onto these relations gives $S_1 = \{A \to E\}, S_2 = \{C \to ACF, I \to J, J \to AI\}.$

A is now a superkey for R_1 , so R_1 is now in BCNF. R_2 must be decomposed further, and decomposing it on the functional dependency $J \to AI$ yields $J^+ = AIJ$, which gives the following two relations:

- $R_3 = \{AIJ\}$
- $R_4 = \{BCDFGHJ\}$

Projecting S_2 onto these relations gives $S_3 = \{J \to AI, I \to J\}, S_4 = \{\}.$

By the closure test, $I^+ = J^+ = AIJ$, so I and J are both superkeys for R_3 and R_3 is in BCNF. S_4 is also in BCNF as it has no functional dependencies.

This leaves the following set of relations: $R' = \{\{AE\}, \{AIJ\}, \{BCDFGHJ\}\}.$

(c) State whether your decomposition is dependency preserving. If not, state which FDs are lost.

The decomposition is not dependency preserving as the following FDs are not preserved:

$$\{BC \rightarrow AE, C \rightarrow ACF, DE \rightarrow A, EFG \rightarrow AB\}$$

2. Consider a relation P with attributes ABCDEFGH and functional dependencies T.

$$T = \{A \rightarrow B, BC \rightarrow ACE, C \rightarrow B, EF \rightarrow CG, EFG \rightarrow ABCD, GH \rightarrow ABCD\}$$

(a) Compute all minimal keys for P.

Attribute	Appears on		Conclusion
	LHS	RHS	
D		✓	not in any key
F, H	✓		in every key
A, B, C, E, G	✓	✓	must check

Compute closures for all combinations of A, B, C, E, G. F and H must be in every combination and D must never be in a combination.

- $FHA^+ = ABFH$
- $FHB^+ = BFH$
- $FHC^+ = ABCDEFHG$
- \bullet $FHE^+ = EFH$
- $FHG^+ = ABCDEFHG$

So, the minimal keys are FHC and FHG.

(b) Compute a minimal basis for T. In your final answer, put the FDs into alphabetical order.

Simplify to singleton right-hand, number resulting FDs, let this be set S1:

- $1\ A\to B$
- $2 BC \rightarrow A$
- $3 BC \rightarrow C$
- $4 BC \rightarrow E$
- $5 C \rightarrow B$
- $6~EF \to C$
- $7~EF \to G$
- $8~EFG \rightarrow A$
- 9 $EFG \rightarrow B$
- 10 $EFG \rightarrow C$
- $11~EFG \rightarrow D$
- 12 $GH \rightarrow A$
- 13 $GH \rightarrow B$
- 14 $GH \rightarrow C$
- $15~GH \rightarrow D$

Eliminate redundant FDs from S1.

FD	Exclude	Closure	Decision
1	1	$A^+ = A$	keep
2	2	$BC^+ = BCE$	keep
3	3	$BC^+ = BCAE$	discard
4	3,4	$BC^+ = BCA$	keep
5	3,5	$C^+ = C$	keep
6	3,6	$EF^+ = EFGC\dots$	discard
7	3,6,7	$EF^+ = A$	keep
8	3,6,8	$EFG^+ = EFGBCDA$	discard
9	3,6,8,9	$EFG^+ = EFGCDB\dots$	discard
10	3,6,8,9,10	$EFG^+ = EFGD\dots$	keep
11	3,6,8,9,11	$EFG^+ = EFGCBA\dots$	keep
12	3,6,8,9,12	$GH^+ = GHBCDA\dots$	discard
13	3,6,8,9,12,13	$GH^+ = GHCDBAE$	discard
14	3,6,8,9,12,13,14	$GH^+ = GHD$	keep
15	3,6,8,9,12,13,15	$GH^+ = GHCBAE$	keep

Remaining FDs, let this be set S2:

- $\mathbf{1} \ A \to B$
- $\mathbf{2} \ BC \to A$
- 4 $BC \rightarrow E$
- $\mathbf{5} \ C \to B$
- 7 $EF \rightarrow G$
- 10 $EFG \rightarrow C$
- 11 $EFG \rightarrow D$
- 14 $GH \rightarrow C$
- 15 $GH \rightarrow D$

Reduce LHS of any FDs with multiple attributes in S2.

- $\mathbf{2} \ BC \to A$
 - $C^+ = CBAE$ so we can reduce the LHS to C
- 4 $BC \rightarrow E$
 - $C^+ = CBAE$ so we can reduce the LHS to C
- 7 $EF \rightarrow G$
 - $E^+ = E$ so we can't reduce the LHS to E
 - $F^+ = F$ so we can't reduce the LHS to F
- 10 $EFG \rightarrow C$
 - $EF^+ = EFGCD$ so we can reduce the LHS to EF
- 11 $EFG \rightarrow D$
 - $EF^+ = EFGCD$ so we can reduce the LHS to EF
- 14 $GH \rightarrow C$
 - $G^+ = G$ so we can't reduce the LHS to G
 - $H^+ = H$ so we can't reduce the LHS to H
- 15 $GH \rightarrow D$
 - $G^+ = G$ so we can't reduce the LHS to G
 - $H^+ = H$ so we can't reduce the LHS to H

Remaining FDs after reduction, let this be set S3:

- 1 $A \rightarrow B$
- $\mathbf{2} \ C \to A$
- $\mathbf{3} \ C \to B$
- 4 $C \rightarrow E$
- $\mathbf{5} \ EF \to C$
- 6 $EF \rightarrow D$
- 7 $EF \rightarrow G$
- 8 $GH \rightarrow C$
- 9 $GH \rightarrow D$

Eliminate redundant FDs from S3.

FD	Exclude	Closure	Decision
1	1	$A^+ = A$	keep
2	2	$C^+ = CBE$	keep
3	3	$C^+ = CABE$	discard
4	3,4	$C^+ = CAB$	keep
5	3,5	$EF^+ = EFDG$	keep
6	3,6	$EF^+ = EFCGAB$	keep
7	3,7	$EF^+ = EFCDAB$	keep
8	3,8	$GH^+ = GHD$	keep
9	3,9	$GH^+ = GHCAEB$	keep

The following set S4 of FDs with merged RHSs is a minimal basis:

- $1 A \rightarrow B$
- $2 C \rightarrow AE$
- $3~EF \to CDG$
- $4 \ GH \rightarrow CD$
- (c) Using your minimal basis from the last subquestion, employ the 3NF synthesis algorithm to obtain a lossless and dependency-preserving decomposition of relation R into a collection of relations that are in 3NF.

The set of relations created using S4 is:

$$R1(A, B), R2(C, A, E), R3(E, F, C, D, G), R4(G, H, C, D)$$

(d) Does your schema allow redundancy? Explain why or why not.

No, it does not because every relation in the schema satisfies BCNF.