Ecommerce Sales Analysis Project Report

Prepared By :- Vinay Raykar

INDEX

- 1. Introduction
- 2. Data Description
- 3. Exploratory Analysis & Key Findings
- 4. Methodology
- 5. Dashboard Overview
- 6. Conclusion

1. Introduction

This report presents the analysis of ecommerce sales data focusing on understanding sales trends, customer behavior, and seller performance across different product categories and geographic regions. The goal is to provide actionable insights to drive business decisions.

This project was made by using connection between **Python** and **SQL** for efficient data extraction, manipulation, and analysis.

2. Data Description

The dataset comprises multiple tables including products, orders, payments, sellers, and customer information. Key variables analyzed include sales amounts, order dates, product categories, geographic locations, payment methods, and seller/customer IDs. These data provide a holistic view of ecommerce activities.

3. Exploratory Analysis & Key Findings

Exploratory analysis showed dominant product categories driving most sales, clear seasonal patterns in monthly order volumes, and geographic concentration in a few top states. Payment methods varied, with credit cards and digital payments favored by most customers. Top customers and sellers accounted for a significant portion of revenues.

DATA EXPLORATION

26 RR

138

a. Number of Customers from Each State

Bar chart detailing distribution of customers by state, useful for targeted outreach and expansion strategies.

```
12]: query = """SELECT customer_state, count(customer_unique_id) FROM customers
     GROUP BY customer_state
     0.00
     cur.execute(query)
     data = cur.fetchall()
     customer_count = pd.DataFrame(data, columns = ["State", "Count of customers"])
     print('The state SP has 80k+ count of the customers number.')
     print(customer_count)
     The state SP has 80k+ count of the customers number.
       State Count of customers
        SP
                      125238
     1
         SC
                       10911
     2
                        34905
     3
        PR
                        15135
         RJ
     4
                        38556
     5
         RS
                        16398
     6
         PA
                         2925
     7
        GO
                         6060
        ES
     8
                         6099
     9
        BA
                        10140
    10 MA
                         2241
    11 MS
                         2145
    12 CE
                         4008
    13 DF
                         6420
     14
         RN
                         1455
     15
         PE
                         4956
     16
         MT
                         2721
    17 AM
                          444
     18
        AP
                          204
     19
        AL
                         1239
     20 RO
                          759
         PB
     21
                         1608
        TO
                          840
     22
     23 PI
                         1485
     24 AC
                          243
     25 SE
                         1050
```


b. Monthly Order Volume

Line plot showing trends in monthly order volumes, revealing seasonal sales peaks and troughs.

```
[219]: query = """SELECT MONTH(order_purchase_timestamp) as Monthly,
    COUNT(order_id) as Order_Count
    FROM orders
    GROUP BY Monthly
    ORDER BY Monthly ASC;"""

    cur.execute(query)

    data = cur.fetchall()
    Monthly_vol= pd.DataFrame(data, columns = ["Month", "Order_Count"])
```

Count of sales of orders by months

[221]:		Month	Order_Count
	0	1	16138
	1	2	17016
	2	3	19786
	3	4	18686
	4	5	21146
	5	6	18824
	6	7	20636
	7	8	21686
	8	9	8610
	9	10	9918
	10	11	15088
	11	12	11348

c. Revenue by Seller

Bar chart ranking sellers by total revenue, identifying highest-performing sellers for prioritizing partnerships.

```
[226]: # Using Window function.
    query = """SELECT *, dense_rank() over(ORDER BY Revenue DESC) as rank_seller FROM
    (SELECT DISTINCT orders_items.seller_id,
        round(sum(payments.payment_value),2) Revenue
    FROM orders_items JOIN payments
    ON payments.order_id = orders_items.order_id
    GROUP BY orders_items.seller_id) as Seller_group
    LIMIT 10
    """

    cur.execute(query)

    data = cur.fetchall()

    seller_rank = pd.DataFrame(data, columns = ["Seller_id","Revenue", "Rank"])
```

Seller Id :- 7c67e1448b00f6e969d365cea6b010ab is in the First Rank for generating the maximum revenue

```
[227]: seller_rank
```

227]:		Seller_id	Revenue	Rank
	0	7c67e1448b00f6e969d365cea6b010ab	2028667.63	1
	1	1025f0e2d44d7041d6cf58b6550e0bfa	1232888.16	2
	2	4a3ca9315b744ce9f8e9374361493884	1204981.08	3
	3	1f50f920176fa81dab994f9023523100	1161013.68	4
	4	53243585a1d6dc2643021fd1853d8905	1139612.32	5
	5	da8622b14eb17ae2831f4ac5b9dab84a	1088877.28	б
	6	4869f7a5dfa277a7dca6462dcf3b52b2	1056664.48	7
	7	955fee9216a65b617aa5c0531780ce60	945289.20	8
	8	fa1c13f2614d7b5c4749cbc52fecda94	826052.92	9
	9	7e93a43ef30c4f03f38b393420bc753a	740536.84	10

Total revenue generated by each seller, and rank them by revenue.

d. Top 3 Customers by Year

This chart highlights the top three customers who spent the most money in each year, showing shifts in high-value customer retention and acquisition.

```
[231]: query = """SELECT years, customer_id, payment, d_rank
FROM
  (SELECT year(orders.order_purchase_timestamp) as years,
    orders.customer_id,
    sum(payments.payment_value) as payment,
    dense_rank() over (partition by year(orders.order_purchase_timestamp)
    ORDER BY sum(payments.payment_value) desc) d_rank
FROM orders JOIN payments
    ON payments.order_id = orders.order_id
    GROUP BY years,
    orders.customer_id) as a
    WHERE d_rank <= 3"""

cur.execute(query)

data = cur.fetchall()
    top_3 = pd.DataFrame(data, columns = ["Years", "Customer ID", "Payment", "Rank"])</pre>
```

The top 3 customers who spent the most money in each year.

2]:	to	p_3			
32]:		Years	Customer ID	Payment	Rank
	0	2016	a9dc96b027d1252bbac0a9b72d837fc6	5694.200195	1
	1	2016	1d34ed25963d5aae4cf3d7f3a4cda173	5602.959961	2
	2	2016	4a06381959b6670756de02e07b83815f	4911.120117	3
	3	2017	1617b1357756262bfa56ab541c47bc16	54656.320312	1
	4	2017	c6e2731c5b391845f6800c97401a43a9	27717.240234	2
	5	2017	3fd6777bbce08a352fddd04e4a7cc8f6	26906.640625	3
	6	2018	ec5b2ba62e574342386871631fafd3fc	29099.519531	1
	7	2018	f48d464a0baaea338cb25f816991ab1f	27688.839844	2
	8	2018	e0a2412720e9ea4f26c1ac985f6a7358	19237.759766	3

Top 3 customers who spent the most money in each year.

4. Methodology

Data cleaning included missing value imputation and duplicate removal. Analysis involved SQL queries for aggregation and Python (Pandas, Matplotlib, Seaborn) for visualization and deeper exploratory data analysis. The dashboard was created using matplotlib's gridspec for layout efficiency.

5. Dashboard Overview

The dashboard visually summarizes key metrics such as sales by category, monthly order volumes, top customers, sales by state, and top sellers, allowing rapid assessment of business performance and trends.

Ecommerce Sales Dashboard

Comprehensive overview dashboard summarizing key sales metrics for quick business performance assessment.

6. Conclusion

This analysis highlights key ecommerce sales drivers including product categories and geographic hotspots. The findings suggest focusing inventory on high-performing categories and targeting marketing in strong sales regions. Future work could incorporate customer segmentation and external market data to enhance decision-making.