CONTAMINATION BIAS IN LINEAR REGRESSIONS

Paul Goldsmith-Pinkham Peter Hull Michal Kolesár

Oct 2022

• Interested in estimating "treatment effects" β in partly linear model

$$Y_i = \alpha + X_i'\beta + g(W_i) + U_i.$$

- Two key features:
 - 1. Multiple treatments: X_i is vector of (mutually exclusive) treatment indicators, $X_{ik} = \mathbb{1}\{D_i = k\}$
 - Underlying treatment $D_i \in \{0, ..., K\}$
 - In paper: X_i treatment general vector, not necessarily discrete or mutually exclusive
 - 2. Necessary to include vector of controls W_i to prevent omitted variables bias (OVB)
- What is the interpretation of β if treatment effects are heterogeneous?

Many examples...

1. Multi-armed RCT with variation across strata

- D_i : set of treatments, W_i : strata FE
- Examples: Project STAR (Krueger, 1999), RAND Health Insurance Experiment (Manning et al., 1987)
- 2. Value-added models in education, health, or development:
 - D_i : set of teachers, W_i : strata controls for as-if-random-assignment
 - Examples: evaluation of teachers (Kane & Staiger, 2008; Chetty et al., 2014), schools (Angrist et al., 2017; Angrist et al., 2021; Mountjoy & Hickman, 2020), or healthcare (Hull, 2018; Abaluck et al., 2021; Geruso et al., 2020), leader effectiveness (Easterly and Pennings, 2022)
- 3. Differences-in-differences and event studies
 - D_i : periods since treatment adoption, W_i : unit and time fixed effects (FE)
 - Our results related to Sun and Abraham (2021) and de Chaisemartin and D'Haultfœuille (2021).
- 4. First-stage + reduced-form in examiner designs (not focus of this talk):
 - D_i : set of judges, W_i : strata controls for as-if-random-assignment
 - Examples: Kling (2006), Maestas et al. (2013), Dobbie and Song (2015), and Arnold et al. (2020)

- If D_i binary, so $X_i = D_i$, setting even more common and well-understood (e.g. Angrist & Pischke, 2009; Aronow & Samii, 2016)
- Influential result, known since at least Angrist (1998): β is (convex) weighted average treatment effect (ATE)
 - (Unweighted) ATE generally different
 - Weights proportional to variance of D_i conditional on W_i : strata with more variation in treatment receive more weight \implies automatically deals with overlap issues
 - Used to justify estimating "treatment effect" of D_i using partly linear model

MAIN RESULTS

- 1. When D_i multi-valued, β no longer corresponds to convex combination of causal effects
 - β_k = weighted average of treatment effect of treatment k + contamination bias from other treatments, with weights summing to 0
 - Recent results in DiD literature arise as special case; negative weighting (Goodman-Bacon, 2021; de Chaisemartin & D'Haultfœuille, 2020) and contamination bias (Sun & Abraham, 2021; de Chaisemartin & D'Haultfœuille, 2021) conceptually distinct.

2. Provide solutions to contamination bias:

- (a) Estimate ATE directly: apply methods from ATE literature. Noisy with poor overlap.
- (b) Run one-treatment-at-a-time regression. New justification: implements weights that are "easiest to estimate" in that they minimize SEB for estimation of weighted average of treatment effects.
 - When D_i binary, SEB result gives new formal motivation for using partially linear model.
- (c) Use SEB bound to construct new estimator when considering all treatments equally

Simple example

General setting and result

Solutions

Empirical example and diagnostics

- To build intuition, first review Angrist's result when both W_i and D_i binary.
- Consider regression

$$Y_i = \alpha + \beta D_i + \gamma W_i + U_i,$$

with $D_i, W_i \in \{0, 1\}$. By definition, U_i mean-zero residual uncorrelated with (D_i, W_i)

- Stylized Project STAR example: D_i is small classroom dummy, Y_i is avg test score of student i
 - Randomization stratified: probability of assignment to small vs large classroom depends on school. W_i denotes school FE
 - Binary W_i : only 2 schools for simplicity

POTENTIAL OUTCOMES AND KEY ASSUMPTION

- To characterize β , use potential outcomes notation $Y_i(d)$
 - Individual treatment effect $\tau_i = Y_i(1) Y_i(0)$, conditional treatment effect $\tau_1(w) = E[\tau_i \mid W_i = w]$
 - Observed outcome $Y_i = Y_i(0) + \tau_i D_i$
 - Propensity score: $p_1(W_i) = \Pr(D_i = 1 \mid W_i) = E[D_i \mid W_i]$
- Treatment (as good as) randomly assigned conditional on W_i : $(Y_i(0), Y_i(1)) \perp D_i \mid W_i$
- Random assignment assumption delivers key result (Angrist, 1998):

$$\beta = \phi \tau_1(0) + (1 - \phi)\tau_1(1), \quad \phi = \frac{\operatorname{var}(D_i \mid W_i = 0) \operatorname{Pr}(W_i = 0)}{\sum_{w=0}^{1} \operatorname{var}(D_i \mid W_i = w) \operatorname{Pr}(W_i = w)},$$

$$\beta = \phi \tau(0) + (1 - \phi)\tau(1), \quad \phi = \frac{\text{var}(D_i \mid W_i = 0) \Pr(W_i = 0)}{\sum_{w=0}^{1} \text{var}(D_i \mid W_i = w) \Pr(W_i = w)},$$

- $\phi \in (0,1)$
- No need to estimate propensity score
- Puts larger weight on strata with higher variation in D_i
 - \neq ATE! (unless $\tau(w)$ constant or $p_1(w)$ constant across strata)
 - May lead to unusual or "unrepresentative" estimand (Aronow & Samii, 2016)
 - But this sort of weighting necessary to avoid loss of identification under overlap failure (e.g. $p_1(0) = 0$), or lack of precision under weak overlap ($p_1(0)$ close to 0)

MULTIPLE TREATMENTS

• Project STAR in fact had additional treatment arm in addition to small class ($D_i = 1$): full-time teaching aide ($D_i = 2$).

$$Y_i = \alpha + \beta_1 X_{i1} + \beta_2 X_{i2} + \gamma W_i + U_i,$$

- General notation:
 - $X_i = [X_{i1}, X_{i2}]', X_{ij} = \mathbb{1}\{D_i = j\}$
 - $Y_i = Y_i(0) + X'_i \tau_i$, where $\tau_{ik} = Y_k(k) Y_i(0)$.
 - Let $\tau_k(W_i) = E[\tau_{ik} \mid W_i]$ and $p_k(w) = E[X_{ik} \mid W_i = w]$.
- Assignment still conditionally random, $(Y_i(0), Y_i(1), Y_i(2)) \perp X_i \mid W_i$

Due to FWL,

$$\beta_{1} = \frac{E[\tilde{X}_{i1}Y_{i}]}{E[\tilde{X}_{i1}^{2}]} = \frac{E[\tilde{X}_{i1}Y_{i}(0)]}{E[\tilde{X}_{i1}^{2}]} + \frac{E[\tilde{X}_{i1}X_{i1}\tau_{i1}]}{E[\tilde{X}_{i1}^{2}]} + \frac{E[\tilde{X}_{i1}X_{i2}\tau_{i2}]}{E[\tilde{X}_{i1}^{2}]}$$

$$= E[\lambda_{11}(W_{i})\tau_{1}(W_{i})] + E[\lambda_{12}(W_{i})\tau_{2}(W_{i})],$$

where
$$\lambda_{11}(W_i) = \frac{E[\tilde{X}_{i1}X_{i1}|W_i]}{E[\tilde{X}_{i1}^2]} \ge 0$$
, and $\lambda_{12}(W_i) = \frac{E[\tilde{X}_{i1}X_{i2}|W_i]}{E[\tilde{X}_{i1}^2]} \ne 0$ in general.

Key point X_{i1} is residual from regressing X_{i1} on W_i , constant, and X_{i2}

- $\tilde{X}_{i1} \neq X_{i1} E[X_{i1} \mid W_i, X_{i2}]$, since X_{i2} depends non-linearly on X_{i1}
- As a result, β_1 contaminated by τ_{i2} .

$$\beta_1 = E[\lambda_{11}(W_i)\tau_1(W_i)] + E[\lambda_{12}(W_i)\tau_2(W_i)], \qquad \lambda_{12}(W_i) = \frac{E[\tilde{X}_{i1}X_{i2} \mid W_i]}{E[\tilde{X}_{i1}^2]} \neq 0.$$

- Why does this second contamination bias term arise?
- Consider single residualization:
 - $\tilde{X}_{ik} = X_{ik} E[X_{ik} \mid W_i] = X_{ik} p_k(W_i)$
 - \tilde{X}_{i1} is residual from regressing \tilde{X}_{i1} on \tilde{X}_{i2} , and relationship between them varies by school
 - If $p_k(0) \neq p_k(1)$, then line of best fit averages across this relationship and does not isolate conditional (i.e. within-school) variation in $X_{i1} \Longrightarrow \text{variation in } \tilde{X}_{i1}$ predicts X_{i2} within-schools

STYLIZED EXAMPLE 1

- Two (equal-sized) schools vary significantly in treatment assignment
 - School o: $p_1(0) = 0.05$, $p_2(0) = 0.45$
 - School 1: $p_1(1) = 0.45$, $p_2(1) = 0.45$
- Under our formula,

$$\lambda_{12}(0) = 99/106, \lambda_{12}(1) = -99/106$$

- To illustrate potential magnitude of contamination bias:
 - $\tau_1(W_i) = 0$, $\tau_2(0) = 0$, $\tau_2(1) = 1$
 - Then, $\beta_1 \approx -0.47$

STYLIZED EXAMPLE 2: NO OVERLAP

- Consider multiple strata, included as indicators, but only units in stratum $W_i = 0$ receive treatment 2. Let $n_k(w) = \sum_i \mathbb{1}\{W_i = w, X_i = k\}$.
- Then

$$\hat{\beta} = \begin{pmatrix} \sum_{w} \hat{\lambda}_{11}(w) \hat{\tau}_{1}(w) \\ \frac{n_{1}(0)}{n_{0}(0) + n_{1}(0)} \sum_{w \neq 0} \lambda(w) \left[\hat{\tau}_{1}(w) - \hat{\tau}_{1}(0) \right] + \hat{\tau}_{2}(0) \end{pmatrix},$$

where
$$\hat{\lambda}_{11}(w) = (n_0(w) + n_1(w))\hat{V}_1(w) / \sum_w (n_0(w) + n_1(w))\hat{V}_1(w)$$
. and $\hat{V}_1(w) = n_1(w)n_0(w) / (n_0(w) + n_1(w))^2$ is an estimate of $\operatorname{var}(X_{i1} \mid W_i = w, D_i \neq 2)$.

Simple example

General setting and result

Solutions

Empirical example and diagnostics

• Interested in effect of X_i on Y_i estimated by a partially linear model,

$$Y_i = X_i'\beta + g(W_i) + U_i,$$

where β and $g(\cdot)$ defined as minimizers of expected squared residuals $E[U_i^2]$:

$$(\beta, g) = \underset{\tilde{\beta} \in \mathbb{R}^K, \tilde{g} \in \mathcal{G}}{\operatorname{argmin}} E[(Y_i - X_i' \tilde{\beta} - \tilde{g}(W_i))^2]$$

for some linear space of functions G.

- Linear covariate adjustment: $\mathcal{G} = \{\alpha + w'\gamma \colon (\alpha, \gamma')' \in \mathbb{R}^{1 + \dim(W_i)}\},\$
- Allow for flexible adjustments if ${\cal G}$ large class of "nonparametric" functions (Robinson, 1988).

$$Y_i = X_i'\beta + g(W_i) + U_i,$$

Multi-armed RCT

 W_i are strata indicators, X_i treatment indicators.

Event study / Two-way fixed effects

Panel data, i = (j, t) where j is unit and t is time. $g(\cdot)$ is linear, and W_i contains unit and time indicators. X_i contains leads and lags relative to (deterministic) treatment adoption date A(j). Or indicators for multiple treatments ("mover regressions").

• Let \tilde{X}_i denote residual from projecting X_i onto \mathcal{G} . Then by projection theorem,

$$\beta = E[\tilde{X}_i \tilde{X}_i']^{-1} E[\tilde{X}_i Y_i].$$

· Hence, by FWL

$$\beta_k = \frac{E[\tilde{X}_{ik}Y_i]}{E[\tilde{X}_{ik}^2]}.$$

Where $\tilde{\tilde{X}}_{ik}$ is residual from regressing $\tilde{X}_{i,k}$ on $\tilde{X}_{i,-k}$. Equivalently,

$$\tilde{\tilde{X}}_{ik} = X_{ik} - E^*[X_{ik} \mid X_{i,-k}, W_i] \text{ where } E^* \text{ is projection on } X'_{i,-k}\delta + g(W_i).$$

• Does β_k have a causal interpretation?

ASSUMPTIONS

Assumption 1: Random assignment

$$E[Y_i(k) \mid D_i, W_i] = E[Y_i(k) \mid W_i]$$
 for all k .

- Let $\mu_0(w) = E[Y_i(0) \mid W_i = w].$
 - Assumption 2: Correct outcome or assignment model

Either $\mu_0 \in \mathcal{G}$ or $p_k \in \mathcal{G}$ for all k.

- $\mu_0 \in \mathcal{G}$ is "parallel trends" assumption in event studies. p_k degenerate and not in \mathcal{G} .
- $p_k \in \mathcal{G}$ automatic in stratified RCT example

Main result

Suppose Assumptions 1 and 2 hold. Then

$$\beta_k = \underbrace{E[\lambda_{kk}(W_i)\tau_k(W_i)]}_{\text{Own treatment effect}} + \sum_{\ell \neq k} \underbrace{E[\lambda_{k\ell}(W_i)\tau_\ell(W_i)]}_{\text{Contamination bias}}$$

where

$$\lambda_{kk}(W_i) = \frac{E[\tilde{X}_{ik}X_{ik} \mid W_i]}{E[\tilde{X}_{ik}^2]}, \qquad \lambda_{k\ell}(W_i) = \frac{E[\tilde{X}_{ik}X_{i\ell} \mid W_i]}{E[\tilde{X}_{ik}^2]}.$$

The weights satisfy $E[\lambda_{kk}(W_i)] = 1$ and $E[\lambda_{k\ell}(W_i)] = 0$. Furthermore,

$$\lambda_{kk}(W_i) \ge 0 \iff E^*[X_{ik} \mid X_{i,-k} = 0, W_i] \le 1$$
. A sufficient condition is $p_k \in \mathcal{G}$.

$$\beta_k = \underbrace{E[\lambda_{kk}(W_i)\tau_k(W_i)]}_{\text{Own treatment effect}} + \underbrace{\sum_{\ell \neq k} E[\lambda_{k\ell}(W_i)\tau_\ell(W_i)]}_{\text{Contamination bias}}$$

Two conceptually distinct issues:

- 1. If $p_1 \notin \mathcal{G}$, then weights not necessarily positive, even with K = 1.
 - If $p_1 \in \mathcal{G}$, $\lambda_{11}(W_i) = \text{var}(X_i \mid W_i) / E[\text{var}(X_i \mid W_i)] \ge 0$
- 2. If K > 1, then additional contamination bias present unless
 - 2.1 $E[X_{ik} \mid X_{i,-k}, W_i] = E^*[X_{ik} \mid X_{i\ell}, W_i]$: no non-linear dependence across treatments, or treatment completely randomized $\implies \lambda_{kl}(W_i) = 0$
 - 2.2 Uncorrelated heterogeneity: $E[\lambda_{k\ell}(W_i)\tau_{\ell}(W_i)] = 0$

RELATIONSHIP WITH DID LITERATURE

- In DiD or event studies, focus on two-way FE specification: \mathcal{G} is a set of unit + time effects. D_i may index time since treatment adoption, or else static multivalued treatment
- "Model-based" parallel trends assumption $E[Y_i(0) \mid W_i = w] \in \mathcal{G}$, but $p \notin \mathcal{G}$ virtually by design. Then
 - If K = 1, weights $\lambda_{kk}(W_i)$ may not be positive (de Chaisemartin & D'Haultfœuille, 2020; Goodman-Bacon, 2021)
 - If K > 1, also contamination bias (de Chaisemartin & D'Haultfœuille, 2021; Sun & Abraham, 2021)
- Our result shows issue not specific to two-way FE specification of \mathcal{G} . Instead, issue is:
 - 1. Contamination bias: non-linear dependence among treatments
 - 2. Own weights could be negative: propensity score not in \mathcal{G} (restrictive here, albeit implied by setup in Athey and Imbens, 2022)

Simple example

General setting and result

Solutions

Empirical example and diagnostics

SOLUTION 1: ESTIMATE ATE

- Focus on $p_k \in \mathcal{G}$ case
- Most principled solution: estimate ATEs $E[\tau(W_i)]$ directly, using your favorite method (propensity score weighting, matching, regression etc). E.g. regression implementation:

$$Y_i = X_i' \beta + q_0(W_i) + \sum_{k=1}^K X_{ik} (q_k(W_i) - E[q_k(W_i)]) + U_i, \qquad \beta = E[\tau(W_i)]$$

Note relevant for IV setting: adds many more additional controls

- Key issue in practice: poor overlap \implies large standard errors. Salient once K moderate.
 - Suppose new Medicaid enrollees randomized among K plans. Monthly variation in capacity means month FE necessary.
 - Little/no enrollment in plan k in some months \implies ATE estimate very noisy/unidentified.

SOLUTIONS 2 AND 3: FOCUS ON WEIGHTED ATE THAT IS EASY TO ESTIMATE

- Regression approach adapts to overlap by putting less weight on strata with less overlap
 - This is why it is popular in practice with binary treatment!
 - · Can we generalize this advantage without introducing contamination bias?
- Our strategy:
 - 1. Derive semiparametric efficiency bound for such a weighted ATE under idealized conditions
 - 2. Identify which weights lead to smallest efficiency bound
 - 3. Construct efficient feasible estimator of this weighted ATE
- Consider conditional potential outcome contrasts: $\sum_{k=0}^{K} c_k \mu_k(W_i)$, where $\mu_k(W_i) = E[Y_i(k) \mid W_i]$ and c is a (K+1)-dimensional vector.
 - If we set $c_k = 1$, $c_0 = -1$ and all other entries of c to zero: $\sum_{k=0}^{K} c_k \mu_k(W_i) = \tau_k(W_i)$.
 - Conditions on realized $\{W_i\}_{i=1}^n$

STEP 1: SEMIPARAMETRIC EFFICIENCY BOUND

Proposition

Consider i.i.d. sample of size N that satisfies Assumption 1. Suppose $p_k(W_i)$ known, and let $\sigma_k^2(W_i) = \text{var}(Y_i(k) \mid W_i)$. Consider estimating weighted avg of contrasts

$$\theta_{\lambda,c} = \frac{1}{\sum_{i=1}^{N} \lambda(W_i)} \sum_{i=1}^{N} \lambda(W_i) \sum_{k=0}^{K} c_k \mu_k(W_i),$$

where λ and c are known. Then, conditional on $\{W_i\}_{i=1}^N$,

$$\mathcal{V}_{\lambda,c} = E\left[\sum_{k=0}^K \frac{\lambda(W_i)^2 c_k^2 \sigma_k^2(W_i)}{p_k(W_i)}\right] / E[\lambda(W_i)]^2.$$

is a.s. the semiparametric efficiency bound.

SOLUTION 2: ONE-TREATMENT-AT-A-TIME REGRESSION

- Suppose we are interested in single contrast, so contrast vector c^k sets $c_j^k = 1$ if j = k, $c_j^k = -1$ if j = 0, and $c_j^k = 0$ otherwise. Suppose further conditional variance homoskedastic: $\sigma_{\nu}^2(W_i) = \sigma^2$.
- Minimizing V_{λ,c^k} over weights λ yields efficient weights and minimal asymptotic variance

$$\lambda^{k}(W_{i}) = \frac{p_{0}(W_{i})p_{k}(W_{i})}{p_{0}(W_{i}) + p_{k}(W_{i})}, \ \mathcal{V}_{\lambda^{k},c^{k}} = \sigma^{2}E\left[\frac{p_{0}(W_{i})p_{k}(W_{i})}{p_{0}(W_{i}) + p_{k}(W_{i})}\right]^{-1},$$

- Precisely the weighting of one-treatment-at-a-time regression when we fit partially linear model only using observations with $D_i \in \{0, k\}$
- Result gives formal justification for using regression to estimate effects of single treatment.

SOLUTION 3: EFFICIENTLY WEIGHTED CONTRASTS

- One-treatment-at-a-time regression estimates not comparable across treatments (same is true for usual estimator based on full data, even in absence of contamination bias).
- If consider all K(K+1) potential contrasts $\mu_j(W_i) \mu_k(W_i)$ equally important, then natural to minimize average variance $\int V_{\lambda,c} dF(c)$, where F uniform over contrasts
- Equivalent to setting $c_k^2 = 2/(K+1)$, which under homoskedasticity leads to

$$\lambda^{C}(W_{i}) = \frac{1}{\sum_{k=0}^{K} p_{k}(W_{i})^{-1}}.$$

$$\lambda^{C}(W_{i}) = \frac{1}{\sum_{k=0}^{K} p_{k}(W_{i})^{-1}}$$

- Weights generalize intuition behind single binary treatment: place more weight on strata with evenly distributed treatments, less weight on strata with overlap problem.
- Weights are the same for every treatment contrast c, so $\beta_{\lambda^{\mathbb{C}},k} \beta_{\lambda^{\mathbb{C}},\ell}$ is a convex weighted average of relative causal effects for all k, ℓ .
- Efficient estimator: weighted regression of Y_i onto X_i , weighting each observation by $\hat{\lambda}^{\mathbb{C}}(W_i)/\hat{p}_{D_i}(W_i)$.

Three motivations for Solutions 2 and 3:

- 1. Robustness concern: want to estimate given contrast as efficiently as possible, at least under benchmark of constant treatment effects, while being robust to the possibility that effects heterogeneous.
- 2. Gives bound on information available in the data: if these weights λ^{C} or λ^{k} yield overly large standard errors, inference on other treatment effects (such as the unweighted ATE) will be at least as uninformative.
- 3. General efficiency vs robustness trade-off: estimators of unweighted ATE most robust, but least efficient. OLS most efficient, but not at all robust to heterogeneity in treatment effects. Weights λ^k/λ^C land closer to the middle.

Simple example

General setting and result

Solutions

Empirical example and diagnostics

PROJECT STAR

	A. Contamination Bias Estimates				
	Regression Coefficient	Own Effect	Bias	Worst-Case Bias	
				Negative	Positive
Small Class Size	5.357	5.202	0.155	-1.654	1.670
	(0.778)	(0.778)	(0.160)	(0.185)	(0.187)
Teaching Aide	0.177	0.360	-0.183	-1.529	1.530
	(0.720)	(0.714)	(0.149)	(0.176)	(0.177)
	B. Treatment Effect Estimates				
		Unweighted	Efficiently-Weighted		
		(ATE)	One-at-a-time	Common	-
Small Class Size		5.561	5.295	5.563	
		(0.763)	(0.775)	(0.764)	
Teaching Aide		0.070	0.263	-0.003	
		(0.708)	(0.715)	(0.712)	

- Considerable variation in weights as well as in treatment effects
- But heterogeneity in treatments appears to be uncorrelated with weights, so contamination bias small
 - Generality of this result open question
 - Issues we flag in this paper may be salient under "optimal" stratification.
- Diagnostics implementation details in paper and stata package multe