DIRECTION GENERALE DE L'ENSEIGNEMENT SUPERIEUR ET DES ŒUVRES UNIVERSITAIRES (**DGES**)

DIRECTION DE l'ORIENTATION ET DES EXAMENS (DORE



## **Concours AMCPEsession 2013**

Composition : Mathématiques 6 (statistiques, probabilités)

Durée : 2 Heures



**Exercice 1 :** Dans certaines exploitations agricoles, on utilise deux types de compléments alimentaires : le type A et le type B. Ces produits sont utilisés par paquets de 5 kilogrammes. On fait une enquête portant sur le nombre de kilogrammes utilisés par jour dans 10 exploitations différentes, numérotées de 1 à 10, et on obtient les résultats suivants :

| Exploitation n°   | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 |
|-------------------|----|----|----|----|----|----|----|----|----|----|
| Produit A (en kg) | 10 | 15 | 15 | 10 | 10 | 15 | 20 | 15 | 20 | 20 |
| Produit B (en kg) | 5  | 15 | 10 | 10 | 10 | 5  | 10 | 10 | 15 | 10 |

On choisit au hasard une exploitation parmi les dix. A ce tirage, on associe deux variables aléatoires X et Y définies par : X : nombre de kilogrammes de produit A utilisés par jour.

Y : nombre de kilogrammes de produit A utilisés par jour.

**1)** Montrer que la loi du couple (X,Y) est donnée par le tableau suivant où  $\alpha$  est un réel que l'on déterminera.

|   |    | Υ   |    |     |  |  |  |
|---|----|-----|----|-----|--|--|--|
|   |    | 5   | 10 | 15  |  |  |  |
|   | 10 | 0,1 | α  | 0   |  |  |  |
| X | 15 | 0,1 | α  |     |  |  |  |
|   | 20 | 0   | α  | 0,1 |  |  |  |

- 2) a) Déterminer la loi de X; puis calculer son espérance E(X) et sa variance de V(X).
  - **b)** Déterminer la loi de Y ; puis calculer son espérance E(Y) et sa variance de V(Y) .
- 3) Calculer la covariance cov(X,Y) du couple aléatoire (X,Y).
- **4) a)** Déterminer la loi de la variable conditionnelle Y / (X = 10); et calculer l'espérance E[Y/(X = 10)].
  - **b)** Calculer les espérances E[Y/(X=15)] et E[Y/(X=20)].
  - c) Que peut-on déduire du calcul des trois espérances des questions a) et b)?
- **5)** On désigne par S la variable aléatoire égale au poids total en kilogrammes des compléments alimentaires utilisés par jour.
  - Calculer l'espérance et la variance de la variable S.
- 6) Le prix d'un kilogramme de produit A est de 6 euros et celui d'un kilogramme de produit B est de 8 euros. Le coût journalier, en euros, des compléments alimentaires est donné par la variable aléatoire C.

- a) Exprimer la variable C à l'aide des variables X et Y
- b). Calculer l'espérance et la variance de la variable C.

**Exercice 2**: On a à disposition 2 tests sanguins pour le dépistage du HIV : d'une part l'ELISA, relativement bon marché (environ 20 €) et raisonnablement fiable, et d'autre part le Western Blot (WB), nettement meilleur mais beaucoup plus cher (environ 100 €).

Un patient vient vers vous, un médecin, avec des symptômes vous suggérant qu'il peut être HIV-positif. Pour ce patient, la prévalence du HIV est estimée par la littérature médicale à

$$P(A) = P($$
 « il est HIV-positif »  $) = 0.01.$ 

Les données concernant des personnes dont on connaît le statut HIV apportent :

1) Calculer les probabilités suivantes :

2) Quelle(s) conséquence(s) peut-on en tirer sur l'utilisation de l'ELISA?

## Exercice 3:

 $\textbf{1)} \ \ \text{On considère la fonction f définie par } \ f(t) = \left\{ \begin{array}{c} \alpha t \big(30-t\big), \ \text{si } t \in \left]0,30\right[ \\ 0 \quad , \ \text{sinon} \end{array} \right. \ \text{où } \ \alpha \in \mathbb{R} \ .$ 

Déterminer  $\alpha$  pour que f soit une densité de probabilité d'une variable aléatoire absolument continue.

- **2)** La durée de séjour, en minutes, d'un bovin dans une salle de traite est une variable aléatoire D qui admet f comme densité.
  - a) Déterminer la fonction de répartition  $F_D$  de la variable aléatoire D.
  - **b)** Calculer l'espérance mathématique E(D) de D.
  - c) Déterminer l'écart-type de la variable D.
- **3)** Soit N un entier supérieur ou égal à 1 et  $\beta$  un réel appartenant à  $\rceil 0,30 \lceil$  .

A l'instant  $t_0$ , il y a N bovins la salle de traite et l'on s'intéresse au nombre  $Q(\beta)$  de bovins qui vont la quitter dans l'intervalle de temps  $\lceil 0, \beta \rceil$ .

On suppose que les comportements des différents bovins sont indépendants et que, pendant l'intervalle de temps considéré, aucun nouveau bovin n'est entré dans la salle.

On numérote les N bovins de 1 à N ; on note  $X_i$  la variable aléatoire qui vaut 1 si le bovin numéro i est sorti de la salle avant l'instant  $\beta$  et 0 sinon.

- a) Déterminer la loi de la variable  $X_i$  et son espérance.
- **b)** Déterminer la loi de la variable  $Q(\beta)$ .
- c) Donner l'espérance et la variance de  $Q(\beta)$ .