	Utech
Name:	
Roll No. :	In the second Of Association 2 and Excellent
Inviailator's Sianature :	

CS / B.TECH (OLD) / SEM-1 / EE-101 / 2010-11 2010-11

BASIC ELECTRICAL ENGINEERING

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1.	Choose	the	correct	alter:	natives	for	any	ten	of 1	the	follo	wing	

 $10 \times 1 = 10$

- i) The capacitance of a capacitor is not influenced by
 - a) plate separator
- b) plate thickness
- c) plate area
- d) nature of dielectric.
- ii) The efficiency of a circuit under maximum power transfer condition is
 - a) 50 %

b) 25 %

c) 75 %

d) 100 %.

1251 [Turn over]

- Battery is an example of iii)
 - voltage dependent voltage source a)
 - current dependent voltage source b)
 - independent voltage source c)
 - d) independent current source.
- iv) The efficiency of a transformer is maximum when
 - a) Cu losses are zero
 - Iron losses are zero b)
 - Cu losses are 50% of iron losses c)
 - Cu losses are equal to iron losses. d)
- For additive flux of two coils connected in series, the v) equivalent inductance can be expressed as

a)
$$L_1 + L_2$$

b)
$$L_1 + L_2 + 2M$$

c)
$$L_1 + L_2 - 2M$$

d)
$$L_1 + L_2 + M$$
.

Resonant frequency fr of a series RLC circuit is related vi) to half-power frequencies f_1 and f_2 as

a)
$$fr = \frac{f_1 + f_2}{2}$$
 b) $fr = \sqrt{f_1 f_2}$

b)
$$fr = \sqrt{f_1 f_2}$$

c)
$$fr = f_2 - f$$

c)
$$fr = f_2 - f_1$$
 d) $fr = \sqrt{f_1} + \sqrt{f_2}$.

- In the circuit shown in figure, if the power consumed by 5Ω resistor is 10 W, then power factor of the circuit is
 - 0.8 a)

0.6 b)

0.5 c)

d) zero.

viii)	For	a wave connected <i>dc</i> m	achir	Utech				
•,		For a wave connected <i>dc</i> machine, number of poles is 6. The number of parallel path is						
	a)	4	b)	8				
	c)	6	d)	none of these.				
ix)	The	dc motor needs a starte	er du	ring starting to control				
	a)	speed	b)	current				
	c)	voltage	d)	flux.				
x)	The	emf induced in the rot	or of	an induction motor has				
·		quency						
	a)	same as supply freque	ncy					
	b)	same as slip frequency						
	c)	difference between supply & slip frequency						
	d)	none of these.						
xi)	The	commutator of a dc ma	chine	e acts as a				
	a)	full-wave rectifier						
	b)	half-wave rectifier						
	c)	controlled full-wave rectifier						
	d)	contact.						
xii)	The	normal efficiency of a t	ransf	ormer is				
	a)	10%	b)	50%				
	c)	75%	d)	95%.				
	•	2	•	[]				

Answer any *three* of the following. $3 \times 5 = 15$

- 2. Derive the torque equation of a *dc* motor.
- 3. Explain the principle of working of a 3 ϕ induction motor.
- 4. A voltmeter is connected to a source having voltage waveform given by $v = 20 \sin wt + 10 \sin 3wt + 5 \sin 5wt$. If the voltmeter reads the *rms* value, find the reading of the voltmeter.
- 5. Explain the difference between statically & dynamically induced *emf* s. Give example.
- 6. Deduce an expression of electric field at a general point due to infinitely long charged conductor.

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

7. a) Why is a series resonant circuit called an acceptor circuit & parallel resonant circuit is called rejecter circuit?

1251 4

b) In the circuit diagram shown, the magnitude of V_L and V_C are twice that of V_R . Find the inductance of the coil.

c) For the circuit diagram shown below, find the current I.

3 + 5 + 7

- a) Draw the phasor diagram of a single phase transformer for lagging power factor load.
 - b) The open circuit & short circuit test data of a 5 kVA,200 / 400 volt, 50 Hz single phase transformer are

OC test : Primary voltage = 200 volts, I = 0.75 A,

$$W = 75 W.$$

SC test : Primary voltage = 18 volts, Current on

Secondary side = 12.5 A, W = 200 W.

Find the parameters of the equivalent circuit & draw the equivalent circuit w.r.t. primary side. 5 + 10

- 9. a) Deduce the *e.m.f.* equation of a *dc* generator
 - b) A shunt generator delivers 50 kW at 250 V & 400 rpm. The armature resistance is 0.02 Ω and field resistance is 50 Ω . Calculate the speed of the machine when running on a shunt motor and taking 50 kW input at 250 V.

5 + 10

- 10. a) Define self & mutual inductance of coils.
 - b) Two coils A of 1000 turns and B of 500 turns are mutually coupled with 80% coupling. If a current of 3A in A produces a flux of 0.25 m wb, find the mutual inductance and coefficient of coupling between the coils.
 - c) A ring of mean diameter 30 cm is wound with 300 turns of copper wire carrying a current of 4A. The cross-section of the magnetic material of the ring is 12 cm² and its relative permeability is 2000. Determine the flux through it.

4 + 7 + 4

11. a) Find the value of R in the circuit shown below:

1251 6

b) Calculate the current in the 6 Ω resistor in the circuit below using Thevenin's theorem :

7 + 8
