Točno

Broj bodova: 1,00 od 1,00

Cramerovim pravilom za računanje inverza, izračunajte inverz matrice

$$\mathbf{A} = \begin{bmatrix} -1 & 1 & 2 \\ 3 & -1 & 1 \\ -1 & 3 & 4 \end{bmatrix}.$$

Odaberite jedan odgovor:

O a.
$$\mathbf{A}^{-1} = \begin{bmatrix} -7 & -2 & 3 \\ -13 & -2 & 7 \\ 8 & 2 & -2 \end{bmatrix}$$

O c. Ne znam

O d.
$$\mathbf{A}^{-1} = \begin{bmatrix} 0.7 & 0.2 & -0.3 \\ 1.3 & 0.2 & -0.7 \\ -0.8 & -0.2 & 0.2 \end{bmatrix}$$

$$\mathbf{A}^{-1} = \begin{bmatrix} 7 & 2 & -3 \\ 13 & 2 & -7 \\ -8 & -2 & 2 \end{bmatrix}$$

Vaš odgovor je točan.

Ispravan odgovor je:
$$\mathbf{A}^{-1} = \begin{bmatrix} -0.7 & 0.2 & 0.3 \\ -1.3 & -0.2 & 0.7 \\ 0.8 & 0.2 & -0.2 \end{bmatrix}$$

Pitanje 2

Točno

Broj bodova: 1,00 od 1,00

Postoji li matrica ${f X}$ koja zadovoljava matričnu jednadžbu

$$\begin{bmatrix} 1 & 2 \\ -2 & -4 \end{bmatrix} \cdot \mathbf{X} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} ?$$

Odaberite jedan odgovor:

- Točno
- Netočno

Rješenje: ne postoji jer je $\det \begin{bmatrix} 1 & 2 \\ -2 & -4 \end{bmatrix} = 0$ i $\det \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = -2$.

Ispravan odgovor je 'Netočno'.

Točno

Broj bodova: 1,00 od 1,00

Zadane su matrice
$$\mathbf{A} = \begin{bmatrix} 2 & 0 & 2 \\ 2 & 0 & 3 \\ 4 & 1 & 9 \end{bmatrix}$$
 i $\mathbf{B} = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$.

Riješite matričnu jednadžbu $\mathbf{B}\mathbf{X}(2\mathbf{A}-\mathbf{I})=\mathbf{B}\mathbf{X}\mathbf{A}+\mathbf{I}.$

Odaberite jedan odgovor:

$$\mathbf{X} = \begin{bmatrix} \frac{1}{2} & 0 & -2 \\ 1 & -1 & -3 \\ 2 & 1 & -8 \end{bmatrix}$$

$$\mathbf{X} = \begin{bmatrix} -22 & 4 & 4 \\ -4 & 0 & 1 \\ -6 & 1 & 1 \end{bmatrix}$$

o. Ne znam

O d.
$$\mathbf{X} = \begin{bmatrix} \frac{1}{2} & 0 & 1 \\ 2 & -1 & 3 \\ -4 & -1 & -8 \end{bmatrix}$$

O e.
$$\mathbf{X} = \begin{bmatrix} -22 & -4 & -6 \\ 4 & 0 & 1 \\ 4 & 1 & 1 \end{bmatrix}$$

Vaš odgovor je točan.

Vas odgovor je tocan.
$$\text{Rješenje: } \mathbf{X} = \mathbf{B}^{-1} (\mathbf{A} - \mathbf{I})^{-1} = \begin{bmatrix} -22 & 4 & 4 \\ -4 & 0 & 1 \\ -6 & 1 & 1 \end{bmatrix}.$$

$$\text{Ispravan odgovor je: } \mathbf{X} = \begin{bmatrix} -22 & 4 & 4 \\ -4 & 0 & 1 \\ -6 & 1 & 1 \end{bmatrix}.$$

Ispravan odgovor je:
$$\mathbf{X} = \begin{bmatrix} -22 & 4 & 4 \\ -4 & 0 & 1 \\ -6 & 1 & 1 \end{bmatrix}$$

Broj bodova: 1,00 od 1,00

$$\text{Zadane su matrice } \mathbf{A} = \begin{bmatrix} 3 & 0 & 2 \\ 0 & 2 & -3 \\ 1 & 0 & 1 \end{bmatrix} \text{i } \mathbf{B} = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 0 & 1 \\ 0 & 2 & 0 \end{bmatrix}.$$

Riješite matričnu jednadžbu $(\mathbf{A}\mathbf{X}\mathbf{B}^{-1})^{-1}\mathbf{A} = \mathbf{B}^2\mathbf{A}^{-1}$.

Odaberite jedan odgovor:

$$\mathbf{X} = \begin{bmatrix} 7 & 0 & 5 \\ 1 & 0 & 1 \\ -14 & 8 & -16 \end{bmatrix}$$

b. Ne znam

$$\mathbf{X} = \begin{bmatrix} 7 & 1 & -14 \\ 0 & 0 & 8 \\ 5 & 1 & -16 \end{bmatrix}$$

$$\bigcirc \mbox{ d. } \\ \mathbf{X} = \begin{bmatrix} -1 & 6 & -1 \\ 2 & -3 & 1 \\ -\frac{1}{2} & 4 & -\frac{1}{2} \end{bmatrix}$$

$$\mathbf{X} = \begin{bmatrix} -1 & 2 & -\frac{1}{2} \\ 6 & -3 & 4 \\ -1 & 1 & -\frac{1}{2} \end{bmatrix}$$

Vaš odgovor je točan.

Vas odgovor je tocan.
$$\text{Rješenje: } \mathbf{X} = \mathbf{A}\mathbf{B}^{-1} = \begin{bmatrix} -1 & 2 & -\frac{1}{2} \\ 6 & -3 & 4 \\ -1 & 1 & -\frac{1}{2} \end{bmatrix}.$$

$$\text{Ispravan odgovor je: } \mathbf{X} = \begin{bmatrix} -1 & 2 & -\frac{1}{2} \\ 6 & -3 & 4 \\ -1 & 1 & -\frac{1}{2} \end{bmatrix}.$$

Ispravan odgovor je:
$$\mathbf{X} = \begin{bmatrix} -1 & 2 & -\frac{1}{2} \\ 6 & -3 & 4 \\ -1 & 1 & -\frac{1}{2} \end{bmatrix}$$

Točno

Broj bodova: 1,00 od 1,00

$$\text{Zadane su matrice } \mathbf{A} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \text{i } \mathbf{B} = \begin{bmatrix} 2 & 0 & 0 \\ -1 & 3 & 0 \\ 1 & -2 & 4 \end{bmatrix}.$$

Riješite matričnu jednadžbu $\mathbf{A}^{-1}\mathbf{X}=(\mathbf{A}\mathbf{B}^{-1})^{-1}+\mathbf{A}^{-1}.$

Odaberite jedan odgovor:

$$\mathbf{X} = \begin{bmatrix} 2 & 2 & -2 \\ 0 & 2 & 3 \\ 1 & -3 & 8 \end{bmatrix}$$

$$\mathbf{X} = \begin{bmatrix} 1 & 1 & -3 \\ -1 & 1 & 2 \\ 0 & -4 & 7 \end{bmatrix}$$

$$\mathbf{X} = \begin{bmatrix} 0 & 0 & -4 \\ -2 & 0 & 1 \\ -10 & -5 & 6 \end{bmatrix}$$

O d. Ne znam

$$\mathbf{X} = \left[\begin{array}{ccc} 2 & 0 & 1 \\ 2 & 2 & -3 \\ -2 & 3 & 8 \end{array} \right]$$

Vaš odgovor je točan.

Rješenje:
$$\mathbf{X} = \mathbf{A}\mathbf{B}\mathbf{A}^{-1} + \mathbf{I} = \begin{bmatrix} 2 & 2 & -2 \\ 0 & 2 & 3 \\ 1 & -3 & 8 \end{bmatrix}$$

Ispravan odgovor je:
$$\mathbf{X} = \begin{bmatrix} 2 & 2 & -2 \\ 0 & 2 & 3 \\ 1 & -3 & 8 \end{bmatrix}$$

Pitanje 6

Nije odgovoreno

Broj bodova od 1,00

Odgovorite je li tvrdnja točna ili netočna:

Matrica oblika
$$\begin{bmatrix} 0 & a & 0 \\ b & c & d \\ 0 & e & 0 \end{bmatrix}$$
 ne može biti regularna.

Odaberite jedan odgovor:

- Točno
- Netočno

Rješenje: Matrica ne može biti regularna jer je
$$\begin{vmatrix} 0 & a & 0 \\ b & c & d \\ 0 & e & 0 \end{vmatrix} = -a \begin{vmatrix} b & d \\ 0 & 0 \end{vmatrix} = 0.$$

Ispravan odgovor je 'Točno'.

Točno

Broj bodova: 1,00 od 1,00

Odredite inverz matrice
$$\mathbf{A}=egin{bmatrix} -3 & 1 & -1 \\ 1 & 0 & 1 \\ -2 & 2 & 3 \end{bmatrix}$$
 .

Odaberite jedan odgovor:

Odabenie jedan odgovor.
$$\mathbf{A}^{-1} = \begin{bmatrix} -2 & -5 & 2 \\ -5 & -11 & 4 \\ 1 & 2 & -1 \end{bmatrix}$$

O b.
$$\mathbf{A}^{-1} = \begin{bmatrix} -2 & -5 & 1 \\ -5 & -11 & 2 \\ 2 & 4 & -1 \end{bmatrix}$$

O c. Ne znam

$$\mathbf{A}^{-1} = \begin{bmatrix} 2 & 5 & -2 \\ 5 & 11 & -4 \\ -1 & -2 & 1 \end{bmatrix}$$

Vaš odgovor je točan.

Ispravan odgovor je:
$$\mathbf{A}^{-1} = \begin{bmatrix} 2 & 5 & -1 \\ 5 & 11 & -2 \\ -2 & -4 & 1 \end{bmatrix}$$

Pitanje 8

Točno

Broj bodova: 1,00 od 1,00

Odgovorite je li tvrdnja točna ili netočna:

Ako za matricu
$$\mathbf{A}=egin{bmatrix} p & q \\ r & s \end{bmatrix}$$
 vrijedi $ps=rq$ onda je ona regularna?

Odaberite jedan odgovor:

- Točno
- Netočno

Rješenje: Matrca nije regularna jer $\det \mathbf{A} = \begin{bmatrix} p & q \\ r & s \end{bmatrix} = ps - rq = 0.$

Ispravan odgovor je 'Netočno'.

Točno

Broj bodova: 1,00 od 1,00

Neka vrijedi jednakost: $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{bmatrix} \mathbf{A} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}.$

Matrica ${\bf A}$ je regularna matrica reda 3.

Iskoristite danu jednakost i izračunajte inverz matrice $\boldsymbol{\mathrm{A}}.$

Odaberite jedan odgovor:

$$\mathbf{A}^{-1} = \begin{bmatrix} 2 & 3 & 1 \\ 5 & 3 & 2 \\ 0 & 8 & 1 \end{bmatrix}$$

O b.
$$\mathbf{A}^{-1} = \begin{bmatrix} 3 & 1 & 2 \\ 3 & 2 & 5 \\ 8 & 1 & 0 \end{bmatrix}$$

$$\mathbf{A}^{-1} = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 3 \\ 2 & 3 & 1 \end{bmatrix}$$

O e. Ne znam

Vaš odgovor je točan.

Rješenje:

Označimo s **B** i **P** matrice iz zadatka.

Lako je vidjeti da je \mathbf{P} regularna i da je $\mathbf{P}^{-1} = \mathbf{P}^\intercal$.

Sada $\mathbf{B}\mathbf{A} = \mathbf{P} \Rightarrow \mathbf{P}^{\intercal}\mathbf{B}\mathbf{A} = \mathbf{I}.$

Matrica \mathbf{A} je invertibilna pa je $\mathbf{A}^{-1} = \mathbf{P}^{\mathsf{T}} \mathbf{B} = \begin{bmatrix} 1 & 0 & 8 \\ 1 & 2 & 3 \\ 2 & 5 & 3 \end{bmatrix}$. Ispravan odgovor je: $\mathbf{A}^{-1} = \begin{bmatrix} 1 & 0 & 8 \\ 1 & 2 & 3 \\ 2 & 5 & 3 \end{bmatrix}$

Nije odgovoreno

Broj bodova od 1,00

Neka je $\bf A$ regularna matrica reda 3. Proveden je postupak eliminacije za nalaženje inverza $\bf A^{-1}$. Redom su korištene sljedeće elementarne matrice:

$$\mathbf{P}_{13} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \mathbf{E}_{21}(-2) = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \mathbf{E}_{31}(-3) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -3 & 0 & 1 \end{bmatrix},$$

$$\mathbf{E}_{12}(1) = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \mathbf{E}_{32}(-1) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}.$$

Iskoristite dane matrice i nađite \mathbf{A}^{-1} .

Odaberite jedan odgovor:

$$\mathbf{A}^{-1} = \left[\begin{array}{ccc} 0 & -1 & 1 \\ 0 & -1 & 2 \\ -1 & 1 & 1 \end{array} \right]$$

$$\mathbf{A}^{-1} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 1 & -1 \\ -1 & -2 & -1 \end{bmatrix}$$

$$egin{aligned} oldsymbol{\circ} & \mathbf{c}. \ & \mathbf{A}^{-1} = \left[egin{array}{ccc} 0 & 0 & 1 \ -1 & -1 & 1 \ 1 & 2 & 1 \end{array}
ight] \end{aligned}$$

Od. Ne znam

$$egin{aligned} oldsymbol{\circ} \ \mathbf{A}^{-1} = egin{bmatrix} 0 & 1 & -1 \ 0 & 1 & -2 \ 1 & -1 & -1 \end{bmatrix}$$

Vaš odgovor nije točan.

Rješenje:

Dobivamo
$$\mathbf{E}_{32}(-1)\mathbf{E}_{12}(1)\mathbf{E}_{31}(-3)\mathbf{E}_{21}(-2)\mathbf{P}_{13}\mathbf{A} = \mathbf{A}^{-1}\mathbf{A} = \mathbf{I}.$$

Dakle
$$\mathbf{A}^{-1} = \mathbf{E}_{32}(-1)\mathbf{E}_{12}(1)\mathbf{E}_{31}(-3)\mathbf{E}_{21}(-2)\mathbf{P}_{13} = \begin{bmatrix} 0 & 1 & -1 \\ 0 & 1 & -2 \\ 1 & -1 & -1 \end{bmatrix}.$$

Ispravan odgovor je:
$$\mathbf{A}^{-1} = \begin{bmatrix} 0 & 1 & -1 \\ 0 & 1 & -2 \\ 1 & -1 & -1 \end{bmatrix}$$

Točno

Broj bodova: 1,00 od 1,00

Neka je A regularna kvadratna matrica koja zadovoljava jednadžbu ${f I}+{f A}+{f A}^2={f 0}.$ Nađite ${f A}^{-1}.$

Odaberite jedan odgovor:

- \bigcirc a. $\mathbf{A}^{-1} = \mathbf{I} \mathbf{A}$
- O b. Ne znam
- \odot c. $\mathbf{A}^{-1} = -\mathbf{I} \mathbf{A}$
- $\bigcirc \ \text{d.} \ \mathbf{A}^{-1} = \mathbf{I} + \mathbf{A}$
- \bigcirc e. $\mathbf{A}^{-1} = -\mathbf{I} + \mathbf{A}$

Vaš odgovor je točan.

Rješenje:

$$\mathbf{I} + \mathbf{A} + \mathbf{A}^2 = \mathbf{0} \Rightarrow \mathbf{I} = -\mathbf{A} - \mathbf{A}^2 = \mathbf{A}(-\mathbf{I} - \mathbf{A}).$$

Kako je ${\bf A}$ regularna i ${\bf A}{\bf A}^{-1}={\bf I},$ mora biti ${\bf A}^{-1}=-{\bf I}-{\bf A}.$

Ispravan odgovor je: $\mathbf{A}^{-1} = -\mathbf{I} - \mathbf{A}$

Pitanje 12

Točno

Broj bodova: 1,00 od 1,00

Neka je ${\bf D}$ dijagonalna matrica reda n, s elementima na dijagonali $d_1,\ldots,d_n.$

Odgovorite je li tvrdnja točna ili netočna:

Matrica ${f D}$ je invertibilna ako je $d_1,\ldots,d_n \neq 0$ i tad je njezin inverz dijagonalna matrica s elementima na dijagonali d_1^{-1},\ldots,d_n^{-1} .

Odaberite jedan odgovor:

- Točno
- Netočno

Ispravan odgovor je 'Točno'.

Broj bodova: 0,00 od 1,00

Odgovorite je li tvrdnja točna ili netočna:

Postoje kvadratne matrice ${\bf A}$ i ${\bf B}$ koje nisu regularne, ali čiji je umnožak ${\bf AB}$ regularna matrica.

Odaberite jedan odgovor:

- Točno X
- Netočno

Rješenje:

$$\mathbf{A} \text{ i } \mathbf{B} \text{ nisu regularne} \Rightarrow \det \mathbf{A} = \det \mathbf{B} = 0, \text{ a } \mathbf{A} \mathbf{B} \text{ je regularna} \Rightarrow \det \mathbf{A} \mathbf{B} \neq 0.$$

Dakle
$$0=\det \mathbf{A}\det \mathbf{B}=\det \mathbf{AB}\neq 0$$
, što je kontradikcija.

Ispravan odgovor je 'Netočno'.

Pitanje 14

Točno

Broj bodova: 1,00 od 1,00

Za koje vrijednosti $x\in\mathbb{R}$ matrica $\mathbf{A}=egin{bmatrix}1&x&0\3&2&0\1&2&1\end{bmatrix}$ nije regularna?

Odaberite jedan odgovor:

- \bigcirc a. x=0
- Ob. Ne znam
- c. $x = \frac{2}{3}$
- \bigcirc d. x=-1
- \circ e. $x = \frac{1}{2}$

Vaš odgovor je točan.

Rješenje:

Računamo determinantu matrice ${\bf A}$ razvojem po trećem stupcu i dobivamo $\det {\bf A} = \begin{vmatrix} 1 & x & 0 \\ 3 & 2 & 0 \\ 1 & 2 & 1 \end{vmatrix} = 2 - 3x.$

Matrica ${f A}$ nije regularna za $2-3x=0 \Rightarrow x=rac{2}{3}.$

Ispravan odgovor je: $x=\frac{2}{3}$

Točno

Broj bodova: 1,00 od 1,00

Odredite rang matrice $\mathbf{A}=egin{bmatrix}1&2&3&1\\2&-1&3&4\\4&3&9&6\end{bmatrix}$.

Odgovor: 2

Rješenje: Rang je 2.

$$\begin{bmatrix} 1 & 2 & 3 & 1 \\ 2 & -1 & 3 & 4 \\ 4 & 3 & 9 & 6 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 & 1 \\ 0 & -5 & -3 & 2 \\ 0 & -5 & -3 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 & 1 \\ 0 & -5 & -3 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Ispravan odgovor je: 2

Pitanje 16

Točno

Broj bodova: 1,00 od 1,00

Odgovorite je li tvrdnja točna ili netočna:

Vektori
$$\begin{bmatrix} 1\\1\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\1\\0\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\0\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\0\\0\\1 \end{bmatrix}$$
 su linearno nezavisni?

Odaberite jedan odgovor:

Točno

Netočno

Rješenje: Linearno nezavisni su, jer je rang matrice $\begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$

$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \text{ jednak } 4.$$

Ispravan odgovor je 'Točno'.

Točno

Broj bodova: 1,00 od 1,00

Odredi inverz matrice $\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$

Odaberite jedan odgovor:

- oa. Ne znam

- O e. $\begin{bmatrix} -1 & 0 & 1 & 0 \\ 0 & 1 & 1 & -1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{bmatrix}$

Vaš odgovor je točan.

Ispravan odgovor je: $\begin{bmatrix} 1 & -1 & 1 & -1 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

Točno

Broj bodova: 1,00 od 1,00

Zadana je matrica
$$\mathbf{A} = egin{bmatrix} 0 & 1 & 1 \\ 0 & 2 & 2 \\ 0 & 3 & 4 \end{bmatrix}$$
 .

Nađite pripadajuću reduciranu matricu ${f R}$ i rang matrice ${f A}.$

Odaberite jedan odgovor:

$$\bigcirc$$
 a.
$$\mathbf{R} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \, \mathsf{rang}\,\mathsf{je}\,3$$

$$\ensuremath{ \odot}$$
 b.
$$\mathbf{R} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \text{, rang je 2}$$

O c. Ne znam

$$\bigcirc$$
 d.
$$\mathbf{R}=\begin{bmatrix}1&0&0\\0&1&0\\0&0&0\end{bmatrix}, \, \mathsf{rang}\,\mathsf{je}\,2$$

O e.
$$\mathbf{R} = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \, \mathsf{rang}\,\mathsf{je}\,2$$

Vaš odgovor je točan.

Ispravan odgovor je:
$$\mathbf{R}=egin{bmatrix}0&1&0\\0&0&1\\0&0&0\end{bmatrix}$$
 , rang je 2

Točno

Broj bodova: 1,00 od 1,00

Za koje vrijednosti $\lambda\in\mathbb{R}$ je matrica $\mathbf{A}=egin{bmatrix}1&\lambda&-1&2\\2&-1&\lambda&5\\1&10&-6&1\end{bmatrix}$ ranga $r(\mathbf{A})=3$?

Odaberite jedan odgovor:

- \odot a. $\lambda
 eq 3$
- O b. Ne znam
- \bigcirc c. $\lambda=3$
- \bigcirc d. $\lambda
 eq -3$
- \odot e. $\lambda=-3$

Vaš odgovor je točan.

Rješenje:

Provođenjem elementarnih transformacija dobijemo $\mathbf{R}=egin{bmatrix}1&0&0&0\\0&1&0&0\\0&0&3(3-\lambda)&-(3-\lambda)\end{bmatrix}$

Rang $r(\mathbf{A})=3$ ako $3-\lambda \neq 0 \Rightarrow \lambda \neq 3$.

Ispravan odgovor je: $\lambda \neq 3$

Pitanje 20

Nije odgovoreno

Broj bodova od 1,00

Nađite rang kvadratne matrice
$$\mathbf{A}=egin{bmatrix}1&2&\cdots&n\\2&3&\cdots&n+1\\ \vdots&\vdots&\ddots&\vdots\\n&n+1&\cdots&2n-1\end{bmatrix}$$
 reda $n.$

Odgovor:

Rješenje:

Od svakog retka, osim prvog, oduzmemo prethodni .

U slijedećem koraku oduzmimo drugi redak od trećeg, četvrtog,..., n -tog.

$$\begin{bmatrix} 1 & 2 & \cdots & n \\ 2 & 3 & \cdots & n+1 \\ \vdots & \vdots & \ddots & \vdots \\ n & n+1 & \cdots & 2n-1 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & \cdots & n \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & \cdots & n \\ 1 & 1 & \cdots & 1 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix}.$$

Dakle. $r(\mathbf{A}) = 2$.

Ispravan odgovor je: 2

◄ Predavanja 3. Rang i inverz

Prikaži...