Interaction Homme-Machine

Léa LAPORTE

Bâtiment Blaise Pascal - Bureau 501.323 lea.laporte@insa-lyon.fr

Année universitaire 2016/2017

Objectifs

Bases de l'Interaction Homme-Machine

- Connaître les concepts et principes de la conception d'interfaces
- Savoir mettre en oeuvre une technique de conception centrée utilisateur
- Savoir commenter un système interactif sur la base de critères ergonomiques
- Être capable de développer une interface mobile native (Androïd), en séparant les codes de l'interface et du noyau application

Description de l'enseignement

EC intégré dans l'UE Développement Logiciel

Séances

5 amphis d'1h30

3 séance de projets de 4h, en hexanôme

Évaluation

DS en Janvier

Rapport de projet

Soutenance de Projet

Questionnaire Moodle

Planning des cours

14 Novembre Introduction à l'IHM + Présentation du projet

Léa Laporte

18 Novembre Conception des IHM - Partie I

Aurélien Tabard

5 Décembre Ergonomie (Poly à lire avant la séance)

Léa Laporte

6 Décembre Conception des IHM - Partie II

Léa Laporte

12 Décembre Recherche et IHM innovantes

Audrey Serna

Préparation et déroulement du projet

14 Novembre Présentation du projet en cours

18 Novembre Cours d'A. Tabard sur les phases de capture des besoins -> Nécessaire pour préparer le projet

18 novembre Collecte des besoins (travail personnel, par groupe)
 décembre Début d'analyse des données collectées

13 décembre Début des projets

Janvier Soutenance des projets

Interfaces Homme-Machine

Introduction à la communication hommemachine

- 1. Problématique
- 2. Enjeux de la conception des IHM
- 3. Modèles psychologiques

- 1. Problématique
- 2. Enjeux de la conception d'IHM
- 3. Modèles psychologiques

Communication entre individus

- 1. Problématique
- 2. Enjeux de la conception d'IHM
- 3. Modèles psychologiques

Communication entre individus

Nécessité de passer par des représentations

Gestes, mots, sons, images, ... supposées connus de l'autre Chacun utilise son code pour émettre et décode ce qu'il reçoit

- 1. Problématique
- 2. Enjeux de la conception d'IHM
- 3. Modèles psychologiques

Vers la Communication Homme-Machine

A retenir sur la communication entre individus

- La communication n'est jamais directe mais passe toujours par une représentation
- Il n'existe ni codage ni décodage universel
- Toute représentation dépend du référentiel

S'applique aussi à la communication homme-machine

Comment faire communiquer efficacement l'homme et la machine ?

Comment faire communiquer de l'humain et du non humain?

- 1. Problématique
- 2. Enjeux de la conception d'IHM
- 3. Modèles psychologiques

Interaction Homme Machine

Interface Dispositif technique permettant de

communiquer/interagir avec le système

Interaction Ensemble d'actions mutuelles entre

l'utilisateur et le système

**Interaction Homme Machine **

Domaine de l'informatique qui vise à assurer une bonne adéquation entre système et besoin

utilisateur

Sigle « IHM » souvent utilisé pour « Interface Homme Machine »

- 1. Problématique
- 2. Enjeux de la conception d'IHM
- 3. Modèles psychologiques

Principe de l'interaction homme-machine

Interface permet l'interaction entre utilisateur et système

C'est la seule chose que l'utilisateur voit de la machine / du logiciel

- 1. Problématique
- 2. Enjeux de la conception d'IHM
- 3. Modèles psychologiques

Principe de l'interaction homme-machine

Interaction via l'interface et les dispositifs d'entrée/sortie

- Perception et compréhension de l'état du système
- Modification et action sur l'état du système

- 1. Problématique
- 2. Enjeux de la conception d'IHM
- 3. Modèles psychologiques

Enjeux techniques et scientifiques

Du point de vue scientifique

- Concevoir des systèmes informatiques prenant en compte l'humain
- Comprendre et modéliser les interactions entre l'humain et le système
- Pour concevoir des systèmes adaptés aux besoins des utilisateurs

Du point de vue technique

- Augmenter les performances du couple humain/système informatique
- Concevoir des systèmes
 - utilisables : confortables et faciles à utiliser, faciles à apprendre
 - utiles : permettent à l'utilisateur d'atteindre ses objectifs
 - utilisés !!!

- 1. Problématique
- 2. Enjeux de la conception d'IHM
- 3. Modèles psychologiques

Acceptabilité, Utilité, Utilisabilité (Nielsen, 1993)

- 1. Problématique
- 2. Enjeux de la conception d'IHM
- 3. Modèles psychologiques

Utilité et Utilisabilité

Utilité

Adéquation entre système et besoin de l'utilisateur

Est-ce que le système permet à l'utilisateur de faire ce

dont il a besoin ?

Utilisabilité

Adéquation entre système, caractéristiques des utilisateurs et contexte d'usage

« Degré selon lequel un produit peut être **utilisé** par des utilisateurs identifiés pour atteindre des **buts** définis avec **efficacité**, **efficience** et **satisfaction** » (ISO 9241)

- 1. Problématique
- 2. Enjeux de la conception d'IHM
- 3. Modèles psychologiques

Mesure / évaluation de l'utilisabilité

Facilité d'apprentissage

Le système est-il facile à prendre en main?

- → Combien de temps faut-il à un débutant pour comprendre le fonctionnement du système ?
- → Combien de services sont mis en oeuvre par un utilisateur après un temps raisonnable d'utilisation ?

Efficacité à l'usage

Le système permet-il à l'utilisateur de réaliser son travail efficacement ?

→ Combien de temps faut-il à l'utilisateur pour réaliser sa tâche ?

- 1. Problématique
- 2. Enjeux de la conception d'IHM
- 3. Modèles psychologiques

Mesure / évaluation de l'utilisabilité

Facilité d'apprentissage

Efficacité à l'usage

Résistance aux erreurs

Le système permet-il à l'utilisateur d'éviter les erreurs, notamment les erreurs critiques ?

→ Combien d'erreurs / erreurs critiques fait l'utilisateur lors de l'exécution d'une tâche ?

- 1. Problématique
- 2. Enjeux de la conception d'IHM
- 3. Modèles psychologiques

Contexte d'usage et système interactif

Environnement

Le contexte d'usage peut avoir une influence sur notre façon d'utiliser le système

- 1. Problématique
- 2. Enjeux de la conception d'IHM
- 3. Modèles psychologiques

Contexte d'usage et système interactif - Exemple

Bornes interactives dans les gares/aéroports VS sites web/applications

- 1. Problématique
- 2. Enjeux de la conception d'IHM
- 3. Modèles psychologiques

Contexte d'usage et système interactif

Dans quelle mesure le contexte d'usage mobile peut-t-il avoir une influence sur un système interactif

- 1. Problématique
- 2. Enjeux de la conception d'IHM
- 3. Modèles psychologiques

Une approche pluridisciplinaire

Comprendre l'humain

Sciences cognitives

Developper les fonctionnalités Assurer l'interaction **Informatique**Génie logiciel - Ergonomie

Soigner les graphismes et le design

Arts et design

- 1. Problématique
- 2. Enjeux de la conception d'IHM
- 3. Modèles psychologiques

IHM et ergonomie trop souvent au second plan

Aspect technique : souvent le seul déterminant

Spécification et conception de l'IHM laissées au développeur

Développeur ≠ **Ergonome** (en souvent)

- Aspect graphique souvent négligé
- Confusion entre ergonome et graphiste / designer
- Méconnaissance des règles ergonomiques
- Méconnaissance ou mauvaise appréciation des situations d'usage, de la tâche
- Utilisateur final absent du processus

- 1. Problématique
- 2. Enjeux de la conception d'IHM
- 3. Modèles psychologiques

Pourquoi des modèles psychologiques des utilisateurs ?

Comprendre et modéliser le comportement de l'utilisateur

- → Modèles théoriques : base de réflexion
- → Modèles de performance : indicateurs quantitatifs
- ✓ Aide le raisonnement et la conception
- ✓ Permet d'expliquer/ justifier les choix de conceptions
- ✓ Peut aider à l'évaluation du système conçu
- ✓ Globalement des aides/guides pour le concepteur

- 1. Problématique
- 2. Enjeux de la conception d'IHM
- 3. Modèles psychologiques

Le Modèle de Processeur Humain (1983)

Humain = système de traitement de l'information régi par des règles

Composé de 3 sous-systèmes interdépendants

Système sensoriel ↔ Perception

Système cognitif ↔ Mémorisation

Système moteur ↔ Action

- 1. Problématique
- 2. Enjeux de la conception d'IHM
- 3. Modèles psychologiques

Le Modèle de Processeur Humain (1983)

Système sensoriel (perception)

- 5 sous-systèmes ↔ 5 sens (vue, ouïe, touché, odorat, goût)
- Spécialisés dans le traitement d'une classe de stimuli

Mémoire sensorielle

Stocke des infos physiques Très brève

Capacité : 17 symboles Persistance : 200 ms

Processeur sensoriel

Temps de cycle : 100 ms Transfert l'info du stimuli en mémoire

Sons, paroles, ...
Persistance: 1500 ms

- 1. Problématique
- 2. Enjeux de la conception d'IHM
- 3. Modèles psychologiques

Le Modèle de Processeur Humain (1983)

De la perception vers la mémorisation

- 1. Problématique
- 2. Enjeux de la conception d'IHM
- 3. Modèles psychologiques

Le Modèle de Processeur Humain (1983)

Système cognitif

- 1. Problématique
- 2. Enjeux de la conception d'IHM
- 3. Modèles psychologiques

Le Modèle de Processeur Humain (1983)

Système cognitif

Mémoire court terme (MCT)

- Mémoire de travail
- Faible capacité : 5-9 mnèmes
- Oublie en 20-30 secondes

Information (mnème) issue de la mémoire long terme

Mnème = unité cognitive

- Mémorisation par répétition
- Dépend de l'attention
- Utilisée pour l'apprentissage dans les IHM

- 1. Problématique
- 2. Enjeux de la conception d'IHM
- 3. Modèles psychologiques

Le Modèle de Processeur Humain (1983)

Système cognitif

Mémoire long terme (MLT)

- Mémoire centrale
- Contient l'information de masse
- Information représentée sous la forme d'un réseau de mnèmes

Capacité et persistance infinies!

- Mémoire à long terme peut être lue et modifiée
- Ajout de nouveaux mnèmes et associations toujours possibles
- Mnème n'est jamais effacé mais peut devenir inaccessible

- 1. Problématique
- 2. Enjeux de la conception d'IHM
- 3. Modèles psychologiques

Le Modèle de Processeur Humain (1983)

Système cognitif

Mémorisation dans la mémoire à long terme

- Ajout / modification = mnème + associations avec autres mnèmes
- Stockage de la signification et des inférences pour le mnème
- Mêmes associations pour deux mnèmes → interférence

Donner du sens et structurer l'info = bonne mémorisation

IHM: apprendre à structurer pour favoriser l'apprentissage et améliorer l'utilisation

La mémoire à long terme est structurée en plusieurs types

- 1. Problématique
- 2. Enjeux de la conception d'IHM
- 3. Modèles psychologiques

Le Modèle de Processeur Humain (1983)

Système cognitif

Les types de la mémoire à long terme

- 1. Problématique
- 2. Enjeux de la conception d'IHM
- 3. Modèles psychologiques

Le Modèle de Processeur Humain (1983)

Système cognitif

Fonctionnement du processeur cognitif

Cycle Reconnaissance-Action

Reconnaissance

Détermine les actions de la MLT associées aux mnèmes de la MCT

Action

Actions exécutées avec modification du contenu de la MCT

Durée cycle de base : 70ms

- 1. Problématique
- 2. Enjeux de la conception d'IHM
- 3. Modèles psychologiques

Le Modèle de Processeur Humain (1983)

Système cognitif

- 1. Problématique
- 2. Enjeux de la conception d'IHM
- 3. Modèles psychologiques

Le Modèle de Processeur Humain (1983)

Humain = système de traitement de l'information régi par des règles

Composé de 3 sous-systèmes interdépendants

Système sensoriel ↔ Perception

Système cognitif ↔ Mémorisation

Système moteur ↔ Action

- 1. Problématique
- 2. Enjeux de la conception d'IHM
- 3. Modèles psychologiques

Le Modèle de Processeur Humain (1983)

Système moteur

- Responsable du traitement des mouvements
- IHM : manipulation des unités physiques de commande (clavier, souris, écran tactile, ...)

Ex: mouvement de la main

micro-mouvements: 1.5 m/s cycle de 70 ms

Loi de Fitts

Le temps nécessaire pour placer sa main sur une cible dépend de la précision requise

$$T = a + b.\log_2(2D/L)$$

où D = distance à parcourir L = largeur de la cible a, b = constantes

- 1. Problématique
- 2. Enjeux de la conception d'IHM
- 3. Modèles psychologiques

Le Modèle de Processeur Humain (1983)

Visualisation de la loi de Fitts

http://www.simonwallner.at/ext/fitts/

Cliquez sur le rond qui apparaît en rouge

fig. 2: Time in ms over effective ID. Only parameter combinations (distance and width) with at least 3 samples are shown.

- 1. Problématique
- 2. Enjeux de la conception d'IHM
- 3. Modèles psychologiques

Le Modèle de Processeur Humain (1983)

Visualisation de la loi de Fitts
http://husk.eecs.berkeley.edu/projects/fitts/

Cliquez sur la cible verte

- 1. Problématique
- 2. Enjeux de la conception d'IHM
- 3. Modèles psychologiques

Le Modèle de Processeur Humain (1983)

Apports et utilité pour les IHM

- + Utilise le vocabulaire de l'informaticien
- + Précise les notions de perception, cognition, mémorisation et action
- + Globalement, fournit des éléments de réflexion pour l'ergonomie des IHM
- + Met l'accent sur la mémorisation
 - Trois mémoires fortement liées
 - Environnement faisant intervenir les sens favorise la mémorisation à court terme
 - Répétition = passage de la MCT à la MLT
 - Donner du sens = aider à la mémorisation
 - Donner du sens = structurer l'information
 - En IHM, beaucoup d'actions utilisent la mémoire court terme
 - Modèle processeur Humain : pas une méthode de conception d'IHM !!!!

- 1. Problématique
- 2. Enjeux de la conception d'IHM
- 3. Modèles psychologiques

Modèle de Rasmussen et théorie de l'action

Introduction

Modèle de processeur humain = cadre théorique pour la compréhension de mécanismes généraux

Pas description, d'explication ou de modélisation du comportement utilisateur

MODÈLE DE RASMUSSEN

THÉORIE DE L'ACTION

- 1. Problématique
- 2. Enjeux de la conception d'IHM
- 3. Modèles psychologiques

Modèle de la connaissance de Rasmussen

BUT

Distinguer les différents niveaux de comportements standards d'un utilisateur Caractériser le type d'erreur possible et leur gravité

Dans quelle situation comportementale se trouve l'individu lors de la tâche ? Quelle est le risque encouru lors d'une erreur ?

Segmentation du comportement en 3 niveaux

Risque associé lors de l'apparition d'une erreur

- 1. Problématique
- 2. Enjeux de la conception d'IHM
- 3. Modèles psychologiques

Le modèle de la connaissance de Rasmussen (1986)

Skills - Rules - Knowledge (SKR)

Trois niveaux de comportements

- Basé sur les réflexes ou habiletés (skills)
 Dominant
 Risque : erreur de routine
- Basé sur les règles (rules)
 Risque : règle inadapté à la situation
- Basé sur les connaissances (knowledge)
 Aucune règle pour résoudre le problème
 Risque : solution non trouvée, panique

- I. Problématique
- 2. Enjeux de la conception d'IHM
- 3. Modèles psychologiques

Le modèle de la connaissance de Rasmussen (1986)

- I. Problématique
- 2. Enjeux de la conception d'IHM
- 3. Modèles psychologiques

Le modèle de la connaissance de Rasmussen (1986)

- 1. Problématique
- 2. Enjeux de la conception d'IHM
- 3. Modèles psychologiques

Théorie de l'action

BUT

Analyser les processus psychologiques conduisant au comportement

Pourquoi et comment l'individu est-il arrivé à avoir ce comportement ?

Explication et modélisation du comportement utilisateur

Description de la façon de réaliser une tâche

- 1. Problématique
- 2. Enjeux de la conception d'IHM
- 3. Modèles psychologiques

La théorie de l'action (1986)

Principes directeurs

Modèle conceptuel

L'humain utilise des modèles pour représenter son environnement et définir son comportement

Réalisation cyclique des tâches

L'humain décompose ses actions selon un cycle constitué de 7 étapes

- 1. Problématique
- 2. Enjeux de la conception d'IHM
- 3. Modèles psychologiques

La théorie de l'action (1986)

Principe directeur : le modèle conceptuel

Modèle conceptuel = Représentation mentale

- Dépend
 - des connaissances acquises
 - de la compréhension de la situation présente
- Évolue avec l'expérience
- Est par nature incomplet et imprécis

Il guide le comportement

- 1. Problématique
- 2. Enjeux de la conception d'IHM
- 3. Modèles psychologiques

La théorie de l'action (1986)

Deux modèles conceptuels en IHM

Modèle de l'utilisateur

Représentation mentale de l'outil élaborée par l'utilisateur

Résulte de l'interprétation de l'image

Importance primordiale de l'image donc de l'IHM

NB : Pour l'utilisateur, logiciel = interface. Se moque de l'architecture interne, de la technique

Modèle de conception

Modèle de conception de l'outil

Résulte de l'étude des besoins et capacités des utilisateurs

Rôle crucial du concepteur pour la qualité de l'IHM

- 1. Problématique
- 2. Enjeux de la conception d'IHM
- 3. Modèles psychologiques

La théorie de l'action (1986)

Le rôle du concepteur

Définir une interface conduisant l'utilisateur à construire un modèle conceptuel compatible avec celui de l'outil

Interface doit être explicite, cohérente et intelligible

Modélisation du comportement de l'utilisateur Modélisation et structuration de l'activité

Adaptation de l'IHM à l'utilisateur

Création de profils utilisateurs

Tâche difficile

- 1. Problématique
- 2. Enjeux de la conception d'IHM
- 3. Modèles psychologiques

La théorie de l'action (1986)

Principe directeur : Modélisation cyclique de l'activité

- I. Problématique
- 2. Enjeux de la conception d'IHM
- 3. Modèles psychologiques

La théorie de l'action (1986)

La notion de distance

Distance = dissimilitude des représentations

- 1. Problématique
- 2. Enjeux de la conception d'IHM
- 3. Modèles psychologiques

La théorie de l'action (1986)

La notion de distance

Distance = effort de mise en correspondance

Doit être minimale pour l'utilisateur sinon risque de rejet

- I. Problématique
- 2. Enjeux de la conception d'IHM
- 3. Modèles psychologiques

La théorie de l'action (1986)

Structure hiérarchique de l'activité

Activité = ensemble de tâches pouvant être décomposées en sous-tâches

- 1. Problématique
- 2. Enjeux de la conception d'IHM
- 3. Modèles psychologiques

La théorie de l'action (1986)

Structure hiérarchique de l'activité : notation CTT

- CTT = ConcurTaskTree
- Conçue pour le développement d'applications interactives
- En IHM : description de tâches et activités logiques que doit réaliser l'application pour atteindre les objectifs utilisateurs
- Liée à l'UML

Source: http://www.w3.org/2012/02/ctt/

- 1. Problématique
- 2. Enjeux de la conception d'IHM
- 3. Modèles psychologiques

À retenir sur les modèles des sciences cognitives

Permettent d'expliquer et de modéliser :

- les **performances** sensorielles et cognitives de l'utilisateur
- son comportement
- le cycle des actions
- la hiérarchie des activités

Utiles du point de vue de la **compréhension** et de la **quantification** des phénomènes

MAIS

Pas de méthodes de conception!

Guides pour la **réduction de l'écart** entre le système **perçu** et le système **réel**

Conception centrée utilisateur

Définition

« Manière de concevoir les systèmes interactifs, ayant pour objet spécifique de rendre les systèmes utilisables »

ISO 9241-210

Démarche s'intégrant dans d'autres processus de conception

4 principes fondamentaux

- Participation active des utilisateurs
- Répartition appropriée des fonctions entre utilisateur et système
- Itération des solutions de conception
- Conception multidisciplinaire

Conception centrée utilisateur

Cycle de conception centrée utilisateur (ISO 9241-210)

Planning des prochaines séance

14 Novembre Introduction à l'IHM + Présentation du projet

Léa Laporte

18 Novembre Conception des IHM - Partie I

Aurélien Tabard

5 Décembre Ergonomie (Poly à lire avant la séance)

Léa Laporte

6 Décembre Conception des IHM - Partie II

Léa Laporte

12 Décembre Recherche et IHM innovantes

Audrey Serna

Planning deux prochaines séances

18 Novembre Conception des IHM - Partie I Aurélien Tabard

- Conception centrée utilisateur
- Comprendre et spécifier le contexte d'utilisation
- Comprendre et spécifier les exigences utilisateurs
- Analyse des besoins
- Modélisation de l'utilisateur, de l'activité, du contexte d'usage, ...
- Entretiens, focus groupes, questionnaires, personas, scénarios, créativité, ...

Planning deux prochaines séances

5 Décembre Ergonomie Léa Laporte

- Critères, principes et recommandations ergonomiques pour la conception d'IHM
- Guidelines
- « Amphi inversé »
 - → Ressources disponibles sur Moodle à lire avant la séance
 - → Pendant la séance : réponse aux questions, quizz, compléments