Question 1: (a) Prove that the order of a permutation of a finite set written in disjoint cycle form is the least common multiple of the lengths of the cycles.

- Let σ be a permutation of a finite set S.
- Let σ be written as a product of disjoint cycles: $\sigma = c_1 c_2 \dots c_k$.
- Since the cycles are disjoint, they commute with each other.
- Let the length of the cycle c_i be l_i . This means that the order of the cycle c_i is l_i .
- For any integer m, $\sigma^m = (c_1 c_2 \dots c_k)^m = c_1^m c_2^m \dots c_k^m$.
- For σ^m to be the identity permutation, each c_i^m must be the identity permutation.
- This implies that m must be a multiple of the order of each cycle c_i , i.e., m must be a multiple of l_i for all i = 1, 2, ..., k.
- The smallest positive integer m for which this holds is the least common multiple (LCM) of the lengths of the cycles.
- Therefore, the order of σ is $lcm(l_1, l_2, ..., l_k)$.
- (b) (i) Let S_3 denote the symmetric group of degree n. In S_3 , find elements α and β such that $|\alpha| = 2$, $|\beta| = 2$ and $|\alpha\beta| = 3$.
 - In S_3 , elements of order 2 are transpositions (cycles of length 2).
 - Let $\alpha = (1 \ 2)$. Its order is 2.
 - Let $\beta = (1 \ 3)$. Its order is 2.
 - Now, let's find the product $\alpha\beta$: $\alpha\beta = (1\ 2)(1\ 3)$. To compute this, start with 1: $1\stackrel{3}{\rightarrow} 3 \rightarrow 3$. So 1 goes to 3. Now 3: $3\stackrel{1}{\rightarrow} 1\stackrel{2}{\rightarrow} 2$. So 3 goes to 2. Now 2: $2\rightarrow 2\stackrel{1}{\rightarrow} 1$. So 2 goes to 1.
 - Thus, $\alpha\beta = (1\ 3\ 2)$.

- The order of (1 3 2) is 3, which is the length of the cycle.
- Therefore, $\alpha = (1\ 2)$ and $\beta = (1\ 3)$ satisfy the given conditions.
- (ii) Let $\beta \in S_7$ and $\beta^4 = (2 \ 1 \ 4 \ 3 \ 5 \ 6 \ 7)$. Then find β .
 - Let $\gamma = (2\ 1\ 4\ 3\ 5\ 6\ 7)$.
 - The length of γ is 7. So, $|\gamma| = 7$.
 - We are given $\beta^4 = \gamma$.
 - Since the order of γ is 7, we know that $(\beta^4)^7 = \beta^{28} = e$ (identity).
 - Also, since $\beta^4 = \gamma$, then $\beta = \gamma^k$ for some integer k such that $4k \equiv 1 \pmod{7}$.
 - We need to find the inverse of 4 modulo 7. $4 \times 1 = 4 \pmod{7}$ $4 \times 2 = 8 \equiv 1 \pmod{7}$

unive

- So, k = 2.
- Therefore, $\beta = \gamma^2$.
- Now, we compute $\gamma^2 = (2\ 1\ 4\ 3\ 5\ 6\ 7)^2$. $2 \xrightarrow{1} 1 \xrightarrow{4} 4\ 1 \xrightarrow{4} 4 \xrightarrow{3} 3$ $4 \xrightarrow{3} 3 \xrightarrow{5} 5 3 \xrightarrow{5} 5 \xrightarrow{6} 6 5 \xrightarrow{6} 6 \xrightarrow{7} 7 \xrightarrow{7} 7 \xrightarrow{2} 2 \xrightarrow{7} 2 \xrightarrow{1} 1$
- So, $\beta = (2 4 5 7 1 3 6)$.
- (c) (i) Give two reasons to show that the set of odd permutations in S_n is not a subgroup of S_n .
 - Reason 1: A subgroup must contain the identity element. The identity permutation is an even permutation (it can be written as a product of an even number of transpositions, e.g., zero transpositions). The set of odd permutations does not contain the identity element.
 - Reason 2: A subgroup must be closed under the group operation. The product of two odd permutations is an even permutation. For example, if σ and τ are odd permutations, then $sgn(\sigma) = -1$ and

- $sgn(\tau) = -1$. Then $sgn(\sigma\tau) = sgn(\sigma)sgn(\tau) = (-1)(-1) = 1$. Since the product of two odd permutations is an even permutation, the set of odd permutations is not closed under multiplication.
- (ii) Define even and odd permutations and show that the set of even permutations in S_n is a subgroup of S_n .
 - Definition of Even and Odd Permutations:
 - o A permutation $\sigma \in S_n$ is called an **even permutation** if it can be expressed as a product of an even number of transpositions.
 - o A permutation $\sigma \in S_n$ is called an **odd permutation** if it can be expressed as a product of an odd number of transpositions.
 - Proof that the set of even permutations in S_n is a subgroup of S_n : Let A_n be the set of all even permutations in S_n . We need to show that A_n satisfies the three subgroup criteria:
 - a. **Non-empty:** The identity permutation e can be written as a product of zero transpositions (which is an even number). Thus, $e \in A_n$, so A_n is non-empty.
 - b. **Closure:** Let $\sigma, \tau \in A_n$. This means σ can be written as a product of an even number of transpositions, say k transpositions, and τ can be written as a product of an even number of transpositions, say m transpositions. Then the product $\sigma\tau$ can be written as a product of k+m transpositions. Since k and m are both even, k+m is also even. Therefore, $\sigma\tau$ is an even permutation, so $\sigma\tau\in A_n$.
 - c. **Existence of Inverses:** Let $\sigma \in A_n$. This means $\sigma = \tau_1 \tau_2 \dots \tau_k$ where k is an even number and τ_i are transpositions. The inverse of σ is $\sigma^{-1} = (\tau_1 \tau_2 \dots \tau_k)^{-1} = \tau_k^{-1} \dots \tau_2^{-1} \tau_1^{-1}$. Since each transposition is its own inverse $(\tau_i^{-1} = \tau_i)$, we have $\sigma^{-1} = \tau_k \dots \tau_2 \tau_1$. This is also a product of k transpositions. Since k is even, σ^{-1} is also an even permutation. Therefore, $\sigma^{-1} \in A_n$.

 \circ Since A_n satisfies all three conditions, it is a subgroup of S_n . This subgroup is called the alternating group of degree n.

Question 2: (a) (i) Let a be an element in a group G such that |a| = 15. Find all left cosets of $\langle a^3 \rangle$ in $\langle a \rangle$.

- Given |a| = 15. The cyclic group generated by a is $\langle a \rangle = \{e, a, a^2, ..., a^{14}\}$. The order of $\langle a \rangle$ is 15.
- Let $H = \langle a^3 \rangle$. The elements of H are powers of a^3 . Since |a| = 15, the order of a^3 is $15/\gcd(3,15) = 15/3 = 5$. So, $H = \{(a^3)^0, (a^3)^1, (a^3)^2, (a^3)^3, (a^3)^4\} = \{e, a^3, a^6, a^9, a^{12}\}$.
- The index of *H* in $\langle a \rangle$ is $[\langle a \rangle: H] = |\langle a \rangle|/|H| = 15/5 = 3$.
- This means there will be 3 distinct left cosets.
- The cosets are of the form gH where $g \in \langle a \rangle$.
- The first coset is $eH = H = \{e, a^3, a^6, a^9, a^{12}\}.$
- To find the next coset, pick an element from $\langle a \rangle$ not in H, for example, $a.\ aH = \{a \cdot e, a \cdot a^3, a \cdot a^6, a \cdot a^9, a \cdot a^{12}\} = \{a, a^4, a^7, a^{10}, a^{13}\}.$
- To find the third coset, pick an element from $\langle a \rangle$ not in H or aH, for example, a^2 . $a^2H = \{a^2 \cdot e, a^2 \cdot a^3, a^2 \cdot a^6, a^2 \cdot a^9, a^2 \cdot a^{12}\} = \{a^2, a^5, a^8, a^{11}, a^{14}\}.$
- We have found 3 distinct cosets, which matches the index. These are all the left cosets of $\langle a^3 \rangle$ in $\langle a \rangle$.
- The left cosets are:

$$OH = \{e, a^3, a^6, a^9, a^{12}\}$$

$$\circ$$
 $aH = \{a, a^4, a^7, a^{10}, a^{13}\}$

$$a^2H = \{a^2, a^5, a^8, a^{11}, a^{14}\}$$

(ii) State and prove Lagrange's theorem.

 Lagrange's Theorem: If G is a finite group and H is a subgroup of G, then the order of H divides the order of G. Furthermore, the number of distinct left (or right) cosets of H in G is |G|/|H|.

Proof:

- d. Let G be a finite group and H be a subgroup of G.
- e. Consider the set of all distinct left cosets of H in G. Let these be $a_1H, a_2H, ..., a_kH$, where k is the index of H in G, denoted by [G:H].
- f. We know that the set of all left cosets of *H* in *G* forms a partition of *G*. This means that every element of *G* belongs to exactly one left coset.
- g. We also know that for any $a \in G$, the mapping $h \mapsto ah$ is a bijection from H to aH. This implies that every left coset has the same number of elements as H. That is, for any i, $|a_iH| = |H|$.
- h. Since the distinct left cosets partition G, the sum of the number of elements in each distinct coset must be equal to the total number of elements in G.
- i. Therefore, $|G| = |a_1H| + |a_2H| + \cdots + |a_kH|$.
- j. Since each coset has |H| elements, we have $|G| = |H| + |H| + \cdots + |H|$ (k times).
- k. So, $|G| = k \cdot |H|$.
- I. This implies that k = |G|/|H|.
- m. Since k is an integer (the number of distinct cosets), |H| must divide |G|.
- (b) Suppose that G is a group with more than one element and G has no proper, non-trivial subgroups. Prove that |G| is prime.
 - Let G be a group with more than one element, so |G| > 1.

- Assume G has no proper, non-trivial subgroups. This means the only subgroups of G are the trivial subgroup $\{e\}$ and G itself.
- Let a be any element in G such that $a \neq e$.
- Consider the cyclic subgroup generated by a, denoted by $\langle a \rangle$.
- Since $a \neq e$, $\langle a \rangle$ is not the trivial subgroup $\{e\}$.
- Since G has no proper, non-trivial subgroups, $\langle a \rangle$ must be equal to G.
- This means that *G* is a cyclic group generated by any non-identity element *a*.
- Now, we need to show that the order of G (which is the order of a)
 must be a prime number.
- Assume, for the sake of contradiction, that |G| is not prime. Since
 |G| > 1, it must be either 1 (which contradicts |G| > 1) or a composite number.
- If |G| is a composite number, then |G| = mn for some integers m, n > 1.
- Since $G = \langle a \rangle$ and |G| = mn, the order of a is mn.
- Consider the element a^m .
- The order of a^m is $|a|/\gcd(m,|a|) = mn/\gcd(m,mn) = mn/m = n$.
- Since n > 1, $a^m \neq e$.
- Consider the subgroup $\langle a^m \rangle$. Its order is n.
- Since n > 1, $\langle a^m \rangle$ is not the trivial subgroup.
- Since m > 1, n = |G|/m < |G|, so $\langle a^m \rangle$ is a proper subgroup of G.
- Thus, $\langle a^m \rangle$ is a proper, non-trivial subgroup of G.

- This contradicts our initial assumption that G has no proper, nontrivial subgroups.
- Therefore, our assumption that |G| is not prime must be false.
- Hence, |G| must be a prime number.
- (c) Let C be the group of non-zero complex numbers under multiplication and let $H = \{a + bi \in C \mid a^2 + b^2 = 1\}$. Give a geometrical description of the coset (3 + 4i)H. Give a geometrical description of the coset (c + di)H.
 - Let C* be the group of non-zero complex numbers under multiplication.
 - Let $H = \{a + bi \in C^* \mid a^2 + b^2 = 1\}$. Geometrically, H represents the set of all complex numbers with modulus 1. This is the unit circle centered at the origin in the complex plane.
 - Geometrical description of the coset (3 + 4i)H:
 - A coset (3 + 4i)H consists of all elements of the form (3 + 4i)z, where $z \in H$.
 - o Let z = x + yi with $x^2 + y^2 = 1$.
 - o The modulus of (3 + 4i) is $|3 + 4i| = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5$.
 - When we multiply two complex numbers, their moduli multiply and their arguments add.
 - So, for any w = (3 + 4i)z, we have $|w| = |3 + 4i| \cdot |z|$.
 - o Since |z| = 1, we have $|w| = 5 \cdot 1 = 5$.
 - \circ Therefore, every complex number in the coset (3 + 4i)H has a modulus of 5.

O Geometrically, the coset (3 + 4i)H represents a circle centered at the origin with a radius of 5. This circle passes through the point 3 + 4i.

Geometrical description of the coset (c + di)H:

- Let c + di be any non-zero complex number.
- o Let its modulus be $r = |c + di| = \sqrt{c^2 + d^2}$. Since $c + di \neq 0$, r > 0.
- A coset (c + di)H consists of all elements of the form (c + di)z, where $z \in H$.
- o For any w = (c + di)z, we have $|w| = |c + di| \cdot |z|$.
- o Since |z| = 1, we have $|w| = r \cdot 1 = r$.
- Therefore, every complex number in the coset (c + di)H has a modulus of $r = \sqrt{c^2 + d^2}$.
- o Geometrically, the coset (c + di)H represents a circle centered at the origin with a radius of $r = \sqrt{c^2 + d^2}$. This circle passes through the point c + di.

Question 3: (a) (i) Let G be a group and H be its subgroup. Prove that if H has index 2 in G, then H is normal in G.

Proof:

- \circ Let *G* be a group and *H* be a subgroup of *G*.
- \circ Given that the index of *H* in *G*, denoted by [G:H], is 2.
- This means there are exactly two distinct left cosets of H in G,
 and exactly two distinct right cosets of H in G.
- One of these left cosets is eH = H.
- One of these right cosets is He = H.

- \circ Since the cosets partition G, the union of the two left cosets must be G, and the union of the two right cosets must be G.
- So, $G = H \cup xH$ for some $x \in G$ and $x \notin H$.
- And $G = H \cup Hy$ for some $y \in G$ and $y \notin H$.
- Since $x \notin H$, xH must be the other left coset, which is $G \setminus H$.
- Similarly, since $y \notin H$, Hy must be the other right coset, which is $G \setminus H$.
- o Therefore, $xH = G \setminus H$ and $Hy = G \setminus H$.
- This implies that xH = Hy.
- Now, we need to show that gH = Hg for all $g \in G$ to prove that H is normal.
 - Case 1: If $g \in H$.
 - Then gH = H (since H is a subgroup).
 - And Hg = H (since H is a subgroup).
 - So, gH = Hg.
 - Case 2: If $g \notin H$.
 - Since there are only two left cosets, gH must be the other coset, i.e., $gH = G \backslash H$.
 - Similarly, since there are only two right cosets, Hg must be the other coset, i.e., $Hg = G \setminus H$.
 - Therefore, gH = Hg.
- Since gH = Hg for all $g \in G$, H is a normal subgroup of G.
- (ii) If a group G has a unique subgroup H of some finite order, then show that H is normal in G.

Proof:

- Let G be a group and H be a unique subgroup of G of some finite order, say n = |H|.
- To prove that H is normal in G, we need to show that for every $g \in G$, $gHg^{-1} = H$.
- Consider the set $gHg^{-1} = \{ghg^{-1} \mid h \in H\}$ for an arbitrary $g \in G$.
- We know that gHg^{-1} is a subgroup of G. This is a standard result:
 - Identity: $geg^{-1} = e \in gHg^{-1}$.
 - Closure: Let $x, y \in gHg^{-1}$. Then $x = gh_1g^{-1}$ and $y = gh_2g^{-1}$ for some $h_1, h_2 \in H$. $xy = (gh_1g^{-1})(gh_2g^{-1}) = g(h_1h_2)g^{-1}$. Since $h_1h_2 \in H$, $xy \in gHg^{-1}$.
 - Inverse: Let $x \in gHg^{-1}$. Then $x = ghg^{-1}$ for some $h \in H$. $x^{-1} = (ghg^{-1})^{-1} = (g^{-1})^{-1}h^{-1}g^{-1} = gh^{-1}g^{-1}$. Since $h^{-1} \in H$, $x^{-1} \in gHg^{-1}$.
- o Thus, gHg^{-1} is a subgroup of G.
- \circ Now, let's consider the order of gHg^{-1} .
- The mapping ϕ : $H \to gHg^{-1}$ defined by $\phi(h) = ghg^{-1}$ is an isomorphism.
 - It is a homomorphism: $\phi(h_1h_2) = g(h_1h_2)g^{-1} = (gh_1g^{-1})(gh_2g^{-1}) = \phi(h_1)\phi(h_2).$
 - It is injective: If $\phi(h_1) = \phi(h_2)$, then $gh_1g^{-1} = gh_2g^{-1}$. By cancellation, $h_1 = h_2$.
 - It is surjective by definition of gHg^{-1} .
- Since ϕ is an isomorphism, $|gHg^{-1}| = |H| = n$.

- So, for every $g \in G$, gHg^{-1} is a subgroup of G of order n.
- \circ However, we are given that H is the *unique* subgroup of G of order n.
- Therefore, gHg^{-1} must be equal to H for all $g \in G$.
- \circ This shows that *H* is a normal subgroup of *G*.
- (b) (i) Prove that a factor group of a cyclic group is cyclic. Is converse true? Justify your answer.

Proof that a factor group of a cyclic group is cyclic:

- Let G be a cyclic group. This means $G = \langle a \rangle$ for some element $a \in G$.
- \circ Let *N* be a normal subgroup of *G*.
- Consider the factor group $G/N = \{gN \mid g \in G\}$.
- \circ We want to show that G/N is cyclic. This means we need to find an element in G/N that generates the entire factor group.
- Consider the coset aN.
- \circ Let gN be an arbitrary element in G/N.
- Since $g \in G$ and $G = \langle a \rangle$, g can be written as a^k for some integer k.
- \circ Therefore, $gN = a^k N$.
- o By the definition of multiplication in factor groups, $(aN)^k = a^k N$.
- \circ So, every element gN in G/N can be expressed as a power of aN.
- o Thus, $G/N = \langle aN \rangle$.
- \circ Therefore, G/N is a cyclic group.

- Is converse true? Justify your answer.
 - The converse is **not true**.
 - Justification: The converse states that if a factor group of a group G is cyclic, then G must be cyclic. This is false.
 - \circ Consider the group S_3 , the symmetric group of degree 3.
 - S_3 is not a cyclic group because its elements have orders 1, 2, or 3, and there is no element of order $|S_3| = 6$. (For example, S_3 is non-abelian, while all cyclic groups are abelian).
 - o Consider the alternating group $A_3 = \{e, (1\ 2\ 3), (1\ 3\ 2)\}$, which is a normal subgroup of S_3 .
 - The order of A_3 is 3.
 - The index of A_3 in S_3 is $[S_3:A_3] = |S_3|/|A_3| = 6/3 = 2$.
 - The factor group S_3/A_3 has order 2.
 - o Any group of order 2 is cyclic. For example, $S_3/A_3\cong Z_2$.
 - So, S_3/A_3 is a cyclic group.
 - \circ However, S_3 itself is not cyclic.
 - This provides a counterexample, showing that the converse is false.
- (ii) Let G be a group and let Z(G) be the center of G. If G/Z(G) is cyclic, then show that G is Abelian.

Proof:

- o Let G be a group and Z(G) be its center.
- o Assume that G/Z(G) is cyclic.

- Since G/Z(G) is cyclic, there exists an element $aZ(G) \in G/Z(G)$ such that $G/Z(G) = \langle aZ(G) \rangle$.
- This means that every element in G/Z(G) can be written as a power of aZ(G).
- \circ Let x, y be any two arbitrary elements in G.
- o Consider their cosets xZ(G) and yZ(G) in G/Z(G).
- Since G/Z(G) is cyclic and generated by aZ(G), there exist integers k and m such that:
 - $xZ(G) = (aZ(G))^k = a^k Z(G)$
 - $yZ(G) = (aZ(G))^m = a^m Z(G)$
- o From $xZ(G) = a^k Z(G)$, it implies that x and a^k belong to the same coset. So, $x = a^k z_1$ for some $z_1 \in Z(G)$.
- O Similarly, from $yZ(G) = a^m Z(G)$, it implies that $y = a^m z_2$ for some $z_2 \in Z(G)$.
- Now, we need to show that G is Abelian, i.e., xy = yx for all $x, y \in G$.
- $\circ xy = (a^k z_1)(a^m z_2)$
- Since $z_1 \in Z(G)$, z_1 commutes with all elements in G, including a^m . So, $z_1 a^m = a^m z_1$.
- $\circ \ xy = a^k(z_1 a^m) z_2 = a^k(a^m z_1) z_2 = a^{k+m} z_1 z_2.$
- Similarly, consider yx:
- $vx = (a^m z_2)(a^k z_1)$
- Since $z_2 \in Z(G)$, z_2 commutes with all elements in G, including a^k . So, $z_2a^k=a^kz_2$.
- $yx = a^m(z_2a^k)z_1 = a^m(a^kz_2)z_1 = a^{m+k}z_2z_1.$

- O Since k + m = m + k and z_1, z_2 are elements of Z(G), they commute with each other $(z_1z_2 = z_2z_1)$.
- o Therefore, $xy = a^{k+m}z_1z_2 = a^{m+k}z_2z_1 = yx$.
- \circ Since x and y were arbitrary elements of G, this proves that G is Abelian.
- (c) (i) Let ϕ be a group homomorphism from group G_1 to group G_2 and H be a subgroup of G_1 . Show that if H is cyclic, then $\phi(H)$ is cyclic.

Proof:

- Let ϕ : $G_1 \rightarrow G_2$ be a group homomorphism.
- Let H be a subgroup of G_1 .
- Assume H is cyclic. This means $H = \langle h \rangle$ for some element $h \in H$.
- We need to show that $\phi(H)$ is cyclic. This means we need to find an element in $\phi(H)$ that generates it.
- Consider the element $\phi(h) \in G_2$. We will show that $\phi(H) = \langle \phi(h) \rangle$.
- \circ Let y be an arbitrary element in $\phi(H)$.
- By definition of $\phi(H)$, there exists an element $x \in H$ such that $y = \phi(x)$.
- Since H is cyclic and generated by h, x can be written as h^k for some integer k.
- \circ So, $y = \phi(h^k)$.
- Since ϕ is a homomorphism, $\phi(h^k) = (\phi(h))^k$.
- Therefore, $y = (\phi(h))^k$.

- This shows that every element y in $\phi(H)$ can be expressed as a power of $\phi(h)$.
- $\circ \quad \mathsf{Thus}, \, \phi(H) = \langle \phi(h) \rangle.$
- \circ Hence, $\phi(H)$ is a cyclic group.
- (ii) How many homomorphisms are there from Z_{20} to Z_8 ? How many are there onto Z_8 ?

Number of homomorphisms from Z₂₀ to Z₈:

- Let $\phi: Z_{20} \to Z_8$ be a homomorphism.
- A homomorphism from a cyclic group is completely determined by the image of its generator.
- \circ Let the generator of Z_{20} be 1 (under addition modulo 20).
- Let $\phi(1) = k$, where $k \in Z_8$.
- o For a homomorphism ϕ , the order of $\phi(g)$ must divide the order of g. So, $|\phi(1)|$ must divide |1|=20.
- Also, $\phi(1) = k \in \mathbb{Z}_8$, so |k| must divide $|\mathbb{Z}_8| = 8$.
- o Therefore, |k| must divide both 20 and 8. So, |k| must divide gcd(20,8) = 4.
- The possible orders for $k \in \mathbb{Z}_8$ are 1, 2, 4, 8.
- We need to find elements $k \in \mathbb{Z}_8$ whose order divides 4.
 - Elements of order 1: 0 (since |0| = 1)
 - Elements of order 2: 4 (since $2 \times 4 = 8 \equiv 0 \pmod{8}$)
 - Elements of order 4: 2,6 (since $4 \times 2 = 8 \equiv 0 \pmod{8}$) and $4 \times 6 = 24 \equiv 0 \pmod{8}$)
 - Elements of order 8: 1,3,5,7 (their orders do not divide 4, so they are not valid choices for $\phi(1)$).

- The possible values for $\phi(1)$ are 0,2,4,6.
- Each of these choices for $\phi(1)$ uniquely defines a homomorphism.
- \circ Therefore, there are **4** homomorphisms from Z_{20} to Z_8 .

Number of homomorphisms from Z₂₀ onto Z₈:

- For a homomorphism $\phi: Z_{20} \to Z_8$ to be onto Z_8 , its image $Im(\phi)$ must be equal to Z_8 .
- o This means the generator $\phi(1)$ must generate Z_8 .
- The elements that generate Z_8 are those whose order is 8. These are the elements $k \in Z_8$ such that gcd(k, 8) = 1.
- \circ The generators of Z_8 are 1,3,5,7.
- From the previous part, we found that $|\phi(1)|$ must divide $\gcd(20.8) = 4$.
- The possible orders for $\phi(1)$ are 1, 2, 4.
- Since none of these orders is 8, it is impossible for $\phi(1)$ to generate Z_8 .
- \circ Therefore, there are **0** homomorphisms from Z_{20} onto Z_8 .

Question 4: (a) (i) Suppose that ϕ is a homomorphism from U(30) to U(30) and Ker ϕ = {1,11}. If ϕ (7) = 7, find all the elements of U(30) that map to 7.

• Understanding U(30):

- o U(30) is the group of units modulo 30.
- $OU(30) = \{n \in \{1,2,...,29\} \mid \gcd(n,30) = 1\}.$
- \circ The elements are: $U(30) = \{1,7,11,13,17,19,23,29\}.$
- $|U(30)| = \phi(30) = 30(1 1/2)(1 1/3)(1 1/5) = 30(1/2)(2/3)(4/5) = 8.$

• Using properties of homomorphisms:

- We are given ϕ : $U(30) \rightarrow U(30)$ is a homomorphism.
- \circ Ker $\phi = \{1,11\}.$
- We are given $\phi(7) = 7$.
- We need to find all $x \in U(30)$ such that $\phi(x) = 7$.
- o By a property of homomorphisms, if $\phi(a) = y$ and $\phi(b) = y$, then $a \text{Ker } \phi = b \text{Ker } \phi$. More generally, the set of all elements that map to a specific image y is given by $a \text{Ker } \phi$, where a is any element such that $\phi(a) = y$.
- \circ Here, y = 7 and we know one element that maps to 7 is a = 7.
- \circ So, the set of all elements x such that $\phi(x) = 7$ is $7 \text{Ker } \phi$.
- $7\text{Ker }\phi = \{7 \cdot k \pmod{30} \mid k \in \text{Ker }\phi\}.$
- o 7Ker $\phi = \{7 \cdot 1 \pmod{30}, 7 \cdot 11 \pmod{30}\}.$
- \circ 7 · 1 = 7.
- o $7 \cdot 11 = 77 \equiv 77 2 \times 30 = 77 60 = 17 \pmod{30}$.
- \circ Therefore, the elements of U(30) that map to 7 are $\{7, 17\}$.
- (ii) Let ϕ be a homomorphism from a group G_1 to group G_2 . Show that $\phi(a) = \phi(b)$ iff aKer $\phi = b$ Ker ϕ .

Proof:

- Let ϕ : $G_1 \rightarrow G_2$ be a homomorphism.
- Let Ker $\phi = \{g \in G_1 \mid \phi(g) = e_2\}$, where e_2 is the identity element in G_2 .
- o Part 1: Prove $\phi(a) = \phi(b) \Rightarrow a \operatorname{Ker} \phi = b \operatorname{Ker} \phi$.
 - Assume $\phi(a) = \phi(b)$.

- Multiply by $\phi(b)^{-1}$ on the right: $\phi(a)\phi(b)^{-1} = e_2$.
- Since ϕ is a homomorphism, $\phi(ab^{-1}) = e_2$.
- By definition of the kernel, this means $ab^{-1} \in \text{Ker } \phi$.
- Let $k = ab^{-1}$, so $k \in \text{Ker } \phi$.
- Multiplying by b on the right, we get a = kb.
- Now, consider the left coset $a \text{Ker } \phi$. Any element in $a \text{Ker } \phi$ is of the form ax where $x \in \text{Ker } \phi$.
- Substitute a = kb: ax = (kb)x = k(bx). This doesn't directly show equality.
- Let's restart the coset equality:
 - We have $ab^{-1} \in \text{Ker } \phi$.
 - We know that $a \operatorname{Ker} \phi = b \operatorname{Ker} \phi$ if and only if $b^{-1}a \in \operatorname{Ker} \phi$ (or $ab^{-1} \in \operatorname{Ker} \phi$, depending on whether we're talking about left or right cosets, but the statement here is about left cosets. Let's use the definition of coset equality: $aH = bH \Leftrightarrow a^{-1}b \in H$).
 - Here, we have $ab^{-1} \in \text{Ker } \phi$. This means $a\text{Ker } \phi = b\text{Ker } \phi$ is not directly true. The correct property is $a\text{Ker } \phi = b\text{Ker } \phi$ if and only if $a^{-1}b \in \text{Ker } \phi$.
 - Let's try again using direct membership for $a \text{Ker } \phi = b \text{Ker } \phi$.
 - Assume $\phi(a) = \phi(b)$. This means $\phi(a)\phi(b)^{-1} = e_2 \Rightarrow \phi(ab^{-1}) = e_2 \Rightarrow ab^{-1} \in \text{Ker } \phi$.
 - Let $k \in \text{Ker } \phi$. Then $k = ab^{-1}$. So a = kb.

- Now we show $a \text{Ker } \phi \subseteq b \text{Ker } \phi$: Let $x \in a \text{Ker } \phi$. Then x = ah for some $h \in \text{Ker } \phi$. Since a = kb, x = kbh. This implies $b^{-1}x = kh$.
- This is not the standard way. Let's use the property that aH = bH iff $a^{-1}b \in H$.
- We have $\phi(a) = \phi(b) \Leftrightarrow \phi(a)^{-1}\phi(b) = e_2 \Leftrightarrow \phi(a^{-1}b) = e_2 \Leftrightarrow a^{-1}b \in \operatorname{Ker} \phi$.
- And for left cosets, we know that $a \text{Ker } \phi = b \text{Ker } \phi$ if and only if $a^{-1}b \in \text{Ker } \phi$.
- Combining these two equivalences, we directly get $\phi(a) = \phi(b) \Leftrightarrow a \text{Ker } \phi = b \text{Ker } \phi$.
- o Part 2: Prove a Ker $\phi = b$ Ker $\phi \Rightarrow \phi(a) = \phi(b)$.
 - Assume $a \text{Ker } \phi = b \text{Ker } \phi$.
 - This implies that $a^{-1}b \in \text{Ker } \phi$. (This is a standard result for coset equality).
 - By definition of Ker ϕ , if $a^{-1}b \in \text{Ker } \phi$, then $\phi(a^{-1}b) = e_2$.
 - Since ϕ is a homomorphism, $\phi(a^{-1}b) = \phi(a^{-1})\phi(b) = \phi(a)^{-1}\phi(b)$.
 - So, $\phi(a)^{-1}\phi(b) = e_2$.
 - Multiplying by $\phi(a)$ on the left, we get $\phi(b) = \phi(a)$.
 - Thus, $\phi(a) = \phi(b)$.
- Since both implications hold, we have $\phi(a) = \phi(b) \Leftrightarrow a \text{Ker } \phi = b \text{Ker } \phi$.
- (b) (i) Is U(8) isomorphic to U(10)? Justify your answer.
 - U(8):

- $0 U(8) = \{n \in \{1,2,...,7\} \mid \gcd(n,8) = 1\} = \{1,3,5,7\}.$
- The order of U(8) is $\phi(8) = 8(1 1/2) = 4$.
- o Let's find the order of each element:
 - |1| = 1
 - |3|: $3^1 = 3$, $3^2 = 9 \equiv 1 \pmod{8}$. So, |3| = 2.
 - |5|: $5^1 = 5$, $5^2 = 25 \equiv 1 \pmod{8}$. So, |5| = 2.
 - |7|: $7^1 = 7$, $7^2 = 49 \equiv 1 \pmod{8}$. So, |7| = 2.
- o All non-identity elements in U(8) have order 2. This means U(8) is isomorphic to the Klein four-group $Z_2 \times Z_2$.

• U(10):

- $OU(10) = \{n \in \{1,2,...,9\} \mid \gcd(n,10) = 1\} = \{1,3,7,9\}.$
- o The order of U(10) is $\phi(10) = 10(1 1/2)(1 1/5) = 10(1/2)(4/5) = 4.$
- o Let's find the order of each element:
 - |1| = 1
 - |3|: $3^1 = 3$, $3^2 = 9$, $3^3 = 27 \equiv 7 \pmod{10}$, $3^4 = 81 \equiv 1 \pmod{10}$. So, |3| = 4.
 - |7|: $7^1 = 7$, $7^2 = 49 \equiv 9 \pmod{10}$, $7^3 = 63 \equiv 3 \pmod{10}$, $7^4 = 21 \equiv 1 \pmod{10}$. So, |7| = 4.
 - |9|: $9^1 = 9$, $9^2 = 81 \equiv 1 \pmod{10}$. So, |9| = 2.
- o U(10) has elements of order 4 (e.g., 3 and 7). This means U(10) is a cyclic group of order 4, isomorphic to Z_4 .

Conclusion:

o No, U(8) is not isomorphic to U(10).

- o **Justification:** U(8) is not cyclic (all non-identity elements have order 2), while U(10) is cyclic (it has an element of order 4). Isomorphic groups must have the same algebraic properties, including cyclicity. A non-cyclic group cannot be isomorphic to a cyclic group.
- (ii) Show that any infinite cyclic group is isomorphic to the group of integers under addition.

Proof:

- Let G be an infinite cyclic group. By definition, G is generated by a single element, say a, and its order is infinite. So, $G = \langle a \rangle = \{a^k \mid k \in Z\}$ and all powers a^k are distinct.
- \circ Let Z be the group of integers under addition, (Z, +).
- We need to find an isomorphism ϕ : $G \to Z$.
- Define the mapping $\phi(a^k) = k$ for all integers k.
- o **1.** ϕ **is well-defined:** Since G is an infinite cyclic group generated by a, all powers a^k are distinct. Thus, if $a^k = a^m$, then k = m. This ensures that $\phi(a^k)$ maps to a unique value.
- \circ 2. ϕ is a homomorphism:
 - Let $x, y \in G$. Then $x = a^k$ and $y = a^m$ for some integers $k, m \in Z$.

 - By definition of ϕ , $\phi(a^{k+m}) = k + m$.
 - Also, $\phi(x) + \phi(y) = \phi(a^k) + \phi(a^m) = k + m$.
 - Since $\phi(xy) = \phi(x) + \phi(y)$, ϕ is a homomorphism.
- \circ 3. ϕ is injective (one-to-one):
 - Assume $\phi(x) = \phi(y)$.

- Then $\phi(a^k) = \phi(a^m)$, which means k = m.
- Since k = m, $a^k = a^m$, so x = y.
- Therefore, ϕ is injective.

\circ 4. ϕ is surjective (onto):

- Let i be any integer in Z.
- We need to find an element $x \in G$ such that $\phi(x) = j$.
- Consider $x = a^j \in G$.
- By definition of ϕ , $\phi(a^j) = j$.
- Therefore, for every integer in Z, there exists an element in G that maps to it. So, ϕ is surjective.
- \circ Since ϕ is a well-defined, bijective homomorphism, it is an isomorphism.
- Hence, any infinite cyclic group is isomorphic to the group of integers under addition.
- (c) (i) If ϕ is an onto homomorphism from group G_1 to group G_2 , then prove that $G_1/Ker \phi$ is isomorphic to G_2 . Hence show that if G_1 is finite, then order of G_2 divides the order of G_1 .

Proof that G₁/Ker φ is isomorphic to G₂ (First Isomorphism Theorem):

- o Let $\phi: G_1 \to G_2$ be an onto (surjective) group homomorphism.
- Let $K = \text{Ker } \phi = \{g \in G_1 \mid \phi(g) = e_2\}$, where e_2 is the identity in G_2 .
- \circ We know that K is a normal subgroup of G_1 . (This is a standard result; kernels of homomorphisms are always normal subgroups).

- Consider the factor group $G_1/K = \{gK \mid g \in G_1\}$.
- o Define a mapping $\psi: G_1/K \to G_2$ by $\psi(gK) = \phi(g)$.
- \circ 1. ψ is well-defined:
 - Assume $g_1K = g_2K$ for some $g_1, g_2 \in G_1$.
 - This means $g_1^{-1}g_2 \in K = \text{Ker } \phi$.
 - By definition of Ker ϕ , $\phi(g_1^{-1}g_2) = e_2$.
 - Since ϕ is a homomorphism, $\phi(g_1^{-1})\phi(g_2) = e_2 \Rightarrow$ $\phi(g_1)^{-1}\phi(g_2)=e_2.$
 - Multiplying by $\phi(g_1)$ on the left, we get $\phi(g_2) = \phi(g_1)$.
 - Thus, $\psi(g_1K) = \phi(g_1) = \phi(g_2) = \psi(g_2K)$. So, ψ is welldefined.

\circ 2. ψ is a homomorphism:

- Let g_1K , $g_2K \in G_1/K$.
- $\psi((g_1K)(g_2K)) = \psi(g_1g_2K).$
- By definition of ψ , $\psi(g_1g_2K) = \phi(g_1g_2)$.
- Since ϕ is a homomorphism, $\phi(g_1g_2) = \phi(g_1)\phi(g_2)$.
- Also, $\psi(g_1K)\psi(g_2K) = \phi(g_1)\phi(g_2)$.
- Since $\psi((g_1K)(g_2K)) = \psi(g_1K)\psi(g_2K)$, ψ is a homomorphism.
- \circ 3. ψ is injective (one-to-one):
 - Assume $\psi(gK) = e_2$ (the identity in G_2).
 - By definition of ψ , $\phi(g) = e_2$.
 - By definition of Ker ϕ , if $\phi(g) = e_2$, then $g \in \text{Ker } \phi = K$.

- If $g \in K$, then the coset gK is equal to K (which is the identity element in G_1/K).
- Since the kernel of ψ is trivial (only the identity element), ψ is injective.

\circ 4. ψ is surjective (onto):

- Let $y \in G_2$.
- Since ϕ is an onto homomorphism from G_1 to G_2 , there exists an element $g \in G_1$ such that $\phi(g) = y$.
- Consider the coset $gK \in G_1/K$.
- By definition of ψ , $\psi(gK) = \phi(g) = y$.
- Therefore, for every element $y \in G_2$, there exists a coset in G_1/K that maps to it. So, ψ is surjective.
- \circ Since ψ is a well-defined, bijective homomorphism, it is an isomorphism.
- o Thus, $G_1/\text{Ker }\phi\cong G_2$.

• Hence show that if G₁ is finite, then order of G₂ divides the order of G₁.

- o If G_1 is a finite group, then its order $|G_1|$ is finite.
- o From the First Isomorphism Theorem, we have $G_1/\text{Ker }\phi\cong G_2$.
- This means that $|G_1/\operatorname{Ker} \phi| = |G_2|$.
- o By definition of the order of a factor group, $|G_1|/|\text{Ker }\phi| = |G_1|/|\text{Ker }\phi|$.
- Therefore, $|G_2| = |G_1|/|\text{Ker }\phi|$.
- \circ Rearranging this equation, we get $|G_1| = |G_2| \cdot |\text{Ker } \phi|$.

 \circ Since |Ker ϕ | is an integer (it's the order of a subgroup), this equation clearly shows that the order of G_2 divides the order of G_1 . This is also a direct consequence of Lagrange's Theorem applied to G_1 and its subgroup Ker ϕ .

Question 5: (a) Let G be a group and let $a \in G$. Define the inner automorphism of G induced by a. Show that the set of all inner automorphisms of a group G, denoted by Inn(G), forms a subgroup of Aut(G), the group of all automorphisms of G. Find $Inn(D_4)$.

- Definition of the inner automorphism of G induced by a:
 - o For any element $a \in G$, the **inner automorphism of G induced by a**, denoted by ϕ_a , is a mapping from G to G defined by: $\phi_a(x) = axa^{-1}$ for all $x \in G$.
- Show that Inn(G) forms a subgroup of Aut(G):
 - Aut(G) is the group of all automorphisms of G. We need to show that $Inn(G) = \{\phi_a \mid a \in G\}$ satisfies the subgroup criteria.
 - \circ First, show that each ϕ_a is an automorphism:
 - i. Homomorphism: $\phi_a(xy) = a(xy)a^{-1} = (axa^{-1})(aya^{-1}) = \phi_a(x)\phi_a(y)$ for all $x, y \in G$.
 - ii. **Injective:** Assume $\phi_a(x) = \phi_a(y)$. Then $axa^{-1} = aya^{-1}$. By cancellation (multiplying by a^{-1} on the left and a on the right), x = y.
 - iii. **Surjective:** Let $y \in G$. We need to find $x \in G$ such that $\phi_a(x) = y$. $axa^{-1} = y \Rightarrow x = a^{-1}ya$. Since $a^{-1}ya \in G$, for any $y \in G$, there exists an x such that $\phi_a(x) = y$.
 - Therefore, each ϕ_a is an automorphism of G, so $Inn(G) \subseteq Aut(G)$.
 - Now, show that Inn(G) is a subgroup of Aut(G):

- iv. **Non-empty:** The identity automorphism $id_G(x) = x$ is an inner automorphism induced by $e \in G$. $\phi_e(x) = exe^{-1} = x$. So, $id_G = \phi_e \in Inn(G)$. Thus, Inn(G) is non-empty.
- v. Closure under composition: Let $\phi_a, \phi_b \in \text{Inn}(G)$ for some $a, b \in G$. Consider their composition $(\phi_a \circ \phi_b)(x)$. $(\phi_a \circ \phi_b)(x) = \phi_a(\phi_b(x)) = \phi_a(bxb^{-1}) = a(bxb^{-1})a^{-1} = (ab)x(b^{-1}a^{-1}) = (ab)x(ab)^{-1}$. This is $\phi_{ab}(x)$. Since $ab \in G$, $\phi_{ab} \in \text{Inn}(G)$. Thus, Inn(G) is closed under composition.
- vi. **Existence of inverses:** Let $\phi_a \in \text{Inn}(G)$. We need to find its inverse. Consider $\phi_{a^{-1}}$. Since $a^{-1} \in G$, $\phi_{a^{-1}} \in \text{Inn}(G)$. $(\phi_a \circ \phi_{a^{-1}})(x) = \phi_a(a^{-1}xa) = a(a^{-1}xa)a^{-1} = (aa^{-1})x(aa^{-1}) = exe = x = id_G(x)$. Similarly, $(\phi_{a^{-1}} \circ \phi_a)(x) = x = id_G(x)$. So, $\phi_a^{-1} = \phi_{a^{-1}} \in \text{Inn}(G)$.
- Therefore, Inn(G) is a subgroup of Aut(G).

• Find Inn(D₄):

- \circ D_4 is the dihedral group of order 8, representing the symmetries of a square.
- o Elements of D_4 are $\{e, r, r^2, r^3, s, sr, sr^2, sr^3\}$, where r is a rotation by 90° and s is a reflection. We have $r^4 = e$, $s^2 = e$, and $rs = sr^{-1} = sr^3$.
- The group of inner automorphisms Inn(G) is isomorphic to G/Z(G), where Z(G) is the center of G.
- Let's find $Z(D_4)$.
 - $Z(D_4) = \{g \in D_4 \mid gx = xg \text{ for all } x \in D_4\}.$
 - e commutes with all elements.
 - r does not commute with s ($rs \neq sr$).

- r^2 commutes with r and s: $r^2s = sr^{-2} = sr^2$. So r^2 commutes with all elements.
- r^3 does not commute with s ($r^3s = sr^{-3} = sr \neq sr^3$).
- s does not commute with r.
- sr does not commute with r ($srr = srr^{-1}r = sr^{-1}r = s \neq r(sr)$). (Alternatively, $r(sr) = r^2s$ and $sr(r) = sr^2$. $r^2s \neq sr^2$ since $s \neq r^{-2}sr^2 = s$).
- sr^2 does not commute with r.
- sr^3 does not commute with r.
- So, $Z(D_4) = \{e, r^2\}.$
- $|Inn(D_4)| = |D_4|/|Z(D_4)| = 8/2 = 4.$
- The elements of $Inn(D_4)$ are ϕ_a for $a \in D_4$. However, if $a \in Z(D_4)$, then $\phi_a = id_G$.
- o So, $\phi_e = id_{D_4}$ and $\phi_{r^2} = id_{D_4}$.
- o The distinct inner automorphisms are generated by elements not in the center. We can pick representatives from the cosets of $Z(D_4)$.
- $O D_4/Z(D_4) = \{Z(D_4), rZ(D_4), sZ(D_4), srZ(D_4)\}.$
- So the distinct inner automorphisms are ϕ_e , ϕ_r , ϕ_s , ϕ_{sr} .
- \circ Let's describe them by their action on the generators r and s:
 - $\phi_e(x) = exe^{-1} = x$.
 - $\phi_r(r) = rrr^{-1} = r$. $\phi_r(s) = rsr^{-1} = rsr^3 = r^2(rsr^2) = r^2s = sr^2$. So $\phi_r = (s \mapsto sr^2)$.
 - $\phi_s(r) = srs^{-1} = srs = r^{-1}$. $\phi_s(s) = sss^{-1} = s$. So $\phi_s = (r \mapsto r^{-1})$.

• $\phi_{sr}(r) = (sr)r(sr)^{-1} = sr^2r^{-1}s^{-1} = srs = r^{-1}$. $\phi_{sr}(s) = r^{-1}$ $(sr)s(sr)^{-1} = srsr^{-1}s^{-1} = s(srs)r^{-1} = sr(r^{-1})s =$ s(e)s = s. So $\phi_{sr} = (r \mapsto r^{-1})$. (Wait, this is wrong: $srsr^{-1}s^{-1} = srsrs = s(rs)rs = s(sr^3)rs = r^3(sr)s =$ $r^3(sr)s = r^3(s)s = r^3$. This is incorrect. Let's recompute $\phi_{sr}(s) = (sr)s(sr)^{-1} = srsr^{-1}s^{-1} = s(rs)r^{-1}s =$ $s(sr^{-1})r^{-1}s = s^2r^{-2}s = r^2s$. This is still not right. Let's use the definition: $(sr)s(sr)^{-1} = srsr^{-1}s^{-1} = srsrs =$ $sr(srs) = sr(r^{-1}) = s$. So $\phi_{sr} = (r \mapsto r^{-1})$.

Let's re-evaluate the inner automorphisms based on representatives e,r,s,sr.

$$\circ \phi_e = id_{D_4}$$

 \circ ϕ_r :

$$\phi_r(r) = rrr^{-1} = r$$

$$\phi_r(s) = rsr^{-1} = sr^{-1}r^{-1} = sr^2.$$

 $\circ \phi_s$:

•
$$\phi_s(r) = srs^{-1} = srs = r^{-1}$$
.

•
$$\phi_s(s) = sss^{-1} = s$$
.

 $\circ \phi_{sr}$:

•
$$\phi_{sr}(r) = (sr)r(sr)^{-1} = (sr)r(r^{-1}s^{-1}) = srrr^{-1}s = srs = r^{-1}$$
.

•
$$\phi_{sr}(s) = (sr)s(sr)^{-1} = srsr^{-1}s^{-1} = s(sr^{-1})r^{-1}s = s^2r^{-2}s = r^2s$$
. (This is r^2s not s) Wait, $(sr)^{-1} = r^{-1}s^{-1} = r^3s$. $\phi_{sr}(s) = (sr)s(r^3s) = srsr^3s = s(rs)r^3s = s(sr^3)r^3s = s^2r^6s = r^2s$. Ah, $r^2 \in Z(D_4)$ so conjugation by r^2 is identity. $r^2s = sr^2$. It's not the reflection itself.

Let's check the group structure. $\operatorname{Inn}(D_4)$ has order 4. ϕ_e has order 1. $\phi_r^2(s) = \phi_r(sr^2) = r(sr^2)r^{-1} = r(sr^2)r^3 = r(s)r^2r^3 = r(s)r^5 = r(s)r = r(r^{-1}s)r = s$. So $\phi_r^2 = id_{D_4}$. This means $|\phi_r| = 2$. $\phi_s^2(r) = \phi_s(r^{-1}) = s(r^{-1})s^{-1} = s(r^{-1})s = (sr^{-1})s = (sr^3)s = s(r^3s) = s(sr^{-3}) = r^{-3} = r$. So $\phi_s^2 = id_{D_4}$. This means $|\phi_s| = 2$. $\phi_{sr}^2(r) = \phi_{sr}(r^{-1}) = (sr)r^{-1}(sr)^{-1} = (sr)r^{-1}r^3s = sr^4s = ses = s^2 = e$. So r^{-1} is not correct. $\phi_{sr}(r) = (sr)r(sr)^{-1} = srrr^{-1}s^{-1} = s(rr^{-1})s = s(e)s = s^2 = e$. This means (sr) maps r to e, which is incorrect. A homomorphism cannot map a generator to identity if the image of the generator is not identity. Let's check calculation of $\phi_{sr}(r)$ again: $(sr)r(sr)^{-1} = (sr)r(r^{-1}s^{-1}) = sr^2r^{-1}s = srs = r^{-1}$. This is correct. Now, $|\phi_{sr}|$: $\phi_{sr}(r) = r^{-1}$. $\phi_{sr}(s) = s$. $\phi_{sr}^2(r) = \phi_{sr}(r^{-1}) = (sr)r^{-1}(sr)^{-1} = srr^{-1}r^{-1}s = sr^{-1}s = s(sr) = r$. $\phi_{sr}^2(s) = \phi_{sr}(s) = s$. So $\phi_{sr}^2 = id_{D_4}$. This means $|\phi_{sr}| = 2$. All non-identity elements in $\ln(D_4)$ have order 2. This means $\ln(D_4) \cong Z_2 \times Z_2$.

- Inn(D₄) = { ϕ_e , ϕ_r , ϕ_s , ϕ_{rs} } where:
 - o $\phi_e(x) = x$ (identity automorphism)
 - o $\phi_r(r) = r$, $\phi_r(s) = sr^2$ (conjugation by r)
 - $\phi_s(r) = r^{-1}, \phi_s(s) = s$ (conjugation by s)
 - o $\phi_{rs}(r)=r^{-1}$, $\phi_{rs}(s)=s$ (conjugation by rs). Note that $\phi_{rs}=\phi_s$ because $rsZ(D_4)=sZ(D_4)$. (e.g., $rs(r^2)=r^3s$ and $s(r^2)=sr^2$, these are not the same cosets).

Let's use the coset representatives as generators for the distinct inner automorphisms: $Z(D_4) = \{e, r^2\}$. The distinct cosets are $Z(D_4)$, $rZ(D_4)$, $sZ(D_4)$, $srZ(D_4)$.

- $\phi_e = id$ (induced by e or r^2)
- ϕ_r : $r \mapsto r$, $s \mapsto sr^2$ (induced by r or r^3)
- ϕ_s : $r \mapsto r^{-1}$, $s \mapsto s$ (induced by s or sr^2)

- ϕ_{sr} : $r \mapsto r^{-1}$, $s \mapsto sr^2$ (induced by sr or sr^3)
 - o Let's verify $\phi_{sr}(r) = (sr)r(sr)^{-1} = sr^2(r^{-1}s^{-1}) = srs^{-1} = srs = r^{-1}$.
 - $\phi_{sr}(s) = (sr)s(sr)^{-1} = srsr^{-1}s^{-1} = s(rs)r^{-1}s^{-1} = s(sr^{-1})r^{-1}s^{-1} = s^2r^{-2}s^{-1} = r^2s^{-1} = r^2s. \text{ So } \phi_{sr} \text{ is different from } \phi_s.$

The four distinct inner automorphisms are:

- 2. $\phi_e = id$ (conjugation by e or r^2)
- 3. ϕ_r (conjugation by r or r^3). Acts as $s \mapsto sr^2$.
- 4. ϕ_s (conjugation by s or sr^2). Acts as $r \mapsto r^{-1}$.
- 5. ϕ_{sr} (conjugation by sr or sr^3). Acts as $r \mapsto r^{-1}$ and $s \mapsto sr^2$.

Let's check the composition of these to confirm the $Z_2 \times Z_2$ structure. $\phi_r \circ \phi_s(r) = \phi_r(r^{-1}) = rr^{-1}r^{-1} = r^{-1}$. $\phi_r \circ \phi_s(s) = \phi_r(s) = sr^2$. So $\phi_r \circ \phi_s = \phi_{sr}$. This is xy = z. All orders are 2. So it must be $Z_2 \times Z_2$. Inn $(D_4) = \{\phi_e, \phi_r, \phi_s, \phi_{sr}\}$ where:

- $\phi_e(x) = x$
- $\phi_r(x) = rxr^{-1}$
- $\phi_{sr}(x) = (sr)x(sr)^{-1}$
- (b) Prove that the order of an element in a direct product of a finite number of finite groups is the lcm of the orders of the components of the element, i.e., $|(g_1, g_2, ..., g_n)| = \text{lcm}(|g_1|, |g_2|, ..., |g_n|)$. Also, find the number of elements of order 7 in $Z_{49} \oplus Z_7$.

Proof:

• Let $G = G_1 \oplus G_2 \oplus ... \oplus G_n$ be the external direct product of finite groups G_i .

- Let $g = (g_1, g_2, ..., g_n)$ be an element in G, where $g_i \in G_i$.
- Let |g| be the order of g in G, and let $|g_i|$ be the order of g_i in G_i .
- o By definition, |g| is the smallest positive integer k such that $g^k = e_G$, where $e_G = (e_1, e_2, ..., e_n)$ is the identity element in G.
- $\circ g^k = (g_1, g_2, \dots, g_n)^k = (g_1^k, g_2^k, \dots, g_n^k).$
- o So, $g^k = e_G$ means that $(g_1^k, g_2^k, ..., g_n^k) = (e_1, e_2, ..., e_n)$.
- This implies that $g_i^k = e_i$ for all i = 1, 2, ..., n.
- o For each g_i , $g_i^k = e_i$ means that k must be a multiple of $|g_i|$.
- \circ Therefore, k must be a common multiple of $|g_1|, |g_2|, ..., |g_n|$.
- \circ Since |g| is the *smallest* such positive integer k, it must be the least common multiple (LCM) of the orders of the components.
- o Hence, $|(g_1, g_2, ..., g_n)| = \text{lcm}(|g_1|, |g_2|, ..., |g_n|).$

Find the number of elements of order 7 in Z₄₉ ⊕ Z₇:

- Let $(x, y) \in Z_{49} \oplus Z_7$, where $x \in Z_{49}$ and $y \in Z_7$.
- We want to find the number of elements (x, y) such that |(x, y)| = 7.
- We know that |(x,y)| = lcm(|x|,|y|).
- o For lcm(|x|, |y|) = 7, the possible orders for |x| and |y| must be divisors of 7, i.e., 1 or 7.
- o Also, at least one of |x| or |y| must be 7.

Let's list the possibilities for (|x|, |y|):

- o Case 1: |x| = 1, |y| = 7.
 - Elements of order 1 in Z₄₉: Only 0. (1 element)

- Elements of order 7 in Z_7 : These are the elements $y \in Z_7$ such that gcd(y,7) = 1. These are 1,2,3,4,5,6. ($\phi(7) = 6$ elements)
- Number of elements in this case: $1 \times 6 = 6$.
- o Case 2: |x| = 7, |y| = 1.
 - Elements of order 7 in Z_{49} : These are the elements $x \in Z_{49}$ such that |x| = 7. These are of the form $k \cdot (49/7) = 7k$, where gcd(k,7) = 1. So $x \in \{7,14,21,28,35,42\}$. (6 elements)
 - Elements of order 1 in Z_7 : Only 0. (1 element)
 - Number of elements in this case: $6 \times 1 = 6$.
- o Case 3: |x| = 7, |y| = 7.
 - Elements of order 7 in Z_{49} : 6 elements (as found above).
 - Elements of order 7 in Z_7 : 6 elements (as found above).
 - Number of elements in this case: $6 \times 6 = 36$.

Total number of elements of order 7 in $Z_{49} \oplus Z_7$ is the sum of elements from these cases: Total = 6 + 6 + 36 = 48.

- (c) Without doing any calculations in $Aut(Z_{105})$, determine how many elements of $Aut(Z_{105})$ have order 6.
 - Understanding Aut(Z_n):
 - The group of automorphisms of Z_n , denoted $Aut(Z_n)$, is isomorphic to U(n), the group of units modulo n.
 - So, $Aut(Z_{105}) \cong U(105)$.
 - \circ We need to find the number of elements of order 6 in U(105).
 - Structure of U(105):

- \circ 105 = 3 × 5 × 7.
- Since 105 is a product of distinct odd primes, U(105) is isomorphic to the direct product of the U groups of its prime factors: $U(105) \cong U(3) \oplus U(5) \oplus U(7)$.
- o Let's find the structure and orders of these component groups:
 - $U(3) = \{1,2\}$. This is isomorphic to Z_2 . The only non-identity element (2) has order 2.
 - $U(5) = \{1,2,3,4\}$. This is isomorphic to Z_4 . Elements of order 1, 2, 4. (e.g., |2| = 4, |4| = 2)
 - $U(7) = \{1,2,3,4,5,6\}$. This is isomorphic to Z_6 . Elements of order 1, 2, 3, 6. (e.g., |3| = 6, |6| = 2)
- Finding elements of order 6 in U(105):
 - An element in U(105) corresponds to a triplet $(u_1, u_2, u_3) \in U(3) \oplus U(5) \oplus U(7)$.
 - The order of (u_1, u_2, u_3) is $lcm(|u_1|, |u_2|, |u_3|)$.
 - We want this LCM to be 6.
 - \circ The possible orders for u_1, u_2, u_3 are based on the orders of elements in Z_2, Z_4, Z_6 respectively.
 - $|u_1| \in \{1,2\}$
 - $|u_2| \in \{1,2,4\}$
 - $|u_3| \in \{1,2,3,6\}$
 - o For $\text{lcm}(|u_1|, |u_2|, |u_3|) = 6$, at least one of the orders must be a multiple of 3 (so 3 or 6) AND at least one must be a multiple of 2 (so 2, 4 or 6).

Let's enumerate the possibilities for $(|u_1|, |u_2|, |u_3|)$ such that their LCM is 6. We need $\text{lcm}(|u_1|, |u_2|, |u_3|) = 2 \times 3$. This implies that for

each prime factor (2 and 3), the maximum power of that prime in the orders must be 2^1 and 3^1 . So, 3 must divide at least one of the orders, and 2 must divide at least one of the orders.

Let
$$o_1 = |u_1|$$
, $o_2 = |u_2|$, $o_3 = |u_3|$.

- $o o_1 \in \{1,2\} \text{ (from } Z_2)$
 - Number of elements for $o_1 = 1$: 1 (element $1 \in U(3)$)
 - Number of elements for $o_1 = 2$: 1 (element $2 \in U(3)$)
- $o o_2 \in \{1,2,4\} \text{ (from } Z_4)$
 - Number of elements for $o_2 = 1$: 1 (element $1 \in U(5)$)
 - Number of elements for $o_2 = 2$: 1 (element $4 \in U(5)$)
 - Number of elements for $o_2 = 4$: 2 (elements 2,3 $\in U(5)$)
- $o o_3 \in \{1,2,3,6\} \text{ (from } Z_6)$
 - Number of elements for $o_3 = 1$: 1 (element $1 \in U(7)$)
 - Number of elements for $o_3 = 2$: 1 (element $6 \in U(7)$)
 - Number of elements for $o_3 = 3$: 2 (elements 2,4 $\in U(7)$)
 - Number of elements for $o_3 = 6$: 2 (elements 3,5 $\in U(7)$)

Now we analyze the combinations for $lcm(o_1, o_2, o_3) = 6$. We need:

- a. At least one order must be divisible by 3 (so o_3 must be 3 or 6).
- b. The maximum power of 2 in the orders is 2^1 (so o_2 cannot be 4).

Let's count elements based on (o_1, o_2, o_3) combinations:

- Case A: $o_3 = 6$. (This automatically satisfies the 'divisible by 3' condition, and also the 'divisible by 2' condition).
 - Number of elements for $o_3 = 6$: 2

- For o_1 : Can be 1 or 2 (2 choices)
- For o_2 : Can be 1 or 2 (2 choices) (Cannot be 4, otherwise lcm would be 12).
- Number of elements = (choices for o_1) × (choices for o_2) × (choices for $o_3 = 6$)
- Number of elements = $2 \times 2 \times 2 = 8$.
- o **Case B:** $o_3 = 3$. (This satisfies the 'divisible by 3' condition). Now we need the 'divisible by 2' condition to be satisfied by o_1 or o_2 . And o_2 cannot be 4.
 - Number of elements for $o_3 = 3:2$
 - For o_2 : Can be 1 or 2. (Cannot be 4).
 - For o_1 : Can be 1 or 2.

We need $lcm(o_1, o_2, 3) = 6$. This means $lcm(o_1, o_2) = 2$. This implies:

- $o_1 = 2, o_2 = 1$. (1 choice for o_1 , 1 choice for o_2)
- $o_1 = 1, o_2 = 2$. (1 choice for o_1 , 1 choice for o_2)
- $o_1 = 2$, $o_2 = 2$. (1 choice for o_1 , 1 choice for o_2)
- Total combinations for (o_1, o_2) where $lcm(o_1, o_2) = 2$:
 - $(|u_1| = 2, |u_2| = 1)$: 1 element of order 2 in U(3), 1 element of order 1 in U(5). (1 * 1 = 1 combination)
 - $(|u_1| = 1, |u_2| = 2)$: 1 element of order 1 in U(3), 1 element of order 2 in U(5). (1 * 1 = 1 combination)
 - $(|u_1| = 2, |u_2| = 2)$: 1 element of order 2 in U(3), 1 element of order 2 in U(5). (1 * 1 = 1 combination)
 - So, 3 combinations for (o_1, o_2) that yield LCM 2.

- Number of elements = (choices for $lcm(o_1, o_2) = 2) \times (choices for o_3 = 3)$
- Number of elements = $3 \times 2 = 6$.

Total number of elements of order 6 in U(105) is the sum of elements from these cases: Total = 8 + 6 = 14.

So, there are **14** elements of order 6 in $Aut(Z_{105})$.

Question 6: (a) For any group G, prove that $G/Z(G) \cong Inn(G)$.

Proof:

- o Let G be a group and Z(G) be its center. We know Z(G) is a normal subgroup of G.
- o Let Inn(G) be the set of all inner automorphisms of G. We have already shown in Q5(a) that Inn(G) is a subgroup of Aut(G).
- O Define a mapping $\psi: G \to \text{Inn}(G)$ by $\psi(a) = \phi_a$, where $\phi_a(x) = axa^{-1}$ for all $x \in G$.

\circ 1. ψ is a homomorphism:

- Let $a, b \in G$. We need to show $\psi(ab) = \psi(a) \circ \psi(b)$.
- $\psi(ab) = \phi_{ab}$.
- $(\phi_{ab})(x) = (ab)x(ab)^{-1} = abxb^{-1}a^{-1}$.
- $(\psi(a) \circ \psi(b))(x) = (\phi_a \circ \phi_b)(x) = \phi_a(\phi_b(x)) = \phi_a(bxb^{-1}) = a(bxb^{-1})a^{-1} = abxb^{-1}a^{-1}.$
- Since $\phi_{ab}(x) = (\phi_a \circ \phi_b)(x)$ for all $x \in G$, we have $\phi_{ab} = \phi_a \circ \phi_b$.
- Therefore, $\psi(ab) = \psi(a) \circ \psi(b)$, so ψ is a homomorphism.

\circ 2. ψ is surjective (onto):

- By definition, Inn(G) is the set of all ϕ_a for $a \in G$.
- For any $\phi_a \in \text{Inn}(G)$, there exists an element $a \in G$ such that $\psi(a) = \phi_a$.
- Thus, ψ is surjective.

o 3. Find the Kernel of ψ (Ker ψ):

- Ker $\psi = \{a \in G \mid \psi(a) = \mathrm{id}_G\}$, where id_G is the identity automorphism.
- $\psi(a) = \phi_a$, so $\phi_a = \mathrm{id}_G$.
- This means $\phi_a(x) = x$ for all $x \in G$.
- $axa^{-1} = x$ for all $x \in G$.
- Multiplying by a on the right, ax = xa for all $x \in G$.
- By definition, the set of all elements that commute with every element in G is the center of G, Z(G).
- Therefore, Ker $\psi = Z(G)$.

4. Apply the First Isomorphism Theorem:

- Since ψ : $G \to Inn(G)$ is an onto homomorphism with Ker $\psi = Z(G)$, by the First Isomorphism Theorem (as proved in Q4(c)(i)), we have: $G/\text{Ker }\psi \cong Im(\psi)$.
- Since ψ is surjective, $Im(\psi) = Inn(G)$.
- Substituting Ker $\psi = Z(G)$, we get $G/Z(G) \cong Inn(G)$.
- (b) Define the internal direct product of a collection of subgroups of a group G. Let R denote the group of all nonzero real numbers under multiplication. Let R⁺ denote the group of all positive real numbers under multiplication. Prove that R is the internal direct product of R⁺ and the subgroup {1, -1}.

Definition of Internal Direct Product:

- A group G is the **internal direct product** of its subgroups $H_1, H_2, ..., H_n$ if the following three conditions are met:
 - i. Each H_i is a normal subgroup of G.
 - ii. $G = H_1 H_2 \dots H_n$ (every element $g \in G$ can be written as a product $h_1 h_2 \dots h_n$ where $h_i \in H_i$).
 - iii. For each $i, H_i \cap (H_1H_2 \dots H_{i-1}H_{i+1} \dots H_n) = \{e\}$ (the intersection of each subgroup with the product of the other subgroups is the identity element).
- Alternatively, for two subgroups H and K of G, G is the internal direct product of H and K if:
 - iv. H and K are normal subgroups of G.

$$\vee$$
. $G = HK$.

vi. *H* ∩
$$K = \{e\}$$
.

- o (And for two subgroups, (1) can be relaxed to just hk = kh for all $h \in H, k \in K$ if G = HK and $H \cap K = \{e\}$ because this implies normality for H and K within G = HK.)
- Prove that R is the internal direct product of R⁺ and the subgroup {1, -1}:
 - Let $G = R^*$ be the group of all non-zero real numbers under multiplication.
 - o Let $H = R^+$ be the group of all positive real numbers under multiplication.
 - Let $K = \{1, -1\}$ be a subgroup of R^* under multiplication.
 - We need to verify the three conditions for internal direct product:
 - o 1. H and K are normal subgroups of G:

H = R⁺:

- *R*⁺ is a subgroup of *R*^{*} (closed under multiplication, contains 1, has inverses for every element).
- To show R^+ is normal in R^* , we need to show $gxg^{-1} \in R^+$ for all $g \in R^*$ and $x \in R^+$.
- Let $g \in R^*$ and $x \in R^+$. Then $gxg^{-1} = x(gg^{-1}) = x \cdot 1 = x$. Since $x \in R^+$, $gxg^{-1} \in R^+$.
- Alternatively, consider gxg^{-1} . Since x > 0, $gxg^{-1} = (g^2)(x/g^2)$. The product of any two positive numbers is positive. If g > 0, then $g^{-1} > 0$, $gxg^{-1} > 0$. If g < 0, then $g^{-1} < 0$, $gxg^{-1} > 0$. So gxg^{-1} is always positive.
- Therefore, R^+ is a normal subgroup of R^* .

• K = {1, -1}:

- *K* is a subgroup of R^* (closed under multiplication: $1 \cdot 1 = 1$, $1 \cdot (-1) = -1$, $(-1) \cdot (-1) = 1$; contains 1; inverses exist: $1^{-1} = 1$, $(-1)^{-1} = -1$).
- To show K is normal in R^* , we need to show $gxg^{-1} \in K$ for all $g \in R^*$ and $x \in K$.
- If x = 1, $g \cdot 1 \cdot g^{-1} = 1 \in K$.
- If x = -1, $g \cdot (-1) \cdot g^{-1} = -gg^{-1} = -1 \in K$.
- Therefore, K is a normal subgroup of R^* .
- o **2. G** = **HK**: (Every element in R^* can be written as a product of an element from R^+ and an element from K).
 - Let $x \in R^*$.

- If x > 0, then $x \in R^+$. We can write $x = x \cdot 1$, where $x \in R^+$ and $1 \in K$.
- If x < 0, then -x > 0. So $-x \in R^+$. We can write $x = (-x) \cdot (-1)$, where $-x \in R^+$ and $-1 \in K$.
- Therefore, every element in R^* can be expressed as a product of an element from R^+ and an element from K. So $R^* = R^+K$.
- o **3.** H \cap K = {e}: (The intersection of R^+ and K is the identity element).
 - $R^+ = (0, \infty)$ (set of positive real numbers).
 - $K = \{1, -1\}.$
 - The common element in both sets is only 1.
 - Therefore, $R^+ \cap \{1, -1\} = \{1\}$.
- Since all three conditions are satisfied, R^* is the internal direct product of R^+ and $\{1, -1\}$.
- (c) The set $G = \{1,4,11,14,16,19,26,29,31,34,41,44\}$ is a group under multiplication modulo 45. Write G as an external and an internal direct product of cyclic groups of prime-power order.
 - Understanding the group G:
 - \circ The group is U(45) because its elements are precisely those integers relatively prime to 45.
 - \circ 45 = 9 × 5 = 3² × 5.
 - o The order of U(45) is $\phi(45) = 45(1 1/3)(1 1/5) = 45(2/3)(4/5) = 2 \times 3 \times 4 = 24$.
 - o The given set G has 12 elements. Let's list them and compare with U(45). $U(45) = \{1,2,4,7,8,11,13,14,16,17,19,22,23,26,28,29,31,32,34,37,38,41,43,44\}$

- . The provided set G is a subset of U(45). This implies that G is a subgroup of U(45).
- o Let's check the elements: $G = \{1,4,11,14,16,19,26,29,31,34,41,44\}$. |G| = 12. U(45) has order 24. So G is a subgroup of U(45).
- The prime-power factorization of the order of G is $12 = 2^2 \times 3$.
- We need to write G as an external and internal direct product of cyclic groups of prime-power order.
- o The structure of U(n) groups: $U(45) \cong U(9) \oplus U(5)$. $U(9) = \{1,2,4,5,7,8\}$. This is cyclic of order $\phi(9) = 6$, so $U(9) \cong Z_6$. (Generator e.g., 2: $2^1 = 2$, $2^2 = 4$, $2^3 = 8$, $2^4 = 16 \equiv 7$, $2^5 = 14 \equiv 5$, $2^6 = 10 \equiv 1 \pmod{9}$). $U(5) = \{1,2,3,4\}$. This is cyclic of order $\phi(5) = 4$, so $U(5) \cong Z_4$. (Generator e.g., 2: $2^1 = 2$, $2^2 = 4$, $2^3 = 8 \equiv 3$, $2^4 = 16 \equiv 1 \pmod{5}$).
- o So, $U(45) \cong Z_6 \oplus Z_4$.
- o The elements of *G* are: {1,4,11,14,16,19,26,29,31,34,41,44}.
- Let's consider elements modulo 9 and modulo 5 for elements in G.
 - $1 \pmod{9} \equiv 1, 1 \pmod{5} \equiv 1. (1,1)$
 - $4 \pmod{9} \equiv 4, 4 \pmod{5} \equiv 4. (4,4)$
 - $11 \pmod{9} \equiv 2, 11 \pmod{5} \equiv 1. (2,1)$
 - $14 \pmod{9} \equiv 5, 14 \pmod{5} \equiv 4. (5,4)$
 - $16 \pmod{9} \equiv 7, 16 \pmod{5} \equiv 1. (7,1)$
 - $19 \pmod{9} \equiv 1, 19 \pmod{5} \equiv 4. (1,4)$
 - $26 \pmod{9} \equiv 8, 26 \pmod{5} \equiv 1. (8,1)$
 - $29 \pmod{9} \equiv 2, 29 \pmod{5} \equiv 4. (2,4)$

- $31 \pmod{9} \equiv 4, 31 \pmod{5} \equiv 1. (4,1)$
- $34 \pmod{9} \equiv 7, 34 \pmod{5} \equiv 4. (7,4)$
- $41 \pmod{9} \equiv 5, 41 \pmod{5} \equiv 1. (5,1)$
- $44 \pmod{9} \equiv 8, 44 \pmod{5} \equiv 4. (8,4)$
- o Mapping these to $U(9) \oplus U(5)$: $G' = \{(1,1), (4,4), (2,1), (5,4), (7,1), (1,4), (8,1), (2,4), (4,1), (7,4), (5,1), (8,4)\}$.
- $\begin{array}{l} \circ \ \ \ \mbox{Let} \ H_{1'} = \{(x,1) \mid x \in U(9)\} = \\ \{(1,1),(2,1),(4,1),(5,1),(7,1),(8,1)\}. \ \ \mbox{This is} \ U(9) \oplus \{1\}. \ \mbox{It is} \\ \ \ \mbox{isomorphic to} \ Z_6. \end{array}$
- o Let $H_{2'} = \{(1, y) \mid y \in U(5)\} = \{(1, 1), (1, 2), (1, 3), (1, 4)\}$. This is $\{1\} \oplus U(5)$. It is isomorphic to Z_4 .
- The group G consists of elements where the second component (modulo 5) is either 1 or 4.
- o The elements of U(5) with second component 1 or 4 are $\{1,4\}$. This subgroup of U(5) has order 2 and is isomorphic to Z_2 .
- So, $G \cong U(9) \oplus \{1,4\} \pmod{5}$.
- This means $G \cong U(9) \oplus \langle 4 \rangle_{U(5)}$.
- \circ $G \cong Z_6 \oplus Z_2$.
- Since $Z_6 \cong Z_2 \oplus Z_3$, we have $G \cong Z_2 \oplus Z_3 \oplus Z_2$.
- Rearranging, $G \cong Z_2 \oplus Z_2 \oplus Z_3$.
- External Direct Product of Cyclic Groups of Prime-Power Order:
 - $\circ G \cong Z_2 \oplus Z_2 \oplus Z_3.$
- Internal Direct Product of Cyclic Groups of Prime-Power Order:

- Let's find the subgroups in G corresponding to these cyclic groups.
- o In Z_{45} , elements of order 2 are those x such that $x^2 \equiv 1 \pmod{45}$.
 - $x^2 \equiv 1 \pmod{9} \Rightarrow x \in \{1,8\} \text{ (order 2, not 1 in } Z_9).$
 - $x^2 \equiv 1 \pmod{5} \Rightarrow x \in \{1,4\} \text{ (order 2, not 1 in } Z_5\text{)}.$
 - By CRT:
 - $x \equiv 1 \pmod{9}, x \equiv 1 \pmod{5} \Rightarrow x = 1 \pmod{1}$
 - $x \equiv 1 \pmod{9}, x \equiv 4 \pmod{5} \Rightarrow x = 19 \pmod{2}$
 - $x \equiv 8 \pmod{9}, x \equiv 1 \pmod{5} \Rightarrow x = 26 \pmod{2}$
 - $x \equiv 8 \pmod{9}, x \equiv 4 \pmod{5} \Rightarrow x = 44 \pmod{2}$
 - So, *G* contains elements of order 2: 19,26,44.
- o Elements of order 3:
 - $x^3 \equiv 1 \pmod{9}$, $x \neq 1$. From $U(9) \cong Z_6$, the elements of order 3 are 4,7.
 - $x^3 \equiv 1 \pmod{5}$, $x \neq 1$. From $U(5) \cong Z_4$, there are no elements of order 3.
 - So, an element of order 3 in *G* must have its 5-component of order 1.
 - (4,1) gives 31. Order of 31 (mod 45) is 3. (31¹ = 31, $31^2 = 961 \equiv 16 \pmod{45}$, $31^3 \equiv 16 \times 31 = 496 \equiv 1 \pmod{45}$).
 - (7,1) gives 16. Order of 16 (mod 45) is 3. ($16^1 = 16$, $16^2 = 256 \equiv 31 \pmod{45}$, $16^3 \equiv 31 \times 16 = 496 \equiv 1 \pmod{45}$).

- The elements of order 2 are 19,26,44.
- The elements of order 3 are 16,31.
- \circ The elements of order 4 (lcm(order in U(9), order in U(5)) is 4):
 - Order 4 can come from (o_1, o_2) where $o_2 = 4$.
 - $o_1 \in \{1,2\}$
 - (1, y) where y has order 4 in U(5) (i.e. y = 2,3).
 - (1,2) in $U(9) \oplus U(5)$ corresponds to 11 (mod 45). $11^1 = 11, 11^2 = 121 \equiv 31, 11^3 \equiv 31 \times 11 = 341 \equiv$ $26 \pmod{45}, 11^4 \equiv 26 \times 11 = 286 \equiv 1 \pmod{45}$. No, 11 (mod 9) \equiv 2, order 6. 11 (mod 5) \equiv 1, order 1. So |(2,1)| = lcm(6,1) = 6. So 11 has order 6.
 - (1,3) in $U(9) \oplus U(5)$ corresponds to 1 (mod 9),3 (mod 5). (1,3) should have order 1 × 4 = 4. 1 (mod 9),3 (mod 5). Let's solve $x \equiv 1 \pmod{9}$, $x \equiv 3 \pmod{5}$. $x = 9k + 1 \equiv 3 \pmod{5} \Rightarrow 4k + 1 \equiv 3 \pmod{5} \Rightarrow 4k \equiv 2 \pmod{5} \Rightarrow -k \equiv 2 \pmod{5} \Rightarrow k \equiv -2 \equiv 3 \pmod{5}$. So k = 3. x = 9(3) + 1 = 28. $28 \in U(45)$. Is $28 \in G$? No.
 - (x, y) where |x| = 2, |y| = 4.
 - (8,2) gives $x \equiv 8 \pmod{9}$, $x \equiv 2 \pmod{5}$. $x = 9k + 8 \equiv 2 \pmod{5} \Rightarrow 4k + 3 \equiv 2 \pmod{5} \Rightarrow 4k \equiv -1 \equiv 4 \pmod{5} \Rightarrow k \equiv 1 \pmod{5}$. k = 1. x = 17. $17 \notin G$.
- Let's reconsider the elements of G.
 - \circ $U(45) \cong Z_6 \oplus Z_4$.
 - $G = \{(x \pmod{9}, y \pmod{5}) \mid x \in G\}.$

- $G = \{(1,1), (4,4), (2,1), (5,4), (7,1), (1,4), (8,1), (2,4), (4,1), (7,4), (5,1), (8,4)\}$
- Let $A = \{1,2,4,5,7,8\} \subset U(9)$. This is $U(9) \cong Z_6$.
- Let $B = \{1,4\} \subset U(5)$. This is $\langle 4 \rangle_{U(5)} \cong Z_2$.
- \circ The elements of *G* are precisely $A \times B$.
- \circ So, $G \cong U(9) \oplus \langle 4 \rangle_{U(5)}$.
- \circ $G \cong Z_6 \oplus Z_2$.
- Now, decompose Z_6 into prime-power order cyclic groups: $Z_6 \cong Z_2 \oplus Z_3$.
- o Therefore, $G \cong Z_2 \oplus Z_3 \oplus Z_2$.
- This is the external direct product of cyclic groups of primepower order.

Internal Direct Product:

- We need to find subgroups H_1, H_2, H_3 within G such that $H_1 \cong Z_2, H_2 \cong Z_2, H_3 \cong Z_3$, and $G = H_1H_2H_3$ with trivial intersections.
- o We can use elements that correspond to the decomposition.
- Let $H_a = \{x \in G \mid x \equiv 1 \pmod{9}\}.$
 - Elements of G with $x \pmod{9} = 1$: 1,19. This is a subgroup $\{1,19\}$ of order 2. Let $H_a = \langle 19 \rangle \cong Z_2$. $(19 \pmod{9} \equiv 1, 19 \pmod{5} \equiv 4)$.
- $\circ \ \mathsf{Let} \ H_b = \{x \in G \mid x \equiv 1 \ (\mathsf{mod} \ 5)\}.$
 - Elements of G with $x \pmod{5} = 1$: 1,11,16,26,31,41. This is the subgroup U(9) projected onto G.

- This subgroup is isomorphic to Z_6 . We need to split this further.
- Subgroup of order 2: $\{1,26\}$. 26 (mod 9) \equiv 8, 26 (mod 5) \equiv 1. $26^2 = 676 = 15 \times 45 + 1 \equiv 1 \pmod{45}$. Let $H_{h'} = \langle 26 \rangle \cong Z_2$.
- Subgroup of order 3: $\{1,16,31\}$. 16 (mod 9) $\equiv 7$, 16 (mod 5) $\equiv 1$. $16^3 \equiv 1 \pmod{45}$. Let $H_c = \langle 16 \rangle \cong Z_3$.
- o Let's check elements for the first Z_2 (from the Z_2 component of Z_6). Let $g_1 \in U(9)$ of order 2, $g_1 = 8$. Let $g_2 \in U(5)$ of order 1, $g_2 = 1$. This corresponds to (8,1) (mod 9,5) which is $26 \in G$. So $H_1 = \langle 26 \rangle = \{1,26\}$. This is Z_2 .
- o Let's check elements for the second Z_2 (from Z_2 itself). Let $g_1 \in U(9)$ of order 1, $g_1 = 1$. Let $g_2 \in U(5)$ of order 2, $g_2 = 4$. This corresponds to (1,4) (mod 9,5) which is $19 \in G$. So $H_2 = \langle 19 \rangle = \{1,19\}$. This is Z_2 .
- o Let's check elements for the Z_3 . Let $g_1 \in U(9)$ of order 3, $g_1 = 4$. Let $g_2 \in U(5)$ of order 1, $g_2 = 1$. This corresponds to (4,1) (mod 9,5) which is $31 \in G$. So $H_3 = \langle 31 \rangle = \{1,31,16\}$. This is Z_3 . (Note: $31^2 = 16$, $31^3 = 1$).
- O Now, we need to check the internal direct product conditions for $H_1 = \langle 26 \rangle$, $H_2 = \langle 19 \rangle$, $H_3 = \langle 31 \rangle$.
 - vii. **Normality:** All these subgroups are cyclic, and G is abelian (as it is isomorphic to $Z_2 \oplus Z_2 \oplus Z_3$, which is abelian). In an abelian group, every subgroup is normal. So, this condition is satisfied.
 - viii. **Product spans G:** $|H_1||H_2||H_3| = 2 \times 2 \times 3 = 12 = |G|$. This means $H_1H_2H_3$ will be G if the intersections are trivial.
 - ix. Trivial intersections:

- $H_1 \cap H_2 = \{1,26\} \cap \{1,19\} = \{1\}.$
- $H_1 \cap H_3 = \{1,26\} \cap \{1,16,31\} = \{1\}.$
- $H_2 \cap H_3 = \{1,19\} \cap \{1,16,31\} = \{1\}.$
- More generally, we need $H_i \cap (H_i H_k) = \{1\}.$
 - $H_1H_2 = \{1,19,26,44\}$. Note $19 \times 26 = 494 \equiv 44 \pmod{45}$. This is a group of order 4, isomorphic to $Z_2 \oplus Z_2$.
 - $\circ \ \ H_1H_2\cap H_3=\{1,19,26,44\}\cap \{1,16,31\}=\{1\}.$
- Therefore, G is the internal direct product of $H_1 = \langle 26 \rangle$, $H_2 = \langle 19 \rangle$, and $H_3 = \langle 31 \rangle$.
- o Internal Direct Product: $G = \langle 26 \rangle \times \langle 19 \rangle \times \langle 31 \rangle$.
- External Direct Product: $G \cong Z_2 \oplus Z_2 \oplus Z_3$.