Paths of analysis*

Synthia

March 3, 2022

1 Analysis parameters

Analysis type: Automatic Retrosynthesis

Rules: none selected

Filters: FGI, FGI with protections

Max. paths returned: 5

Max. iterations: 300

Commercial:

1. Max. molecular weight - 1000 g/mol

2. Max. price - 1000 \$/g

Published:

1. Max. molecular weight - 1000 g/mol

2. Popularity - 10

My Stockroom:

1. Max. molecular weight - 1000 g/mol

Reaction scoring formula: TUNNEL_COEF*FGI_COEF*STEP*20+1000 000*(CONFLICT+NON SELECTIVITY+FILTERS+PROTECT)

Chemical scoring formula: SMALLER^ 3,SMALLER^ 1.5

Min. search width: 400

Max. reactions per product: 60

Strategies: none selected

^{*}The results stated herein were generated using the proprietary platform owned and maintained by Grzybowski Scientific Inventions, Inc., a subsidiary of Merck KGaA, Darmstadt Germany. The results are provided on an as is basis, and shall be used solely in connection with the rights afforded in the license agreement and for no other purpose.

FGI Coeff: 0

JSON Parameters: {}

2 Paths

3 paths found. Paths are sorted by score. Reactions are sorted in appearance order for each path.

2.1 Path 1

Score: 159.67

Figure 1: Outline of path 1

2.1.1 Synthesis of O-substituted N-substituted hydroxamic acids

Substrates:

- 1. 6-Chloro-2-fluoro-3-iodobenzoic acid AOBChem
- 2. n-methoxymethylamine ChemImpexInternational

Products:

1. CON(C)C(=O)c1c(Cl)ccc(I)c1F

 $\textbf{Typical conditions:} \ \, \text{DCC.DMAP or CDI.TEA.DCM}$

Protections: none

Yield: good

Reference: Patent: WO2007/67333A2, 2007 & 10.1016/j.bmcl.2008.09.100

Retrosynthesis ID: 1152

2.1.2 Coupling of Ammonia with Aryl Halides

Substrates:

1. CON(C)C(=O)c1c(Cl)ccc(I)c1F

Products:

1. CON(C)C(=O)c1c(Cl)ccc(N)c1F

Typical conditions: Pd[(P(p-tol)3]2.NaOtBu.dioxane.heat

Protections: none

Yield: good

Reference: 10.1021/ja903049z and 10.1021/jo9006738

2.1.3 N-Sulfonylation

Substrates:

1. CON(C)C(=O)c1c(Cl)ccc(N)c1F

2. 1-Propanesulfonyl chloride - available at Sigma-Aldrich

Products:

1. CCCS(=O)(=O)Nc1ccc(Cl)c(C(=O)N(C)OC)c1F

Typical conditions: THF.rt

Protections: none

Yield: good

Reference: 10.1055/s-0029-1217565 and 10.1002/(SICI)1099-0690(199806)1998:6<945::AID-EJOC945>3.0.CO;2-3 and 10.1055/s-2001-14567 and 10.1016/j.bmc.2014.07.022

Retrosynthesis ID: 14717

2.1.4 Iodination of aromatic compounds

Substrates:

1. 5-(4-Chlorophenyl)-1H-pyrrolo[2,3-b]pyridine - Combi-Blocks

Products:

1. Clc1ccc(-c2cnc3[nH]cc(I)c3c2)cc1

Typical conditions: I2 or other iodinating agent e.g. NIS

Protections: none

Yield: good

Reference: DOI: 10.1039/C5SC00964B and 10.1016/j.tetlet.2005.05.117 and

10.1007/s11178-005-0256-1

Retrosynthesis ID: 10697

2.1.5 Synthesis of ketones from Weinreb amides

Substrates:

- 1. CCCS(=O)(=O)Nc1ccc(Cl)c(C(=O)N(C)OC)c1F
- 2. Clc1ccc(-c2cnc3[nH]cc(I)c3c2)cc1

Products:

 $\begin{array}{ll} 1. & CCCS(=O)(=O)Nc1ccc(Cl)c(C(=O)c2c[nH]c3ncc(-c4ccc(Cl)cc4)cc23)c1F \end{array}$

Typical conditions: 1.RmgBr.THF 2.TFA.DCM

Protections: none

Yield: good

Reference: 10.1021/jm051185t and 10.1021/ol101021v (supporting info)

2.2 Path 2

Score: 213.20

Figure 2: Outline of path 2

2.2.1 N-Sulfonylation

Substrates:

1. 1-Propanesulfonyl chloride - available at Sigma-Aldrich

2. 4-Chloro-2-fluoro-3-methoxyaniline 1g pack - available at Sigma-Aldrich

Products:

 $1. \ \mathrm{CCCS}(=\mathrm{O})(=\mathrm{O})\mathrm{Nc1ccc}(\mathrm{Cl})\mathrm{c}(\mathrm{OC})\mathrm{c}1\mathrm{F}$

Typical conditions: THF.rt

Protections: none

 $\bf Yield: \ good$

Reference: 10.1055/s-0029-1217565 and 10.1002/(SICI)1099-0690(199806)1998:6<945::AID-EJOC945>3.0.CO;2-3 and 10.1055/s-2001-14567 and 10.1016/j.bmc.2014.07.022

Retrosynthesis ID: 14718

2.2.2 Demethylation of Phenols

Substrates:

1. CCCS(=O)(=O)Nc1ccc(Cl)c(OC)c1F

Products:

1. CCCS(=O)(=O)Nc1ccc(Cl)c(O)c1F

Typical conditions: BBr3.CH2Cl2

Protections: none
Yield: moderate

Reference: DOI: 10.1021/ja00105a021 and 10.1021/jm00176a011 and 10.1021/jm970277i and 10.1021/ja0106164 and Patent: US2010/16298, 2010,

A1, page 185

2.2.3 Synthesis of haloarenes via triflates

Substrates:

1. CCCS(=O)(=O)Nc1ccc(Cl)c(O)c1F

Products:

1. CCCS(=O)(=O)Nc1ccc(Cl)c(I)c1F

Typical conditions: 1.Tf2O 2. [Pd].MX

Protections: none
Yield: moderate

Reference: 10.1016/j.tetasy.2012.04.008 and WO2007/136577 (p46) and

10.1021/ol202098h and 10.1021/ol402859k and 10.1021/jacs.5b09308

Retrosynthesis ID: 23940

2.2.4 Synthesis of O-substituted N-substituted hydroxamic acids

Substrates:

1. n-methoxymethylamine -ChemImpexInternational

2. 7-Azaindole-3-carboxylic acid - $Combi ext{-}Blocks$

Products:

1. CON(C)C(=O)c1c[nH]c2ncccc12

Typical conditions: DCC.DMAP or CDI.TEA.DCM

Protections: none

Yield: good

Reference: Patent: WO2007/67333A2, 2007 & 10.1016/j.bmcl.2008.09.100

Retrosynthesis ID: 1152

Bromination of aromatic compounds

Substrates:

1. CON(C)C(=O)c1c[nH]c2ncccc12

Products:

1. CON(C)C(=O)c1c[nH]c2ncc(Br)cc12

Typical conditions: Br2.Fe

Protections: none

Yield: good

Reference: 10.1021/acs.accounts.6b00120

2.2.6 Suzuki coupling of arylboronic acids with aryl bromides

Substrates:

1. 4-Chlorophenylboronic acid - available at Sigma-Aldrich

2. CON(C)C(=O)c1c[nH]c2ncc(Br)cc12

Products:

1. CON(C)C(=O)c1c[nH]c2ncc(-c3ccc(Cl)cc3)cc12

Typical conditions: Pd catalyst.base.solvent

Protections: none

Yield: good

Reference: 10.1021/cr00039a007 and $10.1007/3418_2012_32$ and 10.1021/cr0505268 and 10.1016/j.jfluchem.2016.01.018 and 10.1039/C3CS60197H and 10.1016/j.ejmech.2018.08.092 and 10.1038/s41929-020-00564-z (metal-free coupling)

Retrosynthesis ID: 25150

2.2.7 Synthesis of ketones from Weinreb amides

Substrates:

- 1. CCCS(=O)(=O)Nc1ccc(Cl)c(I)c1F
- 2. CON(C)C(=O)c1c[nH]c2ncc(-c3ccc(Cl)cc3)cc12

Products:

1. CCCS(=O)(=O)Nc1ccc(Cl)c(C(=O)c2c[nH]c3ncc(-c4ccc(Cl)cc4)cc23)c1F

Typical conditions: 1.RmgBr.THF 2.TFA.DCM

Protections: none

Yield: good

Reference: 10.1021/jm051185t and 10.1021/ol101021v (supporting info)

Retrosynthesis ID: 5060

2.3 Path 3

Score: 331.10

Figure 3: Outline of path 3

2.3.1 Bromination of aromatic compounds

Substrates:

1. 5-(4-Chlorophenyl)-1H-pyrrolo[2,3-b]pyridine - Combi-Blocks

Products:

1. Clc1ccc(-c2cnc3[nH]cc(Br)c3c2)cc1

Typical conditions: Br2.Fe

Protections: none

Yield: good

Reference: 10.1021/acs.accounts.6b00120

Retrosynthesis ID: 7777000

2.3.2 Heck Reaction

Substrates:

1. Isobutylene - available at Sigma-Aldrich

2. Clc1ccc(-c2cnc3[nH]cc(Br)c3c2)cc1

Products:

1. CC(C)=Cc1c[nH]c2ncc(-c3ccc(Cl)cc3)cc12

Typical conditions: Pd (cat). Ligand e.g. TXPTS. Base. Temp

Protections: none

Yield: moderate

Reference: 10.1039/C3GC40493E 10.1021/ol0360288 or 10.1021/ol702755g or

10.1055/s-0033-1340319 or 10.1016/j.tet.2004.10.049

2.3.3 Chan-Lam Coupling

Substrates:

- 1. Propane-1-sulfonamide Combi-Blocks
- 2. 3-Bromo-4-chloro-2-fluorophenylboronic acid Combi-Blocks

Products:

1. CCCS(=O)(=O)Nc1ccc(Cl)c(Br)c1F

Typical conditions: Cu(OAc)2.K2CO3.H2O or Cu(OAc)2.pyridine.DCM.MS

4A

Protections: none

Yield: good

Reference: 10.1016/j.molcata.2014.02.017 and 10.1039/C4RA08137D and

WO2008073956 p.88

Retrosynthesis ID: 31015970

2.3.4 Heck Reaction

Substrates:

- 1. CC(C)=Cc1c[nH]c2ncc(-c3ccc(Cl)cc3)cc12
- 2. CCCS(=O)(=O)Nc1ccc(Cl)c(Br)c1F

Products:

1. CCCS(=O)(=O)Nc1ccc(Cl)c(C(=C(C)C)c2c[nH]c3ncc(-c4ccc(Cl)cc4)cc23)c1F

Typical conditions: Pd (cat). Ligand e.g. TXPTS. Base. Temp

Protections: none

Yield: good

Reference: 10.1016/j.tetlet.2013.01.077 or 10.1021/ja508165a 10.3390/molecules16108353 or 10.1039/C3GC40493E 10.1021/ol0360288 or 10.1021/ol702755g or 10.1055/s-0033-1340319 or 10.1016/j.tet.2004.10.049

Retrosynthesis ID: 9174

2.3.5 Ozonolysis

Substrates:

1. CCCS(=O)(=O)Nc1ccc(Cl)c(C(=C(C)C)c2c[nH]c3ncc(-c4ccc(Cl)cc4)cc23)c1F

Products:

1. CCCS(=O)(=O)Nc1ccc(Cl)c(C(=O)c2c[nH]c3ncc(-c4ccc(Cl)cc4)cc23)c1F

Typical conditions: O3.MeOH.CH2Cl2.PPh3 or Me2S.low temperature

Protections: none

Yield: good

Reference: 10.1016/j.tet.2017.03.039