MAT77C - Fundamentos de Análise - Lista 1

Fabio Zhao Yuan Wang*

- 1. Como vimos, existe uma função injetora $s: \mathbb{N} \to \mathbb{N}$, tal que s(n) = n+1, em que s(n) chama-se *sucessor* de n. A partir disso, podemos definir a operação *soma* em \mathbb{N} , que satisfaz a seguinte lei de recursão:
- Para todo $n \in \mathbb{N}$, temos que n + 1 = s(n);
- Para cada $m, n \in \mathbb{N}$, temos que n + s(m) = s(n + m).

Também podemos definir a operação de produto em ℕ, que satisfaz a seguinte lei de recursão:

- Para todo $n \in \mathbb{N}$, temos que $n \cdot 1 = n$;
- Para cada $m, n \in \mathbb{N}$, temos que $n \cdot s(m) = nm + n$.

Mostre que valem as seguintes propriedades:

a) (Comutatividade da soma) Para cada $m, n \in \mathbb{N}$, temos que m + n = n + m. Antes, considere a seguinte proposição:

Proposição: Seja $m \in \mathbb{N}$, então m + 1 = 1 + m.

Demonstração da proposição: Considere $S \subset \mathbb{N}$ tal que, $S = \{m \in \mathbb{N}; m+1=1+m\}$. Note que $1 \in S$, já que (1) + 1 = 2 = 1 + (1); Vejamos agora que $s(S) \subset S$. Seja $m \in S$, então:

$$s(m) + 1 = (m + 1) + 1,$$
 (Definição da função sucessor)
= $(1 + m) + 1,$ (Visto que $m \in S$)
= $1 + (m + 1),$ (Associatividade da soma em \mathbb{N})
= $1 + s(m)$. (Definição da função sucessor)

Deste modo, já que $1 \in S$ e $s(S) \in S$, pelo Princípio da Indução, temos que $S = \mathbb{N}$, como queríamos. \square

Dem: Considere $S \subset \mathbb{N}$ tal que $S = \{m \in \mathbb{N}; m+n=n+m, n \in \mathbb{N}\}$. Da proposição anterior, temos que $1 \in S$, visto que 1+n=n+1. Vejamos que $s(S) \subset S$. Tomando $m \in S$,

```
s(m) + n = (m + 1) + n, (Definição da função sucessor)

= m + (1 + n), (Associatividade da soma em \mathbb{N})

= m + (n + 1), (Proposição anterior)

= (m + n) + 1, (Associatividade da soma em \mathbb{N})

= (n + m) + 1, (Visto que m \in S)

= n + (m + 1), (Associatividade da soma em \mathbb{N})

= n + s(m). (Definição da função sucessor)
```


Visto que $1 \in S$ e $s(S) \subset S$, pelo Princípio da Indução, temos $S = \mathbb{N}$, como queríamos. \square

b) (Lei do cancelamento da soma) Para cada $m, n, p \in \mathbb{N}$, se m+p=n+p, então m=n. Dem: Seja $S \subset \mathbb{N}$ tal que $S = \{p \in \mathbb{N}; (m+p=n+p) \implies m=n, m, n \in \mathbb{N}\}$. Ora, $1 \in S$, já que, se m+1=n+1, então s(m)=s(n), e, como s é injetora por definição, então m=n. Vejamos que $s(S) \subset S$. Tomando $p \in S$ e m+s(p)=n+s(p),

```
m+s(p)=n+s(p),

m+(p+1)=n+(p+1), (Definição da função sucessor)

(m+p)+1=(n+p)+1, (Associatividade da soma em bN)

s(m+p)=s(n+p), (Definição da função sucessor)

m+p=n+p, (Injetividade da função sucessor)

m=n. (Já que p \in S)
```

Deste modo, como $1 \in S$ e $s(S) \subset S$, pelo Princípio da Indução, temos $S = \mathbb{N}$. \square

c) (Comutatividade do produto) Para cada $m, n \in \mathbb{N}$, temos que mn = nm. Antes, considere as seguintes proposições:

.....

Proposição 1: Seja $n \in \mathbb{N}$, $n \cdot 1 = 1 \cdot n$.

Demonstração da proposição: Seja $T \subset \mathbb{N}$ tal que $T = \{n \in \mathbb{N}; n \cdot 1 = 1 \cdot n\}$, queremos mostrar que $T = \mathbb{N}$. Ora, $1 \in T$, já que pela definição do produto em \mathbb{N} , $(1) \cdot 1 = 1 = 1 \cdot (1)$. Vejamos que $s(T) \subset T$. Tomando $n \in T$, temos que:

```
s(n) \cdot 1 = s(n), (Definição do produto em \mathbb{N})
= n+1, (Definição da função sucessor)
= 1 \cdot n + 1, (Da definição do produto e sabendo que n \in T, n = n \cdot 1 = 1 \cdot n)
= 1 \cdot s(n). (Definição do produto em \mathbb{N}, m \cdot s(n) = mn + m)
```

Portanto, como $1 \in T$ e $s(T) \subset T$, segue do Princípio da Indução que $T = \mathbb{N}$. \square

.....

Dem: