An Implementation of Sin and Cos Using Gal's Accurate Tables

Pascal Leroy (phl)

2025-02-02

This document describes the implementation of functions Sin and Cos in Principia. The goals of that implementation are to be portable (including to machines that do not have a fused multiply-add instruction), achieve good performance, and ensure correct rounding.

Overview

The implementation follows the ideas described by [GB91] and uses accurate tables produced by the method presented in [SZ05]. It guarantees correct rounding with a high probability. In circumstances where it cannot guarantee correct rounding, it falls back to the (slower but correct) implementation provided by the CORE-MATH project [SZG22] [ZSG+24]. More precisely, the algorithm proceeds through the following steps:

- perform argument reduction using Cody and Waite's algorithm in double precision (see [Mul+10, p. 379]);
- if argument reduction loses too many bits (i.e., the argument is close to a multiple of $\frac{\pi}{2}$), fall back to cr_sin or cr_cos;
- otherwise, uses accurate tables and a polynomial approximation to compute Sin or Cos with extra accuracy;
- if the result has a "dangerous rounding configuration" (as defined by [GB91]), fall back to cr_sin or cr_cos;
- otherwise return the rounded result of the preceding computation.

In this document we assume a base-2 floating-point number system with M significand bits¹ similar to the IEEE formats. We define a real function \mathfrak{m} and an integer function \mathfrak{e} denoting the *significand* and *exponent* of a real number, respectively:

$$x = \pm \operatorname{m}(x) \times 2^{\operatorname{e}(x)}$$
 with $2^{M-1} \le \operatorname{m}(x) \le 2^M - 1$

Note that this representation is unique. Furthermore, if x is a floating-point number, $\mathfrak{m}(x)$ is an integer.

The distance between 1 and the next larger floating-point number is:

$$\epsilon_M \coloneqq 2^{1-M}$$

and the distance between 1 and the next smaller floating-point number is $\frac{\epsilon_M}{2}$. The *unit of the last place* of x is defined as:

$$\mathfrak{u}(x)\coloneqq 2^{\mathfrak{e}(x)}$$

In particular, $\mathfrak{u}(1) = \epsilon_M$.

We ignore the exponent bias, overflow and underflow as they play no role in this

Finally, for error analysis we use the accuracy model of [Higo2], equation (2.4): unless otherwise indicated, δ_i is a roundoff factor such that $\delta_i < u = \epsilon_M/2 = 2^{-M}$ (see pages 37 and 38). We also use θ_n and γ_n with the same meaning as in [Higo2], lemma 3.1.

 $^{^{1}}$ In binary64, M = 53.

Argument Reduction

Given an argument x, the purpose of argument reduction is to compute a pair of floating-point numbers $(\hat{x}, \delta \hat{x})$ such that:

$$\begin{cases} \hat{x} + \delta \hat{x} \cong x \pmod{\frac{\pi}{2}} \\ \hat{x} \text{ is approximately in } \left[-\frac{\pi}{4}, \frac{\pi}{4} \right] \\ |\delta \hat{x}| < \mathfrak{u}(\hat{x}) \end{cases}$$

Approximation of $\frac{1}{2}$

We start by defining the truncation function $\text{Tr}(\kappa, z)$ which clears the last κ bits of the mantissa of z:

$$\operatorname{Tr}(\kappa, z) := \lfloor 2^{-\kappa} \operatorname{m}(z) \rfloor 2^{\kappa} \operatorname{\mathfrak{u}}(z)$$

From the definition of the floor function we deduce:

$$0 \le z - \operatorname{Tr}(\kappa, z) < 2^{\kappa} \mathfrak{u}(z)$$

Furthermore if the bits that are being truncated start with k zeros we have the stricter inequality:

$$0 \le z - \operatorname{Tr}(\kappa, z) < 2^{\kappa'} \mathfrak{u}(z)$$
 with $\kappa' = \kappa - k$

and:

$$\mathfrak{u}(z - \operatorname{Tr}(\kappa, z)) < \frac{2^{\kappa'} \mathfrak{u}(z)}{\mathfrak{m}(z - \operatorname{Tr}(\kappa, z))} \le 2^{\kappa' - M + 1} \mathfrak{u}(z)$$

Since the function u is always a power of 2 this implies:

$$\mathfrak{u}(z - \operatorname{Tr}(\kappa, z)) = 2^{\kappa' - M} \mathfrak{u}(z) \tag{1}$$

Two-Term Approximation

We approximate $\frac{\pi}{2}$ as the sum of two floating-point numbers:

$$\frac{\pi}{2} \simeq C_1 + \delta C_1$$

which are defined as:

$$\begin{cases} C_1 & \coloneqq \operatorname{Tr}\left(\kappa_1, \frac{\pi}{2}\right) \\ \delta C_1 & \coloneqq \left[\left[\frac{\pi}{2} - C_1 \right] \right] \end{cases}$$

With these definitions, equation 1 becomes:

$$\mathfrak{u}\left(\frac{\pi}{2}-C_1\right)=2^{\kappa_1'-M}\,\mathfrak{u}\left(\frac{\pi}{2}\right)$$

where κ_1' is obtained by accounting for the zeroes after the truncated bit of $\frac{\pi}{2}$ at position κ_1 . Therefore, the absolute error on the two-term approximation is:

$$\left|\frac{\pi}{2} - C_1 - \delta C_1\right| \le \frac{1}{2} \operatorname{u}\left(\frac{\pi}{2} - C\right) = 2^{\kappa_1' - M - 1} \operatorname{u}\left(\frac{\pi}{2}\right) \tag{2}$$

In other words, we have a representation with a significand that has effectively $2M - \kappa_1'$ bits and is such that multiplying C_1 by an integer less than or equal to 2^{κ_1} is exact. The representation of $\frac{\pi}{2}$ has three zeroes after the 18th bit of its significand, so by taking $\kappa_1 = 18$ we have $\kappa_2 = 14$.

Three-Term Approximation

To find a suitable approximation of $\frac{\pi}{2}$ we start by defining:

$$C_1 := \operatorname{Tr}\left(\kappa_1, \frac{\pi}{2}\right)$$

where:

$$\frac{\pi}{2} - C_1 < 2^{\kappa_1' - M + 1} \operatorname{\mathfrak{u}}\left(\frac{\pi}{2}\right)$$

and:

$$C_2 := \operatorname{Tr}\left(\kappa_1, \frac{\pi}{2} - C_1\right)$$

where:

$$\begin{split} \frac{\pi}{2} - C_1 - C_2 &< 2^{\kappa_1'' - M + 1} \, \mathfrak{u} \Big(\frac{\pi}{2} - C_1 \Big) \\ &< 2^{\kappa_1' + \kappa_1'' - 2M + 2} \, \mathfrak{u} \Big(\frac{\pi}{2} \Big) \end{split}$$

Finally we define:

$$C_3 \coloneqq \left[\left[\frac{\pi}{2} - C_1 - C_2 \right] \right] < 2^{\kappa_1' + \kappa_1'' - 2M + 1} \mathfrak{u}\left(\frac{\pi}{2}\right)$$

Argument Reduction for Small Angles

If
$$|x| < \left[\frac{\pi}{4}\right]$$
 then $\hat{x} = x$ and $\delta \hat{x} = 0$.

Argument Reduction for Medium Angles

If $|x| \le 2^{\kappa_1} \left[\frac{\pi}{2} \right]$ then we compute:

$$\begin{cases} n &= \left[\left[x \left[\frac{2}{\pi} \right] \right] \right] \\ y &= x - n \ C \\ \delta y &= \left[n \ \delta C \right] \\ \hat{x} &= \left[y - \delta y \right] \\ \delta \hat{x} &= (y - \hat{x}) - \delta y \end{cases}$$

Let's first show that $|n| \le 2^{\kappa_1}$.:

$$|x| \le 2^{\kappa_1} \frac{\pi}{2} (1 + \delta_1)$$

$$|n| \le \left[2^{\kappa_1} \frac{\pi}{2} (1 + \delta_1) \frac{2}{\pi} (1 + \delta_2) (1 + \delta_3) \right]$$

$$\le \left[2^{\kappa_1} (1 + \gamma_3) \right]$$

Because $2^{\kappa_1}\gamma_3$ is very small (less that 2^{-33}), the rounding cannot cause n to exceed 2^{κ_1} .

The product n C is exact thanks to the κ_1 trailing zeroes of C. The subtraction x-n C is exact by Sterbenz's Lemma. Finally, the last two steps form a compensated summation so that $\hat{x} + \delta \hat{x} = y + \delta y$.

To compute the overall error on argument reduction, first remember that, from equation 2 we have:

$$C + \delta C = \frac{\pi}{2} + \delta_5$$
 with $|\delta_5| \le 2^{\kappa_2 - M - 1} \mathfrak{u}\left(\frac{\pi}{2}\right)$

The error computation proceeds as follows:

$$y + \delta y = x - n C - n \delta C (1 + \delta_4)$$
$$= x - n(C + \delta C) - n \delta C \delta_4$$
$$= x - n \frac{\pi}{2} - n(\delta_5 + \delta C \delta_4)$$

from which we can deduce an upper bound on the absolute error:

$$\left| y + \delta y - \left(x - n \frac{\pi}{2} \right) \right| < 2^{\kappa_1} 2^{\kappa_2} \mathfrak{u} \left(\frac{\pi}{2} \right) (2^{-M-1} + 2^{-M}) = \frac{3}{2} 2^{\kappa_1 + \kappa_2 - M} \mathfrak{u} \left(\frac{\pi}{2} \right)$$

where we have used the upper bound for δC given by equation ??.

Argument Reduction for Large Angles

Accurate Tables and Their Generation

Computation of the Functions

Sin

Near Zero

For \hat{x} near zero we evaluate:

$$\begin{split} \widehat{x^2} &= [[\hat{x}^2]] = \hat{x}^2 (1 + \delta_1) \\ \widehat{x^3} &= [[\hat{x} \ \widehat{x^2}]] = \hat{x}^3 (1 + \delta_1) (1 + \delta_2) \\ \widehat{p} &= [[a\widehat{x^2} + b]] = (a\widehat{x}^2 (1 + \delta_1) + b) (1 + \delta_3) \\ s(x) &\coloneqq \widehat{x} + [[[\widehat{x^3} \widehat{p}]] + \delta \widehat{x}]] \\ &= \widehat{x} + (\widehat{x}^3 (1 + \delta_1) (1 + \delta_2) (a\widehat{x}^2 (1 + \delta_1) + b) (1 + \delta_3) (1 + \delta_4) + \delta \widehat{x}) (1 + \delta_5) \\ &= \widehat{x} + a\widehat{x}^3 (1 + \theta_5) + b\widehat{x}^5 (1 + \theta_4) + \delta \widehat{x} (1 + \delta_5) \end{split}$$

References

- [GB91] S. Gal and B. Bachelis. "An Accurate Elementary Mathematical Library for the IEEE Floating Point Standard". In: *ACM Transactions on Mathematical Software* 17.1 (Mar. 1991), pp. 26–45.
- [Higo2] N. J. Higham. *Accuracy and Stability of Numerical Algorithms*. Society for Industrial and Applied Mathematics, 2002.
- [Mul+10] J.-M. Muller, N. Brisebarre, F. De Dinechin, C.-P. Jeannerod, V. Lefèvre, G. Melquiond, N. Revol, D. Stehlé and S. Torres. Handbook of Floating-Point Arithmetic. Birkhäuser, 2010.
- [SZo5] D. Stehlé and P. Zimmermann. "Gal's accurate tables method revisited". In: 17th IEEE Symposium on Computer Arithmetic (ARITH'o5) (Cape Cod, MA, USA, 27th–29th June 2005). Ed. by P. Montuschi and E. Schwarz. IEEE Computer Society, June 2005, pp. 257–264. DOI: 10.1109/ARITH.2005.24.
- [SZG22] A. Sibidanov, P. Zimmermann and S. Glondu. "The CORE-MATH Project". In: 2022 IEEE 29th Symposium on Computer Arithmetic (ARITH). IEEE, Sept. 2022, pp. 26-34. DOI: 10.1109/ARITH54963.2022.00014. eprint: https://inria.hal.science/hal-03721525v3/file/coremath-final.pdf.
- [ZSG+24] P. Zimmermann, A. Sibidanov, S. Glondu et al. *The CORE-MATH Project*. Software. Apr. 2024.