Theoretical Computerscience - Summary

WS 24/25

Theoretical	Computerscience	- Summary
meoreticai	Computer Scrence	– Summarv

Contents

0 Words

A word w (also called String) has length l and consists of symbols $\sigma \in {}^{\circ}$.

The empty word ε has length 0.

The concatenation of two words w and x is denoted as wx.

 w^i denotes the i-fold concatenation of w with itself. Therefore $w^3 = www$.

 $\varepsilon w = w \varepsilon = w$.

0.1 Subwords

A word w is a subword of a word x if there exist words u and v such that x = uwv.

The empty word is a subword of every word.

The word w is a subword of itself.

0.2 Prefixes and Suffixes

A word w is a prefix of a word x if there exists a word v such that x = wv.

A word w is a suffix of a word x if there exists a word u such that x = uw.

The empty word is a prefix and suffix of every word.

The word w is a prefix and suffix of itself.

1 Finite Automatons

2 Regular Languages

3 Regular Expressions

A regular expression always describes a regular language. If we can build a regular expression E, then $L(E) \in \mathsf{REG}$.

3.1 Languages of regular expressions

If
$$E=\emptyset$$
 then $L(E)=\emptyset$
If $E=\varepsilon$ then $L(E)=\{\varepsilon\}$
If $E=\sigma$ then $L(E)=\{\sigma\}$
If $E=(E_1+E_2)$ then $L(E)=L(E_1)\cup L(E_2)$
If $E=(E_1E_2)$ then $L(E)=L(E_1)L(E_2)$
If $E=(E_1)^*$ then $L(E)=L(E_1)^*$

3.2 Identities

- 1. E + F = F + E
- 2. (E+F)+G=E+(F+G)
- 3. (EF)G = E(FG)
- 4. $\emptyset + E = E + \emptyset = E$
- 5. $\varepsilon E = E \varepsilon = E$
- 6. $\emptyset E = E\emptyset = \emptyset$
- 7. E + E = E
- 8. (E+F)G = (EG) + (FG)
- 9. E(F+G) = (EF) + (EG)
- 10. $(E^*)^* = E^*$
- 11. $\emptyset^* = \varepsilon$
- 12. $\varepsilon^* = \varepsilon$

3.3 Regular expressions and finite automata

If *E* is a regular expression, then $L(E) \in REG$.

For every deterministic finite automaton $M = (Q, \sum, \delta, q_0, Q_{acc})$ there is a regular expression E with L(M) = L(E).

4 The Pumping Lemma

5 Equivalences and Myhill Nerode

5.1 Equivalence Relations

5.2 Myhill Nerode

6 Limits of computability

7 FOR and WHILE programs

7.1 WHILE programming language

Variables: $x_0, x_1, ..., x_n$ Constants: 0, 1, 2, ...Keywords: while, do, od Other symbols: $:=, \neq, :, +, -, [,]$ W_0 : set of all simple statements

7.2 FOR programming language

Variables: x_0, x_1, \dots, x_n Constants: $0, 1, 2, \dots$ Keywords: for, do, od

Other symbols: $:=, \neq, ;, +, -, [,]$

7.3 Semantics

Input is stored in x_0, \ldots, x_{s-1} Output is the content of x_0 after execution of P.

The set $X = \{x_0, x_1, x_2, ...\}$ if akk variables is finite.

7.4 FOR/WHILE computable functions

- 1. A partial function $f: \mathbb{N}^s \to \mathbb{N}$ is WHILE computable, if there is a WHILE program P such that $f = \phi_P$.
- 2. f is FOR computable if $f = \phi_P$ for some FOR program P.
- 3. The set of all WHILE computable functions is denoted by R.
- 4. The set of all FOR computable functions is denoted by PR.

7.5 Decidable languages

The characteristic function of L is the function $\chi_L : \mathbb{N} \to \mathbb{N}$ defined by

$$\chi_L(x) = \begin{cases} 1 & \text{if } x \in L \\ 0 & \text{if } x \notin L \end{cases}$$

A language L is decidable if χ_L is computable ($\chi_L \in R$).

The set of all decidable languages is denoted by REC.

8 Syntactic Sugar

9 Gödel numberings

10 Diagonalisation

11 Universal WHILE Program

12 Halting Problem

13 Reductions

13.1 Known problems

13.1.1 Verification Problem *V*

The verification problem has two gödel number inputs namely i, j and checks if the two programs corresponding to these gödel numbers output the same for every possible input.

13.1.2 Special Verification Problem V_0

The special verification problem has a gödel number i as input and checks if the program corresponding to that gödel number will output 0 for every possible input.

13.1.3 Program termination T

The program termination problem has a gödel number i as input and checks if the program corresponding to that gödel number will terminate for every possible input.

TODO: Add chapter contents

13.2 Many-one Reduction

A WHILE computable total function $f: \mathbb{N} \to \mathbb{N}$ is called many-one reduction from L to L' if

- $L, L' \subseteq \mathbb{N}$
- $\forall x \in \mathbb{N} : x \in L \iff f(x) \in L'$

If such an f exists, then L is many-one reducible to L', therefore we can write $L \leq L'$

13.3 Known Reductions

 $H_0 \leq V_0$

 $V_0 \leq V$

 $V_0 \leq T$

 $\overline{H_0} \leq V_0$

14 More on Reductions

15 Rice's Theorem

16 Turing Machines

17 Examples, tricks and syntactic sugar for Turing Machines

18 Church-Turing Thesis

19 Common Proof Techniques

19.1 Pumping Lemma

The pumping lemma can only be used to show that a language is not REG. We take a word $w \in L$ and split it into multiple sub words u,v,w where $|v| \ge n$ with $n \ge 0$. Now there are words x,y,z with v = xyz and $|y| \ge 0$ such that $uxy^izw \in L$ for all $i \in \mathbb{N}$. Afterwards we try to find an i such that the pumped word is no longer i and thus we proved that the language is not regular.

19.1.1 **Example**

Exercise:

Show that the following language is not regular.

Let
$$A = \{1^{(3n)} \mid n \in \mathbb{N}\}$$

Solution:

Let $n \ge 0$ be given.

We choose $u = 1^n$, $v = 1^n$, $w = 1^n$ such that $uvw = 1^{3n}$ and |v| = n.

Let x,y,z be given as $x=1^r$, $y=1^s$, $z=1^t$ with xyz=v and $s\geq 0$ since $y\neq \varepsilon$ and r+s+t=n.

$$uxy^{i}zw = 1^{n}1^{r}1^{s \cdot i}1^{t}1^{n} = 1^{n}1^{r+s+t}1^{s \cdot (i-1)}1^{n}$$

We choose i=0, therefore $1^n1^{r+s+t}1^{s\cdot(i-1)}1^n=1^n1^{n-s}1^n\notin A$ since it is not of the form 1^{3m} anymore for any $m\in\mathbb{N}$.

Therefore we cannot pump language A and thus it is not regular.

19.2 Myhill Nerode

19.2.1 Example

TODO: Add example for Myhill Nerode

19.3 Reductions

19.3.1 **Example**

Exercise:

Consider the following language $L = \{i \in \mathbb{N} \mid \text{g\"od}^{-1}(i) \text{ outputs 42 on input 1337} \}$ Prove $L \notin \text{co-RE}$

General Ideas:

 \overline{L} is the set of all programs that either diverge or output something else than 42 on input 1337.

L is the set of all programs that output 42 on input 1337 which is equal to running a sub program that halts on every input and outputting 42 afterwards. Thus we could try to reduce the special halting problem H_0 to L.

Solution:

$$\forall L: L \in \mathsf{REC} \iff L \in \mathsf{RE} \land \overline{L} \in \mathsf{RE}$$

$$L \notin \mathsf{co-RE} \iff \overline{L} \in \mathsf{RE}$$

 $H_0 \notin \mathsf{REC}$ but $H_0 \in \mathsf{RE}$, therefore $\overline{H_0} \notin \mathsf{RE}$ thus reducing $\overline{H_0} \leq \overline{L}$ suffices to show that $\overline{L} \notin \mathsf{RE}$ but this is the same as $H_0 \leq L$ by equivalence.

The reduction is given by $f(i) := g\ddot{o}d(P)$

We create the WHILE program P, that has input m. However we ignore the input m and simulate i on the input i, then return 42. Thus f is obviously WHILE computable.

We consider the following two cases:

• Let $i \in H_0$, then i halts on input i by definition. Program P halts on arbitrary inputs m and outputs 42. Therefore P also outputs 42 on our input 1337.

```
Thus g\ddot{o}d(P) \in L holds.
```

• Let $i \notin H_0$, then i does not halt on input i by definition. Therefore Program P diverges on all inputs, which is also the case for input 1337.

Therefore *P* diverges on our input 1337.

Thus $g\ddot{o}d(P) \notin L$ holds.

Therefore we have successfully shown that $H_0 \leq L$ is a valid reduction.

20 Useful Proofs

20.1 Regular Languages

20.1.1 Finite Set

Exercise:

Show that the following language is regular over the alphabet $\{0,1\}$.

 $L = \{x \mid x \text{ is prime and } x < 1'000'000'000\}$

Solution:

Since there are only finitely many prime numbers between 0 and 1'000'000'000, the set of the words that are accepted by L is finite and thus the language is regular.

20.1.2 Finite Automaton

Exercise:

Show that the following language is regular over the alphabet $\{0,1\}$.

$$L = \{0^n 10^m \mid n, m \in \mathbb{N}\}$$

Solution:

Since we can describe the language L by the finite automaton given above, the language is regular.

20.1.3 Regular Expression

Exercise:

Show that the following language is regular over the alphabet $\{0,1\}$.

$$L = \{0^n 1^m \mid n, m \in \mathbb{N}\}$$

Solution:

Let $E = 0^*1^*$ be the regular expression describing the language L.

Since we can describe the language L by the regular expression given above, the language is regular.

20.1.4 Closure Properties

20.2 Non-Regular Languages

20.2.1 Pumping Lemma

Exercise:

Show that the following language is not regular over the alphabet $\{0,1\}$.

$$L = \{0^n 1^n \mid n \in \mathbb{N}\}$$

Solution:

Let $n \ge 0$ be given.

We choose $u = 1^n$, $v = 1^n$, $w = 1^n$ such that $uvw = 1^{3n}$ and |v| = n.

Let x,y,z be given as $x=1^r$, $y=1^s$, $z=1^t$ with xyz=v and $s\geq 0$ since $y\neq \varepsilon$ and r+s+t=n.

$$uxy^{i}zw = 1^{n}1^{r}1^{s \cdot i}1^{t}1^{n} = 1^{n}1^{r+s+t}1^{s \cdot (i-1)}1^{n}$$

We choose i=0, therefore $1^n1^{r+s+t}1^{s\cdot(i-1)}1^n=1^n1^{n-s}1^n\notin A$ since it is not of the form 1^{3m} anymore for any $m\in\mathbb{N}$.

Therefore we cannot pump language A and thus it is not regular.

20.2.2 Myhill Nerode

Exercise:

Show that the following language is not regular over the alphabet $\{0,1\}$.

$$L = \{0^n 1^n \mid n \in \mathbb{N}\}$$

Solution:

TODO: Add solution for Myhill Nerode