1.
$$D_x \left[\sec^{-1}(x) \right] = \left[\begin{array}{c} 1 \\ \hline \left(\begin{array}{c} 1 \\ \hline \end{array} \right) \\ \end{array} \right]$$

2.
$$D_x \left[\sin^{-1} (x^3 + 3x) \right] = \frac{1}{\sqrt{1 - (\chi^3 + 3\chi)^2}} (3\chi^2 + 3) = \frac{3\chi^2 + 3}{\sqrt{1 - (\chi^3 + 3\chi)^2}}$$

3.
$$D_{x}\left[\sqrt{\tan^{-1}(x)}\right] = D_{x}\left[\left(\tan^{-1}(x)\right)^{\frac{1}{2}}\right] = \frac{1}{2}\left(\tan^{-1}(x)\right) \left[\tan^{-1}(x)\right]$$
$$= \frac{1}{2}\left(\tan^{-1}(x)\right)^{\frac{1}{2}} = \frac{1}{2}\left(\tan^{-1}(x)\right)^{\frac{1}{2}} = \frac{1}{2}\left(\tan^{-1}(x)\right)^{\frac{1}{2}}$$

4. An object (at point A) rises vertically above a point B on the ground. A camera on the ground (at a point C), 1 mile from B, tracks the object and forms an angle θ of inclination, as illustrated. Find the function giving the rate of change of θ with respect to the object's height z (in miles).

tan(0) =
$$\frac{opp}{adj} = \frac{z}{1} = z$$

Therefore $\theta = tom^{-1}(z)$
Rate of change of θ is
$$\frac{d\theta}{dz} = D_z \left[tan^{-1}(z) \right] = \frac{1}{1 + z^2} radians/mile$$

1.
$$D_x \left[\sin^{-1}(x) \right] = \left[\frac{1}{\sqrt{1 - \chi^2}} \right]$$

2.
$$D_{x}\left[\sqrt{\sec^{-1}(x)}\right] = D_{x}\left[\left(\sec^{-1}(x)\right)^{\frac{1}{2}}\right] = \frac{1}{2}\left(\sec^{-1}(x)\right)D_{x}\left[\sec^{-1}(x)\right]$$
$$= \frac{1}{2}\left(\sec^{-1}(x)\right)^{\frac{1}{2}}\frac{1}{|x|\sqrt{|x^{2}-1|}} = \frac{1}{2\sqrt{|\sec^{-1}(x)|}|x|\sqrt{|x^{2}-1|}}$$

3.
$$D_x \left[\tan^{-1} (x^3 + 3x) \right] = \frac{1}{1 + \left(\frac{3}{4} + 3 \right)^2}$$
 $\left[\frac{3 \chi^2 + 3}{1 + \chi^6 + 6 \chi^4 + 9 \chi^2} \right]$

4. An object (at point A) rises vertically above a point B on the ground. A camera on the ground (at a point C), 1 mile from B, tracks the object and forms an angle θ of inclination, as illustrated. Find the function giving the rate of change of θ with respect to the object's height z (in miles).

$$tan(\Theta) = \frac{OP}{adj} = \frac{Z}{I} = Z$$

Therefore $\Theta = tani'(Z)$
Rate of change of Θ is

