Introduction to FPGA Testing

Examples of FPGAs

Cyclone II floorplan

Potential Problems

- Functional definition errors
 - At the FPGA or system level
- Functional system interaction problems
- System-level timing issues
 - Asynchronous events
 - Real-world interactions, especially at speed
 - Difficult to simulate timing violations
- Signal fidelity between ICs
 - Noise, cross-talk, reflections, loading, EMI
- ► Interconnect reliability issues
 - Solder joints, connectors
- Power supply issues
 - Transients and load variations
 - High power dissipation
- Undiscovered FPGA design errors due to incomplete simulation
 - Too complex to provide 100% code coverage
 - Too time-consuming to implement and run

FPGA Debug Challenges

- Design verification has become a critical bottleneck
 - Increased design size and complexity
 - Limited access to internal signals
- Time-to-market constraints reduce debugging time
 - Debugging can take >50% of design cycle time
- Simply looking at the external pins is inadequate
- Adding debug circuitry to FPGA affects the design
 - Consumes valuable chip real estate
 - Requires additional time
 - May affect the design's timing performance
 - Access usually uses up scarce pins on the chip
 - Probing many signals on the board may be difficult

Debugging FPGA Designs

- Challenge
 - How to get visibility into FPGAs that are getting bigger and more complex?
- Review 2 Basic Methodologies
 - advantages and disadvantages of each
- Conclusions
 - Is there a "best" methodology?

Simulation

- Simulation can help reduce debug time by catching obvious errors, but... simulation can not catch all problems!
 - Can not simulate asynchronous events
 - Hard to simulate real-world interactions, especially at speed
 - Difficult to simulate timing violations
- ▶ 100% Code Coverage is Difficult
- Simulation runs are slow

FPGA Design Process

- Design Phase Tasks
 - Design Entry
 - Design Implementation
 - Simulation
- Debug and Verification Phase
 - Validate Design
 - Correct any Bugs found
- Debug and Verification Methods
 - Simulation
 - In-Circuit Verification

Overview of In-Circuit FPGA Debug Methods

Basic Approaches

Embedded Instruments

- Embed a logic analyzer/bus analyzer into your design
 - Logic analyzer functionality is inserted in design
 - SignalTap[®] II (Altera)
 - ChipScope™ ILA (Xilinx)

External Instrument

- 1:1 Signal/Pin
 - Modify RTL as needed
 - Take advantage of the programmability of the FPGA to route internal signals to a small number of pins
 - Use FGPA tools to add "Probes" to your design
 - Adds a "green wire" to your FPGA
 - » SignalProbe (Altera)
 - » PROBE (Xilinx)
- N:1 Signal/Pin
 - Insert a test mux
 - Allows more visibility than Modify RTL method
 - Instrument-controlled test mux
 - Creates instrument awareness and control of inserted test mux

Embedded Logic Analyzer

SignalTap II / ChipScope ILA / CLAM

- FPGA vendors offer logic analyzer cores
- Inserted in design and contain triggering and trace storage resources
 - Uses FPGA resources
- Core is accessed via JTAG
- Data displayed in FPGA vendors viewer application

Advantages

- Fewer pins required. Uses JTAG pins
- Simple probing
 - Just hook up JTAG cable
- Embedded logic analyzer cores are relatively inexpensive

Disadvantages

- Size of core limits use to large FPGAs
- Designers have to give up internal memory for trace storage
 - Limited memory depth
- Data can be captured in state mode only and at a limited speed
 - Limited to fastest clock in FPGA
- Can't correlate (see) FPGA trace data with other system traces

External Test Equipment

Oscilloscopes

- Inserts custom debug code in design
 - Leverages the programmability of FPGA
 - Can route copies of internal signals of interest to output pins for viewing
- Can implement complex triggering internally
- User interface is familiar and frequently used

<u>Advantages</u>

- Lowest (capital) cost technique
- May use few FPGA logic resources
- Uses no FPGA memory
- Can correlate FPGA signals to other analog or digital signals system

<u>Disadvantages</u>

- Debug code must be redesigned and recompiled for each experiment.
- Consumes valuable FPGA gates and pins
- Very limited visibility of complex designs
 - Limited by pins and scope channels
- Inefficient technique for complex designs

External Test Equipment

Mixed-Signal Oscilloscopes

- Inserts custom debug code in design
 - Leverages the programmability of FPGA
 - Can route copies of internal signals of interest to output pins for viewing
- Can implement complex triggering internally
 - MSO may reduce this need

<u>Advantages</u>

- MSOs offer more channels and wider logic triggering than oscilloscopes
- MSOs offer parallel bus and event table displays of the digital signals
- May use few FPGA logic resources
- Uses no FPGA memory
- Can correlate FPGA signals to other analog or digital signals system

<u>Disadvantages</u>

- Debug code must be redesigned and recompiled for each experiment.
- Consumes valuable FPGA gates and pins
- Visibility of complex designs somewhat limited by pins
- Have to manually update signal names and channel assignments on MSO

External Logic Analyzer

Modify RTL source as needed

- Take advantage of the programmability of the FPGA to route internal signals to a small number of pins
- ▶ 1:1 Relationship of internal signals to FPGA pins
- Use external logic analyzer to capture data

<u>Advantages</u>

- Use few, if any, FPGA logic resources
- Uses no FPGA memory
- Data can be captured in state mode and in timing mode
- Can correlate (see) FPGA signals to other system signals

Disadvantages

- Requires more pins on FPGA
- Moving probe points can take a recompile of the design
 - Uses time and changes timing of design
- Have to manually update signal names on logic analyzer

Use FGPA tools to add "Probes" to your design

Green Wire

- FPGA vendors offer ability to add "green" wire to design
 - Does not require modification to RTL
 - 1:1 Relationship of internal signals to FPGA pins
- Use external logic analyzer to capture data

<u>Advantages</u>

- No modification of RTL required
 - No need to recompile design
- Uses no FPGA memory
- Data can be captured in state mode and in timing mode
- Can correlate FPGA signals to other system signals
- Reduces need to recompile design

<u>Disadvantages</u>

- Requires more pins on FPGA
- Requires a test mux
- Requires a way to control test mux
- Still have to manually update signal names on logic analyzer

Instrument-controlled test mux

- Closed-loop system between FPGA and test equipment
 - Test equipment is aware of the design
- Increased visibility of internal signals
 - N:1 relationship of internal signals to pins
- Use external logic analyzer to capture data

Advantages

- Uses no FPGA memory
- Test Mux designed and tested by 3rd party
- Data can be captured in state mode and in timing mode
- Can correlate FPGA signals to other system signals
- ► Eliminates recompiles

Disadvantages

- Requires more pins on FPGA
- External instrument vendor specific

Picking the Right FPGA Debug Methodology

Feature	Embedded Logic Analyzer	"Probe"	Modify RTL	Insert Test Mux	Instrument- controlled Test Mux
Sample Depth	Fair	Best	Best	Best	Best
Instrument Performance	Fair	Best	Best	Best	Best
Correlation of FPGA Signals to board signals	None	Excellent	Excellent	Excellent	Excellent
Uses FPGA Memory	Design- dependent	None	None	None	No
Use of FPGA Resources	Logic & Routing	Routing	Routing	Logic + Routing	Logic + Routing
Output Pin Usage	JTAG	1-256	1-256	1-256	1-256
Cost	ELA License	External Instrument	External Instrument + Time	External Instrument	External Instrument+ Control SW

FPGA Debug

Summary

Is there a best methodology for all designs?

Almost Impossible!

- Choosing the right FPGA debug methodology for your design can reduce debug and validation time.
 - Make the choice early in the design phase.
 - ► Are you pin-constrained or FPGA-resource constrained?
 - Choice of methodology impacts the design of the board
 - How to connect to external instrument?
 - ► FPGA Pin useage
- ► Embedded logic analyzers and external logic analyzers each have trade-offs.
 - Pins vs. Resources
 - Ability to correlate FPGA signals to board-level signals
 - Power of instrument
 - Memory, triggering, resolution

Summary

- ► Reduce Debug and Validation Time
 - Choosing the right FPGA debug methodology can reduce debug and validation time
- Understand the Trade-offs
 - Embedded logic analyzers and external test equipment each have their own advantages and disadvantages