

Elementi di memoria

Flip flop

1 Reti Logiche

Latch D

- Il latch D è trasparente quando C = 1
 - ▶ L'uscita segue le variazioni dell'ingresso
- ▶ Il latch D è in memoria quando C = 0
 - Le variazioni su D non hanno influenza sull'uscita

Si comporta come una porta

- Quando C = 1 la porta è aperta
- Quando C = 0 la porta si chiude e l'uscita mantiene l'ultimo valore che c'era su D prima che avvenisse la transizione su C
- Diverso da una porta logica, che non ricorda

С	D	Q	Q'
0	-	Q ₋₁	Q' ₋₁
1	0	0	1
1	1	1	0

Diagramma temporale

L'uscita Q segue D quando C = 1

- Memorizza quando C diventa 0
- Q può fare una transizione quando C diventa 1, e il valore su D è diverso da quello memorizzato

Simboli grafici

Rete sequenziale

- Latch D usato per costruire la parte di memoria di un circuito sequenziale
 - ► Il segnale C, detto segnale di clock, definisce quando lo stato può cambiare

Il circuito passa attraverso due fasi

- ▶ 1. La rete combinatoria calcola le nuove uscite e il nuovo stato futuro mentre il clock è basso
- ▶ 2. Il clock si attiva, e lo stato futuro diventa stato presente
- ▶ Il ciclo si ripete infinitamente

Stabilità

Il latch è trasparente mentre il clock è attivo

- Supponiamo che la rete combinatoria sia molto veloce
- Il nuovo stato si presenta alla memoria prima che il clock si sia disattivato
- Il nuovo stato diventa stato presente
- Si calcola un nuovo stato futuro

Stabilità

 Il latch è trasparente mentre il clock è attivo

 Supponiamo che la rete combinatoria sia molto veloce

- Il nuovo stato si presenta alla memoria prima che il clock si sia disattivato
- Il nuovo stato diventa stato presente
- Si calcola un nuovo stato futuro
- Il circuito può cambiare stato più volte durante una fase attiva del clock
 - Rende la rete poco affidabile, instabile, non abbiamo risolto nulla!
 - ▶ Il numero di cambi di stato dipende dalla velocità del circuito
 - ▶ Le variazioni di fabbricazione rendono difficile realizzare reti tutte con lo stesso comportamento

Esempio di circuito instabile

Riportiamo l'uscita negata sull'ingresso

- La rete combinatoria è semplicemente un filo
- La rete di memoria è formata dal latch

Applichiamo a C un clock

- Quando C = 1 il circuito comincia ad oscillare
- Quando C = 0 il circuito si ferma sull'ultimo valore
- L'oscillazione dipende dai ritardi attraverso il flip flop

Cosa volevamo?

 L'intenzione era quella di far cambiare Q solamente una volta per ogni impulso attivo del clock

Soluzioni

- ▶ Il latch D è sensibile al *livello* del clock
 - ▶ E' attivo per tutto il tempo in cui il clock è a 1
- Occorre avere una fase attiva molto breve
 - ▶ Il clock sta sempre a 0 tranne per un breve periodo
 - Il periodo attivo deve essere più breve del tempo di propagazione minimo attraverso la rete combinatoria

Realizzazione e problemi

Il clock asimmetrico crea problemi

- Quando la logica è veloce (per esempio un filo!), la fase attiva deve essere estremamente stretta
- Occorrono transistori grossi per fare transizioni il più possibile verticali
- ▶ Tenete presente che ci sono migliaia di elementi di memoria in un circuito sequenziale (alta capacità sulla linea del clock)

La fase stretta aumenta il contenuto armonico

- Più problemi di compatibilità elettromagnetica
- Spreco di energia

Il problema è che il latch è trasparente

- Ci vorrebbe un elemento di memoria che non sia mai trasparente
- Tranne che per un istante in cui si trasferisce il dato dall'ingresso all'uscita

Flip flop di tipo edge triggered

Due latch con clock in opposizione

- ► Il primo, detto master, aperto quando il clock è alto
- ► Il secondo, detto slave, aperto quando il clock è basso
- Non c'è mai un cammino diretto tra ingresso e uscita

Funzionamento

- Quando C = 1 il primo flip flop è aperto e Q_M segue le variazioni di D,
 ma l'uscita sta ferma perché lo slave non è abilitato
- ▶ Quando C esegue la transizione da 1 a 0 il valore di Q_M (che è anche quello di D) viene trasferito nel secondo flip flop e sull'uscita
- Mentre C = 0 tutto sta fermo perché il primo non è sensibile, e il secondo ha gli ingressi fissi

Simboli grafici

Reti Logiche

Negative e positive edge triggered

Comportamento al fronte

Più in dettaglio (importante)

Preset e clear

E' necessario dare un valore iniziale al flip flop

- Altrimenti il valore iniziale è ignoto
- ▶ Lo si può fare al primo fronte attivo del clock
- Oppure si utilizzano spesso segnali asincroni di inizializzazione
- Asincroni significa che hanno effetto immediatamente, anche non al fronte del clock

Preset e clear

- Indicati con S ed R
- Spesso attivi bassi
- Ininfluenti quando a 1
- ▶ Se S = 0, Q si porta immediatamente a 1
- Se R = 0, Q si porta immediatamente a 0

Take away

Possibili molti tipi di elementi di memoria diversi

- Ne vedremo anche altri
- Ognuno è un diverso compromesso tra complessità e caratteristiche

Vogliamo evitare le instabilità

- Dividiamo la parte combinatoria (calcolo) da quella sequenziale (stato)
- Selezioniamo gli istanti in cui è possibile far variare lo stato attraverso un segnale di clock
- Dobbiamo comunque però evitare degli anelli di feedback
- Usiamo flip flop di tipo edge triggered

Disaccopiamento tra stato futuro e stato presente

- ▶ Lo stato futuro deve essere a regime entro la fine del ciclo di clock
- Nel frattempo può anche avere dei glitch, ma questi non si propagano attraverso il flip flop edge triggered
- ▶ I glitch non influiscono sulla rete combinatoria