© Министерство образования Республики Беларусь Учреждение образования «Республиканский институт контроля знаний»

РТ-2022/2023 гг. Этап III

Тематическое консультирование по математике

Вариант 1

Раздел программы. Элемент содержания	Содержание задания	Комментар <mark>ий и ре</mark> шение задания*	Учебное издание**
Выражения и их преобразования. Формулы сокращенного умножения	А1. Укажите номер выражения, являющегося разностью квадратов выражений m и $7n$. 1) $(m-7n)^2$; 2) $\left(\frac{m}{7n}\right)^2$; 3) $m^2-(7n)^2$; 4) $m-(7n)^2$; 5) m^2-7n^2 . 1) 1; 2) 2; 3) 3; 4) 4; 5) 5	Задание на проверку знания формул сокращенного умножения. Решение: Разностью квадратов выражений m и $7n$ является выражение под номером 3 , то есть $m^2-\left(7n\right)^2$. Ответ: 3	Арефьева, И. Г. Алгебра : учеб. пособие для 7-го кл. учреждений общ. сред. образования с рус. яз. обучения / И. Г. Арефьева, О. Н. Пирютко. — 2-е изд., испр. и доп. — Минск : Народная асвета, 2022. — 313 с. : ил. (Гл. 2, § 4, с. 44–53; § 12–13, с. 105–125)
Числа и вычисления. Тангенс произвольного угла	А2. Из углов 180°; 240°; 225°; 210°; 270° выберите тот, тангенс которого равен √3. 1) 180°; 3) 225°; 4) 210°; 5) 270°	Задание на проверку умения находить угол при заданном значении тангенса этого угла. Решение: Среди предложенных углов только $tg\ 240^\circ = tg\ (180^\circ + 60^\circ) = tg\ 60^\circ = \sqrt{3}$. Ответ: 2	Арефьева, И. Г. Алгебра: учеб. пособие для 10-го кл. учреждений общ. сред. образования с рус. яз. обучения / И. Г. Арефьева, О. Н. Пирютко. — Минск: Народная асвета, 2019. — 285 с.: ил. (Гл. 1, § 3, с. 32–45)

^{*} Предлагается одно из возможных решений задания. Ответы к заданиям даны с учетом правил заполнения бланка ответов.

^{**} Электронные версии учебных изданий размещены в разделе «Электронная библиотека» (<u>http://e-padruchnik.adu.by</u>) национального образовательного портала (<u>www.adu.by</u>).

Раздел программы. Элемент содержания	Содержание задания	Комментарий и решение задания*	Учебное издание**
Геометрические фигуры и их свойства. Центральный и вписанный углы	АЗ. Найдите градусную меру вписанного угла <i>МКN</i> (см. рис.), если градусная мера дуги <i>MN</i> , заключенной внутри этого угла, равна 88°. 1) 44°; 2) 24°; 3) 46°; 4) 88°; 5) 22°	Задание на проверку знания теоремы о вписанном угле. Решение: Теорема (о вписанном угле). Вписанный угол равен половине соответствующего ему центрального угла, а также половине дуги, на которую он опирается. На дугу MN опирается вписанный угол MKN , тогда по теореме о вписанном угле: $\angle MKN = \frac{1}{2} \cup MN = 44^{\circ}$. Ответ: 1	Казаков, В. В. Геометрия : учеб. пособие для 8-го кл. учреждений общ. сред. образования с рус. яз. обучения / В. В. Казаков. — Минск : Народная асвета, 2018. — 199 с. : ил. (Гл. 4, § 27, с. 167—176)
Уравнения и неравенства. Корень уравнения	А4. Укажите номер уравнения, корнем которого является число -1 . 1) $\frac{5}{x+1} = 0$; 2) $x^2 + 1 = 0$; 3) $3^{x-1} = 1$; 4) $\log_7(x+2) = 0$; 5) $\sqrt{x-1} = 0$. 1) 1; 2) 2; 3) 3; 4) 4; 5) 5	Задание на проверку знания определения корня уравнения. Решение: Определение Корнем уравнения называется значение переменной, которое обращает это уравнение в верное числовое равенство. При подстановке числа —1 вместо переменной х в уравнения 1—5 получим верное числовое равенство только для уравнения под номером 4. Значит, число —1 является корнем уравнения $\log_7(x+2) = 0$. Ответ: 4	Герасимов, В. Д. Математика: учеб. пособие для 5-го кл. учреждений общ. сред. образования с рус. яз. обучения: в 2 ч. / В. Д. Герасимов, О. Н. Пирютко, А. П. Лобанов. — 2-е изд., испр. и доп. — Минск: Адукацыя і выхаванне, 2020. — Ч. 1. — 176 с.: ил. (Гл. 2, § 3, с. 133—139)
Координаты и функции. Значение функции	А5. Среди значений аргумента x , равных 1,5; 0,4; 1,2; 0,6; 2,5, укажите то, при котором значение функции $f(x) = \frac{2}{x}$ меньше 1. 1) 1,5; 2) 0,4; 3) 1,2; 4) 0,6;	Задание на проверку умения находить значение функции по заданному значению аргумента. Решение: Найдем значения функции $f(x) = \frac{2}{x}$ при заданных значениях аргумента x .	Арефьева, И. Г. Алгебра : учеб. пособие для 7-го кл. учреждений общ. сред. образования с рус. яз. обучения / И. Г. Арефьева, О. Н. Пирютко. — 2-е изд., испр. и доп. — Минск : Народная асвета, 2022. — 313 с. : ил. (Гл. 3, § 20, с. 226—249); Арефьева, И. Г. Алгебра : учеб. пособие для 8-го кл.

^{*}Предлагается одно из возможных решений задания. Ответы к заданиям даны с учетом правил заполнения бланка ответов.

^{**} Электронные версии учебных изданий размещены в разделе «Электронная библиотека» (<u>http://e-padruchnik.adu.by</u>) национального образовательного портала (<u>www.adu.by</u>).

Раздел программы. Элемент содержания	Содержание задания	Комментарий и решение задания*	Учебное издание**
	5) 2,5	1) $f(1,5) = \frac{2}{1,5}$, $f(1,5) = 1\frac{1}{3}$.	учреждений общ. сред. образования с рус. яз. обучения / И. Г. Арефьева, О. Н. Пирютко. — Минск : Народная асвета, 2018. — 269 с. : ил. (Гл. 4, § 17, с. 204—214)
		2) $f(0,4) = \frac{2}{0,4}$, $f(0,4) = 5$.	
		3) $f(1,2) = \frac{2}{1,2}$, $f(1,2) = 1\frac{2}{3}$.	
		4) $f(0,6) = \frac{2}{0,6}$, $f(0,6) = 3\frac{1}{3}$.	
		5) $f(2,5) = \frac{2}{2,5}$, $f(2,5) = \frac{4}{5}$.	
		Только при x , равном 2,5, значение	
		функции $f(x) = \frac{2}{x}$ меньше 1.	
		Ответ: 5	
	А6. На рисунке изображен график функции $y = f(x)$,	Задание на проверку умения определять свойства функции по ее графику.	Арефьева, И.Г. Алгебра: учеб. пособие для 9-го кл. учреждений общ. сред. образования с рус. яз. обучения /
	которая определена на промежутке [-5; 6]. Укажите	Решение:	И.Г. Арефьева, О.Н. Пирютко. – Минск : Народная
	номера верных утверждений.	[асвета, 2019. – 329 с. : ил. (Гл. 2, § 7, с. 90–103);
Координаты и функции. Свойства функции	y = f(x) $O(1)$ x	1) Утверждение 1 – верное. Нулями	Арефьева, И. Г. Алгебра : учеб. пособие для 10-го кл. учреждений общ. сред. образования с рус. яз. обучения / И. Г. Арефьева, О. Н. Пирютко. — Минск : Народная асвета, 2019. — 285 с. : ил. (Гл. 3, § 20, с. 239—256)
	1) Функция имеет три нуля;	функции $y = f(x)$, график которой	
	2) $f'(-4) = 0$;		

^{*} Предлагается одно из возможных решений задания. Ответы к заданиям даны с учетом правил заполнения бланка ответов.

^{**} Электронные версии учебных изданий размещены в разделе «Электронная библиотека» (<u>http://e-padruchnik.adu.by</u>) национального образовательного портала (<u>www.adu.by</u>).

Раздел программы. Элемент содержания	Содержание задания	Комментарий и решение задания*	Учебное издание**
	3) максимум функции равен 5;	изображен на рисунке, являются значения	
	4) сумма целых значений аргумента,	аргумента x_1 , x_2 , x_3 , так как при них	
	при которых $f'(x) > 0$, равна 5;	значение функции равно 0.	
	5) наименьшее значение функции на промежутке [-5; 6]	2) Утверждение 2 – неверное. Производная	
		равна нулю в точках экстремума, а $x = -4$	
	равно -2.	не является точкой экс <mark>тре</mark> мума по	
	1) 1;	признаку точки экстремума.	
	2) 2;	3) Утверждение 3 – верное. На рисунке	
	3) 3;	видно, что функция $y = f(x)$ на	
	4) 4;	промежутке $[x_4; x_5]$ возрастает, а на	
	5) 5	промежутке $[x_5; 6]$ убывает. Тогда по	
		признаку точки максимума $x_{\text{max}} = x_5$.	
		Значит, $f_{\text{max}} = f(x_5) = 5$.	
		4) Утверждение 4 – верное. На промежутке	
		$[x_4; x_5]$ функция $y = f(x)$ возрастает,	
		значит, производная функции	
		положительна $f'(x) > 0$. Сумма целых	
		значений аргумента из промежутка	
		$[x_4; x_5]: -1+0+1+2+3=5.$	
		5) Утверждение 5 – неверное. На рисунке	
		видно, что наименьшее значение	
		функции $y = f(x)$ на промежутке [-5; 6]	
		равно -5.	
		Ответ: 1, 3, 4	
	А7. Пять рабочих могут выполнить работу за	Задание на проверку умения решать задачи	Герасимов, В. Д. Математика: учеб. пособие для 6-го кл.
Числа и вычисления.	14 дней. За сколько дней могут выполнить эту же	с помощью пропорций.	учреждений общ. сред. образования с рус. яз. обучения /
Прямая и обратная	работу 7 рабочи <mark>х?</mark>	Решение:	В. Д. Герасимов, О. Н. Пирютко. – 2-е изд., испр. и доп. –
пропорциональные	1) 20; 2) 16;	Если количество рабочих увеличивается в несколько раз, то количество дней,	Минск: Адукацыя і выхаванне, 2022. — 312 с. : ил. (Гл. 2, § 4–5, с. 115–136)
зависимости	1) 20; 2) 10; 3) 12; 4) 10;	несколько раз, то количество днеи, необходимых им для выполнения работы,	\(\frac{9}{1}\)-130)
	5) 9	уменьшается во столько же раз. Значит,	

^{*} Предлагается одно из возможных решений задания. Ответы к заданиям даны с учетом правил заполнения бланка ответов.

^{**} Электронные версии учебных изданий размещены в разделе «Электронная библиотека» (<u>http://e-padruchnik.adu.by</u>) национального образовательного портала (<u>www.adu.by</u>).

Раздел программы. Элемент содержания	Содержание задания	Комментарий и решение задания*	Учебное издание**
	А8. Найдите значение выражения $6\cos\alpha$, если $\sin\alpha=\frac{\sqrt{2}}{3}$ и $\frac{\pi}{2}<\alpha<\pi$. 1) $2\sqrt{7}$; 2) $-2\sqrt{11}$; 3) $-2\sqrt{7}$; 4) $2\sqrt{11}$; 5) $-2\sqrt{2}$	зависимость между величинами в задаче обратно пропорциональная. Пусть за x дней могут выполнить работу 7 рабочих. Составим и решим пропорцию: $\frac{5}{7} = \frac{x}{14}, x = \frac{5 \cdot 14}{7}, x = 10.$ Значит, за 10 дней могут выполнить эту же работу 7 рабочих. Ответ: 4 Задание на проверку умения находить значения $\sin \alpha$, $\cos \alpha$, если одно из этих значений известно. Решение: Из равенства $\sin^2 \alpha + \cos^2 \alpha = 1$ выразим $\cos^2 \alpha$: $\cos^2 \alpha = 1 - \sin^2 \alpha$. Так как	Арефьева, И. Г. Алгебра: учеб. пособие для 10-го кл. учреждений общ. сред. образования с рус. яз. обучения / И. Г. Арефьева, О. Н. Пирютко. — Минск: Народная асвета, 2019. — 285 с.: ил. (Гл. 1, § 4, с. 45–53)
Выражения и их преобразования. Соотношения между синусом, косинусом, тангенсом и котангенсом одного и того же угла (тригонометрические тождества)	3) $-2\sqrt{7}$; 4) $2\sqrt{11}$; 5) $-2\sqrt{2}$	$\sin \alpha = \frac{\sqrt{2}}{3}$, то $\cos^2 \alpha = 1 - \left(\frac{\sqrt{2}}{3}\right)^2$, $\cos^2 \alpha = \frac{7}{9}$. Тогда $\cos \alpha = \frac{\sqrt{7}}{3}$ или $\cos \alpha = -\frac{\sqrt{7}}{3}$. По условию $\alpha \in \left(\frac{\pi}{2}; \pi\right)$ (вторая четверть), тогда $\cos \alpha < 0$, значит, $\cos \alpha = -\frac{\sqrt{7}}{3}$. Значение выражения $6\cos \alpha$ равно $-2\sqrt{7}$. Ответ: 3	
Геометрические фигуры и их свойства. Площадь боковой поверхности цилиндра	А9. Прямоугольник, у которого длины сторон равны 3 и 6, вращается вокруг большей стороны. Найдите площадь боковой поверхности цилиндра, полученного в результате вращения.	Задание на проверку умения находить площадь боковой поверхности цилиндра. Решение: Рассмотрим рисунок.	Латотин, Л. А. Геометрия: учеб. пособие для 11-го кл. учреждений общ. сред. образования с рус. яз. обучения (базовый и повышенный уровни) / Л. А. Латотин, Б. Д. Чеботаревский, И. В. Горбунова, О. Е. Цыбулько. – Минск: Белорусская Энциклопедия имени Петруся

^{*} Предлагается одно из возможных решений задания. Ответы к заданиям даны с учетом правил заполнения бланка ответов.

^{**} Электронные версии учебных изданий размещены в разделе «Электронная библиотека» (<u>http://e-padruchnik.adu.by</u>) национального образовательного портала (<u>www.adu.by</u>).

Раздел программы. Элемент содержания	Содержание задания	Комментарий и решение задания*	Учебное издание**
	1) 54π; 2) 18π; 3) 108π; 4) 45π; 5) 36π	Пусть прямоугольник <i>ABCD</i> , у которого длина стороны <i>CD</i> равна 3, а длина стороны <i>AD</i> . В результате вращения получим цилиндр, у которого радиус основания равен 3, а высота – 6.	Бровки, 2020. — 232 с. : ил. (Р. 1, § 2, с. 22—36)
		Теорема 4. Боковая поверхность цилиндра равна произведению длины окружности основания и высоты: $S_{60\kappa} = 2\pi r h.$ $S_{60\kappa} = 2 \cdot \pi \cdot 3 \cdot 6, S_{60\kappa} = 36\pi.$ ОТВет: 5	
Числа и вычисления. Арксинус, арккосинус, арктангенс, арккотангенс числа. Синус, косинус, тангенс, котангенс числа	А10. Среди данных утверждений укажите номера верных. 1) $\operatorname{arctg}(-1) = \frac{3\pi}{4}$; 2) $\sin \frac{\pi}{4} > \sin \frac{\pi}{6}$; 3) $\cos \frac{\pi}{3} > \cos \frac{\pi}{6}$; 4) $\operatorname{ctg} \frac{17\pi}{12} < 0$;	Задание на проверку умений находить арксинус, арккосинус, арктангенс, арккотангенс числа, сравнивать значения синуса, косинуса, тангенса, котангенса углов. Решение: 1) Утверждение 1 – неверное, так как $\frac{3\pi}{4} \not\in \left(-\frac{\pi}{2}; \frac{\pi}{2}\right)$. 2) Утверждение 2 – верное. $\sin \frac{\pi}{4} = \frac{\sqrt{2}}{2}$,	Арефьева, И. Г. Алгебра : учеб. пособие для 10-го кл. учреждений общ. сред. образования с рус. яз. обучения / И. Г. Арефьева, О. Н. Пирютко. — Минск : Народная асвета, 2019. — 285 с. : ил. (Гл. 1, § 7, с. 87–99; § 9, с. 115–128)
	5) $\arccos\left(-\frac{1}{2}\right) = \frac{2\pi}{3}$.	$\sin \frac{\pi}{6} = \frac{1}{2}$. Очевидно, что $\frac{\sqrt{2}}{2} > \frac{1}{2}$.	

^{*} Предлагается одно из возможных решений задания. Ответы к заданиям даны с учетом правил заполнения бланка ответов.

^{**} Электронные версии учебных изданий размещены в разделе «Электронная библиотека» (<u>http://e-padruchnik.adu.by</u>) национального образовательного портала (<u>www.adu.by</u>).

Раздел программы. Элемент содержания	Содержание задания	Комментарий и решение задания*	Учебное издание**
	2) 2; 3) 3; 4) 4; 5) 5	3) Утверждение 3 – неверное. $\cos\frac{\pi}{3} = \frac{1}{2}$, $\cos\frac{\pi}{6} = \frac{\sqrt{3}}{2}$. Очевидно, что $\frac{1}{2} < \frac{\sqrt{3}}{2}$. 4) Утверждение 4 – неверное, так как $\cot\left(\frac{17\pi}{12}\right) = \cot\left(\pi + \frac{5\pi}{12}\right) = \cot\frac{5\pi}{12} > 0$. 5) Утверждение 5 – верное. $\arccos\left(-\frac{1}{2}\right) = \pi - \arccos\frac{1}{2} = \frac{2\pi}{3}$, так как $\frac{2\pi}{3} \in [0; \pi]$ и $\cos\frac{2\pi}{3} = -\frac{1}{2}$. Ответ: 2, 5	
Координаты и функции. Арифметическая прогрессия. Геометрическая прогрессия. Бесконечно убывающая геометрическая прогрессия	В1. Для начала каждого из предложений А—В подберите его окончание 1—6 так, чтобы получилось верное утверждение. Начало предложения Окончание предложения А) Сумма шестнадцати первых членов арифметической прогрессии (a_n) , у которой $a_1 = -2$, $a_{16} = 43$, равна Б) Сумма пяти первых членов геометрической прогрессии (b_n) , у которой $b_1 = -4$, $q = 2$, равна В) Сумма бесконечно убывающей геометрической прогрессии, у которой $b_1 = -208$, $q = \frac{1}{5}$, равна Ответ запишите в виде сочетания букв и цифр, соблюдая алфавитную последовательность букв левого столбца. Помните,	Задание на проверку умения находить сумму n первых членов арифметической прогрессии, геометрической прогрессии и сумму бесконечно убывающей геометрической прогрессии. Решение: А) Формулы суммы n первых членов арифметической прогрессии $S_n = \frac{a_1 + a_n}{2} \cdot n$ $S_n = \frac{2a_1 + d(n-1)}{2} \cdot n$ $S_{16} = \frac{-2 + 43}{2} \cdot 16, \ S_{16} = 41 \cdot 8, \ S_{16} = 328.$	Арефьева, И. Г. Алгебра : учеб. пособие для 9-го кл. учреждений общ. сред. образования с рус. яз. обучения / И. Г. Арефьева, О. Н. Пирютко. — Минск : Народная асвета, 2019. — 329 с. : ил. (Гл. 4, § 16, с. 224—234; § 18, с. 247—254; § 19, с. 254—264)

^{*} Предлагается одно из возможных решений задания. Ответы к заданиям даны с учетом правил заполнения бланка ответов.

^{**} Электронные версии учебных изданий размещены в разделе «Электронная библиотека» (<u>http://e-padruchnik.adu.by</u>) национального образовательного портала (<u>www.adu.by</u>).

Раздел программы. Элемент содержания	Содержание задания	Комментарий и решение задания*	Учебное издание**
	что некоторые данные правого столбца могут использоваться несколько раз или не использоваться вообще. Например: A1Б1B4	Б)	
Геометрические фигуры и их свойства. Расстояния	В2. $ABCDA_1B_1C_1D_1$ — прямоугольный параллеленипед (см. рис.). Выберите верные утверждения. A_1 — B_1 — C_1 — C_1 — C_2 — C_3 — C_4 — C_4 — C_4 — C_4 — C_4 — C_4 — C_5 — C_4 — C_5	Задание на проверку умения находить расстояние от точки до плоскости, расстояние между прямой и параллельной ей плоскостью, расстояние между параллельными плоскостями. Решение: Расстоянием от точки до плоскости называется длина перпендикуляра, проведенного из этой точки к плоскости. Таким образом, утверждение 1 – верное, а утверждение 4 – неверное. Расстоянием между параллельными плоскостями называется длина перпендикуляра, проведенного из какойлибо точки одной плоскости к другой	Латотин, Л. А. Геометрия : учеб. пособие для 10-го кл. учреждений общ. сред. образования с рус. яз. обучения (базовый и повышенный уровни) / Л. А. Латотин, Б. Д. Чеботаревский, И. В. Горбунова ; пер. с белорус. яз. Л. А. Романович. — Минск : Адукацыя і выхаванне, 2020. — 199 с. : ил. (Р. 3, § 8, с. 97—108)

 [▼] Предлагается одно из возможных решений задания. Ответы к заданиям даны с учетом правил заполнения бланка ответов.

^{**} Электронные версии учебных изданий размещены в разделе «Электронная библиотека» (<u>http://e-padruchnik.adu.by</u>) национального образовательного портала (<u>www.adu.by</u>).

Раздел программы. Элемент содержания	Содержание задания	Комментарий и решение задания*	Учебное издание**
	1 расстояние от точки В до плоскости грани A₁D₁C₁B₁ равно длине отрезка BB₁ 2 расстояние между плоскостями граней AA₁D₁D и BB₁C₁C равно длине отрезка AB 3 расстояние между прямой D₁C₁ и плоскостью грани ABCD равно длине отрезка DC₁ 4 расстояние от точки C до плоскости грани AA₁D₁D равно длине отрезка CC₁ 5 расстояние между плоскостями граней AA₁B₁B и DD₁C₁C равно длине отрезка B₁D 6 расстояние между прямой DC₁ и плоскостью грани AA₁B₁B равно длине отрезка B₁C₁	плоскости. Значит, утверждение 2 – верное, а утверждение 5 – неверное. Расстоянием между прямой и параллельной ей плоскостью называется длина перпендикуляра, проведенного из какой-либо точки прямой к плоскости. Таким образом, утверждение 6 – верное, а утверждение 3 – неверное. Ответ: 126	
Координаты и функции. График функции	Прани AA_1B_1B равно длине отрезка B_1C_1 Ответ запишите цифрами (порядок записи цифр не имеет значения). Например: 234 ВЗ. На рисунке изображен график функции $f(x) = x $ и отмечена точка $A(-2;2)$, принадлежащая этому графику. Для начала каждого из предложений A —В подберите его окончание 1 —6 так, чтобы получилось верное утверждение.	Задание на проверку умения строить графики функций $y = f(x) \pm b$, $b \in R$, $y = f(x \pm a)$, $a \in R$ с помощью преобразования графика функции $y = f(x)$. Решение:	Арефьева, И. Г. Алгебра : учеб. пособие для 9-го кл. учреждений общ. сред. образования с рус. яз. обучения / И. Г. Арефьева, О. Н. Пирютко. — Минск : Народная асвета, 2019. — 329 с. : ил. (Гл. 2, § 9, с. 118—134)

^{*} Предлагается одно из возможных решений задания. Ответы к заданиям даны с учетом правил заполнения бланка ответов.

^{**} Электронные версии учебных изданий размещены в разделе «Электронная библиотека» (<u>http://e-padruchnik.adu.by</u>) национального образовательного портала (<u>www.adu.by</u>).

Раздел программы. Элемент содержания	Содержание задания	Комментарий и решение задания*	Учебное издание**
	Начало предложения Окончание предложения	$m{A}$	
	А) Если график функции $f(x) = x $ сдвинуть на 6 единиц вправо вдоль оси абсцисс, то точка A будет иметь координаты Б) Если график функции $f(x) = x $ сдвинуть на 8 единиц вниз вдоль оси ординат, то точка A будет иметь координаты В) Если график функции $f(x) = x $ сдвинуть на 2 единицы влево вдоль оси абсцисс и на 3 единицы вверх вдоль оси ординат, то точка A будет иметь координаты 1) $(-8; 2)$. 2) $(0; -1)$. 3) $(-2; -6)$. 4) $(-2; 10)$. 5) $(4; 2)$. 6) $(-4; 5)$.	$y = f(x - a)$ можно получить сдвигом графика функции $y = f(x)$ вдольоси абсисе на $a \in \text{диниц}$ вправо, если $a > 0$ (рис. 52 , a). а) $y = f(x) = f(x)$ вдольоси абсицес на $a \in \text{диниц}$ влеево, если $a > 0$ (рис. 52 , a). а) $y = f(x) = f(x)$ вдольоси абсицисе на $a \in \text{диниц}$ влеево, если $a > 0$ (рис. 52 , a). Выполним сдвиг графика функции $y = x $ вдольоси абсицисе на $a \in \text{диниц}$ вправо (см. рис.).	
	Ответ за <mark>пи</mark> шите <mark>в ви</mark> де сочетания букв и цифр, соблюдая алфавитную последова <mark>тельн</mark> ость букв левого с <mark>то</mark> лбца. Помните, что некоторые данные <mark>прав</mark> ого столбца м <mark>огут</mark> использоваться несколько раз <mark>или</mark> не использоваться вообще. Например: A1Б1B4		

 [▼] Предлагается одно из возможных решений задания. Ответы к заданиям даны с учетом правил заполнения бланка ответов.

^{**} Электронные версии учебных изданий размещены в разделе «Электронная библиотека» (<u>http://e-padruchnik.adu.by</u>) национального образовательного портала (<u>www.adu.by</u>).

Раздел программы. Элемент содержания	Содержание задания	Комментарий и решение задания*	Учебное издание**
		a) $y = f(x) + b$ $y = f(x)$ $y = f(x)$ $y = f(x)$ $y = f(x)$ $y = f(x) - b$	
		Построим график функции $y = x - 8$.	
		Выполним сдвиг графика функции $y = x $	
		вдоль оси ординат на 8 единиц вниз (см. рис.).	
		По рисунку видно, что координаты точки A будут $(-2; -6)$.	
		B) Построим график функции $y = x+2 + 3$.	

^{*}Предлагается одно из возможных решений задания. Ответы к заданиям даны с учетом правил заполнения бланка ответов.

^{**} Электронные версии учебных изданий размещены в разделе «Электронная библиотека» (<u>http://e-padruchnik.adu.by</u>) национального образовательного портала (<u>www.adu.by</u>).

Раздел программы. Элемент содержания	Содержание задания	Комментарий и решение задания*	Учебное издание**
		Выполним сдвиг графика функции $y = x $ вдоль оси абсцисс на 2 единицы влево и вдоль оси ординат на 3 единицы вверх (см. рис.).	
	В4. Для начала каждого из предложений А-В подберите	По рисунку видно, что координаты точки <i>А</i> будут (–4; 5). Ответ: А5Б3В6 Задание на проверку умений раскладывать	Герасимов, В. Д. Математика : учеб. пособие для 5-го кл.
Числа и вычисления. Делители числа	его окончание 1–6 так, чтобы получилось верное утверждение, если известно, что 2023 = 7·17·17. Начало предложения А) Наибольший простой делитель числа 2023 равен Б) Количество различных натуральных делителей числа 2023 равно В) Наибольший общий делитель числа 2023 равен В) Наибольший общий делитель чисел 117 и 2023 равен Ответ запишите в виде сочетания бужв и цифр, соблюдая	числа на простые множители и находить делители числа, наибольший общий делитель чисел. Решение: А) Простыми делителями числа 2023 являются числа 7 и 17. Наибольшее из них равно 17. Б) Натуральными делителями числа 2023 являются числа: 1, 7, 17, 119, 289, 2023. Их количество равно 6. В) Разложим число 117 на простые множители: 117 = 3·3·13. НОД(117; 2023) = 1.	учреждений общ. сред. образования с рус. яз. обучения: в 2 ч. / В. Д. Герасимов, О. Н. Пирютко, А. П. Лобанов. — 2-е изд., испр. и доп. — Минск: Адукацыя і выхаванне, 2020. — Ч. 1. — 176 с.: ил. (Гл. 1, § 12, с. 93–100; § 14, с. 106–115)
	алфавитную <mark>пос</mark> ледовательность букв левого столбца. Помните,	Ответ: A2Б6В5	

^{*} Предлагается одно из возможных решений задания. Ответы к заданиям даны с учетом правил заполнения бланка ответов.

^{**} Электронные версии учебных изданий размещены в разделе «Электронная библиотека» (<u>http://e-padruchnik.adu.by</u>) национального образовательного портала (<u>www.adu.by</u>).

Раздел программы. Элемент содержания	Содержание задания	Комментарий и решение задания*	Учебное издание**
	что некоторые данные правого столбца могут использоваться несколько раз или не использоваться вообще. Например: A1Б1B4		
	В5. На рисунке изображен треугольник ABC , в котором $MN \parallel AB$, $CM = 24$, $CN = 12$, $BN = 3$. Найдите длину стороны AC .	Задание на проверку умения применять подобие треугольников к решению задач. Решение:	Казаков, В. В. Геометрия: учеб. пособие для 8-го кл. учреждений общ. сред. образования с рус. яз. обучения / В. В. Казаков. — Минск: Народная асвета, 2018. — 199 с.: ил. (Гл. 3, § 20, с. 123—128)
	$\frac{B_3}{N}$ 12	Теорема (о параллельной прямой). Прямая, параллельная стороне треугольника, отсекает от него треугольник, подобный данному.	
Геометрические фигуры и их свойства. Подобие треугольников	$A \xrightarrow{M} 24$	Поскольку $MN \parallel AB$, то треугольник MNC подобен треугольнику ABC (по теореме о параллельной прямой). У подобных треугольников	
		соответствующие стороны пропорциональны, тогда $\frac{CM}{AC} = \frac{CN}{BC}$,	
		$\frac{24}{AC} = \frac{12}{15}, AC = 30.$ Other: 30	
	В6. Найдите значение выражения $\left(3b^{0,25}\right)^2 + 3b^{0,5}$ при $b = \log_{\sqrt{2}} 256$	Задание на проверку умения применять свойства степени и свойства логарифмов. Решение: Воспользуемся свойствами степени и преобразуем выражение:	Арефьева, И. Г. Алгебра: учеб. пособие для 11-го кл. учреждений общ. сред. образования с рус. яз. обучения / И. Г. Арефьева, О. Н. Пирютко. — Минск: Народная асвета, 2020. — 270 с.: ил. (Гл. 1, § 1, с. 4—21)
Выражения и их преобразования. Степень		преобразуем выражение: $(3b^{0.25})^2 + 3b^{0.5} = 9b^{0.5} + 3b^{0.5} = 12b^{0.5}$.	
с рациональным показателем		По свойствам логарифмов: $b = \log_{\sqrt{2}} 256$,	
		$b = \log_{\frac{1}{2^2}} 2^8$, $b = 2 \cdot 8 \cdot \log_2 2$, $b = 16$.	
		$12 \cdot 16^{0.5} = 12 \cdot \sqrt{16} = 12 \cdot 4 = 48.$ Ответ: 48	
Уравнения и неравенства. Логарифмические уравнения	В7. Найдите произведение корней (корень, если он единственный) уравнения	Задание на проверку умения решать логарифмические уравнения. Решение:	Арефьева, И.Г. Алгебра: учеб. пособие для 11-го кл. учреждений общ. сред. образования с рус. яз. обучения / И.Г. Арефьева, О. Н. Пирютко. — Минск: Народная

^{*} Предлагается одно из возможных решений задания. Ответы к заданиям даны с учетом правил заполнения бланка ответов.

^{**} Электронные версии учебных изданий размещены в разделе «Электронная библиотека» (<u>http://e-padruchnik.adu.by</u>) национального образовательного портала (<u>www.adu.by</u>).

Раздел программы. Элемент содержания	Содержание задания	Комментарий и решение задания*	Учебное издание**
	$\log_{\sqrt{5}}\left(x - 3\sqrt{7}\right) + \log_{\sqrt{5}}\left(x + 3\sqrt{7}\right) = 0$	По свойству логарифмов получим: $\log_{\sqrt{5}}(x^2-63)=0$. По определению	асвета, 2020. – 270 с. : ил. (Гл. 3, § 9, с. 130–147)
		логарифма числа получим уравнение	
		$x^2 - 63 = \left(\sqrt{5}\right)^0$, или $x^2 - 64 = 0$, корни	
		этого уравнения $\begin{bmatrix} x = -8, \\ x = 8. \end{bmatrix}$	
		Так как при переходе от уравнения	
		$\log_{\sqrt{5}}\left(x-3\sqrt{7}\right) + \log_{\sqrt{5}}\left(x+3\sqrt{7}\right) = 0$	
		уравнению $\log_{\sqrt{5}}(x^2-63)=0$ область	
		определения расширяется, то необходима проверка. Для этого можно выполнить подстановку корней в исходное уравнение либо проверить выполнение условия	
		существования логарифмов: $ \begin{cases} x - 3\sqrt{7} > 0, \\ x + 3\sqrt{7} > 0 \end{cases} $ (1). Очевидно, что	
		условию (1) удовлетворяет число 8 и не	
		удовлетворяет число –8. Значит, корнем уравнения является число 8. Ответ: 8	
	В8. Через электронный сервис Петя купил билет на	Задание на проверку умения решать задачи	Герасимов, В. Д. Математика : учеб. пособие для 6-го кл.
	спортивное мероприятие и заплатил 46 рублей 25 копеек. В эту сумму входит стоимость билета и сервисный сбор	практического содержания. Решение:	учреждений общ. сред. образования с рус. яз. обучения / В. Д. Герасимов, О. Н. Пирютко. — 2-е изд., испр. и доп. —
Уравнения и неравенства.	2 рубля 50 копеек. За два дня до мероприятия Петя решил вернуть билет. По правилам организатора мероприятия	Стоимость билета (в рублях) равна $46,25-2,50=43,75$.	Минск : Адукацыя і выхаванне, 2022. — 312 с. : ил. (Гл. 2, § 1–2, с. 86–105)
Задачи практического	ему вернут 80% стоимости билета. Какую сумму	Найдем 80% стоимости билета:	
содержания	(в рублях) получит Петя, вернув билет?	43,75·0,8 = 35 (рублей).	
		Таким образом, вернув билет, Петя получит 35 рублей. Ответ: 35	

^{*} Предлагается одно из возможных решений задания. Ответы к заданиям даны с учетом правил заполнения бланка ответов.

^{**} Электронные версии учебных изданий размещены в разделе «Электронная библиотека» (<u>http://e-padruchnik.adu.by</u>) национального образовательного портала (<u>www.adu.by</u>).

Раздел программы. Элемент содержания	Содержание задания	Комментарий и решение задания*	Учебное издание**
Уравнения и неравенства. Показательные неравенства	В9. Найдите сумму всех целых решений неравенства $\left(\frac{3}{7}\right)^{\frac{x+18}{(x-2)^2}} \le \frac{3}{7}$	Задание на проверку умения решать показательные неравенства. Решение: Так как $0 < \frac{3}{7} < 1$, то функция $y = \left(\frac{3}{7}\right)^t$ является убывающей, значит, $\left(\frac{3}{7}\right)^{\frac{x+18}{(x-2)^2}} \le \frac{3}{7} \Leftrightarrow \frac{x+18}{(x-2)^2} \ge 1$ (1). Преобразуем неравенство (1) к виду $\frac{(x+2)(x-7)}{(x-2)^2} \le 0$ (2). Нулями функции $f(x) = \frac{(x+2)(x-7)}{(x-2)^2}$ являются числа -2 и 7, а при x , равном 2, значение функции не существует. Построим схему графика функции. Построим схему графика функции.	Арефьева, И. Г. Алгебра : учеб. пособие для 9-го кл. учреждений общ. сред. образования с рус. яз. обучения / И. Г. Арефьева, О. Н. Пирютко. — Минск : Народная асвета, 2019. — 329 с. : ил. (Гл. 3, § 13, с. 182—203); Арефьева, И. Г. Алгебра : учеб. пособие для 11-го кл. учреждений общ. сред. образования с рус. яз. обучения / И. Г. Арефьева, О. Н. Пирютко. — Минск : Народная асвета, 2020. — 270 с. : ил. (Гл. 2, § 6, с. 80—99)
Геометрические фигуры и их свойства. Площадь трапеции	B10. В трапеции $ABCD$ $(BC \parallel AD)$ $\angle A = 90^{\circ}$, $\angle C = 120^{\circ}$, $AD = 8\sqrt{2}$. Найдите значение выражения $\sqrt{3} \cdot S$, где S – площадь	Задание на проверку умения находить площадь трапеции. Решение:	Казаков, В. В. Геометрия : учеб. пособие для 8-го кл. учреждений общ. сред. образования с рус. яз. обучения / В. В. Казаков. — Минск : Народная асвета, 2018. — 199 с. : ил. (Гл. 2, § 17, с. 99–104)

^{*} Предлагается одно из возможных решений задания. Ответы к заданиям даны с учетом правил заполнения бланка ответов.

^{**} Электронные версии учебных изданий размещены в разделе «Электронная библиотека» (<u>http://e-padruchnik.adu.by</u>) национального образовательного портала (<u>www.adu.by</u>).

Раздел программы. Элемент содержания	Содержание задания	Комментарий и решение задания*	Учебное издание**
	трапеции $ABCD$, если высота трапеции равна $3\sqrt{6}$	Теорема. Площадь транеции равна произведению полусуммы оснований на высоту, т. е. $S_{np}=\frac{a+b}{2}\cdot h$.	
		Рассмотрим рисунок.	
		$A = \begin{bmatrix} C \\ 3\sqrt{6} \\ 60^{\circ} \\ K \end{bmatrix}$	
		АВСО – трапеция с основаниями ВС и	
		AD , $\angle A = 90^{\circ}$, $\angle C = 120^{\circ}$, $AD = 8\sqrt{2}$.	
		Пусть CK — высота трапеции, тогда $CK = 3\sqrt{6}$.	
		Рассмотрим прямоугольный треугольник	
		<i>CKD</i> : катет <i>KD</i> в два раза меньше	
		гипотенузы <i>CD</i> , так как лежит против угла	
		в 30°. По теореме Пифагора в прямоугольном треугольнике <i>CKD</i> :	
		$\frac{CD^2}{CD^2} = CK^2 + KD^2,$	
		$(2KD)^2 = (3\sqrt{6})^2 + KD^2,$ $3KD^2 = 54,$	
		$KD = 3\sqrt{2}$.	
		Тогда $AK = 5\sqrt{2}$. Поскольку $ABCK$ –	
		прямоугольник, то $AK = BC = 5\sqrt{2}$.	
		Площадь трапеции <i>ABCD</i> найдем по	
		формуле $S = \frac{AD + BC}{2} \cdot CK$,	
		$S = \frac{8\sqrt{2} + 5\sqrt{2}}{2} \cdot 3\sqrt{6}, S = 39\sqrt{3}.$	

^{*}Предлагается одно из возможных решений задания. Ответы к заданиям даны с учетом правил заполнения бланка ответов.

^{**} Электронные версии учебных изданий размещены в разделе «Электронная библиотека» (<u>http://e-padruchnik.adu.by</u>) национального образовательного портала (<u>www.adu.by</u>).

Раздел программы. Элемент содержания	Содержание задания	Комментарий и решение задания*	Учебное издание**
Блемент содержания Координаты и функции. Производная	В11. Найдите наименьшее значение функции $f(x) = \frac{x^2}{x-4}$ на отрезке [6;10]	$\sqrt{3} \cdot S = 117.$ Ответ: 117 Задание на проверку умения находить наибольшее и наименьшее функции на отрезке. Решение: 1) $D(f) = (-\infty; 4) \cup (4; +\infty).$ 2) $f'(x) = \left(\frac{x^2}{x-4}\right)' = \frac{(x^2)' \cdot (x-4) - (x-4)' \cdot x^2}{(x-4)^2} = \frac{2x(x-4)-x^2}{(x-4)^2} = \frac{x^2-8x}{(x-4)^2}.$ 3) $f'(x) = 0$, $\frac{x^2-8x}{(x-4)^2} = 0$, $x_1 = 0$, $x_2 = 8$. Производная не существует в точке $x = 4$. 4) Точка $x = 8$ принадлежит отрезку $[6; 10]$. 5) $f(6) = \frac{6^2}{6-4}$, $f(6) = 18$. $f(8) = \frac{8^2}{8-4}$, $f(8) = 16$. $f(10) = \frac{10^2}{10-4}$, $f(10) = 16\frac{2}{3}$.	Арефьева, И. Г. Алгебра: учеб. пособие для 10-го кл. учреждений общ. сред. образования с рус. яз. обучения / И. Г. Арефьева, О. Н. Пирютко. — Минск: Народная асвета, 2019. — 285 с.: ил. (Гл. 3, § 22, с. 265–276)
Выражения и их преобразования. Свойства логарифмов	$B12$. Найдите значение выражения $\log_3\left(\frac{a}{9}\right) - \log_3\left(\frac{81}{b}\right)$, если $\log_3\left(ab\right) = 17$	6) $\min_{[6;10]} f(x) = f(8) = 16$. Ответ: 16 Задание на проверку умения применять свойства логарифмов. Решение:	Арефьева, И. Г. Алгебра: учеб. пособие для 11-го кл. учреждений общ. сред. образования с рус. яз. обучения / И. Г. Арефьева, О. Н. Пирютко. — Минск: Народная асвета, 2020. — 270 с.: ил. (Гл. 3, § 7, с. 100—115)

^{*} Предлагается одно из возможных решений задания. Ответы к заданиям даны с учетом правил заполнения бланка ответов.

^{**} Электронные версии учебных изданий размещены в разделе «Электронная библиотека» (<u>http://e-padruchnik.adu.by</u>) национального образовательного портала (<u>www.adu.by</u>).

длина стороны основания которой равна 7, а бокового ребра — $\sqrt{29}$. Найдите периметр сечения призмы плоскостью, проходящей прямую A_iC_1 и середину ребра BB_1 гочки K и A_1 плоскости A_1KC_1 и плоскости грани AA_1B_1B , следовательно, секущая плоскость A_1KC_1 пересекает грань AA_1B_1B по отрезку KA_1 . Аналогично получаем, что секущая плоскость A_1KC_1	Раздел программы. Элемент содержания	Содержание задания	Комментарий и решение задания*	Учебное издание**
а каждую из граней $A_1B_1C_1$ и AA_1C_1C – по отрезку A_1C_1 . Таким образом,	Реометрические фигуры и их свойства. Сечения многогранников	В13. $ABCA_1B_1C_1$ — правильная треугольная призма, длина стороны основания которой равна 7, а бокового ребра — $\sqrt{29}$. Найдите периметр сечения призмы плоскостью, проходящей через	Свойство 1. $\log_a(be) = \log_a b + \log_a c$, а также $\log_a b + \log_a c = \log_a(be)$, где $a > 0$, $a \ne 1$, $b > 0$, $c > 0$. Свойство 2. $\log_a \frac{b}{c} = \log_a b - \log_a c$, а также $\log_a b - \log_a c = \log_a \frac{b}{c}$, где $a > 0$, $a \ne 1$, $b > 0$, $c > 0$. Используя свойства 1 и 2, преобразуем выражение: $\log_3\left(\frac{a}{9}\right) - \log_3\left(\frac{81}{b}\right) = \log_3 a - \log_3 9 - \log_3 81 + \\ + \log_3 b = \log_3\left(ab\right) - 6$. В выражение $\log_3\left(ab\right) - 6$ подставим вместо $\log_3\left(ab\right)$ число 17 и получим число 11. Ответ: 11 Задание на проверку умения строить сечение призмы плоскостью. Решение: Построим сечение. Пусть точка K — середина ребра BB_1 . Точки K и A_1 лежат в секущей плоскости A_1KC_1 и плоскости грани AA_1B_1B , следовательно, секущая плоскость A_1KC_1 пересекает грань AA_1B_1B по отрезку KA_1 . Аналогично получаем, что секущая плоскость A_1KC_1 пересекает грань BB_1C_1C по отрезку KC_1 , а каждую из граней $A_1B_1C_1$ и AA_1C_1C — по	Латотин, Л. А. Геометрия: учеб. пособие для 10-го кл. учреждений общ. сред. образования с рус. яз. обучения (базовый и повышенный уровни) / Л. А. Латотин, Б. Д. Чеботаревский, И. В. Горбунова; пер. с белорус. яз. Л. А. Романович. — Минск: Адукацыя і выхаванне, 2020. —

^{*}Предлагается одно из возможных решений задания. Ответы к заданиям даны с учетом правил заполнения бланка ответов.

^{**} Электронные версии учебных изданий размещены в разделе «Электронная библиотека» (<u>http://e-padruchnik.adu.by</u>) национального образовательного портала (<u>www.adu.by</u>).

Раздел программы. Элемент содержания	Содержание задания	Комментарий и решение задания*	Учебное издание**
		A_1 $\sqrt{29}$ A K A	
		Треугольник A_1KC_1 – равнобедренный $(KA_1 = KC_1)$.	
		$(KA_1 = KC_1).$ Найдем длину стороны KA_1 треугольника	
		A_1KC_1 . Рассмотрим прямоугольный	
		треугольник KB_1A_1 : $KB_1 = \frac{\sqrt{29}}{2}$, $A_1B_1 = 7$.	
		По теореме Пифагора $KA_1^2 = A_1B_1^2 + KB_1^2$,	
		$KA_1^2 = 49 + \frac{29}{4}, KA_1^2 = \frac{225}{4}, KA_1 = \frac{15}{2}.$	
		$P_{\text{ceq}} = A_1 C_1 + K A_1 + K C_1,$ $P_{\text{ceq}} = 7 + 2 \cdot \frac{15}{2},$	
		$P_{\text{ceq}} = 22.$	
	В14. Найдите сумму всех целых решений системы	OTBET: 22	Арефьева, И.Г. Алгебра : учеб. пособие для 8-го кл.
Уравнения и неравенства.	неравенств $\begin{cases} x^2 + 8x + 7 \ge 0, \\ (x+9)(4-x) > 0 \end{cases}$	Задание на проверку умения решать системы квадратных неравенств. Решение:	Арефьева, И. Г. Алгеора : учео. посооие для 6-10 кл. учреждений общ. сред. образования с рус. яз. обучения / И. Г. Арефьева, О. Н. Пирютко. — Минск : Народная асвета, 2018. — 269 с. : ил. (Гл. 3, § 16, с. 191—200)
Системы квадратных неравенств		Решим каждое неравенство системы. 1) Построим схему графика функции $f(x) = x^2 + 8x + 7$. Нули функции: $x_1 = -7$,	асвета, 2016. — 209 С ил. (гл. э, § 16, с. 191—200)
		$x_2 = -1$, ветви параболы направлены вверх	

 [▼] Предлагается одно из возможных решений задания. Ответы к заданиям даны с учетом правил заполнения бланка ответов.

^{**} Электронные версии учебных изданий размещены в разделе «Электронная библиотека» (<u>http://e-padruchnik.adu.by</u>) национального образовательного портала (<u>www.adu.by</u>).

Раздел программы. Элемент содержания	Содержание задания	Комментарий и решение задания*	Учебное издание**
		(a = 1 > 0).	
		Решением неравенства $x^2 + 8x + 7 \ge 0$ является множество $(-\infty; -7] \cup [-1; +\infty)$.	
		2) Нулями функции $f(x) = (x+9)(4-x)$ являются числа -9 и 4. Построим схему графика функции.	
		- -9 + 4	
		Решением неравенства $(x+9)(4-x) > 0$	
		является интервал (-9; 4).	
		Найдем пересечение множеств решений неравенств системы.	
		-9 -7 -1 4 x	
		Решение системы неравенств: $(-9; -7] \cup [-1; 4)$.	
		Сумма всех целых решений системы неравенств равна –10. Ответ: –10	
Уравнения и неравенства. Иррациональные	В15. Найдите сумму квадратов корней уравнения $\sqrt{2x+6} - \sqrt{x+1} = 2$	Задание на проверку умения решать иррациональные уравнения и уравнения, сводящиеся к ним.	Арефьева, И. Г. Алгебра : учеб. пособие для 10-го кл. учреждений общ. сред. образования с рус. яз. обучения / И. Г. Арефьева, О. Н. Пиротко. — Минск : Народная
уравнения		Решение: Преобразуем данное уравнение к виду	асвета, 2019. – 285 с. : ил. (Гл. 2, § 17, с. 204–217)

^{*}Предлагается одно из возможных решений задания. Ответы к заданиям даны с учетом правил заполнения бланка ответов.

^{**} Электронные версии учебных изданий размещены в разделе «Электронная библиотека» (<u>http://e-padruchnik.adu.by</u>) национального образовательного портала (<u>www.adu.by</u>).

Раздел программы. Элемент содержания	Содержание задания	Комментарий и решение задания*	Учебное издание**
		$\sqrt{2x+6} = 2 + \sqrt{x+1}$ (1). Возведем обе части уравнения (1) в квадрат и получим уравнение $x+1=4\sqrt{x+1}$ (2). Возведем обе части уравнения (2) в квадрат и получим уравнение $x^2-14x-15=0$, корнями которого являются числа -1 и 15. Подставив числа -1 и 15 в уравнения (2) и исходное, убеждаемся, что эти числа являются корнями исходного уравнения. Таким образом, $(-1)^2+15^2=226$.	
Геометрические фигуры и их свойства. Угол между прямой и плоскостью	В16. В прямоугольном треугольнике KMN $\angle M = 90^\circ$, $KN = 6\sqrt{2}$. Точка A , не лежащая в плоскости треугольника KMN , удалена на расстояние, равное 7, от каждой вершины треугольника. Найдите значение выражения $21\sqrt{2} \cdot \cos \alpha$, где α — угол между прямой AM и плоскостью KMN	Ответ: 226 Задание на проверку умения находить угол между прямой и плоскостью. Решение: Рассмотрим рисунок.	Латотин, Л. А. Геометрия : учеб. пособие для 10-го кл. учреждений общ. сред. образования с рус. яз. обучения (базовый и повышенный уровни) / Л. А. Латотин, Б. Д. Чеботаревский, И. В. Горбунова ; пер. с белорус. яз. Л. А. Романович. — Минск : Адукацыя і выхаванне, 2020. — 199 с. : ил. (Р. 3, § 9, с. 108—118)
		Углом между прямой и плоскостью, пересекающей эту прямую и не перпендикулярной ей, называется угол между прямой и ее проекцией на плоскость. Опустим перпендикуляр АО на плоскость треугольника КМN. Поскольку	

^{*}Предлагается одно из возможных решений задания. Ответы к заданиям даны с учетом правил заполнения бланка ответов.

^{**} Электронные версии учебных изданий размещены в разделе «Электронная библиотека» (<u>http://e-padruchnik.adu.by</u>) национального образовательного портала (<u>www.adu.by</u>).

Раздел программы. Элемент содержания	Содержание задания	Комментарий и решение задания*	Учебное издание**
		$AO \perp (KMN)$, то $AO \perp KO$, $AO \perp NO$, $AO \perp MO$. По условию дано, что $AK = AN = AM = 7$, тогда прямоугольные треугольники AOK , AON , AOM равны по гипотенузе и катету. Значит, $KO = NO = MO$. Отсюда точка $O - $ это центр окружности, описанной около прямоугольного треугольника KMN . Следовательно, точка O является серединой гипотенузы KN и радиус окружности равен половине гипотенузы, то есть $KO = NO = MO = 3\sqrt{2}$. Таким образом, углом между прямой AM и плоскостью KMN является угол AMO , то есть $\angle AMO = \alpha$. В прямоугольном треугольнике AOM : $\cos\alpha = \frac{MO}{AM}$, $\cos\alpha = \frac{3\sqrt{2}}{7}$. Значение выражения $21\sqrt{2} \cdot \cos\alpha$ равно 18. Ответ: 18	
Уравнения и неравенства. Тригонометрические уравнения	В17. Найдите (в градусах) сумму различных корней уравнения $\sqrt{3}\sin 5x + \cos 5x = 0$ на промежутке $(-45^{\circ};0^{\circ})$	Задание на проверку умения решать тригонометрические уравнения. Решение: Уравнение $\sqrt{3}\sin 5x + \cos 5x = 0$ является однородным уравнением первой степени. Так как значения переменной, при которых $\cos 5x = 0$, не являются корнями данного уравнения, то разделим обе части уравнения на $\cos 5x$ и получим: $\sqrt{3} \cdot \frac{\sin 5x}{\cos 5x} + 1 = 0$, $\sqrt{3} \operatorname{tg} 5x = -1$,	Арефьева, И. Г. Алгебра: учеб. пособие для 10-го кл. учреждений общ. сред. образования с рус. яз. обучения / И. Г. Арефьева, О. Н. Пирютко. — Минск: Народная асвета, 2019. — 285 с.: ил. (Гл. 1, § 8, с. 99—115)

^{*}Предлагается одно из возможных решений задания. Ответы к заданиям даны с учетом правил заполнения бланка ответов.

^{**} Электронные версии учебных изданий размещены в разделе «Электронная библиотека» (<u>http://e-padruchnik.adu.by</u>) национального образовательного портала (<u>www.adu.by</u>).

Раздел программы. Элемент содержания	Содержание задания	Комментарий и решение задания*	Учебное издание**
Уравнения и неравенства. Логарифмические неравенства	В18. Найдите сумму всех целых решений неравенства $\frac{8}{1 + \log_3 x} > -1 + \log_3 x$	$tg5x=-rac{\sqrt{3}}{3}$. Решим это уравнение: $5x=-30^\circ+180^\circ\cdot n,n\in Z,x=-6^\circ+36^\circ\cdot n,n\in Z.$ Очевидно, что промежутку $(-45^\circ;0^\circ)$ принадлежат корни: -6° $(n=0);$ -42° $(n=-1)$. Их сумма (в градусах) равна -48 . Ответ: -48 Задание на проверку умения решать логарифмические неравенства методом замены переменной. Решение: Выполним замену переменной $t=\log_3 x,$ тогда данное неравенство можно записать в виде $\frac{8}{1+t}>t-1.$ Решим это дробно-рациональное неравенство методом интервалов: $\frac{8}{1+t}>t-1,$	Арефьева, И. Г. Алгебра : учеб. пособие для 11-го кл. учреждений общ. сред. образования с рус. яз. обучения / И. Г. Арефьева, О. Н. Пирютко. — Минск : Народная асвета, 2020. — 270 с. : ил. (Гл. 3, § 10, с. 147—164)

^{*}Предлагается одно из возможных решений задания. Ответы к заданиям даны с учетом правил заполнения бланка ответов.

^{**} Электронные версии учебных изданий размещены в разделе «Электронная библиотека» (<u>http://e-padruchnik.adu.by</u>) национального образовательного портала (<u>www.adu.by</u>).

Раздел программы. Элемент содержания	Содержание задания	Комментарий и решение задания*	Учебное издание**
		-3 -1 3	
		Решением дробно-рационального неравенства является множество $(-\infty; -3) \cup (-1; 3)$. Объединение этих	
		промежутков можно записать в виде $t < -3$,	
		$\begin{bmatrix} -1 < t < 3. \end{bmatrix}$ Подставим в полученную совокупность неравенств $t = \log_3 x$: $\begin{bmatrix} \log_3 x < -3, \\ -1 < \log_3 x < 3 \end{bmatrix}$	
		неравенств $t = \log_3 x$: $\begin{bmatrix} \log_3 x < -3, \\ -1 < \log_3 x < 3 \end{bmatrix}$ \Leftrightarrow $\begin{bmatrix} 0 < x < 3^{-3}, \\ 3^{-1} < x < 3^3 \end{bmatrix}$ \Leftrightarrow $\begin{bmatrix} 0 < x < \frac{1}{27}, \\ \frac{1}{3} < x < 27 \end{bmatrix}$ \Leftrightarrow \Leftrightarrow $x \in \left(0; \frac{1}{27}\right) \cup \left(\frac{1}{3}; 27\right).$	
		Таким образом, решением исходного неравенства является множество $\left(0; \frac{1}{27}\right) \cup \left(\frac{1}{3}; 27\right)$.	
		Сумма всех целых решений неравенства равна 351. Ответ: 351	

^{*}Предлагается одно из возможных решений задания. Ответы к заданиям даны с учетом правил заполнения бланка ответов.

^{**} Электронные версии учебных изданий размещены в разделе «Электронная библиотека» (<u>http://e-padruchnik.adu.by</u>) национального образовательного портала (<u>www.adu.by</u>).

Раздел программы. Элемент содержания	Содержание задания	Комментарий и решение задания*	Учебное издание**
Уравнения и неравенства. Уравнение с двумя переменными	В19. По углам листа картона прямоугольной формы вырезали четыре одинаковых квадрата (см. рис.) с длиной стороны, равной 5 см. Края полученной заготовки загнули по линиям 1–4 и получили коробку в форме прямоугольного параллелепипеда. Если бы длина каждой стороны листа картона была меньше на 2 см, то объем изготовленной таким же образом коробки был бы на 0,12 дм³ меньше. Найдите периметр исходного листа картона (в см)	Задание на проверку умения решать текстовые задачи с помощью уравнений. Решение: Пусть длина листа картона равна x см, а ширина листа картона — y см. Тогда высота полученной коробки равна 5 см, длина — $(x-10)$ см, ширина — $(y-10)$ см. Объем коробки равен $5(x-10)(y-10)$ см ³ . Если уменьшить каждую сторону листа картона на 2 см, то его длина будет равна $(x-2)$ см, ширина — $(y-2)$ см. Тогда высота полученной коробки будет равна 5 см, длина — $(x-12)$ см, ширина — $(y-12)$ см. Объем коробки будет равен $5(x-12)(y-12)$ см ³ . По условию задачи $5(x-10)(y-10)=5(x-12)(y-12)+120$. Преобразуем левую и правую части уравнения и получим $2(x+y)=68$. Таким образом, периметр исходного листа картона равен 68 см. Ответ: 68	Арефьева, И. Г. Алгебра : учеб. пособие для 7-го кл. учреждений общ. сред. образования с рус. яз. обучения / И. Г. Арефьева, О. Н. Пирютко. — 2-е изд., испр. и доп. — Минск : Народная асвета, 2022. — 313 с. : ил. (Гл. 4, § 21, с. 254–262); Арефьева, И. Г. Алгебра : учеб. пособие для 9-го кл. учреждений общ. сред. образования с рус. яз. обучения / И. Г. Арефьева, О. Н. Пирютко. — Минск : Народная асвета, 2019. — 329 с. : ил. (Гл. 3, § 11, с. 154–171)
Геометрические фигуры и их свойства. Объем пирамиды	В20. Сфера с радиусом 4 касается всех сторон равнобедренного треугольника KMN , у которого длина основания KM равна 10 и длина боковой стороны MN равна 13. Найдите значение выражения $3\sqrt{11} \cdot V$, где V — объем пирамиды $OKMN$ (точка O — центр сферы)	Задание на проверку умения вычислять объем пирамиды. Решение: Рассмотрим рисунок.	Латотин, Л. А. Геометрия: учеб. пособие для 11-го кл. учреждений общ. сред. образования с рус. яз. обучения (базовый и повышенный уровни) / Л. А. Латотин, Б. Д. Чеботаревский, И. В. Горбунова, О. Е. Цыбулько. — Минск: Белорусская Энциклопедия имени Петруся Бровки, 2020. — 232 с.: ил. (Р. 2, § 3, с. 38–56; р. 3, § 5, с. 76–88)

^{*} Предлагается одно из возможных решений задания. Ответы к заданиям даны с учетом правил заполнения бланка ответов.

^{**} Электронные версии учебных изданий размещены в разделе «Электронная библиотека» (<u>http://e-padruchnik.adu.by</u>) национального образовательного портала (<u>www.adu.by</u>).

Раздел программы. Элемент содержания	Содержание задания	Комментарий и решение задания*	Учебное издание**
		K A O M M M	
		Пусть точки A , B , C — точки касания сферы и сторон KM , KN , MN	
		соответственно. Точка O_1 – основание	
		перпендикуляра, опущенного из точки O на плоскость KMN . Поскольку радиусы сферы, проведенные в точки касания, перпендикулярны касательным, то $OA \perp KM$, $OB \perp KN$, $OC \perp MN$. По	
		теореме о трех перпендикулярах $O_1A \perp KM$, $O_1B \perp KN$, $O_1C \perp MN$.	
		Прямоугольные треугольники OO_1A ,	
		OO ₁ B, OO ₁ C равны по гипотенузе и	
		катету. Следовательно, $O_1 A = O_1 B = O_1 C$. Тогда точка O_1 является центром	
		окружности, вписанной в треугольник KMN . Используя формулу $S=pr$,	
		где S — площадь треугольника, p —	
		полупериметр треугольника, <i>r</i> – радиус вписанной окружности, найдем радиус вписанной окружности. Площадь треугольника <i>KMN</i> найдем по формуле	
		Герона: $S = \sqrt{18 \cdot 5 \cdot 5 \cdot 8}$, $S = 60$. Тогда	

^{*} Предлагается одно из возможных решений задания. Ответы к заданиям даны с учетом правил заполнения бланка ответов.

^{**} Электронные версии учебных изданий размещены в разделе «Электронная библиотека» (<u>http://e-padruchnik.adu.by</u>) национального образовательного портала (<u>www.adu.by</u>).

Раздел программы. Элемент содержания	Содержание задания	Комментарий и решение задания*	Учебное издание**
		$r = \frac{S}{p}$, $r = \frac{60}{18}$, $r = \frac{10}{3}$. To есть	
		$O_1 A = O_1 B = O_1 C = \frac{10}{3}.$	
		В прямоугольном треугольнике OO_1A по	
		теореме Пифагора найдем д <mark>лин</mark> у $OO_{\!_1}$:	
		$OA^2 = OO_1^2 + O_1A^2$, $OO_1^2 = OA^2 - O_1A^2$,	
		$OA^{2} = OO_{1}^{2} + O_{1}A^{2}, \qquad OO_{1}^{2} = OA^{2} - O_{1}A^{2},$ $OO_{1}^{2} = 4^{2} - \left(\frac{10}{3}\right)^{2}, \qquad OO_{1}^{2} = \frac{44}{9},$ $OO_{1} = \frac{2\sqrt{11}}{3}.$	
		$OO_1 = \frac{2\sqrt{11}}{3}.$	
		Найдем <mark>объем пир</mark> амиды <i>ОКМ</i> по	
		формуле $V = \frac{1}{3} \cdot S_{KMN} \cdot OO_1$:	
		$V = \frac{1}{3} \cdot 60 \cdot \frac{2\sqrt{11}}{3}, V = \frac{40\sqrt{11}}{3}.$	
		Значен ие выражения $3\sqrt{11} \cdot V$ равно 440. От вет: 440	

^{*}Предлагается одно из возможных решений задания. Ответы к заданиям даны с учетом правил заполнения бланка ответов.

^{**} Электронные версии учебных изданий размещены в разделе «Электронная библиотека» (<u>http://e-padruchnik.adu.by</u>) национального образовательного портала (<u>www.adu.by</u>).