1	- 6 i) j)		
	$Sig^{\mathbf{f}}-proof,SessKey^{\mathbf{f}},AEAD^{\mathbf{f}},\oplus^{\mathbf{f}},DH^{\mathbf{f}}$	$ ✓^P (615) $	Ø
auth-RI-unique	$Sig^{f}-proof,SessKey^{f},AEAD^{f},\oplus^{f},DHShare^{f}$	\mathbb{O}^P	$\checkmark^P (32) \checkmark^T (1630)$
	$Sig^{\mathbf{f}}-proof,SessKey^{\mathbf{f}},AEAD^{\mathbf{f}},\oplus^{\mathbf{f}},DH^{\mathbf{f}}$	$\checkmark^P (585) \ \mathbf{O}^T$	Ø
data-authentication-IR	+	\mathbf{X}^P (23)	\mathbf{X}^P (2)
	Sig⁴-proof, DHShare⁴	\mathbf{O}^P	\mathbf{X}^P (4)
	Sig ^f -proof, SessKey ^f , AEAD ^f	$\checkmark^P \ (\Rightarrow) \ \mathbb{O}^T$	$\checkmark^P (3) \bigcirc^T$
	Sig ^f , SessKey ^f , AEAD ^f , DHShare ^f	\mathbf{O}^P	$\checkmark^P (3) \checkmark^T (1347)$
	Sig ^f -proof, SessKey ^f , AEAD ^f , DH ^f	\checkmark^P (46) \mathbf{O}^T	Ø
data-authentication-RI	$\oplus^{\it f}$, DHShare $^{\it f}$	\mathbb{O}^P	\mathbf{X}^P (21)
	Sig ^f -proof, DHShare ^f	\mathbf{O}^P	\mathbf{X}^P (23)
	Sig ^f , SessKey ^f , AEAD ^f , DHShare ^f	\mathbf{O}^P	$\checkmark^P (6) \checkmark^T (1647)$
	$Sig^{\mathbf{f}}-proof,SessKey^{\mathbf{f}},AEAD^{\mathbf{f}},\oplus^{\mathbf{f}}$	$\checkmark^P \ (\Rightarrow) \ \mathbb{O}^T$	\checkmark^P (25) \mathbf{O}^T
	$Sig^{\mathbf{f}}-proof,SessKey^{\mathbf{f}},AEAD^{\mathbf{f}},\oplus^{\mathbf{f}},DH^{\mathbf{f}}$		Ø
honest-auth-RI-non-inj	$Sig^{f}-proof,SessKey^{f},AEAD^{f},\oplus^{f},DHShare^{f}$	\mathbb{O}^P	\checkmark^P (57) \mathbf{O}^T
	$Sig^{\mathbf{f}}-proof,SessKey^{\mathbf{f}},AEAD^{\mathbf{f}},\oplus^{\mathbf{f}},DH^{\mathbf{f}}$		Ø
honest-auth-RI-unique	$Sig^{f}-proof,SessKey^{f},AEAD^{f},\oplus^{f},DHShare^{f}$	\mathbf{O}^P	$\checkmark^P (50) \checkmark^T (1319)$
	$Sig^{f}-proof, SessKey^{f}, AEAD^{f}, \oplus^{f}, DH^{f}$	$✓^P$ (598) \mathbf{O}^T	Ø

models/lake-edhoc

 \mathbb{O}^P

 \checkmark^P (1891) \mathbf{O}^T

 \mathbb{O}^P

 \bigcirc^P

 $\overline{{\bf V}}^P$

models/lake-edhoc-KEM

 \checkmark^P (41) \checkmark^T (1272)

 $(143) \ \mathbb{O}^{7}$

 $✓^P$ (232) \bigcirc^T

 $✓^P$ (30) \bigcirc^T

 $(40) \checkmark^T (1468)$

ue Sigf-proof, SessKeyf, AEADf, \oplus f, DHSharef Sigf-proof, SessKeyf, AEADf, \oplus f, DHf Sigf-proof, SessKeyf, AEADf, \oplus f, DHSharef Sigf-proof, SessKeyf, AEADf, \oplus f, DHf

 Sig^{f} -proof, $SessKev^{f}$, $AEAD^{f}$, \oplus^{f} , $DHShare^{f}$

Sig^f-proof, SessKey^f, AEAD^f, ⊕^f, DH^f

 Sig^{f} -proof, $SessKey^{f}$, $AEAD^{f}$, \oplus^{f} , $DHShare^{f}$

Sig^f-proof, SessKey^f, AEAD^f, ⊕^f, DH^f

 Sig^{ℓ} -proof, $SessKey^{\ell}$, $AEAD^{\ell}$, \oplus^{ℓ} , $DHShare^{\ell}$

Scenario

 Sig^{ℓ} -proof, $SessKev^{\ell}$, $AEAD^{\ell}$, \oplus^{ℓ} , $DHShare^{\ell}$

Sig'-proof, SessKey', AEAD', \oplus ', DH' \checkmark P (619) \bigcirc T \emptyset Automated aggregation of results

For each lemma and each scenario, we display the result of the automated analysis based on Proverif and Tamarin.

We display all scenarios for which at least one of the protocol has a non trivial and non timeout result.

attack found with Tamarin (T) or Proverif (P) in x seconds

the scenario is irrelevant for this protocol (e.g., DH weakness in KEM setting)

proof found with Tamarin (T) or Proverif (P) in x seconds means the result is implied by another displayed result

timeout for Tamarin (T) or Proverif (P)

honest-auth-IR-unique

 \mathbf{X}^T (x), \mathbf{X}^P (x):

 $\checkmark^T (x), \checkmark^P (x)$:

Lemma

auth-IR-unique

secretI

secretR

honest-auth-IR-non-inj