ESC201T : Introduction to Electronics

Lecture 15: Frequency Response

B. Mazhari Dept. of EE, IIT Kanpur

Time domain vs. Frequency domain analysis

System

What does this circuit do?

Suppose the capacitor is reduced to ~21pF.

It is hard to find out what impact the change in capacitor has on circuit behavior

Frequency domain analysis

Measure response at many different frequencies for a constant input amplitude

One can clearly see the frequency selective (often called a filter) nature of the circuit

Suppose the capacitor is reduced to ~21pF.

Absorption Spectroscopy

Bond length can be estimated from the spectra

Frequency domain analysis

Transfer function is a useful tool for finding the frequency response of a system

Transfer Function:
$$H(\omega) = \frac{Y(\omega)}{X(\omega)}$$

Transfer function has a magnitude and a phase

Because of the wide dynamic range of frequency, plotting frequency on log axis is often more revealing!

Insight is a strong function of information representation

The magnitude of transfer function is often specified in decibels

$$G_{dB} = 10\log_{10}(\frac{P_2}{P_1})$$

Because power is proportional to V^2 or I^2 , voltage gain and current gain in decibels is specified as

$$G_{dB} = 20 \log_{10}(\frac{V_2}{V_1})$$
 $G_{dB} = 20 \log_{10}(\frac{I_2}{I_1})$

Decibel scale is more convenient for our perception of hearing

Change in Sound Pressure Level	Apparent Change in Loudness
3 dB	Just noticeable
5 dB	Clearly noticeable
10 dB	Twice or half as loud
20 dB	4 times or 1/4 as loud

Decibel Scale

G	20Log ₁₀ (G)
1000	60
100	40
10	20
2	6
$\sqrt{2}$	3
1	0
1/√2	-3
0.5	-6
0.1	-20
0.01	-40

Decibel scale often reveals more information about behavior

dB Scale

20Log₁₀(G)

60

40

20

-3

-6

-20

-40

1000

A plot of the decibel magnitude of transfer function versus frequency using a logarihmic scale for frequency is called a **Bode plot**

Logarithmic frequency scale

No. of decades =
$$log(\frac{f_2}{f_1})$$

No. of octaves =
$$\log_2(\frac{f_2}{f_1}) = \frac{\log(\frac{f_2}{f_1})}{\log(2)}$$

How do we determine transfer function?

$$v_S(t) = v_{So}Cos(\omega t)$$

$$H(\omega) = \frac{V_O(\omega)}{V_S(\omega)}$$

$$V_{\rm O}$$
1/j ω C
$$H(\omega) = \frac{1}{1 + j\omega CR}$$

$$|H(\omega)| = \frac{1}{\sqrt{1 + \omega^2 C^2 R^2}}$$

$$\phi(\omega) = -\tan^{-1}(\omega CR)$$

Magnitude plot

$$|H(\omega)| = \frac{1}{\sqrt{1 + \omega^2 C^2 R^2}}$$

$$20\text{Log}_{10}(|H(\omega)|) = -10Log_{10}(1 + \omega^2 C^2 R^2)$$

$$20\text{Log}_{10}(|H(\omega)|) = -10Log_{10}(1 + \omega^2 C^2 R^2)$$
$$= -10Log_{10}(1 + \frac{\omega^2}{\omega_{3dB}^2})$$

$$\omega_{3dB} = \frac{1}{RC} ; f_{3dB} = \frac{1}{2\pi RC}$$

For
$$\omega = \omega_{3dB} \ 20 \text{Log}_{10}(|H(\omega_{3dB})|) = -3dB$$

$$H(\omega) = \frac{1}{1 + j\omega CR} \qquad |H(\omega)| = \frac{1}{\sqrt{1 + \omega^2 C^2 R^2}}$$

$$20\text{Log}_{10}(|H(\omega)|) = -10Log_{10}(1 + \frac{\omega^2}{\omega_{3dB}^2})$$

For
$$\omega >> \omega_{3dB}$$
 $20 \text{Log}_{10}(|H(\omega)|) \cong -20 Log_{10}(\frac{\omega}{\omega_{3dB}})$

Also called corner frequency or half power frequency

Example

$$H(\omega) = \frac{10}{1 + j\omega 10^{-3}}$$

$$20\text{Log}_{10}(|H(\omega)|) = 20 - 10Log_{10}(1 + \frac{\omega^2}{\omega_{3dB}^2})$$

$$\omega_{3dB} = 10^3$$

Adding more RC stages, makes the characteristics sharper

