▼ Exercício 12 - SVM

Aluno: Giovanni Martins de Sá Júnior - 2017001850

import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.svm import SVC from sklearn.preprocessing import StandardScaler from sklearn.metrics import accuracy_score, confusion_matrix from mlxtend.plotting import plot_decision_regions

dados = pd.read_csv('Social_Network_Ads.csv')

dados

	User ID	Gender	Age	EstimatedSalary	Purchased
0	15624510	Male	19	19000	0
1	15810944	Male	35	20000	0
2	15668575	Female	26	43000	0
3	15603246	Female	27	57000	0
4	15804002	Male	19	76000	0

395	15691863	Female	46	41000	1
396	15706071	Male	51	23000	1
397	15654296	Female	50	20000	1
398	15755018	Male	36	33000	0
399	15594041	Female	49	36000	1

400 rows × 5 columns

```
# 2. Separar os dados em treinamento e teste
X = dados[['Age', 'EstimatedSalary']]
y = dados['Purchased']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 3. Treinar a SVM
# Normalizar os dados
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
# Criar e treinar o classificador SVM
svm_classifier = SVC(kernel='linear', C=1.0)
svm_classifier.fit(X_train_scaled, y_train)
              SVC
     SVC(kernel='linear')
# 4. Plotar os dados no espaço de entrada resaltando os vetores de suporte
plt.figure(figsize=(10, 6))
plot_decision_regions(X_train_scaled, y_train.values, clf=svm_classifier, legend=2)
plt.title('SVM - Vetores de Suporte')
plt.xlabel('Age (Padronizado)')
plt.ylabel('EstimatedSalary (Padronizado)')
plt.show()
```

SVM - Vetores de Suporte


```
# 5. Plotar os dados no espaço de entrada com o hiperplano de separação
plt.figure(figsize=(10, 6))
plt.scatter(X_train_scaled[:, 0], X_train_scaled[:, 1], c=y_train, cmap='coolwarm')
plot_decision_regions(X_train_scaled, y_train.values, clf=svm_classifier, legend=2)
plt.title('SVM - Hiperplano de Separação')
plt.xlabel('Age (Padronizado)')
plt.ylabel('EstimatedSalary (Padronizado)')
plt.show()
```


