2020 Math Camp — Lecture 5

Nadia Kotova nkotova@stanford.edu

1 Introduction

Recall the parametric constrained-maximization problem:

Maximize (in
$$z$$
) $F(z, \theta)$ subject to $z \in A$

Suppose the solution to the above problem exists. Let $Z(\theta)$ be the set of solutions of this problem for the parameter θ . We are interested in how $Z(\theta)$ vary with θ .

A traditional approach is to apply the Implicit Function Theorem to the first-order maximization conditions. This approach requires some assumptions about the objective function F and the constraint set A: F is twice differentiable and strictly concave (ensures that $Z(\theta)$ contains at most one element), A is convex, $Z(\theta)$ is not empty for each θ and all its elements lie in the interior of A. In addition, θ is a continuous policy variable. Under this conditions the unique $Z(\theta) \in Z(\theta)$ solves:

$$F_z(z(\theta),\theta)=0$$

We can apply the Implicit Function Theorem to show that:

$$z'(\theta) = -\frac{F_{z\theta}(z(\theta), \theta)}{F_{zz}(z(\theta), \theta)}$$

The above approach allows to calculate $z'(\theta)$ exactly if F is known and satisfies the above conditions. However, very often we might not know F exactly, only some of its properties, F does not have to be smooth and

strictly concave, A might not be convex (indivisible goods) and sometimes it is not necessary for us to know $z'(\theta)$ exactly, just knowing the sign of $z'(\theta)$ is enough.

This note is devoted to a set of tools that allow us to answer how $z'(\theta)$ depends on θ while relaxing all the assumptions mentioned above.

2 Binary relations

Definition 1. Let X and Y be two nonempty sets. A subset R of $X \times Y$ is called a (binary) relation from X to Y. In case X = Y (relation from X to X) we say that it is a relation on X. If $(x,y) \in R$ then we write xRy.

Example 2. a. "equal to" on \mathbb{R} : $R = \{(x,y) \in \mathbb{R}^2 : x = y\}$;

- b. "greater than" on \mathbb{R} : $R = \{(x, y) \in \mathbb{R}^2 : x > y\}$;
- c. "multiple of" on \mathbb{N} : $R = \{(x, y) \in \mathbb{N}^2 : x = ky \text{ for some } k \in \mathbb{N}\};$
- d. "a subset of" on $2^{\mathbb{R}}$: $R = \{(A, B) : A \subseteq B\}$.

Definition 3. Let *X* be a nonempty set and *R* be a relation on it. *R* is said to be:

- *refexive* if xRx for all $x \in X$;
- *complete* if either xRy or yRx for each $x, y \in X$;
- antisymmetric if xRy and yRx implies x = y;
- *transitive* if xRy, yRz implies that xRz.

Definition 4. A relation \succeq on a nonempty set X is called a *partial order* on X if it is reflexive, antisymmetric, transitive.

Definition 5. A partially ordered set, or a poset (X, \succeq) consists of a set X and a partial ordering over that set, \succeq .

Remark 6. A partially ordered set (X, \succeq) need not be complete. That is, there can be elements $x, y \in X$ such that neither xRy nor yRx.

Definition 7. A totally ordered set (X, R) is a partially ordered set that is complete, i.e. for every $x, y \in X$, either xRy, or yRx (or both).

Example 8. (\mathbb{R}, \succeq) is a totally ordered set, while (\mathbb{R}^2, \succeq) under the usual (componentwise) order is not.

3 Increasing differences

Definition 9. If X is a partially ordered set, $f: X \to \mathbb{R}$ is increasing if $\bar{x} \ge \underline{x}$ implies $f(\bar{x}) \ge f(\underline{x})$.

Definition 10. Let X_1 , X_2 be two partially ordered sets. Then, $f: X_1 \times X_2 \to \mathbb{R}$ has increasing differences if, for all $\bar{x}_1 \geq \underline{x}_1$ and $\bar{x}_2 \geq \underline{x}_2$:

$$f(\bar{x}_1, \bar{x}_2) - f(\underline{x}_1, \bar{x}_2) \ge f(\bar{x}_1, \underline{x}_2) - f(\underline{x}_1, \underline{x}_2)$$

We say that *f* has *strictly* increasing differences if the above inequalities are strict.

Remark 11. Informally, f is "more increasing" in x_1 for higher values of x_2 .

Exercise 1. Let $X_1 = X_2 = \mathbb{R}$. Prove that $f = x_1x_2$ has increasing differences.

Exercise 2. Prove or disprove: for any partially ordered X_1 , X_2 and any increasing $f: X_1 \to \mathbb{R}$ and $g: X_2 \to \mathbb{R}$, $f(x_1)g(x_2)$ has increasing differences.

Proposition 12. If $X_1 = X_2 = \mathbb{R}$ and $f : \mathbb{R}^2 \to \mathbb{R}$ is continuously twice differentiable, then increasing differences is equivalent to $\frac{\partial^2 f}{\partial x_1 \partial x_2} \geq 0$.

Theorem 13 (Topkis's Monotone Selection Theorem). *If* $f: X \times \Theta \to \mathbb{R}$ with $X, \Theta \subseteq \mathbb{R}$ has strictly increasing differences and $X^*(\theta) = \arg\max_{x \in X} f(x, \theta)$, then for all $\theta, \theta' \in \Theta$ such that $\theta' > \theta$, $x \in X^*(\theta)$, and $x' \in X^*(\theta')$, we have $x \leq x'$.

4 Lattices

Definition 14. We say that z is a lower bound for two elements $x, y \in X$ if $z \le x$ and $z \le y$. It's the greatest lower bound (GLB) if $z' \le z$ for every lower bound z'. Define upper bound and the least upper bound (LUB) similarly.

Definition 15. Then (X, \succeq) is a lattice if every pair of elements has the GLB and LUB. In this case, we write $x \wedge y$ ("meet") for GLB and $x \vee y$ ("join") for LUB.

Exercise 3. Prove that GLB and LUB are unique.

Example 16. Lattices:

- a. R with usual ordering;
- b. \mathbb{R}^2 with componentwise ordering;
- c. a set of subsets of a given set *X*, ordered by inclusion;
- d. $A = \{(0,0), (0,1), (1,0), (2,2)\}$ under the usual order. Note that LUB operation is not the same as in \mathbb{R}^2 .

Not lattices:

a.
$$A = \{(0,0), (0,1), (1,0), (1,2), (2,1), (2,2)\};$$

b.
$$A = \{(x_1, x_2) \in \mathbb{R}^2 | x_1 + x_2 \le K \}.$$

5 Supermodular functions and Topkis' Theorem

Remark 17. We want to generalize Theorem 13 to $X \subseteq \mathbb{R}^n$ and $\Theta \subseteq \mathbb{R}^m$. What if an increase in θ pushes x_i and x_j up, but the increase in x_i pushes x_j down? We need complementarity within the components of x in addition to complementarity between x and θ .

Definition 18 (Supermodularity). Let X be a lattice. We say that $f: X \times \Theta \to \mathbb{R}$ is supermodular if, for all $x, y \in X$ and $\theta \in \Theta$,

$$f(x \land y, \theta) + f(x \lor y, \theta) \ge f(x, \theta) + f(y, \theta)$$

Exercise 4. Prove or disprove: any function $f : \mathbb{R} \to \mathbb{R}$ is supermodular.

Remark 19. For $f: X_1 \times X_2 \to \mathbb{R}$, where X_1 and X_2 are totally ordered sets, supermodularity is equivalent to increasing differences.

Definition 20. Define a strong set order on subsets of a lattice X. We say $S \le T$ if, for all $s \in S$ and $t \in T$, we have $s \land t \in S$ and $s \lor t \in T$.

Theorem 21 (Topkis' Monotonicity Theorem). Let $X \subseteq \mathbb{R}^n$ be a lattice and $\Theta \subseteq \mathbb{R}^m$, and $f: X \times \Theta \to \mathbb{R}$ has increasing differences in (x, θ) and is supermodular in x, then $X^*(\theta)$ is increasing in the strong set order.

6 Other useful results

Proposition 22 (Chain rule). Let F(x) = f(g(x)). Then F'(x) = f'(g(x))g'(x).

Proposition 23 (Leibniz's rule). *If* $-\infty < a(x), b(x) < +\infty$,

$$\frac{d}{dx}\left(\int_{a(x)}^{b(x)} f(x,t)dt\right) = f(x,b(x)) \cdot \frac{d}{dx}b(x) - f(x,a(x)) \cdot \frac{d}{dx}a(x) + \int_{a(x)}^{b(x)} \frac{\partial}{\partial x}f(x,t)dt$$

Proposition 24 (Jensen's inequality). *If* X *is a random variable and* f *is a convex function, then* $f(E[X]) \leq E[f(X)]$.

Proposition 25 (Law of iterated expectations). *If* X *and* Y *are random variables, then* E[X] = E[E[X|Y]].

Theorem 26 (Fubini's theorem). If $\int_{X\times Y} |f(x,y)| d(x,y) < \infty$, then

$$\int_{X} \left(\int_{Y} f(x, y) \, dy \right) \, dx = \int_{Y} \left(\int_{X} f(x, y) \, dx \right) \, dy = \int_{X \times Y} f(x, y) \, d(x, y)$$

Theorem 27 (Envelope theorem). *Consider the following maximization problem:*

$$\max_{x,y} f(x,y,\theta)$$
 s.t. $g(x,y,\theta) \le c$

Define the Lagrangian:

$$\mathcal{L}(x, y, \lambda, \theta) = f(x, y, \theta) + \lambda [c - g(x, y, \theta)]$$

Let $x^*(\theta)$, $y^*(\theta)$ and λ^* denote solutions to this problem. Define the value function:

$$F(\theta) = f(x^*(\theta), y^*(\theta), \theta)$$

Then, the derivative of the value function with respect to θ is:

$$\frac{dF(\theta)}{d\theta} = \frac{\partial f}{\partial \theta} \left|_{(x^*(\theta), y^*(\theta), \theta)} - \lambda^* \frac{\partial g}{\partial \theta} \right|_{(x^*(\theta), y^*(\theta), \theta)}$$

Remark 28. In the unconstrained case or when the constraint is not binding ($\lambda^* = 0$),

$$\frac{dF(\theta)}{d\theta} = \frac{\partial f}{\partial \theta} \big|_{(x^*(\theta), y^*(\theta), \theta)}$$

Example 29. First price auction with private values. Bidder N has value $v \in [0, +\infty)$, submits bid b. N wins with probability p(b). N solves the following problem:

$$\max_{b} u(v,b) = p(b)v - b$$

Let $b^*(v)$ denote the solution to this problem. N's value function:

$$U(v) = p(b^*(v))v - b^*(v)$$

We want to know how U(v) changes with v. Apply the Envelope theorem:

$$\frac{dU(v)}{dv} = \frac{\partial u(v,b)}{\partial v}(v,b^*(v)) = p(b^*(v))$$

If in equilibrium the highest value bidder wins, $p(b^*(v))$ is equal to the probability that N has the highest value and we can write $p(b^*(v)) = p(v)$. Integrating:

$$U(v) = U(0) + \int_0^v p(\bar{v})d\bar{v}$$

Hence, N's expected utility *only* depends on her probability of winning as a function of her valuation v and her expected utility when she has the lowest possible valuation (U(0)).