Fermilab Keras Workshop

Stefan Wunsch stefan.wunsch@cern.ch

November 30, 2017

What is this talk about?

- Modern implemenation, description and application of neural networks
- Currently favoured approach:
 - Keras used for high-level description of neural networks models
 - ► **High-performance implementations** provided by backends, e.g., Theano or **TensorFlow** libraries

Being able to go from idea to result with the least possible delay is key to doing good research.

theano

Outline

The workshop has these parts:

- 1. Brief introduction to neural networks
- 2. Brief introduction to **computational graphs** with TensorFlow
- 3. Introduction to Keras
- 4. Useful tools in combination with Keras, e.g., TMVA Keras interface
 - ▶ In parts 3 and 4, you have to possibility to follow along with the examples on your laptop.

Assumptions of the tutorial:

- ➤ You are not a neural network expert, but you know roughly how they work.
- You haven't used Keras before.
- You want to know why Keras is so popular and how you can use it!

You can download the slides and code examples from GitHub: git clone

https://github.com/stwunsch/fermilab_keras_workshop

A Simple Neural Network

Neural Network: f(x)

- ► **Important:** A neural network is only a mathematical function. No magic involved!
- ► **Training:** Finding the best function for a given task, e.g., separation of signal and background.

Mathematical Representation

Why do we need to know this?

- \rightarrow Keras backends TensorFlow and Theano implement these mathematical operations explicitely.
- ightarrow Basic knowledge to understand Keras' high-level layers

Mathematical Representation (2)

$$\mathsf{Input}: x = \begin{bmatrix} x_{1,1} \\ x_{2,1} \end{bmatrix}$$

$$\mathsf{Weight}: W_1 = \begin{bmatrix} W_{1,1} & W_{1,2} \\ W_{2,1} & W_{2,2} \end{bmatrix}$$

$$\mathsf{Bias}: b_1 = \begin{bmatrix} b_{1,1} \\ b_{2,1} \end{bmatrix}$$

Activation : $\sigma(x) = \tanh(x)$ (as example)

Activation is applied elementwise!

The "simple" neural network written as full equation:

$$f_{\mathrm{NN}} = \sigma_2 \left(\begin{bmatrix} b_{1,1}^2 \end{bmatrix} + \begin{bmatrix} W_{1,1}^2 & W_{1,2}^2 \end{bmatrix} \sigma_1 \left(\begin{bmatrix} b_{1,1}^1 \\ b_{2,1}^1 \end{bmatrix} + \begin{bmatrix} W_{1,1}^1 & W_{1,2}^1 \\ W_{2,1}^1 & W_{2,2}^1 \end{bmatrix} \begin{bmatrix} x_{1,1} \\ x_{2,1} \end{bmatrix} \right) \right)$$

► How many parameters can be altered during training? $\rightarrow 1+2+2+4=9$ parameters

Training (Short Reminder)

Training:

- 1. Forward-pass of a batch of N inputs x_i calculating the outputs $f_{NN,i}$
- 2. Comparison of outputs $f_{NN,i}$ with true value $f_{Target,i}$ using the loss function as metric
- Adaption of free parameters to improve the outcome in the next forward-pass using the gradient from the back-propagation algorithm in combination with an optimizer algorithm

Common loss functions:

- ► Mean squared error: $\frac{1}{N} \sum_{i=1}^{N} (f_{NN,i} f_{Target,i})^2$
- ► Cross-entropy: $-\sum_{i=1}^{N} f_{Target,i} \log (f_{NN,i})$

Deep Learning Textbook

Free textbook written by Ian Goodfellow, Yoshua Bengio and Aaron Courville:

http://www.deeplearningbook.org/

- Written by leading scientists in the field of machine learning
- Everything you need to know about modern machine learning and deep learning in particular.

- Part I: Applied Math and Machine Learning
 Basics
 - 2 Linear Algebra
 - 3 Probability and Information Theory
 - 4 Numerical Computation
 - 5 Machine Learning Basics
- ► II: Modern Practical Deep Networks
 - 6 Deep Feedforward Networks
 - 7 Regularization for Deep Learning
 - 8 Optimization for Training Deep Models
 - 9 Convolutional Networks
 - 10 Sequence Modeling: Recurrent and Recursive Nets
 - 11 Practical Methodology
 - 12 Applications
- III: Deep Learning Research
 - 13 Linear Factor Models
 - 14 Autoencoders
 - ▶ 15 Representation Learning
 - 16 Structured Probabilistic Models for Deep Learning
 - ▶ 17 Monte Carlo Methods
 - 18 Confronting the Partition Function
 - ▶ 19 Approximate Inference
 - 20 Deep Generative Models

Brief Introduction to Computational Graphs With TensorFlow

Motivation

► Keras wraps and simplifies usage of libraries, which are optimized on efficient computations, e.g., TensorFlow.

► How do modern numerical computation libraries such as Theano and TensorFlow work?

Theano? TensorFlow?

- Libraries for large-scale numerical computations
- ► TensorFlow is growing much faster and gains more support (Google does it!).

Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently.

TensorFlow is an open source software library for **numerical computation using data flow graphs**. Nodes in the graph represent mathematical operations, while the graph edges represent the multidimensional data arrays (tensors) communicated between them.

Computational Graphs

Example neural network

- → According computational graph
- ► TensorFlow implements all needed mathematical operations for multi-threaded CPU and multi GPU environments.
- Computation of neural networks using data flow graphs is a perfect match!

TensorFlow is an open source software library for numerical computation using data flow graphs. **Nodes** in the graph **represent mathematical operations**, while the **graph edges represent the multidimensional data arrays (tensors)** communicated between them.

TensorFlow Implementation of the Example Neural Network

fermilab_keras_workshop/tensorflow/xor.py:

 \rightarrow Already quite complicated for such a simple model!

TensorFlow Implementation of the Example Neural Network (2)

- Plain TensorFlow implements only the mathematical operations.
- Combination of these operations to a neural network model is up to you.
- ► Already quite complicated for a simple neural network model without definition of loss function, training procedure, . . .

- ► **Solution 1:** Write your own framework to simplify TensorFlow applications
- ► **Solution 2:** Use wrapper such as Keras with predefined layers, loss functions, . . .

Introduction to Keras

What is Keras?

- Most popular tool to train and apply (deep) neural networks
- ► Python wrapper around multiple numerical computation libaries, e.g., TensorFlow
- ► Hides most of the low-level operations that you don't want to care about.
- ► Sacrificing little functionality for much easier user interface
- ▶ Backends: TensorFlow, Theano
- ▶ NEW: Microsoft Cognitive Toolkit (CNTK) added as backend

Why Keras and not one of the other wrappers?

- ▶ There are lot of alternatives: TFLearn, Lasagne, . . .
- None of them are as popular as Keras!
- Will be tightly integrated into TensorFlow and officially supported by Google.
- ► Looks like a safe future for Keras!

Read the full story here: Link

Let's start!

- ▶ How does the tutorial works? You have the choice:
 - You can just listen and learn from the code examples on the slides.
 - 2. You can follow along with the examples on your own laptop.
- ▶ **But** you'll learn most by taking the examples as starting point and play around at home.

Download all files:

```
git clone https://github.com/stwunsch/fermilab_keras_workshop
```

Set up the Python virtual environment:

```
cd fermilab_keras_workshop
bash init_virtualenv.sh
```

Enable the Python virtual environment:

```
# This has to be done in every new shell!
source py2_virtualenv/bin/activate
```

Keras Basics

Configure Keras Backend

- Two ways to configure Keras backend (Theano, TensorFlow or CNTK):
 - 1. Using environment variables
 - 2. Using **Keras config file** in \$HOME/.keras/keras.json

Example setup using environment variables: Terminal:

```
export KERAS_BACKEND=tensorflow
python your_script_using_keras.py
```

Inside a Python script:

```
# Select TensorFlow as backend for Keras using environment variable `KERAS_BACKEND`
from os import environ
environ['KERAS_BACKEND'] = 'tensorflow'
```

Example Keras config using TensorFlow as backend:

```
$ cat $HOME/.keras/keras.json
{
    "image_dim_ordering": "th",
    "epsilon": 1e-07,
    "floatx": "float32",
    "backend": "tensorflow"
}
```

Example Using the Iris Dataset

- Next slides will introduce the basics of Keras using the example fermilab_keras_workshop/keras/iris/train.py.
- ▶ Iris dataset: Classify flowers based on their proportions
- ▶ **4 features:** Sepal length/width and petal length/wdith
- ▶ 3 targets (flower types): Setosa, Versicolour and Virginica

Model Definition

- ▶ Two types of models: Sequential and the functional API
 - Sequential: Simply stacks all layers
 - ► Funktional API: You can do everything you want (multiple inputs, multiple outputs, ...).

Model Summary

- model.summary() prints a description of the model
- ► Extremely useful to keep track of the number of free parameters

Layer (type)	Output Shape	Param #
dense_1 (Dense)	(None, 8)	40
dense_2 (Dense)	(None, 3)	27
Total params: 67 Trainable params: 67 Non-trainable params: 0		

Define Loss Function, Optimizer, Validation Metrics. . .

- ► Everything is set in a single function, called the **compile** step of the model.
- ▶ Validation is performed after each training epoch (next slides).

Data Preprocessing

- Some preprocessing steps are included in Keras, but mainly for text and image inputs.
- ▶ Better option: Using scikit-learn package (Link to preprocessing module)
- ▶ **Single input** (4 features): [5.1, 3.5, 1.4, 0.2]
 - Needs to be scaled to the order of 1 to fit the activation function.
- ► Single output (3 classes): [1 0 0]
- ► Common preprocessing: Standardization of inputs
 - ightarrow Operation: $\frac{\text{input-mean}}{\text{standard deviation}}$

Set up preprocessing

```
from sklearn.preprocessing import StandardScaler
preprocessing = StandardScaler()
preprocessing.fit(inputs)
inputs = preprocessing.transform(inputs)
```

Training

Training is again a single call of the model object, called fit.

That's it for the training!

Training (2)

```
Epoch 1/10
150/150 [=========== ] - 0s 998us/step - loss: 1.1936 - acc: 0.2533
Epoch 2/10
150/150 [============ ] - Os 44us/step - loss: 0.9904 - acc: 0.5867
Epoch 3/10
150/150 [============ ] - Os 61us/step - loss: 0.8257 - acc: 0.7333
Epoch 4/10
150/150 [============ ] - Os 51us/step - loss: 0.6769 - acc: 0.8267
Epoch 5/10
150/150 [============ ] - Os 49us/step - loss: 0.5449 - acc: 0.8933
Epoch 6/10
150/150 [============ ] - Os 53us/step - loss: 0.4384 - acc: 0.9267
Epoch 7/10
Epoch 8/10
150/150 [============= ] - Os 46us/step - loss: 0.3150 - acc: 0.9600
Epoch 9/10
150/150 [============ ] - Os 54us/step - loss: 0.2809 - acc: 0.9267
Epoch 10/10
```

Save and Apply the Trained Model

Save model:

- Models are saved as HDF5 files: model.save("model.h5")
 - Combines description of weights and architecture in a single file
- ▶ **Alternative**: Store weights and architecture separately
 - Store weights: model.save_weights("model_weights.h5")
 - Store architecture: json_dict = model.to_json()

Load model:

```
from keras.models import load_model
model = load_model("model.h5")
```

Apply model:

```
predictions = model.predict(inputs)
```

Wrap-Up

Training:

predictions = model.predict(inputs)

```
# Load iris dataset
# ...
# Model definition
model = Sequential()
model.add(Dense(8, kernel initializer="glorot normal", activation="relu", input dim=(4,)))
model.add(Dense(3, kernel initializer="glorot uniform", activation="softmax"))
# Preprocessing
preprocessing = StandardScaler().fit(inputs)
inputs = preprocessing.transform(inputs)
# Training
model.fit(inputs, targets onehot, batch size=20, epochs=10)
# Save model
model.save("model.h5")
Application:
# Load model
model = load model("model.h5")
# Application
```

That's a full training/application workflow in less than ten lines of code!

Available Layers, Losses, Optimizers, ...

- There's everything you can imagine, and it's well documented.
- Possible to define own layers and custom metrics in Python!
- Check out: www.keras.io

Advanced Usage of Keras

Example Using the MNIST Dataset

Example in the repository: fermilab_keras_workshop/keras/mnist/train.py

MNIST dataset?

- ▶ **Task:** Predict the number on an image of a handwritten digit
- Official website: Yann LeCun's website (Link)
- ▶ Database of 70000 images of handwritten digits
- ▶ 28x28 pixels in greyscale as input, digit as label

Data format:

- ▶ **Inputs:** 28×28 matrix with floats in [0, 1]
- ▶ **Target:** One-hot encoded digits, e.g., $2 \rightarrow [0\ 0\ 1\ 0\ 0\ 0\ 0\ 0\ 0]$

Short Introduction to Convolutional Layers

- Kernel: Locally connected dense layer
- ▶ Convolution: Kernel moves similar to a sliding window over the image
- ▶ Feature map: Output "image" after application of the kernel

Model Definition

fermilab_keras_workshop/keras/mnist/train.py:

```
model = Sequential()
# First hidden layer
model.add(
    Conv2D(
        4, # Number of output filters or so-called feature maps
        (3, # column size of sliding window used for convolution
        3), # row size of sliding window used for convolution
        activation="relu", # Rectified linear unit activation
        input_shape=(28,28,1) # 28x28 image with 1 color channel
# All other hidden layers
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Flatten())
model.add(Dense(16, activation="relu"))
model.add(Dropout(0.5))
# Output layer
model.add(Dense(10, activation="softmax"))
# Print model summary
model.summary()
```

Model Summary

Detailed summary of model complexity with model.summary()

Layer (type)	Output Shape	Param #
conv2d_1 (Conv2D)	(None, 26, 26, 4)	40
max_pooling2d_1 (MaxPooling2	(None, 13, 13, 4)	0
flatten_1 (Flatten)	(None, 676)	0
dense_1 (Dense)	(None, 16)	10832
dropout_1 (Dropout)	(None, 16)	0
dense_2 (Dense)	(None, 10)	170
Total params: 11,042 Trainable params: 11,042 Non-trainable params: 0		

Training With Validation Metrics

- Validation metrics are evaluated after each training epoch.
- In compile step, multiple predefined validation metrics can be booked, e.g., accuracy.
- Custom metrics are possible.

Booking a predefined metric:

```
# Compile model
model.compile(loss="categorical_crossentropy",
    optimize=Adam(),
    metrics=["accuracy"])
```

Training with validation data:

Training With Callbacks

- Callbacks are executed before and/or after each training epoch.
- Numerous predefined callbacks are available, custom callbacks can be implemented.

Definition of model-checkpoint callback:

```
# Callback for model checkpoints
checkpoint = ModelCheckpoint(
    filepath="mnist_example.h5", # Output similar to model.save("mnist_example.h5")
    save_best_only=True) # Save only model with smallest loss
```

Register callback:

```
model.fit(x_train, y_train, # Training data
batch_size=100, # Batch size
epochs=10, # Number of training epochs
validation_split=0.5, # Use 50% of the train dataset
# for validation
callbacks=[checkpoint]) # Register callbacks
```

Training With Callbacks (2)

- Commonly used callbacks for improvement, debugging and validation of the training progress are implemented, e.g., EarlyStopping.
- Powerful tool: TensorBoard in combination with TensorFlow
- Custom callback: LambdaCallback or write callback class extending base class keras.callbacks.Callback

Callbacks

Usage of callbacks

Callback

BaseLogger

TerminateOnNaN

ProgbarLogger

History

ModelCheckn

EarlyStopping

RemoteMonitor

LearningRateScheduler

TensorBoard

ReduceLROnPlateau

CSVLogger

LambdaCallback

Create a callback

Advanced Training Methods for Big Data

- ► The call model.fit(inputs, targets, ...) expects all inputs and targets to be already loaded in memory.
 - \rightarrow Physics applications have often data on Gigabyte to Terabyte scale!

These methods can be used to train on data that does not fit in memory.

Training on single batches, performs a single gradient step:

```
model.train_on_batch(inputs, targets, ...)
```

Training with data from a Python generator:

```
def generator_function():
    while True:
        yield custom_load_next_batch()

model.fit_generator(generator_function, ...)
```

Application on Handwritten Digits

PNG images of handwritten digits are placed in fermilab_keras_workshop/keras/mnist/example_images/, have a look!

- Let's **apply our trained model** on the images:
- ./keras/mnist/apply.py keras/mnist/example_images/*.png
 - ▶ If you are bored on your way home:
 - Open with GIMP your_own_digit.xcf
 - 2. Dig out your most beautiful handwriting
 - 3. Save as PNG and run your model on it

Application on Handwritten Digits (2)

Predict labels for images:

```
keras/mnist/example_images/example_input_0.png : 7
keras/mnist/example_images/example_input_1.png : 2
keras/mnist/example_images/example_input_2.png : 1
keras/mnist/example_images/example_input_3.png : 0
keras/mnist/example_images/example_input_4.png : 4
keras/mnist/example_images/example_input_5.png : 1
keras/mnist/example_images/example_input_6.png : 4
keras/mnist/example_images/example_input_7.png : 9
keras/mnist/example_images/example_input_8.png : 8
keras/mnist/example_images/example_input_9.png : 9
```


Examples with Physics Data

Toy Calorimeter

- Data represent measurements in a toy-calorimeter
 - ▶ Inputs: 13 calorimeter layers with energy deposits
 - ► Target: Reconstruction of total energy deposit
- Example in repository:

fermilab_keras_workshop/keras/calorimeter/train.py

Implemented regression model:

```
model = Sequential()
model.add(Dense(100, activation="tanh", input_dim=(13,)))
model.add(Dense(1, activation="linear"))
```

Source: Link

Deep Learning on the HIGGS Dataset

One of the most often cited papers about deep learning in combination with a physics application:

Searching for Exotic Particles in High-Energy Physics with Deep Learning

Pierre Baldi, Peter Sadowski, Daniel Whiteson

- ▶ Topic: Application of deep neural networks for separation of signal and background in an exotic Higgs scenario
- ▶ **Results:** Deep learning neural networks are more powerful than "shallow" neural networks with only a single hidden layer.

Let's reproduce this with minimal effort using Keras!

Deep Learning on the HIGGS Dataset (2)

Files:

- fermilab_keras_workshop/keras/HIGGS/train.py
- fermilab_keras_workshop/keras/HIGGS/test.py

Dataset:

Number of events: 11MNumber of features: 28

Shallow model:

```
model_shallow = Sequential()
model_shallow.add(Dense(1000, activation="tanh", input_dim=(28,)))
model_shallow.add(Dense(1, activation="sigmoid"))
```

Deep model:

```
model_deep = Sequential()
model_deep.add(Dense(300, activation="relu", input_dim=(28,)))
model_deep.add(Dense(300, activation="relu"))
model_deep.add(Dense(300, activation="relu"))
model_deep.add(Dense(300, activation="relu"))
model_deep.add(Dense(300, activation="relu"))
model_deep.add(Dense(1, activation="relu"))
```

Training:

```
model.compile(loss="binary_crossentropy", optimizer=Adam(), metrics=["accuracy"])
model.fit(preprocessed_inputs, targets,
   batch_size=100, epochs=10, validation_split=0.25)
```

Deep Learning on the HIGGS Dataset (3)

Weights of deep and shallow model are part of the repository.

- Shallow model matches performance in the paper, but deep model can be improved.
 - \rightarrow Try to improve it! But you'll need a decent GPU. . .
- ► Keras allows to reproduce this result with a total of 130 lines of code:

```
# Count lines of code
$ wc -l keras/HIGGS/*.py
62 keras/HIGGS/test.py
68 keras/HIGGS/train.py
130 total
```

Useful Tools In Combination With Keras

TMVA Keras Interface

Prerequisites

- Keras inteface integrated in ROOT/TMVA since v6.08
- Example for this tutorial is placed here: fermilab_keras_workshop/tmva/
- ➤ You need ROOT with enabled PyROOT bindings. Easiest way to test the example is using CERN's **Ixplus** machines:
 - ▶ ssh -Y you@lxplus.cern.ch
 - ▶ Source software stack LCG 91

How to source LCG 91 on lxplus:

source /cvmfs/sft.cern.ch/lcg/views/LCG_91/x86_64-slc6-gcc62-opt/setup.sh

Why do we want a Keras interface in TMVA?

- 1. Fair comparison with other methods
 - Same preprocessing
 - Same evaluation
- 2. Try state-of-the-art DNN performance in existing analysis/application that is already using TMVA
- 3. Access data in ROOT files easily
- 4. Integrate Keras in your **application** using **C++**
- Latest DNN algorithms in the ROOT framework with minimal effort

How does the interface work?

- 1. Model definition done in Python using Keras
- Data management, training and evaluation within the TMVA framework
- 3. **Application** using the TMVA reader

► The interface is implemented in the optional PyMVA part of TMVA:

Enable PyMVA

ROOT.TMVA.PyMethodBase.PyInitialize()

Example Setup

 Dataset of this example is standard ROOT/TMVA test dataset for binary classification

53

Model Definition

Setting up the model does not differ from using plain Keras:

```
model = Sequential()
model.add(Dense(64, init='glorot_normal', activation='relu', input_dim=4))
model.add(Dense(2, init='glorot_uniform', activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer=Adam(), metrics=['accuracy',])
model.save('model.h5')
```

► For binary classification the model needs two output nodes:

```
model.add(Dense(2, activation='softmax'))
```

► For multi-class classification the model needs two or more output nodes:

```
model.add(Dense(5, activation='softmax'))
```

► For **regression** the model needs a **single output node**:

```
model.add(Dense(1, activation='linear'))
```

Training

► Training options defined in the TMVA booking options:

That's it! You are ready to run!

python tmva/BinaryClassification.py

Run TMVA GUI to examine results: root -1 tmva/TMVAGui.C

Training Results: ROC

Training Results: Overtraining Check

Application

Does not differ from any other TMVA method!

Example application can be found here: fermilab_keras_workshop/ tmva/ApplicationBinaryClassification.py

Application (2)

Run python tmva/ApplicationBinaryClassification.py:

```
# Response of TMVA Reader

: Booking "PyKeras" of type "PyKeras" from
: BinaryClassificationKeras/weights/TMVAClassification_PyKeras.weights.xml.

Using Theano backend.

DataSetInfo : [Default] : Added class "Signal"

DataSetInfo : [Default] : Added class "Background"
: Booked classifier "PyKeras" of type: "PyKeras"
: Load model from file:
: BinaryClassificationKeras/weights/TrainedModel_PyKeras.h5

# Average response of MVA method on signal and background
Average response on signal: 0.78
Average response on background: 0.21
```

lwtnn with Keras

What is lwtnn?

- Core problem: TensorFlow and others are not made for event-by-event application!
- ► C++ library to apply neural networks
 - ▶ Minimal dependencies: C++11, Eigen
 - Robust
 - Fast
- "Asymmetric" library:
 - Training in any language and framework on any system, e.g.,
 Python and Keras
 - ▶ **Application** in **C++** for real-time applications in a limited environment, e.g., high-level trigger
- ► **GitHub:** https://github.com/lwtnn/lwtnn
- ▶ IML talk about lwtnn by Daniel Guest: Link
- Tutorial can be found here: https://github.com/stwunsch/iml_keras_workshop

Load and Apply Model in C++ Using lwtnn

Convert trained Keras model to lwtnn JSON:

 \rightarrow See the tutorial and README!

// Apply model on inputs

auto outputs = model.compute(inputs);

Load model:

```
// Read lwtnn JSON config
auto config = lwt::parse_json(std::ifstream("lwtnn.json"));
// Set up neural network model from config
lwt::LightweightNeuralNetwork model(
        config.inputs,
        config.layers,
        config.outputs);
Apply model:
// Load inputs from argu
std::map<std::string, double> inputs;
. . .
```