Relatório – Carro Autônomo – Instrumentação Industrial

O seguinte relatório diz respeito ao projeto de carro autônomo utilizando a placa Arduino Uno, referente à disciplina de Instrumentação Industrial.

MONTAGEM

A figura 1 abaixo representa o carro finalizado.

Figura 1: Montagem do carro autônomo

O Link 1 se trata de um vídeo de overview do projeto do carro.

https://youtube.com/shorts/QZKTB9YnEcl (Link 1: Overview do Carro Autônomo)

Para a realização deste projeto foram utilizados os seguintes componentes:

- Sensor de Distância Ultrassônico HC-SR04
- Placa Arduino uno R3
- Acelerômetro e Giroscópio 3 eixos 6 DOF MPU-6050
- Sensor de temperatura e umidade DHT11
- 1 Kit Chassi 2WD Robô para Arduino (com 2 rodas e 2 motores Motor DC
 3-6V com Caixa de Redução e Eixo Duplo)
- Módulo Buzzer Ativo (YL-44)
- Módulo Bluetooth RS232 HC-05
- Módulo Leitor Rfid Mfrc522 Mifare
- Sensor óptico reflexivo tcrt5000
- Mini LCD
- Módulo ponte H L298N

IMPLEMENTAÇÃO

A figura 2 a seguir representa as bibliotecas do Código Arduino utilizado para o projeto.

Figura 2: Bibliotecas Arduino utilizadas no projeto

Para a implementação do projeto, foram utilizados dois códigos:

- Carro_Robo_Gurizes.ino: Este código é o código principal do projeto, sendo o que é programado e gravado dentro da placa Arduino Uno R3.
 O código é responsável por realizar a interface de todos os sensores do carro com o módulo bluetooth, que por sua vez envia os dados para o computador, bem como recebe informações de navegação.
- Python_control_module.py: Este código é o módulo de controle do carro.
 Nele, o computador envia informações de navegação para o Arduino (comandos de movimento) e também recebe as informações dos sensores, imprimindo-os no pyshell, e simultaneamente registrando-os em um log que pode ser enviado para a nuvem.

Ambos os códigos podem ser encontrados no repositório Github "Industrial Instrumentation", disponível no link 2:

https://github.com/Vitroror/Industrial-Instrumentation (link 2: repositório github "Industrial Instrumentation")

EXECUÇÃO

Tendo em mente os aspectos apresentados é necessário realizar, resumidamente, um passo a passo de como funciona o carro autônomo por completo.

- Ao ligar os circuitos, temos a inicialização do LCD e sensores.
- O módulo bluetooth passa a receber e enviar informações
- O código Python recebe informações dos sensores e imprime-as no shell.
- Ao mesmo tempo, o código Python envia informações de teclas pressionadas para o carro, que responde de acordo
- As teclas W, S, A e D correspondem ao movimento de, respectivamente,
 andar para frente, para trás, girar para a esquerda e para a direita.
- Ademais, pressionar a tecla P fará com que o código redirecione para o autenticador do Google Drive, de forma que o log de dados do Shell seja exportado para a Nuvem.
- Ao entrar em uma zona autônoma (espaço com chão preto), o carro entrará em modo autônomo.
- Durante o modo autônomo, o carro fará uma varredura do seu ambiente ao virar, utilizando o sensor de ultrassom para evitar colisões, a procura de uma tag RFID.
- Ao encontrar e escanear a tag RFID, o carro iniciará o processo de saída por ré. Durante esse processo, o buzzer entrará em estado HIGH (permanecerá apitando), e o LED permanecerá aceso, até o carro sair da zona autônoma com êxito.

RESULTADOS

Após a explanação de todos os processos de funcionamento do carro autônomo, é necessário que os resultados do projeto sejam analisados. O link 3 abaixo representa a demonstração do controle remoto do carro autônomo.

https://youtu.be/lqUg1-CEj6s (Link 3: controle do robô por teclado)

O link 4 abaixo trata-se de mais uma demonstração de movimento, juntamente com o funcionamento do LCD

https://youtube.com/shorts/-bSNgZel9wY (Link 4: demonstração de movimento com LCD)

Além disso, o link 5 se trata de um vídeo ilustrativo do funcionamento do carro autônomo em uma zona autônoma.

https://youtube.com/shorts/7xbAgZNzk48 (Link 5: demonstração do funcionamento do carro em uma zona autônoma)

Por fim, o vídeo disponível no link 6 se trata de uma demonstração do upload do log de informações para a nuvem.

https://youtube.com/shorts/WyPHJqhxRUw (Link 6: demonstração do upload na nuvem)

Realizando o upload feito na demonstração supracitada, é possível acessar uma planilha de informações registradas como na figura 3.

Hora	Temperati	Umidade	X	Υ	Z	Gx	Gy	Gz
23:56:24	21.00	77.00	17088	864	616	-346	164	190
23:56:24			16992	728	476	-332	150	176
23:56:24			17064	676	788	-356	167	148
23:56:24			17076	732	732	-330	158	167
23:56:24			16972	732	752	-354	166	165
23:56:24			17172	756	560	-346	161	148
23:56:24	21.00	77.00	17004	716	672	-346	148	176
23:56:24			17104	640	676	-357	176	169
23:56:24			17192	784	636	-349	147	173
23:56:24			17032	712	812	-351	148	152
23:56:26			17048	740	448	-341	168	182
23:56:27			17056	800	696	-365	148	163
23:56:29	21.00	77.00	17112	748	524	-364	153	147
23:56:30			17052	764	612	-339	192	141

Figura 3: Planilha de dados enviada para a nuvem

CONCLUSÕES

Analisando os vídeos demonstrativos apresentados, é possível concluir que o projeto de carro autônomo Arduino foi implementado com êxito. Vemos pelas demonstrações que o carro é capaz de responder a comandos de movimento com fluidez, bem como realizar as medidas de sensoreamento corretamente, detectar a entrada em uma zona autônoma, e também realizar a varredura à procura da tag RFID, escaneá-la, reconhecer a tarefa, e se retirar da zona autônoma com êxito. Além disso, pode se perceber que o dispositivo é capaz de registrar os dados obtidos na nuvem corretamente.

INTEGRANTES

- GABRIEL BRESSAM
- MURILO CAPPONI
- VICTOR MONEGO