

JAN 15, 2023

OPEN ACCESS

Protocol Citation: Siouxsie Wiles, Shara Van De Pas 2023. Extraction of fungal DNA and PCR for identification using the Sigma-Aldrich REDExtract Plant PCR kit. **protocols.io**

https://protocols.io/view/extraction-of-fungal-dna-and-pcr-for-identificatio-cjrmum46

License: This is an open access protocol distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working We use this protocol and it's working

Created: Nov 25, 2022

Last Modified: Jan 15, 2023

PROTOCOL integer ID:

73229

Keywords: DNA, fungi, fungus, DNA extraction, colony PCR, ITS

Extraction of fungal DNA and PCR for identification using the Sigma-Aldrich REDExtract Plant PCR kit

Siouxsie Wiles¹, Shara Van De Pas¹

¹University of Auckland

Bioluminescent Superbugs Lab Tech. support email: s.wiles@auckland.ac.nz

Shara Van De Pas

ABSTRACT

This protocol describes how we use the REDExtract Plant PCR kit (Sigma-Aldrich) to extract DNA from fungal mycelium and PCR from the ITS region.

GUIDELINES

Make sure your fungal plates aren't contaminated!

Plasticware

Desc	cription	Catalogue Number	Supplier
PCR	tubes	TFI0201	Bio Rad laboratories
Pipe	ette tips		

Chemicals and Kits

Description	Catalogue Number	Supplier
REDExtract, Plant PCR Kit	XNAP	Sigma-Aldrich (New Zealand)
Ultrapure water	10977015	Life Technologies New Zealand
Agarose	A-1280-100	pH Scientific Limited
Sybrsafe DNA Gel Stain	S33102	Thermo Fisher Scientific
TAE buffer	PMV4271	In vitro technologies
1kb ladder	SM0313	Life Technologies New Zealand

Primers:

Primer	Sequence
ITS1F	5' CTTGGTCATTTAGAGGAAGTAA 3'
ITS4	5' TCCTCCGCTTATTGATATGC 3'

Equipment:

- Pipettes various sizes
- Thermocycler PCR machine for cell lysis and colony PCR
- Micro centrifuge
- Powerpack for gel electrophoresis

BEFORE START INSTRUCTIONS

You will need to prepare your fungal cultures so that you have visible mycelium for extraction.

DNA Extraction

- 1 Place 30 ul extraction solution into PCR tubes. Using a small sterile pipette tip place a small piece of mycelium so its only just visible on the tip into the tube. Vortex and briefly centrifuge.
- 2 Place PCR tubes into the PCR machine and run a cell break protocol (§ 95 °C for 10 minutes). Cool down and add 30µl dilution solution. Dilute the samples as needed. Start with 1:20 and go to 1:10 or 1:5 if needed.

PCR

3 Make a master mix based on 9 μ l per single reaction

Recipe per PCR sample (single reaction = $9 \mu I$)

Component	Volume per single reaction	Volume based on 10 samples*
Reaction mix	5μl	65µl
Forward primer	0.5μΙ	6.5µl
Reverse primer	0.5μΙ	6.5µl
Dilution solution	0.5μΙ	6.5µl
Extraction solution	0.5μΙ	6.5µl
Ultrapure H20	2μΙ	26µl

^{*}Total preparation amount = number of samples + 1 negative control + 2 extra to cover pipetting errors.

- 4 Aliquot 9µl of master mix into individual PCR tubes.
- 5 Add 1µl of extracted DNA sample to each aliquot of master mix.
- 6 Centrifuge samples briefly (just a few seconds) in a benchtop centrifuge to ensure they are at the bottom of the tube.
- 7 Place tubes into PCR machine and run using the following settings:
 - 1x 4 94 °C 3 minutes.

35-40x cycles of:

- **♣** 94 °C -30 seconds **♣** 52 °C -30 seconds
- ₹ 72 °C -30 seconds (For LSU primers use ₹ 72 °C for 40 sec)

Gel electrophoresis

8	Make a 1% molecular grade agarose gel using 1x fresh TAE. Microwave until the agar has just dissolved. Note. 100ml for running 25 samples, 35ml for 13 samples
9	Add 2µL Sybrsafe stain per 50ml volume of agar
10	Pour into setup gel tray, add comb and leave for half an hour or until set.
11	Place the set gel into the gel tank (make sure the wells are at the negative end).
12	Fill the tank with waste TAE until entire gel is submerged - can top up with fresh TAE if needed.
13	Load 2-5µl of sample into each well including a 1kb ladder and negative controls
14	Set powerpack to run at 90v for 30mins
15	After gel is run gently lift the tray out of the tank and movie it onto a sybersafe tray view bands in the gel viewer.