

Universidade Federal da Paraíba Centro de Ciências Aplicadas à Educação Departamento de Ciências Exatas

Disciplina: Cálculo Diferencial e Integral

Professora: Juliana Aragão

Curso: Sistemas de Informação

Aula 5– Parte 3: Limites Infinitos

x	$\frac{1}{x^2}$
±1	1
±0,5	4
±0,2	25
±0,1	100
±0,05	400
±0,01	10.000
±0,001	1.000.000

- À medida que x tende a 0, $f(x) = \frac{1}{x^2}$ fica muito grande.
- A função f(x) pode se tornar arbitrariamente grande ao tornarmos os valores de x suficientemente próximos de 0.
- Os valores de f(x) não tendem a um número, assim $\lim_{x\to 0} \frac{1}{x^2}$ não existe.

$$\lim_{x \to 0} \frac{1}{x^2} = \infty$$

Definição 1: Seja f uma função definida em ambos os lados de a, exceto possivelmente no próprio a. Então $\lim_{x\to a} f(x) = \infty$ significa que podemos fazer os valores de f(x) ficarem tão grandes quanto quisermos tornando x suficientemente próximo de a mas não igual a a.

Obs: Neste caso, o limite não existe.

Definição 2: De maneira análoga, se f é uma função definida em ambos os lados de a, exceto possivelmente no próprio a, então $\lim_{x\to a} f(x) = -\infty$ significa que podemos fazer os valores de f(x) ficarem tão grandes quanto quisermos, sendo negativos, tornando x suficientemente próximo de a, mas não igual a a.

(a)
$$\lim_{x \to a^{-}} f(x) = \infty$$

(b)
$$\lim_{x \to a^+} f(x) = \infty$$

(c)
$$\lim_{x \to a^{-}} f(x) = -\infty$$

(d)
$$\lim_{x \to a^+} f(x) = -\infty$$

Assíntotas Verticais

Definição 3: A reta x = a é chamada assíntota vertical da curva se pelo menos uma das seguintes condições estiver satisfeita:

$$\lim_{x \to a^+} f(x) = \pm \infty \text{ e } \lim_{x \to a^-} f(x) = \pm \infty$$

Exemplos:

$$\lim_{x \to 3^+} \frac{2x}{x - 3} = \infty$$

$$\lim_{x \to \frac{\pi}{2}^{-}} \operatorname{tg} x = \lim_{x \to \frac{\pi}{2}^{-}} \frac{\sin x}{\cos x} = \infty$$

$$\lim_{x \to \frac{\pi^{+}}{2}} \operatorname{tg} x = \lim_{x \to \frac{\pi^{+}}{2}} \frac{\sin x}{\cos x} = -\infty$$

$$\lim_{x \to 0^+} \ln x = -\infty$$

Exemplo 4: Use o gráfico dado de *f* para dizer o valor de cada quantidade, se ela existir. Se não existir, explique o porquê.

(a)
$$\lim_{x \to -3^{-}} h(x)$$

(b)
$$\lim_{x \to -3^+} h(x)$$

$$(c)\lim_{x\to -3}h(x)$$

(d)
$$h(-3)$$

(e)
$$\lim_{x \to 0^{-}} h(x)$$

$$(\mathsf{f})\lim_{x\to 0^+}h(x)$$

(g)
$$\lim_{x\to 0} h(x)$$

(h)
$$h(0)$$

$$(i)\lim_{x\to 2}h(x)$$

(j)
$$h(2)$$

$$(\mathsf{k}) \lim_{x \to 5^-} h(x)$$

Exemplo 5: Para a função R, cujo gráfico é mostrado a seguir, diga quem são:

(a)
$$\lim_{x\to 2} R(x)$$

(b)
$$\lim_{x\to 5} R(x)$$

$$(c)\lim_{x\to -3^-}R(x)$$

$$(\mathsf{d}) \lim_{x \to -3^+} R(x)$$

(e) As equações das assíntotas verticais.

