Introduction to reinforcement learning

Urtzi Ayesta and Matthieu Jonckheere
CNRS-IRIT & CNRS-LAAS

Markov reward processes and Markov decision processes

CHANGE OF NOTATIONS (we follow Barto and Sutton from now on).

Information - Set of policies

Markov Decision Process (MDP)

- observable state and reward
- known reward distribution and transition probabilities
- Action depends on current state and action, p(s'|s, a)

Partially Observable Markov Decision Process (POMDP)

- Partially observable state: we know z_t with known $P(s_t = s|z)$
- Observed rewards
- Known reward distribution and transition probabilities

Reinforcement learning

- observable state and reward
- Unknown reward distribution, unknown transition probabilities

Adversarial problems

- observable state and reward
- Arbitrary and time-varying reward function and state transitions

Classification of problems

Known model

MDP, POMDP

Unknown model

Reinforcement learning

Absence of model

Adversarial

Major components of an RL Agent

- Policy: A map from states to actions, $\pi(a|s) = \mathbb{P}(A_t = a|S_t = s)$
- ▶ Value function: Prediction of future rewards

$$v_{\pi}(s) = \mathbb{E}_{\pi}(R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots | S_t = s)$$

A model predicts what the environment will do next

$$p(s'|s, a) = \mathbb{P}(S_{t+1} = s'|S_t = s, A_t = a)$$

$$r(s,a) = \mathbb{E}(R_{t+1}|S_t = s, A_t = a)$$

Maze Example

Rewards: -1 per time-step Actions: N,E,S, W

States: Agent's location

Maze Example: Policy

Arrows represent policy $\pi(s)$

Maze Example: Value function

Numbers represent value $v_{\pi}(s)$ of each state s

Maze Example: Model

Dynamics: how actions change state
Rewards: From visited states
Model may be imperfect

Learning and planning

▶ Planning. A perfect model of the environment is known ⇒ MDP

- Reinforcement learning
 - Environment is initially unknown
 - Agent interacts with the environment
 - Agent learns policy

Atari Example: Planning

- Rules known
- Can query emulator
- If I take action a in state s, what would the score and next state be?
- Tree search to find optimal policy

Atari Example: Learning

- Rules unknown
- Learn directly from game-play
- Pick actions on joystic, see pixels and scores

Prediction and Control

a) gridworld

b) v_*

Markov Process

A Markov Process is a sequence of random states S_1, S_2, \ldots , with the Markov property

Definition

A Markov Chain is a tuple $\langle \mathcal{S}, \mathcal{P} \rangle$

- \triangleright S is a (finite) set of states
- ▶ is a state transition probability matrix

$$p(s,s') = \mathbb{P}(S_{t+1} = s' | S_t = s)$$

Example: Student Markov Chain

Example: Student Markov Chain Transition Matrix

Markov Reward Process

A Markov Reward Process is a Markov Chain with values

Definition

Markov Reward Process is a tuple $\langle \mathcal{S}, \mathcal{P}, \mathcal{R}, \gamma \rangle$

- \triangleright S is a (finite) set of states
- $ightharpoonup \mathcal{P}$ is a state transition probability matrix

$$p(s,s') = \mathbb{P}(S_{t+1} = s' | S_t = s)$$

- $ightharpoonup \mathcal{R}$ is a reward function $r(s) = \mathbb{E}(R_{t+1}|S_t = s)$
- $ightharpoonup \gamma \in [0,1]$ is a discount factor

Markov Reward Process

A Markov Reward Process is a Markov Chain with values

Definition

Markov Reward Process is a tuple $\langle \mathcal{S}, \mathcal{P}, \mathcal{R}, \gamma \rangle$

- \triangleright S is a (finite) set of states
- $ightharpoonup \mathcal{P}$ is a state transition probability matrix

$$p(s,s') = \mathbb{P}(S_{t+1} = s' | S_t = s)$$

- $ightharpoonup \mathcal{R}$ is a reward function $r(s) = \mathbb{E}(R_{t+1}|S_t = s)$
- $ightharpoonup \gamma \in [0,1]$ is a discount factor

Return

Definition:

The return G_t is the total discounted reward from time-step t on:

$$G_t = R_{t+1} + \gamma R_{t+2} + \ldots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

- ightharpoonup The discount γ is the present value of future rewards
- ▶ The value of receiving reward R after k+1 time-steps is $\gamma^k R$
- Immediate rewards more relevant than future ones
 - $ightharpoonup \gamma$ close to 0 referred as "myopic"
 - $ightharpoonup \gamma$ close to 1 referred as "far-sighted"

Why discount?

Most Markov reward and decision processes are discounted. Why?

- Mathematically convenient to discount rewards
- ▶ Avoids infinite returns in non-absorving Markov processes
- If the reward is financial, immediate rewards may earn more interest than delayed rewards
- Animal/human behaviour shows preference for immediate reward

Value function

The value function V(s) gives the long-run term value of state s

Definition:

The state value function V(s) of an MRP is the expected return starting from state s:

$$V(s) = \mathbb{E}(G_t|S_t = s)$$

Bellman Equation

$$V(s) = \mathbb{E}(G_t|S_t = s)$$

$$= \mathbb{E}(R_{t+1} + \gamma R_{t+2} + \dots | S_t = s)$$

$$= r(s) + \gamma \sum_{s'} p(s, s') \mathbb{E}(R_{t+2} + \gamma R_{t+3} + \dots | S_{t+1} = s')$$

$$= r(s) + \gamma \sum_{s'} p(s, s') V(s')$$

Bellman Equation in Matrix Form

$$\begin{pmatrix} V(1) \\ \vdots \\ V(n) \end{pmatrix} = \begin{pmatrix} r(1) \\ \vdots \\ r(n) \end{pmatrix} + \gamma \begin{pmatrix} p(1,1) & p(1,2) & \cdots & p(1,n) \\ p(2,1) & p(2,2) & \cdots & p(2,n) \\ \vdots & \vdots & \ddots & \vdots \\ p(n,1) & p(n,2) & \cdots & p(n,n) \end{pmatrix} \begin{pmatrix} V(1) \\ \vdots \\ V(n) \end{pmatrix}$$

It can be solved directly: $V=(I-\gamma\mathcal{P})^{-1}\mathcal{R}$ Computational complexity is $O(n^3)$ for n states Many iterative methods for large MRP: dynamic programming, Monte-Carlo evaluation, Temporal-Difference learning

Example: Grid World

Policy Matrix: Each action is represented by a number : Action (Up) is represented by 0, (Rigth) by 1, (Down) by 2 and, finally, (Left) by 3

Example: Grid World (cont.)

Transition probabilities: Column 0 represents direction Up, Column 1 represents direction Right, Column 2 represents direction Down and Column 3 represents direction Left.

$$\begin{pmatrix}
0.8 & 0.1 & 0 & 0.1 \\
0.1 & 0.8 & 0.1 & 0 \\
0 & 0.1 & 0.8 & 0.1 \\
0.1 & 0 & 0.1 & 0.8
\end{pmatrix}$$

Exercise: For $\gamma = 0.999$, calculate the value function for all the states

Markov Decision Process (MDP)

An MDP is a Markov Reward process with decisions.

Definition

Markov Reward Process is a tuple $\langle \mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma \rangle$

- \triangleright S is a (finite) set of states
- \triangleright A is a finite set of actions
- $ightharpoonup \mathcal{P}$ is a state transition probability matrix

$$p(s'|s,a) = \mathbb{P}(S_{t+1} = s'|S_t = s, A_t = a)$$

- $ightharpoonup \mathcal{R}$ is a reward function $r(s,a) = \mathbb{E}(R_{t+1}|S_t=s,\mathcal{A}_t=a)$
- $ightharpoonup \gamma \in [0,1]$ is a discount factor

Policies (1)

Definition:

A policy π is a distribution over actions: :

$$\pi(s) = \mathbb{P}(A_t|S_t = s)$$

- A policy fully defines the behavior of an agent
- Policies are stationary or time-independent

Policies (2)

- ► Given an MDP $\langle S, A, P, R, \gamma \rangle$ and a policy π
- ▶ The state sequence $S_1, S_2, ...$ is a Markov Process $\langle S, \mathcal{P}^{\pi} \rangle$
- ▶ The state and reward sequence $S_1, R_2, S_2, R_3 \dots$ is a Markov reward process $\langle S, \mathcal{P}^{\pi}, \mathcal{R}^{\pi}, \gamma \rangle$

$$p^{\pi}(s,s') = \sum_{a \in \mathcal{A}} \pi(a|s)p(s'|s,a)$$

$$r^{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s)r(s,a)$$

Value Function

Definition:

The state-value function $v_{\pi}(s)$ of an MDP is the expected return starting from state s, and then following policy π

$$V_{\pi}(s) = \mathbb{E}(G_t|S_t = s, A_{t:\infty} \sim \pi)$$

Definition:

The action-value function $q_{\pi}(s,a)$ is the expected return starting from state s, taking action a, and then following policy π

$$q_{\pi}(s, a) = \mathbb{E}\left(G_t | S_t = s, A_t = a, A_{t+1:\infty} \sim \pi\right)$$

Bellman Expectation Equation

$$V_{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) q_{\pi}(s,a)$$

Bellman Expectation Equation

$$V_{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) q_{\pi}(s,a)$$

$$q_{\pi}(s, a) = r(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s, a) V_{\pi}(s')$$

Bellman Expectation Equation for V_{π}

$$V_{\pi}(s) = \sum_{\mathsf{a}} \pi(\mathsf{a}|s) \left(r(s,\mathsf{a}) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s,\mathsf{a}) V_{\pi}(s')
ight)$$

Bellman Expectation Equation for q_{π}

$$q_{\pi}(s, a) = r(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s, a) \sum_{a' \in \mathcal{A}} \pi(a'|s') q_{\pi}(s', a')$$

Bellman Expectation Equation in Student MDP

Optimal Value Function

Definition:

The optimal state-value function $V_*(s)$ is the maximum value function over all policies

$$V_*(s) = \max_{\pi} V_{\pi}(s)$$

The optimal action-value function $q_*(s)$ is the maximum action-value function over all policies

$$q_*(s,a) = \max_{\pi} q_{\pi}(s,a)$$

An MDP is solved if we find either $V_*(s)$ or $q_*(s, a)$

Example: Optimal value function for Student MDP

Example: Optimal action-value function for Student MDP

Optimal Policy

Define a partial ordering over policies

$$\pi \geq \pi'$$
 if $V_{\pi}(s) \geq V_{\pi'}(s), orall s$

Theorem:

For any Markov Decision Processes

- ► There exists an optimal policy π_* that is better or equal to all others, i.e., $\pi_* \geq \pi, \forall \pi$
- All optimal policies achieve the optimal value function $V_{\pi_*}(s) = V_*(s)$
- All optimal policies achieve the optimal action-value function $q_{\pi_*}(s,a) = q_*(s,a)$

Bellman Optimality Equation

$$V_*(s) = \max_{a \in \mathcal{A}} q_*(s, a)$$

Bellman Optimality Equation

$$V_*(s) = \max_{a \in \mathcal{A}} q_*(s, a)$$

$$q_*(s, a) = r(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s, a) V_*(s')$$

Bellman Optimality Equation for V_*

$$V_*(s) = \max_{a \in \mathcal{A}} \left(r(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s, a) V_*(s') \right)$$

Bellman Optimality Equation for q_*

$$q_*(s, a) = r(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s, a) \max_{a' \in \mathcal{A}} q_*(s', a')$$

Bellman Optimality Equation in Student MDP

Finding an Optimal policy

An optimal policy can be found by maximizing over $q_*(s, a)$

$$\pi_*(a|s) = \left\{ egin{array}{ll} 1 & \emph{if} & \emph{a} = \mathop{\mathsf{argmax}}_{a \in \mathcal{A}} q_*(s,a) \ 0 & \emph{otherwise} \end{array}
ight.$$

Bellman Optimality Equation in Student MDP

Finite Markov Decision Process (MDP)

$$V_T^{\pi}(i) = \mathbb{E}(R_1 + R_2 + \dots + R_T | S_0 = i)$$

$$= \mathbb{E}_{\pi}(\sum_{t=1}^T R_t | S_0 = i)$$

$$V_t(i) = \sup_{\pi} V_t^{\pi}(i)$$

Finite Markov Decision Process (MDP)

Imagine action a, which yields reward r(i, a). The best we can do from now on is

$$r(i,a) + \sum_{j} p(j|i,a) V^{T-1}(j)$$

Then, the best action is

$$V^{T}(i) = \max_{a} \left(r(i, a) + \sum_{j} p(j|i, a) V^{T-1}(j) \right)$$

Known as Optimality Equation, Dynamic Programming, Howard Equation,...

Bellman's key idea

Decision tree with depth T: A^TS^{T+1} leaves (optimizing over history dependent policies)

Dynamic Programming: S^2AT operations

Richard Bellman

1920 - 1984 American applied mathematician

Introduced **Dynamic Programming** (DP) as a method for solving a complex problem by breaking it down into a collection of simpler subproblems, solving each of those subproblems just once, and storing their solutions.

Extensions to MDPs

- ► Infinite and continuous MDPs
- Partially observable MDPs
- Undiscounted, average reward MDPs

Homework Assignment #1

Due date $\frac{23}{04}$. To be done individually or by groups of $\frac{2}{0}$.

- ▶ Using the equation in 31/61, derive the values for the value function of slides 26/61, 27/61 and 28/61. Explain the values obtained as γ changes.
- Verify that the values of the value function in slide 42/61 satisfy the Bellman Expectation Equation of 40/61 (as done in the example in red)
- Derive the values of the optimal action-value function q_* of 45/61 (Hint: To calculate q(s,a) you can use the equation in 39/61, and then calculate q_* as in the definition)
- ► Verify and explain how the values in slide 50/61 satisfy the Bellman optimality equation.

Exercises

Exercise

A miner is at the bottom of a mine and sees three tunnels: 1, 2 and 3. Tunnel 1 leads to the exit in a hour. Tunnel 2 returns to the same crossroads in 2 hours and tunnel 3 returns to the crossroads in 3 hours. Every time the miner is at the crossroads, he chooses one of the tunnels with probability 1/3, regardless of what he chose before. Define a Markov reward process describing this situation. Let T be the time it takes to leave the mine. Compute E(T).

What would be the Bellman Optimality Equation?

Exercise: Finite horizon MDP

Revenue management: Littlewood's model

Problem An airplane has 20 seats available, and the sell closes in 50 days. At every time epoch, the airplane decides the selling price: Either $p_1 = 5$, and then it will sell a seat with probability $q_1 = 0.1$, or $p_2 = 1$, and then it will sell a seat with probability $q_2 = 0.8$.

- Model the problem as a Finite Horizon MDP with total reward criterion, and write the optimality equation
- ▶ What is the optimal selling strategy? which qualitative conclusion you can draw from the solution?

Help: Let s denote the remaining seats available, and $V_T(s)$ denote the total reward in state s and with T days left. Use the principle of optimality of slide 54/61.

Exercise: Infinite Horizon MDP

Note: The reward from state 1 to 0 under action << is -15

What is the optimal policy (for total discounted reward) for various values of γ ?

- Write the optimality equation
- lacktriangle Solve it analytically as a function of γ

Exercise: "You're the reinforcement learner"

$$r(A, 1) = 10; r(A, 2) = -10; r(B, 1) = +40, r(B, 2) = +20$$

Write the optimality equation