

2nd Phase of Glycolysis

Generation of ATP

 Biological Oxidations involving NAD+/NADH (Dehydrogenations)

NAD+ is the electron acceptor in reactions of the type:

NAD+ + R
$$+$$
 R $+$ R $-$ NADH + R $-$ OH

Mechanism

Acid/Base vs. Redox

acid/base BH \rightleftharpoons B⁻ + H⁺

redox NADH \rightleftharpoons NAD+ + H+ + 2e⁻

GA3PDH

1,3BPG

Structural basis for high PO₄-transfer potential of acyl phosphates

 ΔG° = -11.8 kcal/mol

$$R \xrightarrow{O} O - P O - O - O + OH_2$$
 \longrightarrow $R \xrightarrow{O} OH + Pi$

Similar reasons as for hydrolysis of ATP:

- 1. e- withdrawing ability of Ogroup.
- 2. Differential resonance energies between reactants and products.
- 3. Charge repulsion

Phosphorylation of ADP by PEP

Structural Basis for high PO₄ transfer potential of PEP

Net Reaction of Glycolysis

Glucose + 2 P_i + 2ADP + 2NAD+ \rightarrow 2Pyruvate + 2ATP + 2NADH + 2H+ + 2H₂O

- During exercise, purpose of glycolysis is to deliver energy (ATP) FAST!!!
- Glycolysis generates ATP 100x faster than aerobic pathways (ie. oxidative P'n).
- However, under these conditions, NAD+ is depleted and NADH builds up.
- NAD+ must be replenished by re-oxidation of NADH.

Reduction of Pyruvate to Lactate serves to replenish NAD+.

Fermentation in Yeast

Fermentation in Yeast

