Fundamentos de Deep Learning

Entrenamiento de la Red Neuronal

Función de Pérdida

Mide el rendimiento de la red. El objetivo es minimizar esta función.

Optimizadores

Ajustan los pesos de la red durante el entrenamiento.

Learning Rate

Controla cuánto se ajustan los pesos en cada iteración.

Epochs

Iteración completa a través del conjunto de datos.

510 50 20 30 10 7 3 4 1100 60 49 34 50v

Función de Pérdida

Regresión
Error cuadrático medio (MSE) común.

Clasificación
Entropía cruzada (cross-entropy loss)
común.

Optimizadores Comunes

SGD

Actualiza pesos con un ejemplo a la vez.

Adam

Adapta el learning rate para cada parámetro.

Evaluación de la Red Neuronal

Regresión

MSE y MAE son métricas comunes.

Error Cuadrático Medio (MSE):

$$MSE = rac{1}{n}\sum (y_{
m real} - y_{
m predicho})^2$$

Error Absoluto Medio (MAE):

$$MAE = rac{1}{n} \sum |y_{
m real} - y_{
m predicho}|$$

Clasificación

Precisión, Recall y F1-Score son importantes.

Precisión (Accuracy):

 $Accuracy = \frac{\text{número de predicciones correctas}}{\text{total de predicciones}}$

Matriz de Confusión - Precisión, Recall y F1-Score, AUC-ROC

Optimización de la Red Neuronal

Regularización

Evitar el sobreajuste con Dropout, L1 y L2.

Hiperparámetros

Ajustar learning rate, capas y neuronas.

Técnicas Avanzadas

Batch Normalization, Transfer Learning.

El Problema del Sobreajuste

Pocos Datos

Modelo Complejo

Demasiadas

capas o

neuronas.

Epochs Excesivas

Falta de Prevención Sin regularización.

Técnica Dropout

1

Desactivación Aleatoria

Neuronas desactivadas al azar.

2

Menos Dependencia

Reduce dependencia excesiva.

3

Mejor Generalización

Mejora la generalización.

Actividad Práctica Guiada

Objetivo: Predecir la probabilidad de que un paciente desarrolle diabetes basado en características médicas.

Requisitos:

- 1. Instalación y carga de librería: Procura instalas las librerías necesarias.
- 2. Carga del dataset Pima Indians Diabetes, que se encuentra en OpenML.
- 3. Preprocesamiento de datos: Dividir datos de entrenamiento y prueba.
- 4. Construcción de la Red Neuronal: Con tres capas densas y una capa de salida con activación sigmoide.
- 5. Entrenamiento del Modelo.
- 6. Evaluación del Modelo.
- 7. Realizar predicciones: Simular que llega un nuevo paciente y se predice su probabilidad de tener diabetes.
- 8. Visualizar los resultados.

El detalle de la actividad se encuentra en la guía de estudio de la sesión.

Preguntas

Sección de preguntas

Fundamentos de

Deep Learning

Continúe con las actividades