=
$$(A_{P_1} B_{11} + A_{P_2} B_{21})$$
 $A_{P_1} B_{P_1}) C_{13}$
+ $(A_{P_1} B_{12} + A_{P_2} B_{22})$ $A_{P_1} B_{P_2}) C_{23}$
+ $(A_{P_1} B_{13} + A_{12} B_{23})$ $A_{P_1} B_{P_2}) C_{23}$
= $(a_1 B_1) C_{13} + (a_1 B_2) C_{23}$ $(a_1 B_{23}) C_{23}$
 $U + Q = AB$
 $\Rightarrow Q_{P_2} = (a_1 B_2)$
 $\Rightarrow (P_1) Q (AB) C = QC =$
 $Q_{P_1} C_{13} + Q_{P_2} C_{23}$ $Q_{P_2} C_{23}$ $Q_{P_3} C_{23}$
= $(a_1 B_1) C_{13} + Q_{P_2} C_{23}$ $Q_{P_3} C_{23}$ $Q_{P_3} C_{23}$
= $a_1 P_2 C_{23}$ $Q_{P_3} C_{23}$ $Q_{P_3} C_{23}$
 $\Rightarrow (P_1) C_{13} + Q_{P_2} C_{23}$ $Q_{P_3} C_{23}$ $Q_{P_3} C_{23}$
= $a_1 P_2 C_{23}$ $Q_{P_3} C$

(b) Let
$$A = \begin{bmatrix} 5 & 7 \\ -3 & 0 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 2 \\ 9 & -1 \end{bmatrix}$

$$AB = \begin{bmatrix} 68 & 3 \\ -3 & -6 \end{bmatrix}$$

$$BA = \begin{bmatrix} -1 & 7 \\ 48 & 63 \end{bmatrix}$$

$$(AB)C \rightarrow \underline{\text{nor-of computation}} \quad \text{for } AXB$$

$$PX(2y-1) \text{ 9}$$

There wire be q mutiquication + (2-1) additions for (AB),

= Total computation =
$$\frac{pq}{p(2q-1)}$$

(AB) XC > Total computations

=
$$P \times (2n-1) t$$

(AB) C has tetal

 $P (2n-1) t$

Computations

Similarly

$$A(BC)$$
 has = $q(29-1)t + P(29-1)t$

$$\Rightarrow$$
 $p(2q-1)q + p(2y-1)t < q(2y-1)t $+ p(2q-1)t$$

$$\frac{1}{t} + \frac{1}{2} \left\langle \frac{1}{p} + \frac{1}{2} \right\rangle$$