SI231 Matrix Analysis and Computations Low-Rank Matrix Optimization

Ziping Zhao

Spring Term 2022–2023

School of Information Science and Technology ShanghaiTech University, Shanghai, China

http://si231.sist.shanghaitech.edu.cn

Low-Rank Matrix Optimization

- Motivation
- Problem Formulation
- Heuristics for Rank Minimization Problem
 - Nuclear Norm Heuristic
 - Log-det Heuristic
 - Matrix Factorization based Method
 - Rank Constraint via Convex Iteration
- Real Applications
 - Netflix Prize
 - Video Intrusion Detection
- Summary

Motivation – High Dimensional Data

• Data becomes increasingly massive, high dimensional...

- Images: compression, denoising, recognition. . .
- Videos: streaming, tracking, stabilization. . .
- User data: clustering, classification, recommendation. . .
- Web data: indexing, ranking, search. . .

Low Dimensional Structures in High Dimensional Data

Low dimensional structures in visual data

- User Data: profiles of different users may share some common factors
- How to extract low dimensional structures from such high dimensional data?

Problem Formulation – Rank Minimization Problem

- In many scenarios, low dimensional structure is closely related to low rank.
- But in real applications, the true rank is usually unknown. A natural approach to solve this is to formulate it as a rank minimization problem, i.e., finding the matrix of lowest rank that satisfies some constraint

$$\begin{array}{ll}
\text{minimize} & \text{rank}(\mathbf{X}) \\
\mathbf{X} \in \mathbb{R}^{m \times n} & \\
\text{subject to} & \mathbf{X} \in \mathcal{C},
\end{array}$$

where X is the optimization variable and C is a (possibly) convex set denoting the constraints.

• When \mathbf{X} is restricted to be diagonal, $\operatorname{rank}(\mathbf{X}) = \|\operatorname{diag}(\mathbf{X})\|_0$ and the rank minimization problem reduces to the cardinality minimization problem (ℓ_0 -norm minimization).

Matrix Rank

- The rank of a matrix $\mathbf{X} \in \mathbb{R}^{m \times n}$ is
 - the number of linearly independent rows of ${f X}$
 - the number of linearly independent columns of ${f X}$
 - the number of nonzero singular values of \mathbf{X} , i.e., $\|\boldsymbol{\sigma}(\mathbf{X})\|_0$.
 - the smallest number r such that there exists an $m \times r$ matrix ${\bf F}$ and an $r \times n$ matrix ${\bf G}$ with ${\bf X} = {\bf F}{\bf G}$

Solving Rank Minimization Problem

- In general, the rank minimization problem is NP-hard, and there is little hope of finding the global minimum efficiently in all instances.
- What we are going to talk about, instead, are efficient heuristics, categorized into two groups:
 - 1. Approximate the rank function with some surrogate functions
 - Nuclear norm heuristic
 - Log-det heuristic
 - 2. Solving a sequence of rank-constrained feasibility problems
 - Matrix factorization based method
 - Rank constraint via convex iteration

Semidefinite Embedding Lemma

• It can be shown that any nonsquare matrix X can be associated with a positive semidefinite matrix whose rank is exactly twice the rank of X.

Lemma 1. Let $\mathbf{X} \in \mathbb{R}^{m \times n}$ be a given matrix. Then $rank(\mathbf{X}) \leq r$ if and only if there exist matrices $\mathbf{Y} \in \mathbb{S}^m$ and $\mathbf{Z} \in \mathbb{S}^n$ such that

$$\left[\begin{array}{cc} \mathbf{Y} & \mathbf{X} \\ \mathbf{X}^T & \mathbf{Z} \end{array} \right] \succeq \mathbf{0}, \quad \operatorname{rank}(\mathbf{Y}) + \operatorname{rank}(\mathbf{Z}) \leq 2r.$$

• Based on the semidefinite embedding lemma, minimizing the rank of a general nonsquare matrix \mathbf{X} is equivalent to minimizing the rank of the positive semidefinite, block diagonal matrix blkdiag(\mathbf{Y}, \mathbf{Z}):

$$\begin{array}{ll} \underset{\mathbf{X},\mathbf{Y},\mathbf{Z}}{\text{minimize}} & \frac{1}{2} \text{rank}(\mathsf{blkdiag}(\mathbf{Y},\mathbf{Z})) \\ \text{subject to} & \begin{bmatrix} \mathbf{Y} & \mathbf{X} \\ \mathbf{X}^T & \mathbf{Z} \end{bmatrix} \succeq \mathbf{0} \\ \mathbf{X} \in \mathcal{C}. \end{array}$$

Proof of Semidefinite Embedding Lemma

• the " \Longrightarrow " part: Suppose that $\operatorname{rank}(\mathbf{X}) = r_0 \leq r$. Then $\operatorname{rank}(\mathbf{X})$ can be factored as $\operatorname{rank}(\mathbf{X}) = \mathbf{F}\mathbf{G}$ where $\mathbf{F} \in \mathbb{R}^{m \times r_0}$ and $\mathbf{G} \in \mathbb{R}^{r_0 \times m}$, and $\operatorname{rank}(\mathbf{F}) = \operatorname{rank}(\mathbf{G}) = r_0$. Set \mathbf{Y} and \mathbf{Z} to be the rank r_0 matrices $\mathbf{F}\mathbf{F}^T$ and $\mathbf{G}^T\mathbf{G}$, respectively. Then we have

$$\left[egin{array}{ccc} \mathbf{Y} & \mathbf{X} \ \mathbf{X}^T & \mathbf{Z} \end{array}
ight] = \left[egin{array}{ccc} \mathbf{F} \ \mathbf{G}^T \end{array}
ight] \left[egin{array}{ccc} \mathbf{F}^T & \mathbf{G} \end{array}
ight] \succeq \mathbf{0}$$

• the "

part: we begin with a result, which is a generalization of the well known Schur complement condition for positive semidefinite matrices.

Pseudo-Schur Complement

let

$$\mathbf{M} = egin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix},$$

where $\mathbf{A} \in \mathbb{R}^{m_1 \times n_1}$, $\mathbf{B} \in \mathbb{R}^{m_1 \times n_2}$, $\mathbf{C} \in \mathbb{R}^{m_2 \times n_1}$, and $\mathbf{D} \in \mathbb{R}^{m_2 \times n_2}$.

Note ${\bf D}$ can be rectangular or square and singular. We define the pseudo-Schur complement of ${\bf A}$ in ${\bf M}$ by

$$\mathbf{S}_{D^{\dagger}} = \mathbf{A} - \mathbf{B} \mathbf{D}^{\dagger} \mathbf{C},$$

where \mathbf{D}^{\dagger} is the pseudo-inverse (or Moore-Penrose inverse) of \mathbf{D} .

ullet Similarly, we can also define ${f S}_{A^\dagger}={f D}-{f C}{f A}^\dagger{f B},~{f S}_{B^\dagger}={f C}-{f D}{f B}^\dagger{f A}$, and ${f S}_{C^\dagger}={f B}-{f A}{f C}^\dagger{f D}.$

Pseudo-Schur Complement Condition for PSD Matrices

• the Schur complement: let

$$\mathbf{M} = egin{bmatrix} \mathbf{A} & \mathbf{B} \ \mathbf{B}^T & \mathbf{D} \end{bmatrix},$$

where $\mathbf{A} \in \mathbb{S}^m$, $\mathbf{B} \in \mathbb{R}^{m \times n}$, and $\mathbf{D} \in \mathbb{S}^n$.

We have

$$\mathbf{M} \succeq \mathbf{0} \iff \mathbf{A} \succeq \mathbf{0}, \ (\mathbf{I} - \mathbf{A} \mathbf{A}^{\dagger}) \mathbf{B} = \mathbf{0}, \ \mathbf{S}_{A^{\dagger}} \succeq \mathbf{0} \\ \iff \mathbf{D} \succeq \mathbf{0}, \ (\mathbf{I} - \mathbf{D} \mathbf{D}^{\dagger}) \mathbf{B}^{T} = \mathbf{0}, \ \mathbf{S}_{D^{\dagger}} \succeq \mathbf{0}$$

• proof:

$$egin{array}{lll} \mathbf{M} &= egin{bmatrix} \mathbf{I} & \mathbf{0} \ \mathbf{B}^T \mathbf{A}^\dagger & \mathbf{I} \end{bmatrix} egin{bmatrix} \mathbf{A} & \mathbf{0} \ \mathbf{0} & \mathbf{D} - \mathbf{B}^T \mathbf{A}^\dagger \mathbf{B} \end{bmatrix} egin{bmatrix} \mathbf{I} & \mathbf{A}^\dagger \mathbf{B} \ \mathbf{0} & \mathbf{I} \end{bmatrix} \ &= egin{bmatrix} \mathbf{I} & \mathbf{B} \mathbf{D}^\dagger \ \mathbf{0} & \mathbf{I} \end{bmatrix} egin{bmatrix} \mathbf{A} - \mathbf{B} \mathbf{D}^\dagger \mathbf{B}^T & \mathbf{0} \ \mathbf{0} & \mathbf{D} \end{bmatrix} egin{bmatrix} \mathbf{I} & \mathbf{0} \ \mathbf{D}^\dagger \mathbf{B}^T & \mathbf{I} \end{bmatrix} \end{array}$$

Proof of Semidefinite Embedding Lemma

• the " \Leftarrow " part: based on the pseudo-Schur complement condition for positive semidefinite matrices (the result in the first line), our goal is to show that they imply $\operatorname{rank}(\mathbf{Y}) \geq \operatorname{rank}(\mathbf{X})$ and $\operatorname{rank}(\mathbf{Z}) \geq \operatorname{rank}(\mathbf{X})$.

Assume, without loss of generality, that $rank(\mathbf{Y}) \leq rank(\mathbf{Z})$ (if this were not the case, we could use the result in the second line). From second condition, we have

$$\mathbf{X}^T(\mathbf{I} - \mathbf{Y}\mathbf{Y}^\dagger) = \mathbf{0}.$$

Since $(\mathbf{I} - \mathbf{Y}\mathbf{Y}^\dagger)$ is a projection operator for $\mathcal{N}(\mathbf{Y})$, it follows that

$$\mathcal{N}(\mathbf{X}^T) \supseteq \mathcal{N}(\mathbf{Y}) \Rightarrow \dim \mathcal{N}(\mathbf{X}^T) \geq \dim \mathcal{N}(\mathbf{Y}).$$

Recall that $\operatorname{rank}(\mathbf{X}) = n - \dim \mathcal{N}(\mathbf{X}) = m - \dim \mathcal{N}(\mathbf{X}^T)$. Then, we can conclude that $\operatorname{rank}(\mathbf{Y}) \geq \operatorname{rank}(\mathbf{X}^T) = \operatorname{rank}(\mathbf{X})$. Hence,

$$rank(\mathbf{X}) \le rank(\mathbf{Y}) \le \frac{1}{2}(rank(\mathbf{Y}) + rank(\mathbf{Z}))$$

Nuclear Norm Heuristic

A well known heuristic for rank minimization problem is replacing the rank function in the objective with the nuclear norm

$$\begin{array}{ll}
\text{minimize} & \|\mathbf{X}\|_* \\
\text{subject to} & \mathbf{X} \in \mathcal{C}
\end{array}$$

- Proposed by Fazel (2002) [Fazel, 2002].
- The nuclear norm $\|\mathbf{X}\|_*$ is defined as the sum of singular values, i.e., $\|\mathbf{X}\|_* = \sum_{i=1}^r \sigma_i$.
- If $X \succeq 0$, $||X||_*$ is just $\mathrm{tr}(X)$ and the "nuclear norm heuristic" reduces to the "trace heuristic".

Why Nuclear Norm?

- Nuclear norm can be viewed as the ℓ_1 -norm of the vector of singular values.
- Just as ℓ_1 -norm \Rightarrow sparsity, nuclear norm \Rightarrow sparse singular value vector, i.e., low rank.
- When \mathbf{X} is restricted to be diagonal, $\|\mathbf{X}\|_* = \|\operatorname{diag}(\mathbf{X})\|_1$ and the nuclear norm heuristic for rank minimization problem reduces to the ℓ_1 -norm heuristic for cardinality minimization problem.
- $\|\mathbf{x}\|_1$ is the convex envelope of $\operatorname{card}(\mathbf{x})$ over $\{\mathbf{x}|\,\|\mathbf{x}\|_{\infty} \leq 1\}$. Similarly, $\|\mathbf{X}\|_*$ is the convex envelope of $\operatorname{rank}(\mathbf{X})$ on the convex set $\{\mathbf{X}|\,\|\mathbf{X}\|_2 \leq 1\}$.

Equivalent SDP Formulation

Lemma 2. For $\mathbf{X} \in \mathbb{R}^{m \times n}$ and $t \in \mathbb{R}$, we have $\|\mathbf{X}\|_* \leq t$ if and only if there exist matrices $\mathbf{Y} \in \mathbb{R}^{m \times m}$ and $\mathbf{Z} \in \mathbb{R}^{n \times n}$ such that

$$\left[egin{array}{ccc} \mathbf{Y} & \mathbf{X} \\ \mathbf{X}^T & \mathbf{Z} \end{array} \right] \succeq \mathbf{0}, \quad \operatorname{tr}(\mathbf{Y}) + \operatorname{tr}(\mathbf{Z}) \leq 2t.$$

 Based on the above lemma, the nuclear norm minimization problem is equivalent to

minimize
$$\frac{1}{2} \text{tr}(\mathbf{Y} + \mathbf{Z})$$

subject to $\begin{bmatrix} \mathbf{Y} & \mathbf{X} \\ \mathbf{X}^T & \mathbf{Z} \end{bmatrix} \succeq \mathbf{0}$
 $\mathbf{X} \in \mathcal{C}$.

• This SDP formulation can also be obtained by applying the "trace heuristic" to the PSD form of the rank minimization problem.

Log-det Heuristic

- In the log-det heuristic, log-det function is used as a smooth surrogate for rank function.
- Symmetric positive semidefinite case:

$$\begin{array}{ll}
\text{minimize} & \log \det(\mathbf{X} + \delta \mathbf{I}) \\
\text{subject to} & \mathbf{X} \in \mathcal{C},
\end{array}$$

where $\delta > 0$ is a small regularization constant.

- Note that $\log \det(\mathbf{X} + \delta \mathbf{I}) = \sum_{i} \log(\sigma_i(\mathbf{X} + \delta \mathbf{I}))$, $\operatorname{rank}(\mathbf{X}) = \|\boldsymbol{\sigma}(\mathbf{X})\|_0$, and $\log(s + \delta)$ can be seen as a surrogate function of $\operatorname{card}(s)$.
- However, the surrogate function $\log \det(\mathbf{X} + \delta \mathbf{I})$ is not convex (in fact, it is concave).

Log-det Heuristic

- An iterative linearization and minimization scheme (called majorizationminimization) is used to find a local minimum.
- Let $\mathbf{X}^{(k)}$ denote the kth iterate of the optimization variable \mathbf{X} . The first-order Taylor series expansion of $\log \det (\mathbf{X} + \delta \mathbf{I})$ about $\mathbf{X}^{(k)}$ is given by

$$\log \det \left(\mathbf{X} + \delta \mathbf{I} \right) \le \log \det \left(\mathbf{X}^{(k)} + \delta \mathbf{I} \right) + \operatorname{tr} \left(\left(\mathbf{X}^{(k)} + \delta \mathbf{I} \right)^{-1} \left(\mathbf{X} - \mathbf{X}^{(k)} \right) \right).$$

Then, one could minimize $\log \det (\mathbf{X} + \delta \mathbf{I})$ by iteratively minimizing the local linearization, which leads to

$$\mathbf{X}^{(k+1)} = \arg\min_{\mathbf{X} \in \mathcal{C}} \operatorname{tr} \left(\left(\mathbf{X}^{(k)} + \delta \mathbf{I} \right)^{-1} \mathbf{X} \right).$$

Interpretation of Log-det Heuristic

- If we choose $\mathbf{X}^{(0)} = \mathbf{I}$, the first iteration is equivalent to minimizing the trace of \mathbf{X} , which is just the trace heuristic. The iterations that follow try to reduce the rank further. In this sense, we can view this heuristic as a refinement of the trace heuristic.
- At each iteration we solve a weighted trace minimization problem, with weights $\mathbf{W}^{(k)} = \left(\mathbf{X}^{(k)} + \delta \mathbf{I}\right)^{-1}$. Thus, the log-det heuristic can be considered as an extension of the iterative reweighted ℓ_1 -norm heuristic for cardinality minimization problem to the matrix case.

Log-det Heuristic for General Matrix

ullet For general nonsquare matrix ${f X}$, we can apply the log-det heuristic to the equivalent PSD form and obtain

$$\begin{array}{ll} \underset{\mathbf{X},\mathbf{Y},\mathbf{Z}}{\text{minimize}} & \log \det(\mathsf{blkdiag}(\mathbf{Y},\mathbf{Z}) + \delta \mathbf{I}) \\ \text{subject to} & \begin{bmatrix} \mathbf{Y} & \mathbf{X} \\ \mathbf{X}^T & \mathbf{Z} \end{bmatrix} \succeq \mathbf{0} \\ \mathbf{X} \in \mathcal{C}. \end{array}$$

• Linearizing as before, at iteration k we solve the following problem to get $\mathbf{X}^{(k+1)}$, $\mathbf{Y}^{(k+1)}$ and $\mathbf{Z}^{(k+1)}$

$$\begin{array}{ll} \underset{\mathbf{X},\mathbf{Y},\mathbf{Z}}{\text{minimize}} & \operatorname{tr}\left(\left(\mathsf{blkdiag}(\mathbf{Y}^{(k)},\mathbf{Z}^{(k)}) + \delta\mathbf{I}\right)^{-1}\mathsf{blkdiag}(\mathbf{Y},\mathbf{Z})\right) \\ \text{subject to} & \left[\begin{array}{cc} \mathbf{Y} & \mathbf{X} \\ \mathbf{X}^T & \mathbf{Z} \end{array}\right] \succeq \mathbf{0} \\ \mathbf{X} \in \mathcal{C}. \end{array}$$

Matrix Factorization based Method

- The idea behind factorization based methods is that $rank(\mathbf{X}) \leq r$ if and only if \mathbf{X} can be factorized as $\mathbf{X} = \mathbf{FG}$, where $\mathbf{F} \in \mathbb{R}^{m \times r}$ and $\mathbf{G} \in \mathbb{R}^{r \times n}$.
- For each given r, we check if there exists a feasible \mathbf{X} of rank less than or equal to r by checking if any $\mathbf{X} \in \mathcal{C}$ can be factored as above.
- The expression X = FG is not convex in X, F and G simultaneously, but it is convex in (X, F) when G is fixed and convex in (X, G) when F is fixed.
- ullet Various heuristics can be applied to handle this non-convex equality constraint, but it is not guaranteed to find an ${\bf X}$ with rank r even if one exists.

Matrix Factorization based Method

- ullet Coordinate descent method: Fix ${f F}$ and ${f G}$ one at a time and iteratively solve a convex problem at each iteration.
 - Choose $\mathbf{F}^{(0)} \in \mathbb{R}^{m \times r}$. Set k = 1.
 - repeat

$$(\tilde{\mathbf{X}}^{(k)}, \mathbf{G}^{(k)}) = \underset{\mathbf{X} \in \mathcal{C}, \mathbf{G} \in \mathbb{R}^{r \times n}}{\operatorname{argmin}} \left\| \mathbf{X} - \mathbf{F}^{(k-1)} \mathbf{G} \right\|_{F}$$
$$(\mathbf{X}^{(k)}, \mathbf{F}^{(k)}) = \underset{\mathbf{X} \in \mathcal{C}, \mathbf{F} \in \mathbb{R}^{m \times r}}{\operatorname{argmin}} \left\| \mathbf{X} - \mathbf{F} \mathbf{G}^{(k)} \right\|_{F}$$
$$e^{(k)} = \left\| \mathbf{X}^{(k)} - \mathbf{F}^{(k)} \mathbf{G}^{(k)} \right\|_{F},$$

- until $e^{(k)} \le \epsilon$, or $e^{(k-1)}$ and $e^{(k)}$ are approximately equal.

Rank Constraint via Convex Iteration

Consider a semidefinite rank-constrained feasibility problem

find
$$\mathbf{X}$$
 subject to $\mathbf{X} \in \mathcal{C}$ $\mathbf{X} \succeq \mathbf{0}$ $\operatorname{rank}(\mathbf{X}) \leq r$,

• It is proposed in [Dattorro, 2005] to solve this problem via iteratively solving the following two convex problems:

minimize
$$\operatorname{tr}(\mathbf{W}^*\mathbf{X})$$
 minimize $\operatorname{tr}(\mathbf{W}\mathbf{X}^*)$ subject to $\mathbf{X} \in \mathcal{C}$ subject to $\mathbf{0} \leq \mathbf{W} \leq \mathbf{I}$ $\mathbf{X} \succeq \mathbf{0}$ $\operatorname{tr}(\mathbf{W}) = n - r,$

where \mathbf{W}^* is the optimal solution of the second problem and \mathbf{X}^* is the optimal solution of the first problem.

Rank Constraint via Convex Iteration

• An optimal solution to the second problem is known in closed form. Given non-increasingly ordered diagonalization $\mathbf{X}^* = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^T$, then matrix $\mathbf{W}^* = \mathbf{U}^* \mathbf{U}^{*T}$ is optimal where $\mathbf{U}^* = \mathbf{V}(:, r+1:n) \in \mathbb{R}^{n \times n - r}$, and

$$\operatorname{tr}(\mathbf{W}^{\star}\mathbf{X}^{\star}) = \sum_{i=r+1}^{n} \lambda_{i}(\mathbf{X}^{\star}).$$

- We start from $\mathbf{W}^* = \mathbf{I}$ and iteratively solving the two convex problems. Note that in the first iteration the first problem is just the "trace heuristic".
- Suppose at convergence, $\operatorname{tr}(\mathbf{W}^*\mathbf{X}^*) = \tau$, if $\tau = 0$, then $\operatorname{rank}(\mathbf{X}^*) \leq r$ and \mathbf{X}^* is a feasible point. But this is not guaranteed, only local convergence can be established, i.e., converging to some $\tau \geq 0$.

Rank Constraint via Convex Iteration

ullet For general nonsquare matrix $\mathbf{X} \in \mathbb{R}^{m \times n}$, we have an equivalent PSD form

$$\begin{array}{cccc} & & & & & \text{find} & \mathbf{X} \\ & & \mathbf{X} & & & \mathbf{X} \\ \text{subject to} & & \mathbf{X} & & & \\ \text{subject to} & & \mathbf{X} \in \mathcal{C} & \Leftrightarrow & & \\ & & & & \mathbf{G} = \begin{bmatrix} \mathbf{Y} & \mathbf{X} \\ \mathbf{X}^T & \mathbf{Z} \end{bmatrix} \succeq \mathbf{0} \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$$

ullet The same convex iterations can be applied now. Note that if we start from $\mathbf{W}^{\star} = \mathbf{I}$, now the first problem is just the "nuclear norm heuristic" for the first iteration.

Recommender Systems

- How does Amazon recommend commodities?
- How does Netflix recommend movies?

Netflix Prize

Netflix Prize

• Given 100 million ratings on a scale of 1 to 5, predict 3 million ratings to highest accuracy

- 17,770 total movies, 480,189 total users
- How to fill in the blanks?
- \bullet Can you improve the recommendation accuracy by 10% over what Netflix was using? \Longrightarrow One million dollars!

Abstract Setup: Matrix Completion

- Consider a rating matrix $\mathbf{R} \in \mathbb{R}^{m \times n}$ with r_{ij} representing the rating user i gives to movie j.
- But some r_{ij} are unknown since no one watches all movies

$$\mathbf{R} = \begin{bmatrix} 2 & 3 & ? & ? & 5 & ? \\ 1 & ? & ? & 4 & ? & 3 \\ ? & ? & 3 & 2 & ? & 5 \\ 4 & ? & 3 & ? & 2 & 4 \end{bmatrix}$$
Users

We would like to predict how users will like unwatched movies.

Structure of the Rating Matrix

- The rating matrix is very big, 480,189 (number of users) times 17,770 (number of movies) in the Netflix case.
- But there are much fewer types of people and movies than there are people and movies.
- So it is reasonable to assume that for each user i, there is a k-dimensional vector \mathbf{p}_i explaining the user's movie taste and for each movie j, there is also a k-dimensional vector \mathbf{q}_j explaining the movie's appeal. And the inner product between these two vectors, $\mathbf{p}_i^T \mathbf{q}_j$, is the rating user i gives to movie j, i.e., $r_{ij} = \mathbf{p}_i^T \mathbf{q}_j$. Or equivalently in matrix form, \mathbf{R} is factorized as $\mathbf{R} = \mathbf{P}^T \mathbf{Q}$, where $\mathbf{P} \in \mathbb{R}^{k \times m}$, $\mathbf{Q} \in \mathbb{R}^{k \times n}$, $k \ll \min(m, n)$.
- ullet It is the same as assuming the matrix ${f R}$ is of low rank.

Matrix Completion

• The true rank is unknown, a natural approach is to find the minimum rank solution

minimize
$$\operatorname{rank}(\mathbf{X})$$

subject to $x_{ij} = r_{ij}, \quad \forall (i,j) \in \Omega,$

where Ω is the set of observed entries.

• In practice, instead of requiring strict equality for the observed entries, one may allow some error and the formulation becomes

minimize
$$\operatorname{rank}(\mathbf{X})$$

subject to $\sum_{(i,j)\in\Omega}(x_{ij}-r_{ij})^2 \leq \epsilon$.

• Then, all the heuristics can be applied, e.g., log-det heuristic, matrix factorization.

What did the Winners Use?

• What algorithm did the final winner of the Netflix Prize use?

- You can find the report from the Netflix Prize website. The winning solution is really a cocktail of many methods combined and thousands of model parameters fine-tuned specially to the training set provided by Netflix.
- But one key idea they used is just the factorization of the rating matrix as the product of two low rank matrices [Koren et al., 2009], [Koren and Bell, 2011].

Video Intrusion Detection – Background Extraction from Video

• Given video sequence \mathbf{F}_i , $i = 1, \ldots, n$.

• The objective is to extract the background in the video sequence, i.e., separating the background from the human activities.

Low-Rank Matrix + Sparse Matrix

- Stacking the images and grouping the video sequence $\mathbf{Y} = [\text{vec}(\mathbf{F}_1), \dots, \text{vec}(\mathbf{F}_n)]$
- The background component is of low rank, since the background is static within a short period (ideally it is rank one as the image would be the same).
- The foreground component is sparse, as activities only occupy a small fraction of space.
- The problem fits into the following signal model

$$\mathbf{Y} = \mathbf{X} + \mathbf{E},$$

where Y is the observation, X is a low rank matrix (the low rank background) and E is a sparse matrix (the sparse foreground).

Low-Rank and Sparse Matrix Recovery

Low-rank and sparse matrix recovery

minimize
$$\operatorname{rank}(\mathbf{X}) + \gamma \|\operatorname{vec}(\mathbf{E})\|_{0}$$
 subject to $\mathbf{Y} = \mathbf{X} + \mathbf{E}$.

ullet Applying the nuclear norm heuristic and ℓ_1 -norm heuristic simultaneously

minimize
$$\|\mathbf{X}\|_* + \gamma \|\text{vec}(\mathbf{E})\|_1$$
 subject to $\mathbf{Y} = \mathbf{X} + \mathbf{E}$.

ullet Recently, some theoretical results indicate that when ${f X}$ is of low rank and ${f E}$ is sparse enough, exact recovery happens with high probability [Wright et al., 2009].

Background Extraction Result

- row 1: the original video sequences.
- row 2: the extracted low-rank background.
- row 3: the extracted sparse foreground.

Summary

- We have introduced the rank minimization problem.
- We have developed different heuristics to solve the rank minimization problem:
 - Nuclear norm heuristic
 - Log-det heuristic
 - Matrix factorization based method
 - Rank constraint via convex iteration
- Real applications are provided.

References

[Candès and Recht, 2009] Candès, E. J. and Recht, B. (2009). Exact matrix completion via convex optimization. *Foundations of Computational mathematics*, 9(6):717–772.

[Dattorro, 2005] Dattorro, J. (2005). Convex Optimization & Euclidean Distance Geometry. Meboo Publishing USA.

[Fazel, 2002] Fazel, M. (2002). Matrix rank minimization with applications. PhD thesis, Stanford University.

[Koren and Bell, 2011] Koren, Y. and Bell, R. (2011). Advances in collaborative filtering. In *Recommender Systems Handbook*, pages 145–186. Springer.

[Koren et al., 2009] Koren, Y., Bell, R., and Volinsky, C. (2009). Matrix factorization techniques for recommender systems. *Computer*, 42(8):30–37.

[Wright et al., 2009] Wright, J., Ganesh, A., Rao, S., Peng, Y., and Ma, Y. (2009). Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization. In *Advances in neural information processing systems*, pages 2080–2088.