Opgaver til lektion om sandsynlighedsregning

1. De centrale sundhedsmyndigheder tester en ny behandling mod lymfekræft sammen med den nuværende, normale behandling. Forsøget foregår på to forskellige hospitaler, A og B, med følgende resultater:

Hospital A	Ny behandling	Nuværende behandling
Antal patienter	110	71
Heraf helbredt	49	30

Hospital B	Ny behandling	Nuværende behandling
Antal patienter	88	140
Heraf helbredt	60	90

- a. Hvilken behandling har den bedste virkning (størst sandsynlighed for helbredelse), ifølge resultaterne på hvert af de to hospitaler?
- b. Sundhedsmyndighederne samler resultaterne på tværs af hospitalerne og offentliggør, at resultatet af undersøgelsen er, at den gamle behandling er bedst. En politiker anklager i aviserne myndighederne for at fifle med tallene, fordi den nye behandling er væsentligt dyrere end den gamle. Har myndighederne fiflet med tallene, eller tager politikeren fejl?
- c. Hvordan kan disse resultater forklares?
- 2. Tegn følgende mængder i hvert sit Venn diagram:
 - a. $A \cap B^c$
 - b. $(A \cap B)^c$
 - c. $A^c \cap B^c$
 - d. $A \cup B^c$
 - e. $(A \cup B)^c$
 - f. $A^c \cup B^c$
 - g. $A^c \cup B^c \cup (A \cap B)$
 - h. $(A \cap B) \cup C$
 - i. $A \cap (B \cup C)$

- 3. Der trækkes ét kort fra et almindeligt spil kort med 52 kort. Lad B og S betegne hændelserne Billedkort og Spar.
 - a. Hvad er P(B) og P(B|S), og hvad kan du konkludere ud af disse sandsynligheder?
 - b. Hvad er P(S), $P(S^c)$, $P(B \cap S)$, $P(B \cup S)$?
 - c. Nu tilsættes kortspillet de tre jokere. Gør det nogen forskel på sandsynlighederne og ændrer det konklusionerne i delspørgsmål a.?
- 4. En fabrik producerer et bestemt emne på tre forskellige maskiner M_1 , M_2 og M_3 . Maskinerne har forskellig kapacitet, så de producerer henholdsvis 20%, 30% og 50% af emnerne. Der er også forskel på maskinernes produktionskvalitet, således at henholdsvis 6%, 4% og 2% af emnerne produceret på de tre maskiner er defekte.
 - a. Der udtages et tilfældigt emne fra dagens produktion. Hvad er sandsynligheden for, at emnet er defekt?
 - b. Det viser sig, at emnet er defekt. Hvad er så sandsynlighederne for, at det var produceret på hhv. M_1 , M_2 og M_3 ?