Homework 1 of Introduction to Analysis (I), Honor Class

AM15 黃琦翔 111652028

2023/9/19

- 1. For any Cauchy sequence $\{x_n\}_{n=1}^{\infty}$, for all $\varepsilon > 0$, $\exists N \in \mathbb{N}$ s.t. for all n, m > N, $|x_n x_m| \le \varepsilon$ Then, since for any convergence sequence, it is Cauchy sequence
- 2. (a) If we can find infinite many points labeled by n₁, n₂, ··· s.t. {x_{n_k}}_{k=1}[∞] is decreasing, thus {x_n}_{n=1}[∞] have a decreasing subsequence.
 If not, then we only can find at most l∈ N, l < ∞ ponints as n₁, n₂, ··· , n_l s.t. {x_{n_k}}_{k=1}^l is decreasing. Thus, for m > n_l, {x_n}_{n=m}[∞] have to be non-decreasing, Thus, {x_n}_{n=1}[∞] have increasing subsequence. Then, every sequence in R either has an increasing subsequence or a decreasing subsequence
 - (b) Since every sequence have either increasing or decreasing subsequence and $\{x_n\}$ is bounded, then by monotone convergence theorem, the sequence converges.