A 30, 10HP, 208V, 6 pole, 60HZ wound-rotor induction machine has a stator to rotor turns ratio of 1:0.5, where both stator and rotor phases are wye-connected. The stator is connected to a 30, 20RV, 60HZ source. The motor MAS @ 1140.pm.

[A] OPERATING SLIP.

$$n_s = \frac{120 f_s}{p} = \frac{120(60)}{6} = 1200 f_s$$

$$\Rightarrow s = 1 - \frac{n_m}{n_s} = 1 - \frac{1140}{1200} = 0.05 \text{ operation}$$

(MAG. & FREA)

Er: induced rotor voltage eslip

Er: induced rotor voltage

Er: ser = s Es/ = s Vin

avg

 $\left(\begin{array}{c} \mathcal{E}_{13}^{\text{res}} \right) \xrightarrow{3} \frac{\mathcal{V}_{13}}{\sqrt{3}} = \mathcal{E}_{5}^{1} \text{ induced "statur voltage"}.$ $\mathcal{E}_{1,5} = \frac{(6.05)(208)}{2\sqrt{3}} = \boxed{3.0V}$

FIED = fr = sfs = (0.07)(60Hz) = [3Hz

[] RPM OF ROTOR FIELD WITH ROTOR & WITH STATOR.

POTOR FIELD WIT STATOR is (1-5) ng + 5ng = 0.05 (1200 pm) = 60 ppm)

POTOR FIELD WIT STATOR is (1-5) ng + 5ng = ng = (1200 pm)

No + 500 ppm

(2) A 30, 4600, 60Hz, 20kW induction machine draws 25A at a your factor of 0.9 lagging when connected to a 30, 4600, 60Hz supply. The core loss to 900W, stator copper loss to 1600W, rotor copper loss is 550W, and friction and windage loss is 300W. Calculate:

If the airgap power is what is left from the input stage for the rotor to convert to mechanical power.

31 MELHANKAL POWER

The mechanical power we get will be the airgap power the rotor recieves mins the copper loss in the rotor. No core losses given in rotor.

[OUTPUT HOPE POWER

Port = Pmech - PE, w = 15376.7 - 300 = 15076.7W

D EFFICIENCY

The efficiency can be calculated between Pout of Pin.

Psiw: friction of coincidese loss

(3) A 36, IDHP, 4600, 60Hz, 4-pole induction motor runs at 1730 rpm at full-back. The stater copper loss is 200W and the windage of friction loss is 320W. Determine:

First we need to find slip s.

[C] POTOR CAPPER LOSS

DI INPUT POWER

No statur apper loss given . Pin = Pag + Psico

E EFFICIENCY

(7) Test results for 30, 280V, bolle, 6.5A, 500W induction machine

BLOCKED POTOR ! 44V, GOHZ, 25A, 1260W NO-LOAD : 208V, GOHZ, 6.TA, 500W

The average resistance measured by a DC Bridge blun two stator terminals 16 0.541 -7 since 2 states P1 = 0.541 = 0.27.1.

A NO-LOAD BOTATIONAL LOSS

Prot = PNL - 3 I, Pr = 500 - 3 (6.5) (6.270) = 465.8 W

3 TEEE EA. CKT.

We already know to = 0.575 = 0.275 [Zn] | ZNL = PM = 500 = 3.941 | ZNL = I = 78.59 = 18.59 XNL = JEMI - RM = JEST - 3.742 = 318.1 S.

[200] S=1, RBL = PBL = 3(25) = 0.667. where R2 = RBL-R1 = 0.667-6.27

EBL= V1 = 44 = 1.016 A - 4 Xon = V1.0162 - 0.6672 = j0.766 A

XBL = X, + X2 : X, = X2 = X82 = 0.766 = 16.3831

=> Xm = XNL-X = 18.1-0.383= 17.7 1

 $\frac{73}{5} = \frac{6.363}{6.1} = 3.83 R \Rightarrow Z_1 = Z_1 + j \times_1 + \times_m || \left(\frac{Z_1^1}{5} + j \times_2^1 \right) = 0.27 + j \cdot 0.363 + \frac{j \cdot (7.63 + j \cdot 0.363)}{j \cdot (7.63 + j \cdot 0.363)}$ = 4.07 L 21.7° JL

=> I, = J3 Z, = 308 29.5 L-21.7 A

=> P. = VI (206)(29.7)60 (-21.7°) = 9374.69

Pag= Ph-35,22, = 9874.7-3(29.5)2(0.27) = 9169.3W

Prech = (1-5) Pag = (0.9) (9168.8) = 8252.2W

Post = Prech - Prot, 1000 = 8257.8-465.8 = 7787W = 10.4HP