polynomial may not achieve the maximum allowable number of roots given by the Fundamental Theorem of Algebra, but this bound is sharp, in the sense that given a natural number n there exist a polynomial of degree n which has exactly n zeros counting multiplicities.

Theorem 2.4. (Wilmshurst [14]) Let h(z) and g(z) be analytic polynomials of degree n and m respectively with n > m. Then $f(z) = h(z) + \overline{g(z)}$, has at most n^2 zeros counting multiplicities. The case n = m could have infinite number of zeros.

It was shown by Bshouty *et al.* [3] that there exists a complex-valued harmonic polynomial $f = h + \overline{g}$, such that h is an analytic polynomial of degree n, g is an analytic polynomial of degree $m \le n$ and f has exactly n^2 zeros counting with multiplicities in the field of complex numbers, \mathbb{C} .

3 Main Results

In this section we state and prove the main results of the paper. The first part of this section is results regarding products of complex-valued harmonic functions; the second part is results about the boundary values of the factors and products; and the third part is an auxiliary result concerning the the maximum number of zeros of the product, provided the product and factors are complex-valued harmonic polynomials.

3.1 Product of harmonic functions

We know that the square of real harmonic function u cannot be harmonic, unless u is a constant. Of course the square of analytic function is analytic and hence harmonic as any analytic function is complex-valued harmonic function. Similarly the square of anti-analytic function is anti-analytic and hence complex-valued harmonic function. But for the complex-valued harmonic function which is neither analytic nor anti-analytic we have the following result

Theorem 3.1. Suppose $f(z) = h(z) + \overline{g(z)}$, is harmonic on Ω . Then f^2 , is harmonic on Ω if and only if either h or g is a constant on Ω .

Proof. If either h or g is a constant on Ω , then it easy to see that the square of analytic function or the square of co-analytic function is harmonic on Ω . Assume that the square of a complex-valued harmonic function is harmonic on Ω . Then

$$f^2 = (h + \overline{g})^2 = h^2 + \overline{g}^2 + 2h\overline{g}$$

is harmonic on Ω implies that,

$$\frac{\partial^2 f^2}{\partial z \overline{z}} = 0.$$

From which we obtain,

$$\frac{\partial^2 f^2}{\partial z \overline{z}} = 2 \frac{\partial h}{\partial z} \frac{\partial \overline{g}}{\partial \overline{z}} = 0,$$

This on turn implies that either of the following two is satisfied on Ω ,

$$\frac{\partial h}{\partial z} = 0, \quad \frac{\partial \overline{g}}{\partial \overline{z}} = 0.$$

Hence either h or \overline{q} is a constant Ω . Which is the desired result.