

51. Soit le nombre complexe $\frac{\sqrt{3}}{2} - \frac{i}{2}$. La proposition fausse est :

1. $|z| = 1$ (module de z)
2. $z^6 = -1$
3. $\frac{1}{z} = \bar{z}$

www.ecoles-rdc.net

4. z^{12} est un nombre réel
5. L'argument de z vaut $7\pi/6$

(B.87)

52. Soit z_1 et z_2 les racines de l'équation $z^3 + 2z + 4(1+i) = 0$. Les nombres complexes « $z_1 - z_2$ » et « $z_2 - z_1$ » appartiennent à :

1. $\{2+4i ; 2-4i\}$
2. $\{2-4i ; -2+4i\}$
3. $\{6-2i ; -6+2i\}$
4. $\{4+2i ; -4-2i\}$
5. $\{4-2i ; -4+2i\}$

(B. - 87)

53. Dans \mathbb{C} , soit un nombre complexe z d'argument $13\pi/9$. Des racines cinquièmes de z, une seule a un argument de la forme $a\pi/9$ où $a \in \mathbb{N}$ tel que $0 < a < 18$. Déterminer a :

1. 5
2. 7
3. 11
4. 13
5. 17

(M. - 88)

54. Les nombres complexes $z_1 = \frac{a}{1+i}$ et $z_2 = \frac{b}{1-i}$; $a \in \mathbb{R}$, $b \in \mathbb{R}$ sont tels que $z_1 + z_2 = 1$. Dans le plan de Gauss, la distance entre les points images de z_1 et z_2 est égale à :

1. 4
2. 2
3. 8
4. 1
5. 5

(M. - 88)

55. Les solutions de l'équation $z\bar{z} + 2iz = 7 + 4i$ sont :

1. $2+3i$ et $2-i$
2. $-1+3i$ et $-1+i$
3. $1+i$ et $1-5i$
4. $-2+3i$ et $-2-i$
5. $3+3i$ et $3-i$

(M. - 88)

56. L'ensemble des points du plan de Gauss d'affixe z vérifiant

$$\left| \frac{z-i}{z+2i} \right| = 2 \text{ forme un cercle de centre C et de rayon R.}$$

1. $C(0,; 5)$ et $R = 5$
2. $C(0, -3)$ et $R = 2$
3. $C(-1/2, 0)$ et $R = 1/2$
4. $C(4, -2)$ et $R = 2\sqrt{2}$
5. $C(1, 0)$ et $R = \sqrt{3}$

57. Si 1, z et z' sont les trois racines complexes de l'unité, alors :

1. $z = z'$ et $|1+z+z'| = 1$
2. $z+z'=0$ et $z^3 = z'^3 = 1$
3. $1+z+z^2 = 1+z'+z'^2 = 0$
4. $|1+z+z'|^2 = 1+z^2+z'^2 = 1$
5. $1+z^2+z'^2 = 1$

(M. - 88)

58. Quatre nombres complexes sont les sommets d'un carré dans le plan complexe. Trois de ces nombres sont : $1+3i$; $3+i$ et $-1-3i$.

Le quatrième nombre est :

1. $-1+3i$
2. $3+i$
3. $1-3i$
4. $3-i$
5. $-3-i$

(M. - 88)