Exercices de révision

Contents

1	Analyse	
	.1 Calcul de périodicité	
	.2 Factorisation $a^n - b^n$	
	.3 Série harmonique et série harmonique alternée	
	.4 Calcul d'une intégrale	•
2	Statistiques	
	.1 Exercice : calcul d'intégrales	
	.2 Équivalences intégrales infinies	

1 Analyse

1.1 Calcul de périodicité

Calculer la périodicité de la fonction

$$f \colon x \mapsto \cos(5\pi t) + \sin(\frac{3}{2}\pi t)$$

1.2 Factorisation $a^n - b^n$

Factoriser $a^n - b^n$ pour $n \in \mathbb{N}$

1.3 Série harmonique et série harmonique alternée

Notons:

$$H_n = \sum_{k=1}^n \frac{1}{k}, \quad A_n = \sum_{k=1}^n \frac{(-1)^{k-1}}{k}$$

Et:

$$G_n = \sum_{k=1}^n \frac{1}{k^2}, \quad B_n = \sum_{k=1}^n \frac{(-1)^k}{k^2}$$

Montrer que :

- 1. $\lim_{n \to +\infty} H_n = +\infty$ et $\lim_{n \to +\infty} A_n = \ln(2)$
- 2. Justifier la convergence de G_n et B_n et calculer $\lim_{n \to +\infty} B_n$ (sachant que $\sum_{k=1}^{+\infty} \frac{1}{k^2} = \frac{\pi^2}{6}$)

${\bf Indications}:$

- Montrer que $H_{2n} H_n \underset{n \to +\infty}{\to} \ln(2)$
- Décomposer les ordres pairs et impairs de A_{2n} , $P_{2n} = \sum_{k=1 \atop k \text{ pair}}^{2n} \frac{(-1)^{k-1}}{k}$ et $I_{2n} = \sum_{k=1 \atop k \text{ impair}}^{2n} \frac{(-1)^{k-1}}{k}$, pour montrer que $A_{2n} = H_{2n} H_n$

1.4 Calcul d'une intégrale

Justifier l'existence et calculer :

$$\int_0^{+\infty} (x^2 + 6x + 3) \exp(-x) \mathrm{d}x$$

(Réponse : -3)

2 Statistiques

2.1 Exercice : calcul d'intégrales

Soient $a, b, c \in \mathbb{R}$ avec a > 0. Montrer que

$$\int_{-\infty}^{+\infty} \exp(-ax^2 + bx + c) dx = \sqrt{\frac{\pi}{a}} \exp\left(\frac{b^2}{a} + c\right)$$

Sachant que $\int_{-\infty}^{+\infty} \exp(-x^2) dx = \sqrt{\pi}$

2.2 Équivalences intégrales infinies

Soit f une fontion C^1 sur $[0, +\infty[$, continue, positive, décroissante. Montrer que : si $\int_0^{+\infty} f(x) dx$ converge alors $\lim_{x \to +\infty} x f(x) = 0$

Solution:

Notons $F(x) = \int_0^x f(t) dt$. On a :

$$\int_{x/2}^{x} f(t)dt = F(x) - F(x/2) \ge \int_{x/2}^{x} f(x)dt = \frac{xf(x)}{2} \ge 0$$

D'où le résultat voulu d'après le théorème des gendarmes