深入理解 OpenStack 中的网络实现

最新版可以从 yeasy@github 下载。

v0.6: 2014-04-04

修正系统结构的图表;

修正部分描述。

v0.5: 2014-03-24

添加对 vlan 模式下具体规则的分析;

更新 gre 模式下 answerfile 的 IP 信息。

v0.4: 2014-03-20

添加对安全组实现的完整分析,添加整体逻辑图表;

添加 vlan 模式下的 RDO answer 文件 (更新 IP 信息)。

v0 3· 2014-03-10

添加 GRE 模式下对流表规则分析:

添加 GRE 模式下的 answer 文件。

v0.2: 2014-03-06

修正图表引用错误;

添加对 GRE 模式下流表细节分析。

v0.1: 2014-02-20

开始整体结构。

1.1 概述

1.1.1 术语

bridge: 网桥, Linux 中用于表示一个能连接不同网络设备的虚拟设备, linux 中传统实现的 网桥类似一个 hub 设备, 而 ovs 管理的网桥一般类似交换机。

br-int: bridge-integration,综合网桥,常用于表示实现主要内部网络功能的网桥。

br-ex: bridge-external,外部网桥,通常表示负责跟外部网络通信的网桥。

GRE: General Routing Encapsulation,一种通过封装来实现隧道的方式。在 openstack 中一般是基于 L3 的 gre,即 original pkt/GRE/IP/Ethernet

VETH: 虚拟 ethernet 接口,通常以 pair 的方式出现,一端发出的网包,会被另一端接收,可以形成两个网桥之间的通道。

qvb: neutron veth, Linux Bridge-side

qvo: neutron veth, OVS-side

TAP 设备:模拟一个二层的网络设备,可以接受和发送二层网包。

TUN 设备:模拟一个三层的网络设备,可以接受和发送三层网包。

iptables: Linux 上常见的实现安全策略的防火墙软件。

Vlan: 虚拟 lan,同一个物理 lan 下用标签实现隔离,可用标号为 1-4094。namespace: 用来实现隔离的一套机制,不同 namespace 之间彼此不可见。

1.2 概念

Neutron 管理下面的实体:

- 网络: 隔离的 L2 域,可以是虚拟、逻辑或交换,同一个网络中的主机彼此 L2 可见。
- 子网: IP 地址快,其中每个虚拟机有一个 IP,同一个子网的主机彼此 L3 可见。
- 端口: 网络上虚拟、逻辑或交换端口。

所有这些实体都是虚拟的,拥有自动生成的唯一标示 id,支持 CRUD 功能,并在数据库中跟踪记录状态。

1.2.1 网络

隔离的 L2 广播域,一般是创建它的用户所有。用户可以拥有多个网络。网络是最基础的,子网和端口都需要关联到网络上。网络的属性如所示。

1.2.2 子网

子网代表了一组分配了 IP 的虚拟机。每个子网必须有一个 CIDR 和关联到一个网络。IP 可以从 CIDR 或者用户指定池中选取。

子网可能会有一个网关、一组 DNS 和主机路由。

1.2.3 端口

逻辑网络交换机上的一个虚拟交换口。虚拟机挂载他们的网卡到这些端口上。逻辑口往往定义了挂载到它上面的网卡的 MAC 地址和 IP 地址。当端口有 IP 的时候,意味着它属于某个子网。

1.2.4 抽象系统架构

无论 GRE 模式实现还是 Vlan 模式实现,抽象的系统架构可以表述为图表 1 所示。

图表 1 抽象系统架构

下面将分别就 GRE 模式实现和 VLan 模式实现进行分析。

1.3 GRE 模式

图表 1 给出了在 OpenStack 中网络实现的一个简化的架构示意。OpenStack 中网络实现包括 vlan 和 gre 两种模式,此处以 gre 模式为例。

图表 2 网络基本架构

在 OpenStack 中,所有网络有关的逻辑管理均在 Network 节点中实现,例如 DNS、DHCP 以及路由等。Compute 节点上只需要对所部属的虚拟机提供基本的网络功能支持,包括隔离不同租户的虚拟机和进行一些基本的安全策略管理(即 security group)。

1.3.1 Compute 节点

以图表 1 为例,Compute 节点上包括两台虚拟机 VM1 和 VM2,分别经过一个网桥(如 qb r-XXX)连接到 br-int 网桥上。br-int 网桥再经过 br-tun 网桥(物理网络是 GRE 实现)连接到物理主机外部网络。

对于物理网络通过 vlan 来隔离的情况,一般会存在一个 br-eth 网桥。

1.3.1.1 qbr

在 VM1 中,虚拟机的网卡实际上连接到了物理机的一个 TAP 设备(即 A,常见名称如 tap -XXX)上,A 则进一步通过 VETH pair(A-B)连接到网桥 qbr-XXX 的端口 vnet0(端口 B)上,之后再通过 VETH pair(C-D)连到 br-int 网桥上。一般 C 的名字格式为 qvb-XXX,而 D 的名字格式为 qvo-XXX。注意它们的名称除了前缀外,后面的 id 都是一样的,表示位于同一个虚拟机网络到物理机网络的连接上。

之所以 TAP 设备 A 没有直接连接到网桥 br-int 上,是因为 OpenStack 需要通过 iptables 实现 security group 的安全策略功能。目前 openvswitch 并不支持应用 iptables 规则的 Tap 设备。

因为 qbr 的存在主要是为了辅助 iptables 来实现 security group 功能,有时候也被称为 firew all bridge。详见 security group 部分的分析。

1.3.1.2 br-int

一个典型的 br-int 的端口如下所示:

```
# ovs-vsctl show
Bridge br-int
Port "qvo-XXX"
tag: 1
Interface "qvo-XXX"
Port patch-tun
Interface patch-tun
type: patch
options: {peer=patch-int}
Port br-int
Interface br-int
type: internal
```

其中 br-int 为内部端口。

端口 patch-tun (即端口 E,端口号为 1)连接到 br-tun 上,实现到外部网络的隧道。

端口 qvo-XXX(即端口 D,端口号为 2)带有 tag1,说明这个口是一个 1 号 vlan 的 access 端口。虚拟机发出的从该端口到达 br-int 的网包将被自动带上 vlan tag 1,而其他带有 vlan tag 1 的网包则可以在去掉 vlan tag 后从该端口发出(具体请查询 vlan access 端口)。这个 vlan tag 是用来实现不同网络相互隔离的,比如租户创建一个网络(neutron net-create),则会被分配一个唯一的 vlan tag。

br-int 在 GRE 模式中作为一个 NORMAL 交换机使用,因此有效规则只有一条正常转发。如果两个在同一主机上的 vm 属于同一个 tenant 的(同一个 vlan tag),则它们之间的通信只需要经过 br-int 即可。

```
# ovs-ofctl dump-flows br-int
NXST_FLOW reply (xid=0x4):
cookie=0x0, duration=10727.864s, table=0, n_packets=198, n_bytes=17288, idle_age=13,
priority=1 actions=NORMAL
```

1.3.1.3 br-tun

一个典型的 br-tun 上的端口类似:

```
Bridge br-tun
Port patch-int
Interface patch-int
type: patch
options: {peer=patch-tun}
Port "gre-1"
Interface "gre-1"
type: gre
options: {in_key=flow, local_ip="10.0.0.101", out_key=flow,
remote_ip="10.0.0.100"}
Port br-tun
Interface br-tun
type: internal
```

其中 patch-int (即端口 F,端口号为 1) 是连接到 br-int L的 veth pair 的端口,gre-1 口 (即端口 G,端口号为 2) 对应 vm 到外面的隧道。

gre-1 端口是虚拟 gre 端口,当网包发送到这个端口的时候,会经过内核封包,然后从 10.0. 0.101 发送到 10.0.0.100,即从本地的物理网卡(10.0.0.101)发出。

br-tun 将带有 vlan tag 的 vm 跟外部通信的流量转换到对应的 gre 隧道,这上面要实现主要的转换逻辑,规则要复杂,一般通过多张表来实现。

典型的转发规则为:

```
cookie=0x0, duration=10969.631s, table=1, n_packets=163, n_bytes=10966, idle_age=21,
priority=0,dl dst=01:00:00:00:00:00/01:00:00:00:00:00 actions=resubmit(,21)
 cookie=0x0, duration=688.456s, table=2, n packets=29, n bytes=5736, idle age=16,
priority=1,tun id=0x1 actions=mod vlan vid:1,resubmit(,10)
 cookie=0x0, duration=10969.488s, table=2, n packets=0, n bytes=0, idle age=10969,
priority=0 actions=drop
 cookie=0x0, duration=10969.343s, table=3, n_packets=0, n_bytes=0, idle_age=10969,
priority=0 actions=drop
 cookie=0x0, duration=10969.2s, table=10, n packets=29, n bytes=5736, idle age=16,
priority=1
actions=learn(table=20,hard timeout=300,priority=1,NXM OF VLAN TCI[0..11],NXM OF ETH
 DST[]=NXM_OF_ETH_SRC[],load:0->NXM_OF_VLAN_TCI[],load:NXM_NX_TUN_ID[]->NXM_NX
_TUN_ID[],output:NXM_OF_IN_PORT[]),output:1
 cookie=0x0, duration=682.603s, table=20, n packets=26, n bytes=5266, hard timeout=300,
                                priority=1,vlan tci=0x0001/0x0fff,dl dst=fa:16:3e:32:0d:db
lidle age=16,
               hard age=16,
actions=load:0->NXM_OF_VLAN_TCI[],load:0x1->NXM_NX_TUN_ID[],output:2
 cookie=0x0, duration=10969.057s, table=20, n packets=0, n bytes=0, idle age=10969,
priority=0 actions=resubmit(,21)
 cookie=0x0, duration=688.6s, table=21, n_packets=161, n_bytes=10818, idle_age=21,
priority=1,dl_vlan=1 actions=strip_vlan,set_tunnel:0x1,output:2
 cookie=0x0, duration=10968.912s, table=21, n packets=2, n bytes=148, idle age=689,
priority=0 actions=drop
   其中,表 0 中有 3 条规则: 从端口 1 (即 patch-int) 来的,扔到表 1,从端口 2 (即 gre-1)
```

来的,扔到表 2。

```
cookie=0x0, duration=10970.064s, table=0, n_packets=189, n_bytes=16232, idle_age=16,
priority=1,in port=1 actions=resubmit(,1)
 cookie=0x0, duration=10906.954s, table=0, n_packets=29, n_bytes=5736, idle_age=16,
priority=1,in_port=2 actions=resubmit(,2)
 cookie=0x0, duration=10969.922s, table=0, n packets=3, n bytes=230, idle age=10962,
priority=0 actions=drop
```

表 1 有 2 条规则: 如果是单播(00:00:00:00:00:00/01:00:00:00:00:00), 则扔到表 20; 如果 是多播等(01:00:00:00:00:00/01:00:00:00:00:00),则扔到表 21。

```
cookie=0x0, duration=10969.777s, table=1, n_packets=26, n_bytes=5266, idle_age=16,
priority=0,dl dst=00:00:00:00:00:00/01:00:00:00:00 actions=resubmit(,20)
 cookie=0x0, duration=10969.631s, table=1, n_packets=163, n_bytes=10966, idle_age=21,
priority=0,dl dst=01:00:00:00:00:00/01:00:00:00:00:00 actions=resubmit(,21)
```

表 2 有 2 条规则: 如果是 tunnel 1 的网包,则修改其 vlan id 为 1,并扔到表 10; 非 tunnel 1的网包,则丢弃。

```
cookie=0x0, duration=688.456s, table=2, n packets=29, n bytes=5736,
priority=1,tun id=0x1 actions=mod vlan vid:1,resubmit(,10)
```

cookie=0x0, duration=10969.488s, table=2, n_packets=0, n_bytes=0, idle_age=10969, priority=0 actions=drop

表 3 只有 1 条规则: 丢弃。

表 10 有一条规则,基于 learn 行动来创建反向(从 gre 端口抵达,且目标是到 vm 的网包)的规则。learn 行动并非标准的 openflow 行动,是 openvswitch 自身的扩展行动,这个行动可以根据流内容动态来修改流表内容。这条规则首先创建了一条新的流(该流对应 vm 从 br-tun 的 g re 端口发出的规则):其中 table=20 表示规则添加在表 20; NXM_OF_VLAN_TCI[0..11]表示匹配包自带的 vlan id; NXM_OF_ETH_DST[]=NXM_OF_ETH_SRC[]表示 L2 目标地址需要匹配包的 L2 源地址;load:0->NXM_OF_VLAN_TCI[],去掉 vlan,load:NXM_NX_TUN_ID[]->NXM_NX_TUN_ID[],添加 tunnel 号为原始 tunnel 号;output:NXM_OF_IN_PORT[],发出端口为原始包抵达的端口。最后规则将匹配的网包从端口 1(即 patch-int)发出。

cookie=0x0, duration=10969.2s, table=10, n_packets=29, n_bytes=5736, idle_age=16, priority=1
actions=learn(table=20,hard_timeout=300,priority=1,NXM_OF_VLAN_TCI[0..11],NXM_OF_ETH
_DST[]=NXM_OF_ETH_SRC[],load:0->NXM_OF_VLAN_TCI[],load:NXM_NX_TUN_ID[]->NXM_NX
_TUN_ID[],output:NXM_OF_IN_PORT[]),output:1

表 20 中有两条规则, 其中第一条即表 10 中规则利用 learn 行动创建的流表项, 第 2 条提交其他流到表 21。

cookie=0x0, duration=682.603s, table=20, n_packets=26, n_bytes=5266, hard_timeout=300, idle_age=16, hard_age=16, priority=1,vlan_tci=0x0001/0x0fff,dl_dst=fa:16:3e:32:0d:db actions=load:0->NXM_OF_VLAN_TCI[],load:0x1->NXM_NX_TUN_ID[],output:2 cookie=0x0, duration=10969.057s, table=20, n_packets=0, n_bytes=0, idle_age=10969, priority=0 actions=resubmit(,21)

表 21 有 2 条规则,第一条是匹配所有目标 vlan 为 1 的网包,去掉 vlan,然后从端口 2 (gr e 端口)发出。第二条是丢弃。

cookie=0x0, duration=688.6s, table=21, n_packets=161, n_bytes=10818, idle_age=21, priority=1,dl_vlan=1 actions=strip_vlan,set_tunnel:0x1,output:2 cookie=0x0, duration=10968.912s, table=21, n_packets=2, n_bytes=148, idle_age=689, priority=0 actions=drop

这些规则所组成的整体转发逻辑如图表 2 所示。

图表 3 Compute 节点 br-tun 的转发逻辑

1.3.2 Network 节点

1.3.2.1 br-tun

```
Bridge br-tun
          Port br-tun
               Interface br-tun
                    type: internal
          Port patch-int
               Interface patch-int
                    type: patch
                    options: {peer=patch-tun}
          Port "gre-2"
               Interface "gre-2"
                    type: gre
                                  {in_key=flow,
                                                     local_ip="10.0.0.100",
                                                                                  out_key=flow,
                    options:
remote_ip="10.0.0.101"}
```

Compute 节点上发往 GRE 隧道的网包最终抵达 Network 节点上的 br-tun,该网桥的规则包括:

```
# ovs-ofctl dump-flows br-tun
NXST_FLOW reply (xid=0x4):
```

```
cookie=0x0, duration=19596.862s, table=0, n_packets=344, n_bytes=66762, idle_age=4,
priority=1,in port=1 actions=resubmit(,1)
 cookie=0x0, duration=19537.588s, table=0, n packets=625, n bytes=125972, idle age=4,
priority=1,in port=2 actions=resubmit(,2)
 cookie=0x0, duration=19596.602s, table=0, n packets=2, n bytes=140, idle age=19590,
priority=0 actions=drop
 cookie=0x0, duration=19596.343s, table=1, n_packets=323, n_bytes=65252, idle_age=4,
priority=0,dl dst=00:00:00:00:00:00/01:00:00:00:00 actions=resubmit(,20)
 cookie=0x0, duration=19596.082s, table=1, n packets=21, n bytes=1510, idle age=5027,
priority=0,dl dst=01:00:00:00:00:00/01:00:00:00:00:00 actions=resubmit(,21)
 cookie=0x0, duration=9356.289s, table=2, n packets=625, n bytes=125972, idle age=4,
priority=1,tun_id=0x1 actions=mod_vlan_vid:1,resubmit(,10)
 cookie=0x0, duration=19595.821s, table=2, n_packets=0, n_bytes=0, idle_age=19595,
priority=0 actions=drop
 cookie=0x0, duration=19595.554s, table=3, n packets=0, n bytes=0, idle age=19595,
priority=0 actions=drop
 cookie=0x0, duration=19595.292s, table=10, n packets=625, n bytes=125972, idle age=4,
priority=1
actions=learn(table=20,hard timeout=300,priority=1,NXM OF VLAN TCI[0..11],NXM OF ETH
_DST[]=NXM_OF_ETH_SRC[],load:0->NXM_OF_VLAN_TCI[],load:NXM_NX_TUN_ID[]->NXM_NX
_TUN_ID[],output:NXM_OF_IN_PORT[]),output:1
 cookie=0x0,
                duration=9314.338s,
                                        table=20,
                                                     n packets=323,
                                                                        n bytes=65252,
hard timeout=300,
                                         idle age=4,
                                                                           hard age=3,
priority=1,vlan tci=0x0001/0x0fff,dl dst=fa:16:3e:cb:11:f6
actions=load:0->NXM OF VLAN TCI[],load:0x1->NXM NX TUN ID[],output:2
 cookie=0x0, duration=19595.026s, table=20, n_packets=0, n_bytes=0, idle_age=19595,
priority=0 actions=resubmit(,21)
 cookie=0x0, duration=9356.592s, table=21, n packets=9, n bytes=586, idle age=5027,
priority=1,dl vlan=1 actions=strip vlan,set tunnel:0x1,output:2
 cookie=0x0, duration=19594.759s, table=21, n packets=12, n bytes=924, idle age=5057,
priority=0 actions=drop
```

这些规则跟 Compute 节点上 br-tun 的规则相似,完成 tunnel 跟 vlan 之间的转换。

1.3.2.2 br-int

```
Bridge br-int
Port "qr-ff19a58b-3d"
tag: 1
Interface "qr-ff19a58b-3d"
type: internal
Port br-int
```

Interface br-int
type: internal

Port patch-tun
Interface patch-tun
type: patch
options: {peer=patch-int}

Port "tap4385f950-8b"
tag: 1
Interface "tap4385f950-8b"
type: internal

该集成网桥上挂载了很多进程来提供网络服务,包括路由器、DHCP 服务器等。这些进程不同的租户可能都需要,彼此的地址空间可能冲突,也可能跟物理网络的地址空间冲突,因此都运行在独立的网络名字空间中。

规则跟 computer 节点的 br-int 规则一致,表现为一个正常交换机。

ovs-ofctl dump-flows br-int
NXST_FLOW reply (xid=0x4):
cookie=0x0, duration=18198.244s, table=0, n_packets=849, n_bytes=164654, idle_age=43,
priority=1 actions=NORMAL

1.3.2.3 网络名字空间

在 linux 中,网络名字空间可以被认为是隔离的拥有单独网络栈(网卡、路由转发表、ipta bles)的环境。网络名字空间经常用来隔离网络设备和服务,只有拥有同样网络名字空间的设备,才能看到彼此。

可以用 ip netns list 命令来查看已经存在的名字空间。

ip netns qdhcp-88b1609c-68e0-49ca-a658-f1edff54a264 qrouter-2d214fde-293c-4d64-8062-797f80ae2d8f

qdhcp 开头的名字空间是 dhcp 服务器使用的, qrouter 开头的则是 router 服务使用的。可以通过 ip netns exec namespaceid command 来在指定的网络名字空间中执行网络命令, 例如

ip netns exec qdhcp-88b1609c-68e0-49ca-a658-f1edff54a264 ip addr
71: ns-f14c598d-98: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state
UP qlen 1000
link/ether fa:16:3e:10:2f:03 brd ff:ff:ff:ff:ff
inet 10.1.0.3/24 brd 10.1.0.255 scope global ns-f14c598d-98

inet6 fe80::f816:3eff:fe10:2f03/64 scope link valid lft forever preferred lft forever

可以看到,dhcp 服务的网络名字空间中只有一个网络接口"ns-f14c598d-98",它连接到 br -int 的 tapf14c598d-98 接口上。

1.3.2.4 dhcp 服务

dhcp 服务是通过 dnsmasq 进程(轻量级服务器,可以提供 dns、dhcp、tftp 等服务)来实现的,该进程绑定到 dhcp 名字空间中的 br-int 的接口上。可以查看相关的进程。

```
# ps -fe | grep 88b1609c-68e0-49ca-a658-f1edff54a264
nobody
            23195
                         1 0 Oct26 ?
                                                    00:00:00 dnsmasq --no-hosts --no-resolv
--strict-order
                  --bind-interfaces
                                       --interface=ns-f14c598d-98
                                                                       --except-interface=lo
--pid-file=/var/lib/neutron/dhcp/88b1609c-68e0-49ca-a658-f1edff54a264/pid
--dhcp-hostsfile=/var/lib/neutron/dhcp/88b1609c-68e0-49ca-a658-f1edff54a264/host
--dhcp-optsfile=/var/lib/neutron/dhcp/88b1609c-68e0-49ca-a658-f1edff54a264/opts
--dhcp-script=/usr/bin/neutron-dhcp-agent-dnsmasq-lease-update
                                                                               --leasefile-ro
--dhcp-range=tag0,10.1.0.0,static,120s --conf-file= --domain=openstacklocal
root
            23196 23195
                            0 Oct26 ?
                                                   00:00:00 dnsmasg --no-hosts --no-resolv
--strict-order
                  --bind-interfaces
                                        --interface=ns-f14c598d-98
                                                                       --except-interface=lo
--pid-file=/var/lib/neutron/dhcp/88b1609c-68e0-49ca-a658-f1edff54a264/pid
--dhcp-hostsfile=/var/lib/neutron/dhcp/88b1609c-68e0-49ca-a658-f1edff54a264/host
--dhcp-optsfile=/var/lib/neutron/dhcp/88b1609c-68e0-49ca-a658-f1edff54a264/opts
--dhcp-script=/usr/bin/neutron-dhcp-agent-dnsmasq-lease-update
                                                                               --leasefile-ro
--dhcp-range=tag0,10.1.0.0,static,120s --conf-file= --domain=openstacklocal
```

1.3.2.5 router 服务

首先,什么是 router,router 是提供跨 subnet 的互联功能的。比如用户的内部网络中主机想要访问外部互联网的地址,就需要 router 来转发(因此,所有跟外部网络的流量都必须经过 router)。目前 router 的实现是通过 iptables 进行的。

同样的,router 服务也运行在自己的名字空间中,可以通过如下命令查看:

```
# ip netns exec qrouter-2d214fde-293c-4d64-8062-797f80ae2d8f ip addr
66: qg-d48b49e0-aa: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast
state UP qlen 1000
link/ether fa:16:3e:5c:a2:ac brd ff:ff:ff:ff:
inet 172.24.4.227/28 brd 172.24.4.239 scope global qg-d48b49e0-aa
inet 172.24.4.228/32 brd 172.24.4.228 scope global qg-d48b49e0-aa
inet6 fe80::f816:3eff:fe5c:a2ac/64 scope link
valid_lft forever preferred_lft forever
68: qr-c2d7dd02-56: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state
UP qlen 1000
link/ether fa:16:3e:ea:64:6e brd ff:ff:ff:ff:
inet 10.1.0.1/24 brd 10.1.0.255 scope global qr-c2d7dd02-56
inet6 fe80::f816:3eff:feea:646e/64 scope link
valid_lft forever preferred_lft forever
```

可以看出,该名字空间中包括两个网络接口。

第一个接口 qg-d48b49e0-aa(即 K)是外部接口(qg=q gateway),将路由器的网关指向默认网关(通过 router-gateway-set 命令指定),这个接口连接到 br-ex 上的 tapd48b49e0-aa (即 L)。

第二个接口 qr-c2d7dd02-56 (即 N, qr=q bridge) 跟 br-int 上的 tapc2d7dd02-56 口 (即 M) 相连,将 router 进程连接到集成网桥上。

查看该名字空间中的路由表:

ip netns exec qrouter-2d214fde-293c-4d64-8062-797f80ae2d8f ip route 172.24.4.224/28 dev qg-d48b49e0-aa proto kernel scope link src 172.24.4.227 10.1.0.0/24 dev qr-c2d7dd02-56 proto kernel scope link src 10.1.0.1 default via 172.24.4.225 dev qg-d48b49e0-aa

其中,第一条规则是将到 172.24.4.224/28 段的访问都从网卡 qg-d48b49e0-aa (即 K)发出。

第二条规则是将到 10.1.0.0/24 段的访问都从网卡 qr-c2d7dd02-56 (即 N) 发出。

最后一条是默认路由,所有的通过 qg-d48b49e0-aa 网卡(即 K)发出。

floating ip 服务同样在路由器名字空间中实现,例如如果绑定了外部的 floating ip 172.24. 4.228 到某个虚拟机 10.1.0.2,则 nat 表中规则为:

ip netns exec grouter-2d214fde-293c-4d64-8062-797f80ae2d8f iptables -t nat -S

-P PREROUTING ACCEPT

-P POSTROUTING ACCEPT

-P OUTPUT ACCEPT

-N neutron-I3-agent-OUTPUT

-N neutron-I3-agent-POSTROUTING

-N neutron-I3-agent-PREROUTING

-N neutron-I3-agent-float-snat

-N neutron-I3-agent-snat

-N neutron-postrouting-bottom

-A PREROUTING -j neutron-I3-agent-PREROUTING

-A POSTROUTING -i neutron-I3-agent-POSTROUTING

-A POSTROUTING -j neutron-postrouting-bottom

-A OUTPUT -j neutron-l3-agent-OUTPUT

-A neutron-I3-agent-OUTPUT -d 172.24.4.228/32 -j DNAT --to-destination 10.1.0.2

-A neutron-l3-agent-POSTROUTING! -i qg-d48b49e0-aa! -o qg-d48b49e0-aa -m conntrack!

--ctstate DNAT -j ACCEPT

-A neutron-l3-agent-PREROUTING -d 169.254.169.254/32 -p tcp -m tcp --dport 80 -j REDIRECT

--to-ports 9697

-A neutron-I3-agent-PREROUTING -d 172.24.4.228/32 -j DNAT --to-destination 10.1.0.2

-A neutron-I3-agent-float-snat -s 10.1.0.2/32 -j SNAT --to-source 172.24.4.228

I-A neutron-I3-agent-snat -j neutron-I3-agent-float-snat

-A neutron-I3-agent-snat -s 10.1.0.0/24 -j SNAT --to-source 172.24.4.227

-A neutron-postrouting-bottom -j neutron-13-agent-snat

其中 SNAT 和 DNAT 规则完成外部 floating ip 到内部 ip 的映射:

-A neutron-I3-agent-OUTPUT -d 172.24.4.228/32 -j DNAT --to-destination 10.1.0.2

-A neutron-I3-agent-PREROUTING -d 172.24.4.228/32 -j DNAT --to-destination 10.1.0.2

-A neutron-I3-agent-float-snat -s 10.1.0.2/32 -j SNAT --to-source 172.24.4.228

另外有一条 SNAT 规则把所有其他的内部 IP 出来的流量都映射到外部 IP 172.24.4.227。这样即使在内部虚拟机没有外部 IP 的情况下,也可以发起对外网的访问。

-A neutron-I3-agent-snat -s 10.1.0.0/24 -j SNAT --to-source 172.24.4.227

1.3.2.6 br-ex

Bridge br-ex Port "eth1" Interface "eth1" Port br-ex Interface br-ex

type: internal Port "qg-1c3627de-1b"

Interface "qg-1c3627de-1b"

type: internal

br-ex 上直接连接到外部物理网络,一般情况下网关在物理网络中已经存在,则直接转发即可。

ovs-ofctl dump-flows br-ex

NXST_FLOW reply (xid=0x4):

cookie=0x0, duration=23431.091s, table=0, n_packets=893539, n_bytes=504805376, idle_age=0, priority=0 actions=NORMAL

如果对外部网络的网关地址配置到了 br-ex (即 br-ex 作为一个网关):

ip addr add 172.24.4.225/28 dev br-ex

需要将内部虚拟机发出的流量进行 SNAT,之后发出。

iptables -A FORWARD -d 172.24.4.224/28 -j ACCEPT

iptables -A FORWARD -s 172.24.4.224/28 -j ACCEPT

iptables -t nat -I POSTROUTING 1 -s 172.24.4.224/28 -j MASQUERADE

1.4 VLAN 模式

Vlan 模式下的系统架构跟 GRE 模式下类似,如图表 3 所示。需要注意的是,在 vlan 模式下,vlan tag 的转换需要在 br-int 和 br-ethx 两个网桥上进行相互配合。即 br-int 负责从 int-br-et hX 过来的包(带外部 vlan)转换为内部 vlan,而 br-ethx 负责从 phy-br-ethx 过来的包(带内部 vlan)转化为外部的 vlan。

图表 4 Vlan 模式下的系统架构

下面进行一些细节的补充讨论,以 Vlan 作为物理网络隔离的实现。假如要实现同一个租户下两个子网,如图表 2 所示:

图表 5 同一个租户的两个子网

1.4.1 Compute 节点

图表 6 Compute 节点网络示意

查看网桥信息,主要包括两个网桥: br-int 和 br-eth1:

```
[root@Compute ~]# ovs-vsctl show
f758a8b8-2fd0-4a47-ab2d-c49d48304f82
     Bridge "br-eth1"
          Port "phy-br-eth1"
              Interface "phy-br-eth1"
          Port "br-eth1"
              Interface "br-eth1"
                   type: internal
          Port "eth1"
              Interface "eth1"
     Bridge br-int
          Port "qvoXXX"
              tag: 1
              Interface "qvoXXX"
         Port "qvoYYY"
              tag: 1
              Interface "qvoYYY"
         Port "qvoZZZ"
               tag: 2
               Interface "qvoZZZ"
```

Port "qvoWWW"

tag: 2
Interface "qvoWWW"

Port "int-br-eth1"
Interface "int-br-eth1"

Port br-int
Interface br-int

type: internal

类似 GRE 模式下, br-int 负责租户隔离, br-ethl 负责跟计算节点外的网络通信。

在 Vlan 模式下,租户的流量隔离是通过 vlan 来进行的,因此此时包括两种 vlan,虚拟机在 Compute Node 内流量带有的 local vlan 和在 Compute Node 之外物理网络上隔离不同租户的 vlan。

br-int 和 br-eth1 分别对从端口 int-br-eth1 和 phy-br-eth1 上到达的网包进行 vlan tag 的处理。 此处有两个网,分别带有两个 vlan tag(内部 tag1 对应外部 tag101,内部 tag2 对应外部 tag102)。 其中,安全组策略仍然在 qbr 相关的 iptables 上实现。

1.4.1.1 br-int

与 GRE 模式不同的是,br-int 完成从 br-eth1 上过来流量(从口 int-br-eth1 到达)的 vlan ta g 转换,可能的规则为

```
#ovs-ofctl dump-flows br-int

cookie=0x0, duration=100.795s, table=0, n_packets=6, n_bytes=468, idle_age=90,
priority=2,in_port=3 actions=drop

cookie=0x0, duration=97.069s, table=0, n_packets=22, n_bytes=6622, idle_age=31,
priority=3,in_port=3,dl_vlan=101 actions=mod_vlan_vid:1,NORMAL

cookie=0x0, duration=95.781s, table=0, n_packets=8, n_bytes=1165, idle_age=11,
priority=3,in_port=3,dl_vlan=102 actions=mod_vlan_vid:2,NORMAL

cookie=0x0, duration=103.626s, table=0, n_packets=47, n_bytes=13400, idle_age=11,
priority=1 actions=NORMAL
```

1.4.1.2 br-eth1

br-ethl 上负责从 br-int 上过来的流量(从口 phy-br-ethl 到达),实现 local vlan 到外部 vlan 的转换。

```
#ovs-ofctl dump-flows br-eth0

NXST_FLOW reply (xid=0x4):

cookie=0x0, duration=73.461s, table=0, n_packets=51, n_bytes=32403, idle_age=2,

hard_age=65534, priority=4,in_port=4,dl_vlan=1 actions=mod_vlan_vid:101,NORMAL

cookie=0x0, duration=83.461s, table=0, n_packets=51, n_bytes=32403, idle_age=2,

hard_age=65534, priority=4,in_port=4,dl_vlan=2 actions=mod_vlan_vid:102,NORMAL
```

```
cookie=0x0, duration=651.538s, table=0, n_packets=72, n_bytes=3908, idle_age=2574, hard_age=65534, priority=2,in_port=4 actions=drop cookie=0x0, duration=654.002s, table=0, n_packets=31733, n_bytes=6505880, idle_age=2, hard_age=65534, priority=1 actions=NORMAL
```

1.4.2 Network 节点

图表 7 Network 节点网络示意

类似 GRE 模式下, br-eth1 收到到达的网包, int-br-eth1 和 phy-br-eth1 上分别进行 vlan 转换, 保证到达 br-int 上的网包都是带有内部 vlan tag, 到达 br-eth1 上的都是带有外部 vlan tag。br-e x 则完成到 OpenStack 以外网络的连接。

查看网桥信息,包括三个网桥,br-eth1、br-int 和 br-ex。

```
#ovs
3bd78da8-d3b5-4112-a766-79506a7e2801

Bridge br-ex

Port "qg-VVV"

Interface "qg-VVV"

type: internal

Port br-ex

Interface br-ex

type: internal

Port "eth0"

Interface "eth0"
```

```
Bridge br-int
     Port br-int
          Interface br-int
               type: internal
     Port "int-br-eth1"
          Interface "int-br-eth0"
     Port "tapXXX"
          tag: 1
          Interface "tapXXX"
               type: internal
    Port "tapWWW"
          tag: 2
          Interface "tapWWW"
               type: internal
     Port "qr-YYY"
          tag: 1
          Interface "qr-YYY"
               type: internal
     Port "qr-ZZZ"
          tag: 2
          Interface "qr-ZZZ"
               type: internal
Bridge "br-eth1"
     Port "phy-br-eth1"
          Interface "phy-br-eth1"
     Port "br-eth1"
          Interface "br-eth1"
               type: internal
     Port "eth1"
          Interface "eth1"
```

1.4.2.1 br-eth1

br-ethl 主要负责把物理网络上外部 vlan 转化为 local vlan。

```
#ovs-ofctl dump-flows br-eth1

NXST_FLOW reply (xid=0x4):

cookie=0x0, duration=144.33s, table=0, n_packets=13, n_bytes=28404, idle_age=24, hard_age=65534, priority=4,in_port=5,dl_vlan=101 actions=mod_vlan_vid:1,NORMAL

cookie=0x0, duration=144.33s, table=0, n_packets=13, n_bytes=28404, idle_age=24, hard_age=65534, priority=4,in_port=5,dl_vlan=102 actions=mod_vlan_vid:2,NORMAL
```

cookie=0x0, duration=608.373s, table=0, n_packets=23, n_bytes=1706, idle_age=65534, hard_age=65534, priority=2,in_port=5 actions=drop cookie=0x0, duration=675.373s, table=0, n_packets=58, n_bytes=10625, idle_age=24, hard age=65534, priority=1 actions=NORMAL

1.4.2.2 br-int

br-int 上挂载了大量的 agent 来提供各种网络服务,另外负责对发往 br-eth1 的流量,实现 l ocal vlan 转化为外部 vlan。

#ovofd br-int

NXST FLOW reply (xid=0x4):

cookie=0x0, duration=147294.121s, table=0, n_packets=224, n_bytes=33961, idle_age=13, hard_age=65534, priority=3,in_port=4,dl_vlan=1 actions=mod_vlan_vid:101,NORMAL

cookie=0x0, duration=603538.84s, table=0, n_packets=19, n_bytes=2234, idle_age=18963, hard age=65534, priority=2,in port=4 actions=drop

cookie=0x0, duration=603547.134s, table=0, n_packets=31901, n_bytes=6419756, idle_age=13, hard_age=65534, priority=1 actions=NORMAL

dnsmasq 负责提供 DHCP 服务,绑定到某个特定的名字空间上,每个需要 DHCP 服务的租户网络有自己专属隔离的 DHCP 服务(图中的 tapXXX 和 tapWWW 上各自监听了一个 dnsmas q)。

路由是 L3 agent 来实现,每个子网在 br-int 上有一个端口 (qr-YYY 和 qr-ZZZ,已配置 IP,分别是各自内部子网的网关),L3 agent 绑定到上面。要访问外部的公共网络,需要通过 L3 agent 发出,而不是经过 int-br-ex 到 phy-br-ex (实际上并没有网包从这个 veth pair 传输)。如果要使用外部可见的 floating IP,L3 agent 仍然需要通过 iptables 来进行 NAT。

每个 L3 agent 或 dnsmasq 都在各自独立的名字空间中,如图表 5 所示,其中同一租户的两个子网都使用了同一个路由器。

图表 8 每个网络功能进程都在自己的名字空间中

对于子网使用不同路由器的情况,多个路由器会在自己独立的名字空间中。例如要实现两个租户的两个子网的情况,如图表 6 所示。

图表 9 两个租户的两个子网的结构

这种情况下,网络节点上的名字空间如图表 7 所示。

图表 10 两个租户两个子网情况下的名字空间

1.4.2.3 br-ex

br-ex 要做的事情很简单,只需要正常转发即可。

```
#ovofd br-ex
NXST_FLOW reply (xid=0x4):
cookie=0x0, duration=6770.969s, table=0, n_packets=5411, n_bytes=306944, idle_age=0,
hard_age=65534, priority=0 actions=NORMAL
```

1.5 Security Group

Security group 通过 Linux IPtables 来实现,为此,在 Compute 节点上引入了 qbr***这样的 Linux 传统 bridge (iptables 规则目前无法加载到直接挂在到 ovs 的 tap 设备上)。

首先在 Control 节点上用 neutron port-list 命令列出虚拟机的端口 id,例如:


```
| 583c7038-d341-41ec-a0d1-0cd2c33866ca | fa:16:3e:9c:dc:3a | {"subnet_id": "a2456a2c-5eea-416d-8757-d10bc0aa2aaa", "ip_address": "192.168.0.2"} | 9b2db4ac-3145-401c-8dc6-486ca6e303b6 | fa:16:3e:4e:f1:b5 | {"subnet_id": "ea4ed31b-e05a-4735-8c3f-9b430e656b64", "ip_address": "192.168.122.200"} | c5a7d51b-9934-40bd-befa-adff840462d2 | fa:16:3e:21:1d:00 | {"subnet_id": "ea4ed31b-e05a-4735-8c3f-9b430e656b64", "ip_address": "192.168.122.201"} | db2f5a49-7c0d-45dd-acad-908931f9a654 | fa:16:3e:17:5c:36 | {"subnet_id": "a2456a2c-5eea-416d-8757-d10bc0aa2aaa", "ip_address": "192.168.0.3"} |
```

其中 id 的前 10 位数字被用作虚机对外连接的 qbr(同时也是 tap 口)的 id。i 或 o 加上前 9 位数字被用作安全组 chain 的 id。

所有的规则默认都在 Compute 节点上的 filter 表(默认表)中实现,分别来查看 filter 表的 INPUT、OUTPUT、FORWARD 三条链上的规则。

在 Compute 节点上,可以用 iptables --line-numbers -vnL [CHAIN]来获得 filter 表(可以指定某个链上的)规则。

1.5.1 INPUT

#iptal	#iptablesline-numbers -vnL INPUT									
Chain INPUT (policy ACCEPT 0 packets, 0 bytes)										
num	pkts b	ytes target	prot op	t in		out	sour	ce	destination	
1	360K	56M neutr	on-open	vsw	i-IN	PUT all		* *	0.0.0.0/0	
0.0.0.	0/0									
2	10583 2	146K ACCEPT	tcp		*	*		192.168.122.100	0.0.0.0/0	
multi	port dpo	rts 5666 /* 001	nagios-n	rpe	inco	ming 192.	168.1	22.100 */		
3	846 5	0966 ACCEPT	tcp		*	*		192.168.122.100	0.0.0.0/0	
multi	port dpo	rts 5900:5999 /*	* 001 nov	va c	omp	ute incom	ing 19	2.168.122.100 */		
4	1033K	894M ACCEPT	all		*	*		0.0.0.0/0	0.0.0.0/0	
state	RELATED	,ESTABLISHED								
5	760 6	3840 ACCEPT	icmp		*	*	(0.0.0.0/0	0.0.0.0/0	
6	1	60 ACCEPT	all		lo	*	0	.0.0.0/0	0.0.0.0/0	
7	977 5	8620 ACCEPT	tcp		*	*		0.0.0.0/0	0.0.0.0/0	
state	NEW tcp	dpt:22								
8	3899 1	L194K REJECT	all		*	*		0.0.0.0/0	0.0.0.0/0	
reject	-with icr	np-host-prohibit	ed:							

可以看到,跟安全组相关的规则被重定向到 neutron-openvswi-INPUT。

查看其规则,只有一条。

```
#iptables --line-numbers -vnL neutron-openvswi-INPUT
Chain neutron-openvswi-INPUT (1 references)
num pkts bytes target prot opt in out source destination
```

1	0	0 neutron-openvswi-o583c7038-d	all	 *	*	0.0.0.0/0
0.0.0.0/0		PHYSDEV matchphysdev-in tap!				_

重定向到 neutron-openvswi-o583c7038-d。

#iptablesline-numbers -vnL neutron-openvswi-o583c7038-d									
Chain neutron-openvswi-o583c7038-d (2 references)									
num pkts bytes target prot opt in out source	destination								
1 3894 1199K RETURN udp * *	0.0.0.0/0								
0.0.0.0/0 udp spt:68 dpt:67									
2 4282 1536K neutron-openvswi-s583c7038-d all * *	0.0.0.0/0								
0.0.0.0/0									
3 0 0 DROP udp * *	0.0.0.0/0								
0.0.0.0/0 udp spt:67 dpt:68									
4 0 0 DROP all * * 0.0.0.0/0	0.0.0.0/0								
state INVALID									
5 3971 1510K RETURN all * * 0.0.0.0/0	0.0.0.0/0								
state RELATED,ESTABLISHED									
6 311 25752 RETURN all * * 0.0.0.0/0	0.0.0.0/0								
7 0 0 neutron-openvswi-sg-fallback all * *	0.0.0.0/0								
0.0.0.0/0									

如果是 vm 发出的 dhcp 请求,直接通过,否则转到 neutron-openvswi-s583c7038-d。

#iptables --line-numbers -vnL neutron-openvswi-s583c7038-d
Chain neutron-openvswi-s583c7038-d (1 references)
num pkts bytes target prot opt in out source destination
1 4284 1537K RETURN all -- * * 192.168.0.2 0.0.0.0/0
MAC FA:16:3E:9C:DC:3A
2 0 0 DROP all -- * * 0.0.0.0/0 0.0.0.0/0

这条 chain 主要检查从 vm 发出来的网包,是否是 openstack 所分配的 IP 和 MAC,如果不匹配,则禁止通过。这将防止利用 vm 上进行一些伪装地址的攻击。

1.5.2 OUTPUT

#iptab	#iptablesline-numbers -vnLablesline-numbers -vnL OUTPUT								
Chain	Chain OUTPUT (policy ACCEPT 965K packets, 149M bytes)								
num	pkts byt	es target	prot opt in	out		sourc	e		destination
1	481K	107M	neutron-filter-top	all		*		*	0.0.0.0/0
0.0.0.0)/0								
2	481K	107M ne	utron-openvswi-OU	TPUT	all		*	*	0.0.0.0/0
0.0.0.0)/0								

分别跳转到 neutron-filter-top 和 neutron-openvswi-OUTPUT。

#iptables --line-numbers -vnLables --line-numbers -vnL neutron-filter-top

Chain neutron-filter-top (2 references)

num pkts bytes target prot opt in out source destination
1 497K 112M neutron-openvswi-local all -- * * 0.0.0.0/0

0.0.0.0/0

跳转到 neutron-openvswi-local。

#iptables --line-numbers -vnLables --line-numbers -vnL neutron-openvswi-OUTPUT Chain neutron-openvswi-OUTPUT (1 references)

num pkts bytes target prot opt in out source destination

该 chain 目前无规则。

#iptables --line-numbers -vnLables --line-numbers -vnL neutron-openvswi-local
Chain neutron-openvswi-local (1 references)
num pkts bytes target prot opt in out source destination

该 chain 目前也无规则。

1.5.3 FORWARD

FORWARD chain 上主要实现安全组的功能。用户在配置缺省安全规则时候(例如允许 ssh 到 vm,允许 ping 到 vm),影响该 chain。

#iptables --line-numbers -vnLables --line-numbers -vnL FORWARD Chain FORWARD (policy ACCEPT 0 packets, 0 bytes) destination num pkts bytes target prot opt in out source 16203 5342K neutron-filter-top 0.0.0.0/0 0.0.0.0/0 16203 5342K neutron-openvswi-FORWARD 0.0.0.0/00.0.0.0/0 all 0 O REJECT 0.0.0.0/00.0.0.0/0 reject-with icmp-host-prohibited

同样跳转到 neutron-filter-top,无规则。跳转到 neutron-openvswi-FORWARD。

#iptables --line-numbers -vnLables --line-numbers -vnL neutron-openvswi-FORWARD

Chain neutron-openvswi-FORWARD (1 references)

num pkts bytes target prot opt in out source destination

1 8170 2630K neutron-openvswi-sg-chain all -- * * 0.0.0.0/0

0.0.0.0/0 PHYSDEV match --physdev-out tap583c7038-d3 --physdev-is-bridged

2 8156 2729K neutron-openvswi-sg-chain all -- * * 0.0.0.0/0

0.0.0.0/0 PHYSDEV match --physdev-in tap583c7038-d3 --physdev-is-bridged

neutron-openvswi-FORWARD将匹配所有进出 tap-XXX 端口的流量。

#iptables --line-numbers -vnLables --line-numbers -vnL neutron-openvswi-sg-chain
Chain neutron-openvswi-sg-chain (2 references)
num pkts bytes target prot opt in out source destination

1	8170 2630K	neutron-op	envswi-i	583c7038	8-d	all		*	*	0.0.0.0/0
0.0.0.0/	0	PHYSDEV r	match	physdev-	out ta	p583	3c70	38-d3	physdev-is-	bridged
2	8156 2729K	neutron-ope	envswi-c	583c703	8-d	all		*	*	0.0.0.0/0
0.0.0.0/	0	PHYSDEV r	match	physdev-i	in tap	583c	7038	3-d3	physdev-is-b	ridged
3 1	2442 4163K A	ACCEPT	all	*	*		0.0.	0.0/0		0.0.0.0/0

如果是网桥从 tap-XXX 端口发出到 VM 的流量,则跳转到 neutron-openvswi-i9LETTERID; 如果是从 tap-XXX 端口进入到网桥的(即 vm 发出来的)流量,则跳转到 neutron-openvswi-o9 LETTERID。

#iptablesline-numbers -vnLablesline-numbers -vnL neutron-openvswi-i583c7038-d									
Chain neutron-openvswi-i583c7038-d (1 references)									
num pkts bytes to	arget prot op	ot in	out	source	destination				
1 0 0	DROP all	*	*	0.0.0.0/0	0.0.0.0/0				
state INVALID									
2 400 43350	RETURN all	*	*	0.0.0.0/0	0.0.0.0/0				
state RELATED,ESTA	BLISHED								
3 1	60 RETURN		tcp	* *	0.0.0.0/0				
0.0.0.0/0	tcp dpt:22								
4 1	84 RETURN		icmp	* *	0.0.0.0/0				
0.0.0.0/0									
5 3885 139	91K RETURN	udp	*	*	192.168.0.3				
0.0.0.0/0	udp spt:67 dpt:	68							
6 3885 1197	C neutron-openvs	wi-sg-fall	lback all	*	* 0.0.0.0/0				
0.0.0.0/0									

neutron-openvswi-i9LETTERID 允许安全组中配置的策略(允许 ssh、ping 等)和 dhcp repl y 通过。默认的 neutron-openvswi-sg-fallback 将 drop 所有流量。

#iptablesline-numbers -vnLablesline-numbers -vnL neutron-openvswi-o583c7038-d									
Chain neutron-openvswi-o583c7038-d (2 references)									
num pkts bytes target p	orot opt in	out	source	destination					
1 3886 1197K RETUR	RN	udp	* *	0.0.0.0/0					
0.0.0.0/0 udp spt:6	8 dpt:67								
2 4274 1533K neutron-op	oenvswi-s5	83c7038-d	all * *	0.0.0.0/0					
0.0.0.0/0									
3 0 0 DR	OP	udp	* *	0.0.0.0/0					
0.0.0.0/0 udp spt:6	7 dpt:68								
4 0 0 DROP	all	* *	0.0.0.0/0	0.0.0.0/0					
state INVALID	state INVALID								
5 3963 1507K RETURN	all	* *	0.0.0.0/0	0.0.0.0/0					
state RELATED,ESTABLISHED									
6 311 25752 RETURN	all	* *	0.0.0.0/0	0.0.0.0/0					

```
7 0 0 neutron-openvswi-sg-fallback all -- * * 0.0.0.0/0
```

neutron-openvswi-o9LETTERID 将跳转到 neutron-openvswi-s583c7038-d, 允许 DHCP Request 和匹配 VM 的源 IP 和源 MAC 的流量通过。

1.5.4 整体逻辑

整体逻辑如图表 3 所示。

图表 11 OpenStack 中 iptables 的整体逻辑

1.5.5 快速查找安全组规则

从前面分析可以看出,某个 vm 的安全组相关规则的 chain 的名字,跟 vm 的 id 的前 9 个字符有关。

因此,要快速查找 qbr-XXX 上相关的 iptables 规则,可以用 iptables -S 列出(默认是 filter 表)所有链上的规则,其中含有 id 的链即为虚拟机相关的安全组规则。其中--physdev-in 表示即将进入某个网桥的端口,--physdev-out 表示即将从某个网桥端口发出。

```
#iptables -S |grep tap583c7038-d3
-A neutron-openvswi-FORWARD -m physdev --physdev-out tap583c7038-d3
--physdev-is-bridged -j neutron-openvswi-sg-chain
```

-A neutron-openvswi-FORWARD -m physdev --physdev-in tap583c7038-d3 --physdev-is-bridged -j neutron-openvswi-sg-chain

-A neutron-openvswi-INPUT -m physdev --physdev-in tap583c7038-d3 --physdev-is-bridged -j neutron-openvswi-o583c7038-d

-A neutron-openvswi-sg-chain -m physdev --physdev-out tap583c7038-d3 --physdev-is-bridged -- j neutron-openvswi-i583c7038-d

-A neutron-openvswi-sg-chain -m physdev --physdev-in tap583c7038-d3 --physdev-is-bridged -j neutron-openvswi-o583c7038-d

可以看出,进出 tap-XXX 口的 FORWARD 链上的流量都被扔到了 neutron-openvswi-sg-chain 这个链, neutron-openvswi-sg-chain 上是 security group 具体的实现(两条规则,访问虚拟机的流量扔给 neutron-openvswi-i583c7038-d; 从虚拟机出来的扔给 neutron-openvswi-o583c7038-d)。

1.5.6 其它

安全组在 Havana 版本中,默认是开启的,如果安装完毕后发现找不到 qbr-*网桥,则可以 检查在 nova.conf 里面是否设置以下内容:

libvirt vif driver=nova.virt.libvirt.vif.LibvirtHybridOVSBridgeDriver

1.6 参考

- [1] http://openstack.redhat.com/Networking_in_too_much_detail
- [2] http://masimum.inf.um.es/fjrm/2013/12/26/the-journey-of-a-packet-within-an-openstack-cloud/
- [3] http://packetpushers.net/openstack-neutron-network-implementation-in-linux/
- [4] http://masimum.inf.um.es/fjrm/2013/12/26/the-journey-of-a-packet-within-an-openstack-cloud/
- [5] http://blog.scottlowe.org/2013/09/04/introducing-linux-network-namespaces/
- [6] http://assafmuller.wordpress.com/2013/10/14/gre-tunnels-in-openstack-neutron/
- [7] http://lwn.net/Articles/580893/

1.7 附: 安装配置

本文中示例以 havana 版本为例。

控制节点和计算节点分开,均为双网卡,eth0 为 openstack 内部数据网,eth1 为 openstack 管理网 (同时为外部控制网)。

Managment Network: 192.168.122.0/24

Data Network: 10.0.0.0/24

Control Server: 10.0.0.100 (eth0), 192.168.122.100 (eth1) Compute Server: 10.0.0.101 (eth0), 192.168.122.101 (eth1)

安装利用 redhat 的 rdo。

安装和部署所采用的工具,可以从 https://github.com/yeasy/openstack-tool 下载。

1.7.1 RDO answer 文件-GRE 模式

```
[general]
# Path to a Public key to install on servers. If a usable key has not
# been installed on the remote servers the user will be prompted for a
# password and this key will be installed so the password will not be
# required again
CONFIG_SSH_KEY=/root/.ssh/id_rsa.pub
'# Set to 'y' if you would like Packstack to install MySQL
CONFIG MYSQL INSTALL=y
# Set to 'y' if you would like Packstack to install OpenStack Image
# Service (Glance)
CONFIG_GLANCE_INSTALL=y
# Set to 'y' if you would like Packstack to install OpenStack Block
# Storage (Cinder)
CONFIG_CINDER_INSTALL=y
# Set to 'y' if you would like Packstack to install OpenStack Compute
# (Nova)
CONFIG NOVA INSTALL=y
# Set to 'y' if you would like Packstack to install OpenStack
# Networking (Neutron)
```

```
CONFIG_NEUTRON_INSTALL=y
# Set to 'y' if you would like Packstack to install OpenStack
# Dashboard (Horizon)
CONFIG HORIZON INSTALL=y
# Set to 'y' if you would like Packstack to install OpenStack Object
# Storage (Swift)
CONFIG_SWIFT_INSTALL=n
# Set to 'y' if you would like Packstack to install OpenStack
# Metering (Ceilometer)
CONFIG_CEILOMETER_INSTALL=y
# Set to 'y' if you would like Packstack to install OpenStack
# Orchestration (Heat)
CONFIG_HEAT_INSTALL=y
# Set to 'y' if you would like Packstack to install the OpenStack
# Client packages. An admin "rc" file will also be installed
CONFIG_CLIENT_INSTALL=y
# Comma separated list of NTP servers. Leave plain if Packstack
# should not install ntpd on instances.
CONFIG_NTP_SERVERS=pool.ntp.org
# Set to 'y' if you would like Packstack to install Nagios to monitor
# OpenStack hosts
CONFIG NAGIOS INSTALL=n
# Comma separated list of servers to be excluded from installation in
# case you are running Packstack the second time with the same answer
# file and don't want Packstack to touch these servers. Leave plain if
# you don't need to exclude any server.
EXCLUDE SERVERS=
# Set to 'y' if you want to run OpenStack services in debug mode.
# Otherwise set to 'n'.
CONFIG_DEBUG_MODE=n
# The IP address of the server on which to install MySQL
```

```
CONFIG_MYSQL_HOST=192.168.122.100
# Username for the MySQL admin user
CONFIG MYSQL USER=root
# Password for the MySQL admin user
CONFIG_MYSQL_PW=root
# The IP address of the server on which to install the QPID service
CONFIG QPID HOST=192.168.122.100
# Enable SSL for the QPID service
CONFIG_QPID_ENABLE_SSL=n
# Enable Authentication for the QPID service
CONFIG_QPID_ENABLE_AUTH=n
# The password for the NSS certificate database of the QPID service
CONFIG_QPID_NSS_CERTDB_PW=4afeb1315f9341ec994ccfb5c0ace171
# The port in which the QPID service listens to SSL connections
CONFIG_QPID_SSL_PORT=5671
# The filename of the certificate that the QPID service is going to
# use
CONFIG_QPID_SSL_CERT_FILE=/etc/pki/tls/certs/qpid_selfcert.pem
# The filename of the private key that the QPID service is going to
# use
CONFIG QPID SSL KEY FILE=/etc/pki/tls/private/qpid selfkey.pem
# Auto Generates self signed SSL certificate and key
CONFIG_QPID_SSL_SELF_SIGNED=y
# User for gpid authentication
CONFIG_QPID_AUTH_USER=qpid_user
# Password for user authentication
CONFIG_QPID_AUTH_PASSWORD=19f1540f541d402e
# The IP address of the server on which to install Keystone
```

```
CONFIG_KEYSTONE_HOST=192.168.122.100
# The password to use for the Keystone to access DB
CONFIG KEYSTONE DB PW=0a9fbe8bcfc14091
# The token to use for the Keystone service api
CONFIG_KEYSTONE_ADMIN_TOKEN=bfab1155f8944cb49dc0d745fa52ec51
# The password to use for the Keystone admin user
CONFIG KEYSTONE ADMIN PW=admin
# The password to use for the Keystone demo user
CONFIG_KEYSTONE_DEMO_PW=a93b7421f3ae4b18
# Kestone token format. Use either UUID or PKI
CONFIG_KEYSTONE_TOKEN_FORMAT=PKI
# The IP address of the server on which to install Glance
CONFIG_GLANCE_HOST=192.168.122.100
# The password to use for the Glance to access DB
CONFIG GLANCE DB PW=78c3cc98e8a94fef
# The password to use for the Glance to authenticate with Keystone
CONFIG GLANCE KS PW=e47ccb960cb74c4c
# The IP address of the server on which to install Cinder
CONFIG_CINDER_HOST=192.168.122.100
# The password to use for the Cinder to access DB
CONFIG_CINDER_DB_PW=0042879961db474e
# The password to use for the Cinder to authenticate with Keystone
CONFIG CINDER KS PW=ac0b3965e2a34e4f
# The Cinder backend to use, valid options are: lvm, gluster, nfs
CONFIG_CINDER_BACKEND=lvm
# Create Cinder's volumes group. This should only be done for testing
# on a proof-of-concept installation of Cinder. This will create a
# file-backed volume group and is not suitable for production usage.
```

```
CONFIG_CINDER_VOLUMES_CREATE=y
# Cinder's volumes group size. Note that actual volume size will be
# extended with 3% more space for VG metadata.
CONFIG CINDER VOLUMES SIZE=20G
# A single or comma separated list of gluster volume shares to mount,
# eg: ip-address:/vol-name, domain:/vol-name
CONFIG CINDER GLUSTER MOUNTS=
# A single or comma seprated list of NFS exports to mount, eg: ip-
# address:/export-name
CONFIG_CINDER_NFS_MOUNTS=
# The IP address of the server on which to install the Nova API
# service
CONFIG_NOVA_API_HOST=192.168.122.100
# The IP address of the server on which to install the Nova Cert
# service
CONFIG_NOVA_CERT_HOST=192.168.122.100
# The IP address of the server on which to install the Nova VNC proxy
CONFIG_NOVA_VNCPROXY_HOST=192.168.122.100
# A comma separated list of IP addresses on which to install the Nova
# Compute services
CONFIG_NOVA_COMPUTE_HOSTS=192.168.122.101
# The IP address of the server on which to install the Nova Conductor
# service
CONFIG_NOVA_CONDUCTOR_HOST=192.168.122.100
# The password to use for the Nova to access DB
CONFIG NOVA DB PW=622b61c95e334c36
# The password to use for the Nova to authenticate with Keystone
CONFIG_NOVA_KS_PW=0573f5812091497a
# The IP address of the server on which to install the Nova Scheduler
# service
```

```
CONFIG_NOVA_SCHED_HOST=192.168.122.100
# The overcommitment ratio for virtual to physical CPUs. Set to 1.0
# to disable CPU overcommitment
CONFIG NOVA SCHED CPU ALLOC RATIO=16.0
# The overcommitment ratio for virtual to physical RAM. Set to 1.0 to
# disable RAM overcommitment
CONFIG NOVA SCHED RAM ALLOC RATIO=1.5
# Private interface for Flat DHCP on the Nova compute servers
CONFIG_NOVA_COMPUTE_PRIVIF=eth0
# The list of IP addresses of the server on which to install the Nova
# Network service
CONFIG_NOVA_NETWORK_HOSTS=192.168.122.100
# Nova network manager
CONFIG_NOVA_NETWORK_MANAGER=nova.network.manager.FlatDHCPManager
# Public interface on the Nova network server
CONFIG NOVA NETWORK PUBIF=eth1
# Private interface for network manager on the Nova network server
CONFIG NOVA NETWORK PRIVIF=eth0
# IP Range for network manager
CONFIG_NOVA_NETWORK_FIXEDRANGE=192.168.32.0/22
# IP Range for Floating IP's
CONFIG_NOVA_NETWORK_FLOATRANGE=10.3.4.0/22
# Name of the default floating pool to which the specified floating
# ranges are added to
CONFIG NOVA NETWORK DEFAULTFLOATINGPOOL=nova
# Automatically assign a floating IP to new instances
CONFIG_NOVA_NETWORK_AUTOASSIGNFLOATINGIP=n
# First VLAN for private networks
CONFIG_NOVA_NETWORK_VLAN_START=100
```

```
# Number of networks to support
CONFIG_NOVA_NETWORK_NUMBER=1
# Number of addresses in each private subnet
CONFIG_NOVA_NETWORK_SIZE=255
# The IP addresses of the server on which to install the Neutron
# server
CONFIG_NEUTRON_SERVER_HOST=192.168.122.100
# The password to use for Neutron to authenticate with Keystone
CONFIG_NEUTRON_KS_PW=906aae1c5727416b
# The password to use for Neutron to access DB
CONFIG_NEUTRON_DB_PW=4ef2c9f1292c4feb
# A comma separated list of IP addresses on which to install Neutron
# L3 agent
CONFIG_NEUTRON_L3_HOSTS=192.168.122.100
# The name of the bridge that the Neutron L3 agent will use for
# external traffic, or 'provider' if using provider networks
CONFIG_NEUTRON_L3_EXT_BRIDGE=br-ex
# A comma separated list of IP addresses on which to install Neutron
# DHCP agent
CONFIG_NEUTRON_DHCP_HOSTS=192.168.122.100
# A comma separated list of IP addresses on which to install Neutron
# LBaaS agent
CONFIG_NEUTRON_LBAAS_HOSTS=
# The name of the L2 plugin to be used with Neutron
CONFIG NEUTRON L2 PLUGIN=openvswitch
# A comma separated list of IP addresses on which to install Neutron
```

CONFIG_NEUTRON_METADATA_HOSTS=192.168.122.100

A comma separated list of IP addresses on which to install Neutron

metadata agent

```
# metadata agent
CONFIG NEUTRON METADATA PW=31620943f151436c
# A comma separated list of network type driver entrypoints to be
# loaded from the neutron.ml2.type drivers namespace.
CONFIG_NEUTRON_ML2_TYPE_DRIVERS=local
# A comma separated ordered list of network_types to allocate as
# tenant networks. The value 'local' is only useful for single-box
# testing but provides no connectivity between hosts.
CONFIG_NEUTRON_ML2_TENANT_NETWORK_TYPES=local
# A comma separated ordered list of networking mechanism driver
# entrypoints to be loaded from the neutron.ml2.mechanism drivers
# namespace.
CONFIG_NEUTRON_ML2_MECHANISM_DRIVERS=openvswitch
# A comma separated list of physical_network names with which flat
# networks can be created. Use * to allow flat networks with arbitrary
# physical network names.
CONFIG_NEUTRON_ML2_FLAT_NETWORKS=*
# A comma separated list of <physical network>:<vlan min>:<vlan max>
# or <physical_network> specifying physical_network names usable for
# VLAN provider and tenant networks, as well as ranges of VLAN tags on
# each available for allocation to tenant networks.
CONFIG_NEUTRON_ML2_VLAN_RANGES=
# A comma separated list of <tun min>:<tun max> tuples enumerating
# ranges of GRE tunnel IDs that are available for tenant network
# allocation. Should be an array with tun_max +1 - tun_min > 1000000
CONFIG_NEUTRON_ML2_TUNNEL_ID_RANGES=
# Multicast group for VXLAN. If unset, disables VXLAN enable sending
# allocate broadcast traffic to this multicast group. When left
# unconfigured, will disable multicast VXLAN mode. Should be an
# Multicast IP (v4 or v6) address.
CONFIG_NEUTRON_ML2_VXLAN_GROUP=
# A comma separated list of <vni min>:<vni max> tuples enumerating
```

ranges of VXLAN VNI IDs that are available for tenant network

```
# allocation. Min value is 0 and Max value is 16777215.
CONFIG NEUTRON ML2 VNI RANGES=
# The name of the L2 agent to be used with Neutron
CONFIG NEUTRON L2 AGENT=openvswitch
# The type of network to allocate for tenant networks (eg. vlan,
# local)
CONFIG NEUTRON LB TENANT NETWORK TYPE=local
# A comma separated list of VLAN ranges for the Neutron linuxbridge
# plugin (eg. physnet1:1:4094,physnet2,physnet3:3000:3999)
CONFIG_NEUTRON_LB_VLAN_RANGES=
# A comma separated list of interface mappings for the Neutron
# linuxbridge plugin (eg. physnet1:br-eth1,physnet2:br-eth2,physnet3
#:br-eth3)
CONFIG_NEUTRON_LB_INTERFACE_MAPPINGS=
# Type of network to allocate for tenant networks (eg. vlan, local,
# gre, vxlan)
CONFIG_NEUTRON_OVS_TENANT_NETWORK_TYPE=gre
# A comma separated list of VLAN ranges for the Neutron openvswitch
# plugin (eg. physnet1:1:4094,physnet2,physnet3:3000:3999)
CONFIG_NEUTRON_OVS_VLAN_RANGES=
# A comma separated list of bridge mappings for the Neutron
# openvswitch plugin (eg. physnet1:br-eth1,physnet2:br-eth2,physnet3
#:br-eth3)
CONFIG_NEUTRON_OVS_BRIDGE_MAPPINGS=
# A comma separated list of colon-separated OVS bridge:interface
# pairs. The interface will be added to the associated bridge.
CONFIG NEUTRON OVS BRIDGE IFACES=
# A comma separated list of tunnel ranges for the Neutron openvswitch
# plugin (eg. 1:1000)
CONFIG_NEUTRON_OVS_TUNNEL_RANGES=1:1000
# The interface for the OVS tunnel. Packstack will override the IP
```

```
# address used for tunnels on this hypervisor to the IP found on the
# specified interface. (eg. eth1)
CONFIG_NEUTRON_OVS_TUNNEL_IF=eth0
# VXLAN UDP port
CONFIG_NEUTRON_OVS_VXLAN_UDP_PORT=4789
# The IP address of the server on which to install the OpenStack
# client packages. An admin "rc" file will also be installed
CONFIG OSCLIENT HOST=192.168.122.100
# The IP address of the server on which to install Horizon
CONFIG_HORIZON_HOST=192.168.122.100
# To set up Horizon communication over https set this to "y"
CONFIG_HORIZON_SSL=n
# PEM encoded certificate to be used for ssl on the https server,
# leave blank if one should be generated, this certificate should not
# require a passphrase
CONFIG_SSL_CERT=
# Keyfile corresponding to the certificate if one was entered
CONFIG_SSL_KEY=
# The IP address on which to install the Swift proxy service
# (currently only single proxy is supported)
CONFIG_SWIFT_PROXY_HOSTS=192.168.122.100
# The password to use for the Swift to authenticate with Keystone
CONFIG_SWIFT_KS_PW=85f42ee1d9604761
# A comma separated list of IP addresses on which to install the
# Swift Storage services, each entry should take the format
# <ipaddress>[/dev], for example 127.0.0.1/vdb will install /dev/vdb
# on 127.0.0.1 as a swift storage device(packstack does not create the
# filesystem, you must do this first), if /dev is omitted Packstack
# will create a loopback device for a test setup
CONFIG_SWIFT_STORAGE_HOSTS=192.168.122.100
# Number of swift storage zones, this number MUST be no bigger than
```

```
# the number of storage devices configured
CONFIG_SWIFT_STORAGE_ZONES=1
# Number of swift storage replicas, this number MUST be no bigger
# than the number of storage zones configured
CONFIG_SWIFT_STORAGE_REPLICAS=1
# FileSystem type for storage nodes
CONFIG_SWIFT_STORAGE_FSTYPE=ext4
# Shared secret for Swift
CONFIG_SWIFT_HASH=dcd782d154134ed5
# Size of the swift loopback file storage device
CONFIG SWIFT STORAGE SIZE=2G
# Whether to provision for demo usage and testing
CONFIG_PROVISION_DEMO=n
# The CIDR network address for the floating IP subnet
CONFIG_PROVISION_DEMO_FLOATRANGE=172.24.4.224/28
# Whether to configure tempest for testing
CONFIG_PROVISION_TEMPEST=n
# The uri of the tempest git repository to use
CONFIG_PROVISION_TEMPEST_REPO_URI=https://github.com/openstack/tempest.git
# The revision of the tempest git repository to use
CONFIG PROVISION TEMPEST REPO REVISION=stable/havana
# Whether to configure the ovs external bridge in an all-in-one
# deployment
CONFIG PROVISION ALL IN ONE OVS BRIDGE=n
# The IP address of the server on which to install Heat service
CONFIG_HEAT_HOST=192.168.122.100
# The password used by Heat user to authenticate against MySQL
CONFIG_HEAT_DB_PW=db67579b56ea4bcd
```

```
# The password to use for the Heat to authenticate with Keystone
CONFIG_HEAT_KS_PW=0ecab082910c4fab
# Set to 'y' if you would like Packstack to install Heat CloudWatch
# API
CONFIG_HEAT_CLOUDWATCH_INSTALL=n
# Set to 'y' if you would like Packstack to install Heat
# CloudFormation API
CONFIG_HEAT_CFN_INSTALL=n
# The IP address of the server on which to install Heat CloudWatch
# API service
CONFIG HEAT CLOUDWATCH HOST=192.168.122.100
# The IP address of the server on which to install Heat
# CloudFormation API service
CONFIG_HEAT_CFN_HOST=192.168.122.100
# The IP address of the server on which to install Ceilometer
CONFIG_CEILOMETER_HOST=192.168.122.100
# Secret key for signing metering messages.
CONFIG CEILOMETER SECRET=339bb60f1d79431d
# The password to use for Ceilometer to authenticate with Keystone
CONFIG_CEILOMETER_KS_PW=9364b11a6575405f
# The IP address of the server on which to install the Nagios server
CONFIG NAGIOS HOST=192.168.122.100
# The password of the nagiosadmin user on the Nagios server
CONFIG_NAGIOS_PW=593a5048a8ed4bb8
# To subscribe each server to EPEL enter "y"
CONFIG_USE_EPEL=n
# A comma separated list of URLs to any additional yum repositories
# to install
CONFIG REPO=
```

```
# To subscribe each server with Red Hat subscription manager, include
# this with CONFIG_RH_PW
CONFIG_RH_USER=
# To subscribe each server with Red Hat subscription manager, include
# this with CONFIG_RH_USER
CONFIG_RH_PW=
# To subscribe each server to Red Hat Enterprise Linux 6 Server Beta
# channel (only needed for Preview versions of RHOS) enter "y"
CONFIG_RH_BETA_REPO=n
# To subscribe each server with RHN Satellite, fill Satellite's URL
# here. Note that either satellite's username/password or activation
# key has to be provided
CONFIG_SATELLITE_URL=
# Username to access RHN Satellite
CONFIG_SATELLITE_USER=
# Password to access RHN Satellite
CONFIG_SATELLITE_PW=
# Activation key for subscription to RHN Satellite
CONFIG_SATELLITE_AKEY=
# Specify a path or URL to a SSL CA certificate to use
CONFIG_SATELLITE_CACERT=
# If required specify the profile name that should be used as an
# identifier for the system in RHN Satellite
CONFIG_SATELLITE_PROFILE=
# Comma separated list of flags passed to rhnreg ks. Valid flags are:
# novirtinfo, norhnsd, nopackages
CONFIG_SATELLITE_FLAGS=
# Specify a HTTP proxy to use with RHN Satellite
CONFIG_SATELLITE_PROXY=
# Specify a username to use with an authenticated HTTP proxy
```

```
CONFIG_SATELLITE_PROXY_USER=
# Specify a password to use with an authenticated HTTP proxy.
CONFIG_SATELLITE_PROXY_PW=
```

1.7.2 RDO answer 文件-VLAN 模式

```
[general]
# Path to a Public key to install on servers. If a usable key has not
# been installed on the remote servers the user will be prompted for a
# password and this key will be installed so the password will not be
# required again
CONFIG_SSH_KEY=/root/.ssh/id_rsa.pub
# Set to 'y' if you would like Packstack to install MySQL
CONFIG_MYSQL_INSTALL=y
# Set to 'y' if you would like Packstack to install OpenStack Image
# Service (Glance)
CONFIG GLANCE INSTALL=y
# Set to 'y' if you would like Packstack to install OpenStack Block
# Storage (Cinder)
CONFIG_CINDER_INSTALL=y
# Set to 'y' if you would like Packstack to install OpenStack Compute
# (Nova)
CONFIG_NOVA_INSTALL=y
# Set to 'y' if you would like Packstack to install OpenStack
# Networking (Neutron)
CONFIG_NEUTRON_INSTALL=y
# Set to 'y' if you would like Packstack to install OpenStack
# Dashboard (Horizon)
CONFIG_HORIZON_INSTALL=y
# Set to 'y' if you would like Packstack to install OpenStack Object
# Storage (Swift)
CONFIG SWIFT INSTALL=n
```

```
# Set to 'y' if you would like Packstack to install OpenStack
# Metering (Ceilometer)
CONFIG CEILOMETER INSTALL=y
# Set to 'y' if you would like Packstack to install OpenStack
# Orchestration (Heat)
CONFIG_HEAT_INSTALL=y
# Set to 'y' if you would like Packstack to install the OpenStack
# Client packages. An admin "rc" file will also be installed
CONFIG_CLIENT_INSTALL=y
# Comma separated list of NTP servers. Leave plain if Packstack
# should not install ntpd on instances.
CONFIG_NTP_SERVERS=0.pool.ntp.org,1.pool.ntp.org,2.pool.ntp.org,3.pool.ntp.org
# Set to 'y' if you would like Packstack to install Nagios to monitor
# OpenStack hosts
CONFIG_NAGIOS_INSTALL=y
# Comma separated list of servers to be excluded from installation in
# case you are running Packstack the second time with the same answer
# file and don't want Packstack to touch these servers. Leave plain if
# you don't need to exclude any server.
EXCLUDE_SERVERS=
# Set to 'y' if you want to run OpenStack services in debug mode.
# Otherwise set to 'n'.
CONFIG DEBUG MODE=n
# The IP address of the server on which to install MySQL
CONFIG_MYSQL_HOST=192.168.122.100
# Username for the MySQL admin user
CONFIG_MYSQL_USER=root
# Password for the MySQL admin user
CONFIG_MYSQL_PW=root
# The IP address of the server on which to install the QPID service
```

```
CONFIG_QPID_HOST=192.168.122.100
# Enable SSL for the QPID service
CONFIG QPID ENABLE SSL=n
# Enable Authentication for the QPID service
CONFIG_QPID_ENABLE_AUTH=n
# The password for the NSS certificate database of the QPID service
CONFIG QPID NSS CERTDB PW=4afeb1315f9341ec994ccfb5c0ace171
# The port in which the QPID service listens to SSL connections
CONFIG_QPID_SSL_PORT=5671
# The filename of the certificate that the QPID service is going to
# use
CONFIG_QPID_SSL_CERT_FILE=/etc/pki/tls/certs/qpid_selfcert.pem
# The filename of the private key that the QPID service is going to
# use
CONFIG_QPID_SSL_KEY_FILE=/etc/pki/tls/private/qpid_selfkey.pem
# Auto Generates self signed SSL certificate and key
CONFIG_QPID_SSL_SELF_SIGNED=y
# User for qpid authentication
CONFIG_QPID_AUTH_USER=qpid_user
# Password for user authentication
CONFIG QPID AUTH PASSWORD=19f1540f541d402e
# The IP address of the server on which to install Keystone
CONFIG_KEYSTONE_HOST=192.168.122.100
# The password to use for the Keystone to access DB
CONFIG_KEYSTONE_DB_PW=0a9fbe8bcfc14091
# The token to use for the Keystone service api
CONFIG_KEYSTONE_ADMIN_TOKEN=bfab1155f8944cb49dc0d745fa52ec51
# The password to use for the Keystone admin user
```

```
CONFIG_KEYSTONE_ADMIN_PW=admin
# The password to use for the Keystone demo user
CONFIG KEYSTONE DEMO PW=a93b7421f3ae4b18
# Kestone token format. Use either UUID or PKI
CONFIG_KEYSTONE_TOKEN_FORMAT=PKI
# The IP address of the server on which to install Glance
CONFIG GLANCE HOST=192.168.122.100
# The password to use for the Glance to access DB
CONFIG_GLANCE_DB_PW=78c3cc98e8a94fef
# The password to use for the Glance to authenticate with Keystone
CONFIG_GLANCE_KS_PW=e47ccb960cb74c4c
# The IP address of the server on which to install Cinder
CONFIG_CINDER_HOST=192.168.122.100
# The password to use for the Cinder to access DB
CONFIG CINDER DB PW=0042879961db474e
# The password to use for the Cinder to authenticate with Keystone
CONFIG CINDER KS PW=ac0b3965e2a34e4f
# The Cinder backend to use, valid options are: lvm, gluster, nfs
CONFIG_CINDER_BACKEND=nfs
# Create Cinder's volumes group. This should only be done for testing
# on a proof-of-concept installation of Cinder. This will create a
# file-backed volume group and is not suitable for production usage.
CONFIG_CINDER_VOLUMES_CREATE=y
# Cinder's volumes group size. Note that actual volume size will be
# extended with 3% more space for VG metadata.
CONFIG_CINDER_VOLUMES_SIZE=20G
# A single or comma separated list of gluster volume shares to mount,
# eg: ip-address:/vol-name, domain:/vol-name
CONFIG CINDER GLUSTER MOUNTS=
```

```
# A single or comma seprated list of NFS exports to mount, eg: ip-
# address:/export-name
CONFIG CINDER NFS MOUNTS=192.168.105.78:/home/nfs
# The IP address of the server on which to install the Nova API
# service
CONFIG_NOVA_API_HOST=192.168.122.100
# The IP address of the server on which to install the Nova Cert
# service
CONFIG_NOVA_CERT_HOST=192.168.122.100
# The IP address of the server on which to install the Nova VNC proxy
CONFIG NOVA VNCPROXY HOST=192.168.122.100
# A comma separated list of IP addresses on which to install the Nova
# Compute services
CONFIG_NOVA_COMPUTE_HOSTS=192.168.122.101
# The IP address of the server on which to install the Nova Conductor
# service
CONFIG NOVA CONDUCTOR HOST=192.168.122.100
# The password to use for the Nova to access DB
CONFIG_NOVA_DB_PW=622b61c95e334c36
# The password to use for the Nova to authenticate with Keystone
CONFIG NOVA KS PW=0573f5812091497a
# The IP address of the server on which to install the Nova Scheduler
# service
CONFIG_NOVA_SCHED_HOST=192.168.122.100
# The overcommitment ratio for virtual to physical CPUs. Set to 1.0
# to disable CPU overcommitment
CONFIG_NOVA_SCHED_CPU_ALLOC_RATIO=16.0
# The overcommitment ratio for virtual to physical RAM. Set to 1.0 to
# disable RAM overcommitment
CONFIG_NOVA_SCHED_RAM_ALLOC_RATIO=1.5
```

```
# Private interface for Flat DHCP on the Nova compute servers
CONFIG_NOVA_COMPUTE_PRIVIF=eth0
# The list of IP addresses of the server on which to install the Nova
# Network service
CONFIG_NOVA_NETWORK_HOSTS=192.168.122.100
# Nova network manager
CONFIG NOVA NETWORK MANAGER=nova.network.manager.FlatDHCPManager
# Public interface on the Nova network server
CONFIG_NOVA_NETWORK_PUBIF=eth1
# Private interface for network manager on the Nova network server
CONFIG_NOVA_NETWORK_PRIVIF=eth0
# IP Range for network manager
CONFIG_NOVA_NETWORK_FIXEDRANGE=192.168.32.0/22
# IP Range for Floating IP's
CONFIG_NOVA_NETWORK_FLOATRANGE=10.3.4.0/22
# Name of the default floating pool to which the specified floating
# ranges are added to
CONFIG_NOVA_NETWORK_DEFAULTFLOATINGPOOL=nova
# Automatically assign a floating IP to new instances
CONFIG NOVA NETWORK AUTOASSIGNFLOATINGIP=n
# First VLAN for private networks
CONFIG_NOVA_NETWORK_VLAN_START=100
# Number of networks to support
CONFIG NOVA NETWORK NUMBER=1
# Number of addresses in each private subnet
CONFIG_NOVA_NETWORK_SIZE=255
# The IP addresses of the server on which to install the Neutron
```

server

```
CONFIG_NEUTRON_SERVER_HOST=192.168.122.100
# The password to use for Neutron to authenticate with Keystone
CONFIG NEUTRON KS PW=906aae1c5727416b
# The password to use for Neutron to access DB
CONFIG_NEUTRON_DB_PW=4ef2c9f1292c4feb
# A comma separated list of IP addresses on which to install Neutron
# L3 agent
CONFIG NEUTRON L3 HOSTS=192.168.122.100
# The name of the bridge that the Neutron L3 agent will use for
# external traffic, or 'provider' if using provider networks
CONFIG NEUTRON L3 EXT BRIDGE=br-ex
# A comma separated list of IP addresses on which to install Neutron
# DHCP agent
CONFIG_NEUTRON_DHCP_HOSTS=192.168.122.100
# A comma separated list of IP addresses on which to install Neutron
# LBaaS agent
CONFIG NEUTRON LBAAS HOSTS=
# The name of the L2 plugin to be used with Neutron
CONFIG_NEUTRON_L2_PLUGIN=openvswitch
# A comma separated list of IP addresses on which to install Neutron
# metadata agent
CONFIG NEUTRON METADATA HOSTS=192.168.122.100
# A comma separated list of IP addresses on which to install Neutron
# metadata agent
CONFIG NEUTRON METADATA PW=31620943f151436c
# A comma separated list of network type driver entrypoints to be
# loaded from the neutron.ml2.type_drivers namespace.
CONFIG_NEUTRON_ML2_TYPE_DRIVERS=local
# A comma separated ordered list of network types to allocate as
```

tenant networks. The value 'local' is only useful for single-box

```
# testing but provides no connectivity between hosts.
CONFIG NEUTRON ML2 TENANT NETWORK TYPES=local
# A comma separated ordered list of networking mechanism driver
# entrypoints to be loaded from the neutron.ml2.mechanism drivers
# namespace.
CONFIG_NEUTRON_ML2_MECHANISM_DRIVERS=openvswitch
# A comma separated list of physical network names with which flat
# networks can be created. Use * to allow flat networks with arbitrary
# physical network names.
CONFIG_NEUTRON_ML2_FLAT_NETWORKS=*
# A comma separated list of <physical network>:<vlan min>:<vlan max>
# or <physical network> specifying physical network names usable for
# VLAN provider and tenant networks, as well as ranges of VLAN tags on
# each available for allocation to tenant networks.
CONFIG_NEUTRON_ML2_VLAN_RANGES=
# A comma separated list of <tun min>:<tun max> tuples enumerating
# ranges of GRE tunnel IDs that are available for tenant network
# allocation. Should be an array with tun max +1 - tun min > 1000000
CONFIG NEUTRON ML2 TUNNEL ID RANGES=
# Multicast group for VXLAN. If unset, disables VXLAN enable sending
# allocate broadcast traffic to this multicast group. When left
# unconfigured, will disable multicast VXLAN mode. Should be an
# Multicast IP (v4 or v6) address.
CONFIG NEUTRON ML2 VXLAN GROUP=
# A comma separated list of <vni_min>:<vni_max> tuples enumerating
# ranges of VXLAN VNI IDs that are available for tenant network
# allocation. Min value is 0 and Max value is 16777215.
CONFIG NEUTRON ML2 VNI RANGES=
# The name of the L2 agent to be used with Neutron
CONFIG_NEUTRON_L2_AGENT=openvswitch
# The type of network to allocate for tenant networks (eg. vlan,
# local)
CONFIG NEUTRON LB TENANT NETWORK TYPE=local
```

```
# A comma separated list of VLAN ranges for the Neutron linuxbridge
# plugin (eg. physnet1:1:4094,physnet2,physnet3:3000:3999)
CONFIG NEUTRON LB VLAN RANGES=
# A comma separated list of interface mappings for the Neutron
# linuxbridge plugin (eg. physnet1:br-eth1,physnet2:br-eth2,physnet3
#:br-eth3)
CONFIG NEUTRON LB INTERFACE MAPPINGS=
# Type of network to allocate for tenant networks (eg. vlan, local,
# gre, vxlan)
CONFIG_NEUTRON_OVS_TENANT_NETWORK_TYPE=vlan
# A comma separated list of VLAN ranges for the Neutron openvswitch
# plugin (eg. physnet1:1:4094,physnet2,physnet3:3000:3999)
CONFIG_NEUTRON_OVS_VLAN_RANGES=physnet1:1:1000
# A comma separated list of bridge mappings for the Neutron
# openvswitch plugin (eg. physnet1:br-eth1,physnet2:br-eth2,physnet3
# :br-eth3)
CONFIG_NEUTRON_OVS_BRIDGE_MAPPINGS=physnet1:br-eth0
# A comma separated list of colon-separated OVS bridge:interface
# pairs. The interface will be added to the associated bridge.
CONFIG_NEUTRON_OVS_BRIDGE_IFACES=br-eth0:eth0
# A comma separated list of tunnel ranges for the Neutron openvswitch
# plugin (eg. 1:1000)
CONFIG NEUTRON OVS TUNNEL RANGES=
# The interface for the OVS tunnel. Packstack will override the IP
# address used for tunnels on this hypervisor to the IP found on the
# specified interface. (eg. eth1)
CONFIG NEUTRON OVS TUNNEL IF=
# VXLAN UDP port
CONFIG_NEUTRON_OVS_VXLAN_UDP_PORT=4789
# The IP address of the server on which to install the OpenStack
# client packages. An admin "rc" file will also be installed
```

```
CONFIG_OSCLIENT_HOST=192.168.122.100
# The IP address of the server on which to install Horizon
CONFIG HORIZON HOST=192.168.122.100
# To set up Horizon communication over https set this to "y"
CONFIG_HORIZON_SSL=n
# PEM encoded certificate to be used for ssl on the https server,
# leave blank if one should be generated, this certificate should not
# require a passphrase
CONFIG_SSL_CERT=
# Keyfile corresponding to the certificate if one was entered
CONFIG SSL KEY=
# The IP address on which to install the Swift proxy service
# (currently only single proxy is supported)
CONFIG_SWIFT_PROXY_HOSTS=192.168.122.100
# The password to use for the Swift to authenticate with Keystone
CONFIG SWIFT KS PW=85f42ee1d9604761
# A comma separated list of IP addresses on which to install the
# Swift Storage services, each entry should take the format
# <ipaddress>[/dev], for example 127.0.0.1/vdb will install /dev/vdb
# on 127.0.0.1 as a swift storage device(packstack does not create the
# filesystem, you must do this first), if /dev is omitted Packstack
# will create a loopback device for a test setup
CONFIG SWIFT STORAGE HOSTS=192.168.122.100
# Number of swift storage zones, this number MUST be no bigger than
# the number of storage devices configured
CONFIG SWIFT STORAGE ZONES=1
# Number of swift storage replicas, this number MUST be no bigger
# than the number of storage zones configured
CONFIG_SWIFT_STORAGE_REPLICAS=1
# FileSystem type for storage nodes
CONFIG SWIFT STORAGE FSTYPE=ext4
```

```
# Shared secret for Swift
CONFIG SWIFT HASH=dcd782d154134ed5
# Size of the swift loopback file storage device
CONFIG_SWIFT_STORAGE_SIZE=2G
# Whether to provision for demo usage and testing
CONFIG PROVISION DEMO=n
# The CIDR network address for the floating IP subnet
CONFIG_PROVISION_DEMO_FLOATRANGE=172.24.4.224/28
# Whether to configure tempest for testing
CONFIG PROVISION TEMPEST=n
# The uri of the tempest git repository to use
CONFIG_PROVISION_TEMPEST_REPO_URI=https://github.com/openstack/tempest.git
# The revision of the tempest git repository to use
CONFIG_PROVISION_TEMPEST_REPO_REVISION=stable/havana
# Whether to configure the ovs external bridge in an all-in-one
# deployment
CONFIG_PROVISION_ALL_IN_ONE_OVS_BRIDGE=n
# The IP address of the server on which to install Heat service
CONFIG_HEAT_HOST=192.168.122.100
# The password used by Heat user to authenticate against MySQL
CONFIG_HEAT_DB_PW=db67579b56ea4bcd
# The password to use for the Heat to authenticate with Keystone
CONFIG HEAT KS PW=0ecab082910c4fab
# Set to 'y' if you would like Packstack to install Heat CloudWatch
# API
CONFIG_HEAT_CLOUDWATCH_INSTALL=n
# Set to 'y' if you would like Packstack to install Heat
# CloudFormation API
```

```
CONFIG_HEAT_CFN_INSTALL=n
# The IP address of the server on which to install Heat CloudWatch
# API service
CONFIG HEAT CLOUDWATCH HOST=192.168.122.100
# The IP address of the server on which to install Heat
# CloudFormation API service
CONFIG HEAT CFN HOST=192.168.122.100
# The IP address of the server on which to install Ceilometer
CONFIG_CEILOMETER_HOST=192.168.122.100
# Secret key for signing metering messages.
CONFIG CEILOMETER SECRET=339bb60f1d79431d
# The password to use for Ceilometer to authenticate with Keystone
CONFIG_CEILOMETER_KS_PW=9364b11a6575405f
# The IP address of the server on which to install the Nagios server
CONFIG_NAGIOS_HOST=192.168.122.100
# The password of the nagiosadmin user on the Nagios server
CONFIG_NAGIOS_PW=nagiosadmin
# To subscribe each server to EPEL enter "y"
CONFIG_USE_EPEL=y
# A comma separated list of URLs to any additional yum repositories
# to install
CONFIG_REPO=
# To subscribe each server with Red Hat subscription manager, include
# this with CONFIG RH PW
CONFIG RH USER=
# To subscribe each server with Red Hat subscription manager, include
# this with CONFIG_RH_USER
CONFIG_RH_PW=
# To subscribe each server to Red Hat Enterprise Linux 6 Server Beta
```

```
# channel (only needed for Preview versions of RHOS) enter "y"
CONFIG_RH_BETA_REPO=n
# To subscribe each server with RHN Satellite, fill Satellite's URL
# here. Note that either satellite's username/password or activation
# key has to be provided
CONFIG_SATELLITE_URL=
# Username to access RHN Satellite
CONFIG SATELLITE USER=
# Password to access RHN Satellite
CONFIG_SATELLITE_PW=
# Activation key for subscription to RHN Satellite
CONFIG_SATELLITE_AKEY=
# Specify a path or URL to a SSL CA certificate to use
CONFIG_SATELLITE_CACERT=
# If required specify the profile name that should be used as an
# identifier for the system in RHN Satellite
CONFIG_SATELLITE_PROFILE=
# Comma separated list of flags passed to rhnreg_ks. Valid flags are:
# novirtinfo, norhnsd, nopackages
CONFIG_SATELLITE_FLAGS=
# Specify a HTTP proxy to use with RHN Satellite
CONFIG SATELLITE PROXY=
# Specify a username to use with an authenticated HTTP proxy
CONFIG_SATELLITE_PROXY_USER=
# Specify a password to use with an authenticated HTTP proxy.
CONFIG_SATELLITE_PROXY_PW=
```