Data Analysis Lab

Assignment Instructions

Complete all questions below. After completing the assignment, knit your document, and download both your .Rmd and knitted output. Upload your files for peer review.

For each response, include comments detailing your response and what each line does.

```
library(nycflights13)
library(dplyr)

##
## Attaching package: 'dplyr'

## The following objects are masked from 'package:stats':
##
## filter, lag

## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
```

Question 1.

Using the nycflights13 dataset, find all flights that departed in July, August, or September using the helper function between().

```
flights_jul_aug_sep <- flights %>%
  filter(between(month, 7, 9))
flights_jul_aug_sep
```

arr_delay <dbl></dbl>	sched_arr_time <int></int>	arr_time <int></int>	dep_delay <dbl></dbl>	sched_dep_time <int></int>	- —		mo <int></int>	_
157	2359	236	212	2029	1	1	7	2013
C	344	344	3	2359	2	1	7	2013
110	1	151	104	2245	29	1	7	2013
188	14	322	193	2130	43	1	7	2013
120	100	300	174	2150	44	1	7	2013
186	2358	304	235	2051	46	1	7	2013
243	2305	308	287	2001	48	1	7	2013
172	43	335	183	2155	58	1	7	2013

-	mo <int></int>			sched_dep_time <int></int>	dep_delay <dbl></dbl>	arr_	_ time <int></int>		sche	d_ar	r_time <int< th=""><th></th><th>rr_delay <dbl></dbl></th></int<>		rr_delay <dbl></dbl>
2013	7	1	100	2146	194		327	•			30	0	177
2013	7	1	100	2245	135		337	•			13	5	122
1-10 o	f 10,00	00 row	s 1-10 of	19 columns	Previous	1	2	3	4	5	6 .	100	0 Next

Question 2.

Using the nycflights13 dataset sort flights to find the 10 flights that flew the furthest. Put them in order of fastest to slowest.

```
longest_flights <- flights %>%
  arrange(desc(distance)) %>%
  head(10) %>%
  mutate(speed = distance / (air_time / 60)) %>% # calculate speed in miles per hour
  arrange(desc(speed))
longest_flights
```

arr_delay <dbl></dbl>	sched_arr_time <int></int>	arr_time <int></int>	dep_delay <dbl></dbl>	sched_dep_time <int></int>			mo <int></int>	
28	1530	1558	79	900	1019	6	1	2013
50	1530	1620	102	900	1042	7	1	2013
-26	1530	1504	14	900	914	3	1	2013
-41	1530	1449	-1	900	859	10	1	2013
-11	1530	1519	-2	900	858	5	1	2013
-5	1530	1525	9	900	909	2	1	2013
-14	1530	1516	0	900	900	4	1	2013
1272	1530	1242	1301	900	641	9	1	2013
-26	1530	1504	1	900	901	8	1	2013
-14	1530	1516	-3	900	857	1	1	2013

Question 3.

Using the nycflights13 dataset, calculate a new variable called "hr_delay" and arrange the flights dataset in order of the arrival delays in hours (longest delays at the top). Put the new variable you created just before the departure time. Hint: use the experimental argument .before.

```
flights_with_hr_delay <- flights %>%
  mutate(hr_delay = arr_delay / 60) %>%
  arrange(desc(hr_delay)) %>%
  select(year:day, hr_delay, dep_time, everything())
flights_with_hr_delay
```

-	mo <int></int>			dep_time <int></int>	sched_dep_time <int></int>	dep_delay <dbl></dbl>	arr_time <int></int>	sched_arr_time <int></int>
2013	1	9	21.200000	641	900	1301	1242	1530
2013	6	15	18.783333	1432	1935	1137	1607	2120
2013	1	10	18.483333	1121	1635	1126	1239	1810
2013	9	20	16.783333	1139	1845	1014	1457	2210
2013	7	22	16.483333	845	1600	1005	1044	1815
2013	4	10	15.516667	1100	1900	960	1342	2211
2013	3	17	15.250000	2321	810	911	135	1020
2013	7	22	14.916667	2257	759	898	121	1026
2013	12	5	14.633333	756	1700	896	1058	2020
2013	5	3	14.583333	1133	2055	878	1250	2215
1-10 o	f 10,00	0 row	vs 1-10 of 2	0 columns	Previous	1 2 3	4 5	6 1000 Next

Question 4.

Using the nycflights13 dataset, find the most popular destinations (those with more than 2000 flights) and show the destination, the date info, the carrier. Then show just the number of flights for each popular destination.

```
popular_destinations <- flights %>%
  group_by(dest) %>%
  filter(n() > 2000) %>%
  select(dest, year, month, day, carrier)

number_of_flights <- popular_destinations %>%
  group_by(dest) %>%
  summarise(num_flights = n())

list(popular_destinations, number_of_flights)
```

```
## [[1]]
## # A tibble: 302,969 × 5
## # Groups:
                dest [46]
##
      dest
             year month
                           day carrier
##
      <chr> <int> <int> <int> <chr>
              2013
##
    1 IAH
                       1
                              1 UA
##
    2 IAH
              2013
                       1
                              1 UA
##
    3 MIA
              2013
                              1 AA
    4 ATL
                              1 DL
##
              2013
                       1
    5 ORD
             2013
                       1
##
                              1 UA
    6 FLL
              2013
                       1
                              1 B6
##
             2013
                              1 EV
    7 IAD
                       1
##
    8 MCO
             2013
                       1
##
                              1 B6
##
    9 ORD
             2013
                       1
                              1 AA
## 10 PBI
             2013
                       1
                              1 B6
## # i 302,959 more rows
##
## [[2]]
## # A tibble: 46 × 2
##
      dest num_flights
##
      <chr>
                   <int>
##
    1 ATL
                   17215
##
    2 AUS
                    2439
##
    3 BNA
                    6333
    4 BOS
##
                   15508
    5 BTV
                    2589
##
##
    6 BUF
                    4681
##
    7 CHS
                    2884
    8 CLE
                    4573
##
##
   9 CLT
                   14064
## 10 CMH
                    3524
## # i 36 more rows
```

Question 5.

Using the nycflights13 dataset, find the flight information (flight number, origin, destination, carrier, number of flights in the year, and percent late) for the flight numbers with the highest percentage of arrival delays. Only include the flight numbers that have over 100 flights in the year.

```
flight_info <- flights %>%
  group_by(flight) %>%
  filter(n() > 100) %>%
  summarise(
    origin = first(origin),
    dest = first(dest),
    carrier = first(carrier),
    num_flights = n(),
    percent_late = mean(arr_delay > 0) * 100
) %>%
  arrange(desc(percent_late))
flight_info
```

_	origin <chr></chr>	dest <chr></chr>	carrier <chr></chr>	r	num_flig	ghts <int></int>			pei		:_late <dbl></dbl>
43	JFK	МСО	B6			133				63.1	5789
803	JFK	SJU	B6			142				61.2	26761
1165	EWR	LAX	UA			147				61.2	2449
1127	EWR	SFO	UA			107				58.8	37850
195	EWR	MDW	WN			142				58.4	5070
705	JFK	SJU	B6			225				53.7	7778
1202	EWR	MIA	UA			106				53.7	7358
137	JFK	RSW	B6			153				53.5	9477
141	JFK	PBI	B6			377				52.7	8515
1130	LGA	IAH	UA			103				49.5	1456
1-10 of 1,157	rows			Previous	1 2	3	4	5	6	116	Next