数学分析 II 习题课讲义

龚诚欣

gongchengxin@pku.edu.cn

2024年2月3日

目录

1	第 1 次习题课: 定积分基本概念与可积性	3
	1.1 问题	3
	1.2 解答	3
2	第 2 次习题课: 定积分的性质与计算	4
	2.1 问题	4
	2.2 解答	4
3	第 3 次习题课: 定积分中值定理与定积分的应用	5
	3.1 问题	5
	3.2 解答	5
4	第 4 次习题课: 广义积分	6
	4.1 问题	6
	4.2 解答	6
5	第 5 次习题课: 正项级数	7
	5.1 问题	7
	5.2 解答	7
6	第 6 次习题课: 任意项级数, 数项级数的性质	7
	6.1 问题	7
	6.2 解答	7
7	第7次习题课: 函数项级数的一致收敛性 (1)	7
	7.1 问题	7
	7.2 解答	7
8	第 8 次习题课: 函数项级数的一致收敛性 (2)	7
	8.1 问题	7
	8.2 解答	7
9	第 9 次习题课: 幂级数的基本性质	7
	9.1 问题	7
	9.2 解答	7

10	第 10 次习题课: 泰勒展开与多项式逼近	7
	10.1 问题	
	第 11 次习题课: 傅里叶级数的基本性质 11.1 问题	7
	第 12 次习题课: 傅里叶级数的收敛性 12.1 问题	7
13	12.2 解答	7

第 1 次习题课: 定积分基本概念与可积性

1.1 问题

- 1. f(x) 在 [a,b] 的每一点处的极限都是 0, 证明 $f(x) \in R[a,b]$ 且 $\int_a^b f(x)dx = 0$.
- 2. $f(x) \in R[a,b], \int_a^b f(x) dx > 0$. 证明 $\exists [\alpha,\beta] \subset [a,b], \text{s.t.} \forall x \in [\alpha,\beta], f(x) > 0$.
- 3. $f(x) \in R[a, b]$, 问 |f(x)| 是否一定 $\in R[a, b]$?
- 4. 设非负函数 $f(x) \in C[a,b]$, 证明极限 $\lim_{n \to \infty} \left(\int_a^b f^n(x) dx \right)^{\frac{1}{n}}$ 存在并求之.
- 5. $f(x) \ge 0, f''(x) \le 0, x \in [a, b]$. 证明 $\max_{x \in [a, b]} f(x) \le \frac{2}{b-a} \int_a^b f(x) dx$.
- 6. $n \in \mathbb{N}_{+}, f(x) \in C[a,b], \int_{a}^{b} x^{k} f(x) dx = 0, k = 0, 1, \cdots, n$. 证明 f(x) 在 (a,b) 内至少有 n+1 个零点. 7. 计算极限 $\lim_{n \to \infty} \frac{[1^{\alpha} + 3^{\alpha} + \cdots + (2n+1)^{\alpha}]^{\beta+1}}{[2^{\beta} + 4^{\beta} + \cdots + (2n)^{\beta}]^{\alpha+1}}$.

 8. $\lim_{n \to \infty} \frac{a_{n}}{n^{\alpha}} = 1, \alpha > 0$, 求 $\lim_{n \to +\infty} \frac{1}{n^{1+\alpha}} (a_{1} + a_{2} + \cdots + a_{n})$.

- 9. (Hölder 不等式). 非负函数 $f(x), g(x) \in R[a,b], p,q > 1, \frac{1}{p} + \frac{1}{q} = 1$. 证明 $\int_a^b f(x)g(x)dx \leq \left(\int_a^b f^p(x)\right)^{\frac{1}{p}} \left(\int_a^b g^q(x)\right)^{\frac{1}{q}}$. 10. $f(x) \in R[a,b], A = \inf_{x \in [a,b]} f(x), B = \sup_{x \in [a,b]} f(x), g(y) \in C[A,B], \text{ if } H = G(x) := g(f(x)) \in R[a,b].$

1.2 解答

- 1. 显然 f(x) 有界, 否则由聚点原理矛盾. 其次 $\forall \epsilon > 0, \forall x \in [a,b], \exists \delta_x > 0, \text{s.t.} \omega_{(x-\delta_x,x+\delta_x)} < \epsilon$. 由于 $\cup_{x \in [a,b]} (x-\delta_x,x+\delta_x)$ $\delta_x) \supset [a,b]$, 因此存在两两无包含关系的有限子覆盖 $\cup_{i=1}^n (x_i - \delta_i, x_i + \delta_i) \supset [a,b]$. 不妨设 $a \leq x_1 < \dots < x_n \leq b$. 可 取分割点 $y_i \in (x_i - \delta_i, x_i + \delta_i) \cap (x_{i+1} - \delta_{i+1}, x_i + \delta_{i+1})$, 对于这个分割, $\sum_{i=1}^n \omega_i \Delta x_i < \epsilon(b-a)$, 因此有可积性. 由于 $\left| \int_a^b f(x) dx \right| \leq \int_a^b |f(x)| dx \leq \sum_{i=1}^n \int_{y_{i-1}}^{y_i} |f(x)| dx \leq \epsilon(b-a), \epsilon \text{ 的任意性知} \overline{\int_a^b f(x) dx} = 0.$
- 2. 反证法. 如果每个区间都存在值小于等于 0, 那么任意分割我都取区间内那个小于等于 0 的点, 达布和始终小于等于 0, 其极限, 即积分值不可能大于 0.
- 3. $f(x) = -\text{Riemann}(x) \in R[0,1], |f(x)| = -\text{Dirichlet}(x) \notin R[0,1].$
- 4. 设 $M = \max_{x \in [a,b]} f(x), f(\xi) = M$. 由连续性, $\forall \epsilon > 0, \exists \delta > 0$ s.t. $\forall x \in (\xi \delta, \xi + \delta), f(x) > M \epsilon$. 因此当 n 足够大时成立

$$M+2\epsilon > ((b-a)M^n)^{\frac{1}{n}} \geq \left(\int_a^b f^n(x)dx\right)^{\frac{1}{n}} \geq \left(\int_{\xi-\delta}^{\xi+\delta} f^n(x)dx\right)^{\frac{1}{n}} > (2\delta(M-\epsilon)^n)^{\frac{1}{n}} > M-2\epsilon \Rightarrow \left(\int_a^b f^n(x)dx\right)^{\frac{1}{n}} \rightarrow M.$$

5. 设
$$f(\xi) = \max_{x \in [a,b]} f(x)$$
. 由题意知 $f(x)$ 是凹函数, 因此成立 $f(x) \ge \begin{cases} \frac{f(\xi) - f(a)}{\xi - a}(x - a) + f(a), & x \in [a,\xi] \\ \frac{f(b) - f(\xi)}{b - \xi}(x - \xi) + f(\xi), & x \in [\xi,b] \end{cases} \Rightarrow \text{RHS} \ge$

$$\frac{2}{b-a} \left(\int_{a}^{\xi} f(x) dx + \int_{\xi}^{b} f(x) dx \right) \ge \frac{2}{b-a} \left((\xi - a) \frac{f(\xi) + f(a)}{2} + (b - \xi) \frac{f(b) + f(\xi)}{2} \right) \ge \frac{2}{b-a} \frac{f(\xi)}{2} (\xi - a + b - \xi) = f(\xi) = \text{LHS}.$$
6. $\int_{a}^{b} f(x) dx = 0 \Rightarrow \exists 1$ 零点,记为 x_1 . $\int_{a}^{b} (x - x_1) f(x) dx = 0 \Rightarrow \exists 2$ 零点,记为 x_2 . $\cdots \int_{a}^{b} \left[\prod_{i=1}^{n} (x - x_i) \right] f(x) dx = 0 \Rightarrow \exists 1$

 $\exists n+1$ 零点.

7.

原式 =
$$2^{\alpha-\beta} \frac{\left[\frac{2}{n} \left(\frac{1}{n}\right)^{\alpha} + \frac{2}{n} \left(\frac{3}{n}\right)^{\alpha} + \dots + \frac{2}{n} \left(\frac{2n+1}{n}\right)^{\alpha}\right]^{\beta+1}}{\left[\frac{2}{n} \left(\frac{2}{n}\right)^{\beta} + \frac{2}{n} \left(\frac{4}{n}\right)^{\beta} + \dots + \frac{2}{n} \left(\frac{2n}{n}\right)^{\beta}\right]^{\alpha+1}} \stackrel{\text{定积分定义}}{\longrightarrow} 2^{\alpha-\beta} \frac{\left(\int_{0}^{2} x^{\alpha} dx\right)^{\beta+1}}{\left(\int_{0}^{2} x^{\beta} dx\right)^{\alpha+1}} = 2^{\alpha-\beta} \frac{(\beta+1)^{\alpha+1}}{(\alpha+1)^{\beta+1}}$$

8. $\forall \epsilon > 0, \exists N, \forall n > N, n^{\alpha}(1-\epsilon) < a_n < n^{\alpha}(1+\epsilon)$. 从而当 n 足够大时, $\frac{1}{n^{1+\alpha}}(1^{\alpha}+2^{\alpha}+\cdots+N^{\alpha}) < \epsilon, \frac{1}{n^{1+\alpha}}(a_1+a_2+\cdots+a_n)$ $\cdots + a_N) < \epsilon, \left| \frac{1}{n^{1+\alpha}} [(a_{N+1} - (N+1)^{\alpha}) + \cdots + (a_n - n^{\alpha})] \right| \le \frac{\epsilon}{n^{1+\alpha}} [(N+1)^{\alpha} + \cdots + n^{\alpha}] \le \frac{\epsilon}{n^{1+\alpha}} \sum_{i=1}^{n} i^{\alpha} = \frac{\epsilon}{n} \sum_{i=1}^{n} (\frac{i}{n})^{\alpha} \le \frac{\epsilon}{n^{1+\alpha}} [(a_{N+1} - (N+1)^{\alpha}) + \cdots + (a_n - n^{\alpha})]$

$$\epsilon \int_0^1 x^\alpha dx + \epsilon = \frac{\epsilon}{\alpha + 1} + \epsilon \le 2\epsilon. \ \ \dot{\boxtimes} \ \dot{\Xi} \ \dot{\mathbb{R}} \ \dot{\tilde{\mathbb{R}}} \ \left| \frac{1}{n^{1 + \alpha}} \left(\sum_{i = 1}^n a_i - \sum_{i = 1}^n i^\alpha \right) \right| \le 4\epsilon \Rightarrow \ \ \boldsymbol{\mathbb{R}} \ \boldsymbol{\mathbb{R}} \ \boldsymbol{\mathbb{R}} \ \boldsymbol{\mathbb{R}} \ = \lim_{n \to \infty} \frac{1}{n^{1 + \alpha}} \sum_{i = 1}^n i^\alpha = \frac{1}{\alpha + 1}.$$

9. WLOG $\left(\int_a^b f^p(x)dx\right)^{\frac{1}{p}} = \left(\int_a^b g^q(x)dx\right)^{\frac{1}{q}} = 1$, 则原命题的结论可改写为 $\int_a^b f(x)g(x)dx \le 1$. 由 $\ln x$ 的凹性,我们有 $\alpha \ln a + (1-\alpha) \ln b \le \ln(\alpha a + (1-\alpha)b) \Leftrightarrow a^\alpha b^{1-\alpha} \le \alpha a + (1-\alpha)b$. 令 $\alpha = \frac{1}{p}, 1-\alpha = \frac{1}{q}, a = x^p, b = y^q \Rightarrow xy \le \frac{x^p}{p} + \frac{y^q}{q} \Rightarrow \int_a^b f(x)g(x)dx \le \int_a^b \frac{f(x)^p}{p} + \frac{g(x)^q}{q}dx = \frac{1}{p} + \frac{1}{q} = 1$.

也可以将积分离散化后使用离散版本的 Hölder 不等式证明.

10. 证法 a: G(x) 的间断点集合是 f(x) 间断点集合的子集, 因此其 Lebesgue 测度为 0, 从而可积.

证法 b: 由于 g(y) 一致连续, 因此 $\forall \epsilon > 0, \exists \delta > 0$, 使得 $\forall |y_1 - y_2| < \delta, |g(y_1) - g(y_2)| < \frac{\epsilon}{2(b-a)}$. 由于 $f(x) \in R[a,b]$, 因 此 $\exists [a,b]$ 的分割 Δ ,使得 $\sum_{i=1}^{n} \omega_i(f) \Delta x_i < \frac{\delta \epsilon}{4M}$,其中 $M = \sup_{y \in [A,B]} |g(y)|$.若 $\omega_i(f) < \delta$,则 $\omega_i(G) < \frac{\epsilon}{2(b-a)}$.若 $\omega_i(f) \geq \delta$, 其区间长度 $\sum_{i:\omega_i(f)\geq\delta} \Delta x_i$ 不会超过 $\frac{\epsilon}{4M}$. 因此 $\sum_{i=1}^n \omega_i(G)\Delta x_i = \sum_{i:\omega_i(f)<\delta} \omega_i(G)\Delta x_i + \sum_{i:\omega_i(f)\geq\delta} \omega_i(G)\Delta x_i < \frac{\epsilon}{2} + 2M\frac{\epsilon}{4M} = \epsilon$. 这样对于任意 $\epsilon>0$ 我们都找到了一个分割 Δ 使得 $\sum_{i=1}^n \omega_i(G)\Delta x_i<\epsilon$.

第 2 次习题课: 定积分的性质与计算

2.1 问题

- 1. 设函数 f(x) 在 \mathbb{R} 上有定义且内闭可积, 证明 $\forall a,b \in \mathbb{R}, \lim_{h \to 0} \int_a^b [f(x+h) f(x)] dx = 0.$
- 2. (Riemann-Lebesgue 引理). $f \in R[a,b], g \in R[0,T], g(x+T) = g(x)$, 则 $\int_a^b f(x)g(nx)dx \to \int_a^b f(x)dx \cdot \frac{1}{T} \int_0^T g(x)dx$.
- 3. 计算积分 $I = \int_{-1}^{1} \frac{dx}{x^2 2x \cos \alpha + 1}, \alpha \in (0, \pi).$
- 4. 计算积分 $I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{\cos^2 x}{1 + e^{-x}} dx$.
- 5. 设 $f_n(x) = \begin{cases} \frac{\sin^2 nx}{\sin x}, & x \neq 0 \\ 0, & x = 0 \end{cases}, x \in [0, \frac{\pi}{2}], I_n = \int_0^{\frac{\pi}{2}} f_n(x) dx, 求 I_n 的表达式并求极限 \lim_{n \to \infty} \frac{I_n}{\ln n}.$
- 6. $f(x) \in C[a,b]$, 且对于任意的 $[\alpha,\beta] \subset [a,b]$, $\exists \delta > 0, M > 0$, s.t. $\left| \int_{\alpha}^{\beta} f(x) dx \right| \leq M(\beta \alpha)^{1+\delta}$. 证明 $f(x) \equiv 0$.
- 7. $f(x) \in C(\mathbb{R})$, 定义 $g(x) = f(x) \int_0^x f(t) dt$. 证明若 g(x) 单调递减, 则 $f(x) \equiv 0$.
- 8. f(x) 在 \mathbb{R} 上有定义且内闭可积, 且 f(x+y) = f(x) + f(y). 证明 f(x) = xf(1).
- 9. f(x) 在 $(0, +\infty)$ 上是凸函数. 证明 $f(x) \in R[0, x], \forall x \in (0, +\infty),$ 且 $F(x) = \frac{1}{x} \int_0^x f(t) dt$ 也是 $(0, +\infty)$ 上的凸函数. 10. $f(x) \in C[-1, 1],$ 证明 $\lim_{n \to +\infty} \frac{\int_{-1}^1 (1-x^2)^n f(x) dx}{\int_{-1}^1 (1-x^2)^n dx} = f(0).$

2.2 解答

1. WLOG h < 1. 由可积函数性质,存在 [a,b+1] 上的连续函数 g(x) 使得 $\int_a^{b+1} |f(x) - g(x)| dx < \epsilon$, 且 $\exists \delta > 0$ 使得 $\forall x,y \in [a,b+1], |x-y| < \delta$, 成立 $|g(x) - g(y)| \le \frac{\epsilon}{b-a}$. 从而 $\left| \int_a^b [f(x+h) - f(x)] dx \right| \le \int_a^b |f(x+h) - g(x+h)| dx + \int_a^b |g(x+h) - g(x)| dx + \int_a^b |g(x) - f(x)| dx \le \int_a^{b+1} |f(x) - g(x)| dx + \int_a^b \frac{\epsilon}{b-a} dx + \int_a^{b+1} |f(x) - g(x)| dx \le 3\epsilon$.

2. WLOG 设 $\int_0^T g(x)dx = 0$, 否则考虑 $h(x) = g(x) - \frac{1}{T} \int_0^T g(x)dx$.

 $M = \sup_{x \in [0,T]} |g(x)|. \quad \text{则} \mid \int_a^b f(x)g(nx)dx| = |\int_a^b (f(x) - s_{\epsilon}(x))g(nx)dx + \int_a^b s_{\epsilon}(x)g(nx)dx| \leq \int_a^b |f(x) - s_{\epsilon}(x)|g(nx)dx + \int_a^b s_{\epsilon}(x)g(nx)dx| \leq \int_a^b |f(x) - s_{\epsilon}(x)|g(nx)dx + \int_a^b c_{\epsilon}(x)g(nx)dx| \leq \int_a^b |f(x) - s_{\epsilon}(x)|g(nx)dx| \leq \int_a^b |f(x) - s_{\epsilon}(x)|g(nx)dx| \leq \int_a^b |f(x) - s_{\epsilon}(x)|g(nx)dx| \leq \int_a^b |f(x) - s_{\epsilon}(x)|g(nx)dx + \int_a^b c_{\epsilon}(x)g(nx)dx| \leq \int_a^b |f(x) - s_{\epsilon}(x)|g(nx)dx| \leq \int_a^b |f(x) - s_{\epsilon}(x)|g(nx)dx|$

3.
$$I = \int_{-1}^{1} \frac{dx}{(x - \cos \alpha)^2 + \sin^2 \alpha} = \frac{1}{\sin^2 \alpha} \int_{-1}^{1} \frac{dx}{\left(\frac{x - \cos \alpha}{\sin \alpha}\right)^2 + 1} = \frac{1}{\sin \alpha} \arctan\left(\frac{x - \cos \alpha}{\sin \alpha}\right) \Big|_{-1}^{1} = \frac{\pi}{2\sin \alpha}.$$
4.
$$I = \int_{-\frac{\pi}{4}}^{0} \frac{\cos^2 x}{1 + e^{-x}} dx + \int_{0}^{\frac{\pi}{4}} \frac{\cos^2 x}{1 + e^{-x}} dx = \int_{0}^{\frac{\pi}{4}} \frac{\cos^2(-x)}{1 + e^{x}} dx + \int_{0}^{\frac{\pi}{4}} \frac{\cos^2 x}{1 + e^{-x}} dx = \int_{0}^{\frac{\pi}{4}} \cos^2 x dx = \frac{\pi}{8} + \frac{1}{4}.$$

5. 利用三角函数公式,

$$I_n = \int_0^{\frac{\pi}{2}} \frac{1 - \cos(2nx)}{2\sin x} dx = \int_0^{\frac{\pi}{2}} \frac{1 - \cos[(2n-2)x]\cos 2x + \sin[(2n-2)x]\sin 2x}{2\sin x} dx$$
$$= \int_0^{\frac{\pi}{2}} \frac{1 - \cos[(2n-2)x](1 - 2\sin^2 x) + 2\sin[(2n-2)x]\sin x \cos x}{2\sin x} dx$$

$$= \int_0^{\frac{\pi}{2}} \frac{1 - \cos[(2n - 2)x]}{2\sin x} dx + \int_0^{\frac{\pi}{2}} \frac{2\sin^2 x \cos[(2n - 2)x] + 2\sin[(2n - 2)x]\sin x \cos x}{2\sin x} dx$$

$$= I_{n-1} + \int_0^{\frac{\pi}{2}} \sin x \cos[(2n - 2)x] + \sin[(2n - 2)x]\cos x dx = I_{n-1} + \int_0^{\frac{\pi}{2}} \sin(2n - 1)x dx$$

$$= I_{n-1} - \frac{1}{2n - 1} \cos[(2n - 1)x] \Big|_0^{\frac{\pi}{2}} = I_{n-1} + \frac{1}{2n - 1}$$

由于 $I_1 = 1$, 因此 $I_n = \sum_{i=1}^n \frac{1}{2i-1}$, 从而 $\lim_{n \to \infty} \frac{I_n}{\ln n} = \lim_{n \to \infty} \frac{\sum_{i=1}^n \frac{1}{i}}{\ln n} - \lim_{n \to \infty} \frac{1}{2} \frac{\sum_{i=1}^n \frac{1}{i}}{\ln n} = \frac{1}{2}$.

- 6. 假设 $\exists f(x_0) > 0$. 由连续性, $\exists \delta > 0$, s.t. $\forall x \in (x_0 \delta, x_0 + \delta)$, $f(x) > \frac{f(x_0)}{2}$, 从而 $\forall [\alpha, \beta] \subset (x_0 \delta, x_0 + \delta)$, $\left| \int_{\alpha}^{\beta} f(x) dx \right| > 0$ $\frac{f(x_0)}{2}(\beta - \alpha) > M(\beta - \alpha)^{1+\delta}(最后一个大于号成立只需令 \beta - \alpha < \left(\frac{f(x_0)}{2M}\right)^{\frac{1}{\delta}}), 矛盾.$
- 7. 构造 $G(x) = \frac{1}{2} \left(\int_0^x f(t) dt \right)^2$, G'(x) = g(x) 单调递减, g(0) = 0, 因此 G(x) 在 $(0, +\infty)$ 上单调递减, 在 $(-\infty, 0)$ 上单 调递增, 且 G(0) = 0, $G(x) \ge 0$ 恒成立 $\Rightarrow G(x) \equiv 0 \Rightarrow \int_0^x f(t)dt \equiv 0 \Rightarrow f(x) \equiv 0$.
- 8. 只需证明对无理数点成立. 考察 $\alpha \in \mathbb{R} \setminus \mathbb{Q}$. 由有理数点的稠密性, $\int_0^\alpha f(x) dx = \frac{\alpha^2}{2} f(1)$. 由集合 $\{q\alpha: q \in \mathbb{Q}\}$ 的稠密 性且 $f(q\alpha) = qf(\alpha)$, $\int_0^\alpha f(x)dx = f(\alpha)\frac{\alpha}{2}$. 因此 $f(\alpha)\frac{\alpha}{2} = \frac{\alpha^2}{2}f(1) \Rightarrow f(\alpha) = \alpha f(1)$
- 9. 凸函数开区间上连续 \Rightarrow 闭区间上可积. 做变换 $F(x) = \frac{1}{x} \int_0^x f(t) dt = \int_0^x f(\frac{t}{x} \cdot x) d\frac{t}{x} = \int_0^1 f(ux) du$, 从而 $F(\sum_{i=1}^n t_i x_i) = \int_0^1 f(ux) du$
- 够大的 n 使得 $|I_2| < \epsilon$. 类似地放缩 I_3 , 从而 $|I_1 + I_2 + I_3| < 3\epsilon$.

3 第 3 次习题课: 定积分中值定理与定积分的应用

问题 3.1

- 1. f(x) 是 [0,1] 上的递减正函数, 证明对于 $\forall 0 < \alpha < \beta \leq 1$ 都有 $\beta \int_0^\alpha f(x) dx \geq \alpha \int_\alpha^\beta f(x) dx$.
- 2. f(x) 在 \mathbb{R} 上有定义且内闭可积, f(x+y) = f(x) + f(y) + xy(x+y), 求 f(x).
- 3. 已知 A > 0, $AC B^2 > 0$, 求椭圆 $Ax^2 + 2Bxy + Cy^2 = 1$ 的面积.
- 4. 证明极坐标下曲线 $r=r(\theta)$ 与 $\theta=\alpha,\theta=\beta$ 所围平面图形绕极轴旋转一周所得立体体积为 $V=\frac{2\pi}{3}\int_{\alpha}^{\beta}r^{3}(\theta)\sin\theta d\theta$.
- 5. 求双扭线 $r^2 = 2a^2 \cos 2\theta$ 绕轴 $\theta = \frac{\pi}{4}$ 旋转一周所得的曲面的面积.
- 6. $f(x) \in C^1[0,1], f(x) \in [0,1], f(0) = f(1) = 0, f'(x)$ 在 [0,1] 上单调递减. 证明曲线 y = f(x) 在 [0,1] 上的弧长不大
- 7. 求圆的渐伸线 $\begin{cases} x = a(\cos t + t \sin t) \\ y = a(\sin t t \cos t) \end{cases}$, $t \in [0, 2\pi] \perp A(a, 0), B(a, -2\pi a)$ 之间部分与直线 \overline{AB} 围成图形的面积.
- 8. 半径为 R 的球正好有一半沉入水中, 球的密度为 1. 现将球从水中匀速取出, 需要做多少功?
- 9. 求质量分布均匀的对数螺旋线 $r=e^{\theta}$ 在 $(r,\theta)=(1,0)$ 和 $(r,\theta)=(e^{\phi},\phi)$ 之间一段的重心坐标.
- 10. 试求由抛物线 $y^2 = 2x$ 与过其焦点的弦所围的图形面积的最小值.
- 11. f(x) 在 [a,b] 上单调递增, 用定积分第二中值定理证明 $\int_a^b x f(x) dx \ge \frac{a+b}{2} \int_a^b f(x) dx$.
- 12. (Dirichlet 判别法). 设 f(x) 在 $(a, +\infty)$ 上单调, $\lim_{x \to +\infty} f(x) = 0$. $\forall A \geq a, g(x) \in R[a, A]$ 且 $|\int_a^A g(x) dx| \leq M$ 恒成
- 立. 证明极限 $\lim_{A\to +\infty} \int_a^A f(x)g(x)dx$ 存在.

3.2 解答

1. LHS = $\beta \int_0^{\alpha} f(x) dx \ge \beta \alpha f(\alpha) \ge \alpha (\beta - \alpha) f(\alpha) \ge \alpha \int_{\alpha}^{\beta} f(x) dx = \text{RHS}.$

- 2. 等式左右两边对 x 积分,得到 $\int_y^{x+y} f(t)dt = \int_0^x f(t)dt + xf(y) + \frac{x^3y}{3} + \frac{x^2y^2}{2}$. 类似有 $\int_x^{x+y} f(t)dt + \int_0^y f(t)dt + yf(x) + \frac{xy^3}{3} + \frac{x^2y^2}{2}$. 两式相減得 $xf(y) + \frac{x^3y}{3} = yf(x) + \frac{xy^3}{3}$,即是 $\frac{f(x)}{x} \frac{x^2}{3} = \frac{f(y)}{y} \frac{y^2}{3}$. 从而 $\frac{f(x)}{x} \frac{x^3}{3} \equiv C \Rightarrow f(x) = \frac{x^3}{3} + Cx$. 经验证符合题意.
- 3. 设矩阵 $\begin{pmatrix} A & B \\ B & C \end{pmatrix}$ 有相似标准型 $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, 其中 λ_1, λ_2 是方程 $\lambda^2 (A+C)\lambda + (AC-B^2) = 0$ 的两个根. 则原椭 圆在新坐标系下的方程为 $\lambda_1 x^2 + \lambda_2 y^2 = 1$, 面积 $S = \pi \sqrt{\frac{1}{\lambda_1 \lambda_2}} = \pi \sqrt{\frac{1}{AC - B^2}}$.
- 4. 对应 $[\theta, \theta + d\theta]$ 的扇形面积 $dS = \frac{1}{2}r^2(\theta)d\theta$, 其质心位于 $\frac{2}{3}r(\theta)$ 处. 由 Guldin 第二定理, 此扇形绕极轴旋转体体积为 $dV = \frac{1}{2}r^2(\theta)d\theta 2\pi \frac{2}{3}r(\theta)\sin\theta = \frac{2\pi}{3}r^3(\theta)\sin\theta d\theta$. 两边积分得到结果.
- 5. 原命题等价于 $r^2=2a^2\sin 2\theta$ 绕极轴旋转一周所得的曲面的面积. 改写成平面坐标系 $\begin{cases} x=a\sqrt{2\sin 2\theta}\cos \theta \\ y=a\sqrt{2\sin 2\theta}\sin \theta \end{cases}$

面积 $S = 2 \int_0^{\frac{\pi}{2}} 2\pi y(\theta) \sqrt{x'(\theta)^2 + y'(\theta)^2} d\theta = 8\pi a^2$.

- 6. 设 f'(M)=0. 则周长 $C=\int_0^1\sqrt{1+f'(x)^2}dx\leq \int_0^1(1+|f'(x)|)dx=1+\int_0^Mf'(x)dx-\int_M^1f'(x)dx=1+2f(M)\leq 3$.
- 7. 直线 AB 的参数方程 $\begin{cases} x = \phi(t) = a \\ y = \psi(t) = t \end{cases}$, $t \in [-2\pi a, 0]$. 于是 $S = -\int_0^{2\pi} y(t) dx(t) \int_{-2\pi a}^0 \psi(t) d\phi(t) = -\int_0^{2\pi} a(\sin t \sin t) dt$

 $t\cos t a(t\cos t)dt + 0 = \frac{4}{2}\pi^3 a^2 + \pi a$

- 8. 球心向上移动距离 h 时, 球位于水外的体积为 $V(h) = \frac{1}{2} \frac{4}{3} \pi R^3 + \int_0^h \pi (\sqrt{R^2 z^2})^2 dz = \frac{2}{3} \pi R^3 + \pi (R^2 h \frac{1}{3} h^3)$. 对应
- 位移 [h, h + dh] 所做的微功 $dW = gV(h)\rho dh$. 从而 $W = g\int_0^R V(h)dh = g(\frac{2}{3}\pi R^4 + \frac{5}{12}\pi R^4) = \frac{13}{12}g\pi R^4$. 9. $\bar{x} = \frac{\int_0^{\phi} e^{2\theta}\cos\theta d\theta}{\int_0^{\phi} e^{\theta}d\theta} = \frac{e^{2\phi}(\sin\phi + 2\cos\phi) 2}{5(e^{\phi} 1)}, \bar{y} = \frac{\int_0^{\phi} e^{2\theta}\sin\theta d\theta}{\int_0^{\phi} e^{\theta}d\theta} = \frac{e^{2\phi}(2\sin\phi \cos\phi) + 1}{5(e^{\phi} 1)}$. 10. 焦点为 $(\frac{1}{2}, 0)$, 设过焦点的直线为 $x \frac{1}{2} = ky$, 与抛物线交点为 y_1, y_2 , 则围成的面积为 $S = \int_{y_1}^{y_2} \left(ky + \frac{1}{2} \frac{y^2}{2}\right) dy = \frac{13}{12}g\pi R^4$. $\frac{k}{2}(y_2-y_1)(y_2+y_1)+\frac{1}{2}(y_2-y_1)-\frac{1}{6}(y_2-y_1)(y_2^2+y_1y_2+y_1^2)$. 联立直线与抛物线, 由韦达定理知 $y_1+y_2=2k,y_1y_2=-1$. 则 $S = \frac{2}{3}(k^2 + 1)^{\frac{3}{2}}$. 因此 k = 0 时面积最小, 为 $\frac{2}{3}$.
- 11. f(x) 单调, $g(x) = x \frac{a+b}{2}$. 由定积分第二中值定理, $\int_a^b (x \frac{a+b}{2}) f(x) dx = f(a) \int_a^\xi (x \frac{a+b}{2}) dx + f(b) \int_{\varepsilon}^b (x \frac{a+b}{2}) dx = f(a) \int_a^\xi (x \frac{a+b}{2}) dx + f(a) \int_{\varepsilon}^b (x \frac{a+b}{2}) dx = f(a) \int_a^\xi (x \frac{a+b}{2}) dx + f(a) \int_{\varepsilon}^b (x \frac{a+b}{2}) dx = f(a) \int_a^\xi (x \frac{a+b}{2}) dx + f(a) \int_{\varepsilon}^b (x \frac{a+b}{2}) dx = f(a) \int_a^\xi (x \frac{a+b}{2}) dx + f(a) \int_{\varepsilon}^b (x \frac{a+b}{2}) dx = f(a) \int_a^\xi (x \frac{a+b}{2}) dx + f(a) \int_{\varepsilon}^b (x \frac{a+b}{2}) dx = f(a) \int_a^\xi (x \frac{a+b}{2}) dx + f(a) \int_{\varepsilon}^b (x \frac{a+b}{2}) dx = f(a) \int_a^\xi (x \frac{a+b}{2}) dx + f(a) \int_{\varepsilon}^b (x \frac{a+b}{2}) dx = f(a) \int_a^\xi (x \frac{a+b}{2}) dx + f(a) \int_{\varepsilon}^b (x \frac{a+b}{2}) dx = f(a) \int_a^\xi (x \frac{a+b}{2}) dx + f(a) \int_{\varepsilon}^b (x \frac{a+b}{2}) dx = f(a) \int_a^\xi (x \frac{a+b}{2}) dx + f(a) \int_a^\xi (x \frac{a+b}{2}) dx = f(a) \int_a^\xi (x \frac{a+b}{2}) dx + f(a) \int_a^\xi (x \frac{a+$ $f(a) \int_{a}^{b} (x - \frac{a+b}{2}) dx + (f(b) - f(a)) \int_{\xi}^{b} (x - \frac{a+b}{2}) dx = (f(b) - f(a)) \frac{1}{2} (b - \xi) (\xi - a) \ge 0.$
- 12. 由极限定义, $\forall \epsilon > 0, \exists X > a, \text{s.t.} \forall x \geq X, |f(x)| \leq \frac{\epsilon}{4M}.$ 从而 $\forall A', A'' \geq X, |\int_{A'}^{A''} f(x)g(x)dx| = |f(A')\int_{A'}^{\xi} g(x)dx + \int_{A''}^{A''} f(x)g(x)dx|$ $f(A'')\int_{\xi}^{A''}g(x)dx| \leq 2M(|f(A')|+|f(A'')|) \leq \epsilon$. 由柯西收敛定理知极限存在.

4 第 4 次习题课: 广义积分

4.1问题

5. 证明 $\lim_{n \to +\infty} \int_0^1 \cos^n \frac{1}{x} dx = 0.$

4.2 解答

5. 做变换 $t = \frac{1}{x}$, 则 $\int_0^1 \cos^n \frac{1}{x} dx = \int_1^{+\infty} \frac{\cos^n t}{t^2} dt = \int_1^A \frac{\cos^n t}{t^2} dt + \int_A^{+\infty} \frac{\cos^n t}{t^2} dt := I_1 + I_2$. 对于 I_1 , 由定积分第二中值定理 知 $\exists \xi_A \in [1,A] \text{ s.t.} I_1 = \int_1^{\xi_A} \cos^n t dt$. 因此对于任意固定的 $A, n \to +\infty$ 时 $I_1 \to 0$. 对于 I_2 , 成立 $|I_2| \leq \int_A^{+\infty} \frac{1}{t^2} dt = \frac{1}{A}$. 因此 $\forall \epsilon > 0$, 选择 $A = \frac{2}{\epsilon}$, 则 $|I_2| \leq \frac{\epsilon}{2}$, 并选择充分大的 n 使得 $|I_1| < \frac{\epsilon}{2}$, 此时 $|I| \leq \epsilon$, 由极限定义知结论成立.

		5 第 5 次习题课: 正项级数
5.1	问题	
5.2	解答	
		6 第 6 次习题课:任意项级数,数项级数的性质
6.1	问题	
6.2	解答	
		7 第7次习题课:函数项级数的一致收敛性(1)
7.1	问题	
7.2	解答	
		8 第8次习题课:函数项级数的一致收敛性(2)
8.1	问题	
8.2	解答	
		9 第 9 次习题课: 幂级数的基本性质
9.1	问题	
9.2	解答	
		10 第 10 次习题课: 泰勒展开与多项式逼近
10.1	问题	
10.2	解答	
		11 第 11 次习题课: 傅里叶级数的基本性质
11.1	问题	
11.2	解答	

12.1 问题

12.2 解答

13 致谢

12 第 12 次习题课: 傅里叶级数的收敛性

感谢北京大学数学科学学院的王冠香教授和刘培东教授, 他们教会了笔者数学分析的基本知识, 他们的课件和讲义也成为了笔者的重要参考. 感谢选修 2024 春数学分析 II 习题课 3 班的全体同学, 他们提供了很多有意思的做法和反馈.