ARDIŞIL DEVRELER EK

Örnek: Ard arda gelen clock saykıllarında girişin iki tane 1, sonra 0, daha sonra da 1 olması durumunda çıkışın 1 olmasını sağlayacak Mealy türü bir sistem tasarlanması isteniyor. Çıkışın 1 olmasına neden olan 1 girişi sonraki clock saykıllarında kullanılacaktır (tekrar var).

Soruya bir ilave yapalım:

Ancak ard arda girişte 3 veya daha fazla sayıda 1 gelirse bu 1 'lerin dikkate alınmaması isteniyor.

Örnek: Girişin üçlü grup olarak düşünüldüğü Mealy türü bir sistemde, grubun tüm elemanlarının 1 olması durumunda çıkışın 1 olması isteniyor.

x 101110111011 z 000000000000000

Örnek: Girişe, her üçüncü defa 1 geldiğinde, çıkışın 1 olması isteniyor. Girişteki 1'lerin ard arda olma zorunluluğu yoktur. Ayrıca, çıkışın 1 olduğu durumda, girişteki 1 değeri bir sonraki işleme katılmayacaktır (tekrar yok, Non-overlapping).

 $x \ 0 \ 1 \ 1 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0$ z 0001000010000

Örnek: Mealy türü bir sistemde, ard arda gelen clock saykıllarında giriş 010 ise çıkışın 1 olması isteniyor.

- a) Girişte tekrarlama olsun.
- a) Girişte tekrarlama olmasın.

z 00001010

x 0 1 0 1 0 1 0z 0010001

Örnek: Aşağıdaki devrenin durum diyagramını oluşturalım ve x'in 0 0 1 1 0 0 1 0 0 değerleri için çıkışı bulalım.

 $S=x R=x'.q_2 T=x+q_1' z=x.q_1+q_1'.q_2'$

x=0 için S=0 ve R=q₂. Dolayısıyla q₂=0 için SR flip flobu durumunu koruyacak aksi durumda çıkış 0 olacak. x=1 için SR flip flobunun çıkışı 1 olacak. x=1 veya q₁=0 için T flip flobu mevcut durumunun tersini alacak, aksi halde durumunu muhafaza edecek. Durum tablosu;

Şimdiki	Sonraki					
Durum	$Durum(Q_1Q_2)$		$Durum(Q_1Q_2)$		Çıkış	s (z)
q_1q_2	x=0			x=1		
00	0 1	1 1	1	1		
01	0.0	10	0	0		
10	10	1 1	0	1		
11	01	10	0	1		

(Sistemin başlangıç durumu q_1q_2 =00 olarak verilmiştir.)

- x 001100100
- $q_1 \qquad 0 \ 0 \ 0 \ 1 \ 1 \ 1 \ 1 \ 1 \ 0 \ 0$
- $q_2 \qquad 0 \; 1 \; 0 \; 1 \; 0 \; 0 \; 0 \; 1 \; 1 \; 0 \; 1$
- z 1011001001

Örnek: Aşağıda verilen durum tablosuna göre, verilen x girişi için flip flopların durumlarını ve çıkışı belirleyiniz.

Şimdiki	S	onraki		
Durum	Duru	$\operatorname{Im}(\mathbf{Q_1}\mathbf{Q_2})$	Çıkış	§ (z)
q_1q_2	x=0	x=1	x=0	x=1
00	00	10	0	1
01	00	00	0	0
10	11	01	1	1
11	10	10	1	0

(Sistemin başlangıç durumu q_1q_2 =00 olarak verilmiştir.)

- x = 0 1 0 0 1 1 1 0
- $q_2 \ \boxed{000010010010010010}$
- z 01111011-1

Örnek: Aşağıda verilen durum tablosuna göre, verilen x girişi için flip flopların durumlarını ve çıkışı belirleyiniz.

Şimdiki	So	nraki				
Durum	Dur	um(Q)	Çıkış (z)			
q	x=0	x=1				
A	Α	В	1			
В	D	С	1			
С	D	С	0			
D	A	В	0			

- x 0 1 0 1 0 1 1 1 0 1 0 0 0 0
- q A A B D B D B C C D B D A A A
- z 1 1 1 0 1 0 1 0 0 0 1 0 1 1 1 1

Aşağıdaki örnekte sistem, kullanıcının davranışını algılayabilmektedir. Daha önceki örneklerde sayısal sistemlerden veya seri bir iletişim hattından clock ile senkronize gelen verileri işlemiştik (girişten 1101 geldiğinde çıkışın 1 olmasını istediğimiz örnek gibi).

Örnek: 2 girişe (x_1x_2) ve 1 çıkışa (z) sahip bir ardışıl devrenin, girişlerin 00-01-11 olması durumunda çıkış vermesi isteniyor. JK tipi flip floplar kullanılacağını farz ederek Moore tipi devrenin tasarımını yapalım.

Durum diyagramının oluşturulması;

Durum tablosunun oluşturulması;

	Sonraki Durum (Q ₁ Q ₂) 00 01 11 10				Çıkış
$q_1 \; q_2$	00	01	11	10	Z
A	В	A	A	A	0
В	В	С	A	A	0
C	В	С	D	A	0
D	В	Α	D	A	1

Durum atamalarının yapılması;

Şimdiki	Sonraki		Uyarma İşlevleri							
$\begin{array}{c} \textbf{Durum} \\ \textbf{q}_1 \ \textbf{q}_2 \end{array}$	Durum (Q ₁ Q ₂) 00 01 11 10	_	$\mathbf{x}_2 = 00$ $\mathbf{J}_2 \mathbf{K}_2$	$\begin{bmatrix} x_1x_2 \\ J_1 K_1 \end{bmatrix}$		$\begin{bmatrix} x_1x_2 \\ J_1 K_1 \end{bmatrix}$		$\begin{bmatrix} x_1x_2 \\ J_1 K_1 \end{bmatrix}$		Çıkış z
00 (A)	01 00 00 00	0 x	1 x	0 x	0 x	0 x	0 x	0 x	0 x	0
01 (B)	01 11 00 00	0 x	x 0	1 x	x 0	0 x	x 1	0 x	x 1	0
11 (C)	01 11 10 00	x 1	x 0	x 0	x 0	x 0	x 1	x 1	x 1	0
10 (D)	01 00 10 00	x 1	1 x	x 1	0 x	x 0	0 x	x 1	0 x	1

Uyarma işlevleri Karnaugh haritasıyla indirgenirse;

$$\begin{split} J_1 &= q_2 x_1 ' x_2 \qquad K_1 = q_1 x_2 ' + q_1 q_2 ' x_1 ' \\ J_2 &= x_1 ' x_2 ' \qquad K_2 = x_1 \end{split}$$

Moore tipi bir devre olduğundan çıkışın $z = q_1q_2$ ' olduğu durum tablosundan görülebilir.

Sıralı olmayan sayıcı örneği ve don't care durumların incelenmesi

3 durum olduğu için ve 3 sayısını görüntüleyebilmek için 2 flip flop kullanmak gerekir. T tipi flip floplar kullanarak gerçekleştirimi yapalım:

Şimdiki Durum q ₁ q ₂	Sonraki Durum Q ₁ Q ₂	T ₁ T ₂
0 0	0 1	0 1
0 1	1 1	1 0
1 1	0 0	1 1
1 0		X X

 $T_1 = q_2$

 $T_2 = q_2' + q_1$

Sistem şayet don't care durum olan 10 ile başlasaydı hangi duruma gideceğini bulalım: Karno haritası incelendiğinde T_1 için dont'care durum 0, T_2 için ise 1 kabul edilmiş. O halde T_1 flip flobu durumunu koruyacak, T_2 flip flobu ise mevcut durumunun tersini alacaktır. Yani 10 durumundan 11 durumuna gidilecektir. Daha sonra da bizim belirlediğimiz sırada sayma işlemi gerçekleşecektir. Aşağıdaki tabloda bu durum gösterilmiştir.

Şimdiki	Sonraki	
Durum	Durum	T ₁ T ₂
$\begin{array}{c c} \mathbf{q_1} \ \mathbf{q_2} \\ \hline 0 \ 0 \end{array}$	$Q_1 Q_2$	0 1
0 1	1 1	1 0
1 1	0 0	1 1
1 0	1 1	0 1

Aşağıda değişik bir sayıcı tasarımı vardır. Genellikle sayıcıların, giriş ve z çıkışına sahip olmadan tasarlandığını söylemiştik. Ders notlarında girişe bağlı olarak ileri ya da geri sayan sayıcı örneği vardır. burada ise ekstra z çıkışları kullanılmıştır. Çünkü direkt olarak durumlardan çıkış almak bu örnekte mümkün olmamaktadır.

Clock darbesiyle 0-1-0-2-0-1-0-2-... şeklinde sayan bir sayıcıyı D tipi flip floplar kullanarak tasarlayınız? (İpucu: Sistem 4 duruma sahiptir. Bu sayıları göstermek için de 2 çıkışı vardır. Moore tarzı devredir.)

q1q0	Q1Q0	z1	z 0
A	В	0	0
В	C	0	1
С	D	0	0
D	A	1	0

q1q0	Q1Q0	z1	z 0	D1	D 0
00	01	0	0	0	1
01	10	0	1	1	0
10	11	0	0	1	1
11	00	1	0	0	0

D1=q1⊕q0 **D0**=q0' **z1**=q1.q0 **z0**=q1'q0

z1 ve z0 uçlarına 2 led bağlarsak önce 2 ledin de sönük olduğunu, daha sonra sağdaki ledin yandığını, daha sonra 2 ledin de sönük olduğunu ve son olarak da soldaki ledin yandığını görebiliriz. Bu işlem sürekli olarak devam edecektir. Bu tasarımda kullanılan mantıkla değişik led animasyonları (yürüyen ışık gibi) yapabiliriz.

Flip flopların başlangıç durumu nasıl ayarlanır?

Flip flopların *Preset* ve *Clear* girişleri ile ayarlama yapılır. Örnek olarak aşağıdaki flip flobun çıkışını 0 yapmak istersek Clear ucunu aktif, Preset ucunu ise pasif yapmamız gerekir. Yani Clear ucuna lojik 1, Preset ucuna da lojik 1 (değilleme işleminden dolayı pasif durum 1'dir) uygulamamız gerekir. Fakat sistemin normal çalışmasına başlayabilmesi için tekrardan Clear ucunu pasif yani 0 durumuna getirmemiz gerekecektir. Bu işlem için bir butondan faydalanılabilir.

