5. Cálculo de predicados

Os seguintes exercícios e problemas são adaptados a partir do livro *Lógica e Aritmética*, de Augusto Franco de Oliveira, 3ª edição, Gradiva.

- (I) Efectue as seguintes derivações (no sistema DNQ) indicadas no texto, exibindo as dependências de hipóteses:
 - (a) $\forall x (Px \to Qx), Pa \vdash Qa;$
 - (b) $\forall x (Px \to Qx), \neg Qa \vdash \neg Pa;$
 - (c) $\forall x(Px \to Qx), \forall x(Qx \to Rx)$ $\vdash \forall x(Px \to Rx);$
 - (d) $\forall x(Px \to Qx), \forall xPx \vdash \forall xQx;$
 - (e) $\forall x (Px \land Qx) \vdash \forall x Px$;
 - (f) $\forall x (Px \land Qx) \dashv \vdash \forall x Px \land \forall x Qx;$
 - (g) $\forall x (Px \lor Qx), \forall x \neg Px \vdash \forall x Qx;$
 - (h) $\forall x (Px \rightarrow Qx), Pa \vdash \exists x Qx;$
 - (i) $\forall x (Px \to Qx), \exists x Px \vdash \exists x Qx;$
 - (j) $\forall x Px \dashv \vdash \forall y Py$;
 - (k) $\exists x Px \dashv \vdash \exists y Py$;
 - (1) $\forall xyQxy \dashv \vdash \forall yxQxy;$
 - (m) $\exists xyQxy \dashv \vdash \exists yxQxy;$
 - (n) $\exists xQx \dashv\vdash \exists xyPx \land Py$;
 - (o) $\exists x \forall y Rxy \vdash \forall y \exists x Rxy$;
 - (p) $\forall x Px \dashv \vdash \neg \exists x \neg Px;$
 - (q) $\exists x Px \dashv \vdash \neg \forall x \neg Px;$
 - (r) $\forall x (\theta \to \phi(x)) \dashv \theta \to \forall x \phi(x)$;
 - (s) $\forall x (\theta \land \phi(x)) \dashv \theta \land \forall x \phi(x);$
 - (t) $\forall x (\theta \lor \phi(x)) \dashv \theta \lor \forall x \phi(x);$
 - (u) $\exists x (\theta \lor \phi(x)) \dashv \vdash \theta \lor \exists x \phi(x);$
 - (v) $\exists x (\phi(x) \to \theta) \dashv \forall x \phi(x) \to \theta$;
 - (w) $\forall x (\phi(x) \to \theta) \dashv \exists x \phi(x) \to \theta$;
- 2. (I) Mostre que
 - (a) $\forall x (Px \to Qx) \vdash \forall x Px \to \forall x Qx;$
 - (b) $\forall x(Px \to Qx) \vdash \exists xPx \to \exists xQx;$
 - (c) $\forall x (Px \land Qx) \dashv \vdash \forall x Px \land \forall x Qx$;

- (d) $\exists x (Px \lor Qx) \dashv \vdash \exists x Px \lor \exists x Qx;$
- (e) $\exists x (Px \land Qx) \vdash \exists x Px \land \exists x Qx;$
- (f) $\forall x Px \lor \forall x Qx \vdash \forall x (Px \lor Qx)$.
- 3. (I) Mostre, por meio de contra-exemplos, que não se pode substituir "⊢" por "¬" nas alíneas (2a), (2b), (2e) e (2f) acima.
- 4. (I) Mostre, por meio de contra-exemplos, que as sentenças seguintes não são universalmente válidas:
 - (a) $\exists xyRxy \rightarrow \exists xRxx;$
 - (b) $\exists x Px \land \exists x Qx \rightarrow \exists x (Px \land Qx)$.
- 5. (I) Efectue as seguintes derivações (no sistema DNQ, com regras de inferência para a igualdade) indicadas no texto, exibindo as dependências de hipóteses:
 - (a) $\vdash \exists x (x \doteq t)$ (onde $t \in \text{um termo fechado}$);
 - (b) $\vdash \exists x(x \doteq x);$
 - (c) $\vdash \forall x(x \doteq x);$
 - (d) $\vdash \forall xy(x \doteq y \rightarrow y \doteq x);$
 - (e) $\vdash \forall xyz(x \doteq y \land y \doteq z \rightarrow x \doteq z);$
 - (f) $\vdash \forall xyuv (x \doteq u \land y \doteq v \rightarrow (Rxy \leftrightarrow Ruv));$
 - (g) $\vdash \forall xyuv(x \doteq u \land y \doteq v \rightarrow fxy \doteq fuv);$
 - (h) $Pa + \exists x (x \doteq a \land Px);$
 - (i) $\forall x (Px \to x \doteq c \lor x \doteq d),$ $\exists x (Px \land Qx) \vdash Qc \lor Qd;$
 - (j) $Pa \dashv \vdash \forall x (x \doteq a \rightarrow Px);$
 - (k) $\vdash \forall xyz(x \doteq z \land y \doteq z \rightarrow x \doteq y)$ [lei de Euclides];