Devoir à la maison n°01

- ▶ Le devoir devra être rédigé sur des copies doubles.
- ▶ Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- ► Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Exercice 1.

On considère une suite de fonctions (f_n) définies sur [0,1] de la manière suivante.

• $\forall x \in [0,1], f_0(x) = 0$;

•
$$\forall n \in \mathbb{N}, \forall x \in [0,1], f_{n+1}(x) = f_n(x) + \frac{1}{2}(x - f_n(x)^2).$$

- 1. a. Déterminer les fonctions f_1 , f_2 et f_3 .
 - **b.** Etudier les variations de f_1 , f_2 et f_3 sur [0,1].
 - **c.** Tracer les courbes des fonctions f_1 , f_2 et f_3 .
- **2.** On fixe $x \in [0,1]$ et on pose $u_n = f_n(x)$ pour $n \in \mathbb{N}$.
 - **a.** Montrer que pour tout $n \in \mathbb{N}$, $0 \le u_n \le \sqrt{x}$.
 - **b.** Montrer que la suite (u_n) est croissante.
 - **c.** En déduire que la suite (u_n) converge et préciser sa limite.
- 3. a. Montrer que pour tout $n \in \mathbb{N}$ et tout $x \in [0,1]$,

$$0 \le \sqrt{x} - f_n(x) \le \sqrt{x} \left(1 - \frac{\sqrt{x}}{2}\right)^n$$

- **b.** Etudier les variations de la fonction $\varphi_n : t \in [0,1] \mapsto t \left(1 \frac{t}{2}\right)^n$ pour $n \in \mathbb{N}^*$.
- **c.** On note M_n le maximum de la fonction $x \mapsto \sqrt{x} f_n(x)$ sur [0,1]. Montrer que pour tout $n \in \mathbb{N}^*$, $0 \le M_n \le \frac{2}{n+1}$ et en déduire la limite de la suite (M_n) .

EXERCICE 2.

On pose pour $n \in \mathbb{N}^*$

$$S_n = \sum_{k=1}^n k$$

$$T_n = \sum_{k=1}^n k^3$$

Montrer que $T_n = S_n^2$.

Exercice 3.

Une urne contient quatre boules rouges et deux boules noires.

 On effectue au hasard un tirage simultané et sans remise de deux boules de l'urne. On note X la variable aléatoire correspondant au nombre de boules noires obtenues. Déterminer la loi de X. 2. Après ce premier tirage, il reste donc quatre boules dans l'urne. On effectue à nouveau au hasard un tirage simultané et sans remise de deux boules de l'urne. On note Y le nombre de boules noires obtenues au second tirage.

Déterminer la loi de Y.

- **3.** Quelle est la probabilité d'avoir obtenu une seule boule noire au premier tirage sachant que l'on a tiré une seule boule noire au second tirage ?
- **4.** Déterminer la probabilité de l'événement suivant : «Il a fallu exactement deux tirages pour extraire les deux boules noires de l'urne».