Problem 2.35. Find the energy stored in a uniformly charged *solid* sphere of radius \mathbf{R} and charge \mathbf{q} . Do it three different ways:

- (a) Use Eq. 2.43. You found the potential in Prob. 2.22.
- (b) Use Eq. 2.45. Don't forget to integrate over all space.
- (c) Use Eq. 2.44. Take a spherical volume of radius a. What happens as $a \to \infty$?

Problem 2.39. A metal sphere of radius R, carrying charge q, is surrounded by a thick concentric metal shell (inner radius a, outer radius b, as in Fig. 2.48). The shell carries no net charge.

- (a) Find the surface charge density σ at R, at a, and at b.
- (b) Find the potential at the center, using infinity as the reference point.
- (c) Now the outer surface is touched to a grounding wire, which drains off charge and lowers its potential to zero (same as at infinity). How do your answers to (a) and (b) change?

Fig. 2.48

Problem 2.43. A metal sphere of radius R carries a total charge Q. What is the force of repulsion between the "northern" hemisphere and the "southern" hemisphere?

Problem 2.44. Find the capacitance per unit length of two coaxial metal cylindrical tubes, of radii a and b (Fig. 2.53).

Fig. 2.53