What is claimed is:

A method of making a compound of formula (la)

$$R_4O_2C$$
 N
 $(R_1)_n$
 (Ia)

5

wherein R₁ is carboxy, cyano, deuterium, (C₁-C₆)alkyl, (C₁-C₆)alkoxy, (C₁-C₆)acyl, (C₁-C₆)alkylamino, amino(C₁-C₆)alkyl, (C₁-C₆)alkoxy-CO-NH, (C₁-C₆)alkylamino-CO-, (C₂-C₆)alkenyl, (C₂-C₆) alkynyl, (C₁-C₆)alkylamino, amino(C₁-C₆)alkyl, (C₁-C₆)alkoxy(C₁-C₆)alkyl, (C₁-C₆)alkyl, nitro, cyano(C₁-C₆)alkyl, nitro(C₁-C₆)alkyl, trifluoromethyl, trifluoromethyl(C₁-C₆)alkyl, (C₁-C₆)alkyl, (C₁-C₆)acylamino, (C₁-C₆)acylamino(C₁-C₆)alkyl, (C₁-C₆)alkoxy(C₁-C₆)acylamino, amino(C₁-C₆)acyl, amino(C₁-C₆)acyl(C₁-C₆)alkyl, (C₁-C₆)alkylamino(C₁-C₆)acyl, ((C₁-C₆)alkyl)₂amino(C₁-C₆)acyl, R₁₅R₁₆N-CO-O-, R₁₅R₁₆N-CO-(C₁-C₆)alkyl, (C₁-C₆)alkyl-S(O)_m, R₁₅R₁₆NS(O)_m, R₁₅R₁₆NS(O)_m (C₁-C₆)alkyl, R₁₅S(O)_mR₁₆N, R₁₅S(O)_mR₁₆N(C₁-C₆)alkyl or a group of the formula (VII)

$$(CR_6R_7)_a \xrightarrow{(X)_b} (CR_9R_{10})_d \xrightarrow{(Y)_e} (R_{11})_f (Z)_g R_{12}$$

$$(VII);$$

R₂ is hydrogen, (C₁-C₆)alkyl, (C₁-C₆)alkylsulfonyl, (C₂-C₆)alkenyl, or (C₂-C₆)alkynyl wherein the alkyl, alkenyl and alkynyl groups are optionally substituted by deuterium, hydroxy, trifluoromethyl, (C₁-C₄)alkoxy, (C₁-C₆)acyloxy, (C₁-C₆)alkylamino, ((C₁-C₆)alkyl)₂amino, cyano, nitro, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl or (C₁-C₆)acylamino; or R₂is (C₃-C₁₀)cycloalkyl wherein the cycloalkyl group is optionally substituted by deuterium, hydroxy, trifluoromethyl, (C₁-C₆)acyloxy, (C₁-C₆)acylamino, (C₁-C₆)alkylamino, ((C₁-C₆)alkyl)₂amino, cyano, cyano(C₁-C₆)alkyl, trifluoromethyl(C₁-C₆)alkyl, nitro, nitro(C₁-C₆)alkyl or (C₁-C₆)acylamino;

 R_3 is hydrogen, (C_1-C_6) alkyl, (C_3-C_{10}) cycloalkyl, (C_2-C_6) alkenyl, or (C_2-C_6) alkynyl wherein the alkyl, alkenyl and alkynyl groups are optionally substituted

by deuterium, hydroxy, halogen, trifluoromethyl, (C_1-C_4) alkoxy, (C_1-C_6) acyloxy, (C_1-C_6) alkylamino, (C_1-C_6) acylamino, $((C_1-C_6)$ alkyl)₂amino, (C_2-C_6) alkenyl, (C_2-C_6) alkynyl, cyano, cyano (C_1-C_6) alkyl, trifluoromethyl (C_1-C_6) alkyl, nitro, or nitro (C_1-C_6) alkyl;

5

10

25

 R_4 is (C_1-C_6) alkyl, (C_3-C_{10}) cycloalkyl, (C_2-C_6) alkenyl, or (C_2-C_6) alkynyl wherein the alkyl, alkenyl and alkynyl groups are optionally substituted by deuterium, hydroxy, halogen, amino, trifluoromethyl, (C_1-C_4) alkoxy, (C_1-C_6) acyloxy, (C_1-C_6) alkylamino, (C_1-C_6) acylamino, $((C_1-C_6)$ alkyl) $_2$ amino, (C_2-C_6) alkenyl, (C_2-C_6) alkynyl, cyano, cyano (C_1-C_6) alkyl, trifluoromethyl (C_1-C_6) alkyl, nitro, or nitro (C_1-C_6) alkyl;

 R_6 , R_7 , R_8 , R_9 , R_{10} and R_{11} are each independently hydrogen or (C₁-C₆)alkyl optionally substituted by deuterium, hydroxy, trifluoromethyl, (C1-C6)acyloxy, (C1- C_6)acylamino, (C_1-C_6) alkylamino, $((C_1-C_6)$ alkyl)₂amino, cyano, cyano (C_1-C_6) alkyl, trifluoromethyl(C_1 - C_6)alkyl, nitro, nitro(C_1 - C_6)alkyl or (C_1 - C_6)acylamino; R_{12} is 15 carboxy, cyano, amino, oxo, deuterium, hydroxy, trifluoromethyl, (C₁-C₆)alkyl, trifluoromethyl(C_1 - C_6)alkyl, (C_1 - C_6)alkoxy, (C_1 - C_6)acyl, (C_1 - C_6)alkylamino, ((C_1 - C_6)alkyl)₂ amino, amino(C_1 - C_6)alkyl, (C_1 - C_6)alkoxy-CO-NH, (C_1 - C_6)alkylamino-CO-, (C_2-C_6) alkenyl, (C_2-C_6) alkynyl, (C_1-C_6) alkylamino, hydroxy (C_1-C_6) alkyl, (C_1-C_6) alkyl, (C_1-C_6) alkyl C_6)alkoxy(C_1 - C_6)alkyl, (C_1 - C_6)acyloxy(C_1 - C_6)alkyl, nitro, cyano(C_1 - C_6)alkyl, nitro(C_1 - C_6)alkyl, trifluoromethyl, trifluoromethyl(C_1 - C_6)alkyl, (C_1 - C_6)acylamino, (C_1 -20 C_6)acylamino(C_1 - C_6)alkyl, (C_1 - C_6)alkoxy(C_1 - C_6)acylamino, amino(C_1 - C_6)acyl, $amino(C_1-C_6)acyl(C_1-C_6)alkyl, (C_1-C_6)alkylamino(C_1-C_6)acyl, ((C_1-C_6)alkyl)_2 amino(C_1-C_6)acyl(C_1-C_6)alkyl)_2 amino(C_1-C_6)acyl(C_1-C_6)alkyl)_2 amino(C_1-C_6)acyl(C_1-C_6)alkyl(C_1 C_6$)acyl, $R_{15}R_{16}N$ -CO-O-, $R_{15}R_{16}N$ -CO-(C_1 - C_6)alkyl, $R_{15}C(O)NH$, $R_{15}OC(O)NH$, $R_{15}NHC(O)NH, \ (C_1-C_6)alkyl-S(O)_m, \ (C_1-C_6)alkyl-S(O)_m-(C_1-C_6)alkyl, \ R_{15}R_{16}NS(O)_m, \ (C_1-C_6)alkyl-S(O)_m, \ (C_1-C_6)alky$

$$\begin{split} R_{15}R_{16}NS(O)_m(C_1-C_6)alkyl, & R_{15}S(O)_mR_{16}N, \text{ or } R_{15}S(O)_mR_{16}N(C_1-C_6)alkyl; \\ & R_{15} \text{ and } R_{16} \text{ are each independently hydrogen or } (C_1-C_6)alkyl; \\ & X \text{ is } S(O)_p, \text{ oxygen, carbonyl or } -C(=N-cyano)-; \\ & Y \text{ is } S(O)_p \text{ or carbonyl;} \\ & Z \text{ is } S(O)_p, \text{ carbonyl, } C(O)O-, \text{ or } C(O)NR-; \end{split}$$

30 a is 0, 1, 2, 3 or 4;

b, c, e, f and g are each independently 0 or 1;

d is 0, 1, 2, or 3;

m is 0, 1 or 2;

n is 1, 2, 3, or 4;

p is 0, 1 or 2; and

wherein the method comprises reacting NHR₂R₃, N(CH₃)R₂H, or N(CH₂CH₃)R₂H with a compound of formula (IIa)

- 5 and reducing the compound so formed with a reducing agent.
 - 2. The method of claim 1, wherein the method further comprises formation of the compound of the formula (IIa) by reacting a compound having the formula R₄OH, water, or R₄NH₂ and a compound of the formula (IIIa)

$$R_4O_2C$$
 OR_5 OR_5 $(R_1)_n$ (IIIa)

10

wherein R_5 is $CO(C_1-C_6)$ alkyl.

3. The method of claim 2, wherein the method further comprises formation of the compound of the formula (IIIa) by heating a compound having the formula (IVa)

$$R_4O_2C$$
 OR_5
 OR_5
 OR_5
 OR_5
 OR_7
 OR_7
 OR_7
 OR_7
 OR_7

15

with a compound having the formula (C_1-C_6) alkyl- $(C=O)-O-(C=O)-(C_1-C_6)$ alkyl.

4. The method of claim 3, wherein the method further comprises formation of the compound of the formula (IVa) by oxidizing a compound having the formula (Va)

$$R_4O_2C$$
 $(R_1)_n$ (Va)

20

under oxidizing conditions.

5. The method of claim 4, wherein the method further comprises formation of the compound of the formula (Va) by reacting a compound having the formula WCO₂R₄ and a compound having the formula (VIa)

$$H$$
 $(R_1)_n$ (VIa)

- 5 wherein W is halogen.
 - 6. The method of claim 4, wherein the oxidizing conditions are an electrochemical oxidation.
- 10 7. A method of making a compound having the formula (lb)

$$R_{13}$$
 N
 $(R_1)_n$
 (Ib)

wherein R₁ is carboxy, amino, deuterium, hydroxy, (C₁-C₆)alkyl, (C₁-C₆)alkoxy, (C₁-C₆)alkylamino, amino(C₁-C₆)alkyl, (C₂-C₆)alkenyl, (C₂-C₆) alkynyl, (C₁-C₆)alkylamino, amino(C₁-C₆)alkyl, hydroxy(C₁-C₆)alkyl, (C₁-C₆)alkoxy(C₁-C₆)alkyl, nitro, nitro(C₁-C₆)alkyl, trifluoromethyl, trifluoromethyl(C₁-C₆)alkyl, (C₁-C₆)alkyl-S(O)_m, R₁₅R₁₆NS(O)_m, R₁₅R₁₆NS(O)_m (C₁-C₆)alkyl, R₁₅S(O)_m R₁₆N, R₁₅S(O)_mR₁₆N(C₁-C₆)alkyl or a group of the formula (VII)

$$(CR_6R_7)_a \xrightarrow{(X)_b} (CR_9R_{10})_d \xrightarrow{(Y)_e} (R_{11})_{(X)_g} R_{12}$$

$$(VII);$$

R₂ is hydrogen, (C₁-C₆)alkyl, (C₁-C₆)alkylsulfonyl, (C₂-C₆)alkenyl, or (C₂-C₆)alkynyl wherein the alkyl, alkenyl and alkynyl groups are optionally substituted by deuterium, hydroxy, amino, trifluoromethyl, (C₁-C₄)alkoxy, (C₁-C₆)alkylamino, ((C₁-C₆)alkyl)₂amino, nitro, (C₂-C₆)alkenyl, or (C₂-C₆)alkynyl; or R₂ is (C₃-C₁₀)cycloalkyl wherein the cycloalkyl group is optionally substituted by deuterium,

hydroxy, amino, trifluoromethyl, (C_1-C_6) alkylamino, $((C_1-C_6)$ alkyl)₂amino, trifluoromethyl (C_1-C_6) alkyl, nitro, or nitro (C_1-C_6) alkyl;

 R_3 is hydrogen, (C_1-C_6) alkyl, (C_3-C_{10}) cycloalkyl, (C_2-C_6) alkenyl, or (C_2-C_6) alkynyl wherein the alkyl, alkenyl and alkynyl groups are optionally substituted by deuterium, hydroxy, amino, trifluoromethyl, (C_1-C_4) alkoxy, (C_1-C_6) alkylamino, $((C_1-C_6)$ alkyl)₂amino, (C_2-C_6) alkenyl, (C_2-C_6) alkynyl, trifluoromethyl (C_1-C_6) alkyl, nitro, or nitro (C_1-C_6) alkyl;

 R_6 , R_7 , R_8 , R_9 , R_{10} and R_{11} are each independently hydrogen or (C_1 - C_6)alkyl optionally substituted by deuterium, hydroxy, amino, trifluoromethyl, (C_1 -

C₆)alkylamino, ((C₁-C₆)alkyl)₂amino, trifluoromethyl(C₁-C₆)alkyl, nitro, or nitro(C₁-C₆)alkyl; R₁₂ is carboxy, amino, deuterium, hydroxy, trifluoromethyl, (C₁-C₆)alkyl, trifluoromethyl(C₁-C₆)alkyl, (C₁-C₆)alkoxy, (C₁-C₆)alkylamino, ((C₁-C₆)alkyl)₂ amino, amino(C₁-C₆)alkyl, (C₂-C₆)alkenyl, (C₂-C₆) alkynyl, (C₁-C₆)alkyl, trifluoromethyl,

trifluoromethyl(C_1 - C_6)alkyl, (C_1 - C_6)alkyl- $S(O)_m$, (C_1 - C_6)alkyl- $S(O)_m$ -(C_1 - C_6)alkyl, $R_{15}R_{16}NS(O)_m$, $R_{15}R_{16}NS(O)_m$ (C_1 - C_6)alkyl, or $R_{15}S(O)_m$ $R_{16}N$, or $R_{15}S(O)_m$ $R_{16}N$ (C_1 - C_6)alkyl;

 $R_{13} \text{ is } (C_2\text{-}C_6) \text{alkenyl, } (C_2\text{-}C_6) \text{alkynyl, } (C_6\text{-}C_{10}) \text{aryl, } (C_1\text{-}C_6) \text{carboalkoxy, } (C_5\text{-}C_9) \text{heteroaryl, } (C_6\text{-}C_{10}) \text{aryl} (C_1\text{-}C_6) \text{alkyl, } \text{or } (C_5\text{-}C_9) \text{heteroaryl} (C_1\text{-}C_6) \text{alkyl wherein the } \\ R_{13} \text{ group is optionally substituted by deuterium, hydroxy, amino, trifluoromethyl,, } (C_1\text{-}C_6) \text{alkyl, } (C_1\text{-}C_6) \text{alkyl, } (C_1\text{-}C_6) \text{alkyl, } (C_1\text{-}C_6) \text{alkyl, } (C_2\text{-}C_6) \text{alkyl, } (C_2\text{-}C_6) \text{alkyl, } \text{nitro, or nitro} (C_1\text{-}C_6) \text{alkyl, } (C_2\text{-}C_6) \text{alkyl, } (C_2\text{$

 R_{15} and R_{16} are each independently hydrogen or (C_1-C_6) alkyl;

 $X \text{ is } S(O)_{p};$

Y is $S(O)_0$;

5

15

20

Z is $S(O)_p$;

a is 0, 1, 2, 3 or 4;

b, c, e, f and g are each independently 0 or 1;

d is 0, 1, 2, or 3;

30 m is 0, 1 or 2;

n is 1, 2, 3, or 4;

p is 0, 1 or 2; and

wherein the method comprises reducing a compound of formula (IIb).

$$R_{13}$$
 N
 N
 CO_2R_{14}
 $(R_1)_n$ (IIb)

with a reducing agent, wherein R_{14} is (C_1-C_6) alkyl, (C_3-C_{10}) cycloalkyl, (C_2-C_6) alkenyl, or (C_2-C_6) alkynyl wherein the alkyl, alkenyl and alkynyl groups are optionally substituted by deuterium, hydroxy, halogen, amino, trifluoromethyl, (C_1-C_4) alkoxy, (C_1-C_6) alkylamino, $((C_1-C_6)$ alkyl)₂amino, (C_2-C_6) alkenyl, (C_2-C_6) alkynyl, trifluoromethyl (C_1-C_6) alkyl, nitro, or nitro (C_1-C_6) alkyl.

8. The method of claim 7, wherein the method further comprises formation of the compound of the formula (IIb) by reacting a compound having the formula (IIIb)

10

5

with an aldehyde of formula R_{13} -(C=O)-H and reducing the compound so formed with a reducing agent.

9. The method of claim 8, wherein the method further comprises formation of the compound of the formula (IIIb) by hydrogenating a compound having the formula (IVb)

$$\begin{array}{c|c}
R_2 \\
N \longrightarrow CO_2R_{14} \\
(R_1)_n
\end{array}$$
(IVb)

in the presence of a catalyst.

20 10. The method of claim 9, wherein the method further comprises formation of the compound of the formula (IVb) by reacting a compound having the formula (Vb)

with $(R_{14}\text{-O-}(C=O))2O$ or $R_{14}\text{-O-}(C=O)\text{-X}$ wherein X is halo.

11. The method of claim 1, wherein the compound of formula (Ia) has the relative stereochemistry of formula (Ia-1)

$$R_4O_2C$$
 N
 $(R_1)_n$
 $(Ia-1);$

 R_1 is $(C_1\text{-}C_6)$ alkyl; n is one; R_2 and R_3 are each hydrogen or $(C_1\text{-}C_6)$ alkyl; and R_4 is $(C_1\text{-}C_6)$ alkyl.

10 12. The method of claim 7, wherein the compound of formula (lb) has the relative stereochemistry of formula (lb-1)

$$R_{13}$$
 N
 N
 $(R_1)_n$
 $(Ib-1)$:

 R_1 is (C_1-C_6) alkyl; n is one; R_2 and R_3 are each hydrogen or (C_1-C_6) alkyl; and R_{13} is (C_6-C_{10}) aryl.

13. The method of claim 1, wherein the reducing agent is a borohydride.

15

20

14. The method of claim 7, wherein the reducing agent is lithium aluminum hydride.

15. The method of claim 9, wherein the catalyst is Rh/alumina or Rh/C.