Intrusion Detection

Erwin Erikson

Faculty of Information Technology Institut Teknologi Batam Batam, Indonesia 1822003@student.iteba.ac.id

Muhammad Al Imron

Faculty of Information Technology Institut Teknologi Batam Batam, Indonesia 1822007@student.iteba.ac.id Farhan Ghulam Hadi Saputra Faculty of Information Technology Institut Teknologi Batam Batam, Indonesia 1822014@student.iteba.ac.id

Abstract—Meningkatnya perkembangan internet tidak terlepas dari serangan seperti malware infection. Intrusion Detection System (IDS) adalah masalah nonlinier, rumit dan berhubungan dengan data lalu lintas jaringan. IDS mencoba untuk mengidentifikasi dan memberi tahu aktivitas pengguna sebagai anomali normal. Untuk mendeteksi berbagai serangan jaringan dapat dilatih dengan melakukan percobaan menggunakan dataset NSL-KDD dengan beberapa algoritma yaitu Random Forest, K-Neighbors, SVM dan Ensemble Learning.

Keywords—intrusion detection, Random Forest, K-Neighbors, SVM, Ensemble Learning, NSL-KDD dataset.

I. PENDAHULUAN

Pengguna internet yang terus meningkat dari tahun ke tahun tidak terlepas dari serangan yang timbul dari teknologi jaringan seperti serangan *malware infection*. Oleh karena itu, diperlukan keamanan dalam sistem komputer untuk mencegah dari serangan.

IDS (Intrusion Detection System) merupakan sebuah aplikasi yang mampu mencatat kegiatan dalam suatu jaringan dan menganalisa paket-paket yang dikirim melalui lalu lintas jaringan secara realtime. Tujuan dari sistem ini yaitu mengawasi jika terjadi penetrasi ke dalam sistem, mengawasi traffic yang terjadi pada jaringan, mendeteksi anomaly terjadinya penyimpangan dari sistem yang normal atau tingkah laku user.

Dalam melakukan deteksi serangan, dapat digunakan beberapa algoritma yaitu Random Forest, K-Neighbors, SVM dan Ensemble Learning. Dan tujuan dari penelitian ini adalah untuk membandingkan performa dari masing-masing algoritma.

II. PENJELASAN TEORI

A. Random Forest

Hutan acak (*Random Forest*) adalah kumpulan pohon keputusan yang digunakan untuk meningkatkan akurasi, biasanya dilatih dengan metode "*bagging*". Ide umum dari metode *bagging* adalah bahwa kombinasi model pembelajaran meningkatkan hasil secara keseluruhan.

Keuntungan Random Forest adalah sebagai berikut [1]:

- 1) Hutan yang dihasilkan dapat disimpan untuk referensi di masa mendatang.
- 2) Hutan acak mengatasi masalah penyesuaian.
- 3) Dalam akurasi RF dan kepentingan variabel secara otomatis dihasilkan.

Flowchart dari proses pemodelan algoritma *Random Forest* dapat dilihat pada "Gambar. 1".

Gambar 1: Flowchart Algoritma Random Forest

B. K-Nearest Neighbors

K-nearest neighbors (knn) adalah algoritma yang berfungsi untuk melakukan klasifikasi suatu data berdasarkan data pembelajaran (*train data sets*), yang diambil dari k tetangga terdekatnya (*nearest neighbors*), dengan k merupakan banyaknya tetangga terdekat [2]. Beberapa formula yang digunakan adalah:

• Euclidean Distance

Untuk mendefinisikan jarak antara dua titik yaitu titik pada data training (x) dan titik pada data testing (y), maka digunakan rumus *Euclidean* [3], yaitu:

$$d(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

dimana:

d = jarak antara 2 titik

x = data uji

y = data latih

i = merepresentasikan nilai atribut

n = merupakan dimensi atribut.

• City Block Distance

City Block Distance umumnya dihitung antara 2 koordinat objek yang berpasangan. Ini adalah penjumlahan dari perbedaan absolut antara 2 koordinat. City Block Distance 2-titik a dan b dengan dimensi k dihitung secara matematis menggunakan rumus berikut ini:

$$d_{ij} = \sum_{i=1}^{k} |a_i - b_i|$$

• Manhattan Distance

Manhattan Distance merupakan salah satu pengukuran yang paling banyak digunakan meliputi penggantian perbedaan kuadrat dengan menjumlahkan perbedaan absolute dari variabel-variabel. Fungsi ini hanya akan menjumlahkan selisih nilai x dan y dari dua buah titik.

• Minkwoski Distance

Minkwoski Distance adalah metrik dalam ruang vektor bernorma yang dapat dianggap sebagai generalisasi dari kedua jarak Euclidean dan jarak Manhattan. Jarak Minkowski antara dua variabel X dan Y didefinisikan sebagai:

$$d = (\sum_{i=1}^{n} |X_i - Y_i|^p)^{1/p}$$

Kasus di mana p = 1 setara dengan jarak *Manhattan* dan kasus di mana p = 2 setara dengan jarak *Euclidean*.

Flowchart dari proses pemodelan algoritma *K-nearest neighbors* dapat dilihat pada "Gambar. 2" [4].

Gambar 2: Flowchart Algoritma K-nearest neighbors

C. SVM

Teori SVM berasal dari statistik dan prinsip dasar SVM adalah menemukan *hyperplane* linier yang optimal dalam ruang fitur yang secara maksimal memisahkan dua kelas target [5].

Dalam kaitannya dengan fungsi kernel, fungsi diskriminan mengambil bentuk berikut:

$$f(x) = \sum_{i=1}^{n} \alpha_{i} k(x, x_{i}) + b$$

Dalam pekerjaan ini, kernel *Gaussian* telah digunakan untuk membangun pengklasifikasi SVM. *Gaussian* kernel:

$$K(x_i, x_j) = exp\left(-\frac{||x_i - x_j||^2}{2\sigma}\right)$$

dimana σ adalah lebar fungsi.

Fungsi kernel dan parameternya harus dipilih untuk membangun pengklasifikasi SVM. Melatih SVM menemukan hy-perplane margin besar, yaitu menetapkan parameter α .

Flowchart dari proses pemodelan algoritma SVM dapat dilihat pada "Gambar. 3" [6].

Gambar 3: Flowchart Algoritma SVM

D. Ensemble Learning

Metode ini adalah menggabungkan beberapa fitur dengan pembelajaran *Ensemble*.

Flowchart dari proses pemodelan algoritma *Ensemble Learning* dapat dilihat pada "Gambar. 4" [7].

Gambar 4: Flowchart Algoritma Ensemble Learning

III. METODOLOGI

Metodologi adalah tahapan yang akan dilakukan dalam melakukan penelitian agar dapat memenuhi tujuan sesuai dengan yang diharapkan. Tahapan penelitian yang akan dilakukan dapat dilihat pada "Gambar. 5".

Gambar 5: Tahapan Penelitian

Tahapan pada penelitian ini dapat dijelaskan sebagai berikut: **Pengumpulan Data**

Pengumpulan data yang dilakukan dengan membaca dan mempelajari penelitian sebelumnya yang berhubungan dengan IDS.

Analisa

Pada tahap ini adalah menganalisa data yaitu data latih yang digunakan untuk standarisasi melakukan pengujian, dan data uji yang digunakan untuk mengetes penilaian yang dihasilkan dari data latih.

Tahap ini juga menganalisa metode yang digunakan dalam penelitian yang berkaitan dengan sistem yang digunakan.

Implementasi dan Pengujian

Proses implementasi adalah merealisasikan aplikasi IDS sesuai dengan dengan bahasa pemrograman yang digunakan yaitu Phyton menggunakan JupyterLab.

Tahap pengujian adalah tahap yang dilakukan untuk menguji masing-masing metode yang digunakan dalam penelitian dengan tujuan untuk mengetahui perbandingan performa dari setiap algoritma.

Kesimpulan

Merupakan tahap penentuan kesimpulan terhadap hasil pengujian yang telah dilakukan.

IV. HASIL DAN PEMBAHASAN

Untuk melakukan pelatihan/pengujian digunakan dataset NSL-KDD dimana NSL_KDD_Train sebagai data latih dan NSL_KDD_Test sebagai data uji seperti pada "Gambar. 6" [8].

Gambar 6: Data Latih dan Data Uji

Dari dataset tersebut dibagi untuk setiap kategori serangan yaitu 0 = Normal, 1 = DoS, 2 = Probe, 3 = R2L, 4 = U2R. Hasil pembagian setiap kategori serangan dari data latih dan data uji dapat dilihat pada "Gambar. 7".

Gambar 7: Jumlah Data Setiap Kategori Serangan

Untuk menghitung precision dan recall dengan cepat dari setiap serangan dilakukan tahap *Prediction* dan *Evaluation* (*validation*) dengan *confusion matrix* seperti pada "Gambar. 8".

		Actual					
		Positive Negative					
cted	Positive	True Positive	False Positive				
Predic	Negative	False Negative	True Negative				

Gambar 8: Confusion Matrix

Hasil *Prediction* dan *Evaluation* (*validation*) metode *Random Forest* semua fitur dapat dilihat pada "Gambar. 9".

U	D02		Proi	рe		K2	02	ĸ	
Predicted attack	s 0	1	Predicted attacks	0	2	Predicted attacks	0	Predicted attacks	0
Actual attack	s		Actual attacks			Actual attacks		Actual attacks	
	9686	25	0	9364	347	0	9711	0	9711
	1 7447	13	2	1076	1345	3	2885	4	67

Gambar 9: Confusion Matrix Random Forest All Fitur

Hasil *Prediction* dan *Evaluation* (*validation*) metode *Random Forest* 13 fitur dapat dilihat pada "Gambar. 10".

Do	DoS Predicted attacks 0 1			be		R2	L.		U	2R				
Predicted attacks	0	1	Predicted attacks	0	2	Predicted attacks	0	3	Predicted attacks	0	4	4		
Actual attacks			Actual attacks			Actual attacks			Actual attacks					
0	9162	549	0	9413	298	0	9693	18	0	9711	()		
1	2136	5324	2	975	1446	3	2880	5	4	60	7	7		

Gambar 10: Confusion Matrix Random Forest 13 Fitur

Hasil *Prediction* dan *Evaluation* (validation) metode *K-Neighbors* dapat dilihat pada "Gambar. 11".

DoS		Prol	be		R2	R2L U2			2R		
Predicted attacks Actual attacks	0	1	Predicted attacks Actual attacks	0	2	Predicted attacks Actual attacks	0	3	Predicted attacks Actual attacks	0	4
0	9422	289	0	9437	274	0	9706	5	0	9711	0
1	1573	5887	2	1272	1149	3	2883	2	4	65	2

Gambar 11: Confusion Matrix K-Neighbors

Hasil *Prediction* dan *Evaluation* (*validation*) metode SVM dapat dilihat pada "Gambar. 12".

DoS		Pro	be		R2	2L		U2	2R	ļ		
Predicted attacks Actual attacks	0	1	Predicted attacks Actual attacks	0	2	Predicted attacks Actual attacks	0	3	Predicted attacks Actual attacks	0	4	
0	9455	256	0	9576	135	0	9639	72	0	9710	1	
1	1359	6101	2	1285	1136	3	2737	148	4	67	0	

Gambar 12: Confusion Matrix SVM

Hasil *Prediction* dan *Evaluation* (validation) metode *Ensemble Learning* dapat dilihat pada "Gambar. 13".

Do	DoS		DoS			Probe			R2L			2R
Predicted attacks Actual attacks	0	1	Predicted attacks Actual attacks	0	2	Predicted attacks Actual attacks	0	3	Predicted attacks Actual attacks	0		
0	9607	104	0	9550	161	0	9711	0	0	9711		
1	1919	5541	2	1294	1127	3	2884	1	4	67		

Gambar 13: Confusion Matrix Ensemble Learning

Dengan *confusion matrix* dilakukan penghitungan *Accuracy*, *Precision*, *Recall*, dan *F-measure* dari nilai masing-masing dalam matriks dengan menerapkan persamaan berikut:

$$Accuracy = \frac{TP + TN}{TP + FP + FN + TN}$$

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP + FN}$$

$$F-measure = 2*\frac{precision*recall}{precision+recall}$$

dimana:

TP = True Positive

TN = True Negative

FP = False Positive

FN = False Negative

Dari hasil evaluasi kinerja dari masing-masing model atau algoritma, dapat dilihat pada tabel-tabel berikut:

Pengujian menggunakan algoritma *Random Forest* untuk semua fitur dapat dilihat pada "Tabel. I".

Tabel I: Algoritma Random Forest untuk semua Fitur

	Accuracy	Precision	Recall	F-measure
DoS	0.99796	0.99906	0.99651	0.99765
Probe	0.99670	0.99675	0.99262	0.99469
R2L	0.99775	0.94964	0.82014	0.87775
U2R	0.98047	0.97293	0.96844	0.97290

Pengujian menggunakan algoritma *Random Forest* untuk 13 fitur dapat dilihat pada "Tabel. II".

Tabel II: Algoritma Random Forest untuk 13 Fitur

	Accuracy	Precision	Recall	F-measure
DoS	0.99796	0.99839	0.99651	0.99718
Probe	0.99382	0.98973	0.98668	0.98758
R2L	0.97856	0.97280	0.96525	0.96838
U2R	0.99693	0.96256	0.83183	0.90644

Pengujian menggunakan algoritma *K-Neighbors* dapat dilihat pada "Tabel. III".

Tabel III: Algoritma K-Neighbors

	Accuracy	Precision	Recall	F-measure
DoS	0.99715	0.99678	0.99665	0.99672
Probe	0.99077	0.98606	0.98508	0.98553
R2L	0.96705	0.95265	0.95439	0.95344
U2R	0.99703	0.93143	0.85073	0.87831

Pengujian menggunakan algoritma SVM dapat dilihat pada "Tabel. IV".

Tabel IV: Algoritma SVM

	Accuracy	Precision	Recall	F-measure
DoS	0.99371	0.99107	0.99450	0.99278
Probe	0.98450	0.96907	0.98365	0.97613
R2L	0.96793	0.94854	0.96264	0.95529
U2R	0.99632	0.91056	0.82909	0.84869

Pengujian menggunakan algoritma Ensemble Learning dapat dilihat pada "Tabel. V".

Tabel V: Algoritma Ensemble Learning

	Accuracy	Precision	Recall	F-measure
DoS	0.99808	0.99852	0.99718	0.99772
Probe	0.99275	0.98765	0.98953	0.98841
R2L	0.97158	0.95838	0.96409	0.96079
U2R	0.99744	0.94270	0.88758	0.91119

V. KESIMPULAN

Dalam penelitian ini, kami membandingkan beberapa model untuk sistem deteksi trusi menggunakan $Random\ Forest,\ K-Neighbors,\ Support\ Vector\ Machine,\ dan\ Ensemble\ Learning\ dengan ketiga model diatas. Performa keempat pendekatan ini telah diamati berdasarkan <math>accuracy,\ precision,\ recall,\ dan\ f-measure\ (F_1-score).$

Dari hasil pengujian dari masing-masing algoritma yang ada pada tabel, menunjukkan kemampuan klasifikasi algoritma *Ensemble Learning* lebih tinggi tingkat akurasi dan ketepatan.

Hasil penelitian ini sangat berguna untuk penelitian masa depan dengan cara memaksimalkan tingkat kinerja serta meminimalkan tingkat *false negative*.

REFERENCES

- N. Farnaaz and M. Jabbar, "Random forest modeling for network intrusion detection system," *Procedia Computer Science*, vol. 89, pp. 213–217, 2016.
- [2] Y. Liao and R. Vemuri, "Use of k-nearest neighbor classifier for intrusion detection," Computers and Security, vol. 21, pp. 439–448, 10 2002.
- [3] N. Nurhadi, Aplikasi Intelligence Intrusion Detection System (IIDS) Dengan Menggunakan Metode K-Nearest Neighbor Untuk Mendeteksi Serangan Pada Jaringan. PhD thesis, Universitas Islam Negeri Sultan Syarif Kasim Riau, 2017.
- [4] Z. Lubis, P. Sihombing, and H. Mawengkang, "Optimization of k value at the k-nn algorithm in clustering using the expectation maximization algorithm," in *IOP Conference Series: Materials Science and Engineering*, p. 012133, IOP Publishing, 2020.
- [5] M. A. Hasan, M. Nasser, B. Pal, and S. Ahmad, "Support vector machine and random forest modeling for intrusion detection system (ids)," *Journal* of Intelligent Learning Systems and Applications, vol. 06, pp. 45–52, 01 2014
- [6] E. Xydas, C. Marmaras, L. Cipcigan, A. Sani Hassan, and N. Jenkins, "Forecasting electric vehicle charging demand using support vector machines," *Proceedings of the Universities Power Engineering Conference*, pp. 1–6, 09 2013.
- pp. 1–6, 09 2013.
 [7] W. Zhang, F. Liu, L. Longqiang, and J. Zhang, "Predicting drug side effects by multi-label learning and ensemble learning," *BMC Bioinformatics*, vol. 16, 11 2015.
- [8] Mamcose, "Nsl-kdd-network-intrusion-detection," 2019.