

Background

- POS information can be useful in other types of research (e.g. corpus linguistics).
- POS taggers are created for big modern languages or require much data to train.
- Solution: using modern POS taggers on historical data?
- Issues: OOV items, variation in spelling and punctuation, different grammar...
- These problems can be solved, but first they need to be identified.
- Most research has been done on Germanic languages.

RESEARCH QUESTION:

How well does the GATE Cloud tagger for Polish perform on historical data and what kinds of mistakes does it tend to make?

Materials and methods

- GATE Cloud tagger for Polish, trained on Universal Dependencies treebanks.
- Manually annotated data from 19th century memoirs, 3000+ tokens.
- Code in a Jupyter Notebook file: data preprocessing, tagger annotation, an array of evaluation measures (quantitative and qualitative).
- Manual error analysis.

POS tag	Capitalized	Lowercase
ADJ	61.51%	52.56%
ADP	95.65%	95.94%
ADV	72.29%	70.11%
AUX	76.92%	73.91%
CCONJ	97.52%	97.50%
DET	98.46%	98.67%
NOUN	84.94%	73.23%
NUM	73.68%	69.44%
PART	82.22%	82.61%
PRON	82.89%	83.12%
PROPN	66.23%	0.00%
PUNCT	100.00%	100.00%
SCONJ	80.43%	77.50%
VERB	84.40%	82.45%
X	64.52%	64.00%

POS tag	Capitalized	Lowercase
ADJ	78.90%	78.06%
ADP	97.06%	97.35%
ADV	70.59%	71.76%
AUX	74.63%	76.12%
CCONJ	95.73%	95.12%
DET	41.11%	48.68%
NOUN	79.56%	89.54%
NUM	65.12%	58.14%
PART	59.68%	61.29%
PRON	88.73%	92.66%
PROPN	93.09%	0.00%
PUNCT	100.00%	100.00%
SCONJ	53.62%	44.93%
VERB	90.38%	90.38%
X	52.63%	42.11%

Table 3: Recall per POS tag per trial.

Data capitalization	Accuracy	MCC
Original capitalization	83.98%	81.82%
All lowercase	80.46%	77.80%

Table 1: Accuracy and MCC per trial.

Confusion matrix (original capitalization)

Confusion matrix (lowercase)

Qualitative error analysis

- Jupyter Notebook
- Capitalization, confusing word endings, variation in spelling, the ability of some words to function as multiple classes, and archaic vocabulary.
- Mysterious cases.

Discussion

- Performance better than expected (above 80%).
- Issues similar to the ones described in the literature, except the confusing endings.
- Lowercasing the data does not bring obvious benefits, and is detrimental to PROPN detection.

Future Work

- Influence of punctuation.
- Testing other taggers on the same data.
- Testing this tagger on different kinds of historical data.
- Testing taggers on modern nonstandard data.
- Developing methods for preprocessing the data.

