

Problem Statement:

Prepare a classification model using Naive Bayes for salary data test data

1. Import Necessary Libraries

```
In [1]: import pandas as pd
   import numpy as np
   from matplotlib import pyplot as plt
   import seaborn as sns
   from sklearn.preprocessing import LabelEncoder
```

2. Import Data

```
In [3]: Naive_bayes_Test_Data = pd.read_csv('SalaryData_Test.csv')
Naive_bayes_Test_Data
```

Out[3]:

		age	workclass	education	educationno	maritalstatus	occupation	relationship	race	
	0	25	Private	11th	7	Never- married	Machine- op-inspct	Own-child	Black	
	1	38	Private	HS-grad	9	Married-civ- spouse	Farming- fishing	Husband	White	
	2	28	Local-gov	Assoc- acdm	12	Married-civ- spouse	Protective- serv	Husband	White	
	3	44	Private	Some- college	10	Married-civ- spouse	Machine- op-inspct	Husband	Black	
	4	34	Private	10th	6	Never- married	Other- service	Not-in-family	White	
•	15055	33	Private	Bachelors	13	Never- married	Prof- specialty	Own-child	White	
•	15056	39	Private	Bachelors	13	Divorced	Prof- specialty	Not-in-family	White	Fŧ
	15057	38	Private	Bachelors	13	Married-civ- spouse	Prof- specialty	Husband	White	
	15058	44	Private	Bachelors	13	Divorced	Adm- clerical	Own-child	Asian- Pac- Islander	
	15059	35	Self-emp- inc	Bachelors	13	Married-civ- spouse	Exec- managerial	Husband	White	

15060 rows × 14 columns

3. Data Understanding

```
In [5]: Naive_bayes_Test_Data.shape
Out[5]: (15060, 14)
In [6]: Naive_bayes_Test_Data.dtypes
Out[6]: age
                           int64
        workclass
                          object
                          object
        education
        educationno
                           int64
        maritalstatus
                          object
                          object
        occupation
                          object
        relationship
        race
                          object
        sex
                          object
        capitalgain
                           int64
                           int64
        capitalloss
        hoursperweek
                           int64
        native
                          object
        Salary
                          object
        dtype: object
In [7]: Naive_bayes_Test_Data.isna().sum()
Out[7]: age
                          0
        workclass
                          0
        education
                          0
        educationno
                          0
        maritalstatus
                          0
        occupation
                          0
        relationship
                          0
                          0
        race
                          0
        sex
                          0
        capitalgain
                          0
        capitalloss
        hoursperweek
                          0
        native
                          0
                          0
        Salary
        dtype: int64
```


In [8]: Naive_bayes_Test_Data.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 15060 entries, 0 to 15059 Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype		
0	age	15060 non-null	int64		
1	workclass	15060 non-null	object		
2	education	15060 non-null	object		
3	educationno	15060 non-null	int64		
4	maritalstatus	15060 non-null	object		
5	occupation	15060 non-null	object		
6	relationship	15060 non-null	object		
7	race	15060 non-null	object		
8	sex	15060 non-null	object		
9	capitalgain	15060 non-null	int64		
10	capitalloss	15060 non-null	int64		
11	hoursperweek	15060 non-null	int64		
12	native	15060 non-null	object		
13	Salary	15060 non-null	object		
dtype	es: int64(5), d	object(9)			

memory usage: 1.6+ MB

In [9]: Naive_bayes_Test_Data.describe(include='all')

Out[9]:

	age	workclass	education	educationno	maritalstatus	occupation	relationship
count	15060.000000	15060	15060	15060.000000	15060	15060	15060
unique	NaN	7	16	NaN	7	14	6
top	NaN	Private	HS-grad	NaN	Married-civ- spouse	Exec- managerial	Husband
freq	NaN	11021	4943	NaN	6990	1992	6203
mean	38.768327	NaN	NaN	10.112749	NaN	NaN	NaN
std	13.380676	NaN	NaN	2.558727	NaN	NaN	NaN
min	17.000000	NaN	NaN	1.000000	NaN	NaN	NaN
25%	28.000000	NaN	NaN	9.000000	NaN	NaN	NaN
50%	37.000000	NaN	NaN	10.000000	NaN	NaN	NaN
75%	48.000000	NaN	NaN	13.000000	NaN	NaN	NaN
max	90.000000	NaN	NaN	16.000000	NaN	NaN	NaN
4							•

```
In [10]: Naive_bayes_Test_Data.describe(include='all').nunique()
Out[10]: age
                           8
         workclass
                           4
         education
                           4
         educationno
                           8
         maritalstatus
         occupation
         relationship
         race
         sex
                           5
         capitalgain
         capitalloss
                           5
         hoursperweek
         native
                           4
         Salary
         dtype: int64
In [12]: Naive_bayes_Test_Data['workclass'].nunique()
Out[12]: 7
In [11]: Naive_bayes_Test_Data['workclass'].unique()
Out[11]: array([' Private', ' Local-gov', ' Self-emp-not-inc', ' Federal-gov',
                 'State-gov', 'Self-emp-inc', 'Without-pay'], dtype=object)
```


In [13]: Naive_bayes_Test_Data

Out[13]:

	age	workclass	education	educationno	maritalstatus	occupation	relationship	race	
0	25	Private	11th	7	Never- married	Machine- op-inspct	Own-child	Black	
1	38	Private	HS-grad	9	Married-civ- spouse	Farming- fishing	Husband	White	
2	28	Local-gov	Assoc- acdm	12	Married-civ- spouse	Protective- serv	Husband	White	
3	44	Private	Some- college	10	Married-civ- spouse	Machine- op-inspct	Husband	Black	
4	34	Private	10th	6	Never- married	Other- service	Not-in-family	White	
15055	33	Private	Bachelors	13	Never- married	Prof- specialty	Own-child	White	
15056	39	Private	Bachelors	13	Divorced	Prof- specialty	Not-in-family	White	Fŧ
15057	38	Private	Bachelors	13	Married-civ- spouse	Prof- specialty	Husband	White	
15058	44	Private	Bachelors	13	Divorced	Adm- clerical	Own-child	Asian- Pac- Islander	
15059	35	Self-emp- inc	Bachelors	13	Married-civ- spouse	Exec- managerial	Husband	White	

15060 rows × 14 columns

4. Data Preparation

```
In [16]: from sklearn.preprocessing import LabelEncoder

In [17]: Label = LabelEncoder()

In [18]: Naive_bayes_Test_Data['workclass'] = Label.fit_transform(Naive_bayes_Test_Data['v Naive_bayes_Test_Data['education'] = Label.fit_transform(Naive_bayes_Test_Data['e Naive_bayes_Test_Data['maritalstatus'] = Label.fit_transform(Naive_bayes_Test_Data['Naive_bayes_Test_Data['naive_bayes_Test_Data['naive_bayes_Test_Data['naive_bayes_Test_Data['naive_bayes_Test_Data['race'] = Label.fit_transform(Naive_bayes_Test_Data['race'] Naive_bayes_Test_Data['sex'] = Label.fit_transform(Naive_bayes_Test_Data['sex']) Naive_bayes_Test_Data['native'] = Label.fit_transform(Naive_bayes_Test_Data['native'] Naive_bayes_Test_Data['salary'] = Label.fit_transform(Naive_bayes_Test_Data['Salary'] = Label.fit_transform(Nai
```


In [19]: Naive_bayes_Test_Data

Out[19]:

	age	workclass	education	educationno	maritalstatus	occupation	relationship	race	sex
0	25	2	1	7	4	6	3	2	1
1	38	2	11	9	2	4	0	4	1
2	28	1	7	12	2	10	0	4	1
3	44	2	15	10	2	6	0	2	1
4	34	2	0	6	4	7	1	4	1
15055	33	2	9	13	4	9	3	4	1
15056	39	2	9	13	0	9	1	4	0
15057	38	2	9	13	2	9	0	4	1
15058	44	2	9	13	0	0	3	1	1
15059	35	3	9	13	2	3	0	4	1

15060 rows × 14 columns

In [20]: Naive_bayes_Test_Data.dtypes

Out[20]: age

int64 workclass int32 education int32 educationno int64 maritalstatus int32 occupation int32 relationship int32 int32 race int32 sex capitalgain int64 capitalloss int64 hoursperweek int64 native int32 Salary int32 dtype: object

5. Model Building

```
In [21]: X = Naive_bayes_Test_Data.drop(['Salary'], axis=1)
         y = Naive_bayes_Test_Data['Salary']
```


Out[22]:

	age	workclass	education	educationno	maritalstatus	occupation	relationship	race	sex
0	25	2	1	7	4	6	3	2	1
1	38	2	11	9	2	4	0	4	1
2	28	1	7	12	2	10	0	4	1
3	44	2	15	10	2	6	0	2	1
4	34	2	0	6	4	7	1	4	1
15055	33	2	9	13	4	9	3	4	1
15056	39	2	9	13	0	9	1	4	0
15057	38	2	9	13	2	9	0	4	1
15058	44	2	9	13	0	0	3	1	1
15059	35	3	9	13	2	3	0	4	1

15060 rows × 13 columns

```
In [23]: y
Out[23]: 0
         2
         3
         15055
         15056
         15057
         15058
         15059
         Name: Salary, Length: 15060, dtype: int32
In [47]: | from sklearn.model_selection import train_test_split
In [49]: X_train, X_test, y_train, y_test = train_test_split(X,y, train_size=0.20, random]
In [50]: X_train.shape, y_train.shape
Out[50]: ((3012, 13), (3012,))
In [51]: X_test.shape, y_test.shape
Out[51]: ((12048, 13), (12048,))
```


6. Model training | Testing | Evaluation

```
In [52]: from sklearn.naive bayes import MultinomialNB
         nb Classifier = MultinomialNB()
In [59]: |nb_Classifier.fit(X_test, y_test)
         MultinomialNB()
Out[59]: MultinomialNB()
In [60]: y_pred = nb_Classifier.predict(X_train)
         y pred
Out[60]: array([0, 0, 0, ..., 0, 0, 0])
In [61]: from sklearn.metrics import accuracy score, precision score, confusion matrix, cla
In [63]: print("Accuracy Score:", round(accuracy_score(y_train, y_pred),4))
         Accuracy Score: 0.7915
In [64]: print("Confusion Matrix:", confusion_matrix(y_train, y_pred))
         Confusion Matrix: [[2241
          [ 553 143]]
In [65]: print("Classification Report:", classification report(y train, y pred))
         Classification Report:
                                               precision
                                                            recall f1-score
                                                                               support
                            0.80
                                       0.97
                                                 0.88
                                                           2316
                                                            696
                    1
                            0.66
                                       0.21
                                                 0.31
             accuracy
                                                 0.79
                                                           3012
            macro avg
                            0.73
                                       0.59
                                                 0.60
                                                           3012
         weighted avg
                            0.77
                                       0.79
                                                 0.75
                                                           3012
In [66]: print("Precision Scoree:", round(precision_score(y_train, y_pred),4))
         Precision Scoree: 0.656
```

7. Model Deployment

```
In [73]: from pickle import dump
In [74]: dump(nb_Classifier, open('lognb_Classifier.plktest', 'wb'))
In [75]: from pickle import load
```

```
In [76]: nb_Classifier_pickle = load(open('lognb_Classifier.plktest', 'rb'))
In [77]: Pickle_pred = nb_Classifier_pickle.predict(X_train)
```

Conclusion:

Classification model using Naive Bayes for salary data train data with model accuracy 79%