相關

|    |            | 國文      | 英文     |
|----|------------|---------|--------|
|    | Pearson 相關 | 1       | .792** |
| 國文 | 顯著性 (雙尾)   |         | .002   |
|    | 個數         | 12      | 12     |
|    | Pearson 相關 | . 792** | 1      |
| 英文 | 顯著性 (雙尾)   | .002    |        |
|    | 個數         | 12      | 12     |

\*\*. 在顯著水準為0.01時 (雙尾),相關顯著。





由表可知國文與英文成績呈現高度正相關(0.972)。其雙尾檢定的顯著性為 $0.002<\alpha=0.05$ ,故拒絕兩者無關之虛無假設。國文成績高者,其英文成績童要較高。

相關

|      |            | 平均成績             | 出席率   | 選修學分  | 打工時數  |
|------|------------|------------------|-------|-------|-------|
|      | Pearson 相關 | 1                | . 485 | . 560 | 714*  |
| 平均成績 | 顯著性 (雙尾)   |                  | .131  | .073  | .014  |
|      | 個數         | 11               | 11    | 11    | 11    |
|      | Pearson 相關 | .485             | 1     | .604* | 214   |
| 出席率  | 顯著性 (雙尾)   | .131             |       | .049  | . 528 |
|      | 個數         | 11               | 11    | 11    | 11    |
|      | Pearson 相關 | . 560            | .604* | 1     | 158   |
| 選修學分 | 顯著性 (雙尾)   | .073             | . 049 |       | . 644 |
|      | 個數         | 11               | 11    | 11    | 11    |
|      | Pearson 相關 | 714 <sup>*</sup> | 214   | 158   | 1     |
| 打工時數 | 顯著性 (雙尾)   | .014             | . 528 | . 644 |       |
|      | 個數         | 11               | 11    | 11    | 11    |

<sup>\*.</sup> 在顯著水準為0.05 時 (雙尾),相關顯著。

根據此表可以看出平均成績與打工時數的相關性最高,呈現高度負相關(-0.714),其顯著性為  $0.014<\alpha=0.05$ ,故拒絕兩者無關之虛無假設。打工時數與出席率及選修學分皆為低度負相關(-0.214,-0.158)。

相關

| 担           | 控制變數 |          |       |       |
|-------------|------|----------|-------|-------|
| 平均成績 & 打工時數 |      | 相關       | 1.000 | .416  |
|             | 出席率  | 顯著性 (雙尾) |       | . 265 |
|             |      | df       | 0     | 7     |
|             |      | 相關       | .416  | 1.000 |
|             | 選修學分 | 顯著性 (雙尾) | . 265 |       |
|             |      | df       | 7     | 0     |

為直接以簡單相關係數比較出席率與選修學分之間的關係,固定了平均成績及打工時數變數。由此表可知,其相關性為中度正相關(0.416),但其並不再是顯著相關(0.265)  $\alpha=0.05$ )。可見,於多組變數時,僅單獨以簡單相關係數進行檢定,其簡論可能錯誤。

### 模式摘要(線性)

| R    | R 平方 | 調過後的 R 平方 | 估計的標準誤 |
|------|------|-----------|--------|
| .661 | .437 | .380      | 12.934 |

# 自變數是 成就動機。

### ANOVA(線性)

|    | 平方和      | df | 平均平方和    | F     | 顯著性  |
|----|----------|----|----------|-------|------|
| 迴歸 | 1296.016 | 1  | 1296.016 | 7.747 | .019 |
| 殘差 | 1672.901 | 10 | 167.290  |       |      |
| 總數 | 2968.917 | 11 |          |       |      |

# 自變數是 成就動機。

# 模式摘要(二次)

| R    | R 平方 | 調過後的 R 平方 | 估計的標準誤 |
|------|------|-----------|--------|
| .956 | .913 | .894      | 5.351  |

# 自變數是 成就動機。

# ANOVA(二次)

|    | 平方和      | df | 平均平方和    | F      | 顯著性  |
|----|----------|----|----------|--------|------|
| 迴歸 | 2711.195 | 2  | 1355.597 | 47.339 | .000 |
| 殘差 | 257.722  | 9  | 28.636   |        |      |
| 總數 | 2968.917 | 11 |          |        |      |

## 自變數是 成就動機。

### 係數

| 未標準化      |         | 上係數   | 標準化係數   | ,      | 四古女小小 |
|-----------|---------|-------|---------|--------|-------|
|           | B 之估計值  | 標準誤   | Beta 分配 | t      | 顯著性   |
| 成就動機      | 4.103   | . 506 | 4.503   | 8.109  | .000  |
| 成就動機 ** 2 | 041     | .006  | -3.903  | -7.030 | .000  |
| (常數)      | -22.799 | 9.744 |         | -2.340 | .044  |

比較線性與二次曲線模式之相關係數(0.661,0.956)及顯著性(0.019,0.000),可發現二次曲線模型較具解釋能力,線性與二次曲線模型皆能拒絕兩變數無關之虛無假設。因此我們決定使用二次曲線模型。其中每個迴歸係數的顯著性均 $<\alpha=0.05$ ,

故其回歸方程式為  $y = -0.041x^2 + 4.103x - 22.799$ 。曲線圖如下:



模式摘要

| 模式 | R     | R 平方 | 調過後的 R 平方 | 估計的標準誤 |
|----|-------|------|-----------|--------|
| 1  | .984ª | .968 | .936      | .03982 |

a. 預測變數:(常數), 上課時段, 是否點名, 成績高低, 上課內容

係數<sup>a</sup>

| 模式 |         | 未標準化係數 |      | 標準化係數   | ,      | 目式 艺术 144. |
|----|---------|--------|------|---------|--------|------------|
|    | <b></b> | B 之估計值 | 標準誤差 | Beta 分配 | t      | 顯著性        |
|    | (常數)    | . 479  | .099 |         | 4.863  | .008       |
|    | 是否點名    | .026   | .021 | .118    | 1.256  | .277       |
| 1  | 成績高低    | .013   | .016 | .080    | .817   | .460       |
|    | 上課內容    | .100   | .014 | .740    | 7.011  | .002       |
|    | 上課時段    | 057    | .016 | 369     | -3.519 | .024       |

a. 依變數: 出席率

Anova

| 杉 | 莫式 | 平方和  | df | 平均平方和 | F      | 顯著性               |
|---|----|------|----|-------|--------|-------------------|
|   | 迴歸 | .193 | 4  | .048  | 30.353 | .003 <sup>b</sup> |
| 1 | 殘差 | .006 | 4  | .002  |        |                   |
|   | 總數 | .199 | 8  |       |        |                   |

a. 依變數: 出席率

b. 預測變數:(常數),上課時段,是否點名,成績高低,上課內容 此結果之複相關係數為0.984,顯示整組回歸方程式可解釋上課席率差異之程度相當 高。ANOVA中的F檢定顯著性0.003< $\alpha$ =0.05,故能拒絕變數無回歸關係之虛無假設。 T檢定結果縣市,僅上課內容、上課時段與常數項具有顯著性。可將其他變數從回歸 方程式中排除。

其回歸方程式為 y = -0.057\*上課時段 - 0.1\*上課內容 + 0.479