5.3 参变量函数的导数

一、参变量方程表示的曲线

参变量方程
$$\begin{cases} x = \varphi(t) \\ y = \psi(t) \end{cases} (t \in [\alpha, \beta])$$

当t变化时,点 $(x,y)=(\varphi(t),\psi(t))$ 描绘出曲线 Γ .

 Γ :运动轨迹。

1.
$$\Box: x^2 + y^2 = a^2$$

$$\begin{cases} x = a \cos t \\ y = a \sin t \end{cases} \quad (0 \le t \le 2\pi).$$

2、椭圆:
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

$$\begin{cases} x = a \cos t \\ y = b \sin t \end{cases} \quad (0 \le t \le 2\pi).$$

议
$$\begin{cases} x = \varphi(t) \\ y = \psi(t) \end{cases} (t \in [\alpha, \beta]).$$

 \Rightarrow 若 $x = \varphi(t)$ 在某区间 I_t 上单调,则 $t = \varphi^{-1}(x)$,

故
$$y = \psi(t) = \psi[\varphi^{-1}(x)]$$

= $y(x)$.

二、参变量函数的导数

定理1: 设
$$\begin{cases} x = \varphi(t) \\ y = \psi(t) \end{cases}$$
, 若 $\varphi(t)$ 在 t_0 的某邻域单调,

 $\varphi(t), \psi(t)$ 在 t_0 可导且 $\varphi'(t_0) \neq 0$,则

$$\left|\frac{dy}{dx}\right|_{t=t_0}=\frac{\psi'(t_0)}{\varphi'(t_0)}.$$

注: 若 $\varphi(t)$, $\psi(t)$ 在 [α , β] 上都存在连续导数,且

$$\varphi'^2(t)+\psi'^2(t)\neq 0,$$

则称曲线为光滑曲线. 若 $\varphi'(t) \neq 0$,则

$$\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx} = \frac{dy/dt}{dx/dt} = \frac{\psi'(t)}{\varphi'(t)}.$$

例1、求椭圆 $\begin{cases} x = a\cos\theta \\ y = b\sin\theta \end{cases}$ 在 $\theta = \frac{\pi}{4}$ 对应点处的切线

方程.

极坐标系下的参数方程

直角坐标: (x,y)

极坐标: (r,θ)

$$(x,y)$$
 0
 x

关系:
$$\begin{cases} x = r \cos \theta \\ y = r \sin \theta \end{cases}$$

$$\begin{cases} r = \sqrt{x^2 + y^2} \\ \tan \theta = \frac{y}{x} \end{cases}$$

• 直角坐标系下曲线 L:

$$y = f(x), x \in D$$
.

• 极坐标系下曲线 C:

$$r = r(\theta) (\theta \in [\alpha, \beta]).$$

$$r = r(\theta)$$

例: 心形线 $r = a(1 + \cos \theta)$

$$+$$
 $r = r(\theta)$ ($\theta \in [\alpha, \beta]$) 的参数方程:

$$\begin{cases} x = r(\theta)\cos\theta \\ y = r(\theta)\sin\theta \end{cases} (\alpha \le \theta \le \beta).$$

曲线 $C: r = r(\theta)$ 在点 $M(r(\theta), \theta)$ 处切线的斜率:

$$k = \tan \alpha = \frac{r'(\theta) \tan \theta + r(\theta)}{r'(\theta) - r(\theta) \tan \theta}.$$

+ 点 M 的向径 (OM) 与点 M 处切线的夹角为 φ ,则

$$\tan \varphi = \frac{r(\theta)}{r'(\theta)}.$$

例2、证明对数螺线 $r=e^{\frac{\theta}{2}}$ 上所有点处的切线与向径的夹角 φ 是常数 .

作 业

习题5-3: 1(2)、2、5