On Impossible Differential Cryptanalysis

María Naya-Plasencia INRIA, France

Clervaux, ESC 2015

Outline

Introduction and Survey

Generic Complexities

Generic Improvements

Examples

Outline

➤ "Scrutinizing and Improving Impossible Differential Attacks: Applications to CLEFIA, Camellia, LBlock and Simon", Asiacrypt 2014, joint work with Christina Boura and Valentin Suder.

► New Results on Impossible Differential Cryptanalysis of SPN Ciphers, joint work with Christina Boura, Virginie Lallemand and Valentin Suder.

Impossible Differential Attacks

Classical Differential Attacks [BS'90]

Given an input difference between two plaintexts, some output differences occur more often than others.

A differential is a pair (Δ_X, Δ_Y) .

Impossible Differential Attacks [K,BBS'98]

Impossible differential attacks use a differential with probability 0.

We can find the impossible differential using the Miss-in-the-middle [BBS'98] technique.

- ightharpoonup Extend it backward and forward \Rightarrow Active Sboxes transitions give information on the involved key bits.
- Generic framework, improvements [BNPS14, BLNPS15]

Impossible Differential Attack

Discarding Wrong Keys

lacksquare Given one pair of inputs with Δ_{in} that produces Δ_{out} ,

▶ all the (partial) keys that produce ΔX from Δ_{in} and ΔY from Δ_{out} differ from the correct one.

If we consider N pairs verifying $(\Delta_{in}, \Delta_{out})$ the probability of NOT discarding a candidat key is

$$(1-2^{-c_{in}-c_{out}})^N$$

Some previous attacks

Algorithm	# rounds	Type of error	Gravity of error
CLEFIA-128	14	data complexity higher	attack does not work
(without whit.)		than codebook	
CLEFIA-128	13	cannot be verified	-
		without implementation	
Camellia	12	big flaw in computation	attack does not work
(without FL/FL^{-1})			
Camellia-128	12	big flaw in computation	attack does not work
Camellia-128/192/256	11/13/14	small complexity flaws	corrected attacks work
(without FL/FL^{-1})			
LBlock	22	small complexity flaw	corrected attack works
SIMON (all versions)	14/15/16/	data complexity higher	attacks do not work
	19/22	than codebook	
SIMON (all versions)	13/15/17	big flaw in computation	attacks do not work
	20/25		

Generic Complexities

Impossible Differential Attack

Data Complexity

$$P = (1 - 2^{-(c_{in} + c_{out})})^N < \frac{1}{2} \text{ (and not } \frac{1}{2^{|k_{in} \cup k_{out}|}}\text{)}.$$

lacksquare Finding N pairs verifying a given truncated differential.

Data Complexity

The limited birthday problem [GP10] solves it for 1 pair.

 \blacktriangleright For obtaining N pairs:

$$C_N = \max \left\{ \min_{\Delta \in \{\Delta_{in}, \Delta_{out}\}} \left\{ \sqrt{N2^{n+1-|\Delta|}} \right\}, N2^{n+1-|\Delta_{in}|-|\Delta_{out}|} \right\}.$$

For the attack to work, we need that $C_N < 2^n$, where n is the size of the state.

Time Complexity

$$C_N C_E + 2^{|k_{in} \cup k_{out}|} \frac{N}{2^{c_{in} + c_{out}}} C_E' + P 2^{|K|} C_E < 2^{|K|} C_E$$

where C_N is the data needed for obtaining N pairs $(\Delta_{in}, \Delta_{out})$, $\frac{N}{2^{c_{in}+c_{out}}}C_E'$ is the average cost of testing the pairs per candidate key (early abort technique [LKKD08]) and P is the probability of not discarding a candidate key.

Revisiting Time complexity

Considering the key-schedule as a black box, we have to add one term:

$$\min(2^{K-k_{in}}, 2^{K-k_{out}}) \cdot P \cdot 2^{|k_{in} \cup k_{out}|} \cdot C_{KS},$$

As now $|k_{in} \cup k_{out}| = k_{in} + k_{out}$, we have

$$\min(2^{K+k_{out}}, 2^{K+k_{in}}) \cdot P \cdot C_{KS}.$$

Multiplying by $\max(2^{-k_{out}}, 2^{-k_{in}})$, we recover the $P2^K$ keys to test (3rd term).

Memory complexity

▶ The memory complexity is $\min\{N, 2^{|K_{in} \cup K_{out}|}\}$.

ightharpoonup Typically, N is smaller.

Generic Improvements

Improvements from [BN-PS14]

ightharpoonup Correctly choosing Δ_{in} and Δ_{out} (related to [MRST09])

Multiple impossible differentials (related to [JN-PP13])

State-test technique (related to [MRST09])

Choosing Δ_{in} and Δ_{out}

or how to match the time complexity estimation:

$$|\Delta_{in}|=8$$
 and $c_{in}=4$ OR $|\Delta_{in}|=7$ and $c_{in}=3$

Example: CLEFIA-128

- block size: $4 \times 32 = 128$ bits
- key size: 128 bits
- # of rounds: 18

Multiple Impossible Differentials

Formalize the idea of [Tsunoo et al. 08]:

CLEFIA has two 9-round impossible differentials $((0,0,0,A)\not\to (0,0,0,B))$ and $((0,A,0,0)\not\to (0,B,0,0))$ when A and B verify:

$$\begin{array}{|c|c|c|c|c|c|}\hline A & B \\ \hline (0,0,0,\alpha) & (0,0,\beta,0) & \text{or} & (0,\beta,0,0) & \text{or} & (\beta,0,0,0) \\ (0,0,\alpha,0) & (0,0,0,\beta) & \text{or} & (0,\beta,0,0) & \text{or} & (\beta,0,0,0) \\ (0,\alpha,0,0) & (0,0,0,\beta) & \text{or} & (0,0,\beta,0) & \text{or} & (\beta,0,0,0) \\ (\alpha,0,0,0) & (0,0,0,\beta) & \text{or} & (0,0,\beta,0) & \text{or} & (0,\beta,0,0) \\ \hline \end{array}$$

24 in total: $C_N = 2^{113}$ becomes $C_N = 2^{113}/24$

Revisiting Multiple Impossible Differentials

► It seemed difficult to combine with other techniques. New vision:

Could be seen as the application in parallel of independent attacks with the same parametters but (possibly) different involved keybits. When considering multiples, we need less data!

New Idea: Multiple Differentials

We now consider not only multiple impossible differentials, but also multiple differentials:

for a fixed pair (Δ_X, Δ_Y) , different transitions to $m_{in} \ \Delta_{in}$ and $m_{out} \ \Delta_{out}$.

$$C_N' = \frac{C_N}{n_{in}n_{out}m_{in}m_{out}} = \frac{C_N}{M}.$$

State Test Technique

Aims at reducing the number of key bits involved.

In the end, for a partial key candidate, we obtained a list of possible partial states. If all the values appear, the partial key can be eliminated.

Complex to apply and to combine.

Revisiting the State Test Technique

Reduce the number of key bits involved.

Revisiting the State Test Technique

Reduce the number of key bits involved.

$$|k_{in} \cup k_{out}| = 122 \text{ bits } \Rightarrow |k_{in} \cup k_{out}| = 122 - 16 + \underbrace{8}_{B'} \text{ bits}$$

Combination of previous ideas

Black box key schedule and multiples:

$$2^{K-k_{out}^{inv}} \cdot (P^{1/M} \cdot 2^{|k_{in} \cup k_{out}|})^M \cdot 2^{-k_{out}^{int}} \cdot 2^{-k_{in}^{int}} \cdot C_{KS}$$

Giving

$$2^K \cdot P \cdot 2^{k_{in}^{inv}} \cdot C_{KS}$$

that multiplied by $2^{-k_{in}^{inv}} \cdot \frac{1}{C_{KS}}$, gives the number of candidate keys to test (and so the last term remains the same).

Multiples and state-test straight forward now.

Applications of Improved Impossible Diff

Feistel constructions:

- CLEFIA: best attack on CLEFIA (13 rounds).
 State-test and multiples
- Camellia: Improved best attacks for Camellia.
- ► Simon: previous best attacks on versions 32 and 48. Works thanks to multiples!! (now, see [WLVSRT14])
- ▶ LBlock: best attack (on 23 rounds).

Applications of Improved Impossible Diff

SPN constructions:

- AES: new trade-offs on 7 rounds (best memory).
- Crypton: best attack on 128b.
- Aria: best impossible differential attack.

Examples

CLEFIA-128

For CLEFIA, we can combine state-test and multiples and provide the best known attack:

Previous best: $2^{121.2}$ time, $2^{117.8}$ data and $2^{86.8}$ memory

Now (improving Asiacrypt paper!!) $2^{114.4}$ time, $2^{114.4}$ data and 2^{80} memory

CLEFIA-128

$$|\Delta_{in}| = |\Delta_{out}| = 48$$
, $c_{in} = c_{out} = 40$ $r_{\Delta} = 9$, $N_{min} = 2^{80}$, $N = N_{min}2^{\varepsilon}$, $C_N = 2^{113+\varepsilon}$

Crypton

Example of how multiple impossible differentials and multiple differentials can considerably improve the complexities.

From 2^{121} data, $2^{116.2}$ time and 2^{112} memory

to $2^{114.92}$ data, $2^{113.7}$ time and $2^{88.5}$ memory.

Δ_{out} Multiple multiples 00 0000 Δ_{in} 0 0 0 0 0 0 0 ×4 0000 0 0 0 0 0 0 ×4 00 ×4 0 0 0000 00

Conclusion

To Sum Up

► Impossible differential attacks, important family that provides best results on several ciphers.

▶ We have now a generic approach easy to apply. When mounting an attack, check the exact complexity by determining the procedure (but normally corresponds to the theoretical one).

New improvements?