

Realizing Graphs with Cut Constraints^a

Lucas de Oliveira Silva¹ Vítor Gomes Chagas¹ Samuel Plaça de Paula¹ Greis Yvet Oropeza Quesquén¹ Uéverton dos Santos Souza^{2,3}

- ¹ Unicamp, Campinas, Brazil
- ² IMPA, Rio de Janeiro, Brazil
- ³ UFF, Niterói, Brazil

14th CIAC, 11th June 2025

^a This work began during the 6th edition of the S\u00e3o Paulo Workshop on Optimization, Combinatorics, and Algorithms (WoPOCA). We thank the organizers and the agencies CNPq (process number 404315/2023-2) and FAEPEX (process number 2422/23).

Classic Problem

Old Graph Realization Problem

GRAPH REALIZATION (GR)

Input: A non-decreasing sequence $d = (d_1, ..., d_n)$ of

natural numbers.

Question: Is d a graphic sequence?

Example

Is
$$d = (3, 2, 2, 2, 1)$$
 graphic?

Example

Is d = (3, 2, 2, 2, 1) graphic?

Theorem (Erdős and Gallai [EG60])

A non-decreasing sequence $d = (d_1, \ldots, d_n)$ of natural numbers is graphic if and only if

Theorem (Erdős and Gallai [EG60])

A non-decreasing sequence $d = (d_1, \ldots, d_n)$ of natural numbers is graphic if and only if

Theorem (Erdős and Gallai [EG60])

A non-decreasing sequence $d = (d_1, \dots, d_n)$ of natural numbers is graphic if and only if

1.
$$\sum_{i=1}^{n} d_i$$
 is even, and

Theorem (Erdős and Gallai [EG60])

A non-decreasing sequence $d = (d_1, \dots, d_n)$ of natural numbers is graphic if and only if

- 1. $\sum_{i=1}^{n} d_i$ is even, and
- 2. For every $1 \le k \le n$,

$$\sum_{i=1}^{k} d_i \leq k(k-1) + \sum_{i=k+1}^{n} \min\{d_i, k\}$$

- Erdős–Gallai gives a simple poly-time criterion;

- Erdős-Gallai gives a simple poly-time criterion;
- Many variations have been considered;

- Erdős-Gallai gives a simple poly-time criterion;
- Many variations have been considered;
- Vertex degree = size of trivial edge cut;

- Erdős-Gallai gives a simple poly-time criterion;
- Many variations have been considered;
- Vertex degree = size of trivial edge cut;
- We generalize this idea by adding nontrivial constraints.

Nontrivial Cut Constraints

For a fixed graph G=(V,E) where $V=\{v_1,\ldots,v_n\}$:

For a fixed graph G=(V,E) where $V=\{v_1,\ldots,v_n\}$:

- A cut list is a list of pairs $\mathcal{L} = \{(S_1, \ell_1), \dots, (S_m, \ell_m)\};$

For a fixed graph G=(V,E) where $V=\{v_1,\ldots,v_n\}$:

- A *cut list* is a list of pairs $\mathcal{L} = \{(S_1, \ell_1), \dots, (S_m, \ell_m)\};$
- For each j, we have $\emptyset \neq S_j \subsetneq V$ and $\ell_j \in \mathbb{N}$;

For a fixed graph G = (V, E) where $V = \{v_1, \dots, v_n\}$:

- A cut list is a list of pairs $\mathcal{L} = \{(S_1, \ell_1), \dots, (S_m, \ell_m)\};$
- For each j, we have $\emptyset \neq S_i \subsetneq V$ and $\ell_i \in \mathbb{N}$;
- G realizes \mathcal{L} if $|\partial(S_i)| = \ell_i$ for every $(S_i, \ell_i) \in \mathcal{L}$;

For a fixed graph G = (V, E) where $V = \{v_1, \dots, v_n\}$:

- A *cut list* is a list of pairs $\mathcal{L} = \{(S_1, \ell_1), \dots, (S_m, \ell_m)\};$
- For each j, we have $\emptyset \neq S_j \subsetneq V$ and $\ell_j \in \mathbb{N}$;
- *G* realizes \mathcal{L} if $|\partial(S_i)| = \ell_i$ for every $(S_i, \ell_i) \in \mathcal{L}$;
- By $w(\mathcal{L})$ we denote $\max_{j} |S_{j}|$.

New Graph Realization Problem

GRAPH REALIZATION WITH CUT CONSTRAINTS (GR-C)

Input: A cut list \mathcal{L} for a set of vertices $V = \{v_1, \dots, v_n\}$,

and a non-decreasing sequence $d = (d_1, \ldots, d_n)$ of

natural numbers.

Question: Does there exist a (labeled) simple graph

G = (V, E) such that, for every j, $d(v_j) = d_j$ and

G realizes \mathcal{L} ?

Example

Consider d =
$$(d_1 = 3, d_2 = 2, d_3 = 2, d_4 = 2, d_5 = 1)$$
 and $\mathcal{L} = \{(\{v_2, v_3\}, 4), (\{v_1, v_2, v_5\}, 2)\}$:

Example

Consider d =
$$(d_1 = 3, d_2 = 2, d_3 = 2, d_4 = 2, d_5 = 1)$$
 and $\mathcal{L} = \{(\{v_2, v_3\}, 4), (\{v_1, v_2, v_5\}, 2)\}$:

- If $\mathcal{L} = \emptyset$, we have GR;

- If $\mathcal{L} = \emptyset$, we have GR;
- Assume that $2 \le |S_j| \le n-2$ for every j;

- If $\mathcal{L} = \emptyset$, we have GR;
- Assume that $2 \le |S_j| \le n-2$ for every j;
- If $\binom{V}{2} \subseteq \{S_j \mid (S_j, \ell_j) \in \mathcal{L}\}$ then the problem becomes trivial;

- If $\mathcal{L} = \emptyset$, we have GR;
- Assume that $2 \le |S_j| \le n-2$ for every j;
- If $\binom{V}{2} \subseteq \{S_j \mid (S_j, \ell_j) \in \mathcal{L}\}$ then the problem becomes trivial;
- GR-C can be seen as a consistency check for cut-queries.

For
$$S \subseteq V$$
 let $d(S) = \sum_{v_j \in S} d_j$.

For
$$S \subseteq V$$
 let $d(S) = \sum_{v_j \in S} d_j$.

Remark (1)

An instance (d, \mathcal{L}) is true only if, for each $(S, \ell) \in \mathcal{L}$,

For
$$S \subseteq V$$
 let $d(S) = \sum_{v_j \in S} d_j$.

Remark (1)

An instance (d, \mathcal{L}) is true only if, for each $(S, \ell) \in \mathcal{L}$,

For
$$S \subseteq V$$
 let $d(S) = \sum_{v_j \in S} d_j$.

Remark (1)

An instance (d, \mathcal{L}) is true only if, for each $(S, \ell) \in \mathcal{L}$, $\ell \in \{d(S) - 2k \mid 0 \le k \le {|S| \choose 2}\}$.

Nontrivial Cut Constraints

Small Cuts

Fixed Edges

If
$$(\{u,v\}, d_u + d_v - 2) \in \mathcal{L}$$
 then $uv \in E(G)$.

Forbidden Edges

If
$$(\{u,v\}, d_u + d_v) \in \mathcal{L}$$
 then $uv \notin E(G)$.

A Single Case

Replace $(\{u, v\}, d_u + d_v - 2)$ by $(\{u, v\}, d_u + d_v)$ while updating d.

Possibility Graph

Let *F* be the set of forbidden edges.

Possibility Graph

Let F be the set of forbidden edges.

Then we call $\mathcal{G} = K_n - F$ the possibility graph.

Size 2 Cut Constraints

We can reduce GR-C to f-factor!

Size 2 Cut Constraints

We can reduce GR-C to f-factor!

Lemma (1)

An instance (d, \mathcal{L}) of GR-C can be solved in polynomial time whenever $w(\mathcal{L})=2$.

Size 3 Cut Constraints

We can reduce to the previous case!

Size 3 Cut Constraints

We can reduce to the previous case!

Theorem (2)

An instance (d, \mathcal{L}) of GR-C can be solved in polynomial time whenever $w(\mathcal{L}) = 3$.

Proof Sketch

Consider a cut $(S, \ell) \in \mathcal{L}$ where $S = \{u, v, w\}$.

Proof Sketch

Consider a cut $(S, \ell) \in \mathcal{L}$ where $S = \{u, v, w\}$.

As an example, let $d_u = d_v = d_w = 2$ (so d(S) = 6).

Case $\ell = d(S) = 6$

Case $\ell = d(S) - 4 = 2$

Other Cases

$$\ell = d(S) - 2 = 4$$
 and $\ell = d(S) - 6 = 0$

Running Example

$$d = (d_1 = 3, d_2 = 2, d_3 = 2, d_4 = 2, d_5 = 1) \text{ and}$$

$$\mathcal{L} = \{(\{v_2, v_3\}, 4\}, (\{v_1, v_2, v_5\}, 2)\}:$$

Running Example

Equivalent f-factor instance:

Nontrivial Cut Constraints

Large Cuts

Size 4 Cut Constraints

Can we keep doing a case-by-case analysis?

Size 4 Cut Constraints

Can we keep doing a case-by-case analysis?

No, we cannot, and the GR-C becomes hard!

Intuition

For $S \in \binom{V}{3}$, E[S] determines how degrees change.

Intuition

For $S \in \binom{V}{3}$, E[S] determines how degrees change.

In contrast, for $S \in \binom{V}{4}$, this claim no longer holds.

Hardness

Theorem (3)

The GR-C problem cannot be solved in polynomial time unless P = NP even when $w(\mathcal{L}) = 4$ and all degrees in the degree sequence d are 1.

Proof

Reduction from $k ext{-True 1-in-3-SAT}_{(2,1)}$

1-in-3-**SAT** $_{(2,1)}$

 $1-IN-3-SAT_{(2,1)}$

Input: A set of variables X and a formula ϕ in conjunctive

normal form over *X* such that:

each variable of X occurs twice as a positive

literal and once as a negative literal;

each clause of ϕ has two or three literals.

Question: Is there a truth assignment of X such that exactly

one literal in every clause of ϕ is true?

1-in-3-**SAT** $_{(2,1)}$

Lemma (2)

1-in-3- $SAT_{(2,1)}$ is NP-complete.

k-True 1-in-3-**SAT**_(2,1)

k-True 1-in-3-SAT_(2,1)

Input: A tuple (X, ϕ, k) , where (X, ϕ) is an instance of

1-in-3-SAT_(2,1) and k is a nonnegative integer.

Question: Is there a feasible solution to (X, ϕ) in which

exactly k variables are assigned to true?

k-True 1-in-3-**SAT**_(2,1)

Lemma (3)

k- $True\ 1$ -in-3- $SAT_{(2,1)}$ cannot be solved in polynomial time unless P=NP.

Variable Gadget

Variable Gadget

Clause Gadget

$$C_{j} = (x_{a} + x_{b} + x_{c}) \text{ and } C_{k} = (x_{d} + \bar{x}_{e})$$

$$x_{b}$$

$$x_{c}$$

$$x_{d}$$

$$x_{e}$$

$$x_{d}$$

$$x_{e}$$

$$C_{k}$$

Complete Example

$$(\bar{x}_1 + x_3)(x_1 + x_2 + x_4)(x_1 + \bar{x}_4)(\bar{x}_2 + \bar{x}_3)(x_2 + x_3 + x_4)$$
 and $k = 1$:

Conclusion

Tree Possibility Graph

Proposition (1)

Given an instance (d, \mathcal{L}) of GR-C with a tree possibility graph \mathcal{G} , we can decide if there is a solution in polynomial time.

Bipartite Possibility Graph

Theorem (4)

The GR-C problem is NP-complete when the possibility graph \mathcal{G} is subcubic and bipartite, even when $w(\mathcal{L})=6$ and d is a sequence of ones.

 $\ensuremath{\mathcal{G}}$ is planar or has bounded treewidth

The size of ${\cal L}$ is small $(|{\cal L}|=1?)$

Complexity of 1-in-3 $SAT_{(2,2)}$

Geometric version of GR-C

Polygon Realization with Cut Constraints

Thank you all for the attention...

The End

Bibliography

[EG60] Paul Erdős and Tibor Gallai. Gráfok előírt fokszámú pontokkal. Matematikai Lapok, 11:264–274, 1960.