Translate the following queries into Relational Algebra and also Draw an optimized query tree starting from the initial query tree:

Q1. Given the relation below

Employee (<u>E_name</u>, street, city)

Works (<u>E_name</u>, comp_name, salary)

Company (comp_name, city)

Manages (<u>E_name</u>, mgr_name)

a) Select E_name

From Employee E, Works W

Where E.E_name = W.E_name and salary > 50000 and comp_name = 'First Bank Corp.';

b) Select E.E name, W.comp name

From Employee E, Works W

 $Where \ E.E_name = W.E_name \ and \ W.salary > (Select \ Avg(salary)$

From Works)

Group By W.comp_name;

Q2. Given the relation below

Salesperson (Name, Quota%, Salary)

Order (Number, CustName, SalespersonName, Amt)

Customer (Name, City, IndustryType)

a) Select Name

From Salesperson

Where Quota% < 30;

b) Select Name

From Salesperson

Where Quota% = (Select Max(Quota%))

From Salesperson);

Q3. Given the relation below

Student (SID, Name, Major, GradeLevel)

Class (Name, Time, Room)

Junior (SNum, Name, Major)

HonorStudent (Number, Name, Interest)

Enrollment (StdNo, ClassName, PositionNo)

Faculty (FID, Name, Dept)

a) Select Name

From Student

Where Major in ('Math', 'Accounting');

b) Select Name

From Student

Where SID in (Select StdNo

From Enrollment

Where ClassName = 'BD445');

c) Select distinct StdNo

From Enrollment A

Where Exists (Select *

From Enrollment B

Where A.StdNo = B.StdNo and A.ClassName Not =

B.ClassName);