In [1]: import pandas as pd import numpy as np import seaborn as sns from matplotlib import pyplot as plt from sklearn.model_selection import train_test_split from sklearn import preprocessing from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score from sklearn.model_selection import dayses import MultinomialNB as MB from sklearn.naive_bayes import GaussianNB as GB

In [2]: data_train = pd.read_csv("SalaryData_Train.csv") data_test = pd.read_csv("SalaryData_Test.csv") data_train.head()

Out[2]:

	age	workclass	education	educationno	maritalstatus	occupation	relationship	race
0	39	State-gov	Bachelors	13	Never- married	Adm- clerical	Not-in- family	White
1	50	Self-emp- not-inc	Bachelors	13	Married-civ- spouse	Exec- managerial	Husband	White
2	38	Private	HS-grad	9	Divorced	Handlers- cleaners	Not-in- family	White
3	53	Private	11th	7	Married-civ- spouse	Handlers- cleaners	Husband	Black
4	28	Private	Bachelors	13	Married-civ- spouse	Prof- specialty	Wife	Black

In [3]: data_train.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 30161 entries, 0 to 30160
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	age	30161 non-null	int64
1	workclass	30161 non-null	object
2	education	30161 non-null	object
3	educationno	30161 non-null	int64
4	maritalstatus	30161 non-null	object
5	occupation	30161 non-null	object
6	relationship	30161 non-null	object
7	race	30161 non-null	object
8	sex	30161 non-null	object
9	capitalgain	30161 non-null	int64
10	capitalloss	30161 non-null	int64
11	hoursperweek	30161 non-null	int64
12	native	30161 non-null	object
13	Salary	30161 non-null	object
d+v		hioc+(0)	

dtypes: int64(5), object(9)

memory usage: 3.2+ MB

In [4]: data_train.describe()

Out[4]:

	age	educationno	capitalgain	capitalloss	hoursperweek
count	30161.000000	30161.000000	30161.000000	30161.000000	30161.000000
mean	38.438115	10.121316	1092.044064	88.302311	40.931269
std	13.134830	2.550037	7406.466611	404.121321	11.980182
min	17.000000	1.000000	0.000000	0.000000	1.000000
25%	28.000000	9.000000	0.000000	0.000000	40.000000
50%	37.000000	10.000000	0.000000	0.000000	40.000000
75%	47.000000	13.000000	0.000000	0.000000	45.000000
max	90.000000	16.000000	99999.000000	4356.000000	99.000000

```
In [5]: dims = (10,5)
fig, ax = plt.subplots(figsize=dims)
sns.countplot(ax = ax, data=data_train,x='workclass',hue='Salary',p
```

Out[5]: <AxesSubplot:xlabel='workclass', ylabel='count'>


```
In [6]: dims = (20,5)
fig, ax = plt.subplots(figsize=dims)
sns.countplot(data=data_train,x='occupation',hue='Salary',palette='
```

Out[6]: <AxesSubplot:xlabel='occupation', ylabel='count'>


```
In [7]: data_train.Salary.value_counts()
```

Out[7]: <=50K 22653 >50K 7508

Name: Salary, dtype: int64

In [8]: data_test.Salary.value_counts()

Out[8]: <=50K 11360 >50K 3700

Name: Salary, dtype: int64

In [9]: data_train.occupation.value_counts() Out [9]: Prof-specialty 4038 Craft-repair 4030 Exec-managerial 3992 Adm-clerical 3721 Sales 3584 Other-service 3212 Machine-op-inspct 1965 Transport-moving 1572 Handlers-cleaners 1350 Farming-fishing 989 Tech-support 912 Protective-serv 644 Priv-house-serv 143 Armed-Forces 9 Name: occupation, dtype: int64

Visualization EDA

In [10]: sns.pairplot(data_train,hue='Salary',palette='cool_r')

Out[10]: <seaborn.axisgrid.PairGrid at 0x7ff1cda83f70>

Feature Engineering

Out[11]:

	age	workclass	education	educationno	maritalstatus	occupation	relationship	race	S
0	39	5	9	13	4	0	1	4	
1	50	4	9	13	2	3	0	4	
2	38	2	11	9	0	5	1	4	
3	53	2	1	7	2	5	0	2	
4	28	2	9	13	2	9	5	2	

Train test split

```
In [12]: X_train = dftrain.iloc[:,:-1]
y_train = dftrain['Salary']
X_test = dftest.iloc[:,:-1]
y_test = dftest['Salary']
```

Naive Bayes Classifier

```
In [13]: model_mb = MB()
    model_mb.fit(X_train,y_train)

Out[13]:    v MultinomialNB
    MultinomialNB()

In [14]: model_gb = GB()
    model_gb.fit(X_train,y_train)

Out[14]:    v GaussianNB
    GaussianNB()
```

Evaluation

In [15]: pip install scikit-plot

Requirement already satisfied: scikit-plot in /opt/anaconda3/lib/python3.9/site-packages (0.3.7)

Requirement already satisfied: scipy>=0.9 in /opt/anaconda3/lib/py thon3.9/site-packages (from scikit-plot) (1.7.1)

Requirement already satisfied: matplotlib>=1.4.0 in /opt/anaconda3 /lib/python3.9/site-packages (from scikit-plot) (3.4.3)

Requirement already satisfied: scikit-learn>=0.18 in /opt/anaconda 3/lib/python3.9/site-packages (from scikit-plot) (1.2.0)

Requirement already satisfied: joblib>=0.10 in /opt/anaconda3/lib/python3.9/site-packages (from scikit-plot) (1.2.0)

Requirement already satisfied: pyparsing>=2.2.1 in /opt/anaconda3/lib/python3.9/site-packages (from matplotlib>=1.4.0->scikit-plot) (3.0.4)

Requirement already satisfied: cycler>=0.10 in /opt/anaconda3/lib/python3.9/site-packages (from matplotlib>=1.4.0->scikit-plot) (0.1 0.0)

Requirement already satisfied: python-dateutil>=2.7 in /opt/anacon da3/lib/python3.9/site-packages (from matplotlib>=1.4.0->scikit-pl ot) (2.8.2)

Requirement already satisfied: numpy>=1.16 in /opt/anaconda3/lib/p ython3.9/site-packages (from matplotlib>=1.4.0->scikit-plot) (1.20.3)

Requirement already satisfied: kiwisolver>=1.0.1 in /opt/anaconda3 /lib/python3.9/site-packages (from matplotlib>=1.4.0->scikit-plot) (1.3.1)

Requirement already satisfied: pillow>=6.2.0 in /opt/anaconda3/lib/python3.9/site-packages (from matplotlib>=1.4.0->scikit-plot) (8.4.0)

Requirement already satisfied: six in /opt/anaconda3/lib/python3.9 /site-packages (from cycler>=0.10->matplotlib>=1.4.0->scikit-plot) (1.16.0)

Requirement already satisfied: threadpoolctl>=2.0.0 in /opt/anacon da3/lib/python3.9/site-packages (from scikit-learn>=0.18->scikit-p lot) (2.2.0)

Note: you may need to restart the kernel to use updated packages.

In [18]: from scikitplot.estimators import plot_feature_importances from scikitplot.metrics import plot_confusion_matrix, plot_roc from sklearn.metrics import classification_report

```
In [19]: def report(model):
    preds = model.predict(X_test)
    print(classification_report(y_test,preds))
    plot_confusion_matrix(model,X_test,y_test)
#MultinomialNB Evaluation
print('MultinomialNB')
report(model_mb) #model has high inbuilt bias
```

MultinomialNB

precision recall f1-score support

```
0
                    0.79
                               0.96
                                          0.87
                                                    11360
            1
                               0.21
                                          0.32
                                                     3700
                    0.62
                                          0.77
                                                    15060
    accuracy
                    0.71
                                          0.59
                               0.58
                                                    15060
   macro avq
weighted avg
                    0.75
                               0.77
                                          0.73
                                                    15060
```

```
TypeError
                                          Traceback (most recent c
all last)
/var/folders/9_/ckpgdd3s4qzg3w1zytsfvsmh0000gn/T/ipykernel_8571/28
20648027.py in <module>
      5 #MultinomialNB Evaluation
      6 print('MultinomialNB')
----> 7 report(model_mb) #model has high inbuilt bias
/var/folders/9 /ckpgdd3s4gzg3w1zytsfvsmh0000gn/T/ipykernel 8571/28
20648027.py in report(model)
            preds = model.predict(X_test)
      2
      3
            print(classification_report(y_test,preds))
            plot_confusion_matrix(model, X_test, y_test)
      5 #MultinomialNB Evaluation
      6 print('MultinomialNB')
/opt/anaconda3/lib/python3.9/site-packages/scikitplot/metrics.py
in plot_confusion_matrix(y_true, y_pred, labels, true_labels, pred
_labels, title, normalize, hide_zeros, hide_counts, x_tick_rotatio
n, ax, figsize, cmap, title_fontsize, text_fontsize)
                fig, ax = plt.subplots(1, 1, figsize=figsize)
    115
   116
 -> 117
            cm = confusion_matrix(y_true, y_pred, labels=labels)
   118
            if labels is None:
    119
                classes = unique_labels(y_true, y_pred)
/opt/anaconda3/lib/python3.9/site-packages/sklearn/metrics/_classi
fication.py in confusion matrix(y true, y pred, labels, sample wei
ght, normalize)
            (0, 2, 1, 1)
    315
   316
 -> 317
            y_type, y_true, y_pred = _check_targets(y_true, y_pred
            if y_type not in ("binary", "multiclass"):
    318
                raise ValueError("%s is not supported" % y_type)
   319
/opt/anaconda3/lib/python3.9/site-packages/sklearn/metrics/_classi
fication.py in _check_targets(y_true, y_pred)
     84
            y_pred : array or indicator matrix
     85
  -> 86
            check_consistent_length(y_true, y_pred)
            type true = type of target(y true, input name="y true"
     87
```

```
88
            type_pred = type_of_target(y_pred, input_name="y_pred"
)
/opt/anaconda3/lib/python3.9/site-packages/sklearn/utils/validatio
n.py in check_consistent_length(*arrays)
    392
    393
  -> 394
            lengths = [_num_samples(X) for X in arrays if X is not
None]
    395
            uniques = np.unique(lengths)
    396
            if len(uniques) > 1:
/opt/anaconda3/lib/python3.9/site-packages/sklearn/utils/validatio
n.py in <listcomp>(.0)
            .....
    392
    393
--> 394
            lengths = [_num_samples(X) for X in arrays if X is not
Nonel
    395
            uniques = np.unique(lengths)
    396
            if len(uniques) > 1:
/opt/anaconda3/lib/python3.9/site-packages/sklearn/utils/validatio
n.py in _num_samples(x)
            if hasattr(x, "shape") and x.shape is not None:
    333
    334
                if len(x.shape) == 0:
--> 335
                    raise TypeError(
                         "Singleton array %r cannot be considered a
    336
valid collection." % x
    337
```

TypeError: Singleton array array(MultinomialNB(), dtype=object) cannot be considered a valid collection.


```
In [20]: print('GaussianNB')
  report(model_gb) #model has high inbuilt bias but better results as
```

GaussianNB

	precision	recall	f1-score	support
0	0.81	0.95	0.87	11360
1	0.67	0.33	0.44	3700
accuracy			0.79	15060
macro avg	0.74	0.64	0.66	15060
weighted avg	0.78	0.79	0.77	15060

```
TypeError
                                          Traceback (most recent c
all last)
/var/folders/9_/ckpgdd3s4qzg3w1zytsfvsmh0000gn/T/ipykernel_8571/41
90215798.py in <module>
      1 print('GaussianNB')
  --> 2 report(model_gb) #model has high inbuilt bias but better r
esults as compared to multinomial
/var/folders/9 /ckpgdd3s4gzg3w1zytsfvsmh0000gn/T/ipykernel 8571/28
20648027.py in report(model)
            preds = model.predict(X test)
      2
      3
            print(classification_report(y_test,preds))
            plot_confusion_matrix(model, X_test, y_test)
  --> 4
      5 #MultinomialNB Evaluation
      6 print('MultinomialNB')
/opt/anaconda3/lib/python3.9/site-packages/scikitplot/metrics.py
in plot_confusion_matrix(y_true, y_pred, labels, true_labels, pred
_labels, title, normalize, hide_zeros, hide_counts, x_tick_rotatio
n, ax, figsize, cmap, title_fontsize, text_fontsize)
   115
                fig, ax = plt.subplots(1, 1, figsize=figsize)
    116
--> 117
            cm = confusion_matrix(y_true, y_pred, labels=labels)
    118
            if labels is None:
    119
                classes = unique_labels(y_true, y_pred)
/opt/anaconda3/lib/python3.9/site-packages/sklearn/metrics/_classi
fication.py in confusion_matrix(y_true, y_pred, labels, sample_wei
ght, normalize)
    315
            (0, 2, 1, 1)
    316
 -> 317
            y_type, y_true, y_pred = _check_targets(y_true, y_pred
            if y_type not in ("binary", "multiclass"):
    318
    319
                raise ValueError("%s is not supported" % y_type)
/opt/anaconda3/lib/python3.9/site-packages/sklearn/metrics/_classi
fication.py in _check targets(y_true, y_pred)
     84
            y_pred : array or indicator matrix
     85
```

check_consistent_length(y_true, y_pred)

-> 86

```
type_true = type_of_target(y_true, input_name="y_true"
     87
            type_pred = type_of_target(y_pred, input_name="y_pred"
     88
/opt/anaconda3/lib/python3.9/site-packages/sklearn/utils/validatio
n.py in check consistent length(*arrays)
    392
    393
--> 394
            lengths = [_num_samples(X) for X in arrays if X is not
None1
    395
            uniques = np.unique(lengths)
            if len(uniques) > 1:
    396
/opt/anaconda3/lib/python3.9/site-packages/sklearn/utils/validatio
n.py in <listcomp>(.0)
            .....
    392
    393
--> 394
            lengths = [_num_samples(X) for X in arrays if X is not
Nonel
    395
            uniques = np.unique(lengths)
            if len(uniques) > 1:
    396
/opt/anaconda3/lib/python3.9/site-packages/sklearn/utils/validatio
n.py in num samples(x)
    333
            if hasattr(x, "shape") and x.shape is not None:
    334
                if len(x.shape) == 0:
--> 335
                    raise TypeError(
    336
                        "Singleton array %r cannot be considered a
valid collection." % x
    337
                    )
```

TypeError: Singleton array array(GaussianNB(), dtype=object) cannot be considered a valid collection.


```
In []:
```