# Introdução à metagenômica: curso prático

# Versatilidade e importância da metagenômica

Alexandre José Macedo

Universidade Federal do Rio Grande do Sul Centro de Biotecnologia e Faculdade de Farmácia Laboratório de Biofilmes e Diversidade Microbiana





















INCUBADORA EMPRESARIAL NA ÁREA BIOTEC

# Introdução à metagenômica: curso prático

# Versatilidade e importância da metagenômica

Alexandre José Macedo

Universidade Federal do Rio Grande do Sul Centro de Biotecnologia e Faculdade de Farmácia Laboratório de Biofilmes e Diversidade Microbiana











Contents lists available at ScienceDirect

#### **Environmental Pollution**

journal homepage: www.elsevier.com/locate/envpol



Bacteria-invertebrate interactions as an asset in developing new antifouling coatings for man-made aquatic surfaces<sup>★</sup>



Vanessa Ochi Agostini, PhD <sup>a, f, 1</sup>, Erik Muxagata, PhD <sup>b</sup>, Grasiela Lopes Leães Pinho, PhD <sup>a</sup>, Igor Stelmach Pessi, PhD <sup>c, d</sup>, Alexandre José Macedo, PhD <sup>e, \*</sup>

# Breve contextualização do problema e relevância do tema

### Indústria: incrustração



2017: porto de Rio Grande teve uma movimentação de **2.834 embarcações**, totalizando o transporte de mais 37 milhões toneladas em carga.

Marinha amaericana: **U\$ 180 – 260 milhões** por ano para manutenção. Mais de **U\$\$ 2 bilhões** em 10 anos (*Schultz MP et al., Biofoiuling, 2011*).





#### 54°W 52° 50° 48° 52°W Ш South Santa Catarina America 28° 32° S Rio Grande do Sul Porto Alegre Rio Grande All shirts of sh 32° Ш B Altair stranded ship, Cassino Beach, RS, Brazil 18 equal parts distributed in 3 aquariums subdivided into six EU each 200 µm exclude predators 550 μm (mesh)

# Metodologia



### Resultados







### Amphibalanus sp. Nonlabens Ochrobactrum P. caudata P. caudata P. caudata Amphibalanus sp. Amphibalanus sp. Littorinidae Amphibalanus sp. Nonlabens Nonlabens Pseudoalteromonas **Pseudomones** Atteramones Nonlabens Nonlabens Pseudoalteromonas Pseudomonas Halicyclops sp. Mytillidae E. acutifrons Biofouling ecological succession

#### Conclusões

- IV. Macrofouling (fouling, sedentary, and vagile) establishment on hard substrates is strongly correlated with the composition of an existing Gram-negative heterotrophic bacterial biofilm (mainly Proteobacteria and Bacteroidetes). Each macrofouling species showed strong positive correlation with a specific biofilm bacterial composition, however other factor also affecting the biofouling community as the condition of the substrate;
- V. From both ecological and economical points of view, the information provided here on the inter-kingdom interactions between micro- and macrofouling can be used to develop successful and safe control strategies to prevent biofouling development on aquatic man-made structures.



#### Brazilian Journal of

### OTORHINOLARYNGOLOGY





#### ORIGINAL ARTICLE

# High microbiome variability in pediatric tracheostomy cannulas in patients with similar clinical characteristics

```
Leonardo Palma Kuhl (Da,b,*, Paulo José Cauduro Marostica (Db,c, Alexandre José Macedo (Dd, Gabriel Kuhl (Dd, Marina Siebert (De,f,g, Denise Manica (Dd,b, Leo Sekine (Dd, Cláudia Schweiger (Dd,b)
```

# Airway obstruction Tracheal cannula (TRACHEOTOMY) MEDICINA ONLINE

# Breve contextualização do problema e relevância do tema

Tracheostomy is a surgical procedure that creates a shortcut for the air to reach the lungs.

It establishes a communication (or tunnel) between the cervical skin and the trachea, which is maintained pervious by a cannula.

Indications for tracheostomy in children nowadays are mainly related to chronic obstruction of upper airways (e.g., laryngeal stenosis or vocal fold paralysis), management of mechanical ventilation, and treatment of bronchopulmonary aspiration. 1-3 Another obstructive airway pathology with potential necessity for tracheostomy is glossoptosis. Glossoptosis is defined as the posterior collapse of the base of the tongue resulting in varying degrees of respiratory obstruction. It may occur as a consequence of mandibular hypoplasia (Robin Sequence), but it also occurs in patients with neurological disorders related to hypotonia.4-6



## **Pacientes**

| Sample | Age (years) | Time from<br>tracheostomy<br>(years) | Feeding<br>route | Syndrome                          | Comorbidities | Recurrent<br>LRI | Time from last<br>cannula change<br>(days) | Cannula<br>size | Peristomal<br>granuloma | ATB (day<br>of sam-<br>pling) | ATB (last<br>3-months |
|--------|-------------|--------------------------------------|------------------|-----------------------------------|---------------|------------------|--------------------------------------------|-----------------|-------------------------|-------------------------------|-----------------------|
| 001    | 8.2         | 8.1                                  | Oral             | Facio-<br>auricular-<br>vertebral | Yes           | No               | 98                                         | 5               | No                      | No                            | No                    |
| 002    | 5.4         | 5.2                                  | G-tube           | None                              | Yes           | No               | 98                                         | 4.5             | Yes                     | No                            | Yes                   |
| 003    | 7.7         | 7.5                                  | Oral/G-tube      | Richieri-Costa-<br>Pereira        | Yes           | No               | 98                                         | 4.5             | No                      | No                            | No                    |
| 004    | 2.1         | 1.9                                  | NG-tube          | None                              | Yes           | No               | 98                                         | 3.5             | No                      | No                            | Yes                   |
| 005    | 9.2         | 9                                    | Oral             | Stickler                          | No            | No               | 91                                         | 4.5             | No                      | No                            | No                    |
| 006    | 2.2         | 2.1                                  | Oral             | None                              | Yes           | No               | 91                                         | 3.5             | Yes                     | No                            | No                    |
| 007    | 4           | 1.4                                  | NG-tube          | None                              | Yes           | Yes              | 138                                        | 4               | No                      | No                            | Yes                   |
| 800    | 7.2         | 3.9                                  | Oral             | None                              | Yes           | No               | 80                                         | 5               | No                      | No                            | No                    |
| 009    | 11.7        | 8.3                                  | Oral             | Picnodisostosis                   | No            | No               | 98                                         | 4               | No                      | No                            | Yes                   |
| 010    | 5.4         | 5.2                                  | G-tube           | Apert                             | Yes           | No               | 119                                        | 4.5             | No                      | No                            | Yes                   |
| 011    | 9.1         | 9                                    | Oral             | Treacher-<br>Collins              | Yes           | No               | 98                                         | 4               | No                      | No                            | No                    |
| 012    | 2.2         | 2.1                                  | NG-tube          | None                              | Yes           | No               | 91                                         | 3.5             | Yes                     | Yes                           | No                    |



## Resultados

| 001             |       | 002             |       | 003             |       |  |
|-----------------|-------|-----------------|-------|-----------------|-------|--|
| Genus           | %     | Genus           | %     | Genus           | %     |  |
| Aggregatibacter | 29.48 | Aggregatibacter | 50.67 | Moraxella       | 34.42 |  |
| Pseudomonas     | 26.33 | Fusobacterium   | 18.69 | Treponema       | 8.30  |  |
| Fusobacterium   | 9.21  | Capnocytophaga  | 11.62 | Fusobacterium   | 7.49  |  |
| Streptococcus   | 6.07  | Eikenella       | 7.33  | Alloiococcus    | 7.15  |  |
| Capnocytophaga  | 4.36  | Pseudomonas     | 6.69  | Neisseria       | 6.75  |  |
| Mycoplasma      | 4.32  | Neisseria       | 2.44  | Aggregatibacter | 6.42  |  |
| Haemophilus     | 4.05  | Prevotella      | 0.72  | Porphyromonas   | 5.55  |  |
| Neisseria       | 2.87  | Porphyromonas   | 0.59  | Streptococcus   | 4.11  |  |
| Prevotella      | 2.81  | Haemophilus     | 0.40  | Capnocytophaga  | 4.08  |  |
| Treponema       | 2.43  | Leptotrichia    | 0.31  | Mycoplasma      | 2.19  |  |
| Others          | 8.07  | Others          | 0.54  | Others          | 13.54 |  |

**Table 2** Prevalence of total reads per genus on metagenomics.

| Genus            | %     |
|------------------|-------|
| Aggregatibacter  | 17%   |
| Pseudomonas      | 15.9% |
| Heamophilus      | 12.4% |
| Neisseria        | 8.8%  |
| Staphyloccus     | 8.3%  |
| Fusobacterium    | 6.5%  |
| Moraxella        | 5.8%  |
| Streptococcus    | 4.6%  |
| Alloiococcus     | 3.0%  |
| Capnocytophaga   | 2.9%  |
| Corynebacterium  | 2.5%  |
| Prevotella       | 2.5%  |
| Porphyromonas    | 1.8%  |
| Eikenella        | 1.2%  |
| Treponema        | 0.9%  |
| Elizabethkingia  | 0.9%  |
| Stenotrophomonas | 0.8%  |
| Mycoplasma       | 0.8%  |
| Achromobacter    | 0.5%  |
| Acinetobacter    | 0.5%  |
| Others           | 2.4%  |
| Total            | 100%  |

#### Conclusões

Our study describes the use of 16s RNA metagenomics for bacterial microbiome identification present on tracheostomy cannulas of a specific group of children.

Although some bacterial genera demonstrated greater abundance (e.g., Aggregatibacter, Pseudomonas, Haemophilus, Neissera, Staphylococcus, Fusobacterium and Moraxella), composition of patients' individual microbiome showed high variability, even with similar clinical characteristics.

Despite the descriptive nature of this study, we hope to create foundations for more complex questions regarding microbiology interactions of these patients.

# Obrigado! alexandre.macedo@ufrgs.br





