

USN											21MAT401
-----	--	--	--	--	--	--	--	--	--	--	----------

Fourth Semester B.E. Degree Examination, Sept/Oct.2023 Computational Mathematics II Model Question paper

Time: 3 hrs. Max. Marks: 100

Note: Answer any TWO full questions, choosing one full question from each part.

		MODULE -1			
Q. No		Questions	Marks	BL/CO	
1	a.	Derive Cauchy -Reimann 's equation in Cartesian form	6	CL2/CO1	
	b.	Show that $f(z) = \sin z$ is analytic and hence find $f'(z)$.	7	CL3/CO1	
	c.	Find the analytic function $f(z)$ given $u = e^{2x}(x\cos 2y - y\sin 2y)$.	7	CL3/CO1	
		OR			
2	a.	If f(z) is analytic then show that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) f(z) ^2 = 4 f^I(z) ^2$	6	CL2/CO1	
	b.	Find the regular function $f(z)$ whose imaginary part is $(r - \frac{k^2}{r}) \sin \theta$, $r \neq 0$ hence find the real part.	7	CL3/CO1	
	c.	Show that $v = cosx$ sinhy is harmonic and find its harmonic conjugate.	7	CL3/CO1	
	1	MODULE-2			
3	a.	i)Define a subgraph ii) Explain any three types of subgraph	6	CL3/CO2	
	b.	i) Write a short note on Graph colouring.ii) Mention any two applications of graph colouringiii) Find chromatic number of the following graphs.	7	CL3/CO2	

	c.	i) Explain matching of graphs.	7	CL3/CO2
		ii) Find the prefix code represented by the following tree:		
		OR		
4	a.	i)Define the following i)Simple graph ii) Complete graph iii)Complete bipartite graph with two examples each. ii) Indicate the order and size of the following graph.	6	CL3/CO2
	b.	Apply the merge-sort to list -9,6,5,-3,,2,-7,-5,10,-11,0,1	7	CL3/CO2
	c.	Obtain the optimal prefix code for the message ROAD IS GOOD. Indicate the code.	7	CL3/CO2
	1	MODULE-3		
	a.	The probability density function of a random variable X is $f(x) = \begin{cases} kx^2, & -3 < x < 3\\ 0, & otherwise \end{cases}$ Find (i) the value of k (ii) $P(1 \le x \le 2)$ and (iii) $P(x > 1)$.	6	CL3/CO3
5.	b.	In a normal distribution, 31% of the items are under 45 and 8% of the items are over 64. Find the mean and standard deviation of the distribution. (Given $\emptyset(0.5) = 0.1915$ and $\emptyset(1.4) = 0.4192$)	7	CL3/CO3
	c.	A salesman sells in three cities A, B, C. He never sells in the same city on successive days. If he sells in city A on a day, then next day he sells in city B. However if he sells in either B or C, then next day he is twice likely to sell city A as in other city. In a long run how often does he sell in each of the cities?	7	CL3/CO3

		OR		
	a.	A manufacturer of metal pistons finds that, 12% of his pistons are rejected because they are either oversize or undersize. What is the probability that a batch of 10 pistons will contain (i) no more than 2 rejects? (ii) at least 2 rejects (iii) only 3 rejects?	6	CL3/CO3
6.	b.	Alpha particles are emitted by a radioactive source at an average of 5 emissions in 20 minutes. What is the probability that there will be i) exactly 2 emissions ii) at least 2 emissions in 20minutes?	7	CL3/CO3
	c.	A fair coin is tossed thrice. The random variables X and Y are defined as follows. X= 0 or 1 according as head or tail occurs on the first toss. Y= Number of heads. a) Determine the distribution of X and Y b) Determine the joint distribution of X and Y Compute E(X),E(Y) and E(XY)	7	CL3/CO3
	1	MODULE-4		
	a.	Obtain 95% confidence interval for the mean μ for observed value of \overline{X} of size 20 from a normal distribution with μ and $\sigma^2=80$ be 81.2.	6	CL2/CO4
	b.	Define the terms: i) Null hypothesis ii) Type-I and Type-II error iii) Confidence limits iv) Significance level.	7	CL2/CO4
7.	c.	A certain stimulus is administered to each of the 12 patients resulted in the following change in the blood pressure 5,3,8,-1,3,0,6,-2,1,5,0,4. Can it be concluded that the stimulus will increase the blood pressure? (given t _{0.05} for 11 d.f is 2.201)	7	CL2/CO4
	1	OR		
8.	a.	Determine 90% confidence interval for μ of a random sample of size 17 from $N(\mu, \sigma^2)$ yields $\frac{1}{2}$ 4.7 and $S^2=5.76$.	6	CL2/CO4
	b.	Four coins are tossed 100 times and the following results were obtained: No. of heads The frequency The first a binomial distribution for the data and test the goodness of fit The first a binomial distribution for the data and test the goodness of fit The first a binomial distribution for the data and test the goodness of fit The first a binomial distribution for the data and test the goodness of fit The first a binomial distribution for the data and test the goodness of fit The first a binomial distribution for the data and test the goodness of fit The first a binomial distribution for the data and test the goodness of fit The first a binomial distribution for the data and test the goodness of fit The first a binomial distribution for the data and test the goodness of fit The first a binomial distribution for the data and test the goodness of fit The first a binomial distribution for the data and test the goodness of fit and the first a binomial distribution for the data and test the goodness of fit and the first a binomial distribution for the data and test the goodness of fit and the first a binomial distribution for the data and test the goodness of fit and the first a binomial distribution for the data and test the goodness of fit and the first a binomial distribution for the data and test the goodness of fit and the first a binomial distribution for the data and test the goodness of fit and the first a binomial distribution for the data and test and the first a binomial distribution for the data and test and the first a binomial distribution for the data and test a bindicate a binomial distribution for the data and test a binomial	7	CL2/CO4
	c.	(Given $\chi_{0.05}^2 = 9.49$ for 4 d. f) Two types of batteries are tested for their length of life and following results were obtained No. of Mean Variance Batteries Battery A 10 500 hours 100 Battery B 10 560 hours 121 Compute student's t and test whether there is a significant difference between two means. ($t_{0.05}$ =2.086 for 20 d.f)	7	CL2/CO4
	T	MODULE-5		
9.	a.	Fit a curve of the form $y = ax^b$ to the following data and hence find y when $x = 8$.	6	CL3/CO5

		X	2	3		4		6			10						
		Y	50	47		46		4:	5	4	44						
	b.		second-d								125		14.0		7	7	CL3/CO5
		3		1.5	2.0		2.5		3.0 2.7		3.5		4.0				
	c.	Obtain the data:		1 2	ion an	d hen	4		5 11	efficie	ent of 6 13	7 14		on for	the	7	CL3/CO5
			<i>y</i>		<u>, </u>	10			OR		10	1 .					<u> </u>
	a.	A simply supported beam carries a concentrated load P at its midpoint. Corresponding to various values of P, the maximum deflection Y is measured and given below:										CL3/CO5					
10	b.	ID Con Judg Judg	No. npetitors ge A	of	1 1 6	2 6 4	3 5 9	4 3 8	5 10 1	6 2 2 2	7 4 3	8 9 10	9 7 5	10 8 7	in in	7	CL3/CO5
	c.	. Solve ti Maxir	he LPP us nize Z=32 to 2x+3y≤	sing simp x+5y+4z	olex m	ethod	l:	≤15 a	and x	z, y, z	≥0					7	CL3/CO5

Cognitive Levels of Bloom's Taxonomy

No.	CL1	CL2	CL3	CL4	CL5	CL6
Level	Remember	Understand	Apply	Analyze	Evaluate	Create

Course Outcomes

CO1	Construct analytical functions to solve problems in electromagnetic field theory	CL3
CO2	Utilize basic concepts of Graph theory to develop algorithms of prefix codes.	CL3

CO3	Illustrate Discrete and Continuous random variables and Probability distribution functions to analyse the probability models in engineering field	CL3
CO4	Solve LPP and use correlation and regression analysis to fit a Mathematical model for statistical data.	CL2
CO5	Validate hypothesis testing and apply the Principles of Sampling to infer the nature of population.	CL3