

Universidade Estadual da Paraíba - UEPB

Centro de Ciências e Tecnologia - CCT

Departamento de Computação - DC

Bacharelado em Ciência da Computação - BCC

Disciplina: Linguagens Formais e Teoria da Computação - 2021.2

Professora: Cheyenne Ribeiro - charibeiro@servidor.uepb.edu.br

Aula 05 - AFN para AFD

AFN e AFD são modelos de autômatos finitos equivalentes, ou seja, reconhecem exatamente o mesmo conjunto de linguagens (Linguagens Regulares)

Para muitas delas, o AFN é mais fácil de construir que o AFD equivalente.

A prova para essa equivalência dos modelos se dá através da construção de um AFD a partir do AFN original, seguindo os passos a seguir:

Dado um AFN = $(Q_{AFN}, \Sigma, \delta_{AFN}, q_0, F_{AFN})$, construir um AFD = $(Q_{AFD}, \Sigma, \delta_{AFD}, \{q_0\}, F_{AFD})$

O alfabeto permanece o mesmo, e o estado inicial do AFD agora é $\{q_0\}$ (conjunto unitário que possui apenas o q_0 do AFN).

1º passo: Definir o novo possível conjunto de estados Q_{AFD}

 Q_{AFD} = conjunto potência do Q_{AFN} = todos os subconjuntos possíveis de serem formados com os estados do AFN

Se o Q_{AFN} possui n estados, o Q_{AFD} vai possuir 2ⁿ estados

(Nem todos os estados podem ser acessíveis, e podem ser descartados em passo posterior)

Exemplos:

$$\begin{split} Q_{AFN} &= \{q_0, \, q_1\} = n{=}2 \\ Q_{AFD} &= \{ \, \varnothing, \, \, \{q_0\} \, , \, \{q_1\} \, , \, \{q_0, \, q_1\} \, \} = 4 = 2^2 \end{split}$$

$$\begin{split} &Q_{AFN} = \{q_0,\,q_1,\,q_2\} \\ &Q_{AFD} = \{\,\varnothing,\,\{q_0\}\,,\,\{q_1\}\,,\,\{q_2\},\,\{q_0,\,q_1\},\,\,\{q_0,\,q_2\},\,\,\{q_1,\,q_2\},\,\,\{q_0,\,q_1,\,q_2\}\,\,\} \end{split}$$

2º passo: Definir o novo conjunto de estados finais F_{AFD}

F_{AFD} = todos os conjuntos de estados que possuírem como elemento pelo menos um estado final do AFN

Exemplo:

$$\begin{aligned} F_{AFN} &= \{q_1\} \\ F_{AFD} &= \{ \{q_1\}, \{q_0, q_1\}, \{q_1, q_2\}, \{q_0, q_1, q_2\} \} \end{aligned}$$

3° passo: Definir a nova função de transição δ_{AFD}

Para cada elemento p dos conjuntos do Q_{AFD} e cada símbolo a do alfabeto, fazer a união dos conjuntos $\delta_{AFN}(p$, a)

Construir a tabela completa δ_{AFD} de todas as transições possíveis. Cada linha corresponde a um estado, e cada coluna um símbolo do alfabeto.

Exemplo para um estado:

$$\delta_{\text{AFD}}(\;\{q_0,\,q_1\}\;,\;0) =\; \delta_{\text{AFN}}(q_0,\,0)\;\cup\;\delta_{\text{AFN}}(q_1,\,0)$$

 4° passo: Construir o diagrama de estados do AFD, eliminando os estados do Q_{AFD} que não são acessíveis a partir do seu estado inicial.

Desenhar o estado inicial do Q_{AFD} e a partir dele escrever suas transições para os respectivos estados. Para cada novo estado alcançado, desenhar as respectivas transições. O desenho termina quando nenhum novo estado é inserido.

O diagrama resultante é o AFD equivalente ao AFN original!

Exemplo 1: Transformar o AFN a seguir num AFD equivalente

δ_{AFD}	0	1
Ø	Ø	Ø
> {q ₀ }	{q ₁ }	Ø
{q₁}	{q ₂ }	Ø
*{q ₂ }	{q ₂ }	{q ₂ }
{q ₀ , q ₁ }	$\{q_1\} \cup \{q_2\} = \{q_1, q_2\}$	Ø U Ø = Ø
*{q ₀ , q ₂ }	$\{q_1\} \cup \{q_2\} = \{q_1, q_2\}$	∅ U {q₂} = {q₂}
*{q ₁ , q ₂ }	{q2} U {q2} = {q2}	∅ U {q2} = {q2}
*{q ₀ , q ₁ , q ₂ }	{q1} U {q2} U {q2} = {q1, q2}	∅ U ∅ U {q2} = {q2}

Exemplo 2: Transformar o AFN a seguir num AFD equivalente

$Q_{AFN} = \{q_0, q_1, q_2\}$ $\Sigma = \{0, 1\}$ δ_{AFN}				
δ_{AFN}	0	1		
q ₀	{q₀}	{q₀, q₁}		
q ₁	Ø	{q ₂ }		
q_2	Ø	Ø		

 $q_0 = q_0$ $F_{AFN} = \{q_2\}$

δ_{AFD}	0	1
Ø	Ø	Ø
→{ q ₀ }	{q0}	{q0, q1}
{q₁}	Ø	{q2}
*{q ₂ }	Ø	Ø
{q ₀ , q ₁ }	{q0}	{q0,q1,q2}
*{q ₀ , q ₂ }	{q0}	{q0, q1}
*{q ₁ , q ₂ }	Ø	{q2}
*{q ₀ , q ₁ , q ₂ }	{q0}	{q0,q1,q2}

Bibliografia:

Hopcroft, Ullman, Motwani. Introdução à Teoria de Autômatos, Linguagens e Computação. 2ª edição, Elsevier, 2002.

Capítulo 2. AFN para AFD - pg 64-73