МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «КАЗАНСКИЙ (ПРИВОЛЖСКИЙ) ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

Институт вычислительной математики и информационных технологий Кафедра прикладной математики и искусственного интеллекта

ОТЧЕТ

Исследование приближения функций при помощи квадратурных формул

Выполнил: студент группы 09-222 Шпак В.С. Проверил: ассистент Глазырина О.В.

Оглавление

ПОСТАНОВКА ЗАДАЧИ	3
ХОД РАБОТЫ	4
выводы по работе	8
ЛИСТИНГ	9

постановка задачи

Одна из специализированных функций математической физики – интегральный синус, определяется следующим образом $\mathrm{Si}(\mathbf{x}) = \int\limits_0^x \frac{sint}{t}\,dx$

Для вычисления погрешности нам понадобиться ее вычислить разложение в ряд Тейлора

Si(x) =
$$\frac{(-1)^n x^{2n+1}}{(2n+1)(2n+1)!}$$

Цель задания – вычислить интеграл с помощью квадратурных формул.

- 1. Левых прямоугольников
- 2. Правых прямоугольников
- 3. Трапеции
- 4. Симпсона
- 5. Гаусса
- 6. Центральных прямоугольников

где
$$h = (x_{i+1} - x_i), f(x) = \frac{\sin(x)}{x};$$

ХОД РАБОТЫ

Найдем разложение интегрального синуса в ряд Тейлора. Для этого воспользуемся разложением функции синуса в ряд Тейлора

$$\operatorname{Si}(\mathbf{x}) = \int_{0}^{x} \frac{\sin t}{t} \, dt = \int_{0}^{x} \frac{\sum_{k=0}^{\infty} \frac{(-1)^{k} t^{2k}}{(2k+1)!}}{t} \, dt = \sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2k+1}}{(2k+1)(2k+1)!} = \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2n+1}}{(2n+1)(2n+1)!}$$

Для каждой точки из ряда Тейлора будем вычислять значение до тех пор пока не выполнится условие $|J_N(x) - J_{2N}(x)| < \varepsilon$. Далее находим погрешность как модуль разности полученного данным методом значения и найденного через разложение в ряд Тейлора. Составляем таблицу, где $J_0(x)$ - найденное значение интеграла, $J_N(x)$ - настоящее значение интеграла, N - количество разбиений отрезка.

Составная квадратурная формула левых прямоугольников: $J_{N}\left(x\right)=\sum_{i=0}^{n-1}h\ f(x_{i})$

x_i	$J_0(x)$	$J_N(x)$	$\mid J_{0}\left(x\right) - J_{N}\left(x\right) \mid$	N
0.4	0.396461	0.396467	5.16524e-06	1024
0.8	0.772096	0.772136	4.03406e-05	1024
1.2	1.10805	1.10818	0.000130801	1024
1.6	1.38918	1.38947	0.000293099	1024
2	1.60541	1.60595	0.00053243	1024
2.4	1.75249	1.75333	0.000841865	1024
2.8	1.8321	1.8333	0.00120339	1024
3.2	1.8514	1.85299	0.00159075	1024
3.6	1.82195	1.82392	0.00197365	1024
4	1.7582	1.76053	0.00232251	1024

Составная квадратурная формула правых прямоугольников: $J_{N}\left(x\right) = \sum_{i=1}^{n} h \ f(x_{i})$

x_i	$J_0(x)$	$J_N(x)$	$\mid J_{0}\left(x\right) -\ J_{N}\left(x\right) \mid$	N
0.4	0.396461	0.396456	5.16841e-06	1024
0.8	0.772096	0.772055	4.03664e-05	1024
1.2	1.10805	1.10792	0.00013088	1024
1.6	1.38918	1.38889	0.000293255	1024
2	1.60541	1.60488	0.00053271	1024
2.4	1.75249	1.75164	0.000842253	1024
2.8	1.8321	1.83089	0.00120385	1024
3.2	1.8514	1.84981	0.00159125	1024
3.6	1.82195	1.81997	0.00197412	1024
4	1.7582	1.75588	0.0023228	1024

Составная квадратурная формула трапеции:
$$J_{N}\left(x\right)=\sum_{i=0}^{n-1}h^{-}\frac{f\left(x_{i}\right)+f\left(x_{i+1}\right)}{2}$$

x_i	$J_0(x)$	$J_N(x)$	$\mid J_{0}(x) - J_{N}(x) \mid$	N
0.4	0.396461	0.396461	1.06701e-07	128
0.8	0.772096	0.772096	2.03634e-07	256
1.2	1.10805	1.10805	1.57927e-07	512
1.6	1.38918	1.38918	3.27103e-07	512
2	1.60541	1.60541	1.40058e-07	1024
2.4	1.75249	1.75249	1.93854e-07	1024
2.8	1.8321	1.8321	2.29813e-07	1024
3.2	1.8514	1.8514	2.50917e-07	1024
3.6	1.82195	1.82195	2.37024e-07	1024
4	1.7582	1.7582	1.43659e-07	1024

Составная квадратурная формула Симпсона:
$$J_{N}\left(x\right)=\sum_{i=0}^{n-1}\frac{h}{6}\left[f\left(x_{i}\right)+4f\left(\frac{x_{i}+x_{i+1}}{2}\right)+f\left(x_{i+1}\right)\right]$$

Формула для полинома Лагранжа:

$$L_n(x) = \sum_{i=0}^n f(x_i) \prod_{i \neq j, j=0}^n \frac{x - x_j}{x_i - x_j}$$
 (1)

По трём узлам
$$(x_1 = a, x_2 = \frac{a+b}{2}, x_3 = b) : L_2 = f(a) \left(\frac{x - \frac{a+b}{2}}{a - \frac{a+b}{2}}\right) \left(\frac{x-b}{a-b}\right) + f\left(\frac{a+b}{2}\right) \left(\frac{x-a}{a+b} - a\right) \left(\frac{x-b}{a+b} - b\right) + f(b) \left(\frac{x - \frac{a+b}{2}}{b - \frac{a+b}{2}}\right) \left(\frac{x-b}{b-a}\right).$$

Проинтегрируем выражение по интервалу [a,b]:

$$\int_{a}^{b} L_2(x) dx = f(a)c_1 + f\left(\frac{a+b}{2}\right)c_2 + f(b)c_3$$

$$\text{где } c_1 = \frac{b-a}{6}, c_2 = \frac{2}{3}(b-a), c_3 = \frac{b-a}{6}.$$
 (2)

Тогда:

$$\int_{a}^{b} L_2(x) dx = \frac{b-a}{6} \left(f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right)$$
(3)

x_i	$J_0(x)$	$J_N(x)$	$\mid J_{0}\left(x\right) - J_{N}\left(x\right) \mid$	N
0.4	0.396461	0.396461	2.80595e-09	4
0.8	0.772096	0.772096	4.94881e-09	8
1.2	1.10805	1.10805	3.54972e-08	8
1.6	1.38918	1.38918	1.35524e-08	16
2	1.60541	1.60541	1.84437e-08	16
2.4	1.75249	1.75249	3.86081e-08	16
2.8	1.8321	1.8321	6.33216e-08	16
3.2	1.8514	1.8514	6.24795e-08	16
3.6	1.82195	1.82195	2.6337e-08	16
4	1.7582	1.7582	2.6013e-08	16

Составная квадратурная формула Гаусса:
$$J_N\left(x\right) = \sum_{i=0}^{n-1} \frac{h}{2} \left[f\left(x_i + \frac{h}{2} \left(1 - \frac{1}{\sqrt{3}}\right)\right) + f\left(x_i + \frac{h}{2}\right) \right]$$
 (

x_i	$J_0(x)$	$J_N(x)$	$\mid J_{0}\left(x\right) -\ J_{N}\left(x\right) \mid$	N
0.4	0.396461	0.396461	1.73704e-09	4
0.8	0.772096	0.772096	5.50997e-08	4
1.2	1.10805	1.10805	2.34466e-08	8
1.6	1.38918	1.38918	1.40096e-10	16
2	1.60541	1.60541	1.50446e-08	16
2.4	1.75249	1.75249	2.49499e-08	16
2.8	1.8321	1.8321	3.14221e-08	16
3.2	1.8514	1.8514	4.44494e-08	16
3.6	1.82195	1.82195	4.36041e-08	16
4	1.7582	1.7582	2.39866e-08	16

Составная квадратурная формула центральных прямоугольников:
$$J_{N}\left(x\right)=\sum_{i=0}^{n-1}h\ f\left(\frac{x_{i}+\ x_{i+1}}{2}\right)$$

x_i	$J_0(x)$	$J_N(x)$	$\mid J_{0}\left(x\right) -\ J_{N}\left(x\right) \mid$	N
0.8	0.772096	0.772096	1.01524e-07	256
1.2	1.10805	1.10805	3.16249e-07	256
1.6	1.38918	1.38918	1.71809e-07	512
2	1.60541	1.60541	2.75169e-07	512
2.4	1.75249	1.75249	9.76376e-08	1024
2.8	1.8321	1.8321	1.24621e-07	1024
3.2	1.8514	1.8514	1.22943e-07	1024
3.6	1.82195	1.82195	9.50707e-08	1024
4	1.7582	1.7582	2.99268e-07	512

ВЫВОДЫ ПО РАБОТЕ

:

Из представленных 6 методов самыми эффективными оказались методы Гаусса и Симпсона. Для метода Гаусса потребовалось меньше итераций, следовательно, он является самым результативным.

ЛИСТИНГ

```
\#include < iostream >
#include < Math.h>
#include <string>
#include < vector>
static double step = 0.4;
static double Limit (double x)
{
      if (x != 0) return (\sin(x) / x);
      return 1; //первый замечательный предел
}
static double Tabulate(double x)
      double a = x;
      double res = x;
      double q;
      int n = 0;
      do
      {
             q = (-1) * x * x * (2 * n + 1) / ((2 * n + 2) * (2 * n + 3) * (2 * n + 3));
             a *= q;
             res += a;
             n++;
        while (abs(a) > 0.000001);
      return res;
}
static std::vector<double> Tabulate(std::vector<double> x)
      std::vector<double> result;
      for (int i = 0; i < x.size(); i++)
             result.push_back(Tabulate(x[i]));
      }
      return result;
staticdoubleLeft_Rectangle_Method(intN, doublex0)
      double h = x0 / N;
      double result = 0;
      double x = 0;
      for (int i = 0; i < N; i++)
             result += h * Limit(x);
            x += h;
      return result;
```

```
staticdoubleRight_Rectangle_Method(intN, doublex0)
      double h = x0 / N;
      double sum = 0;
      double x = h;
      for (int i = 0; i < N; i++)
            sum += h * Limit(x);
            x += h;
      return sum;
}
staticdoubleCentral_Rectangles_Method(intN, doublex0)
      double h = x0 / N;
      double sum = 0;
      double x = h / 2;
      for (int i = 0; i < N; i++)
      {
            sum += h * Limit(x);
            x += h;
      return sum;
staticdoubleSimpson_method(intN, doublex0)
      double h = x0 / N;
      double sum = 0;
      double x = 0;
      for (int i = 0; i < N; i++)
             sum += (Limit(x) + 4 * Limit(x + h / 2) + Limit(x + h)) * h / 6;
      return sum;
staticdoubleTrapezoid_method(intN, doublex0)
      double h = x0 / N;
      double result = 0;
      double x = 0;
      for (int i = 0; i < N; i++)
             result += h * (Limit(x) + Limit(x + h)) / 2;
            x += h;
      return result;
staticdoubleGauss_method(intN, doublex0)
      double h = x0 / N;
      double ad1 = (1 - 1.0 / \text{sqrt}(3)) * h / 2;
      double ad2 = (1 + 1.0 / \text{sqrt}(3)) * h / 2;
      double sum = 0;
      double x = 0;
      for (int i = 0; i < N; i++)
             sum += (Limit(x + ad1) + Limit(x + ad2)) * h / 2;
            x += h;
```