Customer Segmentation in Python

Segmentation using K-Means clustering algorithm

Plan Of Attack

- · Gather the data
- · Pre-process the data
- Explore the data
- · Cluster the data
- Interpret the result

The Analysis

Gathering Data

```
In [1]:
```

```
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import datetime
import seaborn as sns
from scipy import stats
from sklearn.preprocessing import StandardScaler
from sklearn.cluster import KMeans
```

```
In [2]:
```

```
df_lst = []

for sheet in ['Year 2009-2010','Year 2010-2011']:
    df = pd.read_excel('RetailPulseAssignmentData.xlsx', sheet_name=sheet)
    df_lst.append(df)

df = pd.concat(df_lst)
print(df.shape)
df.head()
```

(1067371, 8)

Out[2]:

	Invoice	StockCode	Description	Quantity	InvoiceDate	Price	Customer ID	Country
0	489434	85048	15CM CHRISTMAS GLASS BALL 20 LIGHTS	12	2009-12-01 07:45:00	6.95	13085.0	United Kingdom
1	489434	79323P	PINK CHERRY LIGHTS	12	2009-12-01 07:45:00	6.75	13085.0	United Kingdom
2	489434	79323W	WHITE CHERRY LIGHTS	12	2009-12-01 07:45:00	6.75	13085.0	United Kingdom
3	489434	22041	RECORD FRAME 7" SINGLE SIZE	48	2009-12-01 07:45:00	2.10	13085.0	United Kingdom
4	489434	21232	STRAWBERRY CERAMIC TRINKET BOX	24	2009-12-01 07:45:00	1.25	13085.0	United Kingdom

Clean & Sample the data

```
df = df[df['Customer ID'].notna()]
df_fix = df.sample(20000, random_state = 42)
df_fix = df_fix.convert_dtypes()
print(df_fix.shape)
df_fix.head()
```

(20000, 8)

Out[3]:

	Invoice	StockCode	Description	Quantity	InvoiceDate	Price	Customer ID	Country
198038	554000	23281	FOLDING BUTTERFLY MIRROR RED	12	2011-05-20 11:53:00	0.83	14794	United Kingdom
457037	575729	22406	MONEY BOX KINGS CHOICE DESIGN	12	2011-11-10 19:49:00	1.25	17932	United Kingdom
236404	512286	22435	SET OF 9 HEART SHAPED BALLOONS	10	2010-06-14 14:27:00	1.25	15967	United Kingdom
435239	530957	22800	ANTIQUE TALL SWIRLGLASS TRINKET POT	8	2010-11-04 18:53:00	3.75	17340	United Kingdom
214547	555586	84212	ASSORTED FLOWER COLOUR "LEIS"	72	2011-06-06 09:12:00	0.65	14232	United Kingdom

Data Preprocessing

Create RFM Table

The RFM refers to Recency, Frequency & Monetary Value.

Recency - The number of days passed since the last invoice date for the customer Frequency - The total number of invoices exist for the customer Monetary Value - The total money the customer spent

```
In [4]:
```

Out[4]:

Recency Frequency MonetaryValue

Customer ID

12347	40	4	58.4
12348	359	1	40.8
12349	19	3	57.45

```
12351 Recency Frequency MonetaryValue 37.8

Customer ID 12352 73 2 45.3
```

Manage Skewness

In [5]:

```
fig, ax = plt.subplots(1, 3, figsize=(15,3))
sns.distplot(customers['Recency'], ax=ax[0])
sns.distplot(customers['Frequency'], ax=ax[1])
sns.distplot(customers['MonetaryValue'], ax=ax[2])
plt.tight_layout()
plt.show()
```

C:\Users\Ashwin Gunasekaran\anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fu tureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flex ibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

C:\Users\Ashwin Gunasekaran\anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fu tureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flex ibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

C:\Users\Ashwin Gunasekaran\anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fu tureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flex ibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

In [6]:

customers.min()

Out[6]:

Recency 1.00 Frequency 1.00 MonetaryValue -2225.17 dtype: float64

__

In [7]:

```
for col_name in customers:
    print(col_name)

if col_name in ['Recency', 'Frequency']:
        sqrt_sr = np.sqrt(customers[col_name])
        log_sr = np.log(customers[col_name])
        boxcox_sr = pd.Series(stats.boxcox(customers[col_name])[0], name='boxcox')

    print('Skewness after SQRT Transformation = %.2f' %sqrt_sr.skew())
    print('Skewness after LOG Transformation = %.2f' %log_sr.skew())
    print('Skewness after BOXCOX Transformation = %.2f\n' %boxcox_sr.skew())

else:
    cbrt_sr = np.cbrt(customers[col_name])
    print('Skewness after CUBE ROOT Transformation = %.2f\n' %cbrt_sr.skew())
```

```
Skewness after SQRT Transformation = 0.15
Skewness after LOG Transformation = -0.75
Skewness after BOXCOX Transformation = -0.17

Frequency
Skewness after SQRT Transformation = 3.37
Skewness after LOG Transformation = 0.69
Skewness after BOXCOX Transformation = 0.11

MonetaryValue
Skewness after CUBE ROOT Transformation = 0.97
```

SQRT Transformation is the most suitable transformation for Recency Box cox is the most suitable transformation for Frequency Cube root is the most suitable transformation for Monetary Value

In [8]:

```
# Set the Numbers
customers_fix = pd.DataFrame()
customers_fix["Recency"] = np.sqrt(customers['Recency']).values
customers_fix["Frequency"] = stats.boxcox(customers['Frequency'])[0]
customers_fix["MonetaryValue"] = pd.Series(np.cbrt(customers['MonetaryValue'])).values
customers_fix.head()
```

Out[8]:

	Recency	Frequency	MonetaryValue
0	6.324555	1.109701	3.879755
1	18.947295	0.000000	3.442601
2	4.358899	0.919637	3.858602
3	19.390719	0.919637	3.356067
4	8.544004	0.618777	3.56478

Centering and Scaling Variables

We do this so that all the features have same mean and variance

In [9]:

```
scaler = StandardScaler()
scaler.fit(customers_fix)
customers_normalized = scaler.transform(customers_fix)
print(customers_normalized.mean(axis = 0).round(2))
print(customers_normalized.std(axis = 0).round(2))
df_normalized = pd.DataFrame(customers_normalized, columns=['Recency', 'Frequency', 'Mon etaryValue'])
df_normalized['ID'] = customers.index
df_normalized.head()
```

```
[ 0. -0. -0.]
[1. 1. 1.]
```

Out[9]:

	Recency	Frequency	MonetaryValue	ID
0	-0.928825	0.486613	0.137152	12347
1	0.742523	-1.261232	-0.077437	12348
2	-1.189093	0.187251	0.126768	12349
3	0.801236	0.187251	-0.119915	12351
4	-0.634953	-0.286621	-0.017462	12352

Modelling

Choose k-value

```
In [10]:
```

```
sse = {}
for k in range(1, 11):
    kmeans = KMeans(n_clusters=k, random_state=42)
    kmeans.fit(customers_normalized)
    sse[k] = kmeans.inertia_ # SSE to closest cluster centroid

plt.title('The Elbow Method')
plt.xlabel('k')
plt.ylabel('SSE')
sns.pointplot(x=list(sse.keys()), y=list(sse.values()))
plt.show()
```


Choosing k value 3 as the best value for k

```
In [11]:
```

```
model = KMeans(n_clusters=3, random_state=42)
model.fit(customers_normalized)
model.labels_
```

```
Out[11]:
```

```
array([2, 1, 0, ..., 2, 1, 0])
```

Cluster Analysis

```
In [12]:
```

Out[12]:

RecencyMean FrequencyMean MonetaryValueMean Count

Cluster

0	75.00	2.36	24.82	1081
1	458.28	1.91	31.06	1571

RecencyMean FrequencyMean MonetaryValueMean Count 11.73 252.89 1232

Snake Plots

In [13]:

Out[13]:

	ID	Cluster	Attribute	Value
0	12347	2	Recency	-0.928825
1	12348	1	Recency	0.742523
2	12349	0	Recency	-1.189093
3	12351	1	Recency	0.801236
4	12352	0	Recency	-0.634953

In [14]:

```
sns.lineplot(x='Attribute', y='Value', hue='Cluster', data=df_nor_melt)
plt.show()
```


Cluster 0 Insights:

 Cluster 0 has Lower Recency, Lower Frequency and Lower Monetary Value from which we can infer it is a cluster of new customers

Cluster 1 Insights:

• Cluster 1 has Lower Recency, Higher Frequency and Higher Monetary Value from which we can infer it is a cluster of **loyal customers**

Cluster 2 Insights:

 Cluster 2 Higher Recency, Lower Frequency and Lower Monetary value from which we can infer it is a cluster of churned customers

Hence we have successfully segmented the customers into 3 categories using KMeans Machine Learning Algorithm.

