Project Statement

- 1. Create 10 items usually seen in Amazon, K-mart, or any other supermarkets (e.g. diapers, clothes, etc.).
- 2. Create a database of 20 transactions each containing some of these items. The information can be stored in a file, or a DBMS (e.g. NJIT ORACLE or MySQL).
- 3. Repeat (1) by creating 4 additional, different databases each containing 20 transactions.

Using the Apriori algorithm, generate and print out all the association rules and the input transactions for each of the 5 transactional databases you created. The support and confidence *must* be user-specified parameters, so the output should show different rules with respect to different databases and different support/confidence.

Make sure to show multiple support and confidence results.

Project Description

- There are 5 .xlsx files have been created with the data available in the Midterm_Project_Items_Datasets_Examples.pdf file in Canvas
- 2. All the files are saved in the **input Folder** inside the Project Folder
- 3. The complete generation of Association Rules consists of 7 functions excluding the main()
- 4. The Process Flow is describe as follows:

Process Flow

Get Input
Parameters &
Read Data

Create All Possible
Combinations And
Calculate Support
for all single Items
and combinations.
Keep On Filtering
Based on the
Minimum Support
and until all the
combinations are
covered

Generate Sets of Low Frequency Items and Combinations and High Frequency Items and Combinations Prune the High Frequency Item set

Get All the Item combinations which have high frequency of occurring

Generate All possible
Permutations from the
High Frequency Item
combinations And
Calculate Confidence

Filter All Rules generated with Minimum Confidence and print the Rules

Folder Structure Description

Input Sample Structure (Type:.xlsx)

The Input file consists of two tabs named (1. Items & 2. Transactions). Below are the sample structure of the file.

Items

DATABASE 4 NIKE Ħ File Edit View Insert Format Data D16 В C 1 Running Shoe 2 Soccer Shoe 3 Socks 4 Swimming Shirt 5 Dry Fit V-Nick 6 Rash Guard 7 Sweatshirts 8 Hoodies 9 Tech Pants 9 10 10 Modern Pants 11 12 13

Transactions

Output Sample Structure (Type:.csv)

DATABASE_4_NIKE_50.0_70.0

	Association_Rules	Support(%)	Confidence(%)
0	Socks> Sweatshirts	60.0	92.3076923076923
1	Sweatshirts> Socks	60.0	92.3076923076923
2	Running Shoe> Sweatshirts	55.00000000000000	78.57142857142860
3	Sweatshirts> Running Shoe	55.00000000000000	84.61538461538460
4	Running Shoe> Socks	55.00000000000000	78.57142857142860
5	Socks> Running Shoe	55.00000000000000	84.61538461538460
6	Sweatshirts> Modern Pants	50.0	76.92307692307690
7	Modern Pants> Sweatshirts	50.0	100.0
8	Swimming Shirt> Rash Guard	50.0	90.90909090909
9	Rash Guard> Swimming Shirt	50.0	83.333333333333
10	Running Shoe> Socks & Sweatshirts	50.0	71.42857142857140
11	Running Shoe & Socks> Sweatshirts	50.0	90.90909090909
12	Socks> Running Shoe & Sweatshirts	50.0	76.92307692307690
13	Running Shoe & Sweatshirts> Socks	50.0	90.90909090909
14	Socks & Sweatshirts> Running Shoe	50.0	83.333333333333
15	Sweatshirts> Running Shoe & Socks	50.0	76.92307692307690

Code Description

Python Version: 3.8 Os: MacOS Big Sur

Modules Used:

```
import os
import numpy as np
import pandas as pd
import itertools
```

** Please Run the below lines in your terminal if any of the following modules are missing

pip3 install pandas pip3 install itertools

Function 1: read_data(location)

This function reads the data from the excel file with the location as input using the existing python modules (os, pandas) and assigns header afterwards. Please make sure that the input excel file does not have any header while running the function.

The excel file should have two tabs named

- 1. Items: Distinct Items)
- 2. Transactions: Transaction Related to the Items

```
def read_data(location):
   This function reads the data from the excel file.
   The excel file should have two tabs named below:
   The function reads the data without the header and assigns header to the dataframe afterwards.
   To run the program with a new set of data, please create an .xlsx file with two above mentioned tabs and please do not
   put header in the data as teh function automatically assigns header to avoid errors and naming conventions
   Returns :
   1. Pandas DataFrame (columns :["Item#","ItemName"])
   1. Pandas DataFrame (columns : ["Transaction ID", "Transaction"])
   items = pd.read_excel(location, sheet_name = "Items", header=None,names = ["Item#","ItemName"])
   # print (items.columns)
   transactions = pd.read_excel(location, sheet_name_=_"Transactions", header=None,names_=_["Transaction ID","Transaction"])
   # print (transactions.columns)
   print ("total number of distinct items : ",items.shape[0], "Items : ",list(set(items.ItemName)))
   print ("total number of transactions : ", transactions.shape[0])
   return items, transactions
```

Function 2: calculate_support(transaction,item)

This function takes two dataframes (Items and Transactions) as input and calculate support of each individual Items as well as combinations of items.

This is a standalone function which is used to generate support.

Returns a sorted pandas DataFrame.

```
calculate_support(transaction_item):
:param transaction: Pandas DataFrame (columns : ["Transaction ID","Transaction"]) | Source function : read_data()
                             ItemName
                                  fig
Total_transactions = len(transaction.index)
item_temp = item
item temp["Support"] = 0.0
item_temp.Support = item_temp.Support.astype(float)
for i in item_temp.index:
    item_list = item_temp.ItemName[i].split(",")
    supp = 0
    for j in transaction.index:
        if all(x in map(str.strip,transaction.Transaction[j].split(",")) for x in item_list):
            supp = supp + 1
    item_temp.loc[i,"Support"] = float(supp)/Total_transactions
return item_temp.sort_values(by='Support',ascending=False).reset_index(drop=True)
```

Function 3: exclusion_process(items,transactions,min_support)

This function takes items, transactions and the minimum support (user input) as input and uses the calculate_support() function to generate the support and divide the items combinations into two separate dataFrames based on low/high frequency of occurrence in the transactions set.

```
exclusion_process(items,transactions,min_support):
:param items: Pandas DataFrame (columns :["Item#","ItemName"]) | Source function : read_data()
:param min_support: Minimum Support ( Provided by the User while running )
k = 1
low_freq_combi = []
high_frequent_combi = pd.DataFrame(columns=["ItemName", "Support"])
distinct_items = list(set(items.ItemName))
while k < len(distinct_items):</pre>
    k_freq_df = pd.DataFrame(columns=["ItemName", "Support"])
    k_freq_df["ItemName"] = [",".join(i) for i in itertools.combinations(list(items.ItemName), k)]
    support_df = calculate_support(transactions, k_freq_df)
    low_freq_df = support_df[support_df.Support < min_support]</pre>
    low_freq_df = low_freq_df.reset_index()
    for lf in low_freq_df.index:
        low_freq_combi.append(low_freq_df.ItemName[lf])
    support_df = support_df[support_df.Support >= min_support]
    for s in support df.index:
        l = len(high_frequent_combi.index)
        high_frequent_combi.loc[l, "ItemName"] = support_df.ItemName[s]
        high_frequent_combi.loc[l, "Support"] = support_df.Support[s]
    k = k+1
return low_freq_combi,high_frequent_combi
```

Function 4: pruning(low_frequency_combi,high_frequency_combi)

This function takes the item combination of low and high frequency and prune the process for optimized results and avoid the redundancy.

Theory: "The superset of a low frequency item would have low frequency"

```
def exclusion_process(items,transactions,min_support):
   :param items: Pandas DataFrame (columns :["Item#","ItemName"]) | Source function : read_data()
   :param min_support: Minimum Support ( Provided by the User while running )
   k = 1
   low frea combi = []
   high_frequent_combi = pd.DataFrame(columns=["ItemName", "Support"])
   distinct_items = list(set(items.ItemName))
   # print (distinct items)
   while k < len(distinct_items):</pre>
       k_freq_df = pd.DataFrame(columns=["ItemName", "Support"])
       k_freq_df["ItemName"] = [",".join(i) for i in itertools.combinations(list(items.ItemName), k)]
       support_df = calculate_support(transactions, k_freq_df)
       # print (support_df)
       low_freq_df = support_df[support_df.Support < min_support]</pre>
       low_freq_df = low_freq_df.reset_index()
       for lf in low_freq_df.index:
           low_freq_combi.append(low_freq_df.ItemName[lf])
       support_df = support_df[support_df.Support >= min_support]
       for s in support df.index:
           l = len(high_frequent_combi.index)
           high_frequent_combi.loc[l, "ItemName"] = support_df.ItemName[s]
           high_frequent_combi.loc[l, "Support"] = support_df.Support[s]
       k = k+1
   return low_freq_combi,high_frequent_combi
```

Function 5: calculate_confidence(list1, list2, support_df)

This function takes a list items and the support as input and calculate confidence of all permutations of the items. This would help to generate association rules given minimum confidence as user input.

```
def calculate_confidence(A,B,support_df):
    This function calculates the confidence of any given two sets with their support
                    Confidence(X,Y) = Support(X,Y)/Support(X)
    :return:
            printable_A --> Returns a string. Returns a string with '&' separator If there is multiple items
            printable_B --> Returns a string. Returns a string with '&' separator If there is multiple items
             support ab --> Support of A.B
             confidence --> Calculated confidence
    printable A = " & ".join(str(x) for x in sorted(list(A)))
    printable_B = " & ".join(str(x) for x in sorted(list(B)))
    A_str = ",".join(str(x) for x in sorted(list(A)))
    AB_str = ",".join(str(x) for x in sorted(list(A) + list(B)))
    support_df["ItemName"] = [",".join(y for y in sorted(list(x))) for x in support_df.item_list]
    print (support_df)
    print (A_str)
    print (B_str)
    support_a = support_df[support_df.ItemName == A_str].Support.values[0]
    support_ab = support_df[support_df.ItemName == AB_str].Support.values[0]
    confidence = float(support_ab) / support_a
   return printable_A, printable_B, support_ab, confidence
```

Function 6: generate_association_rule(pruned_frequent_items, min_confidence)

This function takes a list items and the support as input and calculate confidence of all permutations of the items. This would help to generate association rules given minimum confidence as user input.

```
generate_association_rules(pruned_frequent_items, min_support, min_confidence, out_file_name):
:param pruned_frequent_items: Pandas DataFrame of pruned items who has support more than min_support (source : pruning())
:return: Pandas DataFrame with all the Rules, Support and Confidence for all the possible permutations
Association_Rules = pd.DataFrame(columns=["Association_Rules", "Support(%)", "Confidence(%)"])
pruned_frequent_items["item_list"] = [x.split(",") for x in pruned_frequent_items["ItemName"]]
pruned_frequent_items["item_length"] = [len(x) for x in pruned_frequent_items["item_list"]]
eligible_combinations = pruned_frequent_items[pruned_frequent_items.item_length > 1]
for i in eligible_combinations.index:
    for p in list(itertools.permutations(eligible_combinations.item_list[i])):
        for n in range(1,len(p)):
            rule_str_left_rule_str_right_support_confidence = calculate_confidence(list(p[:-n]), p[-n:], pruned_frequent_items)
            Association_Rules.loc[-1] = [rule_str_left + " --> " + rule_str_right,support*100,confidence*100]
            Association_Rules.index = Association_Rules.index + 1
            Association_Rules = Association_Rules.sort_index()
Association_Rules = Association_Rules.drop_duplicates()
<u>Association_Rules</u> = Association_Rules.reset_index(drop_=_True)
Association_Rules = Association_Rules.sort_index(ascending=False)
Association_Rules = Association_Rules.reset_index(drop = True)
Association_Rules = Association_Rules[Association_Rules["Confidence(%)"] >= min_confidence * 100]
Association_Rules.to_csv(os.getcwd() + "/output/" + out_file_name + "_" + str(min_support * 100) + '_' + str(min_confidence * 100) + '.csv", header=True)
return Association Rules
```

Function 7: run_Apriori(items, transactions, min_support, min_confidence)

This is a wrapper function which triggers all the above functions in a step by step manner to generate the association rules.

```
def run_Apriori(items, transactions, min_support, min_cofidence, out_file_name):
    low_freq_combi, high_frequent_combi = exclusion_process(items, transactions, min_support)
    # print (high_frequent_combi)
    high_frequent_combi = pruning(low_freq_combi, high_frequent_combi)
    association_rules = generate_association_rules(high_frequent_combi, min_support, min_cofidence, out_file_name)
    print (association_rules)
```

Function MAIN:

The main function takes three inline inputs:

- 1. DataBase Name (The user has to choose from the printed list)
- 2. Minimum Support
- 3. Minimum Confidence

And it prints out the Association Rules as well as saves the Rules in output folder.

How to Run the code?

- Open a Terminal and go to the Project Folder
- 2. Run "Python3 Aniruddha_Ganguly_Source_Code_Python.py"
- 3. The Program would start running and ask you parameters in the terminal: Parameter 1: Database Name

Please enter any file name from the above prompt list as those are the data available.

Parameter 2&3: Minimum Support & Minimum Confidence - Please Enter minimum support and minimum confidence in decimal form Example:

If required minimum support is $53\% \rightarrow \text{Please}$ enter 0.53 If required minimum confidence is $71\% \rightarrow \text{Please}$ enter 0.71

Results

DATABASE 1: AMAZON

Minimum Support: **0.40** (40%) Minimum Confidence: **0.60** (60%)

Dataset	Amazon
Source	Canvas
File Name	DATABASE_1_AMAZON.xlsx
Minimum Support	0.40
Minimum Confidence	0.60

----PARAMETERS-----

Enter the Database Name from the following list

--DATABASE_1_AMAZON.xlsx

--DATABASE 4 NIKE.xlsx

--Generic Data Canvas.xlsx

--DATABASE 3 KMART.xlsx

--Homework 1 Apriori.xlsx

--DATABASE_2_BESTBUY.xlsx

File Name: DATABASE_1_AMAZON.xlsx
Enter a minimum support value: 0.40
Enter a minimum confidence value: 0.60

-----Association Rules-----

	Association_Rules	Support(%)	Confidence(%)
0	Java: The Complete Reference> Java For Dummies	50.0	100.000000
1	Java For Dummies> Java: The Complete Reference	50.0	76.923077
2	A Beginner's Guide> Java: The Complete Refe	45.0	81.818182
3	Java: The Complete Reference> A Beginner's	45.0	90.000000
4	Java For Dummies> Android Programming: The	45.0	69.230769
5	Android Programming: The Big Nerd Ranch> Ja	45.0	69.230769
6	A Beginner's Guide> Java For Dummies	45.0	81.818182
7	Java For Dummies> A Beginner's Guide	45.0	69.230769
8	A Beginner's Guide> Java For Dummies & Java	45.0	81.818182
9	A Beginner's Guide & Java: The Complete Refere	45.0	100.000000
10	Java: The Complete Reference> A Beginner's	45.0	90.000000
11	A Beginner's Guide & Java For Dummies> Java	45.0	100.000000
12	Java For Dummies & Java: The Complete Referenc	45.0	90.000000
13	Java For Dummies> A Beginner's Guide & Java	45.0	69.230769

Minimum Support: **0.40** (40%)
Minimum Confidence: **0.70** (70%)

Dataset	Amazon
Source	Canvas
File Name	DATABASE_1_AMAZON.xlsx
Minimum Support	0.40
Minimum Confidence	0.70

O U T P U T

-----PARAMETERS-----

Enter the Database Name from the following list

--DATABASE 1 AMAZON.xlsx

--DATABASE 4 NIKE.xlsx

--Generic Data Canvas.xlsx

--DATABASE 3 KMART.xlsx

--Homework 1 Apriori.xlsx

--DATABASE 2 BESTBUY.xlsx

File Name: DATABASE_1_AMAZON.xlsx Enter a minimum support value: 0.40 Enter a minimum confidence value: 0.70

------Association Rules-----

	Association_Rules	Support(%)	Confidence(%)
0	Java: The Complete Reference> Java For Dummies	50.0	100.000000
1	Java For Dummies> Java: The Complete Reference	50.0	76.923077
2	A Beginner's Guide> Java: The Complete Refe	45.0	81.818182
3	Java: The Complete Reference> A Beginner's	45.0	90.000000
6	A Beginner's Guide> Java For Dummies	45.0	81.818182
8	A Beginner's Guide> Java For Dummies & Java	45.0	81.818182
9	A Beginner's Guide & Java: The Complete Refere	45.0	100.000000
10	Java: The Complete Reference> A Beginner's	45.0	90.000000
11	A Beginner's Guide & Java For Dummies> Java	45.0	100.000000
12	Java For Dummies & Java: The Complete Referenc	45.0	90.000000

Minimum Support: **0.50** (50%)
Minimum Confidence: **0.80** (80%)

Dataset	Amazon
Source	Canvas
File Name	DATABASE_1_AMAZON.xlsx
Minimum Support	0.50
Minimum Confidence	0.80

P

-----PARAMETERS-----

Enter the Database Name from the following list

- --DATABASE 1 AMAZON.xlsx
- -- DATABASE 4 NIKE.xlsx
- --Generic Data Canvas.xlsx
- -- DATABASE 3 KMART.xlsx
- --Homework 1 Apriori.xlsx
- --DATABASE 2 BESTBUY.xlsx

File Name: DATABASE_1_AMAZON.xlsx Enter a minimum support value: 0.50 Enter a minimum confidence value: 0.80

------Association Rules------

total number of distinct items: 10 total number of transactions: 20

Association_Rules Support(%) Confidence(%)

0 Java: The Complete Reference --> Java For Dummies

50.0

100.0

DATABASE 2: Best Buy

Minimum Support: **0.50** (50%)
Minimum Confidence: **0.70** (70%)

Dataset	Best Buy
Source	Canvas
File Name	DATABASE_2_BESTBUY.xlsx
Minimum Support	0.50
Minimum Confidence	0.70

----PARAMETERS-----

Enter the Database Name from the following list

--DATABASE_1_AMAZON.xlsx

--DATABASE 4 NIKE.xlsx

--Generic Data Canvas.xlsx

--DATABASE 3 KMART.xlsx

-- Homework 1 Apriori.xlsx

--DATABASE 2 BESTBUY.xlsx

File Name: DATABASE_2_BESTBUY.xlsx Enter a minimum support value: 0.50 Enter a minimum confidence value: 0.70

-----Rssociation Rules-----

0	
U	
Т	
Р	
U	Ν
Τ	\

	Association_Rules	Support(%)	Confidence(%)
0	Lab Top Case> Anti-Virus	60.0	85.714286
1	Anti-Virus> Lab Top Case	60.0	85.714286
2	Flash Drive> Microsoft Office	55.0	84.615385
3	Microsoft Office> Flash Drive	55.0	100.000000
4	Lab Top> Lab Top Case	50.0	83.333333
5	Lab Top Case> Lab Top	50.0	71.428571
6	Printer> Flash Drive	50.0	100.000000
7	Flash Drive> Printer	50.0	76.923077
8	Flash Drive> Anti-Virus	50.0	76.923077
9	Anti-Virus> Flash Drive	50.0	71.428571
10	Lab Top> Anti-Virus	50.0	83.333333
11	Anti-Virus> Lab Top	50.0	71.428571

Minimum Support : **0.45** (45%)

Minimum Confidence: 0.70 (70%)

Input Parameters

Dataset	Best Buy
Source	Canvas
File Name	DATABASE_2_BESTBUY.xlsx
Minimum Support	0.45
Minimum Confidence	0.70

O U T P U T

----PARAMETERS-----

Enter the Database Name from the following list
--DATABASE_1_AMAZON.xlsx
--DATABASE_4_NIKE.xlsx
--Generic_Data_Canvas.xlsx
--DATABASE_3_KMART.xlsx
--Homework_1_Apriori.xlsx
--DATABASE_2_BESTBUY.xlsx

File Name: DATABASE_2_BESTBUY.xlsx Enter a minimum support value: 0.45 Enter a minimum confidence value: 0.70

-----Rssociation Rules------

	Association_Rules	Support(%)	Confidence(%)
О	Lab Top Case> Anti-Virus	60.0	85.714286
1	Anti-Virus> Lab Top Case	60.0	85.714286
2	Flash Drive> Microsoft Office	55.0	84.615385
3	Microsoft Office> Flash Drive	55.0	100.000000
4	Lab Top> Lab Top Case	50.0	83.333333
5	Lab Top Case> Lab Top	50.0	71.428571
6	Printer> Flash Drive	50.0	100.000000
7	Flash Drive> Printer	50.0	76.923077
8	Flash Drive> Anti-Virus	50.0	76.923077
9	Anti-Virus> Flash Drive	50.0	71.428571
10	Lab Top> Anti-Virus	50.0	83.333333
11	Anti-Virus> Lab Top	50.0	71.428571
13	External Hard-Drive> Anti-Virus	45.0	100.000000
16	Printer> Microsoft Office	45.0	90.000000
17	Microsoft Office> Printer	45.0	81.818182
18	Speakers> Lab Top Case	45.0	81.818182
20	Speakers> Anti-Virus	45.0	81.818182
23	Flash Drive & Lab Top Case> Anti-Virus	45.0	100.000000
25	Anti-Virus & Flash Drive> Lab Top Case	45.0	90.000000
26	Anti-Virus & Lab Top Case> Flash Drive	45.0	75.000000
28	Printer> Flash Drive & Microsoft Office	45.0	90.000000
29	Flash Drive & Printer> Microsoft Office	45.0	90.000000
31	Microsoft Office & Printer> Flash Drive	45.0	100.000000
32	Flash Drive & Microsoft Office> Printer	45.0	81.818182
33	Microsoft Office> Flash Drive & Printer	45.0	81.818182
34	Lab Top> Anti-Virus & Lab Top Case	45.0	75.000000
35	Lab Top & Lab Top Case> Anti-Virus	45.0	90.000000
37	Anti-Virus & Lab Top> Lab Top Case	45.0	90.000000
38	Anti-Virus & Lab Top Case> Lab Top	45.0	75.000000

Minimum Support: **0.50** (50%)
Minimum Confidence: **0.80** (80%)

Dataset	Best Buy
Source	Canvas
File Name	DATABASE_2_BESTBUY.xlsx
Minimum Support	0.50
Minimum Confidence	0.80

-----PARAMETERS-----

Enter the Database Name from the following list

--DATABASE 1 AMAZON.xlsx

--DATABASE 4 NIKE.xlsx

Input

Parameters

--Generic Data Canvas.xlsx

--DATABASE 3 KMART.xlsx

--Homework 1 Apriori.xlsx

--DATABASE 2 BESTBUY.xlsx

File Name: DATABASE_2_BESTBUY.xlsx
Enter a minimum support value: 0.50
Enter a minimum confidence value: 0.80

------Association Rules-----

	Association_Rules	Support(%)	Confidence(%)
0	Lab Top Case> Anti-Virus	60.0	85.714286
1	Anti-Virus> Lab Top Case	60.0	85.714286
2	Flash Drive> Microsoft Office	55.0	84.615385
3	Microsoft Office> Flash Drive	55.0	100.000000
4	Lab Top> Lab Top Case	50.0	83.333333
6	Printer> Flash Drive	50.0	100.000000
10	Lab Top> Anti-Virus	50.0	83.333333

DATABASE 3: KMART

Minimum Support: **0.50** (50%)
Minimum Confidence: **0.70** (70%)

Dataset	KMART
Source	Canvas
File Name	DATABASE_3_KMART.xlsx
Minimum Support	0.50
Minimum Confidence	0.70

-----PARAMETERS-----

Input Parameters Enter the Database Name from the following list

--DATABASE 1 AMAZON.xlsx

--DATABASE 4 NIKE.xlsx

--Generic Data Canvas.xlsx

--DATABASE 3 KMART.xlsx

--Homework 1 Apriori.xlsx

--DATABASE 2 BESTBUY.xlsx

File Name: DATABASE_3_KMART.xlsx
Enter a minimum support value: 0.50
Enter a minimum confidence value: 0.70

O U T P U

	Association_Rules	Support(%)	Confidence(%)
0	Bed Skirts> Kids Bedding	50.0	90.909091
1	Kids Bedding> Bed Skirts	50.0	83.333333
2	Sheets> Kids Bedding	50.0	100.000000
3	Kids Bedding> Sheets	50.0	83.333333

Minimum Support : **0.45** (45%) Minimum Confidence: 0.70 (70%)

Dataset	KMART
Source	Canvas
File Name	DATABASE_3_KMART.xlsx
Minimum Support	0.45
Minimum Confidence	0.70

Input **Parameters** -----PARAMETERS-------

Enter the Database Name from the following list

--DATABASE 1 AMAZON.xlsx

--DATABASE 4 NIKE.xlsx

--Generic Data Canvas.xlsx

--DATABASE 3 KMART.xlsx

--Homework 1 Apriori.xlsx

--DATABASE 2 BESTBUY.xlsx

File Name: DATABASE 3 KMART.xlsx Enter a minimum support value: 0.45 Enter a minimum confidence value: 0.70

----- Rssociation Rules-----

	Association_Rules	Support(%)	Confidence(%)
0	Bed Skirts> Kids Bedding	50.0	90.909091
1	Kids Bedding> Bed Skirts	50.0	83.333333
2	Sheets> Kids Bedding	50.0	100.000000
3	Kids Bedding> Sheets	50.0	83.333333
4	Shams> Kids Bedding	45.0	81.818182
5	Kids Bedding> Shams	45.0	75.000000
6	Bed Skirts> Sheets	45.0	81.818182
7	Sheets> Bed Skirts	45.0	90.000000
8	Bed Skirts> Shams	45.0	81.818182
9	Shams> Bed Skirts	45.0	81.818182
10	Bed Skirts> Kids Bedding & Sheets	45.0	81.818182
11	Bed Skirts & Sheets> Kids Bedding	45.0	100.000000
12	Sheets> Bed Skirts & Kids Bedding	45.0	90.000000
13	Bed Skirts & Kids Bedding> Sheets	45.0	90.000000
14	Kids Bedding & Sheets> Bed Skirts	45.0	90.000000
15	Kids Bedding> Bed Skirts & Sheets	45.0	75.000000

Minimum Support : **0.50** (50%) Minimum Confidence: 0.80 (80%)

Dataset	KMART
Source	Canvas
File Name	DATABASE_3_KMART.xlsx
Minimum Support	0.50
Minimum Confidence	0.80

-----PARAMETERS-----

Input **Parameters** Enter the Database Name from the following list

--DATABASE 1 AMAZON.xlsx

--DATABASE 4 NIKE.xlsx

--Generic Data Canvas.xlsx

-- DATABASE 3 KMART.xlsx

-- Homework 1 Apriori.xlsx

--DATABASE 2 BESTBUY.xlsx

File Name: DATABASE 3 KMART.xlsx Enter a minimum support value: 0.50 Enter a minimum confidence value: 0.80

-----Association Rules-----

	Association_Rules	Support(%)	Confidence(%)
0	Bed Skirts> Kids Bedding	50.0	90.909091
1	Kids Bedding> Bed Skirts	50.0	83.333333
2	Sheets> Kids Bedding	50.0	100.000000
3	Kids Bedding> Sheets	50.0	83.333333

DATABASE 4: NIKE

Minimum Support : **0.50** (50%) Minimum Confidence: 0.70 (70%)

Dataset	NIKE
Source	Canvas
File Name	DATABASE_4_NIKE.xlsx
Minimum Support	0.50
Minimum Confidence	0.70

-----PARAMETERS-----

Enter the Database Name from the following list

- --DATABASE 1 AMAZON.xlsx
- --DATABASE 4 NIKE.xlsx
- --Generic Data Canvas.xlsx
- -- DATABASE 3 KMART.xlsx
- --Homework 1 Apriori.xlsx --DATABASE 2 BESTBUY.xlsx

File Name: DATABASE 4 NIKE.xlsx Enter a minimum support value: 0.50 Enter a minimum confidence value: 0.70

----- Rssociation Rules-----

	Association_Rules	Support(%)	Confidence(%)
0	Socks> Sweatshirts	60.0	92.307692
1	Sweatshirts> Socks	60.0	92.307692
2	Running Shoe> Sweatshirts	55.0	78.571429
3	Sweatshirts> Running Shoe	55.0	84.615385
4	Running Shoe> Socks	55.0	78.571429
5	Socks> Running Shoe	55.0	84.615385
6	Sweatshirts> Modern Pants	50.0	76.923077
7	Modern Pants> Sweatshirts	50.0	100.000000
8	Swimming Shirt> Rash Guard	50.0	90.909091
9	Rash Guard> Swimming Shirt	50.0	83.333333
10	Running Shoe> Socks & Sweatshirts	50.0	71.428571
11	Running Shoe & Socks> Sweatshirts	50.0	90.909091
12	Socks> Running Shoe & Sweatshirts	50.0	76.923077
13	Running Shoe & Sweatshirts> Socks	50.0	90.909091
14	Socks & Sweatshirts> Running Shoe	50.0	83.333333
15	Sweatshirts> Running Shoe & Socks	50.0	76.923077

Minimum Support : **0.45** (45%)

Minimum Confidence: 0.70 (70%)

Dataset	NIKE
Source	Canvas
File Name	DATABASE_4_NIKE.xlsx
Minimum Support	0.45
Minimum Confidence	0.70

O U T P U

-----PARAMETERS------

Enter the Database Name from the following list
--DATABASE_1 AMAZON.xlsx
--DATABASE_4 NIKE.xlsx
--Generic Data_Canvas.xlsx
--DATABASE_3 KMART.xlsx
--Homework_1 Apriori.xlsx
--DATABASE_2 BESTBUY.xlsx

File Name: DATABASE_4_NIKE.xlsx Enter a minimum support value: 0.45 Enter a minimum confidence value: 0.70

-------Association Rules-----

	Association_Rules	Support(%)	Confidence(%)
0	Socks> Sweatshirts	60.0	92.307692
1	Sweatshirts> Socks	60.0	92.307692
2	Running Shoe> Sweatshirts	55.0	78.571429
3	Sweatshirts> Running Shoe	55.0	84.615385
4	Running Shoe> Socks	55.0	78.571429
5	Socks> Running Shoe	55.0	84.615385
6	Sweatshirts> Modern Pants	50.0	76.923077
7	Modern Pants> Sweatshirts	50.0	100.000000
8	Swimming Shirt> Rash Guard	50.0	90.909091
9	Rash Guard> Swimming Shirt	50.0	83.333333
11	Modern Pants> Socks	45.0	90.000000
12	Dry Fit V-Nick> Rash Guard	45.0	100.000000
13	Rash Guard> Dry Fit V-Nick	45.0	75.000000
15	Modern Pants> Running Shoe	45.0	90.000000
16	Rash Guard> Tech Pants	45.0	75.000000
17	Tech Pants> Rash Guard	45.0	100.000000
18	Running Shoe> Socks & Sweatshirts	50.0	71.428571
19	Running Shoe & Socks> Sweatshirts	50.0	90.909091
20	Socks> Running Shoe & Sweatshirts	50.0	76.923077
21	Running Shoe & Sweatshirts> Socks	50.0	90.909091
22	Socks & Sweatshirts> Running Shoe	50.0	83.333333
23	Sweatshirts> Running Shoe & Socks	50.0	76.923077
25	Socks & Sweatshirts> Modern Pants	45.0	75.000000
27	Modern Pants & Socks> Sweatshirts	45.0	100.000000
28	Modern Pants & Sweatshirts> Socks	45.0	90.000000
29	Modern Pants> Socks & Sweatshirts	45.0	90.000000
31	Running Shoe & Sweatshirts> Modern Pants	45.0	81.818182
33	Modern Pants & Running Shoe> Sweatshirts	45.0	100.000000
34	Modern Pants & Sweatshirts> Running Shoe	45.0	90.000000
35	Modern Pants> Running Shoe & Sweatshirts	45.0	90.000000

Minimum Support: **0.50** (50%)
Minimum Confidence: **0.80** (80%)

Dataset	NIKE
Source	Canvas
File Name	DATABASE_4_NIKE.xlsx
Minimum Support	0.50
Minimum Confidence	0.80

Input Parameters -----PARAMETERS-----

Enter the Database Name from the following list

--DATABASE_1_AMAZON.xlsx

--DATABASE 4 NIKE.xlsx

--Generic Data Canvas.xlsx

--DATABASE 3 KMART.xlsx

-- Homework 1 Apriori.xlsx

--DATABASE 2 BESTBUY.xlsx

File Name: DATABASE_4_NIKE.xlsx
Enter a minimum support value: 0.50
Enter a minimum confidence value: 0.80

-----Association Rules-----

	Association_Rules	Support(%)	Confidence(%)
0	Socks> Sweatshirts	60.0	92.307692
1	Sweatshirts> Socks	60.0	92.307692
3	Sweatshirts> Running Shoe	55.0	84.615385
5	Socks> Running Shoe	55.0	84.615385
7	Modern Pants> Sweatshirts	50.0	100.000000
8	Swimming Shirt> Rash Guard	50.0	90.909091
9	Rash Guard> Swimming Shirt	50.0	83.333333
11	Running Shoe & Socks> Sweatshirts	50.0	90.909091
13	Running Shoe & Sweatshirts> Socks	50.0	90.909091
14	Socks & Sweatshirts> Running Shoe	50.0	83.333333

DATABASE 5: Canvas Generic Data

(Modified to make 10 Items and 20 Transactions)

Minimum Support: **0.40** (40%) Minimum Confidence: **0.60** (60%)

Dataset	Canvas Generic Data
Source	Canvas
File Name	Modified_Generic_Data_Canvas.
Minimum Support	0.40
Minimum Confidence	0.60

-----PARAMETERS-----

Input Parameters Enter the Database Name from the following list

- --DATABASE 1 AMAZON.xlsx
- --DATABASE 4 NIKE.xlsx
- --Modified Generic Data Canvas.xlsx
- --Generic Data Canvas.xlsx
- -- DATABASE 3 KMART.xlsx
- -- Homework 1 Apriori.xlsx
- --DATABASE 2 BESTBUY.xlsx

File Name: Modified Generic Data Canvas.xlsx

Enter a minimum support value: 0.40

Enter a minimum confidence value: 0.60

-----Association Rules-----

O U T P II

Association_Rules	Support(%)	Confidence(%)
-------------------	------------	---------------

0	A> C	50.0	71.428571
	C> A	50.0	100.000000

Minimum Support: **0.30** (30%) Minimum Confidence: **0.40** (40%)

Dataset	Canvas Generic Data
Source	Canvas
File Name	Modified_Generic_Data_Canvas.
Minimum Support	0.30
Minimum Confidence	0.40

-----PARAMETERS------

Enter the Database Name from the following list

--DATABASE 1 AMAZON.xlsx

--DATABASE 4 NIKE.xlsx

Input

Parameters

--Modified Generic Data Canvas.xlsx

--Generic Data Canvas.xlsx

--DATABASE 3 KMART.xlsx

--Homework 1 Apriori.xlsx

--DATABASE 2 BESTBUY.xlsx

File Name: Modified_Generic_Data_Canvas.xlsx Enter a minimum support value: 0.30 Enter a minimum confidence value: 0.40

-----Association Rules-----

	Association_Rules	Support(%)	Confidence(%)
0	A> C	50.0	71.428571
1	C> A	50.0	100.000000
2	A> E	40.0	57.142857
3	E> A	40.0	57.142857
4	F> G	30.0	100.000000
5	G> F	30.0	85.714286
6	E> G	30.0	42.857143
7	G> E	30.0	85.714286
8	E> F	30.0	42.857143
9	F> E	30.0	100.000000
10	E> F & G	30.0	42.857143
11	E & F> G	30.0	100.000000
12	F> E & G	30.0	100.000000
13	E & G> F	30.0	100.000000
14	F & G> E	30.0	100.000000
15	G> E & F	30.0	85.714286

Minimum Support: **0.30** (30%)
Minimum Confidence: **0.50** (50%)

Dataset	Canvas Generic Data
Source	Canvas
File Name	Modified_Generic_Data_Canvas.
Minimum Support	0.30
Minimum Confidence	0.50

-----PARAMETERS-----

Enter the Database Name from the following list

--DATABASE_1_AMAZON.xlsx

--DATABASE 4 NIKE.xlsx

Input

Parameters

--Modified Generic Data Canvas.xlsx

--Generic Data Canvas.xlsx

--DATABASE 3 KMART.xlsx

--Homework_1_Apriori.xlsx

-- DATABASE 2 BESTBUY.xlsx

File Name: Modified Generic Data Canvas.xlsx

Enter a minimum support value: 0.30 Enter a minimum confidence value: 0.50

-----Association Rules-----

	Association_Rules	Support(%)	Confidence(%)
0	A> C	50.0	71.428571
1	C> A	50.0	100.000000
2	A> E	40.0	57.142857
3	E> A	40.0	57.142857
4	F> G	30.0	100.000000
5	G> F	30.0	85.714286
7	G> E	30.0	85.714286
9	F> E	30.0	100.000000
11	E & F> G	30.0	100.000000
12	F> E & G	30.0	100.000000
13	E & G> F	30.0	100.000000
14	F & G> E	30.0	100.000000
15	G> E & F	30.0	85.714286

End