Machine Learning Assignment # 1 Universität Bern

Due date: 11/10/2017

Late submissions will incur a penalty. Submit your answers in ILIAS (as a pdf or as a picture of your written notes if the handwriting is very clear). Submission instructions will be provided via email.

You are not allowed to work with others.

Linear algebra review	[Total 100 points]
Solve each of the following problems and show all the steps of your working.	
1. Use the definition of trace to show that $trAB = trBA$, where $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times m}$.	[10 points]
2. Consider the matrix $G = A^{\top}A$, where $A \in \mathbb{R}^{m \times n}$. Show that G is positive semi-definite.	[10 points]
3. Show that a positive definite matrix is non-singular.	[10 points]
4. Show that if (λ_i, x_i) are the <i>i</i> -th eigenvalue and <i>i</i> -th eigenvector of a non-singular and symmetric material are the <i>i</i> -th eigenvalue and <i>i</i> -th eigenvector of A^{-1} . Hint: use the eigendecomposition of A .	atrix $A \in \mathbb{R}^{n imes n}$, then $(rac{1}{\lambda_i}, x_i)$
5. Given two sets of vectors $\{x_1,x_n\} \subset \mathbb{R}^n$ and $\{y_1,,y_n\} \subset \mathbb{R}^n$, show that rank $\left[\sum_{i=1}^m x_i y_i^\top\right] \leq Hint$: First show that the square matrix $x_i y_i^\top$ has rank 1.	m. [20 points]
6. Show that $\operatorname{rank}(A) \leq \min\{m, n\}$, where $A \in \mathbb{R}^{m \times n}$.	[10 points]
7. In each of the following cases, state whether the matrix A is guaranteed to be singular or not. Justify	your answer in each case.
(a) $A \in \mathbb{R}^{m \times n}$ is a full rank matrix.	[4 points]
(b) $ A = 0$.	[4 points]
(c) A is an orthogonal matrix.	[4 points]
(d) A has no eigenvalue equal to zero.	[4 points]

(e) A is a symmetric matrix with non-negative eigenvalues.

[4 points]