Co-Graphen, Splitgraphen, Schwellwertgraphen

Pascal Braband

Institut für Informatik Heinrich-Heine-Universität Düsseldorf

23. März 2020

Gliederung

- 1 Co-Graphen
 - Grundlagen
 - Algorithmus zur Erkennung
 - Algorithmen auf Co-Graphen
- 2 Splitgraphen
 - Grundlagen
 - Splittance
- 3 Schwellwertgraphen
 - Grundlagen

Co-Graphen

Definition

Seien $G_1 = (V, E)$ und $G_2 = (V, E)$ zwei Graphen

 \blacksquare Die disunkte Vereinigung von G_1 und G_2 ist definiert durch

$$G_1 \cup G_2 = (V_1 \cup V_2, E_1 \cup E_2)$$

2 Die *disjunkte Summe* von G_1 und G_2 ist definiert durch

$$G_1 \times G_2 = (V_1 \cup V_2, E_1 \cup E_2 \cup \{\{v_1, v_2\} | v_1 \in V_1, v_2 \in V_2\})$$

Co-Graphen

Definition Co-Graphen [GRRW10]

Ein ungerichteter Graph G = (V, E) ist ein Co-Graph, falls er konstruiert werden kann über:

- **1** Graph mit genau einem Knoten ($G = \bullet$) ist ein Co-Graph.
- **2** Disjunkte Vereinigung $G_1 \cup G_2$ der Co-Graphen G_1 , G_2 ist Co-Graph.
- 3 Disjunkte Summe $G_1 \times G_2$ der Co-Graphen G_1 , G_2 ist Co-Graph.

Co-Baum

Definition Co-Baum [GRRW10]

Seien G_1 , G_2 Co-Graphen mit entsprechenden Co-Bäumen T_1 , T_2 .

Der Co-Baum T zum Graphen G wird konstruiert mit:

- I Co-Baum T für Co-Graph G = hat genau einen Knoten markiert mit •
- **2** Co-Baum T zu $G_1 \cup G_2$ hat Wurzel w markiert mit \cup und die Kinder T_1 , T_2
- 3 Co-Baum T zu $G_1 \times G_2$ hat Wurzel w markiert mit \times und die Kinder T_1 , T_2

Co-Baum

Co-Graph Eigenschaften

Eigenschaften von Co-Graphen [CLSB81]

Sei G ein Co-Graph

- G ist abgeschlossen unter induzierter Teilgraphenbildung
- G enthält keinen P₄ als induzierten Teilgraphen

Erkennung von Co-Graphen

Algorithmus Co-Graphen Erkennung [CPS85]

Der Algorithmus bestimmt für einen Graphen G, ob dieser ein Co-Graph ist. Falls ja, so gibt er den entsprechenden Co-Baum zurück.

- Grundlage: Induzierte Teilgraphenbildung über Co-Graphen
- *Idee:* Den Graphen *G* schrittweise aufbauen
- G ist ein Co-Graph \Rightarrow der Graph ist nach jedem Schritt ein Co-Graph

Erkennung von Co-Graphen

Gegeben Graph
$$G = (V, E)$$
 mit $V = \{v_1, \dots, v_n\}$

- ullet Füge iterativ jedes $x \in V$ zu anfangs leerem Graphen hinzu
- Markiere bisherigen Co-Baum, abhängig von den zu x adjazenten Knoten
- Mit Markierungen:
 - \rightarrow Uberprüfe, ob G + x noch ein Co-Graph ist
 - ightarrow Füge x zu Co-Baum hinzu

Algorithmen auf Co-Graphen

- Lösung von NP-schweren Problemen auf Co-Graphen oft einfach
- Algorithmen benutzen den Co-Baum
- Einschränkung auf P₄-frei oft möglich in Praxis

Algorithmen auf Co-Graphen

Problem	Laufzeit
Unabhängigkeitszahl $lpha(G)$	O(V + E)
Knotenüberdeckungszahl $ au(G)$	O(V + E)
Cliquenzahl $\omega(G)$	O(V + E)
Färbungszahl $\chi(G)$	O(V + E)
Cliquenpartitionszahl $ heta(G)$	O(V + E)
Hamiltonpfad/-kreis	O(V)
Isomorphie	O(V + E)
Baumweite	$O(V_T)$

Tabelle: Laufzeiten für Probleme auf Co-Graphen G=(V,E) mit Co-Baum $T=(V_T,E_T)$

Splitgraphen

Definition Splitgraph [FH77]

Ein ungerichteter Graph G=(V,E) ist ein Splitgraph, falls die Knotenmenge V partitioniert werden kann in zwei Knotenmengen K und S, wobei K eine Clique ist und S eine unabhängige Menge.

Eigenschaften von Splitgraphen

- K oder S können leer sein
- Partition muss nicht eindeutig sein

Splittance

Definition Splittance [HS81]

Die Splittance $\sigma(G)$ eines beliebigen Graphen G=(V,E) ist die minimale Anzahl an Kanten, die entfernt oder hinzugefügt werden muss, damit G ein Splitgraph ist.

Eigenschaften der Splittance

- $\sigma(G) = 0$, falls G ein Splitgraph ist
- $\sigma(G) = \sigma(\overline{G})$

Splittance

Splittance Berechnung

Splittance kann eindeutig durch die Gradfolge $d_{1,...,n}$ von G bestimmt werden.

$$m = \max\{i | 1 \le i \le n, d_i \ge i - 1\}$$

Die Splittance $\sigma(G) = \sigma_m(G)$ ist

$$\sigma_m(d) = \frac{1}{2} \Big(m(m-1) - \sum_{i=1}^m d_i + \sum_{i=m+1}^n d_i \Big)$$

Splittance

Splitgraph Erkennung

G ist ein Splitgraph, falls gilt

$$\sum_{i=1}^{m} d_i = m(m-1) + \sum_{i=m+1}^{n} d_i$$

Schwellwertgraphen

Definition Schwellwertgraph

Ein Graph G=(V,E) ist ein Schwellwertgraph, falls Werte $w_v\in\mathbb{R}_{\geq 0}$ für $v\in V$ und $T\in\mathbb{R}_{\geq 0}$ existieren, sodass für zwei Knoten $x,y\in V$ gilt

$$\{x,y\} \in E \Leftrightarrow w_x + w_y > T$$

Beispiel

Schwellwertgraphen

Definition Schwellwertgraph (konstruktiv)

Ein Graph G = (V, E) ist ein Schwellwertgraph, falls er über die folgenden Vorschriften konstruiert werden kann.

- 1 Hinzufügen eines einzelnen isolierten Knotens
- 2 Hinzufügen eines einzelnen dominierenden Knotens

Schwellwertgraphen

Schwellwertgraphen Eigenschaft

 ${\sf Schwellwertgraphen} = {\sf Co\text{-}Graphen} \ \cap \ {\sf Splitgraphen}$

Schwellwertgraphen und Co-Graphen

Schwellwertgraphen und Splitgraphen

- Splitgraph (Partition K, S) aus Schwellwertgraph
- Unabhängige Menge *S* immer gegeben durch isolierte Knoten

Literatur I

- ▶ D.G. Corneil, H. Lerchs, and L. Stewart Burlingham, Complement reducible graphs, Discrete Applied Mathematics 3 (1981), no. 3, 163–174.
- ▶ D. G. Corneil, Y. Perl, and L. K. Stewart, A linear recognition algorithm for cographs, SIAM Journal on Computing 14 (1985), no. 4, 926–934.
- ► S. Földes and P. L. Hammer, Split graphs, 311–315.
- ► Frank Gurski, Irene Rothe, Jörg Rothe, and Egon Wanke, Exakte algorithmen für schwere graphenprobleme, Springer, Berlin, Heidelberg, 2010.
- ▶ Peter L. Hammer and Bruno Simeone, *The splittance of a graph*, no. 3, 275–284.