Compte-rendu 2 : SAE-12 BELKHIR Ilyes, Groupe : 1A

Q2.1. Analyse avec traceroute

Vers legs.cnrs.fr:

Saut	Adresse IP	Propriétaire
1	192.168.1.1	Box locale
2	109.12.4.1	SFR SA
3	86.69.254.142	SFR SA
4	Délai d'attente de la demande dépassé.	

Vers www.youtube.fr

Saut	Adresse IP	Propriétaire
1	192.168.1.1	Box locale SFR
2	109.12.4.1	SFR SA
3	86.69.254.142	SFR SA
4	194.6.147.220	SFR SA
5	194.6.147.220	SFR SA
6	72.14.194.30	Google
7	108.170.231.95	Google
8	142.251.64.129	Google
9	142.250.178.142	Google

Vers <u>www.nyu.ed</u>u

Saut	Adresse IP	Propriétaire
1	192.168.1.1	Box locale SFR
2	109.12.4.1	SFR SA
3	86.69.254.142	SFR SA
4	Délai d'attente de la demande dépassé.	

- Le traceroute, comme son nom l'indique permet de tracer l'itinéraire d'un paquet à travers les différents routeurs qu'il traverse. Le traceroute renvoie les adresses IP des routeurs qu'il traverse.
- D'après Wireshark, le protocole utilisé par la machine cliente pour un traceroute est ICMP. Il en est de même pour la réponse du serveur à la machine.
- En analysant le champ TTL des paquets envoyés, on remarque que celui si commence à 1 et s'incrémente de 1 à chaque nouveau saut. Cela permet de connaître le nombre de routeurs traversé ainsi que leurs adresses IP
- En regardant le premier message TTL exeeded on voit que sa valeur est de 1 et que son champ d'identification est 0x19c1
- Non, en général les routeurs se contentent de retransmettre les paquets reçu mais pas de les émettre. Dans le cas d'un traceroute, le TTL est exactement égale au nombre de saut nécessaire pour atteindre le routeur ce qui fait que celui-ci doit renvoyant un paquet à notre machine informant que le nombre de saut maximum a

été atteint. De cette manière on peut récupérer les informations du routeurs en analysant le paquet.

Q2.2. Analyse avec capture Wireshark

- Les applications ouvertes sont Discord, Client Riot, Word
- Couche IP: On remarque que l'IPv4 est utilisée pour 99,9% des paquets contre 0,1 pour l'IPv6. Pour l'IPv4 les protocoles majoritaires sont:
 UDP(24%) → on retrouve le protocole QUIC IETF(23,5%) = Client Riot

TCP(75,9%) → on retrouve le protocole TLS(39,6%) = Discord et Client Riot

 On remarque que notre machine communique avec 8 machines différentes et 3 adresse de broadcast

- On peut expliquer cette différence d'adresses par le fait que mon ordinateur ne peut connaître que les adresses MAC des machines de son réseau alors qu'il connait les adresses IP de tous les serveurs avec lesquels il communique
- Ma machine envoie des paquets compris entre 60o et 80kio, pour les paquets reçu 0
 -> 12Mio

Adresse A	Adresse B	Paquets	Octets	Packets A → B	Bytes $A \rightarrow B$	Packets B → A	Bytes $B \rightarrow A$	Début Rel	Durée	Bits/s $A \rightarrow B$	Bits/s B →
192.168.1.48	52.222.158.74	21	3,965 Kio	10	2,443 Kio	11	1,521 Kio	8.768644	0.1305	149,793 Kio	93,276 K
192.168.1.48	54.69.175.47	21	7,742 Kio	10	2,326 Kio	11	5,416 Kio	15.304058	0.9062	20,535 Kio	47,813 k
192.168.1.48	104.16.206.131	21	8,318 Kio	10	1,434 Kio	11	6,885 Kio	10.164667	1.3143	8,726 Kio	41,907 k
192.168.1.48	104.115.83.9	24	9,866 Kio	12	5,929 Kio	12	3,938 Kio	16.951706	0.1852	256,036 Kio	170,044 k
192.168.1.48	104.18.0.68	23	12,409 Kio	11	5,207 Kio	12	7,202 Kio	11.570052	0.3126	133,273 Kio	184,339 F
192.168.1.48	162.159.136.232	23	10,223 Kio	9	1,260 Kio	14	8,963 Kio	5.429037	12.6828	813 octets	5,653 k
192.168.1.48	162.247.241.1	31	14,253 Kio	15	4,297 Kio	16	9,956 Kio	7.820639	0.5857	58,694 Kio	135,999 k
192.168.1.48	131.253.33.239	28	13,320 Kio	11	4,119 Kio	17	9,201 Kio	16.718491	0.1629	202,228 Kio	451,729 H
192.168.1.48	8.238.69.124	38	8,751 Kio	20	1,973 Kio	18	6,778 Kio	11.322776	0.7566	20,858 Kio	71,674
192.168.1.48	104.16.120.50	39	19,928 Kio	16	5,440 Kio	23	14,487 Kio	10.033326	1.6525	26,338 Kio	70,136 H
192.168.1.48	172.65.223.136	42	17,111 Kio	17	5,308 Kio	25	11,804 Kio	12.439535	2.0455	20,758 Kio	46,164 H
192.168.1.48	162.159.133.234	37	31,853 Kio	11	2,639 Kio	26	29,214 Kio	6.423111	13.2332	1,595 Kio	17,660 H
192.168.1.48	104.18.24.250	52	31,686 Kio	25	14,565 Kio	27	17,120 Kio	10.853312	2.9853	39,031 Kio	45,878 H
192.168.1.48	92.123.239.82	51	20,585 Kio	22	3,199 Kio	29	17,386 Kio	11.343855	1.4983	17,081 Kio	92,826 H
192.168.1.48	2.21.34.194	53	21,136 Kio	22	3,185 Kio	31	17,951 Kio	11.231131	1.5690	16,237 Kio	91,528 F
192.168.1.48	104.16.55.40	64	31,108 Kio	30	8,655 Kio	34	22,453 Kio	7.821354	4.2440	16,315 Kio	42,324 F
192.168.1.48	192.168.1.1	70	9,389 Kio	35	2,891 Kio	35	6,498 Kio	5.409578	11.6574	1,983 Kio	4,459 H
192.168.1.48	104.18.156.37	71	52,853 Kio	27	6,360 Kio	44	46,492 Kio	7.731430	3.7529	13,558 Kio	99,104 F
192.168.1.48	67.26.17.252	282	277,534 Kio	65	6,654 Kio	217	270,880 Kio	17.069105	0.2103	253,091 Kio	10,061 N
192.168.1.48	23.192.237.143	433	356,247 Kio	139	13,287 Kio	294	342,960 Kio	10.405797	2.4728	42,985 Kio	1,084 N
192.168.1.48	92.123.239.81	1 369	1,679 Mio	193	14,782 Kio	1 176	1,664 Mio	17.068962	0.3419	345,894 Kio	38,941 N
192.168.1.48	162.159.129.233	6817	7,086 Mio	713	107,913 Kio	6104	6,980 Mio	6.060915	13.2841	64,987 Kio	4,204 N
192.168.1.48	2.21.34.160	9 444	11,844 Mio	1 252	76,472 Kio	8 192	11,769 Mio	11.396895	6.8280	89,597 Kio	13,789 N
102 168 1 48	92.122.188.22	9.731	12,157 Mio	1 3 1 5	80,168 Kio	8416	12,079 Mio	11 322048	6,7063	95,632 Kio	14,409 N

 Les paquets les plus lourd ont été envoyé par Akamai Technologies, un serveur localisé à Cambridge • Pour trouver le paquet, le plus simple est d'utiliser un filtre pour n'avoir que les paquets DNS avec pour destination ma machine (dns && ip.dst == 192.168.1.48) en faisant un ctrl-F de l'adresse IP qui m'a envoyé le plus de paquets, on trouve le paquet correspondant.

Sequence précise : tcp && tcp.port == 443

La colonne bleue comme son nom l'indique représente le temps, celle en rouge indique les adresses IP présentent dans les échange.

Le sens des flèches indique la direction que prend le paquet, on retrouve aussi la triple poignée de main TCP. On constate que la majorité des échanges sont des ACK

3. Les accès WiFi autour de vous

- Le SSID = Service Set IDentifier
 C'est le nom du réseau Wi-Fi. Celui-ci peut mesurer jusqu'à 32 bytes et peut être visible comme invisible.
- Le canal Wifi peut s'apparenter à un chemin que les ondes wifi utilisent pour se connecter aux appareils d'un réseau. En Europe, sur la bande 2.4 GHz, on peut utiliser les canaux 1 à 13. Les canaux 32 à 68, 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136 et 140 sont utilisées sur la bande 5GHz
- La fréquence radio utilisée par le Wi-Fi est de 2,4GHz, celle-ci peut être égale à 2.4 GHz et 5 GHz. La fréquence permet d'envoyer un signal sans fil. Bien que plus récente, celle de 5 GHz a une portée plus courte mais sera plus rapide et plus stable.
- La largeur de la bande passante est de 20 MHz. La bande passante représente le volume de données pouvant être transporté d'un point à un autre.
- Le protocole 802.11n fais référence à la norme IEEE 802.11n ou Wifi N qui permet d'atteindre un débit théorique en définissant la largeur du canal, la fréquence utilisée et d'autre paramètres.
- BSSID = Basic Service Set Identifier. Celui-ci correspond à l'adresse MAC du point d'accès.

- La partie IP correspond au détails IP de ma machine (adresse privé et masque),
 l'adresse publique est celle du réseau.
- WPA2 = Wifi Protected Access 2. C'est une méthode de cryptage des données. Son chiffrement correspond au protocole AES-CCMP

4. Performances Réseaux

Les différentes mesures seront réalisées avec une connexion Ethernet

	Matin (12	h^^)		Soirée			
	Débit Débit RTT (ms)		Débit	Débit	RTT		
	Montant	descendant		Montant	descendant		
	(Mbps)	(Mbps)					
Speed	476.33	442.48	9	452,8	476	10	
Test							
AT & T	470	484	13,8	468	325	13,5	
Ariase	476,2	484,4	3,9	477,9	482	3,17	
Que	475,6	484	18	475,5	482,5	17	
choisir							
Nperf	475,3	486,3	4,1	484	483,6	3,8	

Les débits ascendant et descendant semble être similaire peut importe le site utilisé ou l'heure réalisé

• Test 1:483 – 478

Test 2:492 - 478

Test 3: 470 - 478

Test 4:478 - 478

Test 5: 480 - 476,55

Test 6: 477 – 478 Test 7: 470 – 478 Test 8: 472 – 478 Test 9: 477 – 478 Test 10: 468 – 478

On remarque que les tests en débits descendants varient beaucoup entre 468 et 492 Mbps alors que ceux en débits ascendant sont très net et varient très peu (478 Mbps)

SpeedTest envoie 883MB de données

- Etant données que plusieurs appareils sont connectés au même réseau que moi (télévision, smartphone, consoles...) cela a pour conséquence d'augmenter le trafic déjà présent sur le lien. Pour cette raison, le principal goulet d'étranglement devrait se situer en C1
- Voici le débit obtenu en téléchargeant l'image

Voici le débit obtenu en téléchargeant 2 images en même temps

Le débit du téléchargement est similaire (sans speedtest)

• Le résultat change lorsqu'on utilise le speedtest et le téléchargement en même temps, le débit du téléchargement diminue de 53Mo/s à 328Ko/s. Le speedtest reste cependant similaire (à la différence que la latence augmente

drastiquement $9 \rightarrow 51$)

 D'après c'est résultats, nous pouvons conclure que le speedtest ne mesure que la bande passante disponible ce qui fait que celui-ci peut être affecté par l'utilisation d'application ou téléchargement.

5. Énergie

- J'ai choisi le model LG GSXV90MCAE
 (<a href="https://www.darty.com/nav/achat/encastrable/grand-refrigerateur/refrigerateur-a-refrigerateu
- Consommation d'énergie annuelle = 348 kWh
- (348/(365*24))*1000 = 39,73 Watts

5.2. Votre ordinateur portable

- Batterie = Li-ion 3 cellules 41 Wh; Chargeur = 45W 19,5V(output)
- La batterie se charge en environ 1h15
- Le temps de charge est souvent plus long que cette estimation principalement dû a l'utilisation de l'ordinateur, en l'utilisant pendant sa charge celui-ci consomme une partie de l'énergie fourni par la charge. On peut aussi supposer que même éteint l'ordinateur continue de consommer un peu d'énergie car la batterie chauffe.

Threads	Utilisation CPU	Consommation Energie		
0	7%	2,5W		
2	55%	13,8W		
4	100%	17W		

- La consommation ne varie pas beaucoup une fois qu'on utilise plusieurs threads.
 Cependant la consommation ne semble pas être proportionnel aux nombres de threads utilisés
- L'écart de consommation entre mon ordinateur (17W au maximum) et le frigo choisi (39,73W) est très significatif d'autant plus que le frigo fonction 24h/24 et donc consomme beaucoup plus d'énergie

5.4. Des KWhs au kg de CO2

Prenons le MacBook Pro 13, celui-ci a une capacité de 58,2Wh soit 0,0582kWh

La France et l'Allemagne ont respectivement une intensité carbone de 116 et 658 gCo2/kWh

	France (116g/KWh)	Allemagne (658g/KWh)	
1 recharge (0,0582 kWh)	6,75 g	38,3 g	
300 recharges	2,025 kg	11,489 kg	
Frigo(348KWh/an)	40,37 kg	228,984 kg	

5.5. Carbonalyzr

	Europe	France	Chine	Etats-Unis
Vidéo	70gCo2e	70gCo2e	71gCo2e	71gCo2e
Gmail	1gCo2e	1gCo2e	1gCo2e	1gCo2e
Lemonde	1gCo2e	1gCo2e	1gCo2e	1gCo2e

Vidéo YouTube de 3min visualisé en 4k