

Please use the bookmark to navigate

General information on EG models

- Maximum supply voltage is 1.8 V.
- Validity domain is defined as follows:
 - ✓ Drawn gate length varies from 30nm to 10um.
 - ✓ Drawn transistor width varies from 80nm to 10um.
 - ✓ Device temperature varies from -40 °C to 125 °C.

dormieub

Output parameters definitions

- Model(s): eglvtnfet_acc, eglvtpfet_acc, egnfet_acc, egpfet_acc
 - ✓ Vt_lin: Threshold voltage defined as Vgs value for which drain current is ivt*M*1*W/(1*L+0+1*p_la) at Vds = 0.05V.
 - ✓ Dvtcc : Standard deviation of variation of threshold voltage defined as Vgs value for which drain current is ivt*M*W/L at Vds = 0.05. 5000 Monte-Carlo runs used.
 - ✓ Ilin : Drain current at Vgs = 1.8V, Vds = 0.05V.
 - ✓ Dibl : Vt_lin Vt_sat.
 - ✓ Didovid: Standard deviation of normalized variation of drain current at Vgs = 1.8V, Vds = 0.05V. 5000 Monte-Carlo runs used.
 - ✓ Vt_sat: Threshold voltage defined as Vgs value for which drain current is ivt*M*1*W/(1*L+0+1*p_la) at Vds = vds_offV.

eglvtnfet_acc Electrical characteristics scaling

eglvtnfet_acc, w [um] vs "Device index []"

eglvtnfet_acc, l [um] vs "Device index []"

eglvtnfet_acc, w*l [um2] vs "Device index []"

eglvtnfet_acc, Vtlin [mV] vs "Device index []"

eglvtnfet_acc, Idlin*L/W [uA] vs "Device index []"

eglvtnfet_acc, AVtlin [um.mV] vs "Device index []"

vds_mm==0.05 and (vbs==0 or vbs==1.8)

ST Confidential

eglvtnfet_acc, Aldlin [um.%] vs "Device index []"

eglvtnfet_acc, AVtsat [um.mV] vs "Device index []"

eglvtnfet_acc, Aldsat [um.%] vs "Device index []"

eglvtpfet_acc Electrical characteristics scaling

eglvtpfet_acc, w [um] vs "Device index []"

eglvtpfet_acc, l [um] vs "Device index []"

eglvtpfet_acc, w*l [um2] vs "Device index []"

eglvtpfet_acc, Vtlin [mV] vs "Device index []"

eglvtpfet_acc, Idlin*L/W [uA] vs "Device index []"

eglvtpfet_acc, AVtlin [um.mV] vs "Device index []"

eglvtpfet_acc, AIdlin [um.%] vs "Device index []"

eglvtpfet_acc, AVtsat [um.mV] vs "Device index []"

eglvtpfet_acc, Aldsat [um.%] vs "Device index []"

egnfet_acc Electrical characteristics scaling

egnfet_acc, w [um] vs "Device index []"

egnfet_acc, l [um] vs "Device index []"

egnfet_acc, w*l [um2] vs "Device index []"

egnfet_acc, Vtlin [mV] vs "Device index []"

egnfet_acc, Idlin*L/W [uA] vs "Device index []"

egnfet_acc, AVtlin [um.mV] vs "Device index []"

egnfet_acc, AIdlin [um.%] vs "Device index []"

egnfet_acc, AVtsat [um.mV] vs "Device index []"

egnfet_acc, Aldsat [um.%] vs "Device index []"

egpfet_acc Electrical characteristics scaling

egpfet_acc, w [um] vs "Device index []"

egpfet_acc, l [um] vs "Device index []"

 $vds_mm==0.05$ and vbs==0

egpfet_acc, w*l [um2] vs "Device index []"

 $vds_mm==0.05$ and vbs==0

egpfet_acc, Vtlin [mV] vs "Device index []"

egpfet_acc, Idlin*L/W [uA] vs "Device index []"

egpfet_acc, AVtlin [um.mV] vs "Device index []"

vds_mm==0.05 and (vbs==0 or vbs==-1.8)

dormieub

egpfet_acc, Aldlin [um.%] vs "Device index []"

egpfet_acc, AVtsat [um.mV] vs "Device index []"

egpfet_acc, Aldsat [um.%] vs "Device index []"

Annex

Conditions of simulations

The simulations were done with SBenchLSF Alpha using Eldo simulator 2018.3.

- Model eglvtnfet_acc (DK1.2_RF_mmW)
 - ✓ Input Parameters
 - \times vds_mm = 0.05 V
 - \times ams_release = 2018.3
 - **x** mc_runs = 5000
 - \times vgs_stop = Vdd V
 - X dlshrink ivt = 0
 - \times temp = 25 °C
 - \times vgs_start = -0.5 V
 - \mathbf{x} mc_sens = 0
 - \times vds_lin = 0.05 V
 - **✗** sbenchlsf_release = Alpha
 - **✗** plashrink_ivt = 1
 - **x** ivt = 300e-9 A
 - **x** model_version = 1.2.e
 - **x** mc_nsigma = 3

Sep 24, 2018

- \star ithslwi = 10e-9 A
- \times vstep_ivt = 0.005 V
- \mathbf{x} vbs = 0 V
- **x** shrink_ivt = 1
- **x** vdd = 1.8 V
- \mathbf{x} vgs_off = 0 V
- ✓ Sweep Parameters
 - \star vbs = 0.0, 1.8
 - \times vds_mm = 0.05, 1.8
- ✓ Extra parameters
 - \mathbf{x} eg_dev = 1
 - **x** eglvt_dev = 1
 - **✗** gflag_noisedev_eg_cmos028fdsoi = 1
 - **✗** gflag_noisedev_eglvt_cmos028fdsoi = 1
- Model eglvtpfet_acc (DK1.2_RF_mmW)
 - ✓ Input Parameters
 - \times vds_mm = 0.05 V
 - \mathbf{x} ams_release = 2018.3
 - **x** mc_runs = 5000
 - x vgs_stop = Vdd V
 - **✗** dlshrink_ivt = 0
 - \times temp = 25 °C
 - \times vgs_start = -0.5 V
 - \mathbf{x} mc sens = 0
 - \times vds_lin = 0.05 V

- **✗** sbenchlsf_release = Alpha
- **x** plashrink_ivt = 1
- **x** ivt = 70e-9 A
- **✗** model_version = 1.2.e
- **x** mc_nsigma = 3
- \star ithslwi = 10e-9 A
- \times vstep_ivt = 0.005 V
- \mathbf{x} vbs = Vdd V
- **x** shrink_ivt = 1
- \times vdd = 1.8 V
- \times vgs_off = 0 V
- ✓ Sweep Parameters
 - **x** vbs = 0.0, 1.8
 - \times vds_mm = 0.05, 1.8
- ✓ Extra parameters
 - \times eg_dev = 1
 - **x** eglvt_dev = 1
 - **✗** gflag_noisedev_eg_cmos028fdsoi = 1
 - **✗** gflag__noisedev__eglvt__cmos028fdsoi = 1
- Model egnfet_acc (DK1.2_RF_mmW)
 - ✓ Input Parameters
 - \times vds_mm = 0.05 V
 - \mathbf{x} ams release = 2018.3
 - \times mc runs = 5000
 - \times vgs_stop = Vdd V

- **✗** dlshrink_ivt = 0
- **x** temp = $25 \, ^{\circ}$ C
- \times vgs_start = -0.5 V
- \mathbf{x} mc sens = 0
- \times vds_lin = 0.05 V
- **x** sbenchlsf_release = Alpha
- **✗** plashrink_ivt = 1
- **x** ivt = 300e-9 A
- **✗** model_version = 1.2.c
- **x** mc_nsigma = 3
- \star ithslwi = 10e-9 A
- \times vstep_ivt = 0.005 V
- \mathbf{x} vbs = 0 V
- **x** shrink_ivt = 1
- \times vdd = 1.8 V
- \times vgs_off = 0 V
- ✓ Sweep Parameters
 - **x** vbs = 0.0, 1.8
 - \times vds_mm = 0.05, 1.8
- ✓ Extra parameters
 - \mathbf{x} eg_dev = 1
 - \mathbf{x} eglvt_dev = 1
 - **✗** gflag_noisedev_eg_cmos028fdsoi = 1
 - **✗** gflag_noisedev_eglvt_cmos028fdsoi = 1
- Model egpfet_acc (DK1.2_RF_mmW)

- ✓ Input Parameters
 - \times vds mm = 0.05 V
 - \mathbf{X} ams release = 2018.3
 - **x** mc_runs = 5000
 - \times vgs_stop = Vdd V
 - **✗** dlshrink_ivt = 0
 - \times temp = 25 °C
 - \times vgs_start = -0.5 V
 - \times mc_sens = 0
 - \times vds lin = 0.05 V
 - **✗** sbenchlsf_release = Alpha
 - **✗** plashrink_ivt = 1
 - \times ivt = 70e-9 A
 - **x** model_version = 1.2.c
 - **x** mc_nsigma = 3
 - \star ithslwi = 10e-9 A
 - \times vstep_ivt = 0.005 V
 - \mathbf{x} vbs = 0 V
 - \times shrink ivt = 1
 - \times vdd = 1.8 V
 - \mathbf{x} vgs_off = 0 V
- ✓ Sweep Parameters
 - \star vbs = 0.0, 1.8
 - \times vds_mm = 0.05, 1.8
- ✓ Extra parameters

ST Confidential

- \times eg_dev = 1
- \mathbf{x} eglvt_dev = 1
- **x** gflag_noisedev_eg_cmos028fdsoi = 1
- **✗** gflag__noisedev__eglvt__cmos028fdsoi = 1
- Model eglvtnfet_acc (DK1.1_RF_mmW)
 - ✓ Input Parameters
 - \times vds_mm = 0.05 V
 - **x** ams_release = 2018.3
 - \times mc runs = 5000
 - \times vgs_stop = Vdd V
 - X dlshrink ivt = 0
 - \times temp = 25 °C
 - \times vgs_start = -0.5 V
 - \times mc_sens = 0
 - \times vds lin = 0.05 V
 - **x** sbenchlsf_release = Alpha
 - **✗** plashrink_ivt = 1
 - **x** ivt = 300e-9 A
 - **✗** model_version = 1.2.d
 - **x** mc_nsigma = 3
 - \star ithslwi = 10e-9 A
 - \mathbf{X} vstep_ivt = 0.005 V
 - \mathbf{x} vbs = 0 V
 - **x** shrink_ivt = 1
 - \times vdd = 1.8 V

ST Confidential

- \times vgs_off = 0 V
- ✓ Sweep Parameters
 - \times vbs = 0.0, 1.8
 - \times vds_mm = 0.05, 1.8
- ✓ Extra parameters
 - \times eg_dev = 1
 - **x** eglvt_dev = 1
 - **✗** gflag_noisedev_eg_cmos028fdsoi = 1
 - **✗** gflag_noisedev_eglvt_cmos028fdsoi = 1
- Model eglvtpfet_acc (DK1.1_RF_mmW)
 - ✓ Input Parameters
 - \times vds mm = 0.05 V
 - \times ams release = 2018.3
 - \times mc runs = 5000
 - \times vgs_stop = Vdd V
 - X dlshrink ivt = 0
 - **x** temp = $25 \, ^{\circ}$ C
 - \times vgs_start = -0.5 V
 - \mathbf{x} mc sens = 0
 - \times vds_lin = 0.05 V
 - **✗** sbenchlsf_release = Alpha
 - **✗** plashrink_ivt = 1
 - **x** ivt = 70e-9 A
 - **✗** model_version = 1.2.d
 - **x** mc_nsigma = 3

ST Confidential

- \star ithslwi = 10e-9 A
- \mathbf{X} vstep_ivt = 0.005 V
- \times vbs = Vdd V
- **x** shrink_ivt = 1
- \times vdd = 1.8 V
- \mathbf{x} vgs_off = 0 V
- ✓ Sweep Parameters
 - \star vbs = 0.0, 1.8
 - \times vds_mm = 0.05, 1.8
- ✓ Extra parameters
 - \mathbf{x} eg_dev = 1
 - **x** eglvt_dev = 1
 - **✗** gflag_noisedev_eg_cmos028fdsoi = 1
 - **✗** gflag_noisedev_eglvt_cmos028fdsoi = 1
- Model egnfet_acc (DK1.1_RF_mmW)
 - ✓ Input Parameters
 - \times vds_mm = 0.05 V
 - \mathbf{x} ams_release = 2018.3
 - **x** mc_runs = 5000
 - x vgs_stop = Vdd V
 - **✗** dlshrink_ivt = 0
 - \times temp = 25 °C
 - \times vgs_start = -0.5 V
 - \mathbf{x} mc sens = 0
 - \times vds_lin = 0.05 V

- **✗** sbenchlsf_release = Alpha
- **x** plashrink_ivt = 1
- \times ivt = 300e-9 A
- **✗** model_version = 1.2.b
- **x** mc_nsigma = 3
- \star ithslwi = 10e-9 A
- \times vstep_ivt = 0.005 V
- \mathbf{x} vbs = 0 V
- **x** shrink_ivt = 1
- \times vdd = 1.8 V
- \times vgs_off = 0 V
- ✓ Sweep Parameters
 - \star vbs = 0.0, 1.8
 - \times vds_mm = 0.05, 1.8
- ✓ Extra parameters
 - \times eg_dev = 1
 - **x** eglvt_dev = 1
 - **✗** gflag_noisedev_eg_cmos028fdsoi = 1
 - **✗** gflag__noisedev__eglvt__cmos028fdsoi = 1
- Model egpfet_acc (DK1.1_RF_mmW)
 - ✓ Input Parameters
 - \times vds_mm = 0.05 V
 - \mathbf{x} ams_release = 2018.3
 - \times mc runs = 5000
 - \times vgs_stop = Vdd V

- **✗** dlshrink_ivt = 0
- **x** temp = $25 \, ^{\circ}$ C
- \times vgs_start = -0.5 V
- \mathbf{x} mc_sens = 0
- \times vds_lin = 0.05 V
- **✗** sbenchlsf_release = Alpha
- **✗** plashrink_ivt = 1
- **x** ivt = 70e-9 A
- **✗** model_version = 1.2.b
- **x** mc_nsigma = 3
- \star ithslwi = 10e-9 A
- \mathbf{X} vstep_ivt = 0.005 V
- \mathbf{x} vbs = 0 V
- **x** shrink_ivt = 1
- \times vdd = 1.8 V
- \times vgs_off = 0 V
- ✓ Sweep Parameters
 - **x** vbs = 0.0, 1.8
 - \times vds_mm = 0.05, 1.8
- ✓ Extra parameters
 - \mathbf{x} eg_dev = 1
 - \mathbf{x} eglvt_dev = 1
 - **✗** gflag__noisedev__eg__cmos028fdsoi = 1
 - **✗** gflag__noisedev__eglvt__cmos028fdsoi = 1

