CS559 Lecture 2: Designing a Learning System

Reading: Chapter 1, Bishop book

Types of learning

Supervised learning

- Learning mapping between input x and desired output y
- Teacher gives me y's for the learning purposes

Unsupervised learning

- Learning relations between data components
- No specific outputs given by a teacher

Reinforcement learning

- Learning mapping between input x and desired output y
- Critic does not give me y's but instead a signal (reinforcement) of how good my answer was

• Other types of learning:

Concept learning, explanation-based learning, etc.

- **1. Data:** $D = \{d_1, d_2, ..., d_n\}$
- 2. Model selection:
 - Select a model or a set of models (with parameters) E.g. y = ax + b
- 3. Choose the objective function
 - Squared error

$$\frac{1}{n}\sum_{i=1}^{n}(y_i-f(x_i))^2$$

- 4. Learning:
- Find the set of parameters optimizing the error function
 - The model and parameters with the smallest error
- 5. Testing:
 - Apply the learned model to new data
 - E.g. predict ys for new inputs x using learned f(x)
 - Evaluate on the test data

1. Data: $D = \{d_1, d_2, ..., d_n\}$

- 2. Model ecti
 - Selec E.g.
- 3. Choose the
 - Squared e
- 4. Learning:
- Find the set d
 - The model
- 5. Testing:
 - Apply the

- E.g. predict ys for new inputs x using learned f(x)
- Evaluate on the test data

- **1. Data:** $D = \{d_1, d_2, ..., d_n\}$
- 2. Model selection:
 - Select a model or a set of models (with parameters)

E.g. y = ax + b

- 3. Choose he
 - Squa
- 4. Learning:
- Find the s
 - The mod
- 5. Testing:
 - Apply t
 - E.g. pre
 - Evaluate

- **1. Data:** $D = \{d_1, d_2, ..., d_n\}$
- 2. Model selection:
 - Select a model or a set of models (with parameters)

E.g.
$$y = ax + b$$

- 3. Choose the objective function
 - Squared error

$$\frac{1}{n}\sum_{i=1}^{n}(y_i-f(x_i))^2$$

- 4. Learning:
- Find the se
 - The mod
- 5. Testing:
 - Apply t
 - E.g. pre
 - Evaluate

- 4. Learning:
- Find the set of parameters optimizing the error function
 - The model and parameters with the smallest error

5. Testing:

- Apply the learned model to new data
- E.g. predict ys for new inputs x using learned f(x)
- Evaluate on the test data

- **1. Data:** $D = \{d_1, d_2, ..., d_n\}$
- 2. Model selection:
 - Select a model or a set of models (with parameters) E.g. y = ax + b
- 3. Choose the objective function
 - Squared error

$$\frac{1}{n}\sum_{i=1}^{n}(y_i-f(x_i))^2$$

- 4. Learning:
- Find the set of parameters optimizing the error function
 - The model and parameters with the smallest error
- 5. Testing:
 - Apply the learned model to new data
 - E.g. predict ys for new inputs x using learned f(x)
 - Evaluate on the test data

Testing of learning models

- Simple holdout method
 - Divide the data to the training and test data

- Typically 2/3 training and 1/3 testing

Design cycle

Design cycle

Data

Data may need a lot of:

- Cleaning
- Preprocessing (conversions)

Cleaning:

- Get rid of errors, noise,
- Removal of redundancies

Preprocessing:

- Renaming
- Rescaling (normalization)
- Discretization
- Abstraction
- Aggregation
- New attributes

Data preprocessing

- Renaming (relabeling) categorical values to numbers
 - dangerous in conjunction with some learning methods
 - numbers will impose an order that is not warranted

High
$$\rightarrow$$
 2 True \rightarrow 2
Normal \rightarrow 1 False \rightarrow 1
Low \rightarrow 0 Unknown \rightarrow 0

- Rescaling (normalization): continuous values transformed to some range, typically [-1, 1] or [0,1].
- Discretizations (binning): continuous values to a finite set of discrete values

Data preprocessing

- Abstraction: merge together categorical values
- Aggregation: summary or aggregation operations, such minimum value, maximum value, average etc.
- New attributes:
 - example: obesity-factor = weight/height

Data biases

- Watch out for data biases:
 - Try to understand the data source
 - Make sure the data we make conclusions on are the same as data we used in the analysis
 - It is very easy to derive "unexpected" results when data used for analysis and learning are biased (pre-selected)
- Results (conclusions) derived for biased data do not hold in general !!!

Data biases

Example 1: Risks in pregnancy study

- Sponsored by DARPA at military hospitals
- Study of a large sample of pregnant woman who visited military hospitals
- Conclusion: the factor with the largest impact on reducing risks during pregnancy (statistically significant) is a pregnant woman being single
- a woman that is single → the smallest risk
- What is wrong?

Data

Example 2: Stock market trading (example by Andrew Lo)

- Data on stock performances of companies traded on stock market over past 25 year
- Investment goal: pick a stock to hold long term
- Proposed strategy: invest in a company stock with an IPO corresponding to a Carmichael number
- Evaluation result: excellent return over 25 years
- Where the magic comes from?

Design cycle

Feature selection

• The size (dimensionality) of a sample can be enormous

$$x_i = (x_i^1, x_i^2, ..., x_i^d)$$
 d - very large

- Example: document classification
 - thousands of documents
 - 10,000 different words
 - Features/Inputs: counts of occurrences of different words
 - Overfit threat too many parameters to learn, not enough samples to justify the estimates the parameters of the model
- Feature selection: reduces the feature sets
 - Methods for removing input features

Design cycle

Model selection

What is the right model to learn?

- A prior knowledge helps a lot, but still a lot of guessing
- Initial data analysis and visualization
 - We can make a good guess about the form of the distribution, shape of the function
- Independences and correlations

Overfitting problem

- Take into account the bias and variance of error estimates
- Simpler (more biased) model parameters can be estimated more reliably (smaller variance of estimates)
- Complex model with many parameters parameter estimates are less reliable (large variance of the estimate)

Solutions for overfitting

How to make the learner avoid the overfit?

- Assure sufficient number of samples in the training set
 - May not be possible (small number of examples)
- Hold some data out of the training set = validation set
 - Train (fit) on the training set (w/o data held out);
 - Check for the generalization error on the validation set, choose the model based on the validation set error (random re-sampling validation techniques)
- Regularization (Occam's Razor)
 - Explicit preference towards simple models
 - Penalize for the model complexity (number of parameters)
 in the objective function

Design cycle

Learning

- Learning = optimization problem. Various criteria:
 - Mean square error

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} Error(\mathbf{w}) \qquad Error(\mathbf{w}) = \frac{1}{N} \sum_{i=1...N} (y_i - f(x_i, \mathbf{w}))^2$$

- Maximum likelihood (ML) criterion

$$\Theta^* = \underset{\Theta}{\operatorname{arg max}} P(D \mid \Theta)$$
 $Error(\Theta) = -\log P(D \mid \Theta)$

- Maximum posterior probability (MAP)

$$\Theta^* = \underset{\Theta}{\operatorname{arg max}} P(\Theta \mid D) \qquad P(\Theta \mid D) = \frac{P(D \mid \Theta)P(\Theta)}{P(D)}$$

Learning

Learning = optimization problem

- Optimization problems can be hard to solve. Right choice of a model and an error function makes a difference.
- Parameter optimizations (continuous space)
 - Linear programming, Convex programming
 - Gradient methods: grad. descent, Conjugate gradient
 - Newton-Rhapson (2nd order method)
 - Levenberg-Marquard

Some can be carried **on-line** on a sample by sample basis

- Combinatorial optimizations (over discrete spaces):
 - Hill-climbing
 - Simulated-annealing

Parametric optimizations

- Sometimes can be solved directly but this depends on the objective function and the model
 - Example: squared error criterion for linear regression
- Very often the error function to be optimized is not that nice.

$$Error(\mathbf{w}) = f(\mathbf{w})$$
 $\mathbf{w} = (w_0, w_1, w_2 \dots w_k)$

- a complex function of weights (parameters)

Goal:
$$\mathbf{w}^* = \arg\min_{\mathbf{w}} f(\mathbf{w})$$

decreasing direction

• Example of a possible method: Gradient-descent method Idea: move the weights (free parameters) gradually in the error

Gradient descent method

Descend to the minimum of the function using the gradient information

Change the parameter value of w according to the gradient
$$w \leftarrow w * -\alpha \frac{\partial}{\partial w} Error(w)|_{w^*}$$

Gradient descent method

• New value of the parameter

$$w \leftarrow w * -\alpha \frac{\partial}{\partial w} Error(w)|_{w^*}$$

 $\alpha > 0$ - a learning rate (scales the gradient changes)

Gradient descent method

 To get to the function minimum repeat (iterate) the gradient based update few times

- **Problems:** local optima, saddle points, slow convergence
- More complex optimization techniques use additional information (e.g. second derivatives)

On-line learning (optimization)

Error function looks at all data points at the same time
E.g.
$$Error (\mathbf{w}) = \frac{1}{n} \sum_{i=1,...n} (y_i - f(x_i, \mathbf{w}))^2$$

On-line error - separates the contribution from a data point

$$Error_{\text{ON-LINE}}(\mathbf{w}) = (y_i - f(x_i, \mathbf{w}))^2$$

Example: On-line gradient descent

- **Advantages: 1. simple learning algorithm**
 - 2. no need to store data (on-line data streams)

Design cycle

Evaluation of learning models

- Simple holdout method
 - Divide the data to the training and test data

- Typically 2/3 training and 1/3 testing

Other more complex methods

- Use multiple train/test sets
- Based on various random re-sampling schemes:
 - Random sub-sampling
 - Cross-validation
 - Bootstrap

Random sub-sampling

Repeat a simple holdout method k times

Cross-validation (k-fold)

- Divide data into k
 disjoint groups, test on
 k-th group/train on the
 rest
- Typically 10-fold cross-validation
- Leave one out crossvalidation

(k = size of the data D)

Bootstrap

- The training set of size
 N = size of the data D
- Sampling with the replacement

- What if we want to compare the predictive performance on a classification or a regression problem for two different learning methods?
- Solution: compare the error results on the test data set or the average statistics on the same training/testing data splits
- Answer: the method with better (smaller) testing error gives a better generalization error.
- But we need to use statistics to validate the choice

- Problem: we cannot be 100 % sure about generalization errors
- Solution: test the statistical significance of the result
- Central limit theorem:

Let random variables $X_1, X_2, \dots X_n$ form a random sample from a distribution with mean μ and variance σ , then if the sample n is large, the distribution

$$\sum_{i=1}^{n} X_i \approx N(n\mu, n\sigma^2) \quad \text{or} \quad \frac{1}{n} \sum_{i=1}^{n} X_i \approx N(\mu, \sigma^2 / n)$$

• Sample mean: $\frac{1}{n}\sum_{i=1}^{n}X_{i}$

$$\frac{1}{n} \sum_{i=1}^{n} X_i \approx N(\mu, \sigma^2 / n)$$
 X_i - Is a random variable

Assume:

Regression learner 1 uses function $f_1(\mathbf{x})$ to predict ys **Regression learner 2 uses function** $f_2(\mathbf{x})$ to predict ys

$$Error_{1} = \frac{1}{n} \sum_{i=1}^{n} (y_{i} - f_{1}(\mathbf{x}_{i}))^{2} \quad Error_{2} = \frac{1}{n} \sum_{i=1}^{n} (y_{i} - f_{2}(\mathbf{x}_{i}))^{2}$$

$$\Delta Error = \frac{1}{n} \sum_{i=1}^{n} \left[(y_{i} - f_{1}(\mathbf{x}_{i}))^{2} - (y_{i} - f_{2}(\mathbf{x}_{i}))^{2} \right]$$

$$X_{i} \to (y_{i} - f_{1}(\mathbf{x}_{i}))^{2} - (y_{i} - f_{2}(\mathbf{x}_{i}))^{2}$$

 Two learners are the same in terms of the generalization error when

$$E_{(\mathbf{x},y)}(y - f_1(\mathbf{x}))^2 = E_{(\mathbf{x},y)}(y - f_2(\mathbf{x}))^2$$

$$E_{(\mathbf{x},y)}[(y - f_1(\mathbf{x}))^2 - (y - f_2(\mathbf{x}))^2] = \mu_{diff} = 0$$

• Sample mean (estimate of the last quantity)

$$\Delta Error = \frac{1}{n} \sum_{i=1}^{n} \left[(y_i - f_1(\mathbf{x}_i))^2 - (y_i - f_2(\mathbf{x}_i))^2 \right]$$
$$\Delta Error \approx N(\mu_{diff}, \sigma_{diff}^2 / n)$$

Statistical tests for the mean

- H0 (null hypothesis)
$$\mu_{diff}^{0}$$

- H0 (null hypothesis)
$$\mu_{diff}^{0} = 0$$
- H1 (alternative hypothesis) $\mu_{diff}^{0} \neq 0$

Statistical tests for the mean

- $\ \, \mathbf{H0} \ (\mathbf{null \ hypothesis}) \qquad \qquad \mu_{diff}^{0} = 0 \\ \ \, \mathbf{H1} \ (\mathbf{alternative \ hypothesis}) \qquad \qquad \mu_{diff}^{0} \neq 0$
- · Basic idea:

we use the sample mean and check how probable it is to occur given that the true mean is 0

$$E_{(\mathbf{x},y)}[(y-f_1(\mathbf{x}))^2-(y-f_2(\mathbf{x}))^2]=\mu_{diff}=0$$

$$\Delta Error = \overline{X} = \frac{1}{n} \sum_{i=1}^{n} \left[(y_i - f_1(\mathbf{x}_i))^2 - (y_i - f_2(\mathbf{x}_i))^2 \right]$$

If the probability that $\Delta Error$ comes from the normal distribution with mean 0 is small – we reject the null hypothesis on that probability level

- Statistical tests for the mean
 - H0 (null hypothesis)
 - H1 (alternative hypothesis)

$$\mu_{u_0^{\text{diff}}}^0 = 0$$

• Assume we know standard deviation $\,\sigma_{\scriptscriptstyle diff}$

$$z = \frac{\overline{X} - \mu_{diff}^{0}}{\sigma_{diff}} \sqrt{n} \approx N(0,1) \quad \text{with} \quad P=0.95 \quad z \in [-1.96, 1.96]$$

- Statistical tests for the mean
 - H0 (null hypothesis) $\mu_{diff}^{0} = 0$
- Assume we know standard deviation $\sigma_{\it diff}$

$$z = \frac{\overline{X} - \mu_{diff}^{0}}{\sigma_{diff}} \sqrt{n} \approx N(0,1)$$
 with P=0.95 $z \in [-1.96,1.96]$

• Z-test: If z is outside of the interval – reject the null hypothesis at significance level 5 %

- Statistical tests for the mean
 - H0 (null hypothesis) $\mu_{diff}^{0} = 0$
- Problem: we do not know the standard deviation $\,\sigma_{\scriptscriptstyle diff}$
- Solution: $t = \frac{\overline{X} - \mu_{diff}^{0}}{s_{diff}} \sqrt{n} \approx t - \text{distribution} \quad \text{(Student distribution)}$
 - $s_{diff} = \sqrt{\frac{\sum_{i=1}^{n} (X_i \overline{X})^2}{n-1}}$ Estimate of the standard deviation
- T-test: If t is outside of the tabulated interval reject the null hypothesis at the corresponding significance level