

CSCI 4502/5502 Data Mining

Fall 2020 Lecture 10 (Sep 24)

Reminders

- → Homework 3: due at 9:30am, Th, Sep 24
- → Homework 1&2: graded, check grades in Canvas
- ◆ Temporary 2-week remote instruction: till W Oct 7
- ♦ No new homework this week
 - work on course project proposal

Course Project

- ◆ Hands-on experience with real-world data mining
- ◆ Pick your own project of interest
- ◆ Suggested group size: 3-4, can mix across class section
- ♦ Week 6: proposal; Week 12: checkpoint; Week 16: final

Course Project Proposal

- Introduction: what problem? why this problem?
- ◆ Related work: what has been done already?
- ◆ Proposed work: what do you plan to do?
- ◆ Evaluation: what metrics? how to claim success?
- → Milestones: when to accomplish what?

How do I get started?

- ♦ What's your interest? Who are on your team?
- ◆ Data mining: Different views
 - * Application: e.g., sports, health, election, weather, business, ...
 - ◆ Data: e.g., games/teams/players, COVID-19, Twitter, reviews, ...
 - * Knowledge: frequent patterns, key factors, trends, anomalies, ...
 - ♦ Method: understand, preprocess, manage, model, evaluate

Key Points

- ◆ Start early, talk to people, and keep it evolving
- ◆ Data availability
- Prioritized subtasks
- Existing tools
- ◆ Team coordination, individual contributions

Project Proposal Meetings

- ◆ Availability survey due at 9:30am, Tu Sep 29
- ◆Meeting schedule: Th Oct I to Wed Oct 7
- Meeting with instructor, public to the whole class
- ♦ Presentation: 5~10 minutes per team
- ◆ Discussion & feedback: ~5 minutes

Project Announcement

- ◆ Due at 9:30am, Thursday, Oct I
- ◆ Canvas assignment: Course Project Announcement
- One announcement per team
 - → project title, team members (name, CSCI 4502 or 5502)
 - brief project description,
 - dataset(s) to use, potential tool(s) to use

Project Proposal Slides

- ◆ Due at 9:30am, Thursday, Oct 1
- ◆ Canvas assignment: Course Project Proposal Slides
- ◆ Slides to use for the proposal meetings
 - title, team, introduction, related work
 - → proposed work (data, subtasks), evaluation, milestones

Project Proposal Report

- ◆ Due at 9:30am, Th Oct 8
- ◆ Canvas assignment: Course Project Proposal Report
- *ACM Master Article Template: Word, LaTex, Overleaf
- → Page length: ~3 pages
 - title, team, introduction, related work
 - proposed work (data, subtasks), evaluation, milestones

Review

- ◆ Chapter 6: Mining Frequent Patterns
 - ◆ basic concepts, Apriori algorithm, correlation: lift
 - improve the efficiency of Apriori
 - ◆ FP-growth: grow patterns w/o generating candidates
 - ◆ Correlation metrics: null transaction, imbalance ratio

Chapter 7: Advanced Pattern Mining

Road Map (I)

- Kinds of patterns
 - ◆ set, sequential, structural
- **+**Completeness
 - ◆ all, closed, maximal, constrained, approximate, near-match, top-k
- ◆ Levels of abstraction
 - \bullet e.g., computer \Rightarrow printer; laptop \Rightarrow HP_printer

Road Map (2)

- ◆ Number of data dimensions
 - ♦ computer \Rightarrow printer; (age:30-39, income:42K-48K) \Rightarrow HDTV
- ◆ Types of value
 - ◆ Boolean: presence or absence; quantitative: e.g., age, income
- ◆ Types of rules
 - * association, correlation, gradient

Various Association Rules

- ◆ Single-level, single-dimensional, Boolean value
- ◆ Multi-level association rules
 - support: uniform, reduced, group-based
 - ◆ redundancy filtering: milk ⇒ wheat bread [8%, 70%]; 2% milk ⇒ wheat bread [2%, 72%]
- ◆ Multi-dimensional association rules
- Quantitative association rules

Multi-dimensional Association

- Single-dimensional (intra-dimensional) rules:
 - \bullet buys(X,"milk") \Rightarrow buys(X,"bread")
- → Multi-dimensional rules: ≥2 predicates
 - inter-dimensional (no repeated predicates)
 - → age(X,"19-25") \land occupation(X,"student") \Rightarrow buys (X,"coke")
 - hybrid-dimensional (repeated predicates)
 - → age(X,"19-25") \land buys(X,"popcorn") \Rightarrow buys(X,"coke")

Categorical vs. Quantitative

- **♦** Categorical attributes
 - nominal, finite number of possible values, no ordering among values
 - e.g., occupation, brand, color
- Quantitative attributes
 - numeric, implicit ordering among values
 - e.g., age, income, price

Mining Quantitative Association

- → How numerical attributes (e.g., age, salary) are treated
 - * static discretization: predefined concepts
 - dynamic discretization: data distribution
 - clustering: distance-based association
 - deviation: from normal data
 - e.g., sex = female \Rightarrow wage: mean=\$7/hr (overall mean = \$9/hr)

Constraint-Based Mining

- Automatically find all patterns in a data set
 - Unrealistic! Too many patterns, not focused
- Data mining should be an interactive process
 - user directs what to be mined

- ◆ Constraint-based mining
 - user flexibility: provides constraints on what to be mined
 - system optimization: more efficient mining

Constraints in Data Mining

- Knowledge typeconstraint
- ◆ Data constraint
- Dimension/levelconstraint
- Interestingnessconstraint

- Rule (or pattern)constraint
 - metarules (rule templates)
 - #attributes, attributevalues, etc.

Metarule-Guided Mining

- $ightharpoonup P_1(X,Y)$ ∧ $P_2(X,W)$ ⇒ buys(X, "office sw")
- →age(X, "30-39") \land income(X, "41K-60K") \Rightarrow buys(X, "office sw")
- $P_1 \wedge P_2 \wedge ... \wedge P_a \Rightarrow Q_1 \wedge Q_2 \wedge ... \wedge Q_b$
 - \uparrow n = a + b, find all n-predicate sets L_n
 - ◆ compute the support of all a-predicate subsets of L_n
 - compute the confidence of rules

Anti-Monotonicity

- Anti-monotonicity
 - → if itemset S violates the constraint, so does any of its superset
- **♦** Example
 - \Rightarrow sum(S.price) \leq 100: yes
 - \Rightarrow sum(S.price) \geq 100: no
 - → range(S.profit) \le 15: yes