Accessing Databases with SQL Magic

To communicate with SQL Databases from within a JupyterLab notebook, I use the SQL "magic" provided by the ipython-sql extension. Below, I'll use the *load_ext* magic to load the ipython-sql extension. The following required modules are pre-installed in the Skills Network Labs environment. However if you run this notebook commands in a different Jupyter environment (e.g. Watson Studio or Ananconda) you may need to install these libraries by removing the # sign before !pip in the code cell below.

```
# These libraries are pre-installed in SN Labs. If running in another environment please
uncomment lines below to install them:
#!pip install --force-reinstall ibm db==3.1.0 ibm db sa==0.3.3
# Ensure we don't load ext with sqlalchemy>=1.4 (incompadible)
#!pip uninstall sqlalchemy==1.4 -y && pip install sqlalchemy==1.3.24
#!pip install ipython-sql
%load ext sql
# Now we have access to SQL magic.
# Next, I connect to a Db2 database by retrieving my credentials to access my Db2 database. ¶
%sql
ibm_db_sa://bcy01016:pPV11zoSkjmBw2pU@19af6446-6171-4641-8aba-9dcff8e1b6ff.c1ogj3s
d0tgtu0lqde00.databases.appdomain.cloud:30699/bludb?security=SSL
# Output:
'Connected: bcy01016@bludb'
# Create a table and fill it with some test data
%%sql
CREATE TABLE INTERNATIONAL STUDENT TEST SCORES (
       country VARCHAR(50),
       first name VARCHAR(50),
       last name VARCHAR(50),
       test score INT
);
INSERT INTO INTERNATIONAL_STUDENT_TEST_SCORES (country, first_name, last_name,
test score)
VALUES
('United States', 'Marshall', 'Bernadot', 54),
('Ghana', 'Celinda', 'Malkin', 51),
('Ukraine', 'Guillermo', 'Furze', 53),
('Greece', 'Aharon', 'Tunnow', 48),
('Russia', 'Bail', 'Goodwin', 46),
('Poland', 'Cole', 'Winteringham', 49),
```

```
('Sweden', 'Emlyn', 'Erricker', 55),
('Russia', 'Cathee', 'Sivewright', 49),
('China', 'Barny', 'Ingerson', 57),
('Uganda', 'Sharla', 'Papaccio', 55),
('China', 'Stella', 'Youens', 51),
('Poland', 'Julio', 'Buesden', 48),
('United States', 'Tiffie', 'Cosely', 58),
('Poland', 'Auroora', 'Stiffell', 45),
('China', 'Clarita', 'Huet', 52),
('Poland', 'Shannon', 'Goulden', 45),
('Philippines', 'Emylee', 'Privost', 50),
('France', 'Madelina', 'Burk', 49),
('China', 'Saunderson', 'Root', 58),
('Indonesia', 'Bo', 'Waring', 55),
('China', 'Hollis', 'Domotor', 45),
('Russia', 'Robbie', 'Collip', 46),
('Philippines', 'Davon', 'Donisi', 46),
('China', 'Cristabel', 'Radeliffe', 48),
('China', 'Wallis', 'Bartleet', 58),
('Moldova', 'Arleen', 'Stailey', 38),
('Ireland', 'Mendel', 'Grumble', 58),
('China', 'Sallyann', 'Exley', 51),
('Mexico', 'Kain', 'Swaite', 46),
('Indonesia', 'Alonso', 'Bulteel', 45),
('Armenia', 'Anatol', 'Tankus', 51),
('Indonesia', 'Coralyn', 'Dawkins', 48),
('China', 'Deanne', 'Edwinson', 45),
('China', 'Georgiana', 'Epple', 51),
('Portugal', 'Bartlet', 'Breese', 56),
('Azerbaijan', 'Idalina', 'Lukash', 50),
('France', 'Livvie', 'Flory', 54),
('Malaysia', 'Nonie', 'Borit', 48),
('Indonesia', 'Clio', 'Mugg', 47),
('Brazil', 'Westley', 'Measor', 48),
('Philippines', 'Katrinka', 'Sibbert', 51),
('Poland', 'Valentia', 'Mounch', 50),
('Norway', 'Sheilah', 'Hedditch', 53),
('Papua New Guinea', 'Itch', 'Jubb', 50),
('Latvia', 'Stesha', 'Garnson', 53),
('Canada', 'Cristionna', 'Wadmore', 46),
('China', 'Lianna', 'Gatward', 43),
('Guatemala', 'Tanney', 'Vials', 48),
('France', 'Alma', 'Zavittieri', 44),
('China', 'Alvira', 'Tamas', 50),
```

```
('United States', 'Shanon', 'Peres', 45),
('Sweden', 'Maisey', 'Lynas', 53),
('Indonesia', 'Kip', 'Hothersall', 46),
('China', 'Cash', 'Landis', 48),
('Panama', 'Kennith', 'Digance', 45),
('China', 'Ulberto', 'Riggeard', 48),
('Switzerland', 'Judy', 'Gilligan', 49),
('Philippines', 'Tod', 'Trevaskus', 52),
('Brazil', 'Herold', 'Heggs', 44),
('Latvia', 'Verney', 'Note', 50),
('Poland', 'Temp', 'Ribey', 50),
('China', 'Conroy', 'Egdal', 48),
('Japan', 'Gabie', 'Alessandone', 47),
('Ukraine', 'Devlen', 'Chaperlin', 54),
('France', 'Babbette', 'Turner', 51),
('Czech Republic', 'Virgil', 'Scotney', 52),
('Tajikistan', 'Zorina', 'Bedow', 49),
('China', 'Aidan', 'Rudeyeard', 50),
('Ireland', 'Saunder', 'MacLice', 48),
('France', 'Waly', 'Brunstan', 53),
('China', 'Gisele', 'Enns', 52),
('Peru', 'Mina', 'Winchester', 48),
('Japan', 'Torie', 'MacShirrie', 50),
('Russia', 'Benjamen', 'Kenford', 51),
('China', 'Etan', 'Burn', 53),
('Russia', 'Merralee', 'Chaperlin', 38),
('Indonesia', 'Lanny', 'Malam', 49),
('Canada', 'Wilhelm', 'Deeprose', 54),
('Czech Republic', 'Lari', 'Hillhouse', 48),
('China', 'Ossie', 'Woodley', 52),
('Macedonia', 'April', 'Tyer', 50),
('Vietnam', 'Madelon', 'Dansey', 53),
('Ukraine', 'Korella', 'McNamee', 52),
('Jamaica', 'Linnea', 'Cannam', 43),
('China', 'Mart', 'Coling', 52),
('Indonesia', 'Marna', 'Causbey', 47),
('China', 'Berni', 'Daintier', 55),
('Poland', 'Cynthia', 'Hassell', 49),
('Canada', 'Carma', 'Schule', 49),
('Indonesia', 'Malia', 'Blight', 48),
('China', 'Paulo', 'Seivertsen', 47),
('Niger', 'Kaylee', 'Hearley', 54),
('Japan', 'Maure', 'Jandak', 46),
('Argentina', 'Foss', 'Feavers', 45),
```

('Venezuela', 'Ron', 'Leggitt', 60), ('Russia', 'Flint', 'Gokes', 40), ('China', 'Linet', 'Conelly', 52), ('Philippines', 'Nikolas', 'Birtwell', 57), ('Australia', 'Eduard', 'Leipelt', 53)

Explore the data table SELECT country, first_name, last_name, test_score FROM INTERNATIONAL_STUDENT_TEST_SCORES;

Output:

, ,	output.			
	country	first_name	last_name	test_score
	United States	Marshall	Bernadot	54
	Ghana	Celinda	Malkin	51
	Ukraine	Guillermo	Furze	53
	Greece	Aharon	Tunnow	48
	Russia	Bail	Goodwin	46
	Poland	Cole	Winteringham	49
	Sweden	Emlyn	Erricker	55
	Russia	Cathee	Sivewright	49
	China	Barny	Ingerson	57
	Uganda	Sharla	Papaccio	55
	China	Stella	Youens	51
	Poland	Julio	Buesden	48
	United States	Tiffie	Cosely	58
	Poland	Auroora	Stiffell	45
	China	Clarita	Huet	52
	Poland	Shannon	Goulden	45
	Philippines	Emylee	Privost	50
	France	Madelina	Burk	49
	China	Saunderson	Root	58
	Indonesia	Во	Waring	55
	China	Hollis	Domotor	45
	Russia	Robbie	Collip	46
	Philippines	Davon	Donisi	46
	China	Cristabel	Radeliffe	48
	China	Wallis	Bartleet	58
	Moldova	Arleen	Stailey	38
	Ireland	Mendel	Grumble	58
	China	Sallyann	Exley	51
	Mexico	Kain	Swaite	46
	Indonesia	Alonso	Bulteel	45
	Armenia	Anatol	Tankus	51
	Indonesia	Coralyn	Dawkins	48
	China	Deanne	Edwinson	45
	China			51
		Georgiana	Epple	
	Portugal	Bartlet	Breese	56
	Azerbaijan	Idalina	Lukash	50
	France	Livvie	Flory	54
	Malaysia	Nonie	Borit	48
	Indonesia	Clio	Mugg	47
	Brazil	Westley	Measor	48
	Philippines	Katrinka	Sibbert	51
	Poland	Valentia	Mounch	50
			Hedditch	
	Norway	Sheilah		53
P	Papua New Guinea	Itch	Jubb	50
	Latvia	Stesha	Garnson	53
	Canada	Cristionna	Wadmore	46

I have a python variable country with a value of "Canada". I use this variable in a SQL query to find all the rows of students from Canada.

country = "Canada"

%sql select * from INTERNATIONAL_STUDENT_TEST_SCORES where country = :country

Output:

country	first_name	last_name	test_score
Canada	Cristionna	Wadmore	46
Canada	Wilhelm	Deeprose	54
Canada	Carma	Schule	49

I use an SQL query to retrieve the distribution of test scores (i.e. how many students got each score). I assign the result of this query to the python variable test_score_distribution. test_score_distribution = %sql SELECT test_score as "Test Score", count(*) as "Frequency" from INTERNATIONAL_STUDENT_TEST_SCORES GROUP BY test_score; test_score_distribution

Output:

Test Score	Frequency	
38	2	
40	1	
43	2	
44	2	
45	8	
46	7	
47	4	
48	14	
49	8	
50	10	
51	8	
52	8	
53	8	
54	5	
55	4	
56	1	
57	2	
58	4	
60	1	

Convert the SQL query result to a pandas dataframe. Then, plot the test score distribution. dataframe = test_score_distribution.DataFrame()

%matplotlib inline

uncomment the following line if you get an module error saying seaborn not found # !pip install seaborn==0.9.0 import seaborn

plot = seaborn.barplot(x='Test Score',y='Frequency', data=dataframe)

Output:

Analysis: The plot shows that the most common test score was a score of 48 points, and most of the test scores lie in the range between 45 and 53 points.