Physics 2311 – Physics I, Week 4 Dr. J. Pinkney

Outline for Day W4,D1

Finish up 1D kinematics: examples, free fall 2D kinematics (Ch. 3)

Vectors

2D kinematics with vectors Projectile Motion

Homework Ch. 3 P. 1,3,6,7,10,11,19,20,23,24, 32,33,37,38,39 Due Fri.

Notes: Lab this week: "Acceleration of Gravity" Quiz 2 on Friday (1D motion, vectors). See online "Week 3-5" practice quiz.

Motion in 2D.

Top: position vector in 2-D.

Bottom: change of a position vector \mathbf{r} gives a displacement $\Delta \mathbf{r}$.

Motion in 2-D Definitions

Definitions ...

(Most of these are very similar to the Ch. 2 equations)

Position vector:
$$\vec{r} = x \hat{i} + y \hat{j} + z \hat{k}$$

Displacement: $\Delta \vec{r} = \vec{r}_f - \vec{r}_i$

$$\Delta \vec{r} = \vec{r}_f - \vec{r}_i$$

$$\vec{v}_{avg} = \frac{\Delta \vec{r}}{\Delta t}$$

Average velocity: $|\vec{\mathbf{v}}_{avg} = \frac{\Delta \vec{r}}{\Delta t}|$. Instantaneous velocity: $|\vec{\mathbf{v}}_{inst} = \frac{d\vec{r}}{dt}|$

$$\vec{v}_{inst} = \frac{d\vec{r}}{dt}$$

$$\vec{a}_{avg} = \frac{\Delta \vec{v}}{\Delta t}$$

Average acceleration: $\vec{a}_{avg} = \frac{\Delta \vec{v}}{\Delta t}$. Instantaneous acceleration: $\vec{a}_{inst} = \frac{d\vec{v}}{dt}$

$$\vec{a}_{inst} = \frac{d\vec{v}}{dt}$$

Equations of Uniform acceleration

Final velocity $|\vec{v}_f = \vec{v}_i + \vec{a} t|$

Average Velocity
$$\vec{v}_{avg} = \frac{\vec{v}_i + \vec{v}_f}{2}$$

Position as function of time: $\vec{r}_f = \vec{r}_i + \vec{v}_{avg}t$

$$\vec{r}_f = \vec{r}_i + \vec{v}_{avg}t$$

Position as function of time:
$$\vec{r}_f = \vec{r}_i + \vec{v}_i t + \frac{1}{2} \vec{a} t^2$$

Velocity change related to position change: $\vec{v}_f \cdot \vec{v}_f - \vec{v}_i \cdot \vec{v}_i = 2 \vec{a} \cdot (\vec{r}_f - \vec{r}_i)$

$$\vec{\mathbf{v}}_f \cdot \vec{\mathbf{v}}_f - \vec{\mathbf{v}}_i \cdot \vec{\mathbf{v}}_i = 2 \vec{a} \cdot (\vec{r}_f - \vec{r}_i)$$

Velocity components in 2-D.

Notice that this motion is all in a straight line and so could be expressed with 1 dimension (using a rotated axis).

Top: Motion in 1D Bottom: Motion in 2D.

Motion in 1D.

The sign of acceleration and velocity is used to indicate the direction of these vectors.

Motion in 2 dimensions.

Uniform downward acceleration leads to

parabolic trajectories ...

"Projectile Motion".

Notice that 2 initial angles lead to the same final range, except 45 degrees.

$$R = \frac{v_0^2 \sin 2\theta}{g}$$

PHYS 2311 Motion in 2 dimensions.

Actual trajectories: parabolas distorted by air resistance (drag).

Motion in 2 dimensions. Projectile Motion

Trajectories are specified with an initial position, velocity, inclination angle (or altitude), and acceleration.

Motion in 2 dimensions. Projectile Motion

Trajectories: the position vector (red) is a sum of 3 vectors!

$$\vec{r}(t) = \vec{r}_i + \vec{v}_i t + \frac{1}{2} \vec{a} t^2$$

Motion in 2 dimensions. Projectile Motion

Trajectories: the velocity vector is a sum of 2 vectors.

$$\vec{v}(t) = \vec{v}_0 + \vec{a}t$$
 or $\vec{v}(t) = v_{x,0} \hat{i} + v_y \hat{j}$

Motion in 2-D Projectile Motion formulas

Time to reach max height: $t_{max} = \frac{v_i \sin \theta_i}{g}$ (v_i is the magnitude of the initial velocity)

Maximum height: $h_{max} = \frac{v_i^2 \sin^2 \theta}{2g}$

Range: $R = \frac{v_i^2 \sin 2\theta}{g}$