Pattern Detection in Time Series

01	02	03
Introduction	Data and Objectif	Problematic
04	05	06
New method	Results	Conclusion

O1 Introduction

AIXPERT

- Luxembourgish company founded in 1970
- Global leader in steel industry
- Smart and environmental solutions

- Software developed by Datathings
- ML models without specialized knowledge
- Regression, classification and pattern detection

O2 Data and Objectif

Data Presentation

- 4 time series, each corresponding to a role in a section mill
- The values correspond to the rotation speed of a role at each timestep
- Composed of different types of patterns: from 2 to 5 picks

Objectif: Maximise pattern detections without making wrong detections

03 Problematic when using AIXPert

Limitations of AIXPert

- Limited number of distance measures:
 - Euclidean Distance
 - Symbolic Aggregate Approximation (SAX)

- Threshold too low → Wrong detections

- Threshold too high → Missing detections

- Small changes can have a big impact

Threshold = 96%

O4 New method

Dynamic Time Warping

- Algorithm for measuring similarity between two time series

- Main advantages:
 - Time series can be of different lengths
 - Robust in change of time range

- Main disadvantage:
 - Complexity of O(n*m)
 - Euclidean Distance: O(n)

DTW Algorithm

1	0	1		2	2	3	
0	 					 	
1							
2						 	
3					 		
5					 		İ
5							
5						 	
6	 		 	 	 	 	

+	+	 			 	+	++
	0	1	1	2	2	3	5
0	0	inf	inf	inf	inf	inf	inf
1	inf						
2	' inf +						
3	inf	•					
5	' inf +	•					
	inf	I					
5	inf						
6	inf 	•			 		
•	•				•		

$$M[i,j] = |A[i] - B[j]| + min(M[i-1,j-1], M[i-1,j], M[i,j-1])$$

	0	1	 1	2	2	3	5
0	0	inf	 inf 	inf	inf	inf	inf
1	inf	0	0	1	2	4	8
2	inf	1		0	0	1	4
3	inf	3	3 	1	1 1	0	2
	inf	7	7	4	4	2	0
	inf	11	11	7	7	4	0
	inf	15	15	10	10	6	0
6	inf	20	20 	14	14	9	1

O5.1 Results Single Pattern

Problem: Amplitude of a signal has too much impact in making detections

Solution: comparing patterns locally

1. Adjusting by mean: Z = X - mean(X)

2. Normalization: $Z = X - \min(X) / \max(X) - \min(X)$

3. Standardization: Z = X - mean(X) / std(X)

→ Best results with standardization

DTW with Standardization

2 wrong detections

Euclidean Distance with

1 wrong detection

Detecting a 2-Picks Pattern - Euclidean

DTW: 9/12 good detections

Euclidean Distance: 12/12 good detections

O5.2 Results Multiple Patterns

Multiple Patterns - DTW

None of the 5-Picks patterns have been detected

Multiple Patterns - Euclidean Distance

Only 1 wrong detection

Analysis

- Global detections:
 - In most cases, same results for DTW and ED
 - Neither DTW nor ED very good when big differences in amplitude

- Local detections using standardization:
 - o ED equal or better than DTW in nearly every test
 - Big difference in computation time:
 - 1s vs. 3min for single pattern
 - 10s vs. 15min for multiple patterns

O6 Conclusion

Conclusion

- Euclidean Distance with Standardization → Best results
- Low computation time
 - → Should definitely be implemented in AIXPert

- In most cases, DTW worse than Euclidean Distance
- High computation Time
 - → Not helpful in this testcase
 - → Tests on another testcase may provide new insights

Thank you!