

Worm Club Journal Club

Joey Doll August 1, 2011

Automated on-chip rapid microscopy, phenotyping and sorting of *C. elegans*

Kwanghun Chung^{1,3}, Matthew M Crane^{2,3} & Hang Lu^{1,2}

NATURE METHODS | VOL.5 NO.7 | JULY 2008 | 637

Noncontact microrheology at acoustic frequencies using frequency-modulated atomic force microscopy

Núria Gavara & Richard S Chadwick

650 | VOL.7 NO.8 | AUGUST 2010 | NATURE METHODS

FACS for worms

Sort based upon complex reporter expression patterns.

Two layer PDMS device

- worm layer
- valve/cooling layer

Important features...

- simple loading system
- reproducible worm placement
- worm cooling (vs. drugs/clamp)
- works on any microscope
- all features >20um

900 worms/hour (epi) 150 worms/hour (confocal)

Frame 1: red Wait 270 msec Frame 2: green

Mechanical clamp

4C cooling

Confocal z-stack to determine number of AWC neurons expressing pstr-2-gpf.

Measure soft material mechanics (10-200 kPa) based upon hydrodynamic forces on an AFM cantilever.

Developed at NIDCD lab to measure tectorial and basilar membrane mechanics at acoustic frequencies.

- Measure resonant frequency (90 degree phase) as a function of sample-bead gap.
- The stiffness of the squeezed film depends on the sample mechanics, and affects freq.

Table 1 | Viscoelastic properties of the tectorial membrane

Location	E (kPa)	$\mu_{ m eff}$ (Pa×s)	<i>G</i> ′ (kPa)	<i>G"</i> (kPa)	Loss tangent (G"/G')
Apex	3.3 ± 2.3	0.007 ± 0.006	1.1 ± 0.8	1.3 ± 1.1	1.2 ± 1.9
Middle	5.7 ± 3.3	$\textbf{0.01} \pm \textbf{0.008}$	1.9 ± 1.1	1.8 ± 1.5	0.9 ± 1.3
Base	14 ± 16	$\textbf{0.03} \pm \textbf{0.04}$	4.7 ± 5.3	$\textbf{5.6} \pm \textbf{7.4}$	$\textbf{1.2} \pm \textbf{2.9}$

Data are mean \pm s.e.m. (n = 4). One-way ANOVA reported significant differences in E (P = 0.006) and $\mu_{\rm eff}$ (P = 0.007) along the length of the cochlea.

