Motion of an object on an inclined Plane

Consider an object sliding on an Inclined plane (without friction)

Choice of Coordinate system

we are "used" to this coordinate system orientation

when motion is constrained to move in a line, choose one coordinate to be in that direction.

acceleration of object

à = { projection of the free Fall acceleration (vector in the direction of incline, down incline)

$$a_x = |\vec{a}| \sin \theta$$
 $|\vec{a}| = g$
 $a_x = g \sin \theta$

When
$$\theta = 0$$
 No $Q_x = g \sin 0 = 0$ Incline

when
$$0=90$$
 Free fall $0x=9\sin 90=9$ constraint

Given

$$\chi_0 = 0 \text{ m}$$
 $\chi_0 = 0 \text{ m}$
 $\chi_0 = 0 \text{ m/s}$
 $\chi_0 = 0 \text{ m/s}$

$$\Omega_{\chi} = g \sin \theta = (9.8 \, \text{m/s}^2) \left(\frac{170 \, \text{m}}{360 \, \text{m}}\right)$$
 $\Omega_{\chi} = 4.6 \, \text{m/s}^2$

This is linear motion with constant acceleration

Thus
$$\left(\sqrt{x_f}\right)^2 = \left(\sqrt{x_i}\right)^2 + 2\alpha_x \Delta x$$

$$V_{XF} = \sqrt{(v_{Xi})^2 + 2 \alpha_X \Delta X}$$

$$= \sqrt{0^2 + 2(4.6 \text{ m/s})(360 \text{ m})}$$

$$= 58 \text{ m/s}$$

= V 02+2(4.6m/s)(360m) on The speed at the bottom is 58 m/s

Also
$$x_f = x_i + y_{xi} t_f + \frac{1}{2} a_x t_f$$

Since $x_i = 0$ $y_{xi} = 0$ $x_f = \frac{1}{2} a_x t_f$
or $t_f = \sqrt{\frac{2x_f}{a_x}}$
Thus $t_f = \sqrt{\frac{2(360 \text{ m})}{4.6 \text{ m/s}^2}} = 13.5$

on the time to get to the bottom is 13 seconds