

Programación dinámica

Alejandro Anzola Ávila 2024-2

Algoritmos y Estructuras de Datos - Grupo 4

Problema de rod-cutting

Formulación

Dada una vara de longitud n y una tabla de precios p_i para $i=1,2,\ldots,n$, determine la máxima ganancia r_n obtenida de cortar la vara y vender las partes.

longitud i	1	2	3	4	5	6	7	8	9	10
$precio p_i$	1	5	8	9	10	17	17	20	24	30

1

Diseño

Existen 2^{n-1} maneras de cortar una vara de longitud n, podemos optar por cortar o no cortar, a una distancia i desde el extremo izquierdo.

Para una vara de longitud n=4, tenemos $2^{n-1}=2^{4-1}=2^3=8$ maneras de cortar una vara.

Diseño: Notación

Denotemos la descomposición de la vara como:

$$n = i_1 + i_2 + \dots + i_k$$

Para cortes en la longitud i_1, i_2, \dots, i_k respectivamente, donde $1 \le k \le n$.

Ejemplo: 7=2+2+3, indica tres cortes: dos piezas de 2 unidades de longitud, y una pieza de longitud 3.

3

Para $n=i_1+i_2+\cdots+i_k$ si consideramos a r_n como la maxima ganancia, tenemos:

$$r_n = p_{i_1} + p_{i_2} + \dots + p_{i_k}$$

longitud i										
$\overline{}$ precio p_i	1	5	8	9	10	17	17	20	24	30

Para este ejemplo, encontremos los valores óptimos de r_i

$$egin{array}{lll} r_1 &=& 1 & {
m de \ la \ soluci\'on} & 1 = 1 \ ({
m sin \ cortes}) \ r_2 &=& 5 & {
m de \ la \ soluci\'on} & 2 = 2 \ ({
m sin \ cortes}) \ r_3 &=& 8 & {
m de \ la \ soluci\'on} & 3 = 3 \ ({
m sin \ cortes}) \ r_4 &=& 10 & {
m de \ la \ soluci\'on} & 4 = 2 + 2 \ r_5 &=& 13 & {
m de \ la \ soluci\'on} & 5 = 2 + 3 \ r_6 &=& 17 & {
m de \ la \ soluci\'on} & 6 = 6 \ ({
m sin \ cortes}) \ r_7 &=& 18 & {
m de \ la \ soluci\'on} & 7 = 1 + 6 \ \'o \ 7 = 2 + 2 + 3 \ r_8 &=& 22 & {
m de \ la \ soluci\'on} & 8 = 2 + 6 \ r_9 &=& 25 & {
m de \ la \ soluci\'on} & 9 = 3 + 6 \ r_{10} &=& 30 & {
m de \ la \ soluci\'on} & 10 = 10 \ ({
m sin \ cortes}) \ \end{array}$$

Mas generalmente tenemos que

$$r_n = \max(p_n, r_1 + r_{n-1}, r_2 + r_{n-2}, \dots, r_{n-1} + r_1)$$

Mas generalmente tenemos que

$$r_n = \max(p_n, r_1 + r_{n-1}, r_2 + r_{n-2}, \dots, r_{n-1} + r_1)$$

¿Existe una mejor forma de representar esto?

Podemos optar por simplificar el problema a solo resolver un subproblema:

Para un precio fijo p_i , y caso recursivo de r_{n-i} .

Podemos optar por simplificar el problema a solo resolver un subproblema:

Para un precio fijo p_i , y caso recursivo de r_{n-i} .

¿Que estrategia de solución es esta?

$$r_n = \begin{cases} 0 & \text{si } n = 0 \\ \max_{1 \le i \le n} (p_i + r_{n-i}) & \text{si } n > 0 \end{cases}$$

$$r_n = \begin{cases} 0 & \text{si } n = 0 \\ \max_{1 \le i \le n} (p_i + r_{n-i}) & \text{si } n > 0 \end{cases}$$

Solo computar esto para n=40 nos tomaría varios minutos encontrar la solución, ya que debemos verificar las 2^{n-1} posibilidades.

De formula a pseudo-código

$$r_n = \begin{cases} 0 & \text{si } n = 0 \\ \max_{1 \le i \le n} (p_i + r_{n-i}) & \text{si } n > 0 \end{cases}$$

```
\begin{array}{ll} \operatorname{CUT-ROD}(p,n) \\ 1 & \text{if } n == 0 \\ 2 & \text{return } 0 \\ 3 & q = -\infty \\ 4 & \text{for } i = 1 \text{ to } n \\ 5 & q = \max(q,p[i] + \operatorname{CUT-ROD}(p,n-i)) \\ 6 & \text{return } q \end{array}
```

CUT-ROD computa la máxima ganancia para una varilla de longitud n, con los precios p[1..N], $n \leq N$.

De formula a pseudo-código

$$r_n = \begin{cases} 0 & \text{si } n = 0 \\ \max_{1 \le i \le n} (p_i + r_{n-i}) & \text{si } n > 0 \end{cases}$$

```
CUT-ROD(p,n)

1 if n=0

2 return 0

3 q=-\infty

4 for i=1 to n

5 q=\max(q,p[i]+\text{CUT-ROD}(p,n-i))

CUT-ROD computa la máxima ganancia para una varilla de longitud n, con los precios p[1..N], n \leq N.
```

9

Árbol de recursion para Cut-Rod

 $\mathrm{Para}\; n=4$

Programación dinámica

Programación dinámica

La programación dinámica (*programación dinámica*) consiste en guardar respuestas de las soluciones ya encontradas, de manera que el computo de cada sub-problema se resuelva una sola vez.

Sacrificamos espacio para ahorrar en tiempo de ejecución.

Con esto podemos convertir soluciones de tiempo *exponencial* a soluciones de tiempo *polinomial*.

$$\Theta(b^n) \to \Theta(n^c)$$

Formas de implementar programación dinámica

Existen dos maneras de implementar programación dinámica:

- 1. Top-down con memorización
- 2. Bottom-up (tabulación)

Top-down con memorización

- 1. Se verifica si el sub-problema ya fue resuelto
- 2. Si es así, retornamos el valor guardado
- 3. Sino, se computa la solución del sub-problema normalmente, y se guarda el resultado

Podemos aplicar esta solución con Fibonacci.

$$f(n) = \begin{cases} 1 & \text{si } n = 0 \\ 1 & \text{si } n = 1 \\ f(n-1) + f(n-2) & \text{si } n > 1 \end{cases}$$

Recursivo

```
\begin{aligned} & \text{FiB}(n) \\ & 1 & \text{if } n == 0 \lor n == 1 \\ & 2 & \text{return 1} \\ & 3 & \text{return } \text{FiB}(n-1) + \text{FiB}(n-2) \end{aligned}
```

Podemos aplicar esta solución con Fibonacci.

$$f(n) = \begin{cases} 1 & \text{si } n = 0 \\ 1 & \text{si } n = 1 \\ f(n-1) + f(n-2) & \text{si } n > 1 \end{cases}$$

Recursivo con memorización

Recursivo

FIB(
$$n$$
)

1 if $n == 0 \lor n == 1$

2 return 1

 $\begin{array}{lll} \text{if } n == 0 \lor n == 1 & 2 & \text{return } m[n] \\ & \text{return } 1 & 3 & \text{if } n == 0 \lor n == 1 \\ & \text{return } 1 & \text{return } 1 \\ & \text{return } 1 & \text{fib}(n-1) + \text{Fib}(n-2) & 5 & m[n] = \text{Fib}(m,n-1) + \text{Fib}(m,n-2) \end{array}$

FIB(m, n)

- 1 if $m[n] \neq -\infty$

- 6 return m[n]

Bottom-up (tabulación)

Consiste construir la solución desde el problema más pequeño, hasta resolver el problema completo.

Análogo a la estrategia incremental.

Hacemos en esencia una conversion de una solución recursiva a una solución iterativa.

Volvamos a FIBONACCI

$$f(n) = \begin{cases} 1 & \text{si } n = 0 \\ 1 & \text{si } n = 1 \\ f(n-1) + f(n-2) & \text{si } n > 1 \end{cases}$$

 $\mathsf{PRE}\text{-}\mathsf{CALCULATE}\text{-}\mathsf{FIBONACCI}(m,n)$

$$1 \quad m[0] = 1 \qquad \qquad \mathsf{FIB}(m,n)$$

$$2 \quad m[1] = 1$$

$$2 \quad \text{form } n = 1$$

$$1 \quad \text{return } m[n]$$

3 for
$$i=2$$
 to n
4 $m[i]=m[i-1]+m[i-2]$

¿Complejidad Θ de cada uno?

Top-down con Cut-Rod

```
MEMOIZED-CUT-ROD(p, n)

1 let r[0..n] be a new array

2 for i = 0 to n

3 r[i] = -\infty

4 return MEMOIZED-CUT-ROD-AUX(p, n, r)
```

Top-down con Cut-Rod

```
MEMOIZED-CUT-ROD(p, n)
   let r[0..n] be a new array
  for i = 0 to n
3
        r[i] = -\infty
   return MEMOIZED-CUT-ROD-AUX(p, n, r)
MEMOIZED-CUT-ROD-AUX(p, n, r)
   if r[n] \geq 0
       return r[n]
3 if n == 0
       a = 0
   else q = -\infty
       for i = 1 to n
6
           q = \max(q, p[i] + \text{MEMOIZED-CUT-ROD-AUX}(p, n - i, r))
   return q
```

Bottom-up con Cut-Rod

BOTTOM-UP-CUT-ROD
$$(p,n)$$

1 let $r[0..n]$ be a new array

2 $r[0] = 0$

3 for $j = 1$ to n

4 $q = -\infty$

5 for $i = 1$ to j

6 $q = \max(q, p[i] + r[j - i])$

7 $r[j] = q$

8 return $r[n]$

Usa el orden natural de los subproblemas:

"Un problema de tamaño i es \max pequeño que un subproblema de tamaño j si i < j"

Entonces los problemas se resuelven en tamaños de $j=0,1,\ldots,n$ en ese orden

Reconstruyendo una solución

Usualmente las soluciones de *programación dinámica* nos dan el valor de la mejor solución. Pero no nos da cual fue la solución.

Reconstruyendo una solución

Usualmente las soluciones de *programación dinámica* nos dan el valor de la mejor solución. Pero no nos da cual fue la solución.

 Para top-down podemos plantear que la recursion de como respuesta la solución como parte de la respuesta.

Reconstruyendo una solución

Usualmente las soluciones de *programación dinámica* nos dan el valor de la mejor solución. Pero no nos da cual fue la solución.

- Para top-down podemos plantear que la recursion de como respuesta la solución como parte de la respuesta.
- En bottom-up (tabulación) debemos reconstruirla.

Elementos de la programación dinámica

¿Como podemos reconocer que un problema se puede resolver con programación dinámica?

Elementos de la programación dinámica

¿Como podemos reconocer que un problema se puede resolver con programación dinámica? Existen dos ingredientes que nos puede indicar que es programación dinámica:

- 1. Subestructura óptima
- 2. Subproblemas superpuestos

Subestructura óptima

Un problema exhibe una *subestructura óptima* si una solución optima al problema contiene dentro soluciones optimas a subproblemas.

Subestructura óptima

Un problema exhibe una subestructura óptima si una solución optima al problema contiene dentro soluciones optimas a subproblemas.

1. La solución al problema consiste en tomar una decisión

Subestructura óptima

Un problema exhibe una *subestructura óptima* si una solución optima al problema contiene dentro soluciones optimas a subproblemas.

- 1. La solución al problema consiste en tomar una decisión
- 2. Para un problema dado, *existe* la decisión que nos llevará a una solución óptima.

Subestructura óptima

Un problema exhibe una *subestructura óptima* si una solución optima al problema contiene dentro soluciones optimas a subproblemas.

- 1. La solución al problema consiste en tomar una decisión
- 2. Para un problema dado, *existe* la decisión que nos llevará a una solución óptima.
- 3. Entre otras consideraciones ...

En el problema de Cut-Rod una solución optima para cortar una varilla de tamaño n, usamos un solo subproblema de tamaño n-i, pero debemos considerar n decisiones sobre i para determinar la solución optima.

Subproblemas superpuestos

"Para un algoritmo recursivo, el problema resuelve los mismos subproblemas una y otra vez, en vez de siempre generar nuevos subproblemas"

Sub-secuencia común más larga

Formulación de secuencia

Definición de subsecuencia

Una subsecuencia de una secuencia es solo la secuencia original con cero o más elementos eliminados.

Formulación de secuencia

Definición formal de subsecuencia

Dada una secuencia $X=\langle x_1,\ldots,x_m\rangle$, otra secuencia $Z=\langle z_1,\ldots,z_k\rangle$ es subsecuencia de X si existe una secuencia estrictamente creciente $\langle i_1,i_2,\ldots,i_k\rangle$ de indices de X tales que para todo $j=1,2,\ldots k$, tenemos $x_{i_j}=z_j$.

Ejemplo: $\begin{pmatrix} 1 & 3 & 4 & 5 & 6 \end{pmatrix}$

 $Z=\langle B,C,D,B\rangle$ es subsecuencia de $X=\langle A,B,C,B,D,A,B\rangle$ con indices $\langle 2,3,5,7\rangle.$

Formulación de subsecuencia común

Definición formal de subsecuencia común

Dadas dos secuencias X y Y, decimos que Z es una subsecuencia común de X y Y, si Z es una subsecuencia de X y Y.

Ejemplo:

Si $X=\langle A,B,C,B,D,A,B\rangle$ y $Y=\langle B,D,C,A,B,A\rangle$, la secuencia $\langle B,C,A\rangle$ es una subsecuencia común de X y Y.

Nótese que $\langle B,C,A\rangle$ no es la subsecuencia común más larga de X y Y, esa seria $\langle B,C,B,A\rangle$ con longitud 4.

Formulación de Longest-Common-Subsequence

El problema de LONGEST-COMMON-SUBSEQUENCE consiste en que, dadas dos secuencias $X=\langle x_1,\ldots,x_m\rangle$, y $Y=\langle y_1,\ldots,y_n\rangle$, queremos encontrar la longitud de la subsecuencia común más larga de X y Y.

Diseño: fuerza bruta

Podemos enumerar todas las subsecuencias de X y verificar que cada subsecuencia que veamos también sea subsecuencia de Y. Ya que existen 2^m subsecuencias de X posibles, esta solución seria $\Theta(2^m)$.

Diseño: formulación de prefijo

LCS exhibe una subestructura óptima.

Los subproblemas corresponden a pares de 'prefijos' de dos secuencias de entrada.

Diseño: formulación de prefijo

LCS exhibe una subestructura óptima.

Los subproblemas corresponden a pares de 'prefijos' de dos secuencias de entrada.

Dada una secuencia $X=\langle x_1,\ldots,x_m\rangle$, definimos el i-ésimo prefijo de X, para $i=0,1,\ldots,m$ como

$$X_i = \langle x_1, \dots, x_i \rangle$$

donde X_0 es la secuencia vacía.

Diseño: formulación de prefijo

LCS exhibe una subestructura óptima.

Los subproblemas corresponden a pares de 'prefijos' de dos secuencias de entrada.

Dada una secuencia $X=\langle x_1,\ldots,x_m\rangle$, definimos el i-ésimo prefijo de X, para $i=0,1,\ldots,m$ como

$$X_i = \langle x_1, \dots, x_i \rangle$$

donde X_0 es la secuencia vacía.

Ejemplo:

Si
$$X = \langle A, B, C, B, D, A, B \rangle$$
, entonces $X_4 = \langle A, B, C, B \rangle$.

Podemos subdividir el problema en diferentes casos:

f(xi-1)45-1)+1

• Si $x_i = y_j$, entonces debemos encontrar un LCS en X_{i-1} y Y_{j-1}

Podemos subdividir el problema en diferentes casos:

- · Si $x_i = y_j$, entonces debemos encontrar un LCS en X_{i-1} y Y_{j-1}
- · Si $x_i
 eq y_j$, entonces debemos encontrar un LCS para

Podemos subdividir el problema en diferentes casos:

- · Si $x_i = y_j$, entonces debemos encontrar un LCS en $X_{\underline{i}-1}$ y Y_{j-1}
- · Si $x_i
 eq y_j$, entonces debemos encontrar un LCS para
 - X_{i-1} y Y_i
 - · X_i y Y_{j-1}

Podemos subdividir el problema en diferentes casos:

- · Si $x_i = y_i$, entonces debemos encontrar un LCS en X_{i-1} y Y_{i-1}
- · Si $x_i \neq y_i$, entonces debemos encontrar un LCS para

$$\cdot X_{i-1} \vee Y_i$$

·
$$X_i$$
 y Y_{j-1}

$$c[i,j] = \begin{cases} 0 & \text{si } i = 0 \lor j = 0 \\ c[i-1,j-1] + 1 & \text{si } i,j > 0 \land x_i = y_j \\ \max(c[i,j-1], c[i-1,j]) & \text{si } i,j > 0 \land x_i \neq y_j \end{cases}$$

Ejemplo LCS

BOCABA ABCBDAB BCBA

Ejemplo de Cormen

Ejercicios

1. Problema de KNAPSACK (mochila)

Considere una mochila capaz de albergar un peso máximo M, y n elementos con pesos $P = \langle p_1, \dots, p_n \rangle$, y beneficios $B = \langle b_1, \dots, b_n \rangle$.

Oueremos encontrar el máximo beneficio con pesos de los elementos que no superen el peso máximo de la mochila.

el peso máximo de la mochila.

$$f(m, i) = \begin{cases}
0 & s', m \leq 0 \forall i \geq 0 \\
f(m, i-1) & s', m \leq p[i], \wedge i \geq 0
\end{cases}$$

$$f(m, i-1) = \begin{cases}
f(m-p[i], c-1) + b[i], & s', m \geq p[i], \wedge i \geq 0 \\
f(m, i-1) = \begin{cases}
f(m, i-1) & s', m \leq p[i], \wedge i \geq 0
\end{cases}$$

1. Problema de KNAPSACK (mochila)

¿Cual es el resultado de ejecutar con M=15kg, $P=\langle 12$ kg, 2kg, 1kg, 1kg, 4kg \rangle , $B=\langle 4,2,2,1,10 \rangle$?

P	12kg	2kg	1kg	1kg	4kg	
В	4	2	2	1	10	
	O۴	0 %	χσ	ΟX	О	X
			21	1 1		
		2 V				
		(0 4	-104	-104	-10	~
		(5	- 12	11		
П	14 4	-14				
Т						
П						
	4√					
, T						
		B 4	B 4 2 O N O N 2 V 10 4 14 4 14 V	B 4 2 2 2 2	B 4 2 2 1 OX OX OX 2V V 2	B 4 2 2 1 10 OX OX OX OX OX 2V IV 2V 04 04 04 0

1. Problema de KNAPSACK (mochila)

$$f(m,i) = \begin{cases} \min(f(m-p_i,\,i-1) + b_i,\,f(m,i-1)) & \text{si } m \geq p_i \land i > 0 \\ f(m,i-1) & \text{si } m < p_i \land i > 0 \\ 0 & \text{si } m \leq 0 \lor i \leq 0 \end{cases}$$

La solución optima es f(M, n).

- 1. Implemente el algoritmo en base a la formula recursiva
 - a. Sin memorización
 - b. Con memorización
 - c. Compare los tiempos de ejecución de cada uno para una entrada suficientemente grande.
- 2. * Implemente la solución optimizada con tabulación.

2. Longest-Common-Subsequence

- 1. Determine el LCS de (1,0,0,1,0,1,0,1) y (1,0,0,1,0,1,0,1)
- 2. Implemente la version optimizada con *programación dinámica* de LONGEST-COMMON-SUBSEQUENCE.
- * Implemente la version optimizada con tabulación de LONGEST-COMMON-SUBSEQUENCE.

3. Cut-Rod

1. Modifique Memoized-Cut-Rod para que no solo retorne el valor, sino también la solución (las longitudes de la varilla).