Rio de Janeiro, 16 de Maio de 2012. PROVA 2 DE ANÁLISE DE ALGORITMOS PROFESSOR: EDUARDO SANY LABER DURAÇÃO: 2 HORAS

- 1. (2.0pt) Considere o pseudo-código abaixo
- a) Analise a complexidade do pseudo código abaixo.
- b) Modifique o pseudo-cóodigo para que este preencha um vetor D de n posições aonde a posição i, para $i=1,\ldots,n$, armazena a distância do vértice s até o vértice i.

```
BFS
Procedure Proc(G,s)
         Marque s como visitado
1.
2.
         For each v \in V
3.
               D(v) \leftarrow 0
4.
         End do
5.
         ENQUEUE(Q,s)
9.
         while Q \neq \emptyset
10.
                u \leftarrow DEQUEUE(Q)
11.
                For each v \in Adj[u]
12.
                     if v não visitado then
14.
                           Marque v como visitado
16.
                           ENQUEUE(Q,v)
20.
                End For
          End While
30.
```

Figura 1: Pseudo-Código de uma BFS

- 2. (3.0pt) Em um dado direcionado G = (V, E), aonde $V = \{1, ..., n\}$, cada vértice i tem um preço positivo preço(i). Defina o custo de um vértice i como o preço do vértice de maior preço que é alcançável a partir de i (incluindo ele mesmo).
- a) Mostre como modificar o pseudo-código de uma DFS, apresentado abaixo, para preencher um vetor ${\tt custo}$ de n posições, aonde a posição i armazena o custo do vértice i. Analise a complexidade do algoritmo proposto.
- b) Explique com palavras como poderíamos calcular o custo de todos os vértices em tempo O(m+n).
 - 3. (2.0pt) Considere o grafo da figura abaixo.
- a) Desenhe a árvore geradora obtida pelo algoritmo de PRIM quando começamos a executar o algoritmo a partir do vértice do canto superior direito. Qual o custo da árvore obtida?
- b) Desenhe a árvore obtida pelo algoritmo de Dikjstra quando começamos a executar o algoritmo a partir do vértice do canto superior esquerdo.
- 4. (3.0pt) Nos anos 80, muitos computadores utilizavam fitas K7 como unidade de armazenamento. O acesso a informação nestas fitas é sequencial, ou seja, deve-se partir

	DFS
Procedure DFS(G,s)	
1.	Marque s como visitado
2.	For each $v \in Adj(s)$
3.	if v não visitado then
4.	$\mathrm{DFS}(\mathrm{G},\!\mathrm{v})$
5.	End For

Figura 2: Pseudo-Código de uma DFS

Figura 3:

da posição inicial da fita e ir percorrendo os arquivos em ordem até chegar no arquivo desejado. Como exemplo, considere uma fita K7 com 3 arquivos armazenados: A,B e C, com tamanhos 3Kb, 5Kb e 2Kb. Além disso, assuma que B encontra-se antes de A que, por sua vez, encontra-se antes de C. Neste caso, o custo para acessar o arquivo B é 0, o custo para acessar A é 5 e o custo de acesso à C é S + S = S = S .

Problema Dados n arquivos A_1, \ldots, A_n , com tamanhos l_1, \ldots, l_n e probabilidades de acesso p_1, \ldots, p_n , o problema consiste em determinar de que maneira devemos escalonar os arquivos na fita de modo a minimizar o custo esperado de acesso, que é definido como

$$\sum_{i=1}^{n} p_{(i)} c_{(i)},$$

aonde $p_{(i)}$ (não confunda com p_i) e $c_{(i)}$ são, respectivamente, a probabilidade de acesso e o custo do i-ésimo arquivo no escalonamento ordenação.

- a) Considere a estratégia gulosa que consiste em ordenar os arquivos por ordem crescente de tamanhos. Mostre uma instância do problema, com n=4, em que esta estratégia funciona e outra instância, também com n=4, em que esta estratégia não funciona.
 - b) Projete uma estratégia ótima para este problema.
 - c) Mostre que a estratégia proposta é de fato ótima.