Test #2

$Rob\ Squire$

6.11

Let H be a subgroup of a group G and suppose that $g_1, g_2 \epsilon G$. Prove that the following conditions are equivalent.

(a)

 $g_1H = g_2H$

Proof Let $g_1H = g_2H$. Since H is a subgroup of G, we know $e\epsilon H$. Therefore, $g_1 = g_1e\epsilon g_1H = g_2H$. Similarly, $g_2 = g_2e\epsilon g_2H = g_1H$.

Then since $H \subseteq G \exists$ inverses. So $g_1 \epsilon g_2 H \exists h \epsilon H$ such that $g_1 = g_2 h$ and $h^{-1} \epsilon H$.

So $g_1^{-1} = g_2^{-1}h^{-1}$ and by similar argument $g_2^{-1} = g_1^{-1}h^{-1}$. Thus $g_1H = g_2H$.

(b)

 $Hg_1^{-1} = Hg_2^{-1}$

Proof

Let $g_1^{-1}H = g_2^{-1}H$ Since H is a subgroup of G, we know $e\epsilon H$. Therefore, $g_1^{-1} = eg_1^{-1}\epsilon Hg_1^{-1} = Hg_2^{-1}$ and similarly $g_2^{-1} = eg_2^{-1}\epsilon Hg_2^{-1} = Hg_1^{-1}$. So, $\exists h^{-1}\epsilon H$ such that $g_1^{-1} = h^{-1}g_2^{-1}$. Then $g_1 = g_2h$. Recall that H is a subgroup so hH will equal H. Thus $g_1H = g_2hH = g_2H$. Therfore $g_1H \subseteq g_2H$

(c)

 $g_1H \subset g_2H$

Proof

Let $g_1H \subset g_2H$, By Theorem 6.4 (Judson) As any two left coests of a subgroup H are either disjoint or equal. Thus $g_1H \subset g_2H$ implies that $g_1H = g_2H$. Since $e\epsilon H$, $g_2 = g_2H = g_1H$ Thus $g_2\epsilon g_1H$

(d)

 $g_2 \epsilon g_1 H$

Proof

Let $g_1^{-1}g_2\epsilon H$. So $\exists h\epsilon H$, such that $g_2=g_1h$. Then $g_2^{-1}=h^{-1}g_1^{-1}$. Then $g_2^{-1}g_2=h^{-1}g_1^{-1}g_2$. $e=h^{-1}g_1^{-1}g_2$. $he=hh^{-1}g_1^{-1}g_2$. $he=hh^{-1}g_1^{-1}g_2$. So, $g_1^{-1}g_2\epsilon H$

(e)

 $g_1^{-1}g_2\epsilon H$

Proof Let $g_1^{-1}g_2\epsilon H$. So, $\exists h\epsilon H$ such that $g_1^{-1}g_2\epsilon h$. Thus $g_2=g_1h$. Thus $g_2H=(g_1h)H=g_1(hH)=g_1H$

6.12

If $ghg^{-1}\epsilon H \ \forall g\epsilon G$ and $h\epsilon H$, show that right coests are identical to left cosets. That is, show that $gH = Hg\forall g\epsilon G$.

Proof Let $ghg^{-1}\epsilon H \ \forall g\epsilon G$ and $h\epsilon H$. Since $h\epsilon H$, then h can be anything in H, so h=H. So $ghg^{-1}\epsilon H=gHg^{-1}\subseteq H \ \forall g\epsilon G$ and $h\epsilon H$. Consider $g^{-1}\epsilon G$. So, $g^{-1}H(g^{-1})^{-1}\subseteq H=g^{-1}Hg\subseteq H \ \forall g\epsilon G$. Since $g^{-1}Hg\subseteq H$. Then $g(g^{-1}Hg)g^{-1}\subseteq gHg^{-1}$. Thus $H\subseteq gHg^{-1}$.

So, $ghg^{-1} \subseteq H$ and $H \subseteq g^{-1}hg$. Then $gHg^{-1}g \subseteq Hg = gH \subseteq Hg$ and $gH \subseteq gg^{-1}H = gH \subseteq Hg$. Thus gH = Hg and right cosets are equal to left cosets. \square

9.5

Show U(5) is isomorphic to U(10), but U(12) is not.

Proof Consider U(5) = 1, 2, 3, 4, U(10) = 1, 3, 7, 9, U(12) = 1, 5, 7, 11.

In order for two groups to be isomorphic the order of each element in a group must correspond to a the order of an element in the other group.

Furthermore by Theorem 9.6 (iv), if an isomorphism exists between a two groups G & H,then if G is cyclic, then H is cyclic.

U(5), U(10), and U(12), all contain the same number of elements which is a necessary condition for isomorphism between groups.

Consider, U(5) is cyclic under the generator $\{2\}$ and thus has order 4. U(10) is also cyclic under the generator $\{3\}$ and also has order 4. U(12) is not cyclic so there exists no element in U(12) with order 4. Therefore U(12) cannot be isomorphic to U(5) or U(10). \square ### 9.25 Prove or disprove: There is a noncyclic abelian group of order 52.

Proof Consider the direct product of two groups G_{26} and G_{2} .

Then the direct product of G_{26} which is G_{13} and G_2 . So, we have $G_{13} \times G_2 \times G_2$ or $G_{13} \times G_4$ Consider since G_{13} is of prime order then it must be cyclic but G_4 does not necessarily have to be cyclic.

Consider U(12) from the previous question, has order 4 but is non-cyclic.

Since the product of a cyclic group G_{13} and non cyclic group G_4 result in a group of order 52 and they are abelian since both $G_{13} \times G_4$ and $G_4 \times G_{13}$ result G_{52} , there exists a noncyclic abelian group of order 52. \square

9.27

Let $G \cong H$. Show that if G is cyclic, then so is H.

Proof If G is isomorphic to H, then if G is cyclic, H is cyclic. Let G be isomorphic to H and G be cyclic. Then G and H have the same number of elements, say n and each element of the respective groups has the same order. Since G_n is cyclic, \exists a generator < g > that produces every element in G and is of order n by definition of cyclic. Since H is isomorphic then it must have n elements, hence H_n . Then an isomorphism requires each element of G to have a corresponding element in H so by definition of isomorphic there must exist an element that also has order n. Thus \exists a generator of H.

Since there exists an element in H that generates H, H is cyclic. \square

10.11

If a group G has exactly one subgroup H of order k, prove that H is normal in G.

Proof Suppose group G has exactly one subgroup H of order k. Let g_1H and g_2H be two cosets of the H in G.

Since H is the only subgroup we know that $g_1H=g_2H$