

FCC PART 22H, PART 24E MEASUREMENT AND TEST REPORT

For

Xiamen Yeastar Information Technology Co., Ltd.

4th Floor, NO 29 Wanghai Road, 2nd Software Park, Xiamen, China

FCC ID: Z7C-TG400

Report Type: **Product Type:** Original Report Gateway **Test Engineer:** Dean Liu Report Number: RXM150116050-00B **Report Date:** 2015-01-26 Sula Huang **Reviewed By:** RF Engineer Bay Area Compliance Laboratories Corp. (Dongguan) **Test Laboratory:** No.69 Pulongcun, Puxinhu Industrial Zone, Tangxia, Dongguan, Guangdong, China Tel: +86-769-86858888 Fax: +86-769-86858891 www.baclcorp.com.cn

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Dongguan). This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

TABLE OF CONTENTS

GENERAL INFORMATION	3
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
Objective	
RELATED SUBMITTAL(S)/GRANT(S)	
TEST METHODOLOGY	3
TEST FACILITY	3
SYSTEM TEST CONFIGURATION	4
JUSTIFICATION	4
EQUIPMENT MODIFICATIONS	
EUT EXERCISE SOFTWARE	
SUPPORT EQUIPMENT LIST AND DETAILS	4
CONFIGURATION OF TEST SETUP	
BLOCK DIAGRAM OF TEST SETUP	5
SUMMARY OF TEST RESULTS	6
FCC §1.1310 & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MF	PE)7
APPLICABLE STANDARD	
FCC § 2.1046, § 22.913 (A) & § 24.232 (C) - RF OUTPUT POWER	9
APPLICABLE STANDARD	9
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS	12
TEST DATA	12
FCC §2.1053, §22.917 & §24.238 - SPURIOUS RADIATED EMISSION	NS13
APPLICABLE STANDARD	13
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS	13
T D	1.4

Report No.: RXM150116050-00B

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

The Xiamen Yeastar Information Technology Co., Ltd.'s product, model number: NeoGate TG400 (FCC ID: Z7C-TG400) (or the "EUT") in this report was a Gateway, which was measured approximately: 21.3 cm (L) x16.5 cm (W) x4.5 cm (H). rated input voltage: AC 120V/60Hz.

Report No.: RXM150116050-00B

* All measurement and test data in this report was gathered from production sample serial number: 150116050(Assigned by BACL Dongguan). The EUT was received on 2015-01-19.

Objective

This report is prepared on behalf of *Xiamen Yeastar Information Technology Co., Ltd.* in accordance with Part 2-Subpart J, Part 22-Subpart H, and Part 24-Subpart E of the Federal Communications Commission's rules.

The objective is to determine compliance with FCC rules for output power, modulation characteristic, occupied bandwidth, spurious emissions at antenna terminal, spurious radiated emission, frequency stability and band edge.

Related Submittal(s)/Grant(s)

FCC Part 15B JBP submissions with FCC ID: Z7C-TG400

Test Methodology

All tests and measurements indicated in this document were performed in accordance with the Code of Federal Regulations Title 47 Part 2, Sub-part J as well as the following parts:

Part 22 Subpart H – Public Mobile Services Part 24 Subpart E – Personal Communication Services

Applicable Standards: TIA/EIA 603-D-2010, ANSI C63.4-2003.

All radiated and conducted emissions measurements were performed at Bay Area Compliance Laboratories Corp.(Dongguan).

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Dongguan) to collect test data is located on the No.69 Pulongcun, Puxinhu Industrial Zone, Tangxia, Dongguan, Guangdong, China

Test site at Bay Area Compliance Laboratories Corp. (Dongguan) has been fully described in reports submitted to the Federal Communications Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on February 02, 2012. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2003.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 273710. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

FCC Part 22H/24E Page 3 of 14

SYSTEM TEST CONFIGURATION

Justification

The EUT was configured for testing according to TIA/EIA-603-D-2010.

The test items were performed with the EUT operating at testing mode.

Equipment Modifications

No modification was made to the EUT.

EUT Exercise Software

No exercise software was used in testing.

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
R&S	Universal Radio Communication Tester	CMU200	109038

Report No.: RXM150116050-00B

Configuration of Test Setup

FCC Part 22H/24E Page 4 of 14

Report No.: RXM150116050-00B

Block Diagram of Test Setup

FCC Part 22H/24E Page 5 of 14

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§1.1310, §2.1091	Maximum Permissible RF Exposure (MPE)	Compliance
\$2.1046; \$ 22.913 (a); \$ 24.232 (c)	RF Output Power	Compliance
§ 2.1047	Modulation Characteristics	Compliance*
\$ 2.1049; \$ 22.905 \$ 22.917; \$ 24.238	Occupied Bandwidth	Compliance*
§ 2.1051, § 22.917 (a); § 24.238 (a)	Spurious Emissions at Antenna Terminal	Compliance*
§ 2.1053 § 22.917 (a); § 24.238 (a)	Field Strength of Spurious Radiation	Compliance
§ 22.917 (a); § 24.238 (a)	Out of band emission, Band Edge	Compliance*
§ 2.1055 § 22.355; § 24.235	Frequency stability vs. temperature Frequency stability vs. voltage	Compliance*

Report No.: RXM150116050-00B

Note:

Compliance*: the EUT has used 4 same certified modules (FCC ID: UDV-201314, certified on 2014-01-23), the test please refer to the module report.

FCC Part 22H/24E Page 6 of 14

FCC §1.1310 & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Applicable Standard

According to subpart 15.247(i) and subpart §1.1310, systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Report No.: RXM150116050-00B

Limits for Maximum Permissible Exposure (MPE) (§1.1310, §2.1091)

	(B) Limits for General Population/Uncontrolled Exposure								
Frequency Range (MHz)									
0.3–1.34	614	1.63	*(100)	30					
1.34–30	824/f	2.19/f	*(180/f²)	30					
30–300	27.5	0.073	0.2	30					
300–1500	/	/	f/1500	30					
1500-100,000	/	/	1.0	30					

f = frequency in MHz; * = Plane-wave equivalent power density;

According to §1.1310 and §2.1091 RF exposure is calculated.

Calculated Formulary:

Predication of MPE limit at a given distance

 $S = PG/4\pi R^2 = power density (in appropriate units, e.g. mW/cm^2);$

P = power input to the antenna (in appropriate units, e.g., mW);

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain;

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

For simultaneously transmit system, the calculated power density should comply with:

$$\sum_{i} \frac{S_{i}}{S_{Limit,i}} \le 1$$

Calculated Data:

The device contains 4 same RF modules, the rated output power and antenna gain in the below table:

Frequency Bands	Antei	Antenna Gain		nducted Power	P*G
	(dBi)	(numeric)	(dBm)	(mW)	(mW)
GSM 850	2.50	1.78	33.30	2137.96	3801.89
PCS 1900	3.00	2.00	28.70	741.31	1479.11

Note: the Max. Conducted output power was the total power contained Max. tune-up tolerance.

FCC Part 22H/24E Page 7 of 14

Power Density limit for GSM 850 is:

824.2/1500= 0.55 mW/cm2

Report No.: RXM150116050-00B

Power Density limit for PCS 1900 is:

1.0 mW/cm2

The 4 modules can transmit simultaneously,

$$\sum_i \frac{S_i}{S_{Limit,i}} \leq 1$$

The worst mode is all of the 4 module working at GSM850 band,

$$=>P_1*\,G_1/4\pi R^2+P_2*\,G_2/4\pi R^2+P_3*\,G_3/4\pi R^2+P_4*\,G_4/4\pi R^2 \ <0.55$$

$$=>4*(3801.89)/4\pi R^2 < 0.55$$

$$=> R^2 > 4*(3801.89)/(0.55*4\pi)$$

$$=> R > 46.92 \text{ cm}$$

Result: Result: The device meets MPE requirement for Devices Used by the General Public (Uncontrolled Environment) at the distance more than 46.92 cm.

FCC Part 22H/24E Page 8 of 14

FCC § 2.1046, § 22.913 (a) & § 24.232 (c) - RF OUTPUT POWER

Applicable Standard

According to FCC §2.1046 and §22.913 (a), the ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 watts.

Report No.: RXM150116050-00B

According to FCC §2.1046 and §24.232 (C), mobile and portable stations are limited to 2 watts EIRP and the equipment must employ a means for limiting power to the minimum necessary for successful communications...

Test Procedure

GSM

Menu select > GSM Mobile Station > GSM 850/1900

Press Connection control to choose the different menus

Press RESET > choose all the reset all settings

Press Signal Off to turn off the signal and change settings Connection

Network Support > GSM + only

MS Signal

> 33 dBm for GSM 850 > 30 dBm for GSM 1900

Enter the same channel number for TCH channel (test channel) and BCCH channel BS Signal

Frequency Offset > +0 Hz

Mode > BCCH and TCH

BCCH Level > -85 dBm (May need to adjust if link is not stabe)

BCCH Channel > choose desire test channel [Enter the same channel number for TCH channel (test

channel) and BCCH channel] Channel Type > Off P0 > 4 dB

TCH > choose desired test channel

Hopping > Off

Enter appropriate offsets for Ext. Att. Output and Ext. Att. Input AF/RF

Press Signal on to turn on the signal and change settings Connection

GPRS

Menu select > GSM Mobile Station > GSM 850/1900 Function:

Press Connection control to choose the different menus

Press RESET > choose all the reset all settings

Press Signal Off to turn off the signal and change settings Connection

Network Support > GSM + GPRS or GSM + EGSM

Main Service > Packet Data

Service selection > Test Mode A – Auto Slot Config. off

MS Signal Press Slot Config Bottom on the right twice to select and change the number of time slots and power setting

> Slot configuration > Uplink/Gamma > 33 dBm for GPRS 850

> 30 dBm for GPRS 1900

BS Signal Enter the same channel number for TCH channel (test channel) and BCCH channel

Frequency Offset > +0 Hz

Mode > BCCH and TCH

BCCH Level > -85 dBm (May need to adjust if link is not stabe)

BCCH Channel > choose desire test channel [Enter the same channel number for TCH channel (test

channel) and BCCH channel]

FCC Part 22H/24E Page 9 of 14

Channel Type > Off P0 > Slot Config > TCH > Hopping > 4 dB

Unchanged (if already set under MS signal) choose desired test channel Off

Main Timeslot >

Network Coding Scheme > CS4 (GPRS)

Bit Stream > 2E9-1 PSR Bit Stream

Enter appropriate offsets for Ext. Att. Output and Ext. Att. Input Press Signal on to turn on the signal and change settings AF/RF

Connection

UMTS Rel 99

	Mode	Rel99
	Subtest	-
	Loopback Mode	Test Mode 1
	Rel99 RMC	12.2kbps RMC
	HSDPA FRC	Not Applicable
	HSUPA Test	Not Applicable
WCDMA General	Power Control Algorithm	Algorithm2
Settings	βc	Not Applicable
Settings	βd	Not Applicable
	βес	Not Applicable
	βc/βd	8/15
	βhs	Not Applicable
	βed	Not Applicable

Report No.: RXM150116050-00B

UMTS Rel 6 HSDPA

	Mode	Rel6 HSDPA	Rel6 HSDPA	Rel6 HSDPA	Rel6 HSDPA	
	Subtest	1	2	3	4	
	Loopback Mode	Test Mode 1	_		-	
	Rei99 RMC	12.2kbps RMC				
	HSDPA FRC	H-Set1				
	HSUPA Test	Not Applicable				
WCDMA	Power Control Algorithm	Algorithm 2				
General	βc	2/15	12/15	15/15	15/15	
Settings	βd	15/15	15/15	8/15	4/15	
	βec	-	-	-	-	
	βc/βd	2/15	12/15	15/8	15/4	
	βhs	4/15	24/15	30/15	30/15	
	βed	Not Applicable				
	DACK	8				
	DNAK	8				
HSDPA	DCQI	8				
Specific Ack-Nack repetition factor 3						
Settings	CQI Feedback (Table 5.2B.4)	4ms				
	CQI Repetition Factor (Table 5.2B.4)	2				
	Ahs = βhs/βc	30/15				

FCC Part 22H/24E Page 10 of 14

UMTS Rel 6 HSPA (HSDPA & HSUPA)

	Mode	Rel6 HSUPA	Rel6 HSUPA	Rel6 HSUPA	Rel6 HSUPA	Rel6 HSUPA			
	Subtest	1	2	3	4	5			
	Loopback Mode	Test Mode 1	•	•	•				
	Rei99 RMC	12.2kbps RMC	;						
	HSDPA FRC	H-Set1							
	HSUPA Test	HSUPA Loopb	ack						
	Power Control Algorithm	Algorithm2							
WCDMA General	βc	11/15	6/15	15/15	2/15	15/15			
Settings	βd	15/15	15/15	9/15	15/15	0			
Settings	βec	209/225	12/15	30/15	2/15	5/15			
	βc/βd	11/15	6/15	15/9	2/15	-			
	βhs	22/15	12/15	30/15	4/15	5/15			
				47/15					
	βed	1309/225	94/75	47/15	56/75	47/15			
	DACK	8	•	•					
	DNAK	8							
HSDPA	DCQI	8							
Specific	Ack-Nack repetition factor	3							
Settings	CQI Feedback (Table 5.2B.4)	4ms							
Settings	CQI Repetition Factor (Table								
	5.2B.4)	2							
	Ahs = βhs/βc	30/15	30/15						
	D E-DPCCH	6	8	8	5	7			
	DHARQ	0	0	0	0	0			
	AG Index	20	12	15	17	12			
	ETFCI (from 34.121 Table								
	C.11.1.3)	75	67	92	71	67			
	Associated Max UL Data Rate								
	kbps	242.1	174.9	482.8	205.8	308.9			
HSUPA Specific		E-TFCI 11 E-TFCI PO 4			E-TFCI 11 E-TFCI PO 4				
Settings		E-TFCI 67			E-TFCI 67				
		E-TFCI PO 18			E-TFCI PO 18				
	Peference E TEOle	E-TFCI 71			E-TFCI 71				
	Reference E_TFCIs	E-TFCI PO 23		E-TFCI 11	E-TFCI PO 23				
		E-TFCI 75		E-TFCI PO 4	E-TFCI 75				
		E-TFCI PO 26		E-TFCI 92	E-TFCI PO 26				
		E-TFCI 81		E-TFCI PO	E-TFCI 81				
		E-TFCI PO 27		18	E-TFCI PO 27				

Report No.: RXM150116050-00B

Radiated method:

ANSI/TIA 603-D section 2.2.17

FCC Part 22H/24E Page 11 of 14

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	EMI Test Receiver	ESCI	100224	2014-05-09	2015-05-09
Sunol Sciences	Antenna	JB3	A060611-3	2014-07-28	2017-07-27
HP	Amplifier	8447E	2434A02181	2014-09-01	2015-09-01
R&S	Spectrum Analyzer	FSEM	DE31388	2014-05-09	2015-05-09
ETS LINDGREN	Horn Antenna	3115	000 527 35	2012-09-06	2015-09-06
Mini-Circuit	Amplifier	ZVA-213-S+	054201245	2014-02-19	2015-02-19
Giga	Signal Generator	1026	320408	2014-05-09	2015-05-09
EMCO	Adjustable Dipole Antenna	3121C	9109-753	N/A	N/A
TDK RF	Horn Antenna	HRN-0118	130 084	2012-09-06	2015-09-06

Report No.: RXM150116050-00B

Test Data

Environmental Conditions

Temperature:	22 °C
Relative Humidity:	387 %
ATM Pressure:	101.3 kPa

The testing was performed by Dean Liu on 2015-01-24.

ERP & EIRP

		Dansiran	. Substituted Method		A baoluta			
Frequency (MHz)	Polar (H/V)	Receiver Reading (dBµV)	S.G. Level (dBm)	Antenna Gain (dBd/dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)
				GSM 850				
848.800	Н	102.41	27.6	0.0	1	26.6	38.45	11.9
848.800	V	104.29	32.6	0.0	1	31.6	38.45	6.9
	PCS 1900							
1909.800	Н	87.11	15.8	11.8	1.4	26.2	33.0	6.8
1909.800	V	93.47	22.4	11.8	1.4	32.8	33.0	0.2

Note: Please refer to the certified module (FCC ID: UDV-201314) report for the antenna port output power.

FCC Part 22H/24E Page 12 of 14

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

FCC §2.1053, §22.917 & §24.238 - SPURIOUS RADIATED EMISSIONS

Report No.: RXM150116050-00B

Applicable Standard

FCC § 2.1053, §22.917 and § 24.238.

Test Procedure

The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load which was also placed on the turntable.

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.

The frequency range up to tenth harmonic of the fundamental frequency was investigated.

Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Spurious emissions in $dB = 10 \lg (TXpwr in Watts/0.001)$ – the absolute level

Spurious attenuation limit in $dB = 43 + 10 \text{ Log}_{10}$ (power out in Watts)

Test Equipment List and Details

		VIII III III			
Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	EMI Test Receiver	ESCI	100224	2014-05-09	2015-05-09
Sunol Sciences	Antenna	JB3	A060611-3	2014-07-28	2017-07-27
HP	Amplifier	8447E	2434A02181	2014-09-01	2015-09-01
R&S	Spectrum Analyzer	FSEM	DE31388	2014-05-09	2015-05-09
ETS LINDGREN	Horn Antenna	3115	000 527 35	2012-09-06	2015-09-06
Mini-Circuit	Amplifier	ZVA-213-S+	054201245	2014-02-19	2015-02-19
Giga	Signal Generator	1026	320408	2014-05-09	2015-05-09
EMCO	Adjustable Dipole Antenna	3121C	9109-753	N/A	N/A
TDK RF	Horn Antenna	HRN-0118	130 084	2012-09-06	2015-09-06

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

FCC Part 22H/24E Page 13 of 14

Test Data

Environmental Conditions

Temperature:	20.4 °C
Relative Humidity:	61 %
ATM Pressure:	101.3 kPa

The testing was performed by Dean Liu on 2015-01-24.

EUT Operation Mode: Transmitting

Frequency (MHz)	Polar (H/V)	Receiver Reading (dBµV)	Substituted Method			Albard da			
			S.G. Level (dBm)	Antenna Gain (dBd/dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)	
GSM850, Test Frequency:836.600MHz									
1673.200	Н	77.25	-23.8	10.6	1.5	-14.7	-13.0	1.7*	
1673.200	V	77.72	-23.7	10.6	1.5	-14.6	-13.0	1.6*	
2509.800	Н	57.64	-40.4	13.1	2.8	-30.1	-13.0	17.1	
2509.800	V	58.56	-38.5	13.1	2.8	-28.2	-13.0	15.2	
250.000	Н	37.25	-70.9	0.0	0.5	-71.4	-13.0	58.4	
250.000	V	36.24	-69.5	0.0	0.5	-70.0	-13.0	57.0	
PCS 1900, Test Frequency:1880.000MHz									
3760.000	Н	32.24	-62.1	13.8	2.9	-51.2	-13.0	38.2	
3760.000	V	33.12	-59.9	13.8	2.9	-49.0	-13.0	36.0	
305.000	Н	32.54	-74.3	0.0	0.5	-74.8	-13.0	61.8	
305.000	V	31.83	-72.5	0.0	0.5	-73.0	-13.0	60.0	

Report No.: RXM150116050-00B

Note:

- 1) The unit of Antenna Gain is dBd for frequency below 1GHz, and the unit of Antenna Gain is dBi for frequency above 1GHz.
- 2) Absolute Level = SG Level Cable loss + Antenna Gain
- 3) Margin = Limit-Absolute Level

***** END OF REPORT *****

FCC Part 22H/24E Page 14 of 14