Package 'r2dii.plot'

February 29, 2024

Title Visualize the Climate Scenario Alignment of a Financial

```
Portfolio
Version 0.4.0
Description Create plots to visualize the alignment of a corporate
      lending financial portfolio to climate change scenarios based on
      climate indicators (production and emission intensities) across key
      climate relevant sectors of the 'PACTA' methodology (Paris Agreement Capital
      Transition Assessment; <a href="https://www.transitionmonitor.com/">https://www.transitionmonitor.com/</a>).
      Financial institutions use 'PACTA' to study how their capital
      allocation decisions align with climate change mitigation goals.
License MIT + file LICENSE
URL https://github.com/RMI-PACTA/r2dii.plot,
      https://rmi-pacta.github.io/r2dii.plot/
BugReports https://github.com/RMI-PACTA/r2dii.plot/issues
Depends R (>= 3.4)
Imports dplyr, ggplot2, ggrepel, glue, magrittr, r2dii.data, rlang,
      stringr, scales
Suggests covr, r2dii.analysis, r2dii.match, rmarkdown, spelling,
      testthat (>= 3.0.0)
Config/testthat/edition 3
Encoding UTF-8
Language en-US
LazyData true
RoxygenNote 7.3.1
NeedsCompilation no
Author Monika Furdyna [aut, ctr, cre]
       (<https://orcid.org/0000-0002-3728-0646>),
      Mauro Lepore [aut, ctr] (<a href="https://orcid.org/0000-0002-1986-7988">https://orcid.org/0000-0002-1986-7988</a>),
      Alex Axthelm [aut, ctr] (<https://orcid.org/0000-0001-8579-8565>),
      Rocky Mountain Institute [cph, fnd]
```

2 market_share

Maintainer Monika Furdyna <monika.furdyna@gmail.com>

Repository CRAN

Date/Publication 2024-02-29 16:40:02 UTC

R topics documented:

	market_share	4
	plot_emission_intensity	3
	plot_techmix	4
	plot_trajectory	4
	prep_emission_intensity	(
	prep_techmix	1
	prep_trajectory	8
	qplot_emission_intensity	9
	qplot_techmix	10
	qplot_trajectory	1
	r2dii_colours	12
	scale_colour_r2dii	13
	scale_colour_r2dii_sector	14
	scale_colour_r2dii_tech	15
	sda	16
	theme_2dii	10
	to_title	1
T 3		14
Index		19
mark	t share An example of a market share-like dataset	

Description

Dataset imitating the output of r2dii.analysis::target_market_share().

Usage

market_share

Format

An object of class $spec_tbl_df$ (inherits from tbl_df , tbl, data.frame) with 802 rows and 10 columns.

See Also

```
r2dii.analysis::target_market_share().
Other datasets: r2dii_colours, sda
```

plot_emission_intensity

Examples

market_share

```
plot_emission_intensity
```

Create an emission intensity plot

Description

Create an emission intensity plot

Usage

```
plot_emission_intensity(data)
```

Arguments

data

A data frame like the output of prep_emission_intensity().

Value

An object of class "ggplot".

See Also

sda.

```
# plot with `qplot_emission_intensity()` parameters
data <- subset(sda, sector == "cement" & region == "global") %>%
    prep_emission_intensity(span_5yr = TRUE, convert_label = to_title)
plot_emission_intensity(data)
```

plot_techmix

plot_techmix

Create a technix plot

Description

Create a technix plot

Usage

```
plot_techmix(data)
```

Arguments

data

A data frame like the output of prep_techmix().

Value

An object of class "ggplot".

See Also

```
market_share.
```

```
# plot with `qplot_techmix()` parameters
data <- subset(
    market_share,
    scenario_source == "demo_2020" &
        sector == "power" &
        region == "global" &
        metric %in% c("projected", "corporate_economy", "target_sds")
) %>%
    prep_techmix(
        span_5yr = TRUE,
        convert_label = recode_metric_techmix,
        convert_tech_label = spell_out_technology
)
plot_techmix(data)
```

plot_trajectory 5

nlot	_trajectory
DIOL	ti a iettoi v

Create a trajectory plot

Description

Create a trajectory plot

Usage

```
plot_trajectory(data, center_y = FALSE, perc_y_scale = FALSE)
```

Arguments

data A data frame like the outputs of prep_trajectory().

• (Optional) If present, the column label is used for data labels.

center_y Logical. Use TRUE to center the y-axis around start value (the default behavior

of qplot_trajectory()), or use FALSE to not center.

perc_y_scale Logical. FALSE defaults to using no label conversion. Use TRUE to convert

labels on y-axis to percentage using scales::percent (the default behavior of

qplot_trajectory()).

Value

An object of class "ggplot".

See Also

market_share.

```
# plot with `qplot_trajectory()` parameters
data <- subset(
    market_share,
    sector == "power" &
        technology == "renewablescap" &
        region == "global" &
        scenario_source == "demo_2020"
) %>%
    prep_trajectory()

plot_trajectory(
    data,
    center_y = TRUE,
    perc_y_scale = TRUE
)
```

```
prep_emission_intensity
```

Prepare data for a emission intensity plot

Description

Prepare data for a emission intensity plot

Usage

```
prep_emission_intensity(data, convert_label = identity, span_5yr = FALSE)
```

Arguments

data

A data frame. Requirements:

- The structure must be like sda.
- The column sector must have a single value (e.g. "cement").
- (Optional) If present, the column label is used for data labels.

convert_label

A symbol. The unquoted name of a function to apply to y-axis labels. For example:

- To convert labels to uppercase use convert_label = toupper.
- To get the default behavior of qplot_emission_intensity() use convert_label = to_title.

span_5yr

Logical. Use TRUE to restrict the time span to 5 years from the start year (the default behavior of qplot_emission_intensity()), or use FALSE to impose no restriction.

Value

A data-frame ready to be plotted using plot_emission_intensity().

See Also

sda.

```
# `data` must meet documented "Requirements"
data <- subset(sda, sector == "cement" & region == "global")
prep_emission_intensity(data)</pre>
```

prep_techmix 7

prep_techmix

Prepare data for plotting technology mix

Description

Prepare data for plotting technology mix

Usage

```
prep_techmix(
  data,
  convert_label = identity,
  span_5yr = FALSE,
  convert_tech_label = identity
)
```

Arguments

data

A data frame. Requirements:

- The structure must be like market_share.
- The following columns must have a single value: sector, region, scenario_source.
- The column metric must have a portfolio (e.g. "projected"), a benchmark (e.g. "corporate_economy"), and a single scenario (e.g. "target_sds").
- (Optional) If present, the column label is used for data labels.
- (Optional) If present, the column label_tech is used for technology labels.

convert_label

A symbol. The unquoted name of a function to apply to y-axis labels. For example:

- To convert labels to uppercase use convert_label = toupper.
- To get the default behavior of qplot_techmix() use convert_label = recode_metric_techmix.

span_5yr

Logical. Use TRUE to restrict the time span to 5 years from the start year (the default behavior of qplot_techmix()), or use FALSE to impose no restriction.

convert_tech_label

A symbol. The unquoted name of a function to apply to technology legend labels. For example, to convert labels to uppercase use convert_tech_label = toupper. To get the default behavior of qplot_techmix() use convert_tech_label = spell_out_technology.

Value

A data-frame ready to be plotted using plot_techmix().

See Also

market_share.

8 prep_trajectory

Examples

```
# `data` must meet documented "Requirements"
data <- subset(
   market_share,
   scenario_source == "demo_2020" &
    sector == "power" &
    region == "global" &
    metric %in% c("projected", "corporate_economy", "target_sds"))
prep_techmix(data)</pre>
```

prep_trajectory

Prepare data for a trajectory plot

Description

Prepare data for a trajectory plot

Usage

```
prep_trajectory(
  data,
  convert_label = identity,
  span_5yr = FALSE,
  value_col = "percentage_of_initial_production_by_scope"
)
```

Arguments

data

A data frame. Requirements:

- The structure must be like market_share.
- The following columns must have a single value: sector, technology, region, scenario_source.
- (Optional) If present, the column label is used for data labels.

convert_label

A symbol. The unquoted name of a function to apply to y-axis labels. For example:

- To convert labels to uppercase use convert_label = toupper.
- To get the default behavior of '

span_5yr

Logical. Use TRUE to restrict the time span to 5 years from the start year (the default behavior of qplot_trajectory()), or use FALSE to impose no restriction.

value_col

Character. Name of the column to be used as a value to be plotted.

Value

A data-frame ready to be plotted using plot_trajectory().

See Also

```
market_share.
```

Examples

```
# `data` must meet documented "Requirements"
data <- subset(
  market_share,
  sector == "power" &
    technology == "renewablescap" &
    region == "global" &
    scenario_source == "demo_2020"
)
prep_trajectory(data)</pre>
```

qplot_emission_intensity

Create a quick emission intensity plot

Description

Compared to plot_emission_intensity() this function:

- is restricted to plotting future as 5 years from the start year,
- outputs formatted labels, based on emission metric column,
- outputs a title,
- outputs formatted axis labels.

Usage

```
qplot_emission_intensity(data)
```

Arguments

data

A data frame like the output of prep_emission_intensity().

Value

```
An object of class "ggplot".
```

See Also

```
plot_emission_intensity
```

10 qplot_techmix

Examples

```
# 'data' must meet documented "Requirements"
data <- subset(sda, sector == "cement" & region == "global")
qplot_emission_intensity(data)</pre>
```

qplot_techmix

Create a quick technix plot

Description

Compared to plot_techmix() this function:

- is restricted to plotting future as 5 years from the start year,
- outputs pretty bar labels, based on metric column,
- outputs pretty legend labels, based on technology column,
- outputs a title.

Usage

```
qplot_techmix(data)
```

Arguments

data

A data frame like the output of prep_techmix().

Value

An object of class "ggplot".

See Also

plot_techmix

```
# `data` must meet documented "Requirements"
data <- subset(
   market_share,
   sector == "power" &
     region == "global" &
     scenario_source == "demo_2020" &
     metric %in% c("projected", "corporate_economy", "target_sds")
)

qplot_techmix(data)</pre>
```

qplot_trajectory 11

qplot_trajectory

Create a quick trajectory plot

Description

Compared to plot_trajectory() this function:

- is restricted to plotting only 5 years from the start year,
- outputs pretty legend labels, based on the column holding metrics,
- outputs a title,
- outputs a subtitle,
- outputs informative axis labels in sentence case.

Usage

```
qplot_trajectory(data)
```

Arguments

data

A data frame like the outputs of prep_trajectory().

• (Optional) If present, the column label is used for data labels.

Value

An object of class "ggplot".

See Also

```
plot_trajectory
```

```
# `data` must meet documented "Requirements"
data <- subset(
  market_share,
  sector == "power" &
    technology == "renewablescap" &
    region == "global" &
    scenario_source == "demo_2020"
)

qplot_trajectory(data)</pre>
```

12 r2dii_colours

r2dii_colours

Colour datasets

Description

All datasets have at least two columns:

• label: Text label of the colour.

• hex: Hex code of the colour.

Usage

```
palette_colours
scenario_colours
sector_colours
technology_colours
```

Format

An object of class tbl_df (inherits from tbl, data.frame) with 9 rows and 2 columns. An object of class tbl_df (inherits from tbl, data.frame) with 5 rows and 2 columns. An object of class tbl_df (inherits from tbl, data.frame) with 8 rows and 2 columns. An object of class tbl_df (inherits from tbl, data.frame) with 18 rows and 3 columns.

Details

In scenario_colours, colours are ordered from red to green to be used in trajectory charts.

See Also

```
Other datasets: market_share, sda
```

```
palette_colours
scenario_colours
sector_colours
technology_colours
```

scale_colour_r2dii 13

Description

A custom discrete colour and fill scales with colours from 2DII palette.

Usage

```
scale_colour_r2dii(colour_labels = NULL, ...)
scale_fill_r2dii(colour_labels = NULL, ...)
```

Arguments

```
colour_labels A character vector. Specifies colour labels to use and their order. Run unique(r2dii.plot:::palette_c to see available colours. Similar to value parameter in ggplot2::scale_colour_manual().

... Other parameters passed on to ggplot2::discrete_scale().
```

Value

An object of class "ScaleDiscrete".

See Also

```
Other r2dii scales: scale_colour_r2dii_sector(), scale_colour_r2dii_tech()
```

```
library(ggplot2, warn.conflicts = FALSE)

ggplot(mpg) +
   geom_point(aes(displ, hwy, color = class)) +
   scale_colour_r2dii()

ggplot(mpg) +
   geom_histogram(aes(cyl, fill = class), position = "dodge", bins = 5) +
   scale_fill_r2dii()
```

```
scale_colour_r2dii_sector
```

Custom 2DII sector colour and fill scales

Description

A custom discrete colour and fill scales with colours from 2DII sector palette.

Usage

```
scale_colour_r2dii_sector(sectors = NULL, ...)
scale_fill_r2dii_sector(sectors = NULL, ...)
```

Arguments

sectors A character vector. Specifies sector colours to use and their order. Run unique(r2dii.plot:::sector_c to see available labels. Similar to value parameter in ggplot2::scale_colour_manual().

Other parameters passed on to ggplot2::discrete_scale().

Value

An object of class "ScaleDiscrete".

See Also

```
Other r2dii scales: scale_colour_r2dii(), scale_colour_r2dii_tech()
```

```
library(ggplot2, warn.conflicts = FALSE)

ggplot(mpg) +
   geom_point(aes(displ, hwy, color = class)) +
   scale_colour_r2dii_sector()

ggplot(mpg) +
   geom_histogram(aes(cyl, fill = class), position = "dodge", bins = 5) +
   scale_fill_r2dii_sector()
```

scale_colour_r2dii_tech

scale_colour_r2dii_tech

Custom 2DII technology colour and fill scales

15

Description

A custom discrete colour and fill scales with colours from 2DII technology palette.

Usage

```
scale_colour_r2dii_tech(sector, technologies = NULL, ...)
scale_fill_r2dii_tech(sector, technologies = NULL, ...)
```

Arguments

A string. Sector name specifying a colour palette. Run unique(r2dii.plot:::technology_colours\$set to see available sectors.

technologies A character vector. Specifies technologies to use as colours and their order. Run unique(r2dii.plot:::technology_colours\$technology) to see available technologies (pay attention if they match the sector). Similar to value parameter in ggplot2::scale_colour_manual().

Other parameters passed on to ggplot2::discrete_scale().

Value

An object of class "ScaleDiscrete".

See Also

```
Other r2dii scales: scale_colour_r2dii(), scale_colour_r2dii_sector()
```

```
library(ggplot2, warn.conflicts = FALSE)

ggplot(mpg) +
   geom_point(aes(displ, hwy, color = class)) +
   scale_colour_r2dii_tech("automotive")

ggplot(mpg) +
   geom_histogram(aes(cyl, fill = class), position = "dodge", bins = 5) +
   scale_fill_r2dii_tech("automotive")
```

16 theme_2dii

sda

An example of an sda-like dataset

Description

Dataset imitating the output of r2dii.analysis::target_sda().

Usage

sda

Format

An object of class spec_tbl_df (inherits from tbl_df, tbl, data.frame) with 110 rows and 6 columns.

Source

```
https://github.com/RMI-PACTA/r2dii.plot/issues/55.
```

See Also

```
r2dii.analysis::target_sda().
Other datasets: market_share, r2dii_colours
```

Examples

sda

theme_2dii

Complete theme

Description

A ggplot theme which can be applied to all graphs to appear according to 2DII plotting aesthetics.

Usage

```
theme_2dii(
  base_size = 12,
  base_family = "Helvetica",
  base_line_size = base_size/22,
  base_rect_size = base_size/22
)
```

to_title 17

Arguments

```
base_sizebase font size, given in pts.base_familybase font familybase_line_sizebase size for line elementsbase_rect_sizebase size for rect elements
```

Value

```
An object of class "theme", "gg".
```

See Also

```
ggplot2::theme_classic.
```

Examples

```
library(ggplot2, warn.conflicts = FALSE)
ggplot(mtcars) +
  geom_histogram(aes(mpg), bins = 10) +
  theme_2dii()
```

to_title

Replicate labels produced with qplot_*() *functions*

Description

- to_title() converts labels like qplot_emission_intensity().
- recode_metric_trajectory() converts labels like qplot_trajectory().
- recode_metric_techmix() converts labels like qplot_techmix().
- spell_out_technology() converts technology labels like qplot_techmix().

Usage

```
to_title(x)
recode_metric_techmix(x)
recode_metric_trajectory(x)
spell_out_technology(x)
```

Arguments

x A character vector.

to_title

Value

A character vector.

```
to_title(c("a.string", "another_STRING"))
metric <- c("projected", "corporate_economy", "target_xyz", "else")
recode_metric_trajectory(metric)
recode_metric_techmix(metric)
spell_out_technology(c("gas", "ice", "coalcap", "hdv"))</pre>
```

Index

```
* datasets
                                                scale_color_r2dii (scale_colour_r2dii),
    market_share, 2
                                                        13
    r2dii_colours, 12
                                                scale_color_r2dii_sector
    sda, 16
                                                        (scale_colour_r2dii_sector), 14
* plotting functions
                                                scale_color_r2dii_tech
    theme 2dii, 16
                                                        (scale_colour_r2dii_tech), 15
* r2dii scales
                                                scale_colour_r2dii, 13, 14, 15
    scale_colour_r2dii, 13
                                                scale_colour_r2dii_sector, 13, 14, 15
    scale_colour_r2dii_sector, 14
                                                scale_colour_r2dii_tech, 13, 14, 15
    scale_colour_r2dii_tech, 15
                                                scale_fill_r2dii (scale_colour_r2dii),
ggplot2::discrete_scale(), 13-15
                                                scale_fill_r2dii_sector
ggplot2::scale_colour_manual(), 13-15
                                                        (scale_colour_r2dii_sector), 14
ggplot2::theme_classic, 17
                                                scale_fill_r2dii_tech
                                                        (scale_colour_r2dii_tech), 15
market_share, 2, 4, 5, 7-9, 12, 16
                                                scenario_colours(r2dii_colours), 12
                                                sda, 2, 3, 6, 12, 16
palette_colours (r2dii_colours), 12
                                                sector_colours (r2dii_colours), 12
plot_emission_intensity, 3
                                                spell_out_technology (to_title), 17
plot_emission_intensity(), 9
plot_techmix, 4
                                                technology_colours (r2dii_colours), 12
plot_techmix(), 10
                                                theme_2dii, 16
plot_trajectory, 5
                                                to_title, 17
plot_trajectory(), 11
prep_emission_intensity, 6
prep_techmix, 7
prep_trajectory, 8
qplot_emission_intensity, 9
qplot_emission_intensity(), 17
qplot_techmix, 10
qplot_techmix(), 17
qplot_trajectory, 11
qplot_trajectory(), 17
r2dii.analysis::target_market_share(),
r2dii.analysis::target_sda(), 16
r2dii_colours, 2, 12, 16
recode_metric_techmix (to_title), 17
recode_metric_trajectory (to_title), 17
```