Lagrangeův interpolační polynom

2. listopadu 2005

Lenka Baráková

Obsah

Najděte polynon	n procházející body	[-1, 9], [1, 1],	[2, 6].		. 2
Najděte polynon	n procházející body	[1,3], [2,-2],	[-1, 0],	[0,1].	. 17

◁

i	0	1	2
x_i	-1	1	2
y_i	9	1	6

i	0	1	2
x_i	-1	1	2
y_i	9	1	6

$$L_2(x) = 9l_0(x) + l_1(x) + 6l_2(x).$$

i	0	1	2
x_i	-1	1	2
y_i	9	1	6

$$L_2(x) = 9l_0(x) + l_1(x) + 6l_2(x).$$

$$l_0(x)$$

 $\triangleright \triangleright$

i	0	1	2
x_i	-1	1	2
y_i	9	1	6

$$L_2(x) = 9l_0(x) + l_1(x) + 6l_2(x).$$

$$l_0(x) = \frac{(x-1)(x-2)}{}$$

V čitateli $l_0(x)$ jsou kořenové činitele příslušné všem x_i , kromě x_0 .

i	0	1	2
x_i	-1	1	2
y_i	9	1	6

$$L_2(x) = 9l_0(x) + l_1(x) + 6l_2(x).$$

$$l_0(x) = \frac{(x-1)(x-2)}{(-1-1)(-1-2)}$$

Do jmenovatele píšeme totéž, co do čitatele, jen za x dosazujeme číslo $x_0 = -1$

i	0	1	2
x_i	-1	1	2
y_i	9	1	6

$$L_2(x) = 9l_0(x) + l_1(x) + 6l_2(x).$$

$$l_0(x) = \frac{(x-1)(x-2)}{(-1-1)(-1-2)} = \frac{1}{6}(x^2 - 3x + 2)$$

4 D DD

i	0	1	2
x_i	-1	1	2
y_i	9	1	6

$$L_2(x) = 9l_0(x) + l_1(x) + 6l_2(x).$$

$$l_0(x) = \frac{(x-1)(x-2)}{(-1-1)(-1-2)} = \frac{1}{6}(x^2 - 3x + 2)$$
$$l_1(x) = \frac{(x+1)(x-2)}{(1+1)(1-2)}$$

◁

 $\triangleright \triangleright$

Najděte L(x) procházející body [-1,9], [1,1] a [2,6].

i	0	1	2
x_i	-1	1	2
y_i	9	1	6

$$L_2(x) = 9l_0(x) + l_1(x) + 6l_2(x).$$

$$l_0(x) = \frac{(x-1)(x-2)}{(-1-1)(-1-2)} = \frac{1}{6}(x^2 - 3x + 2)$$
$$l_1(x) = \frac{(x+1)(x-2)}{(1+1)(1-2)} = -\frac{1}{2}(x^2 - x - 2),$$

i	0	1	2
x_i	-1	1	2
y_i	9	1	6

$$L_2(x) = 9l_0(x) + l_1(x) + 6l_2(x).$$

$$l_0(x) = \frac{(x-1)(x-2)}{(-1-1)(-1-2)} = \frac{1}{6}(x^2 - 3x + 2)$$
$$l_1(x) = \frac{(x+1)(x-2)}{(1+1)(1-2)} = -\frac{1}{2}(x^2 - x - 2),$$
$$l_2(x) = \frac{(x+1)(x-1)}{(2+1)(2-1)}$$

Najdeme pomocný polynom příslušný $x_2 = 2$.

◁

 $\triangleright \triangleright$

Najděte L(x) procházející body [-1,9], [1,1] a [2,6].

i	0	1	2
x_i	-1	1	2
y_i	9	1	6

$$L_2(x) = 9l_0(x) + l_1(x) + 6l_2(x).$$

$$l_0(x) = \frac{(x-1)(x-2)}{(-1-1)(-1-2)} = \frac{1}{6}(x^2 - 3x + 2)$$
$$l_1(x) = \frac{(x+1)(x-2)}{(1+1)(1-2)} = -\frac{1}{2}(x^2 - x - 2),$$
$$l_2(x) = \frac{(x+1)(x-1)}{(2+1)(2-1)} = \frac{1}{3}(x^2 - 1).$$

$$L_2(x) = 9\frac{1}{6}(x^2 - 3x + 2) - \frac{1}{2}(x^2 - x - 2) + 6\frac{1}{3}(x^2 - 1)$$

$$L_2(x) = 9\frac{1}{6}(x^2 - 3x + 2) - \frac{1}{2}(x^2 - x - 2) + 6\frac{1}{3}(x^2 - 1)$$
$$= x^2\left(\frac{3}{2} - \frac{1}{2} + 2\right) + x\left(-\frac{9}{2} + \frac{1}{2}\right) + 3 + 1 - 2$$

$$L_2(x) = 9\frac{1}{6}(x^2 - 3x + 2) - \frac{1}{2}(x^2 - x - 2) + 6\frac{1}{3}(x^2 - 1)$$
$$= x^2 \left(\frac{3}{2} - \frac{1}{2} + 2\right) + x\left(-\frac{9}{2} + \frac{1}{2}\right) + 3 + 1 - 2$$
$$= 3x^2 - 4x + 2.$$

◁

 $\triangleright \triangleright$

i	0	1	2	3
x_i	1	2	-1	0
y_i	3	-2	0	1

i	0	1	2	3
x_i	1	2	-1	0
y_i	3	-2	0	1

$$L_3(x) = 3l_0(x) + (-2)l_1(x) + 0l_2(x) + 1l_3(x) = 3l_0(x) - 2l_1(x) + l_3(x).$$

0 D DD

i	0	1	2	3
x_i	1	2	-1	0
y_i	3	-2	0	1

$$L_3(x) = 3l_0(x) + (-2)l_1(x) + 0l_2(x) + 1l_3(x) = 3l_0(x) - 2l_1(x) + l_3(x).$$

$$l_0(x)$$

Hledámé pomocný polynom příslušný $x_0 = 1$.

i	0	1	2	3
x_i	1	2	-1	0
y_i	3	-2	0	1

$$L_3(x) = 3l_0(x) + (-2)l_1(x) + 0l_2(x) + 1l_3(x) = 3l_0(x) - 2l_1(x) + l_3(x).$$

$$l_0(x) = \frac{(x-2)(x+1)x}{1-x}$$

V čitateli $l_0(x)$ jsou kořenové činitele příslušné všem x_i , kromě x_0 .

i	0	1	2	3
x_i	1	2	-1	0
y_i	3	-2	0	1

$$L_3(x) = 3l_0(x) + (-2)l_1(x) + 0l_2(x) + 1l_3(x) = 3l_0(x) - 2l_1(x) + l_3(x).$$

$$l_0(x) = \frac{(x-2)(x+1)x}{(1-2)(1+1)1}$$

◁

Do jmenovatele píšeme totéž, co do čitatele, jen za x dosazujeme číslo $x_0 = 1$.

i	0	1	2	3
x_i	1	2	-1	0
y_i	3	-2	0	1

$$L_3(x) = 3l_0(x) + (-2)l_1(x) + 0l_2(x) + 1l_3(x) = 3l_0(x) - 2l_1(x) + l_3(x).$$

$$l_0(x) = \frac{(x-2)(x+1)x}{(1-2)(1+1)1} = -\frac{1}{2}(x-2)(x^2+x)$$

Číslo vytkneme a polynom roznásobníme.

◁

DD

i	0	1	2	3
x_i	1	2	-1	0
y_i	3	-2	0	1

$$L_3(x) = 3l_0(x) + (-2)l_1(x) + 0l_2(x) + 1l_3(x) = 3l_0(x) - 2l_1(x) + l_3(x).$$

$$l_0(x) = \frac{(x-2)(x+1)x}{(1-2)(1+1)1} = -\frac{1}{2}(x-2)(x^2+x) = -\frac{1}{2}(x^3-x^2-2x),$$

i	0	1	2	3
x_i	1	2	-1	0
y_i	3	-2	0	1

$$L_3(x) = 3l_0(x) + (-2)l_1(x) + 0l_2(x) + 1l_3(x) = 3l_0(x) - 2l_1(x) + l_3(x).$$

$$l_0(x) = \frac{(x-2)(x+1)x}{(1-2)(1+1)1} = -\frac{1}{2}(x-2)(x^2+x) = -\frac{1}{2}(x^3-x^2-2x),$$

$$l_1(x) = \frac{(x-1)(x+1)x}{(2-1)(2+1)2} = \frac{(x^2-1)x}{6} = \frac{1}{6}(x^3-x),$$

i	0	1	2	3
x_i	1	2	-1	0
y_i	3	-2	0	1

$$L_3(x) = 3l_0(x) + (-2)l_1(x) + 0l_2(x) + 1l_3(x) = 3l_0(x) - 2l_1(x) + l_3(x).$$

$$l_0(x) = \frac{(x-2)(x+1)x}{(1-2)(1+1)1} = -\frac{1}{2}(x-2)(x^2+x) = -\frac{1}{2}(x^3-x^2-2x),$$

$$l_1(x) = \frac{(x-1)(x+1)x}{(2-1)(2+1)2} = \frac{(x^2-1)x}{6} = \frac{1}{6}(x^3-x),$$

Pomocný polynom $l_2(x)$ nemusíme hledat, protože $y_2 = 0$ a polynom $l_2(x)$ je tedy násobený nulou.

4

i	0	1	2	3
x_i	1	2	-1	0
y_i	3	-2	0	1

$$L_3(x) = 3l_0(x) + (-2)l_1(x) + 0l_2(x) + 1l_3(x) = 3l_0(x) - 2l_1(x) + l_3(x).$$

$$l_0(x) = \frac{(x-2)(x+1)x}{(1-2)(1+1)1} = -\frac{1}{2}(x-2)(x^2+x) = -\frac{1}{2}(x^3-x^2-2x),$$

$$l_1(x) = \frac{(x-1)(x+1)x}{(2-1)(2+1)2} = \frac{(x^2-1)x}{6} = \frac{1}{6}(x^3-x),$$

$$l_3(x) = \frac{(x-1)(x-2)(x+1)}{(0-1)(0-2)(0+1)} = \frac{(x^2-1)(x-2)}{2} = \frac{1}{2}(x^3-2x^2-x+2).$$

Najdeme pomocný polynom příslušný $x_3 = 0$.

$$L_3(x) = -\frac{3}{2}(x^3 - x^2 - 2x) - 2\frac{1}{6}(x^3 - x) + \frac{1}{2}(x^3 - 2x^2 - x + 2)$$

$$L_3(x) = -\frac{3}{2}(x^3 - x^2 - 2x) - 2\frac{1}{6}(x^3 - x) + \frac{1}{2}(x^3 - 2x^2 - x + 2)$$
$$= x^3\left(-\frac{3}{2} - \frac{1}{3} + \frac{1}{2}\right) + x^2\left(\frac{3}{2} - 1\right) + x\left(3 + \frac{1}{3} - \frac{1}{2}\right) + 1$$

4 D DD

$$L_3(x) = -\frac{3}{2}(x^3 - x^2 - 2x) - 2\frac{1}{6}(x^3 - x) + \frac{1}{2}(x^3 - 2x^2 - x + 2)$$
$$= x^3 \left(-\frac{3}{2} - \frac{1}{3} + \frac{1}{2}\right) + x^2 \left(\frac{3}{2} - 1\right) + x \left(3 + \frac{1}{3} - \frac{1}{2}\right) + 1$$
$$= -\frac{4}{3}x^3 + \frac{1}{2}x^2 + \frac{17}{6}x + 1.$$

Je snadné ověřit, že polynom má vlastnosti požadované v zadání.

◁

 $\triangleright \triangleright$