# Solutions du CLRS 3 ed.

Exercises : (23/12/957)
Problems : (0/6/158)

10 juin 2017

# Table des matières

| Li | ste des Algorithmes                                 | ii |
|----|-----------------------------------------------------|----|
| 1  | The Role of Algorithms in Computing                 | 1  |
|    | 1.1 Algorithms                                      | 1  |
|    | 1.2 Algorithms as a technology                      | 1  |
|    | 1.3 Problems                                        |    |
| 2  | Getting Started                                     | 3  |
|    | 2.1 Insertion Sort                                  | 3  |
|    | 2.2 Analyzing algorithms                            | 4  |
|    | 2.3 Designing algorithms                            | 6  |
|    | 2.4 Problems                                        | 8  |
| 3  | Growth of Functions                                 | 10 |
|    | 3.1 Asymptotic notation                             | 10 |
|    | 3.2 Standard notations and common functions         | 10 |
| 4  | Divide-and-Conquer                                  | 11 |
|    | 4.1 The maximum-subarray problem                    | 11 |
|    | 4.2 Strassen's algorithm for matrix multiplication  | 11 |
|    | 4.3 The substitution method for solving recurrences | 11 |
| A  | Summation                                           | 12 |
|    | A.1 Summation formulas and propreties               | 12 |
|    | A.2 Bounding summations                             | 14 |
|    | A.3 Problems                                        | 15 |
| Ré | éférences                                           | 16 |

# Liste des Algorithmes

| 2.1.1 | Decr-Insertion-Sort     | • |  | • |  | • |  |  |  | • |  | • | • |  | • |  |  | 3  |
|-------|-------------------------|---|--|---|--|---|--|--|--|---|--|---|---|--|---|--|--|----|
| 2.1.2 | Linear-Search           |   |  | • |  |   |  |  |  |   |  |   |   |  |   |  |  | 3  |
| 2.1.3 | Add-Binary-Integer      |   |  |   |  |   |  |  |  |   |  |   |   |  |   |  |  | 4  |
| 2.2.4 | Selection-Sort          |   |  | • |  |   |  |  |  |   |  |   |   |  |   |  |  | 5  |
| 2.3.5 | Merge                   |   |  | • |  |   |  |  |  |   |  |   |   |  |   |  |  | 6  |
| 2.3.6 | Rec-Bin-Search          |   |  | • |  |   |  |  |  |   |  |   |   |  |   |  |  | 7  |
| 4.1.7 | Brute-Find-Max-Subarray |   |  |   |  |   |  |  |  |   |  |   |   |  |   |  |  | 11 |

# 1 The Role of Algorithms in Computing

### 1.1 Algorithms

**Solution:** 

tions.

**1.1-1** Give a real-world example that requires sorting or a real-world example that requires computing a convex hull.

Solution:

1.1-2 Other than speed, what other measures of efficiency might one use in a real-world setting?

1.1-3 Select a data structure that you have seen previously, and discuss its strengths and limita-

Solution:

1.1-4 How are the shortest-path and traveling-salesman problems given above similar? How are they different?

Solution:

1.1-5 Come up with a real-world problem in which only the best solution will do. Then come up with one in which a solution that is "approximately" the best is good enough.

# 1.2 Algorithms as a technology

**1.2-1** Give an example of an application that requires algorithmic content at the application level, and discuss the function of the algorithms involved.

Solution:

**1.2-2** Suppose we are comparing implementations of insertion sort and merge sort on the same machine. For inputs of size n, insertion sort runs in  $8n^2$  steps, while merg sort runs in  $64n\lg n$  steps. For which values of n does insertion sort beat merge sort?

Solution:

**1.2-3** What is the smallest value of n such that an algorithm whose running time is  $100n^2$  runs faster than an algorithm whose running time is  $2^n$  on the same machine?

# 1.3 Problems

# 1-1 Comparison of running times

For each function f(n) and time t in the following table, determine the largest size n of a problem that can be solved in time t, assuming that the algorithm to solve the problem takes f(n) microseconds.

# 2 Getting Started

#### 2.1 Insertion Sort

**2.1-1** Using Figure 2.2 as a model, illustrate the operation of Insertion-Sort on the array  $A = \langle 31, 41, 59, 26, 41, 58 \rangle$ .

Solution:

**2.1-2** Rewrite the Insertion-Sort procedure to sort into non-increasing instead of non-decreasing order.

#### **Solution:**

```
Algorithme 1. Decr-Insertion-Sort (A)
```

```
for j = 2 to A.length
    key = A[j]

// Insert A[j] into the sorted sequence A[1..j-1].

i = j-1

while i > 0 and A[i] < key

A[i+1] = A[i]

i = i-1

A[i+1] = key</pre>
```

2.1-3 Consider the searching problem:

**Input**: A sequence of n numbers  $A = \langle a_1, a_2, ..., a_n \rangle$  and a value v.

**Output:** An index i such that v = A[i] or the special value NIL if v does not appear in A. Write pseudocode for **linear search**, which scans through the sequence, looking for v. Using a loop, prove that your algorithm is correct. Make sure that your loop invariant fulfills the three necessary properties.

#### **Solution:**

**Algorithme 2.** Linear-Search (A, v)

```
1 i = 1

2 while i \le A.length and A[i] \ne v

3 i = i + 1

4 if i \le A.length

5 return i

6 else

7 return NIL
```

- Initialisation : i = 1[1..i - 1] est vide, donc ne contient pas v.
- Conservation

Pour tout  $1 \le i \le A$ . length, pour la boucle i, on a [1..i-1] ne contenant pas v. Le corps de la boucle est executé si et seulement si  $A[i] \ne v$  et que  $i \le A$ . length. Dans ce cas, avant l'itération i+1, le sous-tableau [1..i] ne contient pas v.

— Terminaison

Il y a deux cas de terminaison:

- quand i = A.length + 1, l'algorithme retourne NIL et l'invariant de boucle confirme (en subtituant i par A.length + 1) que le tableau [1..A.length] ne contient v;
- il existe un  $1 \le i \le A$ . length tel que A[i] = v, l'invariant de boucle dit que [1..i-1] ne contient pas v, ce qui est vraie. Dans ce cas l'algorithme retourne i.
- **2.1-4** Consider the problem of adding two n-bit binary integers, stored in two n-element arrays A and B. The sum of the two integers should be stored in binary form in an (n + 1)-element array C. State the problem formally and write pseudocode for adding the two integers.

#### **Solution:**

**Input**: Deux nombres binaires a et b sous forme de vecteur  $A = \langle a_1, ..., a_n \rangle$  et  $B = \langle b_1, ..., b_n \rangle$  tel que pour tout  $i \in [1, n], a_i, b_i \in \{0, 1\}$ . Avec l'indice i = 1 désignant le bit le plus significant.

**Output :** Le vecteur  $C = \langle c_1, \dots, c_{n+1} \rangle$  qui représente c = a + b en binaire.

**Algorithme 3.** Add-Binary-Integer (A, B)

```
1   carry = 0
2   for i = n downto 1
3       tmp = A[i] + B[i] + carry
4       C[i+1] = tmp mod 2
5       carry = tmp/2
6   C[i] = carry
```

### 2.2 Analyzing algorithms

**2.2-1** Express the function  $n^3/1000 - 100n^2 - 100n + 3$  in terms of  $\Theta$ -notation.

**Solution**:  $\Theta(n^3)$ 

**2.2-2** Consider sorting n numbers stored in array A by first finding the smallest element of A and exchanging it with the element in A[1]. Then find the second smallest element of A, and exchange it with A[2]. Continue in this manner for the first n-1 elements of A. Write pseudocode for this algorithm, which is known as **selection sort**. What loop invariant does this algorithm maintain? Why does it need to run for only the first n-1 elements, rather than for all n elements? Give the best-case and worst-case running times of selection sort in  $\Theta$ -notation.

#### **Solution:**

**Algorithme 4.** Selection-Sort (A)

```
1 for i = 1 to n - 1

2 min = i

3 for j = i + 1 to n

4 if A[min] > A[j]

5 min = j

6 if min \neq j

7 swap(A, min, j)
```

— Invariant de boucle :

Le tableau [1..i-1] est trié avant la *i*ème itération et tous les éléments dans [i..n] sont supérieurs à ceux dans [1..i-1].

- À la n-1 itération, le tableau [1..n-2] est trié, il ne reste plus qu'à comparer A[n-1] et A[n].
- Temps d'exécution :
  - Cas optimal : A déjà trié,  $\Theta(n^2)$ ;
  - Cas le plus défavorable : A trié de façon décroissante,  $\Theta(n^2)$ .

**2.2-3** Consider linear search again (see Exercise 2.1-3). How many elements of the input sequence need to be checked on the average, assuming that the element being searched for is equally likely to be any element in the array? How about in the worst case? What are the average-case and worst-case running times of linear search in  $\Theta$ -notation? Justify your answers.

#### **Solution:**

- Cas moyen :  $\frac{1}{n} \sum_{i=1}^{n} i = \frac{n+1}{2}$ ;
- Cas le plus défavorable : n + 1.

Donc  $\Theta(n)$  dans les deux cas.

2.2-4 How can we modify almost any algorithm to have a good best-case running time?

#### **Solution:**

### 2.3 Designing algorithms

**Solution:** 

**2.3-2** Rewrite the Merge procedure so that it does not use sentinels, instead stopping once either array L or R has had all its elements copied back to A and then copying the remainder of the other array back into A.

#### **Solution:**

**Algorithme 5.** Merge (A, p, q, r)

```
1 \quad n_1 = q - p + 1
 2 n_2 = r - q
 3 Let L[1..n_1 + 1] and R[1..n_2 + 1] be new arrays
 4 for i = 1 to n_1
     L[i] = A[p+i-1]
 5
 6 for j = 1 to n_2
    R[j] = A[q+j]
 7
 8 i = 1
 9 j = 1
    for k = p to r
         if L[i] \le R[j] and i \le n_1
11
              A[k] = L[i]
12
              i = i + 1
13
         else
14
              A[k] = R[j]
15
16
             j = j + 1
```

**2.3-3** *Use mathematical induction to show that when n is an exact power of 2, the solution of the recurrence* 

$$T(n) = \begin{cases} 2 & if \ n = 2, \\ 2T(n/2) + n & if \ n = 2^k, \ for \ k > 1 \end{cases}$$

is  $T(n) = n \lg n$ .

**Solution :** Soit  $n = 2^p$ , avec  $p \in \mathbb{N}^*$ .

— <u>Initialisation</u>:  $T(2) = 2 \lg 2 = 2$  est vraie.

- <u>Hérédité</u> : Soit k < p et supposons que  $T(2^k) = 2^k \lg 2^k = 2^k k$ . Alors  $T(2^{k+1}) = 2T(2^k) + 2^{k+1} = 2^{k+1}(k+1)$ .
- Conclusion : Pour tout  $p \in \mathbb{N}^*$ , on a bien  $T(2^p) = 2^p p$ .
- **2.3-4** We can express insertion sort as a recursive procedure as follows. In order to sort A = [1..n], we recursively sort A = [1..n-1] and then insert A[n] into the sorted array A[1..n-1] Write a recurrence for the running time of this recursive version of insertion sort.

#### **Solution:**

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1 \\ T(n-1) + \Theta(n) & \text{otherwise} \end{cases}$$

2.3-5 Referring back to the searching problem (see Exercise 2.1-3), observe that if the sequence A is sorted, we can check the midpoint of the sequence against and eliminate half of the sequence from further consideration. The **binary search** algorithm repeats this procedure, halving the size of the remaining portion of the sequence each time. Write pseudocode, either iterative or recursive, for binary search. Argue that the worst-case running time of binary search is  $\Theta(\lg n)$ .

#### **Solution:**

**Algorithme 6.** Rec-Bin-Search (A, p, q, v)

Calculons le temps d'exécution au cas le plus défavorable. On a :

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1 \\ T(n/2) + \Theta(1) & \text{otherwise} \end{cases}.$$

Supposons que  $n = 2^p$ , alors par la méthode d'arbre récursive, on a un arbre dégénéré de hauteur p dans lequel chaque nœud est étiqueté par une constante c. Il suffit donc

de calculer

$$\sum_{i=0}^{p} c = (p+1)c$$
$$= (\lg n + 1)c$$
$$= \Theta(\lg n).$$

**2.3-6** Observe that the **while** loop of lines 5–7 of the Insertion-Sort procedure in Section 2.1 uses a linear search to scan (backward) through the sorted subarray A[1..j-1]. Can we use a binary search (see Exercise 2.3-5) instead to improve the overall worst-case running time of insertion sort to  $\Theta(n \lg n)$ ?

Solution:

**2.3-7** ★ Describe a  $\Theta(n \lg n)$ -time algorithm that, given a set S of n integers and another integer x, determines whether or not there exist two elements in S whose sum is exactly x.

Solution:

#### 2.4 Problems

2-1 Insertion sort on small arrays in merge sort

Although merge sort runs in  $\Theta(n \lg n)$  worst-case time and insertion sort runs in  $\Theta(n^2)$  worst-case time, the constant factors in insertion sort can make it faster in practice for small problem sizes on many machines. Thus, it makes sense to **coarsen** the leaves of the recursion by using insertion sort within merge sort when subproblems become sufficiently small. Consider a modification to merge sort in which n = k sublists of length k are sorted using insertion sort and then merged using the standard merging mechanism, where k is a value to be determined.

- **a.** Show that insertion sort can sort the n = k sublists, each of length k, in  $\Theta(nk)$  worst-case time.
- **b.** Show how to merge the sublists in  $\Theta(n \lg(n/k))$  worst-case time.
- c. Given that the modified algorithm runs in  $\Theta(nk + n \lg(n/k))$  worst-case time, what is the largest value of k as a function of n for which the modified algorithm has the same running time as standard merge sort, in terms of  $\Theta$ -notation?
- **d.** How should we choose k in practice?

# 2-2 Correctness of bubblesort

Bubblesort is a popular, but inefficient, sorting algorithm. It works by repeatedly swapping adjacent elements that are out of order.

|     | Solution:                                                                        |
|-----|----------------------------------------------------------------------------------|
| 2-3 | Correctness of Horner's rule                                                     |
|     | The following code fragment implements Horner's rule for evaluating a polynomial |
|     | Solution:                                                                        |
| 2-4 | Inversions                                                                       |
|     | Solution:                                                                        |

- 3 Growth of Functions
- 3.1 Asymptotic notation
- 3.2 Standard notations and common functions

# 4 Divide-and-Conquer

## 4.1 The maximum-subarray problem

**4.1-1** What does Find-Maximum-Subarray return when all elements of A are negative?

**Solution**: L'indice du plus grand élément du tableau.

**4.1-2** Write pseudocode for the brute-force method of solving the maximum-subarray problem. Your procedure should run in  $\Theta(n^2)$  time.

```
Algorithme 7. Brute-Find-Max-Subarray (A)
```

```
index = period = -1
 2 sum = -\infty
    for i = 1 to A. length
 3
         tmp-sum = 0
 4
         for tmp-period = 1 to A. length - i + 1
 5
 6
              tmp-sum = tmp-sum + A[i + tmp-period - 1]
              if tmp-sum > sum
 7
                  index = i
 8
                  period = tmp-period
 9
                  sum = tmp-sum
10
    return (index, period, sum)
11
```

- 4.2 Strassen's algorithm for matrix multiplication
- 4.3 The substitution method for solving recurrences

### A Summation

Références: [1]

## A.1 Summation formulas and propreties

**A.1-1** Find a simple formula for  $\sum_{k=1}^{n} (2k-1)$ 

**Solution:** 

$$\sum_{k=1}^{n} (2k-1) = n(n+1) - n$$
$$= n^{2}.$$

**A.1-2** \* Show that  $\sum_{k=1}^{n} 1/(2k-1) = \ln(\sqrt{n}) + O(1)$  by manipulating the harmonic series.

**Solution:** 

$$\sum_{k=1}^{n} \frac{1}{2k-1} = H_n - \frac{1}{2} \sum_{k=1}^{n} \frac{1}{k}$$
$$= \frac{1}{2} H_n$$
$$= \ln(\sqrt{n}) + O(1).$$

**A.1-3** Show that  $\sum_{k=0}^{\infty} k^2 x^k = x(1+x)/(1-x)^3$  for 0 < |x| < 1.

**Solution:** 

$$\sum_{k=0}^{\infty} k^2 x^k = x \left( \frac{x}{(1-x)^2} \right)'$$

$$= \frac{x}{(1-x)^2} + \frac{2x}{(1-x)^3}$$

$$= \frac{x(1+x)}{(1-x)^3}.$$

**A.1-4** \* Show that  $\sum_{k=0}^{\infty} (k-1)/2^k = 0$ .

**Solution :** Soit  $S = \sum_{k=0}^{\infty} \frac{k-1}{2^k}$ . Alors  $2S = \sum_{k=0}^{\infty} \frac{k-1}{2^{k-1}} = -2 + \sum_{k=0}^{\infty} \frac{k}{2^k}$ . Donc

$$2S - S = -2 + \sum_{k=0}^{\infty} \frac{1}{2^k}$$
  
= 0.

**A.1-5**  $\star$  Evaluate the sum  $\sum_{k=1}^{\infty} (2k+1)x^{2k}$  for |x| < 1.

**Solution:** 

$$\sum_{k=1}^{\infty} (2k+1)x^{2k} = \left(\sum_{k=1}^{\infty} x^{2k+1}\right)'$$

$$= \left(\frac{x}{1-x^2} - x\right)'$$

$$= \frac{3x^2}{1-x^2} + \frac{2x^4}{(1-x^2)^2}$$

**A.1-6** Prove that  $\sum_{k=1}^{n} O(f_k(i)) = O(\sum_{k=1}^{n} f_k(i))$  by using the linearity property of summations.

**Solution :** Soit pour tout  $k \in [1, n]$ ,  $g_k \in O(f_k)$ , autrement dit  $g_k \le c_k f_k$  est vérifié à partir d'un rang  $N_k$  avec  $c_k > 0$ . On a donc  $\sum_{k=1}^n g_k \le \sum_{k=1}^n c f_k$  vérifié à partir d'un rang  $N = \max(N_1, ..., N_n)$  et  $c = \max(c_1, ..., c_n)$ . D'où  $\sum_{k=1}^n g_k \in O(\sum_{k=1}^n f_k)$ .

**A.1-7** Evaluate the product  $\prod_{k=1}^{n} 2 \cdot 4^k$ .

**Solution :** Soit  $P = \prod_{k=1}^{n} 2 \cdot 4^k = \prod_{k=1}^{n} 2^{2k+1}$ . On a

$$\lg P = \sum_{k=1}^{n} 2k + 1$$
$$= n(n+2)$$

Finalement,  $P = 2^{n(n+2)}$ .

**A.1-8**  $\star$  Evaluate the product  $\prod_{k=2}^{n} (1 - 1/k^2)$ .

#### **Solution:**

$$\prod_{k=2}^{n} (1 - \frac{1}{k^2}) = \prod_{k=2}^{n} \frac{k-1}{k} \cdot \frac{k+1}{k}$$
$$= \frac{1}{2} \cdot \frac{n+1}{n}$$
$$= \frac{n+1}{2n}.$$

# A.2 Bounding summations

**A.2-1** Show that  $\sum_{k=1}^{n} 1/k^2$  is bounded above by a constant.

**Solution:** 

$$\sum_{k=1}^{n} \frac{1}{k^2} = 1 + \sum_{k=2}^{n} \frac{1}{k^2}$$

$$\leq 1 + \int_{1}^{n} \frac{1}{x^2} dx$$

$$= 1 + (1 - \frac{1}{n})$$

$$= 2 - \frac{1}{n}$$

$$\leq 2.$$

**A.2-2** Find an asymptotic upper bound on the summation  $\sum_{k=0}^{\lfloor \lg n \rfloor} \lceil n/2^k \rceil$ .

**A.2-3** Show that the nth harmonic number is  $\Omega(\lg n)$  by splitting the summation.

**A.2-4** Approximate  $\sum_{k=1}^{n} k^3$  with an integral.

Solution: On a

$$\int_0^n x^3 \, \mathrm{d}x \le \sum_{k=1}^n k^3 \le \int_1^{n+1} x^3 \, \mathrm{d}x$$

ce qui donne

$$\frac{n^4}{4} \le \sum_{k=1}^n k^3 \le \frac{(n+1)^4 - 1}{4}.$$

Ainsi,  $\sum_{k=1}^{n} k^3 = \Theta(n^4)$ .

**A.2-5** Why didn't we use the integral approximation (A.12) directly on  $\sum_{k=1}^{n} 1/k$  to obtain an upper bound on the nth harmonic number?

**Solution :** Car la primitive de 1/x n'est pas définie en 0.

# A.3 Problems

### A-1 Bounding summations

Give asymptotically tight bounds on the following summations. Assume that r > 0 and s > 0 are constants.

- $\mathbf{a.} \ \sum_{k=1}^{n} k^{r}.$
- **b.**  $\sum_{k=1}^{n} \lg^{s} k.$
- $\mathbf{c.} \ \sum_{k=1}^{n} k^r \lg^s k$

# Références

[1] Jānis Lazovskis. University of Illinois at Chicago – MCS 401 Homework 1 grader solutions.