DEAS NO 090411
PROcessed By STI FACILITY

"Made avallable under NASA sponsorship in the interest of early and wide dissemination of Earth Resources Survey Program information and without liability for any use made thereof."

7.6-10.468. UR-14870D

Title of Investigation: 28990, Investigation of

Environmental Change Pattern

in Japan.

Principal Investigator: Dr. Takakazu Maruyasu (;

Science University of Tokyo

Noda City, Chiba-Ken, 278, Japan

Co Investigator: Hiroaki Ochiai

Toba Merchant Marine College Toba City, Mie-Ken, Japan

Date of Submission: June: 30, 1976

Quarterly Progress Report for Period April - June 1976

Original photography may be purchased from: EROS Data Center 10th and Dakota Avenue Sioux Falls, SD 57198

(E76-10468) INVESTIGATION OF ENVIRONMENTAL CHANGE PATTERN IN JAPAN. APPLICATION OF LANDSAT-2 DATA TO ENVIRONMENTAL STUDIES IN COASTAL ZONE Quarterly Progress Report, Apr. - Jun. 1976 (Science Univ. of Tokyo G3/43.00468

N76-31616 HC\$3.50

Unclas

Application of LANDSAT-2 Data to Environmental Studies in Coastal Zone

SIS Code 902.6 Investigation 28990

Hiroaki Ochiai Toba Merchant Marine College Toba City, Mie-Ken, Japan

1 Red tide in Seto Inland Sea

Seto Inland Sea, especially eastern half of it is noted as one of the most polluted inland water area in Japan and we have experienced red tide through the year in everywhere. According to the report announced by The Branch Office of Fishery Agency in Kobe, the total occurrence of red tide for a year in Seto Inland Sea is inclined to increasing year by year and it exceeded two hundred times in recent year as shown in Table 1.

Table 1 Total Occurrence of Red Tide in Seto Inland Sea

Year	1967	1968	1969	1970	1971	1972	1973	1974
Total No.	48	61	67	79	136	164	210	298

As shown in Figure 1, almost area of Osaka Bay, Sea of Harima and Sea of Bingo which consist eastern half of Seto Inland. Sea were suffered by red tide in 1973 and 1974(data of 1975 is not yet received). In 1974, we have experienced the red tide in winter once we have not experienced.

2 Monitoring of red tide by LANDSAT data

An MSS-4 imagery acquired on December 30, 1975, was used for the purpose of investigation. In late December of 1975 and early January of 1976, several red tide consisted by Skeltonema were reported by fishing boat in coastal area of Sea of Harima along But no report was accepted which tells the the northern coast. occurrence of red tide in central area of Sea of Harima in these In Figure 2, several patterns indicated by black arrows were estimated as red tide area depend on the experience of LANDAT-1; investigation and airborn remote sensing. The reason why the red tide detected in central area of Sea of Harima by LANDSAT imagery was not reported by fishing boat was estimated that, almost fishing boat were not at sea for fishing as year end and new year holidays. Monitoring of red tide by LANDSAT like this case is supposed very effective in Seto Inland Sea in future.

Figure 1 Maps of eastern half of Seto Inland Sea. Shaded area means the boundary of red tide were sighted through the year.

ORIGINAL PAGE IS OF POOR QUALITY

Figure 2 MSS-4 imagery of LANDSAT-2 acquired over Seto Inland Sea. December 30, 1975.

3 Monitoring of sedimentation

Along the southern coast of Hokkaido between Tomakomai and Urakawa, typical expanding pattern of sediment was detected in MSS-4 imagery. As indicated in author's previous report(1), MSS-4 imagery is very effective to detect the dritribution of sediment, especially suspended sediment from the river.

In Figure 3, expanding pattern from the mouth of Saru River extended to southwest direction more than 15 Km long. Saru River is noted as polluted water with suspended sediment. So, the density of suspended sediment is more concentrative compared with surrounding area.

According to the report issued by Hokkaido Prefecture, Saru River was named depend on it's characteristic. Namely, the river water contains so much suspended sediment on normal condition, the river was named as "River which flows sand" in Japanese.

Figure 3 MSS-4 Imagery detected the distribution of sediment. June 11, 1975

Except the expanding pattern from the mouth of Saru River, the distribution of sediment along the coast was directed to eastward caused by shore current in this area. So, stand on the distribution pattern of sediment, shore current would be recognized easily in LANDSAT MSS data obtained at lowest condition of sea level.

Along the northeast coast of Hokkaido between Monbetsu and Abashiri, the distribution pattern of sediment was recognized as the index of shore current in this area as shown in Figure 4.

At the outside of Lake Saroma, a round-type pattern indicated by black arrow was detected and it was estimated as sediment bulges out to the sea through sandy shoals which consist the outside bank of Lake Saroma.

Figure 4 Sediment bulge detected in MSS-4 imagery. June 11, 1975

Reference

(1) Hiroaki Ochiai: Multidisciplinary Application of LANDSAT-2

Data to Marine Environment in Central Japan, Progress
report of LANDSAT-2 investigation.

....

:

288020

"Made available under NASA sponsorship in the interest of early and wide dissemination of Earth Resources Survey Program information and without liability for any use made thereot." RECEIVED BY
NASA STI FACILITY
DATE: 9/5/1/
DCAF NO. 0 9/1/
PROCESSED BY
NASA STI FACILITY
ESA - SDS AIAA

Title of Investigation: 28990, Investigation of

Environmental Change Pattern

in Japan [7.6-10.468.

Principal Investigator: Dr. Takakazu Maruyasu

Science University of Tokyo

Noda City, Chiba-Ken, 278, Japan

Co-Investigator: Hiroaki Ochiai

Toba Merchant Marine College Toba City, Mie-Ken, Japan

Date of Submission: June, 30, 1976

Quarterly Progress Report for Period April - June 1976

Original photography may be purchased from EROS Data Center 10th and Dakota Avenue Sioux Falls, SD 57198

REPRODUCED BY
NATIONAL TECHNICAL
INFORMATION SERVICE
U.S. DEPARTMENT OF COMMERCE
SPRINGFIELD, VA. 22161

Digital Analysis of LANDSAT-2 MSS Data in Coastal Zone in Central Japan

Hiroaki Ochiai Toba Merchant Marine College Toba City, Mie-Ken, Japan SIS Code 902.5 Investigation 28990 No.

July 28, 1976

1 Introduction

For the purpose of attempt to classify the field informations revealed by LANDSAT-2, the author tried digital analysis of multispectral scanner data using LARSYS package. Although LARSYS was well known as developed for agriculture remote sensing in first step, depend on the ajustment of the software, recently it was clarified as very effective in various part of remote sensing. As shown in Figure 1, the coastal area in Kii Peninsula was not well classified by Photo-interpretation.

2 MIS Tape

Before the digital analysis, the CCT Tape(9 trucks, 1600 BPI) delivered from NASA was reformatted to MIS(Multispectral Image Storage) Tape which include several Runs data—(1) identification record, (2) data records, (3) end-of-file record.

3 Analysis flow and result

Analysis flow by un-supervised technique was showed in Figure 2. In first step of analysis, the quality check of the data was performed in Histogram. Namely, we could identified the relative radiance in each wavelength.

In second step, several training fields showed in Figure 3 were settled in Picture Print which shows the distribution of resolution by Lines and Columns. Line means scan lines and Column means samples within a scan line of the data. In this case, the Line interval and Column interval were reduced for data compression each two intervals. Relative radiance scale of 0 to 255 were displayed in Picture Print.

In third step, Clustered information were calculated on three points and Cluster Processor Information were as follows:-

As shown in Figure 4, Cluster Points Means and Cluster Variances were carried out statastically. For example, for Class 4, Cluster Points Means indicated as 44.21 to channel 1, 48.46 to channel 2, 69.19 to channel 3 and 30.73 to channel 4. Compared with Histograms for Cluster showed in Figure 6-1, Cluster Points Means were identified satisfactorily. Cluster Variances were also well identified to each wavelength. For Class 4, 51.58 to channel 1, 85.63 to channel 2, 59.02 to channel 3 and 16.62 to channel 4.

In training field showed in upper part of Figure 5-1, Number of Points per Cluster were classified by Symbol and total Points for each Class were calculated. General total of Samples were identified as 2074.

In fourth step, Separability Information were calculated in Cluster as shown in Figure 7. Separability between Classes of interest as a function of combinations of spectral bands were also very important for satisfical analysis of multispectral scanner data. The best evaluation of quotient in LARSYS was known as 0.75.

In fifth step, Cluster Grouping were defined to nine classes as shown in Figure 8. In this case, Cluster 3 and 5 were grouped to 3, Cluster 6 and 9 were grouped to 5, and Cluster 7 and 8 were grouped to 6.

In sixth step, Classification by per field analysis were carried out as shown in Figure 9. In these Classification Maps, we could obtained qualitative determination of the classification.

Reference

(1) LARS Annual Report-Vol. 4(1970), p, 7 - 40.

MSS-5 imagery

MSS-7 imagery

Figure 1 Enlarged LANDSAT-2 imageries. Sept. 11, 1976

Figure 2 LARSYS analysis flow(Un-Supervised classification).

FIELDS TO BE CLUSTERED LISTED IN ORDER PROCESSED

	RUN NUMBER	FIELD DESIG.	FIRST	LAST	LINE INT.	FIRST	COLUMN	COLUMN INT.
1	75091100		1	100	3	700	820	2
2	75051100		. 27C	400	3	500	580	2
3	75091100		560	620	3	300	590	2
4	75091100		700	850	3	200	400	2

Figure 3 Training field.

CLUSTERING INFORMATION

NUMBER OF CLUSTERS = 12 CLUSTERING UNIT SIZE = 12095 CLUSTERING INTERVAL = 1

CHANNEL NUMBER 1 SPECTRAL RANGE 0.50 TO 0.60 MICROMETERS CALIBRATION

CHANNEL NUMBER 2 SPECTRAL RANGE 0.60 TO 0.70 MICROMETERS CALIBRATION

CHANNEL NUMBER 3 SPECTRAL RANGE 0.70 TO 0.80 MICROMETERS CALIBRATION

CHANNEL NUMBER 4 SPECTRAL RANGE 0.80 TO 1.10 MICROMETERS CALIBRATION

CLUSTER	PCINTS	MEANS			
12334556789	111 137 1316 230 2075 868 2014 953	CH(1) 113.51 71.42 18.47 44.21 17.25 25.56 16.18 14.78	CH(2) 123.11 83.12 16.15 48.46 14.78 27.13 13.53 11.87	CH(3) 125.45 96.68 60.19 69.19 50.82 42.03 32.65	CH(4) 56.44 40.12 32.68 30.73 27.10 23.48 21.89 16.02
10 11 12	351 204 365 3471	29.59 22.92 15.02 14.90	32.26 21.28 11.49 8.90	35.16 23.87 14.41 4.18	12.81 8.42 5.25 C.15

CLUSTER VARIANCES

123456789	CH(1) 170.29 77.60 6.28 51.58 2.89 11.92 3.26 14.79	112.78 8.24 85.63 5.24 20.95 5.47 4.07 26.57	23.92 7.03 12.29 32.07	16.62 3.15 8.13 4.17 5.27 21.15
10 11 12	14.79 14.71 10.17 4.23	26.57 20.39 6.70 1.39	32.07 24.94 13.11 1.55	21.15 10.05 6.36 0.15

Figure 4 Clustering information.

	77777777 C3000111 02466024	000000000000 77777777777 11122222333 46802466024	00000000000000000000000000000000000000	0003c5c5c0030006c0900CC000356 7777777777777777777686835685 18657777788688599990000111112 468024650246802468024680
11117070511470760450147076687561470	24.7 2 2 4 4 2 2 4 2 2 2 2 2 2 2 2 2 2 2 2	112121222 114722221 VX 122222 VX 122222 VX 122222 VX 12222 VX	1221/1271/1271/12 1270/2007/2007/2007/2007/2007/2007/2007/	1222 Vanich inch de himmhannians Y (2 i Vi. hamman handinian handiniand of S (2 i Vi. hamman handinian handiniand of S (2 i Vi. hamman handinian handiniand of S (2 i Vi. hamman handiniand handiniand of S (2 i Vi. hamman handiniand of V V handiniand handi

NUPBER OF POINTS PER CLUSTER

CLUSTER .	1	2	3	4	5	6	7	. 8	5	10	
SYMBOL			1	7	2	٧	Υ	8	K	K	_
POINTS	0	0	210	2	332	49	432	273	27	23	
CLUSTER	11	12									
SYPECL	D	×								A Section	
POINTS	35 -	668									

FIELD 75091106

NO. CF SAMPLES SORE . | LIVES | 500- 520 (FY 2)

	C36CC03100000CCCCCCCCCCCCCCCCCCCCCCCCCCC	
000077788555556468811773	2; yyz]21]	

NUMBER OF POINTS PER CLUSTER

							SOUTH TATES				
CLUSTER	1	2 .	3	4	. 5	6	- 7	8	9	10	
SYMBOL			,	. 7	2	- v	Y	8	K	N	
PCINTS	29	63	341	107	495	195	511	304	17	36	
CLUSTER	11	12									
SYMBOL	C	N									
PCINTS	153	80									

Figure 5-1 Field informations.

NUMBER OF POINTS PER CLUSTER CLUSTER 10 12 SYMBOL D 456 TYPE NO. CF SAMPLES 5151 COLUMNS 200- 400 (EY 2) 17 15 1 NFDRMATION

NUMBER OF POINTS PER CLUSTER

	CLUSTER	1	2	3	4	5	6	7	3	9	10	
SYMPOL	SYMECL			1	7	2	٧	Y	6	ĸ	N	
	POINTS	78	68	650	104	737	252	532	176	116	100	
	CLUSTER	11	12									
	SYMBOL	D	W									

Figure 5-2 Field informations(continued)

Figure 6-1 Histgrams for CLUSTER.

JUNE 19.1976 2 31 01 PM LARSYS VERSION 3

Figure 6-2 Histgrams for CLUSTER (continued).

Figure 6-3 Histgrams for CLUSTER (continued).

SEPARABILITY INFORMATION

					0111.0111	OUOT
I	J	0(1,J)	D(1)	0(1)	D(1)+D(J)	QUOT
111111111112222222222233333333333344444444	234567890123456789012456789012567890126789012789012890129012012112	211182293094648616718028199192268839987161717995443885575544559979805171822934557554455597791111111111111111111111111	86C7646246583379891198255341432156643389091813459662149319401242842815555522658888888888869353812149752269265133116872287898134391811191823331218777777766993333333333333333333333333333	8.9470768344768998999649799791760029276215556291386614420113914579797979797979797979797979797979797979	912663 91	177709917798536188609448738908232241802638966921309354253330485368767080823348128596549777620771088236284848966921309354253330488536870753397661289848853685596870753397661289886707533976673861

AVERAGE QUOTIENT

2.655

Figure 7 Separability information calculated in CLUSTER.

LABORATORY FOR APPLICATIONS OF REMOTE SENSING PURDUE UNIVERSITY

RESULTS OF CLUSTER GROUPING

Th	RESHOLD = 0.	750
GROUP	CLUSTERS	NO. PTS.
1	1	111
2	2	137
3	3 5	1316 2075
4	4	230
5	6 9	868 351
6	7 8	2014 953
7	10	204
8	11	365
9	12	3471

Figure 8 Grouping of CLUSTER.

Figure 9-1 Classification map of northern part of Kii Peninsula, near Kumano City.

· The same to the same to the same

Figure 9-2 Classification map of southern part of Kii Peninsula, near Shionomisaki.

. . .

.