Thermodynamics

Paolo Bettelini

Contents

1 Termodinamica		2		
2	Dilatazione			
	2.1	Solidi	2	
	2.2	Fluidi (liquidi e gas)	2	
3	Gas		2	
	3.1	Trasformazione isobarica	2	
	3.2	Trasformazione isocòra		
	3.3	Trasformazione isotermica	3	
	3.4	Gas perfetti	3	
		3.4.1 Equazione di stato dei gas perfetti		
4	Calo	ore	4	
	4.1	Capacità termica	4	
	4.2	Calore specifico	4	
		Calore latente		

1 Termodinamica

La temperatura è una grandezza operativa (C°, K) mentre il calore è una forma di energia (Joule).

Tipi di termometro: dilatazione (es. mercurio), contatto (tensione in funzione della temperatura), infrarossi (potenza onda infrarossi riflessa).

La pressione di vari gas confinati è linearmente proporzionale alla temperatura. Tutte le funzioni linear della pressione P(T) hanno lo stesso punto in comune; quando la temperatura è 0 (zero assoluto).

2 Dilatazione

2.1 Solidi

La dilatazione di un oggetto in una direzione Δl in funzione del cambio di temperatura ΔT è proporzionale e data da

$$\Delta l = l_0 \cdot \alpha \cdot \Delta T$$

dove l_0 è la lunghezza iniziale e α è il coefficiente di dilatazione lineare $(\frac{1}{K})$. Questo funziona solamente per certi intervalli di temperatura, ossia il solido non deve cambiare stato.

Un solido si dilata in tutte le direzioni. La dilatazione dell'area o del volume di un solito possono essere approssimate nella seguente maniera

$$\Delta A \approx 2 \cdot A_0 \cdot \alpha \cdot \Delta T$$
$$\Delta V \approx 3 \cdot V_0 \cdot \alpha \cdot \Delta T$$

2.2 Fluidi (liquidi e gas)

Un liquido/gas, non avendo forma propria, ha una dilatazione che può essere quantificata solo in termini volumetrici

$$\Delta V = V_0 \cdot \gamma \cdot \Delta T$$

dove γ è il coefficiente di dilatazione cubica.

3 Gas

3.1 Trasformazione isobarica

Cambiamento dello stato quando la pressione è costante.

$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$

3.2 Trasformazione isocòra

Cambiamento dello stato quando il volume rimane costante.

$$\frac{P_1}{T_1} = \frac{P_2}{T_2}$$

3.3 Trasformazione isotermica

Cambiamento dello stato quando la temperatura è costante.

$$P_1 \cdot V_1 = P_2 \cdot V_2$$

3.4 Gas perfetti

Un gas perfetto rispetta tutte e 3 le leggi assieme

$$\frac{P_1\cdot V_1}{T_1} = \frac{P_2\cdot V_2}{T_2}$$

3.4.1 Equazione di stato dei gas perfetti

Un gas perfetto rispetta l'identità

$$pV = nRT$$

dove

• p: Pressione

• V: Volume

- n: Numero di moli

• R: Costante universale dei gas $8.314\frac{J}{\mathrm{mol}\cdot K}$

• T: Temperatura

4 Calore

4.1 Capacità termica

La capacità termica di un sistema è la capacità di cambiare temperatura scambiando calore (energia).

$$C = \frac{Q}{\Delta T}, \quad \left[\frac{\mathbf{J}}{\mathbf{K}}\right]$$

dove C è la capacità termica. Q è il calore scambiato e ΔT è la variazione di temperatura.

La capacità termica di un sistema con più sostanze è data dalla somma delle singole capacità termiche.

$$C_{\text{system}} = \sum_{j} C_{j}$$

4.2 Calore specifico

Il calore specifico determina la capacità termica per unità di massa. Corrisponde alla quantità di calore (energia) necessaria per innalzare, o diminuire, di un unità la temperatura di una quantità di sostanza.

$$c_s = \frac{C}{m}, \quad \left[\frac{J}{K \cdot Kg}\right]$$

dove c_s è il calore specifico. C è la capacità termica e m è la massa.

4.3 Calore latente

Il calore latente è la quantità di energia per massa durante lo svolgimento di un passaggio di stato.

$$L = \frac{Q}{m}, \quad \left[\frac{\mathbf{J}}{\mathbf{Kg}}\right]$$