1-Block factors of g measures

Mark Piraino

University of Victoria

Topics in Mathematical Physics

$$P = \begin{bmatrix} 1/3 & 1/3 & 1/3 \\ 1/2 & 0 & 1/2 \\ 1/3 & 1/3 & 1/3 \end{bmatrix} u = \begin{bmatrix} 3/8 \\ 1/4 \\ 3/8 \end{bmatrix}$$

- $\Sigma_A = \left\{ (x_i)_{i=0}^{\infty} \in \{1, 2, 3\}^{\mathbb{N}} : P_{x_i x_{i+1}} > 0 \right\}$
- P gives rise to a Markov measure μ_P on Σ_A .

$$\mu_P[x_0x_1\cdots x_n] = u_{x_0}P_{x_0x_1}P_{x_1x_2}\cdots P_{x_{n-1}x_n}$$

•
$$\pi: \{1,2,3\} \to \{r,b\}.$$

$$\pi(1) = r \ , \ \pi(2) = r \ \text{and} \ \pi(3) = b$$

$$P = \begin{bmatrix} 1/3 & 1/3 & 1/3 \\ 1/2 & 0 & 1/2 \\ 1/3 & 1/3 & 1/3 \end{bmatrix} u = \begin{bmatrix} 3/8 \\ 1/4 \\ 3/8 \end{bmatrix}$$

$$P = \begin{bmatrix} 1/3 & 1/3 & 1/3 \\ 1/2 & 0 & 1/2 \\ 1/3 & 1/3 & 1/3 \end{bmatrix} u = \begin{bmatrix} 3/8 \\ 1/4 \\ 3/8 \end{bmatrix}$$

• $\pi: \{1,2,3\} \to \{r,b\}.$

$$\pi(1)$$
 = r , $\pi(2)$ = r and $\pi(3)$ = b

• π gives a map $\pi : \Sigma_A \to \{r, b\}^{\mathbb{N}}$. 1 2 3 2 3 3 2 1 ...

$$P = \begin{bmatrix} 1/3 & 1/3 & 1/3 \\ 1/2 & 0 & 1/2 \\ 1/3 & 1/3 & 1/3 \end{bmatrix} u = \begin{bmatrix} 3/8 \\ 1/4 \\ 3/8 \end{bmatrix}$$
 • We would like to understand $\pi_* \mu_P$.

• $\pi: \{1,2,3\} \to \{r,b\}.$

$$\pi(1)$$
 = r , $\pi(2)$ = r and $\pi(3)$ = b

• π gives a map $\pi: \Sigma_A \to \{r, b\}^{\mathbb{N}}$. 12323321 ...

$$P^T = \left[\begin{array}{ccc} 1/3 & 1/2 & 1/3 \\ 1/3 & 0 & 1/3 \\ 1/3 & 1/2 & 1/3 \end{array} \right]$$

$$u = \begin{bmatrix} 3/8 \\ 1/4 \\ 3/8 \end{bmatrix}$$

$$P^T = \begin{bmatrix} 1/3 & 1/2 & 1/3 \\ 1/3 & 0 & 1/3 \\ \hline 1/3 & 1/2 & 1/3 \end{bmatrix}$$

$$u = \begin{bmatrix} 3/8 \\ 1/4 \\ \hline 3/8 \end{bmatrix}$$

$$P^T = \begin{bmatrix} 1/3 & 1/2 & 1/3 \\ 1/3 & 0 & 1/3 \\ \hline 1/3 & 1/2 & 1/3 \end{bmatrix}$$

$$u = \begin{bmatrix} 3/8 \\ 1/4 \\ \hline 3/8 \end{bmatrix}$$

$$\mathcal{P}_{rr} = \begin{bmatrix} 1/3 & 1/2 \\ 1/3 & 0 \end{bmatrix} \text{ , } \mathcal{P}_{rb} = \begin{bmatrix} 1/3 \\ 1/3 \end{bmatrix}$$

$$\mathcal{P}_{br}$$
 = $\begin{bmatrix} 1/3 & 1/2 \end{bmatrix}$, \mathcal{P}_{bb} = $\begin{bmatrix} 1/3 \end{bmatrix}$

$$u_r = \begin{bmatrix} 3/8 \\ 1/4 \end{bmatrix} , u_b = \begin{bmatrix} 3/8 \end{bmatrix}$$

$$P^T = \begin{bmatrix} 1/3 & 1/2 & 1/3 \\ 1/3 & 0 & 1/3 \\ \hline 1/3 & 1/2 & 1/3 \end{bmatrix}$$

$$u = \begin{bmatrix} 3/8 \\ 1/4 \\ \hline 3/8 \end{bmatrix}$$

$$\mathcal{P}_{rr} = \begin{bmatrix} 1/3 & 1/2 \\ 1/3 & 0 \end{bmatrix}$$
 , $\mathcal{P}_{rb} = \begin{bmatrix} 1/3 \\ 1/3 \end{bmatrix}$

$$\mathcal{P}_{br}$$
 = $\begin{bmatrix} 1/3 & 1/2 \end{bmatrix}$, \mathcal{P}_{bb} = $\begin{bmatrix} 1/3 \end{bmatrix}$

$$u_r = \begin{bmatrix} 3/8 \\ 1/4 \end{bmatrix} , u_b = \begin{bmatrix} 3/8 \end{bmatrix}$$

$$\pi_* \mu_P[rrbr] = 1^T \mathcal{P}_{rb} \mathcal{P}_{br} \mathcal{P}_{rr} u_r$$

• $\pi_*\mu_P$ is not Markov. That is it has infinite memory.

- $\pi_*\mu_P$ is not Markov. That is it has infinite memory.
- Does $\pi_*\mu_P$ "depend weakly on the past"?

- $\pi_*\mu_P$ is not Markov. That is it has infinite memory.
- Does $\pi_*\mu_P$ "depend weakly on the past"?

$$g(x) = \lim_{n \to \infty} \frac{\pi_* \mu_P[x_0 x_1 \cdots x_n]}{\pi_* \mu_P[x_1 \cdots x_n]}$$

- $\pi_*\mu_P$ is not Markov. That is it has infinite memory.
- Does $\pi_*\mu_P$ "depend weakly on the past"?

$$g(x) = \lim_{n \to \infty} \frac{\pi_* \mu_P[x_0 x_1 \cdots x_n]}{\pi_* \mu_P[x_1 \cdots x_n]}$$

• Is $\operatorname{var}_n g = O(\theta^n)$ for $0 < \theta < 1$?

Theorem (Chazottes-Ugalde '03, Yoo '10)

Yes, provided π is "mixing" in fibers.

Theorem (Chazottes-Ugalde '03, Yoo '10)

Yes, provided π is "mixing" in fibers.

Theorem (Chazottes-Ugalde '03, Yoo '10)

Yes, provided π is "mixing" in fibers.

$$g(x) = \lim_{n \to \infty} \frac{1^T \mathcal{P}_{x_n x_{n-1}} \cdots \mathcal{P}_{x_2 x_1} \mathcal{P}_{x_1 x_0} u_{x_0}}{1^T \mathcal{P}_{x_n x_{n-1}} \cdots \mathcal{P}_{x_2 x_1} u_{x_1}}$$

Theorem (Chazottes-Ugalde '03, Yoo '10)

Yes, provided π is "mixing" in fibers.

(Not a) proof.

$$g(x) = \lim_{n \to \infty} \frac{1^T \mathcal{P}_{x_n x_{n-1}} \cdots \mathcal{P}_{x_2 x_1} \mathcal{P}_{x_1 x_0} u_{x_0}}{1^T \mathcal{P}_{x_n x_{n-1}} \cdots \mathcal{P}_{x_2 x_1} u_{x_1}}$$

Notice that all the products of the \mathcal{P}_{ij} 's of length 2 are positive.

Theorem (Chazottes-Ugalde '03, Yoo '10)

Yes, provided π is "mixing" in fibers.

(Not a) proof.

$$g(x) = \lim_{n \to \infty} \frac{1^T \mathcal{P}_{x_n x_{n-1}} \cdots \mathcal{P}_{x_2 x_1} \mathcal{P}_{x_1 x_0} u_{x_0}}{1^T \mathcal{P}_{x_n x_{n-1}} \cdots \mathcal{P}_{x_2 x_1} u_{x_1}}$$

Notice that all the products of the \mathcal{P}_{ij} 's of length 2 are positive. Positive matrices are strict contractions in the Hilbert Metric hence the exponential rate for $\operatorname{var}_n \log g$.

Theorem (Chazottes-Ugalde '03, Yoo '10)

Yes, provided π is "mixing" in fibers.

(Not a) proof.

$$g(x) = \lim_{n \to \infty} \frac{1^T \mathcal{P}_{x_n x_{n-1}} \cdots \mathcal{P}_{x_2 x_1} \mathcal{P}_{x_1 x_0} u_{x_0}}{1^T \mathcal{P}_{x_n x_{n-1}} \cdots \mathcal{P}_{x_2 x_1} u_{x_1}}$$

Notice that all the products of the \mathcal{P}_{ij} 's of length 2 are positive. Positive matrices are strict contractions in the Hilbert Metric hence the exponential rate for $\operatorname{var}_n \log g$.

• This property that all products are positive is "mixing" in fibers.

Theorem (Chazottes-Ugalde '03, Yoo '10)

Yes, provided π is "mixing" in fibers.

(Not a) proof.

$$g(x) = \lim_{n \to \infty} \frac{1^T \mathcal{P}_{x_n x_{n-1}} \cdots \mathcal{P}_{x_2 x_1} \mathcal{P}_{x_1 x_0} u_{x_0}}{1^T \mathcal{P}_{x_n x_{n-1}} \cdots \mathcal{P}_{x_2 x_1} u_{x_1}}$$

Notice that all the products of the \mathcal{P}_{ij} 's of length 2 are positive. Positive matrices are strict contractions in the Hilbert Metric hence the exponential rate for $\operatorname{var}_n \log g$.

- This property that all products are positive is "mixing" in fibers.
- Is the class of g measures with $var_n \log g = O(\theta^n)$ for some $0 < \theta < 1$ closed under factor maps which are mixing in fibers?

Some Results on g measures

Theorem (P. '18)

Yes.

in fact more is true....

Some Results on g measures

Theorem (P. '18)

Yes.

in fact more is true....

Theorem (P.)

Suppose that Σ_A is a topologically mixing shift of finite type, μ a g measure and π a factor map which is mixing in fibers. If $\log g$ is Bowen (respectively Walters, Hölder) then the logarithm of the g function for $\pi_*\mu$ is Bowen (respectively Walters, Hölder).

Some Results on g measures

Theorem (P. '18)

Yes.

in fact more is true....

Theorem (P.)

Suppose that Σ_A is a topologically mixing shift of finite type, μ a g measure and π a factor map which is mixing in fibers. If $\log g$ is Bowen (respectively Walters, Hölder) then the logarithm of the g function for $\pi_*\mu$ is Bowen (respectively Walters, Hölder).

All of the "classical" uniqueness regimes for g measures are closed under closed under factor maps which are mixing in fibers.

The replacement for P is the Ruelle operator $L_g: C(\Sigma_A) \to C(\Sigma_A)$

$$L_g f(x) = \sum_{A_{ix_0}=1} g(ix) f(ix).$$

 μ_g is a g measure if $L_g^*\mu_g$ = μ_g .

The replacement for P is the Ruelle operator $L_g: C(\Sigma_A) \to C(\Sigma_A)$

$$L_gf(x) = \sum_{A_{ix_0}=1} g(ix)f(ix).$$

 μ_g is a g measure if $L_g^*\mu_g$ = μ_g .

$$C(\Sigma_A) = \bigoplus_{i=1,2,3} C([i])$$

The replacement for P is the Ruelle operator $L_g: C(\Sigma_A) \to C(\Sigma_A)$

$$L_gf(x) = \sum_{A_{ix_0}=1} g(ix)f(ix).$$

 μ_g is a g measure if $L_g^*\mu_g$ = μ_g .

$$L_g = \begin{bmatrix} L_{11} & L_{21} & L_{31} \\ L_{12} & 0 & L_{32} \\ L_{13} & L_{23} & L_{33} \end{bmatrix}$$

$$C(\Sigma_A) = \bigoplus_{i=1,2,3} C([i])$$

$$L_{ij}:C([i])\to C([j])$$

$$L_{ij}f = \chi_{[j]}L_g(f\chi_{[i]})$$

$$L_{ij}f(x) = g(ix)f(ix)\chi_{[j]}(x)$$

$$\mu_g[x_0x_1\cdots x_n] = \langle L_{x_{n-1}x_n}\cdots L_{x_1x_2}L_{x_0x_1}1, \mu_g \rangle$$

$$L_g = \left[\begin{array}{ccc} L_{11} & L_{21} & L_{31} \\ L_{12} & 0 & L_{32} \\ L_{13} & L_{23} & L_{33} \end{array} \right]$$

$$L_g = \begin{bmatrix} L_{11} & L_{21} & L_{31} \\ L_{12} & 0 & L_{32} \\ \hline L_{13} & L_{23} & L_{33} \end{bmatrix}$$

$$L_g = \begin{bmatrix} L_{11} & L_{21} & L_{31} \\ L_{12} & 0 & L_{32} \\ \hline L_{13} & L_{23} & L_{33} \end{bmatrix}$$

$$\mathcal{L}_{rr} = \begin{bmatrix} L_{11} & L_{21} \\ L_{12} & 0 \end{bmatrix} \mathcal{L}_{rb} = \begin{bmatrix} L_{31} \\ L_{32} \end{bmatrix}$$

$$\mathcal{L}_{br} = \begin{bmatrix} L_{13} & L_{23} \end{bmatrix} \mathcal{L}_{bb} = \begin{bmatrix} L_{33} \end{bmatrix}$$

$$L_g = \begin{bmatrix} L_{11} & L_{21} & L_{31} \\ L_{12} & 0 & L_{32} \\ \hline L_{13} & L_{23} & L_{33} \end{bmatrix}$$

$$\mathcal{L}_{rr} = \begin{bmatrix} L_{11} & L_{21} \\ L_{12} & 0 \end{bmatrix} \mathcal{L}_{rb} = \begin{bmatrix} L_{31} \\ L_{32} \end{bmatrix}$$

$$\mathcal{L}_{br} = \begin{bmatrix} L_{13} & L_{23} \end{bmatrix} \mathcal{L}_{bb} = \begin{bmatrix} L_{33} \end{bmatrix}$$
Set $\mathcal{X}_r = \bigoplus_{i=1,2} C([i])$ and $\mathcal{X}_b = C([3])$

$$\mathcal{L}_{rr} : \mathcal{X}_r \to \mathcal{X}_r \mathcal{L}_{rb} : \mathcal{X}_b \to \mathcal{X}_r$$

 $\mathcal{L}_{bn}: \mathcal{X}_r \to \mathcal{X}_b \ \mathcal{L}_{bb}: \mathcal{X}_b \to \mathcal{X}_b$

$$\mathcal{L}_{rr} = \begin{bmatrix} L_{11} & L_{21} \\ L_{12} & 0 \end{bmatrix} \mathcal{L}_{rb} = \begin{bmatrix} L_{31} \\ L_{32} \end{bmatrix}$$

$$L_g = \begin{bmatrix} L_{11} & L_{21} & L_{31} \\ L_{12} & 0 & L_{32} \\ \hline L_{13} & L_{23} & L_{33} \end{bmatrix}$$

$$Set \ \mathcal{X}_r = \bigoplus_{i=1,2} C([i]) \ \text{and} \ \mathcal{X}_b = C([3])$$

$$\mathcal{L}_{rr} : \mathcal{X}_r \to \mathcal{X}_r \ \mathcal{L}_{rb} : \mathcal{X}_b \to \mathcal{X}_r$$

$$\mathcal{L}_{br} : \mathcal{X}_r \to \mathcal{X}_b \ \mathcal{L}_{bb} : \mathcal{X}_b \to \mathcal{X}_b$$

$$\pi_* \mu_g[rrbr] = \langle \mathcal{L}_{rb} \mathcal{L}_{br} \mathcal{L}_{rr} 1, \mu_g \rangle$$

$$\Lambda_r \subseteq \mathcal{X}_r$$
 and $\Lambda_b \subseteq \mathcal{X}_b$

$$\Lambda_r = \{ f \in \mathcal{X}_r : f \ge 0 f(x) \le e^{\alpha_k} f(y) x \sim_k y \} \text{ where } \alpha_k \xrightarrow{k \to \infty} 0.$$

$$\Lambda_r \subseteq \mathcal{X}_r$$
 and $\Lambda_b \subseteq \mathcal{X}_b$

$$\Lambda_r = \{ f \in \mathcal{X}_r : f \ge 0 \\ f(x) \le e^{\alpha_k} f(y) \\ x \sim_k y \} \text{ where } \alpha_k \xrightarrow{k \to \infty} 0.$$

$$\Lambda_b \xrightarrow{\mathcal{L}_{rr}\mathcal{L}_{rb}\cdots\mathcal{L}_{bb}} \Lambda_r \xrightarrow{\mathcal{L}_{rb}\mathcal{L}_{bb}\cdots\mathcal{L}_{br}} \Lambda_b \xrightarrow{\mathcal{L}_{rr}\mathcal{L}_{rb}\cdots\mathcal{L}_{bb}} \Lambda_r \to \cdots$$

$$\Lambda_r \subseteq \mathcal{X}_r \text{ and } \Lambda_b \subseteq \mathcal{X}_b$$

$$\Lambda_r = \{ f \in \mathcal{X}_r : f \ge 0 f(x) \le e^{\alpha_k} f(y) x \sim_k y \} \text{ where } \alpha_k \xrightarrow{k \to \infty} 0.$$

$$\Lambda_b \xrightarrow{\mathcal{L}_{rr}\mathcal{L}_{rb}\cdots\mathcal{L}_{bb}} \Lambda_r \xrightarrow{\mathcal{L}_{rb}\mathcal{L}_{bb}\cdots\mathcal{L}_{br}} \Lambda_b \xrightarrow{\mathcal{L}_{rr}\mathcal{L}_{rb}\cdots\mathcal{L}_{bb}} \Lambda_r \to \cdots$$

Regulairty of g + "Mixing in fibers" \downarrow

Finite Projective diameter

Regularty of g function for $\pi_*\mu_g$