1. Fibonacci Problem – Plant Branch Growth

A rare plant grows following a Fibonacci-like pattern. In the first cycle, it has 1 branch. In the second cycle, it grows 1 more. From the third cycle onward, the number of new branches equals the total number of branches in the previous two cycles.

Task:

How many branches will the plant have after 12 growth cycles?

Hint:

Model this as a Fibonacci sequence:

Cycle $1 \rightarrow 1$ branch

Cycle $2 \rightarrow 1$ branch

Cycle $3 \rightarrow 2$ branches

Cycle $4 \rightarrow 3$ branches

...

Find the total number of branches at cycle 12.

2. LIS Problem – Student Score Trends

A student's test scores over a semester are recorded as:

[72, 74, 69, 78, 80, 81, 75, 85, 88, 70, 92]

Task:

Determine the longest consecutive sequence of scores where each score is higher than the last one (i.e., a strictly increasing subsequence).

What is the length of this increasing trend?

3. Knapsack Problem - Server CPU Allocation

Problem:

You manage a server with 30 CPU units available. You have a list of 7 tasks, each requiring a certain number of CPU units and offering a reward in user satisfaction score:

Task	CPU Time	Reward
A	5	30
В	10	40
С	3	20
D	8	50
Е	7	45
F	4	25
G	6	35

Task:

Which combination of tasks should you select to maximize the total reward without exceeding the 30 CPU unit limit?