Pharmahacks 2025 Error 404 Team Name Not Found

Genevieve Laprade

Multiple Sequence Alignment

Sarah Ford

Rewant Chauhan

Brandon Perestrelo

Reinforcemen t Learning

Agent: Model **Action**: Step **Environment**:

Sequence Alignment

State: Score calculation for current alignment

Reward:Positive

Score(New) > Score(Old)

- Step is made

Negative

Score(New) < Score(Old)

- Step is not made
- Model is penalized

Challenge: Exponential number of possible steps

Model: Deep-Q Learning

Mathematical approximation of all the possible steps given a state

Neural Network chooses the best action (step)

Visualize Data Spread

Trend's from Top Scorers

No strong trends between number of moves or gameplay time and high scores

:(

Model Theory

Distance Algorithm

Calculate how far each base pair is from alignment

Spatial awareness task component enhances model accuracy and efficiency

Importance of first steps

Algorithm input: Correlate changes in distance matrix to gearbox score

Model + Task

Adding the distance algorithm task as a parameter in the neural network helps refine learning to make it more MSA-specific

Features:

- Steps
- Accepted Pairs
- Start
- Distance Matrix

Target Variable:

- Score

Goal:

Model solution score should beat test solution score

Moves variable omitted for simplicity

Model

Adding the distance algorithm task as a parameter in the neural network helps refine learning to make it more MSA-specific

Features:

- Steps
- Accepted Pairs
- Start
- Distance Matrix

Target Variable:

- Score

Goal:

Model solution score should beat test solution score

Moves variable omitted for simplicity

O2 Results

Evaluation Metrics

Evaluation Metrics

Model Metrics currently in queue as of submission deadline

Conclusions

Biological Significanc e

- This algorithm is a starting point for small sequences
- Much more complicated to apply to large sequences
- Could be refined to be more biology-specific with the integration of the spatial task algorithm

Future Directions

- Increasing models layers and episodes
- Evaluate carbon footprint
- Use Leave-One-Out cross validation to refine algorithm
- Expand on distance matrix calculations to refine efficiency