Immersive Data Science Project1 EDA

November 3, 2019

0.1 Final Project Submission

Please fill out: * Student name: Florian Fedrau

0.2 What to do

We are given the King County House Sales dataset and we want to predict the prices for houses.

0.3 Importing Python Libraries needed for the project

```
[1]: import numpy as np # linear algebra
     import pandas as pd # data processing, CSV file I/O (e.g. pd.read csv)
     from pandas.plotting import scatter matrix # data processing, scatter matrix
     import statsmodels.api as sm # Python module that provides classes and
     → functions for the estimation of many different
     #statistical models, as well as for conducting statistical tests, and
     ⇒statistical data exploration
     import matplotlib.pyplot as plt # plotting
     import scipy.stats as stats
     import sklearn.linear_model as linear_model
     from sklearn.model_selection import train_test_split
     import seaborn as sns
     import statsmodels.api as sms
     import statsmodels.formula.api as smf
     from statsmodels.formula.api import ols
     from mpl_toolkits.basemap import Basemap
     sns.set()
     %matplotlib inline
```

0.4 Import the data

```
[2]: df = pd.read_csv('King_County_House_prices_dataset.csv')
    df.head()
```

```
[2]:
                id
                          date
                                   price
                                          bedrooms
                                                    bathrooms
                                                               sqft_living \
     0 7129300520 10/13/2014
                               221900.0
                                                 3
                                                         1.00
                                                                      1180
     1 6414100192
                     12/9/2014
                                538000.0
                                                 3
                                                         2.25
                                                                      2570
     2 5631500400
                    2/25/2015 180000.0
                                                 2
                                                         1.00
                                                                       770
```

```
3 2487200875
                12/9/2014 604000.0
                                              4
                                                       3.00
                                                                     1960
                2/18/2015 510000.0
                                              3
4 1954400510
                                                       2.00
                                                                     1680
   sqft_lot floors
                     waterfront
                                  view
                                                          sqft_above \
                                                   grade
0
       5650
                1.0
                                    0.0
                                                        7
                                                                 1180
                             NaN
       7242
                                                        7
1
                2.0
                             0.0
                                   0.0
                                                                 2170
2
      10000
                1.0
                             0.0
                                   0.0
                                                        6
                                                                  770
3
       5000
                1.0
                             0.0
                                    0.0
                                                        7
                                                                  1050
4
                1.0
       8080
                             0.0
                                    0.0
                                                                  1680
   sqft_basement yr_built
                           yr_renovated
                                           zipcode
                                                         lat
                                                                 long
0
             0.0
                      1955
                                      0.0
                                             98178 47.5112 -122.257
1
           400.0
                      1951
                                  1991.0
                                             98125
                                                    47.7210 -122.319
2
             0.0
                      1933
                                      NaN
                                             98028 47.7379 -122.233
3
           910.0
                      1965
                                      0.0
                                             98136 47.5208 -122.393
4
             0.0
                      1987
                                      0.0
                                             98074 47.6168 -122.045
   sqft_living15
                  sqft_lot15
0
            1340
                         5650
            1690
                         7639
1
2
            2720
                         8062
3
            1360
                         5000
            1800
                         7503
```

[5 rows x 21 columns]

0.5 Understanding the data

```
[3]: f = open("column_names.md", "r")
     print(f.read())
     f.close()
    # Column Names and descriptions for Kings County Data Set
    * **id** - unique identified for a house
    * **dateDate** - house was sold
    * **pricePrice** - is prediction target
    * **bedroomsNumber** - of Bedrooms/House
    * **bathroomsNumber** - of bathrooms/bedrooms
    * **sqft_livingsquare** - footage of the home
    * **sqft_lotsquare** - footage of the lot
    * **floorsTotal** - floors (levels) in house
    * **waterfront** - House which has a view to a waterfront
    * **view** - Has been viewed
    * **condition** - How good the condition is ( Overall )
    * **grade** - overall grade given to the housing unit, based on King County
    grading system
    * **sqft_above** - square footage of house apart from basement
```

```
* **sqft_basement** - square footage of the basement
* **yr_built** - Built Year
* **yr_renovated** - Year when house was renovated
* **zipcode** - zip
* **lat** - Latitude coordinate
* **long** - Longitude coordinate
* **sqft_living15** - The square footage of interior housing living space for the nearest 15 neighbors
* **sqft_lot15** - The square footage of the land lots of the nearest 15 neighbors
```

0.6 Cleaning the data

Lets get an overview about our data first.

[4]: df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 21597 entries, 0 to 21596
Data columns (total 21 columns):
id
                 21597 non-null int64
                 21597 non-null object
date
price
                 21597 non-null float64
bedrooms
                 21597 non-null int64
                 21597 non-null float64
bathrooms
sqft_living
                 21597 non-null int64
                 21597 non-null int64
sqft lot
floors
                 21597 non-null float64
                 19221 non-null float64
waterfront
view
                 21534 non-null float64
condition
                 21597 non-null int64
grade
                 21597 non-null int64
sqft_above
                 21597 non-null int64
sqft_basement
                 21597 non-null object
yr_built
                 21597 non-null int64
                 17755 non-null float64
yr_renovated
                 21597 non-null int64
zipcode
                 21597 non-null float64
lat
long
                 21597 non-null float64
sqft_living15
                 21597 non-null int64
sqft_lot15
                 21597 non-null int64
dtypes: float64(8), int64(11), object(2)
memory usage: 3.5+ MB
```

Sort for nan values

```
[5]: df.isna().sum().sort_values()
```

```
[5]: id
                           0
                           0
     long
                           0
     lat
     zipcode
                           0
     yr built
                           0
     sqft_basement
                           0
     sqft above
                           0
     grade
                           0
                           0
     sqft_living15
     condition
                           0
                           0
     floors
     sqft_lot
                           0
     sqft_living
                           0
     bathrooms
                           0
     bedrooms
                           0
                           0
     price
     date
                           0
     sqft_lot15
                           0
     view
                          63
     waterfront
                        2376
     yr renovated
                        3842
     dtype: int64
```

We see that there are missing values in the columns view, waterfront and yr_renovated. Let's get an better understanding of the columns before we decide what to do with them.

First we take a look at the column waterfront

```
[6]: print("Unique values in waterfront:" + str(df.waterfront.unique()))
print("Mean value of waterfront :" + str(df.waterfront.mean()))
```

```
Unique values in waterfront: [nan 0. 1.]
Mean value of waterfront :0.007595858696217679
```

Takeaway, basicly it is an boolean saying if a house has waterfront. We can also see that most of the houses have no waterfront.

We asume that a waterfront is an unique selling point and every houseowner would give us the information if the house has one. So we decide to fill the "nan" with zeros.

```
[7]: df.waterfront.fillna(0, inplace =True) df.waterfront.unique()
```

[7]: array([0., 1.])

We continue with the next column view

```
[8]: print("Unique values in view : " + str(df.view.unique()))
print("Mean value of view : " + str(df.view.mean()))
print("Number of Nan for view: " + str(df['view'].isna().sum()))
```

```
print("Unique count for view : ")
      print(df.groupby('view')['id'].nunique())
     Unique values in view: [ 0. nan 3. 4. 2.
                                                    1.7
     Mean value of view
                            : 0.23386272870808952
     Number of Nan for view: 63
     Unique count for view:
     view
     0.0
            19253
     1.0
              329
              956
     2.0
     3.0
              505
     4.0
              314
     Name: id, dtype: int64
     We can see that most of the houses have not been viewed. We have only 63 nan in the column and
     we can fill them with zeros.
[9]: df.view.fillna(0, inplace =True)
      df.view.unique()
[9]: array([0., 3., 4., 2., 1.])
     We continue with the column yr_renovated
[10]: print("Unique values in yr_renovated : " + str(df.yr_renovated.unique()))
      print("Number of Nan for yr_renovated: " + str(df['yr_renovated'].isna().sum()))
      print("Unique count for yr_renovated : ")
      print(df.groupby('yr_renovated')['id'].nunique().head())
     Unique values in yr_renovated : [
                                                     nan 2002. 2010. 1992. 2013. 1994.
                                         0. 1991.
     1978. 2005. 2003. 1984.
      1954. 2014. 2011. 1983. 1945. 1990. 1988. 1977. 1981. 1995. 2000. 1999.
      1998. 1970. 1989. 2004. 1986. 2007. 1987. 2006. 1985. 2001. 1980. 1971.
      1979. 1997. 1950. 1969. 1948. 2009. 2015. 1974. 2008. 1968. 2012. 1963.
      1951. 1962. 1953. 1993. 1996. 1955. 1982. 1956. 1940. 1976. 1946. 1975.
      1964. 1973. 1957. 1959. 1960. 1967. 1965. 1934. 1972. 1944. 1958.]
     Number of Nan for yr_renovated: 3842
     Unique count for yr_renovated :
     yr_renovated
     0.0
               16900
     1934.0
                   1
                   2
     1940.0
     1944.0
                   1
     1945.0
                   3
     Name: id, dtype: int64
```

We assume that a renovation is an uique selling point and the houseowner would mention it. So we can fill the nan with a zero what means no renovation has taken place.

```
[11]: df.yr_renovated.fillna(0, inplace = True)
df['yr_renovated'].isna().sum()
```

[11]: 0

So lets take a look at our data:

```
[12]: df.isna().sum().sort_values()
```

```
[12]: id
                         0
      long
                         0
      lat
                         0
      zipcode
                         0
      yr_renovated
                         0
      yr_built
                         0
      sqft basement
                         0
      sqft_above
                         0
      grade
                         0
      sqft_living15
      condition
      waterfront
                         0
      floors
                         0
      sqft_lot
                         0
      sqft_living
                         0
      bathrooms
                         0
      bedrooms
                         0
      price
                         0
      date
                         0
                         0
      view
      sqft_lot15
                         0
      dtype: int64
```

We filled all of the missing data.

To be able to work with our data we want to have numeric values in our data. Lets figure out in what format our data is.

[13]: df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 21597 entries, 0 to 21596
Data columns (total 21 columns):
id
                 21597 non-null int64
                 21597 non-null object
date
                 21597 non-null float64
price
                 21597 non-null int64
bedrooms
                 21597 non-null float64
bathrooms
sqft_living
                 21597 non-null int64
                 21597 non-null int64
sqft_lot
```

```
floors
                 21597 non-null float64
waterfront
                 21597 non-null float64
                 21597 non-null float64
view
condition
                 21597 non-null int64
grade
                 21597 non-null int64
sqft_above
                 21597 non-null int64
sqft_basement
                 21597 non-null object
                 21597 non-null int64
yr_built
yr_renovated
                 21597 non-null float64
                 21597 non-null int64
zipcode
                 21597 non-null float64
lat
long
                 21597 non-null float64
sqft_living15
                 21597 non-null int64
                 21597 non-null int64
sqft_lot15
dtypes: float64(8), int64(11), object(2)
memory usage: 3.5+ MB
```

So the columns date and sqft_basement are objects. We want to change that. First we take a look at sqft_basement. I would expect an numeric value. Lets explore sqft_basement

[14]: print(df.groupby('sqft_basement')['id'].nunique())

```
0.0
           12718
10.0
               1
100.0
              42
             146
1000.0
1008.0
               1
              62
1010.0
1020.0
              51
1024.0
               1
1030.0
              44
1040.0
              54
1050.0
              41
1060.0
              58
1070.0
              51
              31
1080.0
1090.0
              32
110.0
              18
1100.0
              78
1110.0
              35
1120.0
              43
1130.0
              30
1135.0
               1
1140.0
              28
1150.0
              26
1160.0
              26
1170.0
              30
```

sqft_basement

```
1180.0
              28
1190.0
              24
120.0
              53
1200.0
              68
1210.0
              18
80.0
              20
800.0
             201
810.0
              55
820.0
              62
830.0
              56
840.0
              82
850.0
              69
860.0
              79
861.0
               1
862.0
               1
870.0
              48
875.0
               1
0.088
              69
890.0
              52
90.0
              21
900.0
             141
906.0
               1
910.0
              69
915.0
               1
920.0
              65
930.0
              41
935.0
               1
940.0
              71
946.0
               1
950.0
              62
960.0
              65
970.0
              44
980.0
              55
990.0
              51
             454
```

Name: id, Length: 304, dtype: int64

We see the unique sqrt_basement values and detect that in 454 rows is a "?". Thats why the datatype of the column is an object. We definetly want to change that.

So lets try to find some information about the houses with basement, without basement and we don't know about the basement.

```
[15]: df[['sqft_basement','sqft_above','sqft_living']].head()
```

```
[15]: sqft_basement sqft_above sqft_living 0 0.0 1180 1180 1 400.0 2170 2570
```

```
    2
    0.0
    770
    770

    3
    910.0
    1050
    1960

    4
    0.0
    1680
    1680
```

```
[16]: basement = df[['sqft_basement', 'sqft_above', 'sqft_living']]
  basement['sqft_living-above'] = basement['sqft_living'] - basement['sqft_above']
  basement
```

/Users/flori/anaconda3/envs/nf/lib/python3.6/sitepackages/ipykernel_launcher.py:2: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy

[16]:	sqft_basement	sqft_above	sqft_living	sqft_living-above
0	0.0	1180	1180	0
1	400.0	2170	2570	400
2	0.0	770	770	0
3	910.0	1050	1960	910
4	0.0	1680	1680	0
5	1530.0	3890	5420	1530
6	?	1715	1715	0
7	0.0	1060	1060	0
8	730.0	1050	1780	730
9	0.0	1890	1890	0
10	1700.0	1860	3560	1700
11	300.0	860	1160	300
12	0.0	1430	1430	0
13	0.0	1370	1370	0
14	0.0	1810	1810	0
15	970.0	1980	2950	970
16	0.0	1890	1890	0
17	0.0	1600	1600	0
18	?	1200	1200	0
19	0.0	1250	1250	0
20	760.0	860	1620	760
21	720.0	2330	3050	720
22	0.0	2270	2270	0
23	0.0	1070	1070	0
24	0.0	2450	2450	0
25	0.0	1710	1710	0
26	700.0	1750	2450	700
27	0.0	1400	1400	0
28	730.0	790	1520	730

29	0.0	2570	2570	0
•••	•••	•••	•••	•••
21567	0.0	710	710	0
21568	320.0	940	1260	320
21569	0.0	1870	1870	0
21570	0.0	1430	1430	0
21571	0.0	1520	1520	0
21572	190.0	1020	1210	190
21573	0.0	2540	2540	0
21574	1800.0	3110	4910	1800
21575	0.0	2770	2770	0
21576	0.0	1190	1190	0
21577	0.0	4170	4170	0
21578	0.0	2500	2500	0
21579	50.0	1480	1530	50
21580	0.0	3600	3600	0
21581	?	3410	3410	0
21582	0.0	3118	3118	0
21583	0.0	3990	3990	0
21584	0.0	4470	4470	0
21585	0.0	1425	1425	0
21586	0.0	1500	1500	0
21587	0.0	2270	2270	0
21588	0.0	1490	1490	0
21589	0.0	2520	2520	0
21590	910.0	2600	3510	910
21591	130.0	1180	1310	130
21592	0.0	1530	1530	0
21593	0.0	2310	2310	0
21594	0.0	1020	1020	0
21595	0.0	1600	1600	0
21596	0.0	1020	1020	0

[21597 rows x 4 columns]

Seems like the sqft_basement is just calculated by subtracting sqft_above from sqft_living

```
[17]: df['sqft_basement'] = basement['sqft_living'] - basement['sqft_above']
```

So sqft_living is just the sum of sqft_aboce and sqft_basement we can just drop it.

```
[18]: df.drop('sqft_living', axis = 1, inplace = True)
```

```
[19]: df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 21597 entries, 0 to 21596
Data columns (total 20 columns):

```
id
                 21597 non-null int64
date
                 21597 non-null object
price
                 21597 non-null float64
                 21597 non-null int64
bedrooms
bathrooms
                 21597 non-null float64
sqft lot
                 21597 non-null int64
floors
                 21597 non-null float64
waterfront
                 21597 non-null float64
                 21597 non-null float64
view
                 21597 non-null int64
condition
                 21597 non-null int64
grade
                 21597 non-null int64
sqft_above
sqft_basement
                 21597 non-null int64
                 21597 non-null int64
yr_built
yr_renovated
                 21597 non-null float64
zipcode
                 21597 non-null int64
lat
                 21597 non-null float64
                 21597 non-null float64
long
sqft_living15
                 21597 non-null int64
sqft_lot15
                 21597 non-null int64
dtypes: float64(8), int64(11), object(1)
memory usage: 3.3+ MB
```

Now we have to look at the date column. To be able to work with it we have to change it to an numeriv value. Therefore we want to seperate between spring, summer, autumn and winter. We assume that the winter starts at december 1st, spring starts at march 1st, summer starts at june 1st and autumn at september 1st.

```
[22]: dates_dummies = pd.get_dummies(dates, drop_first=True)
    dates_dummies.head()
```

[22]:		spring	summer	winter
	0	0	0	0
	1	0	0	1
	2	0	0	1
	3	0	0	1
	4	0	0	1

We generated our dummy variables. Now we want to join our dummy variables with our dataset

```
[23]: df2 = pd.concat([df, dates_dummies], axis = 1)
df2.head()
```

[23]:		id	dat	e pri	ce	bedrooms	bathrooms	sqft_lo	ot floc	ors	\
[20]	0	7129300520		-		3	1.00			1.0	`
	1	6414100192	2014-12-0	9 538000	.0	3	2.25	724	12 2	2.0	
	2	5631500400	2015-02-2	5 180000	.0	2	1.00	1000	00 1	1.0	
	3	2487200875	2014-12-0	9 604000	.0	4	3.00	500	00 1	1.0	
	4	1954400510	2015-02-1	8 510000	.0	3	2.00	808	30 1	1.0	
		waterfront	view co	ndition		yr_buil	t yr_reno	vated zi	pcode	\	
	0	0.0	0.0	3		195	• –	0.0	98178	`	
					•••						
	1	0.0	0.0	3	•••	1951		991.0	98125		
	2	0.0	0.0	3	•••	1933	3	0.0	98028		
	3	0.0	0.0	5		1969	5	0.0	98136		
	4	0.0	0.0	3	•••	1987	7	0.0	98074		
		lat	long sa	ft living	15	sqft_lot1	5 enring	summer	winter		
	^		•	. – •							
	0	47.5112 -12			40	5650		0	0		
	1	47.7210 -12	22.319	16	90	7639	9 0	0	1		
	2	47.7379 -12	22.233	27	20	8062	2 0	0	1		
	3	47.5208 -12	22.393	13	60	5000	0	0	1		
	4	47.6168 -12	22.045	18	00	7503	3 0	0	1		

[5 rows x 23 columns]

2

3

5631500400

2487200875

4 1954400510

2015

2014

2015

180000.0

604000.0

510000.0

Now we want to drop the month and day part of the date, so we just have the year left.

```
[24]:
     df2['date'] = pd.DatetimeIndex(df2['date']).year
      df2.head()
[25]:
[25]:
                  id
                      date
                                price
                                        {\tt bedrooms}
                                                   bathrooms
                                                               sqft_lot
                                                                          floors
         7129300520
                                                3
                                                                   5650
                      2014
                             221900.0
                                                        1.00
                                                                             1.0
         6414100192
                      2014
                             538000.0
                                                3
                                                        2.25
                                                                   7242
                                                                             2.0
      1
```

2

4

3

1.00

3.00

2.00

10000

5000

8080

1.0

1.0

1.0

waterfront	view	condition	•••	yr_built	yr_reno	vated	zipcode	\
0.0	0.0	3	•••	1955		0.0	98178	
0.0	0.0	3	•••	1951	1	991.0	98125	
0.0	0.0	3	•••	1933		0.0	98028	
0.0	0.0	5	•••	1965		0.0	98136	
0.0	0.0	3	•••	1987		0.0	98074	
lat	long	sqft_living	₅ 15	sqft_lot15	spring	summer	winter	•
47.5112 -12	2.257	13	340	5650	0	C) ()
47.7210 -12	2.319	16	90	7639	0	C) 1	L
47.7379 -12	2.233	27	20	8062	0	C) 1	L
47.5208 -12	2.393	13	360	5000	0	C) 1	L
47.6168 -12	2.045	18	300	7503	0	C) 1	L
	0.0 0.0 0.0 0.0 1at 47.5112 -12 47.7210 -12 47.7379 -12 47.5208 -12	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 3 0.0 0.0 3 0.0 0.0 3 0.0 0.0 5 0.0 0.0 5 0.0 0.0 3 lat long sqft_living 47.5112 -122.257 47.7210 -122.319 47.7379 -122.233 47.5208 -122.393	0.0 0.0 3 0.0 0.0 3 0.0 0.0 3 0.0 0.0 5 0.0 0.0 3 1at long sqft_living15 47.5112 -122.257 1340 47.7210 -122.319 1690 47.7379 -122.233 2720 47.5208 -122.393 1360	0.0 0.0 3 1955 0.0 0.0 3 1951 0.0 0.0 3 1933 0.0 0.0 5 1965 0.0 0.0 3 1987 lat long sqft_living15 sqft_lot15 47.5112 -122.257 1340 5650 47.7210 -122.319 1690 7639 47.7379 -122.233 2720 8062 47.5208 -122.393 1360 5000	0.0 0.0 3 1955 0.0 0.0 3 1951 1 0.0 0.0 3 1933 0.0 0.0 5 1965 0.0 0.0 3 1987 lat long sqft_living15 sqft_lot15 spring 47.5112 -122.257 1340 5650 0 47.7210 -122.319 1690 7639 0 47.7379 -122.233 2720 8062 0 47.5208 -122.393 1360 5000 0	0.0 0.0 3 1955 0.0 0.0 0.0 3 1951 1991.0 0.0 0.0 3 1933 0.0 0.0 0.0 5 1965 0.0 0.0 0.0 3 1987 0.0 lat long sqft_living15 sqft_lot15 spring summer 47.5112 -122.257 1340 5650 0 0 47.7210 -122.319 1690 7639 0 0 47.7379 -122.233 2720 8062 0 0 47.5208 -122.393 1360 5000 0 0	0.0 0.0 3 1955 0.0 98178 0.0 0.0 3 1951 1991.0 98125 0.0 0.0 3 1933 0.0 98028 0.0 0.0 5 1965 0.0 98136 0.0 0.0 3 1987 0.0 98074 lat long sqft_living15 sqft_lot15 spring summer winter 47.5112 -122.257 1340 5650 0 0 0 47.7210 -122.319 1690 7639 0 0 1 47.7379 -122.233 2720 8062 0 0 1 47.5208 -122.393 1360 5000 0 0 1

[5 rows x 23 columns]

Create new column "last_building_phase" include the max of yr_built and yr_renovated

```
[26]: df2["last_building_phase"] = df2[["yr_built", "yr_renovated"]].max(axis=1)
[27]: sns.scatterplot(x="last_building_phase", y="price", data=df2);
```


There is a small relationship between price and last_building_phase.

Lets plot some data

```
[28]: corr = df2.corr()
   f, ax = plt.subplots(figsize = (18,18))
   sns.heatmap(data=corr, center = 0, cmap="coolwarm", annot=True);
```


There are variables that have a correlation with price:

- -bedrooms 0.31
- -bathrooms 0.53
- -sqft-lot 0.09
- -floors 0.26
- -waterfront 0.26
- -view 0.39
- -grade 0.67

```
-sqft_above 0.31
-sqft_basement 0.32
-year_renovated 0.12
-lat 0.31
-sqft_living 0.59
-last_building_phase 0.098
```

Lets plot the location and the price:

```
[29]: # Extract the data we're interested in
      lat = df['lat'].values
      lon = df['long'].values
      bins = [0, 150000, 200000, 250000, 300000, 400000, 550000, 750000, 1000000, U
      →1500000, 2500000, 5000000, 10000000]
      c = pd.cut(df['price'], bins, labels = range(12))
      # 1. Draw the map background
      fig = plt.figure(figsize=(16, 16))
      m = Basemap(projection='merc', resolution='h', llcrnrlon = -122.6, llcrnrlat = L
      \rightarrow47, urcrnrlon = -121.2, urcrnrlat = 47.8,
                  lon_0 = -121.7,
                  lat_0= 47.4,
                  epsg=4269)
      m.arcgisimage(service='ESRI_Imagery_World_2D', xpixels = 2000)
      # 2. scatter city data, with color reflecting population
      # and size reflecting area
      lons, lats = m(lon, lat)
      m.scatter(lons, lats,zorder=1, linewidths=0.07, cmap = 'seismic', c = c)
      plt.show()
```


We see that there is a correlation between location and price.

Let s take the squares of the plot and group our houses into them

```
[30]: lat = []
      for i in (range(len(df))):
           if df['lat'][i] < 47.2:</pre>
               lat.append('lat_47.2')
           elif df['lat'][i] < 47.3:</pre>
               lat.append('lat_47.3')
           elif df['lat'][i] < 47.4:</pre>
               lat.append('lat_47.4')
           elif df['lat'][i] < 47.5:</pre>
               lat.append('lat_47.5')
           elif df['lat'][i] < 47.6:</pre>
               lat.append('lat_47.6')
           elif df['lat'][i] < 47.7:</pre>
               lat.append('lat_47.7')
           else:
               lat.append('lat_47.8')
```

```
[31]: long = []
for i in (range(len(df))):
    if df['long'][i] < -122.4:
        long.append('long_-122.4')
    elif df['long'][i] < -122.2:
        long.append('long_-122.2')</pre>
```

```
elif df['long'][i] < -122:
              long.append('long_-122')
          elif df['long'][i] < -121.8:
              long.append('long_-121.8')
          elif df['long'][i] < -121.6:
              long.append('long_-121.6')
          elif df['long'][i] < -121.4:
              long.append('long_-121.4')
          else:
              long.append('long_-121.2')
[32]: lat_dummies = pd.get_dummies(lat, drop_first=True)
      long_dummies = pd.get_dummies(long, drop_first=True)
      long_dummies.head()
[32]:
         long_-121.4 long_-121.6 long_-121.8 long_-122 long_-122.2 long_-122.4
                   0
                                 0
                                              0
                                                          0
                                                                                     0
      0
                                                                       1
      1
                   0
                                 0
                                              0
                                                          0
                                                                                     0
                   0
                                 0
                                              0
                                                          0
                                                                                     0
      2
                                                                       1
      3
                   0
                                 0
                                              0
                                                          0
                                                                       1
                                                                                     0
                                 0
                   0
                                                          1
                                                                                     0
[33]: lat_long = pd.concat([lat_dummies, long_dummies], axis = 1)
      lat_long.head()
[33]:
         lat 47.3 lat 47.4 lat 47.5 lat 47.6 lat 47.7 lat 47.8 long -121.4 \
                0
                          0
                                     0
                                               1
      1
                0
                           0
                                     0
                                               0
                                                          0
                                                                    1
                                                                                  0
      2
                0
                          0
                                     0
                                               0
                                                          0
                                                                                  0
                                                                    1
                0
                          0
                                     0
                                                          0
                                                                    0
      3
                                               1
                                                                                  0
                0
                          0
                                     0
                                               0
                                                          1
                                                                    0
                                                                                  0
         long_-121.6 long_-121.8 long_-122 long_-122.2
                                                            long -122.4
      0
                   0
                   0
                                 0
                                            0
                                                          1
                                                                       0
      1
      2
                   0
                                            0
                                                          1
                                                                       0
      3
                   0
                                 0
                                            0
                                                                       0
                                                          1
                   0
                                 0
                                            1
                                                          0
                                                                       0
[34]: df3 = pd.concat([df2, lat_long], axis = 1)
     0.7 Model a linear Regression
```

```
'long_-121.6', 'long_-121.8', 'long_-122', 'long_-122.2']]
y = df3[['price']]
X = sms.add_constant(X)
model = sms.OLS(y, X)
results = model.fit()
results.summary()
```

[35]: <class 'statsmodels.iolib.summary.Summary'>

-7.445e+04

6.575e+05

5.832e+04

6.656e+04

floors

-6.79e+04 waterfront

6.91e+05

view 6.22e+04 grade

OLS Regression Results

Dep. Variable Model: Method: Date: Time: No. Observate Df Residuals Df Model: Covariance T	Lo Sun, Sions:	10:10:31 21597 21575 21 nonrobust		Adj. R-squared: F-statistic: Prob (F-statistic):		0.727 0.727 2740. 0.00 9336e+05 868e+05 869e+05
0.975]	coef	std err	t	P> t	[0.025	
	-4.409e+05 -2.451e+04	6.26e+04 1806.001	-7.039 -13.570	0.000	-5.64e+05 -2.8e+04	
bathrooms 2.03e+04 sqft_lot 0.183	1.454e+04 0.1172	2936.901	4.952 3.485	0.000	8786.795 0.051	

-22.299

38.000

29.171

34.291

0.000

0.000

0.000

0.000

-8.1e+04

6.24e+05

5.44e+04

6.28e+04

3338.798

1.73e+04

1999.164

1941.184

1.59e+05						
lat_47.3	-5.139e+04	2.25e+04	-2.281	0.023	-9.56e+04	
-7235.817						
lat_47.4	-4.009e+04	2.17e+04	-1.845	0.065	-8.27e+04	
2489.904						
lat_47.5	1.744e+04	2.17e+04	0.802	0.422	-2.52e+04	
6.01e+04						
lat_47.6	1.766e+05	2.16e+04	8.192	0.000	1.34e+05	
2.19e+05						
lat_47.7	3.217e+05	2.16e+04	14.869	0.000	2.79e+05	
3.64e+05						
long122.4	6.164e+04	5.9e+04	1.046	0.296	-5.39e+04	
1.77e+05						
long121.4	-1.014e+05	9.74e+04	-1.041	0.298	-2.92e+05	
8.96e+04						
long121.6	2.389e+04	5.95e+04	0.401	0.688	-9.28e+04	
1.41e+05						
long121.8	-9.844e+04	5.83e+04	-1.689	0.091	-2.13e+05	
1.58e+04						
long122	-2.936e+04	5.81e+04	-0.506	0.613	-1.43e+05	
8.45e+04						
long122.2	4.69e+04	5.8e+04	0.809	0.419	-6.68e+04	
1.61e+05						
=========	=========					==
Omnibus:		18904.678	Durbin-Wa	tson:	1.9	90
Prob(Omnibus)	:	0.000	Jarque-Be	era (JB):	2171070.2	88
Skew:		3.701	Prob(JB):		0.	00
Kurtosis:		51.558	Cond. No.		5.31e+	06
=========	:=======:			:=======	=========	==

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

[2] The condition number is large, 5.31e+06. This might indicate that there are strong multicollinearity or other numerical problems.

R-squared is 0.727 not bad at all.

0.8 Improving our approach

We want to introduce dummy variables for the zipcode, because the zipcode is an integer but is actual a categorial variable.

First we plot the zipcode and try to get some insights

```
[36]: # Extract the data we're interested in lat = df['lat'].values
```


Seems to work quite good and should be more exact than just the dummies for longitude and latitude.

```
[37]: model = ols('price ~ C(zipcode) + bedrooms + bathrooms + sqft_lot + floors +

→waterfront + view + grade + sqft_above + sqft_basement +

→last_building_phase', data=df3).fit()

model.summary()
```

[37]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results								
Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	Least So Sun, 03 Nov 10	0.804 0.804 1119. 0.00 -2.8978e+05 5.797e+05 5.804e+05						
0.975]	coef	std err	t	P> t	[0.025			
 Intercept 1.28e+06	1.056e+06	1.13e+05	9.346	0.000	8.34e+05			
C(zipcode) [T.98002] 6.32e+04	3.497e+04	1.44e+04	2.429	0.015	6747.289			
C(zipcode)[T.98003] 8253.120	-1.719e+04	1.3e+04	-1.324	0.185	-4.26e+04			
C(zipcode) [T.98004] 8.12e+05	7.868e+05	1.27e+04	62.025	0.000	7.62e+05			
C(zipcode) [T.98005] 3.41e+05	3.104e+05	1.53e+04	20.244	0.000	2.8e+05			
C(zipcode) [T.98006] 3e+05	2.772e+05	1.14e+04	24.239	0.000	2.55e+05			
C(zipcode)[T.98007] 2.83e+05	2.513e+05	1.62e+04	15.488	0.000	2.19e+05			
C(zipcode)[T.98008]	2.538e+05	1.3e+04	19.529	0.000	2.28e+05			
C(zipcode)[T.98010] 1.13e+05	7.7e+04	1.84e+04	4.174	0.000	4.08e+04			
C(zipcode)[T.98011] 1.5e+05	1.217e+05	1.45e+04	8.398	0.000	9.33e+04			
C(zipcode)[T.98014]	9.283e+04	1.71e+04	5.419	0.000	5.93e+04			
1.26e+05 C(zipcode)[T.98019]	8.653e+04	1.46e+04	5.913	0.000	5.78e+04			
1.15e+05 C(zipcode)[T.98022]	-5201.3953	1.38e+04	-0.376	0.707	-3.23e+04			
2.19e+04 C(zipcode)[T.98023] -1.08e+04	-3.287e+04	1.13e+04	-2.917	0.004	-5.5e+04			

C(zipcode)[T.98024] 1.92e+05	1.521e+05	2.03e+04	7.498	0.000	1.12e+05
C(zipcode) [T.98027] 1.94e+05	1.708e+05	1.18e+04	14.465	0.000	1.48e+05
C(zipcode) [T.98028] 1.45e+05	1.195e+05	1.29e+04	9.237	0.000	9.42e+04
C(zipcode)[T.98029] 2.35e+05	2.105e+05	1.26e+04	16.720	0.000	1.86e+05
C(zipcode)[T.98030] 3.05e+04	4456.9119	1.33e+04	0.335	0.738	-2.16e+04
C(zipcode) [T.98031] 4.42e+04	1.854e+04	1.31e+04	1.419	0.156	-7068.667
C(zipcode) [T.98032] 4.35e+04	1.034e+04	1.69e+04	0.611	0.541	-2.28e+04
C(zipcode)[T.98033] 3.93e+05	3.705e+05	1.17e+04	31.779	0.000	3.48e+05
C(zipcode) [T.98034] 2.23e+05	2.012e+05	1.11e+04	18.173	0.000	1.79e+05
C(zipcode) [T.98038] 5.31e+04	3.168e+04	1.09e+04	2.900	0.004	1.03e+04
C(zipcode) [T.98039] 1.38e+06	1.332e+06	2.48e+04	53.757	0.000	1.28e+06
C(zipcode) [T.98040] 5.56e+05	5.297e+05	1.32e+04	40.275	0.000	5.04e+05
C(zipcode)[T.98042]	1.124e+04	1.1e+04	1.017	0.309	-1.04e+04
3.29e+04 C(zipcode)[T.98045] 1.12e+05	8.461e+04	1.4e+04	6.055	0.000	5.72e+04
C(zipcode) [T.98052] 2.5e+05	2.285e+05	1.1e+04	20.786	0.000	2.07e+05
C(zipcode)[T.98053]	1.864e+05	1.19e+04	15.637	0.000	1.63e+05
2.1e+05 C(zipcode)[T.98055]	4.632e+04	1.31e+04	3.524	0.000	2.06e+04
7.21e+04 C(zipcode)[T.98056]	1.046e+05	1.18e+04	8.876	0.000	8.15e+04
1.28e+05 C(zipcode)[T.98058]	3.19e+04	1.15e+04	2.777	0.005	9383.496
5.44e+04 C(zipcode)[T.98059]	8.818e+04	1.14e+04	7.708	0.000	6.58e+04
1.11e+05 C(zipcode)[T.98065]	8.139e+04	1.27e+04	6.406	0.000	5.65e+04
1.06e+05 C(zipcode)[T.98070]	-1441.2949	1.77e+04	-0.082	0.935	-3.61e+04
3.32e+04 C(zipcode)[T.98072]	1.516e+05	1.31e+04	11.569	0.000	1.26e+05
1.77e+05 C(zipcode)[T.98074]	1.693e+05	1.17e+04	14.510	0.000	1.46e+05

1.92e+05					
C(zipcode)[T.98075] 1.94e+05	1.696e+05	1.23e+04	13.793	0.000	1.46e+05
C(zipcode)[T.98077]	1.205e+05	1.46e+04	8.274	0.000	9.19e+04
1.49e+05 C(zipcode)[T.98092]	-3.7e+04	1.22e+04	-3.025	0.002	-6.1e+04
-1.3e+04 C(zipcode)[T.98102]	5.228e+05	1.85e+04	28.301	0.000	4.87e+05
5.59e+05 C(zipcode)[T.98103]	3.504e+05	1.12e+04	31.350	0.000	3.29e+05
3.72e+05 C(zipcode)[T.98105]	4.822e+05	1.41e+04	34.288	0.000	4.55e+05
5.1e+05 C(zipcode)[T.98106]	1.485e+05	1.24e+04	11.958	0.000	1.24e+05
1.73e+05 C(zipcode)[T.98107]	3.578e+05	1.34e+04	26.666	0.000	3.32e+05
3.84e+05					
C(zipcode)[T.98108] 1.58e+05	1.291e+05	1.48e+04	8.729	0.000	1e+05
C(zipcode)[T.98109] 5.42e+05	5.064e+05	1.81e+04	28.019	0.000	4.71e+05
C(zipcode) [T.98112] 6.63e+05	6.362e+05	1.35e+04	46.985	0.000	6.1e+05
C(zipcode)[T.98115]	3.391e+05	1.11e+04	30.524	0.000	3.17e+05
3.61e+05 C(zipcode)[T.98116]	3.02e+05	1.26e+04	23.964	0.000	2.77e+05
3.27e+05 C(zipcode)[T.98117]	3.261e+05	1.12e+04	29.006	0.000	3.04e+05
3.48e+05 C(zipcode)[T.98118]	1.763e+05	1.13e+04	15.536	0.000	1.54e+05
1.98e+05 C(zipcode)[T.98119]	4.892e+05	1.51e+04	32.445	0.000	4.6e+05
5.19e+05 C(zipcode)[T.98122]	3.503e+05	1.31e+04	26.696	0.000	3.25e+05
3.76e+05					
C(zipcode)[T.98125] 2.28e+05	2.044e+05	1.18e+04	17.277	0.000	1.81e+05
C(zipcode)[T.98126] 2.24e+05	1.996e+05	1.23e+04	16.212	0.000	1.75e+05
C(zipcode) [T.98133] 1.97e+05	1.749e+05	1.13e+04	15.418	0.000	1.53e+05
C(zipcode)[T.98136]	2.535e+05	1.34e+04	18.985	0.000	2.27e+05
2.8e+05 C(zipcode)[T.98144]	2.913e+05	1.25e+04	23.344	0.000	2.67e+05
3.16e+05 C(zipcode)[T.98146] 1.39e+05	1.137e+05	1.29e+04	8.803	0.000	8.84e+04

1.08e+05 C(zipcode)[T.98155] 1.512e+05 1.16e+04 13.071 0.000 1.29e+05 1.74e+05 C(zipcode)[T.98166] 6.304e+04 1.34e+04 4.702 0.000 3.68e+04	
8.93e+04	
C(zipcode)[T.98168] 7.529e+04 1.32e+04 5.710 0.000 4.94e+04 1.01e+05	
C(zipcode)[T.98177] 2.229e+05 1.34e+04 16.575 0.000 1.97e+05 2.49e+05	
C(zipcode)[T.98178] 3.638e+04 1.33e+04 2.736 0.006 1.03e+04 6.24e+04	
C(zipcode)[T.98188] 3.495e+04 1.64e+04 2.131 0.033 2804.530 6.71e+04	
C(zipcode)[T.98198] 1934.5695 1.3e+04 0.149 0.882 -2.36e+04 2.74e+04	
C(zipcode)[T.98199] 3.956e+05 1.28e+04 30.999 0.000 3.71e+05 4.21e+05	
bedrooms -2.617e+04 1556.016 -16.822 0.000 -2.92e+04 -2.31e+04	
bathrooms 2.389e+04 2654.214 9.000 0.000 1.87e+04 2.91e+04	
sqft_lot 0.1804 0.030 6.111 0.000 0.123 0.238	
floors -5.149e+04 3172.523 -16.230 0.000 -5.77e+04 -4.53e+04	
waterfront 6.922e+05 1.49e+04 46.571 0.000 6.63e+05 7.21e+05	
view 5.891e+04 1731.680 34.020 0.000 5.55e+04 6.23e+04	
grade 5.668e+04 1774.309 31.943 0.000 5.32e+04 6.02e+04	
sqft_above 213.8100 2.836 75.387 0.000 208.251 219.369 2.65	
sqft_basement 136.9940 3.516 38.962 0.000 130.102 143.886	
last_building_phase -744.5707 59.173 -12.583 0.000 -860.555 -628.586	
Omnibus: 20673.566 Durbin-Watson: 1.992	
Prob(Omnibus): 0.000 Jarque-Bera (JB): 4177058.103	
Skew: 4.117 Prob(JB): 0.00 Kurtosis: 70.632 Cond. No. 4.54e+06	

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly

specified.

[2] The condition number is large, 4.54e+06. This might indicate that there are strong multicollinearity or other numerical problems.

R-squared is 0.804 so we got an better result

So making dummies out of a categorial variable improved our model quite good. So lets take a look at other categorial variables.

Lets take a look at grade

Lets generate dummy variables for grade

```
[39]: model = ols('price ~ C(grade) + C(zipcode) + bedrooms + bathrooms+ sqft_lot +

→floors + waterfront + view + sqft_above + sqft_basement +

→last_building_phase', data=df3).fit()

model.summary()
```

[39]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

=======================================	========				========
Dep. Variable:		price	R-squared:		0.830
Model:		OLS	Adj. R-square	0.829	
Method:	Least So	quares	F-statistic:		1191.
Date:	Sun, 03 Nov	z 2019	Prob (F-stati	istic):	0.00
Time:	10	:10:55	Log-Likelihoo	od:	-2.8827e+05
No. Observations:		21597	AIC:		5.767e+05
Df Residuals:		21508	BIC:		5.774e+05
Df Model:		88			
Covariance Type:		robust			
=======================================	========				=======================================
	coef	std e	err t	P> t	[0.025
0.975]					
Intercept	9.453e+05	1.86e+	-05 5.088	0.000	5.81e+05
1.31e+06					
C(grade)[T.4]	-1.677e+05	1.55e+	-05 -1.081	0.280	-4.72e+05
1.36e+05					
C(grade)[T.5]	-2.039e+05	1.53e+	-05 -1.336	0.181	-5.03e+05
9.51e+04					
C(grade)[T.6]	-2.024e+05	1.52e+	-05 -1.329	0.184	-5.01e+05
9.61e+04	0 007 .05	4 50 .	05 4 040	0.407	4 00 .05
C(grade)[T.7]	-2.007e+05	1.52e+	-05 -1.318	0.187	-4.99e+05
9.78e+04 C(grade)[T.8]	-1.772e+05	1.52e+	-05 -1.163	0.245	-4.76e+05
1.21e+05	-1.772e+05	1.526	-05 -1.103	0.245	-4.70e+05
C(grade)[T.9]	-1.031e+05	1.52e+	-05 -0.677	0.499	-4.02e+05
1.96e+05	1.0516.05	1.026	0.077	0.499	4.026.00
C(grade)[T.10]	1.58e+04	1.52e+	-05 0.104	0.917	-2.83e+05
3.15e+05	1.000*01	1.020	0.101	0.01	2.000.00
C(grade)[T.11]	2.085e+05	1.53e+	-05 1.366	0.172	-9.08e+04
5.08e+05					
C(grade)[T.12]	6.141e+05	1.54e+	-05 4.000	0.000	3.13e+05
9.15e+05					
C(grade)[T.13]	1.712e+06	1.59e+	-05 10.785	0.000	1.4e+06
2.02e+06					
C(zipcode)[T.98002]	1.377e+04	1.34e+	-04 1.024	0.306	-1.26e+04
4.01e+04					
C(zipcode)[T.98003]	-7461.9934	1.21e+	-04 -0.616	0.538	-3.12e+04
1.63e+04					
C(zipcode)[T.98004]	7.787e+05	1.18e+	-04 65.755	0.000	7.55e+05
8.02e+05					
C(zipcode)[T.98005]	3.198e+05	1.43e+	-04 22.328	0.000	2.92e+05
3.48e+05					
C(zipcode)[T.98006]	2.635e+05	1.07e	-04 24.660	0.000	2.43e+05

2.84e+05					
C(zipcode)[T.98007]	2.622e+05	1.51e+04	17.319	0.000	2.33e+05
2.92e+05 C(zipcode)[T.98008]	2.678e+05	1.21e+04	22.082	0.000	2.44e+05
2.92e+05 C(zipcode)[T.98010]	6.984e+04	1.72e+04	4.056	0.000	3.61e+04
1.04e+05 C(zipcode)[T.98011]	1.372e+05	1.35e+04	10.148	0.000	1.11e+05
1.64e+05					
C(zipcode)[T.98014] 1.17e+05	8.581e+04	1.6e+04	5.362	0.000	5.44e+04
C(zipcode)[T.98019] 1.21e+05	9.398e+04	1.37e+04	6.882	0.000	6.72e+04
C(zipcode)[T.98022]	-2594.8172	1.29e+04	-0.201	0.841	-2.79e+04
2.27e+04 C(zipcode)[T.98023]	-2.733e+04	1.05e+04	-2.598	0.009	-4.79e+04
-6708.254 C(zipcode)[T.98024]	1.518e+05	1.89e+04	8.013	0.000	1.15e+05
1.89e+05 C(zipcode)[T.98027]	1.732e+05	1.1e+04	15.701	0.000	1.52e+05
1.95e+05					
C(zipcode)[T.98028] 1.57e+05	1.335e+05	1.21e+04	11.054	0.000	1.1e+05
C(zipcode)[T.98029] 2.47e+05	2.239e+05	1.18e+04	19.034	0.000	2.01e+05
C(zipcode)[T.98030]	7077.1394	1.24e+04	0.570	0.569	-1.73e+04
3.14e+04 C(zipcode)[T.98031]	2.154e+04	1.22e+04	1.767	0.077	-2357.074
4.54e+04 C(zipcode)[T.98032]	8549.9058	1.58e+04	0.541	0.588	-2.24e+04
3.95e+04 C(zipcode)[T.98033]	3.69e+05	1.09e+04	33.910	0.000	3.48e+05
3.9e+05			33.910		3.400+05
C(zipcode)[T.98034] 2.22e+05	2.018e+05	1.03e+04	19.536	0.000	1.82e+05
C(zipcode)[T.98038] 5.82e+04	3.824e+04	1.02e+04	3.753	0.000	1.83e+04
C(zipcode)[T.98039]	1.245e+06	2.32e+04	53.722	0.000	1.2e+06
1.29e+06 C(zipcode)[T.98040]	5.305e+05	1.23e+04	43.167	0.000	5.06e+05
5.55e+05 C(zipcode)[T.98042]	1.398e+04	1.03e+04	1.357	0.175	-6220.325
3.42e+04 C(zipcode)[T.98045]	8.979e+04	1 30+04	6.888	0.000	6.42e+04
1.15e+05		1.3e+04			
C(zipcode)[T.98052] 2.65e+05	2.447e+05	1.03e+04	23.827	0.000	2.25e+05

C(zipcode)[T.98053] 2.28e+05	2.06e+05	1.11e+04	18.502	0.000	1.84e+05
C(zipcode) [T.98055] 6.59e+04	4.189e+04	1.23e+04	3.415	0.001	1.78e+04
C(zipcode) [T.98056] 1.23e+05	1.01e+05	1.1e+04	9.170	0.000	7.94e+04
C(zipcode) [T.98058] 5.96e+04	3.857e+04	1.07e+04	3.597	0.000	1.75e+04
C(zipcode) [T.98059] 1.1e+05	8.893e+04	1.07e+04	8.325	0.000	6.8e+04
C(zipcode) [T.98065] 1.16e+05	9.264e+04	1.19e+04	7.814	0.000	6.94e+04
C(zipcode) [T.98070] 4.17e+04	9401.1544	1.65e+04	0.570	0.569	-2.29e+04
C(zipcode)[T.98072]	1.653e+05	1.22e+04	13.518	0.000	1.41e+05
1.89e+05 C(zipcode)[T.98074]	1.803e+05	1.09e+04	16.535	0.000	1.59e+05
2.02e+05 C(zipcode)[T.98075]	1.774e+05	1.15e+04	15.405	0.000	1.55e+05
2e+05 C(zipcode)[T.98077]	1.239e+05	1.36e+04	9.115	0.000	9.72e+04
1.51e+05 C(zipcode)[T.98092]	-2.272e+04	1.14e+04	-1.989	0.047	-4.51e+04
-335.283 C(zipcode)[T.98102]	4.997e+05	1.73e+04	28.957	0.000	4.66e+05
5.33e+05 C(zipcode)[T.98103]	3.534e+05	1.04e+04	33.872	0.000	3.33e+05
3.74e+05 C(zipcode)[T.98105]	4.94e+05	1.31e+04	37.644	0.000	4.68e+05
5.2e+05 C(zipcode)[T.98106]	1.228e+05	1.16e+04	10.574	0.000	1e+05
1.46e+05 C(zipcode)[T.98107]	3.563e+05	1.25e+04	28.454	0.000	3.32e+05
3.81e+05 C(zipcode)[T.98108]	1.194e+05	1.38e+04	8.651	0.000	9.23e+04
1.46e+05 C(zipcode)[T.98109]	5.18e+05	1.69e+04	30.713	0.000	4.85e+05
5.51e+05 C(zipcode)[T.98112]	6.487e+05	1.26e+04	51.337	0.000	6.24e+05
6.74e+05 C(zipcode)[T.98115]	3.461e+05	1.04e+04	33.380	0.000	3.26e+05
3.66e+05 C(zipcode)[T.98116]	3.072e+05	1.18e+04	26.122	0.000	2.84e+05
3.3e+05 C(zipcode)[T.98117]	3.27e+05	1.05e+04	31.181	0.000	3.06e+05
3.48e+05 C(zipcode)[T.98118]	1.635e+05	1.06e+04	15.414	0.000	1.43e+05

1.84e+05					
C(zipcode)[T.98119]	5.017e+05	1.41e+04	35.654	0.000	4.74e+05
5.29e+05 C(zipcode)[T.98122]	3.588e+05	1.22e+04	29.301	0.000	3.35e+05
3.83e+05 C(zipcode)[T.98125]	2.051e+05	1.1e+04	18.584	0.000	1.83e+05
2.27e+05 C(zipcode)[T.98126]	1.915e+05	1.15e+04	16.650	0.000	1.69e+05
2.14e+05					
C(zipcode)[T.98133] 1.92e+05	1.714e+05	1.06e+04	16.188	0.000	1.51e+05
C(zipcode) [T.98136] 2.82e+05	2.576e+05	1.25e+04	20.680	0.000	2.33e+05
C(zipcode) [T.98144] 3.12e+05	2.892e+05	1.16e+04	24.841	0.000	2.66e+05
C(zipcode)[T.98146]	9.82e+04	1.21e+04	8.129	0.000	7.45e+04
1.22e+05 C(zipcode)[T.98148]	5.993e+04	2.17e+04	2.766	0.006	1.75e+04
1.02e+05 C(zipcode)[T.98155]	1.5e+05	1.08e+04	13.887	0.000	1.29e+05
1.71e+05	6 2010101	1 050104			2 020104
C(zipcode)[T.98166] 8.84e+04	6.384e+04	1.25e+04	5.099	0.000	3.93e+04
C(zipcode) [T.98168] 7.12e+04	4.702e+04	1.23e+04	3.808	0.000	2.28e+04
C(zipcode)[T.98177] 2.49e+05	2.246e+05	1.26e+04	17.883	0.000	2e+05
C(zipcode)[T.98178]	2.344e+04	1.24e+04	1.887	0.059	-907.052
4.78e+04 C(zipcode)[T.98188]	2.791e+04	1.53e+04	1.824	0.068	-2079.731
5.79e+04 C(zipcode)[T.98198]	109.6074	1.21e+04	0.009	0.993	-2.37e+04
2.39e+04					
C(zipcode)[T.98199] 4.22e+05	3.984e+05	1.19e+04	33.455	0.000	3.75e+05
bedrooms -8944.530	-1.185e+04	1483.625	-7.989	0.000	-1.48e+04
bathrooms	2.56e+04	2487.376	10.292	0.000	2.07e+04
3.05e+04 sqft_lot	0.1719	0.028	6.240	0.000	0.118
0.226 floors	-3.61e+04	2993.408	-12.061	0.000	-4.2e+04
-3.02e+04					
waterfront 7e+05	6.73e+05	1.39e+04	48.441	0.000	6.46e+05
view	5.624e+04	1618.504	34.751	0.000	5.31e+04
5.94e+04					

sqft_above	173.3644	2.7	767	62.646	0.000	167.940
178.789 sqft_basement	123.8584	3.2	290	37.651	0.000	117.410
130.306						
<pre>last_building_phase</pre>	-387.6541	55.8	356	-6.940	0.000	-497.136
-278.172						
Omnibus:	 16351	.315	Durbi	n-Watson:		1.999
Prob(Omnibus):	0	.000	Jarqu	e-Bera (JI	3):	1841059.051
Skew:	2	.897	Prob(JB):		0.00
Kurtosis:	47	.859	Cond.	No.		2.16e+07
==============	=========	=====	======	========	========	=========

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.16e+07. This might indicate that there are strong multicollinearity or other numerical problems.

Seems like a good model so far. Lets try to drop some variables that have a low correlation with the price. So we take a look at the heatmap again

Lets try a model were we just keep variables with a correlation of 0.3 and above:

- -bedrooms
- -bathrooms
- -sqft_above
- -view
- $-sqft_basement$

Also we want to keep our categorial variables

- -zipcode
- -grade

[41]: <class 'statsmodels.iolib.summary.Summary'>

<pre><class """<="" 'statsmodels="" pre=""></class></pre>						
============		•	ion Resul		:======	-========
Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	price R-squared: OLS Adj. R-squared: Least Squares F-statistic: Sun, 03 Nov 2019 Prob (F-statistic): 10:10:56 Log-Likelihood: 21597 AIC: 21512 BIC: 84 nonrobust					0.809 0.808 1084. 0.00 -2.8952e+05 5.792e+05 5.799e+05
0.975]	coef	std e	rr	t	P> t	[0.025
Intercept	1.809e+05	1.61e+	05 1	.120	0.263	-1.36e+05
4.97e+05 C(grade)[T.4] 1.4e+05	-1.818e+05	1.64e+	05 -1	.107	0.268	-5.04e+05
C(grade)[T.5] 1.15e+05	-2.017e+05	1.62e+	05 -1	.248	0.212	-5.18e+05
C(grade)[T.6] 1.04e+05	-2.117e+05	1.61e+	05 -1	.313	0.189	-5.28e+05
C(grade) [T.7] 9.69e+04	-2.192e+05	1.61e+		.359	0.174	
C(grade) [T.8] 1.06e+05 C(grade) [T.9]	-2.099e+05 -1.436e+05	1.61e+ 1.61e+		.301	0.193	-5.26e+05 -4.6e+05
1.73e+05 C(grade) [T.10]	-1.430e+03			.118	0.906	
2.97e+05 C(grade)[T.11]	1.816e+05	1.62e+	05 1	.123	0.261	-1.35e+05
4.99e+05 C(grade)[T.12]	6.193e+05	1.63e+	05 3	.810	0.000	3.01e+05
9.38e+05 C(grade)[T.13] 1.97e+06	1.64e+06	1.68e+	05 9	.760	0.000	1.31e+06
C(zipcode) [T.98002]	1.559e+04	1.42e+	04 1	.095	0.273	-1.23e+04

4.35e+04						
C(zipcode)[T.980	003]	-4557.8566	1.28e+04	-0.355	0.722	-2.97e+04
2.06e+04 C(zipcode)[T.980	004]	7.85e+05	1.25e+04	62.754	0.000	7.61e+05
8.1e+05 C(zipcode)[T.980	005]	3.386e+05	1.51e+04	22.389	0.000	3.09e+05
3.68e+05 C(zipcode)[T.980	0061	2.609e+05	1.13e+04	23.099	0.000	2.39e+05
2.83e+05						
C(zipcode)[T.980 3.05e+05		2.74e+05	1.6e+04	17.109	0.000	2.43e+05
C(zipcode)[T.980 3.17e+05	[800	2.916e+05	1.28e+04	22.759	0.000	2.66e+05
C(zipcode)[T.980	010]	7.431e+04	1.82e+04	4.081	0.000	3.86e+04
C(zipcode)[T.980	011]	1.412e+05	1.43e+04	9.863	0.000	1.13e+05
1.69e+05 C(zipcode)[T.980	014]	9.516e+04	1.68e+04	5.665	0.000	6.22e+04
1.28e+05 C(zipcode)[T.980	019]	9.333e+04	1.44e+04	6.462	0.000	6.5e+04
1.22e+05 C(zipcode)[T.980	022]	-2669.3218	1.36e+04	-0.197	0.844	-2.93e+04
2.39e+04				-1.675	0.094	4 0Fa104
C(zipcode)[T.980 3171.107	023]	-1.0000+04	1.11e+04	-1.075	0.094	-4.05e+04
C(zipcode)[T.980 2.08e+05	024]	1.693e+05	1.99e+04	8.500	0.000	1.3e+05
C(zipcode)[T.980	027]	1.761e+05	1.17e+04	15.088	0.000	1.53e+05
1.99e+05 C(zipcode)[T.980	028]	1.372e+05	1.28e+04	10.731	0.000	1.12e+05
1.62e+05 C(zipcode)[T.980	029]	2.2e+05	1.24e+04	17.671	0.000	1.96e+05
2.44e+05						
C(zipcode)[T.980 3.49e+04	030]	9121.9831	1.32e+04	0.694	0.488	-1.67e+04
C(zipcode)[T.980 5.07e+04	031]	2.543e+04	1.29e+04	1.969	0.049	113.321
C(zipcode)[T.980	032]	1.303e+04	1.67e+04	0.779	0.436	-1.97e+04
4.58e+04 C(zipcode)[T.980	033]	3.723e+05	1.15e+04	32.332	0.000	3.5e+05
3.95e+05 C(zipcode)[T.980	034]	2.1e+05	1.09e+04	19.206	0.000	1.89e+05
2.31e+05 C(zipcode)[T.980	038]	3.59e+04	1.08e+04	3.329	0.001	1.48e+04
5.7e+04 C(zipcode)[T.980		1.265e+06	2.45e+04	51.592	0.000	1.22e+06
1.31e+06		1.2006.00	2.106.04	01.002	0.000	1.226.00

C(zipcode)[T.98040] 5.74e+05	5.483e+05	1.3e+04	42.257	0.000	5.23e+05
C(zipcode) [T.98042] 3.74e+04	1.603e+04	1.09e+04	1.468	0.142	-5368.883
C(zipcode) [T.98045] 1.18e+05	9.131e+04	1.38e+04	6.629	0.000	6.43e+04
C(zipcode)[T.98052] 2.75e+05	2.537e+05	1.09e+04	23.340	0.000	2.32e+05
2.75e+05 C(zipcode)[T.98053] 2.35e+05	2.115e+05	1.18e+04	17.969	0.000	1.88e+05
C(zipcode)[T.98055] 6.93e+04	4.387e+04	1.3e+04	3.379	0.001	1.84e+04
C(zipcode)[T.98056]	1.039e+05	1.17e+04	8.907	0.000	8.1e+04
1.27e+05 C(zipcode)[T.98058]	4.686e+04	1.14e+04	4.127	0.000	2.46e+04
6.91e+04 C(zipcode)[T.98059]	9.082e+04	1.13e+04	8.026	0.000	6.86e+04
1.13e+05 C(zipcode)[T.98065]	7.958e+04	1.26e+04	6.340	0.000	5.5e+04
1.04e+05 C(zipcode)[T.98070]	1.119e+05	1.72e+04	6.498	0.000	7.81e+04
1.46e+05 C(zipcode)[T.98072]	1.744e+05	1.29e+04	13.470	0.000	1.49e+05
2e+05 C(zipcode)[T.98074]	1.91e+05	1.15e+04	16.546	0.000	1.68e+05
2.14e+05 C(zipcode)[T.98075]	1.902e+05	1.22e+04	15.601	0.000	1.66e+05
2.14e+05 C(zipcode)[T.98077]	1.391e+05	1.44e+04	9.685	0.000	1.11e+05
1.67e+05 C(zipcode)[T.98092]	-1.979e+04	1.21e+04	-1.637	0.102	-4.35e+04
3900.651 C(zipcode)[T.98102]	4.941e+05	1.8e+04	27.451	0.000	4.59e+05
5.29e+05 C(zipcode)[T.98103]	3.443e+05	1.08e+04	32.031	0.000	3.23e+05
3.65e+05 C(zipcode)[T.98105]	5.047e+05	1.36e+04	37.009	0.000	4.78e+05
5.31e+05 C(zipcode)[T.98106]	1.188e+05	1.23e+04	9.677	0.000	9.47e+04
1.43e+05 C(zipcode)[T.98107]	3.442e+05	1.31e+04	26.355	0.000	3.19e+05
3.7e+05 C(zipcode)[T.98108]	1.195e+05	1.46e+04	8.209	0.000	9.1e+04
1.48e+05 C(zipcode)[T.98109]	5.096e+05	1.76e+04	28.887	0.000	4.75e+05
5.44e+05 C(zipcode)[T.98112]	6.514e+05	1.31e+04	49.860	0.000	6.26e+05

6.77e+05					
C(zipcode) [T.98115]	3.469e+05	1.08e+04	32.061	0.000	3.26e+05
3.68e+05 C(zipcode)[T.98116]	2.94e+05	1.23e+04	23.846	0.000	2.7e+05
3.18e+05					
C(zipcode) [T.98117] 3.47e+05	3.257e+05	1.09e+04	29.794	0.000	3.04e+05
C(zipcode) [T.98118] 1.86e+05	1.637e+05	1.11e+04	14.685	0.000	1.42e+05
C(zipcode) [T.98119] 5.18e+05	4.895e+05	1.47e+04	33.403	0.000	4.61e+05
C(zipcode) [T.98122] 3.79e+05	3.536e+05	1.27e+04	27.744	0.000	3.29e+05
C(zipcode)[T.98125] 2.34e+05	2.113e+05	1.16e+04	18.146	0.000	1.88e+05
C(zipcode)[T.98126] 2.07e+05	1.837e+05	1.21e+04	15.171	0.000	1.6e+05
C(zipcode) [T.98133] 1.94e+05	1.72e+05	1.12e+04	15.395	0.000	1.5e+05
C(zipcode) [T.98136] 2.8e+05	2.545e+05	1.31e+04	19.407	0.000	2.29e+05
C(zipcode) [T.98144] 3.02e+05	2.779e+05	1.22e+04	22.816	0.000	2.54e+05
C(zipcode)[T.98146]	1.061e+05	1.28e+04	8.303	0.000	8.1e+04
1.31e+05 C(zipcode)[T.98148]	6.98e+04	2.29e+04	3.043	0.002	2.48e+04
1.15e+05 C(zipcode)[T.98155]	1.619e+05	1.14e+04	14.188	0.000	1.4e+05
1.84e+05 C(zipcode)[T.98166]	9.251e+04	1.32e+04	6.992	0.000	6.66e+04
1.18e+05 C(zipcode)[T.98168]	4.958e+04	1.31e+04	3.797	0.000	2.4e+04
7.52e+04 C(zipcode)[T.98177]	2.191e+05	1.33e+04	16.528	0.000	1.93e+05
2.45e+05 C(zipcode)[T.98178]	3.658e+04	1.31e+04	2.785	0.005	1.08e+04
6.23e+04 C(zipcode)[T.98188]	3.047e+04	1.62e+04	1.881	0.060	-1282.700
6.22e+04 C(zipcode)[T.98198]	1.146e+04	1.29e+04	0.892	0.372	-1.37e+04
3.67e+04 C(zipcode)[T.98199]	3.919e+05	1.25e+04	31.367	0.000	3.67e+05
4.16e+05 bedrooms	-1.324e+04	1556.313	-8.505	0.000	-1.63e+04
-1.02e+04 bathrooms 1.27e+04	8127.4080	2351.084	3.457	0.001	3519.109

sqft_above 180.425	174.8861	2.8	326	61.887	0.000	169.347
view	8.473e+04	1602.2	215	52.882	0.000	8.16e+04
8.79e+04 sqft_basement	146.6707	3.2	205	45.765	0.000	140.389
152.952						
Omnibus:	1894	18.630	Durk	oin-Watson:		2.001
Prob(Omnibus):		0.000	Jaro	ue-Bera (JE	3):	2780571.536
Skew:		3.629	Prob	(JB):		0.00
Kurtosis:	5	58.111	Cond	l. No.		9.72e+05
============		-=====	=====		=======	=========

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 9.72e+05. This might indicate that there are strong multicollinearity or other numerical problems.

So we droped five variabels and we still got a pretty nice R-squared value of 0.809