Exploratory Data Analysis

Sentiment Analysis

sentiment analysis.

1 Introduction I will be performing sentiment analyses using several of the different approaches described on <u>Figure 1</u> below. I will make some sligth changes that I think reflect a more accurate classification for methods of conducting

Table of contents

1 Introduction

Other Formats

Jupyter

2 Lexicon Based Approaches

Figure 1: Thank you for this, Oliver

the decision of how to proceed.

I will also be providing some background information about each approach, and my own thoughts about it. The purpose of this document is to provide some insights into each of the different techniques and help with

2 Lexicon Based Approaches

2.1 Dictionary based approach

Here I think a better sub-classification scheme may be:

1. Single word/ keyword spotting 1. In this case, a single word (unigram) is matched with a particular sentiment. This is obviously a naive approach with several flaws. Perhaps the most obvious one is that it neglects negation. Another flaw is that it is based on surface features.

2. Lexical affinity 1. This is an slightly more sophisticated approach compared to keyword spotting and it is based on assigning a probability (rather that a hard label) to a certain word. For example, the word accident instead of receiving a label of either positive or negative, is given a probability (e.g. 0.7 of being negative). Dictionary of lexical affinity are usually derived from linguistic corpora. Although an step up from keyword spotting, they still lack the capacity to incorporate negation into the final output and they are usually domain-dependent, so it is hard to find generalisable models.

2.1.1 Keyword spotting

► Code

2.1.1.1 AFINN Lexicon

The AFINN lexicon gives a score of -5 to 5 to classify the sentiment from extremely negative to extremely positive. The overall sentiment is given by the sum of these values. See Qtbl_afinn_sample below for examples.

► Code

Table 1: AFINN Lexicon (sample)

sentiment positive negative

Figure 2: Change of sentiment over time (agg. to week) according to AFINN lexicon

2.1.1.2 Bing Lexicon

Gives a hard label (i.e. positive, negative) to each word. See <u>Table 2</u> below for examples.

► Code

► Code

word	sentiment
sorely	negative
concerned	negative
tease	negative
steadiest	positive
bullying	negative
rapt	positive
compliant	positive
god-given	positive
fervent	positive
	positive
constructive	positive
oppressive	negative
transparent	positive
temper	negative
ieerinaly	negative

Table 2: Bing Lexicon (sample)

jeeringly negative cataclysmically negative illegally negative inspiring positive drawback negative stampede negative ► Code

sentiment positive negative

Figure 3: Change of sentiment over time (agg. to week) according to bing lexicon

2.1.1.3 NRC Lexicon

The NRC lexicon assigns words into categories of positive, negative, anger, anticipation, disgust, fear, joy, sadness, surprise, and trust. See <u>Table 3</u> below for examples.

► Code

Table 3: NRC Lexicon (sample)		
word	sentiment	
wound	anger	
pedigree	trust	
haven	trust	
arrogant	anger	
fanaticism	fear	
avoiding	fear	
memorable	trust	
coward	negative	
reverie	joy	
murderer	anger	
perjury	surprise	
encroachment encroachment	fear	
hilarious	joy	
leakage	negative	
insurrection	anger	
hazard	fear	
leukemia	anger	
sterling	positive	
overwheim .	negative	
deceitful	disgust	
Code		

Warning: Removed 1 rows containing missing values (`position_stack()`).

Figure 4: Change of sentiment over time (agg. to week) according to NRC lexicon

2.1.2 Conclusions Potential issues:

· Because lexicons have only a limited number of words, not all tweets and not all of the words in a given

lexicon

- tweet's text are going to be scored • Some of the words lexicons score as positive (e.g. free) are commonly used by anti-vaxxers groups
- We would be finding the overall sentiment of the tweet, NOT the sentiment towards vaccination, which is what we actually want. . .
- Loss of data (see <u>Table 4</u> below):

• All three lexicons drop between a third and a fourth of the data. See below. Likewise, not all words in a tweet's text are used.

► Code Table 4: Tweets kept by using each lexicon dictionary

65,136 out of 99,997 (65.14	1%)	
retention		

AFINN	65,136 out of 99,997 (65.14%)	
Bing	63,011 out of 99,997 (63.01%)	
NRC	79,369 out of 99,997 (79.37%)	
► Code		
		- 04-
(NNIH 1.	0- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	(Bing) 0.4-
egate nt (Al	5- 144, 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ent (Bi

