DÉNOMBREMENTS PRATIQUES

Exercice 1 - Groupe d'étudiants - $L1/Math\ Sup/Prépa\ HEC$ - \star

Réaliser un tableau à double entrée

Exercice 2 - Dans une entreprise... - $Pr\acute{e}pa~HEC$ - \star

Donner un nom à chacun des ensembles de base, et exprimer les autres en fonction de ceux-ci.

Exercice 3 - Nombres et chiffres - $Pr\'epa\ HEC$ - \star

Il faut mettre à part le premier chiffre (différent de 0), puis

- 1. Décrire les éléments de A en terme de 7 liste.
- 2. Décrire les éléments de A_1 en terme d'arrangements.
- 3. Séparer le traitement du chiffre des unités et le traitement des chiffres précédents.
- 4. Combien y-a-t-il de façons de choisir 7 chiffres distincts parmi 9?

Exercice 4 - Podium! - $L1/Math Sup - \star$

Se reporter à son cours!

Exercice 5 - Tirage dans un jeu de cartes - $Prépa\ HEC$ - \star

- 1. Il faut choisir une partie à 5 élements dans un ensemble à 32 éléments.
- 2. Compter séparément le nombre de tirages comprenant 5 carreaux et 5 piques.
- 3. Choisir les carreaux, puis les piques.
- 4. Compter les tirages sans roi, et retirer du nombre total.
- 5. Compter les tirages sans roi, puis ceux avec exactement un roi.
- 6. Séparer les tirages contenant le roi de pique, et ceux ne contenant pas le roi de pique.

Exercice 6 - Ranger des livres - Prépa HEC - *

- 1. Choisir l'ordre des groupes, puis l'ordre des livres à l'intérieur de chacun des groupes.
- 2. Choisir la position du groupe des livres de mathématiques, puis ranger les livres de mathématiques d'un côté, le reste des livres de l'autre.

Exercice 7 - Anagrammes - L1/Math Sup/Prépa Hec - *

Un anagramme correspond à une permutation des lettres, mais certaines permutations donnent le même résultat.

Exercice 8 - Des tours sur un échiquier - L1/Math Sup/Prépa Hec - *

Commencer par choisir les lignes où sont les tours.

Exercice 9 - Le problème des anniversaires - L1/Math Sup - **

Traduire le problème en terme d'application injective (ou plutôt non injective...).

Exercice 10 - Grilles de Fleissner - L1/Math Sup - **

1. On a 36 choix pour le premier trou. Et combien pour le second?

2. Il faut effectuer $n^2/4$ trous...

DÉNOMBREMENTS PLUS THÉORIQUES

Exercice 11 - Parties de cardinal pair - L1/Math Sup - **

Procéder par récurrence sur n.

Exercice 12 - Partition d'un ensemble - $L1/Math Sup - \star\star$

Pour chaque liste ordonnée des np éléments, on regroupe les éléments dans l'ordre p par p. Il faut ensuite diviser par le nombre de listes qui donnent la même partition.

Exercice 13 - Dérangement et problème des rencontres - Math Sup/L1 - **

- 1. Une permutation d'un tel E peut-elle n'avoir aucun point fixe?
- 2. Ecrire toutes les permutations de E.
- 3. Compter le nombre de choix d'éléments invariants, puis le nombres de permutations possibles sur les éléments non invariants. Séparer ensuite l'ensemble des permutations de E en fonction de leurs nombre de points invariants.
- 4. Appliquer successivement la relation précédente pour n=3, n=4, n=5.
- 5. (a) Exprimer le nombre en terme de permutations.
 - (b) Exprimer le nombre en terme de dérangements.
 - (c) Choisir le couple légitime, puis déranger les autres.
 - (d) Compter aussi le cas où il y a exactement deux couples légitimes.

Exercice 14 - Partie sans entiers consécutifs - L1/Math Sup - **

- 1. Si $1 \le a_1 < a_2 < \cdots < a_p$ sont des entiers dont deux ne sont jamais consécutifs, quelle est la valeur minimal de a_p ?
- 2. Calculer $b_{i+1} b_i$.
- 3. La bijection est donnée par la question précédente (mais il faut encore prouver que c'est une bijection).
- 4. Le cardinal de G_n^p est connu!

Exercice 15 - Nombre de surjections - $L1/Math Sup - \star\star\star$

- 1.
- 2. Un unique élément de l'ensemble d'arrivée doit avoir deux antécédents.
- 3. On pourra considérer la restriction à $\{1,\ldots,n-1\}$ d'une surjection de $\{1,\ldots,n\}$ sur $\{1,\ldots,p\}$.

4.

Coefficients binômiaux

Exercice 16 - Autour de la formule du binôme - $L1/Math\ Sup$ - \star

- 1. Développer d'abord sous la forme $((a+b)+c)^7$.
- 2. Développer $(1+x)^n$ et intégrer!
- 3. $(1+x)^m = (1+x)^q (1+x)^{m-q}$, et calculer le coefficient devant x^p .

Exercice 17 - Une extension de la formule du triangle de Pascal - $L1/Math\ Sup$ - \star S'inspirer de la démonstration de la formule du triangle de Pascal (considérer un ensemble ayant m éléments, isoler q éléments et chercher le nombre de parties à p éléments).

Exercice 18 - Une somme - $L1/Math Sup - \star$

Procéder par récurrence ou par dénombrement d'ensembles (pour ce dernier cas, on pourra discuter suivant la valeur du plus grand entier d'une partie à p+1 éléments de $\{1, \ldots, n+1\}$.

Exercice 19 - Bizarre, bizarre,... - L1/Math Sup - **

On pourra compter le nombre de parties à n éléments dans un ensemble à 2n éléments en coupant d'abord le gros ensemble en deux parties égales. On peut aussi utiliser des polynômes.

Exercice 20 - Avec des nombres complexes - L1/Math Sup - **

Mettre (1+i) sous forme trigonométrique. Calculer d'une autre façon en utilisant la formule du binôme.

Exercice 21 - Avec des polynômes - L1/Math Sup - **

Pour S_n , introduire les polynômes $P(x) = (x+1)^n$, $Q(x) = (x-1)^n$ et chercher le coefficient devant x^n du produit PQ de deux façons différentes. Pour calculer T_n , on pourra étudier le produit PP'.

Symbole somme

Exercice 22 -
$$-L1/Math Sup - \star$$

Calculer $\sum_{k=1}^{n} (1 - x_k)^2$.