Relâmpagos e a Compreensão das Tempestades

Table of Contents

Abstract

Introduction

Purpose and Scope of the Review

- Statement of Purpose
- Specific Objectives:

Methodology of Literature Selection

- Transformation of Query
- Identifying and Applying Inclusion & Exclusion Criteria
- Screening Papers
- Citation Chaining Identifying additional relevant works
- Relevance scoring and sorting

Results

- Descriptive Summary of the Studies
- Critical Analysis and Synthesis
- Thematic Review of Literature
- Chronological Review of Literature
- Agreement and Divergence Across Studies
- Theoretical and Practical Implications
- Limitations of the Literature
- Gaps and Future Research Directions

Overall Synthesis and Conclusion

References

TLDR

This review focuses on lightning and its role in enhancing the understanding of storm dynamics. It reveals that lightning activity correlates strongly with storm intensity and structure, serving as a key indicator of convective processes. Patterns of lightning distribution provide insights into storm development and severity. These findings underscore lightning's significance in improving storm prediction and risk assessment models.

Abstract

This review synthesizes research on "Estudo de relâmpagos e sua contribuição para a compreensão das tempestades" to address gaps in understanding lightning's role in thunderstorm dynamics and hazard prediction. The review aimed to evaluate knowledge on lightning formation and charge structures, benchmark observational and modeling techniques, assess environmental influences, compare lightning characteristics across storm types and regions, and analyze lightning's relation to severe weather hazards. A systematic analysis of diverse studies employing radar, satellite, lightning mapping arrays, acoustic sensing, numerical simulations, and machine learning was conducted. Key findings reveal detailed characterization of dipolar and tripolar charge structures linked to lightning initiation and storm phases; complex aerosol and urban morphology effects modulating lightning frequency and spatial patterns; advances in lightning data assimilation and deep learning models enhancing short-term nowcasting accuracy; and variable correlations between lightning activity and severe weather phenomena such as hail, precipitation, and windstorms. These findings collectively underscore the multifaceted nature of lightning processes and the benefits of integrated multi-instrument approaches. The synthesis highlights methodological challenges and regional variability that constrain generalization but affirms lightning's critical role as a diagnostic and predictive tool. This review informs future research directions and operational strategies to improve thunderstorm forecasting and risk mitigation within diverse convective environments.

Introduction

Research on the study of lightning and its contribution to understanding thunderstorms has emerged as a critical area of inquiry due to its implications for severe weather forecasting, hazard mitigation, and climate monitoring(Ribeiro et al., 2024)(Ma et al., 2024). Over recent decades, advancements in observational technologies such as lightning mapping arrays, geostationary satellites, and phased array radars have progressively enhanced the resolution and scope of lightning data, enabling detailed analyses of thunderstorm microphysics and electrification processes(Bruning et al., 2024)(Wang et al., 2024). The increasing frequency and intensity of thunderstorms linked to climate change underscore the practical significance of this research, as lightning activity is associated with substantial economic losses and human casualties worldwide(Shi et al., 2024)(Bahari et al., 2024). For instance, studies have documented that lightning frequency and intensity correlate with convective available potential energy (CAPE) and storm dynamics, highlighting the need for improved predictive capabilities(Liu et al., 2024)(Ma et al., 2024).

Despite these advances, significant challenges remain in accurately characterizing lightning behavior within diverse thunderstorm types and environmental conditions, revealing critical knowledge gaps(Rocque et al., 2024)(Houel et al., 2024)(Yang et al., 2023). While some research emphasizes the role of microphysical properties and charge structures in lightning initiation and evolution(Wang et al., 2024)(Wang, 2024), others focus on the influence of aerosols, urban morphology, and synoptic-scale forcing on lightning activity(Shi et al., 2024)(Tao et al., 2024)(Jong et al., 2024). Controversies persist regarding the extent to which aerosols enhance or inhibit lightning, and how urbanization modulates thunderstorm electrification(Shi et al., 2024)(Tao et al., 2024). Moreover, the integration of multi-source data for nowcasting and forecasting lightning remains limited by methodological constraints and data heterogeneity(Erdmann & Poelman, 2024)(Zhou et al., 2024). These gaps hinder the development of reliable early warning systems, which are crucial given the rapid onset and localized nature of severe thunderstorms(Kundu et al., 2024)(Yin et al., 2023).

Conceptually, the study of lightning in thunderstorms involves understanding the interplay between convective dynamics, cloud microphysics, and electrical charge separation mechanisms(Ribeiro et al., 2024)(Wang et al., 2024)(Houel et al., 2024). CAPE and vertical wind shear serve as key parameters influencing convective organization and lightning potential(Portal et al., 2024). Lightning activity, including cloud-to-ground and intracloud flashes, reflects underlying charge structures and storm evolution stages, providing insights into thunderstorm intensity and hazards(Houel et al., 2024)(Pineda et al., 2024). This framework guides the systematic investigation of lightning's role in thunderstorm processes and informs predictive modeling efforts(Cummings et al., 2024)(Yousefnia et al., 2024).

The purpose of this systematic review is to synthesize recent research on lightning characteristics and their contributions to understanding thunderstorm dynamics, with an emphasis on observational advances, microphysical insights, and forecasting methodologies. By addressing identified knowledge gaps and controversies, this review aims to enhance the theoretical and practical understanding of lightning-thunderstorm interactions, supporting improved nowcasting and risk mitigation strategies(Ribeiro et al., 2024)(Erdmann & Poelman, 2024)(Shi et al., 2024).

This review employs a comprehensive literature survey of peer-reviewed studies published in 2024, integrating multi-disciplinary data sources including radar, satellite, lightning detection networks, and numerical modeling. Analytical frameworks focus on microphysical processes, charge structure evolution, and environmental influences on lightning activity. The findings are organized thematically to elucidate the state of knowledge, methodological innovations, and future research directions in lightning and thunderstorm science(Bruning et al., 2024)(Wang et al., 2024)(Cummings et al., 2024).

Purpose and Scope of the Review

Statement of Purpose

The objective of this report is to examine the existing research on "Estudo de relâmpagos e sua contribuição para a compreensão das tempestades" in order to synthesize current scientific understanding of lightning phenomena and their role in thunderstorm dynamics. This review is important because lightning serves as a critical indicator of convective activity and electrical processes within storms, which directly impact weather forecasting, hazard mitigation, and climate studies. By consolidating findings from diverse observational, modeling, and experimental studies, the review aims to clarify how lightning characteristics inform the microphysical, dynamical, and electrical structure of thunderstorms. Furthermore, it seeks to identify gaps in knowledge and methodological advances that can enhance nowcasting and early warning systems, ultimately contributing to improved societal preparedness and risk reduction related to severe weather events.

Specific Objectives:

• To evaluate current knowledge on lightning formation, electrical charge structures, and their evolution within thunderstorms.

- Benchmarking of observational and modeling techniques used to analyze lightning activity and thunderstorm microphysics.
- Identification and synthesis of environmental and urban factors influencing lightning frequency and intensity.
- To compare lightning characteristics across different storm types, geographic regions, and convective environments.
- To deconstruct the relationship between lightning activity and thunderstorm hazards such as hail, precipitation, and severe winds.

Methodology of Literature Selection

Transformation of Query

We take your original research question — "Estudo de relâmpagos e sua contribuição para a compreensão das tempestades"—and expand it into multiple, more specific search statements. By systematically expanding a broad research question into several targeted queries, we ensure that your literature search is both comprehensive (you won't miss niche or jargon-specific studies) and manageable (each query returns a set of papers tightly aligned with a particular facet of your topic).

Below were the transformed queries we formed from the original query:

- Estudo de relâmpagos e sua contribuição para a compreensão das tempestades
- Influence of urbanization and aerosol concentration on lightning activity and its implications for thunderstorm dynamics
- Aerosol influences on lightning dynamics and seasonal variations in thunderstorm activity

Identifying and Applying Inclusion & Exclusion Criteria

We analysed your original research question to extract multiple **inclusion/exclusion criteria** that you would have specified so that the database returns only studies that match them.

Below were the identified Inclusion-Exclusion Criteria:

• Papers from the year 2024

Screening Papers

We then run each of your transformed queries with the applied Inclusion & Exclusion Criteria to retrieve a focused set of candidate papers for our always expanding database of over 270 million research papers. during this process we found 112 papers

Citation Chaining - Identifying additional relevant works

- **Backward Citation Chaining:** For each of your core papers we examine its reference list to find earlier studies it draws upon. By tracing back through references, we ensure foundational work isn't overlooked.
- **Forward Citation Chaining:** We also identify newer papers that have cited each core paper, tracking how the field has built on those results. This uncovers emerging debates, replication studies, and recent methodological advances

A total of 6 additional papers are found during this process

Relevance scoring and sorting

We take our assembled pool of 118 candidate papers (112 from search queries + 6 from citation chaining) and impose a relevance ranking so that the most pertinent studies rise to the top of our final papers table. We found 118 papers that were relevant to the research query. Out of 118 papers, 50 were highly relevant.

Results

Descriptive Summary of the Studies

This section maps the research landscape of the literature on Estudo de relâmpagos e sua contribuição para a compreensão das tempestades, encompassing a broad spectrum of investigations into lightning phenomena and their integral role in thunderstorm dynamics. The studies collectively employ diverse observational tools such as radar, satellite, lightning mapping arrays, and acoustic sensing, alongside numerical modeling and machine learning approaches, to elucidate electrical charge structures, environmental influences, and lightning activity patterns across various geographic regions. The comparative analysis highlights advances in understanding lightning initiation, charge evolution, and the impact of urbanization and aerosols, while also assessing the effectiveness of nowcasting and forecasting methodologies. This synthesis is crucial for addressing the research questions

related to microphysical processes, spatial-temporal variability, environmental modulation, and predictive capabilities of lightning-related thunderstorm hazards.

Study	Lightning Charge Structure	Observational Methodologies	Environmental Influences	Lightning Activity Patterns	Forecasting and Nowcasting Performance
(Ribeiro et al., 2024)	Dipolar to tripolar charge evolution in hail-producing storm	S-band radar, 2D/3D lightning networks, satellite data	Low-pressure trough, moisture convergence	Lightning jumps precede hail, flash rates peak ahead of reflectivity	Insights for nowcasting using lightning and radar cross- sections
(Rocque et al., 2024)	Electrical characteristics linked to storm modes in MCSs	Lightning Mapping Array, GOES-16, 1-km radar	Orographic influence of Andes, mesoscale convective systems	Flash size differences between deep convection and stratiform regions	High-resolution lightning data enhances storm lifecycle analysis
(Bruning et al., 2024)	Mixed-phase updraft variability linked to lightning flash rates	Polarimetric radar, VHF 3D Lightning Mapping Array	Aerosol and thermodynamic controls on microphysics	Lightning correlates with rimed precipitation and updraft strength	Lightning complements radar for microphysical process studies
(Liu et al., 2024)	Charge structures vary by thunderstorm category	Total lightning, Doppler radar, precipitation data	Urban topography, wind gradients, nocturnal convection	Diurnal lightning maxima, +CG/CG ratio varies by storm type	Urban and topographic effects on lightning frequency and intensity
(Kundu et al., 2024)	Thunderstorm characteristics with severe lightning events	INSAT-3D satellite, lightning sensors, WRF model	Cloud system origin and isolated convection	High flash counts linked to vertical wind velocity and ice content	WRF model validated for severe weather warning improvement
(Ma et al., 2024)	Charge structures in extreme lightning activity thunderstorms	Thunderstorm Feature Dataset, reanalysis data	Synoptic patterns: westerly troughs, subtropical highs, tropical cyclones	TELAs linked to CAPE and moisture divergence anomalies	Provides early warning references for intense convection

Study	Lightning Charge Structure	Observational Methodologies	Environmental Influences	Lightning Activity Patterns	Forecasting and Nowcasting Performance
(Portal et al., 2024)	Convective environments within Mediterranean cyclones	ATDnet lightning detections, reanalysis data	Cyclone warm conveyor belts, baroclinic features	Lightning peaks in warm sector, varies by cyclone category	Identifies regions favorable for deep convection and hazards
(Erdmann & Poelman, 2024)	Lightning jumps and dives linked to cloud top and updraft structure	Geostationary satellite lightning and cloud data	Cloud top temperature and overshooting tops	Multiple lightning jumps indicate highly organized convection	Useful for nowcasting severe weather phenomena
(Wang et al., 2024)	Electrical alignment of ice particles before IC lightning	X-band dual- polarized phased array radar	Ice particle orientation by strong electric fields	Vertically aligned ice particles peak before first IC flash	Radar detects early electrification aiding lightning initiation forecasts
(Wang, 2024)	Evolution of upper charge regions in isolated thunderstorms	X-band dual- polarized phased array radar, lightning detection	Charge region rise and concentration during storm stages	Upper charge region evolution correlates with IC flash rate	Links microphysical processes with lightning activity
(Wang et al., 2024)	Electrical alignment signatures and IC lightning flash rate	Dual-polarized phased array radar	Electric field evolution in upper cloud layers	Negative KDP volume correlates with IC flash rate with time lag	Radar signatures consistent with electrification process
(Farges et al., 2024)	Acoustic measurements complement electromagnetic lightning detection	Acoustic networks, electromagnetic field data	Acoustic power variability within lightning flashes	Acoustic data reconstructs 3D lightning source structure	Enhances understanding of lightning discharge heterogeneity
(Houel et al., 2024)	Vertical dominant charge structures in Corsican thunderstorms	Lightning Mapping Array, Météorage network	Charge dipole altitude influences flash rate and polarity	Low/high altitude dipoles linked to CG and IC flash dominance	Combined LMA and network data classify charge structures

Study	Lightning Charge Structure	Observational Methodologies	Environmental Influences	Lightning Activity Patterns	Forecasting and Nowcasting Performance
(Hou et al., 2024)	Sprite and lightning activity in mesoscale convective systems	Earth Networks Total Lightning Network	High flash rates during cell merging and dissipation	TLEs associated with large peak current flashes	Links transient luminous events with storm lifecycle stages
(Pu & Cummer, 2024)	Continuous initial breakdown bursts in in-cloud lightning	VHF interferometer observations	Long negative streamer systems at high altitudes	Continuous VHF radiation precedes dart leaders	New mode of lightning initiation with implications for physics
(Hao, 2024)	Simulation of mesoscale convective system dynamics and lightning	Cloud microphysics and electrification model	Integrates cloud formation and lightning generation	Simulates various thunderstorm types and lightning activities	Provides interactive framework for thunderstorm and lightning modeling
(Shi et al., 2024)	Urbanization impacts on thunderstorm and lightning activity	Review of aerosols, urban heat island, and morphology effects	Aerosol effects ambiguous; urban heat and barriers enhance lightning	Lightning clusters at urban edges; building height influences activity	Calls for integrated observational and modeling approaches
(Murphy et al., 2023)	Automated thunderstorm identification using lightning and radar fusion	Geostationary Lightning Mapper, radar VIL data	Fusion method improves storm size stability and detection	Lightning-only method identifies smaller, more lightning-rich storms	Enhances storm tracking for operational applications
(Zhang et al., 2024)	High-resolution thunderstorm identification from lightning data	Lightning location data, DBSCAN clustering, Alpha Shapes	Improved shape and boundary detection of thunderstorms	Outperforms radar-based methods in identification accuracy	Advances spatial- temporal thunderstorm mapping techniques

Study	Lightning Charge Structure	Observational Methodologies	Environmental Influences	Lightning Activity Patterns	Forecasting and Nowcasting Performance
(Jong et al., 2024)	Aerosol impacts on oceanic lightning via shipping regulations	Satellite lightning data, aerosol emission changes	Mixed aerosol effects; shipping lane sensitivity varies	Lightning frequency linked to hydrometeor size and cloud properties	Provides insights into aerosol-cloud-lightning interactions
(Yang et al., 2023)	Aerosol effects on thunderstorm microphysics and lightning	WRF cloud- aerosol bin model with electrification	Polluted conditions narrow droplet spectrum, reduce graupel	Weakened charge separation leads to decreased lightning frequency	Highlights aerosol influence on electrification and lightning timing
(Yang et al., 2024)	Spectral microphysics model of aerosol impacts on thunderstorms	High-resolution cloud-aerosol bin model	Pollution reduces large ice particles, weakens charge separation	43% lightning frequency reduction and 5-min delay under pollution	Improves microphysical accuracy in electrification simulations
(Tao et al., 2024)	Urban morphology modulates CG lightning and thunderstorm processes	Observations and simulations in Beijing metropolitan area	Urban barriers cause cold pool separation and storm bifurcation	Lightning clusters at city edges; building density affects barrier strength	Provides mechanistic understanding of urban lightning modulation
(Mao et al., 2024)	Lightning- precipitation relationship in strong convective weather	Lightning locator, electric field, precipitation data	Cold vortex and air mass convergence drive heavy precipitation	Strong correlation (0.946) between lightning frequency and precipitation	Demonstrates spatial and temporal lightning- precipitation coupling
(Mauda et al., 2024)	Thunderstorm Ground Enhancement linked to gamma rays and electricity	Lightning networks, gamma ray and electric field measurements	Gamma ray increases correlate with electric field fluctuations	Some electric field changes occur without lightning flashes	Suggests multiple physical mechanisms in thunderstorm particle enhancements

Study	Lightning Charge Structure	Observational Methodologies	Environmental Influences	Lightning Activity Patterns	Forecasting and Nowcasting Performance
(Remington et al., n.d.)	Feasibility of 3D lightning mapping from space using RF satellites	Simulated LMA data, Levenberg– Marquardt geolocation	Spaceborne 3D mapping achieves vertical accuracy <2 km	Requires at least five LEO satellites with VHF time-of- arrival sensors	Enables global high-resolution lightning mapping for weather and climate
(Goede et al., 2024)	Lightning observations with Horus polarimetric phased array radar	Rapid RHI scans, LMA VHF data	PAR detects lightning echoes with high spatial- temporal resolution	Lightning echoes correlate with radar reflectivity and polarimetric variables	Demonstrates PAR capability for lightning physics and monitoring
(Cummings et al., 2024)	Evaluation of lightning flash rate parameterizations in WRF-Chem	Cloud-resolved WRF-Chem simulation, LMA observations	Updraft volume and ice flux schemes better represent flash rates	Many schemes overpredict flashes; scaling factors needed for hydrometeors	Supports improved lightning parameterizations for storm simulations
(Zhou et al., 2024)	Deep learning model for local lightning forecasting	Multi-source data, spatial- channel- enhanced recurrent CNN	Multi-scale attention improves spatial feature extraction	High POD (0.991) and reduced FAR (0.351) outperform traditional models	Provides reliable real-time lightning forecasts for risk management
(Yin et al., 2023)	Lightning nowcasting using GNSS PWV and machine learning	GNSS PWV, meteorological data, automated ML algorithms	PWV variations statistically linked to lightning occurrences	Model achieves 89% POD and 30% FAR with 30-min lead time	Demonstrates innovative integration of GNSS data for lightning nowcasting
(Horner et al., 2024)	Improved Iightning NOx emission inventory using satellite data	LIS satellite data, GEOS- Chem model	Variable NOx production rates per flash over land and ocean	Maritime lightning more energetic with higher NOx yields	Enhances representation of lightning NOx for atmospheric chemistry models

Study	Lightning Charge Structure	Observational Methodologies	Environmental Influences	Lightning Activity Patterns	Forecasting and Nowcasting Performance
(Pickering et al., 2024)	Lightning NOx and chemical consequences in severe storm	Cloud-resolved chemistry simulation, aircraft observations	Lower NOx per flash in high flash rate storm with small flash extents	Downwind photochemical ozone production significant in anvil outflow	Links lightning activity with tropospheric chemical impacts
(Du et al., 2024)	Thunderstorm and lightning structures over Qinghai–Tibet Plateau	TRMM satellite precipitation radar and lightning sensor	Spatial variations in vertical height and horizontal extension	Lightning frequency peaks in eastern QTP with diurnal afternoon maxima	Correlations between lightning and convection intensity analyzed
(Pineda et al., 2024)	Operational use of Lightning Mapping Array for severe weather	Largest European LMA network, real- time data	LMA reveals severe storm structures, lightning jumps, and mesocyclones	Lightning density animations complement radar for storm monitoring	Supports nowcasting and warning for tornadic and hail events
(Federico et al., 2024)	Lightning data assimilation impact on forecast over Italy	LINET network, WRF model with Dynamic Lightning Scheme	Seasonal lightning patterns differ over land and sea	LDA improves short-term lightning forecast accuracy and reduces false alarms	Positive impact mainly in first 3 hours of forecast
(Federico et al., 2024)	Lightning data assimilation in WRF for Italy forecast	WRF model, nudging scheme with observed flash density	LDA triggers missed convection and redistributes strokes	Improvement confined to 0-3 hour forecast period	Enhances short- range warning capabilities for convective events
(Petrova et al., 2024)	Seasonal-diurnal lightning distribution over Bulgaria and Black Sea	10-year lightning data, sea surface temperature analysis	Lightning peaks in summer; SST influences autumn night thunderstorms	Strong night correlation between SST and flash frequency	Highlights land- sea contrasts and SST role in thunderstorm formation

Study	Lightning Charge Structure	Observational Methodologies	Environmental Influences	Lightning Activity Patterns	Forecasting and Nowcasting Performance
(Harkema et al., 2024)	Explicit simulation of thundersnow outbreak electrification	Ground/space lightning observations, numerical weather prediction	Tripole charge structure with ice/snow hydrometeors dominates	Thundersnow flashes initiate in conditionally unstable environments	Conceptual model explains spatial offset of thundersnow initiation
(Hong et al., 2024)	3D thunder source location using Distributed Acoustic Sensing	DAS array on telecom fiber, lightning and magnetic field data	Thunder events correlate with lightning detection and radar reflectivity	Thunder signals dominated by direct acoustic waves	Provides novel acoustic method for lightning source localization
("Mapping out lightning processes in both", 2024)	Lightning processes mapped with LOFAR and VLF detection	VHF LOFAR array, VLF electromagnetic system	VHF captures channel development over tens of ms; VLF captures rapid charge movement	Systems co- locate events but detect different lightning processes	Combines frequency bands for comprehensive lightning analysis
(Soler-Ortiz et al., 2024)	Statistical footprint of lightning on Schumann Resonance	Five years of Schumann resonance data analysis	Segmentation identifies global and local lightning activity patterns	Gaussian and Laplacian segments linked to lightning variability	Offers alternative characterization complementing frequency domain methods
(Zandovskis et al., 2024)	Modeling lightning strikes as spatio- temporal point events	UK thunderstorm datasets, statistical and synthetic modeling	Movement speeds, inter- event times, and spatial spreads quantified	Autocorrelation varies from short to long range among storms	Synthetic model simulates realistic lightning strike distributions
(Bahari et al., 2024)	Lightning and windstorm characteristics in tropical thunderstorm	GIS mapping, lightning and wind speed data	Strong initial correlation between lightning and windstorms	Correlation weakens in mature and dissipating storm stages	Highlights complex relationship between lightning and severe winds

Study	Lightning Charge Structure	Observational Methodologies	Environmental Influences	Lightning Activity Patterns	Forecasting and Nowcasting Performance
(Heuscher et al., 2024)	Lightning and precipitation in tropical cyclone lifecycle	Satellite lightning and precipitation data	Lightning maxima in forward right quadrant, linked to shear and storm phase	Super- electrically active convective features have deeper mixed phase	Combines lightning and precipitation for TC convective process insights
(Xiong et al., 2024)	Frequency- domain analysis of atmospheric electric field	Atmospheric electric field data, Fourier analysis	Distinct frequency patterns differentiate thunderstorm from non- thunderstorm	Euclidean classifier predicts lightning with high POD and low FAR	Effective for short-term thunderstorm forecasting
(Sae-Jung et al., 2024)	Urban thunderstorm climatology in Bangkok Metropolitan Region	GLD360 lightning data, hotspot and track density analysis	Urban landcover modifies thunderstorm distribution and intensity	Thunderstorm corridors linked to seasonal monsoon wind regimes	Supports urban planning and hazard mitigation strategies
(Yousefnia et al., 2024)	Deep learning model infers thunderstorms from vertical profiles	Convection- permitting NWP data, SALAMA 1D neural network	Vertical profiles improve thunderstorm occurrence prediction over single-level	Model identifies physical convective patterns consistent with theory	Enhances forecast skill up to 11 hours lead time
(Lyu et al., 2024)	Lightning field experiments at CMA Field Experiment Base	Observational campaigns in Guangdong, China	Comprehensive lightning detection and nowcasting infrastructure	Annual field experiments improve understanding of lightning processes	Supports lightning disaster mechanism research
(Xu et al., 2024)	Spectral study of rare upward and branching CG lightning	High-speed slit- less spectroscope observations	Branching and circling channel structures analyzed with temperature and density	Node regions show higher charge accumulation	Provides insight into complex lightning channel development

Lightning Charge Structure:

- 30 studies detailed vertical and horizontal charge distributions, revealing dipolar, tripolar, and complex charge structures evolving during storm life cycles(Ribeiro et al., 2024)(Wang et al., 2024)(Wang, 2024).
- Several studies linked charge structure altitude and polarity dominance to flash type prevalence, such as CG or IC flashes(Houel et al., 2024).
- New modes of lightning initiation, such as continuous initial breakdown bursts, were identified, expanding understanding of electrical processes (Pu & Cummer, 2024).
- Charge alignment of ice particles and electric field evolution were observed with high-resolution radar, providing early electrification signatures(Wang et al., 2024)(Wang et al., 2024).

Observational Methodologies:

- 35 studies employed diverse tools including radar (S-band, polarimetric, phased array), satellite lightning imagers (GLM, LIS), lightning mapping arrays, and acoustic sensing(Ribeiro et al., 2024)(Goede et al., 2024)(Hong et al., 2024).
- Integration of multiple observational platforms enhanced spatial-temporal resolution and detection accuracy, enabling detailed storm and lightning structure analysis(Rocque et al., 2024)(Pineda et al., 2024).
- Novel acoustic and radio frequency methods complemented traditional electromagnetic observations, offering 3D lightning source localization(Farges et al., 2024)(Remington et al., n.d.)(Hong et al., 2024).
- Machine learning and clustering algorithms applied to lightning data improved thunderstorm identification and tracking beyond radar-only methods (Murphy et al., 2023) (Zhang et al., 2024).

Environmental Influences:

- 20 studies examined aerosol effects, urban morphology, and synoptic conditions, showing complex influences on lightning frequency and intensity(Shi et al., 2024)(Yang et al., 2023)(Tao et al., 2024).
- Urban heat islands, building density, and barrier effects modulate thunderstorm development and lightning clustering, often enhancing activity at urban edges(Tao et al., 2024)(Sae-Jung et al., 2024).
- Aerosol pollution narrows droplet spectra, weakens charge separation, and reduces lightning frequency, with some regional variability(Yang et al., 2023)(Yang et al., 2024).
- Synoptic patterns such as westerly troughs, subtropical highs, and cyclone warm conveyor belts strongly influence extreme lightning activity(Ma et al., 2024)(Portal et al., 2024).

Lightning Activity Patterns:

- 28 studies quantified flash rates, lightning jumps, and spatial clustering, revealing diurnal and seasonal variability linked to storm types and geographic regions(Liu et al., 2024)(Erdmann & Poelman, 2024)(Du et al., 2024).
- Lightning jumps and dives correlate with cloud top temperature and updraft organization, serving as indicators of storm intensification(Erdmann & Poelman, 2024).
- Flash size and frequency differ between convective and stratiform regions, with mesoscale convective systems showing distinct electrical characteristics(Rocque et al., 2024).
- Lightning activity often precedes or coincides with severe weather phenomena such as hail, precipitation, and windstorms(Ribeiro et al., 2024)(Bahari et al., 2024).

Forecasting and Nowcasting Performance:

- 18 studies assessed lightning data assimilation and machine learning models, demonstrating improved short-term forecasts and hazard warnings(Zhou et al., 2024) (Yin et al., 2023)(Federico et al., 2024).
- Lightning data assimilation in numerical weather prediction models enhances convection triggering and stroke pattern accuracy, especially within 3-hour lead times(Federico et al., 2024)(Federico et al., 2024).
- Deep learning models using vertical atmospheric profiles outperform single-level predictors in thunderstorm occurrence prediction(Yousefnia et al., 2024).
- Integration of GNSS PWV and multi-source data with machine learning yields high detection rates and reduced false alarms for lightning nowcasting (Yin et al., 2023).
- Operational use of LMA and lightning jump detection supports real-time severe weather warnings and storm structure monitoring(Pineda et al., 2024).

Critical Analysis and Synthesis

The reviewed literature on lightning and its contribution to understanding thunderstorms presents a comprehensive array of observational, modeling, and experimental approaches that collectively advance knowledge of thunderstorm dynamics and electrification processes. A notable strength lies in the integration of multi-instrument datasets, including radar, lightning mapping arrays, satellite observations, and numerical simulations, which provide detailed insights into microphysical and electrical structures of storms. However, challenges remain in standardizing methodologies, addressing spatial and temporal resolution limitations, and reconciling conflicting findings, particularly regarding aerosol impacts and urban influences on lightning activity. Furthermore, while advances in nowcasting and forecasting models show promise, their operational applicability and accuracy over diverse geographic and convective regimes require further validation. Overall, the literature underscores the complexity of lightning phenomena and highlights

critical gaps that future research must address to enhance predictive capabilities and hazard mitigation.

Aspect	Strengths	Weaknesses
Methodological Diversity and Data Integration	Studies employ a broad spectrum of observational tools such as dual-polarized phased array radars, Lightning Mapping Arrays (LMA), satellite-based lightning imagers, and acoustic sensing, enabling multi-dimensional analysis of lightning and storm microphysics (Ribeiro et al., 2024) (Wang et al., 2024) (Goede et al., 2024) (Hong et al., 2024). The combination of radar and lightning data enhances understanding of charge structures and storm dynamics, as demonstrated in detailed case studies and field campaigns (Ribeiro et al., 2024) (Rocque et al., 2024) (Wang, 2024). Numerical models incorporating spectral microphysics and electrification processes provide realistic simulations of thunderstorm evolution and lightning activity (Hao, 2024) (Yang et al., 2023).	Despite the rich data sources, inconsistencies in spatial and temporal resolutions across instruments limit the ability to fully capture lightning initiation and propagation processes. For example, satellite-based observations often lack vertical resolution, while ground-based networks have limited coverage areas (Remington et al., n.d.). The integration of diverse datasets poses challenges in harmonizing data quality and calibration, potentially affecting the robustness of conclusions. Additionally, some radar-based studies rely on assumptions in microphysical retrievals that may introduce uncertainties (Wang et al., 2024) (Wang, 2024).
Understanding of Lightning Initiation and Charge Structures	Research elucidates the evolution of charge regions within thunderstorms, including dipolar and tripolar structures, and their relation to lightning flash rates and storm phases (Ribeiro et al., 2024) (Houel et al., 2024). High-resolution radar observations reveal electrical alignment of ice particles preceding intracloud lightning, offering potential for improved forecasting of lightning initiation (Wang et al., 2024) (Wang et al., 2024). The identification of continuous initial breakdown bursts (CIBB) provides new insights into lightning leader development (Pu & Cummer, 2024).	While progress is evident, the complexity of charge separation mechanisms and variability across storm types remain incompletely understood. Some studies highlight variability in charge structure altitude and polarity dominance that complicate generalizations (Houel et al., 2024). The temporal lag between radar-inferred electric fields and lightning activity introduces challenges for real-time nowcasting (Wang et al., 2024). Moreover, the physical interpretation of radar signatures related to electrification requires further validation across diverse storm environments.
Influence of Aerosols and Urbanization on Lightning Activity	Numerical simulations incorporating spectral microphysics demonstrate that aerosol loading affects droplet size distributions, riming efficiency, and consequently lightning frequency and timing, with polluted conditions generally reducing lightning activity (Yang et al.,	Contradictory evidence persists regarding whether aerosols enhance or inhibit lightning, reflecting complex interactions between microphysics and dynamics (Shi et al., 2024). The spatial heterogeneity of urban morphology and aerosol distributions complicates

Aspect	Strengths	Weaknesses
	2023) (Yang et al., 2024). Observational and modeling studies emphasize urban thermal and dynamic effects, such as urban heat islands and barrier effects, which modulate thunderstorm development and lightning spatial patterns (Shi et al., 2024) (Tao et al., 2024). These findings contribute to understanding anthropogenic impacts on convective electrification.	attribution of observed lightning patterns solely to urban effects (Tao et al., 2024). Many studies call for improved coupling of multi-scale models and comprehensive observational campaigns to resolve these uncertainties. Additionally, the influence of aerosols over oceanic convection remains less explored and is subject to regional variability (Jong et al., 2024).
Lightning Nowcasting and Forecasting Techniques	Advances in machine learning and data assimilation methods, including deep learning models and lightning data assimilation in numerical weather prediction, have improved short-term lightning forecasts with higher accuracy and reduced false alarms (Zhou et al., 2024) (Yin et al., 2023) (Federico et al., 2024) (Federico et al., 2024). The use of lightning jumps and dives as indicators of storm intensification shows promise for operational nowcasting (Erdmann & Poelman, 2024). Automated storm identification using lightning data enhances detection of convective systems (Murphy et al., 2023) (Zhang et al., 2024).	Despite improvements, forecast skill often diminishes beyond short lead times (e.g., beyond 3 hours), limiting operational utility (Federico et al., 2024). Models may overpredict lightning flashes or require scaling adjustments to hydrometeor fields to match observations (Cummings et al., 2024). Integration of multi-source data remains challenging, and interpretability of complex machine learning models can be limited (Zhou et al., 2024). Furthermore, regional variability in storm characteristics necessitates tailored model tuning, complicating generalization.
Relationship Between Lightning and Thunderstorm Hazards	Several studies establish correlations between lightning activity and severe weather phenomena such as hail, heavy precipitation, and strong winds, supporting the use of lightning as a proxy for convective intensity and hazard potential (Ribeiro et al., 2024) (Mao et al., 2024) (Bahari et al., 2024). Observations of lightning in tropical cyclones and mesoscale convective systems provide insights into convective structure and evolution relevant for hazard assessment (Rocque et al., 2024) (Heuscher et al., 2024).	The strength and consistency of correlations vary with storm type, geographic region, and environmental conditions, limiting universal applicability (Bahari et al., 2024). Some studies report spatial offsets between lightning maxima and precipitation cores, complicating hazard inference (Harkema et al., 2024). The temporal resolution of lightning data may not always align with rapid hazard development, reducing predictive lead time. Additionally, the role of lightning in triggering secondary hazards such as sprites and gamma-ray enhancements is still emerging and requires further

Aspect	Strengths	Weaknesses
		investigation (Hou et al., 2024) (Mauda et al., 2024).
Advances in Lightning Observation Technologies	Emerging technologies such as spaceborne 3D lightning mapping, dual-polarized phased array radars, and distributed acoustic sensing provide unprecedented spatial and temporal resolution of lightning processes, enabling detailed characterization of lightning channel development and electrical field evolution (Remington et al., n.d.) (Goede et al., 2024) (Hong et al., 2024). These tools facilitate improved understanding of lightning physics and support enhanced monitoring capabilities.	Despite technological advances, operational deployment of novel systems is limited by cost, coverage, and data processing demands. Spaceborne 3D mapping remains in feasibility stages and requires multisatellite constellations for global coverage (Remington et al., n.d.). Acoustic sensing techniques are sensitive to environmental noise and require dense sensor arrays for accurate localization (Hong et al., 2024). The interpretation of complex radar and acoustic signatures demands sophisticated algorithms and validation against established methods.
Modeling of Lightning and Thunderstorm Dynamics	High-resolution cloud-resolving models with explicit electrification schemes capture detailed microphysical and electrical processes, enabling simulation of lightning flash rates and charge structures consistent with observations (Hao, 2024) (Cummings et al., 2024). Synthetic lightning strike models based on statistical characterization of lightning events provide tools for simulating lightning occurrence in space and time (Zandovskis et al., 2024). Deep learning models trained on vertical atmospheric profiles offer improved thunderstorm occurrence forecasts (Yousefnia et al., 2024).	Model accuracy is constrained by parameterization uncertainties, especially regarding microphysical processes and aerosol interactions (Yang et al., 2023) (Yang et al., 2024). Many models require empirical scaling to match observed lightning rates, indicating incomplete physical representation (Cummings et al., 2024). Computational demands limit the feasibility of high-resolution simulations for operational forecasting. Statistical models may oversimplify complex storm behaviors, and deep learning approaches risk overfitting or lack physical interpretability (Zandovskis et al., 2024) (Yousefnia et al., 2024).

Thematic Review of Literature

The body of research on lightning and its role in understanding thunderstorms reveals several major thematic areas, including the microphysical and electrical processes governing lightning initiation and evolution, advancements in observational and modeling

techniques for lightning and thunderstorm analysis, and the influence of environmental and urban factors on lightning activity. Studies also emphasize the relationship between lightning characteristics and thunderstorm hazards, such as precipitation and severe winds, as well as the development of forecasting and nowcasting methodologies leveraging lightning data. Emerging themes include the use of novel measurement technologies like acoustic and phased array radar observations, and the implications of lightning-generated chemical emissions on atmospheric composition.

Theme	Appears In	Theme Description
Microphysical and Electrical Processes of Lightning Initiation and Evolution	26/50 Papers	Research extensively investigates the microphysical and electrical mechanisms underlying lightning initiation and propagation within thunderstorms, including charge structures, ice particle alignment, and streamer dynamics. Studies using radar, lightning mapping arrays, and high-frequency measurements reveal charge region evolution and electrical alignment of ice particles preceding lightning flashes, showing complex dipolar and tripolar charge structures connected to lightning behavior(Ribeiro et al., 2024)(Wang et al., 2024)(Wang, 2024)(Wang et al., 2024)(Pu & Cummer, 2024)(Houel et al., 2024). These insights enhance understanding of thunderstorm electrification and lightning source processes.
Observational and Modeling Techniques for Lightning and Thunderstorm Analysis	23/50 Papers	Diverse observational tools like Lightning Mapping Arrays, phased array radars, satellite lightning imagers, and acoustic sensing are employed alongside numerical simulations and machine learning models to analyze lightning and storm dynamics. Advances include 3D lightning mapping from space, lightning data assimilation in weather models, and deep learning-based thunderstorm nowcasting, demonstrating improved storm identification, lightning rate parameterizations, and forecasting accuracy(Rocque et al., 2024)(Hao, 2024)(Remington et al., n.d.)(Goede et al., 2024)(Cummings et al., 2024)(Zhou et al., 2024)(Yin et al., 2023)(Pineda et al., 2024). These methodologies provide higher resolution and earlier warnings of severe convective events.
Influence of Environmental and Urban Factors on Lightning Activity	15/50 Papers	The impact of aerosols, urban morphology, topography, and synoptic conditions on lightning frequency and intensity is a growing focus. Studies reveal aerosols' complex role in altering microphysical cloud properties and charge separation, urban heat islands and building barriers modulating lightning spatial patterns, and terrain-induced convection enhancing activity(Shi et al., 2024)(Jong et al., 2024)(Yang et al., 2023)(Yang et al., 2024)(Tao et al., 2024)(Petrova et al., 2024). Understanding these influences aids in regional lightning hazard assessment and urban risk mitigation.
Relationship Between Lightning Characteristics and Thunderstorm Hazards	15/50 Papers	Lightning activity is correlated with storm hazards such as hail, heavy precipitation, severe winds, and ground enhancements of energetic particles. Research shows lightning jumps preceding hail events, spatial coincidence of lightning with precipitation, and associations with severe windstorms, underscoring lightning's diagnostic value for storm intensity and hazard potential(Ribeiro et al., 2024)(Liu et al., 2024) (Kundu et al., 2024)(Ma et al., 2024)(Hou et al., 2024) (Mao et al., 2024) (Mauda et al., 2024)(Bahari et al., 2024). This relationship is pivotal for improving hazard nowcasting and early warning systems.

Theme	Appears In	Theme Description
Lightning-Based Forecasting and Nowcasting Models	13/50 Papers	The development and evaluation of lightning nowcasting models integrating multi-source data, GNSS precipitable water vapor, deep learning, and lightning data assimilation demonstrate enhanced probability of detection and reduced false alarms. These models leverage sudden changes in lightning activity (lightning jumps and dives) and meteorological parameters to improve short-term forecasts and warnings(Erdmann & Poelman, 2024)(Zhou et al., 2024)(Yin et al., 2023)(Federico et al., 2024)(Federico et al., 2024). Such advances contribute directly to operational meteorology and disaster preparedness.
Lightning's Role in Atmospheric Chemistry and Climate Studies	5/50 Papers	Lightning is recognized as a significant source of nitrogen oxides (NOx), influencing tropospheric ozone chemistry and atmospheric composition. Recent work improves lightning NOx emission inventories using satellite-based radiant energy data and simulates chemical impacts of lightning NOx from convective storms(Horner et al., 2024)(Pickering et al., 2024). These findings are crucial for better representing lightning's chemical effects in climate and air quality models.
Novel Measurement Techniques and Acoustic Observations	4/50 Papers	Innovative approaches utilizing distributed acoustic sensing to map thunder sources in 3D and acoustic measurements of lightning-generated sound provide complementary perspectives on lightning processes. These methods enable detailed spatial localization of thunder events and characterize variability in lightning channel conductivity(Farges et al., 2024)(Hong et al., 2024). They represent emerging tools enhancing understanding of lightning physics.
Thunderstorm Structural and Lifecycle Analysis Using Lightning Data	4/50 Papers	Studies focus on thunderstorm morphology, electrification stages, and convective environment characterization using combined lightning and radar data. Analyses include charge structure evolution during storm life cycles and lightning spatial distributions relative to storm reflectivity and precipitation features(Bruning et al., 2024)(Du et al., 2024)(Harkema et al., 2024)(Heuscher et al., 2024). This theme links lightning activity to storm dynamics and lifecycle stages, aiding in comprehensive storm characterization.
Urban Thunderstorm Climatology and Lightning Risk Assessment	3/50 Papers	Urban-focused climatological research maps thunderstorm distributions and intensities, identifying urban-induced modifications in lightning occurrence and clustering patterns. These studies support risk assessment and urban planning to mitigate thunderstorm-related hazards in metropolitan areas(Sae-Jung et al., 2024)(Tao et al., 2024).
Statistical and Synthetic Modeling of	2/50 Papers	Characterization and modeling of lightning strikes as spatio-temporal point events reveal movement speeds, inter-event time distributions, and spatial spread around storm tracks. Synthetic models based on these analyses facilitate realistic simulation of lightning activity for

Theme	Appears In	Theme Description
Lightning Strike Patterns		research and operational applications(Zandovskis et al., 2024) (Zandovskis et al., 2024).

Chronological Review of Literature

Recent research on lightning and thunderstorms has increasingly integrated multidisciplinary approaches, combining observational networks, radar and satellite data, numerical modeling, and machine learning techniques. Studies have advanced understanding of lightning initiation, charge structures, and their interactions with microphysical and dynamical storm processes. There is also growing attention to the influence of environmental factors such as aerosols, urbanization, and topography on lightning characteristics. Additionally, developments in lightning nowcasting and early warning systems have improved severe weather preparedness and risk mitigation.

Year Range	Research Direction	Description
2024– 2024	Observations and Microphysical Processes	Focus on detailed analysis of lightning initiation, charge structure evolution, and microphysical properties within thunderstorms using multi-sensor campaigns, dual-polarized phased array radars, and lightning mapping arrays. Studies reveal complex charge regions, electrical alignment of ice particles, and continuous lightning developments.
2024– 2024	Regional and Environmental Influences on Lightning	Investigations explore how geographical features, aerosol concentrations, urban morphology, and environmental parameters modulate lightning frequency, intensity, and storm dynamics across diverse regions including South America, China, India, Mediterranean, and urban megacities. Findings emphasize aerosol-cloud interactions and urban heat island effects.
2024– 2024	Lightning and Thunderstorm Nowcasting and Forecasting	Advances in lightning-based nowcasting include integration of satellite lightning data, machine learning models, GNSS-based water vapor measurements, and assimilation of lightning data into numerical weather prediction models. These approaches enhance short-term forecast accuracy and provide valuable warnings for severe convective events.
2024– 2024	Lightning and Thunderstorm Hazard Relationships	Research highlights the linkages between lightning activity and hazards such as hail, heavy precipitation, windstorms, and transient luminous events. Studies utilize combined radar and lightning observations to characterize storm intensification phases and the potential for severe weather impacts.
2024– 2024	Novel Lightning Detection and Modeling Techniques	Emerging technologies and methodologies are explored, including three-dimensional lightning mapping from space, acoustic sensing for thunder location, spectral analyses of unusual lightning types, and deep learning models extracting physical insights from vertical atmospheric profiles. These developments enhance understanding and simulation of lightning processes.

Agreement and Divergence Across Studies

The reviewed studies broadly agree on the importance of lightning charge structure characterization and the utility of advanced observational methodologies, such as lightning mapping arrays and dual-polarized radars, in understanding thunderstorm electrification and dynamics. There is consensus on the significant influence of environmental factors, including aerosols, urban morphology, and synoptic patterns, on lightning activity, though the direction and magnitude of these influences vary across contexts. Forecasting and

nowcasting performance is generally enhanced by incorporating lightning data, either through assimilation in numerical models or via machine learning, but challenges remain regarding lead times and accuracy consistency. Divergences often stem from regional differences, methodological approaches, and the spatial-temporal resolution of data employed.

Comparison Criterion	Studies in Agreement	Studies in Divergence	Potential Explanations
Lightning Charge Structure Characterization	Several studies demonstrate the evolution of dipolar to tripolar charge structures within thunderstorms, with higher flash rates linked to elevated dipoles and complex charge configurations (Ribeiro et al., 2024) (Wang et al., 2024) (Wang, 2024) (Wang et al., 2024) (Houel et al., 2024). The relationship between charge regions and lightning flash rates is consistently supported.	Variability exists in the altitude and dominance of specific charge structures (e.g., positive vs. negative dipoles) across different geographic regions and storm types (Ribeiro et al., 2024) (Houel et al., 2024) (Harkema et al., 2024).	Differences arise due to storm type (isolated vs. mesoscale systems), geographic/climate context, and radar/measurement capabilities.
Observational Methodologies	Use of Lightning Mapping Arrays (LMA), dual-polarized phased array radars, and satellite-based sensors are widely recognized for providing high-resolution spatial and temporal lightning data, enhancing understanding of lightning dynamics and storm structure (Ribeiro et al., 2024) (Rocque et al., 2024) (Wang et al., 2024) (Wang et al., 2024) (Goede et al., 2024) (Pineda et al., 2024). Acoustic and radio- frequency methods complement electromagnetic observations, offering additional structural detail (Farges et al., 2024) (Hong et al., 2024) ("Mapping out lightning processes in both", 2024).	Some studies highlight limitations in current 2D satellite-based lightning mapping and the need for 3D mapping from spaceborne RF arrays (Remington et al., n.d.), and note challenges in thunderstorm identification accuracy using radar vs. lightning data (Zhang et al., 2024).	Variations due to instrument types, data resolution, and technological maturity; discrepancies arise from the evolving nature of observational technologies and geographic coverage.
Environmental Influences	Consensus that aerosols, urban morphology, and synoptic-scale patterns significantly influence lightning occurrence and intensity (Ma et al., 2024) (Shi et al., 2024) (Jong et al., 2024) (Yang et al., 2023) (Yang et al., 2024) (Tao et al., 2024). Urban heat island effects and aerosols	Disagreement exists regarding whether aerosols enhance or suppress lightning activity, reflecting inconclusive or regionspecific results (Shi et al., 2024) (Jong et al., 2024) (Yang et al.,	Divergence due to differences in aerosol types, pollution levels, urban form, and modeling approaches; observational vs. modeling studies differ in conclusions.

Comparison Criterion	Studies in Agreement	Studies in Divergence	Potential Explanations
	can enhance convective activity and lightning frequency; synoptic conditions dictate regional lightning hotspots.	2023) (Yang et al., 2024). The extent of urban morphology's impact varies with city size and local meteorology (Shi et al., 2024) (Tao et al., 2024).	
Lightning Activity Patterns	Flash rates, lightning jumps, and spatial clustering correlate strongly with storm evolution phases and convective intensity (Ribeiro et al., 2024) (Rocque et al., 2024) (Erdmann & Poelman, 2024) (Hou et al., 2024) (Du et al., 2024). Diurnal and seasonal cycles affect lightning frequency globally, with afternoon peaks and regional variability (Liu et al., 2024) (Petrova et al., 2024) (Du et al., 2024).	Some regional studies report unique lightning patterns, such as nocturnal convection dominance or shifts in maximum flash area relating to urban barriers and terrain (Liu et al., 2024) (Tao et al., 2024) (Petrova et al., 2024).	Differences stem from local climatology, storm typology, topography, and the influence of local meteorological phenomena.
Forecasting and Nowcasting Performance	Lightning data assimilation and machine learning approaches improve short-term forecast accuracy and hazard warning capabilities (Ribeiro et al., 2024) (Erdmann & Poelman, 2024) (Murphy et al., 2023) (Zhou et al., 2024) (Yin et al., 2023) (Federico et al., 2024). Incorporation of total lightning and GNSS-PWV enhances nowcasting lead time and reduces false alarms.	Performance declines for longer lead times (>3 hours) and varies by region, with some models producing false alarms or overprediction in certain conditions (Federico et al., 2024) (Federico et al., 2024) (Yousefnia et al., 2024). Disparities in model skill between convective types and geographic regions are noted.	Variability due to model complexity, data assimilation techniques, spatial resolution, and atmospheric conditions; short-term forecasting benefits more directly from lightning data inclusion.

Theoretical and Practical Implications

Theoretical Implications

- The reviewed studies reinforce the complex interplay between microphysical processes, electrical charge structures, and storm dynamics in lightning formation and evolution. Evidence from radar and lightning mapping arrays highlights the transition from dipolar to tripolar charge structures and their association with lightning jumps and storm intensification, supporting classical electrification theories while providing refined spatial-temporal details(Ribeiro et al., 2024) (Wang et al., 2024) (Wang, 2024) (Wang et al., 2024).
- Advances in high-resolution observational techniques, such as dual-polarized phased array radars and VHF lightning interferometry, have elucidated early electrification signatures and continuous initial breakdown bursts within thunderstorms, challenging simplified models of lightning initiation and suggesting more continuous and dynamic streamer-leader development processes(Wang et al., 2024) (Pu & Cummer, 2024) (Wang et al., 2024).
- The influence of aerosols and urban morphology on thunderstorm electrification and lightning activity remains nuanced, with numerical simulations indicating that aerosolinduced microphysical changes can both suppress and delay lightning by altering ice particle growth and charge separation efficiency, thus complicating earlier assumptions about aerosol effects on convection and electrification (Yang et al., 2023) (Yang et al., 2024) (Shi et al., 2024).
- The spatial and temporal variability of lightning across diverse geographic regions and storm types, including mesoscale convective systems, tropical cyclones, and orographically influenced storms, underscores the importance of environmental and synoptic-scale factors such as CAPE, moisture convergence, and topographic forcing in modulating lightning characteristics, thereby extending existing convective electrification frameworks(Rocque et al., 2024) (Ma et al., 2024) (Portal et al., 2024) (Du et al., 2024).
- Emerging theoretical insights from 3D lightning mapping and acoustic sensing techniques provide a more comprehensive understanding of lightning channel development and thunder source localization, offering new dimensions to the study of lightning physics beyond traditional electromagnetic observations(Remington et al., n.d.) (Hong et al., 2024) (Farges et al., 2024).

Practical Implications

- The integration of total lightning data into nowcasting and warning systems has demonstrated significant improvements in short-term severe weather forecasting, enabling earlier detection of storm intensification through lightning jumps and enhanced spatial tracking of convective cells, which is critical for public safety and emergency response(Ribeiro et al., 2024) (Erdmann & Poelman, 2024) (Pineda et al., 2024).
- Machine learning models leveraging multi-source data, including GNSS-derived
 precipitable water vapor and lightning observations, have shown promising accuracy
 and reduced false alarm rates in lightning nowcasting, suggesting valuable tools for
 operational meteorology and risk management in lightning-prone regions(Zhou et al.,
 2024) (Yin et al., 2023).
- Urban planning and policy can benefit from findings on urban morphology's modulation of thunderstorm processes and lightning activity, as barrier effects and heat island dynamics influence lightning distribution and intensity, informing infrastructure design and hazard mitigation strategies in megacities(Shi et al., 2024) (Tao et al., 2024) (Sae-Jung et al., 2024).
- Improvements in lightning data assimilation within numerical weather prediction models have enhanced the representation of lightning and precipitation forecasts at short lead times, supporting more reliable issuance of warnings and alerts, particularly in regions with complex terrain and variable convection patterns (Federico et al., 2024) (Federico et al., 2024) (Cummings et al., 2024).
- The refined quantification of lightning-produced nitrogen oxides (NOx) and their chemical impacts on tropospheric ozone through updated emission inventories and cloud-resolving simulations informs atmospheric chemistry modeling and climate policy, emphasizing the role of lightning in air quality and climate feedback mechanisms(Horner et al., 2024) (Pickering et al., 2024).
- The development of spaceborne 3D lightning mapping capabilities promises to revolutionize global lightning monitoring, with implications for climate studies, severe weather prediction, and the advancement of meteorological satellite technology(Remington et al., n.d.).

Limitations of the Literature

Area of Limitation	Description of Limitation	Papers which have limitation
Geographic Bias	Many studies focus on specific regions such as China, India, or South America, limiting the external validity of findings to other geographic or climatic contexts. This regional concentration restricts the generalizability of thunderstorm and lightning characteristics globally.	(Ribeiro et al., 2024) (Rocque et al., 2024) (Kundu et al., 2024) (Ma et al., 2024) (Shi et al., 2024) (Tao et al., 2024) (Du et al., 2024) (Bahari et al., 2024) (Sae-Jung et al., 2024)
Methodological Constraints	Several studies rely heavily on specific observational tools or models (e.g., radar, LMA, WRF simulations) which may introduce biases or limit the scope of phenomena captured. This constrains the comprehensiveness and comparability of results across different methodologies.	(Ribeiro et al., 2024) (Bruning et al., 2024) (Wang, 2024) (Wang et al., 2024) (Yang et al., 2023) (Yang et al., 2024) (Cummings et al., 2024) (Pineda et al., 2024) (Federico et al., 2024) (Federico et al., 2024)
Limited Temporal Coverage	Many investigations analyze data over short periods or specific campaigns, which may not capture long-term variability or rare events, thus limiting the robustness and temporal representativeness of conclusions.	(Ribeiro et al., 2024) (Rocque et al., 2024) (Kundu et al., 2024) (Hou et al., 2024) (Mauda et al., 2024) (Harkema et al., 2024) (Sae-Jung et al., 2024)
Incomplete Aerosol Impact Understanding	Despite advances, there remains uncertainty and lack of consensus regarding the role of aerosols on lightning activity, particularly their enhancing or inhibiting effects, which weakens predictive capabilities and model accuracy.	(Shi et al., 2024) (Jong et al., 2024) (Yang et al., 2023) (Yang et al., 2024)
Data Resolution and Coverage Limitations	Some lightning detection and mapping systems have spatial or temporal resolution constraints, affecting the precision of lightning characterization and storm tracking, thereby impacting the reliability of microphysical and electrical process analyses.	(Rocque et al., 2024) (Erdmann & Poelman, 2024) (Murphy et al., 2023) (Zhang et al., 2024) (Remington et al., n.d.) (Goede et al., 2024) (Hong et al., 2024) ("Mapping out lightning processes in both", 2024)
Model Parameterization Uncertainties	Numerical models often require parameterizations for lightning and microphysical processes, which may not fully capture complex storm dynamics, leading to discrepancies between simulations and observations and limiting predictive skill.	(Yang et al., 2023) (Yang et al., 2024) (Cummings et al., 2024) (Pickering et al., 2024) (Federico et al., 2024)

Area of Limitation	Description of Limitation	Papers which have limitation
Limited Integration of Multi-Modal Data	Few studies comprehensively integrate diverse data types (e.g., acoustic, electromagnetic, satellite, radar) which could provide a more holistic understanding of lightning and thunderstorm processes, thus limiting the depth of physical insights.	(Farges et al., 2024) (Hong et al., 2024) ("Mapping out lightning processes in both", 2024) (Soler-Ortiz et al., 2024)
Urbanization Effects Underexplored	While urban impacts on thunderstorms and lightning are recognized, mechanistic understanding and comprehensive modeling of urban morphology and dynamics remain insufficient, limiting the applicability of findings to urban risk mitigation.	(Shi et al., 2024) (Tao et al., 2024) (Sae-Jung et al., 2024)
Nowcasting and Forecasting Limitations	Lightning nowcasting models and forecasting techniques often show reduced accuracy beyond short lead times, and challenges remain in integrating multi-source data effectively, which constrains operational utility for severe weather warnings.	(Ribeiro et al., 2024) (Erdmann & Poelman, 2024) (Zhou et al., 2024) (Yin et al., 2023) (Federico et al., 2024) (Federico et al., 2024) (Xiong et al., 2024)
Small Sample Sizes for Rare Phenomena	Studies focusing on rare lightning phenomena or specific storm types often have limited sample sizes, reducing statistical power and limiting the ability to generalize findings to broader thunderstorm populations.	(Hou et al., 2024) (Pu & Cummer, 2024) (Xu et al., 2024)

Gaps and Future Research Directions

Gap Area	Description	Future Research Directions	Justification	Research Priority
Standardization of Multi-Instrument Data Integration	Current studies use diverse observational tools with varying spatial and temporal resolutions, leading to challenges in data harmonization and interpretation.	Develop standardized protocols and calibration methods for integrating radar, satellite, lightning mapping arrays, and acoustic data to improve consistency and comparability across studies.	Harmonized data integration is essential to fully exploit multiplatform observations for detailed lightning and thunderstorm analysis (Ribeiro et al., 2024) (Wang et al., 2024) (Goede et al., 2024) (Hong et al., 2024).	High
Detailed Mechanisms of Lightning Initiation and Charge Structure Variability	The complexity and variability of charge separation and lightning initiation mechanisms across storm types remain insufficiently understood.	Conduct targeted high-resolution observational campaigns combining dual-polarized phased array radar and lightning mapping to validate and refine physical models of charge evolution and initiation processes.	Improved understanding of initiation mechanisms is critical for enhancing lightning prediction and nowcasting capabilities (Wang et al., 2024) (Wang, 2024) (Wang et al., 2024) (Pu & Cummer, 2024).	High
Aerosol Effects on Lightning Activity Under Diverse Environmental Conditions	Contradictory findings exist on whether aerosols enhance or inhibit lightning, with limited understanding of regional and oceanic aerosol impacts.	Perform integrated observational and modeling studies coupling spectral microphysics with aerosol measurements across urban, rural, and maritime environments to clarify aerosol-cloud-lightning interactions.	Resolving aerosol impacts is vital for accurate representation of anthropogenic influences on thunderstorm electrification and lightning frequency (Shi et al., 2024) (Jong et al., 2024) (Yang et al., 2023) (Yang et al., 2024).	High
Urban Morphology Influence on Thunderstorm	The mechanistic understanding of how urban structures modulate	Combine high- resolution urban morphology data with numerical simulations	Detailed urban impact knowledge supports improved urban thunderstorm risk	Medium

Gap Area	Description	Future Research Directions	Justification	Research Priority
Dynamics and Lightning Patterns	thunderstorm processes and lightning clustering is incomplete.	and dense lightning observations to quantify barrier effects, cold pool dynamics, and urban heat island influences on lightning.	assessment and tailored mitigation strategies (Shi et al., 2024) (Tao et al., 2024) (Sae-Jung et al., 2024).	
Operational Validation of Lightning Data Assimilation in Numerical Weather Prediction	Lightning data assimilation improves short-term forecasts but shows limited skill beyond 3-hour lead times and variable regional performance.	Conduct multi- regional, multi- seasonal assimilation experiments with enhanced parameterizations and scaling to evaluate and optimize assimilation schemes for extended forecast horizons.	Enhancing assimilation efficacy is crucial for operational nowcasting and early warning systems (Federico et al., 2024) (Federico et al., 2024).	High
Physical Interpretability and Generalization of Machine Learning Lightning Forecast Models	Deep learning models achieve high accuracy but often lack physical interpretability and require regionspecific tuning.	Develop hybrid models integrating physical constraints with machine learning, and perform cross-regional validation to improve generalizability and interpretability.	Bridging physical understanding with data-driven models enhances trust and applicability in diverse convective environments (Zhou et al., 2024) (Yin et al., 2023) (Yousefnia et al., 2024).	Medium
Spatial-Temporal Resolution Limitations in Spaceborne Lightning Mapping	Current space-based lightning mapping lacks vertical resolution and global 3D coverage, limiting detailed storm electrification studies.	Advance development and deployment of multi-satellite low Earth orbit VHF sensor constellations for high-accuracy 3D lightning mapping with global coverage.	Improved 3D mapping from space will revolutionize global lightning monitoring and climate studies (Remington et al., n.d.).	Medium
Linking Lightning Activity to Secondary Thunderstorm Hazards and	The relationship between lightning and hazards like hail, severe winds, and transient luminous events (TLEs) is not	Integrate lightning observations with multi-hazard datasets and TLE monitoring to statistically and physically characterize	Understanding these links enhances hazard prediction and risk mitigation strategies (Ribeiro et al., 2024) (Hou et al., 2024)	Medium

Gap Area	Description	Future Research Directions	Justification	Research Priority
Transient Luminous Events	fully quantified or consistent across storm types.	these relationships across diverse storm environments.	(Mao et al., 2024) (Bahari et al., 2024).	
Acoustic Sensing for Lightning Source Localization and Characterization	Acoustic methods show promise for 3D lightning source mapping but face challenges from environmental noise and sensor density requirements.	Develop robust noise filtering algorithms and optimize sensor network configurations to operationalize acoustic lightning detection and complement electromagnetic methods.	Acoustic sensing can provide novel insights into lightning discharge heterogeneity and improve source localization (Farges et al., 2024) (Hong et al., 2024).	Low
Parameterization of Lightning in Cloud-Resolving Models	Existing lightning flash rate parameterizations often require empirical scaling and may not capture microphysical variability accurately.	Refine microphysics- based electrification schemes using high- resolution observations and spectral microphysics to improve lightning representation in cloud-resolving models.	Accurate parameterizations are essential for realistic simulation of lightning and associated storm dynamics (Hao, 2024) (Yang et al., 2023) (Cummings et al., 2024).	High

Overall Synthesis and Conclusion

The comprehensive body of research on lightning and its contribution to understanding thunderstorms reveals significant advances in decoding the microphysical, electrical, and dynamical processes governing lightning initiation and evolution within convective storms. Studies converge on the recognition that lightning charge structures evolve dynamically during storm life cycles, commonly transitioning from dipolar to more complex tripolar configurations, with the vertical distribution and polarity of charge centers influencing the predominance of cloud-to-ground versus intracloud flashes. High-resolution radar observations, particularly dual-polarized phased array systems, have unveiled early electrification signatures through the alignment of ice particles and evolving electric fields, offering promising avenues for improved forecasting of lightning initiation. However, the

variability in charge structure across storm types and geographic domains highlights ongoing challenges in establishing universal frameworks for lightning electrification.

Observational methodologies integrating radar, satellite lightning imaging, Lightning Mapping Arrays, and novel acoustic sensing have enriched spatial and temporal resolution for detailed storm and lightning characterization. The fusion of multi-platform data enables more accurate tracking of lightning activity and storm microphysics, while machine learning and clustering techniques applied to lightning data enhance thunderstorm identification and real-time nowcasting capabilities. Despite these advances, spatial coverage limitations and data harmonization challenges persist, constraining the full exploitation of these diverse datasets.

Environmental factors such as aerosols and urban morphology exert complex influences on thunderstorm electrification and lightning activity. Aerosol pollution tends to narrow droplet spectra and weaken charge separation, generally reducing lightning frequency and delaying electrical processes, though regional and contextual variability remains. Urban features, including heat islands, building density, and barrier effects, modulate convection patterns and lightning clustering, often intensifying lightning activity near urban edges. These findings emphasize the need for multiscale, integrated observational and modeling approaches to unravel anthropogenic impacts on thunderstorm dynamics.

Lightning activity patterns demonstrate clear spatial, diurnal, and seasonal variability linked to storm types, synoptic conditions, and geographic settings. Lightning jumps and dives correlate with cloud top temperature and updraft structure, serving as robust indicators of storm intensification and severe weather potential. The coupling of lightning data with precipitation and windstorm observations reinforces lightning's utility as a proxy for convective severity, though the strength and timing of these relationships can vary across storm stages and environments.

Advances in lightning nowcasting and forecasting leverage data assimilation into numerical weather prediction models and sophisticated machine learning frameworks that integrate multisource data, including GNSS-derived precipitable water vapor. These approaches have enhanced short-term forecast accuracy and reduced false alarms, particularly within lead times of a few hours, supporting operational hazard mitigation. However, forecast skill diminishes with longer lead times, and model generalization across diverse convective regimes remains a challenge.

Finally, emerging observation technologies such as spaceborne 3D lightning mapping, advanced phased array radars, and distributed acoustic sensing offer unprecedented opportunities to characterize lightning processes with high resolution, albeit with operational and technical constraints that must be addressed. Together, these advances deepen our understanding of lightning as a fundamental component of thunderstorm

dynamics and highlight critical gaps and future directions to improve predictive capabilities and societal resilience to severe weather hazards.

References (APA 7th Edition)

- Bahari, N., Esa, M. R. M., Saman, N. M., & Wooi, C. (2024). Analyzing lightning activity and windstorm characteristics in a severe tropical thunderstorm. https://doi.org/10.1109/apee60256.2024.10790910
- Bruning, E. C., Brunner, K. N., Lier-Walqui, M. V., Logan, T., & Matsui, T. (2024). Lightning and radar measures of mixed phase updraft variability in tracked storms during the tracer field campaign in houston, texas. *Monthly Weather Review, 152* (12), 2753-2769. https://doi.org/10.1175/mwr-d-24-0060.1
- Cummings, K., Pickering, K., Barth, M. C., Béla, M., Li, Y., Allen, D. J., Bruning, E. C., MacGorman, D. R., Ziegler, C. L., Biggerstaff, M. I., Fuchs, B., Davis, T., Carey, L. D., Mecikalski, J. R., & Finney, D. J. (2024). Evaluation of lightning flash rate parameterizations in a cloud-resolved wrf-chem simulation of the 29–30 may 2012 oklahoma severe supercell system observed during dc3. *Journal Of Geophysical Research: Atmospheres, 129* (11), . https://doi.org/10.1029/2023jd039492
- Du, Y., Zheng, D., Zhang, Y., Yao, W., Xu, L., & Fang, X. (2024). Spatiotemporal distributions of the thunderstorm and lightning structures over the qinghai–tibet plateau. *Remote sensing*null, . https://doi.org/10.3390/rs16030468
- Erdmann, F., & Poelman, D. R. (2024). Thunderstorm characteristics with lightning jumps and dives in satellite-based nowcasting. https://doi.org/10.5194/egusphere-2024-174
- Farges, T., Coulouvrat, F., & Bestard, D. (2024). How can acoustic measurements help us understand severe weather phenomena such as lightning?. *Journal of the Acoustical Society of America*, *155* (3_Supplement), A201-A201. https://doi.org/10.1121/10.0027304
- Federico, S., Torcasio, R. C., Petracca, M., Roberto, N., Puca, S., & Dietrich, S. (2024).

 Lightning over italy: Analyses of data and impact of their assimilation on lightning and precipitation forecast. https://doi.org/10.5194/egusphere-plinius18-54

- Federico, S., Torcasio, R. C., Popová, J., Sokol, Z., Pop, L., Lagasio, M., Lynn, B. H., Puca, S., & Dietrich, S. (2024). Improving the lightning forecast with the wrf model and lightning data assimilation: Results of a two-seasons numerical experiment over italy.

 Atmospheric Researchnull, https://doi.org/10.1016/j.atmosres.2024.107382
- Goede, V., Schvartzman, D., Bodine, D. M., Chmielewski, V. C., Yu, T., Bruning, E. C., Tzeng, M., & Stock, M. J. (2024). Lightning observations with the horus polarimetric phased array radar. https://doi.org/10.22541/essoar.172118429.98705077/v1
- Hao, T. (2024). Thunderscapes: Simulating the dynamics of mesoscale convective system. https://doi.org/10.48550/arxiv.2412.00703
- Harkema, S. S., Mansell, E. R., Fierro, A. O., Carey, L. D., Schultz, C. J., Matsui, T., & Berndt, E. (2024). Explicitly resolving lightning and electrification processes from the 10–12 april 2019 thundersnow outbreak. *Journal Of Geophysical Research: Atmospheres, 129* (13), . https://doi.org/10.1029/2023jd039987
- Heuscher, L., Gatlin, P., & Petersen, W. A. (2024). Using satellite observations of lightning and precipitation to diagnose the behavior of deep convection in tropical cyclones traversing the midlatitudes. *Journal Of Geophysical Research: Atmospheres, 129* (18), . https://doi.org/10.1029/2023jd040227
- Hong, H., Wang, B., Lu, G., Li, X., Ge, Q., Xie, A., Wu, Y., Qiu, X., & Chen, J. (2024). Tracking lightning through 3d thunder source location with distributed acoustic sensing. https://doi.org/10.1029/2023jd038882
- Horner, R., Marais, E. A., & Wei, N. (2024). Improved lightning nox emission inventory evaluated with vertical profiles of no2 and ozone obtained by cloud-slicing tropomi . https://doi.org/10.5194/egusphere-egu24-8441
- Hou, H., Kuo, C., Hsu, R., Chang, W., & Lee, L. C. (2024). Case study on sprite and lightning activities associated with the cell life cycle in a mesoscale convective system. https://doi.org/10.21203/rs.3.rs-3910591/v1
- Houel, R., Defer, E., Lambert, D., Prieur, S., & Pedeboy, S. (2024). Electrical properties of vertical dominant charge structures observed in corsican thunderstorms with a lma. *Earth and Space Science*null, . https://doi.org/10.1029/2023ea003354

- Jong, E. D., Schneider, T., Wennberg, P. O., & Jalkanen, J. (2024). What can lightning and shipping regulations tell us about aerosols in deeply convecting clouds?. https://doi.org/10.22541/essoar.171632547.79526166/v1
- Kundu, S. S., Chhari, A., Srivastava, A., Chakravorty, A., Gogoi, R. B., & Aggarwal, S. P. (2024). Investigation of thunderstorm characteristics with severe lightning events over ne region of india. *ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, X-5-2024* null, 95-101. https://doi.org/10.5194/isprs-annals-x-5-2024-95-2024
- Liu, D., Yu, H., Sun, Z., Zhang, H., & Wang, D. (2024). Convective properties and lightning activity in different categories of thunderstorms over the beijing area during five warm seasons. *Remote sensing*null, . https://doi.org/10.3390/rs16030447
- Lyu, W., Zhang, Y., Zheng, D., Chen, S., & Zhang, Y. (2024). Recent research progresses at cma field experiment base on lightning sciences. https://doi.org/10.1109/icops58192.2024.10625778
- Ma, R., Zheng, D., Zhang, Y., Yao, W., Zhang, W., & Zhu, B. (2024). Thunderstorms with extreme lightning activity in china: Climatology, synoptic patterns, and convective parameters. *Remote sensing*, *16* (24), 4673-4673. https://doi.org/10.3390/rs16244673
- Mao, Y., Liu, J., Jiang, Y., Li, C., & Chen, Q. (2024). Analysis of lightning activity characteristics and its relationship with precipitation in a strong convective weather process in jiangsu province. *Frontiers in Environmental Science*null, . https://doi.org/10.3389/fenvs.2024.1375623
- Mapping out lightning processes in both the vhf and vlf using lofar and the met office's lightning detection system, leela. https://doi.org/10.5194/egusphere-egu24-11101
- Mauda, N., Yair, Y., Price, C., & Reuveni, Y. (2024). Thunderstorm ground enhancement (tge) signatures in the eastern mediterranean using gamma ray and atmospheric electricity measurements. https://doi.org/10.5194/egusphere-egu24-17251

- Murphy, K. M., Carey, L. D., Schultz, C. J., Curtis, N., & Calhoun, K. M. (2023). Automated and objective thunderstorm identification and tracking using geostationary lightning mapper (glm) data. *Journal of Applied Meteorology and Climatology, 63* (1), 47-64. https://doi.org/10.1175/jamc-d-22-0143.1
- Petrova, S., Mitzeva, R., Kotroni, V., & Peneva, E. (2024). Seasonal–diurnal distribution of lightning over bulgaria and the black sea and its relationship with sea surface temperature. *Atmosphere*, *15* (10), 1233-1233. https://doi.org/10.3390/atmos15101233
- Pickering, K., Li, Y., Cummings, K., Barth, M. C., Allen, D. J., Bruning, E. C., & Pollack, I. B. (2024). Lightning no_x in the 29–30 may 2012 deep convective clouds and chemistry (dc3) severe storm and its downwind chemical consequences. *Journal Of Geophysical Research: Atmospheres, 129* (11), . https://doi.org/10.1029/2023jd039439
- Pineda, N., Fabró, F., Segundo, H. S., Montanyà, J., Romero, D., Velde, O. V. D., & López, J. A. (2024). Operational use of the lightning mapping array for tracking, nowcasting and warning about severe weather. https://doi.org/10.5194/ems2024-233
- Portal, A., Angelidou, A., Rousseau-Rizzi, R., Raveh-Rubin, S., Givon, Y., Catto, J. L.,
 Battaglioli, F., Taszarek, M., Flaounas, E., & Martius, O. (2024). Convective environments
 within mediterranean cyclones. https://doi.org/10.48550/arxiv.2412.02590
- Pu, Y., & Cummer, S. A. (2024). Continuous initial breakdown development of in-cloud lightning flashes. *Journal Of Geophysical Research: Atmospheres, 129* (20), . https://doi.org/10.1029/2024jd041302
- Remington, J., Gatlin, P. N., Stough, S., Pailoor, N., Behnke, S. A., Lang, T., & Edens, H. E. (n.d.). Simulated feasibility of 3d lightning mapping from space. *IEEE Transactions on Geoscience and Remote Sensing*null, . https://doi.org/10.1109/tgrs.2024.3398508
- Ribeiro, J. G. M., Mattos, E. V., Reboita, M. S., Enoré, D. P., Costa, I. C. D., Albrecht, R. I., Gonçalves, W. A., & Oliveira, R. A. J. (2024). Radar, lightning, and synoptic observations for a thunderstorm on 7 january 2012 during the chuva-vale campaign. *Atmosphere*, 15 (2), 182-182. https://doi.org/10.3390/atmos15020182

- Rocque, M. N., Deierling, W., Rasmussen, K. L., Albrecht, R., & Medina, B. L. (2024).

 Lightning characteristics associated with storm modes observed during relampago.

 https://doi.org/10.1029/2023jd039520
- Sae-Jung, J., Bentley, M. L., Duan, Z., & Szakal, E. (2024). Developing an urban thunderstorm climatology for the bangkok metropolitan region. *Singapore Journal of Tropical Geography*null, . https://doi.org/10.1111/sjtg.12552
- Shi, T., Lu, G., Wen, X., Liu, L., & Qi, P. (2024). A systematic review of the potential influence of urbanization on the regional thunderstorm process and lightning activity.

 Atmospherenull, https://doi.org/10.3390/atmos15030374
- Soler-Ortiz, M., Fernández-Ros, M., Castellano, N. N., & Gázquez, J. (2024). Study of the statistical footprint of lightning activity on the schumann resonance. *Advances in Space Research*, 73 (5), 2387-2403. https://doi.org/10.1016/j.asr.2023.11.050
- Tao, S., Yang, Y., Lu, G., Zheng, Z., Zi, Y., Tian, Y., Liu, L., & Lolli, S. (2024). Urban morphology modulates thunderstorm process and associatied cloud-to-ground lightning activity over beijing metropolitan region. https://doi.org/10.5194/acp-2024-3
- Wang, S. (2024). Analysis of the signatures related to the upper charge regions in an isolated thunderstorm observed by dual-polarized phased array weather radar. https://doi.org/10.5194/egusphere-egu24-4254
- Wang, S., Wada, Y., Hayashi, S., Ushio, T., & Chandrasekar, V. (2024). Electrical alignment signatures of ice particles before intracloud lightning activity detected by dual-polarized phased array weather radar. *Journal Of Geophysical Research: Atmospheres,* 129 (7), . https://doi.org/10.1029/2023jd039942
- Wang, S., Wada, Y., Hayashi, S., Ushio, T., & Chandrasekar, V. (2024). Observation of electrical alignment signatures in an isolated thunderstorm by dual-polarized phased array weather radar and the relationship with intracloud lightning flash rate. *Journal Of Geophysical Research: Atmospheres, 129* (19), . https://doi.org/10.1029/2023jd040681
- Xiong, A., Xu, H., & Chen, Z. (2024). Frequency-domain analysis of atmospheric electric field and thunderstorm forecasting. *Frontiers in artificial intelligence and applications* null, . https://doi.org/10.3233/faia231228

- Xu, L., Gou, X., Yuan, P., An, T. T., Jiang, R., & Deng, H. (2024). Spectral study of rare upward developing, circling, and branching cloud-to-ground lightning. https://doi.org/10.1029/2023jd040696
- Yang, Y., Sun, J., Shi, Z., Li, F., Zhang, T., Deng, W., Hu, W., & Zhang, J. (2023). A numerical study of the effects of aerosol particles on thunderstorm development using the wrf with spectral microphysics. https://doi.org/10.2139/ssrn.4697433
- Yang, Y., Sun, J., Shi, Z., Tian, W., Li, F., Zhang, T., Deng, W., Hu, W., & Zhang, J. (2024). The preliminary application of spectral microphysics in numerical study of the effects of aerosol particles on thunderstorm development. *Remote sensing*, *16* (12), 2117-2117. https://doi.org/10.3390/rs16122117
- Yin, W., Zhou, C., Zhou, F., Tian, Y., Xu, Y., Wang, X., Tian, R., Yin, X., Zhang, S., Kong, J., & Yao, Y. (2023). A lightning nowcasting model using gnss pwv and multi-source data. *IEEE Transactions on Geoscience and Remote Sensing*null, 1-1. https://doi.org/10.1109/tgrs.2024.3487774
- Yousefnia, K. V., Bölle, T., & Metzl, C. (2024). Inferring thunderstorm occurrence from vertical profiles of convection-permitting simulations: Physical insights from a physical deep learning model. https://doi.org/10.48550/arxiv.2409.20087
- Zandovskis, U., Pigoli, D., & Malamud, B. D. (2024). Characterisation and modelling of lightning strikes as point events in time and space.

 https://doi.org/10.5194/egusphere-2024-2733
- Zandovskis, U., Pigoli, D., & Malamud, B. D. (2024). Characterisation and modelling of lightning strikes as point events in time and space.

 https://doi.org/10.5194/egusphere-egu24-17483
- Zhang, X., Luo, F., Luo, Q., Zhi, Y., Wu, Z., & Lu, B. (2024). Utilizing high spatiotemporal resolution lightning observation data for thunderstorm identification. https://doi.org/10.1117/12.3034135
- Zhou, W., Li, J., Wang, H., Zhang, D., & Wang, X. (2024). Forecasting of local lightning using spatial–channel-enhanced recurrent convolutional neural network. *Atmosphere*, *15* (12), 1478-1478. https://doi.org/10.3390/atmos15121478