Theorie des Algorithmischen Lernens Sommersemester 2006

Teil 2.1: Lernen formaler Sprachen: Standarderkennungstypen

Version 1.4

Gliederung der LV

Teil 1: Motivation

- 1. Was ist Lernen
- 2. Das Szenario der Induktiven Inf erenz
- 3. Natürlichkeitsanforderungen

Teil 2: Lernen formaler Sprachen

- 1. Grundlegende Begriffe und Erkennungstypen
- 2. Die Rolle des Hypothesenraums
- 3. Lernen von Patternsprachen
- 4. Inkrementelles Lernen

Teil 3: Lernen endlicher Automaten

Teil 4: Lernen berechenbarer Funktionen

- 1. Grundlegende Begriffe und Erkennungstypen
- 2. Reflexion

Teil 5: Informationsextraktion

- 1. Island Wrappers
- 2. Query Scenarios

7 Parameters of Inductive Inference

1. objects to be learned

formal languages

2. examples (syntax)

strings / pairs of strings and classification

3. examples (semantics, i.e. connection to object to be learnt)

correct and complete in the limit (text / informant)

4. learning device

computable devices

5. hypothesis space (syntax of hypotheses)

natural numbers

6. semantics of hypotheses

index in some enumeration

7. success criteria

convergence in the limit

Terms

- $\mathbb{N} = \{0, 1, 2, \ldots\}$ natural numbers
- $\langle \cdot, \cdot \rangle : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ Cantor's pairing function
 - $-\langle x,y\rangle = ((x+y)^2 + 3x + y)/2$
 - π_1 : projection to first argument, i.e. $\pi_1(\langle x, y \rangle) = x$,
 - π_2 : projection to second argument, i.e. $\pi_2(\langle x,y\rangle)=y$
 - canonically extended to arbitrary number of arguments
- o: concatenation of sequences

Formal Languages

- *alphabet* Σ : finite set
- $\bullet \Sigma^*, \Sigma^+$
- *language* over Σ : set of words over Σ i.e. $L \subseteq \Sigma^*$
 - empty, finite, infinite
 - Chomsky hierarchy: regular, context-free, context-sensitive languages
 - complement \overline{L}
 - sometimes identify language L with its characteristic function * i.e. L(x)=+ iff $x\in L$ and L(x)=- iff $x\notin L$
- a^n means $\underbrace{a \dots a}_{n \text{ times}}$
 - $-a^0=\varepsilon$
- \bullet |w| length of w
- $\tau \sqsubseteq \tau'$: τ is a prefix of τ'

Indexable classes

Definition 2.1.1: (Angluin 1980)

A class of non-empty languages \mathcal{L} is said to be an *indexable class with uniformly decidable membership* (*indexable class*, for short) provided there are

- ullet an effective enumeration $(L_j)_{j\in\mathbb{N}}$ of all and only the concepts in $\mathcal L$ and
- \bullet a recursive function f

such that, for all $j \in \mathbb{N}$ and all $x \in \Sigma^*$, the following holds:

$$f(j,x) = \begin{cases} 1, & \text{if } x \in L_j, \\ 0, & \text{otherwise.} \end{cases}$$

 \mathcal{IC} : set of all indexable classes

Examples for indexable classes:

- context-sensitive languages, context-free languages, regular languages, and of all pattern languages
- can be extended to arbitrary concept classes
 - use arbitrary *learning domain* \mathcal{X} instead of Σ^* ; *concepts* are subsets of \mathcal{X} .
 - \mathcal{X} = set of all n-bit Boolean vectors: monomials, k-CNF, k-DNF, and k-decision lists are indexable classes of recursive concepts

Pattern Languages

alphabet Σ and enumerable set X of *variables*, $\Sigma \cap X = \emptyset$

a *pattern* is a string $\pi \in (\Sigma \cup X)^+$

a *(non-erasing) substitution* σ is a mapping from $X \to \Sigma^+$

Canonically extend substitutions to patterns

 $L(\pi) = \{ w \mid w \in \Sigma^+ \text{ and there exists a substitution } \sigma \text{ such that } \sigma(\pi) = w \}$

pattern language: language describable by a pattern

PAT: set of all pattern languages

$$PAT \in \mathcal{IC}$$

Text

Definition 2.1.2:

Let L be language and $t=(x_n)_{n\in\mathbb{N}}$ be an *infinite* sequence of elements from Σ^* such that

 $\bullet \ \{x_n \mid n \in \mathbb{N}\} = L.$

Then, t is said to be a **positive presentation** or, synonymously, a **text** for L.

- Text(L): set of all texts for L.
- t_y : initial segment of length y of text t
 - SegText(L): set of all finite initial segments of texts for L.
 - $SegText(\mathcal{L}) = \bigcup_{L \in \mathcal{L}} SegText(L)$.
- t_y^+ : set of all words contained in t_y

Informant

Definition 2.1.3:

Let L be language and $i=((x_n,b_n))_{n\in\mathbb{N}}$ be any infinite sequence of elements from $\Sigma^*\times\{+,-\}$ such that

- $\{x_n \mid n \in \mathbb{N}, b_n = +\} = L$, and
- $\{x_n \mid n \in \mathbb{N}, b_n = -\} = \overline{L}.$

Then, i is said to be a *complete presentation* or, synonymously, an *informant* for L.

- Info(L): set of all informants for L.
- i_y : initial segment of length y of informant i
 - SegInfo(L): set of all finite initial segments of informants for L.
 - $SegInfo(\mathcal{L}) = \bigcup_{L \in \mathcal{L}} SegInfo(L).$
- $content(i_y)$: set of all words contained in i_y
- i_y^+ and i_y^- : sets of all positive and all negative words contained in i_y , i.e. $i_y^+ = \{x_j \mid j \leq y, \ b_j = +\}$ and $i_y^- = \{x_j \mid j \leq y, \ b_j = -\}$

Special Types of Text/Informant

- assume lexicographic order of strings in Σ^* : $(w_j)_{j\in\mathbb{N}}$
- lexicographically ordered text: all strings appear in lexicographic order exactly once
 - exist only for infinite languages
- canonical text $t = (x_n)_{n \in \mathbb{N}}$
 - search the lexicographic smallest $w \in L$
 - $\operatorname{set} x_0 = w$
 - for any j>0: if $w_j\in L$ set $x_j=w_j$, otherwise set $x_j=x_{j-1}$
- for informant both terms lexicographically ordered informant and canonical informant coincide

Inductive Inference Machines

An *inductive inference machine* (abbr. *IIM*) for some indexable class \mathcal{L} is

• a total computable mapping from $SegText(\mathcal{L})/SegInfo(\mathcal{L})$ to $\mathbb{N} \cup \{?\}$.

the numbers output by an IIM M are interpreted with respect to a *hypothesis space* $\mathcal{H}=(h_j)_{j\in\mathbb{IN}}$, i.e. when M outputs some j, hypothesizes h_j

the output "?" means "don't have enough information"

Convergence

Definition 2.1.4:

Let $h = (h_j)_{j \in \mathbb{N}}$ be an infinite sequence.

We say that h converges in the limit to x iff all but finitely many terms of it are equal to x.

- This means, there exists an m such that for every $n \ge m$ it holds $h_n = x$.
- Notion $\lim h = x$

Learning in the Limit

Definition 2.1.5:

Let $\mathcal{L} \in \mathcal{IC}$, let $L \in \mathcal{L}$ be a language, and let $\mathcal{H} = (h_j)_{j \in \mathbb{IN}}$ be a hypothesis space. An IIM M Lim $Txt_{\mathcal{H}}$ -identifies L iff,

- ullet for every $t\in \mathit{Text}(L)$
 - there is a $j \in \mathbb{N}$ with $h_j = L$

such that

• the sequence $(M(t_y))_{y \in \mathbb{N}}$ converges to j.

M Lim $Txt_{\mathcal{H}}$ —identifies \mathcal{L} iff M Lim $Txt_{\mathcal{H}}$ —identifies each $L' \in \mathcal{L}$.

LimTxt denotes the collection of all classes $\mathcal{L}' \in \mathcal{IC}$ for which there are a hypothesis space $\mathcal{H}' = (h'_i)_{j \in \mathbb{N}}$ and an IIM M' that LimTxt $_{\mathcal{H}'}$ -identifies \mathcal{L}' .

 $\mathit{LimTxt}_{\mathcal{H}}(M)$: set of all languages that are $\mathit{LimTxt}_{\mathcal{H}}$ -identified by M

Learning in the Limit

Definition 2.1.6:

Let $\mathcal{L} \in \mathcal{IC}$, let $L \in \mathcal{L}$ be a language, and let $\mathcal{H} = (h_j)_{j \in \mathbb{N}}$ be a hypothesis space. An IIM M Liminf $_{\mathcal{H}}$ -identifies L iff,

- ullet for every $i\in \mathit{Info}(L)$
 - there is a $j \in \mathbb{N}$ with $h_j = L$

such that

• the sequence $(M(i_y))_{y \in \mathbb{N}}$ converges to j.

M **Liminf** $_{\mathcal{H}}$ —identifies \mathcal{L} iff M **Liminf** $_{\mathcal{H}}$ —identifies each $L' \in \mathcal{L}$.

Liminf denotes the collection of all classes $\mathcal{L}' \in \mathcal{IC}$ for which there are a hypothesis space $\mathcal{H}' = (h'_j)_{j \in \mathbb{N}}$ and an IIM M' that $\mathit{LimInf}_{\mathcal{H}'}$ -identifies \mathcal{L}' .

 $\mathit{LimInf}_{\mathcal{H}}(M)$: set of all languages that are $\mathit{LimInf}_{\mathcal{H}}$ -identified by M

Learning of indexable class

When we have to learn an indexable class $\mathcal{L} = (L_j)_{j \in \mathbb{I}\mathbb{N}}$, we can choose the hypothesis space as follows:

- 1. use $\mathcal{L} = (L_j)_{j \in \mathbb{N}}$ as hypothesis space: **exact** identification
- 2. use another enumeration of $\mathcal{L} = (L_j)_{j \in \mathbb{N}}$ as hypothesis space: *class-preserving* identification
- 3. use another indexable class $\mathcal{L}' = (L'_j)_{j \in \mathbb{N}}$ as hypothesis space that contains each L_j : *class-comprising* identification

- → currently we consider class-comprising learning
 - the other variants will be discussed later

Learning in the Limit

Theorem 2.1.1:

 $\mathit{LimInf} = \mathcal{IC}$

Proof.

Identification by enumeration

Theorem 2.1.2:

 $LimTxt \subset LimInf$

Proof.

Consider class $\mathcal{L}_{\mathit{sf}}$:

- $L_0 = \{a^n \mid n \in \mathbb{N}\}$
- $L_{i+1} = \{a, \dots, a^{i+1}\}$ for all $i \in \mathbb{N}$

 $\mathcal{L}_{sf} \notin \mathit{LimTxt}$

Learning in the Limit

Theorem 2.1.3:

 $PAT \in LimTxt$

Sketch of proof.

- 1. PAT is enumerable
- 2. consistency is decidable
- 3. for any example set, there are only *finitely* many consistent hypotheses (apart from variable renamings)
- 4. overgeneralisation can be avoided

Consistent Learning

Definition 2.1.7:

Let $\mathcal{L} \in \mathcal{IC}$, let $L \in \mathcal{L}$ be a language, and let $\mathcal{H} = (h_j)_{j \in \mathbb{N}}$ be a hypothesis space. An IIM M ConsTxt $_{\mathcal{H}}$ / ConsInf $_{\mathcal{H}}$ —identifies L iff,

- for every $s \in \mathit{Text}(L) \, / \, s \in \mathit{Info}(L)$
- ullet there is a $j\in\mathbb{N}$ with $h_j=L$

such that

- ullet the sequence $(M(s_y))_{y\in {\rm I\! N}}$ converges to j and
- every hypothesis is consistent, i.e.
 - (text) for each $x \in s_y^+$ it holds $x \in h_{M(s_y)}$
 - (informant) for each $x \in s_y^+$ it holds $x \in h_{M(s_y)}$ and for each $x \in s_y^-$ it holds $x \notin h_{M(s_y)}$

 $\mathit{ConsTxt}_{\mathcal{H}}(M)$, $\mathit{ConsInf}_{\mathcal{H}}(M)$, $\mathit{ConsTxt}$, $\mathit{ConsInf}$ are defined analogously to LimTxt ...

Consistent Learning

Observation:

- consistency is uniformly decidable in indexable classes
- → every hypothesis can be made consistent

Corollary 2.1.4:

ConsInf = LimInfConsTxt = LimTxt

Proof.

Informant: Identification by enumeration works consistently

Text: Let M be an IIM. For any t_y , pad the hypothesis $M(t_y)$ with t_y , i.e. add all strings $w \in t_y^+$ to $h_{M(t_y)}$.

Consistency is no restriction for learning indexable classes!

Finite Learning

Definition 2.1.8:

Let $\mathcal{L} \in \mathcal{IC}$, let $L \in \mathcal{L}$ be a language, and let $\mathcal{H} = (h_j)_{j \in \mathbb{IN}}$ be a hypothesis space. An IIM M *FinTxt* $_{\mathcal{H}}$ / *FinInf* $_{\mathcal{H}}$ -identifies L iff,

- for every $s \in \mathit{Text}(L)$ / $s \in \mathit{Info}(L)$
- there is a $j \in \mathbb{N}$ with $h_j = L$

such that

- ullet there is exactly one index m in the sequence $(M(s_y))_{y\in \mathbb{N}}$ with $M(s_m)\in \mathbb{N}$ (all other hypotheses are "?") and
- $\bullet M(s_m) = j$

Finite Learning

Corollary 2.1.5:

 $FinTxt \subseteq LimTxt$ $FinInf \subseteq LimInf$

Proof.

Exercise.

Consider the following alternative definition:

Definition 2.1.9:

An IIM M FinTxt $_{\mathcal{H}}$ / FinInf $_{\mathcal{H}}$ -identifies L iff,

- ullet for every $s\in \mathit{Text}(L)$ / $s\in \mathit{Info}(L)$
- there is a $j \in \mathbb{N}$ with $h_j = L$

such that

- ullet the sequence $(M(s_y))_{y\in {\rm I\! N}}$ converges to j and
- if $M(s_y) = M(s_{y+1})$ then $M(s_{y+1}) = M(s_{y+2})$

both are equivalent → Exercise

Finite Learning

Theorem 2.1.6:

 $LimTxt \setminus FinInf \neq \emptyset$

Proof.

Consider the set \mathcal{L}_{fin} of all finite languages. Clearly $\mathcal{L}_{fin} \in LimTxt \setminus FinInf$.

Corollary 2.1.7:

 $FinTxt \subset LimTxt$

FinInf ⊂ LimInf

Finite Learning: Characterization Info

Can we find a characterization for *Fin*-learnability?

Definition 2.1.10:

An indexable class $\mathcal{L} = (L_j)_{j \in \mathbb{N}}$ of languages is said to be **discrete** iff

- ullet for every $j\in\mathbb{N}$ there exists a *finite* set $D_j\subseteq\Sigma^*$
 - such that for every $j' \in \mathbb{N}$ with $L_j \neq L_{j'}$ it holds that
 - * there is an $x \in D_j$ with $L_j(x) \neq L_{j'}(x)$.

 \mathcal{L} is said to be *effectively discrete* iff there is a computable function $f: \mathbb{N} \to \wp(\Sigma^*)$ such that $f(j) = D_j$, for every $j \in \mathbb{N}$.

Theorem 2.1.8:

 $\mathcal{L} \in \mathit{FinInf}$ iff \mathcal{L} is effectively discrete.

Finite Learning: Characterization Info

Proof. Suffiency:

Use $\mathcal{L} = (L_j)_{j \in \mathbb{N}}$ as hypothesis space, i.e. set $h_j = L_j$, for all $j \in \mathbb{N}$.

```
M(i_x):
```

If x=0 or $M(t_{x-1})=$ "?", goto (*). Otherwise output $M(i_{x-1})$.

(*) For $j=0,1,\ldots,x$, generate $D_j=f(j)$ and test whether $D_j\subseteq \mathit{content}(i_x)$ and $h_j(w)=i_x(w)$, for all $w\in D_j$.

If such a j has been found, output the minimal one. Otherwise output "?".

Verification. Let i be an informant for L_j .

- 1. M always outputs a hypothesis
- 2. there is an x such that $M(i_x) \in \mathbb{N}$
 - set $x = \max\{j, \hat{x}\}$, where \hat{x} is the smallest x with $D_j \subseteq \mathit{content}(i_x)$
- 3. $h_M(i_x) = L_j$ holds by properties of f

Finite Learning: Characterization Info

Necessity:

Let M be an IIM finitely learning \mathcal{L} . Define f as follows:

f(j):

Search for the least $x \in \mathbb{N}$ such that $M(i_x) \in \mathbb{N}$, where i is the canonical informant for L_j . Output $\mathit{content}(i_x)$.

Finite Learning: Characterization Text

Theorem 2.1.9:

 $\mathcal{L} \in \mathit{FinTxt}$ iff there are an indexing $\mathcal{L} = (L_j)_{j \in \mathbb{N}}$ and a *recursively generable* family $(T_j)_{j \in \mathbb{N}}$ of *finite* sets such that

- for all $j \in \mathbb{N}$, $T_j \subseteq L_j$
- ullet for all $j,z\in\mathbb{N}$, if $T_j\subseteq L_z$ then $L_j=L_z$

recursively generable: there is a total-computable function $f: \mathbb{N} \to \wp(\Sigma^*)$ such that $f(j) = T_j$, for every $j \in \mathbb{N}$.

Finite Learning: Characterization Text

Proof. Suffiency:

```
M(t_x): If x=0 or M(t_{x-1})= "?", goto (*). Otherwise output M(t_{x-1}). (*) For j=0,1,\ldots,x, generate T_j and test whether T_j\subseteq t_x^+ and t_x^+\subseteq h_j. If such a j has been found, output the minimal one. Otherwise output "?".
```

Verification of correctness → Exercise

Necessity:

Let $j \in \mathbb{N}$ and let t be the canonical text for L_j .

We let x be the smallest number such that $M(t_x) \in \mathbb{N}$. We set $T_j = t_x^+$.

Verification of correctness → Exercise

Conservative Learning

Definition 2.1.11:

- $\bullet \ \, \text{for every} \, \, s \in \mathit{Text}(L) \, / \, s \in \mathit{Info}(L)$
- ullet there is a $j\in\mathbb{N}$ with $h_j=L$

such that

- ullet the sequence $(M(s_y))_{y\in {\rm I\! N}}$ converges to j and
- for any two consecutive hypotheses $k=M(s_y)$ and $j=M(s_{y+1})$:
 - if $k \in \mathbb{N}$ and $k \neq j$, then h_k is inconsistent with s_{y+1}

conservative learning must be done *without overgeneralisation* (a hypothesis j is *overgeneralized* if $h_j \supset L$)

Gold 67: The problem with text is that, if you guess too large a language, the text will never tell you that you are wrong.

Corollary 2.1.10:

 $ConsvInf = \overline{Lim}Inf.$

Proof.

Identification by enumeration works conservativley

Theorem 2.1.11:

 $\mathcal{L} \in \mathit{ConsvTxt}$ iff there are a hypothesis space $\mathcal{H} = (h_j)_{j \in \mathbb{N}}$ and a *recursively generable* family $(T_j)_{j \in \mathbb{N}}$ of *finite* sets such that

- ullet ${\mathcal H}$ contains all languages from ${\mathcal L}$
- for all $j \in \mathbb{N}$, $T_j \subseteq h_j$
- for all $j, z \in \mathbb{N}$, if $T_j \subseteq h_z$ then $h_z \not\subset h_j$

important concept: the sets T_j are called **Telltales**

Example 1:

- set of all finite languages on $\Sigma = \{a, b, c\}$:
 - \rightarrow telltale for L is L
- $\mathcal{L}_{Sf}: L_0 = \{a^n \mid n \in \mathbb{N}\}; L_{i+1} = \{a, \dots, a^{i+1}\}$
 - \rightarrow There is no telltale for L_0

Proof. Suffiency:

$M(t_x)$:

```
If x = 0 or M(t_{x-1}) = "?", goto (B). Otherwise, goto (A).
```

- (A) Let $j=M(t_{x-1})$. Test whether or not $t_x^+\subseteq h_j$. In case it is, output j. Otherwise, goto (B).
- (B) For $j=0,1,\ldots,x$, generate T_j and test whether or not $T_j\subseteq t_x^+\subseteq h_j$. If such a j has been found, output the minimal one. Otherwise output "?".

Verification. Let t be a text for some $L \in \mathcal{L}$.

- 1. ${\cal M}$ always outputs a hypothesis
- 2. M converges on t
 - ullet let k be the minimal index of L in ${\mathcal H}$
 - ullet there must be an \hat{x} such that $T_k \subseteq t_{\hat{x}}^+$
 - after point $\max\{k,\hat{x}\}$, M outputs a number which is < k
 - $\bullet \ M$ only changes the hypothesis in case of inconsistencies

3. if M converges (say to j), then $h_j = L$

Suppose the converse

case "
$$L \setminus h_j \neq \emptyset$$
":

the string w with $w \in L \setminus h_j$ will appear and M will change its hypothesis - a contradiction

case "
$$h_j \setminus L \neq \emptyset$$
":

- ullet may assume $L\subset h_j$ (otherwise we are in the former case)
- for $x \ge \hat{x}$, $T_j \subseteq t_x^+$
- since $t_x^+ \subseteq L$ this implies $T_j \subseteq L$
- ullet by property 3 of T_j this implies $L \not\subset h_j$ a contradiction

Remark:

In fact, M not only $ConsvTxt_{\mathcal{H}}$ -identifies \mathcal{L} , but the potentially larger set \mathcal{H} .

Necessity:

Let M ConsvTx $t_{\mathcal{H}}$ -identify $\mathcal{L} = (L_j)_{j \in \mathbb{N}}$.

We first use an auxiliary construction $\tilde{\mathcal{H}}=(\tilde{h}_j)_{j\in\mathbb{N}}$ and $(\tilde{T}_j)_{j\in\mathbb{N}}$:

For each $k, x \in \mathbb{N}$, set $\tilde{h}_{\langle k, x \rangle} = h_k$. Define $(\tilde{T}_j)_{j \in \mathbb{N}}$ as follows:

- Determine k, x with $j = \langle k, x \rangle$. Let t be the canonical text for h_k .
- \bullet Determine the least $r \leq x$ such that $t_x = t_x'$, where t' is the canonical text for L_r .

If no such r exists, set $\tilde{T}_j = \emptyset$.

• Determine the least $y \leq x$ such that $M(t_y) = k$. If y has been found, set $\tilde{T}_j = t_y^+$, otherwise set $\tilde{T}_j = \emptyset$.

 $\mathcal{H}=(h_j)_{j\in\mathbb{N}}$ and $(T_j)_{j\in\mathbb{N}}$ are now destilled from $\tilde{\mathcal{H}}=(\tilde{h}_j)_{j\in\mathbb{N}}$ and $(\tilde{T}_j)_{j\in\mathbb{N}}$ by simply deleting all entries j with $\tilde{T}_j=\emptyset$.

Analysis

- $(T_i)_{i\in\mathbb{N}}$ is a recursively generable family of finite sets
- ullet condition 1 holds: for each $L\in\mathcal{L}$, there is an index j with $L=h_j$
 - there is a k with $h_k=L$ and M converges to k when feeding the canonical text t for L (say convergence happens at t_y)
 - there is a smallest index r with $L=L_r$
 - then, for $x=\max\{y,r\}$, $\tilde{T}_{\langle k,x\rangle}=t_y^+\neq\emptyset$ and $\tilde{h}_{\langle k,x\rangle}=L$
- condition 2 holds by definition
- verification of condition 3 is more involved, we skip it here (can be found in [2])

qed

Set-Driven Learning

Definition 2.1.12:

Let M be an IIM.

M works *rearrangement-independent* iff for every texts t,t' and every $y \in \mathbb{N}$, $t_y^+ = t_y'^+$ implies $M(t_y) = M(t_y')$.

Definition 2.1.13:

Let M be an IIM.

M works **set-driven** iff for every texts t, t' and every $y, y' \in \mathbb{N}$, $t_y^+ = t'_{y'}^+$ implies $M(t_y) = M(t'_{y'})$.

Corresponding identification type: *sd-LimTxt*

set-driven IIMs only consider the *content*, where rearrangement-independent IIMs also can take the step number into account

Set-Driven Learning

Theorem 2.1.12:

sd-LimTxt = ConsvTxt

Sketch of proof.

 $ConsvTxt \subseteq sd-LimTxt$:

 $\mathcal{L} \in \mathit{ConsvTxt}$ implies existence of $\mathcal{H} = (h_j)_{j \in \mathbb{N}}$ and recursively generable telltale-sets $(T_i)_{j \in \mathbb{N}}$.

 $M(t_x)$:

For $j=0,1,\ldots,$ $card(t_x^+)$, generate T_j and test whether or not $T_j\subseteq t_x^+\subseteq h_j$. If such a j has been found, output the minimal one. Otherwise output a hypothesis for t_x^+ .

Set-Driven Learning

Analysis:

- M works set-driven
- M correctly learns \mathcal{L} :
 - case "L is finite": Consider the hypothesis computed when L is completely contained in t_x , i.e. $t_x^+ = L$
 - the hypothesis is computed by the "otherwise"-statement: correct by definition
 - a j has been found with $T_j \subseteq t_x^+ \subseteq h_j$: $T_j \subseteq L \subseteq h_j$ implies $L = h_j$

case "L is infinite": argumentation "as usual"

Remark: with a slight modification, M can be made conservative: use $\bigcup_{n \leq j} T_n \cap h_j$ instead of T_j

ConsvTxt \subseteq sd-LimTxt: skipped (see [2])

ged

Theorem 2.1.13:

 $\mathcal{L} \in \mathit{LimTxt}$ iff there is an indexing $(L_j)_{j \in \mathbb{N}}$ of \mathcal{L} and a *recursively enumerable* family $(T_j)_{j \in \mathbb{N}}$ of *finite* sets such that

- for all $j \in \mathbb{N}$, $T_j \subseteq L_j$
- ullet for all $j,z\in\mathbb{N}$, if $T_j\subseteq L_z$ then $L_z\not\subset L_j$

recursively enumerable means there exists a recursive function $f: \mathbb{N} \times \mathbb{N} \to \wp(\Sigma^*)$ such that $\bigcup_{n \in \mathbb{N}} f(j,n) = T_j$, for every $j \in \mathbb{N}$.

Proof. Suffiency:

Notation: T_j^x : result of running the generation of T_j for x time steps

$M(t_x)$:

Search for the least $j \leq x$ with $T_i^x \subseteq t_x^+ \subseteq L_j$.

If j has been found, output it; otherwise output "?".

Verification. Let t be a text for some $L \in \mathcal{L}$.

- 1. M always outputs a hypothesis
- 2. M converges on t
 - let k be the minimal index of L in \mathcal{L}
 - let l be the time after which $T_0, T_1, \dots T_k$ are completely enumerated
 - let x be the time so that all elements of $T_0, T_1, \ldots T_k$ (if they belong to L) are contained in t_x , i.e. $\left(L \cap \bigcup_{j=0,\ldots,k} T_j\right) \subseteq t_x$
 - after point $\hat{x} = \max\{k, l, x\}$, M outputs a number $\leq k$
 - once a value j has been rejected by M, it will never be output

3. if M converges (say to j), then $L_j = L$

Suppose the converse

case "
$$L \setminus L_j \neq \emptyset$$
":

the string w with $w \in L \setminus L_j$ will appear and M will change its hypothesis - a contradiction

case "
$$L_j \setminus L \neq \emptyset$$
":

- ullet may assume $L \subset L_i$ (otherwise we are in the former case)
- for $x \geq \hat{x}$, $T_j \subseteq t_x^+$
- since $t_x^+ \subseteq L$ this implies $T_i \subseteq L$
- ullet by property 3 of T_j this implies $L \not\subset L_j$ a contradiction

Necessity:

Generator for T_j :

Let s_0, s_1, \ldots be the canonical text for L_j and $(\sigma_j)_{j \in \mathbb{N}}$ be an enumeration of $\textit{SegText}(L_j)$ (i.e. of all finite sequences of strings from L_j).

Stage 0: Set $\tau = s_0$ and $T_j = \tau^+$.

Stage n>0: Search for the least j such that $M(\tau)\neq M(\tau\circ\sigma_j)$. If such a j has been found, set $\tau=\tau\circ\sigma_j\circ s_n$ and $T_j=\tau^+$.

(f(j,n)) can be defined by letting the generator for T_j run n steps and output the current value of T_j .)

Analysis

- ullet obvious: algorithm enumerates only strings from L_j , i.e. $T_j\subseteq L_j$ holds
- to show: T_i is finite
 - assume the contrary, i.e. T_i contains infinitely many elements
 - \rightarrow every stage is left
 - \rightarrow in the limit, the au form a text for L_j (lets call it t)
 - st t contains only strings from L_j
 - \ast all strings from L_j are contained in t, since s_0,s_1,\ldots is the canonical text for L_j
 - \rightarrow but: M changes its hypothesis infitely often!
 - Basic Idea: hunting for a stabilizing sequence:

Definition 2.1.14:

A finite sequence τ is a **stabilizing sequence** for L w.r.t. M iff

$$* \tau^+ \subset L$$

 $* \ \forall \tau' \in \textit{SegText}(L)$: if $\tau \sqsubseteq \tau'$, then $M(\tau) = M(\tau')$.

remains to show: for all $j,z\in\mathbb{N}$, if $T_j\subseteq L_z$ then $L_z\not\subset L_j$

- ullet assume the contrary, i.e. there are $j,z\in\mathbb{N}$ with $T_j\subseteq L_z$ and $L_z\subset L_j$
- ullet let au be the one computed in the last stage which terminated
- ullet let t' be a text for L_z starting with au
- consider $t'_{|\tau|}$, $t'_{|\tau|+1}$, $t'_{|\tau|+2}$...
 - \rightarrow by construction, $M(t'_{|\tau|})=M(t'_{|\tau|+1})=M(t'_{|\tau|+2})=\cdots=M(\tau)$
 - $\to M$ converges on t and t' to the same hypothesis, but both are texts for two different languages
 - $\to M$ fails to identify at least one of L_j and L_z !

qed

Stabilizing Sequences

the last proof also shows the following insight

Lemma 2.1.14:

For any IIM M LimTxt-learning L, there is a stabilizing sequence for L w.r.t. M.

in fact, it proves an even stronger insight:

Lemma 2.1.15:

For any IIM M LimTxt-learning L and any $\tau \in \textit{SegText}(L)$, there is a stabilizing sequence τ' for L w.r.t. M extending τ (i.e. $\tau \sqsubseteq \tau'$).

Theorem 2.1.16:

 $ConsvTxt \subset LimTxt$

Excursion: Blum Complexity Measures

 φ : acceptable numbering (Gödelnumbering) of all computable 1 ary functions on ${\mathbb N}$

- ullet for all $f\in\mathcal{P}$ there exists a $j\in\mathbb{N}$ such that $\varphi(j,x)=f(x)$, for all $x\in\mathbb{N}$
- ... (some additional constraints)

Notations:

- $\varphi_j(x)$ instead of $\varphi(j,x)$
- φ_j : the function f with $f(x) = \varphi(j, x)$
- $\varphi_j(x)\downarrow$: computation of $\varphi_j(x)$ terminates
- $\varphi_j(x)$: computation of $\varphi_j(x)$ does not terminate

Definition 2.1.15:

A *Blum complexity measure* ϕ is a 2ary computable function $\mathbb{N} \times \mathbb{N} \to \mathbb{N}$ with the following properties:

- $\phi_j(x) \downarrow \text{iff } \varphi_j(x) \downarrow$
- for each $j, x, k \in \mathbb{N}$ it is decidable whether $\phi_i(x) \leq k$ holds

Excursion: Blum Complexity Measures

Example 2:

the following methods are Blum complexity measures:

- time in seconds of computation on some fixed machine
- time in clock cycles of computation on some fixed machine
- number of branches executed when running a program

Proof.

define \mathcal{L}_{consv} as follows:

- ullet for all $k\in\mathbb{N}$, $L_k=\{a^kb^z\mid z\in\mathbb{N}\}$
- for all k with $\varphi_k(k) \downarrow$ and all $j \in \mathbb{N}$ with $j \leq \phi_k(k)$, $L_{k,j} = \{a^k b^z \mid z \leq j\}$

Exercise: Specify an IIM that learns \mathcal{L}_{consv} in the limit.

$\mathcal{L}_{consv} \in \mathit{LimTxt}$

Define hypothesis space $\mathcal{H}=(h_j)_{j\in\mathbb{N}}$ and telltale sets as follows:

$$h_{\langle k,x\rangle} = \begin{cases} L_{k,j} : \text{if } x = \phi_k(k) + j \text{ for some } j \leq \phi_k(k) \\ L_k : \text{ otherwise} \end{cases}$$

$$T_{\langle k,x\rangle} = \begin{cases} L_{k,j} : \text{if } x = \phi_k(k) + j \text{ for some } j \leq \phi_k(k) \\ \{a^k b, a^k b^{\phi_k(k)+1}\} : \text{if } \varphi_k(k) \downarrow \text{ and } (x < \phi_k(k) \text{ or } x > 2\phi_k(k) \\ \{a^k b\} : \text{ otherwise} \end{cases}$$

Exercise: argue why $T_{\langle k,x\rangle}$ is enumerable

verification, that $T_{\langle k,x\rangle}$ is really a telltale set for $L_{\langle k,x\rangle}$:

case "1.
$$\varphi_k(k)\uparrow$$
": for all x , $h_{\langle k,x\rangle}=L_k$ and $T_{\langle k,x\rangle}=\{a^kb\}\dots$

case "2. $\varphi_k(k)\downarrow$ ":

- if $h_{\langle k,x\rangle}=L_k$, $T_{\langle k,x\rangle}=\{a^kb,a^kb^{\phi_k(k)+1}\}$, which is not contained in any $h_{\langle k,x'\rangle}$ with $h_{\langle k,x'\rangle}\neq L_k$
- ullet if $h_{\langle k,x
 angle}=L_{k,x}$, $T_{\langle k,x
 angle}=L_{k,x}$, therefore $T_{\langle k,x
 angle}\subseteq L$ implies $h_{\langle k,x
 angle}\subseteq L$

$\mathcal{L}_{consv} \notin \mathit{ConsvTxt}$

Assume the contrary, i.e. let M Consv $Txt_{\mathcal{H}}$ -identify $\mathcal{L}_{\textit{consv}}$. Let $(T_j)_{j \in \mathbb{N}}$ be a recursive family of finite telltale sets.

Then, the following procedure decides the *halting problem*:

On input k do:

Search for a j with the following property:

• $\{a^k b^r \mid r \leq m_j\} \cup \{a^k b^{m_j+1}\} \subseteq h_j$, where $m_j = \max\{r \mid a^k b^r \in T_j\}$

If $\phi_k(k) \leq m_j$ output 1, otherwise output 0.

Verification:

- L_k is contained in ${\cal H}$ (lets say $L_k=h_j$)
- so, $T_j \cup \{a^k b^{m_j+1}\} \subseteq L_k = h_j$ holds (whatever T_j is)
- hence, the procedure terminates, we next have to verify its correctness

The procedure outputs 1 iff $\varphi_k(k) \downarrow$:

case "procedure returns 1": obviously correct

case "procedure returns 0": Suppose that $\varphi_k(k) \downarrow$, lets say $\phi_k(k) = y$.

- ullet Let j and m_j be the values found in the procedure.
- since the procedure returns 0, $m_j < \phi_k(k)$ holds
- consider the language $L_{k,m_j} = \{a^k b^z \mid z \leq m_j\}$
 - $-L_{k,m_i} \in \mathcal{L}$
 - by construction, $T_j \subseteq L_{k,m_j} \subset h_j$, a contradiction

qed

The missing Relation

Theorem 2.1.17:

 $FinInf \subset ConsvTxt$

Proof.

Let M be an IIM $\mathit{FinInf}_{\mathcal{H}}$ -identifying \mathcal{L} .

We define recursive telltale sets as follows.

For $j \in \mathbb{N}$, let i be the canonical informant for h_j . We set $T_j = i_y^+$, where y is such that $M(i_y) \in \mathbb{N}$.

(If $T_j = \emptyset$ by this construction, we repair it and set $T_j = \{w\}$ for some $w \in h_j$).

Verification:

- ullet obviously $T_j \subseteq h_j$, for all $j \in \mathbb{N}$
- ullet for all $j,z\in\mathbb{N}$, if $T_j\subseteq h_z$ then $h_z\not\subset h_j$:
 - assume the contrary, i.e. let $T_j \subseteq h_z \subset h_j$
 - consider the canonical informants for h_j and h_z \rightarrow are identical up to y
 - M fails to finitely identify h_z

Exercise: Provide a set $\mathcal{L} \in ConsvTxt \setminus FinInf$.

Summary

```
ConsvInf = LimInf = \mathcal{IC}
              LimTxt
ConsvTxt = ri-LimTxt = sd-LimTxt
               FinInf
               FinTxt
```

Literature

- [1] E Mark Gold: Language Identification in the Limit. *Information and Control* 14, pp. 447–474, 1967.
- [2] Steffen Lange: Algorithmic Learning of Recursive Languages. Mensch-und-Buch-Verlag 2000.
- [3] Thomas Zeugmann & Steffen Lange: A Guided Tour Across the Boundaries of Learning Recursive Languages. *In: Jantke & Lange (eds.) Algorithmic Learning for Knowledge-Based Systems*, Lecture Notes in Artificial Intelligence 961, pp. 190–258, Springer-Verlag 1995.

Changelog

- V1.4:
 - Folie 51 $L_{k,m_{j+1}} o L_{k,m_j}$
- V1.3:
 - Folie 35/36 zusammengefaßt, Theorem gelöscht
 - Folie 38 \cup \rightarrow \cap
 - Folie 40 $\mathcal{H}
 ightarrow \mathcal{L}$
 - Folie 49 ff. Fehler korrigiert
- V1.2:
 - Folie 10 $SegInfo(\mathcal{L})$ hinzugefügt
 - Folie 13 $t \rightarrow i$
 - Folie 22 finite hinzugefügt
 - Folie 23 $\max\{\operatorname{card}(D_j), \hat{x}\} \to \max\{j, \hat{x}\}$
 - Folien 35-38 eingeschoben, ab Folie 51 neu
- V1.1:
 - Folie 4: Prefix hinzugefügt
 - ab Folie 14 neu