COMP3203 Final Exam Notes

William Findlay

<u>December 12, 2018</u>

Contents

1	lest 1 Stuff (Brief and Important Only)	
2	RQs 1 Sliding Window	
	2.1.1 Go Back N	
	2.1.2 Selective Reject	
	2 Stop and Wait	
	2.2.1 Errors in Stop and Wait	
	2.2.2 Correctness	
	r 1, ·	
}	fultiaccess 1 Uncoordinated Access Control	
	2 Ethernet	
3	Z Ethernet	•
4	Coordinated Access	
	1 Tree Algorithm	
	2 Binary Countdown	
	3 Bitmap	
	171 1	
5 W 5.1 5.2	Vireless	
	- 114 1155	
	5.2.1 UDG	
	5.2.2 Compass Routing	
	5.2.3 Face Routing	
	3 Bluetooth	•
;	PS .	
	1 Three Techniques	
(2 Satellites	
7	Couting	
	1 Distance Vector (RIP)	
	2 Link State Protocol (LSP)	
	3 MSTs	
,	4 Dijkstra	•
}	P	
8.	1 IPv4	
	8.1.1 Classes of Address	
	8.1.2 Subnets	
	8.1.3 Subnet Masks	
	2 IPv6	
	3 DHCP	
	4 ARP	
	8.4.1 RARP	
		•
)	$^{\circ}$ CP	
	1 How it Works (Sliding Window)	
	2 How it Builds Statistics	
	3 Equilibrium Model	

1 Test 1 Stuff (Brief and Important Only)

• test 1 stuff here

2 ARQs

- (A)utomatic (R)epeat Re(Q)uests
- strategy to handle errors detected by the CRC
 - or whatever other detection method
- main types
 - stop and wait
 - sliding window
 - go back N
 - selective reject

2.1 Sliding Window

2.1.1 Go Back N

- most commonly used sliding window
- \bullet sequential frames numbered $n \mod N$
- send up to N-1 frames **before an ACK** is received
- unbounded sequence numbers is a hurdle for sliding window in non-FIFO channels

ACKs and NAKs

- if no error
 - send RR (ACK) for frame[n]
- if error
 - send REJ (NAK) for frame[n]
- if frame lost, send a NAK
- if no ACK or NAK received before timeout, assume lost

When Sender Receives a NAK/n]

 \bullet resend frame [n] and all frames sent since

When a Sender Receives No ACK or NAK

• go back to the previous ACK and resend all frames sent since

2.1.2 Selective Reject

- \bullet similar to go back N
- BUT we only resend the lost frame
 - out of order!
 - receiver needs sorting logic to store frames after a NAK
- in general, smaller window size

Figure 1: An example of the Selective Reject protocol.

2.2 Stop and Wait

- \bullet also called an \mathbf{ABP}
 - alternating bit protocol
 - $-\,$ because the label bits alternate between 0 and $1\,$
- you can think of it as sliding "window" with a window size of 1
- \bullet works only in **FIFO queues**
 - suitable for data link layer

Figure 2: A diagram of the Stop and Wait ARQ protocol.

2.2.1 Errors in Stop and Wait

- two main types
- frame errors
 - damaged frame
- ACK errors
 - damaged acknowledgement

Frame Errors

Figure 3: A lost frame error in the Stop and Wait ARQ protocol.

- frame is damaged
 - one or more bits have been altered
- discard the frame
- source waits for ACK
 - if it doesn't receive one, it will resend

$ACK\ Errors$

- frame is received but ACK is damaged
- sender will resend message
- receiver will accept the same message twice
 - so we need to label frames
 - and label ACKs
 - use a bit for this
 - ACK[b] acknowledges frame $[b+1 \mod 2]$
 - says receiver is ready for $\mathrm{frame}[b]$

2.2.2 Correctness

- satisfies:
 - safety
 - algorithm never gives an incorrect result
 - always results in a "corrected" error
 - liveness
 - never enters a deadlock condition

Figure 4: An ACK error in the Stop and Wait ARQ protocol.

3 Multiaccess

3.1 Uncoordinated Access Control COME BACK HERE

3.2 Ethernet

4 Coordinated Access

- 4.1 Tree Algorithm
- 4.2 Binary Countdown
- 4.3 Bitmap
- 5 Wireless
- 5.1 Cellular
- 5.2 Ad Hoc
- 5.2.1 UDG
- 5.2.2 Compass Routing
- 5.2.3 Face Routing
- 5.3 Bluetooth
- 6 GPS
- 6.1 Three Techniques
- 6.2 Satellites
- 7 Routing
- 7.1 Distance Vector (RIP)
- 7.2 Link State Protocol (LSP)
- 7.3 MSTs
- 7.4 Dijkstra
- 8 IP
- 8.1 IPv4
- 8.1.1 Classes of Address
- 8.1.2 Subnets
- 8.1.3 Subnet Masks
- 8.2 IPv6
- 8.3 DHCP
- 8.4 ARP
- 8.4.1 RARP
- 9 TCP
- 9.1 How it Works (Sliding Window)
- 9.2 How it Builds Statistics
- 9.3 Equilibrium Model