3. Una Arista Negativa , Daniel Bustos

Diseñar un algoritmo eficiente que, dado un digrafo pesado G y dos vértices s y t, determine el recorrido mínimo de s a t que pasa por a lo sumo una arista de peso negativo. Demostrar que el algoritmo propuesto es correcto.

Idea del algoritmo

Usamos Dijkstra sobre el grafo sin pesos negativos, tanto desde s como desde t sobre G transpuesto. Obtenemos así las distancias d(s,v) y $d(v',t) \forall v,v' \in V(G)$. Luego consideramos los pesos de los caminos que incluyen una arista negativa, definido como: El costo de llegar hasta ellas desde s, sumado el costo de la arista negativa, y desde ellas hasta t es menor que nuestro mejor camino anterior. Observemos que si la única manera de llegar de s a t fuese pasar por más de una arista negativa, entonces la distancia final resultante sería infinito, ya que las distancias que obtenemos en Dijkstra solo consideran que había aristas positivas.

Algoritmo

Algorithm 1 Encontrar el recorrido mínimo de s a t con a lo sumo una arista de peso negativo

```
1: Remover todas las aristas negativas del grafo G.
```

```
2: Ejecutar Dijkstra desde s y desde t en el grafo transpuesto.
```

```
3: candidato \leftarrow d(s,t) {Obtenido del Dijkstra anterior}
```

```
4: for cada arista (a, b) negativa en G do
```

```
5: if d(s,a) + c(a,b) + d(b,t) < \text{candidato then}
```

```
6: candidato \leftarrow d(s, a) + c(a, b) + d(b, t)
```

- 7: end if
- 8: end for
- 9: return candidato

Complejidad

Sea k la cantidad de aristas negativas con $k \leq m.$ La complejidad del algoritmo es de:

$$n + m + 2\Theta(m + n\log n) + k \le O(m + n\log n)$$

Demostración

Es claro que nuestra solución es:

 $\min(\text{Camino mínimo entre } s \text{ y } t \text{ sin negativos}, \min(\text{Camino con una arista negativa entre } s \text{ y } t))$

Nuestro algoritmo nos da:

 $\min(\min(\text{Caminos entre } s \text{ y } t \text{ sin negativos}), \min(d(s,a) + c(a,b) + d(b,t) \mid (a,b) \text{ es una arista negativa}))$

Es trivial que el camino mínimo entre s y t sin aristas negativas es igual a min(Caminos entre s y t sin negativos).

Para la segunda parte, llamemos

- $P' := \{d(s, a) + c(a, b) + d(b, t) \mid (a, b) \text{ es una arista negativa}\}$
- P := los caminos con una arista negativa entre s y t.

Veamos que $\min(P) = \min(P')$. Podemos definir al peso de todos los caminos negativos con una arista negativa entre s y t exactamente como definimos P'. Luego, sus mínimos deben ser iguales.