MATH 503: Mathematical Statistics

Lecture 3: Estimator Variation, and Properties of Point Estimators I

Reading: Sections 6.1-6.2, 7.3

Kimberly F. Sellers

Department of Mathematics & Statistics

Today's Topics

- Information
- Cramér-Rao Lower Bound
- Efficiency
- Sufficiency and its properties

Cramér-Rao Lower Bound

- Gives lower bound on variance of unbiased estimator
- Let X be r.v. with pdf $f(x; \theta)$, $\theta \in \Omega$
- Regularity conditions:
 - Pdfs are distinct, i.e. $\theta \neq \theta' \Rightarrow f(x_i; \theta) \neq f(x_i; \theta')$
 - Pdfs have common support for all θ
 - The point θ_0 is an interior point in Ω
 - Pdf is twice differentiable as a function of θ
 - Integral $\int f(x;\theta)dx$ can be differentiated twice under the integral sign as a function of θ

Fisher Information: Background

Consider random variable X with pdf $f(x; \theta)$. By definition, $\int_{-\infty}^{\infty} f(x; \theta) dx = 1$.

Taking derivative wrt $\theta \Rightarrow \int_{-\infty}^{\infty} \frac{\partial f(x;\theta)}{\partial \theta} dx = 0$.

Multiply w/in integral $\Rightarrow \int_{-\infty}^{\infty} \frac{\partial f(x;\theta)/\partial \theta}{f(x;\theta)} f(x;\theta) dx = 0.$

$$*=\int_{-\infty}^{\infty} \frac{\partial \log f(x;\theta)}{\partial \theta} f(x;\theta) dx = E\left(\frac{\partial \log f(x;\theta)}{\partial \theta}\right) = 0.$$

Fisher Information: Bkgd (cont.)

Differentiating again wrt θ (product rule),

$$\therefore 0 = \int_{-\infty}^{\infty} \frac{\partial^2 \log f(x;\theta)}{\partial \theta^2} f(x;\theta) dx$$
$$E\left(\frac{\partial^2 \log f(x;\theta)}{\partial \theta^2}\right)$$

$$+ \int_{-\infty}^{\infty} \frac{\partial \log f(x;\theta)}{\partial \theta} \frac{\partial \log f(x;\theta)}{\partial \theta} f(x;\theta) dx$$

$$E\left[\left(\frac{\partial \log f(x;\theta)}{\partial \theta}\right)^{2}\right] = I(\theta)$$

Fisher Information

$$I(\theta) = \operatorname{Var}\left(\frac{\partial \log f(X;\theta)}{\partial \theta}\right)$$

$$= E\left[\left(\frac{\partial \log f(X;\theta)}{\partial \theta} - E\left(\frac{\partial \log f(X;\theta)}{\partial \theta}\right)\right)^{2}\right]$$

$$= E\left[\left(\frac{\partial \log f(X;\theta)}{\partial \theta}\right)^{2}\right] = E\left[-\left(\frac{\partial^{2} \log f(X;\theta)}{\partial \theta}\right)\right]$$

- The amount of information that observable r.v. X carries about unobservable θ
 - The greater these derivatives (on average), the more information we get about θ

Let X~Bernoulli(θ). Find the associated information.

Fisher Information: Bkgd (cont.)

• Can consider information for random sample $X_1, ..., X_n$

•
$$\frac{\partial \log L(\theta; \mathbf{X})}{\partial \theta} = \sum_{i=1}^{n} \frac{\partial \log f(X_i; \theta)}{\partial \theta}$$
 where $\operatorname{Var}\left(\frac{\partial \log f(X_i; \theta)}{\partial \theta}\right) = I(\theta)$ for all i , and X_i s are iid $\Rightarrow \operatorname{Var}\left(\frac{\partial \log L(\theta; \mathbf{X})}{\partial \theta}\right) = nI(\theta)$

Result: information for a sample is n times information for one rv

Cramér-Rao Lower Bound

• Let $X_1, X_2, ..., X_n$ be iid with common pdf $f(x; \theta)$ for $\theta \in \Omega$. Assume that the regularity conditions hold. Let $Y = u(X_1, X_2, ..., X_n)$ be a statistic with mean $E(Y) = k(\theta)$. Then $Var(Y) \ge \frac{\left[k'(\theta)\right]^2}{nI(\theta)}$.

• Corollary: if Y is unbiased for θ , then $k(\theta) = \theta$, and the result becomes $Var(Y) \ge \frac{1}{nI(\theta)}$

Efficiency

- Let Y be an unbiased estimator of a parameter θ in the case of point estimation. The statistic Y is an <u>efficient estimator</u> of θ iff. the variance of Y attains the Cramer-Rao lower bound.
- The ratio of the Cramer-Rao lower bound to the actual variance of any unbiased estimator of θ is called the <u>efficiency</u> of that estimator.

Example 1 (cont.)

Let $X_1, ..., X_n$ iid ~ Bernoulli(θ) distribution. Show that the MLE of θ attains the Cramer-Rao lower bound.

Let $X_1, ..., X_n$ iid $\sim Poisson(\theta), \theta > 0$.

- 1. Find the MLE of θ .
- 2. Show that the MLE is an efficient estimator of θ .

Theorem

• Additional regularity condition: The pdf $f(x;\theta)$ is three times differentiable as a function of θ . Further, for all $\theta \in \Omega$, there exists a constant c and function M(x) s.t.

 $\left| \frac{\partial^3}{\partial \theta^3} \log f(x; \theta) \right| \le M(x)$, with $E_{\theta_0}[M(x)] < \infty$, for all $\theta_0 - c < \theta < \theta_0 + c$ and all x in the support of X.

Theorem (cont.)

- Assume X_1, \ldots, X_n are iid with pdf $f(x; \theta_0)$ for $\theta_0 \in \Omega$ such that all regularity conditions hold. Suppose further that Fisher information satisfies $0 < I(\theta_0) < \infty$. Then any consistent sequence of solutions of the MLE equations satisfies $\sqrt{n}(\hat{\theta} \theta_0) \stackrel{d}{\to} N\left(0, \frac{1}{I(\theta_0)}\right)$
- Corollary: Under the above assumptions, suppose g(x) is a continuous function of x which is differentiable at θ_0 s.t. $g'(\theta_0) \neq 0$. Then $\sqrt{n}(g(\hat{\theta}) g(\theta_0)) \stackrel{d}{\to} N\left(0, \frac{g'(\theta_0)^2}{I(\theta_0)}\right)$

Asymptotic Efficiency

• Let $X_1, ..., X_n$ be iid with pdf $f(x; \theta)$. Suppose $\hat{\theta}_{1n} = \hat{\theta}_{1n}(X_1, ..., X_n)$ is an estimator of θ_0 st.

$$\sqrt{n}(\hat{\theta}_{1n} - \theta_0) \stackrel{d}{\rightarrow} N(0, \sigma_{\hat{\theta}_{1n}}^2)$$

Then

a) The <u>asymptotic efficiency</u> of $\hat{\theta}_{1n}$ is defined to be

$$e(\hat{\theta}_{1n}) = \frac{1/I(\theta_0)}{\sigma_{\hat{\theta}_{1n}}^2}$$

 b) The estimator is <u>asymptotically efficient</u> if the ratio equals 1.

Asymptotic Efficiency (cont.)

• Suppose $\hat{\theta}_{1n} = \hat{\theta}_{1n}(X_1, \dots, X_n)$ is an estimator of θ_0 such that

$$\sqrt{n}(\hat{\theta}_{1n} - \theta_0) \stackrel{d}{\rightarrow} N(0, \sigma_{\hat{\theta}_{1n}}^2)$$

Then

c) Let $\hat{\theta}_{2n}$ be another estimator st.

$$\sqrt{n}(\hat{\theta}_{2n} - \theta_0) \stackrel{d}{\rightarrow} N(0, \sigma_{\hat{\theta}_{2n}}^2)$$

Then the <u>asymptotic relative efficiency</u> (ARE) of $\hat{\theta}_{1n}$ to $\hat{\theta}_{2n}$ is

$$e(\hat{\theta}_{1n}, \hat{\theta}_{2n}) = \frac{\sigma_{\widehat{\theta}_{2n}}^2}{\sigma_{\widehat{\theta}_{1n}}^2}$$

Recap

- Let $Y_n = u(X_1, ..., X_n)$ be point estimator based on $X_1, ..., X_n$
- Y_n is consistent if $Y_n \stackrel{p}{\to} \theta$ (i.e. Y_n is close to θ for large sample sizes)
- Y_n is <u>unbiased</u> if $E(Y_n) = \theta$

Maximum Likelihood Estimators

- Under suitable conditions, MLEs are consistent
- MLEs not necessarily unbiased, but generally asymptotically unbiased

Minimum Variance Unbiased Estimators (MVUEs)

- For a given positive integer $n, Y = u(X_1, ..., X_n)$ is a minimum variance unbiased estimator (MVUE) of the parameter θ
 - if Y is unbiased, and
 - if the variance of Y is less than or equal to the variance of every other unbiased estimator of θ .

Sufficiency

Let $X_1, ..., X_n$ denote a random sample of size n from a distribution that has pdf/pmf $f(x;\theta), \theta \in \Omega$. Let $Y_1 = u_1(X_1, ..., X_n)$ be a statistic whose pdf/pmf is $f_{Y_1}(y_1;\theta)$. Then Y_1 is a sufficient statistic for θ iff.

$$\frac{f(x_1;\theta)f(x_2;\theta)\cdots f(x_n;\theta)}{f_{Y_1}[u_1(x_1,\ldots,x_n);\theta]} = H(x_1,\ldots,x_n),$$

where $H(x_1, ..., x_n)$ does not depend on $\theta \in \Omega$.

Let $X_1, ..., X_n \sim \text{Bernoulli}(p)$ iid. Show that $Y_1(X) = \sum X_i$ is sufficient.

Let $X_1, ..., X_n$ be iid with pdf $f(x; \theta) = e^{-(x-\theta)}I_{(\theta,\infty)}(x)$. Show that $Y_1(X) = X_{(1)}$ is sufficient.

Neyman-Fisher Factorization Thm

Let $X_1, ..., X_n$ denote a random sample from a distribution that has pdf/pmf $f(x; \theta), \theta \in \Omega$. The statistic $Y_1 = u_1(X_1, ..., X_n)$ is a sufficient statistic for θ iff. we can find two nonnegative functions, k_1 and k_2 , such that

$$f(x_1; \theta) f(x_2; \theta) \cdots f(x_n; \theta) = k_1[u_1(x_1, ..., x_n); \theta] \cdot k_2(x_1, ..., x_n)$$

where $k_2(x_1, ..., x_n)$ does not depend on θ .

Let $X_1, ..., X_n \sim \text{Normal}(\theta, \sigma^2)$ iid, where $\sigma^2 > 0$ known. Show that \bar{X} is sufficient for θ .

Let $X_1, ..., X_n$ be iid with pdf $f(x; \theta) = \theta x^{\theta-1}$, 0 < x < 1, $\theta > 0$. Show that $\prod X_i$ is sufficient for θ .

Let $X_1, ..., X_n \sim \text{Uniform}(0, \theta)$ iid. Find a sufficient estimator for θ .

Notes re. Sufficient Statistics

- Not unique!
- Can lead to a "best" point estimator
- Given two statistics, Y_1 sufficient for θ and Y_2 unbiased, function $\varphi(Y_1)$ is an unbiased estimator of θ having a smaller variance than that of Y_2

Rao-Blackwell Theorem

Let X_1, \dots, X_n, n a fixed positive integer, denote a random sample from a distribution that has pdf/pmf $f(x;\theta), \theta \in \Omega$. Let $Y_1 = u_1(X_1, ..., X_n)$ be a sufficient statistic for θ , and let $Y_2 = u_2(X_1, ..., X_n)$, not a function of Y_1 alone, be an unbiased estimator of θ . Then $E(Y_2 \mid y_1) = \varphi(y_1)$ defines a statistic $\varphi(Y_1)$. This statistic $\varphi(y_1)$ is a function of the sufficient statistic for θ ; it is an unbiased estimator of θ ; and its variance is less than that of Y_2 .

Notes re. Rao-Blackwell Thm.

- If we know a sufficient statistic for the parameter exists, the MVUE will be a function of the sufficient statistic.
- This does not mean that we first need to find an unbiased statistic!
- Focus on functions of sufficient statistics

Theorem

• Let $X_1, ..., X_n$ denote a random sample from a distribution that has pdf/pmf $f(x; \theta), \theta \in \Omega$. If a sufficient statistic $Y_1 = u_1(X_1, ..., X_n)$ for θ exists, and if a MLE $\hat{\theta}$ of θ also exists uniquely, then $\hat{\theta}$ is a function of $Y_1 = u_1(X_1, ..., X_n)$.

• The point: MLEs are functions of sufficient statistics.

Proof

Let $f_{Y_1}(y_1; \theta)$ be the pdf/pmf of Y_1 . Then by the definition of sufficiency, the likelihood function

$$L(\theta; x_1, ..., x_n) = f(x_1; \theta) f(x_2; \theta) \cdots f(x_n; \theta)$$

= $f_{Y_1}[u_1(x_1, ..., x_n); \theta] H(x_1, ..., x_n),$

where $H(x_1, ..., x_n)$ does not depend on θ . Thus L and f_{Y_1} are maximized simultaneously. Since there is only one value of θ that maximizes these functions, that value of θ must be a function of $u_1(x_1, ..., x_n)$. Thus, the MLE $\hat{\theta}$ is a function of sufficient statistic $Y_1 = u_1(x_1, ..., x_n)$.

Let $X_1, ..., X_n$ denote a random sample from a distribution that has pdf $f(x; \theta) = \theta e^{-\theta x}$, $0 < x < \infty$.

- 1. Find a sufficient statistic for θ .
- 2. Find the MLE of θ .
- 3. Determine a MVUE of θ .