Review and Replication of Lengnick (2013)'s Macroeconomic Agent-Based Model

John T.H. Wong

2025-05-14

▶ Replicated Lengnick (2013)'s macroeconomic agent-based model in Python with Mesa

- ▶ Replicated Lengnick (2013)'s macroeconomic agent-based model in Python with Mesa
- Reproduced endogenous business cycles without growth or aggregate shocks

- ▶ Replicated Lengnick (2013)'s macroeconomic agent-based model in Python with Mesa
- Reproduced endogenous business cycles without growth or aggregate shocks
- Reproduced various aggregate phenomena (Phillips curve, Beveridge curve)

- ▶ Replicated Lengnick (2013)'s macroeconomic agent-based model in Python with Mesa
- Reproduced endogenous business cycles without growth or aggregate shocks
- Reproduced various aggregate phenomena (Phillips curve, Beveridge curve)
- Some deviations in frequency and severity of downturns, and firm-level decisions

Motivations for Agent-Based Macroeconomic Models

► Allows heterogeneity in agents unlike structural VAR or traditional DSGE models

Motivations for Agent-Based Macroeconomic Models

- Allows heterogeneity in agents unlike structural VAR or traditional DSGE models
- No assumptions of perfect foresight or equilibrium conditions unlike HANK models

Contributions

Converted Lengnick (2013)'s Java model to Python in open-source repository

Contributions

- Converted Lengnick (2013)'s Java model to Python in open-source repository
- Clarified ambiguities and inconsistencies in the model

Contributions

- Converted Lengnick (2013)'s Java model to Python in open-source repository
- Clarified ambiguities and inconsistencies in the model
- Added (skeletal) dashboard capabilities with Mesa's Solara-based modules

Model Overview

Two agent types: households and firms

Model Overview

- Two agent types: households and firms
- Two markets: consumer goods and labor

Model Overview

- Two agent types: households and firms
- Two markets: consumer goods and labor
- ► Each step represents one day; 21 days = one month

Model Parameters

Key parameters:

ightharpoonup H = 1000 households, F = 100 firms

Model Parameters

Key parameters:

- \blacktriangleright H=1000 households, F=100 firms
- ightharpoonup n = 7 firms in household's seller network

Model Parameters

Key parameters:

- ightharpoonup H = 1000 households, F = 100 firms
- ightharpoonup n=7 firms in household's seller network
- ▶ Dozens other parameters governing price/wage adjustments, inventories, job search

Parameters table

Paramet	er Description	Value
$\overline{\gamma}$	Months of labor market slack until wage cut.	24
δ	Upper-bound of wage adjustment.	0.019
$\underline{\phi}$	Minimum desirable inventory (multiplier on units of goods demanded).	0.25
$\overline{\phi}$	Maximum desirable inventory (multiplier on units of goods demanded).	1
ρ	Minimum desirable price (multiplier on "marginal cost").	1.025
$\overline{ ho}$	Maximum desirable price (multiplier on "marginal cost").	1.15
heta	Probability firm considers changing price.	0.75
η	Upper-bound of price adjustment.	0.02
$\dot{\psi}_p$	Probability household tries to switch seller for price.	0.25
ψ_y	Probability household tries to switch seller for inventory.	0.25
¢	Minimum price decrease required to switch	0.01

Monthly Actions: Firms

At the start of each month, firms:

1. Adjust wages based on vacancies

Monthly Actions: Firms

At the start of each month, firms:

- 1. Adjust wages based on vacancies
- 2. Adjust headcount based on whether inventory falls within some target multiple of last period's demand

Monthly Actions: Firms

At the start of each month, firms:

- 1. Adjust wages based on vacancies
- 2. Adjust headcount based on whether inventory falls within some target multiple of last period's demand
- 3. Adjust prices, only if headcount was adjusted, and if it's not within some target multiple of marginal costs

At the start of each month, households:

1. Update seller networks based on prices and inventory

At the start of each month, households:

- 1. Update seller networks based on prices and inventory
- 2. Seek new jobs if unemployed

At the start of each month, households:

- 1. Update seller networks based on prices and inventory
- 2. Seek new jobs if unemployed
- 3. Possibly seek better jobs if employed but underpaid

At the start of each month, households:

- 1. Update seller networks based on prices and inventory
- 2. Seek new jobs if unemployed
- 3. Possibly seek better jobs if employed but underpaid
- 4. Plan consumption based on money and average price within network

Daily Actions

▶ Households buy and consume goods from their network

Daily Actions

- Households buy and consume goods from their network
- \blacktriangleright Firms produce according to production function: $y_{fs}=\lambda l_{ft}$

Firms pay wages to employees

- Firms pay wages to employees
- Firms retain buffer for future wages

- Firms pay wages to employees
- Firms retain buffer for future wages
- Firms pay dividends to shareholders (all households)

- Firms pay wages to employees
- Firms retain buffer for future wages
- Firms pay dividends to shareholders (all households)
- ► Households adjust reservation wages

Implementation Challenges

- Omissions in original paper made replication difficult:
 - Initial step not specified
 - Unknown initial parameters (initial money, wages, prices)
 - Thankfully starting values don't matter too much.
 - Unclear definitions (demand, marginal cost)

Example

What price-adjustment looks like over the very long-term:

We therefore remove the first 100 years of observations.

Results: Business Cycles Comparison

Results: Unsatisfied Demand Comparison

2 Unsatisfied demand (in %)

Results: Phillips Curve Comparison

Results: Beveridge Curve Comparison

Results: Firm Size Distribution Comparison

Results: Price Change Distribution Comparison

Results: Cross Correlations Comparison

My Replication

Key Differences in Results

- Business cycles: Less frequent but more severe in my replication
 - ▶ 10% unemployment vs. 4.5% in original
- Unsatisfied demand: Similar mode but fatter tails in replication
- Phillips and Beveridge curves: Similar patterns but different scales
 - \blacktriangleright Price changes mostly within ± 1 vs. ± 4 in original
 - Fewer vacancies in replication (max 20 vs. 80)
- Price changes: My distribution is multimodal with second peak at ~75%
- ➤ Cross-correlations: Negative correlation with price lags persists longer (18 months vs. 6 months)

▶ Model has large parameter space despite "baseline" intent

- ▶ Model has large parameter space despite "baseline" intent
 - ▶ 19 known + 6 unknown parameters

- ▶ Model has large parameter space despite "baseline" intent
 - ▶ 19 known + 6 unknown parameters
 - Many parameters difficult to estimate from real data

- ▶ Model has large parameter space despite "baseline" intent
 - ▶ 19 known + 6 unknown parameters
 - Many parameters difficult to estimate from real data
- Disequilibrium makes some extensions difficult

- ▶ Model has large parameter space despite "baseline" intent
 - ▶ 19 known + 6 unknown parameters
 - Many parameters difficult to estimate from real data
- Disequilibrium makes some extensions difficult
- What I want to add next: modify search behaviors to incorporate tax policies and integrate model with tax calculators for policy forecasting

References

Lengnick, Matthias. 2013. "Agent-Based Macroeconomics: A Baseline Model." *Journal of Economic Behavior & Organization* 86 (February): 102–20. https://doi.org/10.1016/j.jebo.2012.12.021.