INSTITUTO NACIONAL DE MATEMÁTICA PURA E APLICADA

FRAÇÕES

no Ensino Fundamental - Volume 1

Fabio Simas
Humberto Bortolossi
Letícia Rangel
Victor Giraldo
Wanderley Rezende

Wellerson Quintaneiro

Cydara Cavedon Ripoll

Projeto: LIVRO ABERTO DE MATEMÁTICA

umlivroaberto.com

Título: Frações no Ensino Fundamental - Volume 1 Ano/ Versão: 2016 / versão 2.0 de Fevereiro de 2017

Editora Instituto Nacional de Matemática Pura e Aplicada (IMPA-OS)

Realização: Olimpíada Brasileira de Matemática das Escolas Públicas (OBMEP)

Produção: Livro Aberto

Coordenação: Fabio Simas e Augusto Teixeira

Autores: Cydara Cavedon Ripoll, Fabio Luiz Borges Simas, Humberto José Borto-

Iossi, Letícia Guimarães Rangel, Victor Augusto Giraldo, Wanderley Moura

Rezende, Wellerson da Silva Quintaneiro

Colaboradores: Ana Paula Pereira (CAp UFF), Andreza Gonçalves (estudante da UFF),

Bruna Luiza Oliveira (estudante da UFF), Francisco Mattos (Colégio Pedro II), Helano Andrade (estudante da UNIRIO), João Carlos Cataldo (CAp UERJ e Colégio Santo Ignácio), Luiz Felipe Lins (Secretaria de Educação da Cidade do Rio de Janeiro), Michel Cambrainha (UNIRIO), Rodrigo Ferreira

(estudante da UNIRIO), Tahyz Pinto (estudante da UFF)

Arte: Aline Santiago

Ilustradores (fi- Luiz Fe

guras geométri-

cas):

Luiz Fernando Alves Macedo, Vitoria da Mota Souza, Eduardo Filipe de Miranda Souto, Caio Felipe da Silva Evangelista, Gisela Alves de Souza, Mauricio de Azevedo Neto, Briza Aiki Matsumura, Vinícius Marcondes de

Paula Silva, Wanessa Souza de Oliveira, Maurício Menegatti Andrade, Eduardo Filipe de Miranda Souto, Livia Machado da Silveira Verly, Caio Felipe da Silva Evangelista, Lucas Hideo Maekawa, Lucas Oliveira Machado de

Sousa, Kayky Zigart Carlos e Israel Fialho Magalhães

Capa: Fabio Simas

Após o dia 1° de setembro de 2026 esta obra passa a estar licenciada por CC-by-sa. Algumas figuras podem possuir licença com mais direitos do que a vigente para todo o material.

Introdução

Frações é certamente um dos tópicos que mais desafia o ensino e a aprendizagem de matemática da Educação Básica. Justamente por isso, tanto se publicou sobre o assunto nas últimas décadas (para citar apenas algumas das mais utilizadas: *Rational Number Project, Institute of Education Science* ([?], 2010), Van de Walle ([?], 2009) e Wu ([?], 2011). Este texto, organizado como uma proposta didática, reúne as reflexões e as discussões dos autores sobre o tema, amparadas por essas publicações e pela análise de livros didáticos de diversos países. A proposta aqui apresentada foi planejada para:

- (i) ser aplicada diretamente em sala de aula, como material didático destinado aos anos intermediários do ensino fundamental (do 4° ao 7° ano) e
- (ii) amparar a formação e o desenvolvimento profissional do professor que ensina matemática na educação básica.

O texto concentra-se na abordagem inicial de frações como objeto matemático, buscando explorar o assunto a partir de atividades que visam à construção conceitual do tema e a conduzir os alunos a desenvolverem o raciocínio matemático amparados por reflexão e por discussão. Assim, as atividades visam a desafiar os alunos e a levá-los a estabelecer suas próprias conclusões sobre os assuntos tratados. Busca-se valorizar a capacidade cognitiva dos alunos, respeitando uma organização crescente e articulada de dificuldade na organização das atividades. Espera-se com isso mudar a perspectiva do binômio quantidade/qualidade. No lugar de uma quantidade enorme de exercícios, são propostas poucas atividades que exigem maior reflexão e aprofundamento dos conceitos. Assim, são evitadas atividades de simples observação e repetição de modelos e os tradicionais "exercícios de fixação", que, pontuais, são apenas com o objetivo de desenvolver a fluência em procedimentos específicos (por exemplo, os que envolvem a equivalência entre frações).

Uma outra característica particular deste material é o diálogo com o professor. No início de cada lição, há uma introdução dirigida especificamente ao professor que apresenta os objetivos da lição, uma discussão dos aspectos matemáticos que serão tratados, as dificuldades esperadas e algumas observações sobre os passos cognitivos envolvidos. Diferente dos livros didáticos tradicionais, em que, para o professor, há pequenas observações pontuais junto ao texto do aluno e um longo texto teórico anexo ao final do livro, nesta proposta a "conversa" com o professor é permanente. Em cada atividade são realizadas discussões sobre os objetivos a serem alcançados, recomendações e sugestões metodológicas para sua execução e, quando pertinente, uma discussão sobre algum desdobramento do assunto tratado.

Entende-se que, nesta etapa da escolaridade, considerando o cotidiano próprio do aluno, o conceito de fração aparece ligado a noções informais traduzidas por expressões como metade, terço, quartos, décimos e centésimos, por exemplo. Assim, nas primeiras duas lições, buscou-se utilizar a linguagem verbal e os conhecimentos anteriores dos estudantes sobre situações em que aquelas expressões são utilizadas para conduzir as primeiras abordagens, visando à introdução de um conhecimento mais organizado e formal sobre o assunto. Apenas posteriormente, são introduzidas a linguagem e a simbologia próprias da matemática.

A introdução das frações na Educação Básica amplia o universo numérico do aluno e envolve um salto cognitivo, ir além da contagem. São duas as principais questões nesse processo: "a identificação de uma unidade não explícita *a priori*" e a compreensão de uma "unidade contínua", isto é, que pode ser subdividida em qualquer número de partes.

A construção de ideias abstratas, especialmente nesta etapa da escolaridade, deve ser amparada por contextos e modelos representativos. Na abordagem aqui proposta decidimos por iniciar apenas a partir de situações que envolvem modelos contínuos (linhas e regiões do plano ou do espaço). Assim, por exemplo, não trataremos de "um terço de uma caixa de lápis", mas de "um terço de uma barra de chocolate".

A decisão por evitar modelos discretos em um momento inicial deve-se aos seguintes fatos: (i) modelos discretos já evidenciam uma unidade a priori; por exemplo, na determinação de um terço de 24 lápis, a unidade "lápis" não é nem a unidade nem a subunidade que precisam ser levadas em conta para a determinação da fração "um terço de 24 lápis" e (ii) como o conceito de fração subentende o de equipartição, contextos discretos podem desencadear discussões mais complexas, por exemplo, o que seria determinar 1/10 de uma caixa de 24 lápis?

A opção por modelos contínuos traz limitações inerentes. É natural que os estudantes associem a fração à forma que a identifica no modelo. É necessário que identifiquese a fração não à forma, mas à quantidade evidenciada na representação. Assim, por exemplo, se o modelo for um retângulo, o que está em questão é a área e a fração 1/4 pode ser representada igualmente por um retângulo ou um triângulo, como na figura a seguir (ver Atividade 4 da Lição 1).

Iniciar o estudo de frações a partir de modelos contínuos é uma decisão compartilhada por propostas que caracterizam livros japoneses e franceses.

As lições 1 e 2 introduzem os conceitos elementares e a linguagem de frações a partir de situações concretas e de modelos contínuos. Na lição 1, as frações emergem de situações concretas amparadas pela linguagem verbal. Uma vez estabelecida a unidade, a expressão "fração unitária" nomeia cada uma das partes da divisão da unidade em partes iguais. Nas atividades dessas lições a unidade está fortemente vinculada a um objeto concreto. Assim, por exemplo, a fração de uma torta, não é ainda tratada com a abstração própria do conceito de número, mas como uma fatia da torta em uma equipartição. Toma-se bastante cuidado com o papel da determinação da unidade e com a necessidade de uma "equipartição" para a identificação de uma fração. A notação simbólica de frações e as frações não unitárias, incusive as maiores do que a unidade, surgem apenas na Lição 2. As frações com numerador diferente de 1 são apresentadas a partir da justaposição de frações unitárias com mesmo denominador ou simplesmente contando-se essas frações. Para isso, tem-se a representação pictórica como um apoio importante. Nessas lições, as atividades são quase majoritariamente para identificar, reconhecer, analisar e justificar.

Na Lição 3, é exigida maior abstração dos alunos. Retoma-se a representação de números na reta numérica, enfatizando, no contexto das frações, a associação do segmento unitário à unidade. Os modelos contínuos e a justaposição de partes correspondentes às frações unitárias são a base da proposta desenvolvida. A representação das frações na reta numérica é usada para amparar a abordagem da comparação de frações com um mesmo numerador e com um mesmo denominador. Além disso, são propostas atividades que tratam a comparação de frações a partir de uma referência.

A Lição 4 trata da equivalência de frações tendo como objetivo a sua função na comparação de duas frações quaisquer. O assunto é abordado utilizando-se representações equivalentes em modelos de área retangulares, em modelos de área circulares e na reta numérica. A inclusão de modelos diferentes é proposital pois, com isso, o aluno tem a oportunidade de perceber as mesmas propriedades em contextos diferentes. Finalizando a lição, são propostas atividades que conduzem à exploração da propriedade das frações que garante que, dadas duas frações diferentes, é sempre possível determinar uma terceira fração que está entre elas (propriedade de densidade).

Adição e subtração de frações são o tema da Lição 5. A abordagem dessas operações será a partir de problemas e fundamentada na equivalência de frações, que permite

determinar subdivisões comuns da unidade para expressar as frações envolvidas nos cálculos. Os significados e os contextos que caracterizam as operações de adição e de subtração envolvendo frações são semelhantes àqueles que compõem a abordagem dessas operações com números naturais, o que promove uma continuidade conceitual no desenvolvimento desse assunto.

Este volume marca o início de um trabalho em desenvolvimento, que será ampliado e complementado por novos volumes e novas edições. Para o volume 2, de mesmo tema, está prevista a complementação da abordagem das operações com frações, trazendo a multiplicação e a divisão envolvendo frações, a abordagem de frações em situações e modelos discretos e o uso de frações em contextos de razão e de proporção, além das porcentagens.

Teremos prazer em considerar suas sugestões para este livro por meio do endereço eletrônico livroaberto@impa.br. A edição mais recente deste livro está disponível em umlivroaberto.com.

Sumário

Começando a falar sobre frações

EXPLORANDO O ASSUNTO

Atividade 1

Três amigos repartiram uma barra de chocolate. Veja como eles fizeram.

- a) Você concorda com essa divisão? Explique.
- b) Com essa divisão, os três amigos receberam a mesma quantidade de chocolate?
- c) Desenhe uma divisão da barra de chocolate que permita que os 3 amigos recebam quantidades iguais de chocolate.

d) Considerando a divisão da barra de chocolate em 3 partes iguais, como você nomearia a quantidade de chocolate que cada amigo receberia?

Atividade 2

Três pizzas inteiras, de mesmo tamanho, foram repartidas entre as crianças de uma turma. Para isso, a turma foi dividida em três grupos com quatro crianças cada. Veja como cada grupo repartiu a sua pizza.

- a) Cada um dos três grupos repartiu a sua pizza na mesma **quantidade de fatias** que os outros grupos?
- b) Dessa maneira, todas as crianças da turma receberam a mesma **quantidade de pizza**?
- c) É verdade que em algum dos grupos, as 4 crianças receberam a mesma quantidade de pizza? Se sim, em qual? Considerando a pizza inteira, como você nomearia cada uma das fatias de pizza desse grupo?

Atividade 3

Alice quer enfeitar a sala de aula e pretende fazer 4 enfeites utilizando pedaços de barbante. Para isso, precisa cortar o barbante em pedaços iguais. Ajude Alice a cortar o barbante (você receberá o barbante do seu professor).

ORGANIZANDO AS IDEIAS

Nas atividades anteriores, a barra de chocolate, a pizza e o pedaço de barbante foram partidos **em partes com quantidades iguais**. Em cada um dos casos, o que foi repartido é chamado **unidade**. Cada uma das partes em que essas unidades foram repartidas igualmente é uma **fração da unidade**. Assim, por exemplo, um quarto de uma pizza é uma fração da pizza e a pizza é unidade. Se a unidade for um barbante, um quarto do barbante será uma fração do barbante.

O nome dado à fração da unidade depende da quantidade de partes em que a unidade é dividida. Ao dividir uma unidade qualquer em duas partes iguais, ou ao meio, cada uma das partes é chamada de *um meio* ou *a metade* da unidade.

Por exemplo, se uma barra de chocolate é repartida igualmente entre dois amigos, a quantidade que caberá a cada um dos amigos é *um meio* da barra de chocolate (ou *metade* da barra). Nesse exemplo, a unidade é a barra de chocolate.

Ao dividir uma unidade em três partes iguais, cada uma das partes é chamada de *um terço* ou *a terça parte* da unidade.

Por exemplo, se em uma receita, é necessário acrescentar *um terço* de copo de suco de laranja, isso significa que, para colocar a quantidade correta de suco na receita, é preciso repartir a quantidade de um copo de suco em três partes iguais e usar apenas uma dessas partes, que é *um terço* do copo de suco. Nesse caso, a unidade é um copo de suco de laranja.

Ao dividir uma unidade em quatro partes iguais, cada uma das partes é chamada de um quarto ou quarta parte da unidade.

Por exemplo, a parte colorida da figura é um quarto da figura. Neste caso, a figura é a unidade.

Da mesma forma, ao dividir uma unidade em cinco partes iguais, cada uma das partes é chamada de *um quinto* ou *quinta parte* da unidade.

Por exemplo, na época do império *um quinto* de todo ouro pesado nas Casas de Fundição no Brasil era pago em impostos à Coroa Portuguesa. Desta forma, a quantidade de ouro pago em impostos à Coroa Portuguesa era igual a *um quinto* ou a *quinta parte* do ouro pesado nas Casas de Fundição no Brasil.

MÃO NA MASSA

Atividade 4

a) Quais dos oito retângulos a seguir foram repartidos em quartos?

b) Desenhe um retângulo e faça uma partição desse retângulo em quatro partes que não sejam todas quartos.

REFLETINDO

Quando se diz que uma unidade é repartida em meios, terços, quartos, quintos etc, a unidade foi repartida em 2, 3, 4, 5, etc partes iguais. Assim como no dia a dia, neste livro o termo partes iguais quer dizer partes com a mesma quantidade, mesmo que a unidade não esteja dividida em partes de mesma forma. Na atividade anterior, se os retângulos representassem, por exemplo, bolos, as quatro partes em que foram divididos os retângulos representariam quantidades iguais de bolo. Em alguns retângulos as partes não têm a mesma forma. Os dois quadrinhos a seguir mostram exemplos curiosos em que as partes iguais podem ser surpreendentes.

Atividade 5

Em cinco das figuras a seguir, a parte em vermelho é um terço da figura. Identifique essas figuras.

Observe a tabela a seguir. Em cada linha, a primeira coluna, mais à esquerda, exibe figuras que são frações de uma unidade. A coluna do meio indica essas frações. Complete a tabela, fazendo na terceira coluna de cada linha, um desenho da unidade correspondente.

Parte da unidade	Fração da unidade	Unidade
	metade	
	um terço	
	um quarto	
	metade	
	um terço	
	um quarto	
	metade	
	um terço	
	um quarto	
	metade	
	um terço	
	um quarto	

a) Pinte metade do quadrado a seguir.

b) Pinte um quarto do quadrado a seguir.

c) Pinte um oitavo do quadrado a seguir.

d) Observando os quadrados pintados nos itens anteriores, qual é a maior das frações do quadrado: metade, quarto ou oitavo?

Atividade 8

a) Pinte metade da figura.

b) Pinte metade da figura de forma diferente da do item anterior.

c) Pinte a metade da figura de forma diferente das dos dois itens anteriores.

Identifique as figuras em que a parte pintada de vermelho é a metade da figura.

Atividade 10

Usando os Círculos de Frações que você receberá do seu professor (há encarte para reprodução no final do livro), responda:

- a) Qual é a cor da peça que é igual a um terço do círculo preto?
- b) Qual é a cor da peça que é igual a um quarto do círculo preto?
- c) Qual é a cor da peça que é igual a um sétimo do círculo preto?
- d) Qual é a cor da peça que é igual a um nono do círculo preto?
- e) Que fração do círculo preto é igual a uma peça de cor roxa?
- f) Que fração do círculo preto é igual a uma peça de cor cinza?
- g) Que fração do círculo preto é igual a uma peça de cor branca?
- h) Que fração do círculo preto é igual a uma peça de cor rosa?
- i) Qual fração do círculo preto é maior, um terço ou um sétimo? Explique a sua resposta.
- j) Qual fração do círculo preto é menor, um nono ou um quarto? Explique a sua resposta.
- k) Qual fração do círculo preto é menor, um quinto ou um sétimo? Explique a sua resposta.
- I) Qual fração do círculo preto é maior, um oitavo ou um quarto? Explique a sua resposta.
- m) Qual fração do círculo preto é maior, um sexto ou um sétimo? Explique a sua resposta.

Nas figuras a seguir, um mesmo círculo azul aparece diferentemente dividido em regiões iguais e colorido em vermelho.

- a) Complete as sentenças a seguir identificando os círculos que as tornam verdadeiras.
 - I) A parte do círculo colorida em vermelho na figura _____ é um quinto do círculo.
 - II) A parte do círculo colorida em vermelho na figura ____ é a sexta parte do círculo.
 - III) A parte do círculo colorida em vermelho na figura ____ é um sétimo do círculo.

- IV) A parte do círculo colorida em vermelho na figura ____ é um oitavo do círculo.
- V) A parte do círculo colorida em vermelho na figura ____ é a nona parte do círculo.
- VI) A parte do círculo colorida em vermelho na figura ____ é um décimo do círculo.

- b) Dentre as frações do círculo destacadas em vermelho, identifique uma que seja menor do que um sexto do círculo.
- c) Dentre as frações do círculo destacadas em vermelho, identifique uma que seja maior do que um nono do círculo.
- d) Identifique uma fração do círculo que seja menor do que um sexto e maior do que um nono do círculo.

Em cada uma das imagens, a parte em vermelho é uma fração da figura. Essas frações podem ser "um meio", "um quarto" ou "um décimo" da figura. Associe cada imagem à fração correspondente.

