Cálculo II.

1º DE GRADO EN MATEMÁTICAS Y DOBLE GRADO INFORMÁTICA-MATEMÁTICAS. Curso 2019-20. DEPARTAMENTO DE MATEMÁTICAS

Hoja 3

Derivadas parciales y funciones diferenciables

9.- Hallar la matriz de Df(a) en cada uno de los siguientes casos:

(a)
$$f(x,y) = (y, x, xy, y^2 - x^2), a = (1,2).$$

(b)
$$f(x,y) = (\operatorname{sen}(x+y), \cos(x-y)), a = (\pi, -\pi/4).$$

(c)
$$f(x, y, z) = z^2 e^x \cos y$$
, $a = (0, \pi/2, -1)$.

(d)
$$f(x) = (e^x \sin x, e^x \cos x, x^2), a = \pi/6.$$

(e)
$$f(x, y, z, t) = (\sqrt{y^2 + z^2}, \sqrt{x^2 + z^2}, x^2 + y^2 + z^2 - 9t^2), a = (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{3}).$$

Solución. (a)

$$Df(x,y) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \\ y & x \\ -2x & 2y \end{pmatrix}, \qquad Df(1,2) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \\ 2 & 1 \\ -2 & 4 \end{pmatrix}$$

(b)

$$Df(x,y) = \begin{pmatrix} \cos(x+y) & \cos(x+y) \\ -\sin(x-y) & \sin(x-y) \end{pmatrix}, \qquad Df(\pi, -\frac{\pi}{4}) = \begin{pmatrix} \cos\left(\frac{3\pi}{4}\right) & \cos\left(\frac{3\pi}{4}\right) \\ -\sin\left(\frac{5\pi}{4}\right) & \sin\left(\frac{5\pi}{4}\right) \end{pmatrix}$$

(c)
$$Df(x,y,z) = \begin{pmatrix} z^2 e^x \cos(y) & -z^2 e^x \sin(y) & 2z e^x \cos(y) \end{pmatrix}, \qquad Df(0,\pi/2,-1) = \begin{pmatrix} 0 & -1 & 0 \end{pmatrix}$$

(*d*)

$$Df(x) = \begin{pmatrix} e^{x} \sin(x) + e^{x} \cos(x) \\ e^{x} \cos(x) - e^{x} \sin(x) \\ 2x \end{pmatrix}, \qquad Df(\pi/6) = \begin{pmatrix} e^{\pi/6} \left(\frac{1+\sqrt{3}}{2}\right) \\ e^{\pi/6} \left(\frac{-1+\sqrt{3}}{2}\right) \\ \frac{\pi}{3} \end{pmatrix}$$

$$Df(x,y,z,t) = \begin{pmatrix} 0 & \frac{y}{\sqrt{y^2 + z^2}} & \frac{z}{\sqrt{y^2 + z^2}} & 0\\ \frac{x}{\sqrt{x^2 + z^2}} & 0 & \frac{z}{\sqrt{x^2 + z^2}} & 0\\ 2x & 2y & 2z & -18t \end{pmatrix},$$

$$Df(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 3) = \begin{pmatrix} 0 & \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0\\ \frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2} & 0\\ 1 & 1 & 1 & -54 \end{pmatrix}$$

- 10.- Sean $f, g : \mathbb{R}^n \to \mathbb{R}$ las funciones escalares dadas por $g(x) = ||x||^4$ y $f(x) = \langle a, x \rangle$, siendo $a \in \mathbb{R}^n$ un vector fijo.
 - (a) Hallar las derivadas direccionales $D_{\mathbf{v}}f(x)$ y $D_{\mathbf{v}}g(x)$ para cada $x, \mathbf{v} \in \mathbb{R}^n$ con $\|\mathbf{v}\| = 1$.
 - (b) Tomando n=2, hallar todos las direcciones unitarias $\mathbf{v} \in \mathbb{R}^2$ tales que $D_{\mathbf{v}}g(2,3)=6$.
 - (c) Tomando n=3, hallar todos las direcciones unitarias $\mathbf{v} \in \mathbb{R}^3$ tales que $D_{\mathbf{v}}g(1,2,3)=0$.

Solución. (a) Lo haremos de dos maneras. Por definición:

$$D_{\mathbf{v}}f(x) = \lim_{h \to 0} \frac{f(x+h\mathbf{v}) - f(x)}{h} = \lim_{h \to 0} \frac{h\langle a, \mathbf{v} \rangle}{h} = \langle a, \mathbf{v} \rangle$$

$$D_{\mathbf{v}}g(x) = \lim_{h \to 0} \frac{g(x+h\mathbf{v}) - g(x)}{h} = \lim_{h \to 0} \frac{\|x+h\mathbf{v}\|^4 - \|x\|^4}{h}$$
$$= \lim_{h \to 0} \frac{\|x\|^4 + 4h\|x\|^2 \langle x, \mathbf{v} \rangle + o(h) - \|g\|^4}{h} = 4\|x\|^2 \langle x, \mathbf{v} \rangle$$

De otra manera, si $x = (x_1, x_2, \dots, x_n)$, $a = (a_1, a_2, \dots, a_n)$ y $\mathbf{v} = (\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n)$, entonces

$$f(x) = a_1x_1 + a_2x_2 + \dots + a_nx_n$$
 $g(x) = (x_1^2 + x_2^2 + \dots + x_n^2)^2$

Claramente tanto f como g son diferenciables en todo \mathbb{R}^n por lo tanto

$$D_{\mathbf{v}}f(x) = \langle \nabla f, \mathbf{v} \rangle = \langle (a_1, a_2, \dots, a_n), (\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n) \rangle = \langle a, \mathbf{v} \rangle$$

$$D_{\mathbf{v}}g(x) = \langle \nabla g, \mathbf{v} \rangle = \langle (4x_1 ||x||^2, 4x_2 ||x||^2, \dots, 4x_n ||x||^2), (\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n) \rangle = 4||x||^2 \langle x, \mathbf{v} \rangle$$

(b) Queremos encontrar las direcciones unitarias ${f v}$ tales que

$$6 = D_{\mathbf{v}}g(2,3) = 4||(2,3)||^2\langle (2,3), (\mathbf{v}_1, \mathbf{v}_2)\rangle = 52(2\mathbf{v}_1 + 3\mathbf{v}_2)$$

además como \mathbf{v} debe de ser unitario tambíen tenemos que $\mathbf{v}_1^2 + \mathbf{v}_2^2 = 1$, resolvemos el sistema y nos quedan las soluciones (No queda bonito, pero lo importante es llegar a este punto).

(c) Queremos encontrar las direcciones unitarias **v** tales que

$$0 = D_{\mathbf{v}} q(1, 2, 3) = 4 \| (1, 2, 3) \|^2 \langle (1, 2, 3), (\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3) \rangle,$$

es decir $0 = \mathbf{v}_1 + 2\mathbf{v}_2 + 3\mathbf{v}_3$ además como \mathbf{v} debe de ser unitario tambíen tenemos que $\mathbf{v}_1^2 + \mathbf{v}_2^2 + \mathbf{v}_3^2 = 1$. (Basta con llegar hasta aquí)

11.- Sea $f(r,t) = t^n e^{-\frac{r^2}{4t}}$, definida en los $r \ge 0$ y t > 0. Hallar un valor de la constante n tal que f(r,t) satisfaga la ecuación

$$\frac{\partial f}{\partial t} = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial f}{\partial r} \right) \qquad (r, t > 0).$$

Solución. Por una parte

$$\frac{\partial f}{\partial t}(r,t) = nt^{n-1}e^{-\frac{r^2}{4t}} + t^n e^{-\frac{r^2}{4t}} \frac{r^2}{4t^2}.$$

Por otra

$$r^2 \frac{\partial f}{\partial r}(r,t) = -t^n e^{-\frac{r^2}{4t}} \frac{2r^3}{4t}$$

Asi

$$\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial f}{\partial r}\right) = \frac{1}{r^2}\left(t^ne^{-\frac{r^2}{4t}}\frac{r^4}{4t^2} - t^ne^{-\frac{r^2}{4t}}\frac{6r^2}{4t}\right) = -\frac{6}{4}t^{n-1}e^{-\frac{r^2}{4t}} + t^ne^{-\frac{r^2}{4t}}\frac{r^2}{4t^2}$$

Por tanto igualando las dos partes vemos que $n=-\frac{3}{2}$

- 12.- Hallar el vector gradiente, en cada punto en el que exista, de las siguientes funciones escalares
 - (a) $f(x,y) = e^{-y} \cos x$.

(b)
$$f(x, y, z) = \log(x^2 + 2y^2 + 3z^2), (x, y, z) \in \mathbb{R}^3 \setminus \{(0, 0, 0)\}.$$

(c)
$$f(x,y) = xy \operatorname{sen} \frac{1}{x^2 + y^2} \operatorname{si} (x,y) \neq (0,0) \operatorname{y} f(0,0) = 0.$$

Solución. (a)

$$\nabla f(x,y) = \left(-e^{-y}\sin(x), -e^y\cos(x)\right)$$

(b)

$$\nabla f(x,y,z) = \left(\frac{2x}{x^2 + 2y^2 + 3z^2}, \frac{4y}{x^2 + 2y^2 + 3z^2}, \frac{6z}{x^2 + 2y^2 + 3z^2}\right), \quad (x,y,z) \in \mathbb{R}^3 \setminus \{(0,0,0)\}.$$

(c) Para todo $(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}$ se tiene que

$$\nabla f(x,y) = \left(y\sin\frac{1}{x^2 + y^2} + xy\frac{-2x}{(x^2 + y^2)^2}\cos\frac{1}{x^2 + y^2}, x\sin\frac{1}{x^2 + y^2} + xy\frac{-2y}{(x^2 + y^2)^2}\cos\frac{1}{x^2 + y^2}\right),$$

 $y \ para \ (x,y) = (0,0)$

$$\nabla f(0,0) = (0,0).$$

- 13.- (a) Estudiar la existencia de las derivadas parciales de $f(x,y) = \sqrt{3x^2 + 5y^2}$ en el origen.
 - (b) Comprobar que f es diferenciable en todos los demás puntos del plano.
 - (c) Calcular el vector $\nabla f(2,1)$.

Solución. (a)

$$\frac{\partial f}{\partial x}(0,0) = \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h} = \lim_{h \to 0} \frac{f(0+h,0) - f(0,0)}{h} = \lim_{h \to 0} \frac{\sqrt{3}|h|}{h} \quad \nexists$$

$$\frac{\partial f}{\partial y}(0,0) = \lim_{h \to 0} \frac{f(x,y+h) - f(x,y)}{h} = \lim_{h \to 0} \frac{f(0,h) - f(0,0)}{h} = \lim_{h \to 0} \frac{\sqrt{5}|h|}{h} \quad \nexists$$

(b) Para todo $(x, y) \neq (0, 0)$:

$$\frac{\partial f}{\partial x}(x,y) = \frac{3x}{\sqrt{3x^2 + 5y^2}}$$

$$\frac{\partial f}{\partial y}(x,y) = \frac{5y}{\sqrt{3x^2 + 5y^2}}$$

las cuales son continuas para todo $(x,y) \neq (0,0)$, por tanto la función f es diferenciable en estos puntos.

(c) Para todo $(x, y) \neq (0, 0)$:

$$\nabla f(x,y) = \left(\frac{3x}{\sqrt{3x^2 + 5y^2}}, \frac{5y}{\sqrt{3x^2 + 5y^2}}\right) \Rightarrow \nabla f(2,1) = \left(\frac{6}{\sqrt{17}}, \frac{5}{\sqrt{17}}\right)$$

14.- Hallar los puntos (x, y) y las direcciones $\mathbf{v} = (u, v)$ unitarias en los cuales la derivada direccional $D_{\mathbf{v}} f(x, y)$ de la función $f(x, y) = 3 x^2 + y^2$ tiene un máximo, sabiendo que (x, y) está en la circunferencia $x^2 + y^2 = 1$.

Solución. Primero tenemos que observar que f es diferenciable en todo punto. Dado (x,y) en la circunferencia unidad fijo, entonces sabemos que

$$\max_{\mathbf{v}} D_{\mathbf{v}} f(x, y) = \max_{\mathbf{v}} \langle \nabla f, \mathbf{v} \rangle = \langle \nabla f, \lambda \nabla f \rangle \quad \lambda = \frac{1}{\|\nabla f\|}$$

Esto se ve simplemente por la aplicación del Teroma de Cauchy-Schwarz y nos viene a decir que las Derivadas direccionales alcanzan su maximo justo en la dirección del gradiente. La elección del λ es simplemente para que \mathbf{v} sea unitario.

Entonces para un punto (x,y) la dirección que nos da el máximo en las derivadas direccionales es

$$\mathbf{v}_{max} = \frac{\nabla f(x,y)}{\|\nabla f(x,y)\|} = \frac{(6x,2y)}{\|(6x,2y)\|} = \left(\frac{6x}{\sqrt{36x^2 + 4y^2}}, \frac{2y}{\sqrt{36x^2 + 4y^2}}\right)$$

Ahora queremos ver en qué puntos (x,y) de la circunferencia unidad se alcanza el siguiente máximo

$$\max_{\|(x,y)\|=1} D_{\mathbf{v_{max}}} f(x,y) = \max_{\|(x,y)\|=1} \langle \nabla f, \mathbf{v}_{max} \rangle = \max_{\|(x,y)\|=1} \|\nabla f\| = \max_{x^2+y^2=1} \sqrt{36x^2+4y^2}.$$

Esto se puede reducir a un problema de optimización en una varible, por ejemplo si consideramos $y^2 = 1 - x^2$, y definimos la función

$$g(x) = f(x, \sqrt{1 - x^2}) = \sqrt{32x^2 + 4}$$

lo único que tenemos que hacer es maximizarla para $x \in [-1,1]$, lo cual nos da que la función g alcanza su máximo en los puntos $x = \pm 1$. Despejando la y nos queda que la solución a nuestro problema son los puentos $(x,y) = (\pm 1,0)$ y los \mathbf{v}_{max} asociados a esos puntos.

15.- Hallar los valores de a, b, c tales que la derivada direccional respecto de un vector unitario de la función

$$f(x, y, z) = a x y^2 + b y z + c x^3 z^2$$

en el punto (1,2,-1) tenga un valor máximo de 64 en la dirección paralela al eje 0Z (eje positivo de las Z's).

Solución. Como hemos visto en el apartado anterior las derivadas direccionales de la función f serán máximas en el punto (1,2,-1) si \mathbf{v} es proporcional al graciente en ese punto. Como nos dice que esta dirección \mathbf{v} tiene que ser (0,0,1) (paralela al eje 0Z y unitaria), ya sabemos que el gradiente de f en el punto (1,2,-1) tiene que ser de la forma $(0,0,\lambda)$, además

$$64 = \max_{\mathbf{v}} D_{\mathbf{v}} f(1, 2, -1) = \max_{\mathbf{v}} \langle \nabla f, \mathbf{v} \rangle = \langle \nabla f, (0, 0, 1) \rangle = \lambda \quad \lambda = \frac{1}{\|\nabla f\|}$$

Por tanto

$$(0,0,64) = \nabla f(1,2,-1) = (4a+3c,4a-b,2b-2c)$$

Resolviendo este sistema nos queda que a = 6, b = 24 y c = -8.

- 16.- Sea $f: \mathbb{R}^2 \to \mathbb{R}$ diferenciable en el punto $a \in \mathbb{R}^2$. Supongamos que $D_{\mathbf{u}}f(a) = 1/\sqrt{13}$ y $D_{\mathbf{v}}f(a) = \sqrt{2}$, siendo $\mathbf{u} = (\frac{2}{\sqrt{13}}, \frac{3}{\sqrt{13}})$ y $\mathbf{v} = (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$.
 - (a) Calcular el gradiente $\nabla f(a)$.
 - (b) Hallas las dos direcciones unitarias **w** para las cuales $D_{\mathbf{w}}f(a) = 0$.

Solución. (a) Como la función f es diferenciable en el punto a sabemos que

$$\frac{1}{\sqrt{13}} = D_{\mathbf{u}}f(a) = \langle (\frac{\partial f}{\partial x}(a)), \frac{\partial f}{\partial y}(a) \rangle, (\frac{2}{\sqrt{13}}, \frac{3}{\sqrt{13}}) \rangle = \frac{2}{\sqrt{13}} \frac{\partial f}{\partial x}(a) + \frac{3}{\sqrt{13}} \frac{\partial f}{\partial y}(a)$$

$$\sqrt{2} = D_{\mathbf{v}}f(a) = \langle (\frac{\partial f}{\partial x}(a)), \frac{\partial f}{\partial y}(a) \rangle, (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}) \rangle = \frac{1}{\sqrt{2}} \frac{\partial f}{\partial x}(a) + \frac{1}{\sqrt{2}} \frac{\partial f}{\partial y}(a)$$

De este sistema obtenemos que $\nabla f(a) = (5, -3)$.

(b)

$$0 = D_{\mathbf{w}} f(a) = \langle \nabla f(a), \mathbf{w} \rangle = 5\mathbf{w}_1 - 3\mathbf{w}_2$$

Además como \mathbf{w} es unitario $\mathbf{w}_1^2 + \mathbf{w}_2^2 = 1$, resolviendo el sistema nos da como soluciones

$$\mathbf{w} = \left(\frac{-3}{\sqrt{34}}, \frac{-5}{\sqrt{34}}\right) \quad \mathbf{w} = \left(\frac{3}{\sqrt{34}}, \frac{5}{\sqrt{34}}\right)$$

17.- Hallar la derivada de $f(x,y) = x^2 - 3xy$ a lo largo de la parábola $y = x^2 - x + 2$ en el punto (1,2).

Solución. Definimos la función $g(x) = f(x, x^2 - x + 2)$, y la derivada de f a lo largo de la parábola $y = x^2 - x + 2$ en el punto (1,2) coincidirá con la derivada de g en el punto (1,2) coincidirá con la derivada de

$$g(x) = x^2 - 3x^3 + 3x^2 - 6x \Rightarrow g'(x) = -9x^2 + 8x - 6 \Rightarrow g'(1) = -7.$$