IPCT SAS IoT Platform Guide

Control Panel

In the following table, you can introduce your desired parameters. Follow the guidelines.

SOLAR ARRAY SIMULATOR - CONTROL PANEL										
INPUT		VALUE	UNIT	GUIDELINES						
Update		1		If you want to change multiple inputs at once, set this to 0 until all the changes are made.						
Start/Stop		1		Must be either 0 = Stop or 1 = Start.						
Solar panel	PV	1		Must be a value between 1 and 5. See Table 1 for reference.						
Array Rows Ns		2		Ns and Np must be positive integers. The product of Ns and Np must be equal to or les						
Array Columns	Np	3		than 6.						
Irradiance	G	1365	W/m²	Must be a value between 0 and 1375.						
Temperature	т	30.00	°C	Must be a value between -80 and 80.						
Incidence Angle	θ	0.00	۰	Must be a value between 0 and 90.						
Control Variable	CV	0	٧	Must be either 0 = Voltage or 1 = Current.						
Control Variable Value	cvv	5.25	٧	Must be a positive value equal to or less than the maximum voltage or current in Table 1.						

In the following table, you can check what is the maximum voltage or current value you can introduce with your current inputs.

Table 1: Solar panels and their maximum ratings*.											
Solar panel	Value	Max. Voltage (V)	Max. Current (A)								
AZUR 3G30A	1	5.37	1.49								
AZUR 4G32C	2	6.67	1.36								
CESI CTJ30	3	5.12	1.42								
Spectrolab UTJ	4	5.30	1.66								
<new panel="" solar="">**</new>	5	0.00	0.00								

In one or more of the inputs you introduced are invalid, the platform will notify you which are causing problems and the platforms won't be able to receive any parameters until they are corrected.

There are problems with your inputs that need to be fixed before any updates can be applied!

INPUT		VALUE	UNIT	GUIDELINES
Update		-1		If you want to change multiple inputs at once, set this to 0 until all the changes are made.
Start/Stop		2		Must be either 0 = Stop or 1 = Start.
Solar panel	PV	6		Must be a value between 1 and 5. See Table 1 for reference.
Array Rows Ns		-1		Ns and Np must be positive integers.
Array Columns	Np	8.5		The product of Ns and Np must be equal to or less than 6.
Irradiance	G	1800	W/m²	Must be a value between 0 and 1375.
Temperature	Т	343.00	°C	Must be a value between -80 and 80.
Incidence Angle	θ	91.00	۰	Must be a value between 0 and 90.
Control Variable	cv	2	٧	Must be either 0 = Voltage or 1 = Current.
Control Variable Value	CVV	-6.00	V	Must be a positive value equal to or less than the maximum voltage or current in Table 1.

In the second sheet, you can check and / or modify parameters of four known solar panel. You can also add the parameters of one new panel and use it.

Parameter	Symbol	Unit	AZUR 3G30A	AZUR 4G32C	CESI CTJ30	Spectrolab UTJ	<new panel="" solar=""></new>
Panel efficiency	η	%	30	32	29.5	28.3	
Cell temperature at ref. conditions	Tc,ref	°C	28	25	25	28	
Solar irradiance at ref. conditions	Gref	W/m²	1367	1367	1367	1353	
Open Circuit Voltage	Voc	٧	2.699	3.375	2.6	2.66	
Short Circuit Current	Isc	Α	0.496	0.455	0.473	0.548	
MPP Voltage	Vmp	٧	2.387	2.919	2.306	2.335	
MPP Current	Imp	A	0.487	0.434	0.459	0.52	
MPP Power	Pmp	W	1.162	1.266	1.06	1.214	
Number of cells in series (in a single solar panel)	Ns,cell		1	1	1	1	
Voc temperature coefficient	KVoc	V/°C	-6.20E-03	-8.40E-03	-8.40E-03	-5.90E-03	
Isc temperature coefficient	KIsc	A/°C	3.60E-04	7.00E-05	7.00E-05	3.80E-05	
Band gap	Eg	eV	1.6	1.6	1.6	1.6	
Diode ideality factor	n		1.23	1.99	1.99	1.99	
Photoelectric current	Iph	A	0.496	0.4562	0.4731	0.549	
Diode inverse saturation current	Io	Α	9.44E-38	9.45E-30	3.86E-23	2.26E-23	
Series resistance	Rs	Ω	0.3555	0.5705	0.2132	0.2408	
Shunt resistance	Rsh	Ω	996.98	207.91	677.7	138.29	
Root-Mean-Squared-Error	RMSE		0.0021	0.01537	0.00919	0.0084	

Database

The logs are saved automatically in the database, monitoring up to 24 different values, plus the date and time. Google Sheets allows for a maximum of 5 millions cells per workbook, so, theoretically, you save upwards to 192000 logs before running out of space.

Date	Time	PV	Ns	Np	G	T	θ	CV	Vcalc	Vmeas	Icalc	Imeas	Peale	Pmeas	Reale	Rmeas	Err V	Errl	Err P	Err R	n	Iph	lo	Rs	Rsh
10/11/2023	20:37:57	1	2	1	1367	28	0	0	4.78000	4.77198	0.48642	0.48854	2.32510	2.33130	9.82686	9.76783	0.16776	0.43542	0.26693	0.60065	1.23	0.496000	9.44E-38	0.36	996.98
10/11/2023	20:38:01				1367	28			4.78000	4.77238	0.48642	0.48849	2.32510	2.33128	9.82686	9.77234	0.15937	0.42576	0.26571	0.55482	1.23	0.496000	9.44E-38	0.36	996.98
10/11/2023	20:38:06				1367	28			4.78000	4.77223	0.48642	0.48868	2.32510	2.33208	9.82686	9.75671	0.16247	0.46338	0.30016	0.71382	1.23	0.496000	9.44E-38	0.36	996.98
10/11/2023	20:38:13				1367	28			4.78000	4.77346	0.48642	0.48876	2.32510	2.33306	9.82686	9.76656	0.13678	0.47983	0.34239	0.61359	1.23	0.496000	9.44E-38	0.36	996.98
10/11/2023	20:38:31				1367	28			4.78000	4.77562	0.48595	0.48851	2.32285	2.33293	9.83634	9.76879	0.09155	0.52580	0.43377	0.68680	1.23	0.495528	9.44E-38	0.36	997.93
10/11/2023	20:38:35				1367	28			4.78000	4.77182	0.48595	0.48849	2.32285	2.33096	9.83634	9.77368	0.17115	0.52107	0.34902	0.63709	1.23	0.495528	9.44E-38	0.36	997.93
10/11/2023	20:38:40				1367	28			4.78000	4.77828	0.48595	0.48852	2.32285	2.33427	9.83634	9.78120	0.03609	0.52765	0.49137	0.56067	1.23	0.495528	9.44E-38	0.36	997.93
10/11/2023	20:38:45				1367	28	2.5		4.78000	4.77748	0.48595	0.48883	2.32285	2.33536	9.83634	9.77334	0.05282	0.59165	0.53851	0.64058	1.23	0.495528	9.44E-38	0.36	997.93
10/11/2023	20:39:02				1367	28			4.78000	4.76739	0.48455	0.48648	2.31613	2.31922	9.86490	9.79987	0.26379	0.39804	0.13320	0.65922	1.23	0.494113	9.44E-38	0.36	1000.79
10/11/2023	20:39:06				1367	28			4.78000	4.76912	0.48455	0.48655	2.31613	2.32040	9.86490	9.80322	0.22755	0.41290	0.18441	0.62527	1.23	0.494113	9.44E-38	0.36	1000.79
10/11/2023	20:39:13				1367	28			4.78000	4.77324	0.48455	0.48658	2.31613	2.32256	9.86490	9.80846	0.14142	0.41950	0.27749	0.57209	1.23	0.494113	9.44E-38	0.36	1000.79
10/11/2023	20:39:17				1367	28			4.78000	4.77135	0.48455	0.48655	2.31613	2.32148	9.86490	9.80655	0.18107	0.41290	0.23108	0.59149	1.23	0.494113	9.44E-38	0.36	1000.79
10/11/2023	20:39:36				1367	28			4.78000	4.77371	0.48221	0.48460	2.30494	2.31335	9.91280	9.85081	0.13151	0.49687	0.36471	0.62528	1.23	0.491757	9.44E-38	0.36	1005.58
10/11/2023	20:39:42				1367	28			4.78000	4.77650	0.48221	0.48465	2.30494	2.31492	9.91280	9.85558	0.07326	0.50683	0.43319	0.57716	1.23	0.491757	9.44E-38	0.36	1005.58
10/11/2023	20:39:47				1367	28			4.78000	4.77586	0.48221	0.48453	2.30494	2.31404	9.91280	9.85670	0.08657	0.48194	0.39496	0.56587	1.23	0.491757	9.44E-38	0.36	1005.58
10/11/2023	20:40:05				1367	28			4.78000	4.76739	0.47893	0.48053	2.28930	2.29089	9.98051	9.92102	0.26379	0.33417	0.06950	0.59601	1.23	0.488465	9.44E-38	0.36	1012.36
10/11/2023	20:40:10				1367	28			4.78000	4.76824	0.47893	0.48064	2.28930	2.29179	9.98051	9.92064	0.24613	0.35588	0.10888	0.59982	1.23	0.488465	9.44E-38	0.36	1012.36
10/11/2023	20:40:15				1367	28			4.78000	4.76665	0.47893	0.48079	2.28930	2.29175	9.98051	9.91422	0.27929	0.38741	0.10704	0.66421	1.23	0.488465	9.44E-38	0.36	1012.36
10/11/2023	20:40:21				1367	28			4.78000	4.76784	0.47893	0.48083	2.28930	2.29251	9.98051	9.91586	0.25448	0.39576	0.14028	0.64774	1.23	0.488465	9.44E-38	0.36	1012.36
10/11/2023	20:40:39				1367	28	12.5		4.78000	4.76856	0.47474	0.47655	2.26925	2.27244	10.06871	10.00649	0.23933	0.38103	0.14079	0.61800	1.23	0.484243	9.44E-38	0.36	1021.19
10/11/2023	20:40:43				1367	28	12.5		4.78000	4.76659	0.47474	0.47644	2.26925	2.27101	10.06871	10.00453	0.28052	0.35912	0.07759	0.63744	1.23	0.484243	9.44E-38	0.36	1021.19
10/11/2023	20:40:48	1	2	1	1367	28	12.5	0	4.78000	4.76837	0.47474	0.47663	2.26925	2.27273	10.06871	10.00338	0.24333	0.39788	0.15359	0.64882	1.23	0.484243	9.44E-38	0.36	1021.19

Visualization Panel

The following table allows you to see the last logged values in multiple parameters, the time between the first and last logs, and an error analysis of all the logs.

Time elap	00 h, 19 min, 23 s								
INPU'	LKV	UNIT							
Solar Panel	PV	AZUR 3G30A							
Array dimensions	Ns x Np	2 x 1							
Irradiance	G	1367.00	W/m²						
Temperature	Т	28.00	°C						
Incidence Angle	θ	87.50	۰						
Control Variable	CV	Voltage	V						
OUTPU	T	LKV	UNIT						
Calculated Voltage	Vcalc	4.58000	V						
Measured Voltage	Vmeas	4.57556	V						
Calculated Current	I calc	0.02122	Α						
Measured Current	Imeas	0.02098	Α						
Calculated Power	Pcalc	0.09720	W						
Measured Power	Pmeas	0.09600	W						
Diode Ideality factor	n	1.23000							
Photoelectric current	l ph	0.02164	Α						
Saturation current	Io	9.44E-38	Α						
Series resistance	Rs	8.150	Ω						
Shunt resistance	Rsh	22856.350	Ω						
OUTPUT ERRORS	MAXIMUM	MAPE	UNIT						
Voltage	0.618	0.244	%						
Current	1.888	0.415	%						
Power	1.984	0.426	%						
Resistance	2.254	0.588	%						
MEAN MA	0.418	%							
LKV = Last Known Value MAPE = Mean Absolute Percentage Error									

There are plots that allow you to see the change in the outputs in function of time, as well as the associated errors. There are also plots that monitor the change in current and power in function of the voltage, allowing to see real-time characteristic curves.

There are other plots that allow you to see how the outputs change in function of the external conditions (irradiance, cell temperature and incidence angle).

