Base-01(2020)

改正漁業法下での資源評価・管理

- 水産政策の改革の概要
- 「改革」されたポイント

動画作成者 漁業情報解析部 市野川桃子 (ichimomo@fra.affrc.go.jp)

水産政策の改革と漁業法改正

平成29年4月 水產基本計画

- ・漁業の成長産業化
- ・数量管理等による資源管理の充実
- **目標管理基準**や限界管理基準といった、いわゆる資源管理目標等 の導入を順次図る

平成30年6月「水産政策の改革について」

- ・ 資源評価対象種の拡大
- 「目標」はMSYである

漁業法改正へ

平成30年12月 国会で改正漁業法が可決

平成30年度 マサバ、ゴマサバ、スケトウダラ、ホッケ 令和2年度 マイワシ、マアジ、スルメイカ、ズワイガニ

目標管理基準値などの推定と管理方策の提案 (研究機関会議)

令和2年12月 施行

水産政策の改革における「改革」点とは?

表1 「水産政策の改革」に沿った新しい資源評価の方法(従来の方法との比較)

	従来の方法	新しい方法				
不確実性の取り扱い	考慮しない	将来の加入の確率的な変動を考慮する。その他の 不確実性についても、必要であれば適宜導入する。				
管理基準値	下回ってはいけない資源レベル (限界管理基準値)のみを設定	限界管理基準値に加え、SBmsy を基本とした目標 とする資源レベル (目標管理基準値)を設定				
管理方策を選ぶ際の基準	決定論的な予測が限界基準値を 上回るかどうかのみ考慮	確率的な将来予測のもと、目標管理基準値を上回る確率と、限界管理基準値を下回るリスク等、確率 をもとにした複数の基準を考慮				
親と子の関係(再生産関係)	親の量に比例して加入が増える ことを一律に仮定	魚種の特性に応じて様々な関係をデータから推定				
将来予測の年限	~10年の短期予測のみ	10年以上の長期予測からSBmsyなど、MSYをもとにした管理基準値を計算				

2020.1 アクアネット p. 22-27 (表1) より

表1 「水産政策の改革」に沿った新しい資源評価の方法(従来の方法との比較)

	従来の方法	新しい方法			
管理基準値		限界管理基準値に加え、SBmsy を基本とした目標 とする資源レベル (目標管理基準値)を設定			

- どのようなスケジュール・ ルートで目標に達するか、 中長期的な視点で計画を たてやすくなる
- 目標を上回ったら、目標 までは資源を減らしていい

水産庁「水産政策の改革」パンフレットより https://www.jfa.maff.go.jp/j/kikaku/kaikaku/attach/pdf/suisankaikaku-22.pdf

表1 「水産政策の改革」に沿った新しい資源評価の方法(従来の方法との比較)

	従来の方法	新しい方法
不確実性の取り扱い	考慮しない	将来の加入の確率的な変動を考慮する。その他の 不確実性についても、必要であれば適宜導入する。
管理方策を選ぶ際の基準	決定論的な予測が限界基準値を 上回るかどうかのみ考慮	確率的な将来予測のもと、目標管理基準値を上回 る確率と、限界管理基準値を下回るリスク等、確率 をもとにした複数の基準を考慮

加入の確率的な(=ランダムな) 変動を将来予測で考慮

将来の平均親魚量・漁獲量だけでなく、、、

(a) 親魚量が目標管理基準値案を上回る確率

β	2019	2020	2021	2022	2023	2024	2025	2026	2027
1.0	100	100	100	100	0	4	28	37	42
0.9	100	100	100	100	100	11	39	50	56
8.0	100	100	100	100	100	31	55	65	71
^ =	100	100	100	100	100	0.5		0.0	0.5

※その他の不確実性も必要に応じて順次導入可能

漁獲圧が高い・低いなの方策を比較

目標や限界を上回 る確率 = リスクも 示す

β	2019	2020	2021	2022	2023	2024	2025	2026	2
1.0	100	100	100	100	100	93	80	84	
0.9	100	100	100	100	100	100	91	93	
8.0	100	100	100	100	100	100	98	98	
0.7	100	100	100	100	100	100	100	100	
0.6	100	100	100	100	100	100	100	100	
0.5	100	100	100	100	100	100	100	100	
0.4	100	100	100	100	100	100	100	100	
0.3	100	100	100	100	100	100	100	100	

※ RPS: 親魚あたり加入尾数

(新) 資源評価期間全体にわたって加入の 平均値を予測する再生産関係を5年に一度 研究機関会議で決定

- ・密度効果(=いつかは頭打ちになる)
 - ・ 予測値のまわりのばらつき

Base-01(2020)

- 密度効果があるのでMSYが 計算できる
- ・ 魚種別の再生産関係の特徴を 考慮できる

- 目標年限を10年後に固定して管理方策をたてる
 - 「10年後の親魚量が目標管理基準値を 上回る確率が50%以上」が水産庁の管理方針
 - 国連海洋法条約(資源を持続的にMSY水準以上に維持)、 SDGs(2030年までにMSY以上に回復)にこたえるため には、このような長期的視点が必要

水産政策の改革における「疑問」点

新しい方法

将来の加入の確率的な変動を考慮する。その他の不確実性についても、必要であれば適宜導入する。

限界管理基準値に加え、SBmsyを基本とした目標を とする資源レベル(目標管理基準値)を設定

確率的な将来予測のもと、目標管理基準値を上回 る確率と、限界管理基準値を下回るリスク等、確率 をもとにした複数の基準を考慮

魚種の特性に応じて様々な関係をデータから推定

10年以上の長期予測からSBmsyなど、MSYをもとにした管理基準値を計算

そもそもMSYって何? MSYってうそっぱちじゃないの?

Base-02~06の講義で MSYにまつわる議論の概要を 紹介します

水産政策の改革における「疑問」点

新しい方法

将来の加入の確率的な変動を考慮する。その他の不確実性についても、必要であれば適宜導入する。

限界管理基準値に加え、SBmsy を基本とした目標とする資源レベル(目標管理基準値)を設定

確率的な将来予測のもと、目標管理基準値を上回 る確率と、限界管理基準値を下回るリスク等、確率 をもとにした複数の基準を考慮

魚種の特性に応じて<mark>様々な関係をデータから推定</mark>

10年以上の長期予測からSBmsy など、MSY をもと にした管理基準値を計算 再生産関係ってどうやって推定しているの? 加入の確率的な変動を仮定した将来 予測ってどうやるの?

長期予測を使ってどうやってABC を決定していくの?

再生産関係ってどうやって推定しているの?

FRA-SA-2020-ABCWG01-03 (再生産関係推定ガイドライン)

加入の確率的な変動を仮定した将来予測ってどうやるの?

FRA-SA-2020-ABCWG01-02(技術ノート)

長期予測を使ってどうやってABCを決定していくの?

FRA-SA-2020-ABCWG02-01(基本指針)

2月上旬までに令和3年度版としてアップデート予定!

市野川桃子. 2020. 新たな資源評価の考え方と管理のプロセス.

アクアネット. 2020.1:22-27 (PDF配布しています)

