CNC-Maroc 2007—Epreuve de math I : Corrigé Par M.Taibi professeur en MP* à Rabat

Partie I

- (1) L'application $t\mapsto t^{x-1}e^{-t}$ est continue sur $]0,+\infty[$ pour tout réel x .
 - (a) On a : $t^{x-1}e^{-t} \sim t^{x-1}$, donc $t \mapsto t^{x-1}e^{-t}$ est intégrable sur]0,1[si, et seulement 1-x < 1 soit x > 0.
 - (b) On a aussi $t^{x-1}e^{-t} = O_{t-1}(\frac{1}{t^2})$, donc $t \mapsto e^{-t}t^{x-1}$ est intégrable sur $[1, +\infty[$.
- $(2) \text{ L'applicationn } t \mapsto t^{x-1}e^{-t} = e^{-t}e^{(z-1)\ln(t)} \text{ est continue sur }]0, +\infty[, \text{ et que pour tout } t>0, \left|e^{-t}t^{z-1}\right| = e^{-t}t^{\Re(z)-1},$ donc par la question 1°), l'application $t \mapsto t^{z-1}e^{-t}$ est intégrable sur $[0, +\infty[$ si et seulement si $\Re(z) > 0$.
- (3) Quelques formules utiles:
 - (a) Les applications $t\mapsto t^z$ et $t\mapsto e^{-t}$ sont de classes C^1 sur $]0,+\infty[$ et que pour tout $z\in C$ tel que $\Re(z)>0$, on a : $\left|e^{-t}t^z\right|=e^{-t}t^{\Re(z)-1}$ $\underset{t\mapsto +\infty}{\to} 0$. On applique alors une intégration par parties à l'intégrale

$$\Gamma(z+1) = \int_{0}^{+\infty} t^z e^{-z-1} dt :$$

$$\Gamma(z+1) = \int\limits_{0}^{+\infty} t^{z} e^{-z-1} dt = \left[-e^{-t} t^{z} \right]_{t=0}^{+\infty} + z \int\limits_{0}^{+\infty} t^{z-1} e^{-t} dt = z \Gamma(z) \text{ pour tout } z \text{ tel que } \Re(z) > 0$$

(b) Pour tout $z\in C$ tel que $\Re(z)>0$ et tout $p\in N^*,$ on a : $\Gamma(z+p)=\Gamma((z+p-1)+1)=(z-p-1)\Gamma(z-p-1).$

D'où :
$$\prod_{k=1}^{p} \Gamma(z+k) = \prod_{k=1}^{p} (z-k-1)\Gamma(z-k-1) = \prod_{k=1}^{p-1} (z-k) \prod_{k=1}^{p-1} \Gamma(z-k)$$
 et par suite :

$$\Gamma(z+p) = \prod_{k=1}^{p-1} (z-k)\Gamma(z)$$

On prend $z = \alpha + 1$, on a : $\Re(z) = \Re(\alpha + 1) = \Re(\alpha) + 1 > 0$ et par suite

$$\Gamma(\alpha + 1 + p) = \gamma(\alpha + 1) \prod_{k=1}^{p-1} (\alpha + 1 + k) = \Gamma(\alpha + 1)(\alpha + 1)...(\alpha + p)$$

- (c) Pour tout x > 0, la fonction $t \mapsto t^{x-1}e^{-t}$ est continue et strictement positive, donc $\Gamma(x) = \int_{x}^{+\infty} t^{x-1}e^{-t}dt > 0$.
- (d) Par un simple calcul, on a $\Gamma(1)=1$ et par b) pour $\alpha=0,\,p=n,$ on a ::

$$\Gamma(n+1) = \prod_{k=1}^{n} k = n!$$

- (4) Développement en série de Γ .
 - (a) Soit $z \in \mathbb{C}$ tel que $\Re(z) > 0$, on a : $\Gamma(z) = \int_{]0,1[} t^{z-1} e^{-t} dt + \int_{[1,+\infty[} t^{x-1} e^{-t} dt + \int_{[1,+$

Si l'on pose $f_n(t) = \frac{(-1)^n}{n!} t^{z+n-1}$ pour $t \in]0,1]$, on a : f_n est intégrable sur]0,1] pour tout entier naturel n et que $\int_{]0,1]} |f_n(t)| dt \leqslant \int_{]0,1]} \frac{1}{n!} dt = \frac{1}{n!}$ et puisque la série $\sum \frac{1}{n!}$ converge, il en résulte par le théorème d'intégration terme à terme que

$$\int_0^1 t^{z-1} e^{-t} dt = \sum_{n=0}^{+\infty} \frac{(-1)^n}{n!} \int_0^1 t^{z+n-1} dt = \sum_{n=0}^{+\infty} \frac{(-1)^n}{n!} \frac{1}{z+n}$$

(b) Posons $f_n(z) = \frac{(-1)^n}{n!} \frac{1}{z+n}$ pour $n \in \mathbb{N}$ et $z \in \mathbb{C}\mathbb{V}\mathbb{Z}^-$.

Pour $n \in \mathbb{N}$, la fonction f_n est continue sur $\mathbb{C}\mathbb{N}\mathbb{Z}^-$ (fraction rationnelle en z) pour tout $z \in \mathbb{C}\mathbb{N}\mathbb{Z}^-$ et tout $n \in \mathbb{N}$, on a : $|f_n(z)| = \frac{1}{n!} \frac{1}{|n+z|} \leqslant \frac{1}{n!} \frac{1}{|n+\Re(z)|} \operatorname{car} |n+\Re(z)| \leqslant |n+z|$, donc $\sum f_n(z)$ converge absolument et par suite $\sum f_n$

converge simplement sur $\mathbb{C}\mathbb{Z}^-$.

Soit K un compact inclu dans $\mathbb{C}\mathbb{Z}^-$, et $\alpha=d(Z^-,K)$, on a $\alpha>0$ car \mathbb{Z}^- fermé et K compact. On a alors

pour tout $z \in K$, et tout $n \in \mathbb{N}$, $|n+z| = d(-n,z) \geqslant \alpha$, donc $|f_n(z)| \leqslant \frac{1}{n!} \frac{1}{|n+z|} \leqslant \frac{1}{n!} \frac{1}{\alpha}$. Comme la série

 $\sum \frac{1}{n!}$ converge, il en résulte que $\sum f_n$ converge localement uniformément sur $\mathbb{C}\mathbb{V}\mathbb{Z}^-$, donc par le théorème de

continuité la fonction somme $\sum_{n=0}^{\infty} f_n$ est continue sur $\mathbb{C}\mathbb{V}\mathbb{Z}^-$.

On peut aussi montrer que $\sum_{n=0}^{\infty} f_n$ est continue en tout point z_0 de $\mathbb{C}\mathbb{V}\mathbb{Z}^-$ en effet : Comme $\mathbb{C}\mathbb{V}\mathbb{Z}^-$ est un ouvert, on a pour tout $z_0 \in \mathbb{CNZ}^-$, il existe r > 0 tel $B(z_0, r) \subset \mathbb{CNZ}^-$, on prend alors le compact $K = \overline{B}(z_0, \alpha)$

- (5) Soit 0 < a < b et t > 0, on a : $t^{a-1} = e^{(a-1)\ln(t)}$
 - (a) Si $t \in]0,1]$, alors $\ln(t) \leqslant 0$, donc $(a-1)\ln(t) \geqslant (b-1)\ln(t)$ et comme $\mathbf{x} \mapsto e^x$ est croissante, on déduit que $t^{a-1} \geqslant t^{b-1}$. Soit $\max(t^{a-1},t^{b-1})=t^{a-1}$. Si t>1, alors $\ln(t)>0$, donc $t^{a-1} < t^{b-1}et$ par suite $\max(t^{a-1},t^{b-1})=t^{b-1}$.

Conclusion finale : Pour tous 0 < a < b et t > 0, on a :

$$\max(t^{a-1}, t^{b-1}) \leqslant t^{a-1} + t^{b-1}.$$

- (b) Pour $t \in]0,1]$, on a d'après a) $0 < t^{x-1} \leqslant \max(t^{x-1},t^{a-1}) = t^{a-1} = \max(t^{a-1},t^{b-1})$ de même si t > 1, on a : $0 < t^{x-1} \leqslant \max(t^{x-1},t^{b-1}) = t^{b-1} = \max(t^{a-1},t^{b-1})$ En conclusion : $0 < t^{x-1} \leqslant \max(t^{a-1},t^{b-1})$ pour tout $t \in]0,+\infty[$
- (c) La fonction $f:(x,t)\mapsto t^{x-1}e^{-t}$. est continue sur $\mathbb{R}_+^*\times\mathbb{R}_+^*$

L'application $x\mapsto t^{x-1}e^{-t}=e^{-t}e^{(x-1)\ln(t)}$ est de classe C^1 sur \mathbb{R}_+^* et $\frac{d}{dx}f(x,t)=\ln(t)f(x,t)$ pour tout $(x,t) \in \mathbb{R}_+^* \times \mathbb{R}_+^*$.

De plus pour tout compact $K = [a,b] \subset \mathbb{R}_+^*$ et tout $(x,t) \in K \times \mathbb{R}_+^*$, on a : $\left|\frac{d}{dx}f(x,t)\right| \leqslant |\ln(t)| e^{-t}t^{x-1} \leqslant |\ln(t)| e^{-t} \max(t^{a-1},t^{b-1}) \leqslant |\ln(t)| e^{-t}(t^{a-1}+t^{b-1})$ et que la fonction $\varphi:t\mapsto |\ln(t)| e^{-t}(t^{a-1}+t^{b-1})$ est intégrable sur \mathbb{R}_+^* car $\sqrt{t}\varphi(t) = \sqrt{t}(t^{a-1}+t^{b-1})e^{-t}|\ln(t)| \underset{t\to 0^+}{\to} 0$. Pour $t\geqslant 1, \varphi(t)\leqslant (t^{a-1}+t^{b-1})te^{-t}=(t^a+t^b)e^{-t}$

Donc par le théorème de dérivation sous le signe intégral, il en résulte que Γ est de classe C^1 sur l'ouvert \mathbb{R}_+^* et que

$$\Gamma'(x) = \int_0^{+\infty} \frac{d}{dx} f(x,t) dt = \int_0^{+\infty} \ln(t) t^{x-1} e^{-t} dt.$$

(d) On a $\Gamma(x+1)=x\Gamma(x)$ pour tout x>0, et comme Γ est continue en 1, on a $\lim_{x\to 0^+}\Gamma(x+1)=\Gamma(1)=1$, donc

$$\Gamma(x) \sim_{x \to 0^+} \frac{1}{x}$$

Partie II:

$$\lambda > 0, \quad \alpha \in \mathbb{R}, \quad y_{\alpha}(x) = \sum_{n=0}^{+\infty} a_n \ x^{n+\alpha}$$

(1) $a_0 \neq 0$ et y_α est solution sur]0, R[de l'équation (F_λ) .

L'application $x \mapsto x^{\alpha}$ est de classe C^{∞} sur R_{+}^{*} et que $x \mapsto \sum_{n=0}^{\infty} a_{n}x^{n}$ est de classe C^{∞} sur]0,R[(somme d'une série entière), donc y_{α} est de classe C^{∞} sur]0,R[(produit de fonctions de classes C^{∞}).

Par calculs:
$$y'_{\alpha}(x) = \alpha x^{\alpha - 1} \sum_{n=0}^{\infty} a_n x^n + x^{\alpha} \sum_{n=1}^{\infty} n a_n x^{n-1} = \sum_{n=0}^{\infty} (\alpha + n) a_n x^{\alpha + n - 1}$$

$$y_{\alpha}^{"}(x) = \sum_{n=1}^{\infty} (\alpha + n)(\alpha + n - 1)a_n x^{\alpha + n - 2}$$

bonc y_{α} est solution sur]0, R[de (F_{λ}) \Leftrightarrow $\forall x \in]0, R[, -(x^{2} + \lambda) \sum_{n=0}^{\infty} a_{n}x^{\alpha+n} + \sum_{n=0}^{\infty} (\alpha+n)a_{n}x^{\alpha+n} + \sum_{n=1}^{\infty} (\alpha+n)(\alpha+n-1)a_{n}x^{\alpha+n} = 0$ \Leftrightarrow $\forall x \in]0, R[$ $\sum_{n=0}^{\infty} ((n+\alpha)^2 - \lambda^2) a_n x^{\alpha+n} - \sum_{n=2}^{\infty} a_{n-2} x^{\alpha+n} = 0$ $\Leftrightarrow \forall x \in]0, R[$ On fait tendre x vers 0^{+} , obtenir $\alpha^2 - \lambda^2 = 0$ car $a_0 \neq 0$ et puis $((\alpha + 1)^2 - \lambda^2)a_1 = 0$ et une recurrence $((\alpha + n)^2 - \lambda^2)a_1 = 0$ et u

 $^{2})a_{n}=a_{n-2}..$

(2) $\alpha = \lambda$, $a_0 \neq 0$ et y_{λ} est solution sur]0, R[de (F_{λ}) .

(a) On a :
$$y_{\lambda}(x) = \sum_{n=0}^{\infty} a_n x^{\lambda+n} = x^{\lambda} \sum_{n=0}^{\infty} a_n x^n$$
. On sait que (1) $((\lambda + n)^2 - \lambda^2) a_n = a_{n-2}$ pour tout $n \geqslant 2$ Puisque . $(\lambda + 1)^2 - \lambda^2 \neq 0$, on a $a_1 = 0$ et par la relation (1), on a : $a_{2p+1} = 0$ pour tout $p \in \mathbb{N}$. et $a_{2p} = \frac{1}{(\lambda + 2p)^2 - \lambda^2} a_{2(p-1)}$ pour tout $p \in \mathbb{N}^*$. Donc $\prod_{k=1}^p a_{2k} = \prod_{k=1}^p \frac{1}{(\lambda + 2k)^2 - \lambda^2} \prod_{k=1}^p a_{2(k-1)} = \prod_{k=1}^p \frac{1}{(\lambda + 2k)^2 - \lambda^2} \prod_{k=0}^{p-1} a_{2k}$ soit : $a_{2p} = \prod_{k=1}^p \frac{1}{(\lambda + 2k)^2 - \lambda^2} a_0$. Mais $(\lambda + 2k)^2 - \lambda^2 = 4\lambda k + 4k^2 = 4k(\lambda + k)$, d'où $\prod_{k=1}^p \frac{1}{(\lambda + 2k)^2 - \lambda^2} = \prod_{k=1}^p \frac{1}{4k(\lambda + k)} = \frac{1}{4^p p!} \prod_{k=1}^p \frac{1}{\lambda + k} = \frac{1}{2^{2p} p!} \frac{\Gamma(\lambda + 1)}{\Gamma(\lambda + p + 1)}$. En conclusion :

$$\forall p \in \mathbb{N}, \quad a_{2p} = \frac{a_0}{2^{2p}p!} \frac{\Gamma(\lambda+1)}{\Gamma(\lambda+p+1)}$$

- $\text{(b) Pour } x>0 \text{ , on a : } \left|\frac{a_{2p}x^{2p}}{a_{2(p-1)}x^{2(p-1)}}\right| = \frac{a_{2p}}{a_{2(p-1)}}x^2 = \frac{1}{(\lambda+2p)^2+\lambda^2}x^2 \underset{p\to+\infty}{\longrightarrow} 0 \text{, donc le rayon de convergence } R$
- (c) On suppose $a_0 2^{\lambda} \Gamma(\lambda + 1) = 1$.

On a:
$$\forall x > 0$$
, $y_{\lambda}(x) = \sum_{p=0}^{+\infty} a_{2p} x^{2p+\lambda}$

$$= \sum_{p=0}^{+\infty} \frac{a_0}{2^{2p} p!} \frac{\Gamma(\lambda+1)}{\Gamma(\lambda+p+1)} x^{2p+\lambda}$$

$$= \sum_{p=0}^{+\infty} \frac{a_0}{p!} \frac{\Gamma(\lambda+1)}{\Gamma(\lambda+p+1)} (\frac{x}{2})^{2p+\lambda} 2^{\lambda}$$

$$= \sum_{p=0}^{+\infty} \frac{1}{p!} \frac{1}{\Gamma(\lambda+p+1)} (\frac{x}{2})^{2p+\lambda} \operatorname{car} a_0 2^{\lambda} \Gamma(\lambda+1) = 1.$$

Equivalent au voisinage de 0 :

D'après les propriétés des séries entières, on a

$$\sum_{p=0}^{\infty} \frac{1}{p!} \frac{1}{\Gamma(\lambda+p+1)} \left(\frac{x}{2}\right)^{2p} \underset{x\to 0^+}{\sim} \frac{1}{\Gamma(\lambda+1)}$$

Donc

$$y_{\lambda}(x) \underset{x \to 0^{+}}{\sim} \frac{1}{\Gamma(\lambda+1)} (\frac{x}{2})^{\lambda}$$

- (3) On suppose ici que $2\lambda \notin \mathbb{N}$.
 - (a) D'après la question 1 et 2) la fonction $y_{-\lambda}$ est aussi solution sur R_+^* de (F_{λ}) .
 - (b) Montrons $(y_{\lambda}, y_{-\lambda})$ est un système fondamental de solutions sur R_+^* de (F_{λ}) .

Soit
$$(\alpha, \beta) \in \mathbb{R}^2$$
 tel que $\alpha y_{\lambda} + \beta y_{-\lambda} = 0$.
Comme $y_{\lambda}(x) \underset{x \to 0^+}{\sim} \frac{1}{\Gamma(\lambda+1)} (\frac{x}{2})^{\lambda}$ et $y_{-\lambda}(x) \underset{x \to 0^+}{\sim} \frac{1}{\Gamma(-\lambda+1)} (\frac{x}{2})^{-\lambda}$, on a : $y_{\lambda}(x) \underset{x \to 0^+}{\to} 0$ et $y_{-\lambda}(x) \underset{x \to 0^+}{\to} +\infty$, donc si l'on suppose $\alpha \neq 0$, alors en faisant tendre x vers 0, on aboutit à une contradiction.

On conclut que $\alpha=0$ et puis $\beta=0$, donc les solutions y_{λ} et $y_{-\lambda}$ sont linéairement indépendantes .

 (F_{λ}) est une équation différentielle linéaire du second ordre à coefficients continus et sans second membre, son ensemble de solutions est donc un espace vectoriel réel de dimension deux. En conséquence : $(y_{\lambda}, y_{-\lambda})$ est un système fondamental de solutions de (F_{λ}) et que toute solution sur \mathbb{R}_{+}^{*} de (F_{λ}) est de la forme :

$$y = \alpha y_{\lambda} + \beta y_{-\lambda}$$
 où $\alpha, \beta \in R$

Partie III.

A- Etude de (F_0) :

Pour
$$x > 0$$
, on a : $y_{\lambda}(x) = \sum_{n=0}^{\infty} \frac{1}{(2^{p}p!)^{2}} x^{2p}$.

(1) .

(a) Pour tout entier $k \ge 1$: $\prod_{k=1}^{p} a_{2k}(\alpha) = \prod_{k=1}^{p} \frac{1}{(\alpha + 2k)^2} \prod_{k=1}^{p} a_{2(k-1)}$, donc $a_{2p}(\alpha) = \prod_{k=1}^{p} \frac{1}{(\alpha + 2k)^2} a_0(\alpha)$. Or $a_0(\alpha) = 1$, d'où la formule cherchée :

$$a_{2p}(\alpha) = \prod_{k=1}^{p} \frac{1}{(\alpha + 2k)^2}$$
 pour tout $p \ge 1$.

CNCMath1_2007.tex - page 3

(b) D'après les notations de l'enoncé, pour tout
$$p \in N^*$$
, on $a : a_{2p}(\alpha) = \exp(\sum_{k=1}^p \ln(\frac{1}{(\alpha+2k)^2})) = \exp(-2\sum_{k=1}^p \ln(\alpha+2k))$, donc $: a'_{2p}(\alpha) = -\sum_{k=1}^p \frac{2}{\alpha+2k} a_{2p}(\alpha)$ et puis $a'_{2p}(0) = -2\sum_{k=1}^p \frac{1}{2k} a_{2p}(0)$

$$= -\sum_{k=1}^p \frac{1}{k} a_{2p}(0)$$

$$= -H_p.a_{2p}(0)$$

Or
$$a_{2p}(0) = \prod_{k=1}^{p} \frac{1}{(2k)^2} = \frac{1}{2^{2p}(p!)^2} = \left(\frac{1}{2^p p!}\right)^2$$
, donc :
$$b_p = a'_{2p}(0) = -\left(\frac{1}{2^p p!}\right)^2 H_p$$

(c) Calcul du rayon de convergence R_b :
On a $b_p \sim -\frac{1}{(2^p p!)^2} \ln(p) = o(\frac{1}{2^p p!})$ car $H_p \sim \ln(p)$, donc le rayon de convergence de la série entière $\sum b_p x^p$ est infini :

$$R_b = +\infty$$

$$(2)$$
 .

(a) Pour tout
$$p \in \mathbb{N}^*$$
, on a : $(2p)^2 b_p + 4pa_{2p}(0) = -(2p)^2 a_{2p}(0) + 4pa_p(0)$
 $= a_{2p}(0) \left(-(2p)^2 H_P + 4p \right)$
Mais $(2p)^2 a_{2p}(0) = a_{2(p-1)}(0)$, donc :
 $(2p)^2 b_p + 4pa_{2p}(0) = -a_{2p}(0)H_p + 4pa_{2p}(0)$
 $= -a_{2(p-1)}(0)H_{p-1}\underbrace{-\frac{1}{p}a_{2(p-1)}(0) + 4pa_{2p}(0)}_{=0}$

$$= b_{p-1}$$

D'où le résultat demandé

(b) L'application $x \mapsto y_0(x) \ln(x)$ est de classe C^{∞} sur \mathbb{R}_+^* (Opérations), donc z_0 est de classe C^{∞} sur \mathbb{R}_+^* . Pour tout x > 0, on a :

$$z_{0}(x) = y_{0}(x)\ln(x) + \sum_{p=1}^{\infty} b_{p}x^{2p}$$

$$z'_{0}(x) = \frac{1}{x}y_{0}(x) + \ln(x).y'_{0}(x) + 2\sum_{p=1}^{\infty} pb_{p}x^{2p-1}$$

$$z''_{0}(x) = -\frac{1}{x^{2}}y_{0}(x) + \frac{2}{x}y'_{0}(x) + \ln(x).y''_{0}(x) + 2\sum_{p=1}^{\infty} p(2p-1)b_{p}x^{2p-2}$$
Donc $x^{2}z''_{0}(x) + xz'_{0}(x) - (x^{2}+0)z_{0}(x) = -y_{0}(x) + 2xy'_{0}(x) + \ln(x).x^{2}y''_{0}(x) + \sum_{p=1}^{\infty} 2p(2p-1)b_{p}x^{2p} + y_{0}(x) + \ln(x).xy'_{0}(x) + \sum_{p=1}^{\infty} b_{p}2px^{2p} - x^{2}\ln(x)y_{0}(x) - \sum_{p=1}^{\infty} b_{p}x^{2p+2}$

En tenant compte du fait que
$$y_0$$
 est solution sur \mathbb{R}_+^* de (F_0) et de la question précédente, il vient : $x^2 z_0''(x) + x z_0'(x) - (x^2 + 0) z_0(x) = 2x y_0'(x) + \sum_{p=1}^{\infty} b_p (2p)^2 x^{2p} - \sum_{p=1}^{\infty} b_p x^{2p+2}$

$$= \sum_{p=1}^{\infty} 4p a_{2p}(0) x^{2p} + \sum_{p=1}^{\infty} b_p (2p)^2 x^{2p} - \sum_{p=1}^{\infty} b_p x^{2p+2}$$

$$= \sum_{p=1}^{\infty} 4p a_{2p}(0) x^{2p} + \sum_{p=1}^{\infty} b_p (2p)^2 x^{2p} - \sum_{p=1}^{\infty} b_p x^{2p+2}$$

$$= \sum_{p=1}^{\infty} 4p a_{2p}(0) x^{2p} + \sum_{p=1}^{\infty} b_p (2p)^2 x^{2p} - \sum_{p=1}^{\infty} b_p x^{2p+2}$$

$$= b_0 x^2 = 0$$

Ce qui permet de conclure.

(3) Comme $y_0(x) \underset{x \to 0^+}{\sim} \frac{1}{\Gamma(0+1)} \left(\frac{x}{2}\right)^0 = 1$, $\lim_{x \to 0} \sum_{p=1}^{\infty} b_p x^{2p} = 0$ et $\lim_{x \to 0^+} \ln(x) = -\infty$, on a :

ceci permet de prouver (comme à la question II 3.b) que les solutions y_0 et z_0 sur \mathbb{R}_+^* de (F_0) sont linéairement indépendantes et avec les mêmes raisons que dans III.3b), toute solution de (F_0) est de la forme : $y = \alpha y_0 + \beta z_0$ où α , β sont des constantes réelles arbitraires.

B- Etude de (F_1) :

(1) .

(a) Pour tout $p \in \mathbb{N}^*$, on a : $c_{2p}(\alpha) = \frac{1}{(\alpha + 2p)^2 - 1} c_{2(p-1)}$, donc $\prod_{k=1}^p c_{2k}(\alpha) = \prod_{k=1}^p \frac{1}{(\alpha + 2k)^2 - 1} \prod_{k=1}^p c_{2(k-1)}$ et par suite $c_{2p}(\alpha) = \prod_{k=1}^p \frac{1}{(\alpha + 2k)^2 - 1} c_0(\alpha)$. et comme $c_0(\alpha) = 1$, on déduite que :

$$c_{2p}(\alpha) = \prod_{k=1}^{p} \frac{1}{(\alpha + 2k)^2 - 1}$$

(b) Pour tout $p \in \mathbb{N}^*$, $d_p = \frac{d}{d\alpha}c_{2p}(1)$. Comme $c_{2p}(\alpha) = \exp(-\sum_{k=1}^p \ln((\alpha+2k)^2-1))$, on a : $c'_{2p}(\alpha) = -\sum_{k=1}^p \frac{2(\alpha+2k)}{(\alpha+2k)^2-1}c_{2p}(\alpha)$. D'où $d_p = -\sum_{k=1}^p \frac{2(1+2k)}{(1+2k)^2-1} \prod_{k=1}^p \frac{1}{(\alpha+2k)^2-1} = -\sum_{k=1}^p \frac{2(1+2k)}{4k(1+k)} \prod_{k=1}^p \frac{1}{(1+2k)^2-1}.$ Or $\prod_{k=1}^p \frac{1}{(1+2k)^2-1} = \prod_{k=1}^p \frac{1}{4k(1+k)} = \frac{1}{2^{2p}} \prod_{k=1}^p \frac{1}{k(1+k)} = \frac{1}{2^{2p}} \frac{1}{p!} \frac{1}{(p+1)!},$ et $\frac{2(1+2k)}{4k(k+1)} = \frac{1}{k} - \frac{1}{k(k+1)} = \frac{1}{k} - \frac{1}{2}(\frac{1}{k} - \frac{1}{k+1}) = \frac{1}{2}(\frac{1}{k} + \frac{1}{k+1})$ donc $\sum_{k=1}^p \frac{2(1+2k)}{4k(k+1)} = \frac{1}{2}(H_p + H_{p+1} - 1).$ D'où le résultat demandé :

$$d_p = \frac{1}{2^{2p+1}p!(p+1)}(H_p + H_{p+1} - 1)$$

(c) On a: $d_p = \frac{1}{2^{2p+1}p!(p+1)}(H_p + H_{p+1} - 1) = \frac{1}{2^{2p+1}p!(p+1)!}(2H_p + \frac{1}{p+1} - 1) \sim \frac{1}{p \to \infty} \frac{1}{2^{2p}} \frac{1}{p!(p+1)!} \ln(p), \text{ donc le rayon de convergence demandé}:$

$$R_d = +\infty$$

(2) .

(a) On a : Pour tout $p \in \mathbb{N}^*$, $((1+2p)^2-1) d_p + 2(1+2p)c_{2p}(1) = d_{p-1}$. En effet : par dérivation de l'identité $c_{2p}(\alpha) \left((1+2p)^2-1\right) = c_{2(p-1)}(\alpha)$, on a : $c'_{2p}(\alpha) \left((\alpha+2p)^2-1\right) + 2(\alpha+2p)c_{2p}(\alpha) = c'_{2(p-1)}(\alpha)$ Pour $\alpha=1$, on a :

$$d_p((1+2p)^2 - 1) + 2(1+2p)c_{2p}(1) = d_{p-1}$$

(b) Il est clair que les fonctions y_1 et $x \mapsto \sum_{p=1}^{\infty} d_p x^{2p+1}$ sont de classe C^{∞} sur \mathbb{R}_+^* et par dérivation on obtient pout tout x > 0:

$$x^{2}u_{1}''(x) + xu_{1}'(x) - (1+x^{2})u_{1}(x) = x^{2} \left(2y_{1}'(x)\ln(x) + \frac{4}{x}y_{1}'(x) - \frac{2}{x^{2}}y_{1}(x) + \sum_{p=1}^{\infty} 2p(2p+1)d_{p}x^{2p-1}\right) + x\left(2y_{1}'(x)\ln(x) + \frac{2}{x}y_{1}(x) + \sum_{p=1}^{\infty} (2p+1)d_{p}x^{2p}\right) - (1+x^{2})\left(2y_{1}(x)\ln(x) + \sum_{p=0}^{\infty} d_{p}x^{2p+1}\right) = 2\ln(x)\left(x^{2}y_{1}''(x) + xy_{1}'(x) - (1+x^{2})y_{1}(x)\right) + 4xy_{1}'(x) + \sum_{p=0}^{\infty} (2p+1)^{2}d_{p}x^{2p+1} - (1+x^{2})\sum_{p=0}^{\infty} d_{p}x^{2p+1}$$

Comme y_1 est xsolution sur \mathbb{R}_+^* de (F_1) , on a : $x^2y_1''(x) + xy_1'(x) - (1+x^2)y_1(x) = 0$ et donc CNCMath1_2007.tex - page 5

$$x^{2}u_{1}''(x) + xu_{1}'(x) - (1+x^{2})u_{1}(x) = 4xy_{1}'(x) + \sum_{p=0}^{\infty} (2p+1)^{2}d_{p}x^{2p+1} - (1+x^{2})\sum_{p=0}^{\infty} d_{p}x^{2p+1}$$

$$= \sum_{p=0}^{\infty} \frac{\frac{4(2p+1)}{p!(p+1)!2^{2p+1}}x^{2p+1} + \sum_{p=0}^{\infty} (2p+1)^{2} - 1)d_{p}x^{2p+1}}{-\sum_{p=0}^{\infty} d_{p}x^{2(p+1)+1}}, \quad d_{0} = 0$$

$$= \sum_{p=0}^{\infty} \underbrace{\frac{1}{p!(p+1)!2^{2p}} \frac{4(2p+1)!}{2}x^{2p+1}}_{=c_{2p}(1)}$$

$$+ \sum_{p=0}^{\infty} (2p+1)^{2} - 1)d_{p}x^{2p+1} - \sum_{p=1}^{\infty} d_{p-1}x^{2p+1}}_{=c_{2p}(1)}$$

$$= \sum_{p=1}^{\infty} \underbrace{(2(2p+1)c_{2p}(1) + ((2p+1)^{2} - 1)d_{p} - d_{p-1})}_{=0}x^{2p+1} + 2x$$

$$= 2x$$

On déduit alors que \mathbf{u}_1 est bien solution sur \mathbb{R}_+^* de (E_1) .

(3) .

(a) On pose
$$u_1(x) = \frac{e_0}{x} + \sum_{p=1}^{\infty} e_p x^{p-1}$$
 avec $R = Rcv(\sum_{p\geqslant 1} e_p x^{p-1}) > 0$.
Sur $]0, R[$, on a : $x^2u_1''(x) + xu_1'(x) - (1 + x^2)u_1(x) - 2x = x^2\left(\frac{2e_0}{x^3} + \sum_{p=1}^{\infty}(p-1)(p-2)e_p x^{p-2}\right) + x\left(\frac{-e_0}{x^2} + \sum_{p=1}^{\infty}(p-1)e_p x^{p-2}\right) - 2x = \sum_{p=0}^{\infty}(p(p-1)e_p - e_{p-2})x^{p-1} - (e_0 + 2)x - e_1 = 0$. comme dans la question ..., on déduit :
$$\begin{cases} e_0 = -2 \\ e_1 = 0 \\ \forall p\geqslant 3, \ p(p-2)e_p - e_{p-1} = 0 \end{cases}$$
, ce qui permet de conclure par une récurrence que : $\forall p\in N$, $e_{2p+1} = 0$ et $e_{2p} = \frac{e_0}{2^{2p}p!(p+1)!} = -2c_{2p}(1)$ car $e_0 = -2$ et par suite R est infini et que u_1 est solution sur \mathbb{R}_+^* de (E_1) .

- (b) (F_1) est une équation différentielle linéaire sans second membre associée à (E_1) et comme z_1 et u_1 sont solutions sur \mathbb{R}_+^* de (E_1) , il en résulte que $z_1 u_1$ est solution sur \mathbb{R}_+^* de (F_1) .
- (4) Comme dans la question....., en étudiant le comportement des solutions z_1 et y_1 au voisinage de 0^+ , on déduit que (y_1, z_1) est système fondamental de solutions sur \mathbb{R}_+^* de (F_1) , donc toute solution sur \mathbb{R}_+^* de (F_1) est de la forme : $y: x \mapsto \alpha y_1(x) + \beta z_1(x)$ où α et β sont des constantes réelles arbitraires .