Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu.

© CKE 2013	UZUP	EŁNIA ZDAJĄCY	Miejsce
graficzny	KOD	PESEL	Miejsce na naklejkę z kodem
Układ g			

EGZAMIN MATURALNY Z INFORMATYKI

POZIOM ROZSZERZONY

CZĘŚĆ I

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 9 stron. Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania i odpowiedzi zamieść w miejscu na to przeznaczonym.
- 3. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem.
- 4. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 5. Pamiętaj, że zapisy w brudnopisie nie podlegają ocenie.
- 6. Wpisz obok zadeklarowane (wybrane) przez Ciebie na egzamin środowisko komputerowe, kompilator języka programowania oraz program użytkowy.
- 7. Jeżeli rozwiązaniem zadania lub jego części jest algorytm, to zapisz go w wybranej przez siebie notacji: listy kroków, schematu blokowego lub języka programowania, który wybrałeś/aś na egzamin.
- 8. Na tej stronie oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 9. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

11 MAJA 2018

Godzina rozpoczęcia: 14:00

WYBRANE:				
(środowisko)				
(kompilator)				
•••••				

Czas pracy: 90 minut

(program użytkowy)

Liczba punktów do uzyskania: 20

MIN-R1 **1**P-182

Zadanie 1. Humor liczb

Na potrzeby zadania niektóre liczby naturalne będziemy nazywać wesołymi, a inne smutnymi. Poniższy algorytm pozwala sprawdzić, czy liczba *n* jest wesoła, czy też smutna.

Specyfikacja:

Dane:

n − liczba całkowita dodatnia

Wynik:

komunikat: "liczba wesoła" lub "liczba smutna"

Algorytm:

```
T[0] \leftarrow n
i ← 0
powtarzaj:
       k \leftarrow T[i]
       suma \leftarrow 0
       dopóki k>0 wykonuj
                                                                                  (*)
               suma \leftarrow suma + (k mod 10)*(k mod 10)
               k \leftarrow k \text{ div } 10
       jeżeli suma = 1
               wypisz "liczba wesoła" i zakończ wykonywanie algorytmu
       dla j = 0, ..., i
               jeżeli T[j] = suma
                      wypisz "liczba smutna" i zakończ wykonywanie algorytmu
       i \leftarrow i + 1
       T[i] \leftarrow suma
```

Zadanie 1.1. (0–2)

Uzupełnij tabelę. Podaj, ile razy spełniony jest warunek k>0 w wierszu oznaczonym (*) dla podanej początkowej wartości k.

k	Liczba wykonań pętli dopóki w wierszu oznaczonym (*)
15	
5005	
x – liczba całkowita > 0	

Zadanie 1.2. (0–4)Przeanalizuj powyższy algorytm i uzupełnij tabelę.

n	Elementy tablicy T	Wynik działania algorytmu
7		
145		

Miejsce na obliczenia.

	Nr zadania	1.1.	1.2.
Wypełnia	Maks. liczba pkt.	2	4
egzaminator	Uzyskana liczba pkt.		

Zadanie 1.3. (0–1)

Oceń czy poniższe stwierdzenia są prawdziwe. Zaznacz P, jeśli stwierdzenie jest prawdziwe, albo F – jeśli jest fałszywe.

1	Dla danej dodatniej, całkowitej liczby <i>n</i> , wszystkie elementy tablicy <i>T</i> są liczbami wesołymi albo wszystkie elementy tablicy <i>T</i> są liczbami smutnymi.	P	F
2	Pomnożenie liczby <i>n</i> przez 10 nie wpływa na zmianę opisanych w zadaniu właściwości liczby.	P	F

Zadanie 1.4. (0-2)

Uzupełnij puste miejsca tak, aby powstała pięciocyfrowa "liczba wesoła", i podaj zawartość tablicy *T* dla tak otrzymanej liczby.

9	4			_					
Zawar	tość t	ablicy	<i>T</i> :	 	 	 	 	 	

Miejsce na obliczenia.

Zadanie 2. Liczba automorficzna

Liczba całkowita dodatnia n jest liczbą automorficzną, jeżeli spełniona jest równość

$$n = n^2 \bmod 10^k$$

gdzie k jest liczbą cyfr liczby n w zapisie dziesiętnym, natomiast $a \mod b$ oznacza resztę z dzielenia liczby a przez liczbę b.

Zadanie 2.1. (0-2)

Uzupełnij tabelę. Wpisz TAK przy tych liczbach, które są automorficzne.

n	Czy liczba n jest liczbą automorficzną?
5	TAK
6	
11	
25	
36	
76	

Miejsce na obliczenia.

	Nr zadania	1.3.	1.4.	2.1.
Wypełnia	Maks. liczba pkt.	1	2	2
egzaminator	Uzyskana liczba pkt.			

Zadanie 2.2. (0–4)

Napisz algorytm (w postaci listy kroków, schematu blokowego lub w wybranym języku programowania), który da odpowiedź na pytanie, czy podana liczba całkowita dodatnia *n* jest liczbą automorficzną.

Uwaga: aby zapisać algorytm, masz do dyspozycji tylko następujące operacje arytmetyczne: dodawanie, odejmowanie, mnożenie, dzielenie całkowite i branie reszty z dzielenia całkowitego.

Specyfikacja:

Dane:

n − liczba całkowita dodatnia

Wynik:

Tak, jeżeli liczba *n* **jest** liczbą automorficzną. *Nie*, jeżeli liczba *n* **nie jest** liczbą automorficzną.

Algorytm

Zadanie 3. Test

Oceń prawdziwość stwierdzeń. Zaznacz P, jeśli stwierdzenie jest prawdziwe, albo F – jeśli jest fałszywe.

Zadanie 3.1. (0–1)

1.	$A5_{16} + 234_8 = 149_{16}$	P	F
2.	$A5_{16} - 234_8 = 9_{16}$	P	F
3.	$A5_{16} * 1000_2 = A50_{16}$	P	F
4.	$128_{10}/2_8 = 1000000_2$	P	F

Zadanie 3.2. (0–1)

Dane są następujące adresy IPv4 komputerów:

Komputer nr 1: 196.122.128.0 Komputer nr 2: 196.122.129.0 Komputer nr 3: 196.123.129.0

1.	Dla maski 255.255.0.0 komputery pierwszy i drugi należą do tej samej sieci.	P	F
2.	Dla maski 255.255.255.0 komputery drugi i trzeci należą do tej samej sieci.	P	F
3.	Dla maski 255.255.0.0 adres sieci, w której jest pierwszy komputer, to 196.122.0.0	P	F
4.	Dla maski 255.255.255.0 adres rozgłoszeniowy sieci, w której jest trzeci komputer, to 196.123.129.255	P	F

Zadanie 3.3. (0–1)

Dana jest funkcja rekurencyjna:

$$f(x) = \begin{cases} 1 & dla \ x \le 1 \\ x + f(x \ div \ 2) & dla \ x > 1 \end{cases}$$

gdzie x jest nieujemną liczbą całkowitą, a operacja x div 2 oznacza część całkowitą z dzielenia x przez 2.

1.	f(15) = 25	P	F
2.	f(12) = 22	P	F
3.	Podczas obliczania wartości $f(12)$ operacja dodawania zostanie wykonana 4 razy.	P	F
4.	Dla x równych potędze dwójki $f(x) = 2 * x - 1$	P	F

Wypełnia egzaminator	Nr zadania	2.2.	3.1.	3.2.	3.3.	
	Maks. liczba pkt.	4	1	1	1]
	Uzyskana liczba pkt.					

Zadanie 3.4. (0-1)

Prawidłowe przyporządkowania rozszerzeń plików i ich zastosowanie to

	Formaty plików	Zastosowanie		
1.	TIFF, OCR, OGG	pliki w grafice wektorowej	P	F
2.	BMP, JPG, PNG	pliki w grafice rastrowej	P	F
3.	AVI, MOV, MPEG	pliki filmowe	P	F
4.	WMA, WAV, MIDI	pliki dźwiękowe	P	F

Zadanie 3.5. (0-1)

Dana jest tablica T[0..3, 0..3] wypełniona następującymi wartościami:

k i	0	1	2	3
0	1	2	3	4
1	2	2	4	6
2	4	4	6	6
3	4	5	6	8

Dla podanych algorytmów oceń poprawność podanego wyniku ich działania.

	Algorytm	Wynik działania/ Wypisane liczby		
1.	suma=0; Dla każdego i od 0 do 2 Dla każdego k od 0 do 2 suma=suma+T[i,k]; wypisz suma;	64	P	F
2.	<pre>k=3; suma=0; Dla każdego i od 0 do 3</pre>	16	P	F
3.	Dla każdego i od 0 do 3 Dla każdego k od 0 do 3 W[k,i]=T[i,k]; k=2; Dla każdego i od 0 do 3 wypisz W[i,k];	2, 2, 4, 6	P	F
4.	Dla każdego i od 0 do 3 Dla każdego k od 0 do 3 W[k,i]=T[i,k]; Dla każdego i od 0 do 3 wypisz W[i,i];	1, 2, 6, 8	P	F

	Nr zadania	3.4.	3.5.
Wypełnia	Maks. liczba pkt.	1	1
egzaminator	Uzyskana liczba pkt.		

BRUDNOPIS (nie podlega ocenie)