[86.03/66.25] Dispositivos Semiconductores 1er Cuatrimestre 2020

Física de Semiconductores

- 1. Concentración de portadores, movilidad y conductividad
- Corriente de difusión
- 3. Relaciones de Boltzmann y diferencia de potencial

A una barra de Si de largo $L=5~\mu m$ a temperatura ambiente tiene un dopaje uniforme $N_D=10^{14}~{\rm cm}^{-3}$. Luego se le realiza un segundo dopaje tal que $N_A(x)=10^{15}~{\rm cm}^{-3}~{\rm exp}(-x~/~1~\mu m)$. Calcular la diferencia de potencial

Relaciones de Boltzmann

$$\phi_{n}(x) = V_{th} \ln \left(\frac{n(x)}{n_{i}} \right)$$

$$\phi_{p}(x) = -V_{th} \ln \left(\frac{p(x)}{n_{i}} \right)$$

Distribución de portadores (Bajo hipótesis de quasi-neutralidad)

