P2_Basic_Inferential_Data_Analysis

Jerad Acosta

December 21, 2014

```
library(plyr)
library(ggplot2)
library(datasets)
data(ToothGrowth)
data <- ToothGrowth</pre>
```

1 Load Libraries and Data

Then get to know the data

```
# dim(data) tells us there are 3 variables and 60 observations
dim(data)
```

[1] 60 3

```
# summary(data) gives us the name of the variables as well as their range summary(data)
```

```
##
        len
                               dose
                  supp
   Min.
          : 4.2
                  OJ:30
                          Min.
                                 :0.50
   1st Qu.:13.1
                  VC:30
                          1st Qu.:0.50
##
  Median:19.2
                          Median:1.00
##
  Mean
          :18.8
                          Mean
                                :1.17
   3rd Qu.:25.3
                          3rd Qu.:2.00
##
  Max.
          :33.9
                          Max.
                                 :2.00
```

```
unique(data$dose)
```

```
## [1] 0.5 1.0 2.0
```

Now we know that of the 3 variables one, **supp** is a factor with two levels which represent different types of delivery methods (Orange Juice or Ascorbic acid) and the other two, **len** and **dose** are numeric but the unique() function tells us that there are only 3 values for **dose**

A little reading into into the dataset with **?ToothGrowth** and we can see that we are measuring tooth length against the two factors **supp** and amount or **dose**

2 basic summary of the data

Thus it seems like the best way to plot out data would be to break it into both **dose** and **supp** values and factors against the tooth length or **len** variable

The boxplot seems to immediately suggest that a higher **dose** is associated with more **len**. However, while this pattern seems to hold true across the different delivery methods **supp** factors, there doesn't appear to be as significant of a relationship between which *delivery method* or **supp** is used.

To be sure, however, we should run some statistical methods to see how we can quantify this relationship between **dose** and **len** and or lack of one between the factors of **supp** and **len**

3 Confidence intervals using a Two Factor ANOVA test

Since we are trying to find the predictive effect of two regressors **dose** and **supp** on a predictor value **len** it is necessary to remove any linear relationships and confounding coefficient data. Rather that factoring each regressor out from each other one at a time, the ANOVA test is a more efficient and sufficiently detailed methodology

```
data$dose<- as.numeric(as.character(data$dose))
data$dose <- factor(data$dose)
data$supp <- factor(data$supp)
fit <- aov(len ~ dose*supp, data = data)
summary(fit)</pre>
```

```
Df Sum Sq Mean Sq F value Pr(>F)
## dose
               2
                   2426
                           1213
                                  92.00 < 2e-16 ***
## supp
                    205
                             205
                                  15.57 0.00023 ***
                                   4.11 0.02186 *
               2
                    108
                             54
## dose:supp
## Residuals
              54
                    712
                             13
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

While the Orange Juice factor of **supp** appears to have a promising positive slope, there is quite a bit of overlap between 1mg and 2mg **dose** so a hypothesis test to see if there is a statistical significance in the increase from 1mg to 2mg **dose**

```
increase from 1mg to 2mg dose
# Seperate the three subgroups
ToothGrowth.doses_0.5_1.0 <- subset (ToothGrowth, dose %in% c(0.5, 1.0))
ToothGrowth.doses_1.0_2.0 <- subset (ToothGrowth, dose %in% c(1.0, 2.0))
ToothGrowth.doses_0.5_2.0 <- subset (ToothGrowth, dose %in% c(0.5, 2.0))
# Check for group differences due to different dose levels (1.0, 2.0)
t.test(len ~ dose, data = ToothGrowth.doses_1.0_2.0)
##
##
   Welch Two Sample t-test
##
## data: len by dose
## t = -4.901, df = 37.1, p-value = 1.906e-05
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -8.996 -3.734
## sample estimates:
## mean in group 1 mean in group 2
             19.73
# Check for group differences due to different dose levels (0.5, 1.0)
t.test(len ~ dose, data = ToothGrowth.doses_0.5_1.0)
##
##
   Welch Two Sample t-test
##
## data: len by dose
## t = -6.477, df = 37.99, p-value = 1.268e-07
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -11.984 -6.276
## sample estimates:
## mean in group 0.5
                       mean in group 1
               10.61
                                 19.73
# Check for group differences due to different dose levels (0.5, 2.0)
t.test(len ~ dose, data = ToothGrowth.doses_0.5_2.0)
##
   Welch Two Sample t-test
##
```

```
## data: len by dose
## t = -11.8, df = 36.88, p-value = 4.398e-14
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -18.16 -12.83
## sample estimates:
## mean in group 0.5 mean in group 2
## 10.61 26.10
```

For each dose of the three potential dose combinations, the p-value is less than 0.05 and non of the confidence intervals contain a zero value so we can confidently reject the null hypothesis that increase in **dose** is not correlated with increase in **len**

While delivery method or **supp** does not appear to have a significant affect we should still check for any statistical significance.

ddply(ToothGrowth,dose~supp,function(x) c(mean=mean(x\$len),confidence.intervall=t.test(x\$len)\$conf.int)

```
##
     dose supp mean confidence.intervall1 confidence.intervall2
## 1
            OJ 13.23
     0.5
                                     10.040
                                                            16.420
      0.5
            VC 7.98
                                      6.015
                                                             9.945
## 2
     1.0
            OJ 22.70
                                     19.902
                                                            25.498
## 3
      1.0
            VC 16.77
                                     14.971
                                                            18.569
## 5
      2.0
            OJ 26.06
                                     24.161
                                                            27.959
## 6 2.0
            VC 26.14
                                     22.708
                                                            29.572
```

Now that we can see that with these confidence intervals that **supp** does have an effect. Particularly in lower **dose** ranges. This is such that Orange Juice has a significant positive slope over Ascorbic acid in the 0.5mg **dose** range and even more so in the 1mg **dose** range. The 2mg range, however is overlapping and rather inconclusive.

4 Conclusion

Based on removing the develery factor and seeing a significant positive slope with an increase in **dose** to an increase in **len** we could at first conclude at the minimum there was at least a single simple relationship. After controlling for **dose**, however, it became clear that certain relationships were supportable; namely, that at lower doses, Orange Juice has a more positive coefficient with **len** than Ascorbic Acid. Thus, it would be prudent to suspect that there is some mixture of effects going on here. Perhaps both **supp** factors are a positive regressor on **len** but when looking at a single dose - particularly in the lower and even mid ranges - there appears to be a Positive Ceofficient for Orange Juice and a negative or less or an affect correlated with the Ascorbic Acid.

This becomes most evident when we use an interaction plot as such

Interaction Plot

And the difference in Coefficient for each regressor is dependent on another regressor, which in this case is the \mathbf{dose} variable