Sentinel

Networking - Network Layer Subnets

DEFENDING OUR DIGITAL WAY OF LIFE

Network layer

- The layer responsible for delivering the packet to its final destination
- Protocol IP
- Using IP addresses
- View on Wireshark:
- > Internet Protocol Version 4, Src: 10.100.102.40, Dst: 157.240.0.63
- > Transmission Control Protocol, Src Port: 65106, Dst Port: 443, Seq: 33, Ack: 29, Len: 0

IP Address - Reminder

- A unique identifier for every device on the network.
- Expressed as a set of four numbers, each one ranges between 0-255.
- Examples:
 - 0 192.168.1.1
 - 0 1.2.3.4
 - 0 123.154.32.232

192.168.20.100

LAN - Local Area Network

- A small network of devices that can talk directly to each other, on the same location (not very far from each other).
- LAN's are separated by ROUTERS used as gateways.
- Examples:
 - Home WiFi network
 - School network
 - Not the internet
 - Not a nation-wide cellular network (e.g Singtel)

IP Addresses in a LAN

- Devices in the same LAN usually have similar IP addresses.
- Let's see it for ourselves!

192.168.1.2

192.168.1.3

192.168.1.1

192.168.1.4

Demo - view all devices in LAN

- Let's open CMD and run the script **get_lan_devices.py**.
 - Try it yourself.
- See all the IP addresses? Those are the devices in your LAN.
- See that all the IP addresses are similar?
- They are all in the same **subnet**.

Subnets

- Each IP address have 2 parts:
 - Network part identifies the network. Like a surname.
 - Host part identifies the device itself. Like a first name.
- IP addresses with the same network part are in the same subnet.
- It's like they are from the same family.
- For example:

Subnets - example

- Let's say the **subnet** of my home WiFi is 192.168.1.x.
- Which of the following IPs are in this subnet?
 - ∘ 192.168.1.1 V
 - o 192.168.1.20 V
 - o 192.168.0.1 X
 - ∘ 10.0.1.1 X

Problem

Are those 2 IPs in the same **subnet**?

10.0.1.1

10.0.2.2

We don't know! How long is the **network ID**?

Is it only the first byte? 10.x.x.x

The first two bytes? 10.0.x.x

The first three bytes? 10.0.1.x

Subnet masks

Subnet masks tell us how much of the IP address is the network ID.

255 - means that this byte is part of the network ID

0 - means that this byte is part of the host ID

For example:

255.255.255.0 - means that first 3 bytes are the network ID.

Subnet mask: **255. 255 . 255** . 0

IP address: 10.0.1.1

Network ID Host ID

Subnet masks - example

Let's say that we have 2 IP addresses:

10.0.1.1

10.0.2.2

The subnet mask is 255.255.255.0.

Are they in the same subnet?

The subnet mask is 255.255.0.0.

Are they in the same subnet?

255. 255. 255. 0

10.0.1.1

Not in the same subnet!

10.0.2

Network ID Host ID

255.255.0.0

10.0.1.1

10.0.2.2

Network ID Host ID

Same subnet!

How to check my subnet?

Use the cmd command ipconfig.

```
C:\> ipconfig
Windows IP Configuration
Wireless LAN adapter Wi-Fi:
    IPv4 Address. . . . . . . . . : 192.168.31.189
    Subnet Mask . . . . . . . . : 255.255.255.0
    Default Gateway . . . . . . . : 192.168.31.1
```

We can see that our subnet is 192.168.31.x

IP rangesioning

- What is the valid IP address range in a subnet?
- Let's look at 192.168.1.x:
 - Lowest possible address 192.168.1.0
 - Called the Network address.
 - Can't be an IP address of a device (it's the address of the subnet itself).
 - Highest possible address 192.168.1.255
 - Called the Broadcast address.
 - Can't be an IP address of a device (used to message all of the devices in the subnet at once).
- We're left with 254 possible IP addresses in the subnet.

Subnet sizes

- Subnets come in different sizes.
- The standard ones are called Classes.
 - 255.0.0.0 Class A
 256³ 2 = 16,777,214 valid addresses in a Class A subnet
 - 255.255.0.0 Class B
 256² 2 = 65,534 valid addresses in a Class B subnet
 - 255.255.255.0 Class C
 256 2 = 254 valid addresses in a Class C subnet
- Most home network are Class C (no need for more than 254 addresses).

CIDR 01101110

- Subnet masks indicate how many bytes of the IP address are the network ID.
 - CIDR -
 - another way to write subnets
 - subnet name + how many bits of the IP address are the network ID.
- Examples:
 - 192.168.1.0/24 24 bits = 3 bytes subnet is **192.168.1.x**
 - 10.0.0.0/16 16 bits = 2 bytes subnet is **10.0.x.x**

CIDR - example

• 10.1.0.0/16

What is the lowest possible address (network name)?
 10.1.0.0

What is the highest possible address (broadcast)? 10.1.255.255

Is 192.168.1.1 in the subnet?

Is 10.1.2.3 in the subnet?

o Is 10.0.0.1 in the subnet?

No

Yes

No

Classless subnets

- Subnets are not limited to classes.
- IP address length is 4 bytes == 32 bits
 - What if the network part is 10 bits? or 15? or 30?
 - The split to network/host parts will be in the <u>middle</u> of a byte
- Example:
 - 0 192.168.0.0/20
 - IPs in this subnet will start with the first 20 bits of 192.168.0.0
 - We have to convert to binary to calculate the exact range
- Pros more control over the network size (more efficient)
- Cons not intuitive, hard to tell at first glance if IP is in subnet

Classless subnets - example

IP (decimal - base 10)

192 . 168 . 0

0 / 2

IP (binary - base 2)

Network ID

Host ID

- The network part in this subnet is 20 bits long
- It means that all IP addresses in this subnet must start with these 20 bits
- In subnet mask notation:

```
Subnet Mask (binary - base 2)
```

Subnet Mask (decimal - base 10)

255

255

240

0

Classless subnets - example

IP (decimal - base 10)

192 . 168 . 0 . 0 / 2

IP (binary - base 2)

11000000 . 10101000 . 00000001 . 00000001

Network ID Host ID

Lowest address (binary)

Lowest address (decimal)

192 . **168** . 0 . 0

Highest address (binary)

Highest address (decimal)

192 . **168** . 15 . 255

Classless subnets - example

- 192.168.0.0/20
 - Lowest address (network name) is 192.168.0.0
 - Highest address (broadcast) is 192.168.15.255
 - Valid IP addresses range is 192.168.0.1 192.168.15.254
 - How many addresses? 32-20 bits = 2^{12}
 - Without the network name and broadcast address:
 - $2^{12} 2 = 4094$ valid IP addresses
 - The subnet mask of /20 is **255.255.240.0**

What did we learn?

- What is a **LAN** (Local Area Network)
- What is a **subnet**
- How to find the **network ID** and the **host ID** in an IP address
- How to identify a subnet
 - Subnet Name + Subnet Mask (e.g., 192.168.1.0 + 255.255.255.0)
 - or CIDR (e.g, 192.168.1.0/24)
- Special addresses in a subnet
 - Lowest network address
 - Highest broadcast address

