指数·対数関数

①指数関数

(1)指数・指数関数とは

例)
$$2^3$$
 , $(-2)^4$, $\left(\frac{1}{2}\right)^3$

$$a^b \leftarrow a \ e^{} , \ b \ e^{})$$
 \(\text{2.1} \)

指数関数とはb()の部分が変化していく関数

(2)指数計算

<指数法則> $a \neq 0$, $b \neq 0$, m, n は有理数

$$a^m a^n = a^{m+n}$$

•
$$a^m a^n = a^{m+n}$$
 Ø $2 \cdot 4 = 2 \cdot 2 = 8 = 2 \rightarrow _ + _ = ___$

$$\bullet \quad \frac{a^m}{a^n} = a^{m-n}$$

•
$$(a^m)^n = a^{mn}$$
 Ø) $(2^3)^2 = 8^2 = 64 = 2$ $\rightarrow \underline{\hspace{1cm}} \times \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$

•
$$(ab)^n = a^n b^n$$
 Ø $(2 \cdot 3)^2 = 6^2 = 36 = 2 \cdot 3$

$$\bullet \quad \left(\frac{b}{a}\right)^n = \frac{b^n}{a^n} \qquad \qquad \emptyset) \quad \left(\frac{3}{2}\right)^2 = \frac{9}{4} = \frac{3}{2}$$

以上が指数法則と呼ばれる計算だが、暗記する必要はなく、例のように具体例使っ て計算すればどうなっているかわかる

(キーワード)

掛け算は_____

割り算は_____

(ポイント)

例)
$$2^0 = 1$$
, $(-3)^0 = 1$

例)
$$2^{-2} = \frac{1}{2^2}$$
, $(-3)^{-3} = \frac{1}{(-3)^3}$

例題)

$$(I)a^6 \times a^{-2}$$

$$(II) a^3 \div (a^3)^{-3}$$

(II)
$$a^3 \div (a^3)^{-3}$$
 (III) $2^7 \div 2^2 \times 2^{-3}$

(i)
$$a^4 \times a^{-3}$$

(ii)
$$a^2 \div a^{-5}$$

$$(iii)(a^3)^{-2}$$

(iv)
$$2^3 \times 2^{-5} \div 2^2$$

$$(v)(3^2)^{-3} \times 3^3 \div 3^{-4}$$

$$(vi) (2^{-3} \times 2^6)^3 \div 16$$

(3)累乗根の計算

これから指数に有理数(分数)が含まれる計算を行っていく

 $x^n = a$ の解をx のn 乗根と言い、その解を x = とかく

例題)
$$x^3 = a$$
 $x^5 = a^3$ $x^4 = 3$

$$x^5 = a^3$$

$$x^4 = 3$$

$$x = x = x = x$$

$$x =$$

$$x =$$

 $(注意)^2\sqrt{a}$ は \sqrt{a} のように2が省略される

次に上記の形を本来の指数の形に持っていきたい

$$\sqrt[n]{a^m} = a^{\frac{m}{n}}$$

よって、上記の答えはそれぞれ

 $\sqrt[3]{a} = a^-$, $\sqrt[5]{a^3} = a^-$, $\sqrt[4]{3} = 3^-$ と変形出来る

本来の指数の形に持っていけば、指数法則を使って計算できる

<累乗根の法則>

$$\bullet \quad \sqrt[n]{a}\sqrt[n]{b} = a^{\frac{1}{n}}b^{\frac{1}{n}} = (ab)^{\frac{1}{n}} = \sqrt[n]{ab}$$

$$\bullet \quad \frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \frac{a^{\frac{1}{n}}}{b^{\frac{1}{n}}} = \left(\frac{a}{b}\right)^{\frac{1}{n}} = \sqrt[n]{\frac{a}{b}}$$

$$\bullet \quad \sqrt[n]{a^m} = a^{\frac{m}{n}} = a^{\frac{mp}{np}} = \sqrt[np]{a^{mp}}$$

例題)

$$(I)\sqrt[3]{4}\sqrt[3]{16}$$

$$(II)\frac{\sqrt[6]{27}}{\sqrt[6]{3}}$$

$$(III) \sqrt[3]{\sqrt{125}}$$

(ポイント)

計算するとき、底は一番_____に合わせると良い

(演習)

$$(i) 3^{\frac{1}{2}} \times 3^{-\frac{1}{3}} \div 3^{\frac{1}{6}}$$
 $(ii) \sqrt[4]{2^3} \times \sqrt{2}$

(ii)
$$\sqrt[4]{2^3} \times \sqrt{2}$$

$$(iii)\sqrt[3]{36}$$

$$(iv) (\sqrt[6]{27})^2$$

$$(v)^{\frac{5\sqrt{128}}{\sqrt{4}}}$$

[応用]

$$(vi) \sqrt{2} \sqrt[6]{200} \sqrt[3]{25}$$

$$(vii) \sqrt{\frac{a\sqrt{a}}{\sqrt[4]{a}}}$$

$$(viii) (a^{\frac{1}{2}} + b^{-\frac{1}{2}})(a^{\frac{1}{2}} - b^{-\frac{1}{2}})$$

(4)指数関数のグラフ

$$y = 3^x \quad \angle \quad y = \left(\frac{1}{3}\right)^x$$

x	-3	-2	-1	0	1	2	3
3 ^x							
$\left(\frac{1}{3}\right)^x$							

(グ	ラ	フ	の性質)	y	=	a^x
----	---	---	------	---	---	-------

1	ウギは(の窓面)は	へ 年~ 唐母(の 第国)は	$\wedge \mathcal{A}$
	定義域(xの範囲)は	全体で値域(y の範囲)は	全体
┰.			⊥ rT`

2. a > 1 のとき_____(常に増加する)

0 < a < 1のとき (常に減少する)

- $\rightarrow \nu$ のある値に対して、それをみたすx が 1 つに定まる
- 3. (0,1) を通り、x軸に______する(yの値は0に近づくが0にはならない)

(注意)

 $a \le 0$, a = 1 のグラフは基本的に出でこない(出せない)

(理由)

 $y = 0^x$ については 0^0 の値が定まらない

 $y = 1^x$ についてはどんなxに対してもy = 1となるので直線になるから

a<0 のときの $y=a^x$ は $a^{\frac{3}{2}}=a^{1.5}$ などの指数部が整数以外の符号が定まらない

(まとめ)

底a が a > 1 の時と 0 < a < 1 でグラフが変わる(グラフは概形が分かれば良い)

→考える関数の底がどっちのグラフになるのか考えること

(5)指数の大小関係

例題)次の数の大小を比較せよ

$$(I)\sqrt[4]{5}, \sqrt[8]{15}$$

$$(II) \left(\frac{1}{2}\right)^{-\frac{1}{5}}, 2^{\frac{1}{3}}, 4^{\frac{1}{4}}$$

(不等式の性質)

a>0,b>0,nは有理数

 $a > b \rightarrow a^n > b^n$

指数関数は常に正の数になるので何乗しても良い

(演習)次の数の大小を比較せよ

$$(i)\sqrt[3]{4},\sqrt[6]{14}$$

$$(ii)(\frac{1}{3})^{-\frac{1}{2}}, 3^{\frac{1}{3}}, 9^{\frac{1}{8}}$$

(6)指数方程式

(解法)

- 2. 指数部の等式を解く

例題 1)

$$(I) 3^{x+2} = 27$$

$$\left(\text{II} \right) \left(\frac{1}{2} \right)^{x(x+3)} = 4$$

$$(i) 4^{x-3} = 64$$

$$(ii) \left(\frac{1}{3}\right)^{2x} = 27$$

[応用]

$$(iii) 3 \cdot 9^x = 1$$

例題 2)置き換え

$$(I) 2^{2x} - 3 \cdot 2^x + 2 = 0$$

(i)
$$3^{2x} + 8 \cdot 3^x - 9 = 0$$

(ii)
$$4^x - 5 \cdot 2^{x+2} + 64 = 0$$

[応用]

 $y = 4^x - 2^{x+1}$ の最小値とそのときの x の値を求めよ(ヒント: $t = 2^x$ とおく)

(7)指数不等式

(解法)

- 2. 指数部の不等式を解く(底によって不等号の向きが変わる)

$$a > 1$$
 のとき $a^x > a^y \rightarrow$

$$0 < a < 1$$
 のとき $a^x > a^y \rightarrow$

例題 1)

(I)
$$2^x > 8$$
 (II) $3^{x-2} \le \left(\frac{1}{3}\right)^3$

(演習)

$$(i) 4^{x-1} < 64$$

$$(ii) \left(\frac{1}{2}\right)^{x+3} \ge 64$$

例題 2)置き換え

$$(I) 3^{2x} + 3^x - 12 \ge 0$$

(i)
$$4^{2x} - 15 \cdot 4^x - 16 \ge 0$$

(ii)
$$4^x \le 2(1+2^{x-1})$$

$$(iii) \left(\frac{1}{9}\right)^x - \left(\frac{1}{3}\right)^{x-1} - 54 < 0$$

(8)[応用]式の値

(問題)関数 $y = 4^x + 4^{-x} - 4(2^x + 2^{-x}) + 7 \cdots$ ① について最小値を求めよ

(step1)
$$t = 2^x + 2^{-x}$$
 とおく

$$t^{2} =$$

①の式を t を使って表すと

t の定義域は______より

$$2^{x} + 2^{-x}$$

よって最小値はt = のとき

そのときの x は______より

②対数関数

(1)対数・対数関数とは

指数関数から派生してできた関数

例) log₂ 6,2 log₅ 4

$$2^x = 4 \rightarrow x = 2$$

$$2^x = 3 \rightarrow x = ? \leftarrow$$

よって a > 0, $a \neq 1$, R > 0

$$a^r = R \leftrightarrow r = \log_a R$$

対数関数とはR()が変化していく関数

(2)対数計算

<対数の性質> a > 0, $a \neq 1$, R > 0, S > 0, p は有理数

1.
$$\log_a RS = \log_a R + \log_a S$$

1.
$$\log_a RS = \log_a R + \log_a S$$
 Ø Ø $\log_2 15 = \log_2 3 \cdot 5 = \log_2 3 + \log_2 5$

2.
$$\log_a \frac{R}{S} = \log_a R - \log_a S$$
 Ø $\log_2 \frac{5}{3} = \log_2 5 - \log_2 3$

例)
$$\log_2 \frac{5}{3} = \log_2 5 - \log_2 3$$

3.
$$\log_a R^p = p \log_a R$$

例)
$$\log_2 5^3 = 3 \log_2 5$$

4.
$$\log_a a = 1$$

例)
$$\log_2 2 = 1$$

5.
$$\log_a 1 = 0$$

例)
$$\log_2 1 = 0$$

(証明)

1.
$$\log_a R = x$$
, $\log_a S = y$ として $\log_a RS = x + y$ を示す

$$RS = a^x \cdot a^y = a^{x+y}$$

よって
$$x + y = \log_a RS$$

2. 1と同様に
$$\log_a \frac{R}{S} = x - y$$
 を示す

$$\frac{R}{S} = \frac{a^x}{a^y} = a^{x-y}$$

$$\ \, \ \, \ \, \ \, x - y = \log_a \frac{R}{S}$$

3.
$$\log_a R = x$$
 として $\log_a R^p = px$ を示す

$$\log_a R = x \ \ \ \ \ \ \ R = a^x$$

両辺
$$p$$
乗すると $R^p = (a^x)^p = a^{px}$

よって
$$px = \log_a R^p$$

$$1 = \log_a a$$

$$0 = \log_a 1$$

例題)

(I) log₂ 16

(II) $log_3 \sqrt[3]{9}$

(III) $\log_3 12 + \log_3 36 + \log_3 \frac{1}{16}$

(IV) $\log_{10} \sqrt{2} - \frac{1}{2} \log_{10} \frac{1}{3} - \frac{3}{2} \log_{10} \sqrt[3]{6}$

(演習)

(i) log₄ 64

(ii) $log_5\frac{1}{\sqrt{125}}$

(iii)
$$\log_{10} 2 + \log_{10} \sqrt{15} - \frac{1}{2} \log_{10} \frac{3}{5}$$
 (iv) $3 \log_4 2 - \frac{1}{2} \log_4 7 + \log_4 \frac{\sqrt{7}}{2}$

(iv)
$$3\log_4 2 - \frac{1}{2}\log_4 7 + \log_4 \frac{\sqrt{7}}{2}$$

<底の変換公式>

次に底が異なっていたらどのように計算するのか

- →底を揃えると計算できる
- →底を揃うように変形したい

$$\log_a b = \frac{\log_c b}{\log_c a}$$

(証明)

両辺にcが底の対数を取ると

$$\log_c b = \log_c a^x = x \log_c a$$
$$x = \log_a b = \frac{\log_c b}{\log_c a}$$

(ポイント)揃える底は	にすること
-------------	-------

例題)以下の式を底の変換公式で変形せよ

(I)
$$\log_{81} 3\sqrt{3}$$

$$(\hspace{1mm} \text{II}\hspace{1mm})\hspace{1mm} \text{log}_{\frac{1}{25}}\hspace{1mm} 5\sqrt[4]{5}$$

(III) $\log_2 5 \cdot \log_5 8$

(IV) $\log_2 3 \cdot \log_3 8 \cdot \log_4 8$

(演習)以下の式を底の変換公式で変形せよ

(i) log₁₆ 1024

(ii) $\log_{\frac{1}{8}} 128$

(iii) $\log_3 6 \cdot \log_6 9$

(iv) $\log_4 3 \cdot \log_9 25 \cdot \log_5 2$

[応用](v)3^{4log₃ 2}

(3)対数関数のグラフ

$$y = \log_3 x \ge \log_{\frac{1}{3}} x$$

x	1 27	$\frac{1}{9}$	$\frac{1}{3}$	1	3	9	27
$\log_3 x$							
$\log_{\frac{1}{3}} x$							

(グラフの性質) $y = \log_a x$

1.	定義域(xの範囲)は	全体で値域(γの範囲)は	全体
т.			

2. a > 1 のとき_____(常に増加する)

0 < a < 1 のとき_____(常に減少する)

 $\rightarrow y$ のある値に対して、それをみたすx が 1 つに定まる

- 3. (1,0) を通り、y軸に $____$ する(xの値は0に近づくが0にはならない)
- 4. $y = a^x$ のグラフと _____に関して**対称**

[応用]逆関数(詳しくは数学Ⅲで)

xとyを入れ替えてできる関数を逆関数といい、y=xに関して対称となる

$$y = a^x \leftrightarrow x = \log_a y$$

右側の式のxとyを入れ替えると $y = \log_a x$

(他の例)

$$y = x^2 \ge y = \pm \sqrt{x}$$
 $y = \sin x \ge y = \sin^{-1} x$

(4)対数の大小関係

例題)

(I)
$$2 \log_3 7$$

($\[\] \] \log_2 3$, $\log_4 7$, $\log_8 28$

(演習)

(i)3, log₂9

(ii) $\log_3 5$, $\log_9 20$, $\log_{27} 126$

(5)対数方程式

(解法)

- 1. ____を確認する
- 2. を揃えて、左辺・右辺ともに同じ底の対数1つずつになるように変形する
- 3. 真数の等式を解く
- 4. 真数条件を満たしているか確認する

例題 1)

(I)
$$\log_2 x + \log_2(x - 2) = 3$$
 (II) $(\log_{10} x)^2 - 4\log_{10} x + 3 = 0$

[応用](III)
$$\log_2 8x - 6 \log_x 2 = 4$$

$$(i) \log_{12} x + \log_{12} (x+1) = 1$$

$$(ii)(\log_2 x)^2 - \log_2 x^3 + 2 = 0$$

[応用](iii)
$$\log_3 x - \log_x 81 = 3$$

[応用] x についての方程式 $\log_a(x-2) - \log_a(x+1) - \log_a(x-1) = 1$ が解を持つように、定数 a の値の範囲を求めよ。

(6)対数不等式

(解法)

- 1. ____を確認する
- 2. ___を揃えて、左辺・右辺ともに同じ底の対数1つずつになるように変形する
- 3. 真数の不等式を解く(底によって不等式の向きが変わる)

$$a > 1$$
 のとき $\log_a x < \log_a y$

0 < a < 1 のとき $\log_a x < \log_a y$ →

4. 真数条件と合わせる範囲を答える

例題)

(I)
$$\log_3 x + \log_3(2x - 1) > 1$$
 (II) $(\log_2 x)^2 + \log_2 x^2 - 3 \le 0$

[応用](III)
$$\log_2 x + 3 \log_x 4 - 7 < 0$$

(i)
$$2\log_2(x-1) < \log_2(3-x)$$

(ii)
$$(\log_3 x)^2 - \log_3 x^2 - 8 \le 0$$

[応用](iii)
$$\log_{\frac{1}{3}} x - 2 \log_x \frac{1}{9} + 3 > 0$$

[応用]関数 $y = -2(\log_2 x)^2 + 2\log_2 x^2 - 3\left(\frac{1}{4} \le x \le 8\right)$ の最大値・最小値とその時のxの値を求めよ。[ヒント: $t = \log_2 x$ とおく]

[応用] $\log_2 x + \log_2 y = 3$ のとき、4x + yの最小値を求めよ。 また、そのときのx,yの値を求めよ。

(7)常用対数

常用対数とは … 底が 10 の対数のこと $\log_{10} x$

何のために → 桁数問題

数が大きい場合、常用対数をとって計算すると値を小さくできる

例)

$$1000 \rightarrow \log_{10} 1000 = \log_{10} 10^3 = 3$$

以上より、計算した値によって、その数の桁数がわかる

→ 具体的に正確な値はわからないが、だいたいどのくらいか(桁数)はわかる

[補足]

$$a = \log_{10} 2 = 0.3010$$
, $b = \log_{10} 3 = 0.4771$ とする

 $\log_{10} 1 =$

 $\log_{10} 2 =$

 $\log_{10} 3 =$

 $\log_{10} 4 =$

 $\log_{10} 5 =$

 $\log_{10} 6 =$

 $\log_{10} 7 =$

 $\log_{10} 8 =$

 $\log_{10} 9 =$

例題 1)3²⁰の数の桁数と最高位の数字を求めよ

(但し、 $\log_{10} 2 = 0.3010$, $\log_{10} 3 = 0.4771$ とする)

(例題 2) $\left(\frac{1}{2}\right)^{20}$ を小数で表すとき、はじめて 0 でない数字が現れるのは小数第何位か。また、その数字はいくつか。(但し、 $\log_{10} 2 = 0.3010$, $\log_{10} 3 = 0.4771$ とする)

(演習 1) 6²⁰ の数の桁数と最高位の数字を求めよ。

(但し、 $\log_{10} 2 = 0.3010$, $\log_{10} 3 = 0.4771$ とする)

(演習 2) $\left(\frac{1}{3}\right)^{15}$ を小数で表すとき、はじめて 0 でない数字が現れるのは小数第何位か。また、その数字はいくつか。(但し、 $\log_{10} 2 = 0.3010$, $\log_{10} 3 = 0.4771$ とする)