2mV

ご注意:この日本語データシートは参考資料として提供しており、内容 が最新でない場合があります。製品のご検討およびご採用に際 しては、必ず最新の英文データシートをご確認ください。

2005年10月

LM358/LM2904

低消費電力デュアル汎用オペアンプ

概要

LM358 シリーズは 2 個の独立した、高利得、周波数補償内蔵のオペアンプを封入したもので、特に広範な動作電圧幅での単一電源でも動作するように設計されました。また、 ± 両電源によって各々のオペアンプ部を動作させる事もできます。 消費電流は少なく、供給される電源電圧には無関係で一定です。

アプリケーションとしては、トランスデューサ・アンプ、DC ゲイン・プロック、種々の通常のオペアンプ応用回路などがありますが、特に単一電源動作を必要とする場合に、簡便という点で LM358 シリーズが最適です。 本シリーズはデジタル・システムに用いられる標準的な+ $5V_{DC}$ 単一電源で直接に作動させることができ、これまでの様に \pm $15V_{DC}$ 等の \pm 両電源を全く必要としません。

LM358/LM2904 は、ナショナル セミコンダクター 社の micro SMD パッケージ技術を用いたチップサイズ・パッケージ (8 ピン micro SMD) でも供給されます。

特記すべき特性

リニア・モードでは、単一電源動作でも入力同相電圧幅はグラウンド・レベルまでカバーし、また出力電圧もグラウンド・レベルまで振幅をとることが可能。

ユニティ・ゲイン周波数が温度補償。 入力バイアス電流も温度面で補償。

利点

動作させるのに±両電源は不要。 ワン・チップに補償回路内蔵のオペアンプを2個封入。 直接GNDレベル近くの値まで検出可能で、しかも出力、V_{OUT}もGNDレベルまでスイング可能。 あらゆるロジック回路とレベル・コンパチブル バッテリ動作に最適な低消費電力

特長

8 ピン micro SMD チップサイズ・パッケージ (AN-1112 を参照)

ユニティ・ゲインとなる周波数までの補償回路内蔵

大直流電圧利得 100dB 広帯域 (ユニティ・ゲイン) 1 MHz

広帯域(ユニティ・ゲイン) (温度補償済み)

広い動作電圧範囲:

単一電源 $3V_{DC} \sim 32V_{DC}$ 両電源 $\pm 1.5V_{DC} \sim \pm 16V_{DC}$

極めて少ない消費電流 (500µA)

基本的に電源電圧の値には無関係

低入力オフセット電圧

入力同相電圧幅にグラウンド・レベルをも含む。 差動入力電圧幅は、電源電圧の値までとれる。

大出力電圧スイング可

Voltage Controlled Oscillator (VCO)

絶対最大定格

本データシートには軍用・航空宇宙用の規格は記載されていません。 関連する電気的信頼性試験方法の規格を参照ください。

	LM358/LM358A	LM2904
電源電圧 V ⁺	32V	26V
差動入力電圧	32V	26V
入力電圧	$-0.3V \sim +32V$	$-0.3V \sim +26V$
消費電力 (Note 1)		
モールド DIP	830 mW	830 mW
SO パッケージ (M)	530 mW	530 mW
micro SMD	435mW	
GND への出力回路短絡		
(アンプ1回路)(Note 2)		
V ⁺ 15V および T _A = 25	連続	連続
入力電流 (V _{IN} < - 0.3V) (Note 3)	50 mA	50 mA
動作温度範囲	0 ~ + 70	- 40 ~ + 85
保存温度範囲	- 65 ~ + 150	- 65 ~ + 150
リード温度、DIP		
(ハンダ付け、10 秒)	260	260
ハンダ付け条件		
DIP パッケージ		
ハンダ付け (10 秒)	260	260
SO パッケージ		
ベーパ・フェーズ (60 秒)	215	215
赤外線 (15 秒)	220	220
その他の表面実装法については、アプリケーション・ノートAN-450「表面実装	法と信頼性上における効果」を参照下さい。	
ESD 耐圧 (Note 10)	250V	250V

電気的特性 特記のない限以 V ⁺ = + 5.0V

Parameter	Conditions	LM358A			Units
		Min	Тур	Max	
Input Offset Voltage	(Note 5), T _A = 25°C		2	3	mV
Input Bias Current	$I_{IN(+)}$ or $I_{IN(-)}$, $T_A = 25^{\circ}C$,		45	100	nA
	V _{CM} = 0V, (Note 6)				
Input Offset Current	$I_{IN(+)} - I_{IN(-)}, V_{CM} = 0V, T_A = 25^{\circ}C$		5	30	nA
Input Common-Mode	V ⁺ = 30V, (Note 7)	0		V+-1.5	V
Voltage Range	(LM2904, $V^+ = 26V$), $T_A = 25^{\circ}C$				
Supply Current	Over Full Temperature Range				
	R _L = ∞ on All Op Amps				
	$V^{+} = 30V \text{ (LM2904 } V^{+} = 26V)$		1	2	mA
	V ⁺ = 5V		0.5	1.2	mA

電気的特性 特記のない限り、V ⁺ = + 5.0V

Parameter	Conditions		LM358 LM2904				Units	
		Min	Min Typ Max		Min	Тур	Max	
Input Offset Voltage	(Note 5) , T _A = 25°C		2	7		2	7	mV
Input Bias Current	$I_{IN(+)}$ or $I_{IN(-)}$, $T_A = 25^{\circ}C$, $V_{CM} = 0V$, (Note 6)		45	250		45	250	nA
Input Offset Current	$I_{IN(+)} - I_{IN(-)}, V_{CM} = 0V, T_A = 25^{\circ}C$		5	50		5	50	nA
Input Common-Mode	V ⁺ = 30V, (Note 7)	0		V+-1.5	0		V+-1.5	V
Voltage Range	(LM2904, $V^+ = 26V$), $T_A = 25^{\circ}C$							
Supply Current	Over Full Temperature Range							
	R _L = ∞ on All Op Amps							
	$V^{+} = 30V \text{ (LM2904 } V^{+} = 26V)$		1	2		1	2	mA
	V ⁺ = 5V		0.5	1.2		0.5	1.2	mA

電気的特性 特記のない限り、V ⁺ = + 5.0V (Note 4)

Parameter		Conditions		LM358	Α	Units				
raiameu	5 1	Conditions	Min	Тур	Max					
Large Signal Vol	tage	V ⁺ = 15V, T _A = 25°C,								
Gain		$R_L \ge 2 \text{ k}\Omega$, (For $V_O = 1V$	25	100		V/mV				
		to 11V)								
Common-Mode		$T_A = 25^{\circ}C$,	0.5	0.5		I.D.				
Rejection Ratio		$V_{CM} = 0V \text{ to } V^{+}-1.5V$	65	85		dB				
Power Supply		V ⁺ = 5V to 30V								
Rejection Ratio		(LM2904, V ⁺ = 5V	65	100		dB				
		to 26V), T _A = 25°C								
Amplifier-to-Amp	lifier	f = 1 kHz to 20 kHz, T _A = 25°C		400						
Coupling		(Input Referred), (Note 8)		-120		dB				
Output Current	Source	$V_{IN}^+ = 1V,$								
		$V_{IN}^- = 0V,$		40	40	40		00 40		
		$V^{+} = 15V,$	20			mA				
		$V_{O} = 2V, T_{A} = 25^{\circ}C$								
	Sink	$V_{IN}^{-} = 1V, V_{IN}^{+} = 0V$								
		V ⁺ = 15V, T _A = 25°C,	10	20		mA				
		$V_O = 2V$								
		$V_{IN}^- = 1V,$								
		$V_{IN}^+ = 0V$	10							
		$T_A = 25^{\circ}C, V_O = 200 \text{ mV},$	12	2 50)	μΑ				
		V ⁺ = 15V								
Short Circuit to G	round	T _A = 25°C, (Note 2),		40						
		V ⁺ = 15V		40	60	mA				
Input Offset Volta	age	(Note 5)			5	mV				
Input Offset Volta	age	$R_S = 0\Omega$	1							
Drift				7	20	μV/°C				
Input Offset Current		$I_{IN(+)} - I_{IN(-)}$			75	nA				
Input Offset Current		$R_S = 0\Omega$		40	200					
Drift				10	300	p A /°C				
Input Bias Currer	nt	I _{IN(+)} or I _{IN(-)}	1	40	200	nA				
Input Common-M	lode	V ⁺ = 30 V, (Note 7)								
Voltage Range		(LM2904, V ⁺ = 26V)	0		V*-2	V				

電気的特性 特記のない限り、V + = + 5.0V (Note 4) (つづき)

Parameter		Condition		LM358A			Units	
raiameu		Condition	15	Min	Тур	Max		
Large Signal Vol	tage	V ⁺ = +15V						
Gain		$(V_O = 1V \text{ to } 11V)$		15			V/mV	
		$R_L \ge 2 k\Omega$						
Output	V _{OH}	V ⁺ = +30V	$R_L = 2 k\Omega$	26			V	
Voltage		$(LM2904, V^+ = 26V)$	$R_L = 10 \text{ k}\Omega$	27	28		V	
Swing	V _{OL}	$V^+ = 5V$, $R_L = 10 \text{ k}\Omega$			5	20	mV	
Output Current	Source	$V_{IN}^{+} = +1V, V_{IN}^{-} = 0V$	$V_{IN}^{+} = +1V, V_{IN}^{-} = 0V,$					
		V ⁺ = 15V, V _O = 2V		10	20		mA	
	Sink	$V_{IN}^- = +1V, V_{IN}^+ = 0V,$		_			_	
		$V^+ = 15V, V_O = 2V$		5	8		mA	

電気的特性 特記のない限り、V⁺ = + 5.0V (Note 4)

Parameter		Conditions		LM358			LM2904		
		Conditions	Min Typ		Max	Min Typ		Max	
Large Signal Voltage		$V^+ = 15V, T_A = 25^{\circ}C,$							
Gain		$R_L \ge 2 k\Omega$, (For $V_O = 1V$	25	100		25	100		V/mV
		to 11V)							
Common-Mode		$T_A = 25^{\circ}C$,		0.5		50	70		
Rejection Ratio		$V_{CM} = 0V \text{ to } V^{+}-1.5V$	65	85		50	70		dB
Power Supply		V ⁺ = 5V to 30V							
Rejection Ratio		(LM2904, V ⁺ = 5V	65	100		50	100		dB
		to 26V), T _A = 25°C							
Amplifier-to-Amplifier		f = 1 kHz to 20 kHz, T _A = 25°C		400			100		
Coupling		(Input Referred), (Note 8)		-120			-120		dB
Output Current	Source	$V_{IN}^+ = 1V,$							
		$V_{IN}^- = 0V,$	00	40			40		
		$V^{+} = 15V,$	20	40		20	40		mA
		$V_{O} = 2V, T_{A} = 25^{\circ}C$							
	Sink	$V_{IN}^- = 1V, V_{IN}^+ = 0V$							
		V ⁺ = 15V, T _A = 25°C,	10	20		10	20		mA
		$V_{O} = 2V$							
		$V_{IN}^- = 1V,$							
		$V_{IN}^+ = 0V$	10	50		10	50		
		$T_A = 25^{\circ}C, V_O = 200 \text{ mV},$	12	50		12	50		μΑ
		V ⁺ = 15V							
Short Circuit to Grour	nd	T _A = 25°C, (Note 2),		40	60		40	60	A
		V ⁺ = 15V		40	60		40	60	mA
Input Offset Voltage		(Note 5)			9			10	mV
Input Offset Voltage		$R_S = 0\Omega$		7			7		µV/°C
Drift									μν/ С
Input Offset Current		$ I_{IN(+)} - I_{IN(-)} $			150		45	200	nA
Input Offset Current		$R_S = 0\Omega$		10			10		pA/°C
Drift							10		pA/ C
Input Bias Current		$I_{IN(+)}$ or $I_{IN(-)}$		40	500		40	500	nA
Input Common-Mode		V ⁺ = 30 V, (Note 7)	0		V+-2	0		V+ -2	V
Voltage Range		$(LM2904, V^+ = 26V)$			v -2	U		v -2	V

電気的特性 特記のない限以 V + = + 5.0V (Note 4) (つづき)

Parameter		Condition			LM358 LM29		LM2904	004 Units		
- arameter		Condition	15	Min Typ		Max	Min Typ Max		Max	
Large Signal Voltage		V ⁺ = +15V								
Gain		$(V_O = 1V \text{ to } 11V)$		15			15			V/mV
		$R_L \ge 2 k\Omega$								
Output	V _{OH}	V ⁺ = +30V	$R_L = 2 k\Omega$	26			22			V
Voltage		$(LM2904, V^+ = 26V)$	$R_L = 10 \text{ k}\Omega$	27	28		23	24		V
Swing	V _{OL}	$V^+ = 5V$, $R_L = 10 \text{ k}\Omega$			5	20		5	100	mV
Output Current	Source	$V_{IN}^{+} = +1V, V_{IN}^{-} = 0V$,	10	00		10	20		
		$V^+ = 15V, V_O = 2V$		10	20		10	20		mA
	Sink	$V_{1N}^{-} = +1V, V_{1N}^{+} = 0V$,	5	0					
		$V^+ = 15V, V_O = 2V$		٥	8		5	8		mA

- Note 1: 高湿動作時には、LM358/LM358A/LM2904 は、いずれも、プリント基板上にハンダ付けされ強制空冷を行なわない場合には、最高接合部温度 125 及び DIP パッケージの場合は 120 /W、micro SMD は 230 /W の熱抵抗を考慮しながら定格を下げて使用しなくてはなけません。 最大許容損失は 2 つのオペアンプの合計であり、可能な場合には外付けの抵抗を使って、それぞれの許容損失に対して限度までコントロールするか、損失を下げるようにします。
- Note 2: 出力が V ⁺ とショートした場合には、デバイスは極度に温度上昇してしまい破壊につながってしまいます。最大出力電流は約 40mA であって、V ⁺ の値には左右されません。また電源電圧が + 15V よりた高くなっていると、連続短絡は許容損失定格を越えてしまい、デバイスが破損することになります。また 2 個のアンプが同時に短絡してしまっている時には、デバイスは許容損失をこえ、焼損する原因となります。
- Note 3: この入力電流は、いずれかの入力端子が負電圧でドライブされている時にのみ存在します。これは、入力部 PNP トランジスタのコレクタベース接合が順方向にパイアスされてしまうので、あたかも入力部のクランプ・ダイオードとして動作するからです。これ以外に生また、IC チップ上に存在する NPN の寄生トランジスタによる原因もあります。 即ち、このトランジスタが動作すると、一入力でも負にドライブされている間、オペアンプ出力電圧が V * レベル(大入力のオーバドライブ時にはグラウンド・レベル)となるよう働いてしまうからです。 但し、これらはデバイスの破壊にはつながらず、入力電圧のうち負電圧となっているものが 0.3V_{DC} より生大きくなってくれば(25 の場合)、ただちに元の正常動作に復帰します。
- Note 4: これらのスペックは特記がない限り、LM358/LM358A は、0 T_A + 70 、LM2904 は、- 40 T_A + 85 とします。
- Note 5: 両入力端子を $R_S=0$ で GND に接続した時の出力は $V_0\cong 1.4V_{DC}$ となます。 電源電圧 $V^+=5V\sim 30V_{DC}$ 、全ての同相入力電圧範囲 $(0V_{DC}\sim V^+-1.5V_{DC})$ 内で有効 (25-)。 LM2904 では、 $V^+=5V\sim 26V$ です。
- Note 6: 入力電流の流れる向きは PNP 入力のため、IC 内部から流出する方向です。この値は基本的にはコンスタントであって、出力の状態にも左右されないため負荷の変動に対しては入力電流は変化しません。
- Note 8: 外付け部品が近接していると、これら部品間の浮遊容量によって結合が起きがちであるので注意を要します。この現象はより高い周波数で容量が増加するため典型的となます。
- Note 9: 省略
- Note 10: 使用した試験回路は、人体モデルにもとづき直列抵抗 1.5k と100pF のコンデンサから成る回路を使用し、各端子に放電させます。

代表的な性能特性

Input Current

Supply Current

Voltage Gain

Open Loop Frequency Response

Common-Mode Rejection Ratio

代表的な性能特性(つづき)

Voltage Follower Pulse Response

Voltage Follower Pulse Response (Small Signal)

Large Signal Frequency Response

Output Characteristics Current Sourcing

Output Characteristics Current Sinking

Current Limiting

代表的な性能特性(つづき)

Input Current (LM2902 only)

Voltage Gain (LM2902 only)

アプリケーション・ヒント

LM358 シリーズは、単一電源動作のオペアンプであり、真に差動入力で動作し、 $0V_{DC}$ の入力同相電圧でもリニア・モードを有しています。またいずれも広範な電源電圧で動作して、特性、性能にあまり変化がない特長を持っています。 25 での増幅器動作では、電源電圧を $2.3V_{DC}$ としても、ほとんど問題が起きることはありません。

次の各点に対しあらかじめ注意を払う必要があります。どの IC に対しても、極性を間違えて電源電圧を供給する事は絶対にしてはなりません。またテスト・ソケットに逆挿入してしまうと無限大のサージ電流が IC 内部に存在するダイオード類に順方向となって流入してしまうため、内部結線を焼損したり、デバイス破壊の原因となります。

このシリーズの IC は大レベルの差動入力電圧を容易に与えることができるようになっていて、入力部に保護用のダイオードが不要であるため入力電流を取られることもないので、大レベルの入力電圧を印加できます。この差動入力電圧は IC を破壊することなく、V *を超えて値を与えることが可能ですが、25 において、-0.3V_{DC}以下の負電圧が与えられる場合には何等かの防護が必要です。通常、IC の入力端子に対しクランプ・ダイオード 1 個を抵抗を用いて接続します。

消費電流を少なくするため、このシリーズのオペアンプは小信号に対して出力段は A 級として動作し、大信号モードでは B 級の増幅器として動作します。これにより、この増幅器はかなり大きいソース及びシンク電流をとることができます。従って、NPN 及びPNPのトランジスタを外部接続することによりカーレント・ブースタとして動作させ、オペアンプの出力を増加させることが可能です。出力を電流シンクとして使用する場合は、内部のバーティカルPNPトランジスタをバイアスするために出力電圧をグラウンドよりダイオード 1 個分高くする必要があります。

容量性負荷の AC 動作のアプリケーションでは、出力端子とグラウンド間に抵抗器 1 個を接続し、A 級動作のバイアス電流を増加させ、また、クロス・オーバ歪を減らすようにします。 但し、DC 動作のように負荷がダイレクトに接続される様なアプリケーション例では、クロス・オーバ歪は発生しません。

容量性負荷がダイレクトに出力に接続されている時は、増幅器の 閉回路としての安定性を損うことになり、ワーストケースの非反転 ユニティ・ゲイン回路の場合では 50pF までが適応できます。ま た、大容量負荷をドライブする必要がある場合には、閉回路利 得を大きくとるとか抵抗による分離等を考慮しなければなりませ ん。

LM358 のバイアス回路は、電源電圧の変動とは関係なく一定の電流を与えるようになっているので、 $3V_{DC} \sim 30V_{DC}$ の広範な範囲の電源電圧で動作可能です。

出力側の短絡、即ち、グラウンド間、あるいは正の電源との場合は、共に短時間でなければなりません。 短絡が起きると、デバイスは、短絡電流による内部結線の焼損だけではなく、むしろ、IC チップの許容損失の増大により接合部が過大温度となってしまうため基本的に IC は破壊してしまうのです。 直接的な短絡が、1個以上の増幅器で同時に発生するとすれば、仮りに、許容損失制限用外部抵抗が出力リードと直列に入っている等の適切な保護回路が無い場合には、ICトータルの最大損失を越えて破壊するレベルに達してしまいます。 本シリーズのオペアンプは、25 において大きな値のソース出力電流を供給できるので、通常の標準的なICオペアンプより走大きい出力電流を供給できるので、通常の標準的なICオペアンプより走大きい出力電流を温度が上昇した場合にも流せる性能を有しています("代表的な性能特性"を参照のこと)

ここに掲載してある典型的なアプリケーション例の各回路は、単一電源によるものを強調して掲げてありますが、当然、±両電源が供給できる場合には、他の標準的なICオペアンプの回路が適当です。一般にこのICは、単一電源方式によって作動させるので、疑似グラウンド(V + /2 リファレンス・バイアス電圧)を中心としてその上下の電圧によって動作することになります。ここには多くのアプリケーション例が掲げられていますが、いずれも広範な入力同相電圧(グラウンド・レベルを含む)という特長を生かしてあります。ほとんどの場合は、また入力のバイアスは不必要で入力電圧はグラウンド・レベルとすることも可能です。

ピン配置図

DIP/SO Package

8-Bump micro SMD

Top View (Bump Side Down)

LM358BP micro SMD Marking Orientation

LM2904IBP micro SMD Marking Orientation

LM358TP micro SMD Marking Orientation

LM2904ITP micro SMD Marking Orientation

Top View

製品情報

Package	Temperat	ure Range	NCO D	
- ackage	0°C to 70°C	NSC Drawing		
SO-8	LM358AM	LM2904M		
	LM358AMX	LM2904MX	14004	
	LM358M		M08A	
	LM358MX			
8-Pin Molded DIP	LM358AN	LM2904N	Noor	
	LM358N		N08E	
8-Bump micro	LM358BP	LM2904IBP	BPA08AAB	
SMD	LM358BPX	LM2904IBPX	0.85 mm Thick	
8-Bump micro	LM358TP	LM2904ITP	TDAGGAAA	
SMD	LM358TPX	LM2904ITPX	TPA08AAA	
Lead Free			0.50 mm Thick	

Non-Inverting DC Gain (0V Output)

DC Summing Amplifier ($V_{IN'S} \ge 0 \ V_{DC}$ and $V_O \ge 0 \ V_{DC}$)

ここで、 $V_0 = V_1 + V_2 + V_3 + V_4$ $V_0 > 0V_{DC}$ を保つため $(V_1 + V_2)$ $(V_3 + V_4)$

Power Amplifier

 $V_{\rm IN}$ = $0V_{\rm DC}$ の場合 $V_{\rm O}$ = $0V_{\rm DC}$ $A_{\rm V}$ = 10

 $[*]I_{IN}$ は温度に依存しないため、R は不要。

"BI-QUAD" RC Active Bandpass Filter

 $f_o = 1 \text{ kHz}$ Q = 50 $A_v = 100 (40 \text{ dB})$

Fixed Current Sources

Part of the second of the seco

 $I_2 = \left(\frac{R1}{R2}\right)I_1$

Lamp Driver

LED Driver

Current Monitor

$$V_O = \frac{1V (I_L)}{1A}$$

*(I_L を小さくするには R1 を大きくする) $V_L - V^+ - 2V$

Driving TTL

Voltage Follower

$$V_O = V_{IN}$$

Pulse Generator

Squarewave Oscillator

Pulse Generator

Low Drift Peak Detector

HIGH Z_{IN} LOW Z_{OUT}

High Compliance Current Sink

1/2 LM358

Comparator with Hysteresis

 I_{O} = 1 amp/volt V_{IN} $(I_{O}$ を小さくするには R_{E} を大きくする)

Voltage Controlled Oscillator (VCO)

* 広範囲制御電圧: $0V_{DC}$ V_{C} 2 (V $^{+}$ - $1.5V_{DC})$

単一電源動作回路でのアプリケーション $(V^+$ = $5.0V_{DC})$ (つづき)

AC Coupled Inverting Amplifier

Ground Referencing a Differential Input Signal

AC Coupled Non-Inverting Amplifier

 $A_V = 1 + \frac{R2}{R1}$

A_v = 11(この場合)

DC Coupled Low-Pass RC Active Filter

 $f_0 = 1 \text{ kHz}$

Q = 1

 $A_V = 2$

単一電源動作回路でのアプリケーション $(V^+$ = $5.0V_{DC})$ (つづき)

Bandpass Active Filter

 $f_0 = 1 \text{ kHz}$ Q = 25

High Input Z, DC Differential Amplifier

For
$$\frac{R1}{R2}=\frac{R4}{R3}$$
 (CMRR はこの抵抗比の一致に依存)の場合
$$V_O=1+\frac{R4}{R3}~(V_2-V_1)$$
 ここでは、 $V_O=2~(V_2-V_1)$

Photo Voltaic-Cell Amplifier

Bridge Current Amplifier

For δ << 1 and $R_f>>\,R$

$$V_{O} \cong V_{REF} \left(\frac{\delta}{2}\right) \frac{R_{f}}{R}$$

High Input Z Adjustable-Gain DC Instrumentation Amplifier

If R1 = R5 & R3 = R4 = R6 = R7 (CMRR は一致に依存)
$$V_O = 1 + \frac{2R1}{R2} \; (V_2 - V_1)$$
 ここでは、 $V_O = 101 \; (V_2 - V_1)$

Using Symmetrical Amplifiers to Reduce Input Current (General Concept)

等価回路(各アンプ共通)

外形寸法図 特記のない限りinches (millimeters)

SOIC Package (M)
NS Package Number M08A

Molded Dip Package (N) NS Package Number N08E

外形寸法図 単位は millimeters (つづき)

DIMENSIONS ARE IN MILLIMETERS
DIMENSIONS IN () FOR REFERENCE ONLY

TOP SIDE COATING

-BUMP A1 CORNER

8-Bump micro SMD NS Package Number BPA08AAB $X_1 = 1.285$ $X_2 = 1.285$ $X_3 = 0.850$

NOTES: 特記のない限り

- 1. エポキシ・コーティング
- 2. 63Sn/37Pb EUTECTIC バンプ
- 3. NSMD (Non-Solder Mask Defined) のランディング・パッドを推奨。
- 4. 端子 A1 はマーキング面 (エポキシ・コーティング面)から見て左下にあり、他の端子は反時計回りに番号が付けられています。
- 5. 図中の XXX はパッケージ・サイズを表しています。 X_1 はパッケージ幅、 X_2 はパッケージ長、 X_3 はパッケージ高です。
- 6. JEDEC 登録 MO-211、VARIATION BC を参照。

外形寸法図 単位は millimeters (つづき)

NOTES: 特記のない限り 1. エポキシ・コーティング

- 2. NSMD (Non-Solder Mask Defined) のランディング・パッドを推奨。
- 3. 端子 A1 はマーキング面(エポキシ・コーティング面)から見て左下にあり、他の端子は反時計回りに番号が付けられています。
- 4. 図中の XXX はパッケージ・サイズを表しています。 X_1 はパッケージ幅、 X_2 はパッケージ長、 X_3 はパッケージ高です。
- 5. JEDEC 登録 MO-211、VARIATION BCを参照。

8-Bump micro SMD Lead Free NS Package Number TPA08AAA $X_1 = 1.285$ $X_2 = 1.285$ $X_3 = 0.500$

ナショナルは記述したいかなる回路についても、その使用に関して責任を負うものではありません。特許の使用許諾を与えることを意味するものではありません。ナショナルは当該回路および仕様を任意の時点で予告なく変更する権利を有します。製品の最新情報については www.national.com をご覧ください。

生命維持装置への使用について

弊社の製品はナショナル セミコンダクター社の書面による許可なくしては、生命維持用の装置またはシステム内の重要な部品として使用することはできません。

- 1. 生命維持用の装置またはシステムとは (a) 体内に外科的に使用されることを意図されたもの、または (b) 生命を維持あるいは支持するものをいい、ラベルにより表示される使用法に従って適切に使用された場合に、これの不具合が使用者に身体的障害を与えると予想されるものをいいます。
- 2. 重要な部品とは、生命維持にかかわる装置またはシステム内のすべての部品をいい、これの不具合が生命維持用の装置またはシステムの不具合の原因となりそれらの安全性や機能に影響を及ぼすことが予想されるものをいいます。

禁止物質不使用に関する適合

ナショナル セミコンダクターの製品および梱包材料は、CSP-9-111C2 規格 (Customer Products Stewardship Specification)、CSP-9-111S2 規格 (Banned Substances and Materials of Interest Specification) の規約に準拠しており、CSP-9-111S2 に定義された禁止物質を使用しておりません。

ナショナル セミコンダクター ジャパン株式会社

本社/〒 135-0042 東京都江東区木場 2-17-16

TEL.(03)5639-7300

技術資料(日本語/英語)はホームページより入手可能です。

その他のお問い合わせはフリーダイヤルをご利用ください。

www.national.com/jpn/

0120-666-116