

PERANCANGAN SISTEM MICROPAYMENT MENGGUNAKAN TEKNOLOGI NEAR FIELD COMMUNICATION

Arina Listyarini Dwiastuti (13512006)

LATAR BELAKANG

Perkembangan transaksi semakin canggih dan mudah

Transaksi dengan jumlah kecil namun sering dilakukan disebut micropayment

Micropayment sudah dijumpai di Indonesia

- Contoh: E-Toll Mandiri, Flazz BCA, Kartu Commet
- Memanfaatkan teknologi NFC

NFC: teknologi koneksi jarak pendek tanpa kabel

NFC + micropayment = aman

RUMUSAN, TUJUAN, BATASAN

Rumusan masalah

Bagaimana rancangan sistem *micropayment* yang aman menggunakan teknologi NFC

Tujuan

Rancangan sistem micropayment yang aman menggunakan teknologi NFC

Batasan masalah

- Perancangan sistem micropayment menggunakan teknologi NFC
- Menerapkan metode pengamanan yang sesuai pada transaksi micropayment yang dirancang

ANALISIS SISMIC

ANALISIS KEBUTUHAN SISMIC

SISMIC dapat melakukan transaksi top-up saldo kartu.

- SISMIC dapat menambah saldo kartu.
- SISMIC dapat memberikan biaya pembayaran top-up saldo kartu ke penerbit kartu.
- SISMIC dapat menyimpan riwayat transaksi top-up saldo kartu ke dalam kartu.
- SISMIC dapat menyimpan riwayat transaksi top-up saldo kartu ke dalam basisdata.

SISMIC dapat melakukan transaksi pembelian menggunakan kartu.

- SISMIC dapat mengurangi saldo kartu.
- SISMIC dapat memberikan biaya transaksi pembelian pemilik kartu ke merchant.
- SISMIC dapat menyimpan riwayat transaksi pembelian ke dalam kartu.
- SISMIC dapat menyimpan riwayat transaksi pembelian saldo kartu ke dalam basisdata.

SISMIC dapat menunjukkan saldo kartu pada pemilik kartu.

SISMIC dapat menunjukkan riwayat transaksi kartu pada pemilik kartu.

Kartu SISMIC memiliki masa berlaku (tanggal kadaluarsa).

HARDWARE SISMIC

Kartu SISMIC (tag NFC)

Smartphone (NFC & Android)

Mesin EDC, yang dimiliki oleh merchant.

disimulasi dengan NFC reader & laptop

Mesin ATM, yang dimiliki oleh penerbit kartu.

disimulasi dengan NFC reader & laptop

GAMBARAN UMUM SISMIC

Diagram usecase

ANALISIS KEBUTUHAN KEAMANAN SISMIC

Confidentiality

Data yang ada pada SISMIC bersifat rahasia & tidak dapat diakses oleh orang yang tidak berhak.

Integrity

Data SISMIC tidak boleh berubah tanpa izin dari pihak yang berhak.

Availability

Ketika berbagai pihak menggunakan SISMIC, layanan dan data SISMIC harus dapat digunakan.

Authentication

Transaksi SISMIC hanya dapat dilakukan pada hardware dan software yang resmi

Authorization

Semua pihak melakukan transaksi secara legal sesuai tugas dan perannya masing-masing pada SISMIC.

Accountability

Segala aktivitas yang terjadi di SISMIC ada catatannya.

Non-repudiation

Tidak ada pihak yang dapat menyanggah suatu transaksi yang telah terjadi.

PERANCANGAN SISMIC

OPERASI APLIKASI SISMIC

Transaksi top-up kartu SISMIC

Via smartphone, ATM, dan merchant

Transaksi pembelian

Via smartphone dan merchant

Lihat Saldo

Via smartphone, ATM, dan merchant

Lihat Riwayat Transaksi

Lihat Masa Berlaku Kartu SISMIC

Via smartphone, ATM, dan merchant

TRANSAKSI TOP-UP

Via Smartphone

TRANSAKSI TOP-UP

Via ATM

TRANSAKSI TOP-UP

Via merchant

TRANSAKSI PEMBELIAN

Via *smartphone* (tanpa parameter)

TRANSAKSI PEMBELIAN

Via *merchant* (tanpa parameter)

TRANSAKSI PEMBELIAN

Via merchant (dengan parameter)

LIHAT SALDO

Via smartphone

LIHAT SALDO

Via ATM

LIHAT SALDO

Via merchant

LIHAT RIWAYAT TRANSAKSI

Via smartphone

LIHAT MASA BERLAKU

Via smartphone

LIHAT MASA BERLAKU KARTU SISMIC

Via ATM

LIHAT MASA BERLAKU KARTU SISMIC

Via merchant

STRUKTUR PENYIMPANAN KARTU SISMIC

Memori 1KB, 16 sektor

- 1 sektor: 4 blok - 1 blok: 16 bytes

Konfigurasi penyimpanan:

- Sektor ke-0 Blok ke-1: tanggal masa berlaku kartu
- Sektor ke-0 Blok ke-2: saldo kartu
- Sektor ke-1 5 Blok ke-0: waktu transaksi pembelian atau top-up
- Sektor ke-1 5 Blok ke-1: nominal transaksi pembelian atau top-up
- Sektor ke-1 5 Blok ke-2: jenis transaksi (pembelian/top-up)
- Sektor ke-6 14 Blok ke-0: untuk transaksi dengan parameter
- Sektor ke-6 14 Blok ke-1: iv dari sektor ke-6 14 blok ke-0
- Sektor ke-15 Blok ke-1: iv dari sektor ke-0 slok ke-1
- Sektor ke-15 Blok ke-2: iv dari sektor ke-0 slok ke-2

Menggunakan algoritma round-robin

HAK AKSES KARTU SISMIC

Sektor	Blok	Data	Hak Akses			
			Pemilik Kartu	Penerbit Kartu	Merchant	Payment Gateway
0	0	Nomor kartu	Baca	Baca	-	-
	1	Tanggal masa berlaku kartu	Baca	Baca	Baca	-
	2	Saldo Kartu	Baca	Baca, tulis	Baca, tulis	-
1-5	0	Riwayat waktu transaksi pembelian atau top-up dalam bentuk epoch	Васа	Baca, tulis	-	-
	1	Riwayat nominal transaksi pembelian atau top-up	Baca	Baca, tulis	-	-
	2	Riwayat jenis transaksi apakah transaki merupakan transaksi pembelian atau top-up	Baca	Baca, tulis	-	-
6-14	0	Parameter jarak atau waktu pertama kartu disentuh pada reader	_	-	Baca, tulis	-
	1	lv hasil dari enkripsi blok ke-0 di sektor 6 sampai 14	-	-	-	-
	2	-	-	-	-	-
15	1	lv hasil dari enkripsi blok ke-1 di sektor 0	-	-	-	-
	2	lv hasil dari enkripsi blok ke-2 di sektor 0	-	-	-	-

BASISDATA

Entity-Relationship

Diagram

BASISDATA RELASIONAL

Basisdata SISMIC

BASISDATA RELASIONAL

Basisdata Merchant

BASISDATA RELASIONAL

Basisdata Payment Gateway

Diagram Kelas ATM

Diagram Kelas Merchant

Diagram Kelas Web Service SISMIC

Diagram Kelas Web Service Payment Gateway

Diagram Kelas Web Service Merchant

Diagram Kelas ATM

Diagram Kelas Merchant

Diagram Kelas Web Service SISMIC

Diagram Kelas

Web Service Payment Gateway

Diagram Kelas Web Service Merchant

ASPEK KEAMANAN SISMIC

Confidentiality

- Mengubah key A dan key B dari semua sektor di kartu SISMIC dengan manajemen kuncinya diatur di SAM
- Melindungi basisdata SISMIC dengan enkripsi dan password

Integrity

- Menerapkan enkripsi dan dekripsi pada SISMIC
- Pencatatan (logging) segala aktivitas yang terjadi di mesin EDC dan mesin ATM

Availability

 Membuat sistem cadangan redundan sehingga jika sistem utama ada gangguan, ada sistem cadangan yang dapat menggantikannya

Authentication

- SISMIC menyimpan identitas mesin EDC yang dikeluarkan resmi oleh penerbit kartu
- Menerapkan digital signature

Authorization

* Key A atau key B yang digunakan untuk melakukan transaksi dengan kartu SISMIC berbeda-beda tiap pihak

Accountability dan Non-repudiation

Pencatatan (logging) segala aktivitas yang terjadi di SISMIC

MANAJEMEN & DISTRIBUSI KUNCI

Manajemen dan distribusi kunci akan diatur pada Secure Access Module (SAM).

SAM menyimpan dan mengolah kunci pada SISMIC ($key A \rightarrow baca kartu, key B \rightarrow tulis kartu, kunci AES \rightarrow kriptografi).$

SAM sudah memiliki sistem kriptografi sendiri \rightarrow kunci aman.

SAM punya kunci master \rightarrow diturunkan menjadi kunci-kunci lain (PBKDF2).

Kunci AES (16 bytes) → salt: idKartu (8 bytes) + bil.random (12 bytes) XOR bil.random (20 bytes)

Key A & Key B (6 bytes) → salt: idKartu (8 bytes) + posisi sektor (1 bytes) + bil.random (11 bytes) XOR bil.random (20 bytes)

Key untuk merchant → salt: idKartu (8 bytes) + posisi sektor (1 bytes) + bil.random (11 bytes) XOR bil.random (20 bytes) XOR idMerchant (20 bytes)

SAM disimpan pada aplikasi

KRIPTOGRAFI PADA SISMIC

Enkripsi dan dekripsi: algoritma AES

Digital signature

- algoritma ECDSA.
- apakah pesan berasal dari pihak yang benar atau tidak

Proses:

- Kunci AES -> mengenkripsi pesan yang akan dikirim ke mesin pembaca kartu
- Pesan yang dienkripsi → diberi digital signature dengan kunci privat. dikirim ke mesin pembaca kartu
- Mesin pembaca kartu periksa digital signature dengan kunci publik
- •OK → pesan didekripsi dengan kunci AES dan instruksi dijalankan

IMPLEMENTASI

ARSITEKTUR SISMIC

KAKAS & LIBRARY

IDE NetBeans (bahasa Java)

Basisdata menggunakan NoSQL dan disimpan online di Firebase. Library Firebase versi 2.5.2.

CFX JAXWS untuk Heroku yang dibuat oleh Chamerling

API Java Smart Card I/O

Library Bouncy Castle (PBKDF2, AES, dan ECDSA)

LINGKUNGAN IMPLEMENTASI

Sistem operasi: Windows 10 64-bit

Bahasa pemrograman: Java

Basisdata: NoSQL dengan disimpan di Firebase

Web Service: CXF JAXWS di Heroku

HASIL IMPLEMENTASI

Aplikasi ATM

Aplikasi merchant

Aplikasi Smartphone SISMIC & merchant tidak diimplementasi

PENGUJIAN

TUJUAN & BATASAN

Tujuan: Membuktikan bahwa fungsionalitas aplikasi ATM dan *merchant* dapat berjalan dengan baik dan benar

Batasan: Aspek keamanan tidak diimplementasi semua \rightarrow celah keamanan tidak diuji

PERANGKAT & LINGKUNGAN

Perangkat: NFC reader & kartu Mifare Classic ukuran 1 KB

Lingkungan:

- Sistem operasi: Windows 10 64-bit
- Bahasa pemrograman: Java
- Basisdata: NoSQL dengan disimpan di Firebase
- Web Service: CXF JAXWS di Heroku

STRATEGI PENGUJIAN

Top-down testing → bug lebih cepat dan mudah ditemukan di awal

Blackbox -> menguji fungsionalitas program tanpa melihat kode program

KASUS, SKENARIO, DAN HASIL UJI

Kasus Uji Aplikasi ATM

- 1. Pengujian top-up saldo
- 2. Pengujian lihat saldo
- 3. Pengujian lihat masa berlaku

Kasus Uji Aplikasi Merchant

- 1. Pengujian transaksi pembelian tanpa parameter
- 2. Pengujian transaksi pembelian dengan parameter
- 3. Pengujian top-up saldo
- 4. Pengujian lihat saldo
- 5. Pengujian lihat masa berlaku

11/9/17

IF4092 - TUGAS AKHIR 2

KESIMPULAN HASIL UJI

Pengujian fungsionalitas aplikasi ATM & merchant = diterima

Skenario yang dilakukan pengujian berbeda dengan perancangan

KESIMPULAN & SARAN

KESIMPULAN

Perancangan sistem *micropayment* NFC selesai dirancang

Aplikasi ATM & merchant berhasil dibuat tetapi berbeda dari perancangan.

Aplikasi smartphone SISMIC & aplikasi smartphone merchant tidak berhasil diimplementasi

Aspek keamanan tidak diuji

SARAN

Implementasi perancangan diterapkan pada studi kasus yang lebih rinci & nyata

Aplikasi *smartphone* SISMIC & aplikasi *smartphone* SISMIC diimplementasi sesuai rancangan

Implementasi transaksi pembelian aplikasi *merchant* dikembangkan sesuai perancangan

Ditambah perancangan yang mengatasi transaksi yang gagal dilakukan.

Pengembangan pada implementasi kriptografi untuk NFC reader \rightarrow aspek keamanan dapat diuji.

Memikirkan aspek *user-experience* \rightarrow aplikasi lebih mudah, nyaman, dan menarik untuk digunakan \rightarrow daya tarik dan nilai jual yang lebih baik.

TERIMA KASIH