

GeoRich Data Management and Mining

Gao Cong (丛高) Nanyang Technological University

Geo-Textual Data

- Social media
 - Facebook
 - Twitter
 - Weibo, etc.
- Location-based services
 - Foursquare
 - Yelp
 - Flickr, etc.

Geo-textual data grows in an unprecedented scale!

- Twitter **500 million** tweets daily¹ (3.1% contains location²)
- Foursquare 9 million check-in daily³
- 1. http://www.internetlivestats.com/twitter-statistics/
- 2. Sloan L, Morgan J. Who tweets with their location? Understanding the relationship between demographic characteristics and the use of geoservices and geotagging on Twitter. *PloS one*, 10(11), 2015.
- 3. https://foursquare.com/about

Geo-Textual Data

- Components of Geo-Textual Data:
 - Text
 - Geographical location
 - Time
- Example: Geo-tagged Tweets

Geo-textual Data – Sources

- Static geo-textual data
 - Web pages with location
 - Online business directories
 - E.g., Google My Business
 - POI data in Location-based social networks
 - E.g., 65 million POIs at Foursquare
- Streaming geo-textual data
 - Geo-tagged micro-blog posts
 - E.g., 10 million geotagged Tweets per day
 - Photos with tags and geo-location in social photo sharing websites
 - E.g., Flickr, Instagram
 - Check-in information at POIs in location-based social networks (e.g., Foursquare, Facebook places)
 - E.g., Foursquare had 7 million check-in on 3rd Oct 2015

Smart Nation Applications

GeoSpatial Data Mining

POL recommenda tion & prediction

Interactive exploration geospatial data

Knowledge graph for **locations**

Trajectory representation and similarity

Speed, travel time. route prediction

Region search, (e.g., burst region)

Region exploration (topic, crowdness)

Querying and indexing spatio-temporal data

Snapshot queries (OLTP, OLAP)

Continuous queries

Distributed streaming systems

Distributed load balance Distributed materialized view Index &query optimizer

Machine learning techniques

Big static/streaming geo-spatial + X (e.g., text, temporal) data

Outline

- Spatial-textual Data Management
 - Spatial keyword queries on static geo-textual data
 - Standard queries: spatial DB queries + IR queries
 - Boolean range query
 - Top-k kNN queries
 - Beyond single object result granularity
 - Index structures
 - Querying geo-textual streams
- Location recognition and linking (WWW'16)
- POI recommendation (VLDB'17)
- Exploring geospatial data mining (SIGMOD'18)
- Region Level geospatial data mining
 - Topic exploration in regions (SIGMOD'16, VLDB J'19)
 - Similar region search (KDD'18)

Boolean Range Query

A query region

Top-k kNN Query (TkQ)

- A query location
- A set of keywords
- Ranking criteria: A combination of spatial proximity and text relevancy

Top-k Spatial Keyword Query

- Objects: $p = \langle \lambda, \psi \rangle$ (location, text description)
- Query: $q = \langle \lambda, \psi, k \rangle$ (location, keywords, # of objects)
- Ranking function

$$rank_{q}(p) = \alpha \frac{||q.\lambda, p.\lambda||}{\max D} + (1 - \alpha)(1 - \frac{tr_{q.\psi}(p.\psi)}{\max P}) \qquad 0 \le \alpha \le 1$$

- Distance: $\|q.\lambda, p.\lambda\|$
- Text relevancy: $tr_{q,\psi}(p.\psi)$
 - Probability of generating the keywords in the query from the language models of the documents
- Generalizes the kNN query and text retrieval

The Collective Spatial Keyword Query

Query location:

Query keywords: theater, gym

Spatio-Textual Similarity Join

- Text Similarity Threshold T_{text}
- Spatial Distance Threshold T_{distance}
- Objective: Retrieve all pairs of geo-textual objects (o_i, o_i) s.t.
 - (1) TextSim $(o_i, o_j) \ge T_{text}$
 - (2) Distance (o_i, o_j) ≤ T_{distance}

Classification for Geo-textual Indices

- Based on Spatial Indexing Scheme
 - R-tree based indices
 - Grid based indices
 - Space Filling Curve (SFC) based indices
- Based on Textual Indexing Scheme
 - Inverted File based indices
 - Signature file (Bitmap) based indices
- Based on Combination Scheme
 - Spatial-first
 - Text-first
 - Tightly combined (hybrid index)

Example R-tree

Example R-tree

Example R-tree

Recall the basic indexing pipeline

Acknowledgement: slide from website of "Introduction to Information Retrieval"

Key steps: sort by terms, then by docIDs \rightarrow doc. freq, postings

Acknowledgement: slide from website of "Introduction to Information Retrieval"

Geo-textual Indices

Index:	R-IF	IF-R
Spatial:	R*-tree	R*-tree
Textual:	Inverted file	Inverted file
Combination:	Spatial-first	Text-first
Query Types:	BkQ, BRQ	BkQ, BRQ

Geo-textual Indices

IR-tree and its variants (WIBR-tree, CDIR-tree) (Cong et al. VLDB 09, Li et al. TKDE, Wu et al. TKDE 11)

Inverted file

Inverted file

Italian	<o<sub>1, 5></o<sub>
coffee	<o<sub>2, 5></o<sub>
restaurant	<0 ₁ , 5> <0 ₂ , 5>
expensive	<o<sub>1, 2> <o<sub>2, 1></o<sub></o<sub>

Inverted file

Italian	< ₀₃ , 7>
coffee	<o<sub>8, 3></o<sub>
restaurant	<0 ₄ , 7> <0 ₈ , 3>
expensive	<0 ₃ , 1> <0 ₄ , 1> <0 ₈ , 1>

IR-tree / CDIR-tree

Spatial:	R-tree
Textual:	Inverted file
Combination:	Hybrid
Query Types:	BkQ, BRQ, TkQ

WIBR-tree

Spatial:	R-tree
Textual:	Inverted Bitmap
Combination:	Hybrid
Query Types:	BkQ, BRQ

Example of IR-tree index

IR-Tree

- Each node of the IR-tree records a summary of the location information and the textual content of its sub-tree.
- Thus, it is able to prune the search space by simultaneously making use of both spatial proximity and text relevancy.
 - For example, for TKQ, Object O is enclosed in the rectangle of node N.
 - Theorem: We can estimate an upper bound ranking score for all the objects enclosed in N by making using of the summary information
 - Algorithm: Apply best-first search

Motivation of publish/subscribe

- Streaming geo-textual data (e.g., geo-tagged tweets) often has the quickest first-hand reports of:
 - Breaking news
 - E.g., Osama Bin Laden's death¹
 - Disasters
 - E.g., Bomb blast in Mumbai in Nov. 2008³, flooding of Red River Valley in Mar 2009²
 - Public Health Disease Outbreaks
 - E.g., Norovirus outbreak at universities³, influenza epidemic 2009³

- 1. Hu, Mengdie, et al. Breaking News on Twitter. CHI, 2012. 2751-2754.
- 2. Atefeh, Farzindar, et al. A Survey of Techniques for Event Detection in Twitter. Computational Intelligence, 2015. Vol. 31

24

3. Krieck, Manuela, et al. A New Age of Public Health: Identifying Disease Outbreaks by Analyzing Tweets. Proceedings of Health Web-Science Workshop, 2011.

Applications of Publish/Subscribe

Applications

- Location-based services, e.g., Location-aware event, Local news subscription, Location-based E-coupon
 - <u>location-based</u> and <u>keyword-based</u> requirements
 - Real-time requirement (instant feeding)
- Annotation of Points-of-Interest (POIs) with social media feeds:
 Bridge dynamic (streaming) world and offline world

Challenges:

- High arrival rate of geo-textual objects.
 - Over 10 million new tweets with coordinates per day ^{1,2}
 - Over 100 million new tweets with semantic locations per day ^{1,2}
- A large number of subscription queries.

^{1.} Leetaru, Kalev, et al. Mapping the global Twitter heartbeat: The geography of Twitter. First Monday 18.5 (2013).

^{2.} http://www.internetlivestats.com/twitter-statistics/#sources

Boolean Range Subscription Query

Boolean Range Subscription (BRS) Query

$$q = (\psi, r)$$

- ψ : a set of keywords connected by AND or OR semantics (dengue AND fever, vomit OR poisoning)
- r: the query region (within 1 km from <u>Hyatt Regency in SF</u>)

- To trigger the action of "pushing", the following conditions should be satisfied:
 - The Boolean expression, as indicated in ψ , should be satisfied by the object terms.
 - The location of object should be within the query region r.

Boolean Range Subscription Query

 Problem: answering a stream of <u>BRS queries</u> in real time on a stream of <u>geo-textual objects</u> continuously.

Location-Aware Publish/Subscribe Model

Outline

- Spatial-textual Data Management
 - Spatial keyword queries on static geo-textual data
 - Standard queries: spatial DB queries + IR queries
 - Boolean range query
 - Top-k kNN queries
 - Beyond single object result granularity
 - Index structures
 - Querying geo-textual streams
- Exploring geospatial data mining (SIGMOD'18)
- Location recognition and linking (WWW'16)
- POI recommendation (VLDB'17)
- Region Level geospatial data mining
 - Topic exploration in regions (SIGMOD'16, VLDB J'19)
 - Similar region search (KDD'18)

When we want to look into the spatial dataset...

Can we do better?

Can we do better?

Issues of Map Exploration

Consistency of interactive operations

Three types of Interactive Operations

Zoom-in

Zoom-out

Panning

Features of this problem

1. Zooming/Movement Consistency

Objects should not appear/disappear oddly.

2. Visibility Constraint

Objects shown should not be too close to each other.

3. Representativeness

The selected objects should represent as most of the dataset as possible.

4. Similarity Metrics

 General. We aim to support various types of geospatial data. (Documents, Images, ...)

5. Online

 The user can choose a random region on the map, and the system should immediately respond.

Problem Definition

- Given a set of geospatial objects O, each object o in O is represented by a triple $o = <\lambda, \omega, A>$.
 - 1. $o.\lambda$ is the location where o is posted.
 - 2. $o.\omega$ is the weight of the object (normalized in [0, 1]).
 - 3. o.A is a set of attributes of the object.
 - ◆ For geo-tagged tweet, o.A can be the textual content, post user, timestamp, ...
 - The similarity between two objects $Sim(o_i, o_j)$ is computed from the attributes o.A.

Problem Definition

- Representative Score
 - The similarity between two objects. $Sim(o_i, o_j)$
 - The similarity between an object o and a set of objects S.

$$Sim(o,S) = \max_{o' \in S} Sim(o,o')$$

An object o can be represented by other objects S

= the similarity between o and some object in S is high

Extend o to all the objects O

$$Score(S) = Sim(O, S) = \frac{1}{|O|} \sum_{o \in O} o.\omega \times Sim(o, S)$$

Problem Definition

- Select a subset of objects S of size k from a geospatial object set O.
 - Meeting the map constraints.
 - Visibility Constraint
 $dist(o_i, o_j) ≥ θ$ for any $o_i, o_j ∈ S$
 - The selected objects should represent *S* as much as possible.
 - Sim(0,S) is maximized
- We denote it by Spatial Object Selection (SOS) Problem

Problem Definition

- Select a subset of objects S from a geospatial object set G, where
 - $G \subseteq O$ is the set of candidate geospatial objects,
 - $D \subseteq O$ be the set of geospatial objects that are always visible.
 - $\bullet |S \cup D| = k.$
 - Meeting the map constraints.
 - * Visibility Constraint $dist(o_i, o_i) \ge \theta$ for any $o_i, o_i \in S \cup D$
 - 2. The selected objects should represent S as much as possible.
 - * $Sim(O, S \cup D)$ is maximized
- We denote it by Interactive Spatial Object Selection (ISOS) Problem

Solution Overview

- 1. We have developed an interactive visualized exploration system for geospatial data, which took representativeness, visibility, zooming consistency, and panning consistency into consideration.
- 2. We propose SOS problem to select *k* representative objects, and prove it is NP-hard.
- 3. We enhance the efficiency for large dataset by a sampling technique with theoretical guarantee.
- 4. We propose ISOS problem to support navigation operations.

Solution Overview

- We prove that the objective function is submodular.
 - We propose a greedy solution to solve the SOS/ISOS problem.
 - Initially, S is empty.
 - In each round of iteration, we choose the object that increases the maximum marginal RP score.
 - 3. It is repeated until *k* objects are selected.
- We prove that the approximate ratio is 1/8.
- Optimization.
 - We utilize "lazy forward" to speed up, and the time complexity is reduced.

Solution Overview (cont.)

- For the ISOS problem, we notice some computation can be done before the user's next operation.
 - We propose to use prefetching technique to do the precomputation.
- Sampling Extension.
 - When the size of dataset is too large, we can accelerate the selection by working on sampled data.
 - We prove the RP score can be bounded by sampling specific number of objects.

Outline

- Spatial-textual Data Management
 - Spatial keyword queries on static geo-textual data
 - Standard queries: spatial DB queries + IR queries
 - Boolean range query
 - Top-k kNN queries
 - Beyond single object result granularity
 - Index structures
 - Querying geo-textual streams
- Exploring geospatial data mining (SIGMOD'18)
- Location recognition and linking (WWW'16)
- POI recommendation (VLDB'17)
- Region Level geospatial data mining
 - Topic exploration in regions (SIGMOD'16, VLDB J'19)
 - Similar region search (KDD'18)

Fine-grained location recognition and linking

Tweets → recognition and linking → Foursquare

- Fine-grained location₁
 - Focused geographic entity: district, area, street, road...
 - Specific point location: hotel, landmark, school, mall...
- Source document: tweets
 - Informal writing, incomplete name, nickname ...
 - Ambiguity: <u>popular</u>, <u>mac</u>

- Well-defined locations:
 - Location profile: name, category, address, geo-coordinates

Example location profiles in Foursquare

Pipeline Architecture vs Joint Framework

Pipeline Architecture **Location Recognition** Tweet x**Location Mentions** with Linked **Location Linking Location Profiles** CLP Joint Framework Tweet xLocation Joint Search Algorithm Mentions with (Beam Search + **Linked Location** Multiview Learning) **Profiles** CLP

CLP: collection of location profiles from Foursquare

Introduction

- POI recommendation:
 - Given a set of POIs \mathcal{L} , and a set of users \mathcal{U} each associated with a set of visited POIs \mathcal{L}^u of user u, POI recommendation is to recommend for each user $u \in \mathcal{U}$ new POIs, i.e., $\mathcal{L}/\mathcal{L}^u$, that are likely to be visited.
 - POI recommendation helps users exploring new places and enrich their experiences.

A large number of POIs

Users with different interests

Problem settings

- Setting 1: POI recommendation (given u, recommending l)
- Setting 2: Context-aware POI recommendation
 - Given u and t, recommending l

Introduction

- Challenges of POI recommendation:
 - Data scarcity problem: each user has only visited a very small portion of all the POIs (usually around 0.1%, worse than traditional recommendation problems, e.g., 1.2% for Netflix data).
 - Rich context: user's mobility preference is affected by many types of context information, e.g., geographical distance, time and social relations.

Users tend to travel short distance

Users behave similarly to their friends

Outline

- Spatial-textual Data Management
 - Spatial keyword queries on static geo-textual data
 - Standard queries: spatial DB queries + IR queries
 - Boolean range query
 - Top-k kNN queries
 - Beyond single object result granularity
 - Index structures
 - Querying geo-textual streams
- Exploring geospatial data mining (SIGMOD'18)
- Location recognition and linking (WWW'16)
- POI recommendation (VLDB'17)
- Region Level geospatial data mining
 - Topic exploration in regions (SIGMOD'16, VLDB J'19)
 - Similar region search (KDD'18)

- Spatiotemporal collections, e.g., Twitter, Facebook
 - Multiple attributes: location (latitude, longitude), time and text
 - Large: 320M monthly active users, 500M tweets/day in Twitter
 - Informative: topics/events described by tweets
 - Topics are different in different spatiotemporal dimensions

Topic Exploration in Spatio-Temporal Data

The topic exploration problem:

- Given a collection of spatio-temporal documents D;
- **Input**: query rectangle region R and timespan $[t_b, t_e]$;
- Output: K topics in the region and timespan.

Challenges

Efficiency issue:

- Training topic models online is time consuming
 - The complexity of training LDA is O(|W|KI)
 - 3-months tweets (250M) in NYC → 13.85 hrs training time
 - In real scale, the number of tweets in a user specified region and timespan could be large
- User could consider to modify the query in an exploratory manner, and we could not train topic models for each query offline in advance.

Framework

Extension

- Applications
 - The high volume of data is difficult for users to consume

Summarization

Business analytics

User may want to submit spatiotemporal query *in an exploratory manner* to view topics in different regions and time spans.

Outline

- Spatial-textual Data Management
 - Spatial keyword queries on static geo-textual data
 - Standard queries: spatial DB queries + IR queries
 - Boolean range query
 - Top-k kNN queries
 - Beyond single object result granularity
 - Index structures
 - Querying geo-textual streams
- Exploring geospatial data mining (SIGMOD'18)
- Location recognition and linking (WWW'16)
- POI recommendation (VLDB'17)
- Region Level geospatial data mining
 - Topic exploration in regions (SIGMOD'16, VLDB J'19)
 - Similar region search (KDD'18)

- Expansion and complication of urban cities
 - People are only familiar with a small area (where they live).
 - Difficult and expensive to explore new areas.

- Similar Region Search (SRS)
 - Definition: Given a query region, finding other similar regions.
 - Region: a rectangular geographical space that contain a set of POIs.
 - Each POI is associated with an attribute vector (e.g., category).

- Applications: easier exploration on geographical space
 - City planning.
 - Business site selection.
 - Improving location-based services (e.g., POI/region recommendations).

A novel application: Similar Region Search (SRS)

- Formal definition:
 - Given: a geo space P; a set of POIs O on P; a query region R_q.
 - Retrieve: a set of regions ${\mathcal R}$, such that

$$sim(R_q, R_i) \ge sim(R_q, R_j), \forall R_i \in \mathcal{R}, \forall R_j \notin \mathcal{R}.$$

- Challenges
 - C1: How to represent a region to define region similarity.
 - Region ≠ Bag of POIs.
 - POIs in a region have influence to each other.
 - Considering both POI category & their spatial relations.

- C2: How to efficiently search over large geographical space.
 - Billions of ways to place a region in a city with various sizes and scales.

Contributions

- To support similar region search:
 - Solving C1: We propose a deep metric learning model to learn region similarity, which consider both POI category and their spatial relations.
 - Solving C2: We propose an efficient search algorithm (45× faster than the best baseline).
 - Solving C2: We propose an approximation method that can make a trade-off between accuracy and efficiency.

Preliminary

- Deep metric learning method: triplet network
 - A shared Convolutional Neural Network.

$$d_{+} = ||Net(x_q) - Net(x_{+})||_{2}$$
 $d_{-} = ||Net(x_q) - Net(x_{-})||_{2}$

$$\mathcal{L} = \sum_{(x_q, x_+, x_-)} \max\{0, d_+ - d_- + \delta\} + \lambda ||Net(\cdot)||_2$$

Deep Metric Learning for Regions

- Learning from self-similarity
 - $sim(R_1, R_2) = \frac{1}{1+||\mathbf{v}_1-\mathbf{v}_2||_2}$.

Experiments

Case study: finding top-5 similar regions:

Query: Bukit Timah Nature Reserve

Our method

Baseline

Smart Nation Applications

GeoSpatial Data Mining

POI recommenda tion & prediction Interactive exploration geospatial data

Knowledge graph for locations

Trajectory representation and similarity

Speed, travel time, route prediction

Region search, (e.g., burst region)

Region exploration (topic, crowdness)

Querying and indexing spatio-temporal data

Snapshot queries (OLTP, OLAP)

Continuous queries

Distributed streaming systems

Distributed load balance Distributed materialized view Index &query optimizer

Machine learning techniques

Big static/streaming geo-spatial + X (e.g., text, temporal) data

Acknowledgement to my students and collaborators: Tao Guo, Xiucheng Li, Yiding Liu, Di Yao, Kaiqi Zhao.

Thank You! Q&A?

Demo URL: http://spatialkeyword.sce.ntu.edu.sg/index.html#