<u>Temas</u>: Polinomio interpolante de Newton-Diferencias ascendentes

Ejercicio 6

La siguiente tabla de valores corresponde a la evaluación de la función:

$$y = 2x^3 + 3x + 1$$

X	Υ
0,1	1,302
0,2	1,616
0,3	1,954
0,4	2,323
0,5	2,750

- a) Elabore una tabla de diferencias ascendentes y muestre que la diferencia de cuarto orden se anula.
- b) Explique por qué ocurre esto.

Resolución

Para poder obtener el polinomio interpolante de Newton con diferencias ascendentes los puntos datos deben estar equiespaciados.

La expresión que nos permite calcular dicho polinomio es:

Siendo:
$$s = \frac{x - x_0}{h}$$

Donde se obtiene un polinomio de la forma:

$$p_n(s) = y_0 + s \cdot \Delta y_0 + \frac{s \cdot (s-1)}{2!} \cdot \Delta^2 y_0 + \dots + \frac{s \cdot (s-1) \cdot \dots (s-n+1)}{n!} \cdot \Delta^n y_0$$

A continuación, se muestra el código FORTRAN para diferencias ascendentes:

SUBROUTINE Dif_Ascendentes(P, V_Asc, N, x0, h_orig)

!Variables REAL(8), DIMENSION(0:N-1) :: V_Asc ,P, s REAL(8) x0, h_orig, h_act

```
INTEGER N, i
```

```
!Cuerpo
P = 0.
P(0) = (-x0 * V_Asc(1) / h_orig) + V_Asc(0) !Preparamos el polinomio cargando los dos
!primeros términos de la fórmula
P(1) = V_Asc(1) / h_orig
h_act = h_orig * h_orig
s = 0. !Cargamos el s inicial
s(0) = -x0
s(1) = 1.
DO i=2, N-1 !Vamos hasta N-1 que es la cantidad de términos del polinomio
CALL Mult_Vec_Bin(N, i-1, s, -(x0 + (i-1) * h_orig)) !Vamos multiplicando s !La
función !!lama con el opuesto, es decir, si tenemos X-1 debemos llamar con -1
P = P + s * V_Asc(i) / (Factorial(i) * h_act)
h_act = h_act * h_orig
END DO
```

END SUBROUTINE Dif_Ascendentes

Continuando con el ejercicio:

Ingresando los puntos de la tabla de valores en el programa FORTRAN se obtiene:

Diferencias Ascendentes

Descendentes

f(xi)	1,302	1,616		1,954		2,323		2,750
1°	0,314	1	0,330		0,374		0,422	
2°		0,024		0,036		0,048		
3°			0,012		0,012	2		
4°				0,000				

Entonces, las diferencias obtenidas son:

	Ascendentes	Descendentes
f(xi)	1,302	2,750
1°	0,314	0,422
2°	0,024	0,048
3°	0,012	0,012
4°	0,000	0,000

Ayte. Alumno: Cruces, Joaquín P. Facultad de Ingeniería – UNMdP-2020

Análisis Numérico para Ingeniería

Ejercicio Resuelto

Ejercicio 6 - Guía 6 - 1C 2020

Luego, se construye el polinomio de Diferencias Ascendentes de Newton y operando algebraicamente se obtiene el siguiente polinomio de interpolación:

$$f(x) = 1,99999x^3 - 0,00000x^2 - 2,99999x + 1,00000$$

La diferencia de cuarto orden se anula porque el polinomio es de grado 3.