Letter of N. Grothendieck to J. Coates (1)

6.1.1966

Dear Coates,

Here a few more comments to my talk on the conjectures. The following proposition shows that the conjecture $C_{\chi}(X)$ is independent of the chosen polarisation, and has also some extra interest, in showing the part played by the fact that $H^{i}(X)$ should be "motive-theoretically" isomorphic to its natural dual $H^{2n-i}(X)$ (as usual, I drop the twist for simplicity).

Proposition. — The condition $C_{\chi}(X)$ is equivalent also to each of the following conditions:

- a) $D_{\chi}(X)$ holds, and for every i < n, there exists an isomorphism $H^{2n-i}(X) \longrightarrow H^i(X)$ which is algebraic (i.e. induced by an algebraic correspondence class; we do not make any assertion on what it induces in degrees different from 2n-i).
- b) For every endomorphism $H^i(X) \longrightarrow H^i(X)$ which is algebraic, the coefficients of the characteristic polynomial are rational, and for every i < n, there exists an isomorphism $H^{2n-i}(X) \longrightarrow H^i(X)$ which is algebraic.

Proof. — I sketched already how $D_{\chi}(X)$ implies the fact that for an algebraic endomorphism of $H^{i}(X)$, the coefficients of the characteristic polynomial are rational numbers, therefore we know that a) implies b), and of course $C_{\chi}(X)$ implies a). It remains to prove that b) implies $C_{\chi}(X)$. Let $u: H^{2n-i}(X) \longrightarrow H^{i}(X)$ be the given isomorphism which is algebraic, and $v: H^{i}(X) \longrightarrow H^{2n-i}(X)$ is an algebraic isomorphism in the opposite direction, induced by L_{X}^{n-i} . Then uv = w is an automorphism of $H^{i}(X)$ which is algebraic, and the Hamilton-Cayley formula $u^{h} - \sigma_{1}(w)u^{h-1} + ... + (-1)^{b}\sigma_{b}(w) = 0$

^{1.} This text had been transcribed by Mateo Carmona

(where the $\sigma_i(w)$ are the coefficients of the characteristic polynomial of w) [] that w^{-1} is a linear combination of the w^i , with coefficients of the type $+/-\sigma_i(w)/\sigma_b(w)$ (N.B. $b=\operatorname{rank} H^i$). The assumption implies that these coefficients are rational, which implies that w^{-1} is algebraic, and so is $w^{-1}u=v^{-1}$, which was to be proved.

N.B. In characteristic 0, the statement simplifies to: C(X) equivalent to the existence of algebraic isomorphisms $\mathrm{H}^{2n-i}(X) \longrightarrow \mathrm{H}^i(X)$, (as the preliminary in b) is then automatically satisfied). Maybe with some extra care this can be proved too in arbitrary characteristics.

Corollary. — Assume X and X' satisfy condition C_{χ} , and let $u: H^{i}(X) \longrightarrow H^{i+2[]}(X') \longrightarrow H^{i}(X)$ ([] $\in \mathbf{Z}$) be an isomorphism which is algebraic. Then u^{-1} is algebraic.

Indeed, the o spaces can be identified "algebraically" (both directions!) to their dual, so that the transpose of u can be viewed as an isomorphism u': $H^{i+2[]}(X') \longrightarrow H^i(X)$. Thus u'u is an algebraic automorphism w of $H^i(X)$, and by the previous argument we see that w^{-1} is algebraic, hence so is $u^{-1} = w^{-1}u'$.

As a consequence, we see that if $x \in H^i(X)$ is such that u(x) is algebraic (i being now assumed to be even), than so is x. The same result should hold in fact if u is a monomorphism, the reason being that in this case there should exists a left-inverse which is algebraic; this exists indeed in a case like $H^{n-1}(X) \longrightarrow H^{n-1}(Y)$ (where we take the left inverse $\Lambda_X \varphi_*$). But to get it in general, it seems w need moreover the Hodge index relation. (The complete yoga then being that we have the category of motives which is semi-simple!). Without speaking of motives, and staying down on earth, it would be nice to explain in the notes that C(X) together with the index relation $I(X \times X)$ implies that the ring of correspondences classes for X is semi-simple, and how one deduces from this the existence of left and right inverses as looked for above.

This could be given in an extra paragraph (which I did not really touch upon in the talk), containing also the deduction of the Weil conjectures from the conjectures C and A.

A last and rather trivial remark is the following. Let's introduce variant $A'_{\chi}(X)$ and $A''_{\chi}(X)$ as follows:

 $A'_{\chi}(X)$: if $2i \leq n-1$, any element x of $H^{i}(X)$ whose image in $H^{i}(Y)$ is algebraic, is algebraic.

 $A''_{\chi}(X)$: if $2i \geq n-1$, any algebraic element of $H^{i+2}(X)$ is the image of an algebraic element of $H^{i}(Y)$.

Let us consider also the specifications $A'_{\chi}(X)^{\circ}$ and $A''_{\chi}(X)^{\circ}$, where we restrict to the [] dimensions 2i = n-1 if n odd, 2i = n-2 if n even. All these conditions are in the nature of "weak" Lefschetz relations, and they are trivially implied

by $A_{\chi}(X)$ resp. $C_{\chi}(X)$ (in the first case, applying φ we see that L_XX is algebraic; in the second, we take $y = \Lambda_Y \varphi^+(x)$). The remark then is that these pretendenly "weak" variants in fact imply the full Lefschetz relations for algebraic cycles, namely:

Proposition. — $C_{\chi}(X)$ is equivalent to the conjunction $C_{\chi}(Y) + A_{\chi}(X \times X)^{\circ} + A_{\chi}''(X \times X)^{\circ}$, hence (by induction) also to the conjunction of the conditions $A_{\chi}'^{\circ}$ and $A_{\chi}''^{\circ}$ for all of the varieties $X \times X$, $Y \times Y$, $Z \times Z$,.... Analogous statement with $X \times Y$, $Y \times Z$ etc instead of $X \times X$, $Y \times Y$ etc.

This comes from the remark that $A_{\chi}(X)^{\circ}$ follows from the conjunction of $A'_{\chi}(X)^{\circ}$ and $A''_{\chi}(X)^{\circ}$, as one sees by decomposing $L^{2}_{X}: \mathrm{H}^{2m-2}(X) \longrightarrow \mathrm{H}^{2m+2}(X)$ into $\mathrm{H}^{2m+2}(X) \xrightarrow{\varphi^{k}} \mathrm{H}^{2m+2}(Y) \xrightarrow{\varphi_{\alpha}} \mathrm{H}^{2m}(X) \xrightarrow{L_{X}} \mathrm{H}^{2m+2}(X)$ if dim X = 2m+1 is odd.

Sincerely yours