FIREFLY MONTE CARLO: EXACT MCMC WITH SUBSETS OF DATA

MCMC

We have a unnormalized distribution from which we want to sample

Metropolis-Hastings algorithm for MCMC

With probability $p = \min\left[1, \exp\left(\frac{U(\mathbf{x}_n) - U(\mathbf{x}_n')}{T}\right)\right]$ system accepts new state (jumps to the new state): $\mathbf{x}_{n+1} = \mathbf{x}_n'$ and with probability 1 - p new state is rejected: $\mathbf{x}_{n+1} = \mathbf{x}_n$.

Hamiltonian Monte Carlo

$$E(\mathbf{x},\mathbf{v}) = U(\mathbf{x}) + K(\mathbf{v}), \qquad K(\mathbf{v}) = \sum_i rac{m \, v_i^2}{2}$$

Thus, velocities ${\bf v}$ and positions ${\bf x}$ have **independent** canonical distributions:

$$p(\mathbf{x}, \mathbf{v}) \propto \exp\left(rac{-E(\mathbf{x}, \mathbf{v})}{T}
ight) = \exp\left(rac{-U(\mathbf{x})}{T}
ight) \exp\left(rac{-K(\mathbf{v})}{T}
ight) \propto p(\mathbf{x}) \; p(\mathbf{v}).$$

MCMC problem

MCMC cannot be practically applied to large data sets because of the prohibitive cost of evaluating every likelihood term at every iteration.

Solution

$$p(z_n \mid x_n, \theta) = \left[\frac{L_n(\theta) - B_n(\theta)}{L_n(\theta)}\right]^{z_n} \left[\frac{B_n(\theta)}{L_n(\theta)}\right]^{1-z_n}.$$

$$p(x_n \mid \theta)p(z_n \mid x_n, \theta)$$

$$= L_n(\theta) \left[\frac{L_n(\theta) - B_n(\theta)}{L_n(\theta)}\right]^{z_n} \left[\frac{B_n(\theta)}{L_n(\theta)}\right]^{1-z_n}$$

$$= \begin{cases} L_n(\theta) - B_n(\theta) & \text{if } z_n = 1 \\ B_n(\theta) & \text{if } z_n = 0 \end{cases}.$$

For each data point, n, we introduce a binary auxiliary variable, $z_n \in \{0, 1\}$, and a function $B_n(\theta)$ which is a sctrictly positive lower bound on the nth likelihood: $0 < B_n(\theta) \le L_n(\theta)$. Each z_n has the following Bernoulli distribution conditioned on the parameters:

Algorithm 1 Firefly Monte Carlo Note: Using simple random-walk MH for clarity. 1: $\theta_0 \sim \text{InitialDist}$ ▶ Initialize the Markov chain state. ▷ Iterate the Markov chain. 2: for $i \leftarrow 1 \dots$ Iters do for $j \leftarrow 1 \dots \lceil N \times \text{RESAMPLEFRACTION} \rceil$ do $n \sim \text{RandInteger}(1, N)$ ▷ Select a random data point. $z_n \sim \text{Bernoulli}(1 - B_n(\theta_{i-1})/L_n(\theta_{i-1}))$ \triangleright Biased coin-flip to determine whether n is bright or dark. end for $\theta' \leftarrow \theta_{i-1} + \eta \text{ where } \eta \sim \text{Normal}(0, \epsilon^2 \mathbb{I}_D)$ \triangleright Make a random walk proposal with step size ϵ . $u \sim \text{Uniform}(0,1)$ Draw the MH threshold. if $\frac{\text{JOINTPOSTERIOR}(\theta'; \{z_n\}_{n=1}^N)}{\text{JOINTPOSTERIOR}(\theta; \{z_n\}_{n=1}^N)} > u$ then ▶ Evaluate MH ratio conditioned on auxiliary variables. $\theta_i \leftarrow \theta'$ 10: ▶ Accept proposal. else 11: $\theta_i \leftarrow \theta_{i-1}$ 12: Reject proposal and keep current state. 13: end if 14: end for 15: 16: function JointPosterior(θ ; $\{z_n\}_{n=1}^N$) ▶ Modified posterior that conditions on auxiliary variables. $P \leftarrow p(\theta) \times \prod_{n=1}^{N} B_n(\theta)$ 17: ▷ Evaluate prior and bounds. Collapse of bound product not shown. for each n for which $z_n = 1$ do 18: ▶ Loop over bright data only. $P \leftarrow P \times (L_n(\theta)/B_n(\theta) - 1)$ ▶ Include bound-corrected factor. 19: end for 20: return P21:

22: end function

In the case of tight bound, explicit sampling doesn't effective. So the author's propose the following solution

1: f	or $n \leftarrow 1 \dots N$ do	▶ Loop over all the auxiliary variables		
2:	if $z_n = 1$ then	▷ If currently bright, propose going dark.		
3:	$u \sim \text{Uniform}(0,1)$	▷ Sample the MH threshold.		
4:	if $rac{q_{d o b}}{ ilde{L}_n(heta)}>u$ then	\triangleright Compute MH ratio with $\tilde{L}_n(\theta)$ cached from θ update.		
5:	$z_n \leftarrow 0$	⊳ Flip from bright to dark.		
6: 7:	end if			
7:	else	Already dark, consider proposing to go bright.		
8:	if $v < q_{d \to b}$ where $v \sim \text{Uniform}(0,1)$ then	\triangleright Flip a biased coin with probability $q_{d\rightarrow b}$.		
9:	$u \sim \text{Uniform}(0,1)$	▷ Sample the MH threshold.		
10:	$\textbf{if} \frac{\tilde{L}_n(\theta)}{q_{d \to b}} < u \textbf{then}$	▷ Compute MH ratio		
11:	$z_n \leftarrow 1$	▶ Flip from dark to bright.		
12:	end if			
13:	end if			
14:	end if			
15: e	end for			

Results

		Algorithm	Average Likelihood queries per iteration	Effective Samples per 1000 iterations	Speedup relative to regular MCMC
Data set:	MNIST	Regular MCMC	12,214	3.7	(1)
Model:	Logistic regression	Untuned FlyMC	6,252	1.3	0.7
Updates:	Metropolis-Hastings	MAP-tuned FlyMC	207	1.4	22
Data set:	3-Class CIFAR-10	Regular MCMC	18,000	8.0	(1)
Model:	Softmax classification	Untuned FlyMC	8,058	4.2	1.2
Updates:	Langevin	MAP-tuned FlyMC	654	3.3	11
Data set:	OPV	Regular MCMC	18,182,764	1.3	(1)
Model:	Robust regression	Untuned FlyMC	2,753,428	1.1	5.7
Updates:	Slice sampling	MAP-tuned FlyMC	575,528	1.2	29

Table 1

Results from empirical evaluations. Three experiments are shown: logistic regression applied to MNIST digit classification, softmax classification for three categories of CIFAR-10, and robust regression for properties of organic photovoltaic molecules, sampled with random-walk Metropolis-Hastings, Langevin-adjusted Metropolis, and slice sampling, respectively. For each of these, the vanilla MCMC operator was compared with both untuned FlyMC and FlyMC where the bound was determined from a MAP estimate of the posterior parameters. We use likelihood evaluations as an implementation-independent measure of computational cost and report the number of such evaluations per iteration, as well as the resulting sample efficiency (computed via R-CODA (Plummer et al., 2006)), and relative speedup.