Exercice 1. Soient les complexes $z_1 = 5 + 2i$ et $z_2 = -1 - i$.

1.
$$z_1^2 = 21 + 20i$$

2.
$$\overline{z_1 - z_2} = \overline{5 + 2i + 1 + i} = 6 - 3i$$
.

Exercice 2. On donne le nombre complexe $z = \frac{1+2i}{1-i}$.

1.
$$z = -\frac{1}{2} + \frac{3}{2}i$$
.

2.
$$\frac{1+2i}{1-i} + \frac{1-2i}{1+i} = z + \overline{z} = 2\text{Re}(z) = -1.$$

Exercice 3.

1.
$$(1+2i)z = 1-iz \iff (1+3iz) = 1 \iff z = \frac{1}{1+3i} = \frac{1}{10} - \frac{3}{10}i$$
.

2. $z + 3\overline{z} = i + 2$. On pose z = x + iy avec x, y réels.

$$z + 3\overline{z} = i + 2 \iff x + iy + 3(x - iy) = 2 + i$$
. Par identification, il vient $4x = 2$ et $-2y = 1$ soit $x = \frac{1}{2}$ et $y = -\frac{1}{2}$ et ainsi $z = \frac{1}{2} - \frac{1}{2}i$.

Exercice 4. $\mathscr{S}_{\mathbb{R}^3} = \{(1; 2; 3)\}.$

Exercice 5.

1. (a)
$$AX = \begin{pmatrix} 13 \\ 13 \\ 13 \end{pmatrix}$$
.

- (b) AX = 13X donc $\lambda = 13$ est valeur propre associé au vecteur propre $X = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.
- 2. (a) On démontre ce résultat par récurrence : soit P_n : « $A^nX = \lambda^nX$ ».

Initialisation: si n = 0 on a d'une part $A^0X = I_3 = X$ et $\lambda^0X = X$ donc P_0 est donc vraie.

<u>Hérédité</u> : Soit $n \in \mathbb{N}$. Supposons P_n vraie $(A^n X = \lambda^n X)$.

Montrons que P_{n+1} est vraie $(A^{n+1}X = \lambda^{n+1}X)$.

On a $A^{n+1}X = A \times A^nX$ et par hypothèse de récurrence $A^nX = \lambda^nX$.

Ainsi $A^{n+1}X = A \times \lambda^n X = \lambda^n AX$. Or $AX = \lambda X$ donc $A^{n+1}X = \lambda^{n+1}X$ ce qui prouve que P_{n+1} est vraie.

Conclusion: P_0 est vraie et P_n est héréditaire à partir du rang n = 0, P_n est donc vraie pour tout entier naturel n c'est-à-dire $A^n X = \lambda^n X$.

(b) λ est une valeur propre de A si et seulement s'il existe un vecteur propre X non nul tel que $AX = \lambda X$. Or $AX = \lambda X \iff (A - \lambda I_3)X = O_{3,1}$. On rappelle qu'un système dont l'écriture matricielle est MX = B admet une unique solution si et seulement si M est inversible. On en déduit qu'une équation du type MX = B n'admet pas de solution unique si et seulement si M n'est pas inversible.

Posons $M = A - \lambda I_3$: l'équation $MX = O_{3,1}$ admet toujours au moins une solution qui est la matrice nulle $O_{3,1}$. Ainsi λ est valeur propre de A si et seulement s'il existe au moins une autre matrice (non nulle donc) qui soit également solution de cette équation. D'après ce qui précède, cela équivaut à dire que M n'est pas inversible.