

MATEMÁTICA DISCRETAS I

RELACIONES DE EQUIVALENCIA Y DE ORDEN

1. ¿Es relación de equivalencia $xRy \leftrightarrow x^2 - y^2 = x - y$? En caso afirmativo, obtén la clase [5] y el conjunto cociente.

Para comprobar si es una **relación de equivalencia**, debemos verificar las propiedades siguientes:

I) Reflexiva:
$$\mathbf{xRx} \leftrightarrow x^2 - x^2 = x - x$$
; $\theta = 0 \rightarrow OK$

* NOTA: ↔ significa sí v solo sí

- II) Simétrica: si xRy $\leftrightarrow x^2 y^2 = x y$, entonces yRx $\leftrightarrow y^2 x^2 = y x \rightarrow Si$ multiplicamos por -1 la segunda ecuación, obtenemos la primera $\rightarrow OK$
- III) Transitiva: si xRy $\leftrightarrow x^2 y^2 = x y$ y yRz $\leftrightarrow y^2 z^2 = y z$, entonces xRz $\leftrightarrow x^2 z^2 = x z$ En este caso, sumamos ambas ecuaciones

$$x^2 - y^2 = x - y$$
$$y^2 - z^2 = y - z$$

$$x^2 - z^2 = x - z \rightarrow OK$$

Como se cumplen las tres propiedades, entonces la relación es de equivalencia.

Obtenemos la clase $[5] = \{xR5: x \in Z\} = \{5,-4\}$

$$xR5 \leftrightarrow x^2 - 5^2 = x - 5 \to x^2 - x - 20 = 0 \to x = \frac{1 \pm \sqrt{1 + 80}}{2} = \frac{1 \pm 9}{2} = \{5, -4\}$$

Obtenemos el conjunto cociente: $\{xRa: x,a \in Z\} = \{a,1-a\}$

$$x\text{Ra} \leftrightarrow x^{2} - a^{2} = x - a \to x^{2} - x - a(a-1) = 0$$

$$x = \frac{1 \pm \sqrt{1 + 4a(a-1)}}{2} = \frac{1 \pm \sqrt{4a^{2} - 4a + 1}}{2} = \frac{1 \pm (2a-1)}{2} = \{a, 1-a\}$$

2. ¿Es relación de equivalencia $(a, b)R(c, d) \leftrightarrow ad = bc$? En caso afirmativo, obtén la clase [(2,8)] y el conjunto cociente.

Para comprobar si es una relación de equivalencia, debemos verificar las propiedades siguientes:

- I) Reflexiva: $(a,b)R(a,b) \leftrightarrow ab = ba \rightarrow OK$
- II) Simétrica: Si $(a,b)R(c,d) \leftrightarrow ad = bc$, entonces $(c,d)R(a,b) \leftrightarrow cb = da \rightarrow OK$
- III) Transitiva: Si (a,b)R(c,d) \leftrightarrow ad = bc y (c,d)R(e,f) \leftrightarrow cf = de, entonces (a,b)R(e,f) \leftrightarrow af = be Despejamos de la primera ecuación la d y sustituimos en la segunda ecuación

 $d = bc/a \rightarrow cf = bc/a e \rightarrow af = be \rightarrow OK$

Como se cumplen las tres propiedades, entonces la relación es de equivalencia.

Hallamos la clase
$$[(2,8)] = \{(a,b)R(2,8): a,b \in Z\} = \{(a,4a): a \in Z\}$$

 $(a,b)R(2,8) \leftrightarrow 8a = 2b \to b = 4a \to (a,4a)$

Hallamos el conjunto cociente:
$$\{(a,b)R(x,y): a,b,x,y \in Z\} = \{(a,ay/x):a,y,x \in Z \ y \ x \neq 0\}$$

 $(a,b)R(x,y) \leftrightarrow ay = bx \rightarrow b = ay/x \rightarrow (a,ay/x)$

3. En el conjunto \Re se define la relación $(a,b)R(c,d) \leftrightarrow a+d=b+c$. Averigua si es una relación de equivalencia, y en caso afirmativo, obtén la clase [(2,5)] y el conjunto cociente.

Para comprobar si es una relación de equivalencia, debemos verificar las propiedades siguientes:

- I) Reflexiva: $(a,b)R(a,b) \leftrightarrow a+b=b+a \rightarrow OK$
- II) Simétrica: si $(a,b)R(c,d) \leftrightarrow a+d=b+c$, entonces $(c,d)R(a,b) \leftrightarrow c+b=d+a \rightarrow OK$
- III) Transitiva: si $(a,b)R(c,d) \leftrightarrow a+d=b+c$ y $(c,d)R(e,f) \leftrightarrow c+f=d+e$, entonces $(a,b)R(e,f) \leftrightarrow a+f=b+e$ a+d=b+c \rightarrow Despejamos de la primera: d = b+c-a

 $d+e=f+c \rightarrow Sustituimos$ en la segunda: $b+c-a+e=f+c \rightarrow b+e=a+f \rightarrow OK$

Como se cumplen las tres propiedades, entonces la relación es de equivalencia.

Hallamos la clase
$$[(2,5)] = \{(a,b)R(2,5): a,b \in Z\} = \{(a,a+3): a \in Z\}$$

 $(a,b)R(2,5) \leftrightarrow a+5=b+2 \rightarrow b = a+3 \rightarrow (a,a+3)$

Hallamos el conjunto cociente:
$$\{(a,b)R(x,y): a,b,x,y \in Z\} = \{(a,a+y-x): a,x,y \in Z\}$$

 $\{(a,b)R(x,y) \leftrightarrow a+y=b+x \rightarrow b = a+y-x \rightarrow (a,a+y-x)$

OJO: si nos piden calcular una clase de equivalencia o el conjunto cociente de una relación de orden → MAL!! NO EXISTE!!

4. En el conjunto \mathbb{Z} se define la relación $aRb \leftrightarrow 10|a^2 - b^2$. Averigua si se trata de una relación de equivalencia y, de ser cierto, encuentra la clase de equivalencia del elemento 0, es decir, [0].

Para comprobar si es relación de equivalencia, debemos verificar las siguientes propiedades:

I) Reflexiva: aRa
$$\leftrightarrow 10|a^2 - a^2 = \frac{a^2 - a^2}{10} = \frac{0}{10} = 0 \in \mathbb{Z} \to OK$$

*NOTACIÓN: | se lee divide a...

- II) Simétrica: si aRb \leftrightarrow 10| $a^2 b^2 = \frac{a^2 b^2}{10}$, entonces bRa \leftrightarrow 10| $b^2 a^2 = \frac{b^2 a^2}{10} \rightarrow$ Si multiplico el segundo resultado por -1 entonces obtenemos el primero \rightarrow OK
- III) Transitiva: si aRb \leftrightarrow 10| $a^2 b^2 = \frac{a^2 b^2}{10}$ y bRc \leftrightarrow 10| $b^2 c^2 = \frac{b^2 c^2}{10}$, entonces aRc \leftrightarrow 10| $a^2 c^2 = \frac{a^2 c^2}{10}$

Si sumamos las dos primeras operaciones, obtenemos la tercera:
$$\frac{a^2-b^2}{10} + \frac{b^2-c^2}{10} = \frac{a^2-c^2}{10} \to OK$$

Como se cumplen las tres propiedades, entonces la relación es de equivalencia.

Hallamos la clase de equivalencia del $[0] = \{aR0: a \in Z\} = \{10 \cdot a / a \in Z\}$ $aR0 \leftrightarrow 10|a^2 - \theta^2 = \frac{a^2}{10} \rightarrow \text{Cumplirán esto todos los elementos de la forma 10·a, tq (tal que) a \in Z$ 5. a) Sean los conjuntos D_{1519} , $A = \{ n \in \mathbb{N} / 2n - 14 \le 5 \}$ y $B = \{ 2n + 3 / n \in \mathbb{N} y \ n \ge 2 \}$. Obtén el cardinal del conjunto cartesiano D_{1519} x (A \cap B).

Cardinal de un conjunto → número de elementos que tiene.

Para D1519 debemos calcular su factorización (descomposición en factores primos) \rightarrow 1517 = $7^2 * 31$ |D1519| = 3*2 = 6 elementos

A = {
$$n \in \mathbb{N} / 2n - 14 \le 5$$
 } $\rightarrow 2n \le 19 \rightarrow n \le 9.5 \rightarrow n \le 9 \rightarrow \{0,1,2,...,9\}$
B = { $2n + 3 / n \in \mathbb{N} y \ n \ge 2$ } \rightarrow Si n=2 $\rightarrow 2*2+3=7$; Si n=3 $\rightarrow 2*3+3=9 \rightarrow \{7,9,11,...\}$
A \cap B = {7,9} \rightarrow |A \cap B| = 2 elementos

Luego, $|D1519x(A \cap B)| = 6x2 = 12$ elementos.

¿Cómo calculamos el cardinal de un conjunto del estilo D1519? Cogemos las potencias de sus factores primos, les sumamos 1 y los multiplicamos entre sí.

b) En el conjunto de los números enteros definimos la siguiente relación: dados a,b $\subseteq Z$, decimos que aRb si $\exists c \in Z : b = a \cdot c$. Razona si es una relación de equivalencia, de orden, ambas o ninguna de las dos. (Nov 2019)

Relación dada: aRb \leftrightarrow b=a·c, donde c \in Z

Comprobamos las propiedades:

- I) Simétrica: si aRb \leftrightarrow b=a·c, entonces bRa \leftrightarrow a=b·c, si c=1 \in Z \rightarrow OK
- II)Antisimétrica: si aRb \leftrightarrow b=a·c y bRa \leftrightarrow a=b·c, entonces a=b

Buscamos un contraejemplo:

Si a=1 y b=-1, entonces aRb
$$\leftrightarrow$$
 b=a·c \rightarrow -1 = 1·c, si c = -1 \in Z, entonces se relacionan bRa \leftrightarrow a=b·c \rightarrow 1 = -1·c, si c = -1 \in Z, entonces se relacionan

Como a \neq b y aRb y bRa, entonces NO es antisimétrica \rightarrow No puede ser relación de orden.

- III) Reflexiva: aRa \leftrightarrow a=a·c, si c=1 \in Z \rightarrow OK
- IV) Transitiva: aRb \leftrightarrow b=a·c y bRd \leftrightarrow d=b·c, entonces aRd \leftrightarrow d=a·c

Si sustituimos la primera ecuación en la segunda, entonces obtenemos la tercera:

 $d=a \cdot c \cdot c$, donde $c \in Z$. Luego es lo mismo que poner $d=a \cdot c'$ donde $c' \in Z \to OK$

Como es reflexiva, simétrica y transitiva, entonces se trata de una relación de equivalencia.

6. Determina el orden lexicográfico de las siguientes cadenas de bits: 001, 111, 010, 011, 000, 100 basado en el orden $0 \le 1$. Dibuja el diagrama de Hasse de estas cadenas, con el orden producto.

Nota: Sabemos que ... Orden usual = ≤

Orden Lexicográfico

Orden Producto

RETÍCULOS Y ÁLGEBRAS DE BOOLE

1. Halla los elementos maximales, minimales, máximo y mínimo (si los hay) para los siguientes conjuntos con el orden dado el diagrama de Hasse:

Maximales = $\{a\}$

 $Minimales = \{d,e\}$

Máximo = a → Si existe, coincide con el maximal (solo hay uno)

Mínimo = \nexists \rightarrow Si existe, coincide con el minimal (solo hay uno)

 $Maximales = \{a,b\}$

Minimales = $\{d,e\}$ Máximo = \nexists

Mínimo = ∄

 $Maximales = \{a\}$

 $Minimales = \{d,f\}$

Máximo = a

Mínimo = ∄

 $Maximales = \{a,b\}$

Minimales = $\{c,d,e\}$ Máximo = \nexists

Mínimo = ∄

2. Halla C.S., C.I., supremo, ínfimo, maximales, minimales, máximo y mínimo (si los hay) del conjunto B en cada uno de los siguientes casos:

$$B = \{c, d, e\}$$

ESTOS ELEMENTOS NO TIENEN POR QUÉ PERTENECER AL SUBCONJUNTO

C.S. =
$$\{a,b,c\}$$

C.I. = $\{f\}$
Supremo = $c \rightarrow$ mínima CS
Ínfimo = $f \rightarrow$ máxima CI

ESTOS ELEMENTOS DEBEN PERTENECER AL SUBCONJUNTO

Maximales = $\{c\}$ Minimales = $\{d,e\}$ Máximo = $c \rightarrow$ supremo Mínimo = $\nexists \rightarrow$ ínfimo

Máximo y mínimo, si existen, coinciden con el supremo e ínfimo (respectivamente). Existen si supremo/ínfimo ∈ subconjunto B

4 5 7

 $B = \{4, 5, 6\}$

Los elementos que son únicos (si existen) entonces no llevan {}

Los elementos que pueden ser más de uno, entonces van entre llaves {}

Maximales = $\{4,5\}$ Minimales = $\{6\}$ Máximo = \nexists Mínimo = 6

Maximales =
$$\{2,3\}$$

Minimales = $\{4\}$
Máximo = $\not\equiv$
Mínimo = 4

$$B = \{2, 3, 4\}$$

- 3. Representa el diagrama de Hasse de los siguientes conjuntos ordenados, y halla los elementos notables de los subconjuntos señalados:
- 4. En (\mathbb{N}, \mathbb{I}) x (\mathbb{N}, \mathbb{I}) se considera el orden lexicográfico. Determina, si existen, las cotas superiores, cotas inferiores, supremo e ínfimo del conjunto $A = \{(2,1),(3,4)\}$

- 5. Se considera D48xN el orden lexicográfico correspondiente a tomar el orden de divisibilidad en el primer factor y el orden usual en el segundo factor. Sea S = {(2,2), (2,3), (3,2), (6,3), (6,1), (4,2)}. Halla, si existen, las C.S., C.I., supremo, ínfimo, máximo, mínimo, maximales y minimales de S.
- 6. Dado el orden parcial del siguiente diagrama de Hasse, obtén un orden total que lo contenga. ¿Cuántos pueden obtenerse?

ORDEN TOTAL \rightarrow TODOS los elementos están relacionados entre sí ORDEN PARCIAL \rightarrow no todo par de elementos cualesquiera están relacionados entre sí

Un posible orden total sería {i,h,f,e,d}

Hay 6 órdenes totales posibles (uno hasta a, otro hasta b y otro hasta d x 2 debido a la bifurcación de f,g)

Indicamos todas las posibilidades:

 $\{i,h,f,e,d\}$

 $\{i,h,g,e,d\}$

 $\{i,h,f,e,c,a\}$

 $\{i,h,g,e,c,a\}$

 $\{i,h,f,e,c,b\}$

 $\{i,h,g,e,c,b\}$