Conjuntos

Axiomas Básicos

Ej. 1. Demuestra que el enunciado $\varphi \leftrightharpoons \forall x \exists y (x \in y \land \forall z \forall w ((z \in w \land w \in y) \rightarrow z \in y))$ implica el axioma de unión. *Indica claramente cuáles axiomas de ZFC utilizas en la demostración*.

$$\varphi \leftrightharpoons \forall x \exists y \forall z \forall w ((z \in w \land w \in x) \rightarrow z \in y)$$

Ej. 2. Sea $\psi(x)$ una fórmula de la teoría de conjuntos. Demuestre que, si $z := \{y \mid \exists x \, (\psi(x) \to y \in x)\}$ es un conjunto, entonces $\{x \mid \psi(x)\}$ es un conjunto. *Indica claramente cuáles axiomas de ZFC utilizas en la demostración.*

Relaciones y Funciones

- Ej. 3. Demuestra que toda relación es una unión de funciones.
- Ej. 4. Sean $f: \omega \to 2$ y $P := \{f \mid n \in \mathscr{P}(\omega \times 2) \mid n \in \omega\}$. Demuestra que (P, \subseteq) es un conjunto bien ordenado.

Dominancia y CSB

- Ej. 5. Prueba que 2^{ω} y ω^{ω} son equipotentes.
- **Ej. 6.** Sean (B, <) un conjunto bien ordenado $y \times A$ conjuntos con $x \subseteq A$. Prueba que, si existe $f: B \to A$ sobreyectiva, entonces $x \le B$.

Copos

- **Ej. 7.** Sea (A, <) una retícula (latiz). Demuestra que si (A, <) no es distributiva, entonces existe un subconjunto $B = \{a, b, c, d, e\} \subseteq A$ de modo que $< \upharpoonright B$ es alguno de los siguientes:
 - a) Diamante: $\{(a, b), (b, e), (a, c), (c, e), (a, d), (d, e), (a, e)\}$
 - b) Pentagono: $\{(a, e), (a, d), (d, e), (a, c), (c, e), (a, b), (b, c), (b, e)\}$
- **Ej. 8.** Pruebe que si un orden parcial (P, <) es fuertemente inductivo, entonces cada $A \subseteq P$ no vacío posee un <-minimal.

Naturales e Inducción

Ej. 9. Sean $f: X \to \omega$ y $Y \subseteq X$ cualesquiera. Demuestra que si para cada $x \in X$ se satisface la proposición: $\forall y \in X (f(y) < f(x) \to y \in Y) \to x \in Y$, entonces Y = X.

- Ej. 10. Un conjunto X es Tarski-finito si y sólo si para cada $A \subseteq X$ no vacío, existe $y \in A$ de modo que para cada $a \in A$, no ocurre $y \subseteq a$. Demuestra que todo natural $n \in \omega$ es Tarski-finito.
- Ej. 11. Sea X un conjunto. Una \in , X-cadena es una función f con dominio algún natural $n \in \omega$ que cumple: $f(0) \in X$; y, para cualesquiera $m, k \in n$ con m < k, se cumple $f(k) \in f(m)$. Es un hecho que $C = \bigcup \{ima(f) \mid f \text{ es } \in$, X cadena $\}$ es un conjunto. Pruebe que C es un conjunto transitivo tal que $X \subseteq C$.

Recursión

Ej. 12. Utilizando *únicamente* el Primer Teorema de Recursión (ITR), demuestre que existe una función $F: \omega \to \omega$ de modo que F(0) = 1; y, para cada $n \in \omega$, $F(s(n)) = s(n) \cdot F(n)$.

Hint: Considere $X := \omega \times \omega$ en el 1TR, con el punto inicial (1,1) y defina una dinámica adecuada $q: X \to X$ de modo que al proyectar q a la primera entrada, consiga la función F.

- Ej. 13. Sean X un conjunto y f : X \rightarrow X. Demuestre que existe una función g : $\omega \times X \rightarrow X$ de modo que para cada $(n, x) \in \omega \times X$ se cumplen g(0, x) = x y g(s(n), x) = g(n, f(x)).
- Ej. 14. Sea $f: X \to X$ una función $y A \subseteq X$. Consideremos, mediante el teorema de recursión, la (única) función $g: N \to \mathscr{P}(X)$ de modo que g(0) = A y, para cada $n \in \omega$, $g(s(n)) = g(n) \cup f[g(n)]$. Definimos a los conjuntos $A_* = \bigcup im(g)$, $y A^* = \bigcap \{B \subseteq X \mid A \subseteq B \land f[B] \subseteq B\}$ (llamados las cerraduras inferiores y superiores de A bajo f, respectivamente). Demuestra que:

$$A^* = A_*$$
, $A \subseteq A^*$ y $f[A^*] \subseteq A^*$