IMO 2024 (Problem 4) Let ABC be a triangle with AB < AC < BC. Let the incentre and incircle of triangle ABC be I and ω , respectively. Let X be the point on the line BC different from C such that the line through X parallel to AC is tangent to ω . Similarly, let Y be the point on line BC different from B such that the line through Y parallel to AB is tangent to ω . Let AI intersect the circumcircle of triangle ABC again at $P \neq A$. Let K and L is the midpoints of AC and AB, respectively.

Prove that $\angle KIL + \angle YPX = 180^{\circ}$.

Solutions.

 ω tiếp xúc với các cạnh AB, AC lần lượt tại F, E. Kẻ đường kính FZ, ET với ω . TX cắt ZY tại A'.

Từ đây có $IA' \perp TZ$, Vì FEZT là hình chữ nhật. Nên $FE \parallel TZ$. Do đó $IA' \perp FE$, mặt khác $FE \perp IA$. Điều này dẫn đến A, I, A' thẳng hàng.

B, A', C lần lượt là đối xứng của A qua L, I, K Do đó $\angle KIL = \angle CA'B$.

Ta có: $\angle TXB = \angle ACB = \angle APB = \angle A'PB$ Do đó tứ giác XA'PB nội tiếp. Tương tự: Tứ giác YA'PC nội tiếp.

Tiến hành biến đổi góc như sau:

$$\angle YPX = \angle YPA' + \angle XPA' = \angle YCA' + \angle XBA' = 180^{\circ} - \angle CA'B = 180^{\circ} - \angle KIL \Rightarrow \angle KIL + \angle YPX = 180^{\circ}.$$

Vậy ta có điều cần chứng minh.