No part of the candidate evidence in this exemplar material may be presented in an external assessment for the purpose of gaining credits towards an NCEA qualification.

SUPERVISOR'S USE ONLY

90944

Level 1 Science, 2016

KIA NOHO TAKATŪ KI TŌ ĀMUA AO!

90944 Demonstrate understanding of aspects of acids and bases

9.30 a.m. Monday 14 November 2016 Credits: Four

Achievement	Achievement with Merit	Achievement with Excellence
Demonstrate understanding of aspects of acids and bases.	Demonstrate in-depth understanding of aspects of acids and bases.	Demonstrate comprehensive understanding of aspects of acids and bases.

Check that the National Student Number (NSN) on your admission slip is the same as the number at the top of this page.

You should attempt ALL the questions in this booklet.

Pull out Resource Booklet 90944R from the centre of this booklet.

If you need more room for any answer, use the extra space provided at the back of this booklet and clearly number the question.

Check that this booklet has pages 2–8 in the correct order and that none of these pages is blank.

YOU MUST HAND THIS BOOKLET TO THE SUPERVISOR AT THE END OF THE EXAMINATION.

TOTAL 18

Merit exemplar 2016

Sub	ject: Scier	nce Standard: 90944 Total score: 18						
Q	Grade score	Annotation						
		Correctly balanced symbol equation. Explains that oxygen needs to gain two electrons and sodium needs to lose an						
1	М6	electron to have full valence shells. Explains that oxygen is in Group 16, has 8 protons and electrons – with an electron arrangement of 2,6 – and that to form an oxygen ion it needs to gain 2 electrons to have a full valence shell.						
2	M6	Explains that the greater surface area of calcium carbonate in powder form leads to more successful collisions between the hydrochloric acid particles and the powdered calcium carbonate particles leading to a faster rate of reaction when compared to a slower rate with chips of calcium carbonate which have a smaller area.						
		Explains that hydrochloric acid with a pH 1 has more hydrogen ions and is therefore able to have a faster reaction rate with the powdered calcium carbonate than an acid at pH 5 which has fewer hydrogen ions.						
		Correctly links potassium hydroxide (purple with universal indicator) with having a higher pH (14) than potassium carbonate (blue) which has a pH between 11-13.						
3	M6	Correctly balanced symbol equation						
		Explains that before any acid is added there is an excess of OH- ions which decreases as H+ ions are added until there is an excess of H+ ions.						

(a) Complete the table below.

Element	Atomic number	Electron arrangement of atom	Electron arrangement of ion		
F	9	217	2,8		
S	16	2,8,6	2,8,8		
Ca	20	2,8,8,2	2,8,8		

(b) Write the formulae for the following ionic compounds.

Use the table of ions in your resource booklet to help you.

(i) Silver fluoride

AgF

(ii) Potassium sulfate

K2504

(iii) Calcium nitrate

(a (NO3)2

(c) Sodium burns in oxygen gas, O2, to form sodium oxide, Na2O.

(i) Explain how the Na and O atoms form Na⁺ and O²⁻ ions, in terms of their groups in the periodic table, electron arrangement, AND number of protons.

table. It has an election arrangment of

Protons. To form on ion it needs to gain 2 electrons to make its full valence shell. So then it has a charge of 2-. The

number of protons remain at 600

Sodium is in group I of the periodic table. It has an electron arrangment of 7,8,1. So a total of 11 electrons and protous. For sodium to make

its	Full	valence	shell	4	heeds	to	lose	1
electron	1 . Il	t then	gets	a	Charg	e of	}	- CI+)
II 51	,ill	has 11) Ar	olons	i of	fer	17	hos
Lecome	- an	16/16	All	Flem	ents	h 9	TOUR	4
Est have	, a	charge	of	1	In go	oup	6	2 01

ASSESSOR'S USE ONLY

(ii) Justify the ratio of Na⁺ and O²⁻ ions in the formula Na₂O, in terms of the **electrons** lost or gained, and the **charge** on each ion.

Include an explanation of the type of bonding between the Na⁺ and O²⁻ ions.

N This	is an	ionc.	-bond	betwe	een	Sodium	(Nat)
and	Oxygen	(0 2h), (Massa	RHSO	HOD I	onic-b	and is
the a	Hracken	between	eh a	cation	and	a sh	ľoh.
As the	sodi	um ioh	has	only	lost :	1 elec	fron it
has a	Charge	0F 4	r and	Oxy	yth b	ws g	anea
2 6/60	Wohs S	it it	hus a	Chorgi	e of	- 2	- e This
Means	that	there	, her	eds to	> 6e	e a	ravio
00	201	of	the	Sodiun	~ & OX	49th o	For
Every	1 0	xygen	idh	there	15	2	Sodium
- Ui	JhS.	This	15	becaus	e 1	Ley	Sodium word
a	hertral	chou	ge of	2 0	SO	2	sodims
Cacel	out	1	0249	en of			
			V V	,			

(d) Write a word equation AND a balanced symbol equation for the reaction between sodium hydroxide and sulfuric acid.

Word equation:		Condition	C 10 1
Sodium hydroxide + sulfuric acid		50010M	JUITALI
	+	water s.	
	_		

Balanced symbol equation:

2NaOH + H2SOL - Naz SOLI +2H2O

Na+ 04- H' Sou

Science 90944, 2016

QUESTION TWO

A sample of calcium carbonate is added to dilute hydrochloric acid in an open conical flask. The total mass of the flask and contents is measured over time.

Three experiments are carried out at 25°C using the same mass of calcium carbonate, and the same volume of acid:

	Calcium carbonate pieces	pH of acid
Experiment 1	Chips	1
Experiment 2	Powdered	1
Experiment 3	Powdered	5

(a) For each of the experiments reacting calcium carbonate and dilute acid together, the mass of the flask and its contents decreases over time.

Describe why this happens.

1 This	is	becau	se so	me i	0.P	he	content	gets
	ice		Corban					

- (b) (i) Identify the factor affecting the reaction rate being investigated in Experiments 1 and 2.
 - (ii) Explain how this factor affects the rate of reaction in the two flasks, with reference to particle collisions.

Explain any observations, including changes in mass, over the course of Experiments 1 and 2 until the reactions are finished.

/	Sulfac	e ov	ee al	-fects	the	fate	of	reacti	on_
1/2	because	e 17	Me	ioun s	thert	more	par	tricles	
	the A	in Controlled	ile	de	exlos	ed	the	hydro	chloric
	acid.		hreehs	s il	-at			be	more
	Suces	spil	Zollišu	168	os :	There	is_	More	of -
		chance	the	1	collide.	The	e fo	rticle	colli a in
	Mheory	5 lei	Fes	theif	l'n	order	- For	а	Chemical

Realton to occur	Llas muchich	es must	collide	with
TEACHION TO OCCUP	100		~ 1 · · · · ·	1 11:5
sufficent force	and at	the corve	at on	en ta Mah,
This means the	reaction	Will take	e place	- mich
quicker them wh	en the	calcium	was	(A)
Chips. The ma	85 will	stay	the so	ame
os its still	the s	ame	amount	-5 but
the experiment	11W 5	l use	up to	he
alcium. powder	much q	yi'cher	than	[f 1]
calcium powder was chips . S	to the	rate of	re al	toon is
grichen -				

(c) Compare and contrast the rate of reaction of Experiments 2 and 3, with reference to particle collisions and the concentration of hydrogen ions in the solution.

VIII experiment 2 there is a ph of 1 so
there is a much higher concentration of the
acid. This means that there are offmore Ht ions
Chydrogen) in the acid that there is of the
of ions (hydroxide). In experiment 2 there
is a ph of 5 so close to hertral,
this meuns there is a low concentration of
acid. There are alot move OH ions
present in there than experiment 1. The
ratio is newriting 50% as its close
1010 13 NEW 100 30 16 00 110 000 100
to hestral. This meuns that it would
take much longer to fully reacts as there
are less collisions happening. There arent as
ove less collisions happening. There arent as much 14th ions bolliding with the cacaz
ions. So the reaction would take
longer. a

QUESTION THREE

A student added universal indicator to the solutions in two beakers as shown below.

Beaker 1 Potassium carbonate

Beaker 2 Potassium hydroxide

(a) Explain why the solutions are different colours.

Ž	They	are	different	colour	as	they	have	a	different
	amoun	t of	hydro	xide c	and	blydro	40h	rons	ih
	them.	They	have	differ	rent	Ph	levels	(61	ve
	11-13	Ph)	Cpirple	14 11	7) 6	they	owe	60	Th
	basic		but	bealter	- £	7 /5	Mol	e	
	basi	COM							

The student then adds hydrochloric acid to each of the beakers until there are no more changes in colour.

(b) Write a word equation AND a balanced symbol equation for the reaction between **hydrochloric acid** and **potassium carbonate** in Beaker 1.

Science 90944, 2016

ASSESSOR'S

Relate this to the changing pH, the ions present in the beaker, and the type of reaction occurring.

Hydrochloric acid is put level indicator purple down then orange hydroxide OH more When Th there into hydrogen 1045 ion S Solution Heb OVESBULL dioxide neutralisi

Metal carbonate -> Metal salt