Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ(ТУСУР)

Кафедра компьютерных систем в управлении и проектировании (КСУП)

РАЗРАБОТКА ПЛАГИНА "ВАЛ-ШЕСТЕРНЯ" ДЛЯ САПР Компас-3D Проект системы по дисциплине «ОСНОВЫ РАЗРАБОТКИ САПР»

	Выпол	тнил:
	студент гр. :	589-3
_	А.С.Избі	ышев
« <u></u>	_» 20)22 г.
	Руководи	тель:
	к.т.н., доцент каф. К	СУП
	А.А. Калег	нтьев
//	" 20)22 г

Оглавление

1 Описание САПР	3
1.1 Описание программы	3
1.2 Анализ АРІ	4
2 Описание предмета проектирования	12
3 Проект системы	14
3.1 Описание технических и функциональных аспектов проекта	14
3.2 Диаграмма классов	15
3.3 Макет пользовательского интерфейса	19
Список литературы	21

1 Описание САПР

1.1 Описание САПР «КОМПАС-3D»

Система «Компас-3D» предназначена для создания трёхмерных моделей деталей (в ассоциативных отдельных TOM числе, деталей, формируемых из листового материала путём его гибки) и сборочных единиц, содержащих как оригинальные, так и стандартизованные конструктивные элементы [1]. Параметрическая технология позволяет быстро получать модели типовых изделий на проектированного основе ранее прототипа. Многочисленные сервисные функции облегчают решение вспомогательных задач проектирования и обслуживания производства.

КОМПАС-3D широко используется для проектирования изделий вспомогательного производств В отраслях основного И таких промышленности, как машиностроение (транспортное, сельскохозяйственное, энергетическое, нефтегазовое, химическое И т.д.), приборостроение, авиастроение, судостроение, станкостроение, вагоностроение, металлургия, промышленное и гражданское строительство, товары народного потребления ит. д.

1.2 Анализ АРІ

АРІ (англ. Application Programming Interface — программный интерфейс приложения) — это набор способов и правил, по которым различные программы общаются между собой и обмениваются данными. Все эти коммуникации происходят с помощью функций, классов, методов, структур, а иногда констант одной программы, к которым могут обращаться другие [2].

Для КОМПАС-3D есть две различные версии API: версии 5 и версии 7. К ним разработчик прилагает справочную систему по всем включенным в эту API интерфейсам.

Далее будут приведены самые важные для использования в программе методы и свойства интерфейсов. Наиболее вероятно, программа не ограничится их использованием, а будет также применять более локальные методы и свойства:

Таблица 1.1 – Интерфейсы, используемые при разработке

Название интерфейса	Описание интерфейса
KompasObject	Интерфейс АРІ КОМПАС
ksEntity	Интерфейс элемента модели (оси, плоскости,
Rozmary	формообразующего элемента)
ksDocument2D	Интерфейс графического документа системы
KSD0cument2D	КОМПАС
ksSketchDefinition	Интерфейс параметров эскиза
ksDocument3D	Интерфейс документа-модели
ksPart	Интерфейс детали или подсборки в составе
KST uit	сборки
ksBaseExtrusionDefinition	Интерфейс параметров основания - элемента
KSB4SCEAR 4SIOID CIMITON	выдавливания
ksCircularPartArrayDefinition	Интерфейс операции копирования по
RECITCULARY ARTHUSE	окружности

В нижеописанных таблицах представлены методы, которые будут использоваться при разработке плагина, а также описание входных параметров данных методов (таблицы 1.2-1.15).

Таблица 1.2 – Используемые методы интерфейса KompasObject

Название	Возвращаемый тип	Описание
Document3D()	ksDocument	Метод для получения указателя на интерфейс трехмерного графического документа (детали или сборки)
ActivateControllerAPI()	bool	Метод для активации API КОМПАС-3D
Visible()	bool	Свойство видимости приложения

Таблица 0.3 – Используемые методы интерфейса ksEntity

Название	Возвращаемый	Описание
1100201111	ТИП	
Create()	bool	Создать объект в модели
GetDefinition()	IUnkown	Получить указатель на интерфейс
TOIROWII		параметров объектов и элементов

Таблица 1.4 – Используемые методы интерфейса ksDocument2D

Название	Возвращаемое значение	Описание
ksCircle (double xc, double yc, double rad, long style)	Ссылка на окружность – в случае удачного завершения, 0 – в случае неудачи	Создать окружность

Таблица 1.5 – Описание входных параметров, используемых методов интерфейса ksDocument2D

Метод	Входной параметр	Описание входного параметра
ksCircle (double xc,	xc, yc	Координаты центра окружности
double yc, double rad,	rad	Радиус окружности
long style)	style	Стиль линии

Таблица 0.6 – Используемые методы интерфейса ksSketchDefinition

Название	Возвращаемый	Описание	
Пазванис	тип	Описанис	
BeginEdit() bool		Войти в режим редактирования эскиза	
Deginizant()	bool	(ksDocument2D)	
EndEdit()	bool	Выйти из режима редактирования эскиза	

Таблица 0.7 – Используемые методы интерфейса ksDocument3D

Название	Возвращаемый тип	Описание
Create (bool invisible, bool typeDoc)	bool	Создать документ-модель (деталь или сборку)
GetPart (int type)	ksPart	Получить указатель на интерфейс компонента в соответствии с заданным типом

Таблица 1.8 – Описание входных параметров, используемых методов интерфейса ksDocument3D

Метод	Входной	Описание входного параметра	
TVICIO _A	параметр	оппеште входного параметра	
		Признак режима редактирования документа	
Create (bool	invisible	(TRUE – невидимый режим, FALSE – видимый	
invisible, bool		режим)	
typeDoc)	typeDoc	Тип документа (TRUE – деталь, FALSE –	
	турсьос	сборка)	
		Тип компонента из перечисления:	
		pInPlace_Part – компонент, редактируемый на	
		месте; pNew_Part – новый компонент;	
CotPort (int		pEdit_Part –редактируемый компонент;	
GetPart (int type)	type	pTop_Part – главный компонент, в составе	
		которого находится новый, редактируемый	
		или указанный компонент (например, сборка, в	
		составе которой находится редактируемая	
		деталь)	

Таблица 1.9 – Используемые методы интерфейса ksPart

Название	Возвращаемый тип	Описание
GetDefaultEntity (short objType)	ksEntity	Получить ссылку на интерфейс объекта, создаваемого системой по- умолчанию
NewEntity (short objType)	ksEntity	Создать новый интерфейс объекта и получить указатель на него

Таблица 1.10 – Описание входных параметров, используемых методов интерфейса ksPart

Входной параметр	Описание параметра
objType	Тип объекта

Таблица 1.11 – Используемые типы объектов в методах интерфейса ksPart

Метод	Тип объекта	Название объекта
GetDefaultEntity	o3d_planeXOY	Плоскость ХОҮ
(short objType)	o3d_axisOZ	Ось ОΖ
	o3d_sketch	Эскиз
NewEntity (short objType)	o3d baseExtrusion	Базовая операция
	OSG_SUBSELAR USION	выдавливания
	o3d_cutExtrusion	Вырезать
	03d_cutExtrusion	выдавливанием
	o3d_circularCopy	Операция копирования
		по концентрической
		сетке

Таблица 1.12 – Используемые методы интерфейса ksBaseExtrusionDefinition

Название	Возвращаемый тип	Описание
SetSideParam (bool forward, short type, double depth, double draftValue, bool draftOutward)	bool	Установить параметры выдавливания в одном направлении
SetSketch (LPDISPATCH sketch)	bool	Задать указатель на интерфейс эскиза элемента

Таблица 1.13 – Описание входных параметров, используемых методов интерфейса ksBaseExtrusionDefinition

Метод	Входной параметр	Описание входного параметра
SetSideParam (bool	forward	Направление выдавливания: TRUE - прямое направление, FALSE - обратное направление
forward, short type,	type	Тип выдавливания
double depth, double	depth	Глубина выдавливания
draftValue, bool	draftValue	Угол уклона
draftOutward)		Направление уклона: FALSE –
	draftOutward	уклон наружу, TRUE – уклон
		внутрь
SetSketch		Указатель на интерфейс эскиза
(LPDISPATCH	sketch	
sketch)		ksEntity

Таблица 1.14 – Используемые методы интерфейса ksCircularPartArrayDefinition

Название	Возвращаемый тип	Описание
SetCopyParamAlongDir (long count, double step, bool, factor, bool dir)	bool	Установить параметры копирования
SetAxis (LPDISPATCH axis)	bool	Установить указатель на ось копирования

Таблица 1.15 – Описание входных параметров, используемых методов интерфейса ksCircularPartArrayDefinition

Метод	Входной параметр	Описание входного параметра
SetCopyParamAlongDir	count	Количество копий
(long count, double	step	Шаг
step, bool factor, bool	factor	Признак полного шага
dir)	dir	Направление
SetAxis (LPDISPATCH	axis	Указатель на интерфейс оси
axis)	UAIS	ksEntity

1.3 Обзор аналогов

Онлайн 3D – конфигуратор шестерней Gear Generator[3].

Gear Generator — это онлайн генератор для создания различных контуров шестерней, которые можно сконвертировать в 3D-модель в формате DXF, либо использовать как 2D-скетч в формате SVG для дальнейшего выдавливания в Inventor, Solidworks, Fusion 360 и других программах, поддерживающих эту функцию.

Генератор включает в себя всевозможные настраиваемые параметры: центр шестерни, диаметр, количество зубьев, профиль зуба и их направление. Также можно создавать внутренние шестерни.

Интерфейс программы показан на рисунке 1.1:

Рисунок 1.1 –Интерфейс Gear Generator

2 Описание предмета проектирования

Программа предназначена для автоматизации моделирования детали «Коническая вал-шестерня».

Вал-шестерня — комбинированный вид запчасти, состоящей непосредственно из самого вала и шестерни. Целевой задачей данной конструкции является передача крутящего усилия с одного вала на другой и поддержание шкивов, катков и прочих элементов в приводных механизмах, редукторах. Коническая вал-шестерня — это шестерня, в которой оси двух валов пересекаются, а зубчатая поверхность самой шестерни имеет коническую форму. Поверхность конических вал-шестерней представляет собой конус [4].

Изображение моделируемого объекта представлено на рисунке 2.1:

Рисунок 2.1 – Чертёж конической вал-шестерни

Изменяемые параметры для плагина:

D1 – диаметр профиля шестерни (70-120 мм);

W1 – ширина шестерни (70-200 мм);

D2 – диаметр соединяющего цилиндра (85-110 мм);

- **D3** диаметр основного цилиндра (80-105 мм);
- **D4** диаметр вращательного цилиндра (10-55 мм);
- L1 длина вращательного цилиндра (5-75 мм).

Ширина шестерни W1 и диаметр конического профиля D1 ограничены так, чтобы сохранять форму конуса и не допускать искажений модели.

Диаметр D2 и D3 не должны превышать выхода за профиль шестерни, а также зависимы между собой и второе значение должно быть больше первого на 5 см для правильного перехода между ними.

Диаметр D4 ограничен значением 10 см и предельно допустимым для перехода к следующему элементу значением 55 см. Длина L1 имеет границы в пределах нормы.

3 Проект системы

3.1 Описание технических и функциональных аспектов проекта

Плагин позволяет пользователю ввести вышеперечисленные значения через графический интерфейс. В программе предусмотрена проверка корректности введенных данных и сообщение пользователю о неправильно заполненных полях.

Если пользователем введены недопустимые значения параметров, то построение модели не начнётся.

При правильно введенных значениях результатом работы программы будет созданная по ним модель конической вал-шестерни.

Для графического описания абстрактной модели проекта, а также пользовательского взаимодействия (сценарии) использован стандарт UML.

UML язык графического описания для объектного моделирования в области разработки программного обеспечения. UML является языком широкого профиля, это — открытый стандарт, использующий графические обозначения для создания абстрактной модели системы, называемой UML — моделью. UML был создан для определения, визуализации, проектирования и документирования, в основном, программных систем. UML не является языком программирования, но на основании UML возможна генерация кода и наоборот [5].

При использовании UML были простроена диаграмма классов.

3.2 Диаграмма классов

Диаграмма классов — структурная диаграмма языка моделирования UML, демонстрирующая общую структуру иерархии классов системы, их коопераций, атрибутов (полей), методов, интерфейсов и взаимосвязей между ними.

На рисунке 3.1 представлена диаграмма классов.

Рисунок 3.1 – Диаграмма классов UML

Далее в таблицах 3.1 - 3.4 представлено описание классов.

Таблица 3.1 – Описание полей, методов, сущностей класса «MainForm»

Название	Возвращ	Описание
метода/поля	аемый	
	ТИП	
_parameters		Хранит в себе набор методов для
		построения вал-шестерни
_textBoxToParameter		Хранит в себе набор TextBox и
		соответствующий ему тип параметра из
		перечисления «ShaftGearParametersТуре»
SetParameter(object, EventArgs)	void	Устанавливает значение параметра
SetMinParameters()	void	Устанавливает минимальное значение всех параметров
SetMaxParameters()	void	Устанавливает максимальное значение
Setiviaxi arameters()	VOIG	всех параметров
SetAvgParameters()	void	Устанавливает среднее значение всех
Schvgi arameters()	VOIG	параметров
Build()	void	Строит коническую вал-шестерню по
Duna()	VOIU	заданным параметрам

Таблица 3.2 – Описание полей, методов, сущностей класса «ShaftGearParameters»

Название	Возвращае	Описание	
метода/поля	мый тип	Описание	
		Хранит данные о каждом параметре	
_parameters		модели из перечисления	
		«ShaftGearParametersType»	
ShaftGearParameters()		Конструктор для создания экземпляра	
ShartOearr arameters()		класса	
SetParameterValue(Pa	void	Устанавливает значение	
rameterType, double)	volu	определённого параметра	
GetParameterValue(Pa	double	Возвращает значение определённого	
rameterType)	uouble	параметра	

Таблица 3.3 – Описание полей, методов, сущностей класса «ShaftGearParameter»

Название метода/поля	Возвращаемый	Описание
	ТИП	
_value		Хранит текущее значение
ShaftGearParameter(double,		Конструктор для создания
double, double)		экземпляра класса
		Возвращает максимальное
Maximum()	double	допустимое значение
		параметра
		Возвращает минимальное
Minimum()	double	допустимое значение
		параметра
		Возвращает текущее значение
Value()	double	параметра. Задает новое
		значение параметра

Таблица 3.4 – Описание полей, методов, сущностей класса «SinkBuilder»

Название метода/поля	Возвращаемый	Описание
	ТИП	
		Хранит в себе методы
kompasConnector		необходимые для связи
		с КОМПАС 3D
		Хранит данные о
		каждом параметре
_parameters		модели из
		перечисления
		«ShaftGearParameter»
ShaftGearBuild		Построение шестерни
	void	по заданным
(ShaftGearParameters)		параметрам
CreateGear()	void	Построение основы
CreateGear()	Volu	шестерни
Crasta Shaft Paga()	void	Построение основы
CreateShaftBase()	void	вала
	void	Построение
CreateShaftTip()		вращательного
		цилиндра вала

Окончание таблицы 3.4

		Возвращает
CreateSketch(obj3dType)	ksSketchDefinition	интерфейс
		параметров эскиза
PressOutSketch(ksSketchDefinition, double)	void	Выдавливает эскиз
uouble)		

3.3 Макет пользовательского интерфейса

Макет пользовательского интерфейса представляет собой форму для ввода параметров конической вал-шестерни (рисунок 3.2). Построение модели осуществляется путем нажатия на кнопку «Build Model».

Рисунок 3.2 – Макет пользовательского интерфейса

С помощью данного окна пользователь может изменять параметры будущей 3D-модели конической вал-шестерни.

Рядом с полями ввода находятся название компонента, за который поле отвечает и его обозначение на чертеже.

На панели «Default Parameters» созданы 3 кнопки значений по умолчанию. При нажатии на кнопку «Set Minimum Size» будет создана 3D-модель с минимальными допустимыми размерами. При нажатии на кнопку «Set Average Size» будет создана 3D-модель со средними значениями размеров. При нажатии на кнопку «Set Maximum Size» будет создана 3D модель с максимальными корректными размерами.

Чертёж модели справа необходим для лучшего понимания расположения вводимых размеров – обозначения размеров соответствуют подписям полей ввода значений.

При вводе недопустимых значений рядом с полем ввода появляется предупреждение, при наведении на которое можно увидеть подробную информацию о причине его появления. На рисунке 3.3 продемонстрированы 2 предупреждения: первое из-за ввода слишком большого значения, выходящего за пределы допустимых; второе из-за нарушения зависимости параметров друг от друга.

Построение модели невозможно начать, пока все поля не будут корректно заполнены.

Рисунок 3.3 – Реализация предупреждений о недопустимых значениях

Список литературы

- 1. Компас (САПР) Википедия. [Электронный ресурс]. Режим доступа: https://ru.wikipedia.org/wiki/Komпac_(САПР) (дата обращения 02.11.2022).
- 2. API Википедия. [Электронный ресурс]. Режим доступа: https://ru.wikipedia.org/wiki/API (дата обращения 08.11.2022).
- 3. Генератор шестерни онлайн Gear Generator [Электронный ресурс]. Режим доступа: https://geargenerator.com/beta (дата обращения 18.11.2022).
- 4. Коническая вал-шестерня Википедия. [Электронный ресурс]. Режим доступа: https://en.wikipedia.org/wiki/Bevel_gear (дата обращения 18.11.2022).
- 5. UML. [Электронный ресурс]. Режим доступа: http://www.uml.org/ (дата обращения 14.11.2022).