딥러닝의 정석 Chapter 3

텐서플로로 신경망 구현하기 – based on Pytorch

Index

- PyTorch
 - Tensor
 - Autograd
 - PyTorch Functions
 - CPU/GPU
- 로지스틱 회귀모델
- MNIST

Pytorch

- Tensor
 - GPU에서 동작 가능
 - 계산, 그래프, 변화도 추적기능
- 자동 미분 기능 제공 (Automatic Differentiation) Autograd

CV (batch size, width, height) NLP (batch size, length, dim)

Tensor

• PyTorch는 Tensor를 기반으로 작동하는 함수 제공

't'
'e'
'n'
's'
'0'
'r'

3	1	4	1
5	9	2	6
5	3	5	8
9	7	9	3
2	3	8	4
6	2	6	4

tensor of dimensions [6] (vector of dimension 6)

tensor of dimensions [6,4] (matrix 6 by 4)

tensor of dimensions [4,4,2]

- 미분자동화
- 전방향 : 비용함수 계산, input에 따른 output계산
 - 비용함수 : 예측값과 실제값의 오차
 - MSE (Mean Squared Error)
 - CEE (Cross Entropy Error)
- 역방향(Backpropagation) : 비용 함수에 따른 학습 파라미터의 변화도(기울기) 계산
 - 연쇄 규칙 이용

• 그래프 만들기

$$b=w_1*a$$
 $c=w_2*a$
 $d=w_3*b+w_4*c$
 $L=10-d$
 w_1
 w_2
 w_3

- Computing the Output
- Computing the Gradients

$$rac{\partial L}{\partial w_4} = rac{\partial L}{\partial d} * rac{\partial d}{\partial w_4}$$
 $rac{\partial L}{\partial w_3} = rac{\partial L}{\partial d} * rac{\partial d}{\partial w_3}$

$$\overline{\partial w_2} = \overline{\partial d} * \overline{\partial c} * \overline{\partial w_2}$$
 $\frac{\partial L}{\partial w_1} = \frac{\partial L}{\partial d} * \frac{\partial d}{\partial b} * \frac{\partial b}{\partial w_1}$

PyTorch Functions

- 수식 연산
 - torch.nn.Autograd.Function 에 정의되어 있다.
- Forward Function

```
b = w1 * a
c = w2 * a
d = (w3 * b) + (w4 * c)
L = 10 - d
```

Backward Function

```
def backward( input_grad ) :
    d.Tensor.grad = input_grad

for i in self.inputs:
    if i.grad_fn is not None :
        new_input_grad = input_grad * local_grad( d.Tensor, i )
        i.grad_fn.backward( new_input_grad )
    else :
        pass
```

Logistic Regression

- 입력이 대상에 속할 확률을 계산하는 방법
- 은닉층이 없다
- (1, batch) 사이즈의 아웃풋

$$g(z)=rac{1}{1+e^{-z}}$$

$$L_0 = rac{1}{m} \sum_{i=1}^m (h(x^{(i)}) - y^{(i)})^2 = rac{1}{m} \sum_{i=1}^m (rac{1}{1 + e^{-w^T x^{(i)}}} - y^{(i)})^2$$

Softmax

• Logistic Regression을 일반화 한 것

$$f(x^{(i)},W,b)=Wx(i)+b$$

$$h(x^{(i)}) = rac{e^{w_{j_j}^T x^{(i)}}}{\sum_{i=1}^k e^{w_j^T x^{(i)}}}$$
 Activation Function

If we write it as an equation, we can get:

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

tanh

tanh(x)

ReLU

 $\max(0, x)$

Leaky ReLU

 $\max(0.1x, x)$

Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

Sigmoid

$$g(z)=rac{1}{1+e^{-z}}$$

Tanh

$$tanh(x) = 2\sigma(2x) - 1$$

$$tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

$$tanh'(x) = 1 - tanh^2(x)$$

- ReLU (경사함수)
- 가장 많이 사용되는 활성화 함수
- Gradient Vanishing 문제 해결

$$f(x) = max(0, x)$$

Thank You