

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶:
 C12N 15/31, C07K 14/315, 16/12, C12Q 1/68

(11) International Publication Number:

WO 98/18931

(43) International Publication Date:

7 May 1998 (07.05.98)

(21) International Application Number:

PCT/US97/19588

(22) International Filing Date:

30 October 1997 (30.10.97)

(30) Priority Data:

60/029,960

31 October 1996 (31.10,96) US

(71) Applicant (for all designated States except US): HUMAN GENOME SCIENCES, INC. [US/US]; 9410 Key West Avenue, Rockville, MD 20850 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): KUNSCH, Charles, A. [US/US]; 2398B Dunwoody Crossing, Atlanta, GA 30338 (US). CHOI, Gil, H. [KR/US]; 11429 Potomac Oaks Drive, Rockville, MD 20850 (US). DILLON, Patrick, J. [US/US]; 1055 Snipe Court, Carlsbad, CA 92009 (US). ROSEN, Craig, A. [US/US]; 22400 Rolling Hill Road, Laytonsville, MD 20882 (US). BARASH, Steven, C. [US/US]; 582 College Parkway #303, Rockville, MD 20850 (US). FANNON, Michael [US/US]; 13501 Rippling Brook Drive, Silver Spring, MD 20850 (US). DOUGHERTY, Brian, A. [US/US]; 708 Meadow Field Court, Mount Airy, MD 21771 (US).

(74) Agents: BROOKES, A., Anders et al.; Human Genome Sciences, Inc., 9410 Key West Avenue, Rockville, MD 20850 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: STREPTOCOCCUS PNEUMONIAE POLYNUCLEOTIDES AND SEQUENCES

(57) Abstract

The present invention provides polynucleotide sequences of the genome of *Streptococcus pneumoniae*, polypeptide sequences encoded by the polynucleotide sequences, corresponding polynucleotides and polypeptides, vectors and hosts comprising the polynucleotides, and assays and other uses thereof. The present invention further provides polynucleotide and polypeptide sequence information stored on computer readable media, and computer-based systems and methods which facilitate its use.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	ТJ	Tajikistan
\mathbf{BE}	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
\mathbf{BF}	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	$\mathbf{z}\mathbf{w}$	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
\mathbf{cz}	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
\mathbf{DE}	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	$\mathbf{s}\mathbf{G}$	Singapore		

Streptococcus pneumoniae Polynucleotides and Sequences

FIELD OF THE INVENTION

The present invention relates to the field of molecular biology. In particular, it relates to, among other things, nucleotide sequences of *Streptococcus pneumoniae*, contigs, ORFs, fragments, probes, primers and related polynucleotides thereof, peptides and polypeptides encoded by the sequences, and uses of the polynucleotides and sequences thereof, such as in fermentation, polypeptide production, assays and pharmaceutical development, among others.

5

10

15

20

25

30

BACKGROUND OF THE INVENTION

Streptococcus pneumoniae has been one of the most extensively studied microorganisms since its first isolation in 1881. It was the object of many investigations that led to important scientific discoveries. In 1928, Griffith observed that when heat-killed encapsulated pneumococci and live strains constitutively lacking any capsule were concomitantly injected into mice, the nonencapsulated could be converted into encapsulated pneumococci with the same capsular type as the heat-killed strain. Years later, the nature of this "transforming principle," or carrier of genetic information, was shown to be DNA. (Avery, O.T., et al., J. Exp. Med., 79:137-157 (1944)).

In spite of the vast number of publications on *S. pneumoniae* many questions about its virulence are still unanswered, and this pathogen remains a major causative agent of serious human disease, especially community-acquired pneumonia. (Johnston, R.B., et al., Rev. Infect. Dis. 13(Suppl. 6):S509-517 (1991)). In addition, in developing countries, the pneumococcus is responsible for the death of a large number of children under the age of 5 years from pneumococcal pneumonia. The incidence of pneumococcal disease is highest in infants under 2 years of age and in people over 60 years of age. Pneumococci are the second most frequent cause (after *Haemophilus influenzae* type b) of bacterial meningitis and otitis media in children. With the recent introduction of conjugate vaccines for *H. influenzae* type b, pneumococcal meningitis is likely to become increasingly prominent. *S. pneumoniae* is the most important etiologic agent of community-

acquired pneumonia in adults and is the second most common cause of bacterial meningitis behind *Neisseria meningitidis*.

5

10

15

20

25

30

35

The antibiotic generally prescribed to treat *S. pneumoniae* is benzylpenicillin, although resistance to this and to other antibiotics is found occasionally. Pneumococcal resistance to penicillin results from mutations in its penicillin-binding proteins. In uncomplicated pneumococcal pneumonia caused by a sensitive strain, treatment with penicillin is usually successful unless started too late. Erythromycin or clindamycin can be used to treat pneumonia in patients hypersensitive to penicillin, but resistant strains to these drugs exist. Broad spectrum antibiotics (e.g., the tetracyclines) may also be effective, although tetracycline-resistant strains are not rare. In spite of the availability of antibiotics, the mortality of pneumococcal bacteremia in the last four decades has remained stable between 25 and 29%. (Gillespie, S.H., *et al.*, *J. Med. Microbiol.* 28:237-248 (1989).

S. pneumoniae is carried in the upper respiratory tract by many healthy individuals. It has been suggested that attachment of pneumococci is mediated by a disaccharide receptor on fibronectin, present on human pharyngeal epithelial cells. (Anderson, B.J., et al., J. Immunol. 142:2464-2468 (1989). The mechanisms by which pneumococci translocate from the nasopharynx to the lung, thereby causing pneumonia, or migrate to the blood, giving rise to bacteremia or septicemia, are poorly understood. (Johnston, R.B., et al., Rev. Infect. Dis. 13(Suppl. 6):S509-517 (1991).

Various proteins have been suggested to be involved in the pathogenicity of *S. pneumoniae*, however, only a few of them have actually been confirmed as virulence factors. Pneumococci produce an IgA1 protease that might interfere with host defense at mucosal surfaces. (Kornfield, S.J., *et al.*, *Rev. Inf. Dis. 3*:521-534 (1981). *S. pneumoniae* also produces neuraminidase, an enzyme that may facilitate attachment to epithelial cells by cleaving sialic acid from the host glycolipids and gangliosides. Partially purified neuraminidase was observed to induce meningitis-like symptoms in mice; however, the reliability of this finding has been questioned because the neuraminidase preparations used were probably contaminated with cell wall products. Other pneumococcal proteins besides neuraminidase are involved in the adhesion of pneumococci to epithelial and endothelial cells. These pneumococcal proteins have as yet not been identified. Recently, Cundell *et. al.*, reported that peptide permeases can modulate

pneumococcal adherence to epithelial and endothelial cells. It was, however, unclear whether these permeases function directly as adhesions or whether they enhance adherence by modulating the expression of pneumococcal adhesions. (DeVelasco, E.A., et al., Micro. Rev. 59:591-603 (1995). A better understanding of the virulence factors determining its pathogenicity will need to be developed to cope with the devastating effects of pneumococcal disease in humans.

5

10

15

20

25

Ironically, despite the prominent role of *S. pneumoniae* in the discovery of DNA, little is known about the molecular genetics of the organism. The *S. pneumoniae* genome consists of one circular, covalently closed, double-stranded DNA and a collection of so-called variable accessory elements, such as prophages, plasmids, transposons and the like. Most physical characteristics and almost all of the genes of *S. pneumoniae* are unknown. Among the few that have been identified, most have not been physically mapped or characterized in detail. Only a few genes of this organism have been sequenced. (See, for instance current versions of GENBANK and other nucleic acid databases, and references that relate to the genome of *S. pneumoniae* such as those set out elsewhere herein.)

It is clear that the etiology of diseases mediated or exacerbated by S. pneumoniae, infection involves the programmed expression of S. pneumoniae genes, and that characterizing the genes and their patterns of expression would add dramatically to our understanding of the organism and its host interactions. Knowledge of S. pneumoniae genes and genomic organization would improve our understanding of disease etiology and lead to improved and new ways of preventing, ameliorating, arresting and reversing diseases. Moreover, characterized genes and genomic fragments of S. pneumoniae would provide reagents for, among other things, detecting, characterizing and controlling S. pneumoniae infections. There is a need to characterize the genome of S. pneumoniae and for polynucleotides of this organism.

SUMMARY OF THE INVENTION

The present invention is based on the sequencing of fragments of the *Streptococcus pneumoniae* genome. The primary nucleotide sequences which were generated are provided in SEQ ID NOS:1-391.

5

10

15

20

25

30

35

The present invention provides the nucleotide sequence of several hundred contigs of the *Streptococcus pneumoniae* genome, which are listed in tables below and set out in the Sequence Listing submitted herewith, and representative fragments thereof, in a form which can be readily used, analyzed, and interpreted by a skilled artisan. In one embodiment, the present invention is provided as contiguous strings of primary sequence information corresponding to the nucleotide sequences depicted in SEQ ID NOS:1-391.

The present invention further provides nucleotide sequences which are at least 95% identical to the nucleotide sequences of SEQ ID NOS:1-391.

The nucleotide sequence of SEQ ID NOS:1-391, a representative fragment thereof, or a nucleotide sequence which is at least 95% identical to the nucleotide sequence of SEQ ID NOS:1-391 may be provided in a variety of mediums to facilitate its use. In one application of this embodiment, the sequences of the present invention are recorded on computer readable media. Such media includes, but is not limited to: magnetic storage media, such as floppy discs, hard disc storage medium, and magnetic tape; optical storage media such as CD-ROM; electrical storage media such as RAM and ROM; and hybrids of these categories such as magnetic/optical storage media.

The present invention further provides systems, particularly computer-based systems which contain the sequence information herein described stored in a data storage means. Such systems are designed to identify commercially important fragments of the *Streptococcus pneumoniae* genome.

Another embodiment of the present invention is directed to fragments of the *Streptococcus pneumoniae* genome having particular structural or functional attributes. Such fragments of the *Streptococcus pneumoniae* genome of the present invention include, but are not limited to, fragments which encode peptides, hereinafter referred to as open reading frames or ORFs, fragments which modulate the expression of an operably linked ORF, hereinafter referred to as expression modulating fragments or EMFs, and fragments which can be used to diagnose the

presence of *Streptococcus pneumoniae* in a sample, hereinafter referred to as diagnostic fragments or DFs.

Each of the ORFs in fragments of the *Streptococcus pneumoniae* genome disclosed in Tables 1-3, and the EMFs found 5' to the ORFs, can be used in numerous ways as polynucleotide reagents. For instance, the sequences can be used as diagnostic probes or amplification primers for detecting or determining the presence of a specific microbe in a sample, to selectively control gene expression in a host and in the production of polypeptides, such as polypeptides encoded by ORFs of the present invention, particular those polypeptides that have a pharmacological activity.

5

10

15

20

25

30

The present invention further includes recombinant constructs comprising one or more fragments of the *Streptococcus pneumoniae* genome of the present invention. The recombinant constructs of the present invention comprise vectors, such as a plasmid or viral vector, into which a fragment of the *Streptococcus pneumoniae* has been inserted.

The present invention further provides host cells containing any of the isolated fragments of the *Streptococcus pneumoniae* genome of the present invention. The host cells can be a higher eukaryotic host cell, such as a mammalian cell, a lower eukaryotic cell, such as a yeast cell, or a procaryotic cell such as a bacterial cell.

The present invention is further directed to isolated polypeptides and proteins encoded by ORFs of the present invention. A variety of methods, well known to those of skill in the art, routinely may be utilized to obtain any of the polypeptides and proteins of the present invention. For instance, polypeptides and proteins of the present invention having relatively short, simple amino acid sequences readily can be synthesized using commercially available automated peptide synthesizers. Polypeptides and proteins of the present invention also may be purified from bacterial cells which naturally produce the protein. Yet another alternative is to purify polypeptide and proteins of the present invention from cells which have been altered to express them.

The invention further provides methods of obtaining homologs of the fragments of the *Streptococcus pneumoniae* genome of the present invention and homologs of the proteins encoded by the ORFs of the present invention. Specifically, by using the nucleotide and amino acid sequences disclosed herein as

a probe or as primers, and techniques such as PCR cloning and colony/plaque hybridization, one skilled in the art can obtain homologs.

The invention further provides antibodies which selectively bind polypeptides and proteins of the present invention. Such antibodies include both monoclonal and polyclonal antibodies.

5

10

15

20

25

30

The invention further provides hybridomas which produce the abovedescribed antibodies. A hybridoma is an immortalized cell line which is capable of secreting a specific monoclonal antibody.

The present invention further provides methods of identifying test samples derived from cells which express one of the ORFs of the present invention, or a homolog thereof. Such methods comprise incubating a test sample with one or more of the antibodies of the present invention, or one or more of the DFs of the present invention, under conditions which allow a skilled artisan to determine if the sample contains the ORF or product produced therefrom.

In another embodiment of the present invention, kits are provided which contain the necessary reagents to carry out the above-described assays.

Specifically, the invention provides a compartmentalized kit to receive, in close confinement, one or more containers which comprises: (a) a first container comprising one of the antibodies, or one of the DFs of the present invention; and (b) one or more other containers comprising one or more of the following: wash reagents, reagents capable of detecting presence of bound antibodies or hybridized DFs.

Using the isolated proteins of the present invention, the present invention further provides methods of obtaining and identifying agents capable of binding to a polypeptide or protein encoded by one of the ORFs of the present invention. Specifically, such agents include, as further described below, antibodies, peptides, carbohydrates, pharmaceutical agents and the like. Such methods comprise steps of: (a) contacting an agent with an isolated protein encoded by one of the ORFs of the present invention; and (b) determining whether the agent binds to said protein.

The present genomic sequences of *Streptococcus pneumoniae* will be of great value to all laboratories working with this organism and for a variety of commercial purposes. Many fragments of the *Streptococcus pneumoniae* genome will be immediately identified by similarity searches against GenBank or protein databases and will be of immediate value to *Streptococcus pneumoniae* researchers

and for immediate commercial value for the production of proteins or to control gene expression.

The methodology and technology for elucidating extensive genomic sequences of bacterial and other genomes has and will greatly enhance the ability to analyze and understand chromosomal organization. In particular, sequenced contigs and genomes will provide the models for developing tools for the analysis of chromosome structure and function, including the ability to identify genes within large segments of genomic DNA, the structure, position, and spacing of regulatory elements, the identification of genes with potential industrial applications, and the ability to do comparative genomic and molecular phylogeny.

5

10

15

20

25

30

35

DESCRIPTION OF THE FIGURES

FIGURE 1 is a block diagram of a computer system (102) that can be used to implement computer-based systems of present invention.

FIGURE 2 is a schematic diagram depicting the data flow and computer programs used to collect, assemble, edit and annotate the contigs of the Streptococcus pneumoniae genome of the present invention. Both Macintosh and Unix platforms are used to handle the AB 373 and 377 sequence data files, largely as described in Kerlavage et al., Proceedings of the Twenty-Sixth Annual Hawaii International Conference on System Sciences, 585, IEEE Computer Society Press, Washington D.C. (1993). Factura (AB) is a Macintosh program designed for automatic vector sequence removal and end-trimming of sequence files. program Loadis runs on a Macintosh platform and parses the feature data extracted from the sequence files by Factura to the Unix based Streptococcus pneumoniae relational database. Assembly of contigs (and whole genome sequences) is accomplished by retrieving a specific set of sequence files and their associated features using Extrseq, a Unix utility for retrieving sequences from an SQL database. The resulting sequence file is processed by seq_filter to trim portions of the sequences with more than 2% ambiguous nucleotides. The sequence files were assembled using TIGR Assembler, an assembly engine designed at The Institute for Genomic Research (TIGR) for rapid and accurate assembly of thousands of sequence fragments. The collection of contigs generated by the assembly step is loaded into the database with the lassie program. Identification of open reading

frames (ORFs) is accomplished by processing contigs with zorf or GenMark. The ORFs are searched against *S. pneumoniae* sequences from GenBank and against all protein sequences using the BLASTN and BLASTP programs, described in Altschul *et al.*, *J. Mol. Biol. 215*: 403-410 (1990)). Results of the ORF determination and similarity searching steps were loaded into the database. As described below, some results of the determination and the searches are set out in Tables 1-3.

DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

10

15

20

25

30

35

5

The present invention is based on the sequencing of fragments of the *Streptococcus pneumoniae* genome and analysis of the sequences. The primary nucleotide sequences generated by sequencing the fragments are provided in SEQ ID NOS:1-391. (As used herein, the "primary sequence" refers to the nucleotide sequence represented by the IUPAC nomenclature system.)

In addition to the aforementioned *Streptococcus pneumoniae* polynucleotide and polynucleotide sequences, the present invention provides the nucleotide sequences of SEQ ID NOS:1-391, or representative fragments thereof, in a form which can be readily used, analyzed, and interpreted by a skilled artisan.

As used herein, a "representative fragment of the nucleotide sequence depicted in SEQ ID NOS:1-391" refers to any portion of the SEQ ID NOS:1-391 which is not presently represented within a publicly available database. Preferred representative fragments of the present invention are *Streptococcus pneumoniae* open reading frames (ORFs), expression modulating fragment (EMFs) and fragments which can be used to diagnose the presence of *Streptococcus pneumoniae* in sample (DFs). A non-limiting identification of preferred representative fragments is provided in Tables 1-3. As discussed in detail below, the information provided in SEQ ID NOS:1-391 and in Tables 1-3 together with routine cloning, synthesis, sequencing and assay methods will enable those skilled in the art to clone and sequence all "representative fragments" of interest, including open reading frames encoding a large variety of *Streptococcus pneumoniae* proteins.

While the presently disclosed sequences of SEQ ID NOS:1-391 are highly accurate, sequencing techniques are not perfect and, in relatively rare instances, further investigation of a fragment or sequence of the invention may reveal a

nucleotide sequence error present in a nucleotide sequence disclosed in SEQ ID NOS:1-391. However, once the present invention is made available (i.e., once the information in SEQ ID NOS:1-391 and Tables 1-3 has been made available), resolving a rare sequencing error in SEQ ID NOS:1-391 will be well within the skill of the art. The present disclosure makes available sufficient sequence information to allow any of the described contigs or portions thereof to be obtained readily by straightforward application of routine techniques. Further sequencing of such polynucleotide may proceed in like manner using manual and automated sequencing methods which are employed ubiquitous in the art. Nucleotide sequence editing software is publicly available. For example, Applied Biosystem's (AB) AutoAssembler can be used as an aid during visual inspection of nucleotide sequences. By employing such routine techniques potential errors readily may be identified and the correct sequence then may be ascertained by targeting further sequencing effort, also of a routine nature, to the region containing the potential error.

5

10

15

20

25

30

35

Even if all of the very rare sequencing errors in SEQ ID NOS:1-391 were corrected, the resulting nucleotide sequences would still be at least 95% identical, nearly all would be at least 99% identical, and the great majority would be at least 99.9% identical to the nucleotide sequences of SEQ ID NOS:1-391.

As discussed elsewhere herein, polynucleotides of the present invention readily may be obtained by routine application of well known and standard procedures for cloning and sequencing DNA. Detailed methods for obtaining libraries and for sequencing are provided below, for instance. A wide variety of Streptococcus pneumoniae strains that can be used to prepare S. pneumoniae genomic DNA for cloning and for obtaining polynucleotides of the present invention are available to the public from recognized depository institutions, such as the American Type Culture Collection (ATCC). While the present invention is enabled by the sequences and other information herein disclosed, the S. pneumoniae strain that provided the DNA of the present Sequence Listing, Strain 7/87 14.8.91, has been deposited in the ATCC, as a convenience to those of skill in the art. As a further convenience, a library of S. pneumoniae genomic DNA, derived from the same strain, also has been deposited in the ATCC. The S. pneumoniae strain was deposited on October 10, 1996, and was given Deposit No. 55840, and the cDNA library was deposited on October 11, 1996 and was given Deposit No. 97755. The genomic fragments in the library are 15 to 20 kb

fragments generated by partial Sau3A1 digestion and they are inserted into the BamHI site in the well-known lambda-derived vector lambda DASH II (Stratagene, La Jolla, CA). The provision of the deposits is not a waiver of any rights of the inventors or their assignees in the present subject matter.

The nucleotide sequences of the genomes from different strains of *Streptococcus pneumoniae* differ somewhat. However, the nucleotide sequences of the genomes of all *Streptococcus pneumoniae* strains will be at least 95% identical, in corresponding part, to the nucleotide sequences provided in SEQ ID NOS:1-391. Nearly all will be at least 99% identical and the great majority will be 99.9% identical.

5

10

15

20

25

30

35

Thus, the present invention further provides nucleotide sequences which are at least 95%, preferably 99% and most preferably 99.9% identical to the nucleotide sequences of SEQ ID NOS:1-391, in a form which can be readily used, analyzed and interpreted by the skilled artisan.

Methods for determining whether a nucleotide sequence is at least 95%, at least 99% or at least 99.9% identical to the nucleotide sequences of SEQ ID NOS:1-391 are routine and readily available to the skilled artisan. For example, the well known fasta algorithm described in Pearson and Lipman, *Proc. Natl. Acad. Sci. USA 85:* 2444 (1988) can be used to generate the percent identity of nucleotide sequences. The BLASTN program also can be used to generate an identity score of polynucleotides compared to one another.

COMPUTER RELATED EMBODIMENTS

The nucleotide sequences provided in SEQ ID NOS:1-391, a representative fragment thereof, or a nucleotide sequence at least 95%, preferably at least 99% and most preferably at least 99.9% identical to a polynucleotide sequence of SEQ ID NOS:1-391 may be "provided" in a variety of mediums to facilitate use thereof. As used herein, provided refers to a manufacture, other than an isolated nucleic acid molecule, which contains a nucleotide sequence of the present invention; *i.e.*, a nucleotide sequence provided in SEQ ID NOS:1-391, a representative fragment thereof, or a nucleotide sequence at least 95%, preferably at least 99% and most preferably at least 99.9% identical to a polynucleotide of SEQ ID NOS:1-391. Such a manufacture provides a large portion of the *Streptococcus pneumoniae* genome and parts thereof (*e.g.*, a *Streptococcus pneumoniae* open reading frame (ORF)) in a form which allows a skilled artisan to examine the manufacture using

means not directly applicable to examining the *Streptococcus pneumoniae* genome or a subset thereof as it exists in nature or in purified form.

5

10

15

20

25

30

35

In one application of this embodiment, a nucleotide sequence of the present invention can be recorded on computer readable media. As used herein, "computer readable media" refers to any medium which can be read and accessed directly by a computer. Such media include, but are not limited to: magnetic storage media, such as floppy discs, hard disc storage medium, and magnetic tape; optical storage media such as CD- ROM; electrical storage media such as RAM and ROM; and hybrids of these categories, such as magnetic/optical storage media. A skilled artisan can readily appreciate how any of the presently known computer readable mediums can be used to create a manufacture comprising computer readable medium having recorded thereon a nucleotide sequence of the present invention. Likewise, it will be clear to those of skill how additional computer readable media that may be developed also can be used to create analogous manufactures having recorded thereon a nucleotide sequence of the present invention.

As used herein, "recorded" refers to a process for storing information on computer readable medium. A skilled artisan can readily adopt any of the presently know methods for recording information on computer readable medium to generate manufactures comprising the nucleotide sequence information of the present invention. A variety of data storage structures are available to a skilled artisan for creating a computer readable medium having recorded thereon a nucleotide sequence of the present invention. The choice of the data storage structure will generally be based on the means chosen to access the stored information. In addition, a variety of data processor programs and formats can be used to store the nucleotide sequence information of the present invention on computer readable medium. The sequence information can be represented in a word processing text file, formatted in commercially- available software such as WordPerfect and MicroSoft Word, or represented in the form of an ASCII file, stored in a database application, such as DB2, Sybase, Oracle, or the like. A skilled artisan can readily adapt any number of data-processor structuring formats (e.g., text file or database) in order to obtain computer readable medium having recorded thereon the nucleotide sequence information of the present invention.

Computer software is publicly available which allows a skilled artisan to access sequence information provided in a computer readable medium. Thus, by providing in computer readable form the nucleotide sequences of SEQ ID NOS:1-

391, a representative fragment thereof, or a nucleotide sequence at least 95%, preferably at least 99% and most preferably at least 99.9% identical to a sequence of SEQ ID NOS:1-391 the present invention enables the skilled artisan routinely to access the provided sequence information for a wide variety of purposes.

5

10

15

20

25

30

35

The examples which follow demonstrate how software which implements the BLAST (Altschul et al., J. Mol. Biol. 215:403-410 (1990)) and BLAZE (Brutlag et al., Comp. Chem. 17:203-207 (1993)) search algorithms on a Sybase system was used to identify open reading frames (ORFs) within the Streptococcus pneumoniae genome which contain homology to ORFs or proteins from both Streptococcus pneumoniae and from other organisms. Among the ORFs discussed herein are protein encoding fragments of the Streptococcus pneumoniae genome useful in producing commercially important proteins, such as enzymes used in fermentation reactions and in the production of commercially useful metabolites.

The present invention further provides systems, particularly computer-based systems, which contain the sequence information described herein. Such systems are designed to identify, among other things, commercially important fragments of the *Streptococcus pneumoniae* genome.

As used herein, "a computer-based system" refers to the hardware means, software means, and data storage means used to analyze the nucleotide sequence information of the present invention. The minimum hardware means of the computer-based systems of the present invention comprises a central processing unit (CPU), input means, output means, and data storage means. A skilled artisan can readily appreciate that any one of the currently available computer-based systems are suitable for use in the present invention.

As stated above, the computer-based systems of the present invention comprise a data storage means having stored therein a nucleotide sequence of the present invention and the necessary hardware means and software means for supporting and implementing a search means.

As used herein, "data storage means" refers to memory which can store nucleotide sequence information of the present invention, or a memory access means which can access manufactures having recorded thereon the nucleotide sequence information of the present invention.

As used herein, "search means" refers to one or more programs which are implemented on the computer-based system to compare a target sequence or target structural motif with the sequence information stored within the data storage

means. Search means are used to identify fragments or regions of the present genomic sequences which match a particular target sequence or target motif. A variety of known algorithms are disclosed publicly and a variety of commercially available software for conducting search means are and can be used in the computer-based systems of the present invention. Examples of such software includes, but is not limited to, MacPattern (EMBL), BLASTN and BLASTX (NCBIA). A skilled artisan can readily recognize that any one of the available algorithms or implementing software packages for conducting homology searches can be adapted for use in the present computer-based systems.

As used herein, a "target sequence" can be any DNA or amino acid sequence of six or more nucleotides or two or more amino acids. A skilled artisan can readily recognize that the longer a target sequence is, the less likely a target sequence will be present as a random occurrence in the database. The most preferred sequence length of a target sequence is from about 10 to 100 amino acids or from about 30 to 300 nucleotide residues. However, it is well recognized that searches for commercially important fragments, such as sequence fragments involved in gene expression and protein processing, may be of shorter length.

10

15

20

25

30

35

As used herein, "a target structural motif," or "target motif," refers to any rationally selected sequence or combination of sequences in which the sequence(s) are chosen based on a three-dimensional configuration which is formed upon the folding of the target motif. There are a variety of target motifs known in the art. Protein target motifs include, but are not limited to, enzymic active sites and signal sequences. Nucleic acid target motifs include, but are not limited to, promoter sequences, hairpin structures and inducible expression elements (protein binding sequences).

A variety of structural formats for the input and output means can be used to input and output the information in the computer-based systems of the present invention. A preferred format for an output means ranks fragments of the *Streptococcus pneumoniae* genomic sequences possessing varying degrees of homology to the target sequence or target motif. Such presentation provides a skilled artisan with a ranking of sequences which contain various amounts of the target sequence or target motif and identifies the degree of homology contained in the identified fragment.

A variety of comparing means can be used to compare a target sequence or target motif with the data storage means to identify sequence fragments of the

Streptococcus pneumoniae genome. In the present examples, implementing software which implement the BLAST and BLAZE algorithms, described in Altschul et al., J. Mol. Biol. 215: 403-410 (1990), is used to identify open reading frames within the Streptococcus pneumoniae genome. A skilled artisan can readily recognize that any one of the publicly available homology search programs can be used as the search means for the computer-based systems of the present invention. Of course, suitable proprietary systems that may be known to those of skill also may be employed in this regard.

Figure 1 provides a block diagram of a computer system illustrative of embodiments of this aspect of present invention. The computer system 102 includes a processor 106 connected to a bus 104. Also connected to the bus 104 are a main memory 108 (preferably implemented as random access memory, RAM) and a variety of secondary storage devices 110, such as a hard drive 112 and a removable medium storage device 114. The removable medium storage device 114 may represent, for example, a floppy disk drive, a CD-ROM drive, a magnetic tape drive, etc. A removable storage medium 116 (such as a floppy disk, a compact disk, a magnetic tape, etc.) containing control logic and/or data recorded therein may be inserted into the removable medium storage device 114. The computer system 102 includes appropriate software for reading the control logic and/or the data from the removable medium storage device 114, once it is inserted into the removable medium storage device 114.

10

15

20

25

A nucleotide sequence of the present invention may be stored in a well known manner in the main memory 108, any of the secondary storage devices 110, and/or a removable storage medium 116. During execution, software for accessing and processing the genomic sequence (such as search tools, comparing tools, *etc.*) reside in main memory 108, in accordance with the requirements and operating parameters of the operating system, the hardware system and the software program or programs.

BIOCHEMICAL EMBODIMENTS

10

15

20

25

30

35

Other embodiments of the present invention are directed to isolated fragments of the *Streptococcus pneumoniae* genome. The fragments of the *Streptococcus pneumoniae* genome of the present invention include, but are not limited to fragments which encode peptides and polypeptides, hereinafter open reading frames (ORFs), fragments which modulate the expression of an operably linked ORF, hereinafter expression modulating fragments (EMFs) and fragments which can be used to diagnose the presence of *Streptococcus pneumoniae* in a sample, hereinafter diagnostic fragments (DFs).

As used herein, an "isolated nucleic acid molecule" or an "isolated fragment of the *Streptococcus pneumoniae* genome" refers to a nucleic acid molecule possessing a specific nucleotide sequence which has been subjected to purification means to reduce, from the composition, the number of compounds which are normally associated with the composition. Particularly, the term refers to the nucleic acid molecules having the sequences set out in SEQ ID NOS:1-391, to representative fragments thereof as described above, to polynucleotides at least 95%, preferably at least 99% and especially preferably at least 99.9% identical in sequence thereto, also as set out above.

A variety of purification means can be used to generate the isolated fragments of the present invention. These include, but are not limited to methods which separate constituents of a solution based on charge, solubility, or size.

In one embodiment, *Streptococcus pneumoniae* DNA can be enzymatically sheared to produce fragments of 15-20 kb in length. These fragments can then be used to generate a *Streptococcus pneumoniae* library by inserting them into lambda clones as described in the Examples below. Primers flanking, for example, an ORF, such as those enumerated in Tables 1-3 can then be generated using nucleotide sequence information provided in SEQ ID NOS:1-391. Well known and routine techniques of PCR cloning then can be used to isolate the ORF from the lambda DNA library or *Streptococcus pneumoniae* genomic DNA. Thus, given the availability of SEQ ID NOS:1-391, the information in Tables 1, 2 and 3, and the information that may be obtained readily by analysis of the sequences of SEQ ID NOS:1-391 using methods set out above, those of skill will be enabled by the present disclosure to isolate any ORF-containing or other nucleic acid fragment of the present invention.

The isolated nucleic acid molecules of the present invention include, but are not limited to single stranded and double stranded DNA, and single stranded RNA.

As used herein, an "open reading frame," ORF, means a series of triplets coding for amino acids without any termination codons and is a sequence translatable into protein.

5

10

15

20

25

30

35

Tables 1, 2, and 3 list ORFs in the *Streptococcus pneumoniae* genomic contigs of the present invention that were identified as putative coding regions by the GeneMark software using organism-specific second-order Markov probability transition matrices. It will be appreciated that other criteria can be used, in accordance with well known analytical methods, such as those discussed herein, to generate more inclusive, more restrictive, or more selective lists.

Table 1 sets out ORFs in the *Streptococcus pneumoniae* contigs of the present invention that over a continuous region of at least 50 bases are 95% or more identical (by BLAST analysis) to a nucleotide sequence available through GenBank in October, 1997.

Table 2 sets out ORFs in the *Streptococcus pneumoniae* contigs of the present invention that are not in Table 1 and match, with a BLASTP probability score of 0.01 or less, a polypeptide sequence available through GenBank in October, 1997.

Table 3 sets out ORFs in the *Streptococcus pneumoniae* contigs of the present invention that do not match significantly, by BLASTP analysis, a polypeptide sequence available through GenBank in October, 1997.

In each table, the first and second columns identify the ORF by, respectively, contig number and ORF number within the contig; the third column indicates the first nucleotide of the ORF (actually the first nucleotide of the stop codon immediately preceding the ORF), counting from the 5' end of the contig strand; and the fourth column, "stop (nt)" indicates the last nucleotide of the stop codon defining the 3'end of the ORF.

In Tables 1 and 2, column five, lists the Reference for the closest matching sequence available through GenBank. These reference numbers are the databases entry numbers commonly used by those of skill in the art, who will be familiar with their denominators. Descriptions of the nomenclature are available from the National Center for Biotechnology Information. Column six in Tables 1 and 2 provides the gene name of the matching sequence; column seven provides the BLAST identity score and column eight the BLAST similarity score from the

comparison of the ORF and the homologous gene; and column nine indicates the length in nucleotides of the highest scoring segment pair identified by the BLAST identity analysis.

5

10

15

20

25

30

Each ORF described in the tables is defined by "start (nt)" (5') and "stop (nt)" (3') nucleotide position numbers. These position numbers refer to the boundaries of each ORF and provide orientation with respect to whether the forward or reverse strand is the coding strand and which reading frame the coding sequence is contained. The "start" position is the first nucleotide of the triplet encoding a stop codon just 5' to the ORF and the "stop" position is the last nucleotide of the triplet encoding the next in-frame stop codon (i.e., the stop codon at the 3' end of the ORF). Those of ordinary skill in the art appreciate that preferred fragments within each ORF described in the table include fragments of each ORF which include the entire sequence from the delineated "start" and "stop" positions excepting the first and last three nucleotides since these encode stop codons. Thus, polynucleotides set out as ORFs in the tables but lacking the three (3) 5' nucleotides and the three (3) 3' nucleotides are encompassed by the present invention. Those of skill also appreciate that particularly preferred are fragments within each ORF that are polynucleotide fragments comprising polypeptide coding sequence. As defined herein, "coding sequence" includes the fragment within an ORF beginning at the first in-frame ATG (triplet encoding methionine) and ending with the last nucleotide prior to the triplet encoding the 3' stop codon. Preferred are fragments comprising the entire coding sequence and fragments comprising the entire coding sequence, excepting the coding sequence for the N-terminal methionine. Those of skill appreciate that the N-terminal methionine is often removed during post-translational processing and that polynucleotides lacking the ATG can be used to facilitate production of N-termainal fusion proteins which may be benefical in the production or use of genetically engineered proteins. Of course, due to the degeneracy of the genetic code many polynucleotides can encode a given polypeptide. Thus, the invention further includes polynucleotides comprising a nucleotide sequence encoding a polypeptide sequence itself encoded by the coding sequence within an ORF described in Tables 1-3 herein. Further, polynucleotides at least 95%, preferably at least 99% and especially preferably at least 99.9% identical in sequence to the foregoing polynucleotides, are contemplated by the present invention.

Polypeptides encoded by polynucleotides described above and elsewhere herein are also provided by the present invention as are polypeptide comprising a an amino acid sequence at least about 95%, preferably at least 97% and even more preferably 99% identical to the amino acid sequence of a polypeptide encoded by an ORF shown in Tables 1-3. These polypeptides may or may not comprise an N-terminal methionine.

5

10

15

20

25

30

The concepts of percent identity and percent similarity of two polypeptide sequences is well understood in the art. For example, two polypeptides 10 amino acids in length which differ at three amino acid positions (e.g., at positions 1, 3 and 5) are said to have a percent identity of 70%. However, the same two polypeptides would be deemed to have a percent similarity of 80% if, for example at position 5, the amino acids moieties, although not identical, were "similar" (i.e., possessed similar biochemical characteristics). Many programs for analysis of nucleotide or amino acid sequence similarity, such as fasta and BLAST specifically list percent identity of a matching region as an output parameter. Thus, for instance, Tables 1 and 2 herein enumerate the percent identity of the highest scoring segment pair in each ORF and its listed relative. Further details concerning the algorithms and criteria used for homology searches are provided below and are described in the pertinent literature highlighted by the citations provided below.

It will be appreciated that other criteria can be used to generate more inclusive and more exclusive listings of the types set out in the tables. As those of skill will appreciate, narrow and broad searches both are useful. Thus, a skilled artisan can readily identify ORFs in contigs of the *Streptococcus pneumoniae* genome other than those listed in Tables 1-3, such as ORFs which are overlapping or encoded by the opposite strand of an identified ORF in addition to those ascertainable using the computer-based systems of the present invention.

As used herein, an "expression modulating fragment," EMF, means a series of nucleotide molecules which modulates the expression of an operably linked ORF or EMF.

As used herein, a sequence is said to "modulate the expression of an operably linked sequence" when the expression of the sequence is altered by the presence of the EMF. EMFs include, but are not limited to, promoters, and promoter modulating sequences (inducible elements). One class of EMFs are fragments which induce the expression or an operably linked ORF in response to a specific regulatory factor or physiological event.

5

10

15

20

25

30

EMF sequences can be identified within the contigs of the *Streptococcus pneumoniae* genome by their proximity to the ORFs provided in Tables 1-3. An intergenic segment, or a fragment of the intergenic segment, from about 10 to 200 nucleotides in length, taken from any one of the ORFs of Tables 1-3 will modulate the expression of an operably linked ORF in a fashion similar to that found with the naturally linked ORF sequence. As used herein, an "intergenic segment" refers to fragments of the *Streptococcus pneumoniae* genome which are between two ORF(s) herein described. EMFs also can be identified using known EMFs as a target sequence or target motif in the computer-based systems of the present invention. Further, the two methods can be combined and used together.

The presence and activity of an EMF can be confirmed using an EMF trap vector. An EMF trap vector contains a cloning site linked to a marker sequence. A marker sequence encodes an identifiable phenotype, such as antibiotic resistance or a complementing nutrition auxotrophic factor, which can be identified or assayed when the EMF trap vector is placed within an appropriate host under appropriate conditions. As described above, a EMF will modulate the expression of an operably linked marker sequence. A more detailed discussion of various marker sequences is provided below. A sequence which is suspected as being an EMF is cloned in all three reading frames in one or more restriction sites upstream from the marker sequence in the EMF trap vector. The vector is then transformed into an appropriate host using known procedures and the phenotype of the transformed host in examined under appropriate conditions. As described above, an EMF will modulate the expression of an operably linked marker sequence.

As used herein, a "diagnostic fragment," DF, means a series of nucleotide molecules which selectively hybridize to *Streptococcus pneumoniae* sequences. DFs can be readily identified by identifying unique sequences within contigs of the *Streptococcus pneumoniae* genome, such as by using well-known computer analysis software, and by generating and testing probes or amplification primers

consisting of the DF sequence in an appropriate diagnostic format which determines amplification or hybridization selectivity.

5

10

15

20

25

30

35

The sequences falling within the scope of the present invention are not limited to the specific sequences herein described, but also include allelic and species variations thereof. Allelic and species variations can be routinely determined by comparing the sequences provided in SEQ ID NOS:1-391, a representative fragment thereof, or a nucleotide sequence at least 95%, preferrably at least 99% and most at least preferably 99.9% identical to SEQ ID NOS:1-391, with a sequence from another isolate of the same species. Furthermore, to accommodate codon variability, the invention includes nucleic acid molecules coding for the same amino acid sequences as do the specific ORFs disclosed herein. In other words, in the coding region of an ORF, substitution of one codon for another which encodes the same amino acid is expressly contemplated. Any specific sequence disclosed herein can be readily screened for errors by resequencing a particular fragment, such as an ORF, in both directions (i.e., sequence both strands). Alternatively, error screening can be performed by sequencing corresponding polynucleotides of Streptococcus pneumoniae origin isolated by using part or all of the fragments in question as a probe or primer.

Preferred DFs of the present invention comprise at least about 17, preferrably at least about 20, and more preferrably at least about 50 contiguous nucleotides within an ORF set out in Tables 1-3. Most highly preferred DFs specifically hybridize to a polynucleotide containing the sequence of the ORF from which they are derived. Specific hybridization occurs even under stringent conditions defined elsewhere herein.

Each of the ORFs of the *Streptococcus pneumoniae* genome disclosed in Tables 1, 2 and 3, and the EMFs found 5' to the ORFs, can be used as polynucleotide reagents in numerous ways. For example, the sequences can be used as diagnostic probes or diagnostic amplification primers to detect the presence of a specific microbe in a sample, particularly *Streptococcus pneumoniae*. Especially preferred in this regard are ORFs such as those of Table 3, which do not match previously characterized sequences from other organisms and thus are most likely to be highly selective for *Streptococcus pneumoniae*. Also particularly preferred are ORFs that can be used to distinguish between strains of *Streptococcus pneumoniae*, particularly those that distinguish medically important strain, such as drug-resistant strains.

In addition, the fragments of the present invention, as broadly described, can be used to control gene expression through triple helix formation or antisense DNA or RNA, both of which methods are based on the binding of a polynucleotide sequence to DNA or RNA. Triple helix-formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Information from the sequences of the present invention can be used to design antisense and triple helixforming oligonucleotides. Polynucleotides suitable for use in these methods are usually 20 to 40 bases in length and are designed to be complementary to a region of the gene involved in transcription, for triple-helix formation, or to the mRNA itself, for antisense inhibition. Both techniques have been demonstrated to be effective in model systems, and the requisite techniques are well known and involve routine procedures. Triple helix techniques are discussed in, for example, Lee et al., Nucl. Acids Res. 6:3073 (1979); Cooney et al., Science 241:456 (1988); and Dervan et al., Science 251:1360 (1991). Antisense techniques in general are discussed in, for instance, Okano, J. Neurochem. 56:560 (1991) and Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988)).

5

10

15

20

25

30

35

The present invention further provides recombinant constructs comprising one or more fragments of the *Streptococcus pneumoniae* genomic fragments and contigs of the present invention. Certain preferred recombinant constructs of the present invention comprise a vector, such as a plasmid or viral vector, into which a fragment of the *Streptococcus pneumoniae* genome has been inserted, in a forward or reverse orientation. In the case of a vector comprising one of the ORFs of the present invention, the vector may further comprise regulatory sequences, including for example, a promoter, operably linked to the ORF. For vectors comprising the EMFs of the present invention, the vector may further comprise a marker sequence or heterologous ORF operably linked to the EMF.

Large numbers of suitable vectors and promoters are known to those of skill in the art and are commercially available for generating the recombinant constructs of the present invention. The following vectors are provided by way of example. Useful bacterial vectors include phagescript, PsiX174, pBluescript SK, pBS KS, pNH8a, pNH16a, pNH18a, pNH46a (available from Stratagene); pTrc99A, pKK223-3, pKK233-3, pDR540, pRIT5 (available from Pharmacia). Useful eukaryotic vectors include pWLneo, pSV2cat, pOG44, pXT1, pSG

(available from Stratagene) pSVK3, pBPV, pMSG, pSVL (available from Pharmacia).

Promoter regions can be selected from any desired gene using CAT (chloramphenicol transferase) vectors or other vectors with selectable markers. Two appropriate vectors are pKK232-8 and pCM7. Particular named bacterial promoters include lacI, lacZ, T3, T7, gpt, lambda PR, and trc. Eukaryotic promoters include CMV immediate early, HSV thymidine kinase, early and late SV40, LTRs from retrovirus, and mouse metallothionein- I. Selection of the appropriate vector and promoter is well within the level of ordinary skill in the art.

5

10

15

20

25

30

The present invention further provides host cells containing any one of the isolated fragments of the *Streptococcus pneumoniae* genomic fragments and contigs of the present invention, wherein the fragment has been introduced into the host cell using known methods. The host cell can be a higher eukaryotic host cell, such as a mammalian cell, a lower eukaryotic host cell, such as a yeast cell, or a procaryotic cell, such as a bacterial cell.

A polynucleotide of the present invention, such as a recombinant construct comprising an ORF of the present invention, may be introduced into the host by a variety of well established techniques that are standard in the art, such as calcium phosphate transfection, DEAE, dextran mediated transfection and electroporation, which are described in, for instance, Davis, L. *et al.*, BASIC METHODS IN MOLECULAR BIOLOGY (1986).

A host cell containing one of the fragments of the *Streptococcus* pneumoniae genomic fragments and contigs of the present invention, can be used in conventional manners to produce the gene product encoded by the isolated fragment (in the case of an ORF) or can be used to produce a heterologous protein under the control of the EMF. The present invention further provides isolated polypeptides encoded by the nucleic acid fragments of the present invention or by degenerate variants of the nucleic acid fragments of the present invention. By "degenerate variant" is intended nucleotide fragments which differ from a nucleic acid fragment of the present invention (e.g., an ORF) by nucleotide sequence but, due to the degeneracy of the Genetic Code, encode an identical polypeptide sequence.

Preferred nucleic acid fragments of the present invention are the ORFs and subfragments thereof depicted in Tables 2 and 3 which encode proteins.

A variety of methodologies known in the art can be utilized to obtain any one of the isolated polypeptides or proteins of the present invention. At the simplest level, the amino acid sequence can be synthesized using commercially available peptide synthesizers. This is particularly useful in producing small peptides and fragments of larger polypeptides. Such short fragments as may be obtained most readily by synthesis are useful, for example, in generating antibodies against the native polypeptide, as discussed further below.

5

10

15

20

25

30

In an alternative method, the polypeptide or protein is purified from bacterial cells which naturally produce the polypeptide or protein. One skilled in the art can readily employ well-known methods for isolating polypeptides and proteins to isolate and purify polypeptides or proteins of the present invention produced naturally by a bacterial strain, or by other methods. Methods for isolation and purification that can be employed in this regard include, but are not limited to, immunochromatography, HPLC, size-exclusion chromatography, ion-exchange chromatography, and immuno-affinity chromatography.

The polypeptides and proteins of the present invention also can be purified from cells which have been altered to express the desired polypeptide or protein. As used herein, a cell is said to be altered to express a desired polypeptide or protein when the cell, through genetic manipulation, is made to produce a polypeptide or protein which it normally does not produce or which the cell normally produces at a lower level. Those skilled in the art can readily adapt procedures for introducing and expressing either recombinant or synthetic sequences into eukaryotic or prokaryotic cells in order to generate a cell which produces one of the polypeptides or proteins of the present invention.

Any host/vector system can be used to express one or more of the ORFs of the present invention. These include, but are not limited to, eukaryotic hosts such as HeLa cells, CV-1 cell, COS cells, and Sf9 cells, as well as prokaryotic host such as *E. coli* and *B. subtilis*. The most preferred cells are those which do not normally express the particular polypeptide or protein or which expresses the polypeptide or protein at low natural level.

"Recombinant," as used herein, means that a polypeptide or protein is derived from recombinant (e.g., microbial or mammalian) expression systems. "Microbial" refers to recombinant polypeptides or proteins made in bacterial or fungal (e.g., yeast) expression systems. As a product, "recombinant microbial"defines a polypeptide or protein essentially free of native endogenous substances and unaccompanied by associated native glycosylation. Polypeptides or proteins expressed in most bacterial cultures, e.g., E. coli, will be free of glycosylation modifications; polypeptides or proteins expressed in yeast will have a glycosylation pattern different from that expressed in mammalian cells.

5

10

15

20

25

30

35

"Nucleotide sequence" refers to a heteropolymer of deoxyribonucleotides. Generally, DNA segments encoding the polypeptides and proteins provided by this invention are assembled from fragments of the *Streptococcus pneumoniae* genome and short oligonucleotide linkers, or from a series of oligonucleotides, to provide a synthetic gene which is capable of being expressed in a recombinant transcriptional unit comprising regulatory elements derived from a microbial or viral operon.

Recombinant expression vehicle or vector" refers to a plasmid or phage or virus or vector, for expressing a polypeptide from a DNA (RNA) sequence. The expression vehicle can comprise a transcriptional unit comprising an assembly of (1) a genetic regulatory elements necessary for gene expression in the host, including elements required to initiate and maintain transcription at a level sufficient for suitable expression of the desired polypeptide, including, for example, promoters and, where necessary, an enhancer and a polyadenylation signal; (2) a structural or coding sequence which is transcribed into mRNA and translated into protein, and (3) appropriate signals to initiate translation at the beginning of the desired coding region and terminate translation at its end. Structural units intended for use in yeast or eukaryotic expression systems preferably include a leader sequence enabling extracellular secretion of translated protein by a host cell. Alternatively, where recombinant protein is expressed without a leader or transport sequence, it may include an N-terminal methionine residue. This residue may or may not be subsequently cleaved from the expressed recombinant protein to provide a final product.

"Recombinant expression system" means host cells which have stably integrated a recombinant transcriptional unit into chromosomal DNA or carry the recombinant transcriptional unit extra chromosomally. The cells can be prokaryotic or eukaryotic. Recombinant expression systems as defined herein will express

heterologous polypeptides or proteins upon induction of the regulatory elements linked to the DNA segment or synthetic gene to be expressed.

Mature proteins can be expressed in mammalian cells, yeast, bacteria, or other cells under the control of appropriate promoters. Cell-free translation systems can also be employed to produce such proteins using RNAs derived from the DNA constructs of the present invention. Appropriate cloning and expression vectors for use with prokaryotic and eukaryotic hosts are described in Sambrook *et al.*, *Molecular Cloning*: A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (1989), the disclosure of which is hereby incorporated by reference in its entirety.

5

10

15

20

25

30

35

Generally, recombinant expression vectors will include origins of replication and selectable markers permitting transformation of the host cell, e.g., the ampicillin resistance gene of E. coli and S. cerevisiae TRP1 gene, and a promoter derived from a highly expressed gene to direct transcription of a downstream structural sequence. Such promoters can be derived from operons encoding glycolytic enzymes such as 3- phosphoglycerate kinase (PGK), alphafactor, acid phosphatase, or heat shock proteins, among others. The heterologous structural sequence is assembled in appropriate phase with translation initiation and termination sequences, and preferably, a leader sequence capable of directing secretion of translated protein into the periplasmic space or extracellular medium. Optionally, the heterologous sequence can encode a fusion protein including an N-terminal identification peptide imparting desired characteristics, e.g., stabilization or simplified purification of expressed recombinant product.

Useful expression vectors for bacterial use are constructed by inserting a structural DNA sequence encoding a desired protein together with suitable translation initiation and termination signals in operable reading phase with a functional promoter. The vector will comprise one or more phenotypic selectable markers and an origin of replication to ensure maintenance of the vector and, when desirable, provide amplification within the host.

Suitable prokaryotic hosts for transformation include strains of *E. coli*, *B. subtilis*, *Salmonella typhimurium* and various species within the genera *Pseudomonas* and *Streptomyces*. Others may, also be employed as a matter of choice.

As a representative but non-limiting example, useful expression vectors for bacterial use can comprise a selectable marker and bacterial origin of replication

derived from commercially available plasmids comprising genetic elements of the well known cloning vector pBR322 (ATCC 37017). Such commercial vectors include, for example, pKK223-3 (available form Pharmacia Fine Chemicals, Uppsala, Sweden) and GEM 1 (available from Promega Biotec, Madison, WI, USA). These pBR322 "backbone" sections are combined with an appropriate promoter and the structural sequence to be expressed.

5

10

15

20

25

30

Following transformation of a suitable host strain and growth of the host strain to an appropriate cell density, the selected promoter, where it is inducible, is derepressed or induced by appropriate means (e.g., temperature shift or chemical induction) and cells are cultured for an additional period to provide for expression of the induced gene product. Thereafter cells are typically harvested, generally by centrifugation, disrupted to release expressed protein, generally by physical or chemical means, and the resulting crude extract is retained for further purification.

Various mammalian cell culture systems can also be employed to express recombinant protein. Examples of mammalian expression systems include the COS-7 lines of monkey kidney fibroblasts, described in Gluzman, *Cell 23:*175 (1981), and other cell lines capable of expressing a compatible vector, for example, the C127, 3T3, CHO, HeLa and BHK cell lines.

Mammalian expression vectors will comprise an origin of replication, a suitable promoter and enhancer, and also any necessary ribosome binding sites, polyadenylation site, splice donor and acceptor sites, transcriptional termination sequences, and 5' flanking nontranscribed sequences. DNA sequences derived from the SV40 viral genome, for example, SV40 origin, early promoter, enhancer, splice, and polyadenylation sites may be used to provide the required nontranscribed genetic elements.

Recombinant polypeptides and proteins produced in bacterial culture is usually isolated by initial extraction from cell pellets, followed by one or more salting-out, aqueous ion exchange or size exclusion chromatography steps. Microbial cells employed in expression of proteins can be disrupted by any convenient method, including freeze-thaw cycling, sonication, mechanical disruption, or use of cell lysing agents. Protein refolding steps can be used, as necessary, in completing configuration of the mature protein. Finally, high performance liquid chromatography (HPLC) can be employed for final purification steps.

The present invention further includes isolated polypeptides, proteins and nucleic acid molecules which are substantially equivalent to those herein described. As used herein, substantially equivalent can refer both to nucleic acid and amino acid sequences, for example a mutant sequence, that varies from a reference sequence by one or more substitutions, deletions, or additions, the net effect of which does not result in an adverse functional dissimilarity between reference and subject sequences. For purposes of the present invention, sequences having equivalent biological activity, and equivalent expression characteristics are considered substantially equivalent. For purposes of determining equivalence, truncation of the mature sequence should be disregarded.

10

15

20

25

30

35

The invention further provides methods of obtaining homologs from other strains of *Streptococcus pneumoniae*, of the fragments of the *Streptococcus pneumoniae* genome of the present invention and homologs of the proteins encoded by the ORFs of the present invention. As used herein, a sequence or protein of *Streptococcus pneumoniae* is defined as a homolog of a fragment of the *Streptococcus pneumoniae* fragments or contigs or a protein encoded by one of the ORFs of the present invention, if it shares significant homology to one of the fragments of the *Streptococcus pneumoniae* genome of the present invention or a protein encoded by one of the ORFs of the present invention. Specifically, by using the sequence disclosed herein as a probe or as primers, and techniques such as PCR cloning and colony/plaque hybridization, one skilled in the art can obtain homologs.

As used herein, two nucleic acid molecules or proteins are said to "share significant homology" if the two contain regions which possess greater than 85% sequence (amino acid or nucleic acid) homology. Preferred homologs in this regard are those with more than 90% homology. Especially preferred are those with 93% or more homology. Among especially preferred homologs those with 95% or more homology are particularly preferred. Very particularly preferred among these are those with 97% and even more particularly preferred among those are homologs with 99% or more homology. The most preferred homologs among these are those with 99.9% homology or more. It will be understood that, among measures of homology, identity is particularly preferred in this regard.

Region specific primers or probes derived from the nucleotide sequence provided in SEQ ID NOS:1-391 or from a nucleotide sequence at least 95%, particularly at least 99%, especially at least 99.5% identical to a sequence of SEQ

ID NOS:1-391 can be used to prime DNA synthesis and PCR amplification, as well as to identify colonies containing cloned DNA encoding a homolog. Methods suitable to this aspect of the present invention are well known and have been described in great detail in many publications such as, for example, Innis *et al.*, *PCR Protocols*, Academic Press, San Diego, CA (1990)).

5

10

15

20

25

35

When using primers derived from SEQ ID NOS:1-391 or from a nucleotide sequence having an aforementioned identity to a sequence of SEQ ID NOS:1-391, one skilled in the art will recognize that by employing high stringency conditions (e.g., annealing at 50-60°C in 6X SSPC and 50% formamide, and washing at 50-65°C in 0.5X SSPC) only sequences which are greater than 75% homologous to the primer will be amplified. By employing lower stringency conditions (e.g., hybridizing at 35-37°C in 5X SSPC and 40-45% formamide, and washing at 42°C in 0.5X SSPC), sequences which are greater than 40-50% homologous to the primer will also be amplified.

When using DNA probes derived from SEQ ID NOS:1-391, or from a nucleotide sequence having an aforementioned identity to a sequence of SEQ ID NOS:1-391, for colony/plaque hybridization, one skilled in the art will recognize that by employing high stringency conditions (e.g., hybridizing at 50-65°C in 5X SSPC and 50% formamide, and washing at 50-65°C in 0.5X SSPC), sequences having regions which are greater than 90% homologous to the probe can be obtained, and that by employing lower stringency conditions (e.g., hybridizing at 35-37°C in 5X SSPC and 40-45% formamide, and washing at 42°C in 0.5X SSPC), sequences having regions which are greater than 35-45% homologous to the probe will be obtained.

Any organism can be used as the source for homologs of the present invention so long as the organism naturally expresses such a protein or contains genes encoding the same. The most preferred organism for isolating homologs are bacteria which are closely related to *Streptococcus pneumoniae*.

30 ILLUSTRATIVE USES OF COMPOSITIONS OF THE INVENTION

Each ORF provided in Tables 1 and 2 is identified with a function by homology to a known gene or polypeptide. As a result, one skilled in the art can use the polypeptides of the present invention for commercial, therapeutic and industrial purposes consistent with the type of putative identification of the

polypeptide. Such identifications permit one skilled in the art to use the Streptococcus pneumoniae ORFs in a manner similar to the known type of sequences for which the identification is made; for example, to ferment a particular sugar source or to produce a particular metabolite. A variety of reviews illustrative of this aspect of the invention are available, including the following reviews on the industrial use of enzymes, for example, BIOCHEMICAL ENGINEERING AND BIOTECHNOLOGY HANDBOOK, 2nd Ed., MacMillan Publications, Ltd. NY (1991) and BIOCATALYSTS IN ORGANIC SYNTHESES, Tramper et al., Eds., Elsevier Science Publishers, Amsterdam, The Netherlands (1985). A variety of exemplary uses that illustrate this and similar aspects of the present invention are discussed below.

1. Biosynthetic Enzymes

10

15

20

25

30

35

Open reading frames encoding proteins involved in mediating the catalytic reactions involved in intermediary and macromolecular metabolism, the biosynthesis of small molecules, cellular processes and other functions includes enzymes involved in the degradation of the intermediary products of metabolism, enzymes involved in central intermediary metabolism, enzymes involved in respiration, both aerobic and anaerobic, enzymes involved in fermentation, enzymes involved in ATP proton motor force conversion, enzymes involved in broad regulatory function, enzymes involved in amino acid synthesis, enzymes involved in nucleotide synthesis, enzymes involved in cofactor and vitamin synthesis, can be used for industrial biosynthesis.

The various metabolic pathways present in *Streptococcus pneumoniae* can be identified based on absolute nutritional requirements as well as by examining the various enzymes identified in Table 1-3 and SEQ ID NOS:1-391.

Of particular interest are polypeptides involved in the degradation of intermediary metabolites as well as non-macromolecular metabolism. Such enzymes include amylases, glucose oxidases, and catalase.

Proteolytic enzymes are another class of commercially important enzymes. Proteolytic enzymes find use in a number of industrial processes including the processing of flax and other vegetable fibers, in the extraction, clarification and depectinization of fruit juices, in the extraction of vegetables' oil and in the maceration of fruits and vegetables to give unicellular fruits. A detailed review of the proteolytic enzymes used in the food industry is provided in Rombouts *et al.*,

Symbiosis 21:79 (1986) and Voragen et al. in Biocatalysts In Agricultural Biotechnology, Whitaker et al., Eds., American Chemical Society Symposium Series 389:93 (1989).

5

10

15

20

25

30

The metabolism of sugars is an important aspect of the primary metabolism of *Streptococcus pneumoniae*. Enzymes involved in the degradation of sugars, such as, particularly, glucose, galactose, fructose and xylose, can be used in industrial fermentation. Some of the important sugar transforming enzymes, from a commercial viewpoint, include sugar isomerases such as glucose isomerase. Other metabolic enzymes have found commercial use such as glucose oxidases which produces ketogulonic acid (KGA). KGA is an intermediate in the commercial production of ascorbic acid using the Reichstein's procedure, as described in Krueger *et al.*, *Biotechnology* <u>6(A)</u>, Rhine *et al.*, Eds., Verlag Press, Weinheim, Germany (1984).

Glucose oxidase (GOD) is commercially available and has been used in purified form as well as in an immobilized form for the deoxygenation of beer. See, for instance, Hartmeir et al., Biotechnology Letters 1:21 (1979). The most important application of GOD is the industrial scale fermentation of gluconic acid. Market for gluconic acids which are used in the detergent, textile, leather, photographic, pharmaceutical, food, feed and concrete industry, as described, for example, in Bigelis et al., beginning on page 357 in GENE MANIPULATIONS AND FUNGI; Benett et al., Eds., Academic Press, New York (1985). In addition to industrial applications, GOD has found applications in medicine for quantitative determination of glucose in body fluids recently in biotechnology for analyzing syrups from starch and cellulose hydrosylates. This application is described in Owusu et al., Biochem. et Biophysica. Acta. 872:83 (1986), for instance.

The main sweetener used in the world today is sugar which comes from sugar beets and sugar cane. In the field of industrial enzymes, the glucose isomerase process shows the largest expansion in the market today. Initially, soluble enzymes were used and later immobilized enzymes were developed (Krueger et al., Biotechnology, The Textbook of Industrial Microbiology, Sinauer Associated Incorporated, Sunderland, Massachusetts (1990)). Today, the use of glucose- produced high fructose syrups is by far the largest industrial business using immobilized enzymes. A review of the industrial use of these enzymes is provided by Jorgensen, Starch 40:307 (1988).

Proteinases, such as alkaline serine proteinases, are used as detergent additives and thus represent one of the largest volumes of microbial enzymes used in the industrial sector. Because of their industrial importance, there is a large body of published and unpublished information regarding the use of these enzymes in industrial processes. (See Faultman *et al.*, Acid Proteases Structure Function and Biology, Tang, J., ed., Plenum Press, New York (1977) and Godfrey *et al.*, Industrial Enzymes, MacMillan Publishers, Surrey, UK (1983) and Hepner *et al.*, Report Industrial Enzymes by 1990, Hel Hepner & Associates, London (1986)).

5

10

15

20

25

30

Another class of commercially usable proteins of the present invention are the microbial lipases, described by, for instance, Macrae *et al.*, *Philosophical Transactions of the Chiral Society of London 310*:227 (1985) and Poserke, *Journal of the American Oil Chemist Society 61*:1758 (1984). A major use of lipases is in the fat and oil industry for the production of neutral glycerides using lipase catalyzed inter-esterification of readily available triglycerides. Application of lipases include the use as a detergent additive to facilitate the removal of fats from fabrics in the course of the washing procedures.

The use of enzymes, and in particular microbial enzymes, as catalyst for key steps in the synthesis of complex organic molecules is gaining popularity at a great rate. One area of great interest is the preparation of chiral intermediates. Preparation of chiral intermediates is of interest to a wide range of synthetic chemists particularly those scientists involved with the preparation of new pharmaceuticals, agrochemicals, fragrances and flavors. (See Davies et al., Recent Advances in the Generation of Chiral Intermediates Using Enzymes, CRC Press, Boca Raton, Florida (1990)). The following reactions catalyzed by enzymes are of interest to organic chemists: hydrolysis of carboxylic acid esters, phosphate esters, amides and nitriles, esterification reactions, trans-esterification reactions, synthesis of amides, reduction of alkanones and oxoalkanates, oxidation of alcohols to carbonyl compounds, oxidation of sulfides to sulfoxides, and carbon bond forming reactions such as the aldol reaction.

When considering the use of an enzyme encoded by one of the ORFs of the present invention for biotransformation and organic synthesis it is sometimes necessary to consider the respective advantages and disadvantages of using a microorganism as opposed to an isolated enzyme. Pros and cons of using a whole cell system on the one hand or an isolated partially purified enzyme on the other

hand, has been described in detail by Bud et al., Chemistry in Britain (1987), p. 127.

Amino transferases, enzymes involved in the biosynthesis and metabolism of amino acids, are useful in the catalytic production of amino acids. The advantages of using microbial based enzyme systems is that the amino transferase enzymes catalyze the stereo- selective synthesis of only L-amino acids and generally possess uniformly high catalytic rates. A description of the use of amino transferases for amino acid production is provided by Roselle-David, *Methods of Enzymology 136*:479 (1987).

Another category of useful proteins encoded by the ORFs of the present invention include enzymes involved in nucleic acid synthesis, repair, and recombination.

2. Generation of Antibodies

5

10

15

20

25

30

35

As described here, the proteins of the present invention, as well as homologs thereof, can be used in a variety of procedures and methods known in the art which are currently applied to other proteins. The proteins of the present invention can further be used to generate an antibody which selectively binds the protein. Such antibodies can be either monoclonal or polyclonal antibodies, as well fragments of these antibodies, and humanized forms.

The invention further provides antibodies which selectively bind to one of the proteins of the present invention and hybridomas which produce these antibodies. A hybridoma is an immortalized cell line which is capable of secreting a specific monoclonal antibody.

In general, techniques for preparing polyclonal and monoclonal antibodies as well as hybridomas capable of producing the desired antibody are well known in the art (Campbell, A. M., Monoclonal Antibody Technology: Laboratory Techniques In Biochemistry And Molecular Biology, Elsevier Science Publishers, Amsterdam, The Netherlands (1984); St. Groth et al., J. Immunol. Methods 35: 1-21 (1980), Kohler and Milstein, Nature 256:495-497 (1975)), the trioma technique, the human B-cell hybridoma technique (Kozbor et al., Immunology Today 4:72 (1983), pgs. 77-96 of Cole et al., in Monoclonal Antibodies And Cancer Therapy, Alan R. Liss, Inc. (1985)). Any animal (mouse, rabbit, etc.) which is known to produce antibodies can be immunized with the pseudogene polypeptide. Methods for immunization are well known in the art. Such methods

include subcutaneous or interperitoneal injection of the polypeptide. One skilled in the art will recognize that the amount of the protein encoded by the ORF of the present invention used for immunization will vary based on the animal which is immunized, the antigenicity of the peptide and the site of injection.

The protein which is used as an immunogen may be modified or administered in an adjuvant in order to increase the protein's antigenicity. Methods of increasing the antigenicity of a protein are well known in the art and include, but are not limited to coupling the antigen with a heterologous protein (such as globulin or galactosidase) or through the inclusion of an adjuvant during immunization.

5

10

15

20

25

30

35

For monoclonal antibodies, spleen cells from the immunized animals are removed, fused with myeloma cells, such as SP2/0-Ag14 myeloma cells, and allowed to become monoclonal antibody producing hybridoma cells.

Any one of a number of methods well known in the art can be used to identify the hybridoma cell which produces an antibody with the desired characteristics. These include screening the hybridomas with an ELISA assay, western blot analysis, or radioimmunoassay (Lutz et al., Exp. Cell Res. 175:109-124 (1988)).

Hybridomas secreting the desired antibodies are cloned and the class and subclass is determined using procedures known in the art (Campbell, A. M., Monoclonal Antibody Technology: Laboratory Techniques in Biochemistry and Molecular Biology, Elsevier Science Publishers, Amsterdam, The Netherlands (1984)).

Techniques described for the production of single chain antibodies (U. S. Patent 4,946,778) can be adapted to produce single chain antibodies to proteins of the present invention.

For polyclonal antibodies, antibody containing antisera is isolated from the immunized animal and is screened for the presence of antibodies with the desired specificity using one of the above-described procedures.

The present invention further provides the above- described antibodies in detectably labelled form. Antibodies can be detectably labelled through the use of radioisotopes, affinity labels (such as biotin, avidin, etc.), enzymatic labels (such as horseradish peroxidase, alkaline phosphatase, etc.) fluorescent labels (such as FITC or rhodamine, etc.), paramagnetic atoms, etc. Procedures for accomplishing such labeling are well-known in the art, for example see Sternberger et al., J. Histochem. Cytochem. 18:315 (1970); Bayer, E. A. et al., Meth. Enzym. 62:308

(1979); Engval, E. et al., Immunol. 109:129 (1972); Goding, J. W., J. Immunol. Meth. 13:215 (1976)).

The labeled antibodies of the present invention can be used for *in vitro*, *in vivo*, and in situ assays to identify cells or tissues in which a fragment of the *Streptococcus pneumoniae* genome is expressed.

The present invention further provides the above-described antibodies immobilized on a solid support. Examples of such solid supports include plastics such as polycarbonate, complex carbohydrates such as agarose and sepharose, acrylic resins and such as polyacrylamide and latex beads. Techniques for coupling antibodies to such solid supports are well known in the art (Weir, D. M. et al., "Handbook of Experimental Immunology" 4th Ed., Blackwell Scientific Publications, Oxford, England, Chapter 10 (1986); Jacoby, W. D. et al., Meth. Enzym. 34 Academic Press, N. Y. (1974)). The immobilized antibodies of the present invention can be used for *in vitro*, *in vivo*, and in situ assays as well as for immunoaffinity purification of the proteins of the present invention.

3. Diagnostic Assays and Kits

5

10

15

20

25

30

The present invention further provides methods to identify the expression of one of the ORFs of the present invention, or homolog thereof, in a test sample, using one of the DFs or antibodies of the present invention.

In detail, such methods comprise incubating a test sample with one or more of the antibodies or one or more of the DFs of the present invention and assaying for binding of the DFs or antibodies to components within the test sample.

Conditions for incubating a DF or antibody with a test sample vary. Incubation conditions depend on the format employed in the assay, the detection methods employed, and the type and nature of the DF or antibody used in the assay. One skilled in the art will recognize that any one of the commonly available hybridization, amplification or immunological assay formats can readily be adapted to employ the DFs or antibodies of the present invention. Examples of such assays can be found in Chard, T., An Introduction to Radioimmunoassay and Related Techniques, Elsevier Science Publishers, Amsterdam, The Netherlands (1986); Bullock, G. R. et al., Techniques in Immunocytochemistry, Academic Press, Orlando, FL Vol. 1 (1982), Vol. 2 (1983), Vol. 3 (1985); Tijssen, P., Practice and Theory of Enzyme Immunoassays: Laboratory Techniques in Biochemistry and

5

10

15

20

25

30

35

Molecular Biology, Elsevier Science Publishers, Amsterdam, The Netherlands (1985).

The test samples of the present invention include cells, protein or membrane extracts of cells, or biological fluids such as sputum, blood, serum, plasma, or urine. The test sample used in the above-described method will vary based on the assay format, nature of the detection method and the tissues, cells or extracts used as the sample to be assayed. Methods for preparing protein extracts or membrane extracts of cells are well known in the art and can be readily be adapted in order to obtain a sample which is compatible with the system utilized.

In another embodiment of the present invention, kits are provided which contain the necessary reagents to carry out the assays of the present invention.

Specifically, the invention provides a compartmentalized kit to receive, in close confinement, one or more containers which comprises: (a) a first container comprising one of the DFs or antibodies of the present invention; and (b) one or more other containers comprising one or more of the following: wash reagents, reagents capable of detecting presence of a bound DF or antibody.

In detail, a compartmentalized kit includes any kit in which reagents are contained in separate containers. Such containers include small glass containers, plastic containers or strips of plastic or paper. Such containers allows one to efficiently transfer reagents from one compartment to another compartment such that the samples and reagents are not cross-contaminated, and the agents or solutions of each container can be added in a quantitative fashion from one compartment to another. Such containers will include a container which will accept the test sample, a container which contains the antibodies used in the assay, containers which contain wash reagents (such as phosphate buffered saline, Trisbuffers, *etc.*), and containers which contain the reagents used to detect the bound antibody or DF.

Types of detection reagents include labelled nucleic acid probes, labelled secondary antibodies, or in the alternative, if the primary antibody is labelled, the enzymatic, or antibody binding reagents which are capable of reacting with the labelled antibody. One skilled in the art will readily recognize that the disclosed DFs and antibodies of the present invention can be readily incorporated into one of the established kit formats which are well known in the art.

4. Screening Assay for Binding Agents

Using the isolated proteins of the present invention, the present invention further provides methods of obtaining and identifying agents which bind to a protein encoded by one of the ORFs of the present invention or to one of the fragments and the *Streptococcus pneumoniae* fragment and contigs herein described.

In general, such methods comprise steps of:

5

10

15

20

25

30

- (a) contacting an agent with an isolated protein encoded by one of the ORFs of the present invention, or an isolated fragment of the *Streptococcus pneumoniae* genome; and
 - (b) determining whether the agent binds to said protein or said fragment.

The agents screened in the above assay can be, but are not limited to, peptides, carbohydrates, vitamin derivatives, or other pharmaceutical agents. The agents can be selected and screened at random or rationally selected or designed using protein modeling techniques.

For random screening, agents such as peptides, carbohydrates, pharmaceutical agents and the like are selected at random and are assayed for their ability to bind to the protein encoded by the ORF of the present invention.

Alternatively, agents may be rationally selected or designed. As used herein, an agent is said to be "rationally selected or designed" when the agent is chosen based on the configuration of the particular protein. For example, one skilled in the art can readily adapt currently available procedures to generate peptides, pharmaceutical agents and the like capable of binding to a specific peptide sequence in order to generate rationally designed antipeptide peptides, for example see Hurby et al., "Application of Synthetic Peptides: Antisense Peptides," in Synthetic Peptides, A User's Guide, W. H. Freeman, NY (1992), pp. 289-307, and Kaspczak et al., Biochemistry 28:9230-8 (1989), or pharmaceutical agents, or the like.

In addition to the foregoing, one class of agents of the present invention, as broadly described, can be used to control gene expression through binding to one of the ORFs or EMFs of the present invention. As described above, such agents can be randomly screened or rationally designed/selected. Targeting the ORF or EMF allows a skilled artisan to design sequence specific or element specific agents, modulating the expression of either a single ORF or multiple ORFs which rely on the same EMF for expression control.

One class of DNA binding agents are agents which contain base residues which hybridize or form a triple helix by binding to DNA or RNA. Such agents can be based on the classic phosphodiester, ribonucleic acid backbone, or can be a variety of sulfhydryl or polymeric derivatives which have base attachment capacity.

5

10

15

20

25

30

35

Agents suitable for use in these methods usually contain 20 to 40 bases and are designed to be complementary to a region of the gene involved in transcription (triple helix - see Lee et al., Nucl. Acids Res. 6:3073 (1979); Cooney et al., Science 241:456 (1988); and Dervan et al., Science 251:1360 (1991)) or to the mRNA itself (antisense -Okano. J. Neurochem. *56*:560 (1991);Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988)). Triple helix- formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Both techniques have been demonstrated to be effective in model systems. Information contained in the sequences of the present invention can be used to design antisense and triple helixforming oligonucleotides, and other DNA binding agents.

5. Pharmaceutical Compositions and Vaccines

The present invention further provides pharmaceutical agents which can be used to modulate the growth or pathogenicity of *Streptococcus pneumoniae*, or another related organism, *in vivo* or *in vitro*. As used herein, a "pharmaceutical agent" is defined as a composition of matter which can be formulated using known techniques to provide a pharmaceutical compositions. As used herein, the "pharmaceutical agents of the present invention" refers the pharmaceutical agents which are derived from the proteins encoded by the ORFs of the present invention or are agents which are identified using the herein described assays.

As used herein, a pharmaceutical agent is said to "modulate the growth pathogenicity of *Streptococcus pneumoniae* or a related organism, *in vivo* or *in vitro*," when the agent reduces the rate of growth, rate of division, or viability of the organism in question. The pharmaceutical agents of the present invention can modulate the growth or pathogenicity of an organism in many fashions, although an understanding of the underlying mechanism of action is not needed to practice the use of the pharmaceutical agents of the present invention. Some agents will modulate the growth by binding to an important protein thus blocking the biological activity of the protein, while other agents may bind to a component of the outer

surface of the organism blocking attachment or rendering the organism more prone to act the bodies nature immune system. Alternatively, the agent may comprise a protein encoded by one of the ORFs of the present invention and serve as a vaccine. The development and use of a vaccine based on outer membrane components are well known in the art.

5

10

15

20

25

30

35

As used herein, a "related organism" is a broad term which refers to any organism whose growth can be modulated by one of the pharmaceutical agents of the present invention. In general, such an organism will contain a homolog of the protein which is the target of the pharmaceutical agent or the protein used as a vaccine. As such, related organisms do not need to be bacterial but may be fungal or viral pathogens.

The pharmaceutical agents and compositions of the present invention may be administered in a convenient manner, such as by the oral, topical, intravenous, intraperitoneal, intramuscular, subcutaneous, intranasal or intradermal routes. The pharmaceutical compositions are administered in an amount which is effective for treating and/or prophylaxis of the specific indication. In general, they are administered in an amount of at least about 1 mg/kg body weight and in most cases they will be administered in an amount not in excess of about 1 g/kg body weight per day. In most cases, the dosage is from about 0.1 mg/kg to about 10 g/kg body weight daily, taking into account the routes of administration, symptoms, etc.

The agents of the present invention can be used in native form or can be modified to form a chemical derivative. As used herein, a molecule is said to be a "chemical derivative" of another molecule when it contains additional chemical moieties not normally a part of the molecule. Such moieties may improve the molecule's solubility, absorption, biological half life, etc. The moieties may alternatively decrease the toxicity of the molecule, eliminate or attenuate any undesirable side effect of the molecule, etc. Moieties capable of mediating such effects are disclosed in, among other sources. REMINGTON'S PHARMACEUTICAL SCIENCES (1980) cited elsewhere herein.

For example, such moieties may change an immunological character of the functional derivative, such as affinity for a given antibody. Such changes in immunomodulation activity are measured by the appropriate assay, such as a competitive type immunoassay. Modifications of such protein properties as redox or thermal stability, biological half-life, hydrophobicity, susceptibility to proteolytic degradation or the tendency to aggregate with carriers or into multimers also may

be effected in this way and can be assayed by methods well known to the skilled artisan.

The therapeutic effects of the agents of the present invention may be obtained by providing the agent to a patient by any suitable means (e.g., inhalation, intravenously, intramuscularly, subcutaneously, enterally, or parenterally). It is preferred to administer the agent of the present invention so as to achieve an effective concentration within the blood or tissue in which the growth of the organism is to be controlled. To achieve an effective blood concentration, the preferred method is to administer the agent by injection. The administration may be by continuous infusion, or by single or multiple injections.

5

10

15

20

25

30

In providing a patient with one of the agents of the present invention, the dosage of the administered agent will vary depending upon such factors as the patient's age, weight, height, sex, general medical condition, previous medical history, etc. In general, it is desirable to provide the recipient with a dosage of agent which is in the range of from about 1 pg/kg to 10 mg/kg (body weight of patient), although a lower or higher dosage may be administered. The therapeutically effective dose can be lowered by using combinations of the agents of the present invention or another agent.

As used herein, two or more compounds or agents are said to be administered "in combination" with each other when either (1) the physiological effects of each compound, or (2) the serum concentrations of each compound can be measured at the same time. The composition of the present invention can be administered concurrently with, prior to, or following the administration of the other agent.

The agents of the present invention are intended to be provided to recipient subjects in an amount sufficient to decrease the rate of growth (as defined above) of the target organism.

The administration of the agent(s) of the invention may be for either a "prophylactic" or "therapeutic" purpose. When provided prophylactically, the agent(s) are provided in advance of any symptoms indicative of the organisms growth. The prophylactic administration of the agent(s) serves to prevent, attenuate, or decrease the rate of onset of any subsequent infection. When provided therapeutically, the agent(s) are provided at (or shortly after) the onset of an indication of infection. The therapeutic administration of the compound(s)

serves to attenuate the pathological symptoms of the infection and to increase the rate of recovery.

The agents of the present invention are administered to a subject, such as a mammal, or a patient, in a pharmaceutically acceptable form and in a therapeutically effective concentration. A composition is said to be "pharmacologically acceptable" if its administration can be tolerated by a recipient patient. Such an agent is said to be administered in a "therapeutically effective amount" if the amount administered is physiologically significant. An agent is physiologically significant if its presence results in a detectable change in the physiology of a recipient patient.

10

15

20

25

30

35

The agents of the present invention can be formulated according to known methods to prepare pharmaceutically useful compositions, whereby these materials, or their functional derivatives, are combined in a mixture with a pharmaceutically acceptable carrier vehicle. Suitable vehicles and their formulation, inclusive of other human proteins, e.g., human serum albumin, are described, for example, in REMINGTON'S PHARMACEUTICAL SCIENCES, 16th Ed., Osol, A., Ed., Mack Publishing, Easton PA (1980). In order to form a pharmaceutically acceptable composition suitable for effective administration, such compositions will contain an effective amount of one or more of the agents of the present invention, together with a suitable amount of carrier vehicle.

Additional pharmaceutical methods may be employed to control the duration of action. Control release preparations may be achieved through the use of polymers to complex or absorb one or more of the agents of the present invention. The controlled delivery may be effectuated by a variety of well known techniques, including formulation with macromolecules such as, for example, polyesters, polyamino acids, polyvinyl, pyrrolidone, ethylenevinylacetate, methylcellulose, carboxymethylcellulose, or protamine, sulfate, adjusting the concentration of the macromolecules and the agent in the formulation, and by appropriate use of methods of incorporation, which can be manipulated to effectuate a desired time course of release. Another possible method to control the duration of action by controlled release preparations is to incorporate agents of the present invention into particles of a polymeric material such as polyesters, polyamino acids, hydrogels, poly(lactic acid) or ethylene vinylacetate copolymers. Alternatively, instead of incorporating these agents into polymeric particles, it is possible to entrap these materials in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization with, for example, hydroxymethylcellulose or gelatine-

microcapsules and poly(methylmethacylate) microcapsules, respectively, or in colloidal drug delivery systems, for example, liposomes, albumin microspheres, microemulsions, nanoparticles, and nanocapsules or in macroemulsions. Such techniques are disclosed in REMINGTON'S PHARMACEUTICAL SCIENCES (1980).

The invention further provides a pharmaceutical pack or kit comprising one or more containers filled with one or more of the ingredients of the pharmaceutical compositions of the invention. Associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration.

In addition, the agents of the present invention may be employed in conjunction with other therapeutic compounds.

6. Shot-Gun Approach to Megabase DNA Sequencing

The present invention further demonstrates that a large sequence can be sequenced using a random shotgun approach. This procedure, described in detail in the examples that follow, has eliminated the up front cost of isolating and ordering overlapping or contiguous subclones prior to the start of the sequencing protocols.

Certain aspects of the present invention are described in greater detail in the examples that follow. The examples are provided by way of illustration. Other aspects and embodiments of the present invention are contemplated by the inventors, as will be clear to those of skill in the art from reading the present disclosure.

ILLUSTRATIVE EXAMPLES

5

10

15

20

25

30

35

LIBRARIES AND SEQUENCING

1. Shotgun Sequencing Probability Analysis

The overall strategy for a shotgun approach to whole genome sequencing follows from the Lander and Waterman (Landerman and Waterman, *Genomics* 2:231 (1988)) application of the equation for the Poisson distribution. According to this treatment, the probability, P, that any given base in a sequence of size L, in nucleotides, is not sequenced after a certain amount, n, in nucleotides, of random

sequence has been determined can be calculated by the equation $P = e^{-m}$, where m is L/n, the fold coverage. For instance, for a genome of 2.8 Mb, m=1 when 2.8 Mb of sequence has been randomly generated (1X coverage). At that point, $P = e^{-1} = 0.37$. The probability that any given base has not been sequenced is the same as the probability that any region of the whole sequence L has not been determined and, therefore, is equivalent to the fraction of the whole sequence that has yet to be determined. Thus, at one-fold coverage, approximately 37% of a polynucleotide of size L, in nucleotides has not been sequenced. When 14 Mb of sequence has been generated, coverage is 5X for a 2.8 Mb and the unsequenced fraction drops to .0067 or 0.67%. 5X coverage of a 2.8 Mb sequence can be attained by sequencing approximately 17,000 random clones from both insert ends with an average sequence read length of 410 bp.

Similarly, the total gap length, G, is determined by the equation $G = Le^{-m}$, and the average gap size, g, follows the equation, g = L/n. Thus, 5X coverage leaves about 240 gaps averaging about 82 bp in size in a sequence of a polynucleotide 2.8 Mb long.

The treatment above is essentially that of Lander and Waterman, *Genomics* $\underline{2}$: 231 (1988).

2. Random Library Construction

5

10

15

20

25

30

35

In order to approximate the random model described above during actual sequencing, a nearly ideal library of cloned genomic fragments is required. The following library construction procedure was developed to achieve this end.

Streptococcus pneumoniae DNA is prepared by phenol extraction. A mixture containing 200 µg DNA in 1.0 ml of 300 mM sodium acetate, 10 mM Tris-HCl, 1 mM Na-EDTA, 50% glycerol is processed through a nebulizer (IPI Medical Products) with a stream of nitrogen adjusted to 35 Kpa for 2 minutes. The sonicated DNA is ethanol precipitated and redissolved in 500 µl TE buffer.

To create blunt-ends, a 100 μ l aliquot of the resuspended DNA is digested with 5 units of BAL31 nuclease (New England BioLabs) for 10 min at 30°C in 200 μ l BAL31 buffer. The digested DNA is phenol-extracted, ethanol-precipitated, redissolved in 100 μ l TE buffer, and then size-fractionated by electrophoresis through a 1.0% low melting temperature agarose gel. The section containing DNA fragments 1.6-2.0 kb in size is excised from the gel, and the LGT agarose is melted and the resulting solution is extracted with phenol to separate the agarose from the

DNA. DNA is ethanol precipitated and redissolved in 20 μ l of TE buffer for ligation to vector.

A two-step ligation procedure is used to produce a plasmid library with 97% inserts, of which >99% were single inserts. The first ligation mixture (50 ul) contains 2 µg of DNA fragments, 2 µg pUC18 DNA (Pharmacia) cut with Smal and dephosphorylated with bacterial alkaline phosphatase, and 10 units of T4 ligase (GIBCO/BRL) and is incubated at 14°C for 4 hr. The ligation mixture then is phenol extracted and ethanol precipitated, and the precipitated DNA is dissolved in 20 µl TE buffer and electrophoresed on a 1.0% low melting agarose gel. Discrete bands in a ladder are visualized by ethidium bromide-staining and UV illumination and identified by size as insert (I), vector (v), v+I, v+2i, v+3i, etc. The portion of the gel containing v+I DNA is excised and the v+I DNA is recovered and resuspended into 20 µl TE. The v+I DNA then is blunt-ended by T4 polymerase treatment for 5 min. at 37°C in a reaction mixture (50 ul) containing the v+I linears, 500 µM each of the 4 dNTPs, and 9 units of T4 polymerase (New England BioLabs), under recommended buffer conditions. After phenol extraction and ethanol precipitation the repaired v+I linears are dissolved in 20 µl TE. The final ligation to produce circles is carried out in a 50 µl reaction containing 5 µl of v+I linears and 5 units of T4 ligase at 14°C overnight. After 10 min. at 70°C the following day, the reaction mixture is stored at -20°C.

10

15

20

25

30

35

This two-stage procedure results in a molecularly random collection of single-insert plasmid recombinants with minimal contamination from double-insert chimeras (<1%) or free vector (<3%).

Since deviation from randomness can arise from propagation the DNA in the host, *E. coli* host cells deficient in all recombination and restriction functions (A. Greener, *Strategies 3 (1)*:5 (1990)) are used to prevent rearrangements, deletions, and loss of clones by restriction. Furthermore, transformed cells are plated directly on antibiotic diffusion plates to avoid the usual broth recovery phase which allows multiplication and selection of the most rapidly growing cells.

Plating is carried out as follows. A 100 μ l aliquot of Epicurian Coli SURE II Supercompetent Cells (Stratagene 200152) is thawed on ice and transferred to a chilled Falcon 2059 tube on ice. A 1.7 μ l aliquot of 1.42 M beta-mercaptoethanol is added to the aliquot of cells to a final concentration of 25 mM. Cells are incubated on ice for 10 min. A 1 μ l aliquot of the final ligation is added to the cells and incubated on ice for 30 min. The cells are heat pulsed for 30 sec. at 42°C and

placed back on ice for 2 min. The outgrowth period in liquid culture is eliminated from this protocol in order to minimize the preferential growth of any given transformed cell. Instead the transformation mixture is plated directly on a nutrient rich SOB plate containing a 5 ml bottom layer of SOB agar (5% SOB agar: 20 g tryptone, 5 g yeast extract, 0.5 g NaCl, 1.5% Difco Agar per liter of media). The 5 ml bottom layer is supplemented with 0.4 ml of 50 mg/ml ampicillin per 100 ml SOB agar. The 15 ml top layer of SOB agar is supplemented with 1 ml X-Gal (2%), 1 ml MgCl (1 M), and 1 ml MgSO /100 ml SOB agar. The 15 ml top layer is poured just prior to plating. Our titer is approximately 100 colonies/10 µl aliquot of transformation.

All colonies are picked for template preparation regardless of size. Thus, only clones lost due to "poison" DNA or deleterious gene products are deleted from the library, resulting in a slight increase in gap number over that expected.

3. Random DNA Sequencing

5

10

15

20

25

30

35

High quality double stranded DNA plasmid templates are prepared using a "boiling bead" method developed in collaboration with Advanced Genetic Technology Corp. (Gaithersburg, MD) (Adams *et al.*, *Science 252*:1651 (1991); Adams *et al.*, *Nature 355*:632 (1992)). Plasmid preparation is performed in a 96-well format for all stages of DNA preparation from bacterial growth through final DNA purification. Template concentration is determined using Hoechst Dye and a Millipore Cytofluor. DNA concentrations are not adjusted, but low-yielding templates are identified where possible and not sequenced.

Templates are also prepared from two *Streptococcus pneumoniae* lambda genomic libraries. An amplified library is constructed in the vector Lambda GEM-12 (Promega) and an unamplified library is constructed in Lambda DASH II (Stratagene). In particular, for the unamplified lambda library, *Streptococcus pneumoniae* DNA (> 100 kb) is partially digested in a reaction mixture (200 ul) containing 50 μg DNA, 1X Sau3AI buffer, 20 units Sau3AI for 6 min. at 23°C. The digested DNA was phenol-extracted and electrophoresed on a 0.5% low melting agarose gel at 2V/cm for 7 hours. Fragments from 15 to 25 kb are excised and recovered in a final volume of 6 ul. One μl of fragments is used with 1 μl of DASHII vector (Stratagene) in the recommended ligation reaction. One μl of the ligation mixture is used per packaging reaction following the recommended protocol with the Gigapack II XL Packaging Extract (Stratagene, #227711). Phage

are plated directly without amplification from the packaging mixture (after dilution with 500 μ l of recommended SM buffer and chloroform treatment). Yield is about 2.5×10^3 pfu/ul. The amplified library is prepared essentially as above except the lambda GEM-12 vector is used. After packaging, about 3.5×10^4 pfu are plated on the restrictive NM539 host. The lysate is harvested in 2 ml of SM buffer and stored frozen in 7% dimethylsulfoxide. The phage titer is approximately 1×10^9 pfu/ml.

5

10

15

20

25

30

35

Liquid lysates (100 μ l) are prepared from randomly selected plaques (from the unamplified library) and template is prepared by long-range PCR using T7 and T3 vector-specific primers.

Sequencing reactions are carried out on plasmid and/or PCR templates using the AB Catalyst LabStation with Applied Biosystems PRISM Ready Reaction Dye Primer Cycle Sequencing Kits for the M13 forward (M13-21) and the M13 reverse (M13RP1) primers (Adams et al., Nature 368:474 (1994)). Dye terminator sequencing reactions are carried out on the lambda templates on a Perkin-Elmer 9600 Thermocycler using the Applied Biosystems Ready Reaction Dye Terminator Cycle Sequencing kits. T7 and SP6 primers are used to sequence the ends of the inserts from the Lambda GEM-12 library and T7 and T3 primers are used to sequence the ends of the inserts from the Lambda DASH II library. Sequencing reactions are performed by eight individuals using an average of fourteen AB 373 DNA Sequencers per day. All sequencing reactions are analyzed using the Stretch modification of the AB 373, primarily using a 34 cm well-to-read distance. The overall sequencing success rate very approximately is about 85% for M13-21 and M13RP1 sequences and 65% for dye-terminator reactions. average usable read length is 485 bp for M13-21 sequences, 445bp for M13RP1 sequences, and 375 bp for dye-terminator reactions.

Richards et al., Chapter 28 in AUTOMATED DNA SEQUENCING AND ANALYSIS, M. D. Adams, C. Fields, J. C. Venter, Eds., Academic Press, London, (1994) described the value of using sequence from both ends of sequencing templates to facilitate ordering of contigs in shotgun assembly projects of lambda and cosmid clones. We balance the desirability of both-end sequencing (including the reduced cost of lower total number of templates) against shorter read-lengths for sequencing reactions performed with the M13RP1 (reverse) primer compared to the M13-21 (forward) primer. Approximately one-half of the templates are sequenced from both ends. Random reverse sequencing reactions are

done based on successful forward sequencing reactions. Some M13RP1 sequences are obtained in a semi-directed fashion: M13-21: sequences pointing outward at the ends of contigs are chosen for M13RP1 sequencing in an effort to specifically order contigs.

5

10

15

20

25

30

35

4. Protocol for Automated Cycle Sequencing

The sequencing is carried out using ABI Catalyst robots and AB 373 Automated DNA Sequencers. The Catalyst robot is a publicly available sophisticated pipetting and temperature control robot which has been developed specifically for DNA sequencing reactions. The Catalyst combines pre-aliquoted templates and reaction mixes consisting of deoxy- and dideoxynucleotides, the thermostable Taq DNA polymerase, fluorescently-labelled sequencing primers, and reaction buffer. Reaction mixes and templates are combined in the wells of an aluminum 96-well thermocycling plate. Thirty consecutive cycles of linear amplification (i.e.., one primer synthesis) steps are performed including denaturation, annealing of primer and template, and extension; i.e., DNA synthesis. A heated lid with rubber gaskets on the thermocycling plate prevents evaporation without the need for an oil overlay.

Two sequencing protocols are used: one for dye-labelled primers and a second for dye-labelled dideoxy chain terminators. The shotgun sequencing involves use of four dye-labelled sequencing primers, one for each of the four terminator nucleotide. Each dye-primer is labelled with a different fluorescent dye, permitting the four individual reactions to be combined into one lane of the 373 DNA Sequencer for electrophoresis, detection, and base-calling. ABI currently supplies pre-mixed reaction mixes in bulk packages containing all the necessary non-template reagents for sequencing. Sequencing can be done with both plasmid and PCR- generated templates with both dye-primers and dye- terminators with approximately equal fidelity, although plasmid templates generally give longer usable sequences.

Thirty-two reactions are loaded per AB373 Sequencer each day, for a total of 960 samples. Electrophoresis is run overnight following the manufacturer's protocols, and the data is collected for twelve hours. Following electrophoresis and fluorescence detection, the ABI 373 performs automatic lane tracking and base-calling. The lane-tracking is confirmed visually. Each sequence electropherogram (or fluorescence lane trace) is inspected visually and assessed for quality. Trailing

sequences of low quality are removed and the sequence itself is loaded via software to a Sybase database (archived daily to 8mm tape). Leading vector polylinker sequence is removed automatically by a software program. Average edited lengths of sequences from the standard ABI 373 are around 400 bp and depend mostly on the quality of the template used for the sequencing reaction. ABI 373 Sequencers converted to Stretch Liners provide a longer electrophoresis path prior to fluorescence detection and increase the average number of usable bases to 500-600 bp.

INFORMATICS

1. Data Management

A number of information management systems for a large-scale sequencing lab have been developed. (For review see, for instance, Kerlavage et al., Proceedings of the Twenty-Sixth Annual Hawaii International Conference on System Sciences, IEEE Computer Society Press, Washington D. C., 585 (1993)) The system used to collect and assemble the sequence data was developed using the Sybase relational database management system and was designed to automate data flow wherever possible and to reduce user error. The database stores and correlates all information collected during the entire operation from template preparation to final analysis of the genome. Because the raw output of the ABI 373 Sequencers was based on a Macintosh platform and the data management system chosen was based on a Unix platform, it was necessary to design and implement a variety of multi- user, client-server applications which allow the raw data as well as analysis results to flow seamlessly into the database with a minimum of user effort.

25

30

35

20

10

15

2. Assembly

An assembly engine (TIGR Assembler) developed for the rapid and accurate assembly of thousands of sequence fragments was employed to generate contigs. The TIGR assembler simultaneously clusters and assembles fragments of the genome. In order to obtain the speed necessary to assemble more than 10⁴ fragments, the algorithm builds a hash table of 12 bp oligonucleotide subsequences to generate a list of potential sequence fragment overlaps. The number of potential overlaps for each fragment determines which fragments are likely to fall into repetitive elements. Beginning with a single seed sequence fragment, TIGR Assembler extends the current contig by attempting to add the best matching

fragment based on oligonucleotide content. The contig and candidate fragment are aligned using a modified version of the Smith-Waterman algorithm which provides for optimal gapped alignments (Waterman, M. S., Methods in Enzymology 164:765 (1988)). The contig is extended by the fragment only if strict criteria for the quality of the match are met. The match criteria include the minimum length of overlap, the maximum length of an unmatched end, and the minimum percentage match. These criteria are automatically lowered by the algorithm in regions of minimal coverage and raised in regions with a possible repetitive element. The number of potential overlaps for each fragment determines which fragments are likely to fall into repetitive elements. Fragments representing the boundaries of repetitive elements and potentially chimeric fragments are often rejected based on partial mismatches at the ends of alignments and excluded from the current contig. TIGR Assembler is designed to take advantage of clone size information coupled with sequencing from both ends of each template. It enforces the constraint that sequence fragments from two ends of the same template point toward one another in the contig and are located within a certain range of base pairs (definable for each clone based on the known clone size range for a given library).

The process resulted in 391 contigs as represented by SEQ ID NOs:1-391.

3. Identifying Genes

10

15

20

25

30

The predicted coding regions of the *Streptococcus pneumoniae* genome were initially defined with the program GeneMark, which finds ORFs using a probabilistic classification technique. The predicted coding region sequences were used in searches against a database of all nucleotide sequences from GenBank (October, 1997), using the BLASTN search method to identify overlaps of 50 or more nucleotides with at least a 95% identity. Those ORFs with nucleotide sequence matches are shown in Table 1. The ORFs without such matches were translated to protein sequences and compared to a non-redundant database of known proteins generated by combining the Swiss-prot, PIR and GenPept databases. ORFs that matched a database protein with BLASTP probability less than or equal to 0.01 are shown in Table 2. The table also lists assigned functions based on the closest match in the databases. ORFs that did not match protein or nucleotide sequences in the databases at these levels are shown in Table 3.

ILLUSTRATIVE APPLICATIONS

5

10

15

20

25

30

1. Production of an Antibody to a Streptococcus pneumoniae Protein

Substantially pure protein or polypeptide is isolated from the transfected or transformed cells using any one of the methods known in the art. The protein can also be produced in a recombinant prokaryotic expression system, such as *E. coli*, or can be chemically synthesized. Concentration of protein in the final preparation is adjusted, for example, by concentration on an Amicon filter device, to the level of a few micrograms/ml. Monoclonal or polyclonal antibody to the protein can then be prepared as follows.

2. Monoclonal Antibody Production by Hybridoma Fusion

Monoclonal antibody to epitopes of any of the peptides identified and isolated as described can be prepared from murine hybridomas according to the classical method of Kohler, G. and Milstein, C., Nature 256:495 (1975) or modifications of the methods thereof. Briefly, a mouse is repetitively inoculated with a few micrograms of the selected protein over a period of a few weeks. The mouse is then sacrificed, and the antibody producing cells of the spleen isolated. The spleen cells are fused by means of polyethylene glycol with mouse myeloma cells, and the excess unfused cells destroyed by growth of the system on selective media comprising aminopterin (HAT media). The successfully fused cells are diluted and aliquots of the dilution placed in wells of a microtiter plate where growth of the culture is continued. Antibody-producing clones are identified by detection of antibody in the supernatant fluid of the wells by immunoassay procedures, such as ELISA, as originally described by Engvall, E., Meth. Enzymol. 70:419 (1980), and modified methods thereof. Selected positive clones can be expanded and their monoclonal antibody product harvested for use. Detailed procedures for monoclonal antibody production are described in Davis, L. et al., Basic Methods in Molecular Biology, Elsevier, New York. Section 21-2 (1989).

3. Polyclonal Antibody Production by Immunization

5

10

15

20

25

30

Polyclonal antiserum containing antibodies to heterogenous epitopes of a single protein can be prepared by immunizing suitable animals with the expressed protein described above, which can be unmodified or modified to enhance immunogenicity. Effective polyclonal antibody production is affected by many factors related both to the antigen and the host species. For example, small molecules tend to be less immunogenic than others and may require the use of carriers and adjuvant. Also, host animals vary in response to site of inoculations and dose, with both inadequate or excessive doses of antigen resulting in low titer antisera. Small doses (ng level) of antigen administered at multiple intradermal sites appears to be most reliable. An effective immunization protocol for rabbits can be found in Vaitukaitis, J. et al., J. Clin. Endocrinol. Metab. 33:988-991 (1971).

Booster injections can be given at regular intervals, and antiserum harvested when antibody titer thereof, as determined semi-quantitatively, for example, by double immunodiffusion in agar against known concentrations of the antigen, begins to fall. See, for example, Ouchterlony, O. et al., Chap. 19 in: Handbook of Experimental Immunology, Wier, D., ed, Blackwell (1973). Plateau concentration of antibody is usually in the range of 0.1 to 0.2 mg/ml of serum (about 12M). Affinity of the antisera for the antigen is determined by preparing competitive binding curves, as described, for example, by Fisher, D., Chap. 42 in: Manual of Clinical Immunology, second edition, Rose and Friedman, eds., Amer. Soc. For Microbiology, Washington, D. C. (1980)

Antibody preparations prepared according to either protocol are useful in quantitative immunoassays which determine concentrations of antigen-bearing substances in biological samples; they are also used semi-quantitatively or qualitatively to identify the presence of antigen in a biological sample. In addition, antibodies are useful in various animal models of pneumococcal disease as a means of evaluating the protein used to make the antibody as a potential vaccine target or as a means of evaluating the antibody as a potential immunotherapeutic or immunoprophylactic reagent.

4. Preparation of PCR Primers and Amplification of DNA

Various fragments of the *Streptococcus pneumoniae* genome, such as those of Tables 1-3 and SEQ ID NOS:1-391 can be used, in accordance with the present invention, to prepare PCR primers for a variety of uses. The PCR primers are preferably at least 15 bases, and more preferably at least 18 bases in length. When selecting a primer sequence, it is preferred that the primer pairs have approximately the same G/C ratio, so that melting temperatures are approximately the same. The PCR primers and amplified DNA of this Example find use in the Examples that follow.

10

15

20

5

5. Gene expression from DNA Sequences Corresponding to ORFs

A fragment of the *Streptococcus pneumoniae* genome provided in Tables 1-3 is introduced into an expression vector using conventional technology. Techniques to transfer cloned sequences into expression vectors that direct protein translation in mammalian, yeast, insect or bacterial expression systems are well known in the art. Commercially available vectors and expression systems are available from a variety of suppliers including Stratagene (La Jolla, California), Promega (Madison, Wisconsin), and Invitrogen (San Diego, California). If desired, to enhance expression and facilitate proper protein folding, the codon context and codon pairing of the sequence may be optimized for the particular expression organism, as explained by Hatfield *et al.*, U. S. Patent No. 5,082,767, incorporated herein by this reference.

5

10

15

20

25

30

The following is provided as one exemplary method to generate polypeptide(s) from cloned ORFs of the Streptococcus pneumoniae genome fragment. Bacterial ORFs generally lack a poly A addition signal. The addition signal sequence can be added to the construct by, for example, splicing out the poly A addition sequence from pSG5 (Stratagene) using BglI and SalI restriction endonuclease enzymes and incorporating it into the mammalian expression vector pXT1 (Stratagene) for use in eukaryotic expression systems. pXT1 contains the LTRs and a portion of the gag gene of Moloney Murine Leukemia Virus. The positions of the LTRs in the construct allow efficient stable transfection. vector includes the Herpes Simplex thymidine kinase promoter and the selectable neomycin gene. The Streptococcus pneumoniae DNA is obtained by PCR from the bacterial vector using oligonucleotide primers complementary to the Streptococcus pneumoniae DNA and containing restriction endonuclease sequences for PstI incorporated into the 5' primer and BglII at the 5' end of the corresponding Streptococcus pneumoniae DNA 3' primer, taking care to ensure that the Streptococcus pneumoniae DNA is positioned such that its followed with the poly A addition sequence. The purified fragment obtained from the resulting PCR reaction is digested with PstI, blunt ended with an exonuclease, digested with BglII, purified and ligated to pXT1, now containing a poly A addition sequence and digested BglII.

The ligated product is transfected into mouse NIH 3T3 cells using Lipofectin (Life Technologies, Inc., Grand Island, New York) under conditions outlined in the product specification. Positive transfectants are selected after growing the transfected cells in 600 ug/ml G418 (Sigma, St. Louis, Missouri). The protein is preferably released into the supernatant. However if the protein has membrane binding domains, the protein may additionally be retained within the cell or expression may be restricted to the cell surface. Since it may be necessary to purify and locate the transfected product, synthetic 15-mer peptides synthesized from the predicted *Streptococcus pneumoniae* DNA sequence are injected into mice to generate antibody to the polypeptide encoded by the *Streptococcus pneumoniae* DNA.

Alternatively and if antibody production is not possible, the Streptococcus pneumoniae DNA sequence is additionally incorporated into eukaryotic expression vectors and expressed as, for example, a globin fusion. Antibody to the globin moiety then is used to purify the chimeric protein. Corresponding protease cleavage sites are engineered between the globin moiety and the polypeptide encoded by the Streptococcus pneumoniae DNA so that the latter may be freed from the formed by simple protease digestion. One useful expression vector for generating globin chimerics is pSG5 (Stratagene). This vector encodes a rabbit globin. Intron II of the rabbit globin gene facilitates splicing of the expressed transcript, and the polyadenylation signal incorporated into the construct increases the level of expression. These techniques are well known to those skilled in the art of molecular biology. Standard methods are published in methods texts such as Davis et al., cited elsewhere herein, and many of the methods are available from the technical assistance representatives from Stratagene, Life Technologies, Inc., or Promega. Polypeptides of the invention also may be produced using in vitro translation systems such as in vitro ExpressTM Translation Kit (Stratagene).

10

15

20

While the present invention has been described in some detail for purposes of clarity and understanding, one skilled in the art will appreciate that various changes in form and detail can be made without departing from the true scope of the invention.

All patents, patent applications and publications referred to above are hereby incorporated by reference.

S. pneumoniae - Coding regions containing known sequences

Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	percent	HSP nt length	ORF nt
		437	1003	gb U41735	Streptococcus pneumoniae peptide methionine sulfoxide reductase (msrA) and homoserine kinase homolog (thrB) genes, complete cds	9.5	200	567
2	٥.	6169	5720	gb U04047	Streptococcus pneumoniae SSZ dextran glucosidase gene and insertion sequence IS1202 transposase gene, complete cds	96	450	450
2	9	6592	6167	emb z83335 sPz8	S.pneumoniae dexB, cap1[A,B,C,D,E,F,G,H,I,J,K] genes, dTDP-rhamnose biosynthesis genes and aliA gene	86	426	426
е ——	11	9770	9147	emb 283335 SPZ8	S.pneumoniae dexB, capl[A,B,C,D,E,F,G,H,I,J,K] genes, dTDP-rhamnose biosynthesis genes and aliA gene	94	624	624
۳	12	10489	9671	emb 283335 SP28	S.pneumoniae dexB, cap1[A,B,C,D,E,F,G,H,I,J,K] genes, dTDP-rhamnose biosynthesis genes and aliA gene	91	819	819
m	13	11546	12019	gb U43526	Streptococcus pneumoniae neuraminidase B (nanB) gene, complete cds, and neuraminidase (nanA) gene, partial cds	66	474	474
6	14	12017	13375	gb U43526	Streptococcus pneumoniae neuraminidase B (nanB) gene, complete cds, and neuraminidase (nanA) gene, partial cds	66	1359	1359
m	15	13421	14338	gb U43526	Streptococcus pneumoniae neuraminidase B (nanB) gene, complete cds, and neuraminidase (nanA) gene, partial cds	66	918	918
e	116	14329	15171	gb U43526	Streptococcus pneumoniae neuraminidase B (nanB) gene, complete cds, and neuraminidase (nanA) gene, partial cds	66	843	843
e	117	15132	17282	gb U43526 	Streptococcus pneumoniae neuraminidase B (nanB) gene, complete cds, and neuraminidase (nanA) gene, partial cds	66	2151	2151
e .	8 1	17267	18397	gb U43526 	Streptococcus pneumoniae neuraminidase B (nanB) gene, complete cds, and neuraminidase (nanA) gene, partial cds	66	1069	1131
7	-	46	1188	emb Y11463 SPDN	Streptococcus pneumoniae dnaG, rpoD, cpoA genes and ORF3 and ORF5	66	1143	1143
4	2	1198	2529	emb Y11463 SPDN	Streptococcus pneumoniae dnaG, rpoD, cpoA genes and ORF3 and ORF5	66	876	1332
25		11297	111473	gb U41735 	Streptococcus pneumoniae peptide methionine sulfoxide reductase (msrA) and homoserine kinase homolog (thrB) genes, complete cds	82	175	177
9	7	7125	7364	emb 277726 SPIS	S.pneumoniae DNA for insertion sequence IS1318 (1372 bp)	93	238	240
9	8	7322	1 7570	emb[277725 SPIS	S.pneumoniae DNA for insertion sequence IS1381 (966 bp)	95	160	249
9	6	7533	7985	emb 277725 SPIS	S.pneumoniae DNA for insertion sequence IS1381 (966 bp)	1 66	453	453
9	23	20197	19733	emb[z83335 SPZ8	S.pneumoniae dexB, cap1{A,B,C,D,E,F,G,H,I,J,K} genes, dTDP-rhamnose biosynthesis genes and aliA gene	96	465	465
7	100	8305	7682	emb 283335 SP28	S.pneumoniae dexB, cap1(A,B,C,D,E,F,G,H,I,J,K) genes, dTDP-rhamnose biosynthesis genes and aliA gene	95	624	624

S. pneumoniae - Coding regions containing known sequences

Contig	ORF	Start (nt)	Stop (nt)	match acession	natch gene name	percent	HSP nt	ORF nt
7	=_	9024	8206	emb 283335 SP28	S.pneumoniae dexB, capl[A,B,C,D,E,F,G,H,I,J,K] genes, dTDP-rhamnose biosynthesis genes and aliA gene	95	819	819
10	13	9304	8078	gb L29323	Streptococcus pneumoniae methyl transferase (mtr) gene cluster, complete cds	93	513	1227
=	7	548	919	emb 279691 SOOR	S.pneumoniae yorf[A,B,C,D,E], ftsL, pbpX and regR genes	1 66	316	372
11	3	892	1980	emb[279691 SOOR	S.pneumoniae yorf[A,B,C,D,E], ftsL, pbpX and regR genes	66	1089	1089
11	2	3040	3477	emb 279691 SOOR	S. pneumoniae yorf(A,B,C,D,E), ftsL, pbpX and regR genes	1 66	259	438
11	9	3480	3247	emb[279691 SOOR	S.pneumoniae yorf[A,B,C,D,E], ftsL, pbpX and regR genes	66	234	234
11	7	3601	4557	emb 279691 SOOR	S.pneumoniae yorf[A,B,C,D,E], ftsL, pbpX and regR genes	98	957	957
11	8	4506	4886	emb 279691 SOOR	S.pneumoniae yorf[A,B,C,D,E], ftsL, pbpX and regR genes	1 66	381	381
11	6	4884	7142	emb x16367 SPPB	Streptococcus pneumoniae pbpX gene for penicillin binding protein 2X	66	2259	2259
11	100	7132	8124	emb X16367 SPPB	Streptococcus pneumoniae pbpX gene for penicillin binding protein 2X	1 86	70	993
13	7	53	1126	gb M31296	S.pneumoniae recP gene, complete cds	1 66	437	1074
14	3	1837	2148	emb 283335 SP28	S.pneumoniae dexB, cap1(A,B,C,D,E,F,G,H,I,J,K) genes, dTDP-rhamnose biosynthesis genes and aliA gene	87	96	312
14	4	2518	2108	gb M36180 	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds	86	411	411
15	6	8942	8511	gb U09239	Streptococcus pneumoniae type 19F capsular polysaccharide biosynthesis operon, (cps19fABCDEFCHIJKLMNO) genes, complete cds, and aliA gene, partial cds	68	340	432
17	7	3910	3458	emb 277726 SPIS	S.pneumoniae DNA for insertion sequence IS1318 (1372 bp)	1 86	453	453
17	8 -	4304	3873	emb z77727 SPIS	S.pneumoniae DNA for insertion sequence IS1318 (823 bp)	96	382	432
19	1	41	529	emb x94909 SPIG	S.pneumoniae iga gene	75	368	489
19	2	554	757	gb L07752	Streptococcus pneumoniae attachment site (attB), DNA sequence	- 66	167	204
19	3	946	1827	gb L07752	Streptococcus pneumoniae attachment site (attB), DNA sequence	94	100	882
30	7	937	182	gb U33315	Streptococcus pneumoniae orfL gene, partial cds, competence stimulating peptide precursor (comC), histidine protein kinase (comD) and response regulator (comE) genes, complete cds, tRNA-Arg and tRNA-Gln genes	66	756	756
20	2	2271	931	gb U33315	Streptococcus pneumoniae orfi, gene, partial cds, competence stimulating peptide precursor (comC), histidine protein kinase (comD) and response regulator (comE) genes, complete cds, tRNA-Arg and tRNA-Gln genes	86	1341	1341
			 	• • • • • • • • • • • • • • • • • • • •	•	-+		

o u
known
containing
regions
- Coding
pneumoniae -
s.

Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	percent	HSP nt	ORF nt
20		3175	2684	gb U76218	Streptococcus pneumoniae competence stimulating peptide precursor ComC (comC), histidine kinase homolog ComD (comD), and response regulator homolog ComE (comE) genes, complete cds	66	1engtn 492	length
20	4	3322	4527	gb AF000658	Streptococcus pneumoniae R801 tRNA-Arg gene, partial sequence, and putative serine protease (sphtra), SPSpoJ (spspoJ), initiator protein (spdnaa) and beta subunit of DNA polymerase III (spdnan) genes, complete cds	66	1206	1206
20	رم د	4573	5343	[gb AF000658	l sequence or proteir	66	771	771
20	9	5532	6917	gb AF000658	rg gene, partial sequence pspoJ), initiator protein (spdnan) qenes, complete	666	1386	1386
20	7	6995	8212	gb AF000658	partial sequence initiator protein genes, complete	66	1218	1218
20	·	8214	8471	gb AF000658	partial sequence initiator protein genes, complete	86	258	258
20	6	8534	9670	gb AF000658	partial sequence initiator protein genes, complete		134	1137
22 1	14 1	11887	12267	emb 277726 SPIS	S.pneumoniae DNA for insertion sequence IS1318 (1372 bp)	-+	226	1 186
22 1	115 1	12708	12256	emb 277727 SPIS	S.pneumoniae DNA for insertion sequence IS1318 (823 bp)		353	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
22	16 1	13165	12662	emb 277726 SPIS	S.pneumoniae DNA for insertion sequence IS1318 (1372 bp)		700	100
22 2	23 1	18398	18910	emb 286112 SPZ8	S.pneumoniae genes encoding galacturonosyl transferase and transposase and insertion sequence 181515	95	463	513
22 2	24 1	18829	19299	emb 286112 SP28	S.pneumoniae genes encoding galacturonosyl transferase and transposase and insertion sequence 151515	66	443	471
23	2	5624	4203	emb X52474 SPPL	S.pneumoniae ply gene for pneumolysin		1433	+
23	9	6063	5629	71771M db	S.pneumoniae pneumolysin gene, complete cds	0	7757	1 7761
26	- -	5500	2	emb x94909 SPIG	S.pneumoniae iga gene		-+	435
26	2	5823	5584	gb[U47687]	Streptococcus pneumoniae immunoglobulin Al protease (iga) gene, complete	66	151	240
26	e	6878	5685	gb U47687	Streptococcus pneumoniae immunoglobulin Al protease (iga) gene, complete	100	50	1194
				+		- +		

S. pneumoniae - Coding regions containing known sequences

Contig	J ORF	Start	÷ —	match				
QI -	9	- ∤	(nt)	acession	מעדע ווספּע	percent	HSP nt	ORF nt
26	8	14498	14854	emb 283335 SP28	S.pneumoniae dexB, capl(A,B,C,D,E,F,G,H,I,J,K) genes, dTDP-rhamnose biosynthesis genes and aliA gene	66	338	357
26	6	14763	14924	emb 283335 SP28	S.pneumoniae dexB, cap1(A,B,C,D,E,F,G,H,I,J,K) genes, dTDP-rhamnose biosynthesis genes and aliA gene	100	94	162
26	10	14922	15173	gb 004047	Streptococcus pneumoniae SSZ dextran glucosidase gene and insertion sequence IS1202 transposase gene, complete cds	97	242	252
28		80	205	emb 283335 SP28	J, D, E, F	66	426	426
28	- 5	503	952	gb U04047	Streptococcus pneumoniae SSZ dextran glucosidase gene and insertion sequence IS1202 transposase gene, complete cds		450	450
28		,780	1298	gb U04047	Streptococcus pneumoniae SS2 dextran glucosidase gene and insertion sequence IS1202 transposase gene, complete cds	96	181	519
34		207	1523	gb L08611	Streptococcus pneumoniae maltose/maltodextrin uptake (malX) and two maltodextrin permease (malC and malD) genes, complete cda	66	1317	1317
34	- 5	1477	2367	gb L08611	1	96	795	891
34	~ -	2593	3420	gb L21856	cds; malR	- +		- + -
34	4	2790	2647	gb L21856	dene complete	0 0	4	828
34	5	3418	4416	gb L21856		96	137	144
34	6	7764	7507	gb U41735	pneumoniae peptide methionine sulfoy	96	999	999
34	116	10562	10257	emb X63602 SPBO	S. Dneumonjae mmea.box	;		0 1
35	4	1176	1439	emb 283335 SP28	S.pneumoniae dexB, cap1(A,B,C,D,E,F,G,H,I,J,K) genes, dTDP-rhamnose biosynthesis genes and alia cone	92 87	238 248	306
35	5	1458	1961	dp n09239	oniae type DEFGHIJKLM	86	264	504
35	17	16172	15477	emb(x85787 SPCP	S.pneumoniae dexB. cps14A, cps14B, cps14C, cps14D, cps14E, cps14F, cps14G, cps14H, cps14I, cps14S, cps14C,	9.	969	969
35	118	16961	16170	emb z83335 SPZ8	A, B, C, D, E, F, G, H, I, J, K)	98	792	792
35	6	17620	16871	gb u09239	Streptococcus pneumoniae type 19F capsular polysaccharide biosynthesis operon, (Cps19fABCDEFGHIJKLANO) genes, complete cds, and aliA gene, partial cds	83	750	750
•		+	+	+		_		

S. pneumoniae - Coding regions containing known sequences

++			+-	111111111111111111111111111111111111111				
Contig	J ORF	Start (nt)	Stop (nt)	match	match gene name	percent	HSP nt	ORF nt
35	20	19061	17604	emb X85787 SPCP	S.pneumoniae dexB, cps14A, cps14B, cps14C, cps14D, cps14E, cps14F, cps14G, cps14H, cps14I, cps14J, cps14L, tasA genes	76 10euc	1458	l length
36	119	18960	18352	gb U40786		66	609	609
36	20	19934	18966	de de de	rsor (psa	66	696	696
37	-	2743	179	emb 267739 SPPA	S.pneumoniae parC, parE and transposase genes and unknown orf	- +		- •
37	- 5	2985	2824	emb 267739 SPPA	genes and unknown		1 5057	2565
37	3	5034	3070	emb 267739 SPPA	parc, parE and transposase genes and unknown	1001	162	162
37	4	5134	5790	emb 267739 SPPA	parc, parE and transposase genes and introduce	66	1965	1965
37	2	6171	5833	emb 267739 SPPA	parc, parE and transnosase genes and university	66	657	657
38	119	12969	13268	gb M28679	Dromoter region DNA	96	339	339
39	7	1256	2137	gb[U41735]	methionine sulfoxide reductase (maxx)	100	64	300
	- + -	_ + -		-	inase homolog (thrB) genes, complete cds		882	882
٧٤	~	2405	3370	gb U41735	Streptococcus pneumoniae peptide methionine sulfoxide reductase (msrA) and homoserine kinase homolog (thrB) genes, complete cds	66	996	996
40	6	5253	7208	gb M29686	S.pneumoniae mismatch repair (hexB) gene, complete cds		+	1 4
41		3	1037	emb 217307 SPRE	S.pneumoniae recA gene encoding RecA		1 2000	9267
41	7	1328	2713	emb Z34303 SPCI	Streptococcus pneumeniae cin operon encoding the cinA, recA, dinE, lytA genes, and downstream semisores	99	1386	1386
41	- 3	3083	4045	dp M13812	de la contraction de la contra	-	-	
41	4 4	3272	3096		strategies (Tych) gene,	1 66	963	963
41	- 2	3603	3860	- •	autolysin (lytA) gene,	100	177	177
41		4755	5153	-	J.purcumonide autolysin (lyth) gene, complete cds	100	258	258
41	, , ,		7010	_ † .	Streptococcus pneumoniae ORF, complete cds	86	408	408
; ;		1 0/76	5716		Streptococcus pneumoniae ORF, complete cds	98	447	447
41	80	6112	6918	gb t36660 s	Streptococcus pneumoniae ORF, complete cds	98	431	807
41	- †	6916	7119	ab L36660 s	Streptococcus pneumoniae ORF, complete cds	100	204	1 700
41	100	7082	7660	dp r36660	Streptococcus pneumoniae ORF, complete cds			****
41	111	7680	1979	ap r36660 s	Streptococcus pneumoniae ORF, complete cds		766	579
41	112	9169	8717	emb 277727 SPIS		98	81	300
	.++	-+	+	+		97	353	453

S. pneumoniae - Coding regions containing known sequences

Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	percent ident	HSP nt	ORF nt
41	113	9533	9132	emb[277725 SPIS	S. pneumoniae DNA for insertion sequence IS1381 (966 bp)	96	160	402
41	14	6996	9475	emb 282001 SP28	S. pneumoniae pcpA gene and open reading frames	100	189	195
44	- 5	7190	7555	emb 282001 SP28	S. pneumoniae pcpA gene and open reading frames	66	366	366
44	9	8059	7607	emb 277726 SPIS	S. pneumoniae DNA for insertion sequence IS1318 (1372 bp)		453	453
44	7	8423	8022	emb 277725 SPIS	S.pneumoniae DNA for insertion sequence IS1381 (966 bp)	96	160	402
44	8	8559	8365	emb 282001 SP28	S. pneumoniae pcpA gene and open reading frames	100	189	195
48	6	6480	4687	gb L39074	Streptococcus pneumoniae pyruvate oxidase (spxB) gene, complete cds	66	1794	1794
49	2	231	2603	gb L20561	Streptococcus pneumoniae Exp7 gene, partial cds	100	216	2373
53	9	2407	2156	gb 004047	Streptococcus pneumoniae SSZ dextran glucosidase gene and insertion sequence IS1202 transposase gene, complete cds	97	242	252
23	7	2566	2405	emb 283335 SP28	S.pneumoniae dexB, cap1[A,B,C,D,E,F,G,H,I,J,K] genes, dTDP-rhamnose biosynthesis genes and aliA gene	100	94	162
53	œ	2831	2475	emb 283335 SP28	S.pneumoniae dexB; cap1[A,B,C,D,E,F,G,H,I,J,K] genes, dTDP-rhamnose biosynthesis genes and aliA gene	66	338	357
54	13	12409	11105	emb 283335 SPZ8	S.pneumoniae dexB, cap1{A,B,C,D,E,F,G,H,I,J,K] genes, dTDP-rhamnose biosynthesis genes and aliA gene	67	591	1305
55	22	20488	19949	emb 284379 HS28	S.pneumoniae dfr gene (isolate 92)	66	540	540
61	Ξ	111864	0066	emb 216082 PNAL	Streptococcus pneumoniae aliB gene	86	1965	1965
63	-	e -	239	gb M18729	S.pneumoniae mismatch repair protein (hexA) gene, complete cds	100	237	237
63	- 5	233	2611	gb M18729	S.pneumoniae mismatch repair protein (hexA) gene, complete cds	66	2330	2379
63	~	1 2557	2823	gb M18729	S.pneumoniae mismatch repair protein (hexA) gene, complete cds	66	266	267
63	4	2958	4664	gb M18729	S.pneumoniae mismatch repair protein (hexA) gene, complete cds	95	69	1707
67	9	3770	3399	gb L20670	Streptococcus pneumoniae hyaluronidase gene, complete cds	96	372	372
1 67	7	7161	4171	gb L20670	Streptococcus pneumoniae hyaluronidase gene, complete cds	66	2938	2991
1 70	1	1	702	gb M14340	S.pneumoniae DpnI gene region encoding dpnC and dpnD, complete cds	100	693	702
1 70	2	879	1160	gb M14340	S.pneumoniae DpnI gene region encoding dpnC and dpnD, complete cds	100	483	483
1 70	- 1	2490	1210	gb M14339	S.pneumoniae DpnII gene region encoding dpnM, dpnA, dpnB, complete cds	98	462	1281
1 70		4230	4424	gb J04234	S.pneumoniae exodeoxyribonuclease (exoA) gene, complete cds	1 66	. 147	195
1 70	8	5197	4316	gb J04234	S.pneumoniae exodeoxyribonuclease (exoA) gene, complete cds	66	881	882
					· +	+	-+	+

S. pneumoniae - Coding regions containing known sequences

Contig	J ORF	Start (nt)	Stop (nt)	match	match gene name	percent	HSP nt length	ORF nt
1 70	113	8108	9874	gb L20562	Streptococcus pneumoniae Exp8 gene, partial cds	93	234	1767
17	22	27964	28341	emb x63602 SPBO	S.pneumoniae nunsA-Box	93	233	378
72	2	4607	3552	emb 226850 SPAT	S.pneumoniae (M222) genes for ATPase a subunit, ATPase b subunit and ATPase c subunit	97	102	1056
73	-	471	133	emb(x63602 SPBO	S.pneumoniae mmsA-Box	91	193	339
73		3658	7.6	gb J04479	S.pneumoniae DNA polymerase I (polA) gene, complete cds	66	2682	2682
73	8	4864	5379	gb M36180	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds	86	318	516
ττ	n	2622	1999	emb 283335 SP28	S.pneumoniae dexB, cap1(A,B,C,D,E,F,G,H,I,J,K) genes, dTDP-xhamnose biosynthesis genes and aliA gene	95	624	624
77	4	3341	2523	emb 283335 SPZ8	S.pneumoniae dexB, cap1(A,B,C,D,E,F,G,H,I,J,K) genes, dTDP-rhamnose biosynthesis genes and aliA gene	91	819	819
78		343	3	emb x77249 sPR6	S.pneumoniae (R6) ciaR/ciaH genes	1 66	339	339
78	2 -	1095	325	emb x77249 SPR6	S.pneumoniae (R6) ciaR/ciaH genes	1 66	771	771
82	110	111436	10816	gb U90721	Streptococcus pneumoniae signal peptidase I (spi) gene, complete cds	97	621	621
82	=	12402	111434	95 093576	Streptococcus pneumoniae ribonuclease HII (rnhB) gene, complete cds	- 86	953	1 696
82	112	12381	12704	gb U93576	Streptococcus pneumoniae ribonuclease HII (rnhB) gene, complete cds	100	51	324
83	8	3212	3550	emb 277727 SPIS	S.pneumoniae DNA for insertion sequence IS1318 (823 bp)	97	290	339
83	10	4662	6851	gb M36180	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds	66	2190	2190
83	=	6849	8213	gb M36180	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds	66	1365	1365
83	112	8236	0606	gb M36180	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds	66	855	855
83	113	9283	13017	gb L15190	Streptococcus pneumoniae SAICAR synthetase (purC) gene, complete cds	100	107	3735
83	23	22147	23313	gb L36923	Streptococcus pneumoniae beta-N-acetylhexosaminidase (strH) gene, complete cds	86	218	1167
83	24	23268	23450	gb[L36923]	Streptococcus pneumoniae beta-N-acetylhexosaminidase (strH) gene, complete cds	86	172	183
83	25	27527	23505	gb L36923	Streptococcus pneumoniae beta-N-acetylhexosaminidase (strH) gene, complete cds	66	3826	4023
i				+	; • • • • • • • • • • • • • • • • • • •		- +	- +

S. pneumoniae - Coding regions containing known sequences

a l	ID	(nt)	(ut)	match acession	march gene name	percent	HSP nt length	ORF nt
833	56	28472	17772	gb L36923	Streptococcus pneumoniae beta-N-acetylhexosaminidase (strH) gene, complete cds	66	416	702
84		4554	6173	emb 283335 SP28	S.pneumoniae dexB, cap1[A,B,C,D,E,F,G,H,I,J,K] genes, dTDP-rhamnose biosynthesis genes and aliA gene	86	169	1620
87	9	5951	5316	emb 277725 SPIS	S.pneumoniae DNA for insertion sequence IS1381 (966 bp)	96	439	636
888		2957	3511	gb M36180	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds	94	555	555
888	9	3466	4269	gb M36180	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds	94	804	804
89	13	9878	10093	gb M36180	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds	97	211	216
88	14	10062	10412	emb 283335 SP28	S.pneumoniae dexB, cap1(A,B,C,D,E,F,G,H,I,J,K) genes, dTDP-rhamnose biosynthesis genes and allA gene	97	335	351
93	100	5303	4941	emb x63602 SPBO	S. pneumoniae mmsA-Box	89	237	363
97	4	1708	1520	gb U41735	Streptococcus pneumoniae peptide methionine sulfoxide reductase (msrA) and homoserine kinase homolog (thrB) genes, complete cds	91	140	189
66		88	700	emb 283335 SPZ8	S.pneumoniae dexB, cap1[A,B,C,D,E,F,G,H,I,J,K] genes, dTDP-rhamnose biosynthesis genes and aliA gene	93	592	612
66	2	1773	1775	emb x17337 SPAM	Streptococcus pneumoniae ami locus conferring aminopterin resistance	1 66	1 866	1 666
66	- 3	2794	1712	emb x17337 SPAM	Streptococcus pneumoniae ami locus conferring aminopterin resistance	1 66	1083	1083
66	4	3732	2788	emb x17337 SPAM	Streptococcus pneumoniae ami locus conferring aminopterin resistance	100	945	945
66	- 5	5249	3714	emb x17337 SPAM	Streptococcus pneumoniae ami locus conferring aminopterin resistance	100	1536	1536
96	9	7262	1 5277	emb x17337 SPAM	Streptococcus pneumoniae ami locus conferring aminopterin resistance	1 66	1986	1986
101		216	1538	emb X54225 SPEN	S.pneumoniae epuA and endA genes for 7 kDa protein and membrane endonuclease	- 66	146	1323
101	7	1492	1719	emb X54225 SPEN	S.pneumoniae epuA a:.J endA genes for 7 kDa protein and membrane endonuclease	66	228	228
101	<u></u>	1694	1855	emb x54225 SPEN	S.pneumoniae epuA and endA genes for 7 kDa protein and membrane endonuclease	100	162	162
101	4	1701	2582	emb X54225 SPEN	S.pneumoniae epuA and endA genes for 7 kDa protein and membrane endonuclease	100	882	882
103	7	5556	5041	emb 295914 SP29	Streptococcus pneumoniae sodA gene	100	396	516
104	2	1347	1556	emb 277727 SPIS	S.pneumoniae DNA for insertion sequence IS1318 (823 bp)	83	206	210

S. pneumoniae - Coding regions containing known sequences

1	percent HSP nt ORF nt ident length	98 353 354	98 84 711	98 72 906	99 1692 2076	2B 91 107 615	95 342 351	99 199 387	96 61 61 528	96 148 168	97 353 408	100 371 1737	SAICAR synthetase 95 429 429	99 1257 1257	99 1116 1116	synthetase 95 481 501	10n 97 372 372	99 2402 2406	99 237 555	SAICAR synthetase 98 429 429	lete cds 99 202 573	lete cds 99 1842 1842	<u> </u>
	match gene name	S.pneumoniae parC, parE and transposase genes and unknown orf	S.pneumoniae parC, parE and transposase genes and unknown orf	S.pneumoniae penA gene	S.pneumoniae penA gene	Streptococcus pneumoniae penA gene for penicillin binding protein 2B lacking N-term. (penicillin resistant strain)	S.pneumoniae parC, parE and transposase genes and unknown orf	S.pneumoniae parC, parE and transposase genes and unknown orf	S. pneumoniae DNA for insertion sequence IS1381 (966 bp)	S. pneumoniae DNA for insertion sequence IS1318 (1372 bp)	S. pneumoniae DNA for insertion sequence IS1318 (823 bp)	S.pneumoniae mismatch repair protein (hexA) gene, complete cds	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR (purC) genes, complete cds	S. pneumoniae dacA gene and ORF	S. pneumoniae dack gene and ORF	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds	Streptococcus pneumoniae SSZ dextran glucosidase gene and insertion sequence IS1202 transposase gene, complete cds	S.pneumoniae nanA gene	S.pneumoniae nanA gene	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR (purC) genes, complete cds	Streptococcus pneumoniae heat shock protein 70 (dnaK) gene, complete and DnaJ (dnaJ) gene, partial cds	Streptococcus pneumoniae heat shock protein 70 (dnaK) gene, complete and DnaJ (dnaJ) gene, partial cds	
	match acession	emb 267739 SPPA	emb 267739 SPPA	emb x16022 SPPE	emb x16022 SPPE	emb X13136 SPPE	emb 267739 SPPA	emb 267739 SPPA	emb 277725 spis	emb 277726 SPIS	emb 277727 SPIS	gb M18729	gb M36180	emb x99400 spDA	emb x99400 SPDA	gb M36180	gb U04047	emb x72967 SPNA	emb x72967 SPNA	gb M36180	gb U72720	gb U72720	
1 1 1 1	Stop (nt)	5028	5379	1880	4988	5595	8718	10922	2241	2855	3269	3584	e	8532	10985	2030	10932	3302	3831	3899	1941	4253	
1 1 1 1	Start (nt)	5381	6809	2785	2913	4981	8906	11308	2768	2688	2862	5320	431	9788	9870	2530	11303	897	3277	4327	1369	2412	1 1 1 1
++-	ORF	2	9	4	2	9	6	112	3	4	2	9		01	=	e 	111	-	7	e 	2	m ——	
	Contig ID	105	105	107	107	107	108	108	109	109	109	109	113	113	113	114	115	117	117	117	121	121	

S. pneumoniae - Coding regions containing known sequences

Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	percent ident	HSP nt	ORF nt
125		1811	189	gb M36180	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds	92	66	1623
128	115	12496	11204	emb 283335 SPZ8	S.pneumoniae dexB, capl[A,B,C,D,E,F,G,H,I,J,K] genes, dTDP-rhamnose biosynthesis genes and aliA gene	91	705	1293
134		1	492	emb Y10818 SPY1	S.pneumoniae spsA gene	66	203	492
134	2	556	2652	gb AF019904	Streptococcus pneumoniae choline binding protein A (cbpA) gene, partial cds	986	685	2097
134	3	1160	837	emb Y10818 SPY1	S.pneumoniae spsA gene	86	324	324
134	4	3952	2882	gb AF019904	Streptococcus pneumoniae choline binding protein A (cbpA) gene, partial cds	86	215	1071
134	80	7992	9848	gb U12567	Streptococcus pneumoniae P13 glycerol-3-phosphate dehydrogenase (glpD) gene, partial cds, and glycerol uptake facilitator (glpF) and ORF3 genes, complete cds	66	285	1857
134	6	9846	10622	gb U12567 	Streptococcus pneumoniae Pl3 glycerol-3-phosphate dehydrogenase (glpD) gene, partial cds, and glycerol uptake facilitator (glpF) and ORF3 genes, complete cds	66	570	111
134	10	10805	11122	gb U12567	Streptococcus pneumoniae Pl3 glycerol-3-phosphate dehydrogenase (glpD) gene, partial cds, and glycerol uptake facilitator (glpF) and ORF3 genes, complete cds	100	318	318
137	<u> </u>	7970	8443	gb u09239	Streptococcus pneumoniae type 19F capsular polysaccharide biosynthesis operon, (cps19fABCDEFGHIJKLMNO) genes, complete cds, and aliA gene, partial cds	06	420	474
137	14	8590	8775	emb z83335 sPz8	S.pneumoniae dexB, capl(A,B,C,D,E,F,G,H,I,J,K) genes, dTDP-rhamnose biosynthesis genes and aliA gene	94	174	186
137	115	8773	8967	emb 283335 SPZ8	S.pneumoniae dexB, capl[A,B,C,D,E,F,G,H,I,J,K] genes, dTDP-rhamnose biosynthesis genes and aliA gene	86	195	195
137	116	9223	9687	emb 277726 SPIS	S.pneumoniae DNA for insertion sequence IS1318 (1372 bp)	96	446	465
137	117	9641	10051	emb 277727 SPIS	S.pneumoniae DNA for insertion sequence IS1318 (823 bp)	96	293	411
139	110	12998	12702	emb x63602 SPBO	S.pneumoniae mmsA-Box	1 06	234	297
141	8	7805	8938	emb Z49988 SPMM	Streptococcus pneumoniae mmsA gene	1 66	338	1134
141	6	8936	10972	emb Z49988 SPMM	Streptococcus pneumoniae mmsA gene	1 66	2037	2037
141	10	11472	12467	emb 249988 SPMM	Streptococcus pneumoniae musA gene	100	76	966
142	2	257	814	gb M80215	Streptococcus pneumoniae uvs402 protein gene, complete cds	86	174	558
142	- 1 3	787	957	gb M80215	Streptococcus pneumoniae uvs402 protein gene, complete cds	100	142	171
142	4	980	3022	gb M80215	Streptococcus pneumoniae uvs402 protein gene, complete cds	95	1997	2043

S. pneumoniae - Coding regions containing known sequences

Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	percent	HSP nt	ORF nt
142	2	3020	3595	gb M80215	Streptococcus pneumoniae uvs402 protein gene, complete cds	100	153	576
145	-		219	emb 235135 SPAL	S.pneumoniae allA gene for amiA-like gene A		185	219
145	- 5	171	1994	dp 120556	Streptococcus pneumoniae plpA gene, partial cds	66	1811	1824
145	3	2287	7599	emb 247210 SPDE	S.pneumoniae dexB, caplA, caplB and caplC genes and orfs	66	1052	5313
145		9934	7766	gb M90527	Streptococcus pneumoniae penicillin-binding protein (ponA) gene, complete cds	66	2169	2169
145	· ·	10488	9922	gb M90527	Streptococcus pneumoniae penicillin-binding protein (ponA) gene, complete cds	66	512	567
146		159	4	emb 282002 SP28	S.pneumoniae pcpB and pcpC genes	86	156	156
146	2	344	06	emb 282002 SP28	S. pneumoniae pcpB and pcpC genes	86	255	255
1 146	116	11795	10794	emb 282002 SP28	S.pneumoniae pcpB and pcpC genes	85	276	1002
147		10678	10202	emb 221702 SPUN	S.pneumoniae ung gene and mutX genes encoding uracil-DNA glycosylase and 8- oxodGTP nucleoside triphosphatase	86	477	477
147	112	11338	10676	emb Z21702 SPUN	S.pneumoniae ung gene and mutX genes encoding uracil-DNA glycosylase and 8- oxodGTP nucleoside triphosphatase	66	663	663
148	112	6006	8815	gb U41735	Streptococcus pneumoniae peptide methionine sulfoxide reductase (msrA) and homoserine kinase homolog (thrB) genes, complete cds	06	180	195
1 156	4	1154	1402	emb x63602 SPBO	S.pneumoniae mmsA-Box	94	185	249
159	13	9048	8521	gb M36180	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds	98	526	528
160			147	emb 226851 SPAT	S.pneumoniae (R6) genes for ATPase a subunit, ATPase b subunit and ATPase c subunit	100	142	147
160	7	179	868	emb 226851 SPAT	S.pneumoniae (R6) genes for ATPase a subunit, ATPase b subunit and ATPase c	66	720	720
160	e -	906	1406	emb 226850 SPAT	S.pneumoniae (M222) genes for ATPase a subunit, ATPase b subunit and ATPase c subunit	95	501	501
160	4	1373	1942	emb 226850 SPAT	S.pneumoniae (M222) genes for ATPase a subunit, ATPase b subunit and ATPase c subunit	87	306	570
161		-	984	emb x77249 SPR6	S.pneumoniae (R6) ciaR/ciaH genes	96	984	984
161	7	6910	7497	emb x83917 SPGY	S.pneumoniae orflyyrB and gyrB gene encoding DNA gyrase B subunit	1 66	437	588
161	8 +	7443	9386	emb X83917 SPGY	S.pneumoniae orflgyrB and gyrB gene encoding DNA gyrase B subunit	98	1912	1944
163	1	2	2155	gb L20559	Streptococcus pneumoniae Exp5 gene, partial cds	98	327	2154
						-+	+	4 11 11 11 11 11

S. pneumoniae - Coding regions containing known sequences

Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	percent	HSP nt	ORF nt
165		32	1618	gb J01796	S.pneumoniae malX and malM genes encoding membrane protein and amylomaltase, complete cds, and malP gene encoding phosphorylase	66	1587	1587
165	2	1608	3902	gb J01796	S.pneumoniae malX and malM genes encoding membrane protein and amylomaltase, complete cds, and malP gene encoding phosphorylase	100	280	2295
166	-	378	4	emb Y11463 SPDN	Jenes and	100	375	375
166	2	1507	320	emb Y11463 SPDN	Streptococcus pneumoniae dnaG, rpoD, cpoA genes and ORF3 and ORF5	66	1188	1188
166		3240	1432	emb Y11463 SPDN	Streptococcus pneumoniae dnaG, rpoD, cpoA genes and ORF3 and ORF5	1 66	563	1809
167	-	1077	328	emb 271552 SPAD	Streptococcus pneumoniae adcCBA operon	94	155	750 1
167	2	1844	666	emb 271552 SPAD	Streptococcus pneumoniae adcCBA operon	98	405	846
167	3	2714	1842	emb 271552 SPAD	Streptococcus pneumoniae adcCBA operon	97	604	873
167	4	3399	2641	emb 271552 SPAD	Streptococcus pneumoniae adcCBA operon	1 66	703	759
168		-	2259	gb L20558	Streptococcus pneumoniae Exp4 gene, partial cds	66	282	2259
170	110	7338	7685	emb 277726 SPIS	S. pneumoniae DNA for insertion sequence IS1318 (1372 bp)	95	315	348
172	9	2462	4981	gb U47625	Streptococcus pneumoniae formate acetyltransferase (exp72) gene, partial cds	97	365	2520
175		373	20	gb M36180	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds	68	353	354
175	4	1843	3621	emb 247210 SPDE	S.pneumoniae dexB, cap3A, cap3B and cap3C genes and orfs	9.5	- σα	1 9771
176	2	3984	2980	emb 267739 SPPA	S.pneumoniae parC, parE and transposase genes and unknown orf	1001	573	1001
178	7	3	425	emb 267739 SPPA	S pneumoniae parc, parE and transposase genes and unknown orf	95	423	423
179		426	70	emb 283335 SP28	S.pneumoniae dexB, cap1[A,B,C,D,E,F,G,H,I,J,K] genes, dTDP-rhamnose biosynthesis genes and aliA gene	66	338	357
180	- F	3084	1855	emb x95718 SPGY	S.pneumoniae gyrA gene		381	1030
186	-	714	4	emb 279691 SOOR	S.pneumoniae yorf(A,B,C,D,E), ftsL, pbpX and regR genes		59	1117
186	2	2254	809	emb[279691 SOOR	S.pneumoniae yorf[A,B,C,D,E], ftsL, pbpX and regR genes	98	315	1647
186	3	707	880	emb 279691 SOOR	S.pneumoniae yorf[A, B,C,D,E], ftsL, pbpX and regR genes		174	174
189		2	259	gb U72720	Streptococcus pneumoniae heat shock protein 70 (dnaK) gene, complete cds and DnaJ (dnaJ) gene, partial cds	66	258	258
189	7	009	385	95 072720	Streptococcus pneumoniae heat shock protein 70 (dnaK) gene, complete cds and DnaJ (dnaJ) gene, partial cds	86	204	216
•		•		+		-+	- +	

S. pneumoniae - Coding regions containing known sequences

Contig	; -	Start	Stop		match gene name			
QI -	<u> </u>	(nt)	(nt)	acession		percent ident	HSP nt length	ORF nt
189	m -	1018	851	gb U72720	Streptococcus pneumoniae heat shock protein 70 (dnaK) gene, complete cds and DnaJ (dnaJ) gene, partial cds	66	168	168
189	4	1012	2154	gb U72720	Streptococcus pneumoniae heat shock protein 70 (dnaK) gene, complete cds and DnaJ (dnaJ) gene, partial cds	66	1062	1143
191	6	7829	7524	emb x63602 SPBO	S.pneumoniae mmsA-Box	95	23.4	4
194			729	gb M36180	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purc) genes, complete cds	91	728	729
199	2	1117	881	emb 283335 SP28	S.pneumoniae dexB, cap1[A,B,C,D,E,F,G,H,I,J,K] genes, MTDP-rhamnose biosynthesis genes and aliA gene	96	211	237
199	4	1499	1762	emb[z83335 spz8	S.pneumoniae dexB, cap1[A,B,C,D,E,F,G,H,I,J,K] genes, dTDP-rhamnose biosynthesis genes and aliA gene	89	248	264
199	5	1781	2284	emb 283335 SP28	S.pneumoniae dexB, cap1[A,B,C,D,E,F,G,H,I,J,K] genes, dTDP-rhamnose biosynthesis genes and aliA gene	98	504	504
203	1	1977	337	gb L20563	Streptococcus pneumoniae Exp9 gene, partial cds	66	342	1641
204	1-1-1-1	1145	6	gb L36131	Streptococcus pneumoniae expl0 gene, complete cds, recA gene, 5' end	1 66	1143	1143
208		59	2296	gb U89711	Streptococcus pneumoniae pneumococcal surface protein A PspA (pspA) gene, complete cds	06	471	2238
213	<u> </u>	2455	2123	emb 283335 SP28	S.pneumoniae dexB, capl[A,B,C,D,E,F,G,H,I,J,K] genes, dTDP-rhamnose biosynthesis genes and allA gene	96	332	333
216		368	12	emb 283335 SP28	S.pneumoniae dexB, capl(A,B,C,D,E,F,G,H,I,J,K) genes, dTDP-rhamnose biosynthesis genes and allA gene	66	338	357
216	3	2650	2327	gb[M28678	S.pneumoniae promoter sequence DNA		1 98	1 100
222		417	4	emb 283335 SP28	S.pneumoniae dexB, cap1(A,B,C,D,E,F,G,H,I,J,K) genes, dTDP-rhamnose biosynthesis genes and aliA gene	94	414	414
227	3 -	5266	4238	emb AJ000336 SP	Streptococcus pneumoniae 1dh gene		1029	1000
239			804	gb M31296	S.pneumoniae recP gene, complete cds	9.5	- Var	1 1 0 0
247	m	1625	1807	gb M36180	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds	94	178	183
249	m	921	1364	emb 283335 SP28	S.pneumoniae dexB, cap1[A,B,C,D,E,F,G,H,I,J,K] genes, dTDP-rhamnose biosynthesis genes and aliA gene	94	443	444
253		362	m	gb M36180	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds	66	360	360
253	ω ——	1238	2050	emb z83335 SP28	S.pneumoniae dexB, cap1[A,B,C,D,E,F,G,H,I,J,K] genes, dTDP-rhamnose biosynthesis genes and aliA gene	95	420	813
•		+		+		_	-	-

S. pneumoniae - Coding regions containing known sequences

ORF nt	504	- + -	96/	1044	525	216	714	987	1341	576	786	405	- + -	198	459	477	249	276
 	-	-	-	-	-								-	-	-	-	_ _	_
HSP nt	504	531		7/0	435	339	84	755	1341	576	748	186		194	450	205	170	264
percent	97				76	96	95	97	98	66	66	100	- + -	88	96	87		85
match gene name	8 S.pneumoniae dexb, capl(A,B,C,D,E,F,G,H,I,J,K) genes, dTDP-rhamnose biosynthesis genes and allA gene	8 S.pneumoniae pcpB and pcpC genes	8 S.pneumoniae pcpB and pcpC genes	S.pneumoniae parC, par	Streptococcus pneumoniae ami locus conferring aminostoria	pneumoniae transposase, (comA and comB) and	1 0 6 5	Streptococcus pneumoniae dihydropteroate synthase (sulA), dihydrofolate synthetase (sulB), guanosine triphosphate cyclohydrolase (sulC), aldolase-pyrophosphokinase (sulD) genes, complete cds	Streptococcus pneumoniae dihydropteroate synthase (sulA), dihydrofolate synthetase (sulB), guanosine triphosphate cyclohydrolase (sulC), aldolase pyrophosphokinase (sulD) genes, complete cds	Streptococcus pneumoniae dihydropteroate synthase (sulA), dihydrofolate synthetase (sulB), guanosine triphosphate cyclohydrolase (sulC), aldolase pyrophosphokinase (sulD) genes, complete cds	Streptococcus pneumoniae dihydropteroate synthase (sulh), dihydrofolate synthetase (sulh), guanosine triphosphate cyclohydrolase (sulC), aldolase-pyrophosphokinase (sulD) genes, complete cds	Streptococcus pneumoniae dihydropteroate synthase (sulh), dihydrofolate synthetase (sulb), guanosine triphosphate cyclohydrolase (sulC), aldolase-pyrophosphokinase (sulD) genes, complete cds	S.pneumoniae musA-Box	S.pneumoniae mismatch repair (hexB) gene, complete cds		F, G, H, I, J,	S.pneumoniae dexB, cap1[A,B,C,D,E,F,G,H,I,J,K] genes, dTDP-rhamnose biosynthesis genes and aliA gene	Streptococcus pneumoniae transposase, (comA and comB) and SAICAR synthetase (purC) genes, complete cds
match	emb z83335 spz8	emb 282002 SP28	emb 282002 SP28	emb 267739 SPPA	emb X17337 SPAM	gb M36180	gb U16156	95 016156	dp U16156	gb U16156	 gb U16156 	gb U16156	emb x63602 SPBO	gb M29686	gb U04047	emb 283335 SP28	emb 283335 SP28	gb M36180
Stop (nt)	2572	800	1841	1969	077	907	1208	77.72	3601	4136	4949	5140	1990	104	524	525	559	1099
Start (nt)	2069	~	798	2493	985	1245	495	1291	2261	3561	4164	5544	1793	562	275	1001	807	1374
ID	9	-	- 5	3	2	- 3	2	e	4	5	9	7	4	~		2	e	4
Contig	253	255	255	255	257	257	267	267	267	267	267	267	268	27.1	291	291	291	291

sednences
known
containing
regions
- Coding
pneumoniae -
s,

Contig ORF	ORF	Start (nt)	Stop	match	match gene name	percent	HSP nt	ORF nt
1 293	-		1 1625		i i	ident	length	length
	-		10/3	emb 267740 SPGY	S.pneumoniae gyrB gene and unknown orf	1 86 1	553	1671
296	1	1434	151	emb 247210 SPDE	S.pneumoniae dexB, caplA, caplB and caplC genes and orfs		000	+
317		157	510	emb 267739 SPPA	S.pneumoniae parC, parE and transposase ge		00#	1284
325	2	1237	485	emb 283335 SP28	S.pneumoniae dexB.	68	353	354
-					biosynthesis genes and aliA gene	91	299	753
326		-	462	emb 282001 SPZ8	S.pneumoniae pcpA gene and open reading frames		+	- + -
327		603	64	emb 283335 SP28	S.pneumoniae dexB, capl[A,B,C,D,E,F,G,H,I,J,K] genes, qTDP-rhamnose biosynthesis genes and aliA gene	94	89	540
334	-	153	545	gb U41735	Streptococcus pneumoniae peptide methionine sulfoxide reductase (msrA) and homoserine kinase homolog (thrB) genes, complete cds	87	91	393
336		308	93	emb 226850 SPAT	S.pneumoniae (M222) genes for ATPase a subunit, ATPase b subunit and ATPase	97	102	216
360	-	1	519	emb 267739 SPPA	S.pneumoniae parC, parE and transposase genes and unknown orf	-+	- + -	- +
360	4	1598	1960	emb 283335 SP28	S.pneumoniae dexB, cap1[A,B,C,D,E,F,G,H,I,J,K] genes, dTDP-rhamnose biosynthesis genes and aliA gene	94	353	519 363
362		673	7	emb 283335 SP28	S.pneumoniae dexB, cap1(A,B,C,D,E,F,G,H,I,J,K) genes, dTDP-rhamnose biosynthesis genes and alia gene	95	63	672
362	7	1168	728	gb U04047	Streptococcus pneumoniae SS2 dextran glucosidase gene and insertion sequence IS1202 transposase gene, complete cds	96	441	441
384		347	111	emb x85787 SPCP		94	54	237

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

1 1 1 1								
Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	# sim	% ident	length (nt)
228	- 1 - 1	1760	1942	pir F60663 F606	translation elongation factor Tu - Streptococcus oralis	100	100	183
319		2	205	gi 984927	neomycin phosphotransferase (Cloning vector pBSL99)	100	100	204
260		2	1138	pir F60663 F606	translation elongation factor Tu - Streptococcus oralis	66	86	1137
25	- 5	486	1394	gi 1574495	hypothetical (Haemophilus influenzae)	86	96	606
94		685	1002	gi 310627	phosphoenolpyruvate:sugar phosphotransferase system HPr [Streptococcus mutans]	86	93	318
312	-	190	2	gi 347999	ATP-dependent protease proteolytic subunit (Streptococous salivarius)	86	95	189
329		-	807	gi 924848	inosine monophosphate dehydrogenase [Streptococcus pyogenes]	86	94	807
336	- 5	1 290	589	gi 987050	lac2 gene product (unidentified cloning vector)	86	86	300
181	6	5948	7366	gi 153755	phospho-beta-D-galactosidase (EC 3.2.1.85) Lactococcus lactis cremoris	97	94	1419
312	- 5	1044	361	gi 347998	uracil phosphoribosyltransferase (Streptococcus salivarius)	1 66	888	684
32	8	6575	7486	sp P37214 ERA_S	GTP-BINDING PROTEIN ERA HOMOLOG.	96	91	912
94	e -	951	2741	gi 153615 	phosphoenolpyruvate:sugar phosphotransferase system enzyme I (Streptococcus salivarius)	96	92	1791
127	-	-	168	gi 581299	initiation factor IF-1 [Lactococcus lactis]	96	89	168
128	14	10438	11154	gi 1276873	DeoD (Streptococcus thermophilus)	96	93	117
181	7	1362	1598	gi 46606	lacD polypeptide (AA 1-326) [Staphylococcus aureus]	96	80	237
218	-	-	834	gi 1743856	intrageneric coaggregation-relevant adhesin (Streptococcus gordonii)	96	93	834
319		115	441	gi 208225	heat-shock protein 82/neomcyn phosphotransferase fusion protein (hsp82-neo) [unidentified cloning vector]	96	96	327
54	112	8622	10967	gn1 PID d100972	Pyruvate formate-lyase [Streptococcus mutans]	95	89	2346
181	2	909	1289	gi 149396	lacD [Lactococcus lactis]	95	89	684
46	3	3410	3045	gi 1850606	YlxM [Streptococcus mutans]	94	86	366
89	110	7972	7337	gi 703442	thymidine kinase [Streptococcus gordonii]	94	86	636
148	6 -	6431	7354	gi 995767	UDP-glucose pyrophosphorylase [Streptococcus pyogenes]	94	85	924
160	7	4430	5848	gi 153573	H+ ATPase [Enterococcus faecalis]	94	87	1419
2		4598	3513	gi 153763	plasmin receptor [Streptococcus pyogenes]	63	86	1086
12	8	787	6204	gi 1103865	formyl-tetrahydrofolate synthetase [Streptococcus mutans]	93	84	1674
						-+		4 - 1 - 1 - 1 - 1 - 1

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF	Start (nt)	Stop (nt)	match acession	match gene name	e sim	* ident	length (nt)
65	1	4734	5120	gi 40150	L14 protein (AA 1-122) [Bacillus subtilis]	93	87	387
68	-	53	1297	gi 47341	antitumor protein (Streptococcus pyogenes)	93	87	1245
08	-1	3	299	gn1 PID d101166	ribosomal protein S7 [Bacillus subtilis]	93	84	297
127	E -	695	1093	gi 142462	ribosomal protein S11 [Bacillus subtilis]	93	86	399
160	5	1924	3462	gi 1773264	ATPase, alpha subunit [Streptococcus mutans]	93	85	1539
211	- 5	3757	3047	gi 535273	aminopeptidase C (Streptococcus thermophilus)	93	82	711
262		16	564	gi 149394	lacB [Lactococcus lactis]	93	06	549
366	-	197	6	gi 295259	tryptophan synthase beta subunit (Synechocystis sp.)	93	91	195
25	3	1392	1976	gi 1574496	hypothetical [Haemophilus influenzae]	92	80	585
36	21	20781	119927	gi 310632	hydrophobic membrane protein (Streptococcus gordonii)	92	86	855
181	-	1265	1534	gi 149396	[lacD [Lactococcus lactis]	92	83	270
181		3662	4060	gi 149410	enzyme III [Lactococcus lactis]	92	83	399
32	7	5631	3937	gn1 PID e294090	fibronectin-binding protein-like protein A Streptococcus gordonii}	91	85	1695
46	2	3054	1462	gi 1850607	signal recognition particle Ffh [Streptococcus mutans]	91	84	1593
65	110	4442	4726	pir S17865 S178	ribosomal protein S17 - Bacillus stearothermophilus	91	80	285
77	7	260	1900	gi 287871	groEL gene product [Lactococcus lactis]	91	82	1641
84		2	2056	gi 871784	Clp-like ATP-dependent protease binding subunit [Bos taurus]	91	62	2055
66	8 -	10750	9272	gi 153740	sucrose phosphorylase [Streptococcus mutans]	91	84	1479
66	6 -	11947	11072	gi 153739	membrane protein [Streptococcus mutans]	91	78	876
127	- 5	2065	2469	pir S07223 R5BS	ribosomal protein L17 - Bacillus stearothermophilus	91	78	405
132	9	9539	9390	gi 143065	hubst (Bacillus stearothermophilus)	91	89	150
137	8	4765	6153	gn1 PID d100347	Na+ -ATPase beta subunit (Enterococcus hirae)	91	1 61	1389
151	7	111119	9734	gi 1815634	glutamine synthetase type 1 [Streptococcus agalactiae]	91	82	1386
201	2	1798	278	gi 2208998	dextran glucosidase DexS [Streptococcus suis]	91	61	1521
222	2	673	1839	gi 153741	ATP-binding protein [Streptococcus mutans]	91	85	1167
293	5	4113	4400	gi 1196921	unknown protein [Insertion sequence IS861]	91	71.	288
32	17	6166	6570	pir A36933 A369	diacylglycerol kinase homolog - Streptococcus mutans	- 06	- 12	405
					***************************************	********	-++	+

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF	Start (nt)	Stop (nt)	match acession	match gene name	e sim	% ident	length (nt)
33	- 5	841	527	gi 1196921	unknown protein (Insertion sequence 18861)	9.6	70	315
48	27	120908	19757	gn1 PID e274705	lactate oxidase (Streptococcus iniae)	06	80	1152
55	21	77761	18515	gn1 PID e221213	ClpX protein (Bacillus subtilis)	06	75	1263
56	- 5	717	1 977	gi 1710133	flagellar filament cap (Borrelia burgdorferi)	06	50	261
65	-		909	gi 1165303	L3 (Bacillus subtilis)	06	75	1 909
114		~	988	gi 153562	aspartate beta-semialdehyde dehydrogenase (EC 1.2.1.11) Streptococcus mutans	06	80	987
120	-	1345	827	gi 407880	ORF1 (Streptococcus equisimilis)		75	519 1
159	112	0697.	8298	gi 143012	GMP synthetase [Bacillus subtilis]	06	84	1 609
166	4	4076	3282	gi 1661179	high affinity branched chain amino acid transport protein (Streptococcus mutans)	06	78	795
183	-	28	1395	gi 308858	ATP:pyruvate 2-0-phosphotransferase [Lactococcus lactis]	1 06	196	1368
191	~	2891	1662	gi 149521	tryptophan synthase beta subunit (Lactococcus lactis)	06	78	1230
198	2	1551	436	gi 2323342	(AF014460) CcpA (Streptococcus mutans)	90	1 9/	1116
305	1	37	783	gi 1573551	asparagine synthetase A (asnA) [Haemophilus influenzae]	906	80	747
80	m	2285	3343	gi 149434	putative [Lactococcus lactis]	89	78	1059
46	8	757	7362	pir A45434 A454	ribosomal protein L19 - Bacillus stearothermophilus	89	1 92	216
49	6	8363	10342	[gi 153792	recP peptide (Streptococcus pneumoniae)	89	83	1980
51	14	18410	119447	gi 308857	ATP:D-fructose 6-phosphate 1-phosphotransferase [Lactoccccus lactis]	89	81	1038
57	11	9896	10669	gn1 P1D d100932	H2O-forming NADH Oxidase (Streptococcus mutans)	89	1,77	984
65	2	2418	2786	gi 1165307	S19 (Bacillus subtilis)	89	81	369
65	8	3806	4225	sp P14577 RL16_	50S RIBOSOMAL PROTEIN L16.	89	82	420
65	118	8219	8719	gi 143417	ribosomal protein S5 (Bacillus stearothermophilus)	1 68	76	501
73	6	6337	5315	gi 532204	prs [Listeria monocytogenes]	89	70	1023
76	3	3360	1465	gn1 PID e200671	lepA gene product (Bacillus subtilis)	89	76	1896
66	110	12818	11919	gi 153738	membrane protein (Streptococcus mutans)	89	73	006
120	2	3552	1300	gi 407881		89	79	2253
122	5	4512	2791	gn1 PID e280490	unknown (Streptococcus pneumoniae)	- 68	81	1722
					# # # # # # # # # # # # # # # # # # #	-+	-+	+

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig C	ORF S	Start (nt)	Stop (nt)	match	match gene name	e sin	% ident	length (nt)
176	1 - 6	699	4	gi 47394	5-oxoproly1-peptidase [Streptococcus pyogenes]	68	78	999
177	6 -3	3050	3934	gi 912423	[putative [Lactococcus lactis]	89	71	885
181	8	4033	5751	gi 149411	enzyme III [Lactococcus lactis]	68	80	1719
211	4 3	3149	2793	gi 535273	aminopeptidase C (Streptococcus thermophilus)	68	83	357
361	1 4	431	838	gi 1196922	unknown protein (Insertion sequence 18861)	68	70	408
34 1	17 111	11839	10535	sp P30053 SYH_S	HISTIDYL-TRNA SYNTHETASE (EC 6.1.1.21) (HISTIDINETRNA LIGASE) (HISRS).	88	78	1305
38	3 1	1646	2623	gi 2058544	putative ABC transporter subunit ComYA [Streptococcus gordonii]	88	78	978
54	. 3	3	227	gn1 PID d101320	YqgU (Bacillus subtilis)	88	99	225
57	2 6	611	1468	gn1 PID e134943	putative reductase 1 [Saccharomyces cerevisiae]	88	75	828
65 1	13 5	5497	6909	pir A29102 R5BS	ribosomal protein L5 - Bacillus stearothermophilus	88	75	573
65 2	20 9	9030	9500	gi 2078381	ribosomal protein L15 (Staphylococcus aureus)	88	83	471
78	3	3636	1108	gn1 PID d100781	lysyl-aminopeptidase [Lactococcus lactis]	88	80	2529
106 1	12 12	12965 1	12054	gi 2407215	(AF017421) putative heat shock protein HtpX [Streptococcus gordonii]	88	72	912
107	2 2	219	962	gn1 PID e339862	Dutative acylneuraminate lyase (Clostridium tertium)	88	75	744
111	8 14	14073 1	10420	gi 402363	RNA polymerase beta-subunit (Bacillus subtilis)	88	74	3654
126	9 13	13096 1	12062	gn1 PID e311468	unknown [Bacillus subtilis]	88	74	1035
140 1	17 19	19143 1	18874	gi 1573659	H. influenzae predicted coding region HI0659 (Haemophilus influenzae)	88	61	270
144	1 - 3	394	555	gn1 PID e274705	lactate oxidase (Streptococcus iniae)	88	75	162
148	4 2	2723	3493	gi 1591672	phosphate transport system ATP-binding protein [Methanococcus jannaschii]	88	68	771
160	8	5853	6278	91 1773267	ATPase, epsilon subunit [Streptococcus mutans]	88	65	426
177	4	1770	2885	gi 149426	putative [Lactococcus lactis]	88	72	1116
211	6	4140	3613	gi 535273	aminopeptidase C (Streptococcus thermophilus)	88	74	528
231	4 5	580	957	gi 40186	homologous to E.coli ribosomal protein L27 (Bacillus subtilis)	88	78	378
260	5 - 2	2387	2998	gi 1196922	unknown protein [Insertion sequence IS861]	88	69	612
291	6 2(2017	3375	gn1 P1D d100571	adenylosuccinate synthetase [Bacillus subtilis]	88	75	1359
319	4 6	658	317	91 603578	serine/threonine kinase [Phytophthora capsici]	88	88	342
40	5 4:	4353	4514	gi 153672	lactose repressor (Streptococcus mutans)	87	- 95	163

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	& sim	% ident	length (nt)
49	2	10660	10929	gi 1196921	unknown protein (Insertion sequence IS861)	87	72	270
65	- 1	3140	3808	gi 1165309	S3 [Bacillus subtilis]	87	73	699
65	115	6623	7039	gi 1044978	ribosomal protein S8 (Bacillus subtilis)	87	73	417
75		5411	6625	91 1877422	galactokinase (Streptococcus mutans)	87	78	1215
80	5	703	2805	gn1 PID d101166	elongation factor G [Bacillus subtilis]	87	196	2103
82	7	541	248	gi 1196921	unknown protein (Insertion sequence 18861)	87	69	294
140	23	25033	23897	gn1 PID e254999	phenylalany-tRNA synthetase beta subunit (Bacillus subtilis)	87	74	1137
214	4	10441	8516	91 2281305	glucose inhibited division protein homolog GidA (Lactococcus lactis cremoris)	87	75	1926
220	2	2742	874	gn1 PID e324358	product highly similar to elongation factor EF-G [Bacillus subtilis]	87	73	1869
260	4	2096	2389	gi 1196921	unknown protein (Insertion sequence 18861)	87	72	294
323	-	27	650	gi 897795	[30S ribosomal protein (Pediococcus acidilactici)	87	73	624
357	-	154	570	gi 1044978	ribosomal protein S8 (Bacillus subtilis]	87	73	417
49	111	10927	111445	gi 1196922	unknown protein (Insertion sequence 18861)	98	63	519
59	112	7461	9224	gi 951051	relaxase [Streptococcus pneumoniae]	98	89	1764
65	4	1553	2401	pir A02759 R5BS	ribosomal protein L2 - Bacillus stearothermophilus	98		849
65	23	10957	11610	gi 44074	adenylate kinase [Lactococcus lactis]	98	76	654
82	4	4374	4856	gi 153745	mannitol-specific enzyme III [Streptococcus mutans]	86	72	483
102	4	4270	4986	gn1 PID e264705	OMP decarboxylase [Lactococcus lactis]	98	76	717
106	9	7824	6880	gn1 PID e137598	aspartate transcarbamylase (Lactobacillus leichmannii)	98	89	945
107	1	1	273	gn1 PID e339862	putative acylneuraminate lyase (Clostridium tertium)	98	71	273
111	7	10432	6710	gn1 PID e228283	DNA-dependent RNA polymerase [Streptococcus pyogenes]	98	80	3723
131	6	5704	4892	gi 1661193	polipoprotein diacylglycerol transferase (Streptococcus mutans)	98	71	813
134	1 7 1	6430	7980	gi 2388637	glycerol kinase (Enterococcus faecalis)	98	73	1551
146	111	7473	6583	gi 1591731	melvalonate kinase [Methanococcus jannaschii]	98	72	891
153		595	2010	gi 2160707	dipeptidase [Lactococcus lactis]	98	78	1416
154	-	2	1435	gi 1857246	6-phosphogluconate dehydrogenase [Lactococcus lactis]	86	74	1434
					+	-+	+	+

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	g ORF	F Start	t Stop (nt)	match	match gene name	e sia	% ident	length (nt)
161		5025	6284	gi 47529	Unknown (Streptococcus salivarius)	98	99	1260
184			1483	gi 642667	NADP-dependent glyceraldehyde-1-phosphate dehydrogenase (Streptococcus	86	73	1482
210		1 3659	6571	gi 153661	translational initiation factor IF2 (Enterococcus faecium)	986	76	2913
250	-	- 5	187	91 1573551	asparagine synthetase A (asnA) (Haemophilus influenzae)	86		186
36		2644	3909	gi 2149909	cell division protein [Enterococcus faecalis]	85	73	1266
38	4	2475	3587	gi 2058545	putative ABC transporter subunit ComYB (Streptococcus gordonii)	85	72	1113
38		13577	3915	gi 2058546	ComYC [Streptococcus gordonii]	85	80	339
57	2 -	1 2797	3789	gn1 P1D d101316	YqfJ (Bacillus subtilis)	85	72	
82		4915	6054	gi 153746	mannitol-phosphate dehydrogenase (Streptococcus mutans)	85	89	1140
83	115	14690	15793	gi 143371	phosphoribosyl aminoimidazole synthetase (PUR-M) [Bacillus subtilis]	85	69	1104
87	- 5	1417	2388	gi 1184967	ScrR (Streptococcus mutans)	85	69	972
108	-	2666	3154	gi 153566	ORF (19K protein) [Enterococcus faecalis]	85	67	489
127	- 5	312	692	gi 1044989	ribosomal protein S13 (Bacillus subtilis)	85	72	381
128	3	1534	2409	gi 1685110	tetrahydrofolate dehydrogenase/cyclohydrolase (Streptococcus thermophilus)	85	117	876
137		2962	4767	gn1 PID d100347	Na+ -ATPase alpha subunit (Enterococcus hirae)	85	74	1806
170		2622	709	gn1 P1D d102006	(ABO01488) FUNCTION UNKNOWN, SIMILAR PRODUCT IN E.COLI, H. INFLUENZAE AND NEISSERIA MENINGITIDIS. (Bacillus subtilis)	85	70	1914
187		3760	4386	gi 727436	putative 20-kDa protein [Lactococcus lactis]	85	65	627
233	- 5	728	1873	gi 1163116	ORF-5 [Streptococcus pneumoniae]	85	67	1146
234	- 3	962	1255	gi 2293155	(AF008220) YtiA (Bacillus subtilis)	85	61	294
240	-	309	1931	gi 143597	CTP synthetase [Bacillus subtilis]	85	70	1623
9	-	199	1521	gi 508979	GTP-binding protein (Bacillus subtilis)	84	72	1323
10	4	4375	3443	gn1 PID e339862	[putative acylneuraminate lyase [Clostridium tertium]	84	70	933
14	-	63	2093	gi 520753	DNA topoisomerase I (Bacillus subtilis)	84	69	2031
19	4	1793	2593	gi 2352484	[(AF005098) RNAseH II [Lactococcus lactis]	84	89	801
20	117	117720	19687	gn1 PID d100584	cell division protein [Bacillus subtilis]	84	71	1968
22	128	21723	20884	gi 299163	alanine dehydrogenase (Bacillus subtilis)	84	- 89	840
					+	+	+	+

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

++								
Contig	ID	Start (nt)	Stop (nt)	match	match gene name	s sim	% ident	length
30	110	7730	6792	gn1 P1D d100296	fructokinase (Streptococcus mutans)	84	75	939
33	.6	5650	5300	gi 147194	phnA protein [Escherichia coli]	84	16	1 130
36	122	21551	20772	gi 310631	ATP binding protein (Streptococcus gordonii)		1 2 2	+
48	7	2837	1 2505	gi 882609	6-phospho-beta-glucosidase [Escherichia coli]	78	7,	+
28	- -	41	1516	gi 450849	amylase Streptococcus bovis			+
59	110	6715	7116	gi 951053	ORF10, putative [Streptococcus pneumoniae]	70		14/07
62	-	21	644	gi 806487	ORF21]; putative [Lactococcus lactis]	7 7 7	1 99	1 204
65	117	6777	8207	91 1044980	ribosomal protein L18 (Bacillus subtilis)	4 60	+	1 6004
65	21	1 9507	10397	gi 44073	SecY protein (Lactococcus lactis)	7 00		1 676
106	4	5474	2262	gn1 PID e199387	carbamoyl-phosphate synthase [Lactobacillus plantarum			+
159		147	7	gi 806487	ORF211; putative [Lactococcus lactis]		1 67	+
163	7	4690	5910	gi 2293164	(AF008220) SAM synthase (Bacillus subtilis)	1 84		+
192	7	46	1308	gi 495046	tripeptidase [Lactococcus lactis]	84		1251
348	~	671	9	gi 1787753	(AE000245) £346; 79 pct identical to 336 amino acids of ADH1_ZYMMO SW: P20368 but has 10 additional N-ter residues [Escherichia colii	84	71	999
8	4	1572	3575	gi 143766	(thrSv) (EC 6.1.1.3) [Bacillus subtilis]			7000
6	9	3893	3417	gn1 PID d100576	single strand DNA binding protein (Bacillus subtilis)			* 1 5 7 7
17	115	7426	8457	gi 520738	comA protein {Streptococcus pneumoniae}		- + -	1 / / 4
20	112	13860	14144	gn1 PID d100583	unknown (Bacillus subtilis)	7	- 00	1032
23	*	3358	2606	gi 1788294	(AE000290) o238; This 238 aa orf is 40 pct identical (5 gaps) to 231 residues of an approx. 248 aa protein YEBC_ECOLI SW: P24237 (Escherichia coli)	83	74	753
28	9	3304	3005	gi 1573659	H. influenzae predicted coding region HI0659 [Haemophilus influenzae]	83	57	1 002
35	7	5108	3867	gi 311707	hypothetical nucleotide binding protein (Acholeplasma laidlawii)	83	63	1242
55	119	17932	17528	gi 537085	ORF_f141 [Escherichia coli]	83 1		405
55	20	18539	17919	gi 496558	orfX [Bacillus subtilis]	83		621
65	9	2795	3142	gi 1165308	L22 (Bacillus subtilis)	83	64	348
68	9	6877	6683	gi 1213494	immunoglobulin Al protease [Streptococcus pneumoniae]	83	54	195
				•	/+	-+	+	

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

	+							
Contig	ID	Start (nt)	Stop	match	match gene name	B Sim	% ident	length
87	115	15112	14771	gn1 PID e323522	putative rpo2 protein (Bacillus subtilis)			, (IIC)
96	113	8963	9631	gi 47394	5-oxoproly1-peptidase (Streptococcus pyogenes)			4
98	-		263	gi 1183885		00	13	699
120	7	1 7170	5233	gi{310630	zinc metalloprotease Streptococcus gordonii	6	- 66	197
127	-	2998	4347	gi 1500567	M. jannaschii predicted coding region MJ1665 [Methanococcus jannaschii]	83	1 52	1938
137		<u></u>	440	gi 472918	(v-type Na-ATPase (Enterococcus hirae)		1 27	1 0007
160	9	3466	4356	gi 1773265	ATPase, gamma subunit [Streptococcus mutans]	60		4.28
214	4	2278	2964	gi 663279	transposase (Streptococcus pneumoniae)		7 66	+
226	3	2367	2020	gi 142154	thioredoxin [Synechococcus PCC6301]	2	7,	180
303		۳	1049	gi 40046	phosphoglucose isomerase A (AA 1-449) (Bacillus stearghermonbilie)	70	80	348
303	7	11155	1931	gi 289282	btilisl	1 50	/ 4	1047
9	117	115370	14318	91 633147	ribose-phosphate pyrophosphokinase [Bacillus caldolyticus]	20	10	111
7	-	299	96	gi 143648	ribosomal protein L28 (Bacillus subtilis)	+	******	1 500
6	3	1479	1090	gi 385178	unknown [Bacillus subtilis]	1 6		204
6		4213	3899	gn1 P1D d100576	ribosomal protein S6 [Bacillus subtilis]	20		1 065
12	9	4688	3942	gn1 PID d100571	unknown [Bacillus subtilis]			127
22	[17	13422	14837	gi 520754	putative (Bacillus subtilis)		000	147
22	18	14897	15658	gn1 PID d101929	uridine monophosphate kinase [Symechocystis sp.]	70	60	1416
33	16	11471	10641	gn1 PID d101190	ORF4 (Streptococcus mutans)	.+	70	162
35	6	7400	6255	gi 1881543	UDP-N-acety1glucosamine-2-epimerase {Streptococcus pneumoniae}		09	831
40	100	8003	7533	91/11/3519	riboflavin synthase beta subunit (Actinobacillus pleuropneumoniae)			1140
48	32	23159	23437	gi 1930092	outer membrane protein [Campylobacter jejuni]	80		4/1
52	114	13833	14765	gi 142521	deoxyribodipyrimidine photolyase (Bacillus subtilis)		- 13	+
09	4	4737	1849	gn1 PID d102221	(AB001610) uvrA (Deinococcus radiodurans)	6		+
62	4	2131	1457	gi 2246749	(AF009622) thioredoxin reductase [Listeria monocytogenes]	-+		1 6887
71	11	16586	17518	gn1 PID e322063	ss-1,4-galactosyltransferase (Streptococcus pneumoniae)			+
73	13	9222	7837	gn1 PID d100586	unknown [Bacillus subtilis]	82 +	- 59	1 2051
								9007

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

	Contig Of	ORF Star	Start Stop (nt) (nt)	p match) acession	match gene name	E is	% ident	length (nt)
13 1975 3983 gni ptD e305362 unnamed protein product Streptococcus thermophilus 11 10776 9344 gii 663383 5-enolpyruvy1shikimate-3-phosphate synchase Lactoccoll 12 8325 9372 gii 10035 homologous to E.coll 50K Racillus subtilis 1 1 1312 gni PtD d100579 sery1-RRA synthetase [Facillus subtilis] 1 1 1312 gni PtD d100579 sery1-RRA synthetase [Facillus subtilis] 2 4657 6246 pir 506097 5060 type I site-specific decxyribonuclease (EC 3.1.2.3) 3 4657 6246 pir 506097 5060 type I site-specific decxyribonuclease (EC 3.1.2.3) 4 4657 6246 pir 506097 5060 type I site-specific decxyribonuclease (EC 3.1.2.3) 5 4657 6246 pir 506097 5060 type I site-specific decxyribonuclease (EC 3.1.2.3) 5 4657 6246 pir 506097 5060 type I sterespecific decxyribonuclease (EC 3.1.2.3) 7 4657 6246 pir 506564 8385 ribosomal protein 59 - Bacillus stearchermophilus 7 7484 8413 gii 1100074 tryptocphanyl tRNA synthetase (Clostridium Longisporu 11 10008 13820 gii 1100074 tryptocphanyl tRNA synthetase (Clostridium Longisporu 11 10008 13820 gii 1100074 tryptocphanyl tRNA synthetase (Clostridium Longisporu 12 1367 gii 1100074 tryptocphanyl tRNA synthetase (Clostridium Longisporu 13 1367 gii 1100074 tryptocphanyl tRNA synthetase (Clostridium Longisporu 13 1367 gii 1100074 tryptocphanyl tRNA synthetase (Clostridium Longisporu 13 1367 gii 1100074 tryptocphanyl tRNA synthetase (Clostridium Longisporu 13 1367 gii 1100074 tryptocphanyl tRNA synthetase (Clostridium Longisporu 13 1367 gii 1100075 transport protein (Agrobacterium tumefacters) 13 1367 gii 1100075 transport protein (Agrobacterium tumefacters) 13 1367 gii 1100075 transport protein (Agrobacterium tumefacters) 13 13 13 13 13 13 13 1	-		_		alkaline amylopullulanase (Bacillus sp.)	82	69	3771
11 10776 9394 91 683583 5-enolpyruvylshiklmate-1-phosphate synthase [Lactococcil 28 8225 9752 91 40025 homologous to E.coli 50K (Bacillus subtilis) 1 1 1312 91 PID 41002090 (AB001327) phospho-beta-galactosidase [Lactobacill 1 1 1312 91 PID 41002090 (AB001327) phospho-beta-galactosidase [Lactobacill 1 1 1312 91 PID 4100579 seryl-RNA synthetase [Bacillus subtilis] 2 4657 6246 pir 506097 5060 type 1 site-specific deoxyribonuclease (EC 3.1.21.3) 3 4657 6246 pir 506097 5060 type 1 site-specific deoxyribonuclease (EC 3.1.21.3) 4 5411 7442 91 PID 4101999 (AB001341) NCEB (Escherichia coli) 2 178 576 pir 506084 RABS ribosomal protein S9 - Bacillus stearcthermophilus 3 1340 91 PID 41001999 (AB001341) NCEB (Escherichia coli) 4 8413 91 460278 ribosomal protein S9 - Bacillus subtilis 5 3400 3146 91 PID 4100576 ribosomal protein S9 - Bacillus subtilis 6 1751 91 460259 enolase (Bacillus subtilis) 7 7484 8413 91 460259 enolase (Bacillus subtilis) 8 1751 91 460259 enolase (Bacillus caldolyticus) 9 1751 91 460259 enolase (Bacillus caldolyticus) 1 2 1267 91 460259 enolase (Bacillus caldolyticus) 1 2 1268 91 540250 enolase (Bacillus caldolyticus) 1 2 1269 91 540250 enolase (Bacillus caldolyticus) 1 2 1267 91 44073 Secty protein (Agrobacterium tumefaciens) 1 2 1268 91 540250 enolase (Bacillus caldolyticus) 1 2 1269 91 540250 enolase (Bacillus caldolyticus) 1 2 1269 91 540250 enolase (Bacillus caldolyticus) 1 2 1260 91 540250 enolase (Bacillus caldolyticus) 1 2 1260 91 540250 enolase (Bacillus caldolyticus) 1 2 1260 91 540250 enolase (Bacillus caldolyticus) 2 1260 91 540250 enolase (Bacillus caldolyticus) 3 1261 91021 91 4073 Secty protein (Agrobacterium tumefaciens) 5 1262 8877 91 4073			-	gn1 PID e3053	protein product (Streptococcus	82	52	288
12 8295 9752 911	_			_		82	67	1383
9 10347 8812 gni Pip[di02090 (AB003927) phospho-beta-galactosidase liactobacill 1 1 1332 gni Pip[di00573 seryl-rRNA synthetase Bacillus subtilis 1 1332 gni Pip[di00573 seryl-rRNA synthetase Bacillus subtilis 12 4657 6246 pir S06097 S060 Citrobacter freundid Citrobacter		-		_	to E.coli 50K (Bacillus	82	99	1458
1 1 1 1332 gnl PID d100579 seryl-tRNA synthetase Bacillus subtilis 1 1 1 1332 gnl PID d100579 seryl-tRNA synthetase Bacillus subtilis 1 1 1 1 1 1 1 1 1	-	- 1		gn1 PID d1020		82	74	1536
3 4657 6246 pir S06097 S060 Citrobacter freundii 6 4183 3503 gi 2313836 (AE000584) conserved hypothetical protein [Helicobac 12 5481 7442 gnl PID[d101999] (AE000584) conserved hypothetical protein [Helicobac 2 1788 576 pir S08564 R385 ribosomal protein 59 - Bacillus stearochermophilus 2 1788 576 pir S08564 R385 ribosomal protein 59 - Bacillus stearochermophilus 3 1480 3146 pir S08564 R385 ribosomal protein 59 - Bacillus subtilis 11 10308 11820 gnl PID[d100576 ribosomal protein 518 [Bacillus subtilis] 1 10308 11820 gnl PID[d100583 transcription-repair coupling factor (Bacillus subtilis 2 1267 gil R0559 ribosomal protein [Streptococcus gordonii 3 2453 1440 gnl PID[d100453 putative DNA binding protein [Streptococcus mutans] 3 2453 1440 gnl PID[d100453 Mannosephase [Bacillus caldolyticus] 4 3874 2603 gil S1522 transport protein [Agrobacterium tumefaciens] 5 10306 10821 gil 44073 Secy protein [Lactococcus lactis] 6 5054 6877 gil HD[e199384 RyrR [Lactobacillus plantarum] 7 8373 7822 gnl PID[e199384 SpoilIE protein - Bacillus subtilis 8 13889 11883 pir S08411 S094 spoilIE protein - Bacillus subtilis 8 13589 13618 gil R05111 crt1091 [Streptococcus thermophilus]	-	-		_	synthetase [Bacillus	82	71	1332
6 4183 3503 gi 2313836 (AE000084) conserved hypothetical protein [Helicobac 12 178 576 pir S08564 R3BS Irbosomal protein S9 - Bacillus stearothermophilus 2 258 845 gi 146402 EcoA type I restriction-modification enzyme S subuni 5 3400 3146 gi 146402 EcoA type I restriction-modification enzyme S subuni 5 3400 3146 gi 1200074 Irbosomal protein S18 [Bacillus subtilis] 7 7484 8413 gi 1100074 Irryptophanyl-tRNA synthetase [Clostridium longisporu 1 10008 13820 gi 12058543 putative DNA binding protein [Streptococcus gordon!] 2 1267 gi 440259 enolase [Bacillus subtilis] 2 1267 gi 44073 Bannosephosphate Isomerase [Streptococcus mutans] 2 1106 336 gi 556886 serine hydroxymethyltransferase [Bacillus subtilis]				pir S06097 S0	I site-specific deoxyribonuclease (EC 3.1.21.3)	82	99	1590
12 5481 7412 gnl FID d101999 (AB001341) NGTB [Escherichia coli]	-		-			82	89	681
2 178 576 pir S08564 R3BS ribosomal protein S9 - Bacillus stearochermophilus 2 258 845 gi 46402 EcoA type I restriction-modification enzyme S subuni 2 3400 3146 gin PID d100576 ribosomal protein S18 Bacillus subtilis 1 10308 13820 gin PID d100583 transcription-repair coupling factor Bacillus subtilis 2 1232 1666 gi 2058543 putative DNA binding protein Streptococcus gordon1 1 2 1267 gi 400259 enolase Bacillus subtilis 1 2 1267 gi 410331 uracil permease Bacillus caldolyticus 1 2 1267 gi 410331 uracil permease Bacillus caldolyticus 1 2 1267 gi 41033 Mannosephosphate Isomerase Streptococcus mutans 2 1306 1382 gi 54053 Rannosephosphate Isomerase Bacillus subtilis 1 2 1387 gi 44073 SecY protein Lactococcus Bacillus subtilis 1 1 1 1 1 1 1 1 1		-	-	gml ara Ing	(AB001341) NcrB (Escherichia coli)	82	28	1962
2 258 845 gi 146402 EcoA type I restriction-modification enzyme S subunian 5 3400 3146 gil 21010074 Trybtophanyl-tRNA synthetase [Clostridium longisporu 11 10308 13820 gil 1100074 Tryptophanyl-tRNA synthetase [Clostridium longisporu 11 10308 13820 gil 2058543 putative DNA binding protein [Streptococcus gordonia 2 1267 gi 460259 enolase [Bacillus subtilis] 1751 gi 460259 enolase [Bacillus subtilis] 12 1267 gi 413231 uracil permease [Bacillus caldolyticus] 12 1267 gi 4100453 Mannosephosphate Isomerase [Streptococcus mutans] 12 1106 336 gi 154752 transport protein [Agrobacterium tumefaciens] 12 1106 10821 gi 44073 SecY protein [Lactococcus lactis] 1897 gi 2313256 serine hydroxymethyltransferase [Bacillus subtilis] 18 1828 gi 1693384 pyrR [Lactobacillus plantarum] 18 1828 gi 1693384 pyrR [Lactobacillus subtilis 18283 gi 168931 group B oligopeptidase PepB [Streptococcus agalactia 15 1589 18283 gi 1685111 orf1091 (Streptococcus thermophilus) 18 18 18 18 18 18 18 1	-	-	-	pir S08564 R3	protein S9 -	82	1 04	399
5 3400 3146 gnl PID d100676 Fibosomal protein S18 [Bacillus subtilis] 7 7484 8413 gi l100074 Erryptophanyl-ENNA synthetase [Clostridium longisporu 11 10308 13820 gnl PID d100583 Erranscription-repair coupling factor (Bacillus subtilis 2 1267 gi d60259 enolase [Bacillus subtilis] 1 2 1267 gi d131231 Erranscription-repair coupling factor (Bacillus subtilis 1 2 1267 gi d131231 Erranscription-repair coupling factor (Bacillus subtilis 1 2 1267 gi d131231 Erransport protein [Agrobacterium tumefaciens 2 1106 336 gi 55486 Erransport protein [Agrobacterium tumefaciens 2 1106 10821 gi 44073 SecY protein [Lactococcus lactis 1 2 18929 gi 2313526 Erransport protein [Agrobacterium tumefaciens 1 2 18929 gi 2313526 Erransport protein [Agrobacterium tumefaciens 1 2 18929 gi 2313526 Erransport protein [Agrobacterium tumefaciens 1 2 1893 gi 440939 group B oligopeptidase PepB [Streptococcus agalactia 1 2 18899 18283 pir S09411 S094 spolIIE protein - Bacillus subtilis 1 1 1 1 1 1 1 1 1	-		-	_	I restriction-modification enzyme S	82	89	588
7 7484 8413 gi 100074	_	-	-	gn1 PID d1005	ribosomal protein S18 (Bacillus subtilis)	81	99	255
11 10308 13820 gnl PID d100583 transcription-repair coupling factor (Bacillus subtil 2 1232 1606 gi 2058543 putative DNA binding protein [Streptococcus gordoniii 2 3061 1751 gi 460259 enolase [Bacillus subtilis] 1 2 1267 gi 4131231 uracil permease [Bacillus caldolyticus] 2 1367 gi 4131231 uracil permease [Bacillus caldolyticus] 2 1106 336 gi 154752 transport protein [Agrobacterium tumefaciens] 2 1106 336 gi 154752 transport protein [Lactococcus lactis] 4 3874 2603 gi 556886 serine hydroxymethyltransferase [Bacillus subtilis] 16 19126 18929 gi 2313526 (AE000557) H. Fylori predicted coding region HP0411 7 8373 7822 gnl PID e199384 pyrR [Lactobacillus plantarum] 6 5054 6877 gi 469339 group B oliopeptidase PepB [Streptococcus agalactia 15 15899 18283 pir S09411 S094 spoilie protein - Bacillus subtilis 15 15899 3634 gi 1685111 orf1091 [Streptococcus thermophilus]			-		tryptophanyl-tRNA synthetase [Clostridium longisporum]	81	102	930
2 1232 1606 gi 2058543 putative DNA binding protein [Streptococcus gordonii 2 3061 1751 gi 460259 enolase [Bacillus subtilis]		- 1		gn1 Pr0 d1005	transcription-repair coupling factor (Bacillus subtilis)	81	63	3513
2 3061 1751 gi 460259 enolase [Bacillus subtilis] 1 2 1267 gi 431231 uracil permease [Bacillus caldolyticus] 3 2453 1440 gn1 PID d100453 Mannosephosphate Isomerase [Streptococcus mutans] 2 1106 336 gi 154752 transport protein [Actococcus lactis] 22 10306 10821 gi 44073 SecY protein [Lactococcus lactis] 3874 2603 gi 556886 serine hydroxymethyltransferase [Bacillus subtilis] 16 19126 18929 gi 2313526 (AE000557) H. Fylori predicted coding region HP0411 7 8373 7822 gn1 PID e199384 pyrR [Lactobacillus plantarum] 6 5054 6877 gi 1469939 group B oligopeptidase PepB [Streptococcus agalactia 15 15899 18283 pir 509411 5094 spoIIIE protein - Bacillus subtilis 5 3359 3634 gi 1685111 orf1091 [Streptococcus thermophilus]		-		- 1		81	63	375
1 2 1267 gi 431231						81	67	1311
3 2453 1440 gnl PID d100453 Mannosephosphate Isomerase [Streptococcus mutans] 2 1106 336 gi 154752 transport protein [Agrobacterium tumefaciens] 22 10306 10821 gi 44073 SecY protein [Lactococcus lactis] 4 3874 2603 gi 556886 Serine hydroxymethyltransferase [Bacillus subtilis] 16 19126 18929 gi 2313526 (AE000557) H. Fylori predicted coding region HP0411 7 8373 7822 gnl PID e199384 pyrR [Lactobacillus plantarum] 6 5054 6877 gi 1469939 group B oligopeptidase PepB [Streptococcus agalactia 15 15899 18283 pir 509411 5094 spoIIIE protein - Bacillus subtilis 5 3359 3634 gi 1685111 orf1091 [Streptococcus thermophilus]			. —	- :	permease [Bacillus	81	61	1266
2 1106 336 gi 154752 transport protein [Agrobacterium tumefaciens] 122 10306 10821 gi 44073 SecY protein [Lactococcus lactis] 4 3874 2603 gi 556886 Serine hydroxymethyltransferase [Bacillus subtilis] 16 19126 18829 gi 2313326 (AE000557) H. Pylori predicted coding region HP0411 7 8373 7822 gn1 PID e199384 pyrR [Lactobacillus plantarum] 6 5054 6877 gi 1469339 group B oligopeptidase PepB [Streptococcus agalactia 15 15899 18283 pir S09411 S094 spoilie protein - Bacillus subtilis 5 3359 3634 gi 1685111 orf1091 [Streptococcus thermophilus]	-			gn1 PID d1004	Isomerase (Streptococcus	81	70	1014
12 10306 10821 gi 44073 SecY protein [Lactococcus lactis]			;	- 1	transport protein (Agrobacterium tumefaciens)	81	64	771
4 3874 2603 gi 556886 serine hydroxymethylransferase [Bacillus subtilis] 16 19126 18829 gi 2313256 (AE000557) H. Pylori predicted coding region HP0411 7 8373 7822 gnl PID e199384 pyrR [Lactobacillus plantarum] 6 5054 6877 gi 1469939 group B oligopeptidase PepB [Streptococcus agalactia 15 15899 18283 pir S09411 S094 spoilie protein - Bacillus subtilis 5 3359 3634 gi 1685111 orf1091 [Streptococcus thermophilus]	_			_	SecY protein [Lactococcus lactis]	81	99	516
16 19126 18929 gi 2313526 (AE000557) H. Fylori predicted coding region HP0411 7 8373 7822 gn PID e199384 pyrR (Lactobacillus plantarum) 6 5054 6877 gi 1469939 group B oligopeptidase PepB (Streptococcus agalactia 15 15899 18283 pir 509411 5094 spoIIIE protein - Bacillus subtilis 5 3359 3634 gi 1685111 orfi091 (Streptococcus thermophilus)	-	-		_ 1		81	69	1272
7 8373 7822 gnl PID e199384 pyrR [Lactobacillus plantarum] 6 5054 6877 gi 1469939 group B oligopeptidase PepB [Streptococcus 15 18899 18283 pir 509411 5094 spoiliE protein - Bacillus subtilis 5 3359 3634 gi 1685111 orf1091 [Streptococcus thermophilus]		- 1			pylori predicted coding	81	157	198
6 5054 6877 gi 1469939 group B oligopeptidase PepB (Streptococcus 15 15899 18283 pir S09411 S094 spolIIE protein - Bacillus subtilis 5 3359 3634 gi 1685111 orf1091 (Streptococcus thermophilus)				gn1 PID e1993	[Lactobacillus	81	61	552
15 15899 18283 pir 509411 5094			-		B oligopeptidase PepB (Streptococcus	81	99	1824
5 3359 3634 91 1685111				pir S09411 SC	protein - Bacillus	81	65	2385
**************************************	- †	- †	-+	Ī	orf1091 (Streptococcus thermophilus)	81	69	276

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	e s sia	% ident	length (nt)
151	1 1	830	3211	gi 304896	EcoE type I restriction-modification enzyme R subunit (Escherichia coli)	81	65	2382
159	=======================================	6722	7837	gi 2239288	GMP synthetase (Bacillus subtilis)	81	1 69	1116
170	-	739	458	gn1 PID d102006	(AB001488) FUNCTION UNKNOWN. (Bacillus subtilis)	81	55	282
191	7 -	1759	893	gi 149522	tryptophan synthase alpha subunit [Lactococcus lactis]	81	9	867
214	E	1 2290	1994	gi 157587	reverse transcriptase endonuclease (Drosophila virilis)	81	43	297
1 217	4	4415	4008	gi 466473	cellobiose phosphotransferase enzyme II' [Bacillus stearothermophilus]	81	65	408
262	2	569	898	gi 153675	tagatose 6-P kinase [Streptococcus mutans]	81	68	300
299	-	1,663	4	gn1 PID e301154	StySKI methylase [Salmonella enterica]	81	09	099
366	- 5	376	83	gi 149521	tryptophan synthase beta subunit [Lactococcus lactis]	81	65	294
12	110	8766	9242	gi 1216490	DNA/pantothenate metabolism flavoprotein (Streptococcus mutans)	80	64	477
17	111	6050	5748	gn1 PID e305362	unnamed protein product (Streptococcus thermophilus)	08	67	303
17	116	8455	9906	gi 703126	leucocin A translocator [Leuconostoc gelidum]	80	65	612
18	3	2440	1613	gi 1591672	phosphate transport system ATP-binding protein (Methanococcus jannaschii)	08	58	828
27	3	4248	1579	gi 452309	valy1-tRNA synthetase (Bacillus subtilis)	80	1 69	2670
28	7	3671	3288	gi 1573660	H. influenzae predicted coding region HI0660 (Haemophilus influenzae)	08	63	384
32	2	902	1933	gn1 PID e264499	dihydroorotate dehydrogenase B [Lactococcus lactis]	80	99	1032
39	-	-	1266	gn1 PID e234078	hom [Lactococcus lactis]	08	63	1266
52	5	4363	3593	gi 1183884	ATP-binding subunit (Bacillus subtilis)	80	57	177
54	5	4550	4744	gi 2198820	(AF004225) Cux/CDP(1B1); Cux/CDP homeoprotein (Mus musculus)	80	09	195
59	111	7109	7486	gi 951052	ORF9, putative (Streptococcus pneumoniae)	80	89	378
65	3	1230	1550	pir A02815 R5BS	ribosomal protein L23 - Bacillus stearothermophilus	80	69	321
65	112	5174	5503	pir A02819 R5BS	ribosomal protein L24 - Bacillus stearothermophilus	80	70 1	330
99	6	9884	10687	gi [2313836	(AE000584) conserved hypothetical protein [Helicobacter pylori]	80	99	804
82	2	648	2438	gi 622991	mannitol transport protein (Bacillus stearothermophilus)	80	65	1791
85	1	950	630	gi 528995	polyketide synthase (Bacillus subtilis)	80	46	321
89	8	6870	5779	gi 853776	peptide chain release factor 1 (Bacillus subtilis)	80	63	1092
93	112	8718	7438	gul PID d101959	hypothetical protein (Synechocystis sp.)	80	09	1281
					+	+	-+	+

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF	Start (nt)	Stop (nt)	match acession	match gene name	e si si	% ident	length (nt)
106	2	6854	5751	gn1 PID e199386	glutaminase of carbamoyl-phosphate synthase {Lactobacillus plantarum}	80	9	1104
109	2	2160	1450	gi 40056	phoP gene product (Bacillus subtilis)	80	59	711
124	6	4246	3953	gn1 PID d102254	[30S ribosomal protein S16 [Bacillus subtilis]	80	65	294
128	8	5148	6428	gi 2281308	phosphopentomutase [Lactococcus lactis cremoris]	80	99	1281
137	119	12665	111376	gi 159109	NADP-dependent glutamate dehydrogenase [Glardia intestinalis]	80	89	1290
140	119	19699	19457	gi 517210	putative transposase [Streptococcus pyogenes]	80	70	243
158	5	2474	984	gi 1877423	galactose-1-P-uridyl transferase [Streptococcus mutans]	80	9	1491
171	10	7474	7728	gi 397800	cyclophilin C-associated protein [Mus musculus]	80	1 09	255
181	-	2	619	gi 149395	lacC [Lactococcus lactis]	80	99	618
313		27	539	gi 143467	ribosomal protein S4 {Bacillus subtilis}	80	70	513
329	2	1652	858	gi 533080	RecF protein [Streptococcus pyogenes]	80	63	795
371	-	2	958	gi 442360	ClpC adenosine triphosphatase [Bacillus subtilis]	80	58	957
80	1 2	4312	5580	gi 149435	putative [Lactococcus lactis]	1 62	64	1269
23	1	1175	135	gi 1542975	AbcB [Thermoanaerobacterium thermosulfurigenes]	1 64	61	1041
33	114	9244	8201	gn1 PID e253891	[UDP-glucose 4-epimerase [Bacillus subtilis]	1 62	62	1044
36		1242	2633	gn1 PID e324218	[ftsA [Enterococcus hirae]	19	58	1392
38	113	7155	8378	gi 405134	acetate kinase (Bacillus subtilis)	1 61	58	1224
55	7	9011	8229	gi 1146234	dihydrodipicolinate reductase (Bacillus subtilis)	1 62	95	783
65	19	8661	8915	gi 2078380	ribosomal protein L30 [Staphylococcus aureus]	1 62	1 89	255
69	4	3678	2128	gn1 PID e311452	unknown (Bacillus subtilis)	1 61	64	1551
69	6	7881	7279	gi 677850	hypothetical protein (Staphylococcus aureus)	1 62	59	603
72	110	8491	9783	gn1 PID d101091	hypothetical protein [Symechocystis sp.]	1 62	62	1293
80	3 -	2906	7300	gi 143342	polymerase III (Bacillus subtilis)	1 62	65	4395
82	114	13326	15689	gn1 PID e255093	hypothetical protein [Bacillus subtilis]	1 61	65	2364
98	113	12233	11118	gi 683582	prephenate dehydrogenase [Lactococcus lactis]	1 61	58	1116
92	~	940	1734	gi 537286	triosephosphate isomerase [Lactococcus lactis]	79	65	795
98	9	4023	4742	gn1 P1D d100262	LivG protein (Salmonella typhimurium)	1 62	63	720
			•		◆ f	+	+	+

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	s sim	% ident	length (nt)
66	112	16315	14150	gi 153736	a-galactosidase (Streptococcus mutans)	62	64	2166
107	7	5684	6406	gi 460080	D-alanine:D-alanine ligase-related protein (Enterococcus faecalis)	96.	58	723
113	6 -	6858	8303	gi 466882	pps1; B1496_C2_189 [Mycobacterium leprae]		64	1446
151	100	13424	12213	gi 450686	[3-phosphoglycerate kinase [Thermotoga maritima]		1 09	1212
162	- 5	1158	3017	gi 506700	CapD [Staphylococcus aureus]	62	67	1860
771	- 2	2876	3052	gi 912423	putative (Lactococcus lactis)	62	61	177
177		4198	4563	gi 149429	putative [Lactococcus lactis]	62	61	366
187	3	2728	2907	gn1 PID d102002	(AB001488) FUNCTION UNKNOWN. (Bacillus subtilis)	62	53	180
189	7	3589	4350	gn1 PID e183449	putative ATP-binding protein of ABC-type (Bacillus subtilis)		61	762
191	- 2	4249	3449	gi 149519	indoleglycerol phosphate synthase [Lactococcus lactis]	1 64	99	801
211	£ -	1805	1 2737	gi 147404	mannose permease subunit II-M-Man [Escherichia coli)	66	57	933
212	e -	3863	3621	gn1 PID e209004	glutaredoxin-like protein [Lactococcus lactis]	1 62	58	243
215	-	1 987	715	gi 2293242	(AF008220) arginine succinate synthase [Bacillus subtilis]	62	64	273
323	2	530	781	gi 897795	30S ribosomal protein [Pediococcus acidilactici]	62	1 69	252
380	-	694	2	gi 1184680	polynucleotide phosphorylase [Bacillus subtilis]	66	64	693
384	- 5	655	239	gi 143328	phoP protein (put.); putative (Bacillus subtilis)	1 62	59	417
9	E	2820	4091	gi 853767	UDP-N-acetylglucosamine 1-carboxyvinyltransferase Bacillus subtilis	78	62	1272
80		50	1786	gi 149432	putative [Lactococcus lactis]	78	63	1737
6	1	351	124	gi 897793	1998 gene product (Pediococcus acidilactici)	78	1 65	228
15	8	7364	8314	gn1 P1D d100585	Cysteine synthetase A (Bacillus subtilis)	78	63	951
20	110	9738	10310	gn1 PID d100583	stage V sporulation (Bacillus subtilis)	78	58	573
20	116	17165	17713	gi 49105	hypoxanthine phosphoribosyltransferase [Lactococcus lactis]	78	59	549
22	22	17388	18416	gn1 PID d101315	YqfE (Bacillus subtilis)	78	09	1029
22	27	20971	20612	gi 299163	alanine dehydrogenase (Bacillus subtilis)	78	59	360
34	8	7407	7105	gi 41015	aspartate-tRNA ligase (Escherichia coli)	78	55	303
35	8	6257	5196	gi 1657644	Cap8E [Staphylococcus aureus]	78	1 09	1062
				· · · · · · · · · · · · · · · · · · ·	· • • • • • • • • • • • • • • • • • • •	*	-+	+

S. pneumoniae - Putative coding regions of novel proteins Similar to known proteins

Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	s sim	% ident	length (nt)
40	===	9287	8001	gi 1173518	GTP cyclohydrase II/ 3,4-dihydroxy-2-butanone-4-phosphate synthase [Actinobacillus pleuropneumoniae]	78	288	1287
48	31	22422	23183	gi 2314330 	(AE000623) glutamine ABC transporter, ATP-binding protein (glnQ)	78	888	762
52	5	2101	1430	91 1183887	integral membrane protein [Bacillus subtilis]	1 78	54	672
55	14	13605	112712	gn1 PID d102026	(AB002150) YbbP (Bacillus subtilis)	1 78	58	894
55	17	16637	15612	gn1 PID e313027	hypothetical protein (Bacillus subtilis)	1 78	51	1026
7.1	14	19756	119598	gi 179764	calcium channel alpha-1D subunit (Homo sapiens)	1 84	57	159
74	11	15031	14018	gi 1573279	Holliday junction DNA helicase (ruvB) [Haemophilus influenzae]	1 28 1	57	1014
75	6	6623	1972	gi 1877423	galactose-1-P-uridyl transferase (Streptococcus mutans)	1 78	62	1350
81	12	12125	13906	gi 1573607	L-fucose isomerase (fuci) [Haemophilus influenzae]	82	99	1782
82	m	2423	4417	gi 153744	ORF X; putative [Streptococcus mutans]	78	64	1995
83	118	16926	18500	gi 143373 	phosphoribosyl aminoimidazole carboxy formyl formyltransferase/inosine monophosphate cyclohydrolase (PUR-H(J)) (Bacillus subtilis)	78	63	1575
83	20 2	20212	20775	gi 143364	phosphoribosyl aminoimidazole carboxylase I (PUR-E) {Bacillus subtilis}	1 28	64	564
92	2	165	878	gn1 PrD d101190	ORF2 Streptococcus mutans	1 82	62	714
98	8	5863	6069	gi 2331287	(AF013188) release factor 2 (Bacillus subtilis)	78	63	1047
113	3	1071	2741	gi 580914	dnaZX (Bacillus subtilis	1 78	64	1671
127	4	1133	2071	gi 142463	RNA polymerase alpha-core-subunit [Bacillus subtilis]	78	59	939
132	-	2782	497	gi 1561763	[pullulanase [Bacteroides thetaiotaomicron]	1 82	58	2286
135	4	2698	3537	gi 1788036	(AE000269) NH3-dependent NAD synthetase (Escherichia coli)	1 78	99	840
140	24 2	26853	25423	gi 1100077	phospho-beta-glucosidase [Clostridium longisporum]	1 87	64	1431
150 .	2	4690	4514	gi 149464	amino peptidase [Lactococcus lactis]	78	42	177
152	1	1	795	gi 639915	NADH dehydrogenase subunit (Thunbergia alata)	78	43	795
162	4	4997	4110	gn1 PID e323528	putative YhaP protein (Bacillus subtilis)	78	64	888
181	10	8651	7947	gi 149402	lactose repressor (lacR; alt.) [Lactococcus lactis]	1 78	48	705
200		3627	4958	gn1 PID d100172	invertase (Zymomonas mobilis)	1 78	61	1332
203	-	3230	3015	gi 1174237	Cyck (Pseudomonas fluorescens)	78	57	216
•					▼	++	.+	+

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	# sia	% ident	length (nt)
210		6789	1 7172	gi 580902	ORF6 gene product (Bacillus subtilis)	78	42	384
214	۰	3810	2797	gn1 PID d102049	P. haemolytica o-sialoglycoprotein endopeptidase; P36175 (660) transmembrane [Bacillus subtilis]	78	09	1014
214	113	6322	8163	gi 1377831	unknown [Bacillus subtilis]	78	62	1842
217	-	6	1 2717	gi 488430	alcohol dehydrogenase 2 [Entamoeba histolytica]	78	64	2709
222	<u>~</u>	2316	3098	gi 1573047	spore germination and vegetative growth protein (gerC2) [Haemophilus influenzae]	78	65	783
268	-	742	80	gi 517210	putative transposase [Streptococcus pyogenes]	78	65	735
276	-	223	753	gn1 PID d100306	ribosomal protein L1 [Bacillus subtilis]	78	65	531
312		1567	1079	gi 289261		78	54	489
339	-	1117	794	gi 1916729	[CadD {Staphylococcus aureus}	78	53	678
342	2	762	265	gi 1842439	phosphatidy1g1ycerophosphate synthase (Bacillus subtilis)	78	1 69	498
383	-	737	<u>ء</u>	gi 1184680	polynucleotide phosphorylase (Bacillus subtilis)	78	64	735
7	115	111923	11018	gi 1399855	carboxyltransferase beta subunit [Synechococcus PCC7942]	1. 1.	63	906
8	7	1698	2255	gi 149433	putative [Lactococcus lactis]	177	29	558
17	114	6948	7550	gi 520738	comA protein [Streptococcus pneumoniae]	1 11	09	603
30	112	9761	1 8967	gi 1000451	TreP (Bacillus subtilis)	1 11	43	795
36	114	11421	12131	gi 1573766	phosphoglyceromutase (gpmA) [Haemophilus influenzae]	1 11	64	711
55		3836	4096	gi 1708640	YeaB (Bacillus subtilis)	77	55	261
61	80	8377	8054	gi 1890649	multidrug resistance protein LmrA [Lactococcus lactis]	11	51	324
65	2	607	1254	gi 40103	ribosomal protein L4 [Bacillus stearothermophilus]	1 11	63	648
89	8	7509	7240	gi 47551	MRP [Streptococcus suis]	77	89	270
69		1083	118	gn1 PID e311493	unknown (Bacillus subtilis)	1	57	996
	- 5	4583	4026	gn1 PID e281578	hypothetical 12.2 kd protein (Bacillus subtilis)	11 11	09	558
83	114	13104	14552	gi 1590947	amidophosphoribosyltransferase [Methanococcus jannaschii]	77	95	1449
94	4	3006	5444	gn1 PID e329895	(AJ000496) cyclic nucleotide-gated channel beta subunit (Rattus norvegicus)	77	99	2439
96	=	8518	8880	gi 551879	ORF 1 (Lactococcus lactis)	1,44	62	363
96	11	14082	12799	gi 153737	sugar-binding protein (Streptococcus mutans)	17	61	1284
					F1			+

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

ID	ID	Start (nt)	Stop (nt)	match acession	match gene name	e sin	* ident	length (nt)
106	2	361	1176	gi 148921	LicD protein (Haemophilus influenzae)	77	51	816
108	4	3152	4030	gi 1574730	tellurite resistance protein (tehB) (Haemophilus influenzae)	1 11	58	879
118	4	3520	3131	gi 1573900	D-alanine permease (dagA) [Hacmophilus influenzae]	77	57	390
124	4	1796	1071	gi 1573162	tRNA (guanine-N1)-methyltransferase (trmD) [Haemophilus influenzae]	177	58	726
126	4	5909	4614	gn1 PID d101163	Srb [Bacillus subtilis]	77	62	1296
128	2	630	1373	gn1 PID d101328	Yqiz (Bacillus subtilis)	77	58	744
130	-	1	1287	gn1 PID e325013	hypothetical protein [Bacillus subtilis]	1 11	61	1287
139	- 5	4388	3639	gi 2293302	(AF008220) YtqA (Bacillus subtilis)	1 11	59	750
140	111	10931	9582	gi 289284	cysteinyl-tRNA synthetase [Bacillus subtilis]	1 11	64	1350
140	118	19451	19263	gi 517210	putative transposase (Streptococcus pyogenes)	1 11	99	189
141	2 -	976	1683	gn1 PID e157887	URF5 (aa 1-573) (Drosophila yakuba)	1 11	50	708
141	4	2735	5293	gi 556258	secA [Listeria monocytogenes]	1 11	59	2559
144	2	671	2173	gn1 PID d100585	lysyl-tRNA thynthetase [Bacillus subtilis]	1 11	61	1503
163		6412	7398	gi 511015	dihydroorotate dehydrogenase A [Lactococcus lactis]	77	62	987
164	10	7841	7074	gn1 PID d100964	homologue of iron dicitrate transport ATP-binding protein FecE of E. coli {Bacillus subtilis}	7.	52	768
191	8	7257	5791	gi 149516	anthranilate synthase alpha subunit [Lactococcus lactis]	1 11	57	1467
198	8	5377	5177	gi 1573856	hypothetical (Haemophilus influenzae)	77	99	201
213	-	202	462	gi 1743860	Brca2 [Mus'musculus]	1 11	20	261
250	7	231	509	gn1 PID e334776	[YlbH protein [Bacillus subtilis]	1 11	1 09	279
289	-	1737	1276	gn1 PID d100947	Ribosomal Protein L10 (Bacillus subtilis)	1 11	62	462
292	2	1399	899	gi 143004	transfer RNA-Gln synthetase (Bacillus stearothermophilus)	1.11	58	732
7		2734	1166	gn1 PID d101824	peptide-chain-release factor 3 (Synechocystis sp.)	76	53	1569
7	[23]	18474	18235	gi 455157	acyl carrier protein [Cryptomonas phi]	76	57	240
6 1	8	5706	4342	gi 1146247	asparaginyl-tRNA synthetase (Bacillus subtilis)	76	61	1365
100	- 1	4531	4385	gn1 PID e314495	hypothetical protein (Clostridium perfringens)	76	53	147
18	2	1615	842	gi 1591672	phosphate transport system ATP-binding protein [Methanococcus jannaschii]	76	56	774

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig C	ORF	Start (nt)	Stop (nt)	match acession	match gene name	s in	% ident	length
22	37 2	27796	28173	gn1 P1D e13389	translation initiation factor IF3 (AA 1-172) (Bacillus stearothermophilus)	9,	64	378
35	9	3869	2682	gi 1773346	Cap5G (Staphylococcus aureus)	76	61	1188
48	28 2	21113	21787	gi 2314328	AE000623) glutamine ABC transporter, permease protein (glnP) [Helicobacter pylori]	76	52	675
52 1	12 1	12881	13786	gi 142521	deoxyribodipyrimidine photolyase [Bacillus subtilis]	76	58	906
55 1	10 11	11521	10571	gn1 PID e283110	femD (Staphylococcus aureus)	196	61	951
57	8	7824	6559	gi 290561		76	47	1266
62		2406	2095	gn1 PID e313024	hypothetical protein (Bacillus subtilis)	76	59	312
65	- 6	4223	4441	gi 40148	129 protein (AA 1-66) [Bacillus subtilis]	76	58	219
68		1328	2371	gn1 PID e284233	anabolic ornithine carbamoyltransferase [Lactobacillus plantarum]	76	61	1044
69	8	7297	6005	gn1 PID d101420	Pyrimidine nucleoside phosphorylase (Bacillus stearothermophilus)	76	61	1293
73 1	12	7839	7267	gn1 PID e243629	unknown [Mycobacterium tuberculosis]	76	53	573
74	-	8433	7039	gn1 PID d102048	C. thermocellum beta-glucosidase; P26208 (985) [Bacillus subtilis]	76	9	1395
80	2	7643	7936	gi 2314030	(AE000599) conserved hypothetical protein (Helicobacter pylori)	76	61	294
82 1	15 1	16019	16996	gi 1573900	D-alanine permease (dagA) [Haemophilus influenzae]	1 9/	95	978
83 1	19	18616	19884	gi 143374	phosphoribosyl glycinamide synthetase (PUR-D; gtg start codon) [Bacillus subtilis]	76	09	1269
86 1	114 11:	13409	12231	gi 143806	Arof (Bacillus subtilis)	76	58	1179
87	1	3	1442	gi 153804	sucrose-6-phosphate hydrolase (Streptococcus mutans)	1 92	65	1440
87 1	116 119	15754	15110	gn1 PID e323500	putative Gmk protein (Bacillus subtilis)	76	95	645
93	4	1769	1539	gi 1574820	1,4-alpha-glucan branching enzyme (glgB) [Haemophilus influenzae]	1 91	46	231
94	-	51	365	gi 144313	6.0 kd ORF [Plasmid ColE1]	76	73	315
116	2 - 2	2151	1678	gi 153841	pneumococcal surface protein A [Streptococcus pneumoniae]	76	59	474
123	9	3442	5895	gi 1314297	ClpC ATPase [Listeria monocytogenes]	76	59	2454
126	2 2	2156	2932	gn1 PID d101328	YqiZ {Bacillus subtilis}	76	61	111
128 10	†	6973	1977	gi 944944	purine nucleoside phosphorylase (Bacillus subtilis)	76	09	825
131 11		6186	5812	gi 1674310	(AE000058) Mycoplasma pneumoniae, MG085 homolog, from M. genitalium [Mycoplasma pneumoniae]	76	47	375
+ 1 1 1 1 1		+		+		- +	- +	- +

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF	Start (nt)	Stop (nt)	match acession	match gene name	Sin =	% ident	length
139	4	3641	3192	gi 2293302	(AF008220) YtqA (Bacillus subtilis)	76	53	450
140	14	14872	12536	gi 1184680	polynucleotide phosphorylase [Bacillus subtilis]	76	62	2337
143	7	2583	3905	gi 143795	transfer RNA-Tyr synthetase (Bacillus subtilis)	76	61	1323
170	9	5095	6114	gn1 PID d100959	ycgQ (Bacillus subtilis)	76	44	1020
180	7	1927	557	gi 40019	ORF 821 (aa 1-821) (Bacillus subtilis)	196	53	1371
191	7	5815	5228	gi 551880	anthranilate synthase beta subunit [Lactococcus lactis]	16	61	588
195	m	3829	2444	gi 2149905	D-glutamic acid adding enzyme (Enterococcus faecalis)	76	1 09	1386
200	3	1914	3629	gi 431272	lysis protein (Bacillus subtilis)	192	58	1716
201	-	431	207	gi 2208998	dextran glucosidase DexS [Streptococcus suis]	192	57	225
214	2	1283	2380	gi 663278	transposase (Streptococcus pneumoniae)	1 94	55	1098
225	3	2338	3411	gi 1552775	ATP-binding protein (Escherichia coli)	76	26	1074
233	-	5	724	[gi 1163115	neuraminidase B (Streptococcus pneumoniae)	1 91		723
347	7	523	38	gi 537033	ORF_f356 [Escherichia coli]	1 96	09	486
356	5	842	165	gi 2149905	D-glutamic acid adding enzyme [Enterococcus faecalis]	1 92	61	678
366	3	734	348	gi 149520	phosphoribosyl anthranilate isomerase [Lactococcus lactis]	76	1 69	387
2	8	12599	11484	gi 1574293	fimbrial transcription regulation repressor (pilB) [Haemophilus influenzae]	75	61	1116
9	113	12553	11894	gn1 PID d102050	ydiH (Bacillus subtilis)	75	51	099
6	110	7282	6062	gi 142538	aspartate aminotransferase (Bacillus sp.)	75	55	1221
10	112	8080	7940	gi 149493	SCRFI methylase [Lactococcus lactis]	75	95	141
18	- 5	4266	3301	gn1 P1D d101319	YqgH [Bacillus subtilis]	75	52	1 996
22	4	1838	2728	gi 1373157	orf-X; hypothetical protein; Method: conceptual translation supplied by author [Bacillus subtilis]	75	62	891
30	=	9015	7828	gi 153801	enzyme scr-II [Streptococcus mutans]	75	64	1188
31	5	2362	2030	gi 2293211	(AF008220) putative thioredoxin [Bacillus subtilis]	75	53	333
32	6	7484	8359	gn1 PID d100560	formamidopyrimidine-DNA glycosylase [Streptococcus mutans]	75	61	876
33	4	1735	1448	gi 413976	ipa-52r gene product (Bacillus subtilis)	75	53	288
33	110	6470	5769	gi 533105	unknown (Bacillus subtilis)	75	95	702
							- +	+

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF	Start	Stop	match	match gene name		+	+
ΔI	2	(nt)	· (nt) -+	acession			Taging .	(nt)
33	112	6878	7183	pir A00205 FECL	ferredoxin [4Fe-4S] - Clostridium thermaceticum	75	99	306
36		181	2	gi 2088739 	(AF003141) strong similarity to the FABP/P2/CRBP/CRABP family of transporters (Caenorhabditis elegans)	75	43	180
38	22	14510	115379	9i 1574058	hypothetical [Haemophilus influenzae]	75	56	870
48	33	23398	24066	gi 1930092	Outer membrane protein (Campylobacter jejuni)	75	56	699
51		2	319	gi 43985	nifS-like gene (Lactobacillus delbrueckii)	75	55	318
51	10	8318	11683	gi 537192 	CG Site No. 620; alternate gene names hs, hsp, hsr, rmx apparent frameshift in GenBank Accession Number X06545 (Escherichia coli)	75	50	3366
54	118	19566	20759	91 666069	orf2 gene product [Lactobacillus leichmannii]	75	58	1194
1 57	6 - 1	8448	7822	gi 290561	ol88 [Escherichia coli]	75	20	627
9	114	6072	6356	gi 606241	10S ribosomal subunit protein S14 [Escherichia coli]	75	64	285
1 70	4	3071	2472	gi 1256617	adenine phosphoribosyltransferase (Bacillus subtilis)	75	57	009
17	24	30399	29404	gi 1574390	[C4-dicarboxylate transport protein [Haemophilus influenzae]	75	57	966
7.3	2	910	455	gn1 PID e249656	YneT [Bacillus subtilis]	75	57	456
79		1810	491	gi 1146219	18.2% of identity to the Escherichia coli GTP-binding protein Era; putative {Bacillus subtilis}	75	59	1320
82	9	0989	6536	gi 1655715	BztD (Rhodobacter capsulatus)	75	55	1771
83	9	1938	2975	gn1 PID e323529	putative PlsX protein (Bacillus subtilis)	75	56	1038
93	=	7368	5317	gi 39989	methionyl-tRNA synthetase (Bacillus stearothermophilus)	75	85	2052
93	113	9409	8699	gi 1591493	glutamine transport ATP-binding protein Q [Methanococcus jannaschii]	75	54	711
95		1795	47	gn1 PID e323510	YloV protein (Bacillus subtilis)	75	57	1749
103	2	362	1186	gn1 P1D e266928	unknown [Mycobacterium tuberculosis]	75	64	825
104		691	915	gi 460026	repressor protein (Streptococcus pneumoniae)	75	54	225
1113	2	2951	3883		ABC transporter subunit [Synechocystis sp.]	75	55	933
121	-	320	1390	gi 2145131	repressor of class I heat shock gene expression HrcA (Streptococcus mutans)	75	58	1071
127	9	2614	3000	gi 1500451	M. jannaschii predicted coding region MJ1558 [Wethanococcus jannaschii]	75	44	387
137	118	10082	10687	gi 393116	P-glycoprotein 5 (Entamoeba histolytica)	75	52	909
149	= = =	8499	9338	gn1 PID d100582	unknown (Bacillus subtilis)	75	55	840
					1 4 1 1 7 7 7 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1	+	**	+

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	a sim	% ident	length
151	9	9100	1 7673	gi 40467	HsdS polypeptide, part of CfrA family (Citrobacter freundii)	75		(nc)
158	-	986	e -	gn1 PID e253891	UDP-glucose 4-epimerase (Bacillus subtilis)	75	63	1 786
172	8	5653	6774	gi 142978	glycerol dehydrogenase [Bacillus stearothermophilus]	75	95	1122
172	6	7139	9730	gn1 PID e268456	unknown (Mycobacterium tuberculosis)	75	58	2592
173		261	67	gn1 PID e236469	C10C5.6 (Caenorhabditis elegans)	75	50	183
185	e	3066	2014	gi 1574806	spermidine/putrescine transport ATP-binding protein (potA) [Haemophilus influenzae]	75	56	1053
191	9	5235	4213	gi 149518	phosphoribosyl anthranilate transferase [Lactococcus lactis]	75	61	1023
226	- 5	1774	1181	gi 2314588	(AE000642) conserved hypothetical protein [Helicobacter pylori]	75	65	594
231	-	,	153	gi 40173	homolog of E.coli ribosomal protein L21 (Bacillus subtilis)	75	57	153
234	-	5	418	gi 2293259	(AF008220) YtqI (Bacillus subtilis)	75	59	417
279	1	552	151	gi 1119198	unknown protein (Bacillus subtilis)	75	50	402
291	7	3558	3827	gi 40011	ORF17 (AA 1-161) (Bacillus subtilis)	75	48	270 1
375	2	137	628	gi 410137	ORFX13 (Bacillus subtilis)	75	58	492
9	20	16721	117560	gi 2293323	(AF008220) YtdI (Bacillus subtilis)	74	53	840
7	9	4682	6052	gi 1354211	PET112-like protein (Bacillus subtilis)	74	1 09	1371
18	7	3341	2427	gn1 PID d101319	YqgI (Bacillus subtilis	74	54	915
21	9	5885	4800	gi 1072381	glutamyl-aminopeptidase (Lactococcus lactis)	74	59	1086
24	2	739	548	gi 2314762	(AE000655) ABC transporter, permease protein (yaeE) [Helicobacter pylori]	74	46	192
25		2	367	gn1 PID d100932	H20-forming NADH Oxidase [Streptococcus mutans]	74	63	366
38	118	11432	12964	gi 537034	ORF_0488 [Escherichia coli]	74	57	1513
48	110	8924	6999	gi 1513069	P-type adenosine triphosphatase [Listeria monocytogenes]	74	53	2256 1
55	111	11964	11401	gn1 PID e283110	[femD [Staphylococcus aureus]	74	. 64	564
61	2	1782	427	gi 2293216	(AF008220) putative UDP-N-acetylmuramate-alanine ligase [Bacillus subtilis]	74	55	1356
76	110	9414	8065	gn1 PID d101325	YqiB (Bacillus subtilis)	74	54	1350
83	2	999	926	pir C33496 C334	hisC homolog - Bacillus subtilis	74	55	261
86	6	8985	0808	gi 683585	prephenate dehydratase [Lactococcus lactis]	74	55	906
						+	-+	,

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

	1		+-					
Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	# Sim	* ident	length
102	2	5005	5652	91 143394	OMP-PRPP transferase (Bacillus subtills)	74	57	648
103	- 2	4364	3267	[gn] PID e323524	YloN protein (Bacillus subtilis)	74	62	1 8601
108	7	6864	7592	gn1 P1D e257631	methyltransferase (Lactococcus lactis)	74	7 4 5	1 962
131	7	478	146	gn1 P1D d101320	YqgZ (Bacillus subtilis)	74	45	333
133	2	1380	919	gn1 P1D e313025	hypothetical protein (Bacillus subtilis)	74	2 09	1 634
137	6	6167	6787	gn1 P1D d100479	Na+ -ATPase subunit D [Enterococcus hirae]	74	23	1 70.
149	4	3008	3883	gn1 PID d100581	high level kasgamycin resistance (Bacillus subtilis)	74		1 720
157	7	243	824	gi 1573373	methylated-DNAprotein-cysteine methyltransferase (dat1) [Haemophilus influenzae]	74	48	582
164	9 -	3515	4249	gi 410131	ORFX7 (Bacillus subtilis)	74	4.8	735
167	7	5446	5201	gi 413927	ipa-3r gene product (Bacillus subtilis)	74		776
171	-		1818	gn1 P1D d102251	beta-galactosidase (Bacillus circulans)	74		1 0 5 7
172	-	1064	2392	gi 466474	cellobiose phosphotransferase enzyme II'' [Bacillus stearothermophilus]	74	1 05	1 9021
185		326	г ———	gi 1573646	Mg(2+) transport ATPase protein C (mgtC) (SP:P22037) (Haemophilus	74	89	324
188	2	1089	2018	gi 1573008	ATP dependent translocator homolog (msbA) [Haemophilus influenzae]	74	44	1 026
189	11	6491	7174	gi 1661199	sakacin A production response regulator (Streptococcus mutans)	74		1 4 8 8
210	2	520	1287	gi 2293207	(AF008220) YtmQ (Bacillus subtilis)	74	09	+
261	-	836	192	gi 666983	putative ATP binding subunit (Bacillus subtilis)	74	55 1	645
263	e -	1619	3655	gi 663232 	Similarity with S. cerevisiae hypothetical 137.7 kD protein in subtelomeric Y' repeat region (Saccharomyces cerevisiae)	74	42	2037
265	2	844	1227	gi 49272	Asparaginase (Bacillus licheniformis)	74	64	384
368	-	-	942	gi 603998	unknown [Saccharomyces cerevisiae]	74	39	942
7	116	13357	11921	gn1 PID d101324	YqhX (Bacillus subtilis)	73	57	1437
17	110	5706	5449	gn1 PID e305362	unnamed protein product [Streptococcus thermophilus]	73	47	258
31	2	522	244	gn1 PID d100576	single strand DNA binding protein (Bacillus subtilis)	73	55	279
32	- į	5667	Ì	7	YqfG (Bacillus subtilis)	73	58	528
34	115	10281	9790	gn1 PID d102151	(AB001684) ORF42c [Chlorella vulgaris]	73	46	492
						~+	+	+

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF	Start	Stop (nt)	match	match yene name	e sim	% ident	length (nt)
40	112	9876	9226	gi 1173517	riboflavin synthase alpha subunit (Actinobacillus pleuropneumoniae)	73	55	651
55	2	3592	839	gn1 PID d101887	cation-transporting ATPase PacL [Synechocystis sp.]	73	09	2754
55	118	17494	16586	gn1 PID e265580	unknown {Mycobacterium tuberculosis}	5.	52	606
65	116	7213	1767	gi 143419	ribosomal protein L6 [Bacillus stearothermophilus]	73	9	555
99	8	3300	3659	gn1 PID e269883	LacF [Lactobacillus casei]	73	52	360
70	110	5557	5733	gi 857631	envelope protein (Human immunodeficiency virus type 1)	73	09	177
11	4	6133	8262	gn1 P1D e322063	ss-1,4-galactosyltransferase Streptococcus pneumoniae	73	45	2130
1 72	-	m	851	gi 2293177	(AF008220) transporter (Bacillus subtilis)	73	20	849
1 76	- 2	7019	6195	gn1 PID d101325	YqiF (Bacillus subtilis)	73	99	825
9,	112	10009	9533	gi 1573086	uridine kinase (uridine monophosphokinase) (udk) (Haemophilus influenzae)	7.3	54	477
80	7	8113	9372	gi 1377823	aminopeptidase (Bacillus subtilis)	73	1 09	1260
16	2	3389	1668	gn1 PID d101954	dihydroxyacid dehydratase [Synechocystis sp.]	73	54	1722
86	6	6912	7619	gn1 PID e314991	FtsE [Mycobacterium tuberculosis]	73	54	708
108	=======================================	110928	10440	gi 388109	regulatory protein [Enterococcus faecalis]	73	54	489
128	9	3632	4222	gi 1685111	orf1091 [Streptococcus thermophilus]	73	63	591
138	2	1575	394	gi 147326	transport protein (Escherichia coli)	73	09	1182
140	113	12538	11903	pir E53402 E534	serine O-acetyltransferase (EC 2.3.1.30) - Bacillus stearothermophilus	73	55	636
162	- 5	5701	4991	gn1 P1D e323511	putative YhaQ protein {Bacillus subtilis	73	20	711
164	4	2323	2790	gi 1592076	hypothetical protein (SP:P25768) [Methanococcus jannaschii]	73	52	468
164	8	4815	5546	gi 410137	ORFX13 [Bacillus subtilis]	73	56	732
170	5	4394	5302	gn1 PID d100959	homologue of unidentified protein of E. coli (Bacillus subtilis)	73	46	606
178	7	3893	4855	gi 46242	nodulation protein B, 5'end (Rhizobium loti)	73	26	963
204	9	5096	4278	gn1 P1D e214719	PlcR protein (Sacillus thuringiensis)	73	41	819
213	7	832	2037	gi 1565296	ribosomal protein S1 homolog; sequence specific DNA-binding protein [Leuconostoc lactis]	73	55	1206
231	2	84	287	gi 40173	homolog of E.coli ribosomal protein L21 (Bacillus subtilis)	73	61	204
1 237	-	2	505	gi 1773151	adenine phosphoribosyltransferase [Escherichia coli]	73	51	504

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	# sim	% ident	length
269	-	2	691	gn1 PID d101328		73	36	1 069
289	5	1272	832	pir A02771 R7MC	ribosomal protein L7/L12 - Micrococcus luteus	73	99	441
343		14	484	gi 1788125	(AE000276) hypothetical 30.4 kD protein in manZ-cspC intergenic region [Escherichia coli]	73	47	471
356	1	222	4	gi 2149905	D-glutamic acid adding enzyme [Enterococcus faecalis]	73	50	219
, ,	2	3165	4691	gn1 PID d101833	amidase [Synechocystis sp.]	72	52	1527
, ,	6	7195	7647	gi 146976	nusB [Escherichia coli]	72	54	453
7	17	13743	13300	gn1 PID e289141	similar to hydroxymyristoyl-(acyl carrier protein) dehydratase (Bacillus subtilis	72	59	444
22	119	15637	16224	gn1 PID d101929	ribosome releasing factor (Synechocystis sp.)	72	51	588
33	117	12111	111425	gn1 PID d101190	ORF3 [Streptococcus mutans]	72	55	687
34	-	7147	5627	gi 396501	aspartyl-tRNA synthetase [Thermus thermophilus]	72	52	1521
38	23	15372	16085	pir H64108 H641	L-ribulose-phosphate 4-epimerase (araD) homolog - Haemophilus influenzae (strain Rd KW20)	72	54	714
39	- 5	5094	6905	gn1 PID e254877	unknown [Mycobacterium tuberculosis]	72	95	1812
40	9	4469	4636	[gi 153672	lactose repressor [Streptococcus mutans]	72	58	168
48	2	1459	1253	gi 310380	Inhibin beta-A-subunit (Ovis aries]	72	33	207
48	29	21729	22424	gi 2314329 	(AE000623) glutamine ABC transporter, permease protein (glnP) (Helicobacter pylori)	72	49	969
50	- 5 -	4529	3288	gi 1750108	Ynba (Bacillus subtilis)	72	54	1242
51	-3	1044	2282	gi 2293230	(AF008220) YtbJ (Bacillus subtilis)	72	54	1239
52	113	13681	13938	gi 142521	deoxyribodipyrimidine photolyase [Bacillus subtilis]	72	45	258
55	1	841	35	gi 882518	ORF_0304; GTG start [Escherichia coli]	72	59	807
75	2	2832	3191	gn1 PID e209886	mercuric resistance operon regulatory protein (Bacillus subtilis)	72	44	360
92	9	6229	5771	gi 142450	ahrC protein (Bacillus subtilis)	72	53	459
96	5	5065	4592	gi 2293279	(AF008220) YtcG [Bacillus subtilis]	72	46	474
87	114	14726	12309	gn1 PID e323502	putative PriA protein (Bacillus subtilis)	72	52	2418
91	1 - 1	444	662	gi 500691	MY01 gene product [Saccharomyces cerevisiae]	72	50	219
91	7	4516	4764	gi 829615	skeletal muscle sodium channel alpha-subunit [Equus caballus]	72	38	249
					↑ ◆ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑	+	-+	+

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	& sim	* ident	length (nt)
95	- 5	2004	1717	gn1 PID e323527	putative Asp23 protein (Bacillus subtilis)	72	40	288
109	-	1452	118	gi 143331	alkaline phosphatase regulatory protein (Bacillus subtilis)	72	52	1335
126		3	2192	gn1 PID d101831	glutamine-binding periplasmic protein (Synechocystis sp.)	72	46	2190
130	3	1735	2478	gi 2415396	(AF015775) carboxypeptidase [Bacillus subtilis]	27	53	744
137	9	2585	2929	gi 472922	v-type Na-ATPase Enterococcus hirae	72	46	345
140	110	9601	9203	gi 49224	URF 4 [Synechococcus sp.]	72	48	399
146	2	1906	1247	gn1 PID e324945	hypothetical protein (Bacillus subtilis)	72	45	1 099
147	2	2084	1083	gn1 PID e325016	hypothetical protein (Bacillus subtilis)	72	26	1002
147	- 2	6156	5146	gi 472327	TPP-dependent acetoin dehydrogenase beta-subunit (Clostridium magnum)	72	36	1011
148	8	5381	6433	gi 974332	NAD(P)H-dependent dihydroxyacetone-phosphate reductase [Bacillus subtilis]	72	54	1053
148	14	10256	9675	gn1 PID d101319	YqgN (Bacillus subtilis)	72	20	582
159	®	4005	4949	gi 1788770	(AE000330) 0463; 24 pct identical (44 gaps) to 338 residues from penicillin-binding protein 4*, PBPE_BACSU SW: P32959 (451 aa) (Escherichia coli)	72	43	945
172	110	9907	10620	gi 763387	unknown [Saccharomyces cerevisiae] .	72	55	714
220	3	2862	3602	gi 1574175	hypothetical (Haemophilus influenzae)	72	20	741
1 267	1	3	449	gi 290513	[f470 [Escherichia coli]	72	48	447
281	7	889	540	gn1 P1D d100964	homologue of aspartokinase 2 alpha and beta subunits LysC of B. subtilis [Bacillus subtilis]	72	45	360
290		1018	14	gi 474195 	This ORF is homologous to a 40.0 kd hypothetical protein in the htrB 3' region from E. coli, Accession Number X61000 [Mycoplasma-like organism]	72	54	1005
300	7	63	587	gi 746399	Lranscription elongation factor [Escherichia coli]	72	20	525
316	1	1326	4	gi 158127	protein kinase C (Drosophila melanogaster)	72	40	1323
342	1	227	3	gn1 PID d101164	unknown [Bacillus subtilis]	72	54	225
354	1	-	1005	gn1 PID d102048	C. thermocellum beta-glucosidase, P26208 (985) [Bacillus subtilis]	72	52	1005
9	110	8134	10467	gn1 PID e264229	Unknown [Mycobacterium tuberculosis]	71	57	2334
7	20	16231	15464	gi 18046	3-oxoacyl-[acyl-carrier protein] reductase (Cuphea lanceolata)	71	52	768
15	1	1297	2	gn1 PID d100571	replicative DNA helicase (Bacillus subtilis)	11	51	1296
15	4	4435	3869	gi 499384	orf189 (Bacillus subtilis)	11	47	567

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	e sim	% ident	length (nt)
18	9	5120	4218	gn1 PID d101318	YqgG [Bacillus subtilis]	71	51	903
29	7		540	gi 1773142	similar to the 20.2kd protein in TETB-EXOA region of B. subtilis [Escherichia coli]	71	26	540
38	20	13327	13830	gi 537036	ORF_0158 [Escherichia coli]	11,	48	504
51	112	15015	12676	gi 149528	dipeptidyl peptidase IV [Lactococcus lactis]	11	55	2340
55	23	21040	20585	gi 2343285	(AF015453) surface located protein [Lactobacillus rhamnosus]	11	58	456
09	7	705	265	gn1 PID d101320	YqgZ (Bacillus subtilis)	11	44	441
7.1	118	24679	26226	gi 580920	rodD (gtaA) polypeptide (AA 1-673) (Bacillus subtilis)	7.1	44	1548
17	25	30587	30360	gi 606028	ORF_0414; Geneplot suggests frameshift near start but none found {Escherichia coli}	71	20	228
72	9	5239	6729	gi 580835	lysine decarboxylase [Bacillus subtilis]	7.1	48	1491
72	4	11991	12878	gi 624085	similar to rat beta-alanine synthetase encoded by GenBank Accession Number S27881; contains ATP/GTP binding motif [Paramecium bursaria Chlorella virus 1]	71	54	8888
73	111	7269	7033	gi 1906594	PN1 (Rattus norvegicus)	71	42	237
74	9	10385	8517	gi 1573733	prolyl-tRNA synthetase (proS) [Haemophilus influenzae]	11	52	1869
81	6	5772	6578	gi 147404	mannose permease subunit II-M-Man [Escherichia coli]	71	45	807
98	2	4602	3604	gn1 PID e322063	ss-1,4-galactosyltransferase (Streptococcus pneumoniae)	71	53	666
105	4	3619	4707	gi 2323341	(AF014460) PepQ [Streptococcus mutans]	71	28	1089
106	113	13557	12955	gi 1519287	LemA [Listeria monocytogenes]	11	48	603
114	2	1029	1979	gi 310303	mosA [Rhizobium meliloti]	71	55	951
122	2	564	1205	gi 1649037	glutamine transport ATP-binding protein GLNQ [Salmonella typhimurium]	71	50	642
132	2	9018	7063	gn1 PID d102049	H. influenzae hypothetical ABC transporter; P44808 (974) [Bacillus subtilis]	71	51	1956
140		1141	227	gi 1673788	(AE000015) Mycoplasma pneumoniae, fructose-bisphosphate aldolase; similar to Swiss-Prot Accession Number P13243, from B. subtilis (Mycoplasma pneumoniae)	71	49	915
140	5	5635	4973	gn1 P1D d100964	homologue of hypothetical protein in a rapamycin synthesis gene cluster of Streptomyces hygroscopicus (Bacillus subtilis)	71	488	663
141		7369	7845	gn1 PID d102005	(ABO01488) FUNCTION UNKNOWN, SIMILAR PRODUCT IN E. COLI AND MYCOPLASHA PNEUMONIAE. (Bacillus subtilis)	17	51	477
					· · · · · · · · · · · · · · · · · · ·	+	+	+

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	a sim	% ident	length (nt)
193		-	165	gi 46912	ribosomal protein L13 (Staphylococcus carnosus)	71.	59	165
194		2205	1594	91 535351	[Cody [Bacillus subtilis]	71	52	612
199	- 3	1510	1319	gi 2182574	(AE000090) Y4pE (Rhizobium sp. NGR234)	71	45	192
208	- 5	2616	3752	gi 1787378	(AE000213) hypothetical protein in purB 5' region [Escherichia coli]	11	57	1137
209	- 5	2022	11141	gi 41432	fepC gene product [Escherichia coli]	111	46	882
210	- 5	1911	3071	gi 49316	ORF2 gene product (Bacillus subtilis)	71	45	1161
210	9	3069	3386	gi 580900	ORF3 gene product (Bacillus subtilis)	71	48	318
212	2	3561	1381	gi 557567		111	53	2181
233	e	2003	2920	gn1 PID d101320	YqgR (Bacillus subtilis)	71	90	918
244		13	1053	gn1 PID d100964	homologue of aspartokinase 2 alpha and beta subunits LysC of B. subtilis [Bacillus subtilis]	71	55	1041
251	2	1008	1874	gi 755601	unknown (Bacillus subtilis	71	46	867
282	2	906	112	gi 1353874	unknown (Rhodobacter capsulatus)	71	46	195
312	4	2137	1565	gn1 PID d102245	(AB005554) yxbF (Bacillus subtilis)	71	34	573
338	-	3	683	gi 1591045	hypothetical protein (SP:P31466) [Methanococcus jannaschii]	711	48	681
346	-	3	164	gi 1591234	hypothetical protein (SP:P42297) [Methanococcus jannaschii]	11.	36	162
374	-	619	2	gi 397526	clumping factor [Staphylococcus aureus]	71	23	618
1 377	1	889	- 2	gi 397526	clumping factor [Staphylococcus aureus]	71	23	1 689
3	8	7419	6958	gn1 PID e269486	Unknown [Bacillus subtilis]	70	42	462
3	110	8395	9075	gn1 PID e255543	putative iron dependant repressor [Staphylococcus epidermidis]	70	46	681
7	114	11024	10254	gn1 P1D d100290	undefined open reading frame (Bacillus stearothermophilus)	70	55	177
7	118	14213	13719	gn1 PID d101090 	biotin carboxyl carrier protein of acetyl-CoA carboxylase [Synechocystis sp.]	70	56	495
6	5	1057	287	gn1 PID d100581	unknown (Bacillus subtilis)	70	52	771
12	4	2610	1789		yycJ (Bacillus subtilis)	70	52	822
21	2	2586	1846	gi 2293447	(AF008930) ATPase (Bacillus subtilis)	70	54	741
22	113	10955	11512	gi 1165295	Ydr540cp [Saccharomyces cerevisiae]	70	50	558
30	9	4315	3980	gi 39478	ATP binding protein of transport ATPases (Bacillus firmus)	70	51	336
						-+	-+	+

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF	Start (nt)	Stop (nt)	match acession	match gene name	e sim	% ident	length
31	-	370	113	gi 662792	single-stranded DNA binding protein [unidentified eubacterium]	70	36	258
33	115	10639	9521	gi 1161219	homolgous to D-amino acid dehydrogenase enzyme (Pseudomonas aeruginosa)	70	50	1119
38	9	3812	4312	91 2058547	ComYD [Streptococcus gordonii]	70	48	501
38	25	117986	18477	gi 537033	ORF_f356 [Escherichia coli]	70	58	492
40	113	111054	9846	gi 1173516	riboflavin-specific deaminase (Actinobacillus pleuropneumoniae)	70	52	1209
42	- 5	722	1954	gi 1146183	[putative [Bacillus subtilis]	70	51	1233
43	E -	2373	1612	gi 1591493	glutamine transport ATP-binding protein Q [Methanococcus jannaschii]	1 07	48	762
45	8	9197	8049	gn1 PID d102036	subunit of ADP-glucose pyrophosphorylase [Bacillus stearothermophilus]	70	54	1149
65	2	567	956	gn1 P1D d100302	neopullulanase [Bacillus sp.]	70	42	390
09	8 -	1874	795	gn1 PID e276466	aminopeptidase P [Lactococcus lactis]	70	48	1080
61	4	5553	2437	gn1 PID e275074	SNF (Bacillus cereus)	70	51	3117
61	7	7914	6802	gi 1573037	cystathionine gamma-synthase (metB) [Haemophilus influenzae]	70	52	1113
63	7	5372	7222	gn1 PID d100974	unknown (Bacillus subtilis)	70	54	1851
68	7	7126	6962	gi 1263014	emm18.1 gene product [Streptococcus pyogenes]	70	37	165
1 72	112	10081	110911	gi 2313093	(AE000524) carboxynorspermidine decarboxylase (nspC) (Helicobacter pylori)	70	95	831
75	110	7888	8124	gi 1877423	galactose-1-P-uridyl transferase [Streptococcus mutans]	1 07	59	237
79	6	3424	2525	gi 39881	ORF 311 (AA 1-311) (Bacillus subtilis)	70	47	1 006
87	110	9369	7324	gn1 PID e323506	putative Pkn2 protein (Bacillus subtilis)	70	52	2046
96	114	10640	11788	gi 1573209	tRNA-guanine transglycosylase (tgt) (Haemophilus influenzae)	1 00	52	1149
1113	2	574	1086	gi 433630	A180 (Saccharomyces cerevisiae)	70	59	513
123	- 5	2901	3461	gn1 PID d100585	unknown [Bacillus subtilis]	1 01	45	561
125	5	4593	4282	gn1 PID e276474	Capacitative calcium entry channel 1 [Bos taurus]	70	35	312
129	5	4500	3454	gn1 PID d101314	YqeT (Bacillus subtilis)	70	47	1047
133	3	2608	1394	gi 2293312	(AF008220) YtfP (Bacillus subtilis)	1 0/	20	1215
135	1	420	662	gn1 PID e265530	yorfE Streptococcus pneumoniae	70	47	243
137	3 -	438	932	gi 472919 	v-type Na-ATPase [Enterococcus hirae]	70	57	495
138	1-1-	440	3	gi 147336	transmembrane protein (Escherichia coli)	70	42	438
					. •	-+	-+	+

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

+++++++			+-					
Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	e sia	% ident	length (nt)
140	116	18796	16364	gi 976441	NS-methyltetrahydrofolate homocysteine methyltransferase [Saccharomyces cerevisiae]	70	53	2433
167	10	8263	6699	gi 149535	D-alanine activating enzyme [Lactobacillus casei]	07	52	1569
204	4	3226	2747	gn1 PID d102049	E. coli hypothetical protein; P31805 (267) (Bacillus subtilis)	02	51	480
1 207		2627	2869	gn1 PID e309213	[racGAP [Dictyostelium discoideum]	70	45	243
282	3	1136	882	gi 1353874	unknown Rhodobacter capsulatus	70	50	255
9	21	17554	18453	gn1 PID e233879	hypothetical protein (Bacillus subtilis)	69	44	006
9	22	18482	119471	gi 580883	lpa-88d gene product (Bacillus subtilis)	69	53	1 066
22	9 +	4682	5824	gi 2209379	(AF006720) ProJ (Bacillus subtilis)	69	48	1143
22	6	7992	8651	gn1 PID d100580	unknown {Bacillus subtilis	69	51	1 099
22	112	9871	10767	gn1 P1D d100581	unknown (Bacillus subtilis)	69	51	897
27		5857	5348	gn1 PrD d102012	(AB001488) FUNCTION UNKNOWN. [Bacillus subtilis]	69	28	510
36	110	7294	10116	gi 437916	isoleucyl-tRNA synthetase (Staphylococcus aureus)	69	53	2823
38	7	2	1090	gi 141900	alcohol dehydrogenase (EC 1.1.1.1) (Alcaligenes eutrophus)	69	48	1089
40	14	11333	111944	gi 1573280	Holliday junction DNA helicase (ruvA) (Haemophilus influenzae)	69	44	612
40	115	11942	12517	gi 1573653	DNA-3-methyladenine glycosidase I (tagI) [Haemophilus influenzae]	69	80	576
45	9	6947	5490	gi 580887	starch (bacterial glycogen) synthase (Bacillus subtilis)	[69	47	1458
48	34	24932	24153	gn1 PID e233870	hypothetical protein (Bacillus subtilis)	69	36	780
49	9	6183	6521	gi 396297	similar to'phosphotransferase system enzyme II [Escherichia coli]	69	20	339
49	8	7586	8338	gi 396420	similar to Alcaligenes eutrophus pHGl D-ribulose-5-phosphate 3 epimerase [Escherichia coli]	69	49	753
55	9	8262	7033	gi 1146238	poly(A) polymerase (Bacillus subtilis)	1 69	50	1230
65	3	954	2333	gn1 PID e313038	hypothetical protein [Bacillus subtilis]	1 69	54	1380
62	- 1	1170	1418	gn1 P1D d101915	hypothetical protein (Synechocystis sp.)	69	49	249
63	8	7298	1762	gi 293017	ORF3 (put.); putative (Lactococcus lactis)	69	42	465
99	4	3657	5081	gi 153755	phospho-beta-D-galactosidase (EC 3.2.1.85) [Lactococcus lactis cremoris]	69	49	1425
99	5	5126	6829	gi 433809	enzyme II [Streptococcus mutans]	1 69	46	1704
71	9	10017	10664	gn1 PID e322063	ss-1,4-galactosyltransferase (Streptococcus pneumoniae)	- 69	39	648
		•		*	**			• • • • • • • • • • • • • • • • • • • •

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	s sim	% ident	length
7.1		27730	127966	gn1 P1D d100649	DE-cadherin (Drosophila melanogaster)		0.00	(nc)
77	-		237	91 287870	groES gene product [Lactococcus lactis]		44	23.7
81	- 2	3622	4101	gi 1573605	fucose operon protein (fucU) (Haemophilus influenzae)	69	52	4
83	7	40	714	pir C33496 C334	hisC homolog - Bacillus subtilis	69	46	1 269
83	116	15742	16335	gi 143372	phosphoribosyl glycinamide formyltransferase (PUR-N) (Bacillus subtilis)	69	46	1 468
85	7	1212	916	gi 194097	IFN-response element binding factor 1 [Mus musculus]	69	48	297
91	2	3678	4274	gi 1574712	anaerobic ribonuleoside-triphosphate reductase activating protein (nrdG)	69	44	597
9.8	2	3247	4032	gn1 PID d100262	Live protein (Salmonella typhimurium)	69	51	786
108	- 5	4085	9505	gn1 PID e257629	transcription factor (Lactoroccus lactis)	69	1 64	472
126	m	3078	4568	[gn1 PID d101329	YqjJ [Bacillus subtilis]	69	49	1491
131	9	4121	2889	gn1 P1D d101314	YqeR (Bacillus subtilis)	69	47	1233
136	2	1505	2299	[gn1 PID d100581	unknown (Bacillus subtilis)	69	47	795
149	5	3852	4763	gn1 PID e323525	YloQ protein (Bacillus subtilis)	69	20	912
149	112	9336	10655	gi 151571 	Homology with E.coli and P.aeruginosa lysA gene; product of unknown function; putative [Pseudomonas syringae]	69	52	1320
153 .	4 +	3191	3829	gi 1710373	BrnQ (Bacillus subtilis)	69	44	639
169		849	2324	gn1 PID d100582	temperature sensitive cell division (Bacillus subtilis)	69	49 1	1476
180	-	999	3	gi 488339	alpha-amylase (unidentified cloning vector)	69	50 1	564
212	1	1196	231	gi 1395209	ribonucleotide reductase R2-2 small subunit (Mycobacterium tuberculosis)		53 1	1 996
226	7	2	661	pir JQ2285 JQ22	nodulin-26 - soybean	1 69	41	1 099
233	2	3249	4766	gi 472918	v-type Na-ATPase [Enterococcus hirae]	69	56	1518
235	3	099	1766	gi 148945	methylase [Haemophilus influenzae]	1 69	43	1107
243	2	865	2361	gn1 PID d100225	ORFS (Barley yellow dwarf virus)	69		1497
251	3	2899	1967	gi 2289231	macrolide-efflux protein (Streptococcus agalactiae)	1 69	51	+
310		1	282	gn1 PID e322442	Peptide deformylase (Clostridium beijerinckii)	69	55	282
369	1	868	2	gi 397526	clumping factor [Staphylococcus aureus]	1 69	22	867
370	- †	749	3	gi 397526	clumping factor (Staphylococcus aureus)	69	21	747
						-+		

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	8 sim	\$ ident	length (nt)
379	-	44	280	gn1 P1D d100649	DE-cadherin (Drosophila melanogaster)	69	30	237
388		260	72	gi 1787524	(AE000225) hypothetical 32.7 kD protein in trpL-btuR intergenic region [Escherichia coli]	69	44	189
1	7	2006	3040	gn1 PID d101809	ABC transporter (Synechocystis sp.)	68	43	1035
12	- 2	3958	2600	gi 2182992	histidine kinase (Lactococcus lactis cremoris)	89	45	1359
15	- 5	1790	1311	pir S16974 R5BS	ribosomal protein L9 - Bacillus stearothermophilus	89	56	480
16	9	7353	5701	gi 1787041	(AE000184) 0530; This 530 aa orf is 33 pct identical (14 gaps) to 525 residues of an approx. 640 aa protein YHES_HAEIN SW: P44808 [Escherichia coli)	89	45	1653
17	112	6479	6805	gi 553165	acetylcholinesterase (Homo sapiens)	89	68	327
20	113	14128	14505	gi 142700	P competence protein (ttg start codon) (put.); putative (Bacillus subtilis)	89	40	378
22	32	24612	25397	gi 289262		89	36	786
30	7	4548	4288	gi 311388	ORF1 (Azorhizobium caulinodans)	68	46	261
36	- 5	3911	4585	gi 1573041	hypothetical (Haemophilus influenzae)	1 89	54	675
46	9	5219	6040	gi 1790131	(AECO0446) hypothetical 29.7 kD protein in ibpA-gyrB intergenic region	89	47	822
54	110	6235	7086	gi 882579	CG Site No. 29739 [Escherichia coli]	68	55	852
55	5	1069	5165		ABC transporter [Synechocystis sp.]	1 89	45	1905
71	3	6134	5613	gi 1573353	outer membrane integrity protein (tolA) [Haemophilus influenzae]	68	20	522
71	110	15342	16613	gi 580866	ipa-12d gene product (Bacillus subtilis)	68	31	1272
71	112	17560	18792	gi 44073	SecY protein [Lactococcus lactis]	89	35	1233
71	17	22295	24703	gi 1762349	involved in protein export (Bacillus subtilis)	89	50	2409
73	116	10208	9729	gi 1353537	dUTPase (Bacteriophage rlt)	68	51	480
86	118	17198	16011	gi 413943	ipa-19d gene product (Bacillus subtilis)	- 89	53	1188
87	117	17491	15866	gi 150209	ORF 1 [Mycoplasma mycoides]	89	43	1626
89	9	5139	4354	gi 1498824	M. jannaschii predicted coding region MJ0062 [Methanococcus jannaschii]	89	40 4	786
89	111	8021	8242	gi 150974	4-oxalocrotonate tautomerase (Pseudomonas putida)	68	43 (222
76	80	6755	5394	gi 2367358	(AE000491) hypothetical 52.9 kD protein in aidB-rpsF intergenic region	89	41	1362
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	+			- +	- +

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

	- 4-							
Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	e sia	8 ident	length
86	. —	1418	2308	gnl P1D d100261	LivA protein [Salmonella typhimurium]			(nt)
96	113	16414	117280	gi 455363	regulatory protein (Streptococcus mulane)	89	40	891
115	3	5054	3693	gi 466474		68	50	1 867
124	7	3394	3221	gn1 P1D d100702	cut14 protein Schizosaccharomyces nombol	68	44	1362
125	2	2923	1922	gi 450566	transmembrane protein (Racillus cuttii.)	68	1 56	174
132	1 2	4858	1 2888		DNA ligase (Superhouseties 1	68	50	1002
140	1 7	7765	1 7580	gi 1209711		1 68	52	1971
150	-	539		gi 402490		68	47	186
164	-	58	1 867	gn1 P1D e255114	glutamate racemase (Barillus subri)	89	59	537
164	7	819	1835	gn1 PID e255117	hypothetical protein [page 1]	89	49	810
169	7	3946	4104		handthotical process	89	20	1017
170	4	4247	4396	9i 304146	Sport for brothin fractor	89	40	159
171	8	6002	7054	-+		89	52	150
198	-	2473	1021			1 68	54	1053
211		67.82	1/8/1	gn1 PID e313075	hypothetical protein (Bacillus subtilis)	89	46	603
+	7	496	1 1802	gi 1439528	EIIC-man [Lactobacillus curvatus]	+		
214	8	4926	4231	gn1 PID d102049	H. influenzae hypothetical protein; P43990 (182) (Racillus cubeili.	1 90	45	834
217	9	4955	5170	gn1 PID e326966	ondrial	68	50	969
+					transcriptase) [Arabidopsis thaliana]	89	36	216
1 017	-	1930	4745	gi 2293198	(AF008220)	, es	+	- +
220	9	4628	4338	gn1 PID e325791	(AJ000005) orfl (Bacillus megaterium)		1 00	816
236		746	108	gi 410137	ORFX13 [Bacillus subtilis]	98	51	291
237	~	675	1451	gi 396348	homoserine transsuccinvlase (Echamichia anii)	89	46	639
250	4	771	1229	gi 310859		1 89	49	111
254		517	155	11202106	201:100:100:100:100:100:100:100:100:100:	89	20	459
· ;) 	607/0/1	(AEUUU189) o648 was o669; This 669 aa orf is 40 pct identical (1 gaps) to 217 residues of an approx. 232 aa protein YBBA_HAEIN SW: P45247 {Escherichia coli]	89	44	363
337	1		774	gn1 PID e261990	putative orf [Bacillus subtilis]		- †	- +
345	-	3	653	gi 149513	1,5	89	47	174
	+ 1 - 1 - 1 - 1	+	-	+		89	61	651

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

15 4 4 19 133333 cuence membrane incepting protein (toba) (letemophilus influencescue, jamuschill) 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 <th< th=""><th>Contig</th><th>ORF</th><th>Start (nt)</th><th>Stop (nt)</th><th>match acession</th><th>match gene name</th><th>e sia</th><th>% ident</th><th>length (nt)</th></th<>	Contig	ORF	Start (nt)	Stop (nt)	match acession	match gene name	e sia	% ident	length (nt)
4 5722 5637 [5132313] [N. Sannaschili predicted coding region MilSOT [Methanococcus Januachtili 1 67 724 44 6 5337 [531 [5123135] (ARODOZZOD signal transduction regulator [Bacillus abblilish] 67 7 44 12 200 [573 [573] [41233135] (ARDOGZZO) signal transduction regulator [Bacillus abblilish] 67 7 45 13 20 [573 [573] [4123135] [142000227] para-animomenta synthetase (pabl) [Relicobacter priori) 67 7 41 18 20 [573] [41232962] [APTOLINA-Y-carboduct Bacillus abblilish] 67 7 41 19 20 [573] [41232962] [APTOLINA-Y-carboduct Bacillus abblilish] 67 7 47 10 [573] [573] [574] 67 7 47 11 [58] [570] [570] 67 7 47 12 [57] [57] [57] 47 47 13 [57] [57] [57] 57 57 14 [58] [57] 57 57 57 15 [58] [57] 57 57 57 16 [58] [57] 57 57 57	386	2	417	4	91 1573353	membrane integrity protein (tolA)	1 89	51	414
6 539 453 451	2	4	5722	4697	gi 1592141	M. jannaschii predicted coding region MJ1507 [Methanococcus jannaschii]	1 19	26	1026
2 1004 1673 1673336 Appropriate Paraminobancous synthetase (pubb) (Melicobacter pylori) 67 466 41 19 16663 16738 Gyl(13331 Ipp-7d gome product [Bacillus subtilis] 67 40 41 10 8333 2037 Gyl(123352 Parzollun-5-carboxylate reductase (Actinidia deliciosa) 67 41 67 41 10 8333 2037 Gyl(22323 Gyl(2022) Gyl(3	9	5397	4591	gi 2293175	signal transduction regulator [Bacillus	1 19	44	807
13 18573 18773 181923862 Dyrroline-S-carboxylate reducesae (Actinidia deliciosa) 67 41 10 8315 9372 [91148745] [91cc8 gene product [Bacillus brevis] 67 41 1 11 8815 9372 [91148745] [91cc8 gene product [Bacillus brevis] 67 41 41 11 8859 10136 [9114829] [087] gene product [Bacherichia coli] 67 47 47 1 11 8859 10136 [91148029] [087] gene product [Bacherichia coli] 67 47 47 47 12 11376 14312 [91181912] [087] gene product [Bacherichia coli] 67 52 43 13 11374 [912] gene product [Bacherichia coli] [912] gene product [Bacherichia coli] 67 52 47	2	7	2301	574	gi 2313385	para-aminobenzoate synthetase (pabB)	1 19	48	1728
9 7094 7897 7897 9411928942 Pyprroline-S-carboxylate reductase (Actinida deliciose) 67 611 51 51 51 51 51 51 51 41 67 41 41 10 8335 9372 914148945 9152 9152232 148019885 Paca Dictyostellum discoldemal 67 <td< td=""><td>9</td><td>119</td><td>16063</td><td>16758</td><td>[gi 413931</td><td>gene product (Bacillus</td><td>67</td><td>41</td><td>1 969</td></td<>	9	119	16063	16758	[gi 413931	gene product (Bacillus	67	41	1 969
10 8315 9072 91468745 91ct R gene product (Bacillus brevis) 7 7 7 7 7 7 7 7 7	22	8	7094	7897	gi 1928962	pyrroline-5-carboxylate reductase [Actinidia deliciosa]	67	51	804
1 2849 10150 91 2425123 ORF1 gene product [Escherichia coli] 67 49 71 71 72 73 74 74 74 74 74 74 74	29	110	8335	9072	gi 468745	gene	1 19	41	738
11 2849 10154 91 42029 918F1 gene product [Escherichia coli] 1810 1814 1815 1814 1815 1815 1815 1815 91 182142 91 1828313 Caenorhabdits elegans) 67 67 67 67 67 67 67 6	31	3	1379	585	gi 2425123	(AF019986) PksB [Dictyostellium discoideum]	1 19	49	195
14 14316 15546 gi 1592142 ABC transporter, probable APP-binding subunit [Methanococcus jannaschii] 67 47 47 47 47 47 47 47	32	11	8849	10150	gi 42029	gene product (Escherichia	67	47	1302
9 4958 51372 gnl PD e214603 772B3.3 (Genochabditis elegans) 67 47 47 21 13775 14512 gil537037 ORC_0216 (Escherichia coll) EC 2.1.18) (Bacillus stearcothermophilus) 67 52 1 21 13775 14512 gil537037 ORC_0216 (Escherichia coll) EC 2.1.1.8) (Bacillus stearcothermophilus) 67 50 1 23 18344 17514 gil1810130 Yago (Bacillus subtilis) 67 50 40 1 131 3 gil18740 Habrial transcription regulation repressor (plB) (Haemophilus influenzee) 67 40 40 1 131 3 gil18740 Habrial transcription regulation repressor (plB) (Haemophilus influenzee) 67 40 40 1 131 1246 Habrial proposition (Bachano Color) Acceptation (Bachano Color) Acceptation (Bachano Color) 42 42 2 5544 6117 gil1142744 Acceptation (Bachano Color) Acceptation (Bachano Color) Acceptation (Bachano Color) Acceptation (Bachano Color)	36	;	14830	15546	gi 1592142	transporter, probable ATP-binding subunit	67	43	1 711
13 14312 918 14512 918 1451710 Dranching enzyme (91gB) (EC 2.4.1.18) [Bacillus stearothermophilus] 67 51 11 11 11 11 11 11 1	38	6	4958	5392	gn1 PID e214803	{Caenorhabditis	67	47	435
9 10428 9181 [91] 551710 branching enzyme (glgB) [EC 2 4.1.18) [Bacillus subtilis] 67 50 12 1773 952 [91] [13349 [194.25d gene product [Bacillus subtilis] 67 50 1 431 3 [91] [1574291 [fimbrial transcription regulation repressor (plB) [Haemophilus influenzae] 67 50 13 [1274] [1346 [91] [1574291 [fimbrial transcription regulation repressor (plB) [Haemophilus influenzae] 67 50 13 [1274] [1346 [91] [137429] [91] [14741] [91] [14741] [91] [14774 [91] [14774] [91] [14774 [91] [14774 [91] [14774 [91] [14774 [91] [14774 [91] [14774 [91] [14774 [91] [14774 [91] [14774 [91] [14774 [91] [14774 [92] [14774 [92] [14774 [93] [14774 [94] [14774 [94] [14774 [95] [14774 [95] [14774 [95] [14774 [95] [14774 [95] [14774 [95] [14774 [95] [14774 [95] [14774 [95] [14774 [95] [14774 [95] [14774 [95] [14774 [95] [14774 [95] [14774 [95] [14774 [95] [14774<	38			14512	gi 537037	ORF_0216 [Escherichia coli]	67	52	738
23 18314 17514 941 941 941 941 941 941 941 942 9	45	1	10428	9181	91 551710	enzyme (glgB) (EC 2.4.1.18) [Bacillus	67	51	1248
1 173 952 gnl PID d101330 YqjQ Bacillus subtilis) 67 55 1 131 12740 11946 gnl PID d252990 ORF YDL037C Saccharomyces cerevisiae 67 40 13 12740 11946 gnl PID e252990 ORF YDL037C Saccharomyces cerevisiae 67 50 13 12740 11946 gnl PID e254711 ArP-binding cassette transporter A (Staphylococcus aureus) 67 50 14 12740 11946 gnl PID e254711 ArP-binding cassette transporter A (Staphylococcus aureus) 67 36 1 5 5514 6117 gill197667 Vitellogenin (Anolis pulchellus) 67 42 1 5 5514 6117 gill19767 Artellogenin (Anolis pulchellus) 67 42 2 5514 6117 gill19767 Acyl carrier procein (Porphyra purpurea) 67 42 3 68 8140 6809 gill147744 PSR Enterococcus hirael 67 43 4 596 1366 gill18921 Lico procein (Haemophilus influenzae) 67 43 4 598 5656 gil895750 putative cellobiose phosphotransferase enzyme III (Bacillus subtilis) 67 44	48	_	18344	17514	gi 413949	product [Bacillus	67	20	831
1 431 3 91 1574291 finbrial transcription regulation repressor (pilB) [Haemophilus influenzae] 67 40 40 113 12740 11346 91 91 91 9210 91 9210 91 9210 91 9210 91 9210 91 9210 91 9210 91 9210 92	1 50	2	1773	952	gn1 PID d101330	YqjQ (Bacillus subtilis)	67	55	822
13 12740 11946 gnl PID e252990 ORF YDLOJ7C [Saccharomyces crevisiae] 67 51 51 52 52 52 52 52 52	53	-	431		gi 1574291	transcription regulation repressor (pilB)	1 19	40	429
9 9210 8329 gnl PID e264711 ATP-binding cassette transporter A (Staphylococcus aureus) 67 50 2 5614 6117 gi 1197667 vitellogenin (Anolis pulchellus) 67 36 7 4489 4983 gi 1142714 phosphoenolpyruvate:mannose phosphotransferase element IIB (Lactobacillus) 67 42 7 2957 3214 gi 1276746 Acyl carrier protein (Porphyra purpurea) 67 45 1 8 8140 6809 gi 1147744 PSR (Enterococcus hirae) 67 45 1 3 986 1366 gnl PID d102235 (AB000631) unnamed protein product (Streptococcus mutans) 67 43 1 1 601 1413 gi 682765 mccB gene product (Escherichia coli) 67 43 1 3 1109 1987 gi 489275 putative cellobiose phosphotransferase enzyme III (Bacillus subtilis) 67 44	55	;	12740	11946	gn1 PID e252990	[Saccharomyces	67	51	795
2 5614 6117 gil 1197667 vitellogenin (Anolis pulchellus) 67 36 7 4489 4983 gil 1142714 phosphoenolpyruvate:mannose phosphotransferase element IIB [Lactobacillus 67 42 7 2957 3214 gil 1276746 Acyl carrier protein (Porphyra purpurea) 67 45 1 8 8140 6809 gil 1147744 PSR [Enterococcus hirae] 67 43 1 3 986 1366 gil 1147744 PSR [Enterococcus hirae] 67 43 1 1 601 1413 gil 682765 mccB gene product [Escherichia coli] 67 43 1 1 601 148927 LicD protein [Haemophilus influenzae] 67 44 1 4 5982 5656 gil 895750 putative cellobiose phosphotransferase enzyme III [Bacillus subtilis] 67 44 1	61	6	9210	8329	gn1 PID e264711	cassette transporter A (Staphylococcus	67	20	882
7 4489 4983 gi 1142714 phosphoenolpyruvate:mannose phosphotransferase element IIB [Lactobacillus 67 42 7 2957 3214 gi 1276746 Acyl carrier protein [Porphyra purpurea] 67 45 1 8 8140 6809 gi 1147744 PSR [Enterococcus hirae] 67 43 1 3 986 1366 gnl PID d102235 (AB000631) unnamed protein product [Streptococcus mutans] 67 43 1 1 601 1413 gi 682765 mccB gene product [Escherichia coli] 67 43 67 44 3 1109 1987 gi 148921 LicD protein [Haemophilus influenzae] 67 44 67 44 4 5982 5656 gi 895750 putative cellobiose phosphotransferase enzyme III [Bacillus subtilis] 67 44 4	7.1	2	5614	6117	gi 1197667		67	36	504
7 2957 3214 gi 1276746 Acyl carrier protein [Porphyra purpurea] 67 37 8 8140 6809 gi 1147744 PSR [Enterococcus hirae] 67 43 1 1 986 1366 gnl PID d102235 [AB000631] unnamed protein product [Screptococcus mutans] 67 43 1 1 601 1413 gi 682765 mccB gene product [Escherichia coli] 67 36 6 3 1109 1987 gi 148921 LicD protein [Haemophilus influenzae] 67 43 6 4 5982 5656 gi 895750 putative cellobiose phosphotransferase enzyme III [Bacillus subtilis] 67 44 1	81	7	4489	4983	gi 1142714	element	67	42	495
8 8140 6809 gi 1147744 PSR (Enterococcus hirae) 67 45 45 45 45 45 45 45 4	83	7	2957	3214	gi 1276746	protein (Porphyra	1 49	37	258
3 986 1366 gnl PID d102235 (AB000631) unnamed protein product (Streptococcus mutans]	1 86	8	8140	6089	gi 1147744	Enterococcus	67	45	1332
1 601 1413 gi 682765 mccB gene product [Escherichia coli]	76	3	986	1366	gn1 PID d102235	(AB000631) unnamed protein product (Streptococcus mutans)	67	43	381
3 1109 1987 gi 148921 LicD protein (Haemophilus influenzae) 67 43 4 5982 5656 gi 895750 putative cellobiose phosphotransferase enzyme III (Bacillus subtilis) 67 44	102	1	601	1413	gi 682765	gene product	1 19	36	813
4 5982 5656 gi 895750 putative cellobiose phosphotransferase enzyme III [Bacillus subtilis] 67 44	106	3	1109	1987	gi 148921	LicD protein (Haemophilus influenzae)	67	1 64.	879
	115	4	5982	_ i	gi 895750	enzyme III [Bacillus	67	44	327

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	e sin	% ident	length (nt)
115	- 1	8421	8077	91 466473	cellobiose phosphotransferase enzyme II' [Bacillus stearothermophilus]	1 19	51	345
127	13	8127	7021	gi 147326	transport protein [Escherichia coli]	67	45	1107
136	m	2215	2859	gn1 P1D d100581	unknown (Bacillus subtilis)	1.9	49	645
140	21	23317	20906	gn1 PID d101912	phenylalanyl-tRWA synthetase (Synechocystis sp.)	1 69	43	2412
146	9	2894	1893	gi 2182994	histidine kinase [Lactococcus lactis cremoris]	1.9	44	1002
151	8	111476	111117	gn1 PID d100085	[ORF129 [Bacillus cereus]	1 69	48	360
160	10	7453	8646	gi 2281317	OrfB; similar to a Streptococcus pneumoniae putative membrane protein encoded by GenBank Accession Number X99400; inactivation of the OrfB gene leads to UV-sensitivity and to decrease of homologous recombination (plasmidic test) [Lactococcus 1	67	46	1194
1 163	3	3099	4505	gn1 PID d101317	YqfR [Bacillus subtilis]	69	47	1407
167	8	6704	5454	gi 1161933	Dith [Lactobacillus casei]	1 19	45	1251
169	4	2322	2879	gn1 PID d101331	YqkG [Bacillus subtilis]	67	41	258
171	111	7656	8384	gi 153841	pneumococcal surface protein A (Streptococcus pneumoniae)	67	20	729
188	8	1930	3723	gi 1542975	AbcB (Thermoanaerobacterium thermosulfurigenes)	67	46	1794
189	9	3599	3141	gn1 PID e325178	Hypothetical protein (Bacillus subtilis)	67	52	459
205	3	1663	2211	gi 606073	ORF_o169 [Escherichia coli]	67	47	549
207	4	2896	3456	gi 2276374	DtxR/iron regulated lipoprotein precursor (Corynebacterium diphtheriae)	67	64	561
217	- m	4086	3703	gi 895750	putative cellobiose phosphotransferase enzyme III (Bacillus subtilis)	67	42	384
246	2	291	662	gi 1842438	unknown [Bacillus subtilis]	67	43	372
252	1	2	745	gi 2351768	PspA (Streptococcus pneumoniae)	67	41	744
265	- 3	1134	1811	gi 2313847	(AE000585) L-asparaginase II (ansB) [Helicobacter pylori]	67	42	678
295	-	1	375	gi 2276374	DtxR/iron regulated lipoprotein precursor [Corynebacterium diphtheriae]	67	43	375
1	7	4898	5146	gn1 P1D e255179	unknown (Mycobacterium tuberculosis)	99	56	249
3	-	389	m	gn1 PID e269548	Unknown (Bacillus subtilis)	99	48	387
3	20	19267	20805	gi 39956	IIGlc (Bacillus subtilis)	99	20	1539
4	- 3	2545	2718	gi 1787564	(AE000228) phage shock protein C [Escherichia coli]	99	36	174
5	6	13197	112592	gi 1574291	[fimbrial transcription regulation repressor (pilB) [Haemophilus influenzae]	99	46	909
							•	

. S. pneumoniae - Putative coding regions of novel proteins Similar to known proteins

9 4 2872 1451 post 1020 post 1020 <t< th=""><th>Contig ID</th><th>ORF</th><th>Start (nt)</th><th> Stop (nt)</th><th>match</th><th>match gene name</th><th>e sin</th><th>% ident</th><th>length </th></t<>	Contig ID	ORF	Start (nt)	Stop (nt)	match	match gene name	e sin	% ident	length
2 1459 1200 91 520400 orf2: Gro start codon [bacillus thuringianis] 12 1057 9897 91 2110738 AkaDO0653) translation alongation factor EP-7s [tsf] [Helicobacter pylori] 1 131 734 91 210 310254 AkaDO05531 yark [sacillus subtilis] 1 132 1851 91 10 10 22554 AkaDO05531 yark [sacillus subtilis] 1 132 1851 171 10 10 10 10 10 10 10 10 10 10 10 10 10	6	7	2872	1451	gn1 PID e266928	unknown [Mycobacterium tuberculosis]	99	43	1422
12 11929 9887 94 2314338 ARRODOGASJ Pranslation elongation factor EF-Ts (tsf) [Nellicobacter pylori] 2 1312 734 991 PDD[d102245 ARRODOSAS4) yzde [ascillus subtilis] 3 1372 1883 7056 991 PDD[d20245 Signal Paptidase type II (Lactococcus harrophilus) 4 5828 7056 991 PDD[d20245 Gamma-glutamyl phosphate reductase [Streptococcus thereophilus] 5 550 756 991 PDD[d20245 MARODOSA MAROD	12	2	1469	1200	gi 520407	start codon	99	42	270
1 1312 1831 1911 PID GLO2255 Gamel Peptidase type II (Lactococcus lactis) 1 1312 1831 1911 PID GLO22626 gamel Peptidase type II (Lactococcus lactis) 1 1832 7096 991 PID GLO22626 gamel-glutamyl phosphate reductase (Streptococcus thermophilus) 1 189 884 991 2314379 Att identity over 302 residues with hypothetical protein (yhco) (Helicobacter Pyloz1) 1 189 884 991 33479 Att identity over 302 residues with hypothetical protein from Symechocystis 1 189 884 991 33779 Att identity over 302 residues with hypothetical protein from Symechocystis 1 189 884 991 33779 Att identity to 91/cos91 transferases; two potential membrane-spaming 1 189 885 4708 991 550974 Ordiz [Lactobacillus subt]] 1 189 887 991 991 550774 Ordiz [Lactobacillus subt]] 1 189 887 991 991 550774 Ordiz [Lactobacillus subt]] 1 189 887 991 991 550774 Ordiz [Lactobacillus subt]] 1 189 887 991 991 550774 Ordiz [Lactobacillus subt]] 1 189 887 991 991 550774 Ordiz [Lactobacillus subt]] 1 189 887 991 991 50997 W. Jannsschil predicted coding region MO0272 [Rethanococcus Jannsschil] 1 189 887 991 991 50997 W. Jannsschil predicted coding region MO0272 [Rethanococcus Jannsschil] 1 18 19 19 19 19 19 19	15	112	10979	9897	gi 2314738	translation elongation factor EF-Ts (tsf) [Helicobacter	99	49	1083
3 1372 1851 91 1480916 Signal peptidase type II [Lactococcus lactis] 2 5828 7096 9ni PiD e206266 gamea-gluteamyl phosphate reductase [Streptococcus thermophilus] 2 530 976 91 2114379 (ARE000627) ABC transporter, ATP-binding protein (yhco) [Helicobacter Pyderi] 3 532 7234 91 31244 ONF2 [Bacillus subbilis] AREOLOGYSIS Phyderi] 4 5956 4708 9ni PiD e20831 W. Jammaschil predicted coding region HOG72 [Hethanococcus jannaschili] 5 5658 4708 9ni PiD e20937 W. Jammaschil predicted coding region HOG72 [Hethanococcus jannaschili] 6 5658 4708 9ni PiD e20937 W. Jammaschil predicted coding region HOG72 [Hethanococcus jannaschili] 8 5034 9ni PiD e20937 W. Jammaschili predicted coding region HOG72 [Hethanococcus jannaschili] 9 6173 6576 9ni PiD e20937 M. Jammaschil predicted coding region HOG72 [Hethanococcus jannaschili] 1 1036 1032 Bbe 155344 Insulin activator factor, INSAF [human, Pancreatic insulinoma, Peptide 1 28 1119 9ni PiD e205204 Phypothetical protein Box111s 1 28 1119 9ni PiD e205204 Phypothetical protein Box10 Sprehocycisi sp.] 1 28 1119 9ni PiD e1010131 9uramine-binding partplasmic protein [Synehocycisi sp.] 1 28 1119 9ni PiD e1010131 9uramine-binding partplasmic protein [Synehocycisi sp.] 1 28 1119 9ni PiD e1010131 9uramine-binding partplasmic protein [Synehocycisi sp.] 1 28 1119 9ni PiD e1010131 9uramine-binding partplasmic protein [Synehocycisi sp.] 1 28 1118 9ni PiD e1010131 9uramine-binding partplasmic protein [Synehocycisi sp.] 1 28 1118 9ni PiD e1010131 9uramine-binding partplasmic protein [Synehocycisi sp.] 1 2 668 9ni PiD e1010131 9ni PiD e101014	16	- 5	1312	734	gn1 PID d102245	yxbF {Bacillus	99	35	579
1 1832 1704 9701 PID e206261 gamma-gluteamy1 phosphate reductase [Streptococcus thermophilus] 2 530 976 911 121143 (ARE000627) ARC transporter, ATP-binding protein (yhc0) [Helicobacter Pydori] 1 199 984 91 131244 (ORF2 [Bacillus subblilis] AREOLOGYSTIS Pydori] 1 199 984 91 131244 (ORF2 [Bacillus subblilis] AREOLOGYSTIS AREOLOGYSTIS	22	~	1372	1851	gi 1480916	peptidase type II	99	38	480
2 530 976 91 1919 984 91 1910 6281914 91/101 180006777 ABC transporter, ATP-binding protein (yhoG) (Helicobacter pyloci) 1 1959 984 91 1314379 (AE00006777 ABC transporter, ATP-binding protein (yhoG) (Helicobacter pyloci) 1 1959 984 91 131444 OMF2 (Bacillus caldolyvicus) 1 1959 984 91 131444 OMF2 (Bacillus caldolyvicus) 1 1 1 1 1 1 1 1 1	22	7	5828	9607	gn1 PID e206261	phosphate	99	51	1269
2 530 976 911231439 (AED000627) ABC transporter, ATP-binding protein (PAGG) [Helicobacter 1 1959 984 91131244 (ORF2 Bacillus caldolyticus] 1 8352 7234 911318799 448 identity over 302 residues with hypothetical protein from Symethocystis screening 1 8352 7234 911318799 948 identity to allocapit transferases; two potential membrane-spanning 1 8558 4708 91118799 91131874 Oslococyal transferases; two potential membrane-spanning 1 9792 9574 911590997 W. jannaschii predicted coding region WJ0272 [Methanococcus jannaschii] 1 10396 10450 9111518680 minicell-associated protein DiVIA [Bacillus subtilis] 1 10396 10824 bbs 55344 minicell-associated protein DiVIA [Bacillus subtilis] 1 28 1419 911 810 835244 Mypothetical protein [Bacillis subtilis] 2 3662 1076 911818565 major cell-binding factor [Campylobacter jejuni] 3 2662 1076 91181919 911231129 (AB000090) Y4pE [Rhizobium sp. NRR34] 4 3355 2739 911283574 (AB000090) Y4pE [Rhizobium sp. NRR34] 5 11593 911211129 (AR000026) H. Pylori predicted coding region HP0049 [Helicobacter Pylori] 6 11586 91181129 (AR000026) H. Pylori predicted coding region HP0049 [Helicobacter Pylori] 8 11593 91151129 (AR000026) H. Pylori predicted coding region HP0049 [Helicobacter Pylori] 9 13857 12435 4 14156 911571941 Mypothetical [Haemophilus influenzae] 1 2 868 911571941 Inicotianaide mononuelectide transporter (purc) [Haemophilus influenzae] 1 5303 4275 9114112 Purt. EBG repressor protein [Escherichia coli]	22		16194	17138	gn1 PID e281914	subtilis	99	05	945
1 1999 984 gi 112444 [ORPZ Bacillus caldolyticus] 13 8352 7234 gi 138799 444 identity over 302 residues with hypothetical protein from Synechocystis 1 1 1 1 1 1 1 1 1	30	2	530	976	gi 2314379	(AE000627) ABC transporter, ATP-binding protein (yhcG) [Helicobacter pylori]	99	40	447
13 8352 7234 gi 1387979 44% identity over 302 residues with hypothetical protein from Synechocystis speak similarity to givesy! transferases; two potential membrane-spanning helices [Bacillus subtil 2,6568 4708 gml PID e250724 orf2 [Lactobacillus sake]	32	1	199	984	gi 312444	[Bacillus	99	49	786
6 5658 4708 gnl PID e250724 orf2 [Lactobacillus sake]	33	13	8352	7234	gi 1387979	over 302 residues with hypothetical protein from nn D64006_CD; expression induced by environmental o glycosyl transferases; two potential membrane-sillus subtil	99	44	1119
14 9792 9574 991 1590997	34	9	5658	4708	gn1 PID e250724	orf2 [Lactobacillus sake]	99	39	951
15 15163 14501 9j 1773352 Cap5M Staphylococcus aureus] 101396 10824 10824 10824 10824 10824 10825204 108040 11893	34	114	9792	9574	gi 1590997	jannaschii predicted coding region MJ0272 (Methanococcus	99	48	219
9 6173 6976 91 1518680 minicell-associated protein DivIVA [Bacillus subtilis] 10196 10824 bbs 155344 insulin activator factor, INSAF [human, Pancreatic insulinoma, Peptide 1 28 1419 911 PID 6325204 hypothetical protein [Bacillus subtilis] 1 28 1419 911 PID 6325204 hypothetical protein [Bacillus subtilis] 1 1 1 1 1 1 1 1 1	35	- †	15163	14501	gi 1773352		99	46	663
1 10396 10824 bbs 55344 insulin activator factor, INGAF [human, Pancreatic insulinoma, Peptide Partial, 744 aa] [Homo sapiens] 1 28 1419 gnl PID e325204 hypothetical protein [Bacillus subtilis] 1 3810 4112 gi 2182574 (AE000090) Y4pE [Rhizobium sp. NGR234] 1395 2789 gi 388565 major cell-binding factor [Campylobacter jejuni] 10 9740 9183 gnl PID e154144 mdr gene product [Staphylococcus aureus] 13 10893 11993 gi 2313129 (AE000526) H. pylori predicted coding region HP0049 [Helicobacter pylori] 1 2 868 gi 573631 nicotinamide mononucleotide transporter (pnuc) [Haemophilus influenzae] 1 2 868 gi 41312 put. EBG repressor protein [Escherichia coli]	36	6	6173	9269	91 1518680	minicell-associated protein DivIVA (Bacillus subtills)	99	35	804
1 28 1419 gnl PID e325204 hypothetical protein (Bacillus subtilis) 7 3810 4112 gi 2182574 (AE0000090) Y4pE [Rhizobium sp. NGR234) 4 3595 2789 gi 388565 major cell-binding factor [Campylobacter jejuni] 3 2662 1076 gnl PID d101831 glutamine-binding periplasmic protein [Synechocystis sp.] 10 9740 9183 gnl PID e154144 mdr gene product [Staphylococcus aureus] 13 10893 11993 gi 2313129 (AE000526) H. pylori predicted coding region HP0049 [Helicobacter pylori] 9 113267 12476 gi 233941 hypothetical [Haemophilus influenzae] 1 2 868 gi 1574631 nicotinamide mononucleotide transporter (pnuc) [Haemophilus influenzae] 7 5303 4275 gi 41312 put. EBG repressor protein [Escherichia coli]	36	†	10396	10824	bbs 155344	factor, INSAF (human, Pancreatic insulinoma, [Homo sapiens]	99	43	429
7 3810 4112 gi 2182574 (AE0000890) Y4pE [Rhizobium sp. NGR234] 4 3595 2789 gi 388565 major cell-binding factor [Campylobacter jejuni] 3 2662 1076 gin PID d101831 glutamine-binding periplasmic protein [Synechocystis sp.] 10 9740 9183 gin PID e154144 mdr gene product [Staphylococcus aureus] 11 12 11993 gi 2313129 (AE000526) H. pylori predicted coding region HP0049 [Helicobacter pylori] 1 2 868 gi 1573431 hypothetical (Haemophilus influenzae] 1 2 868 gi 1574631 nicotinamide mononucleotide transporter (pnuc) [Haemophilus influenzae] 1 2 868 gi 41312 put. EBG repressor protein [Escherichia coli)	48	-	28	1419	gn1 P1D e325204	protein (Bacillus	99	50	1392
4 3595 2789 gi 388565 major cell-binding factor [Campylobacter jejuni] 3 2662 1076 gnl PID d101831 glutamine-binding periplasmic protein [Synechocystis sp.] 10 9740 9183 gnl PID e154144 mdr gene product [Staphylococcus aureus] 13 10893 11993 gi 2313129 (AE000526) H. pylori predicted coding region HP0049 [Helicobacter pylori] 1 2 868 gi 1573631 hypothetical [Haemophilus influenzae] 1 2 868 gi 1574631 nicotinamide mononucleotide transporter (pnuc) [Haemophilus influenzae] 7 5303 4275 gi 41312 put. EBG repressor protein [Escherichia coli]	48	1 2 1	3810	4112	gi 2182574	(AE000090) Y4pE [Rhizobium sp. NGR234]	99	40	303
3 2662 1076 gnl PID d101831 glutamine-binding periplasmic protein [Synechocystis sp.] 10 9740 9183 gnl PID e154144 mdr gene product [Staphylococcus aureus] 11 10893 11993 gi 2313129 [AE000526] H. pylori predicted coding region HP0049 [Helicobacter pylori] 12 868 gi 1573941 hypothetical [Haemophilus influenzae] 1 2 868 gi 1574631 nicotinamide mononucleotide transporter (pnuc) [Haemophilus influenzae] 1 5303 4275 gi 41312 put. EBG repressor protein [Escherichia coli]	52	4	3595	2789	gi 388565	major cell-binding factor [Campylobacter jejuni]	99	52	807
10 9740 9183 gnl PID e154144 mdr gene product [Staphylococcus aureus] 13 10893 11993 gr [2313129 (AE000526) H. pylori predicted coding region HP0049 [Helicobacter pylori] 9 13267 12476 gr [1573941 hypothetical (Haemophilus influenzae] 1 2 868 gr [1574631 Inicotinamide mononucleotide transporter (pnuc) [Haemophilus influenzae] 7 5303 4275 gr [41312 put. EBG repressor protein [Escherichia coli)	54	3	2662	1076		l ω	99	43	1587
13 10893 11993 gi 2313129 (AE000526) H. pylori predicted coding region HP0049 [Helicobacter pylori] 9 13267 12476 gi 1573941 hypothetical (Haemophilus influenzae) 1 2 868 gi 1574631 nicotinamide mononucleotide transporter (pnuc) (Haemophilus influenzae) 7 5303 4275 gi 41312 put. EBG repressor protein [Escherichia coli]	61	110	9740	9183	44	gene product (Staphylococcus	99	44	558
9 13267 12476 gi 1573941 hypothetical (Haemophilus influenzae)	72	13	10893	111993	gi 2313129	(AE000526) H. pylori predicted coding region HP0049 [Helicobacter pylori]	99	44	1101
1 2 868 gi 1574631 Inicotinamide mononucleotide transporter (pnuc) [Haemophilus influenzae] 7 5303 4275 gi 41312 put. EBG repressor protein [Escherichia coli]	74	- 1	13267	12476	gi 1573941		99	43	792
7 5303 4275 gi 41312 put. EBG repressor protein [Escherichia coli]	75	1-1-1-1	2	898		(pnuC) (Haemophilus	99	48	867
	75	7	5303	4275		EBG repressor protein [Escherichia	99	40	1029

S. pneumoniae - Putative coding regions of novel proteins sīmilar to known proteins

Contig	ORF	Start (nt)	Stop (nt)	match acession	match gene name	E	* ident	length
82	7	6813	8123	gn1 PID e255128	trigger factor (Bacillus subtilis)	99	53	1311
83	3	905	1219	pir C33496 C334	hisC homolog - Bacillus subtilis	99	44	315
98	10	9407	8925	gi 683584	shikimate kinase [Lactococcus lactis]	99	41	483
88	10	7001	0909	gi 2098719	putative fimbrial-associated protein (Actinomyces naeslundii)	99	52	942
89	7	951	4	gi 410118	ORFX19 (Bacillus subtilis)	99	41	948
93	7	3661	2711	gi 1787936	[AE000260] f298; This 298 aa orf is 51 pct identical (5 gaps) to 297 residues of an approx. 304 aa protein YCSN_BACSU SW: R42972 (Escherichia coli)	99	49	951
104	3	1805	3049	gi 1469784	putative cell division protein ftsW [Enterococcus hirae]	99	48	1245
106	14	13576	14253	gi 40027	homologous to E.coli gidB (Bacillus subtilis)	99	52	678
107	3	965	1864	gi 144858	ORF A [Clostridium perfringens]	99	49	1 006
112	7	5718	6593	gi 609332		99	43	876
115	-	3	302	gi 727367	Hyrlp (Saccharomyces cerevisiae)	99	96	300
122	-		995	gn1 PID d101328	YqiY (Bacillus subtilis]	99	36	564
126	8	11759	11046	gn1 PID d101163	ORF3 [Bacillus subtilis]	99	48	714
128	111	8201	8431	gi 726288	growth associated protein GAP-43 [Xenopus laevis]	99	41	231
131	8	4894	4508	gi 486661	TMnm related protein (Saccharomyces cerevisiae)	99	39	387
140	3	3236	2574	gi 40056	phoP gene product (Bacillus subtilis)	99	36	663
140	115	16318	15434	gi 1658189	5,10-methylenetetrahydrofolate reductase [Erwinia carotovora]	99	48	885
146	112	7926	7636	gn1 PID d101140	transposase [Synechocystis sp.]	99	42	291
147	9	7137	6154	gi 472326	TPP-dependent acetoin dehydrogenase alpha-subunit [Clostridium magnum]	99	48	984
149	9	4435	5430	gn1 PID d101887	pentose-5-phosphate-3-epimerase (Synechocystis sp.)	99	46	966
149	113	10754	11575	gi 42371	pyruvate formate-lyase activating enzyme (AA 1-246) [Escherichia coli]	1 99	42	822
186	7	2578	2270	gn1 PID d101199	ORF11 [Enterococcus faecalis]	99	41	309
207	7	2340	2597	gn1 PID e321893	envelope glycoprotein gp160 (Human immunodeficiency virus type 1)	99	46	258
210		3358	3678	gi 49318	ORF4 gene product (Bacillus subtilis)	99	46	321
217	8	5143	5355	91 49538	thrombin receptor (Cricetulus longicaudatus)	99	38	213
220	4	3875	3642	91 466648	alternate name ORFD of L23635 (Escherichia coli)	99	33	234
							+	+

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF	Start		-+	match gene name	+	+ ident	length [
QI .		‡		acession				(nt)
223	-	1070	138	gn1 PID e247187	[zinc finger protein (Bacteriophage phigle)	99	45	933
224	7	1864	2640	gi 1176399	putative ABC transporter subunit {Staphylococcus epidermidis}	99	41	777
243	-	~	872	dbj AB000617_2	(AB000617) YcdH {Bacillus subtilis}	99	45	870
268	2	891	568	gi 517210	putative transposase Streptococcus pyogenes	1 99	1 09	324
322	-	7	643	gi 1499836	Zn protease (Methanococcus jannaschii)	99	40	642
2	10	13909	13178	gi 1574292	hypothetical (Haemophilus influenzae)	65	34	732
9	-11	10465	111190	gi 142854	homologous to E. coli radC gene product and to unidentified protein from Staphylococcus aureus [Bacillus subtilis]	65	48	726
, ,	- 5	647	405	pir C64146 C641	hypothetical protein H10259 - Haemophilus influenzae (strain Rd KW20)	65	42	243
7	7	6246	6821	gn1 PID d101323	YqhU (Bacillus subtilis)	65	50	576
10	- 5	1873	1397	gi 1163111	ORF-1 (Streptococcus pneumoniae)	65	54	477
16	3	1428	1 2222	gn1 PID e325010	hypothetical protein (Bacillus subtilis)	65	45	795
21	4	3815	3357	gn1 PID e314910	hypothetical protein [Staphylococcus sciuri]	65	40	459
22	34	25776	26384	gi 1123030	CpxA [Actinobacillus pleuropneumoniae]	9	42	1 609
43	- 5	1648	290	gi 1044826	[F14E5.1 [Caenorhabditis elegans]	65	38	1359
48	113	10062	10856	gi 1573390	hypothetical [Haemophilus influenzae]	65	45	795
48	22	17521	16883	gi 1573391	hypothetical [Haemophilus influenzae]	9	37	639
48	125	119027	118533	gn1 PID e264484	YCR020c, len:215 [Saccharomyces cerevisiae]	65	38	495
49	-3	3856	5334	gi 1480429	putative transcriptional regulator [Bacillus stearothermophilus]	65	32	1479
05	9	5337	4519	gi 171963	LRNA isopentenyl transferase (Saccharomyces cerevisiae)	65	42	819
52	115	14728	115588	gi 1499745	M. jannaschii predicted coding region MJ0912 [Methanococcus jannaschii]	65	46	861
59	7	3963	4745	gi 496514	orf zeta [Streptococcus pyogenes]	65	42	783
89		1 2500	3483	91 887824	ORF_0310 [Escherichia coli]	1 59	46	984
69	- 3	12171	1077	gn1 PID e311453	unknown [Bacillus subtilis]	65	42	1095
69	7	6029	5325	gi 809660	deoxyribose-phosphate aldolase (Bacillus subtilis)	65	55	705
17	- 5	8536	9783	gi 1573224	glycosyl transferase lgtC (GP:U14554_4) [Haemophilus influenzae]	65	42	1248
72	8 +	7664	8527	gn1 PID e267589	Unknown, highly similar to several spermidine synthases (Bacillus subtilis)	65	39	864
					+ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		+	+

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	s sim	% ident	length (nt)
92	2	5773	4097	gn1 PID d101723	DNA REPAIR PROTEIN RECN (RECOMBINATION PROTEIN N). [Escherichia coli]	65	44	1677
92	6	8099	7875	gi 1574276	exodeoxyribonuclease, small subunit (xseB) [Haemophilus influenzae]	65	38	225
84	- 5	2870	2352	gi 2313188	(AE000532) conserved hypothetical protein [Helicobacter pylori]	69	41	519
86	115	14495	13407	gn1 PID d101880]-dehydroquinate synthase [Synechocystis sp.]	65	44	1089
87	<u>م</u>	3706	2423	gi 151259	HMG-CoA reductase (EC 1.1.88) [Pseudomonas mevalonii]	65	51	1284
88	-	2425	2736	gi 1098510	unknown [Lactococcus lactis]	9	30	312
89	7	1627	1007	gn1 PID d102008	(ABO01488) SIMILAR TO ORF14 OF ENTEROCOCCUS FAECALIS TRANSPOSON TN916.	9	41	621
111	9	6635	6186	gn1 PID e246063	NM23/nucleoside diphosphate kinase (Xenopus laevis)	65	20	450
116	1	3	1016	gn1 PID d101125	queuosine biosynthesis protein QueA (Synechocystis sp.)	65	44	1014
123		69	389	gi 498839	ORF2 [Clostridium perfringens]	9	36	321
123	-	6522	7190	gi 1575577	DNA-binding response regulator (Thermotoga maritima)	9	39	699
125	3	3821	2859	gn1 PID e257609	sugar-binding transport protein [Anaerocellum thermophilum]	65	47	963
137	112	8015	7818	gi 2182574	(AE000090) Y4pE [Rhizobium sp. NGR234]	65	41	198
147	4	5021	3885	gi 472329	dihydrolipoamide acetyltransferase (Clostridium magnum)	65	47	1137
148	- 5	1053	1931	gn1 P1D d101319	YqgH [Bacillus subtilis]	65	42	879
151	- 5	3212	4687	gi 304897	EcoE type I restriction modification enzyme M subunit [Escherichia coli]	65	20	1476
156	2	730	437	gi 310893	membrane protein (Theileria parva)	65	47	294
164	7	4256	4837	gi 410132	ORFX8 (Bacillus subtilis)	99	48	582
169	9 -	3192	3914	gi 1552737	similar to purine nucleoside phosphorylase (deoD) [Escherichia coli]	65	41	723
176	4	2951	2220	gn1 PID e339500	oligopeptide binding lipoprotein (Streptococcus pneumoniae)	65	43	732
195	4	4556	3900	gi 1592142	ABC transporter, probable ATP-binding subunit [Methanococcus jannaschii]	65	40	657
196		160	1572	gn1 PID d102004	(ABOO1488) PROBABLE UDP-N-ACETYLMURAMOYLALANYL-D-GLUTAMYL-2, 6- DIAMINOLIGASE (EC 6.3.2.15). (Bacillus subtilis)	65	51	1413
204	2	2246	1215	gi 143156	membrane bound protein (Bacillus subtilis)	65	37	1032
210	4	1544	1891	gi 49315	ORF1 gene product (Bacillus subtilis)	65	48	348
242	2	1625	723	gi 1787540	(AE000226) f249; This 249 aa orf is 32 pct identical (8 gaps) to 244 residues of an approx. 272 aa protein AGAR_ECOLI SW: P42902 (Escherichia coli)	59	42	903
					·+===171====1111111111111111111111111111	+	+	*

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

284 1 1 304 1 1 315 1 1 1 320 1 1 2 2 2 7 7 7 2 8 8 8 4 8 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2 2 2 3 3 3 3417 3249 6504 6504 6504 14375	574 1483 309 6696 6802 8802 3886 7145 7145	gi 559861 gn PID e290934 gi 790694 gn PID d102048 gn PID e323508 gi 1498753	clyM [Plasmid pAD1]	65	36	006
1 1 1 1 0 4 4		574 1483 309 309 6696 6802 6802 2689 2689 2689 27145 3174			*		+
		569 569 6696 6802 6802 5689 7145 7145 7145		unknown Mycobacterium tuberculosis	65	52	573
		569 6696 6802 1088 2689 2689 1145 21174		mannuronan C-5-epimerase [Azotobacter vinelandii]	65	57	1482
1		309 6696 6802 3686 2689 7145 7145	1 - 1 - 1 - 1	K. aerogenes, histidine utilization repressor; P12380 (199) DNA bunding [Bacillus subtilis]	65	46	567
6 4 4		6696 6802 3686 2689 7145 9895	7		1 59	55	309
9 4 4	_;_;_;_;_;_;_;	5802 3686 2689 7145 9895		nicotinate-nucleotide pyrophosphorylase [Rhodospirillum] rubrum]	64	47	876
4 4		3686 2689 7145 9895	*	methionine aminopeptidase (Synechocystis sp.)	64	52	879
4		7145	gi 1045935	DNA helicase II (Mycoplasma genitalium)	64	58	270
		9895	gn1 PID e265529	OrfB (Streptococcus pneumoniae)	64	46	561
15 7 6		9895	gi 1762328	Ycr59c/YigZ homolog (Bacillus subtilis)	64	45	642
22 11 9		23174	gn1 PID d100581	unknown (Bacillus subtilis)	64	38	348
22 30 22	_ [-	**	gi 289260	comE ORF1 [Bacillus subtilis]	64	44	672
26 7 14	510	14199	gi 409286	bmrU (Bacillus subtilis)	64	30	1771
27 2 13		1334	gi 40795	DdeI methylase [Desulfovibrio vulgaris]	64	51	1771
29 2 62	614	297	gi 2326168	type VII collagen [Mus musculus]	4 7 9 9	- 05	318
35 2 30	368	721	pir JC1151 JC11	hypothetical 20.3K protein (insertion sequence IS1131) - Agrobacterium tumefaciens (strain PO22) plasmid Ti	64	50	354
40 1	3	449	gi 46970	epiD gene product [Staphylococcus epidermidis]	64	41 (447
40 7 4	4683	4976	gn1 PID e325792	(AJ000005) glucose kinase (Bacillus megaterium)	64	45	294
45 7 8(8068	6920	gn1 PID d102036	subunit of ADP-glucose pyrophosphorylase [Bacillus stearothermophilus]	64	40	1149
51 2 30	301	1059	gi 43985	nifS-like gene [Lactobacillus delbrueckii]	64	54	759
51 13 152	15251	18397	gi 2293260	(AFO08220) DNA-polymerase III alpha-chain (Bacillus subtilis)	64	46	3147
53 3 13	1157	555	gi 1574292	hypothetical [Raemophilus influenzae]	64	47	603
58 2 47	4236	1606	gi 1573826	alanyl-tRNA synthetase (alaS) (Haemophilus influenzae)	64	51	2631
66 1 3	-	1259	gi 895749	putative cellobiose phosphotransferase enzyme II'' [Bacillus subtilis]	64	42	1257
68 5 52	5213	6556	gi 436965	(malA) gene products (Bacillus stearothermophilus)	64	47	1344
69 6 53	5356	4949	gn1 PID d101316	[cdd [Bacillus subtilis]	64	52	408

S. pneumoniae - Putative coding regions of novel proteins Similar to known proteins

Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	& sia	% ident	length
74	4	6948	5038	gi 726480	L-glutamine-D-fructose-6-phosphate amidotransferase [Bacillus subtilis]	64	20	1911
75	m	1283	1465	bbs 133379	TLS-CHOP=fusion protein(CHOP=C/EBP transcription factor, TLS=nuclear RNA-binding protein) human, myxoid liposarcomas cells, Peptide Mutant, 462 aa] Homo sapiens	64	57	183
81	13	14016	14231	gi 143175	methanol dehydrogenase alpha-10 subunit [Bacillus sp.]	64	35	216
83	122	21851	22090	gn1 PID d101315	YqfA [Bacillus subtilis]	64	44	240
87	11	10046	9300	gn1 PID e323505	putative Ptc1 protein [Bacillus subtilis]	64	43	747
86	7	5032	5706	gn1 PID e233880	hypothetical protein (Bacillus subtilis)	64	38	675
105	7	2	1276	gi 1657503		64	45	1275
113	17	5136	6410	gn1 PID d1011119	Nifs [Synechocystis sp.]	64	20	1275
119	-	2	1297	gn1 PID e320520	hypothetical protein [Natronobacterium pharaonis]	64	37	1296
123	3	1125	2156	[gn1 PID e253284	ORF YDL244w [Saccharomyces cerevisiae]	64	40	1032
124	2	2331	1780	gn1 PID d101884	hypothetical protein (Symechocystis sp.)	64	20	552
129	4	3467	2709	gn1 PID d101314		64	52	759
131	-	152	m	gi 1377841	unknown (Bacillus subtilis)	64	42	150
137	=	7196	7549	pir JC1151 JC11	hypothetical 20.3K protein (insertion sequence IS1131) - Agrobacterium tumefaciens (strain PO22) plasmid Ti	64	20	354
139	-	3226	2651	gi 2293301	(AF008220) YtqB (Bacillus subtilis)	64	44	576
146	110	6730	5648	gi 1322245	mevalonate pyrophosphate decarboxylase [Rattus norvegicus]	64	45	1083
147	-	2	1018	gn1 PID e137033	unknown gene product [Lactobacillus leichmannii]	64	46	1017
148	=	8430	8783	gi 2130630	(AF000430) dynamin-like protein (Homo sapiens)	64	28	354
156	7	4313	3612	gn1 PID d102050	transmembrane (Bacillus subtilis)	64	31	702
157	4	1299	2114	gn1 PID d100892	homologous to Gln transport system permease proteins (Bacillus subtilis)	64	43	816
162	9	5880	6362	gi 517204	ORF1, putative 42 kDa protein [Streptococcus pyogenes]	64	58	483
164	13	9707	8769	gnl PID d100964	homologue of ferric anguibactin transport system permerase protein FatD of V. anguillarum [Bacillus subtilis]	64	40	939
175	2	3906	4598	gi 534045	antiterminator (Bacillus subtilis)	64	39	693
189	110	6154	6507	91 581307	response regulator [Lactobacillus plantarum]	64	33	354
191	4	3519	2863	gi 149520	[phosphoribosyl anthranilate isomerase [Lactococcus lactis]	64	46	657
							***********	+

S. pneumoniae - Putative coding regions of novel proteins bimilar to known proteins

Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	# sis	% ident	length (nt)
202	1	- 96	1140	gn1 PID e293806	O-acetylhomoserine sulfhydrylase [Leptospira meyeri]	64	47	1065
224	-	234	1571	gi 1573393	collagenase {prtC} [Haemophilus influenzae}	64	42	1338
231	- -	291	647	gi 40174	ORF X (Bacillus subtilis)	64	43	357
253	e .	709	1089	pir JC1151 JC11	hypothetical 20.3K protein (insertion sequence IS1131) - Agrobacterium tumefaciens (strain PO22) plasmid Ti	64	50	381
265	7	820	2	gi 1377832	unknown (Bacillus subtilis)	64	31	819
297	-	-1	099	gi 1590871	collagenase [Methanococcus jannaschii]	64	48	1 099
328	7	263	21	gi 992651	Gin4p (Saccharomyces cerevisiae)	64	41	243
	7	8730	8608	91 556885	Unknown (Bacillus subtilis)	63	48	633
10	9	5178	4483	gi 1573101	hypothetical [Haemophilus influenzae]	63	40	969
12	1	9324	9902	gi 806536	membrane protein [Bacillus acidopullulyticus]	63	42	579
15	10	8897	9187	gi 722339	unknown [Acetobacter xylinum]	63	40	291
17	2	1031	309	gn1 PID e217602	PinU (Lactobacillus plantarum)	63	32	723
18	8	8777	6975	gi 1377843	unknown [Bacillus subtilis]	63	45	804
26	4	9780	7078	gi 142440	ATP-dependent nuclease [Bacillus subtilis]	63	46	2703
29	2	3488	4192	[gi 1377829	unknown (Bacillus subtilis)	63	35	705
34	11	8830	7988	gn1 PID d101198	ORF8 (Enterococcus faecalis)	63	45	843
35	e	1187	876	gi 722339	unknown (Acetobacter xylinum)	63	39	312
48	15	12509	11691	gi 1573389	hypothetical (Haemophilus influenzae)	63	41	819
51	111	12719	12189	gi 142450	ahrC protein (Bacillus subtilis)	63	35	531
55	4	3979	5022	gi 1708640	YeaB (Bacillus subtilis)	63	41	1044
55	15	13669	14670	gn1 PID e311502	[thioredoxine reductase [Bacillus subtilis]	63	44	1002
68	10	9242	8919	sp P37686 YIAY_	HYPOTHETICAL 40.2 KD PROTEIN IN AVTA-SELB INTERGENIC REGION (F382).	63	40	324
98	-	6554	5685	gi 1574382	lic-1 operon protein (licD) [Haemophilus influenzae]	63	41	870
88	80	6085	5180	gi 2098719		63	43	906
96	8	5858	6484	gi 1052803	orflgyrb gene product (Streptococcus pneumoniae)	63	38	627
100		240	1940	gi 7171	[fucosidase [Dictyostelium discoideum]	63	36	1701
							•	

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF	Start (nt)	Stop (nt)	match acession	match gene name	e si	% ident	length
104	4	3063	5765	gi 144985	phosphoenolpyruvate carboxylase [Corynebacterium glutamicum]	63	46	2703
106	8	9189	8554	gi 533099	endonuclease III (Bacillus subtilis)	63	45	636
122	9	4704	4886	gn1 PID d101139	[transposase [Synechocystis sp.]	63	39	183
128	1 7	4517	5203	gn1 PID d101434	orf2 [Methanobacterium thermoautotrophicum]	63	20	687
137	4	963	1547	gi 472920	V-type Na-ATPase [Enterococcus hirae]	63	27	585
142	7	4100	4585	gn1 PID e313025	hypothetical protein (Bacillus subtilis)	63	44	486
159	5	1741	2571	gi 1787043	(AE000184) £271; This 271 aa orf is 24 pct identical (16 gaps) to 265 residues of an approx. 272 aa protein YIDA_ECOLI SW: P09997 (Escherichia coli)	63	39	831
171	122	8803	14406	gn1 P1D e324918	IgAl protease (Streptococcus sanguis)	63	48	5604
177	_	3	347	gi 1773150	hypothetical 14.8kd protein [Escherichia coli]	63	34	345
178	7	423	917	gi 722339	unknown [Acetobacter xylinum]	63	41	495
178	~	794	1012	gi 1591582	cobalamin biosynthesis protein N [Methanococcus jannaschii]	63	36	219
195	-	1377	175	gn1 PID e324217	[ftsQ [Enterococcus hirae]	63	33	1203
234	5	1739	1527	gi 1591582	cobalamin biosynthesis protein N [Methanococcus jannaschii]	63	36	213
249		81	257	gi 1000453	Trem [Bacillus subtilis]	63	41	177
283	1	127	1347	gi 396486	ORF8 [Bacillus subtilis]	63	44	1221
293	6	2804	3466	gi 722339	unknown (Acetobacter xylinum)	63	37	663
311	-	905	486	gi 1877424	UDP-galactose 4-epimerase [Streptococcus mutans]	63	46	420
324		2	556	gi 1477741	histidine periplasmic binding protein P29 (Campylobacter jejuni)	63	36	555
365	1	219	13	gi 2252843	(AF013293) No definition line found (Arabidopsis thaliana)	63	33	207
382	1	888	378	gi 722339	[unknown [Acetobacter xylinum]	63	40	291
385	3	364	158	gi 2252843	(AF013293) No definition line found (Arabidopsis thaliana)	63	33	207
2	1	2495	288	gn1 PID e325007	penicillin-binding protein [Bacillus subtilis]	62	42	2208
8	23	23374	24231	gn1 P1D e254993	hypothetical protein (Bacillus subtilis)	62	35	858
9	116	14320	13193	gn1 PID e349614	nifS-like protein [Mycobacterium leprae]	62	37	1128
7	8	6819	7232	gnl PID d101324	YqhY (Bacillus subtilis)	62	32	414
7	119	15466	114207	gn1 P1D d101804	beta ketoacyl-acyl carrier protein synthase [Synechocystis sp.]	62	43	1260
								+

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	e sim	* ident	length (nt)
7	21	17155	116229	gn1 PID e323514		62	46	927
7 .	24	19526	18519	gi 1276434	beta-ketoacyl-ACP synthase III Cuphea wrightii)	62	37	1008
12		5904	4702	gi 1573768	A/G-specific adenine glycosylase (mutY) (Haemophilus influenzae)	62	43	1203
12	- 6	8032	8793	gi 1591587	pantothenate metabolism flavoprotein [Methanococcus jannaschi1]	62	33	762
15	=-	9678	9328	pir JC1151 JC11	hypothetical 20.3K protein (insertion sequence IS1131) - Agrobacterium tumefaciens (strain PO22) plasmid Ti	62	43	351
17	4	2609	2442	gi 1591081	M. jannaschii predicted coding region MJ0374 (Methanococcus jannaschii)	62	43	168
17	5	3053	2835	gi 149570	role in the expression of lactacin F, part of the laf operon (Lactobacillus sp.)	62	44	219
22	10	8627	9538	gn1 PID d100580	(similar to B. subtilis DnaH (Bacillus subtilis)	62	43	912
30	<u></u>	865	2043	gi 2314379 	(AE000627) ABC transporter, ATP-binding protein (yhcG) [Helicobacter pylori]	62	43	1179
33	- 5	2235	1636	gi 413976	ipa-52r gene product (Bacillus subtilis)	62	44	009
38	=	5689	6123	gi 148231		62	34	435
40	117	14272	13328	gn1 PID d101904	hypothetical protein [Symechocystis sp.]	62	43	945
42	-	~	311	gi 1146182	putative (Bacillus subtilis)	62	41	309
44		1267	4005	gi 1786952	(AE000176) 0877; 100 pct identical to the first 86 residues of the 100 aa hypothetical protein fragment YBGB_ECOLI SW: P54746 [Escherichia coli)	62	43	2739
48	112	9732	9304	gi 662920	repressor protein (Enterococcus hirae)	62	32	429
51	80	5664	7181	gn1 PID e301153	StySKI methylase (Salmonella enterica)	62	44	1518
52	3	2791	2099	gi 1183886	integral membrane protein (Bacillus subtilis)	62	41	693
55	116	15702	14704	gn1 PID e313028	hypothetical protein (Bacillus subtilis)	62	40	1 666
65	9	3418	3984	gi 2065483	unknown [Lactococcus lactis lactis]	62	32	567
63	2	4997	4809	gi 149771	pilin gene inverting protein (PivML) [Moraxella lacunata]	62	28	189
1 70	114	10002	10739	gi 992977	bplG gene product (Bordetella pertussis)	62	45	738
11	2	18790	20382	gi 1280135	coded for by C. elegans CDNA cm21e6; coded for by C. elegans cDNA cm01e2; similar to melibiose carrier protein (thiomethylgalactoside permease II) {Caenorhabditis elegans}	62	62	1593
71	28	32217	32768	gn1 PID d101312	YqeG [Bacillus subtilis]	62	35	552
74	7	11666	10383	gi 1552753	hypothetical (Escherichia coli)	62	38	1284
		i 		T		-+		

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

1	1	1 1 1 1 1		-				
Contig	ORF	Start (nt)	Stop (nt)	match acession	match gene name	e nio	% ident	length (nt)
80	8	9370	6096	gn1 PID d102002	(ABOO1488) FUNCTION UNKNOWN. [Bacillus subtilis]	62	46	240
97	10	8906	7041	gi 882463	protein-N(pi)-phosphohistidine-sugar phosphotransferase [Escherichia coli]	62	42	2028
86	4	2306	3268	gn1 PID d101496	BraE (integral membrane protein) [Pseudomonas aeruginosa]	62	42	963
102	3	2823	3539	gn1 PID e313010	hypothetical protein (Bacillus subtilis)	62	24	717
103	——	2795	1242	gn1 PID d102049	H. influenzae hypothetical ABC transporter; P44808 (974) [Bacillus subtilis]	62	41	1554
111	2	2035	3462	gi 581297	Nisp [Lactococcus lactis]	62	44	1428
112	4	3154	4080	gi 1574379	lic-1 operon protein (licA) (Haemophilus influenzae)	62	39	927
112	- 6	4939	5649	gi 1574381	lic-1 operon protein (licC) (Haemophilus influenzae)	62	39	711
124	m 	1137	721	gi 1573024	anaerobic ribonucleoside-triphosphate reductase (nrdb) (Haemophilus	62	45	417
124	9	3162	2329	gi 609076	leucyl aminopeptidase (Lactobacillus delbrueckii)	62	40	834
126	- 1	11073	7516	gn1 PID d101163	ORF4 (Bacillus subtilis)	62	38	3558
129	9	4983	4540	pir S41509 S415	zinc finger protein EF6 - Chilo iridescent virus	62 🚉	48	444
131		4510	4103	gi 1857245	unknown [Lactococcus lactis]	62	42	408
149	-5	1923	2579	gi 1592142	ABC transporter, probable ATP-binding subunit [Methanococcus jannaschii]	62	41	657
149	7	5360	6055	gn1 PID e323508	YloS protein (Bacillus subtilis)	62	40	969
156	-1	450	238	gn1 PID e254644	membrane protein [Streptococcus pneumoniae]	62	40	213
156	9	3606	2935	gn1 PID d102050	transmembrane (Bacillus subtilis)	62	37	672
171	2	1779	2291	gi 43941	EIII-B Sor PTS [Klebsiella pneumoniae]	62	35	513
172	2	385	723	gi 895750	putative cellobiose phosphotransferase enzyme III [Bacillus subtilis]	62	39	339
173	3	2599	893	gi 1591732	cobalt transport ATP-binding protein O [Methanococcus jannaschii]	62	42	1707
179	2	492	1754	gi 1574071	H. influenzae predicted coding region HI1038 (Haemophilus influenzae)	62	38	1263
181	9	2856	3707	gi 1777435	LacT [Lactobacillus casei]	62	42	852
185	7	2074	311	gi 2182397	(AE000073) Y4fN [Rhizobium sp. NGR234]	62	41	1764
200	- 5	1061	1984	gi 450566	transmembrane protein (Bacillus subtilis)	62	37	924
202	3	2583	3473	gi 42219	P35 gene product (AA 1 - 314) [Escherichia coli]	62	41	891
210	-3	1374	1565	gi 49315	ORF1 gene product (Bacillus subtilis)	62	45	192
					·	+	+	+

S. pneumoniae - Putative coding regions of novel proteins siffilar to known proteins

Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	# Sim	% ident	length (nt)
211	7	3	971	gi 147402	mannose permease subunit III-Man (Escherichia coli)	62	43	696
223	5	1495	1034	gn1 P1D d101190	ORF2 [Streptococcus mutans]	62	41	462
228	7	34	606	gi 530063	[glycerol uptake facilitator [Streptococcus pneumoniae]	62	44	876
234	7	06	917	gi 2293259	(AF008220) YtqI (Bacillus subtilis)	62	38	828
282	2	1765	1487	gn1 PID e276475	galactokinase (Arabidopsis thaliana)	62	33	279
375		п	159	gi 1674231	(AE000052) Mycoplasma pneumoniae, hypothetical protein homolog; similar to Swiss-Prot Accession Number P33155, from B. subtilis (Mycoplasma pneumoniae)	62	40	159
385		584	357	gi 1573353	Outer membrane integrity protein (tolA) [Haemophilus influenzae]	62	47	228
3	119	18550	19269	91 606162	ORF_f229 [Escherichia coli]	61	41	720
	4	2725	3225	gi 2114425	similar to Synechocystis sp. hypothetical protein, encoded by GenBank Accession Number D64006 [Bacillus subtilis]	61	42	501
117	9	3326	3054	gi 149569	lactacin F (Lactobacillus sp.)	61	43	273
44	5	4061	4957	gn1 PID d101068	xylose repressor [Synechocystis sp.]	61	38	897
54	111	8388	7234	gn1 PID d101329	YqjH (Bacillus subtilis)	61	42	1155
57	9	3974	6037	gn1 P1D d101316	YqfK (Bacillus subtilis]	61	42	2064
58	- 5	7356	6565	sp P45169 POTC_	SPERMIDINE/PUTRESCINE TRANSPORT SYSTEM PERHEASE PROTEIN POTC.	61	34	792
67	1	3	692	gi 537108	ORF_f254 (Escherichia coli)	61	46	069
68	6	8816	7890	gi 19501	DPLZ12 gene product (AA 1-184) [Lupinus polyphyllus]	61	41	927
1 70	115	10737	12008	gi 992976	bplF gene product (Bordetella pertussis)	61	44	1272
1 72	111	9759	10202	gn1 PID d101833	carboxynorspermidine decarboxylase [Synechocystis sp.]	61	36	444
1 76	8 -	7881	7003	gn1 PID d100305	farnesyl diphosphate synthase (Bacillus stearothermophilus)	61 +	45	879
87	4	4914	3697	gi 528991	unknown (Bacillus subtilis)	61	42	1218
87	113	12311	11361	gi 1789683	(AE000407) methionyl-tRNA formyltransferase (Escherichia coli)	61	44	951
91	2	731	2989	91 537080	ribonucleoside triphosphate reductase (Escherichia coli)	61	45	2259
105	3	2711	3499	gn1 PID d101851	hypothetical protein (Synechocystis sp.)	61	44	789
115	9	7968	6478	gi 895747	putative cel operon regulator (Bacillus subtilis)	61	36	1491
123	8 -	7181	8518	gi 1209527	protein histidine kinase (Enterococcus faecalis)	61	40	1338
								+

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins TABLE 2

length (nt)	801	639	261	6720	2511	702	657	351	672	1308	363	372	591	360	348	315	933	780	483	1104	750	225	1308	1290
\$ ident	38	41	41	41	42	42	30	44	43	36	30	40	42	36	42	45	33	38	27	35	44	32	43	44
e i i	61	61	61	61	61	61	61	61	61	61	61	61	61	61	61	61	61	61	09	909	1 09	09	09	09
match gene name	(AE000184) f271; This 271 aa orf is 24 pct identical (16 gaps) to 265 residues of an approx. 272 aa protein YIDA_ECOLI SW: P09997 [Escherichia coli]	[YqiY [Bacillus subtilis]	unknown Staphylococcus haemolyticus	beta-galactosidase [Thermoanaerobacter ethanolicus]	penicillin-binding proteins 1A and 1B (Bacillus subtilis)	tetrahydrodipicolinate N-succinyltransferase Escherichia coli	[phosphoglycolate phosphatase [Symechocystis sp.]	B. subtilis, cellobiose phosphotransferase system, celA; P46318 (220)	[unknown {Bacillus subtilis}	hypothetical protein (GB:L18965_6) [Mycoplasma genitalium]	M. jannaschii predicted coding region MJ0440 [Methanococcus jannaschii]	hypothetical [Escherichia coli]	Trek (Bacillus subtilis)	ORF120 (Escherichia coli)	unknown [Mycobacterium tuberculosis]	hypothetical 20.3K protein (insertion sequence IS1131) - Agrobacterium tumefaciens (strain PO22) plasmid Ti	(AF016424) contains similarity to acyltransferases (Caenorhabditis elegans)	Tb-292 membrane associated protein [Trypanosoma brucei subgroup]	ORF_0153b [Escherichia coli]	(AF008220) YtoI (Bacillus subtilis)	ORF3 (put.); putative [Lactococcus lactis]	lactacin F {Lactobacillus sp.]	(AE000278) o481; This 481 aa orf is 35 pct identical (19 gaps) to 309 residues of an approx. 856 aa protein NOL1_HUMAN SW: P46087 (Escherichia coli)	lunknown (Bacillus subtilis)
match	gi 1787043	gn1 PID d101328	gi 1022726	gn1 PID e270014	gi 520541	91 1552743	gn1 PID d101829	gn1 PID d102048 	gn1 PID d100574	gi 1045831	gi 1591144	gi 1552774	gi 1000453	gn1 PID d100417	gn1 PID e255315	pir JC1151 JC11	gi 2291209	gi 393396	gi 537093	gi 2293258	gi 293017	gi 149569	gi 1788140	gn1 PID d100584
Stop (nt)	6725	639	5054	5913	42	11424	3456	1077	1772	2585	3144	3766	802	484	350	3657	17	287	24955	5739	11187	6484	5670	17167
Start (nt)	7525	-	4794	12632	2552	12125	4,12	727	1101	1278	2782	3395	212	843	~	3971	949	1066	24473	4636	11936	6708	7269	15878
ORF	9	-	7	6	-	16	3	m ——	2	2	E	4	7	2	1	4	1	-	24	2	112	113		115
Contig	126	128	139	139	143	148	162	172	177	202	224	225	249	254	257	293	301	373	3	9	9	17	18	20

S. pneumoniae - Putative coding regions of novel proteins sīmilar to known proteins

Contig	ORF	Start (nt)	Stop (nt)	match acession	match gene name	Eis &	% ident	length (nt)
22	-		243	gn1 PID d102050	transmembrane [Bacillus subtilis]	09	36	243
32	110	8296	8964	gi 2293275	(AF008220) YtaG (Bacillus subtilis)	09	37	699
38	115	8837	1 9697	gi 40023	B.subtilis genes rpmH, rnpA, 50kd, gidA and gidB (Bacillus subtilis)	09	35	861
43	9	8610	5944	gi 171787	protein kinase 1 (Saccharomyces cerevisiae)	9	36	2667
1 44			1269	gn1 PID e235823	unknown Schizosaccharomyces pombe	09	44	1269
45	110	11138	10368	gi 397488	1,4-alpha-glucan branching enzyme (Bacillus subtilis)	09	43	177
48	119	15766	114378	gn1 P1D e205173	orf1 (Lactobacillus helveticus)	1 09	39	1389
48	21	116727	116951	gn1 PID d102041	[AB002668] unnamed protein product [Haemophilus actinomycetemcomitans]	1 09	32	225
05	- -	7	868	gn1 PID e246537	ORF286 protein [Pseudomonas stutzeri]	09	31	897
62	2	638	1117	gn1 PID d100587	unknown (Bacillus subtilis)	09	42	540
89	4	3590	5203	gi 1573583	H. influenzae predicted coding region H10594 [Haemophilus influenzae]	09	36	1614
20	<u></u>	5781	6182	gn1 PID d102014	(ABOO1488) SIMILAR TO YDFR GENE PRODUCT OF THIS ENTRY (YDFR_BACSU).	09	33	402
07	112	6343	8133	gn1 PID e324970	hypothetical protein (Bacillus subtilis)	09	38	1791
1,1		111701	14157	gi 580866	ipa-12d gene product (Bacillus subtilis)	09	33	2457
74	8	12509	111664	gn1 PID d101832	phosphatidate cytidylyltransferase (Synechocystis sp.)	1 09	45	846
76		4116	3367	gi 2352096	orf; similar to serine/threonine protein phosphatase (Fervidobacterium islandicum)	09	39	750
80		7372	7665	gi 1786420	(AE000131) f86; 100 pct identical to GB: ECODINJ_6 ACCESSION: D38582 [Escherichia coli]	09	30	294
81	9	4073	4522	gi 147402	mannose permease subunit III-Man [Escherichia coli]	09	35	450
98	-	940	155	gi 143177	putative (Bacillus subtilis)	09	26	786
92	-		192	gi 396348	homoserine transsuccinylase [Escherichia coli]	09	45	192
93	14	10619	9384	gi 1788389	(AE000297) o464; This 464 aa orf is 33 pct identical (9 gaps) to 331 residues of an approx. 416 aa protein MTRC_NEIGO SW: P43505 (Escherichia colil	09	27	1236
94	~	5548	8121	gn1 PID e329895	(AJ000496) cyclic nucleotide-gated channel beta subunit [Rattus norvegicus]	09	50	2574
97	- 1	5396	4533	gi 1591396	transketolase' (Methanococcus jannaschii)	90	43	864
102	7	2081	2833	gn1 PID e320929	929 hypothetical protein [Mycobacterium tuberculosis]	09	43	753
				·				- - - - - - - - - - - - - - - - -

S. pneumoniae - Putative coding regions of novel proteins 蛤輔lar to known proteins

111 18 631 611 19 18 18 18 18 18 18	Contig	ORF	Start (nt)	Stop (nt)	match acession	match gene name	e is	% ident	length (nt)
12 27.55 25.44 post 14 (s667) intitu BLA96 CL 1977 (Mycobacterian legrae) 66 12 27.55 52.44 post 12 (proje) ab 23.84 (A.0000320) Giuccasidaee II (Nomo aspheas) 60 12 4.45.6 52.68 post 12 (proje) ab 23.84 (A.0000320) Giuccasidaee II (Nomo aspheas) 60 18 4.51.0 25.74 5011 (1973) (Part Proposana pallidum) 60 11 1.72.0 1.009 511 (2010) (Part Proposana pallidum) 60 11 1.72.0 1.009 511 (2010) (Part Proposana pallidum) 60 12 2.72.9 511 (1901) (Part Proposana pallidum) 60 13 1.72.0 1.049 511 (2010) (Part Proposana pallidum) 60 14 1.72.0 1.049 511 (2010) (Part Proposana pallidum) 60 15 1.72.0 1.041 (Part Proposana pallidum) 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1	106	6	9773	9183		YlbN protein (Bacillus subtilis)	09	31	591
2 73.55 53.64 port PDD [0.123113] (Ab000312) Olivocational particularia 1 (80.64) 50.66 port PDD [0.103186] (Extensional particularia) 60 60 1 4 70.02 2.672 [0.11] PDD [0.12318] Page (Traporneas political) 60 60 1 1 177 4 5 1002 2.672 [0.11] PDD [0.12318] Page (Transma thermophilus) 60 1 1 177 4 5 1002 [0.11] PDD [0.12318] Page (Transma thermophilus) 60 1 1 177 4 5 1012 [0.11] PDD [0.120327] Partecipation a colitical particles (Mana e (Brecherichia coli)) 60 1 1 177 4 1012 [0.11] PDD [0.120327] Partecipation (Mall political) 60 1 1 173 4 4049 [0.11] GROUTH Partecipation (Mall political) 60 2 1 174 5 106 [0.11] GROUTH Partecipation (Mall political) Partecipation (Mall political) 60 2 1 1 174 3 106 [0.11] GROUTH Partecipation (Mall political) Partecipation (Mall political) 60 3 1 174 3 106 [0.11] GROUTH Partecipation (Mall political) Partecipation (Mall	113	80	6361	6837	gi 466875	B1496_C1_157 (Mycobacterium	09	43	477
7 476 476 5366 goll PDI DOLO 0881 Franchoopeatis Sp.) 6 4510 5383 goll DOLO 02201 Poportherical process Poporthe	115	2	2755	524		Glucosidase II (Homo	09	32	2232
8 (450) 5281 961/177938 Pear (Preponena pallidua) 660 1 (4 202) 2672 26712 971/1761932538 Physorbatical protein (Bacillus subtilis) 660 1 (4 202) 1300 91/17745 Oper (Thermas thermophilus) 660 2 (5 252) 1249 91/170452 Protein histidine kinase (Intercoccus facealis) 660 2 (5 252) 1249 91/17052 Protein histidine kinase (Intercoccus facealis) 660 2 (5 252) 1249 91/17052 Protein histidine kinase (Intercoccus facealis) 660 1 (5 202) 1240 91/17052 Protein histidine kinase (Intercoccus facealis) 660 1 (6 202) 1240 91/17052 Protein histidine kinase (Intercoccus facealis) 660 1 (7 202) 1240 91/17052 Protein histidine kinase (Intercoccus facealis) 660 1 (7 202) 1240 91/17052 Protein histidine kinase (Intercoccus facealis) 660 1 (7 202) 1240 91/17052 Protein Histidine kinase (Intercoccus facealis) 660 1 (7 202) 1240 91/17050 <td>122</td> <td>7</td> <td>.4763</td> <td>5068</td> <td> gn1 PID d101876</td> <td></td> <td>09</td> <td>39</td> <td>306</td>	122	7	.4763	5068	gn1 PID d101876		09	39	306
4 3082 2672 971 PID[6032395 Mypothetical potetin lbacillus subtilis] 60 11 177 4 971 PID[603680 GRF Tynermas thermophilus] 60 12 1552 1249 91 237145 Order 147 (Escherichia coll) 60 13 252 1249 91 403182 Order 147 (Escherichia coll) 60 14 270 1049 91 403182 Order 147 (Escherichia coll) 60 15 252 1249 91 403182 Order 147 (Escherichia coll) 60 16 2556 6404 91 403182 Order 147 (Escherichia coll) 60 17 270 1049 91 403182 Order 147 (Escherichia coll) 60 18 2556 2578 91 403182 Order 147 (Escherichia coll) 60 19 271 271 271 271 97	127	8	4510	5283	gi 1777938	Pgm (Treponema pallidum)	09	38	774
11 1477 4 9m1 PID G100660 ORF [Thhermus thermophilus] 66 11 14520 13009 9[4]537145 ORE_4437 [Escherichia coll] 66 12 2592 1249 9[4]63181 Es ORF from bp 3842 to 4031; putative [Human papillomavirus type 33] 60 1 20 1040 9[4]63181 Es ORF from bp 3842 to 4031; putative [Human papillomavirus type 33] 60 1 210 1044 9[4]63181 Es ORF from bp 3842 to 4031; putative [Human papillomavirus type 33] 60 6 3586 605 9[4]143562 Pytosine-sensitive DMP synthase (arch libraria type 33] 60 1 120 104 9[4]143022 Pytosine-sensitive DMP synthase (arch libraria type 33] 60 1 121 274 871 9[4]14000320 Pytosine-sensitive DMP synthase (arch libraria type 31] 60 1 1413 748 9[4]1204504 Pytosine-sensitive DMP synthase (arch libraria type 31] 60 2 150 171 171 172 173 174 174 174 174 <td>138</td> <td>4</td> <td>3082</td> <td>2672</td> <td> gn1 PID e325196</td> <td>protein (Bacillus</td> <td>09</td> <td>36</td> <td>411</td>	138	4	3082	2672	gn1 PID e325196	protein (Bacillus	09	36	411
11 14520 13009 9i 537145 ONP_4137 (Escherichia coli) 60 6 6 6 6 6 6 6 6	139	7	177	4	Jan PID d100680	ORF (Thermus thermophilus)	09	39	174
2 7592 1249 gi 1209527 protein histidine kinase [Enterococcus faecalis] 60 1 200 1049 gi 45181 ES ORF from bp 3847 to 4081; putative [Human papillomavirus type 33] 60 5 5588 6405 gi 43382 tyrosine-sensitive DAHP synthase (arop) [Escherichia coll] 60 10 7742 8713 gni PD[e13302 hypotherical protein [Bacillus subtilis] 60 1 1412 774 8713 gni PD[e13020 branch-Chain amino acid transporter [Bacillus subtilis] 60 1 1413 748 gi 204504 putative UDr-glucose dabydrogenase [Escherichia coll] 60 1 1413 748 gi 204504 putative UDr-glucose dabydrogenase [Escherichia coll] 60 2 3116 2472 gni PD[e108080 putative UDr-glucose dabydrogenase [Escherichia coll] 60 3 3116 2472 gni PD[e108080 putative UDr-glucose dabydrogenase [Escherichia coll] 60 4 8049 8468 gni PD[e108080 putative UDr-glucose Gabydrogenase [Escherichia coll] 60	139	11	14520	13009	gi 537145	ORF_f437 [Escherichia coli]	09	30	1512
1 210 1049 [91] [4518] ES ORP (from bp 3842 to 4081; putative [Human papillomavirus type 33] 60 5 5368 6405 [91] [45362 [Vyrosine-sensitive DMHP synthase (arcP) [Escherichia coli] 60 10 7742 8713 [91] [45302 [Vyrosine-sensitive DMHP synthase (arcP) [Escherichia coli] 60 10 7742 8713 [91] [2704504 [Purative UDP-glucose dahydrogenase (Escherichia coli] 60 1 1413 748 [91] [2704504 [Purative UDP-glucose dahydrogenase (Escherichia coli] 60 1 1413 748 [91] [910] [91080820 [Purative UDP-glucose dahydrogenase (Escherichia coli] 60 2 3016 2472 [91] [910] [91080820 [Purative UDP-glucose dahydrogenase (Escherichia coli] 60 3 778 1386 [91] [910] [91080872 [91] [910] [91080872 [91] [910] [91080872 [91] [910] [91080872 [91] [91080872 [91] [91080872 [91] [91080872 [91] [91080872 [91] [91080872 [91] [91080872 [91] [91080872 [91] [91080872 [91] [91080872 [91] [91080872 [91] [91080872 [91] [91080872	140	2	2592	1249	gi 1209527	protein histidine kinase (Enterococcus faecalis)	09	37	1344
5 5368 6405 gil 45362 [tyrosine-sensitive DAHP synthase larof) [Escherichia coll] 60 10 7742 8713 gil 1600711 putative [Bacillus subtilis] 60 10 7742 8713 gil 2293322 [APO08220) branch-chain amino acid transporter [Bacillus subtilis] 60 1 1413 748 gil 229332 [APO08220) branch-chain amino acid transporter [Bacillus subtilis] 60 3 3667 4278 gil 229332 [APO08220) branch-chain amino acid transporter [Bacillus subtilis] 60 1 1413 748 gil 229332 [APO08220) branch-chain amino acid transporter [Bacillus subtilis] 60 2 3667 4278 gil PID Gl00879 purceduce highly similar to Bacillus anthracis CapA protein [Bacillus subtilis] 60 3 708 gil 500009 produce highly similar to Bacillus anthracis CapA protein [Bacillus subtilis] 60 4 7170 590 gil 60006 00P-0304 [Escherichia coli) 00P-0304 [Escherichia coli) 00P-0304 [Escherichia coli) 10 9444 8428 gil 415442	141	-	210	1049	gi 463181	to 4081; putative (Human papillomavirus type	09	34	840
6 3558 4049 gli [60711] putative [Bacillus subtilis] 60 10 7742 8713 gnl [PID] e313022 hypothetical protein [Bacillus subtilis] 60 1 1415 4278 gjl [2293322 [AF008220] branch-chain amino acid transporter [Bacillus subtilis] 60 1 1415 748 gjl [2104504 putative UDP-glucose dehydrogenase [Escherichia coli] 60 1 1413 748 gjl [2104504] putative UDP-glucose dehydrogenase [Escherichia coli] 60 1 1413 748 gjl [2104504] putative UDP-glucose dehydrogenase [Escherichia coli] 60 1 1416 gjl [1510] dil00812 product highly similar to Bacillus anthracis CapA protein [Bacillus subtilis] 60 1 410 2868 gjl [1574179 [H. influenzae predicted coding region HI1244 [Haemophilus influenzae] 60 1 4110 2868 gjl [187427] [H. influenzae] [H. influenzae] 60 1 4110 2868 gjl [187427] [H. influenzae] [H. influenzae] [H. influenzae] <tr< td=""><td>141</td><td>2</td><td>5368</td><td>6405</td><td> gi 145362</td><td>[Escherichia</td><td>09</td><td>41</td><td>1038</td></tr<>	141	2	5368	6405	gi 145362	[Escherichia	09	41	1038
10 7742 8713 gn PID e313022 hypothetical protein [Bacillus subtilis] 60 60 60 60 60 60 60 6	142	9	3558	4049	gi 600711	putative [Bacillus subtilis]	09	37	492
5 3667 4278 91 2293322 (AF0008220) branch-chain amino acid transporter [Bacillus subtilis] 60 1 1413 748 91 2104504 putative UDP-glucose dehydrogenase [Escherichia coli] 60 3 3116 2472 9n1 PID 6100872 a negative regulator of pho regulon [Fseudomonas aeruginosa] 60 3 3116 2472 9n1 PID 6100872 a negative regulator of pho regulon [Fseudomonas aeruginosa] 60 1 4100 2482 9n1 PID 6101313 Yeak [Bacillus subtilis] 60 2 4100 2488 9n1 PID 6101313 Yeak [Bacillus subtilis] 60 3 4130 2688 9n1 PID 6101313 Yeak [Bacillus subtilis] 60 4 4117 5501 9n1 66076 ORF_0304 [Escherichia coli] 60 4 4117 5501 9n1 66076 ORF_0304 [Escherichia coli] 60 4 4 4 4 4 4 4 4 4 4	148	10	7742	8713	gn1 PID e313022	protein (Bacillus	09	27	972
1 1413 748 gi 2104504 putative UDP-glucose dehydrogenase [Escherichia coli] 60 3 3116 2472 gil PID Gl00872 a negative regulator of pho regulon (Pseudomonas aeruginosa) 60 4 1386 gil PID FID FID Gl00872 a negative regulator of pho regulon (Pseudomonas aeruginosa) 60 5 4310 2688 gil FID Gl01313 YqeN Bacilius subtilis] 60 7 4717 5901 gil 606076 ORF_O384 Escherichia coli] 60 8 4310 2185 gil 1877427 repressor (Streptococcus pyogenes phage T12) 60 9 444 8428 gil 415664 catabolite control protein (Bacilius subtilis) 60 9 139 1083 gil 418462 transmembrane protein (Bacillus subtilis) 60 1 139 1083 gil 415112 enzyme Habenophilus influenzae) 60 15 10930 10439 gil 608520 myosin heavy chain kinase A Dictyostelium discoideum 60	153	5	3667	4278	gi 2293322	branch-chain amino acid transporter [Bacillus	09	42	612
3 778 1386 gn1 PID 6100872 a negative regulator of pho regulon (Pseudomonas aeruginosa) 60 3 778 1386 gn1 PID 6101313 YqeN (Bacillus subtilis) 60 4 7 8049 8468 gn1 PID 6101313 YqeN (Bacillus subtilis) 60 5 4717 5901 gi 606076 ORF_0384 [Escherichia coli) 60 7 4717 5901 gi 606076 ORF_0384 [Escherichia coli) 60 8 4718 4718 4718 gi 1877427 repressor [Streptococcus pyogenes phage T12] 60 9 444 8428 gi 415664 catabolite control protein (Bacillus subtilis) 60 1 139 1083 gi 47512 transmembrane protein (Bacillus subtilis) 60 1 139 10439 gi 1573407 hypothetical (Haemophilus influenzae) 60 15 10930 10439 gi 1573407 hypothetical (Haemophilus influenzae) 60 16 2145 2363 gi 608520 myosin heavy chain kinase A [Dictyostellum discoideum] 60	155	-	1413	748	gi 2104504	putative UDP-glucose dehydrogenase (Escherichia coli)	09	40	999
3 778 1386 gnl PID e308090 product highly similar to Bacillus anthracis CapA protein (Bacillus 60 80490 8468 gnl PID d101313 YqeN (Bacillus subtilis) 60 60 60 60 60 60 60 6	158	e -	3116	2472	gn1 PID d100872		09	37	645
7 8049 8468 gnl FID d101313 YqeN [Bacillus subtilis] 4130 2688 gnl FID d101313 YqeN [Bacillus subtilis] 60	159	m	778	1386	gn1 PID e308090	product highly similar to Bacillus anthracis CapA protein (Bacillus subtilis)	09	48	609
3 4130 2688 gi 1574179 H. influenzae predicted coding region HI1244 [Haemophilus influenzae] 60 7 4717 5901 gi 606076 ORF_0384 [Escherichia coli] 60 8 2440 2135 gi 1877427 repressor [Streptococcus pyogenes phage T12] 60 9 9444 8428 gi 415664 catabolite control protein [Bacillus megaterium] 60 1 139 1083 gi 475112 Enzyme IIabc [Pediococcus pentosaceus] 60 1 139 10439 gi 573407 hypothetical [Haemophilus influenzae] 60 1 14 2145 2363 gi 608520 myosin heavy chain kinase A [Dictyostellum discoideum] 60	163	2	8049	8468		YqeN [Bacillus subtilis]	09	38	420
7 4717 5901 gi 606076 ORF_0384 [Escherichia coli] 3 2440 2135 gi 1877427 repressor [Streptococcus pyogenes phage T12] 60 10 9444 8428 gi 41564 catabolite control protein [Bacillus megaterium] 60 1 139 1083 gi 475112 enzyme ITabc [Pediococcus pentosaceus] 60 1 139 10439 gi 1573407 hypothetical [Haemophilus influenzae] 60 1 14 2145 2363 gi 608520 myosin heavy chain kinase A [Dictyostellum discoideum] 60	170	e .	4130	2688	gi 1574179		09	39	1443
3 2440 2135 gi 1877427 repressor [Streptococcus pyogenes phage T12] 10 9444 8428 gi 415664 catabolite control protein [Bacillus megaterium] 60	171	- 2	4717	5901	gi 606076	ORF_0384 [Escherichia coli]	09	44	1185
10 9444 8428 gi 415664 catabolite control protein [Bacillus megaterium] 60	183	<u>م</u>	2440	2135	gi 1877427	[Streptococcus pyogenes phage	09	38	306
1 139 1083 gi 438462 transmembrane protein [Bacillus subtilis] 60	191	110	9444	8428	gi 415664	control	09	42	1017
3 3895 1928 gi 475112 enzyme IIabc (Pediococcus pentosaceus) 60	200	-	139	1083	gi 438462	transmembrane protein [Bacillus subtilis]	09	37	945
15 10930 10439 gi 1573407 hypothetical (Haemophilus influenzae) 4 2145 2363 gi 608520 myosin heavy chain kinase A [Dictyostelium discoideum] 60	201		3895	1928	gi 475112	enzyme IIabc (Pediococcus pentosaceus)	09	39	1968
4 2145 2363 gi 608520 myosin heavy chain kinase A [Dictyostellum discoideum] 60	214		10930	10439	gi 1573407	(Haemophilus	09	39	492
	218	4	2145	2363	gi 608520		09	31	219

S. pneumoniae - Putative coding regions of novel proteins*sMilar to known proteins

Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	s sim	% ident	length
226	4	2518	2351	gi 437705	hyaluronidase [Streptococcus pneumoniae]	09	53	168
242	-	725	~	gi 43938	Sor regulator (Klebsiella pneumoniae)	09	41	723
245		- 1	288	gi 304897	EcoE type I restriction modification enzyme M subunit [Escherichia coli]	09	95	288
251	-	905	45	[gi 671632	unknown [Staphylococcus aureus]	09	36	861
259		696	82	gi 153794	rgg [Streptococcus gordonii]	09	32	888
260	- 5	1492	1662	pir S31840 S318	probable transposase - Bacillus stearothermophilus	09	26	171
274		836	96	gi 1592173	N-ethylammeline chlorohydrolase [Methanococcus jannaschii]	09	40	741
308	-	463	2	gi 1787397	(AE000214) o157 (Escherichia coli)	09	43	462
318		3	308	gn1 PID e137594	xerC recombinase [Lactobacillus leichmannii]	09	42	306
344	-	73	522	gi 509672	repressor protein (Bacteriophage Tuc2009)	09	32	450
2	-	576	4	gi 2293147	(AF008220) YtxH (Bacillus subtilis]	59	31	573
7	22	18140	17142	gn1 PID e280724	unknown [Mycobacterium tuberculosis]	65	39	666
10	7	1413	4	gi 1353880	sialidase L [Macrobdella decora]	65	41	1410
15	9	6463	5156	gi 580841	F1 (Bacillus subtilis)	65	35	1308
22	7	479	1393	gi 142469	als operom regulatory protein (Bacillus subtilis)	65	34	915
22	- 2	2698	4614	gn1 PID e280623	PCPA (Streptococcus pneumoniae)	65	44	1917
30	1	208	558	gn1 PID e233868	hypothetical protein (Bacillus subtilis)	65	37	351
30	4	3678	2455	gn1 PID e202290	unknown (Lactobacillus sake)	65	33	1224
35	113	12201	11071	gn1 PID e238664	hypothetical protein [Bacillus subtilis]	65	35	1131
35	114	13288	12182	gi 1657647	Cap8H {Staphylococcus aureus}	65	39	1107
36	118	18076	17897	gi 1500535	M. jannaschii predicted coding region MJ1635 [Methanococcus jannaschii]	65	33	180
38	112	6172	7137	gi 2293239	(AF008220) YtxK [Bacillus subtilis]	65	34	996
42	~	1952	3361	gi 1684845	pinin (Canis familiaris)	65	40	1410
50	£	2678	1728	gn1 PID d101329	Yqjk (Bacillus subtilis)	1 65	41	951
56	5	1870	2388	gn1 PID e137594	xerC recombinase [Lactobacillus leichmannii]	65	41	519
61	9	6812	5628	gn1 PID e311516	aminotransferase (Bacillus subtilis)	65	40	1185
	5	2382	3023	gi 1146190	2-keto-3-deoxy-6-phosphogluconate aldolase (Bacillus subtilis)	59	36	642
						+		+

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF	Start (nt)	Stop (nt)	match acession	match gene name	# sia	% ident	length (nt)
69	110	1 8567	8899	gi 1573628	antothenate kinase (coaA) [Haemophilus influenzae]	1 65	38	333
87	112	111383	10055	gn1 PID e323504	putative Fmu protein (Bacillus subtilis)	1 65	44	1329
113	14	13927	15894	gi 1673731	(AE000010) Mycoplasma pneumoniae, fructose-permease IIBC component; similar to Swiss-Prot Accession Number P20966, from E. coli (Mycoplasma pneumoniae)	65	43	1968
115	8	8766	8521	gi 1590886	M. jannaschii predicted coding region MJ0110 (Methanococcus jannaschii)	65	38	246
119	7	1966	1526	gn1 PID e209005	homologous to ORF2 in nrdEF operons of E.coli and S.typhimurium [Lactococcus lactis]	59	43	441
128	117	13438	13178	gn1 PID e279632	unknown [Mycobacterium tuberculosis]	59	38	261
140	22	23903	23388	gi 482922	protein with homology to pail repressor of B.subtilis [Lactobacillus delbrueckii]	59	40	516
148	===	19697	9014	gn1 P1D d102005	(AB001488) FUNCTION UNKNOWN, SIMILAR PRODUCT IN H. INFLUENZAE AND SYNECHOCYSTIS. [Bacillus subtilis]	65	32	684
149	10	7213	8244	91 710422	cmp-binding-factor 1 (Staphylococcus aureus)	59	40	1032
164	6	6993	6013	gn1 PID d100965	ferric anguibactin-binding protein precusor FatB of V. anguillarum [Bacillus subtilis]	59	41	981
164	112	8836	7823	gn1 PID d100964	homologue of ferric anguibactin transport system permerase protein FatC of V. anguillarum (Bacillus subtilis)	29	35	1014
771	2	401	1072	gi 289759	coded for by C. elegans CDNA CE2G3 (GenBank:214728); putative [Caenorhabditis elegans]	59	40	672
177	7	3841	4200	gi 2313445	(AE000551) H. pylori predicted coding region HP0342 [Helicobacter pylori]	29	38	360
183	4	2768	2508	gi 509672	repressor protein (Bacteriophage Tuc2009)	59	20	261
186	. -	3398	2820	gi 606080	ORF_0290; Geneplot suggests frameshift linking to 0267, not found [Escherichia coli]	59	38	579
190	3	3120	1711	91 1613768	histidine protein kinase [Streptococcus pneumoniae]	59	32	1410
194	- 5	1621	1019	gn1 PID d100579	unknown [Bacillus subtilis]	29	40	603
198		5205	4306	gn1 PID e313073	hypothetical protein [Bacillus subtilis]	65	38	006
220	- 2	4362	3958	gn1 PID d101322	YqhL (Bacillus subtilis)	59	46	405
242	<u>~</u>	1573	2367	91 1787045	(AE000184) f308; This 308 aa orf is 35 pct identical (35 gaps) to 305 residues of an approx. 296 aa protein PFLC_ECOLI SW: P32675 [Escherichia coli)	65	42	795
247	- 5	1154	1480	gi 40073	ORF107 (Bacillus subtilis)	86	39	327

S. pneumoniae - Putative coding regions of novel proteins *similar to known proteins

Contig	J ORF	Start	Stop	match	match gene name	s sim	\$ ident	length
256		898	2	-+	hamalysin Cymarhawstie en 1		- + -	(nt)
	-			+761010101111111111111111111111111111111	inemotystic layinecinocyscis sp.j	65	39	867
258		65	820	gi 2246532 	ORF 73, contains large complex repeat CR 73 (Kaposi's sarcoma-associated herpesvirus)	89	20	756
270	7	386	1126	gn1 PID d102092	YfnB (Bacillus subtilis)	65	40	741
281	-	552	166	gi 666062	putative {Lactococcus lactis}	65	31	387
309	-	e -	479	gi 405879	yeiH (Escherichia coli)	65	38	477
363	-	7	1894	gi 915208	gastric mucin (Sus scrofa)	59	31	1893
387	7	425	84	gi 160671	S antigen precursor [Plasmodium falciparum]	59	44	342
- 5	9	111223	10465	gn1 P1D d101812	LumQ (Synechocystis sp.)	58	29	759
29	4	1 2098	3513	gn1 P1D d100479	79 Na+ -ATPase subunit J (Enterococcus hirae)	58	39	1416
30	2	4058	3651	gi 39478	ATP binding protein of transport ATPases [Bacillus firmus]	58	34	408
33	9	2983	2210	gn1 PID d101164	unknown (Bacillus subtilis)	58	45	774
36	8	5316	6179	gi 1518679	orf [Bacillus subtilis]		32	864
43	- 2	5926	3971	gi 1788150	(AE000278) protease II (Escherichia coli)	88	37	1956
46	- 2	3704	5221	gn1 PID e267329	Unknown (Bacillus subtilis)	88	42	1518
48	114	11722	11066	gni PID d101771	thiamin biosynthetic bifunctional enzyme [Synechocystis sp.]	58	34	657
52		1229	. —	gn1 PID d101291	reductase [Pseudomonas aeruginosa]	58	35	1227
53	- 5	702	412	gi 2313357	(AE000545) cytochrome c biogenesis protein (ccda) [Helicobacter pylori]	58	25	291
58	-	6586	5498	gi 147329	transport protein [Escherichia coli]	88	41 +	1089
69	5	4934	3807	gn1 PID e311492	unknown [Bacillus subtilis]	58	41	1128
71	27	31357	72227	gi 2408014	hypothetical protein (Schizosaccharomyces pombe)	- 288	33	921
72	4	3586	2882	gi 18694	nodulin-21 (AA 1-201) [Glycine max]		34	705
74	3	4937	4230	gi 2293252	(AF008220) YtmO [Bacillus subtilis]	88	33	708
97	4	4594	3422	gi 1217989	ORF3 [Streptococcus pneumoniae]	58	44	1173
82	8 +	10585	8171	gi 882711	exonuclease V alpha-subunit (Escherichia coli)	58	38	2415
98	117	116017	15337	gi 47642	5-dehydroquinate hydrolyase (3-dehydroquinase) [Salmonella typhi)	58	32	681
76	2	931	560	gi 153794	rgg [Streptococcus gordonii]	58	32	372
		-				+	-+	+

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	s sim	\$ ident	length (nt)
108	2	358	2724	gi 537020	vacB gene product [Escherichia coli]	58	37	2367
111	2	4593	5240	gi 1592142	ABC transporter, probable ATP-binding subunit (Methanococcus jannaschii)	58	36	648
120	<u>~</u>	4421	5110	gn1 PID d101320	YqgX [Bacillus subtilis]	58	47	1 069
128	116	13131	12673	gi 662919	ORF U (Enterococcus hirae)	58	42	459
132	3	6174	4939	gi 1800301	macrolide-efflux determinant [Streptococcus pneumoniae]	58	35	1236
133	-	111	068	gn1 PID e269488	Unknown [Bacillus subtilis]	85	36	780
160	11	8615	9865	gi 473901	ORF1 [Lactococcus lactis]	85	39	1251
161	9	6268	6849	gn1 PID d101024	[DJ-1 protein [Homo sapiens]	58	32	582
169	-	214	2	gn1 PID d100447	translation elongation factor-3 [Chlorella virus]		31	213
187	_	487	2	gi 475114	regulatory protein [Pediococcus pentosaceus]	85	38	486
187	9	4384	4620	gi 167475	dessication-related protein {Craterostigma plantagineum}	58	55	237
190	2	1464	1640	gn1 PID e246727	Competence pheromone [Streptococcus gordonii]	85	38	177
192	7	2012	1344	gn1 PID d100556	rat GCP360 (Rattus rattus)	58	44	1 699
206	7	1292	969	gn1 PID e202579	product similar to WrbA [Lactobacillus sake]	58	35	597
216	2	2333	555	gn1 PID e325036	hypothetical protein [Bacillus subtilis]	58	33	6771
217	2	5250	4321	gi 466474	cellobiose phosphotransferase enzyme II'' [Bacillus stearothermophilus]	58	38	930
217		5636	5106	gnl PID d102048	B. subtilis cellobiose phosphotransferase system celB; P46317 (998) transmembrane [Bacillus subtilis]	28	44	531
232	-	2	811	gi 1573777	cell division ATP-binding protein (ftsE) [Haemophilus influenzae]	58	39	810
264	-	2	715	gi 973330	NatA (Bacillus subtilis)	58	32	714
280	-	33	767	gi 1786187 	(AE000111) hypothetical 29.6 kD protein in thrC-talB intergenic region	58	31	735
306	7	845	3	gn1 PID e334780	YlbL protein (Bacillus subtilis)	58	47	843
360	-	1556	1092	sp P46351 YZGD_	HYPOTHETICAL 45.4 KD PROTEIN IN THIAMINASE I 5'REGION.	28	32	465
363	2	2160	1867	gi 160671	S antigen precursor [Plasmodium falciparum]	58	51	294
372		908	3	gi 393394	Tb-291 membrane associated protein [Trypanosoma brucei subgroup]	58	37	804
382	2	749	519	pir JC1151 JC11	hypothetical 20.3K protein (insertion sequence IS1131) - Agrobacterium tumefaciens (strain PO22) plasmid Ti	888	41	231
					+ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	+	+	+

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

10 10 10.10 10.10 10.10 <th< th=""><th>Contig</th><th>ORF</th><th>Start (nt)</th><th>Stop (nt)</th><th>match</th><th>match gene name</th><th>Eis</th><th>% ident</th><th>length (nt)</th></th<>	Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	Eis	% ident	length (nt)
1 2 13.2 13.2 11173169 Demologoue to SRCI Acabidopoia thillana) 57 14.2 15.2 13.2 1	e -	6	8409	7471	gi 1499745		57	38	939
11 2 412 June Purple June Describence partentianum 42 2002 1188 591 2392131 (Artonos200) Trop Bacillus subcilis) 57 37	10	10	7674	7507	gi 1737169	to SKP1 (Arabidopsis	57	30	168
4 2022 138 6449 Gall 1293313 (AF000220) YtpR [Bacillus subtilis] 57 346 37 37 34 1 6931 6449 Gall 1292304 Physotheacical procean (Bacillus subtilis] 57 346 57 349 37 34 1 6321 7652 Gall 1352204 Physotheacical procean (Mathemonas campastris) 57 37 34 44 1 6321 7652 Gall 1352204 Physotheacical physotheacical campastris) 57 35 37 35 37 2 6520 771 772 7	11		7	412	gn1 PID d100139	ORF [Acetobacter pasteurianus]	57	42	411
11 631 644 pul DD pol 200 Pol 20	31	4	2032	1388	gi 2293213	(AF008220) YtpR (Bacillus subtilis)	57	37	645
5 5346 5000 96 1992044 Phosphozecine phosphotics (Machaemocac campetria) 57 6531 7652 96 1952044 Processe (Machaemocac campetria) 57 6532 7652 96 1952044 Simple-Stranded-ONA-Decific econocicles (Ircc) (Mesenophius influenzed) 57 755 7	33	11	6931	6449	gn1 PID e324949	protein [Bacillus	57	36	483
1 6 522	45	2	5446	2060	gi 1592204		57	44	387
6 520 6569 gill1574144 Single-stranded-ONN-specific exomuclease frec() [Maemophilus influences] 57 66 73 66 73 66 73 66 73 66 73 66 73 73 66 73 73 74 66 73 73 74	49	7	6523	7632	gi 155369	enzyme-II fructose (Xanthomonas	57	35	1110
5 2079 1795 gi 1841380 feplicase-associated polyprocein (loat blue dwarf virus) 57 46 57 57 58 58 58 58 58 58	52		4,520	6850	gi 1574144	(recJ)	57	35	2331
15 13883 13059 gril Pipel Gramon Pipel Pipel Gramon Pipel Pipel	53	- 2	2079	1795	gi 1843580	replicase-associated polyprotein (oat blue dwarf virus)	57	46	285
15 11883 13059 gnl PID[d1009956 homologous to SwissProt:YIDA_ECOLI hypothetical protein [Bacilluss subtilis] 57 446	63	9	5312	4995	gi 2182608	[AE000094] Y4rJ [Rhizobium sp. NGR234]	57	39	318
2 2561 1815 gnl PID[d100965 homologue of NADPH-flavin oxidoceductase Prp of V. harveyi [Bacillus] 57 44 9 9556 9763 gl 1206045 short region of similarity to glycerophosphoryl diester phosphodiesterases 57 35 16 15371 14493 gi 1787983 (AED002641 o.288; 92 pct identical (I gaps) to 222 residues of fragment 57 34 1 16 15371 14493 gi 1787983 (AED002641 o.288; 92 pct identical (I gaps) to 222 residues of fragment 57 34 1 16 15371 gi 155882 threonine synthase (Arabidopsis thallana) 57 43 1 1 17211 18212 gi 1591393 Harborine synthase (Arabidopsis thallana) 57 44 1 1 17211 18212 gi 1591393 Ha. Jannaschii predicted coding region MJ0678 (Methanococcus jannaschiil) 57 44 1 1 18627 18328 pl-1 AA5605 [AA56 mature-parasite-infected erythrocyte surface antigen MESA - Plasmodium 57 38 1 18627 1833 pl-1 [AA445605] [AA56 [A	72		13883	13059	gn1 PID d100892	to SwissProt:YIDA_ECOLI hypothetical protein [Bacillus	57	40	825
16 15371 1443 gi 1206045 Short region of similarity to glycerophosphoryl diester phosphodiesterases 57 35 35 165 11371 1443 gi 1787983 (AE000264) o288; 92 pct identical (I gaps) to 222 residues of fragment 57 33 34 35 35 35 35 35 35	67	2	2561	1815	gn1 PID d100965	of NADPH-flavin oxidoreductase Frp of V.	57	44	747
16 15371 14493 gi 1787983 (AED000264) o.288; 92 pct identical Il gaps) to 222 residues of fragment 57 34 34 31 31 32 33 34 34 34 34 34 34	82	6	9596	9763	gi 1206045 	region of similarity to glycerophosphoryl diester norhabditis elegans	57	35	168
3 1695 1177 91 1500003 mutator mutT protein [Methanococcus jannaschii] 57 43 11 18212 91 559882 threonine synthase [Arabidopsis thaliana] 57 44 1 1 17211 18212 91 173349 BirA protein [Bacillus subtilis] 57 30 44 1 1 17211 18212 91 173349 BirA protein [Bacillus subtilis] 57 30 1 18627 18328 pir A45605 A456 mature-parasite-infected erythrocyte surface antigen MESA - Plasmodium 57 22 2 343 1110 pir F64149 F64149 F64149 Totoletical protein H10355 - Haemophilus influenzae (strain Rd kW20) 57 39	98	16	15371	14493	gi 1787983 	o288; 92 pct identical (1 gaps) to 222 residues of I SW: P28244 (223 aa) [Escherichia coli)	57	34	879
6 3026 4519 gi 559882 threonine synthase [Arabidopsis thaliana] 57 43 11 18212 gi 773349 BirA protein [Bacillus subtilis] 57 44 1 17211 18212 gi 773349 BirA protein [Bacillus subtilis] 57 30 30	93	3	1695	11177	gi 1500003	mutator mutT protein [Hethanococcus jannaschii]	57	33	519
14 17211 18212 gi 173349 BirA protein [Bacillus subtilis] 57 44 1 1 1 1 1 1 1 1	96	9	3026	4519	91 559882	synthase	57	43	1494
8 7448 7903 gi 1591393	66	114	11211	18212	gi 773349	BirA protein [Bacillus subtilis]	57	44	1002
16 18627 18128 pir A45605 A456 mature-parasite-infected erythrocyte surface antigen MESA - Plasmodium 57 22 22 23 23 1110 pir F64149 F641 hypothetical protein HI0355 - Haemophilus influenzae (strain Rd KW20) 57 38 24 2108 2884 gnl PID d102148 (AB001684) sulfate transport system permease protein [Chlorella vulgaris] 57 39 25 37 38 25 37 37 38 25 37 38 25 37 38 25 37 38 25 37 38 25 2139 1363 gi 42081 nagD gene product (AA 1-250) [Escherichia coli]	112	80	7448	7903	gi 1591393	jannaschii predicted coding region MJ0678 [Methanococcus	57	30	456
2 343 1110 pir F64149 F641 hypothetical protein H10355 - Haemophilus influenzae (strain Rd KW20) 57 38 4 2108 2884 gnl P1D d102148 (AB001684) sulfate transport system permease protein [Chlorella vulgaris] 57 39 10 6477 5587 gi 1573082 nitrogenase C (nifc) (Haemophilus influenzae) 57 35 13 9251 9790 gi 153692 pneumolysin (Streptococcus pneumoniae) 57 38 4 2139 1363 gi 42081 nagD gene product (AA 1-250) (Escherichia coli) 57 36	113	10	18627	18328	pir A45605 A456		57	22	300
4 2108 2884 gnl PID d102148 (AB001684) sulfate transport system permease protein [Chlorella vulgaris] 57 39 10 6477 5587 gi 1573082 Initrogenase C (nifc) (Haemophilus influenzae] 57 35 13 9251 9790 gi 153692 Inneumolysin (Streptococcus pneumoniae) 57 38 4 2139 1363 gi 42081 InagD gene product (AA 1-250) (Escherichia coli) 57 36	123	7	343	1110	pir F64149 F641	protein HI0355 - Haemophilus influenzae	57	38	768
10 6477 5587 gi 1573082 nitrogenase C (nifC) (Haemophilus influenzae) 57 35 35 13 9251 9790 gi 153692 pneumolysin (Streptococcus pneumoniae) 57 38 4 2139 1363 gi 42081 nagD gene product (AA 1-250) (Escherichia coli) 57 36	123	4	2108	2884	gn1 PID d102148	system permease protein [Chlorella	57	39	122
13 9251 9790 gi 153692 pneumolysin (Streptococcus pneumoniae) 57 38 4 2139 1363 gi 42081 nagD gene product (AA 1-250) (Escherichia coli)	127	110	6477	5587	gi 1573082	U	57	35	891
4 2139 1363 gi 42081 nagD gene product (AA 1-250) (Escherichia coli)	128	113	9251	9790	gi 153692	[pneumolysin (Streptococcus pneumoniae]	57	38	540
	131	4	2139	1363	gi 42081	gene product (AA 1-250) (Escherichia	57	36	1 777

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig ID	ORF	Start (nt)	Stop (nt)	match acession	match gene name	eris &	% ident	length (nt)
136		214	1221	bbs 148453	SpaA=endocarditis immunodominant antigen Streptococcus sobrinus, MUCOB 263, Peptide, 1866 aa] Streptococcus sobrinus	57	44	1008
140	25	28701	26851	gi 505576	beta-glucoside permease [Bacillus subtilis]		38	1851
141	9	6395	7438	gi 995560	unknown {Schizosaccharomyces pombe]		41	1044
144		3231	2785	gn1 PID d100139	ORF (Acetobacter pasteurianus)	57	42	447
155	4	5454	4564	gi 600431	glycosyl transerase (Erwinia amylovora	55	34	891
159	6	4877	5854	gi 290509	0307 [Escherichia coli]	57	35	978
167	= =	9710	9249	gn1 PID d100139	ORF (Acetobacter pasteurianus)	52	42	462
171	9	4023	4436	gi 147402	mannose permease subunit III-Man (Escherichia coli)	57	29	414
178	4	2170	1076	gn1 PID d102004	(AB001488) ATP-DEFENDENT RNA HELICASE DEAD HOMOLOG. (Bacillus subtilis)	52	39	1095
190		145	1455	gi 149420	export/processing protein [Lactococcus lactis]	57	30	1311
198	-	1 298	95	gi 522268	unidentified ORF22 [Bacteriophage b1L67]	57	36	204
203	7	3195	2110	gn1 PID e283915	orf c01003 (Sulfolobus solfataricus)	57	41	1086
205	-	40	507	gi 1439527	EIIA-man [Lactobacillus curvatus]	57	28	468
214	7	4243	3797	gn1 PID d102049	H. influenzae, ribosomal protein alanine acetyltransferase; P44305 (189) (Bacillus subtilis)	57	48	447
268	m	1767	1276	gi 43979	L.curvatus small cryptic plasmid gene for rep protein (Lactobacillus curvatus)	57	36	492
351	-	324	34	gn1 PID e275871	T03F6.b Caenorhabditis elegans	57	31	291
386	-	226	2	gi 160671	S antigen precursor [Plasmodium falciparum]	57	45	225
2	5	10486	7778	gi 405857	yehU [Escherichia coli]	95	33	1710
8	5	3674	3910	gi 467199	pksC; L518_F1_2 [Mycobacterium leprae]	56	39	237
10	<u> </u>	3442	1874	gn1 PID d101907	sodium-coupled permease (Synechocystis sp.)	95	36	1569
21	-	1880	333	gi 2313949	(AE000593) osmoprotection protein (proWX) [Helicobacter pylori]	95	33	1548
22	29	21968	22456	gn1 PID d102001	(AB001488) PROBABLE ACETYLTRANSFERASE. (Bacillus subtilis)	95	37	489
27		1361	3	gi 215132	ea59 (525) (Bacteriophage lambda)	95	30	1359
28	6	4667	4278	gi 1592090	DNA repair protein RAD2 [Methanococcus jannaschii]	95	29	390
33		3	386	gn1 PID d100139	ORF [Acetobacter pasteurianus]	95	41	384
					→ T - - - - - - - - -	-++	+	+

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF	Start (nt)	Stop (nt)	match	match gene name		% ident	length (nt)
36		5122	5397	pir PQ0053 PQ00	hypothetical protein (proC 3' region) - Pseudomonas aeruginosa (strain PAO)	56	28	276
40	4	3137	4318	gi 1800301	macrolide-efflux determinant (Streptococcus pneumoniae)	95	27	1182
40	116	12511	13191	gn1 PID e217602	PlnU [Lactobacillus plantarum]	95	38	681
48	117	113775	13023	gi 143729	transcription activator (Bacillus subtilis)	95	35	753
7.5	4	1674	2594	gn1 PID d102036	membrane protein (Bacillus stearothermophilus	95	25	921
85		1842	1459	[gn1 P1D d100139	ORF [Acetobacter pasteurianus]	95	41	384
88	7	5815	4940	gi 853777	product similar to E.coli PRFA2 protein (Bacillus subtilis)	95	42	876
105	2	1360	2718	[gn1 P1D d101913	hypothetical protein [Symechocystis sp.]	56	37	1359
112	-	2151	3194	gi 537201	ORF_0345 [Escherichia coli]	95	31	1044
113	4	2754	2963	gn1 PID d100340	ORF (Plum pox virus)	56	28	210
122	m	1203	2054	gi 1649035 	high-affinity periplasmic glutamine binding protein (Salmonella typhimurium)	56	30	852
124	8	3939	3694	gn1 PID e248893	unknown [Mycobacterium tuberculosis]	99	27	246
125	4	4403	4107	gn1 PID d100247	human non-muscle myosin heavy chain [Homo sapiens]	95	32	297
127		6608	6405	gi 2182397	(AE000073) Y4fN [Rhizobium sp. NGR234]	56	35	204
134	5	4769	3849	gn1 PID d101870	hypothetical protein [Synechocystis sp.]	95	39	921
137	110	6814	7245	gi 1592011	sulfate permease (cysA) [Methanococcus jannaschii]	95	34	432
142	8 -	5019	4582	pir A47071 A470	orfl immediately 5' of nifs - Bacillus subtilis	95	29	438
146	8	4676	3660	gn1 PID d101911	hypothetical protein (Synechocystis sp.)	95	32	1017
148	- 3	1906	2739	gn1 PID d101099	phosphate transport system permease protein PstA [Synechocystis sp.]	26	36	834
150	4	4449	2743	gn1 PID e304628	probably site-specific recombinase of the resolvase family of enzymes [Bacteriophage TP21]	56	27	1707
172		2	208	gi 1787791	(AE000249) f317; This 317 aa orf is 27 pct identical (16 gaps) to 301 residues of an approx. 320 aa protein YXXC_BACSU SW: P39140 [Escherichia coli]	56	34	207
172		4979	5668	gi 396293	similar to Bacillus subtilis hypoth. 20 kDa protein, in tsr 3' region [Escherichia coli]	26	40	069
186	7	3732	3367	gi 1732200	PTS permease for mannose subunit IIPMan [Vibrio furnissii]	26	36	366
187	2	2402	819	pir S57904 S579	virR49 protein - Streptococcus pyogenes (strain CS101, serotype M49)	26	35	1584
					7 + 1 4 4 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	+	-+	*

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	* sim	% ident	length (nt)
204	m	2772	2239	gi 606376	ORF_0162 [Escherichia coli]	95	35	534
206	5	3342	1633	gi 559861	clyM [Plasmid pAD1]	95	38	1710
219	3	1689	1096	gi 1146197	putative (Bacillus subtilis)	95	27	594
230	- 5	409	1485	pir C60328 C603	hypothetical protein 2 (sr 5' region) - Streptococcus mutans (strain OM2175, serotype f)	95	40	1077
233	4	2930	3268	gi 1041785	rhoptry protein [Plasmodium yoelii]	95	24	339
273	2	1543	2724	gi 143089	lep protein [Bacillus subtilis]	95	32	1182
353	-		516	gn1 PID e325000	hypothetical protein (Bacillus subtilis)	95	41	516
359	-	87	641	gi 1786952	(AE000176) 0877; 100 pct identical to the first 86 residues of the 100 aa hypothetical protein fragment YBGB_ECOLI SW: P54746 [Escherichia coli)	26	46	555
363	7	4482	4198	gi 1573353	outer membrane integrity protein (tolA) (Haemophilus influenzae)	95	38	285
376	7	2	508	gn1 PID e325031	hypothetical protein (Bacillus subtilis)	95	33	507
18	-	836	177	gn1 PID d100872	a negative regulator of pho regulon (Pseudomonas aeruginosa)	55	31	099
28	4	1824	1618	gn1 PID e316518	STAT protein [Dictyostelium discoideum]	55	40	207
29	9	4496	5041	gi 1088261	unknown protein [Anabaena sp.]	55	31	546
38	116	9698	10702	gi 580905	B.subtilis genes rpmH, rnpA, 50kd, gidA and gidB (Bacillus subtilis)	55	31	1008
49	2	5727	6182	gi 1786951	(AE000176) heat-responsive regulatory protein (Escherichia coli)	55	29	456
51	4	2381	3241	gn1 PID d101293	[YbbA (Bacillus subtilis]	55	42	861
52	6	9640	10866	gi 153016	ORF 419 protein [Staphylococcus aureus]		23	1227
53	4	1813	1349	gi 896042	OspF [Borrelia burgdorferi]	55	30	465
09	5	4794	5756	gi 1499876	magnesium and cobalt transport protein {Methanococcus jannaschii}	55	38	963
71	6	14176	15408	gi 1857120	glycosyl transferase [Neisseria meningitidis]	55	41	1233
75	9	3189	4229	gn1 PID e209890 NAD alcohol	[NAD alcohol dehydrogenase [Bacillus subtilis]	55	44	1041
108	100	10488	9820	gn1 PID e324997 hypothetical	hypothetical protein (Bacillus subtilis)	55	36	699
113	112	12273	13037	gn1 PID e311496	unknown [Bacillus subtilis]	55	34	765
113	113	13007	13945	gi 1573423	1-phosphofructokinase (fruk) [Haemophilus influenzae]	55	39	939
126	5	6764	1 5907	gi 1790131	(AE000446) hypothetical 29.7 kD protein in ibpA-gyrB intergenic region	55	37	858

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

129 3 138 3 140 6 147 10 1 148 6 148 6 148 6 149 14 1		902 1610 5633 2136 8921 4650 11650 550 5897	gn1 P1D d101425 g1 142833 gn1 P1D d100964 g1 472330 gn1 P1D e73078 g1 59572 g1 695769 gn1 P1D d101329 g1 2314496		55 55 55	35	1818 984 984 1284
3 4 6 5 10 3 6 3		5633 2136 8921 4650 11650 550 5897	100964 13078 101329	subtilis] Ypothetical protein in a rapamycin synthesis gene cluster hygroscopicus [Bacillus subtilis] de dehydrogenase [Clostridium magnum] [Lactobacillus leichmannii] orane protein U [Escherichia coli] anthobacter autotrophicus]	55 55	37	984
0 K 0 1 N 0 4 K		5633 2136 8921 4119 4650 11650 550 5897	73078	ypothetical protein in a rapamycin synthesis gene cluster hygroscopicus (Bacillus subtilis) de dehydrogenase [Clostridium magnum] [Lactobacillus leichmannii] orane protein U [Escherichia coli] anthobacter autotrophicus]	55		1284
3 4 6 5 10 3		2136 8921 4119 4650 11650 550 5897	73078	de dehydrogenase (Clostridium [Lactobacillus leichmannii] orane protein U [Escherichia c anthobacter autotrophicus]	+	26	
3 9 7 1		4119 4650 4650 11650 550 5897	78	[Lactobacillus leichmannii] orane protein U [Escherichia anthobacter autotrophicus]	55	39	1719
3 4 6 8		4650	329	orane protein U (Escherichia anthobacter autotrophicus)	55	38	1284
3 14		4650 11650 550 5897	329	anthobacter	55	29	1 069
3		550	329		55	3.7	480
	6625	550	gi 2314496	YqjG (Bacillus subtilis)	55	32	915
***************************************	6625	5897		(AE000634) conserved hypothetical integral membrane protein (Helicobacter pylori)	55	34	564
159 10	1784		gi 290533	similar to E. coli ORF adjacent to suc operon; similar to gntR class of regulatory proteins (Escherichia coli)	55	29	729
164 3		2332	gn1 PID e255118	hypothetical protein (Bacillus subtilis)	55	37	549
164 5	2772	3521	gi 40348	put. resolvase Tnp I (AA 1 - 284) [Bacillus thuringiensis]	55	35	750
164 11	7428	7216	gn1 PID e249407	unknown [Mycobacterium tuberculosis]	55	38	213
167 5	3860	3345	gi 535052	involved in protein secretion (Bacillus subtilis)	55	28	516
186 5	2880	2563	91 606080	ORF_0290; Geneplot suggests frameshift linking to 0267, not found [Escherichia coli]	55	35	318
189 8	4311	5396	gn1 PID e183450	hypothetical EcsB protein (Bacillus subtilis)	55	32	1086
192 5	3270	3079	gi 1196504	vitellogenin convertase [Aedes aegypti]	55	38	192
195 2	2454	1384	gi 1574693	transferase, peptidoglycan synthesis (murG) [Haemophilus influenzae]	55	33	1071
198 4	3013	2471	gn1 PID e313074	hypothetical protein (Bacillus subtilis)	55	29	543
214 1	373	744	gn1 PID d101741	transposase [Synechocystis sp.]	55	33	372
219 2	1115	456	gi 288301	ORF2 gene product [Bacillus megaterium]	55	30	1 099
263 7	3742	3443	gi 18137	cgcr-4 product [Chlamydomonas reinhardtii]	55	48	300
285 1	2	829	gn1 P1D d100974	unknown (Bacillus subtilis)	55	40	828
286 1	650	249	gi 396844	ORF (18 kDa) [Vibrio cholerae]	55	31	402
297 2	1229	1696	gi 150848	prtC (Porphyromonas gingivalis)	55	39	468

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	e sia	8 ident	length (nt)
309	2	218	982	gi 1574491	hypothetical (Haemophilus influenzae)	55	35	765
328	- 5	646	224	gi 571500	prohibitin (Saccharomyces cerevisiae)	55	27	423
330		1340	474	gi 396397	soxS [Escherichia coli]	55	29	198
364	3	2538	1546	gi 393394	Tb-291 membrane associated protein [Trypanosoma bruce; subgroup]	55	36	993
368	- 3	941	105	gi 160671	S antigen precursor [Plasmodium falciparum]		40	837
	- 5	4604	3624	gi 2293176	(AF008220) signal transduction protein kinase (Bacillus subtilis)		26	981
6	=======================================	7746	7246	gi 1146245		54	38	501
38	24	16213	117937	gi 1480429	putative transcriptional regulator [Bacillus stearothermophilus]	54	27	1725
40	8	5076	4882	gi 39989	methionyl-tRNA synthetase [Bacillus stearothermophilus]	54	35	195
43	4	3980	2367	gn1 PID e148611	ABC transporter [Lactobacillus helveticus]	54	25	1614
52	10	10844	12103	gi 1762962	Fem& [Staphylococcus simulans]	54	29	1260
57	-		512	gi 558177	endo-1,4-beta-xylanase [Cellulomonas fimi]	54	36	510
58	6	4749	4246	gn1 PID d101237	hypothetical (Bacillus subtilis)	54	29	504
71	7	10684	111703	gi 510255	orf3 [Escherichia coli]	54	31	1020
71	20	27546	127737	gi 202543	Serotonin receptor (Rattus norvegicus)	54	31	192
72	7	844	1098	gi 148613	srnB gene product [Plasmid F]	54	37	255
72	7	7438	6695	gi 1196496	recombinase (Moraxella bovis)	54	38	744
74	10	14043	13465	gi 1200342	ORF 3 gene product (Bradyrhizobium japonicum)	54	32	579
74	112	16483	15995	gi 2317798	maturase-related protein (Pseudomonas alcaligenes)	54	30	489
986	3	2877	2155	gi 46988	orf9.6 possibly encodes the O unit polymerase (Salmonella enterica)	54	34	723
89	2	4433	3921	gi 147211	phnO protein (Escherichia coli)	54	41	513
96		3	464	gi 2317798	maturase-related protein [Pseudomonas alcaligenes]	54	30	462
96	100	8058	8510	gn1 PID d102015	(ABO01488) SIMILAR TO SALMONELLA TYPHIMURIUM SLYY GENE REQUIRED FOR SURVIVAL IN MACROPHAGE. [Bacillus subtilis]	54	32	453
97	9	4662	3604	gi 1591394	[transketolase'' (Methanococcus jannaschii]	54	30	1059
106	111	10406	12010	91 606286	ORF_0637 [Escherichia coli]	54	32	1605
147	· · ·	8663	7404	gn1 PID d101615	ORF_ID:0319#7; similar to [SwissProt Accession Number P37340] [Escherichia coli]	54	35	1260
			1 1 1 1 1 1 1 1 1 1	**************	• •		- +	- +

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

1 226 1727 2725 1911/192592 EIIC-ann (Incropacial) in cerretual 24 35 35 35 35 35 35 35 3	Contig	g ORF	Start	Stop	match	match gene name	* Sim		length
1 25.06 1727 301 12010 10010 10 Inductor Proceeding Contenting Cont	171			-+			-	-	(nt)
1 2.26 1189 1918 1919 1910 191	7/1	7		1 3223	91 1439528 -+	EIIC-man (Lactobacillus curvatus)	54	36	1 747
1 526 1188 goal Propietica Proportical procesin (describing) 54 319	174	- 5	2068	1787		:	54	35	282
1 1. 161 1614 1011 PDI 611031 hypothetical procein [symetholyties sp.] 24 31 161 1614 1011 PDI 6101813 hypothetical procein [symetholyties sp.] 24 24 24 24 24 24 24 2	188	-	526	1188	gn1 PID e250352		54	3.1	663
1 2 655 Gallerian Depondencial process Especial Espe	198	- 2	3582	2884	gnl PID e313074	hypothetical protein (Bacillus	54	33	1 669
2 966 2337 91]293066 (1470022010) Ytap [Bacillus subtilis] 54 29 2 966 2337 9m] Pip[el300344 Rillié (1000) 74 36 39 1 1681 347 9m] Pip[el301346 Rillié (11) Genochabélitie elépanal 54 26 2 307 1395 9m] Pip[el3013486 transponasse [Symechocystis sp.] 54 26 3 130 2377 541 156671 S antigen precureor [Plasmodium falicipatum] 54 47 1 130 2377 541 156671 S antigen precureor [Plasmodium falicipatum] 54 47 1 120 2377 541 156571 S antigen precureor [Plasmodium falicipatum] 54 47 1 120 2377 137 138 54 47 1 228 591 50000031 VARIA [Raizcolum sp. 1002134] 134 135 2 829 550 51158250 Albert local procein sp. 100135 134 149 2	207	-		1641	gn1 PID d101813	hypothetical protein (Synechocystis	54	24	1641
1 1681 137 1901 P10 e310194 R11His.1 (Caenorhabditis elegans) 54 39 1 1681 137 1901 P10 d101813 Importential protein (Symethocystis sp.) 54 30 2 1397 1315 191 P10 d101866 Iransposase (Symethocystis sp.) 54 30 6 1345 297 191 66071 Sattigen precursor (Plasmodlum falcipatum) 54 47 1 135 191 166276 Unknown protein (Streptococcus michael) 54 30 1 136 191 166236 Unknown protein (Streptococcus michael) 54 30 1 136 4 91 1362367 (Astanones) Yep (Bacillus subtilis) 54 37 2 836 590 191 1501878 Amborita (Rative Neg)tococyalation strees, as 41 41, 46 49 49 2 838 590 191 1501878 Amborita (Rative Neg)tococyalation strees, as 41 41, 46 49 49 2 838 1990 191 1501878 Amborita (Rative Neg)tococyalation strees, as 41	210	-	5	655	gi 2293206	(AF008220) YtmP (Bacillus subtilis)	54	29	1 7 7 7
1 1681 347 Gnil Pibl diolisis Apporthetical protein Symechocystis sp.] 3 54 26 2 997 139 Gnil Pibl diolisis International Protein Symechocystis sp.] 54 30 1 4350 237 gil 160671 5 antigen precursor Plasmodium faictpartum 54 47 1 2547 136 gil 1189526 unknown protein Streptococcus mutans 54 30 1 258 4 gil 1299138 unknown protein Streptococcus mutans 54 37 1 258 4 gil 12991815 APP-ribosylglycohydrolase (drao) Hethanococcus jannaschiii) 54 37 2 858 590 gil 1510816 APP-ribosylglycohydrolase (drao) Hethanococcus jannaschiii) 54 37 2 858 190 gil 1510816 APP-ribosylglycohydrolase (drao) Hethanococcus jannaschiii 54 37 3 191 201 11 11 12 70 41 10 10 10 10 10 10 10	225	7	996	2357	gn1 PID e330194	R11H6.1 (Caenorhabditis	24	3.9	1 0001
2 907 1395 gnil PDD d101886 transponase ISynechocystis sp.) 54 30 6 3450 2977 gli160671 S antigen precursor [Plasmodium falciparum] 54 47 1 188 4 gli120526 unknown protein [Streptococcus matens] 54 30 1 188 4 gli1205207 unknown protein [Streptococcus subtains] 54 30 2 888 590 gli1205207 AREDOOS219 V4H [Bacillus subtilis] 54 37 2 888 590 gli150878 ARDP-ribosylglycobydrolase (drob) [Herbanococcus jamaschii] 54 37 4 240 479 gli150878 ARDP-ribosylglycobydrolase (drob) [Herbanococcus jamaschii] 54 37 2 888 590 gli150878 ARDP-ribosylglycobydrolase (drob) [Herbanococcus jamaschii] 53 32 3 19102 gli100102015 Mypothetical protein [Bacillus subtilis] 53 33 4 240 479 371 341 37 31	241		1681	347	gn1 PID d101813	hypothetical protein (Synechocystis	54	26	1335
6 1450 2977 glil106671 Santigen precursor [Plasmodium falcipatum] 54 477 1365 glil1196936 unknown protein [Streptococcus mutans] 54 77 1365 glil1196936 unknown protein [Streptococcus mutans] 54 57 58 glil2191398 (Akbo08220) Y4JH [Rhizobium sp. NGR314] 54 54 57 58 glil2183507 (Akbo08220) Y4JH [Rhizobium sp. NGR314] 54 54 57 58 glil2183507 And P-ribosylglycohydrolase (Faco) [Methanococcus jannaschii] 54 37 37 77 77 77 77 77 7	263	- 5	1 907	1395	gn1 P1D d101886		1 88	2 1 6	+ - 0 0 4
1 828 4 91 293198 (APO08220) YGP Bacillus subtilis	263	9	3450	2977	gi 160671	S antigen precursor (Plasmodium falciparum)	54	47	4
1 828 4 gi[2293198 [AR00082X0) YtgP [Bacillus subtilis] 54 28 2 898 550 gi[12082507 [ABD00083] Y4lH [Rhizoblum sp. NRR34] 54 37 4 240 479 gi[151818.5] ADP-ribosylglycohydrolase (drad) [Methanococcus jamnaschii] 54 37 4 240 479 gi[151818.5] ADP-ribosylglycohydrolase (drad) [Methanococcus jamnaschii] 54 49 15 170 479 gi[151818.5] ADP-ribosylglycohydrolase (drad) [Methanococcus jamnaschii] 54 49 2 180 471 77 74 17 74 17 74 17 74 17 74 17 74 17 74 17 74 17 74 17 74 17 74 17 74	277	-	2517	1363	gi 1196926	unknown protein (Streptococcus mutans)	54	3.0	1155
1 19 768 91 2182507 (AED000083) Y4JH [Rhizobium sp. MGR334] 54 37 37 37 38 38 590 91 1591815 APP-ribosy191ycohydrolase (draG) [Methanococcus jannaschil] 54 32 32 32 32 33 34 34 3	307	-	828	4	gi 2293198	{Bacillus	54	28	+
2 898 590 gi 1591815 ADP-Tibosylglycohydrolase (dreG) [Methanococcus jannaschii] 54 32 4 240 479 gi 530878 amino acid feature: N-glycosylation sites, aa 41 43, 46 48, 51 53 54 49 125 170.2 474 107 109, 132 134, 158 160, 163 165; 49 49 25 1870.2 19493 gnll PID[acc55111] hypothetical protein domain, aa 169 340; amino acid feature: Rod protein domain, aa 169 340; amino acid feature: Bacillus subtilis] 53 32 25 1870.2 19493 gnll PID[acc55111] hypothetical protein (Bacillus subtilis) 53 32 11 9042 1012.1 gil [41333] alkaline phosphatase regulatory protein (Bacillus subtilis) 53 33 14 852.1 gli [810655] Slob hypothetical protein X - Pyrococcus woesel (fragment) 53 30 14 852.1 gli [810655] Slob hypothetical protein X - Pyrococcus woesel (fragment) 53 30 14 852.1 gli [86066]	325	-	1 19	1 768	gi 2182507	(AE000083) Y41H [Rhizobium sp. NGR234]	54	37	750
4 240 479 91 530878 amino acid feature: N-glycosylation sites, aa 41. 45, 46. 48, 51. 53, 54 49 72. 74, 107 109, 128 . 130, 132 . 134, 158 . 160, 163 . 165; amino acid feature: Rod protein domain, aa 169 . 340; amino acid feature: galobular protein domain, aa 169 . 340; amino acid feature: galobular protein domain, aa 169 . 340; amino acid feature: galobular protein domain, aa 169 . 340; amino acid feature: galobular protein domain, aa 169 . 340; amino acid feature: galobular protein domain, aa 169 . 340; amino acid feature: galobular protein domain, aa 169 . 340; amino acid feature: galobular protein domain, aa 169 . 340; amino acid feature: galobular protein domain, aa 169 . 340; amino acid feature: galobular protein domain, aa 169 . 340; and a 160 acid galobular protein domain gacillus subtilis] 11 9042 10121 91 143331 alkaline phosphetase regulatory protein (Bacillus subtilis) 53 30 30 30 30 30 30 30	332	- 5	898	290	gi 1591815	ADP-ribosylglycohydrolase (draG) [Methanococcus jannaschii]	54	32	1 608
19702 19493 gnl PID e255111 hypothetical protein (Bacillus subtilis) 53 32 32 32 32 32 32 32	385	4	240	479	gi 530878	aa 41 134, 158 169	54	49	240
3 2497 2033 gnl PID d102015 (AB001488) · SIMILAR TO SALMONELLA TYPHIMURIUM SLYY GENE REQUIRED FOR 53 25 31 31 31 32 32 33 34 32 34 34 34	7	25	19702	19493	gnl PID e255111	hypothetical protein (Bacillus subtilis)	53	32	21012
11 9042 10121 gi 143331 alkaline phosphatase regulatory protein (Bacillus subtilis) 53 31 31 31 31 31 31 31	23	m	2497	2033	0.1		53	25	465
3 1479 1009 pir S10655 S106 hypothetical protein X - Pyrococcus woesei (fragment) 53 33 33 6 4583 5134 gnl PID e316029 unknown [Mycobacterium tuberculosis] 53 30 14 8521 8898 gi 580904 homologous to E.coli rnpA (Bacillus subtilis) 53 30 7 7007 8686 gi 1377831 unknown (Bacillus subtilis) 53 36 17 17555 19564 gi 666069 orf2 gene product (Lactobacillus leichmannii) 53 35 1 1 681 gi 1592266 restriction modification system S subunit [Methanococcus jannaschii] 53 32	29	=		10121	gi 143331		53	31	1080
6 4583 5134 gnl PID e316029 unknown [Mycobacterium tuberculosis] 53 30	33	- 3	1479	1009	106	- Pyrococcus woesei	53	33	471
14 8521 8898 gi 580904 homologous to E.coli rnpA (Bacillus subtilis) 53 30	36	9 -	4583	5134		unknown [Mycobacterium tuberculosis]	53	30	552
7 7007 8686 gi 1377831 unknown (Bacillus subtilis) 1755 19564 gi 666069 orf2 gene product (Lactobacillus leichmannii) 53 36	38	114	8521	8898	gi 580904	to E.coli rnpA {Bacillus	53	30	378
17 17555 19564 gi 666069 Orf2 gene product [Lactobacillus leichmannii] 53 36	52	7	7007	9898	gi 1377831	unknown (Bacillus subtilis)	53	29	1680
1 1 681 gi 1592266 restriction modification system S subunit [Methanococcus jannaschii] 53 32	54	117		19564	gi 666069		53	36	2010
			1	681	gi 1592266	S	53	32	681

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

			1-1-1-1					
Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	e sim	% ident	length
57	70	9431	8487	gi 1788543	(AE000310) f351; Residues 1-121 are 100 pct identical to YOJK_ECOLI SW: P33944 (122 aa) and aa 152-351 are 100 pct identical to YOJK_ECOLI SW: P33943 [Escherichia coli]	53	31	945
61	-	429	7	gn1 PID e236467	B0024.12 (Caenorhabditis elegans)	53	33	426
71	7	5772	4	gi 393394	Tb-291 membrane associated protein [Trypanosoma brucei subgroup]	53	33	5769
72	8 -	894	2840	gi 2293178		53	22	2000
73	14	9793	9212	gi 1778556	putative cobalamin synthesis protein [Escherichia coli]		32	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
88		5217	4342	gi 2098719	putative fimbrial-associated protein {Actinomyces naeslundii}		35	700
93	2	2395	1688	gi 563366			000	0/0
96	6	6632	7762	gi 517204	ORF1, putative 42 kDa protein (Streptococcus pyogenes)			907
108	8	7629	1 8600	gi 149581	maturation protein [Lactobacillus paracasei]	7	7.	1131
128	6	6412	6972	gn1 P10 e317237	unknown Mycobacterium tuberculosis		1 20	
128	112	8429	9253	91 311070	pentraxin fusion protein (Xenopus laevis)	23		100
148	-	3	950	pir A61607 A616	probable hemolysin precursor - Streptococcus agalactiae (strain 74-360)		+	
163	2	2162	3022	gi 1755150			7	07.0
171	3	2304	2624	gi 1732200	PTS permease for mannose subunit IIPMan (Vibrio furnissii)		0000	100
182	2	3785	3051	gn1 PID d100572	unknown (Bacillus subtilis)		†=	3.21
209	<u> </u>	2948	1935	gi 1778505	ferric enterobactin transport protein [Escherichia colii		+	55/
218		3884	2406	gi 40162	ubtilisl		28	1014
250	3	473	1 790	gn1 PID e334776	YlbH protein (Bacillus subtilis)		34	1479
275		-	1611	gn1 PID d101314	Yqew [Bacillus subtilis]	20	+	318
332	1	544	2	gi 409286	bmrU [Bacillus subtilis]		7	1011
2	2	2543	3445	gn1 PID e233879	hypothetical protein (Bacillus subtilis)	- + - 5	- TS	543
е	22	22402	23376	gi 38969	lacF gene product [Agrobacterium radiobacter]	70		903
2		8094	2356	gn1 PID e324915	IgAl protease (Streptococcus sanguis)	- +	95	5/6
22	26	19961	20212	gi 152901	ORF 3 (Spirochaeta aurantia)	76	32	5739
22	31 [3	23140	24666	91 289262		52	35	252
27	9	5397	4801			52	32	1527
1	+		i		rco (AA I-1/8) [bacillus licheniformis]	52	35	597
					•	1+1-1-1		+

S. pneumoniae - Putative coding regions of novel proteins Similar to known proteins

Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	e sia	* ident	length (nt)
35	110	8604	7357	gi 508241	putative O-antigen transporter [Escherichia coli]	52	27	1248
45	7	4801	3662	gn1 P1D d102243	(AB005554) homologs are found in E. coli and H. influenzae; see SWISS_PROT ACC#: P42100 [Bacillus subtilis]	52	36	1140
48	118	14385	13726	gn1 PID e205174	orf2 [Lactobacillus helveticus]	52	25	099
49	4	5321	5755	gi 2317740	(AF013987) nitrogen regulatory IIA protein (Vibrio cholerae)	52	19	435
54	4	2773	4668	91 1500472	M. jannaschli predicted coding region MJ1577 [Methanococcus jannaschii]	52	36	1896
54	9	5250	4969	gi 2182453	(AE000079) Y4iO (Rhizobium sp. NGR234)	52	40	282
99	9	8400	6955	gi 43140	TrkG protein (Escherichia coli)	52	30	1446
71	26	30659	31312	gn1 PID e314993	unknown [Mycobacterium tuberculosis]	52	23	654
75	2	1673	1035	gn1 PID d102271	(AB001683) FarA (Streptomyces sp.)	52	27	639
81	~	1439	2893	gn1 PID e311458	rhamnulose kinase (Bacillus subtilis)	52	32	1455
81	8	4987	5781	gi 147403	mannose permease subunit II-P-Man [Escherichia coli]	52	37	795
83	21	20687	21853	gi 143365 	phosphoribosyl aminoimidazole carboxylase II (PUR-K; ttg start codon) {Bacillus subtilis}	52	37	1167
86	9	5785	4592	gi 1276879	EpsF [Streptococcus thermophilus]	52	26	1194
98	20	19390	17861	gi 454844	ORF 3 (Schistosoma mansoni)	52	26	1530
96	113	10540	6596	gi 288299	ORF1 gene product (Bacillus megaterium)	52	33	882
111	1	2	2026	gi 148309	cytolysin B transport protein [Enterococcus faecalis]	52	27	2025
112	2	1457	2167	gi 471234	orf1 {Haemophilus influenzae}	52	33	711
118		2931	2365	bbs 151233	Mip=24 kda macrophage infectivity potentiator protein (Legionella pneumophila, Philadelphia-1, Peptide, 184 aa) (Legionella pneumophila)	52	33	567
122	6	5646	5951	gi 8214	myosin heavy chain (Drosophila melanogaster)	52	36	306
122	111	6159	6374	gi 434025	dihydrolipoamide acetyltransferase [Pelobacter carbinolicus]	52	52	216
134	9	4880	6313	gi 153733	M protein trans-acting positive regulator (Streptococcus pyogenes)	52	43	1434
135	- F	1238	2716	gn1 PID e245024	unknown [Mycobacterium tuberculosis]	52	35	1479
141	3	1681	2319	gn1 PtD d100573	unknowm (Bacillus subtilis)	52	32	639
161	4	2562	5024	gi 1146243 	123.4% identity with Escherichia coli DNA-damage inducible protein; putative (Bacillus subtilis)	52	36	2463
173	2	968	183	gi 1215693	putative orf; GT9_orf434 [Mycoplasma pneumoniae]	52	30	786
					+	+		+

S. pneumoniae - Putative coding regions of novel proteins Similar to known proteins

Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	eis &	% ident	length (nt)
198	9	4400	3567	gn1 PID e313010	hypothetical protein [Bacillus subtilis]	52	26	834
210	112	8844	9107	gi 497647	DNA gyrase subunit B [Mycoplasma genitalium]	52	38	264
214	110	5264	5431	gi 550697	envelope protein [Human immunodeficiency virus type 1]	52	36	168
225		15	884	gi 1552773	hypothetical [Escherichia coli]	52	34	870
230	-	39	362	gn1 PID d100582	unknown (Bacillus subtilis)	52	28	324
287	7	871	2	gn1 PID e335028	protease/peptidase [Mycobacterium leprae]	52	29	870
363	7	1305	4	gi 393394	TD-291 membrane associated protein [Trypanosoma brucei subgroup]	52	32	1302
23	7	2048	1173	gn1 PID e254943	Unknown (Mycobacterium tuberculosis)	51	30	876
29	e = 1	742	1521	gi 929900	5'-methylthioadenosine phosphorylase [Sulfolobus solfataricus]	51	31	780
45	7	410	1597	gi 1877429	integrase (Streptococcus pyogenes phage T12)	51	32	1188
48	26	119227	118946	gi 2314455	(AE000633) transcriptional regulator (tenA) [Helicobacter pylori]	51	33	282
1 73	2	4276	4016	191 474177	alpha-D-1,4-glucosidase {Staphylococcus xylosus}	51	31	261
81	=	8935	12057	91 311070	pentraxin fusion protein (Xenopus laevis)	51	31	3123
83	2	1195	1986	gn1 PID d101316	YqfI (Bacillus subtilis)	51	33	792
98	100	7531	8538	gi 41500	ORF 3 (AA 1-352); 38 kD (put. ftsX) (Escherichia coli)	51	28	1008
113	9	3908	5173	gi 466882	[pps1; B1496_C2_189 [Mycobacterium leprae]	51	27	1266
124	-	326	57	gi 2191168	(AF007270) contains similarity to myosin heavy chain (Arabidopsis thaliana)	51	32	270
129	110	7286	6816	gi 1046241	orf14 (Bacteriophage HP1)	51	30	471
143	- 3	4963	3983	gi 1354935	probable copper-transporting atpase [Escherichia coli]	51	26	981
148	115	11359	10226	gi 2293256	(AF008220) putative hippurate hydrolase (Bacillus subtilis)	51	36	1134
149	8	6003	7313	gi 1633572 	Herpesvirus saimiri ORF73 homolog [Kaposi's sarcoma-associated herpes-like virus]	51	21	1311
151	6 -	12092	11550	gn1 PID e281580	hypothetical 40.7 kd protein (Bacillus subtilis)	51	34	543
159	9	2555	3208	gi 146944	CMP-N-acetylneuraminic acid synthetase [Escherichia coli]	51	36	654
174	7	1797	4	gi 1773166	probable copper-transporting atpase (Escherichia coli)	51	28	1794
265	4	2231	1773	gn1 PID e256400	anti-P.falciparum antigenic polypeptide (Saimiri sciureus)	51	18	459
277	2	643	1311	pir S32915 S329	pilD protein - Neisseria gonorrhoeae	51	33	699
							+	+

S. pneumoniae - Putative coding regions of novel proteins 's'milar to known proteins

Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	e sia	% ident	length (nt)
350	_	890	3	gi 290509	o307 [Escherichia coli]	51	30	888
363	4	1228	4485	gi 1707247	partial CDS (Caenorhabditis elegans)	51	23	3258
367	_	1701	4	gi 393394	Tb-291 membrane associated protein [Trypanosoma brucei subgroup]	51	32	1698
15	2	5174	4497	gn1 PID e58151	[F3 [Bacillus subtilis]	80	38	678
16	4	2220	2582	gn1 PID e325010	hypothetical protein (Bacillus subtilis)	50	29	363
19	2	2591	4159	gi 1552733	similar to voltage-gated chloride channel protein (Escherichia coli)	50	30	1569
25	4	2701	1997	gi 887849	ORF_f219 [Escherichia coli]	50	27	705
35	1	211	417	gn1 PiD e236697	unknown {Saccharomyces cerevisiae}	50	33	207
39	4	3416	5152	gn1 P1D d100974	unknown {Bacillus subtilis}	50	27	1737
51	,	4000	5181	gi 1592027	carbamoyl-phosphate synthase, pyrimidine-specific, large subunit [Methanococcus jannaschii]	200	27	1182
51	6	7179	8303	gi 1591847	type I restriction-modification enzyme, S subunit (Methanococcus jannaschii)	50	28	1125
52	80	8740	9534	gi 144297	acetyl esterase (XynC) [Caldocellum saccharolyticum]	50	34	795
52	16	16591	15770	gi 2108229	basic surface protein (Lactobacillus fermentum)	50	34	822
57	7	6031	6336	gi 2275264	60S ribosomal protein L7B (Schizosaccharomyces pombe)	80	40	306
71	23	29348	28383	gn1 P1D d101328	YqjA (Bacillus subtilis)	50	30	1 996
98	12	11155	10769	gn1 PID e324964	hypothetical protein (Bacillus subtilis)	50	24	387
93	7	1205	330	gi 1066016 	Similar to Escherichia coli pyruvate, water dikinase, Swiss-Prot Accession Number P23538 [Pyrococcus furiosus]	90	24	876
96	5	1673	2959	gn1 PID e322433	gamma-glutamylcysteine synthetase [Brassica juncea]	-+ 20 +	29	1287
86	2	218	1171	gi 151110	leucine-, isoleucine-, and valine-binding protein (Pseudomonas aeruginosa)	20	30	954
103	4	3303	2785	gi 154330	O-antigen ligase (Salmonella typhimurium)		31	519
115	2	6480	5980	gi 895747	putative cel operon regulator (Bacillus subtilis)	50	26	501
129	11	7559	7305	gi 1216475	skeletal muscle ryanodine receptor (Homo sapiens)	20	32	255
129	13	8192	7965	gi 152271	319-kDA protein (Rhizobium meliloti)	90	30	228
151	2	7634	6819	gi 40348	put. resolvase Tnp I (AA 1 - 284) [Bacillus thuringiensis]	50	35	816
153	-	-	597	gn1 PID d102015	(AB001488) SIMILAR TO NITROREDUCTASE. [Bacillus subtilis]	50	29	597
•		•			+	-+	-+	+

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	e sin	% ident	length
155		5986	5432	gi 1276880	EpsG (Streptococcus thermophilus)	20	28	555
160	6	7390	6323	gi 1786983	(AE000179) 0331; 92 pct identical to the 333 aa hypothetical protein YBHE_ECOLI SW: P52697; 26 pct identical (7 gaps) to 167 residues of the 373 aa protein MLE_TRICU SW: P46057; SW: P52697 [Escherichia coli]	20	30	1068
163	9	7396	8091	gn1 PID d101313	Ygen (Bacillus subtilis)	50	22	969
167	9	5232	3940	gi 413926	ipa-2r gene product (Bacillus subtilis)	05	27	1293
169	2	807	130	gn1 PID e304540	endolysin {Bacteriophage Bastille}	50	35	678
171	5	3168	4025	gi 606080	ORF_0290; Geneplot suggests frameshift linking to 0267, not found [Escherichia coli]	20	27	858
210	111	8151	8414	gi 330038	HRV 2 polyprotein [Human rhinovirus]	50	25	264
364	1-	1538	135	gi 393396	TD-292 membrane associated protein (Trypanosoma brucei subgroup)	50	31	1404
10	1 2	5911	1 5090	gi 144859	ORF B (Clostridium perfringens)	49	24	822
26	- 5	10754	9768	gi 142440	ATP-dependent nuclease (Bacillus subtilis)	49	31	987
99	7	7776	8398	gi 414170	LrkA gene product [Methanosarcina mazeii]	49	26	1380
77	9	5364	4648	gn1 PID e285322	RecX protein [Mycobacterium smegmatis]	49	28	1 717
82	113	12689	13249	gnl PID e255091	hypothetical protein (Bacillus subtilis)	46	20	561
93	6	4866	4531	gi 40067	X gene product (Bacillus sphaericus)	49	26	336
112	2	4019	4948	gi 1574380	lic-1 operon protein (licB) [Haemophilus influenzae]	4	27	930
129	7	6058	4949	gn1 PID e267587	Unknown (Bacillus subtilis)	49	35	1110
135	- 5	3875	4438	gi 39573	P20 (AA 1-178) [Bacillus licheniformis]	49	25	564
154	2	1423	1953	gn1 P1D d101102	regulatory components of sensory transduction system (Synechocystis sp.)	49	29	531
156	5	2878	1637	gn1 PID d101732	hypothetical protein (Synechocystis sp.)	49	25	1242
173	5	3500	2940	gi 490324	LORF X gene product [unidentified]	49	30	561
1 182	-	1057	2	gi 331002	first methionine codon in the ECLF1 ORF (Saimiriine herpesvirus 2)	49	25	1056
192	9	5352	3667	gi 2394472	(AF024499) contains similarity to homeobox domains (Caenorhabditis elegans)	49	23	1686
253	4	1129	1350	gi 531116	SIR4 protein [Saccharomyces cerevisiae]	49	23	222
277	111	009	136	gi 396844	ORF (18 kDa) [Vibrio cholerae]	49	32	465
327		1435	887	gi 733524	phosphatidylinositol-4,5-diphosphate 3-kinase [Dictyostelium discoideum]	46	24	549
								+

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

Contig	ORF	Start (nt)	Stop (nt)	match acession	match gene name	% sim	% ident	length (nt)
365	n	1436	132	gi 393394	Tb-291 membrane associated protein [Trypanosoma brucei subgroup]	49	31	1305
33	7	4461	13277	gi 145644	codes for a protein of unknown function [Escherichia coli]	48	26	1185
40	5	652	1776	gn1 PID e290649	ornithine decarboxylase [Nicotiana tabacum]	48	29	1125
19	4	1377	2384	gi 1772652	2-keto-3-deoxygluconate kinase [Haloferax alicantei]	48	30	1008
74	- 5	4269	3871	gi 2182678	(AE000101) Y4vJ (Rhizobium sp. NGR234)	48	27	399
81		1326	541	gi 153672	lactose repressor [Streptococcus mutans]	48	33	786
81	7	2981	3646	gi 146042	fuculose-1-phosphate aldolase (fucA) [Escherichia coli]	48	30	1 999
97	-	602	51	gi 153794	rgg [Streptococcus gordonii]	48	29	552
110	-	-	3132	91 1381114	prtB gene product [Lactobacillus delbrueckii]	48	23	3132
131	5	2914	2147	gn1 PID e183811	Acyl-ACP thioesterase [Brassica napus]	48	27	768
133	4	3494	2628	gn1 PID e261988	putative ORF (Bacillus subtilis)	48	27	867
139	9	4231	4599	gi 1049388	ZK470.1 gene product (Caenorhabditis elegans)	48	23	369
1 139	88	5036	5995	gi 1022725	unknown [Staphylococcus haemolyticus]	48	29	630
140	112	11936	11007	gnl PID d102049	H. influenzae, ribosomal protein alanine acetyltransferase; P44305 (189) [Bacillus subtilis]	48	27	930
146	6	5670	4654	gi 1591731	melvalonate kinase (Methanococcus jannaschii)	48	24	1017
161		1280	2374	gn1 PID d101578	Collagenase precursor (EC 3.4). [Escherichia coli]	48	24	1095
172	11	10581	111048	gn1 PID d101132	hypothetical protein (Symechocystis sp.)	48	27	468
182	4	2930	2586	gi 40067	X gene product (Bacillus sphaericus)	48	37	345
210	115	10786	11196	sp P13940 LE29_	LATE EMBRYOGENESIS ABUNDANT PROTEIN D-29 (LEA D-29).	48	30	411
214	112	6231	6482	gi 40389	non-toxic components [Clostridium botulinum]	48	26	252
221		704	3	gi 1573364	H. influenzae predicted coding region HI0392 [Haemophilus influenzae]	48	27	702
227	7	647	3928	gi 1673693 	(AE000005) Mycoplasma pneumoniae, C09_orf718 Protein (Mycoplasma pneumoniae)	48	30	3282
253	5	480	758	gn1 PID e236697	unknown (Saccharomyces cerevisiae)	48	31	279
363	3	1874	1122	gi 18137	cgcr-4 product [Chlamydomonas reinhardtii]	48	40	753
389	1	505	7	gi 18137	cgcr-4 product [Chlamydomonas reinhardtii]	48	38	504
3	[21]	20879	22258	gn1 PID e264778	putative maltose-binding pootein [Streptomyces coelicolor]	47	33	1380
					***************************************	********	+	+

S. pneumoniae - Putative coding regions of novel proteins sīmilar to known proteins

Contig	1	Start	Stop	-+	match gene name	# Sim	% ident	length 1
QI .	9	(nt)	(nt)	acession				(nt)
9	4	4089	4658	gi 39573	P20 (AA 1-178) [Bacillus licheniformis]	47	23	570
15		3736	1760	gn1 PID d100572	unknown [Bacillus subtilis]	47	25	1977
35	115	14516	13263	gi 1773351	Cap5L Staphylococcus aureus	47	20	1254
51	9	3547	4002	pir A37024 A370	12K antigen precursor - Mycobacterium tuberculosis	47	38	456
55	80	10154	9273	gi 39848	U3 [Bacillus subtilis]	47	26	882
92	4	1753	3276	gn1 PID e280611	PCPC (Streptococcus pneumoniae)	47	35	1524
127	6	5589	5386	gi 1786458	(AE000134) f120; This 120 aa orf is 76 pct identical (0 gaps) to 42 residues of an approx. 48 aa protein Y127_HAEIN SW: P43949 (Escherichia coli)	47	32	204
130	2	1232	1759	gn1 P1D e266555	unknown (Mycobacterium tuberculosis)	47	23	528
140	4	4951	3542	gn1 PID d100964 	homologue of hypothetical protein in a rapamycin synthesis gene cluster of Streptomyces hygroscopicus [Bacillus subtilis]	47	24	1410
151	4	6814	6200	gi 1522674	M. jannaschii predicted coding region MJECL41 (Methanococcus jannaschii)	47	27	615
157	~	803	1174	gn1 PID d101320	Yqg2 (Bacillus subtilis)	47	25	372
178	S	3267	2155	gi 2367190	(AE000130) 0334; sequence change joins ORFs ygjR & ygjR from earlier version (YGJR_ECOLI SW: P42599 and YGJS_ECOLI SW: P42600) [Escherichia coli]	47	30	1113
273	1	2	1549	gn1 PID e254973	autolysin sensor kinase (Bacillus subtilis)	47	32	1548
300	2	880	644	gi 1835755	zinc finger protein Png-1 (Mus musculus)	47	22	237
54	14	14182	12638	pir S43609 S436	rofA protein - Streptococcus pyogenes	46	24	1545
88	-	2	1018	gn1 PID e223891	xylose repressor (Anaerocellum thermophilum)	46	27	1017
96		4553	5860	gn1 PID d101652	ORF_ID:0347#5; similar to [SwissProt Accession Number P45272] [Escherichia coli]	46	23	1308
112		1127	e -	gi 2209215	(AFO04325) putative oligosaccharide repeat unit transporter (Streptococcus pneumoniae)	46	24	1125
122	13	7308	7982	gi 1054776	hr44 gene product (Homo sapiens)	46	34	675
127	114	9198	8125	gi 1469286	afuA gene product [Actinobacillus pleuropneumoniae]	46	28	1074
132	4	7093	6197	gi 153794	rgg (Streptococcus gordonii)	46	26	897
140	8	8220	7723	gi 1235795	pullulanase (Thermoanaerobacterium thermosulfurigenes)	46	21	498
140	6	9205	8315	gi 407878	leucine rich protein (Streptococcus equisimilis)	46	27	891

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

length (nt)	1125	585	495	849	468	630	408	306	504	1218	441	1059	411	603	507	579	873	744	1992	2790	2688	657	2079
% ident	25	28	27	28	29	24	29	3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	25	28	24	33	28	31	26	26	25	20	24	26	27	29	1 70
E is	46	46	46	46	46	45	45	45	45	45	45	45	45	45	44	44	44	44	43	43	43	43	43 1
match gene name	ORF7; Method: conceptual translation supplied by author (Shigella sonnei)	(AF000299) No definition line found (Caenorhabditis elegans)	MYOSIN HEAVY CHAIN, SKELETAL MUSCLE (FRAGMENTS).	ycf38 gene product (Cyanophora paradoxa)	(AE000011) Mycoplasma pneumoniae, cytidine deaminase; similar to GenBank Accession Number C53312, from M. pirum (Mycoplasma pneumoniae)	(AE0000270) o235; This 235 aa orf is 29 pct identical (10 gaps) to 198 residues of an approx. 216 aa protein YTXB_BACSU SW: P06568 (Escherichia coli)	unknown Acetobacter xylinum	coded for by C. elegans cDNA yk41h4.3; coded for by C. elegans cDNA yk148g10.5; coded for by C. elegans cDNA yk15g5.5; coded for by C. elegans cDNA yk15g10.5; coded for by C. elegans cDNA yk59a10.5; coded for by C. elegans cDNA yk41h4.5; coded for by C. elegans cDNA cm20g10; coded	NADH dehydrogenase (ubiquinone) Artemia franciscana	mutation causes a succinoglucan-minus phenotype; ExoQ is atransmembrane protein; third gene of the exoYFQ operon;; putative [Rhizobium meliloti]	<pre>HitB=iron utilization protein (Haemophilus influenzae, type b, DL42, NTHI TN106, Peptide, 506 aa) (Haemophilus influenzae)</pre>	V-type Na-ATPase [Enterococcus hirae]	restriction endonuclease beta subunit (Bacillus coagulans)	latex allergen (Hevea brasiliensis)	ORF [Lactococcus lactis]	ORF_£277 [Escherichia coli]	membrane transport protein [Bacillus subtilis]	ORFI (Bacillus sp.)	PspA Streptococcus pneumoniae]	M. genitalium predicted coding region MG064 [Mycoplasma genitalium]	[penicillin-binding proteins 1A and 1B (Bacillus subtilis]	YjcA gene product (Escherichia coli)	similar to eukaryotic Na+/H+ exchangers [Escherichia coli!
match	gi 1143209	gi 1947171	sp P02562 MYSS_	gi 1016112	gi 1673744	gi 1788049	gi 722339	gi 1699079	91 1321900	gi 152192	bbs 153689	gi 472921	gi 304141	gi 1480457	gi 433942	gi 537207	gn1 PID e308082	gn1 PID d100718	gi 2351768	gi 1045739	gi 520541	gi 536934	gi 396400
Stop (nt)	1125	585	1477	1608	220	6472	3868	2	14874	7941	9099	2619	364	2	20288	6452	4037	75	3876	18256	17343	1352	338
Start (nt)	1	7	1971	760	687	5843	3461	307	14371	9158	7046	1561	774	604	19782	7030	4909	818	1885	15467	14656	969	2416
ORF	-	-	e -	2	1	α	9		116	7	112	2	1	-	118	8	5	7	3	117	115	2	2
Contig	162	199	223	232	292	30	48	09	72	66	127	137	209	314	20	87	166	247	32	36	54	67	139

S. pneumoniae - Putative coding regions of novel proteins similar to known proteins

+		+ -				+	+	+
Louicig lore	10	(nt)	(nt)	marcn acession	match gene name	e sia	% ident	length (nt)
298	7		809	gi 413972	ipa-48r gene product (Bacillus subtilis)	43	24	807
387	-	47	427	gi 2315652	(AF016669) No definition line found (Caenorhabditis elegans)	43	30	381
185	4	4221	3127	3127 gi 2182399	(AE000073) Y4fP [Rhizobium sp. NGR234]	41	25	1095
340		582	70	gn1 PID e218681	CDP-diacylglycerol synthetase [Arabidopsis thaliana]	41	20	513
363	9	4205	1914	1914 gi 1256742	R27-2 protein (Trypanosoma cruzi)	41	27	2292
368	5	2	943	[gi 21783	LMW glutenin (AA 1-356) [Triticum aestivum]	41	34	942
155	т.	4489	2861	gi 42023	member of ATP-dependent transport family, very similar to mdr proteins and hemolysin B, export protein [Escherichia coli]	40	18	1629
365	7	95	1438	gi 1633572	Herpesvirus saimiri ORF73 homolog (Kaposi's sarcoma-associated herpes-like virus)	40	21	1344
-	8	2979	3860	gn1 PID d101908	hypothetical protein (Synechocystis sp.)	39	26	882
1	5	3814	4647	gn1 PID d101961	gnl PID d101961 hypothetical protein (Synechocystis sp.)	39	19	834
26	9	14035	14035 10724	gi 142439	ATP-dependent nuclease (Bacillus subtilis)	38	20	3312
47		۳	4916	4916 gi 632549	NF-180 [Petromyzon marinus]	36	23	4914

S. pneumoniae - Putative coding regions of novel proteins not similar to known proteins

· — ·	•	·		· — ·	· —	.	.	.	· ·	.	•	+	• —	. —		.	. —	+	. —	•	. —						• —
Stop (nt)	3009	4964	994	1574	6497	25396	26317	1689	12618	12841	15390	9419	9910	4280	5704	6298	6888	7672	4	1456	1434	243	3087	34	1050	4465	15893
Start (nt)	3428	4611	818	1182	5382	25046	25625	1519	12875	13215	15977	9955	10161	3915	6024	6069	7136	1968	1140	1779	1913	-	5675	324	1451	4890	14544
ORF	4	9	7	m	7	25	26	~	14	15	18	12	13	9	6	· ·	6	=	-	<u>۾</u>	2	7	2	-	m	6	14
Contig ID	1		3	m	Е	~	m	9	9	9	9	7	7	8	6	10	01	10	12	12	14	16	16	17	17	17	20
				•			• — •		• — •		· — ·	• — •		• — ·			-	· — ·				-		· — ·			

S. pneumoniae - Putative coding regions of novel proteins not similar to known proteins

· —— .	 ·	• — •	•	• — .	•																						
Stop (nt)	2589	1 8	17362	19982	25764	26218	27572	6032	6653	8	2641	4223	4956	1797	3850	4597	5072	4919	5518	8207	26	۱ ۳	5538	ب ر	7740	8641	9377
Start (nt)	3359	80	17099	19467	25540	26388	26382	6655	7132	36	3009	4819	4789	3017	4272	5028	5746	5596	5039	59	6511	2664	5203	5327	8024	9360	1 2996
ORF ID	3	5		25	33				8	-	- 2	7			8	01	11	1 2	8	6	6	9	5		10	12	= -
Contig ID	21	21	22	22	22	22	22	23	23	24	25	27	27	28	28	28	28	29	29	29	30	31	32	33		34	34
		· — i	· — ·						-			-					_			<u>. </u>	- -			<u>. </u>	- -		

proteins
known
r to kr
\$tfm1lar
not
proteins not sthilar to known
novel
of
tive coding regions of nove
coding
Putative
•
pneumoniae
s.

Stop (nt)	58 1	0670	1041	10893	11388	14595	4577	5001	5711	11376	3143	2	8732	9071	6831	3665	3468		3582	4229	8922	12494	15764	18351	21776	3
Start (nt)		11073	334	11120	10993	27121	4269	4480	5517	10732	1728	172	8884	9956	4831	3204	3875	6074	3196	4579	9323	13042	16342	17971	21979	209
ORF ID 118	=	112	2	12	13	15	7	80	07	17	m	_	7	∞	4	~	₹.	7	S.		=======================================	16	20	24	30	-
Contig ID 34	35	35	36	36	36	36	38	38	38	38		43	43	43	44	45	46	46	48	48	48	48	48	48	48	49

S. pneumoniae - Putative coding regions of novel proteins not similar to known proteins

+	+ -	• -	.	 .	+ —	+	.	+	•				.														
Stop (nt)	2672	59		5187	5459	210	17506	10123	12141	1387	1939	2130	2501	7335	430	2736	3063	5549	5929	6451	1772		2	3147		1182	980
Start (nt)	3307		14	5588	6013	6004	17685	10515	11947	935	1496	1624	2100	7541	2		2734	4743	5459	5741	2395	3316	2722	1180	9082	1343	1165
ORF	7	2	=	7	· ·	6	16	6	12	~	4	m	4	9	-	4	2	- 8	6	9	e .	2		7	-	_	7
Contig	50	51	52	54	54	54	54	55	55	95	56	57	57	28	59	59	59	59	59		61	61	64	99	99	67	69
÷ —— ÷	· i						_				_			-	-		- -		- -				.			‡	· — ‡

oteins
ū
known prot
ţ
ar
eins not stmil
not
proteins no
ā,
f novel
of n
regions
coding
Putative
t Ot
iae
pnenmonia

÷	+ — ·	• — •	 .	. — .	٠	• —	+	. —	+ —	•	• —	. —	+	+			•										
Stop (nt)	3922	0.5	5504	21901	22338	27556	8081	4216	4582	4773	6428	8996	i 6	535	9210	8109	2	8931	1150	16460	2929	1092	2875	17114	2000	6001	7006
Start (nt)	4059		52	20351	21859	26204	8458	3815	4214	4369	7183	9462	524	867	8602	7924	244	6631	1872	16810	4464	2147	3606	16767		6459	7224
ORF	- 2	9	6	15	16	119	6	7	9	_	01	115	-	7	=	9	-	10	₹.	-	<u>س</u>	7	4	19	2		6
Contig	7.0	70	7.0		71	71	72	73		73	7.3		96	76	16	80	81	81	83	83	84	86	86	86	87	87	87
+		- •							- -					4		_						- -	-		-		- +

S. pneumoniae - Putative coding regions of novel proteins not similar to known proteins

19 ORF Start Store S	· —— -	. — .		· ·	· — ·	. — .	.	+	. — :	. —	 .	. —	• — ·	+	 .	. —	• — ·	• -	+	•	•							.
Lig ORF Star D ID (nt) 1 18 17930 1 19 18275 8 2 1619 8 4 2711 8 9 6252 9 3 2634 9 9 7371 1 1 391 1 1 391 1 1 391 2 904 2 904 3 1 1407 3 1 1407 4 1250 6 4924 1 1 19717 6 4924 6 4924 6 4924	1 5 5	767	792	84	87	1 6	62	86	39	1 10	14	69	57	i .	37	17	1 00	i m	14	42	75	869	54	ıœ	0	37	73	6517
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	tar nt)	793	827	61	17	25	63	37	ا م	4	95	17	25	91	64	53	3 !	04	40	25	2	852	971	6		92	14	8609
	1 × 0			7	4	6	_	6	7	~		*	9	-	9		-	2	E .	4	6			7		9	2	7
19 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	ont i ID	87	87			88				9.6								96	96	96	97						. 0	105

FABLE 3

S. pneumoniae - Putative coding regions of novel proteins not sitallar to known proteins

Contig ORF Start Stop 106 1 1 363 106 1 1 363 107 10 10 111 3 3417 3788 111 4 3809 4606 112 12 12 12 12 12 13 31 12 12 274 1357 12 12 6301 7416 12 12 10 5858 6139 12 12 6301 7416 12 12 1433 756 13 14 11 11838 11209 13 14 14 14521 13 14 14875 13 14 15363 14875																												
Ontig ORF Star ID ID (nt) 106 1 1 106 1 1 107 10 9832 108 1 2 111 4 3809 112 10 10854 113 10 5858 125 12 6301 129 2 1011 129 2 1011 131 10 5972 131 1 11838 132 2 2534 133 14 1338 134 11 11838 135 2 2534 131 10 5972 132 12 14027 133 13 14840 134 13 14840	Stop (nt)	9	021	9	78	1 09	043	12	iù		13	į 🗝	0	36	. 0	1 (7)	0.5		62	l W	67	120	4	83	m	45	453	487
Ontig On	1 4 ~	-	832	2	41.	80	085	iòσ	27	69	82	30	4	54	1 00	10	5.	54	80	43	97	183	1 0	91	i 7	05	1 4 1	536
1		-			3	4	10	3	7 7	4	100	112	2	4	-	7	8	6		3	01		2	4	7		13	14
	onti	106	. 0	108		1	i ~i			1 (2)	1 0	1 (2	1 0	1 (2	1 2	1 (7)					ı ۳		l m	136			ımi	1 10 1

S. pneumoniae - Putative coding regions of novel proteins not similar to known proteins

+	•	· ·	· ·								_																
Stop (nt)	20838	iä	479	778	2885	9401	10676	9750	7276	8647	4765	1936	2880	0009	579	1909	2642	1741	1411	4311	294	780	1722	4017	1018	4945	4972
Start (nt)	19822	-	760	1149	3604	8223	9399	10052	7488	8913	5298	2	2557	6258	1355	2556	2061	1953	2181	4550	37	631	1384	3271	1332	5535	5406
ORF	20		e -	7		£1	14	21	-	6	- 2		e .	6	7	- ·	- 3	- ·	2	8	-	7	4	-	7	m	9
Contig ID	140 .	142	146	146	146	146	146	146	147	147	148	149	149	149	150	150	153	154	155	156	157	159	159	159	161	165	166
· ——	4				. — ·				-	 .	! — ·			! — !					- -		! — ·	! ·	<u> </u>	. — .		_ :	.

S. pneumoniae - Putative coding regions of novel proteins not similar to known proteins

Stop	6395	10	6243	6362	6962	1 9062	7476	1948	2677	835	1789	546	1466	4925	5177	5347	8703	3724	2473	1 01	2006	2320	4219	4634	3557	4363	4821
Start (nt)	6075	82	6485	96	7303	8790	7150	2298	2913	659	893	1487	2200	4686	4923	5111	7396	3452	1853	2112	2617	2126	4683	4846	2940	3686	4183
ORF	6	S	7	8	6	=	6	2	4	2	3	7	2	6	10	1	1	9	7	~	e -	7	2	9	4	4	2
Contig	167	169	-	170	170	170	171	172	173	175	175	176	176	177	177	177	177	178	181	182	182	. 183	185	185	187	188	188
· —— ·						· — ·						- -	. — ·	· ·			— -				—	-		_	- -		

S. pneumoniae - Putative coding regions of novel proteins not similar to known proteins

Stop (nt)	6493	84	ivõ	4	10001	2268	2878	5331	839	2127	4543	6231	1849	861	6644	5769	6595	3276	1709	2460	2682	8230	10441	10705	2330	5277	5754
ta nt	80	3143	5956	618	10357	2861	3081	0089	997	im	6249	6620	1553		6844	5329	5993	3914	447	2038	2458	7370	9059	10439	2581	5065	5996
ORF	9	s	6	-	Ξ	<u>س</u>	4	7	~	4	2	9	7		6	2	9	5	7	4	5	01	13	14	5	6	11
Contig	188	189		191	191	192	192	192	193	194	195	195	196	197	198	200	200	204	205		209	210		210	214	214	214
+	+					• —·	• — ·			. — ·	-	· — ·			- -		-	- -		· — ·	-	-	.		.	·	

S. pneumoniae - Putative coding regions of novel proteins not similar to known proteins

•																											
Stop (nt)	94	4	-	3821	. ~	009	1964	510	1312	1838	312	687	64	270	362	1 0	792	. 9	2123	177	9	2973	342	1022	1681	186	2295
Start (nt)	. 4	914	4 400	3639	458	869	2617	1		1		310			3	443	2789		1770	653	2244	3569		177		857	1684
ORF	7	7	_	9		-	4	-	4	9	-	2	-	-	-	7	e .	7	~	-	4	ر د		~	7	-	7
Contig	217	-	218	218	219	220	223	227	234	234	235	235	238				254	258	260	263	263	263	266	266		272	1 6 1
+	. — -					- -	· ·			 .	-				. — -												- - +

to known proteins
to X
i₩lar
s not
e coding regions of novel proteins
novel
oţ
regions
coding
Putative
1
. pneumoniae
S

+	 .	 .	• — ·	. — .	.		. —							.													
Stop (nt)	406	391	1134	826	4	4	1858	2925	608	700	843	530	350	1889	1818	584	777	133	607	549	535	82	342	. 0	701	199	198
Start (nt)	2	714	1463	1119	540	684	1589	2539	21	494	0.09	261	559	249	2087	1048	313	٦.	912		2	465	127	-	895	750	-
ORF	-		₹	7	-	1	2	7	-	7	~	-	- ·	7	7	7	7		7		-	2		-	~	7	
Contig	278	282		287	288	289	291	293	294	296	296	302	309	310	316	317	318	319	327	331	333	333	333	341	345	346	349
			•								+						+				.					· — i	· ÷

S. pneumoniae - Putative coding regions of novel proteins not 計加lar to known proteins

+	• -	• — ·	. —	+ —	. —	. —	.		.	
Stop (nt)	413	973	448	628	1265	1004	510	693	4	30
Start (nt)	81	44	636	948	1639	345	683	109	150	269
ORF	2	-	7	7	7	-	7	-	-	7
Contig	350	355	358	360	364	378	379	381	385	385

WO 98/18931

148

(1) GENERAL INFORMATION:

(i) APPLICANT: Charles Kunsch

Gil H. Choi

Patrick S. Dillon

Craig A. Rosen

Steven C. Barash

Michael R. Fannon

Brian A. Dougherty

- (ii) TITLE OF INVENTION: Streptococcus pneumoniae Polynucleotides and Sequences
- (iii) NUMBER OF SEQUENCES: 391
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Human Genome Sciences, Inc.
 - (B) STREET: 9410 Key West Avenue
 - (C) CITY: Rockville
 - (D) STATE: Maryland
 - (E) COUNTRY: USA
 - (F) ZIP: 20850
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Diskette, 3.50 inch, 1.4Mb storage
 - (B) COMPUTER: HP Vectra 486/33
 - (C) OPERATING SYSTEM: MSDOS version 6.2
 - (D) SOFTWARE: ASCII Text
- (vi) CURRENT APPLICATION DATA:

- (A) APPLICATION NUMBER:
- (B) FILING DATE:
- (C) CLASSIFICATION:
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE:
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Brookes, A. Anders
 - (B) REGISTRATION NUMBER: 36,373
 - (C) REFERENCE/DOCKET NUMBER: PB340P1
- (vi) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (301) 309-8504
 - (B) TELEFAX: (301) 309-8512

150

(2) INFORMATION FOR SEQ ID NO: 1:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 5625 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

CCAAGCAAAA	CCAGCTACAG	CTAAAGGAAC	TTACGTAACA	AACTTGACTA	TCACAACTAC	60
TCAAGGTGTT	GGTATCAAAG	TTGACGTAAA	CTCACTTTAA	TCAGTAGTTA	AAGTAATGTA	120
AAAAAGTTGA	AGACGCTATG	TCTCAACTTT	TTTTGATGTA	CGACGGGCAT	GTTGTATAGT	180
AGATGTGTAC	TATTCTAGTT	TCAATCTACT	ATAGTAGCTC	AGAAGTCGGT	ACTTAAACGT	240
GCTATATCAA	AACCAGTCCT	TGAAAAACGT	GGACTGGTTT	CGTGTTTGGA	TTATTACCTT	300
GAACGACATG	CGTTAAAAGT	TAGTTGAACC	GCCGTATGCC	GAACGGACGT	ACGGTGGTGT	360
GAGAGGGGCT	AGAGATTATC	CCCTACTCGA	TTTCGAAATC	TAGTGGAATG	AATCTGGAAT	420
AGTCCATCGA	GCTTTCTAAT	ACTCTTCGAA	AATCTCTTCA	AACCACGTCA	ACGTCGCCTT	480
GCCGTGCGTA	TGGTTACTGA	CTTCGTCAGT	TCTATCCACA	ACCTCAAAAC	AGTGTTTTGA	540
GCTGACTACG	TCAGTTCCAT	CTACAACCTC	AAAACAGTGT	TTTGAGCAAC	CTGCGGCTAG	600
TTTCCTAGTT	TGCTCTTTGG	TTTTCATTGA	GTATAACACA	TTGTTAGAAG	TTGGTTTAAA	660
TTTCCTAATC	AGTTTGTTCA	CATTTACCTT	CGATATATTA	TATCCCATAG	TTAAGGTTGG	720
TCATACAGAT	GATTATAGTC	ATGGAGCCGT	AAAACTTAGT	GTTTCTTTAG	TTGACAAAGA	780
TGCCATGAAA	AAAATATTTG	TAACTGTAAT	AGGATATTTT	GAAATAAATA	TAGATGAAAA	840
TATCACCGAT	ATTCTATACG	TAAATGGTAC	TGCTATTCTT	TATCTTTATT	TACGTTCAAT	900
TGTTTCAATA	GTTTCGGCAA	TTGATAGCAG	TGAAGCAATG	TTGCTACCTA	TCATTAATGT	960
TTTAGAGTTA	CTAGATAAAT	CTCAACCTTT	TGAAGAAGAA	TAATTTATTA	GCTCACTAAA	1020
TTGAGGGTAA	GGAAAAGTAA	AAGCAGTAAG	AAAAATGTCT	TGCATTATAC	AGCAACCTTT	1080
TGGGAATGAG	TGGATGGATT	GAATAAAATT	TGATTAAGAG	TGGATGATTT	ATCTGTAGAT	1140
TATTATTGGA	CAGTTAGTCT	TGAAGTAGTC	TAAGAATTAG	GTTATAATCA	GTAGAAGCCT	1200
TGCTAATAAT	GAGGAGGTTA	GTTTATGTAT	AGTAGACTGA	АТСТААААТА	GTACGAAACA	1260
ATTGCTAAAA	CATTTATAGA	AATTAATTTT	ACTTTCCCAA	TCGATTTGTT	CTCATCTTAT	1320
TTCAATCCGC	TATATATTAT	GGTATCGAAT	CTTCATCAGA	АТСАТААААТ	TAATCAATTG	1380
ATATCTGATT	ACAAACAGAA	TATGAAAGCT	TTTTATATCA	CTATTGAAAA	ATTTATACGA	1440

GATGATGAAA	GCCTTAAGTG	TTATTTTATA	AAGGTTATTT	CAAGTCGTTC	CAAGGTAACA	1500
AGTCTAGATC	AGATTGAAGC	TGATAAAACG	ATACAAAGAA	AATATTCAAG	TGAGCTAAAA	1560
AAATTTATTG	GATTTTATAA	TGAGATTATT	TGTGAGGAAA	ATAGTTTCCT	ACATGTACGA	1620
AAGAGGTGGT	CGAGTTGGTT	TAGGTAGTCG	ATGCGTGAGT	TGATAATTCT	CAGGGTATGG	1680
ACTTCTTTTT	CATGAATGAG	GTAAAAGAGC	AGGTATTGTT	TAGAGACAAT	CATTCTGAGC	1740
ATATTTTCTG	GATAGAGGGA	GTATCCGATT	TTATGATCAA	AGTTAATACC	GCCCTCTGGT	1800
GAGAAGATGA	GTAGGTTGGT	AATTTAAACT	ATTAAACAGA	ATTTTTGATT	AAAAGTATTA	1860
TTTCATGAGA	GAAATCCTAA	TTTCACAATC	CATAGGCAAA	CGCTTGCATT	TCGTTTTTTA	1920
TTGGACTATA	ATAGGTTGGT	ATAAAGCCTT	CTGTAGTAAT	AAAATGTAGA	AGGTGTAGAA	1980
AGTAAGGATT	TAGAATATTT	GTAGTTAAAA	ACACAATGTT	GCTATTCCTT	ACGATAGGGA	2040
GATAGATATG	GCAATGATAG	AAGTGGAACA	TCTTCAGAAA	AATTTTGTGA	AGACTGTTAA	2100
GGAACCGGGC	TTGAAGGGGG	CTTTGCGCTC	CTTTATTCAT	CCTGAAAAGC	AGACCTTTGA	2160
AGCGGTCAAG	GATTTGACCT	TTGAGGTTCC	AAAAGGGCAG	ATTTTAGGAT	TTATCGGGGC	2220
AAATGGTGCT	GGGAAGTCGA	CAACCATTAA	AATGCTGACA	GGAATTTTGA	AACCAACATC	2280
TGGTTTTTGT	CGGATTAACG	GCAAGATTCC	CCAGGACAAT	CGGCAAGATT	ATGTCAAAGA	2340
TATTGGCGTA	GTCTTTGGAC	AACGCACCCA	GCTATGGTGG	GATTTGGCTC	TGCAAGAGAC	2400
CTACACTGTC	TTAAAAGAGA	TTTATGATGT	GCCAGACTCG	CTCTTTCATA	AGCGTATGGA	2460
CTTTTTGAAT	GAAGTCTTGG	ATTTGAAGGA	CTTTATCAAG	GATCCCGTGC	GGACTCTTTC	2520
ACTGGGACAA	CGGATGCGGG	CGGATATTGC	GGCCTCCTTG	CTCCACAATC	CCAAGGTTCT	2580
TTTTTTAGAT	GAGCCGACCA	TTGGTTTGGA	CGTTTCGGTT	AAGGATAATA	TTCGTCGGGC	2640
AATTACTCAG	ATCAATCAAG	AGGAAGAAAC	TACCATTCTT	TTGACCACTC	ACGATTTGAG	2700
TGATATTGAG	CAACTTTGTG	ATCGGATTTT	CATGATTGAC	AAGGGGCAAG	AGATTTTTGA	2760
TGGAACGGTG	AGCCAACTCA	AGGAGACCTT	TGGTAAGATG	AAGACTCTCT	CTTTTGAACT	2820
GCTACCAGGT	CAAAGTCATC	TCGTCTCTCA	CTATGACGGT	CTGTCTGATA	TGACCATTGA	2880
TAGACAAGGA	AACAGCCTCA	ACATTGAATT	TGATAGTTCT	CGCTACCAGT	CAGCTGACAT	2940
TATCAAGCAA	ACCCTGTCTG	ATTTTGAAAT	CCGCGATTTG	AAGATGGTGG	ATACGGATAT	3000
TGAGGATATT	ATCCGTCGCT	TCTACCGAAA	GGAGCTCTAG	GATGATCAAA	TTGTGGAGAC	3060
GTTATAAACC	CTTTATCAAT	GCAGGGGTTC	AGGAGTTGAT	TACTTACCGA	GTCAACTTTA	3120
TTCTCTATCG	GATTGGCGAT	GTCATGGGGG	CTTTTGTGGC	CTTTTATCTC	TGGAAGGCTG	3180

152 TCTTTGATTC TTCGCAAGAG TCTTTGATTC AGGGCTTCAG TATGGCGGAT ATCACCCTCT 3240 ACATCATCAT GAGTTTTGTG ACCAATCTTC TGACTAGATC CGATTCGTCC TTTATGATTG 3300 GGGAGGAGGT CAAGGATGGC TCCATTATCA TGCGTTTGTT GCGACCAGTG CATTTTGCGG 3360 CCTCCTATCT TTTCACCGAG CTTGGTTCCA AGTGGTTGAT TTTTATCAGC GTTGGCCTTC 3420 CATTTTAAG TGTCATTGTC TTGATGAAAA TCATATCGGG TCAAGGTATT GTAGAGGTGC 3480 TAGGATTAAC TGTCATTTAT CTTTTTAGCT TAACGCTCGC CTATCTGATT AACTTTTTCT 3540 TTAATATTTG CTTTGGATTT TCAGCCTTTG TGTTTAAAAA TCTTTGGGGT TCCAACCTAC 3600 TTAAGACTTC CATAGTGGCT TTTATGTCGG GGAGTTTGAT TCCCTTGGCA TTTTTTCCAA 3660 AGGTTGTTTC AGATATTCTC TCCTTTTTGC CTTTTTCATC CTTGATTTAT ACTCCAGTTA 3720 TGATCATTGT TGGAAAATAC GATGCCAGTC AGATTCTTCA GGCACTCCTT TTGCAGTTCT 3780 TCTGGCTCTT AGTGATGGTG GGATTGTCTC AGTTAATTTG GAAACGGGTC CAGTCCTTTA 3840 TCACCATTCA AGGAGGTTAG TATGAAAAAA TATCAACGAA TGCATCTGAT TTTTATCAGA 3900 CAATACATCA AACAAATCAT GGAATATAAG GTAGATTTTG TGGTTGGTGT CTTGGGAGTC 3960 TTTCTGACTC AAGGCTTGAA TCTCTTGTTT CTCAATGTCA TCTTTCAACA TATTCCATTC 4020 CTAGAAGGCT GGACCTTTCA AGAGATAGCT TTCATTTATG GATTTCCTT GATTCCCAAG 4080 GGAATGGACC ATCTCTTTTT TGACAATCTC TGGGCACTAG GGCAACGCCT AGTCCGAAAA 4140 GGGGAGTTTG ACAAGTATCT GACTCGTCCC ATCAATCCTC TCTTTCACAT CCTAGTTGAA 4200 ACCTTTCAGA TTGATGCCTT GGGTGAACTC TTAGTCGGTG GTATTTTATT GGGAACAACA 4260 GTGACCAGCA TTGTTTGGAC TCTTCCAAAA TTCCTGCTTT TCCTAGTTTG TATTCCTTTT 4320 GCGACCTTGA TTTATACTTC TCTTAAAATC GCAACAGCCA GTATCGCCTT TTGGACTAAG 4380 CAGTCAGGCG CCATGATTTA CATCTTCTAT ATGTTCAATG ACTTTGCTAA GTATCCGATT 4440 TCTATTTACA ATTCTCTTCT TCGTTGGTTG ATTAGCTTTA TCGTGCCTTT CGCCTTTACA 4500 GCCTACTATC CAGCTAGCTA TTTCTTACAG GAAAAGGATG TGTTCTTTAA CGTAGGAGGT 4560 TTGATGTTGA TTTCTCTGGT TTTCTTTGTT ATTTCCCTTA AACTTTGGGA TAAGGGCTTA 4620 GATTCCTACG AAAGTGCGGG TTCGTAAAAG CTAAAGTAAG ACTAAAATCA AGAAAGAAAC 4680 TTATGATGTT TGTAATTGAA GAAGTCAAGG ATGAAAATCA AAAAAAGGCA GTTGTCGCTG 4740 AGGTTTTGAA GGATTTGCCA GAATGGTTTG GAATCCCAGA AAGCACACAA GCCTATATAG 4800 AAGGAACCAC GACACTGCAA GTTTGGACCG CCTATCAGGA GAGTGATTTG ACTAGATTTG 4860 TAAGCTTATC CTATTCGAGT GAAGATTGTG CAGAGATTGA TTGTCTCGGC GTAAAAAAGC 4920 TTATCAAGGT AGAAAAATTG GGAGCCAATT GCTTGCTACT TTAGAGAGTG AAGCTCGTAA 4980

153

AAAAGTTGGT	TATCTGCAGG	TCAAAACAGT	GGCAGAAGGT	TCTAATAAAG	ATTATGATCG	5040
AACAAATGAC	TTTTATCGAG	GTCTTGGCTT	TAAAAAGTTA	GAGATTTTTC	CTCAACTATG	5100
GAATCCGCAA	AATCCTTGTC	AGATTTTGAT	TAAAAAGCTT	GAATAATATT	ACTTGACATC	5160
TATTCTCAGA	GTGCTATACT	GTAAGTGTAA	TCGCCGATTT	AGCTTAGTTG	GTAGAGCAAG	5220
GCACTCGTAA	AGCCTAGGTT	ATAGGTAGAT	AAACGACTGA	GGATTTGAAA	AAATAGATAG	5280
GTAGAAGATA	ACCGTTAAGC	CTTACTCTTA	GCGGTTATTT	ATATTGTTTA	ATAGCGCTAA	5340
TATTTTATCA	ATTATGCCTG	TTTTCGTGTT	TCTGGTAGTT	GTTCAAGTTT	ATTGCTACTA	5400
TTTTTGATGG	TATGAATGTG	CTTATAATGT	ATCCCGGTTA	ACGAAAGTTT	TGGACTTATA	5460
CTCTTCGAAA	ATCTCTTCAA	ACCACGTCAA	CGTCGCCTTG	CCGTGCGTAT	GGTTATGACT	5520
TCGTCAGTTC	TATCCACAAC	CTCAAAACAG	TGTTTTGAGT	GACTACGTCA	GTTCCATCTA	5580
CAACCTCAAA	ACACTGTTTT	GCCCAATCTG	CGGCTAGTTT	CCTAG		5625

(2) INFORMATION FOR SEQ ID NO: 2:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 7571 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

CTCTCCAGCT TTCCTTGCGA	GTTGGCCATG	TTGTGTCTTT	AAGAAGTCTA	AAAATATCTC	60
CAATAAAACG CATCGCTCTC	TCCTATCTCG	TTTCTCTGTG	TGTAGTGTAC	TTGCCACAAT	120
GCTTACAAAA TTTATTTACT	TCTAGTCGTG	TAGGCTTGAG	GTTTCCGCTG	ATCTTGATTG	180
AATAGTTTCT CGAACCACAA	ACCGCACAAG	CTAGGCTTGC	TTTTTTTAGT	GCCATAACGC	240
CTCCATCTTA TCCATTATAA	CAAGAAAGCT	AGGCTTTGAC	AAGCATCTTA	GCGAAATAGA	300
TTGACTATCG AATCCCATAT	TGTTTGAGCC	TTTTCCTTAA	TCTTCGCATC	TGAGATAGCC	360
CGGCTAGCCT CATCTACTAG	ACTTTGCGCA	CGCCCTCGAA	TATCAGACAA	ATTATCATCT	420
GTCTGGCTAT TATCATTGGT	TTGTACTTGT	CTTTTTGTAT	TGGCTGGTGC	AATTCCATTT	480
TGCTTATAAG CATTTTCAAC	CGTAAAGGTA	CTTCCTGGCG	TATAAGGTAA	AATGGTATTG	540
GCAATGTTTC TAAAGACATG	AGCTGCACCG	TTTGAAGTAG	AGCCAGCTAG	ATAGTGGTTT	600
TCATCAGTGG TCGGAAAGCC	AAGCCAGTGG	CTAATCACTA	CATCCGGAGT	ATAACCAATT	660
ACCCACTGGT CACTTGTGTA	CTCCGGATTG	AAAACTGCTT	CAGTTGTTCC	AGTTTTCCCT	720

154 GCCATGACAT AGTCTGCAGG CGATGAACTA ATACCGGTAC CGTTGGTGAA AGTCCCCAAC 780 ATCATACTGG TCATCTTGTC AGCTACAGAC TTATCAATCA CCCGTTTTTG TGAATTTTTA 840 TGACTCGCAA TAACTTGTCC ACTAGCATTT TCAATTCTAC TAATAAAATG AGCTTCAGGC 900 ATTAAACCTT CATTTGCAAA GGCGGCGTAT GCTTGAGCCA TTTGAAGAGG GTTGGTTTCA 960 ACACCGCTTC CCAAGGCGAC ACCAAGAACA CGGTCGACCT TTTCCATGTT GAGTCCGAAT 1020 TTTTCGCCTG CCTCAAAAGC CTTGTCGACA CCCAAATCAT TAACAGTGGC AACAGCAGGT 1080 AGATTAAGCG ATTCTGCCAA GGCTTGATAC ATAGGAACTT CTCGACTCGT TTTGATCCCT 1140 GCATAGTTAT CAACCTTATA GCTGTCATAC TGCATGGTAT GGTTATCCAA CTGCTTATTC 1200 AAAGCCCAGC TTGCTTCAAC TGCTGGCGTA TAAACAACTA AAGGCTTAAT TGTAGAACCA 1260 GGACTACGCT TTGATTGGGT TGCATAGTTG AAATTCCGGA ATCCAGTTTT ATCATTGTCA 1320 GCAACTTGAC CGACAACTCC ACGAACTCCC CCTGTTTTCG GTTCGAGGGC TACACTTCCT 1380 GATTGAGCAA ACGTTCCATC CTCTGCCCTC GGAAATAGCG ATGTGTTTTC ATAAACAATC 1440 TGCATATTTG CTTGGTAGTT TTGGTCCAGC TCTGTGTAAA TGCGGTAGCC ATTATTGACA 1500 ATCTCTTCCT CTGTTAGATT ATACTTGGAA ACAGCTTCAT TAACCACCGC ATCAAAATAA 1560 GAGGGGTAAC GGTAATCTGA GATTTTTCCT TCATACTTAT CGTGCAATTG CGAAGTCATA 1620 TCAACTTCAG CAGCTTTGGT TTCTTGGTTT TTATCAATAT ATCCTGCTGC AACCATATTC 1680 TGCAAGACAG TATCGCGCCG ATTAGTAGAA TCTTCTACGG AATTCAAGGG ATTATACAGT 1740 TCCGGCCCCT TGAGCATCCC TGCCAGAGTC GCAGCTTGAT CCAGACTCAC TTCTGATGCA 1800 GAAACTCCAA AGTATTTCTT ACTCGCATCT TCTACACCCC ACACACCATT TCCAAAATAA 1860 GCGTTGTTAA GGTACATGGT TAGAATTTGC TCCTTACTAT ATTTTTTGCT TAATTCTAAG 1920 GCAAGGAAAA ATTCTTTCGC TTTTCTCTCA ACAGTTTGAT CCTGCGATAA ATAGGCGTTT 1980 TTAGCCAGCT GTTGGGTAAT GGTAGAGCCA CCACCTGAAC GTCCAGCAGT GACAATAGCC 2040 AAGAAAAAC GGCCATAGTT AATCCCGTCA TTTTTATAGA AAGAACGGTC TTCTGTCGCA 2100 ATAACAGCAT TCTGCAAGTT TTTACTGATG TCAGTCAGCT CAACATAGGT TCCCTTTTGA 2160 CCAGACAAGG CACCAGCCTC TTTTTCTTCA CGGTCAAAAA TAAGAGTCCG AGTTTTCAAG 2220 GCATTTTGCA AATCATTGAC ATTGGTCGAC TTGGCTACAG CAAACAAATA GATTCCAACT 2280 AGCAAGCCTG CACTCAAACC TAGTATAAGG ATAATCTTTG TTAGATGATA ACGACGCCAG 2340 AATTTTCGAA TCGGACCTAC TTGGGCTAAT TTTTTTCGAT CACTACGAGA GCGACGTAAG 2400 ATAGTAGAAT CAGAGTCCTC TAGTTCACTT GTTTCTTTTT TAAAAAGAGA AAGAAATTTC 2460 TCAAATAATT TATCTAATTT CATGCGTTTA TTTTATCATC TTCATCATAG GAAGACAAGA 2520

ATTTAGCTAT	TTCCTATCCA	AATAGGGCTT	TTTTTGTTAC	AATATCTGTA	TGCAATTCAC	2580
ATTTACATTA	CCCGCCTCTC	TACCTCAAAT	GACAGTAAAG	CAATTACTTG	AGGAACAACT	2640
CCTCATCCCT	AGAAAAATCC	GTCATTTTT	GAGAATCAAG	AAACATATTT	TGATAAATCA	2700
AGAAGAAGTC	CACTGGAAGG	AAATCGTAAA	TCCTGGAGAT	GTTTGCCAGT	TGACTTTTGA	2760
CGAGGAAGAT	TATTCCCAAA	AGACGATCCC	TTGGGGCAAC	CCAGACTTAG	TGCAGGAAGT	2820
TTATCAAGAT	CAACACTTGA	TTATTGTAAA	CAAACCAGAG	GGGATGAAAA	CGCATGGTAA	2880
TCAACCAAAC	GAAATTGCCC	TTCTTAACCA	TGTCAGTACC	TATGTTGGCC	AAACCTGCTA	2940
TGTCGTTCAT	CGTCTGGACA	TGGAAACCAG	TGGCTTAGTT	CTCTTTGCCA	AAAATCCTTT	3000
TATCCTGCCC	ATTCTCAATC	GCTTATTGGA	GAAAAAAGAG	ATTTCTAGAG	AATATTGGGC	3060
TCTAGTTGAT	GGAAATATCA	ACAGAAAAGA	ACTTGTTTTC	AGAGACAAAA	TTGGACGTGA	3120
TCGCCATGAT	CGTAGAAAAA	GAATAGTTGA	TGCAAAAAAT	GGGCAATATG	CTGAAACGCA	3180
TGTAAGCAGA	TTAAAGCAAT	TCTCAAACAA	GACTTCCTTG	GCTCATTGCA	AGCTAAAGAC	3240
AGGGCGAACC	CATCAGATTC	GTGTGCACCT	TTCGCATCAT	AATCTTCCTA	TCCTGGGAGA	3300
CCCTCTCTAT	AATAGTAAAT	CAAAGACAAG	CCGGCTTATG	CTTCATGCCT	TCCGACTTTC	3360
CTTTACCCAC	CCACTTACTT	TAGAGAAGCT	AACTTTCACT	ACCCTTTCAA	ATACATTTGA	3420
AAAAGAATTA	AAAAAGAATG	GATGATCGTG	TCATCCATTT	TTCCATATAA	AAAAGCAAGA	3480
CCACAAAGCC	TTGCTTTCTA	TCAACTCAAG	AATTATTTAG	CAATTTTTGC	GAAGTATTCA	3540
AGAGTACGAA	CAAGTTGTGC	AGTGTATGAC	ATTTCGTTGT	CGTACCATGA	TACAACTTTA	3600
ACCAATTGTT	TACCGTCAAC	GTCAAGAACT	TTAGTTTGAG	TTGCGTCAAA	CAATGAACCG	3660
TAAGACATAC	CTACGATATC	TGAAGATACG	ATTGGATCTT	CTGTGTAACC	GTATGATTCG	3720
TTTGAAGCTG	CTTTCATAGC	TGCGTTCACT	TCATCAACAG	TAACGTTCTT	TTCAAGAACT	3780
GCTACCAATT	CAGTAACTGA	TCCAGTTGGA	GTTGGAACGC	GTTGTGCAGA	TCCGTCAAGT	3840
TTACCATTCA	ATTCTGGGAT	TACAAGACCG	ATAGCTTTTG	CAGCACCAGT	TGAGTTAGGA	3900
ACGATGTTTG	CAGCACCAGC	GCGAGCACGG	CGAAGGTCAC	CACCACGGTG	TGGTCCGTCA	3960
AGGATCATTT	GGTCACCAGT	GTAAGCGTGG	ATAGTAGTCA	TCAATCCTTC	AACAACACCA	4020
AAGTTGTCTT	GAAGAGCTTT	AGCCATTGGA	GCCAAGCAGT	TTGTAGTACA	TGAAGCACCT	4080
GAGATAACTG	TTTCAGTACC	GTCAAGAACG	TCGTGGTTAG	TGTTGAATAC	AACTGTTTTA	4140
ACGTCGTTTC	CACCAGGAGC	AGTGATAACA	ACTTTTTTAG	CTCCACCTTT	AAGGTGTTTT	4200
TCAGCTGCTT	CTTTCTTAGC	AAAGAAACCA	GTAGCTTCAA	GAACGATTTC	TACACCGTCA	4260

			156			
GTAGCCCAGT	CGATTTGTTC	TGGATCACGT	TCAGCAGAAA	CTTTGATGAA	TTTACCGTTA	4320
ACTTCAAATC	CACCTTCTTT	AACTTCAACA	GTACCGTCGA	AACGACCTTG	AGTTGTGTCG	4380
TATTTCAACA	AGTGTGCAAG	CATAACTGGA	TCTGTAAGGT	CGTTGATGCG	TGTAACTTCA	4440
ACACCTTCTA	CGTTTTGGAT	ACGACGGAAA	GCAAGACGAC	CGATACGTCC	GAAACCGTTA	4500
ATACCAACTT	TAACTACCAT	TAGTGATTTC	CTCCTTATGA	AAATCATGAA	ATTTTTATTG	4560
TGAAAAGAGT	AACTTGAATC	ACTACAAATC	ACCTTTCAAC	AAACCTATTA	TACAACTATT	4620
TGAGTTGAAT	TGCAAGTATG	GCCATTGTTT	TTCTATGTTA	GTTTCTTTTT	AAGACTGTAA	4680
ACCAAGGAAT	CCCTTACTAT	TCATAGCATA	ACGATTCTAT	AGGATCCATT	TTACTAATCT	4740
TACGCGCCGG	GAAGTAGGCT	GAGACATAAC	CAAGTAATAG	AGCGAAAACT	AGAGTTCCTA	4800
AAACAGATAA	AAGATTTAAT	TTAAAAACCT	TAGTGATGGA	TGGGTAAAAG	TGACTTACAA	4860
TCGCATTCGC	CAAACTTCCC	ACCCCTTGTG	CAACCAAAAA	TGCCAGCAGC	AAGGCGATGC	4920
CTACAATCCA	GATAGCCTCG	ТАААТАААА	TTCCTTTGAC	ATCACGATTC	TGATAACCAA	4980
CTGCTTTCAT	GACACCTATT	TCCTTGGAAC	GTTGCATGAT	ATTGATGTAA	ATAATGATAC	5040
CAATCATAAC	CGCTGCTACC	ACAATAGCTT	GTGATGAAAG	CACAATCAAT	AATCCCTGAA	5100
TAACACGAAT	AAAGGTAATC	ACAATATCAA	GAACTCTCTG	TTGAGAAAGC	ACAGTATACT	5160
PCTTATTTTT	CTGTAATTCT	TCTGTTACTA	CTTTTGTCTG	TGATGGATCT	TTGAGTTCCA	5220
AGATAAAATA	AGATACAGCT	TTCGTAAATC	CAGCCTCTTT	CAAAATCGTT	TCCATTTGAT	5280
GAGACAGCAT	GAAACTGTTG	CTGTCCTCCA	TGTCATCTTC	ATCATTGATT	ACACGTACAA	5340
PCTTCGTTTG	AAATTGAGCA	ATCTTACTAG	TTTCGGCAGC	ACTTTCTACA	ATGCTGGCTG	5400
AGACTGATTT	GCCAATAAGA	TCATTAGCTG	TCAAATTTTT	TCCTGTCTGT	TCATTCCAAT	5460
PTTTTAGTAA	ACTGCTTGGA	ATCGTTAATC	CCTGTTCATT	TGTATCAGTA	TAGAGGGATC	5520
CAGCCAACAC	TTTGTCCGTC	TCATTATTAC	TAACAGAGAT	ACTTGTATCA	TCATAAAGAC	5580
PCACTACTTG	AGCATAAGAA	GGCATCGTTT	GACTCAGATC	CATTTCTTGC	CCATCTATAG	5640
PAATATTTGA	CATGTTCATC	CCAAAAGGAC	TCTCCAAATA	TTTAATAGCT	TCTTTCCCAA	5700
CTGTATCCGT	GATATATAGT	CAATTGAAAC	AAGAGCAGGA	TAAAAAAGCC	TCGTAAAAGG	5760
PATTGCAACT	TGGTAATACC	TTTTTGAGGT	GCTTTTTGAT	ATGAGCCCAT	GTTTTCTCAA	5820
PAGGATTGTA	CTCAGGCGAG	TAGGGAGGAA	GAGGTAAAAG	TTTATGCCCA	AACTCTTCGC	5880
ATAAAAGTTC	TAGCTTCCCC	ATTCTATGGA	ATCTTACATT	АТССАТААТА	ATAACCGATG	5940
GTGTGTTTAA	TGTTGGTAAG	AGAAAATTCT	GAAACCAAGC	TTCAAAAAAG	TCGCTCGTCA	6000
CGTCTCTTC	GTAAGTCATT	GGAGCGATTA	ATTCACCATT	TGTTAGACCT	GCAACCAAAG	6060

AAATCCTCTG	ATATCTTCTT	CCAGATACTT	TGCCTCTTAT	TAATTGACCT	TTTAATGAGC	6120
GACCATATTC	TCGATAAAAA	TAAGTATCGA	ATCCTGTTTC	GTCAATCTAA	ACAGGTGCTA	6180
GGTGCTTTAA	ACTATTAAAA	TTCTTAAGAA	ATAAGGCTAC	TTTTTCTGGG	TCTTGTTCAT	6240
AGTAGGTGTG	GTTCTTTTTT	CGAGTGTAGC	CCATAGCTTT	GAGCGTATAG	TGGATGGTAG	6300
TTGGATGACA	GCCAAATTCA	GAAGCTATTT	CAGTCAAATA	AGCGTCTGGA	TTGTCAGTAA	6360
GATAGTTTTT	AAGTCTATCT	CTATCAACCT	TTCTTGGTTT	TATTCCTTTT	ACTTGGTGGT	6420
TTAGCTCTCC	TGTTTTCTCT	TTTAGCTTTA	ACCAGCCATA	AATGGTATTA	CGTGAGATTT	6480
GGAAAACGTG	TGATGCTTCT	GTTATACTAC	CTGTTCGCTC	ACAATAAGAG	AGAACTTTTT	6540
TACGAAAATC	TATTGAATAT	GCCATAAAAA	GATTATACCA	CATTGTGTAC	TATTTTTGGT	6600
TCATTTTACT	ATATTTGAAG	AGGCGTTTAA	ACTATCTGAC	ATAAAACTCG	TTCTAGAGGA	6660
AAGACATCCT	TTAAAAAGTT	AGTTTATTTT	ACAACTTAGA	CATCAAGGTA	GGTTAACCCC	6720
TTCATGGAAA	AATCAAGACT	CTTAGCACTA	TGGGTTAAAC	TACCACTGGA	GACGTAATCA	6780
ATCGCTAAAC	CACGAAAACG	GCTAATAGTG	GTCATATCAA	TATTTCCAGA	ACATTCAATC	6840
CGAGAACGTC	CTGCAATTAG	GGTAATGGCC	TGTTCAATCT	GTTCCAATGA	CATATTATCC	6900
AACATGATAA	TATCAGCACC	CGCCGCCGCA	GCTTCTTCGG	CAGCAGCAAG	GCTTTCCACT	6960
TCCACCTCGA	CCATTTTCAC	AAAAGGGGCA	TAGGCACGCG	CTTGAGCAAT	TGCCTTTTGA	7020
ACACTACCTA	CTGCCGCAAT	GTGATTGTCT	TTTAGCAGGA	TAGCATCTGA	TAAATTAAAG	7080
CGATGATTAT	AGCCACCGCC	AACTCTCACG	GCATATTTCT	CAAAAAGACG	TAAATTAGGA	7140
GTAGTTTTTC	GAGTATCAAA	TACCTTAATG	CAATCATCGC	CTAAGGCTTC	TACATAAGCA	7200
GCTGTCATCG	AAGCAATCCC	TGATAAATGT	TGTAAAAAAT	TCAAGGCAAC	GCGTTCACAT	7260
GTTAAGAGAC	TTCTCACCGA	GCCTATGATT	TCTAAAACCA	AATCGCCACT	AGTCAAACGA	7320
TCCCCATCCT	TAAATTGATG	AGGATTCTGG	AAGGTCACCT	CGGCATCAAA	TAGGGTAAAA	7380
ACCCTTTGAA	AAACGGTTAG	CCCCGCTAAA	ACACCAGCTT	CCTTGGCAAA	AAGCGACACC	7440
TTGGCTTGGC	CATGATGATC	AAAAATGGCA	TTGGTACTGT	AATCTTCGGA	ATGAACATCT	7500
TCTCGCAAGG	CTGCTTTCAA	TGTATCATCT	ATTTGAAAAG	GGGTTAAATC	AGTTGAAATG	7560
ATTGACATCA	С					7571

(2) INFORMATION FOR SEQ ID NO: 3:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 26385 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double

158

(D) TOPOLOGY: linear

(xi)	SEOUENCE	DESCRIPTION:	SEO	ID	NO:	3:	

TTTGCTAGTG	GCTTAAATTC	TTCAGGAAAA	TCAGGCGTAT	CTAAAAGTCG	TGTCGTTTTT	60
GTTTCATCTA	TATAAAGACT	TCCTGCTCCC	CCTACAACTA	GAAAACGTGT	CTGTGTTCCA	120
GCAAGAAGCT	GATTAAATAG	TTCGATTGAT	TTGCTGTGGA	GCGGTAGCGT	ATCTGGTGTA	180
TAAGCACCAA	ACGCTGAAAT	AACAGCATCA	AATCCAGTAA	GATCATCTTT	TGTCAACTCA	240
AATAAATCTT	TTTTAATAAT	AGACTCAGCT	TGACTTTTGT	TTTCAGAACG	AACAATAGCC	300
GTTACTTCAT	GTCCTCGTTT	GACTGCTTCT	TCAACAATTG	CTTTCCCCGC	TTGTCCATTT	360
GCTGCAATAA	CTGCTAGTTT	CATTTTTTAT	ACCTCTCTTG	TTGTAATTAT	TTTAGTTACA	420
GAAATTGTGA	CACTCTTAAT	AATCAATGTC	AATAGTCTTG	СТТААТТАТТ	ATCAAAATAT	480
TTCTACCAAG	AAAACTAACC	ATGATTCTAG	TGAAAAAAA	TCTTCTTTGT	CAACAAATTT	540
ACTTTCTTGT	TTTAAACATG	СТАТААТААТ	CATAGCAAGA	GATCTAAGTT	GTCTGTTTTT	600
TTAAAACGAG	GTGATTATCA	TGCGTAGATT	CTATTCCCAT	CTCCCCTACT	ATCTGGTCAT	660
ATTATTCTTT	TATTGGCCAC	TTTATGAGTT	GTTCTTACTA	GTTGTTTCTG	ACCCCCTTAC	720
ACTCAAGGGA	CTCTATATAA	ACAATCTTCT	CTTCTTTACA	CCTCTGGTAA	TCTTGATTGT	780
ATCGTTACTC	TATAGCTACC	GTTTCCGTTT	CTCACTTTGA	TGGTTAGTTG	GTAACGGACT	840
GCTCTTTTAC	TTTACTATCA	TAACCTTTGG	TGAGTTTATA	CTAATTTACT	TGCTAATCTA	900
TGAAACAGTT	GCTCTGGTCG	GCATGGATTC	TGGTATTAGC	ATCAAGCATA	TTCTACAAAA	960
AATGAAAAAC	AAAAAACTTT	CACAAAATCC	TTGAAAAATC	TCACAATCAT	GCTATAATAA	1020
TCCATAGAGA	CAAGTCACTT	AGTCCCTTTC	TACTAGAGAG	TGCGTGGTTG	CTGGAAACGC	1080
ATAGGAAGTC	TAAACTGATA	CTACTCTTGA	GTTTTTTATG	AAAACATAAA	ACGGTGGCCA	1140
CGTTAGAGCC	GATCAGAGGT	GTCCCTCTCT	TTTGAGGTAC	ATAAATGAAG	GTGGAACCAC	1200
GTTGCGACGT	CCTTTCGAGG	ATGTCGCATT	TTTTTATTAG	GATACTAATT	ATGGAGTTGC	1260
AAGAATTAGT	GGAGCGCAGT	TGGGCAATCC	GACAAGCTTA	TCACGAACTG	GAAGTTAAGC	1320
ATCATGATTC	CAAGTGGACG	GTAGAAGAAG	ACCTCTTGGC	TTTATCTAAT	GATATTGGAA	1380
ATTTCCAACG	ACTGGTGATG	ACAAAGCAAG	GACGCTACTA	TGATGAAACA	CCCTACACAC	1440
TGGAACAAAA	ACTTTCAGAA	AATATCTGGT	GGCTATTAGA	ACTTTCTCAA	CGTTTGGATA	1500
TAGACATTCT	GACGGAAATG	GAAAACTTCC	TCTCTGATAA	AGAAAAGCAA	TTGAACGTTA	1560
GGACTTGGAA	GTAGTCTGCT	GATAAAAAAT	CAATGCTTAG	AAACTATGAA	АТААТАААА	1620

AGGAGAACAT	CATGATTAAC	ATTACTTTCC	CAGATGGCGC	TGTTCGTGAA	TTCGAATCTG	1680
GCGTAACAAC	TTTTGAAATT	GCCCAATCTA	TCAGCAATTC	CCTAGCTAAA	AAAGCCTTGG	1740
CTGGTAAATT	CAACGGCAAA	CTCATCGACA	CTACTCGCGC	TATCACTGAA	GATGGAAGCA	1800
TCGAAATTGT	GACACCTGAT	CACGAAGATG	CCCTTCCAAT	CTTGCGTCAC	TCAGCAGCTC	1860
ACTTGTTCGC	CCAAGCAGCT	CGTCGTCTTT	TCCCAGACAT	TCACTTGGGA	GTTGGTCCAG	1920
CCATCGAAGA	TGGTTTCTAC	TACGATACTG	ACAACACAGC	TGGTCAAATC	TCTAACGAAG	1980
ACCTTCCTCG	TATCGAAGAA	GAAATGCAAA	AAATCGTCAA	AGAAAACTTC	CCATCTATTC	2040
GTGAAGAAGT	GACTAAAGAC	GAGGCACGTG	AAATCTTCAA	AAATGACCCT	TACAAGTTGG	2100
AATTGATTGA	AGAACACTCA	GAAGACGAAG	GCGGTTTGAC	TATCTATCGT	CAGGGTGAAT	2160
ATGTAGACCT	CTGCCGTGGA	CCTCACGTTC	CATCAACAGG	TCGTATCCAA	ATCTTCCACC	2220
TTCTCCATGT	AGCTGGTGCG	TACTGGCGTG	GAAACAGCGA	CAACGCTATG	ATGCAACGTA	2280
TCTACGGTAC	AGCTTGGTTT	GACAAGAAAG	ACTTGAAAAA	CTACCTTCAA	ATGCGTGAAG	2340
AAGCTAAGGA	ACGTGACCAC	CGTAAACTTG	GTAAAGAGCT	TGACCTCTTT	ATGATTTCAC	2400
AAGAAGTGGG	ACAAGGTTTG	CCATTCTGGT	TGCCAAATGG	TGCGACTATC	CGTCGTGAAT	2460
TGGAACGCTA	CATCGTAAAC	AAAGAGTTGG	TTTCTGGCTA	CCAACACGTC	TACACTCCAC	2520
CACTTGCTTC	TGTTGAGCTT	TACAAGACTT	CTGGTCACTG	GGATCATTAC	CAAGAAGACA	2580
TGTTCCCAAC	CATGGACATG	GGTGACGGGG	AAGAATTTGT	CCTTCGTCCA	ATGAACTGTC	2640
CGCACCACAT	CCAAGTTTTC	AAACACCATG	TTCACTCTTA	CCGTGAATTG	CCAATCCGTA	2700
TCGCTGAAAT	CGGTATGATG	CACCGTTACG	AAAAATCTGG	TGCCCTCACT	GGCCTTCAAC	2760
GTGTACGTGA	AATGTCACTC	AACGACGGTC	ACCTATTCGT	TACTCCAGAA	CAAATCCAAG	2820
AAGAATTCCA	ACGTGCCCTT	CAGTTGATTA	TCGATGTTTA	TGAAGACTTC	AACTTGACTG	2880
ACTACCGCTT	CCGCCTCTCT	CTTCGTGACC	CTCAAGATAC	TCATAAGTAC	TTTGATAACG	2940
ATGAGATGTG	GGAAAATGCC	CAAACCATGC	TTCGTGCAGC	TCTTGATGAA	ATGGGCGTGG	3000
ACTACTTTGA	AGCCGAAGGT	GAAGCAGCCT	TCTACGGACC	AAAATTGGAT	ATCCAGATTA	3060
AAACTGCCCT	TGGAAAAGAA	GAAACCCTTT	CTACTATCCA	ACTTGATTTC	TTGTTGCCAG	3120
AACGCTTCGA	CCTCAAATAC	ATCGGAGCTG	ATGGCGAAGA	TCACCGTCCA	GTCATGATCC	3180
ACCGTGGGGT	TATCTCAACT	ATGGAACGCT	TCACAGCTAT	CTTGATTGAG	AACTACAAGG	3240
GGGCCTTCCC	AACATGGCTG	GCACCACACC	AAGTAACCCT	CATCCCAGTA	TCTAACGAAA	3300
AACACGTGGA	CTACGCTTGG	GAAGTGGCCA	AGAAACTCCG	TGACCGCGGT	GTCCGTGCAG	3360

160 ACGTAGATGA GCGCAATGAA AAAATGCAGT TCAAGATCCG TGCTTCACAA ACCAGCAAGA 3420 TTCCTTACCA ATTAATTGTT GGAGACAAAG AAATGGAAGA CGAAACAGTC AACGTTCGTC 3480 GCTACGGCCA AAAAGAAACA CAAACTGTCT CAGTTGATAA TTTTGTTCAA GCTATCCTAG 3540 CTGATATCGC CAACAATCA CGCGTTGAGA AATAAGAGTC TAGCATAAAA GCCTCCAATC 3600 TGGAGGCTTT TTCTCATCTA TTTTTACTCA AGGACTAAGT TCACTTGAGC AAACTGAATC 3660 CGCACTGTCG TTCCTTTTCC GACCTCAGAC TCGATACGAA TCTGGTGCCC CAGTTCTTCA 3720 GAAATTTTCT TAGATAGATA AAGGCCAAGT CCAGAGGACT GCTGGGTCAA ACGGCCATTG 3780 TATCCTGAAA AGCCACGTTC AAATACTCGG AGGACATCAC TGTTTTTTAT CCCGATTCCC 3840 GTATCTTTGA TACAAAGCTC TTGGTCATCC ATATAAATCT CCAGACCACC TTCCTTGGTG 3900 TACTTGAGAC TGTTTGAGAT GATTTGCTCA ATAACCACTA GCAGCCACTT TTTATCCGTC 3960 4020 GCATATTTAC GAATTATTTC CTTGACCAAG TCCTCAATTT GAACCTGCTT TAAGACCAAA 4080 TCATCATGGA AACTTTCTAA ACGCAGGTAC TGTAAAACTA GGTTGGTATA GGAGTCGATT 4140 TTGAAAATTT CCTGTTCTAG CTGCTGCTTC AGTTGGCGGT CGACCACTTC TGCAACTAAG 4200 AGTTGACTGG CTGCAATGGG GGTCTTTATC TGATGGACCC ACAAGGTATA GTAATCCAGC 4260 AAATCCGTCA GTTTTCTTTC TGCTTTTGAC CTCTGCTGAT AGAGTTCCAT CTCACGCGCT 4320 TCTAATTTT CTGCTAAAGC TATTTCCAAA GGAGACTTGG CTTCCCTCTC TCCATAGAGA 4380 AGTTCCTGGC GATAGACCTG CGTTTCCACC AATATGTCCC AAGTGAAAAA TAATATGGTT 4440 ACAAAGCAAC ACAAGAAGAA AAAGTAGAGG AAGTAAATTC CTAGACTGGC AAATAAAAAC 4500 TGAAAGAGTA AGACAAGAAA TGCCAAAGAA AGCAGATAGA TAAAAAGACG ACTACGGGAG 4560 CGCAGATAGG CTAGAAAAAA TTGTTTCCAA TCAAGCATGC TTCAATCCGT ACCCTATTCC 4620 TTTCTTGGTC TCGATAAATC CTACCAATCC CTGCTCCTCC AACTTTTTAC GCAAACGAGC 4680 CACATTGACA GAGAGGGTAT TATCATCAAT GAAAAAGTCA CTGTTCCAAA GTTCCCGCAT 4740 CAGGTCGTCA CGTGCTACGA TGTTGCCTGC ATGCTCAAAT AACACGCGTA AAATCTGGAA 4800 TTCATTCTTG GTCAAATTCA AGACTTGCCC TTGATAATGT AAATCCATGG ATTTGGTATT 4860 GAGGATAACA CCAGCATATT CCAGCAAACT CTCATCACGC CCAAACTCAT AGGAACGACG 4920 CAACAAGCCC TGAACCTTAG CTAAAAGAAC CTGCTGGTCA AAAGGCTTGG TCACAAAGTC 4980 ATCCGCCCC ATATTGATTG CCATGACAAT ATCCATAGCC TGGTCTCTCG AAGAAAGAAA 5040 CATGATAGGT ACCTTGGAAA TCTTGCGGAT TTCCTGACAC CAGTGATAAC CATTAAACAA 5100 GGGCAAACCA ATATCCATGA GGACCAGATG AGGTTCCGAC TGAACAAATA GACTCAAAAC 5160

TTCCATAAAG	TCTTCTACCA	GGACCACTTC	AAATCCCCAT	TCAGAGAGCA	TTTTCCCAAT	5220
CTGTTGACGA	ATGACCTGAT	CATCTTCTAT	TAATAAAATC	TTGTGCATGC	GCTTCTCCTT	5280
TTCCATTATT	ATAACAGATT	TTTCCATGCT	AGATGGTCTG	AAACTGAATT	TGAAATAGCC	5340
TGTTTTTAGC	CAGTACAAAC	AGGCTATGCT	ACTAGCTAAT	TTGAGGGAAA	TTTGCTAAGA	5400
ТАААТАААА	GAAAGGAGCT	CTTATGGCCA	ATATTTTTGA	CTATCTGAAA	GATGTCGCAT	5460
ATGATTCTTA	TTACGACCTT	CCCTTGAATG	AGTTAGACAT	TCTAACCTTA	ATAGAAATCA	5520
CCTACCTCTC	CTTTGATAAT	CTGGTCTCCA	CACTTCCTCA	ACGTCTTTTA	GATCTAGCAC	5580
CTCAGGTTCC	AAGAGATCCC	ACCATGCTTA	CTAGCAAAAA	TCGCCTTCAA	TTATTAGATG	5640
AATTGGCTCA	ACACAAGCGC	TTCAAAAATT	GCAAACTCTC	CCATTTTATC	AACGACATCG	5700
ACCCTGAACT	GCAAAAGCAA	TTTGCGGCTA	TGACTTATCG	TGTCAGCCTC	GATACCTATC	5760
TGATTGTCTT	TCGTGGGACA	GATGACAGTA	TCATTGGCTG	GAAGGAAGAT	TTCCACCTGA	5820
CCTATATGAA	GGAAATTCCT	GCTCAAAAGC	ACGCCCTTCG	CTATTTAAAG	AACTTTTTTG	5880
CCCATCATCC	TAAGCAAAAG	GTTATTCTAG	CTGGGCATTC	CAAGGGAGGA	AATCTCGCTA	5940
TCTATGCTGC	TAGCCAAATT	GAGCAAAGTT	TGCAAAATCA	GATCACAGCA	GTTTATACAT	6000
TTGATGCACC	TGGTCTCCAT	CAAGAATTGA	CACAGACTGC	GGGTTATCAA	AGGATAATGG	6060
ATAGAAGCAA	GATATTCATT	CCACAAGGTT	CCATTATCGG	TATGATGCTG	GAAATTCCTG	6120
CTCACCAAAT	CATCGTTCAG	AGTACTGCCC	TGGGTGGCAT	CGCCCAGCAC	GATACCTTTA	6180
GTTGGCAGAT	TGAGGACAAG	CACTTCGTCC	AACTGGATAA	GACCAACAGT	GATAGCCAGC	6240
AAGTAGACAC	AACCTTTAAA	GAATGGGTGG	CCACAGTCCC	TGACGAAGAA	CTTCAGCTCT	6300
ACTTCGACCT	CTTCTTTGGC	ACTATTCTTG	ATGCTGGTAT	TAGCTCTATC	AATGACTTGG	6360
CTTCCTTAAA	GGCGCTTGAA	TACATTCATC	ATCTCTTTGT	CCAAGCTCAA	TCCCTCACTC	6420
CAGAAGAAAG	AGAAACCTTG	GGTCGCCTTA	CCCAGTTATT	GATTGATACT	CGTTACCAGG	6480
CATGGAAAAA	TAGATAATAC	TCTTGAAAAT	TAAATGTATA	СААААСАААА	GACCTAGAAT	6540
ACATACTTTC	ATGTGCATTC	TAAGTCTTTT	TAAATAGAAT	CTAATAGTCA	ATAAAAATCA	6600
AAGAGCATTG	AGAGATAATG	GGGCTTGGAA	CGTCCCTCTC	GCTTCAACAA	AATGACCCCA	6660
TTATAGATTA	AAAAGATGCC	ACTTAGAAAA	AGCAAAAAAG	GAAGTAAGAC	AAAGGCAAAT	6720
ATATAAAAAG	CTAACTGAAC	ATTCTCGTAT	CCATTTTTAT	AAAAAAGGTA	GGATAGATAA	6780
AAATAACTTG	AAATGAGGGA	ТААТААААТ	AATACTGGAT	TCCACAAACT	TCTATTATCC	6840
TTCCAAAATG	АСАСТАТААА	GGCTAATACA	ATTCCTATAA	CGAGATACAT	TTCTTACTCC	6900

			162			
TTTAATAGCT	ACATTTTATC	ATAATTATCC	AAAGAAAAA	GAGGGCATTT	ATCCCTCTTA	6960
ATCCTTCATC	TGACTCTCTG	CATCGGCCAC	GACTTTTTCT	AGACTGGTTT	GACCAAGTTC	7020
TGCCTCCATA	GTCAACTGAA	TTCTCTCCAA	TTTTTGATCC	AAAACATCAT	GAATATGAGC	7080
TCCTACAGGG	CAATTTGGAT	TCGGATTGTC	ATGGAAACTG	AAGAGTTGAC	CTGTCTTACC	7140
AAGACATTCG	ACCGCCTGAT	АААСАТСТАА	AAGACTAATA	TCCTTAAGGT	CCTTGACAAT	7200
CTCTGTTCCG	CCCGTTCCAC	GCGCTACTGA	AATCAGCTCT	GCCTTCTTCA	ACTGGGACAA	7260
GATCTTTCTG	ATAATGACAG	GATTGACCCC	GACACTAGCA	GCCAGAAAAT	CACTGGTCAC	7320
CTTGCTTTCC	TTCCCCTCGA	GGGCAATGAT	TATCAGCATA	. TGAGTCGCAA	TGGTAAATCT	7380
ACTTGGAATT	TGCATCCTCT	TCTCCTTTTT	ACGAGGCTAC	CCTGCCTCTA	CTCTTCTTTT	7440
TCTATTATTA	TACCCTTTTT	AGTTGTAATG	TCAATCGTTA	CCACTTTTCA	ACCAGTCGTC	7500
TAACTCCCGA	TCGCAGCCCT	CTTTCTGAGC	CAATTCTCTC	AAAAATTCCT	GATGATGAGT	7560
ATGGTGGATC	CCATTGACCA	GACTTTCATA	GTAAACCTCA	AAATAGGGAA	GTCTCAGGTC	7620
TTTAGCCAGC	TGCAATTCAG	CTGCTACATC	GTAGTCTACC	CGTCGGAAGT	CCATATCTAC	7680
CAGGCCTTTG	TCATCAAACT	CCAAAATCAT	ATACTGGGCC	CGCAAGTCCT	TCCGTAGCTG	7740
AGCGTCCAAA	AAGAAAGGTT	GGCCAATCGA	ACCCGGATTG	ACAATCAATT	GCCCACCAGT	7800
CCCGTAACGA	AGCAACTGCT	GGTGAATATG	TCCATAAACA	GCAATATCAC	AGGGAGGATG	7860
AGTCACCAAG	CGGTCAAACT	CCTCTTGTTT	GCCAGTATGA	ATCAACTCTC	GCCCCAGTT	7920
CTTATCAGGC	AGATGATGGC	TAATTCCCAC	CGTCAAATCC	CCAAACTGAC	GATGAATTTG	7980
AAGAGGTTGA	TTGTGGAGCA	CTTCAATTTC	TTCTAGGGAA	ATTTCCTCTA	AAACATACTG	8040
GCACTGGCGC	AAGAGATAGC	GTTGACTGGG	GCGAGTACTG	TCCAATTCCT	TACGGACACC	8100
ATGCCAAAGA	CTGTCTTCCC	AGTTTCCCAA	AACTCTAGCC	GTAATCGGTA	GTTGATCCAA	8160
CAAGTCCAAA	ATCCTTCTAC	GCCCTGTCCC	TGGCATGAGA	ATATCTCCCA	AAAGCCAGTA	8220
TTCATCCACT	CCTATCTGCC	GAGCATCTGC	CAAAACAGCC	TCCAAGGCGG	TGGTATTTCC	8280
ATGAATATCT	GAAAGAAGAG	CTATTTTCGT	CATATCCATC	TCCTCGTTTT	TTCTCTTGCA	8340
ATAAGTATAA	CATAAAAAGT	CACAGCTAGA	GAAATCTAGC	TTTTTTTGAT	ATACTAGATA	8400
AAGATATTAG	ACAAGAGGAA	ACGAATGACC	CCAAACAAAG	AAGACTATCT	AAAATGTATT	8460
TATGAAATTG	GCATAGACCT	GCATAAGATT	ACCAACAAGG	AAATTGCGGC	TCGCATGCAA	8520
GTCTCTCCCC	CTGCCGTAAC	TGAAATGATC	AAACGAATGA	AAAGTGAAAA	TCTCATCCTA	8580
AAGGACAAGG	AATGTGGCTA	TCTACTGACT	GACCTCGGTC	TCAAACTGGT	CTCTGAGCTC	8640
TATCGTAAGC	ACCGCTTGAT	TGAAGTTTTT	CTAGTTCATC	ATTTAGACTA	TACAAGTGAC	8700

CAGATTCACG	AGGAAGCTGA	GGTCTTGGAA	CACACTGTCT	CTGACCTGTT	CGTGGAAAGA	8760
CTAGATAAAC	TGCTAGGTTT	CCCTAAAACC	TGCCCCCACG	GGGGAACTAT	TCCTGCCAAG	8820
GGAGAACTAC	TCGTTGAAAT	CAATAACCTC	CCACTAGCTG	ATATCAAGGA	AGCTGGCGCC	8880
TACCGCCTGA	CTCGGGTGCA	CGATAGTTTT	GACATTCTCC	ATTATCTGGA	CAAGCACTCA	8940
CTTCACATCG	GTGACCAGCT	CCAAGTCAAG	CAGTTTGATG	GCTTCAGCAA	TACCTTCACT	9000
ATCCTCAGTA	ACGACGAGGA	TTTACAAGTG	AATATGGACA	TTGCAAAACA	ACTCTATGTC	9060
GAGAAAATCA	ACTAATTTCT	CAAGTCCCCT	ACCAACCCTG	AAAGTTTTAT	TTTGGCTCTT	9120
TGTCAACTGT	AGTGGGTTGA	AGTCAGCTAA	GCTCGAGAAA	GGACAAATTT	TGTCCTTTCT	9180
TTTTTGATAT	TCAGAGCGAT	AAAAATCCGT	TTTTTGAAGT	TTTCAAAGTT	CCGAAAACCA	9240
AAGGCATTGC	GCTTGATAAG	TTTGATGAGA	TTATTGGTCG	CTTCCAGTTT	GGCATTAGAA	9300
TAGTGTAGTT	GAAGGGCGTT	GACAATCTTT	TCTTTATCTT	TGAGGAAGGT	TTTAAAGACA	9360
GTCTGAAAAA	TAGGATGAAC	CTGCTTTAGA	TTGTCCTCAA	TGAGTCCGAA	AAATTTCTCC	9420
GGTTTCTTAT	TCTGAAAGTG	AAACAGCAAG	AGTTGATAGA	GCTGATAGTG	GTGTTTCAAG	9480
TCTTGTGAAT	AGCTCAAAAG	CTTGTCTAAA	ATCTCTTTAT	TGGTTAAGTG	CATACGAAAA	9540
GTAGGACGAT	AAAATCGCTT	ATCACTCAGT	TTACGGCTAT	CCTGTTGTAT	GAGCTTCCAG	9600
TAGCGCTTGA	TAGCCTTGTA	TTCATGGGAT	TTTCGATCCA	ATTGGTTCAT	AATTTGAACA	9660
CGCACACGAC	TCATAGCACG	GCTAAGATGT	TGTACAATGT	GAAAGCGATC	CAACACGATT	9720
TTAGCATTCG	GGAGTGAAAC	AGTCTGGGAG	ACTGTTTCAG	CCTGAGCCTA	GAAATTTGAA	9780
AGCGAAGCTG	TTTAGCCAAG	TCATAGTAAG	GACTAAACAT	ATCCATCGTA	ATGATTTTCA	9840
CTTGACAACG	AACGGCTCTA	TCGTAGCGAA	GAAAGTGATT	TCGGATGACA	GCTTGTGTTC	9900
TGCCTTCAAG	AACAGTGATA	ATATTAAGAT	TATCAAAATC	TTGCGCAATG	AAACTCATCT	9960
TTCCCTTAGT	GAAGGCATAC	TCATCCCAAG	ACATAATCTT	TGGAAGCCGA	GAAAAATCAT	10020
GCTCAAAGTG	AAAGTCATTG	AGCTTGCGAA	TGACAGTTGA	AGTTGAAATG	GCCAGCTGAT	10080
GGGCAATATC	AGTCATAGAA	ATTTTTTCAA	TTAACTTTTG	AGCAATyTTT	TGGTTGATGA	10140
TACGAGGGAT	TTGGTGATTT	TTCTTTACCA	GGGGAGTCTC	AGCAACCATC	ATTTTTGAAC	10200
AGTGATAGCA	CTTGAAACGA	CGCTTTCTAA	GGAGAATTCT	AGAAGGCATA	CCAGTCGTTT	10260
CAAGATAAGG	AATTTTAGAA	GGTTTTTGAA	AGTCATATTT	CTTCAATTGG	TTTCCGCACT	10320
CAGGGCAAGA	TGGGGCGTCG	TAGTCCAGTT	TGGCGATGAT	TTCCTTGTGT	GTATCCTTAT	10380
TGATGATGTC	TAAAATCTGG	ATATTAGGGT	CTTTAATGTC	TAGTAATTTT	GTGATAAAAT	10440

			164			
GTAATTGTTC	CATATGATTC	TTTCTAATGA	GTTGTTTTGT	CGCTTTTCAT	TATAGGTCAT	10500
ATGGGACTTT	TTTTCTACAA	TAAAATAGGC	TCCATAATAT	CTATAGTGGA	TTTACCCACT	10560
ACAAATATTA	TAGAACCGTA	AAAATAGAAG	GAGATAGCAG	GTTTTCAAGC	CTGCTATCTT	10620
TTTTTGATGA	CATTCAGGCT	GATACGAAAT	CATAAGAGGT	CTGAAACTAC	TTTCAGAGTA	10680
GTCTGTTCTA	TAAAATATAG	TAGATTGAAA	TAAGATGTGA	ACAACTCTAT	CAGGAAAGTC	10740
AAATTAATTT	ATAGAATTAT	TTTAGCAGTC	AAGGTGTACT	GTTATAGATT	CAATATATTA	10800
TATGACTATT	AACCTTGTCT	TCTCCTAAAA	TTGACTTTCT	TGTTTTCTTA	TCTTGTCCAC	10860
TCGAAACAAG	TATTGTAAGA	ATTTGATTAT	TTTTGAAAGT	ACTTTTAATA	TACTTGATAT	10920
AGTTAAAAAA	GATTTGAAAC	TAAATTCCAA	ATTAGAAAAA	GACTTGAAAT	АСТАААААА	10980
AAAAAGTATA	CTCTAATTGA	AAACGGTAAC	AAAACTAATT	TAGAGAATGA	AATATAGAGT	11040
ATTTCTCTCT	TAAAAGTTTT	TGGTGAAACG	AGATGTAGAA	AGGAGATTTA	GCCAAAGAGT	11100
CTATTAGTGC	TAGAATAATA	GATTAGAATT	ATTTTAGAAA	AACGAAGTGA	GCAGCTTATA	11160
AATTCAAGTC	CCCAAATAGA	TTCATACTAG	TATCTTTTGC	AAAAAATAAA	GGGCGACTTC	11220
CTTCATGAAT	ATCAATTTCA	TCTATAAGGA	AGGTAGCTAA	TTGAACTAAC	TTATTTATTC	11280
TGTTTGTCGC	TAGAAAAATC	AGACCTCCTT	GTGAAGATTG	AGGAGATACT	TAATGAAAAT	11340
CAAAGAAGAA	ACTAGCAAGC	TAGTAGCAGA	TTGCCCAAAA	CACCGCTTTG	AGGTTGTAGA	11400
TAAGACTGAC	CTATATAATC	CAAGGTGAAG	CGACTGTGGT	TTGAAGAGAT	TTTCAAAGAG	11460
TATAGGCTAG	AGAGTAGTGT	TTTTATGTCC	TTCTAGTAGA	AAATGCTAGA	CAGAAGAATG	11520
GGGAACTTGG	ATAGGAAAAA	TAGATTGAGA	AAGGAGGTTA	GAAGAGATGA	ТТАТТАСААА	11580
AATTAGCCGT	TTAGGAACTT	ATGTGGGAGT	AAATCCACAT	TTTGCAACAT	TAATAGATTT	11640
TCTAGAAAAA	ACAGGACTAG	AAAATTTAAC	AGAAGGTTCG	ATTGCTATCG	ATGGTAATCG	11700
ATTGTTTGGG	AATTGCTTTA	CTTATCTAGC	AGATGGTCAA	GCAGGGGCTT	TCTTTGAAAC	11760
CCACCAAAAA	TATTTGGATA	TTCATTTAGT	TTTGGAAAAC	GAAGAAGCCA	TGGCTGTTAC	11820
ATCGCCGGAA	AATGTAAGCG	TTACCCAAGA	ATATGATGAA	GAGAAAGATA	TTGAATTATA	11880
CACAGGGAAA	GTGGAACAGT	TGGTTCATTT	GAGAGCTGGC	GAATGCCTCA	TCACTTTTCC	11940
AGAAGATTTA	CATCAACCCA	AGGTTCGTAT	AAATGATGAA	CCTGTGAAAA	AAGTTGTCTT	12000
TAAAGTTGCG	ATTTCTTAAT	GTAGAAAGAG	AAGAACGATG	AAAAAAATGA	GAAAGTTTTT	12060
ATGTCTAGCT	GGAATTGCGC	TAGCGGCTGT	TGCCTTGGTA	GCTTGTTCAG	GAAAAAAAGA	12120
AGCTACAACT	AGTACTGAAC	CACCAACAGA	ATTATCTGGT	GAGATTACAA	TGTGGCACTC	12180
CTTTACTCAA	GGACCCCGTT	TAGAAAGTAT	тсааааатса	GCAGATGCTT	TCATGCAAAA	12240

GCATCCAAAA	ACGAAAATCA	AGATTGAAAC	ATTTTCTTGG	AATGACTTCT	ATACTAAATG	12300
GACTACAGGT	TTAGCAAATG	GAAATGTGCC	AGATATCAGT	ACAGCTCTTC	CTAACCAAGT	12360
AATGGAAATG	GTCAACTCAG	ATGCTTTGGT	TCCGCTAAAT	GATTCTATCA	AGCGTATTGG	12420
ACAAGATAAA	TTTAACGAAA	CTGCCTTAAA	TGAAGCAAAA	ATCGGAGATG	ATTACTACTC	12480
TGTTCCTCTT	TATTCACATG	CACAAGTCAT	GTGGGTTAGA	ACAGATTTGT	TAAAAGAACA	12540
TAATATTGAG	GTTCCTAAAA	CTTGGGATCA	ACTCTATGAA	GCTTCTAAAA	AATTGAAAGA	12600
AGCTGGAGTT	TATGGCTTGT	CTGTTCCGTT	TGGAACAAAT	GACTTAATGG	CAACACGTTT	12660
CTTGAACTTC	TACGTACGTA	rTGGTGGAGG	AAGCCTCTTA	ACAAAAGATC	TTAAAGCAGA	12720
CTTGACAAGC	CAACTTGCTC	AAGATGGTAT	TAAATACTGG	GTTAAATTGT	ATAAAGAAAT	12780
CTCACCTCAA	GATTCTTTGA	ACTTTAATGT	CCTTCAACAA	GCTACCTTGT	TCTATCAAGG	12840
AAAAACAGCA	TTTGACTTTA	ACTCTGGCTT	CCATATCGGA	GGAATTAATG	CCAACAGTCC	12900
TCAATTGATT	GATTCGATTG	ATGCTTATCC	TATTCCAAAA	ATCAAAGAGT	CTGATAAAGA	12960
CCAAGGAATT	GAAACCTCAA	ACATTCCAAT	GGTTGTTTGG	AAAAATTCAA	AACATCCAGA	13020
AGTTGCTAAA	GCATTCTTAG	AAGCACTTTA	TAATGAAGAA	GACTACGTTA	AATTCCTTGA	13080
TTCAACTCCA	GTAGGTATGT	TGCCAACTAT	TAAGGGGATT	AGCGATTCTG	CAGCCTATAA	13140
AGAAAATGAA	ACTCGTAAGA	AATTTAAACA	TGCTGAAGAA	GTAATTACTG	AAGCTGTTAA	13200
AAAAGGTACT	GCTATTGGTT	ATGAAAATGG	GCCAAGTGTA	CAAGCTGGTA	TGTTGACTAA	13260
CCAACACATT	ATTGAACAAA	TGTTCCAAGA	TATCATTACA	AATGGAACAG	ATCCTATGAA	13320
AGCAGCAAAA	GAAGCAGAAA	AACAATTAAA	TGATTTATTT	GAGGCTGTTC	AGTAGATGTA	13380
AAAGACTAGA	AAATAGGTGG	GATAGTGAGC	TGAAAAGCTC	TAGCCCAATC	TTGTAAAAGA	13440
AGGGAGAAGG	AGAATGGTTA	AAGAACGTAA	TTTAACTCGC	TGGATATTTG	TTTTGCCAGC	13500
TATGATTATC	GTAGGATTAC	TCTTTGTTTA	TCCGTTTTTC	TCGAGTATTT	TTTATAGCTT	13560
TACCAATAAG	CATTTGATTA	TGCCTAATTA	TAAATTTGTT	GGTTTGGCTA	ACTATAAAGC	13620
TGTGCTATCA	GATCCCAACT	TCTTTAATGC	GTTCTTTAAT	TCAATTAAGT	GGACCGTTTT	13680
CTCATTAGTT	GGTCAAGTTT	TAGTAGGGTT	TGTATTGGCT	TTAGCTCTTC	ACAGAGTACG	13740
CCACTTCAAG	AAATTATATA	GGACATTATT	GATTGTTCCT	TGGGCATTTC	CTACCATCGT	13800
TATTGCCTTC	TCTTGGCAGT	GGATTCTAAA	CGGGGTTTAT	GGCTACTTAC	СТААТСТААТ	13860
CGTAAAATTA	GGTTTAATGG	AACATACACC	TGCATTTTTG	ACAGATAGTA	CATGGGCATT	13920
CCTATGTTTG	GTGTTTATCA	ACATTTGGTT	TGGAGCACCA	ATGATTATGG	TTAATGTGCT	13980

TTCAGCTTTG	CAAACAGTAC	CAGAAGAACA	166 ATTTGAGGCT	GCTAAGATAG	ATGGTGCTTC	14040
		TTATCGTCTT				14100
		GGATCTTTAA				14160
		CAACGACGCT				14220
		CTTCAGCAGT				
						14280
		CTATCATCAG				14340
		TTTAGATATT				14400
		GGTATGGATT				14460
TTAACTCAGT	ATCCAACACG	ATTTTGGCCT	GAACAGTTTA	CATTAGATTA	TTTCACTCAT	14520
GTTATCAACG	ATTTGCACTT	CATTGATAAC	ATTCGAAACA	GTTTAATCAT	TGCCTTGGCT	14580
ACAACCCTTA	TTGCGATTAT	TATTTCTGCT	ATGGCAGCCT	ATGGTATTGT	TCGATTCTTT	14640
CCTAAATTGG	GAGCAATCAT	GTCGAGACTA	CTCGTCATTA	CCTACATTTT	CCCACCAATT	14700
TTGTTAGCAA	TTCCCTATTC	AATTGCCATT	GCTAAAGTTG	GGTTAACAAA	TAGTTTATTT	14760
GGCTTGATGA	TGGTTTATCT	ATCTTTTAGT	GTTCCATATG	CAGTTTGGCT	CTTAGTTGGA	14820
TTTTTCCAAA	CAGTTCCAAT	TGGAATTGAA	GAAGCGGCTA	GAATTGATGG	TGCAAATAAA	14880
TTTGTTACGT	TTTATAAAGT	TGTGCTACCG	ATTGTAGCAC	CAGGTATTGT	AGCAACAGCT	14940
ATTTATACAT	TTATCAATGC	TTGGAATGAA	TTCCTGTATG	CCTTGATTTT	GATTAACAAT	15000
ACAGGAAAGA	TGACAGTAGC	AGTAGCCCTT	CGTTCACTTA	ATGGTTCAGA	AATACTAGAC	15060
TGGGGAGATA	TGATGGCAGC	GTCTGTTATT	GTAGTTCTTC	CATCAATTAT	TTTCTTCTCT	15120
ATCATCCAAA	ATAAGATTGC	AAGTGGATTA	TCAGAAGGAT	CTGTGAAGTA	GACGAAAGAA	15180
GGAAAAAAAT	GAATAAAAGA	GGTCTTTATT	CAAAACTAGG	AATTTCCGTT	GTAGGCATTA	15240
GTCTTTTAAT	GGGAGTCCCC	ACTTTGATTC	ATGCGAATGA	ATTAAACTAT	GGTCAACTGT	15300
CCATATCTCC	TATTTTTCAA	GGAGGTTCAT	ATCAACTGAA	CAATAAGAGT	ATAGATATCA	15360
GCTCTTTGTT	ATTAGATAAA	TTGTCTGGAG	AGAGTCAGAC	AGTAGTAATG	AAATTTAAAG	15420
CAGATAAACC	AAACTCTCTT	CAAGCTTTGT	TTGGCCTATC	TAATAGTAAA	GCAGGCTTTA	15480
ААААТААТТА	СТТТТСААТТ	TTCATGAGAG	ATTCTGGTGA	GATAGGTGTA	GAAATAAGAG	15540
ACGCCCAAAA	GGGAATAAAT	TATTTATTTT	CCAGACCAGC	TTCATTATGG	GGAAAACATA	15600
AAGGACAGGC	AGTTGAAAAT	ACACTAGTAT	TTGTATCTGA	TTCTAAAGAT	AAAACATACA	15660
CAATGTATGT	TAATGGAATA	GAAGTGTTCT	CTGAAACAGT	TGATACATTT	TTGCCAATTT	15720
САААТАТААА	TGGTATAGAT	AAGGCAACAC	TAGGAGCTGT	TAATCGTGAA	GGTAAGGAAC	15780

ATTACCTCGC	AAAAGGAAGT	ATTGATGAAA	TCAGTCTATT	TAACAAAGCA	ATTAGTGATC	15840
AGGAAGTTTC	AACTATTCCC	TTGTCAAATC	CATTTCAGTT	AATTTTCCAA	TCAGGAGATT	15900
CTACTCAAGC	TAACTATTTT	AGAATACCGA	CACTATATAC	ATTAAGTAGT	GGAAGAGTTC	15960
TATCAAGTAT	TGATGCACGT	TATGGTGGGA	CTCATGATTC	TAAAAGTAAG	ATTAATATTG	16020
CCACTTCTTA	TAGTGATGAT	AATGGGAAAA	CGTGGAGTGA	GCCAATTTTT	GCTATGAAGT	16080
TTAATGACTA	TGAGGAGCAG	TTAGTTTACT	GGCCACGAGA	ТААТАААТТА	AAGAATAGTC	16140
AAATTAGTGG	AAGTGCTTCA	TTCATAGATT	CATCCATTGT	TGAAGATAAA	AAATCTGGGA	16200
AAACGATATT	ACTAGCTGAT	GTTATGCCTG	CGGGTATTGG	АААТААТААТ	GCAAATAAAG	16260
CCGACTCAGG	TTTTAAAGAA	ATAAATGGTC	ATTATTATTT	AAAACTAAAG	AAGAATGGAG	16320
ATAACGATTT	CCGTTATACA	GTTAGAGAAA	ATGGTGTCGT	TTATAATGAA	АСААСТААТА	16380
AACCTACAAA	ТТАТАСТАТА	AATGATAAGT	ATGAAGTTTT	GGAGGGAGGA	AAGTCTTTAA	16440
CAGTCGAACA	ATATTCGGTT	GATTTTGATA	GTGGCTCTTT	AAGAGAAAGG	CATAATGGAA	16500
AACAGGTTCC	TATGAATGTT	TTCTACAAAG	ATTCGTTATT	TAAAGTGACT	CCTACTAATT	16560
ATATAGCAAT	GACAACTAGT	CAGAATAGAG	GAGAGAGTTG	GGAACAATTT	AAGTTGTTGC	16620
CTCCGTTCTT	AGGAGAAAAA	CATAATGGAA	CTTACTTATG	TCCCGGACAA	GGTTTAGCAT	16680
TAAAATCAAG	TAACAGATTG	ATTTTTGCAA	CATATACTAG	TGGAGAACTA	ACCTATCTCA	16740
TTTCTGATGA	TAGTGGTCAA	ACATGGAAGA	AATCCTCAGC	TTCAATTCCG	TTTAAAAATG	16800
CAACAGCAGA	AGCACAAATG	GTTGAACTGA	GAGATGGTGT	GATTAGAACA	TTCTTTAGAA	16860
CCACTACAGG	TAAGATAGCT	TATATGACTA	GTAGAGATTC	TGGAGAAACA	TGGTCGAAAG	16920
TTTCGTATAT	TGATGGAATC	CAACAAACTT	CATATGGCAC	ACAAGTATCT	GCAATTAAAT	16980
ACTCTCAATT	AATTGATGGA	AAAGAAGCAG	TCATTTTGAG	TACACCAAAT	TCTAGAAGTG	17040
GCCGCAAGGG	AGGCCAATTA	GTTGTCGGTT	TAGTCAATAA	AGAAGATGAT	AGTATTGATT	17100
GGAAATACCA	CTATGATATT	GATTTGCCTT	CGTATGGTTA	TGCCTATTCT	GCGATTACAG	17160
AATTGCCAAA	TCATCACATA	GGTGTACTGT	TTGAAAAATA	TGATTCGTGG	TCGAGAAATG	17220
AATTGCATTT	AAGCAATGTA	GTTCAGTATA	TAGATTTGGA	AATTAATGAT	TTAACAAAAT	17280
AAAGGAGAAA	AACATGGTTA	AATACGGTGT	TGTTGGAACA	GGGTATTTTG	GAGCTGAATT	17340
GGCTCGCTAC	ATGCAAAAGA	ATGATGGAGC	AGAGATTACT	CTTCTCTATG	ATCCAGATAA	17400
TGCAGAGGCG	ATTGCAGAAG	AATTGGGAGC	AAAAGTAGCA	AGTTCCTTAG	ATGAGTTGGT	17460
TTCTAGCGAT	GAAGTAGATT	GTGTTATCGT	CGCAACTCCA	ААТААТСТТС	ATAAGGAACC	17520

GGTTATTAAG	GCTGCACAGC	ATGGTAAAAA	168 TGTTTTCTGT	GAAAAACCAA	TTGCGCTTTC	17580
TTATCAAGAT	TGTCGCGAGA	TGGTAGATGC	GTGTAAAGAA	AACAATGTAA	CCTTTATGGC	17640
		TTAATGGTGT				17700
AGTTATCGGA	GACGTTCTAT	ATTGTCATAC	AGCTCGTAAT	GGTTGGGAAG	AACAACAACC	17760
GTCAGTATCA	TGGAAAAAA	TTCGTGAAAA	ATCAGGTGGT	CACTTGTATC	ACCACATCCA	17820
TGAATTGGAT	TGCGTTCAAT	TCCTTATGGG	GGGCATGCCT	GAAACTGTAA	CCATGACAGG	17880
TGGAAATGTG	GCCCATGAAG	GTGAACATTT	CGGTGATGAA	GATGATATGA	TTTTTGTCAA	17940
TATGGAATTT	TCTAATAAGC	GTTTTGCCTT	GTTAGAATGG	GGTTCAGCTT	ATCGTTGGGG	18000
TGAACATTAT	GTCTTAATCC	AAGGAAGCAA	AGGTGCCATC	CGCTTAGACT	TATTCAACTG	18060
TAAAGGAACT	CTTAAGCTAG	ATGGGCAAGA	AAGCTATTTC	TTGATTCACG	AATCGCAAGA	18120
AGAAGATGAT	GATCGGACTC	GTATCTATCA	TAGTACAGAG	ATGGATGGAG	CAATTGCTTA	18180
TGGTAAACCA	GGTAAACGTA	CTCCATTATG	GCTATCATCT	GTCATTGATA	AAGAAATGCG	18240
CTATCTGCAT	GAGATTATGG	AAGGAGCTCC	AGTATCAGAA	GAATTTGCAA	AACTTTTGAC	18300
AGGTGAAGCT	GCCCTAGAAG	CAATTGCTAC	TGCAGATGCT	TGTACCCAGT	CTATGTTTGA	18360
AGATCGCAAA	GTAAAATTGT	CAGAAATTGT	AAAATAAATT	TTGGTATTCT	ССТАТТТАТА	18420
GGTCGACTTG	CTCCTCTGAA	AGTACTTTTA	GAGGAGCTGT	TTGACTTTGC	TAGTTTTTGA	18480
AACTGAAATC	ТАТТАТАСТА	CAAACTATTG	AAAGCGTTTT	AATTTTAAGG	TATAATAATC	18540
TCATAGAAAT	AAAGAAAAGG	AGGAAAGAGG	ATGCCACAGA	TTAGCAAAGA	AGCCTTGATT	18600
GAGCAAATCA	AAGATGGAAT	CATCGTTTCT	TGTCAGGCTC	TTCCTCATGA	ACCGCTTTAT	18660
ACAGAAGCGG	GAGGGGTGAT	TCCCTTGCTG	GTCAAAGCGG	CTGAGCAAGG	TGGAGCAGTC	18720
GGTATCCGAG	CAAACAGTGT	TCGCGATATC	AAGGAAATTA	AGGAAGTCAC	TAAACTTCCA	18780
ATCATTGGGA	TTATCAAACG	TGATTATCCA	CCTCAGGAAC	CCTTCATCAC	GGCTACTATG	18840
AAAGAAGTTG	ATGAATTGGC	AGAACTGGAC	ATCGAGGTGA	TTGCTCTGGA	TTGTACCAAG	18900
CGTGAACGCT	ACGATGGTTT	GGAAATTCAA	GAGTTCATTC	GTCAGGTTAA	GGAGAAATAT	18960
CCTAATCAGC	TTTTGATGGC	TGATACTAGT	ATCTTCGAAG	AAGGGCTAGC	AGCTGTAGAA	19020
GCAGGAATTG	ACTTTGTCGG	AACAACCTTA	TCAGGCTACA	CATCCTACAG	TCCAAAAGTA	19080
GACGGTCCAG	ATTTTGAATT	GATTAAGAAA	CTCTGTGATG	CTGGTGTAGA	TGTCATTGCA	19140
GAAGGAAAAA	TTCATACACC	AGAACAAGCC	AAACAAATCC	TTGAATATGG	AGTGCGAGGC	19200
ATCGTTGTTG	GTGGCGCCAT	TACTAGACCA	AAAGAGATTA	CAGAACGCTT	CGTTGCTAGT	19260
CTTAAATAAG	ATGTGAGGGG	GAGTTTTATG	TTTAAAGTTT	TACAAAAAGT	TGGAAAAGCT	19320

TTTATGTTAC	CTATAGCTAT	ACTTCCTGCA	GCAGGTCTAC	TTTTGGGGAT	TGGTGGTGCA	19380
CTTTCAAACC	CAACCACGAT	AGCAACTTAT	CCAATACTAG	ACAATAGTAT	TTTTCAATCA	19440
ATATTCCAAG	TAATGAGCTC	TGCAGGAGAG	GTTGTATTCA	GTAATTTGTC	ACTACTTCTC	19500
TGTGTGGGAT	TATGTATTGG	CTTAGCGAAA	CGAGATAAAG	GAACCGCTGC	GTTAGCAGGA	19560
GTAACTGGTT	ACTTAGTTAT	GACTGCAACG	ATCAAAGCTT	TGGTAAAACT	TTTTATGGCA	19620
GAAGGATCTG	CAATTGATAC	TGGAGTTATT	GGAGCATTAG	TTGTCGGAAT	AGTTGCCGTA	19680
TATTTGCACA	ACCGATATAA	СААТАТТСАА	TTACCTTCCG	CTTTAGGATT	CTTTGGAGGT	19740
TCACGCTTCG	TTCCTATTGT	TACATCGTTC	TCTTCTATCT	TGATTGGCTT	TGTCTTCTTT	19800
GTTATTTGGC	CACCTTTCCA	ACAACTTCTT	GTTTCTACAG	GTGGATATAT	TTCTCAGGCG	19860
GGTCCAATTG	GAACTTTTCT	ATATGGATTT	TTAATGAGAC	TTTCTGGAGC	AGTAGGCTTA	19920
CATCATATAA	TTTACCCTAT	GTTTTGGTAT	ACTGAACTTG	GTGGTGTTGA	AACTGTTGCA	19980
GGACAAACAG	TGGTTGGAGC	ТСААААААТА	TTTTTTGCTC	AATTAGCCGA	TTTGGCCCAT	20040
TCTGGATTAT	TTACAGAAGG	AACAAGGTTT	TTTGCAGGTC	GTTTCTCAAC	AATGATGTTC	20100
GGTTTACCGG	CTGCCTGTTT	AGCGATGTAC	CATAGTGTTC	CTAAAAATCG	TCGTAAAAAA	20160
TACGCGGGTT	TGTTTTTTGG	AGTTGCTTTA	ACATCTTTTA	TTACCGGTAT	TACAGAACCA	20220
ATTGAATTTA	TGTTTCTATT	CGTCAGTCCG	GTTCTATATG	TTGTTCACGC	ATTCCTTGAT	20280
GGTGTTAGCT	TCTTTATTGC	AGACGTCTTA	AATATTTCAA	TAGGAAACAC	ATTTTCAGGA	20340
GGTGTAATCG	ATTTCACTTT	ATTTGGAATT	TTGCAGGGGA	ACGCTAAGAC	GAATTGGGTT	20400
CTTCAGATTC	CATTTGGACT	TATTTGGAGT	GTTTTGTATT	ATATTATTT	TAGATGGTTC	20460
ATTACTCAAT	TCAACGTTCT	AACGCCAGGG	CGAGGAGAAG	AAGTAGATTC	TAAAGAAATT	20520
TCTGAATCCG	CAGATTCAAC	TTCAAATACT	GCAGATTATT	TAAAACAGGA	TAGCCTACAA	20580
ATTATCAGAG	CCTTGGGTGG	АТСАААТААТ	ATAGAAGATG	TAGATGCTTG	TGTGACACGT	20640
TTACGTGTAG	CTGTAAAAGA	AGTTAATCAA	GTTGATAAAG	CACTTTTAAA	ACAAATTGGT	20700
GCAGTTGATG	TCTTAGAAGT	GAAGGGTGGC	ATTCAAGCAA	TCTATGGAGC	AAAAGCAATC	20760
ТТАТАТАААА	ATAGTATTAA	TGAAATTTTA	GGTGTAGATG	ATTAAGTACT	TACTGACTTA	20820
ATAAAAAACA	GAGGAGAGTG	ATGGATGAGT	AGGATGAAAT	GAAATCGCAT	ACAAGAAATA	20880
AAGAACTCAT	TATCCAAGTT	GGATACGCTT	ATTACATAGG	AGAATACAAA	TGAAATTTAG	20940
AAAATTAGCT	TGTACAGTAC	TTGCGGGTGC	TGCGGTTCTT	GGTCTTGCTG	CTTGTGGCAA	21000
TTCTGGCGGA	AGTAAAGATG	CTGCCAAATC	AGGTGGTGAC	GGTGCCAAAA	CAGAAATCAC	21060

170 TTGGTGGGCA TTCCCAGTAT TTACCCAAGA AAAAACTGGT GACGGTGTTG GAACTTATGA 21120 AAAATCAATC ATCGAAGCGT TTGAAAAAGC AAACCCAGAT ATAAAAGTGA AATTGGAAAC 21180 CATCGACTTC AAGTCAGGTC CTGAAAAAAT CACAACAGCC ATCGAAGCAG GAACAGCTCC 21240 AGACGTACTC TTTGATGCAC CAGGACGTAT CATCCAATAC GGTAAAAACG GTAAATTGGC 21300 TGAGTTGAAT GACCTCTTCA CAGATGAATT TGTTAAAGAT GTCAACAATG AAAACATCGT 21360 ACAAGCAAGT AAAGCTGGAG ACAAGGCTTA TATGTATCCG ATTAGTTCTG CCCCATTCTA 21420 CATGGCAATG AACAAGAAAA TGTTAGAAGA TGCTGGAGTA GCAAACCTTG TAAAAGAAGG 21480 TTGGACAACT GATGATTTTG AAAAAGTATT GAAAGCACTT AAAGACAAGG GTTACACACC 21540 AGGTTCATTG TTCAGTTCTG GTCAAGGGG AGACCAAGGA ACACGTGCCT TTATCTCTAA 21600 CCTTTATAGC GGTTCTGTAA CAGATGAAAA AGTTAGCAAA TATACAACTG ATGATCCTAA 21660 ATTCGTCAAA GGTCTTGAAA AAGCAACTAG CTGGATTAAA GACAATTTGA TCAATAATGG 21720 TTCACAATTT GACGGTGGGG CAGATATCCA AAACTTTGCC AACGGTCAAA CATCTTACAC 21780 AATCCTTTGG GCACCAGCTC AAAATGGTAT CCAAGCTAAA CTTTTAGAAG CAAGTAAGGT 21840 AGAAGTGGTA GAAGTACCAT TCCCATCAGA CGAAGGTAAG CCAGCTCTTG AGTACCTTGT 21900 AAACGGGTTT GCAGTATTCA ACAATAAAGA CGACAAGAAA GTCGCTGCAT CTAAGAAATT 21960 CATCCAGTTT ATCGCAGATG ACAAGGAGTG GGGACCTAAA GACGTAGTTC GTACAGGTGC 22020 TTTCCCAGTC CGTACTTCAT TTGGAAAACT TTATGAAGAC AAACGCATGG AAACAATCAG 22080 CGGCTGGACT CAATACTACT CACCATACTA CAACACTATT GATGGATTTG CTGAAATGAG 22140 AACACTTTGG TTCCCAATGT TGCAATCTGT ATCAAATGGT GACGAAAAAC CAGCAGATGC 22200 TTTGAAAGCC TTCACTGAAA AAGCGAACGA AACAATCAAA AAAGCTATGA AACAATAGTC 22260 CTTAGTTATT CTATAAAAAG TAGTTTTTTA AAGAACCTAA GAGTGTATAC CCCCTTTTCC 22320 CTCTACACAG ATAGTGTAAG AAAAGGGGGC TTTTGTTTAA AATGTAAGAA ACTGTCACGA 22380 AATTAAAATG AAGTTCTTAC ATAAGCGAAT CATAAAAAAT TTCATTTTGA TTTTAAAACA 22440 GTTCAAGAAA GTCAAAAAAT TATTCTATTT GAAAGAGAGG TGCCGACTGT GAAAGTCAAT 22500 AAAATCCGTA TGCGGGAAAC AGTGATTTCC TACGCTTTCC TAGCACCAGT ATTATTCTTC 22560 TTTGTCATCT TTGTGTTGGC TCCGATGGTG ATGGGCTTCA TTACAAGTTT CTTTAACTAC 22620 TCAATGACTA AATTTGAGTT TGTAGGCTTG GATAACTATA TCCGTATGTT TAAAGATCCT 22680 GTCTTTACAA AATCTCTGAT TAACACAGTT ATTTTGGTTA TTGGATCTGT ACCAGTTGTT 22740 GTTCTATTCT CACTCTTTGT AGCATCTCAG ACCTATCATC AAAATGTCAT TGCCAGATCC 22800 TTCTACCGTT TCGTCTTCTT CCTTCCTGTT GTAACGGGTA GTGTTGCCGT GACAGTTGTT 22860

TGGAAATGGA	TTTATGACCC	ACTATCAGGG	ATTCTAAACT	TTGTCCTTAA	GTCCAGCCAC	22920
ATCATCAGCC	AAAACATTTC	TTGGTTGGGA	GATAAAAACT	GGGCATTGAT	GGCGATTATG	22980
ATTATTCTCT	TGACCACTTC	AGTTGGTCAG	CCCATCATCC	TTTATATCGC	TGCCATGGGG	23040
AATATTGACA	ATTCACTGGT	TGAAGCGGCG	CGTGTTGATG	GTGCAACTGA	GTTTCAAGTT	23100
TTTTGGAAGA	TTAAATGGCC	AAGCCTTCTT	CCAACAACTC	TTTATATTGC	AATCATCACA	23160
ACAATTAACT	CATTCCAGTG	TTTCGCCTTG	ATTCAGCTTT	TGACATCTGG	TGGTCCAAAC	23220
TACTCAACAA	GTACCTTGAT	GTACTACCTT	TACGAAAAAG	CCTTCCAATT	GACAGAATAC	23280
GGCTATGCCA	ACACAATTGG	TGTCTTCTTG	GCAGTCATGA	TTGCTATCGT	AAGCTTTGTT	23340
CAATTTAAAG	TACTTGGAAA	CGACGTAGAA	TACTAAAGAA	AGGAGACAGC	TATGCAATCT	23400
ACAGAAAAAA	AACCATTAAC	AGCCTTTACT	GTTATTTCAA	CAATCATTTT	GCTCTTGTTG	23460
ACTGTGCTGT	TCATCTTTCC	ATTCTACTGG	ATTTTGACAG	GGGCATTCAA	ATCACAACCT	23520
GATACAATTG	TTATTCCTCC	TCAGTGGTTC	CCTAAAATGC	CAACCATGGA	AAACTTCCAA	23580
CAACTCATGG	TGCAGAACCC	TGCCTTGCAA	TGGATGTGGA	ACTCAGTATT	TATCTCATTG	23640
GTAACCATGT	TCTTAGTTTG	TGCAACCTCA	TCTCTAGCAG	GTTATGTATT	GGCTAAAAAA	23700
CGTTTCTATG	GTCAACGCAT	TCTATTTGCT	ATCTTTATCG	CTGCTATGGC	GCTTCCAAAA	23760
CAAGTTGTCC	TTGTACCATT	GGTACGTATC	GTCAACTTCA	TGGGAATCCA	TGATACTCTC	23820
TGGGCAGTTA	TCTTGCCTTT	GATTGGATGG	CCATTCGGTG	TCTTCCTCAT	GAAACAGTTC	23880
AGTGAAAATA	TCCCTACAGA	GTTGCTTGAA	TCAGCTAAAA	TCGACGGTTG	TGGTGAGATT	23940
CGTACCTTCT	GGAGTGTAGC	CTTCCCGATT	GTGAAACCAG	GGTTTGCAGC	CCTTGCAATC	24000
TTTACCTTCA	TCAATACTTG	GAATGACTAC	TTCATGCAAT	TGGTAATGTT	GACTTCACGT	24060
AACAATTTGA	CCATCTCACT	TGGGGTTGCG	ACCATGCAGG	CTGAAATGGC	AACCAACTAT	24120
GGTTTGATTA	TGGCAGGAGC	TGCCCTTGCT	GCTGTTCCAA	TCGTCACAGT	CTTCCTAGTC	24180
ТТССАААААТ	CCTTCACACA	GGGTATTACT	ATGGGAGCGG	TCAAAGGATA	ATACTCTGCG	24240
AAAATCTCTT	CAAACTACGT	CAGCTTCACC	TTGCCATACT	TAAGTATTGC	CTGCGGTTAG	24300
CTTCCTAGTT	TGTTCTTCAA	TTTTCATTGA	GTATAGGAAA	АТСААТСТАТ	CAAGATACAG	24360
AAGTATATTT	TATAGATTTA	GAGAATATAG	AGGTTATAAG	TGTCTACAAA	ATGGAGGGTA	24420
TGCAGTTACT	TTATGAAGTT	TTGTCAGACA	СТТАТАААСТ	TAAGAATGGT	TTTAGTTAAC	24480
TATCAGAAAC	GAAGGAAAGA	GTATGATTTT	TGACGATTTG	АААААСАТСА	CCTTTTACAA	24540
AGGGATTCAT	CCTAATTTAG	ACAAGGCTAT	CGACTATCTC	TACCAACATC	GTAAGGATTC	24600

172 TTTCGAATTA GGAAAGTATG ATATTGATGG AGATAAAGTC TTTCTAGTTG TTCAGGAAAA 24660 TGTCCTCAAT CAAGCTGAAA ATGATCAATT TGAGTATCAT AAGAACTATG CAGATTTGCA 24720 TTTGCTGGTA GAAGGACATG AATATTCGAG CTACGGTTCA CGTATCAAAG ACGAGGCAGT 24780 AGCATTCGAC GAAGCGAGTG ACATTGGCTT TGTTCATTGT CATGAACACT ACCCACTCTT 24840 GTTGGGTTAT CACAATTTTG CGATTTTCTT CCCAGGTGAG CCACATCAGC CAAATGGTTA 24900 TGCAGGCATG GAAGAAAAGG TTCGAAAATA TCTCTTTAAA ATTTTGATTG ATTAAAAATA 24960 GGATGAATTG TTTTTTTGTA AAGCTTTGAT AATACTCTAC CATGAAATTG ATCTTTGTGA 25020 GGTAGAGAAA TGAGAATAAA ATATTTAAAA ATTGGTATCT TCTAAGTATG CTGCAAGAGC 25080 TAGTTTCTTA GATGGACAGG GGATTACAGT TGATGAGATG GCTTGGATAA TTAGGGGCAT 25140 TGTGAATGCA TTGATTGGTA GATACATAAA ATTAGGTACT TATGCGGCTA AGTATGGTAT 25200 TAGTATGGCA CGCTCGATCT TAAGTAGGGT AGCTGCAACT GCAGCAGCAA GAGTAGGATT 25260 ACTGACCAAG ATTTCTGGAT GGATTTTACG AGTAGCTGTG AATGTAGCTG ATGTATATGG 25320 TAATTTTGCC AACAATATTG CTGCAGCTTG GGATGCATAT GATAAAATTC CTAACAATGG 25380 TCGTATAAAC TTTTAAAATG CGAGAATGAA AGCACTTTGT ATTTTTTTAT TGAATATGTT 25440 AGCTTGGACA GTGCTTGCAA TGATAATTCG TGGAGGGCTA GATGGATTTG ATAGGCATAC 25500 TTGGAGTACT ATTTTAATTG CGTCGCTGTT CGGGGTATAT GATTATAAGC CCATAGATAA 25560 AAATAGAAAA AAGTCCAAAA GAAAAAATAG ATTTGTTCAT GGTAGGGACT TATGAAAGCT 25620 TTACTGACAA AAAAGAAAAC AGTTTACAAA GAAAAATGAT GGAGGAGCAA ACATGGCACA 25680 AAAAGGAGTA AGCCTTATCA AGGCAGCATT TGATACAGAT AACTTTCTCA TGCGTTTTAG 25740 TGAGAAGGTC TTGGACATCG TGACAGCCAA TCTTCTTTTT GTCGTCTCTT GTTTACCCAT 25800 CGTGACGATT GGAGTGGCTA AAATCAGCCT CTACGAGACC ATGTTCGAAG TTAAGAAGAG 25860 CAGACGGGTG CCTGTTTTTA AAATCTATCT AAGATCTTTC AAGCAAAATC TGAAACTAGG 25920 TCTTCAGCTG GGTTTAATGG AGTTAGGAAT TGTGTTTCTT ACCCTTTCAG ATCTCTATCT 25980 TTTCTGGGGT CAAACAGCTC TGCCCTTCCA ATTGCTGAAA GCCATTTGTT TAGGTATTCT 26040 GATTTTTCTT ACTATCGTGA TGCTGGCTAG TTACCCTATC GCGGCACGTT ATGACCTATC 26100 TTGGAAAGAA ATTCTTCAAA AAGGATTGAT GTTGGCTAGT TTTAACTTTC CTTGGTTCTT 26160 CCTCATGTTA GCCATTCTTG TCCTCATTGT GATGGTTCTT TATCTGTCCG CCTTCAGTCT 26220 ACTCTTAGGT GGCTCAGTCT TCCTACTTTT TGGGTTTGGA CTATTGGTCT TTATCCAGAC 26280 TGGATTGATG GAGAAAATTT TCGCAAAATA CCAATAGGAG CTTTATTTCT GAAACTACTT 26340 TCAAAGGCTC CAAACGCTAT TCTATAAGCG AGAAACTAAA ATCGG 26385

173

(2) INFORMATION FOR SEQ ID NO: 4:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 2716 base pairs

(B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

CCTGCCCGCA TTGCCCTAGG	CATTAAGTAA	АСАТАТАААА	GCATGTGAGA	GACTGTTGGA	60
AAAGCGAGGA AATTTCCCCT	CTTTTCCTCT	AGTCTCTCCT	TTCTTTTGCT	GATTTTATTC	120
AAAGAAAATG ATATAATAGT	AGTTATGGAG	AAAAAGAAAT	TACGCATCAA	TATGTTGAGT	180
TCAAGTGAGA AAGTAGCAGG	ACAGGGAGTT	TCAGGTGCTT	ACCGTGAATT	AGTTCGTCTT	240
CTTCACCGTG CTGCCAAGGA	CCAATTGATT	GTTACAGAAA	ATCTTCCAAT	CGAGGCAGAT	300
GTGACTCACT TTCATACGAT	TGATTTTCCC	TATTATTTAT	CAACCTTCCA	AAAGAAACGC	360
TCAGGGAGAA AGATTGGCTA	TGTGCATTTC	TTGCCAGCTA	CACTTGAGGG	AAGTTTGAAA	420
ATTCCATTTT TCTTAAAGGG	AATTGTGAAA	CGCTATGTAT	TTTCTTTTTA	CAACCGGATG	480
GAGCACTTGG TTGTGGTCAA	TCCTATGTTT	ATTGAGGATT	TGGTAGCAGC	TGGTATTCCA	540
CGTGAAAAAG TGACCTATAT	TCCTAACTTT	GTCAACAAGG	AAAAATGGCA	TCCTCTACCA	600
CAAGAAGAGG TAGTCAGACT	GCGCACAGAT	CTTGGTCTTA	GTGACAATCA	GTTTATCGTA	660
GTAGGTGCTG GGCAAGTTCA	GAAACGTAAA	GGGATTGATG	ACTTTATCCG	TCTGGCTGAG	720
GAATTGCCTC AGATTACCTT	TATCTGGGCT	GGTGGCTTCT	CTTTTGGTGG	TATGACAGAT	780
GGTTATGAAC ACTATAAGAA	AATTATGGAA	AATCCCCCTA	AAAATTTGAT	TTTTCCAGGC	840
ATTGTATCGC CAGAGCGGAT	GCGCGAATTG	TATGCTCTAG	CGGATCTTTT	CTTGTTGCCT	900
AGTTACAATG AGCTCTTTCC	TATGACTATT	TTAGAAGCTG	CGAGTTGTGA	GGCTCCTATT	960
ATGTTGCGTG ATTTAGATCT	CTATAAGGTG	ATTTTGGAGG	GAAATTATCG	GGCGACAGCG	1020
GGTAGAGAAG AGATGAAAGA	GGCTATTTTG	GAATATCAAG	CAAATCCTGC	TGTCTTAAAA	1080
GATCTCAAAG AAAAGGCTAA	GAATATTTCC	AGAGAGTATT	CTGAAGAGCA	TCTGTTACAA	1140
ATCTGGTTGG ACTTTTATGA	GAAACAAGCC	GCTTTAGGGA	GAAAGTAAAA	AGTGAGGTAA	1200
TCTATGCGAA TTGGTTTATT	TACAGATACC	TATTTTCCTC	AGGTTTCTGG	TGTTGCGACC	1260
AGTATTCGAA CCTTGAAAAC	AGAACTTGAA	AAGCAGGGAC	ATGCTGTTTT	TATCTTTACG	1320
ACGACAGATA AGGATGTCAA	TCGCTACGAA	GATTGGCAAA	TTATCCGCAT	TCCAAGTGTT	1380

			174			
CCTTTCTTTG	CTTTTAAGGA	TCGTCGCTTT		GTTTTAGCAA	GGCACTTGAA	1440
ATTGCTAAAC	AGTATCAGCT	AGATATTATC	CATACTCAGA	CAGAATTTTC	TCTTGGCCTG	1500
TTGGGGATTT	GGATTGCGCG	TGAATTGAAA	ATTCCAGTCA	TCCATACCTA	TCACACCCAG	1560
TATGAAGACT	ATGTCCATTA	TATTGCTAAG	GGGATGTTGA	TCCGGCCGAG	TATGGTCAAG	1620
TATCTGGTTA	GAGGTTTCCT	GCATGATGTG	GATGGGGTTA	TTTGCCCTAG	TGAGATTGTC	1680
CGTGACTTGC	TATCTGATTA	TAAGGTCAAG	GTTGAAAAAC	GGGTCATTCC	TACTGGGATT	1740
GAATTAGCCA	AGTTTGAGCG	TCCGGAAATC	AAGCAGGAAA	ATTTGAAAGA	ACTGCGTAGT	1800
AAACTAGGGA	TTCAAGATGG	TGAAAAGACG	TTGCTTAGTC	TTTCGAGAAT	CTCCTATGAA	1860
AAAAATATTC	AAGCAGTTTT	AGCAGCCTTT	GCTGATGTTC	TGAAAGAGGA	AGACAAGGTT	1920
AAACTGGTAG	TAGCTGGGGA	TGGCCCTTAT	CTGAATGACC	TCAAAGAGCA	AGCCCAGAAC	1980
CTAGAGATTC	AAGACTCAGT	CATCTTTACA	GGGATGATTG	CTCCTAGTGA	GACGGCTCTT	2040
TACTATAAAG	CGGCGGATTT	CTTCATTTCG	GCATCGACAA	GCGAAACGCA	AGGTTTGACC	2100
TACTTGGAAA	GCTTAGCCAG	TGGAACACCT	GTCATTGCTC	ACGGAAATCC	TTATTTGAAC	2160
AACCTCATCA	GTGATAAAAT	GTTTGGAACC	TTGTACTATG	GAGAACATGA	TTTGGCTGGT	2220
GCTATTTTGG	AAGCCCTGAT	TGCAACACCA	GACATGAACG	AGCATACCTT	ATCAGAGAAA	2280
TTGTATGAGA	TTTCAGCTGA	GAACTTTGGG	AAACGAGTGC	ATGAGTTTTA	TCTGGATGCC	2340
ATTATTTCAA	ATAACTTCCA	GAAAGATTTG	GCTAAAGATG	ATACGGTCAG	TCAGCGTATC	2400
TTTAAGACAG	TTTTGTATCT	TCAGCAACAG	GTGGTTGCTG	TACCTGTAAA	AGGATCTAGA	2460
CGCATGTTGA	AGGCTTCAAA	AACACAGTTG	ATCAGTATGA	GAGACTATTG	GAAAGACCAT	2520
GAAGAATAGA	AAGAGGAACA	GCTATGAAAA	AAACAATTAA	TGAGAAGCGG	TCGTGATAAA	2580
AAGATTGCGG	GTGTTTGTGC	TGGGGTGGCC	CATTATCTGG	ATATGGATCC	GACTATCGTT	2640
CAAGTCATTT	GGGGTGTTCT	TACTTGCTGT	TACGGAGCTG	GAATTGTAGC	TTACATTATT	2700
TTATGGATTA	TCGCGA					2716

(2) INFORMATION FOR SEQ ID NO: 5:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 13926 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:

CTTTGGTTTT GCCTTATTCA AGACATGAGG GCCATCAGGA ATGATCTGAA ACTGCGAATC

TGTTAACAGT	CTATGGAGAG	CTTTCATAGA	ACTAAGATTC	GGTTTATCTT	TGCTGCCACA	120
AATTAGTAAG	GTTGGATAAG	GGTAAGTTCC	TGCTATATCC	GTTAAATCAA	GTGTCTTCAA	180
CTCCTCAGAA	ACTCCGACCA	TAAGAGTCTT	GTCTGCTCCC	TGTTTTTCAA	ATACTCTTTT	240
GGGAAGTAGT	ТТАААААТСА	GCAATTGAAG	ATAAAATAGG	ATATTCCCTG	CTAATTTAAG	300
CGGGCATCCT	GACAGAATCA	AAGCTCGAAG	ATTTGGTAAA	TCGTAACTGG	AAAGTTCTAG	360
TGTCAGGGCA	GCACCTAAGG	ACAATCCAAT	CAAAACAAAA	GGTTCTGTCT	CTTGAGCTAG	420
GTGCTGATAA	ACTCGCTCTT	TAGCTTGTTG	ATAGTTACTA	ACTCCAGAAG	GAAATAACTC	480
GATAGCCTCA	GAAGGATAAT	CTGTCAGTAG	ATTCCGAACT	TCTTTCCAAG	ACTCTGCTGA	540
CTGCCCTAAC	CCATGCAAAA	ATATTAATTT	CATCTAGTTC	TCCTCAAGGC	TTAATTCATA	600
CAAGCCTCTC	ACTGCATTAC	AGCCGTAAAT	AGCTTCTGCT	TGGGTTAAAT	CTGCCAAGGT	660
CAAGACTTTC	TCTTCTACCT	GTCCTGTTTC	TAGCAAATGC	TGACGGTAAA	TTCCTGGCAA	720
GATTCCAAGT	CGGATAGGCG	GTGTGTAGAG	TTTTCCAGCG	ATTTTCAGAA	CCAAATTTCC	780
TATAGAGGTT	TCAAGCAGTT	CTCCTGACTT	ATTGTGGTAA	ATCTTCTCTT	GTTCTCCTAG	840
GCTCAAATGC	GGTCGGTGAG	TGGTTTTAAA	GTAGGTAAAG	GATTGATTCA	AAGCAGCTTC	900
CTGAAGACAG	ACTTGGGCCT	GACAAAAGCT	TGTACTGAGA	GGGGTTAATA	CTTGACGATT	960
GACTTCTATC	TCTCCAGATT	TGCTAAGGCT	GATTCGCAAG	CGGTAATCTC	GATTAGCTTC	1020
ACAATCCTGA	CACTCTTCCT	CAATCTTGTG	TCCCAAGTCT	TCTGCATCAA	AAGGAAAAGC	1080
AAAATAACGA	CTAGCTTTTC	TCAGCCTTTC	CAGATGTTGT	TCTTCAAACA	TCAGTTGTTT	1140
TTGGCTGATT	TTTCCAGTTG	TAATTAATTG	GAAGCGAGCT	TGTTTACGAT	AGAGAACTGC	1200
TGCCTTTTGA	TGAACCTCTC	GGTATTCAGA	TTCCCATGTG	CTATCCCAAG	TAATCCCTCC	1260
GCCAACTCCA	TAAATGGCTT	GACCTTTGTG	AAGTTGAATG	GTACGAATGG	CCACATTAAA	1320
AATCCGTCGT	CCATTTGGAA	GCAAGAGACC	AATCGTTCCA	CAGTAGACTC	CACGCGGTTG	1380
AGGCTCCAAG	TCCTTGATAA	TCTCCATTGT	CGCAATTTTC	GGTGCACCCG	TTATGGAACC	1440
ACAAGGAAAG	AGTGAGCGGA	AGATTTCAAC	AAGGTCCACA	TCCTCTCGCA	ACTGACTCTT	1500
GATGGTCGAA	GTCATCTGCC	AAACAGTTGA	ATACTGCTCT	ACCTGACACA	GACGCTCCAC	1560
GTGCTCGCTC	CCAACTTCAG	AAATACGGTT	CATATCATTG	CGCAAGAGGT	CCACAATCAT	1620
CATATTTTCA	GAGCGATTTT	TGGGATCCTG	TTCCAACCAA	CTGGCCTGTT	CAAGATCTTC	1680
TTGGTCAGTT	ACCCCACGCT	GAGTCGTCCC	CTTCATTGGT	CGTGTTGTCA	ACTCGCGATC	1740
ATTTTGCTCA	AAAAAGAGCT	CTGGGCTCAT	GGAAATCACT	GTCATCTCGT	CATGTTCCAC	1800

ATAGGCATTG	TAGCCCGCCT	CCTGCTCTAC	176 CACCATACGA	TTGTAGATGG	CAAAAGGATT	1860
GGCATTTAAC	TTTTGCTTAA	GTTGGACGGT	GTAGTTGACC	TGATAGGTAT	CTCCCTGCCG	1920
TAAATGATGG	TGAATTTGGG	CAATGGCCTT	TTCATAGTCT	GCTGCAGACG	TTACTTCCTG	1980
CCAATTTGAG	GGCAAATCAA	TATCCTCATA	AGTCAGAGGA	ATAGGGGAAG	TTTCTACGAT	2040
ATCATGAACA	GTAAAGTAAA	GCAGGTACTC	TCCCAGTAGG	GGATCCTTGT	GAACTGCTAA	2100
TTTTTCCTCA	AAAGCAGGTG	CAGCCTCGTA	GCTGACATAC	CCCACCACAT	AATAACCTTG	2160
CTCTTGGTAG	CTTTCCACTT	GTGCCAGCAA	ATCTGCCACT	TCTTCTACAT	TTCTCGTTTT	2220
CAACTCTTTA	ATAGGCTGGG	TAAAGGTATA	TCTCTCCCCC	AAAGTCCTAA	AATCAATCAC	2280
TGTTTTTCTA	TGCATACCTT	AAGTATAGCA	TAAAATAAGA	AAACCCTCAT	CCGCAAAGCA	2340
GATGAGAGAT	TTCAATTATT	TAAAGATTGA	AGTTTTAAAG	CTATTTGTTT	GTTGAAGAAG	2400
TTTCTTATAA	ACAGCTTCTT	TTAATTTAAC	TGTATTATTC	ATAGATACTG	TTTTATTACC	2460
GTTTGCTTCT	TGTTTAAGAG	TTTCGGCATC	TTTTTTAACA	GCTTCTTTAA	ACAATGTCAG	2520
TAAATCATCG	TATGATGAAA	CGGAAGAACC	ATTTACTTCG	AATGTTGTTA	ATCCTTTCGT	2580
TGCTTTATCT	TTAACTTCTT	TGAAGTAAGC	TTTTTTAAAT	TCTTCAATAG	TATTAAATGT	2640
ATTGTTAGAT	ATTTTCTTGA	TAATATATTC	ATCACTTAGA	ACAGACTCAC	CATCTGTTTT	2700
AGATTGTTGT	TTATATTTAT	TTGAAGCATA	ACCTAAGAAC	CCATTTTCGT	ATCCGTAGTA	2760
ACCCCATAAT	CTAAAAGCAT	TATGTTTGAA	TGAAACAGCT	CCAGGAGCAC	CTTTACTAGT	2820
ATTACCTCCG	TAGATACCGG	TCATCATTCT	AACACCTACA	TAAGGTGATT	GATCGTTATA	2880
GCTAATTGCT	TCGGGTTTAT	AGATACCATT	ACCTGGATTG	CGATTAGTCA	TTAATTGTTG	2940
ATCAACTAAA	TCATTAACAG	ATTGAATATT	TAATTCATTT	TTCTCTTCTT	GACTTAGATT	3000
TCGAATTTTA	TCCCATTGAT	TTAATTTATT	GTTATCACGG	TATTCTCTAT	CTATTTTTT	3060
GAACCATGCA	CTATTTAAAT	CTTTATTTTG	TTGAGAAATC	ACAGATTCAG	CCTCAATTTC	3120
ATCAAGAAGA	GTTAAAGTGT	CATTATAACC	CTTCATATAT	СТАТТААТАТ	CTTCTCGTGT	3180
TTTTAGAGTT	TTTGGATCTG	TAATATACCA	CTGATTCCCA	TCATTTTTGC	GTTTAAATAC	3240
САТАТТААТА	CCTAAAGAAC	CAAACTCATC	AAATCCACTA	CCAGTAACAG	GAGTTTGTAG	3300
CATACCCTGA	GCATATGCTT	CAGCATCAGT	ACCTTCACGG	TGTCCAAAGC	CACCTAAGTA	3360
AATCGCACGG	TCGTTGACGT	GTGTTGTTTC	ATGTGTGTAA	ACTGAAATAC	CGTATTCACC	3420
AACCATTTCT	AAATGAACAT	ATTTTACATC	AGTTCTAATA	TCATCAGAGT	TAGGATATAT	3480
AGCAGCATAA	GCTCCTGTTC	CATTATAATT	АТААТАСТТА	TCCATAGGAC	CAAAGAATTC	3540
TCTAAGAGGA	GTATATACTT	TGTCGGTATT	ATAGCGGCCA	TATTTTTCAA	CCCATCCACC	3600

AGGAGCGTTA	TAACCTTCCC	AAATAGGAAT	AACAGCATCT	CTTAGTAGTC	GTTGTTTAAC	3660
GTTATCAGAC	GCTAGACGAT	ACCAGAAATC	ATAATAGTTT	CTATAACCAT	CTGCAGCTTT	3720
GTTAACGATA	TCTTTAATAT	CTTCTAATGA	TTTTTTACCT	AATCGCTCTG	CACTACCAAA	3780
GGCAATTGCA	TTATAATTTG	AAATTAAATA	AAGATGTGCT	TTATCAATAT	TCAGTAGTGG	3840
GAGTATAGTA	TTTCTAAGGT	GACTTCGTTT	TAAATTATCG	AATGCACGAT	GTTTAGAATT	3900
TTTAATTTCT	TCGACCTCAG	AAGCGCGTTC	TGCGATGTAG	ACATGGTCTT	CTGTAGCATC	3960
AATAAACCAA	TCGTTCATAT	TGTCTATATT	TGTGAACAAT	TGTCTATTAT	AATTTAAAAA	4020
TGCATCTAAA	TTACCTGATT	TAGTATATTT	AGCCAATACT	TGACCGAATG	CGTCGAATGT	4080
ACGTGAACCT	TTAATGTTGT	TCTCTTTAGA	ACCGATTTCA	ATTAATCTGT	CTAATACGCT	4140
AACTTTTTCA	CCATAGAAAT	CTGGTTTGAA	TAGCATTAAT	TCTTTAATAT	TAACATCACC	4200
AAATTTAACT	CCATAGTAAC	GATTTAGGTA	AGTTAAACCT	AGTAATAAAG	CTGCTTTGTT	4260
TTTCTCGACT	TTATCACGAA	TCATTTGACG	AGCAGCTGGA	GAATCATTTA	GTTGATGTTC	4320
TTCGTTTTGA	ACTAATTTTG	TGATTAGGTT	TGTTAAGTTT	TCTTTAACAT	CTGTGAAGCT	4380
TTCTTCTAAA	TATAAATCTT	TGATTGCATT	AACTCTATAG	TCACCTAATC	GATTTAGATG	4440
CTGATACATC	GTTTGAGACT	GAAGCTCTAC	TGATTCTAAA	ATAGATTTTA	TATCATTAAC	4500
AAGAGTAGTG	TTATCTTTTT	GAACGATATT	AGGTGTATAT	TTAATTCCTA	AGTCAGTTAT	4560
AGTATATTCT	TTTACATTAC	TTAAACCTTC	ACTGCTAGAA	GACAAGTTAA	AGTAATCTTT	4620
TGTACCGTCC	GCATAGTGAA	CAATAATTTT	ATTAGCTTCA	TCTAGGTTTG	TGATAAACTC	4680
ATTGTTGTTC	ATCGCGGTAA	CAGAAAGAAC	TTCTTTAGTA	TTTAGATGGT	GTTCTTTATT	4740
TAATTTATTA	CCTTGATATA	CAATATAATC	TTTATTGTAG	AATGGTATTA	ATTTTTCAAG	4800
ATTTTTATAG	GCTTGGTTAT	ATTCAGCGTT	ATAATCTTGA	ATACTAGAAT	AGGCTTTTTC	4860
TTCATTAAGT	TTTGCAAGAG	GAGATAGATC	ACTTTCTAAT	TTATCAGCAG	TAATATTGAA	4920
AGTAGTAACT	TTAGCATCAG	CTTGTTCTTT	AGTTAATTTA	GTAAATGTTT	TAGATTTCCT	4980
AAATGATCTA	TTACCTGACG	AATATCCCTC	TACCGCATAT	AAATCTTTTA	TATGAGCACT	5040
AGCATAATCA	GAATCATCAA	CGTCGTTAGA	GCCGAATAAC	TCCTCTCCAC	GGATAATCTT	5100
AGCATAGCTG	ACAGAATTAC	TTACCGTACC	TACAGGCCAA	GTCTTACTTG	CTATTGCTCC	5160
AACTTCTACT	GGATTTGAAA	CATCTATTTT	ACCTTTTACA	ACCGACTCAG	TTAGGAGAGC	5220
TTTTGTACCA	ATAAGATGGT	CTAGAGTTAA	TCCATAATCT	ACTTTAGGAA	CTAACAAGCT	5280
GGCGCGTGTT	TTGTTTCCTG	TAATAGTAGC	ATCAACATAT	GCTTTTCTAA	CAATTCCTCT	5340

178 ATAGTTTGTA CCTGCAATTC CCCCTGTATG AGAGCCATTT CCACTTGTAG AGTGTAGTTT 5400 GCCAAAGAAA GCAACATTTT CAATACGAGT TCCATCATTC ATATTATTTA CAAATCCAGC 5460 AACATTATTA CGACCTGAAA GTGTGCCTGT AATTTTGACA TTTGTAATAA CTGAAGAACC 5520 TTTCATAGTA TTGGCTAATG ATGCAATATT ATCTTGACCA GAACGTTCTA TCTCTACATT 5580 TTCAAAATTC ACATTATTTA TCGTTGCGTT TGTTATCACA TTAAATAATG GATGTTCCAA 5640 TTCAGTAATA GCAAATTGTT TTCCTTCAGA ACTTAAAAGT TTTCCTGTGA ATTCTTTAGT 5700 GATATATGAT TTTCCATTAG GAACAACATT TCTAGCGCTC ATTGATTGTC CCAGACGATA 5760 TTCTTTGAA GGATCGTTTT GAATAGCTTC CACTAATTCT TTGAAATTAT AATATACATT 5820 ATCTTCGTGG ACTTTAGGTT TTTCAATATA GTGAACGTAT TCTTCTTCAA ATTTATTATC 5880 AGCAGTTCTA GAGACTAAAT TGTCTGCGAT TGCTGTAACT TTATATACAG GTGTTCCGTT 5940 AACCGTAGTT TCTTCTATAT TTTTAACAGC TAGTAATGTA GTTTTCTGAT TATTTGAAGT 6000 TATTTTAAA TAATAATTGC TCTTATCATC AGGAATAGTT GTTATCAGTG ATTCATTAGT 6060 TTCTTTTCCA TTTTCGTATT TGATTAAATC TGTACGTTTA ATATTTTTAA GCTCAACTTT 6120 TTTAAGATCT AATTGAATAT TTTGATTTTC TAGAGTTTCA GTTTCTTCAC CGTTACCTCT 6180 GTCGTAAATC ATAGTTGTAG ATAGGGTGTA TTCTTTGTAG TACTCTAGGT TCTTAAATGC 6240 AGCGCTTATA GTTTCTGTTG TTACCTTGTC ATCTGTAAGG ACTACAGTAT TAATAACTTC 6300 6360 AGTATACTTA GCAACAGCTT CACGTTCCAA TATTTTCTTA TCGGTACTAG TCAATGTTAA 6420 TATTGGCTTT TCAGATAATT CAACCAATTT TTCAATAGTT GCAGTTAATT TTTCAACAGC 6480 TTCGTTAACT TCACTTTGTT TAGCATCTGT ATTAGCTGCA ACTTTTTCAG CCTTTGTAAC 6540 TTCAGTTTGG AGGTTTTGCC AACTTCTATC ACTGTAATGT TCTTTTACCT TTGTTTTTGC 6600 ATCTGCAATC GTATTGTTTA ATTCAGTTTT ATCAACGTTT AGAGCGTCAA TAGCCGTTTT 6660 AAGTTTATTT GTCTCGCTAT TTACCTCAGG CTGTTTTACA GGCTCTGAAG CATAGACACC 6720 TTTTGCAGTT TCTAAAACAG GTCCAAGAGC ATTGTAACTT GCTGTAGAAT AATCAGTAGG 6780 AGAAACTGAA CTAGCTTTAT CAATTTGATT ATTTAACTCA CTTTTATCAA CTGGTTCTTT 6840 AGTACCAATA CCCTTTATTT TATCTTCTGG TTTCGGTGTT TCCTCTACAG CCTTCTCTTC 6900 TTCAGGAACT TCTGGTTGCT TTTCTGGCTC AACTGGTGCC GTTGGTGCCT GTTCGTCTTC 6960 TCTTGGCGCG ACTGGTTCAC CTGCTTGTTC AACTTTTGGT TCCTCTGTTG GTTCTGTTTG 7020 TTTTTCTACA GCAGGCGTTT CAACTTTTGG TTGTTCAATA GATTGATTAA CAGTCTCCTC 7080 TTTTGGTTCT ACAGTTTCTT CAGCCTTGGT ATCTGGAGTT GACTCTTCTT GTTTCGGTGT 7140

TTCCTCTACA	GCCTTCTCTT	CTTCAGGAGC	TTCTGGTTGC	TTTTCTGGCT	CGACTGGTGC	7200
CTTTTCGTCT	TCTCTTGGCG	CGACTGGTTC	ACCTGCTTGT	TCAACTTTTG	ATTCCTCAGC	7260
TGGTTTGTCT	GATGGTTGAC	TTTCTGGCTT	AACTGCTACT	TTTTCCTCTG	GTTTTGACTC	7320
AACTTCTCCA	CCTACTTCTT	CAACTGGAGC	TGGTTCTGCT	GAATCTTCTT	TCCCCTCTTC	7380
TACTTTAGGA	AGGGTGTCGT	CAGTAGGTTT	TACCTCCGAT	TTTGGTTCTT	CCTTTGGACT	7440
TTCTTCTGTT	TTAGGTGCTT	CTTCTTTTGG	AGCTTCCTCT	GTCTCTACTA	CTTGGTTTTC	7500
TGTCCTAGCT	TGCTCCTGAT	TTGTTATTGA	TTGAGGAGTC	TCAACTTCGA	CCACAGTCAC	7560
CTCTCCAGGT	TTTGCTGAGG	TTTCTTCTAA	AACAGTGTCC	AAGCCAAGCG	TTTTGAGGAT	7620
GTCACCTGAT	AGATAACCAA	CATAGCGATA	GCCCTCCATT	TCAACAACAC	CCTCTCGACT	7680
AGCCAGCGCT	AGGGTCGCAA	CTGGGTCTAC	AGCCCCTGCA	CTAGGAAGAA	CTACCAATCC	7740
CATAGCTCCA	ACTAGAAAGA	CGCTAGCAAT	TTTCTTTCTC	TTGTAGATTA	AAAGCAAGCT	7800
CCCAACAGTC	AGCAAACCAA	AAGCTGTCAA	AACAGATGCT	TCTGTCCCTG	TTTGAGGCAA	7860
CTGATCTTTT	TGATACACCA	AACCATATAC	AACTTCATTC	CTGTCAGGCT	TTCCTGTCTG	7920
AATTAAATCT	TTAGCTTCTT	GTGAAATAAT	CTCTTTATTT	ACATAGTGAT	AGGTGGCTGC	7980
GTCCACTACA	GAAGGAGCCA	TCAAAAGGCT	TCCAAGAAAT	ACAGAGCCTA	CAACTCCCTT	8040
AATCTTACGA	ATTGAAAAAC	GGTCTTTTTT	AAACACTTTT	ATCTCCTTTA	TTCATTCTCA	8100
AAACTTCCTA	ATAGCATCTT	GCGGATAGTG	CGCACGCGCA	CCTCCGATTA	ATTTTGGACG	8160
ACTAGCCAGT	GCCGTTACAT	GGGCATGACC	AATCTCTCTC	AAAATAGGGC	GAATCGGAAC	8220
CTGAACATGC	TTGACATGCA	TGCCAATTGC	AGTGTCTCCG	ATATCCAATC	CAGCATGAGC	8280
CTTGATAAAT	TCAACCTCAA	CTGGATCCTG	CATAAACTTA	AAGGCTGCCA	ACTGCCCCGA	8340
ACCTCCTGCA	TGAAGAGTAG	GATGGACACT	GACAATTTCC	AGACCAAACT	GCTCTGCCAC	8400
CTGACGTTCA	ACAACGAGAG	CCCGATTGAC	ATGCTCACAA	CCTTGAACTG	CTAAATGGAT	8460
ACCTCTACTA	CCTAGAATAT	CCAAGATAGT	CTCCACTATC	AGCTCACCAA	TCTCTTGACT	8520
GGATTCTTTC	CCAATATGAC	CACCTAGCAC	CTCACTAGAA	GATAGACCTA	AAACAAAAAG	8580
GGCCCCCTGC	TTCAAATTGG	TCTTTTCTAA	AACATCTTCC	ACTACCTGAC	GTGTTTCTCT	8640
TTGAATCTGT	GTCTCGTTCA	TCTCTGTTAC	CTCTGTTGTC	ACTCTTCTAT	CATACCGTTT	8700
TTTCTTGTTT	TTAGCAAGAT	AGACAACCTA	GAAAGTTTGC	CCAATTACGC	ATAAAACTCC	8760
CAGAATTGAC	TGGGAGTTAG	CTAGTTTCTA	TTCTATTTAT	ATATATTTCA	ACTTTCGTCC	8820
CTTTTTGGGG	TCTAGAATCA	ATCTTCATAT	GGTAATTGGC	TCCAAAATGA	AGTTTGAGCC	8880

GTTGATCGAC	ATTTTGAAGA	CCAACTCCCC	180 CACGTTTGAG	TTGACTTTGA	CTACTATCAC	8940
CAGCATCTTG	GAAGCCAACG	CCATCATCCT	CAATACGGAT	GACCAATCCC	GAATCCTGTT	9000
TCTGGACAGA	AAGTTTAATA	TGGCCCTGAC	CTTCCTTTTC	CTTAATGCCA	TGGTAAAGAG	9060
CATTTTCTAC	AAGGGGTTGT	AGGACCAGCT	TGGGTAAGAC	ТАААТТАТСА	AAGGCAACAT	9120
TTTCATTAAT	TTCGTATTCC	AGCTTATCTC	CATAGCGTTG	TTTCTGGATA	AAGAGATACT	9180
GGCGGACATG	ATTGATTTCG	TCAGAGAGAC	AAATCAAGTC	CTTGCCTTGA	TTGAGCGCCA	9240
AGCGGAAATA	GGTTGCCAAG	GACTTGGTCA	CCTGCACCAC	TCGCTGACTA	TCATGAAATT	9300
CAGCCATCCA	GATGATGGTG	TCCAAAGTGT	TATAGAGGAA	ATGTGGATTA	ATCTGGCTCG	9360
AAAGGGCTTG	AAGTTGGTAC	TGACGGGTCG	TTTCTTCCTG	GCTACGAATA	GCTACCATCA	9420
ACTGATCAAT	CTGATCCAAC	ATAGCATTAA	ATTGGCGAGT	TACTTCTCTC	AGTTCATAGG	9480
CACCAACTTC	CTTGGCACGA	AGATTTTGAG	CACCAGAAGC	AATTTCCAAC	ATGGTTTCTC	9540
TCAAATCCTT	CAAAGGAGCA	ATCCAGCGTT	TAAGACTGAA	CCACACTAAG	CAGAGACAGA	9600
CAAGAAGAGA	TGTGACACTG	GCCCCAAGCA	AGGTCCACAA	GAGCTGACTC	CGAACCTGGT	9660
CTAACTTTTC	CAATGATGAC	ACGCCAAGCA	CCGTCCAATC	AGTTCCTGCA	ATCTTCTCTT	9720
GACTGACGTA	GGATTTGTGA	CCAGGAGTAT	AACCCTGACC	TGTATCGATG	TAGGGTTTCA	9780
TAGCCTCCAT	TTTGCTAGAC	GAACTATAAA	CTGTGTGTTG	AGGATGGTAG	ACAAATTCAT	9840
GGTTTTCATT	GATAATGAAG	GCAAAGCCCT	GCTGCCCCAA	CTGGAGTTGA	TTGAGATAGG	9900
CTTCCAGAGT	TTCATAAGAA	ATATCCAAAC	GAAGCACACC	AAGATTGGCT	CCCTTTGCAT	9960
CAACAAGTTC	TTGAGTGACA	GAAATGACCC	ACTGACTATC	TGATTTACGA	GCTGGAGTCA	10020
AAACAGGCAT	AGCTCCCTGA	TGAATGGCCT	TTTGGTACCA	ATCCTCAGCC	ATCATATCAG	10080
AGGAAGTTTT	CATCTGCACA	CTGTCATCTG	TAGAAATGAC	CTGACCAGAT	TTGGTCACCA	10140
GCACAACAGT	TTTCAAGTCC	TTATCTGACT	TCAAGATGGT	CAAAAACAAA	TCTCGGATTC	10200
CCTCGACCTT	GTCTTGACTG	GGATTCTCAG	CATAGGCCAG	AACATCCGTC	TGCTGGGTCA	10260
AACCAGTCGA	GGTGGTTTCT	AGTTTTTTGA	TATAAGACTG	AATAAAGTGG	CTAGTCTGGC	10320
TGATGGTCGT	TTGGCTGTTG	CCCTCAATGG	TGGCCTCAAT	GGCTGAAGAA	CTTGATTGAT	10380
AGTAGAAAGT	TCCAACCAGA	GCTAGGAGAA	TGAGAAAGAC	CAGAAAGATG	GAAATAACCA	10440
ТТСТААСТАА	AAGAGAAGAA	CGCTTCATCG	GTCTTCTCCC	TTCTTAAACT	GACGAGGTGT	10500
CACACCTGCA	ATCTGCTTAA	AACGTTGGGT	AAAATAGTTC	ATATCTTCAA	AACCAACCTT	10560
CTCTGCGATC	TCATAAATCT	TCAGATCTGT	AGTTAAAAGC	AAGAGCTTGG	CTTGTTTAAC	10620
ACGTTCTCTC	ACCAGATAAT	CCTGAAAAGG	CAAGCCCAAC	TCTTTCTTAA	TCAAGGAACT	10680

CAGATAGGTC	GGACTAAAAC	CTAAGTCACT	GGCTAAAGAC	ТТТАААСТАА	ATTGGCTATC	10740
AGCCAGATGA	GACTGGATTT	TCTGGGCCAT	GTTTCCTTCA	AACCTATTAG	TCAATAAATC	10800
TTGTAACTGC	TCTTCTTTCT	CTTCCTTGTC	TAGTTTTTGT	TTGATTTTCC	CCAACATTTC	10860
CTCAATATCC	TGACGAGAAA	AGGGTTTGAG	CAGGTAGTCG	TCCACACCTA	GTTTGACAGC	10920
AGACAAGGCA	TAATCAAAAT	CATCGTAACC	TGTTAAAAAG	ACCAAATGAA	CCTGAGGATA	10980
GGTTTCTCGT	ACCAGACTGG	CCAACTGGAT	GCCATTTAGA	TGAGGCATGT	TGATATCGGT	11040
TAAAATGATA	TCTGGCACCT	GCTTTTGGAT	CAATTCCCAA	GCCTGCCTTC	CATTTTCAGC	11100
CTGACCGATG	ATTTCCATAT	CGTAGGCTGC	TACATTGACC	AGTTTAGTCA	AACCTTGTCT	11160
TACCAGATAT	TCATCTTCTA	CGATTAAGAT	TGTGTAGGTC	ATGCTCTGCT	CCTTTACCAC	11220
TTACTAGTAT	CAGTATAGCA	AAATTCTCCT	CTAACTGCTT	AGGAAAGACC	TCTTATACTC	11280
AATAAAAATC	AAAAAGTAAA	CTAGGAAGAT	AGCCACAGGT	TTCTCAAAGT	ACCGCTTTGA	11340
GGTTGTAAAT	AAAACTGACG	AAGTCGACTC	AAAGTATAGC	TTTGAGGTTG	TAGATAAAAC	11400
TGACGAAGTC	GATAACCCTA	CATACGGTAA	GGCGACGCTG	ACGTGGTTTG	AAGAGATTTT	11460
CGAAGAGTAT	TAATCAACAT	AATCTAGTAA	ATAAGCGTAc	CTTTTTCTTC	CATTTGGTCT	11520
TTGGGAATAA	AGCGGATAGA	GAGGCTATTG	ATACAGTAAC	GTAAGCCGCC	CTTGTCCTGT	11580
GGACCATCCG	TAAAGACATG	CCCAAGGTGA	GAATCTCCTA	CTCGGCTCCG	CACTTCCATA	11640
CGCGTCATAT	TGTAGGACTT	ATCTTCCTTG	TAGGTGACAA	CATCTGGACT	GATGGGTTGG	11700
GTAAAACTAG	GCCAGCCACA	ACCAGACTCA	AATTTGTCTT	TTGATGAAAA	GAGAGGTTCC	11760
CCAGTTGCTA	TATCCACATA	GATACCGGAT	TCAAATTTAT	CCCAGTAACG	GTTTGAGAAA	11820
GCTCGTTCTG	TTTGATTTTC	CTGGGTAACT	GCATACTCCT	CAGGTGACAG	GGTCTTTTTC	11880
AATTCCTCAT	CACTTGGTTT	TGGATATTTG	CTGGCATCAA	TGACAGGATA	GGCCGCCTGA	11940
TTAACATTGA	TATGGCAGTA	GCCATTTGGA	TTTTTCTTGA	GATAGTCTTG	ATGGTAATCC	12000
TCAGCCACCA	CAAAATTCTT	CAAGTTTTCC	TTTTCAACTG	CTAGAGGTTG	ATCGTATTTC	12060
TTAGCCACCT	CATCAAAGAC	TTGGTTAATC	ACTTCCAAAT	CCTTGTCATC	TGTGTAATAA	12120
ACACCAGTAC	GGTACTGGGT	CCCCACATCA	TTTCCTTGTT	TATTTTTGCT	GGTTGGATTG	12180
ATAATGCGGA	AATAGTGAAG	CAGGATTTCC	TTGAGAGAAA	TTTGCTTGGC	ATCATAGGTG	12240
ACATGGACGG	TTTCTGCATG	ACCTGTTTGG	TTAATCAATT	CGTACTTGGT	TGTTTCTCCT	12300
CTACCATTTG	CATAGCCTGA	AACGGCATCC	GTCACCCCGG	GAACACGTGA	GAAATATTCC	12360
TCCACTCCCC	AGAAACAACC	TCCAGCTAGA	TAAATTTCGT	GCAAGTCTGC	GTCTTTACTA	12420

ATTTCTGTTT	TTTTCACTGC	TTTTCCTCCT	182 TGGCTAACTG	CCGCCTTTTC	AATTTGCGAG	12480
GCATCTGTCT	GCCCTGCATT	TCGTATCAAT	AGAACATAGA	AACCGGTTAT	GGCTAGAAAA	12540
AATACTCCTA	GCAACAAGAA	GATTTTTAAC	TTATCATTCA	TAAGACGCCT	CCTAGGCTAA	12600
TTCCTTCAAA	GTTTGCAAAA	TTGCATCTTT	TTCCATGAAT	CCTGGATGTG	TTTTGACCAG	12660
CTTGCCTTCT	TTGTCTATAA	AGGCTTGGGT	TGGGTAAGAA	CGGACACCAT	AAGTTTCCAA	12720
AAGTTTGCCT	GATGGGTCAA	CTAGGACTGG	GAGATTTTTA	TAATCCAATC	CCTTATACCA	12780
ATTCTTAAAG	TCCGCTTCAG	ATTGCTCTCC	CTTATGTCCT	GGTGACACTA	CTGTCAAGAC	12840
CACATAGTCA	TCACCAGCTT	CTTTAGCAAT	CTCATCCGTA	TCTGGAAGAC	TAGCCAGACA	12900
GATGGAACAC	CAAGAAGCCC	AGAATTTGAG	ATAGACTTTC	TTGCCCTTGT	AATCAGATAA	12960
ACGGTAGGTC	TTGCCATCTA	CTCCCATCAA	TTCAAAATCA	GCCACCTCTT	TCCCTTTAGC	13020
TGCGCTTGTT	TTACTAGCTG	TCTGCTCCGT	CTTCATTTCA	TCTTTCGTTT	GGTGTTCACT	13080
AGTCACGGAC	TTGCCTGAAC	AAGCCGTCAA	ACAAAGGAGC	GAACCTGCTC	CAAGAACACA	13140
TGTTTGCCAT	TTTTTCATAT	TGATATTCCT	TTCCATTTTA	TTCAAATAAT	TGACTTAAAA	13200
TTGAAGCATT	TCCAAACAGA	ACCAAGAAGC	CCATCACAAT	AATGAGAAAA	CCACCCACTT	13260
TTTTGAGGAT	TCCGAGATAG	GGATGAAGTT	TTCGGAAATG	TTTCAAAACA	TAACTAGAGG	13320
TCAGAGCTAG	AAGCAAGAAT	GGTAGCGCCA	AGCCCAGCGT	ATACACCAAC	ATGAGACCAG	13380
CTCCCTGCCA	AGCTCCTGAA	CCACCTGAAG	CCGCCAAGGC	CAAAACAGAC	CCCAGAACCG	13440
GCCCCACGCA	AGGCGTCCAA	GCAAAACTAA	AGGTCAAGCC	СААТАААААТ	GCCTGACTAT	13500
AGCCCTTACC	ATTTTGCCCC	TGTCCTTGCA	GTTGTAGCCT	CTTTTCCTTA	TAAAGCCCCT	13560
TAAAGTGTAG	AATCTCCATT	TGGTGCAAAC	CAAGAAGGAT	AATAATTGCC	CCAGTAAGAT	13620
ATTGGAACCA	AGAAGCATAA	AGCAAATCGC	CTAAAAAACC	AGCTCCATAG	CCCAACAAAA	13680
ТАААТАТААА	GGAAATTCCT	GCTATAAAGG	CCAGAGTTCG	ТААТАААСТА	GTAACTGAGA	13740
TTGAAAATTT	GCCGCTAGAA	GCCTGAGCAC	CATCCTTATC	ATCTAGTAAC	ACTCCTGTAT	13800
AGACCGGTAA	CAAAGGTAAG	ATACAAGGAG	AAAAGAAGGA	TAGAATCCCT	GCCAAAAAGA	13860
CACTTAGAAA	AAAGAAAATA	TGACCCATAA	AGTTCCTCCT	ATCATTTTAT	TGATAGATTT	13920
ATTATA						13926

(2) INFORMATION FOR SEQ ID NO: 6:

- (i) SEQUENCE CHARACTERISTICS:

 (A) LENGTH: 20199 base pairs

 (B) TYPE: nucleic acid

 (C) STRANDEDNESS: double

 (D) TOPOLOGY: linear

183

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:

CCCAGCAGAA AAATGGCATT TGGAGATAAT GGAAATCGTA AAAAAACTAT GTTTGAGAAA 60 ATAACCTTGT TTATCGTGAT TATCATGCTA GTAGCAAGTT TATTGGGAAT TTTTGCAACT 120 GCAATTGGTG CCCTCAGTAA TCTATAAAAT AGATTCAAGA AAATTTAGTG ACTGGGATTT 180 CCCAGCCCTT TTTTAAAGTG AGAAGAAATA ATGAGTATGT TTTTAGATAC AGCTAAGATT 240 AAGGTCAAGG CTGGTAATGG TGGCGATGGT ATGGTTGCCT TTCGTCGTGA AAAATATGTC 300 CCTAATGGAG GCCCTTGGGG TGGTGATGGT GGTCGTGGAG GCAATGTGGT CTTCGTTGTA 360 GACGAAGGAC TACGTACCTT GATGGATTTC CGCTACAATC GTCATTTCAA GGCTGATTCT 420 GGTGAAAAAG GGATGACCAA AGGGATGCAT GGTCGTGGTG CTGAGGACCT TAGAGTTCGA 480 GTACCACAAG GTACGACTGT TCGTGATGCG GAGACTGGCA AGGTTTTAAC AGATTTGATT 540 GAACATGGGC AAGAATTTAT CGTTGCCCAC GGTGGTCGTG GTGGACGTGG AAATATTCGT 600 TTCGCGACAC CAAAAAATCC TGCACCGGAA ATCTCTGAAA ATGGAGAACC AGGTCAGGAA 660 CGTGAGTTAC AATTGGAACT AAAAATCTTG GCAGATGTCG GTTTAGTAGG ATTCCCATCT 720 GTAGGGAAGT CAACACTTTT AAGTGTTATT ACCTCAGCTA AGCCTAAAAT TGGTGCCTAC 780 CACTTTACCA CTATTGTACC AAATTTAGGT ATGGTTCGCA CCCAATCAGG TGAATCCTTT 840 GCAGTAGCCG ACTTGCCAGG TTTGATTGAA GGGGCTAGTC AAGGTGTTGG TTTGGGAACT 900

CAGTTCCTCC GTCACATCGA GCGTACACGT GTTATCCTTC ACATCATTGA TATGTCAGCT

AGCGAGGGCC GTGATCCATA TGAGGACTAC CTAGCTATCA ATAAAGAGCT GGAGTCTTAC

AATCTTCGCC TCATGGAGCG TCCACAGATT ATTGTAGCTA ATAAGATGGA CATGCCTGAG

AGTCAGGAAA ATCTTGAAGA CTTTAAGAAA AAATTGGCTG AAAATTATGA TGAATTTGAA

GAGTTACCAG CTATCTTCCC AATTTCTGGA TTGACCAAGC AAGGTCTGGC AACACTTTTA

GATGCTACAG CTGAATTGTT AGACAAGACA CCAGAATTTT TGCTCTACGA CGAGTCCGAT

ATGGAAGAAG AAGCTTACTA TGGATTTGAC GAAGAAGAAA AAGCCTTTGA AATTAGTCGT

GATGACGATG CGACATGGGT ACTTTCTGGT GAAAAACTCA TGAAACTCTT TAATATGACC

AACTTTGATC GTGATGAATC TGTCATGAAA TTTGCCCGTC AGCTTCGTGG TATGGGGGTT

GATGAAGCCC TTCGTGCGCG TGGAGCTAAA GATGGGGATT TGGTCCGCAT TGGTAAATTT

GAGTTTGAAT TTGTAGACTA GGAGACTGGT ATGGGAGATA AACCGATATC TTTCCGAGAT

GCGGATGGTA ATTTTGTTTC CGCCGCAGAC GTTTGGAATG AAAAGAAATT GGAAGAACTA

960

1020

1080

1140

1200

1260

1320

1380

1440

1500

1560

			184			
TTTAATCGTC	TCAATCCAAA	TCGTGCCTTG	AGATTGGCAC	GAACTAAAAA	GGAAAATCCA	1680
TCTCAGTAAA	GAAGCTAAAA	AATCCCGTGC	CTCATCAGAC	ACGGGATTTT	GTGGTACGAC	1740
AGGCATGTAT	AGCAAACTGA	ATCTGGAATA	GCACAGCATA	TCTTCTAAAA	TATAGTAAAA	1800
TGAAATGAGA	ACAGGACAAA	TCGATCAGGA	CAGTAAAATC	GATTTCTAAC	AATGTTTTAT	1860
AAGCAGAGAT	GTACTATTCT	AGTTTCAATC	AACTATATTG	TTATAAATTG	ATTTGAATTT	1920
СААААТТААА	TTGTTTGATT	CTTATTTCAA	TTTGTTATAG	TATATCTGAT	GTCAAAGTTC	1980
TCGGCGAGTC	AAATAGCGAT	TCCCAAGCCT	GACTATCGTG	AGGTAGCGGA	TTAAAATGGT	2040
CTGGGGATAG	ACCGTTTTAA	GTCTGACGCT	GGAAATAAGA	ATTGTCAGAA	GAAGGGATAG	2100
CGAAATCGTG	GCTCTACGAA	CAGGAACGTG	ATAATAAGGC	GTATATAGCG	GATAAGAGGG	2160
CATCAAACTC	TAAAGTCCAA	AAAGGTAGTC	GTAACCTATA	TGCGTAAATC	ACGAGAGTAA	2220
TTGAATTCGT	ACTAAGATTT	TCTATTTTCA	CTGTAACCTT	TTAACGCCCT	TATATCTTGT	2280
ATACACGAGG	AAAGATGTAC	GACTTATCCC	GTGAGGTCTA	TCACTATAAA	GAGAAAACGA	2340
CAGATAGAAG	TGATCCTGAG	TCACGGTTAT	CTGTCTGATA	GGACGGTATG	TATAAAACGC	2400
TTCTGTGAAC	TGAGAGAAGG	GGGAGAAGTT	CTTGCTAAAA	TTTAGTTGAA	CAGCCGTATT	2460
CCGATACTTA	GATAAGAGAT	CTAGTCTTAG	CTCCTACTCA	GTTTTAGGGG	ATAAAAAAGG	2520
GGCAATAGCG	ATTCGAGAAA	GATTATACTC	TTCGAAAATC	TCTTCAAATC	ACGTCAATAT	2580
CGCCTTGTCG	TATGTGTAGG	ATACTGACTA	CGTCAGTTCC	ATCTACAACC	TCAAAACAGT	2640
GTTTTGAGCA	ACcTGCGGCT	AGTTTCCTAG	TTTGATCTTT	GATTTTCATT	GAGTATTAGT	2700
AATTCAGTTA	CTAACTCGTC	AACTCTGATT	TATCCAATAA	AATTGAAAAG	GATGGAAAAA	2760
AGGATAAATT	TATGATATAC	TTTATTTTGA	AGACCTTATT	AGAAATCTTG	AAAGAGTATT	2820
GAAAACTTAG	AATGAGAAAA	ATTGTTATCA	ATGGTGGATT	ACCACTGCAA	GGTGAAATCA	2880
CTATTAGTGG	TGCTAAAAAT	AGTGTCGTTG	CCTTAATTCC	AGCTATTATC	TTGGCTGATG	2940
ATGTGGTGAC	TTTGGATTGC	GTTCCAGATA	TTTCGGATGT	AGCCAGTCTT	GTCGAAATCA	3000
TGGAATTGAT	GGGAGCTACT	GTTAAGCGTT	ATGACGATGT	ATTGGAGATT	GACCCAAGAG	3060
GTGTTCAAAA	TATTCCAATG	CCTTATGGTA	AAATTAACAG	TCTTCGTGCA	TCTTACTATT	3120
TTTATGGGAG	CCTCTTAGGC	CGTTTTGGTG	AAGCGACAGT	TGGTCTACCG	GGAGGATGTG	3180
ATCTTGGTCC	TCGTCCGATT	GACTTACACC	TTAAGGCGTT	TGAAGCTATG	GGTGCCACTG	3240
CTAGCTACGA	GGGAGATAAC	ATGAAGTTAT	CTGCTAAAGA	TACAGGACTT	CATGGTGCAA	3300
GTATTTACAT	GGATACGGTT	AGTGTGGGAG	CAACGATTAA	TACGATGATT	GCTGCGGTTA	3360
AAGCAAATGG	TCGTACTATT	ATTGAAAATG	CAGCCCGTGA	ACCTGAGATT	ATTGATGTAG	3420

CTACTCTCT	r gaataatatg	GGTGCCCATA	TCCGTGGGGC	AGGAACTAAT	ATCATCATTA	3480
TTGATGGTG	T TGAAAGATTA	CATGGGACAC	GTCATCAGGT	GATTCCAGAC	CGCATTGAAG	3540
CTGGAACAT	A TATATCTTTA	GCTGCTGCAG	TTGGTAAAGG	AATTCGTATA	AATAATGTTC	3600
TTTACGAAC	A CCTGGAAGGG	TTTATTGCTA	AGTTGGAAGA	AATGGGAGTG	AGAATGACTG	3660
TATCTGAAG	A CAGCATTTTT	GTCGAGGAAC	AGTCTAATTT	GAAAGCAATC	AATATTAAGA	3720
CAGCTCCTT	A CCCAGGCTTT	GCAACTGATT	TGCAACAACC	GCTTACCCCT	CTTTTACTAA	3780
GAGCGAATG	G TCGTGGTACA	ATTGTCGATA	CGATTTACGA	AAAACGTGTA	AATCATGTTT	3840
TTGAACTAG	AAAGATGGAT	GCGGATATTT	CGACAACAAA	TGGTCATATT	TTGTACACGG	3900
GTGGACGTG	A TTTACGTGGG	GCCAGTGTTA	AAGCGACCGA	CTTAAGAGCT	GGGGCTGCAC	3960
TAGTCATTG	TGGGCTTATG	GCTGAAGGTA	AAACTGAAAT	TACCAATATC	GAGTTTATCT	4020
TACGTGGTT	A TTCTGATATT	ATCGAAAAAT	TACGTAATTT	AGGAGCGGAT	ATTAGACTTG	4080
TTGAGGATT	AACCGTAGAG	GTGTTTATGA	ATATTTGGAC	CAAATTAGCA	ATGTTTTCTT	4140
TTTTTGAAA	GGATCGCTTG	TATTTGCGTC	CTTTCTTTT	TAGTGATAGT	CAGGACTTCC	4200
GCGAGATAG	TTCAAATCCA	GAAAATCTTC	AATTTATTTT	CCCAACGCAG	GCAAGTCTGG	4260
AAGAAAGTCA	ATATGCACTG	GCCAATTACT	TTATGAAGTC	CCCTTTGGGA	GTGTGGGCAA	4320
TTTGTGACCA	GAAAAATCAA	CAAATGATTG	GTTCTATTAA	ATTTGAGAAG	TTAGATGAAA	4380
TCAAAAAAGA	AGCTGAGCTT	GGCTATTTTT	TGAGAAAAGA	TGCTTGGTCG	CAAGGATTTA	4440
TGACAGAGGT	TGTTAGAAAA	ATTTGTCAGC	TTTCTTTTGA	GGAATTTGGC	ТТААААСААТ	4500
TATTTATCAT	TACCCACCTT	GAAAATAAAG	CTAGCCAAAG	AGTTGCTCTT	AAGTCTGGAT	4560
TTAGTTTGTT	CCGTCAGTTT	AAGGGAAGTG	ATCGTTACAC	AAGAAAAATG	CGGGATTATC	4620
TTGAATTTCC	GTATGTAAAA	GGAGAGTTCA	ATGAGTAAGC	ATCAGGAAAT	TCTAAGCTAT	4680
TTGGAGGAAT	TACCAGTAGG	TAAAAGGGTC	AGTGTTCGTA	GCATTTCGAA	TCATCTAGGA	4740
GTTAGTGATC	GAACAGCCTA	TCGGGCTATT	AAAGAAGCTG	AAAACCGTGG	AATTGTGGAG	4800
ACCCGTCCTA	GAAGTGGAAC	AATTCGTGTT	AAATCCCAGA	AAGTTGCTAT	AGAGAGATTA	4860
ACGTTTGCTC	AAATTGCAGA	AGTGACTTCT	TCTGAGGTTC	TGGCTGGGCA	AGAAGGTTTA	4920
GAGAGAGAAT	TTAGTAAGTT	TTCAATTGGT	GCCATGACTG	ААСААААТАТ	CTTGTCTTAC	4980
CTTCATGATG	GGGGGCTCTT	GATTGTCGGA	GACCGAACCC	GTATTCAGTT	GCTAGCCTTG	5040
GAAAATGAAA	ATGCAGTTCT	GGTTACAGGG	GGATTTCAGG	TTCATGATGA	TGTGCTTAAA	5100
CTGGCCAATC	AAAAAGGGAT	TCCTGTTCTA	AGAAGTAAGC	ATGATACCTT	TACCGTCGCG	5160

ACCATGATCA	ATAAAGCCTT	GTCAAATGTC	186 CAAATCAAGA	CTGATATTCT	GACAGTTGAG	5220
AAACTTTATC	GCCCTAGTCA	TGAGTATGGT	TTTCTGAGAG	AGACAGATAC	AGTTAAAGAT	5280
TATTTGGACT	TGGTTCGTAA	GAATCGTAGC	AGCCGTTTCC	CTGTTATCAA	TCAACATCAG	5340
GTCGTTGTTG	GTGTTGTAAC	CATGAGAGAC	GCTGGTGATA	AATCACCAAG	CACGACAATT	5400
GATAAGGTTA	TGTCTCGTAG	TCTATTTTTG	GTTGGATTAT	CGACAAATAT	TGCCAATGTG	5460
AGTCAACGGA	TGATCGCAGA	AGACTTTGAA	ATGGTACCAG	TTGTTCGAAG	СААТСАААСТ	5520
TTGCTTGGCG	TTGTGACGCG	ACGAGATGTC	ATGGAGAAGA	TGAGCCGTTC	CCAAGTTTCG	5580
GCTCTACCAA	CTTTTTCTGA	GCAGATTGGA	CAAAAGCTCT	CTTATCACCA	TGATGAAGTA	5640
GTCATTACAG	TGGAACCCTT	TATGCTAGAA	AAAAATGGAG	TTTTGGCTAA	TGGTGTATTG	5700
GCAGAAATTC	TGACCCACAT	GACCCGATTT	AGTTGTTAAT	AGTGGTCGCA	ATCTCATTAT	5760
CGAGCAGATG	CTGATCTACT	TTTTGCAGGC	TGTTCAGATA	GATGATATAT	TGCGCATTCA	5820
GGCACGGATT	ATTCATCATA	CGAGACGGTC	AGCTATAATT	GATTACGATA	TTTATCATGG	5880
TCACCAGATT	GTTTCAAAAG	CAAATGTGAC	TGTTAAAATT	AATTAGAAAC	TAGGAGAAAA	5940
GATGATAACA	TTAAAATCAG	CTCGTGAAAT	CGAAGCTATG	GACAAGGCTG	GTGATTTTCT	6000
AGCAAGTATT	CATATAGGCT	TACGTGATTT	GATTAAGCCA	GGCGTAGATA	TGTGGGAAGT	6060
TGAAGAATAT	GTCCGCCGTC	GTTGTAAAGA	AGAAAATTTC	CTTCCACTTC	AGATTGGGGT	6120
TGACGGTGCC	ATGATGGACT	ATCCTTATGC	TACCTGTTGC	TCTCTTAACG	ATGAAGTGGC	6180
TCACGCTTTC	CCTCGTCATT	ATATCTTGAA	AGATGGTGAT	TTGCTCAAAG	TTGATATGGT	6240
TTTGGGAGGT	CCCATTGCTA	AATCTGACCT	AAATGTCTCA	AAATTAAACT	TCAACAATGT	6300
TGAACAAATG	AAAAAATACA	CTCAGAGCTA	TTCTGGTGGT	TTAGCAGACT	CATGTTGGGC	6360
TTATGCTGTT	GGTACACCGT	CCGAAGAAGT	CAAAAACTTG	ATGGATGTAA	CCAAAGAAGC	6420
TATGTACAAG	GGTATTGAGC	AAGCTGTTGT	TGGAAATCGT	ATCGGTGATA	TCGGTGCGGC	6480
TATTCAAGAA	TACGCTGAAA	GTCGTGGTTA	CGGTGTAGTG	CGTGATTTGG	TTGGTCATGG	6540
TGTTGGCCCA	ACTATGCACG	AAGAACCAAT	GGTTCCTAAC	TATGGTATTG	CAGGTCGTGG	6600
ACTCCGTCTT	CGTGAAGGAA	TGGTCTTAAC	CATTGAACCA	ATGATCAATA	CAGGCGATTG	6660
GGAAATTGAT	ACAGATATGA	AAACTGGTTG	GGCGCATAAG	ACCATTGACG	GTGGATTGTC	6720
ATGTCAGTAT	GAACACCAAT	TTGTCATTAC	GAAAGATGGA	CCTGTTATCT	TGACTAGCCA	6780
AGGTGAAGAA	GGAACTTATT	AATAAAAAGT	GAAAAGACTA	CTGGAAGTTT	ATTTTGATAA	6840
AAAATCCAGT	AGATCTTTTC	АТААТААААС	GCATTGTATC	AAGTGTTAGG	GGCTGATATC	6900
ATGCGTTTTT	CTGCTTTTAA	GATTTTTTCC	AACTCTGTTT	GTAAGCGCAT	CATAACAAAG	6960

GGTCTAGGAT	TCAGGGCTCT	CCTCCTATAT	ACTATTAGTA	AAGTAAAACT	AAGGGAGGAT	7020
ATTTTAGTGT	CGCAGTCTAT	TGTTCCTGTA	GAGATTCCAC	AATATTGTCG	TTTTGATTCT	7080
AAAAAGAGAA	ATGGAATTCT	GTTTAATGTT	CGTATTGCCA	ATCTTAAATT	TACTTTTTTA	7140
TATTATACTT	CCTGCGAAAC	AAAATATGGT	ATAGTAGTTC	TATGAATGAT	GAAGCAAGTA	7200
AACAACTAAC	TGATGCACGA	TTTAAGCGTC	TTGTTGGTGT	TCAGCGTACC	ACTTTTGAAG	7260
AGATGTTAGC	TGTATTAAAA	ACAGCTTATC	AACTTAAACA	CGCAAAAGGT	GGACGAAAAC	7320
CTAAATTAAG	CCTAGAAGAC	CTTCTTATGC	CCACTCTTCA	ATAGTGCGAG	AATATCGAAC	7380
TTATGAAGAA	ATTGCGGCTG	ATTTTGGTAT	TCACGAAAGC	AACTTTATCC	GTCGGAGCCA	7440
ATGGGTTGAA	ATAACTCTTG	TTCAAAGTGG	TTTTACGGTT	TCAAGAACTC	CTCTCAGTTC	7500
TGAGGACACG	GTAATGATTG	ATGCGACGGA	AGTAAAAATC	AATCGCCCTA	ААААААСААТ	7560
TAGCGAATGA	TTCTGGTAAA	AAGAAATTTC	ACGCTATGAA	GGCTCAAGCG	ATTGTCACAA	7620
GTCAAGGGAG	AATTGTTTCT	TTGGATATCG	CTGTGAACTA	TAGTCATGAT	ATGAAGTTGT	7680
TCAAAATGAG	TCGTAGAAAT	ATCGAACAAG	CTGGTAAAAT	CTTGGCTGAC	AGTGGTTATC	7740
AAGGGCTCAT	GAAGATATAT	CCTCAAGCAC	AAACTCCACG	TAAATCCAGC	AAACTCAAGC	7800
CGCTAACAGC	TGAAGATAAA	GCCTATAACC	ATGCGCTATC	TAAGGAAAGA	AGCAAGGTTG	7860
AGAACATCTT	TGCCAAAGTA	AAAACGTTTA	AAATATTTTC	AACAACCTAT	CGAAATCATC	7920
GTAAACGCTT	CGGATTACGA	ATGAATTTGA	GTGCTGGTAT	TATCAATCAT	GAACTAGGAT	7980
TCTAGTTTTG	CAGGAAGTCT	ATTGAGGTAT	TGAGCTAGTT	TATGAAAAA	TTGGGTGAAA	8040
AGTCGAGTGT	TTTAGAAACC	CACAGTGTAG	TATTCTAGTT	TCAATCCACT	ATATTTTGCT	8100
ACTCCCCGTA	AAGTTTCTAT	TTTCCCTGAT	TTCTGATATA	ATAGAAATAT	TGACTTCAAG	8160
AGTAAGGAAG	AGAAGATGAA	CGCATTATTA	AATGGAATGA	ATGACCGTCA	GGCTGAGGCG	8220
GTGCAAACGA	CAGAAGGTCC	CTTGCTAATC	ATGGCAGGGG	CTGGTTCTGG	AAAGACTCGT	8280
GTTTTGACCC	ACCGTATCGC	TTATTTGATT	GATGAAAAGC	TGGTCAATCC	TTGGAATATC	8340
TTGGCCATTA	CCTTTACCAA	CAAGGCTGCG	CGTGAGATGA	AAGAGCGTGC	TTATAGCCTC	8400
AATCCAGCGA	CTCAGGACTG	TCTGATTGCG	ACCTTCCACT	CCATGTGTGT	GCGTATTTTG	8460
CGTCGCGATG	CGGACCATAT	TGGCTACAAT	CGTAATTTTA	CAATTGTGGA	TCCTGGTGAA	8520
CAGCGAACGC	TCATGAAACG	TATTCTCAAA	CAGTTGAACT	TGGACCCTAA	AAAATGGAAT	8580
GAACGAACTA	TTTTGGGGAC	CATTTCCAAT	GCTAAGAATG	ATTTGATTGA	TGATGTTGCT	8640
TATGCTGCCC	AAGCTGGCGA	TATGTATACG	CAAATTGTGG	CCCAGTGTTA	TACAGCCTAT	8700

CAAAAAGAAC TTCGTCAGTC TGAATCCGTT GACTTTGATG ATTTGATTAT GCTGACCTTG CGTCTCTTTG ATCAAAATCC TGATGTTTTG ACCTACTACC AGCAAAAATT CCAATACATC CACGTTGATG AGTACCAAGA TACCAACCAC GCTCAGTACC AATTGGTCAA ACTCTTGGCT TCCCGTTTTA AAAATATCTG TGTGGTTGGG GATGCGGACC AGTCTATCTA CGGTTGGCGT GGTGCTGATA TGCAGAATAT CTTGGACTTT GAAAAGGATT ACCCAAAGC CAAGGTTGTT TTGTTGGAGG AAAATTACCG CTCAACCAAA ACCATTCTC AAGCGGCCAA CGAGGTTATT AAAAATAATA AAAATCCG TCCTAAAAAT CTCTGGACTC AAAACGCTGA TGGGGAGCAA ATCGTTTACT ATCGTGCCGA TGATGAGCTG GATGAGGCTG TATTTGTAGC CAGAACCATC GATGAACTTA GTCGCAGTCA AAACTTCCTT CATAAGGATT TTGCAGTTC TATACCATG GATGAACTTA GTCGCAGTCA AAACTTCCTT CATAAGGATT TTGCAGTTC TATACCATG GTTGGCGGAA CCAAATTCTA CAGCCGTAAG GAAATTCCC TAACATTCC TTATACCATG GTTGGCGGAA CCAAATTCTA CAGCCGTAAG GAAATTCCCT TATACCATG TATACCATG GTTGGCGGAA CCAAATTCTA CAGCCGTAAG GAAATTCCC TAACATTCC TTATACCATG GTTGGCGGAA CCAAATTCTA CAGCCGTAAG GAAATTCCC AAATTTTGC TATACCATG GGAATTGGCT TAGGTACAGT TGAGAAAAC CGTGATTTTC CAAATTTTGC TATACCATG GGAATTGGCT TAGGTACAGT TGAGAAAAA CCGTGATTTTC CAAATTTTGC TAACATCTC ATCTGGGATT TTGCCATAT TATATGTTT TCTGGGAGC AGCCCAATCT GGAACTTGG TTGGCTCAA TATATGTTT TCTGGGAGC AGCTCAACGT ACCGACTCTAG AAAGCAAGC ACGGGTTGAA AATATCGAAG AGCTCAATCT GCGACTCTAG AAAGCAAGC ACGGGTTGAA AATATCAACGA GCTTAACCATC TTCTTAAATG ACACCACGGA TGTGACAGAA GAGGTAAGAC CTTAAGCATT TCCTTAAATG ACACCACGGA TGTGACAGAA GAGGAAACTG GTCTGGACAA ACTGAGTCGT TTCTTAAAATG ACACCACGGA TGTGACAGAA GAGGAAACTG GTCTGGACAA ACTGAGTCGT TTCTTAAATG ACACCACGGA TGTGACAGAA GAGGAAACTG GTCTGGACAA ACTGAGTCGT TTCTTAAATG ACACCACGGA TGTGACAGAA GAGGAAACTG GTCTGGACAA ACTGAGTCGT TTCTTAAATG ACACCACGGA TGTGACAGAA GAGGAAACTG GTCTGGACAA ACTGAGTCGT TTCTTAAAGCAT TACACCTCCA TGCTGCAAAAAA ACAGGTTAGA AAGAATCCA CTTTTTGTTT AAAGGAAATCA GACCCTGCA TGCTGCAAAAACA GCTCCGAAATCAA TCCAGTTAGA TAAAAAACA TCAAGACC TCTTTTTTTT AAACGAAATCA GTCAAACCA GCTTAAGCA CAAAATCAA TCCAGTCAGA GACATCAAGA GGAAAACCA GTCAAAACCA GCTTAACCA CAAAATCAA TCCAGTCAAG CGGTCTTCCA 102 ATTTGGCTCAAT TAAACACC CGCTAAAACCA GAAATCAA TCCAGTCAAG CGGTCTTCCA 102 ATTTGGCAAAAAA TCAAT					100			
CACGTTGATG AGTACCAAGA TACCAACCAC GCTCAGTACC AATTGGTCAA ACTCTTGGCT TCCCGTTTTA AAAATATCTG TGTGGTTGGG GATGCGGACC AGTCTATCTA CGGTTGGCGT GGTGCTGATA TGCAGAATAT CTTGGACTTT GAAAAGGATT ACCCCAAAGC CAAGGTTATT TTGTTGGAGG AAAATTACCG CTCAACCAAA ACCATTCTC AAGCGGCCAA CAAGGTTATT AAAAATAATA AAAATCCG TCCTAAAAAT CTTGGACTC AAAACGCTGA TGGGGAGCAA ATCGTTTACT ATCGTGCCGA TGATGAGCTG GATGAGGCTG TATTTGTAGC CAGAACCATC GATGAACCTTA GTCGCAGTCA AAACTTCCTT CATAAGGATT TTGCAGTTC CTATCGACT AATGCCCAGT CCCGTACAAT TGAGGAAGCC CTGCTCAAGT CTAACCATTCC TTATCCAAC GTTGGCGGAA CAAATTCTA CAGCCGTAAG GAAATTCGC ATATTATTCC TTATCCAAC GTTGGCGGAA CAAATTCTA CAGCCGTAAG GAAATTCGC ATATTATTCC TTATCCAAC GTTGGCGGAA CAAATTCTA CAGCCGTAAG GAAATTCGC ATATTATTCC TTATCCAAC GGAATTGGTC TAGGTACAGT TGAGAAAATC CGTGATTTTG CAAAATTTGC TTATCCAAC GGAATTGGTC TAGGTACAGT TGAGAAAATC CGTGATTTTG CAAATTTGCA AAATTATGCT ATCTGGGATT TTGCCAATAT GATGCTTGAT TTGCGGGAG AGCCCAATCT ACCGGGATT TTGCCAATAT GATGCTTGAT TTGCGGGAG AGCTAAGCCA CTTAAGCATT ACCAGGATTG TTGCCAATAT GATGCTTGAT TTGCGGGAGC AGCTAACCAC CTTAAGCATT ACCAGAGTTGG TTGACCATAT GATGCTTGAT TTGCGGGAGC AGCTAACCAC CTTAAGCATT ACCAGAGTTGG TTGACCAGC ACGGTTGAA AAATCGAAG AGTTTCTTT TAACTCCCAA AACCTTTGAT AAAGCAAGGC ACGGTTGAA AAATCGAAG AGTTTCTTT TAACTCCCAA AACCTTTGAT AAAGCAAGGC ACGGTTGAA AAATCGAAG AGTTTCTTT TTTTTTTTTT	CAAAAAGA	AAC	TTCGTCAGTC	TGAATCCGTT	188 GACTTTGATG	ATTTGATTAT	GCTGACCTTG	8760
GGTGCTGATA AAAATATCTG TGTGGTTGGG GATGCGGACC AGTCTATCTA CGGTTGGGGT GGTGCTGATA TGCAGAATAT CTTGGACTTT GAAAAGGATT ACCCCAAAGC CAAGGTTGTT GGGTGCTGATA TGCAGAATAT CTTGGACTTT GAAAAGGATT ACCCCAAAGC CAAGGTTGATT GAAAATAATA AAAATCACG CTCAAAAAAT CTCTGGACTC AAAACGCTGA TGGGGAGCAA GACGTTATT ACCGTTATA AAAAATAATA AAAATCACG TCCTAAAAAAT CTCTGGACTC AAAACGCTGA TGGGGAGCAA GACGATCATT ACCGTTATA ACCGCAGACCATC GAAAACATCA GTCGCAGACAAT GAGGAGCAC CAGAACCATC GAAAACATTA GTCGCAGACAAT TGAGGAAGCAC CTGCTCAAGT TTGCAGTTCT CTATCGGACT GATGAGCCAG CCCGTACAAT TGAGGAAGCAC CTGCTCAAGT TTGCAGTTCT CTATCGAGCT GAAATCCCCAGT CCCGTACAAT TGAGGAAGCC CTGCTCAAGT CTAACATTCC TTATCCAAC GCCTTATTGCCAA ATTTGAGCAGA CCAAATTCTA CAGCCGTAAG GAAATTCGC ATATTATCC TTATCCAAC GCCTAAACGT GAAATTGGCT TAGGAACAATC TTATCACACG GCCTAAACGT GAAATTGGCT TAGGAACAAT TGAGGAAAAT CCGTGATATTG CAAATTTGC AAAATATGCT GAAATTGGC AAAATTTGCC AAAATTTGC AAAATATGCT GAGAAATTGGC CTTCTGCTAA TATTATGTTG TCTGGTATCA AGGGTAAGCC ACCCCAATCT GAGCAATCT TTGCCGAATAT GAGCGTTGAT TTGCCGGAGC AGCTGAACCA CTTAAGCATT GACAGAGTTGG TTGCCGAATAT GATGCTTGAT TTGCCGGAGC AGCTGAACCA CTTAAGCATT GACAGAGTTGG TTGCCAATAT GATGCTTGAT TTGCCGGAGC AGCTGAACCA CTTAAGCATT GACAGAGTTGG TTGCCAATAAA ACAGGTTATG TCGATATTCT TAACTCCCAA GCGACCAATCTG AAACTTTGAA AAACTTTGAA AAACTTTGAA AAACTTTGAA AAACTTTGAA AAACTTTGAAAAA ACAGGTTATG TCGATATTCT TAACTCCCAA GCGACCTCTAGAAAAA ACAGGTTATG TCGATATTCT TGTTACGAAG GACATCAGAA AACTTTGAAT ACACCACGGA TGTGACAGAA GAGGAAACTG GTCTGGACAA ACTGAGTCGT TTCTTTAAATG ACACCACGGA TGCTGCCAAA GAGGAAACTG GTCTGAAAA ACTGAGTCGT TTCTTTAAGAA GACATCAGAA ACTGAGTCGT TTCCATTTATT TCCACTTAGT CGTGCCAAA GCTCGAACT TTCCAGTTGT CTTTTTGATC GAAGAAAATCA GTCAGAACCA CTTTATGCCAA ACCGATGAACA ACTGAGTCGT TTCCACTTAGT CACCTTGAA AAAATTCAAA TCCAGTCAGA AAAAATTCAAA TCCAGTCAAA ACCGAAATCAA ACCGACTAGAA AAAATTCAAA TCCAGTCAAA ACCGACTACAAA ACCGAAATCAA TCCAGTCAAA CCGGTCTCCA AAATACAAA TCCAGTCAAA CCGGTCTACA AATACAAAC TCTATCCAAAACA ACCGAAAACCA GCATCTAGAC AAATACAAA TCCAGTCAAA CCGGTCTTCCA AAATACAAA TCCAGTCAAA CCGGTCTTCCA AAATACAAAA TCCAGTCAAA ACCGATCAAAACAA ACGGAAAATTG GTCCATTGGT TCCATTGGT TCCAC	CGTCTCTT	TG	ATCAAAATCC	TGATGTTTTG	ACCTACTACC	AGCAAAAATT	CCAATACATC	8820
GTGCTGATA TGCAGAATAT CTTGGACTTT GAAAAGGATT ACCCCAAAGC CAAGGTTGTT TTGTTGGAGG AAAATTACCG CTCAAACAAA ACCATTCTC AAGCGGCCAA CGAGGTTATT AAAAATAATA AAAATCGCCG TCCTAAAAAAT CTCTGGACTC AAAACGCTGA TGGGGAGCAA ATCGTTTACT ATCGTGCCGA TGATGAGCTG GATGAGGTT TTTGCAGTTT CTATCGAGCT GATGAACTTA GTCGCAGTCA AAACTTCCTT CATAAGGATT TTGCAGTTCT CTATCGAGCT AATGCCCAGT CCCGTACAAT TGAGGAAGCC CTGCTCAAGT TTGCAGTTCT CTATCCATG GTTGGCGGAA CCAAATTCTA CAGCCGTAAG GAAATTCGC ATAATTATGC TTATCTCAAC GTTGGCGGAA CCAAATTCTA CAGCCGTAAG GAAATTCGC ATAATTATGC TTATCTCAAC CTTATTGCTA ATTTGAGTGA CAATATTAGT TTTGAGCGTA TTATCAACGA GCCTAAACGT GGAATTGGTC TAGGTACAGT TGAGAAAATC CGTGATTTTG CAAATTTGCA AAATATGTCT ATCCTGGATT TTGCCAATAT GATGCTTGAT TTTGCGGAGC AGCCCAATCT ACCGGGATT TTGCCAATAT GATGCTTGAT TTGCGGGAC AGCTAAACGT GCGACTCTAG AAAGCAAGGC ACGGGTTGAA AAATATCGAA GAGTTACCCAA ACCTTGGATT TTGCCAATAT GATGCTTGAT TTGCGGGAGC AGCTAAACGT GCGACTCTAG AAAGCAAGGC ACGGGTTGAA AAATATCGAAG AGTTTCTTC TTATCCCAA GCGACTCTAG AAAGCAAGGC ACGGGTTGAA AAATATCGAAG AGTTTCTTC TTATCCCAAA ACCTTTGATG ACACCACGGA TGTGACAGAA ACAGGTTAGG TCGATATTCT TAACTCCCAA ACCTTTGATG ACACCACGGA TGTGACAGAA GAGGAAACTG GTCTGACAA ACTGAGTCGT TTCTTAAAATG ACTCTGCCTAA TGTTGCCGACA ACGATTCAG GTCTGACAA ACTGAGTCGT TTCTTAAAATG ACTCTGCCTAA GGTCTGCCAAA GGTCTGAAT TTCCAGTTGT CTTTTTGATT GGGGATGGAAG AAAATGTCTT TCCACTTAGT CGTGCCAAA GAGATTCAGA TGAATTAGAA GGGAATGGAAG AAAATGTCTT TCCACTTAGT CGTGCCAAA ACGATTCAGA TGAATTAGAA GAGAGCGCC GTCTAGCCTA TGTAGGTATC ACGCGTGCAG AGAAATTCC CTTTTTTGATC AACGAAATCA GTTCAGACTT GCTGCCAAA ACGATTATA ACCGTCCGAC TCGTTTTATT AACCCAACT CACGCTTGCT TTTTGGTCGT ACCAATTATA ACCGTCCGAC TCGTTTTATT AACGAAATCA GTTCAGACTT GCTGAGTAT CACGCTTGCC CCAAAATCAA TCCAGTCAG CCGTCTTCCA AATGCCCAAC CACGCTTGCT TTTTGGTCGT ACCAATTATA ACCGTCCGAC TCGTTTTATT AACGCAACT CACGCTTAACCG CGGTCTGCC CCAAAATCAA TCCAGTCAG CCGTCTTCCA AATGCCAAT TAACAGCA GCTTCTGCC CCAAAATCAA TCCAGTCAG CCGTCTTCCA GCTCTTCAAG ACCGTAAACC GCGTCTCCC CCAAAATCAA TCCAGTCAAC CGGTCTTCCA GCTCTTCAAG ACCGTAAACC GCGTCTCCC CCAAAATCAA TCCAGTCAAC CGGTCTTCCA GCTAGGCAGG AATTGAAAAC CAATTTCCCA GAGACTTC TGGAAAAACT	CACGTTGA	ΥG	AGTACCAAGA	TACCAACCAC	GCTCAGTACC	AATTGGTCAA	ACTCTTGGCT	8880
TTGTTGGAGG AAAATTACCG CTCAACCAAA ACCATTCTCC AAGCGCCAA CGAGGTTATT AAAAAATAATA AAAATCGCCG TCCTAAAAAT CTCTGGACTC AAAACGCTGA TGGGGAGCAA ATCGTTTACT ATCGTGCCGA TGATGAGCTG GATGAGGCTG TATTTGTAGC CAGAACCATC GATGAACTTA GTCGCAGTCA AAACTTCCTT CATAAGGATT TTGCAGTTCT CTATCGGACT AATGCCCAGT CCCGTACAAT TGAGGAAGCC CTGCTCAAGT CTAACATTCC TTATCCAAC GTTGGCGGAA CCAAATTCTA CAGCCGTAAG GAAATTCGCG ATATTATTGC TTATCCAAC CTTATTGCTA ATTTGAGTGA CAATATTAGT TTTGAGCGAT TTATCAACGA GCCTAAACGT GGAATTGGTC TAGGTACAGT TGAGAAAAAT CGTGATTTTG CAAATTTGCA AAATATGTCT ATCCTGGATT TTGCCAATAT GATGCTTGAT TTGCGGAGCA AGCCCAATCT ATCTGGGAT TTGCCAATAT GATGCTTGAT TTGCGGAGCA AGCCCAATCT ACCAGGATTGGT TTGCCAATAT GATGCTTGAT TTGCGGAGCA AGCCCAATCT ACCAGGATTGG TTGAGTCCGT CCTAGAAAAA ACAGGTTATG TCGATATTCT TAACCCCAA GCGACTCTAG AAAGCAAGGC ACGGGTTGAA AATATCGAG AGTTTCTTC TGTTACGAAG AACTTTGATG ACACCACGA TGTGACAGAA GAGGAAACTG GTCTGGACAA ACTGAGTCGT TTCTTAAATG ACTTGGCTTT GATTGCCGAC ACAGATTCAG GTAGTCAGA ACTGAGTCGT TTCTTAAATG ACTTGGCTTT GATTGCCGAC ACAGATTCAG GTAGTCAGA ACTGAGTCGT TTCTTAAATG ACTTGGCTTT TCCACTTAGT CGTGCGACT AAGATTCAGA GACATCAGAA GGGAATGGAAG AAAATGTCTT TCCACTTAGT CGTGCGACT AAGATTCAG TGAATTAGAA GGAAGAGCCC GTCTAGCCTA TGCTGCCAAA GGTCTCGAAT TTCCAGTTGT CTTTTTGATT GAAGGAAACCA TCCACTGCA TGCTGCCAAA GGTCTCGAAT TTCCAGTTGT CTTTTTGATT AACGCAAATCA GTTCAGCTT TTTTGGTCGT ACAAATTATA ACCGTCCGC TCGTTTTATT AACGCAAATCA GTTCAGACTT TTTTGGTCGT ACAAATTATA ACCGTCCGC TCGTTTTATT AACGCAAATCA GTTCAGACTT TTTTGGTCGT ACAAATTATA ACCGTCCGC TCGTTTTATT AACGCAAATCA GTTCAGACTT TTTTGGTCGT ACAAATTATA ACCGTCCGC TCGTTTTTATT AACGCAAATCA GTTCAGACT TGCTGAGTATT TCCTTTTGGTC AAAGAAATTCT CTATCTCAC AATACCAAATCA GTTCAGAACCA GCATCTAGCG AGGCAAATTCG CGGTCTTCCA AATGCCAAATCAA ACCGGTAAACCA GCATCTAGCG AGGCAAATTCG CTCCTTTTATT AACGCAATTCAAACAAC GCATCTAGCG AGGCAAATTCG CTCCATTGGT AATGCAAATCA ACCGGTAAACCA GCATCTAGCG AGGCAAATTCG CTCCATTGGT AATGCAAATCA TTTACAGCAG GGGAAAACCA GCATCTAGCG AGGCAAATTCG GTCCATTGGT AATGCAAATTCA TTCCACAAGAA ATGGGGAGAGGTT TGGAAAACAC TTTAGCCAGT ATTTGGCAAACCA GCATCTAGCG AGGCAAATTCA GCCCATTTGCCA TCCATTGGT AATTTGCTCAAAA	TCCCGTTT	TΑ	AAAATATCTG	TGTGGTTGGG	GATGCGGACC	AGTCTATCTA	CGGTTGGCGT	8940
AAAAATAATA AAAATCGCCG TCCTAAAAAT CTCTGGACTC AAAACGCTGA TGGGGAGCAA ATCGTTTACT ATCGTGCCGA TGATGAGCTG GATGAGGCTG TATTTGTAGC CAGAACCATC GATGAACTTA GTCGCAGTCA AAACTTCCTT CATAAGGATT TTGCAGTTCT CTATCGAGCT AATGCCCAGT CCCGTACAAT TGAGGAAGCC CTGCTCAAGT CTAACATTCC TTATACCATG GTTGGCGGAA CCAAATTCTA CAGCCGTAAG GAAATTCGC ATATTATTGC TTATCCAAC GTTGGCGGAA CCAAATTCTA CAGCCGTAAG GAAATTCGC ATATTATTGC TTATCCAAC GTTATTGCTA ATTTGAGTGA CAATATTAGT TTTGAGCGTA TTATCAACGA GCCTAAACGT ATGCTGGATG CTTCTGCTAA TATTATGTT TCTGGAGTAT AAGGTAAGGC AGCCCAATCT ATCTGGGATT TTGCCAATAT GATGCTTGAT TTGCGGGAGC AGCTAGACCA CTTAAGCATC ACCAGGATTCG TTGAGTCCGT CCTAGAAAAA ACAGGTTATC TCGATATTCT TAACTCCCAA GCGACTCTAG AAAGCAAGGC ACGGGTTGAA AATATCGAAG AGTTTCTTC TGTTACCAAG GCGACTCTAG AAAGCAAGGC ACGGGTTGAA AATATCGAAG AGTTTCTTC TGTTACCAAG AACTTTGATG ACACCACGGA TGTGACAGAA AATATCGAAG AGTTTCTTC TGTTACGAAG AACTTTGATG ACACCACGGA TGTGACAGAA AATATCGAAG AGTTTCTTC TGTTACGAAG AACTTTGATG ACACCACGGA TGTGACAGAA GAGGAAACTG GTCTGGACAA ACTGAGTCGT TTCTTAAATG ACTTGGCTT GATTGCCGAC ACAGATTCAG GTAGTCAGAA ACTGAGTCGT TTCTTAAATG ACTTGGCTT TCCACTTAGT CGTGCGACT TTCCAGTTGT CTTTTTGATT GGGAAGGCCC GTCTAGCCTA TGTAGGTATC ACCGTTCGAC ACAAATTCA ACCGTCCGAC TCGTTTTATT AACGCAACT CACGCTTGCT TTTTGGTCGT ACCAAATTATA ACCGTCCGAC TCGTTTTATT AACGCAACT CATATAGCAG TGGTAGTATT TCCTTTGGTC AAGGTATGAG TTTGCCTCAG CCTTCTCAAG ACCGTAAACCA GCATCTAGCG ACGAAATTCA TCCAGTCAAG CGGTCTCCA AATGCCAACT CATATAGCAG TGGTAGTATT TCCTTTGGTC AAGGTATGAG TTTGCCTCAG CCTTCTCAAG ACCGTAAACCA GCATCTAGCG ACGAAATTCA TCCAGTCAAG CGGTCTTCCA CCTTCTCAAG ACCGTAAACCA GCATCTAGCG ACGAAATTCA TCCAGTCAAG CGGTCTTCCA CCTTCTCAAG ACCGTAAACCA GCATCTAGCG ACGCAAATTCG TCCAATTGGT 103 CTTTGGTCAAT TTACAGCTG CCCAAAATCAA TCCAGTCAAG CGGTCTTCCA CTTTGGTCAAT TTACAGCAG ACGGAAACCA GCATCTAGCG ACGCAAATTCG TCCAATTGGT 103 CTTTGGTCAAT TTACAGCTG CCCAAAACCA GCATCTAGCG ACGCAAATTC TTTAGCCAGT 103 CTTTGG	GGTGCTGA	ATA	TGCAGAATAT	CTTGGACTTT	GAAAAGGATT	ACCCCAAAGC	CAAGGTTGTT	9000
ATCGTTTACT ATCGTGCCGA TGATGAGCTG GATGAGGCTG TATTTGTAGC CAGAACCATC GATGAACTTA GTCGCAGTCA AAACTTCCTT CATAAGGATT TTGCAGTTCT CTATCGGACT AATGCCCAGT CCCGTACAAT TGAGGAAGCC CTGCTCAAGT CTAACATTCC TTATACCATG GTTGGCGGAA CCAAATTCTA CAGCCGTAAG GAAATTCGC ATATTATTGC TTATCCAAC CTTATTGCTA ATTTGAGTGA CAATATTAGT TTTGAGCGTA TTATCAACGA GCCTAAACGT GGAATTGGTC TAGGTACAGT TGAGAAAATC CGTGATTTTG CAAATTTGCA AAATATGTCT ATGCTGGAGT CTTCTGCTAA TATTATGTTT TCTGGGGACA AGCCCAATCT ACCTGGAATT TTGCCAATAT GATGCTTGAT TTGCGGGAC AGCTAAACGA CTTAAGCATT ACCTGGGATT TTGCCAATAT GATGCTTGAT TTGCGGGAC AGCTAAACCA CTTAAGCATT ACCAGAGTTGG TTGAGTCCGT CCTAGAAAAA ACAGGTTATG TCGATATTCT TAACTCCCAA AACTTTGATG ACACCACGGA TGTGACAGAA GAGGAAACTG GTCTGGACAA ACTGAGTCGT TTCTTAAATG ACTTGGCTTT GATTGCCGAC ACAGATTCAG GTAGTCAGGA GACATCAGAA ACCTTTGATG ACACCACGGA TGTGACAGAA GAGGAAACTG GTCTGGACAA ACTGAGTCGT TTCTTAAATG ACTTGGCTTT TCCACTTAGT CGTGCGACT TTCCAGTTGT CTTTTTGATT GGGAAGGCCC GTCTAGCCTA TGTAGGTATC ACGGTCCGAC TCCTTTTTGATT GGAAGAGCCC GTCTAGCCTA TGTAGGTATC ACGCGTCCAA AGAATATCTC CTATCTGAC AAACGAAATCA GTTCAGCCTA TGTAGGTATC ACGCGTCCAA AGAATATCTC CTATCTGACC AAACGAAATCA GTTCAGCCTA TGTAGGTATC ACGCGTCCAA AGAATACCAA TGTATTAGTA AACGAAATCA GTTCAGACTT TCCACTTAGT CACGCTCCAA AGAATACAA TCCACTCAGA TGTTTTATT AACGCAACT CACGCTTGCT TTTTGGTCGT ACCAATTATA ACCGTCCGAC TCGTTTTATT AACGCAACT CACGCTTAGCC TGCTTGAGTATT TCCTTTTGGTC AAGGTATGAG TTTGGCTCAA CCTTTCAAG ACCGTAAACG CGGTGCTGC CAAAATCAA TCCAGTCAAG CGGTCTTCCA CTTTGGTCAAT TTACAGCTG CGCAAAACCA GCAACTTAGC AGGCAAATTG GTCCATTGGT ATTTGGTCAAT TTACAGCTG CGCAAAACCA GCATCTAGCA AGGCAAATTG GTCCATTGGT ATTTGGTCAAT TTACAGCTG CGCAAAACCA GCATCTAGCA AGGCAAATTG GTCCATTGGT ACGTAGGCAG AATTGAAAAA ATGGGGAGAG GGAACCGTTC TGGAAAACAA TCCAGTAGAG TTTAGCCAGT TTTTGGTCAAT TTACAGCTG CGCAAAACCA GCATCTAGCA AGGCAAATTG GTCCATTGGT AATTTGCTC TCCACAAGAA ATGGGGAGAG GGAACCGTTC TGGAAATTG TTTAGCCAGT AATTTGCCA	TTGTTGGA	\GG	AAAATTACCG	CTCAACCAAA	ACCATTCTCC	AAGCGGCCAA	CGAGGTTATT	9060
GATGAACTTA GTCGCAGTCA AAACTTCCTT CATAAGGATT TTGCAGTTCT CTATCGGACT AATGCCCAGT CCCGTACAAT TGAGGAAGCC CTGCTCAAGT CTAACATTCC TTATACCATG GTTGGCGGAA CCAAATTCTA CAGCCGTAAG GAAATTCGC ATATTATTGC TTATCCAAC GTTATTGCTA ATTTGAGTGA CAATATTAGT TTTGAGGGAT TTATCAACGA GCCTAAACGT GGAATTGGTC TAGGTACAGT TGAGAAAATC CGTGATTTTG CAAATTTGCA AAATATGTCT ATGCTGGATG CTTCTGCTAA TATTATGTTG TCTGGTATCA AGGGTAAGGC AGCCCAATCT ATCTGGGATT TTGCCAATAT GATGCTTGAT TTGCGGGACC AGCTAGACCA CTTAAGCATT ACAGAGGTTGG TTGAGTCCGT CCTAGAAAAA ACAGGTTATG TCGATATTCT TAACTCCCAA AACTTTGATG ACACCACGGA TGTGACAGAA GAGGAAACTG GTCTGGACAA ACTGAGTCGT TTCTTAAATG ACTTGGCTTT GATTGCCGAC ACAGATTCAG GTAGTCAGAA ACTGAGTCGT TTCTTAAATG ACTTGGCTTT GATTGCCGAC ACAGATTCAG GTAGTCAGAA ACTGAGTCGT GGGATGGAAG AAAATGTCTT TCCACTTAGT CGTGCGACAA TTCCAGTAGA GAAGAGCGCC GTCTAGCCTA TGTAGGTATC CAGCGTCGA AGAATATCACA TGAATTAGAA GAAGAGCGCC GTCTAGCCTA TGTAGGTATC ACGCGTGCA AGAAATTCT CTATCTGACC AAAGCCAACT CACGCTTGCT TTTTGGTCGT ACCAATTATA ACCGTCGAC TCGTTTTATT AACGCAACT CACGCTTGCT TTTTGGTCGT ACCAATTATA ACCGTCCGAC TCGTTTTATT AACGCAACT CACGCTTAGCC TGCTGAGTATT TCCTTTTGGT AAAGGTATGAG TTTGGCTCAG CCTTCTCAAG ACCGTAAACG CGGTGCTGC CCAAAATCAA TCCAGTCAAG CGGTCTTCCA TTTAGGCCAA TTACAGCTG CGCAAAACCA GCATCTAGCA AGGCAAATTG GTCCATTGGT ATTTGGTCAAT TTACAGCTG CGCAAAACCA GCATCTAGCG AGGCAAATTG GTCCATTGGT ATTTGGTCAAT TTACAGCTG CGCAAAACCA GCATCTAGCG AGGCAAATTG GTCCATTGGT ACCAAGAAATCA TTACAGCTG CGCAAAACCA GCATCTAGCG AGGCAAATTG GTCCATTGGT ACCAAGAAATCA TTACAGCTG CGCAAAACCA GCATCTAGCG AGGCAAATTG GTCCATTGGT ACCAAGAAACCA GCAAATCAA TCCAGTCAAG CGGTCTTCCA ACCAAGAAACCA GCAAATCAA TCCAGTCAAG CGGTCTTCCA ACCAAGGCAGG AATTGAAAAAACCA GCAACTTCCA TGGAAAACCA TTAGACAGGT TTAACAGCGGT TTAGACCAGGA AATTGAAAAACCA GAAATCAA TCCAGTCAAG TTTAGCCAGT AATTGGCCAGA AATTGAAAAACCA GAAATTCAC TGAAAAAACCT TTTAGCCAGT AATTGGC	АААААТАА	ΥA	AAAATCGCCG	TCCTAAAAAT	CTCTGGACTC	AAAACGCTGA	TGGGGAGCAA	9120
AATGCCCAGT CCCGTACAAT TGAGGAAGCC CTGCTCAAGT CTAACATTCC TTATACCATG GTTGGCGGAA CCAAATTCTA CAGCCGTAAG GAAATTCGCG ATATTATTGC TTATCTCAAC GTTGGCGGAA CCAAATTCTA CAGCCGTAAG GAAATTCGCG ATATTATTGC TTATCTCAAC CTTATTGCTA ATTTGAGTGA CAATATTAGT TTTGAGCGTA TTATCAACGA GCCTAAACGT GGAATTGGTC TAGGTACAGT TGAGAAAATC CGTGATTTTG CAAATTTGCA AAATATGTCT ATGCTGGATG CTTCTGCTAA TATTATGTTG TCTGGTATCA AGGGTAAGGC AGCCCAATCT ACCTGGGATT TTGCCAATAT GATGCTTGAT TTGCGGGAGC AGCTAGACCA CTTAAGCATT ACCAGAGTTCG TTGAGTCCGT CCTAGAAAAA ACAGGTTATG TCGATATTCT TAACTCCCAA GCGACTCTAG AAAGCAAGGC ACGGGTTGAA AATATCGAAG AGTTTCTTC TGTTACGAAG AACTTTGATG ACACCACGGA TGTGACAGAA GAGGAAACTG GTCTGGACAA ACTGAGTCGT TTCTTAAATG ACTTGGCTTT GATTGCCGAC ACAGATTCAG GTAGTCAGGA GACATCAGAA GTGACCTTGA TGACCCTGCA TGCTGCCAAA GGTCTCGAAT TTCCAGTTGT CTTTTTGATT GGGATGGAAG AAAATGTCTT TCCACTTAGT CGTGCGACTG AAGATTCAGA TGAATTAGAA GAAGAAGCGC GTCTAGCCTA TGTAGGTATC ACGCGTCGAA AGAAAATTCC CTATCTGACC AATGCCAACT CACGCTTGCT TTTTGGTCGT ACCAATTATA ACCGTCCGAC TCGTTTTATT AACGCAACT CACGCTTGCT TTTTGGTCGT ACCAATTATA ACCGTCCGAC TCGTTTTATT AACGCAACT CACGCTTGCT TTTTGGTCGT ACCAATTATA ACCGTCCGAC TCGTTTTATT AACGCAACT CACGCTTGCT TTTTGGTCGT ACCAATTATA ACCGTCCGAC TCGTTTTATT AACGAAATCA GTTCAGACTT GCTTGAGTAT TCCTTTTGGTC AAGGTATGAG TTTGGCTCAG TTTAAAGGCAT CATATAGCAG TGGTAGTATT TCCTTTTGGTC AAGGTATGAG TTTGGCTCAG TTTTGGTCAAT TTACAGCTG CGCAAAACCA GCATCTAGCG AGGCAAATTG GTCCATTGGT TTTGGTCAAT TTACAGCTG CGCAAAACCA GCATCTAGCG AGGCAAATTG GTCCATTGGT TTTGGTCAAT TTACAGCTG CGCAAAACCA GCATCTAGCG AGGCAAATTG GTCCATTGGT TTTTGGTCAAT TTACAGCTGG CGCAAAACCA GCATCTAGCG AGGCAAATTG GTCCATTGGT TTTTGGTCAAT TTACAGCTGG CGCAAAACCA GCATCTAGCG AGGCAAATTG GTCCATTGGT TTTAGGCCAG AATTGAAAACCA GCATCTAGCG AGGCAAATTG AGGTAGCGGT TTTAGGCCAGG AATTGAAAACCA GAATTGACG GAACCGTTC TGGAAGATTC AGGTAGCGGT TTTAGGCCAGG AATTGAAAACCA GAATTGACG GAACCGTTC TGGAAAAAACCT TTTAGGCCAGT TTTA	ATCGTTTA	CT	ATCGTGCCGA	TGATGAGCTG	GATGAGGCTG	TATTTGTAGC	CAGAACCATC	9180
GTTGGCGGAA CCAAATTCTA CAGCCGTAAG GAAATTCGCG ATATTATTGC TTATCTCAAC CTTATTGCTA ATTTGAGTGA CAATATTAGT TTTGAGCGTA TTATCAACGA GCCTAAACGT GGAATTGGTC TAGGTACAGT TGAGAAAATC CGTGATTTTG CAAATTTGCA AAATATGTCT ATGCTGGATG CTTCTGCTAA TATTATGTTG TCTGGTATCA AGGGTAAGGC AGCCCAATCT ATCTGGGATT TTGCCAATAT GATGCTTGAT TTGCGGAGC AGCTAGACCA CTTAAGCATT ACAGAGTTGG TTGAGTCCGT CCTAGAAAAA ACAGGTTATG TCGATATTCT TAACTCCCAA GCGACTCTAG AAAGCAAGGC ACGGGTTGAA AATATCGAAG AGTTTCTTC TGTTACGAAG AACTTTGATG ACACCACGGA TGTGACAGAA GAGGAAACTG GTCTGGACAA ACTGAGTCGT TTCTTAAATG ACTTGGCTTT GATTGCCGAC ACAGATTCAG GTAGTCAGAA ACTGAGTCGT GGGATGGAAG AAAATGTCTT TCCACTTAGT CGTGCGACTG AAGATTCAGA TGAATTAGAA GAAGAGCGCC GTCTAGCCTA TGTAGGTATC ACGCGTGCAG AGAAAATTCT CTATCTGACC AATGCCAACT CACGCTTGCT TTTTGGTCGT ACCAATTATA ACCGTCCGAC TCGTTTTATT AACGAAATCA GTTCAGACTT GCTTGAGTAT TCCATTATA ACCGTCCGAC TCGTTTTATT AACGAAATCA GTTCAGACTT GCTTGAGTAT TCCATTATA ACCGTCCGAC TCGTTTTATT AACGAAATCA GTTCAGACTT GCTTGAGTAT TCCATTATA ACCGTCCGAC TCGTTTTATT AACGAAATCA GTTCAGACTT GCTTGAGTAT TCCATTATTA ACCGTCCGAC TCGTTTTATT AACGAAATCA GTTCAGACTT GCTTGAGTAT TCCATTAGTC AAGGTATGAG TTTGGCTCAG GCTCTTCAAG ACCGTAAACG CGGTGCTGC CCAAAAACAA TCCAGTCAGA CGGTCTTCCA TTTTAGGCAAT TATAGCAG TGGTAGTATT TCCTTTTGGTC AAGGTATGAG TTTGGCTCAG GCTCTTCAAG ACCGTAAACG CGGTGCTGC CCAAAAACCA GCACTCTAGCG AGGCAAATTG GTCCATTGGT TTTTGGTCAAT TTACAGCTG CGCAAAACCA GCATCTAGCG AGGCAAATTG AGGTAGCGGT TTTTGGTCAAT TTACAGCTG CGCAAAACCA GCATCTAGCG AGGCAAATTG AGGTAGCGGT TTTAGGCCAG AATTGAAAAT CAATTTCCCA GAAGTAGGTT TGAAAAAACT TTTAGCCAGT GCTAGGCAGG AATTGAAAAT CAATTTCCCA GAAGTAGGTT TGAAAAAACT TTTAGCCAGT TTTAGGCAGG AATTGAAAAT CAATTTCCCA GAAGTAGGTT TGAAAAAACT TTTAGCCAGT TTTAGGCAGG AATTGAAAAT CAATTTCCCA GAAGTAGGTT TGAAAAAACT TTTAGCCAGT TTTAGGCAGG AATTGAAAAT CAATTTCCC	GATGAACT	TΑ	GTCGCAGTCA	AAACTTCCTT	CATAAGGATT	TTGCAGTTCT	CTATCGGACT	9240
CTTATTGCTA ATTTGAGTGA CAATATTAGT TTTGAGCGTA TTATCAACGA GCCTAAACGT GGAATTGGTC TAGGTACAGT TGAGAAAATC CGTGATTTTG CAAATTTGCA AAATATGTCT ATGCTGGATG CTTCTGCTAA TATTATGTTG TCTGGTATCA AGGGTAAGGC AGCCCAATCT ATCTGGGATT TTGCCAATAT GATGCTTGAT TTGCGGGAGC AGCTAGACCA CTTAAGCATT ACAGAGTTGG TTGAGTCCGT CCTAGAAAAA ACAGGTTATG TCGATATTCT TAACTCCCAA GCGACTCTAG AAAGCAAGGC ACGGGTTGAA AATATCGAAG AGTTTCTTTC TGTTACGAAG AACTTTGATG ACACCACGGA TGTGACAGAA GAGGAAACTG GTCTGGACAA ACTGAGTCGT TTCTTAAATG ACTTGGCTTT GATTGCCGAC ACAGATTCAG GTAGTCAGGA GACATCAGAA GTGACCTTGA TGACCCTGCA TGCTGCCAAA GGTCTCGAAT TTCCAGTTGT CTTTTTGATT GGGATGGAAG AAAATGTCTT TCCACTTAGT CGTGCCACA TGAATTCAGA TGAATTAGAA GAAGAGCGCC GTCTAGCCTA TGTAGGTATC ACGCGTGCAG AGAAAATTCT CTATCTGACC AATGCCAACT CACGCTTGCT TTTTGGTCGT ACCAATTATA ACCGTCCGAC TCGTTTTATT AACGAAATCA GTTCAGACTT GCTTGAGTAT CAAGGTCTGG CTCGTCCTGC AAATACAAGC TTTAAGGCAT CATATAGCAG TGGTAGTATT TCCTTTGGTC AAGGTATGAG TTTTGGCCAGG GCTCTTCAAG ACCGTAAACG CGGTGCTGCC CCAAAATCAA TCCAGTCAAG CGGTCTTCCA GCTCTTCAAG ACCGTAAACG CGGTGCTGCC CCAAAATCAA TCCAGTCAAG CGGTCTTCCA TTTGGTCAAT TTACAGCTGG CGCAAAAACCA GCATCTAGCG AGGCAAATTG GTCCATTGGT TTTTGGTCAAT TTACAGCTGG CGCAAAAACCA GCATCTAGCG AGGCAAATTG GTCCATTGGT GCTATGGCCAGG AATTGAAAAT CAATTTCCCA GAAGTAGGTT TGAAAAAACT TTTAGCCAGT GCTAGGCAGG AATTGAAAAT CAATTTCCCA GAAGTAGGTT TGAAAAAAACT TTTAGCCAGT GCTAGGCAGG AATTGAAAAT CAATTTCCCA GAAGTAGGTT TGAAAAAAACT TTTAGCCAGT GCTAGGCAGG AATTGAAAAT CAATTTCCCA GAAGTAGGTT TGAAAAAACT TTTAGCCAGT 104	AATGCCCA	GT	CCCGTACAAT	TGAGGAAGCC	CTGCTCAAGT	CTAACATTCC	TTATACCATG	9300
GGAATTGGTC TAGGTACAGT TGAGAAAATC CGTGATTTTG CAAATTTGCA AAATATGTCT 94 ATGCTGGATG CTTCTGCTAA TATTATGTTG TCTGGTATCA AGGGTAAGGC AGCCCAATCT 95 ATCTGGGATT TTGCCAATAT GATGCTTGAT TTGCGGGAGC AGCTAGACCA CTTAAGCATT 96 ACAGAGTTGG TTGAGTCCGT CCTAGAAAAA ACAGGTTATG TCGATATTCT TAACTCCCAA 96 GCGACTCTAG AAAGCAAGGC ACGGGTTGAA AATATCGAAG AGTTTCTTC TGTTACGAAG 97 AACTTTGATG ACACCACGGA TGTGACAGAA GAGGAAACTG GTCTGGACAA ACTGAGTCGT 97 TTCTTAAATG ACTTGGCTTT GATTGCCGAC ACAGATTCAG GTAGTCAGGA GACATCAGAA 96 GGGATGGAAG AAAATGTCTT TCCACTTAGT CGTGCGACT TTCCAGTTGT CTTTTTGATT 96 GGGATGGAAG AAAATGTCTT TCCACTTAGT CGTGCGACTG AAGATTCAGA TGAATTAGAA 96 GAAGAGCGCC GTCTAGCCTA TGTAGGTATC ACCAGATTATA ACCGTCCGAC TCGTTTTATT 100 AACGAAATCA GTTCAGACTT GCTTGAGTAT CAAGGTCTGG CTCGTCCTGC AAATACAAGC 101 TTTAAGGCAT CATATAGCAG TGGTAGTATT TCCTTTGGTC AAAGGTATGAG TTTGGCTCAG 102 GCTCTTCAAG ACCGTAAACG CGGTGCTGCC CCAAAATCAA TCCAGTCAGA CGGTCTCCA 102 GCTCTTCAAG ACCGTAAACG CGGTGCTGCC CCAAAATCAA TCCAGTCAGG CGGTCTTCCA 102 GCTCTTCAAG ACCGTAAACG CGGTGCTGCC CCAAAATCAA TCCAGTCAG CGGTCTTCCA 102 GCTCTTCAAG ACCGTAAACC CGGTGCTGCC CCAAAATCAA TCCAGTCAGG CGGTCTTCCA 102 GCTCTTCAAG ACCGTAAACC CGGTGCTGCC CCAAAATCAA TCCAGTCAAG CGGTCTTCCA 102 GCTCTTCAAG ACCGTAAACC CGGTGCTGCC CCAAAATCAA TCCAGTCAAG CGGTCTTCCA 102 GCTAGGCCAG AATTGAAAAC CGGAAAACCA GCATCTAGCG AGGCAAATTG CTCCATTGGT 103 GATATTGCTC TCCACAAGAA ATGGGGAAGG GGAACCGTC TGGAAGAACT TTTAGCCAGT 103 GCTAGGCCAG AATTGAAAAT CAATTTCCCA GAAGTAAGGT TGGAAAAACC TTTAGCCAGT 103 GCTAGGCCAG AATTGAAAAT CAATTTCCCA GAAGTAAGGT TGGAAAAAACT TTTAGCCAGT 103	GTTGGCGG	AA	CCAAATTCTA	CAGCCGTAAG	GAAATTCGCG	ATATTATTGC	TTATCTCAAC	9360
ATGCTGGATG CTTCTGCTAA TATTATGTTG TCTGGTATCA AGGGTAAGGC AGCCCAATCT ATCTGGGATT TTGCCAATAT GATGCTTGAT TTGCGGGAGC AGCTAGACCA CTTAAGCATT ACAGAGTTGG TTGAGTCCGT CCTAGAAAAA ACAGGTTATG TCGATATTCT TAACTCCCAA GCGACTCTAG AAAGCAAGGC ACGGGTTGAA AATATCGAAG AGTTTCTTTC TGTTACGAAG AACTTTGATG ACACCACGGA TGTGACAGAA GAGGAAACTG GTCTGGACAA ACTGAGTCGT TTCTTAAATG ACTTGGCTTT GATTGCCGAC ACAGATTCAG GTAGTCAGGA GACATCAGAA GGGAATGGAAG AAAATGTCTT TCCACTTAGT CGTGCGACTA TTCCAGTTGT CTTTTTGATT GGAAGAGCGCC GTCTAGCCTA TGTAGGTATC ACGCGTGCAG AGAAAATTCT CTATCTGACC AAATGCCAACT CACGCTTGCT TTTTGGTCGT ACCAATTATA ACCGTCCGAC TCGTTTTATT AACGAAATCA GTTCAGACTT GCTTGAGTAT TCCAGTTGG CTCGTCCTGC AAATACAAGC TTTAAAGGCAT CATATAGCAG TGGTAGTATT TCCTTTGGTC AAGGTATGAG TTTTGGCTCAG GCTCTTCAAG ACCGTAAACG CGGTGCTGCC CCAAAATCAA TCCAGTCAAG CGGTCTTCCA TTTGGTCAAT TTACAGCTG CGCAAAACCA GCATCTAGCG AGGCAAATTG GTCCATTGGT TTTGGTCAAT TTACAGCTG CGCAAAACCA GCATCTAGCG AGGCAAATTG GTCCATTGGT GATATTGCTC TCCACAAGAA ATGGGGAGAG GGAACCGTTC TGGAAGAAACT TTTAGCCAGT GCTAGGCAGG AATTGAAAAT CAATTTCCCA GAAGTAGGTT TGAAAAAACT TTTAGCCAGT 10.3 GCTAGGCAGG AATTGAAAAT CAATTTCCCA GAAGTAGGTT TGAAAAAACT TTTAGCCAGT 10.4 CCTAGGCAGG AATTGAAAAT CAATTTCCCA GAAGTAGGTT TGAAAAAACT TTTAGCCAGT 10.4 CCTAGGCAGG AATTGAAAAT CAATTTCCCA GAAGTAGGTT TGAAAAAACT TTTAGCCAGT 10.4 CCTAGGCAGG AATTGAAAAT CAATTTCCCA GAAGTAGGTT TGAAAAAACT TTTAGCCAGT 10.4 CCTAGGCCAGG AATTGAAAAT CAATTTCCCA GAAGTAGGTT TGAAAAAACT TTTAGCCAGT 10.4 CCTAGGCCAGG AATTGAAAAT CAATTTCCCA GAAGTAGGTT TGAAAAAACT TTTAGCCAGT 10.4 CCTAGGCCAGG AATTGAAAAT CAATTTCCCA GAAGTAGGTT TGAAAAAACT TTTAGCCAGT	CTTATTGC	TA	ATTTGAGTGA	CAATATTAGT	TTTGAGCGTA	TTATCAACGA	GCCTAAACGT	9420
ATCTGGGATT TTGCCAATAT GATGCTTGAT TTGCGGGAGC AGCTAGACCA CTTAAGCATT ACAGAGTTGG TTGAGTCCGT CCTAGAAAAA ACAGGTTATG TCGATATTCT TAACTCCCAA GCGACTCTAG AAAGCAAGGC ACGGGTTGAA AATATCGAAG AGTTTCTTTC TGTTACGAAG AACTTTGATG ACACCACGGA TGTGACAGAA GAGGAAACTG GTCTGGACAA ACTGAGTCGT TTCTTAAATG ACTTGGCTTT GATTGCCGAC ACAGATTCAG GTAGTCAGGA GACATCAGAA GTGACCTTGA TGACCCTGCA TGCTGCCAAA GGTCTCGAAT TTCCAGTTGT CTTTTTGATT GGGATGGAAG AAAATGTCTT TCCACTTAGT CGTGCGACTG AAGATTCAGA TGAATTAGAA GAAGAGCGCC GTCTAGCCTA TGTAGGTATC ACGCGTGCAG AGAAAATTCT CTATCTGACC AATGCCAACT CACGCTTGCT TTTTGGTCGT ACCAATTATA ACCGTCCGAC TCGTTTTATT AACGAAATCA GTTCAGACTT GCTTGAGTAT CCAGTTGG CTCGTCCTGC AAATACAAGC TTTAAAGGCAT CATATAGCAG TGGTAGTATT TCCTTTGGTC AAGGTATGAG TTTGGCTCAG GCTCTTCAAG ACCGTAAACG CGGTGCTGC CCAAAATCAA TCCAGTCAG CGGTCTTCCA TTTGGTCAAT TTACAGCTGG CGCAAAACCA GCATCTAGCG AGGCAAATTG GTCCATTGGT TTTGGTCAAT TTACAGCTGG CGCAAAACCA GCATCTAGCG AGGCAAATTG GTCCATTGGT GATATTGCTC TCCACAAGAA ATGGGGAGAG GGAACCGTTC TGGAAAAAACT TTTAGCCAGT GCTAGGCAGG AATTGAAAAT CAATTTCCCA GAAGTAGGGTT TGAAAAAAACT TTTAGCCAGT 10.3	GGAATTGG	TC	TAGGTACAGT	TGAGAAAATC	CGTGATTTTG	CAAATTTGCA	AAATATGTCT	9480
ACAGAGTTGG TTGAGTCCGT CCTAGAAAAA ACAGGTTATG TCGATATTCT TAACTCCCAA GCGACTCTAG AAAGCAAGGC ACGGGTTGAA AATATCGAAG AGTTTCTTTC TGTTACGAAG AACTTTGATG ACACCACGGA TGTGACAGAA GAGGAAACTG GTCTGGACAA ACTGAGTCGT TTCTTAAAATG ACTTGGCTTT GATTGCCGAC ACAGATTCAG GTAGTCAGGA GACATCAGAA GTGACCTTGA TGACCCTGCA TGCTGCCAAA GGTCTCGAAT TTCCAGTTGT CTTTTTGATT GGGATGGAAG AAAATGTCTT TCCACTTAGT CGTGCGACT AAGAATTCAGA TGAATTAGAA GAAGAGCGCC GTCTAGCCTA TGTAGGTATC ACGCGTGCAG AGAAAATTCT CTATCTGACC AATGCCAACT CACGCTTGCT TTTTGGTCGT ACCAATTATA ACCGTCCGAC TCGTTTTATT AACGAAATCA GTTCAGACTT GCTTGAGTAT TCCTTTGGTC CTGTCCTGC AAATACAAGC TTTAAAGGCAT CATATAGCAG TGGTAGTATT TCCTTTGGTC AAGGTATGAG TTTGGCTCAG GCTCTTCAAG ACCGTAAACC CGGTGCTGCC CCAAAATCAA TCCAGTCAAG CGGTCTTCCA TTTTGGTCAAT TTACAGCTGG CGCAAAACCA GCATCTAGCG AGGCAAATTG GTCCATTGGT GATATTGCTC TCCACAAGAA ATGGGGAGAG GGAACCGTTC TGGAAGTTTC AGGTAGCGGT GCTAGGCAG AATTGAAAAT CAATTTCCCA GAAGTAGGTT TGAAAAAACT TTTAGCCAGT GCTAGGCAG AATTGAAAAT CAATTTCCCA GAAGTAGGTT TGAAAAAACT TTTAGCCAGT 10.3	ATGCTGGA	ΤG	CTTCTGCTAA	TATTATGTTG	TCTGGTATCA	AGGGTAAGGC	AGCCCAATCT	9540
GCGACTCTAG AAAGCAAGGC ACGGGTTGAA AATATCGAAG AGTTTCTTC TGTTACGAAG AACTTTGATG ACACCACGGA TGTGACAGAA GAGGAAACTG GTCTGGACAA ACTGAGTCGT TTCTTAAATG ACTTGGCTTT GATTGCCGAC ACAGATTCAG GTAGTCAGGA GACATCAGAA GTGACCTTGA TGACCCTGCA TGCTGCCAAA GGTCTCGAAT TTCCAGTTGT CTTTTTGATT GGGATGGAAG AAAATGTCTT TCCACTTAGT CGTGCGACTG AAGATTCAGA TGAATTAGAA GAAGAGCGCC GTCTAGCCTA TGTAGGTATC ACGCGTGCAG AGAAAATTCT CTATCTGACC AATGCCAACT CACGCTTGCT TTTTGGTCGT ACCAATTATA ACCGTCCGAC TCGTTTTATT AACGAAATCA GTTCAGACTT GCTTGAGTAT CAAGGTCTGG CTCGTCCTGC AAATACAAGC TTTAAGGCAT CATATAGCAG TGGTAGTATT TCCTTTGGTC AAGGTATGAG TTTGGCTCAG GCTCTTCAAG ACCGTAAACG CGGTGCTGC CCAAAATCAA TCCAGTCAAG CGGTCTTCCA TTTGGTCAAT TTACAGCTGG CGCAAAACCA GCATCTAGCG AGGCAAATTG GTCCATTGGT GATATTGCTC TCCACAAGAA ATGGGGAGAG GGAACCGTTC TGGAAGTTTC AGGTAGCGGT GCTAGGCAGG AATTGAAAAT CAATTCCCA GAAGTAGGTT TGAAAAAACCT TTTAGCCAGT 10.6 GCTAGGCAGG AATTGAAAAT CAATTTCCCA GAAGTAGGTT TGAAAAAAACT TTTAGCCAGT 10.7	ATCTGGGA	TT	TTGCCAATAT	GATGCTTGAT	TTGCGGGAGC	AGCTAGACCA	CTTAAGCATT	9600
AACTTTGATG ACACCACGGA TGTGACAGAA GAGGAAACTG GTCTGGACAA ACTGAGTCGT TTCTTAAATG ACTTGGCTTT GATTGCCGAC ACAGATTCAG GTAGTCAGGA GACATCAGAA GTGACCTTGA TGACCCTGCA TGCTGCCAAA GGTCTCGAAT TTCCAGTTGT CTTTTTGATT GGGATGGAAG AAAATGTCTT TCCACTTAGT CGTGCGACTG AAGATTCAGA TGAATTAGAA GAAGAGCGCC GTCTAGCCTA TGTAGGTATC ACGCGTGCAG AGAAAATTCT CTATCTGACC AATGCCAACT CACGCTTGCT TTTTGGTCGT ACCAATTATA ACCGTCCGAC TCGTTTTATT AACGAAATCA GTTCAGACTT GCTTGAGTAT CAAGGTCTGG CTCGTCCTGC AAATACAAGC TTTAAGGCAT CATATAGCAG TGGTAGTATT TCCTTTGGTC AAGGTATGAG TTTGGCTCAG GCTCTTCAAG ACCGTAAACG CGGTGCTGCC CCAAAATCAA TCCAGTCAAG CGGTCTTCCA TTTGGTCAAT TTACAGCTGG CGCAAAACCA GCATCTAGCG AGGCAAATTG GTCCATTGGT GATATTGCTC TCCACAAGAA ATGGGGAGAG GGAACCGTTC TGGAAGTTTC AGGTAGCGGT 10.3 GCTAGGCAGG AATTGAAAAT CAATTTCCCA GAAGTAGGTT TGAAAAAAACT TTTAGCCAGT 10.4 GCTAGGCAGG AATTGAAAAT CAATTTCCCA GAAGTAGGTT TGAAAAAAACT TTTAGCCAGT 10.4 GCTAGGCAGG AATTGAAAAT CAATTTCCCA GAAGTAGGTT TGAAAAAAACT TTTAGCCAGT	ACAGAGTT	GG	TTGAGTCCGT	CCTAGAAAAA	ACAGGTTATG	TCGATATTCT	TAACTCCCAA	9660
TTCTTAAATG ACTTGGCTTT GATTGCCGAC ACAGATTCAG GTAGTCAGGA GACATCAGAA 98 GTGACCTTGA TGACCCTGCA TGCTGCCAAA GGTCTCGAAT TTCCAGTTGT CTTTTTGATT 99 GGGATGGAAG AAAATGTCTT TCCACTTAGT CGTGCGACTG AAGATTCAGA TGAATTAGAA 99 GAAGAGCGCC GTCTAGCCTA TGTAGGTATC ACGCGTGCAG AGAAAATTCT CTATCTGACC 100 AATGCCAACT CACGCTTGCT TTTTGGTCGT ACCAATTATA ACCGTCCGAC TCGTTTTATT 100 AACGAAATCA GTTCAGACTT GCTTGAGTAT CAAGGTCTGG CTCGTCCTGC AAATACAAGC 101 TTTAAGGCAT CATATAGCAG TGGTAGTATT TCCTTTGGTC AAGGTATGAG TTTGGCTCAG 102 GCTCTTCAAG ACCGTAAACG CGGTGCTGCC CCAAAATCAA TCCAGTCAAG CGGTCTTCCA 102 GTTGGTCAAT TTACAGCTGG CGCAAAACCA GCATCTAGCG AGGCAAATTG GTCCATTGGT 103 GATATTGCTC TCCACAAGAA ATGGGGAGAG GGAACCGTTC TGGAAGTTTC AGGTAGCGGT 103 GCTAGGCAGG AATTGAAAAT CAATTTCCCA GAAGTAGGTT TGAAAAAACT TTTAGCCAGT 104	GCGACTCT	'AG	AAAGCAAGGC	ACGGGTTGAA	AATATCGAAG	AGTTTCTTTC	TGTTACGAAG	9720
GTGACCTTGA TGACCCTGCA TGCTGCCAAA GGTCTCGAAT TTCCAGTTGT CTTTTGATT GGGATGGAAG AAAATGTCTT TCCACTTAGT CGTGCGACTG AAGATTCAGA TGAATTAGAA GAAGAGCGCC GTCTAGCCTA TGTAGGTATC ACGCGTGCAG AGAAAATTCT CTATCTGACC AATGCCAACT CACGCTTGCT TTTTGGTCGT ACCAATTATA ACCGTCCGAC TCGTTTTATT AACGAAATCA GTTCAGACTT GCTTGAGTAT CAAGGTCTGG CTCGTCCTGC AAATACAAGC TTTAAGGCAT CATATAGCAG TGGTAGTATT TCCTTTGGTC AAGGTATGAG TTTGGCTCAG GCTCTTCAAG ACCGTAAACG CGGTGCTGCC CCAAAATCAA TCCAGTCAAG CGGTCTTCCA TTTGGTCAAT TTACAGCTGG CGCAAAACCA GCATCTAGCG AGGCAAATTG GTCCATTGGT GATATTGCTC TCCACAAGAA ATGGGGAGAG GGAACCGTTC TGGAAGTTTC AGGTAGCGGT GCTAGGCAGG AATTGAAAAT CAATTTCCCA GAAGTAGGTT TGAAAAAAACT TTTAGCCAGT 104 105 106 107 107 107 107 107 107 107	AACTTTGA	TG	ACACCACGGA	TGTGACAGAA	GAGGAAACTG	GTCTGGACAA	ACTGAGTCGT	9780
GGGATGGAAG AAAATGTCTT TCCACTTAGT CGTGCGACTG AAGATTCAGA TGAATTAGAA GAAGAGCGCC GTCTAGCCTA TGTAGGTATC ACGCGTGCAG AGAAAATTCT CTATCTGACC 100 AATGCCAACT CACGCTTGCT TTTTGGTCGT ACCAATTATA ACCGTCCGAC TCGTTTTATT 100 AACGAAATCA GTTCAGACTT GCTTGAGTAT CAAGGTCTGG CTCGTCCTGC AAATACAAGC 101 TTTAAAGGCAT CATATAGCAG TGGTAGTATT TCCTTTGGTC AAGGTATGAG TTTGGCTCAG 102 GCTCTTCAAG ACCGTAAACG CGGTGCTGCC CCAAAATCAA TCCAGTCAAG CGGTCTTCCA 102 GTTGGTCAAT TTACAGCTGG CGCAAAACCA GCATCTAGCG AGGCAAATTG GTCCATTGGT 103 GATATTGCTC TCCACAAGAA ATGGGGAGAG GGAACCGTTC TGGAAGTTTC AGGTAGCGGT 103 GCTAGGCAGG AATTGAAAAT CAATTTCCCA GAAGTAGGTT TGAAAAAACT TTTAGCCAGT 104	TTCTTAAA	TG	ACTTGGCTTT	GATTGCCGAC	ACAGATTCAG	GTAGTCAGGA	GACATCAGAA	9840
GAAGAGCGCC GTCTAGCCTA TGTAGGTATC ACGCGTGCAG AGAAAATTCT CTATCTGACC AATGCCAACT CACGCTTGCT TTTTGGTCGT ACCAATTATA ACCGTCCGAC TCGTTTTATT AACGAAATCA GTTCAGACTT GCTTGAGTAT CAAGGTCTGG CTCGTCCTGC AAATACAAGC TTTAAAGGCAT CATATAGCAG TGGTAGTATT TCCTTTGGTC AAGGTATGAG TTTGGCTCAG GCTCTTCAAG ACCGTAAACG CGGTGCTGCC CCAAAATCAA TCCAGTCAAG CGGTCTTCCA TTTGGTCAAT TTACAGCTGG CGCAAAACCA GCATCTAGCG AGGCAAATTG GTCCATTGGT GATATTGCTC TCCACAAGAA ATGGGGAGAG GGAACCGTTC TGGAAGTTTC AGGTAGCGGT GCTAGGCAGG AATTGAAAAT CAATTTCCCA GAAGTAGGTT TGAAAAAAACT TTTAGCCAGT 104 105 106 107 107 107 107 107 107 107	GTGACCTT	'GA	TGACCCTGCA	TGCTGCCAAA	GGTCTCGAAT	TTCCAGTTGT	CTTTTTGATT	9900
AATGCCAACT CACGCTTGCT TTTTGGTCGT ACCAATTATA ACCGTCCGAC TCGTTTTATT 100 AACGAAATCA GTTCAGACTT GCTTGAGTAT CAAGGTCTGG CTCGTCCTGC AAATACAAGC 100 TTTAAGGCAT CATATAGCAG TGGTAGTATT TCCTTTGGTC AAGGTATGAG TTTGGCTCAG 100 GCTCTTCAAG ACCGTAAACG CGGTGCTGCC CCAAAATCAA TCCAGTCAAG CGGTCTTCCA 100 TTTGGTCAAT TTACAGCTGG CGCAAAACCA GCATCTAGCG AGGCAAATTG GTCCATTGGT 100 GATATTGCTC TCCACAAGAA ATGGGGAGAG GGAACCGTTC TGGAAGTTTC AGGTAGCGGT 100 GCTAGGCAGG AATTGAAAAT CAATTTCCCA GAAGTAGGTT TGAAAAAACT TTTAGCCAGT 100	GGGATGGA	ĀG	AAAATGTCTT	TCCACTTAGT	CGTGCGACTG	AAGATTCAGA	TGAATTAGAA	9960
AACGAAATCA GTTCAGACTT GCTTGAGTAT CAAGGTCTGG CTCGTCCTGC AAATACAAGC 101 TTTAAGGCAT CATATAGCAG TGGTAGTATT TCCTTTGGTC AAGGTATGAG TTTGGCTCAG 102 GCTCTTCAAG ACCGTAAACG CGGTGCTGCC CCAAAATCAA TCCAGTCAAG CGGTCTTCCA 102 TTTGGTCAAT TTACAGCTGG CGCAAAACCA GCATCTAGCG AGGCAAATTG GTCCATTGGT 103 GATATTGCTC TCCACAAGAA ATGGGGAGAG GGAACCGTTC TGGAAGTTTC AGGTAGCGGT 103 GCTAGGCAGG AATTGAAAAT CAATTTCCCA GAAGTAGGTT TGAAAAAACT TTTAGCCAGT 104	GAAGAGCG	CC	GTCTAGCCTA	TGTAGGTATC	ACGCGTGCAG	AGAAAATTCT	CTATCTGACC	10020
TTTAAGGCAT CATATAGCAG TGGTAGTATT TCCTTTGGTC AAGGTATGAG TTTGGCTCAG GCTCTTCAAG ACCGTAAACG CGGTGCTGCC CCAAAATCAA TCCAGTCAAG CGGTCTTCCA TTTGGTCAAT TTACAGCTGG CGCAAAACCA GCATCTAGCG AGGCAAATTG GTCCATTGGT GATATTGCTC TCCACAAGAA ATGGGGAGAG GGAACCGTTC TGGAAGTTTC AGGTAGCGGT GCTAGGCAGG AATTGAAAAT CAATTTCCCA GAAGTAGGTT TGAAAAAACT TTTAGCCAGT 104	AATGCCAA	CT	CACGCTTGCT	TTTTGGTCGT	ACCAATTATA	ACCGTCCGAC	TCGTTTTATT	10080
GCTCTTCAAG ACCGTAAACG CGGTGCTGCC CCAAAATCAA TCCAGTCAAG CGGTCTTCCA TTTGGTCAAT TTACAGCTGG CGCAAAACCA GCATCTAGCG AGGCAAATTG GTCCATTGGT GATATTGCTC TCCACAAGAA ATGGGGAGAG GGAACCGTTC TGGAAGTTTC AGGTAGCGGT GCTAGGCAGG AATTGAAAAT CAATTTCCCA GAAGTAGGTT TGAAAAAACT TTTAGCCAGT 104	AACGAAAT	CA	GTTCAGACTT	GCTTGAGTAT	CAAGGTCTGG	CTCGTCCTGC	AAATACAAGC	10140
TTTGGTCAAT TTACAGCTGG CGCAAAACCA GCATCTAGCG AGGCAAATTG GTCCATTGGT 103 GATATTGCTC TCCACAAGAA ATGGGGAGAG GGAACCGTTC TGGAAGTTTC AGGTAGCGGT 103 GCTAGGCAGG AATTGAAAAT CAATTTCCCA GAAGTAGGTT TGAAAAAACT TTTAGCCAGT 104	TTTAAGGC	'AT	CATATAGCAG	TGGTAGTATT	TCCTTTGGTC	AAGGTATGAG	TTTGGCTCAG	10200
GATATTGCTC TCCACAAGAA ATGGGGAGAG GGAACCGTTC TGGAAGTTTC AGGTAGCGGT 103 GCTAGGCAGG AATTGAAAAT CAATTTCCCA GAAGTAGGTT TGAAAAAACT TTTAGCCAGT 104	GCTCTTCA	AG	ACCGTAAACG	CGGTGCTGCC	CCAAAATCAA	TCCAGTCAAG	CGGTCTTCCA	10260
GCTAGGCAGG AATTGAAAAT CAATTTCCCA GAAGTAGGTT TGAAAAAACT TTTAGCCAGT 104	TTTGGTCA	AT	TTACAGCTGG	CGCAAAACCA	GCATCTAGCG	AGGCAAATTG	GTCCATTGGT	10320
	GATATTGC	TC	TCCACAAGAA	ATGGGGAGAG	GGAACCGTTC	TGGAAGTTTC	AGGTAGCGGT	10380
GTGGCTCCAA TTGAGAAAAA AATCTAATTT TCCATCCTTC TCACGAATAA TAAAGTGAGG 105	GCTAGGCA	.GG	AATTGAAAAT	CAATTTCCCA	GAAGTAGGTT	TGAAAAAACT	TTTAGCCAGT	10440
	GTGGCTCC	AA	TTGAGAAAAA	AATCTAATTT	TCCATCCTTC	TCACGAATAA	TAAAGTGAGG	10500

AGGATTTTTA	TGTACAGTAT	TTCATTCCAA	GAAGATTCAC	TATTACCAAG	AGAAAGGCTG	10560
GCCAAGGAAG	GAGTTGAAGC	GCTTAGTAAC	CAAGAGTTGC	TAGCTATTTT	ACTCAGGACA	10620
GGAACACGTC	AAGCTAGCGT	TTTTGAAATT	GCCCAAAAAG	TCTTGAACAA	TCTTTCAAGC	10680
CTAACGGATT	TGAAAAAAAT	GACCCTGCAG	GAATTGCAGA	GTTTGTCTGG	TATTGGGCGT	10740
GTTAAGGCCA	TAGAATTACA	AGCTATGATT	GAACTGGGGC	ATCGTATTCA	CAAACACGAG	10800
ACTCTTGAAA	TGGAAAGTAT	TCTCAGCAGT	CAAAAGTTGG	CCAAGAAGAT	GCAGCAGGAA	10860
TTAGGGGATA	AAAAACAAGA	GCACCTGGTG	GCACTCTATC	TCAATACTCA	AAATCAAATC	10920
ATCCATCAGC	AGACCATTTT	TATCGGGTCT	GTAACTCGTA	GTATCGCTGA	ACCGCGAGAG	10980
ATTCTTCACT	ATGCAATCAA	GCATATGGCG	ACTTCTCTTA	TCTTGGTCCA	CAATCATCCT	11040
TCAGGAGCGG	TAGCGCCTAG	CCAAAATGAT	GATCATGTCA	CTAAACTTGT	TAAAGAAGCC	11100
TGCGAATTGA	TGGGGATTGT	TCTCTTGGAC	CATTTGATTG	TCTCTCATTC	TAATTACTTT	11160
AGTTATCGTG	AAAAGACAGA	TTTAATCTAA	AGTTCATTAA	CGACATAGTC	AAAGAGTTTT	11220
TTATCTTTGG	GACGATTTTC	AAAAAGAAGT	TCTGGATGCC	ATTGGACACC	GAGAAAGGCG	11280
ACATCATCCG	TACTCATGAC	AGCCTCAATG	ATACCATCTT	TAGGATCATG	AGCCACAACT	11340
TTTAAATTTG	GTGCTAAGTC	CTTGATGCTC	TGGTGGTGGA	AGGAGTTGAT	ATGAGAGATT	11400
TCTCCATAGA	TTTCTTGGAG	AACGGTATCT	GGTTCTGTTA	CCAAGCGTTG	AGTTGTGTAC	11460
TCAACAGAAG	AATCCTGCCA	ATGGTCTTCG	ATATCTTGGT	ACAAAGTTCC	ACCCATGGCA	11520
ACGTTAAAGA	GTTGGGTACC	ACGGCAGACA	GAGAAAATGG	GCTTTTTCTG	TTTAATAGCT	11580
TCCTTGATGA	GGGCCAGTTC	GAAGATATCT	CTTTGAAGGT	GATAGTCATC	ACTATCAATG	11640
GTTTTGGGTT	CGCCATAAAA	TTTTGGATCG	ACATTTTGCC	CACCTGTCAA	GATGAGCTTG	11700
TCAATCAAAC	TGATATAGTG	GCAGGCCATT	TCTTGATCAC	CAATCGGTAG	GATGATGGGA	11760
ATCCCTCCAG	CATCTTTAAC	GCCTTCAACA	AAGCCTTTTG	CTGCGTAGCT	CATCATGATG	11820
TCATCATCTG	GATGAGTTTT	TTCGTTTCCT	GTAATCCCAA	TAACTGGTTT	TTTCATAAAA	11880
TGATTTTCGC	TTTCTAATCC	TCTTTTCGCA	TGAAGTAGAG	GAGGGTTTGG	AGTTCACTTG	11940
TCAAATCGAC	ATACTGAACG	ACCACGTCTT	TTGGTAAATG	CAGATGGACT	GGTGAAAAAC	12000
TGAGAATTCC	TTTCACACCA	GCATCAACCA	AGAGATTAGC	AACCTCTTGT	GACTTGACGC	12060
TGGGAACAGT	TAGGATAGCA	GTCTTCACAT	CAGCATCCTT	GATTTTATCC	TTGATCTGAG	12120
AAATCCCGTA	AATGGGAATC	CCGTCAGGAG	TTTGGGTACC	GACTTCAGGA	TGGTCGTCTA	12180
GGTCAAAGGC	CATGATAATC	TTCATCTTGT	TACGTTCGTG	GAAGCGGTAG	TGGAGAAGGG	12240

CATGGCCCAT	ATTTCCAATA	CCAACCAGCA	190 TGACATTGGT	AATAGAGTTG	TCATTGAGCA	12300
AATCGGCAAA	AAATGTCATT	AGTTTTTTGA	CATCATAGCC	AAAACCACGA	CGACCAAGTT	12360
САССААААТА	GGAAAAATCA	CGACGTACGG	TCGCTGAATC	AATACCGATA	GCCTCTGCAA	12420
TTTGCTTAGA	GTTGGCACGT	TCAATCTTTT	CTGCATGAAA	ТСТСТТАААА	ATTCGATAGT	12480
AGAGAGAGAG	TCTTTTTGCT	GTAGCTTTTG	GAATAGCAAA	CTGTTTATCT	TTCACAAAAT	12540
CACAACCTTT	СТАТТСТТСТ	ATTTTATAGA	AACATTGTGA	АААААТСААС	AAAAATAAGA	12600
AAAAACTAAG	АААААТСТТА	GTTTTGATGT	AAAAAATCTG	CATGAGATAG	AAAACGGTAG	12660
AGGTCTCCGA	CCAGCCCCTG	ATAAACTTTT	TTGCCCCTAA	AAGTCAGAGA	AGTCACATAA	12720
AGTGTATCTG	GTAAGGTTAC	ACATCCTGAC	AAAGTCAACA	TGAGAGCCTC	ATGATCCTCA	12780
TACTTGAGAG	TACGCTCTAC	ATGATAGCAG	TCCTTATAGG	TCAGTTCAAA	CATTTTGGCT	12840
CTATCTTTCC	GATTTTGTAA	AGACACCACG	TTCTACCAAG	CTATCCATGA	GGAAGTAGAA	12900
TTTTTCCTGA	TGAATATGGT	GGTCTTCTGA	TTTGAAAATA	TCAACTAGAC	GAAGGCCAAA	12960
CTTGTCAGTG	ATATTGATTT	TAGCCCCTGT	AAGTTCCTTG	TTAATGATGA	TTTTGAGTTG	13020
GAAGCCTTCA	CCGCTGTTTG	GCACTTTTTC	CAAAAGGCGA	GTCAGTTCAT	AGTTACCAAC	13080
CTTAGTTTCA	AAAAAGGTGT	TATCTTTGAG	GGTGAATTTT	TTAACAGAAG	GGCTAAGAGT	13140
GTAATCGTAA	CGACAATTTT	TTAACTGAAT	GATTTTTTCA	AATGCCATAT	GGCTAACCTC	13200
CGATAATTTC	TTTTAAGGTT	TTTGCGAGGG	TTTGTAGGTC	TTCAACGGTA	TTTTGTGGCG	13260
ACAAACTGAT	GCGAAGGGAT	TCCTTCAAGC	GTTCTGAATT	TGCGCCATAC	ATGGCTTCAA	13320
GAACATGGCT	GGATTGGACA	ACGCCTGCAG	TACAGGCTGA	GCCAGTAGAG	ATTGAAATTC	13380
CAGCTAAATC	TAGCCGAAGG	AGTAAGAGGT	CATTTTTCTG	ACCAGGAAAT	CCAATATTGA	13440
GAACATAAGG	GAGATGATGT	TTTCCTCTAT	TCAGGTAATA	CTGAATGCCC	TCCAGCTCTG	13500
CCAGAAAGGC	AGTTTCTAGA	TTTTGTACAT	GTTGAAAATG	TTCTTCTTGT	TTTTCTAGGT	13560
CTTCTTTTAG	GGCTGCAACC	ATGCCTACAA	TGGCAGGCAG	ATTTTCAGTT	CCTGCACGTT	13620
TTTTCTGTTC	CTGGTCTCCG	CCATGTAGAT	AGGAATCAAA	GTCCATGCTA	GATGCGTAGA	13680
GAAAACCGAT	TCCCTTAGGA	CCATGGAATT	TGTGGGCAGA	AGCAGTGAGA	AAATCAATGC	13740
CCAATTCTTC	TGAATGAATT	GGGATTTTAC	CAATAGCCTG	AACTGCATCA	ACATGATAGG	13800
CAGCAGGGTG	TTGCTTGAGT	ATTTGGCCAA	TTTCAGCGAT	GGGCAGTAGG	TTTCCTGTCT	13860
CATTATTGAC	AAACATGGTA	GAAACCAAAA	TCGTATCGTC	ACGTAAAGCC	TTTTGAATTT	13920
GCTGGGCTGT	GATTTCTTGA	TTTTCTGGCT	GGATAATGGT	TGCTTCAAAC	CCAAAGTGTT	13980
GAACCAAGTA	ATCAATTGTT	TCAAGGACAG	CATGGTGCTC	GATGGCAGTT	GTGATGATAT	14040

GTTTTCCTTG	TTCTTGGTGA	CGAAGACAGT	AGCCAATGAT	GGTAGTATTA	TTGCCTTCAG	14100
TCCCACCAGA	AGTGAAAAAG	ATATGTTGAG	GTTTTGTCCT	TAGTAACTGG	GCTAGTTCCT	14160
GACGGGCTTC	TCGCAAGAGT	TTGCCAGCTT	GACGACCATG	ACCATGAATA	CTAGAAGGAT	14220
TTCCGTGGGT	TTCTTGCATA	ACCTTGGTCA	TAGCTGAAAT	AGCAACTGCT	GACATAGGAG	14280
TCGTTGCAGC	ATTGTCCAAA	TAAATCAAAG	AATCACCTTA	TTTCTTTTTA	TTGTAGGCAA	14340
AGAGTGGGCT	GACTGGTTTT	CTTTCGTGAA	TACGGACGAT	AGCATCACCA	ATTAACTCAC	14400
TAGCAGTGAT	GTAGCATACA	TTTTTAGGAG	TTTTTTCTTT	TGTTGCTACT	GAATCAGTCA	14460
CAAGAATTTC	TTTAATATTA	GTATTGTCAA	GAAGCTCAGC	AGCTCCCTCG	ACGAAGAGAC	14520
CGTGGCTAGA	AACAGCATAA	ATTTCTGTAG	CTCCTTCACG	TTCAACGATT	TTAGAAGCTT	14580
CAGAGAAGGT	ACGTCCTGTA	TTTAAAATAT	CATCAATCAA	GATAGCTTTC	TTACCTTCAA	14640
CATCACCAAT	AATATAACCT	TCGTTACGAG	TTGCATCGTC	TTGAGGGTAG	TCGATAATGG	14700
CGATAGGAGC	ATCAAGATAT	TCAGCCAGGC	TACGCGCACG	TTTGACACCT	GAATTTTTAG	14760
GGCTAACGAC	AACAACATCT	GAACCAAGCA	ATCCTTTATC	GCAGTAATGT	TTTGCGAATA	14820
GGGGAACAGT	GAAAAGATTA	TCCACTGGAA	TATCAAAGAA	ACCTTGAACC	TGAACGGCAT	14880
GCAAATCAAG	AGTCAGGATA	CGATCAACTC	CAGCCTTAAC	CAGCATATTG	GCAACTAGTT	14940
TTGCTGTAAG	TGGCTCACGA	GGACAAGCAA	TGCGGTCTTG	ACGTGCATAG	CCAAAATATG	15000
GAAGGACAAC	GTTGATACTG	TGGGCACTTG	CACGCACACA	AGCATCGACC	ATGATTAACA	15060
ATTCCATTAG	GTGGTTGTTG	ACAGGGAAAC	TTGTTGATTG	GATGATGTAA	ACATCATAAC	15120
CACGGACACT	TTCTTCGATA	TTTACTTGGA	TTTCTCCGTC	TGAAAATTGA	CGTGATGATA	15180
GTTTTCCAAG	TGGGACACCA	ACAGCTTGGG	CAATTTTTTG	TGCAATCTCT	TGGTTAGAGT	15240
TGAGTGCGAA	AAGTTTCATG	TTTTTTCTAT	CTGACATTAT	AGACCGTCCT	CTGTAAACTT	15300
TATAAATCCT	AGTTATATTT	ACCTTACATA	TATGAACTGG	GATTTGTGTA	TTTTTATCTT	15360
TTCTATTTTA	CCAAAAAATG	GAGATTATTT	CAGCTATTTT	TCATACTTTT	GACAAATCGA	15420
ACCAATTTTG	AAGGAGCTTT	TTGATAGGAA	ATCTGATTTT	TCTCTAAAAA	TTGTCGAAAA	15480
TCCTGTTTGC	CTTGCTCATG	ATTTTCCACT	TCAAGCTCCA	ATTCGTAATC	TGTTATATCA	15540
AAGTATCGGC	TCTGATCCAG	TGCCATGAGA	CCAATAGCTG	TTTTCATTTC	ATAGCGAAGC	15600
GTTGTTAGAC	AACCAAGAAC	CTGCCAGTTC	TTACTTTGGA	TACCATGTTT	CGCCAATTCA	15660
TCCAGTACTA	GCCCTTGAGG	AAGTTCTTCC	TTACTCAGAT	AGTTCTCAGC	ATCTTTTAGT	15720
TGCAATTTTT	GGTTGTATTC	CATGTTTCCA	ACACTCTGCG	GGACTTTGAG	TGTCAACTCA	15780

			192			
GCCCAGTCTT	CAAAGGTTCG	AATGCGCATA		TTTCTCGCAG	TTCAAAATCA	15840
GGCGTGTCGA	TGTAGTAATT	TGTTTGAAGA	ACAGGAGTGA	CACCTGTGAA	CTGGTCTTTT	15900
AGACGATTGT	ATTCATCTTT	TTTCAATAGT	GTTTTCAATT	CAATTTCTAA	ATGTTTCATT	15960
TTTCTTACCT	TTTTTTATCG	TTGAAAGCGG	ATTTATGGTA	TAATAAGCAT	TGTATTTATT	16020
GTATATGAAT	CTGGAGAAAA	AATCAAAGAT	ATTTTTGACG	GATAATATGA	GAACAAGGGA	16080
GAATATATGA	CCTTAGAATG	GGAAGAATTT	CTAGATCCTT	ACATTCAAGC	TGTTGGTGAG	16140
TTAAAGATTA	AACTTCGTGG	TATTCGTAAG	CAATATCGTA	AGCAAAATAA	GCATTCTCCA	16200
ATTGAGTTTG	TGACCGGTCG	AGTCAAGCCA	ATTGAGAGCA	TCAAAGAAAA	AATGGCTCGT	16260
CGTGGCATTA	CTTATGCGAC	CTTGGAACAC	GATTTGCAGG	ATATTGCTGG	CTTACGTGTG	16320
ATGGTTCAGT	TTGTAGATGA	CGTCAAGGAA	GTAGTGGATA	TTTTGCACAA	GCGTCAGGAT	16380
ATGCGAATCA	TACAGGAGCG	AGATTACATT	ACTCATAGAA	AAGCATCAGG	CTATCGTTCC	16440
TATCATGTGG	TAGTAGAATA	TACGGTTGAT	ACCATCAATG	GAGCTAAGAC	TATTTTGGCA	16500
GAAATTCAAA	TTCGTACTTT	GGCCATGAAT	TTCTGGGCAA	CGATAGAACA	TTCTCTCAAC	16560
TACAAGTACC	AAGGGGATTT	CCCAGATGAG	ATTAAGAAGC	GACTGGAAAT	TACAGCTAGA	16620
ATCGCCCATC	AGTTGGATGA	AGAAATGGGT	GAAATTCGTG	ATGATATCCA	AGAAGCCCAG	16680
GCACTTTTTG	ATCCTTTGAG	TAGAAAATTA	AATGACGGTG	TAGGAAACAG	TGACGATACA	16740
GATGAAGAAT	ACAGGTAAAC	GAATTGATCT	GATAGCCAAT	AGAAAACCGC	AGAGTCAAAG	16800
GGTTTTGTAT	GAATTGCGAG	ATCGTTTGAA	GAGAAATCAG	TTTATACTCA	ATGATACCAA	16860
TCCGGATATT	GTCATTTCCA	TTGGCGGGGA	TGGTATGCTC	TTGTCGGCCT	TTCATAAGTA	16920
CGAAAATCAG	CTTGACAAGG	TCCGCTTTAT	CGGTCTTCAT	ACTGGACATT	TGGGCTTCTA	16980
TACAGATTAT	CGTGATTTTG	AGTTGGACAA	GCTAGTGACT	AATTTGCAGC	TAGATACTGG	17040
GGCAAGGGTT	TCTTACCCTG	TTCTGAATGT	GAAGGTCTTT	CTTGAAAATG	GTGAAGTTAA	17100
GATTTTCAGA	GCACTCAACG	AAGCCAGCAT	CCGCAGGTCT	GATCGAACCA	TGGTGGCAGA	17160
TATTGTAATA	AATGGTGTTC	CCTTTGAACG	TTTTCGTGGA	GACGGGCTAA	CAGTTTCGAC	17220
ACCGACTGGT	AGTACTGCCT	ATAACAAGTC	TCTTGGCGGT	GCTGTTTTAC	ACCCTACCAT	17280
TGAAGCTTTG	CAATTAACGG	AAATTGCCAG	CCTTAATAAT	CGTGTCTATC	GAACACTGGG	17340
CTCTTCCATT	ATTGTGCCTA	AGAAGGATAA	GATTGAACTT	ATTCCAACAA	GAAACGATTA	17400
TCATACTATT	TCGGTTGACA	ATAGCGTTTA	TTCTTTCCGT	AATATTGAGC	GTATTGAGTA	17460
TCAAATCGAC	CATCATAAGA	TTCACTTTGT	CGCGACTCCT	AGCCATACCA	GTTTCTGGAA	17520
CCGTGTTAAG	GACGCCTTTA	TCGGCGAGGT	GGATGAATGA	GGTTTGAATT	TATCGCAGAT	17580

GAACATGTCA	AGGTTAAGAC	CTTCTTAAAA	AAGCACGAGG	TTTCTAAGGG	ATTGCTGGCC	17640
AAGATTAAGT	TTCGAGGTGG	AGCTATTCTG	GTCAATAATC	AACCGCAAAA	TGCAACGTAT	17700
CTATTGGACG	TTGGAGACTA	CGTTACCATT	GACATTCCCG	CTGAGAAAGG	CTTTGAAACC	17760
TTGGAGGCTA	TTGAGCTTCC	ATTAGATATT	CTCTATGAGG	ATGACCACTT	TCTAGTCTTG	17820
AATAAACCCT	ATGGAGTGGC	TTCTATTCCT	AGTGTCAATC	ACTCTAATAC	CATTGCCAAT	17880
TTTATCAAGG	GTTACTATGT	CAAGCAAAAT	TATGAAAATC	AGCAGGTTCA	CATTGTTACC	17940
AGACTAGATA	GGGATACTTC	TGGCTTGATG	CTCTTTGCCA	AGCACGGTTA	TGCCCATGCA	18000
CGATTAGACA	AGCAGTTGCA	GAAGAAATCT	ATCGAGAAAC	GCTACTTTGC	TTTGGTTAAG	18060
GGAGATGGAC	ATTTGGAGCC	AGAAGGGGAA	ATTATTGCTC	CGATTGCGCG	TGATGAAGAT	18120
TCCATTATTA	CCAGACGAGT	GGCTAAAGGC	GGAAAGTATG	CCCATACTTC	ATACAAGATT	18180
GTAGCTTCTT	ATGGAAATAT	TCACTTGGTC	TATATTCACC	TGCACACTGG	TCGAACCCAT	18240
CAAATCCGAG	TCCATTTTTC	TCATATCGGT	TTTCCTTTGC	TGGGAGATGA	TTTGTATGGT	18300
GGTAGTCTGG	AAGATGGTAT	TCAACGTCAG	GCTCTGCATT	GCCATTACCT	ATCCTTTTAT	18360
CATCCATTTT	TAGAGCAAGA	CTTGCAGTTA	GAAAGTCCCT	TGCCGGATGA	TTTTAGTAAC	18420
CTTATTACCC	AGTTATCAAC	TAATACTCTA	TAAAAACTGT	CTCAGAGTAT	AATTATTATC	18480
TTAAAGGAGA	AAACTCATGG	AAGTTTTTGA	AAGTCTCAAA	GCCAACCTTG	TTGGTAAAAA	18540
TGCTCGTATC	GTTCTCCCTG	AAGGGGAAGA	GCCTCGTATT	CTTCAAGCAA	CAAAACGCTT	18600
AGTAAAAGAA	ACAGAAGTGA	TTCCTGTTTT	GCTTGGAAAT	CCTGAAAAAA	ТТААААТТТА	18660
TCTTGAAATT	GAAGGAATCA	TGGATGGTTA	TGAGGTCATC	GACCCTCAAC	ATTATCCTCA	18720
ATTTGAAGAA	ATGGTTTCTG	CCTTGGTGGA	GCGTCGCAAG	GGCAAAATGA	CTGAAGAAGA	18780
TGTACGCAAG	GTTTTGGTTG	AAGATGTCAA	CTACTTTGGT	GTGATGTTGG	TTTACTTGGG	18840
CTTGGTTGAT	GGAATGGTGT	CAGGAGCGAT	TCACTCAACA	GCTTCAACAG	TTCGCCCAGC	18900
TCTACAAATC	ATCAAAACTC	GTCCAAATGT	AACTCGTACT	TCAGGAGCCT	TCCTCATGGT	18960
TCGTGGTACG	GAACGTTACC	TATTTGGAGA	CTGTGCCATT	AACATCAATC	CAGATGCAGA	19020
AGCCTTGGCT	GAAATTGCCA	TCAACTCAGC	AATCACAGCT	AAGATGTTTG	GCATCGAACC	19080
TAAAATTGCC	ATGTTGAGCT	ATTCTACTAA	AGGTTCAGGG	TTTGGTGAAA	GCGTTGATAA	19140
GGTCGTTGAA	GCAACTAAAA	TTGCTCACGA	CTTGCGTCCT	GACCTTGAAA	TCGATGGTGA	19200
GTTGCAATTT	GATGCAGCCT	TTGTTCCTGA	AACTGCAGCT	CTGAAAGCTC	CTGGAAGTAC	19260
GGTAGCTGGT	CAAGCAAATG	TCTTCATCTT	CCCAGGTATC	GAGGCAGGAA	ATATTGGTTA	19320

			194			
CAAGATGGCT	GAACGCCTGG	GTGGCTTTGC	GGCTGTAGGA	CCTGTTTTGC	AAGGTTTAAA	19380
CAAGCCAGTT	AATGATCTTT	CTCGTGGATG	TAATGCAGAT	GATGTTTACA	AGTTGACCCT	19440
CATCACAGCA	GCTCAAGCAG	TTCATCAATA	GTGAAAACTA	TAAAGTGATA	TACTATGCTA	19500
TACTGTAGTT	ATGAAACTAT	GTACGAAAAG	CACTGCCATT	AATTCCTGAG	ААСТАААТТА	19560
CTGATTGGTG	TCAAAAAGGA	AAACTTCCAA	GCGATGATAT	CCTGTCTATA	CACGACCTAT	19620
AGAAATCTGT	AATATACATA	TCCGTAAAAC	GATAAATTCC	CTTTTTGATT	TTAAATGAGT	19680
ATGAAAAGAG	AATTTTTTGG	CTCTTTGTCA	ACTGTAGTGG	GTTGAAGAAA	AGCTAAGCTC	19740
GAGAAAGGAC	AAATTTCATC	CTTTCTTTTT	TGATATTCAG	AGCGATAAAA	ATCCGTTTTT	19800
IGAAGTTTTC	AAAGTTCCGA	AAACCAAAGG	CATTGCGCTT	GATAAGTTTG	ATGAGATTAT	19860
rggtcgcttc	CAGTTTGGCG	TTAGAATAGT	GTAGTTGAAG	GGCGTTGATA	ATCTTTTCTT	19920
PATCTTTGAG	GAAGGTTTTA	AAGACAGTCT	GAAAAATAGG	ATGAACCTGC	TTAAGATTGT	19980
CCTCAATAAG	TCCGAAAAAT	TTCTCTGGTT	CCTTATTCTG	GAAGTGAAAA	AGCAAGAGTT	20040
GATAGAGCTG	ATAGTGGTGT	TTCAAGTCTT	CCGAATAGCT	CAAAAGCTTG	TTTAAAATCT	20100
CTTTATTGGT	TAAGTGCATA	CGAAAAATAG	GACGATAAAA	TCGCTTATCA	CTCAGTTTAC	20160
GCTATCCTG	TTGAATGAGT	TTCCAGTAGC	GCTTGATAG			20199

(2) INFORMATION FOR SEQ ID NO: 7:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 19702 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:

60	CACAATAAAA	ATGTTATACC	TTTTCAAACG	TTTACTCTAT	TCAGCGGATA	ACCCGATGTA
120	TTTACCTGAT	CGCGTTCAAC	ТАТТАТТААА	CCTTTGCTTT	CCTAAGGTCT	GAAAAAAGAC
180	AACAGTAACT	CATCGATAAG	TTAGGTTTAC	CCAAACTTTT	GAGCTGAAGC	TTCAAAGCAC
240	ACGGTTGTTT	TCGCGTGTGA	GTTTGGTTCA	GGCACGTTTT	TTGGTTTTAC	TTTTGAAGGT
300	TTCCTCCTAT	CCATTGTGTT	CATACTTTAG	TGTAAAGTAA	TCTTACGACC	CCTGATACAG
360	ACATTTTCTT	CTATGTTATC	ACATACCGTA	TGCTAGCACC	ATAGCGGATG	TAGATCTAAT
420	CTTGCGTGAC	TAAATCAGGT	ATTTGTGTCT	AAGATTTTTT	AGGGAATTGG	GTTTTTTGCA
480	ATTATGTGTA	CAGAATTAAA	AACAGAACAC	ATCGTTGATT	TCCACATGCC	ATTTCTGCTC
540	CCACAGCTCA	AGTCCAAATC	ATAGCCGTCA	AGCTAAGGGT	CTCTAACTGC	TAAAAATCAT

TCTATCGATT	TTCTTACAAC	AATATCTGAA	тссааатаса	GTACACGAGA	CTCGCTTACA	600
TACTTTGGAA	TAAAATACCT	AAAAAAGCCG	CATATGAAAG	TCCCTCAAAG	GGGAGACGAT	660
AACCTTTCAG	AATATTACTG	TCAATCTAAA	CATTCACAAT	CTCACTATTC	AAAGTCTCTA	720
GTCTTTTTC	CATCAATTGG	AACCATTCTC	GCGGAAGGTC	ATCATTAAAA	ACATAAAACT	780
TAAGATTATA	ATGATGAACA	CAAAGAGATT	TTATTGTTGT	TTCAACTTTA	TCCATATAAG	840
CATTATCTGC	ACCTAAGACA	ATCGCTTTTT	TCTCTTCTTT	CACTTTTTAT	CTCATTTCTT	900
TTTATTCCCA	TCATATTATT	CCCATCATAT	GTTTCCCATC	ATATGTTTCT	ACGTAACCAT	960
TATTTTCGCC	TATTCGTTCG	TAAAACCATA	CCAGTGGAGA	TTTTAGATGA	AGTCCCATTA	1020
CGGTTTACAA	TTTTTACATT	ACGACACGGA	GTTTTACAAA	TCGATTTCAT	TTGCCAAACG	1080
TAGTTAGTGA	GGCAGTTAGC	TAGTTCGCCA	AATAGCGACT	AGCGTCCAAC	AATTTGGAAC	1140
TTTAGTTCCA	ATTGTTGGTA	CTGAGTCACA	TCTTCTCCTC	TAACTCTACG	TCTGGATACT	1200
TGTCCGCAAA	CCAGCGGAGG	GCAAAGTCAT	TTTCAAAGAG	AAAGACTGGT	TGGTCAAAAC	1260
GGTCTTTGGC	TAAGATATTG	CGACTTGACG	ACATCCGTTC	ATCCAAGTCC	TCAGGCTTGA	1320
TCCAACGAAC	GGTCTTTTTA	CCCATTGGGT	TCATAACTAC	TTCCGCATTG	TACTCGCCTT	1380
CCATGCGGTG	TTTAAAGACT	TCAAACTGGA	GTTGACCTAC	AGCGCCTAGC	ATGTACTCAC	1440
CTGTTTGGTA	ATTCTTATAA	AGCTGAACGG	CTCCTTCTTG	CACCAATTGC	TCAATCCCCT	1500
TGTGGAAGGA	TTTTTGCTTC	ATAACATTCT	TAGCAGAAAC	TTTCATGAAA	ATCTCAGGTG	1560
TAAAGGTTGG	CAGGGGTTCA	AATTCAAACT	TGTTTTTTCC	AACCGTCAAG	GTATCCCCAA	1620
CCTGATAAGT	ACCGGTATCG	TAAACCCCGA	TAATATCACC	TGCCACGGCA	TTGGTCACAT	1680
TCTCACGACT	CTCCGCCATA	AACTGGGTAA	CATTAGATAG	TTTAGCCCCC	TTACCAGTAC	1740
GAGGGAGATT	GACACTCATG	CCGCGCTCAA	ATTCGCCAGA	TACGATACGG	ACAAAGGCAA	1800
TACGGTCACG	GTGACGAGGG	TCCATGTTGG	CTTGGATTTT	AAAGACAAAG	CCTGAGAAAT	1860
CCTTGTCATA	AGGATCCACA	ATTTCACCGT	CTGTTTTCTT	GTGACCATGT	GGTTCTGGAG	1920
CAAACTTGAG	GAAGGTTTCA	AGGAAGGTCT	GCACACCAAA	GTTTGTCAGG	GCTGAACCGA	1980
AAAAGACAGG	CGTCAATTCT	CCAGCCAGAA	TAGCTTCCTC	TGAAAACTCA	TTCCCGGCTT	2040
CATTTAAAAG	CTCAATGTCA	TCCTTGACTT	GCTCGTAGAA	AGGATTGCTA	CCAAAGAGTT	2100
TGTCCCCGTC	TTCTAGACTG	GCAAAACGCT	CATCCCCTTT	GTAAAGCTCT	AAACGTTGGT	2160
TATAGAGGTC	ATACAAGCCC	TCAAAGGCTT	TCCCCATCCC	GATAGGCCAG	TTCATAGGGT	2220
AGCTAGCAAT	GCCCAAGATT	TCTTCCAATT	CTTGCAAGAG	ATCCAAAGGC	TCACGACCGT	2280

			196			
CACGGTCCAG	CTTGTTCATA	AAGGTAAAGA		ACGATGTTTC	ACAACCTCAA	2340
ACAATTTCTT	GGTTTGAGCC	TCGATCCCCT	TGGCAGAGTC	CACGACCATG	ACCGCAGCAT	2400
CCACCGCCAT	CAAGGTACGA	TAGGTATCTT	CTGAGAAGTC	CTCGTGCCCT	GGCGTGTCTA	2460
AGATATTCAC	GCGCTTGCCG	TCGTAGTCAA	ATTGCATAAC	AGATGAAGTA	ACAGAAATCC	2520
CACGTTGCTT	CTCGATATCC	ATCCAGTCAG	ATTTAGCAAA	AGTCCCTGTT	TTCTTCCCTT	2580
TTACCGTACC	AGCCTCACGA	ATCTCACCCC	CAAAGTAGAG	TAACTGCTCA	GTGATGGTTG	2640
TTTTCCCCGC	GTCCGGGTGG	GAGATAATGG	CAAAGGTACG	ACGTTTCTTA	ATTTCTTCTT	2700
GAATATTCAT	AAGTTCTCTT	TCTTTGATTC	TCTATTTTC	TTGTTTCAAT	AGCTGAGAAT	2760
GATTTTTACA	TTGGATTTTA	CCATTCCTTT	CAACACTCCA	TTATATCGGA	TTTTAGCATT	2820
TTTTTCAATT	TCTATTTCTT	TTCACTTCCC	CCTCCCTTAT	TTATAGGAAA	ATATGGTAAA	2880
ATAGAACAGA	СТАААААТСА	TCATTTCACG	AAAGGATGCA	AGATGAAAAT	TACGCAAGAA	2940
GAGGTAACAC	ACGTTGCCAA	TCTTTCAAAA	TTAAGATTCT	CTGAAGAAGA	AACTGCTGCC	3000
TTTGCGACCA	CCTTGTCTAA	GATTGTTGAC	ATGGTTGAAT	TGCTGGGCGA	AGTTGACACA	3060
ACTGGTGTCG	CACCTACTAC	GACTATGGCT	GACCGCAAGA	CTGTACTCCG	CCCTGATGTG	3120
GCCGAAGAAG	GAATAGACCG	TGATCGCTTG	TTTAAAAACG	TACCTGAAAA	AGACAACTAC	3180
TATATCAAGG	TGCCAGCTAT	CCTAGACAAT	GGAGGAGATG	CCTAATGACT	TTTAACAATA	3240
AAACTATTGA	AGAGTTGCAC	AATCTCCTTG	TCTCTAAGGA	AATTTCTGCA	ACAGAATTGA	3300
CCCAAGCAAC	ACTTGAAAAT	ATCAAGTCTC	GTGAGGAAGC	CCTCAATTCA	TTTGTCACCA	3360
TCGCTGAGGA	GCAAGCTCTT	GTTCAAGCTA	AAGCCATTGA	TGAAGCTGGA	ATTGATGCTG	3420
ACAATGTCCT	TTCAGGAATT	CCACTTGCTG	TTAAGGATAA	CATCTCTACA	GACGGTATTC	3480
TCACAACTGC	TGCCTCAAAA	ATGCTCTACA	ACTATGAGCC	AATCTTTGAT	GCGACAGCTG	3540
TTGCCAATGC	AAAAACCAAG	GGCATGATTG	TCGTTGGAAA	GACCAACATG	GACGAATTTG	3600
CTATGGGTGG	TTCAGGTGAA	ACTTCACACT	ACGGAGCAAC	TAAAAACGCT	TGGAACCACA	3660
GCAAGGTTCC	TGGTGGGTCA	TCAAGTGGTT	CTGCCGCAGC	TGTAGCCTCA	GGACAAGTTC	3720
GCTTGTCACT	TGGTTCTGAT	ACTGGTGGTT	CCATCCGCCA	ACCTGCTGCC	TTCAACGGAA	3780
TCGTTGGTCT	CAAACCAACC	TACGGAACAG	TTTCACGTTT	CGGTCTCATT	GCCTTTGGTA	3840
GCTCATTAGA	CCAGATTGGA	CCTTTTGCTC	CTACTGTTAA	GGAAAATGCC	CTCTTGCTCA	3900
ACGCTATTGC	CAGCGAAGAT	GCTAAAGACT	CTACTTCTGC	TCCTGTCCGC	ATCGCCGACT	3960
TTACTTCAAA	AATCGGCCAA	GACATCAAGG	GTATGAAAAT	CGCTTTGCCT	AAGGAATACC	4020
TAGGCGAAGG	AATTGATCCA	GAGGTTAAGG	AAACAATCTT	AAACGCGGCC	AAACACTTTG	4080

AAAAATTGGG	TGCTATCGTC	GAAGAAGTCA	GCCTTCCTCA	CTCTAAATAC	GGTGTTGCCG	4140
TTTATTACAT	CATCGCTTCA	TCAGAAGCTT	CATCAAACTT	GCAACGCTTC	GACGGTATCC	4200
GTTACGGCTA	TCGCGCAGAA	GATGCAACCA	ACCTTGATGA	AATCTATGTA	AACAGCCGAA	4260
GCCAAGGTTT	TGGTGAAGAG	GTAAAACGTC	GTATCATGCT	GGGTACTTTC	AGTCTTTCAT	4320
CAGGTTACTA	TGATGCCTAC	TACAAAAAGG	CTGGTCAAGT	CCGTACCCTC	ATCATTCAAG	4380
ATTTCGAAAA	AGTCTTCGCG	GATTACGATT	TGATTTTGGG	TCCAACTGCT	CCAAGTGTTG	4440
CCTATGACTT	GGATTCTCTC	AACCATGACC	CAGTTGCCAT	GTACTTAGCC	GACCTATTGA	4500
CCATACCTGT	AAACTTGGCA	GGACTGCCTG	GAATTTCGAT	TCCTGCTGGA	TTCTCTCAAG	4560
GTCTACCTGT	CGGACTCCAA	TTGATTGGTC	CCAAGTACTC	TGAGGAAACC	ATTTACCAAG	4620
CTGCTGCTGC	TTTTGAAGCA	ACAACAGACT	ACCACAAACA	ACAACCCGTG	ATTTTTGGAG	4680
GTGACAACTA	ATGAACTTTG	AAACAGTCAT	CGGACTTGAA	GTCCACGTAG	AGCTCAACAC	4740
CAATTCAAAA	ATCTTCTCAC	CTACTTCTGC	CCACTTTGGA	AATGACCAAA	ATGCCAACAC	4800
TAACGTGATT	GACTGGTCTT	TCCCAGGAGT	TCTACCAGTT	CTCAATAAAG	GGGTTGTTGA	4860
TGCCGGTATC	AAGGCTGCTC	TTGCCCTCAA	CATGGACATC	CACAAAAAGA	TGCACTTTGA	4920
CCGCAAGAAC	TACTTCTATC	CTGATAACCC	CAAAGCCTAC	CAAATTTCTC	AGTTTGATGA	4980
ACCAATCGGA	TATAATGGCT	GGATTGAAGT	CAAACTAGAA	GACGGTACGA	CCAAGAAAAT	5040
CGGTATCGAA	CGTGCCCACC	TAGAGGAAGA	CGCTGGTAAA	AACACCCATG	GTACAGATGG	5100
CTACTCTTAT	GTTGACCTCA	ACCGCCAAGG	GGTTCCCTTG	ATTGAGATTG	TATCTGAGGC	5160
AGATATGCGT	TCTCCTGAAG	AAGCCTATGC	TTATCTGACA	GCCCTCAAGG	AAGTTATCCA	5220
GTACGCTGGC	ATTTCTGACG	TTAAGATGGA	GGAAGGTTCG	ATGCGTGTGG	ATGCCAACAT	5280
CTCCCTTCGT	CCTTATGGTC	AAGAGAAATT	CGGTACCAAG	ACTGAATTGA	AGAACCTCAA	5340
CTCCTTCTCA	AACGTTCGTA	AAGGTCTTGA	ATACGAAGTC	CAACGCCAGG	CTGAAATTCT	5400
TCGCTCAGGT	GGTCAAATCC	GCCAAGAAAC	ACGCCGTTAC	GATGAAGCGA	ATAAAGCAAC	5460
CATCCTCATG	CGTGTCAAGG	AAGGGGCTGC	TGACTACCGC	TACTTCCCAG	AACCAGACCT	5520
ACCCCTCTTT	GAAATTTCTG	ACGAGTGGAT	TGAGGAAATG	CGGACTGAGT	TGCCAGAGTT	5580
TCCAAAAGAA	CGTCGTGCGC	GTTATGTATC	TGACCTTGGT	TTATCAGACT	ACGATGCTAG	5640
TCAGTTGACT	GCTAATAAAG	TCACTTCTGA	CTTCTTTGAA	AAAGCTGTTG	CCCTAGGTGG	5700
TGATGCCAAA	CAAGTCTCTA	ACTGGCTCCA	AGGGGAAGTC	GCTCAGTTCT	TGAATGCTGA	5760
AGGTAAAACA	CTGGAACAAA	TCGAATTGAC	ACCAGAAAAC	TTGGTTGAAA	TGATTGCCAT	5820

CATCGAAGAC	GGTACTATTT	CATCTAAGAT	198 TGCCAAGAAA	GTCTTTGTCC	ATCTAGCTAA	5880
AAATGGCGGT	GGCGCGCGTG	AATACGTGGA	AAAAGCAGGT	ATGGTTCAAA	TTTCAGATCC	5940
AGCTATCTTG	ATCCCAATCA	TCCACCAAGT	CTTTGCCGAT	AACGAAGCTG	CTGTTGCCGA	6000
CTTCAAGTCA	GGCAAACGTA	ACGCCGACAA	GGCtTTACAG	GATTCCTTAT	GAAGGCAACC	6060
AAAGGCCAAG	CCAACCCACA	AGTTGCCCTT	AAACTACTTG	CACAGGAATT	GGCGAAGTTG	6120
AAAGAAAACT	AGACAGAACA	AAACCAGCCC	TAAGGTTGGT	TTTTTCTTCT	CTACCAACTC	6180
ССААТААСТА	TTTTGGCTTT	ATTTCCAGAG	TATTTTATGG	TAAAATGAAG	AGTAATAATA	6240
TTTATTAAAG	AGGTAAAAAC	ATGATTGAAG	CAAGTACCTT	AAAAGCTGGT	ATGACCTTTG	6300
AAACAGCTGA	CGGCAAATTG	ATTCGCGTTT	TGGAAGCTAG	TCACCACAAA	CCAGGTAAAG	6360
GAAACACGAT	CATGCGTATG	AAATTGCGTG	ATGTCCGTAC	TGGTTCTACA	TTTGACACAA	6420
GCTACCGTCC	AGAGGAAAAA	TTTGAACAAG	CTATTATCGA	GACTGTCCCA	GCTCAATACT	6480
TGTACAAAAT	GGATGACACA	GCATACTTCA	TGAATACAGA	AACTTATGAC	CAATACGAAA	6540
TCCCTGTAGT	CAATGTTGAA	AACGAATTGC	TTTACATCCT	TGAAAACTCT	GATGTGAAAA	6600
TCCAATTCTA	CGGAACTGAA	GTGATCGGTG	TCACCGTTCC	TACTACTGTT	GAGTTGACAG	6660
TTGCTGAAAC	TCAACCATCT	ATCAAAGGTG	CTACTGTTAC	AGGTTCTGGT	AAACCAGCAA	6720
CGATGGAAAC	TGGACTTGTC	GTAAACGTTC	CAGACTTCAT	CGAAGCAGGA	CAAAAACTCG	6780
TTATCAACAC	TGCAGAAGGA	ACTTACGTTT	CTCGTGCCTA	ATCTCTAGAA	AGAGGTCATT	6840
CTATGGGAAT	TGAAGAACAA	CTTGGCGAAA	TCGTTATCGC	CCCACGTGTA	CTTGAAAAAA	6900
TCATTGCTAT	CGCTACTGCA	AAGGTAGAGG	GTGTTCACTC	TTTTTCAAAC	AGATCAGTGT	6960
CTGATACCCT	TTCAAAACTT	TCACTCGGCC	GTGGCATTTA	TCTTAAAAAC	GTGGACGAAG	7020
AACTCACAGC	AGATATCTAT	CTCTACCTTG	AGTACGGAGT	AAAAGTTCCT	AAGGTAGCGG	7080
TTGCTATCCA	GAAAGCTGTC	AAAGATGCCG	TCCGTAATAT	GGCTGATGTA	GAACTCGCTG	7140
СТАТСААТАТ	TCACGTTGCA	GGTATCGTCC	CAGATAAAAC	ACCAAAACCA	GAATTGAAAG	7200
ATCTATTTGA	CGAGGACTTC	CTCAATGACT	AGTCCACTAT	TAGAATCTAG	ACGCCAACTC	7260
CGTAAATGCG	CTTTTCAAGC	TCTCATGAGC	CTTGAGTTCG	GTACGGATGT	CGAAACTGCT	7320
TGTCGTTTCG	CCTATACTCA	TGATCGTGAA	GATACGGATG	TACAACTTCC	AGCCTTTTTG	7380
ATAGACCTCG	TTTCTGGTGT	TCAAGCTAAA	AAGGAAGAAC	TAGATAAGCA	AATCACTCAG	7440
CATTTAAAAG	CAGGTTGGAC	CATTGAACGC	TTAACGCTCG	TGGAGAGAAA	CCTCCTTCGC	7500
TTGGGAGTCT	TTGAAATCAC	TTCATTTGAC	ACTCCTCAGC	TGGTTGCTGT	TAATGAAGCT	7560
ATCGAGCTTG	CAAAGGACTT	CTCCGATCAA	AAATCTGCCC	GTTTTATCAA	TGGACTGCTC	7620

AGCCAGTTTG	TAACAGAAGA	ACAATAAGGC	TCTTTGTCAA	CTGTAGTGGG	TTGAAAAAA	7680
GCTAAGCTCG	AGAAAGGACA	AATTTCGTCC	TTTCTTTTT	GATGTTCAAA	GCGATAAAAA	7740
TCCGTTTTTT	GAAGTTTTCA	AAGTTTCGAA	AACCAAAGGC	ATTGCGCTTG	ATAAGTTTGA	7800
TGAGATTATT	GGTCGCTTCC	AGTTTGGCAT	TAGAATAGTG	TAGTTGAAGG	GCGTTGACAA	7860
TCTTTTCTTT	ATCTTTGAGG	AAGGTTTTAA	AGACAGTCTG	AAAAATAGGA	TGAGCCTGCT	7920
TAAGATTGTC	CTCAATAAGT	CCGAAAAATT	TCTCTGGTTC	CTTATTCTGG	AAGTGAAACA	7980
GCAAGAGCTG	ATAGAGCTGA	TAGTGGTGTT	TCAAGTCTTG	TGAATGGCTC	AAAAGCTTGT	8040
CTAAAATCTC	TTTATTGGTT	AAGTGCATAC	GAAAAGTAGG	ACGATAAAAT	CGCTTATCAC	8100
TCAGTCTACG	GCTATCCTGT	TGAATGAGTT	TCCAGTAGCG	CTTGATATCC	TTGTATTCAT	8160
GGGATTTTCG	ATGAAACTGA	TTCATGATTT	GGACACGCAC	ACGACTCATG	GCACGGCTAA	8220
GATGTTGTAC	AATGTGAAAG	CGATCAAGAA	CGATTTTAGC	ATTCGGGAGT	GAAACAGTCT	8280
GGGAGACTGT	TTCAGCCTGA	GCCTAGGAAT	TTGAAAGCGA	AGCTGTTTAG	CCAAGTCATA	8340
GTAAGGGCTA	AACATATCCA	TAGTAATAAT	TTTGACGCGA	CATCGGACAA	CTCTATCGTA	8400
GCGAAGAAAG	TGATTTCGAA	TGATAGCTTG	TGTTCTACCC	TCAAGAACAG	TGATGATATT	8460
GAGATTGTTA	AAATCTTGCG	CAATGAAGCT	CATCTTTCCC	TTTGTAAAAG	CATACTCATC	8520
CCAAGACATA	ATCTCAGGAA	GACAAGAAAA	ATCATGTTTA	AAGTGAAAAT	CATTGAGCTT	8580
ACGAATAACA	GTTGAAGTTG	AGATGGAAAG	CTGATGGGCA	ATATCAGTCA	TAGAAATCTT	8640
TTCAATCAAC	TTTTGAGCAA	TCTTTTGGTT	GATGATACGA	GGGATTTGGT	GATTTTTCTT	8700
GACGATAGAA	GTTTCAGCGA	CCATCATTTT	TGAACAGTGA	TAGCACTTGA	ATCGACGCTT	8760
TCTAAGGAGA	ATTCTAGTAG	GCATACCAGT	CGTTTCAAGA	TAAGGAATTT	TAGAAGGTTT	8820
TTGAAAGTCA	TATTTCTTCA	ATTGGTTTCC	GCACTCAGGG	CAAGATGGGG	CGTCGTAGTC	8880
CAGTTTGGCG	ATGATTTCCT	TGTGTGTATC	CTTATTGATG	ATGTCTAAAA	TCTGGATATT	8940
AGGGTCTTTA	ATGTCTAGTA	ATTTTGTGAT	AAAATGTAAT	TGTTCCATAT	GAATCTTTCT	9000
AATGAGTTGT	TTTGTCGCTT	TTCATTATAG	GTCATATGGG	ACTTTTTTC	TACAATAAAA	9060
TAGGCTCCAT	AATATCTATA	GGGGATTTAC	CCACTACAAA	TATTATAGAG	CCAACAATAA	9120
AAAGAAAAAG	TGTTTGATAG	ATATCAAACA	CTTTTTTCTT	TGCCTCCCAC	ТАТСТААААА	9180
AATGATAATA	GATATAATTG	ТАААСААААА	TCCAGATAGG	TTTTGCATGA	TTGAGAAAGT	9240
ТАААААААСТ	ATGGCAGAGA	ATCGTTAATC	TCAGATTGTC	GGTAGAACGA	TAAACAAGGG	9300
CAAAAAAGAA	ACCAATCAGA	СТАТААТАТА	АТАААСТААТ	TGGATCTCTG	TGAGATAGTA	9360

			200			
TCAAATGGCT	AATCCCAAAG	ATGATAGCAG	200 ATAGGATAAC	ATCCAAATAG	TACTTGGACT	9420
AGGGAAAGAA	GGTATTCATA	AAATACCCTC	TATCAAGAGT	CTCCTCAAAA	ACAGGACCGA	9480
TGATTACAGG	CAGGACAAAA	GATAAGATAG	TCGATAAAAA	GGTTGGTTGT	CCATTTGAAA	9540
AAAGCACGGT	AAAATACTCA	TCATGAATAT	TCCTATGATT	AATCAAATGA	GCATAGCGTG	9600
CCCAAAAATT	ACCGAGAATC	TGATAAACCA	CATAAGTTGC	AAATAAGTAG	AAGACAAATG	9660
ACCAGTTCCA	GCTCTTTTTC	TCAAAGATAA	AGAGCATCTT	TTTCTTTTT	AACCTCCAAA	9720
TTAATAGAAG	GAAACTTCCC	ACTAATCCCA	TTGTTAAAAT	AAGAGAATAG	ACATCAGCTC	9780
CTAACCCTAA	AATGATCGTC	ACATACAATC	CAATTGTTTG	TGGTAAATAG	GTAGATAGTA	9840
AAATAATAAG	САААААТАТТ	CCAAATTGTC	TTAGTTTTTT	TGTGTTTCTC	ATCGTACTTT	9900
TTTGAAAGAT	TACCCTGCTC	GGAAGCCGTA	CTTCCAAGCA	TCTATATAAG	AATTAAGTGC	9960
CCCTTGCCTC	ATATAGGGAG	CAAATTCTCT	ATAATATAAC	CATCTACTAT	ATCCATCTTC	10020
CCAAACAGCA	AGACCACCTG	AAGTTTGCTC	CAAGTCCTCA	GTTGAAAGAA	CTGTAAATGT	10080
ATTTGTACCT	GTCATTGCAA	GTACCTTCTT	AAAATAGATT	GTTGTAGGCT	CACATTTATA	10140
GTATATTTCT	TTTTTTGTCT	ATTTTATAGC	CCATCTCCTC	AACTGGCAAT	TTTTCGACCT	10200
GAATTACATT	TTTCCATAAA	AAATGAGACC	TTTCTAGTCT	CATTTAGTCA	TTCTTAGTAT	10260
TTTCTAAATC	GTTGATAGCG	TTCTTCCAGC	AACTCTTCTA	GCGGTTTTTG	TGAAAGTCTA	10320
GCCAGCTCCG	TTTGGAGTTC	TTTTTTGACA	CTCTTAATCA	GTTCTTTACT	AGAAAGTCCT	10380
ATTTCAGAAA	TCACCTTATC	CACCACGTCC	ATTTCTAACA	GTTCATGCGA	AGTGATTTTC	10440
ATCAGTTCTG	CTGCTTCCAT	AGCGCGAGTA	CCGTCCTTCC	ATAAAATGGA	AGCAAAGCCT	10500
TCTGGACTGA	GAATGGCATA	GATAGAATTT	TCCAGCATCC	AGACACGGTC	CGCGACAGCT	10560
AGAGCCAGAG	CCCCGCCTGA	ACCACCTTCA	CCGATAATAA	TGGCGATAAT	AGGAACTTTC	10620
AGGTCACTCA	TTTCCATGAG	ATTGCGAGCG	ATAGCTTCCC	CTTGACCACG	TTCTTCCGCT	10680
CCGACACCAG	GATAAGCACC	TGCTGTATTG	ATAAAGGTCA	CAACTGGACG	GCCAAATTTC	10740
TCAGCCTGTT	TCATCAACCG	CAGTGCCTTT	CGGTAGCCTT	CTGGATGTGG	TTGGCCAAAA	10800
TTCCGTTTGA	GGTTGTCTTG	CAAACTCTTG	CCTTTTTGGA	TACCAACCAC	TGTTACAGCT	10860
TGGTCTCCAA	GCCAACCAAT	ACCACCAACA	ACTGCACCAT	CATCACGAAA	AGAACGGTCA	10920
CCATGTAATT	GGATAAATTC	ATCAAAAATG	CCTGTCGCAA	AGTCCAAGGT	TGTCAAGCGA	10980
CTCTGCTCAC	GCGCTTCTCT	GACTATTTT	GCAATATTCA	TCTAGGACTC	CCTCCATGCA	11040
ATCTGACTAG	GCTAGCAATC	GTATCTGGTA	AGTCTCTTCT	TTTGACAATA	GCATCCACAA	11100
AGCCATGTTC	TAATAGGAAT	TCTGCCTTTT	GGAAATCCTC	AGGCAAGCTT	TCACGAACCG	11160

TATTTTCAAT	CACACGACGC	CCAGCAAAAC	CAACCAAGCT	CTGTGGTTCA	GCCAGAATGA	11220
TATCGCCTTC	CATAGCGAAA	GAAGCTGTCA	CACCACCAGT	CGTTGGATCT	GTCAAAATGG	11280
TCAGGTAAAA	GAGACCAGCA	TTTGAATGGC	GTTTAACCGC	CGCAGAGATC	TTAGCCATCT	11340
GCATGAGACT	CATGATTCCT	TCCTGCATAC	GGGCTCCACC	AGAGGCTGTG	AATAGGACAA	11400
CTGGCAATTT	TTCGACAGTC	GCATACTCAA	ACAAACGAGT	GATTTTTTCA	CCTACAACCG	11460
TACCCATAGA	AGCCATGATA	AAGTTAGAAT	CCATAATCCC	AAGAGCCACA	GTCTGACCTT	11520
TAATAAGAGC	AGTTCCTGTC	ACAACGGCTT	CATGCAGACC	TGTTTTTCA	CGCATAGATG	11580
CCAGTTTCTT	TTGGTAACCA	GGGAAATGCA	AGGGATCCTT	GCTTTCAATC	CCTGTAAACA	11640
ATTCTTTGAA	GGTTCCCATA	TCAATCGTCA	AAGCCAAGCG	TTCTTGGGCA	GAAATACGAA	11700
AGGTATAGCT	ACAGTGCGGA	CAGATACGTT	CACTTCCCAG	ATCCTTCTGA	TAGATGGTAT	11760
GCTTACAGCC	TGGACACTGG	GAAAATAATT	CATCTGGAAC	CTCTGGCTTA	GCTTGAGGTT	11820
TTTCCCTAAC	CGAACGATTG	GGATTGATTC	GAATATACTT	ATCTTTTTTA	CTAAATAGAG	11880
CCATTGATTC	CCCTTTTCGG	TTTAAACTCT	TAAAGTCATT	TTATTCTTTT	TCTTGATATT	11940
TAGGTAAGAA	GGTTTCCATC	AAGAAGGAAG	TATCATAATC	CCCAGCAATG	ACATTGCGAT	12000
CTGAAATGAG	GTCAAGCTGG	AAATCTGCAT	TGGTCTGCAC	TCCTTCAATT	TCTAATTCAT	12060
AGAGGGCACG	TTGCATTTTC	ATCAAGGCGT	CAAAACGATT	TTCGCCGTGT	ACTATGATTT	12120
TGGCAATCAT	ACTATCATAA	TAAGGCGGAA	TGGTATAACC	TGGATAAACT	GCTGAATCCA	12180
CGCGCAAGCC	AACTCCACCA	CTTGGCAGAT	AGAGATTAGT	AATCTTACCT	GGACTTGGAG	12240
CAAAGTTAAA	GGCTGGGTTT	TCTGCATTGA	TACGACACTC	GATGGCATGA	CCGCGTAGGA	12300
CAATATCTTC	TTGCTTAACA	GACAAAGGCT	GACCTGCCGC	AATGCAAATC	TGTTCCTTAA	12360
CGATATCAAC	ACCTGAAACA	AACTCTGTTA	CTGGATGTTC	TACCTGAACA	CGAGTATTCA	12420
TCTCCATGAA	ATAGAAATTG	CTACTTGCTT	CATCAAGAAG	AAATTCAATG	GTTCCTGCAT	12480
TCTCATAGCC	AACAAACTCT	GCCGCTCGAA	CAGCAGCAGC	ACCTATTTCA	TGACGCAGCG	12540
TTTTTCCGAT	TGCAATCGAG	GGACTTTCTT	CCAAAACCTT	TTGGTTATTC	CTTTGAAGAG	12600
AACAATCCCG	TTCACCCAAG	TGAATCACAT	GTCCATGCTC	ATCACCTAGG	ATTTGAACCT	12660
CAATGTGCCG	AGCTGGATAG	ATAACCCGTT	CTATGTACAT	GGCACCATTG	CCATAATTGG	12720
CCTTGGCCTC	ACTAGAGGCA	GTTTCAAAGG	CAGAAACGAG	GTCATCTGGT	TTTTCAACCT	12780
TACGAATCCC	TTTACCACCT	CCACCTGCTG	AAGCCTTGAG	CATAACAGGA	TAGCCAATTT	12840
TTTCAGCAAC	AATCAAAGCT	TCTTCAGAGT	TATGCACTTC	TCCATCTGAA	CCTGGTATAA	12900

CAGGCACACC	TGCTTTAATC	ATCTGAGCAC	202 GCGCATTGAT	CTTATCCCCC	ATCATATCCA	12960
TAACATGACC	AGATGGACCG	ATAAACTTGA	TACCTACTTC	TTCACACATG	GTCGCAAATT	13020
TGGAATTTTC	ACTGAGAAAT	CCAAAACCAG	GGTGAATAGC	TTCTGCCTCA	GTCAAGACTG	13080
CAGCTGATAG	AACTGCATTA	ATATTGAGAT	AAGACTCTGT	TGCCTTGCCA	GGACCAATAC	13140
AAACTGCTTC	ATCTGCCAAA	AGCGTATGAA	GAGCTTCCTT	ATCAGCAGTT	GAATAAACCG	13200
CTACCGTCGC	AATCCCCAAT	TCACGTGCCG	CACGGATAAT	ACGAACCGCA	ATTTCACCAC	13260
GATTGGCAAT	TAAAATTTTT	CGAAACATGG	AGAACCTCCT	TAGTTCCCAA	TTGCAAAAGT	13320
AAGGGTACCA	CTGGCTGCAA	GCTTGCCATC	CACTTCAGCC	TTTGCTTCAA	CCACAGCTAT	13380
GGTGCCACGA	CGTTTTACAA	AAGTCGCTGT	CATAACCAAT	TGGTCGCCTG	GTACAACTTG	13440
CTTCTTGAAC	TTAACCTTGT	CCATACCAGC	GTAAAAGACC	AGTTTTCCTT	TATTTTCAGG	13500
TTTTGATAAC	TCCAACACAC	CGGCAGTTTG	CGCCAAGGCT	TCCATAATCA	CAACACCTGG	13560
CATAACTGGG	TATTGAGGAA	AGTGGCCGTT	AAAGAAAGGC	TCGTTGATGG	TCACATTTTT	13620
GATAGCAACA	ATGGTATCCT	CGCTCACTTC	CAAGACACGG	TCCACTAGAA	GCATAGGATA	13680
ACGGTGGGGA	AGAGCTTCTT	TGATTCCTTG	AATATCGATC	ATTTGATACG	TACCAATCCT	13740
TTACCAAACT	CAACCATTTC	TTCGTTAGAG	ACGAGAATTT	CCGTTACCAC	ACCATCCTTA	13800
GGAGCTGGGA	TTTCATTCAT	GACTTTCATG	GCTTCGATAA	TTACCAATGT	TTGACCTTTT	13860
TTGACACTAT	CACCAACTGT	AACGAAGGCA	GGTTTATCTG	GTCCAGCAGC	CAAGTAAACC	13920
ACTCCAACAA	GTGGACTCTC	TACAAGATTT	CCCTCAGTAG	CCACACTTGC	TTCAGCTGGA	13980
GCTGGAACTT	CTTCTGCTAC	AGTCTCTGCT	GGAGCAGATG	TAGGAGCTAC	TGGACTCGGT	14040
GTTGCTAGAA	CGGGTGCTGG	AGCGACTTGA	GTTGCAACTT	CAGGCACAGG	TCTTGCTTCA	14100
TTCTTGCTAA	ACTGCAACTC	ATCCGTCCCA	TTTTTATAAG	AAAATTCTCT	CAAACTTGAC	14160
TGGTCAAATT	GAGTCATCAA	GTCTTTAATA	TCGTTTAAAT	TCATACTTAT	CTATTCTCCC	14220
AACGTTTGAA	AGCAAGAACT	GCATTGTGGC	CTCCAAAACC	AAAAGTATTT	GAAATAGCGT	14280
ATGGAATTTC	TTTCTCCAAG	CCTTGTCCAT	AAACGACATT	AGCTTCGATA	TAATCTGATA	14340
CTTCACTTGT	CCCAGCTGTC	ATTGGTACAA	AGTTATGACG	CATAGCTTCG	ATGGTGACGA	14400
TAGCTTCTAC	TGCACCCGCA	GCCCCCAGCA	AATGTCCTGT	AAAAGACTTG	GTTGATGATA	14460
CAGGTACTTC	CTTACCAAGA	ACAGCTACGA	TAGCACCACT	TTCTCCTTTT	TCATTGGCAG	14520
GAGTTGACGT	TCCGTGAGCA	TTGACATAGG	CTACTTGCTC	TGGAGAAATC	TCAGCTTCTT	14580
CCAAGGCTAG	TTTGATGGCC	TTGATAGCTC	CCTGACCTTC	TGGATGTGGA	GAAGTCATGT	14640
GGTAGGCATC	ACAAGTATTT	CCGTAACCAA	CCACTTCAGC	CAGGATAGTA	GCTCCACGTT	14700

TTTCAGCGTG	TTCAAGACTT	TCTAGAACCA	ACATCCCTGA	ACCTTCACCC	ATAACAAACC	14760
CATTGCGATC	CTTATCAAAT	GGGATCGAAG	CACGAGTTGG	ATCCTCTGTA	GTAGAGAGAG	14820
CTGTTAAGGC	TTGGAAACCA	GCGATGGCAA	AAGGTGTGAT	AGAAGCTTCT	GTTCCTCCCA	14880
CCAACATCAC	ATCTTGGAAA	ССАААСТТАА	TGGAGCGGAA	GGCATCCCCA	ATCGCATCAT	14940
TTGATGAAGA	GCAGGCAGTA	TTGATAGATT	TACAAACACC	GTTTGCACCA	AAACGCATGG	15000
CTACATTCCC	AGAAGCCATA	TTTGGTAAAG	CTTTTGGAAG	AGTCATTGGT	TTGACACGTT	15060
TGGGTCCTTT	TTCATGAAGG	CGAAGTACCT	GATCTTCAAT	TTCCTTGATT	CCACCAATAC	15120
CAGATGCAAC	GATAACACCA	AAACGATCCC	TATTAAGAGC	CTCTACATCA	AGATTGGCAT	15180
GATTTACAGC	CTCTTGGGCT	GCATACAAGG	CATATAAAGA	ATAGTTATCA	AAACGGTTGG	15240
TATCTTTTT	TACAAAGTAT	TTATCGAACG	GAAAATCTTG	GATTTCTGCC	GCATTATGCA	15300
CATCAAAGTC	ACTATGATCA	AATTTTGTAA	TGCCACCAAT	GCCGATTTTC	CCAGTTGCTA	15360
AACTATTCCA	AAATTCTTCT	GGTGTATTTC	CGATTGGAGA	TGTTACTCCA	TAACCTGTTA	15420
CCACTACTCG	ATTTAGTTTC	ATTCTTTTCA	CCTCTAGCTT	TCGCTACATA	CTTAAGCCAC	15480
CATCAATGGC	AACCACTTGT	CCAGTTAGAT	AATCTTGGCC	ТСТАААААТ	ACTGTCAAAT	15540
CTGCAACCTG	CTCTGCCTGC	CCAAATTCTT	TCATCGGAAT	CTGAGCTAGT	GTAGCTTCCT	15600
TAATCTTATC	TGACAGGATA	GCGGTCATAT	CAGACTCAAT	CATTCCTGGA	GCAATCACAT	15660
TGACTCGTAT	ATTCCGACTA	GCGACCTCGC	GTGCCACAGA	CTTGGTAAAG	CCAATCAAGC	15720
CAGCCTTAGA	AGCAGCATAA	TTAGCTTGAC	CAATATTCCC	CATCAAACCA	ACAACACTAG	15780
ACATATTAAT	GATAGCACCT	TCTCTGGCTT	TCATCATCGG	TTTCAAGACT	GATTGTGTCA	15840
TATTAAAGGC	ACCAGTCAGA	TTGACCTTGA	GCACTTTTTC	AAAATCTGCT	TCTGTCATCT	15900
TGAGCATAAG	AGTATCTTGG	GTAATCCCTG	CATTGTTGAC	CAAAACATCT	ACTGAACCCA	15960
GTTCTGCAAT	AGCTTGATCA	ATCATACGCT	TAGCGTCTGC	AAAATCTGAT	ACATCTCCTG	16020
AAATGGGAAC	CACCTTGATA	CCATAGTTTG	AAAACTCAGC	GAGCAATTCT	TCTGAGATTG	16080
CCCCACGACT	GTTTAAGACA	ATGTTGGCTC	CTGCTTGAGC	AAACTTGTGG	GCGATGGCAA	16140
GACCAATTCC	ACGACTCGAA	CCTGTAATAA	AGATATTTTT	ATGTTCTAGT	TTCATTTTTT	16200
TCCTTTCAAA	ACTTCTACTT	ATTTTAGTCT	ATTTTTCTAA	AAGTGCTACT	AAACTCGCTT	16260
GATCTTCCAC	ATGAGCTAAG	TGAGCAGTTT	GATCAATTTT	TTTAACAAAA	CCTGACAAGA	16320
CTTTCCCCGG	TCCAATCTCG	ATAAAGTTGC	TTATGCCTGC	TTCTTGCATG	ACCCCAATAC	16380
TTTCATAGAA	ACGAACGGGT	TCCTTGACCT	GACGCGTCAA	GAGCTGAGCA	ATGTCCTCTT	16440

			204			
TTTGCATCAC	AGCAGCTTCT	GTATTGCCGA	CTAGGGGACA	AGTAAAATCT	GAAAAACTTA	16500
CCTGAGCTAG	AGTTTCAGCT	AGTTTCTGGC	TAGCAGGTTC	AAGGAGAGCG	GTGTGAAAGG	16560
GACCTGACAC	CTTAAGAGGA	ATCAAGCGTT	TGGCACCTGC	TTCTTGCAAA	AGTTCAACCG	16620
CTCGATCAAC	TGCAACCACT	TCTCCAGCAA	TGACGATTTG	TGCAGGTGTG	TTATAGTTGG	16680
CTGGAGTAAC	CACTCCAAGT	TCAGAAGCTT	TTTGACAGGC	TTCTTCAATG	ACCTCTACTG	16740
GCGTATTGAG	AACTGCTACC	ATCTTGCCAG	AGTCAGCAGG	AGCCGCTTCT	TCCATATAGG	16800
CTCCACGCTT	AGCTACCAAG	GCAACCGCAT	CTTCAAAATC	CAAGGCGCCA	CTTGCCACCA	16860
AGGCAGAGTA	TTCTCCAAGA	GACAAACCAG	CAACCATATC	AGGCTGATAG	CCCTTTTCTT	16920
GCAATAAACG	GTAGATAGCA	ACCGAAGTCG	CTAGAATGGC	TGGTTGCGTA	TAGCGGGTCT	16980
GATTGAGTTT	GTCTTCTTCC	GTATCGATGA	GATAACGCAA	ATCATAACCG	AGCACCTGGC	17040
TCGCTCGATC	AATCGTTTCT	TTAACAATCG	GATACTGATC	ATAGAAATCC	CGTCCCATCC	17100
CTAGATACTG	GGCACCTTGA	CCAGCAAATA	AAAAGGCTGT	TTTAGTCATT	TCTTACAACT	17160
CCTGTCCAGC	GAGAGGCTTC	TTCTTGAATT	TTCTTAGCGG	CTCCGTAATA	CAAATCTTTT	17220
AGGATTTCTT	CAGCTGTTTC	TTCTTTAGAA	ACAAGCCCTG	CGATTTGACC	TGCCATAACA	17280
GAGCCACCAT	CCACATCACC	GTGAACAACT	GCTTTGGCTA	GAGCACCTGC	TCCCATTTGT	17340
TCAAAGATTT	CTAAATCAGG	ATCTTCTTGC	TTAAAGGCAT	CTTTTTCAGC	CAGTTCAAAA	17400
TCTCTAGTCA	ACTGATTTTT	AATAGCACGA	ACAGCATGAC	CAAAGTGCTG	AGCTGAAATC	17460
GTAGTATCAA	TATCCCTTGC	ТТТТААААТТ	TTCTCCTTGT	AGTTTGGATG	GGCATTCGAC	17520
TCTTTTGCAA	CTACAAACCG	TGTCCCCACC	TGTACAGCCT	CTGCACCTAG	CATAAAGCCA	17580
GCCGCAGCAC	CTTCACCATC	CGCAATTCCT	CCTGCAGCAA	TAACAGGAAT	AGATATAGCT	17640
GTGGCTACCT	GTCGCACCAA	GGTCATGGTT	GTTAATTTAC	CGATATGCCC	CCCAGCTTCC	17700
ATTCCTTCTG	CAATAACAGC	GTCTGCACCG	ATTTTTTCCA	TGCGTTTAGC	TAAAGCGACA	17760
CTAGGAACAA	CAGGAATAAC	GATTATCCCA	GCTTCATGGA	AACGTTCCAT	ATACTTGCTT	17820
GGATTTCCTG	CTCCTGTTGT	GACAACTTTA	ACACCTTCTT	CAATAACGAG	ATCCACGATG	17880
TCTTCCACAA	AGGGAGATAA	GAGCATGATG	TTGACCCCAA	AGGGTTTATC	AGTCAATGAT	17940
TTGATTTTAT	CAATATTGGC	CTTGACAACT	TCTTTCGGGG	CATTTCCCCC	ACCGATAATT	18000
CCTAATCCTC	CAGCCTTGGA	AACAGCCCCT	GCCAAATCAC	CATCAGCAAC	CCAGGCCATC	18060
CCTCCTTGGA	AAATAGGATA	ATCAATCTTC	AATAATTCTG	TAATACGCGT	TTTCATAGTG	18120
CCTCCAACCT	TCCTTGCTTA	CGTAATAGTT	CGATTTCACC	ATAATTTGAC	AGTCAAACTA	18180
TTACCTAAAC	AAGAGGGAGT	GGGTTTCTCC	CTACTCCTTC	TACTAATATT	CTGCTTATTT	18240

205

TGCTTGCTCT	TCAACGTAAG	CAACCAAGTC	ACCAACTGTT	TTCAAGTCAT	TTTCTGCTTC	18300
GATTTGGATA	TCAAAAGCAT	CTTCGATTTC	TGAGATTACT	TGGAACAAGT	CCAATGAATC	18360
TGCGTCCAAA	TCATCAAAAG	TTGATTCAAG	TGTTACTTCT	GATGCGTCTT	TTCCAAGTTC	18420
TTCAACGATA	ATTTCTTGTA	CTTTTTCAAA	TACTGCCATG	ATAGGACTCC	ТТТААААТАА	18480
ATAGTTTTTT	TATAACAATG	TGTTCACCAC	ATGATTACCT	AAATTGTAAG	AATGAGCGTG	18540
CCCCAGGTCA	AGCCTCCACC	GAAGCCTGAT	AGAAGAACAG	TCTGGCTACC	ATCTAAAGGG	18600
ATGAGACCTT	GTTCTACACA	CTCTGAAAGT	AAAATCGGGA	TACTGGCTGC	ACTGGTATTG	18660
CCATATTCCA	TCATATTGGC	TGGAAGTTTG	GCTCGGTCAA	CACCAATTTT	TCTAGCCATC	18720
TTATCCAAAA	TACGGTCATT	GGCTTGATGA	AGTAGCAGAT	AATCCAAGTC	TGTCACCTCT	18780
ATAGGAGATT	CATCAATAGT	CTGCTTGATA	GACTTGGCTA	CATCTCGAAT	GGCAAAATCA	18840
AAGACTGTGC	GTCCATCCAT	CTTCAAAAAC	GAATCTGCAC	TTTCTTGATC	TGAAAATGGA	18900
GAATGTAAAC	CTGAATGCCC	ATAAGTTAAA	CACTCGCTGC	GACTTCCATC	GCTATTGAGA	18960
CTCTCAGCTA	AGAAATGCTC	TTGCTCGCTA	GCTTCTAACA	AGACACCACC	AGCACCATCT	19020
CCAAACAACA	CAGCTGTTGA	TCGATCCGAC	CAATCGACTG	CCTTAGAGAG	GGTTTCACTA	19080
CCAATCACCA	AGCCTTTTTG	AAAGCGACCA	GAAGCGATAA	ACTTTTCAGC	AGTTGAAAGA	19140
GCAAATACAA	ATCCACTGCA	AGCCGCGGTT	AAGTCAAAAG	CAAAGGCTTT	ATTAGCACCA	19200
ATATTAGCTT	GAACACGAGC	AGCTGTAGAG	GGCATCATCG	AATCTGGAGT	AATGGTAGCT	19260
AGGATGATAA	AATCCAGTTC	TTCTCCTGTT	ATTCCAGCTT	TTGCCATCAG	TTTCTTAGCA	19320
ACCTCTGTAG	CCAAATCACT	GGTAGATTCT	GTTCTTGAAA	TATGCCTTTG	TCGTATTCCC	19380
GTTCGACTTG	AAATCCACTC	ATCATTGGTA	TCCATAATCT	GAGCCAAGTC	GTGATTTGTA	19440
ACCACTTGCT	CTGGCACATA	ATGAGCAACC	TGACTTATTT	TTGCAAAAGC	CATTATTTCA	19500
AATCCTCCAA	AAATTGGTAA	AGATTAGTCA	AACCTTTACC	CATGACAGCA	ATTTCTTCCT	19560
CGCTCATGCC	ATCAATAATT	TTTTCTACCA	TGGCCTTGTG	GAAGCGTTTA	TGCAGTCTAT	19620
GAATCAAGCG	ACCCTTCTTT	GTCAAATGCA	GATGCACCAC	ACGACGATCC	TGTTCTGACC	19680
GAACTCGCTC	AATGTAGCCC	GG				19702

(2) INFORMATION FOR SEQ ID NO: 8:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 6211 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

206

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:

GAAAATTTCC	TCTCTTCTCT	TGAAAAATTT	TGAAAAAATG	GTATGATAGT	AACAAGTTAT	60
TTTTAAGAGG	AAAGAAAGGG	GAATAATGGA	GAAAATCAGT	TTAGAATCTC	CTAAGACGGG	120
GTCGGACCTA	GTTTTGGAAA	CACTTCGTGA	TTTAGGAGTT	GATACCATCT	TTGGTTATCC	180
TGGTGGTGCG	GTTTTGCCTT	TTTATGATGC	GATATATAAT	TTTAAAGGCA	TTCGCCACAT	240
TCTAGGGCGC	CATGAGCAAG	GTTGTTTGCA	TGAAGCTGAA	GGTTATGCCA	AATCAACTGG	300
AAAGTTGGGT	GTTGCCGTCG	TCACTAGTGG	ACCAGGAGCA	ACAAATGCCA	TTACAGGGAT	360
TGCGGATGCC	ATGAGCGATA	GCGTTCCCCT	TTTGGTCTTT	ACAGGTCAGG	TGGCGCGAGC	420
AGGGATTGGG	AAGGATGCCT	TTCAGGAGGC	AGACATCGTG	GGAATTACCA	TGCCAATCAC	480
TAAGTACAAT	TACCAAGTTC	GTGAGACAGC	TGATATTCCG	CGTATCATTA	CGGAAGCTGT	540
CCATATCGCA	ACTACAGGCC	GTCCAGGGCC	AGTTGTAATT	GACCTACCAA	AAGACATATC	600
TGCTTTAGAA	ACAGACTTCA	TTTATTCACC	AGAAGTGAAT	TTACCAAGTT	ATCAGCCGAC	660
TCTTGAGCCG	AATGATATGC	AAATCAAGAA	AATCTTGAAG	CAATTGTCCA	AGGCTAAAAA	720
GCCAGTCTTG	TTAGCTGGTG	GTGGAATTAG	TTATGCTGAG	GCTGCTACGG	AACTAAATGA	780
ATTTGCAGAA	CGCTATCAAA	TTCCAGTGGT	AACCAGTCTT	TTGGGACAAG	GAACGATTGC	840
AACGAGTCAC	CCACTCTTTC	TTGGAATGGG	AGGCATGCAC	GGGTCATTCG	CAGCAAATAT	900
TGCTATGACG	GAAGCGGACT	TTATGATTAG	TATTGGTTCT	CGTTTCGATG	ACCGTTTGAC	960
GGGGAATCCT	AAGACTTTCG	CTAAGAATGC	TAAGGTTGCC	CACATTGATA	TTGACCCAGC	1020
TGAGATTGGC	AAGATTATCA	GTGCAGACAT	TCCTGTAGTT	GGAGATGCTA	AGAAGGCCTT	1080
GCAAATGTTG	CTAGCAGAAC	CAACAGTTCA	CAACAACACT	GAAAAGTGGA	TTGAGAAAGT	1140
CACTAAAGAC	AAGAATCGTG	TTCGTTCTTA	TGATAAGAAA	GAGCGTGTGG	TTCAACCGCA	1200
AGCAGTTATT	GAACGAATTG	GTGAATTGAC	GAATGGAGAT	GCCATTGTGG	TAACAGACCT	1260
TGGTCAACAC	CAAATGTGGA	CAGCTCAGTA	TTATCCCTAC	CAAAATGAAC	GTCAGTTAGT	1320
GACTTCAGGT	GGTTTGGGAA	CAATGGGCTT	TGGAATTCCA	GCAGCAATCG	GTGCTAAAAT	1380
TGCTAACCCA	GATAAGGAAG	TAGTCTTGTT	TGTTGGGGAT	GGTGGTTTCC	AAATGACCAA	1440
CCAGGAGTTG	GCTATTTTGA	ATATTTACAA	GGTGCCAATC	AAGGTGGTTA	TGCTGAACAA	1500
TCATTCACTT	GGAATGGTTC	GCCAGTGGCA	GGAATCCTTC	TATGAAGGCA	GAACATCAGA	1560
GTCGGTCTTT	GATACCCTTC	CTGATTTCCA	ATTGATGGCG	CAGGCTTATG	GTATTAAAAA	1620
CTATAAGTTT	GACAATCCTG	AGACCTTGGC	TCAAGACCTT	GAAGTCATCA	CTGAGGATGT	1680

TCCTATGCTA	ATTGAGGTAG	ATATTTCTCG	TAAGGAACAG	GTGTTACCAA	TGGTACCGGC	1740
TGGTAAGAGT	AATCATGAGA	TGTTGGGGGT	GCAGTTCCAT	GCGTAGAATG	TTAACAGCAA	1800
AACTACAAAA	TCGTTCAGGA	GTCCTCAATC	GCTTTACAGG	TGTCCTATCT	CGTCGTCAGG	1860
TTAATATTGA	AAGCATCTCT	GTTGGAGCAA	CAGAAGATCC	GAATGTATCG	CGTATCACTA	1920
TTATTATTGA	TGTTGCTTCT	CATGATGAAG	TGGAGCAAAT	CATCAAACAG	CTCAATCGTC	1980
AGATTGATGT	GATTCGCATT	CGAGATATTA	CAGACAAGCC	TCATTTGGAG	CGCGAGGTGA	2040
TTTTGGTTAA	GATGTCAGCG	CCAGCTGAGA	AGAGAGCTGA	GATTTTAGCG	ATTATTCAAC	2100
CTTTCCGTGC	AACAGTAGTA	GACGTAGCGC	CAAGCTCGAT	TACCATTCAG	ATGACGGGAA	2160
ATGCAGAAAA	GAGCGAAGCC	CTATTGCGAG	TCATTCGCCC	ATACGGTATT	CGCAATATTG	2220
CTCGAACGGG	TGCAACTGGA	TTTACCCGCG	ATTAAAAATC	CAACTTAAAT	TTATTAAACC	2280
AGCCTAAAAG	GCAATAAATA	ATAGAAAAGA	GAGAAAAGCT	ATGACAGTTC	AAATGGAATA	2340
TGAAAAAGAT	GTTAAAGTAG	CAGCACTTGA	CGGTAAAAAA	ATCGCCGTTA	TCGGTTATGG	2400
TTCACAAGGG	CATGCGCATG	CTCAAAACTT	GCGTGATTCA	GGTCGTGACG	TTATTATCGG	2460
TGTACGTCCA	GGTAAATCTT	TTGATAAAGC	AAAAGAAGAT	GGATTTGATA	CTTACACAGT	2520
AGCAGAAGCT	ACTAAGTTGG	CTGATGTTAT	CATGATCTTG	GCGCCAGACG	AAATTCAACA	2580
AGAATTGTAC	GAAGCAGAAA	TCGCTCCAAA	CTTGGAAGCT	GGAAACGCAG	TTGGATTTGC	2640
CCATGGTTTC	AACATCCACT	TTGAATTTAT	CAAAGTTCCT	GCGGATGTAG	ATGTCTTCAT	2700
GTGTGCTCCT	AAAGGACCAG	GACACTTGGT	ACGTCGTACT	TACGAAGAAG	GATTTGGTGT	2760
TCCAGCTCTT	TATGCAGTAT	ACCAAGATGC	AACAGGAAAT	GCTAAAAACA	TTGCTATGGA	2820
CTGGTGTAAA	GGTGTTGGAG	CGGCTCGTGT	AGGTCTTCTT	GAAACAACTT	ACAAAGAAGA	2880
AACTGAAGAA	GATTTGTTTG	GTGAACAAGC	TGTACTTTGT	GGTGGTTTGA	CTGCCCTTAT	2940
CGAAGCAGGT	TTCGAAGTCT	TGACAGAAGC	AGGTTACGCT	CCAGAATTGG	CTTACTTTGA	3000
AGTTCTTCAC	GAAATGAAAT	TGATCGTTGA	CTTGATCTAC	GAAGGTGGAT	TCAAGAAAAT	3060
GCGTCAATCT	ATTTCAAACA	CTGCTGAATA	CGGTGACTAT	GTATCAGGTC	CACGTGTAAT	3120
CACTGAACAA	GTTAAAGAAA	ATATGAAGGC	TGTCTTGGCA	GACATCCAAA	ATGGTAAATT	3180
TGCAAATGAC	TTTGTAAATG	ACTATAAAGC	TGGACGTCCA	AAATTGACTG	CTTACCGTGA	3240
ACAAGCAGCT	AACCTTGAAA	TTGAAAAAGT	TGGTGCAGAA	TTGCGTAAAG	CAATGCCATT	3300
CGTTGGTAAA	AACGACGATG	ATGCATTCAA	AATCTATAAC	TAATTAGAAA	TATATAGCGC	3360
TGGAGATGAT	TTTATGAAAA	AGATTATGAG	AAAAATTGCA	TCGTTATTAT	TGGTTCTAGT	3420

208 TGTATAATGT AATTACACCG TCGGTAATAG TGCTAGCAGA CCAAAATAAA GCAGATTGGT 3480 CGTATGATGA AAATGCTGTA ATTAACATTT ATGATGATGC TAATTTTGAA GATGGTAGGT 3540 TGCATATGAA CTTTGAACAA TTCTTCAAAT TGGCACAAAT AGCTAGAGAA GAAGGTCTTG 3600 AAATTCATTC TCCGTTTGAG AGAGCTGGTG CGACTAAATC TGCTCGTTAT ATAGCGAAAT 3660 GGATTTTGAG AAATAAAAAA CATTAACAAA TATAGTTGGT AAATCATTAG GACCTAAATC 3720 AGCTGTTAGA TTCGGAGAAG CTTTATCCTA TATTGAAGGT CCTCTTCGCA GAATAAATGA 3780 GACGATAGAT GGCGGTTTAT ATCAAATAGA GCAAATTATT GCATCTGGAT TGAAAGAATC 3840 GGGTTTAAAT GACTGGACTG CGAAAACTTT AGCTTCAGCT ATTCGTGGGA TATTAGATGT 3900 ACTTATTTAG GGGTTGAAAT CATATGAATA TTACCAATTT GTTTTCTATC AAGACAGGAT 3960 GTGATGAAAC TGATAGGCAA CTGCAAAAAC TATTTTTTCA GTTGGATTTA CAATTGGGAG 4020 AATTGACAGA TCAACTAAGA AAATTAGATT CTAATTTTGT TCCTCGTAGT CAATTTGTAG 4080 ACACGTTGGA TTTGAATGAT GTAGAATATA AAGAAATTTT AAACTATTTT ATCTTCCATC 4140 GTAATGATAG TGAAGAAAGT TTGGTAGAAT GGTTATATGA TTGGATTTCC ACAAATCGTT 4200 ATGAACTTCC TAAAGAGTTT TCGATTCGTA TGGCTCATAA ATACCATGAA AGTGTTACTG 4260 AAGTTTTCGG AGATGAATAA CTAAAAAACA GTCATTAGTG ACTGTTTTTT ATAGAAAAAG 4320 AGGTTTTATA TGTTAAGTTC AAAAGATATA ATCAAGGCTC ACAAGGTCTT GAACGGTGTG 4380 GTTGTGAATA CTCCACTGGA TTACGATCAT TATTTATCGG AGAAGTATGG TGCTAAGATT 4440 TATTTGAAAA AAGAAAATGC CCAGCGTGTT CGCTCCTTTA AAATTCGTGG TGCCTATTAT 4500 GCCATTTCCC AGCTCAGCAA GGAAGAACGT GAACGTGGGG TAGTCTGCGC TTCTGCGGGA 4560 4620 ATGCCCATTA CTACGCCACA ACAAAAGATT GGTCAGGTTC GCTTTTTTGG TGGGGATTTT 4680 GTAACTATTA AACTAGTTGG AGATACCTTT GATGCCTCAG CCAAAGCAGC TCAAGAATTT 4740 ACAGTCTCTG AAAATCGTAC CTTTATTGAT CCTTTTGATG ATGCTCATGT TCAAGCAGGT 4800 CAAGGAACAG TTGCTTATGA GATTTTAGAA GAAGCTCGAA AAGAATCGAT TGATTTTGAT 4860 GCTGTCTTGG TTCCTGTTGG TGGTGGCGGT CTCATTGCCG GGGTTTCTAC CTATATCAAG 4920 GAAACAAGTC CAGAGATTGA GGTTATCGGA GTAGAGGCGA ATGGAGCGCG TTCCATGAAA 4980 GCTGCCTTTG AGGCTGGAGG TCCAGTAAAA CTCAAGGAAA TTGATAAATT TGCTGATGGG 5040 ATTGCTGTGC AAAAGGTAGG TCAGTTGACC TATGAAGCAA CTCGTCAACA TATTAAAACT 5100 TTGGTAGGTG TCGATGAGGG ATTGATTTCT GAAACCTTGA TTGACCTTTA CTCTAAGCAA 5160 GGGATAGTCG CAGAACCTGC TGGAGCGGCT AGTATCGCCT CTTTAGAGGT TTTAGCTGAA 5220

209

TATATTAAGG	GGAAAACCAT	TTGTTGTATC	ATTTCTGGAG	GAAATAATGA	TATCAACCGT	5280
ATGCCAGAAA	TGGAAGAGCG	TGCCTTGATT	TATGATGGTA	TCAAACATTA	CTTTGTGGTC	5340
AATTTCCCAC	AACGTCCAGG	AGCTTTGCGT	GAGTTTGTAA	ATGATATCCT	GGGGCCAAAT	5400
GATGATATCA	CACGTTTTGA	GTATATCAAA	CGAGCTAGCA	AGGGAACAGG	CCCAGTATTA	5460
ATTGGGATCG	CTTTAGCAGA	TAAGCATGAT	TATGCAGGTT	TGATTCGTAG	AATGGAAGGT	5520
TTTGATCCAG	CTTATATTAA	CTTAAATGGT	AATGAAACGC	TTTATAATAT	GCTTGTCTGA	5580
GGACTAATAA	AAAAATATCA	TACCTTCATT	TTGATTTCCT	ATCTATTGAC	AAGCATAGTC	5640
ACACTGTCTT	TAATACTCTT	CGAAAATCTC	TTCAAACCAC	GTTAGCTCTA	TCTGCAACCT	5700
CAAAACAGTG	TTTTGAGCAA	CTTGCGGCTA	GCTTCCTAGT	TTGCTCTTTG	ATTTTCATTG	5760
AGTATAAGGT	ATGATTTGAT	TTCTTTTTGT	TGACAAATAT	ACTATATTAA	AAAGATATAT	5820
AAGTAATTAA	CTGAGCTTAT	CTGTCTTGTC	ATCTCTATTA	AGGATGGTTT	AGATAATCGG	5880
GTGTCTGCTT	CTAGGCTAGC	ACCTCAATAT	CCAAAGGAGT	GATGAATTTG	AAGGACATAA	5940
GGAATACCTA	TCTCTCAGAT	GATTTATTGA	GGAAGAAAGA	TAGGAGTTTT	TGAGCTAGTG	6000
AAGGCTTGGA	TTTCTAAAGG	TTAGAACTAT	CATCTTCAGT	TCTTAAATCG	AAGAAATAAG	6060
CTATCTTACG	GAAATAGAGA	AGCATTTTTT	AAGAACTTGA	ATAATTTCGC	ACCTTAAGAG	6120
GGTAATAATA	CAGTATTTTT	ATTAGCAAAT	ATTTATGGTG	TAGAGGCTAG	СААААССТАТ	6180
ATATTATCGG	ATTTAAAAAG	GAAGTAAGAA	A			6211

(2) INFORMATION FOR SEQ ID NO: 9:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 7939 base pairs
 (B) TYPE: nucleic acid

 - (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:

CCGGACTCCC	CACGATTCTT	CAAAATAACT	GAGTATATTT	CTATCTTGAT	TTTCAGATAT	60
AAATTCTTCC	TTCTGTGGCC	TCTTCTTACG	CTTGAGAAGA	GCTTCTCCGA	CATGGCTTCT	120
TCCTTACTGA	GCAAAACCTT	GAGCATAGAT	AAGTTTGACT	GGCAAGCGTG	CTCTTGTATA	180
TTTGGCTCCC	TTCCCACTAT	TGTGGATAGC	GAGGCGTCTT	CTCATATCAG	TCGTATAGCC	240
TATATAGTAG	GATCCATCAC	GACACTCCAG	AACGTACATA	TAAGCCTTAT	GATCCATAAT	300
AAATCTCTTC	GATTTCGGGC	GTATAAGAGC	CATCATCATT	GTGGACAATC	AAAGGAGGTA	360

			210			
				AATCAAAAGC		420
CCTTTTCTCT	TTTTGGATAA	ACAAACTGCA	GGCGCTTAGG	GGCTAGATTA	TGTCGTTTTA	480
ACGTATCCAA	AATATCCAGA	AGTCGATCAG	GACGATGAAC	CATGGCCAAA	CGCCCATTAG	540
ACTTGAGAAT	ACTCTGGGCA	CTACGACAGA	TTTCTTCCAA	ATTAGTCGTG	ATTTCGTGTC	600
GAGCCAAGAG	ATAATGTTCA	CTCTCGTTCA	GATTAGAATA	AGGATTCACC	TTGAAATAGG	660
GTGGATTACA	CAAAATCATA	TCCACCTTAC	TCCCCTGAAT	GTGAGCAGGC	ATATTTTTCA	720
AATCATCGCA	GATGACCTGC	ATTTGCTCCT	CTAATCCATT	CAAACGGACA	GAGCGTTCAG	780
CCATATCCGC	CAAACGCTCC	TGAATCTCAA	CAGACAATAT	CTGTGCTTGA	GTACGAGTGC	840
TAGCAAAAAG	CCCCACTGCT	CCATTCCCAG	CACAGAAATC	CACAATCAAC	CCCTTCTTAG	900
GAAAACGTGG	AAATCGTGAT	AAGAGAACAC	TATCCACCGA	ATAGCTAAAA	ACCTCTCTAT	960
TTTGAATGAT	TTTGATATCT	GTCGAAAAGA	GCTGGTTAAT	GCGCTCTCCT	GATTTTAATA	1020
ATTGTTCTTC	TTCCATGGTC	CTATTATAGC	AAATTCATAT	TAACATTACA	AAAAATATAA	1080
AACTCTAAAC	TACTTCTTCT	TTTTTAAATG	GTGCAGGGCT	TCTCCAGTCC	AGATTGGTAG	1140
CATTCGTCGA	AAGGGAGCAA	AGCCGTAGTT	AAAGCGGTCG	CTTGAAAAGC	GTCTCCGTCT	1200
AGGAAACTGG	TACTTTTCTT	CCTCCAAAGT	GCGGATAGAA	AGACTGGCTT	TCCCTGTAAA	1260
TTCATCTAAA	TCCACTACCT	GAACTTGAAC	CTCTTCATCG	ACTTTCAAGG	TTTCATGAAT	1320
АТТТТСААТА	AATCCTGTCC	GAATCTCTGA	AATGTGAATC	AGCCCCGTAT	CACCCGTCTC	1380
TAACTCAACA	AAGGCACCGT	AGGGCTGAAT	CCCTGTAATA	CGCCCCTTTA	GCTTATCACC	1440
GATTTTCATC	TTAGTCCTCG	ATTTCAATAG	TTTCAATTAC	AACATCTTCA	ACTGGCTTGT	1500
CCATAGCTCC	TGTCTCAACA	GCAGCAATGG	CATCCAAGAC	AGCGTAAGAT	GCTTCATCAG	1560
CTAACTGACC	AAAAACCGTG	TGACGGCGGT	CTAGGTGAGG	TGTCCCACCT	TGATTGGCAT	1620
AGATTTCTGC	AATCGGTTCT	GGCCAACCAC	CACGAGTAAT	ТТСТТТСТТА	GAATAAGGTA	1680
GGTGTTGGTT	TTGCACGATA	AAGAACTGGC	TGCCGTTGGT	ATTTGGACCA	GCATTTGCCA	1740
TGGAAAGAGC	ACCACGGATA	TTGTAAAGCT	CTTCTGAGAA	TTCATCCTCA	AAAGATTCGC	1800
CGTAGATTGA	CTCGCCACCC	ATACCAGTTC	CAGTTGGGTC	TCCACCTTGG	ATCATAAAGT	1860
CCTTGATAAT	ACGGTGGAAA	ATGACACCAT	CATAGTAGCC	ATCTTTTGAA	AGAGATACAA	1920
AGTTAGCCAC	TGTTTTAGGA	GCATGTTCAG	GGAAAAGCTT	GATACGTAAG	TCTCCGTGAT	1980
TGGTCTTAAT	AGTCGCAAGA	GGACCTTCTA	CTGTTTCAAT	GTCTACTTGT	GGAAAATGCA	2040
ATTCTTTTC	TACCATACCA	ААТАСТТСТА	AGGCAGCAAA	AATGCCATCT	TCTTCTAATG	2100
TTTTTGTAAT	ATAATCTGCT	TTTTCTTTGA	TTTTATCATG	AGAAATTCCC	ATGGCAACGC	2160

TGATTCCAGC	ATAATCAAAG	AGTTCCAAGT	CGTTGAGACC	ATCTCCAAAA	ACCATGACCT	2220
TCTCTGGTTT	CAAGCCAAGG	TGTTCCACAA	CCTTTTCCAC	CCCCGTCGCT	TTGGAGCCTG	2280
AAATCGGCAC	AATATCAGAC	GAATGTTGAT	GCCAACGAAC	CATGCGAAGT	TTGTCTGAGA	2340
GACTGTCAGG	CAAGTGCAAG	TCATCTCCCT	TATCTTCAAA	AGTCCACATC	TGATAGATAT	2400
CTTCTTTTTC	ATGGAAATCG	GGATCTACAT	CTAAGTCGGG	ATAAATTGGA	TTGATAGCTT	2460
CACTCATCAT	ATCGGTGCGA	GTCGACAACT	TGGCATCATG	ACTCCCAACC	AAGCCATACT	2520
CAATTCCTTC	TTGCTTAGCC	CAAGAGATAT	ACTCCTCAAC	ATCTGACTTT	TCAATCTGAT	2580
GCTGATAAAT	GACCTGACCT	TTTTTATCTT	CGATATAAGC	CCCATTCAAA	GTTACAAAAA	2640
AGTCAGGCTT	GAGATCACGA	ATCTCTGGAA	CAACACCAAA	AATGCCACGT	CCAGAGGCGA	2700
TTCCTGTTAA	AATTCCTTTT	TCACGCAACT	GTTTAAAAAC	AGTGGGAATT	GTAGTTGGAA	2760
TAAACCCTGT	CTTTGAATTC	CGCAATGTAT	CATCAATATC	AAAAAAGACA	ATCTTGATCT	2820
TCTTTGCCTT	GTATCTTAAT	TTCGCGTCCA	TCTCACTACC	TCTTTCAATC	TAACTCTTTC	2880
CATTATATCA	TAAAGTAGGC	AAATCCCCTA	TTTTCAAAAA	GTTTATCATT	ТТТАТТТТАА	2940
TTTCTTGGAT	GAGAAAAGAG	ACATATTTAT	GAAAAAGCTC	CATCGTGCTT	TTAATGTGTT	3000
CTCTTGTTTT	CAAACTCGTA	AAAAGGGAGC	CACTGATCCT	AACTCGCTCT	CTCATTTCAA	3060
AGCTTGTGAA	AAAAGACCCG	TTGGGGTCTT	AATTCGCTTT	CTTGTTTTCA	AGCTCATGAA	3120
AAAGAGACCC	AACTGGGTCT	TTTCTTTAAT	CTTCGTTTAC	GAAAGGCATC	AAAGCCATTA	3180
CGCGAGCGCG	TTTGATAGCT	GTTGTTACTT	TACGTTGGTT	TTTAGCTGAA	GTTCCTGTTA	3240
CACGACGAGG	AAGGATTTTC	CCACGTTCTG	AAACGAAACG	GCTAAGAAGC	TCAGTATCTT	3300
TGTAATCAAC	ATATTCAATT	TTGTTTGCTG	CGATGTAATC	AACTTTTTTA	CGGCGTTTGA	3360
ATCCGCCACG	ACGTTGTTGA	GCCATGTTTT	TTCTCCTTTA	TAAGTTTAGT	TGTCCATTAG	3420
AATGGTAAAT	CATCATCTGA	AATATCCAAT	GGGTTTGTTG	CTCCAAATGG	ATTTTCATTA	3480
CGTGAAAAGT	CTGGTACTGA	ATTTGTAGGT	GCTGAATAGT	TTGCAGTTGG	TGCAGAGTAA	3540
GCTCCACCTG	TGTGACCCTC	ACGCACACTA	CGGCTTTCCA	ACATTTGGAA	ATTCTCAGCC	3600
ACGACCTCTG	TCACGTAGAC	ACGTTGTCCT	TGCTGGTTAT	CGTAACTACG	AGTCTGGATA	3660
CGACCTGTCA	CCCCGATAAG	TGAGCCTTTT	TTAGCCCAGT	TAGCAAGATT	TTCAGCCTGT	3720
TGGCGCCACA	TAACGACATT	GATAAAATCA	GCCTCACGTT	CACCATTTTG	ACTCTTAAAT	3780
GTACGGTTTA	CTGCAAGAGT	AAAAGTCGCA	ACTGCTACAT	TTGATGGGGT	ATAACGCAAC	3840
TCAGCGTCAC	GTGTCATACG	CCCTACAAGT	ACAACATTGT	TAATCATAGT	TTACCTTCTT	3900

212 ACGCGTCAAT TTTGACGATC ATGTGACGAA GAATGTCAGC GTTGATTTTT GAAAGACGGT 3960 CAAACTCTTT AAGAGCTGCA TCGTCATTTG CTTCAACGTT AACGATGTGG TAAAGTCCTT 4020 CACGGAAATC TTGGATTTCG TATGCAAGAC GACGTTTTTC CCAAGTTTTT GATTCAACAA 4080 CAGTTGCACC GTTGTCAGTC AAAATAGAGT CAAAACGTGC TACCAAAGCG TTTTTAGCTT 4140 CTTCTTCAAT GTTTGGACGA ATGATATAAA GAATTTCGTA TTTAGCCATT GATATGTTCC 4200 TCCTTTTGGT CTAATGACCC CAAGACTTTG CAAGGGGTAA GTGAGGTTCG CTCACAATAA 4260 ACTATTATAC TAGAAAAAAT TTTTTTACGC AAGTAAAAAC ACTAGAATTC GAAAAAACGC 4320 4380 AGCTTCACGG ATATGTTTTG TTCCTGCTGC GAAGGTTACC ATACGTTCGA TACCGATACC 4440 AAATCCTCCG TGTGGAACTG TACCGTATTT ACGAAGGTCA AGGTAGAATT CATATTCTGT 4500 ACGATCCATG CCAAGTTCAT CCATCTTAGC GACAAGGGCA TCGTAATCTT CCTCACGCAT 4560 AGACCCACCG ATAATTTCTC CATAGCCTTC TGGAGCAAGC AAGTCTGCAC AAAGCACGCG 4620 CTCTGGATTT CCAGGAACTG GTTTCATGTA GAAGGCCTTG ATGGCTGCTG GATAGTTCAT 4680 GACAAATGTT GGCACACCAA AGTGGTTTGA AATCCAAGTT TCGTGTGGTG ACCCAAAGTC 4740 ATCACCATGC TCAAGATGCT CGTAGTCAGC ATCTTCATCA TTTTCATGCT CTTGCAAGAG 4800 GTCAATGGCT TGATCGTAAG TGATACGTTT GAATGGCTCT GCAATGTAGC GTTTCAAGAG 4860 TTCTGTATCA CGTTCCAAGG TTTCCAAGGC TTGAGGCGCG CGGTCAAGAA CACCTTGTAG 4920 AAGAGCTTTC ACATAAGCTT CTTGCAAGTC AAGCGACTCA TCATGTGTCA AGTATGAGTA 4980 CTCAGCATCC ATCATCCAGA ACTCAGTCAA GTGACGGCGT GTTTTTGATT TTTCAGCACG 5040 GAAAACTGGA CCAAAGTCAA AGACACGACC AAGAGCCATA GCCCCTGCTT CTAGGTAAAG 5100 CTGACCTGAT TGGCTCAAGT AGGCTGGCGT TCCGAAGTAG TCAGTTTCAA AGAGTTCTGT 5160 AGAATCTTCT GCCGCATTTC CTGAAAGAAT TGGGCTGTCA AACTTCATAA AACCGTTCTT 5220 GTCAAAGAAC TCATAAGTTG CATAGATAAT AGCGTTACGG ATTTGCAACA CAGCTACTTG 5280 CTTACGAGAG CGTAGCCACA AGTGACGGTT ATCCATCAAA AAGTCTGTTC CGTGTTCTTT 5340 TGGTGTGATT GGGTAGTCTT GAGATTCACC GATCACTTCG ATGTCTGTGA TGTCCAACTC 5400 ATAGCCAAAT TTAGAACGTT CGTCCTCTTT GACAATACCT GTCACATAAA CAGACGTTTC 5460 TTGGCTCAAG CGTTTGATAA CATCAAACTT CTCAAGTCCC ACTTCTTCAC CAAATTTTTC 5520 GACAAAGTTT GGTTTAAAAG CCACACCTTG AAAGAAGGCT GTTCCATCAC GCAATTGTAA 5580 GAAAGCGATT TTTCCTTTTC CTGATTTGTT GGCAACCCAA GCGCCAATCG TCACTTCCTG 5640 ACCAACATAG TCTTTTACGT CAATAATCGT TACACGTTTT GTCATTATTT TTCCTTTTCT 5700

TTTTTATTCT	TTATGGCAAA	CCACCTCTAT	ATTGTTCCCA	TCCAGGTCAA	TCATAAAAGC	5760
AGCATAGTAA	ATCGGATGCT	CACTTCGATA	ACCAGGAGCC	CCATTGTCTC	GCCCACCTGC	5820
CTCTAAGCCA	GCCTCATAAC	AAGCCTGAAC	TTCTTCCTTA	TTTTCTGCTA	AAAAAGCAAA	5880
ATGAACAGGA	TCTTGTGTTC	CCTGAGTCAG	ССАААААТСА	CCACCAGGAT	GAGGGCTGTT	5940
CGGGGATAGA	AAACTAATTA	GAGAACTAGT	CTTAAAAGCC	AATTTATAGT	CCAAAGGAGC	6000
GAGAAAACTC	СТАТААААТС	CTTATGAAAT	TTGTAAATCC	TTTACCTTAA	TCTCAAAATG	6060
ATCAATCATT	CTCACTACCC	ATAAATGCTT	TCAAGCGTTC	GACTGCTTCT	TTAAGCGTGT	6120
CTAGGTCTGT	CGCATAGCTG	AGGCGGACAT	TTTCTGGTGC	TCCAAATCCA	GCTCCTGTTA	6180
CCAAGGCCAC	TTCGGCTTCT	TCTAAGATAA	CAGTTGTAAA	GTCTGTCACA	TCCGTGTAGC	6240
CTTTCATCTC	CATGGCCTTT	TTGACATTTG	GGAAGAGATA	GAAGGCCCCT	TGCGGTTTGA	6300
CCACTTCAAA	TCCTGGTACC	TCTGCAAGGA	GGGGATAGAT	GGTATTAAGA	CGTTCCTCAA	6360
AGGCCTGACG	CATGCTTTCT	ACAGTATCTT	GCTCACCTGA	TAGAGCCTCA	ACTGCTGCAT	6420
ATTGGGCTAC	TGCTGACGGA	TTCGAAGTTG	TTTGACCTGC	AATCTTGGAC	ATGGCAGCGA	6480
TAATGTCTGC	TTCTCCAACG	GCATAACCAA	TCCGCCAACC	AGTCATGGCA	TAAGTTTTAG	6540
ACACACCATT	GATGACCACT	GTTTGCTTGC	GAATCGCTTC	CGATAGGCTA	GAAATCGGTG	6600
TGAACTCATG	ACCATTATAA	ACCAAGCGGC	CATAGATATC	GTCTGCTAGG	ATGAGAATAT	6660
CATTTTCTAC	AGCCCAGTTT	CCAATTGCCA	AGAGTTCCTC	ACGGGTGTAA	ATCATACCTG	6720
TGGGATTAGA	TGGCGAATTC	AGCACCAAAA	CCTTGGTCTT	GTCAGTGCGA	GCTGCTTCTA	6780
ACTGCTCTAC	GGTCACCTTA	AAGTGATTGT	CTTCCTTAGC	AGAAACAAAG	ACGGGAACGC	6840
CTTCTGCCAT	CTTGACCTGA	TCTCCATAGC	TAACCCAGTA	TGGGGTTGGG	ATGATGACTT	6900
CATCACCTGG	ATTGACCACA	GCCATAAAGA	AGGTATAGAG	AGAATATTTG	GCTCCCGCAG	6960
CGACTGTCAC	TTGATTTGAC	GCTACAGAAT	AGCCGTAAAA	GCGCTCAAAG	TAGCTATTGA	7020
CCGCCGCCTT	AAGCTCTGGC	AGACCTGAGG	TTACTGTATA	AAAAGAAGCA	CGCCCATCTC	7080
GAATCGATGC	AATGGCGGCA	TCTTGGATAT	TTTTGGGAGT	AGTGAAATCT	GGCTCACCCA	7140
AGGTTAGAGA	СААААТАТСТ	CTACCCTCAG	CCTTCAGTGC	TTTGGCACGG	GCTCCAGCAG	7200
CCAAAGTCAC	ACTTTCTTCC	ATTTCTAAAA	CACGGTTGGA	TAGTTTCATA	GGCCCTCCTT	7260
GTTGACCAAT	GCTCCTGTTT	CAAAATCTAC	TAGATAAAAA	TCAGATCCTG	ACTTAACTTC	7320
CCAGATTGGC	TTATCTTGAT	AACGGCCAAA	GGTTATCTTG	TCAATCTCGC	CAGCTCCCTT	7380
TTCCTTAGAA	ACCGTTTCTG	CTTTTTCTTG	TGAAACACCC	TGATTTAGCT	GATAAACGTA	7440

			214			
AATCTTATGG	TCATCTTTAC	CAATCAGGAC	AGCAAGCGCT	TCTTGCTGTT	TGTTACGACC	7500
AAGAACGCTG	TAATAAGATT	CCAAGCCATT	GTATAAATCA	ACCTGATCAG	CCTGCTCTAA	7560
TCCTGCATAC	TGCTGAGCTA	ATTTTTCTCC	TTCACTTTTA	GCTGTTTGAT	AGGGTTTCAT	7620
GCTAAGAGAA	ACCATATACA	GAAAGGAACC	ACTGATAACC	ACAAACAAAA	TCGTCATCCC	7680
TAGACCATAC	TGCCACAGTA	GATTATTTT	TGCTTTGTTT	TGTCTTTTT	TCACTCGTCT	7740
ATTTTACCAT	CTATTAAGCT	TTATTACAAG	TGAATATAAG	AATACTCTTC	GAAAATCTCT	7800
TCAAACCACG	TCAGCTTTAT	CTGCAGACCT	CAAAGCTGTG	CTTTGAGCAA	CCAATTCTAT	7860
TTCTCCCTTC	AAACAAAACC	GATTTTGAAA	GTGAAACAGT	TCTTACTTTT	TCAGTCACAA	7920
ATGATTAGAG	TTTGCCGGG					7939
(2) INFORMA	ערדטאן ביטט פנ	O TD NO. 10				

(2) INFORMATION FOR SEQ ID NO: 10:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 9897 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:

CCGCTCTACC	GTCAAATAAT	TACCATTTTG	TTTAATACCG	AAATTTTTAT	CTACTGAAAA	60
TTCAGTTGGT	CTGTTGGTAC	GATCGTCGTA	TACAGTACCA	TTCTCACGAA	TAGTATAATT	120
GTAATCAGTA	TCACCTTGTT	TCCTTAATTT	AAGGTAATAA	TTACCATCAA	TTTGTTTATA	180
ACCTGAATCT	TTTCTAGTTG	CTTCTCTAAA	ACTTACTCCA	GCAGGCATCA	CATCAGCAAA	240
CATGAGTACT	TGTTTGTTCT	TTTTTTCAAC	AATAACAGAG	TCAATATAGG	TTGCACCACC	300
GCTGATTTGT	AAGTCACGTC	CACCAACTTC	ACGAGGCCAT	TCTAATGGTA	CTGGCGCAAA	360
ATCATCGAAT	GCCAATGTTA	ATTTTGGTTT	AGTCCATGTC	TTACCATTAT	CATCACTATA	420
ACTTGTAGCA	ATATTAATTT	TATTCAAGAA	ATCATGAGTT	CCACCGTAAC	GAGCGTCAAT	480
GCTTGAAAAT	ACCCGACCAT	TGCTAAAAGT	ATACAGAACT	GGAATACGGA	AATAGTTAGA	540
ACCTGTTGTA	TCATTAGCCG	TATAAATTAA	ATGTCCAGTA	ACAGCGTTTG	TTGTCATCTT	600
TTTAACAGTT	TCTTCATCCA	ATGCACTATT	AAAGAATTTG	ATATTTTCTA	GTGTTCCGTT	660
AAAACCAAAC	GCCGTTTTTC	CTGCACGTTT	CACTCCCCCA	AGCATATAGT	AATCAATACC	720
тттаататсс	TTGATGTTTA	GGAAATTATC	CACTTTCTTT	TCTACTACTT	TTGTACCATT	780
TGCGTATAAA	GAATATGTTT	TTTTGACTGA	ATCTGCTACT	ACTGCAACAG	TGTTAGTCAC	840
AGCCTCTTGT	TTGTACTTAC	CCCAAACTGA	AGCAGGTCTG	GATACTAGGT	TATTTTTATT	900

GGAAGAAGTA	TCACGCGCTT	CCATCCCCAA	CTCACCATTG	TCTCTAAGGA	ACACATCTAC	960
ATAACTATTT	TGTTGACCGG	GTTTGGAATT	AGATATTCCA	AACAGAGCTT	GTAAGCCTTT	1020
CTCACTTGAC	TGATTGTACT	TAATCACTAC	AGTAAAGTCA	CCGCTAGTAA	ATTTATCCTT	1080
TAACTCTTTA	GTAACATTTT	CTCCGCCCCC	TGTTAAAGTA	ACATTATTTT	TTTCTAAGAC	1140
AGGAGTTTCT	TCCGCTGTAG	AAGATGGATC	CTTAACAGTA	GTTTCAACTG	TTCGAGGTTG	1200
TACAGTAACT	TCCGAAGAGT	TATCCGATGT	AGGTTGTACT	TCCGAAATCG	GAGTCGTTGG	1260
TGCAACAGGT	TGCACCAACT	TTGGTGTTGA	TACTTCAGAA	GTTTCAGTCT	CCTGAGCTGC	1320
AACTGAGTTA	GCAACAAATG	CTGATAATAC	CACTACAGTA	CCTAAGGTTA	CATATTGTTT	1380
AATATTTTTT	TTCATTTTAT	TTTTCCTCGT	TTAAAACTTT	GATAACAAGT	TTTTTAACAG	1440
TTTCATCATT	GCAATGAATC	TTTGGTTGGT	GAAGATCTTC	TTCAAAAGTC	АССААСАТАТ	1500
TCCCTGGAAG	CAATTCAACA	ATTTGATAGT	CTTTGCTATC	GTAAAAAGCA	ATATCCTTCT	1560
CTTCGCTAAA	AGGTACACGT	GACTGGGCAC	GAACTGGGGA	AGTTACTGCC	ATTTTTTCAG	1620
TATTTTCAAC	AACAATATGA	ATATCTAAAT	ATTTCTTATG	AGTTTCAAAA	ATATCTCCTG	1680
GAACTCCATC	AGCTAGATAA	GTCATACAAT	TTGCAAAAAC	ATTTTCCCCG	TCAATATCAA	1740
TTTTTCCATC	AACTAAATCT	GTCAAATTTG	TATTTTCTAA	AAAATCACAG	ACTTTTGAAA	1800
AATATTTATT	GACAGAAGCA	TATCGTTTAA	AATCAGATTG	TTCAGAAATA	ATCATATTAT	1860
TTTCTCTTTT	CTATTAGTGA	CGAACTTCCC	AACTTGAATC	CGCTTTAATT	TCTGTAATAT	1920
CATGAATCGT	TGTATATTTA	GGTGCAGATA	CTTTATTTCC	AGTAAGAACA	GATACAATAT	1980
AACCTGAAAC	TACTGATACA	GAGATTGAAA	TCAATGAATA	TGCCCAGTAG	CTAACAGCTG	2040
TTGGAGGAAG	GAAGTATTTA	ATAAATACCA	TGACGATGGT	TGATACAATC	AGCGCTGCAT	2100
AAGCACCTTG	TTTATTTGCT	TTTTTAGAAA	CAAATCCAAG	AATAAATACA	CCACCAAGTA	2160
GACCAAGTAC	AAGTCCCATG	AAACTATTGA	ACCATTCGTA	TGCAGATTTA	ATATCTGAGT	2220
GAGCCATGAC	AATGGAAACA	CCAATTGAGA	ATAAACCTAC	TGCTAGAGAT	ACGAATTGTG	2280
CAATTTTCGT	ACGACGATTG	TCTGACATAT	TTTTAGAAAT	GACATCTTGA	ATATCCAATG	2340
TCCATGAAGT	TGCAACAGAG	TTCAAACCTG	TTGAAATAGT	TGATTGAGAT	GCTGCATAAA	2400
TCGCTGCCAA	GATCAAACCT	GTGATACCTA	CTGGTAACTG	GTATGCAATA	AAGTACATAA	2460
AGATTTGGTC	TTGAGGGATA	TTGCTAGCTG	CACTATCTGC	ATTTTGTACT	TGATAGAATA	2520
CGTACAAGCC	TGTACCAATC	AAGTAAAAGA	CTGTTGCAGT	TGCAAGTGAC	AAAACACCGT	2580
TTGTGAACAA	CATCTTATTA	AGTTTCTTAA	TATTTTGTGT	TGTAGTAAAA	CGTTGAACCA	2640

216 AATCTTGAGA TGAAGCATAG GAAGACAAGA TTGTAAAGCC TGAACCCATC ACAATTAAAA 2700 AGATGGAGTT TGAAAGCAAG TTAGGATCGA AAAGTTTTTC ATTTGCAGCA AGGAATTTCC 2760 CGTTTGCTAA TGTTTCTGCT ACTGCACCAA AGCCACCTTT AATATTAGCA ATCAGTACAA 2820 ATAAAGCTAA AACGACACCA CTAATCAGAA TCACACCTTG AATAAAGTCT GTCCATAATA 2880 CGGATTTTAG ACCACCAGTA TAAGAATAAA CAATTGCAAC TACACCCATC AAAATAATCA 2940 AAATATTGAT GTCAATTCCT GTCAATACTG ATAAACCAGC TGATGGGAGG TACATAATGA 3000 TAGACATACG TCCCAATTGA TAAATAATAA ACAAGAGTGC TGAAATAATA CGAAGTGCTT 3060 TAGAATTAAA ACGTTTATCC AAGTAATCAT ATGCCGTATC GATGTCTATC CGTGCAAAGA 3120 TAGGTAAGAT AAAACGAATT GTCAGTGGAA TAGCTACTAC CATCCCTAAT TGAGCAAACC 3180 ATAAAATCCA GCTACCTGCA TAAGAGCTAC CAGCGAGTCC CAAGAAGGAA ATCGGACTGA 3240 GCATTGTGGC AAAAATGGAT ACCGAAGTAA CATACCAAGG AACCGAACCA TCTCCTTTAA 3300 AGAACTCTTT TCCTTTCATC TCTTTTTAG AGAAATAGAT ACCTGCAACC AACACCGCAA 3360 GTAAATAAAC AATCAAGATA ATTAAGTCAA TTATTGTAAA TCCTGTTGTG CCCATAACAT 3420 ATCTCCATAT TGATTTATT TATTATAAAA ATTCTTTTCG TGCTTGTTGA ATAAGTTCTG 3480 CTGCTTGTTT TGCAACTTCC AAGTCACCTT CTGCCAATGC TTCTAAAGGT TGACGAACAG 3540 AACCTAAATC AAGTTTTTCA TTTAGACGCA AAACTTCTTT TGCTACAGCA TACATATTTG 3600 CCTTACCTGA TATCATCTTA TAGATAACTT CATTGATAGC ATATTGAAGT TTTTTAGCTG 3660 TATCTAAATC TCGTTCTTGA ATCAAACTTT CCAATTTCAA GAACAAATCT GGCATAACGC 3720 CATAAGTACC ACCAATACCA GCTTCTGCTC CCATCAAGCG ACCACCAAGA TATTGTTCAT 3780 CTGGACCATT GAATACAATG TAATCTTCTC CACCTGCAGC TACAAACATT TGAATATCTT 3840 GTACAGGCAT AGAAGAATTT TTAACTCCAA TCACACGAGG ATTTTGACGC ATTGTTGCAT 3900 ACAAACTACC AGTCAACGCA ACCCCTGCCA ATTGTGGAAT ATTATAGATA ATAAAATCTG 3960 TATTTGACGC AGCTTCACTC ATTGCATTCC AATATGCTGC GATTGAATAC TCTGGCAATT 4020 TGAAATAAAT AGGTGGGATA GCTGCAATAG CATCGACTCC AACACTTTCT GAATGTTTTG 4080 CCAATTCGAT ACTATCTTTC GTGTTATTAC ATGCAATATG GTTGATAACT GTTAATTTAC 4140 CTTTAGCAAC TTCCATAACA GCTTCAATAA TTTGTTTACG ATCTTCTACA CTTTGGTAAA 4200 TACATTCACC TGAAGAACCA TTTACATAGA TACCTTTTAC ACCTTTGTCA ATGAAATATT 4260 GTACCAGAGA TTTTACACGA TCTTGGCTAA TTTCACCATT TTCATCATAG CAAGCATAAA 4320 ATGCAGGGAT AACGCCTTTG TATTTAGTTA AATCTTTCAT CAGATTTCTC CTTTATATTG 4380 TTTTTTATTT GATGACATTA ATAAATCGCT GAGCAATTTC TTTTGGACGT GTAATCGCTC 4440

CACCAATGAC	TACACTGGTA	ACACCTAAAC	TATAAGCTTT	TTTTAATTGT	TCTGGATAAT	4500
GAATTTTTCt	TCGGCAATTA	CCGGAATATT	AAAATCAGCC	AATTTTTTCA	TTAGTTCAAA	4560
ATCAGGCTCA	TCTGATTGTA	CACTTGTACT	TGTGTAACCT	GATAATGTTG	TACCAACAAA	4620
ATCAACGCCT	GATTTAAATG	CATAGAGACC	ТТСАТСТААА	TTACTTACAT	CCGCCATCAG	4680
CAATTGATTC	GGATATTTT	CTTTTATTTT	TTTGATAAAT	TCACTGACAA	CTAAGCCATC	4740
ATATCTTGGT	CTTAAAGTTG	CATCAAATGC	AATGACTGTT	GTTCCGCATT	CTACAAGTTC	4800
ATCTACTTCT	TTCATCGTAG	CAGTAATATA	TGGTTCTTGA	GGTGGATAAT	CCCTTTTGAT	4860
AATTCCAATT	ATTGGTAAAT	CTACTACTTT	CTGAATTGCT	TTAATATCAC	GCACAGAATT	4920
TGCGCGAATG	CCCACTGCTC	CTGCCTCTAA	AGCTGCTTTA	GCCATAAAAG	GCATCAAGCT	4980
AAATTCTTCA	TTATAAAGGG	CTTCACCAGG	TAAAGCTTGA	CAAGAAACAA	TGACTCCACC	5040
TTGAACTTGG	CTTATAAATT	TTTCTTTAGT	CCAAATTTGG	CTCATTTTAT	TATTCCTCCT	5100
TATGGATAAT	AGTTTGATTG	TAATAATATT	GTCTCTCTGG	ACTTTCCAGA	TAATTAGAGA	5160
ATAAGCAGTC	TGTAATTAAA	AGTATTGGAA	ACTGAGGTGA	TATGCGATTG	CCATACGAGA	5220
GATGATCGGT	CGAAGCTAAT	AACAATAGTT	CATCAAAGAA	ACAATCTTCT	TCGTCAAATT	5280
TTCTTGTAGT	CATTAAAACT	GTTTTAGCGC	CTTTATCTGC	AGCTTTTTGT	AGACCTTCTA	5340
GTACAATATC	AGTTTGACCT	GAAATGGATG	CTCCAATGAC	AAGGCAATTT	TCATTAAGTA	5400
GTAAGCTACT	CCACAAAATC	ATATCCTCGT	CTGATAATAC	TTCACCAATC	ACTCCGAGAC	5460
GCATAAATCT	CATCTTCATT	TCTTGTAAAG	CAAGAACAGA	ACTTCCTTTA	CCGTAGAGAT	5520
ATACACGCTC	AGCAGTTTCT	ATCATCTCAG	CAATACGCTC	AAGTTGAACT	TCATCAAGAA	5580
CCGTGTAAGT	TTTTCTCAAC	ATTTCCTCAT	AGTCGGATAA	AACTTTTTCT	GTTGCCTCTG	5640
TATATAATGC	CAACTTTTCT	TTCTCATGAA	TCATCTCTTG	GTATTTGAAA	ATGAATTGTC	5700
TAAAACCTTT	AAAACCACAT	TTTTTCGCAA	ATCGAGTCAA	TGTTGCTTTG	GATACATTAA	5760
GGTATTCGCA	CAATGCTTTA	GATGAATAAT	CATTCAGAGG	TTGCTGTTTT	AAGAAGAATT	5820
TAGCAATGTC	TTTTTCAGCA	TATGCCATAT	TTGGTAAGTT	AGCTTCTATC	ATTGGAATTA	5880
GTTCTTTTTG	CAGTAACATA	TGAGCTCCTT	AGTTGAAGTA	AACGTTTACA	TTCTTTATTT	5940
TAACACTTTT	TTTTTTTTC	AATATTTTC	ATAAATTAGA	AACTAGTTTC	CAATTTCTTT	6000
CGTTTCATAA	CAGAACAACA	ААСАТААААА	TATAATAGTT	TTTATTCTTT	TTATCGTAAT	6060
TATATGTATT	GTAAGAACGT	ТТАТСАСТАА	TAATATGTTC	АТАТТААААТ	ATTTTAGTAA	6120
TATTTTATTT	TGGTTTTATT	ATTTCTTTTC	GGAATTTCTA	ТАТААТАТТ	ТАТТТСТААА	6180

AAAATTGAAA	AAATATTTCT	AGTTTCTTTA	218 TTTTATATAG	GTAATATATT	ТТАТТТСТАА	6240
ATTAAAAGAG	AATCCCATAA	AAACTACAGA	TTTATGAGAT	AAATCAGGTC	ACCTATTTTA	6300
AAAAAGCAGC	АААСТАТААА	CTAAAAAGTT	CCACACCAAA	TGTAACCCCA	TACTTCCCCA	6360
TAAGTCAGAT	TTATAGCGCA	CCATACCTAA	AAACATTCCA	AGTGAAACGT	ACAGACACCA	6420
AGCTAGAATG	GTTCCTGGAT	GATGTACTAA	GGCAAATAAA	ACACTTGTCA	AAGCAACTCG	6480
AATATCTAAT	TTTCTAACCA	AGTTCCATAA	AATTTCACGA	TACAGAAATT	CTTCAACCAT	6540
ACTCGCATTG	ATTAAGAACA	ATAAAAATGA	AAACCAAGGA	ACTTGATGTT	GAAGGCCAAT	6600
TAAATTTGTT	TGATTCGTGC	TTCCTTGAGC	ATGAATCAGG	СТААААСАТА	GACTTATAAT	6660
CAGTAGACTA	GCTAGTCCAA	TACCAAGGCA	TTTCATCCTA	GTTTTCATAT	TGACCTTGAC	6720
CACTTGTTTT	CGTTGACCAT	ACATCCATAA	AAAAGAAAAA	AGAGACGCAC	CATAGAGAAC	6780
CTGTAGTATA	GTTAACTCAC	CGATACAAAG	AAATTTCAAT	AAGTATAGAG	ATACCAATAG	6840
GACATTTACT	TGTTGGAATA	TATAAACTGG	AATTATTCTT	TTCATAGTTA	CCTCCGAAAT	6900
AAATCTTCAT	AATCTAAATC	TAATATCTGC	ACAATCCTTT	CTACCCATGG	ACTTTGAGGC	6960
ATTCGTTGTT	CCATCTTGTA	GTGGCGAATC	TTTTGATATA	AACGATTCAA	TTCACTTGGA	7020
TAGTGAAACT	CTCCCGCAAA	CATTTTTCTG	GTTAACTCAA	TCCAGCTGAT	ATTTCTTTCA	7080
GCCAAAATAA	TGGACAAGTT	CTCCCAAAAT	CGTTCAGCCA	TATTCTTCT	CCTTTAGTTA	7140
GATAAATAAT	GTGTTTGyGC	CATGTAAATC	AATTGTTTCG	TATCTCTTGG	CAATAGAGCT	7200
CTAGCCTCTT	CCAAATTCAG	ACTTGGATAA	ACCCGCTTAT	TTGAAACCAC	AAAAGGAAGT	7260
CCGATGGTTA	GTTCAGGATT	TTTAAAATT	ATCTCAACGA	AATCCGTTAA	TCTTAGATTG	7320
TCACGGTTCT	TAAATCGTAA	TAAATTGGGA	GATAAAAACT	CAAAACAATC	TGAAGAATAG	7380
CTCATCATCT	CAATTAATTT	GTCCTTTGTC	ATTTCAGAAA	CTGAATGACA	AGATACCTCA	7440
ATGCCATAGT	TTTGGAAGAA	GTCTAAAAGA	AGTTGATTTC	TTTGGCTATT	TTTACTTAGA	7500
TAGAGATCAA	TCATGGGAGA	CCTCCAACAA	ATTTGCTTCC	ATTTGATATT	CTGAGACGAT	7560
TAAGGAATCT	AACAACTTTG	AGAAGTTAAT	CGATTTCTTG	TCTTCATCAT	AAGCTTTTAC	7620
AGTTACTTGG	GTTGTAAGTA	TCCCCTCTTT	TCCCTCGGCT	CGATAGTCTT	GTCAATATAA	7680
AACAAAAACA	AGATTCTGAT	TATCATCTAC	AAAGGCATTA	ACTCCGTTCT	TTATATCCTG	7740
ACTTTCAAGG	AATTCCATAA	CGTTTTGAAG	ATAGGATTCA	TAAAATAGTG	GGTAATTATG	7800
TTTTTTATGG	TAATCATCTA	AAAATGTTAC	CTCAAACTCA	CATGGATAAT	TGGGCATCAA	7860
AAATATTTGT	TCATCCAGCT	GTTTGATTTC	TGCATCATGT	AATTCTGTTT	CTAATTCATC	7920
ACAATCTAGT	ATTGATTCTT	TATTTAATGC	TTTTATCTTT	TTCCTCTATT	TCTTTTAATT	7980

TCTTTGCGAT	TGCGGCAATC	ACAGGAACGG	TTACACTATT	ACCAACTTGT	TTATAGAGCT	8040
GACTATTAAT	AGAGACTTTT	CTAGCAGCTT	CAAAAGCCTA	ATCAGGAAAG	CCATGCAATC	8100
GAAAACACTC	TTTAGGAGTG	ATTCGTCGTA	TTCTCAAACG	GTAAAATTGT	CCATCTATTA	8160
AAACACCAGC	TACTTGGTAA	ACTTGTTTAT	CTTCTCCTTC	ATAGCTAGCC	ACTACTACTC	8220
CCATTTGACC	ACTAGTTGTT	AACGTATTAG	CTATACCTTT	TCCAACTCTA	CCACGACGAT	8280
ACTGAGAACT	TGGTCTTTCT	AAATTGATTG	AATCCCCAAT	CTCTGCTTGA	GCATATCCTT	8340
TTTTCGTTGC	TTCCCGTACT	TTTAGAAATT	GGATTGGTTC	TGGAATTAGT	ATTTTGGGGA	8400
TTTTATCTCC	TCCTTGCATC	GTAGTCAGTG	TTGGAGATAA	GCCCTCACTT	CCATAGACAC	8460
GACCTGTCTC	CTTAAAGCTA	GTCGGTAAAT	CTCCAACAAC	GACAATGCCA	TAACGATCCT	8520
GAGTATTTAA	AGTAAACATC	GGCTCTTGAT	TTTCCTTAAA	GCGTCTCCCA	TTTTGTCTCT	8580
TGTCTAATCT	ATCTGGTGTC	ATACAAGGAA	TCGCAACTTT	AAATCCTTCT	CCTTTACCAC	8640
GAACTAAGGT	TGGCGCAAGA	CCTTCTGAAT	AATAGACTTT	ACCGCTCATT	CCACTTCTTG	8700
ATGGATTCAA	ATTTCCTAGT	GCTTTCAAAG	TCTCAGAGTT	AGTTGCTTGA	CCTTCTCGTC	8760
TGAAAGGAAA	TAAGAGTCTG	GTACCTTTCT	TTCTAGAATG	TCCGATAATA	AACACCCTCT	8820
CTCTGTTTTT	GGGAACGCCA	AAATCCTTAC	TGTTAAGCAC	CTGCCACTCA	ACATCAAACC	8880
CCAACTCATC	AAGTGTGGTA	AGTATTGTGG	TGAACGTCCG	TCCCTTATCG	TGATTGAGTA	8940
GGCCTTTAAC	ATTTTCAAGA	AAAAGAAAAC	GTGGTTGGAT	TTGTTTGGCC	GCCCGAGCAA	9000
TTTCAAAGAA	CAAAGTTCCT	CTAGTATCTT	CAAATCCCAA	TCGTCTTCCT	GCGATTGAAA	9060
ATGCTTGACA	AGGGAATCCC	CCACAGATGA	CATCGACTTT	CCCTCTAAGT	ТТТТТАААТТ	9120
CGTCATCTGA	AACATCTCGT	ATGTCATGAA	ATTCTATTTC	TCCTTCCGTT	TGAAAAATGG	9180
ACTTATAAGA	TTTCCTAGCA	AATTTATCAA	TCTCACAAAA	TCCCAAGCAC	TCATGCCCTT	9240
GAGCTTCCAT	TCCCATCCTA	AAGCCTCCTA	TCCCAGCAAA	ТАААТСТААА	ACCCAAATCA	9300
TTCATACCTC	TCTCAACTAG	ATGTAACTTA	CAAAACCCCT	GACCTCATGA	GCCACTTTCT	9360
TCCTCCTCAT	GAGGTCAGTT	TTACTTTCTG	CTGTTCCAGT	ATCGTTTTTC	CTCGCTAGAT	9420
TTCCTCAAAA	GGGCAGACTC	CTCCCTTGGT	TCGTCACACG	ATTTTTTCAT	CTCGACTGTT	9480
CTTTAATGCA	TCATTAACGA	CGCTTTTCTT	CTAGGTGGTT	CATAAGGAAC	AGGAAGATTC	9540
AGGTTGACTT	TTCTAATCCT	AGAATAAAGT	GCTGAAAACA	ATTCGGAATA	GGCATAGAGA	9600
CTAGACAATT	TGAGGAGCTG	CTTGCGTCCT	GTTCGAACAC	ATTTTCCTAC	CACGTGAAGA	9660
AAAAGATGGC	GGAAGCGTTT	GATTGTTAAA	GTTTGGAAGT	CACCTCCAGC	TAGATGTTTG	9720

> 220 AGAAAAAGAT AGAGATTGTA GGCGATACAG CTCATCATCA TACGAACTCG TTTTTGATTA 9780 AGGTTGAACT ATCCGTTTTA TCGCCAAAAA ATCCCTCCTT CATCTCCTTG ATGAAATTCT 9840 CGGCTTGACC ACGTCCACGA TAAAGCTGAA ACTGGTCTTG GCTTGTTCCG GTACCGA 9897 (2) INFORMATION FOR SEQ ID NO: 11:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 8148 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEDNESS: double

 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:

GGGTTGG3.3.G3.3.G3.3.G3.3.G3.3.G3.3.G3.					
CCGTGGAACA AGCCAAGACC	AGTTTCAGCT	TTATCGTGGA	CGTGGTCAAG	CCGAGAATTT	60
CATCAAGGAG ATGAAGGAGG	GATTTTTTGG	CGATAAAACG	GATAGTTCAA	CCTTAATCAA	120
AAACGAAGTT CGTATGATGA	TGAGCTGTAT	CGCCTACAAT	CTCTATCTTT	TTCTCAAACA	180
TCTAGCTGGA GGTGACTTCC	AAACTTTAAC	AATCAAACGC	TTCCGCCATC	TTTTTCTTCA	240
CGTGGTAGGA AAATGTGTTC	GAACAGGACG	CAAGCAGCTC	CTCAAATTGT	CTAGTCTCTA	300
TGCCTATTCC GAATTGTTTT	CAGCACTTTA	TTCTAGGATT	AGAAAAGTCA	ACCTGAATCT	360
TCCTGTTCCT TATGAACCAC	CTAGAAGAAA	AGCGTCGTTA	ATGATGCATT	AAAGAACAGT	420
CGAGATGAAA AAATCGTGTG	ACGAACCAAG	GGAGGAGTCT	GCCCTTTTGA	GGAAATCTAG	480
CGAGGAAAAA CGATACTGGA	ACAGCAGAAA	GTAAAACTGA	CCTCATGAGG	AGGAAGAAAG	540
TGGCTCATGA GGTCAGGGGT	TTTGTAAGTT	ACATCTAGTT	GAGAGAGGTA	TGAATGATTT	600
GGGTAAATAC AATGAGCTTG	AAAGAAGTAG	CAAACTCACC	AAGCGCCAAT	TCTTTGAGAA	660
TCAGATGCTG GATTATACCA	TCATTGCGCA	TGAGAGTTTT	GAAATCATCC	GTCATTCTGT	720
CTACCAGACA GATGATCGTG	AAGTGGAAAA	TGCTCTGGCT	TTTGAAGTGA	AAAATGATGA	780
AACAGACAAG CTGATTCTGT	TATTAAGCGA	GGATATTGGT	GTAGGTGAAA	AATTGTGCCT	840
CGTTGACGGA ACAAAAATGC	GTGGAAAATG	TTTAGTATAT	GATAAAATAA	ATGAGAGAAT	900
GATTCGCTTG CAGTGCTAGA	AATAGGCATT	TTGAATAGTG	AATATGTTAT	AATAAGTATT	960
AGTAGGAGGT GTTTTAGATT	GGAGAAGAAA	CTGACCATAA	AAGACATTGC	GGAAATGGCT	1020
CAGACCTCGA AAACAACCGT	GTCATTTTAC	CTAAACGGGA	AATATGAAAA	AATGTCCCAA	1080
GAGACACGTG AAAAGATTGA	AAAAGTTATT	CATGAAACAA	ATTACAAACC	GAGCATTGTT	1140
GCGCGTAGCT TAAACTCCAA	ACGAACAAAA	TTAATCGGTG	TTTTGATTGG	TGATATTACC	1200
AACAGTTTCT CAAACCAAAT	TGTTAAGGGA	ATTGAGGATA	TCGCCAGCCA	GAATGGCTAC	1260

CAGGTAATGA	TAGGAAATAG	TAATTACAGC	CAAGAGAGTG	AGGACCGGTA	TATTGAAAGC	1320
ATGCTTCTCT	TGGGAGTAGA	CGGCTTTATT	ATTCAGCCGA	CCTCTAATTT	CCGAAAATAT	1380
TCTCGTATCA	TCGATGAGAA	AAAGAAGAAA	ATGGTCTTTT	TTGATAGTCA	GCTCTATGAA	1440
CACCGGACTA	GCTGGGTTAA	AACCAATAAC	TATGATGCCG	TTTATGACAT	GACCCAGTCC	1500
TGTATCGAAA	AAGGTTATGA	ACATTTTCTC	TTGATTACAG	CGGATACGAG	TCGTTTGAGT	1560
ACTCGGATTG	AGCGGGCAAG	TGGTTTTGTG	GATGCTTTAA	CAGATGCTAA	TATGCGTCAC	1620
GCCAGTCTAA	CCATTGAAGA	TAAGCATACG	AATTTGGAAC	AAATTAAGGA	ATTTTTACAA	1680
AAAGAAATCG	ATCCCGATGA	AAAAACTCTG	GTATTTATCC	CTAACTGTTG	GGCCCTACCT	1740
CTAGTCTTTA	CCGTTATCAA	AGAGTTGAAT	TATAACTTGC	CACAAGTTGG	GTTGATTGGT	1800
TTTGACAATA	CGGAGTGGAC	TTGCTTTTCT	TCTCCAAGTG	TTTCGACGCT	GGTTCAGCCC	1860
TCCTTTGAGG	AAGGACAACA	GGCTACAAAG	ATTTTGATTG	ACCAGATTGA	AGGTCGCAAT	1920
CAAGAAGAAA	GGCAACAAGT	CTTGGATTGT	AGTGTGAATT	GGAAAGAGTC	GACTTTCTAA	1980
AATGAAGGAA	AATGACTTGC	AATCTCTGTT	AAGAAATAAA	ATAATCCCAC	CTAGAACAAG	2040
CTAGGTGGGA	TTATTTGCCT	ATGAAATGAG	AAATTATGGG	AGCAAGCTCC	TAAATCAACT	2100
GTTTTTGATC	TACTTCTTTA	ACTACTTGAT	AAAAGTTATA	GAAGTAGGCC	AAACTTGAAA	2160
TGATGGTTAC	GACTAGGAAT	ATTGAAAATT	TCCATTGGAC	AGGGTTGGTT	AAAAGTTGTG	2220
GAAAGGATAT	GAGGAGAAAG	AAGAGGCTG	CGTTGAGGAC	AGGTATCCGT	TTTGATTGTA	2280
TTTTCTCAAG	TCCTTTATTG	AGCGCAGGAA	GAAAGAGGAG	TAGGAGTAGT	AAAACTGTAT	2340
GAGAAATAGC	TCCTGAAGTA	AGGGCGAAGA	AAAGGAAAAT	ACTGATAAAA	ACATGAATGA	2400
TCAGTAGTCT	AGCTAGTGAT	TTCATAAGGC	ACCTCCTAAT	CCTGGTCTTT	TTTAGCTCTT	2460
GCAATACGAA	GTGAGTCGAC	AATATGTATC	ATCACTCCGA	AAAAGAAAGC	TCCCAGTATA	2520
GTTTTAAAAA	TATGTTTTGT	ATTTAGAAGA	GAACTGATAA	AATTTGGATT	TTCACTTGTT	2580
AGGGTATCAA	TGAGTGGAAT	TATAAAAAAT	ATCACTGTTC	CATAAATCGA	ACCTGCTTTC	2640
AGACCAGGAT	AACGTAACTG	TTTCTTTTCT	TTTTTCATGA	GTTTCCTCCT	AATCCTCATC	2700
TTGATTTTTC	TTAGTTTTTG	CAATGCGACG	GGAGATGAGG	AACTGTATGC	TCGCTCCGAA	2760
GAAAATAGAA	CCGAGAATAC	TTGATACACC	ATTTCTTATA	GTGAGAAGAG	AATGAAAATA	2820
GTCCTGACCT	TCATCTATGA	GTATCCTGAG	AAGAGGAGTT	ATAAAAAACA	TCCATAGACC	2880
AAAGAACAAA	CCTGCTTTCA	GACCTGGGTA	GTGTAGTTGC	TTGCTTTCTT	TCTCATTCAG	2940
CATATCTGGT	TCAATGACTG	TGATGCCTGT	TTTTTTCATT	TGGTAGGTGA	CATAGCCAGA	3000

222 AGCGATGAGG GCAATCACTA AAATCAGAGG AGGATAGATT AGAGCCACTT CTTGAGGGTA 3060 TTTATAGGCC AGAAGGAGTG GAATAAGATT TCCGAAAATC ATCAGATAAA AGAGGATGAT 3120 AAAGACTTGG TTCCCAATAC TATCGGCCTC ACGCCGTTTG TATTCGTCAA GGGGACCAGA 3180 AATACCGTAT GTGCGTTTGA TCAGTTTTTC AGTGAAGGTT TCTTTTTTCA TGAGTTTGCT 3240 CCTTTTTAA AAATCTTCCT CCCAAAAGAG ACTGTTGAGG TCAGTTTGGA GGCTGCGGGC 3300 GAGATTGAGA CAGAGTTCCA AGGTTGGATT GTACTTGTCG TTTTCAATCA TATTGATAGT 3360 CTGTCTCGAG ACACCGATAT CCTTGGCGAG TTCGAGCTGG GAAATACCCA ATTCCTTGCG 3420 AAATTCTTTC ACACGATTCA TCTGTTCTCC TTTCTGATTT ATGTCGTATA TATTTGACTA 3480 TATTATAGTC TTTTAAACAT AAAGTGTCAA GTATTTTTGA CATATTTTTT GAAGAAATAG 3540 TAGTCTCCTT GTCCTATTTG TCTGACAAGT GCAAGCTGGT CGGATTTGTG GTAAAATAGA 3600 TAAGATATGA CAAAAGAATT TCATCATGTA ACGGTCTTAC TCCACGAAAC GATTGATATG 3660 CTTGACGTAA AGCCTGATGG TATCTACGTT GATGCGACTT TGGGCGGAGC AGGACATAGC 3720 GAGTATTTAT TAAGTAAATT AAGTGAAAAA GGCCATCTCT ATGCCTTTGA CCAGGATCAG 3780 AATGCCATTG ACAATGCGCA AAAACGCTTG GCACCTTACA TTGAGAAGGG AATGGTGACC 3840 TTTATCAAGG ACAACTTCCG TCATTTACAG GCATGTTTGC GCGAAGCTGG TGTTCAGGAA 3900 ATTGATGGAA TTTGTTATGA CTTGGGAGTG TCTAGTCCTC AATTAGACCA GCGTGAGCGT 3960 GGTTTTTCTT ATAAAAAGGA TGCGCCACTG GACATGCGGA TGAATCAGGA TGCTAGCCTG 4020 ACAGCCTATG AAGTGGTGAA CAATTATGAC TATCATGACT TGGTTCGTAT TTTCTTCAAG 4080 TATGGAGAGG ACAAATTCTC TAAACAGATT GCGCGTAAGA TTGAGCAAGC GCGTGAAGTG 4140 AAGCCGATTG AGACAACGAC TGAGTTAGCA GAGATTATCA AGTTGGTCAA ACCTGCCAAG 4200 GAACTCAAGA AGAAGGGGCA TCCTGCTAAG CAGATTTTCC AGGCTATTCG AATTGAAGTC 4260 AATGATGAAC TGGGAGCGGC AGATGAGTCC ATCCAGCAGG CTATGGATAT GTTGGCTCTG 4320 GATGGTAGAA TTTCAGTGAT TACCTTTCAT TCCTTAGAAG ACCGCTTGAC CAAGCAATTG 4380 TTCAAGGAAG CTTCAACAGT TGAAGTTCCA AAAGGCTTGC CTTTCATCCC AGATGATCTC 4440 AAGCCCAAGA TGGAATTGGT GTCCCGTAAG CCAATCTTGC CAAGTGCGGA AGAGTTAGAA 4500 GCCAATAACC GCTCGCACTC AGCCAAGTTG CGCGTGGTCA GAAAAATTCA CAAGTAAGAG 4560 GGAAAAAGAT GGCAGAAAAA ATGGAAAAAA CAGGTCAAAT ACTACAGATG CAACTTAAAC 4620 GGTTTTCGCG TGTGGAAAAA GCTTTTTACT TTTCCATTGC TGTAACCACT CTTATTGTAG 4680 CCATTAGTAT TATTTTATG CAGACCAAGC TCTTGCAAGT GCAGAATGAT TTGACAAAAA 4740 TCAATGCGCA GATAGAGGAA AAGAAGACCG AATTGGACGA TGCCAAGCAA GAGGTCAATG 4800

AACTATTACG	TGCAGAACGT	TTGAAAGAAA	TTGCCAATTC	ACACGATTTG	CAATTAAACA	4860
ATGAAAATAT	TAGAATAGCG	GAGTAAGATA	TGAAGTGGAC	AAAAAGAGTA	ATCCGTTATG	4920
CGACCAAAAA	TCGGAAATCG	CCGGCTGAAA	ACAGACGCAG	AGTTGGAAAA	AGTCTGAGTT	4980
TATTATCTGT	CTTTGTTTTT	GCCATTTTTT	TAGTCAATTT	TGCGGTCATT	ATTGGGACAG	5040
GCACTCGCTT	TGGAACAGAT	TTAGCGAAGG	AAGCTAAGAA	GGTTCATCAA	ACCACCCGTA	5100
CAGTTCCTGC	CAAACGTGGG	ACTATTTATG	ACCGAAATGG	AGTCCCGATT	GCTGAGGATG	5160
CAACCTCCTA	TAATGTCTAT	GCGGTCATTG	ATGAGAACTA	TAAGTCAGCA	ACGGGTAAGA	5220
TTCTTTACGT	AGAAAAAACA	CAATTTAACA	AGGTTGCAGA	GGTCTTTCAT	AAGTATCTGG	5280
ACATGGAAGA	ATCCTATGTA	AGAGAGCAAC	TCTCGCAACC	TAATCTCAAG	CAAGTTTCCT	5340
TTGGAGCAAA	GGGAAATGGG	ATTACCTATG	CCAATATGAT	GTCTATCAAA	AAAGAATTGG	5400
AAGCTGCAGA	GGTCAAGGGG	ATTGATTTTA	CAACCAGTCC	CAATCGTAGT	TACCCAAACG	5460
GACAATTTGC	TTCTAGTTTT	ATCGGTCTAG	CTCAGCTCCA	TGAAAATGAA	GATGGAAGCA	5520
AGAGCTTGCT	GGGAACCTCT	GGAATGGAGA	GTTCCTTGAA	CAGTATTCTT	GCAGGGACAG	5580
ACGGCATTAT	TACCTATGAA	AAGGATCGTC	TGGGTAATAT	TGTACCCGGA	ACAGAACAAG	5640
TTTCCCAACG	AACGATGGAC	GGTAAGGATG	TTTATACAAC	CATTTCCAGC	CCCCTCCAGT	5700
CCTTTATGGA	AACCCAGATG	GATGCTTTTC	AAGAGAAGGT	AAAAGGAAAG	TACATGACAG	5760
CGACTTTGGT	CAGTGCTAAA	ACAGGGGAAA	TTCTGGCAAC	AACGCAACGA	CCGACCTTTG	5820
ATGCAGATAC	AAAAGAAGGC	ATTACAGAGG	ACTTTGTTTG	GCGTGATATC	CTTTACCAAA	5880
GTAACTATGA	GCCAGGTTCC	ACTATGAAAG	TGATGATGTT	GGCTGCTGCT	ATTGATAATA	5940
ATACCTTTCC	AGGAGGAGAA	GTCTTTAATA	GTAGTGAGTT	AAAAATTGCA	GATGCCACGA	6000
TTCGAGATTG	GGACGTTAAT	GAAGGATTGA	CTGGTGGCAG	AACGATGACT	TTTTCTCAAG	6060
GTTTTGCACA	CTCAAGTAAC	GTTGGGATGA	CCCTCCTTGA	GCAAAAGATG	GGAGATGCTA	6120
CCTGGCTTGA	TTATCTTAAT	CGTTTTAAAT	TTGGAGTTCC	GACCCGTTTC	GGTTTGACGG	6180
ATGAGTATGC	TGGTCAGCTT	CCTGCGGATA	ATATTGTCAA	CATTGCGCAA	AGCTCATTTG	6240
GACAAGGGAT	TTCAGTGACC	CAGACGCAAA	TGATTCGTGC	CTTTACAGCT	ATTGCTAATG	6300
ACGGTGTCAT	GCTGGAGCCT	AAATTTATTA	GTGCCATTTA	TGATCCAAAT	GATCAAACTG	6360
CTCGGAAATC	TCAAAAAGAA	ATTGTGGGAA	ATCCTGTTTC	TAAAGATGCA	GCTAGTCTAA	6420
CTCGGACTAA	CATGGTTTTG	GTAGGGACGG	ATCCGGTTTA	TGGAACCATG	TATAACCACA	6480
GCACAGGCAA	GCCAACTGTA	ACTGTTCCTG	GGCAAAATGT	AGCCCTCAAG	TCTGGTACGG	6540

			224			
CTCAGATTGC	TGACGAGAAA	AATGGTGGTT	ATCTAGTCGG	GTTAACCGAC	TATATTTTCT	6600
CGGCTGTATC	GATGAGTCCG	GCTGAAAATC	CTGATTTTAT	CTTGTATGTG	ACGGTCCAAC	6660
AACCTGAACA	TTATTCAGGT	ATTCAGTTGG	GAGAATTTGC	CAATCCTATC	TTGGAGCGGG	6720
CTTCAGCTAT	GAAAGACTCT	CTCAATCTTC	AAACAACAGC	TAAGGCTTTA	GAGCAAGTAA	6780
GTCAACAAAG	TCCTTATCCT	ATGCCTAGTG	TCAAGGATAT	TTCACCTGGT	GATTTAGCAG	6840
AAGAATTGCG	TCGCAATCTT	GTACAACCCA	TCGTTGTGGG	AACAGGAACG	AAGATTAAAA	6900
ACAGTTCTGC	TGAAGAAGGG	AAGAATCTTG	CCCCGAACCA	GCAAGTCCTT	ATCTTATCTG	6960
ATAAAGCAGA	GGAGGTTCCA	GATATGTATG	GTTGGACAAA	GGAGACTGCT	GAGACCCTTG	7020
CTAAGTGGCT	CAATATAGAA	CTTGAATTTC	AAGGTTCGGG	CTCTACTGTG	CAGAAGCAAG	7080
ATGTTCGTGC	TAACACAGCT	ATCAAGGACA	ТТАААААААТ	TACATTAACT	TTAGGAGACT	7140
AATATGTTTA	TTTCCATCAG	TGCTGGAATT	GTGACATTTT	TACTAACTTT	AGTAGAAATT	7200
CCGGCCTTTA	TCCAATTTTA	TAGAAAGGCG	CAAATTACAG	GCCAGCAGAT	GCATGAGGAT	7260
GTCAAACAGC	ATCAGGCAAA	AGCTGGGACT	CCTACAATGG	GAGGTTTGGT	TTTCTTGATT	7320
ACTTCTGTTT	TGGTTGCTTT	CTTTTTCGCC	CTATTTAGTA	GCCAATTCAG	CAATAATGTG	7380
GGAATGATTT	TGTTCATCTT	GGTCTTGTAT	GGCTTGGTCG	GATTTTTAGA	TGACTTTCTC	7440
AAGGTCTTTC	GTAAAATCAA	TGAGGGGCTT	AATCCTAAGC	AAAAATTAGC	TCTTCAGCTT	7500
CTAGGTGGAG	TTATCTTCTA	TCTTTTCTAT	GAGCGCGGTG	GCGATATCCT	GTCTGTCTTT	7560
GGTTATCCAG	TTCATTTGGG	ATTTTTCTAT	ATTTTCTTCG	CTCTTTTCTG	GCTAGTCGGT	7620
PTTTCAAACG	CAGTAAACTT	GACAGACGGT	GTTGACGGTT	TAGCTAGTAT	TTCCGTTGTG	7680
ATTAGTTTGT	CTGCCTATGG	AGTTATTGCC	TATGTGCAAG	GTCAGATGGA	TATTCTTCTA	7740
GTGATTCTTG	CCATGATTGG	TGGTTTGCTC	GGTTTCTTCA	TCTTTAACCA	TAAGCCTGCC	7800
AAGGTCTTTA	TGGGTGATGT	GGGAAGTTTG	GCCCTAGGTG	GGATGCTGGC	AGCTATCTCT	7860
ATGGCTCTCC	ACCAAGAATG	GACTCTCTTG	ATTATCGGAA	TTGTGTATGT	TTTTGAAACA	7920
ACTTCTGTTA	TGATGCAAGT	CAGTTATTTC	AAACTGACAG	GTGGTAAACG	TATTTTCCGT	7980
ATGACGCCTG	TACATCACCA	TTTTGAGCTT	GGGGGATTGT	CTGGTAAAGG	AAATCCTTGG	8040
AGCGAGTGGA	AGGTTGACTT	CTTCTTTTGG	GGAGTGGGAC	TTCTAGCAAG	TCTCCTGACC	8100
CTAGCAATTT	TATATTTGAT	GTAAGAATGG	CACCCTGATG	TTTCAGGG		8148

⁽²⁾ INFORMATION FOR SEQ ID NO: 12:

⁽i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 9909 base pairs
 (B) TYPE: nucleic acid

225

(C) STRANDEDNESS: double(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:

TACTCCACCC	TTAATATCCG	TTCCTGTAAA	TACTTTACCG	CTTTTAAGTT	CATAGAATTG	60
AACTTTTAAA	TGCTTGTCTT	CAAGCATCTT	TTCCATCCAA	TTTTTAGGAG	TTTGACCAGC	120
ТТТАААТАА	AACCTTGCTG	GGGTGATTAG	TATAGATTTA	TCTGCGATTT	TATAAGCTTC	180
ATCAATAAAA	TAGTGATATA	TCGGCTCATC	TCTGGCTTCT	CCTGTTTCCT	GATACGGAGG	240
ATTTCCTATC	ACGACATCAA	ATTTCATTTC	ACTTTCCTCG	CTAGATAGGC	GCTCAAAACC	300
TATCATTCTA	TTCTTTTTCC	AGTCTTTGAT	ATGGGTTTTA	GATTCTTCTA	CTTCTTGGAC	360
TTCTAGCTCA	TCCGCAAACA	AACTCAATTG	TTGAGATTGC	TTTTGTTTAG	CTGAATAAGG	420
ACTACTTTTT	TTCAATCCAT	CCATCTGAAA	GACATTGTAA	GAGATAATAG	TCGCAATTTC	480
TTTCTTTTGC	TCTAATGTTG	GTTGATTTCC	AGTCTTAGCT	AGATAATAGT	CCTCAAAAGT	540
TGCCAAAAGA	TTCTCACGCG	CCAAAAGGAG	AGAATCTCCT	TGATACTCAT	AACCATACGA	600
AGCATGATAA	GCATCTTTTA	CAAGTTTATA	AAATGTGACT	TCATCTGAAA	CCTCACGACT	660
AATCCGTTGC	AGTTTTCTAT	CAACAAAACC	AACTCGCTCA	GATAATGGAA	TTTCCTCACC	720
AGTTACGGTA	TCATATCTCG	TTACCATATA	AGGTGCTTCA	CCACAAGTTA	CCTCTAACCA	780
TCGTAAGTCC	ACATACTCCT	CAAGACTTAA	CGAGCCTAAT	TTCGATTCTA	CATATCCATT	840
TTGCTTTGCG	ACCAACCACG	TTGGTGTAAA	CACTTCTGCC	CTTATTTTTG	TCCGATCTTT	900
TTGTTCATAT	TTGGATTTTT	CAGATCTGGG	CTGAATCAAG	TTGGCAAAGT	TTCCAGTAAC	960
CTTACTTGGA	TTGATGCGAT	CACTTGGAGC	AAATCCCTTT	CCTAACAATT	CATAAGAATG	1020
CGTAnGCCAA	ACAATTGATT	TCTTTGTCGT	TCGATCTTTT	AAAAGAATTT	TTAATAAGTC	1080
AGCCGATTCT	TTAGCCAAAC	TTTCTTCACT	AATATCTATT	GTCATCAGCA	ACCTCTCTTA	1140
TATTGTAAGC	CCTATTATAT	CATATTTTAA	AGAATGAAAA	TTTACTTGAA	AAAAGTAATT	1200
СААТАААТАТ	CTCTCCGATG	ACCAACTTCT	AGAGTAGCAA	CGACTAATTC	ATCATCTACA	1260
ATTTGTACGA	TAACTCGATA	ATTACCAATT	CTATAGCGCC	ATTGACCAAC	GCGATTACCA	1320
ACCAAAGCCT	TTCCGTGTCG	TCTTGGGTCT	TCCAAAACAT	TGGTTTGTAA	ATAGTTTGTA	1380
ATTAGCTTCT	GCGTATAACG	GTCCAATTTT	TTCAATTGCT	TGATAAAACG	TCTTGTTGGA	1440
ACTAATTTAT	ACAAATTATT	CATCCTTCAA	GCCTAAATCA	TGCATCATTT	CTTCCCAAGT	1500
AATGGGTTCA	ACTCCTTTTT	CCAAGTCTTC	TAAATACTCT	TGATAGGCTA	AATCTGCCAC	1560

226 ACGAGCATCG TATTCATCTT CTAGGGCTTC AAGAGTTTTG GTGCGAATAA GTTCCGAAAG 1620 GGAAACTCCT TCAAACTTAG CCATTGCTTT CATAAATGTT TTATCAGCTT CAGAAACTTT 1680 TAATGTAATA GTAGTCATCT TTTGTGCTCC CTTTTTTAAT GGTAACACCA TTGTATTACT 1740 TTTTAGGTGT TCAGTCAATA TAAAAAGAAC ACCTTCTCAG CGTTCTTTCT ATATCTCTGT 1800 CAATGGTGTT GCGGTATCTG GTGAGGTATC ATAAACCTTA AAGTCTACTC CGACTCCCAG 1860 ATCAGCTTGA GCCAGCTGAT TGACCATGGT CATATGAGCC AGTTCCTTGA TATTGTTTTC 1920 CTTAGATAAA TGCCCAAGGT AAATCTTCTT AGTACGATTT CCTAGCGTCC GAATCATAGC 1980 TTCAGCACCG TCCTCGTTAG AAAGGTGACC AAGGTCAGAT AGGATTCGTT GTTTGAGTCG 2040 CCAAGCGTAA GAACCTGATC GCAAAATCTC TACATCATGG TTGGCCTCGA TAAGATAACC 2100 ATCCGCATTT TCGACAATGC CCGCCATACG GTCACTGACA TAACCTGTAT CTGTCAAGAG 2160 GACAAAACTC TTATCATCCT TCATAAAGCG ATAGAACTGC GGTGCGACTG CATCATGGCT 2220 TACACCAAAA CTCTCGATGT CGATATCTCC AAAGGTTTTG GTTTTACCCA TTTCAAAAAT 2280 ATGCTTTTGC GAAGAATCCA CCTTGCCAAG ATATTTACTA TTTTCCATAG CTTGCCAGGT 2340 CTTTTCATTG GCATAAAGAT CCATACCATA CTTGCGAGCC AAAACGCCTA CTCCATGGAT 2400 ATGATCTGAA TGCTCATGGG TAATCAAGAT GGCATCCAGG TCTTCTGGCT TACGGTTAAT 2460 TTCAGCTAGC AGACTGGTAA TTTTCTTGCC AGACAAGCCT GCATCTACTA AAAGCTTCTT 2520 TTTTGAGGTT TCCAGATAAA AAGAATTTCC ACTGGAACCC GACGCTAAAA TACTGTATTT 2580 AAAGCCTATT TCACTCATTC TAGTCTTCTA CTTCATCCTC CCATACTTCT TCTTTCACTG 2640 CATCCTTATC ATAAGGGAGT ACAATGGTAA AGGTTGAACC CTTGCCGTAT TCACTCTTGG 2700 CCCAAATAAA GCCCTTATGT TGTTTGATAA TTTCTTTAGC GATAGACAGT CCTAGACCTG 2760 TACCACCTTG TGCACGACTT CTAGCACGAT CCACACGATA GAAACGGTCA AAGATACGTG 2820 GTAAATCCTG CTTAGGAATC CCCAAACCGT GGTCAGAAAT GGATAAAATC ATCTGGTCTT 2880 CAGTTGTCTT CATTCTGACA GTGATTTTAC CCCCATCTGG CGAATACTTA ATAGCATTAT 2940 TTAAAATATT GTCGACAACC TGCGTCATCT TATCTGTATC AATTTCCATC CAGATAGAAT 3000 TGATGGGATA ATCTCTCACC AACTCATATT TTTTCTCCTT TTCCTGTCCT TTCATCTTGT 3060 CAAAACGATT GAGGATAAAG GTAATAAAAG CAGTGAAGTT AATCAGTTCC ACATCTAGGT 3120 GACTGGTAGC ATTATCAATA CGTGAAAGAT GGAGGAGATC CGTCACCATG CGCATCATAC 3180 GGTTGGTCTC ATCAAGAGAA ACCTTGATAA AGTCTGGTGC TACAGTTTCA CACAAAGCCC 3240 CCTCATCCAA GGCTTCAAGA TAGGATTTTA CGCTAGTCAG AGGAGTCCGT AACTCATGGC 3300 TAACATTGGA AACAAAGAGT CTTCGTTCGC GTTCTTCCTT CTCCTGCTCC GTCGTATCAT 3360

GCAAAACAGC	CACCAAACCT	GAAATAAAGC	CAGACTCTCG	ACGTATCAAG	GCAAAGCGAA	3420
CTCGAAGGTT	CAAATATTCG	CCATTGATAT	CTTGGGAATC	TAGCAACAAT	TCTGGACTTT	3480
GGGTAATCAA	ATCACGCAAT	TCATAGTTTT	CTTCTATCTT	GAGCAATTCC	AAAATGCTTC	3540
TATTCAGAAC	ATCTTCCTTA	ACCAACCCCA	GTTGCTTCTT	GGCTGTATCG	TTAATCATGA	3600
TAATCTGACC	CCGACGGTTA	GTCGCAAGAA	CCCCATCTGT	САТАТААААС	AGAATACTAT	3660
TTAGCCTCTT	ACTCTCTTGT	TCTAGATTTT	CCTGAGTGAG	ACGAATAACC	TCCGACAAGT	3720
CATTCAAATT	ATTGGTAATA	TTGGTGATTT	CAGACCCACC	TTGCATATCA	AGAACCTTGG	3780
AATAATCTCC	TGCAATCAAA	TCTTTAACCT	TTTGATTGAC	TTGCTTCAAC	TGAATATTAT	3840
CACGTCTATT	TTCCAGTAAT	AAGAGGGTCA	CAACAAGGAT	GAAACCTAAC	AAAATCAGGA	3900
TAAAGATAAA	ATCTCTGGTA	AAAATGGTTT	GTTTCAGTAA	ATCAAGCATT	ATTTCTCATG	3960
TAATACCCTA	CACCACGGCG	CGTCAAGATA	TACTCTGGTC	GGCTGGGCGT	ATCTTCAATC	4020
TTCTCACGCA	GACGTCGTAC	AGTCACATCA	ACTGTACGGA	CATCACCAAA	ATAGTCATAA	4080
CCCCAGACAG	TCTCAAGCAA	GTGTTCGCGC	GTGATGACTT	GACCTGTATG	CGATGCTAAA	4140
TGATACAAAA	GCTCAAATTC	ACGATGGGTT	AAGTCTAGTT	CTTCGCCATA	TTTTTTAGCC	4200
ACGTAGGCGT	CTGGAACAAT	TTCTAAATCC	CCAATTTGGA	TAGGTTGAGG	TTTACTATCT	4260
GCTTCCTGAC	CATCTACTGG	CATAGGTTGA	GAACGACGCA	GAAGAGCTTT	AACACGCGCC	4320
TGCAACTCAC	GATTGGAGAA	GGGTTTTGTT	ACATAGTCAT	CTGCCCCAAG	TTCCAAACCG	4380
ATAACCTTAT	CAAATTCACT	ATCTTTGGCT	GAAAGCATAA	GAATGGGCAC	ACTGCTTGTC	4440
TTACGAATGG	TCTTAGCAAC	TTCTAAACCA	TCAATTTCTG	GAAGCATCAA	ATCCAGAATA	4500
ATAATATCTG	GTTGCTCTGC	TTCAAATTGC	TCTAGCGCTT	CACGACCATT	AAAAGCAGTT	4560
ACAACTTCGT	AACCTTCCTT	GGTCATATTA	AACTTGATAA	TATCCGAGAT	TGGTTTCTCA	4620
TCATCTACAA	TTAGTATTTT	TTTCATATGT	TCACCTTTTT	СТСТАСТАТТ	АТАССААААА	4680
AATAGTCAGA	AGACACAATA	GCTAGTCTTG	GCTACTGTCT	AAGTTGGCTT	GTGCATAAAC	4740
CTGCCAGATT	TTTTGTTGGG	GTTTGGCAAG	TGGGTAATTC	TTGAATTCTT	CTGGTGAAAG	4800
CCAGCGAACT	TCCCTATCTG	AAAAATCATG	GAAGTCACTC	ACCTGACCTG	CTACAATCTG	4860
TACATGCCAT	TTTCGATGAC	TAAAAACATG	CTGGACTGTA	TCAAAACAAA	CATCAAGCCA	4920
ATCAACATCT	AGGTCATAGT	CCTGCTGGAA	ACTCTCTTCT	GGACTGGGAC	CAAAGTTCAC	4980
ACTTTCTTCC	GCAACCTGAT	GAAAGAGGTC	AAACTGCTCT	TCTTGCGAAA	AGTTATCAAC	5040
TTCTATAAAG	GGGAAATGCC	AAAAACCTGC	CAAGAGCTTT	TCGCTTTCAT	TTTTTTCAAG	5100

228 TAAAAATTGT CCTTGAGAAT TTTTCACAAC TAAGGCTTTA AGATAAATAG GAACCGGCTT 5160 TTTCTTAGGA GATTAATTG GATAACGGTC CATGGTTCCA TTCTGATATG CCGCACTAAA 5220 GTCCTTGACT GGGCTTTCTT CAGGTCTGGG ATTTACAGGA GACTCAATAT CAGACCCTAA 5280 GTCCATCAAG GCTTGATTAA AATCACCCGG ACGATCCGGA TTAATCAAGA TCTCCATCAT 5340 TGCCTGAAAA ATTTTTCGAT TACTTGGAAT CCCAATATCG TGGTTGACTT CAAACAGACG 5400 CGCCAAGACC CGCATGACAT TACCATCTAC AGCTGGCTCA GGCAAGTTAA AAGCAATACT 5460 GGAAATGGCT CCTGCTGTGT AAGGTCCAAT CCCTTTCAAG CTGGAAATTC CTTCATAGGT 5520 ATTTGGAAAT TGGCCACCAA AGTCAGTCAT AATCTGCTGG GCTGCAGCCT GCATATTGCG 5580 AACTCGAGAA TAATAGCCCA AGCCCTCCCA AGCTTTCAGT AAACTCTCCT CAGGCGCAGT 5640 TGCCAGACTT TCGACAGTTG GAAACCAGTC CAAAAATCTT TCGTAGTAAG GGATAACTGT 5700 ATCCACCCTG GTCTGCTGAA GCATGATTTC AGATACCCAG ATGTGATAAG GATTTTTACT 5760 TCTCCTCCAA GGCAAATCTC TTTTGTTTTC ATCATACCAA GCGAGAAGTT TCTCACGGAA 5820 AGAAATGACT TTCTCCTCCG GCCACATGAC GATACCGTAT TCTTTCAAAT CTAACATATC 5880 TCTAGTATAA CACAGAAGGT TTCACCTGTC TTTGTATCTG ATTTATAATA TTTTCAATAG 5940 ATAGTATATA ACTTTTCTAT CTACTTATAC TCAATGAAAA TCAAAGAGCA AACTAGGAAG 6000 CTAGCCGCAG GTTGCTCAAA ACACTGTTTT GAGGTTGTGG ATAGAACTGA CAGAGTCAGT 6060 ATCATATACT ACGGCAAGGT GAAGCTGACG TAGTTTGAAG AGATTTTCGA AGAGTATAAA 6120 TCTTATTGAT GAACTGCTTG CAGTCTGAGA AAAAATGAGC TTGGATATTA TTTCCAAACT 6180 CACTTAAAGT CAATTTCAAT CCACTAGAAC AAGCCTAGTA CAGTTCCATC GCTTTCAACA 6240 TCCATGTTGA GAGCTGCTGG ACGTTTTGGA AGACCTGGCA TGGTCATAAC ATCACCAGTT 6300 AAGGCAACGA TGAAGCCTGC ACCTAATTTT GGTACCAATT CACGAATGGT AATTTCAAAG 6360 TTTTCTGGTG CTCCAAGCGC ATTTGGATTG TCTGAGAAAC TGTATTGAGT TTTAGCCATA 6420 CAGATTGGCA ATTTGTCCCA ACCGTTTTGA ACGATTTGAG CAATTTGTGT TTGAGCTTTC 6480 TTCTCAAAGT TCACTTTGCT ACCACGATAG ATTTCAGTGA CAATTTTTTC AATCTTTTCT 6540 TGGACAGAAA GGTCATTATC ATACAAACGT TTATAGTTAG CTGGATTTTC AGCAATTGTC 6600 TTAACAACTG TTTCGGCAAG TGCTACTCCA CCTTCTGCTC CATCAGCCCA GACACTAGCC 6660 AATTCAACTG GTACATCGAT TGAGGCACAG AGTTCTTTTA AGGCTGCAAT TTCAGCTTCT 6720 GTATCAGATA CAAATTCGTT AATAGCTACA ACTGCTGGAA TACCGAACTT ACGGATATTT 6780 TCAACGTGGC GTTTCAAGTT AGCAAAACCT GCACGAACTG CCTCTACATT TTCTTCAGTC 6840 AGAGCGTCTT TAGCCACACC ACCATTCATC TTAAGGGCAC GAAGGGTTGC GACAATAACA 6900

ACTGCATCTG	GAGATGTTGG	CAAGTTTGGT	GTCTTGATAT	CAAGGAATTT	CTCAGCACCA	6960
AGGTCCGCAC	CAAAACCAGC	TTCAGTAACA	GTGTAATCAG	CCAAGTGAAG	GGCTGTTGTC	7020
GTCGCCAAAA	CAGAGTTACA	GCCATGAGCG	ATATTGGCAA	ATGGACCACC	GTGTACAAAG	7080
GCAGGTGTAC	CGTAAATTGT	CTGAACCAAG	TTTGGCTTAA	TAGCATCCTT	СААААТСААА	7140
GCCAAGGCAC	CCTCAACCTG	CAAATCACCT	ACAGAAACAG	GCGTACGGTC	ATAGCGATAA	7200
CCAATAACGA	TATTCGCCAA	ACGACGTTTC	AAGTCCTCGA	TGTCCGTTGC	CAAGCAAAGA	7260
ATTGCCATGA	TTTCTGAAGC	AACTGTAATA	TCAAAACCAT	CCTCACGTGG	AATACCGTTT	7320
AGAGGACCAC	CAAGACCAAC	AGTCACATGG	CGGAGCGTAC	GGTCGTTCAA	GTCCACAACG	7380
CGTTTCCAGA	GGATACGACG	TTGATCAATT	CCCAGCTCAT	TCCCTTGGTG	CAAGTGGTTG	7440
TCAATCAAGG	CAGAAAGGGC	ATTGTTGGCA	GTTGTAATAG	CATGCATATC	TCCAGTAAAG	7500
TGGAGGTTGA	TGTCTTCCAT	TGGCAGAACT	TGTGCATACC	CACCACCAGC	AGCACCACCC	7560
TTGATCCCCA	TGACTGGACC	AAGAGACGGT	TCGCGGATAG	CAATCATGGT	TTTCTTGCCA	7620
ATCTTGTTCA	AGGCATCCGC	AAGACCAATG	GTAAGCGTCG	ACTTTCCTTC	ACCTGCAGGT	7680
GTTGGGTTGA	TGGCAGTAAC	CAAGATCAAT	TTACCGACTG	GATTGCTCTC	AACTGCACGA	7740
ATTTTATCAA	AGCTGAGTTT	AGCCTTGTAC	TTTCCGTACA	ACTCCAAATC	GTCATAAGAA	7800
ATACCAAGTT	TCTCTACAAC	ATCAACAATT	GGCTTCAACT	CAATACTCTG	TGCGATTTCA	7860
ATATCTGTTT	TCATTCAAAA	TTCCTCTAAC	CTCTTATATG	ATAATTCATT	ATATCACAAA	7920
ACAAGATTTT	TAACATCCTA	AAACTCTCTA	AACGTTCGTA	AATATCTCTG	TTTTTAAGAC	7980
TTTTAGAGTC	СТТТСТТААА	TTTTATATGG	CTTTATAGTT	TGAAACTATA	ATAAATCTTC	8040
GTTTTTACCA	AAAATTTATC	ACTTTCATTT	TACTTACCGC	TTATTTTTGT	GTACAATAGT	8100
GCTATGAAAA	TTTTAGTTAC	ATCGGGCGGT	ACCAGTGAAG	CTATCGATAG	CGTCCGCTCT	8160
ATCACTAACC	ATTCTACAGG	TCACTTGGGG	AAAATTATCA	CAGAGACTTT	GCTTTCTGCA	8220
GGGTATGAAG	TTTGTTTAAT	TACGACAAAA	CGAGCTCTGA	AGCCAGAGCC	TCATCCTAAC	8280
CTAAGTATTC	GAGAAATTAC	CAATACCAAG	GACCTTCTAA	TAGAAATGCA	AGAACGTGTT	8340
CAGGATTATC	AGGTCTTGAT	CCACTCAATG	GCTGTTTCTG	ACTACACTCC	TGTTTATATG	8400
ACAGGGCTTG	AGGAAGTTCA	GGCTAGCTCC	AATCTAAAAG	AATTTTTAAG	CAAGCAAAAT	8460
CATCAGGCCA	AGATTTCTTC	AACTGATGAG	GTTCAGGTTT	TGTTCCTTAA	AAAGACACCC	8520
AAAATCATAT	CCCTAGTCAA	GGAATGGAAT	CCTACTATTC	ATCTGATTGG	TTTCAAACTG	8580
CTGGTTGATG	TTACCGAAGA	TCATCTGGTT	GACATTGCAC	GAAAAAGTCT	TATCAAGAAT	8640

			230			
CAAGCAGATT	TAATCATCGC	GAATGACCTG		CAGCAGATCA	GCACCGAGCT	8700
ATATTTGTTG	AGAAAAATCA	GCTTCAAACA	GTCCAGACTA	AAGAAGAAAT	TGCAGAACTC	8760
CTCCTTGAAA	AAATTCAAGC	CTATCATTCT	TAGAAAGGAA	AACTATGGCA	AACATTCTCT	8820
TGGCTGTAAC	GGGTTCAATC	GCCTCTTATA	AGTCGGCAGA	TTTAGTCAGT	TCTCTAAAAA	8880
AACAAGGCCA	TCAAGTCACT	GTCTTAATGA	CTCAGGCTGC	TACAGAGTTT	ATCCAACCTT	8940
TGACACTACA	GGTACTCTCA	CAGAATCCTG	TCCACTTGGA	TGTCATGAAG	GAACCCTATC	9000
CTGATCAGGT	CAATCATATC	GAACTTGGAA	AAAAAGCAGA	TTTATTTATC	GTGGTACCTG	9060
CAACTGCTAA	CACTATTGCA	AAACTAGCTC	ACGGATTTGC	GGACAACATG	GTAACCAGTA	9120
CAGCTCTAGC	CCTACCAAGT	CATATTCCCA	AACTAATAGC	TCCTGCTATG	AATACAAAAA	9180
TGTATGACCA	TCCAGTAACT	CAGAATAATC	TGAAAACATT	AGAAACTACG	GCTATCAGCT	9240
GATTGCTCCT	AAGGAATCCC	TACTAGCTTG	TGGAGACCAC	GGACGAGGAG	CTTTAGCTGA	9300
CCTCACAATT	ATTTTAGAAA	GAATAAAGGA	AACTATCGAT	GAAAAAACGC	TCTAATATTG	9360
CACCCATTGC	TATCTTTTTT	GCTACCATGC	TCGTGATACA	CTTTCTGAGC	TCACTTATCT	9420
TTAACCTTTT	TCCATTTCCA	ATCAAACCGA	CCATTGTTCA	TATTCCTGTC	ATTATTGCCA	9480
GCATTATTTA	TGGTCCACGA	GTTGGGGTTA	CACTTGGATT	TTTGATGGGA	TTACTTAGCT	9540
TGACGGTTAA	CACGATTACG	ATTCTACCGA	CAAGCTACCT	CTTCTCTCCC	TTCGTACCAA	9600
ACGGAAACAT	CTACTCAGCT	ATCATTGCCA	TCGTCCCACG	TATTTTGATT	GGTTTAACTC	9660
CTTACTTAGT	CTATAAACTG	ATGAAAAACA	AGACTGGTCT	GATTTTAGCT	GGAGCCCTTG	9720
GTTCcTTGAC	AAATACTATC	TTTGTCCTTG	GAGGAATCTT	CTTCCTATTT	GGAAATGTTT	9780
ATAATGGAAA	TATCCAACTT	CTTCTGGCAA	CCGTTATCTC	AACAAATTCA	ATTGCTGAAT	9840
TGGTCATTTC	TGCAATTCTA	ACCCTAGCCA	TTGTTCCACG	ACTACAAACC	TTGAAAAAAT	9900
AAAAACAGG						9909

(2) INFORMATION FOR SEQ ID NO: 13:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1126 base pairs (B) TYPE: nucleic acid

 - (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:

TAATTTCAT ATAATAGTAA AATAGAATGT GTGATTCAAT AATCACCTCA AATAGAAAGG AAATTCTATG TCAAATCTAT CTGTTAATGC AATTCGTTTT CTAGGTATTG ACGCCATTAA 120

231

TAAAGCCAAC	TCAGGTCATC	CAGGTGTGGT	TATGGGAGCG	GCTCCGATGG	CTTACAGCCT	180
СТТТАСАААА	CAACTTCATA	TCAATCCAGC	TCAACCAAAC	TGGATTAACC	GCGACCGCTT	240
TATTCTTTCA	GCAGGTCATG	GTTCAATGCT	CCTTTATGCT	CTTCTTCACC	TTTCTGGTTT	300
TGAAGATGTC	AGCATGGATG	AGATTAAGAG	TTTCCGTCAA	TGGGGTTCAA	AAACACCAGG	360
TCACCCAGAA	TTTGGTCATA	CGGCAGGGAT	TGATGCTACG	ACAGGTCCTC	TAGGGCAAGG	420
GATTTCAACT	GCTACTGGTT	TTGCCCAAGC	AGAACGTTTC	TTGGCAGCCA	AATATAACCG	480
TGAAGGTTAC	AATATCTTTG	ACCACTATAC	TTACGTTATC	TGTGGAGACG	GAGACTTGAT	540
GGAAGGTGTC	TCAAGCGAGG	CAGCTTCATA	CGCAGGCTTG	CAAAAACTTG	ATAAGTTGGT	600
TGTTCTTTAT	GATTCAAATG	ATATCAACTT	GGATGGTGAG	ACAAAGGATT	CCTTTACAGA	660
AAGTGTTCGT	GACCGTTACA	ATGCCTACGG	TTGGCATACT	GCCTTGGTTG	AAAATGGAAC	720
AGACTTGGAA	GCCATCCATG	CTGCTATCGA	AACAGCAAAA	GCTTCAGGCA	AGCCATCTTT	780
GATTGAAGTG	AAGACGGTTA	TTGGATACGG	TTCTCCAAAC	AAACAAGGAA	CTAATGCTGT	840
ACACGGCGCC	CCTCTTGGAG	CAGATGAAAC	TGCATCAACT	CGTCAAGCCC	TCGGTTGGGA	900
CTACGAACCA	TTTGAAATTC	CAGAACAAGT	ATATGCTGAT	TTCAAAGAAC	ATGTTGCAGA	960
CCGTGGCGCA	TCAGCTTATC	AAGCTTGGAC	TAAATTAGTT	GCAGATTATA	AAGAAGCTCA	1020
TCCAGAACTG	GCTGCAGAAG	TAGAAGCCAT	CATCGACGGA	CGTGATCCAG	TCGAAGTGAC	1080
TCCAGCAGAC	TTCCCAGCTT	TAGAAAATGG	TTTTtCTCAA	GCAACT		1126

(2) INFORMATION FOR SEQ ID NO: 14:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 2520 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:

CCGGCAACAA	AAAAGAAAAA	ATCAACAGTT	AAAAAAAATC	TAGTCATCGT	GGAGTCGCCT	60
GCTAAGCCAA	GACGATTGAA	AAATATCTAG	GCAGAAACTA	CAAGGTTTTA	GCCAGTGTCG	120
GGCATATCCG	TGATTTGAAG	AAATCCAGTA	TGTCCGTCGA	TATTGAAAAT	AATTATGAAC	180
CGCAATATAT	TAATATCCGA	GGAAAAGGCC	CTCTTATCAA	TGACTTGAAA	AAAGAAGCTA	240
AAAAAGCTAA	TAAAGTTTTT	CTCGCGAGTG	ACCCGGACCG	TGAAGGAGAA	GCGATTTCTT	300
GGCATTTGGC	CCATATTCTC	AACTTGGATG	AAAATGATGC	CAACCGTGTG	GTCTTCAATG	360

232 AAATCACCAA GGATGCAGTC AAAAATGCTT TTAAAGAACC TCGTAAGATC GATATGGACT 420 TGGTCGATGC CCAACAAGCT CGTCGGATCT TGGATCGCTT GGTAGGGTAT TCGATTTCGC 480 CTATTTTGTG GAAGAAGGTC AAGAAGGGCT TGTCAGCAGG TCGCGTTCAG TCCATTGCCC 540 TTAAACTCAT CATTGACCGT GAAAATGAAA TCAATGCCTT CCAGCCAGAA GAATACTGGA 600 CAGTTGATGC TGTCTTTAAA AAGGGAACCA AACAATTTCA TGCTTCCTTC TATGGAGTAG 660 ATGGTAAAAA GATGAAACTG ACCAGCAATA ACGAAGTCAA GGAAGTCTTG TCTCGTCTGA 720 CGAGTAAAGA CTTTTCAGTA GATCAGGTGG ATAAGAAAGA GCGCAAGCGC AATGCTCCTT 780 TACCCTATAC CACTTCATCT ATGCAGATGG ATGCTGCCAA TAAAATCAAT TTCCGTACTC 840 GAAAAACCAT GATGGTTGCC CAACAGCTCT ATGAAGGAAT TAATATCGGT TCTGGTGTTC 900 AAGGTTTGAT TACCTATATG CGTACCGATT CGACTCGTAT CAGTCCTGTA GCGCAAAATG 960 AGGCGGCAAG CTTCATTACG GATCGTTTTG GTAGCAAGTA TTCTAAGCAC GGTAGCAAGG 1020 TCAAAAACGC ATCAGGTGCT CAGGATGCCC ATGAGGCTAT TCGTCCGTCA AGTGTCTTTA 1080 ATACACCAGA AAGCATCGCT AAGTATCTGG ACAAGGATCA GCTTAAGCTA TATACCCTTA 1140 TCTGGAATCG TTTTGTGGCT AGCCAGATGA CAGCGGCCGT TTTTGATACC ATGGCTGTTA 1200 AATTGTCTCA AAAAGGGGTT CAATTTGCTG CCAATGGTAG TCAGGTTAAG TTTGATGGTT 1260 ATCTTGCCAT TTATAATGAT TCTGACAAGA ATAAGATGTT ACCGGACATG GTTGTTGGAG 1320 ATGTGGTCAA ACAGGTCAAT AGCAAACCAG AGCAACATTT CACCCAACCG CCTGCCCGTT 1380 ATTCTGAAGC AACACTGATT AAAACCTTAG AGGAAAATGG GGTTGGACGT CCATCAACCT 1440 ACGCGCCAAC CATTGAAACC ATTCAGAAAC GTTATTATGT TCGCCTGGCA GCCAAACGTT 1500 TTGAACCGAC AGAGTTGGGA GAAATTGTCA ATAAGCTCAT CGTTGAATAT TTCCCAGATA 1560 TCGTAAACGT GACCTTCACA GCTGAAATGG AAGGTAAACT GGATGATGTC GAAGTTGGAA 1620 AAGAGCAGTG GCGACGGGTC ATTGATGCCT TTTACAAACC ATTCTCTAAA GAAGTTGCCA 1680 AGGCTGAAGA AGAAATGGAA AAAATCCAGA TTAAGGATGA ACCAGCTGGA TTTGACTGTG 1740 AAGTGTGTGG CAGTCCAATG GTCATTAAAC TTGGTCGTTT TGGTAAATTC TACGCTTGTA 1800 GCAATTTCCC AGATTGCCGT CATACCCAAG CAATCGTGAA AGAGATTGGT GTTGAGTGTC 1860 CAAGCTGTCA TCAGGGACAA ATTATTGAGC GAAAAACCAA GCGTAATCGC CTATTCTATG 1920 GTTGCAATCG CTATCCAGAA TGTGAATTTA CCTCTTGGGA CAAGCCTGTT GGTCGTGACT 1980 GTCCAAAATG TGGCAACTTC CTCATGGAGA AAAAAGTCCG TGGTGGTGGC AAGCAGGTTG 2040 TTTGTAGCAA AGGCGACTAC GAGGAAGAAA AGATGGCTCT TTGTCAACTG TAGTGGGTTG 2100 AAGTCAGCTA AGCTCGAGAA AGGACAAATT TTGTCCTTTC TTTTTTGATA TTCAGAGCGA 2160

233

TAAAAAATCCG TTTTTTGAAG TTTTCAAAGT TCCGAAAACC AAAGGCATTG CGCTTGATAA 2220
GTTTGATGAG ATTATTGGTC GCTTCCAATT TGGCGTTAGA ATAGTGTAGT TGAAGGCCGT 2280
TGACGATTTT CTCTTTGTCC TTTAGAAAGG TTTTAAAGAC AGTCTGAAAA AGAGGATGAA 2340
CCTGCTTTAG ATTGTCCTCA ATGAGTCCGA AAAATTTCTC CGGTTCCTTA TTCTGAAAGT 2400
GAAACAGCAA GAGTTGATAG AGCTGATAGT GATGTTTCAA GTCTTGTGAA TAGCTCAAAA 2460
GCTTGTTTAA AATCTCTTTA TTGGTTAAAT GCATACGAAA AGTAGGGCGA TAAAAATGTT 2520

(2) INFORMATION FOR SEQ ID NO: 15:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 10993 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:

TTTTCTCGAT AATAACTTCC ACCTTATTAT TTGGGATACC CTCCTCTTCT TCACCACCAC 60 GTTCATAGTA GTCATCGCGA TAGAGAAAAG CTACGATATC AGCGTCCTGC TCAATAGACC 120 CAGATTCACG AATATCAGAC AAGACCGGTC TCTTGTCCTG ACGTTGTTCT ACACCACGAG 180 AAAGCTGACT CAGAGCGATT ACTGGAACCT TCAATTCCTT GGCTAGTATT TTCAACTGAC 240 GAGAAATTTC AGAAACTTCT TGTTGACGAT TTTCTCGACC AGTTCCCGTG ATAAGTTGCA 300 AATAGTCTAT CAAAATCAAA CCAAGATTTC CAGTTTCTTG AGCCAATTTA CGAGAACGAG 360 AACGAATCTC TGTAATCCGA ATACCTGGCG TATCATCGAT ATAGATACTG GCGTTAGCTA 420 GATTACCCTG AGCAATAGTA TATTTTTGCC ACTCCTCATC TGTCAATTGC CCTGTACGGA 480 TAGAATGTGA CTCCACTAAG CCTTCTGCAG CTAACATACG ATCTACCAAG CTTTCCGCAC 540 CCATTTCGAG TGAAAAAATA GCAACCGTTT TGTCCAACTT AGTCCCAATG TTCTGAGCGA TATTCAAGGC AAATGCTGTC TTACCAACTG CTGGACGAGC TGCTAAGATA ATCAACTCCT 660 CCTCATGAAG TCCTGTTGTC ATATGATCCA AATCACGATA ACCTGTCGCA ATACCTGTAA 720 TATCGGTCGT TTGTTGCGAG CGAGCTTCCA GATTTCCAAA GTTGAGATTC AACACATCTC 780 GAATGTTCTT AAACCCGCTT CGATTTGCAT TTTCACTGAC ATCAATCAAC CCTTTTTCTG 840 CCTGAGCAAT AATTTCATCA GCTGGTTGTG ACGCTTCGTA AGCTTGGTTG ACAGACTCTG 900 TCAACTTGGC AATTAAACGA CGTAGCATTG CTTTTTCTGC AACAATCTTA GCATAATACT 960 CCGCATTAGC AGAAGTTGGC ACAGAATTAA CAATCTCAAC CAAGTAAGAC AAGCCACCAA 1020

234 TATTCTGTAA ATCACCTTGA TTATCAAGGA TAGTACGAAC CGTTGTTGCA TCTATGGCAT 1080 CACCACGATC GGATAAATCG ACCATGGCTT GGAAAATCAA ACGATGGGCA TACTTAAAAA 1140 AGTCCCGAGA CTCAATGTAT TCTCGCACAA AAACAAGTTT ACTCTCATCA ATAAAGATAG 1200 CCCCTAAAAC GGATTGCTCA GCTAAGATAT CTTGAGGTTG TACTCGTAAC TCTTCTACTT 1260 CTGCCATCAG ACTTCCCTTC CTTTTACAAT CTTGTCAAGA AGGTGTAAAC TTATCCTTCT 1320 TTCACACGAA GATTGATTAC ACTTGTGATA TCTTGATAGA TTTTCACTGG CACATCAATC 1380 AAACCAACCG CTCGAATCGG AGCTTGTACT TGAATATGAC GTTTATCAAT CTTAATTCCA 1440 AATTGCTTTT GCAATTCTTC TGCAATCTTC TTATTGGTAA TAGAACCAAA GGTACGACCA 1500 TCTGGACCAA CTTTTTCAAC AAATTCTACA ACAGTTTCTT CTGCTTCAAG TTGTGCTTTA 1560 ATTGCTTTTC CTTCTGCAAT CATCTCAGCG TGAGCTTTTT CTTCCGATTT TTGTTTACCA 1620 CGAAGTTCAC CTACAGCTTG AGCAGTCGCT TCTTTGGCTA GATTCTTTTT GATAAGAAAG 1680 TTTTGCGCAT ACCCTGTTGG TACTTCCTTA ATTTCGCCTT TTTTACCTTT TCCTTTAACA 1740 TCTGCTAAAA AGATTACTTT CATTCTTCTT TCTCCTTTTC CTTCATTTCA TTTAATACAA 1800 TTTCTGTCAG TTTTTCACCT GCTTCTGACA AGGTTACATC TTTAATTTGA GCTGCTGCCA 1860 AATTAAAGTG GCCTCCACCG CCTAACTCTT CCATAATCCG TTGTACATTC AGTTTACTAC 1920 GACTTCGAGC TGAGATAGAG ATAAATCCTT GTGTATTCTT CGCAAGAACA AAACTCGCTT 1980 CAATACCTGA CATGGCTAAC ATGGCATCTG CTGCCTTACT AATAACAACT GTATCATAGC 2040 ATTTCATGTC CTTAGCCTCT GCTATTAGTA CATCTGAACC TAATTTACGC CCCTGTAAAA 2100 TAAGTTCATT GACCTCACGA TATTCTTCAA AATCTGTCGC AGCGATTTCC TGGATAGCAA 2160 TACTATCACT TCCGCGCGTT CTGAGATAGC TAGCAACATC AAATGTCCGA CTAGTTACTC 2220 GCGAGGTGAA ATTTTTAGTA TCCAACATCA TACCAGCCAT CAAGACACTT GCTTGCATAC 2280 GACTCAAACG ATTTTCTTA GAATTCTGGA ACTGAATCAA TTCCGTTACC AACTCACTGG 2340 CACTACTTGC ACCACTTTCG ATATAAGTAA TAACCGCATT ATCTGGAAAA TCCTGATCCC 2400 TTCTATGGTG GTCAATAACA ATGGTTTGGG TAAATAAATC ATAAAATTCT TTTGATAATG 2460 TTAAGGCTGT CTTTGAATGG TCTACAAGAA TCAACAAAGA ACGATTGGTC ACCATCCCCA 2520 TTGCATCCTT AACAGACAAC AACTTCGTAA CTCCTTCTTT TTCTATGAAT GAAACAGCTC 2580 GTTCAATATC TGGAGACATT TGTTCTTCAT CATAAAGAGC ATAGCTATTT TCAATCACAT 2640 TGCTGGCGAA CAACTGCATA CCTACAGCAG AGCCCAAAGC ATCCATGTCT AAATTTTTGT 2700 GACCGACTAC AAAAACCTGA TCTACACTCC GAATCTTATC TGAAATAGCT GTCATCATAG 2760 CGCGCGTACG AGTCCGTGTA CGCTTGATTG AAGCAGCAGA CCCACCACCA AAATAAACTG 2820

GATTTTTCGT	TTCGTCGTTT	TCCTTAACAA	CCACCTGGTC	GCCACCACGT	ACTTCAGCCA	2880
AGTTCAAATT	GAGCAAAGCA	ACTTTCCCTA	TCTCATCATG	ATTTCCATCG	CCATAAGAAA	2940
ATCCCATACT	TAAGGTCAAG	GGCAACTGTC	TCTGTTTCGA	CTCTTCTCTG	AAAGCATCAA	3000
TAACAGAAAA	TTTATCATTC	ATCAAGCCCT	CAAGCACCGT	GTAGTCAGTA	AATAGATAAA	3060
ATCGATCCAT	ACTTACCCGA	CGAGAAAACA	TCATGTGTTT	TTCTGAAAAC	TCTGATATAA	3120
AATTAGCTAC	AAAACTATTG	ATTTGACTAA	TATCTGACTC	AGAAGTTTCA	TCCTCCAAAT	3180
CATCATAATT	ATCCACAGAG	ACAATCCCAA	TCACTGGTCT	ACTTGTTACC	AATTCATCTG	3240
TTATGGCTTG	TTCCCTGGAT	ACATCTACAA	AATACAAAAC	ACCGGAAGAA	GCATCCATAT	3300
GAACAGCATA	ACGCTTCTCA	CCAAGCTTGG	CATAAGTAGA	CGGATTTCCT	ACTGAAGCCT	3360
TGATAATCGT	TTGAACAGCT	TCTAAATCAA	AATCACCATC	TTCCTTGGTC	AAAATCAATT	3420
CAGCATAGGG	ATTAAACCAC	TCAACCTCTC	CAGAAGATAA	ATTCAATTTC	ATAACACCTA	3480
CAGGCATCTG	TTCCAATAGA	GCTGTCAAAC	TTTCTTCCGC	TTGGTGGTTT	ACATACTGTA	3540
TCTGTTCTAC	ATCACTCCTT	GTATAATGCA	CTCTCAGTTT	СТТАААТААА	AAAACATAGC	3600
CTCCTACAAA	AAGAAACAAA	ATTAAAACCG	TCAACAGATT	ATTATTAACA	AAAATAATGA	3660
AAGTGGATAA	GACTCCAAAC	GCAATCAATC	CTACTAGAAT	AGGAAAAATT	GGACTTACAT	3720
AAAATTTTTT	CATTCAAAAC	CTCTTGGCAC	CCATTATACC	ATAATACCCC	TCAAAAAGCG	3780
ACTTTTTAAA	AGTGTAATCA	GTAATTCTAT	CAATTATAAG	AAAAAGGTAG	TTTACAATTC	3840
AGTAAACCTA	CCTTTACACA	TATTGAAATT	AAGATTCTTT	AACCTCTAAC	AAACCAATTT	3900
CGCCATCCTC	ACGACGATAA	ATCACATTGG	TTGTCTGATC	TTCAACATCC	ACATAGATAA	3960
AGAAATCATG	CCCCAATAAA	TCCATTTGTA	GAATTGCTTC	TTCCAAATCC	ATTGGTTTTA	4020
AATCAATTTG	TTTTGAACGA	ACAACTTTAG	ACTGGACAAT	ATTTGAATCT	TCCACCAAAG	4080
CATCTGTAAA	TAATTGACCA	GTTGCTACCT	TATTTTTATT	TTTACGCTCG	ATTTTTGTTT	4140
TATTTTTACG	AATCTGACGT	TCAATTTTAT	CAGTTACAAG	GTCAATTGAA	CCATACATAT	4200
CTTGAGATAC	ATCTTCTGCG	CGGAGAGTAA	TAGATCCAAG	CGGAATCGTT	ACTTCCACTT	4260
TAGCCGTTTT	TTCACGATAA	ACTTTTAAGT	TAATTCGGGC	ATCCAACTCT	TGTTCTGGTT	4320
GGAAGTACTT	TTCGATCTTT	TCGAGTTTAG	AAACTACATA	ATCACGAATT	GCTTCTGTTA	4380
CTTCTAGGTT	TTCACCACGG	ATACTATATT	TAATCATATG	AGTACCTTCT	TTCTAAACAT	4440
TTTTGTTTTT	ATGATTTTAT	TATAACGCTT	TCATTCTATT	TTTGCAAATT	TTTTCCTCAT	4500
CTTACAAGGG	AAAATGTTTT	TACATCCTTA	GCACCAGCTT	CTTCCAACAG	TTTCTTAACA	4560

			236			
CGATTTATAG	TTGCTCCTGT	AGTATAGATA	TCATCTATAA	GTAGGATTTT	TTTAGGAATA	4620
GTGACTCCAC	ТТТТААТААА	GAAAGGAAGT	TCTGTCCCCA	AGCGCTCTGA	ACGATTTTTA	4680
GAAGAACTGG	CTCTCTCTTC	TCTTTTCTCT	AATAAATCCA	GATACTCAAA	GCCTGCTGCC	4740
TCTACCAAGC	CCTCAACCTG	ATTAAATCCT	CTATTAGCAT	ATCTATCAGG	ACTTAGGGGA	4800
ATTACAACAA	ATTGATACTC	TTTGTACTTT	TTCAACTCCT	САСТТААААА	TGAAGCGAAA	4860
ACTTTTCTTA	ACAGGAAGTC	TCCATCAAAC	TTATACCGAC	TGAAAAAATC	CTTCATAGCT	4920
TGATTGTAAG	TAAAAATCGC	TCTATGACTG	ACTTCAACTC	CCTCTTTACA	CCAAAGTTGA	4980
CAATCTTGAC	ACTTTGTTGA	CAACTCTGTT	TTCATACAAT	TTGGACAGTT	CTCTTCCCCA	5040
ATTCTTTCAA	AAGTAGAATC	ACAGTCTGAA	CAAAGACAAG	AGTCATCATT	CCTCAGAAGT	5100
AAGAGACTAC	TAAAAGTTAA	AACAGTCTTC	ATAGTCTGCC	CACATAACAA	GCACTTCATA	5160
GACCAGCCTC	CTTATTCATC	ATCTGAATTT	CCTTAATCGC	CTTCTTGATT	GAAGCATTTA	5220
ACCCATCATG	GAAGAAAAGC	AAATCTCCTG	TCGGTCTATC	CATGCTTCGT	CCAACTCGTC	5280
CACCAATCTG	AATCAAACTA	GACTTGGTAA	ACAAACGATG	ATTGGCCTCT	ACTACGAAAA	5340
CATCCACACA	AGGGAAGGTA	ACTCCGCGCT	CCAAGATTGT	CGTACTGATA	AGTATTGTCA	5400
GTTCTCCATC	TCGAAAAGCT	TGTACTTGCT	CTAATCGATC	CTCTGTTACA	GAAGATACAA	5460
AGCCAATTTT	CTCATTTGGA	AATTGCTCCT	GTAAGATTTC	TGCTAACTGC	TCCCCTTTCT	5520
TAATTTCTGA	AGCAAAAATG	AGTAACGGAT	AAGCTGTCTT	TCTCTGCTTC	TCAATATAGG	5580
ACTTTAACTT	TGGTGACAAA	CGATTCTTGT	CTAAGTAGCG	ATTAAAATCC	GATAACCAAA	5640
TTGGTTTTGG	AATAATCAAC	GGATTTCCAT	GAAACCGTCT	CGGTAAATTC	AGTCTTTTTA	5700
GTTCTCCTAA	ACGGACCTTT	TTATCTAACT	CATTGGTCGA	AGTCGCTGTT	AAAAAGATTC	5760
TCAATCCATT	CTCCTTTACA	CTATTCTTGA	CAGCGTGGTA	AAGCATGGGA	TTATCAACAT	5820
AAGGAAAAGC	ATCTACTTCA	TCCACTATCA	GCAAATCAAA	AGCTTGATAA	AACTTCAATA	5880
ACTGATGGGT	TGTTGCAACA	ACTAGTGGTG	TTCGAAAATA	AGGTTCCGAT	TCTCCATGTA	5940
GCAAAGCTAT	CCCGCAAGAA	AAATCCTGTT	GCAGGCGCTT	GTACAGCTCC	AAACAAACAT	6000
CTATGCGAGG	ACTAGCCAAA	CACACTGCAC	CACCCGCATT	GATCACTTTA	GCCACTACTT	6060
GATAAATCAT	TTCTGTCTTT	CCAGCTCCTG	TTACCGCATG	AACTAAGGTT	GGCTTTTGCT	6120
FGTCTACTAC	TTGAAGCAAT	CCCTCTGACA	CCTTCTCTTG	AAAAGGAGTT	AATTGGCCGC	6180
GCCATTTGAG	AACATCTTGC	TTTGGAAAAT	CCTCCTGCGG	AAAATAGTAT	AAAGTTTGAT	6240
CACTTCTGAC	TCGCTTCATC	AGCAAGCACT	CTCGACAATA	GTAAGCACCG	ATGGGCAAAT	6300
ACCATTCTTC	TAGAATAGTA	CTATTACAGC	GTTGACAGAA	AAGTTTCCCC	TTCTCCTTTC	6360

TCATTGCTGG	AAGTTTCTCC	GCCAACTGAC	GTTCTTCTTC	TGTTAATTCA	TTCTCAGTAA	6420
ATAAACGACC	GAGATAATCT	AAATTTACTT	TCATACTTCT	TTATTCGTAA	AAACTAGCAC	6480
TTTAGATGAT	TTTTTAGTAC	AATTAAATCA	TGGAATTTAG	GACAATTAAA	GAGGACGGTC	6540
AAGTCCAAGA	AGAAATCAAA	AAATCTCGCT	TTATCTGCCA	TGCCAAGCGT	GTTTATAGCG	6600
AAGAAGAGGC	TCGTGACTTC	ATTACTGCCA	TCAAAAAAGA	ACACTACAAA	GCGACACATA	6660
ACTGCTCTGC	CTTCATTATT	GGAGAACGTA	GTGAAATTAA	ACGTACAAGT	GATGATGGTG	6720
AGCCTAGTGG	TACTGCTGGT	GTTCCCATGC	TTGGGGTACT	AGAAAATCAC	AATCTCACCA	6780
ATGTCTGTGT	GGTCGTGACA	CGCTACTTTG	GTGGTATTAA	ACTAGGCGCT	GGAGGACTAA	6840
TTCGTGCTTA	CGCCGGCAGT	GTCGCCTTAG	CTGTCAAAGA	AATTGGTATT	ATTGAAATAA	6900
AAGAACAGGC	TGGCATTGCT	ATTCAAATGT	CTTATGCTCA	GTACCAAGAG	TACAGTAACT	6960
TCCTTAAAGA	ACATGGTCTC	ATGGAGCTGG	ATACAAACTT	TACAGATCAA	GTCGATACGA	7020
TGATTTATGT	TGATAAAGAA	GAAAAAGAAA	CTATTAAAGC	TGCACTTGTG	GAGTTTTTTA	7080
ATGGAAAAGT	CACTTTAACT	GACCAAGGTT	TACGAGAGGT	TGAAGTTCCT	GTAAACTTAG	7140
TGTAAACAAT	GAATAATACA	GCGTTTCGTT	GACATTCTCA	CAACTACTTT	AGCGAGCAAA	7200
ATAAAAAGAG	GCGTACCAAA	ATATACTAGA	AAATGAAGCA	ATTCAAACGA	AACCTGATAT	7260
CGTTTTCCTT	CACACCTATT	TACTAGAATT	AGCTGAACGC	AATCACTTGA	AAATTAATGA	7320
CTTTGATCTA	TGATATATAG	AAATGGTATG	GATAGCGTTA	TACTAAAGAT	ATCTTATACA	7380
AAGAGGTATT	CATATGTCTA	TTTATAACAA	CATTACTGAA	TTAATCGGTC	AAACACCGAT	7440
TGTTAAACTT	AACAACATCG	TGCCAGAAGG	TGCTGCAGAC	GTCTATATAA	AGCTTGAAGC	7500
ATTTAATCCT	GGTTCATCTG	TAAAAGACCG	TATTGCCCTT	AGCATGATTG	AAAAAGCTGA	7560
ACAAGATGGT	ATTCTGAAAC	CTGGTTCTAC	TATTGTTGAA	GCAACAAGTG	GAAACACCGG	7620
TATTGGACTT	TCATGGGTAG	GTGCTGCTAA	AGGGTATAAA	GTCGTCATCG	TTATGCCTGA	7680
AACTATGAGT	GTAGAACGAC	GTAAAATTAT	CCAAGCTTAT	GGTGCTGAAC	TCGTCCTAAC	7740
TCCTGGTAGC	GAGGGAATGA	AAGGTGCTAT	TGCTAAGGCT	CAAGAAATCG	CTGCTGAACG	7800
TGATGGTTTC	CTTCCTCTTC	AATTTGACAA	TCCAGCTAAT	CCAGAAGTAC	ACGAAAGAAC	7860
AACAGGAGCT	GAGATACTAG	CTGCTTTCGG	TAAAGATGGA	TTAGATGCCT	TTGTTGCTGG	7920
AGTAGGTACT	GGTGGAACGA	TTTCTGGTGT	TTCTCATGCA	CTCAAATCAG	AAAATTCTAA	7980
CATTCAAGTT	TTTGCAGTAG	AAGCAGATGA	ATCTGCTATT	CTATCTGGTG	AAAAACCTGG	8040
TCCTCACAAA	ATTCAAGGTA	TCTCAGCTGG	ATTTATTCCT	GATACACTTG	ATACTAAAGC	8100

238

CTATGATGGT ATCGTTCGTG TAACATCAGA TGACGCTCTT GCACTCGGAC GTGAAATTGG 8160 TGGAAAAGAA GGCTTCCTTG TAGGGATTTC CTCAGCTGCA GCTATCTACG GAGCCATCGA 8220 GGTTGCCAAA AAATTAGGTA CAGGTAAAAA AGTCCTTGCC CTAGCACCAG ATAACGGTGA 8280 ACGTTATCTC TCTACAGCAC TTTATGAATT GTAACCGTCC AATAACGAAG TCTATTGAAA 8340 AATCTCCAGA CTAGAGAACT CACGGATAGT TCCTAATCTG GAGATTTCTT ATTTGCACTT 8400 TTCTTGTACA ACTTTAGTCC ATGGTAAATA GGCCTCTAAA ACCTCTTTGT TTACGAGAGT 8460 TTCCACGTTT GGAAGACATT CTAGAAGATA GGATAGATAT TTCTCACTAT TTATAATGGA 8520 TTGAAATAAG ATATGAACAA ATCGATTAGA ACATGATGGT AAAGCGTAAT CCCTTGTTTC 8580 TCAGCTTTCC CAGACAAAAA AGTCCAATAG TAAGTCAGCT GACTATCACT CTCTAGCACC 8640 CTATAAGAAG TTTCATCCGC ATGAAGTAAG GGCTGAGTCA ATAGTCTCTC TCGCAAGAGG 8700 TTATAAAGGG GCTCCAAATA GTATTGACTC GTCTTGATAT GCCAATTAGA GATTTCCTTA 8760 CGTGTGATTG GTAAACCCAT CCTAGCCCAA TCTTCTTCTT GGCGATAATT GGGTACCTTC 8820 AGATTAAACT TCTGATGGAT GGTGTGAGCG ATAATAGAAG CTGAGCCAAA GTTATGCGCT 8880 AAAGGGGCTT TAGGAATAGG AGCTTTCACA AGCTTATCCA GATGATTATC TTTTACTCGT 8940 TATGGACAAT GCTATATGGC ATAAATCAAG TACCTTAAAG ATTCCGACTA ATATTGGCTT 9000 TGCATTTATT CCTCCATACA CACCAGAGAT GAACCCCATT GAACAAGTGT GGAAAGAGAT 9060 TCGTAAACGT GGATTTAAGA ATAAAGCCTT TCGAACTTTG GAAGATGTCA TACAAGGACT 9120 GGAGAAGGAG GTGATAAAGT CCATCGTTAA TCGGAGACGG ACTAGAATGC TTTTTGAAAA 9180 CAGATGAGTA TAAAAAGAAA GTCCTCATTT CAATAGAAAT CACGACTTTC TGATGAATTT 9240 ATAGTAAAAT GAAATAAGAA CAGGATAGTC AAATCGATTT CTAACAATGT TTTTAGAAGCA 9300 GAGGTGTACT ATTCTAGTTT AAATCCACTA TATTTGGGGA GTGATAGAAA AGCCCTTCAT 9360 CAGCCAATCT ACTTGTTCAG GTGCGAGAGC TTTGACATCC TTTTCTGTAC TGGACCAAGT 9420 CAGTTTTCCG TTCTCAAAGC GTTTATATAA TATCCAAAAT CCTTGACCAT CCCAGTAAAG 9480 AACTTTAAAG CGGTCTTTAC GTCCACCACA AAAGAGAAAG ACTTGATCGG AGAAAGGATC 9540 CAATTCAAAG TGGGTTTTAA CTACATAGGC TAATGAGTCT ATTCCCTGCC TCATATCTGT 9600 CTTGCCACAA ACAAGGTGAA CTTGACCTAA ATCACTTAGT TGAATTATCA TAGTACAATA 9660 CCTTTCCTCC GATAATTATT TTTTATCTGG TATACTGGAA GTTGGGGAAT TAGGATAGAT 9720 ACCTTGTTAT GACGCGCTTA CTATGAATTT GAAGTATAGT CTCCTAAATG CACTTAGCCC 9780 TTATTATAGG GCTTTTTGTT TTAATTATTC TAATCGAGTG AGACTGGGGA AAAAACAATT 9840 TCAGGAAAAA TCTAAGCCCT ATACAAAAAA GGAAGCAATT TGCTTCCTTT CTATTATTAG 9900

239

TTATTCAAGG	CTGCTGCCAT	TGTAGCTGCA	ACTTCAGCTT	CGAAGTCGTT	TGCAGCTTTC	9960
TCGATACCTT	CACCAACTTC	AAAGCGAGCA	AACTCAACTA	CCGAAGCGTT	AACTGATTCA	10020
AGGTATGCTT	CAACTGTCTT	GCTGTCATCC	ATGATGTAAA	CTTGTGCAAG	AAGTGTGTAA	10080
GCTTGGTCAA	CTTTAGTGTT	ATCAAGCATG	AAGCGATCCA	TTTTACCTGG	AATAATTTTG	10140
TCCCAGATTT	TTTCTGGTTT	GCCTTCTGCA	GCCAATTCAG	CTTTGATGTC	AGCTTCAGCT	10200
TGAGCAATAA	CATCATCAGT	TAATTGAGCT	TTTGATCCAT	ACTTCAAGTG	TGGAAGAGCT	10260
GGTTTATTAA	CCATTGCACG	GCTTTCGTTG	TCTTGGTCGA	TAACGTGATT	CAATTGTGCC	10320
AACTCATCTT	TAACGAATTG	CTCATCCAAT	TCTTTGTAAG	AAAGAACTGT	TGGTTTCATC	10380
GCTGCGATGT	GCATTGACAA	TTGTTTAGCA	AGTGCTTCGT	CTCCACCTTC	AACAACTGAA	10440
ATAACACCGA	TACGTCCACC	GTTATGTTGG	TATGCTCCAA	AGTGTTGTGC	GTCTGTTTTT	10500
TCAATCAATG	CAAAGCGACG	GAATGAGATT	TTCTCTCCGA	TAGTTGCTGT	TGCAGATACG	10560
TATGCAGCTT	CAAGAGTTTC	ACCTGAAGGC	ATTATCAAAG	CAAGAGCTTC	TTCGTTGTTA	10620
GCAGGTTTTC	CTTCAGCAAT	GACTTTAGCT	GTAGTATTTA	CCAATTCAAC	GAATTGAGCG	10680
TTTTTTGCAA	CGAAGTCAGT	TTCAGCGTTT	ACTTCAATAA	CTGCTGCAAC	ATTACCGTTA	10740
ACATAAACAC	CAGTCAAACC	TTCTGCAGCA	ACACGGTCAG	CTTTCTTAGC	TGCCTTAGCC	10800
ATACCTTTTT	CACGAAGCAA	TTCAATCGCT	TTTTCGATGT	CACCGTCTGT	TTCTACAAGC	10860
GCTTTTTTAG	CGTCCATAAC	ACCGGCACCA	GATTTTTCAC	GCAACTCTTT	TACAAGTTTA	10920
GCTGTAATTT	CTGCCATTTT	AATTCTCCTA	TATTTTTGA	AAATAGGAGA	GCGCGGCTAA	10980
GCCCGCCTC	CGG					10993

(2) INFORMATION FOR SEQ ID NO: 16:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 8411 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16:

60	TAGTCGGTCC	CCTGGGGCTG	CTCGTCGCAT	TCGATGTCGG	GTTTGGCACC	CGACGGGGAG
120	ACGTCGTGAG	TGGGTTCAGA	GCACGCGAGC	CATTAAAGCG	GCTGTTCGCC	CAAGGGTTGG
180	TCCTAGTACG	GAGGATCTGC	GGAAATTTGA	CGCGGGCGTA	CCCTATCCGT	ACAGTTCGGT
240	CATCGCTGGG	TTGCCAAAGG	ACCAGTTGTC	CCGCTGGTGT	AGTGGACTTA	AGAGGACCAG

			240			
TAGCTATGTA	GGGAAGGGAT	AAACGCTGAA	AGCATCTAAG	TGTGAAACCC	ACCTCAAGAT	300
GAGATTTCCC	ATGATTATAT	ATCAGTAAGA	GCCCTGAGAG	ATGATCAGGT	AGATAGGTTA	360
GAAGTGGAAG	TGTGGCGACA	CATGTAGCGG	ACTAATACTA	ATAGCTCGAG	GACTTATCCA	420
AAGTAACTGA	GAATATGAAA	GCGAACGGTT	TTCTTAAATT	GAATAGATAT	TCAATTTTGA	480
GTAGGTATTA	CTCAGAGTTA	AGTGACGATA	GCCTAGGAGA	TACACCTGTA	CCCATGCCGA	540
ACACAGAAGT	TAAGCCCTAG	AACGCCGGAA	GTAGTTGGGG	GTTGCCCCCT	GTGAGATAGG	600
GAAGTCGCTT	AGCTTTAATC	CGCCATAGCT	CAGTTGGTAG	TAGCGCATGA	CTGTTAATCA	660
TGATGTCGTA	GGTTCGAGTC	CTACTGGCGG	AGTAATtGAT	AAAAGGGaAC	ACAGCTGTGT	720
TCCTCTTTTT	GTATCAATTT	GTATCACCAA	GCATTTTCAT	AAGGAAGTCT	GTTATTTCTT	780
GAGAACTTTC	TTTTTTTCCA	TGTGCAATCC	AAGTTTGGCA	GACACCAAAA	AGTGCATGAG	840
TTAGATAGAT	GCTACTATAT	TCTAATTCAG	TGGTATTTAG	ATTCAGTTGC	ATAAATCGCT	900
TTTGTAAATC	TGTACTAAGC	ATGATATGAA	GTTTATTTCG	TAAGAAATTT	TGGATTTCTT	960
TAGTCCCATT	TTCAGAAAGA	AGGGCAGCCA	GAAGTGGTTC	TGACTCTAGA	TATTCAAAAA	1020
СТТСТААААТ	AGCGTCTCTT	TTGTGATGAG	CATGTTTTTG	АААААТАТАТ	TCAAATGTAT	1080
GGAATAGCTT	GCTTTGATAG	TGCTCAATCA	TATCATACTT	ATCCTTATAG	TGAGTATAGA	1140
AGCTGGAACG	ACTAATTCCG	GCTTTTTCTA	CTAATTTGAC	AGTAGAAATT	TTATCAAATG	1200
GCTGTTCCAT	CAGTAATTGT	ACCATAGCAT	TTTCAATAGT	TCGCTTTGTT	TTTAAGCGTT	1260
TGTTACTTTC	TTGCATATTT	CCTCCTTGTA	AACAAATTAG	ACTATATGTC	TAAAAATAGA	1320
TTTTTTATCT	TGTAATTTAG	ATTTTTTAAT	GTATAATCTA	TTATATCAAA	ATTTTAGACA	1380
ATATGTTTAA	AAAAGGAGAA	ACTAAGTTTA	AAGAATGGAA	AGCAATTTAA	AAAAAACCAA	1440
ССТТТАТТАТ	TGTCATGATC	GGGATTTCTC	TTATTCCAGA	TCTGTACAAT	ATCATATTTT	1500
TGTCATCAAT	GTGGGATCCA	TATGGGCAAT	TGTCTGACTT	ACCTGTGGCA	GTTGTAAATA	1560
ATGATAAAGA	GGCTTCCTAT	AATGGTAATA	CTATGGCAAT	AGGAAAAGAC	ATGGTGTCCA	1620
ATTTAAAAGA	AAATAAAACC	TTGGATTTTC	ATTTTGTAGA	TGAAGAGGAA	GGAAAGAAGG	1680
GATTGGAAGA	TGGCGATTAC	TATATGGTAG	TGACTTTACC	AAGTGATTTA	TCTGAAAAAA	1740
CAACTACATT	ATCCAATATT	CAATCGACAG	CAGCTTATCA	ATCATTGACA	AGTGAGCAAC	1800
AAACTGAGAT	AAGTGATTCT	GTATCTCAAA	ATTCAACTGA	TAGTATTCAA	TCGGCTCAGT	1860
CAATTGTAGC	TTTAGTACAA	GATTTACAGG	GAAGTTTAGA	AAACTTACAA	AATCAATCTT	1920
CTAATCTTTC	GACTTTAAAA	AATCAATCTA	ATCAAGTATC	ACCTATTACT	TCTACTTCTT	1980
TGATAGGATT	GTCAAGTGGA	TTAACAGAGA	TACAAGGAGA	TGTTACTAGC	AAATTAGTTC	2040

CTGCCAGTCA	GTCGATTGCA	TCAGGTGTAA	ACGCATATAC	TACAGGTGTT	GATAAAGTTT	2100
CTCAGGGCGC	AAGTCAACTA	AGTGAAAAAA	ATGCCACCTT	GACAGGTAGT	TTGGATAAAC	2160
TAGTTTCAGG	CTCAAACACC	TTGACACAAA	AATCTTCTAG	ATTGACAGCA	GGAGTTGGTT	2220
AATTACAATC	AGGATCTGGG	CAATTAGCAG	ACAAATCCAG	TCAGTTACTT	TCAGGTGCTT	2280
CTCCATTAGA	GAATAGAGCT	AATAAATTGG	CAGATGGATC	TGGGAAACTA	GCAGAAGGTG	2340
GAACAAAGTT	AACTTCTGGA	TTGGAAGATT	TACAGACAGG	ACTTGCTTCT	TTAGGACAAG	2400
GACTAGGTAA	TGCTAGTGAT	CAACTCAAAT	CAGTATCAAC	AGAATCTAAA	AATGCAGAGA	2460
TTTTGTCAAA	TCCACTCAAT	CTTTCAAAAA	CAGACAATGA	TCAAGTTCCT	GTAAATGGAA	2520
TCGCAATAGC	TCCTTATATG	ATATCAGTTG	CTCTTTTTT	GCAGCAATAT	CAACAAATAT	2580
GATATTTGCG	AAATTGCCTT	CAGGACGTCA	TCCAGAGAGC	CGTTGGGCTT	GGTTGAAATC	2640
TTGAGCTGAA	ATAAATGGTA	TTATAGCTGT	TTTGGCAGGA	ATTTTGGTAT	ATGGAGGAGT	2700
TCAGCTTATT	GGTTTAACTG	CTAATCATGA	GATGAGAATA	TTTATTCTCA	TCATCCTAAC	2760
AAGTTTAGTA	TTCATGTCTA	TGGTGACCAC	TTTAGCAACG	TGGAATAGCC	GTATAGGAGC	2820
TTTTTTCTCA	CTTATTTTGC	TTTTACTACA	GTTAGCATCA	AGTGCAGGTA	CTTATCCACT	2880
TGCTTTGACA	AATGATTTCT	TTAGATCTAT	TAATCCCTGG	TTACCAATGA	GCTATTCAGT	2940
TTCGGGATTA	CGACAAACAA	TCTCTATCAA	CAAGTCATTT	TCCTAGCTGT	CATACTAGTT	3000
CTATTTACTA	GTTTAGGTAT	GCTAGCCTAT	CAACATAAGA	AAATGGAAGA	AGATTAAAAA	3060
AATCGACCGA	TTAACTGGTC	GATTTTTTAT	GCCTTAGATG	ACTTTCGTCT	GTGATTATAG	3120
ATTCCAAATA	GTAAGAGAGA	AGTAAAGGAA	CAGATTGCTC	CAGTAATAAA	ACCATTGGGA	3180
ATGAAGGAAA	GTGTAATAGT	TCCTTTCCCC	TTGGGAATGT	CAACTTTCAT	AAATCCAGTT	3240
TGAGCTTGTT	ТААТТТСТАТ	TTTCTTACCA	TCTTGGTAGG	CAGACCAACC	TTTGTCATAA	3300
GGAATGGTGA	AGAAAATAGA	TGTATCTTGT	TGGACATCAT	ATGTAGCAAA	AACCTTGTTT	3360
TTAGAAGTTG	ATACTGTGAC	AGGTTGTTCT	TTAATTTTTT	GAATTGCCTC	GGTGAAAGTT	3420
TTGGTATCTA	AACGATAGAA	GGTAGGAGAT	TCAAATGATA	CTTGTGAATT	TCCAGGGAAA	3480
CTAACATTGA	TATTGAAAGT	ТТТТТСТСТ	TTAGTATATC	CTAGATTAAA	GAAGGAGAAG	3540
ACATTATCAG	TTGTAAAAGT	CTTTTTTCA	CCATTTACAA	GGATGTCAAC	CTTCTTTTGT	3600
TTATCGTTAG	AAAAGTGAAG	GTTTATGAAA	GAGAGATAAA	CTTGGCTGTT	TTCTGGAACT	3660
TCAATTTGAT	ACTGGATTGC	TGCATCTTCA	TTTGAAGAAC	TTGTGACACT	AATCAAATCA	3720
TTAGTATTTT	CTATTTTTC	TGTTTTTTCA	TAAGGTATTG	GAGAAAAATA	ATCAAAATTG	3780

242 ACGTTAGCAA GTTGATTTAA AAATGAGGCC TGATTATCCA AGGTATGTTC ATTGAACTTG 3840 ACATCATTGT AAACAGATTG ACTCGCAACT GCAATCGGAA GAGAGTATTG ATTTTCATAT 3900 AGGGTAAGAT TATCTTTTTG ATAGATATCT TTAAAGCCAT ACTTATCAAT AGGACTGTCT 3960 GAGATATTGT ACTGGATACC AAATAAACTA TCAGCCAAAA TACTATTATT TGCATATCGG 4020 AGATTGAGAT TAGTCCCAGA GGATTTAAAA CCAAGTTTAT CTAAAGTAGA GCTTGATGAA 4080 CGATTTCGAA CAGATGAAAA TTGAGAGATT CCATTGTAGT TGAATTTCAT ACTGTCATTT 4140 CCTGTCTGAG TTTGTAGTTT TTCAGTACGA GTAAATTGAT TTCCAATATA TGTTGAGAAA 4200 GATTCCATAG CTGGGATATC TCGACTATAA GCACTTCGAG AAGCAAATCC CCATTCCTTA 4260 GCAATTCCGT CCATTTGAGA TGAAGCATTT AAACTCATTT CAACCAGTAT AAATAAAGAG 4320 ATTAGAATGG CAAATAGATT CACAGATATA AACTTTTTGA TAACTGCAAG GAGTAAAAGA 4380 GAATAGACAA CCAAAAATTC AAGAGTAAGC AGAATATTCA AATCTGTTAA AAAAGAATAA 4440 TGCGATTTTA GATAGATGGT AGCTAAAAAT CCTGCTACTA CAAGAAAAAG CGAAACTAAA 4500 AAATTCCAGA CTTTAAGTTC TTTCAGACGC TTTAAGACTT CTGCTGCTGT GTAAATTAAC 4560 AAGGTAGAGA AAATCCAAGC ATAGCGATGT AAAAACATGT TTGGAGTATG CATGCCTTGC 4620 CAAAATAAGT CAAGAGCTTC TATGTAAAAG CTTGCAATTA GAAATGCAAA GAATATTACA 4680 4740 AAGGGAAATA GTCCAACAAA AATCATTGGG ATGGCCCCAT ACTTTGTTGT GTCAAAGGAA 4800 CCAATGAATT GCTTAGCAAA GAGATCAAGA TACCAGCTAC TTTCAGTTTG AAACTTTGTA 4860 ACTTCAGTCA ATTTTTCCCC ATGTGTCTGT AAATCAAATA GAGTGGGAAG AGTCATAATC 4920 AAACTAGCCA TACCAGCTAA AAAGGAGATA ACTATGAAAT CAAGAACAGA TGATTTTCGA 4980 GTCTTAAAGT CCCACGAAAT TTGACAGAGA TACCAGAAAA TAAGAAACAA TACTGTCATA 5040 TATCCAAAAT AATAATTTTG AATAAATAAG ATTGACAGAC TTGTAAAGTA CAATAGGAGT 5100 TTCTTTTCAG TTATCAGTAG ATGTAAACCA GTTATAATTA AAGGAATCAA GATAAAAACA 5160 TCTAGCCAGG TTTTTATCTC TAATTGACTG ACAGTGAAAC TCATCAGAGC ATAGGAAGTA 5220 GATAAGGCTA GTTTTAAAAT CTGAGGGATA GATTGAAACA ATTTATTCAA ACTAAAAAAG 5280 GTTGACAGAC CAATCAATCC AAATTTTAAG AGAGTTGTCA GATAGATAGC ATCTGGCATA 5340 TTCGTTAGAT CAAAAAAGTA AACCAGAGGC GCGAGAAAAC TACCCAAGTA ATAACTAGAT 5400 AGGGCATAGA AGTTTAGCCC TAGACCACTT GTAAAGGTGT AAAACAGATT ACTATTTCCA 5460 TGTAGGATAT TTCGTAAGGC TACATCAAAA ATAACGTATT GATGAAAGCC ATCTCCTAAT 5520 AGAGGAGAGT TGTCGCTATT CCAGTAGATA CTTTGAGATA GATATACTCC AGACATAATC 5580

A	CTACAGGAA	TGATGAAAGA	AATAAAATAG	GTTCGATATG	TTTTTAAAAA	TGATTTCATG	5640
T	TACCTCGTA	GAATGATAGA	AAACTCAGTT	GGTTAACCCA	ACTGAGTTTT	GAAGTTTTAT	5700
Т	TAGTCTTTC	CAAAGTTCTT	TAACTTTTGC	TTGTACTTCT	GCATTTTCTA	GGAATTCATC	5760
G	TAGGTTTCA	TCGATACGGT	CAATGACGCC	ATTTTTAGAT	AAGACAATGA	TATGGTTAGC	5820
C	AAAGTTTGA	ATAAATTCGT	GGTCATGGCT	GGCAAAGATG	ATTGATTCTT	TAAAGTTTTT	5880
C	AATCCATCA	TTCAAGCTTG	AGATAGATTC	CAAGTCCAAG	TGATTTGTTG	GATCATCAAG	5940
Т	'ACAAGGACA	TTTGATTTTA	AGAGCATGAG	TTTTGAAAGC	ATGACACGAA	CTTTTTCTCC	6000
С	CCTGACAAG	ACATTTACAG	GTTTGTTAAC	TTCATCTCCA	GAGAAGAGCA	TACGGCCGAG	6060
G	AAGCCACGT	AGGAAAGTAT	TGTCATCTTC	TTCTTTACTT	GCGAATTGAC	GCAACCAGTC	6120
A	AGAATTGAT	TCTCCTCCTG	CAAAATCAGC	TGAGTTATCT	TTTGGTAGGT	AAGATTGACT	6180
A	GTTGTAACT	CCCCACTTGA	CAGTTCCTTC	ATAGTCAATA	TCTCCCATGA	TTGCACGAAT	6240
Т	AATGCAGTC	GTTTGAATAT	CATTTTGTCC	AATAAGTGCT	GTCTTATCAT	CTGGACGCAA	6300
G	ATGAAACTA	ATATTATCCA	AGATAGTTTC	ACCATCAATC	TTTACAGTTA	AATTTTCTAC	6360
Т	GTCAAGAGA	TCATTACCAA	TCTCACGTTC	CGCTTTAAAG	TTGATAAATG	GATATTTACG	6420
Α	CTAGATGGC	ACAATCTCTT	CTAGCTCAAT	CTTATCAAGC	ATTCTCTTAC	GTGATGTTGC	6480
С	TGCCTTGAC	TTAGAAGCAT	TGGCAGAGAA	ACGAGCAACA	AATTCTTGCA	ATTGTTTAAT	6540
Т	TTTTCTTCT	GCTTTAGCAT	TACGGTCTGC	TAGCAATTTA	GCAGCAAGCT	CAGAAGATTC	6600
С	TTCCAGAAG	TCGTAGTTTC	CGACATAGAG	TTTGATTTTT	CCAAAGTCAA	GGTCGGCCAT	6660
G	TGAGTACAA	ACTTTGTTTA	AGAAGTGACG	GTCGTGGGAT	ACTACGATAA	CTGTGTTATC	6720
A	AAGTCAATC	AAGAAGTCTT	CTAACCAAGT	AATCGATTGG	ATATCCAAAC	CGTTAGTAGG	6780
C	TCGTCCAAG	AGAAGAACAT	CTGGTTTACC	AAAAAGTGCT	TTGGCGAGGA	GAACCTTTAC	6840
Т	TTTTCACCG	TTGGCCAATT	CGCTCATGTT	TTGGTAGTGT	AATTCTTCTG	GAATGTTTAG	6900
G	TTTTGAAGT	AGTTGAGAGG	CTTCACTCTC	TGCTTCCCAA	CCTCCAAGTT	CGGCAAACTC	6960
T	CCTTCGAGT	TCGGCAGCAC	GAACCCCGTC	CTCGTCTGAG	AAATCTTCCT	TCATGTAGAT	7020
A	GCATCTTTC	TCTTTCATGA	TGCTATAAAG	TTTTTCATTT	CCCATGATAA	CGACATCAAT	7080
G	GCACGTTCA	TCTTCGTAGT	CAAAGTGATT	TTGACGAAGA	ACAGAGAGAC	GTTCATCTGG	7140
A	CCAAGAGAG	ATGTGACCAG	TAGTAGGTTC	GATATCTCCA	GCTAAAATTT	TTAAAAAGGT	7200
T	GATTTTCCG	GCACCATTAG	CACCGATTAA	TCCGTAAGTA	TTTCCTTCTG	TAAATTTGAT	7260
A'	TTGACATCA	TCAAAAAGTT	TGCGATCACT	AAAACGTAGT	GAAACATCAG	ATACTGTAAG	7320

			244			
CAATGTTTTT	CTCCTATATG	TGTAATATAT	TTATTCTACT	AGAAAATACA	GAAATATTCA	7380
AATTTTTATT	TGTCAATTTT	GTGTAAATTA	TATTTACAGT	ATCCTTTACA	CAAATCTGTA	7440
AAAAGCAAGG	CTGATTTATT	TTGATAAATT	ACGGTTATTT	САТТАААААА	ATGCTATAAT	7500
TGAAAGGACT	ATATCGAAGG	AGAACAAAAT	GACTAAACCC	ATTATTTAA	CAGGAGACCG	7560
rccaacagga	AAATTGCATA	TTGGACATTA	TGTTGGAAGT	CTCAAAAATC	GAGTATTATT	7620
ACAGGAAGAG	GATAAGTATG	ATATGTTTGT	GTTCTTGGCT	GACCAACAAG	CCTTGACAGA	7680
rcatgccaaa	GATCCTCAAA	CCATTGTAGA	GTCTATCGGA	AATGTGGCTT	TGGATTATCT	7740
TGCAGTTGGA	TTGGATCCAA	ATAAGTCAAC	TATTTTTATT	CAAAGCCAGA	TTCCAGAGTT	7800
GGCTGAGTTG	TCTATGTATT	ATATGAATCT	AGTTTCGTTA	GCACGTTTGG	AGCGAAATCC	7860
AACAGTCAAG	ACAGAGATTT	CTCAGAAAGG	ATTTGGAGAA	AGCATTCCGA	CAGGATTCTT	7920
GGTCTATCCA	ATCGCTCAAG	CAGCTGATAT	CACAGCTTTC	AAGGCTAATT	ATGTTCCTGT	7980
rgggacagat	CAGAAACCAA	TGATTGAGCA	AACTCGTGAA	ATTGTTCGTT	CTTTTAACAA	8040
rgcatataac	TGTGATGTCT	TGGTAGAGCC	GGAAGGTATT	TATCCAGAAA	ATGAGAGAGC	8100
AGGGCGTTTG	CCTGGTTTAG	ATGGAAATGC	TAAAATGTCT	AAATCACTAA	ATAATGGTAT	8160
TTATTTAGCT	GATGATGCGG	ATACTTTGCG	TAAAAAAGTA	ATGAGTATGT	ATACAGATCC	8220
AGATCATATC	CGCGTTGAGG	ATCCAGGTAA	GATTGAGGGA	AATATGGTTT	TCCATTATCT	8280
AGATGTTTTT	GGTCGTCCAG	AAGATGCTCA	AGAAATTGCT	GATATGAAAG	AACGTTATCA	8340
ACGAGGTGGT	CTTGGTGATG	TGAAGACCAA	GCGTTATCTA	CTTGAAATAT	TAGAACGTGA	8400
ACTGGGTCCG	G					8411

(2) INFORMATION FOR SEQ ID NO: 17:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 9064 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double

 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:

TGCCGTACTC	AAGTACAGCC	TGCGCTAAGT	TTCCTAGTTT	GCTCTTTGAT	TTTCATTGAG	60
TATTAGTAAC	CAAAATCCGA	CCACATAGCC	AGCCCCTATG	AATATAGCCA	TTAAAGCTAG	120
CATGGAATTT	AGGAAATTAA	AAACCACCGC	AGATACAAAG	GTTAGCACAA	AAACATTAAA	180
AGCAATGGTG	TCAGAAGCCA	AGACTAGAAT	ATAGGGTGTC	AACCGATCTA	AAGTTTTGGA	240
ATCTAGGAAA	AATAAGTGTT	TATACATGAT	GACCTCCTCT	ATGGCTGAAA	AGCAAGCCTT	300

TTGTTTTTT ACCCCAAGAC	CCTATGTAGA	AAAGTGAGCA	AAAACGGGAA	GGTCGCTACA	360
ATATTATTGA TCACATGCAC	CGCATAGGAT	GGATAAATGC	TCTTGGTATA	GCGGGTCAAA	420
CCAGCAAAGA TGATTCCAAC	TGTTGCAAAG	ACGAAGATAT	CTAACAGACT	AGGCAGGCTT	480
GAAAAATGAG GGAGAGCAAA	TAAAATAGAA	GGAAGAAGCA	AATCAAGACC	AAATCGCGAA	540
TGCTTAAAGA AAGCATGTTC	CAGTAATCCT	CTATAAATCA	ATTCTTCCAT	CAGTGGAACC	600
AGAAAGAACA GGGCTATATA	AATACCTAGC	TCTGCAAAGT	TAGTCCCACT	ATAACCAATC	660
AATACAGCCC AACCTTCCGC	AGTTGACTGA	ACATGTTTAG	CTGTCTGAAC	GTTAAAAGAG	720
ATCTGGAACA CTAGCACTAA	TACTGTCAAA	ATCGAATACC	AAAGCCATTT	TTTTCTTGGA	780
ATGCGGAAGA GATAACCATG	GCCTGTCTTA	ACAAGAACCA	CAATCATGAC	TCCAATAAAA	840
AGTAAACTCA AGATATTTTC	AATCCAGAAT	AAATTGCCTA	TCTGAGAAGA	AAATTGCCAA	900
TAGTTTTGGA CGATAAGCGT	CAGCTGAGAA	AGACTAAATA	CGAAAAATAA	GTAAGAGAAG	960
ACTGCACTTA TTTTGAATAG	AAGTTGATAC	TTTTTCATAG	AAATCCTCCC	TACTATGACC	1020
TCACCTTGTC AGGCTCTACT	GCTGTAAGAT	TAAGAAGACA	GTTTGTTTT	TTTAAGGCTA	1080
ACCTGACTAC TAGATAATAG	ATACATTAAG	GCATTAAAGA	CAATGAAAAT	ATGTCCATAG	1140
AATAAAATCA ACCTCGCATC	CAAACCAAGA	TAAAGTTTGA	TTATCAAAAA	GATGAGCAAA	1200
AGAATTTGAA ACCATAAGGT	TTTTCCAAAA	ATAAATTTAA	AGCGATTTCG	AATATCTACT	1260
TCCTTGATTT TTACCGCCAC	CCCTTTATTA	GCAAGAAGGA	AAACTCCTGC	TTCAAACAAA	1320
CCACTGTAAA GAACAAGCCA	CCCAATAGAT	ACGATAGAGA	TTTGTAAAAA	TGTCCCTAAA	1380
AGAATATCCA ACACACTACT	CAAGAAAATA	АСААААААТА	ATCTGTATTT	CATATTAAAT	1440
ACCTCCATTC ATTTATTTCA	CTAACAATTT	AATAGAGCCT	TCTACTCAAA	TATCCTGTCA	1500
GAAAAGGATA GAAAGCTACT	ТТТТАТААТА	CTTCAAGCCC	CACATGAGCA	GAAGCGTGAT	1560
AAACAAGCAG AGAATACACC	TATATAAGCG	ATTAGTTGTT	GATAGAATTC	TGTTTCTGAA	1620
ATACCTCTAT ACAAACAAAT	GACAAACATA	AAATCTGCCA	AGCCGATAAA	CATAAGTTGA	1680
TTGGTTCTAG GACTAACCAA	ATCATCATTT	ACTTATATTT	AAGAGTATCT	CTTTTATTTT	1740
AATGTATGTT AGCACTGAAA	AGCAAGACAG	GCCAATAATA	TTTAAAATGA	ACAGTAACGG	1800
GGTTAAGTCT CTAAAAAAA	TATCTACTGA	CACTACAAGA	AATACTATAC	ATATTATAGT	1860
CGAAACTATC TTTTTCTTAT	CCATAATTAT	TTACTCCTTT	CCTAACAAAT	CCAGCTTATC	1920
AATCAAGAGC GATTTTTAAC	ATAATGTAGC	AGCACCCGTT	GCAACTTTGA	CAAGTTTAGT	1980
ATATCATTGT TTTTTAAAAT	TTTTCATCCA	AATCTTGAAT	TGTCATCGAA	ACATCTTGAA	2040

246 TTGTTAAAAA ATTTAAAAAG TAAGCATTAA AAACATACTT TCCTCTTTAT ATTGTATTGA 2100 TACCAACTTG TTTGTAGACT TTTCATCCTG CTATCACATA TCATTTTGAC AGGCGAAACA 2160 ATATTAAAGA AACTCCCCTG TAAATTAAGC TAGCAAATAC AGGGGAGAAA TTTATTTTTT 2220 AGAGAGTACT ATCCGTATCC TTTTTGGAAG ATTTTGAAAA TATTTTTCTA ATTAAGTCAT 2280 CCATATAAGG ACCAAATATA CCAACTACTA AACCAATAAT AAAACTTTTA AAATCCATAA 2340 TTACCACCAA CATATTGCTG CATAGGCTAC ACCTCCAAGT ATAGCTCCAC CTGCAGCACC 2400 AGTTACACCT ATTCCTATAG CAAATGGTCC CAATAGAAAT GTCAAACCGT TGTTGCACAC 2460 CCATCAATTG CGCCATATGC AACCCCTGCT GCACAACTAA TTTTTCTTCC CCAATCAATA 2520 TCTCCACCTT CAACGCAAGC AAGCATTTCA TTATCCATAA CTGCAAATTG TGACATCATT 2580 TTTGTATCCA TATAGTGTAT CACTTTTCAG TTACGGAACA AGTTTAATAT AAAAATTATC 2640 AAAAAACAT AGGCAATAAA GAGAAAAATT AATTTATCAT AGATTAGAAA TAATATGACA 2700 AAACAATTCA ATGATGTTAA TTCAATAGTC TTTTGTTTTT TATCGGAGAT ACTTATGGAT 2760 AGATAAATAA GATAGGTTTG AAAAGCGAAG AGAATAATAA AGAATATAGC CTTCATAAAA 2820 TTTAGCTTTC ATTTTATGA TGTAGCGGTA TAGGCTAAAT ATCCACAAAC CACTGCTCCT 2880 CCAATTCCTC CTATTGCAGC GCCCCATGGT CCTAGAAGTC TCCCATATTT CACTCCACCC 2940 GCTGCACAAC CTAAAGCAGC AACTACAGCT GCTCCTCCGG AATTACCTCC ATAAACCTCA 3000 CTCAGCATTG TTTCATTAT ATTACAATAA GTATTCATAC AAGTCTCCTT TTATTAAAAT 3060 CCACCCGTTG CCCCTGTTAC TCCTGCCCAA AGATCCACAC CAAATTTAGC TCCTATGTAT 3120 CCACATGCTC CCATAAATGG TGCTCCAACA CCACTCGCAG CACAAATAGC TGTCCCTAGC 3180 CCCCAGCCAC CAAAAGCAGC ACCACCACCT TCTAAGACAT TAGTTTGCCA ATTATTCTTG 3240 CCTCCTTCAA TACTAGATAA CATAGTTATA TCCATTTCAT GAAATTGTTC CATAATTTTT 3300 GTATCCATGA CAAATACTCT TTTTTATTTT TAATTTTTGT CTTGTTGTAA CTTTGACAAG 3360 TTTAGTATAT CATCGTTTTT TAAAATTTTT CATCCAGATT TTGAATAGTC ATCGAAACGT 3420 CTTGAATTGC AAAAATTACA TTAGACTTCC TGCAAAACTA GAATCCTAGT TCATGATTGA 3480 TAATACCAGC ACTCAAATTC ATTCGTAATC CGAAGCGTTT ACGATGACTT CGATAGGTTG 3540 TTGAAAACAT TTTAAACGTT TTTACTTTGG CAAAGATGTT CTCAACCTTG CTTCTCCT 3600 TAGATAGCGC ATGGTTACAG GCTTTATCTT CAACTGTTAG CGGTTTGAGT TTGCTGGATT 3660 TACGTGAAGT TTGTGCTTGA GGATATATCT TCATGAGCCC TTGATAACCA CTGTCAGCCA 3720 AGATTTTACC AGCTTGTCCG ATATTTCTGC GACTCATTTT GAACAACTTC ATATCATGAC 3780 AATAGTTCAC AGTGATATCC AAAGAAACAA TTCTCCCTTG ACTTGTGACA ATCGCTTGAG 3840

TCTTCATAGC	GTGAAATTTC	TTTTTACCAG	AATCATTCGC	TAATTCTTTT	TTTAGGGCGA	3900
TTGATTTTTA	CTTCCGTCGC	ATCAATCATT	ACCGTGTCCT	CAGAACTGAG	AGGAGTTCTT	3960
GAAATCGTAA	CACCACTTTG	AACAAGAGTT	ACTTCAACCC	ATTGGCTCCG	ACGGAGTAAG	4020
TTGCTTTCGT	GAACACCAAA	ATCAGCCGCA	ATTTCTTCAT	AAGTGCGGTA	TTCTCGCACA	4080
TATTGAAGAG	TGGCCATAAG	AAGGTCTTCT	AGGCTTAATT	TAGGTTTTCG	TCCACCTTTT	4140
GCGTGTTTAA	GTTGATAAGC	TGTTTTTAAT	ACAGCTAGCA	TCTCTTCAAA	AGTCGTGCGC	4200
TGAACACCAA	CAAGACGCTT	AAATCGTGCA	TCAGTTAGTT	GTTTACTTGC	TTCATAATTC	4260
ATAGAACTAT	AGTAAAATGA	AATAAGAACA	GGATAAATCG	ATCAGGACAG	TCAAATCGAT	4320
TTCTAACAAT	GTTTTAGAAG	TAGAGGCGTA	CTATTCTAGT	TTCAATCTAC	TATACTATAC	4380
CATATTTTGT	TTCGCAGGGA	ATCTATTATA	AAAGGGTAAG	TATTGCAAAA	ACACTTACCC	4440
TTTTCTTTTA	TACTTCATTA	AGCTCTACTT	TTTATAATAC	TTCAAGCCCC	ACATGAGCAG	4500
AAGCATGATG	ATTAAGCAGA	GAACAGCGCC	AATATAAGCG	ATTATTTGTT	GGTAGGATTC	4560
TCCTGCTGTG	ATACCTCTAT	ACAAACAAAT	AATAGACATA	AAACCTGTCA	AGCCGATGAA	4620
CATAAGTTGA	TTGGTTCTAG	GACTAACCAA	ATCATCATCT	TCAAACTCTC	TTATCCTCAT	4680
TTCCCTAGTG	AGATAAACAG	TAACCAAAAT	AGAAGCCAAG	ТТААТААСТА	CTAAAAGAAA	4740
TTGGAAAACT	ACGGAAAAAT	TTAAAAACTG	ACGAGATAGA	AATAGATAAG	TAGAAACAAG	4800
CAAGGGCAAC	TGACCTAAGA	ACAATCTCGC	AAGGAAGATG	TTCCGTTTTT	TAGCAAGAAA	4860
AGTTTTCATT	TCTTTTCTCC	TTTCTTTTTA	TTGATAGCAA	AATAGATCAT	AACTGCAATC	4920
ACATAGGCTA	TGGTATAAAA	TAGCTGATAC	CAAGCACTCT	CCCTAAGCGG	ATATAGAAAG	4980
ATGGACATGA	TTAGATACAG	AACGAAAATA	ATCAGTATTT	TTTTCTTCAT	AAGATTTCCT	5040
CCTAAATGTG	CGATTTATCT	TAGTTGAGCA	AGAACATTTA	CACTGCTAGT	ATAGCACTTA	5100
TTTTGACCTT	GGATCACTCA	AATCATAAAT	GGTCATCAAA	ACCTCTTGAA	TTGTAAAAAT	5160
TAAAAAAGCA	AGCATGAAAA	ACATACTTTC	CTCTTTATAT	TGTATTGATA	CCAACTTGTT	5220
TGTAGACTTT	TCATCCTGCT	ATCACATATC	ATTTTGACAG	GCGAAACAAT	ATTAAAGAAA	5280
CTCCCCTGTA	AATTAAGCTA	GCAAATACAG	GGGAGAAATT	TATTTTTAG	AGAGTACTAT	5340
CCGTATCCTT	TTTGGAAGAT	TTTGAAAATA	TTTTTCTAAT	TAAGTCATCC	ATATAAGGAC	5400
CAAATATACC	AACTACTAAA	ССААТААТАА	AACTTTTAAA	ATCCATAATT	ACCACCAACA	5460
TGTTGCTGCA	TAGGCTACAC	CTCCAAGTAT	AGCTCCACCC	GCAGCACCAG	TTGCTGCACC	5520
TTGCCATGTT	CCTGTTTTAA	TGCCTAGTTG	AAGACCTCTT	GCTGCTCCTC	CTCCAACACC	5580

			248			
TGCTTTGGCA	AAATCTCCCC	AATTGCATCC	GCCACCTTCA	ACGCAAGCAA	GCATTTCAGT	5640
ATCCATAACA	GAAAATTGTG	ACATCATTTT	TGTATCCATG	ACAAATACTC	CTTTTTTAAA	5700
AAACTAAAAT	AAATCAGAAT	AGAATCCTCA	TAATTTTACT	ATAAGTCTTA	CCAACTTAGT	5760
CCCAATTTAT	CACCAACCAT	ACCTCCTAAG	CATGTTAATC	CACCCCCAAT	TGCACCAATG	5820
TGTGCTCCAA	CAAATGCACC	AGCAAGTCCA	GCTACTCCTA	AAGTGGCCAA	ACCTGCTCCA	5880
GTTCCACCAG	TTATAATTCC	CGTAGTGACT	CCTGTAATCA	GTGCATTTTG	ACAATCAGTG	5940
GAGCTATACC	CCCCTTCAAC	TTTCGCAAGC	ATTTCAGTAT	CCATAACCTC	TAACTGTGAC	6000
AACATTTTTG	TATTCATGAT	GAATACCTCC	TTTTTATTTT	CAATTTGTTA	CCAAAGTCTT	6060
AAATTCAATA	AACAAATAGA	TTTTTTATAG	TATCTTTTTG	ATTTTCTTAA	AAAAGTATAT	6120
ACGTCTACTA	TCTTCTTAAA	GGTAGCAGTA	CCTATTTTTT	AGTCTAAGAT	TTCAATAATC	6180
TTGAGTATCT	AAAATATCTT	AATTTCGTTA	TTCTCCTTGC	AATAAAAAGT	TTTACTATAC	6240
ТАТТТАТТАА	CTTGCAGAAA	GCAAAAAATA	TTAGTAAATA	ATAGTTTATA	GTTAAGTTTT	6300
TTATTCCTAC	CAATCCATCA	ACTAAGTAAA	GCATCAACGA	TTACATAAAC	GATTGATAAT	6360
АТААТТАААА	TTTTGCTAAC	TATCTTATTC	TCATCATTCT	TAGATAACTT	TGATATTTTG	6420
TAAGTAAGTA	AATAAGACAG	ТАААТТААТА	GCGATAATAA	TACTATATTT	AAGAATCATA	6480
АТСТТАСААА	GAGGACATAA	TTCCTGAACC	TACACAAATA	AGTGTTGCTG	CTCCCCCAGT	6540
TATCGGACCA	GTCGCAGCAG	CTAATAGTAC	TGCTCCAATA	CAACCACCGA	TTGCAGATCC	6600
TAAATTGCCT	CTTCCTCCAC	TAACTATTTC	GAGTTCTTCA	TTATCCATAA	CAGAAAATTG	6660
TTCCATCATT	TTTGTATTCA	TGACAAATAC	TCCTTTTTTC	TTTTTTTATT	TTTGTCTTGT	6720
TGTAACTTTG	ATAAGTTTAG	TATATCATCG	TTTTTTAAAA	TTTTTCATCC	AGATCTTGAA	6780
TTGTCATCGA	AACGTCTTGA	ATTAGCTTTT	TTATTTCAAG	CCACCTCTAA	ATGTTTAAAA	6840
AAAATAATT	CTAATCACTT	TTTTACCATT	CAGGAAGTTT	TAATGACTAT	TCAAGATTTC	6900
АТААААТАТG	AACTTAGTTT	TATGACATAA	TAGACCTATC	CACTATATGA	AAGGAATTGC	6960
CAATGACTTC	TTATAAACGT	ACATTTGTTC	CTCAAATAGA	TGCGAGAGAC	TGTGGTGTCG	7020
CTGCCTTAGC	CTCGATTGCT	AAATTCTATG	GTTCAGATTT	TTCTCTAGCT	CACTTGAGAG	7080
AACTTGCAAA	GACCAATAAA	GAAGGGACGA	CTGCTCTTGG	CATTGTAAAA	GCCGCTGATG	7140
AAATGGGCTT	TGAAACAAGA	CCTGTTCAAG	CAGATAAAAC	GCTCTTTGAC	ATGAGTGATG	7200
PCCCTATCC	ATTTATCGTT	CACGTTAACA	AAGAAGGAAA	ACTCCAACAT	TACTATGTTG	7260
rctatcaaac	AAAGAAAGAC	TATCTGATTA	TTGGTGATCC	TGACCCTTCT	GTAAAAATCA	7320
CTAAAATGTC	AAAAGAACGC	TTTTTCTATG	AATGGACTGG	AGTAGCTATT	TTTCTAGCTA	7380