NZSSN Courses: Introduction to R

Session 7 – Simple analysis

Statistical Consulting Centre

consulting@stat.auckland.ac.nz The Department of Statistics The University of Auckland

20 July, 2017

SCIENCE
DEPARTMENT OF STATISTICS

Regression commands

Two of the most commonly used R commands for modeling:

- lm(): fits Linear Models
- glm(): fits Generalised Linear Models.\

Note SAS users: PROC GLM is **not** the same as R's glm().

There's a lot in these two commands; entire stage 3 statistical courses on linear and generalised linear models.

Student's *t*-test

$$t.test(y \sim x)$$

- y: values; e.g., Cholesterol, BMI, Age, etc.
- x: group; e.g., Sex, Smoke.group.

Suppose we want to test whether males and females (x = Sex) have different Cholesterol levels.

Categorical variables should be converted to type factor before analysis, i.e.

```
combined.long.df$Sex <- factor(combined.long.df$Sex)
with(combined.long.df, t.test(Cholesterol ~ Sex))</pre>
```

Student's t-test

```
##
## Welch Two Sample t-test
##
## data: Cholesterol by Sex
## t = 11.029, df = 48066, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equ
## 95 percent confidence interval:
## 3.723005 5.332270
## sample estimates:
## mean in group Female mean in group Male</pre>
```

• p-value < 2.2e-16.

208, 1640

 We have extremely strong evidence that the cholesterol level for male is different from female.

203.6364

##

Multiple comparisons

Let's compare the total score between three age groups, i.e.

- ① Do a t-test between "Under 35" and "36 to 60".
- Do a t-test between "Under 35" and "Over 61".
- 3 Do a t-test between "36 to 60" and "Over 61".

Really?

Error rate

When we do a t-test comparing mean total score between females and males, the null hypothesis is that the mean total score for females is the same as that for males. The t-test is performed (with the hope) to reject this null hypothesis.

In order to come up with a p-value, we assume that α (typically 5%) of the time, we will reject the null hypothesis when it's actually true, i.e., we assume 5% of the time we will make a mistake.

- When we do two simultaneous *t*-tests, about 10% of the time we will make a mistake.
- When we do three simultaneous *t*-tests, about 15% of the time we will make a mistake.
- The chance of being shot in Russian Roulette is 16.67%. Would you risk it then?

Analysis of Variance (ANOVA)

Generalises *t*-test to more than two groups

Null hypothesis: all group means are equal.

Example. Mean Cholesterol level is the same for all three age.groups.

```
tryaov <- with(combined.long.df, aov(Cholesterol~Age.group))</pre>
```

- aov(): Analysis of Variance.
- Response variable (i.e. total.lik) is separated by ~ from explanatory variable(s) (i.e. age.group).
- All explanatory variables should be categorical (otherwise it's not ANOVA).

aov()

summary(tryaov)

We have extremely strong evidence that at least one age group's mean Cholesterol level is different to that of the other age groups.\

Which one(s) is(are) different????

Which one(s)?

Tables of means

```
model.tables(tryaov, "means")
```

```
## Grand mean
##
## 206.0412
##
## Age.group
## Under 35 36 to 60 Over 61
## 186.3 210.7 221.2
## rep 15780.0 17040.0 15366.0
```

The mean Cholesterol level...

• over all participants is 206.

Which one(s)?

Tables of means

```
model.tables(tryaov, "means")
```

```
## Grand mean
##
## 206.0412
##
## Age.group
## Under 35 36 to 60 Over 61
## 186.3 210.7 221.2
## rep 15780.0 17040.0 15366.0
```

The mean Cholesterol level...

- for "Under 35" group is lower than both that of the "36 to 60" and the "Over 61" groups.
- for "36 to 60" group is lower than the "Over 61" group.

Which one(s)?

Tables of means

```
model.tables(tryaov, "means")
```

```
## Grand mean
##
## 206.0412
##
## Age.group
## Under 35 36 to 60 Over 61
## 186.3 210.7 221.2
## rep 15780.0 17040.0 15366.0
```

Are any pairs of these means statistically different from one another?

Post-hoc multiple comparisons

TukeyHSD(tryaov)

```
##
     Tukey multiple comparisons of means
##
       95% family-wise confidence level
##
## Fit: aov(formula = Cholesterol ~ Age.group)
##
## $Age.group
##
                         diff
                                    lwr
                                            upr p adj
## 36 to 60-Under 35 24.37127 23.261145 25.48138
## Over 61-Under 35 34.88304 33.744215 36.02186
                                                     0
## Over 61-36 to 60 10.51177 9.393915 11.62963
                                                     0
```

- diff: estimated difference between two group means.
- lwr, upr: lower and upper limit of the 95% confidence interval of the estimated difference.
- p adj: p-values adjusted for multiple comparisons.

Post-hoc multiple comparisons

```
comp <- TukeyHSD(tryaov)
comp$Age.group</pre>
```

```
## diff lwr upr p adj

## 36 to 60-Under 35 24.37127 23.261145 25.48138 0

## Over 61-Under 35 34.88304 33.744215 36.02186 0

## Over 61-36 to 60 10.51177 9.393915 11.62963 0
```

- Mean Cholesterol level for "36 to 60" is 24.4 mg/100ml higher than "Under 35" (p adj < 0.0001).
- \bullet Mean Cholesterol level for "Over 61" is 34.9 mg/100ml <code>higher</code> than "Under 35" (p adj < 0.0001).
- Mean Cholesterol level for "Over 61" is 10.5 mg/100ml higher than "36 to 60" (p adj < 0.0001).

From Session 6: Mean Cholesterol level vs Age group

Two-way ANOVA

- tryaov was fitted using one categorical explanatory variable (Age.group). We therefore refer to its ANOVA table as one-way.
- If we fit a linear model using two categorical explanatory variables, we have a *two-way* ANOVA.
- Recall: All categorical variables should be converted into factors.

 Sex*Age.group is equivalent to Sex + Age.group + Sex:Age.group.

Two-way ANOVA

summary(try2way)

There is two-way interaction between Sex and Age.group (p-value = 0.19), i.e., the magnitude of the difference in mean Cholesterol levels between males and females is not constant across all age groups, and vice versa.

Estimated means

```
model.tables(try2way, "means")
```

```
## Tables of means
## Grand mean
##
## 206.0412
##
##
   Sex
##
       Female Male
##
        208.2 203.6
## rep 25593.0 22593.0
##
##
   Age.group
##
      Under 35 36 to 60 Over 61
         186.3 210.6
##
                          221.2
## rep 15780.0 17040.0 15366.0
```

Estimated means

```
model.tables(try2way, "means")$table$'Sex:Age.group'
```

```
## Age.group

## Sex Under 35 36 to 60 Over 61

## Female 184.7069 209.6103 231.4095

## Male 188.1431 211.8985 210.1405
```

Post-hoc pairwise comparisons

TukeyHSD(try2way)

```
##
    Tukey multiple comparisons of means
##
      95% family-wise confidence level
##
## Fit: aov(formula = Cholesterol ~ Sex * Age.group)
##
## $Sex
##
                   diff
                              lwr
                                     upr p adj
## Male-Female -4.527637 -5.286902 -3.768373
##
## $Age.group
##
                        diff
                                   lwr upr p adj
## 36 to 60-Under 35 24.37080 23.272004 25.46959
## Over 61-Under 35 34.96254 33.835337 36.08974
                                                    0
## Over 61-36 to 60 10.59174 9.485293 11.69819
```

Post-hoc pairwise comparisons

TukeyHSD(try2way)\$`Sex:Age.group`

```
##
                                           diff
                                                        lwr
  Male: Under 35-Female: Under 35
                                      3.4361409
                                                   1.505591
  Female: 36 to 60-Female: Under 35
                                     24.9033236
                                                  23.079721
                                     27.1915865
  Male:36 to 60-Female:Under 35
                                                  25, 299622
  Female:Over 61-Female:Under 35
                                     46.7026213
                                                  44.815819
  Male:Over 61-Female:Under 35
                                     25.4335479
                                                  23.508474
  Female:36 to 60-Male:Under 35
                                     21.4671826
                                                  19.570071
## Male:36 to 60-Male:Under 35
                                     23.7554456
                                                  21.792531
## Female:Over 61-Male:Under 35
                                     43.2664804
                                                  41.308541
                                     21.9974070
                                                  20.002561
## Male:Over 61-Male:Under 35
                                      2.2882629
                                                   0.430431
  Male:36 to 60-Female:36 to 60
                                     21.7992977
                                                  19.946724
## Female:Over 61-Female:36 to 60
## Male:Over 61-Female:36 to 60
                                      0.5302244
                                                  -1.361314
   Female:Over 61-Male:36 to 60
                                     19.5110348
                                                  17.591130
                                         7500206
                                                     715560
```

Test of independence

```
smoke.age.tab <- with(combined.df, table(Smoke.group, Age.group)
smoke.age.tab</pre>
```

```
## Age.group
## Smoke.group Under 35 36 to 60 Over 61
## No 643 1548 2064
## Yes 1732 1840 799
```

Do smoking habit depend on age group? Statistically speaking, is Smoke.group and Age.group independent of one another?

Pearson's Chi-squared test

```
chisq.test(smoke.age.tab)
```

```
##
## Pearson's Chi-squared test
##
## data: smoke.age.tab
## X-squared = 1082.1, df = 2, p-value < 2.2e-16</pre>
```

- There is extremely strong evidence (p-value < 0.0001) that Smoke.group and Age.group are not independent of one another.
- Smoking habit depend on the age group to which patient belong.

Assumptions

 Pearson's Chi-squared tests have certain assumptions. Beyond the scope of this course. \item chisq.test() will give you a warning if these assumptions are not met.

Warning in chisq.test(mytest): Chi-squared approximation ma

```
## be incorrect
##
## Chi-squared test for given probabilities
##
## data: mytest
```

X-squared = 2, df = 3, p-value = 0.5724

- These assumptions are more likely to be wrong if the sample size is small.
- If this happens, the alternative is to use Fisher's exact test.

Fisher's exact test

Assume Q5.age.tab does not meet the underlying assumptions of Pearson's Chi-squared test.

```
fisher.test(smoke.age.tab, simulate.p.value = TRUE)
```

```
##
## Fisher's Exact Test for Count Data with simulated
## p-value (based on 2000 replicates)
##
## data: smoke.age.tab
## p-value = 0.0004998
## alternative hypothesis: two.sided
```

Summary

- Student's t-test
- One-way ANOVA
- Two-way ANOVA
- Pearson's Chi-squared test
- Fisher's exact test