22MAC260 Problem Sheet 4: Solutions

Week 4 Lectures

Last updated March 8, 2024

1. Let a and b be complex numbers such that $-4a^3-27b^2\neq 0$. Let E and E' be the elliptic curves given the by two equations

E:
$$y^2 = x^3 + ax + b$$

E':
$$y^2 = x^3 + ax - b$$
.

(a) Show that $E \simeq E'$.

Solution: By our definition of isomorphism in Week 4, we need to find a complex number μ satisfying

$$\mu^4 a = a$$

$$\mu^6 b = -b$$
.

For any value of α , the first equation has solutions $\mu=\pm 1,\pm i.$ To satisfy the second equation, we can then choose $\mu=\pm i.$

(b) If $\alpha, b \in \mathbb{R}$, show that E and E' are not isomorphic over \mathbb{R} unless b=0. Solution: If $b \neq 0$ then the second equation above becomes $\mu^6=-1$. This

equation has no solutions $\mu \in \mathbb{R}$, so E and E' are not isomorphic over \mathbb{R} .

2. Consider the family of curves

$$E_t$$
: $y^2 = x^3 + a(t)x + b(t)$

where a(t) and b(t) are polynomials in the parameter t. Suppose that

$$\Delta(t) = -4a(t)^3 - 27b(t)^2$$

is not identically zero.

(a) Show that there is a finite (possibly empty) set V of values for t such that E_t is an elliptic curve for all $t \in \mathbb{C} \setminus V$.

Solution: The point here is just that for any chosen value of t, the value of $\Delta(t)$ as defined above is the discriminant of the curve E_t . So E_t is an elliptic curve if and only if $\Delta(t) \neq 0$. Now $\Delta(t)$ is a polynomial which by assumption is not identically zero, hence it has finitely many roots t_1, \ldots, t_n . Define V to be the set $\{t_1, \ldots, t_n\}$: then for any $t \in \mathbb{C} \setminus V$, we have that $\Delta(t) \neq 0$, hence E_t is an elliptic curve.

(b) Suppose that neither of α and b is identically zero, that α and b have no common root, and that $3 \deg \alpha \neq 2 \deg b$. Show that for every $c \neq 0$, -1728 there is an elliptic curve E_t in the family with $j(E_t) = c$.

Solution: Let c be a fixed complex number, not equal to either 0 or 1728. To find a value of t such that $j(E_t) = c$ we have to solve the equation

$$1728 \frac{4\alpha(t)^3}{\Delta(t)} = c.$$

Writing $\Delta(t) = -4a(t)^3 - 27b(t)^2$ and rearranging, this becomes

$$4(c + 1728)\alpha(t)^3 + 27cb(t)^2 = 0.$$
 (*)

Since by assumption $c \neq 0, -1728$, the coefficients of $a(t)^3$ and $b(t)^2$ in equation (*) are both nonzero.

Moreover, since $\deg(\alpha(t)^3)=3\deg\alpha(t)\neq 2\deg b(t)=\deg(b(t)^2)$, the terms on the left-hand side of (*) have different degrees, and hence the degree of the left-hand side is $\max\{3\deg\alpha(t),2\deg b(t)\}>0$. So in particular we see that the left-hand side of (*) is not a constant polynomial, and hence Equation (*) has at least one solution t_0 .

To finish, we need to check that our solution t_0 actually corresponds to an elliptic curve: in other words, that $\Delta(t_0) \neq 0$. Now if t_o is a common solution of (*) and $\Delta=0$, then it must also be a root of

$$\gcd\left(4(c+1728)\alpha(t)^3+27cb(t)^2,-4\alpha(t)^3-27b(t)^2\right)=\alpha(t)^3$$

But then t_0 is a common root of a(t) and $\Delta(t)$, hence also a root of b(t). This contradicts the assumption that a(t) and b(t) have no common roots.

3. Legendre form. A cubic is in Legendre form if it is given as

$$E_{\lambda}: y^2 = x(x-1)(x-\lambda)$$

for some number $\lambda \neq 0, 1$.

(a) Show that every cubic in Legendre form defines an elliptic curve.

Solution: There is not really anything to show here. Since by assumption $\lambda \neq 0$, the right-hand side of the equation defining E_{λ} is a cubic with 3 distinct roots 0, 1, λ , hence it satisfies our definition of elliptic curve.

(b) Transform the Legendre equation into Weierstrass form.

Solution: According to the lectures from Week 3, if we transform the cubic

$$y^2 = x^3 + \beta x^2 + \gamma x + \delta$$

to Weierstrass form, we get the cubic

$$y^2=x^3+\gamma'x+\delta'$$
 where $\gamma'=\gamma-rac{1}{3}eta^2,$ $\delta'=\delta-rac{1}{3}eta\gamma+rac{2}{27}eta^3.$

Multiplying out the Legendre equation above we get

$$y^2 = x^3 + (-\lambda - 1)x^2 + \lambda x$$

so we have

$$\beta = -\lambda - 1$$
, $\gamma = \lambda$, $\delta = 0$.

Putting these into the formulas above we get the Weierstrass form

$$y^{2} = x^{3} + \left(\lambda - \frac{1}{3}(\lambda + 1)^{2}\right)x + \left(\frac{1}{3}\lambda(\lambda + 1) - \frac{2}{27}(\lambda + 1)^{3}\right).$$

(c) Use the previous part to show that for every $j \neq 0$, 1728, there are exactly 6 values of λ such that $j(E_{\lambda}) = j$.

Solution: This turns out to be a fairly difficult computation, so don't worry too much if you weren't able to work through the whole solution.

First we have to compute the j-invariant as a function of λ . Taking the coefficients of our short Weierstrass form from above

$$\begin{split} \alpha &= \lambda - \frac{1}{3}(\lambda+1)^2 = \frac{1}{3}\left(3\lambda - (\lambda+1)^2\right) \\ b &= \frac{1}{3}\lambda(\lambda+1) - \frac{2}{27}(\lambda+1)^3 = \frac{1}{27}\left(9\lambda(\lambda+1) - 2(\lambda+1)^3\right) \end{split}$$

Plugging these into our formula $j=-1728\frac{4\alpha^3}{4\alpha^3+27b^2}$ we get

$$j = -1728 \frac{4 \cdot \frac{1}{27} (3\lambda - (1+\lambda)^2)^3}{\frac{4}{27} (3\lambda - (1+\lambda)^2)^3 + \frac{1}{27} (9\lambda(1+\lambda) - 2(1+\lambda)^3)^2}$$

We can multiply by 27 above and below to get rid of fractions in numberator and denominator. The numerator then simplifies to give

$$1728 \cdot 4(\lambda^2 - \lambda + 1)^3$$
.

For the denominator we get

$$4(3\lambda - (1+\lambda)^2)^3 + (9\lambda(1+\lambda) - 2(1+\lambda)^3)^2$$

= $-4(\lambda^2 - \lambda + 1)^3 + (-2\lambda^3 + 3\lambda^2 + 3\lambda - 2)^2$
= $-27\lambda^2(\lambda - 1)^2$.

Putting everything back together we get

$$j = -\frac{1728 \cdot 4}{27} \frac{(\lambda^2 - \lambda + 1)^2}{\lambda^2 (\lambda - 1)^2}$$

$$= -256 \frac{(\lambda^2 - \lambda + 1)^3}{\lambda^2 (\lambda - 1)^2}.$$
(**)

Now to prove the claim, we observe (check it!) that our formula for j is invariant under the two substitutions

$$\lambda \mapsto 1 - \lambda$$
 $\lambda \mapsto \frac{1}{\lambda}$.

Applying these substitutions repeatedly, we end up with the 6 values

$$\lambda, 1-\lambda, \frac{1}{\lambda}, \frac{1}{1-\lambda}, \frac{\lambda}{\lambda-1}, \frac{\lambda-1}{\lambda}.$$

For a fixed value of j, the formula (**) above gives a degree-6 polynomial in λ . This polynomial has (at most) 6 roots, so if the 6 values above are distinct, they must be all the roots, so we get exactly 6 values of λ for which E_{λ} has the given j-invariant. Let us analyse the cases when the 6 values above are not distinct. We find the following possibilities: first

$$\lambda = \frac{1}{\lambda},$$

$$1 - \lambda = \frac{\lambda - 1}{\lambda},$$

$$\frac{1}{1 - \lambda} = \frac{\lambda}{\lambda - 1}$$

which happens exactly when $\lambda = -1$. Next,

$$\begin{split} \lambda &= 1 - \lambda, \\ \frac{1}{\lambda} &= \frac{1}{1 - \lambda}, \\ \frac{\lambda}{\lambda - 1} &= \frac{\lambda - 1}{\lambda} \end{split}$$

which happens exactly when $\lambda=\frac{1}{2}.$ Next,

$$\lambda = \frac{\lambda}{\lambda - 1},$$

$$1 - \lambda = \frac{1}{1 - \lambda},$$

$$\frac{1}{\lambda} = \frac{\lambda - 1}{\lambda}$$

which happens exactly when $\lambda = 2$.

In each of these case, plugging in the value of λ in (**) we get $j(E_{\lambda}) = -1728$.

Finally, we can also have

$$\lambda = \frac{1}{1 - \lambda} = \frac{\lambda - 1}{\lambda}$$
$$1 - \lambda = \frac{1}{\lambda} = \frac{\lambda}{\lambda - 1}$$

which happens when $\lambda^2 - \lambda + 1 = 0$, in other words when $j(E_\lambda) = 0$. Writing the values out explicitly we get

$$\lambda = \frac{1 \pm \sqrt{3}i}{2}.$$

(d) Which values of λ give $j(E_{\lambda})=0?$ Which give $j(E_{\lambda})=-1728?$

Solution: answered in the previous part.

4. Starting from the right-angled triangle with sides of length (5, 12, 13), use the method described in the Week 4 lectures to produce another right-angled triangle with rational sides and area 30.

5

Solution: Using formula (1) in Theorem 3.1 of the Week 4 notes with q=30, the triple (5,12,13) maps to the point

$$P = \left(\frac{30 \cdot 12}{13 - 5}, \frac{2 \cdot 30^2}{13 - 5}\right)$$
$$= (45, 225)$$

on the curve

E:
$$y^2 = x^3 - 900x$$
.

Now we apply the formulas for point addition from the Week 3 notes. We compute

$$m' = \left(\frac{3x^2 - 900}{2y}\right)_{|P}$$
$$= \frac{23}{2}$$

and hence

$$x(2P) = \left(\frac{23}{2}\right)^2 - 2x(P)$$

$$= \frac{169}{4}$$

$$y(2P) = -(y(P) + m'(x(2P) - x(P)))$$

$$= -\frac{1547}{8}.$$

Since y(2P) < 0, applying formula (2) from Theorem 3.1 of the Week 4 notes would give us a triple (a,b,c) with $\alpha < 0$, b < 0, c < 0. So instead of 2P, we use the point -2P = P * P. We have

$$-2P = \left(\frac{169}{4}, \frac{1547}{8}\right)$$

and plugging these coordinates into formula (2) from the Week 3 notes, we get

$$(a,b,c) = \left(\frac{119}{26}, \frac{1560}{119}, \frac{42961}{3094}\right).$$