RANDOM MATRIX PROJECT REPORT

Wenhao Yang

School of Mathematical Sciences Peking University yangwenhaosms@pku.edu.cn

ABSTRACT

In this report, GOE and GUE will be discussed.

1 MODEL DESCRIPTION AND THEORITICAL RESULTS

In this part, I will give the model description and some theoritical results.

1.1 GOE

The GOE(N) is ensembled by generating $N \times N$ matrices H with $H = H^T$, $H_{ij} \sim \mathbb{N}(0,1)$ and $H_{ii} \sim \sqrt{2}\mathbb{N}(0,1)$. So the density of matrix H is:

$$\rho(H) = \left(\frac{1}{\sqrt{4\pi}}\right)^N \left(\frac{1}{\sqrt{2\pi}}\right)^{N(N-1)/2} e^{-\frac{1}{4}\sum_{i=1}^N H_{ii}^2} e^{-\frac{1}{2}\sum_{i< j}^N H_{ij}^2}
= \left(\frac{1}{\sqrt{4\pi}}\right)^N \left(\frac{1}{\sqrt{2\pi}}\right)^{N(N-1)/2} e^{-\frac{1}{4}\|H\|_F^2}$$
(1)

Under orthogonal transformation, the density is invariant because $\|H\|_F^2 = tr(HH) = tr(P^THPP^THP) = \|P^THP\|_F^2$.

Suppose $\Lambda = diag\{\lambda_1, ..., \lambda_n\}$, where λ_i are eigenvalues of matrix H. H could be written as $H = P\Lambda P^T$. By measurement transformation, we have:

$$\rho(H)dH = \rho(\Lambda)|J|dPd\Lambda \tag{2}$$

where J is Jacobian matrix. According to Liu (2000), J has the following formation:

$$J = \prod_{i < j} (\lambda_i - \lambda_j) h(p_1, ..., p_{N(N-1)/2})$$
(3)

where p_i decide the matrix P. Integrate all the p_i , we have

$$\mathbb{P}(\Lambda) = \rho(\Lambda) \left| \prod_{i < j} (\lambda_i - \lambda_j) \right| d\Lambda \tag{4}$$

Take N=2 as example, we have the density of spaceing:

$$\rho_{|\lambda_1 - \lambda_2|}(x) = C \int_{-\infty}^{+\infty} x e^{-\frac{1}{4}(t^2 + (t+x)^2)} dt = C' x e^{-\frac{1}{8}x^2}$$
(5)

As $\int_0^{+\infty} \rho_{|\lambda_1-\lambda_2|}(x) dx = 1$, we have $C' = \frac{1}{4}$. So the mean of $|\lambda_1 - \lambda_2|$ is:

$$\mathbb{E}|\lambda_1 - \lambda_2| = \int_0^{+\infty} \frac{1}{4} x^2 e^{-\frac{1}{8}x^2} dx = \sqrt{2\pi}$$
 (6)

As the normalized spacing is $|\lambda_1 - \lambda_2|/\mathbb{E}|\lambda_1 - \lambda_2|$, its density is:

$$\frac{\pi}{2}xe^{-\frac{\pi}{4}x^2}$$
 (7)

1.2 GUE

The GUE(N) is ensembled by generating $N \times N$ complex matrices $H = H^*$ with $H_{ij} \sim \mathbb{N}(0, \frac{1}{2}) + i\mathbb{N}(0, \frac{1}{2})$ and $H_{ii} \sim \mathbb{N}(0, 1)$. The density of matrix H is:

$$\rho(H) = \left(\frac{1}{\sqrt{\pi}}\right)^{N(N-1)/2} e^{-\sum_{i < j}^{N} Re(h_{ij})^{2}} \left(\frac{1}{\sqrt{\pi}}\right)^{N(N-1)/2} e^{-\sum_{i < j}^{N} Im(h_{ij})^{2}} \left(\frac{1}{\sqrt{2\pi}}\right)^{N} e^{-\frac{1}{2}\sum_{i}^{N} h_{ii}^{2}}$$

$$= \left(\frac{1}{\sqrt{\pi}}\right)^{N(N-1)} \left(\frac{1}{\sqrt{2\pi}}\right)^{N} e^{-\frac{1}{2}\|H\|_{F}^{2}}$$
(8)

The similar as GOE(N), the density of eigenvalues is:

$$\mathbb{P}(\Lambda) = \rho(\Lambda) \left| \prod_{i < j} (\lambda_i - \lambda_j)^2 \right| d\Lambda \tag{9}$$

For N=2, we have the density of normalized spacing:

$$\frac{32}{\pi}x^2e^{-\frac{4}{\pi}x^2}\tag{10}$$

2 Numerical Results

The number of samples is set to be 10^6 .

2.1 GOE SPACINGS

The matrix H is generated by $\frac{A+A^T}{\sqrt{2}}$, where $A_{ij} \sim \mathbb{N}(0,1)$. As the density of spacings is invariant, we only consider the distribution of $\lambda_N - \lambda_{N-1}$, where $\lambda_N \geq \lambda_{N-1} \geq \ldots \geq \lambda_1$, like Fig 1 shows.

Figure 1: GOE

2.2 GUE SPACINGS

The matrix H is generated by $\frac{A+A^*}{2}$, where $A_{ij} \sim \mathbb{N}(0,1) + i\mathbb{N}(0,1)$. The same as before, only $\lambda_N - \lambda_{N-1}$ is considered, like Fig 2 shows.

2.3 EIGENVALUES

In this part, the size of matrix is 5000, GOE and GUE are simulated because they are special cases of Real Wigner and Complex Wigner, respectively. Besides, $H_{ij} \sim \mathbb{N}(0,1)$ with $H_{ij} = H_{ji}$ is also simulated. Complex Wigner Matrix is ignored as GUE is a special case.

Figure 2: GUE

In fact, we have:

$$\frac{1}{N} \sum_{i=1}^{N} \lambda_i = \frac{1}{N} \sum_{i=1}^{N} H_{ii}$$
 (11)

$$\frac{1}{N} \sum_{i=1}^{N} \lambda_i^2 = \frac{1}{N} \sum_{i=1}^{N} H_{ij}^2 \tag{12}$$

By large law, the first equation is about o(1) but the second equation is about O(N), which means we have to scale the eigenvalues by $\frac{1}{\sqrt{N}}$. The Fig 3 shows the empirical distribution of GOE, GUE and RW:

Figure 3: Eigenvalue distribution

In fact, by Wigner's semicircle law, the empirical distribution of scaled eigenvalues converges to ρ almost surely, where ρ satisifies:

$$\frac{d\rho}{dx} = \frac{1}{2\pi} \sqrt{4 - x^2} 1_{|x| \le 2} \tag{13}$$

EXPERIMENT DETAILS

All of my code and results can be found on website https://github.com/yangwenh/stochastic-simulation.

ACKNOWLEDGMENTS

I would like to thank Prof Li giving me a oppertunity to do research on random matrix theory. Thank Teaching Assistant Xiong helps to figure out my problems on the research topic. Thank Deep Learning Lab providing me computation resources.

REFERENCES

Yi Kai Liu. Statistical behavior of the eigenvalues of random matrices. 2000.