

Министерство науки и высшего образования Российской **Федерации**

Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

имени Н.Э. Баумана

ФАКУЛЬТЕТ	ИУ «Информатика и системы управления»		
КАФЕДРА	ИУ-1 «Системы автоматического управления»		
ОТЧЕТ	ГПО УЧЕБНОЙ ПРАКТ	<u>ИКЕ</u>	
Студент	Шевченко Алексей Дмитриевич фамилия, имя, отчество		
Группа	ИУ1-42Б		
Тип практики	Учебно-технологический практикум по SimInTech		
Название предприятия	Кафедра «Системы автоматического управления»		
Студент	19/05/2023	А. Д. Шевченко	
	(Подпись, дата)	(И.О. Фамилия)	
Руководитель практики	19/05/2023 (Подпись, дата)	Г. В. Лысухо (И.О. Фамилия)	
Оценка	(подітов, дага)	(II.O. Funidila)	

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э.

Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

УТВЕРЖДАЮ

Заведующий кафедрой <u>ИУ-1</u>
(Индекс)

К.А. Неусыпин
(И.О. Фамилия)

« 24 » сентября 20 22 г.

ЗАДАНИЕ

на прохождение учебной практики

Студент группы ИУ1-42Б		
Шев	<u> </u>	гч
	(Фамилия, имя, отчество)	
Задание Ознакомление со с	редой динамического мод	елирования SimInTech
Реализация программного кода	а. Составление отчёта по г	пройденной практике.
Оформление отчета по прак	тике:	
Отчет выполнен на	<u>18</u> листах формата А	4.
Перечень графического (и	1 1	
фотографии, скриншоты экрана	и т.п.)	
Дата выдачи задания	25 апреля	2023 г.
Студент	19/05/2023	А. Д. Шевченко
Руководитель практики	(Подпись, дата) 19/05/2023	(И.О. Фамилия) Г. В. Лысухо
	(Подпись, дата)	(И.О. Фамилия)

Оглавление

Оглавление	
введение	
Знакомство со средой разработки SimInTech	5
В первую очередь, с помощью SimInTech мы можем:	5
SimInTech содержит библиотеки типовых блоков для моделирования:	5
Кроме этого, SimInTech обладает:	6
Основные приемы создания расчетных схем в SimInTech	7
Этап 1. Наполнение Схемного окна блоками.	7
Этап 2. Ввод свойств блоков.	8
Этап 3. Соединение блоков линиями связи	8
Этап 4. Возможно оформление поясняющих подписей	9
Моделирование в SimInTech	10
Получение математической модели двухзвенного маятника	10
Основные формулы	10
Подсчёт по формулам	11
Начальные условия	13
Составление логических блоков для моделирования системы	14
ЗАКЛЮЧЕНИЕ	18
Список использованной литературы	18

ВВЕДЕНИЕ

За многие годы накоплены обширные библиотеки научных подпрограмм на различных алгоритмических языках, предназначенных для решения типовых задач вычислительной математики. Кроме того, имеется целый ряд различных математических пакетов, реализующих разнообразные численные методы и производящих аналитические математические преобразования.

Название SimInTech является сокращением от перевода на английский язык оригинального названия технологии программного комплекса «МВТУ» (Моделирование в Технических Устройствах, Simulation In Technic). SimInTech — это альтернатива таким программным продуктам как Matlab/Simulink (MathWorks), Dymola (Dassault), AMESim (Siemens), SCADE (ANSYS), VisSim (Visual Solutions), SimulationX (ESI ITI GmbH), Simscape, Modelica, LabVIEW (National Instruments) и другим.

SimInTech (Simulation In Technic) — среда разработки математических моделей, алгоритмов управления, интерфейсов управления и автоматической генерации кода для контроллеров управления и графических дисплеев.

SimInTech предназначен для детального исследования и анализа нестационарных процессов в различных объектах управления.

Цель работы — ознакомление с основами работы со средой SimInTech, изучение базовых функций. Как для дальнейшего углублённого изучения с целью повышения навыков владения системой, так и в качестве вспомогательного помощника в освоении основ рекомендуется ознакомиться встроенной документацией (Documentation).

Знакомство со средой разработки SimInTech

В первую очередь, с помощью SimInTech мы можем:

- 1. Создавать симуляторы для разных отраслей (авиация, медицина, промышленность, горнодобывающая и энергетическая).
- 2. Создавать интерактивные сценарии для приобретения практического опыта и улучшения навыков в реальных условиях.
- 3. Работать с различными форматами данных и языками программирования.
- 4. Создавать симуляторы любой сложности, включая трехмерные модели и физические расчеты.
- 5. Создавать сценарии с различными условиями и параметрами.
- 6. Интегрироваться с другими средами разработки.
- 7. Тестировать и отлаживать созданные симуляторы.
- 8. Поддерживать многопользовательские симуляции и обмен данными между пользователями.
- 9. Создавать обучающие программы и курсы для повышения квалификации пользователей.

SimInTech содержит библиотеки типовых блоков для моделирования:

- 1. Теплогидравлики/пневматики
- 2. Электроцепей, в действующих и мгновенных значениях
- 3. Силовых машин гидравлических/пневматических
- 4. Механических взаимодействий
- 5. Точечной кинетики нейтронов
- 6. Баллистики космических аппаратов

- 7. Динамики полета летательных аппаратов в атмосфере
- 8. Электрических приводов

Кроме этого, SimInTech обладает:

- 1. Инструментами для создания интерфейсов управления (SCADA)
- 2. Библиотекой цифровой обработки сигналов
- 3. Библиотекой статистики
- 4. Функционалом оптимизации/подбора параметров
- 5. Протоколами обмена (OPC, UDP, TCP/IP, MODBUS, RS, FMI и т.д.)
- 6. Функционалом распараллеливания расчетов на разных вычислительных узлах
- 7. Модулем для верификации кода ПЛИС
- 8. Модулем анализа надежности, безопасности и живучести системы на принципиальной схеме
- 9. Библиотекой нейронных сетей
- 10. Библиотекой видеообработки

Основные приемы создания расчетных схем в SimInTech

Этап 1. Наполнение Схемного окна блоками.

Для размещения того или иного блока нужно перейти на соответствующую вкладку Палитры блоков, 1-кратным щелчком левой кнопкой мыши выбрать интересующий блок (фон станет подсвечен).

Далее переместить курсор на Форму расчетной схемы, вид курсора изменится — появится изображение блока и крестообразный указатель места установки блока. Выбираем место установки и 1-кратным щелчком левой кнопки мыши устанавливаем блок на форме.

Рис. 1 - Пример размещения блоков на Схемном окне

Этап 2. Ввод свойств блоков.

Вызвать окно редактора свойств можно:

- 1. Выделив блок 1-кратным кликом правой кнопки мыши, вызвать контекстное меню, в котором выбрать пункт Свойства объекта
 - 2. Выделив блок, нажать на Панели кнопок кнопку Свойства
- 3. Выделив блок щелчком мыши на схеме, а затем произвести по нему двойной щелчок левой кнопкой мыши

В окне свойств блока мы чаще всего используем:

- Свойства расчетные свойства блока, непосредственно влияющие на его исполнение
- Общие базовые свойства блока, такие как имя, тип, координаты расположения на листе, видимость и другие
- Порты список и редактор параметров входных/выходных портов блока

Этап 3. Соединение блоков линиями связи

Рис. 2 - Пример соединение 4-х блоков линиями связи

Этап 4. Возможно оформление поясняющих подписей

Рис. 3 - Пример оформления поясняющих подписей

Моделирование в SimInTech

Главным заданием было смоделировать поведение указанной ниже системы (Рис. 4) и вывести график зависимости координат от времени.

Получение математической модели двухзвенного маятника

Основные формулы

Рис. 4 - Модель двухзвенного маятника

В дальнейшем будем обозначать

 ${\it l}_{1}$ - длина первого стержня , ${\it l}_{2}$ - длина второго стержня

 ${{arphi}_{1}}_{ ext{-}}$ угол отклонения первой сферы, ${{arphi}_{2}}_{ ext{-}}$ угол отклонения второй сферы

$$\begin{cases} \frac{d}{dt} \left(\frac{\partial T}{\partial \dot{\varphi}_1} \right) - \left(\frac{\partial T}{\partial \varphi_1} \right) = Q_{\varphi_1} \\ \frac{d}{dt} \left(\frac{\partial T}{\partial \dot{\varphi}_2} \right) - \left(\frac{\partial T}{\partial \varphi_2} \right) = Q_{\varphi_2} \end{cases}$$

$$T = T_1 + T_2$$

$$T_1 = \frac{m_1 v_1^2}{2}, \qquad T_2 = \frac{m_2 v_2^2}{2}$$

$$v_1^2 = \dot{x}_1^2 + \dot{y}_1^2, \qquad v_2^2 = \dot{x}_2^2 + \dot{y}_2^2$$

$$Q_{\varphi_1} = l_1 \sin \varphi_1 g(m_1 + m_2) - \mu_1 \frac{d\varphi_1}{dt}$$

$$Q_{\varphi_2} = m_2 l_2 g \sin \varphi_1 - \mu_2 \frac{d\varphi_2}{dt}$$

Подсчёт по формулам

$$\begin{cases} x_1 = l_1 \sin \varphi_1 \\ y_1 = l_1 \cos \varphi_1 \end{cases}$$

$$\begin{cases} x_2 = l_1 \sin \varphi_1 + l_2 \sin \varphi_2 \\ y_2 = l_1 \cos \varphi_1 + l_2 \cos \varphi_2 \end{cases}$$

$$\begin{cases} \dot{x_1} = l_1 \cos \varphi_1 \dot{\varphi}_1 \\ \dot{y}_1 = -l_1 \sin \varphi_1 \dot{\varphi}_1 \end{cases}$$

$$\begin{cases} \dot{x_2} = l_1 \cos \varphi_1 \dot{\varphi}_1 + l_2 \cos \varphi_2 \dot{\varphi}_2 \\ \dot{y}_2 = -l_1 \sin \varphi_1 \dot{\varphi}_1 - l_2 \sin \varphi_2 \dot{\varphi}_2 \end{cases}$$

$$\begin{split} v_1^2 &= l_1^2 \dot{\varphi}_1^2 (\cos^2 \varphi_1 + \sin^2 \varphi_1) = l_1^2 \dot{\varphi}_1^2 \\ v_2^2 &= l_1^2 \dot{\varphi}_1^2 \cos^2 \varphi_1 + 2 l_1 l_2 \dot{\varphi}_1 \dot{\varphi}_2 \cos \varphi_1 \cos \varphi_2 + l_2^2 \dot{\varphi}_2^2 \cos^2 \varphi_2 + l_1^2 \dot{\varphi}_1^2 \sin^2 \varphi_1 \\ &+ 2 l_1 l_2 \dot{\varphi}_1 \dot{\varphi}_2 \sin \varphi_1 \sin \varphi_2 + l_2^2 \dot{\varphi}_2^2 \sin^2 \varphi_2 \\ &= l_1^2 \dot{\varphi}_1^2 (\cos^2 \varphi_1 + \sin^2 \varphi_1) + 2 l_1 l_2 \dot{\varphi}_1 \dot{\varphi}_2 (\cos \varphi_1 \cos \varphi_2 + \sin \varphi_1 \sin \varphi_2) \\ &+ l_2^2 \dot{\varphi}_2^2 (\cos^2 \varphi_2 + \sin^2 \varphi_2) = l_1^2 \dot{\varphi}_1^2 + 2 l_1 l_2 \dot{\varphi}_1 \dot{\varphi}_2 \cos(\varphi_1 - \varphi_2) + l_2^2 \dot{\varphi}_2^2 \end{split}$$

$$\begin{split} T_1 &= \frac{m_1}{2} (l_1^2 \dot{\varphi}_1^2), \qquad T_2 = \frac{m_2}{2} (l_1^2 \dot{\varphi}_1^2 + 2 l_1 l_2 \dot{\varphi}_1 \dot{\varphi}_2 \cos(\varphi_1 - \varphi_2) + l_2^2 \dot{\varphi}_2^2) \\ T &= \frac{m_1}{2} (l_1^2 \dot{\varphi}_1^2) + \frac{m_2}{2} (l_1^2 \dot{\varphi}_1^2 + 2 l_1 l_2 \dot{\varphi}_1 \dot{\varphi}_2 \cos(\varphi_1 - \varphi_2) + l_2^2 \dot{\varphi}_2^2) \end{split}$$

$$\begin{split} \frac{\partial T}{\partial \dot{\varphi}_1} &= m_1 l_1^2 \dot{\varphi}_1 + m_2 l_1^2 \dot{\varphi}_1 + m_2 l_1 l_2 \dot{\varphi}_2 \cos(\varphi_1 - \varphi_2) \\ \frac{d}{dt} \left(\frac{\partial T}{\partial \dot{\varphi}_1} \right) &= l_1^2 \ddot{\varphi}_1 (m_1 + m_2) + m_2 l_1 l_2 \ddot{\varphi}_2 \cos(\varphi_1 - \varphi_2) - m_2 l_1 l_2 \dot{\varphi}_2 \sin(\varphi_1 - \varphi_2) \left(\dot{\varphi}_1 - \dot{\varphi}_2 \right) \\ &= l_1^2 \ddot{\varphi}_1 (m_1 + m_2) + m_2 l_1 l_2 \ddot{\varphi}_2 \cos(\varphi_1 - \varphi_2) - m_2 l_1 l_2 \dot{\varphi}_1 \dot{\varphi}_2 \sin(\varphi_1 - \varphi_2) \\ &+ m_2 l_1 l_2 \dot{\varphi}_2^2 \sin(\varphi_1 - \varphi_2) \\ &\frac{\partial T}{\partial \varphi_1} = - m_2 l_1 l_2 \dot{\varphi}_1 \dot{\varphi}_2 \sin(\varphi_1 - \varphi_2) \end{split}$$

$$\begin{split} \frac{d}{dt} \left(\frac{\partial T}{\partial \dot{\varphi}_2} \right) &= m_2 l_1 l_2 \ddot{\varphi}_1 \cos(\varphi_1 - \varphi_2) - m_2 l_1 l_2 \dot{\varphi}_1 \sin(\varphi_1 - \varphi_2) \left(\dot{\varphi}_1 - \dot{\varphi}_2 \right) + m_2 l_2^2 \ddot{\varphi}_2 \\ &= m_2 l_1 l_2 \ddot{\varphi}_1 \cos(\varphi_1 - \varphi_2) - m_2 l_1 l_2 \dot{\varphi}_1^2 \sin(\varphi_1 - \varphi_2) + m_2 l_1 l_2 \dot{\varphi}_1 \dot{\varphi}_2 \sin(\varphi_1 - \varphi_2) \\ &\quad + m_2 l_2^2 \ddot{\varphi}_2 \\ \frac{\partial T}{\partial \varphi_2} &= m_2 l_1 l_2 \dot{\varphi}_1 \dot{\varphi}_2 \sin(\varphi_1 - \varphi_2) \end{split}$$

$$\begin{cases} l_1^2 \ddot{\varphi}_1(m_1+m_2) + m_2 l_1 l_2 \ddot{\varphi}_2 \cos(\varphi_1-\varphi_2) - m_2 l_1 l_2 \dot{\varphi}_1 \dot{\varphi}_2 \sin(\varphi_1-\varphi_2) + m_2 l_1 l_2 \dot{\varphi}_2^2 \sin(\varphi_1-\varphi_2) + m_2 l_1 l_2 \dot{\varphi}_2^2 \sin(\varphi_1-\varphi_2) + m_2 l_1 l_2 \dot{\varphi}_1^2 \sin(\varphi_1-\varphi_2) + m_2 l_1 l_2 \dot{\varphi}_1^2 \sin(\varphi_1-\varphi_2) + m_2 l_1 l_2 \dot{\varphi}_2^2 \sin(\varphi_1-\varphi_2) + m_2 l_2 l_2 \dot{\varphi}_2 \sin(\varphi_1-\varphi_2) + m_2 l_2^2 \ddot{\varphi}_2 - m_2 l_1 l_2 \dot{\varphi}_1 \dot{\varphi}_2 \sin(\varphi_1-\varphi_2) = m_2 l_2 g \sin(\varphi_1-\varphi_2) \dot{\varphi}_2 \end{cases}$$

$$\begin{cases} l_1^2 \ddot{\varphi}_1(m_1+m_2) + m_2 l_1 l_2 \ddot{\varphi}_2 \cos(\varphi_1-\varphi_2) + m_2 l_1 l_2 \dot{\varphi}_2^2 \sin(\varphi_1-\varphi_2) = l_1 \sin \varphi_1 \, g(m_1+m_2) - \mu_1 \dot{\varphi}_1 \\ m_2 l_1 l_2 \ddot{\varphi}_1 \cos(\varphi_1-\varphi_2) - m_2 l_1 l_2 \dot{\varphi}_1^2 \sin(\varphi_1-\varphi_2) + m_2 l_2^2 \ddot{\varphi}_2 = m_2 l_2 g \sin \varphi_1 - \mu_2 \dot{\varphi}_2 \end{cases}$$

$$\begin{cases} \ddot{\varphi}_1 = \frac{l_1 \sin \varphi_1 \, g(m_1 + m_2) - \mu_1 \dot{\varphi}_1 - m_2 l_1 l_2 \ddot{\varphi}_2 \cos(\varphi_1 - \varphi_2) - m_2 l_1 l_2 \dot{\varphi}_2^2 \sin(\varphi_1 - \varphi_2)}{l_1^2 (m_1 + m_2)} \\ \\ \ddot{\varphi}_2 = \frac{m_2 l_2 g \sin \varphi_1 - \mu_2 \dot{\varphi}_2 - m_2 l_1 l_2 \ddot{\varphi}_1 \cos(\varphi_1 - \varphi_2) + m_2 l_1 l_2 \dot{\varphi}_1^2 \sin(\varphi_1 - \varphi_2)}{m_2 l_2^2} \end{cases}$$

Начальные условия

$$m_1 = 2$$
кг $l_1 = 1$ м $l_2 = 2$ м $\phi_1 = 30^\circ$ $\phi_2 = 20^\circ$ $g = 9.815 \frac{\text{м}}{\text{c}^2}$ $\mu_1 = 5$ $\mu_2 = 5$

1 k	Постоянное значение (константа)
sin(x)	Функция sin(x) и cos(x)
	Вывод данных (график)
$\frac{\mathbf{k}}{\mathbf{s}}$	Интегратор
+ \Sigma	Оператор сложения
*	Оператор умножения

Таблица 1. Необходимые компоненты для моделирования заданной системы

Составление логических блоков для моделирования системы

Рис. 5 - Модуль вычисления числителя для уравнения $\ddot{\varphi}_1$

Рис. 6 - Модуль вычисления знаменателя для уравнения $\ddot{\varphi}_1$

Рис. 7 - Модуль вычисления числителя для уравнения

Рис. 8 - Модуль вычисления знаменателя для уравнения $\ddot{\varphi}_2$

В итоге получаем общую схему моделирования

Рис. 9 - Общая схема моделирования

После моделирования системы получим график зависимости координаты у от времени t для первого и второго тела.

Красным цветом показан график колебаний для первого тела, а зелёным цветом показан график колебаний для второго тела.

Из наблюдений графика видно, что время возвращения моделируемой системы с указанными параметрами к равновесному состоянию составляет ~ 15 секунд.

Рис. 10 - График значений моделирования системы

ЗАКЛЮЧЕНИЕ

В результате выполнения практической работы в SimInTech были получены ценные знания и навыки в области моделирования и анализа технических систем. В данной среде очень удобно работать с интегрированием и дифференцированием, что способствует сокращению моделирования схем. Были изучены основные принципы работы программы, а также ее возможности для решения различных задач. В целом, данная практическая работа позволила приобрести ценный опыт работы с программным обеспечением SimInTech.

Список использованной литературы

Страница gitHub репозитория учебного практикума

https://github.com/BMSTU-Automatic-Control-Systems-IU1-1/educational-technological-practice-of-simintech

Документация, предоставляемая компанией SimInTech https://simintech.ru/science/publications/knigi/

Wikipedia SimInTech

https://ru.wikipedia.org/wiki/Simintech

Справочная система SimInTech (v13.04.2023)

https://help.simintech.ru/index.html