PHYS*1A03 Introductory Physics

Fall 2015

http://avenue.mcmaster.ca/

PHYS 1A03

Section CO2:

Tuesday & Friday, 8:30-9:20, JHE 376

• Lecturer: Maikel Rheinstädter

rheinstadter@mcmaster.ca

Office: ABB-237A

Physics Impact

The Nobel Prize in Physics 2012

Serge Haroche, David J. Wineland

"for ground-breaking experimental methods that enable measuring and manipulation of individual quantum systems"

The Quantum Computer

The Nobel Prize in Physics 2010

Andre Geim, Konstantin Novoselov

"for ground-breaking experiments regarding the two-dimensional material graphene"

Physics Impact

The Nobel Prize in Physics 2009

Charles K. Kao, Willard S. Boyle, George E. Smith

"for the invention of an imaging semiconductor circuit – the CCD sensor"

"for groundbreaking achievements concerning the transmission of light in fibers for optical communication"

The Nobel Prize in Physics 2007

"for the discovery of Giant Magnetoresistance"

Physics 1A03

- Introductory course in physics
 - We have discussed how the course works
 - This is a brand new course, redesigned from the ground up with a different focus:
 - This course is not:
 - a weeder course
 - a gate keeper to other programs
 - This course is:
 - designed to give you an appreciation for physics
 - designed to teach you how to model the real world
 - designed with faculty input from other programs
 - designed keeping in mind different backgrounds

Course Materials

Textbook (Recommended): *Physics for the Life Sciences, 2nd edition* by Zinke-Allmang and co-authors is an ideal companion to the material presented.

i>clickers (Required): i>clickers will be used in every class and are an integral part of the course.

Lab manual (Required): PHYS 1A03 Laboratory course manual available from the bookstore.

Lab notebook (Required): Black hard cover bound Physics Laboratory Notebooks available from the bookstore.

Calculator (Required): Only the McMaster Standard Calculator will be permitted during tests and examinations

Course Textbook

"Physics for the Life Sciences, 2nd Edition" by Zinke-Allmang

Available in the bookstore

Course Format

- On-line modules (11 in total) will provide an introduction to the course material
- Lectures (2 hrs per week) will serve to reinforce your understanding of the material
- Labs (5 in total: 4 typical labs + 1 home experiment)
- Homework will be assigned throughout the term this may include on-line assignments & quizzes
- Midterm tests
 - Friday, October 9, 2015, 7-9 pm
 - Tuesday, November 10, 2015, 7-9 pm
- Final Exam
 - see McMaster Examination Timetable

Assessment in the Course

	Option 1	Option 2	Option 3
Class activities (i-clicker questions)	5%	5%	5%
Homework	5%	5%	5%
Labs	20%	20%	20%
Midterm 1	20%	15%	20%
Midterm 2	15%	20%	20%
Final Exam	35%	35%	30%

Avenue to Learn

- Avenue is your main portal into the course material
 - Calendar of events
 - News items
 - Course outline you must read this in carefully, the outline represents the contract between you and me
 - Online modules
 - Extra resources
- It is your responsibility to check Avenue regularly

LON-CAPA

- "Learning Online Network with Computer Assisted Personalized Approach"
- You log in and receive personalized questions (numbers are different)

https://loncapa.physics.mcmaster.ca

- On a nearly weekly basis questions will be assigned for practice [these are NOT for marks]
- HOWEVER! In class, we will have you solve one of your homework problems
 - Don't forget to bring yourself some paper!!

LON-CAPA

https://loncapa.physics.mcmaster.ca

Login:
Username is MacID
Password is Student #

Change your password!!

Click on "Main Menu" then find this:

i-Clicker

- We will pose questions in class on a regular basis
 - Multiple choice
 - You click, we get instant feedback!
 - Participation is a crucial part of this course

General in-class questions strictly participation

In-class Quizzes (based on modules) additional marks for correct answers

- All questions count towards your total grade for class activities (5%)
- Must have your iClicker by next class!!

i-Clicker Registration

- ixlicker Web Registration
- Have questions about clicker registration?
- Contact us at <u>support@iclicker.com</u> or 866-209-5698.
- Thank you for using **i clicker!** Please complete the form below. Your professor will then be able to give you credit for using your **i clicker** in class.

Labs

- 5 labs during the semester
 - 4 in the lab room
 - Kinematics in 1D
 - Forces
 - Conservation of energy
 - Waves, superposition and reflections
 - 1 home experiment on fluids
- Lab room is BSB B115, there are 18 sections, check your section carefully

Labs

- Labs start Monday September 28 (see AtL for schedule)
- Lab sections alternate week by week:
 - L01-L09:
 - Lab#1 week of 05.10.2015
 - Lab#2 week of 19.10.2015
 - Lab#3 week of 02.11.2015
 - Lab#4 week of 16.11.2015
 - L10-L18:
 - Lab#1 week of 28.09.2015
 - Lab#2 week of 26.20.2015
 - Lab#3 week of 09.11.2015
 - Lab#4 week of 23.11.2015
- Lab#5 will be assigned when we start topic on Fluids

Topics

- Broken up into 4 Themes, with sub-modules (see AtL)
 - Introduction and core concepts
 - Units, conversion, precision, estimation
 - Mechanics
 - Kinematics, forces, energy and momentum
 - Waves
 - Wave motion, superposition, sound, light
 - Fluids
 - Fluids, pressure, surface tension, flow, turbulence

Academic Integrity

If it feels like cheating, it probably is!

- It is your responsibility to understand what constitutes academic dishonesty.
- For information on the various kinds of academic dishonesty please refer to the Academic Integrity Policy, specifically Appendix 3, located at

http://www.mcmaster.ca/academicintegrity/

C02: In-class Quizzes & Homeworks

September

M	т	W	Th	F
	8	9	10	11
14	¹⁵ Q	16	17	18
21	²² Q	23	24	25
28	²⁹ Qh	30		

October

M	т	w	Th	F
			1	2
5	⁶ Qh	7	8	9
12	13	14	15	16
19	²⁰ Qh	21	22	23
26	²⁷ Qh	28	29	30

November

M	Т	W	Th	F
2	³ Qh	4	5	6
9	¹⁰ Qh	11	12	13
16	¹⁷ Qh	18	19	20
23	²⁴ Qh	25	26	27
30				

December

M		T	W	Th	F
	1	Qh	2	3	4
7	8	h			

Physics?

- The goal of physics is to understand the way the world works
 - It's the study of the fundamental laws of nature
- Why study physics?
 - Physics is at the intersection of many disciplines (biophysics, medical physics, geophysics, etc.), ties these disciplines together, and bridges them to mathematics.

Physics and other areas of Science

- Chemistry deals with interactions between atoms and molecules
- Medicine diagnostic equipment and practices
 - Ultrasound & CT scans image using sound/electromagnetic waves
 - MRI & PET imaging use magnetic properties of atoms and exotic particles (positrons)
- Cell biology
 - Membrane structure and function
- Architecture
 - Structural stability, acoustics, heating, lighting...

The Chain Fountain

Image taken from: http://phys.org/news/2014-01-chain-fountain-problem-solving-partnership-video.html

Can you beat a phone book in a tug-of-war?

Images taken from:

http://sciphile.org/lessons/phone-book-friction

http://www.france5.fr/emissions/on-n-est-pas-quedes-cobayes/experiences/experience-1-defisuspendre-une-voiture-avec-deux-annuair-0

How does Physics work?

- Our understanding of the way the world works comes through observation, measurement and modeling
- Observation is essential for understanding a phenomenon
 - In physics, observations should be quantitative
- Measurements are observations with a numerical value (i.e. a "quantity", rather than a "quality")
 - Quantitative observations can tell us about the consistency and the extent of a phenomenon, how factors affect its behaviour
- Models are created to capture the essential features of a phenomenon
 - they offer a concise, often approximate, representation (analogy) for something that is difficult to describe directly

Models in physics

PANIC!!

- What can we say about how people panic in, say, a crowded classroom that's on fire?
- What kind of observations might we make of people leaving a room?

Simulating dynamical features of escape panic

Dirk Helbing*†, Illés Farkas‡ & Tamás Vicsek*‡

* Collegium But
H-1014 Budape
† Institute for E
D-01062 Dresd
‡ Department o
H-1117 Budapesi, Trungary
$$m_{i} \frac{\mathrm{d}v_{i}}{\mathrm{d}t} = m_{i} \frac{v_{i}^{0}(t) \mathrm{e}_{i}^{0}(t) - \mathrm{v}_{i}(t)}{\tau_{i}} + \sum_{j(\neq i)} f_{ij} + \sum_{W} f_{iW}$$

Problem solving

- Lots of people say "physics is hard".
- It can evoke feelings similar to filling in your forms for university registration
 - You don't know if you're doing it correctly, and you're worried that a single mistake will invalidate the whole process!
- By far, the biggest mistake people make is giving up before you even get started
- 2. A second pitfall is thinking that physics is formulaic
 - If you've done a problem throwing a ball from a window, then you've done them all, and they all solve the same way

Problem solving

- 1. By far, the biggest mistake people make is giving up before you even get started
 - There are always things that can be done to start a problem
 - Write down what you know, and what you are asked to find
 - Draw a picture of what's going on in the problem
- 2. A second pitfall is thinking that physics is formulaic
 - Physics is not about memorizing formulas and jamming numbers into them

The real skills that we would like you to develop are:

- Assess what is going on in a problem
- Decide what's relevant
- Know what tools would be needed to solve the problem
- Be able to break the problem down into small steps, and approach the problem systematically

Problem solving

To repeat

- Physics is NOT about memorizing a lot of complicated equations
 - If you take this approach, you will do poorly
- Physics is about understanding a very small number of simple natural laws and learning to apply them to a wide variety of problems
 - We will encounter perhaps 10 important rules/ideas over the course

Closing Comments

Watch the module T1M1

Next class:

- Units and unit conversion
- Dimensional analysis
- Proportionality
- Vectors
 - If you have never worked with vectors, watch the additional Vector Module for an introduction
 - If you have vector experience, take a quick look through the Vector Review Notes posted

• In one week:

We will begin class with a clicker quiz on T1M1

Module Dos and Don'ts

- Writing stuff down:
 - Build your own formula sheet
 - Consider writing down formulas, and even write down what each symbol is in the formula.
 - Ex: $v_f = v_i + a\Delta t$ v_i initial velocity v_f final velocity a acceleration Δt time interval
 - You'll notice that there are often Checkpoints on slides immediately afterwards, which build your understanding of the formulas (so, write them down!)
 - Evaluate your comfort/understanding level after watching the module
 - ENJOY!!!