

(B) BUNDESREPUBLIK DEUTSCHLAND

© Offenlegungsschrift© DE 198 57 204 A 1

(a) Int. Cl.⁷: **C 11 D 1/83**

DEUTSCHES
PATENT- UND
MARKENAMT

② Aktenzeichen: 198 57 204.2
 ② Anmeldetag: 11. 12. 1998
 ④ Offenlegungstag: 15. 6. 2000

7) Anmelder:

Henkel KGaA, 40589 Düsseldorf, DE

② Erfinder:

Millhoff, Jürgen, 40211 Düsseldorf, DE; Gassenmeier, Thomas, Dr., 40229 Düsseldorf, DE; Liphard, Maria, Dr., 45279 Essen, DE; Artiga González, Rene-Andres, Dr., 40589 Düsseldorf, DE; Hammelstein, Stefan, 40591 Düsseldorf, DE; Kraus, Ingrid, 40229 Düsseldorf, DE

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

- (5) Wäßrige Schaumregulatoremulsion
- Eine flüssige Formulierung eines Paraffin und Bisfettsäureamid enthaltenden Schaumregulatorsystems war zu entwickeln, die niedrigviskos und bei niedrigen Temperaturen handhabbar ist und einen möglichst geringen Anteil an nicht zur Schaumregulatorleistung beitragenden Inhaltsstoffen aufweist. Dies gelang im wesentlichen durch eine wäßrige Schaumregulatoremulsion, enthaltend 15 Gew.-% bis 60 Gew.-% Paraffinwachs oder einer Mischung aus Paraffinwachs und Silikonöl, 1 Gew.-% bis 10 Gew.-% sich von C₂₋₇-Diaminen und C₁₂₋₂₂-Fettsäuren ableitendem Bisfettsäureamid, 3 Gew.-% bis 15 Gew.-% nichtionischen und/oder anionischen Emulgator sowie nicht mehr als 80 Gew.-% Wasser. Die Schaumregulatoremulsion wird vorzugsweise zur Herstellung teilchenförmiger Schaumregulatorgranulate für den Einsatz in Wasch- und Reinigungsmitteln verwendet.

Beschreibung

Die Erfindung betrifft ein Schaumregulatorsystem auf der Basis von Paraffin und Bisfettsäureamid, das in Form einer wäßrigen Emulsion vorliegt, seine Verwendung zur Herstellung teilchenförmiger Schaumregulierungsmittel sowie ein Verfahren zu deren Herstellung.

Die schaumregulierende Wirkung von Kombinationen aus Paraffinen mit Bisfettsäureamiden in wäßrigen tensidhaltigen Systemen ist bekannt. So beschreibt zum Beispiel die europäische Patentschrift EP 0 309 931 B1 zur Verwendung in Wasch- und Reinigungsmitteln geeignete teilchenförmige Schaumregulierungsmittel, die aus einem wasserlöslichen tensidfreien Trägermaterial und einem daran adsorbierten siloxanfreien Entschäumergemisch aus 5-60 Gew.-% Weichund/oder Hartparaffin, 20-90 Gew.-% mikrokristallinem Paraffinwachs mit bestimmtem Schmelzbereich und 5-20 Gew.-% eines von C₂₋₇-Diaminen und C₁₂₋₂₂-Fettsäuren abgeleiteten Diamids in feinverteilter Form. Die Herstellung solcher teilchenförmiger Schaumregulierungsmittel erfolgt mittels Sprühtrocknung einer wäßrigen Außschlämmung, welche das Trägermaterial und das Entschäumergemisch enthält. Die Entschäumerleistung des Entschäumergemisches wird als unzureichend angegeben, wenn man es auf ein teilchenförmiges Waschmittel aufsprüht.

Die Verwendung schaumregulierender homogener Gemische aus nichtionischem Tensid und einem Schaumregulatorsystem, das Paraffinwachs und Bisfettsäureamide enthält, zur Verbesserung der Herstellbarkeit und der Produkteigenschaften extrudierter Wasch- und Reinigungsmittel ist aus der internationalen Patentanmeldung WO 96/26258 bekannt.

Aus der europäischen Patentschrift EP 0 337 523 B1 ist ein Verfahren zur Herstellung pulverförmiger Waschmittel bekannt, die mindestens 5 Gew.-% anionisches Tensid, 20–80 Gew.-% Alumosilikat und in Wasser sowie anionischen und nichtionischen Tensiden im wesentlichen unlösliches Paraffinwachs enthalten, welches das Mitversprühen oder nachträgliche Aufsprühen des Paraffins auf das vorgefertigte Waschmittelteilchen als wesentlichen Verfahrensschritt umfaßt. Das Paraffinwachs kann dabei auch in Form einer Mischung mit nichtionischen Tensiden eingesetzt werden.

Die in dem letztgenannten Dokument offenbarte Variante des Aufsprühens des Paraffins auf ein vorgefertigtes pulverförmiges Waschmittel läßt sich nur unter Schwierigkeiten anwenden, wenn man das Paraffinwachs nicht alleine, sondern in Kombination mit einem bekanntlich seine Schaumregulatorwirkung verstärkenden Bisfettsäureamid einsetzen will. Derartige Bisfettsäureamide sind in der Regel bei Raumtemperatur fest und weisen einen relativ hohen Schmelzpunkt auf, so daß man sie beziehungsweise ihre Kombination mit dem Paraffin nur bei erhöhter Temperatur von beispielsweise etwa 140°C in flüssiger und versprühbarer Form handhaben kann. Bei Unterschreitung dieser Temperatur droht die Verstopfung der verwendeten Rohrleitungen und Düsen durch die Verfestigung des Bisfettsäureamids. Weiterhin nachteilig ist, daß es durch derartig hohe Temperaturen des Aufsprühmaterials zu unerwünschten Wechselwirkungen mit thermisch empfindlichen Bestandteilen des Waschmittels kommen kann. Zudem ist eine gleichmäßige Verteilung des Schaumregulatorsystems im Waschmittel gefährdet, wenn es als hocherhitztes Aufsprühmaterial nach dem Auftreffen auf das Waschmittelpulver rasch abkühlt.

Das mit der vorliegenden Erfindung gelöste Problem bestand hauptsächlich darin, eine flüssige Formulierung des Paraffin und Bisfettsäureamid enthaltenden Schaumregulatorsystems zu entwickeln, die niedrigviskos und bei niedrigen Temperaturen handhabbar ist und einen möglichst geringen Anteil an nicht zur Schaumregulatorleistung beitragenden Inhaltsstoffen aufweist. Außerdem darf sowohl bei der Herstellung und der Lagerung wie auch bei der eventuellen Weiterverarbeitung der flüssigen Zusammensetzung zu teilchenförmigen Produkten nur eine möglichst geringe Abnahme der Entschäumerleistung auftreten.

Gegenstand der Erfindung, mit der diese Aufgabe gelöst wird, ist eine wäßrige Schaumregulatoremulsion, die 15 Gew.-% bis 60 Gew.-%, insbesondere 30 Gew.-% bis 50 Gew.-% Paraffinwachs oder einer Mischung aus Paraffinwachs und Silikonöl, 1 Gew.-% bis 10 Gew.-%, insbesondere 3 Gew.-% bis 8 Gew.-% sich von C₂₋₇-Diaminen und C₁₂₋₂₂-Fettsäuren ableitendem Bisfettsäureamid, 3 Gew.-% bis 15 Gew.-%, insbesondere 4 Gew.-% bis 10 Gew.-% nichtionischen und/oder anionischen Emulgator sowie nicht mehr als 80 Gew.-%, insbesondere nicht mehr als 60 Gew.-% und besonders bevorzugt 20 Gew.-% bis 50 Gew.-% Wasser enthält.

Weitere Gegenstände der Erfindung sind die Verwendung von derartigen Emulsionen zur Schaumregulierung wäßriger, zum Schäumen neigender Systeme, insbesondere von Wasch- und Reinigungsmittelflotten, und ihre Verwendung zur Herstellung teilchenförmiger Wasch- oder Reinigungsmittel durch Aufsprühen auf granulare Teilchen, die alle oder zumindest einige der bei Raumtemperatur festen Wasch- beziehungsweise Reinigungsmittelinhaltsstoffe enthalten.

Die Erfindung betrifft außerdem ein Verfahren zur Herstellung teilchenförmiger Schaumregulatorgranulate durch Aufsprühen der genannten wäßrigen Emulsion auf ein festes Trägermaterial, woran sich gegebenenfalls ein Trocknungsschritt anschließt, oder durch Sprühtrocknen einer wäßrigen Aufschlämmung, die erhalten wird durch Vermischen der Schaumregulatoremulsion mit festem Trägermaterial und gegebenenfalls Wasser.

Eine erfindungsgemäße Schaumregulatoremulsion wird vorzugsweise durch Aufschmelzen des Paraffinwachses und des Bisfettsäureamides in Gegenwart des Emulgators, gegebenenfalls Abkühlen der Schmelze auf höchstens ca. 100°C und Einrühren in Wasser hergestellt. Falls Mischungen aus nichtionischem Emulgator und anionischem Emulgator eingesetzt werden ist es bevorzugt, den nichtionischen Emulgator wie beschrieben in die Schmelze aus Paraffinwachs und Bisfettsäureamid einzuarbeiten und den anionischen Emulgator nicht der Schmelze, sondern vor dem Einrühren der Schmelze dem Wasser zuzusetzen. Wenn man Paraffinwachs und Bisfettsäureamid in geschmolzener, nicht abgekühlter Form einsetzt, ist es bevorzugt, kaltes Wasser mit einer höchstens Raumtemperatur entsprechenden Temperatur zu verwenden. Falls die Schmelze vor dem Einrühren in Wasser auf eine Temperatur von höchstens ca. 100°C abgekühlt wird, ist es bevorzugt, Wasser mit einer Temperatur von ca. 50°C bis 80°C einzusetzen. Übliche Rührvorrichtungen sind normalerweise ausreichend, um die gleichmäßige Verteilung aller Komponenten zu erzielen und somit die erfindungsgemäße wäßrige Emulsion zu erzeugen; der Einsatz von Hochgeschwindigkeitsmischern oder Homogenisatoren (zum Beispiel Ultra Turrax®) ist in der Regel nicht erforderlich. Die so erhältlichen Schaumregulatoremulsionen sind stabil und weisen bei 60°C vorzugsweise Viskositäten unterhalb von 2500 mPa·s, insbesondere im Bereich von 100 mPa·s bis 500 mPa·s, gemessen beispielsweise mit einem Brookfield-Rotationsviskosimeter, Spindel Nr. 2, 5 Umdrehungen pro Minute, auf.

Die erfindungsgemäß in Frage kommenden Paraffinwachse sind im allgemeinen komplexe Stoffgemische ohne scharfen Schmelzpunkt. Zur Charakterisierung bestimmt man üblicherweise ihren Schmelzbereich durch Differential-Thermo-Analyse (DTA), wie in "The Analyst" 87 (1962), 420, beschrieben, und/oder ihren Erstarrungspunkt. Darunter versteht man die Temperatur, bei der das Wachs durch langsames Abkühlen aus dem flüssigen in den festen Zustand übergeht. Erfindungsgemäß sind sowohl bei Raumtemperatur vollständig flüssige Paraffine, das heißt solche mit einem Erstarrungspunkt unter 25°C, als auch bei Raumtemperatur feste Paraffine brauchbar. Vorzugsweise ist das Paraffinwachs bei Raumtemperatur fest und liegt bei 100°C in vollständig flüssiger Form vor. Eingesetzt werden können beispielsweise die aus der europäischen Patentanmeldung EP 0 309 931 bekannten Paraffinwachsgemische aus beispielsweise 26 Gew.-% bis 49 Gew.-% mikrokristallinem Paraffinwachs mit einem Erstarrungspunkt von 62°C bis 90°C, 20 Gew.-% bis 49 Gew.-% Hartparaffin mit einem Erstarrungspunkt von 42°C bis 56°C und 2 Gew.-% bis 25 Gew.-% Weichparaffin mit einem Erstarrungspunkt von 35°C bis 40°C. Vorzugsweise werden Paraffine beziehungsweise Paraffingemische verwendet, die im Bereich von 30°C bis 90°C erstarren. Dabei ist zu beachten, daß auch bei Raumtemperatur fest erscheinende Paraffinwachsgemische unterschiedliche Anteile an flüssigem Paraffin enthalten können. Bei den erfindungsgemäß brauchbaren Paraffinwachsen liegt der Flüssiganteil bei 40°C möglichst hoch, ohne bei dieser Temperatur schon 100% zu betragen. Bevorzugte Paraffinwachsgemische weisen bei 40°C einen Flüssiganteil von mindestens 50 Gew.-%, insbesondere von 55 Gew.-% bis 80 Gew.-%, und bei 60°C einen Flüssiganteil von mindestens 90 Gew.-% auf. Die Temperatur, bei der ein Flüssiganteil von 100 Gew.-% des Paraffinwachses erreicht wird, liegt bei besonders bevorzugten Paraffinwachsgemischen noch unter 85°C, insbesondere bei 75°C bis 82°C. Außerdem ist darauf zu achten, daß die Paraffine möglichst keine flüchtigen Anteile enthalten. Bevorzugte Paraffinwachse enthalten weniger als 1 Gew.-%, insbesondere weniger als 0,5 Gew.-% bei 110°C und Normaldruck verdampfbare Anteile. Erfindungsgemäß brauchbare Paraffinwachse können beispielsweise unter den Handelsbezeichnungen Lunaflex® der Firma Fuller sowie Deawax® der DEA Mineralöl AG bezogen werden. Anstelle des Paraffinwachses können auch Gemische aus Paraffinwachs mit bekanntlich schaumregulierendem Silikonöl eingesetzt werden. Dabei kann das Silikonöl in bekannter Weise feinteilige Füllstoffe, beispielsweise hydrophiles oder hydrophobes Siliciumdioxid, sogenannte hochdisperse Kieselsäure, enthalten, wobei pyrogenes oder gefälltes, insbesondere hydrophobiertes Siliciumdioxid mit einer Oberfläche von mindestens 50 m²/g besonders bevorzugt ist, wie es beispielsweise unter den Bezeichnungen Aerosil® oder Sipernat® im Handel erhältlich ist. Silikonöl, beispielsweise Polydimethylsiloxan, ist in dem Mischungen aus Paraffinwachs und Silikonöl vorzugsweise in solchen Mengen enthalten, daß die daraus hergestellte Schaumregulatoremulsion einen Gehalt an Silikonöl im Bereich von 0,1 Gew.-% bis 10 Gew.-%, insbesondere 1 Gew.-% bis 5 Gew.-% aufweist.

Die zweite wesentliche Komponente des Entschäumersystems wird aus Bisfettsäureamiden gebildet. Geeignet sind Bisamide, die sich von gesättigten Fettsäuren mit 12 bis 22, vorzugsweise 14 bis 18 C-Atomen sowie von Alkylendiaminen mit 2 bis 7 C-Atomen ableiten. Geeignete Fettsäuren sind Laurin-, Myristin-, Stearin-, Arachin- und Behensäure sowie deren Gemische, wie sie aus natürlichen Fetten beziehungsweise gehärteten Ölen, wie Talg oder hydriertem Palmöl, erhältlich sind. Geeignete Diamine sind beispielsweise Ethylendiamin 1,3-Propylendiamin, Tetramethylendiamin, Pentamethylendiamin, Hexamethylendiamin, p-Phenylendiamin und Toluylendiamin. Bevorzugte Diamine sind Ethylendiamin und Hexamethylendiamin. Besonders bevorzugte Bisamide sind Bis-myristoylethylendiamin, Bis-palmitoyl-ethylendiamin, Bis-stearoylethylendiamin und deren Gemische sowie die entsprechenden Derivate des Hexamethylendiamins.

Unter nichtionischen Emulgatoren, die in erfindungsgemäßen Emulsionen zum Einsatz kommen können, werden insbesondere die Alkoxylate, vorzugsweise die Ethoxylate und/oder Propoxylate von Alkoholen, Alkylaminen, vicinalen Diolen, Carbonsäuren und/oder Carbonsäureamiden, die Alkylgruppen mit 8 bis 22 C-Atomen, vorzugsweise 12 bis 18 C-Atomen, besitzen, verstanden. Der mittlere Alkoxylierungsgrad dieser Verbindungen beträgt dabei in der Regel von 1 bis 10, vorzugsweise 2 bis 5. Sie können in bekannter Weise durch Umsetzung mit den entsprechenden Alkylenoxiden hergestellt werden. Auch Produkte, die durch Alkoxylierung von Fettsäurealkylestern mit 1 bis 4 C-Atomen im Esterteil nach dem Verfahren der internationalen Patentanmeldung WO 90/13533 herstellbar sind, kommen in Frage. Zu den in Frage kommenden Alkoholalkoxylaten gehören die Ethoxylate und/oder Propoxylate von linearen oder verzweigtkettigen Alkoholen mit 8 bis 22 C-Atomen, vorzugsweise 12 bis 18 C-Atomen. Geeignet sind insbesondere die Derivate der Fettalkohole, obwohl auch deren verzweigtkettige Isomere zur Herstellung verwendbarer Alkoxylate eingesetzt werden können. Brauchbar sind demgemäß insbesondere die Ethoxylate primärer Alkohole mit linearen Dodecyl-, Tetradecyl-, Hexadecyl- oder Octadecylresten sowie deren Gemische. Auch der Einsatz entsprechender Alkoxylate von ein- oder mehrfach ungesättigten Fettalkoholen, zu denen beispielsweise Oleylalkohol, Elaidylalkohol, Linoleylalkohol, Linolenylalkohol, Gadoleylalkohol und Erucaalkohol gehört, ist möglich. Auch Ester beziehungsweise Partialester von Carbonsäuren entsprechender C-Kettenlänge mit Polyolen wie Glycerin oder Oligoglycerin können eingesetzt werden. Bevorzugte anionische Emulgatoren sind Alkalisalze der Alkylbenzolsulfonsäuren mit 9 bis 13 C-Atomen in der Alkylgruppe, insbesondere Natriumdodecylbenzolsulfonat. Zusätzlich zu derartigen Emulgatoren können geringe Mengen, gegebenenfalls bis zu 4 Gew.-%, anionischer und/oder nichtionischer Celluloseether wie Carboxymethylcellulose und/oder Hydroxyethylcellulose, enthalten sein.

Wesentlich ist, daß man eine homogene Mischung aus Schaumregulatorsystem und insbesondere nichtionischem Emulgator einsetzt. Diese kann man vorteilhaft in einfacher Weise durch Aufschmelzen des bei Raumtemperatur festen Bisamids in Gegenwart des Paraffins und des Emulgators, zweckmäßigerweise unter Rühren beziehungsweise Homogenisieren, erreichen. Falls das Bisamid nicht in Substanz, sondem vorkonfektioniert in Abmischung mit dem Paraffin eingesetzt wird, ist ein Erhitzen über den Schmelzpunkt des Bisamids hinaus in der Regel nicht erforderlich, da sich bereits bei niedrigeren Temperaturen in der Regel eine Lösung des Bisamids im Paraffin bildet. Anschließend an die vorzugsweise bei Temperaturen im Bereich von 60°C bis 150°C, insbesondere 80°C bis 150°C vorgenommene Bildung des Gemisches aus Entschäumersystem und Emulgator wird dieses, gegebenenfalls nach Abkühlen, mit dem Wasser vermischt, wobei dem Wasser zuvor ein insbesondere anionischer Emulgator zugesetzt worden sein kann. In diesem Fall beträgt die Konzentration an anionischem Emulgator in Wasser vorzugsweise 5 Gew.-% bis 15 Gew.-%.

Das so erhältliche Schaumregulatorsystem ist bei Raumtemperatur lagerstabil und kann als solches durch einfaches

Zumischen zu den übrigen Komponenten des Mittels in flüssigen Wasch- und Reinigungsmitteln eingesetzt werden. Auch zur Schaumregulierung beziehungsweise Entlüftung insbesondere wäßriger Flüssigwaschmittel bei deren Herstellung und/oder Abfüllung kann die erfindungsgemäße Schaumregulatoremulsion verwendet werden. Bevorzugt ist allerdings, die gut fließfähige Emulsion auf einen festen und/oder in fester Form konfektionierten Wasch- oder Reinigungsmittelbestandteil, beispielsweise auf anorganische Builderpartikel, aufzubringen, wodurch die Einarbeitung der Schaumregulatorwirkstoffe in teilchenförmige Wasch- und Reinigungsmittel in einfacher Weise ermöglicht wird.

Falls das gesamte teilchenförmige Wasch- oder Reinigungsmittel mit der Entschäumeremulsion beaufschlagt werden soll, bringt man vorzugsweise 0,1 Gew.-% bis 5 Gew.-%, insbesondere 0,25 Gew.-% bis 3 Gew.-% an Entschäumeremulsion auf die Wasch- beziehungsweise Reinigungsmittelteilchen auf. Falls man ein sogenanntes Schaumregulatorgranulat herstellen will, das heißt die Schaumregulatorwirkstoffe nicht auf das gesamte Waschmittel, sondern auf einen Teil der darin üblicherweise enthaltenen festen Komponenten (die im folgenden als Trägermaterialien bezeichnet werden) aufbringt und dieses Schaumregulatorgranulat anschließend den übrigen festen Komponenten des Wasch- oder Reinigungsmittels zumischt, bringt man vorzugsweise 3 Gew.-% bis 60 Gew.-%, insbesondere 15 Gew.-% bis 45 Gew.-% an Entschäumeremulsion auf. Nach dem Aufsprühen der wäßrigen Entschäumeremulsion kann ein Trocknungsschritt, beispielweise unter Verwendung üblicher Wirbelschichttrockner, angeschlossen werden, oder man bringt die Entschäumeremulsion unter gleichzeitiger Trocknung, zum Beispiel ebenfalls in einer Wirbelschicht, auf. Falls man die Konfektionierung in Teilchenform mit Hilfe der Sprühtrocknung einer wäßrigen Aufschlämmung, welche die Entschäumeremulsion und die festen Waschmittelinhaltsstoffe beziehungsweise Trägermaterialien enthält, durchführen will, gelten die voranstehend angebenen Mengenbereiche entsprechend.

Zu den festen und/oder in fester Form konfektionierten Wasch- oder Reinigungsmittelbestandteilen, auf die beziehungsweise auf mindestens eines aus denen die erfindungsgemäße Emulsion zur Herstellung teilchenförmiger Produkte aufgebracht wird, gehören übliche durch Sprühtrocknung wäßriger Aufschlämmungen ihrer Inhaltsstoffe hergestellte Pulver, feste Bleichmittel, in fester Form konfektionierte Bleichaktivatoren, nicht durch konventionelles Sprühtrocknen hergestellte Aniontensidcompounds gemäß der internationalen Patentanmeldung WO 93/04162 mit einem Gehalt von über 80 Gew.-%, insbesondere über 90 Gew.-% an Alkylsulfat mit Alkylkettenlängen im Bereich von C₁₂ bis C₁₃, wobei der Rest im wesentlichen aus anorganischen Salzen und Wasser besteht, pulverförmige Polycarboxylat-Cobuilder, beispielsweise Alkalicitrat, feste anorganische Buildermaterialien, wie Zeolith-A, Zeolith-P und kristalline Schichtsilikate, und sonstige anorganische Salze wie Alkalisulfat, Alkalicarbonat, Alkalihydrogencarbonat und Alkalisilikat sowie deren Mischungen.

Ein in einer bevorzugten Variante des erfindungsgemäßen Verfahrens eingesetztes und mit der Schaumregulatoremulsion zu beaufschlagendes Sprühtrocknungsprodukt enthält vorzugsweise 25 Gew.-% bis 65 Gew.-%, insbesondere 30 Gew.-% bis 60 Gew.-% anorganischen Builder und 7,5 Gew.-% bis 40 Gew.-%, insbesondere 10 Gew.-% bis 30 Gew.-% Aniontensid, insbesondere synthetisches Aniontensid vom Sulfat- und/oder Sulfonattyp. Der Rest auf 100 Gew.-% besteht aus üblichen Inhaltsstoffen sprühgetrockneter Wasch- oder Reinigungsmittel, insbesondere Wasser, das vorzugsweise in Mengen bis zu 20 Gew.-%, insbesondere von 8 Gew.-% bis 18 Gew.-%, organischem Cobuilder, der vorzugsweise in Mengen bis zu 8 Gew.-%, insbesondere von 3 Gew.-% bis 6,5 Gew.-%, Verfärbungsinhibitoren, die vorzugsweise in für die Herstellung von Waschmitteln vorgesehenen Sprühtrocknungsprodukten in Mengen bis zu 5 Gew.-%, insbesondere 1,5 Gew.-% bis 3 Gew.-%, und anorganischen wasserlöslichen Salzen, beispielsweise Alkalisulfaten und/oder -carbonaten, die vorzugsweise in Mengen bis zu 20 Gew.-%, insbesondere von 2 Gew.-% bis 12 Gew.-% enthalten sind.

Zu den weiteren Waschmittelinhaltsstoffen, die als Trägermaterial bei der teilchenförmigen Konfektionierung der Schaumregulatoremulsion eingesetzt werden können, gehören feste Bleichmittel auf Sauerstoffbasis, beispielsweise Alkalipercarbonate oder Alkaliperborate, die als sogenannte Monohydrate oder Tetrahydrate vorliegen können, pulverförmig konfektionierte Bleichaktivatoren, beispielsweise ein nach dem Verfahren des europäischen Patentes EP 0 037 026 hergestelltes Tetraacetylethylendiamin-Granulat, in fester Form konfektionierte, hoch-aktivsubstanzhaltige Aniontensid-compounds, beispielsweise ein nach dem Verfahren der internationalen Patentanmeldung WO 93/04162 hergestelltes Alkylsulfatcompound, in granularer Form vorliegende Enzyme, beispielsweise ein nach dem Verfahren der internationalen Patentanmeldung WO 92/11347 hergestelltes Enzymextrudat oder ein nach dem Verfahren der deutschen Patentanmeldung DE 43 29 463 hergestelltes Mehrenzymgranulat und/oder ein pulverförmig, beispielsweise nach dem Verfahren der deutschen Patentanmeldung DE 44 08 360, konfektionierter Soil release-Wirkstoff.

In einer bevorzugten Variante des Verfahrens zur Herstellung teilchenförmiger Schaumregulatorgranulate führt man im wesentlichen wie in der internationalen Patentanmeldung WO 98/09701 beschrieben in einem Granulationsmischer eine Aufbaugranulation derart durch, daß man eine Menge von 50 bis 100 Gewichtsteilen, insbesondere 60 bis 85 Gewichtsteilen an anorganischem Trägersalz, vorzugsweise enthaltend Alkalisulfat und/oder Alkalicarbonat, gegegebenfalls mit einer Menge von bis zu 5 Gewichtsteilen, insbesondere 1 bis 3 Gewichtsteilen eines anionischen und/oder nichtionischen Celluloseethers intensiv mischt, unter weiterem Granulieren eine Menge von 1 bis 10 Gewichtsteilen, insbesondere 2 bis 8 Gewichtsteilen wäßriger Alkalisilikat- und/oder polymerer Polycarboxylat-Lösung zugibt, und daraufhin 10 Gewichtsteile der gegebenenfalls auf eine Temperatur im Bereich von 70°C bis 180°C erwärmten Schaumregulatoremulsion zusetzt.

Beispiele

Aus den in der nachfolgenden Tabelle mit ihren Mengen angegebenen Bestandteilen wurden wäßrige Emulsionen E1, E2, E3 und E4 hergestellt. Dabei ging man so vor, daß man das Paraffinwachs (beziehungsweise das Gemisch aus Paraffinwachs und Silikonöl) und das Bistearylsäureethylendiamid zusammen mit dem Emulgator I beziehungsweise II durch Erwärmen auf eine Temperatur von etwa 150°C schmolz und in kaltes Wasser (E1 und E4) beziehungsweise eine wäßrige Lösung des Emulgators III (E2 und E3) einrührte.

Tabelle 1

Zusammensetzung der Schaumregulatoremulsionen [Gew.-%]

10

15

20

25

30

35

45

Mittel	E1	E2	E3	E4
Paraffinwachs ^{a)}	44	44	40	41
Silikonöl	-	-	4,5	3,5
Bistearylsäureethylendiamid	6	6	6	6
Emulgator I ^{b)}	5	5	5	-
Emulgator II ^{e)}	-	4	-	7,5
Emulgator III ^{d)}	-	4	5,5	
Wasser	auf 100			

- a) Erstarrungspunkt nach DIN ISO 2207 45 °C, Flüssiganteil bei 40 °C ca. 66 Gew.-%, bei 60 °C ca. 96 % (Lunaflex®, Hersteller DEA)
- b) 3-fach ethoxylierter C_{12/14}-Fettalkohol, Hersteller Henkel
- c) 2:1-Gemisch aus 7-fach ethoxyliertem C_{12/16}-Fettalkohol, Hersteller Henkel KGaA, und Triglycerindiisostearat, Hersteller Henkel KGaA

d) Na-Dodecylbenzolsulfonat

Die so erhaltenen Schaumregulatoremulsionen wurden in Anlehnung an das in WO 98/09701 beschriebene Verfahren in Mengen von 30 Gew.-% auf ein anorganisches teilchenförmiges Trägermaterial aufgebracht. Die so erhaltenen Schaumregulatorgranulate wurden in einer Menge von jeweils 1 Gew.-% zu einem entschäumerfreien teilchenförmigen Waschmittel zugesetzt, was bei Waschtemperaturen von 40°C, 60°C und 90°C eine Entschäumerleistung ergab, die nicht hinter derjenigen bei Einsatz auf konventionelle Art hergestellter Entschäumergranulate zurückstand.

Patentansprüche

- 1. Wäßrige Schaumregulatoremulsion, enthaltend 15 Gew.-% bis 60 Gew.-% Paraffinwachs oder einer Mischung aus Paraffinwachs und Silikonöl, 1 Gew.-% bis 10 Gew.-% sich von C_{2-7} -Diaminen und C_{12-22} -Fettsäuren ableitendem Bisfettsäureamid, 3 Gew.-% bis 15 Gew.-% nichtionischen und/oder anionischen Emulgator sowie nicht mehr als 80 Gew.-% Wasser.
- 2. Wäßrige Schaumregulatoremulsion nach Anspruch 1, dadurch gekennzeichnet, daß sie 30 Gew.-% bis 50 Gew.-% Paraffinwachs oder einer Mischung aus Paraffinwachs und Silikonöl enthält.
- 3. Wäßrige Schaumregulatoremulsion nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Paraffinwachs bei Raumtemperatur fest ist und bei 100°C in vollständig flüssiger Form vorliegt.
- 4. Wäßrige Schaumregulatoremulsion nach Anspruch 3, dadurch gekennzeichnet, daß das Paraffinwachs bei 40°C einen Flüssiganteil von mindestens 50 Gew.-%, insbesondere von 55 Gew.-% bis 80 Gew.-%, und bei 60°C einen Flüssiganteil von mindestens 90 Gew.-% aufweist.
- 5. Wäßrige Schaumregulatoremulsion nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß sie 3 Gew.-% bis 8 Gew.-% sich von C_{2-7} -Diaminen und C_{12-22} -Fettsäuren ableitendem Bisfettsäureamid enthält.
- Wäßrige Schaumregulatoremulsion nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß sie einen Gehalt an Silikonöl im Bereich von 0,1 Gew.-% bis 10 Gew.-%, insbesondere 1 Gew.-% bis 5 Gew.-% aufweist.
 Wäßrige Schaumregulatoremulsion nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß sie 4 Gew.-
- % bis 10 Gew.-% nichtionischen und/oder anionischen Emulgator enthält.
- 8. Wäßrige Schaumregulatoremulsion nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß der nichtionische Emulgator unter den Alkoxylaten, insbesondere den Ethoxylaten und/oder Propoxylaten von Alkoholen, Alkylaminen, vicinalen Diolen und/oder Carbonsäureamiden, die Alkylgruppen mit 8 bis 22 C-Atomen, vorzugsweise 12 bis 18 C-Atomen, besitzen, und deren mittlerer Alkoxylierungsgrad von 1 bis 10, insbesondere 2 bis 5 beträgt,

ausgewählt wird.

- Wäßrige Schaumregulatoremulsion nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß der anionische Emulgator ein Alkalisalz der Alkylbenzolsulfonsäuren mit 9 bis 13 C-Atomen in der Alkylgruppe ist.
- 10. Wäßrige Schaumregulatoremulsion nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß sie nicht mehr als 60 Gew.-%, insbesondere 20 Gew.-% bis 50 Gew.-% Wasser enthält.
- 11. Wäßrige Schaumregulatoremulsion nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß sie bei bei 60°C eine Viskosität unterhalb von 2500 mPa·s, insbesondere im Bereich von 100 mPa·s bis 500 mPa·s aufweist.
- 12. Verfahren zur Herstellung einer wäßrigen Schaumregulatoremulsion gemäß einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß man das Paraffinwachs und das Bisfettsäureamid in Gegenwart des Emulgators durch Erwärmen auf Temperaturen im Bereich von 60°C bis 150°C, insbesondere 80°C bis 100°C aufschmilzt, die Schmelze gegebenenfalls auf höchstens ca. 100°C abkühlt und in Wasser einrührt.
- 13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, daß man zusätzlich zu einem nichtionischen Emulgator einen anionischen Emulgator einsetzt und den anionischen Emulgator nicht der Schmelze, sondern vor dem Einrühren der Schmelze dem Wasser zusetzt.
- 14. Verwendung einer wäßrigen Schaumregulatoremulsion gemäß einem der Ansprüche 1 bis 11 oder erhältlich nach einem der der Ansprüche 12 bis 13 zur Schaumregulierung wäßriger, zum Schäumen neigender Systeme, insbesondere von Wasch- und Reinigungsmittelflotten.
- 15. Verwendung einer wäßrigen Schaumregulatoremulsion gemäß einem der Ansprüche 1 bis 11 oder erhältlich nach einem der Ansprüche 12 bis 13 zur Schaumregulierung beziehungsweise Entlüftung insbesondere wäßriger Flüssigwaschmittel bei deren Herstellung und/oder Abfüllung.
 - 16. Verwendung einer wäßrigen Schaumregulatoremulsion gemäß einem der Ansprüche 1 bis 11 oder erhältlich nach einem der Ansprüche 12 bis 13 zur Herstellung teilchenförmiger Wasch- oder Reinigungsmittel durch Aufsprühen auf granulare Teilchen, die alle oder zumindest einige der bei Raumtemperatur festen Waschbeziehungsweise Reinigungsmittelinhaltsstoffe enthalten.
 - 17. Verfahren zur Herstellung teilchenförmiger Schaumregulatorgranulate durch Aufsprühen einer wäßrigen Schaumregulatoremulsion gemäß einem der Ansprüche 1 bis 11 oder erhältlich nach einem der Ansprüche 12 bis 13 auf ein festes Trägermaterial, woran sich gegebenenfalls ein Trocknungsschritt anschließt.
- 18. Verfahren zur Herstellung teilchenförmiger Schaumregulatorgranulate durch Sprühtrocknen einer wäßrigen Aufschlämmung, die erhalten wird durch Vermischen einer wäßrigen Schaumregulatoremulsion gemäß einem der Ansprüche 1 bis 11 oder erhältlich nach einem der Ansprüche 12 bis 13 mit festem Trägermaterial und gegebenenfalls Wasser.

35

5

10

15

25

40

45

50

55

60

65