ТЕХНИЧЕСКИ УНИВЕРСИТЕТ – СОФИЯ КАТЕДРА ПРИЛОЖНА ФИЗИКА

Протокол № Студент: Група: Факултет: Подпис на преподавателя:

Задача: Определяне на специфичния заряд на електрона $^e/m_e$ с електронно-лъчева тръба

1. Схема на опитната постановка.

2. Описание на метода и теоретични изводи.

Електрично поле с интензитет \vec{E} действа на заредена частица с маса m и заряд q с електрична сила $\vec{F}_{\rm en}=q\vec{E}$. Под действие на тази сила неподвижна заредена частица (начална скорост $v_0=0$ в начаалния момент $t_0=0$) се ускорява и придобива кинетична енергия E_k . Изменението на кинетичната енергия ΔE_k на частицата се дава чрез

$$\Delta E_k = E_k - E_{k0} = \frac{mv^2}{2} - \frac{mv_0^2}{2} = \frac{mv^2}{2}$$
 (1)

където $E_{k0} = \frac{mv_0^2}{2} = 0$ е кинетичната й енергия в началния момент, v е скоростта на частицата, която тя придобива под действие на електричното поле.

Изменението на кинетичната енергия на частицата ΔE_k е равно на работата A, извършена от електричното поле

$$\Delta E_k = A = qU \tag{2}$$

където U е напрежението на електричното поле между началната и крайната точки на движение на частицата.

Магнитно поле с индукция \vec{B} действа на заредена частица с маса m и заряд q, движеща се със скорост \vec{v} с магнитна сила $\vec{F}_M = q(\vec{v} \times \vec{B})$. Големината на магнитната сила се дава с израза

$$F_M = qvB \sin \alpha$$

където α е ъгълът между векторите на скоростта \vec{v} и магнитната индукция \vec{B} .

От определението за магнитна сила следва, че тя може да измени само посоката на скоростта на движение на частицата, но не и нейната големина. Ако ъгълът $\alpha=90^{0}$ ($\sin\alpha=1$) и магнитното поле е хомогенно ($\vec{B}={\rm const}$), то траекторията на движение на частицата е окръжност, радиусът r, на която може да се определи чрез приравняване на големините на магнитната сила ($\vec{F}_{M}=qvB\sin\alpha=qvB$) и центростремителната сила ($\vec{F}_{\rm цc}=\frac{mv^2}{r}$), която действа върху движещата се по окръжност частица (r е радиуса на окръжността)

$$qvB = \frac{mv^2}{r}$$

От тук

$$r = \frac{mv}{qB} \tag{3}$$

Това движение е периодично с период

$$T = \frac{2\pi r}{v} = \frac{2\pi m}{qB} \tag{4}$$

Опитната постановка се състои от електронно-лъчева тръба (ЕЛТ), част от която е поставена в соленоид, така че вътре в нея се създава магнитно поле с индукция \vec{B} , насочена по оста на тръбата. От нагорещения катод на ЕЛТ се излъчват електрони (маса m_e и заряд e), които се ускоряват от електричното поле между катода K и анода K . Електроните преминават през анода със скорост v_x , която може да се определи от изразите (K) и (K), т.е.

$$\frac{m_e v_x^2}{2} = e U_a$$

където U_a е напрежението между катода и анода (нарича се анодно напрежение) или

$$v_x = \sqrt{\frac{2eU_a}{m_e}}$$

След анода електроните преминават през плосък кондензатор С, чийто интензитет на електричното поле е по направление на оста Z. Това поле отклонява движението на електроните по направление на тази ос. Преминавайки през кондензатора С електроните получават и компонента на скоростта \vec{v}_z . Следователно скоростта на електрона ще е сума от компонентите й по осите X и Z, т.е. $\vec{v} = \vec{v}_x + \vec{v}_z$.

След кондензатора С електроните попадат в магнитното поле, създадено от соленоида. Индукцията \vec{B} , на това поле е насочена по посока на оста X. Под действие на електричното поле между катода и анода електроните имат компонента на скоростта \vec{v}_x по оста X. Тъй като $\vec{v}_x \parallel \vec{B}$, т.е. $\alpha = 0^0$ (sin $\alpha = 0$), то ако те имат само тази компонента на скоростта, магнитното поле няма да им действа и ще се движат равномерно праволинейно по оста X със скорост $\vec{v}_x = \text{const.}$ Но електроните имат и компонента на скоростта по оста Z. Тъй като $\vec{v}_z \perp \vec{B}$, то електроните би трябвало да се движат по окръжност с период, определен от израза (4)

$$T = \frac{2\pi r}{v_z} = \frac{2\pi m_e}{eB}$$

Двете компоненти на скоростта на електроните определят траекторията им на движение да е винтова линия.

За време един период T всеки електрон прави една пълна обиколка по съответната винтова линия и попада отново на оста, по която се движи. Следователно за време T електронът ще измине път

$$S = v_x T = v_x \frac{2\pi m_e}{eB} = \sqrt{\frac{2eU_a}{m_e}} \times \frac{2\pi m_e}{eB} = \frac{2\pi}{B} \times \sqrt{\frac{2m_eU_a}{e}}$$

От този израз можем да се намери относителния заряд на електрона $^e/m_e$

$$\frac{e}{m_e} = \frac{8\pi^2 U_a}{B^2 S^2} \tag{5}$$

При подходящ избор на анодното напрежение и индукцията на магнитното поле, пътят, изминат от електроните, може да се избере равен на разстоянието между кондензатора C и екрана на EЛT, т.е. $S=S_0$. Това разстояние лесно може да бъде измерено.

От друга страна индукцията на магнитно поле, създавано от соленоида се дава с израза $B = \mu_0 n I = 4\pi \times 10^{-7} n I$, където $\mu_0 = 4\pi \times 10^{-7} \ H/m$ е магнитната константа, n е броя на навивките на соленоида на единица дължина и I е големината на тока през соленоида. Като се замести израза за B в израза (5) се получава

$$\frac{e}{m_e} = \frac{8\pi^2 U_a}{16\pi^2 \times 10^{-14} n^2 I^2 S_0^2} = \frac{U_a \times 10^{14}}{2n^2 I^2 S_0^2} \tag{6}$$

3. Опитни данни и резултати

$$n = 20090 \text{ m}^{-1}$$
, $S_0 = 6.5 \times 10^{-2} \text{ m}$

$$U_{a1} = 600 \text{ V}$$
 , $I_1 = 320 \text{ mA} = 0.32 \text{ A}$

$$\left(\frac{e}{m_e}\right)_1 = \frac{U_{a1} \times 10^{14}}{2n^2 I_1^2 S_0^2} =$$

$$U_{a2} = 500 \text{ V}$$
, $I_2 = 285 \text{ mA} = 0.285 \text{ A}$

$$\left(\frac{e}{m_e}\right)_2 = \frac{U_{a2} \times 10^{14}}{2n^2 I_2^2 S_0^2} =$$

$$\left(\frac{e}{m_e}\right)_{cp} = \frac{\left(\frac{e}{m_e}\right)_1 + \left(\frac{e}{m_e}\right)_2}{2} =$$