ESIR1 BD Bases de données

normalisation

Olivier Ridoux

Plan

Formes normales

Normalisation

Formes normales

 Propriété structurelle d'un schéma qui entraîne un niveau de qualité déterminé

structurel

qui dépend seulement du schéma

1^{ère} forme normale (1)

- La valeur de tout attribut est atomique
- 1NF
- Difficile de faire autrement, mais ...

1^{ère} forme normale (2)

On voudrait

Livre(<u>num-livre</u>, titre, <u>auteurs</u>, éditeur, année)

On doit faire

Livre(<u>num-livre</u>, titre, éditeur, année) Écrit(<u>num-auteur</u>, <u>num-livre</u>)

2^{nde} forme normale (1)

- 1^{ère} forme normale + ...
- ... pour tout R(K, X), K est minimale aussi pour les $Y \subset X$
- 2NF
- Pas de clé trop grosse pour une projection de la relation

2^{nde} forme normale (2)

On voudrait

```
Client(<u>prénom</u>, <u>nom</u>, <u>fête-à-souhaiter</u>, ...)
```

On doit faire

Client(<u>prénom</u>, <u>nom</u>, ...)

Fête(<u>prénom</u>, fête-à-souhaiter)

Remarque : 2^{nde} forme normale

 Si une relation est 1NF et n'a que des clés simples (1 attribut)...

...alors elle est 2NF

3^{ème} forme normale (1)

- 2^{nde} forme normale + ...
- ... pour tout R(K, A, B, X), on n'a pas $A \rightarrow B$
- 3NF
- Pas de DF dissimulée dans une relation

3^{ème} forme normale (2)

On voudrait

```
Flotte( <u>num-avion</u>, constructeur, modèle, capacité, ... )
```

• On doit faire

Flotte(<u>num-avion</u>, num-modèle, ...

Modèle (<u>num-modèle</u>,

constructeur, capacité, ...)

Jonction conservatrice (1)

Soit R(X) une relation,
 ...peut-on décomposer X en

Tel que
$$\Pi_{U}(R) \bowtie \Pi_{V}(R) = R$$

...principe d'une décomposition inversible

Jonction conservatrice (2)

- Si $S \rightarrow T$ une DF de R(X) ...
- ...alors

$$\prod_{S,T}(R) \bowtie_S \prod_{X \setminus T}(R) = R$$

C'est la jonction conservatrice

Jonction conservatrice (2)

•
$$R(X) = \prod_{S,T}(R) \bowtie_S \prod_{X \setminus T}(R)$$

Quel que soit le contenu des tables

Exemple - Jonction conservatrice

ville	frais
Ц	Щ.
Paris	100
Rennes	50
Redon	50

num-four	ville
	•••
f1	Paris
f2	Paris
f3	Rennes
f4	Redon

Préservation des DF

- Soit X₁, X₂, ..., X_n une décomposition de X à jonction conservatrice
- Soit F_i ⊂ F+ tq les DF de F_i sont définies sur X_i
- F est préservé par la décomposition

ssi
$$F+ = (UF_i)+$$

3^{ème} forme normale (3)

• Théorème :

Toute relation peut être décomposée...

...sous forme 3NF à jonction conservatrice,

...et avec préservation des DF

Algorithme de synthèse (1)

- Entrée : R(X) et DF
- Sortie: {R₁, ..., R_n} en 3NF
 - 1. C = couverture irredondante de DF
 - 2. F_1 , ..., $F_n = C$ groupée par partie gauche
 - 3. Pour chaque F_i

construire
$$R_i = \Pi_{F_i}(R)$$

Algorithme de synthèse (2)

• R(A, B, C, D, E) et

• A→B
• A→C
•
$$R_1(\underline{A}, B, C)$$

• $R_2(\underline{C}, \underline{D}, E)$
• $R_3(\underline{B}, D)$

Algorithme de synthèse (3)

Remarque :

$$A \rightarrow D \notin F_1 \cup F_2 \cup F_3$$

...mais

$$A \rightarrow D \in (F_1 \cup F_2 \cup F_3)^+$$

Forme normale de Boyce-Codd (1)

X → Y élémentaire entraîne que...

...X est une clé

BCNF

• Les clés sont adéquates

Forme normale de Boyce-Codd (2)

• BCNF \Rightarrow 3NF

 On peut toujours décomposer une relation en BCNF,

...mais parfois au pris de perdre des DF

Forme normale de Boyce-Codd (3)

• Soit R...

$$R(A,B,C)$$
 et A, B \rightarrow C et C \rightarrow B

...R est 3NF

...mais pas BCNF à cause de $C \longrightarrow B$

• $\Pi_{A,B}(R)$ et $\Pi_{C,B}(R)$ est BCNF mais...

...perd A, B \rightarrow C

Algorithme de décomposition

- Entrée : R(X) et DF
- Sortie: $\{R_1, ..., R_n\}$ en BCNF
- 1. Res = $\{R\}$
- 2. Itérer : soit $R_i \subseteq Res$ et R_i pas BCNF soit $X \rightarrow Y$ une DF de R_i qui n'est pas clé remplacer R_i par $R_i \setminus Y$ et XY

3NF et BCNF

- Si BCNF mais perte DF préférer 3NF...
- ...sinon préférer BCNF
 - Commencer par l'algorithme de synthèse (→ 3NF), puis appliquer l'algorithme de décomposition si besoin (aux composants ¬BCNF)
 - Il existe d'autres formes normales

xNF et BCNF

 Si mises à jour fréquentes, préférer niveau de normalisation élevé

 Si mises à jour rares, envisager niveau de normalisation faible

 On peut dénormaliser exprès pour éviter des jointures répétitives

En résumé

- Éviter les redondances
- Représenter fidèlement les dépendances fonctionnelles
 - → devient R(...)
- On peut ne pas normaliser exprès pour des raisons d'efficacité

Attention!

Attention de ne pas tenter d'améliorer un système dont on ne connaît pas les performances!

Donald Knuth a dit

premature optimization is the root of all evil.

A good programmer [...] will be wise to look carefully at the **critical** code;

but only after that code has been identified.

Codd a dit

The data in a record depends on

the Key to the record, the Whole Key, and nothing but the Key

