Test without Fault Model

- Introduction
- Boolean Tests without Fault Model
 - Toggle Test
 - Design Verification
 - Exhaustive Test
 - Checking experiment (1964)
 - Pseudo Exhaustive Test (1984)
- Conclusions

McCluskey and his collection of hats

Exhaustive Tests

- For combinational circuits with n inputs
 - Exhaustive test
 - * all possible 2ⁿ input vectors
 - Super exhaustive test
 - all possible input transitions 2²ⁿ
 - Example: 2 input AND gate
- How about sequential circuits?
 - Checking experiment

Checking Experiment

- CE = Input sequence that exhaustively verifies state table of
 - Finite State Machine (FSM)
- CE is high-level, functional testing
 - Does not need implementation of circuit
 - Developed by many [Moore 56] [Poage + McClueksy 64] ...
- In this lecture, a general procedure by [Hennie 64]
 - 1. Synchronizing sequence: bring FSM to a known state
 - 2. A sequence: verify existence of all states
 - 3. B sequence: verify all state transitions
- Only control primary inputs (PI), only observe primary outputs (PO)
 - Internal states not observable, not controllable
 - * No scan DFT

Synchronizing Sequence (SS)

- Synchronizing Sequence = Input seq. such that final state is fixed
 - Regardless of initial state or output
- Example: FSM #1
 - SS is 01010, final state is D

PS	NS, z						
	x = 0	x = 1					
Α	B, 0	D, 0					
В	A, 0	B, 0					
С	D, 1	A, 0					
D	D, 1	C, 0					

PS=present state; NS=next state x = input; z=output

NOTE:

- 1. Not every FSM has SS
- 2. SS may not be unique

synchronizing tree

How to Derive SS?

- Initially, root node has all sates together in one parenthesis
 - Branch downward, one input combination for each branch
 - Group all NS in parenthesis of child node
- Stop if same NS as some node in preceding level
- Repeat until only one state in parenthesis

PS	NS, z						
	x = 0	x = 1					
Α	B, 0	D, 0					
В	A, 0	B, 0					
С	D, 1	A, 0					
D	D, 1	C, 0					

NOTE:

Tree size grows exponentially!

Quiz

Q1: Show the synchronizing tree of FSM#2. What is SS?

Q2: Show that final state after SS is C

(FSM#2)	NS	, z
PS	x = 0	x = 1
Α	C, 0	D, 1
В	C, 0	A, 1
С	A, 1	B, 0
D	B, 0	C, 1

Distinguishing Sequence (DS)

- *Distinguishing sequence* = Input seq. such that
 - Corresponding output sequence is different for each initial state
- Example: FSM#2, 101 is DS

(FSM#2)	NS, z						
PS	x = 0	x = 1					
Α	C, 0	D, 1					
В	C, 0	A, 1					
С	A, 1	B, 0					
D	B, 0	C, 1					

NOTE:

- 1. Not every FSM has DS
- 2. DS may not be unique

Init. State	apply DS x= 1 0 1
Α	z= 1 0 1 s= DBA
В	z= 1 0 0 s= ACB
С	z= 0 0 0 s= BCB
D	z= 1 1 1 s= CAD

How to Derive DS?

- Initially, root node has all sates together in one parenthesis
 - Branch downward, one input combination for each branch
 - Group different output sequence in different parenthesis
- Stop if more than one identical NS in a parenthesis
- Repeat until every parenthesis contains only one NS

• Example: DS = 101

(FSM#2)	NS	, z
P3	x = 0	x = 1
Α	C, 0	D, 1
В	C, 0	A, 1
С	A, 1	B, 0
D	B, 0	C, 1

Quiz

Q: Show that 111 is also DS for FSM#2.

(Actually, 100, 101, 110, 111 are all DS.)

(FSM#2)	NS, z					
PS	x = 0	x = 1				
Α	C, 0	D, 1				
В	C, 0	A, 1				
С	A, 1	B, 0				
D	B, 0	C, 1				

A Sequence

- Goal: Verify existence of every state
 - Also verify states before and after DS
- How? Apply two DS to each state continuously
 - Observation of Z_i to identifies S_i
 - Observation of Z_{i+1} to identifies S_{i+1}, which is Q_i
- Notation:
 - S_i & Q_i indicate state before and after DS_i, respectively
 - Z_i indicates outputs when DS_i is applied
 - i = time index

Input		DS _i			DS _{i+1}	
State	Si		Q_i	S _{i+1}		Q _{i+1}
output		Z _i			Z _{i+1}	

A Sequence (STEP 1)

- 1. Repeatedly apply DS, until
 - 1A: DS DS has been applied continuously to all states, finish
 - 1B: $Q_{i+1} = Q_i$, continue to STEP2
- 2. DS is applied once more
 - To verify state Q_{i+1}
- 3A: If DS DS applied to all states, finish
- 3B. Else, apply *Transfer Sequence* (TS)
- 4. Goto 1

(FSM#2)	NS, z						
	x = 0	x = 1					
Α	C, 0	D, 1					
В	C, 0	A, 1					
С	A, 1	B, 0					
D	B, 0	C, 1					

Init. State	apply DS x= 1 0 1
Α	z= 1 0 1 s= DBA
В	z= 1 0 0 s= ACB
С	z= 0 0 0 s= BCB
D	z= 1 1 1 s= CAD

Χ		101		101		101		1		101		101		1	101		101	
S	С		В		В		В		Α		Α		А			D		D
Z		000		100		100		1		101		101		1	111		111	
					ノし										 	人		
			Y			Υ		Y		Υ		Υ		Y	Y		Υ	
		;	Step	1		Step 2		Step TS	3	Step 1		Step 2		tep 3 S	Step 1		Step 2	

A Sequence (STEP 2)

- 1. Repeatedly apply DS, until
 - 1A: DS DS has been applied continuously to all states, finish
 - 1B: $Q_{i+1} = Q_i$, continue to STEP2
- 2. DS is applied once more
 - To verify state Q_{i+1}
- 3A: If DS DS applied to all states, finish
- 3B. Else, apply *Transfer Sequence* (TS)
- 4. Goto 1

(FSM#2)	NS, z						
	x = 0	x = 1					
Α	C, 0	D, 1					
В	C, 0	A, 1					
С	A, 1	B, 0					
D	B, 0	C, 1					

Init. State	apply DS x= 1 0 1
Α	z= 1 0 1 s= DBA
В	z= 1 0 0 s= ACB
С	z= 0 0 0 s= BCB
D	z= 1 1 1 s= CAD

Χ		101		101		101		1		101		101		1	101		101	
S	С		В		В		В		А		A		Α					D
Z		000		100)	100		_		101		101		_	111		111	
					ノし		_/_									人		
			Y			Υ		Y		Y		Υ		Y	Y		Υ	
			Step	1		Step 2		Step TS	3	Step 1		Step 2		tep 3 S	Step 1		Step 2	

A Sequence (STEP 3)

- 1. Repeatedly apply DS, until
 - 1A: DS DS has been applied continuously to all states, finish
 - 1B: $Q_{i+1} = Q_i$, continue to STEP2
- 2. DS is applied once more
 - ◆ To verify state Q_{i+1}
- 3A: If DS DS applied to all states, finish
- 3B. Else, apply *Transfer Sequence* (TS)
- 4. Goto 1

PS PS	NS	5, Z
. 0	x = 0	x = 1
Α	C, 0	D, 1
В	C, 0	A, 1
С	A, 1	B, 0
D	B, 0	C, 1

Init. State	apply DS x= 1 0 1
A	z= 1 0 1 s= DBA
В	z= 1 0 0 s= ACB
С	z= 0 0 0 s= BCB
D	z= 1 1 1 s= CAD

	_		-	-		-	_		_				_		-				
X		101		101		101		1)		101		101		1		101		101	
S	С		В		В		В		Α		Α		Α						D
Z		000		100		100		1		101		101		1		111		111	
					八												人		
			Y			Y		Y		Y		Υ		Y		Y		Y	
			Step	1		Step 2		Step TS	3	Step 1		Step 2		tep 3	}	Step 1		Step 2	

A Sequence (STEP 4)

- 1. Repeatedly apply DS, until
 - 1A: DS DS has been applied continuously to all states, finish
 - 1B: $Q_{i+1} = Q_i$, continue to STEP2
- 2. DS is applied once more
 - To verify state Q_{i+1}
- 3A: If DS DS applied to all states, finish
- 3B. Else, apply *Transfer Sequence* (TS)
- 4. Goto 1

(FSM#2)	NS	5, z
. 0	x = 0	x = 1
Α	C, 0	D, 1
В	C, 0	A, 1
С	A, 1	B, 0
D	В, 0	C, 1

Init. State	apply DS x= 1 0 1
A	z= 1 0 1 s= DBA
В	z= 1 0 0 s= ACB
С	z= 0 0 0 s= BCB
D	z= 1 1 1 s= CAD

X		101		101	'	101		1		101		101		1		101		101	
S	С		В		В		В		Α		Α		Α		D		D		D
Z		000		100		100		1		101		101		1		111		111	
					八		/\		_/_								_/_		
			Y			Υ		γ		Υ		Υ		Y		Υ		Υ	
		4	Step	1		Step 2	<u>)</u>	Step TS	3	Step 1		Step 2		step 3	3	Step 1		Step 2	

A Sequence (FINISH)

- 1. Repeatedly apply DS, until
 - 1A: DS DS has been applied continuously to all states, finish
 - 1B: $Q_{i+1} = Q_i$, continue to STEP2
- 2. DS is applied once more
 - ◆ To verify state Q_{i+1}
- 3A: If DS DS applied to all states, finish
- 3B. Else, apply *Transfer Sequence* (TS)
- 4. Goto 1

(FSM#2)	NS	, z
	x = 0	x = 1
Α	C, 0	D, 1
В	C, 0	A, 1
С	A, 1	В, 0
D	B, 0	C, 1

Init. State	apply DS x= 1 0 1
Α	z= 1 0 1 s= DBA
В	z= 1 0 0 s= ACB
С	z= 0 0 0 s= BCB
D	z= 1 1 1 s= CAD

Χ		101		101		101		1		101		101		1		101		101	
S	C		В		В		В		Α		Α		Α		D		D		D
Z		000		100		100		1		101		101		1		111		111	
					八		_/\										人		
			Y			Y		Y		Y		Υ		Y		Y		Y	
		;	Step	1		Step 2	2	Step TS	3	Step 1		Step 2		step 3	3	Step 1		Step 2	

Why Two DS Continuously?

- Because we need to verify not only initial state
 - But also final state after applying DS

Quiz

Q: Find A sequence for the same FSM. Use DS = '111'. Starts from state C, end of synchronizing sequence.

(FSM#2)	NS	5, Z
. •	x = 0	x = 1
Α	C, 0	D, 1
В	C, 0	A, 1
С	A, 1	B, 0
D	B, 0	C, 1

Init. State	apply DS x=111
Α	z= 1 1 0 s= DCB
В	z= 1 1 1 s= ADC
С	z= 0 1 1 s= BAD
D	z= 1 0 1 s= CBA

X	111								
S									
Z	011								

B Sequence

Goal: Verify state transition

(FSM#2)	NS	5, Z
. 0	x = 0	x = 1
Α	C, 0	D, 1
В	C, 0	A, 1
С	A, 1	В, 0
D	В, 0	C, 1

Init. State	apply DS x= 1 0 1
Α	z= 1 0 1 s= DBA
В	z= 1 0 0 s= ACB
С	z= 0 0 0 s= BCB
D	z= 1 1 1 s= CAD

- Example: Use DS='101'
 - Starts from D, end of A seq.
 - Notation: N(S, X) = Q means next state for S with input X is Q

How about Other Transitions?

- N(B,1)=A, N(A,1) =D already verified in A sequence
 - No need to verify again in B sequence

(FSM#2) PS	NS	5, z
	x = 0	x = 1
Α	C, 0	D, 1
В	C, 0	A, 1
С	A, 1	В, 0
D	B, 0	C, 1

8 / 8 Transitions Verified

Whole Checking Experiment

- This example uses DS = 101
- Checking experiment is NOT unique
 - Other CE is OK, as long as all states and transitions verified
 - The shorter, the better

(FSM#2)	NS	5, Z
	x = 0	x = 1
Α	C, 0	D, 1
В	C, 0	A, 1
С	A, 1	В, 0
D	B, 0	C, 1

	Synchronizing	A-sequence	B-sequence
	Sequence		
X:	01010	101 101 101 1 101 101 1 101 101	0 101 0 101 0 0 101 0 101 11 1 101 01 101
Expected	Don't care	000 100 100 1 101 101 1 111 111	0 100 0 000 0 1 101 0 000 11 1 000 00 100
Output:			

- NOTE: The introduced procedure
 - 1. Does NOT guarantee shortest CE
 - 2. Need distinguishing sequence

Quiz

Q: (cont'd from last quiz)

Find B sequence for the same FSM.

Use DS = '111'.

Starts from state B, end of A sequence

	(FSM#2)	NS	5, Z
		x = 0	x = 1
	Α	C, 0	D, 1
\ \ \	В	C, 0	A, 1
,	С	A, 1	B, 0
	D	B, 0	C, 1

Init. State	apply DS x=111
Α	z= 1 1 0 s= DCB
В	z= 1 1 1 s= ADC
С	z= 0 1 1 s= BAD
D	z= 1 0 1 s= CBA

X												
S	В											_
Z												_
_												
— I												
v			ı		, 							
X					' 							1

Summary

- Checking experiment exhaustively verify FSM
 - Independent of circuit implementation
- General procedure of checking experiment
 - Synchronizing sequence: fixed final state
 - A sequence: verify all states
 - B sequence: verify all state transitions
- Assumptions of checking experiment:
 - 1. No equivalent states (i.e. reduced FSM)
 - 2. Strongly connected FSM
 - 3. Defect Does not increase state of circuit

FFT

Q: at end of A sequence, how do we verify last state is indeed D?

