Höhere Technische Bundeslehranstalt Salzburg

Abteilung für Elektronik

Übungen im Laboratorium für Elektronik

Protokoll für die Übung Nr. 19

Gegenstand der Übung

LDO II

Name: Leon Ablinger

Jahrgang: 4AHEL

Gruppe Nr.: A1

Übung am: 19.05.2021

Anwesend: Leon Ablinger

Inhalt

1	Inventa	rliste	. 2
2	Messan	weisung	. 2
3	Übungs	durchführung	. 3
3	3.1 Sta	bilisierungsfaktor des Längsreglers mit OPV	. 3
	3.1.1	Beschreibung des Messvorgangs	. 3
	3.1.2	Schaltung	. 3
	3.1.3	Dimensionierung	. 3
	3.1.4	Tabelle	. 4
	3.1.5	Oszillogramm	. 4
	3.1.6	Erkenntnis / Schlussfolgerung	. 4
3	3.2 Spa	annungsfunktionen	. 5
	3.2.1	Beschreibung des Messvorgangs	. 5
	3.2.2	Tabelle	. 5
	3.2.3	Strom-Spannungs-Kennlinie über R _L	. 5
	3.2.4	Erkenntnis / Schlussfolgerung	. 6

1 Inventarliste

Gerätebezeichnung	Inventarnummer	Verwendung
Tektronix TBS 1052B	C032683	Spannungsverlauf
Digitales Multimeter	Platz 3	Strom-/Spannung

2 Messanweisung

1.2 Entwurf eines Längsreglers mit OPV

Der unter Punkt 1.1 gegebene Längsregler ist durch eine Variante mit OPV zu ersetzen. Eingangsspannung und Laststrom bleiben gleich.

Gefordert sind:

- a) Dimensionierung der Schaltung für Ua = 7V.
- b) Simulation der Schaltung mit LTSpice
- c) Stromlaufplan der Messschaltung
- d) Aufbau am Steckbrett

Messungen:

- a) Bestimme den Stabilisierungsfaktor des Längsreglers.
- b) Bestimme Ua = f(Ia) durch schrittweise Verminderung von R_L .
- c) Bestimme die Ausregelzeit infolge eines Sprungs der Eingangsspannung von +/-2V.

SRES HTBLA-Salzburg 1/1
31-01-2021 LAB4 v0 Messanweisung

4. Protokoll

Im Protokoll ist anzuführen:

- · Messanweisung, Inhaltsverzeichnis, Inventarliste
- Angabe des Übungszieles
- Schaltplan und Dimensionierung
- Kurzbeschreibung der Messungen (Quellen, Messobjekte, Messgeräte, ...)
- Messergebnisse ,Oszillogramme, Diagramme, Interpretation
- Zusammenfassung, besondere Vorkommnisse
- Ort, Datum und Unterschrift

5. Kontrollfragen

- a) Erkläre die Begriffe Line Regulation und Load Regulation und Ausregelzeit eines Spannungsreglers anhand realer Kenngrößen aus einem Datenblatt?
- b) Stromlaufplan und Dimensionierung des L\u00e4ngsreglers LM1117 incl. Dimensionierung auf die Ausgangsspannung unter Bsp 1.1.
 - Gib die Größe des maximalen Ausgangsstroms (Datenblattauszug) an.

Übungsdurchführung

Stabilisierungsfaktor des Längsreglers mit OPV

3.1.1 Beschreibung des Messvorgangs

In diesem Übungsteil soll der Stabilisierungsfaktor des Längsreglers mit einem OPV bestimmt werden. Dafür wurde die Schaltung zuerst dimensioniert und anschließend aufgebaut.

3.1.2 Schaltung

3.1.3 Dimensionierung

$$P_{tot} = 500mW$$

$$U_z = 4.3V$$

$$U_z = 4.3V$$

$$U_e = 15V \pm 1V$$

$$U_a = 7V$$

$$U_a = 7V$$

BD139:

$$B = 100$$

$$I_B = (0.4 - 2)mA$$

$$U_a = U_z \left(1 - \frac{R_1}{R_2} \right)$$

$$R_2 = 15k\Omega$$

$$R_1 = \left(\frac{U_a}{U_z} - 1\right) R_1 = \left(\frac{7}{4.3} - 1\right) 15k = 9.4k\Omega$$

$$R_{VD,min} = \frac{U_{e,max} - U_z}{I_z} = \frac{(16 - 4.3)V}{20mA} = 585\Omega$$

$$R_{VD,gew} = 560\Omega$$

$$R_{L,max} = \frac{U_a}{I_{L,max}} = \frac{4,6V}{0,5A} = 9,2\Omega$$

3.1.4 Tabelle

dUa	60	mV
dUe	1,384	V
G	23,07	

$$G = \frac{dU_e}{dU_a} = \frac{1,38V}{63mV} = 23,06$$

3.1.5 Oszillogramm

Abbildung 1: Spannungsdeltas des Ein- & Ausgangs

3.1.6 Erkenntnis / Schlussfolgerung

Der Stabilisierungsfaktor der aufgebauten Schaltung ist mit 23 deutlich unter einem wünschenswerten Wert. Um einen höheren zu erreichen, wurde die Schaltung im zweiten Versuch mittels einer Ausgangsrückkopplung optimiert.

In Verbindung mit der Rückkopplung ist das Ausgangsspannungsdelta durch das Rauschen kaum mehr messbar. Dennoch lässt sich sagen, dass der Stabilisierungsfaktor um ein Vielfaches erhöht ist.

3.2 Spannungsfunktionen

3.2.1 Beschreibung des Messvorgangs

Nun soll die Spannung UA in Abhängigkeit des Ausgangstromes IA gesetzt werden und dessen Kennlinie ermittelt werden. Hierfür wird die Kollektor-Emitter-Spannung am Transistor und der Laststrom mit einem Digital-Multimeter gemessen.

3.2.2 Tabelle

Nr 💌	la 🔼	UA 💌
-	mA	V
1	13,73	6,78
2	20,17	6,72
3	25,41	6,43
4	49,30	6,53
5	76,80	6,31
6	99,00	6,16
7	124,00	5,99
8	149,00	5,80
9	173,30	5,63
10	204,40	5,41
11	246,10	5,07
12	301,90	4,61
13	328,10	4,41
14	381,00	4,11
15	408,70	3,91
16	488,00	2,58

3.2.3 Strom-Spannungs-Kennlinie über RL

3.2.4 Erkenntnis / Schlussfolgerung

Wie bereits bei der ersten LDO-Übung, ohne OPV, kann auch hier eine lineare Kennlinie mit starkem Abfall bei hoher Strombelastung gezeichnet werden. Zu sehen ist aber auch, dass im Vergleich zur ersten Kennlinie diese im linearen Bereich etwas flacher abfällt als hier.

Unterschrift:

Datum:	Note:	Punkte:	<u>Unterschrift:</u>