

# 实验二:K近邻与朴素贝叶斯

——分类和回归

PPT制作及出题人: 刘金杨(KNN) 商家煜(NB)



#### 几点说明

- 1. 本次实验报告DDL为10月18日,但是10月12,13日要验收KNN
- 2. 如果报告有新版本,在文件名后面加后缀,例如"15351234\_zhangsan\_v1.xx"
- 3. 代码一定会进行查重,重复率达到不可接受的阈值按抄袭处理,不接受任何反驳。
- 4. python库只能用numpy(矩阵的运算也可以用)



#### 实验报告内容

- 1. 算法原理: 用自己的话解释一下自己对模型的理解
- 2. 伪代码: 伪代码或者流程图(注意清晰简洁)
- 3. 关键代码截图: 代码+注释
- 4. 创新点&优化: 分点列出自己的创新点
- 5. 实验结果展示: 用小数据测试自己的模型是否正确
- 6. 评测指标展示: 基础模型的指标+与第4点中分点对应的优化后的

指标(如果有)



- KNN和NB都是有监督的机器学习模型
- 有监督训练的步骤:
  - 给出带标签的训练数据
  - 用训练数据训练模型至一定程度
  - 用训练好的模型预测不带标签的数据的标签



• 分类问题: 预测离散值的问题

——(如预测明天是否会下雨)

• 回归问题: 预测连续值的问题

——(如预测明天气温是多少度)



## k-NN处理分类问题



半径大小 表示 K值大小



### k-NN处理分类问题

• 输入:原始文本

• 输出: 类标签(happy, sadness...)

• 分类原则: 多数投票原则

| Γ | ocument number The sentence words |                                      | emotion  |
|---|-----------------------------------|--------------------------------------|----------|
|   | train 1 I buy an apple phone      |                                      | happy    |
|   | train 2                           | I eat the big apple                  | happy    |
|   | train 3                           | The apple products are too expensive | sadnesss |
|   | test 1                            | My friend has an apple               | ?        |



### 步骤1:数据集的特征表示

#### 数据集

| Document number | The sentence words                   | emotion  |
|-----------------|--------------------------------------|----------|
| train 1         | I buy an apple phone                 | happy    |
| train 2         | I eat the big apple                  | happy    |
| train 3         | The apple products are too expensive | sadnesss |
| test 1          | My friend has an apple               | ?        |

#### 处理成One-hot矩阵

| Document number | I | buy | an | apple | <br>friend | has | emotion |
|-----------------|---|-----|----|-------|------------|-----|---------|
| train 1         | 1 | 1   | 1  | 1     | <br>0      | 0   | happy   |
| train 2         | 1 | 0   | 0  | 1     | <br>0      | 0   | happy   |
| train 3         | 0 | 0   | 0  | 1     | <br>0      | 0   | sadness |
| test 1          | 0 | 0   | 1  | 1     | <br>1      | 1   | ?       |



### 步骤2: 相似度计算

#### 计算test1与每个train的欧氏距离 (也可以使用其他距离度量方式)

$$d(train1, test1) = \sqrt{(1-0)^2 + (1-0)^2 + \dots + (0-1)^2} = \sqrt{6};$$
 
$$d(train2, test1) = \sqrt{(1-0)^2 + (1-0)^2 + \dots + (0-1)^2} = \sqrt{8};$$
 
$$d(train3, test1) = \sqrt{(0-0)^2 + (0-0)^2 + \dots + (0-1)^2} = \sqrt{9};$$

若k=1, test1的标签即为train1的标签happy; 若k=3, test1的标签为train1,train2,train3的标签 中数量较多的,即为happy。



### k-NN处理回归问题

• 输入:原始文本

• 输出:属于某一类的概率(连续值)

| Documen | ocument number The sentence words |                                      | the probability of happy |
|---------|-----------------------------------|--------------------------------------|--------------------------|
| trai    | in 1                              | I buy an apple phone                 | 0.8                      |
| train 2 |                                   | I eat the big apple                  | 0.6                      |
| train 3 |                                   | The apple products are too expensive | 0.1                      |
| tes     | st 1                              | My friend has an apple               | ?                        |



### 步骤1:数据集的特征表示

#### 数据集

| Document number | The sentence words                   | the probability of happy |
|-----------------|--------------------------------------|--------------------------|
| train 1         | I buy an apple phone                 | 0.8                      |
| train 2         | I eat the big apple                  | 0.6                      |
| train 3         | The apple products are too expensive | 0.1                      |
| test 1          | My friend has an apple               | ?                        |

#### 处理成One-hot矩阵

| Document number | I | buy | an | apple | <br>friend | has | probability |
|-----------------|---|-----|----|-------|------------|-----|-------------|
| train 1         | 1 | 1   | 1  | 1     | <br>0      | 0   | 0.8         |
| train 2         | 1 | 0   | 0  | 1     | <br>0      | 0   | 0.6         |
| train 3         | 0 | 0   | 0  | 1     | <br>0      | 0   | 0.1         |
| test 1          | 0 | 0   | 1  | 1     | <br>1      | 1   | ?           |



### 步骤2: 根据相似度加权

计算test1与每个train的距离,选取TopK个训练数据 把该<mark>距离的倒数</mark>作为权重,计算test1属于该标签的概 率:

$$P(test1\ is\ happy) = \frac{train1\ probability}{d(train1, test1)} + \frac{train2\ probability}{d(train2, test1)} + \frac{train3\ probability}{d(train3, test1)}$$

思考: 为什么是倒数呢?

注意: 同一测试样本的各个情感概率总和应该为1 如何处理?



### 不同距离度量方式

•距离公式:

Lp距离(所有距离的总公式):

• 
$$L_p(x_i, x_j) = \left\{ \sum_{i=1}^n \left| x_i^{(l)} - x_j^{(l)} \right|^p \right\}^{\frac{l}{p}}$$

• *p* = 1: 曼哈顿距离;

• p = 2: 欧式距离,最常见。

(思考: 在矩阵稀疏程度不同的时候, 这两者表现有什么区别, 为什么?)



### 不同距离度量方式

### 余弦相似度:

$$\cos\left(\frac{1}{A},\frac{1}{B}\right) = \frac{\overrightarrow{A} \cdot \overrightarrow{B}}{|\overrightarrow{A}||B|}$$
,其中  $\overrightarrow{A}$  和  $\overrightarrow{B}$  表示两个文本特征向量;

- 余弦值作为衡量两个个体间差异的大小的度量
- 为正且值越大,表示两个文本差距越小
- 为负代表差距越大,请大家自行脑补两个向量余弦值。



### 更多实验方法提高准确率

- 采用不同的距离度量方式
- 通过验证集对参数(K值)进行调优
- 对权值进行归一化

| Name            | Formula                                      | Explain                                                   |
|-----------------|----------------------------------------------|-----------------------------------------------------------|
| Standard score  | $X' = \frac{X - \mu}{\sigma}$                | $\mu$ is the mean and $\sigma$ is the standard deviation  |
| Feature scaling | $X' = \frac{X - X_{min}}{X_{max} - X_{min}}$ | $X_{min}$ is the min value and $X_{max}$ is the max value |

PS:关于k的经验公式:一般取 $k=\sqrt{N}$ ,N为训练集实例个数,大家可以尝试一下



## 训练集 验证集 测试集的区别

| 数据类型                | 有无标签 | 作用                                                      |
|---------------------|------|---------------------------------------------------------|
| 训练集(training set)   | 有    | 用来 <mark>训练模型</mark> 或确定模型参数的,如k-NN中权值的确定等。<br>相当于平时练习。 |
| 验证集(validation set) | 有    | 用来确定网络结构或者控制模型复杂程度的参数,修正模型。<br>相当于模拟考试。                 |
| 测试集(test set)       | 无    | 用于检验最终选择最优的模型的性能如何。<br>相当于期末考试。                         |



### 训练集 验证集 测试集的使用

 一个典型的划分是训练集占总样本的50%,而其它各占25%, 三部分都是从样本中随机抽取。

本次实验分类任务和回归任务都出了训练集,验证集和测试 集。

validation.xlsx文件用于在验证集上进行结果的评估,使用相关系数,大家把验证集上的预测结果,粘贴在Predict工作表中,右边会产生结果。Standard工作表不要修改内容。



### KNN实验任务

- 分类(使用准确率进行衡量结果)
  - 1. 使用KNN处理分类问题。在验证集上,通过调节K值、选择不同距离等方式得到一个准确率最优的模型参数,并将该过程记录在实验报告中。
  - 2. 在测试集上应用步骤1中得到的模型参数(K, 距离类型等),将输出结果保存为 "学号\_姓名拼音\_KNN\_classification.csv",

文件内部格式参考"15351234\_Sample\_KNN\_classification.csv"

#### • 回归(使用相关系数进行衡量结果)

- 1. 使用KNN处理回归问题,在验证集上,通过调节K值、选择不同距离等方式得到一个相关系数最优的模型参数,并将该过程记录在实验报告中。这一步可以通过使用 "validation相关度评估.xlsx"文件辅助验证(也可以自己写代码)。
- 2. 在测试集上应用步骤1中得到的模型参数(K, 距离类型等),将输出结果保存为 "学号\_姓名拼音\_KNN\_regression.csv",

文件内部格式参考"15351234\_Sample\_KNN\_regression.csv"



### Naïve Bayes

HOLY CRAIL





# 实验课内容



Example:  $P_{(c)} = 0.01$ 

Sensitivity -> 真阳性

Test: 90% it is positive if you have cancer

 $P_{(Pos|c)} = 0.9$ 

Specificity -> 假阴性

90% it is negative if you don't have cancer

 $P_{(Neg|-c)} = 0.9$ 

Question: If Test = Positive

Probability of having cancer







Prior:

$$P_{(c)} = 0.01$$

$$P_{(Pos|c)} = 0.9$$

$$P_{(Pos|c)} = 0.9$$
  
 $P_{(Neg|} - c) = 0.9$ 

$$P_{(-)} = 0.99$$

$$P_{(\neg c)} = 0.99$$
  
 $P_{(Pos| \neg c)} = 0.1$ 

Posterior:

$$p(y|x) = \frac{p(x,y)}{p(x)} = \frac{p(x|y)p(y)}{p(x)}$$



Joint: 
$$P_{(c, pos)} = P_{(c)} * P_{(Pos|c)} = 0.009$$

$$P_{(\neg_{c, pos})} = P_{(\neg_{c})} P_{(Pos| \neg_{c})} = 0.099$$

normalizer: 
$$P_{(pos)} = P_{(c, pos)} + P_{(\neg c, pos)} = 0.108$$

Posterior: 
$$P_{(c|pos)} = 0.0833$$

$$P_{(\neg c|pos)} = 0.9167$$



```
9(C)
P(PoslC) senishinty
P(NeslaC) specificity
                                 P(PoslaC) add
P(PosiaC)
                                                             P(Pos)
                               divide
by P(pos)
P(701 Pos)
        P(C| Pos)
```

# Bayes rule

$$p(y|x) = \frac{p(x,y)}{p(x)} = \frac{p(x|y)p(y)}{p(x)}$$

where p(x) is a **constant** for all classes. Take animal classification as example: p(x) = p(x|y=0)p(y=0) + p(x|y=1)p(y=1)

Thus NB is to find

$$y = \arg\max_{y} p(y|x) = \arg\max_{y} \frac{p(x,y)}{p(x)}$$
$$= \arg\max_{y} p(x|y)p(y)$$



### Classification for Naïve Bayes

## Classification for Naïve Bayes

**Bernoulli Model (伯努利模型)**: a document is represented by a feature vector with binary elements taking value 1 if the corresponding word is present in the document and 0 if the word is not present.

$$p(x_k|e_i) = \frac{n_{e_i}(x_k)}{N_{e_i}}$$
  $p(e_i) = \frac{N_{e_i}}{N}$ 

where  $n_{e_i}(x_k)$  is the number of documents of emotion  $e_i$  in which  $x_k$  is observed, and  $N_{e_i}$  and N is the number of documents with emotion  $e_i$  and total documents, respectively.

### Classification for Naïve Bayes

Multinomial Model (多项式模型): a document is represented by a feature vector with integer elements whose value is the frequency of that word in the document.

$$p(x_k|e_i) = \frac{nw_{e_i}(x_k)}{nw_{e_i}}$$
  $p(e_i) = \frac{N_{e_i}}{N}$ 

where  $nw_{e_i}(x_k)$  is the number of times word  $x_k$  occurs in documents with emotion  $e_i$ , and  $nw_{e_i}$  is the total number of words occurs in documents with emotion  $e_i$ .

# Example

| ID | text                  | class label |
|----|-----------------------|-------------|
| 1  | good,thanks           | joy         |
| 2  | No impressive, thanks | sad         |
| 3  | Impressive good       | joy         |
| 4  | No, thanks            | ?           |



| ID | goods | thanks | no | impressive | class label |
|----|-------|--------|----|------------|-------------|
| 1  | 1     | 1      | 0  | 0          | joy         |
| 2  | 0     | 1      | 1  | 1          | sad         |
| 3  | 1     | 0      | 0  | 1          | joy         |
| 4  | 0     | 1      | 1  | 0          | ?           |

#### Bernoulli Model(伯努利模型):

$$P_{\text{(thanks|joy)}} = 1/2$$

#### Multinomial Model(多项式模型):

$$P_{\text{(thanks|joy)}} = 1/4$$

思考题:这两个模型分别有什么优缺点

## ②lassification(多项式模型)

| ID | text                  | class label |
|----|-----------------------|-------------|
| 1  | good,thanks           | joy         |
| 2  | No impressive, thanks | sad         |
| 3  | Impressive good       | joy         |
| 4  | No, thanks            | ?           |



| ID | goods | thanks | no | impressive | class label |
|----|-------|--------|----|------------|-------------|
| 1  | 1     | 1      | 0  | 0          | joy         |
| 2  | 0     | 1      | 1  | 1          | sad         |
| 3  | 1     | 0      | 0  | 1          | joy         |
| 4  | 0     | 1      | 1  | 0          | ?           |

#### Target function:

$$p(joy|d_4) = p(joy) \cdot p(d_4|joy)$$
$$p(sad|d_4) = p(sad) \cdot p(d_4|sad)$$

#### Example:

$$\begin{split} \textit{p}(\textit{joy}|\textit{d}_4) &= \textit{p}(\textit{d}_4|\textit{joy}) \cdot \textit{p}(\textit{joy}) \\ &= \textit{p}(" \textit{thanks"}, " \textit{no"} |\textit{joy}) \cdot \textit{p}(\textit{joy}) \\ &= \textit{p}(" \textit{thansk"} |\textit{joy}) \cdot \textit{p}(" \textit{no"} |\textit{joy}) \cdot \textit{p}(\textit{joy}) \\ &= \frac{1}{4} \times 0 \times \frac{2}{3} = 0 \end{split}$$



### Regression for Naïve Bayes



| Documnt     | sentence                       | joy | sad |
|-------------|--------------------------------|-----|-----|
| train1 (d1) | Step by step, we will succeed. | 0.9 | 0.1 |
| train2 (d2) | We step on shit.               | 0.3 | 0.7 |
| test1 (d3)  | We succeed.                    | ?   | ?   |

Figure: Example of documents

| X           | $x_1$ | $x_2$ | <i>x</i> <sub>3</sub> | $x_4$   | $x_5$ | $x_6$ | <i>x</i> <sub>7</sub> | emotion |     |
|-------------|-------|-------|-----------------------|---------|-------|-------|-----------------------|---------|-----|
| Document    | step  | by    | we                    | succeed | on    | shit  | will                  | joy     | sad |
| train1 (d1) | 0.33  | 0.17  | 0.17                  | 0.17    | 0     | 0     | 0.17                  | 0.9     | 0.1 |
| train2 (d2) | 0.25  | 0     | 0.25                  | 0       | 0.25  | 0.25  | 0                     | 0.3     | 0.7 |
| test1 (d3)  | 0     | 0     | 0.5                   | 0.5     | 0     | 0     | 0                     | ?       | ?   |

Figure: TF features of documents



To predict emotion  $e_i$  of test document  $X_3 = (x_3, x_4)$ , we need to estimate:

$$arg \max_{e_i} p(e_i|X) = arg \max_{e_i} \sum_{j=1}^{M} \prod_{k=1}^{K'} p(x_k|e_i, d_j) p(d_j, e_i)$$

$$p(joy|X_3) \propto p(x_3|joy, d_1)p(x_4|joy, d_1)p(d_1, joy)$$
  
  $+ p(x_3|joy, d_2)p(x_4|joy, d_2)p(d_2, joy)$   
  $= 0.17 \times 0.17 \times 0.9 + 0.25 \times 0 \times 0.3 = 0.02601$ 

$$p(sad|X_3) \propto p(x_3|sad, d_1)p(x_4|sad, d_1)p(d_1, sad)$$
  
  $+ p(x_3|sad, d_2)p(x_4|sad, d_2)p(d_2, sad)$   
  $= 0.17 \times 0.17 \times 0.1 + 0.25 \times 0 \times 0.7 = 0.00289$ 



Normalize the posterior distribution:

$$p'(joy|X_3) = \frac{0.02601}{0.02601 + 0.00289} = 0.9$$

$$p'(sad|X_3) = \frac{0.00289}{0.02601 + 0.00289} = 0.1$$

# aplace Smoothing

Notice that if the word  $x_k$  in test document does not occur in the training set,  $p(x_k|d_j, e_i)$  will be zero and thus cause the resulting value becoming 0.

Solution: Laplace Smoothing! (拉普拉斯平滑)

regression model:

$$p(x_k|d_j, e_i) = \frac{x_k + 1}{\sum_{k=1}^{K} x_k + K}$$

classification model:

Bernoulli: 
$$p(x_k|e_i) = \frac{n_{e_i}(x_k) + 1}{N_{e_i} + 2}$$

Multinomial: 
$$p(x_k|e_i) = \frac{nw_{e_i}(x_k) + 1}{nw_{e_i} + V_{e_i}}$$

where  $nw_{e_i}$  is the total number of words in documents with emotion  $e_i$ , and  $V_{e_i}$  is the number of non-repetitive words with label  $e_i$ .



- (1) 分类(使用<mark>准确率</mark>衡量结果) 分类只要求实现多项式模型
- (2) 回归(使用相关系数衡量结果)
  - 归一化最后的情感概率,使得六中情感概率相加为 1
  - 本次实验同样提供了 validation 数据集
- (3) 推荐实现拉普拉斯平滑

思考题:如果测试集中出现了一个之前全词典中没有出现过的词该如何解决

## 数据说明

总共 两个压缩包:

classification\_dataset和regression\_dataset 里面分别有三个文件,分别用作train、validation、test

从外,regression另外提供了一个相似度评估文件。

### 提交文件

• 总共 两个结果文件:

"学号\_姓名拼音\_NB\_classification.csv", "学号\_姓名拼音\_NB\_regression.csv", 打包,正确命名后上交ftp。 文件内部格式参考"15351234\_Sample\_NB\_classification.csv" 文件内部格式参考"15351234\_Sample\_NB\_regression.csv"

- 代码文件 尽量 是写在一个代码文件里, , **如果有多个 代码文件, 打包**, 正确命名后上交ftp。
- •报告中要有所有任务的结果展示,报告提交PDF版本,请勿提交word文件、避免排版混乱。



### 两次实验共提交文件



如果对此次实验题目有疑问, 请联系刘金杨和商家煜。



### 注意事项

1、作业提交地址

FTP地址: ftp://39.108.233.34

登录用户名与密码均为 student

提交文件夹的名字是 labx\_yyyyddmmend, x为第几次实验, yyyyddmmend是指截止日期, 比如20171018end

2、命名方式

查询"实验课须知",实验报告,所有代码文件以及结果文件都需要上交。

- 3、编程语言可用 C++, python, matlab, java等, 不能使用现成库(如 sklearn 等), 否则扣分
- 4、提交截止时间

2017年10月18日23:59:59前