

Query Processing – Part 2: Physical Operators

Abdu Alawini

University of Illinois at Urbana-Champaign

CS411: Database Systems

Leaning Objectives

After this lecture, you should be able to:

- Develop one-pass operators and understand their cost and memory requirements
- Develop two-pass (sort/hash-based) operators and understand their cost and memory requirements
- Develop index-based physical operators and understand their cost and memory requirements.

2

Today's Lecture

- One-Pass Algorithms
- Nested-Loop Join
- Two-Pass Algorithms
 - Sort-Based
 - Hash-based
- Index-Based Algorithms

Duplicate elimination $\delta(R)$

- Need to keep a "dictionary" in memory:
 - Unique tuples seen so far
 - balanced search tree, hash table, etc.
- Memory requirement: $M > B(\delta(R))$
 - [specifically, $M >= B(\delta(R)) + 1$]
 - We need to estimate $B(\delta(R))$ in advance, when planning whether to use this algorithm. Significant penalties if we underestimated!
- Cost: B(R), again assuming clustered relation on disk, no index use.

Grouping: $\gamma_{city, sum(price)}(R)$

SELECT city, SUM(price) FROM R GROUP BY city

- Need to keep a dictionary in memory
 - Each entry in the dictionary is: (city, sum(price))

Q: What if "SUM" was replaced with "AVG"?

Grouping: $\gamma_{city, sum(price)}(R)$

SELECT city, SUM(price) FROM R GROUP BY city

- Need to keep a dictionary in memory
 - Each entry in the dictionary is: (city, sum(price))

Q: What if "SUM" was replaced with "AVG"?

- Memory requirement: number of cities + aggregates fits in memory (plus one for input buffer)
- Cost: B(R), i.e., whatever it takes to read the blocks
- Note: Not ideally suited for the "iterator" model (pipelined production of output tuples). Why?

Binary operations:

- Read the smaller relation, store in memory.
- Build some data structure so that tuples can be accessed and inserted efficiently. (Hash table or Btree)
- Read the other relation, block by block, go through each tuple and decide whether to output or not.

 \bullet Cost: B(R)+B(S)

Set Union:

- Read the smaller relation (say S) into memory.
- Build a search structure whose search key is entire tuple. (*up to M-2 blocks can be used*)
- Read R, block by block (1 block). Once a block is loaded, for each tuple t in that block, see if t is in S; if not, copy t to the output block (1 block).
- Output distinct tuples of S from dictionary structure

• Memory requirement:

- M >= min(B(R), B(S)) + 2.
- $^{\bullet}$ Cost: B(R)+B(S)

Outline

- ✓ One-Pass Algorithms
- Nested-Loop Join
- Two-Pass Algorithms
 - Sort-Based
 - Hash-based
- Index-Based Algorithms

- Simple block-based nested loop $R \bowtie S$
- R=outer relation, S=inner relation

for each block r in R do
for each block s in S do
for each tuple r1 in r do
for each tuple s1 in s do
if r1 and s1 join then output (r,s)

• Memory: M >= 3; Cost: B(R) B(S)

Can we do even better?

Hint: lots of memory that can be used...

Block-based Nested Loop Join

for each (M-2) blocks r of R do
for each block s of S do
for each tuple r1 in r do
for each tuple s1 in s do
if r1 and s1 join then output(r,s)

one block reserved for the output buffer

```
M = 4;

R = [(1, a), (1, b)][(1, c), (1, d)][(1, e), (1, f)][(1, g)(1, h)]

S = [(1, x), (1, b)][(1, z), (1, c)][(1, v), (1, e)][(1, t), (1, g)]
```

$$M = 4;$$

 $R = [(1, a), (1, b)][(1, c), (1, d)][(1, e), (1, f)][(1, g)(1, h)]$
 $S = [(1, x), (1, b)][(1, z), (1, c)][(1, v), (1, e)][(1, t), (1, g)]$

R		S	Output
[(1, a), (1, b)]	[(1, c), (1, d)]	[(1, x), (1, b)]	
[(1, a), (1, b)]	[(1, c), (1, d)]	[(1, z), (1, c)]	
[(1, a), (1, b)]	[(1, c), (1, d)]	[(1, v), (1, e)]	
[(1, a), (1, b)]	[(1, c), (1, d)]	[(1, t), (1, g)]	
[(1, e), (1, f)]	[(1, g)(1, h)]	[(1, x), (1, b)]	
[(1, e), (1, f)]	[(1, g)(1, h)]	[(1, z), (1, c)]	
[(1, e), (1, f)]	[(1, g)(1, h)]	[(1, v), (1, e)]	
[(1, e), (1, f)]	[(1, g)(1, h)]	[(1, t), (1, g)]	

- Block-based Nested Loop Join
- Cost:
 - Read R once: cost B(R)
 - Outer loop runs B(R)/(M-2) times, and each time need to read S: costs B(S)B(R)/(M-2)
 - Total cost: B(R) + B(S)B(R)/(M-2)[Approximately B(R) B(S)/M]
- Notice: it is better to iterate over the smaller relation first— i.e., R

Think-Pair-Share

Why, in general, it is "slightly" better have the smaller relation is the outer relation?

A: because the smaller relation can fit in memory

B: By iterating over the smaller relation, the number of times to read the inner relation will be reduced

C: All of the above

D: None of the above

Outline

- ✓ One-Pass Algorithms
- ✓ Nested-Loop Join
- Two-Pass Algorithms
 - Sort-Based
 - Hash-based
- Index-Based Algorithms

16

Binary operations: $R \cap S$, $R \cup S$, R - S

- Idea: sort R, sort S, then do the right thing
 - What do we sort on?
- A closer look:
 - Step 1: split R into sorted runs of size M, then split S into sorted runs of size M. Cost: 2B(R) + 2B(S)
 - Step 2: merge all x runs from R; merge all y runs from S; output a tuple on a case by case basis ($x + y \le M-1$)
 - Why do we need all the sorted runs in memory at once?
- Total cost: ??
 - $^{\bullet}$ 3B(R)+3B(S)
- •Assumption: $B(R)+B(S) \le M(M-1) < M^2$

Join R⊳⊲S. Let's recap what we've seen so far -- extremes

- (a) $min(B(R), B(S)) \le M-2$: Load smaller table to memory and load other table block by block. Cost: B(R)+B(S). This is the <u>one-pass algorithm</u>.
- (b) Min(B(R), B(S)) > M-2: Load to memory M-2 blocks of S; go over every block of R; repeat. Cost: $\sim B(R)B(S)/M$. This is the nested-loop join algorithm, can operate whenever M >= 3

Nested loop join is the only option if Min(B(R), B(S))>M-2, but is too expensive, quadratic (B(R)B(S)).

Join R ⋈ S

- Start by writing out runs of R and S on the join attribute:
 - Cost: 2B(R)+2B(S) (because need to write to disk)
- "Merge" runs of both relations in sorted order, match tuples
 - Cost: B(R)+B(S)
- Total cost: 3B(R)+3B(S)
- Assumption: $B(R) + B(S) \le M (M-1)$

- One difficulty: many tuples in R may match many in S
 - If at least one set of tuples fits in M, we are OK
 - Otherwise need nested loop, higher cost
 - But let's assume that this is not the case; we are in a good situation can we do even better?
- See Section 15.4.6.

Outline

- ✓ One-Pass Algorithms
- ✓ Nested-Loop Join
- Two-Pass Algorithms
 - ✓ Sort-Based
 - Hash-based
- Index-Based Algorithms

21

A. Alawini

Two Pass Algorithms Based on Hashing

- Idea: partition a relation R into M roughly equal sized buckets, on disk
 - Hashing is crucial to affect this partitioning
- These buckets can then be examined "in one shot", independent of other buckets
 - Everything that needs to be considered together is in a small number of buckets (one or two)
- Can therefore do the operation by only looking at one or two buckets at a time.

Two Pass Algorithms Based on Hashing

- How to partition a relation R into (M-1) roughly equal sized buckets (on disk)?
- Each bucket has size approx. B(R)/(M-1)

- Does each bucket fit in main memory ?
 - Yes if $B(R)/(M-1) \le M$, roughly $B(R) < M^2$

Recap: One pass Hashing-based Join

- $^{\bullet}$ R \bowtie S
- Scan S into memory, build buckets in main memory
- Then scan R, hash the tuples of R, output those that match
- Assuming that the smaller table is smaller than the memory available.

Two pass Hashing-based Join

$R \bowtie S$

- Step 1:
 - Hash S into (M-1) buckets, using join attribute(s) as hash key
 - Send all buckets to disk
- Step 2
 - Hash R into (M-1) buckets, using join attribute(s) as hash key
 - Send all buckets to disk
- Step 3
 - Join every pair of buckets with the same bucket number. Use the one pass algorithm for this.
 - Works when for each bucket no. i, either R_i or S_i fits in memory.

Hash-Join

Partition both relations using hash fn h: R tuples in partition i will only match S tuples in partition i.

Two pass Hashing-based Join

$R \bowtie S$

- Step 1:
 - Hash S into (M-1) buckets, using join attribute(s) as hash key
 - Send all buckets to disk
- Step 2
 - Hash R into (M-1) buckets, using join attribute(s) as hash key
 - Send all buckets to disk
- Step 3
 - Join every pair of buckets with the same bucket number. Use the one pass algorithm for this.
 - Works when for each bucket no. *i*, either R_i or S_i fits in memory.
 - $\min(B(R), B(S))/(M-1) \le (M-2) \Leftrightarrow \min(B(R), B(S)) \le (M-1)(M-2) < M^2$
- Cost = 3(B(R)+B(S))

Sort-based vs Hash-based (for binary ops)

- For sorting-based implementations of binary operations, size requirement was $B(R)+B(S)<=M(M-1)<M^2$. For hashing-based implementation, requirement is $\min(B(R),B(S))<=(M-1)(M-2)<M^2$.
 - Hashing wins!
- Output of sorting-based algorithms are in sorted order, which may be useful for subsequent operations.
 - Sorting wins!
- Hashing-based algorithms rely on buckets being of roughly equal size. This may be a problem.
 - Sorting wins!
- Other differences too. Read 15.5.7.

Outline

- ✓ One-Pass Algorithms
- ✓ Nested-Loop Join
- Two-Pass Algorithms
 - ✓ Sort-Based
 - ✓ Hash-based
- Index-Based Algorithms

Index Based Selection

- •Selection on equality: $\sigma_{a=v}(R)$
- •Clustered index on a: cost = B(R)/V(R,a)
 - V(R, a) was defined as the number of distinct values of the attribute a.
- •Unclustered index on a: cost = T(R)/V(R,a)

Index Based Selection

- Example: B(R) = 2000, T(R) = 100,000, V(R, a) = 20, compute the cost of $\sigma_{a=v}(R)$.
- Cost of un-indexed selection:
 - If R is clustered on some key: B(R) = 2000 I/Os
 - If R is unclustered for all keys: T(R) = 100,000 I/Os
- Cost of index-based selection:
 - If index on a is clustered: B(R)/V(R,a) = 100
 - If index on a is unclustered: T(R)/V(R,a) = 5000
- Note: when V(R,a) is small, then unclustered index is useless

Index Based (Nested-Loop) Join

- $^{\bullet}$ R \bowtie S
- Assume S has an index on the join attribute
- Iterate over R, for each tuple fetch corresponding tuple(s) from S
- Assume R is clustered. Cost:
 - If index (on S) is clustered: B(R) + T(R)B(S)/V(S,a)
 - If index (on S) is unclustered: B(R) + T(R)T(S)/V(S,a)
- Looks useless (Example 15.12), but see text (paragraph following the example).

Index Based (Sort-Merge or Zig-zag) Join

- Assume both R and S have a sorted index (B+ tree) on the join attribute. (A clustering index.)
- Then perform a merge join (called zig-zag join)
 - This is only the last step of the "two pass sorting-based join" algorithm we saw previously.
 - "bring all relevant tuples into memory"
- Cost: B(R) + B(S)

Outline

- ✓ One-Pass Algorithms
- ✓ Nested-Loop Join
- ✓ Two-Pass Algorithms
 - ✓ Sort-Based
 - ✓ Hash-based
- ✓ Index-Based Algorithms

34