

Claims

1. A supported catalyst system comprising the product obtainable by contacting:

- a) an adduct of formula (I)

wherein

Mg is magnesium; Al is aluminum; O is oxygen;

T is chlorine, bromine, or iodine;

U is a linear or branched C₁-C₁₀ alkyl radical,

y ranges from 6.00 to 0.05;

j ranges from 3 to 0.1, being also a non integer number;

Q substituent, same or different, is a hydrocarbon radical containing from 1 to 20 carbon atoms optionally containing silicon or germanium atoms;

- b) with at least one compound selected from the compounds of formula (II), (III) and (IV)

(II)

(III)

(IV)

wherein

in the compound of formula (II)

M¹ is a transition metal atom selected from Groups 3-11 of Periodical Table (Group 3 including lanthanoids);

the substituents X, equal to or different from each other, are monoanionic sigma ligands selected from the group consisting of hydrogen, halogen, R, OR, OCOR, SR, NR₂ and PR₂, wherein R is a hydrocarbon radical containing from 1 to 20 carbon atoms optionally containing one or more Si or Ge atoms;

n ranges from 0 to 3;

the bonds connecting the two nitrogen atoms with the bridge L can be single bonds or double bonds;

each R¹, equal to or different from each other, is a C₁-C₄₀ hydrocarbon radical optionally containing one or more heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements;

L is a divalent or trivalent bridge connecting the two nitrogen atoms;

m ranges from 0 to 1; when m is 0 the group T¹ is not-existent;

T¹ is a Lewis base; the group T¹ can also be bonded to the group R¹; in the compound of formula (III):

Cr is a chromium atom; X is as described above;

Each R², R³, R⁴ and R⁵, equal to or different from each other, is a hydrogen atom, a halogen atom, or a C₁-C₄₀ hydrocarbon radical optionally containing one or more heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements; or two adjacent R², R³, R⁴ and R⁵ form one or more C₃-C₇ membered ring optional containing heteroatoms belonging to groups 13-17 of the periodic table;

L¹ is a divalent or trivalent bridging group selected from C₁-C₂₀ alkylidene, C₃-C₂₀ cycloalkylidene, C₆-C₂₀ arylidene, C₇-C₂₀ alkylarylidene, or C₇-C₂₀ arylalkylidene radicals optionally containing heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements, and silylidene radical containing up to 5 silicon atoms such as SiMe₂, SiPh₂;

m1 is 1 or 2, and more specifically m1 is 1 when Z is N or P, and m1 is 2 when Z is C, Si or Ge;

n1 is an integer ranging from 1 to 4;

A¹ is a moiety of formula (V)

(V)

wherein R², R³, R⁴ and R⁵ are as described above; or A¹ is an oxygen atom, a sulphur atom, a NR⁷, NR⁷₂, a OR⁷ or a SR⁷ group, wherein R⁷, is a C₁-C₄₀ hydrocarbon radical;

in the compound of formula (IV):

Cr is chromium; X, R², R³, R⁴ and R⁵ are as described above, and R⁸ has the same meaning given for R², R³, R⁴ and R⁵;

A^2 is a halogen atom, R^7 , OR^7 , $OCOR^7$, SR^7 , NR_2^7 , NR_3^7 , SR_2^7 , OR_2^7 wherein R^7 are as described above.

2. The catalyst system according to claim 1 wherein T is chlorine; U is a linear C_1-C_{10} alkyl radical; y ranges from 2 to 0.1; j ranges from 3 to 0.5 and Q is a linear or branched, cyclic or acyclic, C_1-C_{20} -alkyl, C_2-C_{20} alkenyl, C_2-C_{20} alkynyl, C_6-C_{20} -aryl, C_7-C_{20} -alkylaryl or C_7-C_{20} -arylalkyl radical optionally containing silicon or germanium atoms.
3. The catalyst system according to claims 1 or 2 wherein in the compound of formula (II) M^1 is a transition metal atom selected from Groups 3-6 and 8-10, X is an halogen atom or a R group; and L is a divalent or trivalent C_1-C_{40} hydrocarbon group optionally containing one or more heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements.
4. The catalyst system according to any one of claims 1 to 3 wherein in the compound of formula (III) L¹ is a divalent group $(ZR^6)_{m1}$; Z being C, Si, Ge, N or P, and each R⁶ group, equal to or different from each other, is a hydrogen atom or a hydrocarbon group containing from 1 to 20 carbon atoms, or two R⁶ can form a aliphatic or aromatic C_4-C_7 ring; R⁷ is a C_1-C_{20} -alkyl radical; and A¹ is a NR_2^7 group.
5. The catalyst system according to any one of claims 1 to 4 wherein the adduct of formula (I)

has a surface area (BET) higher than $30 \text{ m}^2/\text{g}$.

6. The catalyst system according to any one of claims 1 to 5 obtainable by the process comprising the following steps:
 - a) contacting
 - (i) a partially dealcoholated adduct of formula $MgT_2 \cdot wUOH$ wherein T is chlorine, bromine, or iodine; U is a linear or branched C_1-C_{10} alkyl radical, w ranges from 6 to 0.1; with
 - (ii) an organo-aluminium compound of formula H_eAlQ^{1-e} or $H_eAl_2Q^{1-e}$, wherein each Q¹ substituent, same or different, is a hydrogen atom, a halogen atom, or a hydrocarbon radical containing from 1 to 20 carbon atoms optionally containing silicon or germanium atoms; with the proviso that at least one Q¹ is different from halogen, and e ranges from 0 to 1, being also a non-integer number;

to obtain an adduct of formula (I) $MgT_2yAlQ_j(OU)_{3-j}$ (I) described above; and

- b) contacting the product obtained from step a) with at least one compound selected from the compounds of formula (II), (III) and (IV) as described in claim 1.
7. The catalyst system according to anyone of claims 1 to 6 wherein the amount of the compounds of formula (II), (III) or (IV) supported on the adduct of formula (I) is generally between $1000 \mu\text{mol/g}$ of support and $1 \mu\text{mol/g}$ of support.
8. The catalyst system according to anyone of claims 1 to 7 wherein the compound of formula (II) has formulas (IIa) or (IIb):

wherein R^1 , T^1 , M^1 , X , m and n are as described in claim 1;

R^9 is a hydrogen atom or a linear or branched, cyclic or acyclic, C_1-C_{20} -alkyl, C_2-C_{20} alkenyl, C_2-C_{20} alkynyl, C_6-C_{20} -aryl, C_7-C_{20} -alkylaryl or C_7-C_{20} -arylalkyl radical optionally containing heteroatoms belonging to groups 13-17 of the periodic table;

R^{10} is a divalent group selected from C_1-C_{20} alkylidene, C_3-C_{20} cycloalkylidene, C_6-C_{20} arylidene, C_7-C_{20} alkylarylidene, or C_7-C_{20} arylalkylidene radicals optionally containing heteroatoms belonging to groups 13-17 of the Periodic Table of the Elements, and silylidene radical containing up to 5 silicon atoms;

T^2 is an OR^{11} , SR^{11} or a NR^{11}_2 radical, wherein R^{11} is a linear or branched, cyclic or acyclic, C_1-C_{10} -alkyl, C_2-C_{10} alkenyl, C_2-C_{10} alkynyl, C_6-C_{10} -aryl, C_7-C_{10} -alkylaryl or C_7-C_{10} -arylalkyl radical.

9. The catalyst system according to claim 8 wherein in the compounds of formula (IIa) and (IIb) T^1 is tetrahydrofuran or a tertiary amine; M^1 is titanium or vanadium; n is 2 and m is 1.
10. The catalyst system according to anyone of claims 1 to 7 wherein the compound of formula (II) has formula (IIc):

wherein R¹, T¹, M¹, X, and n are as described in claim 1;

each R¹², equal to or different from each other, is a hydrogen atom or a linear or branched, cyclic or acyclic, C₁-C₂₀-alkyl, C₂-C₂₀ alkenyl, C₂-C₂₀ alkynyl, C₆-C₂₀-aryl, C₇-C₂₀-alkylaryl or C₇-C₂₀-arylalkyl radical optionally containing heteroatoms belonging to groups 13-17 of the periodic table; two R¹² groups can also join to form a C₃-C₈membered ring that can bear one or more C₁-C₁₅-alkyl, C₂-C₁₅ alkenyl, C₂-C₁₅ alkynyl, C₆-C₁₅-aryl, C₇-C₁₅-alkylaryl or C₇-C₁₅-arylalkyl substituents.

11. The catalyst system according to claim 10 wherein the compound of formula (IIc) has formulas (IIIca) or (IIIcb):

(IIIca)

(IIIcb)

wherein:

each R¹³, equal to or different from each other, is a hydrogen atom or a linear or branched, cyclic or acyclic, C₁-C₁₀-alkyl radical;

each R¹⁴, equal to or different from each other, is a hydrogen atom or a linear or branched, cyclic or acyclic, C₁-C₁₀-alkyl radical;

each R¹⁵, equal to or different from each other, is a hydrogen atom or a linear or branched, cyclic or acyclic, C₁-C₂₀-alkyl, C₂-C₂₀ alkenyl, C₂-C₂₀ alkynyl, C₆-C₂₀-aryl, C₇-C₂₀-alkylaryl or C₇-C₂₀-arylalkyl radical optionally containing heteroatoms belonging to groups 13-17 of the periodic table;

each R¹⁶, equal to or different from each other, is a hydrogen atom or a C₁-C₁₅-alkyl, C₂-C₁₅ alkenyl, C₂-C₁₅ alkynyl, C₆-C₁₅-aryl, C₇-C₁₅-alkylaryl or C₇-C₁₅-arylalkyl radical.

12. A process for (co)polymerizing olefins containing from 2 to 20 carbon atoms comprising contacting one or more of said olefins under polymerization conditions in the presence of the catalyst system of claims 1-11.
13. The process according to claim 12 wherein one or more alpha-olefins are (co)polymerized.
14. The process according to claim 12 wherein said alpha olefins are propylene, ethylene, 1-butene, 1-hexene and 1-octene.
15. A process for polymerizing ethylene comprising contacting one or more of said olefins under polymerization conditions in the presence of the catalyst system of claims 1-11.
16. The process according to claim 15 wherein the ethylene polymer has a molecular weight Mw higher than 500,000.