Hohr circle

Mohr circle is a graphical way to display the normal and shear stress on all planes.

For simplicity we look at 2D case, which is already very useful in geology.

Consider physical plane containing &, and &,

6 augle between n and e,

langle between n and e3

$$\lambda + 6 = \frac{\pi}{2} \rightarrow \lambda = \frac{\pi}{2} - \theta$$

$$n_i = \underline{n} \cdot \underline{e}_i = |\underline{n}| |\underline{e}_i| \cos \theta = \cos \theta$$

$$n_2 = \underline{n} \cdot \underline{C}_2 = \sin \theta$$

$$\Rightarrow \underline{n} = \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix} \Rightarrow \underline{m} = \begin{pmatrix} -\sin \theta \\ \cos \theta \end{pmatrix}$$

Stress in principal frame { = 3

traction: $t_{n} = \frac{1}{2} \cos \theta = \frac{1}{4} \cos \theta$ normal stress: $\delta = n \cdot t_{n} = \delta_{1} \cos^{2}\theta + \delta_{3} \sin^{2}\theta$ use: $\cos^{2}\theta = \frac{1 + \cos^{2}\theta}{2}$, $\sin^{2}\theta = \frac{1 - \cos^{2}\theta}{2}$ $\Rightarrow \delta = \frac{\delta_{1} + \delta_{3}}{2} + \frac{\delta_{1} - \delta_{3}}{2} \cos^{2}\theta$

shear stress: $T = m \cdot t_n = (\delta_1 - \zeta_3) \sin \theta \cos \theta$ where $2 \sin \theta \cos \theta = \sin \theta \cos \theta$ $\Rightarrow T = \frac{\delta_1 - \delta_3}{2} \sin \theta \cos \theta$

Together these are equations for circle in T_{8} -space with radius $R = \frac{\delta_{1}-\delta_{3}}{2}$ and center $(\frac{\delta_{1}+\delta_{2}}{2}, 0)$ Note: max shear stress: $T_{max} = \frac{\sigma_{1}-\delta_{3}}{2} = R$ mean stress: $\overline{\delta} = \frac{\delta_{1}+\delta_{2}}{2}$

For Mohr circle construction compressive stresses are assumed to be positive?

This is another way of showing that the max, shear stress is at 45° to n, and n3.

⇒ plane parallel to ez

Mohr circles in 3D

Repeat the arguments above for planes parallel to e, and es

⇒ Two additional circles for the on & T on those planes

=> clearly plans parallel to => how largest I.

Failure criteria for shear fracture

Shear fracture is most

common type of brittle

failure.

Empirical criterion that allows prediction of shear failure.

I, Tresca criterion

Fracture occurs when max. shear stress $T_{max} = T_{13}$ reaches the shear strength by $|T_{max}| = \frac{\delta_1 - \delta_3}{2} = \delta_y$

Note: Failure is not affected by intermediate principal stress and mean stress?

Failure occurs on planes 45° to 11.

Experiments show angle is smaller than 45°.

Example: Normal & shear stress on a fault

$$\Theta = 60^{\circ}$$

Really just 2D problem

mean stresp:
$$\bar{\sigma}_{13} = \frac{23 + 13.8}{2} = 18.4 \text{ MPa}$$

differential stress: $\Delta \bar{\sigma}_{13} = \frac{23 - 13.9}{2} = 4.6 \text{ MPa}$ (half!)

normal stress: $\bar{\sigma}_{4} = \bar{\sigma}_{13} + \Delta \bar{\sigma}_{13} \cos(2.60^{\circ}) = 16.1 \text{ MPa}$

shear stress: $\bar{\tau} = \Delta \bar{\sigma}_{13} \sin(2.60^{\circ}) = 4.0 \text{ MPa}$

Draw Mohr circle

General tensorial approach

The last approch worked (easily) because the fault was parallel to a principal direction of the stress tensor.

In general ve have two (right handed) frames:

- 1) Geographic frame {e;}
- 2) Principal frame of stress tensor {e;}

Geographic frame: N-E-D

$$e_1 = \{0\}$$
 $e_2 = \{0\}$
 $e_3 = \{0\}$
 $e_4 = \{0\}$
 $e_5 = Down$

Principal directions in geographic frame: $e'_1 = e_3$ principal stress is vertical $e'_3 = e_2$ minimal horizontal stress is E-W $e'_2 = e'_3 \times e'_1 = e_1$ generates right-handed frame

Compare two reference frames

Geographie Principal dir.

$$\stackrel{\underline{e_i}}{\rightleftharpoons_3} \underline{e_2}$$

Stress teusor in principal frame:

$$\begin{bmatrix} \underline{\partial} \end{bmatrix}' = \begin{bmatrix} 6, \\ 6_2 \\ \delta_3 \end{bmatrix} = \begin{bmatrix} 23 & 0 & 0 \\ 0 & 20 & 0 \\ 0 & 0 & 13.8 \end{bmatrix}$$
 | Pa

To compute normal & shear stress on fault we mud stress in geographic frame (2;): => change of basis tensor: A; = e; e;

$$\begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

Stress tensor in geographic frame:

$$\begin{bmatrix} \underline{e} \end{bmatrix} = \begin{bmatrix} \underline{A} \end{bmatrix} \begin{bmatrix} \underline{e} \end{bmatrix} \begin{bmatrix} \underline{A} \end{bmatrix}^{T} = \begin{bmatrix} 20 & 0 & 0 \\ 0 & 13.8 & 0 \\ 0 & 0 & 23 \end{bmatrix}$$
 HPa

To compute traction we need the normal to the fault:

traction en fault: $\underline{t}_n = \underline{\underline{s}} \cdot \underline{n} = \begin{bmatrix} 0 \\ 12 \\ -11.5 \end{bmatrix}$ MPe

normal stress:
$$\epsilon_n = \underline{n} \cdot \underline{o}\underline{n} = 16.1$$
 MPa \checkmark shear stress: $t = \sqrt{|t|^2 + \epsilon_n^2} = 4.0$ KPa \checkmark

II, Coulomb criterion

Fracture depends on both mag. of shear stress and the normal stress.

 $\mu' = \tan \phi$ internal friction ~ 0.6

¢ ≈ 30° angle of interval friction

failure occurs at Te < Tmax

angle of failure:

$$\theta_{c} = \frac{\pi}{4} + \frac{\phi}{2} \approx 60^{\circ}$$

Byerlee's law

Host brittle rochs already contain pre-existing fractures and fail by reachivating them => fail by friction

So = cohesion of fault ~ 1-10 HPa Mo = coefficient of friction ~ 0.5-0.8

Strength of brittle rocho is determined by frictional sliding.