Point Cloud Sampling Network

Huang^a, Yong Liu^{a,*}, and Jie Liang^{a,b}

^aLaboratory of Advanced Perception on Robotics and Intelligent Learning, College of Control Science and Engineering, Zhejiang University, Hangzhou, China

^bInstitute of Mechanical and Electrical Engineering, Beijing, China

1 Abstract

The increasing number of points in 3D point clouds has brought great challenges for subsequent algorithm efficiencies. Down-sampling algorithms are adopted to simplify the data and accelerate the computation.

2 Introduction

Existing works [4, 1, 2] often use random sampling and the farthest point sampling (FPS) to down-sample the point clouds. The differences between our work and former learning-based works are presented in Fig. 1. The discrepancy between progress-net and our method is presented in Fig. 1-(b) and (c).

Figure 1: (a) shows the differences between learning-based sampling strategies, while (b) and (c) present the discrepancy between progress-net and our method in multiresolution sampling

Our contributions can be summarized as:

- We propose a novel learning-based point cloud sampling framework named fast sampling network (FPN) by driving existing randomly sampled points to better positions;
- We introduce a hybrid training strategy to help FPN adapt to different sampling resolutions by randomly

introducing selecting the resolution of initial points during training;

3 Methodology

3.1 Basic Pipeline

The basic pipeline of FPN is presented in Fig. 2. We aggregate global features from the input points with a set of multilevel perceptions (MLPs) and Max Pooling following PointNet [3]

3.2 Hybrid Training Strategy

The achievement of HTS is presented as Algorithm 9.

3.3 Loss function

The range constraint can be presented as

$$\mathcal{L}_{rc} = \frac{1}{N} \sum ||S_o - S_i||_2 \tag{1}$$

For reconstruction related tasks, it may be Chamfer Distance or Earth Mover Distance [22] defined as

$$\mathcal{L}_{task} = L_{CD}(S_1, S_2)$$

$$= \frac{1}{2} \left(\frac{1}{|S_1|} \sum_{x \in S_1} \min_{y \in S_2} ||x - y||_2 + \frac{1}{|S_2|} \sum_{x \in S_2} \min_{y \in S_1} ||x - y||_2 \right)$$
(2)

r

$$\mathcal{L}_{task} = \mathcal{L}_{EMD}(S_1, S_2) = min_{\phi; S_1 \to S_2} \frac{1}{|s_1|} \sum_{x \in S_1} ||x - \Phi(x)||_2$$
(3)

4 Experiments

4.1 Dataset and Implementation Details

Table 1: The number of neurons in networks. f_1, f_2, f_3 are modules in Fig. 2.

	f_1	f_2	f_3
MLPs	(128, 256, 256)	(128, 256, 256)	(128,128,3)

Table 2: The comparison on optimal clustering.

Center	Iterations	1	10	100
16	FPS	2.43	2.00	1.98
	Ours	2.16	1.98	1.96
32	FPS	1.20	1.02	1.00
	Ours	1.11	1.00	1.00

The hyper-parameter λ is tuned on the validation split of ShapeNet.Detailed network structures are shown in Table 1

4.2 Discussion and Clustering

Except down-stream tasks such as reconstruction or recognition, down-sampled points can also be adopted as the initial clustering centers. The results are presented in Table 2

4.3 Ablation Study

The influence of range constraint. Note that this is only conducted to observe the influence of range constraint weight λ on sampling performances instead of the tuning

of λ , which is chosen according to the val set introduced in Section 4.1.

```
Algorithm 1: Training with Hybrid Training Strategy
```

```
Input: data X, the number of iterations iter, the number of resolutions m; prob_1, prob_2, \ldots, prob_m = \frac{1}{m}, \frac{1}{m}, \ldots, \frac{1}{m}; for i=1 to iter do Select the resolution r according to prob_1, \ldots, prob_m; Train FPN by descending gradient: \Delta_{\theta_{FPN}} \mathcal{L}_{loss}(Y_{X,r}) end
```

References

- [1] Qingyong Hu et al. "Randla-net: Efficient semantic segmentation of large-scale point clouds". In: *Proceedings* of the IEEE/CVF conference on computer vision and pattern recognition. 2020, pp. 11108–11117.
- [2] Charles R Qi et al. "Deep hough voting for 3d object detection in point clouds". In: proceedings of the IEEE/CVF International Conference on Computer Vision. 2019, pp. 9277–9286.
- [3] Charles R Qi et al. "Pointnet: Deep learning on point sets for 3d classification and segmentation". In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2017, pp. 652–660.
- [4] Charles Ruizhongtai Qi et al. "Pointnet++: Deep hierarchical feature learning on point sets in a metric space". In: Advances in neural information processing systems 30 (2017).

Figure 2: The whole pipeline of FPN. The + denotes element-wised addition. f_1 and f_2 aggregate features by MultiLayer Perceptrons(MLPs) and pooling, while f_3 is a group of MLPs to predict offsets from coordinates and features. The task network is corresponding to the specific task, such as point cloud recognition and reconstruction. L_{task} is the loss constrained the task network.