MSMS 301 - Time Series

Ananda Biswas

August 8, 2025

Contents

1	Some Important Functions	2
2	Stationarity	2
	2.1 Strong/Strict Stationary	2
	2.2 Weak Stationary	2
3	Random Walk	3
4	Moving Average Process	5
	4.1 MA(1) Process	5
	4.1 MA(1) Process	6
5	Autoregressive Process	7
	5.1 AR(1) Process	7
	5.2 AR(2) Process	

1 Some Important Functions

Let $\{X_t\}$ be any process. Then we have

- (1) Mean Function : $\mu(t) = E(X_t)$
- (2) Variance Functions: $\sigma^2(t) = E(X_t^2) (E(X_t))^2$
- (3) Covariance Function: $\gamma(t,s) = cov(X_t, X_s) = E(X_t X_s) E(X_t) E(X_s)$
- (4) <u>Correlation Function</u> : $\rho(t,s) = \frac{\gamma(t,s)}{\sqrt{\sigma^2(t) \cdot \sigma^2(s)}}$

2 Stationarity

Stationarity is a phenomenon of any stochastic process in which probabilistic nature of the random variables remain constant over time.

2.1 Strong/Strict Stationary

A stochastic process (or a time series to be specific) $\{X_t\}$ is said to be strictly stationary if the joint distribution of $\{X_{t_1}, X_{t_2}, \dots, X_{t_k}\}$ is same as the joint distribution of $\{X_{t_k+h}, X_{t_k+h}, \dots, X_{t_k+h}\}$ for all integers $k \geq 0$ and h i.e.

$$\{X_{t_1}, X_{t_2}, \dots, X_{t_k}\} \stackrel{d}{\equiv} \{X_{t_k+h}, X_{t_k+h}, \dots, X_{t_k+h}\}.$$

2.2 Weak Stationary

Strong Stationary is a much tough condition and is very rare to observe in practice. So we introduce a less strict set of conditions, called Weak Stationary Conditions.

A time series is said to be Weakly Stationary of order(r) if the moments of the process upto order r depend only on the time differences.

A time series $\{X_t\}$ is said to be Second Order Stationary if its mean is constant and autocovariance function depends only on the lag, provided all the required means exist *i.e.*

- (i) $\forall t \ E(X_t) = \mu$.
- (ii) $\forall t \ \gamma(h) = cov(X_t, X_{t+h})$ depends only on lag h, not depends on t.

Strong Stationary \Rightarrow Weak Stationary, but the converse is not necessarily true. However, for a Gaussian Process, Weak Stationary does readily imply Strong Stationary as a Gaussian Process is completely determined by its mean and covariance.

Let $\{Z_t\}$ ~ White Noise $(0, \sigma^2)$. Get $E(X_t)$, $Var(X_t)$, $cov(X_t, X_x)$ and $corr(X_t, X_s)$ for the process

$$X_t = \frac{1}{3}(Z_{t-1} + Z_t + Z_{t+1})$$

. Thus comment on the stationarity of the process $\{X_t\}$.

$$E(X_t) = \frac{1}{3}(E[Z_{t-1}] + E[Z_t] + E[Z_{t+1}]) = 0$$
, independent of t .

$$Var(X_t) = \frac{1}{9}(Var[Z_{t-1}] + Var[Z_t] + Var[Z_{t+1}]) = \frac{1}{9} \cdot 3\sigma^2 = \frac{\sigma^2}{3}$$
, independent of t.

Now

$$\begin{aligned} cov(X_t, X_s) &= cov\left(\frac{1}{3}\left(Z_{t-1} + Z_t + Z_{t+1}\right), \frac{1}{3}(Z_{s-1} + Z_s + Z_{s+1})\right) \\ &= \frac{1}{9}\left[cov(Z_{t-1}, Z_{s-1}) + cov(Z_{t-1}, Z_s) + cov(Z_{t-1}, Z_{s+1})\right] \\ &+ \frac{1}{9}\left[cov(Z_t, Z_{s-1}) + cov(Z_t, Z_s) + cov(Z_t, Z_{s+1})\right] \\ &+ \frac{1}{9}\left[cov(Z_{t+1}, Z_{s-1}) + cov(Z_{t+1}, Z_s) + cov(Z_{t+1}, Z_{s+1})\right] \\ &= \begin{cases} \frac{1}{3}\sigma^2, & |t-s| = 0 \\ \frac{2}{9}\sigma^2, & |t-s| = 1 \\ \frac{1}{9}\sigma^2, & |t-s| = 2 \\ 0, & |t-s| \ge 3 \end{cases} \end{aligned}$$

- \therefore So the covariances are independent of t and depending only on lag |t-s|.
- \Rightarrow The process $\{X_t\}$ is weak stationary.

Then

$$corr(X_{t}, X_{s}) = \frac{cov(X_{t}, X_{s})}{\sqrt{Var(X_{t}) \cdot Var(X_{s})}}$$

$$= \frac{cov(X_{t}, X_{s})}{\frac{\sigma^{2}}{3}}$$

$$= \begin{cases} 1, |t - s| = 0\\ \frac{2}{3}, |t - s| = 1\\ \frac{1}{3}, |t - s| = 2\\ 0, |t - s| \ge 3 \end{cases}$$

3 Random Walk

@ 01.08.2025, Friday

For a process of the form $X_t = Z_{t-1} + 2Z_t + Z_{t+1}$, t = 0, 1, 2, ... where $Z_t \sim$ White Noise $(0, \sigma^2)$, determine the ACVF and ACF as a function of lag h. Also plot the ACF as a function of h.

From the given,
$$E(X_t) = E(Z_{t-1}) + 2E(Z_t) + E(Z_{t+1}) = 0 \ \forall t.$$

The ACVF is given by

$$\gamma(h) = cov(X_t, X_{t+h})$$

$$= cov(Z_{t-1} + 2Z_t + Z_{t+1}, Z_{t+h-1} + 2Z_{t+h} + Z_{t+h+1})$$

$$= cov(Z_{t-1}, Z_{t+h-1}) + 2 \cdot cov(Z_{t-1}, Z_{t+h}) + cov(Z_{t-1}, Z_{t+h+1})$$

$$+ 2 \cdot cov(Z_t, Z_{t+h-1}) + 4 \cdot cov(Z_t, Z_{t+h}) + 2 \cdot cov(Z_t, Z_{t+h+1})$$

$$+ cov(Z_{t+1}, Z_{t+h-1}) + 2 \cdot cov(Z_{t+1}, Z_{t+h}) + cov(Z_{t+1}, Z_{t+h+1})$$

$$= \begin{cases} \sigma^2 + 0 + 0 + 0 + 4\sigma^2 + 0 + 0 + 0 + \sigma^2, & h = 0 \\ 0 + 0 + 0 + 2\sigma^2 + 0 + 0 + 0 + 2\sigma^2 + 0, & h = 1 \\ 0 + 2\sigma^2 + 0 + 0 + 0 + 2\sigma^2 + 0 + 0 + 0, & h = -1 \\ 0 + 0 + 0 + 0 + 0 + 0 + \sigma^2 + 0 + 0, & h = 2 \\ 0 + 0 + \sigma^2 + 0 + 0 + 0 + 0 + 0 + 0, & h = 2 \\ 0, & h = \pm 3, \pm 4, \pm 5, \dots \end{cases}$$

$$= \begin{cases} 6\sigma^2, & h = 0 \\ 4\sigma^2, & h = \pm 1 \\ \sigma^2, & h = \pm 2 \\ 0, & h = \pm 3, \pm 4, \pm 5, \dots \end{cases}$$

Consequently the ACF will be

$$\rho(h) = \frac{\gamma(h)}{\gamma(0)}$$

$$= \begin{cases} 1, & h = 0 \\ \frac{2}{3}, & h = \pm 1 \\ \frac{1}{6}, & h = \pm 2 \\ 0, & h = \pm 3, \pm 4, \pm 5, \dots \end{cases}$$

4 Moving Average Process

Suppose $\{Z_t\}$ is a purely random process with mean 0 and variance σ^2 . A process $\{X_t\}$ derived as a weighted sum of present and past \mathbf{q} white noises is said to be a Moving Average Process of order q (abbreviated to MA(q)).

$$X_t = \beta_0 Z_t + \beta_1 Z_{t-1} + \dots + \beta_q Z_{t-q}$$
 (1)

where all β_i 's are constants. The Z's are usually scaled so that $\beta_0 = 1$.

It immediately follows

- $E(X_t) = 0 \ \forall t \text{ as } E(Z_t) = 0 \ \forall t$
- $Var(X_t) = \sigma^2 \sum_{i=0}^{q} \beta_i^2 \ \forall t \text{ as } Z_t \overset{ind}{\sim} \text{variance } = \sigma^2 \ \forall t.$

$4.1 \quad MA(1) \text{ Process}$

With $Z_t \sim$ White Noise $(0, \sigma^2)$, the first order moving average process $\{X_t\}$ is defined as

$$X_t = \beta_0 Z_t + \beta_1 Z_{t-1}; \ \beta_0 = 1 \tag{2}$$

or
$$X_t = Z_t + \theta Z_{t-1}$$
 (3)

where $\theta \in \mathbb{R}$ (as the process is finite, θ is free to be any real constant).

Clearly $E(X_t) = 0 \ \forall t \ \text{and} \ Var(X_t) = \sigma^2(1 + \theta^2).$

Now

$$\gamma(h) = cov(X_t, X_{t+h})
= cov(Z_t + \theta Z_{t-1}, Z_{t+h} + \theta Z_{t+h-1})
= cov(Z_t, Z_{t+h}) + \theta \cdot cov(Z_t, Z_{t+h-1}) + \theta \cdot cov(Z_{t-1}, Z_{t+h}) + \theta^2 \cdot cov(Z_{t-1}, Z_{t+h-1})
= \begin{cases} \sigma^2(1 + \theta^2), & h = 0 \\ \theta \sigma^2, & h = \pm 1 \\ 0, & h = \pm 2, \pm 3, \pm 4, \dots \end{cases}$$

Then

$$\rho(h) = \frac{\gamma(h)}{\gamma(0)}$$

$$= \begin{cases} 1, & h = 0\\ \frac{\theta}{1 + \theta^2}, & h = \pm 1\\ 0, & h = \pm 2, \pm 3, \pm 4, \dots \end{cases}$$

So, for MA(1) process, the autocorrelation function vanishes after lag 1. This is an identifier for MA(1) process.

4.2 MA(q) Process

MA(q) process as in (1) can be written as $X_t = \sum_{i=0}^{q} \beta_i Z_{t-i}$.

Then

$$\begin{split} \gamma(h) &= cov(X_t, X_{t+h}) \\ &= cov\left(\sum_{i=0}^q \beta_i Z_{t-i}, \sum_{j=0}^q \beta_j Z_{t+h-j}\right) \\ &= cov\left(\sum_{i=0}^q \beta_i Z_{t-i}, \sum_{s=-h}^{q-h} \beta_{s+h} Z_{t-s}\right) \quad [s=j-h] \\ &= cov\left(\sum_{i=0}^q \beta_i Z_{t-i}, \sum_{i=-h}^{q-h} \beta_{i+h} Z_{t-i}\right) \quad [\text{runner } s \text{ is just a dummy variable}] \\ &= \sum_{i=0}^{q-h} \beta_i \beta_{i+h} \cdot cov(Z_{t-i}, Z_{t-i}) \\ &= \sigma^2 \sum_{i=0}^{q-h} \beta_i \beta_{i+h} \\ &= \begin{cases} \sigma^2 \sum_{i=0}^{q-h} \beta_i \beta_{i+h}, & h=0,1,\ldots,q \\ 0, & h>q \\ \gamma(-h), & h<0 \end{cases} \end{split}$$

Consequently

$$\rho(h) = \frac{\gamma(h)}{\gamma(0)}$$

$$= \begin{cases} \sum_{i=0}^{q-h} \beta_i \beta_{i+h} \\ \sum_{i=0}^{q} \beta_i^2 \\ 0, h > q \\ \rho(-h), h < 0 \end{cases}$$

 \bigcirc It can be seen from the above expression that ACF becomes 0 at lag k > q. It shows that ACF of MA process cuts off at lag q which is a special characteristics of MA(q) process.

@ 03.08.2025, Sunday (Yesss!! On a goddaamn Sunday!! \circlearrowleft)

<u>Random Cosine Curve</u>: Consider a stochastic process $\{X_t\}$ given by

$$X_t = \cos\left(2\pi\left(\frac{t}{12} + \Phi\right)\right). \ t = 0, \pm 1, \pm 2, \dots$$

where $\Phi \sim U(0,1)$. Find $E(X_t)$ and $Var(X_t)$.

Autoregressive Process 5

AR(1) Process

The first-order autoregressive process $\{X_t\}$ is defined as

$$X_t = \alpha X_{t-1} + Z_t \ t = 0, \pm 1, \pm 2, \dots$$
 (4)

where Z_t 's are White Noise with mean 0 and variance σ^2 ; $\alpha \in \mathbb{R}$, constant.

Notice (4) reduces to a random walk model for $\alpha = 1$.

We may write (4) as $X_t = \alpha B X_t + Z_t$ where B is a backshift operator with $B X_t = X_{t-1}$.

Then $(1 - \alpha B)X_t = Z_t$ so that

$$X_{t} = (1 - \alpha B)^{-1} Z_{t}$$

$$= (1 + \alpha B + \alpha^{2} B^{2} + \alpha^{3} B^{3} + \dots) Z_{t}$$

$$= Z_{t} + \alpha Z_{t-1} + \alpha^{2} Z_{t-2} + \alpha^{3} Z_{t-3} + \dots$$

$$= \sum_{j=0}^{\infty} \alpha^{j} Z_{t-j} \text{ provided the sum exists } i.e. |\alpha| < 1$$
(5)

Using (5), $E(X_t) = 0$, $t = 0, \pm 1, \pm 2, \dots$

And
$$Var(X_t) = \sigma^2 \sum_{j=0}^{\infty} \alpha^{2j} = \frac{\sigma^2}{1 - \alpha^2}$$
, provided $|\alpha| < 1$.

Then

$$\gamma(h) = cov(X_t, X_{t+h})$$

$$= cov\left(\sum_{j=0}^{\infty} \alpha^j Z_{t-j}, \sum_{j=0}^{\infty} \alpha^j Z_{t+h-j}\right)$$

$$= cov\left(\sum_{j=0}^{\infty} \alpha^j Z_{t-j}, \sum_{k=-h}^{\infty} \alpha^{k+h} Z_{t-k}\right), \text{ taking } k = j - h$$

$$= \sigma^2 \sum_{j=0}^{\infty} \alpha^j \alpha^{j+h}$$

$$= \sigma^2 \alpha^h \sum_{j=0}^{\infty} \alpha^{2j}$$

$$= \frac{\sigma^2 \alpha^h}{1 - \alpha^2} \text{ provided } |\alpha| < 1, h \ge 0$$

Note that $\gamma(h)$ does not depend on t. So AR(1) model is weak stationary only if $|\alpha| < 1$.

Consequently

$$\rho(h) = \frac{\gamma(h)}{\gamma(0)}$$

$$= \begin{cases} 1, & h = 0 \\ \alpha^h, & h = 1, 2, \dots \\ \rho(-h), & h = -1, -2, \dots \end{cases}$$

$$= \alpha^{|h|}, & h = \pm 1, \pm 2, \dots$$

Multiplying X_{t-k} on both sides of (4) and taking expectation we get

$$E(X_t \cdot X_{t-h}) = \alpha E(X_{t-1} \cdot X_{t-h}) + E(Z_t \cdot X_{t-h}),$$

$$\Rightarrow \gamma(h) = \alpha \gamma(h-1)$$
(6)

Remember Z_t , X_{t-h} are independent and $E(X_t) = 0 \ \forall t$. Also, using (5), $cov(Z_t, X_{t-h}) = 0$.

Following (6) we have

$$\gamma(1) = \alpha \gamma(0)$$

$$\gamma(2) = \alpha^2 \gamma(0)$$

$$\vdots$$

$$\gamma(h) = \alpha^h \gamma(0)$$
(7)

On dividing both sides of (7) by $\gamma(0)$, we get

$$\rho(h) = \alpha^{|h|}, \ h = 0, \pm 1, \pm 2, \dots$$

-_-

Find ACVF & ACF and draw the ACF plot for the following AR(1) processes.

- (i) $X_t = 0.35 X_{t-1} + Z_t$
- (ii) $X_t = 0.85 X_{t-1} + Z_t$
- (iii) $X_t = -0.35 X_{t-1} + Z_t$

The ACVFs and ACFs are as follows.

- (i) $\gamma(h) = 0.8775 \cdot \sigma^2 0.35^{|h|}, \, \rho(h) = 0.35^{|h|} \, \forall h = 0, \pm 1, \pm 2, \dots$
- (ii) $\gamma(h) = 0.2775 \cdot \sigma^2 0.85^{|h|}, \, \rho(h) = 0.85^{|h|} \, \forall h = 0, \pm 1, \pm 2, \dots$
- (iii) $\gamma(h) = 0.8775 \cdot \sigma^2 (-0.35)^{|h|}, \ \rho(h) = (-0.35)^{|h|} \ \forall h = 0, \pm 1, \pm 2, \dots$

5.2 AR(2) Process

The second-order autoregressive process $\{X_t\}$ is defined as

$$X_t = \alpha_1 X_{t-1} + \alpha_2 X_{t-2} + Z_t \ t = 0, \pm 1, \pm 2, \dots$$
 (8)

where Z_t 's are White Noise with mean 0 and variance σ^2 ; $\alpha_1, \alpha_2 \in \mathbb{R}$, constants.

The AR(2) process in (8) can be written in terms of backshift operator B as follows.

$$X_t = \alpha_1 B X_t + \alpha_2 B^2 X_t + Z_t$$

$$(1 - \alpha_1 B - \alpha_2 B^2) X_t = Z_t$$

$$X_t = (1 - \alpha_1 B - \alpha_2 B^2)^{-1} Z_t$$

$$= (\alpha(B))^{-1} Z_t$$

$$= \psi(B) Z_t$$

where $\alpha(z) = 1 - \alpha_1 z - \alpha_2 z^2$ and $\psi(z) = 1 + \psi_1 z + \psi_2 z^2 + \ldots = \sum_{j=0}^{\infty} \psi_j z^j$ with $\psi_0 = 1$.

$$\therefore X_t = \sum_{j=0}^{\infty} \psi_j B^j Z_t$$

$$= \sum_{j=0}^{\infty} \psi_j Z_{t-j} \text{ with } \psi_0 = 1$$
(9)

Using (9), $E(X_t) = 0$, $t = 0, \pm 1, \pm 2, \dots$

And $\gamma(0) = Var(X_t) = \sigma^2 \sum_{j=0}^{\infty} \psi_j^2$, provided the sum exists.

Then

$$\forall h > 0, \ \gamma(h) = cov(X_t, X_{t+h})$$

$$= cov\left(\sum_{j=0}^{\infty} \psi_j Z_{t-j}, \sum_{j=0}^{\infty} \psi_j Z_{t+h-j}\right)$$

$$= cov\left(\sum_{j=0}^{\infty} \psi_j Z_{t-j}, \sum_{k=-h}^{\infty} \psi_{k+h} Z_{t-k}\right), \text{ taking } k = j-h$$

$$= \sigma^2 \sum_{j=0}^{\infty} \psi_j \psi_{j+h} \text{ provided the sum exists}$$

Thus

$$\gamma(h) = \begin{cases} \sigma^2 \sum_{j=0}^{\infty} \psi_j \psi_{j+h}, \ h = 1, 2, 3, \dots \\ \\ \sigma^2 \sum_{j=0}^{\infty} \psi_j^2, \ h = 0 \\ \\ \rho(-h), \ h = -1, -2, -3, \dots \text{ provided all the sums exist} \end{cases}$$

Consequently

$$\rho(h) = \begin{cases} \sum_{j=0}^{\infty} \psi_j \psi_{j+h} \\ \sum_{j=0}^{\infty} \psi_j^2 \\ \rho(-h), \ h = -1, -2, -3, \dots \text{ provided all the sums exist} \end{cases}$$