

Calculus 1 The Derivative at a point

Dr. Adam Larios

Calculus 1 The Derivative at a point

Dr. Adam Larios

Average Versus Instantaneous Rate of Change

Calculus 1 The Derivative at a point

Dr. Adam Larios The average rate of change of f over the interval from a to a+h is given by

$$\frac{f(a+h) - f(a)}{h}$$

The Derivative

The derivative of f at a, written f'(a), is defined as

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}.$$

If the limit exists, then f is said to be differentiable at a.

To emphasize that f'(a) is the rate of change of f(x) as the variable x changes, we call f'(a) the derivative of f with respect to x at x=a. When the function y=s(t) represents the position of an object, the derivative s'(t) is the velocity.

Clicker Question

Calculus 1 The Derivative at a point

Dr. Adam Larios Suppose we want to find how the volume, V, of a balloon changes as it is filled with air. We know $V(r)=4/3\pi r^3$, where r is the radius in inches and V(r) is in cubic inches. Which of the following represents the instantaneous rate at which the volume is changing when the radius is 1 inch?

- a) $\frac{V(1.01)-V(1)}{0.01} = 12.69 \mathrm{in}^3$
- b) $\frac{V(0.99)-V(1)}{-0.01} = 12.44 \text{in}^3$
- c) $\lim_{h\to 0} \frac{V(1+h)-V(1)}{h}$ in³
- d) All of the above

Visualizing the Derivative:

Calculus 1 The Derivative at a point

> Dr. Adam Larios

The derivative at point A can be interpreted as:

- The slope of the curve at A.
- The slope of the tangent line to the curve at A.

Visualizing the Derivative:

Calculus 1 The Derivative at a point

Dr. Adam Larios The derivative at point A can be interpreted as:

- The slope of the curve at A.
- The slope of the tangent line to the curve at A.

	h	2^h	2^{0}	$\frac{2^h-1}{h}$
-	-0.0003		1	
-	-0.0002		1	
-	-0.0001		1	
	0	1	1	Undefined
	0.0001		1	
	0.0002		1	
	0.0003		1	

Complete the table on your own a

For the function g(x) shown below, arrange the following numbers in increasing order.

- a) (
- b) g'(-2)
- c) g'(0)
- d) g'(1)
- e) q'(3)

Computing the Derivative Algebraically

Calculus 1 The Derivative at a point

> Dr. Adam Larios

Find the derivative of f(x) = 1/x at the point x = 2

Solution: Solution The derivative is the limit of the difference quotient, so we look at

$$f'(2) = \lim_{h \to 0} \frac{f(2+h) - f(2)}{h} = \lim_{h \to 0} \frac{\frac{1}{2+h} - \frac{1}{2}}{h}$$
$$= \lim_{h \to 0} \frac{2 - (2+h)}{2h(2+h)} = \lim_{h \to 0} \frac{-h}{2h(2+h)}$$

Since the limit only examines values of h close to, but not equal to, zero, we can cancel h. We get

$$f'(2) = \lim_{h \to 0} \frac{-h}{2h(2+h)} = \frac{-1}{4}$$

Thus, f'(2) = ?1/4.

Clicker

Calculus 1 The Derivative at a point

> Dr. Adam Larios

> > Let f(x) = x|x|. Then f(x) is differentiable at x = 0.

- a) True
- b) False

Hint: Work out the limit yourself and see!