On the (In)Security of a Pairing-Based Group Signature Protocol

Sanjit Chatterjee

University of Waterloo

February 25, 2010

What is a Pairing?

Let $\mathbb{G}_1 = \langle P_1 \rangle$, $\mathbb{G}_2 = \langle P_2 \rangle$ and \mathbb{G}_T be three groups.

A bilinear pairing on $(\mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T)$ is a function $e : \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$ such that:

1. Bilinearity: For all $Q_1, Q_2 \in \mathbb{G}_1, R_1, R_2 \in \mathbb{G}_2$:

$$e(Q_1 + Q_2, R_1) = e(Q_1, R_1)e(Q_2, R_1)$$

$$e(Q_1, R_1 + R_2) = e(Q_1, R_1)e(Q_1, R_2).$$

- 2. Non-degeneracy: $e(P_1, P_2) \neq 1$.
- 3. Computability: *e* can be computed efficiently.

Note: $e(aU,bV) = e(U,V)^{ab} = e(bU,aV) \ \forall U \in \mathbb{G}_1, V \in \mathbb{G}_2, a,b \in \mathbb{Z}.$

Known examples: Weil pairing, Tate pairing over elliptic curves.

Types of Pairing

$$e: \mathbb{G}_1 imes \mathbb{G}_2 o \mathbb{G}_T$$

- ▶ \mathbb{G}_1 , \mathbb{G}_2 and \mathbb{G}_T are cyclic groups of prime order n.
- e is a symmetric pairing if $G_1 = \mathbb{G}_2$ (aka, Type 1 pairing).
- ▶ If an efficiently-computable isomorphism $\psi : \mathbb{G}_2 \to \mathbb{G}_1$ $(\psi(P_2) = P_1)$, is known, then e is called a Type 2 pairing.
- ▶ If no such isomorphism ψ is known, then e is called a Type 3 pairing.

Types of Pairing

$$e: \mathbb{G}_1 imes \mathbb{G}_2 o \mathbb{G}_T$$

- ▶ \mathbb{G}_1 , \mathbb{G}_2 and \mathbb{G}_T are cyclic groups of prime order n.
- e is a symmetric pairing if $G_1 = \mathbb{G}_2$ (aka, Type 1 pairing).
- ▶ If an efficiently-computable isomorphism $\psi : \mathbb{G}_2 \to \mathbb{G}_1$ $(\psi(P_2) = P_1)$, is known, then e is called a Type 2 pairing.
- ▶ If no such isomorphism ψ is known, then e is called a Type 3 pairing.
- ▶ Type 4: \mathbb{G}_2 is a (non-cyclic) group of order n^2 .

Why Type 4?

- Some cryptographic protocols involve hashing into \mathbb{G}_2 followed by an application of ψ on the hash digest.
- ▶ They cannot be implemented in Type 2 or Type 3 settings.
- These protocols can be implemented in Type 4.
 - ▶ But the cost of hashing into G₂ is quite high.

Group Signature

- Every member has a secret key but there is a single public key for the whole group.
- Group signatures provide signer-anonymity.
- Revocation of a user may be critical for some applications.

Boneh-Shacham Group Signature

- ▶ BS group signature allows a verifier to locally check whether the given signature is generated by a revoked user.
 - Verifier-local revocation (VLR) group signature.
 - The signature length is short.
 - Application: privacy preserving attestation.
- The first protocol for which Type 4 setting was introduced.
- ► The protocol is quite involved...and so is the security argument.

Revocation Check in BS-VLR Group Signature

- A list of revocation tokens (RL) corresponding to the revoked users is publicly available.
- Suppose the signature (σ) is generated by a user whose revocation token A is in RL.
- ▶ The correctness of the protocol mandates that σ must be rejected.

Revocation Check (contd.)

The protocol stipulates that σ will be rejected as the following holds:

$$e(T_2 - A, \hat{U}) = e(T_1, \hat{V})$$
 (1)

where $(\hat{U}, \hat{V}) = \operatorname{Hash}(gpk, M, r) \in \mathbb{G}_2$, and $T_1 = \psi(\alpha \hat{U}), T_2 = A + \psi(\alpha \hat{V})$ are part of σ .

- Suppose $U = \psi(\hat{U})$ and $V = \psi(\hat{V})$, so Eqn. 1 can be rewritten as $e(\alpha V, \hat{U}) = e(\alpha U, \hat{V})$
- ▶ Trivially holds if \mathbb{G}_2 is of same prime order n as \mathbb{G}_1 .
 - Write $\hat{U} = x\hat{V}$ and U = xV.

Another Look at the Revocation Check

- ▶ But G₂ is a group of order n²!
- $ightharpoonup \hat{U}, \hat{V}$ are obtained through hashing into random elements of \mathbb{G}_2 .
 - ► The probability that they belong to the same order-n subgroup of G₂ is negligibly small.
- ▶ With overwhelming probability Eqn. 1 will not hold.
 - A signature generated by a revoked user will be accepted as valid.

Another Look at the Revocation Check

- ▶ But G₂ is a group of order n²!
- $ightharpoonup \hat{U}, \hat{V}$ are obtained through hashing into random elements of \mathbb{G}_2 .
 - ► The probability that they belong to the same order-n subgroup of G₂ is negligibly small.
- ▶ With overwhelming probability Eqn. 1 will not hold.
 - A signature generated by a revoked user will be accepted as valid.
- The protocol is **not** secure!
 - So also several other protocols that extend the idea of BS-VLR group signature.

Rescuing BS-VLR Scheme

Essential idea:

- ▶ Send $\hat{T}_1 = \alpha \hat{U}$ instead of T_1 as part of σ .
- For each A ∈ RL check whether the following holds:

$$e(T_2 - A, \hat{U}) = e(V, \hat{T}_1).$$

- ▶ The modified protocol satisfies the security definition.
- ▶ But the signature now contains an element of G₂.
 - Cannot be considered as short.

Efficient Implementation in Type 4

- ▶ We propose an alternative representation of \mathbb{G}_2 .
 - Allows much shorter representation of elements of G₂.
 - And efficient arithmetic.
 - And surprisingly faster hashing into G₂.
- ► Restores (almost!) the "shortness" of BS-VLR group signature and allows much efficient implementation.

For details:

S. Chatterjee, D. Hankerson and A. Menezes, "On the efficiency and security of pairing-based protocols in the Type 1 and Type 4 Settings", *Manuscript*, 2010.

Thank you for your attention!