Session 7: Spectral theorem, PCA & Singular Value Decomposition

Optimization and Computational Linear Algebra for Data Science

Midterm

- The Midterm exam is in 1 week.
- Scope: Session 1 to Session 6 included HW1 to HW6 included
- Knowing is not enough! You need to practice: review problems available on the last year's course's webpage.
- Practice is not enough! You need to know the definitions/theorems/propositions.
- Past years midterms also available, with solutions.
- Important: when working on a problem, take at least 10min on it before looking at the solution (in case you are stuck).
- You can bring notes, but if you think that you need them for the exam, you are probably not prepared enough.

Contents

- 1. The Spectral Theorem
 - 1.1 Theorem
 - 1.2 Consequences
 - 1.3 The Theorem behind PCA
- 2. Principal Component Analysis
- 3. Singular Value Decomposition

1. The Spectral theorem

1. The Spectral theorem 1/

1.1 The Spectral theorem

Theorem

Let $A \in \mathbb{R}^{n \times n}$ be a **symmetric** matrix. Then there is a orthonormal basis of \mathbb{R}^n composed of eigenvectors of A.

That means that if A is symmetric, then there exists an orthonormal basis (v_1, \ldots, v_n) of \mathbb{R}^n and $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$ such that

$$Av_i = \lambda_i v_i$$
 for all $i \in \{1, \dots, n\}$.

Theorem (Matrix formulation)

Let $A\in\mathbb{R}^{n\times n}$ be a **symmetric** matrix. Then there exists an orthogonal matrix P and a diagonal matrix D of sizes $n\times n$ such that

$$A = PDP^{\mathsf{T}}.$$

The spectral orthonormal basis

Geometric interpretation

The Spectral theorem 1.1 The Spectral theorem

1.2 Consequences

lf

$$A = P \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & & \vdots \\ \vdots & & \ddots & 0 \\ 0 & \cdots & 0 & \lambda_n \end{pmatrix} P^{\mathsf{T}}$$

for some orthogonal matrix P then:

Consequence #1: $\lambda_1, \ldots, \lambda_n$ are the only eigenvalues of A, and the number of time that an eigenvalue appear on the diagonal equals its multiplicity.

Proof sketch on an example

Consider n=3 and

$$A = P \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & -1 \end{pmatrix} P^{\mathsf{T}} \quad \text{where} \quad P = \begin{pmatrix} | & | & | \\ v_1 & v_2 & v_3 \\ | & | & | \end{pmatrix}$$

is an orthogonal matrix.

Proof sketch on an example

1. The Spectral theorem 1.2 Consequences

1.2 Consequences

lf

$$A = P \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & & \vdots \\ \vdots & & \ddots & 0 \\ 0 & \cdots & 0 & \lambda_n \end{pmatrix} P^{\mathsf{T}}$$

for some orthogonal matrix P then:

Consequence #2: The rank of A equals to the number of non-zero λ_i 's on the diagonal:

$$rank(A) = \#\{i \mid \lambda_i \neq 0\}.$$

1. The Spectral theorem 1.2 Consequences

1.2 Consequences

lf

$$A = P \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & & \vdots \\ \vdots & & \ddots & 0 \\ 0 & \cdots & 0 & \lambda_n \end{pmatrix} P^{\mathsf{T}}$$

for some orthogonal matrix P then:

Consequence #3: A is invertible if and only if $\lambda_i \neq 0$ for all i. In such case

$$A^{-1} = P \begin{pmatrix} 1/\lambda_1 & 0 & \cdots & 0 \\ 0 & 1/\lambda_2 & & \vdots \\ \vdots & & \ddots & 0 \\ 0 & \cdots & 0 & 1/\lambda_n \end{pmatrix} P^{\mathsf{T}}$$

11/1

1. The Spectral theorem 1.2 Consequences

1.2 Consequences

If
$$A = P \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & & \vdots \\ \vdots & & \ddots & 0 \\ 0 & \cdots & 0 & \lambda_n \end{pmatrix} P^\mathsf{T}$$

for some orthogonal matrix P then:

Consequence #4:
$$\operatorname{Tr}(A) = \lambda_1 + \cdots + \lambda_n$$
.

1.3 The Theorem behind PCA

Theorem

Let A be a $n \times n$ symmetric matrix and let $\lambda_1 \ge \cdots \ge \lambda_n$ be its n eigenvalues and v_1, \ldots, v_n be an associated orthonormal family of eigenvectors. Then

$$\lambda_1 = \max_{\|v\|=1} \ v^\mathsf{T} A v \qquad \text{and} \qquad v_1 = \operatorname*{arg\,max}_{\|v\|=1} \ v^\mathsf{T} A v \,.$$

Moreover, for $k = 2, \ldots, n$:

$$\lambda_k = \max_{\|v\|=1,\,v \perp v_1,\dots,v_{k-1}} v^\mathsf{T} A v\,,\quad \text{and}\quad v_k = \argmax_{\|v\|=1,\,v \perp v_1,\dots,v_{k-1}} v^\mathsf{T} A v.$$

1. The Spectral theorem 1.3 The Theorem behind PCA

1. The Spectral theorem 1.3 The Theorem behind PCA

1. The Spectral theorem 1.3 The Theorem behind PCA

Empirical mean and covariance

We are given a dataset of n points $a_1, \ldots, a_n \in \mathbb{R}^d$

$$d=1$$

$$\mu = \frac{1}{n} \sum_{i=1}^{n} a_i \in \mathbb{R}$$

$$\sigma^2 = \frac{1}{n} \sum_{i=1}^n (a_i - \mu)^2 \in \mathbb{R}$$

Empirical mean and covariance

We are given a dataset of n points $a_1,\ldots,a_n\in\mathbb{R}^d$

$$d = 1$$

$$d \ge 2$$

$$\mu = \frac{1}{n} \sum_{i=1}^{n} a_i \in \mathbb{R}$$

$$\mu = \frac{1}{n} \sum_{i=1}^{n} a_i \in \mathbb{R}^d$$

$$\sigma^2 = \frac{1}{n} \sum_{i=1}^n (a_i - \mu)^2 \in \mathbb{R}$$

$$S = \frac{1}{n} \sum_{i=1}^{n} (a_i - \mu)(a_i - \mu)^{\mathsf{T}} \in \mathbb{R}^{d \times d}$$

$$= \frac{1}{n} \sum_{i=1}^{n} a_i a_i^{\mathsf{T}} \qquad \text{if } \mu = 0.$$

PCA

- We are given a dataset of n points $a_1, \ldots, a_n \in \mathbb{R}^d$, where d is «large».
- **Goal:** represent this dataset in lower dimension, i.e. find $\widetilde{a}_1,\ldots,\widetilde{a}_n\in\mathbb{R}^k$ where $k\ll d$.
- Assume that the dataset is centered: $\sum_{i=1}^{n} a_i = 0$.
- Then, S can be simply written as:

$$S = \sum_{i=1}^{n} a_i a_i^{\mathsf{T}} = A^{\mathsf{T}} A.$$

where A is the $n \times d$ "data matrix":

$$A = \begin{pmatrix} -a_1^{\mathsf{I}} - \\ \vdots \\ -a_1^{\mathsf{T}} - \end{pmatrix}.$$

D	ir	e	ct	io	n	0	f١	m	a	Χİ	m	a	l١	/a	ri	a	no	ce	

2. Principal Component Analysis

D	ir	e	ct	io	n	0	f١	m	a	Χİ	m	a	l١	/a	ri	a	no	ce	

2. Principal Component Analysis

Direction of maximal variance

Good news: $S = A^{\mathsf{T}}A$ is symmetric.

Spectral Theorem: let $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$ be the eigenvalues of S and (v_1, \ldots, v_n) an associated orthonormal basis of eigenvectors.

2nd direc	ction of	maximal va	riance

$j^{ m th}$ direction of maximal variance

The « j^{th} direction of maximal variance » is v_j since v_j is solution of

maximize
$$v^{\mathsf{T}}Sv$$
, subject to $||v||=1,\ v\perp v_1,v\perp v_2,\ldots,v\perp v_{j-1}.$

lacktriangle The dimensionally reduced dataset of in k-dimensions is then

$$\begin{pmatrix} \langle v_1, a_1 \rangle \\ \langle v_2, a_1 \rangle \\ \vdots \\ \langle v_k, a_1 \rangle \end{pmatrix}, \begin{pmatrix} \langle v_1, a_2 \rangle \\ \langle v_2, a_2 \rangle \\ \vdots \\ \langle v_k, a_2 \rangle \end{pmatrix}, \begin{pmatrix} \langle v_1, a_3 \rangle \\ \langle v_2, a_3 \rangle \\ \vdots \\ \langle v_k, a_3 \rangle \end{pmatrix} \cdots \begin{pmatrix} \langle v_1, a_n \rangle \\ \langle v_2, a_n \rangle \\ \vdots \\ \langle v_k, a_n \rangle \end{pmatrix}.$$

Recap

22/1

Which value of k should we take?

Which value of k should we take?

3. Singular Value Decomposition

PCA

- Data matrix $A \in \mathbb{R}^{n \times m}$
- "Covariance matrix" $S = A^{\mathsf{T}} A \in \mathbb{R}^{m \times m}$.
- ightharpoonup S is symmetric positive semi-definite.
- **Spectral Theorem:** there exists an orthonormal basis v_1, \ldots, v_m of \mathbb{R}^m such that the v_i 's are eigenvectors of S associated with the eigenvalues $\lambda_1 \geq \cdots \geq \lambda_m \geq 0$.

Singular values/vectors

For i = 1, ..., m:

- we define $\sigma_i = \sqrt{\lambda_i}$, called the $i^{\rm th}$ singular value of A.
- we call v_i the i^{th} right singular vector of A.

For $i = 1, \ldots, r$:

• we call $u_i = \frac{1}{\sigma_i} A v_i$ the i^{th} left singular vector of A.

If r < n, we add $u_{r+1}, \cdots u_n$ such that $u_1, \cdots u_n$ is an orthonormal basis of \mathbb{R}^n .

Singular Value decomposition

Theorem

Let $A \in \mathbb{R}^{n \times m}$. Then there exists two orthogonal matrices $U \in \mathbb{R}^{n \times n}$ and $V \in \mathbb{R}^{m \times m}$ and a matrix $\Sigma \in \mathbb{R}^{n \times m}$ such that $\Sigma_{1,1} \geq \Sigma_{2,2} \geq \cdots \geq 0$ and $\Sigma_{i,j} = 0$ for $i \neq j$, that verify

$$A = U\Sigma V^{\mathsf{T}}.$$

Geometric interpretation of $U\Sigma V^{\mathsf{T}}$

Questions?

Questions?

