Pertemuan ke-14

APLIKASI INTEGRAL LUAS SUATU DAERAH

Oleh:

Santi Arum Puspita Lestari, M.Pd

Teknik Informatika

Universitas Buana Perjuangan Karawang

LUAS SUATU DAERAH

- Andaikan daerah $D = \{(x, y) | a \le x \le b, 0 \le y \le f(x)\}$
- Berapakah luas daerah D?
- 1. Iris daerah D menjadi n bagian dan luas satu buah irisan dihampiri oleh luas persegi panjang dengan tinggi f(x) dan alas/lebar Δx $\Delta A \approx f(x) \Delta x$

2. Luas daerah D dihampiri oleh jumlah luas persegi panjang.

Dengan mengambil limitnya diperoleh:

Luas
$$D = A = \int_{a}^{b} f(x) dx$$

CONTOH 1:

Hitunglah luas daerah yang dibatasi oleh kurva $y=x^2$, sumbu x, dan x=2.

Penyelesaian:

Luas irisan : $\Delta A \approx x^2 \Delta x$ maka luas daerah:

$$A = \int_{0}^{2} x^{2} dx$$

$$A = \left[\frac{1}{3}x^{3}\right]_{0}^{2} = \left(\frac{1}{3}2^{3}\right) - \left(\frac{1}{3}0^{3}\right)$$

$$= \frac{8}{3}$$

Jadi, luas daerah adalah $\frac{8}{3}$ satuan luas.

CONTOH 2:

Tentukan luas daerah R di bawah kurva $y = x^4 - 2x^3 + 2$ antara x = -1 dan x = 2.

Penyelesaian:

$$A(R) = \int_{-1}^{2} (x^4 - 2x^3 + 2) dx$$

$$= \left[\frac{1}{5} x^5 - \frac{1}{2} x^4 + 2x \right]_{-1}^{2}$$

$$= \left(\frac{32}{5} - \frac{16}{2} + 4 \right) - \left(\frac{-1}{5} - \frac{1}{2} - 2 \right)$$

$$= \frac{51}{10}$$

Jadi, luas daerah R adalah $\frac{51}{10}$ satuan luas

LUAS SUATU DAERAH

- Andaikan daerah $D = \{(x, y) | a \le x \le b, g(x) \le y \le h(x) \}$
- Berapakah luas daerah D ?

Luas daeah D:

1. Iris D menjadi n bagian dan luas satu buah irisan dihampiri oleh luas persegi panjang dengan tinggi h(x)-g(x) dan alas/lebar Δx

$$\Delta A \approx (h(x) - g(x))\Delta x$$

2. Luas D dihampiri oleh jumlah luas persegi panjang. Dengan mengambil limitnya diperoleh:

Luas
$$D = A = \int_{a}^{b} (h(x) - g(x)) dx$$

CONTOH 3:

Hitunglah luas daerah yang dibatasi oleh garis y=x+4 dan parabola $y=x^2-2$.

Penyelesaian:

Titik potong antara garis dan parabola:

$$x + 4 = x^{2} - 2$$

 $x^{2} - x - 6 = 0$
 $(x - 3)(x + 2) = 0$
 $x = -2$ dan $x = 3$

Luas irisan:

$$\Delta A = ((x+4) - (x^2 - 2))\Delta x$$

LANJUTAN CONTOH 3:

Sehingga luas daerah:

$$A = \int_{-2}^{3} ((x+4) - (x^2 - 2)) dx$$

$$A = \int_{-2}^{3} (-x^2 + x + 6) \, dx$$

$$A = \left[-\frac{1}{3}x^3 + \frac{1}{2}x^2 + 6x \right]_{-2}^{3}$$

$$A = \left(-\frac{27}{3} + \frac{9}{2} + 18\right) - \left(\frac{8}{3} + \frac{4}{2} - 12\right)$$

$$A = \frac{125}{6}$$

Jadi, luas daerahnya adalah $\frac{125}{6}$ satuan luas.

Catatan:

Jika irisan dibuat tegak lurus terhadap sumbu x maka tinggi irisan adalah kurva yang terletak disebelah atas dikurangi kurva yang berada disebelah bawah. Jika batas atas dan bawah irisan berubah untuk sembarang irisan di D maka daerah D harus dibagi dua atau lebih

CONTOH 4:

 ullet Hitunglah luas daerah yang dibatasi oleh sumbu x, $y=x^2$

$$dan y = -x + 2.$$

Penyelesaian:

Titik potong

$$x^{2} = -x + 2$$

$$x^{2} + x - 2 = 0$$

$$(x + 2)(x - 1) = 0$$

$$x = -2, \qquad x = 1$$

Jika dibuat irisan tegak, maka daerah harus dibagi menjadi dua bagian,

Luas irisan I : $\Delta A_1 \approx x^2 \Delta x$ dan Luas irisan II : $\Delta A_2 \approx (-x+2) \Delta x$

LANJUTAN CONTOH 4

Luas daerah I

$$A_1 = \int_0^1 x^2 dx = \left[\frac{1}{3}x^3\right]_0^1 = \frac{1}{3} - 0 = \frac{1}{3}$$

Luas daerah II

$$A_2 = \int_{1}^{2} (-x+2) \, dx = \left[-\frac{1}{2}x^2 + 2x \right]_{1}^{2}$$

$$A_2 = \left(-\frac{4}{2} + 4\right) - \left(-\frac{1}{2} + 2\right) = \frac{1}{2}$$

• Sehingga luas daerah :
$$A = A_1 + A_2 = \frac{1}{3} + \frac{1}{2} = \frac{5}{6}$$

LUAS SUATU DAERAH

- •OAndaikan daerah $D = \{(x, y) | c \le y \le d, g(y) \le x \le h(y)\}$
- Berapakah luas daerah D?Luas daerah D:
 - 1. Iris daerah D menjadi n bagian dan luas satu buah irisan dihampiri oleh luas persegi panjang dengan tinggi h(y)-g(y) dan alas/lebar Δy $\Delta A \approx (h(y)-g(y))\Delta y$

2. Luas D dihampiri oleh jumlah luas persegi panjang, dengan limit:

Luas
$$D = A = \int_{c}^{a} (h(y) - g(y)) dy$$

CONTOH 5:

Tentukan luas daerah yang dibatasi oleh $x=3-y^2$ dan y=x-1

Penyelesaian:

Titik potong antara garis dan parabola

$$y + 1 = 3 - y^{2}$$

$$y^{2} + y - 2 = 0$$

$$(y + 2)(y - 1) = 0$$

$$y = -2, y = 1$$

Maka luas irisan menjadi $\Delta A = ((3 - y^2) - (y + 1))\Delta y$

LANJUTAN CONTOH 5:

Luas daerah:

$$A = \int_{-2}^{1} ((3 - y^2) - (y + 1)) dy$$

$$A = \int_{-2}^{1} (-y^2 - y + 2) \, dy$$

$$A = \left[-\frac{1}{3}y^3 - \frac{1}{2}y^2 + 2y \right]_{-2}^{1}$$

$$A = \left(-\frac{1}{3} - \frac{1}{2} + 2\right) - \left(\frac{8}{3} - \frac{4}{2} - 4\right)$$

$$A = \frac{9}{2}$$

Jadi, luas daerah adalah $\frac{9}{2}$ satuan luas.

Catatan:

Jika irisan sejajar dengan sumbu x maka tinggi irisan adalah kurva yang terletak disebelah kanan dikurangi kurva yang berada disebelah kiri.

Jika batas kanan dan kiri irisan berubah untuk sembarang irisan di D maka daerah D harus dibagi dua atau lebih

LATIHAN

Tentukan luas daerah yang dibatasi oleh:

1)
$$y = \frac{x^2}{3} - 4$$
, sumbu x , $x = -2$, dan $x = 3$.

2)
$$y = x^3 - 3x^2 - x + 3$$
, ruas sumbu x antara $x = -1$ dan $x = 2$ dan oleh garis $x = 2$.

3)
$$y = x^4 \text{ dan } y = 2x - x^2$$
.

4)
$$y^2 = 4x \, dan \, 4x - 3y = 4$$

