•••

Expert Analytics formiddag Tuesday 18th 2020

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, ..., 282 589 933 - 1, ...

Euclid's theorem from 300 BC:

There are infinetly many prime numbers 150-

Number of primes smaller than n:

 $\Pi(n) \sim n / ln (n)$

 $\Pi(100\ 000) = 9\ 592$

 $\Pi(1\ 000\ 000) = 78\ 498$

 $\Pi(10\ 000\ 000) = 664\ 579$

The chance of a random integer n being prime is about 1/ln(n)


```
Palindromic primes: 2, 3, 5, 7, 11, 101, 131, 151, 181, 191, 313, 353, ...

The largest known as of March 2019 is (474,501 digits): 10 474 500 + 999 \times 10 237
249 + 1
```

Binary palindromic primes: 11, 101, 111, 10001, 11111, 1001001, 1101011, ...

Beastly palindromic primes: 700666007, 1000000000000666000000000001

Triply palindromic primes:

10000500001 is prime with 11 digits. 11 is a palindromic prime with 2 digits. 2 is a palindromic prime.

 $p = 1011310 + 4661664 \times 105652 + 1$, which has q = 11311 digits, and 11311 has r = 5 digits.

Emirp: 13, 17, 31, 37, 71, 73, 79, 97, 107, 113, ..., 311, ..., 701, ...

Twin primes:

(3, 5), (5, 7), (11, 13), (17, 19), (29, 31), (41, 43), (59, 61), (71, 73), (101, 103), ...

Common form: (6n - 1, 6n + 1)

Unresolved: infinetly many, or is there a highest pair?

```
Prime triplet (p, p+2, p+6): (5, 7, 11), (7, 11, 13), ... (347, 349, 353), ...
```

Prime quadruplet (p, p+2, p+6, p+8): (5, 7, 11, 13), ... (2081, 2083, 2087, 2089), ...

Sexy prime (p, p+6): (5, 11), (7, 13), ...

Sexy prime triplets (p, p+6, p+12): (7, 13, 19), (17, 23, 29), ...

Cousin prime (p, p+4): (3, 7), (7, 11), ...

Isolated prime: neither p-2 nor p+2 is prime: 2, 23, 37, 47, ...

Concatenate binary primes:

$$3 = 11, 17 = 10001$$

$$3+17 = 1000111 = 71$$

$$17+3 = 1110001 = 113$$

$$1049 = 10000011001$$

$$1051 = 10000011011$$

$$1051+1049 = 1000001100110000011011 = 2149403$$

Ulam's Spiral

Ulam's Spiral

Ulam's Spiral

Prime generating polynomials:

$$P = n^2 + n + 1$$

$$P = 4x^2 - 2x + 41$$

Prime formulas

Euclid: $E_n = p_n + 1$, where p_n is the product of the first n prime numbers.

$$E_1 = 3$$
, $E_2 = 7$, $E_3 = 31$, $E_4 = 211$, $E_5 = 2311$, $E_6 = 30031 = 59*509$, ...

Fermat:
$$F_n = 2^2 \hat{} + 1$$
, $n = 0, 1, 2, 3, ...$

$$F_0 = 3$$
, $F_1 = 5$, $F_2 = 17$, $F_3 = 257$, $F_4 = 65537$, $F_5 = 4294967297 = 641*6700417$, ...

Euler's prime generating formula: $P_n = n^2 + n + 41$

 P_n is prime for all n = 0, 1, 2, 3, ..., 39

Wilson: n is prime iff $(n-1)! \mod(n) = n-1$

$$n = 2$$
, $(2-1)! mod(2) = 2-1$, $1 mod 2 = 1$

$$n = 3$$
, $(3-1)!mod(3) = 3-1$, $2 mod 3 = 2$

$$n = 5$$
, $(5-1)! mod(5) = 5-1$, 24 mod 5 = 4

Mersenne primes: $M_n = 2^n - 1$

$$M_2 = 3$$
, $M_3 = 7$, $M_5 = 31$, $M_7 = 127$,

$$M_{11} = 2047 = 23*89, ...$$

L. Euler proved $M_{31} = 2 147 483 647$ in 1772

E. Lucas proved M_{127} in 1876

F. N. Cole proved $M_{67} = 193\ 707\ 721*761\ 838\ 257\ 287$ in 1903

All $n \le 257$ has been tested by hand

The seven largest known primes are Mersenne primes.

As of June 2019, 51 Mersenne primes are known

Largest: 282 589 933 - 1 with 24 862 048 digits.

GIMPS – Great Internet Mersenne Prime Search-project

2	3	5	7	11	13	17	19
23	29	31	37	41	43	47	53
59	61	67	71	73	79	83	89
97	101	103	107	109	113	127	131
137	139	149	151	157	163	167	173
179	181	191	193	197	199	211	223
227	229	233	239	241	251	257	263
269	271	277	281	283	293	307	311

Computing primes

The chance of a random integer n being prime is about 1/ln(n).

Computing a 1000 digit prime by choosing random numbers you expect to test about 2302 before finding a prime.

Computing primes

Sieve of Eratosthenes

- 1. Let p = 2
- 2. Remove all multiples of p
- 3. Let p = next integer
- 4. Iterate until $p^2 > n$

	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100
101	102	103	104	105	106	107	108	109	110
111	112	113	114	115	116	117	118	119	120

Prime numbers

Computing primes – primality tests For random integers: Probabilistic tests use O(n²) Deterministic tests use O(n6)

For Mersenne numbers: Lucas-Lehmer primality test var s = 4var $M = 2^p - 1$ repeat p - 2 times: $s = ((s \times s) - 2) \mod M$ if s == 0 return PRIME else return COMPOSITE

This is deterministic and use O(n²)