

To Estimate the Cooling Load of the-Lecture Hall 1, 2

COURSE- ME621 REFRIGERATAION AND AIR CONDITIONING

GUIDE- PROF. P. MUTHUKUMAR

PRESENTED BY –

MAHESH MAHAJAN

ABHISHEK PARIDA

► Lecture hall 1

Meteorological Conditions of Guwahati and Design Conditions

Location	Guwahati
Outdoor DBT	35°C
Outdoor RH	80%
Indoor DBT	25°C
Indoor RH	55%
Wind Velocity	3.1 Kmph
Month under consideration	July

So, Where Heat Load comes From?

- 1)Convection
- 2)Conduction
- 3)Radiation
- 4)Occupancy and appliances
- 5)Outdoor & indoor differences
- 6) External or Solar

Space Characteristics

- Orientation
- Size and shape
- Construction material
- Windows, doors, openings
- Surrounding conditions
- Ceiling
- Occupants (activity, number, duration)
- Appliances (power, usage)
- Air leakage (infiltration or exfiltration)
- Lighting

Characteristics of the hall

- Octagonal Space with false Ceiling
- ► Side of Octagon- 25 ft
- Capacity-250 person
- ► Number of lights-50
- ▶ 4 Doors
- Wood lining and Acoustic fiber Lining on wall

Cooling load calculations

Calculation of CLTD Correction:

Arr CLTD_c= [CLTD + (78 –TR) +(TM –85)]

Here:

TR = Inside design temperature = 25°C = 77°F

Daily range = Maximum DBT – Minimum DBT

$$= 37-27 = 10^{\circ}$$
C or 18° F

TM = Mean outdoor temperature = Maximum outdoor DBT-(Daily range /2)

$$= 89.6^{\circ} F$$

Layers of The wall

To calculate the overall heat transfer coefficient of the wall

COMPONENT	Air outside	Cement	brick	Air- wood	Air- cement	Wood	Polyeste

COMPONENT	Air outside	Cemeni	Drick	wood	cement	wood	roiyesiei	Air inside
K or h	8.805	0.167	0.462	1.76	0.8805	0.115	0.05	3.522
length	NA	2"	9"	1.5"	1.5"	0.6''	0.6"	NA

For East Wall

- Arr CLTD_c= [CLTD + (78 –TR) +(TM –85)]
- ► Length =25 ft
- ► Height =30 ft
- ► Area= 750 ft^2
- ▶ Door =4
- ► CLTD=33
- ► Inside design Temp=77
- ► Mean Outdoor temp=89.6
- ► Corrected CLTD=38.6

Cooling Load for the Wall

ORIENTATION	OVERALL h.t.c	CLTDc/TD	LOAD Btu/hr
NORTH	0.156	18	2106
NORTH WEST	0.156	18	1895.4
WEST	0.156	18	2106
SOUTH WEST	0.156	38.6	4064.58
SOUTH	0.156	38.6	4516.2
SOTH EAST	0.156	38.6	4064.58
EAST	0.156	18	2106
NORTH EAST	0.156	18	1895.4 Btu/hr

Layers of The roof

To calculate the overall heat transfer coefficient of the Roof

$$\frac{1}{h_o} \qquad \left(\frac{L}{K}\right)_{clay-tile} \qquad \left(\frac{L}{K}\right)_{RIC} \qquad \left(\frac{L}{K}\right)_{air} \qquad \left(\frac{L}{K}\right)_{false-ceiling} \qquad \frac{1}{h_i} \qquad \qquad U = 0.14Btu/ft^2 \circ F$$

COMPONENT	Air outside	Clay tile	RIC	Air	False-Ceiling	Air inside
K or h	8.805	0.167	0.46	1.76	0.8805	3.522
length	NA	2''	9''	1.5"	1.5"	NA

Cooling Load for the Roof

TYPE	OVERALL h.t.c	CLTDc/TD	LOAD
ROOF	0.14	33	13943.16Btu/hr

Components of Floor

To calculate the overall heat transfer Coefficient of the Floor

 $U(floor) = 0.345Btu/ft^{2} \circ F$

COMPONE NT	Air outside	tile	Concrete
Korh	8.805	0.7	0.462
length	NA	1"	5"

Cooling Load for the Floor

Туре	Length (ft)	Area (ft^2)	TD	Overall heat transfer coefficient	Cooling load
Concrete flooring					
with tiles	25	3018	9	0.345	9370.89 Btu/hr

Load From Occupants

Heat load From occupants

Sensible heat	Latent heat
No of people= 250	► Latent heat= 140 Btu/hr.person
Type of Activity = Rest , at 78 F	► No of people= 250
Sensible heat gain =210 Btu/hr.person	Type of Activity = Rest , at 78 F
Cooling Load factor= 0.3	▶ Total Latent heat=
Total Sensible heat = 210*250*0.3=15750 Btu/hr	1*250*140= 35000Btu/hr

Heat load from Lightning system

- ▶ 100 W LED tubes
- ► No of tubes=50
- Cooling Load factor = 1
- ▶ Ballast Factor = 1.3
- Total head load=3.41*Wattage*CLF*BF*N

=100*3.41*50*1.3*1= **22100 Btu/hr**

Heat load for Appliances

Sensible Heat load

- Q Sensible = Qin x Fu x Fr x (CLF)
- ► Fr= Radiation factor
- ► CLF = Cooling Load Factor

Latent heat Load

- ▶ Q Latent = Qin x Fu
- ► Fu= Usage factor

Load from Appliances

Sensible heat load

Type	Conversion factor	Rated Power	CLF	Usage factor	Radiation factor	Quantity	Cooling load
Speakers	3.4	150	1	1	0.15	10	765
PC	3.4	240	0.4	0.3	0.15	1	14.688
Projector and UPS	3.4	500	0.4	0.3	0.2	1 Total	40.8 820.488 Btu/hr

Infiltration Heat Load

Infiltration Sensible Heat

- Q Sensible = 60 * CFM * ρ * CP * ΔT
- \triangleright $\rho = Air density (0.075 lbm/ft3)$
- Cp = Specific heat of air (0.24 Btu/lb °F)
- ▶ CFM=5 cfm / person;
- Arr = Outdoor air minus indoor air temperature difference (To -Ti)

Infiltration Latent Heat load

- Q Latent = 4840 * CFM * ΔW
- $ightharpoonup \Delta W = (Wo Wi)$

Infiltration Sensible heat load

Туре	Constant	CFM	TD(To-Tc)	Number of persons	Cooling load
					24300
Sensible	1.08	5	18	250	Btu/hr

Infiltration Latent Heat load

Туре	Constant	CFM	HD(Wo-Wi)	Number of persons	Cooling load
					107085
Latent	4840	5	0.0177	250	Btu/hr

Summary of Heat load for Hall 1

Cooling Load Components	Sensible load	Latent load	TOTAL LOAD IN Btu/hr
WALLS	21174.66	0	21174.66
ROOFS	13943.16	0	13943.16
FLOOR	9370.89	0	9370.89
DOORS	5783.04	0	5783.04
LIGHTS	22100	0	22100
PEOPLE	15750	35000	50750
APPLIANCES	820.488	0	820.488
INFILTRATION	24300	107085	131385
VENTILATION	46170	111925	158095
Total	159412.238	254010	413422.238
Room Total sensible Load	88942.238		
Room Total latent Load	35000		
Total room load			123942.238Btu/hr

Summary of Heat load for Hall 2

	Sensible	Latent	TOTAL LOAD IN	
Cooling Load Components	load	load	Btu/hr	
WALLS	22754.16	0	22754.16	
ROOFS	13943.16	0	13943.16	
FLOOR	9370.89	0	9370.89	
DOORS	5783.04	0	5783.04	
LIGHTS	22100	0	22100	
PEOPLE	15750	35000	50750	
APPLIANCES	820.488	0	820.488	
INFILTRATION	24300	107085	131385	
VENTILATION	46170	111925	158095	
Total	160991.738	254010	415001.738	
Room Total sensible Load	90521.738			
Room Total latent Load	35000		125521.738 Btu/hr	

Psychrometry Chart

Hall 1

Hall 2

ha= 108.5	ha=
hb= 53.5	hb=
hc=70	hc=
hd=23	hd=
he=39	
	he=
SHF=0.72 for both halls 1	SHF
Qt=Mt*(hb-he)	Qt=
Qt=255327. Btu/hr	Qt=
Mt=1.467 Kg/s	Mt=
Va=0.915 M3/Kg (from the given outside	Va:
conditions)	cor
Total flow of air =1.4765*0.915	Toto
=1.34226 m3/s=1.34226*35.315*60	=1.
=2844.97 CFM	=28
We have 250 People so	We
·	
=2862.58/250=11.38 CFM per person of total	=28
air	tota
As we have the 30% recirculation so we	As١
have	hav
=0.3*11.38	=0
=3.414 CFM of fresh air per person	=3.4
Cooling coil Capacity	Co
= mt*(hc-he)= 12.997 Tr	= m
1111 (110 110) 12.777 II	- 11

```
1 = 108.5
= 53.5
=70
l=23
=39
F=0.72 for both halls 1
=Mt*(hb-he)
=256906 Btu/hr
=1.47647 Kg/s
i=0.915 M3/Kg (from the given outside
onditions)
tal flow of air =1.47647*0.915
.351 m3/s=1.351*35.315*60
862.573 CFM
e have 250 People so
862.573/250=11.45 CFM per person of
tal air
we have the 30% recirculation so we
ıve
0.3*11.45
.435 CFM of fresh air per person
ooling coil Capacity
mt*(hc-he)=13.077 Tr
```

Summary

Hall 1 Hall2

- ► TONNES OF REFERIGERATION=34.45 Tr
- ► Cooling Coil Capacity=12.997 Tr

- ► TONNES OF REFERIGERATION=34.58 Tr
- ► Cooling Coil Capacity=13.077 Tr

* Thank You *