Algorithm (Pseudocode)

NOTATIONS

Let $X = \{x_1, ... x_n\}$ be the set of points in d-dimensional Euclidean space, and let k be a positive integer specifying the number of clusters. Let $||x_i - x_j||$ denote the Euclidean distance between x_i and x_j . For a point x and a subset $Y \subseteq X$ of points, the distance is defined as $d(x, Y) = \min_{y \in Y} ||x - y||$. For a subset $Y \subseteq X$ of points, let its *centroid* be given by

$$centroid(Y) = \frac{1}{|Y|} \sum_{y \in Y} x$$

Let $C = \{c_1, ..., c_k\}$ be the ser of points and let $Y \subseteq X$. We define the *cost* of Y with respect to C as

$$\phi_Y(C) = \sum_{y \in Y} d^2(y, C) = \sum_{y \in Y} \min_{i=1,\dots,k} ||y - c_i||^2$$

ALGORITHM

k-means++(k) initialization

- 1. $C \leftarrow$ sample a point uniformlt at random from X
- 2. **while** |C| < k **do**
 - Sample $x \in X$ with probability $\frac{d^2(x,C)}{\phi_X(C)}$
 - $C \leftarrow C \cup \{x\}$
- 3. end while

k-means||(k, l)| initialization

- 1. $C \leftarrow$ sample a point uniformlt at random from X
- 2. $\psi \leftarrow \phi_X(C)$

- 3. **for** $O(\log \psi)$ times **do**
 - $C' \leftarrow$ sample each point $x \in X$ independently with probability $p_x = \frac{l \cdot d^2(x,C)}{\phi_X(C)}$
 - $C \leftarrow C \cup C'$
- 4. end for
- 5. For $x \in C$, set w_x to be the number of points in X closer to x than any point in C
- 6. Recluster the weighted points in C into k clusters