

Model-based real-time monitoring of a subsea gas pipeline network

Apostolos Giovanoglou – Technical Director - Oil & Gas

gPROMS Natural gas gathering networks

Users and interfaces

1 - Engineer

Create process models in a flowsheet environment; validate models and perform scenario analyses with complete flexibility

2 - Planner

Utilise models to ensure optimal system behaviour over short, medium and long term horizons

3 – Online Advisor

Continuously (i) validate and reconcile online measurements and (ii) calculate and display advice for optimising current operation

gPROMS Natural gas gathering networks

North sea asset: gPROMS based pipeline monitoring and planning solution

North sea asset: gPROMS based pipeline monitoring and planning solution

Gas gathering network

- ~12 shippers
- ~1,000 km of pipeline network
- ~ 5 days residence time

Data available

- Online for shippers flowrate and composition
- Historical for terminal flowrate and composition

Objective

Forecast terminal flowrate and composition to ensure liquid condensate does not arrive at the terminal

Overview

North sea asset: gPROMS based pipeline monitoring and planning solution Engineer

gPROMS model of the gas gathering network created and <u>validated</u> in ProcessBuilder

model is sufficiently fast and robust for online applications

Easy support of deployed solutions [e.g. new producer ties in]

North sea asset: gPROMS based pipeline monitoring and planning solution

PSE

Engineer – validation

- Terminal KPIs calculated with producers input data up to current time
 - ~75 days worth of comparison
 - provides a clear picture of model's accuracy

North sea asset: gPROMS based pipeline monitoring and planning solution Engineer – validation

- Terminal KPIs calculated with producers input data up to current time
 - ~75 days worth of comparison
 - provides a clear picture of model's accuracy

North sea asset: gPROMS based pipeline monitoring and planning solution Planner

Planner Interface

User requirement

- Short, medium or long term planning
- User defined future or "what-if" scenarios defining producer flowrate and composition at periodic intervals
- Start from any historic case [pipeline content] cf. Online Advisor
- or manual input

		• (P		?	
Auto Stop	Run all Run s	elected Run	most Previ	ous Select	Next	Help	
			it case	ous sciece	rect	ПСБ	
' '	stacked cases C	355 16661			_		
storian				ne Period Cor		umentation	
A	В	С	D	E	F	G	Н
Date	27-01-17	27-01-17	27-01-17	27-01-17	27-01-17	27-01-17	27-01-17
Time	11:40	11:50	12:00	12:10	12:20	12:30	12:40
Case	1	2	3	4	5	6	7
Model Input Dat							
RunLength	7 days	7 days	7 days	7 days	7 days	7 days	7 days
SeaTemp	8.0°C	8.0°C	8.0°C	8.0°C	8.0°C	8.0°C	8.0°C
ReportStep	0.3 hrs	0.3 hrs	0.3 hrs	0.3 hrs	0.3 hrs	0.3 hrs	0.3 hrs
Terminal Pressu							
Terminal.Pressure	• 112 barg	112 barg	112 barg	112 barg	112 barg	112 barg	112 barg
Producer 1							
kSm3h	0.0	89.9	92.2	0.0	78.0	0.0	89.9
H2S	3.45	4.17	4.09	4.17	3.71	3.45	4.17
CO2	1.90	2.04	2.07	2.04	2.02	1.90	2.04
N2	0.90	0.83	0.84	0.83	0.88	0.90	0.83
C1	84.18	84.83	84.32	84.83	85.17	84.18	84.83
C2	7.42	6.97	7.12	6.97	6.91	7.42	6.97
C3	3.31	3.02	3.16	3.02	3.02	3.31	3.02
iC4	0.44	0.42	0.44	0.42	0.43	0.44	0.42
nC4	0.97	0.92	0.99	0.92	0.92	0.97	0.92
iC5	0.23	0.26	0.27	0.26	0.25	0.23	0.26
nC5	0.29	0.33	0.35	0.33	0.32	0.29	0.33
nC6	0.22	0.15	0.30	0.15	0.13	0.22	0.15
nC7	0.08	0.10	0.12	0.10 0.02	0.08 0.01	0.08 0.00	0.10
nC8	0.00	0.02	0.02		å	ô	0.02
nC9	0.00	0.00	0.00	0.00	0.00	0.00	0.00
nC10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Producer 2							===
kSm3h	28.6	52.1	28.6	0.0	35.0	28.6	52.1
H2S	22.50	12.16	22.50	12.16	16.46	22.50	12.16
CO2 N2	3.72 0.44	4.67 0.39	3.72 0.44	4.67 0.39	3.99 0.40	3.72 0.44	4.67
INZ C1	78.23	76.99	78.23	0.33 76.99	76.71	78.23	0.39 76.99
C2	9.32	11.01	9.32	76.33 11.01	11.18	9.32	76.33 11.01
C3	4.23	4.43	4.23	4.43	4.46	4.23	4.43
iC4	0.64	0.68	0.64	0.68	0.67	0.64	0.68
nC4	0.57	1.00	0.64	1.00	0.96	0.57	1.00
iC5	0.13	0.26	0.13	0.26	0.36	0.57	0.26

North sea asset: gPROMS based pipeline monitoring and planning solution Planner

Planner Interface

User requirement

- Short, medium or long term planning
- User defined future or "what-if" scenarios defining producer flowrate and composition at periodic intervals
- Start from any historic case [pipeline content] cf. Online Advisor
- or manual input

Results

- KPIs: terminal flowrate and composition
- Flexible KPI plotting capabilities for report generation

North sea asset: gPROMS based pipeline monitoring and planning solution Online advisor

Online advisor [24/7]

User requirement

- Installed behind data firewall
- Producers' flowrates and compositions retrieved from OSIsoft PI® Historian, usually every 30 min
- Data reconciliation
 - to check for outliers
 - value substituted by historical average if out of normal range

Description	ServerTAG	Units	Date Date	27-01-17
Terminal Pressure			Time	11:40
	T-07013.PJ	barg	Model Input Data	
Producer 1			RunLength	7 days
Flowrate	P1-Flow-STN	kSm3h	SeaTemp	8.0°C
H2S	P1-H2S-STN	mol%	ReportStep	0.3 hrs
CO2	P1-CHRM-CO2	mol%	Terminal Pressure	
N2	P1-CHRM-N2	mol%	Terminal.Pressure	112 barg
C1	P1-CHRM-C1	mol%	Producer 1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
C2	P1-CHRM-C2	mol%	kSm3h	89.9
C3	P1-CHRM-C3	mol%	H2S	4.17
iC4	P1-CHRM-IC4	mol%	CO2	2.04
nC4	P1-CHRM-NC4	mol%	N2	0.83
iC5	P1-CHRM-IC5	mol%	C1	84.83
nC5	P1-CHRM-NC5	mol%	C2	6.97
nC6	P1-CHRM-C6	mol%	C3	3.02
nC7	P1-CHRM-C7	mol%	iC4	0.42
nC8	P1-CHRM-C8	mol%	nC4	0.92
nC9	P1-CHRM-C9	mol%	iC5	0.26
nC10	P1-CHRM-C10	mol%	nC5	0.33
Producer 2	1 1 011111 010	moize	nC6	0.15
Flowrate	P2-JR25002_313	kSm3h	nC7	0.10
H2S	P2-JR25002_316	mol%	nC8	0.02
CO2	P2-JR25002_332	mol%	nC9	0.00
N2	P2-JR25002_331	mol%	nC10	0.00
C1	P2-JR25002_3318	mol%	Producer 2	0.00
C2	P2-JR25002_319	mol%	kSm3h	52.1
C3	P2-JR25002_313	mol%	H2S	12.16
iC4	P2-JR25002_321	mol%	CO2	4.67
nC4	P2-JR25002_321 P2-JR25002_322	moi/.	N2	0.39
			C1	76.99
iC5	P2-JR25002_323	mol%	C2	11.01
nC5	P2-JR25002_324	mol%	C3	4.43
nC6	P2-JR25002_326	mol%	iC4	0.68
nC7	P2-JR25002_327	mol%	nC4	1.00
nC8	P2-JR25002_328	mol%	iC5	0.26
nC9	P2-JR25002_329	mol%	nC5	0.22
nC10	P2-JR25002_330	mol%	nC6	0.13
Producer 3		nC7	0.05	
Flowrate	P3-FI-03558	kSm3h	nC8	0.03
H2S	P3-88375	mol%	nC9	0.01
CO2	P3-88377	mol%	nC10	0.00
N2	P3-88376	mol%		0.00
C1	P3-88378	mol%	Producer 3	10.0
C2	P3-88379	mol%	kSm3h H2S	10.0
C3	P3-88380	mol%	H25	0.00
iC4	P3-88381	mol%		

7-7-V JADVANCED PROCESS WODELLING FORUM 2017

North sea asset: gPROMS based pipeline monitoring and planning solution

Online advisor [24/7]

User requirement

Installed behind data firewall

Online advisor

- Producers' flowrates and compositions retrieved from OSIsoft PI® Historian, usually every 30 min
- Data reconciliation
 - to check for outliers
 - value substituted by historical average if out of normal range

Results

- KPIs: terminal flowrate and composition
- Current projection: always available for next 7 days
- Interactive chart: efficient archiving;
 past projections easily retrieved and plotted

Conclusions

- Critical Operational Support tool for North Sea gas pipeline network
- System has been installed
- On-line advisor
 - linked to OSIsoft PI® Historian to receive real time data
 - Running 24/7

 Engineer and Planner have been used by gas planners to take decissions and introduce new produces to the network

Thank you

