# Module 7 Notes (MATH-211)

Lillie Donato

22 July 2024

# General Notes (and Definitions)

• Working with Integrals

A function f(x) is **even** if f(-x) = f(x).

A function f(x) is **odd** if f(-x) = -f(x).

Let  $a \in \mathbb{R}$  such that a > 0 and let f be an integrable function on the interval [-a, a].

If f is even, 
$$\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$$

If 
$$f$$
 is odd, 
$$\int_{-a}^{a} f(x) dx = 0$$

The average value of an integrable function f on the interval [a, b] is

$$\overline{f} = \frac{1}{b-a} \int_{a}^{b} f(x) \, dx$$

Let f be continuous on the interval [a, b]. There exists a point c in (a, b) such that (Mean Value Theorem)

$$f(c) = \overline{f} = \frac{1}{b-a} \int_a^b f(t) dx$$

• Substitution Rule

Let u = g(x), where g is differentiable on an interval, and let f be continuous on the corresponding range of g. On that interval,

$$\int f(g(x))g'(x) dx = \int f(u) du$$

- 1. Given an indefinite integral involving a commposite function f(g(x)), identify an inner function u = g(x) such that a constant multiple of g'(x) appears in the integrand.
- 2. Substitute u = g(x) and du = g'(x) dx in the integral.
- 3. Evaluate the new indefinite integral with respect to u.
- 4. Write the result in terms of x using u = g(x).

Let u = g(x), where g' is continuous on [a, b], and let f be continuous on the range of g. Then

$$\int_{a}^{b} f(g(x))g'(x) \, dx = \int_{g(a)}^{g(b)} f(u) \, du$$

1

# General formulas for indefinite integrals

$$\int \cos ax \, dx = \frac{1}{a} \sin ax + C \tag{1}$$

$$\int \sin ax \, dx = -\frac{1}{a} \cos ax + C \tag{2}$$

$$\int \sec^2 ax \, dx = \frac{1}{a} \tan ax + C \tag{3}$$

$$\int \csc^2 ax \, dx = -\frac{1}{a} \cot ax + C \tag{4}$$

$$\int \sec ax \tan ax \, dx = \frac{1}{a} \sec ax + C \tag{5}$$

$$\int \csc ax \cot ax \, dx = -\frac{1}{a} \csc ax + C \tag{6}$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax} + C \tag{7}$$

$$\int b^x \, dx = \frac{1}{\ln b} b^x + C, b > 0, b \neq 1 \tag{8}$$

$$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \tan^{-1} \frac{x}{a} + C \tag{9}$$

$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \sin^{-1} \frac{x}{a} + C, a > 0 \tag{10}$$

$$\int \frac{dx}{x\sqrt{x^2 - a^2}} = \frac{1}{a}\sec^{-1}\left|\frac{x}{a}\right| + C, a > 0 \tag{11}$$

## Examples

1. Use symmetry to evaluate integrals

$$\int_{-200}^{200} 2x^5 \, dx = 0$$

$$\int_{-2}^{2} (x^2 + x^3) dx = \int_{-2}^{2} x^2 dx + \int_{-2}^{2} x^3 dx$$
 (1)

$$= 2\int_0^2 x^2 dx + 0 (2)$$

$$= 2\frac{x^3}{3} \tag{3}$$

$$= \frac{16}{3} \tag{4}$$

2. A derivative calculation

$$s(t) = -16t^2 + 64t$$
$$t = 4$$
$$[0, 4]$$

$$v(t) = s'(t) \tag{1}$$

$$\overline{v} = \frac{1}{4} \int_0^4 v(t) \, dx \tag{2}$$

$$= \frac{1}{4} \int_0^4 s'(t) \, dx \tag{3}$$

$$= \frac{1}{4}s(t) \tag{4}$$

$$= \frac{1}{4} (s(4) - s(0)) \tag{5}$$

$$= 0 (6)$$

#### 3. Applying MVT for integrals

$$f(x) = e^x$$
$$[0, 2]$$

$$\overline{f} = \frac{1}{2} \left( \int_0^2 e^x \, dx \right) \tag{1}$$

$$= \frac{e^x}{2} \tag{2}$$

$$= \frac{e^2}{2} - \frac{e^0}{2} \tag{3}$$

$$= \frac{e^2 - 1}{2} \tag{4}$$

$$e^x = \frac{e^2 - 1}{2} \tag{5}$$

$$= \frac{e^x}{2} \tag{2}$$

$$= \frac{e^2}{2} - \frac{e^0}{2} \tag{3}$$

$$= \frac{e^2 - 1}{2} \tag{4}$$

$$e^x = \frac{e^2 - 1}{2} \tag{5}$$

$$\ln e^x = \ln \frac{e^2 - 1}{2} \tag{6}$$

### 4. Perfect substitutions in indefinite integrals

$$u = 4x^3 - 8 \tag{1}$$

$$du = 12x^2 dx (2)$$

$$u = 4x^{3} - 8$$

$$du = 12x^{2} dx$$

$$\int 12x^{2} (4x^{3} - 8)^{5} dx = \int 12x^{2} u^{5} dx$$
(1)
(2)

$$= \frac{u^6}{6} + C \tag{4}$$

$$= \frac{(4x^3 - 8)^6}{6} + C \tag{5}$$

$$u = \sin t \tag{1}$$

$$du = \cos t \, dt \tag{2}$$

$$\int (\cos t) e^{\sin t} dt = \int e^u du$$
 (3)

$$= e^u + C \tag{4}$$

$$= e^{\sin t} + C \tag{5}$$

### 5. Introducting constants when integrating by substitution

$$u = 6x + 4 \tag{1}$$

$$du = 6 dx (2)$$

$$dx = \frac{du}{6} \tag{3}$$

$$dx = \frac{du}{6}$$

$$\int (6x+4)^9 dx = \int \frac{1}{6} \cdot u^9 du$$
(3)

$$= \frac{1}{6} \int u^8 du \tag{5}$$

$$= \frac{1}{6} \cdot \frac{u^9}{9} + C \tag{6}$$

$$= \frac{(6x+4)^9}{54} + C \tag{7}$$

$$u = \cot x \tag{1}$$

$$du = -\csc^2 x \, dx \tag{2}$$

$$\int \cot^2 x \csc^2 x \, dx = \int -u^2 \, du \tag{3}$$

$$= -\frac{u^3}{3} + C \tag{4}$$

$$= -\frac{\csc^3 x}{3} + C \tag{5}$$

6. Variations on the substitution method

$$u = x - 1 \tag{1}$$

$$du = dx (2)$$

$$x = u+1 \tag{3}$$

$$\int x\sqrt{x-1}\,dx = \int (u+1)\sqrt{u}\,du \tag{4}$$

$$= \int u\sqrt{u} + \sqrt{u}\,du \tag{5}$$

$$= \int u^{\frac{3}{2}} + u^{\frac{1}{2}} du \tag{6}$$

$$= \frac{2}{5}u^{\frac{5}{2}} + \frac{2}{3}u^{\frac{3}{2}} + C \tag{7}$$

$$= \frac{2}{5}(x-1)^{\frac{5}{2}} + \frac{2}{3}(x-1)^{\frac{3}{2}} + C$$
 (8)

7. Use known formulas to evaluate indefinite integrals

$$\int 2e^{-4x} \, dx = 2 \int e^{-4x} \, dx \tag{1}$$

$$= \frac{2}{-4}e^{-4x} + C \tag{2}$$

$$= -\frac{1}{2}e^{-4x} + C \tag{3}$$

$$\int \frac{dx}{\sqrt{36 - x^2}} = \int \frac{dx}{\sqrt{6^2 - x^2}} \tag{1}$$

$$= \sin^{-1}\frac{x}{6} + C \tag{2}$$

8. Evaluating definite integrals using substitution

$$u = 2^x + 4 \tag{1}$$

$$du = 2^x \ln 2 \, dx \tag{2}$$

$$du = 2^{x} \ln 2 dx \tag{2}$$

$$\frac{1}{\ln 2} du = 2^{x} dx \tag{3}$$

$$\int_{1}^{3} \frac{2^{x}}{2^{x} + 4} dx = \int_{1}^{3} \frac{1}{u \ln 2} du \tag{4}$$

$$\int_{q(1)}^{g(3)} \frac{1}{u \ln 2} du = \int_{6}^{12} \frac{1}{u \ln 2} du \tag{5}$$

$$= \frac{1}{\ln 2} \int_{6}^{12} \frac{du}{u} \tag{6}$$

$$= \frac{1}{\ln 2} \cdot (\ln 12 - \ln 6)$$

$$= \frac{\ln 2}{\ln 2}$$
(8)

$$= \frac{\ln 2}{\ln 2} \tag{8}$$

$$= 1 \tag{9}$$

$$u = \ln p \tag{1}$$

$$du = \frac{1}{p}dx \tag{2}$$

$$\int_{1}^{e^{2}} \frac{\ln p}{p} = \int_{0}^{2} u \, du \tag{3}$$

$$J_0 = \frac{J_0}{2} = \frac{2^2}{2} - \frac{0^2}{2}$$

$$= \frac{4}{2}$$

$$= 2$$
(5)
$$= (5)$$

$$= (6)$$

$$= \frac{4}{2} \tag{5}$$

$$= 2$$
 (6)

9. Integrals involving  $\cos^2 x$  and  $\sin^2 x$ 

$$u = 2x \tag{1}$$

$$du = 2 dx (2)$$

$$dx = \frac{1}{2}du \tag{3}$$

$$\sin^2 x = \frac{1 - \cos 2x}{2} \tag{4}$$

$$dx = \frac{1}{2}du$$

$$\sin^{2} x = \frac{1 - \cos 2x}{2}$$

$$\int_{0}^{\pi} \sin^{2} x \, dx = \int_{0}^{\pi} \frac{1 - \cos 2x}{2} \, dx$$
(3)
(4)

$$= \frac{1}{2} \int_0^{\pi} 1 - \cos 2x \, dx \tag{6}$$

$$= \frac{1}{2} \left( \int_0^{\pi} 1 \, dx - \int_0^{\pi} \cos 2x \, dx \right) \tag{7}$$

$$= \frac{1}{2} \left( (\pi - 0) - \frac{1}{2} \int_0^{2\pi} \cos u \, du \right) \tag{8}$$

$$= \frac{1}{2} \left( \pi - \frac{1}{2} \left( \sin 2\pi - \sin 0 \right) \right) \tag{9}$$

$$= \frac{1}{2}(\pi - 0) \tag{10}$$

$$= \frac{1}{2}(\pi - 0) \tag{10}$$

$$= \frac{\pi}{2} \tag{11}$$

## Related Exercises

1. (Section 5.4, Exercise 15)

$$\int_{-2}^{2} (x^2 + x^3) dx = \int_{-2}^{2} x^2 dx + \int_{-2}^{2} x^3 dx$$
 (1)

$$= 2\int_0^2 x^2 dx + 0 (2)$$

$$= 2\frac{x^3}{3} \tag{3}$$

$$= 2\frac{2^{3}}{3} - 2\frac{0^{3}}{3}$$

$$= 2\frac{8}{3}$$

$$= \frac{16}{3}$$
(5)
$$= \frac{16}{3}$$
(6)

$$= 2\frac{8}{3} \tag{5}$$

$$= \frac{16}{2} \tag{6}$$

2. (Section 5.4, Exercise 16)

$$\int_{-\pi}^{\pi} t^2 \sin t \, dx = 0$$

3. (Section 5.4, Exercise 26)

$$f(x) = x^2 + 1$$
$$[-2, 2]$$

$$\overline{f} = \frac{1}{2 - (-2)} \int_{-2}^{2} x^2 + 1 \, dx \tag{1}$$

$$= \frac{1}{4} \left( \int_{-2}^{2} x^{2} dx + 1 \int_{-2}^{2} x^{0} dx \right) \tag{2}$$

$$= \frac{1}{4} \left( \frac{x^3}{3} + x \right) \tag{3}$$

$$= \frac{1}{4} \left( \int_{-2}^{2} x^{2} dx + \int_{-2}^{2} 1 dx \right) \tag{4}$$

$$= \frac{1}{4} \left( \frac{2^3}{3} - \frac{(-2)^3}{3} + 2 - (-2) \right) \tag{5}$$

$$= \frac{1}{4} \left( \frac{8}{3} - \frac{-8}{3} + 4 \right) \tag{6}$$

$$= \frac{1}{4} \left( \frac{16}{3} + 4 \right) \tag{7}$$

$$= \frac{1}{4} \left( \frac{28}{3} \right) \tag{8}$$

$$= \frac{7}{3} \tag{9}$$

4. (Section 5.4, Exercise 34)

$$f(x) = x^3 - 5x^2 + 30$$
$$[0, 4]$$

$$\overline{f} = \frac{1}{4} \left( \int_0^4 \left( x^3 - 5x^2 + 30 \right) \, dx \right) \tag{1}$$

$$= \frac{1}{4} \left( \int_0^4 x^3 - 5 \int_0^4 x^2 + 30 \int_0^4 x^0 \right) \tag{2}$$

$$= \frac{1}{4} \left( \frac{x^4}{4} - 5\frac{x^3}{3} + 30x \right) \tag{3}$$

$$= \frac{1}{4} \left( \left( \frac{4^4}{4} - \frac{0^4}{4} \right) - \left( 5\frac{4^3}{3} - 5\frac{0^3}{3} \right) + (30(4) - 30(0)) \right) \tag{4}$$

$$= \frac{1}{4} \left( 64 - \frac{320}{3} + 120 \right) \tag{5}$$

$$= \frac{1}{4} \left( \frac{232}{3} \right) \tag{6}$$

$$= \frac{58}{3} \tag{7}$$

5. (Section 5.4, Exercise 41)

$$f(x) = 1 - \frac{x^2}{a^2}$$
$$[0, a]$$

$$\overline{f} = \frac{1}{a} \left( \int_0^a 1 - \frac{x^2}{a^2} dx \right) \tag{1}$$

$$= \frac{1}{a} \left( \int_0^a 1 \, dx - \int_0^a \frac{x^2}{a^2} \, dx \right) \tag{2}$$

$$= \frac{1}{a} \left( x - \frac{1}{a^2} \int_0^a x^2 \, dx \right) \tag{3}$$

$$= \frac{1}{a} \left( x - \frac{1}{a^2} \frac{x^3}{3} \right) \tag{4}$$

$$= \frac{1}{a} \left( x - \frac{x^3}{3a^2} \right) \tag{5}$$

$$= \frac{1}{a} \left( (a-0) - \frac{1}{a^2} \left( \frac{a^3}{3} - \frac{0^3}{3} \right) \right) \tag{6}$$

$$= \frac{1}{a} \left( a - \frac{a^3}{3a^2} \right) \tag{7}$$

$$= \frac{1}{a}\left(a - \frac{a}{3}\right) \tag{8}$$

$$= \frac{1}{a} \left(\frac{2a}{3}\right) \tag{9}$$

$$= \frac{2}{3} \tag{10}$$

$$\begin{array}{rcl}
 & a & 3 \\
 & = & \frac{2}{3} \\
1 - \frac{c^2}{a^2} & = & \frac{2}{3} \\
\frac{c^2}{a^2} & = & \frac{1}{3} \\
c^2 & = & \frac{a^2}{3}
\end{array} \tag{12}$$

$$\frac{c^2}{a^2} = \frac{1}{3} \tag{12}$$

$$c^2 = \frac{a^2}{3} \tag{13}$$

$$c = \sqrt{\frac{a^2}{3}} \tag{14}$$

$$= \frac{a}{\sqrt{3}} \tag{15}$$

### 6. (Section 5.4, Exercise 42)

$$f(x) = \frac{\pi}{4} \sin x$$
$$[0, \pi]$$

$$\overline{f} = \frac{1}{\pi} \int_0^{\pi} \frac{\pi}{4} \sin x \tag{1}$$

$$= \frac{1}{\pi} \frac{\pi}{4} \int_0^{\pi} \sin x \tag{2}$$

$$= \frac{1}{\pi} \frac{\pi}{4} \left( -\cos x \right) \tag{3}$$

$$= \frac{1}{\pi} \frac{\pi}{4} \left( -\cos \pi + \cos 0 \right) \tag{4}$$

$$= \frac{1}{\pi} \frac{\pi}{4} (1+1) \tag{5}$$

$$= \frac{1}{\pi} \frac{\pi}{2} \tag{6}$$

$$= \frac{1}{2} \tag{7}$$

$$\frac{\pi}{4}\sin x = \frac{1}{2} \tag{8}$$

$$\sin x = \frac{2}{\pi} \tag{9}$$

$$\pi 4 J_0 
= \frac{1}{\pi} \frac{\pi}{4} (-\cos x)$$

$$= \frac{1}{\pi} \frac{\pi}{4} (-\cos \pi + \cos 0)$$

$$= \frac{1}{\pi} \frac{\pi}{4} (1+1)$$

$$= \frac{1}{\pi} \frac{\pi}{2}$$

$$= \frac{1}{2}$$

$$(5) 
= \frac{1}{2}$$

$$(6) 
= \frac{1}{2}$$

$$(7) 
$$\frac{\pi}{4} \sin x = \frac{1}{2}$$

$$\sin x = \frac{2}{\pi}$$

$$(9) 
$$\sin^{-1} \sin x = \sin^{-1} \frac{2}{\pi}$$

$$(10) 
$$x = \sin^{-1} \frac{2}{\pi}$$

$$(11)$$$$$$$$

$$x = \sin^{-1}\frac{2}{\pi} \tag{11}$$

