

Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le (*: equal contribution)

Carnegie Mellon University

Google Al

Language Pretraining: Related Work

- RBMs (Salakhutdinov et al 2007), Autoencoders (Vincent et al 2008), Jigsaw (Noroozi and Favaro 2016), GANs (Donahue and Simonyan 2019)...
- word2vec (Mikolov et al 2013), GloVe (Pennington et al 2014)
- Semi-supervised sequence learning (Dai and Le 2015), ELMo (Peters et al 2017), CoVe (McCann et al 2017), GPT (Radford et al 2018), BERT (Devlin et al 2018)...

Two Notable Objectives for Language Pretraining

Auto-regressive Language Modeling

$$\log p(\mathbf{x}) = \sum_{t=1}^{T} \log p(x_t | \mathbf{x}_{< t})$$

Next-token prediction

Denoising Auto-encoding (BERT)

$$\log p(\bar{\mathbf{x}}|\hat{\mathbf{x}}) = \sum_{t=1}^{T} \operatorname{mask}_{t} \log p(x_{t}|\hat{\mathbf{x}})$$

Reconstruct masked tokens

Two Notable Objectives for Language Pretraining

Auto-regressive Language Modeling

No Bidirectional Context

Denoising Auto-encoding (BERT)

- Independent Predictions
- Artificial **Noise**: [MASK]

Two Notable Objectives for Language Pretraining

Auto-regressive Language Modeling

Denoising Auto-encoding (BERT)

- Full Auto-regressive **Dependence**
- **Independent** Predictions

Free from artificial **Noise**

- - Artificial **Noise**: [MASK]

No Bidirectional Context

Natural Bidirectional Context

Desire: Combine the Pros and Remove the Cons

Full Auto-regressive **Dependence**

Free from **Noise**

Natural Bidirectional Context

Desire: Combine the Pros and Remove the Cons

XLNet

• An auto-regressive model that captures bidirectional context

• Standard LM: Left-to-right factorization $1 \rightarrow 2 \rightarrow 3 \rightarrow 4$

$$P(\mathbf{x}) = P(x_1)P(x_2 \mid \mathbf{x}_1)P(x_3 \mid \mathbf{x}_{1,2})P(x_4 \mid \mathbf{x}_{1,2,3}) \cdots$$

 X_1

X₂

X₃

X₄

• Standard LM: Left-to-right factorization $1 \rightarrow 2 \rightarrow 3 \rightarrow 4$

$$P(\mathbf{x}) = P(x_1)P(x_2 \mid \mathbf{x}_1)P(x_3 \mid \mathbf{x}_{1,2})P(x_4 \mid \mathbf{x}_{1,2,3}) \cdots$$

• Change the Factorization order to: $4 \rightarrow 1 \rightarrow 3 \rightarrow 2$

$$P(\mathbf{x}) = P(x_4)P(x_1 \mid \mathbf{x}_4)P(x_3 \mid \mathbf{x}_{1,4})P(x_2 \mid \mathbf{x}_{1,2,4}) \cdots$$

 X_1

 $\mathbf{x_2}$

X₃

X₄

• Change the Factorization order to: $4 \rightarrow 1 \rightarrow 3 \rightarrow 2$

$$P(\mathbf{x}) = P(x_4)P(x_1 \mid \mathbf{x}_4)P(x_3 \mid \mathbf{x}_{1,4})P(x_2 \mid \mathbf{x}_{1,2,4}) \cdots$$

• Change the Factorization order to: $4 \rightarrow 1 \rightarrow 3 \rightarrow 2$

$$P(\mathbf{x}) = P(x_4)P(x_1 \mid \mathbf{x}_4)P(x_3 \mid \mathbf{x}_{1,4})P(x_2 \mid \mathbf{x}_{1,2,4}) \cdots$$

Bidirectional Context via Factorization Order

• Factorization order: $4 \rightarrow 1 \rightarrow 3 \rightarrow 2$

Bidirectional Context via Factorization Order

• Factorization order: $4 \rightarrow 1 \rightarrow 3 \rightarrow 2$

Permutation Language Modeling

- Given a sequence \mathbf{x} of length T
- Uniformly sample a factorization order **z** from all possible permutations
- Maximize the permutated log-likelihood

$$\mathbb{E}_{\mathbf{z} \sim \mathcal{Z}_{T}} \left[\log P(\mathbf{x} \mid \mathbf{z}) \right] = \mathbb{E}_{\mathbf{z} \sim \mathcal{Z}_{T}} \left[\sum_{t=1}^{T} P(x_{z_{t}} \mid \mathbf{x}_{\mathbf{z} < t}, z_{t}) \right]$$

Factorization order: $4 \rightarrow 1 \rightarrow 3 \rightarrow 2$

 X_1

 $\mathbf{x_2}$

X₃

X₄

Factorization order: $4 \rightarrow 1 \rightarrow 3 \rightarrow 2$

Factorization order: $4 \rightarrow 1 \rightarrow 3 \rightarrow 2$

Factorization order: $2 \rightarrow 4 \rightarrow 1 \rightarrow 3$

 x_1

 X_2

X₃

X₄

Factorization order: $4 \rightarrow 1 \rightarrow 3 \rightarrow 2$

Factorization order: $2 \rightarrow 4 \rightarrow 1 \rightarrow 3$

Target-position-aware Distribution

$$\mathbb{E}_{z_t \sim \mathcal{Z}_T} \left[\sum_{t=1}^T \log P(x_{z_t} \mid \mathbf{x}_{\mathbf{z}_{< t}}, z_t) \right]$$

The distribution $P(x_{z_t} \mid \mathbf{x}_{\mathbf{z}_{< t}}, z_t)$ must condition on the target position z_t

Target-position-aware Distribution

$$\mathbb{E}_{z_t \sim \mathcal{Z}_T} \left[\sum_{t=1}^T \log P(x_{z_t} \mid \mathbf{x}_{\mathbf{z}_{< t}}, z_t) \right]$$

The distribution $P(x_{z_t} \mid \mathbf{x}_{\mathbf{z}_{< t}}, z_t)$ must condition on the target position z_t

Target-position-aware Distribution

$$\mathbb{E}_{z_t \sim \mathcal{Z}_T} \left[\sum_{t=1}^T \log P(x_{z_t} \mid \mathbf{x}_{\mathbf{z}_{< t}}, z_t) \right]$$

The distribution $P(x_{z_t} \mid \mathbf{x}_{\mathbf{z}_{< t}}, z_t)$ must condition on the **target position** z_t

- Predicting **position 3** and **position 2** requires different prediction distributions
- The prediction distribution should **change according to the target position**

Reparameterization

• Standard Softmax does **NOT** work

$$P(x_{z_t} \mid \mathbf{x}_{\mathbf{z}_{< t}}, z_t) = \frac{\exp\left(e(x_{z_t})^\top h(\mathbf{x}_{\mathbf{z}_{< t}})\right)}{\sum_{x'} \exp\left(e(x')^\top h(\mathbf{x}_{\mathbf{z}_{< t}})\right)}$$

Reparameterization

• Standard Softmax does **NOT** work

$$P(x_{z_t} \mid \mathbf{x}_{\mathbf{z}_{< t}}, z_t) = \frac{\exp\left(e(x_{z_t})^\top h(\mathbf{x}_{\mathbf{z}_{< t}})\right)}{\sum_{x'} \exp\left(e(x')^\top h(\mathbf{x}_{\mathbf{z}_{< t}})\right)}$$
No info.
of z_t

• Proposed solution: incorporate z_t into hidden states

$$P(x_{z_t} \mid \mathbf{x}_{\mathbf{z}_{< t}}, z_t) = \frac{\exp\left(e(x_{z_t})^\top g(\mathbf{z}_t, \mathbf{x}_{\mathbf{z}_{< t}})\right)}{\sum_{x'} \exp\left(e(x')^\top g(\mathbf{z}_t, \mathbf{x}_{\mathbf{z}_{< t}})\right)}$$
 Deep Net

Reparameterization

Standard Softmax does NOT work

$$P(x_{z_t} \mid \mathbf{x}_{\mathbf{z}_{< t}}, z_t) = \frac{\exp\left(e(x_{z_t})^\top h(\mathbf{x}_{\mathbf{z}_{< t}})\right)}{\sum_{x'} \exp\left(e(x')^\top h(\mathbf{x}_{\mathbf{z}_{< t}})\right)}$$

No info. of z_t

• Proposed solution: incorporate z_t into hidden states

$$P(x_{z_t} \mid \mathbf{x}_{\mathbf{z}_{ Deep Net$$

Question: how to implement $g(\mathbf{z}_t, \mathbf{x}_{\mathbf{z}_{< t}})$?

Target Position Aware Representation: $g(z_t, x_{z_{< t}})$

Reuse the Idea of Attention

- Stand at the target position z_t Gather information from $\mathbf{x}_{z_{< t}}$

Target Position Aware Representation: $g(z_t, x_{z,t})$

Reuse the Idea of Attention \(\sum_{\circ} \) .

- Stand at the target position z_t Gather information from $x_{z < t}$

$$g(z_t, \mathbf{x}_{\mathbf{z}_{< t}}) = \operatorname{Attn}_{\theta} \left(\underbrace{\mathbf{Q} = \operatorname{Enc}(\mathbf{z}_t)}_{\text{Stand at } \mathbf{z}_t}, \underbrace{\operatorname{KV} = \mathbf{h}(\mathbf{x}_{\mathbf{z}_{< t}})}_{\text{Gather info. from } \mathbf{x}_{\mathbf{z}_{< t}}} \right)$$

Target Position Aware Representation: $g(z_t, x_{z_{< t}})$

Reuse the Idea of Attention

- Stand at the target position z_t
- Gather information from $\mathbf{x}_{\mathbf{z}_{< t}}$

$$g(z_t, \mathbf{x}_{\mathbf{z}_{< t}}) = \operatorname{Attn}_{\theta} \left(\underbrace{\mathbf{Q} = \operatorname{Enc}(\mathbf{z}_t)}_{\text{Stand at } \mathbf{z}_t}, \underbrace{\operatorname{KV} = \mathbf{h}(\mathbf{x}_{\mathbf{z}_{< t}})}_{\text{Gather info. from } \mathbf{x}_{\mathbf{z}_{< t}}} \right)$$

Contradiction: Predicting Self and Others

• Factorization order: $4 \rightarrow 1 \rightarrow 3 \rightarrow 2$

Use $g_1^{(1)}$ to predict $\mathbf{x_1}$ (self)

Should not encode x_1

Contradiction: Predicting Self and Others

• Factorization order: $4 \rightarrow 1 \rightarrow 3 \rightarrow 2$

Use $g_1^{(1)}$ to predict $\mathbf{x_1}$ (self)

Should not encode x_1

Use $g_1^{(1)}$ to predict x_3 (other)

Should encode x_1

Two-Stream Attention

• Factorization order: $4 \rightarrow 1 \rightarrow 3 \rightarrow 2$

Encoding. Predicting x_2 and x_3 (others).

 h_1 encodes x_1

Decoding. Predicting x_1 (self).

 g_1 does not encode x_1

Two-Stream Attention

• Factorization order: $4 \rightarrow 1 \rightarrow 3 \rightarrow 2$

Solutions Challenges Independence assumption and distribution discrepancy in BERT

Independence assumption and distribution discrepancy in BERT

Standard parameterization is reduced to bag-of-words

Solutions

Permutation language modeling

Experiment 1: Comparison with BERT

- Same training data as in BERT: Wikipedia + BooksCorpus
- Same hyperparameters for pretraining as in BERT
 - Model size: L=24, H=1024, A=16
 - Batch size: 256
 - Number of steps: 1M
 - ...
- Same hyperparameter search space for finetuning as in BERT

XLNet outperforms BERT on 20 tasks

We report the **best of 3** BERT variants. Almost **identical** training recipes.

Experiment 2: Comparison with RoBERTa

- Less training data for XLNet: 126GB vs 160GB
- Same hyperparameters for pretraining as in RoBERTa
 - Model size: L=24, H=1024, A=16
 - Batch size: 8192
 - Number of steps: 500K
 - •
- Same hyperparameter search space for finetuning as in RoBERTa

XLNet outperforms RoBERTa on all considered tasks

Almost identical training recipes.

XLNet is

The best pretrained model today Given standard FLOPs.

XLNet-2 Coming Soon!

Optimized data processing

Optimized model implementation

- Only about 10% slower than BERT during pretraining
- Finetuning speed and memory are identical to BERT
- Outperforms BERT (and larger BERT-like models) consistently under all considered settings

To be release at https://github.com/zihangdai/xlnet

Future Work

Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le (*: equal contribution)

Carnegie Mellon University

Google Al