Алгоритмы и структуры данных-1 Лекция 9

Дата: 20.11.2023

Программная инженерия, 2 курс 2023-2024 учебный год

Нестеров Р.А., PhD, ст. преподаватель департамент программной инженерии ФКН

План

Бинарные деревья. Общие вопросы

Бинарные деревья поиска.

ADT «Отсортированный список»

Вырождение бинарных деревьев поиска. Проблема баланса

Дерево – это ...

Односвязный граф без циклов

Это НЕ бинарное дерево...

Бинарное дерево

Произвольное количество вершин-потомков для простых деревьев редко встречается в реальных приложениях...

Бинарное дерево

Произвольное количество вершин-потомков для простых деревьев редко встречается в реальных приложениях...

- разбор выражений с бинарными операторами
- алгоритмы кодирования без потерь
- генеалогические и филогенетические деревья

Бинарное дерево – рекурсивная структура

Каждая вершина имеет не более двух потомков (левый L и правый R)

Потомки могут определять целое поддерево

Классификация

Все вершины, кроме листьев, имеют двух потомков

Все листья располагаются на одном уровне

Высота идеального дерева с *n* вершинами – ...

Высота идеального дерева с n вершинами $-\Theta(\log n)$

Высота идеального дерева с n вершинами — $\Theta(\log n)$

Идеальное дерево высоты h имеет $2^{h+1}-1$ вершин

Высота идеального дерева с n вершинами — $\Theta(\log n)$

Идеальное дерево высоты h имеет $2^{h+1} - 1$ вершин

Идеальное дерево высоты h имеет 2^h листьев

Мы использовали идеальные деревья для анализа

рекурсивных алгоритмов

Идеальные деревья использовались для анализа рекурсивных алгоритмов

А вообще, это то, к чему мы стремимся при работе с бинарными деревьями...

Идеальное дерево имеет строго определенное количество вершин $n=2^{h+1}-1$ для h=0,1,2,3,... 1,3,7,15,31,63,127,255,511,1023,...

Идеальное дерево имеет строго определенное количество вершин $n=2^{h+1}-1$ для h=0,1,2,3,... 1,3,7,15,31,63,127,255,511,1023,...

Рассмотрим деревья, похожие на идеальные, но в которых количество вершин определено для всех *n*

Все уровни, кроме, м. б., последнего, заполнены

Заполнение уровней происходит слева направо

Высота полного дерева с n вершинами — $\lfloor \log n \rfloor$

Такое дерево логичнее всего обрабатывать

обходом в ширину

Естественным образом индуцируется нумерация вершин по уровням, ...

Естественным образом индуцируется нумерация вершин по уровням, ...

...что делает удобным хранение этого дерева в массиве

Вставка сводится к помещению значения на первое свободное место

Вставка сводится к помещению значения на первое свободное место

Удаление сводится к обмену с последним значением в дереве

Удаление сводится к обмену с последним значением в дереве

Удаление сводится к обмену с последним значением в дереве

Куча является ярким примером полного бинарного дерева с доп. ограничениями

Почему бы не хранить любое бинарное дерево в массиве?

Строгие full бинарные деревья

Каждая вершина, кроме листьев, имеет в точности по два потомка

Пусть *n* – количество вершин с потомками, ...

Пусть n — количество вершин c потомками, ...

тогда количество вершин без потомков – n+1

Строгие деревья находят свое применение в

- кодировании Хаффмана
- синтаксическом разборе выражений

Синтаксический разбор выражений

Дерево выражения $3(4a+b+c)+d/_5+(6-e)$

Дерево выражения. Прямой обход

preOrder(Node* root)

```
1 if root != nullptr
2  visit(root)
3  preOrder(root->left)
4  preOrder(root->right)
```

Дерево выражения. Прямой обход

preOrder(Node* root)

```
1 if root != nullptr
2  visit(root)
3  preOrder(root->left)
4  preOrder(root->right)
```

Дерево выражения. Прямой обход

preOrder(Node* root)

```
1 if root != nullptr
2  visit(root)
3  preOrder(root->left)
4  preOrder(root->right)
```

* + a 2b

Дерево выражения. Обратный обход

postOrder(Node* root)

```
1 if root != nullptr
2  postOrder(root->left)
3  postOrder(root->right)
4  visit(root)
```

Дерево выражения. Обратный обход

postOrder(Node* root)

```
1 if root != nullptr
2  postOrder(root->left)
3  postOrder(root->right)
4  visit(root)
```

Дерево выражения. Обратный обход

postOrder(Node* root)

```
1 if root != nullptr
2  postOrder(root->left)
3  postOrder(root->right)
4  visit(root)
```

$$a 2 + b *$$

Префиксная и постфиксная запись не требует скобок

Дерево выражения. Симметричный обход

inOrder(Node* root)

```
1 if root != nullptr
2 inOrder(root->left)
3 visit(root)
4 inOrder(root->right)
```

Дерево выражения. Симметричный обход

inOrder(Node* root)

```
1 if root != nullptr
2 inOrder(root->left)
3 visit(root)
4 inOrder(root->right)
```

Дерево выражения. Симметричный обход

inOrder(Node* root)

```
1 if root != nullptr
2 inOrder(root->left)
3 visit(root)
4 inOrder(root->right)
```

$$a + 2 * b$$

Нужны дополнительные действия для восстановления скобок

Обходы бинарного дерева

Три вариации поиска в глубину

Могут быть реализованы без рекурсии, но тогда потребуется хранить вершины дерева в стеке

Бинарное дерево поиска

Ранее мы работали с реализациями ADT «Линейный контейнер», упорядочивание объектов в которых выполняется самим разработчиком

Ранее мы работали с реализациями ADT «Линейный контейнер», упорядочивание объектов в которых выполняется самим разработчиком явно

В случае с ADT «Отсортированный список», объекты упорядочиваются <u>не</u>явно

Операции push_front, push_back больше не имеют смысла

Операции push_front, push_back больше не имеют смысла

Вместо них реализуется обобщенная операция вставки **insert**

...

Поиск максимума и минимума
Поиск порядковых статистик
Поиск предыдущего и следующего значения
Итерация по объектам в заданном интервале [a, b]

АиСД-1 2023-2024. Лекция 9

В чем проблема реализации отсортированного списка на массиве?

Бинарное дерево поиска – BST

Для любой вершины верно:

- ключи в левомподдереве меньше
- ключи в правом поддереве больше

BST и ключи-дубликаты

Делаем одно из условий сравнения нестрогим

BST и ключи-дубликаты

Делаем одно из условий сравнения нестрогим

BST и ключи-дубликаты

Дополнительно храним кратность для каждого ключа в дереве

BST и ключи-дубликаты

Будем всегда рассматривать BST в случае обработки уникальных значений

На практике, дубликаты редко хранятся в виде отдельных записей

Бинарное дерево поиска. Вставка и удаление

Вставка нового ключа в <u>BST</u>

insert 11

Место для нового ключа ищем последовательным спуском в правое или в левое поддерево

Вставка нового ключа в <u>BST</u>

insert 11

Место для нового ключа ищем последовательным спуском в правое или в левое поддерево

Вставка нового ключа в BST

```
insert(Node* r, T key)
  if (r == nullptr)
       return Node(key)
  else if (key < r->data)
       r->left = insert(r->left, key)
4
   else
       r->right = insert(r->right, key)
6
   return r
```

Удаление ключа из BST. Лист

erase 6

Удаление ключа из BST. Лист

erase 6

Найти ключ в дереве и установить предка

Удаление ключа из BS<u>T. Лист</u>

erase 6

Найти ключ в дереве и установить предка

Освободить память и отвязать от предка

Удаление ключа из BST. Один потомок

erase 10

Удаление ключа из BST. Один потомок

erase 10

Удаление выполняется так же, как и из обычного односвязного списка

Удаление ключа из BST. Один потомок

erase 10

Удаление выполняется так же, как и из обычного односвязного списка

erase 8

Замещаем удаляемый ключ на предыдущий/следующий

erase 8

Замещаем удаляемый ключ на предыдущий

erase 8

Замещаем удаляемый ключ на предыдущий

erase 8

Замещаем удаляемый ключ на предыдущий

Сводим к удалению листа

erase 8

Замещаем удаляемый ключ на следующий

erase 8

Замещаем удаляемый ключ на следующий

erase 8

Замещаем удаляемый ключ на следующий

Сводим к удалению вершины с одним потомком

Предыдущее и следующее значение для некоторого ключа всегда находится в листе или вершине с одним потомком

Сложность основных операций с бинарным деревом поиска полностью определяется его высотой

Бинарное дерево поиска. Проблема баланса

Вырождение BST

-2 -4 -7 -9

1 5 7 20

Вырождение BST

Стремимся к логарифмической высоте бинарного дерева поиска

Введем null-вершины, которые будут заполняться при следующих вставках

Отношение числа null-вершин в левом и правом поддеревьях к общему количеству

Баланс по весу. $BB[\alpha]$ деревья

Параметр $\alpha \in [0, \frac{1}{3}]$ определяет нижнюю границу доли null-вершин левого и правого поддерева для каждой вершины

Баланс по весу. $BB[\alpha]$ деревья

Параметр $\alpha \in [0, 1/3]$ определяет нижнюю границу доли null-вершин левого и правого поддерева для каждой вершины

Баланс по весу. $BB[\alpha]$ деревья

Параметр $\alpha \in [0, \frac{1}{3}]$ определяет нижнюю границу доли null-вершин левого и правого поддерева для каждой вершины

Логарифмическая сложность основных операций достигается при $\alpha \in \left[\frac{1}{2}, \frac{\sqrt{2}}{2}\right]$.

Баланс по длине путей

Баланс по длине путей. КЧД

В красно-черных деревьях следят за тем, чтобы длина кратчайших путей до null-вершин отличалась не более, чем вдвое для каждой вершины

Баланс по высоте. AVL

Прямое обеспечение баланса в дереве
В AVL-деревьях высоты поддеревьев не должны отличаться более, чем на 1

Как исправить разбалансировку?

...и не нарушить порядок

Правый поворот

Правый поворот

Левый поворот

Левый поворот

Повороты дерева

Операции, направленные на исправление локальной разбалансировки

Выполняются при вставке и удалении ключей

Recap

Бинарное дерево. Классификация и анализ Бинарное дерево поиска. Неявное упорядочивание ключей. ADT «Отсортированный список»

Прямой и косвенный анализ баланса бинарного дерева поиска

Teaser – Лекция 10

АVL-дерево. Баланс по высоте Самобалансирующееся В-дерево. 2-3-4 дерево Красно-черное дерево. Изометрия с В-деревом