BUNDESREPUBLIK DEUTSCHLAND

AUSGEGEBEN AM 27. SEPTEMBER 1956

DEUTSCHES PATENTAMT

PATENTSCHRIFT

Nr. 949 990

KLASSE 63c GRUPPE 34 or

INTERNAT. KLASSE B 62d ———

Z 3231 II / 63c

Otto Schwab, Friedrichshafen (Bodensee), und Julius Kiechle, Friedrichshafen (Bodensee) sind als Erfinder genannt worden

Zahnradfabrik Friedrichshafen Aktiengesellschaft, Friedrichshafen (Bodensee)

Getriebe für Kraftfahrzeuge mit einem Strömungsgetriebe

Patentiert im Gebiet der Bundesrepublik Deutschland vom 28. Januar 1953 an
Patentanmeldung bekanntgemacht am 5. April 1956
Patenterteilung bekanntgemacht am 6. September 1956
Die Priorität der Anmeldung in Österreich vom 29. Januar 1952 ist in Anspruch genommen

Die Erfindung betrifft ein Getriebe für Kraftfahrzeuge mit einem Strömungsgetriebe, das mit einem mehrgängigen Stirnräderwechselgetriebe mit einem Hauptwellenzug und einem dazu parallelen Nebenwellenzug vereinigt ist, wobei das Pumpenrad des Strömungsgetriebes mit dem Antriebsritzel eines dem Wechselgetriebe vorgeschalteten Zahnrädervorgeleges und das Turbinenrad mit dem Antriebsritzel eines weiteren, dem Wechselgetriebe vorgeschalteten Zahnrädervorgeleges verbunden ist.

Insbesondere betrifft die Erfindung ein Getriebe mit mehreren mechanischen, durch Wechselräder erzeugten Gängen, die jeweils über den Wandler, oder unter Umgehung des Wandlers unmittelbar vom Motor, bzw. vom Pumpenrad des Wandlers antreibbar sind.

Es wurde nun als vorteilhaft erkannt, daß die Abstufung der Gänge bei Vollast und die Vollastdrehzahlen der Getriebeausgangswelle in den einzelnen Gängen bei Betrieb mit und ohne Wandler gleich sind. Das mechanische Getriebe wird daher nach der Erfindung so ausgelegt, daß der Unterschied zwischen der Endübersetzung des durch den Motor mit der Drehzahl des Pumpenrades angetriebenen Stirnräderwechselgetriebes und der Endübersetzung des durch das Turbinenrad angetriebenen Stirnräderwechselgetriebes in allen Gängen dem Schlupf zwischen dem Turbinenrad und dem Pumpenrad bei Vollast und bei der höchsten Drehzahl entspricht.

Dadurch wird erreicht, daß die Vollastdrehzahl der getriebenen Welle bei einem Betrieb mit eingeschal- 30 tetem Strömungsgetriebe der Drehzahl dieser Welle bei rein mechanischem Betrieb in allen Gängen gleich ist.

Bei Betrieb über den Wandler wird das Eingangsdrehmoment des Stufengetriebes auf ein Mehrfaches des Motordrehmoments erhöht.

Um hierbei die dem höheren Drehmoment entsprechende größere und schwerere Ausbildung zu vermeiden, wird das Stufengetriebe zweckmäßigerweise als Gruppengetriebe in sogenannter Schnellgangausführung gebaut, indem man die Übersetzungen im Stufengetriebe alle um einen Stufensprung verkleinert und bei der Drehmomentübertragung auf die Fahrzeugradachse um den erwähnten Stufensprung ver-

größert.

Die Zeichnung stellt ein Ausführungsbeispiel der Erfindung dar. Der nicht gezeichnete Motor treibt das Pumpenrad P und das Ritzel I an. Durch das Pumpenrad P wird bei Wandlerbetrieb über das Leitrad L das Turbinenrad T angetrieben. Das Turbinenrad T treibt über einen Freilauf 15 das Ritzel 2 eines mechanischen Stufengetriebes. Dabei ist bei Vollast und Höchstdrehzahl n_1 des Motors die Drehzahl n_2 des Turbinenrades um einen bestimmten Betrag kleiner als die Motorendrehzahl n_1 (Schlupf). Bei direktem Antrieb des Ritzels 1 läuft dieses um mit Motordrehzahl n_1 . Das Ritzel 2 läuft bei Antrieb durch das Turbinenrad mit der Drehzahl n2 das Turbinenrades um. Die Übersetzungsverhältnisse $i_{1,3}$ und $i_{2,4}$ der Räderpaare 1, 3 und 2, 4 sind nach der Erfindung so bemessen, daß die Differenz zwischen n_1 und n_2 ausgeglichen wird und die Ausgangsdrehzahlen der Welle 14 in den entsprechenden Gängen I und WI bzw. III und WIII

Bei normaler Abstufung der einzelnen Gänge um den Stufensprung φ (größer als 1) und direktem Antrieb im IV. Gang würde die Abstufung in den

einzelnen Gängen betragen:

jeweils gleich sind.

I. Gang, Übersetzungsverhältnis
$$rac{n_1}{n_1}=arphi^3$$
II. Gang, Übersetzungsverhältnis $rac{n_1}{n_\Pi}=arphi^2$

III. Gang, Übersetzungsverhältnis
$$\frac{n_1}{n_{\text{III}}} = \varphi$$

IV. Gang, Übersetzungsverhältnis
$$\frac{n_1}{n_{\rm IV}}=\varphi^0={
m r}$$

wobei $n_{\rm I}$ bis $n_{\rm IV}$ die Drehzahlen der Welle 14 in de einzelnen Gängen bezeichnen.

Zur Verringerung der Getriebebelastung soll di Gesamtübersetzung in jedem Gang beispielsweis um φ verringert werden, so daß sich für die einzelne in der Zeichnung schematisch dargestellten Kraft wege folgende Übersetzungsverhältnisse ergeben:

I. Gang
$$\frac{n_1}{n_1} = \varphi^2$$

II. Gang $\frac{n_1}{n_{II}} = \varphi$

III. Gang $\frac{n_1}{n_{II}} = \varphi^0 = I$

IV. Gang $\frac{n_1}{n_{IV}} = \varphi^{-1} = \frac{I}{\varphi}$

Hierbei erfolgt also der direkte Antrieb im III. Gang Der IV. Gang ergibt eine Übersetzung ins Schnelle Durch Vergrößern der Übersetzung an der Fahrzeug radachse um den Stufensprung φ erhält man wiede die ursprünglichen Übersetzungsverhältnisse φ^3 , φ^2 φ und $\tilde{\varphi}^0$.

Zur Vermeidung zu hoher Drehzahlen des Ritzels: im IV. Gang kann der Exponent des Stufensprunge für das Räderpaar 7, 8 verkleinert werden gegenübe dem Exponenten des Stufensprunges in der größter Übersetzungsstufe des Getriebes, beispielsweise au φ^{1½} Um die oben angegebenen Gesamtübersetzunger in den einzelnen Getriebestufen beizubehalten, werder die Räderpaare des Stufengetriebes in dem dargestell

ten Ausführungsbeispiel mit folgenden Übersetzunger

Räderpaar 1, 2 Übersetzungsverhältnis $\varphi^{-\frac{1}{2}}$

ausgeführt:

Räderpaar 4, 5 bzw. 5, 6 Übersetzungsverhältnis $\varphi^{-\frac{1}{2}}$ bzw. φ^+

Räderpaar 8, 7 Übersetzungsverhältnis $\varphi^{1\frac{1}{2}}$.

Die Gänge des mechanischen Stufengetriebes sind dann folgendermaßen angeordnet:

50 · .	Gang	Räderpaare	Kupplungen	Stufensprung der Räderpaare	Gesamtes Über- setzungsverhältnis
	I.	5, 6 8, 7	9 und 12	$arphi^{+rac{1}{2}} arphi^{+rac{1}{2}}$. φ²
55.	II.	r, 3 8, 7	10 und 12	$arphi^{-rac{7}{2}} arphi^{rac{1}{2}}$	$arphi^1$
бо	III.	direkt	9 und 11		$arphi^0$
	IV.	1, 3 6, 5	ro und 11	$\varphi^{-rac{1}{2}} \ arphi^{-rac{1}{2}}$	$arphi^{-1}$

Es ergeben sich also mit den verkleinerten Exponenten die gleichen Gesamtübersetzungsverhältnisse in den einzelnen Gängen wie mit den ursprünglichen Exponenten. Dabei wird das Räderpaar 5, 6 doppelt benutzt, und zwar im I. Gang mit dem Übersetzungsverhältnis φ^{+½} und im IV. Gang mit Übersetzungsverhältnis φ^{-½}.

Es besteht nach der Erfindung für das Räderpaar 2, 4 folgende Bedingung:

$$S \cdot i_{2,4} \cdot i_{6,5} = 1$$

Unter der Annahme eines Schlupfes des Wandlers von $S = \frac{n_1}{n_2} = 1,25$ und eines Stufensprunges $\varphi = 1,58$ folgt:

$$i_{2,4} = \frac{I}{S \cdot i_{6,5}} = \frac{I \cdot \varphi^{0,5}}{I,25} \approx I.$$

PATENTANSPRUCH:

20

25

Getriebe für Kraftfahrzeuge mit einem Strömungsgetriebe, das mit einem mehrgängigen Stirnräderwechselgetriebe mit einem Hauptwellenzug und einem dazu parallelen Nebenwellenzug vereinigt ist, wobei das Pumpenrad des Strömungs-

getriebes mit dem Antriebsritzel eines dem Wechselgetriebe vorgeschalteten Zahnrädervorgeleges und das Turbinenrad mit dem Antriebs- 30 ritzel eines weiteren dem Wechselgetriebe vorgeschalteten Zahnrädervorgeleges verbunden ist, wobei die Übersetzung in dem durch das Pumpenrad antreibbaren Vorgelege von der Übersetzung in dem durch das Turbinenrad antreibbaren 35 Vorgelege verschieden ist, dadurch gekennzeichnet, daß der Unterschied zwischen der Endübersetzung des durch den Motor mit der Drehzahl des Pumpenrades angetriebenen Stirnräderwechselgetriebes und der Endübersetzung des durch das Turbinenrad 40 angetriebenen Stirnräderwechselgetriebes in allen Gängen dem Schlupf zwischen dem Turbinenrad und dem Pumpenrad bei Vollast und bei der höchsten Drehzahl entspricht, so daß die Vollastdrehzahl der getriebenen Welle bei einem Betrieb mit eingeschaltetem Strömungsgetriebe der Drehzahl dieser Welle bei einem rein mechanischen Betrieb gleich ist.

In Betracht gezogene Druckschriften: USA.-Patentschrift Nr. 2 243 482;

Bussien, Automobiltechnisches Handbuch, 16. Aufläge, S. 66 bis 69;

Richard Ritter, Zahnradgetriebe.

Hierzu I Blatt Zeichnungen

