Домашнее задание 1

Задание 1

Многочлен $P_n(x) = 3200x^5 + 480x^4 - 73624x^3 - 10686x^2 + 245645x - 59598$

Локализация

 $x \approx 3.5400$

Производная
$$P_n'(x)=16000x^4+1920x^3-220872x^2-21372x+245645$$
 $16000x^4+1920x^3-220872x^2-21372x+245645=0$ Корни: $x\approx -3.5554$ $x\approx -1.1580$ $x\approx 1.0534$

Возьмём отрезки с концами близкими к корням уравнения производной в качестве разбиения

x	-4.5	-2.5	-0.5	1.5	3.5	5.5
$P_n(x)$	-380475	116127	-175959	63075	-734643	5263335

Выберем отрезки
$$[-4.5;-2.5],\ [-2.5;-0.5],\ [-0.5;1.5],\ [1.5;3.5],\ [3.5;5.5]$$

Для любого a и b, которые являются границами выбранных отрезков, выполняется условие: f(a)f(b)<0

Так как мы нашли пять отрезков, удовлетворяющих этому условию, и максимальное количество корней уравнения многочлена пятой степени равно пяти, то на каждом отрезке ровно один корень

Нахождение корней методом Ньютона

$$x_{n+1} = x_n - rac{f(x_n)}{f'(x_n)} = x_n - rac{P_n(x_n)}{P'_n(x_n)}, \; \epsilon = 10^{-6}$$

итерации	[-4.5; -2.5]	[-2.5;-0.5]	$\left[-0.5; 1.5\right]$	[1.5;3.5]	[3.5; 5.5]
1	-4.3312899768	-2.2612397820	0.2155502511	1.8219837248	4.8739461899
2	-4.300928818	-2.2500386685	0.2496899396	1.7532514185	4.5286058187
3	-4.3000008506	-2.2500000005	0.2499999724	1.7500074089	4.4127323851
4	-4.3000000000	-2.2500000000	0.2500000000	1.7500000000	4.4001411870
корень	-4.3	-2.25	0.25	1.75	4.4

Значения получены из программы, в качестве начального приближения бралось такое x_0 , что $f(x_0)f(x_0)''=P_n(x_0)P_n(x_0)''>0$ Значения получены из программы, в качестве начального приближения бралось такое x_0 , что $f(x_0)f(x_0)''=P_n(x_0)P_n(x_0)''>0$

Задание 2

Будем везде брать $x_0=0.5$

1.
$$0 < r < 1$$

Возьмём r=0.5

$$\phi(x) = \frac{1}{2}x(1-x)$$

$$\phi'(x) = rac{1}{2} - x$$

По теореме о сходимости метода простых итераций итерационная последовательность сходится к корню x=0, так как на отрезке $x\in [0-\delta,0+\delta]$ проихводная $\phi'(x)$ непрерывна и $|\phi'(x)|<1$

Путь итерационной последовательности:

График: i $\rightarrow x_i$

2.
$$1 < r < 3$$

$$\circ 1 < r < 2$$

Пусть
$$r=1.5$$

$$\phi(x) = rac{3}{2}x(1-x)$$

$$\phi'(x) = \frac{3}{2} - 3x$$

При $x\in [\frac{1}{3}-\delta,\frac{1}{3}+\delta]$ производная непрерывна и $|\phi'(x)|<1$ \Longrightarrow по теореме о сходимости метода простых итераций последовательность сходится к корню $x=\frac{1}{3}$

Путь итерационной последовательности:

График: i $\rightarrow x_i$

График иллюстрирует монотонную сходимость.

$$\circ 2 < r < 3$$

пусть r=2.5

$$\phi(x) = \frac{5}{2}x(1-x)$$

$$\phi'(x) = \frac{5}{2} - \frac{5}{x}$$

Аналогично итерационная последовательность сходится к корню $x=\frac{3}{5}$, т. к. при $x\in[\frac{3}{5}-\delta,\frac{3}{5}+\delta]$ производная непрерывна и ее модуль $|\phi'(x)|<1$ меньше единицы (т.е. выполняется условие Липшица).

Путь итерационной последовательности:

График: i $\rightarrow x_i$

В данном случае мы уже имеем колебательную сходимость.

3. При г \in (3; r_{∞}) мы уже не можем применить теорему о сходимости, т.к. не выполняется условие Липшица \implies итерационная последовательность не сходится к одному корню. Она распадается на 2, 4, 8... подпоследовательностей, каждая из которых имеет свой предел. Это можно проследить на графике:

4. Покажем, что в диапозоне $r_{\infty} < r < 4$ поведение итерационной последовательности становится похожим на случайное (детерминированный хаос):

Также заметим, что если рассмотреть один из подпромежутков, то при некоторых значениях r имеются области сгущения и разрежения итерационной последовательсти. Этот график рассматривает часть предыдущего графика для наглядности

Этот график показывает, что в окрестности r=4 поведение итерационной последовательности становится похожим на белый шум

Задание 3

Для случайных начальных значений:

