# Assignment 3 - Numerical Linear Algebra

## Arthur Rabello Oliveira<sup>1</sup>, Henrique Coelho Beltrão<sup>2</sup>

## 16/06/2025

#### **Abstract**

coming soon

### **Contents**

| 1. | Introduction                     | 2    |
|----|----------------------------------|------|
|    | Norm Distribution (a)            |      |
|    | 2.1. The Chi-Square Distribution |      |
|    | 2.2. Histograms                  |      |
|    | Inner Products (b)               |      |
|    | 3.1. Histograms                  |      |
|    | The Maximum Distribution         |      |
| 5. | Complexity                       | . 12 |
| 6. | Another Maximum Distribution     | . 12 |
| 7. | Conclusion                       | . 12 |
| Bi | oliography                       | . 12 |
|    |                                  |      |

 $<sup>^1\!</sup>Escola\ de\ Matemática\ Aplicada, Fundação\ Getúlio\ Vargas\ (FGV/EMAp),\ email:\ arthur.oliveira.1@fgv.edu.br$ 

<sup>&</sup>lt;sup>2</sup>Escola de Matemática Aplicada, Fundação Getúlio Vargas (FGV/EMAp), email: henrique.beltrao@fgv.edu.br

#### 1. Introduction

## 2. Norm Distribution (a)

### 2.1. The Chi-Square Distribution

Here we construct a theoretical basis for our analysis of the histograms shown in Section 2.2

When we generate a matrix  $A \in \mathbb{R}^{m \times n}$ , with  $A_{ij} \sim N(0,1)$  independent, each column  $c_i$  is a gaussian vector in  $\mathbb{R}^m$ . if

$$x = \begin{pmatrix} X_1 \\ X_2 \\ \vdots \\ X_m \end{pmatrix} \in \mathbb{R}^m \tag{1}$$

Is a column, then:

$$V = \|x\|_2 = \sqrt{\sum_{i=1}^m X_i^2}$$
 
$$V^2 = \sum_{i=1}^m X_i^2$$
 (2)

Is of our interest. The expected value and variance are:

$$\mathbb{E}[V^2] = \mathbb{E}\left[\sum_{i=1}^m X_i^2\right] = \sum_{i=1}^m \mathbb{E}[X_i^2] = m$$

$$\operatorname{Var}(V^2) = \operatorname{Var}\left(\sum_{i=1}^m X_i^2\right) = \sum_{i=1}^m \operatorname{Var}(X_i^2) = 2m$$
(3)

But we know that if  $X_i \sim N(0,1)$  are independent:

$$\sum_{i=1}^{m} X_i^2 \sim \chi_m^2 \tag{4}$$

where  $\chi_m$  is the chi-squared distribution with m degreees of freedom, better discussed in Section 2.1.

Taking the square root on eq. (4), we have:

$$V = \|x\|_2 = \sqrt{\sum_{i=1}^m X_i^2} \sim \sqrt{\chi_m^2} \sim \chi_m \tag{5}$$

The 2-norm of a vector x is distributed as a chi distribution with m degrees of freedom, in order to understand the distribution for many values of m, we can calculate the expected value and variance of this distribution as a function of m. The PDF of the chi distribution (with m degrees of freedom) is:

$$f_V(\varphi) = \frac{1}{2^{\frac{m}{2} - 1} \cdot \Gamma(\frac{m}{2})} \varphi^{m-1} e^{-\frac{\varphi^2}{2}}$$

$$\tag{6}$$

So from this, the expected value is:

$$\mathbb{E}(V) = \sqrt{2} \cdot \frac{\Gamma(\frac{m+1}{2})}{\Gamma(\frac{m}{2})} \tag{7}$$

And from this, the variance:

$$Var(V) = m - \left(\sqrt{2} \cdot \frac{\Gamma(\frac{m+1}{2})}{\Gamma(\frac{m}{2})}\right)^{2}$$
(8)

The Stirling Approximation provides a good approximation for the expected value and variance:

$$\mathbb{E}(V) \approx \sqrt{m} \cdot \left(1 - \frac{1}{4m} + O\!\left(\frac{1}{m^2}\right)\right) \tag{9}$$

$$Var(V) \approx \frac{1}{2} + O\left(\frac{1}{m}\right) \tag{10}$$

## 2.2. Histograms

The first cell of this notebook has as expected output, with input being matrices with fixed n = 1000 and  $m \in \{10, 20, 100, 200, 1000, 2000\}$ , the following plots:



Figure 1:  $10 \times 1000$  gaussian matrix



Figure 2:  $20 \times 1000$  gaussian matrix



Figure 3:  $100 \times 1000$  gaussian matrix



Figure 4:  $200 \times 1000$  gaussian matrix



Figure 5:  $1000 \times 1000$  gaussian matrix



Figure 6:  $2000 \times 1000$  gaussian matrix

| m    | approximate $\mu_m$ (theory) | $[\mu \pm 3\sigma]$ (theory) | observed spike        | visual range |
|------|------------------------------|------------------------------|-----------------------|--------------|
| 10   | 3.08                         | 1.0 - 5.18                   | $\approx 3.1$         | 1.2 - 5.1    |
| 20   | 4.42                         | 2.3 - 6.52                   | pprox 4.3 - 4.4       | 2.9 - 6.4    |
| 100  | 9.98                         | 7.9 - 12.1                   | $\approx 9.9 - 10.0$  | 7.8 - 12.0   |
| 200  | 14.12                        | 12.0 - 16.2                  | $\approx 14.1$        | 12.2 - 16.2  |
| 1000 | 31.61                        | 29.5 - 33.7                  | $\approx 31.7 - 32.0$ | 29.9 - 33.3  |
| 2000 | 44.72                        | 42.6 - 46.8                  | $\approx 44.5 - 45.0$ | 42.8 - 46.6  |

This table illustrates the expected value  $\mu_m$  and the range  $[\mu - 3\sigma, \mu + 3\sigma]$  for Figure 1 to Figure 6.

So apparently as m grows, the size of the gaussian vectors rapidly converge to  $\sqrt{m}$ , with small errors.

## 3. Inner Products (b)

Here we construct a theoretical basis for our analysis of the inner products shown in Section 3.1.

When we generate a matrix  $A \in \mathbb{R}^{m \times n}$ , with  $A_{ij} \sim N(0,1)$  independent, each column  $c_i$  is a gaussian vector in  $\mathbb{R}^m$ . If The inner product of two gaussian vectors  $x = (X_1,...,X_n), y = (Y_1,...,Y_n)$  is:

$$Z = \langle x, y \rangle = \sum_{i=1}^{m} X_i Y_i \tag{11}$$

With  $X,Y \sim N(0,1)$ . Since  $X_i,Y_j$  are independent, we have:

$$\mathbb{E}[Z] = \sum_{i=1}^{m} \mathbb{E}[X_i Y_i] = \sum_{i=1}^{m} \mathbb{E}[X_i] \mathbb{E}[Y_i] = 0$$

$$Var(Z) = \sum_{i=1}^{m} Var(X_i Y_i) = \sum_{i=1}^{m} \mathbb{E}[X_i^2] \mathbb{E}[Y_i^2] = \sum_{i=1}^{m} 1 = m$$
(12)

If  $W = X_i Y_i$ , we have:

$$M_W(\varphi) = \mathbb{E}[e^{\varphi W}] = \frac{1}{\sqrt{1 - \varphi^2}}, |\varphi| < 1 \tag{13}$$

Over all  $W_i = X_i Y_i$ :

$$M_Z(\varphi) = \mathbb{E}\big[e^{\varphi Z}\big] = \left(M_W(\varphi)\right)^m = \left(\frac{1}{\sqrt{1-\varphi^2}}\right)^m = \left(1-\varphi^2\right)^{-\frac{m}{2}}, |\varphi| < 1 \tag{14}$$

And magically:

$$M_{\frac{Z}{\sqrt{m}}}(\varphi) = \left(1 - \frac{\varphi^2}{m}\right)^{-\frac{m}{2}} \Rightarrow \lim_{m \to \infty} M_{\frac{Z}{\sqrt{m}}}(\varphi) = e^{\frac{\varphi^2}{2}}$$
 (15)

Precisely the moment generating function of a standard normal distribution, so as  $m \to \infty$ :

$$\frac{Z}{\sqrt{m}} \sim N(0, 1) \tag{16}$$

With a fixed m=100, when  $n\to\infty$  we can see the distribution approaching N(0,1), as shown in Section 3.1

#### 3.1. Histograms

The following plots are an expected output for the second cell of this notebook, with input  $m = 100, n \in \{10, 20, 30, 40, 50, 60, ..., 1000\}$ :

















































Figure 7  $\rightarrow$  Figure 34 shows that the distribution indeed approaches N(0,1)

- 4. The Maximum Distribution
- 5. Complexity
- 6. Another Maximum Distribution
- 7. Conclusion

Bibliography