

Dinámica de Sistemas Mecánicos – IMEC2540 Semana 3: Movimiento

Realice los ejercicios utilizando las librerías en Python: *jupyter, sympy, numpy y matplotlib*. Deberá entregar un cuaderno en Jupyter (en formato .ipynb) que pueda correr la solución a cada uno de los ejercicios, produciendo los resultados y gráficas solicitadas. **Enviar un único archivo** .*ipynb* por bloque neón.

1. Determine la aceleración del eje B cuando $\theta=60^\circ$ y la manivela OA está rotando a una velocidad $\dot{\theta}=4rad/s$ con una aceleración de $\ddot{\theta}=8rad/s^2$. Suponga que el resorte hace que siempre se mantenga contacto entre el rodillo y el punzonador.

- 2. Para el mecanismo de dos barras:
 - a. Describir la posición de cada una de las barras usando vectores.
 - b. Determinar la velocidad (\dot{x}) del deslizador C en términos de $\theta y \dot{\theta}$.
 - c. Determinar la aceleración (\ddot{x}) del deslizador C en términos de θ , $\dot{\theta}$ y $\ddot{\theta}$.

3. Para el sistema en el que pin ancla al collar deslizante A con la barra OB, dar expresiones que describan las variables \ddot{y} del collar A en términos de θ (y sus $derivadas \dot{\theta} y \ddot{\theta}$).

4. Construya una gráfica que presente el volumen del flotador en función de las vueltas del tornillo central (avance 1.25mm/vuelta). Utilice los archivos CAD para compartidos en el enlace de la actividad para entender el mecanismo y obtener las longitudes y medidas que requiera.

