

FACULTAD DE CIENCIAS SOCIÁLES

Examen Parcial

Especialidad de Economía Econometría 1 2013-I

Profesor: Gabriel Rodríguez

Indicaciones: Todas las secciones son obligatorias. El número de puntos que aparece entre paréntesis corresponde al número de minutos que Ud. debería asignar a la sección respectiva. En consecuencia, la duración del examen es de 2 horas (120 puntos). Ningún material de consulta del curso es permitido.

1 Sección 1 (20 puntos)

Defina (brevemente) los siguientes conceptos:

- 1. Test uniformemente más potente (UMP) y Localmente más Potente (LMP).
 - 2. Tamaño (size) nominal y exacto de un test.
 - Función de potencia de un estadístico para probar la hipótesis nula que el verdadero coeficiente es igual a cero.

 \mathcal{M} Test de Wald con restricciones lineales $R\beta = q$.

2 Sección 2 (40 puntos)

 (40 puntos) Considere la siguiente Tabla con observaciones anuales del logaritmo del Consumo (cp), del logaritmo del ingreso disponible (yd) y de la tasa de interés de referencia (i).

15	o agreement Miller over a re-	7.		
Año	intercepto	yd	cp_	i
1970	<u> </u>	6.62	6.51	0.030
1971	1 /	6.66	6.55	0.035
1972	1 /	6.70	6.60	0.04
1973	1	6.76	6.64	0.05
1974	1	6.75	6.64	0.04
1975	1	6.77	6.66	0.03
1976	1	6.81	6.71	0.03
1977	1 \	6.85	6.76	0.05
1978	1 \	6.90	6.81	0.055
1979	/ 1	6.92	6.83	0.06

$$C_{P_{\pm}} = \beta_1 + \beta_2 y_{d_{\pm}} + \beta_3 i_{\pm} + \varepsilon_{\pm}$$

 $(6.5) = \beta_1 + \beta_2 (6.62) + \beta_3 (0.030) + \varepsilon_{\pm}$

(b) Pruebe la hipótesis que $\beta_2=0$. Use como valor crítico $t_{\alpha/2}=2.306$. ¿Rechaza o no rechaza la hipótesis nula?

(c) Halle un intervalo de confianza al 95% para $\widehat{\beta}_3$. Use como valor crítico $t_{\alpha/2}=2.306$.

(d) Halle el coeficiente R^2 . Halle el coeficiente \overline{R}^2 .

(e) Halle el estadístico F para verificar la prueba de hipótesis $H_0: \beta_2=\beta_3=0$. Usa el valor crítico 4.46. ¿Rechaza o no rechaza la hipótesis nula?

3 Sección 3 (60 puntos)

(25 puntos) Sea el Modelo $Y = X_1\beta_1 + X_2\beta_2 + \epsilon$ donde X_1 y X_2 son matrices de orden $T \times k_1$ y $T \times k_2$, respectivamente y donde $k_1 + k_2 = k$. Utilice la fórmula de matrices particionadas para encontrar $\widehat{\beta}_1$ y $\widehat{\beta}_2$. Use sus resultados para explicar el Teorema de Frisch-Waugh. Ayuda: Use la la fórmula de matrices particionadas que es la siguiente:

$$\left[\begin{array}{cc} A_{11} & A_{12} \\ A_{21} & A_{22} \end{array}\right]^{-1} = \left[\begin{array}{cc} A_{11}^{-1}(I + A_{12}F_2A_{21}A_{11}^{-1}) & -A_{11}^{-1}A_{12}F_2 \\ -F_2A_{21}A_{11}^{-1} & F_2 \end{array}\right]$$

donde $F_2 = (A_{22} - A_{21}A_{11}^{-1}A_{12})^{-1}$

2. (35 puntos) Asuma el modelo $y_t = \beta_1 + \beta_2 t + \epsilon_t$ donde t es una tendencia lineal. Se pide hallar la distribución asintótica de $(\widehat{\beta}_1 - \beta_1)$ y $(\widehat{\beta}_2 - \beta_2)$. ¿Cuáles son los órdenes de convergencia de cada uno de ellos?

Lima, 11 de Mayo 2013

$$\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} A_{11} (I + A_{12} (A_{22} - A_{21} A_{22})) \\ A_{21} & A_{22} \end{bmatrix}$$