Syntax and Semantics of V^-

Roger Burtonpatel

October 22, 2023

1 Syntax

We present a grammar of V^- :

A *name* is any token that is not an integer literal, does not contain whitespace, a bracket, or parenthesis, and is not a value constructor name or a reserved word.

2 Refinement ordering on environments

$$\rho \subseteq \rho'$$
 when $dom \rho \subseteq dom \rho'$
and $\forall x \in dom \rho : \rho(x) \subseteq \rho'(x)$

3 Forms of Judgement for V^- :

Metavariables	
θ	a value produced from evaluating α .
eq	equation
${f reject}$	equation rejection
r	$\vartheta \mid \mathbf{reject}$: a result of ϑ or rejection
ho	environment: $name \rightarrow \mathcal{V}_{\perp}$
$\rho\{x\mapsto y\}$	environment extended with name x mapping to y
${\mathcal T}$	Context of all temporarily stuck equations (a sequence)
e_{lpha}	An expression
g_{lpha}	A guarded expression
÷	Inability to compile to a decision tree; a compile time error

Sequences	
$ \begin{array}{c} \varepsilon \\ S_1 \cdot S_2 \\ x \cdot S_2 \end{array} $	the empty sequence Concatenate sequence S_1 and sequence S_2 Cons x onto sequence S_2

Expressions

An expression in core Verse evaluates to produce possibly-empty sequence of values. In V^- , values depend on α . If α is a Verse-like expression, ϑ will be a value sequence. If it is an ML-like expression, it will be a single value.

A guarded expression evaluates to produce a **result**. A result is either a possibly-empty sequence of values or reject.

$$r ::= \vartheta \mid \mathbf{reject}$$

$$\rho; \ \mathcal{T} \vdash \alpha \Downarrow \vartheta \ \ (\text{EVAL-EXPR})$$

$$\rho; \ \mathcal{T} \vdash g_{\alpha} \Downarrow r \ \ (\text{EVAL-GUARDED-EXPR})$$

If a guarded expression cannot be evaluated without producing logical variables at runtime, it cannot be expressed as a decision tree. This notation indicates this failure (think of \in as a fallen tree), which results in a compile-time error.

$$\rho; \mathcal{T} \vdash g_{\alpha} \leadsto \in (\text{NoTree})$$

4 Sequences

The trivial sequence is ε . Sequences can be concatenated with infix \cdot . In an appropriate context, a value like x stands for the singleton sequence containing x.

$$\varepsilon \cdot ys \equiv ys$$
$$ys \cdot \varepsilon \equiv ys$$
$$(xs \cdot ys) \cdot zs \equiv xs \cdot (ys \cdot zs)$$

5 Rules (Big-step Operational Semantics) for V^- :

Evaluating Guarded Expressions

Evaluating simple parts of guarded expressions

(EVAL-ARROWEXPR)
$$\frac{\rho; \ \varepsilon \vdash e \Downarrow \vartheta}{\rho; \ \varepsilon \vdash \to e \Downarrow \vartheta}$$
(EVAL-EXISTS)
$$\frac{\rho\{x \mapsto \bot\}; \ \mathcal{T} \vdash g_{\alpha} \Downarrow r}{\rho; \ \mathcal{T} \vdash \exists x. \ g_{\alpha} \Downarrow r}$$
(EVAL-EXPSEQ)
$$\frac{\rho; \ \mathcal{T} \vdash e_{\alpha} \Downarrow \vartheta}{\rho; \ \mathcal{T} \vdash e_{\alpha}; \ g_{\alpha} \Downarrow r}$$

Shifting an equation to the context

(G-MOVE-TO-CTX)
$$\frac{\rho; \ eq \cdot \mathcal{T} \vdash g_{\alpha} \Downarrow r}{\rho; \ \mathcal{T} \vdash eq; \ g_{\alpha} \Downarrow r}$$

Evaluating with different types of equations

$$(G-EQEXPS) \quad \frac{x, \ y \text{ are distinct and fresh}}{\rho\{x \mapsto \bot, \ y \mapsto \bot\}; \ x = e_{\alpha_1} \cdot y = e_{\alpha_2} \cdot x = y \cdot \mathcal{T} \cdot \mathcal{T}' \vdash g_{\alpha} \Downarrow r}{\rho; \ \mathcal{T} \cdot e_{\alpha_1} = e_{\alpha_2} \cdot \mathcal{T}' \vdash g_{\alpha} \Downarrow r}$$

$$(G-EQNAMEEXP) \quad \frac{\rho; \ \mathcal{T} \vdash e_{\alpha} \Downarrow \vartheta \qquad \rho\{x \mapsto \vartheta\}; \ \mathcal{T} \cdot \mathcal{T}' \vdash g_{\alpha} \Downarrow r'}{\rho; \ \mathcal{T} \cdot x = e_{\alpha} \cdot \mathcal{T}' \vdash g_{\alpha} \Downarrow r'}$$

$$(G-EQNAMES-VALS-SUCC) \begin{array}{c} x, \ y \in \operatorname{dom} \rho \\ \rho(x) = \vartheta, \ \rho(y) = \vartheta \\ \rho; \ \mathcal{T} \cdot \mathcal{T}' \vdash g_{\alpha} \Downarrow r \\ \hline \rho; \ \mathcal{T} \cdot x = y \cdot \mathcal{T}' \vdash g_{\alpha} \Downarrow r \end{array}$$

$$(G-EQNames-Vals-Fail) \quad \begin{aligned} x, \ y &\in \operatorname{dom} \rho \\ \rho(x) &= \vartheta, \ \rho(y) = \vartheta' \\ \vartheta &\neq \vartheta' \\ \hline \rho; \ \mathcal{T} \cdot x = y \cdot \mathcal{T}' \vdash g_{\alpha} \Downarrow \mathbf{reject} \end{aligned}$$

$$(G-EQNAMES-BOTS-FAIL) \begin{array}{c} x, \ y \in \operatorname{dom} \rho \\ \rho(x) = \bot, \ \rho(y) = \bot \\ x, \ y \ \operatorname{do} \ \operatorname{not} \ \operatorname{appear} \ \operatorname{in} \ \mathcal{T}, \ \mathcal{T}' \\ \hline \rho; \ \mathcal{T} \cdot x = y \cdot \mathcal{T}' \vdash g_{\alpha} \leadsto \boldsymbol{\in} \end{array}$$

$$(G-EQNAMES-BOTVAL-SUCC) \begin{array}{c} x, \ y \in \operatorname{dom} \rho \\ \rho(x) = \bot, \ \rho(y) = \vartheta \\ \rho\{x \mapsto \vartheta\}; \ \mathcal{T} \cdot \mathcal{T}' \vdash g_{\alpha} \Downarrow r' \\ \rho; \ \mathcal{T} \cdot x = y \cdot \mathcal{T}' \vdash g_{\alpha} \Downarrow r' \end{array}$$

(G-VCON-SINGLE-FAIL)
$$\frac{K \neq K'}{\rho; \ \mathcal{T} \cdot K = K' \cdot \mathcal{T}' \vdash g_{\alpha} \Downarrow \mathbf{reject}}$$

(G-VCON-SINGLE-SUCC)
$$\frac{\rho; \ \mathcal{T} \cdot \mathcal{T}' \vdash g_{\alpha} \Downarrow r}{\rho; \ \mathcal{T} \cdot K = K \cdot \mathcal{T}' \vdash g_{\alpha} \Downarrow r}$$

$$(\text{G-Vcon-Multi-Fail}) \quad \frac{K \neq K'}{\rho; \ \mathcal{T} \cdot K(e_{\alpha_1}, \dots e_{\alpha_n}) = K'(e'_{\alpha_1}, \dots e'_{\alpha_n}) \cdot \mathcal{T}' \vdash g_{\alpha} \Downarrow \mathbf{reject}}$$

$$(\text{G-Vcon-Multi-Arity-Fail}) \quad \frac{n \neq m}{\rho; \ \mathcal{T} \cdot K(e_{\alpha_1}, \dots e_{\alpha_n}) = K(e'_{\alpha_1}, \dots e'_{\alpha_m}) \cdot \mathcal{T}' \vdash g_\alpha \Downarrow \mathbf{reject}}$$

$$(\text{G-Vcon-Multi-Succ}) \quad \frac{\rho; \ [e_{\alpha_i} = e'_{\alpha_i} \mid 1 \leq i \leq n] \cdot \mathcal{T} \cdot \mathcal{T}' \vdash g_{\alpha} \Downarrow r}{\rho; \ \mathcal{T} \cdot K(e_{\alpha_1}, \dots e_{\alpha_n}) = K(e'_{\alpha_1}, \dots e'_{\alpha_n}) \cdot \mathcal{T}' \vdash g_{\alpha} \Downarrow r}$$

Evaluating General Expressions

(IF-FI-SUCCESS)
$$\frac{\rho; \ \mathcal{T} \vdash g_{\alpha} \Downarrow \vartheta}{\rho; \ \mathcal{T} \vdash \text{IF} \left[g_{\alpha} \square \dots \right] \text{FI} \Downarrow \vartheta}$$

$$(\text{IF-FI-REJECT}) \ \frac{\rho; \ \mathcal{T} \vdash g_{\alpha} \Downarrow \mathbf{reject} \qquad \rho; \ \mathcal{T} \vdash \text{IF} \ [\ \dots \] \ \text{FI} \Downarrow \vartheta }{\rho; \ \mathcal{T} \vdash \text{IF} \ [\ g_{\alpha} \ \square \ \dots \] \ \text{FI} \Downarrow \vartheta }$$

(VCON-EMPTY)
$$\overline{\rho; \ \mathcal{T} \vdash K \Downarrow K}$$

(VCON-MULTI)
$$\frac{\rho; \ \mathcal{T} \vdash e_{\alpha_i} \Downarrow \vartheta_i \quad 1 \leq i \leq n}{\rho; \ \mathcal{T} \vdash K(e_{\alpha_1}, \dots e_{\alpha_n}) \Downarrow K(\vartheta_1, \dots \vartheta_i)}$$

6 The very suspect rule from question 5

$$(\text{EqNames-Bots-Succ}) \begin{array}{c} x, \ y \in \operatorname{dom} \rho \\ \rho(x) = \bot, \ \rho(y) = \bot \\ \text{Either } x \text{ or } y \text{ appears in } \mathcal{T}, \ \mathcal{T}' \\ \rho; \ \mathcal{T} \cdot x = y \cdot \mathcal{T}' \vdash g_{\alpha} \Downarrow r \\ \hline \rho; \ \mathcal{T} \cdot x = y \cdot \mathcal{T}' \vdash g_{\alpha} \Downarrow r \end{array}$$