Mixed metrics

Comparing heterogeneous objects

K. Gibert

Dep. Statistics and Operations Research

Knowledge Engineering and Machine Learning group at

Intelligent Data Science and Artificial Intelligence Research Center

Universitat Politècnica de Catalunya

karina.gibert@upc.edu

www.eio.upc.edu/homepages/karina

Ascendant hierarchical clustering

Hot points:

- Agregation criteria
 - Centroid criterion
 - Ward's criterion
- Distance between individuals
 - Only quantitative variables Euclidean, Correlations
 - Only qualitative variables \longrightarrow χ^2 (Benzécri 80)

Gibert's Mixed (91)

Ichino i Yaguchi (94)

Ralambondrainy (95)

Generalized Gibert's Mixed (13)

Ascendant hierarchical clustering

- Benzécri, J. P. (1980). Pratique de l'analyse des données. vol. 1, analyse des correspondances.
- J. C. Gower A General Coefficient of Similarity and Some of Its Properties *Biometrics*, Vol. 27, No. 4. (Dec., 1971), pp. 857-871
- Diday, E. and Gowda, K.C. Symbolic clustering using a new similarity measure IEEE Trans. on systems, mans, and
 cybernetics 22(2) 368-378, 1992
- Gibert, K. (1991). *Klass. Estudi d'un sistema d'ajuda al tractament estadistic de grans bases de dades* (Doctoral dissertation, Master's thesis, UPC).
- Gibert, K., and Cortés, U. (1997). "Weighing quantitative and qualitative variables in clustering methods." *Mathware* and *Soft Computing*, 4(3), 251-266
- Ichino, M. and Yaguchi, H. (1990), Generalized Minkowski metrics for mixed features. Electron. Comm. Jpn. Pt. III, 73: 12–20. doi: 10.1002/ecjc.4430730602
- [Ralambondrainy 1995] Ralambondrainy, H A conceptual version of the K-means algorithm Lifetime Learning Publications, Belmont, California, 1995
- Gibert K, Valls A, Batet M. (2014): Introducing semantic variables in mixed distance measures. Impact on hierarchical clustering, Knowledge and Information Systems 40(3):559-593, Springer, DOI: 10.1007/s10115-013-0663-5.

Proximity measures

Distance:

$$d: E \times E \longrightarrow R^+$$

$$1. \forall x \in E$$
 $d(x, x) = 0$

$$2. \forall x, \forall y$$
 $d(x, y) = d(y, x)$

$$3. \forall x, \forall y, \forall z \quad d(x, z) \le d(x, y) + d(y, z)$$

Distance index:

Verifies 1. and 2., but 3.

Similarity index: $s : E \times E \longrightarrow R^+$

$$1. \forall x, \forall y$$
 $s(x, y) = s(y, x)$

$$2. \forall x, \forall y$$
 $s(x, x) = s(y, y) > s(y, z)$

Dissimilarty index:

1.
$$\forall x, \forall y$$
 $d_s(x, y) = d_s(y, x)$

2.
$$\forall x, \forall y$$
 $d_s(x, x) = d_s(y, y) < d_s(y, z)$

$$d_s(x, y) = s(x, x) - s(x, y)$$

Euclidean

$$d^{2}(i,i') = \sum_{j=1}^{p} (x_{ij} - x_{i'j})^{2}$$

Distances

Minkowski distances:

$$d(i,i') = \sum_{j=1}^{p} (|x_{ij} - x_{i'j}|^{d})^{1/d}$$

Euclidean (L₂):

 $d^{2}(i,i') = \sum_{i=1}^{p} (x_{ij} - x_{i'j})^{2}$

Manhattan (L_1) (absolute value):

 $d(i,i') = \sum_{j=1}^{p} |x_{ij} - x_{i'j}|$ $d(i,i') = \max_{i} |x_{ij} - x_{i'j}|$

Chebichev (L_∞):

Correlation

$$d^{2}(x_{j}, x_{j'}) = 2(1 - cor(x_{j}, x_{j'}))$$

(L₂ with standardized *variables*)

Cosine similarity between individuals $1 - \cos(x_i, x_{i'}) = 1 - \frac{\langle x_i, x_{i'} \rangle}{|x||x|}$

Distances

- To scale or not to scale
 - Standardization

$$x_{ij} \leftarrow \frac{x_{ij} - \overline{x}_j}{s_j}$$

Max normalization

$$x_{ij} \leftarrow \frac{x_{ij}}{\max(x_j) - \min(x_j)}$$

Distance correlation

Pearson correlation:

For linear association between two variables

$$cov(x, y) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})$$
$$r_{xy} = cor(x, y) = \frac{cov(x, y)}{\sqrt{cov(x, x) \cdot cov(y, y)}}$$

Distance correlation:

For non linear association between two sets of variables (eventually two variables)

(x, y) Let x and y be two random vectors of p and q dimensions

$$a_{kl} = d(x_k, x_l) \quad k, l = 1, \dots, n$$

 $b_{kl} = d(y_k, y_l)$ k, l = 1, ..., n

Let a and b all pair distances between the x and y vectors respectively

$$\overline{\overline{a}}_{kl} = a_{kl} - a_{k.} - a_{.l} + a_{..}$$
 (double centering of the distance matrices) $\overline{\overline{b}}_{kl} = b_{kl} - b_{k.} - b_{.l} + b_{..}$

Distance covariance

$$dv^{2}(x, y) = \frac{1}{n^{2}} \sum_{k=1}^{n} \sum_{l=1}^{n} \overline{\overline{a}}_{kl} \times \overline{\overline{b}}_{kl}$$

Distance standard deviation dv(x,x)

Distance correlation

$$dc^{2}(x, y) = \frac{dv^{2}(x, y)}{dv(x, x) \times dv(y, y)}$$

Distance Binary variables (Logical)

$$d(i,i') = f(n_{11}, n_{00}, n_{10}, n_{01})$$

$$d(i,i') = \frac{n_{10} + n_{01}}{n_{10} + n_{01} + n_{11}}$$
 Assymetrical distance

Sokal

$$d(i,i') = \frac{n_{10} + n_{01}}{n}$$

Symetrical distance

Distances Nominal variables Simple matching coefficient (Hamming)

$$d(i,i') = \frac{\text{# vars mismatch}}{p}$$

Chi-2 distance

$$X^{2} = \sum_{k=1}^{p} \sum_{j=1}^{q} \frac{(n_{kj} - \frac{n_{k} n_{j}}{n_{k} n_{j}})^{2}}{n_{k} n_{j}}$$

Distances Ordinal variables

normalized ranks

$$x_{ij} = \frac{r_{ij} - 1}{R_i - 1} \in [0, 1]$$

treat them as numerical

Distances strings and curves

Edit distance between two strings (or DNA sequences)

Minimum number of operations to transform one string into the other (removals, insertions and substitutions). It verifies the three axioms of a distance. Operations can be weighted inversely to their likelihood.

What is the edit distance between "SEAL" and "ATE"?

Step	Comparison	Edit necessary	Total Editing
1.	"A" to "S"	replace: +1 edit	"STE" in 1 edit
2.	"T"	delete: +1 edit	"SE" in 2 edits
3.	"A"	insertion: +1 edit	"SEA" in 3 edits
4.	"L"	insertion: +1 edit	"SEAL" in 4 edits

■ Hamming distance between two strings of the same length

Counts the minimum number of substitutions to convert one string in the other

```
dist(cats,dogs) = 3/4
cats => dats (substitute 'd' for 'c')
dats => dots (substitute 'o' for 'a')
dots => dogs (substitute 'g' for 't')
```

- Vertical distance between curves $\max |F(x) G(x)|$
- Histogram matching distance $\int |F(x) G(x)|$

Management of heterogeneous data matrices

Heterogeneous matrices faced. Several approaches [Anderberg 73]:

Variables partitioning

(Ex, naive bayes classifier)

Variables converting

Compatibility measures

Mixed metrics required

Gower

[Gow 71]

$$s(i,i') = \frac{\sum_{k=1}^{K} w_k(i,i') s_k(i,i')}{\sum_{k=1}^{K} w_k(i,i')}; \qquad d(i,i') = 1-s(i,i')$$

$$w_{k}(i,i') = \begin{cases} 0 & \text{if } (x_{ik} = m \text{issing}) \text{ or } (x_{ik} = m \text{issing}) \\ 0 & \text{if } (X_k \text{ binary}) \text{ and } (x_{ik} = \text{false}) \text{ if } (x_{ik} = \text{false}) \end{cases}$$

$$\text{and negative absence of } X_k \text{ excluded}$$

$$1 & \text{otherwise}$$

$$S_{k}(i,i') = \begin{cases} 1 - \frac{|\mathbf{x}_{ik} - \mathbf{x}_{i'k}|}{R_{k}} & \text{if } \mathbf{X}_{k} \text{ numerical} \\ 1 & \text{if } (\mathbf{X}_{k} \text{ qualitative}) \text{ and } (\mathbf{x}_{ik} = \mathbf{x}_{i'k}) \\ 0 & \text{if } (\mathbf{X}_{k} \text{ qualitative}) \text{ and } (\mathbf{x}_{ik} \neq \mathbf{x}_{i'k}) \end{cases}$$

Gowda-Diday [Gow 91]

$$D(i,i') = \sum_{k=1}^{K} D_k(i_k,i'_k) \quad \text{with} \quad D_k(i,i') = D_p(i,i') + D_s(i,i') + D_c(i,i')$$

Component Position

$$D_{kp}(i,i') = \begin{cases} \frac{|\mathbf{X}_{ik} - \mathbf{X}_{i'k}|}{R_k} & \text{if } (\mathbf{X}_k \text{ numerical}) \text{ and } R_k \text{ is rang of } \mathbf{X}_k \\ 0 & \text{if } (\mathbf{X}_k \text{ qualitative}) \end{cases}$$

Component Span

$$D_{ks}(i,i') = \begin{cases} 0 & \text{if } X_k \text{ numerical} \\ 0 & \text{if } X_k \text{ qualitative and not nultivalued} \end{cases}$$

Component Content

$$D_{kc}(i,i') = \begin{cases} 0 & \text{if } X_k \text{ numerical} \\ 0 & \text{if } (X_k \text{ qualitative) and } (x_{ik} = x_{i'k}) \\ 1 & \text{if } (X_k \text{ qualitative) and } (x_{ik} \neq x_{i'k}) \end{cases}$$

$$\text{@K.Gibert}$$

Mixed Metrics

[Gib 91]

$$d^{2}_{(\alpha,\beta)}(i, i') = \alpha d_{\varsigma}^{2}(i, i') + \beta d_{Q}^{2}(i, i')$$

$$d_{\varsigma}^{2}(i,i') = \sum_{\forall k \in \varsigma} \frac{\left(x_{ik} - x_{i'k}\right)^{2}}{s_{k}^{2}}$$

$$d_{k}^{2}(i,i') = \begin{cases} \frac{1}{I_{k^{i}}} + \frac{1}{I_{k^{i'}}}, \\ \frac{(f_{i}^{k_{s}} - 1)^{2}}{I^{k_{s}}} + \sum_{j \neq s}^{n_{k}} \frac{(f_{i}^{k_{j}})^{2}}{I^{k_{j}}}, \\ \sum_{j=1}^{n_{k}} \frac{(f_{i}^{k_{j}} - f_{i'}^{k_{j}})^{2}}{I^{k_{j}}}, \end{cases}$$

if $x_{ik} = x_{i'k}$

otherwise, for compact i and i' with respect X_{i}

if $x_{ik} = c_s^k$, and extended i' with respect X_k

for i, i' extended with respect X_k

Proposal [Gib 91]:

$$\alpha = \frac{n_{\zeta}}{d_{\zeta}^{2} max^{*}} \qquad \beta = \frac{n_{Q}}{d_{Q}^{2} max^{*}}$$

$$\beta = \frac{n_Q}{d_Q^2 max^*}$$

Ralambondrainy

[Ral95]

$$d^{2}(i,i') = \pi_{1}d_{1/\sigma^{2}}^{2}(i,i') + \pi_{2}d_{\chi^{2}}^{2}(i,i')$$

- Proposal [Ral 88] :
 - Standardisation by the inertia

$$\pi_1 = \frac{1}{Card(\zeta)}$$

$$\pi_2 = \frac{1}{n_k - 1}$$

Standardisation by the norm

$$\pi_1 = \frac{1}{\sqrt{\sum \{\rho^2(X_k, X_{k'})/k, k' \in \zeta\}}} \qquad \pi_2 = \sqrt{n_k - 1}$$

Ichino-Yaguchi

[Ichi 94]

Generalized Minkowski metrics, p-order (p >= 1)

$$d_p(i,i') = \sum_{k=1}^{p} \left(\frac{\phi(x_{ik},x_{i'k})}{|U_k|} \right)^p$$

where

 $|U_{\nu}|$ Normalizes (with R_k o n_k)

 $\phi(x_{ik}, x_{i'k})$ Is a function of:

• Cartesian Joint

$$|x_{ik} \oplus x_{i'k}| = \begin{cases} |x_{ik} - x_{i'k}|, & \text{if } X_k \text{ numerical} \\ 1, & \text{if } X_k \text{ categorical and } x_{ik} = x_{i'k} \\ 2, & \text{if } X_k \text{ categorical and } x_{ik} \neq x_{i'k} \end{cases}$$

• Catesian Meet

$$|x_{ik} \oplus x_{i'k}| = \begin{cases} |x_{ik} - x_{i'k}|, & \text{if } X_k \text{ numerical} \\ 1, & \text{if } X_k \text{ categorical and } x_{ik} = x_{i'k} \\ 2, & \text{if } X_k \text{ categorical and } x_{ik} \neq x_{i'k} \end{cases}$$

- Cardinality of x, $/x_{ik}/$, (0 o 1)
- **Factor** $\gamma \in [0,0.5]$

Example Michalski data

(Gibert mixed metrics)

	A	В	C	F	J	M	P	R	S	Т
A	0	1.2488811	1.2438452	0.8309088	1.1683081	1.2438452	0.8309088	0.63954794	1.4049911	0.90644586
В	1.2488811	0	0.8309088	1.2438452	0.90644586	1.4352059	0.63954794	0.8309088	0.8309088	1.1683081
C	1.2438452	0.8309088	0	1.3999553	1.1330574	1.0474486	1.6920323	1.0474486	1.8229634	0.7201209
F	0.8309088	1.2438452	1.3999553	0	0.7201209	1.2388093	1.5006716	1.2388093	1.2488811	1.1330574
J	1.1683081	0.90644586	1.1330574	0.7201209	0	0.97191143	1.1632721	1.5762087	1.2942033	1.2488811
M	1.2438452	1.4352059	1.0474486	1.2388093	0.97191143	0	1.2488811	1.2085946	2.2661147	1.1632721
P	0.8309088	0.63954794	1.6920323	1.5006716	1.1632721	1.2488811	0	1.2488811	0.63451207	0.97191143
R	0.63954794	0.8309088	1.0474486	1.2388093	1.5762087	1.2085946	1.2488811	0	2.2661147	1.7675694
S	1.4049911	0.8309088	1.8229634	1.2488811	1.2942033	2.2661147	0.63451207	2.2661147	0	0.7201209
Т	0.90644586	1.1683081	0.7201209	1.1330574	1.2488811	1.1632721	0.97191143	1.7675694	0.7201209	0
·										

Ralambondrainy normalized by inertia pi1=0.5, pi2=0.2

B 1.2560605 0 1.7314991 0.84210527 1.7481657 1.8648324 0.70877194 1.7314991 1.7314991 0.825438 C 0.84210527 1.7314991 0 1.2893938 0.25 2.5017545 3.6244814 2.5017545 4.3242416 1.139393 F 1.7314991 0.84210527 1.2893938 0 1.1393938 3.5244815 2.6017544 3.5244815 1.2560605 0.25 J 0.8254386 1.7481657 0.25 1.1393938 0 2.4850879 3.507815 2.618421 4.2075753 1.256060 M 0.84210527 1.8648324 2.5017545 3.5244815 2.4850879 0 1.2560605 0.26666668 6.692663 3.50781 P 1.7314991 0.70877194 3.6244814 2.6017544 3.507815 1.2560605 0 1.2560605 3.391148 2.485087 R 0.70877194 1.7314991 2.5017545 3.5244815 2.618421 0.26666668 1.2560605 0 6.692663 3.64114 S 4.7996807 1.7314991 4.3242416 1.2560605 4.2075753 6.692663 3.391148 6.692663 0 1.139393		A	В	C	F	J	M	P	R	S	Т
C 0.84210527 1.7314991 0 1.2893938 0.25 2.5017545 3.6244814 2.5017545 4.3242416 1.1393938 F 1.7314991 0.84210527 1.2893938 0 1.1393938 3.5244815 2.6017544 3.5244815 1.2560605 0.25 J 0.8254386 1.7481657 0.25 1.1393938 0 2.4850879 3.507815 2.618421 4.2075753 1.256060 M 0.84210527 1.8648324 2.5017545 3.5244815 2.4850879 0 1.2560605 0.26666668 6.692663 3.50781 P 1.7314991 0.70877194 3.6244814 2.6017544 3.507815 1.2560605 0 1.2560605 3.391148 2.485087 R 0.70877194 1.7314991 2.5017545 3.5244815 2.618421 0.266666668 1.2560605 0 6.692663 3.64114 S 4.7996807 1.7314991 4.3242416 1.2560605 4.2075753 6.692663 3.391148 6.692663 0 1.139393	A	0	1.2560605	0.84210527	1.7314991	0.8254386	0.84210527	1.7314991	0.70877194	4.7996807	1.7481657
F 1.7314991 0.84210527 1.2893938 0 1.1393938 3.5244815 2.6017544 3.5244815 1.2560605 0.25 J 0.8254386 1.7481657 0.25 1.1393938 0 2.4850879 3.507815 2.618421 4.2075753 1.2560606 M 0.84210527 1.8648324 2.5017545 3.5244815 2.4850879 0 1.2560605 0.26666668 6.692663 3.50781 P 1.7314991 0.70877194 3.6244814 2.6017544 3.507815 1.2560605 0 1.2560605 3.391148 2.485087 R 0.70877194 1.7314991 2.5017545 3.5244815 2.618421 0.266666668 1.2560605 0 6.692663 3.64114 S 4.7996807 1.7314991 4.3242416 1.2560605 4.2075753 6.692663 3.391148 6.692663 0 1.139393	В	1.2560605	0	1.7314991	0.84210527	1.7481657	1.8648324	0.70877194	1.7314991	1.7314991	0.8254386
J 0.8254386 1.7481657 0.25 1.1393938 0 2.4850879 3.507815 2.618421 4.2075753 1.256060 M 0.84210527 1.8648324 2.5017545 3.5244815 2.4850879 0 1.2560605 0.26666668 6.692663 3.50781 P 1.7314991 0.70877194 3.6244814 2.6017544 3.507815 1.2560605 0 1.2560605 3.391148 2.485087 R 0.70877194 1.7314991 2.5017545 3.5244815 2.618421 0.266666668 1.2560605 0 6.692663 3.64114 S 4.7996807 1.7314991 4.3242416 1.2560605 4.2075753 6.692663 3.391148 6.692663 0 1.139393	\mathbf{C}	0.84210527	1.7314991	0	1.2893938	0.25	2.5017545	3.6244814	2.5017545	4.3242416	1.1393938
M 0.84210527 1.8648324 2.5017545 3.5244815 2.4850879 0 1.2560605 0.26666668 6.692663 3.50781 P 1.7314991 0.70877194 3.6244814 2.6017544 3.507815 1.2560605 0 1.2560605 3.391148 2.485087 R 0.70877194 1.7314991 2.5017545 3.5244815 2.618421 0.266666668 1.2560605 0 6.692663 3.64114 S 4.7996807 1.7314991 4.3242416 1.2560605 4.2075753 6.692663 3.391148 6.692663 0 1.139393	F	1.7314991	0.84210527	1.2893938	0	1.1393938	3.5244815	2.6017544	3.5244815	1.2560605	0.25
P 1.7314991 0.70877194 3.6244814 2.6017544 3.507815 1.2560605 0 1.2560605 3.391148 2.485087 R 0.70877194 1.7314991 2.5017545 3.5244815 2.618421 0.26666668 1.2560605 0 6.692663 3.64114 S 4.7996807 1.7314991 4.3242416 1.2560605 4.2075753 6.692663 3.391148 6.692663 0 1.139393	J	0.8254386	1.7481657	0.25	1.1393938	0	2.4850879	3.507815	2.618421	4.2075753	1.2560605
R 0.70877194 1.7314991 2.5017545 3.5244815 2.618421 0.26666668 1.2560605 0 6.692663 3.64114 S 4.7996807 1.7314991 4.3242416 1.2560605 4.2075753 6.692663 3.391148 6.692663 0 1.139393	M	0.84210527	1.8648324	2.5017545	3.5244815	2.4850879	0	1.2560605	0.26666668	6.692663	3.507815
S 4.7996807 1.7314991 4.3242416 1.2560605 4.2075753 6.692663 3.391148 6.692663 0 1.139393	P	1.7314991	0.70877194	3.6244814	2.6017544	3.507815	1.2560605	0	1.2560605	3.391148	2.4850879
	R	0.70877194	1.7314991	2.5017545	3.5244815	2.618421	0.2666668	1.2560605	0	6.692663	3.641148
	\mathbf{S}	4.7996807	1.7314991	4.3242416	1.2560605	4.2075753	6.692663	3.391148	6.692663	0	1.1393938
T 1.7481657 0.8254386 1.1393938 0.25 1.2560605 3.507815 2.4850879 3.641148 1.1393938 0	\mathbf{T}	1.7481657	0.8254386	1.1393938	0.25	1.2560605	3.507815	2.4850879	3.641148	1.1393938	0

Ralambondrainy normalized by norm, pi1=0,617, p2=2,236

	A	В	\mathbf{C}	F	J	M	P	R	S	Т
A	0	3.8718193	3.5263379	3.298699	3.3399992	3.5263379	3.298699	2.035626	7.0879183	3.4850378
В	3.8718193	0	3.298699	3.5263379	3.4850378	4.7894106	2.035626	3.298699	3.298699	3.3399992
\mathbf{C}	3.5263379	3.298699	0	4.2444973	2.795085	4.415724	6.796831	4.415724	7.6610384	2.5674462
\mathbf{F}	3.298699	3.5263379	4.2444973	0	2.5674462	5.678797	5.533758	5.678797	3.8718193	2.795085
J	3.3399992	3.4850378	2.795085	2.5674462	0	4.229385	5.492458	5.7200966	6.356665	3.8718193
M	3.5263379	4.7894106	4.415724	5.678797	4.229385	0	3.8718193	2.981424	10.58605	5.492458
P	3.298699	2.035626	6.796831	5.533758	5.492458	3.8718193	0	3.8718193	4.1880846	4.229385
\mathbf{R}	2.035626	3.298699	4.415724	5.678797	5.7200966	2.981424	3.8718193	0	10.58605	6.9831696
\mathbf{S}	7.0879183	3.298699	7.6610384	3.8718193	6.356665	10.58605	4.1880846	10.58605	0	2.5674462
\mathbf{T}	3.4850378	3.3399992	2.5674462	2.795085	3.8718193	5.492458	4.229385	6.9831696	2.5674462	0

Gower

	A	В	\mathbf{C}	F	J	M	P	\mathbf{R}	\mathbf{S}	\mathbf{T}
A	0	0.625	0.625	0.5	0.625	0.625	0.5	0.375	0.625	0.5
В	0.625	0	0.5	0.625	0.5	0.75	0.375	0.5	0.5	0.625
C	0.625	0.5	0	0.625	0.5	0.5	0.875	0.5	0.75	0.375
	0.5									
J	0.625	0.5	0.5	0.375	0	0.5	0.625	0.75	0.5	0.625
M	0.625	0.75	0.5	0.625	0.5	0	0.625	0.5	1.0	0.625
P	0.5	0.375	0.875	0.75	0.625	0.625	0	0.625	0.375	0.5
R	0.375	0.5	0.5	0.625	0.75	0.5	0.625	0	1.0	0.875
S	0.625	0.5	0.75	0.625	0.5	1.0	0.375	1.0	0	0.375
T	0.5	0.625	0.375	0.5	0.625	0.625	0.5	0.875	0.375	0

Example

Michalski data

Gower

	A	В	\mathbf{C}	F	J	M	P	\mathbf{R}	S	$_{\mathrm{T}}$
A	0	0.625	0.625	0.5	0.625	0.625	0.5	0.375	0.625	0.5
В	0.625	0	0.5	0.625	0.5	0.75	0.375	0.5	0.5	0.625
C	0.625	0.5	0	0.625	0.5	0.5	0.875	0.5	0.75	0.375
F	0.5	0.625	0.625	0	0.375	0.625	0.75	0.625	0.625	0.5
J	0.625	0.5	0.5	0.375	0	0.5	0.625	0.75	0.5	0.625
M	0.625	0.75	0.5	0.625	0.5	0	0.625	0.5	1.0	0.625
P	0.5	0.375	0.875	0.75	0.625	0.625	0	0.625	0.375	0.5
\mathbf{R}	0.375	0.5	0.5	0.625	0.75	0.5	0.625	0	1.0	0.875
\mathbf{S}	0.625	0.5	0.75	0.625	0.5	1.0	0.375	1.0	0	0.375
Т	0.5	0.625	0.375	0.5	0.625	0.625	0.5	0.875	0.375	0

Gibert mixed metrics

	A	В	C	F	J	M	P	R	S	T
A	0	1.2488811	1.2438452	0.8309088	1.1683081	1.2438452	0.8309088	0.63954794	1.4049911	0.90644586
В	1.2488811	0	0.8309088	1.2438452	0.90644586	1.4352059	0.63954794	0.8309088	0.8309088	1.1683081
\mathbf{C}	1.2438452	0.8309088	0	1.3999553	1.1330574	1.0474486	1.6920323	1.0474486	1.8229634	0.7201209
\mathbf{F}	0.8309088	1.2438452	1.3999553	0	0.7201209	1.2388093	1.5006716	1.2388093	1.2488811	1.1330574
J	1.1683081	0.90644586	1.1330574	0.7201209	0	0.97191143	1.1632721	1.5762087	1.2942033	1.2488811
\mathbf{M}	1.2438452	1.4352059	1.0474486	1.2388093	0.97191143	0	1.2488811	1.2085946	2.2661147	1.1632721
P	0.8309088	0.63954794	1.6920323	1.5006716	1.1632721	1.2488811	0	1.2488811	0.63451207	0.97191143
\mathbf{R}	0.63954794	0.8309088	1.0474486	1.2388093	1.5762087	1.2085946	1.2488811	0	2.2661147	1.7675694
\mathbf{S}	1.4049911	0.8309088	1.8229634	1.2488811	1.2942033	2.2661147	0.63451207	2.2661147	0	0.7201209
\mathbf{T}	0.90644586	1.1683081	0.7201209	1.1330574	1.2488811	1.1632721	0.97191143	1.7675694	0.7201209	0
	•									

Ralambondrainy, Pi1=0,1, Pi2=0,2

	A	В	C	F	J	M	P	R	S	T
A	0	1.2560605	0.84210527	1.7314991	0.8254386	0.84210527	1.7314991	0.70877194	4.7996807	1.7481657
В	1.2560605	0	1.7314991	0.84210527	1.7481657	1.8648324	0.70877194	1.7314991	1.7314991	0.8254386
C	0.84210527	1.7314991	0	1.2893938	0.25	2.5017545	3.6244814	2.5017545	4.3242416	1.1393938
F	1.7314991	0.84210527	1.2893938	0	1.1393938	3.5244815	2.6017544	3.5244815	1.2560605	0.25
J	0.8254386	1.7481657	0.25	1.1393938	0	2.4850879	3.507815	2.618421	4.2075753	1.2560605
M	0.84210527	1.8648324	2.5017545	3.5244815	2.4850879	0	1.2560605	0.26666668	6.692663	3.507815
P	1.7314991	0.70877194	3.6244814	2.6017544	3.507815	1.2560605	0	1.2560605	3.391148	2.4850879
R	0.70877194	1.7314991	2.5017545	3.5244815	2.618421	0.26666668	1.2560605	0	6.692663	3.641148
S	4.7996807	1.7314991	4.3242416	1.2560605	4.2075753	6.692663	3.391148	6.692663	0	1.1393938
Т	1.7481657	0.8254386	1.1393938	0.25	1.2560605	3.507815	2.4850879	3.641148	1.1393938	0

Ralambondrainy, Pi1=0,617, Pi2=0,2236

	A	В	\mathbf{C}	F	J	M	P	R	S	T
A	0	3.8718193	3.5263379	3.298699	3.3399992	3.5263379	3.298699	2.035626	7.0879183	3.4850378
В	3.8718193	0	3.298699	3.5263379	3.4850378	4.7894106	2.035626	3.298699	3.298699	3.3399992
\mathbf{C}	3.5263379	3.298699	0	4.2444973	2.795085	4.415724	6.796831	4.415724	7.6610384	2.5674462
F	3.298699	3.5263379	4.2444973	0	2.5674462	5.678797	5.533758	5.678797	3.8718193	2.795085
J	3.3399992	3.4850378	2.795085	2.5674462	0	4.229385	5.492458	5.7200966	6.356665	3.8718193
M	3.5263379	4.7894106	4.415724	5.678797	4.229385	0	3.8718193	2.981424	10.58605	5.492458
P	3.298699	2.035626	6.796831	5.533758	5.492458	3.8718193	0	3.8718193	4.1880846	4.229385
R	2.035626	3.298699	4.415724	5.678797	5.7200966	2.981424	3.8718193	0	10.58605	6.9831696
S	7.0879183	3.298699	7.6610384	3.8718193	6.356665	10.58605	4.1880846	10.58605	0	2.5674462
Т	3.4850378	3.3399992	2.5674462	2.795085	3.8718193	5.492458	4.229385	6.9831696	2.5674462	0

