DM (mars 2021)

Exercice 1. Soit $\gamma:[0,1]\to\mathbb{C}$ une courbe de classe \mathcal{C}^1 . Notons pour un $t_0\in]0,1[$ le point $z_0=\gamma(t_0)$. Le vecteur tangent à γ en z_0 est $\gamma'(t_0)$.

Soient γ_1 et γ_2 deux courbes de classe \mathcal{C}^1 définies sur [0,1], avec $z_0 = \gamma_1(t_1) = \gamma_2(t_2)$ pour $t_1, t_2 \in]0, 1[$. On dit que l'angle entre γ_1 et γ_2 en z_0 est l'angle entre les vecteurs tangents à γ_1 et γ_2 en z_0 (si ces vecteurs sont non nuls).

Soient $v_1, v_2 \in \mathbb{C} \simeq \mathbb{R}^2$. Comme en algèbre linéaire on définit l'angle (non orienté) $\alpha = \sphericalangle(v_1, v_2)$ entre v_1 et v_2 par

$$\frac{\Re(v_1)\Re(v_2) + \Im(v_1)\Im(v_2)}{|v_1||v_2|} = \cos(\alpha)$$

Où $\langle v_1, v_2 \rangle = \Re(v_1)\Re(v_2) + \Im(v_1)\Im(v_2)$ est le produit scalaire de v_1 et v_2 .

- a) Soit D un domaine dans \mathbb{C} , et f holomorphe sur un voisinage de $z_0 \in D$. Soit aussi $\gamma : [0,1] \to \mathbb{C}$ une courbe de classe \mathcal{C}^1 avec $\gamma(t_0) = z_0$ pour un $t_0 \in]0,1[$. Montrer que le vecteur tangent à $f \circ \gamma$ en $f(z_0)$ est $f'(z_0)\gamma'(t_0)$.
- b) Une fonction $f: D \to \mathbb{C}$ est dite conforme en $z_0 \in D$ si f préserve les angles entre deux courbes sécantes en $z_0 \in D$ Montrer que si $f \in \mathcal{O}(D)$, alors f est conforme en z_0 si et seulement si $f'(z_0) \neq 0$.
- c) Pour tout $n \in \mathbb{N}$, trouver les points de \mathbb{C} pour lesquels la fonction $f(z) = z^n$ est conforme en z_0 .
- d) Montrer que la fonction $f(z) = z^2$ envoie $\{z \in \mathbb{C} \mid \Re e(z) > 0\}$ de manière conforme sur $\mathbb{C} \setminus \mathbb{R}_-$.
- e) Soit $f(z) = z^2$. Pour $c, d \in \mathbb{R}$, montrer que les ensembles

$$H_c := \{z \in \mathbb{C} \mid \Re(f(z)) = c\} \text{ et } K_d = \{z \in \mathbb{C} \mid \Im(f(z)) = d\}$$

sont des hyperboles. Montrer que K_d et H_c sont orthogonales en tout point de croisement z, sauf si z=0.

- f) Soit $f(z) = z + \frac{e^{i\alpha}}{z}$ pour $0 < \alpha < \pi$.
 - 1. Déterminer où f est conforme et où f ne l'est pas.
 - 2. Trouver l'image de $\{z \in \mathbb{C} \mid |z| = 1\}$ sous f.
- g) Soit $T: \mathbb{C} \to \mathbb{C}$ une application \mathbb{R} -linéaire injective.
 - 1. Si T est conforme, montrer que a:=T(1) est non nul, et que $\Re e(b)\neq 0$ pour $b=a^{-1}T(i)$. En déduire que Tz=az ou $Tz=a\overline{z}$ pour a=T(1).
 - 2. Montrer que T est conforme si et seulement s'il existe $s \in \mathbb{R}_+^*$ avec $\langle Tw, Tz \rangle = s \langle w, z \rangle$ pour tous $w, z \in \mathbb{C}$.
 - 3. Soit $D \subset \mathbb{C}$ un domaine, et soit $f := u + iv : D \to \mathbb{C}$ une fonction de classe \mathcal{C}^1 au sens réel de telle sorte que la jacobienne de f en z est non nulle pour tout $z \in D$. Si f est de plus conforme, et si le déterminant de sa jacobienne en un point de D est positif, montrer que f est holomorphe sur D.