SCC120 Fundamentals of Computer Science Unit 4: Graphs (Terminology)

Jidong Yuan yuanjd@bjtu.edu.cn

Graphs

(and also Trees)

Two Types of Graph

- Graphs can be divided into two broad types
 - directed graphs, or digraphs, where each edge or arc has an associated direction (for example, from node X to node Y)
 - non-directed graphs, or simple graphs, in which every edge or arc is two-way
- We will concentrate mostly on directed graphs
 - but will look at simple graphs too

A Directed Graph

- Imagine a group of ten students on a social networking site
- Each one has up to three friends
- We can summarise this information using a diagram (or with letters for names)

A Directed Graph (Digraph)

A Directed Graph (Digraph)

A Directed Graph (Digraph)

- That was an example of a directed graph
 - or digraph for short
- Even if there is a link from one node to another, there may or may not be a link in the reverse direction

- Imagine an area of land, such as an island, with nine towns or villages
- We can represent the roads and distances between them as a graph

- That was an example of a non-directed graph, or simple graph
- There is no direction associated with a link
 - it simply connects node A to node B
 - and so also connects node B to node A

Numbers corresponding to edges

- The distance numbers are not necessary (although important in many cases)
 - it would still be a meaningful simple graph without this added data
 - it would show whether or not there was a (direct) road from one location to another
- Similarly, a directed graph may or may not have a number (or some other data) associated with each link

Graphs (and Trees)

- In this unit, we are going to look at graphs
- Later, we will look at trees
- However, we need to know what a tree looks like for the discussion of graphs

- A certain engineering company A is divided into a consultancy division C and a manufacturing division M
- The manufacturing division M is divided into a railway section R and a marine engine section S
- Section R is divided into three departments, building locomotives (L), passenger coaches (P), and freight wagons (F)

- That was an example of a tree
- The node at the top is called the root
- Trees are used for holding hierarchical information
- A tree is "a graph with no loops"
 - we must also have no paths "separating and then rejoining"

Example 1: Airline Routes

Example 1: Airline Routes

- A line connects two cities if and only if there is a non-stop flight between them in both directions
- Some possible questions:
 - Is there a nonstop flight between SD and SAC?
 - What is the cheapest way to fly from STK to SD?
 - Which route involves the least flying time?
 - If one city's airport is closed by bad weather, can you still fly between any other pair of cities?
- The 2nd and 3rd questions require additional information on each route

Example 2: Program Flowchart

Example 2: Program Flowchart

- The points or nodes are the flowchart boxes;
 the lines or edges are the flowchart arrows
- Some possible questions are:
 - Does this flowchart contain a loop?
 - How many separate paths are there through the flowchart?

Example 3: A Binary Relation

Example 3: A Binary Relation

- Let S be the set { 1, 2, 3, ..., 9, 10 }
- Let R be the relation on S defined by xRy if and only if x ≠ y and x divides y (that is, with no remainder)
- So 3R6 and 3R9, but not 3R3 or 3R7
- A possible question is:
 - Is the relation R transitive (that is, aRb and bRc together imply aRC)?

Other Examples

A road map or railway network

What is the shortest, or cheapest, or fastest, route

from A to B?

Other Examples

- A computer network
 - If one computer in a network goes down, can messages still be sent between any other pair of computers in the network?

Other Examples

- An electrical circuit
 - How can we interconnect various pieces of electrical equipment so that we use the minimum amount of wire?
 - Is the graph planar?
 - That is, can we draw the circuit on a flat surface without crossings?
 - If not, what is the minimum number of crossings to draw it on a flat surface?

Terminology

- There is a lot of terminology associated with graphs
- Some concepts have more than one name

Representing a (Directed) Graph

- · We can represent a graph as an ordered pair
 - a list of nodes (or vertices)
 - and a list of arcs (or edges)
- G = (N, A)
 N = { a, b, c }
 A = { (a, a), (a, c), (b, a), (c, a), (c, b) }
- Or
 - $-G = ({a, b, c}, {(a, a), (a, c), (b, a), (c, a), (c, b)})$
- This is a graph of 3 nodes and 5 arcs

Terminology

- The number of nodes is sometimes called its weight
- Node b is said to be adjacent to another node a if there is an arc (a, b)
- If we have an arc (a, b), a is the out-node and b is the in-node
- Similarly we can define the *in-arcs* and *out-arcs* of a node
- An arc whose out-node and in-node is the same is a self-loop; for example, G has a self-loop (a, a)

Numbers of Arcs

- An arc cannot be duplicated
 - there cannot be two arcs (a, c)
 - though (in a directed graph) there may or may not be an arc (c, a) as well
- So if the weight (number of nodes) of a graph is w, the maximum possible number of arcs is w²
- A directed graph which contains the maximum possible number of arcs is called a *full* graph

Numbers of Arcs

- The *density* of a graph is the proportion of the w^2 possible arcs which are actually present
 - so if there are a arcs and w nodes, the density is a/w²
 - so for the graph G, density = 5/9 = 0.56
 - for the full graph, density = 9/9 = 1.0

Numbers of Arcs

- A graph with a density of zero (that is, no arcs at all) is said to be empty
 - or totally disconnected
- A graph with very few arcs compared to the number of nodes (that is, whose density is low) is sparse
 - this is not a precise term

The Complementary Graph

- The complementary graph of G contains
 - all the nodes of G
 - all the possible arcs not present in G
- The complementary graph of G is denoted G*
 - $density(G^*) = 1 density(G)$
 - $(G^*)^* = G$

A Partial (Reduced) Graph

- A partial (or reduced) graph of G is one with
 - all the nodes of G
 - one or more arc deleted

A Subgraph

- A subgraph of G is a graph derived from G with
 - one or more node deleted
 - all the arcs deleted which are associated with one or more of the deleted nodes
- We can use the term subgraph to refer to some portion of G which we are focussing on at present, as though it were separate from the rest of the graph

- A path of a graph G is an ordered set of nodes such that each node is adjacent to its predecessor
 - for example P = (b, a, c, a, a)
 - we could also write it as a sequence of arcs P = ((b, a), (a, c), (c, a), (a, a))
- The length of a path is the number of arcs it contains
 - so the length of P is 4

- A simple (or elementary) path is one which does not visit any node more than once
 - for example, (c, b, a) is a simple path of G
- A loop (or cycle) is a path whose initial and final nodes are the same
 - for example, (c, b, a, a, c) is a loop in G
- A simple loop is a loop which becomes a simple path if its final node is deleted
 - for example, (c, b, a, c) is a simple loop in G

- The distance between two nodes is the length of the shortest path between the nodes
 - a shortest path is always simple (why?)
- The *diameter* of a graph is the largest distance which can be found in it
 - so in G, there are shortest paths of length 2
 - ((b, a), (a, c)) and ((a, c), (c, b))
 - and none of length 3
 - so the diameter of G is 2

- There are algorithms to calculate the distance (shortest path) between two nodes in a graph
- We will look at some of these later

In- and Out-Degree

- A node has degree (p, q) if p arcs point to it, and q arcs leave it
 - so in graph G node "a" is of degree (3, 2)
 - p is called the in-degree of the node
 - q is called the *out-degree* of the node
- In a full graph, every node has degree (w, w)

Connectivity

Connectivity

- For some applications, it is very important that a digraph be strongly connected
- For example, suppose we represent a oneway traffic network as a digraph, where each stretch of road is an arc, and each crossroads is a node
 - What are the consequences if the network is not strongly connected?
- In a simple (non-directed) graph, every arc can be traversed in either direction, so it is either connected or disconnected
 - There is no strong/weak connectivity concept

SCC120 ADT (weeks 5-10)

- Week 5 Abstractions; Set Stack
- Week 6 Queues
 Priority Queues
- Week 7 Graphs (Terminology)
- Week 8
- Week 9
- Week 10