Name:	id:
SC217: Electromagnetic Theory,	id: AUTUMN'15 MIDSEM1
DA-IICT, B.Tech, Sem III	14:00-15:00 PM 10 th Sep'15 25 marks
<u>-</u>	be answered in the question paper. Others are to be an- your name and ID above on the question paper and return
1. Encircle the correct choice. Ar	swer this in the question paper ($2 \times 5 = 10$)
(a) Consider two dimensions space the quantity $A_x B_y$	al vectors \vec{A} and \vec{B} . Under rotation in this two dimensional $+A_yB_x$ transforms as
(a) a scalar,(c) neither scalar nor vector	(b) a vector,or,(d) both, scalar and vector
boat is found to spin in t	e surface of a whirlpool is given as $\vec{v} = \frac{y\hat{i} - x\hat{j}}{x^2 + y^2}$. A light tiny his whirlpool at a distance of 2 units from the center of the need of this spin (not the revolution) in radians per second is
(a) 0 (b) 2	(c) 4 $(d)_{\frac{1}{2}}$
(c) $F(\vec{r}) = s^2$ where s is the Then over the surface $s =$	distance from the z axis.
(a) 6 (b) 3	(c) 4 (d) 0
(d) $F(x,y,z) = f(\frac{z}{\sqrt{x^2+y^2}})$	s a scalar function in three dimension. $\vec{\nabla} F$ is proportional to
	(c) $\hat{\theta}$ (d) \hat{k}
(e) $\vec{A} = \hat{i}(z - y) + \hat{j}(x - z)$ radius a on the x - y plane	$+\hat{k}(y-x)$. The line integral $\oint \vec{A} \cdot \vec{dl}$ over a circular loop of with center at origin, traversed clockwise, is

(d) $4\pi a^2$

(a) $2\pi a^2$ **(b)** 0 **(c)** $-2\pi a^2$

- 2. An infinitely long wire along the z axis carries a uniform charge with density λ per unit length. Calculate the electric field due to this wire. (5)
- 3. Consider a vector field $\vec{A} = \vec{\omega} \times \vec{r}$. Evaluate

$$\int_{S} (\vec{\nabla} \times \vec{A}) \cdot \hat{n} da$$

over the upper half surface of an ellipsoid $x^2/a^2 + y^2/b^2 + z^2/c^2 = 1$. (The part that lies above the x-y plane).

You may use the fact that area of the ellipse $x^2/a^2 + y^2/b^2 = 1$ is πab . (5)

4. The electric field in a region is given as

$$\vec{E}(\vec{r}) = \frac{ca^2}{\epsilon_0} \frac{\hat{r}}{r^2} ; r \ge a$$

$$= 0 ; r < a$$

Describe the charge densities in the region, i.e, outside, inside and on the sphere r=a (5)

Gradient, divergence and curl in spherical and cylindrical co-ordinate systems

Spherical polar system

$$\vec{\nabla}F = \frac{\partial F}{\partial r}\hat{\mathbf{r}} + \frac{1}{r}\frac{\partial F}{\partial \theta}\hat{\theta} + \frac{1}{r\sin\theta}\frac{\partial F}{\partial \phi}\hat{\phi}$$

$$\vec{\nabla} \cdot \vec{\mathbf{A}} = \frac{1}{r^2}\frac{\partial}{\partial r}(r^2A_r) + \frac{1}{r\sin\theta}\frac{\partial}{\partial \theta}(\sin\theta A_\theta) + \frac{1}{r\sin\theta}\frac{\partial A_\phi}{\partial \phi}$$

$$\vec{\nabla} \times \vec{\mathbf{A}} = \frac{1}{r\sin\theta}\left[\frac{\partial}{\partial \theta}(\sin\theta A_\phi) - \frac{\partial A_\theta}{\partial \phi}\right]\hat{\mathbf{r}} + \frac{1}{r}\left[\frac{1}{\sin\theta}\frac{\partial A_r}{\partial \phi} - \frac{\partial}{\partial r}(rA_\phi)\right]\hat{\theta} + \frac{1}{r}\left[\frac{\partial}{\partial r}(rA_\theta) - \frac{\partial A_r}{\partial \theta}\right]\hat{\phi}$$

Cylindrical System

$$\vec{\nabla}F = \frac{\partial F}{\partial s}\hat{\mathbf{s}} + \frac{1}{s}\frac{\partial F}{\partial \phi}\hat{\phi} + \frac{\partial F}{\partial z}\hat{\mathbf{z}}$$

$$\vec{\nabla} \cdot \vec{\mathbf{A}} = \frac{1}{s}\frac{\partial}{\partial s}(sA_s) + \frac{1}{s}\frac{\partial A_{\phi}}{\partial \phi} + \frac{\partial A_z}{\partial z}$$

$$\vec{\nabla} \times \vec{\mathbf{A}} = \left[\frac{1}{s}\frac{\partial A_z}{\partial \phi} - \frac{\partial A_{\phi}}{\partial z}\right]\hat{\mathbf{s}} + \left[\frac{\partial A_s}{\partial z} - \frac{\partial A_z}{\partial s}\right]\hat{\phi} + \frac{1}{s}\left[\frac{\partial}{\partial s}(sA_{\phi}) - \frac{\partial A_s}{\partial \phi}\right]\hat{\mathbf{z}}$$