

MMMx: RigiFlex modelling

G. Jeschke

ETH Zürich, Dep. Chemistry & Applied Biosciences

Modelling SRSF1 in complex with UCAUUGGAU

Steps

- run Rigi module with hierarchical clustering to generate an ensemble of rigid-body arrangements
- run FlexRNA to generate a two-nucleotide linker UU between binding motifs CA and GGA
- run FlexRNA to generate single 5'-terminal nucleotide U
- run FlexRNA to generate single 3'-terminal nucleotide U
- run Flex to generate peptide linker from residue 90 to 120
- refine all conformers by Yasara

At this point, we have generated a raw ensemble by RigiFlex

• run EnsembleFit with the raw ensemble, DEER distance distribution restraints, and PRE restraints

Dependences on third-party software

- SCWRL4 for generating amino acid side groups in Flex
- Yasara for refining conformers (proprietary software)
- refinement by GROMACS (free) is possible, but requires manual force-field choice

Making rigid-body arrangements

```
!rigi % call the Rigi module
 rbtemplate BSRS.pdb % load the rigid-body template
 separate on % separate the rigid bodies from each other for spin labelling
 maxtrials 10000 % make 10000 trials within the distance distributions
 models 200 % generate up to 200 models
 save SRSF1 rba % save in MMMx internal rigid-body arrangement format with file name SRSF1 rba.mat
 rigid (A) (B) % define the first rigid body by chains A and B of the template
    (A) 16 mtsl % first reference point of first rigid body, labelled by MTSL
   (A) 37 mtsl % second reference point of first rigid body, labelled by MTSL
   (A) 72 mtsl % third reference point of first rigid body, labelled by MTSL
  .rigid % close block kev
 rigid (C) (D) % define the first rigid body by chains C and D of the template
    (D) 126 mtsl % first reference point of second rigid body, labelled by MTSL
    (D) 148 mtsl % second reference point of second rigid body, labelled by MTSL
    (D) 169 mtsl % third reference point of second rigid body, labelled by MTSL
  .rigid % close block key
 ddr mtsl % define 7 core restraints between reference points in different rigid bodies
   (A) 16 (D) 148
                     32.5 06.0 % Gaussian restraint
   ... % there are six more lines as the previous one
  .ddr % close block key
```

Further specifications for rigid-body arrangements

```
plink % specify the length of a peptide linker
    (A)89 (D)121 32 % 32 residues anchored at sites (A)89 and (D)121, <=3.8 Å/residue
    .plink

nlink % specify the length of a nucleic acid linker
    (B)3 (C)6 3 16 % 3 nucleotides anchored at sites (B)3 and (C)6, maximum length 16 Å
    .nlink

superimpose 2 % superposition is onto rigid body 2
.rigi % close module
```

- Laura Esteban Hofer was running 50000 trials on Euler and she requested 6000 models
- when running Flex on Euler with a fresh MMMx installation, specify the path to SCWRL4 in the Flex block by scwrl4 pathname

(this is generally necessary on Linux or Mac, Matlab fails to find the correct path)

Completing the RNA

```
!flexrna 0.75 1 0.016667 % 75% coverage of distributions, 1 model, maximum of 1 min per conformer
  expand SRSF1 rba % the input conformers are generated by expanding rigid-body arrangements
  sequence 4 5 UU % add nucleotides number 4 and 5 with sequence UU
  save SRSF1 short UU all % save the models with basis file name 'SRSF1 short UU all'
  anchor 5p (B) 3 % the 5'-terminal anchor nucleotide is nucleotide 3 in chain B
  anchor 3p (C)6 % the 3'-terminal anchor nucleotide is nucleotide 6 in chain C
.flexrna % close module
!flexrna 0.75 1 0.025 % 75% coverage of distributions, 1 model, maximum of 1.5 min per conformer
  addpdb SRSF1 short UU all*.pdb % load conformers generated by the previous module call
  sequence 1 1 U % segment is a single nucleotide U with residue number 1
  save SRSF1 short U1 % save the models with basis file name 'SRSF1 short U1'
  anchor 3p (B) 2 % the 3'-terminal anchor nucleotide is nucleotide 2 in chain C
  ddr dota-gd r5p % specify distance distribution restraints, dota-gd label on protein, r5p on RNA
    (A) 16 (B) 1 34.9 04.1 % Gaussian restraint to RRM1
    (D)148 (B)1 26.5 08.5 % Gaussian restraint to RRM2
  .ddr % close block key
.flexrna % close module
% there is one more FlexRNA block for adding the 3'-terminal nucleotide
```

Adding the peptide linker

```
!flex 0.75 1 0.25 % 75% coverage of distributions, 1 model, maximum of 15 min per conformer
 addpdb SRSF1 short U9*.pdb % load conformers from previous section
 sequence 90 120 RSGRGTGRGGGGGGGGAPRGRYGPPSRRSE % specify residue numbers and sequence
 n anchor (A)89 % the N-terminal anchor is residue 89 in chain A
 c anchor (D)121 % the C-terminal anchor is residue 121 in chain D
 save SRSF1 short RNA SRSF % save conformers with basis file name 'SRSF1 short RNA'
 ddr mtsl % specify peptide-peptide distance distribution restraints (MTSL label pairs)
   (A) 16 107 29.3 08.7 @deer\C16 A107C short med distr.dat % site 107 is newly generated
   107 (D) 148 25.0 07.3 @deer\A107C C148 short med distr.dat % full distribution is specified
   (A) 37 107 39.7 08.0 @deer\Y37C A107C short med distr.dat
  .ddr % close block key
 ddr dota-gd r5p % specify peptide-RNA distance distribution restraints between dota-gd and r5p
   107 (B) 1 27.2 10.8 @deer\A107C U1 short med distr.dat
  .ddr
 ddr dota-gd r3p % specify peptide-RNA distance distribution restraints between dota-gd and r3p
   107 (B) 9 31.7 11.8 @deer\A107C U9 short med distr.dat
 .ddr
.flex % close module
```

Refining conformer models

```
!yasara 1 % allow for up to 1 hour for refinement
   addpdb SRSF1_short_RNA_i*_m1.pdb % process all output conformers from the previous section
   save SRSF1_short_refined % save output with basis file name 'SRSF1_short_refined'
.yasara % close module

# report % open log file in editor
```

- Yasara cannot be stopped by MMMx
- if Yasara runs take longer than the specified maximum time, more and more Yasara instances are generated
- this can severely slow down a desktop computer
- avoid the # report statement if you run on a server (Euler), use console mode

Fitting populations and contracting the ensemble

```
!ensemblefit
  addpdb SRSF1 short refined m*.pdb % use all refined conformers in the raw ensemble
  interactive % display figure that visualizes fit progress
  plot % plot figures on fit quality
  csv % save fits in comma-separated value files
  save SRSF1 UCAUUGGAU ensemble fit.ens % output name for MMMx ensemble list
  ddr mtsl % specify distance distribution restraints protein to protein sites
       (A) 16 (A) 148 32.5 06.0 @deer\C16 C148 short med distr.dat
       ... % more lines as the previous one
  .ddr
  ddr dota-gd r5p % specify distance distribution restraints protein site to 5'-terminus of RNA
      (A) 107 (B) 1 27.2 10.8 @deer\A107C U1 short med distr.dat
      ... % more such lines
   .ddr
  ddr dota-gd r3p % specify distance distribution restraints protein site to 3'-terminus of RNA
      (A) 107 (B) 9
                         31.7 11.8 @deer\A107C U9 short med distr.dat
      ... % more such lines
 .ddr
 ddr r5p r3p % specify distance distribution restraint between RNA termini
      (B) 1
           (B) 9 32.6 10.5 \frac{10.5}{10.5} \frac{10.5}{10.5}
 .ddr
```

Specifying PRE restraints

```
% PRE ratio data C16
               site larmor td R2dia taui taur maxrate
  % pre label
        mtsl (A) 16 600.13 12.812 49.66 0.50 11.15 170
  pre
          (A) 18 0.941 0.280 % proton site, PRE ratio, standard deviation
          (A) 19 0.529 0.134 % proton site, PRE ratio, standard deviation
          . . .
  .pre % close PRE block
  % PRE ratio data C148
  % pre label site Larmor td R2dia taui taur maxrate
        mtsl (A) 148 600.13 12.812 49.35 0.50 11.15 170
  pre
          (A) 17 0.470 0.057 % proton site, PRE ratio, standard deviation
          (A) 19 0.289 0.064 % proton site, PRE ratio, standard deviation
  .pre % close PRE block
.ensemblefit % close module
```

• the PRE block specifies the label type, spin label site, proton Larmor frequency in MHz, total INEPT delay td in ms, relaxation rate R2dia for the diamagnetic sample in s⁻¹, correlation time taui of internal label motion in ns, rotational correlation time taur of the protein in ns, and a maximum relaxation rate enhancement maxrate in s⁻¹