Lecture-21: DTMC: Representation

1 Representation

Consider a Markov chain $X = (X_n \in \mathcal{X} : n \in \mathbb{Z}_+)$ with countable state space \mathcal{X} and transition matrix P.

1.1 Chapman Kolmogorov equations

We denote by $\pi_0 \in \mathbb{R}_+^{\mathcal{X}}$ the initial distribution of the Markov chain, that is $\pi_0(x) = P\{X_0 = x\}$. The distribution of X_n is given by $\pi_n \in \mathbb{R}_+^{\mathcal{X}}$, such that for any state $x \in \mathcal{X}$.

$$\pi_n(x) = P\{X_n = x\} = \sum_{z \in \mathcal{X}} p_{zx}^{(n)} \pi_0(z) = (\pi_0 P^n)_x.$$

We can write this succinctly in terms of transition probability matrix P as $\mu_n = \mu_0 P^n$. We can alternatively derive this result by the following Lemma.

Lemma 1.1. The right multiplication of a probability vector with the transition matrix *P* transforms the probability distribution of current state to probability distribution of the next state. That is,

$$\pi_{n+1} = \pi_n P$$
, for all $n \in \mathbb{N}$.

Proof. To see this, we fix $y \in X$ and from the law of total probability and the definition conditional probability, we observe that

$$\pi_{n+1}(y) = P\{X_{n+1} = y\} = \sum_{x \in \mathcal{X}} P\{X_{n+1} = y, X_n = x\} = \sum_{x \in \mathcal{X}} P\{X_n = x\} p_{xy} = (\pi_n P)_y.$$

We would respectively denote the conditional probability of events and conditional expectation of random variables, conditioned on the event $X_0 = x$, by

$$P_x(A) = P(A \mid \{X_0 = x\}),$$
 $\mathbb{E}_x[Y] = \mathbb{E}\left[A \mid \{X_0 = x\}\right].$

Lemma 1.2. The left multiplication of any vector of a function evaluation at all states, with the transition matrix P results in a vector of the expected value of the function at the next state given the current state. That is, for any function $f: \mathfrak{X} \to \mathbb{R}$, we have $(Pf)_x = \mathbb{E}_x[f(X_1)]$.

Proof. From the definition of transition probability matrix, we have

$$(Pf)_x = \sum_{y \in \mathcal{X}} p_{xy} f(y) = \sum_{y \in \mathcal{X}} f(y) \mathbb{E}_x 1_{\{X_1 = y\}} = \mathbb{E}_x [f(X_1)].$$

1.2 Transition graph

We can define a collection *E* of possible one-step transitions indicated by the initial and the final state, as

$$E \triangleq \{ [x,y) \in \mathcal{X} \times \mathcal{X} : p_{xy} > 0 \}.$$

A transition matrix P is sometimes represented by a directed weighted graph $G = (\mathfrak{X}, E, W)$, where the set of nodes in the graph G is the state space \mathfrak{X} , and the set of directed edges is the set of possible transitions. In addition, this graph has a weight $w_e = p_{xy}$ on each edge $e = [x, y) \in E$.

Example 1.3 (Integer random walk). For an integer random walk $X = (X_n \in \mathbb{Z} : n \in \mathbb{N})$ with <u>i.i.d.</u> step-size sequence $Z = (Z_n \in \{-1,1\}, n \in \mathbb{N})$, we have and infinite graph $G = (\mathbb{Z}, E)$, where the edge set is

$$E = \{(n, n+1) : n \in \mathbb{Z}\} \cup \{(n, n-1) : n \in \mathbb{Z}\}.$$

We have plotted the sub-graph of the entire transition graph for states $\{-1,0,1\}$ in Figure 1.

Figure 1: Sub-graph of the entire transition graph for an integer random walk with <u>i.i.d.</u> step-sizes in $\{-1,1\}$ with probability p for the positive step.

Example 1.4 (Sequence of experiments). Consider the sequence of experiments with the set of outcomes $\mathcal{X} = \{0,1\}$ with the transition matrix

$$P = \begin{bmatrix} 1 - q & q \\ p & 1 - p \end{bmatrix}.$$

We have plotted the corresponding transition graph for this two-state Markov chain in Figure 2.

Figure 2: Markov chain for the sequence of experiments with two outcomes.

1.3 Random Mapping Theorem

We saw some example of Markov processes where $X_n = X_{n-1} + Z_n$, and $(Z_n : n \in \mathbb{N})$ is an iid sequence, independent of the initial state X_0 . We will show that any discrete time Markov chain is of this form, where the sum is replaced by arbitrary functions.

Theorem 1.5 (Random mapping theorem). For any DTMC X, there exists an <u>i.i.d.</u> sequence $Z \in \Lambda^{\mathbb{N}}$ and a function $f: \mathfrak{X} \times \Lambda \to \mathfrak{X}$ such that $X_n = f(X_{n-1}, Z_n)$ for all $n \in \mathbb{N}$.

Remark 1. A **random mapping representation** of a transition matrix *P* on state space \mathfrak{X} is a function f: $\mathfrak{X} \times \Lambda \to \mathfrak{X}$, along with a Λ -valued random variable Y, satisfying

$$P\{f(x,Y) = y\} = p_{xy}$$
, for all $x, y \in X$.

Proof. It suffices to show that every transition matrix P has a random mapping representation. Then for the mapping f and the i.i.d sequence $Z = (Z_n : n \in \mathbb{N})$ with the same distribution as random variable Y, we would have $X_n = f(\overline{X_{n-1}}, Z_n)$ for all $n \in \mathbb{N}$.

Let $\Lambda = [0,1]$, and we choose the <u>i.i.d.</u> sequence Z, uniformly at random from this interval. Since \mathfrak{X} is countable, it can be ordered. We let $\mathfrak{X} = \mathbb{N}$ without any loss of generality. We set $F_{xy} \triangleq \sum_{w \leqslant y} p_{xw}$ and define

$$f(x,z) = \sum_{y \in \mathbb{N}} y \mathbb{1}_{\left\{F_{x,y-1} < z \leqslant F_{x,y}\right\}}.$$

It follows that
$$P\{f(x,Z) = y\} = P\{F_{x,y-1} < Z \leqslant F_{x,y}\} = p_{xy}$$
.