On the Democratization of Al:

Bridging the Gap with AutoML

Candidate:

Joseph Giovanelli

Supervisor:
Matteo Golfarelli

Coordinator: Ilaria Bartolini

What Do We Mean By AI?

Machine Learning¹

A computer program is said to learn in some class of tasks, with respect to a performance measure, if it improves with experience.

¹Mitchell, T. M. 1997. Machine Learning.

Bridging the Gap with AutoML

Democratization of Al²

Making AI accessible to a broader audience, allowing domain experts to apply it in their own fields.

²Thornton, C. et al. 2013. Auto-WEKA: Combined selection and hyperparameter optimization of classification algorithms. In Proceedings of ACM SIGKDD.

Real-case problem scenarios

Cross-Industry Standard Process for Data Mining (CRISP-DM) is a process model for dealing with problem complexity.

Data-centric Al

systematically engineers data used to build an AI system.

3

Real-case problem scenarios

Cross-Industry Standard Process for Data Mining (CRISP-DM) is a process model for dealing with problem complexity.

Human-centric AI aims at complementing, instead of replacing, human intelligence.

Real-case problem scenarios

Cross-Industry Standard Process for Data Mining (CRISP-DM) is a process model for dealing with problem complexity.

Physics-aware Al

focuses on coupling and enhancing physical simulators with AI.

Data-centric Al

Effective Data
 Pre-processing Pipelines
 in Supervised Learning

$$\mathcal{D} = \{(x_i,y_i)\}_{i=0}^N \in \mathbb{D} \subset \mathcal{X} imes \mathcal{Y}$$

2. Exploring Clustering Pipelines via AutoML and Diversification

$$\mathcal{D} = \{(x_i)\}_{i=0}^N \in \mathbb{D} \subset \mathcal{X}$$

Human-centric Al

3. Human-centric AutoML via Logic and Argumentat.

 $\pmb{\lambda}^{\star} \in argmin_{\pmb{\lambda} \in \pmb{\Lambda}} \mathcal{L}(A_{\pmb{\lambda}}(\mathcal{D}_{train}), \mathcal{D}_{val})$

4. Interactive HPO via Preference Learning

 $\mathcal{L}_1,\ldots,\mathcal{L}_m$

5. AutoML in the Age of the Large Language Models

Physics-aware Al

6. Multi-sensor Profiling for Soil-Moisture Monitoring

Data-centric Al

Effective Data
 Pre-processing Pipelines
 in Supervised Learning 3,4

$$\mathcal{D} = \{(x_i,y_i)\}_{i=0}^N \in \mathbb{D} \subset \mathcal{X} imes \mathcal{Y}$$

2. Exploring Clustering Pipelines via AutoML and Diversification

$$\mathcal{D} = \{(x_i)\}_{i=0}^N \in \mathbb{D} \subset \mathcal{X}$$

Human-centric Al

3. Human-centric AutoML via Logic and Argumentat.

 $\mathbf{\lambda}^{\star} \in argmin_{\mathbf{\lambda} \in \mathbf{\Lambda}} \mathcal{L}(A_{\mathbf{\lambda}}(\mathcal{D}_{train}), \mathcal{D}_{val})$

4. Interactive HPO via Preference Learning

 $\mathcal{L}_1, \dots, \mathcal{L}_m$

5. AutoML in the Age of the Large Language Models

Physics-aware Al

6. Multi-sensor Profiling for Soil-Moisture Monitoring

³Giovanelli J., Bilalli B., and Abelló A. (2022). Data pre-processing pipeline generation for AutoETL. Information Systems 108 (2022): 101957.

⁴Giovanelli J., Bilalli B., and Abelló A., et al. (2023). Reproducible experiments for generating pre-processing pipelines for AutoETL. Information Systems (2023): 102314.

Data-centric Al

Effective Data
 Pre-processing Pipelines
 in Supervised Learning

$$\mathcal{D} = \{(x_i,y_i)\}_{i=0}^N \in \mathbb{D} \subset \mathcal{X} imes \mathcal{Y}$$

2. Exploring Clustering Pipelines via AutoML and Diversification ⁵

$$\mathcal{D} = \{(x_i)\}_{i=0}^N \in \mathbb{D} \subset \mathcal{X}$$

Human-centric Al

3. Human-centric AutoML via Logic and Argumentat.

 $\lambda^{\star} \in argmin_{\lambda \in \Lambda} \mathcal{L}(A_{\lambda}(\mathcal{D}_{train}), \mathcal{D}_{val})$

4. Interactive HPO via Preference Learning

 $\mathcal{L}_1,\ldots,\mathcal{L}_m$

5. AutoML in the Age of the Large Language Models

Physics-aware Al

6. Multi-sensor Profiling for Soil-Moisture Monitoring

⁵Francia M., <u>Giovanelli J.</u>, and Golfarelli M. (2024). **AutoClues: Exploring Clustering Pipelines via AutoML and Diversification**. In Proceedings of Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD). Springer Nature Singapore.

Data-centric Al

 Effective Data Pre-processing Pipelines in Supervised Learning

$$\mathcal{D} = \{(x_i,y_i)\}_{i=0}^N \in \mathbb{D} \subset \mathcal{X} imes \mathcal{Y}$$

Exploring Clustering Pipelines via AutoML and Diversification

$$\mathcal{D} = \{(x_i)\}_{i=0}^N \in \mathbb{D} \subset \mathcal{X}$$

Human-centric Al

3. Human-centric AutoMI via Logic and Argumentat. 6

 $\lambda^* \in argmin_{\lambda \in \Lambda} \mathcal{L}(A_{\lambda}(\mathcal{D}_{train}), \mathcal{D}_{val})$

 Interactive HPO via Preference Learning $\mathcal{L}_1, \ldots, \mathcal{L}_m$

5. AutoML in the Age of the Large Language Models

Physics-aware Al

Multi-sensor Profiling for Soil-Moisture Monitoring

⁶Francia M., Giovanelli J., and Pisano G. (2022). HAMLET: A framework for Human-centered AutoML via Structured Argumentation. Future Generation Computer Systems 142 (2023): 182-194.

Data-centric AI

Effective Data
 Pre-processing Pipelines
 in Supervised Learning

$$\mathcal{D} = \{(x_i,y_i)\}_{i=0}^N \in \mathbb{D} \subset \mathcal{X} imes \mathcal{Y}$$

2. Exploring Clustering Pipelines via AutoML and Diversification

$$\mathcal{D} = \{(x_i)\}_{i=0}^N \in \mathbb{D} \subset \mathcal{X}$$

Human-centric Al

3. Human-centric AutoML via Logic and Argumentat.

 $oldsymbol{\lambda}^{\star} \in argmin_{oldsymbol{\lambda} \in oldsymbol{\Lambda}} \mathcal{L}(A_{oldsymbol{\lambda}}(\mathcal{D}_{train}), \mathcal{D}_{val})$

4. Interactive HPO via Preference Learning ⁷

 $\mathcal{L}_1,\ldots,\mathcal{L}_m$

5. AutoML in the Age of the Large Language Models

Physics-aware Al

6. Multi-sensor Profiling for Soil-Moisture Monitoring

⁷ Giovanelli J., Tornede A., Tornede T., and Lindauer M. (2024). Interactive hyperparameter optimization in multi-objective problems via preference learning. In Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 38. No. 11. 2024.

Data-centric AI

Effective Data
 Pre-processing Pipelines
 in Supervised Learning

$$\mathcal{D} = \{(x_i,y_i)\}_{i=0}^N \in \mathbb{D} \subset \mathcal{X} imes \mathcal{Y}$$

2. Exploring Clustering
Pipelines via AutoML and
Diversification

$$\mathcal{D} = \{(x_i)\}_{i=0}^N \in \mathbb{D} \subset \mathcal{X}$$

Human-centric Al

3. Human-centric AutoML via Logic and Argumentat.

 $oldsymbol{\lambda}^{\star} \in argmin_{oldsymbol{\lambda} \in oldsymbol{\Lambda}} \mathcal{L}(A_{oldsymbol{\lambda}}(\mathcal{D}_{train}), \mathcal{D}_{val})$

4. Interactive HPO via Preference Learning

 $\mathcal{L}_1,\ldots,\mathcal{L}_m$

 AutoML in the Age of the Large Language Models ⁸

Physics-aware Al

6. Multi-sensor Profiling for Soil-Moisture Monitoring

⁸Tornede A., Difan D., Giovanelli J., Mohan A., Ruhkopf T., Segel S., Theodorakopoulos D., Tornede T., Wachsmuth H., and Lindauer M. (2024). **Automl in the age of large language models: Current challenges, future opportunities and risks**. Transaction on Machine Learning Research. ISSN 2835-8856 2024.

Data-centric AI

Effective Data
 Pre-processing Pipelines
 in Supervised Learning

$$\mathcal{D} = \{(x_i,y_i)\}_{i=0}^N \in \mathbb{D} \subset \mathcal{X} imes \mathcal{Y}$$

2. Exploring Clustering Pipelines via AutoML and Diversification

$$\mathcal{D} = \{(x_i)\}_{i=0}^N \in \mathbb{D} \subset \mathcal{X}$$

Human-centric Al

3. Human-centric AutoML via Logic and Argumentat.

 $\lambda^* \in argmin_{\lambda \in \Lambda} \mathcal{L}(A_{\lambda}(\mathcal{D}_{train}), \mathcal{D}_{val})$

4. Interactive HPO via Preference Learning

 $\mathcal{L}_1,\ldots,\mathcal{L}_m$

5. AutoML in the Age of the Large Language Models

Physics-aware Al

6. Multi-sensor Profiling for Soil-Moisture Monitoring ⁹

⁹Francia M., <u>Giovanelli J.</u>, and Golfarelli M. (2022). <u>Multi-sensor profiling for precision soil-moisture monitoring.</u> <u>Computers and Electronics in Agriculture</u>. 197 (2022): 106924.

Data-centric Al

Effective Data
 Pre-processing Pipelines
 in Supervised Learning

$$\mathcal{D} = \{(x_i,y_i)\}_{i=0}^N \in \mathbb{D} \subset \mathcal{X} imes \mathcal{Y}$$

2. Exploring Clustering Pipelines via AutoML and Diversification

$$\mathcal{D} = \{(x_i)\}_{i=0}^N \in \mathbb{D} \subset \mathcal{X}$$

Human-centric Al

3. Human-centric AutoML via Logic and Argumentat.

 $\mathbf{\lambda}^{\star} \in argmin_{\mathbf{\lambda} \in \mathbf{\Lambda}} \mathcal{L}(A_{\mathbf{\lambda}}(\mathcal{D}_{train}), \mathcal{D}_{val})$

4. Interactive HPO via Preference Learning

 $\mathcal{L}_1,\dots,\mathcal{L}_m$

6. Multi-sensor Profiling for Soil-Moisture Monitoring

Physics-aware Al

7. Enhancing Process-Based Models for Soil Moisture Forecasting ¹⁰

5. AutoML in the Age of the Large Language Models

¹⁰ Bitelli M., Francia M., <u>Giovanelli J.</u>, Golfarelli M., and Tomei F. An Auto-Tuning Three-Dimensional Numerical Model Coupled with Data Assimilation from a Sensor Grid to Forecast Irrigation Demand in Kiwifruit. Submitted to Computers and Electronics in Agriculture.

Data-centric AI

Effective Data
 Pre-processing Pipelines
 in Supervised Learning

$$\mathcal{D} = \{(x_i,y_i)\}_{i=0}^N \in \mathbb{D} \subset \mathcal{X} imes \mathcal{Y}$$

2. Exploring Clustering
Pipelines via AutoML and
Diversification

$$\mathcal{D} = \{(x_i)\}_{i=0}^N \in \mathbb{D} \subset \mathcal{X}$$

Human-centric Al

3. Human-centric AutoML via Logic and Argumentat.

 $oldsymbol{\lambda}^{\star} \in argmin_{oldsymbol{\lambda} \in oldsymbol{\Lambda}} \mathcal{L}(A_{oldsymbol{\lambda}}(\mathcal{D}_{train}), \mathcal{D}_{val})$

4. Interactive HPO via Preference Learning ⁷

 $\mathcal{L}_1,\ldots,\mathcal{L}_m$

5. AutoML in the Age of the Large Language Models

Physics-aware Al

6. Multi-sensor Profiling for Soil-Moisture Monitoring

7. Enhancing Process-Based Models for Soil Moisture Forecasting

⁷ Giovanelli J., Tornede A., Tornede T., and Lindauer M. (2024). Interactive hyperparameter optimization in multi-objective problems via preference learning. In Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 38. No. 11, 2024.

Interactive

Hyperparameter Optimization

via Preference Learning

in Multi-Objective Problems

Hyperparameter Optimization (HPO)

HPO Problem. Given a machine learning (ML) algorithm A and corresponding hyperparameter space of $\Lambda = \Lambda_1 \times \cdots \times \Lambda_M$, the goal is to determine the configuration $\lambda^* \in \Lambda$ with optimal loss function \mathcal{L} .

$$\boldsymbol{\lambda}^{\star} \in \operatorname*{arg\,min}_{\boldsymbol{\lambda} \in \boldsymbol{\Lambda}} \mathcal{L}(A_{\boldsymbol{\lambda}}(\mathcal{D}_{\textit{train}}), \mathcal{D}_{\textit{val}})$$

 \mathcal{L} quantifies how well the trained model $h = A_{\lambda}(\mathcal{D}_{train})$ performs a disjoint split \mathcal{D}_{val} .

Example NN hyperparameter conf.

 $\lambda \in \Lambda =$ learning rate: 0.05 hidden layers: 5 neurons per layer: 256

SOTA. Bayesian Optimization (BO)¹¹ drives the exploration toward new promising configurations via a surrogate trained on past evaluations.

¹¹Brochu E., Vlad M. Cora, et al. A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. (2010).

Hyperparameter Optimization (HPO)

HPO Problem. Given a machine learning (ML) algorithm A and corresponding hyperparameter space of $\Lambda = \Lambda_1 \times \cdots \times \Lambda_M$, the goal is to determine the configuration $\lambda^* \in \Lambda$ with optimal loss function \mathcal{L} .

$$\boldsymbol{\lambda}^{\star} \in \operatorname*{arg\;min}_{\boldsymbol{\lambda} \in \boldsymbol{\Lambda}} \mathcal{L}(A_{\boldsymbol{\lambda}}(\mathcal{D}_{train}), \mathcal{D}_{val})$$

 \mathcal{L} quantifies how well the trained model $h = A_{\lambda}(\mathcal{D}_{train})$ performs a disjoint split \mathcal{D}_{val} .

Example Best NN hyperparameter conf.

 $\lambda^* \in \Lambda =$ learning rate: 0.01 hidden layers: 10 neurons per layer: 256

SOTA. Bayesian Optimization (BO)¹¹ drives the exploration toward new promising configurations via a surrogate trained on past evaluations.

¹¹Brochu E., Vlad M. Cora, et al. A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. (2010).

Multi-Objective Machine Learning (MO-ML)

MO-ML algorithms. When optimizing multiple objectives $\mathcal{L}_1, \ldots, \mathcal{L}_M$, MO-ML algorithms $A_{\lambda}(\mathcal{D}_{train})$ return a **Pareto front** $P_{\mathcal{D}_{val}}(\mathcal{H})$.

Quality Indicators. quantify the goodness of the Pareto front by measuring specific characteristics —e.g., hypervolume (HV)¹³, maximum spread (MS)¹³, spacing (SP)¹⁴, closeness to reference point (R2)¹⁵.

¹³Zitler E., Thiele L. **Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach**. IEEE transactions on Evolutionary Computation, 1999.

¹⁴Schott J. R. **Fault tolerant design using single and multicriteria genetic algorithm optimization.** 1995. PhD Thesis. Massachusetts Institute of Technology.

¹⁵Hansen M. P., Jaszkiewicz A. **Evaluating the quality of approximations to the non-dominated set**. Copenhagen, Denmark: IMM, Technical University of Denmark, 1994.

Interactive HPO via Preference Learning

Challenge. Choosing the quality indicator leading to a Pareto front which has a desired shape requires deep expert knowledge.

Approach. Learning a quality indicator via user preferences

1. Preliminary Sampling

Collect Paretos
$$\mathcal{P} = \{P_i | P_i = P_{\mathcal{D}_{val}}(A_{\lambda}(\mathcal{D}_{train})) : \lambda \in \Lambda\}$$

- 2. Interactive Preference Learning
 - a. Build preference dataset $\mathcal{U} = \{P_{i,1} \succ P_{i,2}\}_{i=1}^{U}$
 - b. Learn utility function $u: \mathcal{P} \to \mathbb{R}$
- 3. Utility-driven HPO

Solve HPO problem $\lambda^* \in \arg\min u(P_{\lambda}) : P_{\lambda} = A_{\lambda}(\mathcal{D}_{val})$

1. Preliminary Sampling

Example $\lambda_1 \in \Lambda$

Example $P_{\mathcal{D}_{val}}(A_{\lambda}(\mathcal{D}_{train}))$

NN hyperparameter configuration:

learning rate: 0.01 hidden layers: 10 neurons per layer: 256

1. Preliminary Sampling

Example $\lambda_2 \in \Lambda$

Example $P_{\mathcal{D}_{val}}(A_{\lambda}(\mathcal{D}_{train}))$

NN hyperparameter configuration:

learning rate: 0.05 hidden layers: 5 neurons per layer: 256

2. Interactive Preference Learning - Pairwise Preferences

2. Interactive Preference Learning - Feature Building

2. Interactive Preference Learning - Learn Utility

Example Building $u: \mathcal{P} \to \mathbb{R}$ through RankSVM¹⁶

$$\begin{array}{c} P_{1} \succ P_{2} \Leftrightarrow \vec{W}^{\mathsf{T}} \vec{f}_{P_{1}} > \vec{W}^{\mathsf{T}} \vec{f}_{P_{2}} & \text{(1)} \\ \Leftrightarrow \vec{W}^{\mathsf{T}} \left(\vec{f}_{P_{1}} - \vec{f}_{P_{2}} \right) > 0 & \text{(2)} \\ \Leftrightarrow \vec{W}^{\mathsf{T}} \left(\vec{f}_{P_{2}} - \vec{f}_{P_{1}} \right) < 0 \,. & \text{(3)} \end{array}$$

¹⁶ Joachims T. **Optimizing search engines using clickthrough data**. Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining. (2002).

3. Utility-driven HPO

Evaluation – End-to-end Performance

Preference-Based (PB): HPO process driven by the utility function trained with the indicator in the row

Indicator-Based (IB): HPO process driven by the indicator in the column

LCBench¹⁷:

- funnel-shaped MLP from Auto-pytorch;
- 35 datasets from OpenML CC-18 suite.

PB\IB	HV	SP	MS	R2
HV	98.70%	146.15%	146.15%	98.70%
SP	300.00%	100.00%	400.00%	400.00%
MS	321.05%	321.05%	93.85%	265.22%
R2	95.65%	204.35%	195.65%	95.65%

- → PB performs better or equal in 11/16 cases;
- \longrightarrow IB performs slightly better in only 5/16 cases.

¹⁷Zimmer L., Lindauer M, and Hutter F. **Auto-pytorch: Multi-fidelity metalearning for efficient and robust autodl.** IEEE transactions on pattern analysis and machine intelligence 43.9 (2021).

Conclusions and Future Works

Data-centric and Human-centric Al

Main Contributions

- Develop effective data pipelines for supervised and unsupervised learning.
- Propose a HAMLET: a human-centric AutoML framework allowing explainability and interactive interventions;

Future Works

- Provide insight on data bias in pre-processing for fairness through HAMLET.
- Integrate HAMLET with multi-objective and cross-cutting constraints (e.g., ethical, legal) to allow fairness interventions.

Physics-aware Al

Main Contributions

- Integration of physical models with Al through AutoML for monitoring and forecasting tasks.
- During the whole campaign: Water saving: 44%
 Vine productivity: unaffected Fruit quality: increased (+1 brix)

Future works:

- Integration of a smart-irrigation algorithm based on control theory, dynamically adjusting the water plan.
- Application of transfer learning with a pre-trained model to transfer the knowledge from different conditions, supporting a wider range of crops.

Thanks for the attention :)