Name: Loh Jing Wei

Student ID: 30856183

Problem 8

CW is the language for closed walk, it is represented as a string over the alphabet {N,S,E,W}.

We want to prove that CW is not context free

Assume, by way of contradiction, that CW is context-free.

Then it has a CFG in Chomsky Normal Form with k non-terminals.

Then, by the Pumping Lemma for CFLs, every $w \in CW$ with $|w| > 2^{k-1}$ can be written w = uvxyz where

- $vy \neq \varepsilon$,
- $|vxy| \leq 2^k$,
- and for all $i \ge 0$ we have $uv^i x y^i z \in CW$.

let $M > 2^k-1$ and let w be the following string:

$$w = N^M E^M S^M W^M$$

W = N...NE...ES...SW...W

This satisfies the rule for CW, so $w \in CW$.

We can also see that our w has a length of $|w| > 4(2^k-1)$, so w satisfies the $|w| > 2^{k-1}$ condition in the Pumping Lemma for CFLs.

Since the window size must be lesser than or equal to 2^k , i.e $|vxy| \le 2^k$. The window size must be lesser than or equal to M+1, i.e $|vxy| \le M+1$, where M > $2^{k}-1$.

Now consider all possible divisions of w into five parts, w = uvxyz. Consider, in particular, the possible locations for v and y within w. We have several cases

Case 1:

If vxy falls entirely within stretch of N, then uv^2xy^2z has number of S, W and E the same as w except that the stretch of N is now larger (since $vy \ne \varepsilon$). As a result, it cannot be a closed walk since number of N is larger than number of S in w, i.e $|N| \ne |S|$. So $uv^2xy^2z \notin CW$.

uv'xy'æ :	N		N	E		E	S		S	W		N	
•	٧	لب X	Y				1						
uv'xy't:	N	N		N	N	E		E	S		S	W	 W

Case 2 (Similar to Case 1):

If vxy falls entirely within stretch of S, then uv^2xy^2z has number of N, W and E the same as w except that the stretch of S is now larger (since $vy \models \varepsilon$). As a result, it cannot be a closed walk since number of S is larger than number of N in the new string, i.e $|S| \neq |N|$. So $uv^2xy^2z \notin CW$.

Case 3 (Similar to Case 1):

If vxy falls entirely within stretch of E, then uv^2xy^2z has number of N, S and W the same as w except that the stretch of E is now larger (since $vy \ne \varepsilon$). As a result, it cannot be a closed walk since number of E is larger than number of W in the new string, i.e $|E| \ne |W|$. So $uv^2xy^2z \notin CW$.

uv'xy't	N	 Ν	E	• • •	E	S		3	W	•••	N		
uv'xy't					1	٧	لہا X	y					
uv'xy't:												 W	

Case 4 (Similar to Case 1):

If vxy falls entirely within stretch of W, then uv^2xy^2z has number of N, S and E the same as w except that the stretch of W is now larger (since $vy \ne \varepsilon$). As a result, it cannot be a closed walk since number of W is larger than number of E in the new string, i.e $|W| \ne |E|$. So $uv^2xy^2z \notin CW$.

Case 5:

If v falls within N and y falls within E, then uv^2xy^2z has number of S and W the same as w except that the stretch of N or E or both N and E is now larger (since $vy \ne \varepsilon$). As a result, it cannot be a closed walk since number of N is larger than number of S, as well as number of E is larger than number of W, i.e $|N| \ne |S|$ and $|E| \ne |W|$. So $uv^2xy^2z \notin CW$.

uv'xy't:	_	m											
	V	_	×	У									
				/			V						
uv'xy't:	N	N		N	E	E		E	S	 S	W	 N	

Case 6 (Similar to Case 5):

If v falls within S and y falls within W, then uv^2xy^2z has number of N and E the same as w except that the stretch of S or W or both S and W is now larger (since $vy \models \varepsilon$). As a result, it cannot be a closed walk since number of S is larger than number of N, as well as number of W is larger than number of E, i.e $|S| \neq |N|$ and $|W| \neq |E|$. So $uv^2xy^2z \notin CW$.

иv	'xy	t :	N	 N	E		E	S		S	W	•••	N			
								_	M							
								٧	_	X	у					
						V										
u٧	²xy²	t:	N	 N	E	••.	E	S	S		3	W	N	•••	N	
	•															

Case 7 (Similar to Case 5):

If v falls within E and y falls within S, then uv^2xy^2z has number of N and W the same as w except that the stretch of E or S or both E and S is now larger (since $vy \ne \varepsilon$). As a result, it cannot be a closed walk since number of E is larger than number of W, as well as number of S is larger than number of N, i.e $|E| \ne |W|$ and $|S| \ne |N|$. So $uv^2xy^2z \notin CW$.

Conclusion

I have now covered all possibilities for the division of w into five parts, w = uvxyz with $vy \ne \epsilon$. In each case, I found a value of i such that $uv^i xy^iz \notin \mathsf{CW}$. This contradicts the conclusion of the Pumping Lemma for CFLs. So the initial assumption, that CW is context-free, was wrong. Therefore CW is not context-free.

Note:

Since $|vxy| \le M+1$, it is impossible for v to fall within stretch of N and at the same time y to fall within stretch of S. Hence there is no possibility for N and S to be pumped at the same time, resulting in string uv^ixy^iz which has the same number of N and S. The same goes to E and W.

