Protein secondary structure assignement

Project presented by Maha GRAA

M2 Biologie Informatique 2022/2023

(1) INTRODUCTION

2 OBJECTIVES

3 MATERIAL AND METHODS

4 RESULTS AND DISCUSSION

Introduction

ARN

ADN

Protein

Cell

List of amino acids: Valine Leucine Isoleucine Lysine Thréonine **Phénylalanine** Méthionine Histidine tryptophane Glutamine **Aspartate Glutamate** Arginine **Alanine Proline** Cystéine **Asparagine** Sérine **Glycine Tyrosine**

We have two types of protein's secondary structure:

Alpha helix

Beta Sheet

This structure that we observe in PDB protein is obtained thanks to the technique of crystallography or RMN spectrometry

DSSP attribue 7 or 8 cases:

H: hélice α (i-i+4 HB)

G: hélice 310 (i-i+3 HB)

I: hélice π (i-i+5 HB)

E: brin β (in a β sheet)

B: (isolated β bridge)

T: coude β (β -turn)

S: bend

C: everything else!

Objective:

We want to find an alternative method to assign the secondary structures of a protein by applying the conditions applied in the DSSP algorithm

Structure of the Protein of interest (From PDB)

« HBPLUS » program

File genrated by HBPLUS (it contains the Hbonds)

Protein secondary structure assignement Model:

- Reading the file generated by HBPLUS
- Creating the Hbond list
- helix fonction (application of DSSP condition)
- Sheet béta (application of DSSP condition)

Generated file: hélices&feuillets.txt

Applied method for helix structure assignment

- To assign a turn: If two amino acids that form an HBond are 3, 4 or 5 amino acids apart, we can say that they form a Turn.
- Minimum two successive turns of the same type are sufficient to say that there is a helix.

Feuillet beta condition

The condition for assigning the presence of a beta sheet:

If we have 3 successive amino acids that have HBond with other 3 amino acids, the condition we will assume to be true is the fact that the amino acid in the middle (i) has an Hbond with another amino acid (j) (figure).

Then have to check the next amino acid (i+1) if it has an Hbond with the amino acid that comes just after or just before the J (that has an Hbond with in our initial condition true)

Results and discussion

Protein model used for results and discussion is TYROSINE PHOSPHATASE YOPH FROM YERSINIA PESTIS (1HUF)

Helix alpha from 8 to 9 position

Helix alpha from 12 to 13 position

Didn't detect Sheet

DSSP model

Helix alpha from 5 to 9 position.

Sheet from 25 to 27 position

Helix alpha from 54 to 57 position

Helix alpha from 58 to 61 position

54	Α	٧	Н
55	А	F	Н
56	А	А	Н
57	А	Q	Н
58	А	Τ	Н
59	А	٧	Н
60	А	L	Н
61	A	S	Н
62	Α	Н	Н

helix alpha from 54 to 62 position

Helix count

My model	DSSP	PDB protein Database
From 8 to 18	Frome 5 to 15	From 4 to 18
From 43 to 46	From 16 to 20	From 49 to 63
From 54 to 64	From 44 to 46	From 69 to 84
From 69 to 83	From 50 to 62	From 109 to 125
From 113 to 125	From 70 to 83	
	From 110 to 124	

Sheets count

My model	DSSP	PDB protein Database
From 15 to 16	From 25 to 27	From 25 to 33
From 54 to 55	From 31 to 33	From 88 to 103
From 80 to 81	From 88 to 94	
From 115 to 116	From 79 to 103	