Advanced Machine Learning

Multi-Target Prediction: Introduction

Learning goals

- Understand the practical relevance of multi-target prediction problems
- Know the relevant special cases of multi-target prediction
- Understand the difference between inductive and transductive learning problems

MULTI-TARGET PREDICTION: MOTIVATION

- ullet Conventional supervised learning: Label space ${\mathcal Y}$ is 1-D.
- Multi-target prediction (MTP): multiple targets of mixed types (binary, nominal, ordinal, real-valued).
- Learn one model per target independently? → Targets can be statistically dependent.
- Multi-label Emotions Dataset: 4 emotions of a music piece.
 Multiple emotions may be attributed to a single piece. Mutual information of the labels are:

	Calm	Quiet	Sad	Angry
Calm	1.000	0.073	0.018	0.290
Quiet	0.073	1.000	0.241	0.164
Sad	0.018	0.241	1.000	0.067
Angry	0.290	0.164	0.067	1.000

• It might be better to tackle targets simultaneously.

MULTI-TARGET PREDICTION: CHARACTERISTICS

Characterized by instances $\mathbf{x} \in \mathcal{X}$ and targets $m \in [1, 2, ..., I]$ with following properties:

- A training set $\mathcal{D} = \{(\mathbf{x}^{(i)}, y_m^{(i)})\}_{i=1}^n$, where $y_m^{(i)} \in \mathcal{Y}_m$ is label for target m.
- n instances and I targets \leadsto Scores $y_m^{(i)}$ can be arranged in an $n \times I$ matrix Y. Note Y may have missing values.
- Label space \mathcal{Y}_m can be nominal, ordinal or real-valued.
- Goal: to predict scores for any pair $(\mathbf{x}, m) \in \mathcal{X} \times [1, 2, \dots, l]$.

In conventional MTP setting: no available side information for targets.

Special Cases of Multi-target Prediction

MULTIVARIATE REGRESSION

• $|\mathcal{T}| = I \rightsquigarrow$ all targets are observed during training.

- The score set is $\mathcal{Y} = \mathbb{R}$.
- No side information is available for targets. We can re-index the targets with t = (1, 2, ..., I)^T.

Waegeman et al. (2019), Multi-target prediction: A unifying view on problems and methods (URL).

Example: Predict whether a protein (rows) will bind to a set of experimentally developed small molecules (columns).

MULTI-LABEL CLASSIFICATION

- All targets are observed during training.
- No side information is available for targets.
- The score matrix Y has no missing values.
- $\mathcal{Y}_m = \{0, 1\}$ for all m.

Waegeman et al. (2019), Multi-target prediction: A unifying view on problems and methods (<u>URL</u>).

Example: Assign for documents (rows) the appropriate category tags (columns).

LABEL RANKING

In label ranking, each instance is associated with a ranking of targets.

- All targets are observed during training.
- No side information is available for targets.
- Y has no missing values.

activities (columns).

• $\mathcal{Y}_m = \{1, \dots, I\}$ for all m, and the scores (i.e. ranks) $y_m^{(i)} \neq y_k^{(i)}$ for all $1 \leq m, k \neq I$.

for all $1 \le m, k \ne l$. Example: Predict for users (rows) their preferences over specific

MULTI-TASK LEARNING

- Not all targets are relavent for all instances. E.g. a student may only attend one school, other labels are irrelavent.
- All targets are observed during training.
- No side information is available for targets.
- Label space is homogenous across columns of Y, e.g., $\mathcal{Y}_m = \{0,1\}$ or $\mathcal{Y}_m = \mathbb{R}$ for all m.

Waegeman et al. (2019), Multi-target prediction: A unifying view on problems and methods (URL).

 $\{0,1\}$ or $\mathcal{Y}_m=\mathbb{R}$ for all m. Example: Predict for students (rows) the final grades for a specific high-school course (columns).

REMARKS

- It is also possible when the *m*-th task is multiclass classification.
 That is, f(x)_m ∈ R^{g_m} is the probability predictions for g_m classes.
 ∴ The techniques for multi-target learning are also applicable under this setting. But the notations will be cumbersome, so we will not cover it.
- Label space can be inhomogeneous. E.g. $\mathcal{Y}_m = \{0, 1\}$ and $\mathcal{Y}_k = \mathbb{R}$.
 - → A mixture of multi-label classification and multivariate regression.

Learning with Side Information on Targets

SIDE INFORMATION ON TARGETS

- In some applications additional side information about targets is available.
- Examples:
 - Extra representation for the target molecules in drug design application (structured representation).

 Taxonomy on document categories (hierarchy).

SIDE INFORMATION ON TARGETS

 Information about schools (geographical location, school reputation) in student mark forecasting (feature representation).

Waegeman et al. (2019), Multi-target prediction: A unifying view on problems and methods (URL).

- Such problems are referred to as dyadic or link prediction.
- Such problems fulfill the four properties of MTP setting.
- Scores $y_m^{(i)}$ can be arranged in a matrix Y, which is often sparse.
- Thus, dyadic prediction can be seen as multi-target prediction with target features.

INDUCTIVE VS. TRANSDUCTIVE LEARNING

- In previous problems,
 - predictions need be be generated for novel instances,
 - targets are known beforehand and observed during training.
- These problems are *inductive* w.r.t. instances and *transductive* w.r.t. targets.
- Side information is important for generalizing to novel targets.
 - a novel target molecule in the drug design,
 - a novel tag in the document annotation,

Waegeman et al. (2019), Multi-target prediction: A unifying view on problems and methods (URL).

SUBDIVISION OF DIFFERENT LEARNING SETTINGS

- Setting A transductive w.r.t. targets and instances. Goal: predict missing values of score matrix (matrix completion).
- Setting B transductive w.r.t. targets and inductive w.r.t. instances.
- Setting C inductive w.r.t. targets and transductive w.r.t. instances.
 Some targets are unobserved during training but may appear at prediction time.
- Setting D inductive w.r.t. both targets and instances (zero-shot learning).

Waegeman et al. (2019), Multi-target prediction: A unifying view on problems and methods (URL).

