

3. Deep Reinforcement Learning

Atari (PongNoFrameskip-v4)

Environment

- Input to the NN 2 consecutive frames of the game so as to capture the movement of the ball
- ► Images resized to lower dimensions scaled from 0 to 1.

Replay Buffer

- used to store the <u>current states</u>, <u>actions</u>, <u>rewards</u>, <u>next states</u> and whether or not a terminal state (<u>done</u>) was reached.
- Total memory = 20,000 (when set to 50,000 I ran out of memory).
- Sampled with a batch size of 32.

Model Architecture

- 3 convolutional layers
 - ▶ 32, 64 and 64 filters respectively
 - ReLU activations
 - Kernel sizes: 8, 4 and 4 respectively
 - Strides: 2, 3 and 1 respectively
- 2 fully-connected layers
 - ReLU and Linear activations respectively

- 2 networks with the previous architecture were used
 - One that was trained
 - The other was updated every 1000 iterations by using the current weights of the first.

Atari (PongNoFrameskip-v4)

- Methods 4 methods were implemented <u>from scratch</u>
 - Deep Q-Learning
 - Double Deep Q-Learning
 - Dueling Deep Q-Learning
 - Dueling Double Q-Learning
- Hyperparameters
 - ► Number of games = 500
 - Learning rate =
 - (epsilon)
 - was initialized to 1
 - decreased by in each iteration until .
 - ► After that, it was kept constant

Atari (PongNoFrameskip-v4)

