Cours: Déterminants

Table des matières

1	Groupe symétrique		
	1.1	Groupe symétrique	1
	1.2	Décomposition en cycles à support disjoints	1
	1.3	Signature, groupe alterné	2
	1.4	Groupe diédral	2
_	Déterminants		
	2.1	Formes n-linéaires alternées	2

2.1 Formes n-linéaires alternées 2.2 Déterminant d'une famille de n vecteurs 2.3 Déterminant d'un endomorphisme 2.4 Déterminant d'une matrice carrée 2.5 Calcul de déterminant 2.6 Développement d'un déterminant 2.7 Comatrice 2.8 Orientation d'un espace vectoriel réel de de dimension finie

1 Groupe symétrique

1.1 Groupe symétrique

Définition 1 ($\circ \circ \circ$). Soit $n \in \mathbb{N}^*$. On appelle groupe symétrique et on note (S_n, \circ) l'ensemble des bijections de [1, n] dans lui-même muni de la loi de composition.

Remarques:

 \Rightarrow Soit $\sigma \in \mathcal{F}([\![1,n]\!],[\![1,n]\!])$. Dans ce cours, l'application σ sera notée

$$\sigma = \begin{pmatrix} 1 & 2 & \cdots & n \\ \sigma(1) & \sigma(2) & \cdots & \sigma(n) \end{pmatrix}$$

Puisque $[\![1,n]\!]$ est fini, σ est bijective si et seulement si elle est injective ou surjective. Autrement dit σ est bijective si et seulement si l'une des deux conditions suivantes est vérifiée

1.Les entiers $\sigma(1), \ldots, \sigma(n)$ sont deux à deux distincts.

$$2.\{\sigma(1),\ldots,\sigma(n)\}=[1,n].$$

 \Rightarrow Si E est un ensemble fini de cardinal n, l'ensemble des bijections de E muni de la loi de composition est un groupe isomorphe à (S_n, \circ) .

Proposition 1 ($\circ \circ \circ$). (S_n, \circ) est un groupe fini de cardinal n!.

Définition 2 ($\circ \circ \circ$). *Soit* $n \in \mathbb{N}^*$.

- Soit $p \in [2, n]$. On appelle cycle de longueur p (ou p-cycle) toute permutation σ tel qu'il existe $k_1, \ldots, k_p \in [1, n]$ deux à deux distincts tels que:
 - $-\sigma(k_1) = k_2, \sigma(k_2) = k_3, \dots, \sigma(k_p) = k_1$
 - $\forall k \in [1, n] \setminus \{k_1, \dots, k_p\} \quad \sigma(k) = k$
 - On note $\sigma = (k_1 \quad k_2 \quad \cdots \quad k_p)$.
- On appelle transposition tout cycle de longueur 2.

Remarques:

- \Rightarrow Si $n \ge 3$, (S_n, \circ) n'est pas commutatif.
- \Rightarrow Les p-cycles sont des éléments d'ordre p. En particulier, si σ est une transposition, $\sigma^2 = \operatorname{Id} \operatorname{donc} \sigma^{-1} = \sigma$.

Exemples:

 \Rightarrow Soit $\sigma_1, \sigma_2 \in \mathcal{S}_n$ deux *p*-cycles. Montrer qu'il existe $\sigma \in \mathcal{S}_n$ tel que $\sigma_1 = \sigma^{-1}\sigma_2\sigma$. On dit que σ_1 et σ_2 sont conjuguées.

1.2 Décomposition en cycles à support disjoints

Définition 3 ($\circ \circ \circ$). Soit $\sigma \in \mathcal{S}_n$. On définit la relation \mathcal{R} sur [1, n] par :

$$\forall x, y \in [1, n] \quad x \ \mathcal{R} \ y \quad \Longleftrightarrow \quad [\exists k \in \mathbb{Z} \quad \sigma^k(x) = y]$$

Alors \mathcal{R} est une relation d'équivalence. Si $x \in [1, n]$, la classe de x est notée $\mathcal{O}(x)$ et est appelée orbite de x.

Remarques:

- \Rightarrow Si $x \in [1, n]$, alors $\mathcal{O}(x) = \{\sigma^k(x) \mid k \in \mathbb{Z}\}$. Plus précisément, il existe un plus petit entier strictement positif p tel que $\sigma^p(x) = x$ et on a $\mathcal{O}(x) = \{x, \sigma(x), \dots, \sigma^{p-1}(x)\}$.
- \Rightarrow Les orbites étant des classes d'équivalence, elles forment une partition de S_n .

Exemples:

⇒ Montrer qu'une permutation est un cycle si et seulement si la relation d'équivalence définie ci-dessus admet une et une seule classe non réduite à un point.

Définition 4 ($\circ \circ \circ$). Soit $\sigma \in \mathcal{S}_n$. On appelle support de σ et on note supp(σ) l'ensemble des $x \in [1, n]$ tels que $\sigma(x) \neq k$.

Remarques:

- \Rightarrow Deux permutations de support disjoints commutent. Cependant la réciproque est fausse.
- \Rightarrow Le support de σ est stable par σ .
- \Rightarrow Soit $\sigma_1, \ldots, \sigma_m \in \mathcal{S}_n$ une famille de permutations du supports deux à deux disjoints telle que $\sigma_1 \circ \cdots \circ \sigma_m = \text{Id}$. Alors, pour tout $i \in [1, m]$, $\sigma_i = \text{Id}$.

Théorème 1 (000). Toute permutation s'écrit comme le produit (commutatif) de cycles à supports disjoints. De plus, à l'ordre près, il y a unicité d'une telle décomposition.

Remarques:

 \Rightarrow Si une permutation $\sigma \in \mathcal{S}_n$ s'écrit comme le produit de m cycles de longeurs respectives p_1, \ldots, p_m , alors l'ordre de σ est $\operatorname{ppcm}(p_1, \ldots, p_m)$.

Exemples:

- \Rightarrow Déterminer tous les éléments de S_3 . Quels sont ses sous-groupes?
- \Rightarrow Quels sont les ordres possibles dans S_4 ?
- ⇒ Combine de fois un mélange portant sur 6 cartes doit-il être répété pour retomber à coup sûr sur l'ordre initial?

1.3 Signature, groupe alterné

Proposition 2 ($\circ \circ \circ$). Tout permutation $\sigma \in S_n$ s'écrit comme le produit d'au plus n-1 transpositions.

Remarques:

 \Rightarrow Soit $\sigma = (k_1 \quad k_2 \quad \cdots \quad k_p)$ un cycle de longueur p. Alors :

$$\sigma = (k_1 \ k_2) (k_2 \ k_3) \cdots (k_{p-1} \ k_p)$$

Exemples:

 \Rightarrow Dans S_3 , on pose $\sigma_1 = \begin{pmatrix} 1 & 3 \end{pmatrix}$ et $\sigma_2 = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$. Décomposer $\sigma_1 \sigma_2$ en produit de transpositions de deux manières distinctes.

Théorème 2 ($\circ \circ \circ$). Soit σ une permutation et :

$$\sigma = \tau_1 \cdots \tau_m$$
 et $\sigma = \tau'_1 \cdots \tau'_n$

deux décompositions de σ en produit de transpositions. Alors m et n ont même parité; on dit que σ est paire si ces entiers sont pairs et que σ est impaire dans le cas contraire. On définit la signature de σ et on note $\varepsilon(\sigma)$:

$$\varepsilon\left(\sigma\right) = \begin{cases} +1 & si \ \sigma \ est \ paire \\ -1 & si \ \sigma \ est \ impaire \end{cases}$$

Remarques:

 \Rightarrow Soit $\sigma \in \mathcal{S}_n$ et $\sigma = \tau_1 \cdots \tau_m$ une de ses décompositions en produit de transpositions. Alors

$$\varepsilon\left(\sigma\right) = \left(-1\right)^{m}$$

 \Rightarrow La signature d'un p-cycle est $(-1)^p$. En particulier, les transpositions sont impaires et les 3-cycles sont pairs.

Proposition 3 ($\circ \circ \circ$). L'application ε de (S_n, \circ) dans $(\{-1, 1\}, \times)$ est un morphisme de groupe.

Remarques:

Proposition 4 ($\circ \circ \circ$). On note A_n l'ensemble des permutations paires. C'est un sous-groupe de (S_n, \circ) appelé groupe symétrique alterné.

Remarques:

 \Rightarrow Si $n \ge 2$, le goupe (\mathcal{A}_n, \circ) est de cardinal n!/2.

1.4 Groupe diédral

Définition 5 (000). Soit $n \ge 2$. L'ensemble des similitudes du plan complexe laissant invariant \mathbb{U}_n est un groupe pour la composition appelé groupe diédral et noté (D_n, \circ) .

Proposition 5 (000). Soit $n \ge 2$. Une application $f : \mathbb{C} \to \mathbb{C}$ est un élément du groupe diédral si et seulement si il existe $u \in \mathbb{U}_n$ tel que

$$[\forall z \in \mathbb{C} \quad f(z) = uz] \quad ou \quad [\forall z \in \mathbb{C} \quad f(z) = u\overline{z}]$$

En particulier, ces applications étant deux à deux distinctes, le groupe diédral est fini de cardinal 2n.

Remarques:

 \Rightarrow Toute similitude du plan laissant invariant \mathbb{U}_n induit une bijection de \mathbb{U}_n dans lui-même, donc un élément de \mathcal{S}_n . On construit ainsi un morphisme de groupe φ de (D_n, \circ) dans (\mathcal{S}_n, \circ) . Ce morphisme est injectif dès que $n \geqslant 3$.

Exemples:

 \Rightarrow Montrer que S_3 est isomorphe à D_3 . Que devient A_3 par cet isomorphisme?

2 Déterminants

2.1 Formes *n*-linéaires alternées

Définition 6 ($\circ \circ \circ$). On dit qu'une application φ de E^n dans \mathbb{K} est une forme n-linéaire lorsque φ est linéaire par rapport à chacune de ses variables :

$$\forall i \in [1, n] \quad \forall x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n \in E \quad \forall x, y \in E \quad \forall \lambda, \mu \in \mathbb{K}$$

$$\varphi(x_1,\ldots,x_{i-1},\lambda x+\mu y,x_{i+1},\ldots,x_n)=$$

$$\lambda \varphi(x_1, \dots, x_{i-1}, x, x_{i+1}, \dots, x_n) + \mu \varphi(x_1, \dots, x_{i-1}, y, x_{i+1}, \dots, x_n)$$

Muni des lois usuelles, l'ensemble des formes n-linéaires sur E est un \mathbb{K} -espace vectoriel.

Définition 7 (000). On dit qu'une forme φ , n-linéaire sur E, est alternée lorsque quels que soient $x_1, \ldots, x_n \in E$ tels qu'il existe $i, j \in [\![1, n]\!]$ avec $i \neq j$ et $x_i = x_j$, on a:

$$\varphi\left(x_1,\ldots,x_n\right)=0$$

L'ensemble des formes n-linéaires alternées est noté $\Lambda_n(E)$. C'est un sous-espace vectoriel de l'espace des formes n-linéaire sur E.

Proposition 6 ($\circ \circ \circ$). Soit φ une forme n-linéaire alternée sur E. Alors :

$$\forall x_1, \dots, x_n \in E \quad \forall \sigma \in \mathcal{S}_n \quad \varphi\left(x_{\sigma(1)}, \dots, x_{\sigma(n)}\right) = \varepsilon\left(\sigma\right) \varphi\left(x_1, \dots, x_n\right)$$

On dit que φ est antisymétrique.

Proposition 7 (000). Soit E un \mathbb{K} -espace vectoriel de dimension n, $\mathcal{B} = (e_1, \ldots, e_n)$ une base de E et φ une forme n-linéaire alternée sur E. Si x_1, \ldots, x_n est une famille de n vecteurs de E et $A = \mathcal{M}_{\mathcal{B}}(x_1, \ldots, x_n)$, alors :

$$\varphi(x_1, \dots, x_n) = \left[\sum_{\sigma \in \mathcal{S}_n} \varepsilon(\sigma) \, a_{\sigma(1), 1} a_{\sigma(2), 2} \cdots a_{\sigma(n), n} \right] \varphi(e_1, \dots, e_n)$$

Théorème 3 (000). Soit E un \mathbb{K} -espace vectoriel de dimension n et $\mathcal{B} = (e_1, \ldots, e_n)$ une base de E. Alors, il existe une unique forme n-linéaire alternée φ sur E telle que $\varphi(e_1, \ldots, e_n) = 1$.

Proposition 8 ($\circ \circ \circ$). Soit E un \mathbb{K} -espace vectoriel de dimension n. Alors $\Lambda_n(E)$ est un \mathbb{K} -espace vectoriel de dimension 1.

Proposition 9 ($\circ \circ \circ$). Soit E un \mathbb{K} -espace vectoriel de dimension n, φ une forme n-linéaire alternée sur E non nulle et x_1, \ldots, x_n une famille de n vecteurs de E. Alors x_1, \ldots, x_n est une base de E si et seulement si :

$$\varphi(x_1,\ldots,x_n)\neq 0$$

Autrement dit, x_1, \ldots, x_n est liée si et seulement si :

$$\varphi\left(x_1,\ldots,x_n\right)=0$$

2.2 Déterminant d'une famille de n vecteurs

Définition 8 (000). Soit $\mathcal{B} = (e_1, \ldots, e_n)$ une base de E, φ l'unique forme n-linéaire alternée sur E telle que $\varphi(e_1, \ldots, e_n) = 1$ et x_1, \ldots, x_n une famille de n vecteurs de E. On appelle déterminant de la famille x_1, \ldots, x_n relativement à la base \mathcal{B} et on note $\det_{\mathcal{B}}(x_1, \ldots, x_n)$ le scalaire :

$$\det_{\mathcal{B}}(x_1,\ldots,x_n) = \varphi(x_1,\ldots,x_n)$$

Proposition 10 ($\circ \circ \circ$). Soit $\mathcal{B} = (e_1, \ldots, e_n)$ une base de E et x_1, \ldots, x_n une famille de n vecteurs de E. Alors x_1, \ldots, x_n est une base de E si et seulement si :

$$\det_{\mathcal{B}}(x_1,\ldots,x_n)\neq 0$$

Autrement dit, x_1, \ldots, x_n est liée si et seulement si :

$$\det_{\mathcal{B}}(x_1,\ldots,x_n)=0$$

Proposition 11 ($\circ \circ \circ$). Soit $\mathcal{B} = (e_1, \ldots, e_n)$ et $\mathcal{B}' = (e'_1, \ldots, e'_n)$ deux bases de E. Alors:

$$\forall x_1, \dots, x_n \in E \quad \det_{\mathcal{B}'}(x_1, \dots, x_n) = \det_{\mathcal{B}'} \mathcal{B} \cdot \det_{\mathcal{B}}(x_1, \dots, x_n)$$

Remarques:

 \Rightarrow En particulier, si \mathcal{B} , \mathcal{B}' et \mathcal{B}'' sont des bases de E

$$\det{}_{\mathcal{B}}\mathcal{B}'' = \det{}_{\mathcal{B}}\mathcal{B}' \det{}_{\mathcal{B}'}\mathcal{B}''$$

2.3 Déterminant d'un endomorphisme

Définition 9 (000). Si $f \in \mathcal{L}(E)$, il existe un unique scalaire, appelé déterminant de f et noté det f, tel que pour toute base \mathcal{B} de E:

$$\forall x_1, \dots, x_n \in E \quad \det_{\mathcal{B}} (f(x_1), \dots, f(x_n)) = \det f \cdot \det_{\mathcal{B}} (x_1, \dots, x_n)$$

En particulier, si $\mathcal{B} = (e_1, \dots, e_n)$ est une base de E:

$$\det f = \det_{\mathcal{B}} \left(f\left(e_{1}\right), \dots, f\left(e_{n}\right) \right)$$

Exemples:

 \Rightarrow Soit E un \mathbb{K} -espace vectoriel de dimension n et s une symétrie de E. On note p la dimension de Ker $(s + \mathrm{Id})$. Montrer que det $s = (-1)^p$.

Proposition 12 ($\circ\circ\circ$).

- $\det \mathrm{Id}_E = 1$
- Si $f \in \mathcal{L}(E)$ et $\lambda \in \mathbb{K}$, alors:

$$\det\left(\lambda f\right) = \lambda^n \det f$$

— $Si\ f,g\in\mathcal{L}(E)$, alors:

$$\det(g \circ f) = \det g \cdot \det f$$

Exemples:

 \Rightarrow Soit E un \mathbb{R} -espace vectoriel de dimension n. Montrer qu'il existe $f \in \mathcal{L}(E)$ tel que $f^2 = -\operatorname{Id}$ si et seulement si n est pair.

Proposition 13 (000). Soit $f \in \mathcal{L}(E)$. Alors f est un isomorphisme si et seulement si:

$$\det f \neq 0$$

Si tel est le cas :

$$\det f^{-1} = \frac{1}{\det f}$$

2.4 Déterminant d'une matrice carrée

Définition 10 ($\circ \circ \circ$). Soit $A \in \mathcal{M}_n(\mathbb{K})$. On appelle déterminant de A et on note det A le déterminant des vecteurs colonnes de A relativement à la base canonique de \mathbb{K}^n .

Remarques:

 \Rightarrow Si $A \in \mathcal{M}_n(\mathbb{K})$, alors

$$\det A = \sum_{\sigma \in \mathcal{S}_n} \varepsilon(\sigma) a_{\sigma(1),1} a_{\sigma(2),2} \cdots a_{\sigma(n),n}$$

Cependant, cette formule comporte n! termes. Elle sera donc inutile pour le calcul effectif d'un déterminant. Par contre elle permettra, par exemple, de démontrer que le déterminant d'une matrice à coefficients entiers est un entier

 \Rightarrow Si $A \in \mathcal{M}_n(\mathbb{K})$, son déterminant est noté :

$$\begin{vmatrix} a_{1,1} & \cdots & a_{1,n} \\ \vdots & & \vdots \\ a_{n,1} & \cdots & a_{n,n} \end{vmatrix}$$

Proposition 14 ($\circ \circ \circ$). Soit \mathcal{B} une base de E.

— $Si x_1, ..., x_n$ est une famille de n vecteurs de E, alors :

$$\det_{\mathcal{B}}(x_1,\ldots,x_n) = \det\left[\mathcal{M}_{\mathcal{B}}(x_1,\ldots,x_n)\right]$$

— $Si \ f \in \mathcal{L}(E)$, alors:

$$\det f = \det \left[\mathcal{M}_{\mathcal{B}} \left(f \right) \right]$$

Proposition 15 ($\circ \circ \circ$).

- $\det I_n = 1$
- $Si A \in \mathcal{M}_n(\mathbb{K}) \ et \ \lambda \in \mathbb{K}, \ alors :$

$$\det\left(\lambda A\right) = \lambda^n \det A$$

— $Si\ A, B \in \mathcal{M}_n(\mathbb{K}), \ alors:$

$$\det(AB) = \det A \cdot \det B$$

Remarques:

 \Rightarrow Il n'existe aucune formule permettant de calculer $\det(A+B)$ en fonction de $\det A$ et de $\det B$. En particulier, toute formule du type $\det(A+B) = \det A + \det B$ est fausse.

Proposition 16 ($\circ \circ \circ$). Soit $A \in \mathcal{M}_n(\mathbb{K})$. Alors A est inversible si et seulement si:

$$\det A \neq 0$$

Si tel est le cas :

$$\det\left(A^{-1}\right) = \frac{1}{\det A}$$

Proposition 17 ($\circ \circ \circ$). *Soit* $A \in \mathcal{M}_n(\mathbb{K})$. *Alors* :

$$\det{}^t A = \det A$$

Exemples:

 \Rightarrow Soit $A \in \mathcal{M}_3(\mathbb{R})$ une matrice antisymétrique. Montrer que det A = 0.

2.5 Calcul de déterminant

Proposition 18 ($\circ \circ \circ$). Soit la matrice :

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{pmatrix} \in \mathcal{M}_2 \left(\mathbb{K} \right)$$

Alors det $A = a_{1,1}a_{2,2} - a_{2,1}a_{1,2}$.

Exemples:

 \Rightarrow Soit $\theta_1, \dots, \theta_n \in \mathbb{R}$. Calculer le rang de la matrice $A \in \mathcal{M}_n(\mathbb{R})$ définie par

$$\forall i, j \in [1, n] \quad a_{i,j} = \cos(\theta_i + \theta_j)$$

Proposition 19 ($\circ \circ \circ$). Soit T une matrice triangulaire supérieure

alors:

$$\det T = \prod_{k=1}^{n} \lambda_k$$

Remarques:

⇒ Plus généralement, si une matrice est triangulaire supérieure par blocs, on montre son déterminant est égal au produit des déterminants des matrices blocs présentes sur la diagonale.

Proposition 21 ($\circ \circ \circ$). *Soit* $A \in \mathcal{M}_n(\mathbb{K})$.

- On multiplie le déterminant de A par λ lorsqu'on multiplie une de ses colonnes (resp. lignes) par λ .
- On ne change pas le déterminant de A lorsqu'à une colonne (resp. ligne) de A on ajoute une combinaison linéaire des ses autres colonnes (resp. lignes).
- On change le signe du déterminant de A lorsqu'on échange deux de ses colonnes (resp. lignes). Plus généralement, une permutation paire des colonnes (resp. lignes) de A ne change pas le signe de son déterminant, tandis qu'une permutation impaire de ses colonnes (resp. lignes) change son signe.

Exemples:

 \Rightarrow Soit $a, b, c \in \mathbb{R}$. Calculer les déterminants

2.6 Développement d'un déterminant

Définition 11 ($\circ \circ \circ$). *Soit* $A \in \mathcal{M}_n(\mathbb{K})$.

- On appelle mineur d'indice (i,j) le déterminant $\Delta_{i,j}$ de la matrice obtenue en supprimant la i-ème ligne et la j-ème colonne de la matrice A.
- On appelle cofacteur d'indice (i,j) et on note $A_{i,j}$ le scalaire $A_{i,j} = (-1)^{i+j} \Delta_{i,j}$.

Remarques:

 \Rightarrow Si rg $A \leq n-2$, tous ses mineurs (et donc ses cofacteurs) sont nuls.

Proposition 22 ($\circ \circ \circ$). *Soit* $A \in \mathcal{M}_n(\mathbb{K})$.

— Soit $j_0 \in [1, n]$. Alors:

$$\det A = \sum_{i=1}^{n} a_{i,j_0} A_{i,j_0}$$
$$= \sum_{i=1}^{n} (-1)^{i+j_0} a_{i,j_0} \Delta_{i,j_0}$$

— Soit $i_0 \in [1, n]$. Alors:

$$\det A = \sum_{j=1}^{n} a_{i_0,j} A_{i_0,j}$$
$$= \sum_{j=1}^{n} (-1)^{i_0+j} a_{i_0,j} \Delta_{i_0,j}$$

Exemples:

⇒ Calculer le déterminant de la matrice

$$\begin{pmatrix}
-u & v & 0 \\
-2 & 0 & 2v \\
0 & -1 & u
\end{pmatrix}$$

⇒ Calculer la déterminant de la matrice tridiagonale

$$\begin{pmatrix} 1 & 1 & & & & (0) \\ 1 & 1 & 1 & & & \\ & \ddots & \ddots & \ddots & \\ & & 1 & 1 & 1 \\ (0) & & & 1 & 1 \end{pmatrix} \in \mathcal{M}_n(\mathbb{R})$$

 \Rightarrow On appelle Vandermonde de la famille $x_0, \ldots, x_n \in \mathbb{K}$ le déterminant, noté $V(x_0, \ldots, x_n)$, de la matrice

$$\begin{pmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^n \\ 1 & x_1 & x_1^2 & \cdots & x_1^n \\ \vdots & & & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^n \end{pmatrix} \in \mathcal{M}_{n+1}(\mathbb{K})$$

2.7 Comatrice

Définition 12 ($\circ \circ \circ$). Soit $A \in \mathcal{M}_n(\mathbb{K})$. On appelle comatrice de A et on note $\operatorname{Com} A$ la matrice des cofacteurs de A:

$$\forall i, j \in [1, n] \quad [\text{Com } A]_{i,j} = A_{i,j} = (-1)^{i+j} \Delta_{i,j}$$

Proposition 23 ($\circ \circ \circ$). *Soit* $A \in \mathcal{M}_n(\mathbb{K})$. *Alors* :

$$A^{t}(\operatorname{Com} A) = {}^{t}(\operatorname{Com} A)A = (\det A) I_{n}$$

En particulier, si $A \in GL_n(\mathbb{K})$:

$$A^{-1} = \frac{1}{\det A}^{t}(\operatorname{Com} A)$$

Exemples:

 \Rightarrow Soit $A \in \mathcal{M}_n(\mathbb{Z})$ une matrice inversible (dans $\mathcal{M}_n(\mathbb{R})$). Montrer que son inverse est à coefficients entiers si et seulement si det $A = \pm 1$.

2.8 Orientation d'un espace vectoriel réel de de dimension finie

Définition 13 ($\circ \circ \circ$). Soit E un \mathbb{R} -espace vectoriel de dimension finie. On dit qu'un automorphisme f de E est :

- direct lorsque det f > 0
- indirect lorsque $\det f < 0$

On note $\mathrm{GL}^+(E)$ l'ensemble des automorphismes directs de E. On définit de même les notions de matrice directes et indirectes ainsi que l'ensemble $\mathrm{GL}_n^+(\mathbb{R})$.

Exemples:

 \Rightarrow Si E est un \mathbb{R} -espace vectoriel de dimension n, - Id est direct si n est pair et indirect si n est impair.

Proposition 24 ($\circ\circ\circ$). $\mathrm{GL}^{+}\left(E\right)$ (resp. $\mathrm{GL}_{n}^{+}\left(\mathbb{R}\right)$) est un sous-groupe de $\mathrm{GL}\left(E\right)$ (resp. $\mathrm{GL}_{n}\left(\mathbb{R}\right)$).

Définition 14 ($\circ \circ \circ$). Soit \mathcal{B} et \mathcal{B}' deux bases de E. Alors les deux assertions suivantes sont équivalentes :

- $\det \left(P \left(\mathcal{B}, \mathcal{B}' \right) \right) > 0$
- L'unique automorphisme f qui transforme \mathcal{B} en \mathcal{B}' est direct.

Si tel est le cas, on dit que \mathcal{B} a même orientation que \mathcal{B}' .

Proposition 25 ($\circ \circ \circ$). La relation « a même orientation que » est une relation d'équivalence sur l'ensemble des bases de E et possède exactement deux classes d'équivalence.

Définition 15 ($\circ\circ\circ$). Choisir une orientation de E, c'est choisir une base \mathcal{B} de E que l'on définit comme directe. Les bases ayant même orientation que \mathcal{B} sont dites directes, les autres sont dites indirectes.