Física Contemporánea

Guía 1 - 2024

Física Molecular – Estructura Molecular

Problema 1. Evalúe la energía de los estados ligante y antiligante de la molécula de hidrógeno ionizada (H_2^+) en el modelo LCAO, utilizando orbitales atómicos hidrogenoides 1s.

Para evaluar las integrales, en este problema es conveniente hacer uso de coordenadas elipsoidales (u, v, ϕ) :

$$u = \frac{r_1 + r_2}{R},$$
 $v = \frac{r_1 - r_2}{R},$ $dV = \frac{1}{8}R^3(u^2 - v^2)du\,dv\,d\phi$

con $1 \le u < \infty$, $-1 \le v \le 1$ y $0 \le \phi \le 2\pi$. r_1 y r_2 son las distancias desde cada uno de los protones al electrón, R es la separación entre ambos protones y dV es el elemento de volumen.

Grafique la energía en función de la separación entre protones.

Determine la separación de equilibrio y la profundidad del potencial.

Problema 2. Encuentre la constante de normalización de la función de onda electrónica del estado fundamental de la molécula de hidrógeno (H₂) en el modelo de Heitler-London.

Problema 3. Un método alternativo al de Heitler-London para describir el estado electrónico de la molécula H_2 es el de orbitales moleculares. Este método considera que dos electrones, de espín opuesto, se encuentran en un mismo estado del tipo ψ_+ de la molécula H_2^+ .

- a) Mostrar que la función de onda es antisimétrica.
- b) Evalúe la constante γ que determina la fracción de estructura iónica propuesta por esta función.
- c) ¿Cuál es la probabilidad de que ambos electrones residan en el mismo núcleo en este modelo?

Problema 4. En la molécula H_2^+ una porción δe de la carga electrónica se encuentra en la región media entre los dos protones. En base a un modelo simple, clásico, ¿cuál debe ser δe para mantener ligado al sistema?

Problema 5. La energía del estado fundamental del H_2^+ respecto al sistema H, en su estado fundamental, y H^+ a distancia infinita es -2,65 eV.

a) Calcular la energía del H_2^+ respecto al sistema $H^+ + H^+ + e$, a distancia infinita.

- b) Calcular la energía del sistema $H_2^+ + e$ a separación infinita respecto al sistema $H_2^+ + H_1^+$, también a distancia infinita y con ambos átomos en su estado fundamental.
- c) Calcular la energía de ionización del H_2 si la energía de disociación de esta molécula en el sistema H + H, en su estado fundamental, es 4,48 eV.

Problema 6. Una expresión fenomenológica para la energía potencial de un molécula de haluro alcalino tiene la siguiente forma

$$V(R) = \alpha \exp(-aR) - \frac{e^2}{4\pi\epsilon_0 R}$$

Datos espectrales proveen valores de la separación de equilibrio $R_0 = 1,56$ Å y de la curvatura de la energía potencial $K = d^2V/dR^2|_{R=R_0} = 248$ J/m², para la molécula LiF.

- a) Encuentre la energía para separar la molécula LiF en los iones Li $^+$ y F $^-$ a distancia infinita.
- b) La energía de ionización del Li es 5,4 eV y la afinidad electrónica del F es 3,4 eV. Encuentre la energía de disociación de la molécula LiF.

Problema 7. La función de onda que describe el orbital ligante de la molécula LiF puede expresarse de la siguiente forma

$$\Psi(1,2) = \left\{ A \frac{1}{\sqrt{2}} \left[\phi_{2s}(1) \phi_{2p_z}(2) + \phi_{2s}(2) \phi_{2p_z}(1) \right] + B \phi_{2s}(1) \phi_{2s}(2) + C \phi_{2p_z}(1) \phi_{2p_z}(2) \right\} \chi_S(1,2) \right\}$$

Los orbitales atómicos ϕ_{2s} y ϕ_{2p_z} corresponden a los átomos Li y F, respectivamente. $\chi_S(1,2)$ representa el estado de espín singlete.

- a) Verifique que $\Psi(1,2)$ está normalizada si $A^2+B^2+C^2=1$.
- b) Encuentre una expresión para el momento dipolar eléctrico p en término de los parámetros A, B y C.
- c) El valor medido de p para LiF es p=0,85eR, siendo R la separación de equilibrio entre Li y F. A partir de este dato experimental determine valores para los parámetros $A,\ B$ y C de la función de onda. Discuta la relación entre ligadura iónica y covalente en LiF.

Problema 8. Considere un potencial de Lennard–Jones del tipo 12–6:

$$V_{LJ} = 4\varepsilon \left[\left(\frac{\sigma}{R} \right)^{12} - \left(\frac{\sigma}{R} \right)^{6} \right]$$

- a) Encontrar la profundidad del pozo de potencial y la separación entre átomos en términos de los parámetros ε y σ del potencial.
- b) Para el caso de Xe, los parámetros del potencial son $\varepsilon=1,94\times10^{-2} {\rm eV}$ y $\sigma=0,407{\rm nm}$. Encuentre la separación de equilibrio y la temperatura de la energía térmica equivalente a la profundidad del pozo de potencial para el Xe.

Problema 9. Analizar la estructura de la molécula de amoníaco, NH₃.