Chapitre 13- Compléments sur les variables aléatoires réelles

Dans tout ce chapitre, on considère un espace probabilisé (Ω, \mathcal{A}, P) . Les variables aléatoires considérées seront définies sur cet espace probabilisé.

1 Complément sur les variables aléatoires réelles quelconques

Dans cette partie, les variables considérées sont quelconques. En particulier, les résultats qui y sont présentés s'appliquent aussi bien aux variables aléatoires discrètes qu'aux variables aléatoires à densité.

1.1 Compléments sur l'indépendance

Définition 1 (Indépendance de deux variables aléatoires réelles)

Soient X et Y des variables aléatoires réelles définies sur (Ω, \mathcal{A}, P) . On dit que X et Y sont **indépendantes** (pour la probabilité P) si pour tous intervalles réels I et J on a

$$P([X \in I] \cap [Y \in J]) = P([X \in I]) P([Y \in J])$$

Méthode 1

- 1. Pour montrer que deux variables aléatoires réelles X et Y sont indépendantes il faut montrer que $P([X \in I] \cap [Y \in J]) = P([X \in I]) P([Y \in J])$ pour tous intervalles réels I et J.
- 2. Pour montrer que deux variables aléatoires réelles X et Y ne sont pas indépendantes il suffit de montrer que $P([X \in I] \cap [Y \in J]) \neq P([X \in I]) P([Y \in J])$ pour (au moins) un intervalle I et un intervalle J.

Exemple 1

Soit X une variable aléatoire à densité de densité f donnée par

$$\forall x \in \mathbb{R}, \quad f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2}.$$

Soit ε une loi discrète suivant une loi uniforme sur $\{-1,1\}$ et indépendante de X. On note Y = ε X.

1.	Reconnaître la loi de X.
2.	A l'aide de la formule des probabilités totales montrer que pour tout $t \in \mathbb{R}$, $P(X \le t) = P(Y \le t)$.

1	Montrer que ε et Y sont indépendantes.
4.	wontter que e et 1 sont independantes.
1.	Montrons que pour tout réel t , $[Z > t] = [X > t] \cap [Y > t]$.
2.	En déduire que pour tout réel t , $P([Z > t]) = P([X > t])P([Y > t])$.
2.	En déduire que pour tout réel t , $P([Z > t]) = P([X > t])P([Y > t])$.
2.	En déduire que pour tout réel t , $P([Z > t]) = P([X > t])P([Y > t])$.
2.	En déduire que pour tout réel t , $P([Z > t]) = P([X > t])P([Y > t])$.
2.	En déduire que pour tout réel t , $P([Z > t]) = P([X > t])P([Y > t])$.
2.	En déduire que pour tout réel t , $P([Z > t]) = P([X > t])P([Y > t])$.
2.	En déduire que pour tout réel t , $P([Z > t]) = P([X > t])P([Y > t])$.
2.	En déduire que pour tout réel t , $P([Z > t]) = P([X > t])P([Y > t])$.
2.	En déduire que pour tout réel t , $P([Z > t]) = P([X > t])P([Y > t])$.
	En déduire que pour tout réel t , $P([Z > t]) = P([X > t])P([Y > t])$. Conclure.

Test 1 (Voir solution.)

Soient X et Y deux variables aléatoires réelles indépendantes et soit $Z = \max(X, Y)$. Exprimer la fonction de répartition F_Z de Z en fonction des fonctions de répartition F_X de X et F_Y de Y.

Définition 2 (Indépendance mutuelle de variables aléatoires réelles)

Soient $X_1, ..., X_n$ $(n \ge 2)$ des variables aléatoires réelles définies sur (Ω, \mathcal{A}, P) .

• On dit que $X_1,...,X_n$ sont **mutuellement indépendantes** si pour tous intervalles $I_1,...,I_n$ de \mathbb{R}

$$P\left(\bigcap_{k=1}^{n} [X_k \in I_k]\right) = \prod_{k=1}^{n} P\left([X_k \in I_k]\right)$$

• Plus généralement, si $(X_n)_{n\in\mathbb{N}}$ est une suite de variables aléatoires réelles définies sur (Ω, \mathcal{A}, P) . On dit que les variables $(X_n)_{n\in\mathbb{N}}$ sont **mutuellement indépendantes** si pour tout $n \ge 2, X_1, \dots, X_n$ sont mutuellement indépendantes.

Proposition 1 (Lemme des coalitions)

Soient $X_1, ..., X_n$ $(n \ge 2)$ des variables aléatoires réelles définies sur (Ω, \mathcal{A}, P) .

Si $X_1,...,X_n$ sont mutuellement indépendantes alors toute variable aléatoire fonction de $X_1,...,X_k$ est indépendante de toute variable aléatoire fonction de $X_{k+1},...,X_n$.

Exemple 3

 $SiX_1,...,X_5$ sont des variables aléatoires réelles mutuellement indépendantes alors

1.2 Compléments sur l'espérance, la variance

En première année, vous avez rencontré la notion d'espérance pour les variables aléatoires réelles discrètes et pour les variables aléatoires réelles à densité. Même si la définition de la notion d'espérance/variance pour une variable aléatoire quelconque est largement hors-programme, les propriétés suivantes sont à retenir.

Proposition 2 (Linéarité de l'espérance)

- 1. Soient X et Y deux variables aléatoires réelles définies sur (Ω, \mathcal{A}, P) . Si X et Y admettent une espérance alors X + Y admet une espérance et E(X + Y) = E(X) + E(Y).
- 2. Plus généralement, soient n un entier supérieur ou égal à 2 et X_1, \ldots, X_n des variables aléatoires réelles définies sur (Ω, \mathcal{A}, P) possédant une espérance. Alors $X_1 + \cdots + X_n$ admet une espérance et $E(X_1 + \cdots + X_n) = E(X_1) + \cdots + E(X_n)$.

Proposition 3 (Espérance du produit de variables indépendantes)

- 1. Soient X et Y deux variables aléatoires réelles **indépendantes** définies sur (Ω, \mathcal{A}, P) . Si X et Y admettent une espérance alors XY admet une espérance et E(XY) = E(X)E(Y).
- 2. Plus généralement, soient n un entier supérieur ou égal à 2 et $X_1, ..., X_n$ des variables aléatoires réelles **mutuellement indépendantes** définies sur (Ω, \mathcal{A}, P) possédant une espérance. Alors $X_1 \times \cdots \times X_n$ admet une espérance et $E(X_1 \times \cdots \times X_n) = E(X_1) \times \cdots \times E(X_n)$.

Remarque 1

Ces résultats sont valables pour des variables aléatoires quelconques. Par exemple, si X est discrète et Y est à densité, X+Y ou XY peuvent n'être ni discrète ni à densité et les résultats ci-dessus permettent alors, dans certains cas, de calculer leur espérance (sous réserve d'existence).

reprend les variables aléatoires de l'exemple 1 : ϵ suit une loi uniforme sur $\{-1,1\}$, X une loi normale centrée uite et X et ϵ sont indépendantes. On note $Y = \epsilon X$. Calculer $E(XY)$.

Proposition 4 (Variance de la somme de variables indépendantes)

- 1. Soient X et Y deux variables aléatoires réelles **indépendantes** définies sur (Ω, \mathcal{A}, P) . Si X et Y admettent une variance alors X + Y admet une variance et V(X + Y) = V(X) + V(Y).
- 2. Plus généralement, soient n un entier supérieur ou égal à 2 et $X_1, ..., X_n$ des variables aléatoires réelles **mutuellement indépendantes** définies sur (Ω, \mathcal{A}, P) possédant une variance. Alors $X_1 + \cdots + X_n$ admet une variance et $V(X_1 + \cdots + X_n) = V(X_1) + \cdots + V(X_n)$.

Proposition 5 (Croissance de l'espérance)

Soient X et Y deux variables aléatoires réelles définies sur (Ω, \mathcal{A}, P) et possédant une espérance. Si $P(X \le Y) = 1$ (on dit que X prend des valeurs inférieures à celles de Y presque sûrement) alors $E(X) \le E(Y)$.

2 Compléments sur les variables à densité

2.1 Fonction de répartition des variables à densité : rappels et compléments

Définition 3 (Variable aléatoire à densité)

Soit X une variable aléatoire définie sur (Ω, \mathcal{A}, P) . On dit que X est une variable aléatoire **à densité** si sa fonction de répartition F_X est :

- 1. continue sur \mathbb{R} ,
- 2. de classe C^1 sur \mathbb{R} sauf éventuellement en un nombre fini de points.

Définition 4 (Densité)

Soit X une variable aléatoire à densité définie sur (Ω, \mathcal{A}, P) . On appelle **densité de** X toute fonction f à valeurs positives telle que $f = F_X'$ sauf éventuellement en un nombre fini de points.

Remarque 2

On parle de la fonction de répartition car elle est unique mais d'une densité car il n'y a pas unicité.

Méthode 2 (Montrer qu'un variable aléatoire est à densité)

Étant donnée une variable aléatoire X, pour montrer qu'il s'agit d'une variable à densité:

- 1. on calcule sa fonction de répartition,
- 2. on vérifie si elle vérifie les conditions de la définition 3.

Soit X une variable aléatoire dont la fonction de répartition est donnée par

$$\forall x \in \mathbb{R}, \quad \mathrm{F}_{\mathrm{X}}(x) = \left\{ \begin{array}{cc} 0 & si \ x < 1 \\ 1 - \frac{1}{x^2} & si \ x \geq 1. \end{array} \right.$$

Montrons que X est une variable à densité.

1. Monitrons que fx est continu	1.	Montrons que F_X est cont	inue.
---------------------------------	----	-----------------------------	-------

		1	
2.	Montrons aue F _v e	st de classe C^1 sur $\mathbb{R}\setminus\{1\}$.	

3.	Donc X est bien	une variable	aléatoire à	densité.	Déterminons	une densité de X.

Test 2 (Voir solution.)

Soit X une variable aléatoire de fonction de répartition donnée par

$$\forall x \in \mathbb{R}, \quad F_{X}(x) = \begin{cases} 1 - e^{-x^{2}} & si \ x \geqslant 0 \\ 0 & si \ x < 0. \end{cases}$$

Montrer que X est à densité et déterminer une densité.

Proposition 6

Soit X une variable réelle à densité et f une densité de X. Alors

$$\forall x \in \mathbb{R}, \quad F_{X}(x) = \int_{-\infty}^{x} f(t) dt.$$

Plus généralement, pour tout $(a, b) \in \mathbb{R}^2$ avec $a \leq b$ on a

$$P(a \le X \le b) = P(a < X \le b) = P(a \le X \le b) = P(a \le X \le b) = P(a \le X \le b) = \int_a^b f(t) dt.$$

Théorème 1 (Caractérisation des fonctions de répartition des variables à densité)

Soit F une fonction de \mathbb{R} dans \mathbb{R} telle que :

- F est croissante sur \mathbb{R} ,
- $\lim_{x \to -\infty} F(x) = 0$ et $\lim_{x \to +\infty} F(x) = 1$,
- F est continue sur ℝ,
- F est de classe C^1 sur \mathbb{R} sauf éventuellement en un nombre fini de points.

Alors F est la fonction de répartition d'une variable aléatoire X à densité.

Remarque 3

La réciproque de ce théorème est bien évidemment vraie : la fonction de répartition F d'une variable aléatoire réelle X est toujours croissante sur \mathbb{R} et vérifie $\lim_{x \to -\infty} F(x) = 0$ et $\lim_{x \to +\infty} F(x) = 1$.

Théorème 2 (Caractérisation des densités)

Soit $f : \mathbb{R} \to \mathbb{R}$ une fonction telle que

- f est positive,
- f est continue sauf éventuellement en un nombre fini de points,
- l'intégrale $\int_{-\infty}^{+\infty} f(t)dt$ converge et vaut 1.

Alors la fonction f est la densité d'une variable aléatoire X. Dans ce cas, la fonction de répartition de X est donnée par

$$\forall x \in \mathbb{R}, \quad F_{X}(x) = \int_{-\infty}^{x} f(t) dt.$$

Proposition 7

Si f est une densité de probabilité, la fonction $F: x \mapsto \int_{-\infty}^{x} f(t)dt$ définie sur \mathbb{R} est de classe \mathbb{C}^1 en tout point où f est continue. En un tel point x, F'(x) = f(x).

Plus généralement, si f est continue à droite (resp. à gauche) en x, F est dérivable à droite (resp. à gauche) en x.

Méthode 3 (Montrer qu'une fonction est la fonction de répartition/la densité d'une variable à densité)

- Le théorème 1 permet de montrer qu'une fonction est la fonction de répartition d'une variable aléatoire à densité. Ici, la question est un peu différente de la question de la méthode précédente : on ne sait pas si la fonction est une fonction de répartition!
- Le théorème 2 permet de montrer qu'une fonction est la densité d'une variable aléatoire à densité.

Soit F la fonction définie sur $\mathbb R$ par

$$\forall x \in \mathbb{R}, \quad F(x) = \begin{cases} 0 & si \ x < -1 \\ \frac{1}{2}x^2 + x + \frac{1}{2} & si \ -1 \le x < 0 \\ -\frac{1}{2}x^2 + x + \frac{1}{2} & si \ 0 \le x < 1 \\ 1 & si \ x \ge 1 \end{cases}$$

	rons que F est la fonction de répartition d'une variable à densité. Montrons que F est croissante sur ℝ.
	On a bien $\lim_{x \to -\infty} F(x) = 0$ et $\lim_{x \to +\infty} F(x) = 1$.
	$x \to -\infty$ $x \to +\infty$ Montrons que F est continue sur \mathbb{R} .
•	
	Montrons que F est de classe \mathbb{C}^1 sauf éventuellement en un nombre fini de points.
•	montono que i est de chasse e suar eventuenement en un nombre un de points.

Ainsi F est la fonction de répartition d'une variable aléatoire à densité.

Soit f la fonction définie sur \mathbb{R} par

$$\forall x \in \mathbb{R}, \quad f(x) = \left\{ \begin{array}{ll} 0 & si \ x < 0 \\ e^{-x} & si \ x \geqslant 0 \end{array} \right. .$$

1. Montrons que f est une densité d'une variable aléatoire X.

2. Determinons la fonction de repartition de A	2. Déterminons la fonction de ré _l	artition de X
--	--	---------------

Test 3 (Voir solution.)

Montrer que la fonction f suivante est une densité d'une variable aléatoire X.

$$\forall x \in \mathbb{R}, \quad f(x) = \begin{cases} 0 & si \ x < -1 \\ 1 + x & si - 1 \le x < 0 \\ 1 - x & si \ 0 \le x < 1 \\ 0 & si \ x \ge 1 \end{cases}$$

Déterminer la fonction de répartition de X.

Test 4 (Voir solution.)

Montrer que la fonction F suivante est la fonction de répartition d'une variable aléatoire X.

$$\forall x \in \mathbb{R}, \quad F(x) = \begin{cases} \frac{1}{2}e^x & \text{si } x < 0\\ 1 - \frac{1}{2}e^{-x} & \text{si } x \ge 0 \end{cases}$$

Déterminer une densité de X.

2.2 Exemples de transferts

Méthode 4

Une variable aléatoire à densité X étant donnée, une question très fréquente consiste à déterminer la loi d'une variable aléatoire Y fonction de X ($aX + b, X^2, ...$).

Pour cela la méthode consiste souvent à déterminer la fonction de répartition de Y.

- 1. On détermine $Y(\Omega)$ à partir de $X(\Omega)$
 - \hookrightarrow si Y(Ω), on calcule P(Y = k) pour tout $k \in Y(\Omega)$.
- 2. Sinon, pour tout $t \in \mathbb{R}$ on déterminer $P(Y \le t)$ à l'aide F_X en essayant d'écrire $[Y \le t]$ sous la forme $[X \in I]$.
- 3. On peut ensuite chercher à vérifier si F_Y est la fonction de répartition d'une variable à densité et, le cas échéant, calculer une densité de Y.

Noter que, contrairement au cas discret, une variable aléatoire fonction d'une variable aléatoire à densité **n'est pas nécessairement à densité**.

Toutes les étapes des raisonnements suivants doivent être comprises et vous devez savoir les reproduire sur des exemples.

► Transformations affines d'une variable aléatoire à densité Exemple 8

 Déterminons la fonction de répartition Fy de Y. Montrons que Y est une variable à densité. Déterminons une densité de Y en fonction de f. 	t X une à densi	variable aléatoire à densité de densité f et soient $(a,b) \in \mathbb{R}^2$ avec $a \neq 0$. On va montrer que $Y = aX + b$ té et déterminer une densité de Y .
2. Montrons que Y est une variable à densité.	1.	Déterminons la fonction de répartition F _Y de Y.
3. Déterminons une densité de Y en fonction de f.	2.	Montrons que Y est une variable à densité.
3. Déterminons une densité de Y en fonction de f .		
3. Déterminons une densité de Y en fonction de f.		
3. Déterminons une densité de Y en fonction de f.		
3. Déterminons une densité de Y en fonction de f.		
3. Déterminons une densité de Y en fonction de f .		
3. Déterminons une densité de Y en fonction de f .		
3. Déterminons une densité de Y en fonction de f .		
3. Déterminons une densité de Y en fonction de f .		
3. Déterminons une densité de Y en fonction de f.		
	3	Déterminons une densité de Y en fonction de f

Test 5 (Voir solution.)

Soit X une variable aléatoire à densité dont une densité est la fonction f définie par

$$\forall x \in \mathbb{R}, \quad f(x) = \begin{cases} 0 & si \ x < 1 \\ \frac{2}{x^3} & si \ x \ge 1 \end{cases}$$

Montrer que 3X - 1 est une variable à densité et en déterminer une densité.

▶ Exponentielle d'une variable aléatoire à densité

Exemple 9

1.	On a $Y(\Omega) \subset \mathbb{R}_+^*$. Déterminons la fonction de répartition F_Y de Y .
2.	Montrons que Y est une variable à densité.
3	Déterminons une densité de Y en fonction de f.
Э.	Determinons and densite de l'en ionetion de j.

Τe

Soit X une variable aléatoire de loi $\mathcal{E}(2)$. Déterminer la loi de Y = e^X .

► Carré d'une variable aléatoire à densité

Exemple 10

		variable aléatoire à densité de densité f . On pose Y = X^2 . trer que Y est à densité et déterminer une densité de Y .
		On a $Y(\Omega) \subset \mathbb{R}_+$. Déterminons la fonction de répartition F_Y de Y .
	2.	Montrons que Y est une variable à densité.
	3.	Déterminons une densité de Y en fonction de f .
Гол	st 7 (<i>Voir so</i>	(ution)
le		$\frac{\text{cuttors}}{\text{cant une loi uniforme sur } [-1,1]}$. Déterminer la loi de X^2 .
	ie transforn emple 11	nation usuelle
		ant une loi uniforme sur [0,1[et soit $\lambda > 0$. On pose Y = $-\frac{1}{\lambda} \ln(1-X)$. Déterminons la loi de Y.
	On pose h	$: [0,1[\to \mathbb{R} \text{ définie par } h(x) = -\frac{1}{\lambda} \ln(1-x).$
	1.	D éterminons $Y(\Omega)$.

2. 1	Déterminons la fonction de répartition de Y
3. I	Déterminer la loi de Y.
L	

On procédera comme dans l'exemple 2 et le test 1.

Test 8 (Voir solution.)

Soient a et b deux réels strictement positifs et $X \hookrightarrow \mathcal{E}(a)$, $Y \hookrightarrow \mathcal{E}(b)$ deux variables aléatoires indépendantes.

- 1. On pose U = max(X, Y). Déterminer la fonction de répartition de U.
- 2. On pose V = min(X, Y).
 - (a) Déterminer la fonction de répartition de V.
 - (b) Reconnaître la loi de V.

▶ Valeur absolue d'une variable aléatoire à densité

Test 9 (Voir solution.)

Soit $X \hookrightarrow \mathcal{N}(0,1)$. On pose Y = |X|. Montrer que Y est une variable à densité et déterminer une densité de Y.

▶ Partie entière d'une variable aléatoire à densité

Voir TD.

2.3 Moments d'une variable à densité

Définition 5 (Espérance/moments d'une variable aléatoire à densité)

Soit $r \in \mathbb{N}^*$. Soit X une variable aléatoire à densité dont on note f une densité de X.

• On dit que X possède un **moment d'ordre** r si l'intégrale $\int_{-\infty}^{+\infty} t^r f(t) dt$ converge absolument. On note alors

$$m_r(X) = \int_{-\infty}^{+\infty} t^r f(t) dt.$$

• Sous réserve d'existence, le moment d'ordre 1 est appelée l'**espérance** de X et noté E(X).

Remarque 4

L'espérance ainsi définie vérifie en particulier les propriétés énoncées au paragraphe 1.2.

Soit X une variable aléatoire à densité dont une densité est la fonction f définie par

$$\forall x \in \mathbb{R}, \quad f(x) = \begin{cases} 0 & si \ x < 1 \\ \frac{2}{x^3} & si \ x \ge 1 \end{cases}$$

1.	Montrons	que f	admet une	espérance.
----	----------	-------	-----------	------------

2.	X	possède-t-elle ui	n moment d'	ordre 2?
----	---	-------------------	-------------	----------

Test 10 (Voir solution.)

On considère la fonction f définie sur $\mathbb R$ par

$$\forall x \in \mathbb{R}, \quad f(x) = \frac{1}{\pi(1+x^2)}.$$

On admet que f est une densité de probabilité et on considère une variable aléatoire à densité X de densité f. X possède-t-elle une espérance? Le cas échéant, la calculer.

Théorème 3 (Théorème de transfert)

Soit X une variable aléatoire à densité et soit f une densité de X nulle en dehors d'un intervalle] a, b[(avec $-\infty \le a < b \le +\infty$).

Si g est une fonction continue sur] a,b[(sauf éventuellement en un nombre fini de points) alors la variable aléatoire g(X) admet une espérance si et seulement si l'intégrale $\int_a^b g(t)f(t)dt$ converge absolument. Dans ce cas :

 $E(g(X)) = \int_{a}^{b} g(t)f(t)dt.$

Remarque 5

En particulier, X possède un moment d'ordre $r \in \mathbb{N}^*$ si et seulement si X^r possède une espérance. Dans ce cas

$$m_r(X) = E(X^r)$$
.

Exemple 13

Soit $X \hookrightarrow \mathcal{E}(\lambda)$ avec $\lambda > 0$. La variable e^{λ} possède-t-elle une espérance?					

Test 11 (Voir solution.)

Soit $X \hookrightarrow \mathcal{E}(1)$. La variable $\frac{1}{1+e^{-X}}$ possède-t-elle une espérance? Si oui, la calculer.

Définition 6 (Variance/écart-type d'une variable aléatoire à densité)

Soit X une variable aléatoire à densité de densité f.

• On dit que X possède une variance si X possède une espérance et si (X – E(X)) possède un moment d'ordre 2. On appelle alors **variance de** X et on note V(X) le réel définie par :

$$V(X) = E((X - E(X))^{2}).$$

• Lorsque X possède une variance, on appelle **écart-type** et on note $\sigma(X)$ le réel

$$\sigma(X) = \sqrt{V(X)}.$$

Remarque 6

La variance ainsi définie vérifie en particulier les propriétés énoncées au paragraphe 1.2.

Proposition 8 (Formule de Koenig-Huygens)

Soit X une variable aléatoire à densité possédant une espérance. Alors X possède une variance si et seulement si X possède un moment d'ordre 2. Dans ce cas, on a

$$V(X) = E(X^2) - E(X)^2$$
.

Exemple 14

Soit X une variable aléatoire à densité dont une densité est la fonction f définie par

$$\forall x \in \mathbb{R}, \quad f(x) = \begin{cases} 0 & \text{si } x < 1\\ \frac{2}{x^3} & \text{si } x \ge 1 \end{cases}$$

On a vu à l'exemple 12 que X ne possède pas de moment d'ordre 2.

Proposition 9

Soit X une variable aléatoire à densité possédant une variance. Alors pour tous réels a et b, la variable aléatoire aX + b possède une variance et

$$V(aX + b) = a^2V(X).$$

Définition 7 (Variable aléatoire centrée/réduite)

Soit X une variable aléatoire à densité.

- On dit que X est **centrée** si X possède une espérance nulle.
- On dit que X est **réduite** si X possède une variance égale à 1.

Exemple 15

Soit X une variable à densité possédant une variance non nulle. On pose $X^* = \frac{X - E(X)}{\sigma(X)}$.

 $1. \ \underline{\text{La variable } X^* \text{ est centr\'ee.}}$

2. La variable X* est réduite.

On dit que X* est la variable aléatoire centrée réduite associée à X.

3 Lois usuelles à densité

3.1 Lois uniformes

Lois uniformes

Soit a < b deux nombres réels.

• On dit qu'une variable aléatoire X suit une **loi uniforme sur** [a,b] et on note X $\hookrightarrow \mathcal{U}([a,b])$ si X a pour densité la fonction f définie par

$$\forall x \in \mathbb{R}, \quad f(x) = \begin{cases} \frac{1}{b-a} & \text{si } x \in [a,b] \\ 0 & \text{sinon} \end{cases}$$

• Si $X \hookrightarrow \mathcal{U}([a,b])$ alors la fonction de répartition de X est donnée par

$$\forall x \in \mathbb{R}, \quad F_{X}(x) = \begin{cases} 0 & \text{si } x < a \\ \frac{x-a}{b-a} & \text{si } x \in [a,b] \\ 1 & \text{si } x > b \end{cases}$$

• Si $X \hookrightarrow \mathcal{U}([a,b])$ alors X possède une espérance et une variance et

$$E(X) = \frac{a+b}{2}$$
; $V(X) = \frac{(b-a)^2}{12}$.

Test 12 (Voir solution.)

 $Soit X \hookrightarrow \mathcal{U}([a,b])$ avec a < b deux réels. Montrer que X possède une variance et que cette variance vaut $\frac{(b-a)^2}{12}$.

Proposition 10

Soient a < b deux nombres réels et X une variable aléatoire.

$$X \hookrightarrow \mathcal{U}([0,1]) \Longleftrightarrow a + (b-a)X \hookrightarrow \mathcal{U}([a,b]).$$

Test 13 (Voir solution.)

Démontrer la proposition.

3.2 Lois normales

Loi normale centrée réduite

• On dit qu'une variable aléatoire X suit une **loi normale centrée réduite** et on note $X \hookrightarrow \mathcal{N}(0,1)$ si X a pour densité la fonction f définie par

$$\forall x \in \mathbb{R}, \quad f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}.$$

• Si $X \hookrightarrow \mathcal{N}(0,1)$ alors la fonction de répartition de X est donnée par

$$\forall x \in \mathbb{R}, \quad F_{X}(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^{2}}{2}} dt.$$

• Si $X \hookrightarrow \mathcal{N}(0,1)$ alors X possède une espérance et une variance et

$$E(X) = 0$$
 ; $V(X) = 1$.

Proposition 11

Soit $X \hookrightarrow \mathcal{N}(0,1)$. Alors, pour tout $x \in \mathbb{R}$

$$F_{\mathbf{X}}(-x) = 1 - F_{\mathbf{X}}(x).$$

En particulier, $F_X(0) = \frac{1}{2}$.

Remarque 7

On ne sait pas exprimer la fonction de répartition d'une variable suivant une loi normale centrée réduite à l'aide des fonctions usuelles.

Lois normales

Soit m et $\sigma > 0$ deux réels.

• On dit qu'une variable aléatoire X suit une **loi normal de paramètre** μ **et** σ^2 et on note X $\hookrightarrow \mathcal{N}(\mu, \sigma^2)$ si X a pour densité la fonction f définie par

$$\forall x \in \mathbb{R}, \quad f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}.$$

• Si $X \hookrightarrow \mathcal{N}(\mu, \sigma)$ alors la fonction de répartition de X est donnée par

$$\forall x \in \mathbb{R}, \quad F_{X}(x) = \int_{-\infty}^{x} \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(t-\mu)^{2}}{2\sigma^{2}}} dt.$$

• Si $X \hookrightarrow \mathcal{N}(\mu, \sigma^2)$ alors X possède une espérance et une variance et

$$E(X) = \mu$$
 ; $V(X) = \sigma^2$.

Proposition 12

Soient μ , $\sigma > 0$, $a \neq 0$ et b des nombres réels et X une variable aléatoire.

$$X \hookrightarrow \mathcal{N}(\mu, \sigma^2) \iff aX + b \hookrightarrow \mathcal{N}(a\mu + b, a^2\sigma^2).$$

Test 14 (Voir solution.)

Soit μ , $\sigma > 0$. Démontrer le cas particulier suivant :

$$X \hookrightarrow \mathcal{N}(0,1) \Longleftrightarrow \sigma X + \mu \hookrightarrow \mathcal{N}(\mu,\sigma^2).$$

Remarque 8

De manière équivalente (μ , $\sigma > 0$ des réels) :

$$X \hookrightarrow \mathcal{N}(\mu, \sigma^2) \Longleftrightarrow \frac{X - \mu}{\sigma} \hookrightarrow \mathcal{N}(0, 1).$$

Proposition 13

- 1. Soient $X_1 \hookrightarrow \mathcal{N}(\mu_1, \sigma_1^2)$, $X_2 \hookrightarrow \mathcal{N}(\mu_2, \sigma_2^2)$ deux variables aléatoires **indépendantes** alors $X_1 + X_2$ suit une loi normale $\mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$.
- 2. Soient $X_1 \hookrightarrow \mathcal{N}(\mu_1, \sigma_1^2), \dots, X_n \hookrightarrow \mathcal{N}(\mu_n, \sigma_n^2)$ avec $n \geqslant 2$ des variables aléatoires **mutuellement in-dépendantes** alors $X_1 + \dots + X_n$ suit une loi normale $\mathcal{N}(\mu_1 + \dots + \mu_n, \sigma_1^2 + \dots + \sigma_n^2)$.

3.3 Lois exponentielles

Lois exponentielles

Soit $\lambda > 0$.

• On dit qu'une variable aléatoire X suit une **exponentielle de paramètre** $\lambda > 0$ et on note X $\hookrightarrow \mathcal{E}(\lambda)$ si X a pour densité la fonction f définie par

$$\forall x \in \mathbb{R}, \quad f(x) = \begin{cases} \lambda e^{-\lambda x} & \text{si } x \ge 0 \\ 0 & \text{sinon} \end{cases}$$

• Si $X \hookrightarrow \mathcal{E}(\lambda)$ alors la fonction de répartition de X est donnée par

$$\forall x \in \mathbb{R}, \quad F_{X}(x) = \begin{cases} 0 & \text{si } x < 0 \\ 1 - e^{-\lambda x} & \text{si } x \ge 0 \end{cases}$$

• Si $X \hookrightarrow \mathcal{E}(\lambda)$ alors X possède une espérance et une variance et

$$E(X) = \frac{1}{\lambda}$$
 ; $V(X) = \frac{1}{\lambda^2}$.

Test 15 (Voir solution.)

Soit $X \hookrightarrow \mathcal{E}(\lambda)$ avec $\lambda > 0$. Montrer que X possède une variance et que cette variance vaut $\frac{1}{\lambda^2}$.

4 Objectifs

- 1. Savoir montrer que deux variables aléatoires quelconques sont/ne sont pas indépendantes. Savoir montrer que des variables aléatoires quelconques sont/ne sont pas mutuellement indépendantes.
- 2. Savoir étudier le min et max de deux variables aléatoires quelconques, de deux variables aléatoires à densité.
- 3. Savoir justifier qu'une variable aléatoire est/n'est pas à densité.
- 4. Savoir montrer qu'une fonction donnée est la fonction de répartition d'une variable à densité. Savoir montrer qu'une fonction donnée est une densité d'une variable à densité.
- 5. Sur des exemples simples, savoir déterminer la fonction de répartition, une densité de fonctions d'une variable aléatoire à densité.
- 6. Savoir déterminer si une variable aléatoire à densité possède une espérance, un moment d'ordre r ($r \in \mathbb{N}^*$) à partir de la définition.
- 7. Savoir montrer qu'une fonction d'une variable aléatoire à densité possède/ne possède pas une espérance à l'aide du théorème de transfert et le cas échéant, la calculer.
- 8. Savoir montrer qu'une fonction d'une variable aléatoire à densité possède/ne possède pas de variance et le cas échéant, la calculer.