IDSM Circuit Model

Boris Murmann bmurmann@hawaii.edu

Template Project

Y. Chae et al., "A 2.1 M Pixels, 120 Frame/s CMOS Image Sensor With Column-Parallel ADC Architecture," in IEEE Journal of Solid-State Circuits, Jan. 2011. https://ieeexplore.ieee.org/document/5641589

First Stab at Building an Integrator

NGSPICE

```
.param temp=27 vdd=1.2
.model mysw SW vt={vdd/2} ron=10k roff=10gig
.control
save all
tran 1n 3u
plot vo
write tb_ideal_integ.raw
.endc
```

MODEL

.lib \$::SG13G2_MODELS/cornerMOSlv.lib mos_tt
.lib \$::SG13G2_MODELS/cornerRES.lib res_typ

Boris Murmann

/foss/designs/tb_ideal_integ.sch

2024-01-12 06:00:17

Non-overlapping two-phase clocks

Integrator output (Amplifier gain = 1000)

Integrator Analysis (1)

Nonoverlapping clocks

t/T _s	Q_s	Q_{l}
n-1	$C_s \cdot V_i(n-1)$	C _I ·V _o (n-1)
n-1/2	0	$C_1 \cdot V_o(n-1/2) = C_1 \cdot V_o(n-1) + C_s \cdot V_i(n-1)$
n	$C_s \cdot V_i(n)$	$C_l \cdot V_o(n) = C_l \cdot V_o(n-1) + C_s \cdot V_i(n-1)$
n+1/2		

Integrator Analysis (1)

■ Assuming that V_o is sampled during \$\phi1\$, we have

$$C_{I}V_{o}(n) = C_{I}V_{o}(n-1) + C_{S}V_{i}(n-1)$$

$$C_{I}V_{o}(z) = z^{-1}C_{I}V_{o}(z) + z^{-1}C_{S}V_{i}(z)$$

$$\therefore \frac{V_{o}(z)}{V_{i}(z)} = \frac{C_{S}}{C_{I}} \frac{z^{-1}}{1-z^{-1}}$$

- This expression holds only for infinite amplifier gain
 - Let's look at impact of finite gain
 - Causes integrator gain error and leakage

Finite Gain (1)

t/T _s	Q _s	Q _I
n-1	$C_s \cdot V_i(n-1)$	$C_{l} \cdot V_{o}(n-1) \cdot [1+1/A]$
n-1/2	C _s ·V _o (n-1/2)/A	$C_{l} \cdot V_{o}(n-1/2) \cdot [1+1/A] = C_{l} \cdot V_{o}(n-1) \cdot [1+1/A] + C_{s} \cdot V_{i}(n-1) - C_{s} \cdot V_{o}(n-1/2)/A$
n	C _s ·V _i (n)	$C_{l} \cdot V_{o}(n) \cdot [1+1/A] = C_{l} \cdot V_{o}(n-1) \cdot [1+1/A] + C_{s} \cdot V_{i}(n-1) - C_{s} \cdot V_{o}(n)/A$
n+1/2		•••

Finite Gain (2)

■ Again, assuming that V_o is sampled during \$\phi1\$, we have

$$C_{I}V_{o}(z)\left[1+\frac{1}{A}\right] = z^{-1}C_{I}V_{o}(z)\left[1+\frac{1}{A}\right] + z^{-1}C_{S}V_{i}(z) - \frac{C_{S}}{A}V_{o}(z)$$

$$\therefore \frac{V_{o}(z)}{V_{i}(z)} \cong \frac{C_{S}}{C_{I}} \frac{z^{-1}\left(1-\frac{1}{A}\left[1+\frac{C_{S}}{C_{I}}\right]\right)}{1-\left(1-\frac{1}{A}\frac{C_{S}}{C_{I}}\right)z^{-1}} = \frac{g \cdot z^{-1}}{1-\left[1-\alpha\right] \cdot z^{-1}}$$

$$V_{o}(z) = \left[1-\alpha\right] \cdot z^{-1}V_{o}(z) + g \cdot z^{-1}V_{i}(z)$$

- Finite gain results in "leaky integrator" (and gain error)
 - Some fraction of previous output is lost in new cycle

Integrator output (Amplifier gain = 20)

First Stab at Building A First-Order Modulator

─ XSCHEM

Boris Murman

/foss/designs/tb_ideal_idsm1.sch

2024-01-15 18:16:24

Integrator output and feedback pulses match behavioral simulation!

Next Steps

- Add second integrator (second-order modulator)
- Write some post-processing scripts
 - Detailed measurements
 - Emulate counters to create final digital output
- Increasingly "transistorize" the implementation
 - Shift voltages to practical levels (can't have negative voltages)
 - MOSFET switches
 - Comparator
 - Inverter-based amplifier
 - With correlated double-sampling to achieve high gain