(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2005年6月16日(16.06.2005)

PCT

(10) 国際公開番号 WO 2005/054213 A1

(51) 国際特許分類7:

C07D 261/08, 261/20, 261/18, 413/04, 417/12, A61K 31/42, 31/5377, 31/423, 31/5395, 31/4245, 31/5377, 31/502, 31/536, 31/435, 31/428, 31/427, 31/4427, 31/501, 31/506, A61P 43/00, 3/06, 3/10, 3/04, 9/10, 9/12, 29/00, 37/08, 1/04, 19/02, 1/18, 17/06, 17/04, 19/10, 15/00, 35/00, 25/28, 25/16

(21) 国際出願番号: PCT/JP2004/017706

(22) 国際出願日: 2004年11月29日(29.11.2004)

(25) 国際出願の言語: 日本語

(26) 国際公開の言語: 日本語

(30) 優先権データ:

特願2003-403274 2003年12月2日(02.12.2003) JР 2004年4月16日(16.04.2004) 特願2004-121635 ЛР 特願2004-167941 2004 年6 月7 日 (07.06.2004) JР 特願 2004-316251

2004年10月29日(29.10.2004) JP

(71) 出願人(米国を除く全ての指定国について): 塩野義 製薬株式会社 (SHIONOGI & CO., LTD.) [JP/JP]; 〒 5410045 大阪府大阪市中央区道修町3丁目1番8号 Osaka (JP).

(72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 福井 喜一 (FUKUI, Yoshikazu) [JP/JP]; 〒5530002 大阪府大阪市 福島区鷺洲5丁目12番4号塩野義製薬株式会社 内 Osaka (JP). 笹谷 隆司 (SASATANI, Takashi) [JP/JP]; 〒5530002 大阪府大阪市福島区鷺洲5丁目12番 4号 塩野義製薬株式会社内 Osaka (JP). 松村 謙一 (MATSUMURA, Ken-ichi) [JP/JP]; 〒5530002 大阪府 大阪市福島区鷺洲5丁目12番4号塩野義製薬株 式会社内 Osaka (JP). 石塚 夏樹 (ISHIZUKA, Natsuki) [JP/JP]; 〒5530002 大阪府大阪市福島区鷺洲 5 丁目 12番4号 塩野義製薬株式会社内 Osaka (JP). 矢野 利定 (YANO, Toshisada) [JP/JP]; 〒5530002 大阪府大 阪市福島区鷺洲5丁目12番4号塩野義製薬株 式会社内 Osaka (JP). 神田 泰彦 (KANDA, Yasuhiko) [JP/JP]; 〒5530002 大阪府大阪市福島区鷺洲 5 丁目 12番4号 塩野義製薬株式会社内 Osaka (JP). 長命 信雄 (CHOMEI, Nobuo) [JP/JP]; 〒5530002 大阪府大 阪市福島区鷺洲5丁目12番4号塩野義製薬株式 会社内 Osaka (JP).

(74) 代理人: 山内秀晃, 外(YAMAUCHI, Hideaki et al.); 〒 5530002 大阪府大阪市福島区鷺洲5丁目12番4号 塩野義製薬株式会社 知的財産部 Osaka (JP).

/続葉有/

(54) Title: ISOXAZOLE DERIVATIVE HAVING AGONISTIC ACTIVITY AGAINST PEROXISOME PROLIFER ATOR-ACTI-VATED RECEPTOR

(54) 発明の名称: ペルオキシソーム増殖活性化受容体アゴニスト活性を有するイソキサゾール誘導体

$$R^{2}$$
 R^{3}
 R^{4}
 R^{5}
 R^{8}
 R^{9}
 R^{10}
 R^{10}
 R^{10}

(57) Abstract: Compounds represented by the formula (I):[wherein R¹ to R¹⁰ each independently is hydrogen, halogeno, optionally substituted lower alkyl, etc.; X^1 is -O-, -S-, -NR¹¹- (wherein R¹¹ is hydrogen, lower alkyl, etc.), -CR12R13CO-, $-(CR^{12}R^{13})_{m}O$ -, or $-O(CR^{12}R^{13})_{m}$ - (wherein R¹² and R¹³ each independently is hydrogen or lower alkyl and m is an integer of 1 to 3), etc.; X² is a single bond, -O-, -S-, -NR¹⁴-(wherein R14 is hydrogen, lower alkyl, etc.,

provided that R¹⁴ may be bonded to R⁶ to form a ring in cooperation with the adjacent atoms), or -CR¹⁵R¹⁶- (wherein R¹⁵ and R¹⁶ each independently is hydrogen or lower alkyl, provided that R¹⁵ may be bonded to R⁶ or R¹⁰ to form a ring in cooperation with the adjacent carbon atoms and R¹⁶ and R⁹ in combination may form a bond); and X³ is COOR¹⁷, C(=NR¹⁷)NR¹⁸OR¹⁹, etc.], pharmaceutically acceptable salts of the compounds, or solvates of any of these.

(57) 要約: 式(I): 【(1)] (式中、(1)0 は各々独立して水素、ハロゲン、置換基を有していてもよい低級ア ルキル等であり、X¹は-O-、-S-、-NR¹¹-(ここでR¹¹は水素または低級アルキル等)、-CR¹²R¹³CO-、 - (CR¹²R¹³)mO-または-O (CR¹²R¹³)m- (ここでR¹²およびR¹³は各々独立して水素または低級ア ルキルであり、mは1~3の整数) 等であり、X²は単結合、-O-、-S-、-NR¹⁴-(ここでR¹⁴は水素または 低級アルキル等、 R^{14} は R^6 と共に隣接する原子と一緒になって環を形成してもよい)または $-CR^{15}R^{16}$ -(こ こでR15およびR16は各々独立して水素または低級アルキルであり、R15はR6またはR10と共に隣接する炭 素原子と一緒になって環を形成してもよく、 R^{16} は R^{9} と一緒になって結合を形成してもよい)であり、 X^{3} は COOR¹⁷またはC(=NR¹⁷) NR¹⁸OR¹⁹等である) で示される化合物、それらの製薬上許容される塩また はそれらの溶媒和物。

- (81) 指定国 (表示のない限り、全ての種類の国内保護が可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) 指定国 (表示のない限り、全ての種類の広域保護が可能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア (AM, AZ, BY,

KG, KZ, MD, RU, TJ, TM), $\exists -\Box \gamma \Lambda$ (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

一 国際調査報告書

2文字コード及び他の略語については、定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。 WO 2005/054213 1 PCT/JP2004/017706

明細書

ペルオキシソーム増殖活性化受容体アゴニスト活性を有するイソキサゾー ル誘導体

技術分野

- [0001] 本発明はペルオキシソーム増殖活性化受容体(以下、PPARとする)アゴニスト活性を有し、医薬として有用な化合物に関する。 背景技術
- [0002] 細胞内顆粒であるペルオキシソームを増殖させるペルオキシソーム増殖薬は、脂質代謝の重要な調節因子であると考えられている。そのペルオキシソーム増殖薬によって活性化される核内受容体PPARは、内分泌、代謝、炎症等に関わる多機能な受容体であることが判明しており、そのリガンドが種々の医薬品として応用可能であるとして近年活発な研究が行われている。
- [0003] PPARは種々の動物臓器からサブタイプ遺伝子が見出されており、ファミリーを形成している。哺乳類においてはPPAR α 、PPAR δ (PPAR β と呼ばれることもある) およびPPAR γ の3種のサブタイプに分類されている。
- [0004] 高脂血症薬として用いられているフィブラート類はPPAR α の活性化を介した血清 脂質改善遺伝子群の転写促進によりその活性を示すと考えられている。また、骨代 謝および非ステロイド性抗炎症薬の活性発現にPPAR α が関与している可能性も示 唆されている。
- [0005] インスリン抵抗性改善剤であるチアゾリジンジオン系化合物はPPARγのリガンドである。これらの化合物が血糖降下作用、脂質低下作用、脂肪細胞分化誘導作用等を示すことから、PPARγアゴニストは糖尿病、高脂血症、肥満等の治療薬としての開発が期待される。また、PPARγアゴニストは慢性膵炎、炎症性大腸炎、糸球体硬化症、アルツハイマー症、乾癬、パーキンソン症、バセドウ氏病、慢性関節リウマチ、癌(乳癌、結腸癌、前立腺癌等)および不妊等の治療薬となり得るとして期待されている

[0006] PPAR δ を脂肪細胞特異的に過剰発現させたトランスジェニックマウスが太りにくい

こと等が報告されており、PPAR δ アゴニストは抗肥満薬、糖尿病薬になり得ると考えられている。 さらにPPAR δ アゴニストは結腸癌、骨粗しょう症、不妊、乾癬、多発性 硬化症等の治療薬としても可能性も示唆されている。

- [0007] これらの知見より、PPARアゴニストは高脂血症、糖尿病、高血糖、インスリン抵抗性、肥満、動脈硬化、アテローム性動脈硬化、高血圧、シンドロームX、炎症、アレルギー性疾患(炎症性大腸炎、慢性関節リウマチ、慢性膵炎、多発性硬化症、糸球体硬化症、乾癬等)、骨粗しょう症、不妊、癌、アルツハイマー症、パーキンソン症、バセドウ氏病等の治療または予防に有用であるとして期待されている(非特許文献1参照)。
- [0008] 特許文献1および特許文献2にはPPARアゴニスト活性を有する種々の化合物が開示されており、イソキサゾール化合物も記載されている。しかし、本発明化合物のようにイソキサゾール骨格およびフェノキシ酢酸、フェニルチオ酢酸またはフェニルアミノ酢酸骨格を併せ持つ化合物は記載されていない。さらに、特許文献2のイソキサゾール化合物は本発明化合物と比較すると、イソキサゾール上の置換基の位置関係が異なる。また、PPAR α および(または)PPAR γ アゴニスト活性は確認されているがPPAR δ アゴニスト活性についてはデータが記載されていない。さらに、イソキサゾール化合物については α または γ アゴニスト活性すらデータが記載されておらず、PPAR γ アゴニスト活性が確認されていない。
- [0009] 特許文献3にはイソキサゾール化合物が記載されているが、本発明化合物と比較すると、イソキサゾール上の置換基の位置関係が異なる。また、FXR NR1H4受容体のリガンドであり高コレステロール血症や高脂血症に有用であると記載されているが、PPARアゴニスト活性については記載されていない。
- [0010] 特許文献4にはイソキサゾール化合物が記載されているが、本発明化合物と比較すると、イソキサゾール上の置換基の位置関係が異なる。また、動脈硬化や高血圧に有用である旨開示されているが、PPARアゴニスト活性については記載されていない
- [0011] 特許文献5および6には、チアゾール化合物、オキサゾール化合物およびイミダゾール化合物がPPAR δ アゴニスト活性を有することが記載されているが、イソキサゾ

ール化合物については示唆されていない。

[0012] 特許文献7には、末端が桂皮酢酸であるイソキサゾール化合物が記載されている。 甲状腺受容体アンタゴニスト活性を有することが記載されているが、PPARアゴニスト 活性については記載されていない。

[0013] 特許文献8には、イソキサゾール化合物が記載されている。本発明化合物と異なり、末端がフェノキシ酢酸である場合に、イソキサゾール上の置換基に水素が存在する。PPAR α および δ アゴニスト活性のデータが開示されている。

[0014] 特許文献1:国際公開第WO99/11255号パンフレット

特許文献2:国際公開第WO99/58510号パンフレット

特許文献3:国際公開第WO03/15771号パンフレット

特許文献4:欧州特許出願公開第0558062号明細書

特許文献5:国際公開第WO01/00603号パンフレット

特許文献6:国際公開第WO02/14291号パンフレット

特許文献7:国際公開第WO01/36365号パンフレット

特許文献8:国際公開第WO03/084916号パンフレット

非特許文献1:カレント メディシナル ケミストリー (Current Medicinal Chemistry)、2003年、第10巻、第267-280頁

発明の開示

発明が解決しようとする課題

- [0015] 本発明の目的は、優れたPPARアゴニストを提供することにある。 課題を解決するための手段
- [0016] 本発明者らは、鋭意研究の結果、以下の優れたPPARアゴニストの合成に成功した。イソキサゾールの4位が水素でありかつ末端がフェノキシ酢酸である化合物が特許文献8で公知となっている。しかし、本発明者らは、4位の水素をメチルなど他の置換基に置換した化合物が、置換前の化合物と比較して、PPAR転写活性が大きく改善されることを見出した。また、末端の側鎖をフェノキシ酢酸から桂皮酸に置換した化合物が、置換前の化合物と比較して、薬物代謝酵素に対する阻害が少ないことを見出した。

WO 2005/054213 4 PCT/JP2004/017706

[0017] 本発明は、

(1)式(I):

[化1]

$$R^{2}$$
 R^{3}
 R^{4}
 R^{5}
 R^{8}
 R^{9}
 R^{10}
 R^{10}
 R^{10}

(式中、

R¹はハロゲン、ヒドロキシ、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級アルキニル、置換基を有していてもよい低級アルコキシ、カルボキシ、置換基を有していてもよい低級アルコキシカルボニル、置換基を有していてもよい低級アルキルチオ、置換基を有していてもよいアシル、置換基を有していてもよいアミノ、置換基を有していてもよいカルバモイル、置換基を有していてもよいチオカルバモイル、置換基を有していてもよいチオカルバモイルオキシ、置換基を有していてもよいチオカルバモイルオキシ、置換基を有していてもよいチオカルバモイルオキシ、置換基を有していてもよいアリールスルホニルオキシ、置換基を有していてもよいアリールスルホニルオキシ、置換基を有していてもよいアリールスルホニルオキシ、置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリールチオまたは置換基を有していてもよいヘテロ環式基であり、

していてもよいアリール、置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリールチオまたは置換基を有していてもよいへテロ環式基であり、 R^3 および R^4 は各々独立して、水素、ハロゲン、置換基を有していてもよい低級アルキ

ル、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級アルキニル、置換基を有していてもよいアリールまたは置換基を有していてもよいヘテロ 環式基であり、

R⁵、R⁶、R⁷およびR⁸は各々独立して水素、ハロゲン、ヒドロキシ、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級アルコキシ、置換基を有していてもよい低級アルコキシ、置換基を有していてもよい低級アルキルチオ、置換基を有していてもよいアシル、置換基を有していてもよいアシル、置換基を有していてもよいアリール、置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリールチオまたは置換基を有していてもよ

R⁹およびR¹⁰は各々独立して水素、ハロゲン、シアノ、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルコキシ、置換基を有していてもよいアミノまたは置換基を有していてもよいアリールであり、

いヘテロ環式基であり、

 X^1 は-O-、-S-、 $-NR^{11}-$ (ここで R^{11} は水素、置換基を有していてもよい低級アルキル、置換基を有していてもよいアシル、置換基を有していてもよい低級アルキルスルホニルまたは置換基を有していてもよいアリールスルホニルである)、 $-CR^{12}R^{13}$ CO-、 $-(CR^{12}R^{13})$ mO-、 $-(CR^{12}R^{13})$ mS-または $-O(CR^{12}R^{13})$ m-(ここで R^{12} および R^{13} は各々独立して水素または低級アルキルであり、 $-CR^{12}R^{13}$ 0m-0、 $-CR^{12}R^{13}$ 0。 $-CR^{12}R^{13}$ 0。 $-CR^{12}R^{13}$ 0。 $-CR^{12}R^{13}$ 0。 $-CR^{12}R^{13}$ 0。 $-CR^{12}R^{13}$ 0。 $-CR^{12}R^{13}$ 1 $-CCR^{12}R^{13}$ 1 $-CCR^{12}R^{13}$ 1 $-CCR^{12}R^{13}$ 2 $-CR^{13}R^{13}$ 3 $-CR^{13}R^{14}$ 4 $-CCR^{14}R^{14}R^{14}$ 4 $-CCR^{14}R^{14}R^{14}$ 4 $-CCR^{14}R^{14}R^{14}$ 4 $-CCR^{14}R^{14}R^{14}$ 4 $-CCR^{14}R^{14}R^{14}$ 4 $-CCR^{14}R^{14}R^{14}$ 4 $-CCR^{14}R^{14}R^{14}R^{14}R^{14}$ 4 $-CCR^{14}$

WO 2005/054213 6 PCT/JP2004/017706

 X^{3} は $COOR^{17}$ 、 $C(=NR^{17})NR^{18}OR^{19}$ 、 [化2]

(ここでR¹⁷~R¹⁹は各々独立して水素または低級アルキルである)であり、

但し、 R^6 は R^{14} と共に隣接する原子と一緒になって環を形成してもよく、 R^6 は R^9 および R^{10} と共に隣接する炭素原子と一緒になって環を形成してもよく、 R^6 は R^{15} および R^{16} と共に隣接する炭素原子と一緒になって環を形成してもよく、 R^6 は R^{15} および R^{16} と共に隣接する炭素原子と一緒になって環を形成してもよく、 R^6 は R^{24} と共に隣接する炭素原子と一緒になって環を形成してもよく、 R^9 は R^{16} と一緒になって結合を形成してもよく、 R^9 は R^{10} と一緒になって環を形成してもよく、 R^9 は R^{10} と一緒になって精合を形成してもよく、 R^9 および R^{10} は R^{15} と共に隣接する炭素原子と一緒になって環を形成してもよく、 R^{10} は R^{15} と一緒になって精合を形成してもよく、 R^{10} は R^{15} と一緒になって精合を形成してもよく、 R^{10} は R^{15} と一緒になって精合を形成してもよく、 R^{10} は R^{15} と共に隣接する炭素原子と一緒になって環を形成してもよい)

で示される化合物(但し、 R^1 が非置換低級アルキルかつ R^5 および R^7 が共にブロモかつ X^1 が一Oーである化合物、 R^1 が非置換低級アルキルかつ X^2 が一 CH_2 ーである化合物、および R^2 が水素かつ X^2 が一Oーである化合物を除く)、その製薬上許容される塩またはそれらの溶媒和物、

- (2) R¹がハロゲン、置換基を有していてもよい低級アルキル、置換基を有していてもよいアリールまたは置換基を有していてもよいヘテロ環式基である、(1) 記載の化合物、その製薬上許容される塩またはそれらの溶媒和物、
- (3) R²が、ハロゲン、置換基を有していてもよい低級アルキル、置換基を有していて もよい低級アルケニル、置換基を有していてもよいアルキニル、置換基を有していて もよい低級アルコキシ、置換基を有していてもよいアシル、置換基を有していてもよい カルバモイル、置換基を有していてもよいアリールまたは置換基を有していてもよい アリールチオである、(1) 記載の化合物、その製薬上許容される塩またはそれらの溶

媒和物、

(4) R²が水素、ハロゲン、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよいアルキニル、置換基を有していてもよい低級アルコキシ、置換基を有していてもよいアシル、置換基を有していてもよいカルバモイル、置換基を有していてもよいアリールまたは置換基を有していてもよいアリールチオである、(1) 記載の化合物、その製薬上許容される塩またはそれらの溶媒和物、

- (5) R³およびR⁴が各々独立して水素、低級アルキルまたは置換基を有していてもよいアリールである、(1) 記載の化合物、その製薬上許容される塩またはそれらの溶媒和物、
- (6) R⁵、R⁶、R⁷およびR⁸は各々独立して水素、ハロゲン、置換基を有していてもよい 低級アルキルまたは置換基を有していてもよい低級アルコキシであり、

但し、 R^6 は R^{14} と共に隣接する原子と一緒になって環を形成してもよく、 R^6 は R^9 および R^{10} と共に隣接する炭素原子と一緒になって環を形成してもよく、 R^6 は R^9 と共に隣接する炭素原子と一緒になって環を形成してもよく、 R^6 は R^{15} および R^{16} と共に隣接する炭素原子と一緒になって環を形成してもよく、 R^6 は R^{24} と共に隣接する炭素原子と一緒になって環を形成してもよく、 R^6 は R^{24} と共に隣接する炭素原子と一緒になって環を形成してもよい、(1)記載の化合物、その製薬上許容される塩またはそれらの溶媒和物、

(7)R⁹およびR¹⁰が各々独立して水素、ハロゲン、シアノ、置換基を有していてもよい 低級アルキルまたは置換基を有していてもよい低級アルコキシであり、

但し、 R^9 および R^{10} は R^6 と共に隣接する炭素原子と一緒になって環を形成してもよく、 R^9 は R^6 と共に隣接する炭素原子と一緒になって環を形成してもよく、 R^9 は R^{16} と一緒になって結合を形成してもよく、 R^9 は R^{10} と一緒になって君合を形成してもよく、 R^9 は R^{10} と一緒になって結合を形成してもよく、 R^9 および R^{10} は R^{15} と共に隣接する炭素原子と一緒になって環を形成してもよく、 R^{10} は R^{15} と一緒になって結合を形成してもよく、 R^{10} は R^{15} と一緒になって結合を形成してもよく、 R^{10} は R^{15} と共に隣接する炭素原子と一緒になって環を形成してもよく、 R^{10} は R^{15} と共に降接する炭素原子と一緒になって環を形成してもよい、(1)記載の化合物、その製薬上許容される塩またはそれらの溶媒和物、

 $(8)X^1$ がO、S、NR 11 (ここでR 11 は水素または置換基を有していてもよい低級アルキ

ルである)または CH_2 COである、(1)記載の化合物、その製薬上許容される塩またはそれらの溶媒和物、

(9)X³がCOOR¹⁷(ここでR¹⁷は水素または低級アルキルである)である、(1)記載の化合物、その製薬上許容される塩またはそれらの溶媒和物、

(10)R¹が低級アルキル、置換基を有していてもよいアリール(置換基としては、ハロゲン、置換基を有していてもよい低級アルキルまたは置換基を有していてもよい低級アルコキシ)またはヘテロ環式基であり、

R²が水素、ハロゲン、置換基を有していてもよい低級アルキル(置換基としては、ハロゲン、ヒドロキシ、置換基を有していてもよい低級アルコキシ、低級アルキルアミノ、置換基を有していてもよいイミノ、低級アルキルスルホニル、置換基を有していてもよいアリールまたはヘテロ環式基)、置換基を有していてもよい低級アルキニル(置換基としては、アリール)、置換基を有していてもよい低級アルコキシ(置換基としては、ハロゲン)、アルコキシカルボニル、アシル、カルバモイル、置換基を有していてもよいアリール(置換基としては、置換基を有していてもよいアリール(置換基としては、置換基を有していてもよい低級アルキルまたは置換基を有していてもよい低級アルキルまたは置換基を有していてもよい低級アルキキシ)またはアリールチオであり、

R³およびR⁴が各々独立して、水素、低級アルキルまたは置換基を有していてもよいアリール(置換基としては、ハロゲン)であり、

R⁵、R⁶、R⁷およびR⁸は各々独立して、水素、ハロゲン、置換基を有していてもよい低級アルキル(置換基としては、ハロゲン)または置換基を有していてもよい低級アルコキシ(置換基としては、ハロゲン)であり、

R⁹およびR¹⁰が各々独立して水素、ハロゲン、シアノ、低級アルキルまたは低級アルコキシであり、

 X^{1} はO、S、NHまたはCH COであり、 X^{3} はCOOR¹⁷、C(=NR¹⁷)NR¹⁸OR¹⁹、

[化3]

(ここで R^{17} $\sim R^{19}$ は各々独立して水素または低級アルキルである)である、但し、 R^6 は R^{14} と共に隣接する原子と一緒になって環を形成してもよく、 R^6 は R^9 と共に隣接する炭素原子と一緒になって環を形成してもよく、 R^6 は R^9 と共に隣接する炭素原子と一緒になって環を形成してもよく、 R^6 は R^{15} および R^{16} と共に隣接する炭素原子と一緒になって環を形成してもよく、 R^6 は R^{24} と共に隣接する炭素原子と一緒になって環を形成してもよく、 R^9 は R^{24} と共に隣接する炭素原子と一緒になって環を形成してもよく、 R^9 は R^{10} と一緒になって環を形成してもよく、 R^9 は R^{10} と一緒になって精合を形成してもよく、 R^9 は R^{10} と一緒になって精合を形成してもよく、 R^9 は R^{10} と一緒になって精合を形成してもよく、 R^{10} は R^{15} と 一緒になって精合を形成してもよく、 R^{10} は R^{15} と 十緒になって精合を形成してもよく、 R^{10} は R^{15} と 十年に解接する R^{10} は R^{15} と 十年に発生する R^{10} は R^{15} と 十年に発生する R^{10} は R^{15} と 十年に発生する R^{10} は R^{15} と $R^$

(11) X^2 が単結合、-O-、-SO-、 $-SO_2-$ または $-CR^{26}=CR^{27}-$ (ここで R^{26} および R^{27} は各々独立して水素または低級アルキルである)、である、(1) - (10) のいずれかに記載の化合物、その製薬上許容される塩またはそれらの溶媒和物、

と一緒になって環を形成してもよい、(1)記載の化合物、その製薬上許容される塩ま

たはそれらの溶媒和物、

- (12) X^2 が $-CR^{15}R^{16}-(ここでR^{15}$ は水素または低級アルキルであり、 R^{16} は R^9 と一緒になって結合を形成している、または R^{16} は R^9 および R^{15} は R^{10} と各々一緒になって結合を形成している)である、(1) -(10) のいずれかに記載の化合物、その製薬上許容される塩またはそれらの溶媒和物、
- (13) X^2 が $-NR^{14}$ -(ここで R^{14} は水素、低級アルキル、アシル、低級アルキルスルホニルまたは R^{14} は R^6 と共に隣接する原子と一緒になって環を形成している)、 $-CR^{15}R^{16}$ -(ここで R^{15} および R^{16} は R^6 と共に隣接する炭素原子と一緒になって環を形成している、 R^9 および R^{10} は R^{15} と共に隣接する炭素原子と一緒になって環を形成してもよく、または、 R^{15} は R^{10} と共に隣接する炭素原子と一緒になって環を形成かつ R^{16} は R^9 と一緒になって結合を形成している)または $-COCR^{24}R^{25}$ -(ここで R^{24} は R^6 と共に隣接する炭素原子と一緒になって結合を形成している)である、(1) -(10) のいずれかに記載の化合物、その製薬上許容される塩またはそれらの溶媒和物、
- (14)R²がハロゲン、ヒドロキシ、置換基を有していてもよい低級アルキル、置換基を

有していてもよい低級アルケニル、置換基を有していてもよい低級アルキニル、置換基を有していてもよい低級アルコキシ、カルボキシ、置換基を有していてもよい低級アルコキシカルボニル、置換基を有していてもよい低級アルキルチオ、置換基を有していてもよいアシル、置換基を有していてもよいアミノ、置換基を有していてもよいカルバモイル、置換基を有していてもよいチオカルバモイル、置換基を有していてもよいチオカルバモイルオキシ、置換基を有していてもよいチオカルバモイルオキシ、置換基を有していてもよいヒドラジノカルボニル、置換基を有していてもよい低級アルキルスルホニルオキシ、置換基を有していてもよいアリールスルホニルオキシ、置換基を有していてもよいアリール、置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリールチオまたは置換基を有していてもよいヘテロ環式基であり、

R⁹およびR¹⁰が各々独立して水素であり、

 X^1 は-O-、-S-、 $-(CR^{12}R^{13})$ mO-または $-(CR^{12}R^{13})$ mS-(ここで R^{12} および R^{13} は各々独立して水素または低級アルキルであり、mは1-3の整数である)であり、 X^2 は-O-であり、

 X^3 が $COOR^{17}$ (ここで R^{17} は水素または低級アルキルである)である、(1)記載の化合物、その製薬上許容される塩またはそれらの溶媒和物、

(15) R⁹はR¹⁶と一緒になって結合を形成しており、

R¹⁰は水素、ハロゲン、低級アルキル、低級アルコキシまたはシアノであり、

 X^1 は-O-、-S-、 $-(CR^{12}R^{13})$ mO-または $-(CR^{12}R^{13})$ mS-(ここで R^{12} および R^{13} は各々独立して水素または低級アルキルであり、mは1-3の整数)であり、

 X^2 は $-CR^{15}R^{16}$ -(ここで R^{15} は水素または低級アルキルであり、 R^{16} は R^9 と一緒になって結合を形成している)であり、

 X^3 が $COOR^{17}$ (ここで R^{17} は水素または低級アルキルである)である、(1)記載の化合物、その製薬上許容される塩またはそれらの溶媒和物、

(16)R¹がハロゲン、置換基を有している低級アルキル、置換基を有していてもよいア リールまたは置換基を有していてもよいヘテロ環式基であり、

R⁹およびR¹⁰が各々独立して水素または低級アルキルであり、

 X^{1} は-O-、-S-、 $-(CR^{12}R^{13})$ mO-または $-(CR^{12}R^{13})$ mS-(ここで R^{12} および R^{13}

は各々独立して水素または低級アルキルであり、mは1〜3の整数である)であり、 X^2 は単結合または $-CR^{15}R^{16}$ ー(ここで R^{15} および R^{16} は各々独立して水素または低級アルキルである)であり、

 X^3 が $COOR^{17}$ (ここで R^{17} は水素または低級アルキルである)である、(1)記載の化合物、その製薬上許容される塩またはそれらの溶媒和物、

(17)R⁹およびR¹⁰が各々独立して水素であり、

 X^1 は-O-、-S-であり、

 X^2 が $-NR^{14}$ -(ここで R^{14} は R^6 と共に隣接する原子と一緒になって環を形成している)、 $-CR^{15}R^{16}$ -(ここで R^{15} および R^{16} は R^6 と共に隣接する炭素原子と一緒になって環を形成している)、または $-COCR^{24}R^{25}$ -(ここで R^{24} は R^6 と共に隣接する炭素原子と一緒になって環を形成かつ R^{25} は R^9 と一緒になって結合を形成している)であり、

 X^3 は $COOR^{17}$ (ここで R^{17} は水素または低級アルキルである)である、(1)記載の化合物、その製薬上許容される塩またはそれらの溶媒和物、

(18) R⁹ はR¹⁶と一緒になって結合を形成しており、

 X^1 は-O-、-S-であり、

 X^2 が $-CR^{15}R^{16}$ $-(ここでR^{15}kR^{10}$ と共に隣接する炭素原子と一緒になって環を形成かっ $R^{16}kR^9$ と一緒になって結合を形成している、または R^9 および $R^{10}kR^{15}$ と共に隣接する炭素原子と一緒になって環を形成している)であり、

 X^3 は $COOR^{17}$ (ここで R^{17} は水素または低級アルキルである)である、(1)記載の化合物、その製薬上許容される塩またはそれらの溶媒和物、

(19)R⁹はR¹⁰と一緒になって環を形成しており、

 X^1 は-O-、-S-であり、

 X^2 は単結合または $-CR^{15}R^{16}$ $-(ここで<math>R^{15}$ および R^{16} は各々独立して水素または低級アルキルである)であり、

 X^3 が $COOR^{17}$ (ここで R^{17} は水素または低級アルキルである)である、(1)記載の化合物、その製薬上許容される塩またはそれらの溶媒和物、

(20)式:

[4286]

WO 2005/054213 12 PCT/JP2004/017706

$$R^{20}$$
 R^{21}
 R^{9}
 R^{10}
 R^{10}

(式中、

R¹はハロゲン、ヒドロキシ、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級アルキニル、置換基を有していてもよい低級アルコキシ、カルボキシ、置換基を有していてもよい低級アルコキシカルボニル、置換基を有していてもよい低級アルキルチオ、置換基を有していてもよいアシル、置換基を有していてもよいアミノ、置換基を有していてもよいカルバモイル、置換基を有していてもよいチオカルバモイル、置換基を有していてもよいチオカルバモイルオキシ、置換基を有していてもよいチオカルバモイルオキシ、置換基を有していてもよいチオカルバモイルオキシ、置換基を有していてもよいアリールスルホニルオキシ、置換基を有していてもよいアリールスルホニルオキシ、置換基を有していてもよいアリールスルホニルオキシ、置換基を有していてもよいアリール、置換基を有していてもよいアリール・置換基を有していてもよいアリールチオまたは置換基を有していてもよいヘテロ環式基であり、

R²は水素、ハロゲン、ヒドロキシ、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級アルキニル、置換基を有していてもよい低級アルコキシ、カルボキシ、置換基を有していてもよい低級アルコキシカルボニル、置換基を有していてもよい低級アルキルチオ、置換基を有していてもよいアシル、置換基を有していてもよいアミノ、置換基を有していてもよいカルバモイル、置換基を有していてもよいチオカルバモイル、置換基を有していてもよいカルバモイルオキシ、置換基を有していてもよいチオカルバモイルオキシ、置換基を有していてもよいチオカルバモイルオキシ、置換基を有していてもよいアリカルボニル、置換基を有していてもよいに扱のアルキルスルホニルオキシ、置換基を有していてもよいアリールスルホニルオキシ、置換基を有していてもよいアリール、置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリールチオまたは置換基を有していてもよいへテロ環式基であり、

R³およびR⁴は各々独立して、水素、ハロゲン、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級アルキニル、置換基を有していてもよいでもよいであり、

R⁵、R⁷およびR⁸は各々独立して水素、ハロゲン、ヒドロキシ、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級アルコキシ、置換基を有していてもよい低級アルコキシ、置換基を有していてもよい低級アルコキン、置換基を有していてもよいアシル、置換基を有していてもよいアシル、置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリールチオまたは置換基を有していてもよいヘテロ環式基であり、

R⁹およびR¹⁰は各々独立して水素、ハロゲン、シアノ、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルコキシ、置換基を有していてもよいアミノまたは置換基を有していてもよいアリールであり、

R²⁰およびR²¹は各々独立して水素、ハロゲン、ヒドロキシ、シアノ、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級アルコキシ、置換基を有していてもよい低級アルコキシ、置換基を有していてもよい低級アルキルチオ、置換基を有していてもよいアシル、置換基を有していてもよいアシル、置換基を有していてもよいアリール、置換基を有していてもよいアリール、置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリールチオまたは置換基を有していてもよいへテロ環式基であり、

 X^1 は-O-、-S-、 $-NR^{11}-$ (ここで R^{11} は水素、置換基を有していてもよい低級アルキル、 置換基を有していてもよいアシル、置換基を有していてもよい低級アルキルスルホニルまたは置換基を有していてもよいアリールスルホニルである)、 $-CR^{12}R^{13}CO-$ 、 $-(CR^{12}R^{13})mO-$ 、 $-(CR^{12}R^{13})mS-$ または $-O(CR^{12}R^{13})m-$ (ここで R^{12} および R^{13} は各々独立して水素または低級アルキルであり、mは1~3の整数である)であり、 R^{17} は水素または低級アルキルである)で示される化合物、その製薬上許容される塩またはそれらの溶媒和物、

(21)R¹が置換基を有していてもよいアリールであり、

R²が置換基を有していてもよい低級アルキルであり、

 R^3 および R^4 が各々独立して、水素または置換基を有していてもよいアリールであり、 R^5 、 R^7 および R^8 が各々独立して、水素、置換基を有していてもよい低級アルキルまたは置換基を有していてもよい低級アルコキシであり、

R⁹およびR¹⁰が各々独立して水素または置換基を有していてもよい低級アルキルであり、

R²⁰およびR²¹が各々独立して水素、シアノ、置換基を有していてもよい低級アルキルまたは置換基を有していてもよい低級アルコキシであり、

X¹は-O-または-S-である、(20)記載の化合物、その製薬上許容される塩または それらの溶媒和物、

(22)式:

[化87]

$$R^{23}$$
 R^{20} R^{9} R^{10} R^{9} R^{10} $R^{$

(式中、

R¹はハロゲン、ヒドロキシ、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級アルキニル、置換基を有していてもよい低級アルコキシカルボニル、置換基を有していてもよい低級アルコキシカルボニル、置換基を有していてもよい低級アルキルチオ、置換基を有していてもよいアシル、置換基を有していてもよいアミノ、置換基を有していてもよいカルバモイル、置換基を有していてもよいチオカルバモイル、置換基を有していてもよいチオカルバモイルオキシ、置換基を有していてもよいチオカルバモイルオキシ、置換基を有していてもよいアリールスルホニルオキシ、置換基を有していてもよいアリールスルホニルオキシ、置換基を有していてもよいアリールスルホニルオキシ、置換基を有していてもよいアリールスルホニルオキシ、置換基を有していても

よいアリール、置換基を有していてもよいアリールオキシ、置換基を有していてもよい アリールチオまたは置換基を有していてもよいヘテロ環式基であり、

R²は水素、ハロゲン、ヒドロキシ、置換基を有していてもよい低級アルキル、置換基を 有していてもよい低級アルケニル、置換基を有していてもよい低級アルキニル、置換 基を有していてもよい低級アルコキシ、カルボキシ、置換基を有していてもよい低級 アルコキシカルボニル、置換基を有していてもよい低級アルキルチオ、置換基を有し ていてもよいアシル、置換基を有していてもよいアミノ、置換基を有していてもよいカ ルバモイル、置換基を有していてもよいチオカルバモイル、置換基を有していてもよ いカルバモイルオキシ、置換基を有していてもよいチオカルバモイルオキシ、置換基 を有していてもよいヒドラジノカルボニル、置換基を有していてもよい低級アルキルス ルホニルオキシ、置換基を有していてもよいアリールスルホニルオキシ、置換基を有 していてもよいアリール、置換基を有していてもよいアリールオキシ、置換基を有 していてもよいアリール、置換基を有していてもよいアリールオキシ、置換基を有 していてもよいアリール、置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリールをすまたは置換基を有していてもよいへテロ環式基であり、

R³およびR⁴は各々独立して、水素、ハロゲン、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級アルキニル、置換基を有していてもよいアリールまたは置換基を有していてもよいヘテロ環式基であり、

R⁵、R⁷、R⁸およびR²⁰は各々独立して水素、ハロゲン、ヒドロキシ、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級アルコキシ、置換基を有していてもよい低級アルコキシ、置換基を有していてもよい低級アルキルチオ、置換基を有していてもよいアシル、置換基を有していてもよいアミノ、置換基を有していてもよいアリール、置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリールチオまたは置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリールチオまたは置換基を有していてもよいヘテロ環式基であり、

R²³は水素、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級アルキニル、置換基を有していてもよい低級アルキルスルホニルまたは置換基を有していてもよいアシル、置換基を有していてもよいアリールスルホニル、置換基を有していてもよいアミノ、置換基を有していてもよいアミノ、置換基を有していてもよいアミノ、

てもよいアリールまたは置換基を有していてもよいヘテロ環式基であり、

R⁹およびR¹⁰は各々独立して水素、ハロゲン、シアノ、置換基を有していてもよい低級 アルキル、置換基を有していてもよい低級アルコキシ、置換基を有していてもよいアミ ノまたは置換基を有していてもよいアリールであり、

 X^1 は-O-、-S-、 $-NR^{11}-$ (ここで R^{11} は水素、置換基を有していてもよい低級アルキルスル ル、置換基を有していてもよいアシル、置換基を有していてもよい低級アルキルスル ホニルまたは置換基を有していてもよいアリールスルホニルである)、 $-CR^{12}R^{13}CO-$ 、 $-(CR^{12}R^{13})mO-$ 、 $-(CR^{12}R^{13})mS-$ または $-O(CR^{12}R^{13})m-$ (ここで R^{12} および R^{13} は各々独立して水素または低級アルキルであり、mは1-3の整数である)であり、 R^{17} は水素または低級アルキルである)で示される化合物、その製薬上許容される塩またはそれらの溶媒和物、

(23)R¹が置換基を有していてもよいアリールであり、

R²が置換基を有していてもよい低級アルキルであり、

R³およびR⁴水素であり、

R⁵、R⁷およびR⁸が水素であり、

R⁹およびR¹⁰が各々独立して水素または置換基を有していてもよい低級アルキルであり、

R²⁰およびR²³が各々独立して水素または置換基を有していてもよい低級アルキルであり、

X¹は-O-または-S-である、(22)記載の化合物、その製薬上許容される塩または それらの溶媒和物、

(24)式:

[化88]

$$R^{3}$$
 R^{4} R^{5} R^{16} R^{16} R^{16} R^{10} R^{10} R^{10} R^{10} R^{10} R^{10} R^{10} R^{10}

(式中、

R¹はハロゲン、ヒドロキシ、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級アルキニル、置換基を有していてもよい低級アルコキシ、カルボキシ、置換基を有していてもよい低級アルコキシカルボニル、置換基を有していてもよい低級アルキルチオ、置換基を有していてもよいアシル、置換基を有していてもよいアミノ、置換基を有していてもよいカルバモイル、置換基を有していてもよいチオカルバモイル、置換基を有していてもよいチオカルバモイルオキシ、置換基を有していてもよいチオカルバモイルオキシ、置換基を有していてもよいチオカルバモイルオキシ、置換基を有していてもよいアリールスルホニルオキシ、置換基を有していてもよいアリールスルホニルオキシ、置換基を有していてもよいアリールスルホニルオキシ、置換基を有していてもよいアリール、置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリールチオまたは置換基を有していてもよいヘテロ環式基であり、

R²は水素、ハロゲン、ヒドロキシ、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級アルキニル、置換基を有していてもよい低級アルコキシ、カルボキシ、置換基を有していてもよい低級アルコキシカルボニル、置換基を有していてもよい低級アルキルチオ、置換基を有していてもよいアシル、置換基を有していてもよいアミノ、置換基を有していてもよいカルバモイル、置換基を有していてもよいチオカルバモイル、置換基を有していてもよいカルバモイルオキシ、置換基を有していてもよいチオカルバモイルオキシ、置換基を有していてもよいチオカルバモイルオキシ、置換基を有していてもよいアリカルボニル、置換基を有していてもよい低級アルキルスルホニルオキシ、置換基を有していてもよいアリールスルホニルオキシ、置換基を有していてもよいアリール、置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリールチオまたは置換基を有していてもよいへテロ環式基であり、

R³およびR⁴は各々独立して、水素、ハロゲン、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級アルキニル、置換基を有していてもよいヘテロ環式基であり、

R⁵、R⁶、R⁷およびR⁸は各々独立して水素、ハロゲン、ヒドロキシ、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有して

いてもよい低級アルキニル、置換基を有していてもよい低級アルコキシ、置換基を有していてもよい低級アルキルチオ、置換基を有していてもよいアシル、置換基を有していてもよいアリール、置換基を有していてもよいアリール、置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリールチオまたは置換基を有していてもよいヘテロ環式基であり、

R⁹およびR¹⁰は水素であり、

 X^1 は-O-、-S-、 $-NR^{11}$ -(ここで R^{11} は水素、置換基を有していてもよい低級アルキル、 置換基を有していてもよいアシル、置換基を有していてもよい低級アルキルスルホニルまたは置換基を有していてもよいアリールスルホニルである)、 $-CR^{12}R^{13}CO$ -、 $-(CR^{12}R^{13})mO$ -、 $-(CR^{12}R^{13})mS$ -または $-O(CR^{12}R^{13})m$ -(ここで R^{12} および R^{13} は各々独立して水素または低級アルキルであり、mは1-3の整数である)であり、 R^{15} が低級アルキルであり、

R¹⁶が水素であり、

R¹⁷は水素または低級アルキルである)で示される化合物、その製薬上許容される塩またはそれらの溶媒和物。

(25)R¹が置換基を有していてもよいアリールであり、

R²が置換基を有していてもよい低級アルキルであり、

R³およびR⁴が水素であり、

R⁵、R⁶、R⁷およびR⁸が各々独立して、水素、ハロゲン、置換基を有していてもよい低級アルキルまたは置換基を有していてもよい低級アルコキシであり、

X¹が-O-または-S-である、(24)記載の化合物、その製薬上許容される塩または それらの溶媒和物、

(26)請求項(1)~(25)のいずれかに記載の化合物、その製薬上許容される塩また はそれらの溶媒和物を有効成分とする医薬組成物、

(27)(1)~(25)のいずれかに記載の化合物、その製薬上許容される塩またはそれ らの溶媒和物を有効成分とするペルオキシソーム増殖活性化受容体アゴニストとして 使用する医薬組成物、を提供する。

さらには、以下の発明も提供する。

(X1)式(I):

[化4]

$$R^{2}$$
 R^{3}
 R^{4}
 R^{5}
 R^{8}
 R^{10}
 R^{10}
 R^{10}

(式中、

R¹およびR²は各々独立して水素、ハロゲン、ヒドロキシ、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級アルコキシ、カルボキシ、置換基を有していてもよい低級アルコキシ、カルボキシ、置換基を有していてもよい低級アルコキシカルボニル、置換基を有していてもよい低級アルキルチオ、置換基を有していてもよいアシル、置換基を有していてもよいアミノ、置換基を有していてもよいカルバモイル、置換基を有していてもよいチオカルバモイル、置換基を有していてもよいカルバモイルオキシ、置換基を有していてもよいドラジノカルボニル、置換基を有していてもよいアリールスルホニルオキシ、置換基を有していてもよいアリールスルホニルオキシ、置換基を有していてもよいアリール、置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリール

R³およびR⁴は各々独立して、水素、ハロゲン、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級アルキニル、置換基を有していてもよいアリールまたは置換基を有していてもよいヘテロ環式基であり、

R⁵、R⁶、R⁷およびR⁸は各々独立して水素、ハロゲン、ヒドロキシ、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級アルキニル、置換基を有していてもよい低級アルコキシ、置換基を有していてもよい低級アルキルチオ、置換基を有していてもよいアシル、置換基を有し

ていてもよいアミノ、置換基を有していてもよいアリール、置換基を有していてもよいア リールオキシ、置換基を有していてもよいアリールチオまたは置換基を有していてもよ いヘテロ環式基であり、

R⁹およびR¹⁰は各々独立して水素、ハロゲン、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルコキシ、置換基を有していてもよいアミノまたは置換基を有していてもよいアリールであり、R⁹はR¹⁶と一緒になって結合を形成してもよく、

 X^1 は-O-、-S-、 $-NR^{11}-$ (ここで R^{11} は水素、置換基を有していてもよい低級アルキル、 置換基を有していてもよいアシル、置換基を有していてもよい低級アルキルスルホニルまたは置換基を有していてもよいアリールスルホニル)、 $-CR^{12}R^{13}CO-$ 、 $-(CR^{12}R^{13})mO-$ または $-O(CR^{12}R^{13})m-$ (ここで R^{12} および R^{13} は各々独立して水素または低級アルキルであり、mは1-3の整数)であり、

 X^2 は単結合、-O-、-S-、 $-NR^{14}-$ (ここで R^{14} は水素、置換基を有していてもよい低級アルキル、置換基を有していてもよいアシル、置換基を有していてもよい低級アルキルスルホニルまたは置換基を有していてもよいアリールスルホニル)または $-CR^{15}R^{16}-$ (ここで R^{15} および R^{16} は各々独立して水素または低級アルキルであり、 R^{16} は R^{9} と -緒になって結合を形成してもよい)であり、

 X^{3} V\$\footnote{17}, C(=NR^{17})NR^{18}OR^{19},

[化5]

(ここでR¹⁷ーR¹⁹は各々独立して水素または低級アルキル)である)

で示される化合物、そのプロドラッグ、それらの製薬上許容される塩またはそれらの溶媒和物。

(X2)R¹がハロゲン、置換基を有していてもよい低級アルキル、置換基を有していて もよいアリールまたは置換基を有していてもよいヘテロ環式基である、(X1)記載の化 合物、そのプロドラッグ、それらの製薬上許容される塩またはそれらの溶媒和物。 $(X3)R^2$ が水素、ハロゲン、置換基を有していてもよい低級アルキル、置換基を有し ていてもよい低級アルケニル、置換基を有していてもよいアルキニル、置換基を有し ていてもよい低級アルコキシ、置換基を有していてもよいアシル、置換基を有してい てもよいアリールまたは置換基を有していてもよいアリールチオである、(X1)記載の 化合物、そのプロドラッグ、それらの製薬上許容される塩またはそれらの溶媒和物。 $(X4)R^3$ および R^4 が共に水素である、(X1)記載の化合物、そのプロドラッグ、それら

の製薬上許容される塩またはそれらの溶媒和物。

(X5)R⁵およびR⁶が各々独立して水素、ハロゲン、置換基を有していてもよい低級ア ルキルまたは置換基を有していてもよい低級アルコキシであり、R⁷およびR⁸は共に水 素である、(X1)記載の化合物、そのプロドラッグ、それらの製薬上許容される塩また はそれらの溶媒和物。

(X6)R⁹およびR¹⁰が共に水素である、(X1)記載の化合物、そのプロドラッグ、それら の製薬上許容される塩またはそれらの溶媒和物。

 $(X7)X^{1}$ がO、S、NR¹¹(ここでR¹¹は水素または置換基を有していてもよい低級アル キル)またはCH₂COである、(X1)記載の化合物、そのプロドラッグ、それらの製薬上 許容される塩またはそれらの溶媒和物。

(X8) X²が単結合またはOである、(X1) 記載の化合物、そのプロドラッグ、それらの 製薬上許容される塩またはそれらの溶媒和物。

 $(X9)X^3$ がカルボキシである、(X1)記載の化合物、そのプロドラッグ、それらの製薬 上許容される塩またはそれらの溶媒和物。

(X10)(X1)~(X9)のいずれかに記載の化合物、そのプロドラッグ、それらの製薬 上許容される塩またはそれらの溶媒和物を有効成分とする医薬組成物。

(X11)(X1)~(X9)のいずれかに記載の化合物、そのプロドラッグ、それらの製薬 上許容される塩またはそれらの溶媒和物を有効成分とするペルオキシソーム増殖活 性化受容体アゴニストとして使用する医薬組成物。

(好ましくは上記化合物のうち、 X^3 が $COOR^{17}$ であり、 X^2 が $-CR^{15}R^{16}$ -であり、かつR 16が水素または低級アルキルである化合物を除いた化合物である)

を提供する。

- [0018] さらに、上記化合物、その製薬上許容される塩またはそれらの溶媒和物を投与することを特徴とする、PPAR活性化方法、詳しくは高脂血症、糖尿病、肥満、動脈硬化、アテローム性動脈硬化、高血糖および/またはシンドロームXの治療方法および/または予防方法を提供する。
- [0019] 別の態様として、PPAR活性化のための医薬、詳しくは高脂血症、糖尿病、肥満、動脈硬化、アテローム性動脈硬化、高血糖および/またはシンドロームXの治療および/または予防のための医薬を製造するための、化合物(I)、その製薬上許容される塩またはそれらの溶媒和物の使用を提供する。

発明の効果

[0020] 後述の試験結果から明らかなとおり、本発明化合物はPPARアゴニスト作用を示し、本発明化合物は医薬品、特に高脂血症、糖尿病、肥満、動脈硬化、アテローム性動脈硬化、高血糖および/またはシンドロームXの治療および/または予防のための医薬として非常に有用である。

発明を実施するための最良の形態

- [0021] 本明細書中において、「ハロゲン」とは、フッ素、塩素、臭素およびヨウ素を包含する。特にフッ素および塩素が好ましい。
- [0022] 「低級アルキル」とは、炭素数1~10、好ましくは炭素数1~6、さらに好ましくは炭素数1~3の直鎖または分枝状のアルキルを包含し、例えばメチル、エチル、nープロピル、イソプロピル、nーブチル、イソブチル、secーブチル、tertーブチル、nーペンチル、イソペンチル、ネオペンチル、ヘキシル、イソヘキシル、nーヘプチル、イソヘプチル、nーオクチル、イソオクチル、nーノニルおよびnーデシル等が挙げられる。
- [0023] 「低級アルケニル」とは、任意の位置に1以上の二重結合を有する炭素数2~10、 好ましくは炭素数2~6、さらに好ましくは炭素数2~4の直鎖または分枝状のアルケ ニルを包含する。具体的にはビニル、プロペニル、イソプロペニル、ブテニル、イソブ テニル、プレニル、ブタジエニル、ペンテニル、イソペンテニル、ペンタジエニル、ヘ キセニル、イソヘキセニル、ヘキサジエニル、ヘプテニル、オクテニル、ノネニルおよ びデセニル等を包含する。

- [0024] 「低級アルキニル」とは、炭素数2~10、好ましくは炭素数2~6、さらに好ましくは 炭素数2~4の直鎖状または分枝状のアルキニルを意味し、具体的には、エチニル、 プロピニル、ブチニル、ペンチニル、ヘキシニル、ヘプチニル、オクチニル、ノニニル、デシニル等を包含する。これらは任意の位置に1以上の三重結合を有しており、さらに二重結合を有していてもよい。
- [0025] 「置換基を有していてもよい低級アルキル」、「置換基を有していてもよい低級アル ケニル」、「置換基を有していてもよい低級アルキニル」の置換基としてはハロゲン、ヒ ドロキシ、置換基を有していてもよい低級アルコキシ、アミノ、低級アルキルアミノ、アリ ールアミノ、ヘテロ環アミノ、アシルアミノ、低級アルコキシカルボニルアミノ、メルカプ ト、低級アルキルチオ、アシル、アシルオキシ、置換基を有していてもよいイミノ、カル ボキシ、低級アルコキシカルボニル、カルバモイル、低級アルキルカルバモイル、チ オカルバモイル、低級アルキルチオカルバモイル、カルバモイルオキシ、低級アルキ ルカルバモイルオキシ、チオカルバモイルオキシ、低級アルキルチオカルバモイルオ キシ、スルファモイル、低級アルキルスルファモイル、低級アルキルスルホニル、低級 アルキルスルホニルオキシ、シアノ、ニトロ、シクロアルキル、シクロアルキルオキシ、 置換基を有していてもよいアリール、置換基を有していてもよいアリールオキシ、置換 基を有していてもよいアリールチオ、置換基を有していてもよいアリール低級アルコキ シ、置換基を有していてもよいアリールスルホニルオキシ、置換基を有していてもよい ヘテロ環式基(ここで置換基とはハロゲン、ヒドロキシ、低級アルキル、ハロゲノ低級ア ルキル、ヒドロキシ低級アルキル、低級アルケニル、低級アルコキシ、アリール低級ア ルコキシ、ハロゲノ低級アルコキシ、カルボキシ、低級アルコキシカルボニル、カルバ モイル、低級アルキルカルバモイル、アリールカルバモイル、アシルアミノ、メルカプト 、低級アルキルチオ、アミノ、低級アルキルアミノ、アシル、アシルオキシ、シアノ、ニト ロ、フェニル、ヘテロ環式基等)が挙げられ、任意の位置がこれらから選択される1以 上の基で置換されていてもよい。
- [0026] 「置換基を有していてもよい低級アルキル」、「置換基を有していてもよい低級アルケニル」、「置換基を有していてもよい低級アルキニル」等の置換基としての「ヘテロ環式基」として好ましくはモルホリノ、ピペリジノ、ピペラジノ、フリル、チエニルまたはピリ

ジルである。

- [0027] 「ハロゲノ低級アルキル」、「ヒドロキシ低級アルキル」、「低級アルコキシ」、「ハロゲノ低級アルコキシ」、「アリール低級アルコキシ」、「ヒドロキシ低級アルコキシ」、「低級アルキルストルアミノ」、「低級アルキルチオ」、「低級アルキルスルホニル」、「低級アルキルスルホニル」、「低級アルキルストルストルカルバモイル」、「低級アルキルチオカルバモイル」、「低級アルキルカルバモイルオキシ」、「低級アルキルカルバモイルオキシ」、「低級アルキルカルバモイルオキシ」、「低級アルキルスルファモイル」、「低級アルコキシカルボニル」および「低級アルコキシカルボニル」および「低級アルコキシカルボニル」および「低級アルコキシカルボニル」と同様である。
- [0028] 「置換基を有していてもよい低級アルコキシ」、「置換基を有していてもよい低級アルコキシカルボニル」、「置換基を有していてもよい低級アルキルチオ」、「置換基を有していてもよい低級アルキルチオ」、「置換基を有していてもよい低級アルキルスルホニルオキシ」および「置換されていてもよいイミノ」の置換基は上記「置換基を有していてもよい低級アルキル」の置換基と同様である。
- [0029] 「アシル」とは(a) 炭素数1~10、さらに好ましくは炭素数1~6、最も好ましくは炭素数1~3の直鎖もしくは分枝状のアルキルカルボニルもしくはアルケニルカルボニル、(b) 炭素数4~9、好ましくは炭素数4~7のシクロアルキルカルボニル、(c) 炭素数7~11のアリールカルボニルおよび(d) ホルミルを包含する。具体的には、ホルミル、アセチル、プロピオニル、ブチリル、イソブチリル、バレリル、ピバロイル、ヘキサノイル、アクリロイル、プロピオロイル、メタクリロイル、クロトノイル、シクロプロピルカルボニル、シクロヘキシルカルボニル、シクロオクチルカルボニルおよびベンゾイル等を包含する。
- [0030] 「アシルアミノ」および「アシルオキシ」のアシル部分は上記「アシル」と同様である。
- [0031] 「置換基を有していてもよいアシル」の置換基としては上記「置換基を有していてもよい低級アルキル」の置換基と同様のものが挙げられる。さらに、シクロアルキルカルボニルおよびアリールカルボニルは低級アルキル、ハロゲノ低級アルキル、ヒドロキシ低級アルキル、低級アルケニル、ハロゲノ低級アルケニルおよび/またはヒドロキシ低級アルケニル等で置換されていてもよい。
- [0032] 「置換基を有していてもよいアミノ」の置換基としては上記「置換基を有していてもよ い低級アルキル」と同様のものが挙げられる。さらに低級アルキル、ハロゲノ低級アル

キル、ヒドロキシ低級アルキル、低級アルケニル、ハロゲノ低級アルケニルおよび/またはヒドロキシ低級アルケニル等で置換されていてもよい。

- [0033] 「置換基を有していてもよいカルバモイル」、「置換基を有していてもよいチオカルバモイル」、「置換基を有していてもよいカルバモイルオキシ」、「置換基を有していてもよいチオカルバモイルオキシ」、「置換基を有していてもよいヒドラジノカルボニル」の置換基としては上記「置換基を有していてもよい低級アルキル」と同様のものが挙げられる。
- [0034] 「シクロアルキル」とは、炭素数3~8、好ましくは5または6の環状のアルキルを包含 する。具体的には、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、 シクロヘプチルおよびシクロオクチル等が挙げられる。
- [0035] 「アリール」とは、フェニル、ナフチル、アントリルおよびフェナントリル等を包含する。 また、他の非芳香族炭化水素環式基と縮合しているアリールも包含し、具体的にはインダニル、インデニル、ビフェニルイル、アセナフテニルおよびフルオレニル等が挙げられる。他の非芳香族炭化水素環と縮合している場合、結合手はいずれの環に有していてもよい。アリールの好ましい例としてはフェニルが挙げられる。
- [0036] 「置換基を有していてもよいアリール」の置換基としては、特に記載のない限り、上記「置換基を有していてもよい低級アルキル」の置換基と同様のものが挙げられる。さらに、低級アルキル、ハロゲノ低級アルキル、ヒドロキシ低級アルキル、低級アルケニル、ハロゲノ低級アルケニル、ヒドロキシ低級アルケニル、アルキレンジオキシおよび/またはオキソ等で置換されていてもよい。
- [0037] 「アリールオキシ」、「アリールチオ」、「アリール低級アルコキシ」、「アリールアミノ」および「アリールスルホニルオキシ」のアリール部分は上記「アリール」と同様である。
- [0038] 「置換基を有していてもよいアリールオキシ」、「置換基を有していてもよいアリール チオ」および「置換基を有していてもよいアリールスルホニルオキシ」の置換基は特に 記載のない限り、上記「置換基を有していてもよいアリール」の置換基と同様である。
- [0039] 「ヘテロ環式基」とは、O、SおよびNから任意に選択されるヘテロ原子を環内に1以上有するヘテロ環を包含し、具体的にはピロリル、イミダブリル、ピラブリル、ピリジル、ピリダジニル、ピリミジニル、ピラジニル、トリアブリル、トリアジニル、テトラブリル、イソ

オキサゾリル、オキサゾリル、オキサジアゾリル、イソチアゾリル、チアゾリル、チアジア ゾリル、フリルおよびチエニル等の5〜6員のヘテロアリール:インドリル、イソインドリ ル、インダゾリル、インドリジニル、キノリル、イソキノリル、シンノリニル、フタラジニル、 キナゾリニル、ナフチリジニル、キノキサリニル、プリニル、プテリジニル、ベンゾピラニ ル、ベンズイミダゾリル、ベンズイソオキサゾリル、ベンズオキサゾリル、ベンズオキサ ジアゾリル、ベンゾイソチアゾリル、ベンゾチアゾリル、ベンゾチアジアゾリル、ベンゾフ リル、イソベンゾフリル、ベンゾチエニル、ベンゾトリアゾリル、イミダゾピリジル、トリアゾ ロピリジル、イミダゾチアゾリル、ピラジノピリダジニル、キナゾリニル、テトラヒドロキノリ ル、テトラヒドロベンゾチエニル等の2環の縮合ヘテロ環式基:カルバゾリル、アクリジ ニル、キサンテニル、フェノチアジニル、フェノキサチイニル、フェノキサジニル、ジベ ンゾフリル等の3環の縮合ヘテロ環式基:インドリニル、ジオキサニル、チイラニル、オ キシラニル、オキサチオラニル、アゼチジニル、チアニル、ピロリジニル、ピロリニル、 イミダブリジニル、イミダブリニル、ピラブリジニル、ピラブリニル、ピペリジル、ピペリジノ 、ピペラジニル、ピペラジノ、モルホリニル、モルホリノ、オキサジアジニル、ジヒドロピリ ジル等の非芳香族ヘテロ環式基を包含する。ヘテロ環式基が縮合環式基である場 合、結合手をいずれの環に有していてもよい。

- [0040] R¹およびR²としての「ヘテロ環式基」の好ましい例はピリジル、モルホリノ、ピペラジ ノまたはピペリジノである。
- [0041] 「置換基を有していてもよいヘテロ環式基」の置換基は上記「置換基を有していても よいアリール」と同様である。
- [0042] 「ヘテロ環アミノ」のヘテロ環部分は上記「ヘテロ環式基」と同様である。
- [0043] 「R⁶はR¹⁴と共に隣接する原子と一緒になって環を形成」する、または「R¹⁴はR⁶と共に隣接する原子と一緒になって環を形成」するとは、R¹⁴とR⁶が、式(I)のベンゼン環に縮合する1~3のヘテロ原子を持つ4~7員環を形成することを意味する。ベンゼン環との縮合複素環の好ましい例は、置換基を有していてもよい2環のヘテロ環であり、例えば、インドール、ベンズイミダゾール、1H-インダゾール、2,3-ジヒドロインドール、1,2,3,4-テトラヒドロキノリン、2,3-ジヒドロ-1,4-ベンゾオキザジン、2,3-ジヒドロベンズチアゾール、2,3-ジヒドロベンズオキサゾール、1,2-ジヒドロキノリン、1,4-ジヒドロキ

WO 2005/054213 27 PCT/JP2004/017706

ノリン等が挙げられる。「置換基を有していてもよい2環のヘテロ環」の置換基は、式(I)中のベンゼン環上の置換基と同様の置換基及びオキソ基である。置換基としては、例えば、ハロゲン、ヒドロキシ、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級アルキニル、置換基を有していてもよい低級アルキニル、置換基を有していてもよい低級アルコキシ、置換基を有していてもよいアミノ、置換基を有していてもよいアリール、置換基を有していてもよいアリール、置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリールチオ、置換基を有していてもよいヘテロ環式基、オキソである。特に、ベンゼン環に縮合している複素環上の置換基としては、オキソ、ハロゲン、ヒドロキシ、置換基を有していてもよい低級アルコキシ、置換基を有していてもよい低級アルキルが好ましい。

なお、「置換基を有していてもよいヘテロ環」の好ましい例は、

[化6]

(式中、

R⁵、R⁷、R⁸は各々独立して水素、ハロゲン、ヒドロキシ、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級アルコキシ、置換基を有していてもよい低級アルコキシ、置換基を有していてもよい低級アルキルチオ、置換基を有していてもよいアシル、置換基を有していてもよいアリール、置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリールチオまたは置換基を有していてもよいヘテロ環式基であり、

R⁹およびR¹⁰は各々独立して水素、ハロゲン、シアノ、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルコキシ、置換基を有していてもよいアミノまたは置換基を有していてもよいアリールであり、

R²⁰~R²²は各々独立して水素、ハロゲン、ヒドロキシ、シアノ、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級アルコキシ、置換基を有していてもよい低級アルコキシ、置換基を有していてもよい低級アルキルチオ、置換基を有していてもよいアシル、置換基を有していてもよいアミノ、置換基を有していてもよいアリール、置換基を有していてもよいアリール、置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリールチオまたは置換基を有していてもよいへテロ環式基であり、

 X^1 は-O-、-S-、 $-NR^{11}-$ (ここで R^{11} は水素、置換基を有していてもよい低級アルキルスル 、置換基を有していてもよいアシル、置換基を有していてもよい低級アルキルスル ホニルまたは置換基を有していてもよいアリールスルホニル)、 $-CR^{12}R^{13}CO-$ 、 $-(CR^{12}R^{13})mO-$ 、 $-(CR^{12}R^{13})mS-$ または $-O(CR^{12}R^{13})m-$ (ここで R^{12} および R^{13} は 各々独立して水素または低級アルキルであり、mは1-3の整数)であり(特に好ましくは、-O-、-S-、特に-S-である)、

 X^3 は $COOR^{17}$ (ここで R^{17} は水素または低級アルキル)である)である。

[0044] 「 R^6 と R^9 および R^{10} は隣接する炭素原子と一緒になって環を形成」する、または「 R^9 および R^{10} と R^6 は隣接する炭素原子と一緒になって環を形成」するとは、 R^6 と R^9 および R^{10} が、式(I)のベンゼン環に縮合する0~3のヘテロ原子を持つ4~7員環を形成

することを意味する。ベンゼン環との縮合環の好ましい例は、置換基を有していてもよ い炭素数8~11の環の炭素環(特に、置換基を有していてもよいナフタレン)または 置換基を有していてもよい2環のヘテロ環である。 例えば、インドール、ベンゾチオフ ェン、ベンゾフラン、ベンゾイソキサゾール、1H-インダゾール、ナフタレン、キナゾリン 、イソキノリン、2H-クロメン、1,4-ジヒドロナフタレン、1,2,3,4-テトラヒドロナフタレン等 が挙げられる。「置換基を有していてもよい炭素数8~11の環の炭素環(特に、置換 基を有していてもよいナフタレン)」および「置換基を有していてもよい2環のヘテロ環 |の置換基は、式(I)中のベンゼン環上の置換基と同様の置換基及びオキソ基である 。置換基としては、例えば、ハロゲン、ヒドロキシ、置換基を有していてもよい低級アル キル、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級ア ルキニル、置換基を有していてもよい低級アルコキシ、置換基を有していてもよい低 級アルキルチオ、置換基を有していてもよいアシル、置換基を有していてもよいアミノ 、置換基を有していてもよいアリール、置換基を有していてもよいアリールオキシ、置 換基を有していてもよいアリールチオ、置換基を有していてもよいヘテロ環式基、オ キソである。特に、ベンゼン環に縮合している複素環上の置換基としては、オキソ、ハ ロゲン、ヒドロキシ、置換基を有していてもよい低級アルコキシ、置換基を有していて もよい低級アルキルチオ、置換基を有していてもよい低級アルキルが好ましい。

なお、「置換基を有していてもよい炭素数8~11の環の炭素環(特に、置換基を有していてもよいナフタレン)」および「置換基を有していてもよい2環のヘテロ環」の好ましい例は、

[化7]

WO 2005/054213 30 PCT/JP2004/017706

(式中、

R⁵、R⁷、R⁸およびR²⁰~R²²は各々独立して水素、ハロゲン、ヒドロキシ、置換基を有していてもよい低級アルキール、置換基を有していてもよい低級アルケール、置換基を有していてもよい低級アルコキシ、置換基を有していてもよい低級アルコキシ、置換基を有していてもよいアシル、置換基を有していてもよいアシル、置換基を有していてもよいアシール、置換基を有していてもよいアリール、置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリールチオまたは置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリールチオまたは置換基を有していてもよいへテロ環式基であり、

 X^1 は-O-、-S-、 $-NR^{11}-$ (ここで R^{11} は水素、置換基を有していてもよい低級アルキルスル ル、置換基を有していてもよいアシル、置換基を有していてもよい低級アルキルスル ホニルまたは置換基を有していてもよいアリールスルホニル)、 $-CR^{12}R^{13}CO-$ 、 $-(CR^{12}R^{13})mO-$ 、 $-(CR^{12}R^{13})mS-$ または $-O(CR^{12}R^{13})m-$ (ここで R^{12} および R^{13} は 各々独立して水素または低級アルキルであり、mは1-3の整数)であり(特に好ましくは、-O-、-S-、特に-S-である)、

R¹⁴は水素、置換基を有していてもよい低級アルキル、置換基を有していてもよいアシル、置換基を有していてもよい低級アルキルスルホニルまたは置換基を有していてもよいアリールスルホニルであり、

 R^{15} 、 R^{16} 、 R^{26} および R^{27} は各々独立して水素または低級アルキルであり、 X^{3} は $COOR^{17}$ (ここで R^{17} は水素または低級アルキル)である)である。

[0045] 「 R^6 は R^9 と共に隣接する炭素原子と一緒になって環を形成」する、または「 R^9 は R^6 と 共に隣接する炭素原子と一緒になって環を形成」するとは、R⁶とR⁹が、式(I)のベン ゼン環に縮合する0~3のヘテロ原子を持つ4~7員環を形成することを意味する。べ ンゼン環との縮合環の好ましい例は、置換基を有していてもよい炭素数8〜11の環 の炭素環(特に、置換基を有していてもよいナフタレン)または置換基を有していても よい2環のヘテロ環である。「置換基を有していてもよい炭素数8~11の環の炭素環(特に、置換基を有していてもよいナフタレン)」および「置換基を有していてもよい2環 のヘテロ環 | の置換基は、式(I)中のベンゼン環上の置換基と同様の置換基及びオ キソ基である。 置換基としては、例えば、ハロゲン、ヒドロキシ、 置換基を有していても よい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していて もよい低級アルキニル、置換基を有していてもよい低級アルコキシ、置換基を有して いてもよい低級アルキルチオ、置換基を有していてもよいアシル、置換基を有してい てもよいアミノ、置換基を有していてもよいアリール、置換基を有していてもよいアリー ルオキシ、置換基を有していてもよいアリールチオ、置換基を有していてもよいヘテロ 環式基、オキソである。特に、ベンゼン環に縮合している複素環上の置換基としては 、オキソ、ハロゲン、ヒドロキシ、置換基を有していてもよい低級アルコキシ、置換基を 有していてもよい低級アルキルチオ、置換基を有していてもよい低級アルキルが好ま しい。

なお、「置換基を有していてもよい炭素数8~11の環の炭素環(特に、置換基を有していてもよいナフタレン)」および「置換基を有していてもよい2環のヘテロ環」の好ましい例は、

[化8]

(式中、

R⁵、R⁷、R⁸、R²⁰およびR²¹は各々独立して水素、ハロゲン、ヒドロキシ、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級アルコキシ、置換基を有していてもよい低級アルコキシ、置換基を有していてもよいアシル、置換基を有していてもよいアシル、置換基を有していてもよいアリール、置換基を有していてもよいアリール、置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリールチオまたは置換基を有していてもよいアリールチオまたは置換基を有していてもよいアフロ環式基であり、

R¹⁰は各々独立して水素、ハロゲン、シアノ、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルコキシ、置換基を有していてもよいアミノまたは置換基を有していてもよいアリールであり、

 X^1 は-O-、-S-、 $-NR^{11}-$ (ここで R^{11} は水素、置換基を有していてもよい低級アルキルスルル、置換基を有していてもよいアシル、置換基を有していてもよい低級アルキルスルホニルまたは置換基を有していてもよいアリールスルホニル)、 $-CR^{12}R^{13}CO-$ 、 $-(CR^{12}R^{13})mO-$ 、 $-(CR^{12}R^{13})mS-$ または $-O(CR^{12}R^{13})m-$ (ここで R^{12} および R^{13} は各々独立して水素または低級アルキルであり、mは1-3の整数)であり(特に好ましくは、-O-、-S-、特に-S-である)、

 R^{15} および R^{16} は各々独立して水素または低級アルキルであり、 X^{3} は $COOR^{17}$ (ここで R^{17} は水素または低級アルキル)である)である。

[0046] 「R⁶とR¹⁵およびR¹⁶は隣接する炭素原子と一緒になって環を形成」する、または「R¹ およびR¹⁶とR⁶は隣接する炭素原子と一緒になって環を形成」するとは、R⁶とR¹⁵およびR¹⁶が、式(I)のベンゼン環に縮合する0~3のヘテロ原子を持つ4~7員環を形成することを意味する。ベンゼン環との縮合環の好ましい例は、置換基を有していてもよい炭素数8~11の環の炭素環(特に、置換基を有していてもよいナフタレン)または置換基を有していてもよい2環のヘテロ環である。例えば、インドール、ベンゾチオフェン、ベンゾフラン、ベンゾイソキサゾール、1H-インダゾール、ナフタレン、キナゾリン、イソキノリン、2H-クロメン、1,4-ジヒドロナフタレン、1,2,3,4-テトラヒドロナフタレン等が挙げられる。「置換基を有していてもよい炭素数8~11の環の炭素環(特に、置

WO 2005/054213 33 PCT/JP2004/017706

換基を有していてもよいナフタレン)」および「置換基を有していてもよい2環のヘテロ環」の置換基は、式(I)中のベンゼン環上の置換基と同様の置換基及びオキソ基である。置換基としては、例えば、ハロゲン、ヒドロキシ、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級アルキニル、置換基を有していてもよい低級アルコキシ、置換基を有していてもよいでもよい低級アルキルチオ、置換基を有していてもよいアシル、置換基を有していてもよいアミノ、置換基を有していてもよいアリール、置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリールチオ、置換基を有していてもよいへテロ環式基、オキソである。特に、ベンゼン環に縮合している複素環上の置換基としては、オキソ、ハロゲン、ヒドロキシ、置換基を有していてもよい低級アルコキシ、置換基を有していてもよい低級アルコキシ、置換基を有していてもよい低級アルキルが好ましい

なお、「置換基を有していてもよい炭素数8~11の環の炭素環(特に、置換基を有していてもよいナフタレン)」および「置換基を有していてもよい2環のヘテロ環」の好ましい例は、

[化9]

(式中、

R⁵、R⁷、R⁸およびR²⁰~R²²は各々独立して水素、ハロゲン、ヒドロキシ、置換基を有していてもよい低級アルキール、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級アルコキシ、置換基を有していてもよい低級アルコキシ、置換基を有していてもよいアシル、置換基を有していてもよいアシル、置換基を有していてもよいアシール、置換基を有していてもよいアリール、置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリールチオまたは置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリールチオまたは置換基を有していてもよいへテロ環式基であり、

R⁹およびR¹⁰は各々独立して水素、ハロゲン、シアノ、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルコキシ、置換基を有していてもよいアミノまたは置換基を有していてもよいアリールであり、

R²³は水素、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級アルキニル、置換基を有していてもよいに級アルキルスルホニルまたは置換基を有していてもよいアシル、置換基を有していてもよいアリールスルホニル、置換基を有していてもよいアミノ、置換基を有していてもよいアリールまたは置換基を有していてもよいへテロ環式基であり、

 X^1 は-O-、-S-、 $-NR^{11}-$ (ここで R^{11} は水素、置換基を有していてもよい低級アルキルスルル、置換基を有していてもよいアシル、置換基を有していてもよい低級アルキルスルホニルまたは置換基を有していてもよいアリールスルホニル)、 $-CR^{12}R^{13}CO-$ 、 $-(CR^{12}R^{13})mO-$ 、 $-(CR^{12}R^{13})mS-$ または $-O(CR^{12}R^{13})m-$ (ここで R^{12} および R^{13} は各々独立して水素または低級アルキルであり、mは1-3の整数)であり(特に好ましくは、-O-、-S-、特に-S-である)、

 X^3 はCOOR¹⁷(ここでR¹⁷は水素または低級アルキル)である)である。

[0047] 「R⁶はR²⁴と共に隣接する炭素原子と一緒になって環を形成」する、または「R²⁴はR⁶と共に隣接する炭素原子と一緒になって環を形成」するとは、R⁶とR²⁴が、式(I)のベンゼン環に縮合する0~3のヘテロ原子を持つ4~7員環を形成することを意味する。ベンゼン環との縮合環の好ましい例は、置換基を有していてもよい炭素数8~11の環の炭素環または置換基を有していてもよい2環のヘテロ環である。「置換基を有していてもよい2環のヘテロ環である。「置換基を有し

ていてもよい炭素数8~11の環の炭素環」および「置換基を有していてもよい2環の ヘテロ環」の置換基は、式(I)中のベンゼン環上の置換基と同様の置換基及びオキソ 基である。置換基としては、例えば、ハロゲン、ヒドロキシ、置換基を有していてもよい 低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級アルコキシ、置換基を有していてもよい低級アルコキシ、置換基を有していてもよい低級アルコキン、置換基を有していてもよいアシル、置換基を有していてもよいアミノ、置換基を有していてもよいアリール 、置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリールチオ、置換基を有していてもよいでもよいへテロ環式基、オキソである。特に、ベンゼン環に縮合している複素環上の置換基としては、オキソ、ハロゲン、ヒドロキシ、置換基を有していてもよい低級アルコキシ、置換基を有していてもよい低級アルコキシ、置換基を有していてもよい低級アルコキシ、置換基を有していてもよい低級アルコキシ、置換基を有していてもよい低級アルコキシ、置換基を有していてもよい低級アルコキン、置換基を有していてもよい低級アルキルが好ましい

なお、「置換基を有していてもよい炭素数8〜11の環の炭素環」および「置換基を 有していてもよい2環のヘテロ環」の好ましい例は、

[化10]

(式中、

R⁵、R⁷、R⁸およびR²⁰ーR²³は各々独立して水素、ハロゲン、ヒドロキシ、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を

有していてもよい低級アルキニル、置換基を有していてもよい低級アルコキシ、置換 基を有していてもよい低級アルキルチオ、置換基を有していてもよいアシル、置換基 を有していてもよいアミノ、置換基を有していてもよいアリール、置換基を有していても よいアリールオキシ、置換基を有していてもよいアリールチオまたは置換基を有していてもよいでもよいです。 いてもよいヘテロ環式基であり、

R⁹、R¹⁰およびR²⁵は各々独立して水素、ハロゲン、シアノ、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルコキシ、置換基を有していてもよいアミノまたは置換基を有していてもよいアリールであり、

 X^1 は-O、-S-、 $-NR^{11}$ -(ここで R^{11} は水素、置換基を有していてもよい低級アルキル、 置換基を有していてもよいアシル、置換基を有していてもよい低級アルキルスルホニルまたは置換基を有していてもよいアリールスルホニル)、 $-CR^{12}R^{13}CO$ -、 $-(CR^{12}R^{13})mO$ -、 $-(CR^{12}R^{13})mS$ -または $-O(CR^{12}R^{13})m$ -(ここで R^{12} および R^{13} は 各々独立して水素または低級アルキルであり、mは1~3の整数)であり(特に好ましくは、-O-、-S-、特に-S-である)、

 X^3 はCOOR¹⁷(ここで R^{17} は水素または低級アルキル)である)である。

[0048] 「 R^9 は R^{25} と一緒になって結合を形成」する、または「 R^{25} は R^9 と一緒になって結合を形成」するとは、

[化11]

(式中、

R¹⁰およびR²⁴は各々独立して水素、ハロゲン、シアノ、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルコキシ、置換基を有していてもよいアミノまたは置換基を有していてもよいアリールであり、

 X^3 は $COOR^{17}$ (ここで R^{17} は水素または低級アルキル)である) であることを意味する。

「 R^9 は R^{10} と一緒になって環を形成」するとは、 R^9 と R^{10} が、0~3のヘテロ原子を持 [0049] つ3~7員環を形成することを意味する。該環の好ましい例は、置換基を有していても よい炭素数3~7の炭素単環または置換基を有していてもよいヘテロ単環である。例 えば、シクロアルカン(シクロプロパン、シクロブタン、シクロペンタン、シクロヘキサン およびシクロヘプタン)およびオキサン等が挙げられる。「置換基を有していてもよい 炭素数3~7の炭素単環(特に、置換基を有していてもよい3員環)」および「置換基を 有していてもよいヘテロ単環」の置換基は、式(I)中のベンゼン環上の置換基と同様 の置換基である。置換基としては、例えば、ハロゲン、ヒドロキシ、置換基を有してい てもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有して いてもよい低級アルキニル、置換基を有していてもよい低級アルコキシ、置換基を有 していてもよい低級アルキルチオ、置換基を有していてもよいアシル、置換基を有し ていてもよいアミノ、置換基を有していてもよいアリール、置換基を有していてもよいア リールオキシ、置換基を有していてもよいアリールチオ、置換基を有していてもよいへ テロ環式基、オキソである。特に、ハロゲン、ヒドロキシ、置換基を有していてもよい低 級アルコキシ、置換基を有していてもよい低級アルキルチオ、置換基を有していても よい低級アルキルが好ましい。

なお、「置換基を有していてもよい炭素数3~7の炭素単環(特に、置換基を有していてもよい3員環)」および「置換基を有していてもよい~テロ単環」の好ましい例は、 [化12]

(式中、

 R^5 、 R^6 、 R^7 、 R^8 および R^{20} は各々独立して水素、ハロゲン、ヒドロキシ、置換基を有し

ていてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級アルキニル、置換基を有していてもよい低級アルコキシ、置換基を有していてもよい低級アルキルチオ、置換基を有していてもよいアシル、置換基を有していてもよいアリール、置換基を有していてもよいアリール、置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリールチオまたは置換基を有していてもよいアリールチオまたは置換基を有していてもよいへテロ環式基であり、

 X^1 は-O-、-S-、 $-NR^{11}-$ (ここで R^{11} は水素、置換基を有していてもよい低級アルキルスルル、置換基を有していてもよいアシル、置換基を有していてもよい低級アルキルスルホニルまたは置換基を有していてもよいアリールスルホニル)、 $-CR^{12}R^{13}CO-$ 、 $-(CR^{12}R^{13})mO-$ 、 $-(CR^{12}R^{13})mS-$ または $-O(CR^{12}R^{13})m-$ (ここで R^{12} および R^{13} は各々独立して水素または低級アルキルであり、mは1-3の整数)であり(特に好ましくは、-O-、-S-、特に-S-である)、

 X^2 は単結合、-O-、-S-、-SO-、 $-SO_2-$ 、-C=C-、 $-NR^{14}-$ (ここで R^{14} は水素、置換基を有していてもよい低級アルキル、置換基を有していてもよいアシル、置換基を有していてもよい低級アルキルスルホニルまたは置換基を有していてもよいアリールスルホニルである。) $-CR^{15}R^{16}-$ (ここで R^{15} および R^{16} は各々独立して水素または低級アルキルである。)または $-COCR^{23}R^{24}-$ (ここで R^{23} および R^{24} は各々独立して水素または水素または低級アルキルである。)

X³はCOOR¹7(ここでR¹7は水素または低級アルキル)である。

[0050] 「R¹⁰はR¹⁵と共に隣接する炭素原子と一緒になって環を形成」する、または「R¹⁵はR ¹⁰と共に隣接する炭素原子と一緒になって環を形成」するとは、R¹⁵とR¹⁰が、0~3の ~テロ原子を持つ4~7員環を形成することを意味する。該環の好ましい例は、置換 基を有していてもよい炭素数3~7の炭素単環または置換基を有していてもよい~テロ単環である。例えば、チオフェン、ピリミジン、フラン、ピリジン、イミダゾール、イソチアゾール、イソキサゾール、ピリダジン、ピラジン、チアゾール、オキサゾール等が挙 げられる。

特に、 R^{16} が R^9 と一緒になって結合を形成している場合、 R^9 および R^{10} が R^{15} と共に 隣接する炭素原子と一緒になって環を形成している場合が好ましい。「置換基を有し ていてもよい炭素数3~7の炭素単環」および「置換基を有していてもよいへテロ単環」の置換基は、式(I)中のベンゼン環上の置換基と同様の置換基である。置換基としては、例えば、ハロゲン、ヒドロキシ、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルキニル、置換基を有していてもよい低級アルキニル、置換基を有していてもよい低級アルコキン、置換基を有していてもよい低級アルキルチオ、置換基を有していてもよいアシル、置換基を有していてもよいアミノ、置換基を有していてもよいアリール、置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリールチオ、置換基を有していてもよいアリールチオ、置換基を有していてもよいへテロ環式基、オキソである。特に、ハロゲン、ヒドロキシ、置換基を有していてもよい低級アルコキシ、置換基を有していてもよい低級アルコキシ、置換基を有していてもよい低級アルコキン、置換基を有していてもよい低級アルキルが好ましい。

なお、「置換基を有していてもよい炭素数3~7の炭素単環(特に、置換基を有していてもよいフェニル)」および「置換基を有していてもよいヘテロ単環」の好ましい例は

[化13]

WO 2005/054213 40 PCT/JP2004/017706

(式中、

R⁵、R⁶、R⁷、R⁸、R²⁰~R²²は各々独立して水素、ハロゲン、ヒドロキシ、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級アルコキシ、置換基を有していてもよい低級アルコキシ、置換基を有していてもよいアシル、置換基を有していてもよいアシル、置換基を有していてもよいアシル、置換基を有していてもよいアリール、置換基を有していてもよいアリール、置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリールチオまたは置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリールチオまたは置換基を有していてもよいアフールチオまたは置換基を有していてもよいアフールチオまたは置換基を有していてもよいヘテロ環式基であり、

X¹は一O-、-S-、-NR¹¹-(ここでR¹¹は水素、置換基を有していてもよい低級アルキル、置換基を有していてもよいアシル、置換基を有していてもよい低級アルキルスルホニルまたは置換基を有していてもよいアリールスルホニル)、-CR¹²R¹³CO-、-(C

 $R^{12}R^{13}$) mO —、 $-(CR^{12}R^{13})$ mS —または $-O(CR^{12}R^{13})$ m — (ここで R^{12} および R^{13} は 各々独立して水素または低級アルキルであり、mは1 — 3の整数)であり(特に好ましくは、-O —、-S —、特に-S — である)、

 X^3 はCOOR¹⁷(ここで R^{17} は水素または低級アルキル)である)である。

[0051] 「 R^9 は R^{16} と一緒になって結合を形成」する、または「 R^{16} は R^9 と一緒になって結合を形成」するとは、

[化14]

(式中、

R¹⁰およびR¹⁵は各々独立して水素、ハロゲン、シアノ、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルコキシ、置換基を有していてもよいアミノまたは置換基を有していてもよいアリールであり、

 X^3 は $COOR^{17}$ (ここで R^{17} は水素または低級アルキル)である)であることを意味する。

[0052] 「R¹⁶はR⁹およびR¹⁵はR¹⁰と各々一緒になって結合を形成」するとは、 [化15]

(式中、

 X^3 は $COOR^{17}$ (ここで R^{17} は水素または低級アルキル)である)であることを意味する。

[0053] 本発明化合物には、各々の化合物の生成可能であり、製薬上許容される塩を包含する。「製薬上許容される塩」としては、例えば塩酸、硫酸、硝酸またはリン酸等の無

機酸の塩;パラトルエンスルホン酸、メタンスルホン酸、シュウ酸またはクエン酸等の 有機酸の塩;アンモニウム、トリメチルアンモニウムまたはトリエチルアンモニウム等の 有機塩基の塩;ナトリウムまたはカリウム等のアルカリ金属の塩;およびカルシウムまた はマグネシウム等のアルカリ土類金属の塩等を挙げることができる。

- [0054] 本発明化合物はその溶媒和物を包含し、化合物(I)に対し、任意の数の溶媒分子 と配位していてもよい。好ましくは水和物である。
- [0055] 本発明化合物(I)が不斉炭素原子を有する場合には、ラセミ体および全ての立体 異性体(ジアステレオマー、鏡像異性体等)を含む。また、本発明化合物(I)が二重 結合を有する場合には、二重結合の置換基配置につき、幾何異性体が存在するとき はそのいずれをも含む。
- [0056] 本発明化合物(I)は、例えば次の方法で合成する事が出来る。 (第1法)化合物(Ia)($X^1=O$ 、($CR^{12}R^{13}$)mO、 $O(CR^{12}R^{13})$ m)の合成 [化16]

$$R^{2}$$
 R^{3}
 R^{4}
 R^{5}
 R^{6}
 R^{9}
 R^{10}
 R^{10}

(式中、AおよびDは一方がOHで他方が $(CR^{12}R^{13})$ mOHであるか、共にOHであり、その他の記号は前記と同義)

式(II-1)で示される化合物と式(III)で示される化合物を光延反応に付し化合物(Ia)を得ることができる。光延反応は常法に従って行えばよいが、好ましくはN, N-ジメチルホルムアミド、ジメチルスルホキシド、芳香族炭化水素類(例、トルエン、ベンゼン、キシレンなど)、飽和炭化水素類(例、シクロヘキサン、ヘキサンなど)、ハロゲン化炭化水素類(例、ジクロロメタン、1, 2-ジクロロエタンなど)、エーテル類(例、テトラヒドロフラン、ジオキサンなど)、ケトン類(例、アセトン、メチルエチルケトンなど)、ニトリル類(例、アセトニトリルなど)、水およびそれらの混合溶媒等の溶媒中、アゾジカルボン酸エステルやアミド(ジエチルアゾジカルボキシレートなど)とトリフェニルホスフィン等のホスフィン類存在下、一30℃~150℃、好ましくは0℃~100℃で、0.5~90

時間反応させればよい。

式(II-1)および式(III)で示される化合物は公知の化合物を用いてもよく、公知化合物から常法により誘導された化合物を用いてもよい。

[0057] (第2法)化合物(Ib)(X¹=O、SまたはNR¹¹)の合成 [化17]

(式中、LGはハロゲン、低級アルキルスルホニルオキシ等の脱離基であり、その他の記号は前記と同義)

式(II-2)で示される化合物と式(III)で示される化合物を反応させることにより、化合物(Ib)を合成することもできる。反応は適当な溶媒中、塩基存在下、-10~180℃、好ましくは0~150℃で、0.5~90時間行えばよい。溶媒は上記第1法に記載と同様の溶媒を用いることができる。塩基としては例えば金属水素化物(例、水素化ナトリウム、水素化カリウムなど)、金属水酸化物(例、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化バリウムなど)、金属炭酸塩(例、炭酸ナトリウム、炭酸カリウム、炭酸カルシウム、炭酸セシウムなど)、金属アルコキシド(例、ナトリウムメトキシド、ナトリウムエトキシド、カリウムtert-ブトキシドなど)、炭酸水素ナトリウム、金属ナトリウム、有機アミン(トリエチルアミン、DBUなど)等が挙げられる。

式(II-2)および式(III)で示される化合物は公知の化合物を用いてもよく、公知の 化合物から常法により誘導された化合物を用いてもよい。

[0058] (第3法)化合物(Ic)(X¹=CR¹²R¹³CO)の合成式(Ic)で示される化合物で表される化合物は以下のルートで合成できる。「化18]

WO 2005/054213 44 PCT/JP2004/017706

(式中、 X^2 はO、Sまたは NR^{14} であり、Rは低級アルキル、LGはハロゲン、低級アルキルスルホニル等の脱離基、Halはハロゲン、Proは保護基であり、その他の記号は前記と同義)

式(II-3)で示される化合物と式(IV)で示される化合物を付加反応に付し、式(V)で示される化合物を得る。反応は、好ましくは適当な溶媒中、塩基存在下で-50℃ -150℃、好ましくは-20℃-100℃で、0.5~60時間反応させればよい。溶媒としては上記第1法に記載のものを用いることができ、塩基としては上記第2法に記載のものを用いることができる。

次に化合物(V)を酸で処理して式(VI)で示される化合物を得る。反応は酢酸、水等の溶媒中または無溶媒下、塩酸、硫酸等の酸を用いて0℃~180℃、好ましくは20℃~150℃で、0.5~90時間反応させればよい。目的化合物がR¹³が水素である場合は本工程で目的化合物が得られるが、目的化合物がR¹³が置換基を有していてもよい低級アルキルである場合には、本工程の後または次工程の後等、適当な段階で常法によりアルキル化すればよい。

最後に化合物(VI)を脱保護し、得られたフェノール体とハロゲン化合物を反応させて目的化合物(Ic)を得る。脱保護は常法により行うことができる。反応は塩基存在下、適当な溶媒中で目的とするCR⁹R¹⁰X³基を有する対応するハロゲン化物と−10−180℃、好ましくは0−150℃で0.5~90時間反応させればよい。溶媒としては上記第1法に記載のものを用いることができる。塩基としては、上記第2法に記載のものを用いることができる。丸(II-3)および式(VI)で示される化合物は公知の化合物を用

WO 2005/054213 45 PCT/JP2004/017706

いてもよく、公知の化合物から常法により誘導された化合物を用いてもよい。

[0059] (第4法)化合物(Id)(X³=C(=NH)NHOH)の合成

式(Id)で表される化合物は以下の方法で合成できる。

[化19]

(式中、各記号は前記と同義)

式(VIII)で示される化合物をヒドロキシルアミンと反応させ、目的化合物(Id)を得ることができる。反応は適当な溶媒中で0℃~150℃、好ましくは20℃~100℃で0.5時間~90時間反応させればよい。溶媒としては上記第1法に記載のものを用いることができる。塩基としては、上記第2法に記載のものを用いることができる。

式(VIII)で示される化合物は公知の化合物を用いてもよく、公知の化合物から常法により誘導された化合物を用いてもよい。

[0060] (第5法)化合物(Ie)(X³=オキサジアゾロン)の合成 [化20]

(式中、各記号は前記と同義)

上記第4法で得られた式(Id)で示される化合物とCDI、ホスゲン、トリホスゲン等を 反応させ、目的化合物(Ie)を得ることができる。反応は適当な溶媒中で−30℃~15 0℃、好ましくは0℃~100℃で0.5時間~90時間反応させればよい。溶媒としては 上記第1法に記載のものを用いることができる。塩基としては、上記第2法に記載のも のを用いることができる。 目的化合物(Ie)のオキサジアゾロンが R^{17} で置換されている化合物である場合、上記方法により R^{17} がHである化合物を得た後、常法により置換基を導入する反応に付せばよい。

[0061] (第6法)化合物(If)(X³=オキサジアジノン)の合成 [化21]

(式中、各記号は前記と同義)

上記第4法で得られた式(Id)で示される化合物とハロゲン化合物を反させ、目的化合物(Ie)を得ることができる。反応は適当な溶媒中で−30℃~150℃、好ましくは0℃~100℃で0.5時間~90時間反応させればよい。溶媒としては上記第1法に記載のものを用いることができる。塩基としては、上記第2法に記載のものを用いることができる。

[0062] (第7法) 化合物(Ig)(X¹=O, SまたはNR¹¹)の合成式(Ig)で示される化合物で表される化合物は以下のルートで合成できる。[化22]

(式中、各記号は前記と同義)

式(II-2)で示される化合物と式(IX)で示される化合物を付加反応に付し、式(X)で示される化合物を得る。反応は好ましくは適当な溶媒中、塩基存在下で-50℃~150℃、好ましくは-20℃~100℃で、0.5~60時間反応させればよい。溶媒としては上記第1法に記載のものを用いることができ、塩基としては上記第2法に記載のものを用いることができる。

次に化合物(X)を化合物(XI)とカップリング反応に付し、式(Ig)で示される化合物を得る。反応は、好ましくは適当な溶媒中、塩基およびパラジウム触媒存在下で−50℃~200℃、好ましくは 20℃~150℃で、0.5~60時間反応させればよい。溶媒としては上記第1法に記載のものを用いることができ、塩基としては上記第2法に記載のものを用いることができる。パラジウム触媒としては種々パラジウム触媒を用いることができるが、好ましくはトリス(ビスベンジリデンアセトン)ジパラジウムをトリーoートリルホスフィンと組み合わせたもの、または酢酸パラジウムとトリフェニルホスフィンと組み合わせたものなどが用いられる。

式(II-2)、式(IX)および式(XI)で示される化合物は公知の化合物を用いてもよく、公知の化合物から常法により誘導された化合物を用いてもよい。

[0063] 上記のいずれかの方法により得られた化合物が X^3 = $COOR^{17}$ のエステル体である場合、この化合物を常法により加水分解して X^3 =COOHのカルボン酸体を得ることができる。

必要に応じ、上記製造法の適当な段階においていずれかの置換基を公知の有機 合成反応を利用し、異なる置換基に変換してもよい。

例えば、いずれかの化合物がハロゲンを有している場合、DMF、テトラヒドロフラン等の溶媒中、水素化ナトリウム、水素化カリウム等の塩基および水酸化アルカリ金属、炭酸水素アルカリ金属、炭酸アルカリ金属、有機塩基等の脱酸剤存在下、-20℃-100℃でアルコールと反応させれば置換基が低級アルコキンに変換された化合物が得られる。

また、いずれかの化合物がヒドロキシを有している場合、二クロム酸ピリジニウム、ジョーンズ試薬、二酸化マンガン、過マンガン酸カリウム、四酸化ルテニウム等の酸化剤とジメチルホルムアミド、テトラヒドロフラン、ジクロロメタン、ベンゼン、アセトン等の

溶媒中で反応させることにより、置換基がカルボキシに変換された化合物が得られる

[0064] また、必要であれば、適当な段階で化合物のアミノまたはヒドロキシを常法により保護した後に反応に付し、適当な段階で酸または塩基で処理して脱保護してもよいアミノ保護基としてはフタルイミド、低級アルコキシカルボニル、低級アルケニルオキシカルボニル、ハロゲノアルコキシカルボニル、アリール低級アルコキシカルボニル、トリアルキルシリル、低級アルキルスルホニル、ハロゲノ低級アルキルスルホニル、アリールスルホニル、低級アルキルカルボニル、アリールカルボニル等を使用することができる。

ヒドロキシ保護基としてはアルキル(tーブチル等)、アラルキル(トリフェニルメチル、ベンジル)、トリアルキルシリル(tーブチルジメチルシリル、トリイソプロピルシリル等)、アルキルジアリールシリル(tーブチルジフェニルシリル等)、トリアラルキルシリル(トリベンジルシリル等)、アルコキシアルキル(メトキシメチル、1ーエトキシエチル、1ーメチルー1ーメトキシエチル等)、アルコキシアルコキシアルキル(メトキシエトキシメチル等)、アルキルチオアルキル(メチルチオメチル等)、テトラヒドロピラニル(テトラヒドロピランー2ーイル、4ーメトキシテトラヒドロピランー4ーイル等)、テトラヒドロチオピラニル(テトラヒドロチオピランー2ーイル等)、テトラヒドロフランー2ーイル等)、テトラヒドロチオンラニル(テトラヒドロナオフラニル(テトラヒドロナオフランー2ーイル等)、アラルキルオキシアルキル(ベンジルオキシメチル等)アルキルスルホニル、アシル、pートルエンスルホニル等が挙げられる。

脱保護反応はテトラヒドロフラン、ジメチルホルムアミド、ジエチルエーテル、ジクロロメタン、トルエン、ベンゼン、キシレン、シクロヘキサン、ヘキサン、クロロホルム、酢酸エチル、酢酸ブチル、ペンタン、ヘプタン、ジオキサン、アセトン、アセトニトリルまたはそれらの混合溶媒等の溶媒中、ヒドラジン、ピリジン、水酸化ナトリウム、水酸化カリウム等の塩基または塩酸、トリフルオロ酢酸、フッ化水素酸等の酸を用いて行えばよい

[0065] 本発明化合物のうち、好ましい化合物は以下の通りである。

1)式:

[化23]

で示される部分(A部分)が下記のいずれかである化合物、

[0066] [表1]

$$\begin{bmatrix}
R^{2} & R^{3} & R^{4} \\
R^{1} & N & R^{5}
\end{bmatrix} = \begin{bmatrix}
R^{20} & R^{3} & R^{4} \\
(CH_{2}) & N & R^{5}
\end{bmatrix}$$
A
a1

A部分No.	タイ	R20	n	R2	R3,R4
	プ				
A1	a1	4−CI	0	Н	H,H
A2	a1	4-CI	0	Н ~	Me,Me
A3	a1	4-CI	0	Н	Et,Et
A4 .	a1	4-CI	0	. H	H.Et
A5	a1	4-CI	0	Н	H,Ph
A6	a1	4-CI	0	Н	H,C6H4-4-F
A7	al	4-CI	0	Me	н,н
A8	a1	4-CI	0	Me	Me,Me
A9	a1	4-CI	0	Me	Et,Et
A10	a1	4-CI	0	Me	H.Et
A11	a1	4-CI	0	Me	H,Ph
A12	a1	4-CI	0	Me	H,C6H4-4-F
A13	a1	4-CI	0	OMe	H,H
A14	a1	4-CI	0	OMe	Me,Me
A15	a1	4-CI	0	OMe	Et,Et
A16	a1	4-Ci	0	OMe	H.Et
A17	a1	4-CI	0	OMe	H,Ph
A18	a1	4-CI	0	OMe	H,C6H4-4-F
A19	a1	4-CI	0	CH2OH	H,H
A20	a1	4-CI	0	CH2OH	H,C6H4-4-F
A21	a1	4-CI	0	CH2OMe	н,н
A22	a1	4-CI	0	CH2OMe	Me,Me
A23	a1	4-CI	0	CH2OMe	Et,Et
A24	a1	4-CI	0	CH2OMe	H.Et
A25	a1	4-CI	0	CH2OMe	H,Ph
A26	a1	4-CI	0	CH2OMe	H,C6H4-4-F
A27	a1	4-CI	0	CF3	н,н
A28	a1	4-CI	0	CF3	Me,Me
A29	a1	4-CI	0	CF3	Et,Et
A30	a1	4-CI	0	CF3	H.Et
A31	a1	4-CI	0	CF3	H,Ph
A32	a1	4-CI	0	CF3	H,C6H4-4-F
A33	a1	4-CI	0	GH2OPh	н,н

[0067] [表2]

A34		a1	4-CI	Ιo	CH2OPh	H,C6H4-4-F
A35		a1	4-CI	0	CH2OCH2Ph	нн
A36		a1	4-CI	0	CH2OCH2Ph	H,C6H4-4-F
A37		a1	4-CI	0	CH2-morpholino	Н,Н
A38		a1	4-CI	0	CH2-morpholino	Me.Me
A39		a1	4-CI	О	CH2-morpholino	Et,Et
A40		a1	4-CI	0	CH2-morpholino	H.Et
A41		a1	4-CI	0	CH2-morpholino	H,Ph
A42		аŤ	4-CI	0	CH2-morpholino	H,C6H4-4-F
A43		a1	4-CI	0	CH2NHBu	н,н
A44		a1	4–CI	0	CH2NHBu	H,C6H4-4-F
A45		a1	4-CI	0	C≣CPh	н,н
A46		a1	4-CI	0	C≡CPh	H,C6H4-4-F
A47		a1 .	4-CI	0	Ph	Н,Н
A48		a1	4-CI	0	Ph	H,C6H4-4-F
A49		a1	4-CI	0	C6H4-4-CF3	H,H
A50		a1	4-CI	0	C6H4-4-CF3	H,C6H4-4-F
A51		a1	4-CI	0	C6H4-3-CF3	н,н
A52		a1	4-Cl	0	C6H4-3-CF3	H,C6H4-4-F
A53		- a1	4-CI	0	C6H4-4-OH	H,H
A54		a1	4-CI	o	C6H4-4-OH	H,C6H4-4-F
A55		a1	4-CI	0	CH2Ph	H,H
A56		a1	4-CI	0	CH2Ph	H,C6H4-4-F
A57		a1	4-CI	0	CH2C6H4-4-CF3	H,H
A58		a1	4-CI	0	CH2C6H4-4-CF3	Me,Me
A59		a1	4-CI	0	CH2C6H4-4-CF3	Et,Et
A60		a1	4–CI	0	CH2C6H4-4-CF3	H.Et
A61		a1	4-CI	0	CH2C6H4-4-CF3	H,Ph
A62		a1	4-CI	0	CH2C6H4-4-CF3	H,C6H4-4-F
A63		a1	4∸Cl	0	CH2C6H4-4-OCF3	н,н
A64		a1	4−CI	0	CH2C6H4-4-OCF3	H,C6H4-4-F
A65		a1	4-CI	.0	CH2C6H4-4-Ph	H,H
A66		a1	4−CI	0	CH2C6H4-4-Ph	H,C6H4-4-F
A67		a1	4-CI	0	CH2C6H4-2-CI	H,H
A68		a1	4CI	0	CH2C6H4-2-CI	H,C6H4-4-F
A69		a1	4-CI	0	(CH2)2Ph	H,H
A70		a1	4–CI	0	(CH2)2Ph	H,C6H4-4-F
A71		a1	4-CI	0	SPh	H,H
A72		a1	4-CI	0	SPh	H,C6H4-4-F
A73		a1	4-CI	0	NH2	H,H
A74		a1	4-CI	0	NH2	H,C6H4-4-F
A75	ļ	a1	4-CI	0	NHMe	H,H
A76		a1	4-CI	0	NHMe	H,C6H4-4-F
A77		a1	4-CI	0	CH2-piperazino-Ph	H,H

[0068] [表3]

1				la *	l
A78	a1	4-CI	0	CH2-piperazino-Ph	i
A79	a1	4-CI	0	CH2-piperidino	H,H
A80	a1	4-CI	0	CH2-piperidino	H,C6H4-4-F
A81	a1.	4-CI	0	OCH2Ph	H,H
A82	a1	4-Cl	0	OCH2Ph	H,C6H4-4-F
A83	a1	4-Ci	0	Ac	H,H
A84	a1	4-CI	0	Ac	H,C6H4-4-F
A85	a1	4-CI	0	CONH2	H,H
A86	a1	4-CI	0	CONH2	H,C6H4-4-F
A87	a1	4-CI	0	CSNH2	H,H
A88	a1	4-CI	0	CSNH2	H,C6H4-4-F
A89	a1	4-CI	0	OCONH2	H,H
A90	a1	4-CI	0	OCONH2	H,C6H4-4-F
A91	a1	4-CI	0	OCSNH2	H,H
A92	a1	4-CI	0	OCSNH2	H,C6H4-4-F
A93	a1	4-CI	0	OSO2Me	H,H
A94	a1	4-CI	0	OSO2Me	H,C6H4-4-F
A95	a1	4-CI	0	OSO2Ph	H,H
A96	a1	4-Cl	0	OSO2Ph	H,C6H4-4-F
A97	a1	4-CI	0	1	н,н
A98	a1	4-Ci	0	I	H,C6H4-4-F
A99	a1	4-CI	1	Н	н,н
A100	a1	4-CI	1	Н	Me,Me
A101	. a1	4-CI	1	Н	Et,Et
A102	a1	4-CI	1	Н	H.Et
A103	a1	4-Ci	1	Н	H,Ph
A104	a1	4-CI	1	Н	H,C6H4-4-F
A105	a1	4-CI	1	Me	н,н
A106	a1	4-CI	1	Me	Me,Me
A107	a1	4-CI	1	Ме	Et,Et
A108	aí	4-CI	1	Ме	H.Et
A109	a1	4-CI	1	Me	H,Ph
A110	· a1	4-CI	1	Me	H,C6H4-4-F
A111	a1	4-CI	1	OMe	н,н
A112	a1	4-CI	1	OMe	Me,Me
A113	a1	4-CI	1	OMe	Et,Et
A114	a1.	4-CI	1	OMe	H.Et
A115	a1	4-CI	1	OMe	H,Ph
A116	a1	4-CI	1	OMe	H,C6H4-4-F
A117	a1	4-CI	1	CH2OH	н,н
A118	a1	4-CI	1	CH2OH	H,C6H4-4-F
A119	a1	4-CI	1	CH2OMe	н,н
A120	a1	4-CI	1	CH2OMe	Me,Me
A121	a1	4-CI	1	CH2OMe	Et,Et
			1		•

[0069] [表4]

A122	a1	4-CI	1	CH2OMe	H.Et
A123	a1	4-CI	1	CH2OMe	H,Ph
A124	a1	4-CI	1	CH2OMe	H,C6H4-4-F
A125	a1	4-CI	1	CF3	н,н
A126	a1	4-CI	1	CF3	Me,Me
A127	a1	4-CI	1	CF3	Et,Et
A128	a1	4-CI	1	CF3	H.Et
A129	a1	4-Ci	1	CF3	H,Ph
A130	a1	4-CI	1	CF3	H,C6H4-4-F
A131	a1	4-CI	1	CH2OPh	H,H
A132	a1	4-CI	1	CH2OPh	H,C6H4-4-F
A133	a1	4-CI	1	CH2OCH2Ph	н,н
A134	a1	4-CI	1	CH2OCH2Ph	H,C6H4-4-F
A135	a1	4-CI	1	CH2-morpholino	н,н
A136	a1	4-CI	1	CH2-morpholino	Ме,Ме
A137	a1	4-CI	1	CH2-morpholino	Et,Et
A138	a1	4-CI	1	CH2-morpholino	H.Et
A139	a1	4-CI	1	CH2-morpholino	H,Ph
A140	a1	4-CI	1	CH2-morpholino	H,C6H4-4-F
A141	a1	4-CI	1	CH2NHBu	H,H
A142	a1	4-CI	1	CH2NHBu	H,C6H4-4-F
A143	a1	4-CI	1	C≣CPh	H,H
A144	- a1	4-CI	1	C≡CPh	H,C6H4-4-F
A145	a1	4-CI	1	Ph	H,H
A146	a1	4-CI	1	Ph	H,C6H4-4-F
A147	a1	4-CI	1	C6H4-4-CF3	H,H
A148	a1	4-CI	1	C6H4-4-CF3	H,C6H4-4-F
A149	a1	4-CI	1	C6H4-3-CF3	H,H
A150	a1	4-CI	1	C6H4-3-CF3	H,C6H4-4-F
A151	a1	4-CI	1	C6H4-4-OH	H,H
A152	a1	4–CI	1	C6H4-4-OH	H,C6H4-4-F
A153	a1	4-CI	1	CH2Ph	H,H
A154	a1	4-CI	1	CH2Ph	H,C6H4-4-F
A155	a1	4-CI	1	CH2C6H4-4-CF3	H,H
A156	a1	4-CI	1,	CH2C6H4-4-CF3	Me,Me
A157	a1	4CI	1	CH2C6H4-4-CF3	Et,Et
A158	al	4-CI	1	CH2C6H4-4-CF3	H.Et
A159	a1	4-CI	1	CH2C6H4-4-CF3	H,Ph
A160	a1	4-CI	1	CH2C6H4-4-CF3	H,C6H4-4-F
A161	a1	4-CI	1	CH2C6H4-4-OCF3	H,H
A162	a1	4-CI	1	CH2C6H4-4-OCF3	H,C6H4-4-F
A163	a1	4-Cl	1	CH2C6H4-4-Ph	H,H
A164	a1	4-CI	1	CH2C6H4-4-Ph	H,C6H4-4-F
A165	a1	4–CI	1	CH2C6H4-2-CI	H,H

[0070] [表5]

A166	a1	4-CI	1	CH2C6H4-2-CI	H,C6H4-4-F
A167	a1	4-CI	1	(CH2)2Ph	н,н
A168	a1	4-C!	1	(CH2)2Ph	H,C6H4-4-F
A169	a1	4-CI	1	SPh	Н,Н
A170	a1	4-CI	1	SPh	H,C6H4-4-F
A171	a1	4-CI	1	NH2	H,H
A172	a1	4-CI	1	NH2	H,C6H4-4-F
A173	a1	4-CI	1	NHMe	н,н
A174	a1	4-CI	1	NHMe	H,C6H4-4-F
A175	a1	4-CI	1	CH2-piperazino-Ph	H,H
A176	a1	4-CI	1	CH2-piperazino-Ph	H,C6H4-4-F
A177	a1	4-CI	1	CH2-piperidino	H,H
A178	a1	4-CI	1	CH2-piperidino	H,C6H4-4-F
A179	a1	4-CI	1	OCH2Ph	H,H
A180	a1	4-CI	1	OCH2Ph	H,C6H4-4-F
A181	a1	4-Ci	1	Ac	H,H
A182	a1	4-CI	1	Ac	H,C6H4-4-F
A183	a1	4-CI	1	CONH2	H,H
A184	a1	4-CI	1	CONH2	H,C6H4-4-F
A185	a1	4-CI	1	CSNH2	H,H
A186	a1	4-Ci	1	CSNH2	H,C6H4-4-F
A187	a1	4-CI	1	OCONH2	H,H
A188	a1	4-CI	1	OCONH2	H,C6H4-4-F
A189	a1	4-CI	1	OCSNH2	H,H
A190	a1	4-CI	1	OCSNH2	H,C6H4-4-F
A191	a1	4-CI	1	OSO2Me	H,H
A192	a1	4-CI	1	OSO2Me	H,C6H4-4-F
A193	a1	4-CI	1	OSO2Ph	H,H
A194	a1	4-CI	1	OSO2Ph	H,C6H4-4-F
A195	a1	4-CI	1	I	H,H
A196	a1	4–CI	1	Į +	H,C6H4-4-F
A197	a1	4-CI	2	Н	H,H
A198	a1	4-CI	2	Н	Me,Me
A199	a1	4-CI	2	Н	Et,Et
A200	a1	4-CI	2	Н	H.Et
A201	a1	4-CI	2	Н	H,Ph
A202	a1	4-CI	2	Н	H,C6H4-4-F
A203	a1	4-CI	2	Me	H,H
A204	a1	4-CI	2	Ме	Me,Me
A205	a1	4-CI	2	Ме	Et,Et
A206	a1	4-CI	2	Ме	H.Et
A207	a1	4-CI	2	Ме	H,Ph
A208	a1	4-CI	2	Me	H,C6H4-4-F
A209	a1	4–CI	2	OMe	H,H

[0071] [表6]

A210	a1	4-CI	2	OMe	Me,Me
A211	a1	4-CI	2	OMe	Et,Et
A212	a1	4-CI	2	OMe	H.Et
A213	a1	4-CI	2	OMe	H,Ph
A214	a1	4-CI	2	OMe	H,C6H4-4-F
A215	a1	4-CI	2	CH2OH	Н,Н
A216	a1	4-CI	2	CH2OH	H,C6H4-4-F
A217	a1	4-CI	2	CH2OMe	Н,Н
A218	a1	4-CI	2	CH2OMe	Me,Me
A219	a1	4-CI	2	CH2OMe	Et,Et
A220	a1	4-CI	2	CH2OMe	H.Et
A221	a1	4-CI	2	CH2OMe	H,Ph
A222	a1	4-CI	2	CH2OMe	H,C6H4-4-F
A223	a1	4-CI	2	CF3	н,н
A224	a1	4-CI	2	CF3	Me,Me
A225	a1	4-Cl	2	CF3	Et,Et
A226	a1	4-CI	2	CF3	H.Et
A227	a1	4-CI	2	CF3	H,Ph
A228	a1	4-Cl	2	CF3	H,C6H4-4-F
A229	a1	4-CI	2	CH2OPh	H,H
A230	a1	4-CI	2	CH2OPh	H,C6H4-4-F
A231	a1	4-CI	2	CH2OCH2Ph	н,н
A232	a1	4-CI	2	CH2OCH2Ph	H,C6H4-4-F
A233	a1	4-CI	2	CH2-morpholino	Н,Н
A234	a1	4-CI	2	CH2-morpholino	Me,Me
A235	`a1	4-Cl	2	CH2-morpholino	Et,Et
A236	a1	4-CI	2	CH2-morpholino	H.Et
A237	a1	4-CI	2	CH2-morpholino	H,Ph
A238	a1 -	4-CI	2	CH2-morpholino	H,C6H4-4-F
A239	a1	4-CI	2	CH2NHBu	H,H
A240	a1	4-CI	2	CH2NHBu	H,C6H4-4-F
A241	a1	4-CI	2	C≣CPh	H,H
A242	a1	4-CI	2	C≡CPh	H,C6H4-4-F
A243	a1	4-CI	2	Ph	H,H
A244	a1	4-CI	2	Ph	H,C6H4-4-F
A245	a1	4-CI	2	C6H4-4-CF3	H,H
A246	a1	4-CI	2	C6H4-4-CF3	H,C6H4-4-F
A247	a1	4−CI	2	C6H4-3-CF3	H,H
A248	a1	4-CI	2	C6H4-3-CF3	H,C6H4-4-F
A249	a1	4-CI	2	C6H4-4-OH	Н,Н
A250	a1	4-CI	2	C6H4-4-OH	H,C6H4-4-F
A251	a1	4-CI	2	CH2Ph	Н,Н
A252	a1	4-CI	2	CH2Ph	H,C6H4-4-F
A253	a1	4-CI	2	CH2C6H4-4-CF3	H,H

[0072] [表7]

				1	1
A254	a1	4-CI	2	CH2C6H4-4-CF3	Ме,Ме
A255	a1	4-Ci	2	CH2C6H4-4-CF3	Et,Et
A256	a1	4-CI	2	CH2C6H4-4-CF3	H.Et
A257	a1	4-CI	2	CH2C6H4-4-CF3	H,Ph
A258	a1	4-CI	2	CH2C6H4-4-CF3	H,C6H4-4-F
A259	a1	4-CI	2	CH2C6H4-4-OCF3	H,H
A260	a1	4-CI	2	CH2C6H4-4-OCF3	H,C6H4-4-F
A261	a1	4-CI	2	CH2C6H4-4-Ph	H,H
A262	a1	4-CI	2	CH2C6H4-4-Ph	H,C6H4-4-F
A263	a1	4-CI	2	CH2C6H4-2-CI	Н,Н
A264	a1	4-CI	2	CH2C6H4-2-CI	H,C6H4-4-F
A265	a1	4−CI	2	(CH2)2Ph	H,H
A266	a1	4-CI	2	(CH2)2Ph	H,C6H4-4-F
A267	a1	4-CI	2	SPh	H,H
A268	a1	4-CI	2	SPh	H,C6H4-4-F
A269	a1	4-CI	2	NH2	H,H
A270	a1	4-CI	2	NH2	H,C6H4-4-F
A271	a1	4-CI	2	NHMe	H,H
A272	a1	4-CI	2	NHMe	H,C6H4-4-F
A273	. a1	4-CI	2	CH2-piperazino-Ph	Н,Н
A274	a1	4-CI	2	CH2-piperazino-Ph	H,C6H4-4-F
A275	a1	4-CI	2	CH2-piperidino	H,H
A276	a1	4–CI	2	CH2-piperidino	H,C6H4-4-F
A277	a1	4-CI	2	OCH2Ph	H,H
A278	a1	4-CI	2	OCH2Ph	H,C6H4-4-F
A279	a1	4-CI	2	Ac	H,H
A280	a1	4–CI	2	Ac	H,C6H4-4-F
A281	a1	4-CI	2	CONH2	H,H
A282	a1	4-CI	2	CONH2	H,C6H4-4-F
A283	a1	4-CI	2	CSNH2	H,H
A284	a1	4-CI	2	CSNH2	H,C6H4-4-F
A285	a1	4–CI	2	OCONH2	H,H
A286	a1	4-CI	2	OCONH2	H,C6H4-4-F
A287	a1	4-CI	2	OCSNH2	H,H
A288	a1	4-CI	2	OCSNH2	H,C6H4-4-F
A289	a1	4-CI	2	OSO2Me	H,H
A290	a1	4−CI	2	OSO2Me	H,C6H4-4-F
A291	a1	4-CI	2	OSO2Ph	H,H
A292	a1	4-CI	2	OSO2Ph	H,C6H4-4-F
A293	a1	4-CI	2	I	H,H
A294	a1	4-CI	2	I	H,C6H4-4-F
A295	a1	4-CF3	0	Н	H,H
A296	a1	4-CF3	0	* Н	Me,Me
A297	a1	4-CF3	0	Н	Et,Et

[0073] [表8]

A298	al	4-CF3	Ιo	I н	H.Et
A299	al	4-CF3	0	Н Н	H,Ph
A300	a1	4-CF3	0	H	H.C6H4-4-F
A301	a1	4-CF3	0	Me	н.н
A302	a1	4-CF3	0	Me	Me,Me
A303	a1	4-CF3	0	Me	Et.Et
A304	a1	4-CF3	0	Me	H.Et
A305	at	4-CF3	0	Me Me	H.Ph
A306	al	4-CF3	0	Me	H.C6H4-4-F
A307	a1	4-CF3	0	OMe	н.н
A308	a1	4-CF3	0	OMe	Me,Me
A309	a1	4-CF3	0	OMe	Et,Et
A310	a1	4-CF3	0	OMe	H.Et
A311	a1	4-CF3	0	OMe	H.Ph
A312	a1	4-CF3	0	OMe	H,C6H4-4-F
A313	a1	4-CF3	0	СН2ОН	н,н
A314	a1	4-CF3	0	CH2OH	H,C6H4-4-F
A315	a1	4-CF3	0	CH2OMe	н,н
A316	a1	4-CF3	0	CH2OMe	Me,Me
A317	aí	4-CF3	0	CH2OMe	Et,Et
A318	a1	4-CF3	0	CH2OMe	H.Et
A319	a1	4-CF3	0	CH2OMe	H,Ph
A320	a1	4-CF3	0	CH2OMe	H,C6H4-4-F
A321	a1	4-CF3	0	CF3	Н,Н
A322	a1	4-CF3	0	CF3	Me,Me
A323	a1	4-CF3	0	CF3	Et,Et
A324	a1	4-CF3	0	CF3	H.Et
A325	a1	4-CF3	0	CF3	H,Ph
A326	a1	4-CF3	0	CF3	H,C6H4-4-F
A327	a1	4-CF3	0	CH2OPh	H,H
A328	a1	4-CF3	0	CH2OPh	H,C6H4-4-F
A329	a1	4-CF3	0	CH2OCH2Ph	H,H
A330	a1	4-CF3	0	CH2OCH2Ph	H,C6H4-4-F
A331	a1	4-CF3	0	CH2-morpholino	H,H
A332	.a1	4-CF3	0	CH2-morpholino	Me,Me
A333	a1	4-CF3	0	CH2-morpholino	Et,Et
A334	a1	4-CF3	0	CH2-morpholino	H.Et
A335	a1	4-CF3	0	CH2-morpholino	H,Ph
A336	a1	4-CF3	0	CH2-morpholino	H,C6H4-4-F
A337	a1	4-CF3	0	CH2NHBu	H,H
A338	a1	4-CF3	0	CH2NHBu	H,C6H4-4-F
A339	a1	4-CF3	0	C≡CPh	Н,Н
A340	a1	4-CF3	0	C≡CPh	H,C6H4-4-F
A341	a1	4-CF3	0	Ph	H,H

[0074] [表9]

A342	a1	4-CF3	Ιo	Ph	lн.С6н4-4-F
A343	a1	4-CF3	0	C6H4-4-CF3	н,н
A344	a1	4-CF3	0	C6H4-4-CF3	H.C6H4-4-F
A345	a1	4-CF3	0	C6H4-3-CF3	H.H
A346	a1	4-CF3	0	C6H4-3-CF3	H,C6H4-4-F
A347	a1	4-CF3	0	C6H4-4-OH	Н.Н
A348	a1	4-CF3	0	C6H4-4-OH	H.C6H4-4-F
A349	a1	4-CF3	0	CH2Ph	н,н
A350	a1	4-CF3	О	CH2Ph	H,C6H4-4-F
A351	a1	4-CF3	0	CH2C6H4-4-CF3	Н,Н
A352	a1	4-CF3	0	CH2C6H4-4-CF3	Me,Me
A353	a1	4-CF3	0	CH2C6H4-4-CF3	Et,Et
A354	a1	4-CF3	0	CH2C6H4-4-CF3	H.Et
A355	a1	4-CF3	0	CH2C6H4-4-CF3	H,Ph
A356	a1	4-CF3	0	CH2C6H4-4-CF3	H,C6H4-4-F
A357	a1	4-CF3	0	CH2C6H4-4-OCF3	н,н
A358	a1	4-CF3	0	CH2C6H4-4-OCF3	H,C6H4-4-F
A359	a1	4-CF3	0	CH2C6H4-4-Ph	н,н
A360	a1	4-CF3	0	CH2C6H4-4-Ph	H,C6H4-4-F
A361	a1	4-CF3	0	CH2C6H4-2-CI	H,H
A362	a1	4-CF3	0	CH2C6H4-2-CI	H,C6H4-4-F
A363	a1 ·	4-CF3	0	(CH2)2Ph	H,H
A364	a1	4-CF3	0	(CH2)2Ph	H,C6H4-4-F
A365	a1	4-CF3	0	SPh	H,H
A366	a1	4-CF3	0	SPh	H,C6H4-4-F
A367	a1	4-CF3	0	NH2	H,H
A368	a1	4-CF3	0	NH2	H,C6H4-4-F
A369	a _. 1	4-CF3	0	NHMe	H,H
A370	a1	4-CF3	0	NHMe	H,C6H4-4-F
A371	a1	4-CF3	0	CH2-piperazino-Ph	H,H
A372	a1	4-CF3	0	CH2-piperazino-Ph	H,C6H4-4-F
A373	a1	4-CF3	0	CH2-piperidino	H,H
A374	a1	4-CF3	0	CH2-piperidino	H,C6H4-4-F
A375	a1	4-CF3	0	OCH2Ph	H,H
A376	a1	4-CF3	0	OCH2Ph	H,C6H4-4-F
A377	a1	4-CF3	0	Ac	H,H
A378	a1	4-CF3	0	Ac	H,C6H4-4-F
A379	a1	4-CF3	0	- CONH2	H,H
A380	a1	4-CF3	0	CONH2	H,C6H4-4-F
A381	a1	4-CF3	0	CSNH2 `	H,H
A382	a1	4-CF3	0	CSNH2	H,C6H4-4-F
A383	a1	4-CF3	0	OCONH2	H,H
A384	a1	4-CF3	0	OCONH2	H,C6H4-4-F
A385	a1	4-CF3	0	OCSNH2	H,H

[0075] [表10]

A386	a1	4-CF3	0	OCSNH2	H,C6H4-4-F
A387	a1	4-CF3	0	OSO2Me	H,H
A388	a1	4-CF3	0	OSO2Me	H,C6H4-4-F
A389	a1	4-CF3	0	OSO2Ph	Н,Н
A390	a1	4-CF3	0	OSO2Ph	H,C6H4-4-F
A391	a1	4-CF3	0	Ι *	Н,Н
A392	a1	4-CF3	0	I	H,C6H4-4-F
A393	a1	4-CF3	1	н	H,H
A394	a1	4-CF3	1	Н	Me,Me
A395	a1	4-CF3	1	Н	Et,Et
A396	a1	4-CF3	1	Н	H.Et
A397	a1	4-CF3	1	н	H,Ph
A398	a1	4-CF3	1	Н	H,C6H4-4-F
A399	a1	4-CF3	1	Me	H,H
A400	a1	4-CF3	1	Me	Me,Me
A401	a1	4-CF3	1	Me	Et,Et
A402	a1	4-CF3	1	Ме	H.Et
A403	a1	4-CF3	1	Ме	H,Ph
A404	a1	4-CF3	1	Ме	H,C6H4-4-F
A405	а1 -	⇒ 4-CF3	1	OMe	H,H
A406	a1	4-CF3	1	OMe	Me,Me
A407	a1	4-CF3	1	OMe	Et,Et
A408	a1	4-CF3	1	OMe	H.Et
A409	a1	4-CF3	1	OMe	H,Ph
A410	a1	4-CF3	1	OMe	H,C6H4-4-F
A411	a1	4-CF3	1	CH2OH	H,H
A412	a1	4-CF3	1	CH2OH	H,C6H4-4-F
A413	a1	4-CF3	1	CH2OMe	H,H
A414	a1	4-CF3	1	CH2OMe	Me,Me
A415	a1	4-CF3	1	CH2OMe	Et,Et
A416	a1	4-CF3	1	CH2OMe	H.Et
A417	a1	4-CF3	1	CH2OMe	H,Ph
A418	a1	4-CF3	1	CH2OMe	H,C6H4-4-F
A419	a1	4-CF3	1	CF3	H,H
A420	a1	4-CF3	1	CF3	Me,Me
A421	a1	4-CF3	1	CF3	Et,Et
A422	a1	4-CF3	1	CF3	H.Et
A423	a1	4-CF3	1	CF3	H,Ph
A424	a1	4-CF3	1	CF3	H,C6H4-4-F
A425	a1	4-CF3	1	CH2OPh	H,H
A426	a1	4-CF3	1	CH2OPh	H,C6H4-4-F
A427	a1	4-CF3	1	CH2OCH2Ph	H,H
A428	a1	4-CF3	1	CH2OCH2Ph	H,C6H4-4-F
A429	a1	4-CF3	1	CH2-morpholino	H,H

[0076] [表11]

A430	a1	4-CF3	1	CH2-morpholino	Me,Me	
A431	a1	4-CF3	1	CH2-morpholino	Et,Et	
A432	a1	4-CF3	1	CH2-morpholino	H.Et	
A433	a1	4-CF3	1	CH2-morpholino	H,Ph	
A434	a1	4-CF3	1	CH2-morpholino	H,C6H4-4-F	
A435	a1	4-CF3	1	CH2NHBu	н,н	
A436	a1	4-CF3	1	CH2NHBu	H,C6H4-4-F	
A437	a1	4-CF3	1	C≣CPh	H,H	
A438	a1	4-CF3	1	C≣CPh	H,C6H4-4-F	
A439	a1	4-CF3	1	Ph	H,H	
A440	a1	4-CF3	1	Ph	H,C6H4-4-F	
A441	a1	4CF3	1	C6H4-4-CF3	H,H	
A442	a1	4CF3	1	C6H4-4-CF3	H,C6H4-4-F	
A443	a1	4-CF3	1	C6H4-3-CF3	H,H	
A444	a1	4-CF3	1	C6H4-3-CF3	H,C6H4-4-F	
A445	a1	4-CF3	1	C6H4-4-OH	н,н	
A446	a1	4-CF3	1	C6H4-4-OH	H,C6H4-4-F	
A447	a1	4-CF3	1	CH2Ph	H,H	
A448	a1	4-CF3	1	CH2Ph	H,C6H4-4-F	
A449	a1	4-CF3	1	CH2C6H4-4-CF3	H,H	
A450	a1	4-CF3	1	CH2C6H4-4-CF3	Ме,Ме	
A451	a1	4-CF3	1	CH2C6H4-4-CF3	Et,Et	
A452	a1	4-CF3	1	CH2C6H4-4-CF3	H.Et	
A453	a1	4-CF3	1	CH2C6H4-4-CF3	H,Ph	
A454	a1	4-CF3	1	CH2C6H4-4-CF3	H,C6H4-4-F	
A455	a1	4-CF3	1	CH2C6H4-4-OCF3	H,H	
A456	a1	4-CF3	1	CH2C6H4-4-OCF3	H,C6H4-4-F	
A457	a1	4-CF3	1	CH2C6H4-4-Ph	H,H	
A458	a1	4-CF3	ู 1	CH2C6H4-4-Ph	H,C6H4-4-F	
A459	a1	4-CF3	1	CH2C6H4-2-CI	H,H	
A460	a1	4-CF3	1	CH2C6H4-2-CI	H,C6H4-4-F	
A461	a1	4-CF3	1	(CH2)2Ph	H,H	
A462	a1	4-CF3	1	(CH2)2Ph	H,C6H4-4-F	
A463	а1	4-CF3	1	SPh	H,H	
A464	a1	4-CF3	1	SPh	H,C6H4-4-F	
A465	a1	4-CF3	1	NH2	H,H	
A466	a1	4-CF3	1	NH2	H,C6H4-4-F	
A467	a1	4-CF3	1	NHMe	H,H	
A468	a1	4-CF3	1	NHMe	H,C6H4-4-F	
A469	a1 .	4-CF3	1	• •	H,H	
A470	a1	4-CF3	1	CH2-piperazino-Ph	H,C6H4-4-F	
A471	a1	4-CF3	1	CH2-piperidino	H,H	
A472	a1	4-CF3	1	CH2-piperidino	H,C6H4-4-F	
A473	a1	4-CF3	1	OCH2Ph	Н,Н	

[0077] [表12]

A474	a1	4-CF3	1	OCH2Ph	H,C6H4-4-F
A475	a1	4-CF3	1	Ac	H,H
A476	a1	4-CF3	1	Ac	H,C6H4-4-F
A477	a1	4-CF3	1	CONH2	H,H
A478	a1	4-CF3	1	CONH2	H,C6H4-4-F
A479	a1	4-CF3	1	CSNH2	H,H
A480	a1	4-CF3	1	CSNH2	H,C6H4-4-F
A481	- a1	4-CF3	1	OCONH2	Н,Н
A482	a1	4-CF3	1	OCONH2	H,C6H4-4-F
A483	a1	4-CF3	1	OCSNH2	H,H
A484	a1	4-CF3	1	OCSNH2	H,C6H4-4-F
A485	a1	4-CF3	1	OSO2Me	H,H
A486	a1	4-CF3	1	OSO2Me	H,C6H4-4-F
A487	a1	4-CF3	1	OSO2Ph	H,H
A488	a1	4-CF3	1	OSO2Ph	H,C6H4-4-F
A489	a1	4-CF3	1	I	H,H
A490	a1	4-CF3	1	· I	H,C6H4-4-F
A491	a1	4-CF3	2	Н	H,H
A492	a1	4-CF3	2	Н	Me,Me
A493	a1	4-CF3	2	H	Et,Et
A494	a1	4-CF3	2	Н	H.Et
A495	a1	4-CF3	2	Н	H,Ph
A496	a1	4-CF3	2	Н	H,C6H4-4-F
A497	a1	4-CF3	2	Me	H,H
A498	a1	4-CF3	2	Me	Me,Me
A499	a1	· 4-CF3	2	Me	Et,Et
A500	a1	4-CF3	2	Me	H.Et
A501	a1	4-CF3	2	Me	H,Ph
A502	a1	4-CF3	2	Me	H,C6H4-4-F
A503	a1	4-CF3	2	OMe	H,H
A504	al	4-CF3	2	OMe	Me,Me
A505	a1	4-CF3	2	OMe	Et,Et
A506	a1	4-CF3	2	OMe	H.Et
A507	a1	4-CF3	2	OMe	H,Ph
A508	a1	4-CF3	2	OMe	H,C6H4-4-F
A509	a1	4-CF3	2	CH2OH	H,H
A510	a1	4-CF3	2	CH2OH	H,C6H4-4-F
A511	a1	4-CF3	2	CH2OMe	H,H
A512	a1	4-CF3	2	CH2OMe	Me,Me
A513	a1	4-CF3	2	CH2OMe	Et,Et
A514	al	4-CF3	2	CH2OMe	H.Et
A515	a1	4-CF3	2	CH2OMe	H,Ph
A516	a1	4-CF3	2	CH2OMe	H,C6H4-4-F
A517	a1	4-CF3	2	CF3	H,H

[0078] [表13]

					•	
	A518	a1	4-CF3	2	CF3	Me,Me
	A519	a1	4-CF3	2	CF3	Et,Et
	A520	a1	4-CF3	2	CF3	H.Et
	A521	a1	4-CF3	2	CF3	H,Ph
	A522	a1	4-CF3	2	CF3	H,C6H4-4-F
	A523	a1	4-CF3	2	CH2OPh	н,н
-	A524	a1	4-CF3	2	CH2OPh	H,C6H4-4-F
	A525	a1	4-CF3	2	CH2OCH2Ph	Н,Н
	A526	a1	4-CF3	2	CH2OCH2Ph	H,C6H4-4-F
	A527	a1	4-CF3	2	CH2-morpholino	H,H
	A528	a1	4-CF3	2	CH2-morpholino	Me,Me
	A529	a1	4-CF3	2	CH2-morpholino	Et,Et
	A530	a1	4-CF3	2	CH2-morpholino	H.Et
	A531	a1	4-CF3	2	CH2-morpholino	H,Ph
	A532	a1	4-CF3	2	CH2-morpholino	H,C6H4-4-F
	A533	a1	4-CF3	2	CH2NHBu	H,H
	A534	a1	4-CF3	2	CH2NHBu	H,C6H4-4-F
	A535	a1	4-CF3	2	C≣CPh	H,H
	A536	a1	4-CF3	2	C≣CPh	H,C6H4-4-F
	A537	a1	4-CF3	2	Ph	H;H
	A538	a1	4-CF3	2	Ph	H,C6H4-4-F
	A539	a1	4-CF3	2	C6H4-4-CF3	H,H
1	A540	a1	4-CF3	2	C6H4-4-CF3	H,C6H4-4-F
	A541	a1	4-CF3	2	C6H4-3-CF3	H,H
	A542	a1	4-CF3	2	C6H4-3-CF3	H,C6H4-4-F
	A543	a1	4-CF3	2	C6H4-4-OH	H,H
	A544	a1	4-CF3	2	C6H4-4-OH	H,C6H4-4-F
	A545	a1	4-CF3	2	CH2Ph	H,H
	A546	a1	4-CF3	2	CH2Ph	H,C6H4-4-F
	A547	a1	4-CF3	2	CH2C6H4-4-CF3	H,H
	A548	a1	4-CF3	2	CH2C6H4-4-CF3	Me,Me
	A549	a1	4-CF3	2	CH2C6H4-4-CF3	Et,Et
	A550	a1	4-CF3	2	CH2C6H4-4-CF3	H.Et
	A551	a1	4-CF3	2	CH2C6H4-4-CF3	H,Ph
	A552	a1	4-CF3	2	CH2C6H4-4-CF3	H,C6H4-4-F
	A553	a1	4-CF3	2	CH2C6H4-4-OCF3	H,H
	A554	a1	4-CF3	2	CH2C6H4-4-OCF3	H,C6H4-4-F
	A555	a1	4-CF3	2	CH2C6H4-4-Ph	H,H
	A556	.a1	4-CF3	2	CH2C6H4-4-Ph	H,C6H4-4-F
	A557	a1	4-CF3	2	CH2C6H4-2-Cl	H,H
	A558	a1	4-CF3	2	CH2C6H4-2-CI	H,C6H4-4-F
	A559	a1	4-CF3	2	(CH2)2Ph	H,H
	A560	a1	4-CF3	2	(CH2)2Ph	H,C6H4-4-F
	A561	a1	4-CF3	2	SPh	H,H

[0079] [表14]

	A562		a1	4-CF3	l 2	SPh	H,C6H4-4-F
	A563		a1	4-CF3	2	NH2	Н,Н
ı	A564		a1	4-CF3	2	NH2	H,C6H4-4-F
i	A565		a1	4-CF3	2	NHMe	н.н
0	A566	-	a1	4-CF3	2	NHMe	H.C6H4-4-F
i	A567		a1	4-CF3	2	CH2-piperazino-Ph	, , ,
1	A568		a1	4-CF3	2	CH2-piperazino-Ph	
i	A569		a1	4-CF3	2	CH2-piperidino	н,н
١	A570		a1	4-CF3	2	CH2-piperidino	H,C6H4-4-F
İ	A571		a1	4-CF3	2	OCH2Ph	н,н
1	A572		a1	4-CF3	2	OCH2Ph	H,C6H4-4-F
	A573	4.71	a1	4-CF3	2	Ac	Н,Н
-	A574		a1	4-CF3	2	Ac	H,C6H4-4-F
	A575		a1	4-CF3	2	CONH2	H,H
İ	A576		a1	4-CF3	2	CONH2	H,C6H4-4-F
	A577		a1	4-CF3	2	CSNH2	н,н
İ	A578	ĺ	a1	4-CF3	2	CSNH2	H,C6H4-4-F
	A579		a1	4-CF3	2	OCONH2	н,н
١	A580		a1	4-CF3	2	OCONH2	H,C6H4-4-F
١	A581		a1	4CF3	2	OCSNH2	H,H
ŀ	A582		a1	4-CF3	2	OCSNH2	H,C6H4-4-F
	A583		a1	4-CF3	2	OSO2Me	H,H
	A584		a1	4-CF3	2	OSO2Me	H,C6H4-4-F
١	A585		a1	4-CF3	2	OSO2Ph	H,H
	A586		a1	4-CF3	2	OSO2Ph	H,C6H4-4-F
	A587		al i	4-CF3	2	I	H,H
	A588		a1	4-CF3	2	I	H,C6H4-4-F
ł	A589		a1	н	0	Н	H,H
	A590		a1	3-F	0	Н	Me,Me
-	A591		a1	2-Me	0	Н	Et,Et
	A592		a1	3-OMe	0	Н	H.Et
	A593		a1	4-OH	0	Н	H,Ph
	A594		a1	4-OMe	0	Н	H,C6H4-4-F
ĺ	A595		a1	2-Ac	0	Me	H,H
ł	A596		a1	4-CH=CH2	0	Me	Me,Me
	A597		a1	4-CF3, 3-F	0	Me	Et,Et
ľ	A598		a1	4-OCF3	0	Me	H.Et
	A599	ı	a1	4−SMe	0	Ме	H,Ph
- 1	A600	ļ	a1	3,5-difluoro	0	Me	H,C6H4-4-F
1	A601		a1	Н	0	OMe	H,H
	A602		a1	3-F	0	OMe	Me,Me
- 1	A603		a1	2−Me	0	OMe	Et,Et
- 1	A604		a1	3−OMe	0	OMe	H.Et
	A605		a1	4-OH	0	OMe	H,Ph

[0080] [表15]

A606		a1	4-OMe	0	OMe	H,C6H4-4-F
A607		a1	2-Ac	0	CH2OH	H,H
A608		a1	4-CH=CH2	0	CH2OH	H,C6H4-4-F
A609		a1	4-CF3, 3-F	0	CH2OMe	H,H
A610		a1	4-OCF3	0	CH2OMe	Me,Me
A611		a1	4-SMe	0	CH2OMe	Et,Et
A612		a1	3,5-difluoro	0	CH2OMe	H.Et
A613		a1	H	0	CH2OMe	H,Ph
A614		a1	3−F	0	CH2OMe	H,C6H4-4-F
A615		a1	2-Me	0	CF3	н,н
A616		a1	3-OMe	0	CF3	Me,Me
A617		a1	4-OH	0	CF3	Et,Et
A618		a1	4-OMe	0	CF3	H.Et
A619		a1	2-Ac	0	CF3	H,Ph
A620		a1	4-CH=CH2	0	CF3	H,C6H4-4-F
A621		a1	4-CF3, 3-F	0	CH2OPh	H,H
A622		a1	4-OCF3	0	CH2OPh	H,C6H4-4-F
A623		at	4-SMe	0	CH2OCH2Ph	Н,Н
A624		a1	3,5-difluoro	0	CH2OCH2Ph	H,C6H4-4-F
A625		a1	Н	0	CH2-morpholino	H,H
A626		a1	3-F	0	CH2-morpholino	Me,Me
A627		a1	2-Me	0	- CH2-morpholino	Et,Et
A628		ai	3-OMe	0	CH2-morpholino	H.Et
A629		a1	4-OH	0	CH2-morpholino	H,Ph
A630	8	a1	4−OMe	0	CH2-morpholino	H,C6H4-4-F
A631		a1	2-Ac	0	CH2NHBu	н,н
A632		a1	4-CH=CH2	0	CH2NHBu	H,C6H4-4-F
A633		a1	4-CF3, 3-F	0	C≣CPh	Н,Н
A634		a1	4-OCF3	0	C≣CPh	H,C6H4-4-F
A635	1	a1	4-SMe	0	Ph	Н,Н
A636		a1	3,5-difluoro	0	Ph	H,C6H4-4-F
A637		a1	H	0	C6H4-4-CF3	H,H
A638		a1	3-F	0	C6H4-4-CF3	H,C6H4-4-F
A639		a1	2−Me	0	C6H4-3-CF3	H,H
A640		a1	3-OMe	0	C6H4-3-CF3	H,C6H4-4-F
A641		a1	4-OH	0	C6H4-4-OH	H,H
A642		a1	4-OMe	0	C6H4-4-OH	H,C6H4-4-F
A643		a1	2-Ac	0	CH2Ph	H,H
A644		a1	4-CH=CH2	0	CH2Ph	H,C6H4-4-F
A645		a1	4-CF3, 3-F	0	CH2C6H4-4-CF3	H,H
A646		a1	4-OCF3	0	CH2C6H4-4-CF3	Me,Me
A647		a1	4-SMe	0	CH2C6H4-4-CF3	Et,Et
A648		a1	3,5-difluoro	0	CH2C6H4-4-CF3	H.Et
A649		a1	Н	0	CH2C6H4-4-CF3	H,Ph

[0081] [表16]

A650	a1	3-F	0	CH2C6H4-4-CF3	H,C6H4-4-F	
A651	a1	2-Me	0	CH2C6H4-4-OCF3	н,н	
A652	a1	3-OMe	0	CH2C6H4-4-OCF3	H,C6H4-4-F	
A653	a1	4-OH	0	CH2C6H4-4-Ph	н,н	
A654	a1	4-OMe	0	CH2C6H4-4-Ph	H,C6H4-4-F	
A655	a1	2-Ac	0	CH2C6H4-2-CI	Н,Н	
A656	a1	4-CH=CH2	0	CH2C6H4-2-CI	H,C6H4-4-F	
A657	a1	4-CF3, 3-F	0	(CH2)2Ph	H,H	
A658	a1	4-OCF3	0	(CH2)2Ph	H,C6H4-4-F	
A659	a1	4-SMe	0	SPh	н,н	
A660	a1	3,5-difluoro	0	SPh	H,C6H4-4-F	
A661	al	н н	0	NH2	H,H	
A662	a1	3-F	0	NH2	H,C6H4-4-F	
A663	a1	2-Me	0	NHMe	Н,Н	
A664	a1	3-OMe	0	NHMe	H,C6H4-4-F	
A665	a1	4-OH	0	CH2-piperazino-Ph		
A666	a1	4-OMe	0	CH2-piperazino-Ph	1	
A667	a 1	2-Ac	0	CH2-piperidino	н,н	
A668	a1	4-CH=CH2	0	CH2-piperidino	H,C6H4-4-F	
A669	a1	4-CF3, 3-F	0	OCH2Ph	н,н	
A670	a1	4-OCF3	0	OCH2Ph	H,C6H4-4-F	
A671	a1	4−SMe	0	Ac	нн	
A672	a1	3,5-difluoro	0	Ac	H,C6H4-4-F	
A673	a1	Н	0	CONH2	н,н	
A674	a1	3-F	0	CONH2	H,C6H4-4-F	
A675	a1	2-Me	0	CSNH2	н.н	
A676	a1	3-OMe	0	CSNH2	H,C6H4-4-F	
A677	a1	4-OH	0	OCONH2	, н,н	
A678	a1	4-OMe	0	OCONH2	H,C6H4-4-F	
A679	a1	2-Ac	0	OCSNH2	н,н	
A680	a1	4-CH=CH2	0	OCSNH2	H,C6H4-4-F	
A681	a1	4-CF3, 3-F	0	OSO2Me	н,н	
A682	a1	4-OCF3	0	OSO2Me	H,C6H4-4-F	
A683	a1	4-SMe	0	OSO2Ph	н,н	
A684	a1	3,5-difluoro	0	OSO2Ph	H,C6H4-4-F	
A685	a1	Н	0	I	H,H	
A686	a1	3-F	0	Ī	H,C6H4-4-F	
A687	a1	H H	1	H	H,H	
A688	a1	3-F	1	H	Me,Me	
A689	a1	2-Me	1	н	Et,Et	
A690	a1	3-OMe	1	H	H.Et	
A691	a1	4-OH	1	Н	H,Ph	
A692	a1	4-011 4-0Me		"н	H,C6H4-4-F	
A693	a1	2-Ac	1	Me	H,H	
A694	a1	4-CH=CH2	1	Me	Me,Me	
A695				Me	Et,Et	
A095	a1	4-CF3, 3-F	1	ivie	<u> </u>	

[0082] [表17]

A696	a1	4-OCF3	1	· Me	H.Et
A697	a1	4-SMe	1	Me `	H,Ph
A698	a1	3,5-difluoro	1	Me	H,C6H4-4-F
A699	a1	Н	1	OMe	H,H
A700	a1	3−F	1	OMe	Me,Me
A701	a1	2-Me	1	OMe	Et,Et
A702	a1	3-OMe	1	OMe	H.Et
A703	a1	4-0H	1	OMe	H,Ph
A704	a1	4-OMe	1	OMe	H,C6H4-4-F
A705	a1	2−Ac	1	CH2OH	н,н
A706	a1	4-CH=CH2	1	CH2OH	H,C6H4-4-F
A707	a1	4-CF3, 3-F	1	CH2OMe	н,н
A708	a1.	4-0CF3	1	CH2OMe	Me,Me
A709	a1	4−SMe	1	CH2OMe	Et,Et
A710	a1	3,5-difluoro	1	CH2OMe	H.Et
A711	a1	Н	1	CH2OMe	H,Ph
A712	a1	3-F	1	CH2OMe	H,C6H4-4-F
A713	a1	2−Me	1	CF3	H,H
A714	a1	3−OMe	1	CF3	Me,Me
A715	a1	4-OH	1	CF3	Et,Et
A716	a1	4−OMe	1	CF3	H.Et
A717	a1	2−Ac	1	CF3	H,Ph
A718	a1	4-CH=CH2	1	CF3	H,C6H4-4-F
A719	a1	4-CF3, 3-F	1	CH2OPh	H,H
A720	a1	4-0CF3	1	CH2OPh	H,C6H4-4-F
A721	a1	4−SMe	1	CH2OCH2Ph	H,H
A722	a1	3,5-difluoro	1	CH2OCH2Ph	H,C6H4-4-F
A723	a1	н	1	CH2-morpholino	H,H
A724	a1	3-F	1	CH2-morpholino	Me,Me
A725	a1	2−Me	1	CH2-morpholino	Et,Et
A726	a1	3-OMe	1	CH2-morpholino	H.Et
A727	a1	4–OH	1	CH2-morpholino	H,Ph
A728	a1	4-OMe	1	CH2-morpholino	H,C6H4-4-F
A729	a1	2-Ac	1	CH2NHBu	H,H
A730	a1	4-CH=CH2	1	CH2NHBu	H,C6H4-4-F
A731	a1	4-CF3, 3-F	1	C≣CPh	H,H
A732	a1	4-OCF3	1	C≣CPh	H,C6H4-4-F
A733	a1	4-SMe	1	Ph	H,H
A734	a1	3,5-difluoro	-1	Ph	H,C6H4-4-F
A735	a1	Н	2	C6H4-4-CF3	H,H
A736	a1	3-F	2	C6H4-4-CF3	H,C6H4-4-F
A737	a1	2-Me	2	C6H4-3-CF3	H,H
A738	a1	3-OMe	2	C6H4-3-CF3	H,C6H4-4-F
A739	аĭ	4-OH	2	C6H4-4-OH	H,H
A740	a1	4-OMe	2	C6H4-4-OH	H,C6H4-4-F
A741	a1	2-Ac	2	CH2Ph	н,н

[0083] [表18]

A742	a1	4-CH=CH2	2	CH2Ph	H,C6H4-4-F
A743	a1	4-CF3, 3-F	2	CH2C6H4-4-CF3	Н,Н
A744	a1	4-OCF3	2	CH2C6H4-4-CF3	Me,Me
A745	a1	4-SMe	2	CH2C6H4-4-CF3	Et,Et
A746	a1	3,5-difluoro	2	CH2C6H4-4-CF3	H.Et
A747	a1	Н	2	CH2C6H4-4-CF3	H,Ph
A748	a1	3-F	2	CH2C6H4-4-CF3	H,C6H4-4-F
A749	a1	2−Me	2	CH2C6H4-4-OCF3	H,H
A750	a1	3-OMe	2	CH2C6H4-4-OCF3	H,C6H4-4-F
A751	a1	4–0H	2	CH2C6H4-4-Ph	Н,Н
A752	a1	4-OMe	2	CH2C6H4-4-Ph	H,C6H4-4-F
A753	a1	2−Ac	2	CH2C6H4-2-CI	Н,Н
A754	a1	4-CH=CH2	2	CH2C6H4-2-CI	H,C6H4-4-F
A755	a1	4-CF3, 3-F	2	(CH2)2Ph	н,н
A756	a1	4-OCF3	2	(CH2)2Ph	H,C6H4-4-F
A757	a1	4−SMe	2	SPh	н,н
A758	a1	3,5-difluoro	2	SPh	H,C6H4-4-F
A759	a1	н	2	NH2	H,H
A760	a1	3-F	2	NH2	H,C6H4-4-F
A761	a1	2Me	2	NHMe	H,H
A762	a1	3-OMe	2	NHMe	H,C6H4-4-F
A763	a1	4-OH	2	CH2-piperazino-Ph	н,н
A764	a1	4-OMe	2	CH2-piperazino-Ph	H,C6H4-4-F
A765	a1	2-Ac	2	CH2-piperidino	H,H
A766	a1	4-CH=CH2	2	CH2-piperidino	H,C6H4-4-F
A767	a1	4-CF3, 3-F	2	OCH2Ph	Н,Н
A768	a1	4-OCF3	2	OCH2Ph	H,C6H4~4~F
A769	a1	4-SMe	2	Ac	н,н
A770	a1	3,5-difluoro	2	Ac	H,C6H4-4-F
A771	a1	н	2	CONH2	H,H
A772	a1	3-F	2	CONH2	H,C6H4-4-F
A773	a1	2-Me	2	CSNH2	H,H
A774	a1	3-OMe	2	CSNH2	H,C6H4-4-F
A775	a1	4-OH	2	OCONH2	H,H
A776	a1	4-OMe	2	OCONH2	H,C6H4-4-F
A777	a1	2−Ac	2	OCSNH2	H,H
A778	a1	4-CH=CH2	2	OCSNH2	H,C6H4-4-F
A779	a1	4-CF3, 3-F	2	OSO2Me	H,H
A780	a1	4-OCF3	2	OSO2Me	H,C6H4-4-F
A781	a1	4−SMe	2	OSO2Ph	H,H
A782	a1	3,5-difluoro	2	OSO2Ph	H,C6H4-4-F
A783	a1	н	2	I	H,H
A784	a1	3-F	2	I	H,C6H4-4-F

[0084] [表19]

A部分No.	タイプ	R1	R2	R3,R4
A2353	a7	Me	Н	Н,Н
A2354	a7	Ме	н .	Me,Me
A2355	а7	Me	н	Et,Et
A2356	а7	Me	н	H.Et
A2357	а7	Me	н	H,Ph
A2358	a7	Me	н	H,C6H4-4-F
A2359	a7	Me	Me	H,H
A2360	а7	Me	Me	Me,Me
A2361	а7	Me	Me	Et,Et
A2362	a7	Me	Me	H.Et
A2363	a7	Me	Me	H,Ph
A2364	а7	Me	Me	H,C6H4-4-F
A2365	а7	Me	CH2OMe	H,H
A2366	а7	Me	CH2OMe	Me,Me
A2367	a7	Me	CH2OMe	Et,Et
A2368	а7	Me	CH2OMe	H.Et
A2369	a7	Me	CH2OMe	H,Ph
A2370	a7	Me	CH2OMe	H,C6H4-4-F
A2371	a7	Me	CF3	H,H
A2372	a7	Me	CF3	Me,Me
A2373	a7	Me	CF3	Et,Et
A2374	а7	Me	CF3	H.Et
A2375	а7	Me	CF3	H,Ph
A2376	а7	Me	CF3	H,C6H4-4-F
A2377	a7	Me	CH2OH	H,H
A2378	a7	Me	CH2OH	H,C6H4-4-F
A2379	a7	Me	CH2NHBu	H,H
A2380	а7	Me -	CH2NHBu	H,C6H4-4-F
A2381	а7	Me	CH2C≡CH	H,H
A2382	а7	Me	CH2C≡CH	H,C6H4-4-F
A2383	а7	Me	OMe	H,H
A2384	а7	Me	OMe	H,C6H4-4-F
A2385	а7	Me	NH2	H,H
A2386	a7	Me	NH2	H,C6H4-4-F

[0085] [表20]

A2387	a7	l Me	NHMe	н,н
A2388	a7	Me	NHMe	H,C6H4-4-F
A2389	a7	Me	CH2OPh	H,H
A2390	a7	Me	CH2OPh	H,C6H4-4-F
A2391	a7	Me	CH2OCH2Ph	H.H
A2392	a7	Me	CH2OCH2Ph	H,C6H4-4-F
A2393	a7	Me	CH2-morpholino	н,н
A2394	a7	Me	CH2-morpholino	H.C6H4-4-F
A2395	a7	Me	CH=CH-pyridyl	н,н
A2396	a7	Me	CH=CH-pyridyl	H,C6H4-4-F
A2397	a7	Me	C≣CPh	н,н
A2398	a7	Me	C≣CPh	H,C6H4-4-F
A2399	a7	Me	Ph	н,н
A2400	a7	Me	Ph	H,C6H4-4-F
A2401	a7	Me	C6H4-4-CF3	н,н
A2402	а7	Me	C6H4-4-CF3	Me,Me
A2403	а7	Me	C6H4-4-CF3	Et,Et
A2404	а7	Me	C6H4-4-CF3	H.Et
A2405	a7	Ме	C6H4-4-CF3	H,Ph
A2406	a7	Me	C6H4-4-CF3	H,C6H4-4-F
A2407	a7	Me	C6H4-3-CF3	H,H
A2408	a7	Me	C6H4-3-CF3	H,C6H4-4-F
A2409	a7	Me	C6H4-4-OH	H,H
A2410	а7	Me	C6H4-4-OH	H,C6H4-4-F
A2411	a7	Me	CH2Ph	H,H
A2412	a7	Me	CH2Ph	H,C6H4-4-F
A2413	a7	Me	CH2C6H4-4-CF3	H,H
A2414	а7	Me	CH2C6H4-4-CF3	Me,Me
A2415	a7	Me	CH2C6H4-4-CF3	Et,Et
A2416	a7	Me	CH2C6H4-4-CF3	H.Et
A2417	а7	Me	CH2C6H4-4-CF3	H,Ph
A2418	a7	Me	CH2C6H4-4-CF3	H,C6H44-F
A2419	а7	Me	CH2C6H4-4-OCF3	H,H
A2420	а7	Me	CH2C6H4-4-OCF3	H,C6H4-4-F
A2421	a7	Me	CH2C6H4-4-Ph	H,H
A2422	a7	Me	CH2C6H4-4-Ph	H,C6H4-4-F
A2423	a7	Me	CH2C6H4-2-CI	H,H
A2424	a7	Me	CH2C6H4-2-CI	H,C6H4-4-F
A2425	a7	Me	(CH2)2Ph	н,н
A2426	a7	Me	(CH2)2Ph	H,C6H4-4-F
A2427	a7	Me	CH2-piperazino-Ph	H,H
A2428	a7	Me	CH2-piperazino-Ph	Ме,Ме
A2429	a7	Me	CH2-piperazino-Ph	Et,Et
A2430	a7	Me	CH2-piperazino-Ph	H.Et

[0086] [表21]

A2431	a7	Me	CH2-piperazino-Ph	H,Ph	
A2432	a7	Me	CH2-piperazino-Ph	H,C6H4-4-F	
A2433	a7	Me	CH2-piperidino	Н,Н	
A2434	a7	Ме	CH2-piperidino	H,C6H4-4-F	
A2435	a7	Me	SPh	Н,Н	
A2436	a7	Me	SPh	H,C6H4-4-F	
A2437	a7	Me	OCH2Ph	н,н	
A2438	a7	Me	OCH2Ph	H,C6H4-4-F	
A2439	а7	Me	Ac	Н,Н	
A2440	a7	Me	Ac	H,C6H4-4-F	
A2441	a7	Me	CONH2	н,н	
A2442	a7	Me	CONH2	H,C6H4-4-F	
A2443	a7	Me	CSNH2	Н,Н	
A2444	a7	Me	CSNH2	H,C6H4-4-F	
A2445	a7	Ме	OCONH2	H,H	
A2446	a7	Ме	OCONH2	H,C6H4-4-F	
A2447	a7	Me	OCSNH2	H,H	
A2448	a7	Ме	OCSNH2	H,C6H4-4-F	
A2449	a7	Me	OSO2Me	H,H	
A2450	a7	Me 🤼	OSO2Me	H,C6H4-4-F	
A2451	a7	Me	OSO2Ph	H,H	
A2452	a7	Me	OSO2Ph	H,C6H4-4-F	
A2453	a7	Me	I	H,H	
A2454	a7	Me	I	H,C6H4-4-F	
A2455	a7	CF3	Н	H,H	
A2456	a7	CF3	Н	Me,Me	
A2457	a7	CF3	H	Et,Et	
A2458	a7	CF3	Н	H.Et	
A2459	a7	CF3	Н	H,Ph	
A2460	а7	CF3	Н	H,C6H4-4-F	
A2461	a7	CF3	Ме	H,H	
A2462	a7	CF3	Ме	Me,Me	
A2463	а7	CF3	Ме	Et,Et	
A2464	а7	CF3	Me	H.Et	
A2465	а7	CF3	Ме	H,Ph	
A2466	a7	CF3	Me	H,C6H4-4-F	
A2467	a7	CF3	CH2OMe	H,H	
A2468	а7	CF3	CH2OMe	Me,Me	
A2469	а7	CF3	CH2OMe	Et,Et	
A2470	а7	CF3	CH2OMe	H.Et	
A2471	а7	CF3	CH2OMe	H,Ph	
A2472	а7	CF3	CH2OMe	H,C6H4-4-F	
A2473	a7	CF3	CF3	H,H	
A2474	a7	CF3	CF3	Me,Me	

[0087] [表22]

A2475	l a7	l CF3	CF3	Et,Et
A2476	a7	CF3	CF3	H.Et
A2477	a7	CF3	CF3	H,Ph
A2478	a7	CF3	CF3	H,C6H4-4-F
A2479	a7	CF3	CH2OH	H,H
A2480	a7	CF3	CH2OH	H,C6H4-4-F
A2481	a7	CF3	CH2NHBu	Н,Н
A2482	a7	CF3	CH2NHBu	H,C6H4-4-F
A2483	a7	CF3	CH2C≡CH	н.н
A2484	a7	CF3	CH2C≡CH	H,C6H4-4-F
A2485	a7	CF3	OMe	Н.Н
A2486	a7	CF3	OMe	H,C6H4-4-F
A2487	a7	CF3	NH2	Н,Н
A2488	a7	CF3	NH2	H,C6H4-4-F
A2489	a7	CF3	NHMe	Н.Н
A2490	a7	CF3	NHMe	H,C6H4-4-F
A2491	a7	CF3	CH2OPh	н.н
A2492	a7	CF3	CH2OPh	H,C6H4-4-F
A2493	а7	CF3	CH2OCH2Ph	нн
A2494	a7	CF3	CH2OCH2Ph	H,C6H4-4-F
A2495	a7	CF3	CH2-morpholino	н,н
A2496	a7	CF3	CH2-morpholino	H,C6H4-4-F
A2497	а7	CF3	CH=CH-pyridyl	H,H
A2498	a7	CF3	CH=CH-pyridyl	H,C6H4-4-F
A2499	а7	CF3	C≡CPh	H,H
A2500	а7	CF3	C≡CPh	H,C6H4-4-F
A2501	a7	CF3	Ph	H,H
A2502	a7	CF3	Ph	H,C6H4-4-F
A2503	a7	CF3	C6H4-4-CF3	H,H
A2504	a7	CF3	C6H4-4-CF3	Me,Me
A2505	а7	CF3	C6H4-4-CF3	Et,Et
A2506	a7	CF3	C6H4-4-CF3	H.Et
A2507	a7	CF3	C6H4-4-CF3	H,Ph
A2508	a7	CF3	C6H4-4-CF3	H,C6H4-4-F
A2509	a7	CF3	C6H4-3-CF3	H,H
A2510	a7	CF3	C6H4-3-CF3	H,C6H4-4-F
A2511	a7	CF3	C6H4-4-OH	H,H
A2512	а7	CF3	C6H4-4-OH	H,C6H4-4-F
A2513	a7	CF3	CH2Ph	H,H
A2514	а7	CF3	CH2Ph	H,C6H4-4-F
A2515	а7	CF3	CH2C6H4-4-CF3	H,H
A2516	a7	CF3	CH2C6H4-4-CF3	Me,Me
A2517	a7	CF3	CH2C6H4-4-CF3	Et,Et
A2518	а7	CF3	CH2C6H4-4-CF3	H.Et

[0088] [表23]

A2519	a7	CF3	CH2C6H4-4-CF3	H,Ph
A2520	a7	CF3	CH2C6H4-4-CF3	H,C6H4-4-F
A2521	a7	CF3	CH2C6H4-4-OCF3	н.н
A2522	a7	CF3	CH2C6H4-4-OCF3	H,C6H4-4-F
A2523	a7	CF3	CH2C6H4-4-Ph	H.H
A2524	a7	CF3	CH2C6H4-4-Ph	H,C6H4-4-F
A2525	a7	CF3	CH2C6H4-2-CI	н.н
A2526	a7	CF3	CH2C6H4-2-CI	H,C6H4-4-F
A2527	a7	CF3	(CH2)2Ph	н,н
A2528	a7	CF3	(CH2)2Ph	H,C6H4-4-F
A2529	a7	CF3	CH2-piperazino-Ph	H,H
A2530	a7	CF3	CH2-piperazino-Ph	Me,Me
A2531	a7	CF3	CH2-piperazino-Ph	Et,Et
A2532	a7	CF3	CH2-piperazino-Ph	H.Et
A2533	a7	CF3	CH2-piperazino-Ph	H,Ph
A2534	a7	CF3	CH2-piperazino-Ph	H,C6H4-4-F
A2535	a7	CF3	CH2-piperidino	H,H
A2536	a7	CF3	CH2-piperidino	H,C6H4-4-F
A2537	a7	CF3	SPh	H,H
A2538	a7	CF3	SPh	H,C6H44-F
A2539	a7	CF3	OCH2Ph	H,H
A2540	a7	CF3	OCH2Ph	H,C6H4-4-F
A2541	a7	CF3	Ac	H,H
A2542	a7	CF3	Ac	H,C6H4-4-F
A2543	a7	CF3	CONH2	H,H
A2544	a7	CF3	CONH2	H,C6H4-4-F
A2545	a7	CF3	CSNH2	H,H
A2546	a7	CF3	CSNH2	H,C6H4-4-F
A2547	a7	CF3	OCONH2	H,H
A2548	а7	CF3	OCONH2	H,C6H4-4-F
A2549	a7	CF3	OCSNH2	H,H
A2550	a7	CF3	OCSNH2	H,C6H4-4-F
A2551	a7	CF3	OSO2Me	H,H
A2552	a7	CF3	OSO2Me	H,C6H4-4-F
A2553	a7	CF3	OSO2Ph	H,H
A2554	a7	CF3	OSO2Ph	H,C6H4-4-F
A2555	a7	CF3	I	H,H
A2556	a7	CF3	I	H,C6H4-4-F
A2557	a7	CH=CHPh	Н	H,H
A2558	a7	CH=CHPh	Н	Me,Me
A2559	a7	CH=CHPh	Н	Et,Et
A2560	a7	CH=CHPh	Н	H.Et
A2561	a7	CH=CHPh	Н	H,Ph
A2562	a7	CH=CHPh	Н	H,C6H4-4-F

[0089] [表24]

A2563	a7	CH=CHPh	Me	н,н
A2564	a7	CH=CHPh	Me	Me,Me
A2565	a7	CH=CHPh	Me	Et,Et
A2566	a7	CH=CHPh	Me	H.Et
A2567	a7	CH=CHPh	Me	H,Ph
A2568	a7	CH=CHPh	Me	H,C6H4-4-F
A2569	a7	CH=CHPh	CH2OMe	H,H
A2570	a7	CH=CHPh	CH2OMe	Me,Me
A2571 .	a7	CH=CHPh	CH2OMe	Et,Et
A2572	a7	CH=CHPh	CH2OMe	H.Et
A2573	a7	CH=CHPh	CH2OMe	H,Ph
A2574	a7	CH=CHPh	CH2OMe	H,C6H4-4-F
A2575	a7	CH=CHPh	CF3	н,н
A2576	a7	CH=CHPh	CF3	Me,Me
A2577	a7	CH=CHPh	CF3	Et,Et
A2578	a7	CH=CHPh	CF3	H.Et
A2579	a7	CH=CHPh	CF3	H,Ph
A2580	a7	CH=CHPh	CF3	H,C6H4-4-F
A2581	a7	CH=CHPh	CH2OH	H,H
A2582	a7	CH=CHPh	CH2O H	H,C6H4-4-F
A2583	a7	CH=CHPh	CH2NHBu	H,H
A2584	a7	CH=CHPh	CH2NHBu	H,C6H4-4-F
A2585	a7	CH=CHPh	CH2C≡CH	H,H
A2586	a7	CH=CHPh	CH2C≡CH	H,C6H4-4-F
A2587	a7	CH=CHPh	OMe	H,H
A2588	a7	CH=CHPh	OMe	H,C6H4-4-F
A2589	a7	CH=CHPh	NH2	H,H
A2590	a7	CH=CHPh	NH2	H,C6H4-4-F
A2591	a7	CH=CHPh	NHMe	H,H
A2592	a7	CH=CHPh	NHMe	H,C6H4-4-F
A2593	a7	CH=CHPh	CH2OPh	H,H
A2594	a7	CH=CHPh	CH2OPh	H,C6H4-4-F
A2595	a7	CH=CHPh	CH2OCH2Ph	H,H
A2596	a7	CH=CHPh	CH2OCH2Ph	H,C6H4-4-F
A2597	a7	CH=CHPh	CH2-morpholino	H,H
A2598	a7	CH=CHPh	CH2-morpholino	H,C6H4-4-F
A2599	a7	CH=CHPh	CH=CH-pyridyl	H,H
A2600	- a7	CH=CHPh	CH=CH-pyridyl	H,C6H4-4-F
A2601	a7	CH=CHPh	C≣CPh	H,H
A2602	a7	CH=CHPh	C≣CPh	H,C6H4-4-F
A2603	a7	CH=CHPh	Ph	H,H
A2604	a7	CH=CHPh	Ph	H,C6H4-4-F
A2605	a7	CH=CHPh	C6H4-4-CF3	H,H
A2606	a7	CH=CHPh	C6H4-4-CF3	Me,Me

[0090] [表25]

A2607	l a7	CH=CHPh	C6H4-4-CF3	Et,Et
A2608	a7	CH=CHPh	C6H4-4-CF3	H.Et
A2609	a7 a7	CH=CHPh	C6H4-4-CF3	H.Ph
A2610	a7 a7	CH=CHPh	C6H4-4-CF3	H,C6H4-4-F
A2611	a7 a7	CH=CHPh	C6H4-3-CF3	H.H
			C6H4-3-CF3	'
A2612	a7	CH=CHPh		H,C6H4-4-F
A2613	a7	CH=CHPh	C6H4-4-OH	H,H
A2614	a7	CH=CHPh	C6H4-4-OH	H,C6H4-4-F
A2615	a7	CH=CHPh	CH2Ph	H,H
A2616	a7	CH=CHPh	CH2Ph	H,C6H4-4-F
A2617	a7	CH=CHPh	CH2C6H4-4-CF3	H,H
A2618	a7	CH=CHPh	CH2C6H4-4-CF3	Me,Me
A2619	a7	CH=CHPh	CH2C6H4-4-CF3	Et,Et
A2620	a7	CH=CHPh	CH2C6H4-4-CF3	H.Et
A2621	a7	CH=CHPh	CH2C6H4-4-CF3	H,Ph
A2622	a7	CH=CHPh	CH2C6H4-4-CF3	H,C6H4-4-F
A2623	a7	CH=CHPh	CH2C6H4-4-OCF3	H,H
A2624	a7	CH=CHPh	CH2C6H4-4-OCF3	H,C6H4-4-F
A2625	a7	CH=CHPh	CH2C6H4-4-Ph	H,H
A2626	a7	CH=CHPh	CH2C6H4-4-Ph	H,C6H4-4-F
A2627	a7	CH=CHPh	CH2C6H4-2-CI	H,H
A2628	a7	CH=CHPh	CH2C6H4-2-CI	H,C6H4-4-F
A2629	a7	CH=CHPh	(CH2)2Ph	Н,Н
A2630	a7	CH=CHPh	(CH2)2Ph	H,C6H4-4-F
A2631	a7	CH=CHPh	CH2-piperazino-Ph	H,H
A2632	a7	CH=CHPh	CH2-piperazino-Ph	Me,Me
A2633	a7	CH=CHPh	CH2-piperazino-Ph	Et,Et
A2634	a7	CH=CHPh	CH2-piperazino-Ph	H.Et
A2635	a7	CH=CHPh	CH2-piperazino-Ph	H,Ph
A2636	a7	CH=CHPh	CH2-piperazino-Ph	H,C6H4-4-F
A2637	a7	CH=CHPh	CH2-piperidino	H,H
A2638	a7	CH=CHPh	CH2-piperidino	H,C6H4-4-F
A2639	a7	CH=CHPh	SPh	Н,Н
A2640	а7	CH=CHPh	SPh	H,C6H4-4-F
A2641	a7	CH=CHPh	OCH2Ph	Н,Н
A2642	a7	CH=CHPh	OCH2Ph	H,C6H4-4-F
A2643	a7	CH=CHPh	Ac	H,H
A2644	a7	CH=CHPh	Ac	H,C6H4-4-F
A2645	a7	CH=CHPh	CONH2	H,H
A2646	a7	CH=CHPh	CONH2	H,C6H4-4-F
A2647	a7	CH=CHPh	CSNH2	H,H
A2648	a7	CH=CHPh	CSNH2	H,C6H4-4-F
A2649	a7	CH=CHPh	OCONH2	H,H
A2650	a7	CH=CHPh	OCONH2	H,C6H4-4-F

[0091] [表26]

A2651	a7	CH=CHPh	OCSNH2]н,н
A2652	a7	CH=CHPh	OCSNH2	H,C6H4-4-F
A2653	a7	CH=CHPh	OSO2Me	н,н
A2654	a7	CH=CHPh	OSO2Me	H,C6H44-F
A2655	a7	CH=CHPh	OSO2Ph	H,H
A2656	a7	CH=CHPh	OSO2Ph	H,C6H4-4-F
A2657	a7	CH=CHPh	I	н,н
A2658	a7	CH=CHPh	I	H,C6H4-4-F
A2659	a7	≡CPh	н .	н,н
A2660	a7	≣CPh	Н	Me,Me
A2661	a7	≡CPh	н	Et,Et
A2662	a7	≡CPh	Н	H.Et
A2663	a7	≣CPh	Н	H,Ph
A2664	a7	≣CPh	Н	H,C6H4-4-F
A2665	a7	≡CPh	Me	н,н
A2666	а7.	≡CPh	Me	Me,Me
A2667	a7	≡CPh	Me	Et,Et
A2668	a7	≡CPh	Me	H.Et
A2669	a7	≡CPh	Me	H,Ph
A2670	a7	≡CPh	Me	H,C6H4-4-F
A2671	a7	≡CPh	CH2OMe	н,н
A2672	a7	≡CPh	CH2OMe	Me,Me
A2673	a7	≡CPh	CH2OMe	Et,Et
A2674	a7	≡CPh	CH2OMe	H.Et
A2675	a7	≡CPh	CH2OMe	H,Ph
A2676	a7	≘ CPh	CH2OMe	H,C6H4-4-F
A2677	a7	≡CPh	CF3	H,H
A2678	a7	≡CPh	CF3	Me,Me
A2679	a7	≡CPh	CF3	Et,Et
A2680	a7	≡ CPh	CF3	H.Et
A2681	a7	≡CPh	CF3	H,Ph
A2682	a7	ECPh	CF3	H,C6H4-4-F
A2683	a7	≡CPh	CH2OH	H,H
A2684	a7	≡CPh	CH2OH	H,C6H4-4-F
A2685	a7	≡CPh	CH2NHBu	H,H
A2686	a7	≡CPh	CH2NHBu	H,C6H4-4-F
A2687	a7	≡CPh	CH2C≡CH	H,H
A2688	а7	≡CPh	CH2C≡CH	H,C6H4-4-F
A2689	a7	≡CPh	ОМе	H,H
A2690	а7	≡CPh	OMe	H,C6H4-4-F
A2691	а7	≡CPh	NH2	H,H
A2692	a7	≡CPh	NH2	H,C6H4-4-F
A2693	a7	≡CPh	NHMe	H,H
A2694	а7	≡CPh	NHMe	H,C6H4-4-F

[0092] [表27]

A2695	a7	≡CPh	CH2OPh	н,н
A2696	a7	≣CPh	CH2OPh	H,C6H4-4-F
A2697	a7	≡CPh	CH2OCH2Ph	H,H
A2698	a7	≡CPh	CH2OCH2Ph	H,C6H4-4-F
A2699	a7	≡cPh	CH2-morpholino	н,н
A2700	a7	≡CPh	CH2-morpholino	H,C6H4-4-F
A2701	a7	≡CPh	CH=CH-pyridyl	н,н
A2702	a7	≡CPh	CH=CH-pyridyl	H,C6H4-4-F
A2703	a7	≡CPh	C≣CPh	н,н
A2704	a7	≡CPh	C≣CPh	H,C6H4-4-F
A2705	a7	≡ CPh	Ph	Н,Н
A2706	a7	≡CPh	Ph	H,C6H4-4-F
A2707	a7	≡CPh	C6H4-4-CF3	н,н
A2708	a7	≡CPh	C6H4-4-CF3	Me,Me
A2709	а7	≡CPh	C6H4-4-CF3	Et,Et
A2710	a7	≡CPh	C6H4-4-CF3	H.Et
A2711	a7	≡CPh	C6H4-4-CF3	H,Ph
A2712	а7	≡CPh	C6H4-4-CF3	H,C6H4-4-F
A2713	а7	≡CPh .	C6H4-3-CF3	H,H
A2714	a7	≡CPh 🌼	C6H4-3-CF3	H,C6H4-4-F
A2715	а7	≡CPh	C6H4-4-OH	H,H
A2716	a7	≡CPh	C6H4-4-OH	H,C6H4-4-F
A2717	a7	≡CPh	CH2Ph	H,H
A2718	a7	≡CPh	CH2Ph	H,C6H4-4-F
A2719	a7	≡CPh	CH2C6H4-4-CF3	H,H
A2720	a7	≡CPh	CH2C6H4-4-CF3	Me,Me
A2721	а7 -	≡CPh	CH2C6H4-4-CF3	Et,Et
A2722	a7	≡CPh	CH2C6H4-4-CF3	H.Et
A2723	a7	≡CPh	CH2C6H4-4-CF3	H,Ph
A2724	а7	≡CPh	CH2C6H4-4-CF3	H,C6H4-4-F
A2725	а7	≡CPh	CH2C6H4-4-OCF3	H,H
A2726	a7	≡CPh	CH2C6H4-4-OCF3	H,C6H4-4-F
A2727	а7	≡CPh	CH2C6H4-4-Ph	H,H.
A2728	a7	≡CPh	CH2C6H4-4-Ph	H,C6H4-4-F
A2729	а7	≡CPh	CH2C6H4-2-CI	Н,Н
A2730	a7	≡ CPh	CH2C6H4-2-CI	H,C6H4-4-F
A2731	a7	≡CPh	(CH2)2Ph	H,H
A2732	a7	≡CPh	(CH2)2Ph	H,C6H4-4-F
A2733	a7	≡CPh	CH2-piperazino-Ph	H,H
A2734	a7	≡CPh	CH2-piperazino-Ph	Me,Me
A2735	a7	≡ CPh	CH2-piperazino-Ph	Et,Et
A2736	a7	≡ CPh	CH2-piperazino-Ph	H.Et
A2737	a7 _	≡ CPh	CH2-piperazino-Ph	H,Ph
A2738	a7	≡CPh	CH2-piperazino-Ph	H,C6H4-4-F

[0093] [表28]

		1		1
A2739	a7	≡CPh	CH2-piperidino	H,H
A2740	, a7	≡CPh	CH2-piperidino	H,C6H4-4-F
A2741	a7	≡CPh	SPh	H,H
A2742	a7	≡CPh	SPh	H,C6H4-4-F
A2743	a7	≡CPh	OCH2Ph	H,H
A2744	а7	≣CPh	OCH2Ph	H,C6H4-4-F
A2745	а7	≡CPh	Ac	H,H
A2746	a7	≡CPh	Ac	H,C6H4-4-F
A2747	a7	≡CPh	CONH2	H,H
A2748	a7	≡CPh	CONH2	H,C6H4-4-F
A2749	a7	≡CPh	CSNH2	H,H
A2750	a7	≡CPh	CSNH2	H,C6H4-4-F
A2751	a7	≡CPh	OCONH2	H,H
A2752	a7	≡CPh	OCONH2	H,C6H4-4-F
A2753	a7	≡CPh	OCSNH2	н,н
A2754	a7	≡CPh	OCSNH2	H,C6H4-4-F
A2755	a7	≡CPh	OSO2Me	н,н
A2756	a7	≡CPh	OSO2Me	H,C6H4-4-F
A2757	a7	≡CPh	OSO2Ph	H,H
A2758	a7	≡CPh	OSO2Ph	H,C6H4-4-F
A2759	а7	≣CPh	I	H,H
A2760	a7	≣CPh	I	H,C6H4-4-F
A2762	a7	, F	Н	Me,Me
A2763	а7	Et	. Н	Et,Et
A2764	а7	iBu	Н	H.Et
A2765	a7	CH=CHMe	Н	H,Ph
A2766	a7	ОН	Н	H,C6H4-4-F
A2767	a7	OEt	Me	H,H
A2768	a7	COPh	Me	Me,Me
A2769	a7.	4-pyridyl	Me	Et,Et
A2770	а7	morpholino	Me	H.Et
A2771	а7	NHiPr	Me	H,Ph
A2773	a7	F	CH2OMe	H,H
A2774	а7	Et	CH2OMe	Me,Me
A2775	а7	iBu	CH2OMe	Et,Et
A2776	а7	CH=CHMe	CH2OMe	H.Et
A2777	a7	ОН	CH2OMe	H,Ph
A2778	a7	OEt	CH2OMe	H,C6H4-4-F
A2779	a7	COPh	CF3	H,H
A2780	a7	4-pyridyl	CF3	Me,Me
A2781	a7	morpholino	CF3	Et,Et
A2782	a7	NHiPr	CF3	H.Et
A2784	a7	F	CF3	H,C6H4-4-F
A2785	a7	Et	CH2OH	Н,Н
				1 7

[0094] [表29]

A2786	a7	iBu	СН2ОН	H,C6H4-4-F
A2787	a7	CH=CHMe	CH2NHBu	Н,Н
A2788	a7	ОН	CH2NHBu	H,C6H4-4-F
A2789	a7	OEt	CH2C≡CH	H,H
A2790	a7	COPh	CH2C≡CH	H,C6H4-4-F
A2791	a7	4-pyridyl	OMe	Н,Н
A2792	a7	morpholino	OMe	H,C6H4-4-F
A2793	a7	NHiPr	NH2	н,н
A2795	a7	F	NHMe	н,н
A2796	a7	Et F	NHMe	H,C6H4-4-F
A2797	a7	iBu	CH2OPh	н,н
A2798	a7	CH=CHMe	CH2OPh	H,C6H4-4-F
A2799	a7	ОН	CH2OCH2Ph	Н,Н
A2800	a7	OEt	CH2OCH2Ph	H,C6H4-4-F
A2801	a7	COPh	CH2-morpholino	Н,Н
A2802	a7	4-pyridyl	CH2-morpholino	H,C6H4-4-F
A2803	, a7	morpholino	CH=CH-pyridyl	H,H
A2804	a7	NHiPr	CH=CH-pyridyl	H,C6H4-4-F
A2806	a7	F	C≡CPh	H,C6H4-4-F
A2807	a7	Et 🤏 -	Ph	H,H
A2808	a7	iBu	Ph	H,C6H4-4-F
A2809	a7	CH=CHMe	C6H4-4-CF3	H,H
A2810	a7	он	C6H4-4-CF3	Me,Me
A2811	a7	OEt	C6H4-4-CF3	Et,Et
A2812	a7	COPh	C6H4-4-CF3	H.Et
A2813	a7	4-pyridyl	C6H4-4-CF3	H,Ph
A2814	а7	morpholino	C6H4-4-CF3	H,C6H4-4-F
A2815	a7	NHiPr	C6H4-3-CF3	H,H
A2817	a7	F	C6H4-4-OH	H,H
A2818	a7	Et	C6H4-4-OH	H,C6H4-4-F
A2819	a7	iBu	CH2Ph	H,H
A2820	a7	CH=CHMe	CH2Ph	H,C6H4-4-F
A2821	а7	ОН	CH2C6H4-4-CF3	H,H
A2822	a7	OEt	CH2C6H4-4-CF3	Me,Me
A2823	a7	COPh	CH2C6H4-4-CF3	Et,Et
A2824	a7	4-pyridyl	CH2C6H4-4-CF3	H.Et
A2825	a7	morpholino	CH2C6H4-4-CF3	H,Ph
A2826	a7	NHiPr	CH2C6H4-4-CF3	H,C6H4-4-F
A2828	a7	F	CH2C6H4-4-OCF3	H,C6H4-4-F
A2829	a7	Et	CH2C6H4-4-Ph	Н,Н
A2830	а7	iBu	CH2C6H4-4-Ph	H,C6H4-4-F
A2831	a7	CH=CHMe	CH2C6H4-2-CI	H,H
A2832	a7	ОН	CH2C6H4-2-CI	H,C6H4-4-F
A2833	a7	OEt	(CH2)2Ph	Н,Н

[0095] [表30]

A2834	a7	COPh	(CH2)2Ph	H,C6H4-4-F
A2835	a7	4-pyridyl	CH2-piperazino-Ph	H,H
A2836	a7	morpholino	CH2-piperazino-Ph	Me,Me
A2837	a7	NHiPr	CH2-piperazino-Ph	Et,Et
A2839	a7	F	CH2-piperazino-Ph	H,Ph
A2840	a7	Et	CH2-piperazino-Ph	H,C6H4-4-F
A2841	a7	iBu	CH2-piperidino	H,H
A2842	a7	CH=CHMe	CH2-piperidino	H,C6H4-4-F
A2843	a7	ОН	SPh	H,H
A2844	a7	OEt	SPh	H,C6H4-4-F
A2845	a7	COPh	OCH2Ph	H,H
A2846	а7	4-pyridyl	OCH2Ph	H,C6H4-4-F
A2847	a7	morpholino	Ac	H,H
A2848	a7	NHiPr	Ac	H,C6H4-4-F
A2850	а7	F	CONH2	H,C6H4-4-F
A2851	а7	Et	CSNH2	H,H
A2852	a7	iBu	CSNH2	H,C6H4-4-F
A2853	a7	CH=CHMe	OCONH2	H,H
A2854	a7	ОН	OCONH2	H,C6H4-4-F
A2855	a7	OEt	OCSNH2	H,H & Sec
A2856	a7	COPh	OCSNH2	H,C6H4-4-F
A2857	a7	4-pyridyl	OSO2Me	H,H
A2858	a7	morpholino	OSO2Me	H,C6H4-4-F
A2859	a7	NHiPr	OSO2Ph	H,H
A2861	a7	F	I	H,H
A2862	а7	Et	I	H,C6H4-4-F
A3385	a7	CH2OMe	Me	H,H
A3386	a7	CH2OMe	Me	Me,Me
A3387	а7	CH2OMe	Me	Et,Et
A3388	a7	CH2OMe	Me	H.Et
A3389	a7	CH2OMe	Me	H,Ph
A3390	а7	. CH2OMe	Me	H,C6H4-4-F
A3397	a7	CH2OH	Ме	H,H
A3552	a7	CH2-piperazino-Ph	CF3	H.Et
A3553	a7	CH2-piperazino-Ph	CF3	H,Ph
A3554	a7	CH2-piperazino-Ph	CF3	H,C6H4-4-F
A3555	а7	CH2-piperidino	CF3	H,H
A3556	a7	CH2-piperidino	CF3	H,C6H4-4-F
A3557	a7	SPh	CF3	Н,Н
A3558	a7	SPh	CF3	H,C6H4-4-F
A3559	a7	OCH2Ph	CF3	H,H
A3560	a7	OCH2Ph	CF3	H,C6H4-4-F
A3561	a7	Ac	CF3	H,H
A3562	a7	Ac	CF3	H,C6H4-4-F

[0096] [表31]

A3563	a7	l conh2	CF3	н,н
A3564	a7	CONH2	CF3	H,C6H4-4-F
A3565	a7	CSNH2	CF3	Н,Н
A3566	a7	CSNH2	CF3	H,C6H4-4-F
A3567	a7	OCONH2	CF3	H.H
A3568	a7	OCONH2	CF3	H,C6H4-4-F
A3569	a7	OCSNH2	CF3	н.н
A3570	a7	OCSNH2	CF3	H,C6H4-4-F
A3571	a7	OSO2Me	CF3	H.H
A3572	a7	OSO2Me	CF3	H,C6H4-4-F
A3573	a7	OSO2Ph	CF3	H,H
A3574	a7	OSO2Ph	CF3	H.C6H4-4-F
A3575	a7	1	CF3	H,H
A3576	a7	i	CF3	H,C6H4-4-F
A3627	a7	C6H4-4-CF3	CH=CHPh	Et,Et
A3628	a7	C6H4-4-CF3	CH=CHPh	H.Et
A3629	a7	C6H4-4-CF3	CH=CHPh	H,Ph
A3630	a7	C6H4-4-CF3	CH=CHPh	H,C6H4-4-F
A3631	a7	C6H4-3-CF3	CH=CHPh	н.н
A3632	a7	C6H4-3-CF3	CH=CHPh	H.C6H4-4-F
A3633	a7	C6H4-4-OH	CH=CHPh	H,H
A3634	a7	C6H4-4-OH	CH=CHPh	H,C6H4-4-F
A3635	a7	CH2Ph	CH=CHPh	H,H
A3636	a7	CH2Ph	CH=CHPh	H.C6H4-4-F
A3637	a7	CH2C6H4-4-CF3	CH=CHPh	H,H
A3638	a7	CH2C6H4-4-CF3	CH=CHPh	Me,Me
A3639	a7	CH2C6H4-4-CF3	CH=CHPh	Et.Et
A3640	a7	CH2C6H4-4-CF3	CH=CHPh	H.Et
A3641	a7	CH2C6H4-4-CF3	CH=CHPh	H.Ph
A3642	a7	CH2C6H4-4-CF3	CH=CHPh	H,C6H4-4-F
A3643	a7	CH2C6H4-4-OCF3	CH=CHPh	Н,Н
A3644	a7	CH2C6H4-4-OCF3	CH=CHPh	H.C6H4-4-F
A3645	a7	CH2C6H4-4-Ph	CH=CHPh	Н,Н
A3646	a7	CH2C6H4-4-Ph	CH=CHPh	H.C6H4-4-F
A3647	a7	CH2C6H4-2-CI	CH=CHPh	H.H
A3648	a7	CH2C6H4-2-CI	CH=CHPh	H,C6H4-4-F
A3649	a7	(CH2)2Ph	CH=CHPh	н.н
A3650	a7	(CH2)2Ph	CH=CHPh	H.C6H4-4-F
A3651	a7	CH2-piperazino-Ph	CH=CHPh	н,н
A3652	a7	CH2-piperazino-Ph	CH=CHPh	Me.Me
A3704	a7	CH2OH	≣CPh	H,C6H4-4-F
A3705	a7	CH2NHBu	≡CPh	н,н
A3706	a7	CH2NHBu	≡CPh	H.C6H4-4-F
A3707	a7	CH2C≡CH	≡CPh	н,н
A3708	a7	CH2C≡CH	≡CPh	H,C6H4-4-F
A3709	a7	OMe	≡CPh	Н,Н
JA0703	1 47) Olivie		li iki i

[0097] [表32]

A3710	a7	OMe	≣CPh	H,C6H4-4-F	
A3711	a7	NH2	≡CPh	H,H	
A3712	a7	NH2	≣CPh	H,C6H4-4-F	
A3713	a7	NHMe	≡CPh	Н,Н	
A3714	a7	NHMe	≡CPh	H,C6H4-4-F	
A3715	a7	CH2OPh	≣CPh	Н,Н	
A3716	a7	CH2OPh	≡CPh	H,C6H4-4-F	
A3717	a7	CH2OCH2Ph	≣CPh	н,н	
A3718	a7	CH2OCH2Ph	≡CPh	H,C6H4-4-F	
A3719	a7	CH2-morpholino	≡CPh	н,н	
A3720	a7	CH2-morpholino	≡CPh	H,C6H4-4-F	
A3721	a7	CH=CH-pyridyl	≣CPh	н,н	
A3722	a7	CH=CH-pyridyl	≣CPh	H,C6H4-4-F	
A3723	a7	C≣CPh	≡CPh	H,H	
A3724	a7	C≣CPh	≡CPh	H,C6H4-4-F	
A3725	a7	- Ph	≡CPh	H,H	
A3726	a7	Ph	≡CPh	H,C6H4-4-F	
A3727	a7	C6H4-4-CF3	≡CPh	H,H	
A3728	a7	C6H4-4-CF3	≡CPh	Me,Me	
A3806	a7	CH2OH	iBu	H,C6H4-4-F	
A3807	a7	CH2NHBu	CH=CHMe	H,H	
A3808	a7	CH2NHBu	ОН	H,C6H4-4-F	
A3809	a7	CH2C≡CH	OEt	н,н	
A3810	a7	CH2C≡CH	COPh	H,C6H4-4-F	
A3811	a7	OMe	4-pyridyl	H,H	
A3812	a7	OMe	morpholino	H,C6H4-4-F	
A3813	a7	NH2	NHiPr	Н,Н	
A3814	a7	NH2	Н	H,C6H4-4-F	
A3815	a7	NHMe	• " F	H,H	
A3816	a7	NHMe	Et	H,C6H4-4-F	
A3817	a7	CH2OPh	iBu	H,H	
A3818	a7	CH2OPh	CH=CHMe	H,C6H4-4-F	
A3819	a7	CH2OCH2Ph	ОН	H,H	
A3820	a7	CH2OCH2Ph	OEt	H,C6H4-4-F	
A3821	a7	CH2-morpholino	COPh	H,H	
A3822	a7	CH2-morpholino	4–pyridyl	H,C6H4-4-F	
A3823	a7	CH=CH-pyridyl	morpholino	H,H	
A3824	a7	CH=CH-pyridyl	NHiPr	H,C6H4-4-F	
A3825	a7	C≣CPh	Н	H,H	
A3826	a7	C≣CPh	F	H,C6H4-4-F	
A3827	a7	Ph	Et	H,H	
A3828	a7	Ph	iBu	H,C6H4-4-F	
140000	t .				
A3829	а7	C6H4-4-CF3 C6H4-4-CF3	CH=CHMe OH	H,H Me,Me	

[0098] [表33]

A部分No.	タイプ	R20	n	R2	R3,R4
A3883	a1	4-CI	0	Ме	H,4-pyridyl
A3884	a1	4-CI	0	CH2OMe	H,CH2CH=CH2
A3885	a1	4-Cl	0	CH2-morpholino	H,C≡CPh
A3886	a1	4-CF3	0	CH2C6H4-4-CF3	H,CH=CH2
A3887	a1	4-CF3	0	ОМе	H,C6H4-4-Ph
A3888	a1	4-CF3	0	CF3	H,CH2C≡CH
A3889	a1	4-CF3	0	Me	H,CH=CHPh
A3890	a1	4-CF3	0	CH2OMe	H,3-furyl

[0099] 2)式:

[化24]

$$R^5$$
 R^6
 X^1
 R^8
 R^8

で示される部分(B部分)が下記のいずれかである化合物、

[0100] [表34]

D 42 /		Inc no no no
B部分 No.	X1	R5,R6,R7,R8
B1	S	H,H,H,H
B2	S	H,Me,H,H
B3	S	H,nPr,H,H
B4	S	H,OCH2CF3,H,H
B5	S	Н,ОН, Н,Н
B6	S	H,OMe,H,H
B7	S	H,SMe,H,H
B8	S	Me,H,H,H
B9	S	OMe,H,H,H
B10	S	H, SPh,H,H
B11	S S	Me,Me,Me
B12	S	H,Me,H,Me
B13	S	OCH2CF3,H,H,H
B14	S	CI,CI,H,H
B15	S	CI,H,H,H
B16	S	H,Cl,H,H
B17	S	H,F,H,H
B18	g.e. S	F,F,H,H
B19	S	F,H,H,H
B20	S	H,CH2CH=CH2,H,H
B21	0	H,H,H,H
B22	0	H,Me,H,H
B23	0	H,nPr,H,H
B24	O ,	H,OCH2CF3,H,H
B25	0	н,он, н,н
B26	0	H,OMe,H,H
B27	0	H,SMe,H,H
B28	0	Me,H,H,H
B29	0	OMe,H,H,H
B30	0	Me,Me,H,H
B31	0	Me,Me,Me
B32	0	H,OPh,H,H
B33	0	OCH2CF3,H,H,H
B34	0	CI,CI,H,H
B35	0	CI,H,H,H
B36	, O	H,CI,H,H
B37	0	H,F,H,H
B38	0	F,F,H,H
B39	0	F,H,H,H
B40	0	H,CH2CH=CH2,H,H
B41	CH2CO	H,H,H,H

[0101] [表35]

lous	1 0,,,,,,	l.,,,
B42	CH2CO	H,Me,H,H
B43	CH2CO	H,nPr,H,H
B44	CH2CO	H,OCH2CF3,H,H
B45	CH2CO	Н,ОН, Н,Н
B46	CH2CO	H,OMe,H,H
B47	CH2CO	H,SMe,H,H
B48	CH2CO	CI,H,H,H
B49	CH2CO	OMe,H,H,H
B50	CH2CO	Me,Me,H,H
B51	CH2CO	Me,CH=CH2,Me,Me
B52	CH2CO	H,Me,H,NHMe
B53	CH2CO	OCH2CF3,H,H,H
B54	CH2CO	CI,CI,H,H
B55	CH2CO	сі,н,н,н
B56	CH2CO	H,F,H,H
B57	CH2CO	H,CH2CH=CH2,H,H
B58	NH	H,H,H,H
B59	NH	H,Me,H,H
B60	NH	H.nPr.H.H
B61	NH	H,OCH2CF3,H,H
B62	NH	H,OH, H,H
B63	NH	H,OMe,H,H
B64	NH	H,SMe,H,H
	NH	
B65		Me,H,H,H
B66	NH	OMe,H,H,H
B67	NH	Me,CH≡CH,H,H
B68	NH	Me,Me,Me,Me
B69	NH	H,Ac,H,H
B70	NH	OCH2CF3,H,H,H
B71	NH	CI,CI,H,H
B72	NH	CI,H,H,H
B73	NH	H,F,H,H
B74	NH	H,CH2CH=CH2,H,H
B75	NMe	H,H,H,H
B76	NMe	H,Me,H,H
B77	NMe	H,nPr,H,H
B78	NMe	H,OCH2CF3,H,H
B79	NMe	Н,ОН, Н,Н
B80	NMe	H,OMe,H,H
B81	NMe	H,SMe,H,H
B82	NMe	Me,H,H,H
B83	NMe	H,Ph,H,H
B84	NMe	Me,Me,H,H
B85	NMe	Me,Me,Me,Me
B86	NMe	H,Me,H,Me
B87	NMe	OCH2CF3,H,H,H
B88	NMe	CI,CI,H,H
B89		1 ' ' '
اموما	NMe	CI,H,H,H

[0102] [表36]

B90	NMe	 н,ғ,н,н
B91	NMe	H,CH2CH=CH2,H,H
B92	NEt	Н,Н,Н,Н
B93	NMe	H,Me,H,H
B94	NCH2Ph	H,nPr,H,H
B95	NAc	H,OCH2CF3,H,H
B96	NCOEt	H,OMe,H,H
B97	NCOPh	Me,H,H,H
B98	NSO2Me	H,Ph,H,H
B99	NSO2Et	Me,Me,H,H
B100	NSO2Ph	Me,Me,Me,Me
B101	NSO2C6H4-p-Me	OCH2CF3,H,H,H
B102	CH2O	Н,Н,Н,Н
B103	CH2O	H,Me,H,H
B104	CH2O	H,nPr,H,H
B105	CH2O	H,OCH2CF3,H,H
B106	CH2O	н,он, н,н
B107	CH2O	H,OMe,H,H
B108	CH2O	H,CI,H,H
B109	CH2O	Me,H,H,H
B110	CH2O	H,Ph,H,H
B111	CH2O	Me,Me,H,H
B112	CH2O	Me,Me,Me
B113	CH2O	H,Me,H,Me
B114	CHEtO	OCH2CF3,H,H,H
B115	OCH2	H,H,H,H
B116	OCH2	H,Me,H,H
B117	OCH2	H,nPr,H,H
B118	OCH2	H,OCH2CF3,H,H
B119	OCH2	Н,ОН, Н,Н
B120	OCH2	H,OMe,H,H
B121	OCH2	H,SMe,H,H
B122	OCH2	Me,H,H,H
B123	OCH2	H,Ph,H,H
B124	OCH2	H,F,H,H
B125	OCH2	Me,Me,Me
B126	OCH2	H,Me,H,Me
B127	OCHMe	OCH2CF3,H,H,H

[0103] 3)式:

[化25]

$$X^2 \times X^3$$
 $R^9 \times R^{10}$

で示される部分(C部分)が下記のいずれかである化合物。

[0104] [表37]

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} X^2 \\ X^3 \\ \end{array} \end{array} \end{array} = \begin{array}{c} \begin{array}{c} X^2 \\ X^3 \\ \end{array} \end{array} \begin{array}{c} \begin{array}{c} X^2 \\ \end{array} \begin{array}{c} X^2 \\ \end{array} \begin{array}{c} X^3 \\ \end{array} \begin{array}{c} X^2 \\ \end{array} \begin{array}{c} X^3 \\ \end{array} \begin{array}{c} X^2 \\ \end{array} \begin{array}{c} X^3 \\ \end{array} \begin{array}{c}$$

O \$17 / \ \ \ \	A /-	V0.	IDO DIO	D47
C部分No.		X2	R9,R10	R17
C1 C2	c1	0	H,H H,H	H Me
	c1	0		
C3	c1	0 0	Me,H	H
C4	c1		Me,H	Me
C5	c1	0	Et,H	H
C6	c1	0	CH2OMe,H	Me
C7	c1	0	nPr,H	Н
C8	c1	Ó	nPr,H	Me
C9	с1	Ō	Me,Me	Н
C10	c1	O	Ph,Me	Ме
C11	c1	S	H,H	H
C12	с1	S	H,H	Me
C13	c1	S	CH2Ph,H	H
C14	с1	S	Ме,Н	Ме
C15	с1	S	Et,H	H
C16	c1	\$ \$ \$ \$ \$ \$	Et,H	Et
C17	c1	S	nPr,H	H
C18	c1	S	nPr,H	iPr
C19	c1	S	Me,Me	Н
C20	c1	S	Me,Me	Me
C21	c1	NH	H,H	Н
C22	c1	NH	H,H	Me
C23	c1	NH	Me,H	Н
C24	c1	NH	Me,H	Ме
C25	c1	NH	Et,H	Н
C26	c1	NH	Et,H	Me
C27	c1	NH	nPr,H	H
C28	c1	NH	nPr,H	Me
C29	c1	NH	Me,Me	н
C30	c1	NH	Me,Me	tBu
C31	c1	NEt	H,H	H
C32	c1	NMe	H,H	Me
C33	c1	NCH2Ph	Me,H	Н [
C34	c1	NAc	Me,H	Ме
C35	c1	NCOEt	Et,H	н
C36	с1	NCOPh	Et,H	Me
C37	c1	NSO2Me	nPr.H	н
C38	с1	NSO2Et	nPr.H	Мe
C39	c1	NSO2Ph	Me,Me	н
C40	c1	NSO2C6H4-p-Me	Me,Me	Ме
C41	c1	*1	*1	Н
C42	c1	*1	*1	Ме
C43	c2	0	н.н	Н
G44	c2	単結合	H.H	н
C45	c2	S	H.H	н
C46	c2	CH2	H.H	ΗI
C47	c2	NH	,,,,, H.H	Ηl
C48	c2	*1	*1	H
C49	c2	0	H.H	H
C50	c3	0	п,п Н,Н	Me
		0	л,п Ме,Н	H
C51 C52	c3	0	ме,н Ме,Н	Me
	c3	0	1 ' 1	H
C53	с3	U	Et,H	п [

[0105] [表38]

C54 C55 C56 C57 C58 C59 C60 C61 C62 C63 C64 C65 C66 C67 C71 C72 C73 C74 C75 C76 C77 C78 C79 C81 C82 C83 C84 C85 C89 C90 C91 C92 C93 C95 C96 C96 C96 C96 C97 C96 C97 C97 C97 C97 C97 C98 C99 C99 C99 C99 C99 C99 C99 C99 C99	333333333333333333333333333333444444555555	〇〇〇〇的結結結結系のののののは 単単単単単 CN TN NN NN *** O A CN ** Et,H nPr,H Me,Me Me,Me H,H OMe,H Ne,H Me,H Me,H Me,H H,H Me,	ET ET ETTTTTTTTTTTTTTTTTTTETTTETTTTTTTT	
			1 '	
C93	с6		1 7 1	
		CH2 NH	H,H H.H	H
C97 C98	с6 с6	NH *2	⊓,⊓ * 2	Н
C98	c0 c1	*2 CH2	≁∠ H.H	H
C100	c1	CH2	H.Me	H
C100	c1	CH2	H.H	Me
C101	c1	CH2	H,Me	Me
U 102	UI	OHZ	II HING	IVIC

[0106] 具体的には、化合物(I)のA部分、B部分およびC部分の組み合わせが下記の通りである化合物が好ましい。

[0107] [表39]

No.	Α	В	С	ı	43	A321	B4	C1	ı	150	A2466	B78	C11
	1 A7	B1	C1			A326	B4	C3			A2467	B78	C21
1	2 A12	B1	C3			A331	B4	C7	ł	•	A2472	B78	C32
	3 A13	B1	C7			A336	B4	C11		l .	A2472	B78	C41
4	4 A18	B1	C11			A351	B4	C21	l	1	A2478	B78	C43
į	5 A21	B1	C21			A356	B4	C32			A2503	B78	C49
6	6 A26	B1	C32			A399	B4	C41	ł	•	A2508	B78	C81
-	7 A27	B1	C41			A404	B4	C43			A2515	B78	C87
8	3 A32	B1	C43			A405	B4	C49			A2520	B78	C93
ę	A37	B1	C49	- 1		A410	B4	C81			A2529	B78	C99
10	A42	B1	C81			A413	B4	C87			A2534	B78	C102
11	A57	B1	C87			A418	B4	C93			A2563	B92	C102
12	A62	B1	C93			A419	B4	C99			A2568	B92	C3
13	A105	B1	C99	1		A424	B4	C102			A2569	B92	C7
14	A110	B1	C102			A424 A429	B21	01			A2574	B92	C11
15	A111	B2	C1			A434	B21	C3			A2574 A2575	1	
	A116	B2	СЗ	ł		A449		C7			A2575	B92	C21
	A119	B2	C7			l .	B21	1				B92	C32
	A124	B2	C11			A454	B21	C11			A2605	B92	C41
	A125	B2	C21			A497	B21	C21			A2610	B92	C43
	A130	B2	C32			A502	B21	C32			A2617	B92	C49
	A135	B2	C41			A503	B21	C41			A2622	B92	C81
	A140	В2	C43	- 1		A508	B21	C43			A2631	B92	C87
	A155	B2	C49	- 1		A511	B21	C49			A2636	B92	C93
	A160	B2	C81			A516	B21	C81			A2665	B92	C99
	A203	B2	C87			A517	B21	C87			A2670	B92	C102
	A208	B2	C93			A522	B21	C93			A2671	B93	C1
	A209	B2	C99			A527	B21	C99			A2676	B93	C3
	A214	B2	C102			A532	B21	C102			A2677	B93	C7
	A217	B3	C1	-		A547	B22	C1			A2682	B93	C11
	A222	B3	C3			A552	B22	C3			A2707	B93	C21
	A223	B3	C7			A2359	B59	C21			A2712	B93	C32
	A228	B3	C11			A2364	B59	C32			A2719	B93	C41
	A233	B3	C21			A2365	B59	C41			A2724	B93	C43
	A238	B3	C32			A2370	B59	C43			A2733	B93	C49
	A253	B3	C41			A2371	B59	C49	ı	192	A2738	B93	C81
	A258	B3	C43			A2376	B59	C81					
	A301	B3	C49			A2401	B59	C87					
	A306	B3	C81			A2406	B59	C93					
	1	B3				A2413	B59	C99					
	A307	B3	C87			A2418	B59	C102					
	A312	1	C93	Į		A2427	B78	C1					
	A315	B3	C99			A2432	B78	C3					
42	A320	B3	C102		157	A2461	B78	C7					

[0108] [表40]

No.	Α	В	С]	285	A27	B46	C11			331	A105	B92	C43
241	A7	B2	C3	1 1	286	A27	B47	C21			332	A105	B93	C49
242		В3	C7	i l	287	A27	B48	C32			333	A105	B94	C81
243		B4	C11		288	A27	B49	C41			334	A105	B95	C87
244	A7	B5	C21	i l	289	A27	B50	C43			335	A105	B96	C93
245		B6	C32		290	A27	B51	C49			336	A105	B97	C99
246	I	B7	C41		291	A27	B52	C81			337	A105	B98	C102
247		В8	C43	Ιİ	292	A27	B53	C87	Ì		338	A111	B99	C1
248	!	В9	C49	ΙI	293	A27	B54	C93			339	A111	B100	C3
249	1	B10	C81		294	A27	B55	C99		;	340	A111	B101	C7
250		B11	C87		295	A27	B56	C102		;	341	A111	B102	C11
251		B12	C93	l	296	A37	B57	C1		;	342	A111	B103	C21
252		B13	C99		297	A37	B58	СЗ		;	343	A111	B104	C32
253		B14	C102		298	A37	B59	C7		;	344	A111	B105	C41
	A13	B15	C1		299	A37	B60	C11		:	345	A111	B106	C43
	A13	B16	СЗ		300	A37	B61	C21		:	346	A111	B107	C49
	A13	B17	C7	Ш	301	A37	B62	C32		(347	A111	B108	C81
	A13	B18	C11		302	A37	B63	C41		(348	A111	B109	C87
	A13	B19	C21		303	A37	B64	C43		1	349	A111	B110	C93
259		B20	C32		304	A37	B65	C49		3	350	A111	B111	C99
	A13	B21	C41		305	A37	B66	C81		. 3	351	A111	B112	C102
261	A13	B22	C43		306	A37	B67	C87		3	352	A119	B113	C1
262	A13	B23	C49		307	A37	B68	C93		3	353	A119	B114	C3
263	A13	B24	C81		308	A37	B69	C99		3	354	A119	B115	C7
264	A13	B25	C87		309	A37	B70	C102		3	355	A119	B116	C11
265	A13	B26	C93		310	A57	B71	C1		3	356	A119	B117	
266	A13	B27	C99		311	A57	B72	C3		3	357	A119	B118	C32
267	A13	B28	C102		312	A57	B73	C7		3	358	A119	B119	C41
268	A21	B29	C1		313	A57	B74	C11		3	359	A119	B120	
269	A21	B30	C3		314	A57	B75	C21				A119	B121	
270	A21	B31	C7		315	A57	B76	C32		3	361	A119	B122	
271	A21	B32	C11		316	A57	B77	C41			- 1	A119	B123	
272	A21	B33	C21	Į	317	A57	B78	C43		3	363	A119		C93
273	A21	B34	C32	- 1	318		B79	C49			- 1	A119	B125	
274	A21	B35	C41		319	A57	B80	C81				A119		C102
275	A21	B36	C43		320		B81	C87			- 1	A223	B127	C1
276	A21	B37	C49		321	A57	B82	C93			- 1	A223	B1	C3
277	A21	B38	C81		322	A57	B83	C99			- 1	A223	B2	C7
278	A21	B39	C87		323		B84	C102			- 1	A223	B3	C11
279	A21	B40	C93		324	A105	B85	C1			- 1	A223	B4	C21
280	A21	B41	C99			A105	B86	C3			- 1	A223	B5	C32
281	A21	B42	C102			A105	B87	C7				A223	B6	C41
282		B43	C1		327	A105	B88	C11			1	A223	B7	C43
283	A27	B44	C3			A105	B89	C21				A223	B8	C49
284	A27	B45	C7			A105	B90	C32				A223	B9	C81
					330	A105	B91	C41		3	376	A223	B10	C87

[0109] [表41]

378 A223 B12 C99 424 A307 B58 C7 47 379 A223 B13 C102 425 A307 B59 C11 47 380 A233 B14 C1 426 A307 B60 C21 47 381 A233 B15 C3 427 A307 B61 C32 47 382 A233 B16 C7 428 A307 B62 C41 47 383 A233 B17 C11 429 A307 B63 C43 47 384 A233 B18 C21 430 A307 B64 C49 47 385 A233 B19 C32 431 A307 B65 C81 47	9 A429 0 A429 1 A429 2 A429 3 A429 4 A429 5 A429 6 A429 7 A429 8 A449	B104	C43 C49 C81 C87 C93
379 A223 B13 C102 425 A307 B59 C11 47 380 A233 B14 C1 426 A307 B60 C21 47 381 A233 B15 C3 427 A307 B61 C32 47 382 A233 B16 C7 428 A307 B62 C41 47 383 A233 B17 C11 429 A307 B63 C43 47 384 A233 B18 C21 430 A307 B64 C49 47 385 A233 B19 C32 431 A307 B65 C81 47	1 A429 2 A429 3 A429 4 A429 5 A429 6 A429 7 A429	B105 B106 B107 B108 B109	C43 C49 C81 C87 C93
380 A233 B14 C1 426 A307 B60 C21 47 381 A233 B15 C3 427 A307 B61 C32 47 382 A233 B16 C7 428 A307 B62 C41 47 383 A233 B17 C11 429 A307 B63 C43 47 384 A233 B18 C21 430 A307 B64 C49 47 385 A233 B19 C32 431 A307 B65 C81 47	2 A429 3 A429 4 A429 5 A429 6 A429 7 A429	B106 B107 B108 B109	C49 C81 C87 C93
381 A233 B15 C3 427 A307 B61 C32 47 382 A233 B16 C7 428 A307 B62 C41 47 383 A233 B17 C11 429 A307 B63 C43 47 384 A233 B18 C21 430 A307 B64 C49 47 385 A233 B19 C32 431 A307 B65 C81 47	3 A429 4 A429 5 A429 6 A429 7 A429	B107 B108 B109	C81 C87 C93
382 A233 B16 C7 428 A307 B62 C41 47 383 A233 B17 C11 429 A307 B63 C43 47 384 A233 B18 C21 430 A307 B64 C49 47 385 A233 B19 C32 C32 C31 A307 C32 C43 C43 C49 C49 C49 C47 C49 C47 C49 C47 <	4 A429 5 A429 6 A429 7 A429	B108 B109	C87 C93
383 A233 B17 C11 429 A307 B63 C43 47 384 A233 B18 C21 430 A307 B64 C49 47 385 A233 B19 C32 431 A307 B65 C81 47	5 A429 6 A429 7 A429	B109	C93
384 A233 B18 C21 430 A307 B64 C49 47 385 A233 B19 C32 431 A307 B65 C81 47	6 A429 7 A429		
385 A233 B19 C32 431 A307 B65 C81 47	7 A429	B110	
100,000	1		C99
	0 1 1 1 1 0	B111	C102
386 A233 B20 C41 432 A307 B66 C87 47	0 74449	B112	C1
387 A233 B21 C43 433 A307 B67 C93 47	9 A449	B113	C3
388 A233 B22 C49 434 A307 B68 C99 48	0 A449	B114	C7
389 A233 B23 C81 435 A307 B69 C102 48	1 A449	B115	C11
390 A233 B24 C87 A36 A315 B70 C1 48	2 A449	B116	C21
391 A233 B25 C93 437 A315 B71 C3 48	3 A449	B117	C32
392 A233 B26 C99 438 A315 B72 C7 48	4 A449	B118	C41
393 A233 B27 C102 439 A315 B73 C11 48	5 A449	B119	C43
394 A253 B28 C1 440 A315 B74 C21 48	6 A449	B120	C49
395 A253 B29 C3 441 A315 B75 C32 48	7 A449	B121	C81
396 A253 B30 C7 442 A315 B76 C41 48	B A449	B122	C87
397 A253 B31 C11 443 A315 B77 C43 48	9 A449	B123	C93
398 A253 B32 C21 444 A315 B78 C49 49	A449	B124	C99
399 A253 B33 C32 445 A315 B79 C81 49	1 A449	B125	C102
400 A253 B34 C41 446 A315 B80 C87 49	2 A497	B126	C1
401 A253 B35 C43 447 A315 B81 C93 49	3 A497	B127	C3
402 A253 B36 C49 448 A315 B82 C99 49	4 A497	B1	C7
403 A253 B37 C81 449 A315 B83 C102 49	5 A497	B2	C11
404 A253 B38 C87 450 A419 B84 C1 49	6 A497	B3	C21
405 A253 B39 C93 451 A419 B85 C3 49	7 A497	B4	C32
406 A253 B40 C99 452 A419 B86 C7 498	3 A497	B5	C41
107,7,200	A497	B6	C43
100),001	A497	·B7	C49
100)1001	1 A497	B8	C81
110/1001	2 A497	B9	C87
411/1001	3 A497	B10	C93
412 A301 B46 C21 458 A419 B92 C49 504	4 A497	B11	C99
413 A301 B47 C32 459 A419 B93 C81 509	5 A497	B12	C102
4117.001	6 A503	B13	C1
110).001	7 A503	B14	C3
110) 1001	A503	B15	C7
	A503	B16	C11
110)1001	A503	B17	C21
110/1001	1 A503	B18	C32
120) 1001	2 A503	B19	C41
121/1001	3 A503	B20	C43
422 A307 B56 C1 468 A429 B102 C21 514	4 A503	B21	C49

[0110] [表42]

515	A503	B22	C81		561	A2365	B68	C102		60	7 A2427	B114	C11	İ
516	A503	B23	C87		562	A2371	B69	C1	İ,	60	A2427	B115	C21	İ
517	A503	B24	C93		563	A2371	B70	C3		60	A2427	B116	C32	ļ
518	A503	B25	C99		564	A2371	B71	C7	İ	616	A2427	B117	C41	l
519	A503	B26	C102		565	A2371	B72	C11		61	A2427	B118	C43	ı
520	A511	B27	C1		566	A2371	B73	C21		613	A2427	B119	C49	l
521	A511	B28	C3		567	A2371	B74	C32		613	A2427	B120	C81	ı
522	A511	B29	C7		568	A2371	B75	C41		614	A2427	B121	C87	l
523	A511	B30	C11		569	A2371	B76	C43		61	A2427	B122	C93	ı
524	A511	B31	C21		570	A2371	B77	C49		616	A2427	B123	C99	ı
525	A511	B32	C32		571	A2371	B78	C81		61	A2427	B124		ı
526	A511	B33	C41		572	A2371	B79	C87	M	618	A2461	B125	C1	l
527	A511	B34	C43	Į	573	A2371	B80	C93		619	A2461	B126	C3	ı
528	A511	B35	C49		574	A2371	B81	C99		620	A2461	B127	C7	
529	A511	B36	C81			A2371	B82	C102			A2461	B1	C11	l
530	A511	B37	C87		i	A2401	B83	C1			A2461	B2	C21	ı
531	A511	B38	C93			A2401	B84	C3			A2461	В3	C32	ı
	A511	B39	C99			A2401	B85	C7			A2461	B4	C41	
	A511	B40	C102			A2401	B86	C11	1,4		A2461	B5	C43	
	A2359	B41	C1			A2401	B87	C21			A2461	B6	C49	
	A2359	B42	C3			A2401	B88	C32			A2461	В7	C81	
	A2359	B43	C7	ı		A2401	B89	C41			A2461	B8	C87	
	A2359	B44	C11	Į.		A2401	B90	C43			A2461	В9	C93	
	A2359	B45	C21	- 1		A2401	B91	C49			A2461	B10	C99	
	A2359	B46	C32			A2401	B92	C81			A2461	B11;	C102	
	A2359	B47	C41		1	A2401	B93	C87			A2467	B12	C1	
	A2359	B48	C43			A2401	B94	C93			A2467	B13	C3	
	A2359	B49	C49			A2401	B95	C99			A2467	B14	C7	
	A2359	B50	C81			A2401	B96	C102			A2467	B15	C11	
	A2359	B51	C87			A2413	B97	C1			A2467	B16	C21	
	A2359	B52	C93		0.71	A2413	B98	C3	ļ		A2467	B17	C32	
	A2359	B53	C99			A2413	B99	C7			A2467	B18	C41	
	A2359	B54	C102	- 1		A2413		C11	ı		A2467	B19	C43	
	A2365	B55	C1			A2413	B101	C21			A2467	B20	C49	
	A2365	B56	C3			A2413	B102				A2467	B21	C81	
	A2365	B57	C7	П		A2413	B103				A2467	B22	C87	
	A2365	B58	C11	- }		A2413	B104				A2467	B23	C93	
	A2365	B59	C21		1	A2413	B105				A2467	B24	C99	
	A2365	B60	C32		- 1	A2413		C81			A2467	B25	C102	
	A2365	B61	C41		1	A2413	B107				A2473	B26	C1	
	A2365	B62	C43			A2413	B108				A2473	B27	C3	
	A2365	B63	C49			A2413	B109				A2473	B28	C7	
	A2365	B64	C81			A2413	B110		$h^{\Phi_{\alpha}}$		A2473	B29	C11	
	A2365	B65	C87			A2427		C1			A2473	B30	C21	
	A2365		C93			A2427	B112				A2473	B31	C32	
560	A2365	B67	C99	- 1	606	A2427	B113	U/	ı	052	A2473	B32	C41	

[0111] [表43]

653	A2473	B33	C43		684	A2617	B64	C87		715	A2665	B95	C102	ı
654	A2473	B34	C49		685	A2617	B65	C93	1	716	A2671	B96	C1	İ
655	A2473	B35	C81		686	A2617	B66	C99		717	A2671	B97	C3	ı
656	A2473	B36	C87		687	A2617	B67	C102		718	A2671	B98	C7	ı
657	A2473	B37	C93		688	A2631	B68	C1		719	A2671	B99	C11	
658	A2473	B38	C99		689	A2631	B69	C3		720	A2671	B100	C21	
659	A2473	B39	C102		690	A2631	B70	C7		721	A2671	B101	C32	
660	A2605	B40	C1		691	A2631	B71	C11		722	A2671	B102	C41	ĺ
661	A2605	B41	C3		692	A2631	B72	C21		723	A2671	B103	C43	
662	A2605	B42	C7		693	A2631	B73	C32		724	A2671	B104	C49	
663	A2605	B43	C11		694	A2631	B74	C41		725	A2671	B105	C81	
664	A2605	B44	C21		695	A2631	B75	C43	ΙI	726	A2671	B106	C87	
665	A2605	B45	C32		696	A2631	B76	C49	Н	727	A2671	B107	C93	
666	A2605	B46	C41		697	A2631	B77	C81	Н	728	A2671	B108		
667	A2605	B47	C43		698	A2631	B78	C87		729	A2671	B109	C102	
668	A2605	B48	C49		699	A2631	B79	C93		730	A2677	B110		
669	A2605	B49	C81		700	A2631	B80	C99		731	A2677	B111		
670	A2605	B50	C87		701	A2631	B81	C102			A2677	B112		
671	A2605	B51	C93		702	A2665	B82	C1			A2677	B113		
672	A2605	B52	C99			A2665	B83	C3			A2677	B114		
	A2605	B53	C102			A2665	B84	C7			A2677	B115		
674	A2617	B54	C1			A2665	1	C11			A2677	B116		
675	A2617	B55	C3			A2665	1	C21			A2677	B117		
	A2617	B56	C7			A2665		C32			A2677	B118		
	A2617	B57	C11			A2665		C41			A2677	B119		
	A2617	B58	C21			A2665	B89	C43			A2677	B120		
	A2617	B59	C32			A2665	B90	C49			A2677	B121		
	A2617		C41			A2665	1	C81			A2677	B122		
	A2617	B61	C43		-	A2665		C87	L	743	A2677	B123	C102	
	A2617		C49			A2665	1 1	C93						
683	A2617	B63	C81		714	A2665	B94	C99						

[0112] [表44]

No.	Α	В	С		784	A21	B58	C41		825	A57	B3	C83
744		B2	C2		785	A21	B59	C43		826	A57	B4	C84
745	A7	В3	C3		786	A21	B78	C44		827	A57	B21	C85
746	A7	В4	C4		787	A21	B92	C45		828	A57	B22	C86
747	A7	B21	C5		788	A21	B93	C46		829	A57	B23	C87
748	A7	B22	C6		789	A21	B102	C47		830	A57	B24	C88
749	A7	B23	C7		790	A21	B115	C48		831	A57	B42	C89
750	A7	B24	C8		791	A27	В1	C49		832	A57	B58	C90
751	A7	B42	C9		792	A27	B2	C50		833	A57	B59	C91
752	A7	B58	C10	l .	793	A27	ВЗ	C51		834	A57	B78	C92
753	A7	B59	C11		794	A27	B4	C52		835	A57	B92	C93
754	A7	B78	C12		795	A27	B21	C53		836	A57	B93	C94
755	A7	B92	C13		796	A27	B22	C54		837	A57	B102	C95
756	A7	B93	C14		797	A27	B23	C55		838	A57	B115	C96
757	A7	B102	C15		798	A27	B24	C56		839	A105	В1	C97
758	A7	B115	C16		799	A27	B42	C57		840	A105	B2	C98
759	A13	B1	C17		800	A27	B58	C58		841	A105	В3	C99
760	A13	B2	C18		801	A27	B59	C59		842	A105	B4	C100
761	A13	B3	C19		802	A27	B78	C60		843	A105	B21	C101
762	A13	В4	C20		803	A27	B92	C61		844	A105	B22	C102
763	A13	B21	C21		804	A27	B93	C62		845	A105	B23	C1
764	A13	B22	C22		805		B102	C63		846	A105	B24	C2
765	A13	B23	C23		806	A27	B115	C64			A105	B42	C3
766	A13	B24	C24		807		B1	C65			A105	B58	C4
767	A13	B42	C25		808	A37	B2	C66			A105	B59	C5
768	A13	B58	C26		809		В3	C67			A105	B78	C6
769		B59	C27		810		B4	C68		- 1	A105	B92	C7
770	A13	B78	C28		811		B21	C69			A105	B93	.C8
771	A13	B92	C29		812		B22	C70	- 0		A105	B102	C9
772		B93	C30		813		B23	C71			A105	B115	C10
773	l l		C31		814		B24	C72		- 1	A111	B1	C11
774		B115			<u></u> 815		B42	C73			A111	B2	C12
775		B1	C33		816		B58	C74	l		A111	B3	C13
776	J	B2	C34		817		B59	C75			A111	B4	C14
777	i	B3	C35		818		B78	C76			A111	B21	C15
778		B4	C36		819		B92	C77			A111	B22	C16
779		B21	C37		820		B93	C78			A111	B23	C17
780		B22	C38		821		B102				A111	B24	C18
781		B23	C39		822		B115	C80			A111	B42	C19
782		B24	C40		823		B1	C81			A111	B58	C20
783	A21	B42	C41		824	A57	B2	C82	l I	865	A111	B59	C21

[0113] [表45]

	866	A111	B78	C22		907	A233	B21	C63		948			C2	
	867	A111	B92	C23		908	A233	B22	C64		949	4301		C3	
	868	A111	B93	C24		909	A233	B23	C65		950	4301	B115	C4	ĺ
	869	A111	B102	C25		910	A233	B24	C66		951	4307	B1	C5	
	870	A111	B115	C26		911	A233	B42	C67		952		B2	C6	ĺ
	871	A119	В1	C27		912	A233	B58	C68		953	4307	B3	C7	
	872	A119	В2	C28		913	A233	B59	C69		954	4307	B4	C8	
	873	A119	ВЗ	C29		914	A233	B78	C70	1	955	4307	B21	C9	ĺ
	874	A119	B4	C30	i	915	A233	B92	C71		956	4307	B22	C10	l
	875	A119	B21	C31	1 1	916	A233	B93	C72		957	A307	B23	C11	
	876	A119	B22	C32		917	A233	B102	C73		958	A307	B24	C12	
	877	A119	B23	C33		918	A233	B115	C74		959	A307	B42	C13	
	878	A119	B24	C34		919	A253	В1	C75		960	A307	B58	C14	
		A119	B42	C35		920	A253	B2	C76		961	A307	B59	C15	ı
	880	A119	B58	C36		921	A253	В3	C77		962	A307	B78	C16	١
	881	A119	B59	C37		922	A253	В4	C78	- 1	963	A307	B92	C17	ĺ
	882	A119	B78	C38		923	A253	B21	C79	İ	964	A307	B93	C18	ı
	- 1	A119	B92	C39		924	A253	B22	C80		965	A307	B102	C19	ı
l	l l	A119	B93	C40		925	A253	B23	C81		966	A307	B115	C20	١
	885	A119	B102	C41		926	A253	B24	C82	1	967	A315	В1	C21	l
		A119	B115	C41		927	A253	B42	C83	1	968	A315	B2	C22	١
	887	A223	B1	C43		928	A253	B58	C84		969	A315	B3	C23	ĺ
	888	A223	B2	C44		929	A253	B59	C85		970	A315	В4	C24	l
l	889	A223	В3	C45		930	A253	B78	C86		971	A315	B21	C25	١
l		A223	B4	C46		931	A253	B92	C87		972	A315	B22	C26	ļ
l	891	A223	B21	C47		932	A253	B93	C88		973	A315	B23	C27	l
	892	A223	B22	C48		933	A253	B102	C89		974	A315	B24	C28	l
ı	893	A223	B23	C49		934	A253	B115	C90		975	A315	B42	C29	
ı	894	A223	B24	C50		935	A301	B1	C91		976	A315	B58	C30	İ
l	895	A223	B42	C51		936	A301	B2	C92		977	A315	B59	C31	١
١	896	A223	B58	C52		937	A301	ВЗ	C93		978	A315	B78	C32	l
l	897	A223	B59	C53		938	A301	B4	C94			A315	B92	C33	١
۱	898	A223	B78	C54		939	A301	B21	C95		980	A315	B93	C34	l
ı		A223	B92	C55		940	A301	B22	C96		981	A315	B102	C35	l
I		A223	B93	C56	,	941	A301	B23	C97		982	A315	B115	1	١
١	901	A223	B102	C57		942	A301	B24	C98		983	A419	B1	C37	İ
I		A223	B115	C58		943	A301	B42	C99		984	A419	B2	C38	
		A233	В1	C59		944	A301	B58	C100		985	A419	B3	C39	
١		A233	B2	C60		945	A301	B59	C101		986	A419	B4	C40	1
1		A233	B3	C61	1	946	A301	B78	C102			A419	B21	C41	
1		A233	В4	C62	1	947	A301	B92	C1		988	A419	B22	C41	١
1		1	1	1				•	6						

[0114] [表46]

		1					اصبحا	004		1071	A E 1 1	B42	000 1
	A419	B23				A449	B115						
	A419	B24	C44	l I		A497	B1	C85		1072			C24
991	A419	B42	C45			A497	B2	C86		1073			C25
992	A419	B58	C46			A497	B3	C87		1074			C26
993	A419	B59	C47			A497	B4	C88		1075			C27
994	A419	B78	C48		1035	A497	B21	C89		1076			C28
995	A419	B92	C49		1036	A497	B22	C90		1077		B102	
996	A419	B93	C50		1037	A497	B23	C91		1078		B115	
997	A419	B102	C51		1038	A497	1 :	C92			A2359	B1	C31
998	A419	B115	C52		1039	A497	B42	C93			A2359	B2	C32
999	A429	B1	C53		1040	A497	B58	C94		1081	A2359	B3	C33
1000	A429	B2	C54		1041	A497	B59	C95			A2359	B4	C34
1001	A429	B3	C55		1042	A497	B78	C96		1083	A2359	B21	C35
1002	A429	B4	C56		1043	A497	B92	C97		1084	A2359	B22	C36
1003	A429	B21	C57		1044	A497	B93	C98			A2359	B23	C37
1004	A429	B22	C58		1045	A497	B102	C99		1086	A2359	B24	C38
1005	A429	B23	C59		1046	A497	B115	C100	1	1087	A2359	B42	C39
1006	A429	B24	C60		1047	A503	B1	C101		1088	A2359	B58	C40
1007	A429	B42	C61		1048	A503	B2	C102		1089	A2359	B59	C41
1008	A429	B58	C62		1049	A503	B3	C1		1090	A2359	B78	C41
1009	A429	B59	C63		1050	A503	B4	C2		1091	A2359	B92	C43
1010	A429	B78	C64		1051	A503	B21	C3		1092	A2359	B93	C44
1011	A429	B92	C65	1	1052	A503	B22	C4		1093	A2359	B102	C45
1012	A429	B93	C66		1053	A503	B23	C5		1094	A2359	B115	C46
1013	A429	B102	C67		1054	A503	B24	C6		1095	A2365	B1	C47
1014	A429	B115	C68		1055	A503	B42	C7		1096	A2365	B2	C48
1015	A449	B1	C69		1056	A503	B58	C8		1097	A2365	B3	C49
1016	A449	B2	C70		1057	A503	B59	C9			A2365	B4	C50
1017	A449	Вз	C71		1058	A503	B78	C10		1099	A2365	B21	C51
1018	A449	B4	C72		1059	A503	B92	C11		1100	A2365	B22	C52
1019	A449	B21	C73	'	1060	A503	B93	C12		1101	A2365	B23	C53
1020	A449	B22	C74	İ	1061	A503	B102	C13		1102	A2365	B24	C54
1021	A449	B23	C75	1	1062	A503	B115	C14		1103	A2365	B42	C55
1022	A449	B24	C76		1063	A511	B1	C15		1104	A2365	B58	C56
1023	A449	B42	C77		1064	A511	B2	C16		1105	A2365	B59	C57
1	A449	B58	C78		1065	A511	В3	C17		1106	A2365	B78	C58
1025	A449	B59	C79		1066	A511	B4	C18		1107	A2365	B92	C59
1	A449	B7.8	C80		1067	A511	B21	C19		1108	A2365	B93	C60
1027	A449	B92	C81		1068	A511	B22	C20		1109	A2365	B102	
	A449	B93	C82		1069	A511	B23	C21			A2365	B115	
	A449	B102	C83		1070	A511	B24	C22		1111	A2371	B1	C63
ł		i.			5		5						

[0115] [表47]

1112 A2371	B2	C64	1 1	1153	A2413	B59	C3		1194	A2467	B4	C44
1113 A2371	ВЗ	C65		1154	A2413	B78	C4		1195	A2467	B21	C45
1114 A2371	В4	C66		1155	A2413	B92	C5		1196	A2467	B22	C46
1115 A2371	B21	C67		1156	A2413	B93	C6		1197	A2467	B23	C47
1116 A2371	B22	C68		1157	A2413	B102	C7		1198	A2467	B24	C48
1117 A2371	B23	C69		1158	A2413	B115	C8		1199	A2467	B42	C49
1118 A2371	B24	C70		1159	A2427	B1	C9		1200	A2467	B58	C50
1119 A2371	B42	C71		1160	A2427	B2	C10		1201	A2467	B59	C51
1120 A2371	B58	C72		1161	A2427	B3	C11		1202	A2467	B78	C52
1121 A2371	B59	C73		1162	A2427	B4	C12		1203	A2467	B92	C53
1122 A2371	B78	C74		1163	A2427	B21	C13	1 1	1204	A2467	B93	C54
1123 A2371	B92	C75		1164	A2427	B22	C14	Ιİ	1205	A2467	B102	C55
1124 A2371	B93	C76		1165	A2427	B23	C15	ll	1206	A2467	B115	C56
1125 A2371	B102	C77		1166	A2427	B24	C16	ll	1207	A2473	B1	C57
1126 A2371	B115	C78		1167	A2427	B42	C17		1208	A2473	B2	C58
1127 A2401	BI	C79		1168	A2427	B58	C18		1209	A2473	В3	C59
1128 A2401	B2	C80		1169	A2427	B59	C19		1210	A2473	B4	C60
1129 A2401	В3	C81		1170	A2427	B78	C20		1211	A2473	B21	C61
1130 A2401	B4	C82		1171	A2427	B92	C21			A2473	B22	C62
1131 A2401	B21	C83		1172	A2427	B93	C22		1213	A2473	B23	C63
1132 A2401	B22	C84		1173	A2427	B102	C23		1214	A2473	B24	C64
1133 A2401	B23	C85		1174	A2427	B115	C24		1215	A2473	B42	C65
1134 A2401	B24	C86		1175	A2461	B1	C25		1216	A2473	B58	C66
1135 A2401	B42	C87		1176	A2461	B2	C26		1217	A2473	B59	C67
1136 A2401	B58	C88		1177	A2461	B3	C27		1218	A2473	B78	C68
1137 A2401	B59	C89		1178	A2461	B4	C28	191		A2473	B92	C69
1138 A2401	B78	C90		1179	A2461	B21	C29			A2473	B93	C70
1139 A2401	B92	C91		1180	A2461	B22	C30			A2473	B102	
1140 A2401	B93	C92			A2461	B23	C31			A2473	B115	
1141 A2401	B102	C93			A2461	B24	C32			A2605	B1	C73
1142 A2401	B115	C94			A2461	B42	C33	l I		A2605	B2	C74
1143 A2413	B1	C95		1184	A2461	B58	C34	ll		A2605	B3	C75
1144 A2413	B2	C96			A2461	B59	C35			A2605	B4	C76
1145 A2413	B3	C97			A2461	B78	C36			A2605	B21	C77
1146 A2413	B4	C98			A2461	B92	C37			A2605	B22	C78
1147 A2413		C99			A2461	B93	C38			A2605	B23	C79
1148 A2413		C100			A2461	B102				A2605	B24	C80
1149 A2413		C101			A2461	B115	C40			A2605	B42	C81
1150 A2413	1	C102			A2467	B1	C41			A2605	B58	C82
1151 A2413	1	C1			A2467	B2	C41			A2605	B59	C83
1152 A2413	B58	C2		1193	A2467	B3	C43		1234	A2605	B78	U84

[0116] [表48]

ĺ	1235	A2605	B92	C85	1264	A2631	B58	C12	1 1	1293	A2671	B23	C41	
	1236	A2605	B93	C86	1265	A2631	B59	C13		1294	A2671	B24	C41	
	1237	A2605	B102	C87	1266	A2631	B78	C14		1295	A2671	B42	C43	
	1238	A2605	B115	C88	1267	A2631	B92	C15		1296	A2671	B58	C44	
	1239	A2617	B1	C89	1268	A2631	B93	C16	l i	1297	A2671	B59	C45	
	1240	A2617	B2	C90	1269	A2631	B102	C17		1298	A2671	B78	C46	
ŀ	1241	A2617	В3	C91	1270	A2631	B115	C18		1299	A2671	B92	C47	
	1242	A2617	В4	C92	1271	A2665	B1	C19		1300	A2671	B93	C48	
	1243	A2617	B21	C93	1272	A2665	B2	C20		1301	A2671	B102	C49	
	1244	A2617	B22	C94	1273	A2665	В3	C21		1302	A2671	B115	C50	
	1245	A2617	B23	C95	1274	A2665	В4	C22		1303	A2677	B1	C51	
	1246	A2617	B24	C96	1275	A2665	B21	C23		1304	A2677	B2	C52	
	1247	A2617	B42	C97	1276	A2665	B22	C24	l i	1305	A2677	В3	C53	
	1248	A2617	B58	C98	1277	A2665	B23	C25		1306	A2677	В4	C54	
	1249	A2617	B59	C99	1278	A2665	B24	C26		1307	A2677	B21	C55	
	1250	A2617	B78	C100	1279	A2665	B42	C27		1308	A2677	B22	C56	
	1251	A2617	B92	C101	1280	A2665	B58	C28		1309	A2677	B23	C57	
	1252	A2617	B93	C102	1281	A2665	B59	C29	1	1310	A2677	B24	C58	
	1253	A2617	B102	C1	1282	A2665	B78	C30	1	1311	A2677	B42	C59	
	1254	A2617	B115	C2	1283	A2665	B92	C31		1312	A2677	B58	C60	
	1255	A2631	В1	C3	1284	A2665	B93	C32		1313	A2677	B59	C61	
	1256	A2631	B2	C4	1285	A2665	B102	C33		1314	A2677	B78	C62	
	1257	A2631	В3	C5	1286	A2665	B115	C34	. "	1315	A2677	B92	C63	
	1258	A2631	В4	Ç6	1287	A2671	B1	C35		1316	A2677	B93	C64	
	1259	A2631	B21	C7	1288	A2671	B2	C36		1317	A2677	B102	C65	
l	1260	A2631	B22	C8	1289	A2671	B3	C37		1318	A2677	B115	C66	
	1261	A2631	B23	C9	1290	A2671	B4	C38						
	1262	A2631	B24	C10	1291	A2671	B21	C39						
	1263	A2631	B42	C11	1292	A2671	B22	C40						

[0117] [表49]

							,		-			,	
No.	Α	В	С		1364	A13	B22	C41		1410	A26	B22	C1
1319	A7	B1	C5		1365	A13	B22	C59		1411	1	B22	C5
1320	A7	B1	C41	1	1366	A18	B1	C1		1412	A26	B22	C41
1321	A7	B1	C59		1367	A18	B1	C5		1413	A26	B22	C59
1322	A7	B2	C1		1368	A18	B1	C41		1414	A27	B1	C1
1323	A7	B2	C5		1369	A18	B1	C59		1415	A27	B1	C5
1324	A7	B2	C41		1370	A18	B2	C1		1416	A27	B1	C59
1325	A7	B2	C59		1371	A18	B2	C5		1417	A27	B2	C1
1326	A7	B21	C1		1372	A18	B2	C41		1418	A27	B2	C5
1327	A7	B21	C5		1373	A18	B2	C59		1419	A27	B2	C41
1328	A7	B21	C41		1374	A18	B21	C1	•	1420	A27	B2	C59
1329	A7	B21	C59		1375	A18	B21	C5		1421	A27	B21	C1
1330	A7	B22	C1		1376	A18	B21	C41		1422	A27	B21	C5
1331	A7	B22	C5		1377	A18	B21	C59		1423	A27	B21	C41
1332	A7	B22	C41	.]	1378	A18	B22	C1		1424	A27	B21	C59
1333	A7	B22	C59	. 1	1379	A18	B22	C5		1425	A27	B22	C1
1334	A12	B1	C1		1380	A18	B22	C41		1426	A27	B22	C5
1335	A12	B1	C5		1381	A18	B22	C59		1427	A27	B22	C41
1336	A12	B1	C41		1382	A21	B1	C1		1428	A27	B22	C59
1337	A12	B1	C59		1383	A21	B1	C5		1429	A32	B1	C1
1338	A12	B2	C1	.	1384	A21	B1	C41		1430	A32	B1	C5
1339	A12	B2	C5		1385		B1	C59		1431	A32	B1	C41
1340	A12	B2	C41		1386	A21	B2	C1	İ	1432	A32	B1	C59
1341	A12	B2	C59		1387	A21	B2	C5		1433	A32	B2	C1
1342	A12	B21	C1		1388	A21	B2	C41		1434		B2	C5
1343	A12	B21	C5		1389	A21	B2	C59		1435		B2	C41
1344	A12	B21	C41		1390	A21	B21	C1		1436	A32	B2	C59
1345	A12	B21	C59		1391	A21	B21	C5		1437		B21	C1
1346	A12	B22	C1		1392	A21	B21	C41		1438		B21	C5
1347	A12	B22	C5		1393	A21	B21	C59		1439		B21	C41
1348	A12	B22	C41		1394	A21	B22	C1		1440		B21	C59
1349	A12	B22	C59		1395		B22	C5		1441		B22.	.C1 :
1350	A13	B1	C1		1396	A21	B22	C41		1442		B22	C5
1351	A13	B1	C5		1397		B22	C59		1443		B22	C41
1352	A13	B1	C41		1398	A26	B1	C1		1444		B22	C59
1353	A13	B1	C59		1399	A26	B1	C5		1445	A37	B1	C1
1354	A13	B2	C1		1400		B1	C41		1446		B1	C5
1355	A13	B2	C5		1401	A26	B1	C59		1447		B1	C41
1356	A13	B2	C41		1402		B2	C1		1448		B1	C59
1357	A13	B2	C59		1403	A26	B2	C5		1449		B2	C1
1358	A13	B21	C1		1404	A26	B2	C41		1450		B2	C5
1359	A13	B21	C5		1405		B2	C59		1451		B2	C41
1360	A13	B21	C41		1406	A26	B21	C1		1452	A37	B2	C59
1361	A13	B21	C59		1407		B21	C5		1453		B21	C1
1362	A13	B22	C1		1408		B21	C41		1454		B21	C5
1363	A13	B22	C5	L	1409	A26	B21	C59		1455	A37	B21	C41
				_					_				

[0118] [表50]

B21 C1

B21 C5

B21 C41 B21 C59

B22 C1

B22 C5 B22 C41

B22 C59 B1

В1

B1

B1

B2

B2

B2

B2

B21 C5

B22 C1

B22 C5 C41

B22

B22

B1

В1

B1

B1

B2

B2

B2

B2

B21 B21 C41

B21 C1

B21 C41

B21 C59

C1

C5

C41

C59

C1

C5

C41

C59

C59

C1

C5

C41

C59 C1

C5

C41

C59 C1 B21

C5

B21 C59 B22 C1

B22 C5

B22 C41

B22 C59

C1

C5

C41

C59

C1

C5

B1

B1

B1

В1

B2

B2

1456 A37	B21	C59		1502	A62	B21	C5]	1548	A111
1457 A37	B22	C1		1503	A62	B21	C41		1549	A111
1458 A37	B22	C5		1504	A62	B21	C59	1	1550	A111
1459 A37	B22	C41		1505	A62	B22	C1		1551	A111
1460 A37	B22	C59		1506	A62	B22	C5		1552	A111
1461 A42	B1	C1		1507	A62	B22	C41	1	1553	A111
1462 A42	B1	C5	İ	1508	A62	B22	C59		1554	A111
1463 A42	B1	C41		1509	A105	B1	C1		1555	A111
1464 A42	B1	C59		1510	A105	B1	C5		1556	A116
1465 A42	B2	C1		1511	A105	B1	C41		1557	A116
1466 A42	B2	C5		1512	A105	B1	C59		1558	A116
1467 A42	B2	C41		1513	A105	B2	C1	1	1559	A116
1468 A42	B2	C59	İ	1514	A105	B2	C5		1560	A116
1469 A42	B21	C1		1515	A105	B2	C41		1561	A116
1470 A42	B21	C5		1516	A105	B2	C59		1562	A116
1471 A42	B21	C41		1517	A105	B21	C1	- 1	1563	A116
1472 A42	B21	C59		1518	A105	B21	C5		1564	A116
1473 A42	B22	C1		1519	A105	B21	C41	. ,	1565	A116
1474 A42	B22	C5		1520	A105	B21	C59		1566	A116
1475 A42	B22	C41		1521	A105	B22	C1		1567	A116
1476 A42	B22	C59		1522	A105	B22	C5		1568	A116
1477 A57	B1	C1		1523	A105	B22	C41	1 1	1569	A116
1478 A57	B1	C5		1524	A105	B22	C59		1570	A116
1479 A57	B1	C41		1525	A110	B1	C1		1571	A116
1480 A57	B1	C59		1526	A110	B1	C5		1572	A119
1481 A57	B2	C1		1527	A110	B1	C41	A 8	1573	A119
1482 A57	B2	C5		1528	A110	B1	C59		1574	A119
1483 A57	B2	C41		1529	A110	B2	C1		1575	A119
1484 A57	B2	C59		1530	A110	B2	C5		1576	A119
1485 A57	B21	C1		1531	A110	B2	C41		1577	A119
1486 A57	B21	C5		1532	A110	B2	C59		1578	A119
1487 A57	B21	C41		1533	A110	B21	C1		1579	A119
1488 A57	B21	C59		1534	A110	B21	C5		1580	A119
1489 A57	B22	C1		1535	A110	B21	C41		1581	A119
1490 A57	B22	C5		1536	A110	B21	C59		1582	A119
1491 A57	B22	C41		1537	A110	B22	C1			A119
1492 A57	B22	C59		1538	A110	B22	C5			A119
1493 A62	B1	C1		1539	A110	B22	C41		1585	A119
1494 A62	B1	C5		1540	A110	B22	C59			A119
1495 A62	B1	C41		1541	A111	B1	C1			A119
1496 A62	B1	C59		1542	A111	B1	C5			A124
1497 A62	B2	C1		1543	A111	B1	C41			A124
1498 A62	B2	C5		1544		B1	C59			A124
1499 A62	B2	C41		1545		B2	C5			A124
1500 A62	B2	C59		1546		B2	C41			A124
1501 A62	B21	C1		1547	A111	B2	C59] [1593	A124

[0119] [表51]

1594	A124	B2	C41		1640	A135	B2	C1]	1686	A160	B1	C59
1595	A124	B2	C59		1641	A135	B2	C5		1687	A160	B2	C1
1596	A124	B21	C1		1642	A135	B2	C59		1688	A160	B2	C5
1597	A124	B21	C5		1643	A135	B21	C1		1689	A160	B2	C41
	A124	B21	C41		1644	A135	B21	C5		1690	A160	B2	C59
1599	A124	B21	C59		1645	A135	B21	C41		1691	A160	B21	C1
1600	A124	B22	C1		1646	A135	B21	C59		1692	A160	B21	C5
1601	A124	B22	C5		1647	A135	B22	C1		1693	A160	B21	C41
	A124	B22	C41		1648	A135	B22	C5		1694	A160	B21	C59
1603	A124	B22	C59		1649	A135	B22	C41		1695	A160	B22	C1
1604	A125	B1	C1		1650	A135	B22	C59		1696	A160	B22	C5
1605	A125	B1	C5		1651	A140	B1	C1		1697	A160	B22	C41
1606	A125	B1	C41		1652	A140	B1	C5		1698	A160	B22	C59
1607	A125	В1	C59		1653	A140	B1	C41		1699	A203	B1	C1
1608	A125	B2	C1		1654	A140	B1	C59		1700	A203	B1	C5
	A125	B2	C5		1655	A140	B2	C1		1701	A203	B1	C41
1610	A125	B2	C41		1656	A140	B2	C5		1702	A203	В1	C59
1611	A125	B2	C59		1657	A140	B2	C41		1703	A203	B2	C1
1612	A125	B21	C1		1658	A140	B2	C59		1704	A203	B2	C5
1613	A125	B21	C5		1659	A140	B21	C1		1705	A203	B2	C41
1614	A125	B21	C41		1660	A140	B21	C5		1706	A203	B2	C59
1615	A125	B21	C59		1661	A140	B21	C41		1707	A203	B21	C1
1616	A125	B22	C1		1662	A140	B21	C59		1708	A203	B21	C5
1617	A125	B22	C5		1663	A140	B22	C1		1709	A203	B21	C41
1618	A125	B22	C41		1664	A140	B22	C5		1710	A203	B21	C59
1619	A125	B22	C59		1665	A140	B22	C41		1711	A203	B22	C1 .
1620	A130	B1	C1		1666	A140	B22	C59			A203	B22	C5
1621	A130	B1	C5		1667	A155	B1	C1			A203	B22	C41
1622	A130	B1	C41		1668	A155	B1	C5			A203	B22	C59
1623	A130	В1	C59		1669	A155	B1	C41			A208	B1	C1
1624	A130	B2	C1		1670	A155	B1	C59			A208	B1	C5
1625	A130	B2	C5			A155	B2	C1			A208	B1	C41
1626	A130	B2	C41			A155	B2	C5			A208	B1	C59
1627	A130	B2	C59			A155	B2	C41			A208	B2	C1
1628	A130	B21	C1			A155	B2	C59			A208	B2	C5
1629	A130	B21	C5			A155	B21	C1		-	A208	B2	C41
1630	A130	B21	C41		1676	A155	B21	C5			A208	B2	C59
1631	A130	B21	C59		1677	A155	B21	C41			A208	B21	C1
1632	A130	B22	C1		1678	A155	B21	C59			A208	B21	C5
1633	A130	B22	C5		l .	A155	B22	C1			A208	B21	C41
1634	A130	B22	C41		ŀ	A155	B22	C5			A208	B21	C59
1635	A130	B22	C59		1	A155	B22	C41			A208	B22	C1
1636	A135	B1	C1			A155	B22	C59			A208	B22	C5
1637	A135	B1	C5			A160	B1	C1			A208	B22	C41
1638	A135	B1	C41	- 1	}	A160	B1	C5			A208	B22	C59
1639	A135	B1	C59]	1685	A160	B1	C41		1731	A209	B1	C1

[0120] [表52]

B22 C5

B22 C41

B22 C59

C1

C5

C41

C59

C1

C5

C41

C59

C41

C59

C1

C5

C41

C59

C1

C5

C41

C59 B21 C1

B1

B1

B1

В1

B2

B2

B2

B2

B21 C1

B21 C5

B22 C1

B22 C5

B22

B22

B1

B1

B1

В1

B2

B2

B2

B2

B21 C5

B21 C41

B21 C59

B22 C1

B22 C5

B22 C41

B22 C59

C1

C5

C41

C59

C1

C5

C41

C59

В1

B1

B1

B1

B2

B2

B2

B2

B21 C1

B21 C5

B21 C41

B21 C41

B21 C59

1	1732	A209	В1	C5	į	1778	A217	B22	C59		1824	A228
1	1733	A209	B1	C41		1779	A222	B1	C1		1825	A228
1	1734	A209	B1	C59		1780	A222	B1	C5		1826	A228
1	1735	A209	B2	C1		1781	A222	B1	C41		1827	A233
1	1736	A209	B2	C5		1782	A222	B1	C59		1828	A233
1	1737	A209	B2	C41		1783	A222	B2	C1		1829	A233
1	1738	A209	B2	C59		1784	A222	B2	C5		1830	A233
1	1739	A209	B21	C1		1785	A222	B2	C41		1831	A233
1	1740	A209	B21	C5		1786	A222	B2	C59		1832	A233
1	1741	A209	B21	C41		1787	A222	B21	C1	İ	1833	A233
1	1742	A209	B21	C59		1788	A222	B21	C5		1834	A233
1	1743	A209	B22	C1		1789	A222	B21	C41		1835	A233
1	744	A209	B22	C5		1790	A222	B21	C59		1836	A233
1	745	A209	B22	C41		1791	A222	B22	C1		1837	A233
1	1746	A209	B22	C59		1792	A222	B22	C5		1838	A233
1	747	A214	B1	C1		1793	A222	B22	C41		1839	A233
1	748	A214	В1	C5		1794	A222	B22	C59		1840	A233
1	749	A214 .	B1	C41		1795	A223	В1	C1		1841	A233
1	750	A214	B1	C59		1796	A223	B1	C5	ĺ	1842	A233
1	751	A214	B2	C1	ĺ	1797	A223	B1	C41		1843	A238
1	752	A214	B2	C5		1798	A223	B1	C59		1844	A238
1	753	A214	B2	C41		1799	A223	B2	C1		1845	A238
1	754	A214	B2	C59		1800	A223	B2	C5		1846	A238
1	755	A214	B21	C1		1801	A223	B2	C41		1847	A238
1	756	A214	B21	C5		1802	A223	B2	C59		1848	A238
1	757	A214	B21	C41		1803	A223	B21	C1	-	1849	A238
1	758	A214	B21	C59		1804	A223	B21	C5		1850	A238
1	759	A214	B22	C1		1805	A223	B21	C41		1851	A238
1	760	A214	B22	C5		1806	A223	B21	C59		1852	A238
1	761	A214	B22	C41		1807	A223	B22	C1		1853	A238
1	762	A214	B22	C59		1808	A223	B22	C5		1854	A238
1	763	A217	B1	C1		1809	A223	B22	C41		1855	A238
1	764	A217	B1	C5		1810	A223	B22	C59		1856	A238
1	765	A217	B1	C41		1811	A228	B1	C1		1857	A238
1	766	A217	B1	C59		1812	A228	B1	C5		1858	A238
1	767	A217	B2	C1		1813	A228	B1	C41		1859	A253
1	768	A217	B2	C5		1814	A228	B1	C59		1860	A253
1	769	A217	B2	C41		1815	A228	B2	C1		1861	A253
1	770	A217	B2	C59		1816	A228	B2	C5		1862	A253
1	771	A217	B21	C1		1817	A228	B2	C41			A253
1	772	A217	B21	C5		1818		B2	C59			A253
1	773	A217	B21	C41		1819	A228	B21	C1		1865	A253
1	774	A217	B21	C59	1	1820	A228	B21	C5		1866	A253
1	775	A217	B22	C1		1821	A228	B21	C41	ļ		A253
1	776	A217	B22	C5		1822	A228	B21	C59			A253
1	777	A217	B22_	C41		1823	A228	B22	C1		1869	A253
			-									

[0121] [表53]

1870 A253	B21	C59
1871 A253	B22	C1
1872 A253	B22	C5
1873 A253	B22	C41
1874 A253	B22	C59
1875 A258	B1	C1
1876 A258	B1	C5
1877 A258	B1	C41
1878 A258	B1	C59
1879 A258	B2	C1
1880 A258		C5
1881 A258		C41
1882 A258	B2	C59
1883 A258	B21	C1
1884 A258	B21	C5
1885 A258		1 1
1886 A258	1	1 1
1887 A258		! !
1888 A258		1 1
1889 A258		1 1
1890 A25		1
1891 A30		C1
1892 A30		C5
1893 A30		C41
1894 A30		C59
1895 A30		C1
1896 A30		C5 C41
1897 A30		C59
1898 A30		
1899 A30	.	. -
1900 A30		1
1901 A30		
1902 A30		
1903 A30		1
1904 A30		
1	·	ľ
1906 A30		
1907 A30	- [-	
1908 A3	-	
1910 A3		
1910 A3		
1912 A3		
1913 A3		
1914 A3	-	
1915 A3	- 1-	1

					_		
1	916 A3	06	B2	1	C!	5	
	917 A3		B2	21	C	41	
	918 A3		B2	21	C	59	
	919 A3		B2	22	C	1	
	920 A3		B	22	C	5	
	921 A3		B	22	C	41	1
	922 A3			22	C	59	
	923 A3		B	1	c	1	
	1924 A3		B	1	c	5	ļ
	1925 A3		В	1	c	41	
	1926 A3		В	1	c	59	Ì
	1927 A3		В	2	C	1	-
	1928 A	307	В	2	c	5	ŀ
1	1929 A		В	2	c	41	
	1930 A		В	2	c	59	
ı	1931 A		В	21	lc	1	
	1932 A		В	21	lo	5	١
l	1933 A		- 1	21	- 1	241	
1	1934 A			21		559	١
	1935 A			22	- 1	21	1
	1936 A		E	322	lo) 5	١
	1937 A	307	- 1	322	- 1	241	1
l	1938 A	307	- 1	322	- 1	259	١
1	1939 A		1	31	- 1	C1	
1	1940 A		1	31		C5	١
	1941 A		- 1-	31	- 1	C41	
	1942 A	312	- 1	31	- 1	C59	
	1943 A		E	32	- },	C1	-
1	1944		- 1	32	- 1	C5	
1	1945		1	32	١	C41	
1	1946			B2	- 1	C59	
1	1947	4312		 В2	•	C1	
	1948		- 1	 В2	- 1	C5	
Ì	1949			B2	1	C41	
	1950		- 1	B2		C59	
	1951		- 1	- В2		C1	
	1952	A312		B2	2	C5	
	1953		-	B2	2	C41	
	1954			B2		C59	
	1955			В1		C1	
	1956			В1		C5	
	1957	A315	5	B1		C41	ı
	1958			В		C59)
	1959			B2	2	C1	
	1960			B		C5	
	1961			B	2	C4	1

B2 C59 1962 A315 B21 C1 1963 A315 B21 C5 1964 A315 B21 C41 1965 A315 1966 A315 B21 C59 1967 A315 B22 C1 1968 A315 B22 C5 1969 A315 1970 A315 1971 A320 C41 B22 B22 C59 C1 B1 1972 A320 B1 C5 C41 1973 A320 B1 1974 A320 1975 A320 C59 B1 C1 B2 1976 A320 1977 A320 B2 C5 C41 B2 C59 1978 A320 B2 C1 1979 A320 B21 B21 C5 1980 A320 B21 C41 1981 A320 B21 C59 1982 A320 B22 C1 1983 A320 B22 C5 1984 A320 1985 A320 B22 C41 B22 C59 1986 A320 C1 1987 A321 В1 1988 A321 B1 C5 1989 A321 C41 B1 1990 A321 В1 C59 1991 A321 1992 A321 B2 C1 B2 C5 1993 A321 B2 C41 C59 1994 A321 B2 1995 A321 B21 C1 1996 A321 B21 C5 1997 A321 B21 C41 B21 C59 1998 A321 1999 A321 B22 C1 2000 A321 B22 C5 2001 A321 B22 C41 B22 C59 2002 A321 2003 A326 C1 B1 2004 A326 C5 B1 C41 2005 A326 B1 2006 A326 B1 C59 2007 A326 C1 B2

[0122] [表54]

2008	A326	B2	C5		2054	A351	B1	C59		2100	A404	B1	C5	_
2009	A326	B2	C41		2055	A351	B2	C1		2101	A404	B1	C41	
2010	A326	B2	C59		2056	A351	B2	C5		2102	A404	B1	C59	
2011	A326	B21	C1		2057	A351	B2	C41		2103	A404	B2	C1	
2012	A326	B21	C5	İ	2058	A351	B2	C59		2104	A404	B2	C5	
2013	A326	B21	C41		2059	A351	B21	C1		2105	A404	B2	C41	
2014	A326	B21	C59		2060	A351	B21	C5	l	2106	A404	B2	C59	
2015	A326	B22	C1		2061	A351	B21	C41		2107	A404	B21	C1	
1	A326	B22	C5		2062	A351	B21	C59		2108	A404	B21	C5	
2017	A326	B22	C41		2063	A351	B22	C1	li	2109	A404	B21	C41	
2018	A326	B22	C59		2064	A351	B22	C5		2110	A404	B21	C59	
2019	A331	B1	C1		2065	A351	B22	C41		2111	A404	B22	C1	
	A331	В1	C5		2066	A351	B22	C59		2112	A404	B22	C5	
2021	A331	В1	C41		2067	A356	B1	C1		2113	A404	B22	C41	
2022	A331	В1	C59		2068	A356	B1	C5		2114	A404	B22	C59	
	A331	B2	C1		2069	A356	B1	C41		2115	A405	B1	C1	
2024	A331	B2	C5		2070	A356	B1	C59		2116	A405	B1	C5	
2025	A331	B2	C41		2071	A356	B2	C1		2117	A405	B1	C41	
2026	A331	B2	C59		2072	A356	B2	C5		2118	A405	B1	C59	
2027	A331	B21	C1		2073	A356	B2	C41		2119	A405	B2	C1	
2028	A331	B21	C5		2074	A356	B2	C59		2120	A405	B2	C5	
2029	A331	B21	C41		2075	A356	B21	C1		2121	A405	B2	C41	
:	A331	B21	C59		2076	A356	B21	C5		2122	A405	B2	C59	
2031	A331	B22	C1	ı	2077	A356	B21	C41		2123	A405	B21	C1	
2032	A331	B22	C5		2078	A356	B21	C59		2124	A405	B21	C5	
2033	A331	B22	C41		2079	A356	B22	C1	4	2125	A405	B21	C41	
2034	A331	B22	C59	ı	2080	A356	B22	C5		2126	A405	B21	C59	
2035	A336	B1	C1		2081	A356	B22	C41		2127	A405	B22	C1	
2036	A336	В1	C5		2082	A356	B22	C59		2128	A405	B22	C5	
2037	A336	B1	C41		2083	A399	B1	C1		2129	A405	B22	C41	
2038	A336	В1	C59		2084	A399	B1	C5		2130	A405	B22	C59	
2039	A336	B2	C1	1	2085	A399	B1	C41	0	2131	A410	B1	C1	
2040	A336	B2	C5		2086	A399	B1	C59		2132	A410	B1	C5	
2041	A336	B2	C41		2087	A399	B2	C1		2133	A410	B1	C41	
2042	A336	B2	C59		2088	A399	B2	C5			A410	B1	C59	
2043	A336	B21	C1		2089	A399	B2	C41			A410	B2	C1	
2044	A336	B21	C5		2090	A399	B2	C59		2136	A410	B2	C5	
2045	A336	B21	C41		2091	A399	B21	C1		2137	A410	B2	C41	
2046	A336	B21	C59		2092	A399	B21	C5		2138	A410	B2	C59	
2047	A336	B22	C1		2093	A399	B21	C41			A410	B21	C1	
2048	A336	B22	C5		2094	A399	B21	C59			A410	B21	C5	
2049	A336	B22	C41		2095	A399	B22	C1			A410	B21	C41	
2050	A336	B22	C59		2096	A399	B22	C5			A410	B21	C59	
2051	A351	В1	C1		2097	A399	B22	C41			A410	B22	C1	
2052	A351	B1	C5		2098	A399	B22	C59			A410	B22	C5	
2053	A351	В1	C41		2099	A404	B1	C1		2145	A410	B22	C41	
									_					

[0123] [表55]

									_				
2146	A410	B22	C59		2192	A419	B22	C5		2238	A434	B22	C1
2147	A413	B1	C1		2193	A419	B22	C41		2239	A434	B22	C5
2148	A413	B1	C5		2194	A419	B22	C59		2240	A434	B22	C41
2149	A413	B1	C41		2195	A424	В1	C1		2241	A434	B22	C59
2150	A413	B1	C59		2196	A424	B1	C5		2242	A449	B1	C1
2151	A413	B2	C1		2197	A424	B1	C41		2243	A449	B1	C5
2152	A413	B2	C5		2198	A424	B1	C59		2244	A449	B1	C41
2153	A413	B2	C41		2199	A424	B2	C1		2245	A449	B1	C59
2154	A413	B2	C59		2200	A424	B2	C5	8	2246	A449	B2	C1
2155	A413	B21	C1		2201	A424	B2	C41		2247	A449	B2	C5
2156	A413	B21	C5		2202	A424	B2	C59		2248	A449	B2	C41
2157	A413	B21	C41		2203	A424	B21	C1		2249	A449	B2	C59
2158	A413	B21	C59		2204	A424	B21	C5		2250	A449	B21	C1
2159	A413	B22	C1		2205	A424	B21	C41		2251	A449	B21	C5
2160	A413	B22	C5		2206	A424	B21	C59		2252	A449	B21	C41
2161	A413	B22	C41		2207	A424	B22	C1		2253	A449	B21	C59
2162	A413	B22	C59		2208	A424	B22	C5		2254	A449	B22	C1
2163	A418	В1	C1		2209	A424	B22	C41		2255	A449	B22	C5
2164	A418	B1	C5		2210	A424	B22	C59		2256	A449	B22	C41
2165	A418	В1	C41		2211	A429	B1	C1		2257	A449	B22	C59
2166	A418	B1	C59		2212	A429	B1	C5		2258	A454	B1	C1
2167	A418	B2	C1	ŀ	2213	A429	B1	C41		2259	A454	B1	C5
2168	A418	B2	C5		2214	A429	В1	C59		2260	A454	B1	C41
2169	A418	B2	C41		2215	A429	B2	C1		2261	A454	B1	C59
2170	A418	B2	C59		2216	A429	B2	C5		2262	A454	B2	C1
2171	A418	B21	C1		2217	A429	B2	C41		2263	A454	B2	C5
2172	A418	B21	C5		2218	A429	B2	C59		2264	A454	B2	C41
2173	A418	B21	C41		2219	A429	B21	C5		2265	A454	B2	C59
2174	A418	B21	C59		2220	A429	B21	C41		2266	A454	B21	C1
2175	A418	B22	C1		2221	A429	B21	C59		2267	A454	B21	C5
2176	A418	B22	C5		2222	A429	B22	C1		2268	A454	B21	C41
2177	A418	B22	C41		2223	A429	B22	C5		2269	A454	B21	C59 -
2178	A418	B22	C59		2224	A429	B22	C41			A454	B22	C1
2179	A419	B1	C1		2225	A429	B22	C59		2271	A454	B22	C5
2180	A419	B1	C5		2226	A434	В1	C1		2272	A454	B22	C41
2181	A419	B1	C41		2227	A434	B1	C5		2273	A454	B22	C59
2182	A419	B1	C59		2228	A434	B1	C41		2274	A497	B1	C1
2183	A419	B2	C1		2229	A434	B1	C59		2275	A497	B1	C5
2184	A419	B2	C5		2230	A434	B2	C1		2276	A497	B1	C41
2185	A419	B2	C41		2231	A434	B2	C5		2277	A497	B1	C59
2186	A419	B2	C59		2232	A434	B2	C41		2278	A497	B2	C1
2187	A419	B21	C1		2233	A434	B2	C59		2279	A497	B2	C5
2188	A419	B21	C5		2234	A434	B21	C1		2280	A497	B2	C41
2189	A419	B21	C41		2235	A434	B21	C5		2281	A497	B2	C59
2190	A419	B21	C59		2236	A434	B21	C41		2282	A497	B21	C1
2191	A419	B22	C1		2237	A434	B21	C59		2283	A497	B21	C5

[0124] [表56]

	2284	A497	B21	C41	ſ	2330	A508	B21	C5		2376	A517	B2	C59	
	2285	A497	B21	C59		2331	A508	B21	C41		2377	A517	B21	C1	
١	2286	A497	B22	C1		2332	A508	B21	C59		2378	A517	B21	C5	
	2287	A497	B22	C5		2333	A508	B22	C1			A517	B21	C41	
1	2288	A497	B22	C41		2334	A508	B22	C5		2380	A517	B21	C59	
	2289	A497	B22	C59		2335	A508	B22	C41		2381	A517	B22	C1	
	2290	A502	B1	C1		2336	A508	B22	C59		2382	A517	B22	C5	
	2291	A502	В1	C5		2337	A511	B1	C1		2383	A517	B22	C41	
İ	2292	A502	В1	C41		2338	A511	В1	C5		2384	A517	B22	C59	
1	2293	A502	В1	C59	1	2339	A511	В1	C41		2385	A522	B1	C1	
١	2294	A502	B2	C1		2340	A511	В1	C59		2386	A522	B1	C5	
١	2295	A502	B2	C5		2341	A511	B2	C1		2387	A522	B1	C41	
١	2296	A502	B2	C41	ĺ	2342	A511	B2	C5		2388	A522	B1	C59	
ŀ	2297	A502	B2	C59		2343	A511	B2	C41		2389	A522	B2	C1	
İ	2298	A502	B21	C1		2344	A511	B2	C59		2390	A522	B2	C5	
	2299	A502	B21	C5		2345	A511	B21	C1		2391	A522	B2	C41	
İ	2300	A502	B21	C41		2346	A511	B21	C5		2392	A522	B2	C59	
1	2301	A502	B21	C59		2347	A511	B21	C41		2393	A522	B21	C1	
١	2302	A502	B22	C1		2348	A511	B21	C59		2394	A522	B21	C5	
1	2303	A502	B22	C5	*	2349	A511	B22	C1		2395	A522	B21	C41	
	2304	A502	B22	C41	Y	2350	A511	B22	C5		2396	A522	B21	C59	
	2305	A502	B22	C59		2351	A511	B22	C41		2397	A522	B22	C1	
ĺ	2306	A503	B1	C1	*	2352	A511	B22	C59			A522	B22	C5	
	2307	A503	B1	C5		2353	A516	B1	C1		2399	A522	B22	C41	
	2308	A503	B1	C41		2354	A516	B1	C5			A522	B22	C59	
١	2309	A503	В1	C59		2355	A516	B1	C41			A527	B1	C1	
١	2310	A503	B2	C1		2356	A516	B1	C59			A527	B1	C5	
Į	2311	A503	B2	C5	1	2357	A516	B2	C1			A527	B1	C41	
١	2312	A503	B2	C41	ŀ	2358	A516	B2	C5			A527	B1	C59	
١	2313	A503	B2	C59		2359	A516	B2	C41			A527	B2	C1	
١	2314	A503	B21	C1		2360	A516	B2	C59			A527	B2	C5	
1	2315	A503	B21	C5		2361	A516	B21	C1			A527	B2	C41	
	2316	A503	B21	C59			A516	B21	C5			A527	B2	C59	
	2317	A503	B22	C1			A516	B21	C41	5		A527	B21	C1	
ı	2318	A503	B22	C5		2364	A516	B21	C59			A527	B21	C5	
	2319	A503	B22	C41			A516	B22	C1			A527	B21	C41	
	2320	A503	B22	C59		2366	A516	B22	C5			A527	B21	C59	
	2321	A508	B1	C1		2367	A516	B22	C41			A527	B22	C1	
	2322	A508	B1	C5		2368	A516	B22	C59			A527	B22	C5	
	2323	A508	B1	C41			A517	B1	C1		-	A527	B22	C41	
	2324	A508	B1	C59			A517	B1	C5			A527	B22	C59	
	2325	A508	B2	C1			A517	B1	C41			A532	B1	C1	
	2326	A508	B2	C5			A517	B1	C59			A532	B1	C5	
	2327	A508	B2	C41			A517	B2	C1			A532	B1	C41	
ĺ	2328	A508	B2	C59			A517	B2	C5			A532	B1	C59	
	2329	A508	B21	C1		2375	A517	B2	C41]	2421	A532	B2	C1	_

[0125] [表57]

2422	A532	B2	C5
2423	A532	B2	C41
2424	A532	B2	C59
2425	A532	B21	C1
2426	A532	B21	C5
2427	A532	B21	C41
2428	A532	B21	C59
2429	A532	B22	C1
2430	A532	B22	C5
2431	A532	B22	C41
2432	A532	B22	C59
2433	A547	B1	C1
2434	A547	B1	C5
2435	A547	В1 -	C41
	A547	B1	C59
	A547	B2	C1
	A547	B2	C5
	A547	B2	C41
	A547	B2	C59
	A547	B21	C1
	A547	B21	C5
	A547	B21	C41
	A547	B21	C59
2445	A547	B22	C5
	A547	B22	C41
	A547	B22	C59
	A552	B1	C1
	A552	B1	C5
	A552	B1	C41
	A552	B1	C59
	A552	B2	C1
	A552	B2	C5
	A552	B2	C41
	A552	B2	C59
	A552	B21	C1
	A552	B21	C5
	A552	B21	C41
	A552	B21	C59
	A552	B22	C1
	A552	B22	C5
	A552	B22	C41
	A552	B22	C59
1	A2359	B1	C1
	A2359	B1	C5
	A2359	B1	C41
3618	A2359	B1	C59

3619	A2359	B2	C1
3620	A2359	B2	C5
3621	A2359	B2	C41
3622	A2359	B2	C59
3623	A2359	B21	C1
3624	A2359	B21	C5
3625	A2359	B21	C41
3626	A2359	B21	C59
3627	A2359	B22	C1
3628	A2359	B22	C5
3629	A2359	B22	C41
	A2359	B22	C59
3631	A2364	В1	C1
3632	A2364	B1	C5
	A2364	B1	C41
3634	A2364	B1	C59
3635	A2364	B2	C1
3636	A2364	B2	C5
3637	A2364	B2	C41
3638	A2364	B2	C59
3639	A2364	B21	C1
3640	A2364	B21	C5
3641	A2364	B21	C41
3642	A2364	B21	C59
3643	A2364	B22	C1
3644	A2364	B22	C5
3645	A2364	B22	C41
3646	A2364	B22	C59
3647	A2365	В1	C1
3648	A2365	В1	C5
3649	A2365	B1	C41
3650	A2365	B1	C59
3651	A2365	B2	C1
3652	A2365	B2	C5
3653	A2365	B2	C41
3654	A2365	B2	C59
3655	A2365	B21	C1
	A2365	B21	C5
3657	A2365	B21	C41
3658	A2365	B21	C59
3659	A2365	B22	C1
3660	A2365	B22	C5
3661	A2365	B22	C41
3662	A2365	B22	C59
3663	A2370	В1	C1
3664	A2370	В1	C5

3665	A2370	B1	C41
3666	A2370	В1	C59
3667	A2370	B2	C1
3668	A2370	B2	C5
3669	A2370	B2	C41
3670	A2370	В2	C59
3671	A2370	B21	C1
3672	A2370	B21	C5
3673	A2370	B21	C41
3674	A2370	B21	C59
3675	A2370	B22	C1
3676	A2370	B22	C5
3677	A2370	B22	C41
3678	A2370	B22	C59
3679	A2371	B1	C1
3680	A2371	B1	C5
3681	A2371	B1	C41
	A2371	Вí	C59
	A2371	B2	C1
	A2371	B2	C5
	A2371	B2	C41
	A2371	B2	C59
3687		B21	C1
	A2371	B21	C5
3689		B21	C41
	A2371	B21	C59
	A2371	B22	C1
	A2371	B22	C5
	A2371	B22	C41
	A2371	B22	C59
	A2376	B1	C1 C5
	A2376	B1 B1	C41
	A2376 A2376	В1	C59
	A2376	B2	C1
	A2376	B2	C5
	A2376	B2	C41
0.00		B2	C59
	A2376 A2376	B21	C1
	A2376	B21	C5
	A2376	B21	C41
	A2376	B21	C59
	A2376	B22	C1
1	A2376	B22	C5
	A2376	B22	C41
	A2376	B22	C59

[0126] [表58]

3711	A2401	B1	C1
3712	A2401	B1	C5
3713	A2401	B1	C41
3714	A2401	B1	C59
3715	A2401	B2	C1
3716	A2401	B2	C5
3717	A2401	B2	C41
3718	A2401	B2	C59
3719	A2401	B21	C1
3720	A2401	B21	C5
3721	A2401	B21	C41
3722	A2401	B21	C59
3723	A2401	B22	C1
3724	A2401	B22	C5
3725	A2401	B22	C41
3726	A2401	B22	C59
3727	A2406	B1	C1
3728	A2406	В1	C5
3729	A2406	B1	C41
3730	A2406	В1	C59
3731	A2406	B2	C1
3732	A2406	B2	C5
3733	A2406	B2	C41
3734	A2406	B2	C59
3735	A2406	B21	C1
1	A2406	B21	C5
1	A2406	B21	C41
3738	A2406	B21	C59
3739	A2406	B22	C1
3740	A2406	B22	C5
3741	A2406	B22	C41
3742	A2406	B22	C59
3743	A2413	B1	C1
3744	A2413	B1	C5
3745	A2413	B1	C41
	A2413	B1	C59
	A2413	B2	C1
	A2413	B2	C5
3749	A2413	B2	C41
	A2413	B2	C59
	A2413	B21	C1
	A2413	B21	C5
	A2413	B21	C41
	A2413	B21	C59
	A2413	B22	C1
3756	A2413	B22	C5

3757 A2413 B22 C41 3758 A2413 B22 C59 3759 A2418 B1 C1 37.60 A2418 B1 C5 3761 A2418 B1 C41 3762 A2418 B1 C59 3763 A2418 B2 C1 3764 A2418 B2 C5 3765 A2418 B2 C41 3766 A2418 B2 C59 3767 A2418 B21 C1 3768 A2418 B21 C5 3769 A2418 B21 C41 3770 A2418 B21 C59 3771 A2418 B22 C1 3772 A2418 B22 C5 3773 A2418 B22 C41 3774 A2418 B22 C59 3775 A2427 B1 C1 3776 A2427 B1 C5 3777 A2427 B1 C41 3778 A2427 B1 C59 3779 A2427 B2 C1 3780 A2427 B2 C5 3781 A2427 B2 C41 3782 A2427 B2 C59 3783 A2427 B21 C1 3784 A2427 B21 C5 3785 A2427 B21 C41 3786 A2427 B21 C59 3787 A2427 B22 C1 3788 A2427 B22 C5 3789 A2427 B22 C41 3790 A2427 B22 C59 3791 A2432 B1 C1 3792 A2432 B1 C5 3793 A2432 B1 C41 3794 A2432 B1 C59 3795 A2432 B2 C1 3796 A2432 B2 C5 3797 A2432 B2 C41 3798 A2432 B2 C59 3799 A2432 B21 C1 3800 A2432 B21 C5 3801 A2432 B21 C41 3802 A2432 B21 C59

3803 A2432 B22 C1 3804 A2432 B22 C5 3805 A2432 B22 C41 3806 A2432 B22 C59 3807 A2461 B1 C1 3808 A2461 B1 C5 3809 A2461 B1 C41 3810 A2461 B1 C59 3811 A2461 B2 C1 3812 A2461 B2 C5 3813 A2461 B2 C41 3814 A2461 B2 C59 3815 A2461 B21 C1 3816 A2461 B21 C5 3817 A2461 B21 C41 3818 A2461 B21 C59 3819 A2461 B22 C1 3820 A2461 B22 C5 3821 A2461 B22 C41 3822 A2461 B22 C59 3823 A2466 B1 C1 3824 A2466 B1 C5 3825 A2466 B1 C41 3826 A2466 B1 C59 3827 A2466 B2 C1 3828 A2466 B2 C5 3829 A2466 B2 C41 3830 A2466 B2 C59 3831 A2466 B21 C1 3832 A2466 B21 C5 3833 A2466 B21 C41 3834 A2466 B21 C59 3835 A2466 B22 lC1 3836 A2466 B22 C5 3837 A2466 B22 C41 3838 A2466 B22 C59 3839 A2467 B1 C1 3840 A2467 B1 C5 3841 A2467 B1 C41 3842 A2467 B1 C59 3843 A2467 B2 lc1 3844 A2467 B2 C5 3845 A2467 B2 lC41 3846 A2467 B2 C59 3847 A2467 B21 C1 3848 A2467 B21 C5

[0127] [表59]

3849	A2467	B21	C41
3850	A2467	B21	C59
3851	A2467	B22	C1
3852	A2467	B22	C5
3853	A2467	B22	C41
3854	A2467	B22	C59
3855	A2472	B1	C1
3856	A2472	B1	C5
3857	A2472	В1	C41
3858	A2472	B1	C59
3859	A2472	B2	C1
3860	A2472	B2	C5
3861	A2472	B2	C41
	A2472	B2	C59
3863	A2472	B21	C1
3864	A2472	B21	C5
3865	A2472	B21	C41
	A2472	B21	C59
3867	A2472	B22	C1
3868	A2472	B22	C5
	A2472	B22	C41
7	A2472	B22	C59
	A2473	B1	C1
	A2473	B1	C5
	A2473	B1	C41
	A2473	B1	C59
	A2473	B2	C1
	A2473	B2	C5
	A2473	B2	C41
	A2473	B2	C59
	A2473	B21	C1
	A2473	B21	C5
	A2473	B21	C41
	A2473	B21	C59
3883		B22	C1
	A2473	B22	C5
3885	A2473	B22 B22	C41
0000			000
	A2478	B1	C1
	A2478	B1	C5
	A2478 A2478	B1	C41
	A2478 A2478	B1 B2	C59 C1
		B2	C5
	A2478 A2478	B2	C41
	A2478 A2478	B2	C59
3094	MZ4/8	02_	UU3

3895	A2478	B21	C1
	A2478	B21	C5
3897	A2478	B21	C41
3898	A2478	B21	C59
3899	A2478	B22	C1
3900	A2478	B22	C5
3901	A2478	B22	C41
3902	A2478	B22	C59
3903	A2503	B1	C1
3904	A2503	В1	C5
3905	A2503	B1	C41
3906	A2503	B1	C59
3907	A2503	B2	C1
3908	A2503	B2	C5
3909	A2503	B2	C41
	A2503	B2	C59
	A2503	B21	C1
	A2503	B21	C5
	A2503	B21	C41
	A2503	B21	C59
	A2503	B22	C1
	A2503	B22	C5
	A2503	B22	C41
	A2503 A2508	B22 B1	C59 C1
	A2508	В1	C5
	A2508	B1	C41
	A2508	B1	C59
	A2508	B2	C1
	A2508	B2	C5
	A2508	B2	C41
	A2508	B2	C59
	A2508	B21	C1
	A2508	B21	C5
3929	A2508	B21	C41
3930	A2508	B21	C59
3931	A2508	B22	C1
3932	A2508	B22	C5
3933	A2508	B22	C41
3934	A2508	B22	C59
	A2515	BI	C1
	A2515	B1	C5
	A2515	В1	C41
	A2515	B1	C59
	A2515	B2	C1
3940	A2515	B2	C5

3941	A2515	B2	C41
3942	A2515	B2	C59
3943	A2515	B21	C1
3944	A2515	B21	C5
3945	A2515	B21	C41
3946	A2515	B21	C59
3947	A2515	B22	C1
3948	A2515	B22	C5
3949	A2515	B22	C41
3950	A2515	B22	C59
3951	A2520	В1	C1
3952	A2520	B1	C5
3953	A2520	В1	C41
3954	A2520	B1	C59
3955	A2520	B2	C1
3956	A2520	B2	C5
3957	A2520	B2	C41
	A2520	B2	C59
3959	A2520	B21	C1
	A2520	B21	C5
3961	A2520	B21	C41
	A2520	B21	C59
3963	A2520	B22	C1
3964	A2520	B22	C5
3965	A2520	B22	C41
	A2520	B22	C59
	A2529	В1	C1
3968	A2529	В1	C5
	A2529	B1	C41
	A2529	B1	C59
	A2529	B2	C1
	A2529	B2	C5
3973	A2529	B2	C41
	A2529	B2	C59
	A2529	B21	C1
	A2529	B21	C5
	A2529	B21	C41
3978		B21	C59
		B22	C1
	A2529	B22	C5
	A2529	B22	C41
	A2529	B22	C59
	A2534	B1	C1
	A2534	B1	C5
	A2534	B1	C41
3986	A2534	B1	C59

[0128] [表60]

	3987	A2534	B2	C1
	3988	A2534	B2	C5
	3989	A2534	B2	C41
	3990	A2534	B2	C59
	3991	A2534	B21	C1
	3992	A2534	B21	C5
	3993	A2534	B21	C41
	3994	A2534	B21	C59
	3995	A2534	B22	C1
	3996	A2534	B22	C5
	3997	A2534	B22	C41
	3998	A2534	B22	C59
	3999	A2563	В1	C1
	4000	A2563	B1	C5
	4001	A2563	В1	C41
	4002	A2563	В1	C59
	4003	A2563	B2	C1
	4004	A2563	В2	C5
	4005	A2563	B2	C41
	4006		B2	C59
	4007	A2563	B21	C1
	4008	A2563	B21	C5
	4009	A2563	B21	C41
	4010	A2563	B21	C59
	4011	A2563	B22	C1
	4012	A2563	B22	C5
	4013	A2563	B22	C41
	4014	A2563	B22	C59
	4015	A2568	В1	C1
	4016	A2568	В1	C5
	4017	A2568	В1	C41
	4018	A2568	В1	C59
	4019	A2568	B2	C1
	4020	A2568	В2	C5
	4021	A2568	B2	C41
	4022	A2568	B2	C59
	4023	A2568	B21	C1
	4024	A2568	B21	C5
	4025	A2568	B21	C41
	4026	A2568	B21	C59
	4027	A2568	B22.	C1
	4028	A2568	B22	C5
	4029	A2568	B22	C41
	4030	A2568	B22	C59
	4031	A2569	В1	C1
	4032	A2569	В1	C5
-				

4033	A2569	В1	C41
4034	A2569	B1	C59
4035	A2569	В2	C1
4036	A2569	В2	C5
4037	A2569	B2	C41
1	A2569	B2	C59
1	A2569	B21	C1
	A2569	B21	C5
	A2569	B21	C41
	A2569	B21	C59
	A2569	B22	C1
	A2569	B22	C5
	A2569	B22	C41
i	A2569	B22	C59
	A2574	B1	C1
	A2574	B1	C5
	A2574	B1	C41
	A2574	B1	C59
	A2574	B2	C1
	A2574	B2	C5
	A2574	B2	C41
	A2574	B2	C59
	A2574	B21	C1
	A2574	B21	C5
	A2574	B21	C41
	A2574	B21	C59
	A2574	B22	C1
	A2574	B22	C5
			C41
1 1 1 1 1	A2574	B22 B22	C59
	A2574	B1	C1
- 1	A2575		C5
	A2575	B1	
	A2575	B1	C41
	A2575	B1	C59
	A2575	B2	C1
	A2575	B2	C5
	A2575	B2	C41
	A2575	B2	C59
	A2575	B21	C1
	A2575	B21	C5
	A2575	B21	C41
	A2575	B21	C59
	A2575	B22	C1
	A2575	B22	C5
4077	A2575	B22	C41
4078	A2575	B22	C59

4079	A2580	B1	C1
4080	A2580	B1	C5
4081	A2580	В1	C41
4082	A2580	В1	C59
4083	A2580	B2	C1
4084	A2580	B2	C5
4085	A2580	B2	C41
4086	A2580	B2	C59
4087	A2580	B21	C1
4088	A2580	B21	C5
4089	A2580	B21	C41
4090	A2580	B21	C59
4091	A2580	B22	C1
4092	A2580	B22	C5
4093	A2580	B22	C41
	A2580	B22	C59
	A2605	B1	C1
4096	A2605	В1	C5
	A2605	В1	C41
	A2605	В1	C59
4099	A2605	B2	C1
4100	A2605	B2	C5
4101	A2605	B2	C41
4102	A2605	B2	C59
	A2605	B21	C1
	A2605	B21	C5
	A2605	B21	C41
	A2605	B21	C59
	A2605	B22	C1
	A2605	B22	C5
4109	A2605	B22	C41
	A2605	B22	C59
4111	A2610	В1	C1
4112	A2610	В1	C5
	A2610	В1	C41
	A2610	В1	C59
	A2610	В2	C1
	A2610	В2	C5
	A2610	В2	C41
	A2610	В2	C59
	A2610	B21	C1
1	A2610	B21	C5
	A2610	B21	C41
	A2610	B21	C59
· · · · · · · · · · · · · · · · · · ·	A2610	B22	C1
× 1	A2610	B22	C5
		1	

4125 A2610 B22 C41 4126 A2610 B22 C59 4127 A2617 B1 C1 4128 A2617 B1 C5 4129 A2617 B1 C41 4130 A2617 B1 C59 4131 A2617 B2 C1
4127 A2617 B1 C1 4128 A2617 B1 C5 4129 A2617 B1 C41 4130 A2617 B1 C59
4128 A2617 B1 C5 4129 A2617 B1 C41 4130 A2617 B1 C59
4129 A2617 B1 C41 4130 A2617 B1 C59
4130 A2617 B1 C59
4131 A2617 B2 C1
4132 A2617 B2 C5
4133 A2617 B2 C41
4134 A2617 B2 C59
4135 A2617 B21 C1
4136 A2617 B21 C5
4137 A2617 B21 C41
4138 A2617 B21 C59
4139 A2617 B22 C1
4140 A2617 B22 C5
4141 A2617 B22 C41
4142 A2617 B22 C59
4143 A2622 B1 C1
4144 A2622 B1 C5
4145 A2622 B1 C41
4146 A2622 B1 C59
4147 A2622 B2 C1
4148 A2622 B2 C5
4149 A2622 B2 C41
4150 A2622 B2 C59
4151 A2622 B21 C1
4152 A2622 B21 C5
4153 A2622 B21 C41
4154 A2622 B21 C59
4155 A2622 B22 C1
4156 A2622 B22 C5
4157 A2622 B22 C41
4158 A2622 B22 C59
4159 A2631 B1 C1
4160 A2631 B1 C5
4161 A2631 B1 C41
4162 A2631 B1 C59
4163 A2631 B2 C1
4164 A2631 B2 C5
4165 A2631 B2 C41
4166 A2631 B2 C59
4167 A2631 B21 C1
4168 A2631 B21 C5
4169 A2631 B21 C41
4170 A2631 B21 C59

4171	A2631	B22	C1
4172	A2631	B22	C5
4173	A2631	B22	C41
4174	A2631	B22	C59
4175	A2636	В1	C1
4176	A2636	B1	C5
4177	ł .	B1	C41
4178	A2636	В1	C59
4179	A2636	B2	C1
4180	A2636	B2	C5
4181	A2636	B2	C41
	A2636	B2	C59
	A2636	B21	C1
	A2636	B21	C5
	A2636	B21	C41
	A2636	B21	C59
	A2636	B22	C1
10.0	A2636	B22	C5
	A2636	B22	C41
	A2636	B22	C59
4191	A2665	B1	C1
	A2665	B1	C5
	A2665	B1	C41
	A2665	B1	C59
4195	A2665	B2	C1
4196	A2665	B2	C5
4197	A2665	B2	C41
4198	A2665	B2	C59
4199	A2665	B21	C1
4200	A2665	B21	C5
4201	A2665	B21	C41
4202	A2665	B21	C59
4203	A2665	B22	C1
4204	A2665	B22	C5
4205	A2665	B22	C41
4206	A2665	B22	C59
4207	A2670	B1	C1
4208	A2670	В1	C5
	A2670	B1	C41
	A2670	В1	C59
	A2670	B2	C1
	A2670	B2	C5
	A2670	B2	C41
	A2670	B2	C59
	A2670	B21	C1
42 16	A2670	B21	C5

4217	A2670	B21	C41
4218	A2670	B21	C59
4219	A2670	B22	C1
4220	A2670	B22	C5
4221	A2670	B22	C41
4222	A2670	B22	C59
4223	A2671	В1	C1
4224	A2671	В1	C5
4225	A2671	B1	C41
4226	A2671	В1	C59
4227	A2671	B2	C1
	A2671	B2	C5
4229	A2671	B2	C41
4230	A2671	B2	C59
4231	A2671	B21	C1
	A2671	B21	C5
	A2671	B21	C41
4234		B21	C59
	A2671	B22	C1
	A2671	B22	C5
	A2671	B22	C41
	A2671	B22	C59
	A2676	B1	C1
	A2676	B1	C5
	A2676	B1	C41
	A2676	B1	C59
	A2676	B2	C1
	A2676	B2 B2	C5 C41
	A2676 A2676	B2	C59
	A2676	B21	C1
	A2676	B21	C5
	A2676	B21	C41
	A2676	B21	C59
	A2676	B22	C1
	A2676	B22	C5
	A2676	B22	C41
4254		B22	C59
	A2677	B1	C1
	A2677	B1	C5
	A2677	B1	C41
	A2677	В1	C59
	A2677	B2	C1
	A2677	B2	C5
	A2677	B2	C41
4262	A2677	B2	C59

[0130] [表62]

4263	A2677	B21	C1
4264	A2677	B21	C5
4265	A2677	B21	C41
4266	A2677	B21	C59
4267	A2677	B22	C1
4268	A2677	B22	C5
4269	A2677	B22	C41
4270	A2677	B22	C59
4271	A2682	B1	C1
4272	A2682	В1	C5
4273	A2682	B1	C41
4274	A2682	B1	C59
4275	A2682	B2	C1
4276	A2682	B2	C5
4277	A2682	B2	C41
4278	A2682	B2 .	C59
4279	A2682	B21	C1
4280	A2682	B21	C5
4281	A2682	B21	C41
4282	A2682	B21	C59
4283	A2682	B22	Ct
4284	A2682	B22	C5
4285	A2682	B22	C41
4286	A2682	B22	C59
4287	A2707	B1	C1
4288	A2707	B1	C5
4289	A2707	B1	C41
4290	A2707	B1	C59
4291	A2707	B2	C1
4292	A2707	B2	C5
4293	A2707	B2	C41
4294	A2707	B2	C59
4295	A2707	B21	C1
4296	A2707	B21	C5
4297	A2707	B21	C41
4298	A2707	B21	C59
4299	A2707	B22	C1
4300	A2707	B22	C5
4301	A2707	B22	C41
4302		B22	C59
4303	A2712	B1	C1

1	A2712	B1	C5
4305	A2712	B1	C41
	A2712	B1	C59
4307	A2712	B2	C1
4308	A2712	B2	C5
4309	A2712	B2	C41
4310	A2712	B2	C59
4311		B21	C1
	A2712	B21	C5
	A2712	B21	C41
4314	A2712	B21	C59
4315	A2712	B22	C1
	A2712	B22	C5
4317	A2712	B22	C41
	A2712	B22	C59
4319	A2719	В1	C1
4320	A2719	B1	C5
4321	A2719	B1	C41
4322	A2719	B1	C59
4323	A2719	B2	C1
	A2719	B2	C5
4325	A2719	B2	C41
4326	A2719	B2	C59
	A2719	B21	C1
4328	A2719	B21	C5
4329	A2719	B21	C41
4330	A2719	B21	C59
	A2719	B22	C1
4332	A2719	B22	C5
	A2719	B22	C41
	A2719	B22	C59
4335	A2724	В1	C1
4336	A2724	B1	C5
4337	A2724	B1	C41
4338	A2724	B1	C59
4339	A2724	B2	C1
4340	A2724	B2	C5
	A2724	B2	C41
	A2724	В2	C59
	A2724	B21	C1.
4344	A2724	B21	C5

4345	A2724	B21	C41	
4346	A2724	B21	C59	
4347	A2724	B22	C1	
4348	A2724	B22	C5	ĺ
4349	A2724	B22	C41	
4350	A2724	B22	C59	
4351	A2733	В1	C1	
4352	A2733	B1	C5	ļ
4353	A2733	В1	C41	ı
4354	A2733	В1	C59	I
4355	A2733	B2	C1	
4356	A2733	B2	C5	ı
4357	A2733	B2	C41	I
4358	A2733	B2	C59	I
4359	A2733	B21	C1	İ
4360	A2733	B21	C5	ı
	A2733	B21	C41	ļ
	A2733	B21	C59	ı
	A2733	B22	C1	ı
	A2733	B22	C5	l
	A2733	B22	C41	l
	A2733	B22	C59	
	A2738	B1	C1	
	A2738	B1	C5	
	A2738	B1	C41	
	A2738	B1	C59	
	A2738	B2	C1	
	A2738	B2	C5	
	A2738	B2	C41	
	A2738	B2	C59	
	A2738	B21	C1	
	A2738	B21	C5	
	A2738	B21	C41	
	A2738	B21	C59	
	A2738	B22	C1	
	A2738	B22	C5	
	A2738	B22	C41	
4382	A2738	B22	C59	

[0131] [表63]

No.	Α	В	С]	5194	A3885	B21	C59		5238	A3888	B2	C59
5151	A3883	В1	C1	1	5195	A3885	B22	C1		5239	A3888	B21	C1
1	A3883	В1	C5		5196	A3885	B22	C5			A3888	B21	C5
	A3883	В1	C41		5197	A3885	B22	C41	i i	5241	A3888	B21	C41
	A3883	В1	C59		5198	A3885	B22	C59		5242	A3888	B21	C59
	A3883	B2	C1	l i	5199	A3886	В1	C1		5243	A3888	B22	C1
l	A3883	B2	C5		5200	A3886	В1	C5		5244	A3888	B22	C5
	A3883	B2	C41	-]	5201	A3886	В1	C41		5245	A3888	B22	C41
5158	A3883	B2	C59		5202	A3886	В1	C59		5246	A3888	B22	C59
5159	A3883	B21	C1	İ	5203	A3886	B2	C1		5247	A3889	В1	C1
5160	A3883	B21	C5		5204	A3886	B2	C5		5248	A3889	B1	C5
5161	A3883	B21	C41	i l	5205	A3886	B2	C41		5249	A3889	В1	C41
5162	A3883	B21	C59	[5206	A3886	B2	C59		5250	A3889	B1	C59
1 1	A3883	B22	C1		5207	A3886	B21	C1	-	5251	A3889	B2	C1
5164	A3883	B22	C5	-	5208	A3886	B21	C5	ĺĺ	5252	A3889	B2	C5
5165	A3883	B22	C41		5209	A3886	B21	C41		5253	A3889	B2	C41
- 1	A3883	B22	C59	İ	5210	A3886	B21	C59		5254	A3889	B2	C59
5167	A3884	В1	C1		5211	A3886	B22	C1		5255	A3889	B21	C1
5168	A3884	В1	C5		5212	A3886	B22	C5		5256	A3889	B21	C5
5169	A3884	В1	C41	1	5213	A3886	B22	C41	İ	5257	A3889	B21	C41
5170	A3884	В1	C59		5214	A3886	B22	C59		5258	A3889	B21	C59
	A3884	В2	C1		5215	A3887	В1	C1		5259	A3889	B22	C1
5172	A3884	B2	C5		5216	A3887	В1	C5		5260	A3889	B22	C5
5173	A3884	B2	C41		5217	A3887	В1	C41		5261	A3889	B22	C41
5174	A3884	В2	C59		5218	A3887	B1	C59		5262	A3889	B22	C59
5175	A3884	B21	C1		5219	A3887	B2	C1	İ	5263	A3890	B1	C1
5176	A3884	B21	C5		5220	A3887	B2	C5		5264	A3890	B1	C5
5177	A3884	B21	C41		5221	A3887	B2	C41	-	5265	A3890	В1	C41
5178	A3884	B21	C59		5222	A3887	B2	C59		5266	A3890	В1	C59
5179	A3884	B22	C1		5223	A3887	B21	C1		5267	A3890	B2	C1
5180	A3884	B22	C5		5224	A3887	B21	C5		5268	A3890	B2	C5 .
5181	A3884	B22	C41		5225	A3887	B21	C41	-	5269	A3890	B2	C41
5182	A3884	B22	C59		5226	A3887	B21	C59		5270	A3890	B2	C59
5183	A3885	В1	C1		5227	A3887	B22	C1		5271	A3890	B21	C1
5184	A3885	В1	C5		5228	A3887	B22	C5		5272	A3890	B21	C5
5185	A3885	В1	C41		5229	A3887	B22	C41		5273	A3890	B21	C41
5186	A3885	B1	C59		5230	A3887	B22	C59		5274	A3890	B21	C59
5187	A3885	В2	C1		5231	A3888	В1	C1			A3890	B22	C1
5188	A3885	B2	C5	,		A3888	i	C5			A3890		C5
5189	A3885	B2	C41			A3888		C41					C41
5190	A3885	B2	C59			A3888		C59		5278	A3890	B22	C59
	A3885		C1	, [A3888	B2	C1					
5192	A3885	B21	C5	, [В2	C5					
5193	A3885	B21	C41		5237	A3888	B2	C41					

[0132] 本発明のPPARアゴニスト用医薬組成物はPPARの関与する疾患全般に有効に作用するが、特に高脂血症、異脂肪症、脂質代謝異常、低HDL症、高LDL症、高V LDL症、高TG症、糖尿病、高血糖、インスリン抵抗性、肥満、神経性多食症、動脈硬化、アテローム性動脈硬化、高血圧、シンドロームX、虚血性疾患、炎症、アレルギ

ー性疾患(炎症性大腸炎、慢性関節リウマチ、慢性膵炎、多発性硬化症、糸球体硬化症、乾癬、湿疹等)、骨粗しょう症、不妊、癌(乳癌、結腸癌、大腸癌、卵巣癌、肺癌等)、アルツハイマー症、パーキンソン症、バセドウ氏病の予防および/または治療に対して有効である。特に、PPARアゴニスト活性を有する本発明化合物のうち、PPAR δ選択的アゴニスト活性を有する化合物は、高いHDL上昇作用が期待できること、副作用が軽減され得ること等の理由から優れた医薬品となり得る。

- [0133] 本発明化合物をPPARアゴニスト用医薬組成物として投与する場合、経口的、非経口的のいずれの方法でも投与することができる。経口投与は常法に従って錠剤、顆粒剤、散剤、カプセル剤、丸剤、液剤、シロップ剤、バッカル剤または舌下剤等の通常用いられる剤型に調製して投与すればよい。非経口投与は、例えば筋肉内投与、静脈内投与等の注射剤、坐剤、経皮吸収剤、吸入剤等、通常用いられるいずれの剤型でも好適に投与することができる。本発明化合物は経口吸収性が高いため、経口剤として好適に使用できる。
- [0134] 本発明化合物の有効量にその剤型に適した賦形剤、結合剤、湿潤剤、崩壊剤、滑 沢剤、希釈剤等の各種医薬用添加剤とを必要に応じて混合し医薬製剤とすることが できる。注射剤の場合には適当な担体と共に滅菌処理を行なって製剤とすればよい

具体的には、賦形剤としては乳糖、白糖、ブドウ糖、デンプン、炭酸カルシウムもしくは結晶セルロース等、結合剤としてはメチルセルロース、カルボキシメチルセルロース、ヒドロキシプロピルセルロース、ゼラチンもしくはポリビニルピロリドン等、崩壊剤としてはカルボキシメチルセルロース、カルボキシメチルセルロースナトリウム、デンプン、アルギン酸ナトリウム、カンテン末もしくはラウリル硫酸ナトリウム等、滑沢剤としてはタルク、ステアリン酸マグネシウムもしくはマクロゴール等が挙げられる。坐剤の基剤としてはカカオ脂、マクロゴールもしくはメチルセルロース等を用いることができる。また、液剤もしくは乳濁性、懸濁性の注射剤として調製する場合には通常使用されている溶解補助剤、懸濁化剤、乳化剤、安定化剤、保存剤、等張剤等を適宜添加しても良く、経口投与の場合には嬌味剤、芳香剤等を加えても良い。

[0135] 本発明化合物のPPARアゴニスト用医薬組成物としての投与量は、患者の年齢、

体重、疾病の種類や程度、投与経路等を考慮した上で設定することが望ましいが、成人に経口投与する場合、通常0.05~100mg/kg/日であり、好ましくは0.1~10mg/kg/日の範囲内である。非経口投与の場合には投与経路により大きく異なるが、通常0.005~10mg/kg/日であり、好ましくは0.01~1mg/kg/日の範囲内である。これを1日1回~数回に分けて投与すれば良い。

[0136] 以下に実施例を示し、本発明をさらに詳しく説明するが、これらは本発明を限定するものではない。

[0137] 実施例

実施例中、各略語の意味は以下の通りである。

Me メチル

Et エチル

nBu nーブチル

tBu tertーブチル

nPr nープロピル

Ph フェニル

Bn ベンジル

Ac アセチル

Ms メタンスルホニル

TMS トリメチルシリル

PCC ピリジニウムクロロクロメート

CDI 1, 1'ーカルボニルジイミダゾール

DBU 1, 8-ジアザビシクロ[5, 4, 0]ウンデセー7-エン

DME 1, 2-ジメトキシエタン

DPM ジフェニルメチル

TBS 3-tert-ブチルジメチルシリル

TFMP 4-トリフルオロメチルフェニル

[0138] [化26]

1) LiN(TMS)₂
(COOEt)₂

$$R^{2}$$

$$2) NH2OH·H2O
$$R^{1}$$$$

参考例1

5-(4-hリフルオロメチルフェニル)ーイソキサゾールー3-カルボン酸エチルエステル $(R^1=TFMP,R^2=H,1-1-1)$

乾燥エーテル60mlにリチウムビス(トリメチルシリル)アミド溶液15mlを加え、内温-70℃以下に冷却し、4ートリフルオロメチルアセトフェノン2.82gのエーテル15ml溶液を内温-65℃以下に保ち6分間で滴下した。その後バスを除き室温で17時間攪拌し反応液にエーテル100mlを加え氷冷、析出した結晶を濾過しピルベートのリチウム塩を第1晶として2.9g得、さらに濾液を濃縮しエーテルで希釈し氷冷することで第2晶を610mg得た。このリチウム塩3.5gにエタノール35ml、塩酸ヒドロキシルアミン1.22gを加え20時間還流した。溶媒留去後、水を加え、クロロホルムで抽出、有機層を無水硫酸マグネシウムで乾燥後、減圧下溶媒を留去した。得られた残渣をシリカゲルクロマトに付し、酢酸エチル:ヘキサン(1:1)で溶出し、標記化合物を無色結晶として2.55g得た。収率60%

[0139] (1-1-2)~(1-1-4)も同様に合成した。

「0140] 「表64]

No	\mathbb{R}^1	\mathbb{R}^2	NMR
1-1-1	TFMP	H	1.46(3H,t,J=6.9Hz),4.49(2H,q,J=6.9Hz),7.04(1
			H,s),7.77(2H,d,J=8.7Hz),7.95(2H,d,J=8.7Hz)
1-1-2	TFMP	Me	1.46(3H,t,J=6.9Hz),2.47(3H,s),4.49(2H,q,J=6.9
			Hz),7.78(2H,d,J=8.4Hz),7.86(2H,d,J=8.4Hz)
1-1-3	p-Cl-C ₆ H ₄ -	H	1.45(3H,t,J=7.2Hz),4.48(2H,q,J=7.2Hz),6.92(1
			H,s),7.47(2H,d,J=8.4Hz),7.75(2H,d,J=8.4Hz)
1-1-4	ピリジンー	H	1.46(3H,t,J=7.2Hz),4.50(2H,q,J=7.2Hz),7.12(1
	4ーイル		H,s),7.68(2H,d,J=6.0Hz),8.79(2H,d,J=6.0Hz)

[0141] 参考例2

5-ブロモー4-メチルーイソキサゾールー3-カルボン酸エチルエステル(1-2-1) [化27]

WO 2005/054213 116 PCT/JP2004/017706

4-メチルー5-オキソー2, 5-ジヒドロイソキサゾールー3-カルボン酸エチルエステル6. 45gとオキシ臭化リン54. 0gの混合物にトリエチルアミン5. 3mlを加え、80℃で2時間攪拌した。その後反応液を氷中に注ぎ、エーテルで抽出、飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥後、減圧下溶媒を留去した。得られた残渣をシリカゲルクロマトに付し、酢酸エチル:ヘキサン(1:8)で溶出し、標記化合物を薄黄色の油状物として7. 36g得た。収率80%

¹H-NMR(CDCl₂): 1.43(3H,t,J=7.2Hz), 2.19(3H,s), 4.45(2H,q,J=7.2Hz).

[0142] [化28]

参考例3

4—メチルー5ー(4—トリフルオロメチルフェニル)ーイソキサゾールー3—カルボン酸エチルエステル $(R^1$ =TFMP、1-1-2)

化合物(1-2-1)243mgをDME6mlに溶解し、4-トリフルオロメチルフェニルボロン酸285mg、炭酸カリウム420mg、PdCl₂(dppf)81mgを加え、100℃で7時間攪拌した。その後反応液に水を加え、酢酸エチルで抽出、飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥後、減圧下溶媒を留去した。得られた残渣をシリカゲルクロマトに付し、酢酸エチル:ヘキサン(1:8)で溶出し、標記化合物を無色の結晶として239mg得た。収率80%

WO 2005/054213 117 PCT/JP2004/017706

[0143] [化29]

参考例4

[5-(4-トリフルオロメチルフェニル)-イソキサゾール-3-イル]メタノール(R^1 =TF MP、 R^2 =H、2-1-1)

5-(4-トリフルオロメチルフェニル)-イソキサゾール-3-カルボン酸エチルエステル(1-1-1)1. 0gをメタノール15mlに溶解し、氷冷水下、水素化ホウ素ナトリウム358mgを加え、5分後室温に戻し更に2時間攪拌した。反応液に10℃以下で1M塩酸を加え弱酸性とした後、減圧下溶媒を留去、残留液に水を加えクロロホルムで抽出。飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥後、減圧下溶媒を留去した。得られた残渣をシリカゲルクロマトに付し、酢酸エチル:ヘキサン(1:8)で溶出し、標記化合物を結晶として820mg(収率96%)得た。これを酢酸エチルーヘキサンから再結晶し、融点111-113℃の結晶を得た。

[0144] (2-1-2)~(2-1-9)も同様に合成した。

「0145] 「表65]

No	\mathbb{R}^1	\mathbb{R}^2	NMR(CDCl ₃)
2-1-1	TFMP	H	2.04(1H,t,J=6.0Hz),4.85(1H,d,J=6.0Hz),6.70(1H,s),
			7.74(2H,d,J=8.4Hz), 7.91(2H,d,J=8.4Hz)
2-1-2	TFMP	Me	1.97(1H,t,J=6.6Hz),4.80(2H,m),7.76(2H,d,J=8.4Hz),
			7.85(2H,d,J=8.4Hz)
2-1-3	4-Cl- C ₆ H ₄ -	H	4.82(2H,s),6.58(1H,s),7.50(2H,d,J=8.7Hz),7.72(2H,d
			,J=8.7Hz)
2-1-4	4 -Cl- C_6H_4 -	Et	1.25(3H,t,J=7.2Hz),2.68(2H,q,J=7.2Hz),4.80(2H,s),
			7.47(2H,d,J=8.4Hz),7.63(2H,d,J=8.4Hz)
2-1-5	Me	H	2.30(1H,s),2.42(3H,d,J=0.6Hz),4.71(2H,s),6.04(1H,q
-			,J=0.6Hz)
2-1-6	Et	H	1.30(3H,t,J=7.5Hz),2.23(1H,s),2.77(2H,qd,J=7.5,0.6
			Hz),4.72(2H,s),6.04(1H,t,J=0.6Hz)
2-1-7	Br	Me	2.03(3H,s),2.06(1H,brt,J=7.5Hz),4.73(2H,d,
ļ			J=5.7Hz)
2-1-8	モルホリン	Me	1.98(3H,s),3.35-3.38(4H,m),3.78-3.82(4H,m),
	-4-イル		4.60(2H,s)
2-1-9	ピリジン-4-	H	2.20(1H,brs),4.85(2H,s),6.81(1H,s),7.65(2H,d,J=6.0
	イル		Hz),8.75(2H,d,J=6.0Hz)

[0146] [化30]

参考例5

第1工程 保護(TBS化)

3-tert-ブチルジメチルシリルオキシメチル-5-(4-トリフルオロメチルフェニル)イソキサゾール(R^1 =TFMP、 R^2 =H、2-2-1-1)

[5-(4-トリフルオロメチルフェニル)イソキサゾールー3-イル]メタノール(2-1-1) 8.31g、tーブチルジメチルシリルクロライド5.67g、イミダゾール3.49g、塩化メチレン160mlの混合物を2時間攪拌した。反応液に水を加えクロロホルムで2回抽出した。有機層を水、飽和食塩水で順次洗浄後、硫酸マグネシウムで乾燥し、減圧下溶媒を留去した。得られた残渣をシリカゲルクロマトに付し、酢酸エチル:ヘキサン(1:9)で溶出し、標記化合物を無色結晶として11.5g得た。収率94%。

¹H-NMR(CDCl₃): 0.14(6H, s), 0.94(9H, s), 4.82(2H, s), 6.68(1H, s), 7.73(2H, d, J=8.4 Hz), 7.91 (2H, d, J=8.4 Hz).

(メトキシメチル化)

3ーメトキシメトキシメチルー5ー(4ートリフルオロメチルフェニル)イソキサゾール [5ー(4ートリフルオロメチルフェニル)イソキサゾールー3ーイル]メタノール21.9g、テトラヒドロフラン300mlの混合物に水素化ナトリウム(60%)4.14gを氷冷下加え、室温で1時間攪拌した。反応液にクロロメチルメチルエーテル9.42gを加えた後、さらに室温で20時間攪拌した。反応液を氷水に注いだ後、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄後、硫酸マグネシウムで乾燥し、減圧下溶媒を留去した。残渣をシリカゲルカラムクロマトに付し、酢酸エチル:nーヘキサン(1:4)で溶出し、標記化合物20.8gを得た。

NMR(CDCl₃): δ 3.44(3H,s), 4.73(2H,s), 4.76(2H,s), 6.70(1H,s), 7.72(2H,d,J=8.7Hz), 7.92(2H,d,J=8.7Hz)

[0147] 第2工程 4位修飾

(リチオ化法)

TBS体 $\rightarrow R^1 = TFMP$ 、 $R^2 = Br$

4-ブロモ-3-tert-ブチルジメチルシリルオキシメチル-5-(4-トリフルオロメチルフェニル)イソキサゾール(2-2-2-1)

3ーtertーブチルジメチルシリルオキシメチルー5ー(4ートリフルオロメチルフェニル)イソキサゾール(2-2-1-1)9.50gをテトラヒドロフラン 190mlに溶解した。この溶液にnーブチルリチウムのヘキサン溶液(1.57M)を-78℃で15分かけて滴下した。-78℃で70分間攪拌後、臭素9.36gを10分かけて滴下した。-78℃で2時間攪拌後、室温まで昇温し10%亜硫酸ナトリウム水溶液を加え反応を停止した。酢酸エチルで抽出、飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥後、減圧下溶媒を留去し、標記化合物を黄色の油状物として11.6g得た。収率100%。

¹H-NMR(CDCl₃): 0.16(6H, s), 0.94(9H, s), 4.81(2H, s), 7.77(2H, d, J=8.1 Hz), 8.18(2H, d, J=8.1 Hz).

(クロスカップリング法)

TBS体、 $R^2 = Br \rightarrow R^1 = TFMP$, $R^2 = ベンジル$

4-ベンジル-3-(tert-ブチルジメチルシリルオキシメチル)-5-(4-トリフルオロメチルフェニル)イソキサゾール(2-2-2-2)

亜鉛196mgをテトラヒドロフラン2mlに懸濁し、1,2ージブロモエタン28mgを加えて5分間、クロロトリメチルシラン16mgを加えて5分間攪拌した。ベンジルブロマイド376mgをテトラヒドロフラン4mlに溶解し、これを反応液に滴下した。30分間還流後、反応液を4ーブロモー3ーtertーブチルジメチルシリルオキシメチルー5ー(4ートリフルオロメチルフェニル)イソキサゾール(2ー2ー2ー1)376mg、酢酸パラジウム11mg、トリシクロヘキシルホスフィン(14mg、テトラヒドロフラン4mlの混合液に滴下し30分間還流した。反応液に水を加え、酢酸エチルで抽出、水および飽和食塩水で洗浄、硫酸マグネシウムで乾燥後、減圧下溶媒を留去した。得られた残渣をシリカゲルクロマトに付し、酢酸エチル:ヘキサン(1:50)で溶出し、標記化合物を黄色結晶として358mg得た。収率80%

¹H-NMR(CDCl₃): 0.03(6H, s), 0.86(9H, s), 4.13(2H, s), 4.66(2H, s), 7.14-7.31(5H,

m), 7.67(2H, d, J=8.4 Hz), 7.76(2H, d, J=8.4 Hz).

(ホルミル化)

3-メトキシメトキシメチル-5-(4-トリフルオロメチルフェニル)イソキサゾール-4-カ ルボアルデヒド

3ーメトキシメトキシメチルー5ー(4ートリフルオロメチルフェニル)イソキサゾール286mg、テトラヒドロフラン6mlの混合物中に、nーブチルリチウム(1.6Mへキサン溶液)1.56mlを加えた。−78℃で0.5時間攪拌後、N,Nージメチルホルムアミド257mgを一気に加えた。反応液を室温まで昇温後、氷水を加え、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄後、硫酸マグネシウムで乾燥し、減圧下溶媒を留去した。残渣をシリカゲルカラムクロマトに付し、酢酸エチル:nーへキサン(1:5)で溶出し、標記化合物179mgを得た。

NMR(CDCl₃): δ 3.45(3H,s), 4.81(2H,s), 4.96(2H,s), 7.84(2H,d,J=8.4Hz), 8.08(2H,d,J=8.4Hz), 10.14(1H,s)

(イミノアルキル化)

3-メトキシメトキシメチル-5-(4-トリフルオロメチルフェニル)イソキサゾール-4-カ ルボアルデヒドエチルオキシム

3ーメトキシメトキシメチルー5ー(4ートリフルオロメチルフェニル)イソキサゾールー4ーカルボアルデヒド12. 4g、エトキシアミン塩酸塩4. 79g、テトラヒドロフラン300mlの混合物を60℃で3時間撹拌した。溶媒を減圧下留去した後、残渣に水を加え酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄後、硫酸マグネシウムで乾燥し、減圧下溶媒を留去した。残渣をシリカゲルカラムクロマトに付し、酢酸エチル:nーヘキサン(5:95)で溶出し、標記化合物10. 6gを得た。

N MR(CDCl₃): δ 1.33(3H,t,J=7.2Hz), 3.46(3H,s), 4.23(2H,q,J=7.2Hz), 4.18(2H,s), 4.89(2H,s), 7.77(2H,d,J=8.4Hz), 7.88(2H,d,J=8.4Hz), 8.17(1H,s).

[0148] 第3工程 脱保護 (脱TBS化)

4ーベンジルー5ー(4ートリフルオロメチルフェニル)イソキサゾールー3ーイル]メタノール (R^1 =TFMP、 R^2 =Bn、2-2-3-1)

4-ベンジル-3-(tert-ブチルジメチルシリルオキシメチル)-5-(4-トリフルオロメ

チルフェニル)イソキサゾール(2-2-2-2)358mgをテトラヒドロフラン8mlに溶解し、tetra-ブチルアンモニウムフルオライド0.88ml(1Mテトラヒドロフラン溶液)を加えた。室温で1時間攪拌後、水を加え反応を停止した。酢酸エチルで抽出、水および飽和食塩水で洗浄、硫酸マグネシウムで乾燥後、減圧下溶媒を留去した。残渣をシリカゲルクロマトに付し、酢酸エチル:ヘキサン(1:3)で溶出し、標記化合物を無色結晶として207mg得た。収率78%。

¹H-NMR(CDCl₃): 4.10(2H,s), 4.62(2H,s), 7.15-7.34(5H,m), 7.70(2H,d,J=8.7Hz),7.77(2H, d, J=8.7Hz).

(脱メトキシメチル化)

[4-エトキシメチル-5-(4-トリフルオチメチルフェニル)イソキサゾール-3-イル]メタ ノール

4-エトキシメチルー3ーメトキシメトキシメチルー5ー(4ートリフルオロメチルフェニル)イソキサゾール18.7g、6規定塩酸36.1ml、メタノール311mlの混合物を4.5時間還流した。溶媒を減圧化留去後、残渣に水を加え酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄後、硫酸マグネシウムで乾燥し、減圧下溶媒を留去し、標記化合物を15.7g得た。

NMR(CDCl₃): δ 1.29(3H,t,J=7.2Hz), 3.65(2H,q,J=7.2Hz), 4.61(2H,s), 4.82(2H,s), 7.78–7.80(4H,m).

[0149] (2-2-3-2)~(2-2-3-6)も同様に合成した。

「0150] 「表66]

No	\mathbb{R}^1	\mathbb{R}^2	第2工程	NMR
2-2-3-	TFMP	Bn	クロスカッ	0.03(6H,s),0.86(9H,s),4.13(2H,s),4.66(2H,s),7.1
1	-		プリング法	4-7.31(5H,m),7.67(2H,d,J=8.4Hz),
				7.76(2H,d,J=8.4Hz)
2-2-3-	TFMP	Br	リチオ化法	2.15(1H,brs),4.82(2H,s),7.49(2H,d,J=8.7Hz),7.
2				98(2H,d,J=8.7Hz)
2-2-3-	TFMP	CH	リチオ化法	3.74(1H,t,J=7.5Hz),4.89(2H,d,J=7.5Hz),7.88(2
3		О		H,d,J=8.1Hz),7.95(2H,d,J=8.1Hz),10.10(1H,s)
2-2-3-	TFMP	SPh	リチオ化法	0.04(6H,s),0.85(9H,s),4.74(2H,s),7.11-7.26(5H,
4 .				m),7.70(2H,d,J=8.7Hz),8.22(2H,d,J=8.7Hz)
2-2-3-	TFMP	CH2	リチオ化法	1.29(3H,t,J=7.2Hz),3.65(2H,q,J=6.9Hz),
5		OEt		4.61(2H,s), 4.81(2H,s), 7.78-7.80(4H,m).
2-2-3-	TFMP	CH=	イミノアル	1.36(3H,t,J=6.9Hz),4.27(2H,q,J=6.9Hz),
6		NO	キル化法	4.81(2H,d,J=7.5Hz), 7.79(4H,s), 8.26(1H,s).
		Et		

[0151] [化31]

参考例6

[4-ブロモー5-(4-クロロフェニル)-イソキサゾールー3-イル]-メタノール (R^1 =4-Cl-C₆H₄-、 R^2 =Br、2-3-1)

[5-(4-クロロフェニル)ーイソキサゾールー3ーイル]ーメタノール(2-1-3)2.51gと塩化メチレン25mlの溶液に、氷冷下Nーブロムこはく酸イミド2.16gを加え、30分攪拌後、更に常温で16時間反応した。反応液をクロロホルムで希釈した後、氷水下1M水酸化ナトリウム水溶液を加え、クロロホルムで抽出した。水洗、無水硫酸マグネシウムで乾燥後、減圧下溶媒を留去した。得られた残渣をシリカゲルクロマトに付し、酢酸エチル:ヘキサン(1:2)で溶出し、標記化合物を結晶として1.41g得た。収率49%(2-3-2)および(2-3-3)はハロゲン化剤として一塩化ヨウ素を用い、同様に合成した。

[0153] [表67]

[0152]

No	\mathbb{R}^1	\mathbb{R}^2	NMR
2-3-1	4-Cl- C ₆ H ₄ -	Br	2.18(1H,t,J=6.6Hz),4.82(2H,d,J=6.6Hz),7.49(2H,d,J=
0			8.7Hz),7.98(2H,d,J=8.7Hz)
2-3-2	Me	I	2.11(1H,t,J=6.6Hz),2.47(3H,s),4.69(2H,d,J=6.6Hz)
2-3-3	Et	I	1.30(3H,t,J=7.5Hz),2.82(2H,q,J=7.5Hz),4.70(2H,s)

[0154] [化32]

参考例7

2-[4-メチル-5-(4-トリフルオロメチルフェニル)-イソキサゾール-3-イル]-プロパン-2-オール(2-4-1)

5-(4-トリフルオロメチルフェニル)ーイソキサゾールー3-カルボン酸エチルエステル(1-1-2)1.03gを無水テトラヒドロフラン10mlに溶解し、氷ーメタノール冷却下、1 Mメチルマグネシウムブロミド7.3mlを加え、反応液を室温に戻して24時間攪拌した。その後反応液に飽和塩化アンモニウム水溶液を加え、酢酸エチルで抽出、飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥後、減圧下溶媒を留去した。得られた残渣をシリカゲルクロマトに付し、酢酸エチル:ヘキサン(1:4)で溶出し、無色の結晶を得た。これをエーテルーヘキサンより再結晶し標記化合物を738mg得た。収率75%融点126-127℃

¹H-NMR(CDCl₃): 1.71(6H,s), 2.38(3H,s), 7.75(2H,d,J=8.4Hz), 7.81(2H,d,J=8.4Hz). [0155] [作33]

$$F_3C$$
 Me
 OH
 PCC
 R^4MgBr
 F_3C
 N
 R^4MgBr
 R^4OH

参考例8

第1工程 酸化

4-メチル-5-(4-トリフルオロメチルフェニル)-イソキサゾール-3-カルバルデヒド(2-5-1-1)

化合物(2-1-2)4.88gを塩化メチレン200mlに溶解し、ピリジニウムクロロクロメート8.30gを加え、室温下22時間攪拌した。その後反応液をシリカゲル濾過し、クロロホルムで洗浄後、濾液を減圧下留去した。得られた残渣をシリカゲルクロマトに付し、酢酸エチル:ヘキサン(1:4)で溶出し、無色の結晶を得た。これをヘキサンより再結晶し標記化合物を4.14g得た。収率86%

¹H-NMR(CDCl₃): 2.49(3H,s), 7.79(2H,d,J=8.1Hz), 7.87(2H,d,J=8.1Hz), 10.23(1H,s).

第2工程 アルキル化

1-[4-メチル-5-(4-トリフルオロメチルフェニル)-イソキサゾール-3-イル]-プロパン-1-オール $(R^4=$ Et, 2-5-2-1)

第1工程で得られた化合物(2-5-1-1)765mgを無水テトラヒドロフラン20mlに溶解し、-70℃で1Mエチルマグネシウムブロマイド3.2mlを加え、さらに1.5時間攪拌した。その後反応液に飽和塩化アンモニウム水溶液を加え、酢酸エチルで抽出、飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥後、減圧下溶媒を留去した。得られた残渣をシリカゲルクロマトに付し、酢酸エチル:ヘキサン(1:3)で溶出し、標記化合物を無色の結晶として345mg得た。収率40%

[0156] 同様に(2-5-2-2)を合成した。

「0157] 「表68]

No	R ⁴	NMR
2-5-2-1	Et	1.05(3H,t,J=7.5Hz),1.92-2.04(2H,m),2.30(3H,s),4.83
		(1H,t,J=6.6Hz),7.75(2H,t,J=8.4Hz), 7.83(2H,d,J=8.4Hz)
2-5-2-2	4-F- C ₆ H ₄ -	2.03(3H,s),6.03(1H,s),7.05-7.11(2H,m),7.42-
	}	7.47(2H,m),7.73(2H,d,J=8.4Hz),7.79(2H,d,J=8.4Hz)

[0158] 参考例9

(4-メチル-5-モルホリン-4-イル-イソキサゾール-3-イル)-メタノール(2-6-1) 「化34]

化合物(2-1-7)1.66gをモルホリン5mlに溶解し、140℃で2時間攪拌した。その後反応液に水を加え、酢酸エチルで抽出、飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥後、減圧下溶媒を留去した。得られた残渣をシリカゲルクロマトに付し、酢酸エチル:ヘキサン(2:1)で溶出し、標記化合物を薄黄色の結晶として1.14g得た。収率66%

¹H-NMR(CDCl₃): 1.98(3H,s), 3.35-3.38(4H,m), 3.78-3.82(4H,m), 4.60(2H,s).

[0159] [化35]

参考例10 A法(LG=OMs)

メタンスルホン酸4ーホルミルー5ー(4ートリフルオロメチルフェニル)ーイソキサゾールー3 ーイルメチルエステル(R^1 =TFMP、 R^2 =CHO、 R^3 、 R^4 =H、3-1-1-1)

化合物(2-2-4-2)1. 79gを塩化メチレン30mlに懸濁し、氷冷下メタンスルホニルクロライド0. 61ml、トリエチルアミン1. 38mlを加え、1時間攪拌した。その後反応液に水を加え、クロロホルムで抽出、飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥後、減圧下溶媒を留去した。得られた残渣をシリカゲルクロマトに付し、クロロホルムで溶出し、無色の結晶を得た。これにヘキサンを加えて粉砕後濾取し、標記化合物を無色の結晶として2. 21g得た。融点129-130℃ 収率96%

[0160] 同様に(3-1-1-2)~(3-1-1-6)を合成した。

[0161] [表69]

No	\mathbb{R}^1	\mathbb{R}^2	NMR
3-1-1-1	TFMP	СНО	3.21(3H,s),5.58(2H,s), 7.88(2H,d,J=8.4Hz),8.01(2H,d, J=8.4Hz),10.14(1H,s)
3-1-1-2	モルホリン ー4ーイル	Me	2.01(3H,s),3.05(3H,s),3.38-3.41(2H,m),3.79-3.82(2H,m), 5.16(2H,s)
3-1-1-3	4-Cl-C6H4-	CH2O Et	1.28(3H,t,J=6.9Hz),3.10(3H,s),3.63(2H,q,J=6.9Hz), 4.50(2H,s),5.41(2H,s),7.50(2H,d,J=8.4Hz), 7.70(2H,d,J=8.4Hz).
3-1-1-4	TFMP	CH=N OEt	1.34(3H,t,J=7.2Hz), 3.18(3H,s), 4.26(2H,q,J=7.2Hz), 5.58(2H,s), 7.80-7.81(4H,m), 8.17(1H,s)
3-1-1-5	4-Cl-C6H4-	CH=N OEt	1.33(3H,t,J=7.2Hz), 3.16(3H,s), 4.25(2H,q,J=7.2Hz), 5.56(2H,s) 7.51(2H,d,J=9.0Hz), 7.63(2H,q,J=9.0Hz), 8.14(1H,s)
3-1-1-6	4-OCF3- C6H4-	CH=N OEt	1.33(3H,t,J=7.2Hz), 3.17(3H,s), 4.25(2H,q,J=7.2Hz), 5.57(2H,s) 7.37(2H,d,J=8.7Hz), 7.73(2H,q,J=8.7Hz), 8.15(1H,s)

[0162] 参考例11 B法(LG=Cl)

3ークロロメチルー5ー(4ークロロフェニル)ーイソキサゾール $(R^1 = 4 - Cl - C_6 H_4, R^2 = H_5)$ 、 $R^3 = H$ 、 $R^4 = H$ 、 $R^4 = H$ 、 $R^4 = H$ 0、 $R^5 = H$ 1、 $R^6 = H$ 2 の $R^6 = H$ 3 の $R^6 = H$ 4、 $R^6 = H$ 5 の $R^6 = H$ 6 の $R^6 = H$ 7 の $R^6 = H$ 8 の $R^6 = H$ 9 の

[5-(4-クロローフェニル)-イソキサゾール-3-イル]-メタノール(2-1-3)1.73g

、クロロホルム30mlの溶液に塩化チオニル2.1gを加え、氷冷下ピリジン630mgとクロロホルム2mlの溶液を3分で滴下。室温で5時間攪拌した。反応後減圧下溶媒を留去。残渣にクロロホルムと水を加えで抽出。有機層は水洗、無水硫酸マグネシウムで乾燥後、減圧下溶媒を留去した。得られた残渣をシリカゲルクロマトに付し、酢酸エチル:ヘキサン(1:1)で溶出し、標記化合物を結晶として1.72g得た。収率92%

[0163] 同様に(3-1-2-2)〜(3-1-2-17)の化合物を合成した。

[0164] [表70]

No	R 1	R ²	R ³ , R ⁴	NMR
3-1-2-1	4-Cl- C ₆ H ₄ -	Η	Н,Н	4.64(2H,s),6.63(1H,s),7.46(2H,d,J=8.4 Hz),7.73(2H,d,J=8.4Hz)
3-1-2-2	TFMP	Н	Н,Н	4.66(2H,s),6.45(1H,s),7.75(2H,d,J=9.0 Hz),7.91(2H,d,J=9.0Hz)
3-1-2-3	TFMP	Me	Н,Н	2.33(3H,s),4.65(2H,s),7.76(2H,d,J=8.7 Hz),7.85(2H,d,J=8.7Hz)
3-1-2-4	TFMP	CH O	Н,Н	4.89(2H,s),7.87(2H,d,J=8.7Hz),8.03(2 H,d,J=8.7Hz),10.17(1H,s)
3-1-2-5	TFMP	Me	H,Et	1.15(3H,t,J=7.5Hz),2.30(2H,qd,J=7.5, 7.5Hz),4.93(1H,t,J=6.6Hz),7.76(2H,t, J=8.4Hz), 7.83(2H,d,J=8.4Hz)
3-1-2-6	TFMP	Me	H,4-F- C ₆ H ₄ -	2.14(3H,s),6.62(1H,s),7.07-7.13(2H, m),7.50-7.55(2H,m),7.75(2H,d, J=8.4Hz),7.81(2H,d,J=8.4Hz)
3-1-2-7	TFMP	SPh	Н,Н	4.55(2H,s),7.13-7.27(5H,m),7.73(2H, d,J=8.7Hz),8.25(2H,d,J=8.7Hz)
3-1-2-8	TFMP	Bn	Н,Н	4.15(2H,s),4.41(2H,s),7.15- 7.35(5H,m),7.71(2H,d,J=8.7Hz),7.78(2H,d,J=8.7Hz)
3-1-2-9	4-Cl-C ₆ H ₄ -	H	Н,Н	4.64(2H,s),6.63(1H,s),7.46(2H,d,J=8.4 Hz),7.73(2H,d,J=8.4Hz)
3-1-2-10	4 -Cl-C $_6$ H $_4$ -	Br	Н,Н	4.46(2H,s),7.50(2H,d,J=8.7Hz),7.99(2 H,d,J=8.7Hz)
3-1-2-11	4-Cl-C ₆ H ₄ -	Et	H,H	1.28(3H,t,J=7.5Hz),2.72(2H,q,J=7.5Hz),4.64(2H,s),7.47(2H,d,J=8.4Hz),7.65 (2H,d,J=8.4Hz)
3-1-2-12	Br	Me	H,H	2.06(3H,s),4.56(2H,s)
3-1-2-13	ピリジン-4- イル	Н	H,H	4.66(2H,s),6.85(1H,s),7.67(2H,d,J=6.0 Hz),8.77(2H,d,J=6.0Hz)
3-1-2-14	Me	I	H,H	2.49(3H,s),4.53(2H,s)
3-1-2-15	Et	I	H,H	1.31(3H,t,J=7.5Hz),2.83(2H,q,J=7.5H z)4.53(2H,s)
3-1-2-16	TFMP	CH 2OE t	Н,Н	1.28(3H,t,J=6.9Hz), 3.64(2H,q,J=6.9 Hz),4.57(2H,s),4.73(2H,s),7.69(2H ,d,J=8.4Hz),7.90(2H,d,J=8.4Hz)
3-1-2-17	4-OCF3- C6H4-	CH 2OE t	Н,Н	1.28(3H,t,J=6.9Hz), 3.69(2H,q,J=6.9 Hz),4.55(2H,s),4.72(2H,s),7.35(2H,d,J =8.7Hz), 7.82(2H,d,J=8.7Hz)

[0165] 参考例12

[3-クロロメチル-5-(4-トリフルオロメチルフェニル)-イソキサゾール-4-イル]-メ

タノール(3-2-1)

[化36]

3ークロロメチルー5ー(4ートリフルオロメチルフェニル)ーイソキサゾールー4ーカルバルデヒド(3-1-2-4)203mgとメタノール5mlの溶液に氷冷下、水素化ホウ素ナトリウム21mgを加え室温にて2時間攪拌した。反応後減圧下溶媒を留去。残渣に水を加えクロロホルムで抽出。飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥後、減圧下溶媒を留去した。得られた残渣をシリカゲルクロマトに付し、酢酸エチル:ヘキサン(1:3)で溶出し、標記化合物を結晶として210mg得た。収率87%

[0166] [化37]

参考例13

第一工程 チオカルバモイル化

ジメチルチオカルバミン酸 2-フルオロ-4-ホルミルフェニルエステル (R=3-F、 $R^{17}=Me$ 、4-1-1)

3-フルオロー4ーヒドロキシベンズアルデヒド5.00g、N, Nージメチルチオカルバモイルクロリド5.29g、トリエチルアミン4.33g、N, Nージメチルアミノピリジン436mg、ジオキサン50mlの混合物を3時間攪拌した。反応液に水を加え、酢酸エチルで抽出した。有機層を水および飽和食塩水で洗浄、硫酸マグネシウムで乾燥後、減圧下溶媒を留去した。残渣をイソプロピルエーテルで洗浄し、標記化合物を褐色結晶として7.05g得た。収率71%

¹H-NMR(CDCl₃): 3.39(3H, s), 3.47(3H, s), 7.277.35(1H, m), 7.677.74(2H, m), 9.97(1H, s).

第2工程 Horner-Emmons 反応

 $3-(4-ジメチルチオカルバモイルオキシ-3-フルオロフェニル) アクリル酸 メチルエステル(R=3-F、<math>R^{17}=Me$ 、5-1-1)

ジメチルチオカルバミン酸 2-フルオロ-4-ホルミルフェニルエステル(4-1-1)7. 05g、ジメチルホスホノ酢酸メチル5. 89g、塩化リチウム1. 57g、ジメチルホルムアミド70mlの混合物に1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン5. 16gを加え、室温で2.5時間攪拌した。反応液に水を加えた後、酢酸エチルで抽出した。有機層を水および飽和食塩水で洗浄、硫酸マグネシウムで乾燥後、減圧下溶媒を留去した。残渣をイソプロピルエーテルで洗浄し、標記化合物を褐色結晶として7.50g得た。収率86%

¹H-NMR(CDCl₃): 3.37(3H, s), 3.46(3H, s), 3.81(3H, s), 6.39(1H, d, J=15.9 Hz), 7.12(1H, m), 7.307.35(2H, m), 7.63(1H, d, J=15.9Hz).

第3工程 転位反応

3-(4-ジメチルカルバモイルスルファニル<math>-3-フルオロフェニル)アクリル酸 メチルエステル(R=3-F、 $R^{17}=$ Me、6-1-1)

3-(4-ジメチルチオカルバモイルオキシ-3-フルオロフェニル)アクリル酸メチルエステル(5-1-1)7.00gとジフェニルエーテルの混合物を265℃で30分間攪拌した。反応液を室温に冷却後、シリカゲルクロマトに付し、クロロホルムで溶出し、標記化合物を無色結晶として7.00g得た。収率100%

[0167] 同様に(6-1-2)~(6-1-17)を合成した。

[0168] [表71]

No	R	R17	NMR
6-1-1	3-F	Me	3.04(3H,br),3.13(3H,br),3.82(3H,s),6.45(1H,d,
			J=16.2Hz),7.26-7.31(2H,m),7.48-7.53(1H,m),
			7.64(1H,d,J=16.2 Hz)
6-1-2	3-OMe	Me	2.95-3.20(6H,m),3.82(3H,s),3.90(3H,s),
	,		6.45(1H,d,J=15.9Hz),6.95-7.18(2H,m),
			7.48(1H,d,J=7.8Hz), 7.67(1H, d, J=16.2 Hz)
6-1-3	2-OMe	Me	2.96-3.18(6H,m),3.80(3H,s),3.89(3H,s),
010	2 02,10	1.10	6.53(1H,d,J=16.2Hz),7.06-7.13(2H,m),
			7.49(1H,d,J=8.1Hz), 7.96(1H, d, J=16.2 Hz)
6-1-4	3-Br, 5-OMe	Me	2.90-3.30(6H,m),3.82(3H,s),3.89(3H,s),
-	0 22, 0 02.20	1 2.20	6.45(1H,d,J=15.9Hz),7.26(1H,brs),
•			7.48(1H,brs),7.59(1H, d, J=15.9 Hz)
6-1-5	2-OMe, 6-OMe	Me	2.90-3.20(6H,m),3.79(3H,s),3.88(6H,s), 6.73(2H,s)
0-1-5	2-Olvie, d-Olvie	IVIE	6.88(1H, d, J=16.2 Hz), 8.08(1H, d, J=16.2 Hz)
6-1-6	3-OEt	Me	1.34(3H,t,J=6.9Hz),1.43(3H,t,J=6.6Hz),2.90-3.30
0-1-0	9-OEL	IVIE	(6H,m),4.12(2H,q,J=6.9Hz),4.27(2H,q,J=7.2Hz),
			6.43(1H,d,J=15.9Hz)7.04(1H,d,J=1.5Hz),7.12(1H,d
			d,J=7.8Hz,1.8Hz),7.48(1H,d,J=7.8Hz)
			7.64(1H,d,J=15.9 Hz)
6-1-7	3-Br	Me	2.95-3.23(6H,m),3.81(3H,s),6.45(1H,d,J=15.9Hz),
0-1-1	9-Dr	Ivie	7.45(1H,dd,J=8.1Hz,2.1Hz),7.60(1H,d,J=16.2Hz),
			7.45(1H,dd,J=8.1Hz), 7.81(1H,J=2.1Hz)
0.1.0	0 5 1:0	2.6	2.80-3.20(6H,m),3.74(3H,s),6.90(1H,d,J=15.9Hz),
6-1-8	3,5-diBr	Me	
	7		7.60(1H,d,J=15.9Hz), 8.21(2H,s)
6-1-9	3Cl,5OMe	Me	2.90-3.30(6H,m),3.82(3H,s),3.90(3H,s),6.45(1H,d,
	*		J=16.2Hz),6.96(1H,d,J=1.5Hz),7.31(1H,d,J=1.5Hz),
			7.60(1H, d, J=16.2Hz)
6-1-10	3-OMe, 5-OMe	Me	2.85-3.35(6H,m),3.82(3H,s),3.89(6H,s),6.46(1H,d,
			J=15.9Hz)6.76(2H,s),7.66(1H,d,J=15.9Hz)
6-1-11	2-C1	Me	2.90-3.20(6H,m),3.82(3H,s),6.44(1H,d,J=15.9Hz),
			7.36-7.60(2H,m),7.60(1H,d,J=8.1Hz),
			8.06(1H,J=16.2 Hz)
6-1-12	3-Br. 5-OEt	Me	1.42(3H,t,J=7.2Hz),2.85-3.35(6H,m),3.01(3H,s),
			4.10(2H,q,J=7.2Hz),6.43(1H,d,J=15.9Hz),6.97
			(1H,brs), 7.46(1H,brs), 7.57 (1H, d, J=15.9 Hz)
6-1-13	2-F	Me	2.95-3.15(6H,m),3.82(3H,s),6.55(1H,d,J=16.5Hz),
0 1 10			7.26-7.33(2H,m),7.52(1H,d,J=7.8Hz),
			7.79(1H,J=16.2 Hz)
6-1-14	2-Me	Me	2.43(3H,s),3.04(3H,br),3.09(3H,br),3.81(3H,s),6.37(
0-1-14	2-1116	IVIC	1H,d,J=15.9Hz),7.33-7.35(2H,m),
			7.54(1H.d.J=8.7Hz),7.94(1Hm,d,J=15.9Hz)
6-1-15	Н	Me	3.06(6H,br),3.81(3H,s),6.45(1H,d,J=15.9Hz),7.51(4
0-1-10	11	IVIC	H,brs),7.68(1H,d,J=15.9Hz)
6-1-16	2-Me, 3-OMe	Me	3.02(3H,Br),3.12(3H,Br),3.82(3H,s),3.88(3H,s),6.37(
0-1-10	2-1vie, 3-Oivie	1416	1H,d,J=15.9Hz),7.07(1H,s),7.32(1H,s),7.92(1H,d,J=
		0	15.9Hz)
6-1-17	3-Cl	Me	3.05(3H,br),3.13(3H,br),3.81(3H,s),6.45(1H,d,J=15.
0-1-1/	3-01	INTE	9Hz),7.40(1H,dd,J=1.8Hz,8.1Hz),7.58-7.63(3H,m)
	- 1	1	3112], 1.40(1ff,QQ,0-1.0112,0.1112), 1.00-1.00(3ff,III)

[0169] 参考例14(5-ヒドロキシインドール-1-イル)酢酸メチルエステル [化38]

第1工程

(5-ベンジルオキシインドール-1-イル)酢酸メチルエステル

5-ベンジルオキシインドール446mgのジメチルホルムアミド5ml溶液に氷冷下水素化ナトリウム88mgを加え、室温で3時間撹拌した。反応液を氷冷し、ブロモ酢酸メチル228mlを加え1時間30分間撹拌した。反応液に2規定塩酸、水を加え酢酸エチルで抽出した。有機層を水、飽和食塩水で順次洗浄後、硫酸マグネシウムで乾燥し、減圧下溶媒を留去した。得られた残渣をシリカゲルクロマト(酢酸エチル:ヘキサン(1:4)で溶出)精製し、標記化合物を400mg得た。収率68%。

¹H-NMR (CDCl₃) δ : 3.74(3H,s), 4.82(2H,s), 5.10(2H,s), 6.47(1H,dd,J=0.6,3.3Hz), 6.94-7.50 (10H,m).

[0170] 第2工程

(5-ヒドロキシインドール-1-イル)酢酸メチルエステル

(5ーベンジルオキシインドールー1ーイル)酢酸メチルエステル400mgのテトラヒドロフラン5mlーメタノール5ml溶液に10%パラジウム炭素120mgを加え水素雰囲気下室温で3時間撹拌した。反応液を濾過し、減圧下溶媒を留去した。得られた残渣をシリカゲルクロマト(酢酸エチル:ヘキサン(2:3)で溶出)精製し、標記化合物を256mg得た。収率92%。

¹H-NMR (CDCl₃) δ : 3.74(3H,s), 4.49(1H,s), 4.82(2H,s), 6.44(1H,d,J=3.0Hz), 6.79(1H,dd,J=2.7,9.0Hz), 7.04(1H,d,J=2.7Hz), 7.06(1H,d,J=3.0Hz), 7.10(1H,d,J=9.0Hz).

[0171] 参考例15

(5-ジメチルカルバモイルスルファニルインドール-1-イル)酢酸メチルエステル [化39]

$$\begin{array}{c} \text{Me}_2\text{NCOCi} \\ \text{Et}_3\text{N, DMAP} \\ \text{CO}_2\text{Me} \end{array} \begin{array}{c} \text{Me}_2\text{NCOci} \\ \text{Et}_3\text{N, DMAP} \\ \text{CO}_2\text{Me} \end{array} \begin{array}{c} \text{N} \\ \text{CO}_2\text{Me} \end{array}$$

第1工程

(5-ジメチルチオカルバモイルオキシインドール-1-イル)酢酸メチルエステル (5-ヒドロキシインドール-1-イル)酢酸メチルエステル724mg、N, N-ジメチルチ オカルバモイルクロリド523mg、トリエチルアミン0.59ml、N, N-ジメチルアミノピリジ

ン43mg、ジオキサン7mlの混合物を3時間30分間攪拌した。反応液に水を加え、酢酸エチルで抽出した。有機層を水および飽和食塩水で洗浄、硫酸マグネシウムで乾燥後、減圧下溶媒を留去した。残渣をイソプロピルエーテルーメタノールで洗浄し、標記化合物を褐色結晶として443mg得た。収率43%

¹H-NMR (CDCl₃) δ : 3.37(3H,s), 3.48(3H,s), 3.75(3H,s), 4.84(2H,s), 6.55(1H,d,J=3.3Hz), 6.95(1H,dd,J=2.4,9.0Hz), 7.12(1H,d,J=3.3Hz), 7.23(1H,d,J=9.0Hz), 7.29(1H,d,J=2.4Hz).

第2工程

(5-ジメチルカルバモイルスルファニルインドール-1-イル)酢酸メチルエステル (5-ジメチルチオカルバモイルオキシインドール-1-イル)酢酸メチルエステル214 mgとジフェニルエーテル3mlの混合物を270℃で5時間攪拌した。反応液を室温に 冷却後、シリカゲルクロマト(酢酸エチル:ヘキサン(1:3)で溶出)に付し標記化合物を139mg得た。収率65%

¹H-NMR (CDCl₃) δ : 3.07(6H,s), 3.73(3H,s), 4.85(2H,s), 6.55(1H,d,J=3.3Hz), 7.10(1H,d,J=3.3Hz), 7.08-7.35 (2H,m), 7.78(1H,d,J=1.5Hz).

[0172] 参考例16

2-(4-ジメチルカルバモイルスルファニルフェニル)チオフェン-3-カルボン酸メチルエステル

[化40]

第1工程

2-(4-ニトロフェニル)チオフェン-3-カルボン酸メチルエステル 4-ブロモニトロベンゼン3.49g、チオフェン-3-カルボン酸メチルエステル3.44g 、テトラキストリフェニルホスフィンパラジウム1.0、酢酸カリウム2.54g、トルエン35mlの混合物を60時間加熱還流した。反応液に水を加え酢酸エチルで抽出した。有機層を飽和食塩水で洗浄後、硫酸マグネシウムで乾燥し、減圧下溶媒を留去した。得られた残渣をシリカゲルクロマト後(酢酸エチル:ヘキサン(1:6)で溶出)標記化合物を2.78g得た。収率61%。

¹H-NMR (CDCl₃) δ : 3.77(3H,s), 7.37(1H,d,J=5.4Hz), 7.56(1H,d,J=5.4Hz), 7.67(2H,d,J=9.0Hz), 8.26(2H,d,J=9.0Hz).

第2工程

2-(4-アミノフェニル)チオフェン-3-カルボン酸メチルエステル

鉄318mg、2規定塩酸95ml、2-(4-ニトロフェニル)チオフェン-3-カルボン酸メチルエステル250mg、エタノール4.8ml-水1.2mlの混合物を15分間加熱還流した。反応液を冷却後濾過し減圧下濃縮した。得られた残渣をシリカゲルクロマト後(酢酸エチル:ヘキサン(1:2)で溶出)標記化合物を213mg得た。収率96%。

¹H-NMR (CDCl₃) δ : 3.75(3H,s), 4.23(2H,brs), 6.73(2H,d,J=8.7Hz), 7.15(1H,d,J=5.4Hz), 7.33(2H,d,J=8.7Hz), 7.46(1H,d,J=5.4Hz).

第3工程

2-(4-ヒドロキシフェニル)チオフェン-3-カルボン酸メチルエステル

2-(4-アミノフェニル)チオフェン-3-カルボン酸メチルエステル790mgの水90ml -濃硫酸5.3ml懸濁液を-4℃に冷却し、亜硝酸ナトリウム237mgの水溶液2.5ml を5分間で滴下した。-4℃で40分間撹拌後、硝酸銅(II)3.77gの水溶液15ml、酸化銅(I)822mgを加え同温度で20分、室温で45分間撹拌した。反応液に水を加え酢酸エチルで抽出した。有機層を飽和食塩水で洗浄後、硫酸マグネシウムで乾燥し、減圧下溶媒を留去した。得られた残渣をシリカゲルクロマト後(酢酸エチル: $^+$ 、 $^+$ 、 $^+$ 、 $^+$ 、 $^+$)で溶出)標記化合物を363mg得た。収率46%。

¹H-NMR (CDCl₃) δ: 3.76(3H,s), 4.49(1H,brs), 6.84(2H,d,J=8.4Hz), 7.19(1H,d,J=5.7Hz), 7.39(2H,d,J=8.4Hz), 7.48(1H,d,J=5.7Hz). 第4工程

2-(4-ジメチルチオカルバモイルオキシフェニル)チオフェン-3-カルボン酸メチル

エステル

2-(4-ヒドロキシフェニル)チオフェン-3-カルボン酸メチルエステル530mg、N, N -ジメチルチオカルバモイルクロリド336mg、トリエチルアミン0.38ml、N, N-ジメチルアミノピリジン28mg、ジオキサン6mlの混合物を5時間攪拌した。反応液に水を加え、酢酸エチルで抽出した。有機層を水および飽和食塩水で洗浄、硫酸マグネシウムで乾燥後、減圧下溶媒を留去した。残渣をイソプロピルエーテルーメタノールで洗浄し、標記化合物を褐色結晶として632mg得た。収率87%。

¹H-NMR (CDCl₃) δ : 3.36(3H,s), 3.48(3H,s), 3.74(3H,s), 7.11(2H,d,J=8.7Hz), 7.24(1H,d,J=5.4Hz), 7.50(1H,d,J=5.4Hz), 7.51(2H,d,J=8.7Hz).

第5工程

2-(4-ジメチルカルバモイルスルファニルフェニル)チオフェン-3-カルボン酸メチルエステル

2-(4-ジメチルチオカルバモイルオキシフェニル)チオフェン-3-カルボン酸メチルエステル660mgとジフェニルエーテル6mlの混合物を270℃で1時間30分間攪拌した。反応液を室温に冷却後、シリカゲルクロマト(酢酸エチル:ヘキサン(1:4)で溶出)に付し標記化合物を601mg得た。収率91%

 1 H-NMR (CDCl₂) δ : 3.06(6H,brs), 3.74(3H,s), 7.25-7.55(6H,m).

[0173] 参考例17

[化41]

第1工程

3-メトキシー2-メチルフェニルアミン (R5=Me)

2-メチルー3-ニトロアニソール16.7g、10%Pd-C 1.6g、エタノール330mlの混合物を水素雰囲気下6時間攪拌した。不溶物をろ過した後、母液を減圧下濃縮し、

標記化合物を12.5g得た。

NMR(CDCl₃): δ 2.04(3H,s), 3.71(3H,s), 6.33-6.36(2H,m),6.94-7.00(1H,m). 第2工程

3-メトキシ-2-メチルベンゼンチオール(R5=Me)

3ーメトキシー2ーメチルフェニルアミン 10.7g, 水 30ml、35%塩酸 15mlの混合物に亜硝酸ナトリウム 5.92gを水12mlに溶かした溶液を氷冷下加えた。この混合物を、キサントゲン酸カリウム 12.5g、水13mlの混合物に40℃で加えた。50℃で2時間攪拌した後、氷水50mlを加え、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄後、硫酸マグネシウムで乾燥し、減圧下溶媒を留去し、標記化合物を 6.12g得た。収率 61%。

NMR(CDCl₃): δ 2.17(3H,s),3.31(1H,s),3.80(3H,s),6.65(1H,d,J=8.4Hz), 6.87(1H,dd,J=7.5Hz),6.97-7.03(1H,m).

第3工程

4-(3-メトキシ-2-メチルフェニルスルファニル)-3-オキソブタン酸 エチルエステル(R5=Me)

3ーメトキシー2ーメチルベンゼンチオール6.1g、エチルマロニルクロリド6.25g、炭酸セシウ27.9g、アセトニトリル160mlの混合物を室温下23時間攪拌した。不要物をろ過した後、母液を減圧下留去した。残査に水を加え、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄後、硫酸マグネシウムで乾燥し、減圧下溶媒を留去した。得られた残査をシリカゲルカラムクロマトに付し、酢酸エチル:nーヘキサン(1:2)で溶出し、標記化合物 4.05g を得た。

NMR (CDCl3) δ:1.26 (3H, t, J=7.2 Hz), 2.31 (3H, s), 3.60 (2H, s), 3.77 (2H,s), 3.81 (3H, s), 4.17 (2H, q, J=7.2Hz), 6.75 (1H, d, J=8.1 Hz), 6.89 (1H, dd, J=8.1 Hz, 0.6 Hz), 7.087.14 (1H, m).

第4工程

(6-メトキシー7-メチルベンゾ[b]チオフェン-3-イル)酢酸 エチルエステル(R5=Me)

メタンスルホン酸 27mlに、4-(3-メトキシ-2-メチルフェニルスルファニル)-3-オ

キソブタン酸 エチルエステル 4.50gを氷冷下加えた後、室温で1.5時間攪拌した。反応液に氷水100mlを加えた後、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄後、硫酸マグネシウムで乾燥し、減圧下溶媒を留去した。得られた残査をシリカゲルカラムに付し、酢酸エチル:n-ヘキサン(1:4)で溶出し、標記化合物 1.5gを得た。

NMR(CDCl3) δ :1.17 (3H, t, J=7.2 Hz), 2.31 (3H, s), 3.84 (3H, s), 3.86 (2H, d, J=0.9 Hz), 4.07 (2H, q, J=7.2 Hz), 7.15 (1H, d, J=8.7 Hz), 7.34 (1H, s), 7.56 (1H, d, J=8.7 Hz)

第5工程

(6-ヒドロキシー7-メチルベンゾ[b]チオフェン-3-イル)酢酸 エチルエステル(R5=Me)

(6-メトキシー7-メチルベング[b]チオフェンー3ーイル)酢酸 エチルエステル4.6g、塩化メチレン120mlの混合物に、三臭化ホウ素の塩化メチレン溶液(1M溶液)を-40℃で加えた。反応液を室温に昇温後、さらに0.5時間攪拌した。反応液を氷水200mlに注いだ後、有機層を分離した。有機層を水、飽和食塩水で洗浄後、硫酸マグネシウムで乾燥し、減圧下溶媒を留去した。得られた残査をシリカゲルカラムに付し、酢酸エチル:n-ヘキサン(1:3)で溶出し、標記化合物 2.1gを得た。

NMR(CDCl₃): δ 1.78(3H,t,J=6.9Hz), 2.28(3H,s), 3.83(2H,s), 4.08(2H,q,J=6.9Hz), 6.95(1H,d,J=8.4Hz), 7.28(1H,s), 7.40(1H,d,J=8.4Hz), 9.47(1H,br).

[0174] 参考例18

[化42]

$$HO \longrightarrow R^5$$
 $Me_2N \longrightarrow R^5$
 $Me_2N \longrightarrow R^5$
 $Me_2N \longrightarrow R^5$
 $Me_2N \longrightarrow R^5$

第1工程

(6-ジメチルチオカルバモイルオキシ-7-メチルベンゾ[b]チオフェン-3-イル)酢酸

エチルエステル(R5=Me)

(6ーヒドロキシー7ーメチルベンゾ[b]チオフェンー3ーイル) 酢酸 エチルエステル 2.7 0g、N,Nージメチルチオカルバモイルクロリド1.65g、トリエチルアミン1.32g、N,Nージメチルアミノピリジン264mg、アセトニトリル40mlの混合物を4時間還流した。反応液を氷水に加え、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄後、硫酸マグネシウムで乾燥し、減圧下溶媒を留去した。得られた残査をシリカゲルカラムに付し、酢酸エチル:n-ヘキサン(1:2)で溶出し、標記化合物 2.95gを得た。 $NMR(CDCl_3): \delta 1.26(3H,s), 2.39(3H,s), 3.41(3H,s), 3.49(3H,s), 3.82(2H,s), 4.17(2H,q), 7.09(1H,d,J=8.7Hz), 7.34(1H,s), 7.61(1H,d,J=8.7Hz).$

第2工程

(6-ジメチルカルバモイルスルファニル-7-メチルベンゾ[b]チオフェン-3-イル)酢酸 エチルエステル(R5=Me)

(6-ジメチルチオカルバモイルオキシ-7-メチルベンゾ[b]チオフェン-3-イル)酢酸エチルエステル 2.90g、フェニルキシリルエタン29mlを265℃で8時間攪拌した。反応液をシリカゲルカラムクロマトに付し、n-ヘキサン、次いで酢酸エチル:n-ヘキサン(1:2)で溶出し、標記化合物 2.34gを得た。

NMR(CDCl₃): δ 1.25(3H,t,J=7.2Hz), 2.66(3H,s), 3.04–3.14(6H,br),

3.82(2H,d,J=0.9Hz), 4.16(2H,q,J=7.2Hz), 7.41(1H,d,J=0.9Hz), 7.51(1H,d,J=8.1Hz), 7.60(1H,d,J=8.1Hz)

第3工程

(6-メルカプト-7-メチルベンゾ[b]チオフェン-3-イル)酢酸 メチルエステル(R5=Me)

(6-ジメチルカルバモイルスルファニルー7-メチルベンゾ[b]チオフェンー3ーイル) 酢酸 エチルエステル2.34g、1Mナトリウムメトキシド溶液(メタノール溶液)14.9ml の混合物を2.5時間還流した。反応液を2規定塩酸で中和した後、酢酸エチルで抽 出した。有機層を飽和食塩水で洗浄後、硫酸マグネシウムで乾燥し、減圧下溶媒を 留去し、標記化合物1.65gを得た。

NMR(CDCl₃): δ 2.57(3H,s), 3.30(1H,s), 3.69(3H,s), 3.82(2H,s), 7.28(1H,s),

7.34(1H,d,J=8.4Hz), 7.46(1H,d,J=8.4Hz).

[0175] 参考例19

[化43]

第1工程

4-ジメチルチオカルバモイルオキシ-3-フルオロベンズアルデヒド(R5=F, R6=R7=R8=R15=H)

3-フルオロー4-ヒドロキシアセトフェノン7.5g、N, N-ジメチルチオカルバモイルクロリド7.84g、トリエチルアミン6.50g、N, N-ジメチルアミノピリジン0.65g、1, 4-ジオキサン80mlの混合物を110℃で4時間攪拌した。室温に冷却後、反応液に2規定塩酸を加え、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄後、硫酸マグネシウムで乾燥し、減圧下溶媒を留去した。得られた残査をイソプロピルエーテルとn-ヘキサンの混合溶媒で洗浄し、標記化合物11.6gを得た。

NMR(CDCl₃): δ 3.39(3H,s), 3.47(3H,s), 7.30–7.35(1H,m), 7.67–7.73(2H,m), 9.96(1H, s).

第2工程

3-(4-ジメチルチオカルバモイルオキシ-3-フルオロフェニル)-2-フルオロアクリル酸 エチルエステル(R5=F, R6=R7=R8=R15=H)

4-ジメチルカルバモイルオキシー3-フルオロベンズアルデヒド1.5g、2-フルオロー2-ホスホノ酢酸トリエチル1.68g、塩化リチウム0.34mg、1,8-ジアザビシクロ[5.4.0]ウンデセー7-エン1.11g、N,N-ジメチルホルムアミド15mlの混合物を室温で氷冷下19時間攪拌した。反応液に水を加え、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄後、硫酸マグネシウムで乾燥し、減圧下溶媒を留去した。残渣をシリカゲルカラムクロマトに付し、酢酸エチル:n-ヘキサン(1:3)で溶出し、標記化合物 1.84gを得た。

 ${\rm NMR(CDCl_{_{3}}): \ \delta \ 1.28(3H,t,J=7.2Hz), \ 3.37(3H,s), \ 3.46(3H,s), 4.27(2H, \ d,J=7.2Hz),}$

6.85(1H,d,J=7.2Hz), 6.85(1H,d,J=21.6Hz), 7.07–7.13(1H,m), 7.21–7.24(1H,m), 7.42(1H,dd,J=2.1Hz,11.4Hz).

第3工程

(Z)-3-(3-フルオロ-4-ヒドロキシフェニル)-2-フルオロアクリル酸 エチルエステル(R5=F, R6=R7=R8=R15=H)

3-(4-ジメチルチオカルバモイルオキシ-3-フルオロフェニル)アクリル酸 エチルエステル1.0g、1Mナトリウムメトキシド溶液(メタノール溶液)6.5mlの混合物を100℃で4.5時間攪拌した。反応液に2規定塩酸を加え、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄後、硫酸マグネシウムで乾燥し、減圧下溶媒を留去した。残渣をシリカゲルカラムクロマトに付し、酢酸エチル:n-ヘキサン(1:1)で溶出し、標記化合物 1.18gを得た。

[0176] 参考例20

[化44]

第1工程

4-ジメチルチオカルバモイルオキシベンズアルデヒド(R5=R6=R7=R8=R15=H)

4ーヒドロキシベンズアルデヒド25g、N, Nージメチルチオカルバモイルクロリド30g、トリエチルアミン24.9g、N, Nージメチルアミノピリジン4.5g、1, 4ージオキサン300 mlの混合物を110℃で3時間攪拌した。室温に冷却後、2規定塩酸、水を加え、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄後、硫酸マグネシウムで乾燥し、減圧下溶媒を留去した。得られた残査をイソプロピルエーテルと酢酸エチルの混合溶媒で洗浄し、標記化合物35.2gを得た。

NMR(CDCl₃): δ 3.37(3H,s), 3.47(3H,s), 7.24(2H,d,J=8.7Hz), 7.93(2H,d,J=8.7Hz), 10.00(1H,s).

第2工程

4-ジメチルカルバモイルスルファニルベンズアルデヒド(R5=R6=R7=R8=R15=H)

4-ジメチルチオカルバモイルオキシベンズアルデヒド35. 2g、ビフェニルエーテル 350mlの混合物を270℃で45分間攪拌した。反応液をシリカゲルカラムクロマトに付し、n-ヘキサン、次いで酢酸エチル:n-ヘキサン(1:1)で溶出し、標記化合物32. 9gを得た。

NMR(CDCl₃): δ 3.07(6H,br), 7.67(2H,d,J=8.1Hz), 7.87(2H,d,J=8.1Hz),10.03(1H,s).

第3工程

(E)-3-(4-ジメチルカルバモイルスルファニルフェニル)-2-フルオロアクリル酸 エ チルエステル(R5=R6=R7=R8=R15=H)

4-ジメチルカルバモイルスルファニルベンズアルデヒド209mg、2-フルオロ-2-ホスホノ酢酸トリエチル254mg、塩化リチウム51mg、1,8-ジアザビシクロ[5.4.0]ウンデセ-7-エン167mg、N,N-ジメチルホルムアミド2mlの混合物を氷冷下1.5時間攪拌した。反応液に水を加え、ジエチルエーテルで抽出した。有機層を水、飽和食塩水で洗浄後、硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、標記化合物297mgを得た。

NMR(CDCl₃): δ 1.25(3H,t,J=7.2Hz), 3.04(6H,br), 4.25(2H,q,J=7.2Hz), 6.89(1H,d,J=21.6Hz), 7.47(4H,s).

第4工程

- (Z)-2-フルオロ-3-(4-メルカプトフェニル)アクリル酸 メチルエステル(R5=R6=R7=R8=R15=H)
- (E)-3-(4-ジメトキシカルバモイルスルファニルフェニル)-2-フルオロアクリル酸 エチルエステル 297mg、1Mナトリウムメトキシド溶液(メタノール溶液)2.1mlの混 合物を5.5時間攪拌後、氷水に注ぎ、酢酸エチルで抽出した。有機層を水、飽和食

塩水で洗浄後、硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、標記化合物 2 12mgを得た。

NMR(CDCl₃): δ 3.89(3H,s), 3.76(1H,s), 6.86(1H,d,J=34.8Hz), 7.27(2H,d,J=8.4Hz), 7.50(2H,d,J=8.4Hz).

[0177] 参考例21

[化45]

第1工程

4-ジメチルチオカルバモイルオキシー3-メトキシベンズアルデヒド(R5=OMe、R6=R7=R8=R15=H)

バニリン50.0g、N, Nージメチルチオカルバモイルクロリド48.7g、トリエチルアミン39.9mg、N, Nージメチルアミノピリジン4.0g、1, 4ージオキサン250mlの混合物を3時間攪拌した。反応液に水を加え、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄後、硫酸マグネシウムで乾燥し、減圧下溶媒を留去した。得られた残渣をイソプロピルエーテルで洗浄し、標記化合物68.0gを得た。

NMR(CDCl₃): δ 3.38(3H,s), 3.47(3H,s), 3.90(3H,s), 7.21–7.26(1H,m), 7.48–7.52(2H,m), 9.95(1H,s).

第2工程

4ージメチルカルバモイルスルファニルー3ーメトキシベンズアルデヒド (R5=OMe、R6=R7=R8=R15=H)

4ージメチルチオカルバモイルオキシー3ーメトキシベンズアルデヒド 61. 6g、ビフェニルエーテル300mlの混合物を270℃で1時間攪拌した。室温に冷却後、析出した結晶を濾取し、標記化合物46. 2gを得た。

NMR(CDCl₃): δ 3.09(6H,br), 3.95(3H,s), 7.44(1H,s), 7.47(1H,d,J=1.8Hz),

7.69(1H,d,J=7.8Hz), 9.99(1H,s).

第3工程

(Z)-2-クロロ-3-(4-ジメチルカルバモイルスルファニル-3-メトキシフェニル)アク リル酸 メチルエステル(R5=OMe、R6=R7=R8=R15=H)

二塩化クロム5.00g、テトラヒドロフラン70mlの混合物に、4ージメチルカルバモイルスルファニルー3ーメトキシベンズアルデヒド2.16g、トリクロロ酢酸メチル1.61g、テトラヒドロフラン35mlの混合液を室温下加えた。室温で25分間攪拌後、反応液に氷水を加え、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄後、硫酸マグネシウムで乾燥し、減圧下溶媒を留去した。残渣をシリカゲルカラムクロマトに付し、トルエン:酢酸エチル(4:1)で溶出した。得られた粗生成物を酢酸エチルーnーへキサンの混合溶媒から再結晶し、標記化合物2.36gを得た

NMR(CDCl₃): δ 3.08(6H,br), 3.91(6H,s), 7.37–7.41(1H,m), 7.49(1H,d,J=1.5Hz), 7.53(1H,d,J=8.1Hz), 7.90(1H,s).

第4工程

- (Z)-2-クロロ-3-(4-メルカプト-3-メトキシフェニル)アクリル酸 メチルエステル(R 5=OMe、R6=R7=R8=R15=H)
- (Z)-2-クロロー3-(4-ジメチルカルバモイルスルファニルー3-メトキシフェニル)アクリル酸メチルエステル2.21g、1Mナトリウムメトキシド13.4mlの混合物を6時間還流した。氷冷後、反応液に2規定塩酸を加えて酸性とし、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄後、硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、標記化合物1.09gを得た。

NMR(CDCl₃): δ 3.90(3H,s), 7.29(1H,s), 7.30(1H,d,J=1.5Hz), 7.45(1H,d,J=1.5Hz), 7.85(1H,s).

[0178] 参考例22

[化46]

第1工程

4-ジメチルチオカルバモイルオキシ-3-メトキシアセトフェノン (R5=OMe、R6=R7=R8=H)

アセトバニロン15. 11g、N, Nージメチルチオカルバモイルクロリド12. 8g、N, Nージメチルアミノピリジン1. 1g、トリエチルアミン13ml、1, 4ージオキサン100mlの混合物を1. 5時間還流した。反応液に水を加えた後、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄後、硫酸マグネシウムで乾燥し、減圧下溶媒を留去した。得られた残渣を酢酸エチルーnーヘキサンの混合溶媒から再結晶し、標記化合物20. 2gを得た。

NMR(CDCl₃): δ 2.61(3H,s), 3.37(3H,s), 3.47(3H,s), 3.89(3H,s), 7.13(1H,d,J=8.1Hz),7.57-7.61(2H,m).

第2工程

3-(4-i)ジメチルチオカルバモイルオキシ-3-iメトキシフェニル) クロトン酸 メチルエステル (R5=OMe、R6=R7=R8=H)

ジメチルホスホノ酢酸メチル17.4g、テトラヒドロフラン100mlの混合物に、-78℃下、カリウムtーブトキシド11.3gを加えた。室温で40分間攪拌後、4ージメチルチオカルバモイルオキシー3ーメトキシアセトフェノン20.2gを加え、室温で16時間攪拌した。反応液に酢酸エチル500mlを加えた後、1規定塩酸、水、飽和食塩水で順次洗浄し、硫酸マグネシウムで乾燥した。溶媒を減圧下留去したのち、得られた残渣をイソプロピルエーテルで洗浄し、表記化合物16.6gを得た。

第3工程

3-(4-ジメチルチオカルバモイルオキシ-3-メトキシフェニル) 酪酸メチル エステル

(R5=OMe, R6=R7=R8=H)

3-(4-ジメチルチオカルバモイルオキシ-3-メトキシフェニル)クロトン酸 メチルエステル 16.6g、メタノール100mlの混合物に、マグネシウム5.23gを加えた。室温下1.5時間攪拌した後、反応液を酢酸エチル400ml、1規定塩酸400mlの混合物に注ぎ、有機層を分取した。有機層を水、飽和食塩水で洗浄後、硫酸マグネシウムで乾燥し、減圧下溶媒を留去した。得られた残渣をシリカゲルカラムクロマトに付し、酢酸エチル:n-ヘキサン(1:1)で溶出し、標記化合物11.6gを得た。

NMR(CDCl $_3$): δ 1.32(3H,d,J=6.9Hz), 2.49(2H,m), 3.22–3.34(1H,m), 3.34(3H,s), 3.45(3H,s), 3.64(3H,s), 3.82(3H,s), 6.81(2H,m), 6.96(1H,d,J=8.7Hz).

第4工程

3-(4-ヒドロキシ-3-メトキシフェニル) 酪酸 メチルエステル (R5=OMe、R6=R7=R8=H)

3-(4-ジメチルチオカルバモイルオキシ-3-メトキシフェニル) 酪酸 メチルエステル3.1g、1Mナトリウムメトキシド溶液(メタノール溶液) 23mlの混合物を2.5時間還流した。反応液を酢酸エチル100ml、2規定塩酸の混合物中に注ぎ、有機層を分取した。有機層を水、飽和食塩水で洗浄後、硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、標記化合物を2.10g得た。

NMR(CDCl₃): δ 1.27(3H,d,J=6.9Hz), 2.47–2.63(2H,m), 3.18–3.27(1H,m), 3.63(3H,s), 3.88(3H,s), 6.69–6.73(2H,m), 6.84(1H,d,J=8.7Hz).

[0179] 参考例23

[化47]

第1工程

4ージメチルカルバモイルスルファニルー3ーメトキシアセトフェノン(R5=OMe、R6=R7=R8=H)

4-ジメチルチオカルバモイルオキシ-3-メトキシアセトフェノン21.7g、ビフェニルエーテル100mlの混合物を270℃で1時間攪拌した。室温に冷却後、反応液にnーヘキサンを加え、析出した結晶を濾取し、標記化合物18.9gを得た。

NMR(CDCl₃): δ 2.61(3H,s), 3.08(6H,br), 3.94(3H,s), 7.51-7.61(3H,m). 第2工程

3-(4-i)ジェールルバモイルスルファニル-3-iキシフェニル)クロトン酸 メチルエステル(R5=OMe、R6=R7=R8=H)

ジメチルホスホノ酢酸メチル16.3g、テトラヒドロフラン200mlの混合物に、カリウム tーブトキシド10.6gを-78℃で加えた。室温で30分間攪拌後、4ージメチルチオカル バモイルオキシー3ーメトキシアセトフェノン18.9g、を加え、さらに室温下2時間攪拌 した。反応液に飽和酢酸アンモニウム水溶液、水を加えた後、酢酸エチルで抽出し た。有機層を水、飽和食塩水で洗浄後、硫酸マグネシウムで乾燥し、減圧下溶媒を 留去した。得られた残渣を酢酸エチルーnーヘキサンの混合溶媒から再結晶し、標記 化合物15.6gを得た。

第3工程

3-(4-i)ジェールルバモイルスルファニル-3-iキシフェニル) 酪酸 メチルエステル (R5=OMe、R6=R7=R8=H)

3-(4-ジメチルカルバモイルスルファニル-3-メトキシフェニル)クロトン酸 メチルエステル22.3g、メタノール200mlの混合物にマグネシウム4.56gを加え室温で2時間攪拌した。反応液を水200ml、2規定塩酸250mlの混合液に注いだ後、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄後、硫酸マグネシウムで乾燥し、減圧下溶媒を留去した。得られた残渣をn-ヘキサン-イソプロピルエーテルの混合溶媒から再結晶し、標記化合物を15.0g得た。

NMR(CDCl₃): δ 1.30(3H,d,J=6.9Hz), 2.50-2.68(2H,m), 3.06(6H,br), 3.24-3.33(1H,m), 3.65(3H,s), 3.87(3H,s), 6.81-6.85(2H,m), 7.38(1H,d,J=7.8Hz). 第4工程

3-(4-メルカプト-3-メトキシフェニル) 酪酸 メチルエステル (R5=OMe、R6=R7=R8=H)

3-(4-ジメチルチオカルバモイルオキシ-3-メトキシフェニル) 酪酸 メチルエステル 5.0g、1Mナトリウムメトキシド34mlの混合物を2時間還流した。反応液を2規定塩酸100ml、水100mlの混合液に注いだ後、エーテルで抽出した。有機層を水、飽和食塩水で洗浄後、硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、標記化合物3.65gを得た。

NMR(CDCl₃): δ 1.28(3H,s), 2.28–2.64(2H,m), 3.20–3.27(1H,m), 3.63(3H,s), 3.89(3H,s), 6.71–6.74(2H,m), 7.18(1H,d,J=8.4Hz).

[0180] 同様にして、3-(2-7)ルオロー4-3ルカプトフェニル) 酪酸 メチルエステル (R6=F、R5=R7=R8=H)、3-(2-3) メチルー4-3ルカプトフェニル) 酪酸 メチルエステル (R6=Me、R5=R7=R8=H)を得た.

3-(2-フルオロ-4-メルカプトフェニル) 酪酸 メチルエステル

NMR(CDCl3): δ 1.28(3H,d,J=7.2Hz), 2.52–2.69(2H,m), 3.47(1H,s),

3.43-3.55(1H,m), 3.63(3H,s), 6.94-7.10(3H,m).

3-(2-メチル-4-メルカプトフェニル)酪酸 メチルエステル

NMR(CDCl3): δ 1.22(3H,d,J=6.9Hz), 2.32(3H,s), 2.46–2.61(2H,m), 3.35(1H,s), 3.41–3.53(1H,s), 3.62(3H,s), 7.02–7.11(3H,m)

[0181] 参考例24

[化48]

第1工程

[6ーベンジルオキシー1ーメチルー1Hーインドールー3ーイル]酢酸 メチルエステル(R5=R7=R8=H)

[6ーベンジルオキシー1Hーインドールー3ーイル]酢酸 4.00g、N, Nージメチルホルムアミド60mlの混合物に、水素化ナトリウム(60%)1.71gを0℃で加えた。同温度

で30分間攪拌した後、ヨウ化メチル6.05gを加え、60℃で3時間攪拌した。反応液に氷水、飽和酢酸アンモニウム水溶液を加え、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄後、硫酸マグネシウムで乾燥し、減圧下溶媒を留去した。残渣をシリカゲルカラムクロマトに付し、酢酸エチル:n—ヘキサン(1:6)で溶出し、標記化合物1.65gを得た。

NMR(CDCl₃): δ 3.68(3H,s), 3.69(3H,s), 3.73(2H,s), 5.13(2H,s), 6.83–6.92(3H,m), 7.32–7.49(6H,m).

第2工程

[6-ヒドロキシー1-メチルー1H-インドールー3-イル]酢酸 メチルエステル (R5=R7=R8=H)

6ーベンジルオキシー1ーメチルー1Hーインドールー3ーイル]酢酸 メチルエステル1. 65g、10%PdーC 330mg、テトラヒドロフラン<math>41mlを水素雰囲気下1時間攪拌した。不要物をろ過した後、母液を減圧下濃縮した。残渣をシリカゲルカラムクロマトに付し、酢酸エチル:nーヘキサン(1:2)で溶出し、標記化合物615mgを得た。NMR(CDCl $_3$): δ 3.61(3H,s), 3.70(3H,s), 3.72(2H,s), <math>6.66-6.71(2H,m), 6.88(1H,s), 7.19(1H,d,J=<math>8.4Hz).

[0182] 参考例25

[化49]

$$R^7$$
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8
 R^8

第1工程

(6-ジメチルチオカルバモイルオキシー1-メチルー1H-インドールー3-イル)酢酸メ チルエステル(R5=R7=R8=H)

(6-ヒドロキシー1-メチルー1H-インドールー3-イル)酢酸 メチルエステル600mg、

N, N-ジメチルチオカルバモイルクロリド372mg、N, N-ジメチルアミノピリジン33mg、トリエチルアミン763mg、ジオキサン6mlの混合物を6時間還流した。反応液に氷水を加えた後、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄後、硫酸マグネシウムで乾燥し、減圧下溶媒を留去した。残渣をシリカゲルカラムクロマトに付し、酢酸エチル:n-ヘキサン(1:2)で溶出し、標記化合物 724mgを得た。

NM R(CDCl₃): δ 3.38(3H,s), 3.48(3H,s), 3.69(3H,s), 3.72(3H,s), 3.74(2H,s), 6.83(1H,dd,J=1.5,8.4Hz), 7.00(1H,d,J=1.5Hz), 7.04(1H,s), 7.56(1H,s,J=8.4Hz). 第2工程

(6-ジメチルカルバモイルスルファニル-1-メチル-1H-インドール-3-イル)酢酸 メチルエステル(R5=R7=R8=H)

(6-ジメチルチオカルバモイルオキシ-1-メチル-1H-インドール-3-イル)酢酸メチルエステル724mg、ビフェニルエーテル3.6mlの混合物を270℃で7時間攪拌した。反応液を室温に冷却後、シリカゲルカラムクロマトに付し、酢酸エチル:ヘキサン(1:3)で溶出し標記化合物493mgを得た。

NMR(CDCl₃): δ 3.07(6H,br), 3.68(3H,s), 3.74(3H,s), 3.75(2H,s), 7.08(1H,s), 7.21(1H,dd,J=1,5Hz,8.1Hz), 7.47–7.48(1H,m), 7.58(1H,d,J=8.4Hz).

第3工程

(6-メルカプト-1-メチル-1H-インドール-3-イル)酢酸 メチルエステル(R5=R7=R8=H)

(6-ジメチルカルバモイルスルファニルー1-メチルー1H-インドールー3ーイル)酢酸メチルエステル 493mg、1Mナトリウメトキシド3. 4ml、メタノール5mlの混合物を4時間還流した。反応液に水、2規定塩酸を加え、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄後、硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、標記化合物383mgを得た。

[0183] 参考例26

[化50]

第1工程

1-フェニル-1-シクロプロパンカルボン酸 メチルエステル (R5=R6=R7=R8=H)

1-フェニルー1-シクロプロパンカルボン酸8.55g、メタノール160ml、濃硫酸4ml の混合物を2時間還流した。反応液を減圧下濃縮した後、水100mlを加え酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄後、硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、標記化合物を9.16g得た。

NMR(CDCl₃): δ 1.16-1.20(2H,m), 1.58-1.61(2H,m), 3.60(3H,s), 7.22-7.35(5H,m). 第2工程

1-フェニルー1-シクロプロパンカルボン酸メチルエステル2.00gをクロロ硫酸3.0 mlに氷冷下加えた。室温で3時間攪拌後、反応液を氷水に注いだ。析出した結晶を 濾取し、標記化合物を631mg得た。

NMR(CDCl₃): δ 1.16–1.21(2H,m), 1.45–1.50(2H,m), 3.54(3H,s), 7.25–7.28(2H,m), 7.50–7.53(2H,m).

第3工程

1-(4-メルカプトフェニル)-1-シクロプロパンカルボン酸 メチルエステル(R5=R6=R7=R8=H)

1-(4-クロロスルホニルフェニル)-1-シクロプロパンカルボン酸メチルエステル 3 00mg、スズ(粉末状)683mg、4規定塩酸(1,4-ジオキサン溶液)1.43ml、メタノール1.5mlの混合物を1.5時間還流した。不溶物をろ過した後、母液に水を加え、酢酸エチルで抽出した。有機層を飽和炭酸水素ナトリウム水溶液、飽和食塩水で洗浄後、硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、標記化合物を219mg得た。

NMR(CDCl₃): δ 1.11–1.19(2H,m), 1.56–1.60(2H,m), 3.61(3H,s), 4.10(2H,q,J=6.9Hz), 7.20(4H,s).

実施例1

[0184] $(\alpha-1法)$

[化51]

 $\{2$ ーメチルー4ー[5ー(4ートリフルオロメチルフェニル)ーイソキサゾールー3ーイルメトキシ]ーフェノキシ $\}$ 一酢酸メチルエステル $(R^1$ =TFMP、 R^2 = R^3 = R^4 =H、R=2-Me、 R^{17} =Me、 α -1-1)

[5-(4-トリフルオロメチルフェニル)ーイソキサゾールー3ーイル]メタノール(2-1-1)243mg、トリフェニルホスフィン266mg、4-(クロロスルホニルーフェノキシ)ー酢酸メチルエステル176mgとテトラヒドロフラン8mlに氷冷下1,1'-(アゾジカルボニル)ジピペリジン252mgを加え、ついで室温で20時間攪拌した。反応液にクロロホルムと水を加え有機層を分離。無水硫酸マグネシウムで乾燥後、減圧下溶媒を留去。得られた残渣をシリカゲルクロマトに付し、酢酸エチル:ヘキサン(1:2)で溶出し、標記化合物を無色結晶として270mg(収率64%)得た。収率64

これを酢酸エチルーへキサンの混合溶媒で再結晶すると融点107-109℃の結晶が得られた。

実施例 2

[0185] (α-2法)

[化52]

$$R^{2}$$
 LG $+$ R^{9} R^{10} R^{10} R^{10} R^{10} R^{10} R^{10} R^{10} R^{10} R^{10} R^{10} R^{10} R^{10} R^{10}

 $\{2$ -メチルー4-[5-(4-トリフルオロメチルフェニル)-イソキサゾールー3-イルメチルスルファニル]-フェノキシ $\}$ -酢酸エチルエステル $\{R^1$ =TFMP $\{R^2=R^3=R^4=H\}$ $\{R=2$ -Me $\{R^9=R^{10}=H\}$ $\{R^{17}=Et\}$ $\{R^{17}=Et\}$ $\{R^{17}=Et\}$ $\{R^{17}=Et\}$

3ークロロメチルー5ー(4ートリフルオロメチルフェニル)ーイソキサゾール(3-1-2-1) 277mg、(4ーメルカプトー2ーメチルーフェノキシ)ー酢酸エチルエステル255mgをアセトニトリル5mlに溶解し、炭酸セシウム740mgを加え、80℃で2時間加熱攪拌した。アセトニトリルを留去後、水を加え、クロロホルムで抽出、飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥後、減圧下溶媒を留去した。得られた残渣をシリカゲルクロマトに付し、酢酸エチル:ヘキサン(1:6)で溶出し、無色の結晶を得た。これをエーテルー石油エーテルから再結晶し、標記化合物を無色の結晶として358mg得た。融点63-64℃ 収率75%

実施例3

[0186] ($\alpha - 3$ 法)

[化53]

[2-メチルー4-[4-(4-トリフルオロメチルベンジル)-5-(4-トリフルオロメチルフェニル)イソキサゾールー3-イルメチルスルファニル]フェノキシ]酢酸エチルエステル (Hal=Br、 R^1 =TFMP、 R^2 =4-トリフルオロメチルベンジル、 α -3-8)

亜鉛111mgをテトラヒドロフラン2mlに懸濁し、1,2ージブロモエタン16mgを加えて5分間、クロロトリメチルシラン9mgを加えて5分間攪拌した。反応液にpートリフルオロメチルベンジルブロミド297mgを加え、30分間還流した。室温に冷却後、[4ー[4ーブロモー5ー(4ートリフルオロメチルフェニル)イソキサゾールー3ーイルメチルスルファニル]ー2ーメチルフェノキシ]酢酸エチルエステル(α-2-22)300mg、酢酸パラジウム6mg、トリシクロヘキシルホスフィン16mgを加え45分間還流した。反応液に水を加え、

酢酸エチルで抽出、水および飽和食塩水で洗浄、硫酸マグネシウムで乾燥後、減圧下溶媒を留去した。残渣をシリカゲルクロマトに付し、酢酸エチル:ヘキサン(1:9)で溶出し、標記化合物を無色結晶として239mg得た。収率68%

実施例 4

[0187] (α-4法)

[化54]

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

 $\{4-[4-ブチルアミノメチルー5-(4-トリフルオロメチルフェニル)-イソキサゾールー3-イルメチルスルファニル]-2-メチルーフェノキシ}-酢酸tert-ブチルエステル <math>(R^1-TFMP,R^2-CH_NHnBu,R^{17}=tBu,\alpha-4-1)$

[0188] 同様に $\{2-$ メチルー4-[4-モルホリンー4-イルメチルー5-(4-トリフルオロメチルフェニル)ーイソキサゾールー3-イルメチルスルファニル]ーフェノキシ $\}$ 一酢酸エチルエステル($\alpha-4-2$)を得た。

実施例 5

[0189] (α-5法)

[化55]

 $\{4-[4-メトキシメチルー5-(4-トリフルオロメチルフェニル)ーイソキサゾールー3ーイルメトキシ]-2-メチルーフェノキシ}ー酢酸(<math>\alpha-5-1$)

{4-[4-ヒドロキシメチルー5-(4-トリフルオロメチルフェニル)ーイソキサゾールー3ーイルメトキシ]ー2ーメチルーフェノキシ}ー酢酸エチルエステル(α-2-11)210mgのテトラヒドロフラン3ml溶液に水素化ナトリウム19mgを加え室温で30分間攪拌した。反応液にヨウ化メチル90mgのテトラヒドロフラン0.5ml溶液を加え、更に16時間攪拌した。その後、氷冷水下、1M水酸化ナトリウム溶液を1.5ml加え、室温で5時間攪拌した。反応溶液に氷、希塩酸を加え中和し酢酸エチルで抽出した。有機層は食塩水で洗浄、無水硫酸マグネシウムで乾燥、溶媒を減圧留去した。残渣をシリカゲルクロマトに付し、酢酸エチル:ヘキサン(2:1)で溶出し、標記化合物を無色結晶として175mg得た。収率86%。これを酢酸エチルーイソプロピルエーテルの混合溶媒で再結晶し、結晶を得た。

実施例 6

[0190] (α-6法)

[化56]

第1工程 アルキル化

 $(3-(4-ベンジルオキシ-3-メチルーフェニル)-2-[4-メチルー5-(4-トリフルオロメチルフェニル)-イソキサゾールー3-イルメチル]-3-オキソープロピオン酸エチルエステル (<math>\alpha$ -6-1-1)

氷冷下テトラヒドロフラン7mlに水素化ナトリウム48mgを加え、次いで3-(4-ベンジルオキシー3-メチルーフェニル)-3-オキソープロピオン酸エチルエステル375mgのテトラヒドロフラン溶液6mlを15分間で滴下した。室温に戻し3-クロロメチルー3-メチルー5-(4-トリフルオロメチルフェニル)-イソキサゾール(3-1-2-2)276mg、ヨウ化カリウム187mgを加え、17時間加熱還流した。冷却後、酢酸エチルで抽出。無水硫酸マグネシウムで乾燥、溶媒を減圧留去後、残渣をシリカゲルクロマトに付し、酢酸エチル:ヘキサン(1:2)で溶出し、標記化合物を無色油状物として530mg得た。収率96%

第2工程 脱炭酸

1-(4-)+5-3-メチルーフェニル)-3-[4-メチルー5-(4-)+1フルオロメチルフェニル)-イソキサゾール-3-イル]-プロパン-1-オン $(\alpha-6-2-1)$

上記で得られたエステル (α -6 -1 -1) 530 mg に酢酸 4 ml、濃塩酸 1.2 mlを加え 6 時間加熱還流した。冷却後氷冷水に注ぎアンモニア水で中和、酢酸エチルを加え抽出した。有機層は食塩水で洗浄、無水硫酸マグネシウムで乾燥、溶媒を減圧留去した。残渣をシリカゲルクロマトに付し、酢酸エチル: ヘキサン (1:2) で溶出し、標記化合物を無色結晶として210 mg 得た。収率 58%。これを酢酸エチルーヘキサンの混合溶媒で再結晶し、結晶を得た。

¹HNMR(CDCl₃):2.26(3H,s),2.27(3H,s),3.07(2H,t,J=7.8Hz),3.48(2H,t,J=7.8Hz),6.81(1H,d,J=8.4Hz),7.74-7.85(6H,m).

第3工程 アルキル化

(2-メチル-4-{3-[4-メチル-5-(4-トリフルオロメチルフェニル)-イソキサゾール -3-イル]-プロピオニル}-フェノキシ)-酢酸メチルエステル(α-6-3-1)

上記で得られたフェノール化合物 (α-6-2-1)130mgとジメチルホルムアミド3ml の溶液にブロモ酢酸メチルエステル55mg、炭酸カリウム50mg、ヨウ化カリウム9mg を加えた後、室温で7時間攪拌した。その後氷冷水に注ぎクロロホルムで抽出した。

有機層は食塩水で洗浄、無水硫酸マグネシウムで乾燥、溶媒を減圧留去した。残渣をシリカゲルクロマトに付し、酢酸エチル:ヘキサン(1:2)で溶出し、標記化合物を結晶として140mg得た。収率93%。これを酢酸エチルーイソプロピルエーテルの混合溶媒で再結晶し、結晶を得た。

第4工程 加水分解

(2-メチル-4- $\{3-[4-$ メチル-5-(4-トリフルオロメチルフェニル)-イソキサゾール-3-イル]-プロピオニル $\}-$ フェノキシ)-酢酸 $(\alpha-6-4-1)$

上記エステル (α -6 -3 -1) 130 mgをテトラヒドロフラン4. 5 mlに溶解させた後、1 M水酸化リチウム水溶液0. 57 mlを加え室温で1時間攪拌した。次いで氷冷水下、1 M塩酸にて中和した。減圧下溶媒を濃縮し、残留液を水で希釈し、氷冷下析出した結晶を濾取して標記化合物を110 mg得た。収率87%。これを酢酸エチルーイソプロピルエーテルの混合溶媒で再結晶し、結晶を得た。

実施例7

[0191] $(\alpha-7法)$

[化57]

$$Me$$
 CI
 Me
 X^2
 CN
 $NH_2OH \cdot HCI$
 $NAOMe$
 $NH_2OH \cdot HCI$
 $NAOMe$
 $NH_2OH \cdot HCI$
 $NAOMe$
 $NH_2OH \cdot HCI$
 $NAOMe$
 $NH_2OH \cdot HCI$
 $NAOMe$
 $NH_2OH \cdot HCI$
 $NAOMe$
 $NH_2OH \cdot HCI$
 $NAOMe$
 $NH_2OH \cdot HCI$
 $NAOMe$
 $NH_2OH \cdot HCI$
 $NAOMe$
 $NH_2OH \cdot HCI$
 $NAOMe$
 $NH_2OH \cdot HCI$
 $NAOMe$
 $NH_2OH \cdot HCI$
 $NAOMe$
 $NH_2OH \cdot HCI$
 $NAOMe$
 $NH_2OH \cdot HCI$
 $NAOMe$
 $NH_2OH \cdot HCI$
 $NAOMe$
 $NH_2OH \cdot HCI$
 $NAOMe$
 $NH_2OH \cdot HCI$
 $NAOMe$
 $NH_2OH \cdot HCI$
 $NAOMe$
 $NH_2OH \cdot HCI$
 $NAOMe$
 $NH_2OH \cdot HCI$
 $NAOMe$
 $NAOMe$
 $NH_2OH \cdot HCI$
 $NAOMe$
 $NAOMe$
 $NH_2OH \cdot HCI$
 $NAOMe$
 $NH_2OH \cdot HCI$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$
 $NAOMe$

第1工程

[2ーメチルー4ー[4ーメチルー5ー(4ートリフルオロメチルフェニル) イソキサゾールー3ーイルメチルスルファニル] フェニル] アセトニトリル (R=CF $_3$ 、 X^1 =S、 X^2 =CH $_2$ 、 α -7ー1-1)

3-クロロメチルー4ーメチルー5ー(4ートリフルオロメチルフェニル)イソキサゾール(3-1-2-3)225mg、(4ーメルカプトー2ーメチルフェニル)アセトニトリル140mg、炭酸セシウム585mg、アセトニトリル5mlの混合物を室温で20時間攪拌した。反応液に水を加えた後、酢酸エチルで抽出、水および飽和食塩水で洗浄、硫酸マグネシウムで乾燥後、減圧下溶媒を留去した。残渣をシリカゲルクロマトに付し、トルエン:酢酸エチル(95:5)で溶出し、標記化合物を黄色結晶として300mg得た。収率92%
「H-NMR(CDCl」): 2.29(3H, s), 2.31(3H, s), 3.63(2H, s), 4.14(2H, s), 7.26-7.28(3H, m), 7.74(2H, d, J=8.4 Hz), 7.82(2H, d, J=8.4 Hz)

- [0192] 同様の方法で、[2-メチル-4-[4-メチル-5-(4-トリフルオロメチルフェニル)イソキサゾールー3ーイルメトキシ]フェニル]アセトニトリル $(\alpha-7-1-2, X^1=O)$ を得た。 収率88%、Rf=0.25(メルク社シリカゲルプレート、酢酸エチル: ヘキサン=1:3で展開)。
- [0193] 第2工程

Nーヒドロキシー2ー[2ーメチルー4ー[4ーメチルー5ー(4ートリフルオロメチルフェニル)イソキサゾールー3ーイルメチルスルファニル]フェニル]アセトアミジン(α -7-2-1)

[2-メチルー4-[4-メチルー5-(4-トリフルオロメチルフェニル)イソキサゾールー3ーイルメチルスルファニル]フェニル]アセトニトリル(α-7-1-1)300mg、ヒドロキシルアミン塩酸塩259mg、28%ナトリウムメトキシド 0.76ml、メタノール10mlの混合物を20時間還流した。減圧下溶媒を留去した後、残渣に水を加えた。酢酸エチルで抽出、水および飽和食塩水で洗浄、硫酸マグネシウムで乾燥後、減圧下溶媒を留去した。標記化合物を無色結晶として299mg得た。収率92%

- [0194] 同様の方法で、Nーヒドロキシー2ー[2ーメチルー4ー[4ーメチルー5ー(4ートリフルオロメ チルフェニル)イソキサゾールー3ーイルメトキシ]フェニル]アセトアミジン(α -7-2-2、 X^1 =O)を得た。収率57%
- 「0195] 第3工程

3-[2-メチル-4-[4-メチル-5-(4-トリフルオロメチルフェニル) イソキサゾール-3 -イルメチルスルファニル] ベンジル] -4H-[1, 2, 4]オキサジアゾール-5-オン(α -7-3-1)

Nーヒドロキシー2ー[2ーメチルー4ー[4ーメチルー5ー(4ートリフルオロメチルフェニル)イソキサゾールー3ーイルメチルスルファニル]フェニル]アセトアミジン(αー7ー2ー1)29 9mg、1,1'ーカルボニルジイミダゾール123mg、1,8ージアザビシクロ[5,4,0]ウンデセー7ーエン419mg、テトラヒドロフラン10mlの混合物を室温で1時間攪拌した。反応液に水を加え、1M)塩酸で中和した。酢酸エチルで抽出、水および飽和食塩水で洗浄、硫酸マグネシウムで乾燥後、減圧下溶媒を留去した。残渣をシリカゲルクロマトに付し、トルエン:酢酸エチル(95:5)で溶出した。得られた粗物をアセトンより再結晶し標記化合物を無色結晶として133mg得た。収率42%

実施例8

 $\lceil 0196 \rceil$ ($\alpha - 7$ 法)

3-{2-メチルー4-[4-メチルー5-(4-トリフルオロメチルフェニル)ーイソキサゾールー3-イルメトキシ]ーベンジル}ー4H-[1, 2, 4]オキサジアジンー5-オン(α-7-4-1) N-ヒドロキシー2-[2-メチルー4-[4-メチルー5-(4ートリフルオロメチルフェニル)イソキサゾールー3ーイルメタノール]フェニル]アセトアミジン(α-7-2-2)100mg、メチルブロモアセテート55mg、炭酸セシウム155mg、ジメチルホルムアミド3mlの混合物を室温で20時間、100℃で1時間攪拌した。反応液に水を加えた後、エーテルで抽出、水および飽和食塩水で洗浄、硫酸マグネシウムで乾燥した。減圧下溶媒を留去した後、残渣をシリカゲルクロマトに付し、クロロホルム:アセトニトリル(95:5)で溶出し標記化合物を黄色結晶として40mg得た。収率37%

実施例9

[0197] $(\alpha - 8法)$

[化58]

 $3-\{2-メチル-4-[4-メチル-5-(4-トリフルオロメチルフェニル) イソキサゾールー 3-イルメトキシ]フェニル}アクリル酸 メチルエステル (<math>R^1$ =TFMP, R^2 =Me, R^3 = R^4 =H, R^2 = 2-Me, R^{17} = Me、 α -8-10)

3-クロロメチルー4ーメチルー5ー(4ートリフルオロメチルフェニル)ーイソキサゾール(3 -1-2-3)223mgおよび3ー(4ーヒドロキシー2ーメチルフェニル)アクリル酸 メチルエステル200mgのアセトニトリル8ml溶液に炭酸セシウム316mgを加え、室温で24時間、60℃で3時間撹拌した。反応液を濾過し、ろ液を減圧下留去した。得られた残渣をシリカゲルクロマト後(酢酸エチル:ヘキサン(1:4)で溶出)、酢酸エチルーヘキサンの混合溶媒で再結晶し、標記化合物を無色結晶として268mg得た。収率74%実施例 10

[0198] (α-9法)

[4上59]

$$R^3$$
 R^4 R^4 R^3 R^4 R^4 R^3 R^4 R^4 R^3 R^4 R^4 R^3 R^4 R^4 R^3 R^4

 $3-{3-}$ メトキシー4-[4-メチルー5-(4-トリフルオロメチルフェニル)イソキサゾールー3-イルメチルスルファニル]フェニル}アクリル酸メチルエステル (R^1 =TFMP, R^2 =Me, R^3 = R^4 =H, R=3-OMe, R^{17} = Me, $\alpha-9-8$)

3-(4-ジメチルカルバモイルスルファニル-3-メトキシフェニル)アクリル酸メチルエステル(6-1-2)224mg、1mol/Lナトリウムメトキシドメタノール溶液1.3mLの混合物を2時間還流後、氷冷下に1M塩酸にて中和した。酢酸エチルで抽出後、有機層は食塩水で洗浄、無水硫酸マグネシウムで乾燥、溶媒を減圧留去した。得られた残査をアセトニトリル4mLに溶解し、3-クロロメチル-4-メチル-5-(4-トリフルオロメチルフェニル)イソキサゾール(3-1-2-3)209mg、炭酸セシウム296mgを加え、室温で2時間攪拌した。反応液に水を加えた後、酢酸エチルで抽出、水および飽和食塩水で洗浄、硫酸マグネシウムで乾燥後、減圧下溶媒を留去した。残渣をシリカゲルクロマトに付し、クロロホルムで溶出し、標記化合物を無色結晶として227mg得

た。収率65%

実施例 11

[0199] $(\alpha-10法)$

[化60]

第1工程 アルキル化

3ー(4ーブロモー2ーフルオロフェノキシメチル)ー4ーメチルー5ー(4ートリフルオロメチルフェニル)イソキサゾール (R^1 =TFMP, R^2 =Me, R^3 = R^4 =H, R = 2-F, X = O、 α -10-1-1)

3-クロロメチルー4ーメチルー5ー(トリフルオロメチルフェニル)イソキサゾール(3-1-2-3)1.5g、4ーブロモー2ーフルオロフェノール1.25g、炭酸セシウム2.13g、アセトニトリル20mlの混合物を75度で11時間攪拌した。反応液に水を加え、酢酸エチルで抽出した。有機層を水および飽和食塩水で洗浄、硫酸マグネシウムで乾燥後、減圧下溶媒を留去した。残渣をnーヘキサンで洗浄し、標記化合物を結晶として1.82g 得た。収率78%

[0200] 同様に $(\alpha-10-1-2)$ ~ $(\alpha-10-1-5)$ を合成した。

[0201] [表72]

No.	R	X	NMR
α-10-1-1	2-F	0	2.35(3H,s),5.25(2H,s),7.00-7.30(3H,m), 7.76(2H,d,J=8.1Hz), 7.84(2H,d,J=8.1Hz)
α-10-1-2	Н	0	2.28(3H,s),4.12(2H,s),7.25-7.45(4H,m), 7.74(2H,d,J=8.4Hz),7.82(2H,d,J=8.4Hz)
α-10-1-3	3,5-diF	0	2.40(3H,s),5.25(2H,s),7.06-7.16(2H,m), 7.76(2H,d,J=8.4Hz),7.86(2H,d,J=8.4Hz)
α-10-1-4	3-CF ₃	S	2.29(3H,s),4.17(2H,s),7.51(2H,d,J=8.4Hz), 7.62(1H,dd,J=8.4Hz,2.1Hz),7.74(2H,d,J=8.4Hz), 7.77(1H,d,J=2.1Hz),7.81(2H,d,J=8.4Hz)
α-10-1-5	2-CF ₃	S	2.29(3H,s),4.16(2H,s),7.43(1H,dd,J=8.4Hz,2.4Hz), 7.62(1H,d,J=8.4Hz),7.65(1H,d,J=2.4Hz), 7.74(2H,d,J=8.7Hz),7.81(2H,d,J=8.7Hz)

第2工程 Heck 反応

3-{3-フルオロ-4-[4-メチル-5-(4-トリフルオロメチルフェニル)イソキサゾー

ルー3ーイルメトキシ]フェニル}アクリル酸メチルエステル(R^1 =TFMP, R^2 =Me, R^3 = R^4 =H, R=3-F, X=0, $R^{17}=Me$, $\alpha-10-2-1$)

3-(4-ブロモー2-フルオロフェノキシメチル)-4-メチルー5-(4ートリフルオロメチルフェニル)イソキサゾール(α-10-1-1)0.35g、アクリル酸メチル1.06g、酢酸パラジウム(II)37mg、トリエチルアミン0.16g、トリフェニルホスフィン86mg、ジメチルホルムアミド2mlの混合物をアルゴン気流中100度で11時間攪拌した。反応液に水を加え、酢酸エチルで抽出した。有機層を水および飽和食塩水で洗浄、硫酸マグネシウムで乾燥後、減圧下溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー(nーヘキサン/酢酸エチル)により精製し、標記化合物を結晶として0.33g得た。収率92%

実施例 12

[0202] $(\alpha-11法)$

[化61]

$$R^{5}$$
 R^{20} R^{21} R^{2} R^{3} R^{4} R^{5} R^{2} R^{3} R^{4} R^{5} R^{2} R^{2} R^{3} R^{4} R^{5} R^{6} R^{7} R^{8} R^{1} R^{1} R^{2} R^{3} R^{4} R^{5} R^{5} R^{6} R^{1} R^{1} R^{2} R^{3} R^{4} R^{5} $R^$

 $\{5-[4-メチルー5-(4-トリフルオロメチルフェニル) イソキサゾールー3ーイルメトキシ]$ インドールー1-イル}酢酸メチルエステル $\{R^1=TFMP, R^2=Me, R^3=R^4=R^5=R^7=R^8=R^{20}=R^{21}=H, X^1=O, a-11-1)$

(5-ヒドロキシインドールー1-イル)酢酸メチルエステル200mgのアセトニトリル5ml溶液に3-クロロメチルー4-メチルー5-(4-トリフルオロメチルフェニル)ーイソキサゾール224mgおよび炭酸セシウム318mgを加え、室温で15時間、60℃で1時間30分間撹拌した。反応液を濾過し、ろ液を減圧下留去した。得られた残渣をシリカゲルクロマト後(酢酸エチル:ヘキサン(1:4)で溶出)標記化合物を243mg得た。収率67%。

実施例 13

[0203] $(\alpha-12法)$

[化62]

$$\begin{array}{c} R^{6} \\ N \\ R^{7} \\ R^{8} \end{array} \begin{array}{c} R^{6} \\ N \\ R^{7} \\ \end{array} \begin{array}{c} R^{2} \\ R^{3} \\ R^{4} \\ R^{5} \\ R^{6} \\ R^{5} \\ R^{7} \\ \end{array} \begin{array}{c} R^{6} \\ S \\ CO_{2}Me \\ R^{1} \\ \end{array} \begin{array}{c} R^{2} \\ R^{3} \\ R^{4} \\ \end{array} \begin{array}{c} R^{6} \\ S \\ R^{7} \\ \end{array} \begin{array}{c} R^{6} \\ S \\ R^{7} \\ \end{array} \begin{array}{c} R^{6} \\ S \\ R^{7} \\ \end{array} \begin{array}{c} R^{6} \\ S \\ R^{7} \\ \end{array} \begin{array}{c} R^{6} \\ S \\ R^{7} \\ \end{array} \begin{array}{c} R^{6} \\ S \\ R^{7} \\ \end{array} \begin{array}{c} R^{6} \\ S \\ R^{7} \\ \end{array} \begin{array}{c} R^{6} \\ S \\ R^{7} \\ \end{array} \begin{array}{c} R^{6} \\ S \\ R^{7} \\ \end{array} \begin{array}{c} R^{6} \\ S \\ R^{7} \\ \end{array} \begin{array}{c} R^{6} \\ S \\ R^{7} \\ \end{array} \begin{array}{c} R^{6} \\ S \\ R^{7} \\ \end{array} \begin{array}{c} R^{6} \\ S \\ R^{7} \\ \end{array} \begin{array}{c} R^{6} \\ S \\ R^{7} \\ \end{array} \begin{array}{c} R^{6} \\ S \\ R^{7} \\ \end{array} \begin{array}{c} R^{6} \\ S \\ R^{7} \\ \end{array} \begin{array}{c} R^{6} \\ S \\ R^{7} \\ \end{array} \begin{array}{c} R^{6} \\ S \\ R^{7} \\ \end{array} \begin{array}{c} R^{6} \\ S \\ R^{7} \\ \end{array} \begin{array}{c} R^{7} \\ R^{8} \\ \end{array} \begin{array}{c} R^{7} \\ R^{9} \\ \end{array} \begin{array}{c} R^{7} \\ R^{8} \\ \end{array} \begin{array}{c} R^{7} \\ R^{8} \\ \end{array} \begin{array}{c} R^{1} \\ R^{1} \\ \end{array} \begin{array}{c} R^{1} \\ R^{1} \\ \end{array} \begin{array}{c} R^{1} \\ R^{1} \\ \end{array} \begin{array}{c} R^{1} \\ R^{1} \\ \end{array} \begin{array}{c} R^{1} \\ R^{1} \\ \end{array} \begin{array}{c} R^{1} \\ R^{1} \\ \end{array} \begin{array}{c} R^{1} \\ R^{1} \\ \end{array} \begin{array}{c} R^{1} \\ R^{1} \\ \end{array} \begin{array}{c} R^{1} \\ R^{1} \\ \end{array} \begin{array}{c} R^{1} \\ R^{1} \\ \end{array} \begin{array}{c} R^{1} \\ R^{1} \\ \end{array} \begin{array}{c} R^{1} \\ R^{1} \\ \end{array} \begin{array}{c} R^{1} \\ R^{1} \\ \end{array} \begin{array}{c} R^{1} \\ R^{1} \\ \end{array} \begin{array}{c} R^{1} \\ \end{array} \begin{array}{c} R^{1} \\ \end{array} \begin{array}{c} R^{1} \\ R^{1} \\ \end{array} \begin{array}{c} R^{1} \\ \end{array} \begin{array}{c} R$$

 $2-\{4-[4-$ メチル-5-(4-トリフルオロメチルフェニル) イソキサゾール-3-イルメチルスルファニル] フェニル $\}$ チオフェン-3-カルボン酸メチルエステル (R^1 =TFMP, R^2 =Me, R^3 = R^4 = R^5 = R^6 = R^7 = R^8 = H, a-12-1)

2-(4-ジメチルカルバモイルスルファニルフェニル)チオフェン-3-カルボン酸メチルエステル321mgのメタノール7ml溶液に1規定ナトリウムメトキシド溶液(メタノール溶液)1.5mlを加え3時間加熱還流した。反応液を冷却後2規定塩酸と氷水を加え酢酸エチルで抽出した。有機層を飽和食塩水で洗浄後、硫酸マグネシウムで乾燥し、減圧下溶媒を留去した。得られた残渣249mgのアセトニトリル5ml溶液に3-クロロメチルー4-メチルー5-(4-トリフルオロメチルフェニル)ーイソキサゾール228mgおよび炭酸セシウム323mgを加え、室温で3時間撹拌した。反応液を濾過し、ろ液を減圧下留去した。得られた残渣を酢酸エチルーへキサンの混合溶媒で再結晶し、標記化合物を349mg得た。収率72%。

実施例 14

[0204] $(\alpha-13法)$

[化63]

[6-[4-(エトキシイミノメチル)-5-(4-トリフルオロメチルフェニル)イソキサゾールー3-イルメトキシ]-7-メチルベンゾ[b]チオフェン-3-イル]酢酸 エチルエステル(R1=TFMP, R2=CH=NOEt, R3=R4=R7=R8=R9=R10=R20=H、R5=Me, R17=Et)

(6-ヒドロキシー7-メチルベンゾ[b]チオフェンー3ーイル)酢酸エチルエステル201mg、メタンスルホン酸 4-(エトキシイミノメチル)-5-(4-トリフルオロメチルフェニル)イソキサゾール-3-イルメチルエステル 314mg、炭酸セシウム573mg、アセトニトリル9mlの混合物を室温下10分間攪拌した。減圧下溶媒を留去した後、残渣に水を加え酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄後、硫酸マグネシウムで乾燥し、減圧下溶媒を留去した。得られた残査をシリカゲルカラムに付し、酢酸エチル:n-ヘキサン(1:3)で溶出し、標記化合物 397mgを得た。収率91%。

実施例 15

[0205] $(\alpha-14法)$

[化64]

[6-[4-x]++シメチル-5-(4-h])フルオロメチルフェニル)イソキサゾールー3ーイルメチルスルファモイル]ー7ーメチルベンゾ[b]チオフェンー3ーイル]酢酸メチルエステル(R1=TFMP,R2=CH2OEt,R3=R4=R7=R8=R9=R10=R20=H,R5=Me,R17=Me)

6ーメルカプトー7ーメチルベンゾ[b]チオフェンー3ーイル) 酢酸 メチルエステル242mg、3ークロロメチルー4ーエトキシメチルー5ー(4ートリフルオロメチルフェニル) イソキサゾール 256mg、炭酸セシウム573mg、アセトニトリル8mlの混合物を室温下18時間攪拌した。減圧下溶媒を留去後、残渣に水を加え酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄後、硫酸マグネシウムで乾燥し、減圧下溶媒を留去した。得られた残査をシリカゲルカラムに付し、酢酸エチル:nーヘキサン(1:3)で溶出し、標記化合物352mgを得た。

実施例 16

[0206] (α -15法)

[化65]

(Z)-3-[4-[4-T-+シメチル-5-(4-+リフルオロメトキシフェニル) イソキサゾール -3-イルメトキシ]-3-フルオロフェニル]-2-フルオロアクリル酸 メチルエステル (R1 = TFMP, R2=CH2OEt, R3=R4=R6=R7=R8=R15=H、R5=R10=F、R17=Me)

(Z)-2-フルオロ-3-(3-フルオロ-4-ヒドロキシフェニル)アクリル酸メチルエステル 300mg、3-クロロメチルー4-エトキシメチルー5-(4ートリフルオロメチルフェニル)イソキサゾール450mg、炭酸セシウム910mg、アセトニトリル 20mlの混合物を60℃で17時間攪拌した。室温に冷却後、2規定塩酸を加え、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄後、硫酸マグネシウムで乾燥し、減圧下溶媒を留去した。得られた残査をシリカゲルカラムに付し、酢酸エチル:n-ヘキサン(1:5)で溶出し、標記化合物240mgを得た。

実施例 17

[0207] ($\alpha - 16$)

[化66]

(Z)-3-[4-[4-T-+シメチル-5-(4-+リフルオロメチルフェニル)イソキサゾール -3-イルメチルスルファニル]フェニル]-2-フルオロアクリル酸 メチルエステル (R1 =TFMP, R2=CH2OEt, R3=R4=R5=R6=R7=R8=R15=H、R10=F、R17=Me)

3-クロロメチルー4-エトキシメチルー5-(4-トリフルオロメチルフェニル)イソキサゾ

ール 320mg、(Z)-2-フルオロ-3-(4-メルカプトフェニル)アクリル酸 メチルエステル 212mg、炭酸セシウム391mg、アセトニトリル6mlの混合物を室温下2時間攪拌した。不要物をろ過後、母液を減圧下濃縮した。得られた残渣に水を加え、酢酸エチル抽出した。有機層を水、飽和食塩水で洗浄後、硫酸マグネシウムで乾燥し、減圧下溶媒を留去した。残渣をシリカゲルカラムクロマトに付し、酢酸エチル:n-ヘキサン(1:6)で溶出し、標記化合物 216mgを得た。収率44%。

実施例 18

[0208] ($\alpha - 17$)

[化67]

3-(4-ヒドロキシー3-メトキシフェニル) 酪酸 メチルエステル 420mg、3-クロロメ チルー4-エトキシメチルー5-(4ートリフルオロメチルフェニル) イソキサゾール450mg 、炭酸セシウム1.5g、アセトニトリル7mlの混合物を60℃で3時間攪拌した。 反応液を酢酸エチル100ml、2規定塩酸10ml、水50mlの混合物に加え、有機層を分取した。 有機層を水、飽和食塩水で洗浄後、硫酸マグネシウムで乾燥し、減圧下溶媒を留去した。 得られた残渣をシリカゲルカラムクロマトに付し、酢酸エチル:nーヘキサン(1:5)で溶出し、標記化合物739mgを得た。

実施例 19

[0209] ($\alpha - 18$)

[化68]

3-[4-[4-x]++シメチル-5-(4-y]フルオロメチルフェニル)イソキサゾール-3-4ルスルファニル]-3-x+キシフェニル]酪酸 メチルエステル (R1=TFMP, R2=CH 2OEt, R3=R4=R6=R7=R8=H, R5=OMe、R15=Me、R17=Me)

3-(4-メルカプト-3-メトキシフェニル) 酪酸 メチルエステル 300mg、3-クロロメチルー4-エトキシメチルー5-(4ートリフルオロメチルフェニル) イソキサゾール382mg、炭酸セシウム930mg、アセトニトリル6mlの混合物を室温で2時間攪拌した。 反応液を0.5規定塩酸60ml、水50mlに注いだ後、酢酸エチルで抽出した。 有機層を水、飽和食塩水で洗浄後、硫酸マグネシウムで乾燥し、減圧下溶媒を留去した。 残渣をシリカゲルカラムクロマトに付し、酢酸エチル:n-ヘキサン(1:4)で溶出し、標記化合物550mgを得た。

実施例 20

[0210] $(\alpha - 19)$

[化69]

[6-[4-エトキシメチルー5-(4-トリフルオロメチルフェニル)イソキサゾールー3-イルメチルオキシ]-1-メチルー1H-インドールー3-イル]酢酸 メチルエステル(R1=TFMP, R2=CH2OEt, R3=R4=R5=R7=R8=R9=R10=R21=H, R20=Me、R17=Me)

[6-ヒドロキシー1-メチルー1H-インドールー3-イル]酢酸 メチルエステル250mg、 3-クロロメチルー4-エトキシメチルー5-(4-トリフルオロメチルフェニル)イソキサゾー ル401mg、炭酸セシウム742mg、アセトニトリル5mlの混合物を60℃で5時間攪拌した。反応液に飽和塩化アンモニウム水溶液を加え、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄後、硫酸マグネシウムで乾燥し、減圧下溶媒を留去した。残渣をシリカゲルカラムクロマトに付し、酢酸エチル:nーヘキサン(1:4)で溶出し、標記化合物306mgを得た。

実施例 21

[0211] $(\alpha - 20)$

[化70]

[6-[4-x++シメチル-5-(4-h)]フルオロメチルフェニル)イソキサゾール-3-イルメチルスルファニル]-1-メチル-1H-インドール-3-イル]酢酸メチルエステル(R1=TFMP, R2=CH2OEt, R3=R4=R5=R7=R8=R9=R10=R21=H, R20=Me、R17=Me)

6-メルカプト-1-メチル-1H-インドール-3-イル) 酢酸 メチルエステル190mg、3-クロロメチル-4-エトキシメチル-5-(4ートリフルオロメチルフェニル) イソキサゾール284mg、炭酸セシウム526mg、アセトニトリル5mlの混合物を室温で26時間攪拌した。反応液に2規定塩酸を加えた後、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄後、硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、標記化合物を418mg得た。

実施例 22

[0212] ($\alpha - 21$)

[化71]

WO 2005/054213 166 PCT/JP2004/017706

1-[4-[4-x++シメチル-5-(4-hリフルオロメチルフェニル)イソキサゾール-3-イルメチルスルファニル]フェニル]シクロプロパンカルボン酸メチルエステル(R1=TFMP, R2=CH2OEt, R3=R4=R5=R6=R7=R8=H, R17=Me)

1-(4-メルカプトフェニル)-1-シクロプロパンカルボン酸 メチルエステル 219mg、3-クロロメチルー4-エトキシメチルー5-(4ートリフルオロメチルフェニル)イソキサゾール300mg、炭酸セシウム716mg、アセトニトリル5mlの混合物を室温で16時間攪拌した。不溶物をろ過した後、母液を減圧下濃縮した。残渣をシリカゲルカラムクロマトに付し、酢酸エチル:n-ヘキサン(1:10)で溶出し、標記化合物363mgを得た。実施例 23

[0213] (β -1法)

[化72]

 $\{2$ -メチルー4-[5-(4-トリフルオロメチルフェニル)-イソキサゾールー3-イルメチルスルファニル]-フェノキシ $\}$ -酢酸 $\{R^1$ =TFMP、 R^2 = R^3 = R^4 = R^9 = R^{10} =H、R=2-Me、 X^1 =S、 β -1-2)

{2-メチルー4-[5-(4-トリフルオロメチルフェニル)ーイソキサゾールー3ーイルメチルスルファニル]ーフェノキシ}ー酢酸エチルエステル(α-2-1)226mgをテトラヒドロフラン5mlに溶解し、1M水酸化リチウム1mlを加え、室温下17時間攪拌した。その後氷冷下反応液に1M塩酸1mlを加え中和した後、酢酸エチルで抽出、飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥後、減圧下溶媒を留去し無色の固体を得た。これをメタノールー水より再結晶し標記化合物を206mg得た。収率97%

実施例 24

[0214] $(\beta-2法)$

[化73]

 $3-{3-7}ルオロ-4-[4-メチル-5-(4-トリフルオロメチルフェニル)イソキサゾールー3-イルメトキシ]フェニル}アクリル酸(10)(<math>R^1$ =TFMP, R^2 =Me, R^3 = R^4 =H, R=3-F, $X^1=O$, $R^{17}=Me$ 、 $\beta-2-15$)

 $3-{3-7 \nu } -4-{4-7 \nu } -5-{4-\nu }$

[0215] (β-3法)

[化74]

 $\{5-[4-メチルー5-(4-トリフルオロメチルフェニル) イソキサゾールー3ーイルメトキシ]$ インドールー1-イル}酢酸 $\{R^1=TFMP, R^2=Me, R^3=R^4=R^5=R^7=R^8=R^{20}=R^{21}=H, b-3-1\}$)

{5-[4-メチル-5-(4-トリフルオロメチルフェニル)イソキサゾール-3-イルメトキシ] インドール-1-イル}酢酸メチルエステル242mgのテトラヒドロフラン2.5ml-メタノール2.5ml溶液に2規定水酸化ナトリウム溶液0.41mlを加え室温で2時間撹拌した。 反応液に2規定塩酸0.5mlと水を加え酢酸エチルで抽出した。有機層を飽和食塩

水で洗浄後、硫酸マグネシウムで乾燥し、減圧下溶媒を留去した。得られた残渣をアセトンーへキサンの混合溶媒で再結晶し、標記化合物を203mg得た。収率87%。

[0216] (β -4法)

[化75]

 $\{5-[4-メチルー5-(4-トリフルオロメチルフェニル) イソキサゾールー3ーイルメチルス ルファニル] インドールー1ーイル} 酢酸 <math>(R^1=TFMP, R^2=Me, R^3=R^4=R^5=R^7=R^8=R^{20}=R^{21}=H, b-4-1)$

(5-ジメチルカルバモイルスルファニルインドールー1ーイル) 酢酸メチルエステル220 mgのメタノール5ml溶液に2規定水酸化ナトリウム溶液3mlを加え8時間加熱還流した。反応液に2規定塩酸と水を加え酢酸エチルで抽出した。有機層を飽和食塩水で洗浄後、硫酸マグネシウムで乾燥し、減圧下溶媒を留去した。得られた残渣177mgのアセトニトリル5ml溶液に3ークロロメチルー4ーメチルー5ー(4ートリフルオロメチルフェニル)ーイソキサゾール207mgおよび炭酸セシウム290mgを加え、60℃で1時間30分間撹拌した。反応液に2規定塩酸と水を加え酢酸エチルで抽出した。有機層を飽和食塩水で洗浄後、硫酸マグネシウムで乾燥し、減圧下溶媒を留去した。得られた残渣をシリカゲルクロマト後(クロロホルム:メタノール(20:1)で溶出)アセトンーへキサンの混合溶媒で再結晶し、標記化合物を50mg得た。収率15%。

[0217] (β-5法)

[化76]

 $2-\{4-[4-メチルー5-(4-h)]$ フルオロメチルフェニル)イソキサゾールー3ーイルメチルスルファニル]フェニル $\}$ チオフェンー3ーカルボン酸 (R^1 =TFMP, R^2 =Me, R^3 = R^4 = R^5 =

 $R^6 = R^7 = R^8 = H, b-5-1$

2-{4-[4-メチルー5-(4-トリフルオロメチルフェニル)イソキサゾールー3-イルメチルスルファニル]フェニル}チオフェンー3ーカルボン酸メチルエステル347mgのテトラヒドロフラン7mlーメタノール3.5ml溶液に2規定水酸化ナトリウム溶液0.43mlを加え室温で2時間撹拌した。反応液に2規定水酸化ナトリウム溶液0.1mlを追加し60℃で1時間30分間攪拌した。冷却後、反応液に2規定塩酸1.5mlと水20mlを加え析出した結晶を濾取、水洗後乾燥した。得られた粗結晶をアセトンーへキサンの混合溶媒で再結晶し、標記化合物を289mg得た。収率86%。

実施例 25

[0218] (β-6法)

[化77]

[6-[4-(エトキシイミノメチル)-5-(4-トリフルオロメチルフェニル)イソキサゾールー 3-イルメトキシ]-7-メチルベンブ[b]チオフェン-3-イル]酢酸(R1=TFMP, R2= CH=NOEt, R3=R4=R7=R8=R9=R10=R20=H、R5=Me)

[6-[4-(エトキシイミノメチル)-5-(4-トリフルオロメチルフェニル)イソキサゾール -3-イルメトキシ]-7-メチルベンブ[b]チオフェン-3-イル]酢酸 エチルエステル(R 17=Et)393mg、4規定水酸化リチウム0.4ml、水1.2ml、メタノール4ml、テトラヒドロフラン4mlの混合物を室温下8時間攪拌した。減圧下溶媒を留去した後、残渣に 1規定塩酸を加えた。析出した結晶を濾取後、シリカゲルカラムロマトに付し、酢酸エチル:n-ヘキサン(3:1)で溶出し、標記化合物355mgを得た。収率95%。

実施例 26

[0219] $(\beta - 7)$

[化78]

[6-[4-エトキシメチルー5-(4-トリフルオロメチルフェニル)イソキサゾールー3ーイルメチルスルファモイル]ー7-メチルベンゾ[b]チオフェンー3ーイル]酢酸メチルエステル(R17=Me)350mg、4規定水酸化リチウム0.33ml、水1ml、メタノール4ml、テトラヒドロフラン4mlの混合物を室温下1.5時間攪拌した。氷冷下、1規定塩酸を加え、析出した結晶を濾取した。得られた結晶を酢酸エチルとnーへキサンの混合溶媒から再結晶し、標記化合物を310mg得た。

実施例 27

[0220] (*B*-8法)

[41:79]

(Z)-3-[4-[4-エトキシメチルー5-(4ートリフルオロメトキシフェニル)イソキサゾールー3-イルメトキシ]-3-フルオロフェニル]-2-フルオロアクリル酸メチルエステル(R17=Me)240mg、4規定水酸化リチウム1.4ml、メタノール2ml、テトラヒドロフラン2mlの混合物を室温下1.5時間攪拌した。2規定塩酸を加えた後、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄後、硫酸マグネシウムで乾燥、減圧下溶

媒を留去した。得られた残渣を酢酸エチル:n-ヘキサンの混合溶媒から再結晶して、標記化合物 210mgを得た。

実施例 28

[0221] ($\beta - 9$)

[化80]

(Z)-3-[4-[4-エトキシメチルー5-(4ートリフルオロメチルフェニル)イソキサゾールー3-イルメチルスルファニル]フェニル]ー2ーフルオロアクリル酸メチルエステル(R17=Me)200mg、4規定水酸化リチウム0.11ml、水0.33ml、メタノール2ml、テトラヒドロフラン3mlの混合物を室温下30分間攪拌した。減圧下、溶媒を留去した後、残渣に水、1規定塩酸を順次加え、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄後、硫酸マグネシウムで乾燥し、減圧下溶媒を留去した。得られた残渣をアセトンーイソプロピルエーテルの混合溶媒から再結晶し、標記化合物150mgを得た。収率77%。

実施例 29

[0222] ($\beta - 10$)

[化81]

3-[4-[4-エトキシメチル-5-(4-トリフルオロメチルフェニル)イソキサゾール-3-イ

ルメトキシ]-3-メトキシフェニル]酪酸(R1=TFMP, R2=CH2OEt, R3=R4=R6=R7=R8=H, R5=OMe、R15=Me)

3-[4-[4-エトキシメチルー5-(4-トリフルオロメチルフェニル)イソキサゾールー3ーイルメトキシ]ー3ーメトキシフェニル]酪酸メチルエステル(R17=Me)739mg、4規定水酸化リチウム1ml、テトラヒドロフラン10ml、水5mlの混合物を室温で16時間攪拌した。反応液に水50ml、2規定塩酸20mlを加え、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄後、硫酸マグネシウムで乾燥し、減圧下溶媒を留去した。減圧下溶媒を留去した。得られた残渣をシリカゲルカラムクロマトに付し、クロロホルム:メタノール(30:1)で溶出し、標記化合物を363mg得た。

実施例 30

[0223] $(\beta-11)$

[化82]

$$R^{2}$$
 R^{3}
 R^{4}
 R^{5}
 R^{6}
 R^{15}
 R^{15}
 R^{15}
 R^{15}
 R^{15}
 R^{15}
 R^{15}
 R^{15}
 R^{15}
 R^{15}
 R^{15}
 R^{15}
 R^{15}
 R^{15}
 R^{15}
 R^{15}
 R^{15}
 R^{15}
 R^{15}
 R^{15}
 R^{15}
 R^{15}
 R^{15}
 R^{15}

3-[4-[4-x++シメチル-5-(4-hリフルオロメチルフェニル) イソキサゾール<math>-3-イルスルファニル]-3-メトキシフェニル] 酪酸 (R1=TFMP, R2=CH2OEt, R3=R4=R6=R7=R8=H, R5=OMe、R15=Me)

3-[4-[4-エトキシメチルー5-(4-トリフルオロメチルフェニル)イソキサゾールー3ーイルスルファニル]ー3ーメトキシフェニル]酪酸メチルエステル(R17=Me)550mg、4規定水酸化リチウム2.3ml、テトラヒドロフラン4ml、メタノール6mlの混合物を室温で3時間攪拌した。反応液に水30ml、2規定塩酸6mlを加えた後、エーテルで抽出した。有機層を水、飽和食塩水で洗浄後、硫酸マグネシウムで乾燥し、減圧下溶媒を留去した。残渣をシリカゲルカラムクロマトに付し、酢酸エチル:nーヘキサン(1:1)で溶出し、得られた粗生成物を酢酸エチルーn-ヘキサンの混合溶媒から再結晶して、標記化合物130mgを得た。

実施例 31

[0224] ($\beta - 12$)

[化83]

[6-[4-x++シメチル-5-(4-h)]フルオロメチルフェニル)イソキサゾールー3ーイルメチルオキシ]-1-メチルー1H-インドールー3ーイル]酢酸(R1=TFMP, R2=C H2OEt, R3=R4=R5=R7=R8=R9=R10=R21=H, R20=Me)

[6-[4-エトキシメチルー5-(4ートリフルオロメチルフェニル)イソキサゾールー3ーイルメチルオキシ]ー1-メチルー1Hーインドールー3ーイル]酢酸メチルエステル(R17=Me)300mg、4規定水酸化リチウム0.3ml、テトラヒドロフラン6ml、メタノール3mlの混合物を室温で16時間攪拌した。反応液に2規定塩酸を加え、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄後、硫酸マグネシウムで乾燥し、減圧下溶媒を留去した。残渣をシリカゲルカラムクロマトに付し、クロロホルム:メタノール(25:1)で溶出した。得られた粗生成物を酢酸エチルーnーへキサンから再結晶し、標記化合物169mgを得た。

実施例 32

[0225] $(\beta-13)$

[化84]

[6-[4-エトキシメチルー5-(4ートリフルオロメチルフェニル)イソキサゾールー3ーイルメチルスルファニル]-1-メチルー1H-インドールー3ーイル]酢酸(R1=TFMP, R2=CH2OEt, R3=R4=R5=R7=R8=R9=R10=R21=H, R20=Me) [6-[4-エトキシメチルー5-(4-トリフルオロメチルフェニル)イソキサゾールー3ーイ ルメチルスルファニル]ー1ーメチルー1Hーインドールー3ーイル]酢酸メチルエステル(R17=Me)437mg、4規定水酸化リチウム、テトラヒドロフラン9.6ml、メタノール4.8mlの混合物を4.5時間攪拌した。反応液に2規定塩酸を加えた後、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄後、硫酸マグネシウムで乾燥し、減圧下溶媒を留去した。残渣をシリカゲルカラムクロマトに付し、酢酸エチル:nーヘキサン(2:1)で溶出した。得られた粗生成物を酢酸エチルーnーヘキサンの混合溶媒から再結晶し、標記化合物を217mg得た。

実施例 33

[0226] $(\beta-14)$

[41:85]

1-[4-[4-エトキシメチル-5-(4-トリフルオロメチルフェニル)イソキサゾール-3-イルメチルスルファニル]フェニル]シクロプロパンカルボン酸(R1=TFMP, R2=CH 2OEt, R3=R4=R5=R6=R7=R8=H)

1-[4-[4-エトキシメチル-5-(4-トリフルオロメチルフェニル)イソキサゾール-3-イルメチルスルファニル]フェニル]シクロプロパンカルボン酸メチルエステル(R17=Me)363mg、4規定水酸化リチウム水溶液0.42ml、テトラヒドロフラン5ml、メタノール10mlの混合物を室温で16時間攪拌した。反応液に2規定塩酸を加え、酢酸エチルで抽出した。有機層を飽和炭酸水素ナトリウム水溶液、飽和食塩水で洗浄後、硫酸マグネシウムで乾燥した。減圧下溶媒を留去し、標記化合物を200mg得た。

[0227] 以下、同様にして合成される以下の化合物も本発明に含まれる。なお、表75は表74の続きである。表80~81は、表79の続きである。表84~87は、表83の続きである。表89~93は、表88の続きである。表95~98は、表94の続きである。表100および101は、表99の続きである。表103~105は、表102の続きである。表107および108は、表106の続きである。表110は、表109の続きである。表112~114は、表111の続きである。表116は、表115の続きである。表118~120は、表117の続きで

ある。表123は、表122の続きである。表126は、表125の続きである。表128~131 は、表127の続きである。表133~136は、表132の続きである。表138~144は、表137の続きである。表146~152は、表145の続きである。表154は、表153の続きである。表156は、表155の続きである。表161は、表160の続きである。表163は、表162の続きである。

[0228] [表73]

No	合成法	R1	R2	X1	R3,R4	R17	mp	NMR(CDCl3 or DMSO-d6)
α-1-2	α-1	F ₃ C	Me	0	н,н	Me	oil	2.29(3H,s),2.32(3H,s),3.80(3H,s),4.61(2H,s)5.13(2H,s),6.67(1H,d,J=9.0Hz),6.79(1H,dd,J=9.0,2.7Hz),6.86(1H,d,J=2.7Hz),7.75(2H,d,J=8.1Hz),7.84(2H,J=8.1Hz)
α-1-3	α-1	F ₃ C	Me	О	Me,Me	Me	oil	1.76(6H,s),2.20(3H,s),2.37(3H,s),3.78(3H,s),4.56(2H,s),6.49-6.50(2H,m), 6.67(1H,m),7.75(2H,dJ=8.1Hz),7.84(2H,d,J=8.1Hz)

[0229] [表74]

No	合成法	R1	R2	X1	R3,R4	R17	mp	NMR(CDCl3 or DMSO-d6)
α-2-2	α-2	F ₃ C	Me	S	Н,Н	Et		1.29(3H,t,J=7.2Hz),2.23(3H,s),2.24(3H,s), 4.03(2H,s),4.25(2H,q,J=7.2Hz),4.61(2H,s) 6.61(1H,d,J=8.4Hz),7.18(1H,dd,J=8.4,2.1 Hz),7.23(1H,J=2.1Hz),7.74(2H,d,J=8.1Hz),7.82(2H,d,J=8.1Hz)
α-2-4	α-2		Me	S	Н,Н	Et		1.30(3H,t,J=7.2Hz),1.91(3H,s)2.25(3H,s), 3.34(4H,t,J=4.8Hz),3.79(4H,t,J=4.8Hz),3. 87(2H,s),4.26(2H,q,J=7.2Hz),4.61(2H,s),6 .62(1H,d,J=8.4Hz),7.71-7.22(2H,m)

[0230] [表75]

No	合成法	R1	R2	X1	R3,R4	R17	mp	NMR(CDCl3 or DMSO-d6)
α-2-5	α-2		Me	О	Н,Н	Ме	112- 113	1.99(3H,s)2.27(3H,s),3.37(4H,t,J=4.8Hz), 3.78-3.81(4H,m),4.60(2H,s),4.93(2H,s), 6.65(1H,d,J=8.7Hz),6.76(1H,dd,J=8.7,3.0 Hz),6.83(1H,dJ=3.0Hz)
α-2-6	α-2	CI	Me	S	,	Et	oil	$\begin{array}{l} 1.28(3\mathrm{H,t,J=7.2Hz}), 2.19(3\mathrm{H,s}), 2.24(3\mathrm{H,s}), \\ 4.01(2\mathrm{H,s}), 4.25(2\mathrm{H,q,J=7.2Hz}), 4.61(2\mathrm{H,s}) \\ 6.61(1\mathrm{H,d,J=8.7Hz}), 7.18(1\mathrm{H,dd,J=8.4,2.4}), \\ 1.22(1\mathrm{H,J=2.4Hz}), 7.46(2\mathrm{H,d,J=8.4Hz}), \\ 1.23(2\mathrm{H,d,J=8.4Hz}), \\ 1.24(2$
α -2-7	α-2	cı		S	H,H	Et	oil	1.29(3H,t,J=7.2Hz),2.22(3H,s),3.93(3H,s), 4.25(2H,q,J=7.2Hz),4.61(2H,s)6.58(1H,d, J=9.0Hz),7.12-7.14(2H,m),7.26-7.32 (5H,m),7.42-7.45(4H,m)
α-2-8	α-2	CI	F ₃ C	S	Н,Н	Et	oil	1.29(3H,t,J=7.2Hz),2.21(3H,s),3.93(3H,s), 4.25(2H,q,J=7.2Hz),4.61(2H,s)6.57(1H,d, J=8.1Hz),7.07-7.12(2H,m),7.29- 7.46(6H,m),7.70(2H,d,J=8.1Hz)
α-2-9	α-2	F ₃ C	Me	S	H,Et	Et	oil	1.07(3H,t,J=7.5Hz),1.28(3H,t,J=7.2Hz), 1.98-2.17(2H,m),2.21(3H,s),2.26(3H,s), 4.03(1H,dd,J=8.4,7.5Hz),4.24(2H,q,J=7.2 Hz),4.60(2H,s),6.57(1H,d,J=8.1Hz),7.09- 7.14(2H,m),7.74(2H,dJ=8.4Hz),7.81(2H,d ,J=8.4Hz)
α-2- 10	α-2	F ₃ C	Me	S	H, 4-F- C6H4	Et	oil	1.28(3H,t,J=7.2Hz),2.09(3H,s),2.20(3H,s), 4.22(2H,q,J=7.2Hz),4.60(2H,s),5.28(1H,s),6.55(1H,d,J=8.4Hz),6.95-7.03(2H,m), 7.06-7.14(2H,m),7.32-7.38(2H,m),7.73 (2H,dJ=8.4Hz),7.80(2H,d,J=8.4Hz)
α-2- 11	α-2	F ₃ C	но	S	H,H	Et	oil	1.28(3H,t,J=7.2Hz),2.23(3H,s),4.11(2H,s), 4.24(2H,q,J=7.2Hz),4.61(2H,s),4.66(2H,s), 6.60(1H,d,J=8.4Hz),7.15(1H,dd,J=8.4,2.4 Hz),7.22(1H,d,J=2.4Hz),7.77(2H,d,J=8.1 Hz),796(2H,d,J=8.1Hz)
α-2- 12	α-2	F ₃ C		S	н,н	Et	oil	1.29(3H,t,J=6.9Hz),2.23(3H,s),3.82(2H,s), 4.10(2H,s),4.25(2H,q,J=6.9Hz),4.61(2H,s),6.60(1H,d,J=8.4Hz),7.11-7.73(7H,m), 7.68(2H,d,J=8.1Hz),7.76(2H,d,J=8.1Hz)
α-2- 13	α-2	F ₃ C	$\stackrel{\circ}{\triangleright}$	S	Н,Н	Et .	oil	1.29(3H,t,J=7.2Hz),2.23(3H,s),3.96(2H,s), 4.25(2H,q,J=7.2Hz),4.60(2H,s),6.59(1H,d, J=8.1Hz),7.07-7.28(7H,m),7.70(2H,d, J=9.0Hz),8.22(2H,d,J=9.0Hz)
α-2- 14	α-2	Me	I	S	H,H	Et		1.29(3H,t,J=7.2Hz),2.24(3H,s),2.44(3H,s), 3.92(2H,s),4.26(2H,q,J=7.2Hz),4.61(2H,s),6.61(1H,d,J=8.4Hz),7.17(1H,dd,J=8.4,2.4 Hz),7.19(1H,d,J=2.4Hz)
α-2- 15	α-2	F ₃ C		S	Н,Н	Et	oil	1.29(3H,t,J=7.2Hz),2.25(3H,s),2.92-2.99 (4H,m),3.79(2H,s),4.26(2H,q,J=7.2Hz),4.6 1(2H,s),6.61(1H,d,J=8.4Hz),7.09-7.26 (7H,m),7.70(4H,s)
α-2- 16	α-3	F ₃ C	OHC-	S	H,H	tBu	oil	1.47(9H,s),2.24(3H,s),4.28(2H,s),4.51(2H,s),6.60(1H,d,J=8.4Hz),7.18-7.24(2H,m),7.84(2H,d,J=8.7Hz),8.03(2H,d,J=8.7Hz),10.10(1H,d,J=0.6Hz)

[0231] [表76]

No	合成法	R1	R2	X1	R3.R4	/X² X³	mp	NMR(CDCl3 or DMSO-d6)
No	百队法		11/2	^'	1.0,1.4	R ⁹ R ¹⁰	oil	1.23(3H,t,J=7.2Hz),1.66(3H,d,J=6.
α-2-17	α-2	F ₃ C	Me	s	н,н	.Me COOEt	OII	9Hz),2.22(3H,s),4.02(2H,s),4.20(2 H,q,J=7.7Hz),4.71(1H,q,J=6.9Hz),6 .79(2H,d,J=9.0Hz),7.33(2H,d,J=9.0 Hz),7.74(2H,d,J=8.1Hz),7.82(2H,d, J=8.1Hz)
α-2-18	α-2	F ₃ C	Me	s	Н,Н	COOE:	oil	1.06(3H,t,J=7.2Hz),1.23(3H,t,J=7.2Hz),1.93- 2.02(2H,m),2.22(3H,s),4.03(2H,s),4.16- 4.23(2H,m),4.51(1H,t,J=6.3Hz),6.8 0(2H,d,J=9.0Hz),7.32(2H,d,J=9.0Hz),8.13(2H,d,J=8.4Hz),7.82(2H,d,J=8.4Hz)
α-2-19	α-2	F ₃ C	Ме	s	н,н	nPr COOEt	oil	0.97(3H,t,J=7.2Hz),1.23(3H,t,J=7.2Hz),1.48-1.57(2H,m),1.86-1.96(2H,m),2.22(3H,s),4.02(2H,s),4.19(2H,q,J=7.2Hz),4.54-4.58(1H,m),6.79(2H,d,J=9.0Hz),7.32(2H,d,J=9.0Hz),7.74(2H,d,J=8.1Hz),7.81(2H,d,J=8.1Hz)
α-2-20	α-2	F ₃ C	Ме	s	H,nPr	_0COOE	oil	0.90(3H,t,J=7.2Hz),1.27(3H,t,J=7.2Hz),1.55- 1.62(2H,m),2.22(3H,s),2.59(2H,t,J=7.5Hz),4.02(2H,s),4.24(2H,q,J=7.2Hz),4.61(2H,s),6.62(1H,d,J=8.1Hz),7.17- 7.22(2H,m),7.74(2H,d,J=8.3Hz),7.8 1(2H,d,J=8.3Hz)
α-2-2	1 α-2	a	Br	s	н,н	,o , cooet	55-57	1.29(3H,t,J=7.2Hz),2.24(3H,s),4.0 2(2H,s),4.25(2H,q,J=7.2Hz),4.61(2 H,s),6.61(1H,d,J=8.4Hz),7.19- 7.26(2H,m),7.48(2H,d,J=9.0Hz),7.9 8(2H,d,J=9.0Hz)
α-2-2	2 α-2	F ₃ C	Br	· S	н,н	_OCOOEt		1.30(3H,t,J=7.2Hz),2.25(3H,s),4.0 4(2H,s),4.25(2H,q,J=7.2Hz),4.61(2 H,s),6.62(1H,d,J=8.4Hz),7.19– 7.23(2H,m),7.77(2H,d,J=9.0Hz),8.1 6(2H,d,J=9.0Hz)

[0232] [表77]

No	合成法	R1	R2	X1	R3,R4	R17	mp	NMR(CDCl3 or DMSO-d6)
α-3-1	α-3	Ме	F ₃ C	s	н,н	Et	oil	1.30(3H,t,J=7.2Hz),2.21(3H,s),2.40(3H,s),3.98(2H,s),4.26(2H,q,J=7.2Hz),4.61(2H,s),6.56(1H,d,J=8.4Hz),7.06-7.12(2H,m),7.41(2H,d,J=8.1Hz),7.68(2H,d,J=8.1Hz)
α-3-2	α-3	Me	F ₃ C	0	н,н	Ме	105-107	2.25(3H,s),2.48(3H,s),3.78(3H,s),4.59(2 H,s),5.01(2H,s),6.61- 6.72(3H,m),7.50(2H,d,J=8.4Hz),7.68(2H,d,J=8.4Hz)
α-3-3	α-3	F ₃ C	F ₃ C	s	н,н	Et	oil	1.28(3H,t,J=7.2Hz),2.21(3H,s),3.94(2H,s),4.25(2H,q,J=7.2Hz),4.61(2H,s),6.57(1H,d,J=8.4Hz),6.90(1H,d,J=9.0Hz),7.07-7.12(2H,m),7.43(3H,m),7.56(2H,s),7.72(2H,d,J=8.4Hz)
α-3-4	α-3	F ₃ C	F ₃ C	s	н,н	Et	oil	1.29(3H,t,J=7.2Hz),2.21(3H,s),3.95(2H,s),4.25(2H,q,J=7.2Hz),4.61(2H,s),6.58(1H,d,J=9.0Hz),7.09(2H,m),7.51-7.74(8H,m)
α-3-5	α-3	F ₃ C	F ₃ CO	s	н,н	Et	oil	1.29(3H,t,J=7.2Hz),2.23(3H,s),3.83(2H,s),4.12(2H,s),4.25(2H,q),4.61(2H,s),6.59 (1H,d,J=8.4Hz),7.09-7.14(6H,m),7.71-7.72(4H,m)
α-3-6	α-3	F ₃ C	_=-	s	н,н	Et	oil	1.28(3H,t,J=7.2Hz),2.19(3H,s),4.13(2H,s),4.24(2H,q,J=7.2Hz),4.56(2H,s),6.58(1H,d,J=8.4Hz),7.23(3H,m),7.41-7.42(2H,m),7.52-7.55(2H,m),7.77(2H,d,J=9.0Hz),8.30(2H,d,J=9.0Hz)
α-3-7	α-3	F ₃ C	Ph—	s	н,н	Et		Rf=0.34 (EtOAc:Hexane=1:3 メルク社シリカゲル)
α-3-8	3 α-3	F ₃ C	F ₃ C	s	Н,Н	Et	oil	1.29(3H, t, J=7.2 Hz), 2.22(3H, s), 3.83(2H, s), 4.15(2H, s), 4.25(2H, q, J=7.2 Hz), 4.61(2H, s), 6.59(1H, d, J=7.8Hz), 7.09–7.12(2H, m), 7.23(2H, d, J=8.1Hz), 7.55(2H, d, J=8.1Hz), 7.71(4H, s)
α-3-5	9 α-3	F ₃ C	F ₃ CO	S	н,н	Et	oil	1.29(3H,t,J=6.9Hz),2.23(3H,s),3.84(2H,s),4.15(2H,s),4.25(2H,q,J=7.2Hz),4.61(2H,s),6.60(1H,d,J=8.1Hz),6.99-7.14(5H,m),7.29-7.35(1H,m),7.70-7.71(4H,m)
α-3-1	10 α-3	F ₃ C	F ₃ C	S	в н,н	Et	oil	1.29(3H,t,J=7.2Hz),2.23(3H,s),3.83(2H,s),4.14(2H,s),4.25(2H,q,J=7.2Hz),4.61(2H,s),6.60(1H,d,J=8.4Hz),7.09–7.13(2H,m),7.29–7.53(4H,m),7.71(4H,s)

[0233] [表78]

Γ					∠X ² \ ∠X ³		
	○ No	合成法	R2	X1 ·	R ⁹ R ¹⁰	mp	: NMR(CDCl3 or DMSO-d6)
	α-4-1	α-4	nBuNHCH2-	S	OCH2COOtBu		0.93(3h,t,J=7.5Hz),1.33- 1.60(13H,m),2.24(3H,s), 2.69 (2H,t,J=6.9Hz), 3.73(2H,s),4.12(2H,s),4.50(2H,s), 6.59 (1H,d,J=8.4Hz),7.15(1H,dd,J=8.4,2.1Hz), 7.21(1H, d, J=2.1Hz),7.74(2H,d,J=8.1Hz), 8.04 (2H,d, J=8.1Hz)
	α-4-2	α-4 ·	○ N ^	s	OCH2COOEt		1.29(3H,t,J=7.2Hz),2.25(3H,s),2.44(4H,m),3. 54(2H,s),3.68(4H,m), 4.19(2H,q,J=7.2Hz),4.19(2H,s),4.25(2H, q, J=7.2 Hz),4.61(2H,s),6.61 (1H,d,J=8.4Hz), 7.18(1H, dd, J=8.4,2.1Hz),7.22(1H,m), 7.75(2H,d, J=8.4Hz), 7.96(2H,d,J=8.4Hz)
	α−5−1	α-5	-CH2OMe	s	осн2соон	105-107	2.24(3H,s), 3.43(3H,s),4.12(2H,s), 4.46(2H,s),4.66 (2H,s), 6.65(1H,d, J=8.5Hz),7.18-7.24(2H,m),7.76(2H, d,J=8.7Hz),7.88(2H,d,J=8.7Hz)
	α-6-3-1	α-6	Ме	CH2CO	OCH2COOMe	133-134	2.26(3H,s),2.33(3H,s),3.08(2H,t,J=7.5Hz),3.5 0(2H,t,J=7.5Hz),6.72(1H,d,J=9.0Hz)),7.72– 7.87(6H,m).
	α-6-4-1	α−6	Me	CH2CO	осн2соон	191-194	2.27(3H,s),2.34(3H,s),3.08(2H,t,J=7.2Hz),3.5 0(2H,t,J=7.2Hz),4.72(2H,s),6.77(1H,d,J=9.0 Hz),7.73-7.88(6H,m).
İ	α-7-2-1	α-7	Me	S	CH2C(=NH)NHOH		MS m/e 452 (MH+)
	α-7-2-2	α-7	Ме	0	CH2C(=NH)NHOH	152-154	2.32(6H,s),3.42(2H,s),5.17(2H,s),6.8- 6.90(2H,m),7.14(1H,d,J=7.8Hz),7.75(2H,d,J= 8.1Hz),7.84(2H,d,J=8.1Hz) MS m/e 420 (MH+)
	α-7-3-1	α-7	Ме	s	The o	203- 204.5	2.29(3H,s),2.31 (3H,s), 3.83(2H,s),4.06(2H,s),7.11-7.22(3H,m), 7.76(2H,d,J=8.6Hz),7.82 (2H, d,J=8.6 Hz)
	α-7-3-2	α-7	Me	0	N-O		2.33(6H,s),3.80(2H,s),5.18(2H,s),6.86(2H,m), 7.15(1H,d,J=8.1Hz),7.77(2H,d,J=8.7Hz),7.87 (2H,d,J=8.7Hz)
	α-7-3-3	α-7	Me	s	N-O	156.5- 158.5	2.18(3H,s),2.28(3H,s),4.01(2H,s),4.97(2H,s), 6.75(1H,d,J=8.4Hz),7.19- 7.21(2H,m),7.74(2H,d,J=8.4Hz),7.80(2H,d,J= 8.4Hz),9.93(1H,br)
	α - 7-3-4	α-7	Ме	0	N-O	163-165	2.24(3H,s),2.32(3H,s),4.96(2H,s),5.14(2H,s), 6.80- 6.88(3H,m),7.75(2H,d,J=8.6Hz),7.84(2H,d,J= 8.6Hz)
	α-7-4-1	α-7	Ме	0		166.5- 168.5	2.32(3H,s), 2.34(3H,s), 3.68(2H,s),4.18(2H,s),5.19(2H,s),6.87- 6.90(2H, m),7.12(1H,d, J=8.1Hz), 7.24 (1H,br),7.75(2H,d,J=8.4Hz), 7.85(2H, d, J=8.4Hz)

[0234] [表79]

No	合成法	R1	R2	X1	R3,R4	mp	NMR(CDCl3 or DMSO-d6)
β-1-3	β-1	F ₃ C	Ме	S	H,H	129-131	2.24(3H,s),2.25(3H,s),4.04(2H,s),4.67(2H,s),6.65(1H,d,J=8.1Hz),7.18-7.23(2H,m),7.74(2H,d,J=8.1Hz),7.82(2H,d,J=8.1Hz)
β-1-4	β-1	F ₃ C	Me	0	Н,Н	136-138	2.28(3H,s),2.31(3H,s)4.62(2H,s),5.13(2H,s),6.71(1H,d,J=9.0),6.80(1H,dd,J=9.0,2.7 Hz),6.87(1H,d,J=2.7Hz),7.75(2H,d,J=8.1Hz),7.84(2H,d,J=8.1Hz)
β-1-6	β-1		Ме	S	H,H	134-136	1.88(3H,s)2.15(3H,s),3.24- 3.27(4H,m),3.67(4H,t,J=4.8Hz),3.94(2H,s) ,4.69(2H,s),6.77(1H,d,J=8.4Hz)7.15- 7.21(2H,m),13.00(1H,brs)
β-1-7	β-1		Ме	О	н,н	126-127	1.94(3H,s)2.17(3H,s),3.28- 3.32(4H,m),3.67- 3.70(4H,m),4.61(2H,s),4.90(2H,s),6.72- 6.86(3H,m)12.89(1H,brs)
β-1-8	β-1	O	Ме	S	H,H	157-159	2.21(3H,s),2.24(3H,s),4.02(2H,s),4.66(2H, s),6.65(1H,d,J=8.4Hz),7.20(1H,dd,J=8.4,2 .4Hz),7.22(1H,m),746(2H,d,J=9.0Hz),7.63 (2H,d,J=9.0Hz)
β -1-9	β-1	C		S	H,H	131-132	2.22(3H,s),3.93(3H,s),4.66(2H,s)6.62(1H, d,J=9.0Hz),7.14-7.16(2H,m),7.27- 7.33(5H,m),7.42-7.45(4H,m)
β-1- 10	β-1	C	F ₃ C	S	H,H	131-133	2.22(3H,s),3.93(3H,s),4.67(2H,s)6.62(1H, d,J=8.1Hz),7.10-7.14(2H,m),7.30- 7.47(6H,m),7.70(2H,d,J=8.1Hz)
β-1- 11	β−1	F ₃ C	Ме	О	Ме,Ме	115-116	1.76(6H,s),2.20(3H,s),2.37(3H,s),3.78(3H, s),4.56(2H,s),6.49-6.50(2H,m), 6.67(1H,m),7.75(2H,dJ=8.1Hz),7.84(2H,d, J=8.1Hz)

[0235] [表80]

No	合成法	R1	R2	X1	R3,R4	mp	NMR(CDCl3 or DMSO-d6)
β-1-12	β-1	F ₃ C	Ме	S	H,Et	115–117	1.07(3H,t,J=7.5Hz),1.98-2.16(2H,m), 2.20(3H,s),2.29(3H,s),4.04(1H,t,J=7.5Hz),4.65(2H,s),6.61(1H,d,J=8.1Hz),7.10-7.14(2H,m), 7.74(2H,dJ=8.4Hz),7.81(2H,d,J=8.4Hz)
β-1-13	β−1	F ₃ C	Ме	S	H, 4-F-C6H4	110-112	2.29(3H,s),2.20(3H,s),4.67(2H,s),5.29(1H,s),6.59(1H,d,J=8.4Hz), 6.96–7.15(4H,m),7.32–7.37(2H,m),7.73(2H,dJ=8.4Hz),7.79(2H,d,J=8.4Hz)
β-1-14	β-1	F ₃ C	но	s	н,н	138-139	2.23(3H,s),4.11(2H,s),4.66(2H,d,J=3.6),3. 34(1H,br.s),6.64(1H,d,J=8.4Hz),7.16- 7.29(2H,m),7.77(2H,d,J=8.4Hz),7.95(2H,d,J=8.4Hz)
β−1−15	β-1	F ₃ C	MeO	s	н,н	105–107	2.24(3H,s),3.43(3H,s),4.12(2H,s),4.46(2H,s),4.66(2H,s),6.65(1H,d,J=8.5Hz),7.18-7.24(2H,m),7.76(2H,d,J=8.7Hz),7.88(2H,d,J=8.7Hz)
β-1-16	β-1	F ₃ C		s	н,н	oil 183–186 (as HCIsalt)	2.23(3H,s),2.49(4H,m),3.62(2H,s),3.69(4 H,m),4.18(2H,s),4.64(2H,s),6.65(1H,d,J= 9.0Hz),7.18- 7.21(2H,m),7.74(2H,d,J=7.8Hz),790(2H,d ,J=7.8Hz)
β-1-17	β-1	F ₃ C		s	н,н	138-139	2.23(3H,s),3.83(2H,s),4.12(2H,s),4.66(2H,s),6.64(1H,d,J=9.0Hz),7.11-7.16(2H,m),7.24-7.31(m,5H),7.08(2H,d,J=8.4Hz),7.76(2H,d,J=8.4Hz)
β−1−18	β-1	F ₃ C	O's.	s	н,н	123-124	2.23(3H,s),3.97(2H,s),4.67(2H,s),6.63(1H,d,J=8.1Hz),7.08-7.26(7H,m),7.70(2H,d,J=8.4Hz),8.22(2H,d,J=8.4Hz)
β-1-19	β1	Me	I	s	н,н	126-127	2.24(3H,s),2.44(3H,s),3.92(2H,s),4.66(2H,s),6.64(1H,d,J=8.1Hz),7.18(2H,dd,J=8.1,1.8Hz),7.22(2H,d,J=1.8Hz)
β-1-20	β-1	Me	F ₃ C	s	н,н	oil	2.21(3H,s),2.40(3H,s),3.98(2H,s),4.66(2H,s),6.60(1H,d,J=8.1Hz),7.08- 7.12(2H,m),7.42(2H,d,J=8.1Hz),7.68(2H,d,J=8.1Hz)
β-1-21	β-1	Me	F ₃ C	0	н,н	153–154	2.25(3H,s),2.49(3H,s),4.62(2H,s),5.02(2H,s),6.65- 6.73(3H,m),7.50(2H,d,J=8.4Hz),7.68(2H,d,J=8.4Hz)
β-1-22	β-1	F ₃ C	F ₃ C	s	н,н	136.5–137.5	2.22(3H,s),3.95(2H,s),4.67(2H,S),6.62(1 H,d,J=8.1Hz),7.11- 7.14(2H,m),7.47(2H,d,J=8.4Hz),7.60(4H, s),7.72(2H,d,J=8.4Hz)
β-1-23	β-1	F ₃ C	F ₃ C	s	н,н	128-129.5	2.22(3H,s),3.95(2H,s),4.67(2H,s),6.62(1H ,d,J=9.0Hz),7.13-7.15(2H,m),7.50- 7.74(8H,m)

[0236] [表81]

No	合成法	R1	R2	X1	R3,R4	mp	NMR(CDCl3 or DMSO-d6)
β-1-24	β-1	F ₃ C	F ₉ CO	s	н,н	135-136	2.23(3H,s),3.84(2H,s),4.12(2H,s),4.67(2H,s),6.64(1H,d,J=9.0Hz),7.11-7.14(6H,m),7.71-7.72(4H,m)
β-1-25	β-1	F ₃ C	<u> </u>	s	н,н	196-197.5	2.19(3H,s),4.13(2H,s),4.55(2H,s),6.63(1H,d,J=8.4Hz),7.28(2H,m), 7.41-7.43(3H,s),7.53(2H,s),7.79(2H,d,J=8.4Hz),8.31(2H,d,J=8.4Hz)
β-1-26	β-1	F ₃ C	Ph—	s	н,н	137–138	2.22(3H,s),3.87(2H,s),4.16(2H,s),4.65(2H,s),6.63(1H,d,J=9.0Hz),7.14-7.21(4H,m),7.34-7.56(7H,m),7.70(2H,d,J=8.1Hz),7.78(2H,d,J=8.1Hz)
β-1-27	β-1	F ₃ C	BuNHCH2-	s	н,н	177-178	0.84(3h,t,J=7.2Hz),1.22- 1.45(4H,m),2.14(3H,s), 2.56 (2H,t,J=7.2Hz), 3.72(2H,s),4.27(2H,s),4.63(2H,s), 6.76(1H,d,J=8.4Hz),7.15-7.23(2H,m), 7.91(2H,d,J=8.4Hz), 8.08(2H,d,J=8.4Hz)
β-1 - 28	β-1	F ₃ C		s	н,н	150-152	2.24(3H,s),2.93- 2.30(4H,m),3.79(2H,s),4.67(2H,s),6.65(1 H,d,J=8.1Hz),7.09- 7.29(7H,m),7.70(4H,s)
β-1-29	β-1	F ₃ C	F ₈ C	S	H,H	141.5–142.5	2.23(3H,s),3.84(2H,s),4.12(2H,s),4,67(2H,s),6.64(1H,d,J=9.0Hz),7.11-7.13(2H,m),7.24(2H,d,J=8.7Hz),7.56(2H,d,J=8.7Hz),7.71(4H,s)
β-1-30	β-1	F ₃ C	F ₃ CO	s	Н,Н	130-132	2.23(3H,s),3.85(2H,s),4.13(2H,s),4.67(2H,s),6.64(1H,d,J=9.6Hz),6.99-7.15(5H,m),7.30-7.35(1H,m),7.71(4H,s)
β-1-31	β-1	F ₃ C	F ₃ C	S	н,н	127-128.5	2.23(3H,s),3.84(2H,s),3.84(2H,s),4.67(2H,s),6.63(1H,d.J=8.4Hz),7.11-7.14(2H,m),7.27-7.53(4H,m),7.71(4H,s)

[0237] [表82]

No	合成法	R1	R2	X1	R6	X ² X ³ R ¹⁰	mp	NMR(CDCl3 or DMSO-d6)
β-1-32	β-1	F _a C	Ме	s	н	Ме	121-122	1.65(3H,d,J=6.9Hz),2.24(3H,s),4.0 3(2H,s),4.77(1H,q,J=6.9Hz),6.82(2 H,d,J=9.0Hz),7.34(2H,d,J=9.0Hz),7 .74(2H,d,J=8.4Hz),7.81(2H,d,J=8.4 Hz)
β-1-33	β-1	FaC	Me	S	Н	Et O COOH	116-118	1.09(3H,t,J=7.5Hz),1.99- 2.04(2H,m),2.24(3H,s),4.03(2H,s),4.56- 4.60(1H,m),6.82(2H,d,J=8.7Hz),7.3 3(2H,d,J=8.7Hz),7.73(2H,d,J=8.5H z),7.81(2H,d,J=8.5Hz)
β-1-34	β-1	FaC	Me	s	н	пРг	75.5- 77.5	0.97(3H,t,J=7.2Hz),1.50- 1.60(2H,m),1.91- 2.00(2H,m),2.24(3H,s),4.03(2H,s),4 .61- 4.65(1H,m),6.82(2H,d,J=8.7Hz),7.3 5(2H,d,J=8.7Hz),7.73(2H,d,J=8.7H z),7.81(2H,d,8.7Hz)
β-1-35	β-1	F ₃ C	Ме	s	nPr	_OCOOH	85-87	0.89(3H,t,J=7.2Hz),1.51- 1.63(2H,m),2.24(3H,s),2.58(2H,t,J =7.2Hz),4.03(2H,s),4.66(2H,m),6.7 0(1H,d,J=8.4Hz),7.17- 7.24(2H,m),7.74(2H,d,J=8.6Hz),7.8 1(2H,d,J=8.6Hz)
β-1-36	β-1	CI	Br	s	н	_OCOOH		2.24(3H,s),4.03(2H,s),4.66(2H,s),6. 65(1H,d,J=8.4Hz),7.21-7.26 (2H,m), 7.47 (2H,d,J=8.7Hz), 7.97(2H,d,J=8.7Hz)

[0238] [表83]

				H'								I(a
No	合成法	R1	R2	X1	R3,R4	R5	R6	R7	R8	R17	Мр	NMR(CDCl3 or DMSO-d6)
α-8-1	α−8		Me	0	H,H	Н	Н	Н	Н	DPM		2.32(3H,s), 5.23(2H,s), 6.45(1H,d,J=15.9
												Hz), 7.01(1H,s), 7.05(2H,d,J=9.0Hz),
		F ₃ C° ✓										7.20-7.40(10H,m), 7.51(2H,d,J=8.7Hz),
												7.71(1H,d,J=15.9Hz), 7.75(2H,d,J=8.7Hz), 7.84(2H,d,J=8.7Hz)
α-8-2	α-8		Me	0	H.H	OMe	н	н	Н	DPM		2.34(3H,S),3.01(3H,s),5.20(2H,s), 6.45
4-6-2	u-b		INE	U	11,11	OME	п	''	- 11	DEM		(1H,d,J=15.9Hz), 7.00–7.41(13H,m),
		F ₂ C										7.02(1H.s), 7.69(1H.d.J=15.9Hz),
0		. 3-										7.74(2H,d,J=8.7Hz), 7.83(2H,d,J=8.7Hz)
												7.7.4(21,10,0 0.7.12), 7.00(21,10,0 0.7.12)
α-8-3	α-8		CO2Me	0	н,н	Н	Н	н	Н	DPM		3.81(3H,s),5.41(2H,s),6.46(1H,d,J=16.2Hz
*		F ₃ C),7.02-7.42(14H,m),7.52(1H,d,J=8.7Hz),
		. 30										7.72(1H,d,J=16.2Hz),7.78(2H,d,J=8.4Hz),
—		. <u>.</u> .										8.09(2H,d,J=8.4Hz)
α-8-4	α−8		OCH2CF3	0	H,H	Н	н	Н	Н	Me		4.44(2H,q,J=7.8Hz), 5.27(2H,s), 6.47(1H,
												d,J=16.2Hz), 7.01(1H,s)7.04(2H,d,J=8.7
		F ₃ C										Hz), 7.24-7.44(10H,m),7.53(2H,d,J=9Hz),
												7.71(1H,d,J=15.9Hz),
0.5			011000110									7.77(2H,d,J=8.4Hz),8.03(2H,d,J=8.4Hz)
α-8-5	α−8		СН2ОСН3	0	H,H	н	н	Н	Н	DPM		3.42(3H,s),4.50(2H,s),5.29(2H,s),6.46(1H,
												d,J=16.2Hz),7.01-7.06(2H,m),7.26-7.41
		F3C										(12H,m),7.52(1H,d,J=8.7Hz),7.71(1H,d,J= 16.2Hz),7.78(2H,d,J=8.4Hz),7.93(2H,d,J=
												18.4Hz),
α-8-6	α-8		Н	0	H,	Н	Н	Н	Н	DPM		6.40(1H,d,J=15.9Hz),6.51(1H,s),6.62(1H,s
" " "	u 0		''	Ü	4-F-	''	• • •	١	• •	D1 141),7,00-7,13(5H,m),7,28-7,39(10H,m),
1		F ₃ C			C6H4							7.45-7.56(4H,m),7.67(1H,d,J=15.9Hz),
					00							7.70(2H,d,J=8.7Hz),7.85(2H,d,J=8.7Hz)
α-8-7	α-8		CO2Me	ō	н.н	н	Me	н	Н	tBu		1.54(9H,S),2,43(3H,S),3,81(3H,S),5,38(2H
					,							,s),6.22(1H,d,J=15.9Hz),6.83-6.91(2H,m),
		F ₃ C										7.54(1H,d,J=9.3Hz),7,78(2H,d,J=8.1Hz),7.
												83(1H,d,J=15.9Hz),8.09(2H,d,J=8.1Hz)
α-8-8	α-8		СН2ОСН3	0	Н,Н	Н	Ме	Н	Н	Me		2.44(3H,S),3.42(3H,S),3.80(3H,S),4.50(2H
												,s),5.27(2H,s),6.28(1H,d,J=15.9Hz),6.85-
		F ₃ C										6.93(2H,m),7.53(1H,d,J=8.4Hz),7.74(2H,d,
										l		J=8.7Hz),7.92(2H,d,J=15.9Hz),
								L				7.93(1H,d,J=8.7Hz)
α-8-9	or−8		Н	0	H,	Н	Ме	Н	Н	Me		2.40(3H,S),3.79(3H,S),6.25(1H,d,J=15.6H
		الرالي ا			4-F-							z),6.50(1H,S),6.62(1H,S),6.83-6.90(2H,
		F3C -			C6H4							m),7.06-7.15(2H,m),7.46-7.56(3H,m),
								<u> </u>				7.70(2H,d,J=8.4Hz),7.83~7.92(3H,m)
α-8-10	α−8		Me	0	н,н	Н	Ме	Н	Н	Ме		2.32(3H,S),2.44(3H,S),3.80(3H,S),5.21(2H
		F ₃ C										,s),6.28(1H,d,J=15.9Hz),6.84-6.92(2H,m),
		1 30										7,54(1H,d,J=8.4Hz),7.75(2H,d,J=8.4Hz),7.
		<u></u>										84(2H,d,J=8.4Hz),7.91(1H,d,J=15.9Hz)

[0239] [表84]

No	合成法	R1	R2	X1	R3,R4	R5	R6	R7	R8	R17	Мр	NMR(CDCl3 or DMSO-d6)
α-8-11	α−8	F ₃ C	CH2OEt	0	Н,Н	ОМе	н	Н	H	Ме		1.26(3H,t,J=6.9Hz),3.58(2H,q,J=6.9Hz),3. 90(3H,s),4.60(2H,s),5.35(2H,s),6.45(1H,d, J=15.9Hz),7.02(1H,s),7.06-7.13(3H,m), 7.27-7.42(10H,m),7.69(1H,d,J=15.9Hz), 7.77(2H,d,J=8.4Hz),7.94(1H,d,J=8.1Hz)
α-8-12	α-8	F ₃ C	CH2OEt	0	H,H	H	Ме	H	H	Ме		1.23(3H,t,J=6.9Hz),2.44(3H,s),3.58(2H,q, J=6.9Hz),3.80(3H,s),4.54(2H,s),5.27(2H,s),6.28(1H,d,J=15.9Hz),6.87-6.91(2H,m), 7.54(1H,d,J=8.1Hz),7.77(2H,d,J=8.4Hz),7.92(1H,d,J=15.9Hz),7.93(2H,d,J=8.41Hz)
α-9-1	α−9	F ₃ C	CH2OCH3	S	H,H	н	Ŧ	H,	H	Ме		3.44(3H,s),3.80(3H,s),4.29(2H,s),4.51(2H, s),6.40(1H,d,J=15.9Hz),7.40-7.47(4H,m), 7.63(1H,d,J=15.9Hz),7.76(2H,dJ=8.4Hz), 7.85(2H,d,J=8.4Hz)
α-9-2	α-9	F ₃ C	Ме	S	H,H	OCF 3	H	Н	Н	Ме		2.31(3H,s),3.81(3H,s),4.11(2H,s),6.41(1H, d,J=15.9Hz),7.34-7.60(4H,m),7.74(2H,d, J=8.4Hz),7.81(2H,d,J=8.4Hz)
α-9-3	α−9	F ₃ C	Н	S	H, 4-F- C6H4	Н	Ме	Н	Н	Ме		2.35(3H,S),3.80(3H,S),5.68(1H,S),6.31(1H,d,J=15.9Hz),6.70(1H,S),7.01-7.10(2H,m),7.12-7.18(2H,m),7.39-7.48(3H,m),7.71 (2H,d,J=8.4Hz),7.86(2H,d,J=8.4Hz)7.86(1H,d,J=15.9Hz)
α-9-4	α-9	F ₃ C	Ме	S	н,н	Н	Me	H	Ħ	Ме		2.29(3H,S),2.41(3H,S),3.81(3H,S),4.19(2H,s),6.33(1H,d,J=15.9Hz),7.22-7.28(2H,m),7.49(1H,d,J=9.0Hz),7.74(1H,d,J=8.4Hz),7.82(2H,d,J=8.4Hz),7.90(2H,d,J=15.9Hz)
α-9-5	α-9	F ₃ C	CH2OMe	S	н,н	Ħ	Me	I	#	Ме		2.41(3H,S),3.44(3H,S),3.81(3H,S),4.28(2H,S),4.50(2H,S),6.33(1H,d,J=15.9Hz),7.24-7.26(2H,m),7.49(1H,d,J=9.0Hz),7.76(2H,d,J=9.0Hz),7.86(2H,d,J=9.0Hz),7.90(1H,d,J=15.9Hz)
α-9-6	α-9	F ₃ C	Н	S	H, 4-F- C6H4	Н	Ξ	I	Н	Ме		3.79(3H,s),6.38(2H,d,J=16.2Hz),6.69(1H,s),7.02-7.08(2H,m),7.31-7.40(6H,m),7.60 (1H,d,J=16.2Hz),7.71(2H,d,J=8.4Hz),7.86 (2H,d,J=8.4Hz)
α-9-7	α-9	F ₃ C	Ме	S	н,н	F	Н	Н	Н	Ме		2.31(3H,s),3.81(3H,s),4.19(2H,s),6.41(1H,d,J=15.9Hz),7.22-7.27(2H,m),7.45-7.50(1H,m),7.59(1H,d,J=15.9Hz),7.75(2H,d,J=8.4Hz),7.82(2H,d,J=8.4Hz)
α-9-8	α-9	F ₃ C	Ме	s	Н,Н	OMe	H	H	Н	Ме		2.28(3H,s),3.73(3H,s),3.87(3H,s),4.35(2H, s),6.71(1H,d,J=15.9Hz),7.29-7.47(3H,m), 7.63(1H,d,J=15.9Hz),7.88-7.97(4H,m)
α-9-9	α−9	F ₃ C	CF3	S	н,н	Н	Me	Н	Н	Me		2.41(3H,S),3.80(3H,s),4.27(2H,s),6.34(1H,d,J=15.9Hz),7.25-7.28(2H,m),7.48-7.51(1H,d,J=8.7Hz),7.78(2H,d,J=8.4Hz),7.85(2H,d,J=8.4Hz),7.90(1H,d,J=15.9Hz)
α-9-10	α-9	F ₃ C	CH2OEt	S	Н,Н	Н	Me	Н	Н	Me		1.27(3H,t,J=6.9Hz),2.41(3H,S),3.60(2H,q, J=6.9Hz),3.80(3H,s),4.28(2H,s),4.55(2H,s),6.33(1H,d,J=15.6Hz),7.23-7.26(2H,m), 7.47-7.50(1H,m),7.75(2H,d,J=8.4Hz), 7.86(2H,d,J=8.4Hz),7.90(1H,d,J=15.6Hz)

[0240] [表85]

No	合成法	R1	R2	X1	R3,R4	R5	R6	R7	R8	R17	Мр	NMR(CDCI3 or DMSO-d6)
α-9-11	α-9	F ₃ C	Ме	S	н,н	Н	OMe	Н	Н	Ме		2.30(3H,S),3.79(3H,s),3.89(3H,s),4.21(2H, s),6.49(1H,d,J=16.2Hz),6.95-6.99(2H,m) ,7.41(1H,d,J=8.4Hz),7.74(2H,d,J=8.7Hz),7 ,82(2H,d,J=8.7Hz),7.90(1H,d,J=16.2Hz)
α-9-12	α−9	F ₃ C	Ме	S	Н,Н	OEt	H	Н	H	Ме		1.50(3H,t,J=7.2Hz),2.31(3H,s),3.81(3H,s), 4.15(3H,q,J=7.2Hz),4.19(2H,s),6.39(1H,d, J=15.9Hz),6.97(1H,d,J=1.2Hz),7.08(1H,d d,J=1.2Hz,9.0Hz),7.42(1H,d,J=9.0Hz),7.6 2(1H,d,J=15.9Hz),7.73(2H,d,J=8.4Hz),7.8 1(2H,d,J=8.4Hz)
α-9-13	α−9	F ₃ C	Ме	S	H,H	ОМе	Н	Вŗ	Н	Ме		2.35(3H,s),3.81(3H,s),3.92(3H,s),4.11(2H, s),6.41(1H,d,J=15.9Hz),6.93(1H,d,J=1.5H z),7.36(1H,d,J=1.5Hz),7.54(1H,d,J=15.9H z),7.73(2H,d,J=8.4Hz),7.79(2H,d,J=8.4Hz)
α-9-14	α-9	F ₃ C	Ме	S	Н,Н	Н	OMe	Н	ОМе	Ме		2.31(3H,S),3.78(3H,s),3.88(6H,s),4.23(2H, s), 6.62(2H,s),6.82(1H,d,J=16.2Hz), 7.74(2H,d,J=8.4Hz), 7.81(2H,d,J=8.4Hz),8.04(1H,d,J=16.2Hz),
α-9-15	α-9	F ₃ C	Ме	S	Н,Н	OEt	Н	Br	H	Ме		1.52(3H,t,J=7.2Hz),2.35(3H,s),3.09(3H,s), 4.15(2H,s),4.14(2H,q,J=7.2Hz),6.39(1H,d, J=16.2Hz),6.92(1H,d,J=1.8Hz),7.33(1H,d, J=1.8Hz),7.52(1H,d,J=15.9Hz),7.73(2H,d, J=8.4Hz),7.79(2H,d,J=8.4Hz)
α-9-16	α−9	F ₃ C	Ме	S	Н,Н	Br	Н	Br	H	Ме		2.34(3H,S),3.81(3H,s),4.16(2H,s),6.42(1H, d,J=15.9Hz),7.48(1H,d,J=15.9Hz),7.72- 7.76(4H,m),7.80(2H,d,J=8.7Hz)
α-9-17	α−9	CI	Ħ	S	Н,Н	H	Ме	Н	π	Ме		2.39(3H,s),3.80(3H,S),4.19(2H,s),6.32(1H,d,J=15.9Hz),6.52(1H,s),7.17-7.20(2H,m),7.40-7.45(3H,m),7.67(2H,d,J=8.4Hz),7.89(1H,d,J=15.9Hz)
α-9-18	α−9		ı,	S	H,H	ОМе	Н	H	н	Ме		3.80(3H,s),3.93(3H,S),4.18(2H,s),6.39(1H,d,J=15.9Hz),6.54(1H,s),7.07(1H,dd,J=7.8,1.5Hz),7.32(1H,d,J=8.1Hz),7.40-7.43(2H,m),7.62(1H,d,J=15.9Hz),7.64-7.67(2H,m)
α-9-19	α−9	F ₃ C	Н	S	H,H	Н	Me	Н	Н	Ме		2.40(3H,s),3.80(3H,s),4.21(2H,s),6.32(1H,d,J=15.9Hz),6.63(1H,s),7.18-7.20(2H,m),7.47(1H,d,J=8.7Hz),7.71(2H,d,J=8.4Hz),7.87(2H,d,J=8.4Hz),7.89(1H,d,J=15.9Hz)
α-9-20	α−9	F ₃ C	H	S	н,н	ОМе	Н	Н	Н	Ме		3.80(3H,s),3.93(3H,s),4.20(2H,s),6.39(1H,d,J=15.9Hz),6.64(1H,s),6.97(1H,d,J=1.5Hz),7.07(1H,dd,J=1.5Hz,8.1Hz),7.32(1H,d,J=8.1Hz),7.62(1H,d,J=1.59Hz),7.30(2H,d,J=8.1Hz),7.84(2H,d,J=8.1Hz)
α-9-21	α-9	F ₃ C	CH2OEt	S	Н,Н	ОМе	Н	Н	Н	Ме		1.27(3H,t,J=7.2Hz),3.61(2H,q,J=7.2Hz),3.81(3H,s),3.93(3H,s),4.27(2H,s),4.57(2H,s) 6.40(1H,d,J=15.9Hz),6.98(1H,d,J=1.5Hz), 7.09(1H,dd,J=7.8,1.5Hz),7.43(1H,d,J=7.8 Hz),7.63(1H,d,J=15.9Hz),7.75(2H,d,J=8.1 Hz),7.86(1H,d,J=8.1Hz)
α-9-22	α-9	F ₃ C	Ме	S	H,H	ОМе	Н	Н	Ме	Me		2.30(3H,s),2.36(3H,s),3.82(3H,s),3.90(3H, s),4.17(2H,s),6.34(1H,d,J=15.9Hz),7.00(1 H,s),7.25(1H,s),7.72-7.93(5H,m)

[0241] [表86]

No	合成法	R1	R2	X1	R3,R4	R5	R6	R7	R8	R17	Мр	NMR(CDCi3 or DMSO-d6)
α-9-23	α-9	F ₃ C	CH2OMe	S	Н,Н	ОМе	н	H	Ħ	Ме		3.44(3H,s),3.81(3H,s),3.93(3H,s),4.26(2H,s),4.52(2H,s),6.41(1H,d,J=16.4Hz),6.98(1H,d,J=1.8Hz),7.09(1H,dd,J=1.8Hz,8.1Hz),7.43(1H,d,J=8.1Hz),7.63(1H,d,J=15.9Hz),7.75(2H,d,J=8.7Hz),7.86(2H,d,J=8.7Hz)
α-9-24	α−9	F ₃ C	Ме	S	H,H	CI	Н	H	Н	Me		2.32(3H,s),3.81(3H,s),4.23(2H,s),6.40(1H,d,J=16.8Hz),7.37-7.41(1H,m),7.52-7.60(3H,m),7.74(2H,d,J=8.4Hz),7.81(2H,d,J=8.4Hz)
α-10-2 -2	α−10	F ₃ C	Ме	S	Н,Н	Н	Н	н	H	Ме		2.29(3H,s),3.80(3H,s),4.19(2H,s),6.40(1H, d,J=15.9Hz),7.40-7.84(9H,m)
α-10-2 -1	α-10	F ₃ C	Ме	0	H,H	F	Н	Н	Ħ	Me		2.35(3H,s),3.00(3H,s),5.31(2H,s), 6.31 (1H,d,J=15.9Hz),7.10-7.34(3H,m),7.59 (1H,d,j=15.9Hz),7.76(2H,d,J=8.1Hz),7.84(2H,d,J=8.1Hz)
α-10-2 -3	α-10	F ₃ C	Ме	0	н,н	F	Н	F	н	Me		2.41(3H,s),3.81(3H,s),5.32(2H,s),6.34(1H,d,J=15.9Hz),7.083(2H,d,J=8.7Hz),7.52(1H,d,J=15.9Hz),7.76(2H,d,J=8.4Hz),7.86(2H,d,J=8.4Hz)
α-10-2 -4	α−10	F ₃ C	Me	S	н,н	CF3	н	Н	Н	Me		2.31(3H,s),3.816(3H,s),4.247(2H,s),6.4 63(1H,d,J=15.9Hz),7.60-7.80(8H,m)
α-10-2 -5	α-10	F ₃ C	Me	S	Н,Н	H	CF3	Н	Ι	Me		2.31(3H,s),3.82(3H,s),4.22(2H,s),6.39(1H,d,J=15.9Hz),7.56-8.06(4H,m),7.74(2H,d,J=8.7Hz),7.82(2H,d,J=8.7Hz)
α-X-1		F ₃ C	CF3	S	н,н	OMe	Н	Н	H	Me		3.81(3H,s),3.93(3H,s),4.25(2H,s),6.41(1H,d,J=15.9Hz)),6.91(1H,d,J=1.5Hz),7.07(1H,dd,J=7.8Hz),7.41(1H,d,J=7.8Hz),7.63(1H,d,J=15.9Hz),7.77(2H,dJ=8.1Hz),7.83(2H,d,J=8.1Hz)
α-X-2		F ₃ C	CH2OCH2 CF3	Ø	н,н	ОМе	Н	Н	I	Me		3.81(3H,s),3.92(3H,s),3.96(2H,q,J=8.4Hz), 4.25(2H,s),4.77(2H,s),6.40(1H,d,J=15.6Hz)),6.98(1H,d,J=1.8Hz),7.08(1H,dd,J=7.8H z,1.8Hz),7.40(1H,d,J=7.8Hz),7.62(1H,d,J= 15.6Hz),7.76(2H,dJ=8.4Hz),7.85(2H,d,J= 8.4Hz)
α-X-3		F ₃ C	CH2O(CH 2)2OMe	Ø	Н	ОМе	Н	Н	Ħ	Me		3.39(3H,s),3.57-3.60(2H,m),3.69-3.72 (2H,m),3.81(3H,s),3.92(3H,s),4.28(2H,s),4. 66(2H,s),6.40(1H,d,J=15.9Hz)),6.97(1H,d, J=1.8Hz),7.09(1H,dd,J=8.1Hz,1.8Hz),7.43 (1H,d,J=8.1Hz),7.63(1H,d,J=15.9Hz),7.74 (2H,dJ=8.4Hz),7.89(2H,d,J=8.4Hz)
α-X-4		F ₃ C	CH2OnPr	S	н,н	OMe	Н	Н	Н	Ме		0.95(3H,t,J=7.5Hz),1.59-1.71(2H,m), 3.50(2H,d,J=6.6Hz),3.81(3H,s),3.92(3H,s), 4.26(2H,s),4.56(2H,s),6.40(1H,d,J=15.9Hz),6.97(1H,d,J=1.8Hz),7.08(1H,dd,J=7.8Hz, 1.8Hz),7.42(1H,d,J=7.8Hz),7.63(1H,d,J=1.5.9Hz),7.74(2H,d,J=8.1Hz),7.87(2H,d,J=8.1Hz)
α-X-5	*	F ₃ C	CH2OnPr	S	Н,Н	Н	ОМе	Н	ОМе	Ме		0.97(3H,t,J=7.5Hz),160-1.72(2H,m), 3.51(2H,d,J=6.6Hz),3.78(3H,s),3.87(6H,s), 4.32(2H,s),4.57(2H,s),6.63(2H,s),6.81(1H, d,J=16.5Hz),7.75(2H,dJ=8.4Hz),7.86(2H,

[0242] [表87]

No	合成法	R1	R2	X1	R3,R4	R5	R6	R7	R8	R17	Мр	NMR(CDCl3 or DMSO-d6)
								 			<u> </u>	d,J=8.4Hz),8.04(1H,d,J=16.5Hz)
α-X-6		~	Et	s	Н,Н	Н	OMe	Н	OMe	Ме		1.29(3H,t,J=7.5Hz),2.76(2H,q,J=7.5Hz),3.
		ا ل						l				78(3H,s),3.88(6H,s),4.24(2H,s),6.63(2H,s),
1		F3C										6.82(1H,d,J=16.2Hz),7.44(2H,dJ=8.4Hz),
								_				7.81(2H,d,J=8.4Hz),8.04(1H,d,J=16.2Hz)
α-X-7			CO2H	S	н,н	Н	OMe	н	ОМе	Me		3.62(2H,q,J=10.2),,3.78(3H,s),388(6H,s),4
		F ₃ C						ŀ			İ	.33(2H,s),6.58(2H,s),6.81(1H,d,J=16.5Hz),
											l	7.79(4H,brs),8.03(1H,d,J=16.5Hz)
α-X-8			CH2OCH2	s	H,H	Н	OMe	Н	OMe	Ме	ļ	0.22-0.27(2H,m),0.56-0.63(2H,m),1.06-
			cPr									1.19(1H,m),3.40(2H,d,J=7.2Hz),3.78(3H,s
		F ₃ C						٠),3.87(6H,s),4.33(2H,s),4.59(2H,s),6.63(2
		F3C										H,s),6.81(1H,d,J=16.2Hz),7.75(2H,d,J=8.4
									;		İ	Hz),7.87(2H,d,J=8.4Hz),8.04(1H,d,J=16.2
								<u> </u>			<u> </u>	Hz)
α-X-9			Me	S	H,H	CI	Н	Н	н	Me	1	2.32(3H,s), 3.81(3H,s), 4.23(2H,s),6.40
		F ₃ C									1	(1H,d,J=16.8Hz), 7.37-7.41(1H,m), 7.52- 7.60(3H,m), 7.74(2H,d,J=8.4Hz),
												7.81(2H,d,J=8.4Hz)
α-X-10			Me	s	H.H	H	F	н	F	Me	\vdash	2.30(3H,s),3.81(3H,s),4.21(2H,s),6.68(1H,
~ ^ .0					''''	• •		l ''		.,,,,	1	d,J=16.5Hz).6.99(2H,d,J=9.3Hz),7.70(1H,
1		F ₃ C	0								l	d,J=16.5Hz),7.75(2H,d,J=8.4Hz),7.82(2H,
												d,J=8.4Hz)
α-X-11			CH2OEt	S	H,H	Н	ОМе	Н	OMe	Ме		1.28(3H,t,J=6.9Hz),3.62(2H,q,J=6.9Hz),
											İ	3.78(3H,s),3.88(6H,s),4.32(2H,s),4.58(2H,
		F ₃ C										s),6.63(2H,s),6.81(1H,d,J=16.5Hz),7.76(2
											ŀ	H,d,J=8.4Hz),7.85(2H,d,J=8.4Hz),8.04(1H
												.d,J=16.5Hz)
α-X-12			Me	S	H,H	Me	Н	н	н	Ме	ŀ	2.30(3H,s),2.36(3H,s),3.80(3H,s),4.18(2H,
i		F ₃ C									ŀ	s),6.40(1H,d,J=16.0Hz),7.33(2H,m),7.46(1 H,d,J=8.1Hz),7.62(1H,d,J=16.0Hz),7.74(2
		_									l	H,d,J=8.1Hz),7.82(1H,d,J=10.0Hz),7.74(2 H,d,J=8.1Hz),7.82(2H,d,J=8.1Hz)
α-X-13	8		Me	s	H.H	Н	Me	н	Me	Me		2.21(3H.s).2.47(6H.s).3.80(3H.s).3.87(2H.
a x 10			1416	Ŭ		• •	IVIC	l ''	1416	IVIC	}	s),6.41(1H,d,J=15.9Hz),7.24(2H,s,),7.58(1
		F ₃ C									ļ	H,dJ=15.9Hz),7.74(2H,d,J=8.4Hz),7.80(2
												H,d,J=8.4Hz)
α-X-14			Me	s	H,H	Н	CI	Н	Н	Ме		
		F₃C ['] √										
											<u> </u>	
α-X-15			Me	S	нн	Н	F	Н	н	Me	Ì	17.
]		F₃C [^]						l				
α-X-16			N4=	-		87-	 	<u>_</u>	н	14-	<u> </u>	
W -X-16			Me	S	н,н	Me	Н	Me	"	Me		
		F3C ✓									1	
α-X-17			Me	s	н,н	Et	н	н	н	Me		1.21(3H,t,J=7.5Hz),2.29(3H,s),2.74(2H,q,
[~ ~ ~]					''''		''	l ''	''		l	J=7.5Hz),3.80(3H,s),4,18(2H,s),6.41(1H,d,
		F ₃ C									[J=16.2Hz),7.30~7.50(3H,m),7.63(1H,d,J=
												15.9Hz),7.74(2H,d,J=8.4Hz),7.81(2H,d,J=
								L			<u>L</u>	8.4Hz)
α-X-18			CONH2	S	H,H	Н	OMe	Н	OMe	Me		
		F ₂ C										
		J-										
,		1			1							

[0243] [表88]

					R1/\oʻ						
No -	合成法	R1	R2	X1	R3,R4	R5	R6	R7	R8	mp	NMR(CDCI3 or DMSO-d6)
B −2−1	β-2		Me	0	H,H	Н	Н	Н	Н	224-	2.35(3H,s), 5.25(2H,s),
						1		.		224.5	6.32(1H,d,J=15.6Hz), 7.07(2H,d,J=8.7Hz),
		F ₃ C				1					7.54(2H,d,J=8.7Hz), 7.65(1H,d,J=16.2Hz),
											7.78(2H,d,J=8.4Hz), 7.88(2H,d,J=8.4Hz)
β −2−2	β−2		Ме	0	H,H	OMe	Н	Н	Н	235-	2.38(3H,s), 3.93(3H,s), 5.30(2H,s),
						İ				235.5	6.33(1H,d,J=15.9Hz), 7.01-7.20(3H,m),
		F₃C C				l					7.64(1H,d,J=15.9Hz),
											7.782(2H,d,J=8.4Hz), 7.87(2H,d,J=8.4Hz)
β −2−3	β-2		CO2Me	0	H,H	Н	Н	Н	н	201-	3.83(3H,s),5.43(2H,s),6.33(1H,d,J=15.9Hz
						ł			}	203),7.06(2H,d,J=8.7Hz),7.54(2H,d,J=8.7Hz),
		F₃C							İ		7.66(1H,d,J=15.9Hz),7.80(2H,d,J=8.7Hz),
										7	8.10(2H,d,J=8.7Hz)
β-2-4	β-2		Me	S	Н,Н	н	Н	н	Н	214.5	2.31(3H,s), 4.25(2H,s), 7.36-7.52(4H,m),
		F ₃ C								-	7.64(1H,d,J=15.9Hz), 7.77(2H,d,J=8.4Hz),
		F3C								215.5	7.85(2H,d,J=8.4Hz)
β-2-5	β−2		OCH2CF3	0	H,H	Н	Н	Н	Н	İ	4.86(2H,q,J=9.0Hz), 5.45(2H,s), 6.42(1H,
											d,J=15.9Hz), 7.14(2H,d,J=8.1Hz), 7.56
		F₃C ✓								ļ	(1H,d,J=15.9Hz), 7.69(2H,d,J=8.4Hz),
											7.97(2H,d,J=8.4Hz),8.07(2H,d,J=8.4Hz)
β-2-6	β−2		Me	NH	H,H	н	Н	Н	Н	1	2.26(3H,S), 4.45(2H,d,J=5.7Hz),
											6.18(1H,d,J=15.9Hz),6.72(2H,d,J=8.4Hz),
		F ₃ C									6.82-6.90(1H,m),7.36-7.50(3H,m),
<u> </u>											7.91(2H,d,J=8.4Hz), 7.96(2H,d,J=8.4Hz)
β-2-7	β−2		СН2ОСН3	0	H,H	Н	Н	Н	Н		3.43(3H,s),4.52(2H,s),5.03(2H,s),6.32(1H,
1									İ	217	d,J=15.9Hz),7.06(2H,d,J=8.7Hz),7.53(2H,
		F ₃ C					l				d,J=8.7Hz),7.65(1H,d,J=15.9Hz),7.79(2H,
											d,J=8.7Hz),7.93(2H,d,J=8.7Hz)
β −2−8	β−2		Н	0	Н,	Н	н	Н	Н	211-	5.71(1H,s),6.38(1H,d,J=15.9Hz),6.76(1H,s
					4-F-			Ì		213),7.02-7.08(2H,m),7.33-7.50(6H,m),
ļ	į	F ₃ C			C6H4						7.59(1H,d,J=15.9Hz),7.72(2H,d,J=8.7Hz),
											7.87(2H,d,J=8.7Hz)
β −2−9	β−2		СН2ОСН3	S	H,H	Н	Н	Н	Н	182-	3.45(3H,s),4.29(2H,s),4.52(2H,s),6.39(1H,
ļ										183	d,J=16.2Hz),7.42(2H,d,J=8.7Hz),7.47(2H,
İ	İ	F ₃ C									d,J=8.7Hz),7.63(1H,d,J=16.2Hz),7.77(2H,
										1	d,J=8.1Hz),7.87(2H,d,J=8.1Hz)
β-2-	β-2	/	CO2Me	0	H,H	Н	Me	H	Н	195-	2.46(3H,S),3.82(3H,S),5.40(2H,s),6.30(1H,
10	1					1		1		196	d,J=15.6Hz),6.85-6.94(2H,m),7.60(1H,d,
		F ₃ C						ł			J=8.4Hz),7.78(2H,d,J=8.4Hz),8.03(1H,d,J
	<u> </u>			_		 		<u> </u>	ļ		=15.6Hz),8.09(2H,d,J=8.4Hz)
β-2-	β-2		СН2ОСНЗ	0	н,н	Н	Me	Н	Н	179-	CDCl3 δ (300 MHz)
11								l		180	2.46(3H,S),3.42(3H,S),4.51(2H,s),5.28(2H,
		F ₃ C						l			s),6.30(1H,d,J=15.9Hz),6.87-6.96(2H,m),
		. 30						l			7.59(1H,d,J=8.4Hz),7.78(2H,d,J=8.7Hz),7.
		1	1		L						93(2H,d,J=8.7Hz),8.02(1H,d,J=15.9Hz)

[0244] [表89]

N-	A c# :+	D4	D2	V1	D2 D4	DE	De	07			NMR(CDCl3 or DMSO-d6)
No	合成法	R1	R2	X1	R3,R4	R5	R6	R7	R8	mp	
β-2- 12	β-2		Н	0	H, 4-F-	Н	Me	Н	Н	220-	2.41(3H,S),6.26(1H,d,J=15.9Hz),6.51(1H,
'2					C6H4					221	S),6.62(1H,S),6.86-6.93(2H,m),7.06-7.16
		F₃C [^]			C0F4					ŀ	(2H,m),7.48-7.58(3H,m),7.70(2H,d, J=9.0Hz),7.86(2H,d,J=9.0Hz)7.97(1H,d,J
		-						ľ		ì	3-9.0Hz),7.80(2H,a,3-9.0Hz)7.97(1H,a,3 =15.9Hz)
β-2-	B-2		Me	0	H.H	Н	Me	Н	н	206-	2.32(3H,S),2.46(3H,S),5.22(2H,s),6.30(1H,
13	P		1410		'',''	'''		l ''	١"		d,J=15.6Hz),6.86-6.96(2H,m),7.59(1H,d,
.*		E-C								-0,	J=8.4Hz),7.76(2H,d,J=8.7Hz),7.85(2H,d,J
		, 30							ĺ		=8.7Hz),8.02(1H,d,J=15.6Hz)
B-2-	β-2	^ /	Me	s	H,H	OCF3	Н	Н	Н	260-	2.30(3H,S),4.51(2H,s),6.64(1H,d,J=16.2H
14			6								z),7.60(1H,d,J=15.9Hz),7.70-7.84(3H,m),
		F ₃ C ✓									7.91(2H,d,J=8.7Hz),7.95(2H,d,J=8.7Hz)
β −2−	β−2		Me	0	H,H	F	Н	Н	Н	261-	2.30(3H,S), 5.43(2H,s), 6.49(1H,d,
15										262.5	J=15.9Hz), 7.34-7.60(2H,m),7.54(1H,d,
		F ₃ C									J=15.9Hz),7.71(1H,d,J=12.3Hz),
					-						7.93(2H,d,J=8.4Hz), 8.00(2H,d,J=8.4Hz),
β-2-	β-2	-	Me	0	H,H	F	Н	F	н		2.35(3H,S), 5.36(2H,s),
16											6.61(†H,d,J=16.2Hz),
		F₃C ∕									7.51(1H,d,J=16.2Hz),7.62(2H,d,J=9.6Hz),
									<u> </u>		7.93(2H,d,J=8.1Hz), 8.00(2H,d,J=8.1Hz),
β-2-	β-2		Н	S	Н,	Н	Me	Н	н		2.37(3H,S),5.70(1H,S),6.32(1H,d,J=15.9H
17					4-F-					196	z),6.70(1H,S),7.01-7.10(2H,m),7.13-7.20
		F ₂ C			C6H4				l		(2H,m),7.42-7.52(3H,m),7.72(2H,d,
		3-							l		J=8.4Hz),7.87(2H,d,J=8.4Hz)7.95(1H,d,J
β-2-	B-2			s	1111	Н		Н	 	010	=15.9Hz)
18	p-2	~	Me		H,H	"	Me	П	Н	218- 219	2.28(3H,S),2.36(3H,S),4.42(2H,s),6.42(1H, d,J=15.9Hz),7.24-7.34(2H,m),7.67
''										219	a,J=15.9Hz),7.24=7.34(2H,m),7.67 (1H,d,J=8,1Hz),7,74(1H,d,J=15.9Hz),7.91(
		F3C							İ	1	2H,d,J=8.7Hz),7.96(2H,d,J=8.7Hz)
B-2-	<i>B</i> −2		CH2OMe	s	H,H	Н	Me	Н	Н	1845	2.42(3H,S),3.44(3H,S),4.29(2H,s),4.51(2H,
19	P 2		OFFECING	ਁ	'',"'	l ''	1410	''	l ''	1	s),6.35(1H,d,J=15.9Hz),7.25-7.27(2H,m),
		F ₂ C									7.52(1H,d,J=9.0Hz),7.76(2H,d,J=8.4Hz),7.
İ		. 30									86(2H,d,J=8.4Hz),7.99(1H,d,J=15.9Hz)
β-2-	β-2		Н	s	Н,	Н	Н	Н	Н	191.5	5.71(1H,s),6.39(1H,d,J=16.2Hz),6.69(1H,s
20					4-F-					-),7.02-7.08(2H,m),7.32-7.49(6H,m),7.68
		F ₃ C			C6H4				ŀ	193.5	(1H,d,J=16.2Hz),7.71(2H,d,J=8.4Hz),7.86(
		Ü							<u> </u>		2H,d,J=8.4Hz)
β-2-	β-2		CO2Me	S	H,H	Н	Ме	н	Н	171-	2.43(3H,s),3.88(3H,s),4.41(2H,s),6.35(1H,
21										172.5	d,J=16.2Hz),7.27(2H,m),7.53(1H,d,J=8.7H
		F₃C [^]	·								z),7.76(2H,d,J=8.4Hz),8.00(1H,d,J=16.2H
<u> </u>			· · · · · · · · · · · · · · · · · · ·						<u> </u>		z),8.04(2H,d,J=8.4Hz)
β-2-	β−2		CO2Me	S	H,H	Н	Н	н	н		3.88(3H,s),4.43(2H,s),6.41(1H,d,J=16.2Hz
22		F ₂ C								-163),7.42-7.50(4H,m),7.72(1H,d,J=16.2Hz),
<u></u>	0.5			_							7.76(2H,d,J=8.4Hz),8.04(2H,d,J=8.4Hz)
β-2-	β-2		Me	S	Н,Н	F	Н	н	н		2.32(3H,s),4.19(2H,s),6.40(1H,d,J=15.9Hz
23										220.5),7.23-7.27(2H,m),7.44-7.50(1H,m),
		F3C ♥				-					7.58(1H,d,J=15.9Hz),7.69(2H,d,J=8.4Hz),
β-2-	<i>B</i> −2		Me	s	H,H	OMe	н	Н	Н	209-	7.82(2H,d,J=8.4Hz)
24	P ~ 2		ivie	ိ	п,п	OMe	п	п	п		2.31(3H,s),3.94(3H,s),4.18(2H,s),6.40(1H,d,J=15.9Hz),7.02(1H,d,J=1.5Hz),7.10(1H,
"										210	dd,J=1.5Hz,7.8Hz),7.42(1H,d,J=7.8Hz),7.
		F₃C [^]							1		63(1H,d,J=15.9Hz),7.74(2H,d,J=8.1Hz),7.
											82(2H,d,J=8.1Hz)
L	I		L	L	L			L	L	L	02\21 1,U,U=U. 11 12/

[0245] [表90]

No	合成法	R1	R2	X1	R3,R4	R5	R6	R7	R8	mp	NMR(CDCI3 or DMSO-d6)
β-2-	β-2		CF3	s	H,H	Н	Me	Н	Н	194-	2.42(3H,S),4.27(2H,s),6.32(1H,d,J=15.9H
25	P 2		0.0	٦	'',•'	''	"""	''	l ''	196	z),7.25-7.28(2H,m),7.51(1H,d,J=8.7Hz),
-		F ₀ C]		7,79(2H,d,J=8,4Hz),7,88(2H,d,J=8,4Hz),7.
		. 30									91(1H,d,J=15.9Hz)
β-2−	β −2		CH2OEt	s	H,H	н	Me	Н	н	178-	1.27(3H,t,J=6.9Hz),2.43(3H,S),3.60(2H,q,
26			0,12020	ľ	,	''			l ''	180	J=6,9Hz),4,30(2H,s),4.56(2H,s),6.34(1H,d,
									i		J=15.9Hz),7.25-7.28(2H,m),7.75(2H,d,
		F ₃ C								l	J=8.4Hz),7.87(2H,d,J=8.4Hz),7.99(1H,d,J
						İ					=15.9Hz)
β-2-	β-2		Me	s	H,H	Н	OMe	Н	Н	199-	2.30(3H,S),3.89(2H,s),4.22(2H,s),6.47(1H,
27					ŕ					201	d,J=16.2Hz),6.96-7.00(2H,m),7.43
		F ₂ C						'			(1H,d,J=8.4Hz),7.75(2H,d,J=8.7Hz),7.82(2
		. 3-									H,d,J=8.7Hz),7.92(1H,d,J=16.2Hz)
β-2-	β-2		Me	s	Н,Н	OEt	Н	Н	Н	215-	1.50(3H,t,J=7.2Hz),2.31(3H,s),4.16(3H,q,
28										216	J=7.2Hz),4.20(2H,s),6.39(1H,d,J=15.9Hz),
											6.99(1H,d,J=1.2Hz),7.10(1H,dd,J=1.2Hz,7
		F ₃ C							l		.8Hz),7.44(1H,d,J=7.8Hz),7.70(1H,d,J=15.
		,									9Hz),7.74(2H,d,J=8.7Hz),7.82(2H,d,J=8.7
0.											Hz)
β-2-	β-2	~/	Me	S	H,H	OMe	Н	Br	Н	246-	2.30(3H,s),3.86(3H,s),4.18(2H,s),6.70(1H,
29										247	d,J=15.9Hz),7.39(1H,s),7.51(1H,d,J=15.9
		F₃C´ 🏏									Hz),7.58(1H,s),7.90(4H,s)
β-2-	β-2		Me	s	н,н	н	OMe	Н	OMe	176.5	2.301(3H.S), 3.879(6H.s), 4.527(2H,s),
30			·-		"					ı	6.637(1H,d,J=16.2Hz), 6.761(2H,s),
		F₃C [']									7.848(1H,d,J=16.2Hz), 7.906(2H,d,
		J-									J=8.7Hz), 7.964(2H,d,J=8.7Hz)
β-2-	β-2		Me	s	Н,Н	Br	Н	Н	Н	220.5	2.310(3H,S), 4.515(2H,s), 6.535(1H,d,
31					, i						J=15.9Hz), 7.535(1H,d,J=15.9Hz),
		F₃C ✓									7.615(1H,d,J=8.4Hz),7.75-8.10(6H,m),
β −2−	β−2		Ме	S	Н,Н	OEt	Н	Br	Н	228-	1.36(3H,t,J=6.6Hz),2.30(3H,s),4.14(2H,q,
32										229	J=6.6Hz),4.21(2H,s),6.69(1H,d,J=15.6Hz),
		F₃C [™]									7.37(1H,s),7.50(1H,d,J=15.6),7.56(1H,s),7
					-	<u></u>					.90(4H,s)
β-2-	β-2		Me	S	H,H	Br	Н	Br	Н	243-	2.33(3H,S),4.16(2H,s),6.41(1H,d,J=15.9H
33		ا ليال								245	z),7.47(1H,d,J=15.9Hz),7.74(2H,br.s),7.75
	7	F3C ~							<u></u>		(2H,d,J=8.4Hz),7.81(2H,d,J=8.7Hz)
β-2-	β-2		Н	S	H,H	Н	Ме	Н	Н	186-	2.41(3H,S),4.20(2H,s),6.33(1H,d,J=15.9H
34										188	z),6.53(1H,s),7.19-7.21(2H,m),7.40-7.45
		CI 🔨									(2H,m),7.51(1H,d,J=9.0Hz),7.65-7.70
<u></u>											(2H,m),7.98(1H,d,J=15.9Hz)
β-2-	β-2	السير	Н	S	H,H	OMe	н	Н	н		3.94(3H,S),4.19(2H,s),6.39(1H,d,J=15.9H
35										187.5	z),6.54(1H,s),7.08(1H,dd,J=7.8,1.5Hz),7.3
		CI 🔨									2(1H,d,J=8.1Hz),7.40-7.44(2H,m),7.62-
							 			L	7.67(2H,m),7.68(1H,d,J=15.9Hz)
β-2-	β-2		Me	S	H,H	OMe	Н	OMe	Н	241.5	2.28(3H,S), 3.78(6H,s), 4.04(2H,s),
36		F ₂ C								-	6.66(1H,d,J=15.9Hz), 6.98(2H,brs),
		1-30									7.54(1H,d,J=15.9Hz), 7.91(4H,brs)
β-2-	β−2	اریر	Me	S	H,H	OMe	н	CI	Н	234.5	2.30(3H,S),3.06(3H,s),4.17(2H,s), 6.71
37										-	(1H,d,J=15.9Hz), 7.36(1H,brs),7.45
		F₃C [^]								235.5	(1H,brs),7.52(1H,d,J=15.9Hz),7.80-
						<u></u>					8.00(4H,m)
β-2-	β-2		Н	S	H,H	Н	Ме	Н	Н	ı	2.40(3H,s),4.12(2H,s),6.31(1H,d,J=15.9Hz
38		F ₃ C),6.66(1H,s),7.19-7.21(2H,m),
1		. 30				l	1	l		181.5	7.50(1H,d,J=8.4),7.72(2H,d,J=8.1Hz),7.87

[0246] [表91]

No	合成法	R1	R2	X1	R3,R4	R5	R6	R7	R8	mp	NMR(CDCl3 or DMSO-d6)
					,		111	<u> </u>	-		(2H,d,J=8.1Hz),7.90(1H,d,J=15.9)
B-2-	<i>B</i> −2		Н	s	H.H	OMe	Н	Н	Н	207-	3.95(3H,s),4.21(2H,s),6.39(1H,d,J=16.2Hz
39	PZ		,,	"	11,11	Owie	"		"),6.68(1H,s),7.02(1H,d,J=1.5Hz),7.08(1H,d
"										203	d,J=1.5Hz,8.1Hz),7.33(2H,d,J=8.1Hz),7.6
		F₃C ✓									2(1H,d,J=16.2Hz),7.72(2H,d,J=8.1Hz),7.8
											[6(2H,d,J=8.1)
B-2-	<i>B</i> −2		CH2OEt	s	H.H	OMe	Н	н	н	188-	1.27(3H,t,J=7.2Hz),3.62(2H,q,J=7.2Hz),3.
40	ρ-Ζ		CHZOEL	٥	п,п	Owe	"	п	"		94(3H,s),4.28(2H,s),4.58(2H,s),6.41(1H,d,
40										190	J=15.9Hz),7.00(1H,d,J=1.5Hz),7.12(1H,dd
											JJ=7.8,1.5Hz),7.45(1H,d,J=8.1Hz),7.72(1H
		F3C									d,J=15.9Hz),7.75(2H,d,J=8.1Hz),7.86(1H,
									1		d,J=8.1Hz)
B −2−	<i>B</i> −2		CH2OEt	0	н,н	OMe	Н	Н	н	203-	1.21(3H,t,J=7.2Hz),3.59(2H,q,J=7.2Hz),3.
41	ρ 2		OHZOLL		11,11	OME	11	-	"		910(3H,s),4.61(2H,s),5.35(2H,s),6.31(1H,d
''						[;				204	JJ=15.9Hz),7.06-7.14(3H,m),7.64(1H,d,
		F₃C Ô				1					J=15.9Hz),7.77(2H,d,J=8.1Hz),7.94(1H,d,
											J=8.1Hz)
β-2-	<i>B</i> −2		CH2OEt	0	н,н	Н	Me	Н	Н	189-	1.22(3H,t,J=7.2Hz),2.46(3H,s),3.59(2H,q,
42	~ -	/	ONLOCK			''	IVIC	••	l ''	191	J=7.2Hz),4.55(2H,s),5.29(2H,s),6.30(1H,d,
'-											J=15.9Hz),6.88-6.93(2H,m),
		F ₃ C									7.59(1H,d,J=8.7Hz).7,77(2H,d,J=8.1Hz).7.
											94(2H,d,J=8.1Hz),8.01(1H,d,J=15.9Hz)
β-2-	B-2		Me	S	Н.Н	CF3	н	Н	Н	236-	2.28(3H,S), 4.57(2H,s),
43				_							6.69(1H,d,J=15.9Hz),
		F₃C ∕									7.64(1H,d,J=15.9Hz), 7.82-8.08(7H,m),
B-2-	<i>B</i> −2		Me	S	Н,Н	Н	CF3	Н	н	189-	2.30(3H,S), 4.56(2H,s),
44	,				,	''	0.0	• • •	l ''		6.64(1H,d,J=15.6Hz), 7.68-7.83(3H,m),
1 1		F ₃ C								,,,,	7.91(2H,d,J=8.7Hz), 7.97(2H,d,J=8.7Hz),
		. 30									8.01(1H,d,J=8.4Hz)
B −2−	<i>B</i> −2		Me	S	H,H	OMe	н	Н	Me		2.30(3H,s),2.36(3H,s),3.91(3H,s),4.17(2H,
45											s),6.31(1H,d,J=15.9Hz),7.03(1H,s),7.24(1
		F ₃ C									H,s),7.72-7.83(4H,m),
		. 30									7.90(1H,d,J=15.9Hz)
β-2-	β−2		CH2OMe	S	Н,Н	OMe	н	Н	Н		3.45(3H,s),3.93(3H,s),4.26(2H,s),4.53(2H,
46					·						s),6.39(1H,d,J=15.9Hz),7.01-7.11(2H,m),
		F ₂ C [™]				•		•			7.42(1H,d,J=7.8Hz),7.63(1H,d,J=15.9Hz),
											7.76(2H,d,J=8.1Hz),7.86(2H,d,J=8.1Hz)
β-2-	β-2		Me	s	Н,Н	Н	CI	Н	Н	225-	2.29(3H,S), 4.52(2H,s), 6.61(1H,d,J=15.9
47										226	Hz), 7.41(1H,dd,J=8.4Hz,1.8Hz),7.63
											(1H,d,J=1.8Hz),7.81(1H,d,J=15.9Hz),7.89(
		F3C ~									1H,d,J=8.4Hz), 7.91(2H,d,J=8.7Hz),
											7.96(2H,d,J=8.7Hz),
β-2-	β−2		Ме	S	H,H	Н	F	Н	Н	221-	2.29(3H,S), 4.51(2H,s),
49										222	6.56(1H,d,J=16.2Hz), 7.24-7.47(2H,m),
		F₃C [^]									7.59(1H,d,J=16.2Hz), 7.78(1H,t,J=8.1Hz),
											7.90(2H,d,J=8.7Hz), 7.96(2H,d,J=8.7Hz)
β-2-	β-2		Ме	S	H,H	Me	Н	Ме	Н		2.19(3H,S), 2.39(6H,s),4.01(2H,s),
50										241.5	6.53(1H,d,J=14.4Hz), 7.40-
		F3C ~									7.54(3H,m),792(4H,brs)
β-2−	β−2	_	Me	S	H,H	CI	Н	Н	Η		2.33(3H,s),4.24(2H,s),6.39(1H,d,J=15.9Hz
51),7.41(1H,dd,J=1.5Hz),8.4Hz),7.53-
		F₃C [^] ✓✓									7.55(2H,m),7.56(1H,d,J=15.9Hz),7.75(2H,
											d,J=8.4Hz),7.84(2H,d,J=8.4Hz)

[0247] [表92]

β - X-1 CF3 S H,H OMe H H H 190-394(3H-s).428(2H-s).8.42(1H-d,J=16-12-12-14-11-11-12-13-12-12-14-13-11-12-13-13-12-13-11-14-13-13-13-13-13-13-13-13-13-13-13-13-13-	No	合成法	R1	R2	X1	R3,R4	R5	R6	R7	R8	mp	NMR(CDCl3 or DMSO-d6)
192)77.01(H.d.d.=1.5Hz).7.09(H.H.d.d.=7.8Hz).7.17(H.d.d.=5.8Hz).7.17(H.d.d.=5.8Hz).7.17(H.d.d.=5.8Hz).7.17(H.d.d.=5.8Hz).7.17(H.d.d.=5.8Hz).7.17(H.d.d.=5.8Hz).7.17(H.d.d.=5.8Hz).7.17(H.d.d.=5.8Hz).7.17(H.d.d.=5.8Hz).7.18(H.d.d.=5.8Hz).7.18(H.d.d.=5.8Hz).7.18(H.d.d.=5.8Hz).7.18(H.d.d.=5.8Hz).7.18(H.d.d.=5.8Hz).7.18(H.d.d.=5.8Hz).7.18(H.d.d.=5.8Hz).7.18(H.d.d.=5.8Hz).7.18(H.d.d.=5.8Hz).7.18(H.d.d.=5.8Hz).7.18(H.d.d.=5.8Hz).7.18(H.d.d.=5.8Hz).7.18(H.d.d.=5.8Hz).8.18(H.d.d.=5.8Hz).											<u> </u>	3 94(3H c) 4 26(2H c) 6 42(1H d, I=16 2Hz
F ₅ C	" " '			0.3	٠.	11,11	Owie	''	٠.	l '''		
β -X-2 CH2OCH2 S H,H OMe H H H 212-32(3Hz),3.97(2Hz,d,J=8.7Hz),4.25(2Hz),2.25(2Hz),2.16(4Hz,J=16.2Hz),7.00(1Hz,d,J=16.2Hz),7.00(1Hz,d,J=16.2Hz),7.00(1Hz,d,J=16.2Hz),7.00(1Hz,d,J=16.2Hz),7.00(1Hz,d,J=16.2Hz),7.00(1Hz,d,J=16.2Hz),7.00(1Hz,d,J=16.2Hz),7.00(1Hz,d,J=16.2Hz),7.10(1Hz,d,J=16.2Hz)											132	
B - X - 2	}		F₃C ✓									
F ₃ C			V									
F ₃ C	β-X-2			CH2OCH2	s	Н,Н	OMe	н	Н	Н	212-	3.92(3H,s),3.97(2H,q,J=8.7Hz),4.25(2H,s),
B - X-3	1		~/	CF3							214	4.77(2H,s),6.39(1H,d,J=16.2Hz)),7.00(1H,
B - X-3												d,J=1.5Hz),7.09(1H,dd,J=7.8Hz,1.5Hz),7.
β - X-3 CH2O(CH S D) H OMe H H H H H H 146 - 3.39(3/H.s).3.57-3.60(2H.m).3.69-3.72 148 (2H.m).3.39(3/H.s).4.29(2H.s).4.86(2H.s).6.8 (2H.m).3.93(3H.s).4.29(2H.s).4.86(2H.s).6.8 (2H.m).3.93(3H.s).4.29(2H.s).4.86(2H.s).6.8 (2H.m).3.93(3H.s).4.29(2H.s).4.86(2H.s).6.8 (2H.m).4.15 (2H.s).7.45(1H.d.J=16.9H.s).7.45(1H.d.J=16.9H.s).7.45(1H.d.J=16.9H.s).7.45(1H.d.J=16.2H.s).7.45(1H.d.			F₃C′ 🏏									40(1H,d,J=7.8Hz),7.62(1H,d,J=16.2Hz),7.
148												76(2H,dJ=8.1Hz),7.85(2H,d,J=8.1Hz)
B - X - 4	β-X-3			CH2O(CH	S	Н	OMe	Н	Н	Н	146-	3.39(3H,s),3.57-3.60(2H,m),3.69-3.72
β - X-4 CH2OnPr S H,H OMe H H H 11(1H,dd,J=7.8Hz,1.5Hz),7.74(2H,d,J=8.4Hz).7.71(1H,d,J=1.59Hz),7.74(2H,d,J=8.4Hz).7.81(2H,d,J=8.4Hz).7.81(2H,d,J=8.4Hz).7.81(2H,d,J=8.4Hz).7.81(2H,d,J=8.4Hz).7.12(1H,d,J=16.2Hz),7.00(1H,d,J=18.Hz).7.12(1H,d,J=16.2Hz).7.00(1H,d,J=18.Hz).7.12(1H,d,J=16.2Hz).7.00(1H,d,J=16.2Hz).7.75(2H,d,J=8.4Hz).7.87(2H,d,J=8.4Hz).8.12(1H,d,J=16.2Hz).7.75(2H,d,J=8.4Hz).8.32(2H,d,J=8.6Hz).3.89(6Hz).8.39(6Hz).8.				2)2OMe				ĺ	'		148	(2H,m),3.93(3H,s),4.29(2H,s),4.66(2H,s),6.
Hz.).7.71(1H.d.J=15.9Hz.).7.74(2H.d.J=8.4 Hz.).7.89(2H.d.J=8.4Hz.).7.89(2H.d.J=8.4Hz.).7.89(2H.d.J=8.4Hz.).7.89(2H.d.J=8.4Hz.).7.89(2H.d.J=8.4Hz.).7.89(2H.d.J=8.4Hz.).7.89(2H.d.J=8.4Hz.).7.89(2H.d.J=8.4Hz.).7.80(2H.d.J=8.4Hz.).7.80(2H.d.J=8.4Hz.).7.80(2H.d.J=8.4Hz.).7.80(2H.d.J=8.4Hz.).7.80(2H.d.J=8.4Hz.).7.80(2H.d.J=8.4Hz.).7.75(2H.d.J=8.4Hz.).7.77(2H.d.J=8.4H												40(1H,d,J=15.9Hz)),6.99(1H,d,J=1.8Hz),7.
β - X-4 CH2OnPr S H,H OMe H H H 174- 0.96(3H:LJ-7:5H:2),1.60-1.72(2H:m), 0.96(3H:LJ-7:5H:2),1.60-1.72(2H:m), 4.57(2H:s),8.41(1H:dJ=6:H:s),3.94(3H:s),4.28(2H:s), 4.57(2H:s),8.41(1H:dJ=6:H:s),7.00(1H:dJ=16:ZH:s),7.00(1H:dJ=16:ZH:s),7.00(1H:dJ=16:ZH:s),7.00(1H:dJ=16:ZH:s),7.45(1H:dJ=7:SH:s),7.87(2H:dJ=8:ZH:s),7.87(2H:dJ=8:ZH:s),7.87(2H:dJ=8:ZH:s),7.87(2H:dJ=8:ZH:s),7.75(2H:dJ=8:ZH:s),7.75(2H:dJ=8:ZH:s),8.27(2H:dJ=8:ZH:s),8.27(2H:dJ=8:ZH:s),8.27(2H:dJ=8:ZH:s),8.27(2H:dJ=8:ZH:s),8.27(2H:dJ=8:ZH:s),8.27(2H:dJ=8:ZH:s),8.27(2H:dJ=8:ZH:s),8.27(2H:dJ=8:ZH:s),8.27(2H:dJ=8:ZH:s),8.27(2H:dJ=8:ZH:s),8.27(2H:dJ=8:ZH:s),8.27(2H:dJ=8:ZH:s),8.27(2H:dJ=8:ZH:s),8.27(2H:dJ=8:ZH:s),7.75(2H:dJ=8:ZH:s),7	1		F ₃ C									11(1H,dd,J=7.8Hz,1.5Hz),7.45(1H,d,J=7.8
β - X-4 CH2OnPr S H,H OMe H H H 174- 0.96(3H;t,J=7.5Hz),1.60-1.72(2H,m),1.70-1.72(2H,m),1.67-1.72(2H,m),1.72(1H,d,J=16.2Hz),7.700(1H,d,J=18.Hz),7.72(1H,d,J=16.2Hz),7.700(1H,d,J=16.2Hz),7.700(1H,d,J=16.2Hz),7.700(1H,d,J=16.2Hz),7.700(1H,d,J=16.2Hz),7.75(2H,d,J=8.Htz),7.87(2H,d,J=8.Htz),7.87(2H,d,J=8.Htz),7.75(2H,d,J=8.Htz),7.87(2H,d,J=8.Htz),7.75	1		·									Hz),7.71(1H,d,J=15.9Hz),7.74(2H,dJ=8.4
176 3.51(2H,d,J=6.6Hz),3.94(3H,s).4.28(2H,s).										<u> </u>		Hz),7.89(2H,d,J=8.4Hz)
β - X - 5 CH2OnPr S H,H H OMe H OMe 166- 0.97(3H±,0=7.5H±,18H±,2).7.72(1H,d,J=16.2H±,2).7.75(2H,d,J=8.4H±,2).7.87(2H,d,J=8.4H±,2).7.87(2H,d,J=8.4H±,2).7.87(2H,d,J=8.4H±,2).7.87(2H,d,J=8.4H±,2).83(2H±,3).6.82(1H±,d,J=16.5H±,2).89(6H±,3).4.89(6H±,3).4.89(6H±,3).4.89(6H±,3).4.89(6H±,3).4.89(6H±,3).4.89(6H±,3).4.89(2H±,3).6.82(1H±,d,J=16.5H±,2).7.75(2H±,d,J=8.4H±,2).7.81(2H±,d,J=16.5H±,2).7.74(2H±,d,J=8.4H±,2).7.81(2H±,d,J=16.5H±,2).7.74(2H±,d,J=8.4H±,2).7.81(2H±,d,J=16.5H±,2).7.74(2H±,d,J=8.4H±,2).7.81(2H±,d,J=16.2H±,2).7.76(2H±,d,J=8.4H±,2).8.14(1H±,d,J=16.2H±,2).7.76(2H±,d,J=8.4H±,2).8.14(1H±,d,J=16.2H±,2).7.76(2H±,d,J=8.4H±,2).8.14(1H±,d,J=16.2H±,2).7.76(2H±,d,J=8.4H±,2).8.14(1H±,d,J=16.2H±,2).7.75(2H±,d,J=8.4H±,2).8.14(1H±,d,J=16.2H±,2).7.75(2H±,d,J=8.4H±,2).8.14(1H±,d,J=16.2H±,2).7.75(2H±,d,J=8.4H±,2).8.14(1H±,d,J=16.2H±,2).7.75(2H±,d,J=8.4H±,2).8.14(1H±,d,J=16.2H±,2).7.75(2H±,d,J=8.4H±,2).8.14(1H±,d,J=16.2H±,2).7.75(2H±,d,J=8.4H±,2).8.14(1H±,d,J=16.2H±,2).7.75(2H±,d,J=8.4H±,2).8.14(1H±,d,J=16.2H±,2).7.75(2H±,d,J=8.4H±,2).8.14(1H±,d,J=16.2H±,2).7.75(2H±,d,J=8.4H±,2).7.81(2H±,d,J=8.4H±,d,J=8.2H±,d,J=8.4H±,d,J=8.2H±,d,J=8.2H±,d,J=8.2H±,d,J=8.2H±,d,J=8.2H±,d,J=8.2H±,d,J=8.2H±,d,J=8.2H±,d,J=8.2H±,d,J=8.2H±,d,J=8.2H±,	β-X-4			CH2OnPr	S	H,H	ОМе	Н	Н	Н	174-	0.96(3H,t,J=7.5Hz),1.60-1.72(2H,m),
F ₃ C										İ	176	3.51(2H,d,J=6.6Hz),3.94(3H,s),4.28(2H,s),
A5(1H,d,J=7,8Hz),7.72(1H,d,J=16,2Hz),7.75(2H,d,J=8,4Hz),7.87(2H,d,J=8,4Hz),7.87(2H,d,J=8,4Hz),7.87(2H,d,J=8,4Hz),7.87(2H,d,J=8,4Hz),8.97(2H,d,J=8,4Hz),8.97(2H,d,J=6,6Hz),8.96(6H,s),4.33(2H,s),4.57(2H,s),6.63(2H,s),6.82(1H,d,J=16,5Hz),7.75(2H,d,J=8,4Hz),7.85(2H,d,J=8,4Hz),8.94(1H,d,J=16,5Hz),7.75(2H,d,J=8,4Hz),7.85(2H,d,J=8,4Hz),8.94(1H,d,J=16,5Hz),7.75(2H,d,J=8,4Hz),7.87(2H,d,J=8,4Hz),7.87(2H,d,J=8,4Hz),7.87(2H,d,J=8,4Hz),7.87(2H,d,J=8,4Hz),7.87(2H,d,J=8,4Hz),7.87(2H,d,J=8,4Hz),7.87(2H,d,J=8,4Hz),7.87(2H,d,J=8,4Hz),7.87(2H,d,J=8,4Hz),7.87(2H,d,J=8,4Hz),8.94(1H,d,J=16,5Hz),7.87(2H,d,J=8,4Hz),8.94(1H,d,J=16,5Hz),7.87(2H,d,J=8,4Hz),8.94(1H,d,J=16,5Hz),7.87(2H,d,J=8,4Hz),8.94(1H,d,J=16,5Hz),7.94(1H,d,J=16,2Hz),7.96(2H,d,J=8,4Hz),8.94(1H,d,J=16,2Hz),7.96(2H,d,J=8,4Hz),8.94(1H,d,J=16,2Hz),7.96(2H,d,J=8,4Hz),8.94(1H,d,J=16,2Hz),7.96(2H,d,J=8,4Hz),8.94(1H,d,J=16,2Hz),7.96(2H,d,J=8,4Hz),8.94(1H,d,J=16,2Hz),7.96(2H,d,J=8,4Hz),8.94(1H,d,J=16,2Hz),7.96(2H,d,J=8,4Hz),8.94(1H,d,J=16,2Hz),7.96(2H,d,J=8,4Hz),8.94(1H,d,J=16,2Hz),7.96(2H,d,J=8,4Hz),8.94(1H,d,J=16,2Hz),7.96(2H,d,J=8,4Hz),8.94(1H,d,J=16,2Hz),7.96(2H,d,J=8,4Hz),8.94(1H,d,J=16,2Hz),7.96(2H,d,J=8,4Hz),8.94(1H,d,J=16,2Hz),7.96(2H,d,J=8,4Hz),8.94(1H,d,J=16,2Hz),7.96(2H,d,J=8,4Hz),8.94(1H,d,J=16,2Hz),7.96(2H,d,J=8,4Hz),8.94(1H,d,J=16,2Hz),7.96(2H,d,J=8,4Hz),8.94(1H,d,J=16,2Hz),7.94(2H,d,J=8,4Hz),8.94(1H,d,J=16,2Hz),7.94(2H,d,J=8,4Hz),8.94(1H,d,J=16,2Hz),7.94(2H,d,J=8,4Hz),8.94(1H,d,J=16,2Hz),8.94(1	1 .											4.57(2H,s),6.41(1H,d,J=16.2Hz)),7.00(1H,
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1		F₃C ∕									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\beta - X - 6 \\ F_3C \\ \hline \\ \beta - X - 6 \\ \hline \\ \beta - X - 6 \\ \hline \\ \beta - X - 6 \\ \hline \\ \beta - X - 6 \\ \hline \\ \beta - X - 6 \\ \hline \\ \beta - X - 6 \\ \hline \\ \beta - X - 6 \\ \hline \\ \beta - X - 6 \\ \hline \\ \beta - X - 6 \\ \hline \\ \beta - X - 6 \\ \hline \\ \beta - X - 6 \\ \hline \\ \beta - X - 6 \\ \hline \\ \beta - X - 7 \\ \hline \\ CO2H \\ \hline \\ S \\ \hline \\ S \\ \hline \\ S \\ \hline \\ C \\ C$	<u></u>											
$\beta - X - 6 \\ \beta - X - 6 \\ \beta - X - 6 \\ \beta - X - 6 \\ \beta - X - 6 \\ \beta - X - 6 \\ \beta - X - 6 \\ \beta - X - 6 \\ \beta - X - 6 \\ \beta - X - 6 \\ \beta - X - 6 \\ \beta - X - 6 \\ \beta - X - 6 \\ \beta - X - 7 \\ \beta - X - 7 \\ \beta - X - 7 \\ \beta - X - 7 \\ \beta - X - 7 \\ \beta - X - 7 \\ \beta - X - 7 \\ \beta - X - 7 \\ \beta - X - 7 \\ \beta - X - 7 \\ \beta - X - 8 \\ \beta - X - 7 \\ \beta - X - 8 \\ \beta - X - 8 \\ \beta - X - 8 \\ \beta - X - 8 \\ \beta - X - 8 \\ \beta - X - 8 \\ \beta - X - 8 \\ \beta - X - 8 \\ \beta - X - 8 \\ \beta - X - 8 \\ \beta - X - 8 \\ \beta - X - 8 \\ \beta - X - 8 \\ \beta - X - 9 \\ \beta - $	β-X-5			CH2OnPr	S	H,H	н	OMe	H	OMe		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											167	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			F ₂ C									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$. 30							İ		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 1/ 0											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B-X-6			Et	S	н,н	"	OMe	Н	ОМе		-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											1/5	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			F³C. ◆									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	R -Y-7			COSH	-	ши		ONE	ш	OMa	210-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	β-λ-/			COZH	3	11,11	"	Civie		Civie		
B - X - 8	1											1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			F3C .								607	z)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	β-X-8			CH2OCH2	s	H,H	Н	OMe	Н	OMe	165-	0.22-0.27(2H,m),0.57-0.63(2H,m),1.06-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	'	~	сPr			i .			· .	167	1.19(1H,m),3.40(2H,d,J=6.9Hz),3.89(6H,s)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1									-		,4.34(2H,s),4.60(2H,s),6.63(2H,s),6.82(1H,
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			F³C. ⋄				ļ				l	d,J=16.2Hz),7.75(2H,d,J=8.4Hz),7.87(2H,
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	İ			:								d,J=8.4Hz),8.13(1H,d,J=16.2Hz)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	β-X-9			Ме	S	H,H	CI	Н	Н	Н	219-	2.33(3H,s), 4.24(2H,s), 6.39(1H,d,J=15.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											220	Hz), 7.41(1H,dd,J=1.5Hz, 8.4Hz), 7.53-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			F₃C [^]								1	
10 F ₃ C CH2OEt S H,H H OMe H OMe 147- 1.16(3H,t,J=6.9Hz),7.86(2H,d,J=6.5Hz) β - X- 11 F ₃ C CH2OEt S H,H H OMe H OMe 147- 1.16(3H,t,J=6.9Hz),3.56(2H,d,J=6.9Hz),3. F ₃ C CH2OEt S H,H H OMe H OMe 147- 1.16(3H,t,J=6.9Hz),3.56(2H,d,J=6.9Hz),3. [F ₃ C H,G,J=6.9Hz),6.76(2H,s),7.84(1H,d,J=16.2Hz),6.76(2H,s),7.84(1H,d,J=16.2Hz),7.94(2H,d,J=8.4Hz),8.01(2H,d												7.75(2H,d,J=8.4Hz), 7.82(2H,d,J=8.4Hz)
F ₃ C	1 .			Me	S	H,H	Н	F	Н	F		
8 - X- 11 F ₃ C CH2OEt S H,H H OMe H OMe 147- 1.16(3H,t,J=6.9Hz),3.56(2H,q,J=6.9Hz),3. H,H H OMe H OMe 147- 1.16(3H,t,J=6.9Hz),3.56(2H,q,J=6.9Hz),3. H,H H OMe H OMe 147- 1.16(3H,t,J=6.9Hz),3.56(2H,q,J=6.9Hz),3. H,H H OMe H OMe 147- 1.16(3H,t,J=6.9Hz),3.56(2H,q,J=6.9Hz),3. H,H H OMe H OMe H OMe 147- 1.16(3H,t,J=6.9Hz),3.56(2H,q,J=6.9Hz),3. H,H H OMe H OMe H OMe H OMe H OMe H OMe H OMe H OMe H OMe H OMe H OMe H OMe H OMe H OME H O	10										217	
11	Ì		F3C →							1		,7.91(2H,d,J=8.4Hz),7.96(2H,d,J=8.4 Hz)
d,J=16.2Hz),6.76(2H,s),7.84(1H,d,J=16.2 Hz),7.94(2H,d,J=8.4Hz),8.01(2H,d,J=8.4H	β-X-			CH2OEt	S	H,H	Н	OMe	Н	OMe	147-	1.16(3H,t,J=6.9Hz),3.56(2H,q,J=6.9Hz),3.
F ₃ C Hz),7.94(2H,d,J=8.4Hz),8.01(2H,d,J=8.4H	11									ŀ	148	87(6H,s),4.53 (2H,s), 4.58 (2H,s),6.63(1H,
		[d,J=16.2Hz),6.76(2H,s),7.84(1H,d,J=16.2
z)	1		r₃∪ ~				l			}		Hz),7.94(2H,d,J=8.4Hz),8.01(2H,d,J=8.4H
				ļ			<u> </u>			<u> </u>		z)

[0248] [表93]

No	合成法	R1	R2	Х1	R3,R4	R5	R6	R7	R8	mp	NMR(CDCl3 or DMSO-d6)
β-X- 12		F ₃ C	Ме	S	Н,Н	Me	Н	H	Н		2.27(3H,s),2.28(3H,s),4.41(2H,s),6.45(1H,d,J=16.2Hz),7.51(1H,d,J=16.2Hz),7.54(3H,m),7.94(4H,m)
β-X- 13		F ₃ C	Me	S	н,н	Н	Ме	Н	Ме		2.19(3H,s),2.38(6H,s),4.52(2H,s),6.54(1H,d,J=15.9Hz),7.46(2H,s,),7.48(1H,dJ=15.9Hz),7.92(4H,brs)
β-X- 14		F ₃ C	Ме	Ø	н,н	Н	CI	I	Н		2.29(3H,s),4.52(2H,s),6.61(1H,d,J=15.9Hz),7.41(1H,d,J=8.4Hz),7.63(1H,t,J=1.8Hz), 7.89(1H,d,J=8.4Hz),7.91(2H,d,J=8.7Hz),7. 96(2H,d,J=8.7Hz)
β-X- 15		F ₃ C	Ме	Ø	н,н	Н	F	.Н	Н		2.29(3H,s),4.51(2H,s),6.56(1H,d,J=16.2Hz),7.24-7.47(2H,m), 7.59(1H,d,J=16.2Hz),7.78(1H,t,J=8.1Hz)7 .90(2H,d,J=8.7Hz),7.96(2H,d,J=8.7Hz)
β-X- 16		F ₃ C	Ме	S	н,н	Ме	Н	Me	Н	ŀ	2.19(3H,s),2.39(6H,s),4.01(2H,s),6.53(1H,d,J=14.4Hz),7.40-7.54(3H,m),7.92(4H,brs)
β-X- 17		F ₃ C	Me	S	Н,Н	Et	Н	Η	Н	-	1.14(3H,t,J=7.2Hz),2.28(3H,s),2.66(2H,q, J=7.2Hz),4.41(2H,s),6.52(1H,d,J=15.9Hz), 7.50-7.62(4H,m) 7.90(2H,d,J=8.7Hz),7.94(2H,d,J=8.7Hz)
β-X- 18		F ₃ C	GONH2	S	Н,Н	Н	OMe	Н	ОМе		1.04(3H,t,J=6Hz),3.87(6H,s),4.55(2H,s),6. 64(1H,d,J=16.2Hz),6.73(2H,s),7.84(1H,d,J =16.2Hz),7.80- 8.14(2H,m),7.94(2H,d,J=8.4Hz),8.04(2H,d, J=8.4Hz)

[0249] [表94]

No	合成法	R1	R2	X1	R3,R4	R5	R7	R8	R9	R10	R20	R2	R17	mp	NMR(CDCl3 or DMSO-d6)
α-11-1	α-11	F ₃ C	Me	0	Н,Н	н	н	н	н	Н	н	н	Me	,	2.34(3H,s),3.75(3H,s),4.83(2H,s),5.23(2H,s),6.51(1H,d,J=3.0Hz),6.97(1H,dd,J=2.4,9.0Hz),7.08(1H,d,J=3.0Hz),7.16(1H,d,J=9.0Hz),7.27(1H,d,J=2.4Hz),7.75(2H,d,J=9.0Hz),7.85(2H,d,J=9.0Hz).
α-11-2		F ₃ C	Me	0	н,н	н	н	н	Ме	н	н	н	Et		1.21(3H,t,J=7.2Hz),1.80(3H,d,J=7.2Hz),2.34(3H,s),4.16(2H,q,J=7.2Hz),5.07(1H,q,J=7.2Hz),5.22(2H,s),6.51(1H,d,J=3.0Hz),6.95(1H,dd,J=8.7,2.4Hz),7.25(3H),7.74(2H,d,J=8.7Hz),7.84(2H,d,J=8.7Hz)
α-11-3	α-11	F ₃ C	Me	0	Н,Н	н	Н	Н	nPr	Н	н	н	Et		0.93(3H,t,J=7.2Hz),1.22(3H,t,J=7.2Hz),1.23(2H),2.17(2H),2.34(3H,s),4.15(2H,q,J=7.2Hz),4.92(1H,dd,J=9.3.6.3Hz),6.95(1H,dd,J=9.0.6.51(1H,d,J=3.3Hz),6.95(1H,dd,J=9.0.2.4Hz),7.26(3H),7.74(2H,d,J=8.4Hz),7.84(2H,d,J=8.4Hz)
α-11-4	α-11	F ₃ C	CH2OEt	s	н,н	н	н	Н	н	н	» Н	н	Ме		1.25(3H,t,J=6.9Hz),3.56(2H,q,J=6.9Hz),3.74(3H,s),4.18(2H,s),4.47(2H,s),4.83(2H,s),6.50(1H,dd,J=3.0,0.9Hz),7.09(1H,d,J=3.0Hz),7.17(1H,d,J=8.7Hz),7.31(1H,dd,J=8.7,1.8Hz),7.74(3H),7.88(2H,d,J=8.7Hz)
α-11-5	α·−11	F ₃ C	CH2OnPr	s	н,н	н	н	Н	н	н	н	н	Me		0.94(3H,t,J=7.2Hz),1.63(2H),3.46(2H, t,J=6.6Hz),3.74(3H,s),4.18(2H,s), 4.46(2H,s),4.83(2H,s),6.50(1H,dd,J=3 0.0.9Hz),7.09(1H,d,J=3.0Hz),7.17(1H,d,J=8.4Hz),7.30(1H,dd,J=8.4,1.8Hz), 7.74(3H),7.89(2H,d,J=8.7Hz)
α-11-6	α-11	cı	Ме	0	н,н	Me	н	н	н	н	н	н	Ме		2.33(3H,s),2.45(3H,s),3.74(3H,s),4.82 (2H,s),5.17(2H,s),6.53(1H,d,J=3.3Hz),7.04(2H,s),7.08(1H,d,J=3.3Hz),7.46(2H,d,J=8.7Hz),7.67(2H,d,J=8.7Hz)
α-11-7	α-11	CI	Me	S	н,н	н	Н	н	н	Н	н	н	Me		2.18(3H,s),3.74(3H,s),4.07(2H,s),4.83 (2H,s),6.50(1H,dd,J=3.3,0.6Hz),7.08(1H,d,J=3.3Hz),7.17(1H,d,J=8.7Hz), 7.29(1H,dd,J=8.7,1.8Hz),7.44(2H,d,J =8.7Hz),7.62(2H,d,J=8.7Hz),7.74(1H,d,J=1.8Hz)

[0250] [表95]

No	合成法	R1	R2	Χ1	R3,R4	R5	R7	R8	R9	R10	R20	R2	R17	mp	NMR(CDCl3 or DMSO-d6)
α-11-8	α-11	F ₃ CO	Ме	0	н,н	Me	н	н	н	н	н	Н	Ме		2.34(3H,s),2.45(3H,s),3.74(3H,s), 4.82(2H,s),5.17(2H,s),6.53(1H,d,J=3. OHz),7.04(2H,s),7.08(1H,d,J=3.0Hz), 7.34(2H,d,J=9.0Hz),7.76(2H,d,J=9.0 Hz)
α-11-9	α-11	F ₃ C	CH=NOEt	o	н,н	Ме	н	н	Н	Н	н	н	Ме		1.25(3H,t,J=7.2Hz),2.47(3H,s), 3.75(3H,s),4.13(2H,q,J=7.2Hz),4.83(2 H,s),5.35(2H,s),6.53(1H,dd,J=3.3,0.6 Hz),7.07(3H),7.77(2H,d,J=8.1Hz),7.9 3(2H,d,J=8.1Hz),8.23(1H,s)
α-11- 10	α-11	F ₃ C	CH2OnPr	o	н,н	Τ	н	×	Н	Н	Н	н	Me		0.92(3H,t,J=7.2Hz),1.57-1.68(2H,m), 3.50(2H,d,J=6.6Hz),3.74(3H,s), 4.57(2H,s),4.83(2H,s),5.28(2H,s), 6.51(1H,dd,J=3.3Hz,J=0.9Hz)), 6.96(1H,dd,J=8.7Hz,J=2.4Hz),7.08(1 H,d,J=3.3Hz),7.16(1H,d,J=9.0Hz),7.2 6(1H,d,J=0.9Hz),7.76(2H,dJ=8.1Hz), 7.97(2H,d,J=8.1Hz)
α-11- 11	α-11	F ₃ C	CH2OCH2c Pr	s	н,н	н	н	н	н	н	н	н	Ме		0.19-0.24(2H,m),0.53-0.60(2H,m), 1.03-1.16(1H,m),3.35(2H,d,J=7.2Hz), 3.74(3H,s),4.19(2H,s),4.48(2H,s),4.83 (2H,s),6.50(1H,dd,J=3.3Hz,0.9Hz), 7.08-7.31(3H,m),7.72-7.75(3H,m), 7.90(1H,d,J=8.7Hz)
α-11- 12	α-11	F ₃ C	Ме	s	н,н	н	н	н	н	н	Ме	Me	Ме		2.18(3H,s),2.19(3H,s),2.29(3H,s), 3.73(3H,s),4.08(2H,s),4.76(2H,s), 7.07(1H,d,J=8.7Hz), 7.22(1H,dd,J=8.7Hz,J=1.5Hz),7.57(1 H,d,J=1.5Hz),7.71-7.81(4H,m)
α-11- 13	α-11	F ₃ C	CH2OEt	s	н,н	н	н	н	н	н	Ме	Me	Ме		1.24(3H,t,J=6.9Hz),2.18(3H,s), 2.29(3H,s),3.56(2H,q,J=6.9Hz),3.73(3H,s),4.17(2H,s),4.45(2H,s), 4.75(2H,s),7.06(1H,d,J=8.4Hz),7.22(1 H,dd,J=8.4Hz,J=1.5Hz),7.58(1H,d,J= 1.5Hz),7.74(2H,d,J=8.1Hz),)788(2H, d,J=8.1Hz)
α-11- 14	α-11	F ₃ C	CH=NOEt	s	н,н	н	Н	Н	н	н	н	н	Me		1.35(3H,t,J=7.2Hz), 3.74(3H,s), 4.24(2H,q,J=7.2Hz), 4.32(2H,s), 4.83(2H,s), 5.01(1H,dd,J=0.9Hz, 3.3Hz), 7.08(1H,d,J=3.3Hz), 7.17(1H,d,J=8.4Hz), 7.31(1H,dd, J=1.8Hz,8.4Hz), 7.74-7.85(5H,m), 8.17(1H,s)
α-11- 15	α-11	CI CI	CH2OEt	s	Н,Н	Ме	н	н	н	н	Ħ	Н	Ме		1.23(3H,t,J=6.9Hz), 2.65(3H,s), 3.53 (2H,q,J=6.9Hz), 3.74(3H,s), 4.06(2H, s), 4.40(2H,s), 4.82(2H,s), 6.56(1H,d, J=3.3Hz), 7.02(1H,d,J=8.4Hz), 7.08 (1H,d,J=3.3Hz), 7.35(1H,d,J=8.4Hz), 7.45(2H,d,J=8.7Hz), 7.69(2H,d,J=8.7Hz)

[0251] [表96]

No	合成法	R1	R2	X1	R3.R4	R5	R7	Вã	Rq	R10	R20	R21	R17	mp	NMR(CDCi3 or DMSO-d6)
α-11-	α-11	, , , ,	112	<u> </u>	110,114	1.0	10	1.0	113	1110	1120	1121		тър	1.00(3H.t.J=7.2Hz).1.68-1.76(2H.
16	и п														m),2.35(3H,s),2.69(2H,t,J=7.5Hz),
"		ا		ŀ											3.74(3H,s),4.77(2H,s),5.24(2H,s),6.86
			Me	0	H.H	н	н	Н	н	н	nPr	Н	Me		(1H,s),6.96(1H,dd,J=8.7,2.4Hz),7.16(
		F ₃ C [^]		"	'',''	١	l ''	l '''	· ·	''		l '''	""		1H,d,J=8,7Hz),7.20(1H,d,J=2.4Hz),
															7.75(2H.d.J=8.7Hz).7.85(2H.d.J=8.7
							l								Hz)
α-11-	α-11														1.32(3H,t,J=7.2Hz),2.39(3H,s),
17															2.75(2H,q,J=7.2Hz)3.76(3H,s),4.79(2
			Me	0	нн	н	н	н	н	н	Et	Н	Me		H,s),5.21(2H,s),6.86(1H,s),6.96(1H,dd
		F ₃ C		_	,	''	'					''			J=9.0,2.4Hz),7.12(1H,d,J=9.0Hz),7.2
								ŀ		1					0(1H,d,J=2.4Hz),7.74(2H,d,J=8.4Hz),
						ļ	ļ					ļ	_		7.84(2H,d,J=8.4Hz)
α-11- 18	α-11														2.38(3H,s)3.80(3H,s),4.88(2H,s),
18	-		Me	0	н,н	н	н	н	н	н	CN	н	Me		5.23(2H,s),7.09(1H,dd,J=9.0,2.4Hz),
		F ₃ C	Me	١٠	П,П	n	"	7	н	"	CN	"	Me		7.24(1H,d,J=9Hz),7.36(1H,d,J=2.4Hz),7.60(1H,s),7.76(2H,d,J=9.0Hz),7.86(
			W		ł										2H.d.J=9.0Hz)
α-11-	α-11				 		\vdash	_				-	_		2.22(3H,s),3.75(3H,s),4.09(2H,s),
19	u 11														4.84(2H,s),6.51(1H,d,J=3.3Hz),
"		المالي	Me	s	H,H	н	Н	н	н	Н	н	Н	Me		7.08-7.32(3H,m),7.66-7.78(3H,m),
		30	ŀ							l					7.81(2H,d,J=8.4Hz).
α-11-	α-11									 					2.34(3H,s),2.38(3H,s),3.74(3H,s),
20															4.77(2H,s),5.21(2H,s),6.25(1H,s),6.88
		_	Me	0	н,н	н	н	н	н	н	н	Me	Me		(1H,dd,J=2.9Hz,8.8Hz),7.08(1H,d,J=8
		F ₃ C ~													.8Hz),7.17(1H,d,J=2.9Hz),7.74(2H,d,J
			*												=8.7Hz),7.84(2H,d,J=8.7Hz).
α-11-	α−11														1.24(3H,t,J=6.9Hz),3.60(2H,q,J=6.9H
21															z),3.75(3H,s),4.58(2H,s),4.83(2H,s),
		E.C.	CH2OEt	0	H,H	Н	н	н	H	н	н	н	Me		5.28(2H,s),6.51(1H,d,J=3.0Hz),6.94-
		1, 30				l									7.28(4H,m),7.76(2H,d,J=8.7Hz),7.96(
										L					2H,d,J=8.7Hz).
α-11-	α-11														2.38(3H,s),3.76(3H,s),3.92(3H,s),
22			١ ا	_		١	٠	١.,	١	١ ا		١ ا			4.81(2H,s),5.25(2H,s),6.45(1H,d,J=3.
		F ₃ C	Me	0	н,н	Н	OMe	H	н	Н	н	H	Me		0Hz),6.73(1H,s),6.97(1H,d,J=3.0Hz),7
		*					ŀ								.27(1H,s),7.74(2H,d,J=8.7Hz),7.84(2 H,d,J=8.7Hz).
α-11-	α-11					<u> </u>			H			 			2.37(3H,s).2.46(3H,s),3.74(3H,s),
23	u 11														4,82(2H,s),5.19(2H,s),6.53(1H,d,J=3.
			Me	0	H.H	Me	н	Н	н	н	н	ΙнΙ	Me		0Hz),7.04(2H,s),7.09(1H,d,J=3.0Hz),
		F ₃ C		_	,		''	''	.,			``			7,753(2H,d,J=8,4Hz),7.86(2H,d,J=8.4
															Hz).
α-11-	α−11														1.25(3H,t,J=7.0Hz),2.46(3H,s),
24															3.61(2H,q,J=7.0Hz),3.75(3H,s),4.61(2
			CH2OEt	0	н,н	Me	н	н	н	н	н	н	Ме		H,s),4.83(2H,s),5.24(2H,s),6.53(1H,d,
		F₃C	SIZUET		17,17	INIG	["	''	"	'"	17	'`	IAIG		J=3.0Hz),7.05(2H,s),7.09(1H,d,J=3.0
															Hz),7.97(2H,d,J=8.7Hz),
						<u> </u>	 								7.77(2H,d,J=8.7Hz).
α-11-	α-11														2.30(3H,s),2.35(3H,s),3.74(3H,s),
25															4.77(2H,s),5.24(2H,s),6.86(1H,s),6.96
		F ₃ C	Me	0	н,н	н	Н	н	Н	Н	Me	Н	Me		(1H,dd,J=2.4Hz,8.7Hz),7.12(1H,d.J=8
		"													.7Hz),7.18(1H,d,J=2.4Hz),7.75(2H,d,J
		L				L	<u>L</u>					L			=8.7Hz),7.85(2H,d,J=8.7Hz).

[0252] [表97]

No	合成法	R1	R2	Х1	R3,R4	R5	R7	R8	R9	R10	R20	R21	R17	mp	NMR(CDCl3 or DMSO-d6)
α-11- 26	α-11	F ₃ C	Ме	0	Н,Н	Et	н	н	н	н	н	н	Me		
α-11- 27	α-11	F ₃ C	Ме	0	н,н	Ме	н	н	н	н	Me	н	Me		2.37(3H,s),2.49(3H,s),2.62(3H,s), 3.74(3H,s),4.73(2H,s),5.15(2H,s),6.80 (1H,s),6.95(1H,d,J=8.4Hz), 7.01(1H,d,J=8.4Hz),7.75(2H,d,J=8.4 Hz),7.86(2H,d,J=8.4Hz).
α-11- 28	α-11	F ₃ C	Ме	s	Н,Н	ОМе	н	н	н	. н	н	н	Ме		2.41(3H,s),3.76(3H,s),4.08(3H,s), 4.81(2H,s),5.22(2H,s),6.66(1H,d,J=3. 3Hz),6.87(1H,d,J=8.4Hz),7.00- 7.07(2H,m),7.75(2H,d,J=8.4Hz), 7.86(2H,d,J=8.4Hz).
α-11- 29	α-11	F ₃ C	Me	0	н,н	CH2 OMe	н	н	н	н	Н	Н	Me		2.37(3H,s),3.40(3H,s),3.74(3H,s), 4.82(2H,s),4.84(2H,s),5.23(2H,s),6.68 (1H,d,J=3.3Hz),7.06-7.20(3H,m), 7.75(2H,d,J=8.4Hz), 7.86(2H,d,J=8.4Hz).
α-11- 30	α-11	F ₃ C	CH2OEt	s	Н,Н	Me	н	н	н	н	н	Н	Me		7
α-11- 31	α-11	F ₃ C	Ме	0	н,н	н	н	н	н	н	CH=N OMe	н	Me		Rf=0.75 (hexane/AcOEt=1/1)
α-11- 32	α-11	F ₃ C	Ме	0	н,н	Н	Н	H	н	н	CH=N OEt	Н	Me		Rf=0.4 (hexane/AcOEt=2/1)
α-11- 33	α-11	F ₃ C	Ме	s	н,н	Me	н	н	н	н	н	н	Me		2.18(3H,s),2.65(3H,s),3.74(3H,s),3.99 (2H,s),4.83(2H,s),6.56(1H,d,J=3.3Hz),7.03(1H,d,J=8.7Hz),7.08(1H,d,J=3.3 Hz),7.35(1H,d,J=8.7Hz),7.73(2H,d,J=8.4Hz),7.80(2H,d,J=8.4Hz)
α-11- 34	α-11	CI	Ме	0	н,н	Ме	н	н	н	н	Ме	н	Ме		2.33(3H,s),2.49(3H,s),2.61(3H,s),3.73 (3H,s),4.72(2H,s),5.13(2H,s),6.80(1H, s),6.95(1H,d,J=8.7Hz),7.01(1H,d,J=8. 7Hz),7.47(2H,d,J=8.7Hz), 7.67(2H,d,J=8.7Hz).
α-11- 35	α-11	F ₃ C	CH2OEt	0	н,н	Me	н	н	Ŧ	н	Ме	н	Me		1.25(3H,t,J=7.0Hz),2.49(3H,s), 2.62(3H,s),3.61(2H,q,J=7.0Hz),3.74(3 H,s),4.61(2H,s),4.73(2H,s),5.20(2H,s), 6.81(1H,s),6.96(1H,d,J=9.0Hz), 7.02(1H,d,J=9.0Hz),7.77(2H,d,J=8.4 Hz),7.97(2H,d,J=8.4Hz).
α-11- 36	α-11	F ₃ C	Н	s	H. p- FC6H4	н	н	н	Н	н	н	Н	Me		3.74(3H,s),4.82(2H,s),5.49(1H,s), 6.48 (1H,dd,J=3.3,0.9Hz),6.68(1H,s), 7.01(2H,dd,J=8.7,8.7Hz),7.08(1H,d,J =3.3Hz),7.11(1H,dd,J=8.4,0.9Hz),7.20 (1,dd,J=8.4,1.2Hz),7.41(2H,dd,J=8.7, 5.4Hz),7.67-7.72(3H,m), 7.85(2H,d,J=8.4Hz)

[0253] [表98]

No	合成法	R1	R2	Х1	R3,R4	R5	R7	R8	R9	R10	R20	R2 1	R17	mp	NMR(CDCl3 or DMSO-d6)
α-11- 37	α-11	F ₃ C	CH=NOnPr	0	н,н	Ме	Н	н	н	н	н	н	Me		0.91(3H,t,J=7.5Hz),1.62-1.70(2H,m). 2.48(3H,s),3.75(3H,s),4.03(2H,t,J=6.9 Hz),4.84(2H,s),5.36(2H,s),6.54(1H,d, J=3.3Hz),7.03-7.10(3H,m),7.78(2H,d, J=8.7Hz),7.94(2H,d,J=8.7Hz), 8.25(1H, s)
α-11- 38	α-11	F ₃ C	Et	0	н,н	Ме	π	н	н.	н	Ме	н	Ме		1.31(3H,t,J=7.5Hz),2.49(3H,s),2.62(3 H,s),2.82(2H,q,J=7.5Hz),3.74(3H,s),4 .73(2H,s),5.15(2H,s),6.81(1H,s),6.96(H,d,J=8.7Hz),7.02(1H,d,J=8.7Hz),7. 76(2H,d,J=8.7Hz),7.85(2H,d,J=8.7Hz),2
α-11- 39	α-11	F ₃ C	CH2OEt	S	н,н	Ме	н	н	Н	н	Me	н	Ме		1.25(3H,t,J=6.9Hz),2.48(3H,s),2.85(3 H,s),3.55(2H,q,J=6.9Hz),3.73(3H,s),4 .05(2H,s),4.42(2H,s),4.74(2H,s),6.81(,J=8.4Hz),7.31(1h,d),3.84(,J=8.4Hz),7.89(2H,d,J=8.7Hz),7.89(2H,d,J=8.7Hz)
α-11- 40	α-11	F ₃ C	Ме	S	н,н	Ме	· н	н	Н	н	Ме	н	Ме		2.19(3H,s),2.47(3H,s),2.85(3H,s),3.73 (3H,s),3.96(2H,s),4.73(2H,s),6.81(1H, s),6.93(1H,d,J=8.4Hz),7.31(1H,d,J=8. 4Hz),7.73(2H,d,J=8.7Hz),),7.80(2H,d, J=8.7Hz)

[0254] [表99]

No	R1	R2	X1	R3,R4	R5	R7	R8	R9	R10	R20	R21
AA-1	F ₃ C	Ме	S	н,н	H	Н	Н	Н	Н	Н	Н
AA-2	F ₃ C	Ме	0	н,н	I	I	Н	Ме	Н	Ħ	Ħ
AA-3	F ₃ C	Ме	s	н,н	Н	Н	Н	Ме	H	н	Н
AA-4	F ₃ C	Ме	0	Н,Н	Н	H	н	Et	Н	Н	Н
AA-5	F ₃ C	Me	S	н,н	Н	н	Н	Et	Н	Н	Н

[0255] [表100]

No	RI	R2	X1	R3,R4	R5	R7	R8	R9	R10	R20	R21
AA-7	F ₃ C	Ме	s	H,H	Н	Н	Н	nPr	Н	H	н
8-AA	F ₃ C	Ме	0	Н,Н	н	Н	Н	Ме	Ме	Н	Н
AA-9	F ₃ C	Ме	S	H,H	Н	Н	Н	Ме	Ме	Н	Н
AA-11	F ₃ C	Ме	S	H,H	Н	Н	Н	Н	Н	• н	Me
AA-12	F ₃ C	Me	0	H,H	Н	Н	Н	Н	Н	н	OMe
AA-13	F ₃ C	Ме	S	н,н	Н	Н	Н	H	Н	H	ОМе
AA-14	F ₃ C	Ме	0	Н,Н	Н	Н	Н	Н	Н	Me	Ме
AA-16	F ₃ C	Ме	0	H,H	Н	Н	Н	н'	Н	Me	Н
AA-17	F ₃ C	Me	S	Н,Н	H	Н	H	Н	Н	Ме	Н
AA-19	F ₃ C	Me	S	Н,Н	Н	Н	н	Н	Н	Et	Н
AA-21	F ₃ C	Ме	S	Н,Н	н	Η	Н	н	Н	nPr	H
AA-22	F ₃ C	Ме	0	Н,Н	Н	Н	Н	Н	Н	CH2CH2NMe2	Н
AA-23	F ₃ C	Ме	S	Н,Н	н	H	Н	Н	Н	CH2CH2NMe2	Н
AA-24	F ₃ C	Ме	0	н,н	I	I	Н	H	Н	CH2CONH2	Н
AA-25	F ₃ C	Ме	S	Н,Н	Н	н	н	Н	Н	CH2CONH2	Н

[0256] [表101]

No	R1	R2	Χī	R3,R4	R5	R7	R8	R9	R10	R20	R21
AA-26	F ₃ C	Ме	0	н,н	Н	Н	Н	Н	Н	CH2CH2OH	Н
AA-27	F ₃ C	Ме	s	Н,Н	H	Н	Н	Н	Н	CH2CH2OH	Н
AA-28	F ₃ C	Ме	0	н,н	Н	Н	Н	Н	Н	CH2CH2OMe	Н
AA-29	F ₃ C	Ме	S	Н,Н	Н	н	Н	Н	Н	CH2CH2OMe	Н
AA-30	F ₃ C	Me	0	н,н	Н	OMe	Н	Н	Н	Н	Н
AA-31	F ₃ C	Ме	S	Н,Н	н	OMe	Н	Н	н	» н	Н
	F ₃ C	Ме	0	н,н	H	Ме	H	Н	H	Н	Н
AA-33	F ₃ C	Ме	S	н,н	Н	Ме	H	H	Н	Н	Н
AA-34	F ₃ C	Ме	0	н,н	Н	Н	Ме	н	н	Н	Н
AA-35	F ₃ C	Ме	S	Н,Н	Н	Н	ОМе	Н	Н	Н	н
AA-36	F ₃ C	Ме	0	Н,Н	Н	н	ОМе	Н	Н	Н	Н
AA-37	F ₃ C	Ме	S	H,H	Н	Н	Ме	I	Н	Н	Н
	F ₃ C	MeOCH2	0	H,H	Н	Н	Н	Н	Н	Н .	Н
AA-39	F ₃ C	MeOCH2	S	н,н	Н	Н	Н	Н	Н	Н	Н
AA-40	F ₃ C	EtOCH2	0	н,н	Н	Н	Н	H	Н	Н	Н

[0257] [表102]

No	合成法	RI	R2	X1	R3.R4	R5	R7	R8	R9	BIC	R20	D21	mp	NMR(CDCl3 or DMSO-d6)
β-3-1	<i>B</i> −3	Λ,	Me	6	H.H	Н	H	Н	Н	Н	H	H	mp 159-	
β-3-1	ρ-3		Me	١٠	п,п	l ri	"	T	Г .	"	"	"		2.34(3H,s),4.88(2H,s),5.23(2H,s),6.52 (1H,d,J=3.0Hz), 6.98(1H,dd,J=2.4,
										l			100	9.0Hz),7.08(1H,d,J=3.0Hz),7.17(1H,d
		F₃C	ĺ											J=9.0Hz).7.27(1H.d.J=2.4Hz).7.75(2
			ļ					1						H,d,J=8.4Hz),7.84(2H,d,J=8.4 Hz).
β-4-1	β-4		Me	s	H,H	н	Н	Н	н	Н	Н	н	139-	2.23(3H,s),4.18(2H,s),4.79(2H,s),6.36
								İ					141	(1H,d,J=2.7Hz), 7.12-7.36 (2H,m),
		F ₃ C				1			l					7.63(1H,S),7.90(2H,d,J=9.0Hz),7.94(
B-3-2	<i>B</i> −3			0			١	 				 	104	2H,d,J=9.0 Hz). 1.70(3H.d.J=7.2Hz).2.31(3H.s).5.24(2H.s).5
p-3-2	p-3		Ме	١ ٠	H,H	н	Н	Н	Ме	н	н	Н	186	
			<u> </u>										'00	.27(1H,q,J=7.2Hz),6.40(1H,d,J=3.0Hz),6.88 (1H.dd,J=9.0.2.4Hz),7.25(1H.d,J=2.4Hz),7.
		F ₃ C					·		ĺ					35(1H,d,J=9.0Hz),7,43(1H,d,J=3.0Hz),7.92(
							ŀ							2H.d.J=8.7Hz),7.99(2H.d.J=8.7Hz)
B-3-3	<i>B</i> −3		Me	0	H.H	н	Н		nPr	н	Н	Н	139-	0.84(3H.t.J=7.2Hz).1.10(2H).2.11(2H.g.J=7
	, ,		ivie	0	П,П	п	"	"	mer	П	П	"	141	.2Hz),2.31(3H,s),5.13(1H,t,J=7.2Hz),5.24(2
														H,s),6,41(1H,d,J=3.0Hz),6,88(1H,dd,J=9.0,
		F ₂ C												2.4Hz),7.25(1H,d,J=2.4Hz),7.40(1H,d,J=9.0
		, g-												Hz),7.42(1H,d,J=3.0Hz),7.92(2H,d,J=8.7Hz
										ŀ),7.99(2H,d,J=8.7Hz)
β-4-2	β-4		CH2OEt	s	H,H	н	Н	Н	Н	Н	Н	Н	152-	1.13(3H,t,J=6,9Hz),3.51(2H,q,J=6.9Hz),4.2
													154	2(2H,s),4.49(2H,s),4.92(2H,s),6.39(1H,d,J=
									l					2.7Hz),7.18(1H,dd,J=8.4,1.8Hz),7.34(2H),7.
		F3C												65(1H,d,J=1.8Hz),7.93(2H,d,J=8.7Hz),7.98(
								<u>L</u>						2H,đ,J=8.7Hz)
β −4−3	β-4		CH2OnPr	S	H,H	Н	н	н	Н	н	Н	Н		0.85(3H,t,J=7.2Hz),1.53(2H),3.42(2H,t,J=6.
								l	ŀ				161	6Hz),4.23(2H,s),4.49(2H,s),5.00(2H,s),6.40(
		Fac									1			1H,d,J=3.0Hz),7.19(1H,dd,J=8.4,1.8Hz),7.3
	\	30												6(2H),7.66(1H,d,J=1.8Hz),7.92(2H,d,J=8.7
0.04				_						<u> </u>			105	Hz),7.98(2H,d,J=8.7Hz)
β -3-4	β-3		Me	0	H,H	Me	н	Н	н	Н	Н	Н	195- 197	2.29(3H,s),2.33(3H,s),4.94(2H,s),5.17(2H,s)
													137	,6.40(1H,d,J=3.3Hz),7.03(1H,d,J=9.0Hz),7.
		CI - ~							1					17(1H,d,J=9.0Hz)7.29(1H,d,J=3.3Hz),7.63(2H,d,J=8.7Hz),7.78(2H,d,J=8.7Hz)
B-4-4	<i>β</i> −4		Me	s	H,H	н	H	Н	н	н	Н	н	164-	2H,d,J=8.7Hz),7.78(2H,d,J=8.7Hz) 2.18(3H,s),4.18(2H,s),4.99(2H,s),6.41(1H,d,
μ-4-4	ρ-4		Me	ာ	п,п		п	"	"		"	"	166	z.18(3m,s),4.18(2m,s),4.99(2m,s),6.41(1m,d, J=3.0Hz),717(1H,dd,J=8.4,1.8Hz),7.35(2H),
		اللالما												7.60(2H,d,J=8.7Hz),7.64(1H,d,J=1.8Hz),7.7
		G .												2(2H,d,J=8.7Hz)
<i>β</i> −3−5	<i>B</i> −3		Me	0	H.H	Me	Н	Н	н	Н	Н	Н	178-	2.30(3H,s),2,33(3H,s),4.94(2H,s),5.18(2H,s)
	~ ~		"""	ľ	,		l ''	''	l ''	''	''		180	,6.40(1H,dd,J=3.3,0.6Hz),7.03(1H,d,J=9.0H
		F₃CO [~]												z),7.17(1H,d,J=9.0Hz),7.29(1H,d,J=3.3Hz),
														7.56(2H,d,J=8,7Hz),7,90(2H,d,J=8.7Hz)
L			1	_			<u> </u>							

[0258] [表103]

No	合成法	R1	R2	X1	R3.R4	R5	R7	R8	R9	R10	R20	R21	mp	NMR(CDCI3 or DMSO-d6)
β-3-6	β-3		CH=NOEt	0	Н,Н	Me	Н	Н	Н	н	Н	Н	172-	1.17(3H,t,J=6.9Hz),2.32(3H,s),4.06(2H,q,J
`								1 1					174	=6.9Hz),4.95(2H,s),5.34(2H,s),6.40(1H,d,J=
	-						İ							2.7Hz),7.02(1H,d,J=8.7Hz),7.17(1H,d,J=8.7
		F3C ↓						1 1						Hz),7.29(1H,d,J=2.7Hz),7.95(2H,d,J=8.4Hz
),8.10(2H,d,J=8.4Hz),8.36(1H,s)
β −3−7	β −3		CH2OnPr	0	H,H	н	Н	Н	H	Н	Н	н	131-	0.92(3H,t,J=7,2Hz),1.56-1.68(2H,m),3.49
												·	132	(2H,d,J=6.6Hz),4.57(2H,s),4.87(2H,s),5.28(
			0									ļ	İ	2H,s),6.52(1H,d,J=3.0Hz),6.96(1H,dd,J=8.7
	5.00	F ₃ C												Hz,J=2.4Hz),7,07(1H,d,J=3.0Hz),7.15(1H,d,
														J=8.7Hz),7.26(1H,d,J=2.4Hz),7.76(2H,dJ=8
B-4-5	<i>B</i> −4		CH2OCH2	s	H.H	н	Н	н	H		н	Н	140-	.4Hz),7.97(2H,d,J=8.4Hz) 0.19-0.24(2H,m),0.53-0.60(2H,m),1.04-
p -4-5	p -4		cPr	3	п,п		_	"	П	н	п п	"		1.16(1H,m),3.35(2H,d,J=6.9Hz),4.18(2H,s),
			CFI											4.50(2H,s),4.85(2H,s),6.50(1H,d,J=3.3Hz),7
		E.C.											l	.07(1H,d,J=3.3Hz),7.16(1H,d,J=8.4Hz),7.29
		, 30												(1H,dd,J=8.4Hz,1.8Hz),7.72-7.75(3H,m),
														7.90(1H,d,J=8.7Hz)
β-4-6	β-4		Me	s	Н,Н	Н	Н	Н	Н	н	Ме	Me	132-	2.17(3H,s),2.20(3H,s),2.28(3H,s),.4.07(2H,s
													133),4.77(2H,s),7.05(1H,d,J=8.4Hz),7.21(1H,dd
		F ₃ C								l .		ĺ		,J=8.4Hz,J=1.5Hz),7.57(1H,d,J=1.5Hz),7.7
												<u> </u>	ļ	2(2H,d,J=8.4Hz),7.79(2H,d,J=8.4Hz)
β-4-7	β-4		CH2OEt	S	H,H	н	Н	Н	Н	Н	Ме	Ме	122- 125	1.24(3H,t,J=6.9Hz),2.17(3H,s),2.28(3H,s),3.
										:			123	56(2H,q,J=6.9Hz),4.17(2H,s),4.46(2H,s),4.7
		F ₃ C												7(2H,s),7.06(1H,d,J=8.1Hz),7.23(1H,dd,J=8 .1Hz,J=1.5Hz),7.57(1H,d,J=1,5Hz),7,74(2H,
ľ														d,J=8.1Hz),),7.87(2H,d,J=8.1Hz)
B-4-8	B-4		CH=NOEt	s	H.H	н	Н	Н	Н	н	н	н	159-	1.35(3H.t.J=6.9Hz). 4.24(2H.g.J=6.9Hz).
			on noze	_		l ''		l l	•••		l ''	l ''		4.31(2H,s), 4.85(2H,s), 6.51(1H,dd,
														J=0.9Hz,3.3Hz), 7.06(1H,d,J=3.3Hz),
		F ₃ C ✓												7.17(1H,d,J=8.4Hz), 7.31(1H,dd,J=1.5Hz,
														8.4Hz), 7.73-7.84(5H,m), 8.18(1H,s)
β-4-9	₿-4		CH2OEt	S	H,H	Ме	Н	н	Н	Н	н	Н	170-	1.23(3H,t,J=6.9Hz), 2.64(3H,s),
													1/2	3.53(2H,q,J=6.9Hz), 4.05(2H,s), 4.40(2H,s),
														4.80(2H,s), 7.05(2H,d,J=8.4Hz),
		-												7.09(1H,m), 7.34(1H,d,J=8.4Hz),
β-3-8	<i>B</i> −3		Me	0	H.H	Н	Н	Н	Н	Н	nPr	н	163-	7.46(2H,d,J=8.7Hz), 7.68(2H,d,J=8.7Hz) 0.99(3H,t,J=7.2Hz).1.68-1.75(2H,m).
p-3-6	ρ-3		Me	٦	п,п	п	п	"	п	П	1000	_		0.99(3H,t,J=7.2Hz),1.68-1.75(2H,m), 2.35(3H,s),2.69(2H,t,J=7.2Hz),4.81(2H,s),5.
									4					24(2H,s),6.84(1H,s),6.97(1H,dd,J=8.7,2.4H
		F₃C ✓		ľ										z),7.12(1H,d,J=8.7Hz),7.20(1H,d,J=2.4Hz),
													1	7.75(2H,d,J=8.7Hz),7.84(2H,d,J=8.7Hz)
β-3-9	β-3		Me	0	H,H	Н	Н	Н	Н	Н	Et	Н	145-	1.32(3H,t,J=7.2Hz),2.38(3H,s),2.75(2H,q,J
									6		1		147	=7.2Hz),4.82(2H,s),5.23(2H,s)6.86(1H,s),6.
												*	1	97(1H,dd,J=9.0,2.7Hz),7.13(1H,d,J=9Hz),7.
		. 30											1	21(1H,d,J=2.7Hz),7.75(2H,d,J=9.0Hz),7.84(
0.0.65	0.0			Ļ		L	L	<u> </u>		L		L		2H,d,J=9.0Hz)
β-3-10	<i>β</i> −3		Me	О	H,H	н	Н	н	Н	н	CN	Н	207- 209	2.38(3H,s)4.91(2H,s),5.23(2H,s),7.10(1H,dd
													209	,J=9.0,2.7Hz),7.32(1H,d,J=9Hz),7.35(1H,s),
		F3C ~												7.74(1H,s),7.78(2H,d,J=9.0Hz),7.89(2H,d,J =9.0Hz)
B-4-10	<i>B</i> −4		Me	s	Н,Н	н	Н	н	н	н	н	Н	208-	-5.012) 2.23(3H,s),4.18(2H,s),4.79(2H,s),6.36(1H,d,
[IN		Ĭ	, ,,	''	l ''	''	٠.	''	'''	١.,	209	J=2.7Hz), 7.12-7.36 (2H,m), 7.63(1H,S),
		F ₃ C												7.90(2H,d,J=9.0Hz),7.94(2H,d,J=9.0 Hz).
													L	

[0259] [表104]

No	合成	R1	R2	Χ1	R3.R4	R5	R7	R8	R9	R10	R20	R2	mp	NMR(CDCl3 or DMSO-d6)
β-3-11	法 β-3	101	Me	0	H.H	Н	Н	Н	Н	Н	Н	1 Me	204-	2.38(3H,s),2.39(3H,s),4.81(2H,s),5.21(2H,s)
	·	F ₃ C	•		,	+							205	,6.27(1H,s),6.89(1H,dd,J=2.4Hz,9.0Hz),7.09 (1H,d,J=9.0Hz),7.17(1H,d,J=2.4Hz),7.74(2 H,d,J=8.4Hz),7.84(2H,d,J=8.4Hz).
β-3-12	β-3	F ₃ C	CH2OEt	0	Н,Н	Н	Н	Н	н	Н	H	H	143- 144	1.24(3H,t,J=7.0Hz),3.60(2H,q,J=7.0Hz), 4.58(2H,s),4.88(2H,s),5.28(2H,s),6.52(1H,d, J=3.0Hz),6.97(1H,dd,J=3.0Hz,9.0Hz),7.08(1H,d,J=3.0Hz),7.16(1H,d,J=9.0Hz),7.26(1H,d,J=9.0Hz),7.26(2H,d,J=7.8Hz),7.96(2H_d,J=7.8Hz),7.96(2H_d,J=7.8Hz),7.96(2H_d,J=7.8Hz),7.96(2H_d,J=7.8Hz),7.96(2H_d,J=7.8Hz),7.96(2H_d,J=7.8Hz),7.96(2H_d,J=7.8Hz),7.96(2H_d,J=7.8Hz),7.96(2H_d,J=7.8Hz),7.96(2H_
β-3-13		F ₃ C	Ме	0	н,н	Н	OMe	Н	н	Н	Н		189	2.38(3H,s),3.91(3H,s),4.86(2H,s),5.25(2H,s) ,6.47(1H,d,J=3.0Hz),6.74(1H,s),6.97(1H,d,J =3.0Hz),7.28(1H,s),7.74(2H,d,J=8.4Hz),7.8 4(2H,d,J=8.4Hz).
β-3-14	β−3	F ₃ C	Me	0	H,H	Me	Н	Н	н	Н	Ħ	Η	202- 203	2.30(3H,s),2.34(3H,s),4.95(2H,s),5.20(2H,s),6.41(1H,d,J=3.0Hz),7.04(1H,d,J=8.7Hz),7.18(1H,d,J=9.0Hz),7.30(1H,d,J=3.0Hz),7.93(2H,d,J=8.4Hz),8.00(2H,d,J=8.4Hz).
β-3-15	, ′	F ₃ C	CH2OEt	0	н,н	Мe	Н	Н	н	Н	Н	H	197	1.23(3H,t,J=6.9Hz),2.34(3H,s),3.53(2H,q,J=6.9Hz),4.59(2H,s),4.95(2H,s),5.23(2H,s),6.41(1H,d,J=3.0Hz),7.04(1H,d,J=9.0Hz),7.18(1H,d,J=9.0Hz),7.30(1H,d,J=3.0Hz),7.97(2H,d,J=8.1Hz),8.05(2H,d,J=8.1Hz).
β-3-16	β-3	F ₃ C	Me	0	н,н	н	н	н	н	Н	Me	Н		2.30(3H,s),2.35(3H,s),4.81(2H,s),5.24(2H,s),6.84(1H,s),6.96(1H,dd,J=2.4Hz,9.0Hz),7.11(1H,d,J=9.0Hz),7.18(1H,d,J=2.4Hz),7.75(2H,d,J=8.1Hz),7.84(2H,d,J=8.1Hz).
β-3-17	β-3	F ₃ C	Ме	0	Н,Н	Et	Н	Н	Н	Н	Н	н	211- 212	1.25(3H,t,J=7.5Hz),2.38(3H,s),2.93(2H,q,J =7.2Hz),4.88(2H,s),5.20(2H,s),6.56(1H,d,J= 3.0Hz),7.06-7.12(3H,m),7.75(2H,d, J=8.7Hz),7.86(2H,d,J=8.7Hz).
β-3-18	β-3	F ₃ C	Ме	0	Н,Н	Me	Н	Н	Н	Н	Ме	Н	119- 121	2.37(3H,s),2.49(3H,s),2.62(3H,s),4.78(2H,s) ,5.15(2H,s),6.81(1H,s),6.96(1H,d,J=8.7Hz), 7.02(1H,d,J=8.7Hz),7.75(2H,d,J=9.0Hz),7.8 6(2H,d,J=9.0 Hz).
β-4-11	β-4	F ₃ C	Ме	Ø	H,H	ОМе	Н	Н	Н	H	Н	Н	167- 168	2.40(3H,s),4.08(3H,s),4.85(2H,s),5.22(2H,s) ,6.67(1H,d,J=3.3Hz),6.88(1H,d,J=9.0Hz), 7.02-7.08(2H,m),7.75(2H,d,J=8.4Hz), 7.85(2H,d,J=8.4Hz).
β-3-19	β-3	F ₃ C	Me	0	н,н	CH2O Me	Н	H	н	H	Н	Н		2.34(3H,s),3.24(3H,s),4.65(2H,s),4.97(2H,s) ,5.23(2H,s),6.49(1H,d,J=3.3Hz),7.09(1H,d,J =9.0Hz),7.30-7.38(2H,m),7.93(2H,d, J=8.4Hz),8.00(2H,d,J=8.4Hz).
β-4-12	β-4	F ₃ C	CH2OEt	S	н,н	Ме	Н	H	Н	Н	Н	Н	182- 184	1.23(3H,t,J=7.2Hz),2.64(3H,s),3.55(2H,q,J =7.2Hz),4.08(2H,s),4.43(2H,s),4.86(2H,s),6. 57(1H,d,J=3.3Hz),7.03(1H,d,J=8.7Hz),7.07(1H,d,J=3.3Hz),7.36(1H,d,J=8.7Hz),7.74(2H, d,J=8.7Hz),7.87(2H,d,J=8.7Hz).
β-3-20	β-3	F ₃ C	Ме	0	Н,Н	Н	Н	Н	Н	Н	CH=N OMe	Н	196- 198	
β-3-21	β-3	F ₃ C	Ме	0	H,H	Н	Н	н	H	Н	CH=N OEt	Н	170- 171	

[0260] [表105]

No	合成 法	RI	R2	X1	R3,R4	R5	R7	R8	R9	R10	R20	R2 1	mp	NMR(CDCl3 or DMSO-d6)
β-4-13	β-4	F ₃ C	Ме	S	Н,Н	Мө	Н	Н	Н	Н	Н	н	202- 204	2.20(3H,s),2.64(3H,s),3.99(2H,s),4.86(2H,s) ,6.55(1H,d,J=3.3Hz),7.03(1H,d,J=8.1Hz),7. 07(1H,d,J=3.3Hz),7.35(1H,d,J=8.1Hz),7.73(2H,d,J=8.4Hz),7.79(2H,d,J=8.4Hz).
β-3-22	β-3	CI	Ме	0	н,н	Me	н	н	I	Н	Ме	Н		2.33(3H,s),2.48(3H,s),2.61(3H,s),4.77(2H,s) ,5.13(2H,s),6.80(1H,s),6.95(1H,d,J=8.7Hz), 7.02(1H,d,J=8.7Hz),7.47(2H,d,J=8.7Hz),7.6 7(2H,d,J=8.7Hz).
β-3-23	β-3	F ₃ C	CH2OEt	0	H,H	Me	Н	н	Ξ.	Н	Me	Н		1.25(3H,t,J=7.0Hz),2.49(3H,s),2.62(3H,s),3. 61(2H,q,J=7.0Hz),4.60(2H,s),4.77(2H,s),5.2 1(2H,s),6.81(1H,s),6.97(1H,d,J=9.0Hz),7.03(1H,d,J=9.0Hz),7.77(2H,d,J=9.0Hz),7.9 7(2H,d,J=9.0 Hz).
β-4-14	β-4	F ₃ C	н	S	H, p- FC6H4	н	н	н	Н	Н	н	H		4.98(2H,s),5.81(1H,s),6.39(1H,d,J=3.0Hz), 7.18(2H,dd,J=9.08.9Hz),7,18-7.20(1H,m), 7.33(1H,d,J=8.7Hz),7.34(1H,d,J=3.0Hz),7.5 1(1H,s),7.60(2H,dd,J=8.9.5.4Hz),7.65(1H,s), 7.89(2H,d,J=8.4Hz),8.09(2H,d,J=8.4Hz)
β-3-24	β-3	F ₃ C	CH=NOnPr	0	Н,Н	Me	Н	H	н	Н	н	Н	-	0.80(3H,t,J=7.5Hz),1.49-1.61(2H,m),2.30 (3H,s),3.93(2H,t,J=6.9Hz),4.88 (2H, s), 5.32 (2H,s),6.38(1H,d,J=3.3Hz), 6.91(1H,d,J=8.7Hz),7.14(1H,d,J=8.7Hz),7.2 7(1H,d,J=3.4Hz),7.93(2H,d,J=8.4Hz),8.08(2 H,d,J=8.4Hz),8.35 (1H, s)
β-3-25	β-3	F ₃ C	Et	О	Н,Н	Ме	Н	Н	н	Н	Ме	Н	-	1.30(3H,t,J=7.2Hz),2.48(3H,s),2.62(3H,s),2. 82(2H,q,J=7.2Hz),4.76(2H,s),5.15(2H,s),6.7 9(1H,s),6.96(1H,d,J=8.7Hz), 7.02(1H,d,J=8.7Hz),7.75(2H,d,J=8.4Hz),),7 85(2H,d,J=8.4Hz)
β-4-15	β-4	F ₃ C	CH2OEt	S	H,H	Ме	Н	н	Н	Н	Ме	Н		1.24(3H,t,J=6.9Hz),2.47(3H,s),2.83(3H,s),3. 55(2H,q,J=6.9Hz),4.05(2H,s),4.43(2H,s),4.7 6(2H,s),6.79(1H,s),6.93(1H,d,J=8.7Hz)7.32(1h,d,J=8.7Hz),7.74(2H,d,J=8.4Hz),),788(2H _d,J=8.4Hz)
β-4-16	β-4	F ₃ C	Ме	S	Н,Н	Ме	Н	H	Ħ	Н	Ме	Н		2.19(3H,s),2.48(3H,s),2.84(3H,s),3.95(3H,s) ,4.72(2H,s),6.81(1H,s),6.96(1H,d,J=8.4Hz), 7.30(1H,d,J=8.4Hz),7.73(2H,d,J=8.7Hz),),7. 80(2H,d,J=8.7Hz)

[0261] [表106]

	,										
No	R1	R2	X1	R3,R4	R5	R7	R8	R9	R10	R20	R21
BB-2	F ₃ C	Ме	S	Н,Н	Н	Η	н	Ме	Н	. н	Н
BB-3	F ₃ C	Ме	0	H,H	Н	Н	Н	Et	H	Н	н
BB-4	F ₃ C	Me	s	н,н	Н	Н	Н	Et	Н	Н	Н
BB-6	F ₃ C \ \ F ₃ C \ \ F ₃ C \ \ \ F ₃ C \ \ \ F ₃ C \ \ \ F ₃ C \ \ \ F ₃ C \ \ \ F ₃ C \ \ \ F ₃ C \ \ \ F ₃ C \ \ \ F ₃ C \ \ \ F ₃ C \ \ \ F ₃ C \ \ \ F ₃ C \ \ \ F ₃ C \ \ \ F ₃ C \ \ \ F ₃ C \	Me	Ø	н,н	Н	Н	Н	nPr	Ξ	Н	Н
BB-7	F ₃ C	Ме	0	н,н	Ħ	Н	H	Me	Me	Н	H
BB-8	F ₃ C	Ме	S	н,н	Н	Н	Н	Ме	Me	Н	Н
BB-10	F ₃ C	Ме	S	Н,Н	Н	Н	Н	Н	Н	Н	Ме
BB-11	F ₃ C	Ме	0	н,н	Н	H	Н	Н	Н	Н	OMe
BB-12	F ₃ C	Ме	s	Н,Н	H	Н	Н	Н	Н	Н	ОМе
BB-13	F ₃ C	Ме	0	н,н	Н	Н	Н	Н	Н	Ме	Me
	F ₃ C	Ме	0	н,н	H	Н	Н	Н	H	Ме	Н
BB-16	F ₃ C	Ме	S	н,н	Н	Н	Н	Н	Н	Ме	Н

[0262] [表107]

No	R1	R2	Χ1	R3,R4	R5	R7	R8	R9	R10	R20	R21
BB-18	F ₃ C	Me	S	Н,Н	H	Н	Н	Н	Н	Et	Н
BB-20	F ₃ C	Ме	S	Н,Н	Н	Н	Н	Н	Н	nPr	Н
BB-21	F ₃ C	Ме	0	Н,Н	Н	Н	Н	Н	H	CH2CH2NMe2	Н
BB-22	F ₃ C	Ме	S	н,н	Н	Н	Н	Н	Н	CH2CH2NMe2	Н
BB-23	F ₃ C	Ме	0	н,н	Ξ	Н	Ħ	Η	Н	CH2CONH2	Н
BB-24	F ₃ C	Me	S	н,н	H	н	Н	н	Н	CH2CONH2	Н
BB-25	F ₃ C	Me	0	н,н	Ι	Ħ	I	I	Н	СН2СН2ОН	H
BB-26	F ₃ C	Me	S	H,H	Н	H	Н	Н	Н	CH2CH2OH	н
BB-27	F ₃ C	Me	0	Н,Н	Н	Н	н	Н	H	CH2CH2OMe	Н
BB-28	F ₃ C	Me	S	Н,Н	Н	Н	Н	Н	Н	CH2CH2OMe	н
BB-29	F ₃ C	Ме	0	Н,Н	Н	OMe	Н	Н	Н	н	Н
BB-30	F ₃ C	Ме	S	н,н	H	ОМе	Ħ	H	H	H	н
BB-31	F ₃ C	Me	0	H,H	Н	Ме	Н	н	Н	Н	Н
BB-32	F ₃ C	Me	S	Н,Н	Н	Ме	н	H	Н	H	Н
BB-33	F ₃ C	Ме	0	H,H	Н	Н	Me	Н	Н	Н	Н

[0263] [表108]

No	R1	R2	X1	R3,R4	R5	R7	R8	R9	R10	R20	R21
BB-34	F ₃ C	Me	Ø	н,н	Ξ	H	ОМе	Н	H	Н	Н
BB-35	F ₃ C	Ме	0	н,н	I	I	OMe	Н	I	н	H
BB-36	F ₃ C	Me	S	H,H	H	Н	Ме	Н	I	Н	Н
BB-37	F ₃ C	MeOCH 2	0	н,н	Н	Н	H	Н	Н	Н	Н
BB-38	F ₃ C	MeOCH 2	S	Н,Н	H	Н	H	H	Н	Н	Н
BB-39	F ₃ C	EtOCH2	0	Н,Н	H	Н	Н	Н	Н	Н	Н

[0264] [表109]

$$R^{2}$$
 R^{3}
 R^{4}
 R^{5}
 R^{7}
 R^{8}

No	合成法	R1	R2	X1	R3,R4	R ⁶ X ² CO ₂ R ¹⁷	mp	NMR(CDCI3 or DMSO-d6)
α-13-1	α-13	F ₃ C	Me	0	н,н	N CO₂Et		1.28(3H,t,J=7.2Hz),2.33(3H,s),4.25(2H ,q,J=7.2Hz),4.86(2H,s),5.25(2H,s),7.02(2H,d,J=8.7Hz),7.71(2H,d,J=9.0Hz),7.7 4(2H,d,J=8.4Hz),7.83(2H,d,J=9.0Hz)
α-13-2	α-13	F ₃ C	Me	0	н,н	N CO ₂ Et		1.25(3H,t,J=7.2Hz),2,34(3H,s),4.22(2H,q,J=7.2Hz),5.12(2H,s),5.24(2H,s),7.15(1H,dd,J=9.0Hz,2.4Hz),7.28(2H,m),7.75(2H,d,J=8.1Hz),7.84(2H,d,J=8.4Hz),7.97(1H,d,J=0.9Hz)
α-13-3	α-13	F ₃ C	Ме	0	н,н	S_CO ₂ Et		1.25(3H,t,J=7.2Hz),2.34(3H,s),3.81(2H,s),4.16(2H,q,J=7.2Hz),5.27(2H,s),7.12(1H,dd,J=8.7,2.4Hz),7.21(1H,s),7.49(1H,d,J=2.4Hz),7.68(1H,d,J=8.7Hz),7.75(2H,d,J=8.4Hz),7.84(2H,d,J=8.4Hz)

[0265] [表110]

	Ι		1		1			LULADIO DI DIAGO IO)
No	合成法	R1	R2	X1	R3,R4	R5 X2 CO2H17	mp	NMR(CDCl3 or DMSO-d6)
α-14-1	α-14	F ₃ C	Ме	S	н,н	S CO ₂ Et		1.21(3H,t,J=7.2Hz),2.24(3H,s),3.66(2H,s),4.15(2H,q,J=7.2Hz),4.19(2H,s),7.38(1H,d,J=1.8Hz),7.43(1H,dd,J=8.4,1.8Hz),7.69(1H,dd,J=8.4,1.2Hz),7.73(2H,d,J=8.4Hz),7.80(2H,d,J=8.4Hz),7.92(1H,d,J=1.2Hz)
α-13-4	α-13	F ₃ C	CH2OEt	0	н,н	Me CO ₂ Et		1.24(3H,t,J=7.2Hz),1.26((3H,d,J=7.2Hz).2.45(3H,s),3.59(2H,t,J=6.9Hz),3.82(2H,s),4.17(2H,q,J=7.2Hz),4.58(2H,s),5.33(2H,s),7.22(1H,d,J=8.7Hz),7.23(1H,d,J=0.9Hz),7.60(1H,d,J=8.7Hz),7.78(2H,d,J=8.7Hz),7.96(2H,d,J=8.7Hz))
α-13-5	α-13	F ₃ C	CH=NOEt	0	н,н	Me CO ₂ Et		1.21(3H,t,J=7.2Hz),1.25(3H,d,J=7.2Hz),2.45(3H,s),3.81(1H,d,J=0.9Hz),4.06(2 H,t,J=7.2Hz),4.17(2H,q,J=6.9Hz),5.43(2H,s),7.19(1H,d,J=8.7Hz),7.22(1H,d,J= 0.9Hz),7.58(1H,d,J=8.7Hz),7.77(1H,d,J=8.1Hz),7.91(2H,d,J=8.1Hz),8.21(1H,s)
α-14-2	α-14	F ₃ C	CH2OEt	S	н,н	S CO₂Me		1.26(3H,t,J=6.9Hz),2.64(3H,s),3.58(2H,t,J=6.9Hz),3.70(3H,s),3.83(2H,s),4.19(2H,s),4.50(2H,s),7.36(1H,s),7.52-7.57(2H,m),7.75(2H,d,J=8.7Hz),787(2H,d,J=8.7Hz)
α-14-3	α-14	F ₃ C	Me	S	Н,Н	Me CO ₂ Me		2.25(3H,s),2.63(3H,s),3.70(3H,s),3.83(2H,d,J=0.9Hz),4.09(2H,s),7.36(1H,s),7. 52-7.57(2H,m),7.73(2H,d,J=8.4Hz), 780(2H,d,J=8.4Hz)
α-13-6	α-13	F ₃ C	Me	0	н,н	CO₂Me		2.32(3H,s),3.48(5H,s),5.27(2H,s),6.26(1H,s),6.97-7.25(2H,m),7.52(1H,d, J=9.3Hz),7.76(2H,d,J=8.4Hz),7.85(2H, d,J=8.4Hz).
α-14-4	α-14	F ₃ C	Ме	Ø	н.н	O ₂ Me		-
α-14-5	α-14	F ₃ C	Ме	S	Н,Н	CO ₂ Me		
α-14-6	α-14	F ₃ C	Ме	S	H,H	Me CO ₂ Na		1.29(3H,d,J=6.9Hz),2.49-2.64(2H,m), 3.20-3.32(1H,m),3.62(3H,s),3.83 (2H,s),3.90(3H,s),4.21(2H,s),6.73-6.76 (2H,m),7.33(1H,d,J=8.1Hz),7.75- 7.82(4H,m)

[0266] [表111]

[0267] [表112]

No	R1	R2	X1	R3,R4	R5 X2 CO ₂ Me
AAA-13	F ₃ C	Ме	0	н,н	CO ₂ Me
AAA-14	F ₃ C	Ме	S	н,н	O-N CO ₂ Me
AAA-15	F ₃ C	Ме	0	н,н	HN-N CO ₂ Me
AAA-16	F ₃ C	Ме	S	н,н	HN-N CO ₂ Me
AAA-17	F ₃ C	Me	0	H,H	Me N-N CO ₂ Me
AAA-18	F ₃ C	Me	S	H,H	Me N-N CO ₂ Me
AAA-19	F ₃ C	Me	0	Н,Н	CO ₂ Me
AAA-20	F ₃ C	Ме	S	Н,Н	CO ₂ Me
AAA-21	F ₃ C	Ме	0	H,H	N CO ₂ Me
AAA-22	F ₃ C	Ме	s	н,н	N N CO₂Me
AAA-23	F ₃ C	Ме	0	H,H	CO ₂ Me
AAA-24	F ₃ C	Ме	S	H,H	CO₂Me
AAA-2	F ₃ C	Ме	0	Н,Н	CO₂Me

[0268] [表113]

No	R1	R2	Х1	R3,R4	R ⁵ X ² CO ₂ Me
AAA-26	F ₃ C	Me	S	Н,Н	CO₂Me
AAA-27	F ₃ C	Ме	0	Н,Н	N_CO ₂ Me
AAA-28	F ₃ C	Ме	s	Н,Н	N_CO ₂ Me
AAA-29	F ₃ C	Me	0	H,H	N_CO ₂ Me
AAA-30	F ₃ C	Me	S	Н,Н	N_CO ₂ Me
AAA-31	F ₃ C	Ме	0	н,н	N_CO ₂ Me
AAA-32	F ₃ C	Ме	S	Н,Н	N CO ₂ Me
AAA-35	F ₃ C	Me	0	Н,Н	N_CO₂Me
AAA-36	F ₃ C	Ме	S	Н,Н	CO₂Me
AAA-37	F ₃ C	Ме	0	H,H	S—O CO₂Me
AAA-38	F ₃ C	Ме	S	H,H	S—— CO₂Me
AAA-39	F ₃ C	Ме	0	Н,Н	CO₂Me
AAA-40	F ₃ C	Ме	S	H,H	O ₂ Me

[0269] [表114]

No	R1	R2	Χ1	R3,R4	R ⁵ X ² CO ₂ Me
AAA-42	F ₃ C	Ме	S	н,н	CO ₂ Me
AAA-43	F ₃ C	Ме	0	н,н	N_CO₂Me
AAA-44	F ₃ C	Ме	S	Н,Н	N_CO ₂ Me
AAA-45	F ₃ C	Me	0	н,н	N_CO ₂ Me
AAA-46	F ₃ C	Me	S	Н,Н	O CO ₂ Me
AAA-47	F ₃ C	Me	0	н,н	O CO ₂ Me
AAA-48	F ₃ C	Ме	s	н,н	O CO ₂ Me
AAA-49	F ₃ C	Me	0	Н,Н	O CO ₂ Me
AAA-50	F ₃ C	Ме	S	Н,Н	O CO ₂ Me

[0270] [表115]

				• • •				
No	合成法	R1	R2	X 1	R3,R4	R ⁵	mp	NMR(CDCl3 or DMSO-d6)
β-6-1	β-6	F ₃ C	Ме	0	н,н	N CO ₂ H	221- 222	2.37(3H,s),4.95(2H,s),5.27(2H,s),7.09(2 H,m),7.66(1H,d,J=8.7Hz),7.78(2H,d,J=8. 4Hz),7.88(2H,d,J=8.1Hz),8.11(1H,s)
β-6-2	β-6	F ₃ C	Ме	0	н,н	N_CO ₂ H	237- 238.5	2.35(3H,s),5.12(2H,s),5.25(2H,s),7.18(1 H,m),7.33(1H,m),7.75- 7.98(4H,m),7.98(1H,s)
β-6-3	β-6	F ₃ C	Me	0	н,н	S CO₂H	163- 164	2.33(3H,s),3.87(2H,s),5.27(2H,s),7.16(1 H,dd,J=8.7,2.4Hz),7.21(1H,s),7.51(1H,d, J=2.4Hz),7.68(1H,d,J=8.7Hz),7.76(2H,d, J=8.4Hz),7.85(2H,d,J=8.4Hz)
β-7-1	β-7	F ₃ C	Me	S	Н,Н	S CO₂H	143	2.27(3H,s),3.87(2H,s),4.18(2H,s),7.38(1 H,d,J=1.8Hz),7.43(1H,dd,J=8.4,1.8Hz),7. 67(1H,d,J=8.4Hz),7.73(2H,d,J=8.4Hz),7. 80(2H,d,J=8.4Hz),7.92(1H,d,J=1.2Hz)
β-6-4	β-6	F ₃ C	CH2OEt	0	Н,Н	Me CO ₂ H	181- 182	1.33(3H,t,J=7.2Hz),2.45(3H,s),3.59(2H,t, J=7.2Hz),3.86(2H,d,J=0.9Hz),4.58(2H,s) ,5.32(2H,s),7.23(1H,d,J=8.7Hz),7.24(1H, d,J=0.9Hz)),7.58(1H,d,J=8.7Hz),7.77(2H ,d,J=8.7Hz),),795(2H,d,J=8.7Hz)
β-6-5	β-6	F ₃ C	CH=NOEt	0	Н,Н	Me S CO₂H	160- 162	1.20(3H,t,J=6.9Hz),2.45(3H,s),3.86(1H,d,J=0.9Hz),4.05(2H,t,J=6.9Hz),5.43(2H,s),7.19(1H,d,J=8.1Hz),7.24(1H,d,J=0.9Hz),7.56(1H,d,J=8.1Hz),7.77(2H,d,J=8.1Hz),7.90(2H,d,J=8.1Hz),8.21(1H,s)
β-7-2	β-7	F ₃ C	CH2OEt	S	H,H	Me S CO ₂ H	163- 164	1.25(3H.t.,J=6.9Hz),2.64(3H,s),3.57(2H,q ,J=6.9Hz),3.86(2H,s),4.19(2H,s),4.50(2H ,s),7.38(1H,s),7.52-7.57(2H,m),7.74 (2H,d,J=8.4Hz),7.86(2H,d,J=8.4Hz)
β-7-3	β-7	F ₃ C	Ме	S	H,H	Me S CO ₂ H	190- 191	2.25(3H,s),2.63(3H,s),3.82(2H,s),4.09(2 H,s),7.39(1H,s),7.51-7.60(2H,m),7.74 (2H,d,J=8.7Hz),),7.80(2H,d,J=8.7Hz)
β-6-6	β-6	F ₃ C	Me	0	н,н	CO ₂ H	176- 177	2.32(3H,s),3.78(2H,s),5.27(2H,s),6.30(1 H,s),6.98-7.04(2H,m),7.52(1H,d, J=9.6Hz),7.76(2H,d,J=8.4Hz),7.85(2H,d, J=8.4Hz).
β-7-4	β-7	F ₃ C	Me	S	н,н	CO ₂ H		1.97(1H,m),2.24(1H,m),2.30(3H,s),2.48(1H,m),2.98(2H,m),3.06(2H,m),4.25(2H,s) ,7.27(2H,m),7.72~7.83(4H,m),7.94(1H,d, J=8.1Hz)

[0271] [表116]

No	合成法	R1	R2	X 1	R3,R4	R ⁵ X ² CO ₂ H	mp	NMR(CDCl3 or DMSO-d6)
β-7-5	β-7	F ₃ C	Ме	S	H,H	CO ₂ H		2.30(3H,s),3.00(2H,t,J=6.9Hz),3.42(2H,t d,J=6.3Hz,1.8Hz),4.27(2H,s),6.89(2H,t,J =1.8Hz),7.33(1H,m),7.74(1H,d,J=8.4Hz), 7.81(1H,d,J=8.7Hz)

[0272] [表117]

[0273] [表118]

No	Ri	R2	X1	R3,R4	R ⁵ X ² CO ₂ H
BBB-11	F ₃ C	Ме	0	н,н	CO ₂ H
BBB-12	F ₃ C	Me	S	H,H	CO₂H
BBB-13	F ₃ C	Me	0	Н,Н	O−N CO₂H
BBB-14	F ₃ C	Me	S	Н,Н	O-N CO₂H
BBB-15	F ₃ C	Ме	0	н,н	HN-N CO ₂ H
BBB-16	F ₃ C	Ме	S	H,H	HN−N CO₂H
BBB-17	F ₃ C	Me	О	н,н	Me N-N CO ₂ H
BBB-18	F ₃ C	Ме	S	н,н	Me N-N CO ₂ H
BBB-19	F ₃ C	Me	0	н,н	CO ₂ H
BBB-20	F ₃ C	Me	S	н,н	CO ₂ H
BBB-21	F ₃ C	Ме	0	н,н	N N CO ₂ H
BBB-22	F ₃ C	Ме	S	н,н	N CO ₂ H
BBB-23	F ₃ C	Ме	0	Н,Н	CO_2H

[0274] [表119]

	·	r			
No	R1	, R2	X1	R3,R4	R ⁵ X ² CO ₂ H
BBB-24	F ₃ C	Ме	S	н,н	CO₂H
BBB-25	F ₃ C	Ме	0	H,H	CO ₂ H
BBB-26	F ₃ C	Ме	S	Н,Н	CO ₂ H
BBB-27	F ₃ C	Ме	0	H,H	N_CO ₂ H
BBB-28	F ₃ C	Me	S	н,н	N_CO ₂ H
BBB-29	F ₃ C	Ме	0	н,н	N_CO ₂ H
BBB-30	F ₃ C	Me	Ø	н,н	N_CO ₂ H
BBB-31	F ₃ C	Ме	0	Н,Н	N CO ₂ H
BBB-32	F ₃ C	Ме	S	Н,Н	ON CO₂H
BBB-35	F ₃ C	Me	0	н.н	O CO ₂ H
BBB-36	F ₃ C	Ме	S	Н,Н	CO ₂ H
BBB-37	F ₃ C	Ме	0	H,H	S CO₂H
BBB-38	F ₃ C	Ме	S	Н,Н	S CO₂H

[0275] [表120]

No	R1	R2	Х1	R3,R4	R ⁵ X ² CO ₂ H
BBB-39	F ₃ C	Me	0	Н,Н	CO ₂ H
BBB-40	F ₃ C	Ме	s	Н,Н	CO ₂ H
BBB-42	F ₃ C	Ме	S	Н,Н	CO ₂ H
BBB-43	F ₃ C	Me	0	н,н	N CO ₂ H
BBB-44	F ₃ C	Ме	s	Н,Н	N CO ₂ H
BBB-45	F ₃ C	Ме	0	н,н	N CO ₂ H
BBB-46	F ₃ C	Ме	S	Н,Н	N CO₂H
BBB-47	F ₃ C	Me	0	Н,Н	CO₂H
BBB-48	F ₃ C	Ме	S	н,н	N CO ₂ H
BBB-49	F ₃ C	Ме	0	H,H	N CO ₂ H
BBB-50	F ₃ C	Ме	S	Н,Н	N CO ₂ H

[0276] [表121]

$$R^{2}$$
 R^{3}
 R^{4}
 R^{5}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{7}
 R^{8}
 R^{9}
 R^{10}

No	合成法	R1	R2	X1	R3,R4	R ⁵ P ⁶ CO ₂ R ¹⁷	mp	NMR(CDCl3 or DMSO-d6)
α-12-1	α-12	F ₃ C	Ме	s	Н,Н	S CO ₂ Me		2.29(3H,s),3.74(3H,s),4.21(2H,s),7.2 3-7.52(6H,m),7.74(2H,d,J=8.7Hz), 7.83(2H,d,J=8.7Hz).
α-12-2	α−12	F ₃ CO	CH2OEt	S	н,н	S CO₂Me		1.27(3H,t,J=6.9Hz), 3.60 (2H,q,J=6.9Hz), 3.74(3H,s), 4.29(2H,s), 4.53(2H,s), 7.24(2H,d,J=5.4Hz), 7.33(2H,d,J=9.0Hz), 7.43(2H,s), 7.49(2H,d,J=5.4Hz), 7.79(2H,d,J=9.0Hz)
α-12-3	α-12	F ₃ C	CH2OEt	S	н,н	S CO ₂ Me		1.29(3H,t,J=6.93Hz),3.61(3H,t,J=6.9Hz),3 .74(3H,s),4,30(2H,s),4.55(2H,s),7.24(1H,d, J=5.4Hz),7.44(4H,s),7.50(1H,d,J=5.4Hz),7 .76(2H,d,J=8.4Hz),7.88(2H,d,J=8.4Hz).
α-12-4	α−12	F ₃ C	CH2OnPr	S	н,н	S CO ₂ Me		0.97(3H,t,J=7.4Hz),1.57-1.73(2H,m), 3.51(3H,t,J=6.6Hz),3.74(3H,s),4.30(2H,s), 4.55(2H,s),7.24(1H,d,J=5.4Hz),7.44(4H,s), 7.50(1H,d,J=5.4Hz),7.75(2H,d,J=8.4Hz),7. 89(2H,d,J=8.4Hz).
α- XXX-1		F ₃ C	Ме	0	Н,Н	N N N CO ₂ Me		1.21(3H,t,J=7.2Hz),2.33(3H,s),4.29(2H,q, J=7.2Hz),5.27(2H,s),7.13(2H,d,J=8.7Hz),7 .65(2H,d,J=8.7Hz),7.76(2H,d,J=8.7Hz),7.8 5(2H,d,J=8.7Hz),9.03(1H,s),9.35(1H,s)
α- XXX-2		F ₃ C	Ме	0	Н,Н	N S CO ₂ Me		2.34(3H,s),3.85(3H,s),5.26(2H,s),7.11(2H,d,J=8.7Hz),7.76(2H,d,J=8.4Hz),7.81(2H,d,J=8.4Hz),7.85(2H,d,J=8.7Hz)8.88(1H,s)
α- XXX-3		F ₃ C	- Me	0	н,н	N [™] S CO ₂ Me		2.33(3H,s),2.74(3H,s),3.81(3H,m),5.25(2H ,s),7.09(2H,d,J=9.0Hz),7.76(4H,d,J=8.7Hz),7.85(2H,d,J=8.1Hz)
α- XXX-4		F ₃ C	Ме	S	Н,Н	CO₂Me		1.28(1H,m),1.60(1H,m),1.87(1H,m),2.27(3 H,s),2.48(1H,m),3.71(3H,s),4.10(2H,s),7.0 2(2H,d,J=8.4Hz),7.32(2H,d,J=8.4Hz),7.74 (2H,d,J=8.1Hz),7.81(2H,d,J=8.1Hz)

[0277] [表122]

R² R ¹	R ³ R ⁴ R ⁵	R ⁶) Ю₂ме	Ð	
No	Ri	R2	X1	R3,R4	R ⁵ CO ₂ Me
AAAA-1	F ₃ C	Me	0	н,н	S CO ₂ Me
AAAA-2	F ₃ C	MeOCH2	0	н,н	S CO ₂ Me
AAAA-3	F ₃ C	MeOCH2	S	н,н	S CO ₂ Me
AAAA-4	F ₃ C	EtOCH2	0	H,H	S CO ₂ Me
AAAA-5	F ₃ C	EtOCH2	S	Н,Н	\$ CO₂Me
AAAA-7	F ₃ C	Ме	S	Н,Н	N S CO ₂ Me
AAAA-8	F ₃ C	Me	0	H,H	N O CO ₂ Me
AAAA-9	F ₃ C	Ме	S	H,H	N CO ₂ Me
AAAA-10	F ₃ C	Ме	0	Н,Н	S N CO ₂ Me
AAAA-11	F ₃ C	Me	S	H,H	S N CO₂Me
AAAA-12	F ₃ C	Me	0	н,н	CO ₂ Me
AAAA-13	F ₃ C	Me	S	H,H	CO ₂ Me
AAAA-14	F ₃ C	Ме	0	н,н	CO ₂ Me
AAAA-15	F ₃ C	Ме	S	Н,Н	0-N CO ₂ Me

[0278] [表123]

					д5
No	R1	R2	Х1	R3,R4	R ⁵ H _{R⁰} CO ₂ Me
AAAA-16	F ₃ C	Мө	0	H,H	S-N CO₂Me
AAAA-17	F ₃ C	Ме	S	Н,Н	S-N CO _z Me
AAAA-18	F ₃ C	Ме	0	н,н	CO ₂ Me
AAAA-19	F ₃ C	Ме	s	н,н	N-O ₂ Me
AAAA-20	F ₃ C	Ме	0	н,н	N-S CO ₂ Me
AAAA-21	F ₃ C	Me	S	н,н	N-S CO₂Me
AAAA-22	F ₃ C	Me	0	н,н	CO ₂ Me
AAAA-23	F ₃ C	Ме	S	н,н	CO ₂ Me
AAAA-25	F ₃ C	Ме	S	н,н	N N CO₂Me
AAAA-26	F ₃ C	Ме	0	Н,Н	N CO ₂ Me
AAAA-27	F ₃ C	Ме	S	н,н	N CO ₂ Me
AAAA-28	F ₃ C	Me	0	H,H	Nz.N CO ₂ Me
AAAA-29	F ₃ C	Me	S	Н,Н	N N CO ₂ Me
AAAA-30	F ₃ C	Me	0	н,н	N N N CO ₂ Me
AAAA-31	F ₃ C	Ме	S	н,н	N N N CO ₂ Me

[0279] [表124]

				•				
No	合成法	R1	R2	Х1	R3,R4	R° CO _Z H	mp	NMR(CDCl3 or DMSO-d6)
β-5-1	β−5		Ме	s	Н,Н	ş. 🦠	139-	2.52(3H,s),4.20(2H,s),7.26(1H,d,J=5.4H
						СОЭН	141	z),7.41(2H,d,J=8.7Hz),7.45(2H,d,J=8.7H
		F ₃ C				00211		z),7.54(1H,d,J=5.4Hz),7.72(2H,d,J=8.4H
								z),7.81(2H,d,J=8.4Hz).
β-5-2	β −5		CH2OEt	S	н,н			1.26(3H,t,J=6.9Hz), 3.59(2H,g,J=6.9Hz), 4.29(2H,s),
		F₃CO ~				∬ со₂н	107	4.52(2H ₃ s), 7.24–7.54(8H ₃ m),
						\		7.79(2H,d,J=9.0Hz)
β-5-3	β-5		CH2OEt	S	H,H	\$	l	1.27(3H,t,J=6.9Hz),3.60(3H,t,J=6.9Hz),
						CO ₂ H	128	4.31(2H,s),4.54(2H,s),7.24-7.29(1H,m),
		F ₃ C [^]				, SS211	i	7.40-7.56(5H,m),7.75(2H,d,J=8.4Hz),
0.5.4	0 -		01100 5	_				7.87(2H,d,J=8.4Hz).
β −5−4	β-5		CH2OnPr	S	H,H			0.96(3H,t,J=7.3Hz),1.57-1.74(2H,m), 3.50(3H,t,J=7.3Hz),4.30(2H,s),
						[] CO₂H	133	4.54(2H,s),7.25(1H,d,J=5.4Hz),7.42(2H,
		E.C.						d,J=8,7Hz),7,46(2H,d,J=8,7Hz),7.53(1H,
		. 30	4					d,J=5.4Hz),7.74(2H,d,J=8.1Hz),7.88(2H,
								d,J=8.1Hz).
β-			Me	0	H,H	Ν̈́Ν	182	2.33(3H,s), 5.27(2H,s), 7.14(2H,d,
XXX-1								J=6.9Hz),7.71-7.77(4H,m), 7.83(2H,d,
		F ₃ C						J=8.4Hz), 9.18(1H,s), 9.37(1H,s)
B-			Me	0	H,H	N CO2FI		2.36(3H,s),5.27(2H,s),7.11(2H,m),7.80(4
XXX-2			IVIE	U	П,П	~~~\bar{\sigma}\s^{\bar{\sigma}}		H,m),7.86(2H,m),8.92(1H,s)
XXX 2		F ₃ C				СО₂Н	200	11,111,7.30(211,111,0.32(111,3)
β-			Me	0	н,н	Me	l .	2.31(3H,s),2.68(3H,s),5.34(2H,s),7.12(2
XXX-3						S S	234	H,d,J=8.7Hz),7.74(2H,d,J=8.7Hz),7.93(2
		F3C° ♥				СО₂Н		H,d,J=8.4Hz),8.00(2H,d,J=8.4Hz)
β-5-5	β-5		Me	s	H,H	CO₂H	153-	1.37(1H,m),1.63(1H,m),1.88(1H,m),2.27(
							155	3H,s),2.51(1H,m),4.10(2H,s),7.04(2H,d,J
Е		F₃C [^]				~ ~		=8.4Hz),7.33(2H,d,J=8.4Hz),7.74(2H,d,J
		l					<u> </u>	=8.4Hz),7.82(2H,d,J=8.4Hz)

[0280] [表125]

[0281] [表126]

			_		-4
No	R1	R2	Х1	R3,R4	H ⁸ H _P CO ₂ H
BBBB-16	F ₃ C	Ме	0	H,H	S-N CO ₂ H
BBBB-17	F ₃ C	Ме	S	H,H	\$- ^N CO₂H
BBBB-18	F ₃ C	Ме	0	н,н	CO ₂ H
BBBB-19	F ₃ C	Me	s	н,н	N-O CO₂H
BBBB-20	F ₃ C	Ме	0	H,H	N ^{-S} CO₂H
BBBB-21	F ₃ C	Ме	S	н,н	N-S CO ₂ H
BBBB-22	F ₃ C	Ме	0	Н,Н	CO ₂ H
BBBB-23	F ₃ C	Ме	S	H,H	СО2Н
BBBB-25	F ₃ C	Ме	S	Н,Н	N N CO ₂ H
BBBB-26	F ₃ C	Ме	0	н,н	N CO ₂ H
BBBB-27	F ₃ C	Ме	S	Н,Н	N CO ₂ H
BBBB-28	F ₃ C	Me	0	Н,Н	N°N CO2H
BBBB-29	F ₃ C	Me	S	Н,Н	N N CO ₂ H
BBBB-30	F ₃ C	Me	0	Н,Н	N N N CO ₂ H
BBBB-31	F ₃ C	Me	S	Н,Н	N N N CO ₂ H

[0282] [表127]

	K, O													
No	合成法	R1	R2	X1	R3,R4	R5	R6	R7	R8	R10	R15	R17	mp	NMR(CDCl3 or DMSO-d6)
														2.57(6H),3.71(6H),3.89(3H,s),3.91(
α-				١.			l							3H,s),4.29(2H,s),4.63(2H,s),6.87(1
16-1	α-16	F ₃ C	~~	s	H,H	OMe	Н	Н	Н	F	Н	Me		H,d,J=35.1Hz),7.16(2H),
		1 30	"\					ĺ	'					7.44(1H,d,J=8.4Hz),7.74(2H,d,J=8.
<u> </u>				<u> </u>				L.						4Hz),7.86(2H,d,J=8.4Hz)
		. ہ	1	l	l .	1								1.26(3H,t,J=6,9Hz),3.60(2H,q,J=6.
α-				١.										9Hz),3.89(3H,s),3.91(3H,s),4.26(2H
16-2	α-16	F ₃ CO	CH2OEt	s	H,H	OMe	Н	н	Н	F	Н	Ме		,s),4.55(2H,s),6.88(1H,d,J=35,1Hz),
		"												7.16(2H),7.32(2H,d,J=9.0Hz),7.44(
	ļ			_		<u> </u>		Ш						1H,d,J=8.4Hz),7.78(2H,d,J=9.0Hz)
			l			İ				l				1.26(3H,t,J=6.9Hz),3.59(2H,q,J=6.
α-				_										9Hz),3.89(3H,s),3.91(3H,s),4.26(2H
16-3	α-16		CH2OEt	S	H,H	OMe	Н	н	Н	F	Н	Ме		,s),4.54(2H,s),6.88(1H,d,J=34.8Hz),
1	ĺ	Cl.												7.16(2H),7.45(3H),
														7.67(2H,d,J=8.4Hz)
[2.31(3H,s),3.90(3H,s),3.93(3H,s),4.
α-	أمديدا			_										20(2H,s),7.37(1H,dd,J=8.1,1.5Hz),7
16-4	α-16		Me	S	H,H	OMe	Н	н	Н	CI	Н	Me		.44(1H,d,J=1.5Hz),748(1H,d,J=8.1
		F₃C Ô												Hz),7.73(2H,d,J=8.4Hz),
				<u> </u>										7.80(2H,d,J=8.4Hz),7.86(1H,s)
i i														1.27(3H,t,J=6.9Hz),3.61(2H,q,J=6.
														9Hz),3.90(3H,s),3.93(3H,s),4.29(2H
α- 16-5	α-16		CH2OEt	s	н,н	OMe	н	н	н	CI	ні	Ме		s),4.57(2H,s)7.35(1H,dd,J=8.4,1.5
16-5		F ₃ C						ļ						Hz),7.44(1H,d,J=1.5Hz),7.48(1H,d,
													1	J=8.4Hz),7.74(2H,d,J=8.4Hz),7.86(
				-			_						\rightarrow	2H,d,J=8.4Hz),7.86(1H,s)
i														3.90(3H,s),3.93(3H,s),3.99(3H,s),
α-	α-16		CH=NOMe	s	1									4.43(2H,s),7.39(1H,dd,J=8.1,1.5Hz)
16-6	α-10	F ₃ C	CH=NOMe	2	H,H	OMe	Н	Н	Н	CI	н	Ме		,7.44(1H,d,J=1.5Hz),7.52(1H,d,J=8.
		F3C			- 1			- 1	1	j	i		- 1	1Hz),7.77(2H,d,J=8.7Hz),7.82(2H,d
							\dashv							J=8.7Hz),7.86(1H,s),8.17(1H,s)
					- 1						l			1.38(3H,t,J=6.9Hz),3.90(3H,s),3.92
α-		~/		ı	- 1				ŀ		ĺ	[(3H,s),4.23(2H,q,J=6.9Hz),4.43(2H,
16-7	α/−16		CH=NOEt	s	н,н	OMe	н	н	н	CI	н	Me		s),7.38(1H,dd,J=8.1,1.5Hz),7.44(1H
'0-'		F ₃ C			Ì						l			d,J=1.5Hz),7.51(1H,d,J=8.1Hz),7.7
				- 1					1	ļ				5(2H,d,J=8.4Hz),7.81(2H,d,J=8.4H
	-			-					\dashv	\rightarrow				z),7.86(1H,s),8.19(1H,s)
						i						- 1		1.26(3H,t,J=6.9Hz),3.59(2H,q,J=6.
ا ہے ا		^ /		- 1			I	- 1	J					9Hz),3.90(3H,s),3.92(3H,s),4.27(2H
α- 16-8	α-16	[Y	CH2OEt	s	н,н	OMe	н	н	н	CI	н	Me		s),4.54(2H,s),7.36(1H,dd,J=8.1,1.5
10-8		CI				- 1	ı		Í	- 1	- 1			Hz),7.46(1H,d,J=1.5Hz),7.46(2H,d,
											l			J=8.7Hz),7.48(1H,d,J=8.1Hz),7.67(
				-			-	\dashv	\dashv				_	2H,d,J=8.7Hz),7.85(1H,s)
α-	- 1	/			-						- 1			1.33(3H,t,J=7.2Hz),3.90(3H,s),3.92
	α-16		CH=NOEt	s	н,н	OMe	н	н	н	CI	н	Me		(3H,s),4.22(2H,q,J=7.2Hz),4.41(2H,
16-9		CI C											- 1	s),7.38(1H,dd,J=8.1,1.5Hz),7.44(1H
														d,J=1.5Hz),7.47(2H,d,J=8.7Hz),7.5

[0283] [表128]

No	合成法	R1	R2	X1	R3,R4	R5	R6	R7	R8	R10	R15	R17	mp	NMR(CDCl3 or DMSO-d6)
														1(1H,d,J=8.1Hz),7.62(2H,d,J=8.7H z),7.86(1H,s),8.17(1H,s)
α 16-10	α-16	F ₃ CO	CH2OEt	s	н,н	ОМе	н	Ξ	Ħ	CI	н	Me		1.27(3H,t,J=6.9Hz),3.60(2H,q,J=6. 9Hz),3.90(3H,s),3.93(3H,s),4.28(2H,s),4.55(2H,s),7.33(2H,d,J=9.0Hz),7.36(1H,dd,J=8.1,1.5Hz),7.44(1H,d,J=1.5Hz),7.47(1H,d,J=8.1Hz),7.78(2H,d,J=9.0Hz),7.86(1H,s)
α- 16-11	α-16	F ₃ CO	CH2OnPr	S	н,н	ОМе	н	H	· I	CI	H ,	Ме		0.95(3H,t,J=7.5Hz),1.65(2H),3.50(2 H,t,J=6.6Hz),3.90(3H,s),3.93(3H,s), 4.28(2H,s),4.54(2H,s),7.32(2H,d,J= 8.7Hz),7.36(1H,dd,J=8.1,1.5Hz),7.4 4(1H,d,J=1.5Hz),7.47(1H,d,J=8.1H z),7.78(2H,d,J=8.7Hz),7.86(1H,s)
α- 16-12	α-16	F ₃ CO	CH=NOEt	s	н,н	ОМе	Н	H	н	СІ	Н	Me		1.33(3H,t,J=6.9Hz),3.90(3H,s),3.92 (3H,s),4.23(2H,q,J=6.9Hz),4.42(2H, s),7.34(2H,d,J=9.0Hz),7.38(1H,dd, J=8.1,1.5Hz),7.44(1H,d,J=1.5Hz),7. 51(1H,d,J=8.1Hz),7.73(2H,d,J=9.0 Hz),7.86(1H,s),8.17(1H,s)
α- 16-13	α-16	F ₃ C	CH2OnPr	s	н,н	OMe	н	н	н	F	Н	Ме		0.96(3H,t,J=7.5Hz),160-1.71 (2H,m),3.51(2H,d,J=6.3Hz),3.90(3H ,s),3.91(3H,s),4.27(2H,s),4.56(2H,s) ,6.88(1H,d,J=34.8Hz),7.15-7.18 (2H,m),7.44(1H,dJ=8.4Hz),7.74(2H,d,J=8.4Hz),7.87(2H,d,J=8.4Hz)
α- 16-14	α-16	F ₃ C	CH2CF3	s	н,н	ОМе	н	н	н	F	н	Ме		3.66(2H,q,J=10.2),3.90(3H,s),391(3H,s),4.28(2H,s),6.88(1H,d,J=34.8 Hz),7.14-7.17(2H,m),7.41 (1H,dJ=8.4Hz),7.77-7.78(4H,m)
α- 16-15	α-16	F ₃ C	Et	s	н,н	ОМе	н	Н	Н	H.	н	Ме		1.29(3H,t,J=7.5Hz),2.76(2H,q,J=7.5Hz),3.90(3H,s),3.92(3H,s),4.19(2H,s),6.89(1H,d,J=34.8Hz),7.15-7.19(2H,m),7.44(1H,dJ=8.7Hz),7.73(2H,d,J=8.4Hz),7.80(2H,d,J=8.4Hz)
α- 16-16	α-16	F ₃ C	CH2OCH2 cPr	s	н,н	OMe	н	н	н	F	н	Ме		0.22-0.27(2H,m),0.55-0.62(2H,m), 1.06-1.19(1H,m),3.40(2H,d, J=6.9Hz),3.90(3H,s),391(3H,s),4.2 8(2H,s),4.59(2H,s),6.95(1H,d,J=34, 2Hz),7.18(1H,d,J=8.4Hz),7.19(1H,s),7.45(1H,d,J=8.4Hz),7.74(2H,d,J= 8.4Hz),7.87(2H,d,J=8.4Hz)
α- 16-17	α-16	F ₃ C	Ме	s	н,н	н	н	н	н	F	н	Ме		
α- 16-18	α-16	F ₃ C	CH2OEt	s	н,н	Н	н	Н	Н	F	н	Ме		1.27(3H,t,J=6.9Hz), 3.60(2H,q,J=6.9Hz), 3.89(3H,s),4.30(2H,s),4.55(2H,s), 6.87(1H,d,J=35.1),7.43(2H,d,J=8.4 Hz),7.57(2H,d,J=8.4Hz),7.75(2H,d, J=8.1Hz),7.84(2H,d,J=8.1Hz)

[0284] [表129]

No	合成法	R1	R2	X1	R3,R4	R5	R6	R7	R8	R10	R15	R17	mp	NMR(CDCl3 or DMSO-d6)
α- 16-19	α-16	F ₃ C	CH2OMe	s	н,н	Ħ	н	н	н	F	н	Me		3.44(3H,s), 3.89(3H,s), 4.29(2H,s), 4.50(2H,s), 6.87(1H,d,J=35.1Hz), 7.42(2H,d,J=8.7Hz), 7.57(2H,d, J=8.7HZ), 7.75(2H,d,J=8.4Hz), 7.85(2H,d,J=8.4Hz)
α- 16-20	α-16	F ₃ C	CH2OEt	s	н,н	н	Н	н	н	CI	н	Ме		1.27(3H,t,J=6.9Hz), 3.60(2H,q, J=6.9Hz), 3.90(3H,s), 4.32(2H,s), 4.56(2H,s), 7.45(2H,d,J=8.4Hz), 7.74-7.87(7H,m)
α- 16-21	α−16	F ₃ C	н	s	H, 4-F- C6H4	OMe	н	н	Н	F	н	Ме		3.88(3H,s), 3.92(3H,s), 5.85(1H,s), 6.73(1H,s), 6.83(1H,d,J=35.1Hz), 7.00-7.07(3H,m), 7.15(1H,s), 7.25(1H,d,J=7.8Hz), 7.44-7.49 (2H,m), 7.70(2H,d,J=8.1Hz), 7.84(2H,d,J=8.1Hz)
α- 16-22	α−16	F ₃ C	CH2OCH2 CH2F	s	н,н	OMe	н	н	Н	F	н	Ме		3.76(1H,t,J=4.2Hz), 3.86(1H,t, J=4.2Hz),3.90(3H,s),3.91(3H,s),4.2 8(2H,s),4.53(1H,t,J=3.9Hz),4.67(2 H,s),4.69(1H,t,J=3.9Hz),6.88(1H,d, J=35.1Hz),7.15-7.18(2H,m), 7.43(1H,d,J=8,1Hz), 7.75(2H,d, J=8.7Hz),7.87(2H,d,J=8.7Hz)
α- 16-23	α-16	F ₃ C	CH2SnPr	s	н,н	ОМе	н	Н	H	F	Н	Ме		0.95(3H,t,J=7.2Hz),1.59(2H,m),2.4 9(2H,t,J=7.2Hz),3.87(2H,s),3.90(3 H,s),3.91(3H,s),4.34(2H,s),6.88(1H, d,J=35.1Hz),7.15-7.18(2H,m),7.45 (1H,d,J=8.4Hz), 7.75(2H,d, J=8.7Hz),7.87(2H,d,J=8.7Hz)
α- 16-24	α−16	F ₃ C	CH2SO2 nPr	s	н,н	ОМе	н	н	н	F	H	Ме		1.08(3H,t,J=7.5Hz),1.91(2H,m),3.0 4(2H,m),3.89-3.90(6H,m),4.45 (2H,s),4.50(2H,s),6.88(1H,d,J=34.8 Hz),7.15-7.17(2H,m),7.42(1H,d, J=8.4Hz),7.77(2H,d,J=8.1Hz),7.97(2H,d,J=8.1Hz)
α- 16 - 25	α-16	F ₃ C	CH2OiPr	s	н,н	ОМе	н	н	Н	F	н	Ме		1.25(6H,d,J=6.3Hz),3.76(1H,m),3.8 9(3H,s),3.91(3H,s),4.27(2H,s),4.56(2H,s),6.88(1H,d,J=35.1Hz),7.15- 7.17(2H,m),7.45(1H,d,J=8.4Hz),7.7 4(2H,d,J=8.4Hz),7.86(2H,d,J=8.4H z)
α- 16-26	α-16	F ₃ C	CH2OnPr	s	н,н	н	н	н	н	F	Н	Ме	-	0.96(3H,t,J=7.5Hz),1.60-1.72 (2H,m),3.50(2H,t,J=6.6Hz),3.89(3H ,s),4.30(2H,s),4.55(2H,s),6.88(1H,d, J=34.8Hz),7.43(2H,d,J=8.7Hz),7.57 (2H,d,J=8.7Hz),7.75(2H,d,J=8.1Hz) ,7.87(2H,d,J=8.1Hz)
α- 16-27	α-16	F ₃ C	CH2OEt	s	н,н	ОМе	Н	н	н	F	н	Ме		1.25(3H,t,J=7.5Hz),2.55(2H,q,J=7.5Hz),3.87-3.91(8H,m),4.34(2H,s),6.88(1H,d,J=34.8Hz),7.15-7.18(2Hm),7.45(1H,d,J=8.7Hz),7.76 (2H,dJ=8.4 Hz),7.87 (2H,d,J=8.4 Hz)

[0285] [表130]

			· · · · · · · · · · · · · · · · · · ·		r	I								
No	合成法	Rt	R2	X1	R3,R4	R5	R6	R7	R8	R10	R15	R17	mp	NMR(CDCl3 or DMSO-d6)
α- 16-28	α-16	F ₃ C	CH=NO nPr	Ø	н,н	OMe	н	±	Ħ	F	H	Ме		0.97(3H,t,J=7.5Hz),1.68-1.81 (2H,m),3.89-3.91(6H,m),4.13 (2H,t,J=6.9Hz),4.41(2H,s),6.87(1H,d,J=35.1Hz),7.17-7.19(2H,m),7.47 (1H,d,J=8.4Hz),7.76(2H,d,J=8.4Hz),7.82(2H,d,J=8.4Hz), 8.20 (1H,s)
α- 16 - 29	α-16	F ₃ C	CH=NOEt	Ø	н,н	н	н	Ŧ	т.	CI	н	Et		1.35(3H,t,J=7.2Hz),1.38(3H,t,J=7.2 Hz),4.24(2H,q,J=7.2Hz),4.35(2H,q, J=7.2Hz), 4.46 (2H, s), 7.47 (2H, d J=8.4 Hz), 7.75-7.84 (7H, m), 8.20 (1H, s)
α- 16-30	α-16	F ₃ C	CH=NO (CH2)2F	S	н,н	OMe	н	н	н	F	н	Ме		3.90 (3H, s), 3.91(3H, s), 4.38 (2H, s), 4.41(2H,d,J=28.8Hz),4.70 (2H, d) J=47.4Hz),6.89(1H,d,J=34.8Hz),7.1 7-7.19(2H,m),7.47(1H,d,J=8.4Hz), 7.76 (2H, d, J=8.4 Hz), 7.81 (2H, d) J=8.4 Hz), 8.28 (1H, s)
α- 16-31	α-16	F ₃ C		s	н,н	OMe	н	н	н	F	н	Me		3.88 (3H, s), 3.89 (3H, s), 3.98 (2H s),4.07(2H,s),5.94(2H,s),6.57-6.60 (2H,m),6.72(1H,d,J=8.4Hz),6.87(1H ,d,J=35.1Hz),7.13-7.16(2H,m),7.36 (1H,d,J=8.4Hz),7.68(2H,d,J=8.7Hz) ,7.74(2H,d,J=8.7Hz)
α- 16 - 32	α-16	F ₃ C	Ме	S	н,н	н	н	н	н	CN	н	Ме		·
α- 16-33	α−16	F ₃ C	Ме	s	н,н	Ме	Н	Н	Ŧ	F	н	Ме		
α- 16-34	α-16	F ₃ C	() ()	s	н,н	ОМе	н	Ŧ	Ħ	F	н	Ме		
α- 16-35	α-16	F ₃ C	Z~Z_0	s	н,н	ОМе	I	Ι	Ħ	F	н	Ме		
α- 16-36	α-16	F ₃ C	CH2OMe	s	н,н	ОМе	н	н	Ħ	F	н	Ме		
α- 16-37	α-16	F ₃ C	Ме	s	н,н	н	н	н	н	OMe	Н	Ме		2.08(3H,s),2.28(3H,s),3.81(3H,s),5. 04(2H,s),6.89(2H,dt,J=8.4Hz),7.07(1H,d,J=9.3Hz),7.29(2H,d,J=8.4Hz), 7.36(1H,s)7.37(1H,d,J=4.5Hz)
α- 16-38	α-16	F ₃ C	Ме	s	Н,Н	н	н	н	н	н	Мe	Ме		2.30(3H,s),2.56(3H,s),4.24(3H,s),5. 27(2H,s),7.08(2H,dt,J=9.0Hz),7.46(2H,d,J=8.4Hz),7.75(1H,s)7.81(2H,d ,J=9.0Hz),7.88(2H,d,J=8.4Hz)
α- 16-39	α-16	F ₃ C	Me	s	н,н	Н	н	н	н	Ме	Ме	Ме		2.15(3H,s),2.27(2H,d,J=6.9Hz),2.28 (3H,s),4.16(3H,s),5.22(2H,s),7.08(2 H,d,J=8.4Hz),7.41(2H,d,J=8.7Hz),7

[0286] [表131]

No	合成法	R1	R2	X1	R3,R4	R5	R6	R7	R8	R10	R15	R17	mp	NMR(CDCl3 or DMSO-d6)
														.76(2H,d,J=8.7Hz),7.84(2H,d,J=8.4 Hz)
α- 16-40	α-16	F ₃ C	Ме	s	н,н	Н	н	н	н	н	Et	Ме		
α- 16-41	α-16	F ₃ C	Ме	s	Н,Н	н	н	Н	Ŧ.	CI	н	Ме		2.29(3H,s),3.89(3H,s),4.22(2H,s),7. 44(2H,d,J=8.4Hz),7.70-7.86(7H,m)
α- 16-42	α-16	F ₃ C	Ме	S	н,н	Н	H	Н	н	Me	н	Ме		
α- 16-43	α-16	F ₃ C	Ме	s	H.	OMe	н	н	Н	Ме	н	Me		Rf=0.33 (n-hexane/AcOEt=2/1)
α- 16-44	α-16	F ₃ C	Me	s	н,н	OMe	н	н	Н	CI	н	Ме		2.31(3H,s), 3.90(3H,s), 3.93(3H,s), 4.20(2H,s),7.37(1H,dd,J=1.5Hz,8.1 Hz), 7.44(1H,d,J=1.5Hz),7.48 (1H,d,J=8.1Hz),7.73(2H,d,J=8.4Hz), 7.80(2H,d,J=8.4Hz), 7.86(1H,s).
α- 16-45	α-16	F ₃ C	Ме	s	н,н	OMe	н	н	н	F	н	Ме		
α- 16-46	α-16	F ₃ C	Ме	s	н,н	Et	н	н	н	F	Н	Tbu		1.21(3H,t,J=7.5Hz),1.57(9H,s),2.29 (3H,s),2.74(2H,q,J=7.5Hz),4.18(2H, s),6.77(1H,d,35.1Hz),7.28~7.50(3H, m),7.74(2H,d,J=8.4Hz),7.81(2H,d,J =8.4Hz)
α- 16-47	α-16	F ₃ C	CH2OEt	Ø	н,н	ОМе	н	н	н	F	н	Ме		
α- 16-48	α-16	F ₃ C	CH=NOMe	S	н,н	ОМе	H	н	Н	F	Н	Ме		, a
α- 16-49	α−16	F ₃ C	CH=NOEt	s	н,н	OMe	н	Н	н	F	н	Ме		1.34(3H,t,J=7.2Hz),3.90(3H,s),3.91 (3H,s),4.24(2H,q,J=6.9Hz),4.41(2H, s),6.89(1H,d,J=35.1Hz),7.14~7.30(2H,m)7.48(1H,t,J=8.4Hz),7.76(2H, d,J=8.7Hz),7.82(2H,d,J=8.7Hz),8.2 0(1H,s)
α- 15-1	α-15	F ₃ C	CH2OEt	0	н,н	F	Н	н	Н	F	Н	Ме		1.22(3H,t,J=6.9Hz),3.60(2H,q,J=6. 9Hz),3.89(3H,s),4.58(2H,s),5.37(2H,s),4.30(2H,s),6.84(1H,d,J=34.2Hz), 7.18(1H,t,J=8.7Hz),7.34(1H,d,J=8. 4Hz),7.49(1H,d,J=12.6Hz),7.77(2H,d,J=8.4Hz),7.92(2H,d,J=8.4Hz)

[0287] [表132]

No	合成法	R1	R2	X1	R3,R4	R5	R6	R7	R8	R10	R15	mp	NMR(CDCl3 or DMSO-d6)
β-9-1	β-9	F ₃ C	\$\tag{2}	s	н,н	ОМе	н	н	н	F	н	94-97	2.74(4H),2.88(2H),3.62(4H),3.74(2H),3.84(3H,s),4.41(2H,s),4.64(2H,s),7.02(1H,d,J=36.3Hz),7.31(2H),7.48(1H,d,J=8.4Hz),7.93(2H,d,J=8.4Hz),8.00(2H,d,J=8.4Hz)
β-9-2	β-9	F ₃ CO	CH2OEt	s	н,н	OMe	н	н	н	F	Н	217-219	1.14(3H,t,J=6.9Hz),3.54(2H,q,J=6.9 Hz),3.84(3H,s),4.35(2H,s),4.53(2H,s),7.02(1H,d,J=36.6Hz),7.30(2H),7.4 7(1H,d,J=8.4Hz),7.57(2H,d,J=9.0Hz),7.90(2H,d,J=9.0Hz)
β-9-3	β-9	cı	CH2OEt	s	Н,Н	OMe	н	н	н	F	Н	175-177	1.14(3H,t,J=7.2Hz),3.53(2H,q,J=7.2 Hz),3.84(3H,s),4.34(2H,s),4.52(2H,s),7.02(1H,d,J=36.6Hz),7.30(2H),7.4 7(1H,d,J=8.4Hz),7.64(2H,d,J=8.7Hz),7.78(2H,d,J=8.7Hz)
β-9-4	β−9	F ₃ C	Ме	s	н,н	ОМе	н	н	н	CI	н	183-185	2.29(3H,s),3.86(3H,s),4.38(2H,s),7.5 4(3H),7.90(2H,d,J=8.7Hz),7.94(1H,s),7.95(2H,d,J=8.7Hz)
β-9-5	β-9	F ₃ C	CH2OEt	s	н,н	ОМе	н	н	H	CI	н	173-175	1.15(3H,t,J=6.9Hz),3.55(2H,q,J=6.9 Hz),3.86(3H.s),4.40(2H,s),4.57(2H,s),7.54(3H),7.93(1H,s),7.94(2H,d,J=8 ,4Hz),7.99(2H,d,J=8.4Hz)
β-9-6	β−9	F ₃ C	CH=NOMe	s	н,н	ОМе	н	н	н	CI	н	205-207	3.85(3H,s),3.91(3H,s),4.49(2H,s),7.5 4(3H),7.93(1H,s),7.93(2H,d,J=8.4Hz),8.03(2H,d,J=8.4Hz),8.35(1H,s)
β-9-7	β-9	F ₃ C	CH=NOEt	s	н,н	ОМе	н	н	H	CI	н	184-186	1.26(3H,t,J=6.9Hz),3.84(3H,s),4.15(2H,q,J=6.9Hz),4.94(2H,s),7.55(3H), 7.93(1H,s),7.93(2H,d,J=8.4Hz),8.03(2H,d,J=8.4Hz),8.35(1H.s)
β-9-8	β-9	CI	CH2OEt	s	Н,Н	ОМе	н	Н	Н	СІ	н	154-156	1.14(3H,t,J=7.2Hz),3.53(2H,q,J=7.2 Hz),3.86(3H,s),4.37(2H,s),4.52(2H,s),7.53(3H),7.64(2H,d,J=8.4Hz),7.78(2H,d,J=8.4Hz),7.93(1H,s)
β-9-9	β-9	CI	CH=NOEt	s	н,н	OMe	Н	Н	н	CI	н	206-208	1.25(3H,t,J=6.9Hz),3.84(3H,s),4.14(2H,q,J=6.9Hz),4.47(2H,s),753(3H),7 .64(2H,d,J=8.4Hz),7.83(2H,d,J=8.4 Hz),7.94(1H,s),8.30(1H,s)
β-9- 10	β−9	F ₃ CO	CH2OEt	s	н,н	OMe	н	н	Н	Cł	н	174-176	1.15(3H,t,J=6.9Hz),3.54(2H,q,J=6.9 Hz),3.86(3H,s),4.38(2H,s),4.54(2H,s),7.55(5H),7.86(2H,d,J=8.4Hz),7.94(1H,s)

[0288] [表133]

No	合成法	R1	R2	X1	R3,R4	R5	R6	R7	R8	R10	R15	mp	NMR(CDCl3 or DMSO-d6)
β-9- 11	β−9	F ₃ CO	GH2OnPr	s	Н,Н	OMe	н	н	Н	CI	Н	159-161	0.85(3H,t,J=7.2Hz),1.53(2H),3.44(2 H,t,J=6.3Hz),3.86(3H,s),4.38(2H,s), 4.54(2H,s),7.55(5H),7.91(2H,d,J=8. 7Hz),7.93(1H,s)
β-9- 12	β-9	F ₃ CO	CH=NOEt	s	н,н	ОМе	н	н	н	CI	н	179-181	1.25(3H,t,J=7.2Hz),3.84(3H,s),4.14(2H,q,J=7.2Hz),4.48(2H,s),7.55(5H), 7.93(1H,s),7.95(2H,d,J=8.7Hz),8.31(1H,s)
β-9- 13	β-9	F ₃ C	CH2OnPr	s	н,н	OMe	Н	Н	Н	F	Н	203-204	0.96(3H,t,J=7.2Hz),1.60- 1.72(2H,m),3.52(2H,d,J=6.6Hz),3.92 (3H,s),4.28(2H,s),4.58(2H,s),6.95(1 H,d,J=34.2Hz),7.17-7.19(2H,m), 7.45(1H,dJ=8.4Hz),7.74(2H,d,J=8.4 Hz),7.87(2H,d,J=8.4Hz)
β-9- 14	β-9	F ₃ C	CH2CF3	s	н,н	OMe	н	н	н	F	н	211-214	3.66(2H,q,J=10.2),3.91(3H,s),4.27(2 H,s),6.90(1H,d,J=34.5Hz),7.14- 7.20(2H,m),7.40(1H,dJ=8.1Hz),7.75 -7.71(4H,m)
β-9- 15	β−9	F ₃ C	Et	s	н,н	OMe	Ξ	Н	н	F	Н	217-218	1.29(3H,t,J=7.5Hz),2.76(2H,q,J=7.5 Hz),3.92(3H,s),4.19(2H,s),6.91(1H,d ,J=34.8Hz),7.16-7.20(2H,m), 7.43(1H,dJ=8.1Hz),7.73(2H,d,J=8.4 Hz),7.80(2H,d,J=8.4Hz)
β-9- 16	β−9	F ₃ C	CH2OCH2 cPr	S	н,н	ОМе	Н	Н	I	L.	I	214-217	0.22-0.27(2H,m),0.55-0.62(2H,m), 1.06-1.17(1H,m),3.40(2H,d, J=6.9Hz),3.91(3H,s),4.28(2H,s),4.59 (2H,s),6.91(1H,d,J=34.5Hz),7.15- 7.19(2H,m),7.44(1H,d,J=6.9Hz),7.74 (2H,d,J=8.1Hz), 7.89(2H,d,J=8.4Hz)
β-9- 17	β-9	F ₃ C	Ме	s	н,н	Н	н	н	Ι	F	Ħ	193 - 194.5	2.29(3H,s), 4.20(2H,s), 6.90(1H,d, J=35.1Hz), 7.42(2H,d,J=8.4Hz), 7.58(2H,d,J=8.4Hz), 7.58(2H,d, J=8.4Hz), 7.82(2H,d,J=8.4Hz)
β-9- 18	β−9	F ₃ C	CH2OEt	s	н,н	Н	н	Н	Н	F	Ι	173-175	1.28(3H,t,J=6.9Hz), 3.61(2H,q, J=6.9Hz), 4.31(2H,s), 4.57(2H,s), 6.96(1H,d,J=34.5Hz), 7.44(2H,d, J=8.4Hz),7.59(2H,d,J=8.4Hz),7.75(2H,d,J=8.4Hz),7.86(2H,d,J=8.4Hz),
β-9- 19	β-9	F ₃ C	CH2OMe	s	н,н	Н	н	н	Н	F	H	167–168	3.45(3H,s), 4.31(2H,s), 4.52(2H,s), 6.95(1H,d,J=34.8Hz), 7.44(2H,d, J=8.4H), 7.60(2H,d,J=8.4Hz), 7.76(2H,d,J=8.4Hz), 7.86(2H,d,J=8.4Hz)
β-9- 20	β−9	F ₃ C	CH2OEt	s	н,н	н	н	н	Ι	ច	н	157-158	1.28(3H,t,J=6.9Hz), 3.61(2H,q,J=6.9Hz), 4.33(2H,s), 4.57(2H,s), 7.47(2H,d,J=8.4Hz), 7.74-7.87(6H,m), 7.93(1H,s)
β-9- 21	β-9	F ₃ C	н	s	H, 4-F- C6H4	OMe	н	н	Н	F	н	170-171	3.93(3H,s), 5.87(1H,s), 6.73(1H,s), 6.81(1H,d,J=35.1Hz), 6.99-7.28 (5H,m),7.45-7.50(2H,m), 7.70(2H, d,J=8.7Hz), 7.85(2H,d,J=8.7Hz)

[0289] [表134]

No	合成法	R1	R2	X1	R3,R4	R5	R6	R7	R8	R10	R15	mp	NMR(CDCl3 or DMSO-d6)
β-9- 11	β-9	F ₃ CO	CH2OnPr	s	H,H	OMe	Н	н	H	G	н	159-161	0.85(3H,t,J=7.2Hz),1.53(2H),3.44(2 H,t,J=6.3Hz),3.86(3H,s),4.38(2H,s), 4.54(2H,s),7.55(5H),7.91(2H,d,J=8. 7Hz),7.93(1H,s)
β-9- 12	β-9 -	F ₃ CO	CH=NOEt	S	н,н	ОМе	Н	Н	Н	C	н	179–181	1.25(3H,t,J=7.2Hz),3.84(3H,s),4.14(2H,q,J=7.2Hz),4.48(2H,s),7.55(5H), 7.93(1H,s),7.95(2H,d,J=8.7Hz),8.31(1H,s)
β-9- 13	β−9	F ₃ C	CH2OnPr	s	н,н	OMe	Н	Н	Ξ	L.	Ħ	203–204	0.96(3H,t,J=7.2Hz),1.60- 1.72(2H,m),3.52(2H,d,J=6.6Hz),3.92 (3H,s),4.28(2H,s),4.58(2H,s),6.95(1 H,d,J=34.2Hz),7.17-7.19(2H,m), 7.45(1H,dJ=8.4Hz),7.74(2H,d,J=8.4 Hz),7.87(2H,d,J=8.4Hz)
β-9- 14	β-9	F ₃ C	CH2CF3	S	н,н	OMe	н	н	Ħ	F	н	211-214	3.66(2H,q,J=10.2),3.91(3H,s),4.27(2 H.s),6.90(1H,d,J=34.5Hz),7.14- 7.20(2H,m),7.40(1H,dJ=8.1Hz),7.75 -7.71(4H,m)
β-9- 15	β-9	F ₃ C	Et	s	н,н	OMe	н	Н	Н	F	н	217-218	1.29(3H,t,J=7.5Hz),2.76(2H,q,J=7.5 Hz),3.92(3H,s),4.19(2H,s),6.91(1H,d ,J=34.8Hz),7.16-7.20(2H,m), 7.43(1H,dJ=8.1Hz),7.73(2H,d,J=8.4 Hz),7.80(2H,d,J=8.4Hz)
β-9- 16	β−9	F ₃ C	CH2OCH2 cPr	s	н,н	ОМе	Н	Н	Н	F	Н	214-217	0.22-0.27(2H,m),0.55-0.62(2H,m), 1.06-1.17(1H,m),3.40(2H,d, J=6.9Hz),3.91(3H,s),4.28(2H,s),4.59 (2H,s),6.91(1H,d,J=34.5Hz),7.15- 7.19(2H,m),7.44(1H,d,J=6.9Hz),7.74 (2H,d,J=8.1Hz), 7.89(2H,d,J=8.4Hz)
β-9- 17	β-9	F ₃ C	Ме	s	Н,Н	H	Н	н	н	F	н	193– 194.5	2.29(3H,s), 4.20(2H,s), 6.90(1H,d, J=35.1Hz), 7.42(2H,d,J=8.4Hz), 7.58(2H,d,J=8.4Hz), 7.58(2H,d, J=8.4Hz), 7.82(2H,d,J=8.4Hz)
β-9- 18	β−9	F ₃ C	CH2OEt	s	н,н	Ή	#	н	н	F	н	173-175	1.28(3H,t,J=6.9Hz), 3.61(2H,q, J=6.9Hz), 4.31(2H,s), 4.57(2H,s), 6.96(1H,d,J=34.5Hz), 7.44(2H,d, J=8.4Hz),7.59(2H,d,J=8.4Hz),7.75(2H,d,J=8.4Hz),7.86(2H,d,J=8.4Hz),
β-9- 19	β−9	F ₃ C	CH2OMe	s	H,H	Ħ	н	н	н	F	Н	167-168	3.45(3H,s), 4.31(2H,s), 4.52(2H,s), 6.95(1H,d,J=34.8Hz), 7.44(2H,d, J=8.4H), 7.60(2H,d,J=8.4Hz), 7.76(2H,d,J=8.4Hz), 7.86(2H,d,J=8.4Hz)
β-9- . 20	β−9	F ₃ C	CH2OEt	s	н,н	н	н	н	н	СІ	н	157-158	1.28(3H,t,J=6.9Hz), 3.61(2H,q,J=6.9Hz), 4.33(2H,s), 4.57(2H,s), 7.47(2H,d,J=8.4Hz), 7.74-7.87(6H,m), 7.93(1H,s)
β-9- 21	β−9	F ₃ C	Н	s	H, 4-F- C6H4	ОМе	н	н	н	F	н	170-171	3.93(3H,s), 5.87(1H,s), 6.73(1H,s), 6.81(1H,d,J=35.1Hz), 6.99-7.28 (5H,m),7.45-7.50(2H,m), 7.70(2H, d,J=8.7Hz), 7.85(2H,d,J=8.7Hz)

[0290] [表135]

No	合成法	R1	R2	X1	R3,R4	R5	R6	R7	R8	R10	R15	mp	NMR(CDCl3 or DMSO-d6)
β-9- 31	β-9	F ₃ C		s	н,н	OMe	н	н	Н	F	н	183.5- 186.0	3.81(3H,s),4.08(2H,s),4.17(2H,s), 5.95(2H,s),6.57(1H,dd,J=8.1,1.5Hz), 6.69(1H,d,J=1.5Hz), 6.79 (1H, d, J=8.1Hz),7.02(1H,d,J=36.6Hz), 7.277.29(2H,m),7.38(1H,d,J=8.4Hz), 7.87(4H, m)
β-9- 32	β−9	F ₃ C	Ме	s	н,н	н	Н	Н	н	CN	н	250 – 255	2.28(3H,s),4.48(2H,s),7.53(2H,d,J=8 ,4Hz),7.93(7H,m)
β-9- 33	β-9	F ₃ C	Ме	s	н,н	Ме	н	Н	н	F	н	214-216	2.32(3H,s),2.37(3H,s),4.20(2H,s),6.9 5(1H,d,J=32.1Hz),7.48(3H,m),7.75(2H,d,J=8.7Hz),7.83(2H,d,J=8.7Hz)
β-9- 34	β-9	F ₃ C	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	s	н,н	OMe	Н	Н	н	F	н	158-160	
β-9- 35	β-9	F ₃ C	EN O	s	н,н	OMe	н	Н	н	F	H	148-150	
β-9- 36	β−9	F ₃ C	CH2OMe	s	н,н	ОМе	н	н	н	F	н	221-222	
β-9- 37	β−9	F ₃ C	Ме	s	н,н	н	н	н	н	OMe	н	157-160	2.30(3H,s),3.80(3H,s),4.21(2H,s),7.0 7(1H,s),7.42(2H,d,J=8.7Hz),7.70(2H ,d,J=8.4Hz,),7.74(2H,d,J=8.7Hz),7.8 2(2H,d,J=8.4Hz)
β-9- 38	β-9	F ₃ C	Ме	S	н,н	н	н	н	н	н	Ме	223-226	2.30(3H,s),2.53(3H,s),4.20(2H,s),6.1 3(1H,s),7.43(4H,brd,J=4.8Hz),7.76(2H,d,J=8.1Hz),7.84(2H,d,J=8.4Hz)
β-2- 39	β-9	F ₃ C	Ме	s	н,н	н	н	Н	н	Me	Ме	145-145	1.78(3H,q,J=1.5Hz),2.28(3H,s),2.33(3H,q,J=1.5Hz),4.17(2H,s),7.08(1H,d,J=8.4Hz),7.09(1H,d,J=8.1Hz),7.42(2H,d,J=8.1Hz),7.74(2H,d,J=8.1Hz),7.82(2H,d,J=8.4Hz)
β-2- 40	β-9	F ₃ C	Ме	s	Н,Н	н	Н	н	I	Н	Et	174-175	1.07(3H,t,J=7.5Hz),2.29(3H,s),3.09(2H,q,J=7.5Hz),4.20(2H,s),6.04(1H,s),4.14(2H,s),7.41(4H,brs),7.74(2H,d, J=8.4Hz),7.82(2H,d,J=8.1Hz)
β-9- 41	β−9	F ₃ C	Ме	s	н,н	н	Н	Н	Н	CI	H	198.5- 199.5	2.29(3H,s),4.48(2H,s),7.53(2H,d,J=8 .4Hz),7.84~8.00(7H,m)
β-9- 42	β-9	F ₃ C	Ме	s	н,н	н	н	Н	н	Ме	Н	172-173	2.02(3H,s),2.28(3H,s),3.85(3H,s),4.4 2(2H,s),7.44(2H,d,J=8.4Hz),7.48(2H ,d,J=8.4Hz),7.55(1H,s),7.91(2H,d,J= 8.7Hz),7.95(2H,d,J=8.7Hz)

[0291] [表136]

No	合成法	R1	R2	X1	R3,R4	R5	R6	R7	R8	R10	R15	mp	NMR(CDCl3 or DMSO-d6)
β-9- 43	β-9	F ₃ C	Me	s	н,н	ОМе	н	Н	н	Ме	н	174.5- 175.5	2.05(3H,s),2.28(3H,s),3.85(3H,s).4.3 2(2H,s),7.04-7.12(2H,m), 7.46(1H,d,J=8.4Hz),7.90(2H,d,J=8.7 Hz),7.95(2H,d,J=8.7Hz)
β-9- 44	β-9	F ₃ C	Ме	s	н,н	ОМе	н	н	н	CI	н		2.29(3H,s), 3.86(3H,s), 4.38(2H,s), 7.51-7.58(3H,m), 7.89-7.97(5H,m)
β-9- 45	β−9	F ₃ C	Ме	s	н,н	ОМе	Н	н	Н	F	н	211.5- 213	2.28(3H,s)3.84(3H,s),4.36(2H,s),7.0 3(1H,d,J=36.6Hz),7.2-7.36(3H,m), 7.50(1H,d,J=8.1Hz),7.91(2H,d,J=8.7 Hz),7.95(2H,d,J=8.7Hz)
β-9- 46	β-9	F ₃ C	Ме	s	н,н	Et	н	н	н	F	н	200-201	1.14(3H,t,J=7.5Hz),2.28(3H,s),2.26(2H,q,J=7.5Hz),4.42(2H,s),6.99(1H,d ,J=36.9Hz),7.50-7.62(3H,m)7.91 (2H,d,J=8.4Hz),7.95(2H,d,J=8.4Hz)
β-9- 47	β−9	F ₃ C	CH2OEt	s	н,н	OMe	Н	н	н	F	н	250-255 (decom.)	1.15(3H,t,J=6.9Hz),3.54(2H,q,J=6.9 Hz),3.83(3H,s)4.32(2H,s),4.55(2H,s),6.73(1H,d,J=37.2Hz),7.14-7.28 (2H,m),7.41(1H,d,J=8.1Hz),7.94(2H,d,J=8.7Hz),8.00(2H,d,J=8.7Hz)
β-9- 48	β-9	F ₃ C	CH=NOMe	Ø	н,н	ОМе	н	Ħ	н	F	н	245-250 (decom.)	3.81(3H,s),3.92(3H,s),4.01(2H,s),6.7 4(1H,d,J=36.9Hz),7.14-7.22 (2H,m),7.40(1H,d,J=8.4Hz),7.93(2H,d,J=8.7Hz),8.03(2H,d,J=8.7Hz),8.34 (1H,s)
β-9- 49	β−9	F ₃ C	CH=NOEt	S	н,н	ОМе	Η	π	H	F	Н	209- 210.5	1.26(3H,t,J=7.2Hz),3.82(3H,s),4.15(2H,q,J=6.9Hz),4.47(2H,s),7.02(1H,d,J=36.6Hz),7.30(1H,s),7.31(1H,d,J=8.1Hz),7.49(1H,d,J=8.1Hz),7.93(2H,d,J=8.4Hz),8.03(2H,d,J=8.4Hz),8.35(1H,s)
β-8-1	<i>β</i> −8	F ₃ C	CH2OEt	0	н,н	F	Н	Н	н	F	н	205-206	1.08(3H,t,J=6.9Hz),3.50(2H,q,J=6.9 Hz),4.57(2H,s),5.46(2H,s),7.02(1H,d,J=36.3Hz),7.45(1H,t,J=8.7Hz),7.55 (1H,d,J=9Hz),7.58(1H,t,J=12.9Hz), 7.97(2H,d,J=8.4Hz),8.04(2H,d,J=8.4 Hz)
β-9- 50	β-9	F ₃ C	Ме	s	н,н	н	н	н	н	н	Et		MS <i>m/z</i> 448 (M+H) ⁺

[0292] [表137]

					R'_ `	O,		,	, ,		····	,				
No	合成法	R1	R2	X1	R3,R4	R5	R6	R7	R8	R9	R10	R15	R16	R17	mp	NMR(CDCl3 or DMSO-d6)
α- 18-1	α-18	F ₃ C		S	н,н	OMe	н	н	H	н.	н	Ме	н	Ме		1.28(3H,d,J=6.9Hz),2.57(2H),3.2 5(1H),3.63(3H,s),3.85(3H,s),4.05 (2H,s),4.09(2H,s),6.02(1H),6.29(1H),6.74(2H),7.30(1H,d,J=7.8Hz) ,7.35(1H),7.72(2H,d,J=8.4Hz),7.8 1(2H,d,J=8.4Hz)
α- 18-2	α-18	F ₃ C	6	s	н,н	н	н	Н	Н	н	н	Ме	н	Me		1.27(3H,d,J=6.9Hz),2.56(2H),3.2 5(1H),3.61(3H,s),4.05(2H,s),4.06 (2H,s),6.03(1H),6.30(1H),7.15(2H,d,J=8.1Hz),7.31(2H,d,J=8.1Hz),7.35(1H),7.73(2H,d,J=8.4Hz),7.8 2(2H,d,J=8.4Hz)
α- 18-3	α-18	F ₉ C	CH2O(CH 2)2F	Ø	н,н	OMe	н	H	H	н	Н	Ме	Н	Ме		1.28(3H,t,J=7.2Hz),2.49-2.64 (2H,m),3.19-3.31(1H,m),3.63(3H, s),3.73-3.76(1H,m),3.83-3.86 (1H,m),3.88(3H,s),4.19(2H,s),4.5 1-4.53(1H,m),4.64(2H,s),4.67- 4.69(1H,m),6.73-6.77(2H,m), 7.32(1H,d,J=7.8Hz),7.75(2H,d,J= 8.4Hz),7.90(2H,d,J=8.4Hz)
α- 18-4	α-18	F ₃ CO	CH2OEt	Ø	н,н	OMe	H	H	Н	н	н	Me	н	Ме		1.25(3H,t,J=6.9Hz),1.28((3H,d,J=7.2Hz),2.48-2.64(2H,m),3.19-3.31(1H,m),3.58(2H,q,J=7.2Hz),3.62(3H,s),388(3H,s),4.17(2H,s),4.51(2H,s),6.72-6.76(2H,m),7.30-7.34(2H,m),7.77-7.82(2H,m)
α- 18-5	α-18	F ₃ C	(CH2)2OEt	Ø	н,н	OMe	Ŧ	H	Ŧ	н	н	Me	Н	Me		1.16(3H,t,J=6.9Hz),1.29((3H,d,J=7.2Hz),2.49-2.65(2H,m),2.99 (2H,t,J=6.6Hz),3.20-3.32(1H,m), 3.47(2H,q,J=6.9Hz),3.63(3H,s),3. 68(2H,q,J=6.6Hz),3.88(3H,s),4.1 7(2H,s),6.73-6.77(2H,m),7.33 (1H,d,J=7.8Hz),7.72(2H,d,J=8.4 Hz),).7.90(2H,d,J=8.4Hz)
α- 18-6	α−18	CI	CH2OEt	Ø	н,н	ОМе	н	Η	н	н	н	Ме	н	Ме		1.25(3H,t,J=6.9Hz),1.28((3H,d,J=6.9Hz),2.48-2.64(2H,m),3.19-3.31(1H,m),3.57(2H,d,J=6.9Hz),3.63(3H,s),3.88(3H,s),4.17(2H,s),4.51(2H,s),6.71-6.77(2H,m),7.32(1H,d,J=7.8Hz),7.44-7.48(2H,m),7.66-7.71(2H,m)
α- 18-7	α-18	МеО	Ме	ø	н,н	OMe	н	н	н	н	н	Ме	н	Ме		1.28(3H,d,J=6.9Hz),2.20(3H,s),2. 48-2.65(2H,m),3.19-3.31(1H,m), 3.63(3H,s),3.86(3H,s),3.88(3H,s), 4.07(2H,s),6.70-6.79(2H,m), 6.96-7.00(2H,m),7.34(1H,d, J=7.8Hz),7.60-7.63(2H,m)

[0293] [表138]

No	合成法	R1	R2	X1	R3.R4	R5	R6	R7	R8	R9	R10	R15	R16	R17	mp	NMR(CDCl3 or DMSO-d6)
α- 18-8	α-18	CI	CH=NOEt	*	·	ОМе					Н	Me	н	Ме		1.28(3H,d,J=6.9Hz),1.33(3H,t,J=7.2Hz), 2.48-2.65(2H,m), 3.19-3.31(1H,m), 3.63(3H,s), 3.87(3H,s),4.21(2H,q,J=7.2Hz),4.29(2H,s),6.72-6.76(2H,m),7.33(1H,d,J=7.8Hz),7.47(2H,d,J=8.4Hz),7.64(2H,d,J=8.4Hz),8.16(1H,s)
α- 18-9	α-18	F ₃ CO	CH=NOEt	S	н,н	ОМе	Ξ	Н	Ŧ	н	Н	Me	н	Me		1.29(3H,d,J=6.9Hz),1.33(3H,t,J=6.9Hz), 2.48-2.45(2H,m), 3.22-3.29(1H,m),3.63(3H,s),3.87(3H,s),4.22(2H,d,J=6.9Hz),4.29(2H,s),6.72-6.76(2H,m),7.32-7.35(3H,m),7.75(2H,d,J=8.7Hz),8.16(1H,s)
α- 18-10	α-18	F ₃ C	CH2OMe	s	н,н	OMe	н	н	н	н	н	Me	н	Ме		1.28(3H,d,J=6.9Hz),2.48-2.64 (2H,m),3.19-3.31(1H,m),3.62 (3H,s),3.88(3H,s),4.18(2H,s),4.48 (2H,s),6.70(2H,m),7.32(1H,d,J=7. 8Hz),7.74(2H,d,J=8.1Hz), 7.87(2H,d,J=8.1Hz)
α- 18-11	α-18	F ₃ CO	CH2OnPr	s	н,н	ОМе	Н	н	Н	н	Н	Мe	н	Ме		0.94(3H,t,J=7.5Hz),1.28(3H,d,J=6.6Hz),1.61-1.65(2H,m),2.48-2.64(2H,m),3.22-3.29(1H,m),3.48(2H,t,J=6.6Hz),3.63(3H,s),3.88(3H,s),4.17(2H,s),4.51(2H,s),6.73-6.76(2H,m),7.31-7.33(3H,m),7.75(2H,d,J=8.7Hz)
α- 18-12	α-18	F ₃ C	Ме	s	н,н	OMe	Н	Н	Н	н	Н	Ме	н	Ме		1.28(3H,d,J=7.2Hz),2.26(3H,s),2. 47-2.62(2H,m),3.22-3.29(1H,m), 3.62(3H,s),3.89(3H,s),4.10(2H,s), 6.73-6.76(2H,m),7.32(1H,d, J=7.8Hz),7.73(2H,d,J=8.1Hz), 7.80(2H,d,J=8.1Hz)
α- 18-13	α-18	F ₃ C	CH=NO nPr	s	н,н	OMe	н	H	Н	н	Н	Me	H	Ме		0.98(3H,t,J=7.5Hz),1.29(3H,d,J=6.9Hz),1.69-1.81(2H,m),2.48-2.65(2H,m),3.19-3.32(1H,m),3.63(3H,s),3.88(3H,s),4.13(2H,t,J=6.9Hz),4.30(2H,s),6.72-6.76(2H,m),7.33(1H,d,J=7.8Hz),7.75(2H,d,J=8.4Hz),7.84(2H,d,J=8.4Hz),8.20(1H,s)
α- 18-14	α-18	F ₃ C	CH=NO (CH2)2F	s	н,н	OMe	н	н	н	Н	н	Me	н	Ме		1.29(3H,d,J=7.2Hz),2.49-2.65 (2H,m),3.20-3.32(1H,m),3.63 (3H,s),3.8(3H,s),4.28(2H,s),4.39(2H,d,J=28.5Hz),4.69(2H,d,J=47. 4Hz),6.73-6.77(2H,m),7.32(1H,d, J=7.5Hz),7.76(2H,d,J=8.4Hz),7.8 3(2H,d,J=8.4Hz), 8.26 (1H, s)
α- 18-15	α-18	F ₃ C	(CH2)2OMe	s	н,н	ОМе	н	н	н	н	н	Ме	н	Ме		1.29(3H,d,J=6.9Hz),2.49-2.65 (2H,m),2.99(2H,t,J=6.9Hz),3.22- 3.35(4H,m),3.63(3H,s),3.64(2H,t, J=6.9Hz),3.88(3H,s),4.15(2H,s),6 .72-6.77(2H,m),7.33(1H,d,J=7.8 Hz),7.73(2H,d,J=8.4Hz),7.88(2H,

[0294] [表139]

No	合成法	R1	R2	X1	R3,R4	R5	R6	R7	R8	R9	R10	R15	R16	R17	mp	NMR(CDCl3 or DMSO-d6)
140			- 112	~·				-							-	d,J=8.4Hz)
α- 18-16	α-18	F ₃ C	\$I)_	S	н,н	OMe	Н	Н	Н	н	н	Ме	Н	Me		1.29(3H,d,J=6.9Hz),2.49-2.65 (2H,m),3.20-3.32(1H,m),3.62 (3H,s),3.84(3H,s),3.91(2H,s),4.05 (2H,s),5.93(2H,s),6.56-6.59 (2H, m),6.70-6.76(3H,m),7.29(1H,d, J=8.4Hz),7.68(2H,d,J=8.4Hz),7.7 4 (2H,d,J=8.4Hz)
α- 18-17	α-18	F ₃ C	CH=NO cPen	s	н,н	ОМе	н	Н	Н	Н	Н	Me	н	Ме		1.29(3H,d,J=6.9Hz),1.6-1.8(8H, m),2.48-2.65(2H,m),3.19-3.31 (1H,m),3.63(3H,s),3.87(3H,s),4.3 0(2H,s),4.78(1H,m),6.72-6.76 (2H,m),7.32(1H,d,J=7.8 Hz), 7.75 (2H,d,J=8.7Hz),7.84(2H,d,J=8.7 Hz), 8.16(1H,s)
α- 18-18	α-18	F ₃ C	CH=NOiPr	s	н,н	ОМе	Н	н	Н	Н	н	Ме	Н	Ме		1.29(3H,d,J=6.9Hz),1.32(6H,d,J=6.6Hz),2.48-2.65(2H,m),3.19-3.31(1H,m),3.63(3H,s),3.87(3H,s),4.30(2H,s),4.41-4.49(1H,m),6.72-6.76(2H,m),7.32(1H,d,J=7.8Hz),7.75(2H,d,J=8.4Hz),7.84(2H,d,J=8.4Hz),8.18(1H,s)
α- 18-19	α-18	F ₃ C	CH=NOMe	s	н,н	ОМе	Н	н	н	н	Н	Me	Н	Me		1.29(3H,d,J=6.9Hz),2.48-2.65 (2H,m),3.20-3.29(1H,m),3.63(3H, s),3.88(3H,s),3.97(3H,s),4.30(2H, s),6.73-6.79(2H,m),7.34(1H,d, J=7.5Hz),7.75(2H,d,J=8.4Hz),7.8 3(2H, d, J=8.4 Hz), 8.15 (1H, s)
α- 18-20	α-18	F ₃ C	CH=NO (CH2)2CI	s	н,н	ОМе	Н	Н	н	н	н	Ме	н	Ме		1.29(3H,d,J=6.6Hz),2.49-2.66 (2H,m),3.20-3.32(1H,m),3.64(3H, s),3.78(2H,t,J=5.7Hz),3.88(3H,s), 4.28(2H,s),4.38(2H,t,J=5.7Hz),6. 73-6.77(2H,m),7.32(1H,d,J=7.5 Hz), 7.77 (2H, d, J=8.4 Hz), 7.82 (2H, d, J=8.4 Hz), 8.26 (1H, s)
α- 18-21	α-18	CI	GH2OnPr	s	н,н	ОМе	H	Н	Н	Н	Н	Ме	н	Ме		0.94(3H,t,J=7.5Hz),1.28(3H,d,J=7.2Hz),1.60-1.67(2H,m),2.48-2.64(2H,m),3.19-3.31(1H,m),3.47(2H,t,J=6.6Hz),3.63(3H,s),3.88(3H,s),4.17(2H,s),4.50(2H,s),6.72-6.76(2H,m),7.32(1H,d,J=7.8 Hz), 7.45 (2H, d, J=8.4 Hz), 7.70 (2H, d, J=8.4 Hz)
α- 18-22	α-18	F ₃ CO	CH=NOMe	s	н,н	ОМ	e H	Н	i	1 1-	,	Me	Н	Ме		1.29(3H,d).2.48-2.65(2H,m).3.19 -3.32(1H,m),3.63(3H,s),3.88(3H, s),3.97(3H,s),4.29(2H,s),6.73- 6.77(2H,m),7.32-7.35(3H,m), 7.75(2H,d,J=8.7 Hz), 8.13 (1H, s)
α- 18-23	α-18	F ₃ C	Me	s	н,н	Н	Н	i	F	4 +	H Me	н	Н	Ме	•	1.14(3H,d,J=6.6Hz),2.25(3H,s), 2.64(2H,m),3.00(2H,m),3.62(3H,s),4.11(2H,s),7.09(2H,d,J=8.1Hz), 7.33(2H,d,J=8.1Hz),7.74(2H,d,J= 8.4Hz),7.81(2H,d,J=8.4Hz)

[0295] [表140]

No	合成法	R1	R2	T _{X1}	R3,R4	R5	R6	R7	R8	R9	R10	R15	R16	R17	mp	NMR(CDCl3 or DMSO-d6)
α- 18-24	α-18	F ₃ C	CH2OEt	s	Н,Н	OMe		Н	Н	Н	Н	Ме	н	Me		1.27(6H,m),2.57(2H,m),3.26(1H,m),3.58(2H,m),3.63(3H,s),3.88 (3H,s),4.19(2H,s),4.53(2H,s),6.73 (1H,s),6.75(1H,d,J=7.8Hz),7.32(1H,d,J=7.8Hz),7.74(2H,d,J=8.4Hz),7.88(2H,d,J=8.4Hz)
α- 18-25	α−18	F ₃ C	CH2OnPr	s	н,н	ОМе	н	н	Н	H	Н	Ме	н	Ме		0.95(3H,t,,J=7.5Hz),1.28(3H,d,J=6.9Hz),1.65(2H,m),2.57(2H,m),3.26(1H,m),3.49(2H,t,J=6.6Hz),3.62(3H,s),3.88(3H,s),4.18(2H,s),4.53(2H,s),6.73(1H,s,)6.75(1H,d,J=7.2Hz),7.33(1H,d,J=7.2Hz),7.74(2H,d,J=8.4Hz),7.88(2H,d,J=8.4Hz)
α- 18-26	α-18	F ₃ C	CH2OCH2 cPr	s	н,н	OMe	Н	Н	н	Н	Н	Ме	н	Me		0.24(1H,m),0.58(1H,m),1.11(1H,m),1.28(3H,d,J=6.9Hz),2.56(2H,m),3.24(1h,dd,J=6.9Hz),3.38(2H,d,J=6.9Hz),3.6(3H,s),3.88(3H,s),4.19(2H,s),4.56(2H,s),6.73(1H,s,G.75(1H,d,J=7.2Hz),7.32(1H,d,J=7.2Hz),7.74(2H,d,J=8.4Hz),7.90(2H,d,J=8.4Hz)
α- 17-1	α-17	F ₃ C	CH2OEt	0	н,н	ОМе	н	Н	Н	н	н	Ме	н	Ме		-
α- 17-2	α-17	F ₃ C	CH2OnPr	0	Н,Н	ОМе	н	н	π	н	н	Me	Н	Me		х
α- 17-3	α-17	F ₃ C	Ме	0	н,н	ОМе	н	Н	н	Н	н	Ме	Н	Ме		
α- 17-4	α-17	F ₃ C	CH2OEt	0	н,н	F	н	н	Н	н	н	Me	н	Me		
α- 17-5	α-17	F ₃ C	GH2OnPr	0	н,н	F	н	Н	н	н	н	Me	Н	Ме		
α- 17-6	α-17	F ₃ C	Me	0	н,н	F	н	н	н	н	н	Ме	н	Me		
α- 18-27	α-18	F ₃ C	CH2OEt	s	Н,Н	н	н	н	н	Н	н	Ме	Me	Ме		
α- 18-28	α-18	F ₃ C	Me	s	н,н	н	н	н	н	Н	н	Me	Ме	Ме	*	
α- 18-29	α-18	F ₃ C	Me	s	н,н	н	Н	Н	н	н	H	Ме	Н	Ме	ļ	2.09(3H,s),2.30(3H,s),2.59(2H,m) 3.22(2H,m),4.11(3H,s),5.17(2H,s),7.15(2H,d,J=8.4Hz),7.34(2H,d,J =8.1Hz),7.73(2H,d,J=8.7Hz),7.81

[0296] [表141]

No	合成法	R1	R2	X1	R3,R4	R5	R6	R7	R8	R9	R10	R15	R16	R17	mp	NMR(CDCl3 or DMSO-d6)
	,															(d,J=8.1Hz)
α- 18-30	α-18	F ₃ C	CH2OEt	Ø	н,н	Н	н	н	ı	н	Н	Ме	н	Me		1.25(3H,t,J=6.9Hz),1.26(3H,d,J=7.2Hz),2.55(2H),3.27(1H),3.58(2H,q,J=6.9Hz),3.61(3H,s),4.21(2H,s),4.50(2H,s),7.15(2H,d,J=8.1Hz),7.35(2H,d,J=8.1Hz),7.75(2H,d,J=8.4Hz)
α- 18-31	α-18	F ₃ C	CH2OnPr	s	н,н	н	Н	н	н	.н	н	Ме	н	Me		0.95(3H,t,J=7.5Hz),1.27(3H,d,J=6.9Hz),1.65(2H),2.55(2H),3.23(1H),3.48(2H,q,J=6.9Hz),3.61(3H,s),4.21(2H,s),4.50(2H,s),7.15(2H,d,J=8.1Hz),7.35(2H,d,J=8.1Hz),7.95(2H,d,J=8.4Hz),4.21(2H,d,J=8.4Hz),7.89(2H,d,J=8.4Hz)
α- 18-32	α-18	cı	Me	Ø	н,н	OMe	н	H	н	н	н	Me	н	Me		1.28(3H,d,J=8.4Hz),2.21(3H,s),2. 55(2H)3.23(1H),3.62(3H,s),3.88(3H,s),4.07(2H,s),6,72-6.76(2H, m),7.32(1H,d,J=8.4Hz),7.44(2H,d ,J=8.4Hz),7.61(2H,dJ=8.4Hz)
α- 18-33	α-18	cı	Ме	S	н,н	н	·H	н	н	Н	Н	Ме	H	Ме		1.26(3H,d,J=6.9Hz),2.20(3H,s),2. 55(2H)3.24(1H),3.61(3H,s),4.09(3H,s),7.14(2H,d,J=8.1Hz),7.34(1 H,d,J=8.4Hz),7.44(2H,d,J=8.4Hz),7.62(2H,dJ=8.4Hz)
α- 18-34	α−18	F ₃ CO	Ме	Ø	н,н	OMe	н	н	Ħ	Н	н	Ме	н	Ме		1.27(3H,d,J=6.9Hz),2.23(3H,s),2. 56(2H)3.25(1H),3.62(3H,s),3.88(3H,s),4.08(2H,s),6,72-6.76(2H, m),7.32(1H,d,J=8.4Hz),7.71(2H,d ,J=8.4Hz)
α- 18-35	α-18	F ₃ C	Ме	S	н,н	F	н	н	н	н	Н	Ме	н	Ме		1.27(3H,d,J=6.9Hz).2.27(3H,s),2. 55(2H)3.25(1H),3.62(3H,s),4.09(2H,s),6.91-7.00(2H,m),7.35 (1H,t,J=8.1Hz),7.73(2H,dJ=8.4H z),7.81(2H,d,J=8.4Hz)
α- 18-36	α-18	F ₃ CO	CH2OEt	S	н,н	F	н	н	н	н	н	Me	н	Me	*	1.25(3H,t,J=8.4Hz),1.26(3H,t,J= 6.9Hz),2.55(2H)3.26(1H),3.59(2H ,q,J=6.9Hz),3.62(3H,s),4.18(2H,s),4.53(2H,s),6.95(2H,d,J=8.7Hz), 7.32-7.39(3H,m), 7.79(2H,dJ=8.7Hz)
α- 18-37	α-18	F ₃ C	CH2OEt	S	н,н	F	Ħ	н	Н	Ħ	Н	Me	н	Me		1.26(3H,d,J=6.9Hz),1.27(3H,d,J= 8.1Hz),2.55(2H)3.27(1H),3.61(2H, q,J=8.2Hz),3.62(3H,s),6,95(2H,d ,J=9.6Hz),7.37(1H,t,J=7.5Hz),7.7 5(2H,dJ=8.4Hz), 7.83(2H,d,J=8.4Hz)
α- 18-38	α-18	F ₃ C	CH=NOEt	S	н,н	F	н	н	н	н	н	Ме	н	Ме		1.27(3H,d,J=8.1Hz),1.34(3H,t,J= 7.2Hz),2.55(2H)3.25(1H),3.62(3H ,s),4.26(2H,q,J=7.2Hz),4.31(2H, s),6,04(2H,d,J=9.4Hz),7.36(1H,t, J=8.2Hz),7.82(2H,d,J=8.2Hz)

[0297] [表142]

No	合成法	R1	R2	Χı	R3,R4	R5	R6	R7	R8	R9	R10	R15	R16	R17	mp	NMR(CDCl3 or DMSO-d6)
α- 18-39	α-18	CI	CH2OEt	s	н,н	F	н	н	н	Н	н	Me	н	Ме		1.25(3H,t,J=7.2Hz),2.54(2H),3.2 4(1H),3.58(2H,q,J=7.2Hz),3.62(3 H,s),6.93(2H,d,J=9.6Hz),7.37(1H, t,J=7.2Hz),7.46(2H,d,J=8.4Hz),7.
α- 18-40	α-18	F ₃ C	Me	s	Н,Н	Н	F	н	н	н	Н	Me	H	Me		68(2H,d,J=8.4Hz) 1.29(3H,d,J=6.9Hz),2.27(3H,s), 2.52-2.70(2H,m),3.44-3.57(1H, m),3.62(3H,s),4.13(2H,s),7.07- 7.15(3H,m),7.73-7.83(4H,m)
α- 18-41	α-18	F ₃ C	CH2OEt	s	н,н	н	F	Н	н	н	н	Ме	н	Ме		1.27(3H,t,J=6.9Hz),1.29(3H,d,J=6.9Hz),2.61(2H),3.59(2H,q,J=6.9Hz),3.63(3H,s),4.23(2H,s),4.53(2H,s),7.08-7.15(3H,m),7.75(2H,d,J=8.4Hz),7.87(2H,d,J=8.4Hz)
α- 18-42	α-18	F ₃ C	GH2OnPr	s	н,н	н	F	н	н	н	=	Me	н	Ме		0.97(3H,t,J=7.2Hz),1.28(3H,d,J=6.9Hz),1.64(2H),2.61(2H),3.49(3 H,s),3.62(3H,s),4.23(2H,s),4.52(2 H,s),7.07-7.14(3H,m),7.75(2H,d,J=8.4Hz),7.87(2H,d,J=8.4Hz)
α- 18-43	α−18	F ₃ C	CH=NOEt	s	н,н	Ŧ	F	н	н	н	ı	Me	н	Me		1.29(3H,dJ=6.9Hz),1.34(3H,t,J=6.9Hz),2.61(2H),3.53(1H),3.62(3H,s),4.23(2H,qJ=6.9Hz),4.37(2H,s),7.10-7.15(3H,m),7.76(2H,d,J=8.4Hz),7.82(2H,d,J=8.4Hz)
α- 18-44	α-18	F ₃ C	Me	s	н,н	Н	Ме	н	н	Н	#	Ме	Н	Ме		1.22(3H,d,J=7.2Hz),2.24(3H,s),2. 34(3H,s),2.55(2H),3.51(1H,),3.62 (3H,s),4.11(2H,s),7.09-7.24(3H, m),7.71(2H,d,J=8.4Hz),7.82(2H,d ,J=8.4Hz)
α- 18-45	α-18	F ₃ C	CH=NOEt	s	н,н	Н	Me	н	Н	Н	н	Ме	н	Me		1.22(3H,d,J=6.9Hz),2.35(3H,t,J=7.2Hz),2.34(3H,s),2.55(2H),3.49(1H,),3.63(3H,s),4.22(2H),4.35(2H,s)7.10(1H,d,J=8.1Hz),7.22(1H,d,J=4.8Hz),7.76(2H,d,J=8.4Hz),7.8(2H,d,J=8.4Hz)
α- 18-46	α-18	cı 💭	CH2OEt	s	Н,Н	н	Ме	Н	Н	Ξ	н	Ме	Н	Ме		1.21(3H,d,J=6.9Hz),1.25(3H,t,J=6.9Hz),2.33(3H,s),2.55(2H),3.48(1H,),3.56(2H,q,J=6.9Hz),3.62(3H,s),4.19(2H,s),4.47(2H,s),7.10(1H,d,J=8.1Hz),7.19-7.25(2H,m),7.46(2H,d,J=8.4Hz),7.67(2H,d,J=8.4Hz)
α- 18-47	α-18	F ₉ C	CH2OEt	s	н,н	Н	Me	H	H	Н	н	Ме	Н	Ме		1.22(3H,d,J=6.9Hz),1.26(3H,t,J=6.9Hz),2.33(3H,s),2.55(2H),3.48(1H,),3.57(2H,q,J=6.9Hz),3.62(3H,s),4.01(2H,s),4.50(2H,s),7.13(1H,d,J=7.8Hz),7.19-7.25(2H,m),7.75(2H,d,J=8.4Hz),7.88(2H,d,J=8.4Hz)
α- 18-48	α-18	F ₃ C	CH=NOEt	s	н,н	н	н	I	H	H	H	Ме	Ħ	Ме	g ^o	1.27(3H,t,J=7.2Hz),1.35(3H,t,J=7.2Hz),2.47-2.64(2H,m),3.18-3.31(1H,m),3.62(3H,s),4.23(2H,q,J=7.2Hz),4.35(2H,d,J=8.1Hz),7.37(2H,d,J=8.1Hz),7.37(2H,d,J=8.1Hz),7.76

[0298] [表143]

No	合成法	RI	R2	X1	R3,R4	R5	R6	R7	R8	R9	R10	R15	R16	R17	mp	NMR(CDCl3 or DMSO-d6)
					-											(2H,d,J=8.4Hz),7.83(2H,d,J=8.4
				<u> </u>		<u> </u>	<u> </u>	_	_	_		<u> </u>	<u> </u>			Hz)
																1.29(3H,t,J=6.9Hz),1.33(3H,t,J= 6.9Hz),2.48-2.65(2H,m),3.17-
																3.32(1H,m),3.63(3H,s),3.87(3H,s)
α-	α−18	F ₃ C	CH=NOEt	s	н.н	ОМе	н	н	н	н	н	Me	н	Me		,4.22(2H,q,J=6.9Hz),4.30(2H,s),6
18-49		. 30			,		1						İ			.70-6.80(2H,m),7.33(1H,d,J=7.8
													Ī			Hz),7.75(2H,d,J=8.4Hz),7.84(2H,
									_							d,J=8.4Hz),8.18(1H,s)
		~ /														1.29(3H,d,J=6.9Hz),2.49-2.64
α-				_			١	١	١	l	l	١				(2H,m),3.20-3.32(1H,m),3.62
18-50	α-18	F ₃ C	CH2CN	s	Н,Н	OMe	Н	H	н	н	Н	Me	Н	Me		(3H,s),3.83(2H,s),3.90(3H,s),4.21
								1				ŀ				(2H,s),6.73-6.76(2H,m),7.33
1				\vdash			_	\vdash		-		_	 			(1H,d,J=8.1Hz),7.75-7.82(4H,m) 1.27(3H,d,J=6.9Hz),2.47-2.63
	-							l	l							(2H,m),3.22=3.30(1H,m),3.62
α-	α−18	F ₃ CO	CH=NOMe	s	Н,Н	F	н	н	н	н	н	Ме	н	Me		(3H,s),3.97(3H,s),4.31(2H,s),
18-51		, 300			·								1			6.92-7.40(5H,m),7.72(2H,d,
																J=9Hz),8.11(1H,s)
																1.27(3H,d,J=6.9Hz),1.34(3H,t,J=
																7.2Hz),2.47-2.63(2H,m),3.20-
α-	α-18	F ₂ CO	CH=NOEt	s	н.н	F	н	н	н	н	н	Ме	н	Me		3.32(1H,m),3.63(3H,s),4.25(2H,q,
18-52		. 300		-	,	-										J=6.9Hz),4.31(2H,s),6.94(2H,d,J
ł				.												=9.0Hz),7.30-7.40(3H,m),7.73
									\vdash	Н				\vdash		(2H,d,J=9.0Hz),8.15(1H,s) 1.27(3H,d,J=6.9Hz),2.47-2.63
																(2H,m),3.20-3.30(1H,m),3.62
α-																(3H,s),3.98(3H,s),4.32(2H,s),6.9-
18-53	α−18	F ₃ C	CH=NOMe	S	H.H	F	Н	н	Н	н	н	Me	Н	Me		6.97(2H,m),7.37(1H,t,J=7.8Hz),7.
																76(2H,d,J=7.8Hz),7.81(2H,d,J=7.
																8Hz),8.13(1H,s)
		~ /														1.29(3H,d,J=6.9Hz),2.52-2.70
α-								-								(2H,m),3.45-3.55(1H,m),3.63(3H,
18-54	α-18	F ₃ C	CH=NOMe	S	H,H	Н	F	н	н	н	Н	Ме	Н	Ме		s),3.99(3H,s),4.38(2H,s),7.10-
			1						-×							7.20(3H,m),7.77(2H,d,J=9.0Hz),
\vdash								-	H	\vdash			 			7.81(2H,d,J=8.4Hz),8.15(1H,s) 1.29(3H,d,J=7.2Hz),1.34(3H,t,J=
																7.2Hz),2.50-2.70(2H,m),3.45-
α-				ايا												3.58(1H,m),3.63(3H,s),4.22(2H,q,
18-55	α-18	F ₃ C	CH=NOEt	S	H,H	Н	F	н	Н	Н	н	Me	Н	Me		J=7.2Hz),4.36(2H,s),7.10-7.20
]																(3H,m),7.35(2H,d,J=9.0Hz),7.73(
\Box																2H,d,J=9.0Hz)8.15(1H,s)
α-													-			
18-56	α-18	F₃C [^]	Ме	s	H,H	Н	CI	Н	Н	н	Н	Me	Н	Me		
α- 18-57	α−18	F ₃ C	CH2OEt	s	H,H	н,	CI	н	н	н	н	Me	н	Me		
10-3/		,														
α- 18-58	α−18	F ₃ C	CH=NOEt	s	Н,Н	н	CI	н	н	н	н	Me	н	Me		
18-58		. 3~														
				ئــــا					Ц.,	ـــــا						

[0299] [表144]

No	合成法	R1	R2	X1	R3,R4	R5	R6	R7	R8	R9	R10	R15	R16	R17	mp	NMR(CDCl3 or DMSO-d6)
α- 18-59	α-18	F ₃ C	Ме	s	н,н	ОМе	н	н	F	н	н	Ме	н	Me		
α- 18-60	α−18	F ₃ C	CH2OEt	s	н,н	OMe	н	Н	F	н	н	Ме	н	Ме		
α- 18-61	α−18	F ₃ C	CH=NOEt	S	н,н	OMe	I	н	F	н	н	Мę	н	Me		
α- 18-62	α-18	F ₃ C	Ме	s	н,н	OMe	н	н	CI	н	r	Ме	н	Ме		
α- 18-63	α-18	F ₃ C	CH2OEt	s	нн	OMe	Ξ	Н	CI	Ħ	н	Ме	н	Ме		
α- 18-64	α-18	F ₃ C	CH=NOEt	Ø	н,н	OMe	I	н	ō	r	Ι	Me	I	Me		
α- 18-65	α-18	F ₃ CO	CH=NOMe	S	н,н	Н	F	Н	н	Н	н	Me	н	Ме		1.29(3H,d,J=6.9Hz),2.52-2.72 (2H,m),3.45-3.55(1H,m),3.63(3H, s),3.98(3H,s),4.37(2H,s),7.10- 7.17(3H,m),7.35(2H,d,J=9.0Hz), 7.72(2H,d,J=8.7Hz),8.12(1H,s)
α- 18-66	α-18	CI	CH=NOMe	Ø	н,н	Ĥ	F	н	н	Ħ	н	Me	н	Ме		1.29(3H,d,J=6.9Hz),2.52-2.70 (2H,m),3.44-3.60(1H,m),3.63(3H, s),3.98(3H,s),4.37(2H,s),7.10- 7.17(3H,m),7.49(2H,d,J=9.0Hz), 7.62(2H,d,J=8.7Hz),8.13(1H,s)
α- 18-67	α−18	CI	CH≂NOMe	S	н,н	F	H	Н	H	H	н	Ме	н	Me		1.27(3H,d,J=6.9Hz),2.47-2.63 (2H,m),3.19-3.32(1H,m),3.62(3H, s),3.97(3H,s),4.31(2H,s),6.91- 6.98(2H,m),7.37(1H,t,J=7.8Hz), 7.48(2H,d,J=8.7Hz),7.61(2H,d,J= 8.7Hz),8.11(1H,s)
α- 18-68	α-18	CI	CH=NOMe	S	н,н	ОМе	Ι	H	Н	H	Н	Ме	Ι	Ме		1.28(3H,d,J=6.9Hz),2.48-3.32 (3H,m),3.63(3H,s),3.87(3H,s),3.9 6(3H,s),4.29(2H,s),6.70-6.80(2H, m),7.34(1H,t,J=7.8Hz),7.47(2H,d, J=9Hz),7.63(2H,d,J=8.7Hz),8.12(1H,s)
α- 18-69	α-18	F ₃ C	CH2CN	S	н,н	ОМе	н	Ħ	I	H	Н	Me	н	Ме		1.29(3H,d,J=6.9Hz),2.49-2.64 (2H,m),3.20-3.32(1H,m),3.62 (3H,s),3.83(2H,s),3.90(3H,s),4.21 (2H,s),6.73-6.76(2H,m),7.33 (1H,d,J=8.1Hz),7.75-7.82(4H,m)

[0300] [表145]

No	合成法	R1	R2	X1	R3,R4	R5	R6	R7	R8	R9	R10	R15	R16	mp	NMR(CDCl3 or DMSO-d6)
β- 11-1	β-11	F ₃ C	6	s	н,н	ОМе	н	н	Ħ	н	н	Me	н	oil	1.31(3H,d,J=6.9Hz),2.60(2H),3.24(1H),3.85(3H,s),4.05(2H,s),4.08(2H, s),6.02(1H),6.29(1H),6.74(2H),7.30 (1H,d,J=7.8Hz),7.34(1H),7.72(2H, d,J=8.4Hz),7.801(2H,d,J=8.4Hz)
β- 11-2	β-11	F ₃ C		S	н,н	н	Н	н	н	н	н	Me	н	oil	1.29(3H,d,J=6.9Hz),2.59(2H),3.24(1H),4.04(2H,s),4.06(2H,s),6.03(1H),6.30(1H),7.15(2H,d,J=8.4Hz),7.3 2(2H,d,J=8.4Hz),7.35(1H),7.72(2H ,d,J=8.4Hz),7.81(2H,d,J=8.4Hz)
β- 11-3	β-11	F ₃ C	CH2O (CH2)2F	s	н,н	OMe	I	Ι	I	Н	Ι	Ме	Н		1.30(3H,t,J=6.9Hz),2.52-2.68(2H, m),3.18-3.30(1H,m),72-3.75(1H, m),3.82-3.85(1H,m),3.87(3H,s), 4.19(2H,s),4.50-4.53(1H,m),4.63 (2H,s),4.66-4.68(1H,m),6.73-6.80 (2H,m),7.32(1H,d,J=8.4Hz),7.74(2 H,dJ=8.4Hz),7.89(2H,d,J=8.4Hz)
β- 11-4	β-11	F ₃ CO	CH2OEt	Ø	н,н	OMe	н	H	H.	Н	Н	Me	н		1.25(3H,t,J=7.2Hz),1.30((3H,d,J=7 .2Hz),2.52-2.68(2H,m),3.18-3.30 (1H,m),3.57(2H,q,J=7.2Hz),3.88(3 H,s),4.17(2H,s),4.51(2H,s),6.71- 6.77(2H,m),7.30-7.34(2H,m),7.77- 7.81(2H,m)
β- 11-5	β-11	F ₃ C	(CH2)2OEt	S	н,н	OMe	Н	н	н	н	Н	Ме	Н		1.15(3H,t,J=7.2Hz),1.32((3H,d,J=6.9Hz),2.54-2.69(2H,m),2.90(2H,t,J=6.6Hz),3.19-3.31(1H,m),3.46 (2H,q,J=7.2Hz),3.63(2H,t,J=6.6Hz),3.87(3H,s),4.14(2H.s),6.63-6.78 (2H,m),7.33(1H,d,J=7.8Hz),7.72(2H,d,J=8.4Hz)),7.89(2H,d,J=8.4Hz)
β- 11-6	β-11	CI	CH2OEt	s	н,н	OMe	Ξ	Ι	I	π	Ή	Ме	I	•	1.24(3H,t,J=6.9Hz),1.30((3H,d,J=6 .9Hz),2.52-2.68(2H,m),3.18-3.30 (1H,m),3.56(2H,q,J=6.9Hz),3878(3H,s),4.16(2H,s),4.50(2H,s),6.72- 6.77(2H,m),7.33(1H,d,J=7.5Hz),7. 42-7.47(2H,m),7.66-7.70(2H,m)
β- 11-7	β-11	MeO	Me	S	н,н	ОМе	н	Η	Н	H	Н	Ме	н		1.31(3H,d,J=6.9Hz),2.20(3H,s),2.5 3-2.69(2H,m),3.19-3.31(1H,m), 3.86(3H,s),3.88(3H,s),4.07(2H,s), 6.73(1H,s),6.76(1H,d,J=7.8Hz), 6.96-7.03(2H,m),7.34(1H,d,J=7.8 Hz),7.59-7.63(2H,m)
β- 11-8	β-11	c	CH=NOEt	s	н,н	OMe	н	Ξ	I	Ι	Ξ	Ме	Н	101- 103	1.31(3H,d,J=7.2Hz), 1.33(3H,t, J=6.9Hz), 2.52-2.69(2H,m), 3.18- 3.30(1H,m), 3.67(3H,s), 4.12(2H,q,

[0301] [表146]

No	合成法	R1	R2	Х1	R3,R4	R5	R6	R7	R8	R9	R10	R15	R16	mp	NMR(CDCl3 or DMSO-d6)
															J=6.9Hz), 4.29(2H,s), 6.72-6.77
															(2H,m), 7.34(1H,d,J=7.8Hz), 7.47
															(2H,d,J=8.4Hz),7.64(2H,d,J=8.4Hz
				<u> </u>	-	ļ		_						ļ), 8.15(1H,s)
															1.30-1.35(6H,m),2.52-2.70(2H,
β-	R _11	F ₃ CO	CH=NOEt	s	н,н	ОМе	н	н	Н	н	н	Me	Н	04-06	m),3.21-3.28(1H,m),3.87(3H,s), 4.21(2H,q,J=6.9Hz),4.29(2H,s),6.7
11-9	ווים	F3CO ~	OI I-NOLL	"	11,11	Civie	"	''	•	'''	•	IVIE	l ''	04 00	3-6.77(2H,m),7.32-7.35(3H,m)
					ŀ										,7.75(2H,d,J=8.7Hz),8.15(1H,s)
								_							1.31(3H,d,J=6.9Hz),2.52-2.69(2H,
		~			Ì										m),3.18-3.30(1H,m),3.42(3H,s),
β-	β-11	F ₃ C	CH2OMe	s	1111		н	١		١		м.	н		3.88(3H,s),4.18(2H,s),4.48(2H,s),
11-10	β-11	F ₃ C	ChZOMe	٥	Н,Н	OMe	п.	H	н	н	н	Me	п п	oil	6.73-6.77(2H,m),7.33(1H,d,J=8.1
															Hz),7.74(2H,d,J=8.1Hz),7,87(2H,d,
				<u> </u>											J=8.1Hz)
															0.94(3H,t,J=7.2Hz),1.31(3H,d,J=
ا ۾ ا														1	6.9Hz),1.58-1.70(2H,m),2.52-2.69
β- 11-11	β-11	F ₃ CO	CH2OnPr	S	н,н	OMe	н	н	н	н	н	Me	н	oil	(2H,m),3.19=3.30(1H,m),3.48(2H,t,
111-11		Ŭ													J=6.6Hz),3.88(3H,s),4.17(2H,s), 4.50(2H,s),6.73-6.77(2H,m),7.30-
															7.34(3H,m),7.80(2H,d,J=9.0Hz)
								┢─							1.31(3H,d,J=6.9Hz),2.26(3H,s),2.5
														115.5	3-2.69(2H,m),3.21-3.31(1H,m),
β- 11-12	β-11	F₃C J	Me	s	н,н	OMe	н	н	н	н	н	Me	н	-	3.88(3H,s),4.10(2H,s),6.73-6.77
11712		· y -												117.5	(2H,m),7.33(1H,d,J=8.1Hz),7.73(2
								$ldsymbol{ldsymbol{ldsymbol{eta}}}$							H,d,J=8.1Hz),7.80(2H,d,J=8.1Hz)
															0.97(3H,t,J=7.5Hz),1.31(3H,d,J=
															6.9Hz),1.71-1.80(2H,m),2.52-2.70
β-	<i>B</i> −11	F ₃ C	CH=NO	s	,,,,		н	н	н	н	н	Me	Н	71.0-	(2H,m),3.21-3.31(1H,m),3.87(3H,
11-13	P-11	F³C. ◆	nPr	0	н,н	OMe	м	"	н	н	н	Me	"	72.0	s),4.13(2H,t,J=6.9Hz),4.30(2H,s), 6.73(1H,s),6.76(1H,d,J=7.8Hz),7.3
															4(1H,d,J=7.8Hz),7.75(2H,d,J=8.1H
															z),7.84(2H,d,J=8.1Hz),8.19(1H,s)
								Г							1.31(3H,d,J=6.9Hz),2.52-2.70(2H,
															m),3.19-3.31(1H,m),3.87(3H,s),
β-			CH=NO											92.0-	4.28(2H,s),4.38(2H,d,J=28.5Hz),
11-14	β-11	F ₃ C	(CH2)2F	s	H,H	OMe	Н	н	Н	Н	Н	Me	н	93.5	4.68(2H,d,J=47.4Hz),6.74-6.78
			(4,12,2)											00.0	(2H,m),7.33(1H,d,J=7.8Hz),7.76(2
															H,d,J=8.4Hz),7.83(2H,d,J=8.4Hz),
						-	-	├				_	<u> </u>		8.25(1H,s) 1.32(3H,d,J=6.9Hz),2.54-2.69(2H,
														İ	m),2.89(2H,t,J=6.9Hz),3,21-3.33
B-														80.0-	(4H,m),3.59(2H,t,J=6.9Hz),3.87(3
11-15	β-11	F₃C L	(CH2)2OMe	S	H,H	OMe	Н	н	Н	Н	Н	Me	Н	l .	H,s),4.13(2H,s),6.74-6.78(2H,s),
															7.33(1H,d,J=7.8Hz),7.73(2H,d,J=
															8.7Hz),7.86(2H,d,J=8.7Hz)
															1.31 (3H, d, J=7.2 Hz), 2.53-2.59
															(2H,m),3.21-3.28(1H,m),3.83(3H,
B -	8-11	F ₃ C		s	н,н	OMe	Н	н	н	н	н	Me	н		s),3.90(2H,s),4.04(2H,s),5.94(2H,
11-16	~ ''	-30	D~~~		'''''	31,716			••	''		""	-	72.0	s),6.55-6.58(2H,m),6.70-6.76(3H,
															m),7.28(1H,d,J=8.1Hz),7.68(2H,d,
								L							J=8.4Hz),7.74(2H,d,J=8.4 Hz)

[0302] [表147]

No	合成法	R1	R2	X1	R3,R4	R5	R6	R7	R8	R9	R10	R15	R16	mp	NMR(CDCl3 or DMSO-d6)
β- 11-17	β-11	F ₃ C	CH=NO cPen	s	н,н	OMe	н	н	Н	Н	н	Ме	н		1.32(3H,d,J=6.9Hz),1.59-1.86(8H, m),2.53-2.70(2H,m),3.21-3.29(1H, m),3.87(3H,s),4.30(2H,s),4.78(1H, m),6.73-6.77(2H,m),7.33(1H,d, J=7.8Hz),7.75(2H,d,J=8.4Hz),7.84 (2H,d,J=8.4Hz),8.16(1H,s)
β- 11-18	β-11	F ₃ C	CH=NOiPr	S	н,н	OMe	н	Н	Н	H.	Н	Ме	н	86.0- 87.0	1.30-1.33(9H,m),2.53-2.70(2H, m),3.19-3.31(1H,m),3.87(3H,m), 4.30(2H,s),4.39-4.51(1H,m),6.73 -6.78(2H,m),7.34(1H,d,J=7.8Hz), 7.75(2H,d,J=8.4Hz),7.84(2H,d,J=8,4Hz),8.18(1H,s)
β- 11-19	β−11	F ₃ C	CH=NOMe	s	н,н	OMe	н	н	н	H	н	Me	н	83.0- 84.0	1.31(3H,d,J=6.9Hz),2.53-2.70(2H, m),3.19-3.31(1H,m),3.87(3H,s), 3.97(3H,s),4.30(2H,s),6.73-6.77 (2H,m),7.35(1H,d,J=7.8Hz),7.75(2 H,d,J=8.4Hz),7.83(2H,d,J=8.4Hz), 8.15 (1H, s)
β- 11-20	β-11	F ₃ C	CH=NO (CH2)2GI	s	н,н	OMe	Ħ	н	н	н	н	Me	н	-	1.32(3H,d,J=6.9Hz),2.53-2.70(2H, m),3.19-3.31(1H,m),3.77(2H,t,J= 5.7Hz),3.88(3H,s),4.28(2H,s),4.37(2H,t,J=5.7Hz),6.74-6.78(2H,m), 7.32(1H,d,J=7.5Hz),7.76(2H,d,J=8,4Hz),7.82(2H,d,J=8,4Hz),8.25(1H, s)
β- 11-21	β-11	CI	CH2OnPr	s	н,н	ОМе	ı	Н	Н	н	н	Me	н	oil	0.94(3H,t,J=7.5Hz),1.31(3H,d,J=6. 9Hz),1.57-1.69(2H,m),2.52-2.69 (2H,m),3.18-3.30(1H,m),3.46(2H, t,J=6.6Hz),3.87(3H,s),4.16(2H,s), 4.49(2H,s),6.73-6.77(2H,m),7.33 (1H,d,J=7.5Hz),7.45(2H,d,J=8.4Hz),7.69(2H,d,J=8.4Hz)
β- 11-22	β-11	F ₃ CO	CH=NOMe	s	н,н	OMe	Н	н	Ĥ	н	н	М́е	н	99.0- 100.0	1.31(3H,d,J=6.9Hz),2.52-2.70 (2H,m),3.19-3.31(1H,m),3.87(3H, s),3.96(3H,s),4.29(2H,s),6.73-6.77 (2H,m),7.33-7.35(3H,m),7.74 (2H,d,J=8.7Hz),8.12(1H,s)
β- 11 -2 3	β-11	F ₃ C	Ме	s	н,н	н	н	н	Н	H	Ме	н	н	86-88	1.01(3H,d,J=6.6Hz),2.23(3H,s), 2.60(2H,m),2.83(2H,m),4.30(2H,s), 7.15(2H,d,J=8.4Hz),7.33(2H,d,J=8 .4Hz),7.92(4H,m)
β 11-24	β-11	F ₃ C	CH2OEt	S	н,н	ОМе	н	Н	Н	н	н	Me	н	82-84	1.25(6H,m),2.60(2H,m),3.24(1H,m),3.58(2H,q,J=6.9Hz),3.88(3H,s),4.18(2H,s),4.53(2H,s),6.73(1H,s,),6.75(1H,d,J=7.8Hz),7.33(1H,d,J=7.8Hz),7.74(2H,d,J=8.1Hz),7.88(2H,d,J=8.1Hz)
β- 11-25	β-11	F ₃ C	CH2OnPr	S	н,н	ОМе	Н	Ħ	Ħ	H	H	Ме	Н	65–69	0.94(3H,t,J=7.5Hz),1.30(3H,d,J=8. 4Hz),1.65(2H,m),2.60(2H,m),3.25(1H,m),3.49(2H,t,J=6.6Hz),3.88(3H ,s),4.18(2H,s),4.53(2H,s),6.73(1H,s ,)6.75(1H,d,J=7.8Hz),7.33(1H,d,J =7.8Hz),7.73(2H,d,J=8.4Hz),7.89(2H,d,J=8.4Hz)

[0303] [表148]

No	合成法	R1	R2	X1	R3,R4	R5	R6	R7	R8	R9	R10	R15	R16	mp	NMR(CDCl3 or DMSO-d6)
β- 11-26	β-11	F ₃ C	CH2OCH2 cPr	s	н,н	ОМе	н	Н	Н	н	н	Ме	Н	55-58	
β- 10-1	β-10	F ₃ C	GH2OEt	0	н,н	ОМе	н	н	н	н	Н	Me	Н	121- 123	
β- 10-2	β-10	F ₃ C	CH2OnPr	0	н,н	OMe	I	I	I	н	н	Ме	н	127- 129	
β- 10-3	β-10	F ₃ C	Ме	0	н,н	ОМе	н	H	н	н	н	Ме	н	96-98	
β- 10-4	β-10	F ₃ C	CH2OEt	0	н,н	F	н	Н	H	Н	Н	Ме	н	124- 126	
β- 10-5	β-10	F ₃ C	CH2OnPr	0	н,н	F	н	Н	Н	Н	н	Me	Н	122- 124	
β- 10-6	β-10	F ₃ C	Ме	0	Н,Н	F	Ŧ	Ŧ	· I	Ŧ	Ή	Me	н	113- 115	
β- 11-27	β-11	F ₃ C	CH2OEt	s	н,н	H	н	Ħ	н	ı	H	Ме	Me	90-92	
β- 11-28	β-11	F ₃ C	Ме	S	н,н	н	H	I	Н	H	н	Ме	Me	108- 109	
β- 11-29	β-11	F ₃ C	Ме	S	н,н	Н	н	H	н	I	±	Ме	н	183- 186.5	1.28(3H,d,J=7.2Hz),2.30(3H,s), 2.59(2H,m),3.24(1H,m),4.11(3H,s), 4.79(2H,s,),7.15(2H,d,J=8.4Hz),7.3 4(2H,d,J=8.4Hz),7.74(2H,m), 7.81(2H,m)
β- 11-30	β-11	F ₃ C	CH2OEt	S	н,н	I	Ι	Н	н	I	Ħ	Ме	Ħ	83-84	1.13(3H,t,J=6.9Hz),1.18(3H,d,J=6. 9Hz),3.15(1H),3.51(2H),4.32 (2H,s),4.50(2H,s),7.22(2H,d,J=8.4 Hz),7.35(2H,d,J=8.4Hz),7.93(2H,d,J=8.7Hz),7.99(2H,d,J=8.4Hz)
β- 11-31	β-11	F ₃ C	CH2OnPr	S	н,н	н	н	Н	Н	Ħ	Н	Ме	H	59-60	0.94(3H,t,J=7.2Hz),1.29(3H,d,J=6. 9Hz),1.64(2H),2.58(2H), 3.26(1H),3.47(3H,t,J=6.6Hz),4.21(2H,s),4.49(2H,s),7.15(2H,d,J=8.4H z),7.34(2H,d,J=8.4Hz),7.74(2H,dJ =8.4Hz),7.87(2H,d,J=8.4Hz)
β- 11-32	β-11	CO	Ме	Ø	н,н	OMe	н	н	н	н	Н	Ме	Н	116- 117	1.30(3H,d,J=6.9Hz),2.21(3H,s), 2.65(2H),3.24(1H),3.87(3H,s),4.07(2H,s),6,72-6.78(2H,m),7.32(1H,d, J=8.4Hz),7.44(2H,d,J=8.4Hz),7.61 (2H,dJ=8.4Hz)

[0304] [表149]

No	合成法	R1	R2	X1	R3,R4	R5	R6	R7	R8	R9	R10	R15	R16	mp	NMR(CDCl3 or DMSO-d6)
β- 11-33	β-11	CI	Ме	S	н,н	н	н	н	н	н	Ħ	Ме	н	149- 150	1.29(3H,d,J=6.9Hz),2.19(3H,s), 2.59(2H)3.24(1H),4.09(2H,s), 7.14(2H,d,J=8.4Hz),7.34(2H,d,J=8,4Hz),7.44(2H,d,J=8,4Hz),7.62(2H,d,J=8.4Hz)
β- 11-34	β-11	F₃CO C	Ме	S	н,н	ОМе	Н	I	н	Н	Н	Ме	н	75-76	1.30(3H,d,J=6.9Hz),2.23(3H,s),2.6 0(2H),3.24(1H),3.88(3H,s),4.07(2H ,s),6,72-6.78(2H,m),7.32(3H, d,J=8.4Hz),7.71(2H,d,J=8.4Hz)
β- 11-35	β-11	F ₃ C	Ме	Ø	н,н	F	π	I	I	Н	Ħ	Ме	H	117- 118	1.30(3H,d,J=6.9Hz),2.26(3H,s), 2.59(2H),3.24(1H),4.09(2H,s), 6,92(1H,s),6.96(1H,m,),7.35(1H,d, J=8.4Hz),7.73(2H,d,J=8.4Hz), 7.80(2H,d,J=8.4Hz)
β- 11-36	β-11	F ₃ CO	CH2OEt	S	н,н	F	I	Ι	H	н	I	Ме	н	55-56	1.25(3H,tJ=6.9Hz),1.29(3H,d,J=6. 9Hz),2.59(2H),3.24(1H),3.59(2H,q, J=6.9Hz),4.18(2H,s),4.52(2H,s),6, 94(2H,d,J=9.0Hz),7.31-7.40 (3H,m,),7.79(2H,d,J=8.4Hz)
β- 11-37	β-11	F ₃ C	CH2OEt	S	н,н	F	н	н	н	H	H	Ме	н	87–88	1.26(3H,tJ=6.9Hz),1.29(3H,d,J=6. 9Hz),2.59(2H),3.23(1H),3.59(2H,q, J=6.9Hz),4.19(2H,s),4.54(2H,s),6. 94(2H,d,J=9.0Hz),7.36(3H,t,J=7.5 Hz),7.74(2H,d,J=8.4Hz),7.87(2H,d, J=8.4)
β- 11-38	β-11	F ₃ C	CH=NOEt	s	н,н	F	Н	н	н	Н	н	Ме	н	148- 149	1.29(3H,dJ=6.9Hz),1.34(3H,t,J=6. 9Hz),2.58(2H),3.24(1H),3.59(2H), 4.31(2H,s),6,94(2H,d,J=9.0Hz),7.3 7(3H,t,J=7.5Hz),7.74(2H,d,J=8.4H z),7.87(2H,d,J=8.4),8.16(1H,s)
β- 11-39	β-11	CI 2 I	CH2OEt	S	н,н	F	Н	H	Н	н	Н	Ме	Н	60-61	1.25(3H,tJ=6.9Hz),1.28(3H,d,J=6. 9Hz),2.59(2H),3.23(1H),3.59(2H,q, J=6.9Hz),4.18(2H,s),4.51(2H,s),6, 94(2H,d,J=9.0Hz),7.37(3H,t,J=7.5 Hz),7,46(2H,d,J=8.4Hz), 7.67(2H,d,J=8.4)
β- 11-40	β-11	F ₃ C	Ме	s	н,н	н	F	н	н	H	Н	Ме	н		1.29(3H,d,J=7.2Hz), 2.26(3H,s), 2.55-2.75(2H,m), 3.44-3.56(1H, m),4.13(2H,s), 7.07-7.18(3H,m), 7.73-7.84(4H,m)
β- 11-41	β-11	F ₃ C	CH2OEt	s	н,н	н	F	н	Н	н	н	Ме	н	64-65	1.26(3H,tJ=6.9Hz),1.30(3H,d,J=6. 9Hz),2.64(2H),3.49(1H),3.59(2H,q, J=6.9Hz),4.23(2H,s),4.52(2H,s),7. 07-7.14(3H,m,),7.75(2H,d,J=8.4 Hz),7.87(2H,d,J=8.4)
β- 11-42	β−11	F ₃ C	CH2OnPr	S	н,н	н	F	Ŧ	н	н	Ħ	Ме	н	72-73	0.96(3H,tJ=7.2Hz),1.30(3H,d,J=7. 2Hz),1.67(2H),2.65(2H),3.49(3H),4. 23(2H,s),4.52(2H,s),7.07-7.14 (3H,m,),7.75(2H,d,J=8.1Hz),7.87(2 H,d,J=8.1)
β- 11-43	β-11	F ₃ C	CH=NOEt	s	н,н	н	F	н	н	н	н	Ме	н		1.32(3H,tJ=7.2Hz),1.35(3H,d,J=7. 2Hz),2.64(2H),3.49(1H),4.23(2H,q, J=6.9Hz),4.38(2H,s),7.11-7.26 (3H,m,),7.75(2H,d,J=8.4Hz),7.82(2

[0305] [表150]

No	合成法	R1	R2	X1	R3,R4	R5	R6	R7	R8	R9	R10	R15	R16	mp	NMR(CDCl3 or DMSO-d6)
-														<u> </u>	H,d,J=8.4)
β- 11-44	β −11	F ₃ C	Ме	s	н,н	н	Ме	Н	Н	н	Н	Ме	н	74-75	1.23(3H,d,J=6.6Hz),2.22(3H,s),2.3 2(3H,s),2.57(2H),3.47(1H,),4.09(2 H,s),7.11-7.24(3H,m),7.73(2H, d,J=8.4Hz),7.81(2H,d,J=8.4Hz)
β- 11-45	B−11	F ₃ C	CH=NOEt	s	н,н	н	Ме	H	н	H	н	Me	Н	103- 104	1.24(3H,d,J=6.9Hz),1.34(3H,t,J=7. 2Hz),2.33(3H,s),2.59(2H),3.48(1H) ,4.22(2H,q,J=6.9Hz),4.34(2H,s) 7.11(1H,d,J=8.1Hz),7.21-7.26(2H, m),7.75(2H,d,J=8.4Hz),7.83(2H,d, J=8.4Hz)
β- 11-46	β-11	CI	CH2OEt	s	н,н	н	Me	Ι	Н	Н	Н	Me	Н	82-83	1.23(3H,d,J=6.9Hz),1.24(3H,t,J=6. 9Hz),2.33(3H,s),2.60(2H),3.47(1H,),3.55(2H,q,J=6.9Hz),4.19(2H,s),4. 467(2H,s),7.10(1H,d,J=8.1Hz), 7.19-7.25(2H,m),7.45(2H,d, J=8.4Hz),7.68(2H,d,J=8.4Hz)
β- 11-47	β-11	F ₃ C	CH2OEt	s	н,н	Н	Me	н	н	н	Н	Ме	н	66-67	1.23(3H,d,J=6.9Hz),1.25(3H,t, J=6.9Hz),2.33(3H,s),2.59(2H),3.47 (1H,),3.54(2Hq,J=6.9Hz),4.20(2H, s),4.49(2H,s),7.10(1H,d,J=7.8Hz), 7.19-7.25(2H,m),7.75(2H,d, J=8.4Hz),7.87(2H,d,J=8.4Hz)
β- 11-48	β-11	F ₃ C	CH=NOEt	s	н,н	н	н	Н	Н	H	н	Ме	Н	141.5 142.5	1.19(3H,t,J=6.9Hz),1.26(3H,t,J=6 7.2Hz),3.04-3.20(1H,m),4.15 (2H,q,J=7.2Hz),4.43(2H,s),7.23(2 H,d,J=8.4Hz),7.34(2H,d,J=8.4Hz), 7.93(2H,d,J=8.4Hz),8.03(2H,d,J=8 .4Hz),8.33(1H,s)
β- 11-49	β-11	F ₃ C	CH=NOEt	s	н,н	ОМе	Н	н	н	Н	н	Ме	н	97-98	1.21(3H,t,J=6.9Hz),1.26(3H,t,J=6.9Hz),3.02-3.20(1H,m),3.79 (3H,s),4.14(2H,q,J=6.9Hz),4.33(2H,s),6.82(1H,dd,J1=7.82Hz,J2=1.2Hz),6.90(1H,d,J=1.2Hz),7.29(1H,d,J=7.8Hz),7.93(2H,d,J=8.4Hz),8.03 (2H,d,J=8.4Hz),8.32(1H,s)
β- 11-50	β-11	F ₃ C	CH2CN	s	н,н	OMe	н	н	н	н	н	Ме	Н	107- 110	1.31(3H,d,J=7.2Hz),2.53-2.69 (2H,m),3.20-3.31(1H,m),3.62(3H, s),3.82(2H,s),3.90(3H,s),4.22(2H,s),6.73-6.77(2H,m),7.32-7.35 (1H,m),7.74-7.82(4H,m)
β- 11-51	β-11	F ₃ CO	CH=NOMe	s	Н,Н	F	н	н	н	н	н	Мө	н	115.5 -117	1.19(3H,d,J=6.9Hz),3.10-3.20(1H, m),3.88(3H,s),4.38(2H,s),7.07- 7.46(3H,m),7.56(2H,d,J=8.1Hz),7. 94(2H,d,J=8.1Hz),8.27(1H,s)
β- 11-52	β-11	F ₃ CO	CH=NOEt	s	н,н	F	н	Н	н	н	H	Ме	н	114- 115	1.19(3H,t,J=6.9Hz),1.26(3H,t,J=6. 9Hz),3.10-3.20(1H,m),4.14(2H,q, J=7.2Hz),4.38(2H,s),7.06-7.20 (2H,m),7.43(1H,t,J=7.8Hz),7.56(2 H.d,J=8.7Hz),7.94(2H,d,J=8.7Hz), 8.28(1H,s)
β- 11-53	β-11	F ₃ C	CH=NOMe	s	н,н	F	н	Н	Н	н	н	Ме	н	148- 149	1.19(3H,d,J=6.9Hz),3.10-3.20 (1H,m),3.90(3H,s),4.40(2H,s),7.08 -7.20(2H,m),7.44(1H,t,J=7.8Hz),

[0306] [表151]

No	合成法	R1	R2	X1	R3,R4	R5	R6	R7	R8	R9	R10	R15	R16	mp	NMR(CDCl3 or DMSO-d6)
															7.93(2H,d,J=8.4Hz), 8.02(2H,d,J=
β- 11-54	β-11	F ₃ C	CH=NOMe	s	н,н	н	F	н	н	н	н	Ме	н	119.5 - 120.5	8.4Hz),8.31(1H,s) 1.19(3H,d,J=6.9Hz),3.34-3.45 (1H,m),3.90(3H,s),4.50(2H,s),7.16 -7.33(3H,m),7.93(2H,d,J=8.1Hz), 8.03(2H,d,J=8.1Hz),8.33(1H,s)
β- 11-55	β-11	F ₃ C	CH=NOEt	s	н,н	н	F	н	Н	н .	Н	Ме	н	80-81	1.19(3H,t,J=6.9Hz),1.26(3H,t,J= 6.9Hz),3.30-3.43(1H,m),4.14(2H,q, J=7.2Hz),4.48(2H,s),7.15-7.27 (3H,m),7.30(1H,t,J=8.1Hz),7.56(2 H,d,J=8.1Hz),7.95(2H,d,J=8.1Hz), 8.30(1H,s)
β- 11-56	β-11	F ₃ C	Ме	s	н,н	н	CI	н	н	Н	н	Me	н		
β- 11-57	β-11	F ₃ C	CH2OEt	s	н,н	н	ō	н	н	н	н	Me	н		
β- 11-58	β-11	F ₃ C	CH=NOEt	s	н,н	н	ō	Н	Н	Ĥ	н	Ме	Н		
β- 11-59	β-11	F ₃ C	Me	S	н,н	OMe	Η	H	F	Н	н	Me	н		
β- 11-60	β-11	F ₃ C	CH2OEt	s	н,н	OMe	Н	Н	F	Н	н	Me	н		
β- 11-61	β-11	F ₃ C	CH=NOEt	s	н,н	OMe	Н	Н	F	H	н	Me	н		
β- 11-62	β-11	F ₃ C	Ме	s	н,н	ОМе	н	н	CI	н	Ħ	Ме	Н		
β- 11-63	β-11	F ₃ C	CH2OEt	s	н,н	OMe	Н	н	CI	н	н	Ме	Н		
β- 11-64	β-11	F ₃ C	CH=NOEt	Ø	н,н	ОМе	н	н	cı	н	н	Ме	н		,
β- 11-65	β-11	F ₃ CO	CH=NOMe	s	н,н	н	F	н	н	н	н	Me	н		1.19(3H,d,J=6.9Hz),3.89(3H,s), 4.48(2H,s),7.16 [~] 7.34(3H,m),7.56(2 H,d,J=8.4Hz),7.95(2H,d,J=9Hz), 8.30(1H,s)
β- 11-66	β−11	CI	CH=NOMe	s	н,н	Н	F	Н	Н	Н	н	Ме	н		1.19(3H,d,J=6.9Hz),3.33-3.43 (1H,m),3.89(3H,s),4.47(2H,s),7.15 -7.33(3H,m),7.64(2H,d,J=9Hz), 7.82(2H,d,J=8.7Hz),8.28(1H,s)
β- 11-67	β-11	CI	CH=NOMe	s	н,н	F	н	н	Н	н	н	Ме	Н	152- 153	1.19(3H,d,J=6.9Hz),3.05-3.20(1H, m),3.89(3H,s),4.38(2H,s),7.10(1H, d,J=8.1Hz)7.18(1H,d,J=11Hz)7.44

[0307] [表152]

No	合成法	R1	R2	X1	R3,R4	R5	R6	R7	R8	R9	R10	R15	R16	mp	NMR(CDCl3 or DMSO-d6)
															(1H,t,J=8.1Hz),7.64(2H,d,J=8.7Hz),7.82(2H,d,J=8.7Hz),8.26(1H,s)
β- 11-68	β-11	CI	CH=NOMe	s	н,н	OMe	н	н	Н	Η	Н	Ме	н		1.28(3H,d,J=6.9Hz), 2.48-2.65 (2H,m), 3.19-3.31(1H,m), 3.87(3H, s), 3.96(3H,s), 4.29(2H,s),6.72 (2H,m), 7.34(1H,d,J=7.8Hz),7.47 (2H,d,J=8.7Hz),7.63(2H,d,J=8.7Hz), 8.12(1H,s)
β- 11-69	β-11	F ₃ C	CH2CN	s	н,н	OMe	H	н	н	H.	I	Me	I	10/-	1.31(3H.d.,J=7.2Hz),2.53-2.69(2H, m),3.20-3.31(1H.m),3.62(3H,s), 3.82(2H.s),3.90(3H.s),4.22(2H.s), 6.73-6.77(2H,m),7.32-7.35(1H,m), 7.74-7.82(4H,m)
β- 11-70	β-11	F ₃ C	Мө	s	н,н	н	H	I	н	I	н	Et	π		

[0308] [表153]

No	合成法	R1	R2	X1	R3,R4	R5	R7	R8	R9	R10	R23	R20	R17	mp	NMR(CDCl3 or DMSO-d6)
α-20-1	α−20	F ₃ C	CH2OnPr	S	H,H	Н	н	н	Н .	Н	Ме	Н	Ме		0.95(3H,t,J=7.2Hz),1.64(2H),3.48(2H,t,J=6.6Hz),3.67(3H,s),3.71(3H, s),3.73(2H,s),4.23(2H,s),4.50(2H,s),7.03(1H,s),7.18(1H,dd,J=8.4,1.5 Hz),7.42(1H,dd,J=1.50.6Hz),7.50(1H,dd,J=8.40.6Hz),7.74(2H,d, J=9.0Hz),7.89(2H,d,J=9.0Hz)
α-20-2	α-20	F ₃ CO	CH2OnPr	S	н,н	Н	Н	Н	Н	Н	Ме	Н	Ме		
α-19-1	α−19	F ₃ C	Me	0	н,н	Н	Н	Н	Н	Н	н	Н	Ме		2.38(3H,s),3.70(3H,s),3.75(2H,s),5. 24(2H,s),6.89(1H,dd,J=8.7,2.4Hz), 7.03(1H,s),7.09(1H,s),7.51(1H,d,J =8.7Hz),7.73-7.84(4H,m), 8.00(1H,s)
α-19-2	α−19	F ₃ C	Me	0	н,н	Н	Н	Н	Н	Н	Me	I	Me		2.32(3H,s),3.59(2H,s),3.71(3H,s),5. 29(2H,s),6.80(1H,dd,J=8.7,2.1Hz), 7.11(1H,s),7.16(1H,d,J=2.1Hz),7.4 1(1H,d,J=8.7Hz),7.93(2H,d,J=8.7Hz),8.00(2H,d,J=8.7Hz), 12.14(1H,br)
α-19-3	α-19	F ₃ C	Me	0	H,H	Н	Н	H	Н	Н	nPr	H	Ме		0.93(3H,q,J=7.2Hz),1.80-1.87(2H, m),2.34(3H,s),3.69(3H,s),3.73(2H, s),3.99(2H,t,J=7.2Hz),5.26(2H,s),6.87(1H,dd,J=8.7.2.4Hz),6.94(1H,d, J=2.1Hz),6.99(1H,s),7.49(1H,d,J=8.7Hz),7.75(2H,d,J=8.7Hz),7.83(2H,d,J=8.7Hz),7.83)
α-20-3	α-20	a C	CH2OnPr	Ø	Н,Н	Н	H	Н	Н	Н	Me	Н	Ме		0.94(3H,t,J=7,5Hz),1.59-1.70(2H,m),3.46(3H,t,J=6.6Hz),3.69(3H,s),3.71(3H,s),3.73(2H,s),4.22(2H,s),4.48(2H,s),7.3(1H,m),7.19 (1H,dd,J=8.1,1.5Hz),7.42(1H,m),7.46 (2H,d),J=8.4Hz),7.50(1H,d,J=8.1Hz),7.70(2H,d,J=8.4Hz)
α-19-4	α-19	F ₃ C	Me	0	H.H	H	H	Н	Ме	Н	Ме	H	Ме		1.57(3H,d,J=6.9Hz),2.34(3H,s),3.6 6(3H,s),3.71(3H,s),3.96(1H),5.26(2 H,s),6.85-6.92(3H,m),7.56(1H,d, J=8.7Hz),7.75(2H,d,J=8.7Hz),7.84 (2H,dJ=8.7Hz)
α-19-5	α-19	F ₃ C	CH2OEt	0	Н,Н	Н	Н	1	Н	н	Me	Н	Ме		1.26(3H,t,J=6.9Hz),3.60(2H),3.69(3H,s),3.71(3H,s),3.73(2H,s)4.58(2H,s),5.32(2H,s),6.85-6.95(3H,m),7.49(1H,d,J=8.4Hz),7.75(2H,d,J=8.4Hz),7.95(2H,d,J=8.4Hz)

[0309] [表154]

No	合成法	RI	R2	X1	R3,R4	R5	R7	R8	R9	R10	R23	R20	R17	mp	NMR(CDCl3 or DMSO-d6)
α-19-6	α−19	F ₃ C	CH2OnPr	0	H,H	Η	Н	Н	H	Н	Ме	H	Me		0.92(3H,t,J=7.2Hz),1.25(2H,tJ=7. 2Hz),1.61(2H),3.69(3H,s),3.71(3H, s.),3.73(2H,s),4.57(2H,s),5.52(2H,s),6.85-6.95(2H,m),7.49(1H,d, J=8.4Hz),7.75(2H,dJ=7.1Hz),7.95(2H,d,J=7.1Hz)
α-19-7	α−19	F ₃ C	CH2OEt	0	H,H	I	Ξ	ı	Ме	н	Ме	Ι	Me		1.24(3H,t,J=6,9Hz),1.58(3H,d,J=8, 4Hz),3.80(2H),3.66(3H,s),3.71(2H, 5),4.58(2H,s),5.32(2H,s),6.84-6.92 (3H,m),7.56(1H,d,J=8.4Hz),7.75(2 H,d,J=8.4Hz),7.96(2H,dJ=8.4Hz)
α-20-4	α-20	F ₃ C	Me	Ø	н,н	Ι	Ħ	ı	H	н	Ме	I	Me		2.24(3H,s),3.69(3H,s),3.71(3H,s),3. 73(3H,s),4.12(2H),4.14(2H,s),6.61(2H,d,J=9.0Hz),7.03-7.52(4H,m,), 7.73(2H,dJ=8.1Hz),7.80(2H,d,J=8. 1Hz)
α-19-8	α-19	F ₃ C	Me	0	H,H	H	н	Η	Me	Me	Ме	ı ·	Me		1.65(8H,s,),2.35(3H,s),3.60(2H),3.63(3H,s),3.70(3H,s),5.26(2H,s),6.8 2-6.92(3H,m),7.53(1H,d,J=8.4Hz), 7.64(2H,d,J=8.4Hz),7.83(2H,d,J=8.4Hz)
α-20-5	α-20	F ₃ C	Ме	S	н,н	Η	Н	Н	Me	Н	Me	Н	Ме		1.58(3H,s),2.26(3H,s),3.65(3H,s),3.70(3H,s),3.98(1H),4.10(2H,s),6,99(1H,s),7.17(1H,dd,J=8.4,J=1.5Hz),7.3(1H,d,J=1.5Hz),7.57(1H,dJ=8.7),7.73(2H,d,J=8.4Hz),7.81(4H,d,J=8.4Hz),7.81(4H,d,J=8.4Hz),7.81(4H,d,J=8.4Hz),7.81(4H,d,J=8.4Hz),7.81(4H,d,J=8.4Hz),7.81(4H,d,J=8.4Hz),7.81(4H_d,J=8.4Hz),7.81(4H_d,J=8.4Hz),7.81(4H_d,J=8.4Hz),7.81(4H_d,J=8.4Hz),7.81(4H_d,J=8.4Hz),7.81(4H_d,J=8.4Hz),7.81(4H_d,J=8.4Hz),7.81(4H_d,J=8.4Hz),7.81(4H_d,J
α-20-6	α-20	F ₃ C	CH2OEt	Ø	H,H	H	н	H	Н	н	Ме	Н	Ме		1.23(3H.t.,J=6.9Hz),3.58(2H.q.,J=7. 2Hz),3.69(3H,s),3.71(3H,s),3.73(2 H.s),4.23(2H,s),4.514(2H,s),7.03(1 H.s),7.19(14H,dd,J=8.1Hz,J=0.9Hz),7.43(1H,m),7.50(1H,d,J=8.1Hz),7.75(2H,d,J=8.4Hz),7.88(2H,d,J=8.4Hz)
α-20-7	α-20	F ₃ C	CH2OEt	S	н,н	Н	Н	Н	Ме	Н	Ме	Н	Ме	œ	
α-20-8	α-20	F3CO ()	CH2OEt	Ø	H,H	H	Н	H	Н	Н	Ме	H	Me		1.25(3H,t,J=6.9Hz),3.57(2H,q,J=6.9Hz),3.69(3H,s),3.71(3H,s),3.73(3H,s),4.22(2H,s),4.49(2H,s),7.18(1H,dd,J=8.4,J=1.2Hz),7.32(2H,d,J=8.4Hz),7.42(1H,s),7.50(1H,d,J=8.4Hz),7.80(2H,d,J=8.4Hz)
α-20-9	α-20	CI	CH2OEt	S	Н,Н	H	Н	Н	Н	Н	Ме	Н	Me		
α-20- 10	α-20	F ₃ C	CH=NOEt	S	н,н	I	Н	Н	Н	Н	Me	Н	Me		1.35(3H,d,J=7.21Hz),3.69(2H,s,),3. 72(3H,s),3.73(2H,s),4.24(2H,q,J=6.9Hz),4.36(2H,s,),7.02(1H,s,),7.19(1H,dd,J=8.4,J=1.5Hz),7.43(1H,d,J=0.9Hz),7.51(1H,d,J=8.1Hz),7.75(2H,d,J=8.4Hz),7.83(2H,d,J=8.4Hz)

[0310] [表155]

No	合成法	R1	R2	X1	R3,R4	R5	R7	R8	R9	R10	R23	R20	mp	NMR(CDCl3 or DMSO-d6)
B −13−1	β-13		CH2OnPr	s	Н,Н	Н	Н	н	Н.	н	Me	Н	108-	0.85(3H,t,J=7.2Hz),1.53(2H),3.42(2H,t,J=
		~					l						110	6.6Hz),3.60(2H,s),3.70(3H,s),4.31(2H,s),4.
		ا ل ا												53(2H,s),7.09(1H,dd,J=8.1,1.5Hz),7.23(1H
		F3C ◆												,s),7.46(1H,d,J=8.1Hz),7.51(1H,d,J=1.5Hz
),7.93(2H,d,J=8.7Hz),7.99(2H,d,J=8.7Hz)
β-13-2	β-13	~	CH2OnPr	s	H,H	Н	Н	Н	Н	Н	Me	Н	96-98	0.94(3H,t,J=7.2Hz),1.58-1.70(2H,m),3.47
														(2H,t,J=6.6Hz),3.71(3H,s),3.75(2H,s),4.22
		F ₃ CO												(2H,s),4.48(2H,s),7.03(1H,s),7.17-7.51
														(5H,m),7.80(2H,d,J=9.0Hz)
β-12-1	β-12		Me	0	H,H	Н	Н	Н	Н	Н	Ι	Н	213	2.31(3H,s),3,59(2H,s),5.23(2H,s),6.75(1H,
														dd,J=8.7,1.5Hz)7.04(1H,s),7.11(1H,s),7.0
		F ₃ C						ŀ					į	9(1H,d,J=8.7Hz)7.91-8.00(4H,m),10.8
														(1H,s),12.1(1H,br)
β-12-2	B-12		Me	0	H,H	н	н	н	н	н	Me	H	1.66-	2.32(3H,s),3.57(2H,s),3.71(3H,s),5.29(2H,
									ŀ				167	s),6.78(1H,dd,J=8.7,2.1Hz),7.10(1H,s),7.1
		F ₃ C												5(1H,d,J=2.4Hz),7.40(1H,d,J=8.7Hz),7.93
														(2H,d,J=8.4Hz),7.99(2H,d,J=8.4Hz)
β-12-3	β-12	1	Me	0	H,H	Н	Н	н	н	н	nPr	Н		0.93(3H,t,J=7.2Hz),1.80-1.87(2H,m),2.34
	'												157	(3H,s),3.76(2H,s),3.99(2H,t,J=7.2Hz),5.26
		Fact												(2H,s),6.87(1H,dd,J=8.7,2.4Hz),6.95(1H,d,
		. 30												J=2.1Hz),7.00(1H,s),7.48(1H,d,J=8.4Hz),7
										L.	L			.74(2H,d,J=8.4Hz),7.83(2H,d,J=8.4Hz)
β-13-3	β−13		CH2OnPr	S	H,H	н	н	н	H	Н	Me	Н	132.0	0.94(3H,t,J=7.5Hz),1.57-1.69(2H,m),3.46
														(2H,t,J=6.6Hz),3.71(3H,s),3.76(2H,s),4.22
		CI											133.5	(2H,s),4.47(2H,s),7.03(1H,s),7.19(1H,dd,J
									ŀ				ŀ	=8.4,1.5Hz),7.42(1H,m),7.45(2H,d,J=8.4H
2 10 4	B-12			O	H.H		<u> </u>			<u> </u>	<u></u>	<u></u>	450	z),7.50(1H,d,J=8.4Hz),7.69(2H,d,J=8.4Hz)
β-12-4	B-12		Me	U	н,н	н	Н	н	Ме	Н	Me	Н		1.59(3H,d,J=9.0Hz),2.34(3H,s),3.70(3H,s),
													157	3.97(1H),5.26(2H,s),6.86(1H,dd,J=8.7Hz,
		F3C												J=2.1Hz),6.92(1H,s),7.56(1H,d,J=8.7Hz),7
B-12-5	B-12		CH2OEt	0	H.H	н	н	н	Н	н	Me	Н	126-	.74(2H,d,J=8.4Hz),7.83(2H,dJ=8.7Hz) 1,23(3H,t,J=7,2Hz),3.60(2H),3,71(3H,s),3.
P - 12-5	ρ-12		UNZUET	U	п,п	п	"	"	п	"	Me	п	140	75(2H,s)4.57(2H,s).5.32(2H,s).6.87(1H,dd
													140	,J=8.4Hz,J=2.1Hz),6.93(1H,d,J=1.8Hz),6.
		F ₃ C												95(1Hs)7.48(1H,d,J=8.4Hz),7.75(2H,d,J=
														8.4Hz).7.95(2H.dJ=8.4Hz)
B-12-6	β-12	 	CH2OnPr	0	H.H	Н	н	н	н	н	Me	н	122-	0.92(3H,t,J=7,2Hz),1.63(2H),3.49(3H,t,J=
" ' '	~ '2		CHECHE		11,11	'''	''	''	١"	l '''		''	1	6.6Hz).3.71(3H.s.).3.75(2H.s).4.57(2H.s).5
				•									1.20	.31(2H,s),6.87(2H,dd,J=8.7Hz,J=2.1Hz),6.
										1				93(1H,d,J=1.8Hz),6.95(1H,s),7.49(1H,d,J
		30												=8.7Hz),7,76(2H,dJ=7,1Hz),7,96(2H,d,J=
						1							l	7.1Hz)
		L,	L						<u> </u>		L.,	L	L	7.1114/

[0311] [表156]

No	合成法	R1	R2	X1	R3,R4	R5	R7	R8	R9	R10	R23	R20	mp	NMR(CDCl3 or DMSO-d6)
β-12-7	β-12	F ₃ C	CH2OEt	0	Н,Н	Н	Н	Н	Me	Н	Me	I	129- 130	1.23(3H,t,J=6.9Hz),1.59(3H,d,J=7.2Hz),3. 60(2H),3.71(3H,s),3.97(1H),4.57(2H,s),5.3 1(2H,s),6.86(1H,dd,J=8.7Hz,J=2.1Hz),6.9 1(1H,d,J=1.8Hz),6.92(1H,s),7.56(1H,d,J= 8.7Hz),7.75(2H,d,J=8.4Hz),7.96(2H,dJ=8.
β-13-4	β-13	F ₃ C	Me	s	н,н	Н	н	н	н	Н	Me	Н		4Hz) 2.24(3H,s),3.71(3H,s),3.75(2H,s),4.14(2H,s),7.18(1H,dd,J=8.4Hz,J=2.1Hz),7.40(1H,d,J=1.5Hz),7.49(1H,dd,J=8.4Hz,J=2.1Hz),7.72(2H,dJ=8.4Hz),7.79(2H,d,J=8.4Hz)
β-12-8	β-12	F ₃ C	Me	0	Н,Н	Н	Н	Н	Ме	Ме	Ме	Н		1.67(6H.s.),2.33(3H,s),3.71(3H,s),5.25(2H, s),6.83(1H,dd,J=8.4Hz,J=2.1Hz),6.87(1H, s),6.91(1H,d,J=2.4Hz),7.57(1H,d,J=6.0Hz) ,7.74(2H,d,J=8.4Hz),7.83(2H,dJ=8.4Hz)
β-13-5	β-13	F ₃ C	Me	S	н,н	H	Н	н	Ме	Н	Me	H		1.58(3H,d,J=7.2Hz),2.24(3H,s),3.69(3H,s), 3.95(2H,s),4.13(2H,s),7.00(1H,s),7.16(1H,dd,J=8.1Hz,J=1.51Hz),7.38(1H,d,J=0.9),7 .57(1H,d,J=8.4Hz),7.73(2H,d,J=8.4Hz),7.8 0(2H,d,J=8.4Hz)
β-13-6	β−13	F ₃ C	CH2OEt	S	H,H	Н	Н	Н	Н	#	Me	Н		1.25(3H,t,J=6.9Hz),3.57(2H,q,J=7.2Hz),3. 71(3H,s),3.7(2H,s),4.23(2H,s),7.03(1H,s),7. .18(14H,dd,J=8.1Hz,J=0.9Hz),7.42(1H,s),7.49(1H,d,J=8.1Hz),7.73(2H,d,J=8.4Hz),7. 87(2H,d,J=8.4Hz)
β-13-7	β−13	F ₃ C	CH2OEt	S	Н,Н	Н	H	Н	Ме	I	Ме	I		1.25(3H,t,J=6.9Hz),1.57(3H,d,J=7.2Hz),3. 59(2H),3.70(3H,s),3.97(1H),4.23(2H,s),4.5 0(2H,s),7.00(1H,s),7.17(1H,dd,J=8.7Hz,J= 2.1Hz),7.40(1H,d,J=1.8Hz),7.57(1H,d,J=8. 7Hz),7.75(2H,d,J=8.4Hz),7.96(2H,dJ=8.4 Hz)
β-13-8	β-13	F ₃ CO	CH2OEt	S	H,H	H	H	Н	Н	н	Ме	Ħ	85-86	1.25(3H,t,J=6.9Hz),3.57(2H),3.71(3H,s),3. 57(2H,s),4.22(2H,s),4.48(2H,s),7.03(1H,s), 7.18(14H,dd,J=8.1Hz,J=0.9Hz),7.32(1H,d, 7.6Hz),7.42(1H,d,J=1.2Hz),7.49(1H,d,J=7. 2Hz),7.79(4H,d,J=8.4Hz)
β-13-9	β-13	cı	CH2OEt	S	н,н	Н	#	н	н	I	Ме	Н		1.24(3H,t,J=6,9Hz),3.55(2H),3.70(3H,s),3. 74(2H,s),4.22(2H,s),4.43(2H,s),7.03(1H,s), 7.18(1H,dd,J=8.1Hz,J=0.9Hz),7.41-7.51 (4H,m),7.68(2H,d,J=8.4Hz)
β-13- 10	β-13	F ₃ C	CH=NOEt	S	H,H	Н	Н	Н	Н	Н	Me	H	72-73	1.35(3H,t,J=6.9Hz),3.72(3H,s),3.76(2H,s), 4.24(2H),4.36(2H,s),7.03(1H,s),7.20(1H,d, J=8.4Hz),7.44(1H,s,),7.50(1H,d,J=8.4Hz), 7.74(1H,d,J=8.4Hz),7.83(4H,d,J=8.4Hz)

[0312] [表157]

$$R^{2}$$
 R^{3}
 R^{4}
 R^{5}
 R^{6}
 R^{6}
 R^{0}
 R^{1}
 R^{8}

No	合成法	R1	R2	X1	R3,R4	R5	R6	R7	R8	R17	mp	NMR(CDCl3 or DMSO-d6)
α- 21-1	α-21	CI	CH2OEt	s	н,н	н	Н	Н	н	Me		1.14-1.17(2H,m), 1.25(3H,t,J=6.9Hz), 1.57-1.60(2H,m), 3.56(2H,q,J=6.9Hz), 3.61(3H,s), 4.23(2H,s), 4.49(2H,s), 7.26(2H,d,J=8.4Hz), 7.36(2H,d,J=8.4Hz), 7.46(2H,d,J=8.4Hz), 7.68(2H,d,J=8.4Hz)
α- 21-2	α-21	F ₃ CO	CH2OEt	s	н,н	Н	н	н	н	Me		1.14-1.17(2H,m), 1.26(3H,t,J=7.2Hz), 1.57-1.61(2H,m), 3.58(2H,q,J=7.2Hz), 3.61(3H,s), 4.23(2H,s), 4.50(2H,s), 7.25-7.37(6H,m), 7.79(2H,d,J=8.7Hz)
α- 21-3	α-21	F ₃ C	Ме	s	н,н	Н	H	н	н	Ме		1.14-1.18(2H,m).1.58-1.62(2H,m),2.26 (3H,s),3.61(3H,s),4.15(2H,s),7.27(2H,d,J =8.7Hz), 7.36 (2H,d,J=8.7Hz), 7.73 (2H, d, J=8.1 Hz), 7.81 (2H, d,J=8.1Hz)
α- 21-4	α-21	F ₃ C	CH2OnPr	s	н,н	Н	Н	Н	Н	Ме		0.96(3H,t,J=7.5Hz),1.14-1.17(2H,m), 1.58-1.69(4H,m),3.49(2H,t,J=6.6Hz), 3.62(3H,s),4.24(2H,s),4.51(2H,s),7.27(2 H, d,J=8.4Hz),7.36(2H,d,J=8.4 Hz), 7.75 (2H, d, J=8.7 Hz), 7.88 (2H, d, J=8.7 Hz)
α- 21-5	α-21	F ₃ C	CH=NOEt	S	н,н	н	н	н	Н	Ме		1.15-1.18(2H,m),1.35(3H,t,J=7.2Hz), 1.57-1.61(2H,m), 3.62 (3H, s), 4.34 (2H, q,J=7.2Hz),4.38(2H,s),7.27(2H,d,J=8.4H z),7.38(2H,d,J=8.4Hz),7.76(2H,d,J=8.4H z),7.82(2H,d,J=8.4Hz), 8.18 (1H, s)
α- 21-6	α-21	F ₃ C	CH≃NOMe	s	н,н	н	н	н	н	Me		1.14-1.20(2H,m),1.58-1.61(2H,m),3.62 (3H,s),3.98(3H,s),4.38(2H,s),7.27(2H,d,J =8.1Hz),7.38(2H,d,J=8.1Hz),7.76(2H,d,J =8.4Hz),7.82(2H,d,J=8.4Hz),8.15 (1H, s)
α- 21-7	α-21	F ₃ C	CH2OEt	S	н,н	н	н	н	н	Ме	oil	1.16(2H,m),1.26(3H,t,J=7.2Hz),1.60(2H, m),3.59(2H,q,J=7.2Hz),3.62(3H,s),4.25(2 H,s),4.52(2H,s),7.27(2H,d,J=8.4Hz),7.36 (2H,d,J=8.4Hz),7.76(2H,d,J=8.4Hz),7.88 (2H,d,J=8.4Hz)

[0313] [表158]

$$R^{2}$$
 R^{3}
 R^{4}
 R^{5}
 R^{5}
 R^{6}
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{6}
 R^{6}

No	合成法	R1	R2	X1	R3,R4	R5	R6	R7	R8	Мр	NMR(CDCl3 or DMSO-d6)
β- 14-1	β-14	CI	CH2OEt	s	н,н	Н	н	н	н	86-88	1.21-1.26(5H,m), 1.64-1.67(2H,m), 3.55 (2H,q,J=6.9Hz), 4.22(2H,s), 4.46(2H,s), 7.27(2H,d,J=8.4Hz),7.36(2H,d,J=8.4Hz), 7.45(2H,d,J=8.7Hz), 7.67(2H,d,J=8.7Hz)
β- 14-2	β-14	F ₃ CO	CH2OEt	s	н,н	I	н	н	н	83-84	1.22-1.27(2H,m), 1.64-1.66(2H,m), 3.56 (2H,q,J=7.2Hz), 4.22(2H,s), 4.47(2H,s), 7.24-7.37(6H,m), 7.77(2H,d,J=9.0Hz)
β- 14-3	β-14	F ₃ C	Мо	s	н,н	Н	Н	Н	н		1.22-1.26(2H,m),1.65-1.68(2H,m),2.24 (3H,s),4.14(2H,s),7.29(2H,d,J=8.1Hz), 7.36(2H,d,J=8.1Hz),7.73(2H,d,J=8.7Hz), 7.81(2H,d,J=8.7Hz)
β- 14-4	β-14	F ₃ C	CH2OnPr	s	н,н	Н	н	I	Н	76–77	0.85(3H,t,J=7.5Hz),1.09-1.13(2H,m), 1.41-1.45(2H,m),1.47-1.59(2H,m),3.43 (2H,t,J=6.6Hz),4.36(2H,s),4.52(2H,s), 7.28(2H,d,J=8.4Hz),7.35(2H,d,J=8.4Hz), 7.94(2H,d,J=8.7Hz),8.00(2H,d,J=8.7Hz), 12.34 (1H, br s)
β- 14-5	β−14	F ₃ C	CH=NOEt	Ø	н,н	н	н	I	Ŧ	144.5- 146.0	1.22-1.25(2H,m),1.34(3H,t,J=7.2Hz), 1.64-1.67(2H,m),4.23(2H,q,J=7.2Hz), 7.27(2H,d,J=8.4Hz),7.38(2H,d,J=8.4Hz), 7.75(2H,d,J=8.4Hz),7.81(2H,d,J=8.4Hz), 8.17 (1H, s)
β- 14-6	β-14	F ₃ C	CH=NOMe	Ø	н,н	Н	Н.	I	I		1.22-1.26(2H,m),1.64-1.67(2H,m),3.97 (3H,s),4.38(2H,s),7.28(2H,d,J=8.4Hz), 7.38(2H,d,J=8.4Hz),7.76(2H,d,J=8.4Hz), 7.81(2H,d,J=8.4Hz),8.14(1H,s)
β- 14-7	β-14	F ₃ C	CH20Et	S	н,н	H	н	н	н		1.24(5H,m),1.66(2H,m),3.56(2H,m),4.22(2H,s),4.28(2H,s),7.27(2H,d,J=8.4Hz),7.3 6(2H,d,J=8.4Hz),7.73(2H,d,J=8.4Hz),7.8 6(2H,d,J=8.4Hz)

[0314] [表159]

No	合成法	R1	R2	Х1	R3,R4	R5	R6	R7	R8	R17	Мр	NMR(CDCl3 or DMSO-d6)
FF-1		F ₃ C	Ме	s	н,н	Н	н	н	Н	Ме		1.95(2H,m.),2.26(3H,s),2.49(2H,dd,J=1 3.2Hz,J=2.1Hz),3.54(2H,td,J=10.5Hz,J =2.1Hz),3.66(3H,s),3.92(2H,td,J=12.0 Hz,J=3.6Hz),4.15(2H,s),7.30(2H,d,J=8.7Hz),7.39(2H,d,J=9.0Hz),7.74(2H,d,J=8.1Hz),7.81(2H,d,J=8.1Hz)
FF-2		F ₃ C	Ме	S	н,н	Н	π	н	Н	Н		1.96(2H,td,J=11.6Hz),2.26(3H,s),2.48(2H,d,J=12.0Hz),3.60(2H,t,J=11.6Hz),3. 92(2H,dt,J=12.0Hz,3.6Hz),4.14(2H,s),7 .23-7.41(4H,m),7.71~7.82(4H,m)

[0315] [表160]

No	合成法	R1	R2	X1	R3,R4	R5	X2	R9	R10	R17	mp	NMR(CDCl3 or DMSO-d6)
DD-1		F ₃ C	Ме	s	н,н	н	CH2	н	н.	Me		Rf=0.5 (n~hexane/AcOEt=2/1)
DD-2		F ₃ C	Ме	s	н,н	CI	単結合	Н	Н	Ме		2.30(3H,s), 3.70(3H,s), 3.70(2H,s), 4.18 (2H,s), 7.15(1H,dd,J=1.8Hz,8.1Hz),7.33 (1H,d,J=1.8Hz), 7.47(1H,d,J=8.1Hz), 7.74(2H,d,J=8.4Hz), 7.81(2H,d,J=8.4Hz)
DD-3	*	F ₃ C	Ме	Ø	н,н	Н	単結合	н	Н	Ме		2.26(3H,s), 3.59(2H,s), 3.68(3H,s),4.13 (2H,s), 7.21(2H,d,J=8.4Hz),7.34(2H,d, J=8.4Hz), 7.74(2H,d,J=8.1Hz), 7.81(2H,d,J=8.1Hz)
DD-4		F ₃ C	Ме	S	н,н	н	СН=СН	н	н	Ме		2.27(3H,s),3.24(2H,d,J=6.9Hz),3.71(3H,s),4.13(2H,s),6.28(1H,dt,J=15.9Hz,J=6.9Hz),6.44(1H,d,J=15.9Hz),7.29(2H,d,J=8.7Hz),7.35(2H,d,J=8.4Hz),7.81(2H,d,J=8.1Hz)
DD-5		F ₃ C	Ме	s	н,н	н	単結合	Me	н	Ме		1.27(3H,d,J=7.2Hz),2.24(3H,s),2.56(2H, m),3.25(1H,m),3.61(3H,s),4.11(2H,s),7.1 5(2H,d,J=8.1Hz),7.34(2H,d,J=8.4Hz),7.7 3(2H,d,J=8.4Hz),7.81(2H,d,J=8.4Hz)

[0316] [表161]

No	合成法	R1	R2	X1	R3,R4	R5	X2	R9	R10	R17	mp	NMR(CDCl3 or DMSO-d6)
DD-6	*	F ₃ C	CH2OEt	s	нн	н	単結合	Ме	Н	Me		1.26(3H,t,J=7.2Hz),1.48(3H,d,J=7.5Hz), 3.58(2H,q,J=7.2Hz),3.65(3H,s),4.23(2H, s),4.52(2H,m),7.24(2H,d,J=8.4Hz),7.38(2 H,d,J=8.4Hz),7.75(2H,d,J=8.4Hz),7.88(2 H,d,J=7.8Hz)
DD-7		F ₃ C	CH2OEt	s	н,н	н	単結合	н .	Н	Ме		1.26(3H,d,J=7.2Hz),3.59(2H,q,J=7.2Hz), 3.59(2H,s),3.68(3H,s),4.23(2H,s),4.52(2 H,s),7.21(2H,d,J=8.4Hz),7.38(2H,d,J=8. 4Hz),7.75(2H,d,J=8.1Hz),7.87(2H,d,J=8. 4Hz)
DD-8		F ₃ C	Me	s	н,н	н	O Me	Н	н	Ме		1.91(3H,s),2.31(3H,s)3.73(3H,s).4.17(2H ,s),4.34(2H,s),7.28(2H,d,J=8.4Hz),7.42(2 H,dJ=8.4Hz),7.47(2H,d,J=8.4Hz),7.89(2 H,d,J=8.4Hz)
DD-9		F ₃ C	Ме	s	н,н	Н	O=S-Me	н	н	Ме		2.28(3H,s),3.10(3H,s),3.77(3H,s),4.15(2 H,s),4.43(2H,s),7.39~7.42(4H,m), 7.74(2H,dJ=8.4Hz),7.82(2H,d,J=8.4Hz)
DD-10		F ₃ C	Ме	s	н,н	Н	NH	н	н	Ме		12.29(3H,s),3.61(3H,s),3.89(1H,s),3.91(1 H,s)4.03(2H,s),6.49(2H,d,J=8.4Hz),7.13(2H,d,J=8.4Hz),7.89-7.96(4H,m)
DD-11		F ₃ C	Ме	s	н,н	Н	Me N N	н	н	Me		2.20(3H,s),3.06(3H,s),3.71(3H,s),3.98(2 H,s),4.06(2H,s),6.61(2H,d,J=9.0Hz),7.29 (2H,d,J=9.0Hz),7.74(2H,dJ=8.1Hz),7.83(2H,d,J=8.1Hz)
DD-12		F ₃ C	Me	0	н,н	Н	Me -N N	н	Н	Ме		
DD-13		F ₃ C	Ме	o	н,н	н	^{γν} , O=0, ^γ ,	Ξ	н	Ме		
DD-14	. 9	F ₃ C	Me	0	н,н	Н	0 0 3	H	Н	Me		

[0317] [表162]

No	合成法	R1	R2	Х1	R3,R4	R5	X2	R9	R10	Mp	NMR(CDCl3 or DMSO-d6)
DDD-1		F ₃ C	Ме	S	Н,н	Н	CH2	Н	Н	157- 158.5	2.32(3H,s), 2.66(2H,t,J=7.8Hz),2.92(2H, t,J=7.8Hz), 5.17(2H,s),6.96(2H,d,J=8.7 Hz), 7.15(2H,d,J=8.7Hz),7.74(2H,d, J=8.7Hz), 7.84(2H,d,J=8.7Hz)
DDD-2		F ₃ C	Me	s	н,н	CI	単結合	н	н	163- 164	2.29(3H,s), 3.61(sH,s), 4.17(2H,s),7.15 (1H,dd,J=1.8Hz,8.1Hz),7.34(1H,d,J=1.8 Hz), 7.48(1H,d,J=8.1Hz),7.73(2H,d, J=8.4Hz), 7.80(2H,d,J=8.4Hz)
DDD-3	Θ	F ₃ C	Ме	S	н,н	н	単結合	Н	н	141- 143	2.25(3H,s), 3.62(2H,s), 4.13(2H,s), 7.21 (2H,d,J=8.4Hz), 7.37(2H,d,J=8.4Hz), 7.73(2H,d,J=8.4Hz), 7.80(2H,d,J=8.4Hz)
DDD-4		F ₃ C	Ме	Ø	н,н	н	СН=СН	Н	Ι	147- 148	2.27(3H,s),3.29(2H,d,J=6.9Hz),4.14(2H, s),6.27(1H,dt,J=16.2Hz,J=6.6Hz),6.46(1 H,d,J=16.2Hz),7.30(2H,d,J=8.4Hz),7.35(2H,d,J=8.1Hz),7.73(2H,d,J=8.4Hz),7.81(2H,d,J=8.1Hz)
DDD-5		F ₃ C	Me	s	н,н	н	単結合	Ме	Ή	105- 109	1.48(3H,d,J=7.2Hz),2.24(3H,s),3.70(1H, q,J=7.2Hz),4.13(2H,s),7.25(2H,d,J=8.4H z),7.37(2H,d,J=8.4Hz),7.73(2H,d,J=8.4H z),7.80(2H,d,J=8.4Hz)
DDD-6		F ₃ C	CH2OEt	s	н,н	н	単結合	Me	π	98-100	1.26(3H,t,J=6.9Hz),1.50(2H,d,J=7.2Hz), 3.58(2H,q,J=6.9Hz),3.73(1H,q,J=7.2Hz), 4.23(2H,s),4.51(2H,s),7.26(2H,d,J=8.4Hz),7.39(2H,d,J=8.4Hz),7.75(2H,d,J=8.4Hz),7.87(2H,d,J=8.4Hz)
DDD-7		F ₃ C	CH2OEt	s	н,н	н	単結合	н	I	118- 119	1.25(3H,t,J=7.2Hz),3.58(2H,q,J=7.2Hz), 3.59(2H,s,),4.22(2H,s),4.51(2H,s),7.20(2 H,d,J=8.1Hz),7.37(2H,d,J=8.1Hz),7.74(2 H,d,J=8.1Hz),7.85(2H,d,J=8.1Hz)
DDD-8		F ₃ C	Me	s	н,н	н	O N N √N	н	н	171- 172	1.80(3H,s),2.26(3H,s),4.21(2H,s),4.39(2 H,s),7.33(2H,dJ=8.4Hz),7.48(2H,d,J=8.4 Hz),7.91(2H,d,J=8.4Hz),7.93(2H,d,J=8.4 Hz)
DDD-9		F ₃ C	Me	s	н,н	н	O O=S Me	н	H		2.25(3H,s),3.07(3H,s),3.35(2H,s),4.39(2 H,s),7.40(2H,d,J=8.4Hz),7.46(2H,d,J=8. 4Hz,),7.91(2H,d,J=8.4Hz),7.95(2H,d,J=8.4Hz)
DDD-10		F ₃ C	Ме	s	Н,Н	н	NH	Ħ	Н	158- 159	2.19(3H,s),3.78(2H,s),4.03(2H,s),6.49(2 H,d,J=8.7Hz),7.13(2H,d,J=8.7Hz),7.91(2 H,d,J=8.4Hz),7.95(2H,d,J=8.4Hz)
DDD-11		F ₃ C	Ме	s	н,н	н	Me - N	н	н	107	2.19(3H,s),2.95(3H,s),.4.07(2H,s),4.09(2 H,s),659(2H,d,J=8.7Hz),7.21(2H,d,J=8.7 Hz),7.91(2H,dJ=8.7Hz),7.95(2H,d,J=8.1 Hz)

[0318] [表163]

No	合成法	R1	R2	ΧI	R3,R4	R5	X2	R9	R10	Мр	NMR(CDCl3 or DMSO~d6)
DDD-12		F ₃ C	Me	o	н,н	н	Me N vs N	н	Н		
DDD-13		F ₃ C	Me	0	н,н	н	0=0\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	н	Н	165- 167	
DDD-14		F ₃ C	Me	О	н,н	н	200	Н.	π	132- 140	
DDD-15		F ₃ C	Me	s	н,н	н	単結合	Ме	Ме		1.54(6H,s),2.25(3H,s),4.14(2H,s),7.27 (2H,d,J=8.1Hz),7.33(2H,d,J=8.1Hz), 7.73(2H,d,J=8.7Hz), 7.81(2H,d,J=8.7Hz)

[0319] [表164]

No	合成法	R1	R2	X1	R3,R4	R5	R6	R7	R8	R17	mp	NMR(CDCl3 or DMSO-d6)
EE-1		F ₃ C	Me	s	н,н	н	н	н	н	Ме		
EE-2		F ₃ C	Me	s	н,н	Ħ	Η	н	Ξ	н		MS <i>m/z</i> 416 (M+H)*

[0320] [表165]

[0321] 試験例1 PPAR δ および α に対する転写活性化試験

PPAR遺伝子転写活性化アッセイはキメラ転写因子による核内レセプターの活性 検出系を用いた。すなわち酵母の転写因子であるGAL4のDNA結合ドメインとレセ プターのリガンド結合ドメインとの融合蛋白質を発現するプラスミドおよびレポータープラスミドの2つのプラスミドをCHO細胞へ一過性にトランスフェクションし、レポータープラスミドにコードされているGAL4の認識配列を含むプロモーターの活性を指標にすることによりレセプターの活性化度を検出するものである。

- [0322] プラスミド:ヒトPPAR δ (hPPAR δ) および α (hPPAR α) のリガンド結合領域 (δ : aa 139~C末端; α : aa 167~C末端) はHuman Universal Quick-Clone cDNA (CLONTECH社)を用いてPCR増幅により得た。増幅されたcDNAはそれぞれ pCR2.1-TOPOベクター (Invitrogen社) にサブクローニングした後、シークエンスを行い塩基配列を確認した。得られた各々のcDNAフラグメントをさらにpBINDベクター (Promega社) にサブクローニングすることにより、酵母転写因子GAL4のDNA結合ドメインとの融合蛋白質を発現するプラスミドを構築した。レポータープラスミドはpG51 ucベクター (Promega社) を使用した。
- [0323] 細胞培養およびトランスフェクション: CHO細胞を10%FBS-α MEM中で培養した。9 6ウェルプレート(Costar社)を用いて、トリプシン処理にて剥離したCHO細胞を1ウェル当たり20000個、および上記の手順にて得られた2つのプラスミドを1ウェル当たりそれぞれ25ngを製造者のインストラクションに従いFuGene試薬(Roche社)を用いてトランスフェクションた。
- [0324] 転写活性化能の測定:上記手順にてトランスフェクションしたCHO細胞をDMSOに溶解した試験化合物があらかじめ0.5μlスポットされた各ウェルに100μlずつ分注した。細胞と試験化合物は共に24時間CO₂インキュベーター内にて培養した後、ルシフェラーゼ発光基質ピッカジーンLT2.0(東洋インキ社)を1ウェル当たり100μl添加することによってルシフェラーゼ活性を測定した。測定はLUMINOUS CT-9000D(DIA-IATRON社)を用いた。
- [0325] PPAR δ については、得られた発光量から飽和発光量の1/2量を示す試験化合物の濃度をエクセルにて計算し、試験化合物のPPAR δ 活性化作用におけるEC 値を算出した。結果を表166に示す。
- [0326] PPAR α については試験化合物の濃度 1μ Mおよび 10μ Mにおいて、DMSOを対照として発光量が何倍になったかを算出し、上昇率とした。結果を表167に示す。

[0327] [表166]

	EC ₅₀ (nM)
No.	hPPAR δ
比較例化合物	37
O CO ₂ H	
F ₃ C N Me	
α-7-3-1	9.5
β-1-3	9.9
β-1-15	1.5
β-1-8	11
β-4-1	16
β-5-1	14

[0328] [表167]

No.	hPPAR α	
	1 μ Μ	10 μ M
β -1-32	22.9	44.5
β-1-33	18.4	40.7

[0329] 試験例2 CYP2C9酵素阻害試験

CYP2C9酵素阻害試験は、ヒト肝ミクロソームを用いて、CYP2C9の典型的な反応であるトルブタミド4位水酸化活性を指標にして行う。

反応条件は以下のとおり: 基質、5 µ M トルブタミド (¹⁴C標識化合物); 反応時間、3 0分; 反応温度、37℃; 蛋白濃度、0. 25mg/mL (ヒト肝ミクロソーム、15pol、Lot. 210296、米国XenoTech社)。

HEPES Buffer (pH7.4)中に蛋白(ヒト肝ミクロソーム)、薬物溶液、基質を上記の組成で加え、反応の補酵素であるNADPHを添加して反応を開始する。所定の時間反応後、2N 塩酸溶液を加え除蛋白することによって反応を停止する。クロロホルムで残存する基質薬物および生成する代謝物を抽出し、溶媒を留去したものをメタノールで再溶解する。これをTLCにスポットして、クロロホルム:メタノール:酢酸=90:10

:1で展開し、イメージングプレートに約14~20時間コンタクトさせた後、BAS2000で解析する。代謝物であるトルブタミド4位水酸化体の生成活性について、薬物を溶解した溶媒を反応系に添加したものをコントロール(100%)とし、被検薬物溶液を加えたものの残存活性(%)を算出する。

[0330] [表168]

No.	EC ₅₀ (nM) HPPARδ	残存活性 (%) CYP2C9
比較例化合物 F ₃ C N N N N N N N N N N N N N	37	28
β-2-38	35	47

請求の範囲

[1] 式(I):

[化1]

(式中、

R¹はハロゲン、ヒドロキシ、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級アルキニル、置換基を有していてもよい低級アルコキシ、カルボキシ、置換基を有していてもよい低級アルコキシカルボニル、置換基を有していてもよい低級アルキルチオ、置換基を有していてもよいアシル、置換基を有していてもよいアミノ、置換基を有していてもよいカルバモイル、置換基を有していてもよいチオカルバモイル、置換基を有していてもよいチオカルバモイルオキシ、置換基を有していてもよいチオカルバモイルオキシ、置換基を有していてもよいチオカルバモイルオキシ、置換基を有していてもよいアリールスルホニルオキシ、置換基を有していてもよいアリールスルホニルオキシ、置換基を有していてもよいアリールスルホニルオキシ、置換基を有していてもよいアリール、置換基を有していてもよいアリール・置換基を有していてもよいアリールチオまたは置換基を有していてもよいヘテロ環式基であり、

R²は水素、ハロゲン、ヒドロキシ、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級アルキニル、置換基を有していてもよい低級アルコキシ、カルボキシ、置換基を有していてもよい低級アルコキシカルボニル、置換基を有していてもよい低級アルキルチオ、置換基を有していてもよいアシル、置換基を有していてもよいアミノ、置換基を有していてもよいカルバモイル、置換基を有していてもよいチオカルバモイル、置換基を有していてもよいカルバモイルオキシ、置換基を有していてもよいチオカルバモイルオキシ、置換基を有していてもよいチオカルバモイルオキシ、置換基を有していてもよいヒドラジノカルボニル、置換基を有していてもよい低級アルキルス

ルホニルオキシ、置換基を有していてもよいアリールスルホニルオキシ、置換基を有していてもよいアリール、置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリールチオまたは置換基を有していてもよいヘテロ環式基であり、

R³およびR⁴は各々独立して、水素、ハロゲン、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級アルキニル、置換基を有していてもよい、テロ環式基であり、

R⁵、R⁶、R⁷およびR⁸は各々独立して水素、ハロゲン、ヒドロキシ、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級アルコキシ、置換基を有していてもよい低級アルコキシ、置換基を有していてもよいアシル、置換基を有していてもよいアシル、置換基を有していてもよいアシル、置換基を有していてもよいアリール、置換基を有していてもよいアリールをよいアリールオキシ、置換基を有していてもよいアリールチオまたは置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリールチオまたは置換基を有していてもよいへテロ環式基であり、

R⁹およびR¹⁰は各々独立して水素、ハロゲン、シアノ、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルコキシ、置換基を有していてもよいアミノまたは置換基を有していてもよいアリールであり、

 X^1 は-O-、-S-、 $-NR^{11}-$ (ここで R^{11} は水素、置換基を有していてもよい低級アルキル、ル、置換基を有していてもよいアシル、置換基を有していてもよい低級アルキルスルホニルまたは置換基を有していてもよいアリールスルホニルである)、 $-CR^{12}R^{13}$ CO-、 $-(CR^{12}R^{13})$ mO-、 $-(CR^{12}R^{13})$ mS-または $-O(CR^{12}R^{13})$ m $-(CCR^{12}R^{12})$ が $-(CCR^{12}R^{13})$ が $-(CCR^{12}R^$

WO 2005/054213 266 PCT/JP2004/017706

たは低級アルキルである)であり、 X^3 は $COOR^{17}$ 、 $C(=NR^{17})NR^{18}OR^{19}$ 、[化2]

(ここでR¹⁷ーR¹⁹は各々独立して水素または低級アルキルである)であり、

但し、R⁶はR¹⁴と共に隣接する原子と一緒になって環を形成してもよく、R⁶はR⁹およびR¹⁰と共に隣接する炭素原子と一緒になって環を形成してもよく、R⁶はR¹⁵およびR¹⁶と共に隣接する炭素原子と一緒になって環を形成してもよく、R⁶はR¹⁵およびR¹⁶と共に隣接する炭素原子と一緒になって環を形成してもよく、R⁶は R²⁴と共に隣接する炭素原子と一緒になって環を形成してもよく、R⁹はR¹⁶と一緒になって結合を形成してもよく、R⁹はR¹⁰と一緒になって環を形成してもよく、R⁹はR²⁵と一緒になって結合を形成してもよく、R⁹およびR¹⁰はR¹⁵と共に隣接する炭素原子と一緒になって環を形成してもよく、R¹⁰はR¹⁵と一緒になって結合を形成してもよく、R¹⁰はR¹⁵と一緒になって精合を形成してもよく、R¹⁰はR¹⁵と共に隣接する炭素原子と一緒になって環を形成してもよく、R¹⁰はR¹⁵と共に隣接する炭素原子と一緒になって環を形成してもよい)

で示される化合物(但し、 R^1 が非置換低級アルキルかつ R^5 および R^7 が共にブロモかつ X^1 が一Oーである化合物、 R^1 が非置換低級アルキルかつ X^2 が一CH 一である化合物、および R^2 が水素かつ X^2 が一Oーである化合物を除く)、その製薬上許容される塩またはそれらの溶媒和物。

- [2] R¹がハロゲン、置換基を有していてもよい低級アルキル、置換基を有していてもよい アリールまたは置換基を有していてもよいヘテロ環式基である、請求項1記載の化合物、その製薬上許容される塩またはそれらの溶媒和物。
- [3] R²が、ハロゲン、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよいアルキニル、置換基を有していてもよいアルコキシ、置換基を有していてもよいアシル、置換基を有していてもよいカルバモイル、置換基を有していてもよいアリールまたは置換基を有していてもよいアリ

- ールチオである、請求項1記載の化合物、その製薬上許容される塩またはそれらの 溶媒和物。
- [4] R²が水素、ハロゲン、置換基を有していてもよい低級アルキル、置換基を有していて もよい低級アルケニル、置換基を有していてもよいアルキニル、置換基を有していて もよい低級アルコキシ、置換基を有していてもよいアシル、置換基を有していてもよい カルバモイル、置換基を有していてもよいアリールまたは置換基を有していてもよい アリールチオである、請求項1記載の化合物、その製薬上許容される塩またはそれら の溶媒和物。
- [5] R³およびR⁴が各々独立して水素、低級アルキルまたは置換基を有していてもよいア リールである、請求項1記載の化合物、その製薬上許容される塩またはそれらの溶媒 和物。
- [6] R⁵、R⁶、R⁷およびR⁸は各々独立して水素、ハロゲン、置換基を有していてもよい低級アルキルまたは置換基を有していてもよい低級アルコキシであり、但し、R⁶はR¹⁴と共に隣接する原子と一緒になって環を形成してもよく、R⁶はR⁹およびR¹⁰と共に隣接する炭素原子と一緒になって環を形成してもよく、R⁶は R⁹と共に隣接する炭素原子と一緒になって環を形成してもよく、R⁶は R¹⁵およびR¹⁶と共に隣接する炭素原子と一緒になって環を形成してもよく、R⁶は R²⁴と共に隣接する炭素原子と一緒になって環を形成してもよく、R⁶は R²⁴と共に隣接する炭素原子と一緒になって環を形成してもよい、請求項1記載の化合物、その製薬上許容される塩またはそれらの溶媒和物。
- [7] R⁹およびR¹⁰が各々独立して水素、ハロゲン、シアノ、置換基を有していてもよい低級アルキルまたは置換基を有していてもよい低級アルコキシであり、但し、R⁹およびR¹⁰はR⁶と共に隣接する炭素原子と一緒になって環を形成してもよく、R⁹は R⁶と共に隣接する炭素原子と一緒になって環を形成してもよく、R⁹はR¹⁶と一緒になって結合を形成してもよく、R⁹はR¹⁰と一緒になって環を形成してもよく、R⁹はR²⁵と一緒になって結合を形成してもよく、R⁹はR¹⁵と共に隣接する炭素原子と一緒になって積合を形成してもよく、R¹⁰はR¹⁵と共に隣接する炭素原子と一緒になって積合を形成してもよく、R¹⁰はR¹⁵と一緒になって結合を形成してもよく、R¹⁰はR¹⁵と一緒になって結合を形成してもよく、R¹⁰はR¹⁵と共に隣接する炭素原子と一緒になって環を形成してもよい、請求項1記載の化合物、その製薬上許容される塩またはそれらの溶媒和物。

- [8] X^1 がO、S、 NR^{11} (ここで R^{11} は水素または置換基を有していてもよい低級アルキルである)またはCH COである、請求項1記載の化合物、その製薬上許容される塩またはそれらの溶媒和物。
- [9] X^3 が $COOR^{17}$ (ここで R^{17} は水素または低級アルキルである)である、請求項1記載の 化合物、その製薬上許容される塩またはそれらの溶媒和物。
- [10] R¹が低級アルキル、置換基を有していてもよいアリール(置換基としては、ハロゲン、 置換基を有していてもよい低級アルキルまたは置換基を有していてもよい低級アルコ キシ)またはヘテロ環式基であり、

R²が水素、ハロゲン、置換基を有していてもよい低級アルキル(置換基としては、ハロゲン、ヒドロキシ、置換基を有していてもよい低級アルコキシ、低級アルキルアミノ、置換基を有していてもよいイミノ、低級アルキルスルホニル、置換基を有していてもよいアリールまたはヘテロ環式基)、置換基を有していてもよい低級アルキニル(置換基としては、アリール)、置換基を有していてもよい低級アルコキシ(置換基としては、ハロゲン)、アルコキシカルボニル、アシル、カルバモイル、置換基を有していてもよいアリール(置換基としては、置換基を有していてもよい低級アルキルまたは置換基を有していてもよい低級アルキルまたは置換基を有していてもよい低級アルキルまたは置換基を有していてもよい低級アルキキシ)またはアリールチオであり、

R³およびR⁴が各々独立して、水素、低級アルキルまたは置換基を有していてもよいアリール(置換基としては、ハロゲン)であり、

 R^5 、 R^6 、 R^7 および R^8 は各々独立して、水素、ハロゲン、置換基を有していてもよい低級アルキル(置換基としては、ハロゲン)または置換基を有していてもよい低級アルコキシ(置換基としては、ハロゲン)であり、

R⁹およびR¹⁰が各々独立して水素、ハロゲン、シアノ、低級アルキルまたは低級アルコキシであり、

 X^{1} はO、S、NHまたはCH₂COであり、 X^{3} はCOOR¹⁷、C(=NR¹⁷)NR¹⁸OR¹⁹、 [化3]

WO 2005/054213 269 PCT/JP2004/017706

(ここでR¹⁷ーR¹⁹は各々独立して水素または低級アルキルである)である、

但し、 R^6 は R^{14} と共に隣接する原子と一緒になって環を形成してもよく、 R^6 は R^9 および R^{10} と共に隣接する炭素原子と一緒になって環を形成してもよく、 R^6 は R^9 と共に隣接する炭素原子と一緒になって環を形成してもよく、 R^6 は R^{15} および R^{16} と共に隣接する炭素原子と一緒になって環を形成してもよく、 R^6 は R^{24} と共に隣接する炭素原子と一緒になって環を形成してもよく、 R^9 は R^{16} と一緒になって環を形成してもよく、 R^9 は R^{10} と一緒になって環を形成してもよく、 R^9 は R^{25} と一緒になって結合を形成してもよく、 R^9 は R^{10} と一緒になって環を形成してもよく、 R^9 は R^{15} と共に隣接する炭素原子と一緒になって環を形成してもよく、 R^{10} は R^{15} と一緒になって結合を形成してもよく、 R^{10} は R^{15} と一緒になって結合を形成してもよく、 R^{10} は R^{15} と一緒になってお合を形成してもよく、 R^{10} は R^{15} と一緒になってお合を形成してもよく、 R^{10} は R^{15} と共に隣接する炭素原子と一緒になって環を形成してもよい、請求項1記載の化合物、その製薬上許容される塩またはそれらの溶媒和物。

- [11] X^2 が単結合、-O-、-SO-、-SO-、-SO- または $-CR^{26}=CR^{27}-$ (ここで R^{26} および R^{27} は 各々独立して水素または低級アルキルである)、である、請求項1~10のいずれかに 記載の化合物、その製薬上許容される塩またはそれらの溶媒和物。
- [12] X^2 が $-CR^{15}R^{16}$ -(ここで R^{15} は水素または低級アルキルであり、 R^{16} は R^9 と一緒になって結合を形成している、または R^{16} は R^9 および R^{15} は R^{10} と各々一緒になって結合を形成している)である、請求項1~10のいずれかに記載の化合物、その製薬上許容される塩またはそれらの溶媒和物。
- [13] X²が-NR¹⁴-(ここでR¹⁴は水素、低級アルキル、アシル、低級アルキルスルホニルまたはR¹⁴はR⁶と共に隣接する原子と一緒になって環を形成している)、-CR¹⁵R¹⁶-(ここでR¹⁵およびR¹⁶はR⁶と共に隣接する炭素原子と一緒になって環を形成している、R⁹およびR¹⁰はR¹⁵と共に隣接する炭素原子と一緒になって環を形成してもよく、または、R¹⁵はR¹⁰と共に隣接する炭素原子と一緒になって環を形成かつR¹⁶はR⁹と一緒になって結合を形成している)または-COCR²⁴R²⁵-(ここでR²⁴はR⁶と共に隣接する炭

素原子と一緒になって環を形成かつ R^{25} は R^9 と一緒になって結合を形成している)である、請求項1~10のいずれかに記載の化合物、その製薬上許容される塩またはそれらの溶媒和物。

[14] R²がハロゲン、ヒドロキシ、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級アルキニル、置換基を有していてもよい低級アルコキシ、カルボキシ、置換基を有していてもよい低級アルコキシカルボニル、置換基を有していてもよい低級アルキルチオ、置換基を有していてもよいアシル、置換基を有していてもよいアミノ、置換基を有していてもよいカルバモイル、置換基を有していてもよいチオカルバモイル、置換基を有していてもよいチオカルバモイルオキシ、置換基を有していてもよいチオカルバモイルオキシ、置換基を有していてもよいチオカルボニルオキシ、置換基を有していてもよいアリールスルホニルオキシ、置換基を有していてもよいアリールスルホニルオキシ、置換基を有していてもよいアリールスルホニルオキシ、置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリールチオまたは置換基を有していてもよいヘテロ環式基であり、

R⁹およびR¹⁰が各々独立して水素であり、

 X^1 は-O、-S 、 $-(CR^{12}R^{13})$ mO 一または $-(CR^{12}R^{13})$ mS $-(ここで<math>R^{12}$ および R^{13} は各々独立して水素または低級アルキルであり、mは1-3の整数である)であり、 X^2 は-O であり、

 X^3 が $COOR^{17}$ (ここで R^{17} は水素または低級アルキルである)である、請求項1記載の化合物、その製薬上許容される塩またはそれらの溶媒和物。

[15] R⁹はR¹⁶と一緒になって結合を形成しており、

 R^{10} は水素、ハロゲン、低級アルキル、低級アルコキシまたはシアノであり、 X^1 は-O-、-S-、 $-(CR^{12}R^{13})$ mO-または $-(CR^{12}R^{13})$ mS-(ここで R^{12} および R^{13} は各々独立して水素または低級アルキルであり、mは1-3の整数)であり、 X^2 は $-CR^{15}R^{16}-$ (ここで R^{15} は水素または低級アルキルであり、 R^{16} は R^9 と-緒になって結合を形成している)であり、

 X^3 が $COOR^{17}$ (ここで R^{17} は水素または低級アルキルである)である、請求項1記載の化合物、その製薬上許容される塩またはそれらの溶媒和物。

[16] R¹がハロゲン、置換基を有している低級アルキル、置換基を有していてもよいアリールまたは置換基を有していてもよいヘテロ環式基であり、

R⁹およびR¹⁰が各々独立して水素または低級アルキルであり、

 X^1 は-O-、-S-、 $-(CR^{12}R^{13})$ mO-または $-(CR^{12}R^{13})$ mS-(ここで R^{12} および R^{13} は各々独立して水素または低級アルキルであり、mは1-3の整数である)であり、

 X^2 は単結合または $-CR^{15}R^{16}$ $-(ここで<math>R^{15}$ および R^{16} は各々独立して水素または低級アルキルである)であり、

 X^3 が $COOR^{17}$ (ここで R^{17} は水素または低級アルキルである)である、請求項1記載の化合物、その製薬上許容される塩またはそれらの溶媒和物。

[17] R⁹およびR¹⁰が各々独立して水素であり、

 X^1 は-O-、-S-であり、

 X^2 が $-NR^{14}$ -(ここで R^{14} は R^6 と共に隣接する原子と一緒になって環を形成している)、 $-CR^{15}R^{16}$ -(ここで R^{15} および R^{16} は R^6 と共に隣接する炭素原子と一緒になって環を形成している)、または $-COCR^{24}R^{25}$ -(ここで R^{24} は R^6 と共に隣接する炭素原子と一緒になって環を形成かつ R^{25} は R^9 と一緒になって結合を形成している)であり、 X^3 は X^3 は X^4 0の X^5 1になって X^5 2に低級アルキルである)である、請求項1記載の化合物、その製薬上許容される塩またはそれらの溶媒和物。

[18] R^9 は R^{16} と一緒になって結合を形成しており、

 X^1 は-O-、-S-であり、

 X^2 が $-CR^{15}R^{16}$ -(ここで R^{15} は R^{10} と共に隣接する炭素原子と一緒になって環を形成かっ R^{16} は R^9 と一緒になって結合を形成している、または R^9 および R^{10} は R^{15} と共に隣接する炭素原子と一緒になって環を形成している)であり、

 X^3 は $COOR^{17}$ (ここで R^{17} は水素または低級アルキルである)である、請求項1記載の化合物、その製薬上許容される塩またはそれらの溶媒和物。

[19] R^9 は R^{10} と一緒になって環を形成しており、

 X^1 は-O-、-S-であり、

 X^2 は単結合または $-CR^{15}R^{16}$ $-(ここで<math>R^{15}$ および R^{16} は各々独立して水素または低級アルキルである)であり、

WO 2005/054213 272 PCT/JP2004/017706

 X^3 が $COOR^{17}$ (ここで R^{17} は水素または低級アルキルである)である、請求項1記載の化合物、その製薬上許容される塩またはそれらの溶媒和物。

[20] 式:

[化4]

$$R^{20}$$
 R^{21}
 R^{9}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 R^{10}
 $R^$

(式中、

R¹はハロゲン、ヒドロキシ、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級アルキニル、置換基を有していてもよい低級アルコキシ、カルボキシ、置換基を有していてもよい低級アルコキシカルボニル、置換基を有していてもよい低級アルキルチオ、置換基を有していてもよいアシル、置換基を有していてもよいアミノ、置換基を有していてもよいカルバモイル、置換基を有していてもよいチオカルバモイル、置換基を有していてもよいチオカルバモイルオキシ、置換基を有していてもよいチオカルバモイルオキシ、置換基を有していてもよいチオカルバモイルオキシ、置換基を有していてもよいアリールスルホニルオキシ、置換基を有していてもよいアリールスルホニルオキシ、置換基を有していてもよいアリールスルホニルオキシ、置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリールチオまたは置換基を有していてもよいヘテロ環式基であり、

R²は水素、ハロゲン、ヒドロキシ、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級アルキニル、置換基を有していてもよい低級アルコキシ、カルボキシ、置換基を有していてもよい低級アルコキシカルボニル、置換基を有していてもよい低級アルキルチオ、置換基を有していてもよいアシル、置換基を有していてもよいアミノ、置換基を有していてもよいカルバモイル、置換基を有していてもよいチオカルバモイル、置換基を有していてもよいカルバモイルオキシ、置換基を有していてもよいチオカルバモイルオキシ、置換基を有していてもよいチオカルバモイルオキシ、置換基を有していてもよいチオカルバモイルオキシ、置換基を有していてもよいチオカルバモイルオキシ、置換基を有していてもよいチオカルバモイルオキシ、置換基を有していてもよいチオカルバモイルオキシ、置換基を有していてもよいチオカルバモイルオキシ、置換基を有していてもよいチオカルバモイルオキシ、置換基を有していてもよいチオカルバモイルオキシ、置換基を有していてもよいのである。

を有していてもよいヒドラジノカルボニル、置換基を有していてもよい低級アルキルスルホニルオキシ、置換基を有していてもよいアリールスルホニルオキシ、置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリールチオまたは置換基を有していてもよいヘテロ環式基であり、

R³およびR⁴は各々独立して、水素、ハロゲン、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級アルキニル、置換基を有していてもよい下リールまたは置換基を有していてもよいヘテロ環式基であり、

R⁵、R⁷およびR⁸は各々独立して水素、ハロゲン、ヒドロキシ、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級アルコキシ、置換基を有していてもよい低級アルコキシ、置換基を有していてもよい低級アルキルチオ、置換基を有していてもよいアシル、置換基を有していてもよいアリールをよいアミノ、置換基を有していてもよいアリールをよいアリールを表していてもよいアリールを表していてもよいアリールを表していてもよいアリールを表していてもよいアリールチオまたは置換基を有していてもよいへテロ環式基であり、

R⁹およびR¹⁰は各々独立して水素、ハロゲン、シアノ、置換基を有していてもよい低級 アルキル、置換基を有していてもよい低級アルコキシ、置換基を有していてもよいアミ ノまたは置換基を有していてもよいアリールであり、

R²⁰およびR²¹は各々独立して水素、ハロゲン、ヒドロキシ、シアノ、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級アルコキシ、置換基を有していてもよい低級アルコキシ、置換基を有していてもよい低級アルキルチオ、置換基を有していてもよいアシル、置換基を有していてもよいアシル、置換基を有していてもよいアリール、置換基を有していてもよいアリール、置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリールチオまたは置換基を有していてもよいへテロ環式基であり、

X¹は一Oー、一Sー、一NR¹¹ー(ここでR¹¹は水素、置換基を有していてもよい低級アルキル、置換基を有していてもよいアシル、置換基を有していてもよい低級アルキルスルホールまたは置換基を有していてもよいアリールスルホールである)、一CR¹²R¹³COー

、 $-(CR^{12}R^{13})$ mO-、 $-(CR^{12}R^{13})$ mS-または $-O(CR^{12}R^{13})$ m-(ここで R^{12} および R^{13} は各々独立して水素または低級アルキルであり、mは1-3の整数である)であり、 R^{17} は水素または低級アルキルである)で示される化合物、その製薬上許容される塩またはそれらの溶媒和物。

[21] R¹が置換基を有していてもよいアリールであり、

R²が置換基を有していてもよい低級アルキルであり、

 R^3 および R^4 が各々独立して、水素または置換基を有していてもよいアリールであり、 R^5 、 R^7 および R^8 が各々独立して、水素、置換基を有していてもよい低級アルキルまたは置換基を有していてもよい低級アルコキシであり、

R⁹およびR¹⁰が各々独立して水素または置換基を有していてもよい低級アルキルであり、

は R^{20} および R^{21} が各々独立して水素、シアノ、置換基を有していてもよい低級アルキルまたは置換基を有していてもよい低級アルコキシであり、

X¹が-O-または-S-である、請求項20記載の化合物、その製薬上許容される塩またはそれらの溶媒和物。

[22] 式:

[化5]

(式中、

R¹はハロゲン、ヒドロキシ、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級アルキニル、置換基を有していてもよい低級アルコキシ、カルボキシ、置換基を有していてもよい低級アルコキシカルボニル、置換基を有していてもよい低級アルキルチオ、置換基を有していてもよいアシル、置換基を有していてもよいアンル、置換基を有していてもよいカルバモイ

ル、置換基を有していてもよいチオカルバモイル、置換基を有していてもよいカルバ モイルオキシ、置換基を有していてもよいチオカルバモイルオキシ、置換基を有して いてもよいヒドラジノカルボニル、置換基を有していてもよい低級アルキルスルホニル オキシ、置換基を有していてもよいアリールスルホニルオキシ、置換基を有していても よいアリール、置換基を有していてもよいアリールオキシ、置換基を有していてもよい アリールチオまたは置換基を有していてもよいヘテロ環式基であり、

R²は水素、ハロゲン、ヒドロキシ、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級アルキニル、置換基を有していてもよい低級アルコキシ、カルボキシ、置換基を有していてもよい低級アルコキシカルボニル、置換基を有していてもよい低級アルキルチオ、置換基を有していてもよいアシル、置換基を有していてもよいアミノ、置換基を有していてもよいカルバモイル、置換基を有していてもよいチオカルバモイル、置換基を有していてもよいカルバモイルオキシ、置換基を有していてもよいチオカルバモイルオキシ、置換基を有していてもよいチオカルバモイルオキシ、置換基を有していてもよいアリカルボニル、置換基を有していてもよい低級アルキルスルホニルオキシ、置換基を有していてもよいアリールスルホニルオキシ、置換基を有していてもよいアリール、置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリールチオまたは置換基を有していてもよいへテロ環式基であり、

R³およびR⁴は各々独立して、水素、ハロゲン、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級アルキニル、置換基を有していてもよい下リールまたは置換基を有していてもよいヘテロ環式基であり、

R⁵、R⁷、R⁸およびR²⁰は各々独立して水素、ハロゲン、ヒドロキシ、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級アルコキシ、置換基を有していてもよい低級アルコキシ、置換基を有していてもよいアシル、置換基を有していてもよいアシル、置換基を有していてもよいアリール、置換基を有していてもよいアリール、置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリールチオまたは置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリールチオまたは置換基を有していてもよいヘテロ環式基であり、

R²³は水素、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級アルキニル、置換基を有していてもよい低級アルキルスルホニルまたは置換基を有していてもよいアシル、置換基を有していてもよいアリールスルホニル、置換基を有していてもよいアミノ、置換基を有していてもよいアリールまたは置換基を有していてもよいへテロ環式基であり、

R⁹およびR¹⁰は各々独立して水素、ハロゲン、シアノ、置換基を有していてもよい低級 アルキル、置換基を有していてもよい低級アルコキシ、置換基を有していてもよいアミ ノまたは置換基を有していてもよいアリールであり、

 X^1 は-O-、-S-、 $-NR^{11}$ -(ここで R^{11} は水素、置換基を有していてもよい低級アルキル、 置換基を有していてもよいアシル、置換基を有していてもよい低級アルキルスルホニルまたは置換基を有していてもよいアリールスルホニルである)、 $-CR^{12}R^{13}CO$ -、 $-(CR^{12}R^{13})mO$ -、 $-(CR^{12}R^{13})mS$ -または $-O(CR^{12}R^{13})m$ -(ここで R^{12} および R^{13} は各々独立して水素または低級アルキルであり、mは1-3の整数である)であり、 R^{17} は水素または低級アルキルである)で示される化合物、その製薬上許容される塩またはそれらの溶媒和物。

[23] R^1 が置換基を有していてもよいアリールであり、

R²が置換基を有していてもよい低級アルキルであり、

R³およびR⁴が水素であり、

R⁵、R⁷およびR⁸が水素であり、

R⁹およびR¹⁰が各々独立して水素または置換基を有していてもよい低級アルキルであり、

 R^{20} および R^{23} が各々独立して水素または置換基を有していてもよい低級アルキルであり、

X¹が-O-または-S-である、請求項22記載の化合物、その製薬上許容される塩またはそれらの溶媒和物。

[24] 式:

[44:6]

WO 2005/054213 277 PCT/JP2004/017706

$$R^{2}$$
 R^{3}
 R^{4}
 R^{5}
 R^{6}
 R^{15}
 R^{16}
 R^{16}
 R^{10}
 R^{10}
 R^{10}

(式中、

R¹はハロゲン、ヒドロキシ、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級アルコキシ、カルボキシ、置換基を有していてもよい低級アルコキシカルボニル、置換基を有していてもよい低級アルキルチオ、置換基を有していてもよいかしてもよいアシル、置換基を有していてもよいアシル、置換基を有していてもよいアシル、置換基を有していてもよいアシル、置換基を有していてもよいアシル、置換基を有していてもよいチオカルバモイル、置換基を有していてもよいチオカルバモイルオキシ、置換基を有していてもよいチオカルバモイルオキシ、置換基を有していてもよいアリカルボニル、置換基を有していてもよい低級アルキルスルホニルオキシ、置換基を有していてもよいアリールスルホニルオキシ、置換基を有していてもよいアリールスルホニルオキシ、置換基を有していてもよいアリール、置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリールチオまたは置換基を有していてもよいヘテロ環式基であり、

R²は水素、ハロゲン、ヒドロキシ、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級アルキニル、置換基を有していてもよい低級アルコキシ、カルボキシ、置換基を有していてもよい低級アルコキシカルボニル、置換基を有していてもよい低級アルキルチオ、置換基を有していてもよいアシル、置換基を有していてもよいアミノ、置換基を有していてもよいカルバモイル、置換基を有していてもよいチオカルバモイル、置換基を有していてもよいカルバモイルオキシ、置換基を有していてもよいチオカルバモイルオキシ、置換基を有していてもよいアリカルボニル、置換基を有していてもよいにもよいアリカルボニルスルホニルオキシ、置換基を有していてもよいアリールスルホニルオキシ、置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリールチオまたは置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリールチオまたは置換基を有していてもよいへテロ環式基であり、

R³およびR⁴は各々独立して、水素、ハロゲン、置換基を有していてもよい低級アルキ

ル、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級アルキニル、置換基を有していてもよいアリールまたは置換基を有していてもよいヘテロ 環式基であり、

R⁵、R⁶、R⁷およびR⁸は各々独立して水素、ハロゲン、ヒドロキシ、置換基を有していてもよい低級アルキル、置換基を有していてもよい低級アルケニル、置換基を有していてもよい低級アルコキシ、置換基を有していてもよい低級アルコキシ、置換基を有していてもよい低級アルキルチオ、置換基を有していてもよいアシル、置換基を有していてもよいアリール、置換基を有していてもよいアリール、置換基を有していてもよいアリールオキシ、置換基を有していてもよいアリールチオまたは置換基を有していてもよいアリールチオまたは置換基を有していてもよいアリールチオまたは置換基を有していてもよいヘテロ環式基であり、

R⁹およびR¹⁰は水素であり、

 X^{1} は-O-、-S-、 $-NR^{11}-$ (ここで R^{11} は水素、置換基を有していてもよい低級アルキルスル ル、置換基を有していてもよいアシル、置換基を有していてもよい低級アルキルスル ホニルまたは置換基を有していてもよいアリールスルホニルである)、 $-CR^{12}R^{13}CO-$ 、 $-(CR^{12}R^{13})mO-$ 、 $-(CR^{12}R^{13})mS-$ または $-O(CR^{12}R^{13})m-$ (ここで R^{12} および R^{13} は各々独立して水素または低級アルキルであり、mは1-3の整数である)であり、 R^{15} が低級アルキルであり、

R¹⁶が水素であり、

R¹⁷は水素または低級アルキルである)で示される化合物、その製薬上許容される塩またはそれらの溶媒和物。

[25] R¹が置換基を有していてもよいアリールであり、

R²が置換基を有していてもよい低級アルキルであり、

R³およびR⁴が水素であり、

R⁵、R⁶、R⁷およびR⁸が各々独立して、水素、ハロゲン、置換基を有していてもよい低級アルキルまたは置換基を有していてもよい低級アルコキシであり、

X¹が一O-または-S-である、請求項24記載の化合物、その製薬上許容される塩またはそれらの溶媒和物。

[26] 請求項1~25のいずれかに記載の化合物、その製薬上許容される塩またはそれら

- の溶媒和物を有効成分とする医薬組成物。
- [27] 請求項1〜25のいずれかに記載の化合物、その製薬上許容される塩またはそれら の溶媒和物を有効成分とするペルオキシソーム増殖活性化受容体アゴニストとして 使用する医薬組成物。

International application No. PCT/JP2004/017706

A.	CLASSIFICATION	OF SUBJECT MATTER

Int.Cl⁷ C07D261/08, 261/20, 261/18, 413/04, 417/12, A61K31/42, 31/5377,
31/423, 31/5395, 31/4245, 31/5377, 31/502, 31/536, 31/435,
31/428, 31/427, 31/4427, 31/501, 31/506, A61P43/00, 3/06,

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int.Cl⁷ C07D261/08, 261/20, 261/18, 413/04, 417/12, A61K31/42, 31/5377, 31/423, 31/5395, 31/4245, 31/5377, 31/502, 31/536, 31/435, 31/428, 31/427, 31/4427, 31/501, 31/506, A61P43/00, 3/06,

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) REGISTRY (STN), CAPLUS (STN), CAOLD (STN)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Х	WO 99/11255 A1 (Ono Pharmaceutical Co., Ltd.), 11 March, 1999 (11.03.99), Full text	1,2,4-13, 15-19,24,26, 27
А	& AU 9887502 A1	3,14,20-23, 25
X	WO 01/36365 A2 (KARO BIO AB), 25 May, 2001 (25.05.01), Full text	1,2,4-13, 15-19,24,26, 27
A	(Family: none)	3,14,20-23, 25
Х	WO 02/092550 A1 (KARO BIO AB), 21 November, 2002 (21.11.02),	1,2,4-10,16, 24,26,27
A	Full text & EP 1387825 A1 & JP 2004-533450 A & US 2004/220147 A1	3,11-15, 17-23,25

×	Further documents are listed in the continuation of Box C.	See patent family annex.	
*	Special categories of cited documents:	"T" later document published after the international filing date or priority	
"A"	document defining the general state of the art which is not considered to be of particular relevance	date and not in conflict with the application but cited to understand the principle or theory underlying the invention	
"E"	earlier application or patent but published on or after the international filing date	"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive	
"L"	document which may throw doubts on priority claim(s) or which is	step when the document is taken alone	
	cited to establish the publication date of another citation or other special reason (as specified)	"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is	
"O"	document referring to an oral disclosure, use, exhibition or other means	combined with one or more other such documents, such combination	
"P"	document published prior to the international filing date but later than the	being obvious to a person skilled in the art	
	priority date claimed	"&" document member of the same patent family	
Date	Date of the actual completion of the international search Date of mailing of the international search report		
	22 February, 2005 (22.02.05)	08 March, 2005 (08.03.05)	
		,	
Name and mailing address of the ISA/ Authorized officer		Authorized officer	
	Japanese Patent Office		
	-		
Facsimile No.		Telephone No.	

International application No.

PCT/JP2004/017706

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
P,X	US 2004/0209936 A1 (WARNER-LAMBERT CO.), 21 October, 2004 (21.10.04), Full text & WO 04/091604 A1 & NL 1025961 A1	1-27
	•	

International application No. PCT/JP2004/017706

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons: 1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely: 2. Claims Nos.:
2. Declare New
because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows: See extra sheet. .
 As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

International application No.

PCT/JP2004/017706

Continuation of A. CLASSIFICATION OF SUBJECT MATTER

(International Patent Classification (IPC))

Int.Cl⁷ 3/10, 3/04, 9/10, 9/12, 29/00, 37/08, 1/04, 19/02, 1/18, 17/06, 17/04, 19/10, 15/00, 35/00, 25/28, 25/16

(According to International Patent Classification (IPC) or to both national classification and IPC)

Continuation of B. FIELDS SEARCHED

Minimum documentation searched (International Patent Classification (IPC))

Int.Cl⁷ 3/10, 3/04, 9/10, 9/12, 29/00, 37/08, 1/04, 19/02, 1/18, 17/06, 17/04, 19/10, 15/00, 35/00, 25/28, 25/16

Minimum documentation searched (classification system followed by classification symbols)

Continuation of Box No.III of continuation of first sheet(2)

The compound of claim 24 is included in the formula (I) given in claim 1.

Before the filing of this application, a compound was known which comprises isoxazole and a benzene ring bonded to the 3-position of the isoxazole through a group represented by $-CR^3R^4-X^1-$ and has $-COOR^{17}$ bonded at an end through two atoms (see, for example, WO 03/084916 A2, Example 41). It is hence not considered that the compound of claim 1, the compound of claim 20, and the compound of claim 22 have a novel common basic skeleton.

Consequently,

- I. the special technical feature of claims 1-19, 24, and 25 and those parts of claims 26 and 27 in which any of those claims is cited resides in a compound of [Chemical formula 1];
- II. the special technical feature of claims 20 and 21 and those parts of claims 26 and 27 in which either of those claims is cited resides in a compound of [Chemical formula 4]; and
- III. the special technical feature of claims 22 and 23 and those parts of claims 26 and 27 in which either of those claims is cited resides in a compound of [Chemical formula 5].

From the above, it is considered that there is no technical relationship among the inventions I to III which involves one or more identical or corresponding special technical features. They cannot hence be considered to be so linked as to form a single general inventive concept.

A. 発明の属する分野の分類(国際特許分類(IPC))

Int. C1⁷ C07D261/08, 261/20, 261/18, 413/04, 417/12, A61K31/42, 31/5377, 31/423, 31/5395, 31/4245, 31/5377, 31/502, 31/536, 31/435, 31/428, 31/427, 31/501, 31/506, A61P43/00, 3/06, 3/10, 3/04, 9/10, 9/12, 29/00, 37/08, 1/04, 19/02, 1/18, 17/06, 17/04, 19/10, 15/00, 35/00, 25/28, 25/16

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. C1⁷ C07D261/08, 261/20, 261/18, 413/04, 417/12, A61K31/42, 31/5377, 31/423, 31/5395, 31/4245, 31/5377, 31/502, 31/536, 31/435, 31/428, 31/427, 31/4427, 31/501, 31/506, A61P43/00, 3/06, 3/10, 3/04, 9/10, 9/12, 29/00, 37/08, 1/04, 19/02, 1/18, 17/06, 17/04, 19/10, 15/00, 35/00, 25/28, 25/16

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

REGISTRY (STN), CAPLUS (STN), CAOLD (STN)

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
X	WO 99/11255 A1 (小野薬品工業株式会社) 1999.03.11	1, 2, 4–13, 15–
A	全文参照。 & AU 9887502 A1	19, 24, 26, 27 3, 14, 20–23, 25
X	WO 01/36365 A2 (KARO BIO AB) 2001.05.25 全文参照。	1, 2, 4–13, 15– 19, 24, 26, 27
A	(ファミリーなし)	3, 14, 20–23, 25

|X|| C欄の続きにも文献が列挙されている。

□ パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「O」ロ頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日

22. 02. 2005

国際調査報告の発送 日 8.3.2005

国際調査機関の名称及びあて先

日本国特許庁(ISA/JP) 郵便番号100-8915 特許庁審査官(権限のある職員) 中木 亜希 4 P 9 2 8 2

電話番号 03-3581-1101 内線 3492

東京都千代田区霞が関三丁目4番3号

	~_~	
C(続き).	関連すると認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
X A	WO 02/092550 A1 (KARO BIO AB) 2002.11.21 全文参照。 & EP 1387825 A1 & JP 2004-533450 A & US 2004/220147 A1	1, 2, 4–10, 16, 24, 26, 27 3, 11–15, 17–2 3, 25
PΧ	US 2004/0209936 A1 (WARNER-LAMBERT COMPANY) 2004.10.21 全文参照。 & WO 04/091604 A1 & NL 1025961 A1	1-27
	<u>-</u>	1
		-
		, .

_第Ⅱ欄 請求の範囲の一部の調査ができないときの意見(第1ページの2の続き)
法第8条第3項(PCT17条(2)(a))の規定により、この国際調査報告は次の理由により請求の範囲の一部について作成しなかった。
1. □ 請求の範囲 は、この国際調査機関が調査をすることを要しない対象に係るものである。 つまり、
2. □ 請求の範囲は、有意義な国際調査をすることができる程度まで所定の要件を満たしていない国際出願の部分に係るものである。つまり、
3. □ 請求の範囲
第Ⅲ欄 発明の単一性が欠如しているときの意見(第1ページの3の続き)
次に述べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。 特別ページを参照。
1. X 出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求の範囲について作成した。
2. □ 追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追加調査手数料の納付を求めなかった。
3. 出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納付のあった次の請求の範囲のみについて作成した。
4. 出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載されている発明に係る次の請求の範囲について作成した。
追加調査手数料の異議の申立てに関する注意
国加調査手数料の納付と共に出願人から異議申立てがなかった。 国加調査手数料の納付と共に出願人から異議申立てがなかった。

第III欄の続き

請求の範囲 24 に記載の化合物は、請求の範囲 1 に記載の式(I)に包含される。本願出願前、イソオキサゾールの 3 位に $-CR^3R^4-X^1-$ で表される基を介してベンゼン環が存在し、さらに、2 つの原子を介して末端に $-COOR^{17}$ が結合した化合物は公知であったことから(例えば、WO 03/084916 A2 のExample 41 を参照。)、請求の範囲 1 に記載の化合物、請求の範囲 2 のに記載の化合物、及び、請求の範囲 2 2 に記載の化合物は、新規な共通の基本骨格を有しているとは認められない。

してみると、

- I. 請求の範囲 1-19, 24 及び 25、並びに、該請求の範囲を引用する請求の範囲 26 及び 27 に記載された発明の特別な技術的特徴は、 [化 1] の化合物にあり、
- II. 請求の範囲20及び21、並びに、該請求の範囲を引用する請求の範囲26及び27 に記載された発明の特別な技術的特徴は、「化4]の化合物にあり、
- III. 請求の範囲22及び23、並びに、該請求の範囲を引用する請求の範囲26及び27に記載された発明の特別な技術的特徴は、「化5]の化合物にある。

以上から、発明I~IIIは、一又は二以上の同一又は対応する特別な技術的特徴を含む技術的な関係にないから、単一の一般的発明概念を形成するように連関しているものとは認められない。