Representing Graphs

Adjacency Lists And Adjacency Matrices For Different Efficiencies

Review of Graph Theory Terminology

- Covered in discrete math course
- Reviewed extensively in CLRS Appendix B.4
 - Make sure to go over Appendix B.4
- Graph G = (V, E)
 - *V*: The vertex set of *G*, *E*: The edge set of *G*.
 - $E = \{(u, v) | u, v \in V\}$ in a digraph (directed graph): Self-loops are possible.
 - $E = \{\{u, v\} | u, v \in V, u \neq v\}$ in an undirected graph (edges are unordered pairs).
- Various terms and definitions to go over in Appendix B.4:
 - Degree, path, path length, reachability, simple path, cycle, simple cycle, connected graph, connected components, strongly connected components, ...

Representing Graph: Adjacency List

• For $V = \{1, 2, ..., n\}$, maintain an array Adj[1..n] with each Adj[i] pointing to a linked list of all vertices adjacent to vertex i.

Representing Graph: Adjacency Matrix

• For $V=\{1,2,\ldots,n\}$, maintain an adjacency matrix (2D array) $A[1\ldots n,1\ldots n]$ where A[i,j]=1 if $(i,j)\in E$, and A[i,j]=0 otherwise.

Pros & Cons of Each Representation

- Adjacency list
 - $\Theta(|V| + |E|)$ space
 - Compact (in terms of space) representation of sparse ($|E| \ll |V|^2$) graphs
 - O(|V|) time to check if vertex j is adjacent to vertex i: Need to traverse the list Adj[i], which may contain as many vertices as |V|.
- Adjacency matrix
 - O(1) time (always) to check if vertex j is adjacent to vertex i (if there's an edge from vertex i to vertex j)
 - $\Theta(|V|^2)$ space (always, even for very sparse graphs)

Summary

- An adjacency list is usually the method of choice, as most graphs we deal with are sparse.
- Adjacency matrix is preferred when the graph is dense or we need to tell quickly if there's an edge connecting two given vertices.
- Weighted graphs can also be easily represented with either choice:
 - Adjacency matrix entry A[i,j] will be the weight w(i,j) if $(i,j) \in E$.
 - Adjacency list Adj[i] will point to the head of a linked list of nodes each of which has two properties: vertex j and weight w(i, j) if (i, j) ∈ E.

Breadth-First Search

Know All Your Immediate Neighbors First Before Knowing Any Other Neighbors Know Closer Neighbors First Before Knowing Farther Neighbors

Breadth-First Search (BFS) Overview

- One of the two widely used graph traversal methods
 - Also called breadth-first traversal
- Each vertex is (i) discovered, and then later (ii) explored in a graph traversal.
 - Exploring a vertex is basically discovering its adjacent vertices!
 - "Exploring incident edges," as phrased in textbook.
 - There's a source vertex that's initially discovered at the very beginning.
 - You never discover/explore an already discovered/explored vertex!
 - Each vertex is discovered exactly once and explored exactly once.
- In BFS, First-Discovered, First-Explored.
 - First-In, First-Out (FIFO): Queue data structure suits this well!

BFS Pseudocode Details

- Needs to distinguish each vertex's status:
 - Not discovered vet (white), discovered only (gray), explored (black)
 - At the beginning, the source vertex is marked gray (discovered) and all other vertices are marked white (not discovered yet).
- Breadth-first tree (predecessor graph) with root s (the source vertex) will be found after BFS, containing all reachable vertices from s.
- The simple path in the breadth-first tree from s to any vertex v (reachable from s) corresponds to a "shortest path" from s to v.

BFS(G, s)

• "Breadth-first" because the frontier line of the search expands across the breadth of the current frontier.

BFS Illustration

- Using a queue to implement "First-Discovered, First-Explored" nature.
 - The queue holds only the vertices that are discovered only (gray), in the order of discovery.
 - The front of the queue (earliest discovered-only vertex) is dequeued and
 - Which is to discover its adjacent non-discovered/explored vertices
 - The newly discovered vertices should be enqueued to the gueue to be explored later in the order of discovery.
- CLRS Fig. 22.3 (pp.596)
 - See how shortest distance from s to each vertex is updated.

Actual Code

```
for each vertex u \in G. V - \{s\}
                                         Marking all non-source vertices
          u.color = WHITE
                                          as not-yet-discovered, with unknown
                                          distance, and no parent (predecessor)
          u.d = \infty
                                          vet in the breadth-first tree.
          u.\pi = NIL
    s.color = GRAY
                            Marking source vertex as discovered-only.
     s.d = 0
                           setting its distance from itself (0), and setting
     s.\pi = NIL
                           its predecessor (none). Also enqueue it so that
     O = \emptyset
                           it will be explored in the loop.
    ENQUEUE(Q, s)
10 while Q \neq \emptyset Repeat as long as there's some vertex to be explored
11
          u = \text{DEQUEUE}(Q)
                                   Take the vertex to be explored (discovered
12
          for each v \in G. Adj[u] earliest) and inspect all its adjacent vertices
               if v.color == WHITE
13
                                         Only for each not-yet-discovered
14
                    v.color = GRAY
                                         vertex, mark it as discovered-only
                                         (gray), update its distance (+1),
15
                    v.d = u.d + 1
                                         parent (predecessor), and enqueue it
16
                    v.\pi = u
                                         so that it can be explored later in the
17
                    ENQUEUE(O, v)
                                          correct order.
          u.color = BLACK Done exploring all adjacent vertices. Mark
18
                                as such (black). Not enqueued back!
```

Analysis

- Each vertex goes through white \rightarrow gray transition exactly once.
- Only gray vertices are in the queue.
- Once dequeued, it'll never be enqueued again.
- Therefore, each vertex gets enqueued and dequeued exactly once in line 9-18.
- Therefore, the number of iterations of line 10 while loop is O(V).
- Total number of iterations of line 12 for loop is $\Theta(E)$, because each vertex (u)'s adjacency list will be scanned exactly once (Sum of lengths of all adjacency lists is $\Theta(E)$).
- Therefore, it's O(V + E).

BFS(G, s)

```
1 for each vertex u \in G.V - \{s\}
        u.color = WHITE
        u.d = \infty
        u.\pi = NIL
   s.color = GRAY
   s.d = 0
   s.\pi = NIL
    Q = \emptyset
    ENOUEUE(O,s)
    while O \neq \emptyset
11
       u = \text{DeQUeue}(Q)
12
        for each v \in G.Adi[u]
13
            if v.color == WHITE
14
                 v.color = GRAY
15
                 v.d = u.d + 1
16
                 v.\pi = u
17
                 ENQUEUE(O, v)
18
        u.color = BLACK
```

Correctness Proofs

- Lemmas/Corollaries/Theorems 22.1-22.6 in pp.598-601 of CLRS
 - Study individually with the core properties below, and ask questions if any.
 - There may be exam problems related to these properties and insights.
- v. d is the shortest distance from s to v in G.
- Predecessor subgraph G_{π} of G produced by the BFS procedure is a breadth-first tree of G.
 - $V_{\pi} = \{v \in V : v \cdot \pi \neq NIL\} \cup \{s\}$
 - $E_{\pi} = \{(v.\pi, v): v \in V \{s\}\}$
- The G_{π} may vary depending on the order of vertices in the adjacency lists, but v.d (distance) is unique.

Depth-First Search

Dig Deeper On One Neighbor Before Knowing Any Other Neighbors

Depth-First Search (DFS) Overview

- The other widely used graph traversal method
 - · Also called depth-first traversal
- Same process as in BFS: Discover and explore
- However, in DFS, Last-Discovered, First-Explored!
 - Last-In, First-Out (LIFO): Stack data structure fits this.
 - In fact, we can perform DFS just by swapping the queue in BFS with a stack.
 - But remember "stack" of recursive calls can be used as well
 - So recursively implemented in the textbook.
 - · Still iterative code with explicit stack data structure is preferred.

Details of Textbook's DFS Implementation

- Each vertex's predecessor is still maintained.
 - Gives depth-first forest (trees)
- Each vertex's distance from source is no longer maintained (not meaningful).
- Two timestamps are maintained for each vertex:
 - Discovered time & finished time (done exploring incident edges)
- Try all remaining white vertices as sources
 - That's why we get depth-first forest, not just a tree, if the given graph is not connected.
 - This is arbitrary (BFS could have been this way, or DFS could have been like BFS).
 - But it's done this way to reflect how the results of these searches are typically used.

Actual Code and Example (CLRS pp.604-605)

Time Complexity Analysis of DFS Code

- DFS-VISIT() is called exactly once for each vertex $v \in V$: $\Theta(V)$ calls
 - Same coloring argument as in BFS
- The for loop in DFS-VISIT(G,v) iterates |Adj[v]| times for each $v \in V$
 - Across all vertices (all recursive calls), the total will be $\sum_{v \in V} |Adj[v]| = \Theta(E)$
 - |E| for a digraph, 2|E| for an undirected graph
- Loops in DFS() will just iterate up to $\Theta(V)$ times
- Therefore, it's $\Theta(V+E)$, the same as in BFS.

DFS Properties: Parenthesis Structure (CLRS Fig. 22.5)

Theorem 22.7: Parenthesis theorem, about intervals, their inclusions, and their relationships.

Edge Classification from DFS

- Tree edge: When a white vertex is discovered by exploring that edge.
- Back edge: When a gray vertex is seen by exploring that edge.
- Forward edge: When a black vertex is seen by exploring that edge,
- but start time of the from-vertex of that edge is earlier than the finish time of the to-vertex of that edge.
- Cross edge: When a black vertex is seen by exploring that edge, but start time of the from-vertex of that edge is later than the finish time of the to-vertex of that edge.

Note about Formal Proofs

- Individually study the proofs of lemmas, corollaries, and theorems in the textbook, and ask questions if any.
- There might be exam problems related to those proofs.

Applications of Graph Traversals

Topological Sort And Strongly Connected Components, Both With DFS

Topological Sort

- Directed-acyclic graph (DAG): A directed graph with no cycles
- Topological sort of a DAG G = (V, E):
 - A linear ordering of all its vertices s.t. if G contains an edge (u, v), then u appears before v in the ordering.
 - If the graph contains a cycle, this is impossible.
- Many examples with precedence/prerequisite requirements on events can be represented using DAGs.
- Scheduling the events with precedence/prerequisite requirements satisfied can be done by topological sort.
- With our DFS() and DFS-VISIT(), it's simply a call to DFS() and listing vertices in descending order of their finish times!

Curriculum Prerequisite Structure Example

CSE101: INTR100 CSE111: INTR100

CSE221: CSE254 INTR100

CSE243: CSE254

CSE254: CSE111 MATH210 INTR100 CSE258: CSE254 CSE243 INTR100

ECE111: INTR100

ECE201: CSE111 INTR100

INTR100:

MATH210: INTR100

Implementation and Proofs

- Straightforward application of DFS: TOPOLOGICAL-SORT(G)
 - Call DFS(G) to compute finishing time v. f for each vertex v
 - As each vertex is finished, insert it onto the front of a linked list
 - Return the linked list of vertices.
- Straightforward time complexity: $\Theta(V+E)$. Same as DFS.
 - O(1) to insert each of the |V| vertices, so no effect to asymptotic complexity.
- Straightforward correctness proofs: Lemma 22.11 and Theorem 22.12
 - Show for any edge (u, v) in the dag, we have v. f < u. f.

Strongly Connected Components

- Definition (Recall from Appendix B)
 - A strongly connected component (SCC) of a digraph G = (V, E) is a maximal set of vertices $C \subseteq V$ s.t. for every pair of vertices $u, v \in C$, they are reachable from each other.

Fig. 22.9 (a) An example digraph G with its SCCs shaded

Fig. 22.9 (c) Acyclic component graph G^{SCC} obtained by contracting all edges within each SCC.

How To Find SCCs

- Note that the contracted acyclic component graph G^{SCC} is a dag!
- If we do a DFS on SCC w/ h (the last in the topological sort), we'll get a DF tree only for that SCC w/ h.
- Then if we do a DFS on SCC w/ fg (the second last in the topological sort), we'll get a DF tree only for that SCC w/ fg (h is already nonwhite, so won't be visited again).
- ...
- That is, if we do DFS on this reverse topological sort order, we are guaranteed to get a depth-first forest whose trees correspond to SCCs!

Implementation Details

- It's not easy to find the minimum of the finish times of SCCs (the maximum finish time of all vertices in SCC).
- It's easy, though, to find the maximum of the finish times of SCCs.
 - It's just the maximum finish time of the original graph's DFS.
- So the question is how to use the original topological sort order
 - That is, start finding DF trees from abe and move forward, not start from h
 and move backward.
 - But if we start finding DF trees from abe, then cd, fg, and h will be all reachable (because forward directions)!
 - How can we avoid this? Simple. Reverse edges in original G! (Transpose G^T)

Double DFSs (CLRS Fig. 22.9)

• First DFS to sort vertices in descending order of finish times

• Get G^T and perform second DFS to find DF trees corresponding to connected components

Algorithm and Analysis

STRONGLY-CONNECTED-COMPONENTS (G)

- 1 call DFS(G) to compute finishing times u.f for each vertex u
- 2 compute G^{T}
- 3 call DFS(G^T), but in the main loop of DFS, consider the vertices in order of decreasing u.f (as computed in line 1)
- 4 output the vertices of each tree in the depth-first forest formed in line 3 as a separate strongly connected component
- 2 DFSs, still $\Theta(V+E)$.
- Time to create G^T is still O(V + E).
- Thus, this algorithm is still $\Theta(V+E)$.

Formal Correctness Proofs

- Lemmas/Corollaries/Theorems in CLRS Section 22.5
- Formalization of the intuitions presented in earlier slides
- Study the proof individually. Everyone is expected to understand the proofs.