

IEL – protokol k projektu

Jakub Hlava xhlava52

21. prosince 2019

Obsah

1	Příklad 1	2
2	Příklad 2	6
3	Shrnutí výsledků	10

Příklad 1

Stanovte napětí U_{R5} a proud I_{R5} . Použijte metodu postupného zjednodušování obvodu.

sk.	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$	$R_6 [\Omega]$	$R_7 [\Omega]$	$R_8 [\Omega]$	
Н	135	80	680	600	260	310	575	870	355	265	

Zřejmě můžeme sečíst napětí zdrojů, protože jsou řazeny sériově a zjistit tak celkové napětí v obvodu.

$$U = U_1 + U_2 = 135 V + 80 V = 215 V$$

Dále můžeme vypočítat paralelní kombinaci rezistorů R_7 a R_8 :

$$R_{78} = \frac{R_7 * R_8}{R_7 + R_8} = \frac{355 * 265}{355 + 265} = 151,7339 \,\Omega$$

Obvod bude nyní vypadat takto:

Nyní musíme rezistory R_1 , R_2 a R_3 převést z trojúhelníkového tvaru na hvězdu. Ekvivalentní rezistory vypočítáme následovně:

$$R_A = \frac{R_1 * R_2}{R_1 + R_2 + R_3} = \frac{680 * 600}{680 + 600 + 260} = 264,9351 \Omega$$

$$R_B = \frac{R_1 * R_3}{R_1 + R_2 + R_3} = \frac{680 * 280}{680 + 600 + 260} = 114,8052 \Omega$$

$$R_C = \frac{R_2 * R_3}{R_1 + R_2 + R_3} = \frac{600 * 260}{680 + 600 + 260} = 101,2987 \Omega$$

Tímto nám vznikne tento ekvivalentní obvod:

Zjednodušíme si serioparalelní zapojení větví na dva paralelní rezistory:

$$R_{B45} = R_B + R_4 + R_5 = 114,8052 + 310 + 575 = 999,8052 \Omega$$

$$R_{C6} = R_C + R_6 = 101,2987 + 870 = 971,2987 \,\Omega$$

Vznikne nám obvod:

Vypočteme odpor paralelní kombinace nově vzniklých rezistorů:

$$R_{BC456} = \frac{R_{B45} * R_{C6}}{R_{B45} + R_{C6}} = \frac{999,8052 * 971,2987}{999,8052 + 971,2987} = 492,6729 \,\Omega$$

Zůstávají už jen 3 sériové rezistory:

Zjednodušíme obvod pouze na jeden rezistor sečtením těchto rezistorů zapojených do série:

$$R = R_A + R_{BC456} + R_{78} = 264,9351 + 492,6729 + 151,7339 = 909,3419\,\Omega$$

Finální ekvivalentní obvod:

Nyní můžeme vypočítat celkový proud obvodem podle Ohmova zákona:

$$I = \frac{U}{R} = \frac{215}{909,3419} = 236,4347 \, mA$$

Nyní, se znalostí celkového proudu U a napětí I, je třeba se postupně dopracovat ke konkrétnímu napětí a proudu na rezistoru R_5 Vrátíme se ke 2. kroku zjednodušování a vypočítáme si napětí na serioparalelní kombinaci rezistorů R_B , R_C , R_4 , R_5 a R_6 :

Již víme, že kombinace těchto rezistorů má odpor $R_{BC456}=492,6729~\Omega$ Napětí tedy vypočítáme podle Ohmova zákona:

$$U_{R_{BC456}} = I * R_{BC456} = 236,4347 * 10^{-3} * 492,6729 = 116,4850 V$$

Podle Ohmova zákona nyní můžeme určit proud větví R_{B45} :

$$I_{R_{B45}} = \frac{U_{R_{BC456}}}{R_{B45}} = \frac{116,4850 * 10^{-3}}{999,8052} = 116,5077 \, mA$$

A následně napětí přímo na rezistoru R_5 :

$$U_{R_5} = I_{R_{B45}} * R_5 = 116,5077 * 10^{-3} * 575 = 66,9919 V$$

Výsledné napětí a proud na rezistoru R_5 tedy je

$$U_{R_5} = 66,9919 V$$

$$I_{R_5} = 116,5077 \ mA \approx 0,1165 \ A$$

Příklad 2

Stanovte napětí U_{R6} a proud I_{R6} . Použijte metodu Théveninovy věty.

sk.	U[V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$	$R_6 [\Omega]$
В	100	50	310	610	220	570	200
U \	R ₁]	R ₂	R R		U _{R6}	

Pro potřeby výpočtu dle Théveninovy věty odpojíme zatěžovací rezistor, v našem případě označený R_6 , a postupně vypočítáme napětí naprázdno.

Nejprve zjistíme odpor celé paralelní kombinace R_3 , R_4 , R_5 (R_4 a R_5 jsou sériově spojeny, můžeme je tedy sečíst):

$$R_{45} = R_4 + R_5 = 220 + 570 = 790 \,\Omega$$

$$R_{345} = \frac{R_3 * R_{45}}{R_3 + R_{45}} = \frac{610 * 790}{610 + 790} = 344,2143 \,\Omega$$

Poté dle Ohmova zákona určíme napětí na paralelní kombinaci R_{345} :

$$U_{R_{345}} = I * R_{345} = \frac{U}{R_1 + R_2 + R_{345}} * R_{345} = \frac{100}{50 + 310 + 344,2143} * 344,2143 = 48,8792 V$$

Napětí naprázdno podle Théveninovy věty (zde na rezistoru R_5 , ke kterému se paralelně připojuje zátěž) zjistíme pomocí Ohmova zákona:

$$U_{Th} = I_{R_{45}} * R_5 = \frac{U_{R345}}{R_{45}} * R_5 = \frac{48,8792}{790} * 570 = 35,2673 V$$

Poté vyzkratujeme napájecí zdroj a vypočítáme ekvivalentní předřadný vnitřní odpor R_i zdroje podle Théveninovy věty:

Nejprve musíme provést ekvivalentní úpravu trojúhelníkového zapojení rezistorů na hvězdu:

$$R_A = \frac{R_4 * R_5}{R_3 + R_4 + R_5} = \frac{220 * 570}{610 + 220 + 570} = 89,5714 \,\Omega$$

$$R_B = \frac{R_3 * R_5}{R_3 + R_4 + R_5} = \frac{610 * 570}{610 + 220 + 570} = 248,3571 \,\Omega$$

$$R_C = \frac{R_3 * R_4}{R_3 + R_4 + R_5} = \frac{610 * 220}{610 + 220 + 570} = 95,8571 \,\Omega$$

Vznikne nám následující obvod:

Vidíme, že rezistory R_B , R_C , R_1 a R_2 tvoří serioparalelní kombinaci. Seriově zapojené rezistory sečteme a vypočítáme odpor paralelní kombinace:

$$R_{12C} = R_1 + R_2 + R_C = 50 + 310 + 95,8571 = 455,8571 \Omega$$

$$R_p = \frac{R_{12C} * R_B}{R_{12C} + R_B} = \frac{455,8571 * 248,3571}{455,8571 + 248,3571} = 160,7683 \,\Omega$$

Takto vypadá mezikrok výše:

Na závěr sečteme nově vzniklé seriové zapojení rezistorů, čímž konečně získáme velikost odporu R_i :

$$R_i = R_A + R_p = 89,5714 + 160,7683 = 250,3397 \,\Omega$$

Výsledkem je toto zjednodušení:

Nyní k ekvivalentnímu ideálnímu zdroji s napětím U_{Th} a jeho vnitřnímu odporu R_i můžeme připojit zatěžovací rezistor R_6 :

Proud rezistorem $R_6\ (I=I_{R6})$ zjistíme podle Ohmova zákona:

$$I = \frac{U_{Th}}{R_i + R_6} = \frac{35,2673}{250,3397 + 200} = 78,3127 \, mA \approx 0,07831 \, A$$

Z proudu a odporu zátěže zjistíme podle Ohmova zákona napětí na zátěži:

$$U_{R6} = I * R_6 = 78,3127 * 10^{-3} * 200 = 15,6625 V$$

Shrnutí výsledků

Příklad	Skupina	Výsledky				
1	Н	$U_{R5} = 66,9919 V$	$I_{R5} = 116,5077 mA$			
2	В	$U_{R6} = 15,6625 V$	$I_{R6} = 78,3127 mA$			