Introduction to PRAM

Oguz Kaya

Assistant Professor Université Paris-Saclay and ParSys team at LISN, Orsay, France

Outline

Introduction to PRAM

Outline

1 Introduction to PRAM

Objectives

- Revising sequential algorithms, RAM model, and complexity analysis
- Introducing the PRAM concept
- Explore and compare different PRAM variants
- Design and analyse some fundamental algorithms in PRAM model
- Analyze the complexity/performance of PRAM algorithms
- Brent and simulation theorems

RAM model

RAM (random access machine) model is an abstraction of computers

- Consists of a processing unit (PU) and an associated memory space.
- Access to each element in the memory is done in constant time.
- Each operation is performed in constant time in the PU.
- Equivalent to a turing machine (simulation)
- Belongs to the class "register machines"
- Not very realiste (L1/L2/L3/DRAM memory hierarchy) yet useful for developing algorithms that are "asymptotically optimal".
 - One should then adapt these algorithms toniversite modern computer architectures, i.e. HPCPARIS-SACLAY

Algorithms and complexity

Algorithm: A sequence of operations on a RAM machine, which aims to solve a given problem.

- $\frac{\text{SumArray}(A[N])}{1: \text{ sum} = 0}$
- 2: for $i=1,\ldots,N$ do
- 3: $sum \leftarrow sum + A[i]$
- 4: return sum

- Each memory access and arithmetic operation takes unit time.
- The time complexity of the algorithm is a function T(N) of the problem size which represents the total number of operations it performs.
 - One can also consider its space complexity which represents the total memory space it uses in execution.

Complexity analysis

Many methods exist for complexity analysis:

- Nested loops: Counting techniques in the loop iteration domain
- Recursion / divide-and-conquer: Counting by hand, Master theorem
- Probabilistic analysis (i.e., quicksort)
- Amortized analysis (i.e., dynamic tables)
- These analysis could be performed for
 - the best case
 - the worst case
 - the average case

PRAM model

Parallel random access machine (PRAM) is an abstraction of parallel computers.

- Consists of P PUs and a memory space shared among all PUs.
- PUs
 - execute the same algorithm/code in a synchronous manner, but on different elements in the memory (i.e., à la SIMD).
 - can perform an aritmetic operation simultaneously in constant time.
 - can do reads/writes from/to different memory locations simultaneously in constant time.

PRAM model (cont.)

Parallel random access machine (PRAM) is an abstraction of parallel computers.

This behavior defines different PRAM models.

- Memory size: Potentially infinite!
- Communication cost: Completely ignored (done through fast shared memory implicitly)
 - PRAM is useful for developing "asymptotically optimal" parallel algorithms
 - One should then adapt these algorithms to modern parallel computer architectures.

Memory conflicts in PRAM

During the execution of a PRAM algorithm, multiple PUs could try to access to the same memory location (memory conflict).

- Possible resolutions?
- CREW: Concurrent Read Exclusive Write
 - Simultaneous reading of the same memory location is allowed, and takes constant time
 - Simultenous writing is forbidden (bug)
 - Standard PRAM model, closest to real machines

Memory conflicts in PRAM

During the execution of a PRAM algorithm, multiple PUs could try to access to the same memory location (memory conflict).

• Possible resolutions?

- memory location is allowed, and takes constant time

 The most powerful model

 A "concurrency mode" is employed for
 - A "concurrency mode" is employed for simultenous writes:
 - Consistent mode: All PUs write the same value.
 - Arbitrary mode: One PUs value is retained randomly.
 - Priority mode: The PU with min/max index's value is retained.

Memory conflicts in PRAM

During the execution of a PRAM algorithm, multiple PUs could try to access to the same memory location (memory conflict).

- Possible resolutions?
- EREW: Exclusive Read Exclusive Write
 - Simultaneous read/write of the same memory location by multiple PUs is forbidden.
 - The most restrictive model
- ERCW: Exclusive Read, Concurrent Write
 - Does not exist. Why?
 - Does not make sense architecturally.

A first PRAM algorithm: Search in an array

Given an array A[N] and a key e, find the unique element index in A that contains e.

SEARCHINDEX(A[N], e)

1: idx = 02: forall $i \leftarrow 1 \dots N$ in parallel do
3: if e = A[i] then
4: $idx \leftarrow i$

- Sequential algorithm/complexity?
 - Iterate over all array elements, O(N).
- PRAM complexity?
 - O(1) time complexity since all comparisons are done simultaneously.
 - Is EREW sufficient? Or do we need CREW, CRCW?
 - EREW OK as long as the element is unique.
 - What about reading the variable N?

Another algorithm: List ranking

Given a linked list next[N], find the distances from the end of the list for each node.

•
$$next[i] = Nil \implies d[i] = 0$$

•
$$next[i] = j \neq Nil \implies d[i] = d[j] + 1$$

- Sequential algorithm? Complexity?
 - Recursion + memoisation in O(N).

How to parallelize in PRAM?

- Idea: Recursive pointer jumping
 - First, each pointer jump adds 1 distance
 - Then, as we jump over pointers, we add the distance of that pointer.
 - Continue until all pointers point to the end of list.
 - How many iterations until convergence?
 - At each jump, either jump distance of a pointer doubles, or it points to the end of list.
 - In log₂ N itérations, all pointers point to the end of list, with correct jump distance d[i].

How to write the PRAM algorithm?

- Initialization is done in O(1).
- Computation terminates in log₂ N iterations using N PUs.

Read/write conflicts in lines 7, 8?

- We consider it as a sequence of synchronous operations:
 - $temp1[i] \leftarrow d[next[i]]$
 - $temp2[i] \leftarrow d[i] + temp1[i]$
 - $d[i] \leftarrow temp2[i]$
- Asymptotically the same!
- No read nor write conflicts! EREW is sufficient.

How to know when to stop?

CRCW PRAM?

- Write done ← (next[i] = Nil) at the end of while
- For write conflicts, use either "min" or "and" fusion mode

• CREW PRAM?

- Each process sets $done[i] \leftarrow (next[i] = Nil)$ at the end of loop
- Run the reduction algorithm to compute the global done (O(log N) CREW, à venir).

How to know when to stop?

• EREW PRAM?

- Each process sets $done[i] \leftarrow (next[i] = Nil)$ at the end of loop
- Run the reduction algorithm to compute the global done (O(log N) CREW, à venir).
- Run a broadcast algorithm to copy the global done in each done[i] (O(log N) en EREW, à venir).
- Complexity? $O(\log N \log N) = O(\log^2 N)$?
 - Perform this check every log N itérations.
 - Amortized cost per iteration is O(1).

Prefix sum computation on a list

Given a linked list of values (x_1, \ldots, x_N) and a binary associative operation \otimes , compute the sequence (y_1, \ldots, y_N) such that $y_k = x_1 \otimes \cdots \otimes x_k$

FIGURE 1.3: Example execution of the prefix computation algorithm. [i,j] denotes $x_i \otimes x_{i+1} \otimes \ldots \otimes x_j$ for $i \leq j$.

- x is in a linked list form
 - x[i] gives the value
 - next[i] gives the index to the next element
- Use the pointer jumping technique
 - Each element i applies itself to its next[i] before jumping
 - O(log N) iterations maximum

Prefix sum computation on a list (cont.)

Given a linked list of values (x_1, \ldots, x_N) and a binary associative operation \otimes , compute the sequence (y_1, \ldots, y_N) such that $y_k = x_1 \otimes \cdots \otimes x_k$

- x is in a linked list form
 - x[i] gives the value
 - next[i] gives the index to the next element
- Use the pointer jumping technique
 - Each element i applies itself to its next[i] before jumping
 - $O(\log N)$ iterations maximum
 - What type of PRAM is needed?

Evaluating the performance of PRAM algorithms

For a problem A(n) of size n and corresponding sequential and parallel algorithms, we define the following metrics for evaluation:

- $T_{sea}(n)$: Sequential execution time
- $T_{par}(n, p)$: Parallel execution time using P PUs
- $C_p(n) = pT_{par}(p, n)$: Parallel execution cost
- $W_p(n)$: Total work performed in parallel (total number of operations across all PUs)
- If $W_p(n) = O(T_{seq})$, PRAM algorithm is work-optimal.
- $D(n) = \lim_{p \to \infty} T_{par}(n, p)$: Depth of the parallel algorithm
- $T_{seg}(n) \leq W_p(n) \leq C_p(n)$: Parallelism potentially gives an overhead
- $S_p(n) = \frac{T_{seq}(n)}{T_{reg}(n,n)}$: Speedup
- $E_p(n) = \frac{S_p(n)}{n} = \frac{T_{seq}(n)}{nT_{seq}(n,n)}$: Efficiency

A simple simulation

Let A be an algorithm whose execution time is t using PRAM with p PUs. Then, A can be simulated with a same type PRAM with $p' \leq p$ PUs in $O(\frac{tp}{p'})$ time. The cost of the algorithm on this latter PRAM (having p' PUs) is at most 2x the cost of the initial PRAM with p PUs.

- Each "big" step of the PRAM can be simulated in $\lceil \frac{p}{p'} \rceil$ substeps.
- There are at most t such substeps, thus $t' = O(\frac{p}{p'}t) = O(\frac{tp}{p'})$.
- New cost :

$$C_{p'} = t'p' \le \lceil \frac{p}{p'} \rceil p't \le (\frac{p}{p'} + 1)p't = pt(1 + \frac{1}{p'}) = C_p(1 + 1/p') \le 2C_p$$

- Corollary: The cost of a parallel execution of a PRAM algorithm is asymptotically the same or superior to the best sequential algorithm
- If the cost of PRAM algorithm is asymptotically equivalent to its sequential time then the algorithm is called **efficient**.

Brent theorem

Let A be an algorithm that performes m operations in t time using PRAM (with a certain, potentially infinite, number of PUs). Then, A can be simulated with a PRAM of the same type having p PUs in time $O(\frac{m}{p} + t)$.

- Let m_i be the number of operations performed in the step i $(\sum_{i=1}^t m_i = m)$.
- Each coarse step of PRAM having m_i operations could be simulated in $\lceil \frac{m_i}{p'} \rceil$ time using a PRAM with p PUs.

•

$$t' = \sum_{1}^{t} \lceil rac{m_i}{p}
ceil \leq \sum_{1}^{t} (rac{m_i}{p} + 1) = rac{m}{p} + t$$

Comparison between the power of PRAM models

Is there a problem that one can solve asymptotically faster using CRCW PRAM instead of CREW PRAM

- Find the maximum of an array A[N]
- Can be performed in O(1) time using CRCW
- CREW requires at least O(log₂ n) due to reduction

Comparison between the power of PRAM models (cont.)

Is there a problem that one can solve asymptotically faster using CREW PRAM instead of EREW PRAM

SEARCH(A[n], e)

1:
$$idx = 0$$

2: forall i = 1, ..., N in parallel do

3: **if**
$$e = A[i]$$
 then

- 4: $idx \leftarrow i$
- 5: **return** *idx*

- Search an element e in an array (with unique elements) A[N]
- Could be performed in O(1) using CREW
- EREW requires at least $O(\log_2 n)$ for diffusing e to all PUs.

Simulation theorem

The execution time of a CRCW PRAM algorithm using P PUs is at most $O(\log N)$ times faster than the best EREW PRAM algorithm using P PUs for the same problem

- To simulate each step of CRCW using EREW in consistent mode
- For each write at an index, put (index, value) pair in an array A[P].
- Sort A[P] ($O(\log P)$ in EREW PRAM)
- Perform the write for A[0], then for A[i] if $A[i] \neq A[i-1]$.

References

Contact

Oguz Kaya Université Paris-Saclay and LRI, Paris, France oguz.kaya@Iri.com www.oguzkaya.com