

수학 계산력 강화

(1)일반각과 호도법

◇「콘텐츠산업 진흥법 시행령」제33조에 의한 표시

1) 제작연월일 : 2019-02-13

2) 제작자 : 교육지대㈜

3) 이 콘텐츠는 「콘텐츠산업 진흥법」에 따라 최초 제작일부터 5년간 보호됩니다.

◇「콘텐츠산업 진흥법」외에도「저작권법」에 의하여 보호 되는 콘텐츠의 경우, 그 콘텐츠의 전부 또는 일부를 무 단으로 복제하거나 전송하는 것은 콘텐츠산업 진흥법 외에도 저작권법에 의한 법적 책임을 질 수 있습니다.

01 일반각

(1) 일반각: 일반적으로 시초선 OX와 동경 OP가 나타내는 한 각의 크기를 α °라 하면 \angle XOP의 크기는 $360^{\circ} \times n + \alpha^{\circ}$ (단, n은 정수) 꼴로 나타낼 수 있고 이것을 동경 OP의 일반각이라 한다.

(2) 사분면의 각

① θ 가 제1사분면의 각

 \Rightarrow 360° $\times n + 0$ ° $< \theta <$ 360° $\times n + 90$ °

② θ 가 제2사분면의 각

 \Rightarrow 360° $\times n + 90$ ° $< \theta < 360$ ° $\times n + 180$ °

③ θ 가 제3사분면의 각

 \Rightarrow 360° $\times n + 180$ ° $< \theta < 360$ ° $\times n + 270$ °

④ θ 가 제4사분면의 각

 \Rightarrow 360 $^{\circ}$ \times n+270 $^{\circ}$ < heta < 360 $^{\circ}$ \times n+360 $^{\circ}$

☑ 다음에서 시초선 OX와 동경 OP가 나타내는 일반각을 구하여라.

2.

☑ 시초선이 반직선 OX일 때, 다음 각을 나타내는 동경 OP의 위치를 그림으로 나타내시오.

6. 30°

7. $45\degree$

8. $135\,^{\circ}$

9. $210\degree$

10. −350 °

11. -210°

- ☑ 다음 각의 동경이 나타내는 일반각의 크기를 구하여라.
- **12.** 405 °
- **13.** 1000 °
- **14.** -600°
- **15.** -770 °
- **16.** 660 °
- ☑ 다음 각은 제 몇 사분면의 각인지 말하여라.
- **17.** -1230 °
- **18.** 690 °
- **19.** 1165 °
- **20.** 550°
- **21.** -795 °
- **22.** -380°

- ☑ 주어진 각 θ는 제 몇 사분면의 각인지 말하여라.
- **23.** α 가 제1사분면의 각일 때, $\theta = \frac{\alpha}{3}$
- **24.** α 가 제2사분면의 각일 때, $\theta = \frac{\alpha}{2}$
- **25.** α 가 제3사분면의 각일 때, $\theta = \frac{\alpha}{2}$
- **26.** α 가 제4사분면의 각일 때, $\theta = \frac{\alpha}{2}$

02 / 두 동경의 위치 관계

두 각 θ_1 과 θ_2 를 나타내는 동경의 위치관계

- (1) 일치한다.
- $\Rightarrow \theta_2 \theta_1 = 360^{\circ} \times n \ (n$ 은 정수)
- (2) x축에 대하여 대칭이다.
- \Rightarrow $\theta_1 + \theta_2 = 360^{\circ} \times n$ (n은 정수)
- (3) *y*축에 대하여 대칭이다.
- (4) 직선 y=x에 대하여 대칭이다.
- \Rightarrow $\theta_1 + \theta_2 = 360\degree \times n + 90\degree$ (n은 정수)
- (5) 일직선 위에 있고 방향이 반대이다.
- ☑ 다음 <보기>의 각이 나타내는 동경 중 70°를 나타내는 동경과 일치하는 것은 ○표, 일치하지 않는 것은 ×표를 ()안에 써넣어라.
- **27.** -70°

()

28. -290°

()

29. 430 °

()

30. 1330 °

()

- ☑ 다음 두 각을 나타내는 동경의 위치관계가 주어질 때, α 의 일반각을 구하여라.
- **31.** 30°, α [일치]
- **32.** 200°, α [일치]
- **33.** $\alpha + 10^{\circ}$, 160° [일치]
- **34.** $2\alpha 45^{\circ}$, $\alpha + 45^{\circ}$ [일치]
- **35.** α, 90° [x축 대칭]
- **36.** $\alpha + 10^{\circ}$, -160° [x축 대칭]
- **37.** $2\alpha + 75^{\circ}$, $45^{\circ} \alpha$ [x축 대칭]
- **38.** $3\alpha 60\degree$, $30\degree 2\alpha$ [y축 대칭]
- **39.** -120°, α-75° [y축 대칭]

- **40.** α , 70° [직선 y=x에 대칭]
- **41.** $\alpha 30^{\circ}$, 260° [직선 y = x에 대칭]
- **42.** α , $-160\,^{\circ}$ [일직선 위에 있고 방향이 반대]
- **43.** $-\alpha-100^{\circ}$, 90° [일직선 위에 있고 방향이 반대]
- \blacksquare 다음 두 각의 조건이 주어질 때, α 의 크기를 모두 구하 여라.
- **44.** 다음 두 각 -11α , 9α $(0^{\circ} < \alpha < 90^{\circ})$ 를 나타내 는 두 동경이 서로 일치할 때
- **45.** 다음 두 각 α , 5α $(0^{\circ} < \alpha < 180^{\circ})$ 를 나타내는 두 동경이 서로 일치할 때
- **46.** 다음 두 각 3α , 5α ($90^{\circ} < \alpha < 270^{\circ}$)을 나타내 는 동경이 x축에 대하여 대칭일 때
- **47.** 다음 두 각 $-\alpha$, 4α (90° < α < 270°)을 나타내 는 동경이 x축에 대하여 대칭일 때

- 48. 다음 두 각 2α , 3α $(180\degree < \alpha < 360\degree)$ 을 나타내 는 동경이 y축에 대하여 대칭일 때
- **55.** $\frac{3}{5}\pi$
- **49.** 다음 두 각 2α , 4α ($90^{\circ} < \alpha < 270^{\circ}$)을 나타내 는 동경이 직선 y=x에 대하여 대칭일 때
- **56.** $\frac{7}{4}\pi$

- **50.** 다음 두 각 -2α , 5α (90° < α < 270°)을 나타 내는 동경이 직선 y=x에 대하여 대칭일 때
- **57.** $\frac{3}{2}\pi$

- **51.** 다음 두 각 α , 5α ($180^{\circ} < \alpha < 360^{\circ}$)을 나타내 는 동경이 일직선 위에 있고 방향이 반대일 때
- **58.** $\frac{7}{6}\pi$

03 / 호도법

59. $\frac{\pi}{5}$

- (1) $\mathbf{1}$ 라디안(radian): 반지름의 길이가 r인 원에서 길이가 r인 호에 대한 중심각의 크기
- (2) 호도법: 라디안을 단위로 하여 각의 크기를 나타내는 방법으로 1라디안= $\frac{180\,^\circ}{\pi}$, $1\,^\circ=\frac{\pi}{180}$ 라디안이다.
- 참고 호도법을 사용할 때는 단위인 라디안은 생략하고 사용한다.

- **60.** $-\frac{7}{4}\pi$
- **61.** $-\frac{2}{3}\pi$
- **62.** $\frac{4}{5}\pi$
- **63.** $-\frac{\pi}{3}$
- **64.** $\frac{11}{6}\pi$

- ☑ 다음 각을 육십분법으로 나타내어라.
- **52.** *π*
- **53.** $\frac{\pi}{2}$
- **54.** $\frac{5}{6}\pi$

	다음	각을	호도법으로	나타내어라.
--	----	----	-------	--------

65. 30°

66. 72 °

67. 60 °

68. 135 °

69. 150°

70. 210 °

71. 225 °

72. 240 °

73. -210°

74. -120°

75. -300°

☑ 다음 물음에 답하여라.

76. 각 θ 와 8θ 를 나타내는 두 동경이 서로 일치할 때, 만족하는 모든 각 θ 의 합을 구하여라. (단, 0 < θ < π)

77. 각 θ 와 각 6θ 를 나타내는 두 동경이 서로 일치할 때, 모든 θ 의 크기의 합을 구하여라. (단, $0 < \theta < \pi$)

78. $0 < \theta < \pi$ 인 각 θ 에 대하여 3θ 와 4θ 를 나타내는 동경이 x축에 대하여 대칭이다. 모든 θ 의 값의 합을 구하여라.

79. 각 θ 의 동경과 각 6θ 의 동경이 서로 반대방향으 로 일직선을 이루는 모든 각 θ 의 합을 구하여라. (단, 0 < θ < π)

80. $0 < \theta < 2\pi$ 일 때, 각 θ 의 동경과 3θ 의 동경이 일 직선 위에 있고 방향이 반대가 되는 모든 θ 값의 합 을 구하여라.

81. $\frac{\pi}{2}$ < θ < π 이고, 두 각 θ 와 7θ 를 나타내는 동경이 서로 일치할 때, 각 θ 의 크기를 구하여라.

82. 각 θ 를 나타내는 동경과 각 3θ 를 나타내는 동경 이 직선 y=x에 대하여 대칭이 되는 모든 θ 의 값의 합을 구하여라. (단, $0 < \theta < \pi$)

(H

정답 및 해설

- 1) $360^{\circ} \times n + 120^{\circ}$ (n은 정수)
- 2) $360° \times n 50°$ 또는 $360° \times n + 310°$ (n은 정수)
- 3) 360°×n+130°(n은 정수)
- 4) 360°×n+300° (n은 정수)
- 5) 360°×n+230° (n은 정수)

- 12) 360°×n+45° (단, n은 정수)
- 13) 360°×n+280° (n은 정수)
- 14) 360°×n+120° (n은 정수)
- 15) 360°×n-50° 또는 360°×n+310° (단, n은 정수)
- □ → 770° = 360°×(-2) 50°이므로 360°×n-50° (단, n은 정수) 또는 -770°=360°×(-3)+310°이므로 360°×n+310° (단, n은 정수)

- 16) 360°×n+300° (단, n은 정수)
- 17) 제3사분면
- □ -1230° = 360° × (-4) +210° 이므로 제3사분면의 각
- 18) 제4사분면
- ⇒ 690° = 360° +330° 이므로 제4사분면의 각
- 19) 제1사분면
- □ 1165° = 360° ×3+85°이므로 1165°는 제1사분면의 각이다.
- 20) 제3사분면
- ⇒ 550° = 360° + 190° 이므로 제3사분면의 각
- 21) 제4사분면
- □ -795° = 360° × (-3) +285° 이므로 -795° 는 제4사분면의 각이다.
- 22) 제4사분면
- ⇒ -380° = 360° × (-2) +340° 이므로 -380° 는 제4사분면의 각이다.

$$360^{\circ} \times n < \alpha < 360^{\circ} \times n + 90^{\circ}$$

$$\therefore 120^{\circ} \times n < \frac{\alpha}{3} < 120^{\circ} \times n + 30^{\circ}$$

(i) n = 3k (k는 정수)일 때,

$$360\,^{\circ} imes k < rac{lpha}{3} < 360\,^{\circ} imes k + 30\,^{\circ}$$
이므로

 $\frac{\alpha}{3}$ 는 제1사분면의 각이다.

(ii) n=3k+1 (k는 정수)일 때,

$$360\,^{\circ} imes k+120\,^{\circ}<rac{lpha}{3}\!<\!360\,^{\circ} imes k+150\,^{\circ}$$
이므로

 $\frac{\alpha}{3}$ 는 제2사분면의 각이다.

(iii) n=3k+2 (k는 정수)일 때,

$$360\,^\circ imes k+240\,^\circ<rac{lpha}{3}\!<\!360\,^\circ imes k+270\,^\circ$$
이므로

 $\frac{\alpha}{3}$ 는 제3사분면의 각이다.

- (i), (ii), (iii)에서 $\theta = \frac{\alpha}{3}$ 는 제1사분면 또는 제2 사분면 또는 제3사분면의 각이다.
- 24) 제1사분면 또는 제3사분면의 각
- \Rightarrow lpha가 제2사분면의 각이므로

 $360^{\circ} \times n + 90^{\circ} < \alpha < 360 \times n + 180^{\circ}$

$$\therefore 180^{\circ} \times n + 45^{\circ} < \frac{\alpha}{2} < 180 \times n + 90^{\circ}$$

(i) n = 2k (k는 정수)일 때,

$$360\,^{\circ} imes k + 45\,^{\circ} < rac{lpha}{2} < 360\,^{\circ} imes k + 90\,^{\circ}$$
이므로

 $\frac{\alpha}{2}$ 는 제1사분면의 각이다.

(ii) n=2k+1 (k는 정수)일 때,

$$360\,^\circ imes k+225\,^\circ<rac{lpha}{2}<360\,^\circ imes k+270\,^\circ$$
이므로

 $\frac{\alpha}{2}$ 는 제3사분면의 각이다.

- (i), (ii)에서 $\theta = \frac{\alpha}{2}$ 는 제1사분면 또는 제3사분 면의 각이다.
- 25) 제2사분면 또는 제4사분면의 각
- \Rightarrow α 가 제3사분면의 각이므로 $360^{\circ} \times n + 180^{\circ} < \alpha < 360^{\circ} \times n + 270^{\circ}$

$$\therefore 180^{\circ} \times n + 90^{\circ} < \frac{\alpha}{2} < 180^{\circ} \times n + 135^{\circ}$$

(i) n = 2k (k는 정수)일 때,

$$360\,^{\circ} imes k + 90\,^{\circ} < rac{lpha}{2} < 360\,^{\circ} imes k + 135\,^{\circ}$$
 이므로

 $\frac{\alpha}{2}$ 는 제2사분면의 각이다.

(ii) n = 2k + 1 (k는 정수)일 때,

$$360\,^{\circ} imes k + 270\,^{\circ} < rac{lpha}{2} < 360\,^{\circ} imes k + 315\,^{\circ}$$
이므로

 $\frac{\alpha}{2}$ 는 제4사분면의 각이다.

- (i)(ii)에서 $\theta = \frac{\alpha}{2}$ 는 제2사분면 또는 제4사분면 의 각이다.
- 26) 제2사분면 또는 제3사분면 또는 제4사분면의 각
- \Rightarrow α 가 제4사분면의 각일 때,

$$360^{\circ} \times n + 270^{\circ} < \alpha < 360^{\circ} \times n + 360^{\circ}$$

$$\therefore 120^{\circ} \times n + 90^{\circ} < \frac{\alpha}{3} < 120^{\circ} \times n + 120^{\circ}$$

(i) n=3k (k는 정수)일 때,

$$360\,^{\circ} imes k + 90\,^{\circ} < rac{lpha}{3} < 360\,^{\circ} imes k + 120\,^{\circ}$$
 이므로

 $\frac{\alpha}{3}$ 는 제2사분면의 각이다.

(ii) n=3k+1 (k는 정수)일 때,

$$360\,^{\circ} imes k + 210\,^{\circ} < rac{lpha}{3} < 360\,^{\circ} imes k + 240\,^{\circ}$$
이므로

 $\frac{\alpha}{3}$ 는 제3사분면의 각이다.

(iii) n = 3k + 2 (k는 정수)일 때,

$$360\,^\circ imes k+330\,^\circ<rac{lpha}{3}<360\,^\circ imes k+360\,^\circ$$
이므로

 $\frac{\alpha}{3}$ 는 제4사분면의 각이다.

(i), (ii), (iii)에서 $\theta = \frac{\alpha}{3}$ 는 제2사분면 또는 제3 사분면 또는 제4사분면의 각이다.

27) ×

$$\Rightarrow$$
 $-70^{\circ} = 360^{\circ} \times (-1) + 290^{\circ}$

$$\Rightarrow$$
 $-290^{\circ} = 360^{\circ} \times (-1) + 70^{\circ}$

29) 🔾

$$\Rightarrow$$
 430° = 360° \times 1 + 70°

 $30) \times$

$$\Rightarrow$$
 1330° = 360° \times 3 + 250°

31) $\alpha = 360^{\circ} \times n + 30^{\circ} (n - 점수)$

다
$$\alpha-30\degree=360\degree\times n$$
이므로 $\alpha=360°\times n+30°$ (n은 정수)

32) 360°×n+200° (n은 정수)

$$\Rightarrow$$
 $\alpha - 200$ ° = 360 ° $\times n$ 이므로 $\alpha = 360$ ° $\times n + 200$ ° $(n$ 은 정수)

33) α = 360°×n+150° (n은 정수)

34) $\alpha = 360^{\circ} \times n + 90^{\circ} (n - 6 7 7)$

35) 360°×n+270° (n은 정수)

다
$$\alpha + 90\degree = 360\degree \times n$$
이므로 $\alpha = 360\degree \times n - 90\degree$ $\alpha = 360\degree \times n + 270\degree (n은 정수)$

36) 360°×n+150° (n은 정수)

□ (α+10°)+(-160°)=360°×n이므로
$$\alpha = 360°×n+150° (n은 정수)$$

37) 360°×n+240° (n은 정수)

38) 360°×n+210° (n은 정수)

□ (3α-60°)+(30°-2α)=360°×n+180°이므로
$$\alpha = 360°×n+210° (n은 정수)$$

39) 360°×n+15° (n은 정수)

40) 360°×n+20° (n은 정수)

$$\Rightarrow \alpha + 70^{\circ} = 360^{\circ} \times n + 90^{\circ}$$
이므로

- 41) 360°×n+220° (n은 정수)
- \Rightarrow $(\alpha 30^\circ) + 260^\circ = 360^\circ \times n + 90^\circ$ 이므로 $\alpha = 360^{\circ} \times n - 140^{\circ}$ ∴ α = 360°×n+220° (n은 정수)
- 42) 360°×n+20° (n은 정수)
- $\Rightarrow \alpha (-160^{\circ}) = 360^{\circ} \times n + 180^{\circ}$ 이므로 $\alpha = 360^{\circ} \times n + 20^{\circ} \quad (n \in 5)$
- 43) $360^{\circ} \times n + 350^{\circ}$
- \Rightarrow 90 ° $-(-\alpha-100$ °) = 360 ° \times n+180 ° 이므로 $\alpha = 360^{\circ} \times n - 10^{\circ}$ $\therefore \alpha = 360^{\circ} \times n + 350^{\circ} (n - 정수)$
- 44) $\alpha = 18^{\circ}$ $\Xi = \alpha = 36^{\circ}$ $\Xi = \alpha = 54^{\circ}$ 里는 $\alpha = 72$
- \Rightarrow -11α 와 9α 를 나타내는 동경이 일치하므로 $9\alpha - (-11\alpha) = 20\alpha = 360^{\circ} \times n$ ∴ α=18°×n (n은 정수) 이때, $0^{\circ} < \alpha < 90^{\circ}$ 이므로 $\alpha = 18^{\circ}$ 또는 $\alpha = 36$ ° $\Xi = \alpha = 54$ ° $\Xi = \alpha = 72$ °
- 45) 90°
- \Rightarrow 그림과 같이 각 α 를 나타내는 동경 OP와 각 5α 를 나타내는 동경 OQ가 서로 일치하므로 $5\alpha - \alpha = 360^{\circ} \times n$ (단, n은 정수) $4\alpha = 360^{\circ} \times n$ $\therefore \alpha = 90^{\circ} \times n$ 0°<α<180°이므로 $0^{\circ} < 90^{\circ} \times n < 180^{\circ}$
 - $\therefore 0 < n < 2$
 - 이때, n은 정수이므로 n=1
 - n=1을 \bigcirc 에 대입하면 $\alpha=90$ °
- 46) $\alpha = 135^{\circ}$ Ξ_{-}^{+} $\alpha = 180^{\circ}$ Ξ_{-}^{+} $\alpha = 225^{\circ}$
- \Rightarrow 3α 와 5α 를 나타내는 동경이 x축에 대하여 대칭 이므로 $3\alpha + 5\alpha = 8\alpha = 360^{\circ} \times n$ $\therefore \alpha = 45^{\circ} \times n \ (n$ 은 정수) 이때, $90^{\circ} < \alpha < 270^{\circ}$ 이므로 $\alpha = 135$ ° Ξ_{-}^{\bot} $\alpha = 180$ ° Ξ_{-}^{\bot} $\alpha = 225$ °
- 47) $\alpha = 120^{\circ}$ 또는 $\alpha = 240^{\circ}$
- $\Rightarrow -\alpha + 4\alpha = 3\alpha = 360^{\circ} \times n$ $-\alpha$ 와 4α 를 나타내는 동경이 x축에 대하여 대칭 이때, 90°< α < 270°이므로 $\alpha = 120^{\circ}$ $\Xi_{\perp} \alpha = 240^{\circ}$
- 48) $\alpha = 252$ ° 또는 $\alpha = 324$ °
- \Rightarrow 2α 와 3α 를 나타내는 동경이 y축에 대하여 대칭 이므로 $2\alpha + 3\alpha = 5\alpha = 360^{\circ} \times n + 180^{\circ}$ ∴ α = 72°×n+36° (n은 정수) 이때, 180°< α < 360°이므로

$$\alpha = 252$$
° $\Xi = \alpha = 324$ °

- 49) $\alpha = 135^{\circ}$ 또는 $\alpha = 195^{\circ}$ 또는 $\alpha = 255^{\circ}$
- \Rightarrow 2α 와 4α 를 나타내는 동경이 직선 y=x에 대하여 대칭이므로 $2\alpha + 4\alpha = 6\alpha = 360^{\circ} \times n + 90^{\circ}$ ∴ α = 60°×n+15° (n은 정수) 이때, 90°< α < 270°이므로 $\alpha = 135$ ° $\Xi = \alpha = 195$ ° $\Xi = \alpha = 255$ °
- 50) $\alpha = 150^{\circ}$
- \Rightarrow -2lpha와 5lpha를 나타내는 동경이 직선 y=x에 대하 여 대칭이므로 $-2\alpha+5\alpha=3\alpha=360\,^{\circ} imes n+90\,^{\circ}$ $\therefore \alpha = 120^{\circ} \times n + 30^{\circ} (n \in 정수)$ 이때, $90^{\circ} < \alpha < 270^{\circ}$ 이므로 $\alpha = 150^{\circ}$
- 51) $\alpha = 225$ ° 또는 $\alpha = 315$ °
- \Rightarrow α 와 5α 를 나타내는 동경이 일직선 위에 있고 방 향이 반대이므로 $5\alpha - \alpha = 4\alpha = 360^{\circ} \times n + 180^{\circ}$

$$\therefore$$
 $\alpha=90\,^{\circ}\times n+45\,^{\circ}$ $(n$ 은 정수)
이때, $180\,^{\circ}<\alpha<360\,^{\circ}$ 이므로
 $\alpha=225\,^{\circ}$ 또는 $\alpha=315\,^{\circ}$

- 52) 180°
- 53) 90°

$$\Rightarrow \frac{5}{6}\pi = \frac{5}{6}\pi \times 1 = \frac{5}{6}\pi \times \frac{180^{\circ}}{\pi} = 150^{\circ}$$

55) 108°

$$\Rightarrow \frac{3}{5}\pi = \frac{3}{5}\pi \times 1 = \frac{3}{5}\pi \times \frac{180^{\circ}}{\pi} = 108^{\circ}$$

$$\Rightarrow \frac{7}{4}\pi = \frac{7}{4}\pi \times \frac{180^{\circ}}{\pi} = 315^{\circ}$$

- 57) 270°
- 58) 210°
- 59) 36°
- 60) -315°

$$\Rightarrow -\frac{7}{4}\pi = -\frac{7}{4}\pi \times 1 = -\frac{7}{4}\pi \times \frac{180^{\circ}}{\pi} = -315^{\circ}$$

$$\Rightarrow -\frac{2}{3}\pi = \left(-\frac{2}{3}\pi\right) \times \frac{180^{\circ}}{\pi} = -120^{\circ}$$

- 62) 144°
- 63) -60°

$$\Rightarrow -\frac{\pi}{3} = -\frac{\pi}{3} \times 1 = -\frac{\pi}{3} \times \frac{180^{\circ}}{\pi} = -60^{\circ}$$

- 64) 330
- 65) $\frac{\pi}{6}$

$$\Rightarrow$$
 30° = 30×1° = 30× $\frac{\pi}{180} = \frac{\pi}{6}$

- 66) $\frac{2}{5}\pi$
- 67) $\frac{\pi}{3}$
- 68) $\frac{3}{4}\pi$
- 69) $\frac{5}{6}\pi$
- 70) $\frac{7}{6}\pi$
- 71) $\frac{5}{4}\pi$
- 72) $\frac{4}{3}\pi$
- $\Rightarrow 240^{\circ} = 240 \times \frac{\pi}{180} = \frac{4}{3}\pi$
- 73) $-\frac{7}{6}\pi$
- \Rightarrow $-210^{\circ} = -210 \times 1^{\circ} = -210 \times \frac{\pi}{180} = -\frac{7}{6}\pi$
- 74) $-\frac{2}{3}\pi$
- $\Rightarrow -120^{\circ} = -120 \times 1^{\circ} = -120 \times \frac{\pi}{180} = -\frac{2}{3}\pi$
- 75) $-\frac{5}{3}\pi$
- \Rightarrow -300° = (-300) $\times \frac{\pi}{180} = -\frac{5}{3}\pi$
- 76) $\frac{12\pi}{7}$

$$\frac{2}{7}\pi + \frac{4}{7}\pi + \frac{6}{7}\pi = \frac{12}{7}\pi$$

77)
$$\frac{6}{5}\pi$$

- 78) $\frac{12}{7}\pi$
- 79) $\frac{4}{5}\pi$
- 다 두 동경의 차이는 π 이므로 $6\theta-\theta=\pi+2n\pi\,(n$ 은 음이 아닌 정수) $\theta=\frac{\pi}{5}+\frac{2n\pi}{5}$ 이고, $0<\theta<\pi$ 이므로 n=0일 때, $\theta=\frac{\pi}{5}$ 이고, n=1일 때, $\theta=\frac{3\pi}{5}$ 이다. 따라서 만족하는 θ 의 합은 $\frac{\pi}{5}+\frac{3\pi}{5}=\frac{4\pi}{5}$ 이다.
- 80) 2π
- \Rightarrow θ 와 3θ 가 일직선 위에 있고 방향이 반대가 되기 위해선 두 각의 차가 $(2n-1)\pi(n$ 은 자연수)여야 한다.

$$3\theta - \theta = (2n - 1)\pi$$
$$2\theta = (2n - 1)\pi$$
$$\therefore \quad \theta = \frac{2n - 1}{2}\pi$$

이때
$$0<\theta<2\pi$$
이므로 $\theta=\frac{1}{2}\pi$ 또는 $\frac{3}{2}\pi$

따라서 모든 θ 의 합은 $\frac{4}{2}\pi = 2\pi$ 이다.

- 81) $\frac{2}{3}\pi$
- $7\theta \theta = 2n\pi, \ 6\theta = 2n\pi, \ \theta = \frac{1}{3}n\pi$ $\frac{\pi}{2} < \theta < \pi$ 이므로 $\theta = \frac{2}{3}\pi$
- 82) $\frac{3}{4}\pi$
- $\Rightarrow 4\theta = 2n\pi + \frac{\pi}{2}, \ \theta = \frac{n}{2}\pi + \frac{\pi}{8}$ $0 < \theta < \pi$ 이므로 만족하는 θ 는 n = 0일 때, $\theta = \frac{\pi}{8}$ n = 1일 때, $\theta = \frac{5}{8}\pi$ 따라서 모든 θ 의 합은 $\frac{\pi}{8} + \frac{5}{8}\pi = \frac{6}{8}\pi = \frac{3}{4}\pi$ 이다.