## Lecture 24: Recent Progress in Deep Learning: Few-shot Learning

Xuming He SIST, ShanghaiTech Fall, 2020

#### Real-world scenarios

- Data annotation is costly
  - Many specific domain and cross modality tasks



Medical image understanding (image credit: 廖飞. 胰腺影像学. 2015.)



Biological image analysis (Zhang and He, 2019)



beside a remote.

Vision & Language (MSCOCO)

#### Visual concept learning in wild

Open Long-tailed Recognition



(Liu et al CVPR 2019)

### Challenges

- Limitation in naïve transfer learning
  - Insufficient instance variations of novel classes
  - □ Fine-tuning usually fails given a few examples per class



Image Credit: Ravi & Larochelle et al 2017

- Human (child) performance is much better
  - □ How do we achieve such data efficiency?
  - □ What representations are used?
  - □ What are the underlying learning algorithms?

#### Few-shot learning problem

- Learning from (very) limited annotated data
- Typical setting:
  - Classification using a few training examples per visual category
  - $\square$  Formally, given a small dataset  $D_{train} = \{(\mathbf{x}_i, y_i)\}_{i=1}^L$ 
    - N categories  $y_i \in \mathcal{Y}, |\mathcal{Y}| = N$ ,
    - K shot: each class has K examples, or  $L = N \times K$
  - $\square$  The goal is to learn a model F parametrized by  $\theta$  to minimize

$$E_{D_{test}} \left[ loss(y_i, F_{\theta}(x_i)) \right]$$

dogs





















Image Credit: Weng, Lil-log, 2018

#### Few-shot learning problem

- For a single isolated task, this is difficult
  - But if we have access to many similar few-shot learning tasks, we can exploit such prior knowledge.
- Main idea is to consider task-level learning
  - Learn a representation shared by all those tasks
  - Learn an efficient classifier learning algorithm that can be applied to all the tasks





Testing

Image Credit: Weng, Lil-log, 2018

#### Main intuitions in few-shot learning

- Prior knowledge in different vision tasks
  - Similarity between visual categories
    - Feature representations, etc.
  - □ Similarity between visual recognition tasks
    - Learning a classifier, etc.



- Focusing on generic aspects of similar tasks
  - □ Generic visual representations
    - Not category-specific
  - □ Transferrable learning strategies
    - Very data-efficient

## м

#### Meta-learning framework

- Problem formulation
  - □ Each few-shot classification problem as a task

Each Task: 
$$T \in \mathcal{T}$$
  $T \sim P(T)$ 

□ Each task (or an episode) consists of

$$T = (D_{train}, D_{test}, \mathcal{Y}_T)$$



$$D_{train} = \{(\mathbf{x}_i, y_i)\}_{i=1}^L \quad \forall y_i \in \mathcal{Y}_T$$

- $\square$  Task-test set (query)  $D_{test}$
- $\,\square\,$  For each task, we adopt an learning algorithm  $A_\phi$ 
  - to learn its own classifier  $F_{\theta}$  via  $F_{\theta} = A_{\phi}(D_{train})$
  - lacktriangle to perform well on the task-test set  $D_{test}$

## Meta-learning formulation

- Key assumptions:
  - $\Box$  The learning algorithm  $A_{\phi}$  is shared across tasks
  - $\hfill\square$  We can sample many tasks to learn a good  $A_\phi$
- A meta-learning strategy
  - □ Input: meta-training set  $\mathcal{D}_{meta-train} = \{(D_{train}^{(n)}, D_{test}^{(n)})\}_{n=1}^{N}$
  - $\square$  Output: algorithm parameter  $\phi^*$
  - □ Objective: good performance on meta-test set

$$\mathcal{D}_{meta-test} = \{(D_{train}^{\prime(n)}, D_{test}^{\prime(n)})\}_{n=1}^{N'}$$

□ Minimizing the empirical loss on the meta-training set

$$\min_{\phi} E_{\mathcal{D}_{meta-train}} \left[ loss(F_{\theta}^{(n)}, D_{test}^{(n)}) \right]$$

■ Each meta-train task  $F_{\theta}^{(n)} = A_{\phi}(D_{train}^{(n)})$ 

#### Meta-learning formulation

Analogy to standard supervised learning

| Supervised-Learning | Train         | Test         | One data point |
|---------------------|---------------|--------------|----------------|
| Meta-learning       | Meta-training | Meta-testing | One task       |



Image Credit: Ravi & Larochelle et al 2017

#### Overview of existing methods

Depending on the meta-learners used in few-shot tasks

# Model Based

- Santoro et al. '16
- Duan et al. '17
- Wang et al. '17
- Munkhdalai & Yu '17
- Mishra et al. '17



- Koch '15
- Vinyals et al. '16
- Snell et al. '17
- Shyam et al. '17
- Sung et al. '17

#### **Optimization Based**



- Schmidhuber '87, '92
- Bengio et al. '90, '92
- Hochreiter et al. '01
- Li & Malik '16
- Andrychowicz et al. '16
- Ravi & Larochelle '17
- Finn et al. '17

Slide Credit: Vinyals, NIPS 2017

#### Metric-based methods

Basic idea: Learn a generic distance metric

$$P_{\theta}(y|\mathbf{x}, D_{train}) = \sum_{(\mathbf{x}_i, y_i) \in D_{train}} k_{\theta}(\mathbf{x}, \mathbf{x}_i) y_i$$

- Typical methods
  - □ Siamese network (Koch, Zemel & Salakhutdinov, 2015)
  - Matching network (Vinyals et al, 2016)
  - □ Relation network (Sung et al. 2018)
  - □ Prototypical network (Snell, Swersky & Zemel, 2017)

#### Siamese Neural Network



 The learned embedding can be generalized to unknown categories (Koch, Zemel & Salakhutdinov, 2015)

#### **Matching Networks**



- Full Contextual Embedding (Vinyals et al, 2016)
  - Encoding input in the context of the entire support set
  - The learned embedding can be adjusted based on the relationship with other support samples.

#### **Relation Network**



- Similar to Siamese network
- lacksquare More complex metric learning  $r_{ij} = g_\phi([\mathbf{x}_i,\mathbf{x}_j])$

## 10

#### **Prototypical Networks**



Prototype vectors (Snell, Swersky & Zemel, 2017)

$$P(y = c | \mathbf{x}) = \operatorname{softmax}(-d_{\varphi}(f_{\theta}(\mathbf{x}), \mathbf{v}_c))$$

#### Optimization-based methods

- Basic idea: Adjust the optimization in model learning so that the model can effectively learn from a few examples
- Typical methods
  - LSTM meta-learner (Ravi & Larochelle, 2017)
  - ☐ MAML (Finn, et al. 2017)
  - Reptile (Nichol, Achiam & Schulman, 2018)

#### LSTM meta-learner



 The optimization algorithm is explicitly modeled based on an LSTM meta-learner (Ravi & Larochelle, 2017)

## м

#### **MAML**



 Model-Agnostic Meta-Learning (Finn, et al. 2017) aims to generate a fast gradient based learner

#### Model-based methods

- Basic idea: Using a black-box neural network designed specifically for fast learning
- Typical methods
  - □ Memory-augmented network (Santoro et al., 2016)
  - Meta networks (Munkhdalai & Yu, 2017)
  - □ SNAIL (Mishra et al., 2018)

#### Memory-augmented network



- With an explicit storage buffer, it is easier for the network to rapidly incorporate new information.
- (Santoro et al., 2016) train it in a way that the memory can encode and capture information of new tasks fast and is easily and stably accessible.

#### Meta networks



 The MetaNet relies on "fast weights" to achieve rapid generalization across tasks (Munkhdalai & Yu, 2017)

## N /14

#### Main limitations

- A global representation of inputs
  - Sensitive to nuisance parameters: background clutter, occlusions, etc.
- Mixed representation and predictor learning
  - Complex architecture, difficult to interpret
  - Sometimes slow convergence
- Focusing on classification tasks
  - Non-trivial to apply to other vision tasks: localization, segmentation, etc.

## Our proposed solutions

- Structure-aware data representation
  - □ Spatial/temporal representations for semantic objects/actions
- Decoupling representation and classifier learning
  - Improving representation learning
- Generalizing to other visual tasks
  - Instance localization and detection with few-shot learning

#### Temporal action localization

- Our goal: Jointly classify action instances and localize them in an untrimmed video
  - Important for detailed video understanding
  - □ Broad range of applications in video surveillance/analytics



#### Our problem setting

- We conceptualize an example-based action localization strategy
  - Few-shot learning of action classes and
  - Being sensitive to action boundaries



#### Main ideas

- Meta-learning problem formulation
  - Learning how to transfer the labels of a few action examples to a test video
    - Encode action instance into a structured representation
    - Learn to match (partial) action instances
    - Exploit the matching correlation scores







V Untrimmed Test Video









#### Matching examples



## 7

#### Meta-learning strategy

#### Meta-training phase

- $\square$  Meta-training set  $\mathcal{T}_{meta-train} = \{\mathcal{X}, \hat{\mathcal{X}}, \mathcal{L}(\mathcal{X}, \hat{\mathcal{X}}, \theta)\}$
- $\square$  Task-train (support set)  $\mathcal{X} = \{x_i, y_i\}$
- $\square$  Task-test (query)  $\hat{\mathcal{X}} = \{\hat{x}_j, \hat{y}_j\}$
- $\square$  Loss function  $\mathcal{L}$

#### Our loss function

- □ Localization loss: foreground vs background (cross entropy)
- Classification loss: action class (log loss)

$$L = \mathbb{E}_{\mathcal{T} \sim \mathcal{T}_{meta-train}} [L_{loc} + L_{cls}]$$

Ranking loss: replacing localization loss to encourage partial alignment

## М

#### Experimental evaluation

- Few-shot performance summary
  - ~80 classes for meta-training and ~20 for meta-test

| Fully supervised           | mAP  | Few-shot | mAP  |
|----------------------------|------|----------|------|
| Heilbron <i>et al.</i> [5] | 13.5 | Ours@1   | 13.6 |
| Yeung <i>et al</i> . [49]  | 17.1 | Ours@5   | 14.0 |
| Yuan <i>et al</i> . [50]   | 17.8 | Ours@15  | 14.7 |
| S-CNN [35]                 | 19.0 | CDC@1    | 6.4  |
| S-CNN + $SST$ [4]          | 23.0 | CDC@5    | 6.5  |
| CDC [34]                   | 23.3 | CDC@15   | 6.8  |

Thumos14

|                           | mAP@0.5 | Average mAP |
|---------------------------|---------|-------------|
| TCN [8]                   | 37.4    | 23.5        |
| R-C3D [48]                | -       | 26.8        |
| Wang <i>et al</i> . [26]  | 42.2    | 14.8        |
| Lin <i>et al</i> . [27]   | 48.9    | 32.2        |
| Xiong <i>et al</i> . [47] | 41.1    | 24.8        |
| CDC [34]                  | 43.8    | 22.7        |
| Ours@1                    | 22.3    | 9.8         |
| Ours@5                    | 23.1    | 10.0        |
| CDC@1                     | 8.2     | 2.4         |
| CDC@5                     | 8.6     | 2.5         |

ActivityNet



#### **Problem Definition**

• Few-shot semantic segmentation aims to segment **new** semantic objects in an image with only **a few annotated examples**.









#### Related Works



Wang et al. *ICCV19* Dong et al. *BMVC18* 

#### **Prototype-Based Algorithm:**

- Hard to model object's scale and appearance variations
- Easy to saturate with multi-shots







### **Related Works**



Wang et al. *ICCV19*Dong et al. *BMVC18* 



Zhang et al. *ICCV19* Zhang et al. *CVPR19* 

#### **Prototype-Based Algorithm:**

- Hard to model object's scale and appearance variations
- Easy to saturate with multi-shots

#### **Parametric-Based Algorithm:**

- Hard to adapt to multi-way few shot segmentation
- High model complexity







## Challenges

# Global prototype representation lacks detailed information of novel objects. Large appearance & scale variation between support and query images. Less effective to learn a good visual representation for segmentation. Add semantic branch to learn a better visual representation.













# ł

## Method







## ۲

## Method









#### **Part Generation Module**



Part Generation Module aims to generate **the initial part-aware prototypes** on support images.

- Build a set of part-aware prototypes to capture finegrained part-level variation.
- Further augment each initial prototype with a global context of the semantic class.







#### **Part Refinement Module**



Part Refinement Module **further improve** part-aware prototypes representation with unlabeled images features.



Unlabeled image feature



 $\mathcal{P}_k$ : part-aware prototypes











#### **Part Refinement Module**



Part Refinement Module **further improve** part-aware prototypes representation with unlabeled images features.

**Step-1:** Relevant feature generation.





 $\mathcal{P}_k$ : part-aware prototypes











#### **Part Refinement Module**



Part Refinement Module **further improve** part-aware prototypes representation with unlabeled images features.

Step-1: Relevant feature generation.

Step-2: Unlabeled feature augmentation.





 $\mathcal{P}_k$ : part-aware prototypes









#### **Part Refinement Module**



Part Refinement Module **further improve** part-aware prototypes representation with unlabeled images features.

**Step-1: Relevant feature generation.** 

Step-2: Unlabeled feature augmentation.

Step-3: Part-aware prototype refinement.





 $\mathcal{P}_k$ : part-aware prototypes









# 1

## Model Learning



$$L_{full} = L_{meta} + \beta L_{sem}$$

•  $Y_{sem}^q$ ,  $Y_{sem}^l$  are ground-truth mask over global semantic classes.







## Results

#### COCO-20<sup>i</sup> Performance (1-way)

| Methods                           | Split | Backbone | 1-shot |        |        |        |               | 5-Shot |        |        |        |       |
|-----------------------------------|-------|----------|--------|--------|--------|--------|---------------|--------|--------|--------|--------|-------|
|                                   |       |          | fold-1 | fold-2 | fold-3 | fold-4 | mean          | fold-1 | fold-2 | fold-3 | fold-4 | mean  |
| PANet [34]                        | A     | VGG16    | 28.70  | 21.20  | 19.10  | 14.80  | 20.90         | 39.43  | 28.30  | 28.20  | 22.70  | 29.70 |
| PANet* [34]                       | A     | RN50     | 31.50  | 22.58  | 21.50  | 16.20  | 22.95         | 45.85  | 29.15  | 30.59  | 29.59  | 33.80 |
| $Our(\mathbf{w/o} \mathcal{S}^u)$ | A     | RN50     | 34.53  | 25.44  | 24.33  | 18.57  | 25.71         | 48.30  | 30.90  | 35.65  | 30.20  | 36.24 |
| Our                               | A     | RN50     | 36.48  | 26.53  | 25.99  | 19.65  | <b>27.</b> 16 | 48.88  | 31.36  | 36.02  | 30.64  | 36.73 |
| FWB [21]                          | В     | RN101    | 16.98  | 17.78  | 20.96  | 28.85  | 21.19         | 19.13  | 21.46  | 23.39  | 30.08  | 23.05 |
| Our                               | В     | RN50     | 28.09  | 30.84  | 29.49  | 27.70  | 29.03         | 38.97  | 40.81  | 37.07  | 37.28  | 38.53 |
| Split A                           |       |          |        |        |        |        | +4.21         |        |        |        |        | +2.93 |
| Split B                           |       |          |        |        |        |        | +7.84         |        |        |        | +      | 15.48 |

#### COCO-20<sup>i</sup> Performance (2-way & 5-way)

| Methods                             | Backbone | 2-way, 1-shot |        |        |        |       | 5-way, 1-shot<br>fold-1 fold-2 fold-3 fold-4 mean |        |        |                    |       |
|-------------------------------------|----------|---------------|--------|--------|--------|-------|---------------------------------------------------|--------|--------|--------------------|-------|
| Methods                             |          | fold-1        | fold-2 | fold-3 | fold-4 | mean  | fold-1                                            | fold-2 | fold-3 | fold-4             | mean  |
| PANet [34]                          | VGG16    | 29.88         | 21.13  | 20.46  | 15.37  | 21.71 | 24.94                                             | 19.85  | 19.28  | 14.11              | 19.55 |
| PANet* [34]                         | RN50     | 31.86         | 21.47  | 21.31  | 16.43  | 22.76 | 27.20                                             | 21.50  | 19.66  | 15.35              | 20.93 |
| $PPNet(\mathbf{w/o} \mathcal{S}^u)$ | RN50     | 33.87         | 23.98  | 22.75  | 17.59  | 24.55 | 29.12                                             | 22.29  | 21.10  | 16.37              | 22.22 |
| PPNet                               | RN50     | 34.20         | 24.21  | 23.39  | 19.06  | 25.22 | 30.84                                             | 23.03  | 21.32  | 17.93 <sup>1</sup> | 23.28 |





+2.35



## Visualization

#### Part visualization on Pascal 5<sup>i</sup> (1-way)









## Visualization

#### **Qualitative Visualization by utilizing unlabeled data** on Pascal 5<sup>i</sup> visualization (1-way)





**Appearance Variations** 

**Scale Variations** 



