

高等数学 A2

浙江理工大学期中试题汇编 (试卷册)

学校:	
专业:	
班级:	
姓名:	
学무.	

目录

1.	浙江理工大学	2005-2006	学年第二学期	《高等数学 A2》	期中试卷	1
2.	浙江理工大学	2006-2007	学年第二学期	《高等数学 A2》	期中试卷	5
3.	浙江理工大学	2009-2010	学年第二学期	《高等数学 A2》	期中试卷	8
4.	浙江理工大学	2010-2011	学年第二学期	《高等数学 A2》	期中试卷	. 12
5.	浙江理工大学	2011-2012	学年第2学期	《高等数学 A2》	期中试卷	. 17
6.	浙江理工大学	2012-2013	学年第2学期	《高等数学 A2》	期中试卷	.21
7.	浙江理工大学	2013-2014	学年第2学期	《高等数学 A2》	期中试卷	.26
8.	浙江理工大学	2015-2016	学年第2学期	《高等数学 A2》	期中试卷	.30
9.	浙江理工大学	2016-2017	学年第2学期	《高等数学 A2》	期中试卷	.36
10	浙江理工大学	全 2017-201	8 学年第 2 学期]《高等数学 A2》	》期中试卷	.41
11	浙江理工大学	全 2018-2019	9 学年第二学期	【《高等数学 A2》	》期中试券	45

资料汇总人:张创琦。

欢迎关注公众号: 创琦杂谈,一个致力于分享学习资料、分享生活感悟的微信公众号。如您有什么需要的资料或在学习上遇到什么困难,可以在微信公众号后台留言,我们竭诚解决您的问题和困惑。添加方式: 微信搜索框搜索"创琦杂谈"或扫描下方二维码即可关注。如果加不上去,可以联系我的微信号: asd15544827772,也可以联系我加入QQ学习群哦!里面有各种学习资料的分享。

1. 浙江理工大学 2005-2006 学年第二学期《高等数学 A2》期中试卷

题号	 _	=	<u>D</u>	Ц	E	ī.	<u></u>	Ŀ	1/	总分
赵 与		=	1	2	1	2	六	七	八	总分
得分										
签名										

一、选择题(每小题4分,满分28分)

1. 设直线 $L: \begin{cases} x+3y+2z+1=0 \\ 2x-y-10z+3=0 \end{cases}$, 设平面 $\pi: 4x-2y+z-2=0$, 则直线 L ()。
--	----

- (A) 平行于 π (B) 在 π 上
- (C) 垂直于 π (D) 与 π 斜交

- 2. 设 $z = 2^{x+y^2}$,则 $z_y = ($)。
- (A) $y \cdot 2^{x+y^2} \ln 4$ (B) $(x^2 + y^2) \cdot 2y \ln 4$ (C) $2y(x+y^2)e^{x+y^2}$
- (D) $2y \cdot 4^{x+y^2}$
- 3. 设 $u = 2xy z^2$,则 u 在(2, -1, 1)处的方向导数的最大值为()。
- (A) $2\sqrt{6}$
- (B) 4

- (C) $2\sqrt{2}$
- (D) 24
- 4. 函数 z = f(x, y) 在点 (x_0, y_0) 处具有偏导数是它在该点存在全微分的 ()。
- (A) 充分必要条件

- (B) 必要条件而非充分条件
- (C) 充分条件而非必要条件
- (D) 既非充分又非必要条件
- 5. 利用被积函数的对称性及区域的对称性,则 $\iint (x+x^3y^2)d\sigma$ 的值 (),其中 D 为 $x^2+y^2 \le 4, y \ge 0$ 。

- (A) 大于 0
- (B) 小于 0
- (D) 上述都不对
- 6. 设函数 y = y(x, z) 由方程 $yz = \sin(x + y)$ 所确定,则 $\frac{\partial y}{\partial x} = ($

- (A) $\frac{\cos(x+y)}{z}$ (B) $\frac{1}{z-\cos(x+y)}$ (C) $\frac{\cos(x+y)}{z-\cos(x+y)}$ (D) $\frac{1+\cos(x+y)}{z-\cos(x+y)}$
- 7. 已知 $\frac{(x+ay)dx+ydy}{(x+y)^2}$ 为某函数的全微分,则 a=()。
- (A) -1

(C) 1

(D) 2

二、填空题(每小题4分,满分20分)

- 1. 设函数 z = z(x, y) 由方程 $x^2 + 2y^2 + 3z^2 + xy z 9 = 0$ 确定,则函数 z 的驻点是
- 2. 曲面 $e^z z + xy = 3$ 在点 (2, 1, 0) 处的切平面为_____

- 4. 设积分区域D为 $x^2+y^2 \le 1$,在 $\iint_D \sqrt{1+x^2+y^2} d\sigma$ 与 $\iint_D \sqrt{1+x^4+y^4} d\sigma$ 两者中比较大的值是 ______。
- 5. 设L为 $x^2 + y^2 = 1$ 的一周,则 $\oint_I (x^2 + y^2) ds =$ _______。
- 三、(本题满分 6 分) 设 $z = f(x^2 y^2, xy) + g(x^2 + y^2)$,其中 f 具有二阶连续偏导数,g 具有二阶导数,求 $\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}$

$$\pi \frac{\partial^2 z}{\partial x \partial v}$$
 o

四、计算下列二重积分(每小题6分,满分12分)

1. 计算
$$I = \iint_D |\cos(x+y)| dxdy$$
, 其中 $D: x = 0, x = \frac{\pi}{2}, y = 0, y = \frac{\pi}{2}$ 围成。

2. 计算 $I = \iint_D \ln(1+x^2+y^2)d\sigma$, 其中 D 是由圆周 $x^2+y^2=1$ 及坐标轴所围成的第一象限内的闭区域。

五、计算下列三重积分(每小题7分,满分14分)

1. 计算 $\iint_{\Omega} \sqrt{x^2 + y^2} \cdot z dv$,其中 Ω 是由圆柱面 $x^2 + y^2 = 4$,平面 z = 0 和平面 y + z = 2 所围成的区域。

2. 计算 $\iint_{\Omega} (y+z)dv$, 其中 Ω 是由 $z = \sqrt{x^2 + y^2}$ 与 $z = \sqrt{1 - x^2 - y^2}$ 所围成的区域。

六、(本题满分 6 分) 求锥面 $z = \sqrt{x^2 + y^2}$ 被柱面 $z^2 = 2x$ 所割下部分的曲面面积。

七、(本题满分 8 分) 计算 $I = \oint_L e^x (1-\cos y) dx - e^x (y-\sin y) dy$, 其中 L 是区域 $D: \sqrt{\sin x} \le y \le \sqrt{\cos x}$, $0 \le x \le \frac{\pi}{4}$ 的正向边界曲线。

八、(本题满分 6 分) 设 f(x) 在 [a,b] 上连续,且 f(x) > 0,证明: $\int_a^b f(x) dx \cdot \int_a^b \frac{1}{f(x)} dx \ge (b-a)^2$ 。

2. 浙江理工大学 2006-2007 学年第二学期《高等数学 A2》期中试卷

一、填空题(每题5分,共20分)

1、设
$$z = e^{\sin xy}$$
,则 $dz =$ _____

2、设
$$z = xyf\left(\frac{y}{x}\right)$$
, $f(u)$ 可导,则 $xz'_x + yz'_y =$ ______

3、曲面
$$z - e^z + 2xy = 3$$
 在点 $(1,2,0)$ 处的切平面方程为_____

4、设
$$L$$
为取正向的圆周 $x^2 + y^2 = 9$,则曲线积分 $\int_L (2xy - 2y) dx + (x^2 - 4x) dy$ 的值是_______

二、选择题(每题5分,共25分)

1、二元函数 f(x,y) 在点 (x_0,y_0) 处两个偏导数存在,是函数在该点连续的(

(A) 充分非必要条件

(B) 必要非充分条件

(C) 充分且必要条件

(D) 既非充分又非必要条件

2、在曲线
$$x = t$$
, $y = -t^2$, $z = t^3$ 的所有切线中与平面 $x + 2y + z = 4$ 平行的切线 ()

- (B) 只有 2 条
- (C) 至少有 3 条 (D) 不存在

3、累次积分
$$\int_0^{\frac{\pi}{2}} d\theta \int_0^{\cos\theta} f(\rho\cos\theta,\rho\sin\theta) \rho d\rho$$
 可以写成 ()

(A)
$$\int_0^1 dy \int_0^{\sqrt{y-y^2}} f(x,y) dx$$

(B)
$$\int_0^1 dy \int_0^{\sqrt{1-y^2}} f(x,y) dx$$

(C)
$$\int_0^1 dx \int_0^1 f(x,y) dy$$

(D)
$$\int_{0}^{1} dx \int_{0}^{\sqrt{x-x^{2}}} f(x,y) dy$$

4、函数
$$u = \ln(x + \sqrt{y^2 + z^2})$$
 在点 A(1,0,1) 处沿点 A 指向点 B(3,-2,2) 方向的方向导数为(

(A)
$$\frac{1}{4}$$

(B)
$$\frac{1}{2}$$

(C)
$$-\frac{1}{2}$$

(A)
$$\frac{1}{4}$$
 (B) $\frac{1}{2}$ (C) $-\frac{1}{2}$ (D) $-\frac{1}{4}$

5、设
$$l$$
为椭圆 $\frac{x^2}{4} + \frac{y^2}{3} = 1$,其周长记为 a ,则 $\int_l (2xy + 3x^2 + 4y^2) ds = ($

- (A) 2a
- (B) 6*a*
- (C) 12a
- (D) 24a

三、求下列多元函数偏导数

1、设
$$z = f(x^2 + y^2, xy)$$
, 其中 f 具有连续的二阶偏导数,求 $\frac{\partial z}{\partial x}, \frac{\partial^2 z}{\partial x \partial y}$. (8分)

2、设
$$x^2 + y^2 + z^2 - xyz = 0$$
,求 $\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}$. (8分)

四、求下列多元函数的积分

1、计算
$$\int_0^2 dx \int_x^2 e^{-y^2} dy$$
. (8分)

2、 计算二重积分
$$\iint_D y dx dy$$
 , 其中 D 是由直线 $x = -2$, $y = 0$, $y = 2$ 及曲线 $x = -\sqrt{2y - y^2}$ 所围成的平面区域。 (8 分)

(8分)

五、要造一个容积等于定数 a^2 的长方体无盖水池,如何选择水池的尺寸,方可使它的表面积最小。 (8分)

六、计算曲线积分 $I = \int_L \frac{xdy - ydx}{4x^2 + y^2}$, 其中 L 是以点 (1,0) 为中心, R 为半径的圆周 (R > 1),取逆时针方向。 (7分)

3. 浙江理工大学 2009-2010 学年第二学期《高等数学 A2》期中试卷

一、选择题(每小题 4 分,满分 28 分)

1.二元函数 f(x,y) 在点 (x_0,y_0) 处两个偏导数 $f'_x(x_0,y_0)$, $f'_y(x_0,y_0)$ 存在,是 f(x,y) 在该点可微的(

(A) 充分非必要条件 (B) 既不充分也不必要 (C) 充分必要 (D) 必要非充分

2.函数
$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, (x,y) \neq (0,0) \\ 0, (x,y) = (0,0) \end{cases}$$
 在(0,0)处 (

(A) 连续且偏导存在

- (C) 不连续但偏导存在
- (B) 连续但偏导不存在 (D) 不连续且偏导不存在

3.累次积分 $\int_{0}^{\frac{\pi}{2}} d\theta \int_{0}^{\cos\theta} f(\rho\cos\theta, \rho\sin\theta) \rho d\rho$ 可写成 ()

(A)
$$\int_{0}^{1} dy \int_{0}^{\sqrt{y-y^{2}}} f(x,y) dx$$

(B)
$$\int_0^1 dy \int_0^{\sqrt{1-y^2}} f(x,y) dx$$

(C)
$$\int_0^1 dx \int_0^1 f(x,y) dy$$

(D)
$$\int_0^1 dx \int_0^{\sqrt{x-x^2}} f(x,y) dy$$

4.对函数
$$f(x,y) = x^2 + xy + y^2 - 3x - 6y$$
, 在点(0,3) (

- (A) 不是驻点 (B) 是极大值点 (C) 是极小值点 (D) 是驻点但非极值点

5.函数 $u = \ln\left(x + \sqrt{y^2 + z^2}\right)$ 在点 A(1,0,1) 处沿 A 指向 B(3,-2,2) 方向的方向导数是(

$$(A) \frac{1}{2}$$

- (A) $\frac{1}{2}$ (B) $\frac{1}{4}$ (C) $-\frac{1}{2}$ (D) $-\frac{1}{4}$

6. 设 D 是平面上以(1,1), (-1,1), (-1,-1)为顶点的三角形区域, D_1 是 D 在第一象限的部分,则

 $\iint (xy + \cos x \sin y) dx dy \text{ ind indicates } 0$

(A)
$$2\iint_{D_1} (\cos x \sin y) dxdy$$

(B)
$$2 \iint_{D_1} (xy) dx dy$$

(A)
$$2\iint_{D_1} (\cos x \sin y) dxdy$$
 (B) $2\iint_{D_1} (xy) dxdy$ (C) $4\iint_{D_1} (xy + \cos x \sin y) dxdy$ (D) 0

7.设 l 为椭圆 $\frac{x^2}{4} + \frac{y^2}{3} = 1$,其周长记为 a,则 $\oint_{r} (2xy + 3x^2 + 4y^2) ds = ($

- (A) 2a
- (B) 6a
- (C) 12a
- (D) 24^a

二、填空题(每小题4分,满分20分)

1.设 $z = e^{\cos xy}$,则dz =

2.设函数 z = z(x,y) 由方程 $x^2 + 2y^2 + 3z^2 + xy - z - 9 = 0$ 确定,则函数 z 的驻点是_____

3.曲面 $z - e^x + 2xy = 3$ 在点(0,2,1)处的切平面方程为_____

- 4. $\int_0^2 dx \int_x^2 e^{-y^2} dy = \underline{\hspace{1cm}}$
- 5. 设 L 是 以 A(0,0) , B(0,2) , C(2,0) 为 项 点 的 三 角 形 区 域 的 周 界 , 且 沿 ABCA 方 向 , 则 积 分 $I = \int_{r} (3x-y) dx + (x-2y) dy$ 的值为_____

三、计算题(每小题8分,共24分)

1.设 $z = f(x^2 + y^2, xy)$, 其中 f 具有连续的二阶偏导数, 求 $\frac{\partial z}{\partial x}$, $\frac{\partial^2 z}{\partial x \partial y}$

2. 计算二重积分 $\iint_D (x+y) dxdy$, 其中 D 是由直线 x+y=4, x+y=12 及抛物线 $y^2=2x$ 所围成的平面区域。

3. $I = \iiint_{\Omega} z^2 dv$, 其中 Ω 是由球面 $x^2 + y^2 + z^2 = R^2 与 x^2 + y^2 + z^2 = 2Rz(R > 0)$ 所围成的闭区域。

四、(9分) 计算曲线积分 $I=\int\limits_L \Big[\cos\big(x+y^2\big)+2y\Big]dx+\Big[2y\cos\big(x+y^2\big)+3x\Big]dy$,其中 L 为正弦曲线 $y=\sin x$ 上自 x=0 到 $x=\pi$ 的弧段。

五、 (9 分) 求 $\iint_S (y^2-z) dy dz + (z^2-x) dz dx + (x^2-y) dx dy$,其中 S 是圆锥面 $x^2+y^2=z^2$ 在 $0 \le z \le h$ 部分的外侧。

六、证明题(每小题5分,共10分)

1. 设函数
$$u = f\left(\sqrt{x^2 + y^2}\right)$$
, 满足 $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \iint_{s^2 + t^2 \le x^2 + y^2} \frac{1}{1 + s^2 + t^2} ds dt$, $f''(x)$ 存在, 求证:
$$f''(r) + f'(r) \frac{1}{r} = \pi \ln(1 + r^2).$$

2.利用拉格朗日乘数法,证明圆的内接三角形中,正三角形面积最大。

4. 浙江理工大学 2010-2011 学年第二学期《高等数学 A2》期中试卷

一、选择题(本题共7小题,每小题4分,满分呢28分,每小题给出的四个选项中,只有一项符合题目要求。) 1、二元函数 f(x,y) 在点 (x_0,y_0) 处两个偏导数 $f'_x(x_0,y_0)$, $f'_v(x_0,y_0)$ 存在,是 f(x,y) 在该点可微的[(B) 既非充分又非必要条件 (C) 充要条件 (D) 必要非充分条件 (A) 充分非必要条件 2、设f(x,y)是连续函数,则 $I = \int_{0}^{a} dx \int_{0}^{x} f(x,y) dy (a > 0) = [$] (A) $\int_0^a dy \int_0^y f(x,y) dx$ (B) $\int_0^a dy \int_0^a f(x,y) dx$ (C) $\int_0^a dy \int_0^y f(x,y) dx$ (D) $\int_0^a dy \int_0^a f(x,y) dx$ 3、曲面 z = xy 上点 M 处的法线垂直于平面 2x - y - z = 5 ,则点 M 的坐标是[] (A) (-1,2,-2) (B) (1,2,2) (C) (-1,-2,2) (D) (1,-2,-2)4、二重积分 $\iint_D xyd\sigma$ (其中 $D: 0 \le y \le x^2, 0 \le x \le 1$) 的值为[] (A) $\frac{1}{6}$ (B) $\frac{1}{2}$ (C) $\frac{1}{12}$ (D) $\frac{1}{4}$ 5、设 Ω 是由曲面 $z = x^2 + y^2$ 与平面 z = 4 所围成的闭区域,则 $\iiint z dv$ 为[] (A) $\frac{64}{2}$ (B) π (C) $\frac{64}{3}\pi$ (D) 8π 6、设z=z(x,y)由z=z(u,v),u=x+ay,v=x+by复合而成,且z=z(x,y)有二阶连续偏导数,欲把方程: $6\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial x \partial y} - \frac{\partial^2 z}{\partial z^2} = 0 \text{ 化简为} \frac{\partial^2 z}{\partial u \partial y} = 0, \text{ 则常数 } a, b 满足[$ (A) a = -2, b = -2 (B) a = 3, b = 3 (C) a = -2, b = 3 (D) a = 2, b = -37、设 $D: x^2 + y^2 \le a^2$,若 $\iint \sqrt{a^2 - x^2 - y^2} dx dy = \pi$,则a为[] (A) $\sqrt[3]{\frac{3}{4}}$ (B) $\sqrt[3]{\frac{1}{2}}$ (C) 1 (D) $\sqrt[3]{\frac{3}{2}}$ 二、填空题(本题共5小题,每小题4分,满分20分) 1、已知 $u = x^y$,则du =2、设积分区域 D 是由直线 y=0, x=1 及 y=2x 所围成的闭区域,则 $\iint_D xyd\sigma =$ _____

4、设函数 $f(x,y) = 2x^2 + ax + xy^2 + 2y$ 在点(1,-1) 取得极值,则常数 a =______

3、设 $D = \{(x,y) | 1 \le x \le 2, 1 \le y \le 2\}$,则 $\iint |x+y-3| dx dy =$ ______

- 5、设a,b 为非零向量,且满足(a+3b) $\perp (7a-5b)$, (a-4b) $\perp (7a-2b)$, 则a 与b 的夹角 $\theta =$ _______
- 三、计算题(本题共5小题,每小题6分,满分30分,应写出演算过程及相应文字说明)

1、设
$$z = x^3 + y^3 - 3xy^2$$
,求 $\frac{\partial z}{\partial x}$, $\frac{\partial^2 z}{\partial x \partial y}$

2、设
$$e^z - xyz = 0$$
,求 $\frac{\partial z}{\partial x}$, $\frac{\partial^2 z}{\partial x^2}$

3、计算 $\iint_D \ln(1+x^2+y^2)d\sigma$, 其中 D 是由圆周 $x^2+y^2=1$ 及坐标轴所围成的第一象限内的闭区域

4、已知函数
$$z = f(xy^2, x^2y)$$
具有二阶连续偏导数,求 $\frac{\partial^2 z}{\partial y^2}$

5、若 D 满足:
$$x^2 + y^2 \le 2x$$
, 求 $\iint_D \sqrt{x^2 + y^2} dx dy$

的偏导数 $f_x'ig(0,0ig)$ 及 $f_y'ig(0,0ig)$, 在点ig(0,0ig) 是否可微? 说明理由。(本题 8 分)

五、设 z=z(x,y) 是由 $x^2-6xy+10y^2-2yz-z^2+18=0$ 确定的函数,求 z=z(x,y)的极值点和极值。(本题 6 分)

六、证明题(本题共2小题,满分8分)

1、设
$$z = x^y (x > 0, x \neq 1)$$
, 求证 $\frac{x}{y} \frac{\partial z}{\partial x} + \frac{1}{\ln x} \frac{\partial z}{\partial y} = 2z$ (本题 3 分)

2、若函数 $f(\xi,\eta)$ 具有连续二阶偏导数且满足拉普拉斯方程 $\frac{\partial^2 f}{\partial \xi^2} + \frac{\partial^2 f}{\partial \eta^2} = 0$,证明函数 $z = f(x^2 - y^2, 2xy)$ 也满足拉普拉斯方程 $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0$ (本题 5 分)

5. 浙江理工大学 2011-2012 学年第 2 学期《高等数学 A2》期中试卷

本人郑重承诺:本人已阅读并且透彻地理解《浙江理工大学考场规则》,愿意在考试中自觉遵守这些规 定,保证按规定的程序和要求参加考试,如有违反,自愿按《浙江理工大学学生违纪处分规定》有关 条款接受处理。

承诺人签名: 学号:	班级:
--------------	-----

题号	 1			三			ш	T	j	7	总分	复核教师 签名
越与	1	1	2	3	4	5	四	血.	1	2	总分	签名
得分												
阅卷教 师签名												
师签名												

(本试卷共四页)

一、选择题(本题共6小题,每小题4分,满分24分)

1. 设直线 L:
$$\begin{cases} x+3y+2z-4=0\\ 2x-y-10z-1=0 \end{cases}$$
及平面 π : $x+y-2z-2=0$, 则直线 L()

- (A) 平行于 π
- (B) 在 π 上 (C) 垂直于 π

- 2. 下列说法正确的是(
 - (A) 两向量 \overrightarrow{a} 与 平行的充要条件是存在唯一的实数 λ , 使得 \overrightarrow{a} = $\lambda \overrightarrow{b}$:
 - (B) 函数 z = f(x,y) 的两个二阶偏导数 $\frac{\partial^2 z}{\partial v^2}$, $\frac{\partial^2 z}{\partial v^2}$ 在区域 D 内连续,则在该区域内两个二阶混合偏导数必相等;
 - (C) 函数 z = f(x, y) 的两个偏导数在点 (x_0, y_0) 处连续是函数在该点可微的充分条件;
 - (D) 函数 z = f(x, y) 的两个偏导数在点 (x_0, y_0) 处存在是函数在该点可微的充分条件.
- 3. $u = 3xy^2 + 2x^3y 1$ 在点 P(3,2) 沿与 x 轴正向成 $\frac{\pi}{2}$ 倾角方向的方向导数为(

- (A) $60+45\sqrt{3}$ (B) $60\sqrt{3}+45$ (C) $-60-45\sqrt{3}$ (D) $-60\sqrt{3}-45$
- 4. 旋转抛物面 $z = x^2 + 2v^2 4$ 在点 (1,-1,-1) 处的切平面方程为(
- (A) 2x + 4y z = 0 (B) 2x 4y z = 4 (C) 2x + 4y z = 4 (D) 2x 4y z = 7
- 5. 设 f(x) 为连续函数, $F(t) = \int_{1}^{t} dy \int_{y}^{t} f(x) dx$,则 F'(2) 等于 ().
- (A) 2f(2) (B) f(2) (C) -f(2)
- (D) 0
- 6. 设 f(x) 是连续的奇函数, g(x) 是连续的偶函数,且区域 $D = \{(x,y) \mid 0 \le x \le 1, -\sqrt{x} \le y \le \sqrt{x}\}$,则下列结论正 确的是()
 - (A) $\iint_D f(y)g(x)dxdy = 0;$
- (B) $\iint_{D} f(x)g(y)dxdy = 0;$

(C)
$$\iint_{D} [f(x) + g(y)] dxdy = 0;$$
 (D) $\iint_{D} [f(y) + g(x)] dxdy = 0.$

(D)
$$\iint_{D} [f(y) + g(x)] dxdy = 0$$

二、填空题(本题共6小题,每小题4分,满分24分)

- 2. 设函数 $f(x,y) = 2x^2 + ax + xy^2 + 2y$ 在点 (1,-1) 取得极值,则常数 $a = ______;$
- 3. 函数 $u = \ln \sqrt{x^2 + y^2 + z^2}$ 在 (1,2,-2) 处的最大变化率是______, 对应方向的方向余弦
- 4. 设 z = z(x, y) 由 z = z(u, v), u = x + ay, v = x + by 复合而成, 且 z = z(x, y) 有二阶连续偏导数, 欲把方程:

- 5. 将 $\int_{1}^{2} dx \int_{\sqrt{x}}^{x} f(x,y) dy + \int_{2}^{4} dx \int_{\sqrt{x}}^{2} f(x,y) dy$ 交换积分次序为______;
- 6. 设 $D = \{(x, y) | 1 \le x \le 2, 1 \le y \le 2 \}$, 则积分 $\iint |x + y 3| dx dy = ______.$
- 三、计算题(本题共5小题,前4小题每题6分,第五题12分,满分36分)
- $1. \quad u = x^{\frac{y}{z}}, \quad \Re du.$

2. 设 $z = f(x^2 - y^2, xy) + g(x^2 + y^2)$, 其中f具有二阶连续偏导数,g具有二阶导数,求 $\frac{\partial^2 z}{\partial x \partial y}$.

3 设 f(x,y) 在闭区间 $D = \{(x,y) \mid x^2 + y^2 \le y, x \ge 0\}$ 上连续,且

$$f(x,y) = \sqrt{1-x^2-y^2} - \frac{8}{\pi} \iint_D f(x,y) dx dy$$
, $\Re f(x,y)$.

4. 求 $\iint_{\Omega} (y^2 + z^2) dv$,其中 Ω 是 xoy 平面上曲线 $y^2 = 2x$ 绕 x 轴旋转而成的曲面与平面 x = 8 所围成的闭区域.

- 5. 设空间曲线 Γ : $\begin{cases} z = x^2 + y^2 \\ x + y + 2z 2 = 0 \end{cases}$ 求: (1) Γ在 xoy 面内的投影曲线;
- (2) Γ 在点(-1,-1,2) 处切线方程和法平面方程; (3) 原点到 Γ 的最长和最短距离.

四、(8分) 设函数
$$f(x,y) = \begin{cases} \frac{x^2y^2}{(x^2+y^2)^{\frac{3}{2}}} & x^2+y^2 \neq 0 \\ 0 & x^2+y^2 = 0 \end{cases}$$

问: (1) 函数 f(x,y) 在点 (0,0) 是否连续? (2) 计算函数 f(x,y) 在点 (0,0) 的偏导数 $f_x'(0,0)$ 及 $f_y'(0,0)$,在点 (0,0) 是否可微? 说明理由。

五、证明(每小题4分,共8分)

(1) 试证曲面 f(x-ay,z-by)=0 的任一切平面恒与某一直线相平行(其中f为可微函数,a,b为常数).

(2) 设 f(x) 在 [0,a] 上连续,证明: $2\int_0^a f(x)dx \int_x^a f(y)dy = \left[\int_0^a f(x)dx\right]^2$.

6. 浙江理工大学 2012-2013 学年第 2 学期《高等数学 A2》期中试卷

本人郑重承诺:本人已阅读并且透彻地理解《浙江理工大学考场规则》,愿意在考试中自觉遵守这些规 定,保证按规定的程序和要求参加考试,如有违反,自愿按《浙江理工大学学生违纪处分规定》有关 条款接受处理。

承诺人签名:

题号	_	=			三			四	五.	Ì	7	总分	复核教
, 0			1	2	3	4	5			1	2		师签名
得分													
阅卷													
教师													
签名													

(本试卷共五页)

一、选择题(本题共6小题,每小题4分,满分24分)

1. 设直线
$$L$$
: $\frac{x-2}{3} = \frac{y+2}{1} = \frac{z-3}{-4}$ 及平面 π : $x+y+z-3=0$, 则直线 L ()

- (A) 平行于 π (B) 在 π 上 (C) 垂直于 π (D) 与 π 斜交

2. 设
$$z = f(x,y)$$
在 M_0 处存在二阶偏导数,则函数在 M_0 处(

- (A) 一阶偏导数必连续 (B) 一阶偏导数不一定连续 (C) 必可微 (D) $z_{vv} \equiv z_{vv}$

3. 对函数
$$f(x,y) = x^2 + xy + y^2 - 3x - 6y$$
 , 点(0,3)

- (A) 不是驻点
- (B)是驻点但非极值点 (C)是极小值点 (D)是极大值点

4. 设
$$z = f(x, y)$$
 在点 (0,0) 处的偏导数 $\frac{\partial f}{\partial x}\Big|_{(0,0)} = -1, \frac{\partial f}{\partial y}\Big|_{(0,0)} = 2$ 则 (

(A)
$$z = f(x, y)$$
 在点 (0,0) 处的全微分 $dz|_{(0,0)} = -dx + 2dy$;

(B)
$$z = f(x, y)$$
 在点 (0,0) 的某一邻域有定义;

(C) 极限
$$\lim_{(x,y)\to(0,0)} f(x,y)$$
 存在;

(D) 曲线 C:
$$\begin{cases} z = f(x,y) \\ y = 0 \end{cases}$$
 在点 $(0,0,f(0,0))$ 的切线的方向向量 $\vec{s} = \vec{i} - \vec{k}$ 。

5. 累次积分
$$\int_0^{\frac{\pi}{2}} d\theta \int_0^{\cos\theta} f(\rho\cos\theta, \rho\sin\theta) \rho d\rho$$
 可写成()

(A)
$$\int_{0}^{1} dy \int_{0}^{\sqrt{y-y^{2}}} f(x,y) dx$$

(B)
$$\int_0^1 dy \int_0^{\sqrt{1-y^2}} f(x,y) dx$$

(C)
$$\int_0^1 dx \int_0^1 f(x,y) dy$$

(D)
$$\int_{0}^{1} dx \int_{0}^{\sqrt{x-x^{2}}} f(x,y) dy$$

6. 设有平面闭区域 $D = \{(x,y) \mid -1 \le x \le 1, x \le y \le 1\}$, $D_1 = \{(x,y) \mid 0 \le x \le 1, x \le y \le 1\}$, 且 f(x) 是连续奇函数,

$$g(x)$$
 是连续偶函数,则 $\iint_D [f(x)+g(x)]f(y)dxdy = ($

(A)
$$2\iint_{D} g(x)f(y)dxdy$$

(B)
$$2\iint_{D_1} f(x)f(y)dxdy$$

(C)
$$4\iint_{D_1} [f(x) + g(x)] f(y) dxdy$$
 (D) 0

二、填空题(本题共6小题,每小题4分,满分24分)

- 2. 函数 $u = \ln \sqrt{x^2 + y^2 + z^2}$ 在 (1,2,-2) 处的最大变化率是______, 对应方向的方向余弦
- 4. $\forall z = y \cdot \sin(xy) (1-y) \arctan x + e^{-2y}$, $\exists \lim_{y \to 0} \frac{\partial z}{\partial x} \Big|_{y=0}^{x=1} = \underline{\qquad}$;
- 6. 设 Ω 是由曲面 $z=x^2+y^2$ 与平面 z=4 所围成的闭区域,则 $\iiint z dv =$ ______

三、计算题(本题共5小题,每题6分,满分30分)

1. 设u = f(x,z), 而z(x,y)是由方程 $z = x + y\varphi(z)$ 所确定的函数,求du.

2. 设 $z = x^3 f(xy, \frac{y}{x})$, 其中 f 具有连续二阶偏导数,求 $\frac{\partial z}{\partial y}$ 及 $\frac{\partial^2 z}{\partial x \partial y}$.

3. 计算 $\iint_D \arctan \frac{y}{x} dx dy$,其中 D 是由圆周 $x^2 + y^2 = 4$, $x^2 + y^2 = 1$ 及直线 y = 0 ,y = x 所围成的在第一象限内的闭区域。

4. 设 f(x,y) 连续,且 $f(x,y) = xy + \iint_D f(x,y) dx dy$, $D: y = 0, y = x^2, x = 1$ 围成,求 f(x,y).

5. 求 $\iint_{\Omega} (y^2 + z^2) dv$,其中 Ω 是 xoy 平面上曲线 $y^2 = 2x$ 绕 x 轴旋转而成的曲面与平面 x = 8 所围成的闭区域.

四、综合题(本题满分8分)

试求曲面 $x^2 + y^2 = 2z$ 的切平面,使之经过曲线 $\begin{cases} 3x^2 + y^2 + z^2 = 5 \\ 2x^5 + y^2 - 4z = 7 \end{cases}$ 在点 (1,-1,-1) 处的切线。

五、建模题(本题满分7分)

设某电视机厂生产一台电视机的成本为 c,每台电视机的销售价格为 p,销售量为 x。假设该厂的生产处于平衡状态,即 电视机的生产量等于销售量。根据市场预测,销售量 x 与销售价格 p 之间有下面的关系: $x=Me^{-ap}$ (M>0,a>0),其中 M 为市场最大需求量,a 是价格系数。同时,生产部门根据对生产环节的分析,对每台电视机的生产成本 c 有如下测算: $c=c_0-k\ln x$ (k>0,x>1),其中 c_0 是只生产一台电视机时的成本,k 是规模系数。根据上述条件,应如何确定电视机的售价 p,才能使该厂获得最大利润?

六、证明题(第一小题4分,第二小题3分,满分7分)

(1) 已知
$$u=x-ay$$
 , $v=x+ay$, $a^2\frac{\partial^2 z}{\partial x^2}-\frac{\partial^2 z}{\partial y^2}=0$ $\left(a\neq 0\right)$, 函数 $z=z\left(u,v\right)$ 具有二阶连续偏导数,求证 $\frac{\partial^2 z}{\partial u\partial v}=0$.

(2) 设
$$f(x)$$
 连续,证明 $\int_a^b dx \int_a^x (x-y)^{n-2} f(y) dy = \frac{1}{n-1} \int_a^b (b-y)^{n-1} f(y) dy$.

7. 浙江理工大学 2013-2014 学年第 2 学期《高等数学 A2》期中试卷

姓名	学号		级	
一、选择题(6 题*	4分)			
1、在曲线: $x=t$	$y = -t^2, z = t^3$ 的所有切	J线中,与平面 π: x	+2y+z+4=0 平行的切	线()
(A) 只有1条	(B) 只有2条	(C) 至少有3条	(D) 不存在	
2、设区域 <i>D</i> :(<i>x</i> − 2	$(2)^{2} + (y-1)^{2} \le 1, I_{1} = \iint_{D}$	$\iint_{D} (x+y)^2 d\sigma, I_2 = \iint_{D}$	$(x+y)^3d\sigma$,则有()
$(\mathbf{A}) \ I_1 < I_2$	$(B) I_1 = I_2$	(C) $I_1 > I_2$	(D) 不能比较	
$3、球面 x^2 + y^2 + z$	$z^2 = 4a^2 与柱面 x^2 + y^2$	= 2ax 所围成的立位	体积 V= ()	
(A) $4\int_0^{\frac{\pi}{2}}d\theta \int_0^{2a\cos}$	$^{ heta}\sqrt{4a^2- ho^2}d ho$	(B) $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\theta \int_{0}^{2a\cos\theta}$	$^{ heta} ho\sqrt{4a^2- ho^2}d ho$	
$(C) 8 \int_0^{\frac{\pi}{2}} d\theta \int_0^{2a\cos\theta}$	$^{\theta} \rho \sqrt{4a^2 - \rho^2} d\rho$	(D) $4\int_0^{\frac{\pi}{2}}d\theta \int_0^{2ac}$	$\rho\sqrt{4a^2- ho^2}d ho$	
4、设 $u(x,y)$ 在平面	面有界区域 D 上有二阶)	车续偏导数,且满足	$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \not $	0,则()
	曼小值点必定都在 D 的内			
	В小值点必定都在 D 的↓ Э 的内部,最小值点在 I			
(D) 最小值点在 I)的内部,最大值点在 I	D 的边界上		
5、将三重积分 <i>I</i> =	$\iiint_{\Omega} (x^2 + y^2 + z^2) dv , \exists$	$其中 \Omega: x^2 + y^2 + z^2$	≤1,化为球面坐标下的∃	三次积分为()
$(A) \int_0^{2\pi} d\theta \int_0^{\pi} d\varphi$	$\int_0^1 dr$	$(B) \int_0^{2\pi} d\theta \int_0^{\frac{\pi}{2}} d\varphi$	$\int_0^1 r dr$	
$(C) \int_0^{2\pi} d\theta \int_0^{\pi} d\varphi$	$\int_0^1 r^4 \sin \varphi dr$	(D) $\int_0^{2\pi} d\theta \int_0^{\pi} d\varphi$	$\rho \int_0^1 r^2 \sin \varphi dr$	
6、设 $f(x,y)= x-y $	$-y \varphi(x,y)$,其中 $\varphi(x,y)$	v)在点(0,0)连续且q	$\rho(0,0)=0$,则 $f(x,y)$ 在((0,0)处()
(A)连续,偏导数 二、填空题(6题*		续,偏导数存在	(C) 可微 (D) 不可	丁微
1、已知 <i>a</i> 的方向余	·弦为 $\cos \beta = \frac{2}{3}$, $\cos \gamma =$	$=\frac{2}{3}, \mathbb{A} a =3, \mathbb{M}$	<i>a</i> =	
2、已知曲面 $z=4$	$-x^2-y^2$ 在点 P 处的切	平面平行于平面 2x-	+ 2 <i>y</i> + <i>z</i> - 1 = 0 ,则点 P 的	勺坐标是
$3、设 I = \int_0^2 dx \int_x^{2x} dx$	f(x,y)dy,交换积分次	序后, <i>I</i> =		_

- 4、设函数 f(u)可微,已知 $f'(0) = \frac{1}{2}$,且 $z = f(4x^2 y^2)$,则 $dz \Big|_{\substack{x=1 \ y=2}} = \underline{\qquad}$
- 5、设 $u(x,t) = \int_{x-t}^{x+t} f(z)dz$,求 $\frac{\partial u}{\partial x} =$ ______
- 三、计算题(6题*6分)
- 1、设函数 $z = f(y x, ye^x)$, 其中 f 具有二阶连续偏导数, 求 $\frac{\partial z}{\partial x}$, $\frac{\partial^2 z}{\partial x \partial y}$.

2、函数 z = z(x,y) 是由方程 $x^2 + y^2 + z^2 = 3$ 所确定的隐函数,求 $\frac{\partial^2 z}{\partial x \partial y}\Big|_{(1,1,1,)}$ 。

3、求函数 $u = \ln(x + \sqrt{y^2 + z^2})$ 在点 A(1,0,1)沿 A 指向点 B(3, -2, 2)方向的方向导数。

4、设
$$D = \{(x,y)|x^2 + y^2 \le 4\}$$
,利用极坐标求 $I = \iint_D x^2 dx dy$ 。

5、设
$$\Omega$$
是由 $x^2+y^2=2z,z=1,z=2$ 所围成的空间闭区域,求 $I=\iiint\limits_{\Omega}(x^2+y^2)dV$ 。

6、计算
$$I = \iiint_{\Omega} \frac{dV}{\left(1 + x + y + z\right)^3}$$
, 其中 Ω 由 $x = 0, y = 0, z = 0, x + y + z = 1$ 所围。

四、应用题(8分)

设一座山的表面的方程为 $z=100-2x^2-y^2$,M(x,y)时山脚z=0即等高线 $2x^2+y^2=1000$ 上的点。

- (1) 问: z 在点 M(x,y) 处沿什么方向的增长率最大,并求出此增长率;
- (2)攀岩活动要在山脚处找一最陡的位置作为攀岩的起点,即在该等高线上找一点 M 使得上述增长率最大,请写出该点的坐标。

五、证明题 (2 题*4 分)

(1)
$$\[\text{ψ} \] z = \arctan \frac{x}{y}, \ \[\text{\overline{m}} \] x = u + v, y = u - v, \] \[\text{\overline{u}} \] \[\text{$\overline{\theta}$} \] + \frac{\partial z}{\partial u} + \frac{\partial z}{\partial v} = \frac{u - v}{u^2 + v^2} \]$$

(2) 设 f(x)连续, 证明 $\int_{a}^{b} dx \int_{a}^{x} f(y) dy = \int_{a}^{b} f(x)(b-x) dx$.

8. 浙江理工大学 2015-2016 学年第 2 学期《高等数学 A2》期中试卷

本人郑重承诺:本人已阅读并且透彻地理解《浙江理工大学考场规则》,愿意在 考试中自觉遵守这些规定,保证按规定的程序和要求参加考试,如有违反,自愿 按《浙江理工大学学生违纪处分规定》有关条款接受处理。

承诺人签名: _____ 学号: _____ 班级: ____ 座位号: _ 五 复核教 题号 总分 3 4 师签名 得分 阅卷

- 一、选择题(本题共6小题,每小题4分,满分24分)
- 1. 函数 $f(x,y) = 4(x-y)-x^2-y^2$ 的极值为 ()

A. 极大值为 8 B. 极小值为 0 C. 极小值为 8 D. 极大值为 0

2.设有直线
$$L_1$$
: $\frac{x-1}{1} = \frac{y-5}{-2} = \frac{z+8}{1}$, L_2 : $\begin{cases} x-y=6, \\ 2y+z=3, \end{cases}$ 则 L_1 与 L_2 的夹角为 ()

(A) $\frac{\pi}{6}$ (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{3}$ (D) $\frac{\pi}{2}$

教师 签名

- 3. 函数 $z = x^2 + y^2$ 在点 (1,2) 处从点 (1,2) 到 (2,2+ $\sqrt{3}$) 的方向的方向导数为()

- (A)1+2 $\sqrt{3}$ (B)1-2 $\sqrt{3}$ (C)-1+2 $\sqrt{3}$ (D)-1-2 $\sqrt{3}$
- 4. 设 $xy-z\ln y+e^{xz}=1$,根据隐函数存在定理,存在点(0,1,1)的一个领域,在此领域内该方 程()
- (A) 只能确定一个具有连续偏导数的函数 z=z(x,y)
- (B) 可确定具有两个具有连续偏导数的函数 y=y(x,z)和 z=z(x,y)
- (C) 可确定具有两个具有连续偏导数的函数 x=x(y,z)和 z=z(x,y)
- (D) 可确定具有两个具有连续偏导数的函数 x=x(y,z)和 y=y(x,z)

5.设
$$\Omega$$
 由 $z = \frac{1}{2}(x^2 + y^2), z = 1, z = 4$ 围成,则 $\iiint_{\Omega} x^2 - 2xy^2 \cos \sqrt{x^2 + y^2} dx dy dz = ()$

- $(A)21\pi$
- (B) 42π
- (C) 11π (D) 22π
- 6.设有平面闭区域 $D = \{(x,y) \mid -1 \le x \le 1, x \le y \le 1\}$, $D_1 = \{(x,y) \mid 0 \le x \le 1, x \le y \le 1\}$,

且 f(x) 是连续奇函数,g(x) 是连续偶函数,则 $\iint_{\mathbb{R}} [f(x) + g(x)] f(y) dx dy = 0$

(A)
$$2\iint_{D} g(x)f(y)dxdy$$

(B)
$$2\iint_{D_1} f(x)f(y)dxdy$$

(C)
$$4\iint_{D_1} [f(x) + g(x)] f(y) dxdy$$
 (D) 0

二、填空题(本题共5小题,每小题4分,满分20分)

1.已知两条直线的方程是 L_1 : $\frac{x-1}{1} = \frac{y-2}{0} = \frac{z-3}{-1}$, L_2 : $\frac{x+2}{2} = \frac{y-1}{1} = \frac{z}{1}$, 则过 L_1 且平行于

L,的平面方程是_____

2.由曲线 $\begin{cases} z = x^2 - 1, \\ y = 0 \end{cases}$ 绕 z 轴旋转一周所成的旋转曲面在点(2,1,4)处的法线方程

3.设函数 z = f(x, y) 在点 (1,1) 处可微, 且 f(1,1) = 1, $f_x(1,1) = 2$, $f_y(1,1) = 3$,

$$g(x) = f(x, f(x, x)).$$
 $\mathbb{M} \frac{d}{dx} g^{3}(1) = \underline{\hspace{1cm}};$

4.由方程 $x^2 + y^2 + z^2 - 4z = 0$ 所确定的函数 z = z(x, y) 在点 $(\frac{\sqrt{6}}{2}, -\frac{\sqrt{6}}{2}, 1)$ 处的全微分

5. 交换二次积分的积分顺序: $\int_{1}^{0} dy \int_{2}^{1-y} f(x,y) dx =$ ________.

三、解答题(本题共6小题,每小题6分,满分36分)

1. 求直线 $l: \frac{x-1}{1} = \frac{y}{1} = \frac{z-1}{-1}$ 在平面 π : x-y+2z-1=0 上的投影直线 l_0 的方程, 并求 l_0 绕 v 轴旋转一周所成曲面的方程.

2. 设
$$\begin{cases} xu-yv=0, \\ yu+xv=1, \end{cases}$$
 求 u_x, u_y, v_x 和 v_y .

3. 求曲线
$$\begin{cases} x^2 + y^2 + z^2 = 6 \\ x + y + z = 0 \end{cases}$$
 在点 $(1, -2, 1)$ 处的切线及法平面方程.

4. 计算二重积分: $\iint_{D} e^{\max\{x^2,y^2\}} dxdy$, 其中 $D=\{0 \le x \le 1, 0 \le y \le 1\}$.

5. 计算三重积分: $\iiint_{\Omega} z dv$, 其中 Ω 由曲面 $z = \sqrt{2-x^2-y^2}$ 及 $z = x^2+y^2$ 所围成的闭区域.

6. 设变换
$$\begin{cases} u = x - 2y, \\ v = x + ay \end{cases}$$
 可把方程 $6\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial x \partial y} - \frac{\partial^2 z}{\partial y^2} = 0$ 简化为 $\frac{\partial^2 z}{\partial u \partial v} = 0$, 求常数 a .

四、应用题(本题10分)

设有一高度为 h(t) (t 为时间)的雪堆在融化过程中,其侧面满足方程 $z = h(t) - \frac{2(x^2 + y^2)}{h(t)}$, 设长度单位为厘米,时间单位为小时,已知体积减少的速率与侧面积成正比(比例系数 0.9),问高度为 130 cm 的雪堆全部融化需要多少小时?

五、证明题(本题共2小题,第1小题4分,第2小题6分,满分10分)

1. 设函数 f(x,y), g(x,y) 在有界闭区域 D 上连续,且 $g(x,y) \ge 0$,证明:在 D 上必有一点 (ξ,η) 使得 $\iint_D f(x,y)g(x,y)d\sigma = f(\xi,\eta)\iint_D g(x,y)d\sigma$ 成立.

2.证明函数
$$f(x,y) = \begin{cases} xy \sin \frac{1}{\sqrt{x^2 + y^2}}, (x,y) \neq (0,0) \\ 0, (x,y) = (0,0) \end{cases}$$
 在点 $(0,0)$ 处

(1) 连续且偏导数存在; (2)偏导数不连续; (3)可微.

9. 浙江理工大学 2016-2017 学年第 2 学期《高等数学 A2》期中试卷

一、选择题(本题共6小题,每小题4分,满分24分)

1. 设直线
$$L$$
 为 $\begin{cases} x+3y+2z+1=0 \\ 2x-y-10z+3=0 \end{cases}$,平面 π 为 $4x-2y+z-2=0$,则

(A) L 平行于π

- (B) L在π上 (C) L垂直于π D L与π斜交

2. 下列说法正确的是

(A) 两向量 \vec{a} 与 \vec{b} 平行的充要条件是存在唯一的实数 λ , 使得 $\vec{a} = \lambda \vec{b}$;

(B) 函数 z = f(x, y) 的两个二阶偏导数 $\frac{\partial^2 z}{\partial x^2}$, $\frac{\partial^2 z}{\partial x^2}$ 在区域 D 内连续,则在该区域内 两个二阶混合偏导数必相等:

(C) 函数 z = f(x, y) 的两个偏导数在点 (x_0, y_0) 处连续是函数在该点可微的充分条

(D) 函数 z = f(x, y) 的两个偏导数在点 (x_0, y_0) 处存在是函数在该点可微的充分条 件.

3. 对函数 $f(x,y) = x^2 + xy + y^2 - 3x - 6y$, 点(0.3)

(A) 不是驻点 (B) 是驻点但非极值点 (C) 是极大值点 (D)是极小值点 4. 将三重积分 $I=\iiint (x^2+y^2+z^2)dv$,其中 $\Omega: x^2+y^2+z^2 \le 1$,化为球面坐标下

的三次积分为

(A)
$$\int_0^{2\pi} d\theta \int_0^{\pi} d\varphi \int_0^1 dr$$

(B)
$$\int_0^{2\pi} d\theta \int_0^{\frac{\pi}{2}} d\varphi \int_0^1 r dr$$

(C)
$$\int_0^{2\pi} d\theta \int_0^{\pi} d\varphi \int_0^1 r^4 \sin\varphi dr$$

(D)
$$\int_0^{2\pi} d\theta \int_0^{\pi} d\varphi \int_0^1 r^2 \sin\varphi dr$$

5. 旋转抛物面 $z=x^2+2y^2-4$ 在点 (1,-1,-1) 处的切平面方程为

(A)
$$2x + 4y - z = 0$$

(B)
$$2x-4y-z=4$$

(C)
$$2x + 4y - z = 4$$

(D)
$$2x-4y-z=7$$

6. 二次积分 $\int_{0}^{\frac{\pi}{2}} d\theta \int_{0}^{\cos \theta} f(\rho \cos \theta, \rho \sin \theta) \rho d\rho$ 可写成 (

(A)
$$\int_{0}^{1} dy \int_{0}^{\sqrt{y-y^{2}}} f(x,y) dx$$

(B)
$$\int_{0}^{1} dy \int_{0}^{\sqrt{1-y^2}} f(x,y) dx$$

(C)
$$\int_0^1 dx \int_0^1 f(x,y) dy$$

(D)
$$\int_0^1 dx \int_0^{\sqrt{x-x^2}} f(x,y) dy$$

二、填空题(本题共6小题,每小题4分,满分24分)

- 1. 已知函数 $z=e^{xy}$,则在(2,1)处处的全微分dz=
- 2. 设直线 L 的方程为 $\begin{cases} x-y+z=1 \\ 2x+y+z=4 \end{cases}$ 则 L 的参数方程为
- 3. 设函数 $u=x^2+y^2+z^2$,O为坐标原点,则函数u在点 $P(1,1,1)沿 \overrightarrow{OP}$ 方向的方向导数为
- 4. 函数 $u = xy^2z$ 在(1,-1,2)处增长最快的方向为
- 5. 已知向量a位于第一卦限内,其方向余弦中 $\cos \beta = \frac{2}{3}$, $\cos \gamma = \frac{2}{3}$, 且 |a| = 3,则
- 6. 交换积分次序 $\int_1^e dx \int_0^{\ln x} f(x,y)dy =$ _
- 三、解答题(本题共 5 小题,每小题 6 分,满分 30 分,应写出演算过程及文字说明)
- 1. 设函数 $z = f(y x, ye^x)$, 其中 f 具有二阶连续偏导数, 求 $\frac{\partial z}{\partial x}$, $\frac{\partial^2 z}{\partial x \partial y}$;

2. 设
$$D = \{(x,y) | x^2 + y^2 \le 4\}$$
,利用极坐标求 $I = \iint_D x^2 dx dy$;

3. 求锥面 $z = \sqrt{x^2 + y^2}$ 被柱面 $z^2 = 2x$ 所割下部分的曲面面积;

4. 把积分
$$\iint_{\Omega} f(x,y,z) dx dy dz$$
 化为三次积分,其中积分区域 Ω 是由曲面 $z=x^2+y^2$, $y=x^2$ 及平面 $y=1,z=0$ 所围成的区域:

四、综合题 (第1、2 题分别为7分,第3、4 题分别为4分,满分为22分)

的切线。

2. 建模题

设某电视机厂生产一台电视机的成本为 c,每台电视机的销售价格为 p,销售量为 x。假设该厂的生产处于平衡状态,即电视机的生产量等于销售量。根据市场预测,销售量 x 与销售价格 p 之间有下面的关系: $x = Me^{-cp}$ (M > 0, a > 0),其中 M 为市场最大需求量,a 是价格系数。同时,生产部门根据对生产环节的分析,对每台电视机的生产成本 c 有如下测算: $c = c_0 - k \ln x$ (k > 0, x > 1),其中 c_0 是只生产一台电视机时的成本,k 是规模系数。根据上述条件,应如何确定电视机的售价 p,才能使该厂获得最大利润?

3. 设f(x)连续,证明 $\int_a^b dx \int_a^x f(y) dy = \int_a^b f(x)(b-x) dx$;

4.证明曲面 $\sqrt{x} + \sqrt{y} + \sqrt{z} = \sqrt{a} (a > 0)$ 上任何点处的切平面在各坐标轴上的截距 之和等于a。

10. 浙江理工大学 2017-2018 学年第 2 学期《高等数学 A2》期中试卷

一、选择器(本器共6小器,每小题4分。摘分24分)
1. 微分方程 y + 4 y = cos 2 x 的一个特解具有形式 ()
(A) $a\cos 2x$ (B) $a\cos 2x + b\sin 2x$
(C) $ax \cos 2x$ (D) $x(a \cos 2x + b \sin 2x)$
2. 在 yOz 平面内的一条直线绕 z 粘旋转 一周所得曲面的图形不可能是 (A) 旋转单叶双曲面 (B) 固柱面 (C) 圆锥面 (D) 平面 f(x,y)=x²+xy+y²-3x-6y, 点(0,3) ()
X(A) 不是註点 (B) 是註点但非极值点 (C) 是极小值点 (D) 是极大值点 4. 在下列命题中,不正确的是 ()
(A) 若函数 $f(x,y)$ 在点 (x_0,y_0) 处可微,则它在该点连续:
(B) 若函数 $f(x,y)$ 在点 (x_0,y_0) 处可量,则它在该点沿任何方向的方向导数存在。
$C)$ 若函数 $f(x,y)$ 在点 (x_0,y_0) 处可微、则它在该点的偏导数连续。
(D) 若函数 $f(x,y)$ 在点 (x_0,y_0) 处可像 完 这曲图 $z=f(x,y)$ 在点 $(x_0,y_0,f(x_0,y_0))$ 处 的 切 平面 存在。
5. 设 D 是由曲线 $y=x^2-1$, $y=\sqrt{1-x^2}$ 所匿成的平面区域,则 $\iint (axy_x+(by^2)dxdy$ 的(
(A) 值等于 0 (B) 符号与 a 有关,与 b 无关 (C) 符号与 a 无关,与 b 有关 (D) 符号与 a . b 都有关
6. 设 Ω 是由球面 $x^2 + y^2 + z^2 = R^2(R > 0)$ 所置成的闭区域,则三重积分
$\iiint_{\Omega} (x^2 + y^2 + z^2) dV \text{ in (ii.7g)} $
(A) $\frac{4}{3}\pi R^5$ (B) $\frac{4}{5}\pi R^5$ (C) $\frac{2}{5}\pi R^5$ (D) 0
二、填空题 (本题共 6 小题, 每小题 4 分, 摘分 24 分)
1.点 P(1,-2,3)关于 x 轴的对称点 Q 的坐标为
2. 函数 $z = x^4 + \frac{y^2}{2}$ 在点 A(1, -3) 处其函数值增加最快的单位方向向量为

- 3. 设 $y = e^*(C_1 + C_2 x)(C_1, C_2$ 为任意常数) 是某二阶常系数齐次线性强分方程的通解。则该方程为_
- 4. 如果直线 $L_1: \frac{x-1}{1} = \frac{y+1}{2} = \frac{z-1}{\mu\lambda}$ 与直线 $L_2: \frac{x+1}{1} = \frac{y-1}{1} = \frac{z}{1}$ 相交。至么常数人的值为
- 5. 已知 | a |= 2, | b |= √2, 且 a | b = 2, 则 | a × b |=
- 6. 设 $D:-1 \le x \le 1,0 \le y \le 2$,则 $\iint_D x^2 y dx dy =$
- 三、计算题(本题共5小题,每题8分, 摘分40分)
- 1. 求微分方程 $y' + 2y' 3y = e^{-3x}$ 的通解.

2. 已知在球面 $x^2 + y^2 + z^2 = 14$ 上点 P 处的切平面与平面 x - 2y + 3z = 0 平行。求点 P 的 坐标及该平面的方程.

3. 设函数
$$z = z(x, y)$$
 是由方程 $x^2 + y^2 + z^2 - 4z = 0$ 所确定,求 $\frac{\partial^2 z}{\partial x \partial y}$

4.计算二次积分
$$I = \int_{-1}^{1} dx \int_{0}^{\sqrt{1-x^2}} \ln(x^2 + y^2 + 1) dy$$
.

5. 求
$$\iiint_{\Omega} \sqrt{x^2 + y^2} dV$$
 其中 Ω 是 xoz 平面上两条曲线 $z = x^2$ 与 $z = 2 - x^2$ 绕 z 轴旋转而成的闭区域.

四、应用题(本题满分6分)

形状为椭球。 $4x^2+y^2+4z^2=16$ 的空间探测器进入地球大气层,其表面开始受热,1小时后在探测器表面点(x,y,z)的温度为

$$T(x, y, z) = 8x^2 + 4yz - 16z + 600,$$

求探測器表面温度最高的点和温度最低的点。

五、证明题(本题满分6分)

设函数 z = z(x, y)由方程 $\frac{x}{z} = \varphi(\frac{y}{z})$ 所确定,其中 $\varphi(u)$ 具有二阶连续导数.试证明:

(1)
$$x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = z;$$

(2)
$$\frac{\partial^2 z}{\partial x^2} \frac{\partial^2 z}{\partial y^2} = \left(\frac{\partial^2 z}{\partial x \partial y}\right)^2$$
.

(2) 在(1) 南西南町

11. 浙江理工大学 2018-2019 学年第二学期《高等数学 A2》期中试卷

题目	_		三	四	五.	总分
分值						
得分		-				

一、单选题(每小题 4 分, 共 20 分)

- 1. 点(-1,0,2)到平面 $x + \sqrt{2}y z + 1 = 0$ 的距离为(
 - A. 1

- D. 4
- 2. 设有直线 $L: \begin{cases} x+3y+2z+1=0 \\ 2x-y-10z+3=0 \end{cases}$ 及平面 $\pi: 4x-2y+z-2=0$,则直线 L(
 - A. 垂直于 π

- B. 在π上 C. 平行于π D. 与π的夹角为锐角
- 3. 函数 $z = xe^{2y}$ 在点 P(1,0) 处沿从点 P(1,0) 到点 Q(2,-1) 的方向的方向导数等于(
 - A. $\sqrt{2}$

- B. $-\sqrt{2}$ C. $\frac{\sqrt{2}}{2}$ D. $-\frac{\sqrt{2}}{2}$
- 4. 已知点(-3,2)为函数 $f(x,y) = x^3 + ay^3 + 3x^2 + 3y^2 9x$ 的极值点,则 a = (
 - A. 1
- B. -1
- C. 2
- 5. 二元函数 $f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, (x,y) \neq (0,0) \\ 0, (x,y) = (0,0) \end{cases}$ 在点 M(0,0)处 ()
- A. 连续, 偏导存在 B. 连续, 偏导不存在 C. 不连续, 偏导存在 D. 不连续, 偏导不存在 二、填空题(每题4分,共20分)
- 1. 曲线 $x = t, y = t^2, z = t^3$ 在点(1,1,1)处切线的切向量 $\vec{T} =$ _____.
- 3. 已知曲面 $z = 4 x^2 v^2$ 上点 P 的切平面平行于平面 2x + 2v + 2z 1 = 0 ,则点 P 的坐标为
- 4. 函数 u = xyz 在点 M(1,1,1)处的梯度 $grad\ u|_{M} = _____.$
- 5. 求 $z = xy + \frac{x}{y}$ 的全微分______.

三、计算题(每小题8分,共48分)

1. 已知两条直线的方程是

$$L_1: \frac{x-1}{1} = \frac{y-2}{0} = \frac{z-3}{-1}$$
, $L_2: \frac{x+2}{2} = \frac{y-1}{1} = \frac{z}{1}$

已知平面 π 过 L_1 且平行于 L_2 ,求平面 π 的方程.

2. 设 $\begin{cases} xy^2 - uv = 1 \\ x^2 + y^2 - u + v = 0 \end{cases}, \quad w = e^{u+v}, \quad 其中 \ u, \quad v \ 是由上式确定的 \ x, \quad y \ 的函数, \quad 求 \frac{\partial w}{\partial x}.$

3. $\Re \lim_{(x,y)\to(0,0)} \frac{xy}{\sqrt{2-e^{xy}}-1}$.

4. 求函数 f(x,y,z) = xyz 在限制条件 xy + yz + xz = 6下的最大值.

5. $z = f(e^x \sin y, x^2 + y^2)$, 其中f具有二阶连续偏导数,求 $\frac{\partial^2 z}{\partial x \partial y}$.

6. 计算 $\iint_D (x^2 + y^2) dx dy$,其中 D 为圆 $x^2 + y^2 = 2y$, $x^2 + y^2 = 4y$ 及直线 $x - \sqrt{3}y = 0$, $y - \sqrt{3}x = 0$ 所围成的平面闭区域.

四、证明题 (每小题 6 分, 共 12 分)

1. 设 z = xy + xF(u),而 $u = \frac{y}{x}$, F(u) 为可导函数,证明 $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = z + xy$.

2. 试证曲面 $\sqrt{x} + \sqrt{y} + \sqrt{z} = \sqrt{a} (a > 0)$ 上任意点处的切平面在各坐标轴上的截距之和等于 a.