Introducción a las matrices y transformaciones

Una matriz es una tabla de números (o expresiones matemáticas) alineadas en filas y columnas.

- **La dimensión** $(m \times n)$ **de una matriz** es el número de filas (m) por el número de columnas (n).
- En nuestro caso usaremos matrices 4x4 para representar operaciones geométricas en \mathbb{E}^3 .
- Se denomina matriz identidad (I) a aquella que no posee ni traslaciones, ni rotaciones ni escalados, ni proyecciones, o deformación alguna en el espacio.

$$I = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Elementos de la matriz y Godot

Notamos $a_{i,j}$ al valor de la matriz que se encuentra en la fila (i) y la columna j). En Godot se nota como **a.i.j**.

- En Godot tenemos el objeto **Trasform**, que elimina la última fila de las matrices ya que siempre será el vector (0,0,0,1) en nuestro caso.
 - Así, una matriz Transform tendrá tamaño 3×4 .
 - ¡Cuidado! En realidad es una matrix 4×4 matemáticamenta hablando, pero en la práctica nos ahorramos cálculos, al eliminar la última fila, que siempre resultarán en el mismo número.

Operando matrices

El algoritmo estándar para multiplicar matrices sigue la regla: filas de A por columnas de B y luego sumar los datos. El resultado va en la fila (para A) y columna (para B) utilizada.

Germán Arroyo 1

¡Cuidado! La operación de multiplicación entre matrices ¡no es conmutativa!.

Operando vectores y matrices

■ Todo vector de posición se coloca en forma de columna y se multiplica por la derecha.

$$M \times \vec{v} = \begin{pmatrix} m_{1,1} & m_{1,2} & m_{1,3} & m_{1,4} \\ m_{2,1} & m_{2,2} & m_{2,3} & m_{2,4} \\ m_{3,1} & m_{3,2} & m_{3,3} & m_{3,4} \\ 0 & 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} v_x \\ v_y \\ v_z \\ 1 \end{pmatrix}$$

Fíjate, que si eliminas el último componente del vector y la última fila de la matriz, tienes la operación que realiza Godot internamente (dado que la operación siempre resultará 1 en la última componente).

Determinantes

En muchos casos es necesario calcular el determinante de una matriz. Para calcular el determinante de una matriz 3×3 puedes usar la regla de Sarrus:

$$\det(M) = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{31}a_{22}a_{13} - a_{32}a_{23}a_{11} - a_{33}a_{21}a_{12}$$

Es muy típico eliminar la última fila y la última columna de la matriz para realizar esta operación, dado que la última columna solamente representa traslaciones y la última columna es siempre el vector (0,0,0,1).

Germán Arroyo 2

Cuaterniones (Quaternions)

Si tenemos tres ejes rotando en el espacio, hay un momento que los tres ejes se alinean, y entonces perdemos un grado de libertad, ver *bloqueo de cardán*.

Para evitarlo se usa otra notación matemática para representar las orientaciones y las rotaciones de objetos en tres dimensiones: los cuaterniones.

Los cuaterniones se basan en la definición de un espacio vectorial utilizando tres números complejos \mathbf{i} , \mathbf{j} , \mathbf{k} , donde $\mathbf{i} \times \mathbf{j} = \mathbf{k}$ y $\mathbf{i} \times \mathbf{k} = -\mathbf{j}$.

Lo que resulta en un vector de cuatro componentes, donde el cuaternión identidad (Q_I) se representa por los valores (0,0,0,1).

- En Godot tienes métodos para convertir tres ángulos de Éuler en un cuaternión, y a la inversa.
- En Godot puedes interpolar dos cuaterniones sin problema mediante la clase Quat.

Bibliografía

- Matemáticas: matrices y transformaciones, documentación de Godot.
 - https://docs.godotengine.org/es/stable/tutorials/math/matrices_and_transforms.html
 - https://docs.godotengine.org/es/stable/classes/class_transform.html?highlight=transform#transform
- Quaternions: rotaciones avanzadas.
 - https://eater.net/quaternions

Germán Arroyo 3