```
import numpy as np
import pandas as pd
df = pd.read csv('/content/Churn Modelling.csv')
#univariate analysis-1)summary statistics
df['Balance'].mean()
76485.889288
df['Age'].median()
37.0
df['CreditScore'].std()
96.65329873613035
#2)Create frequency table
df['Age'].value_counts()
37
      478
38
      477
35
      474
36
      456
34
      447
92
        2
82
        1
        1
88
85
        1
83
        1
Name: Age, Length: 70, dtype: int64
#3)create charts
import matplotlib.pyplot as plt
df.boxplot(column=['CreditScore'],grid=False, color='black')
<matplotlib.axes._subplots.AxesSubplot at 0x7f8db5bd08d0>
```



```
#Bivariate analysis-
#1)Scatterplots
import matplotlib.pyplot as plt
plt.scatter(df.Age,df.CreditScore)
plt.title('Age vs CreditScore')
plt.xlabel('Age')
plt.ylabel('CreditScore')
Text(0, 0.5, 'CreditScore')
```


#2)Correlation Coefficients
df.corr()

	RowNumber	CustomerId	CreditScore	Age
Tenure \				_
RowNumber	1.000000	0.004202	0.005840	0.000783 -
0.006495 CustomerId 0.014883	0.004202	1.000000	0.005308	0.009497 -
CreditScore 0.000842	0.005840	0.005308	1.000000	-0.003965
Age 0.009997	0.000783	0.009497	-0.003965	1.000000 -
Tenure 1.000000	-0.006495	-0.014883	0.000842	-0.009997
Balance	-0.009067	-0.012419	0.006268	0.028308 -
0.012254 NumOfProducts	0.007246	0.016972	0.012238	-0.030680
0.013444 HasCrCard	0.000599	-0.014025	-0.005458	-0.011721
0.022583 IsActiveMember	0.012044	0.001665	0.025651	0.085472 -
0.028362 EstimatedSalary	-0.005988	0.015271	-0.001384	-0.007201
0.007784 Exited 0.014001	-0.016571	-0.006248	-0.027094	0.285323 -

```
NumOfProducts
                                           HasCrCard
                   Balance
                                                       IsActiveMember
RowNumber
                 -0.009067
                                 0.007246
                                             0.000599
                                                              0.012044
                -0.012419
CustomerId
                                 0.016972
                                            -0.014025
                                                              0.001665
CreditScore
                 0.006268
                                 0.012238
                                            -0.005458
                                                             0.025651
Aae
                 0.028308
                                -0.030680
                                            -0.011721
                                                              0.085472
Tenure
                -0.012254
                                 0.013444
                                             0.022583
                                                             -0.028362
Balance
                                            -0.014858
                 1.000000
                                -0.304180
                                                             -0.010084
NumOfProducts
                -0.304180
                                 1.000000
                                             0.003183
                                                             0.009612
HasCrCard
                 -0.014858
                                 0.003183
                                             1.000000
                                                            -0.011866
IsActiveMember
                -0.010084
                                 0.009612
                                          -0.011866
                                                             1.000000
EstimatedSalary
                 0.012797
                                 0.014204
                                           -0.009933
                                                            -0.011421
Exited
                 0.118533
                                -0.047820
                                           -0.007138
                                                            -0.156128
                 EstimatedSalary
                                     Exited
RowNumber
                        -0.005988 -0.016571
CustomerId
                         0.015271 -0.006248
CreditScore
                        -0.001384 -0.027094
Age
                        -0.007201
                                   0.285323
                         0.007784 -0.014001
Tenure
Balance
                         0.012797
                                   0.118533
NumOfProducts
                         0.014204 - 0.047820
HasCrCard
                        -0.009933 -0.007138
IsActiveMember
                        -0.011421 -0.156128
EstimatedSalary
                         1.000000
                                   0.012097
Exited
                         0.012097
                                   1.000000
#3) Simple Linear Regressiion
import statsmodels.api as sm
v=df['CreditScore']
x=df[['Age']]
x=sm.add constant(x)
model=sm.OLS(y,x).fit()
print(model.summary())
                             OLS Regression Results
Dep. Variable:
                           CreditScore
                                         R-squared:
0.000
Model:
                                   0LS
                                         Adj. R-squared:
-0.000
Method:
                         Least Squares
                                         F-statistic:
0.1572
                     Mon, 26 Sep 2022
Date:
                                         Prob (F-statistic):
0.692
Time:
                              14:01:22
                                         Log-Likelihood:
-59900.
```

10000

AIC:

No. Observations:

1.198e+05

```
Df Residuals:
                           9998
                                BIC:
1.198e+05
Df Model:
                             1
             nonrobust
Covariance Type:
             coef std err t P>|t| [0.025]
0.9751
------
          651.9510 3.715 175.481 0.000 644.668
const
659.234
          -0.0365 0.092 -0.396
                                        0.692
                                                 -0.217
Age
0.144
______
======
Omnibus:
                        133.033
                                Durbin-Watson:
2.014
Prob(Omnibus):
                          0.000
                                Jarque-Bera (JB):
84.280
Skew:
                         -0.071 Prob(JB):
5.00e-19
                                Cond. No.
Kurtosis:
                          2.574
155.
Notes:
[1] Standard Errors assume that the covariance matrix of the errors is
correctly specified.
/usr/local/lib/python3.7/dist-packages/statsmodels/tsa/
tsatools.py:142: FutureWarning: In a future version of pandas all
arguments of concat except for the argument 'objs' will be keyword-
only
 x = pd.concat(x[::order], 1)
#Multi-variate Analysis-scatterplots
import matplotlib.pyplot as plt
plt.scatter(df.Age,df.Tenure)
plt.title('Age vs Tenure')
plt.xlabel('Age')
plt.ylabel('Tenure')
```

Text(0, 0.5, 'Tenure')

#Descriptive Analysis df.describe()

Topuro	RowNumber	CustomerId	CreditScore	Age	
Tenure count 10000.00	10000.00000 10000	1.000000e+04	10000.000000	10000.000000	
mean 5.012800	5000.50000	1.569094e+07	650.528800	38.921800	
std 2.892174	2886.89568	7.193619e+04	96.653299	10.487806	
min 0.000000	1.00000	1.556570e+07	350.000000	18.000000	
25% 3.000000	2500.75000	1.562853e+07	584.000000	32.000000	
50% 5.000000	5000.50000	1.569074e+07	652.000000	37.000000	
75% 7.000000	7500.25000	1.575323e+07	718.000000	44.000000	
	10000.00000	1.581569e+07	850.000000	92.000000	
	Balance				\
count	10000.000000				
mean c+d	76485.889288				
std min	62397.405202 0.000000				
25%	0.00000				
250	0.00000	J 1.00000	0.0000	0.00000	

50% 75% max	97198.540000 127644.240000 250898.090000	1.000000 2.000000 4.000000	1.00000 1.00000 1.00000	1.000000 1.000000 1.000000
	EstimatedSalary	Exited		
count	10000.000000	10000.000000		
mean	100090.239881	0.203700		
std	57510.492818	0.402769		
min	11.580000	0.00000		
25%	51002.110000	0.00000		
50%	100193.915000	0.00000		
75%	149388.247500	0.000000		

1.000000

df.describe(include=['object'])

199992.480000

	Surname	Geography	Gender
count	10000	10000	10000
unique	2932	3	2
top	Smith	France	Male
freq	32	5014	5457

df.std()

max

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.

"""Entry point for launching an IPython kernel.

RowNumber	2886.895680			
CustomerId	71936.186123			
CreditScore	96.653299			
Age	10.487806			
Tenure	2.892174			
Balance	62397.405202			
NumOfProducts	0.581654			
HasCrCard	0.455840			
IsActiveMember	0.499797			
EstimatedSalary	57510.492818			
Exited	0.402769			
dtype: float64				

7 1

df.sum()

RowNumber 50005000
CustomerId 156909405694
Surname HargraveHillOnioBoniMitchellChuBartlettObinnaH...
CreditScore 6505288
Geography FranceSpainFranceFranceSpainSpainFranceGermany...
Gender FemaleFemaleFemaleFemaleMaleMaleFemaleMa...

```
389218
Age
Tenure
                                                                   50128
Balance
                                                           764858892.88
NumOfProducts
                                                                   15302
HasCrCard
                                                                    7055
IsActiveMember
                                                                    5151
                                                          1000902398.81
EstimatedSalary
Exited
                                                                    2037
dtype: object
df.count()
RowNumber
                    10000
CustomerId
                    10000
                    10000
Surname
CreditScore
                    10000
Geography
                    10000
Gender
                    10000
Age
                    10000
Tenure
                    10000
Balance
                    10000
NumOfProducts
                    10000
HasCrCard
                    10000
IsActiveMember
                    10000
EstimatedSalary
                    10000
Exited
                    10000
dtype: int64
#Handle the Missing values.
df.isnull().sum()
RowNumber
                    0
CustomerId
                    0
                    0
Surname
CreditScore
                    0
Geography
                    0
Gender
                    0
Aae
                    0
Tenure
                    0
Balance
                    0
NumOfProducts
                    0
HasCrCard
                    0
IsActiveMember
                    0
EstimatedSalary
                    0
Exited
                    0
dtype: int64
df.info()
<class 'pandas.core.frame.DataFrame'>
```

RangeIndex: 10000 entries, 0 to 9999

```
Data columns (total 14 columns):
                     Non-Null Count Dtype
#
    Column
     -----
                     -----
0
    RowNumber
                     10000 non-null int64
1
    CustomerId
                     10000 non-null int64
2
    Surname
                     10000 non-null object
 3
    CreditScore
                     10000 non-null int64
4
                     10000 non-null
    Geography
                                     object
5
    Gender
                     10000 non-null object
6
    Age
                     10000 non-null int64
 7
    Tenure
                     10000 non-null int64
                     10000 non-null float64
 8
    Balance
9
                     10000 non-null int64
    NumOfProducts
 10 HasCrCard
                     10000 non-null int64
 11 IsActiveMember
                     10000 non-null int64
 12
   EstimatedSalary
                     10000 non-null float64
13 Exited
                     10000 non-null int64
dtypes: float64(2), int64(9), object(3)
memory usage: 1.1+ MB
#there are no missing values in the given dataset
```

#there are no missing values in the given dataset
import seaborn as sns
sns.boxplot(df['CreditScore'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f8d976d3fd0>

np.where(df['CreditScore']<400)</pre>

(array([7, 942, 1193, 1201, 1405, 1631, 1838, 1962, 2473, 2579, 5285, 5494, 6253, 8154, 8723, 8762, 9210, 9356, 9624]),)

df['CreditScore'].mean()

-

650.5288

df['CreditScore']=np.where(df['CreditScore']<400,650.5288,df['CreditScore'])
df.head(10)</pre>

`	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age
0	1	15634602	Hargrave	619.0000	France	Female	42
1	2	15647311	Hill	608.0000	Spain	Female	41
2	3	15619304	Onio	502.0000	France	Female	42
3	4	15701354	Boni	699.0000	France	Female	39
4	5	15737888	Mitchell	850.0000	Spain	Female	43
5	6	15574012	Chu	645.0000	Spain	Male	44
6	7	15592531	Bartlett	822.0000	France	Male	50

7		8	15656	148	Obinna	650.5288	Germany	Female	e 29
8		9	15792	365	Не	501.0000	France	Male	e 44
9		10	15592	389	Н?	684.0000	France	Male	e 27
0 1 2 3 4 5 6 7 8 9	Tenure 2 1 8 1 2 8 7 4 4 2	838 1596 1255 1137 1150 1420	lance 0.00 97.86 60.80 0.00 10.82 55.78 0.00 46.74 51.07 03.88	NumOf	Products 1 1 3 2 1 2 2 4 2 1	HasCrCard 1 0 1 0 1 1 1 1 1 1	IsActiveMe	mber \ 1	•
0 1 2 3 4 5 6 7 8 9	1 1 1	edSal 01348 12542 13931 93826 79084 49756 10062 19346 74940 71725	.88 .58 .57 .63 .10 .71 .80 .88	xited 1 0 1 0 0 1 0 1 0					

#boxplot after identifying and replacing the outliers with the mean value of the column

sns.boxplot(df['CreditScore'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f8d9a7a0b50>


```
#Check for Categorical columns and perform encoding.
df categorical=df[['Geography','Gender']]
df['Gender'].unique()
#two unique values
array(['Female', 'Male'], dtype=object)
df['Geography'].unique()
#three unique values
array(['France', 'Spain', 'Germany'], dtype=object)
#encoding categorical values with two distinct values
from sklearn.preprocessing import LabelEncoder
en gen = LabelEncoder()
en_gen.fit(df_categorical['Gender'])
LabelEncoder()
values gen=en gen.transform(df categorical['Gender'])
"After encoding", values gen
('After encoding', array([0, 0, 0, ..., 0, 1, 0]))
#encoding categorical values with more than two distinct values
from sklearn.preprocessing import OneHotEncoder
import numpy as np
geo encoder = OneHotEncoder()
geo reshaped = np.array(df categorical['Geography']).reshape(-1, 1)
geo values = geo_encoder.fit_transform(geo_reshaped)
print(geo values.toarray())
```

```
print()
print(geo encoder.inverse transform(geo values))
[[1. 0. 0.]
 [0. 0. 1.]
 [1. 0. 0.]
 . . .
 [1. 0. 0.]
 [0. 1. 0.]
 [1. 0. 0.]
[['France']
 ['Spain']
 ['France']
 ['France']
 ['Germany']
 ['France']]
#independent variable
X = df.iloc[:, :-1].values
print(X)
[[1 15634602 'Hargrave' ... 1 1 101348.88]
 [2 15647311 'Hill' ... 0 1 112542.58]
 [3 15619304 'Onio' ... 1 0 113931.57]
 [9998 15584532 'Liu' ... 0 1 42085.58]
 [9999 15682355 'Sabbatini' ... 1 0 92888.52]
 [10000 15628319 'Walker' ... 1 0 38190.78]]
#dependent variable
Y = df.iloc[:,-1].values
print(Y)
[1 \ 0 \ 1 \ \dots \ 1 \ 1 \ 0]
#Scale the independent variables
X = df[["CreditScore", "Age", "Tenure", "EstimatedSalary"]].values
v=df[["Exited"]]
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaler.fit(X)
array([[6.1900000e+02, 4.2000000e+01, 2.0000000e+00, 1.0134888e+05],
       [6.0800000e+02, 4.1000000e+01, 1.0000000e+00, 1.1254258e+05],
       [5.0200000e+02, 4.2000000e+01, 8.0000000e+00, 1.1393157e+05],
       [7.0900000e+02, 3.6000000e+01, 7.0000000e+00, 4.2085580e+04],
```

```
[7.7200000e+02, 4.2000000e+01, 3.0000000e+00, 9.2888520e+04], [7.9200000e+02, 2.8000000e+01, 4.0000000e+00, 3.8190780e+04]])

#Split the data into training and testing from sklearn.model_selection import train_test_split xtrain,xtest,ytrain,ytest = train_test_split(X,Y,test_size=0.3,random_state=10)

xtrain.shape,xtest.shape

((7000, 13), (3000, 13))

ytrain.shape,ytest.shape

((7000,), (3000,))
```