Les fonctions

Qu'est-ce qu'une fonction?

Une **fonction** associe à chaque élément d'un **ensemble de départ**, un unique élément d'un **ensemble d'arrivée**.

Représenter une fonction par son équation

Représenter une fonction par sa courbe représentative

$$f(x) = 1.3x + 100$$

 $f(2000) = 1.3 \times 2000 + 100 = 2700$

$$f(x) = y$$

y est l'image de x
 x est l'antécédent de y

Le domaine de définition d'une fonction

est l'ensemble de toutes les valeurs que l'on peut donner en entrée à la fonction, c'est-à-dire les valeurs pour lesquelles la fonction est bien définie.

Exemples:

$$f(x) = 1.3x + 100$$

$$f$$
 définie sur \mathbb{R} On note : $\mathcal{D}_f = \mathbb{R}$

On peut noter : $f: \mathbb{R} \to \mathbb{R}$

$$x \mapsto 1.3x + 100$$

$$g(x) = \frac{1}{x}$$

$$g$$
 définie sur \mathbb{R}^* (les réels privés de $0 : \mathbb{R} \setminus \{0\}$)

$$g \colon \mathbb{R}^* \to \mathbb{R}$$
$$x \mapsto \frac{1}{x}$$

Une fonction est continue,

intuitivement, si on peut tracer sa courbe représentative sans lever le crayon.

Fonction continue

Fonction discontinue

Comment étudier une fonction ?

Le domaine de définition

Les **racines** : pour quels x, f(x) = 0 ?

$$f(x) = x^2 - 9$$

f est définie sur $\mathbb R$

$$f(x) = 0 \Leftrightarrow x^2 - 9 = 0 \Leftrightarrow x^2 = 9$$

\Leftrightarrow x = 3 ou x = -3

Le tableau de signe

x	-8		-3		3		+∞
f(x)		+	0	_	0	+	

$$f(x) > 0 \Leftrightarrow x^2 - 9 > 0 \Leftrightarrow x^2 > 9$$

 $\Leftrightarrow x > 3 \text{ ou } x < -3$

Les variations - tableau de variation

x	-∞	0	+∞
f		<u> </u>	

 $a,b \in \mathbb{R}$

- f est **croissante** sur un intervalle I, si pour tous a et b de I tels que a < b, on a $f(a) \le f(b)$
- f est **décroissante** sur un intervalle I, si pour tous a et b de I tels que a < b, on a $f(a) \ge f(b)$

Comment étudier une fonction ?

Les extremums (minimum et maximum)

f, définie sur I, admet un **extremum local en** x_0 si :

• $f(x_0)$ est un **maximum local** si, pour un certain intervalle autour de x_0 , on a : $f(x_0) \ge f(x)$ pour tout x dans cet intervalle autour de x_0

ou

• $f(x_0)$ est un **minimum local** si, pour un certain intervalle autour de x_0 , on a : $f(x_0) \le f(x)$ pour tout x dans cet intervalle autour de x_0

Les limites (cf. cours sur les limites)

Les symétries - la parité

- f, définie sur I, est **paire** si pour tout x de I, on a : f(-x) = f(x)**Symétrie** par rapport à l'axe des ordonnées
- f, définie sur I, est **impaire** si pour tout x de I, on a : f(-x) = -f(x)Symétrie centrale par rapport à l'origine

La périodicité

f, définie sur I, est k-périodique si pour tout x de I, on a : f(x + k) = f(x)

L'étude d'une fonction permet d'analyser son comportement sans avoir besoin de la tracer

Les fonctions usuelles

Fonction affine

Forme de l'**équation** : a et b des réels

$$f(x) = ax + b$$
 Ordonnée à l'origine

Coefficient directeur

Courbe représentative : une droite

Coefficient directeur

Soient A et B des points de la droite, de coordonnées respectives (x_A, y_A) et (x_B, y_B)

$$a = \frac{y_B - y_A}{x_B - x_A} = \frac{f(x_B) - f(x_A)}{x_B - x_A}$$

- Si a = 0, f est une fonction constante (représentée par une droite horizontale)
- Si b = 0, f est une fonction linéaire (représentée par une droite qui passe par 0)
- Si a > 0, la fonction est croissante
- Si a < 0, la fonction est décroissante

- \checkmark f est définie et continue sur $\mathbb R$
- ✓ Racine de f $f(x) = 0 \Leftrightarrow ax + b = 0 \Leftrightarrow x = -\frac{b}{a}$

√ Tableau de signes

Si a > 0

х	-∞	$-\frac{b}{a}$	+∞
f(x)	_	Ġ	+

Si a < 0

х	-8	$-\frac{b}{a}$	+∞
f(x)	+	0	-

Fonction carrée

Forme de l'équation : $f(x) = x^2$

$$f(x) = x^2$$

Courbe représentative : une parabole

√ f est paire

$$f(-x) = (-x)^2 = x^2 = f(x)$$

 C_f est **symétrique** par rapport à l'axe des ordonnées

$$f(x) = 0 \Longleftrightarrow x^2 = 0 \Longleftrightarrow x = 0$$

✓ f est **positive** sur \mathbb{R}

Tableau de variations

x	-∞	0	+∞
f		0	

Fonction racine carrée

Forme de l'équation :

$$f(x) = \sqrt{x}$$

- f est **définie** et **continue** sur \mathbb{R}^+
- f s'annule en 0
- f est positive et croissante sur \mathbb{R}^+

Courbe représentative :

Propriétés

$$\forall a, b \in \mathbb{R}^+, \qquad \sqrt{ab} = \sqrt{a} \times \sqrt{b}$$

$$(\sqrt{a})^2 = a$$

$$\forall a \in \mathbb{R} \qquad \sqrt{a^2} = |a| = \begin{cases} a \sin a > 0 \\ -a \sin a < 0 \end{cases}$$

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$
 avec $b \neq 0$

Fonction inverse

Forme de l'équation :

$$f(x) = \frac{1}{x}$$

- ✓ f est **définie** sur \mathbb{R}^*
- \checkmark f n'est pas **continue** sur \mathbb{R}
- √ f est impaire

$$f(-x) = \frac{1}{-x} = -\frac{1}{x} = -f(x)$$

 \mathcal{C}_f est **symétrique** par rapport à l'origine

√ f n'a pas de racine

Courbe représentative

√ Tableau de signes

√ Tableau de variations

Fonction exponentielle

Forme de l'équation :

$$f(x) = e^x$$

- \checkmark f est **définie** et **continue** sur \mathbb{R}
- \checkmark f ne s'annule pas
- \checkmark f est **positive** et **croissante** sur \mathbb{R}

Courbe représentative

Propriétés

$$e^0 = 1$$

Pour tous réels x et y:

$$e^x \times e^y = e^{x+y}$$

$$\frac{e^x}{e^y} = e^{x-y}$$

$$(e^x)^y = e^{xy}$$

Fonction logarithme

Forme de l'équation :

$$f(x) = \ln(x)$$

- f est **définie** et **continue** sur \mathbb{R}_+^*
- f s'annule en 1
- f est **croissante** sur \mathbb{R}_+^*
- Tableau de signes

x	0		1		+∞
f(x)		_	0	+	

Courbe représentative

Propriétés

Pour tous $x, y \in \mathbb{R}_+^*$: $\ln(x \times y) = \ln(x) + \ln(y)$

avec
$$y \neq 0$$
: $\ln\left(\frac{x}{y}\right) = \ln(x) - \ln(y)$
 $\ln(x)^y = y\ln(x)$

C'est la fonction réciproque de la fonction exponentielle

$$ln(e^x) = x \quad pour \ tout \ x \in \mathbb{R}$$

 $e^{lnx} = x \quad pour \ tout \ x > 0$

Fonction cosinus et sinus

Forme de l'équation :

$$f(x) = cos(x)$$

- définies et continues sur ℝ
- continues $\operatorname{sur} \mathbb{R}$
- 2π -périodiques

$$\cos(x + 2k\pi) = \cos(x)$$

$$\sin(x + 2k\pi) = \sin(x) \qquad (k \in \mathbb{Z})$$

Fonction cosinus et sinus

- ✓ La fonction cosinus est **paire** cos(-x) = cos(x)
- ✓ La fonction sinus est **impaire** $\sin(-x) = -\sin(x)$

Les fonctions étant 2π -périodiques, on peut les étudier sur $[-\pi;\pi]$ Les fonctions étant paire et impaire, on peut les étudier sur $[0;\pi]$

✓ Racines

$$\cos\left(\frac{\pi}{2}\right) = 0$$
 La fonction cosinus s'annule pour les x de la forme $x = \frac{\pi}{2} + k\pi$ avec $k \in \mathbb{Z}$

 $\sin(0) = \sin(\pi) = 0$ La fonction sinus s'annule pour les x de la forme $x = k\pi$ avec $k \in \mathbb{Z}$

√ Tableaux de signes

x	0		$\frac{\pi}{2}$	π
cos(x)		+	Ó	_
sin(x)	0		+	0

√ Tableaux de variations

Fonction tangente

Forme de l'équation : $f(x) = \tan(x)$

- ✓ **définie** sur D = $\mathbb{R}\setminus\{\frac{\pi}{2}+k\pi, k\in\mathbb{Z}\}$
- √ π −périodique ∀x ∈ D, tan(x + kπ) = tan(x)
- ✓ impaire tan(-x) = -tan(x)
- ✓ racines

 Elle s'annule pour les x de la forme $x = k\pi$ avec $k \in \mathbb{Z}$ $\tan(0) = \tan(\pi) = 0$
- ✓ **positive** sur $\left[0; \frac{\pi}{2}\right]$
- ✓ **croissante** sur *D*

Courbe représentative

Machine learning et les fonctions

Fonction sigmoïde

Forme de l'équation :

$$f(x) = \frac{1}{1 + e^{-x}}$$

- \checkmark f est **définie** et **continue** sur \mathbb{R}
- √ f ne s'annule pas
- ✓ f est croissante sur \mathbb{R}
- √ f est comprise entre 0 et 1

Fonction Logit : $\ln\left(\frac{x}{1-x}\right)$ réciproque de la fonction sigmoïde

Courbe représentative

Fonction sigmoïde

Forme de l'**équation** :

$$\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

- \checkmark f est **définie** et **continue** sur \mathbb{R}
- √ f s'annule en 0
- \checkmark f est croissante sur $\mathbb R$
- √ f est comprise entre -1 et 1

Les limites

Notion de limite

Pour savoir comment se comporte la fonction autour de ses valeurs interdites, on calcule l'image de x quand x se rapproche de ces valeurs.

Exemple: $\lim_{x\to 3} f(x)$

Les limites nous aident aussi à déterminer le comportement de la fonction lorsqu'elle tend vers plus ou moins l'infini

Les limites infinies en l'infini

$$\lim_{x \to \pm \infty} f(x) = \pm \infty$$

$$\lim_{x \to +\infty} x^n = +\infty$$

$$n > 0$$
 et n impair

$$\lim_{x\to -\infty} x^n = -\infty$$

$$n > 0$$
 et n pair

$$\lim_{x \to -\infty} x^n = +\infty$$

Exemple

$$\lim_{x \to \pm \infty} x^2 = +\infty$$

On peut compléter le tableau de variation

Les limites finies en l'infini

f une fonction et a un réel

$$\lim_{x \to +\infty} f(x) = a$$

$$\lim_{x \to -\infty} f(x) = a$$

Exemple

$$\lim_{x \to +\infty} \frac{1}{x} = 0$$

La droite y = a est une **asymptote horizontale**. La courbe se rapproche de la droite.

La droite
$$y = a$$
 est une **asymptote horizontale**.
La courbe se rapproche de la droite.

Si
$$\lim_{x \to \pm \infty} f(x) = \pm \infty$$
 alors $\lim_{x \to \pm \infty} \frac{1}{f(x)} = 0$

Les limites infinies en un réel

f une fonction et a un réel

$$\lim_{x \to a} f(x) = +\infty$$

$$\lim_{x \to a} f(x) = -\infty$$

La droite x = a est une **asymptote verticale**. La courbe se rapproche de la droite.

Exemple

$$\lim_{x \to 0^{+}} \frac{1}{x} = +\infty \qquad \lim_{x \to 0^{-}} \frac{1}{x} = -\infty$$

$$\downarrow x > 0 \qquad x < 0$$

f une fonction et a un réel

Si
$$\lim_{x \to a} f(x) = 0^+$$
 alors $\lim_{x \to a} \frac{1}{f(x)} = +\infty$

Si
$$\lim_{x \to a} f(x) = 0^-$$
 alors $\lim_{x \to a} \frac{1}{f(x)} = -\infty$

Propriétés

$$\lim(f(x) + g(x)) = \lim f(x) + \lim g(x)$$

$$\lim (a \times f(x)) = a \times \lim f(x)$$

Somme

$\lim_{x\to a} f(x)$	L	L	L	+8	-8	+∞
$\lim_{x\to a}g(x)$	L'	+∞	-8	+∞	-8	-8
$\lim_{x \to a} (f(x) + g(x))$	L + L'	+∞	-∞	+∞	-∞	F.I.

F.I. = Forme Indéterminée

Produit

$\lim_{x\to a} f(x)$	L	L > 0	<i>L</i> < 0	<i>L</i> > 0	<i>L</i> < 0	+8	8	+8	0
$\lim_{x\to a}g(x)$	L'	+∞	+∞	-8	-8	+8	-8	-8	±∞
$\lim_{x\to a}(f(x)g(x))$	L × L'	+8	-8	-8	+8	+∞	+∞	8	F.I.

Quotient

$\lim_{x \to a} f(x)$	L	L	$L > 0$ ou $+ \infty$	<i>L</i> < 0 ou − ∞	$L > 0$ ou $+ \infty$	<i>L</i> < 0 ou − ∞	0	+8	+8	-8	-∞	±∞
$\lim_{x\to a}g(x)$	<i>L</i> '≠ 0	±8	0 avec g(x) > 0	0 avec g(x) > 0	0 avec g(x) < 0	0 avec g(x) < 0	0	L' > 0	L' < 0	L' > 0	L' < 0	±8
$ \lim_{x \to a} \frac{f(x)}{g(x)} $	$\frac{L}{L'}$	0	+∞	-8	-8	+∞	F.I.	+∞	-∞	-8	+∞	<i>F.I.</i>

Lever une forme indéterminée

Exemple

$$f(x) = \frac{x^2 - 1}{x + 4} = \frac{x^2 \left(1 - \frac{1}{x^2}\right)}{x \left(1 + \frac{4}{x}\right)} = \frac{x \left(1 - \frac{1}{x^2}\right)}{\left(1 + \frac{4}{x}\right)}$$

$$\lim_{x \to +\infty} \frac{1}{x} = 0$$

$$\lim_{x \to +\infty} \frac{1}{x} = 0$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x = +\infty$$

Les limites des fonctions usuelles

Fonction **affine** (a et b des réels)

Si
$$a > 0$$

$$\lim_{x \to +\infty} (ax + b) = +\infty \qquad \lim_{x \to -\infty} (ax + b) = -\infty$$

Si
$$a < 0$$

$$\lim_{x \to +\infty} (ax + b) = -\infty \qquad \lim_{x \to -\infty} (ax + b) = +\infty$$

Fonction **carrée**
$$\lim_{x \to +\infty} x^2 = +\infty$$

Fonction **inverse**
$$\lim_{x \to +\infty} \frac{1}{x} = 0^+ \qquad \lim_{x \to -\infty} \frac{1}{x} = 0^-$$

$$\lim_{x \to 0^+} \frac{1}{x} = +\infty \qquad \qquad \lim_{x \to 0^-} \frac{1}{x} = -\infty$$

$$\lim_{x \to -\infty} e^x = 0 \qquad \lim_{x \to +\infty} e^x = +\infty$$

Fonction **logarithme**
$$\lim_{x\to 0} \ln(x) = -\infty$$
 $\lim_{x\to +\infty} \ln(x) = +\infty$

Fonction **tangente**
$$\lim_{x \to -\frac{\pi}{2}} \tan(x) = -\infty \qquad \lim_{x \to \frac{\pi}{2}} \tan(x) = +\infty$$

Fonction **sigmoïde**
$$\lim_{x \to -\infty} \frac{1}{1 + e^{-x}} = 0 \qquad \lim_{x \to +\infty} \frac{1}{1 + e^{-x}} = 1$$

Fonction tangente hyperbolique
$$\lim_{x \to -\infty} \frac{e^x - e^{-x}}{e^x + e^{-x}} = -1$$
 $\lim_{x \to +\infty} \frac{e^x - e^{-x}}{e^x + e^{-x}} = -1$

Continuité

Une fonction
$$f$$
 est continue en a si $\lim_{x \to a} f(x) = f(a)$

Définition limite

Soit f une fonction et \mathcal{D}_f son ensemble de définition. Soient a et L des réels.

On dit que f(x) admet une limite L en a si $\lim_{x\to a} f(x) = L$

$$\lim_{x \to a} f(x) = L \quad \Longleftrightarrow \quad \forall \varepsilon \in \mathbb{R}_+^* \quad \exists \delta \in \mathbb{R}_+^* \quad tel \ que \quad \forall x \in \mathcal{D}_f \quad on \ a \quad (|x - a| < \delta \Longrightarrow |f(x) - L| < \varepsilon)$$

Les dérivées

Qu'est-ce qu'une dérivée ?

tangente : la droite qui touche la courbe en un seul point.

Le **coefficient directeur** a de la tangente est la **dérivée** de f au point d'abscisse x_0

$$f'(x_0) = a$$

Équation de la tangente de f au point d'abscisse x_0 :

$$y = f'(x_0)(x - x_0) + f(x_0)$$

Coefficient directeur d'une droite (AB) : $a = \frac{y_B - y_A}{x_B - x_A}$

Ici :
$$x_B = x_A + h$$
 , $y_B = f(x_A + h)$

$$a = \frac{f(x_A + h) - f(x_A)}{(x_A + h) - x_A} = \frac{f(x_A + h) - f(x_A)}{h}$$

$$f'(x_A) = \lim_{h \to 0} \frac{f(x_A + h) - f(x_A)}{h}$$

Calcul d'une dérivée

Calculer la dérivée de f au point d'abscisse 3.

$$f(x) = x^2 + 2 \qquad x_0 = 3$$

$$f(x_0) = f(3) = 3^2 + 2 = 11$$

$$f(x_0 + h) = f(3 + h)$$

$$= (3 + h)^2 + 2$$

$$= 3^2 + 2 \times 3 \times h + h^2 + 2$$

$$= 11 + 6h + h^2$$

$$\frac{f(3+h) - f(3)}{h} = \frac{11 + 6h + h^2 - 11}{h}$$
$$= \frac{6h + h^2}{h}$$
$$= 6 + h$$

$$f'(3) = \lim_{h \to 0} \frac{f(3+h) - f(3)}{h} = \lim_{h \to 0} (6+h) = 6$$

La dérivée de f au point d'abscisse 3 est : f'(3) = 6

Variations et dérivées

Soit une fonction f définie et dérivable sur un intervalle I

- Si $f'(x) \le 0$ alors f est décroissante sur I.
- Si $f'(x) \ge 0$ alors f est croissante sur I

Pour étudier les variations d'une fonction, on étude le signe de sa dérivée.

Les dérivées usuelles

Fonction	Dérivée	Domaine de définition	Domaine de dérivabilité	
ax + b	а	R	R	$a,b \in \mathbb{R}$
x^n	nx^{n-1}	R	R	$n\in\mathbb{N}$
$\frac{1}{x}$	$-\frac{1}{x^2}$	ℝ*	\mathbb{R}^*	
$\frac{1}{x^n}$	$-\frac{n}{x^{n+1}}$	R*	R*	$n\in\mathbb{N}^*$
\sqrt{x}	$\frac{1}{2\sqrt{x}}$	R ⁺	R ^{+*}	

f(x)+g(x)	f'(x) + g'(x)
$a \times f(x)$	$a \times f'(x)$

Fonction	Dérivée	Domaine de définition	Domaine de dérivabilité	
e ^x	e^x	\mathbb{R}	\mathbb{R}	
ln(x)	$\frac{1}{x}$	R ^{+*}	R ^{+*}	
$\cos(x)$	$-\sin(x)$	\mathbb{R}	\mathbb{R}	
sin(x)	$\cos(x)$	\mathbb{R}	\mathbb{R}	
tan(x)	$\frac{1}{\cos^2(x)}$	$\mathbb{R}\backslash\{\frac{\pi}{2}+k\pi,k\in\mathbb{Z}\}$	$\mathbb{R}\backslash\{\frac{\pi}{2}+k\pi,k\in\mathbb{Z}\}$	

Formules dérivées

Soient f, g, u et v des fonctions.

Produit de fonctions

$$f(x) = u(x) \times v(x)$$

$$f'(x) = u'(x) \times v(x) + u(x) \times v'(x)$$

Exemple: $f(x) = 4x \sqrt{x}$ f est définie sur \mathbb{R}^+ et dérivable sur \mathbb{R}^+_+

$$u(x) = 4x$$

$$u'(x) = 4$$

$$v(x) = \sqrt{x}$$

$$v'(x) = \frac{1}{2\sqrt{x}}$$

$$f'(x) = 4\sqrt{x} + \frac{4x}{2\sqrt{x}} = 4\sqrt{x} + \frac{2x\sqrt{x}}{x} = 6\sqrt{x}$$

Inverse d'une fonction

$$f(x) = \frac{1}{u(x)}$$

$$f(x) = \frac{1}{u(x)} \qquad \boxed{f'(x) = \frac{-u'(x)}{u^2(x)}}$$

Exemple: $f(x) = \frac{1}{3x^2 + x}$ f est définie et dérivable sur $\mathbb{R} \setminus \left\{0; -\frac{1}{3}\right\}$

$$u(x) = 3x^2 + x$$

$$u'(x) = 6x + 1$$

$$u'(x) = 6x + 1$$
 $f'(x) = -\frac{(6x + 1)}{(3x^2 + x)^2}$

Quotient de fonctions

$$f(x) = \frac{u(x)}{v(x)}$$

$$f'(x) = \frac{u'(x) \times v(x) - u(x) \times v'(x)}{v^2(x)}$$

Exemple: $f(x) = \frac{5x-2}{3x^2+x}$ f est définie et dérivable sur $\mathbb{R}\setminus\left\{0;-\frac{1}{3}\right\}$

$$u(x) = 5x - 2 \qquad u'(x) = 5$$

$$u'(x) = 5$$

$$v(x) = 3x^2 + x$$
 $v'(x) = 6x + 1$

$$v'(x) = 6x + 1$$

$$f'(x) = \frac{5(3x^2 + x) - (5x - 2)(6x + 1)}{(3x^2 + x)^2}$$
$$= \frac{-15x^2 + 12x + 2}{(3x^2 + x)^2}$$

Composée de fonctions

$$g(f(x)) = g \circ f(x)$$

$$g(f(x)) = g \circ f(x)$$

$$(g \circ f)'(x) = f'(x) \times g'(f(x))$$

Exemple: $h(x) = \sqrt{2x+1} = g \circ f(x)$ h est définie sur $[-\frac{1}{2}; +\infty[$ et dérivable sur $]-\frac{1}{2}; +\infty[$

$$g(x) = \sqrt{x}$$

$$g(x) = \sqrt{x}$$
 $g'(x) = \frac{1}{2\sqrt{x}}$

$$h'(x) = f'(x) \times g'(f(x))$$

$$f(x) = 2x + 1 \qquad f'(x) = 2$$

$$h'(x) = f'(x) \times g'(f(x))$$

= $2 \times \frac{1}{2\sqrt{f(x)}} = \frac{2}{2\sqrt{2x+1}}$
= $\frac{1}{2\sqrt{2x+1}}$

Dérivées secondes

Convexité

La dérivée seconde est la dérivée de la dérivée

- Si f''(x) est positif alors f est **convexe**
- Si f''(x) est négatif alors f est **concave**

f est **convexe**: la corde entre 2 points est **au-dessus** de la courbe

f est **concave**: la corde entre 2 points est **en-dessous** de la courbe

Une fonction f définie sur un intervalle I est **convexe** si pour tous x_1 et x_2 de I et tout λ de [0,1], on a : $f(\lambda x_1 + (1-\lambda)x_2) \le \lambda f(x_1) + (1-\lambda)f(x_2)$

Extremums et point d'inflexion

Quand f'(x) = 0: minimum ou maximum?

Si f''(x) > 0 c'est un minimum.

Si f''(x) < 0 c'est un maximum.

Si f''(x) change de signe c'est un point d'inflexion.

Exemples

$$f(x)=x^2$$

$$f'(x) = 0 \Leftrightarrow 2x = 0 \Leftrightarrow x = 0$$

f''(x) = 2 > 0 f a un minimum en 0

$$h(x) = x^3 \qquad h'(x) = 3x^2$$

$$h'(x) = 0 \Leftrightarrow x = 0$$

Si
$$x > 0$$
, on a $h''(x) > 0$

$$h''(x) = 6x$$

Si
$$x < 0$$
, on a $h''(x) < 0$

$$g(x) = -x^{2} + x$$

$$g'(x) = 0 \Leftrightarrow -2x + 1 = 0 \Leftrightarrow x = \frac{1}{2}$$

$$g''(x) = -2 < 0 \quad g \text{ a un maximum en } \frac{1}{2}$$

Étude de fonction

Les point à étudier

- √ Le domaine de définition
- √ Les signes
- √ Les variations
- √ Les extremums et points d'inflexion
- √ Les limites
- √ La parité
- √ La périodicité

Exemple

Étudions la fonction $f: f(x) = \ln(x^2 - 4)$

Le domaine de définition

f est définie quand $x^2 - 4 > 0$

$$x^2 - 4 > 0 \iff (x - 2)(x + 2) > 0$$

$$D_f =]-\infty; -2[\cup]2; +\infty[$$

x	-∞	-2		2	+∞
x - 2	_		_	o	+
x + 2	_	0	+		+
(x-2)(x+2)	+	0	_	Ó	+

La parité

Soit
$$x \in D_f$$
 $f(-x) = \ln((-x)^2 - 4) = \ln(x^2 - 4) = f(x)$ donc f est paire.

On peut étudier la fonction sur l'intervalle $]2; +\infty[$

Les racines

Soit
$$x \in D_f$$
 $\ln(x^2 - 4) = 0 \Leftrightarrow (x^2 - 4) = 1 \Leftrightarrow x^2 = 5 \Leftrightarrow x = -\sqrt{5} \text{ ou } x = \sqrt{5}$

 $-\sqrt{5}$ et $\sqrt{5}$ appartiennent à l'ensemble de définition. Ce sont les racines de f.

Le tableau de variations

$$f$$
 est dérivable sur $]-\infty;-2[\cup]2;+\infty[$ $f(x)=\ln(u(x))$

$$f'(x) = \frac{u'(x)}{u(x)}$$
 $u(x) = x^2 - 4$ $u'(x) = 2x$

$$f'(x) = \frac{2x}{x^2 - 4} = \frac{2x}{(x - 2)(x + 2)}$$

f croissante sur]2; $+\infty$ [et est paire, donc elle est décroissante sur] $-\infty$; -2[

х	2		+∞
2 <i>x</i>		+	
x-2	o O	+	
x + 2		+	
f'(x)		+	

Les limites

$$\lim_{x \to \pm \infty} x^2 - 4 = +\infty$$

$$\lim_{x \to \pm 2} x^2 - 4 = 0$$

$$\lim_{x \to \pm 2} \ln(x) = +\infty$$

$$\lim_{x \to 0} \ln(x) = -\infty$$

$$\lim_{x \to +\infty} f(x) = -\infty$$

$$\lim_{x \to +\infty} f(x) = +\infty$$

Intégrales et primitives

Intégrale

Soit f une fonction continue et positive sur un intervalle [a;b].

L'intégrale de f sur [a;b] est l'aire, en unité d'aire, de la surface délimitée par :

- Les droites verticales d'équations x = a et x = b
- La courbe représentative de la fonction f

Intervalle
$$[a, b]$$

$$\int_{a}^{b} f(x) dx = \text{aire sous la courbe entre } a \text{ et } b$$
Indique à quelle variable correspondent a et b

Primitive

Soit f une fonction continue et positive sur un intervalle [a;b]. On note F la fonction définie sur [a;b] par $F(x)=\int_a^x f(t)dt$

F est dérivable sur [a;b] et sa dérivée est la fonction f

F est une **primitive** de f

$$\forall x \in [a;b] \boxed{F'(x) = f(x)}$$

$$\int_{a}^{b} f(x)dx = [F(x)]_{a}^{b} = F(b) - F(a)$$

Exemple calcul

$$f(x) = x^2$$

Calculons l'aire sous la courbe de f entre 0 et 2. Soit F une primitive de f.

$$\int_0^2 f(x)dx = \int_0^2 x^2 dx = [F(x)]_0^2 = F(2) - F(0)$$

$$F(x) = \frac{x^3}{3}$$
 $F(2) - F(0) = \frac{2^3}{3} - \frac{0^3}{3} = \frac{8}{3}$

Donc l'aire sous la courbe de f entre 0 et 2 vaut $\frac{8}{3}$ unités d'aire.

Pourquoi une primitive?

F est une primitive de f

f admet une infinité de primitives :

$$F(x) + C$$
 avec C un réel

$$\int_0^2 f(x)dx = \int_0^2 x^2 dx = [F(x)]_0^2$$

$$F(x) = \frac{x^3}{3}$$
 $F'(x) = \frac{3 \times x^2}{3} = x^2$

$$G(x) = \frac{x^3}{3} + 8$$
 $G'(x) = \frac{3 \times x^2}{3} + 0 = x^2$

F et G sont des primitives de f

Propriétés

Soient f et g des fonctions continues sur un intervalle [a; b].

$$\int_{a}^{a} f(x)dx = 0$$

$$\int_{b}^{a} f(x)dx = -\int_{a}^{b} f(x)dx$$

Si
$$f(x) \ge 0$$
 et $a \le b$ alors $\int_a^b f(x) dx \ge 0$

Si
$$f(x) \le g(x)$$
 et $a \le b$ alors $\int_a^b f(x)dx \le \int_a^b g(x)dx$

Propriété de Chasles : a, b, c des réels tels que $a \le c \le b$

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$

Linéarité : pour tout réel λ

$$\int_{a}^{b} (f(x) + g(x))dx = \int_{a}^{b} f(x)dx + \int_{a}^{b} g(x)dx$$

$$\int_{a}^{b} (\lambda f(x)) dx = \lambda \times \int_{a}^{b} f(x) dx$$

Formules

Fonction		Primitives (C ∈ R)	Domaine des primitives	
x^n	$n\in\mathbb{Z}\backslash\{-1\}$	$\frac{x^{n+1}}{n+1} + C$	\mathbb{R}	
$\frac{1}{x^n}$	$n \in \mathbb{N} \backslash \{0; 1\}$	$-\frac{1}{(n-1)x^{n-1}} + C$ $\ln(x) + C$	\mathbb{R}^*	
$\frac{1}{x}$		ln(x) + C	R*+	
$\frac{1}{\sqrt{x}}$		$2\sqrt{x}+C$	R *+	
e^x		$e^x + C$	\mathbb{R}	
$\cos(x)$		$\sin(x) + C$	\mathbb{R}	
sin(x)		$-\cos(x) + C$	\mathbb{R}	

Intégration par partie

Soient u et v des fonctions dérivables, de dérivées continues. Soient a et b des réels dans l'intervalle de définition des fonctions.

$$\int_a^b u'(x)v(x)dx = [u(x)v(x)]_a^b - \int_a^b u(x)v'(x)dx$$

Exemple:
$$\int_0^1 x \times e^x dx$$

$$v(x) = x$$
 $u'(x) = e^x$ $donc$ $v'(x) = 1$ $u(x) = e^x + c$

$$\int_0^1 x \times e^x dx = [x \times e^x]_0^1 - \int_0^1 e^x dx = e - [e^x]_0^1 = e - (e - 1) = 1$$

Les suites

Qu'est-ce qu'une suite?

Exemple:

Au 1er janvier 2025, Sam a 1700€ sur son livret.

Le 2 janvier 2025, il décide de mettre 150€ sur son livret tous les 1 ers du mois.

Les montants sur son livret au fur et à mesure des mois, constituent une suite numérique.

rangs

Mois	Montant sur le livret	Ł
Janvier 2025	1700€	
Févier 2025	1850€	
Mars 2025	2000€	
Avril 2025	2150€	
Mai 2025	2300€	

termes de la suite

rangs

- \checkmark (U_n) désigne la suite
- \checkmark U_n désigne le n-ième terme de la suite
- \checkmark n est le rang

Formes d'une suite

Relation de récurrence

 U_0 est donné (ou U_1)

 $U_{n+1} = f(U_n)$

Formule explicite

$$U_n=f(n)$$

Exemple : $U_0 = 1700$

 $U_{n+1} = U_n + 150$

 $U_n = 1700 + n \times 150$

Variation d'une suite

Une suite peut être ni croissante ni décroissante. (exemple : $U_n = (-1)^n$)

Pour déterminer la variation d'une suite (U_n) ,

✓ Si on a la **forme par récurrence**, on cherche le signe de : $U_{n+1} - U_n$ pour tout entier naturel n

$$U_{n+1} - U_n > 0 \Leftrightarrow U_{n+1} > U_n$$

Exemple:

Quelle est la variation de la suite (V_n) définie pour tout entier naturel n par : $V_n = 5n^2 - 3$?

$$\begin{split} &V_{n+1}-V_n\\ &=(5(n+1)^2-3)-(5n^2-3)\\ &=5(n^2+2n+1)-3-5n^2+3\\ &=5n^2+10n+5-5n^2\\ &=10n+5>0 \qquad \text{car } n\geq 0 \qquad (V_n) \text{ est croissante.} \end{split}$$

✓ Si on a la forme explicite, $U_n = f(n)$, on regarde la variation de f

Si f est décroissante sur \mathbb{R}^+ alors (U_n) est décroissante. Si f est croissante sur \mathbb{R}^+ alors (U_n) est croissante.

Limite d'une suite

La suite (U_n) admet une limite l lorsque n tend vers l'infini si les termes de la suite se rapprochent de plus en plus de l lorsque n devient très grand.

On dit que la suite (U_n) converge vers un réel l et on note : $\lim_{n\to\infty}U_n=l$ si pour tout $\varepsilon>0$, il existe un entier naturel N tel que pour tout $n\geq N$, on a : $|U_n-l|<\varepsilon$

Exemples :
$$U_n = \frac{1}{n} \qquad \qquad U_n = n^2 + 6 \qquad \qquad U_n = (-1)^n$$

$$\lim_{n \to \infty} U_n = 0 \qquad \qquad \lim_{n \to \infty} U_n = +\infty \qquad \qquad U_0 = 1 \qquad U_1 = -1$$

$$U_0 = 1 \qquad \qquad U_1 = -1$$

$$U_2 = 1 \qquad \qquad U_3 = -1$$

$$U_0 = 1 \qquad \qquad U_1 = -1$$

$$U_1 = -1 \qquad \qquad U_2 = 1 \qquad \qquad U_3 = -1$$

$$U_1 = -1 \qquad \qquad U_3 = -1$$

Les suites arithmétiques

Qu'est-ce qu'une suite arithmétique?

Exemple:

Au 1er janvier 2025, Sam a 1700€ sur son livret.

Le 2 janvier 2025, il décide de mettre 150€ sur son livret tous les 1ers du mois.

 $\forall n \in \mathbb{N}$

$$U_{n+1} = U_n + 150$$

$$U_n = 1700 + n \times 150$$

$$U_0 = 1700$$

 (U_n) est une suite arithmétique.

La suite (U_n) est **arithmétique** s'il existe un réel r tel que, pour tout $n \in \mathbb{N}$:

$$U_{m+1} = U_m + r$$

$$U_{n} = U_{0} + nr$$

$$U_{n+1} = U_n + r$$
 r est la **raison** de la suite.
$$U_n = U_0 + nr$$
 Ou : $U_n = U_1 + (n-1)r$

Montrer qu'une suite est arithmétique.

Soit (U_n) une suite. On calcule $U_{n+1} - U_n$

Si on trouve une constante, alors la suite (U_n) est arithmétique de raison la constante trouvée.

Exemple:

Soit la suite (U_n) telle que pour tout entier naturel n, $U_n = 4(n-2)$

$$U_{n+1} - U_n = 4(n+1-2) - 4(n-2) = 4n - 4 - 4n + 8 = 4$$

 (U_n) est une suite arithmétique de raison 4

$$U_0 = 4(0-2) = -8$$

Variation et convergence d'une suite est arithmétique.

Soit (U_n) une suite arithmétique de raison r

- Si r > 0 alors la suite est **croissante** et elle tend vers $+\infty$
- Si r < 0 alors la suite est **décrois sante** et elle tend tend vers $-\infty$
- Si r = 0 alors la suite est **constante** et elle tend donc vers la valeur qu'elle prend.

Les suites géométriques

Qu'est-ce qu'une suite géométrique?

Exemple:

Hugo a placé un capital $U_0 = 1000$ € à 5% d'intérêts composés par an.

$$U_1 = 1000 + 0.05 \times 1000 = 1000 \times 1.05 = 1050 \in$$

$$U_2 = 1050 \times 1,05 = 1102,5$$

$$U_3 = 1000 \times 1,05 \times 1,05 \times 1,05 = 1000 \times (1,05)^3$$

$$\forall n \in \mathbb{N}$$
.: $U_{n+1} = U_n \times 1{,}05$ et $U_n = U_0 \times (1{,}05)^n$ (U_n) est une **suite géométrique**.

La suite (U_n) est **géométrique** s'il existe un réel q tel que, pour tout $n \in \mathbb{N}$: $U_{n+1} = qU_n \qquad \qquad q \text{ est la raison de la suite.}$ $U_n = U_0 \times q^n \qquad \qquad \text{Ou } : U_n = U_1 \times q^{n-1}$

$$U_{n+1} = qU_n$$
 q est la raison de la suite.

$$U_n = U_0 \times q^n$$
 Ou: $U_n = U_1 \times q^{n-1}$

Montrer qu'une suite est géométrique.

Soit (U_n) une suite. On calcule $\frac{U_{n+1}}{U_n}$

Si on trouve une constante, alors la suite (U_n) est géométrique de raison la constante trouvée.

Exemple:

Soit la suite (U_n) telle que pour tout entier naturel n, $U_{n+1} = 3U_n + 4$ et $U_0 = 2$. On pose $V_n = U_n + 2$. On veut montrer que V_n est géométrique

$$\frac{V_{n+1}}{V_n} = \frac{U_{n+1} + 2}{U_n + 2} = \frac{3U_n + 4 + 2}{U_n + 2} = \frac{3U_n + 6}{U_n + 2} = \frac{3(U_n + 2)}{U_n + 2} = 3$$

 (V_n) est géométrique de raison 3 et de premier terme $V_0 = U_0 + 2 = 4$

Pour tout entier naturel n, on a : $V_n = 4 \times 3^n$

Variation d'une suite géométrique

Soit (U_n) une suite géométrique de raison q. $U_n = U_0 \times q^n \quad \forall n \in \mathbb{N}$

- \checkmark Si q>1 alors la suite est croissante si $U_0>0$ et décroissante si $U_0<0$
- \checkmark Si 0 < q < 1 alors la suite est décroissante si $U_0 > 0$ et croissante si $U_0 < 0$
- ✓ Si q = 1 alors la suite est constante
- ✓ Et si q < 0? La suite n'est ni croissante ni décroissante.

Convergence d'une suite géométrique

- ✓ Si |q| < 1 alors la suite converge vers 0
- ✓ Si q > 1 alors la suite **diverge vers** $+\infty$ **si** $U_0 > 0$, **vers** $-\infty$ si $U_0 < 0$.
- ✓ Si $q \le -1$ la suite **diverge** et ne possède pas de limite.

Les séries

Qu'est-ce qu'une série ?

C'est la somme des termes d'une suite.

$$\sum_{i=0}^{\infty} U_i$$

Somme n premiers termes de (Un):

$$S_n = \sum_{i=0}^{i=n} U_i = U_0 + U_1 + \dots + U_n$$
 S_n est la somme partielle d'ordre n de la **série** $\sum_{n \in \mathbb{N}} U_i$

remarque : (S_n) est aussi une suite

Exemple: (U_n) une suite telle que pour tout entier naturel n, $U_n = n^2 + 1$

$$S_3 = \sum_{i=0}^{i=3} U_i = U_0 + U_1 + U_2 + U_3 = (0^2 + 1) + (1^2 + 1) + (2^2 + 1) + (3^2 + 1) = 18$$

Soit (U_n) une suite arithmétique

Pour tout entier naturel *n*

nombre de termes

premier terme $S_n = \underbrace{(n+1)} \times \underbrace{U_0 + U_n}_2$ dernier terme

$$\sum_{i=1}^{i=n} U_i = n \times \frac{U_1 + U_n}{2}$$

$$\sum_{i=0}^{\infty} U_i = \lim_{n \to +\infty} S_n$$

$$S_n = (n+1) \times \frac{U_0 + U_n}{2} = (n+1) \times \frac{U_0 + (U_0 + nr)}{2} = (n+1) \times \left(U_0 + n\frac{r}{2}\right)$$

$$\checkmark$$
 $\lim_{n\to+\infty} S_n = +\infty$ si $r>0$

$$\int \lim_{n \to +\infty} S_n = -\infty \quad \text{si } r < 0$$

$$\sqrt{\lim_{n\to+\infty} S_n} = +\infty \quad \text{si } r = 0 \text{ et } U_0 > 0$$

$$\checkmark$$
 $\lim_{n\to+\infty} S_n = -\infty$ si $r=0$ et $U_0 < 0$

Somme des n premiers entiers

Pour tout entier naturel n

$$0 + 1 + 2 + 3 + \dots + n = \boxed{\frac{n(n+1)}{2}}$$

$$U_n = 0 + 1 \times n = n$$

$$S_n = (n+1) \times \frac{U_0 + U_n}{2} = (n+1) \times \frac{0+n}{2} = \frac{n(n+1)}{2}$$

Soit (U_n) une suite géométrique

$$\sum_{i=0}^{\infty} U_i = \lim_{n \to +\infty} S_n$$

$$S_n = U_0 \frac{1 - q^{n+1}}{1 - q}$$

- ✓ Si |q| < 1 alors $\lim_{n \to +\infty} q^n = 0$ donc $\lim_{n \to +\infty} S_n = \frac{U_0}{1-q}$, la série **converge.**
- ✓ Si $|q| \ge 1$ la série diverge.

Le raisonnement par récurrence

Idée générale

On veut montrer que tous les dominos tombent.

1 Initialisation: on montre que le 1er domino tombe.

Hérédité: on montre que si un domino tombe, il fait tomber le suivant.

Rédaction

Soit une propriété dépendant d'un entier naturel

1 Initialisation:

 $\overline{\text{Si}}$ la propriété est vraie pour un entier n_0

2 <u>Hérédité</u> :

Et si la propriété étant vraie pour un entier $n \geq n_0$, est vraie au rang n+1

Alors la propriété est vraie pour tout entier $n \ge n_0$

Exemple:

Pour tout entier naturel n, on appelle P_n la propriété : « pour tout réel x strictement positif, on a : $(1+x)^n \ge 1 + nx$ »

 $\underline{\text{Initialisation}}: \text{Soit } x \in \mathbb{R}_+^*$

$$(1+x)^0 = 1$$
 $1+0x = 1$ $(1+x)^0 \ge 1+0x$ Donc P_0 est vraie.

 $\underline{\text{H\'er\'edit\'e}}$: On suppose que la propriété est vraie pour un certain rang n.

Soit
$$x \in \mathbb{R}_+^*$$
 $(1+x)^{n+1} = (1+x)(1+x)^n \ge (1+x)(1+nx)$. (car P_n est vraie)
$$(1+x)^{n+1} \ge 1 + (n+1)x$$
 Donc P_{n+1} est vraie.

 P_0 est vraie et pour tout entier naturel n, si P_n est vraie alors P_{n+1} est vraie.

Ainsi P_n est vraie pour tout entier naturel n

Les distances

Notion de distance

Mesure l'écart entre deux objets.

Exemple : écart entre la maison et le travail

La distance à vol d'oiseau ou la distance parcourue en voiture

$$(x,y) \mapsto d(x,y)$$

✓ Symétrie : $\forall (a,b) \in E^2$, d(a,b) = d(b,a)

✓ Séparation : $\forall (a,b) \in E^2$, $d(a,b) = 0 \Leftrightarrow a = b$

✓ Inégalité triangulaire : $\forall (a, b, c) \in E^3$, $d(a, b) \le d(a, c) + d(c, d)$

Distance euclidienne

Soit E un espace euclidien

Distance euclidienne entre deux points de E: Longueur du segment qui sépare ces points.

$$x, y \in \mathbb{R}^n$$

$$d(x, y) = \sqrt{\sum_{i=1}^n (x_i - y_i)^2}$$

En machine learning?

- ✓ KNN
- ✓ KMeans
- √ Régularisation L2 (ridge)

Distance de Manhattan

ou distance des blocs

$$x, y \in \mathbb{R}^n$$

$$d(x, y) = \sum_{i=1}^n |x_i - y_i|$$

$$d(A,B) = |x_A - x_B| + |y_A - y_B|$$

En machine learning?

√ Régularisation L1 (Lasso)

Distance de Minkowski

Généralisation des distances euclidiennes et de Manhattan

$$x, y \in \mathbb{R}^n$$

$$d(x, y) = \left(\sum_{i=1}^n |x_i - y_i|^p\right)^{\frac{1}{p}}$$

Exemple pour p = 3:

$$d(x,y) = \left(\sum_{i=1}^{n} |x_i - y_i|^3\right)^{\frac{1}{3}}$$

Distance cosinus

Mesure de l'angle entre deux vecteurs, u et v:

Distance comprise entre 0 et 2 :

 \square Vecteurs identiques : d(u, v) = 0

 \Box Vecteurs opposés : d(u, v) = 2

Vecteurs orthogonaux : d(u, v) = 1 (aucune similarité directionnelle)

En machine learning?

✓ NLP (similarité entre des mots)

Distance de Jaccard

Soient A et B deux ensembles.

Similarité de Jaccard

 $|A \cap B|$: Taille de l'intersection de A et B

 $|A \cup B|$: Taille de l'union de A et B

 $B = \{ \text{ } \textit{``fleur''}, \textit{``fontaine''}, \textit{``arbre''}, \textit{``banc''}, \textit{``buisson''}, \textit{``jardin''}\}$

C = { « genealogie », « ancêtre », « arbre », « lien »}

$$Jaccard(A, B) = 1 - \frac{4}{7} = \frac{3}{7}$$
 $Jaccard(A, C) = 1 - \frac{1}{8} = \frac{7}{8}$

En machine learning?

- ✓ NLP
- ✓ Clustering

Tableau récapitulatif

Distance	Principe	Exemples d'applications	Formule $x, y \in \mathbb{R}^n$	Image
Distance euclidienne	Longueur du segment qui sépare deux points.	Mesure de distance générale, classification, clustering. Régularisation L2.	$\sqrt{\sum_{i=1}^{n}(x_i-y_i)^2}$	•
Distance de Manhattan	Distance basée sur des déplacements en ligne droite (sur des grilles)	Réseaux en grille, traitement d'images. Régularisation L1.	$\sum_{i=1}^{n} x_i - y_i $	•
Distance de Minkowski	Généralise les distances euclidienne et de Manhattan en permettant d'ajuster la mesure avec un paramètre p	Classification, Clustering	$\left(\sum_{i=1}^{n} x_i-y_i ^p\right)^{\frac{1}{p}}$	
Distance cosinus	Mesure du cosinus de l'angle entre deux vecteurs (u et v)	NLP Analyse de texte, regroupement de documents. Systèmes de recommandation.	$1 - \frac{u.v}{\ u\ \times \ v\ }$	
Distance de Jaccard	Mesure de la similarité entre deux ensembles (A et B) en utilisant l'intersection et l'union.	NLP Clustering Analyse de similarité d'ensemble. Systèmes de recommandation.	$1 - \frac{ A \cap B }{ A \cup B }$	