```
In [ ]: NAME : ARYAN SIRDESAI
          ROLL NO. : TACO20175
          Lab Assignment 4 : Data Analytics I
          Problem Statement : Create a Linear Regression Model using Python/R to predict home prices using Boston Housing Dataset (https://www.kaggle.com/c/boston-housing). The Boston Housing dataset contains information about various
          houses in Boston through different parameters. There are 506 samples and 14 feature variables in this dataset.
In [1]: import pandas as pd
          import seaborn as sns
          import matplotlib.pyplot as plt
          from sklearn.model_selection import train_test_split
          from sklearn.linear_model import LinearRegression
          import numpy as np
          from sklearn.metrics import mean_squared_error
In [2]: df=pd.read_csv("boston.csv")
In [3]: df
Out[3]:
               Unnamed: 0
                               crim
                                      zn indus chas
                                                        nox
                                                                             dis rad tax ptratio
                                                                                                     black Istat medy
                                                                rm
                                                                    65.2
            0
                         1 0.00632
                                     18.0
                                            2.31
                                                    0 0.538
                                                              6.575
                                                                          4.0900
                                                                                       296
                                                                                               15.3
                                                                                                    396.90
                                                                                                            4.98
                                                                                                                   24.0
            1
                            0.02731
                                      0.0
                                            7.07
                                                    0 0.469
                                                             6.421 78.9
                                                                         4.9671
                                                                                    2 242
                                                                                               17.8 396.90
                                                                                                            9.14
                                                                                                                   21.6
            2
                            0.02729
                                      0.0
                                            7.07
                                                    0 0.469
                                                             7.185
                                                                    61.1 4.9671
                                                                                    2 242
                                                                                               17.8
                                                                                                    392.83
                                                                                                            4.03
                                                                                                                   34.7
            3
                            0.03237
                                      0.0
                                            2.18
                                                    0 0.458
                                                             6.998 45.8 6.0622
                                                                                    3 222
                                                                                               18.7 394.63 2.94
                                                                                                                   33.4
            4
                         5
                            0.06905
                                      0.0
                                            2.18
                                                    0 0.458
                                                             7.147 54.2 6.0622
                                                                                    3 222
                                                                                               18.7 396.90 5.33
                                                                                                                   36.2
          501
                       502 0.06263
                                     0.0
                                          11.93
                                                    0 \quad 0.573 \quad 6.593 \quad 69.1 \quad 2.4786
                                                                                   1 273
                                                                                               21.0 391.99 9.67
                                                                                                                   22.4
          502
                       503 0.04527
                                     0.0
                                          11.93
                                                    0 0.573 6.120 76.7 2.2875
                                                                                    1 273
                                                                                              21.0 396.90 9.08
                                                                                                                   20.6
          503
                       504 0.06076
                                      0.0
                                           11.93
                                                    0 0.573 6.976 91.0 2.1675
                                                                                    1 273
                                                                                               21.0 396.90 5.64
                                                                                                                   23.9
          504
                       505 0.10959
                                      0.0
                                          11.93
                                                    0 0.573 6.794 89.3 2.3889
                                                                                    1 273
                                                                                               21.0 393.45
                                                                                                            6.48
                                                                                                                   22.0
          505
                       506 0.04741
                                     0.0 11.93
                                                    0 0.573 6.030 80.8 2.5050
                                                                                    1 273
                                                                                               21.0 396.90 7.88
                                                                                                                   11.9
         506 rows × 15 columns
```

CRIM: Per capita crime rate by town ZN: Proportion of residential land zoned for lots over 25,000 sq. ft INDUS: Proportion of non-retail business acres per town CHAS: Charles River dummy variable (= 1 if tract bounds river; 0 otherwise) NOX: Nitric oxide concentration (parts per 10 million) RM: Average number of rooms per dwelling AGE: Proportion of owner-occupied units built prior to 1940 DIS: Weighted distances to five Boston employment centers RAD: Index of accessibility to radial highways TAX: Full-value property tax rate per

 $10,000PTRATIO: Pupil-teacher ratio by town B: 1000 (Bk-0.63)^2, where Bk is the proportion of [people of African American descent] by town LSTAT: Peilin Median value of owner-occupied homes in 1000s$

The prices of the house indicated by the variable MEDV is our target variable and the remaining are the feature variables based on which we will predict the value of a house.

```
In [4]: df.rename({"Unnamed: 0":"a"}, axis="columns", inplace=True)
         df.drop(['a'],axis=1, inplace=True)
In [5]: df.isnull().sum()
        crim
Out[5]:
                    0
         indus
                    0
         chas
                    0
                    0
        nox
         rm
                    0
        age
         dis
         rad
         tax
                    0
         ptratio
        hlack
                    a
        1stat
                    0
        medv
                    0
        dtype: int64
In [6]: df.describe()
```

Out[6]:		crim	zn	indus	chas	nox	rm	age	dis	rad	tax	ptratio	black	
	count	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.0
	mean	3.613524	11.363636	11.136779	0.069170	0.554695	6.284634	68.574901	3.795043	9.549407	408.237154	18.455534	356.674032	12.6
	std	8.601545	23.322453	6.860353	0.253994	0.115878	0.702617	28.148861	2.105710	8.707259	168.537116	2.164946	91.294864	7.1
	min	0.006320	0.000000	0.460000	0.000000	0.385000	3.561000	2.900000	1.129600	1.000000	187.000000	12.600000	0.320000	1.7
	25%	0.082045	0.000000	5.190000	0.000000	0.449000	5.885500	45.025000	2.100175	4.000000	279.000000	17.400000	375.377500	6.9
	50%	0.256510	0.000000	9.690000	0.000000	0.538000	6.208500	77.500000	3.207450	5.000000	330.000000	19.050000	391.440000	11.3
	75%	3.677083	12.500000	18.100000	0.000000	0.624000	6.623500	94.075000	5.188425	24.000000	666.000000	20.200000	396.225000	16.9
	max	88.976200	100.000000	27.740000	1.000000	0.871000	8.780000	100.000000	12.126500	24.000000	711.000000	22.000000	396.900000	37.9

In [7]: df.shape

Out[7]: (506, 14)

In [8]: sns.set(rc={'figure.figsize':(12,9)})
sns.distplot(df['medv'], bins=20)
plt.show()

/Users/apple/opt/anaconda3/lib/python3.9/site-packages/seaborn/distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar f lexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

In [9]: df.corr().round(2)

Out[9

)]:		crim	zn	indus	chas	nox	rm	age	dis	rad	tax	ptratio	black	Istat	medv
	crim	1.00	-0.20	0.41	-0.06	0.42	-0.22	0.35	-0.38	0.63	0.58	0.29	-0.39	0.46	-0.39
	zn	-0.20	1.00	-0.53	-0.04	-0.52	0.31	-0.57	0.66	-0.31	-0.31	-0.39	0.18	-0.41	0.36
	indus	0.41	-0.53	1.00	0.06	0.76	-0.39	0.64	-0.71	0.60	0.72	0.38	-0.36	0.60	-0.48
	chas	-0.06	-0.04	0.06	1.00	0.09	0.09	0.09	-0.10	-0.01	-0.04	-0.12	0.05	-0.05	0.18
	nox	0.42	-0.52	0.76	0.09	1.00	-0.30	0.73	-0.77	0.61	0.67	0.19	-0.38	0.59	-0.43
	rm	-0.22	0.31	-0.39	0.09	-0.30	1.00	-0.24	0.21	-0.21	-0.29	-0.36	0.13	-0.61	0.70
	age	0.35	-0.57	0.64	0.09	0.73	-0.24	1.00	-0.75	0.46	0.51	0.26	-0.27	0.60	-0.38
	dis	-0.38	0.66	-0.71	-0.10	-0.77	0.21	-0.75	1.00	-0.49	-0.53	-0.23	0.29	-0.50	0.25
	rad	0.63	-0.31	0.60	-0.01	0.61	-0.21	0.46	-0.49	1.00	0.91	0.46	-0.44	0.49	-0.38
	tax	0.58	-0.31	0.72	-0.04	0.67	-0.29	0.51	-0.53	0.91	1.00	0.46	-0.44	0.54	-0.47
	ptratio	0.29	-0.39	0.38	-0.12	0.19	-0.36	0.26	-0.23	0.46	0.46	1.00	-0.18	0.37	-0.51
	black	-0.39	0.18	-0.36	0.05	-0.38	0.13	-0.27	0.29	-0.44	-0.44	-0.18	1.00	-0.37	0.33
	Istat	0.46	-0.41	0.60	-0.05	0.59	-0.61	0.60	-0.50	0.49	0.54	0.37	-0.37	1.00	-0.74
	medv	-0.39	0.36	-0.48	0.18	-0.43	0.70	-0.38	0.25	-0.38	-0.47	-0.51	0.33	-0.74	1.00

To fit a linear regression model, we select those features which have a high correlation with our target variable MEDV. By looking at the correlation matrix we can see that RM has a strong positive correlation with MEDV (0.7) where as LSTAT has a high negative correlation with MEDV(-0.74).

```
In [10]: plt.figure(figsize=(15, 10))
   plt.title("rm")
   plt.xlabel("rm")
   plt.ylabel('medv')
   plt.scatter(df['rm'],df['medv'])
```

Out[10]: cmatplotlib.collections.PathCollection at 0x7fc292664760>


```
In [11]: plt.figure(figsize=(15, 10))
  plt.title("lstat")
  plt.xlabel("lstat")
  plt.ylabel('medv')
  plt.scatter(df['lstat'],df['medv'])
```

Out[11]: <matplotlib.collections.PathCollection at 0x7fc292be6b50>


```
In [12]: rm= df['rm']
   medv= df['medv']
  In [13]: x_train, x_test, y_train, y_test = train_test_split(rm, medv, test_size = 0.2)
  In [14]: x_train.shape
  Out[14]: (404,)
  In [15]: y_train.shape
  Out[15]: (404,)
  In [16]: x_test.shape
  Out[16]: (102,)
  In [17]: y_test.shape
  Out[17]: (102,)
Converting to 2D array
  In [18]: x_train = np.array(x_train).reshape(-1, 1)
            y_train = np.array(y_train).reshape(-1, 1)
```

```
x_test = np.array(x_test).reshape(-1, 1)
y_test = np.array(y_test).reshape(-1, 1)
In [19]: model = LinearRegression()
            model.fit(x_train, y_train)
Out[19]: LinearRegression()
In [20]: y_predict = model.predict(x_test)
```

Using rm as independent variable for medv

```
In [21]: plt.title("predicted results")
         plt.xlabel("rm")
         plt.ylabel('medv')
         plt.scatter(x_train, y_train, color='blue')
         plt.scatter(x_test, y_predict, color='red',label="aa")
         plt.scatter(x_test, y_test, color="yellow")
```

Out[21]: <matplotlib.collections.PathCollection at 0x7fc292c4bf70>

Using Istat as independent variable for medv

```
In [22]: lstat= df['lstat']
             x_train, x_test, y_train, y_test = train_test_split(lstat, medv, test_size = 0.2)
             x_train = np.array(x_train).reshape(-1, 1)
            y_train = np.array(y_train).reshape(-1, 1)
x_test = np.array(x_test).reshape(-1, 1)
y_test = np.array(y_test).reshape(-1, 1)
             model = LinearRegression()
             model.fit(x_train, y_train)
```

```
y_predict = model.predict(x_test)
plt.title("predicted results")
plt.xlabel("lstat")
plt.ylabel('medv')
plt.scatter(x_train, y_train, color='blue')
plt.scatter(x_test, y_predict, color='red')
plt.scatter(x_test, y_test, color="yellow")
```

Out[22]: cmatplotlib.collections.PathCollection at 0x7fc29308f250>

The model performance for testing set

```
In [23]: X = pd.DataFrame(np.c_[df['lstat'], df['rm']], columns = ['lstat','rm'])
x_train, x_test, y_train, y_test = train_test_split(X, medv, test_size = 0.2)

model = LinearRegression()
model.fit(x_train, y_train)
y_predict = model.predict(x_test)

In [24]: rmse = (np.sqrt(mean_squared_error(y_test, y_predict)))
print('Root Mean Squared Error is {}'.format(rmse))
```

Root Mean Squared Error is 4.622907645726345