$$F = G \frac{m_1 m_2}{d^2}$$

$$\varphi(x)$$

Data SCIENCE - Lifecycle

BUSINESS UNDERSTANDING Ask relevant questions and define objectives for the problem that needs to be tackled.

Wat is de gestelde vraag of het probleem?

Formuleer de vragen waarop een antwoord moet gevonden worden

5 soorten vragen:

- Hoeveel?	Regressie
	- 0

- Wat is het? Classificatie
- Is het sterk gelijkend op? Clustering
- Is het vreemd? Anomaly Detection
- Welke optie is het beste? Recommendation

Verzamel data van verschillende bronnen Welke data is er nodig?

Hoe geraak ik aan deze data?

- Lokale databases
- Scraping van webpaginas
- Verzamelen van data van sensoren / apps / satellieten ...

Hoe bewaar ik de verzamelde data?

Belangrijke stap voor betrouwbare resultaten te bekomen:

Garbage In -> Garbage Out

Het doel is om problemen op te lossen in de datasets:

- Ontbrekende data
- Verkeerd gelabelde data (0/1 vs true/false)
- Verschillende dataformaten (male/m/Male or dates)
- Verbeteren van typos, vertalen van sommige velden, ...

Fase waarin je de verzamelde data bestudeerd

Zoek naar bestaande patronen en controleer of er een bias aanwezig

Visualiseer en analyseer deze patronen

Detecteer outliers

Stel een aantal hypotheses voor

Ook exploratory data analysis genoemd: https://en.wikipedia.org/wiki/Exploratory_data_analysis

Feature = Een meetbare eigenschap van een geobserveerd datapunt

Het zoeken naar de beste features van je data om je vraag op te lossen

- Vereist domein kennis om deze te bepalen/berekenen

1 Feature Selection

- Verwijder onbruikbare features/datapunten

Curse of dimensionality - led veel fertileture

- **Z**Feature Construction
 - Nieuwe features op basis van bestaande
 - Vaak belangrijk in het geval van beelden
 - vb: Enkel geinteresseerd of iemand volwassen is en niet de exacte leeftijd.

Machine learning model opbouwen

Probeer verschillende varianten en evalueer elk model

• Zie cheat sheet voor een aantal mogelijkheden

Beste keuze hang af van:

- Hoeveelheid, type en kwaliteit van de data
- Beschikbare computer-capaciteit
- Gewenste output type

Visualiseer de resultaten van het resulterende model Ook de behaalde inzichten tijdens het process zijn belangrijk De communicatie moet aangepast zijn aan de verschillende stakeholders

BUSINESS UNDERSTANDING 02 **DATA MINING DATA SCIENCE LIFECYCLE** 06 03 sudeep.co **DATA CLEANING PREDICTIVE** MODELING Fix the inconsistencies within the data and handle the missing values. DATA EXPLORATION **FEATURE ENGINEERING** Select important features and Form hypotheses about your construct more meaningful defined problem by visually analyzing the data.

Andere mogelijke lifecycles

Andere mogelijke lifecycles

The

Data Science Process

How to participate? wooclap **Q** 100 % **Q**

www.wooclap.com/EMQUEM

Wat zijn de te volgen stappen in de data science ...

Most frequent combinations:

5 🚢

- 6. Business understanding
- 2. Data mining
- 1. Data cleaning
- 3. Data exploration
- Feature engineering
 - 4. Predictive modeling
 - - Data vizualisation

2 🚨

- 1. Data cleaning
- 2. Data mining
- 3. Data exploration
- 4. Predictive modeling
- 5. Feature engineering
- 6. Business understanding
- Data vizualisation

- 2 🚨
- 6. Business understanding
- 2. Data mining
- Data vizualisation
- 3. Data exploration
- Data cleaning
- 4. Predictive modeling
- 5. Feature engineering

wooclap

www.wooclap.com/EMQUEM

Wat is het belangrijkste dat er gebeurd in elke stap van de Data Science lifecycle

The most frequent answers are

Business Understanding	← 16 ♣ →	Zoeken naar een op te lossen vraag
Data Mining	← 16 ♣ →	Verzamelen van data
Data Vizualization	← 15 ♣ →	Rapporteer je resultaten
Predictive modelling	← 13 ♣ →	Train een model voor de vraag te beantwoorden
Data Cleaning	← 12 ♣ →	Oplossen van fouten in de data
Data Exploration	← 9 ♣ →	Zoeken naar verbanden in de data
Data Cleaning	← 6 ♣ →	Splits de data af die je gaat gebruiken

Resources

http://sudeep.co/data-science/Understanding-the-Data-Science-Lifecycle/

https://en.wikipedia.org/wiki/Exploratory data analysis

https://docs.microsoft.com/en-us/azure/machine-learning/algorithm-cheat-sheet