高级人工智能原理与技术-遗传问题求解

我们来解决这个遗传算法问题,根据题目要求完成初始种群的选择、交叉和变异操作,并给出 新一代种群。

1. 初始化种群表

初始种群:

编号	基因型 (二进制)	表现型 (十进 制)	函数值 (f(x) = x^2)	概率 (p_i)	累计概率 (P_i)
S1	1010	10	(10^2 = 100)	(100/269 \approx 0.372)	0.372
S2	0100	4	(4^2 = 16)	(16/269 \approx 0.059)	0.431
S3	1100	12	(12^2 = 144)	(144/269 \approx 0.535)	0.966
S4	0111	7	(7^2 = 49)	(49/269 \approx 0.182)	1.000

总适应度值: (100 + 16 + 144 + 49 = 269)

2. 选择操作(轮盘赌算法)

轮盘赌算法的随机数分别为: 0.42, 0.16, 0.89, 0.71。按照随机数落在累计概率区间中的位置选择个体:

- 1. 随机数 (0.42) 落在 (P_2 = 0.372) 和 (P_3 = 0.966) 之间 → 选中 (S3)。
- 2. 随机数 (0.16) 落在 (P_1 = 0) 和 (P_2 = 0.372) 之间 → 选中 (S1)。
- 3. 随机数 (0.89) 落在 (P_3 = 0.966) 和 (P_4 = 1.000) 之间 → 选中 (S4)。
- 4. 随机数 (0.71) 落在 (P_3 = 0.966) 和 (P_4 = 1.000) 之间 → 选中 (S3)。

选择后的种群:

编号	基因型 (二进制)	表现型 (十进制)
S1'	1100	12

编号	基因型 (二进制)	表现型 (十进制)
S2'	1010	10
S3'	0111	7
S4'	1100	12

3. 交叉操作

交叉概率 (P_c = 1), 所有个体参与交叉, 交叉点为第3位, 交叉顺序按种群顺序进行:

原种群:

编号	基因型 (二进制)
S1'	1100
S2'	1010
S3'	0111
S4'	1100

交叉过程:

• (S1') 和 (S2') 在第3位交叉:

(S1' = 1100 \rightarrow 1110)

(S2' = 1010 \rightarrow 1000)

• (S3') 和 (S4') 在第3位交叉:

(S3' = 0111 \rightarrow 0100)

(S4' = 1100 \rightarrow 1111)

交叉后的种群:

编号	基因型 (二进制)
S1'	1110
S2'	1000
S3'	0100
S4'	1111

4. 变异操作

变异概率 (P_m = 0.1),每个位有 (10%)的概率发生变异。对每个基因逐位计算是否发生变异 (假设随机生成的变异判断结果如下):

变异计算:

1. (S1'): (1110) → 位2发生变异 → (1010)

2. (S2'): (1000) → 无变异 → (1000)

3. (S3'): (0100) → 无变异 → (0100)

4. (S4'): (1111) → 位3发生变异 → (1101)

变异后的种群:

编号	基因型 (二进制)	表现型 (十进制)
S1'	1010	10
S2'	1000	8
S3'	0100	4
S4'	1101	13

5. 新一代种群表

最终得到的新一代种群:

编号	基因型 (二进制)	表现型 (十进制)
S1'	1010	10
S2'	1000	8
S3'	0100	4
S4'	1101	13

这样,我们完成了选择、交叉和变异操作!