COMPUTER SCIENCE

SUBJECT NAME: DBMS

CHAPTER NO.: 1

CHAPTER NAME: FUNCTIONAL DEPENDENCY & NORMAL FORMS

LECTURE NO.: 1

SYLLABUS

ER-model. Relational model: relational algebra, tuple calculus, SQL. Integrity constraints, normal forms. File organization, indexing (e.g., B and B+ trees). Transactions and concurrency control.

REFERENCE TEXTBOOKS:

- Fundamentals of Database System

 Authors: Elmasri Ramez, Navathe Shamkant
- Database System Concepts

 Authors: Abraham Silberschatz, Henry F. Korth
- Database Management Systems

 Authors: Raghu Ramakrishnan, Johannes Gehrke

RECORD: A collection of individual data items.

Dr. E. F CODD

DATABASE: An organized collection of records.

DBMS: A software that facilitates the end user to manage the underlying data

base.

FUNCTIONAL DEPENDENCY

EACH VALUE OF A SHOULD BE ASSOCIATED
WITH THE SAME VALUE B'

A	В	C
a1	b1	c1
a2	b1	c1
a3	b2	c2
a1	b2	c1

$$A \neq B$$
 $B \neq C$
 $A \rightarrow C$
 $C \neq A$
 $AB \rightarrow C$
 $BC \neq A$
 $AC \neq B$
 $A \rightarrow A$
 $B \rightarrow B$
 $C \rightarrow C$
 $AB \rightarrow B$
 $C \rightarrow C$
 $C \rightarrow C$

FUNCTIONAL DEPENDENCY

FUNCTIONAL DEPENDENCY

- (1) TRIVIAL FOR X->Y IF X2Y FJ:- AB->A AB->AB
- (2) NON TRIVIAL FOR X->Y IF X NY = \$\phi \text{ Fg = AB -> CD (AB N CD = \$\phi\$)
- (3) SEMI NONTRIVIAL FOR X->Y IF XNY # AND X ZY

How many FDs are possible for a relation with "N" attributes?

AMSTRONG'S AXIOMS:

X > X

- (1) REFLEXIVITY IF X 2 Y THEN X →Y
- (2) AUGMENTATION IF X ->Y THEN XW->Y AND/OR XW ->YW
- (3) TRANSITIVITY IF X -> Y AND Y -> Z THEN X -> Z
- (4) PSEUDOTRANSITIVITY IF X->Y AND YW-Z THEN XW->Z
- (5) UNION IF X -> Y AND X -> Z THEN X -> YZ
- (6) DECOMPOSITION IF $X \rightarrow YZ$ THEN $X \rightarrow Y$ AND $X \rightarrow Z$ $2C \rightarrow y$ $2C \rightarrow y$

CLOSURE OF ATTRIBUTE SET:

The set of all the attributes that are functionally determined by an attribute set S is called as Closure of Attribute Set S.

$$B^{\dagger} = BCD \qquad C = CD$$

$$C \rightarrow \phi$$

$$C \rightarrow C$$

$$C \rightarrow D$$

$$C \rightarrow C$$

KEY:

Attributes or set of attributes that determines the tuples uniquely in a relation.

SUPER KEY:

(eid) = eid, ename, Salary

Attributes or set of attributes that possesses Uniqueness property

SUPER KEY

CANDIDATE KEY:

Attributes or set of attributes that possesses two properties

(1) Uniqueness

(e.d)

(2) Irreducible

EMPLOYEE

PRIMARY KEY:

One of the Candidate Key selected by the designer of the database.

ALTERNATE KEY:

All Candidate Keys except the Primary Key

FOREIGN KEY:

Attributes or set of attributes in a relation that acts as Primary Key in another relation.

FINDING ALL CANDIDATE KEYS

R(ABCD)

$$C \rightarrow A$$

$$(B)^{\dagger} = B$$

$$(2)(BCDA)^{\dagger} = BCDA$$

TOTAL 2 Candidak Key

AB & BC

RIABCRE)
F={AB>CD
C->D}

(AB) = ABCD

ONLY ONE CK

ABEL

BOTH LETE & RIGHT LEFT ONLY RIGHT ONLY AB (RB) = ABCD (ABE) = ABCDE CK as well as sle

R(ABC) F= {AB->C C->A} TOTAL CLY D(AB) = ABC CBD

ABX

< □ > < □ > < □ > < □ </p>

- (2) DB
 - 3 AC
- (1) D C
- (FB
- FC

Total 8 cks

FIND ALL THE CANDIDATE KEYS ?

CD->EF

D>A

C -> B

E>F

F > D}