

Art of Problem Solving

2010 Romanian Masters In Mathematics

Romanian Masters In Mathematics 2010

For a finite non empty set of primes P, let m(P) denote the largest possible number of consecutive positive integers, each of which is divisible by at least one member of P.

- (i) Show that $|P| \leq m(P)$, with equality if and only if $\min(P) > |P|$.
- (ii) Show that $m(P) < (|P| + 1)(2^{|P|} 1)$.

(The number |P| is the size of set P)

Dan Schwarz, Romania

For each positive integer n, find the largest real number C_n with the following property. Given any n real-valued functions $f_1(x), f_2(x), \dots, f_n(x)$ defined on the closed interval $0 \le x \le 1$, one can find numbers $x_1, x_2, \dots x_n$, such that $0 \le x_i \le 1$ satisfying

$$|f_1(x_1) + f_2(x_2) + \cdots + f_n(x_n) - x_1 x_2 \cdots x_n| \ge C_n$$

Marko Radovanovi, Serbia

Let $A_1A_2A_3A_4$ be a quadrilateral with no pair of parallel sides. For each i=1,2,3,4, define ω_1 to be the circle touching the quadrilateral externally, and which is tangent to the lines $A_{i-1}A_i$, A_iA_{i+1} and $A_{i+1}A_{i+2}$ (indices are considered modulo 4 so $A_0=A_4$, $A_5=A_1$ and $A_6=A_2$). Let T_i be the point of tangency of ω_i with the side A_iA_{i+1} . Prove that the lines A_1A_2 , A_3A_4 and T_2T_4 are concurrent if and only if the lines A_2A_3 , A_4A_1 and T_1T_3 are concurrent.

Pavel Kozhevnikov, Russia

Determine whether there exists a polynomial $f(x_1, x_2)$ with two variables, with integer coefficients, and two points $A = (a_1, a_2)$ and $B = (b_1, b_2)$ in the plane, satisfying the following conditions:

- (i) A is an integer point (i.e a_1 and a_2 are integers);
- (ii) $|a_1 b_1| + |a_2 b_2| = 2010$;
- (iii) $f(n_1, n_2) > f(a_1, a_2)$ for all integer points (n_1, n_2) in the plane other than A;
- (iv) $f(x_1, x_2) > f(b_1, b_2)$ for all integer points (x_1, x_2) in the plane other than B.

Massimo Gobbino, Italy

Contributors: Goutham

Art of Problem Solving

2010 Romanian Masters In Mathematics

ı			
-	1	h	

Let n be a given positive integer. Say that a set K of points with integer coordinates in the plane is connected if for every pair of points $R, S \in K$, there exists a positive integer ℓ and a sequence $R = T_0, T_1, T_2, \ldots, T_{\ell} = S$ of points in K, where each T_i is distance 1 away from T_{i+1} . For such a set K, we define the set of vectors

$$\Delta(K) = \{ \overrightarrow{RS} \mid R, S \in K \}$$

What is the maximum value of $|\Delta(K)|$ over all connected sets K of 2n + 1 points with integer coordinates in the plane?

Grigory Chelnokov, Russia

6

Given a polynomial f(x) with rational coefficients, of degree $d \geq 2$, we define the sequence of sets $f^0(\mathbb{Q}), f^1(\mathbb{Q}), \ldots$ as $f^0(\mathbb{Q}) = \mathbb{Q}, f^{n+1}(\mathbb{Q}) = f(f^n(\mathbb{Q}))$ for $n \geq 0$. (Given a set S, we write f(S) for the set $\{f(x) \mid x \in S\}$).

Let $f^{\omega}(\mathbb{Q}) = \bigcap_{n=0}^{\infty} f^n(\mathbb{Q})$ be the set of numbers that are in all of the sets $f^n(\mathbb{Q})$, $n \geq 0$. Prove that $f^{\omega}(\mathbb{Q})$ is a finite set.

Dan Schwarz, Romania

Contributors: Goutham