ASE 389P-7 Final Exam

Posting Date: December 16, 2024

Exam Rules: Do all problems, writing or printing on standard 8 1/2 by 11 inch paper. Hand in the completed exam to Dr. Humphreys in his office at 8 am on Tuesday, December 17, 2024, or slip it under his office door beforehand. No collaboration or consultation is allowed with any other person besides Dr. Humphreys. He is willing to discuss problems if he's available. You may use non-human outside sources (e.g., books). If you use such sources, please list them.

- 1. [10 points] Problem set 5 Number 7.
- 2. [15 points] Problem set 6 Number 1.
- 3. [15 points] Problem set 6 Number 2. Instead of generating your own simulated S_k time history in part (c), apply your estimation strategy to SkSim.mat. Note that the S_k time history in SkSim.mat goes from k = 0 to k = N 1. Thus, it has N elements. Estimate ρ , f, and θ , each to one decimal place (e.g., $\hat{f}_{ML} = 10.5 \text{ Hz}$).
- 4. [40 points] Problem set 7 Number 2, but instead of dfDataHead.bin, use the data file

https://radionavlab.ae.utexas.edu/datastore/gnssSigProcCourse/rawintegersamples_fe.bin

Each byte in this data file corresponds to a sample, with four sample streams interleaved. Use the script loadRawSamples.m to read in the data from this file (with appropriate modifications to the path and filename). Select stream = 1, which corresponds to the GPS L1 frequency for the receiver's primary antenna.

These data were captured by the "Radiolynx" front end, whose relevant characteristics are

Radiolynx Front-End Characteristics

Intermediate frequency: $f_{\rm IF} = 2.391428571429 \text{ MHz}$

Mixing: low-side mixed

Sampling frequency: $f_s = 9.6 \text{ MHz}$ Quantization: two level (single bit)

The rawintegersamples_fe.bin data recording is over 60 seconds long. Modify loadRawSamples.m as necessary to read data sequentially in manageable-sized chunks (e.g., 1-second).

There are nine GPS L1 C/A signals with $C/N_0 > 35$ dB-Hz present in the recording. These have Doppler frequencies approximately ranging from -4 kHz to 4 kHz.

- (a) [15 points] Acquire PRN 18, whose initial Doppler is around -680 Hz, and track it over 60 seconds.
- (b) [15 points] Acquire and track the next strongest six GPS L1 C/A signals, which all have C/N_0 above 40 dB-Hz.
- (c) [10 points] Acquire and track the weakest two signals, one of whose C/N_0 drops as low as 35 dB-Hz.

(d) [3 extra-credit points] Determine the GPS Week Number for the week in which the data were captured. For this, you'll need to lock onto the 50-Hz navigation data stream and decode the Week Number. See Section 6.2.4 in the GPS Interface Specification IS-GPS-200L. Also see Figure 20-1, where Week Number is abbreviated WN. As shown in Fig. 20-2, the first 8 bits of the TLM are a unique preamble that you can use to identify the beginning of each subframe, and bits 20-22 of the HOW will allow you to identify the subframe.

For each signal tracked, give (i) the PRN identifier, (ii) a plot of the Doppler time history in Hz, (iii) a plot of the S_k time history, with time on the horizontal axis, abs(real(Sk)) plotted in black (the abs operation eliminates the thrashing due to data bits), and imag(Sk) plotted in gray, and (iv) a plot of the estimated C/N_0 time history in dB-Hz as derived from your estimate of σ_{IQ}^2 (obtained, for example, during acquisition) and your estimate of $E[|S_k|^2]$ over the 60-second interval.

5. [20 points] Problem set 7 Number 4, except use the data given below.

PRN	tR (seconds)	tS (seconds)	
10	142874.031415926	142873.929	
18	142874.031415926	142873.930	
24	142874.031415926	142873.926	
32	142874.031415926	142873.928	
	for PRN 10:		
dtIono dtTrop	ef = -7771062.621964 b = 1.105596e-08 b = 1.031992e-08 = 0.000124682	-13392926.713787	21699866.518681
rSvEce dtIono dtTrop	for PRN 18: of = 4747181.126449 o = 1.206681e-08 o = 1.008367e-08 = 0.000324047	-25802711.537558	3938318.400306
rSvEce dtIono dtTrop	for PRN 24: ef = 14684443.702457 o = 1.582324e-08 o = 1.408656e-08 = -0.000394024	-15351446.405048	15470725.361304
rSvEce dtIono dtTrop	For PRN 32: ef = -15730896.676495 o = 1.226210e-08 o = 1.102516e-08 = -0.000018238	-20849558.582301	5362760.419279

Hint: The correct ECEF receiver location [x,y,z] (in meters) is one of the following possibilities:

(A)	-693606.128	????	2960669.097
(B)	-742080.456	-5462030.875	????
(C)	????	-5456322.852	3208395.305
(D)	-743774.390	-5460644.512	????
(E)	-751970.424	????	3193399.042
(F)	-755431.231	????	3191026.240