§ 3.3 牛顿迭代法

牛顿迭代法又称为切线法。

设 x_k 是f(x) = 0根 α 附近的近似值,

过 $(x_k, f(x_k))$ 作切线:

$$L_k(x) = f(x_k) + f'(x_k)(x - x_k)$$

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

图 3-2 Newton 迭代法几何意义

当 $f'(\alpha) \neq 0$ 时, $\varphi'(\alpha) = 0$,至少平方收敛。

定理3.4 设 $f(\alpha) = 0$, $f'(\alpha) \neq 0$, 且f(x)在 α 的邻域内具有二阶连续导数,则 如下牛顿法产生的迭代 序列

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

局部收敛到 α, 且收敛阶数至少为 2,

当 $f''(\alpha)$ ≠ 0时,收敛阶恰为 2。

$$\varphi'(x) = 1 - \frac{[f'(x)]^2 - f(x)f''(x)}{[f'(x)]^2} = \frac{f(x)f''(x)}{[f'(x)]^2}$$

$$\varphi'(\alpha) = 0 < 1$$
 收敛!

$$x_{k+1} - \alpha = x_k - \alpha - \frac{f(x_k)}{f'(x_k)} = x_k - \alpha - \frac{f(x_k) - f(\alpha)}{f'(x_k)}$$

将 $f(\alpha)$ 在 x_k 附近作泰勒展开,得

$$f(\alpha) = f(x_k) + f'(x_k)(\alpha - x_k) + \frac{f''(\xi_k)}{2}(\alpha - x_k)^2$$
$$(\alpha \le \xi_k \le x_k)$$

代入上式化简得:
$$x_{k+1} - \alpha = \frac{f''(\xi_k)(\alpha - x_k)^2}{2f'(x_k)}$$

$$\mathbb{E}\lim_{k \to \infty} \frac{|e_{k+1}|}{|e_k|^p} = \lim_{k \to \infty} \frac{|x_{k+1} - \alpha|}{|x_k - \alpha|^2} = \lim_{k \to \infty} \frac{|f''(\xi_k)|}{2|f'(x_k)|} = \frac{|f''(\alpha)|}{2|f'(\alpha)|}$$

初值 x_0 阶充分靠近根才会收敛!

图 3-3 迭代点来回变动

定理3.5 设f(x)在有限区间[a,b]上二阶导数存在,且满足

- (1) $f(a) \cdot f(b) < 0$;
- (2) $f'(x) \neq 0, x \in [a,b];$
- (3) f''(x)不变号, $x \in [a,b]$;
- (4) 初值 $x_0 \in [a,b]$,使 $f''(x_0) \cdot f(x_0) > 0$.

则Newton迭代序列 $\{x_n\}$ 收敛于 f(x) = 0 在 [a,b] 的唯一根。

图 3-5 单调收敛于唯一根 α

例3.5 用牛顿迭代法求 $9x^2 - \sin x - 1 = 0$ 在[0,1]内的一个根。

$$f(1) = 9 - \sin 1 - 1 > 0, \ f(\frac{1}{3}) = 1 - \sin \frac{1}{3} - 1 < 0$$

在[1/3,1]区间内满足:

$$f'(x) = 18 x - \cos x \ge 6 - 1 > 0$$
 Matlab $\%$ $\%$

$$f(0.4) = 9 \cdot 0.4^2 - \sin 0.4 - 1 \approx 0.0506 > 0$$

k	$\mathbf{x_k}$	k	$\mathbf{x}_{\mathbf{k}}$
0	0.4	3	0. 39184690700265
1	0. 39194423490290	4	0. 39184690700265
2	0. 39184692120359		

牛顿迭代程序步骤:

- (1)输入精度 $\varepsilon_1, \varepsilon_2$,最大迭代次数N、初值 x_0 ,计算 $f(x_0)$ 、 $f'(x_0)$,记k=0
- (2) $\exists k \ge N$ 或 $f'(x_k) = 0$,终止并输出失败标志;

(3) 计算
$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

(4)若 $|x_{k+1}-x_k|$ < ε_1 或 $f(x_{k+1})$ < ε_2 , 终止并输出 $\alpha \approx x_{k+1}$; 否则k=k+1, 转(2)。

例3.6 用牛顿迭代法求 \sqrt{c} , c > 0

作函数 $f(x) = x^2 - c$ 则 f(x) = 0 的正根就是 \sqrt{c} .

$$f'(x) = 2x$$
, $\varphi(x) = x - \frac{x^2 - c}{2x}$

牛顿迭代公式如下:

$$x_{k+1} = x_k - \frac{x_k^2 - c}{2x_k} = \frac{1}{2}(x_k + \frac{c}{x_k})$$

§ 3.4 牛顿迭代法的变形

§ 3.4.1 简化的牛顿迭代公式

应用牛顿迭代公式,每一步需要计算 $f'(x_n)$.

为了避免计算导数值,将

$$x_{k+1} = x_k - f(x_k) / f'(x_k)$$

修改为:

$$x_{k+1} = x_k - f(x_k) / f'(x_0)$$

图 3-6 迭代平行

可进一步简化为: $x_{k+1} = x_k - f(x_k)/c$

迭代公式为:
$$\varphi(x) = x - \frac{f(x)}{c}$$

根据收敛条件 $|\varphi'(x)| \le L < 1$ 可得:

$$\varphi'(x) = 1 - \frac{f'(x)}{c}$$

$$0 < \frac{f'(x)}{c} < 2$$

异号时可能发散!

图 3-7 迭代发散

例3.7 用简化牛顿迭代法求
$$x-e^{-x}=0$$
的根,取 $x_0=0$,迭代至 $|x_k-x_{k-1}| \le 10^{-4}$. 由 $f'(x_0)=2$ 可得迭代公式为: $x_{k+1}=x_k-f(x_k)/2$ 代入 $x_0=0$,得 $x_1=0.5$; $x_2=0.55326532985632$; $x_3=0.56416714063951$; $x_4=0.56650042432150$; $x_5=0.56700421456929$; $x_6=0.5671319319700$; $x_7=0.56713677664797$;

§ 3.4.2 弦截法

为了避免计算导数值,用下式近似导数:

$$f'(x_k) \approx \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}$$

迭代公式为:

$$x_{k+1} = x_k - \frac{f(x_k)}{f(x_k) - f(x_{k-1})} (x_k - x_{k-1})$$

以直代曲,需要两点函数值开始迭代。

图 3-8 牛顿法与弦截法的几何意义

几何意义:

过点
$$(x_0, f(x_0))$$
与 $(x_1, f(x_1))$ 作直线

$$y = f(x_1) + \frac{f(x_1) - f(x_0)}{x_1 - x_0} (x - x_1)$$

令:
$$y = 0$$
, 得: $x = x_1 - \frac{f(x_1)}{f(x_1) - f(x_0)}(x_1 - x_0)$

$$\exists \exists : \quad x_2 = x_1 - \frac{f(x_1)}{f(x_1) - f(x_0)} (x_1 - x_0).$$

一般形式:
$$x_{k+1} = x_k - \frac{f(x_k)}{f(x_k) - f(x_{k-1})} (x_k - x_{k-1})$$

例3.8 分别用牛顿法和截弦法求解方程在x=1.5附近根:

$$x^3 - x - 1 = 0$$

(1)牛顿法:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} = x_k - \frac{x_k^3 - x_k - 1}{3x_k^2 - 1}$$

$$x_1 = x_0 - \frac{x_0^3 - x_0 - 1}{3x_0^2 - 1} = 1.5 - \frac{(1.5)^3 - 1.5 - 1}{3(1.5)^2 - 1} \approx 1.34783$$

$$x_2 = x_1 - \frac{x_1^3 - x_1 - 1}{3x_1^2 - 1} \approx 1.32520$$

$$x_3 = x_2 - \frac{x_2^3 - x_2 - 1}{3x_2^2 - 1} \approx 1.32472$$

$$x_4 = x_3 - \frac{x_3^3 - x_3 - 1}{3x_3^2 - 1} \approx 1.32472$$

(2)弦截法:

$$x_{k+1} = x_k - \frac{f(x_k)}{f(x_k) - f(x_{k-1})} (x_k - x_{k-1})$$

$$= x_k - \frac{x_k^3 - x_k - 1}{x_k^2 - x_{k-1} \cdot x_k + x_{k-1}^2 - 1}$$

$$\mathbb{R}x_0 = 1.5, \quad x_1 = 1.4$$

$$x_2 = 1.4 - \frac{(1.4)^3 - 1.4 - 1}{(1.4)^2 + 1.4 \times 1.5 + (1.5)^2 - 1} \approx 1.33522$$

$$x_3 = 1.33522 - \frac{(1.33522)^3 - 1.33522 - 1}{(1.33522)^2 + 1.33522 \times 1.4 + (1.4)^2 - 1} \approx 1.32541$$

k	牛顿法	截弦法
0	1.5	1.5, 1.4
1	1. 3478260870	1. 3352165725
2	1. 3252003990	1. 3254136911
3	1. 3247181740	1. 3247247125
4	1. 3247179572	1. 3247179616

牛顿法快于截弦法!

但x₀=0时牛顿法**不收敛**: -1, -0.5, 0.33, -1.44

§ 3.4.3 牛顿下山法

为了防止迭代发散,附加条件:

$$|f(x_{k+1})| < |f(x_k)|$$

引入 $0 < \lambda \le 1$

$$x_{k+1} = x_k - \lambda \frac{f(x_k)}{f'(x_k)}$$

λ为下山因子,一般取不同值进行试探:

$$\lambda = 1, \frac{1}{2}, \frac{1}{2^2}, \dots$$

例3.9 用牛顿下山法求解方程:

$$x^3/3-x=0$$
的一个根,取

$$x_0 = -0.99$$
,误差 $|x_k - x_{k-1}| \le 10^{-5}$

图 3-9
$$y=\frac{x^3}{3}-x$$
 的几何图形

表 3-4 Newton 下山法计算结果

k	λ	x_k	$f(x_k)$	$f'(x_k)$	$\frac{f(x_k)}{f'(x_k)}$
0		-0.99	0.66657	-0.01990	-33.49589
1	1	32, 50598	11416. 51989		
	1/2	15.75799	1288. 5516	- 100	
	1/4	7. 38400	126. 81613		
	1/8	3. 19700	7.69495		
le l	1/16	1.10350	-0,65559	0. 21771	-3,01131
2	1	4. 11481	19. 10899		
	1/2	2.60916	3.31162		24 A A
	1/4	1,85633	0.27594	2. 44594	0.11281
3	1	1.74352	0.02316	2. 03985	0.01135
4	1	1,73217	0.00024	2,00041	0,00012
5	1	1.73205	0.00000	2.00000	0.00000
6	1	1.73205		PROPERTY.	

§ 3.5 Matlab应用实例

• 用牛顿法求解下列方程:

$$e^{5x} - \sin x + x^3 - 20 = 0$$

控制精度eps=10⁻¹⁰,最大迭代次数M=40。分别取初始值x=1和x=0进行计算。

- k = 0;
- M = 40;
- x = 0;
- eps = 10^{-10} ;
- while(k<M)
- c1 = f(x);
- c2 = f1(x);
- if $c1==0 \parallel c2==0$
- break;
- end
- x1 = x-c1/c2;
- if abs(x1)<1
- res = abs(x1-x);
- else
- res = abs(x1-x)/abs(x1);
- end

- k = k+1;
- x = x1;
- ss = sprintf('%d %12.10f',k,x);
- disp(ss);
- if res<eps
- break; <u>Matlab</u>演示
- end
- end
- function z = f(x)
- $z = \exp(5*x) \sin(x) + x^3 20;$
- •
- function z=f1(x)
- $z = 5*exp(5*x)-cos(x)+3*x^2;$

本章小结

$$2^{n+1} > (b-a)/\varepsilon$$

$$x = \varphi(x), \quad |\varphi'(x)| < 1$$

$$x_{k+1} = x_k - f(x_k) / f'(x_k)$$

4. 牛顿迭代法的变形

简化牛顿迭代法
$$x_{k+1} = x_k - f(x_k) / f'(x_0)$$

弦截法

$$x_{k+1} = x_k - \frac{f(x_k)}{f(x_k) - f(x_{k-1})} (x_k - x_{k-1})$$

牛顿下山法

$$x_{k+1} = x_k - \lambda \frac{f(x_k)}{f'(x_k)}$$

课后作业

第三章习题的1、3(只估计迭代次数)、4、 5、6、8、13(2)(计算过程及结果精确到 小数点后两位)。 5月20日递交。