MATEMÁTICAS-FACSÍMIL N°5

1. Si x = -1 entonces
$$\left(1 - \frac{1}{x} + \frac{1}{x^2}\right)^{-1 - \frac{1}{x}} =$$

- A) -1
- B) 1
- C) 2
- Ď) 3
- E) 9

2. Una función se dice par si
$$f(x) = f(-x) \ \forall \ x \in \text{al dominio de f, entonces ¿Cuál(es) de las siguientes funciones es(son) par(es)?}$$

I.
$$g(x) = x^2 + 1$$

II.
$$g(x) = x + x^2$$

III.
$$g(x) = \frac{1}{\sqrt{x^2 + 4}}$$

IV.
$$g(x) = x^3 - 1$$

- A) Sólo I
- B) Sólo II
- C) Sólo I y II
- D) Sólo I y III
- E) I, II, III y IV

3. Las bases
$$\overline{AB}$$
 y \overline{DC} de un trapecio rectángulo miden 9 y 4 respectivamente. Se toma M punto medio de \overline{AD} . Calcular \overline{AD} para que el ángulo BMC sea recto

- A) 4
- B) 6
- C) 8
- D) 10
- E) 12

4. En la figura, calcular el área sombreada si ABCD es un rectángulo en el semicírculo, que tiene por radio 2, con O: centro de la circunferencia y $\overline{AO} = \overline{BC}$

B)
$$5\pi - 4$$

C)
$$\frac{2\pi}{3} - \frac{\sqrt{3}}{2}$$

$$D) \qquad \frac{3\pi}{2} - \frac{\sqrt{2}}{3}$$

E) Otro valor

5.
$$logm = \frac{1}{3} (logx + logy - logz) ; m = ?$$

A)
$$\frac{1}{3}(x+y-z)$$

B)
$$\frac{1}{3} \cdot \frac{xy}{z}$$
C)
$$\sqrt[3]{\frac{xy}{z}}$$
D)
$$x + y - z$$
E)
$$\sqrt[3]{x + y - z}$$

C)
$$\sqrt[3]{\frac{xy}{z}}$$

D)
$$x + y - z$$

E)
$$\sqrt[3]{x+y-z}$$

6. Si
$$x+2 \sqrt{\frac{a^{x^2}-4}{b^{x+2}}} = b^{-1}$$
 entonces $x = a^{-1}$

Si A, B y D y C, B y E son colineales respectivamente, de la figura determinar $(x + y)^2$ 7.

8. Si
$$\sqrt[20-x]{a^{x-2}} = \sqrt[46-x]{a^{x+20}} \Rightarrow x = ?$$

A)
$$\frac{41}{3}$$

B)
$$\frac{41}{4}$$

C)
$$\frac{41}{9}$$

D)
$$\frac{21}{3}$$

E) Ninguna de las anteriores

9. Si
$$A_4^7 \cdot A_a^3 = A_5^7$$
 entonces a =

En la expresión x + 5y = z; con $x \in IN$ e $y \in IN$; z es divisible por 5 si: 10.

E) Ninguna de las anteriores

- 11. Si $x, y \in IR$ ¿Cuál de las siguientes expresiones siempre está(n) bien definida(s) en IR?
 - x^{-1} I.

 - III.
 - IV.
 - A) Sólo I
 - Sólo I y IV B)
 - C) I, II y IV
 - I, II; II y IV D)
 - Ninguna E)
- Determina el valor de la siguiente expresión: $\sqrt[x]{\frac{4^{x+2}-4^x}{15}}$
 - 4 [×]√1/15 A)
 - **∛**1/15 B)
 - 4 ^x C)

 - Otro valor E)
- 13. Si $4^{x-1} + 2 \cdot 4^{x+1} = 132$, entonces x = ?
 - A)
 - 2 B)
 - C)
 - D)
 - Ninguna de las anteriores

14. Sobre la circunferencia de la figura de radio 6, hay un punto M tal que Arco(AM) = Arco(MB), luego haciendo centro en M y con radios \overline{MB} se traza un arco en el interior cortando a la circunferencia en los extremos del diámetro \overline{AB} . Calcular el área de la zona achurada.

15. Se tiene un cuadrado de lado "a" y un triángulo isósceles en C de altura $h_c = x$ equivalentes. ¿Cuánto mide el lado \overline{AC} del triángulo en términos de x y a?

A)
$$\frac{\sqrt{a^4 + x^4}}{x}$$

B)
$$\frac{a^2 + x^2}{x}$$

C)
$$\frac{a^2}{x^2} + x^2$$

D)
$$a^{2} + x^{2}$$

16.
$$a\left(2\sqrt[x]{a}\cdot\sqrt{\frac{1}{a^{2x}}}\right) =$$

A)
$$a^{\frac{1}{2}}$$

B)
$$a^{\frac{x+x}{2x}}$$

C)
$$a^{x+1}$$

D)
$$a^{\frac{1}{x}}$$

E)
$$a^{\frac{2}{x}}$$

El punto x divide el trazo en sección áurea, entonces y = ?

B)
$$-2\sqrt{5}$$

C)
$$-2-2\sqrt{5}$$

D)
$$2\sqrt{5} + 2$$

D)
$$2\sqrt{5} + 2$$

E) $2[\sqrt{5} - 1]$

$$\overline{AX} > \overline{XB}$$

18.
$$\frac{\sqrt[u]{z^{\frac{1}{u-1}}}}{\sqrt[u-1]{z}} =$$

A)
$$\frac{1}{\sqrt[4]{z}}$$

C)
$$u-\sqrt{z}$$

D)
$$z^{\frac{u}{u-1}}$$

Si f es una función invertible entonces $(fof^{-1})^{-1}(8-x) =$

- 8 A)
- B) Χ
- C) 8 - x
- Falta información

20. Si $(a-b)^{\log_X(a-b)} = \frac{1}{a^2 - 2ab + b^2}$ entonces (a-b) = ?

- Ninguna de las anteriores

En la figura, ABCD cuadrado de lado a. Si ∆ABE equilátero, entonces FB 21.

B)
$$a(\sqrt{3}-1)$$

C)
$$a\sqrt{3}$$

C)
$$a\sqrt{3}$$

D) $a(2-\sqrt{3})$

E)
$$2a - \sqrt{3}$$

22. Si $g(x) = \frac{-x + 10}{3}$, entonces $g^{-1}(\frac{7}{2}) = ?$

23.
$$\sqrt{36(a^2 + 2ab + b^2)}$$
: $-\frac{12(a + b)}{5(a - b)} =$?

A)
$$-\frac{5}{2}a + \frac{5}{2}b$$

B)
$$\frac{4}{3}$$
a

C)
$$-\frac{5}{2}(a+b)$$

Ninguna de las anteriores

24. Sea $u \in IR$ con $u = \sqrt{-k}$, si $\begin{cases} x^2 + ky^2 = -8 \\ x - uy = 4 \end{cases}$ entonces uy = x - uy = 4

Ninguna de las anteriores

- 25. En la figura, \overline{AB} diámetro de la circunferencia de centro O, $\overline{DC} = \sqrt{27}$. Si $\overline{AC}: \overline{CB} = 3:1$ entonces $\overline{CB} = 3:1$
 - A) 9
 - B) 3
 - C) $\sqrt{3}$
 - D) 2
 - E) Ninguna de las anteriores

- 26. En una caja hay pelotas negras y blancas, la mitad de las blancas es igual a la tercera parte de las negras; y el doble de todas ellas excede en cuatro al triple de las negras. ¿Cuántas pelotas tiene la caja?
 - A) 18
 - B) 12
 - C) 8
 - D) 20
 - E) Ninguna de las anteriores
- 27. $5 \text{ tg } \beta + 2 \text{ sec}^2 \beta = ?$
 - A) $(tg\beta + 2)(2tg\beta + 1)$
 - B) $5\cos\beta$
 - C) $(tg\beta + 1)(2tg\beta 1)$
 - D) AyB
 - E) Ninguna de las anteriores
- 28. Son verdaderas:
 - I. Si x es directamente proporcional a y, e y es directamente proporcional a z, entonces x y z son directamente proporcionales.
 - II. Si x es inversamente proporcional a y e y es inversamente proporcional a z, entonces x y z son directamente proporcionales.
 - III. Si x es directamente proporcional a z, e y es directamente proporcional a z, entonces $x \pm y \ y \ z$ son directamente proporcionales.
 - A) Sólo I
 - B) Sólo II
 - C) Sólo III
 - D) I y III
 - E) I, II, y III

- 29. Si se dispone de los dígitos 1, 2, 3,4 y 5. ¿Cuántos números distintos de 3 cifras y que sean pares se pueden formar con dichos dígitos, sin repetirlos?
 - A) 48
 - B) 24
 - C) 18
 - D) 12
 - E) 8
- 30. $2\sqrt[3]{-8} \sqrt{-16}$ es un número:
 - A) Entero
 - B) Irracional
 - C) Imaginario
 - D) Real
 - E) Ninguna de las anteriores
- 31. Un múltiplo de 6 disminuído en un número impar <u>es siempre</u>, un número:
 - A) Par
 - B) Impar
 - C) Primo
 - D) Divisor de 3
 - E) Divisor de 6
- 32. Ordenar las siguientes expresiones en orden creciente de valor en:
 - 1. $(\sqrt[3]{-8})^2$
 - II. $(-2)^3$
 - III. -8³
 - IV. $(4/5)^0$
 - A) I, II, III, IV
 - B) III, I, IV, II
 - C) III, II, IV, I
 - D) III, IV, I, II
 - E) II, I, IV, III

- 33. ¿Cuánto vale la base de un trapecio cuya mediana vale 3x y su otra base vale 2x?
 - A) 4x
 - B) x
 - C) 6x
 - D) 5x
 - E) Otro valor
- 34. Un reloj marca 8^{05} en lugar de 8^{03} , determine el porcentaje de adelanto si funciona hace $2\frac{1}{2}$ hrs.
 - A) $1, \bar{3}\%$
 - B) 13, $\bar{3}$ %
 - C) 8%
 - D) 80%
 - E) Falta información
- 35. ¿Cuál es la quinta parte de los dos tercios de 15a?
 - A) 2
 - B) 2a
 - C) 15a
 - D) $\frac{1}{15}$
 - E) Ninguna de las anteriores
- 36. ¿Cuántos cuadrados se pueden observar en la siguiente figura? Cada cuadrado es de lado 1 cm.
 - A) 16
 - B) 23
 - C) 22
 - D) 20
 - E) 17

- $0,\overline{6}+4,\overline{8}-\frac{5}{9}=$ 37.
 - -2 5 A)
 - B)
 - C) 1
 - D) 49/9 E) 5/9
- 38. ¿Cuál es el perímetro del trapecio rectángulo A B C D?
 - A) 24
 - B) 21
 - C) 20
 - 23 D)
 - 22 E)

- La edad de Juan y la de Pedro están en la razón de 6:2 y la de Pedro con la de Diego en la razón de 4:3. 39. Si las edades suman 38 años. ¿Qué edad tiene Pedro?
 - A) 24 años
 - B) 12 años
 - C) 8 años
 - D) 6 años
 - E) 4 años
- 40. En la figura Δ E F G \cong Δ G C E equiláteros A B J D cuadrado. E punto medio. Entonces el perímetro de área achurada.

- B) 24
- C) 20a
- D) 7a
- E) Ninguna de las anteriores

- En un triángulo A B C la relación entre los ángulos convexos es 14 : 15 : 16 ¿Cuáles son esos ángulos?: 41.
 - A) 40° - 50° - 90°
 - 40° 70° 70° B)
 - 40° 60° 80° C)
 - D) 320° - 300° - 280°
 - E) 320° - 310° - 270°

- 42. Las tres figuras son cuadrados. Entonces el área no achurada mide:
 - A) 30
 - B) 28
 - C) 32
 - D) 10
 - E) Ninguna de las anteriores

- 43. ¿En cuál de los siguientes triángulos se cumple siempre que sus tres ángulos interiores son menores o igual que 90°?
 - I. Acutángulo
 - II. Rectángulo
 - III. Isósceles
 - IV. Equilátero
 - V. Escaleno
 - A) I, II, III, IV
 - B) III, V
 - C) I, IV
 - D) I, II, IV
 - E) III, IV, V
- 44. Si con el perímetro del cuadrado, el cual es $\frac{1}{3}$ del perímetro de una circunferencia de r = 1, se hace una recta. Entonces la longitud de dicha recta es:
 - A) 25
 - B) 12
 - C) $\frac{1}{3}$ de circunferencia
 - D) $\frac{2}{3}\pi$
 - E) Ninguna de las anteriores

45. El Δ de la figura es equilátero h: altura ¿Cuánto mide la superficie sombreada?

- B) $\frac{a^2}{2}\sqrt{3}$
- C) $\frac{a^2}{8}\sqrt{3}$

E) Ninguna de las anteriores.

46. Para el trapezoide ABCD de la figura el área se puede calcular si:

- (1) Se conoce \overline{AB} y \overline{AC} y la altura trazada desde D hacia \overline{AC}
- (2) Se conoce \overline{BC} y las distancias desde la diagonal hacia A y D respectivamente.

- B) (2) por sí sola.
- C) Ambas juntas (1) y (2).
- D) Cada una por sí sola (1) ó (2).
- E) Se requiere información adicional.

47. O : centro de la circunferencia r = 2 cm, δ + β = 70°, entonces el área achurada es igual a:

- A) $\frac{7}{90}$ π cm²
- B) $\frac{7}{9}\pi \text{cm}^2$
- C) $\frac{7}{18}\pi cm^2$
- D) $\frac{14}{9}\pi cm^2$
- E) $\frac{18}{9}$ mcm²

- \overline{AD} : diámetro de la circunferencia entonces, la medida de x es igual a: 48.
 - 30° A)
 - B) 40°
 - 45° C)
 - 50° D)
 - 60° E)

- 49. El 75% de la mitad de un número es la cuarta parte de noventa. ¿Cuál es el número?
 - A) 90
 - B) 45
 - C) 22,5
 - D) 60
 - 120 E)
- 50. ¿Cuál de los siguientes cuadriláteros se obtiene al unir los puntos A(-3, -5) B(-3, 4) C(4, -5) D (1, 4).
 - A) Romboide
 - B) Trapecio
 - C) Rombo
 - Rectángulo D)
 - Trapezoide E)
- Si un número $8n^2 + 3n + 2$ es mayor en $2n^2 + n + 5$ que otro. ¿Cuál es éste último número? 51.
 - $3n^2 + n 3$ A)
 - $6n^2 + 2n 6$ B)
 - $3n^2 + 6n 6$ C)
 - D)
 - $6n^2 + n 3$ $6n^2 + 2n 3$
- 52. El cuociente entre dos números es siete y el resto es 13. ¿Cuáles son estos números si la suma de ellos es 197?
 - A) 188;9
 - 102;95 B)
 - C) 105;92
 - D) 161; 23
 - 174; 23 E)

- 53. ¿De cuántas maneras distintas se pueden ordenar las letras de la palabras "orden"?
 - A) 5
 - B) 20
 - C) 60
 - D) 90
 - E) 120
- 54. ¿Cuál es la capacidad total de un estanque si las $\frac{2}{7}$ partes con las $\frac{4}{9}$ partes de la capacidad del estanque completan 46 litros?
 - A) 63
 - B) 36
 - C) 17
 - D) 109
 - E) Ninguna de las anteriores
- 55. Pedro y Juan jugaban sólo entre ellos un juego de azar. Al principio del juego Pedro tenía \$5.400 y Juan \$4.700. Después de algunos juegos, Pedro tenía \$800 más que el doble de lo que le quedaba a Juan ¿Cuánto dinero perdió Juan?
 - A) \$7.000
 - B) \$3.100
 - C) \$1.600
 - D) \$3.900
 - E) \$3.800
- 56. Si se resta 35 unidades del doble de un número más dos, resulta el mismo número aumentando en 7 ¿Cuál es la mitad del número?
 - A) 40
 - B) 13
 - C) 26
 - D) 20
 - E) 15

57. En el sistema
$$\frac{\frac{2x+7y}{4} - \frac{x+7}{6} = 4}{\frac{2x+7y}{6} - \frac{x+7}{3} = 0} \times \text{ x e y valen:}$$

- A) x = 3; y = 2
- B) x = -2; y = 3
- C) x = 4; y = 5
- D) x = 1; y = 2
- E) x = 5; y = 2
- 58. Encontrar la diagonal de un cuadrado sabiendo que el área de éste es igual a la del círculo de radio $\sqrt{\frac{2}{\pi}}$.
 - A) $\sqrt{2}$
 - B) $\sqrt{\pi}$
 - C) 4
 - D) $2\sqrt{2}$
 - E) 2
- 59. El valor de "a" en la ecuación: $\left(\frac{1}{a^2} \frac{1}{a^2 + 1}\right)$: $\frac{17}{a^5 + a^3} \frac{68}{a} = 0$ es
 - A) 34
 - B) √51
 - C) –34.
 - D) $-\sqrt{51}$
 - E) Ninguna de las anteriores
- 60. Para que una división entera de dos números sea exacta es preciso que:
 - (1) El divisor sea un múltiplo del dividendo.
 - (2) El dividendo sea un múltiplo del divisor.
 - A) (1) por sí sola
 - B) (2) por sí sola
 - C) Ambas juntas (1) y (2)
 - D) Cada una por sí sola (1) o (2)
 - E) Se requiere información adicional

61.
$$\left(\frac{1}{4}a^2 - \frac{36}{18}b\right)^2 = ?$$

A)
$$\frac{1}{8}a^2 - ab - 36b^2$$

B)
$$\frac{1}{16}a^4 - a^2b + 4b^2$$

C)
$$\frac{1}{16}a^2 - 2a^2b + \frac{1}{9}b^2$$

D)
$$\frac{1}{8}a^4 - 2a^2b + 36b^4$$

E)
$$16a^2 - 12ab + 9b^4$$

- 62. Manuela tiene Q caramelos, regala cinco, se come siete y guarda el resto, para dar en partes iguales a sus dos hermanitas. ¿Cuántos caramelos recibe cada una de sus hermanitas?
 - A) (Q 12): 2
 - B) (Q 7) / 3
 - C) (Q + 12): 2
 - D) (Q 5):2
 - E) Q/3-12
- 63. Una persona deposita en un banco una cantidad de dinero con un interés simple anual del 10%. Si después de tres años, recibe 2.600.000 ¿Cuál fue su capital inicial?
 - A) \$86.667
 - B) \$200.000
 - C) \$20.000
 - D) \$2.000.000
 - E) Ninguna de las anteriores.
- 64. La siguiente gráfica representa:
 - A) Una función definida en los reales
 - B) Una recta con pendiente cero
 - C) La recta y = 2
 - D) La recta x = 2
 - E) Ninguna de las anteriores

65. Si al ρ ABC de la figura, se le aplica una traslación T(1,-1) y luego rota en 180° con centro en el origen, ¿cuál sería la figura resultante?

A)

Triángulo inicial

С

B)

C)

D)

E) Ninguna de las anteriores.

66. Si el cuadrado de 3x3 es cuadrado mágico y A + B + C = 20 ¿Cuánto vale C =?

Nota: En un cuadrado mágico, las filas, columnas y diagonales, suman lo mismo.

- A) 9
- B) 8
- C) 7
- D) 6
- E) Ninguna de las anteriores.

		1		
	2	9	4	
А	7	В	3	7
	6	1	8	
		С		

67. La gráfica representa:

- A) Proporcionalidad inversa
- B) Datos para graficar una recta que pasa por el origen
- C) Datos para graficar una recta que intersecta al eje X en 3.
- D) Proporcionalidad directa
- E) Ninguna de las anteriores.

- 68. En la línea de taxis "Viaje Feliz", se cobra \$250 por iniciar el viaje y luego \$50 por cada 200 metros recorridos. ¿Cuál será la ecuación de la recta asociada a esta situación considerando como variables x = los metros recorridos e y = valor en \$?
 - A) y = 4x + 250
 - B) y 250 = 4x
 - C) 4y = x + 1000
 - D) x = y + 250
 - E) Ninguna de las anteriores.
- 69. Se aplica una prueba especial a un grupo de 12 alumnos de 4º medio. Los resultados obtenidos están representados en la tabla de frecuencia que muestra la figura. ¿Qué porcentaje de alumnos obtuvo nota mayor que 4?
 - A) 25%
 - B) 45%
 - C) 75%
 - D) 55%
 - E) Ninguna de las anteriores.

Nota	Frec.	
[1,2[0	
[2,3[1	
[3,4[2	
[4,5[3	
[5,6[4	
[6,7]	2	
Total	12	

- 70. Si en la expresión $y = (x + 1)^2 a$ se sabe que el vértice de la parábola asociada es V = (-1, -a), ¿Cuál será el vértice de $y = (x + 1)^2 + 2$?
 - A) V = (-1, -2)
 - B) V = (1,2)
 - C) V = (-1,2)
 - D) V = (1,-2)
 - E) Ninguna de las anteriores