CS 4801: Assignment 4

Adam Camilli (aocamilli@wpi.edu)

Wednesday 5th December, 2018

- 1. Consider the multiplicative group of \mathbb{Z}_{79}^* .
 - (a) What are the possible element order? How many element exist for each order?

$$\mathbb{Z}_{79}^* = a \in \mathbb{Z}_{79} \mid a \perp 79$$

Therefore we may count the size of \mathbb{Z}_{79}^* with Euler's totient function (for prime numbers, since 79 is prime):

$$\phi(79^1) = 79^{1-1}(79-1) = 78$$

There are 78 elements in \mathbb{Z}_{79}^* from $\mathbb{Z}_{79} = \{0, 1, \dots 78\}$:

$$\mathbb{Z}_{79}^* = \{1, 2, \dots, 78\}$$

The order m of the set \mathbb{Z}_{79}^* is just the count of elements 78. Therefore the possible element orders are the elements which divide 78:

$$78 = 2^{1} \cdot 3^{1} \cdot 13^{1}$$

$$\downarrow \\
78 = 6 \cdot 13 \\
= 2 \cdot 39 \\
= 3 \cdot 26 \\
= 1 \cdot 78$$

This gives us the possible element orders. To find how many elements exist for each, we use Euler's totient function:

Order	# Elements	Order	# Elements
6	$\phi(6) = 2$	13	$\phi(13) = 12$
2	$\phi(2) = 1$	39	$\phi(39) = 24$
3	$\phi(3) = 2$	26	$\phi(26) = 12$
1	$\phi(1) = 1$	78	$\phi(78) = 24$

(b) Determine the order of all elements of \mathbb{Z}_{79}^* .

To determine the order, we need to use arithmetic modulo 79. The technical definition of an element a's order |a| is the smallest m such that

$$a^m = e$$

where e is the identity element 1.

Essentially, to calculate |a|, we examine the powers of a to find all values of m where $a^m \mod 79 = 1$ and m is one of the possible element orders we calculated earlier.

There must be at least one such m for all $a \in \mathbb{Z}_{79}^*$, since finite groups are closed under multiplication. In fact, we already know how many a's will fit each possible m since this is found by $\phi(m)$. We can thus simply pick $\phi(m)$ number of a's from the integer solutions of $a^m \mod 79 = 1$ for each m using one rule:

i. Exclude results shared with smaller, non-coprime ms (i.e. for 39, exclude results shared with 3,6,13, and 26)

Order (m)	# Elements $(\phi(m))$	Elements	
		$a^m \mod 79 = 1) \text{ of }$	
		order m	
1	1	1	
2	1	78	
3	2	23,55	
6	2	24, 56	
13	12	8, 10, 18, 21, 22,	
		38, 46, 52, 62, 64,	
		65,67	
26	12	12, 14, 15, 17, 27,	
		33, 41, 57, 58, 61,	
		69,71	
39	24	2, 4, 5, 9, 11,	
		13, 16, 19, 20, 25,	
		26, 31, 32, 36, 40,	
		42, 44, 45, 49, 50,	
		51, 72, 73, 76	
78	24	3, 6, 7, 28, 29,	
		30, 34, 35, 37, 39,	
		43, 47, 48, 53, 54,	
		59, 60, 63, 66, 68,	
		70, 74, 75, 77	

(c) What are the generators of \mathbb{Z}_{79}^* ?

For every positive integer n, The possible orders are the positive numbers that divide $\operatorname{ord}(\mathbb{Z}_{79}^*) = 78$. The generators conversely are those that are coprime to 78:

$$78 = 2^{1} \cdot 3^{1} \cdot 13^{1}$$

$$\phi(78) = 78 \prod_{p|78} \left(1 - \frac{1}{p}\right)$$

$$\phi(78) = 78 \left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{3}\right) \left(1 - \frac{1}{13}\right) = 24$$

These 24 generators are simply the elements of \mathbb{Z}_{79}^* that are smaller than and coprime to its order 78:

$$\left\langle \mathbb{Z}_{79}^* \right\rangle == \{1, 5, 7, 11, 17, 19, 23, 25, 29, 31, 35, 37, 41, 43, 47, 49, 53, 55, 59, 61, 67, 71, 73, 77\}$$

(d) Write the elements of \mathbb{Z}_{79}^* as powers of 7.

Note all powers are evaluated considered mod 79:

$1 = 1^7$	$2 = 13^7$	$3 = 30^7$	$4 = 11^7$	$5 = 32^7$	$6 = 74^7$
$7 = 70^7$	$8 = 64^7$	$9 = 31^7$	$10 = 21^7$	$11 = 19^7$	$12 = 14^7$
$13 = 16^7$	$14 = 41^7$	$15 = 12^7$	$16 = 42^7$	$17 = 27^7$	$18 = 8^7$
$19 = 26^7$	$20 = 36^7$	$21 = 46^7$	$22 = 10^7$	$23 = 23^7$	$24 = 24^7$
$25 = 76^7$	$26 = 50^7$	$27 = 61^7$	$28 = 59^7$	$29 = 39^7$	$30 = 77^7$
$31 = 4^7$	$32 = 72^7$	$33 = 17^7$	$34 = 35^7$	$35 = 28^7$	$36 = 25^7$
$37 = 34^7$	$38 = 22^7$	$39 = 6^7$	$40 = 73^7$	$41 = 57^7$	$42 = 45^7$
$43 = 54^7$	$44 = 51^7$	$45 = 44^7$	$46 = 62^7$	$47 = 7^7$	$48 = 75^7$
$49 = 2^7$	$50 = 40^7$	$51 = 20^7$	$52 = 18^7$	$53 = 29^7$	$54 = 3^7$
$55 = 55^7$	$56 = 56^7$	$57 = 69^7$	$58 = 33^7$	$59 = 43^7$	$60 = 53^7$
$61 = 71^7$	$62 = 52^7$	$63 = 37^7$	$64 = 67^7$	$65 = 38^7$	$66 = 63^7$
$67 = 65^7$	$68 = 60^7$	$69 = 58^7$	$70 = 48^7$	$71 = 15^7$	$72 = 9^7$
$73 = 5^7$	$74 = 47^7$	$75 = 68^7$	$76 = 49^7$	$77 = 66^7$	$78 = 78^7$

- 2. Use Baby-step Giant-step Algorithm to compute following discrete logarithm problems:
 - (a) $15 = 2^x \mod 59$ (or equivalently $\log_2 15 \mod 59$)
 - 1. Set up:

$$\mathbb{Z}_{59}^*, t = |\sqrt{58}| = 7, q = 58$$

$$k = 0 \dots \lfloor \frac{q}{t} \rfloor = 8$$

$$k = 0$$
 $g_0 = 2^{0.7} = 1 \mod 59$

$$k = 1$$
 $g_1 = 2^{1.7} = 20 \mod 59$

. . .

k = 8 $g_1 = 2^{8.7} = 15 \mod 59$ (found by brute-force accidentally)

k=9 $g_1=2^{9\cdot 7}=32 \mod 59$ (found by brute-force accidentally)

$$g = \{1, 20, 56, 29, 54, 9, 15, 32\}$$

3. Baby steps:

$$i=0\ldots 7, \alpha=2$$
:

$$i = 0$$
 $h_0 = 15 * 2^0 = 1 \mod 59$

$$i = 1$$
 $h_1 = 15 * 2^1 = 30 \mod 59$

. . .

$$h = \{1, 30, 1, 2, 4, 8, 16, 32\}$$

$$h \cdot 2^7 = h_7 = g_9 = 2^{63}$$

$$2^7 \cdot h = 2^{63}$$

$$h = 2^{56}$$

$$x = \log_2 h = \mathbf{56}$$

- (b) $23 = 11^x \mod 79$ (or equivalently $\log_{11} 23 \mod 79$)
 - 1. Set up:

$$\mathbb{Z}_{79}^*, t = \left\lfloor \sqrt{78} \right\rfloor = 8, q = 78$$

$$k = 0 \dots \lfloor \frac{q}{t} \rfloor = 9$$

$$k = 0$$
 $g_0 = 11^{0.8} = 1 \mod 79$
 $k = 1$ $g_1 = 11^{1.8} = 44 \mod 79$

. .

$$g = \{1, 44, 40, 22, 20, 11, 10, \mathbf{45}, 5, 62\}$$

3. Baby steps:

$$i = 0 \dots 8, \alpha = 11$$

$$i = 0$$
 $h_0 = 23 * 11^0 = 1 \mod 79$
 $i = 1$ $h_1 = 23 * 11^1 = 16 \mod 79$

. .

$$h = \{1, 16, 18, 40, \mathbf{45}\}$$

$$h \cdot 11^4 = h_4 = g_7 = 11^{56}$$

 $11^4 \cdot h = 11^{56}$
 $h = 11^{52}$
 $x = \log_{11} h = \mathbf{52}$

- (c) $7 = 11^x \mod 79$ (or equivalently $\log_{11} 7 \mod 79$)
 - 1. Set up:

$$\mathbb{Z}_{79}^*, t = \left\lfloor \sqrt{78} \right\rfloor = 8, q = 78$$

$$k = 0 \dots \lfloor \frac{q}{t} \rfloor = 9$$

$$k = 0$$
 $g_0 = 11^{0.8} = 1 \mod{79}$
 $k = 1$ $g_1 = 11^{1.8} = 44 \mod{79}$

. .

$$g = \{1, 44, 40, 22, 20, 11, 10, 45, 5, 62\}$$

3. Baby steps:

$$i = 0 \dots 8, \alpha = 11$$

$$i = 0$$
 $h_0 = 7 * 11^0 = 1 \mod 79$
 $i = 1$ $h_1 = 7 * 11^1 = 77 \mod 79$

. . .

$$h = \{1, 77, 57, 74, 24, 27, 60, 28, 31\}$$

4. Cannot be solved: No such value x exists

- (d) $100 = 7^x \mod 103$ (or equivalently $\log_7 100 \mod 103$)
 - 1. Set up:

$$\mathbb{Z}_{103}^*, t = \left| \sqrt{102} \right| = 10, q = 102$$

$$k = 0 \dots \lfloor \frac{q}{t} \rfloor = 10$$

$$k = 0$$
 $g_0 = 7^{0.10} = 1 \mod 103$
 $k = 1$ $g_1 = 7^{1.10} = 15 \mod 103$

. .

$$g = \{1, 15, 19, 79, 52, 59, 61, 91, 26, 81, 82\}$$

3. Baby steps:

$$i = 0 \dots 10, \alpha = 7$$

$$i = 0$$
 $h_0 = 100 * 7^0 = 100 \mod 103$
 $i = 1$ $h_1 = 100 * 7^1 = 82 \mod 103$
...

 $h = \{1, 82, \mathbf{59}\}$

$$h \cdot 7^2 = h_2 = g_5 = 7^{50}$$

 $7^2 \cdot h = 7^{50}$
 $h = 7^{48}$
 $x = \log_7 h = 48$

- (e) $100 = 7^x \mod 101$ (or equivalently $\log_7 100 \mod 101$)
 - 1. Set up:

$$\mathbb{Z}_{101}^*, t = \lfloor \sqrt{100} \rfloor = 10, q = 100$$

$$k = 0 \dots \lfloor \frac{q}{t} \rfloor = 10$$

$$k = 0$$
 $g_0 = 7^{0.10} = 1 \mod 101$
 $k = 1$ $g_1 = 7^{1.10} = 65 \mod 103$

. .

$$g = \{1, 65, 84, 6, 87, 100, 36, 17, 95, 14, 1\}$$

3. Baby steps:

$$i=0\ldots 10, \alpha=7$$

$$i = 0$$
 $h_0 = 100 * 7^0 = 100 \mod 101$
 $i = 1$ $h_1 = 100 * 7^1 = 94 \mod 101$

$$h = \{1, 94, 52, 61, 23, 60, 16, 11, 77, 34, 36\}$$

$$h \cdot 7^{10} = h_{10} = g_6 = 7^{60}$$
$$7^{10} \cdot h = 7^{60}$$
$$h = 7^{50}$$
$$x = \log_7 h = \mathbf{50}$$

- 3. D-H Key Exchange: Alice and Bob want to generate a common key. They agreed to use prime number p=809 and generator $\alpha=3$. Alice's private key = 17, Bob's private key = 41. Find the followings and show every intermediate step:
 - (a) Alice's public key

Alice and Bob's private keys 17 and 41 can be shown (Alice, Bob) to both be primitive elements of \mathbb{Z}_{809}^* . Therefore Alice's public key is simply

$$x = \alpha^{17} \mod 809 = 302$$

(b) Bob's public key

And Bob's public key is simply

$$y = \alpha^{41} \mod 809 = 153$$

(c) Common key generated by Alice and Bob

Since the keys are primitive roots, the following

$$x^{17} \mod 809 = y^{41} \mod 809 = 410$$