Dynamic Programming and Optimal Control HS18

Sean Bone http://weblog.zumguy.com/

January 24, 2019

1 General problem

Dynamics

$$x_{k+1} = f_k(x_k, u_k, w_k), \quad k = 0, ..., N-1$$

- k: discrete time index, or stage;
- *N*: given time horizon;
- $x_k \in \mathcal{S}_k$: system state vector at time k;
- $u_k \in \mathcal{U}_k$: control input vector at time k;
- w_k : random disturbance vector at time k, conditionally independent with all prior $x_l, u_l, w_l, l < k$. The conditional probability distribution of w_k is known given x_k, u_k ;
- $f_k(\cdot,\cdot,\cdot)$: function capturing system evolution at time k.

Cost function

$$\underbrace{g_N(x_N)}_{\text{terminal cost}} + \underbrace{\sum_{k=0}^{N-1} \underbrace{g_k(x_k, u_k, w_k)}_{\text{stage cost}}}_{\text{accumulated cost}}$$

1.1 Control strategies

Open-loop

Given an initial state x_0 , find a fixed sequence of control inputs $U = (u_0, ..., u_{N-1})$ that minimizes the expected cost:

$$\mathbb{E}_{(X_1, W_0 | x_0)} \left[g_N(x_N) + \sum_{k=0}^{N-1} g_k(x_k, u_k, w_k) \right]$$

Closed-loop

Define

$$u_k = \mu_k(x_k), \quad u_k \in \mathcal{U}_k, k = 0, ..., N - 1,$$

 $\pi := (\mu_0(\cdot), ..., \mu_{N-1}(\cdot)),$

where π is called *admissible policy*. Given an initial state x_0 , the expected cost is now:

$$J_{\pi} := \underset{(X_1, W_0 | x_0)}{\mathbb{E}} \\ \left[g_N(x_N) + \sum_{k=0}^{N-1} g_k(x_k, \mu_k(x_k), w_k) \right]$$

Let Π be the set of all admissible policies. We seek the the optimal policy π^* with the optimal cost:

$$J^* := J_{\pi^*}(x) < J_{\pi}(x) \quad \forall \pi \in \Pi, \forall x \in \mathcal{S}_0.$$

1.2 Discrete states

If x_k takes on discrete values or is finite, we usually express the dynamics in terms of *transition* probabilities:

$$\begin{split} P_{ij}(u,k) \coloneqq \Pr(x_{k+1} = j | x_k = i, u_k = u) \\ &= p_{x_{k+1} \mid x_k, u_k}(j | i, u), \end{split}$$

where $p_{x_k+1|x_k,u_k}(\cdot|\cdot,\cdot)$ denotes the PDF of x_{k+1} given x_k and u_k . This is equivalent to the dynamics:

$$x_{k+1} = w_k$$

where w_k has the following probability distribution:

$$p_{w_k|x_k,u_k}(j|i,u) = P_{ij}(u,k)$$

Conversely, given $x_{k+1} = f_k(x_k, u_k, w_k)$ and $p_{w_k|x_k, u_k}(\cdot|\cdot, \cdot)$, then

$$P_{ij}(u,k) = \sum_{\{\bar{w}_k | f_k(i,u,\bar{w}_k) = j\}} p_{w_k | x_k,u_k}(\bar{w}_k | i,u),$$

that is, $P_{ij}(u,k)$ is equal to the sum over the probabilities of all possible disturbances \bar{w}_k that get us to state j from state i with control input u at time k.

1.3 DPA

Principle of optimality

If $\pi^* = (\mu_0^*(\cdot),...,\mu_{N-1}^*(\cdot))$ is an optimal policy, then the truncated policy $\pi = (\mu_i(\cdot),...,\mu_{N-1}(\cdot))$ minimizes the cost from stage i to N.

This provides the intuition as to why the control inputs selected by the following algorithm constitute the optimal policy:

1. Initialization

$$J_N(x) = g_N(x), \quad \forall x \in \mathcal{S}_N$$

2. Recursion

$$\begin{split} J_k(x) \coloneqq \min_{u \in \mathcal{U}_k(x)} & \underset{(w_k \mid x_k = x, u_k = u)}{\mathbb{E}} \\ & \left[g_k(x_k, u_k, w_k) + J_{k+1}(f_k(x_k, u_k, w_k)) \right], \\ & \forall y \in \mathcal{S}_k, k = N-1, \dots, 0. \end{split}$$

2 Infinite Horizon Problems

Consider the same problem as before, but with time-invariant state evolution and stage costs:

$$x_{k+1} = f(x_k, u_k, w_k), \forall x_k \in \mathcal{S}, u_k \in \mathcal{U},$$
$$cost = \sum_{k=0}^{N-1} g(x_k, u_k, w_k).$$

Assuming the cost converges as $N \to \infty$, problem simplifies to finding the optimal *stationary* policy by means of the *Bellman Equation* (BE):

$$\begin{split} J(x) &= \min_{u \in \mathcal{U}(x)} \underset{(w|x=x, u=u)}{\mathbb{E}} \\ & \left[g(x, u, w) + J(f(x, u, w)) \right], \quad \forall x \in \mathcal{S} \end{split}$$

2.1 SSP

The Stochastic Shortest Path problem is a class of problems for which solving the BE yields the optimal cost-to-go and stationary policy.

Dynamics

Given a finite set S and U(x) for all $x \in S$, consider the finite state, time-invariant system:

$$x_{k+1} = w_k, \quad x_k \in \mathcal{S},$$

 $\Pr(w_k = j | x_k = i, u_k = u) = P_{ij}(u), \ u \in \mathcal{U}(i)$

Terminal state

In order for the cost to be meaningful, there must be a $terminal\ state$, designated as 0, with:

$$P_{00}(u) = 1 \text{ and } g(0, u, 0) = 0, \quad \forall u \in \mathcal{U}(0).$$

We assume there is at least one proper policy, and that improper policies will have infinite cost for at least one starting state. For a policy to be proper, there must be at least one m for which

$$\Pr(x_m = 0 | x_0 = i) > 0, \quad \forall i \in \mathcal{S}.$$

2.2 Discounted problems

Consider an SSP with no explicit termination state and a cost discount factor $\alpha \in]0,1[$:

$$\tilde{J}_{\tilde{\pi}}(i) = \underset{(\tilde{X}_1,\tilde{W}_0|\tilde{x}_0=i)}{\mathbb{E}} \left[\sum_{k=0}^{N-1} \alpha^k \tilde{g}(\tilde{x}_k,\tilde{\mu}_k,\tilde{w}_k) \right]$$

We can convert this problem to an SSP by adding a virtual termination state.

State: $x_k \in \mathcal{S} = \tilde{\mathcal{S}} \cup \{0\}$

Control: $\mathcal{U}(x_k) = \tilde{\mathcal{U}}(x_k)$, $\mathcal{U}(0) = \{\text{stay}\}$ Dynamics: $x_{k+1} = w_k \text{ where } \forall u, \forall i, j$:

$$\begin{split} p_{w|x,u}(j|i,u) &= P_{ij}(u) = \alpha \tilde{P}_{ij}(u), \\ p_{w|x,u}(0|i,u) &= P_{i0}(u) = 1 - \alpha, \\ p_{w|x,u}(j|0, \text{stay}) &= P_{0j}(\text{stay}) = 0, \\ p_{w|x,u}(j|i,u) &= P_{00}(u) = 1. \end{split}$$

Cost: $\forall u_k, \forall x_k, w_k$

$$\begin{split} g(x_k,u_k,w_k) &= \frac{1}{\alpha} \tilde{g}(x_k,u_k,w_k),\\ g(x_k,u_k,0) &= 0,\\ g(0,\mathtt{stay},0) &= 0. \end{split}$$

From this we can derive the Bellman Equation for the original problem:

$$J^*(i) = \min_{u \in \tilde{\mathcal{U}}(i)} \left(q(i, u) + \alpha \sum_{j=1}^n \tilde{P}_{ij}(u) J^*(j) \right), \, \forall i \in \tilde{\mathcal{S}}$$
$$q(i, u) = \sum_{j=1}^n \tilde{P}_{ij}(u) \tilde{g}(i, \mu_k(i), j)$$

2.3 Solving the BE

Value Iteration (VI)

Given any initial conditions $V_0(\cdot)$, the following sequence converges to the optimal cost $J^*(\cdot)$ which uniquely solves the BE, and the corresponding u for each i constitute the optimal policy:

$$V_{l+1} = \min_{u \in \mathcal{U}(i)} \left[q(i, u) + \sum_{j=1}^{n} P_{ij}(u) V_l(j) \right]$$

$$\forall i \in \mathcal{S}^+ = \mathcal{S} \setminus \{0\}$$

$$q(i, u) := \underset{(w|x=i, u=u)}{\mathbb{E}} [g(i, u, w)]$$

Policy Iteration (PI)

- **0. Initialize** with a proper policy.
- 1. Policy evaluation: $\forall i \in S^+$,

$$J_{\mu^h}(i) = q(i, \mu^h(i)) + \sum_{j=1}^n P_{ij}(\mu^h(i)) J_{\mu^h}(j)$$

2. Policy improvement: $\forall i \in \mathcal{S}^+$,

$$\mu^{h+1}(i) = \underset{u \in \mathcal{U}(i)}{\arg\min} \left(q(i, u) + \sum_{j=1}^{n} P_{ij}(u) J_{\mu^{h}}(j) \right)$$

Repeat 1 and 2 until $J_{\mu h+1}(i) = J_{\mu h}(i) \, \forall i$

Linear Programming (LP)

The solution to the following optimization program solves the BE:

$$\begin{aligned} maximize & \sum_{i \in \mathcal{S}^+} V(i) \\ subject & to & V(i) \leq q(i,u) + \sum_{j=1}^n P_{ij}(u)V(j), \\ & \forall u \in \mathcal{U}(i), \, \forall i \in \mathcal{S}^+ \end{aligned}$$

Shortest paths

${\bf SP}$ problem

Consider a graph with vertices V and weighted edges C. $\mathbb{Q}_{s,t}$ is the set of possible s,t paths, and a path Q has cost J_Q . We seek the path with lowest cost $Q^* = \arg\min_{Q \in \mathbb{Q}_{s,t}} J_Q$. For this problem to have a solution the graph may not contain negatives cycles: $\forall i \in \mathcal{V}, \forall Q \in \mathbb{Q}_{i,i} : J_Q \geq 0.$

DFS problem

A Deterministic Finite State is a problem like the general case, but without w_k and where each S_k is finite. A closed loop approach offers no advantage in a deterministic problem, but we can still solve it with DPA.

DFS to SP

A DFS problem can be converted to an SP problem by creating a "layered" graph with layers k =0, ..., N+1. The first layer only contains the node $(0, x_0)$ and is the starting position. Nodes in layers k = 1, ..., N have nodes $(k, x_k), x_k \in \mathcal{S}_k$. Connections are between consecutive layers $k \to k+1$ and have weights

$$c = \min_{u \in \mathcal{U}_k(x_k) \mid x_{k+1} = f_k(x_k, u_k)} g_k(x_k, u)$$

The final layer contains just a virtual termination state t, and connections $N \to N+1$ are weighted with terminal costs $g_N(x_N)$.

SP to DFS

Since there are no negative cycles, an optimal s,t path will have at most $|\mathcal{V}|$ elements. We set $c_{i,i} = 0$ and formulate the problem as an $N = |\mathcal{V}| - 1$ stage DFS:

- $S_0 = \{s\}, S_k = \mathcal{V} \setminus \{t\}, S_N = \{t\}$
- $\mathcal{U}_k = \mathcal{V} \setminus \{t\}, \ \mathcal{U}_{N-1} = \{t\}$ $x_{k+1} = u_k, \ u_k \in \mathcal{U}_k, \ k = 0, ..., N-1$
- $g_k(x_k, u_k) = c_{x_k, u_k}, g_N(t) = 0$

3.1 LCA

The SP problem can be solved more efficiently with the Label Correcting Algorithm for a single starting node.

- 0. Place node s in OPEN, set $d_s = 0$, $d_j = \infty \, \forall j \in$ $\mathcal{V} \setminus \{s\}.$
- 1. Remove node i from OPEN and run step 2 for every child j of i.
- 2. If $d_i + c_{i,j} < d_j$ and $d_i + c_{i,j} < d_t$ set $d_j =$ $d_i + c_{i,j}$ and set i as the parent of j. If $j \neq t$, put j in OPEN.
- Repeat from step 1 while OPEN ≠ ∅.

Traversal order

- Depth-first: always remove the newest element of OPEN:
- Breadth-first: always remove the oldest element of OPEN:
- · Best-first: always remove the element with lowest cost d_i .

3.2 A* algorithm

Perform LCA, and at each step 2, formulate some lower bound $h_j \geq 0$ of the j,t distance. Then change the condition $d_i + c_{i,j} < d_t$ to $d_i + c_{i,j} +$ $h_j < d_t$.

HMMs and Viterbi algorithm

Consider a Markov chain: $S = \{1, ..., n\}$ finite and $p_{w_k|x_k}$ given,

$$\begin{aligned} x_{k+1} &= w_k, \quad x_k \in \mathcal{S}, \\ P_{ij} &:= p_{w|x}(j|i), \quad \forall i, j \in \mathcal{S}. \end{aligned}$$

When a state transition occurs, we obtain measurements

$$M_{ij}(z) := p_{z|x,w}(z|i,j), \quad z \in \mathcal{Z}.$$

Note that, given x_k and x_{k-1} , z_k is independent of all prior variables.

Defining $X_i = (x_i, ..., x_N)$ and $Z_i =$ $(z_i,...,z_N)$, we wish to find:

$$\hat{X}_0 = \arg\max_{X_0} p(X_0|Z_1)$$

$$p(X_0, Z_1) = \dots = p(x_0) \prod_{k=1}^{N} P_{x_{k-1}x_k} M_{x_{k-1}x_k}(z_k)$$

This problem is solved by the SP problem:

$$\min_{X_0} \left(c_{(\mathfrak{s},x_0)} + \sum_{k=1}^N c_{(k-1,x_{k-1}),(k,x_k)} \right)$$

$$\begin{split} c_{(\mathtt{s},x_0)} &= \begin{cases} -\ln(p(x_0)) & \text{if } p(x_0) > 0 \\ \infty & \text{if } p(x_0) = 0 \end{cases} \\ c_{(k-1,x_{k-1}),(k,x_k)} &= \begin{cases} -\ln(P_{x_{k-1}x_k}M_{x_{k-1}x_k}(z_k)) \\ \text{if } P_{x_{k-1}x_k}M_{x_{k-1}x_k}(z_k) > 0 \\ \infty & \text{otherwise} \end{cases} \end{split}$$

resents a state x at time k. An artificial terminal node is added, connected to by layer k = N at zero cost.

4 Deterministic continuous time

$$\dot{x}(t) = f(x(t), u(t)), \quad 0 \le t \le T$$

$$u(t) = \mu(\mathbf{x}, t), \quad u(t) \in \mathcal{U}, \forall t \in [0, T], \forall \mathbf{x} \in \mathcal{S}$$

$$J_{\mu}(t, \mathbf{x}) = h(x(T)) + \int_{0}^{T} g(x(\tau), u(\tau)) d\tau$$

Assumption: for any admissible control law μ , initial time t and initial condition $x(t) \in \mathcal{S}$, there exists a unique state trajectory $x(\tau)$ that satisfies

$$\dot{x}(\tau) = f(x(\tau), u(\tau)), \quad t \le \tau \le T$$

4.1HJB Equation

The Hamilton-Jacobi-Bellman equation is a sufficient but not necessary condition for optimality. If V(t,x) is a solution to

$$\begin{split} \min_{u \in \mathcal{U}} \left[g(x,u) + \frac{\partial V}{\partial t} + \frac{\partial V}{\partial x} f(x,u) \right] &= 0 \\ \forall x \in \mathcal{S}, 0 \leq t \leq T \\ \text{s.t. } V(T,x) &= h(x) \quad \forall x \in \mathcal{S} \end{split}$$

then it is the optimal cost-to-go function, and the minimizing $\mu(t,x)$ is an optimal feedback law.

4.2 Minimum principle

Assumption: $f, g, h \in C^1$ in x

Pontryagin's minimum principle: for a given i.c. $x(0) = x \in \mathcal{S}$, let u(t) be an optimal control trajectory with associated state trajectory x(t). Then there exists a trajectory p(t) such that with $H(x, u, p) := g(x, u) + p^{T} f(x, u)$:

$$\begin{split} \dot{p}(t) &= -\frac{\partial H}{\partial x}\bigg|_{x(t), u(t), p(t)}^{\top}, \ p(T) = \left. \frac{\partial h(\mathbf{x})}{\partial x} \right|_{x(T)}^{\top} \\ u(t) &= \mathop{\arg\min}_{\mathbf{u} \in \mathcal{U}} H(x(t), \mathbf{u}, p(t)) \\ H(x(t), u(t), p(t)) &= const. \ \forall t \in [0, T] \end{split}$$

Fixed terminal state: Replace p(T) = $\frac{\partial h(\mathbf{x})}{\partial x}\Big|_{x(T)}^{\top}$ with $x(T) = x_T$.

Free initial state: instead of $x(0) = x_0$, a cost l(x(0)) is given. Add the condition: p(0) = $\frac{\partial l}{\partial x}\Big|_{x(0)}^{\top}.$

terminal $H(x(t), u(t), p(t)) = 0 \,\forall t \in [0, T]$

Time-varying system and cost: if f and/or g depend on t, we lose that H = const.

Non-standard problems

Some problems are not in the general (discretetime) form, but can be reformulated as such.

5.1Time lags

If the dynamics have a similar form: $x_{k+1} =$ $f_k(x_k, x_{k-1}, u_k, u_{k-1}, w_k)$ we can contruct a state vector $\tilde{x}_k = (x_k, y_k, s_k)$ and modify the dynamics:

$$\tilde{x}_{k+1} = \tilde{f}_k(\tilde{x}_k, u_k, w_k) := \begin{bmatrix} f_k(x_k, y_k, u_k, s_k, w_k) \\ x_k \\ u_k \end{bmatrix}$$

Correlated Disturbances

Disturbances w_k correlated over time can sometimes be modeled as

$$w_k = C_k y_{k+1}, \quad y_{k+1} = A_k y_k + \xi_k$$

Where A_k and C_k are given and ξ_k , k = 0, ..., N -1 are independent random variables. Then we can augment the state as $\tilde{x}_k := (x_k, y_k)$ and update

$$\tilde{x}_{k+1} = \tilde{f}_k(\tilde{x}_k, u_k, \xi_k) \coloneqq \begin{bmatrix} f_k(x_k, u_k, C_k(A_k y_k + \xi_k)) \\ A_k y_k + \xi_k \end{bmatrix}$$

5.3 Forecasts

 w_k is independent of x_k and u_k , and we get a forecast y_k that w_k will attain a distribution from a given family $\{p_{w_k|y_k}(\cdot|1),...p_{w_k|y_k}(\cdot|m)\}$. If $y_k=i$, then $w_k\sim p_{w_k|y_k}(\cdot|i)$. The forecast itself has a given a priori distribution:

$$y_{k+1} = \xi_k$$

where $\xi_k \sim p_{\xi_k}(i)$ are independent random vari-

Augmented state vector: $\tilde{x}_k := (x_k, y_k)$, disturbance $\tilde{w}_k := (w_k, \xi_k)$ with distribution

$$p(\tilde{w}_k|\tilde{x}_k, u_k) = p(w_k|y_k)p(\xi_k)$$

Dynamics:

$$\tilde{x}_{k+1} = \tilde{f}_k(\tilde{x}_k, u_k, \tilde{w}_k) \coloneqq \begin{bmatrix} f_k(x_k, u_k, w_k) \\ \xi_k \end{bmatrix}$$

The DPA then becomes:

$$\begin{split} J_N(\tilde{\mathbf{x}}) &= J_N(\mathbf{x}, \mathbf{y}) = g_N(\mathbf{x}), \quad \mathbf{x} \in \mathcal{S}_N, \mathbf{y} \in \{1, ..., m\} \\ J_k(\tilde{\mathbf{x}}) &= J_k(\mathbf{x}, \mathbf{y}) = \min_{\mathbf{u} \in \mathcal{U}_k(x_k)} \underset{(w_k \mid y_k = \mathbf{y})}{\mathbb{E}} \\ &\left[g_k(\mathbf{x}, \mathbf{u}, w_k) + \sum_{i=1}^m p_{\xi_k}(i) J_{k+1}(f_k(\mathbf{x}, \mathbf{u}, w_k), i) \right] \\ \forall \mathbf{x} \in \mathcal{S}_k, \ \forall \mathbf{y} \in \{1, ..., m\}, \ \forall k = N-1, ..., 0. \end{split}$$