Определение классов

Классы:

- 1. Elite Dangerous
- 2. Гарри Поттер
- 3. Метро
- 4. Звёздные войны
- 5. The Elder Scrolls
- 6. Другое

Вектор признаков

Пусть: *А* – множество уникальных N-грамм в рамках обучаемой выборки. Здесь N-грамма – это группа слов, разделённых пробелами, каждое из которых является последовательностью букв или цифр, ограниченной пробельными символами или знаками препинания. Слова на русском языке приводятся к нормальной форме. Тогда:

$$A=\{a_1,a_2,\dots,a_n\}$$

где a_i — уникальная N-грамма; n — размер множества A.

Векторизация в модели производится с помощью фильтра StringToWordVector, который преобразует строковые атрибуты в набор числовых атрибутов, представляющих информацию о вхождении слов из текста, содержащегося в строках. Итоговое множество A состоит из 3000 N-грамм, каждая из которых может включать от 1 до 3 слов.

Выбранные модели для обучения

Для тестирования были выбраны следующие модели:

- NaiveBayesMultinomialUpdateable Обновляемый многочленный классификатор Наивного Байеса. Основное уравнение для этого классификатора: $P(C_i|D) = (P(D|C_i) \times P(C_i))/P(D)$ (правило Байеса), где C_i класс i, а D документ.
- PART Список решений. Используется принцип «разделяй и властвуй». На каждой итерации строится частичное дерево решений С4.5 и «лучший» лист становится правилом.
- J48 Дерево решений C4.5.
- IBk Классификатор К-ближайших соседей. Можно выбрать подходящее значение K на основе перекрестной проверки.
- REPTree Алгоритм обучения пропозициональным правилам. Повторяющееся постепенное сокращение для уменьшения ошибок (RIPPER).
- JRip Алгоритм обучения пропозициональным правилам. Повторяющееся постепенное сокращение для уменьшения ошибок (RIPPER).
 Оптимизированная версия IREP.
- DescisionTable Простой классификатор большинства по таблице решений.

Обучение и тестирование моделей

Из множества статей было отобрано 900 статей из каждого класса. Всего в выборке присутствовало 5400 статей. Порядка 3600 случайных статей из выборки были использованы для обучения модели. Остальные 2700 — для тестирования обученной модели.

Матрицы неточностей представлены в таблицах 1-6 для моделей, упомянутых выше, соответственно, где:

- a Elite Dangerous
- b Гарри Поттер
- c Metpo
- d Звёздные воины
- e The Elder Scrolls
- f Другое

Результаты тестирования полученных моделей отражены в таблице 7.

Таблица 1 – Матрица неточностей для NaiveBayesMultinomialUpdateable

		Классификатор						
		a	b	c	d	e	f	
	a	294	2		1		1	
	b		324		1	2	3	
IKT	c		2	279		3	6	
Фа	d	1	12	2	279		2	
	e	3			1	291	8	
	f		1		1		317	

Таблица 2 – Матрица неточностей для PART

		Классификатор							
		a	a b c d e f						
	a	256	0	10	12	18	2		
	b	3	294	4	3	22	4		
KT	c	4	0	258	2	12	14		
Φ_{a_1}	d	15	9	6	252	9	5		
	e	6	4	10	5	262	16		
	f	6	6	1	0	13	293		

Таблица 3 – Матрица неточностей для Ј48

		Классификатор						
		a	b	c	d	e	f	
	a	259	4	6	11	14	4	
	b	5	286	5	8	18	8	
акт	c	4	8	245	5	24	4	
Фа	d	11	9	9	247	18	2	
	e	10	16	11	2	247	17	
	f	8	6	7	3	11	284	

Таблица 4 – Матрица неточностей для REPTree

		Классификатор						
		a	a b c d e f					
	a	240	5	8	14	20	11	
	b	8	241	19	5	22	35	
IKT	c	10	12	216	5	24	23	
Фа	d	21	20	21	200	19	15	
	e	20	12	11	8	235	17	
	f	18	6	9	6	20	260	

Таблица 5 – Матрица неточностей для JRip

		Классификатор						
		a	a b c d e f					
	a	255	1	22	10	8	2	
	b	5	263	50	3	8	1	
IKT	c	9	2	253	3	17	6	
Фан	d	23	5	30	225	8	5	
	e	1	4	30	5	261	2	
	f	1	7	14	0	8	289	

Таблица 6 – Матрица неточностей для DescisionTable

		Классификатор						
		a	b	c	d	e	f	
	a	225	3	17	18	35	0	
KT	b	4	264	21	0	40	1	
	С	43	9	222	0	16	0	
Фағ	d	26	31	12	192	34	1	
-	e	10	17	8	0	267	1	
	f	22	42	24	3	16	212	

Таблица 7 – Общие результаты тестирования моделей.

	Accuracy	Precision	Precision	Precision
NaiveBayesMultinomialUpdateable	97.2 %	97.2 %	97.2 %	97.2 %
PART	88 %	88 %	88 %	88 %
J48	85.4 %	85.4 %	85.4 %	85.4 %
IBk	44.7 %	44.7 %	44.7 %	44.7 %
REPTree	75.8 %	75.8 %	75.8 %	75.8 %
JRip	84.2 %	84.2 %	84.2 %	84.2 %
DescisionTable	75.3 %	75.3 %	75.3 %	75.3 %

Вывод

В основном модели демонстрировали точность в рамках от 75 % до 90 %. Хуже всего себя показал классификатор на основе алгоритма IBk с точностью порядка 45%. Наилучшие показатели продемонстрировала модель на основе Наивного Байесовского распределения с показателем точности в 97%.

На основании полученных данных была выбрана модель Naive Bayes Multinomial Updateable.