Machine Learning4771

Instructor: Itsik Pe'er

Reminder: Fitting = Maximizing Likelihood

Regression to fit the Poisson rate

Probability Review

- Definitions
- Distributions
- Moments
- Theorems

Definition: Sample Space

 \bullet Sample space : Ω all possible outcomes

Definition: Events

• Sample space : Ω all possible outcomes Examples: deaths '17, weather Thu, 2 dice

Event: subset of outcomes

Definition: Probability

- \bullet Sample space: Ω all possible outcomes Examples: deaths '17, weather Thu, 2 dice
- Event: subset of outcomes Examples: I die Feb, snow Thu, sum dice<10</p>

♦ *Probability function*: Prob: Ω → [0,1], additive, Prob(Ω) = 1

Definition: Random Variables

- \bullet Sample space: Ω all possible outcomes Examples: deaths '17, weather Thu, 2 dice
- Event: subset of outcomes
 Examples: I die Feb, snow Thu, sum dice<10</p>
- Probability function: Prob: $\Omega \to [0,1]$, additive, Prob $(\Omega) = 1$ Examples: forecast, $p([i,j]) = \frac{1}{36}$
- Random variable: $X: \Omega \to \mathbb{R}$ or \mathbb{R}^D Example: #deaths, percip.[mm], sum dice

Definition: Independence

♦ Events $A \perp B$: Prob $(A \cap B)$ =Prob (A)Prob (B)

Definition: Independence

- **♦** Events $A \perp B$: Prob $(A \cap B)$ =Prob (A)Prob (B) Examples: coin flips, winning MI/PA
- Random variables $X \perp Y$ if $\forall A, B : A(X) \perp B(Y)$ Examples: dice, results MI/PA, height/GPA

Definition: Conditional Probability

◆ Prob
$$(A \land B) = \frac{\text{Prob } (A \cap B)}{\text{Prob } (B)}$$

Examples: low pass possession & goal

Distributions

Discrete

Continuous

Distributions

- Discrete
 - Bernoulli, Binomial, Multinomial, Poisson Geometric

Continuous

•Bernoulli

•Bernoulli(α): binary (coin flip) probability, just 1x2 table $p(x) = \alpha^x (1 - \alpha)^{1-x}$ $\alpha \in [0,1], x \in \{0,1\}$ x=0 x=1 $\alpha \in [0,1], x \in \{0,1\}$ $\alpha \in [0,1]$

Multidimensional Bernoulli:

•Bernoulli(α): binary (coin flip) probability, just 1x2 table

 $p(x) = \alpha^{x} (1 - \alpha)^{1 - x} \qquad \alpha \in [0, 1], x \in \{0, 1\} \qquad \frac{x = 0 \quad x = 1}{0.95 \quad \alpha = 0.05}$

Multidimensional Bernoulli: multiple binary events

$$p(x_1, x_2) = \begin{bmatrix} x_2 = 0 & x_2 = 1 \\ 0.4 & 0.1 \\ \vdots & \vdots & \vdots \\ 0.3 & 0.2 \end{bmatrix}$$

•Bernoulli(α): binary (coin flip) probability, just 1x2 table

$$p(x) = \alpha^{x} (1 - \alpha)^{1 - x} \qquad \alpha \in [0, 1], x \in \{0, 1\} \qquad \frac{x = 0 \quad x = 1}{0.95 \quad \alpha = 0.05}$$

Multidimensional Bernoulli: multiple binary events

$$p(x_1, x_2) = \begin{bmatrix} x_2 = 0 & x_2 = 1 \\ 0.4 & 0.1 \\ \vdots & \vdots & \vdots \\ 0.3 & 0.2 \end{bmatrix}$$

Binomial Distribution

•Bernoulli(α): recall binary (coin flip) probability, 1x2 table $n(x) = \alpha^x (1 - \alpha)^{1-x}$ $\alpha \in [0,1], x \in \{0,1\}$ x = 0, x = 1

$$p(x) = \alpha^{x} (1 - \alpha)^{1 - x}$$
 $\alpha \in [0, 1], x \in \{0, 1\}$ $x = 0$ $x = 1$ $1 - \alpha$ α

•Binomial (n, α) : sum of n identical, independent coin flips

$$p(x) = \binom{n}{x} \alpha^x (1 - \alpha)^{n \cdot x} \qquad \alpha \in [0, 1], x \in \{0, 1\}$$

Poisson Distribution

•Bernoulli(α): recall binary (coin flip) probability, 1x2 table

$$p(x) = \alpha^{x} (1 - \alpha)^{1 - x} \qquad \alpha \in [0, 1], x \in \{0, 1\} \qquad \begin{array}{c|c} x = 0 & x = 1 \\ \hline 1 - \alpha & \alpha \end{array}$$

•Binomial (n, α) : sum of n identical, independent coin flips

$$p(x) = \binom{n}{x} \alpha^x (1 - \alpha)^{f \cdot x} \qquad \alpha \in [0, 1], x \in \{0, \dots, n\}$$

•Poisson(λ): $\lim_{n \to \infty} Binomial\left(n, \frac{\lambda}{n}\right)$ sum of many rare iid coins

$$p(x) = \frac{\lambda^x e^{-\lambda}}{x!}$$
 $\lambda \in \mathbb{R}^+$, $x \in \mathbb{Z}^+$

Geometric Distribution

•Bernoulli(α): recall binary (coin flip) probability, 1x2 table

$$p(x) = \alpha^{x} (1 - \alpha)^{1 - x} \qquad \alpha \in [0, 1], x \in \{0, 1\} \qquad \begin{array}{c|c} x = 0 & x = 1 \\ \hline 1 - \alpha & \alpha \end{array}$$

- •Binomial (n, α) : sum of n identical, independent coin flips $p(x) = \binom{n}{r} \alpha^x (1 \alpha)^{1-x} \qquad \alpha \in [0, 1], x \in \{0, ..., n\}$
- •Poisson(λ): $\lim_{n \to \infty} Binomial\left(n, \frac{\lambda}{n}\right)$ sum of many rare iid coins

$$p(x) = \frac{\lambda^x e^{-\lambda}}{x!}$$
 $\lambda \in \mathbb{R}^+$, $x \in \mathbb{Z}^+$

•Geometric(α): number of iid flips till first success $p(x) = (1 - \alpha)^{x-1}$ $\alpha \in [0,1], x \in \mathbf{Z}^+$

Multinomial Distribution

•Multinomial($\vec{\alpha}$): beyond binary 1 2 3 4 5 6 multi-category event (dice) $\vec{\alpha}(1)$ $\vec{\alpha}(2)$ $\vec{\alpha}(3)$ $\vec{\alpha}(4)$ $\vec{\alpha}(5)$ $\vec{\alpha}(6)$

$$p(x) = \prod_{m=1}^{M} \vec{\alpha}(m)^{\vec{x}(m)} \qquad \sum_{m} \vec{\alpha}(m) = 1$$

$$\vec{x}(1) | \vec{x}(2) | \vec{x}(3) | \vec{x}(4) | \vec{x}(5) | \vec{x}(6)$$

Expectation

$$\bullet$$
 $E(X) = \sum_{x} x p(X = x)$

What is your best guess for *X*?

Example:

$$E(Bernoulli(\alpha)) = O \cdot (1 - x) + 1 \cdot x = x$$

$$E(\text{dice}) = Avg\left(1._6\right)$$

$$Avg\left(1._6\right)$$

Expectation

- \bullet $E(X) = \sum_{x} x p(X = x)$
- Important thms:
 - Linearity: E(X + Y) = E(X) + E(Y)E(aX) = aE(X)
 - Law of large numbers:

$$\{X_1, \dots\}$$
 i. i. d., then $S_n = \frac{\sum_{i=1}^n x_i}{n} \xrightarrow[n \to \infty]{} E(X)$

Variance

$$ightharpoonup Var(X) = E\left(\left(X - E(X)\right)^2\right)$$

How wide is X 's distribution around E(X)?

Variance

- $ightharpoonup Var(X) = E\left(\left(X E(X)\right)^2\right)$
- Quadratic scaling: $Var(aX) = a^2 Var(X)$
- Standard deviation: $Std(X) = \sqrt{Var(X)}$
- Covariance

$$Cov(X,Y) = E((X - E(X))(Y - E(Y)))$$

Continuous Probability Models

- Probabilities can have both discrete & continuous variables
- •We will discuss:
 - 1) discrete probability tables

x=T	x=H
0.4	0.6

x=1	x=2	x=3	x=4	x=5	x=6
0.1	0.1	0.1	0.1	0.1	0.5

2) continuous probability distributions p(x) = probability density function, not probability mass function $cdf(x) = \int_{-\infty}^{x} p(t)dt$ gives actual probabilities

$$\int_{-\infty}^{\infty} p(x)dx = 1$$

Continuous Distributions: Uniform

 \bullet Uniform(a,b):

$$p(x) = \frac{1}{b-a}$$
 $a < b \in \mathbb{R}, x \in [a, b]$

Exponential Distribution

 \bullet Exponential(λ): Time till next Poisson

arrival,
$$\lim_{n \to \infty} \frac{Geometric(\frac{\lambda}{n})}{n}$$

 $p(x) = \lambda e^{-\lambda}$ $\lambda \in \mathbb{R}^+$, $x \in \mathbb{R}^+$

Std. Gaussian (Normal) Distribution

•Bell shape curve

$$p(x) = \frac{1}{\sqrt{2\pi}} exp\left(-\frac{x^2}{2}\right)$$

Central Limit Theorem

Gaussian Distribution

•1-dimensional Gaussian with mean parameter μ translates Gaussian left & right

$$p(x|\mu) = \frac{1}{\sqrt{2\pi}} exp\left(-\frac{1}{2}(x-\mu)^2\right)$$

•Variance parameter σ^2 controls the width of the Gaussian

$$p(x|\mu,\sigma) = \frac{1}{\sqrt{2\pi}\sigma} exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$$

Note: $\int_{-\infty}^{\infty} p(x) dx = 1$

Multivariate Gaussian

- •Gaussian can extend to *D*-dimensions
- •Gaussian mean parameter μ vector, it translates the bump
- Covariance matrix Σ stretches and rotates bump

$$p(\vec{x}|\vec{\mu}, \Sigma) = \frac{1}{(2\pi)^{\frac{D}{2}}\sqrt{|\Sigma|}} exp\left(-\frac{1}{2}(\vec{x} - \vec{\mu})\Sigma^{-1}(\vec{x} - \vec{\mu})\right)$$

- Mean is any real vector
- •Max and expectation = μ
- •Variance parameter is now Σ matrix
- Covariance matrix is positive definite
- Covariance matrix is symmetric
- Need matrix inverse (inv)
- Need matrix determinant (det)
- Need matrix trace operator (trace)

Multivariate Gaussian

•Spherical:

$$\Sigma = \sigma^2 I = \begin{bmatrix} \sigma^2 & 0 & 0 \\ 0 & \sigma^2 & 0 \\ 0 & 0 & \sigma^2 \end{bmatrix}$$

Multivariate Gaussian

•Spherical:

$$\Sigma = \sigma^2 I = \begin{bmatrix} \sigma^2 & 0 & 0 \\ 0 & \sigma^2 & 0 \\ 0 & 0 & \sigma^2 \end{bmatrix}$$

Diagonal Covariance: dimensions of x are independent product of multiple 1d Gaussians

$$p(\vec{x}|\vec{\mu}, \Sigma) = \prod_{d=1}^{D} \frac{1}{\sqrt{2\pi}\vec{\sigma}(d)} exp\left(-\frac{\left(\vec{x}(d) - \vec{\mu}(d)\right)^{2}}{2\vec{\sigma}(d)^{2}}\right)$$

$$\Sigma = \begin{bmatrix} \vec{\sigma}(1)^{2} & 0 & 0 & 0\\ 0 & \vec{\sigma}(2)^{2} & 0 & 0\\ 0 & 0 & \vec{\sigma}(3)^{2} & 0\\ 0 & 0 & 0 & \vec{\sigma}(4)^{2} \end{bmatrix}$$

Regression and Gaussians

Vitruvian Man: cubit = 1/4 height

Reality : $cubit = \frac{1}{4} height + noise$

Regression and Gaussians

Assume y_i is supposed to be \hat{y}_i but many iid, small sources of error

Regression and Gaussians

Assume y_i is supposed to be \hat{y}_i but many iid, small sources of error $y_i \sim Normal(\hat{y}_i, \sigma^2)$ log-likelihood:

$$l(Y) = \log \prod_{i} \operatorname{Prob}(y_i | \hat{y}_i, \sigma^2) = C - \frac{1}{2\sigma^2} \sum_{i} (y_i - \hat{y}_i)^2$$

Summary

Probability definitions, distributions, moments, theorems

Gaussians motivate least squares