An In-depth Look at the Multicopter Control System Architecture

Authors: Anton Erasmus

6 July 2020

PX4 Developer Summit 2020

Introduction

Controllers:

- Architecture
- Parameters
- Modules
- Control Law Functions

Scope: Controller architecture

More Information: [Talk] Overview of Multicopter Control from

Sensors to Motors

1

Controller Architecture Overview

Structure:

- · Cascaded Control Architecture
- · PID Control

Angular Rate Controller

- · KPID: Standard vs Parallel
- · Avoid Integral Wind-up
- Derivative Lowpass Filter
- Derivative on measurement: eliminate derivative kick

Angular Rate Controller: Parameters and Modules

Parameters:

- MC_ROLLRATE_K: K
- MC_ROLLRATE_P: P
- · MC_ROLLRATE_I: I
- MC_ROLLRATE_D: D

- MC_RR_INT_LIM: Integrator limit
- · IMU DGYRO CUTOFF: Derivative LPF
- IMU_GYRO_CUTOFF: Measurement LPF

mc_rate_control/RateControl/RateControl.cpp

Angle / Attitude Controller

- · Quaternion attitude representation
- Why? Euler angle singularity
- Paper: Nonlinear Quadrocopter Attitude Control (2013) by Dario Brescianini, Markus Hehn and Raffaello D'Andrea
- · Limit angular rates

Angle / Attitude Controller: Parameters and Modules

Parameters:

- · MC_ROLL_P: P
- · MC_ROLLRATE_MAX: Maximum roll rate
- · MC_ACRO_R_MAX: Maximum roll rate in Acro mode
- · MC_YAW_WEIGHT: Deprioritize yaw

mc_att_control/AttitudeControl/AttitudeControl.cpp

Acceleration and Yaw to Attitude


```
mc_pos_control/PositionControl
void PositionControl::_accelerationControl()
void PositionControl::getAttitudeSetpoint(...)
void ControlMath::thrustToAttitude(...)
void ControlMath::bodyzToAttitude(...)
```

Velocity Controller

- Prioritise vertical velocity
- Tracking anti-windup (based on paper)

Velocity Controller: Parameters and Modules

Parameters:

- MPC_XY_VEL_P_ACC: P_{xy}
- MPC_XY_VEL_I_ACC: I_{xy}
- MPC_XY_VEL_D_ACC: D_{xy}

- MPC_Z_VEL_P_ACC: P_z
- MPC_Z_VEL_I_ACC: I₇
- MPC_Z_VEL_D_ACC: Dz
- MPC_VELD_LP: Derivative LPF
- MPC_TILTMAX_AIR: Maximum pitch/roll angle
- MPC_THR_MAX: Maximum vertical thrust

mc_pos_control/PositionControl.cpp

void PositionControl::_velocityControl(const float dt)

Position Controller

- · P-control
- Limit velocity setpoints

Position Controller: Parameters and Modules

Parameters:

- MPC_XY_P: P_{xy}
- MPC_XY_VEL_MAX: Maximum XY velocity
- MPC_Z_P: P₇
- MPC_Z_VEL_MAX_UP: Maximum upward Z velocity
- MPC_Z_VEL_MAX_DN: Maximum downward Z velocity

mc_pos_control/PositionControl.cpp

```
void PositionControl::setInputSetpoint(...)
bool PositionControl::update(float dt)
void PositionControl::_positionControl()
```

Summary

More Information

- · User Guide
 - · MC PID Tuning Guide
- · Developer Guide
 - · Parameter Reference
 - PX4 Architectural Overview: Controller Diagrams (TBA)
- PX4 Dev Summit Talk: Overview of Multicopter Control from Sensors to Motors

