Logic Circuit (2015)

Introduction Unit 1. Number Systems and Conversion

Spring 2015

School of Electrical Engineering

Prof. Jong-Myon Kim

이수체계도

Course Information

Textbook

Fundamentals of Logic Design (6th Ed.), Charles
 H. Roth, Jr, Thomson Brooks/Cole.

- Class Website
 - http://uclass.ulsan.ac.kr/

Grading Policy

- 4 In-class Tests: 80%
- Term Project: 10%
 - Individual work, no collaboration
 - No late turn-in will ever be accepted
- Class Attend: 10%
 - 결석: -1, 지각: -0.5
- Final Grade is relative to your peer in class

Objectives

Topics introduced in this chapter:

- Difference between Analog and Digital System
- Difference between Combinational and Sequential Circuits
- Binary number and digital systems
- Number systems and Conversion
- Add, Subtract, Multiply, Divide Positive Binary Numbers
- 1's Complement, 2's Complement for Negative binary number
- ➤ BCD code, 6-3-1-1 code, excess-3 code

Digital Systems and Switching

Digital Systems

- ⇒ computation, data processing, control, communication, measurement
- ⇒ reliable, integration

Differences

Analog – Continuous

- ⇒ Natural Phenomena (Pressure, Temperature, Speed…)
- ⇒ Difficulty in realizing, processing using electronics

Digital - Discrete

- ⇒ Binary Digit → Signal processing as bit unit
- ⇒ Easy in realizing, processing using electronics
- ⇒ High performance due to integrated circuit technology

Analog versus Digital

Binary Digit?

Binary

- \Rightarrow Two values (0,1)
- ⇒ Each digit is called as a "bit"
- ⇒ Thus, good things in binary number
- ⇒ Number representation with only two values (0,1)
- ⇒ Can be implemented with simple electronics devices
 - ⇒ Ex. Voltage high (1), low (0)
 - \Rightarrow Ex. Switch on (1), off (0) etc.

Switching Circuit

Combinational Circuit

- > Outputs depend on only present inputs, not on past inputs
- > Have no "memory" function

Sequential Circuit

- > Outputs depend on both present inputs and past inputs
- ➤ Have "memory" function

What is Logic Design?

- Given the function, implement logic hardware for that function
 - Representation of the function
 - Sentence, speak, pseudo code, program
 - Truth table
 - Karnaugh maps
 - Minterm and Maxterm expansions
 - FSM
 - • • •
 - How to implement
 - You can Implement logic circuits by connecting logic gates
 - There are many logic circuits for only one function, but it is important to implement optimal one

Design Steps

- Board-level
- Chip-level
- Module-level
- Gate-level
- Circuit-level
- Transistor-level

Design Steps

[Jan Rabaey's Digital Circuit Design]

Decimal: $953.78_{10} = 9 \times 10^2 + 5 \times 10^1 + 3 \times 10^0 + 7 \times 10^{-1} + 8 \times 10^{-2}$

Binary:
$$1011.11_2 = 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 + 1 \times 2^{-1} + 1 \times 2^{-2}$$

= $8 + 0 + 2 + 1 + \frac{1}{2} + \frac{1}{4} = 11\frac{3}{4} = 11.75_{10}$

Radix(Base) :

$$\begin{split} N &= (a_4 a_3 a_2 a_1 a_0. a_{-1} a_{-2} a_{-3})_R \\ &= a_4 \times R^4 + a_3 \times R^3 + a_2 \times R^2 + a_1 \times R^1 + a_0 \times R^0 + a_{-1} \times R^{-1} + a_{-2} \times R^{-2} + a_{-3} \times R^{-3} \end{split}$$

Example :

$$147.3_8 = 1 \times 8^2 + 4 \times 8^1 + 7 \times 8^0 + 3 \times 8^{-1} = 64 + 32 + 7 + \frac{3}{8}$$
$$= 103.375_{10}$$

Hexa-Decimal:

$$A2F_{16} = 10 \times 16^2 + 2 \times 16^1 + 15 \times 16^0 = 2560 + 32 + 15 = 2607_{10}$$

Example : Decimal to Binary Conversion

2 /26 rem. =
$$1 = a_0$$

2 /13 rem. =
$$0 = a_1$$

2
$$6$$
 rem. = $1 = a_2$

2 /3 rem. =
$$0 = a_3$$

2
$$nem. = 1 = a_4$$

 $nem. = 1 = a_5$

$$53_{10} = 110101_2$$

Example : Convert 0.7 to Binary

Example : Convert 231.3₄ to Base-7

- 1. Convert to Decimal $231.3_4 = 2 \times 16 + 3 \times 4 + 1 + \frac{3}{4} = 45.75_{10}$
- 2-1. Convert of a decimal integer to base 7
- 2-2. Convert of a decimal fraction to base 7

Conversion of Binary to Octal, Hexa-Decinal

Addition

$$0+0=0$$

$$0+1=1$$

$$1+0=1$$

$$1+1=0$$
 and carry 1 to the next column

Example

$$13_{10} = 1101$$

$$11_{10} = 1011$$

$$11000 = 24_{10}$$

Subtraction

$$0-0=0$$

 $0-1=1$ and borrow 1 from the next column
 $1-0=1$
 $1-1=0$

Example

1 ← (indicates 1111 ← borrows 111 ← borrows 11101
$$\frac{\text{a borrow}}{\text{From the}}$$
 10000 111001 $\frac{-10011}{1010}$ 3rd column) $\frac{-11}{1011}$ 101110

Subtraction Example with Decimal

Multiplication

and phoducin				
$0 \times 0 = 0$	1101			
$0 \times 1 = 0$	1011			
$1\times0=0$	1101			
	1101			
1×1=1	0000			
	_1101			
1111	multiplicand $10001111 = 143_{10}$			
1101_	multiplier			
1111	first partial product			
0000	second partial product			
(01111)	sum of first two partial products			
1111	third partial product			
(1001011)	sum after adding third partial product			
1111	fourth partial product			
11000011	final product (sum after adding fourth partial product)			

The quotient is 1101 with a remainder of 10.

2's Complement Representation for Negative Numbers

$$N^* = 2^n - N$$

			Negative integers		
+N	Positive integers (all systems)	-N	Sign and magnitude	2's complement <i>N</i> *	1's complement N
+0	0000	-0	1000	_	1111
+1	0001	-1	1001	1111	1110
+2	0010	-2	1010	1110	1101
+3	0011	-3	1011	1101	1100
+4	0100	-4	1100	1100	1011
+5	0101	-5	1101	1011	1010
+6	0110	-6	1110	1010	1001
+7	0111	-7	1111	1001	1000
		-8	-	1000	-

1's Complement Representation for Negative Numbers

$$\overline{N} = (2^n - 1) - N$$

Example :

$$2^{n} - 1 = 1111111$$

$$N = 010101$$

$$\overline{N} = 101010$$

$$N^* = 2^n - N = (2^n - 1 - N) + 1 = \overline{N} + 1$$

→ 2's complement: 1's complement + '1'

Addition of 2's Complement Numbers

Case 1	+3	0011	Addition of two positive numbers, sum<2 ⁿ⁻¹
	<u>+4</u>	<u>0100</u>	Martion of two positive nambors, same
	+7	0111	(correct answer)
Case 2	+ 5	0101	Addition of two positive numbers, sum≥2 ⁿ⁻¹
	<u>+ 6</u>	<u>0110</u>	
		1011	← wrong answer because of overflow (+11 requires
Case 3	+ 5	0101	5 bits including sign)
	<u>– 6</u>	<u>1010</u>	Addition of positive and negative numbers
	_	1111	(correct answer)
Case 4	- 5	1011	Same as case 3 except positive number has
	<u>+ 6</u>	<u>0110</u>	greater magnitude
		(1)0001	correct answer when the carry from the sign bit is ignored (this is <i>not</i> an overflow)

Addition of 2's Complement Numbers

```
-3
                         1101
Case 5
                                Addition of two negative numbers,
                                |sum| \le 2^{n-1}
                         1100
                -7
                       (1)1001 ← correct answer when the last carry is ignored
                                    (this is not an overflow)
Case 6
                                Addition of two negative numbers,
                                |sum| > 2^{n-1}
                          1011
                -5
                          1010
                <u>-6</u>
                       (1)0101 ← wrong answer because of overflow
                                     (-11 requires 5 bits including sign)
```

Addition of 1's Complement Numbers

Case 3
$$+5$$
 0101
 -6 1001
 -1 1110 (correct answer)

Case 4 -5 1010
 $+6$ 0110
(1) 0000
 -1 (end-around carry)
(correct answer, no overflow)

Case 5 -3 1100
 -4 1011
(1) 0111
 -1 (end-around carry)
1000 (correct answer, no overflow)

Addition of 1's Complement Numbers

Case 6

1010

-5

1001

-6

(1) 0011

1 (end-around carry)

0100 (wrong answer because of overflow)

Case 4:
$$-A + B$$
 (where $B > A$)

 $\overline{A} + B = (2^n - 1 - A) + B = 2^n + (B - A) - 1$

Case 5: $-A - B$ $(A + B < 2^{n-1})$
 $\overline{A} + \overline{B} = (2^n - 1 - A) + (2^n - 1 - B) = 2^n + [2^n - 1 - (A + B)] - 1$

Addition of 1's Complement Numbers using 8-bit storage

11110100 (-11)

$$\underline{11101011}$$
 $+(-20)$
(1) 11011111
 $\underline{\hspace{1cm}}$ (end-around carry)
11100000=(-31)

Addition of 2's Complement Numbers using 8-bit storage

$$\begin{array}{rcl}
11111000 & (-8) \\
\underline{00010011} & +19 \\
(1)00001011 & =+11
\end{array}$$
(discard last carry)

Binary Codes

Decimal Digit	8-4-2-1 Code (BCD)	6-3-1-1 Code	Excees-3 Code	
0	0000	0000	0011	
1	0001	0001	0100	
2	0010	0011	0101	
3	0011	0100	0110	
4	0100	0101	0111	
5	0101	0111	1000	
6	0110	1000	1001	
7	0111	1001	1010	
8	1000	1011	1011	
9	1001	1100	1100	

Binary Codes

6-3-1-1 Code

$$N = w_3 a_3 + w_2 a_2 + w_1 a_1 + w_0 a_0$$

$$N = 6 \cdot 1 + 3 \cdot 0 + 1 \cdot 1 + 1 \cdot 1 = 8$$

ASCII Code: 7-bit code

1010011 1110100 1100001 1110010 1110100

S

t a r

Examples

Add the following numbers in binary using 2's complement to represent negative numbers. Use a word length of 7 bits (including sign) and indicate if an overflow occurs.

(a)
$$(21)_{10} + (43)_{10}$$

(b)
$$(-10)_{10} + (-11)_{10}$$

(c)
$$(-12)_{10} + (13)_{10}$$