Decision Trees with Arbitrary Losses

Yann Chevaleyre

(source: David S. Rosenberg)

November 3, 2022

Contents

Arbres

2 Arbres de Régression

3 Arbres de décision pour la Classification

Arbres

Terminologie

From Criminisi et al. MSR-TR-2011-114, 28 October 2011.

Arbre de décision binaire

arbre de décision binaire: chaque noeud a 2 ou 0 fils

From Criminisi et al. MSR-TR-2011-114, 28 October 2011.

Arbre de décision binaire sur \mathbb{R}^2

• Soit un arbre binaire sur $\underline{\mathcal{X}} = \mathbb{R}^2$ $\mathbf{\mathcal{X}} = (\mathbf{\mathcal{X}}^{(1)}, \mathbf{\mathcal{X}}^{(2)})$ $\mathbf{x}^{(2)} \leq t_2$ $\mathbf{x}^{(3)} \leq t_2$ $\mathbf{x}^{(3)} \leq t_3$ $\mathbf{x}^{(2)} = \mathbf{x}^{(2)}$ $\mathbf{x}^{(2)} = \mathbf{x}^{(2)}$

• A la racine et à chaque noeud interne, une variable $x^{(j)}$ est appelée variable de test ou variable de décision du noeud, et t est appelé le seuil

From An Introduction to Statistical Learning, with applications in R (Springer, 2013) G. James, D. Witten, T. Hastie and R. Tibshirani.

 R_{r}

Types d'arbres de décision

- Nous nous intéressons aux:
 - arbres binaires (vs arbres avec plus de 2 fils)
 - les décisions à chaque noeuds portent sur une seule variable
 - les décisions sur les variables continues sont de la forme

$$x^{(j)} \leqslant t$$

- pour les variables discrètes, les décision partitionnent les valeurs en 2 groupes
- Autres types d'arbres:
 - oblique decision trees or binary space partition trees (BSP trees)
 - sphere trees

Arbres de Régression

Arbres de régression sur \mathbb{R}^2

• Soit un arbre binaire sur $\mathfrak{X} = \mathbb{R}^2$. Un exemple est $x = (x^{(1)}, x^{(2)})$

From An Introduction to Statistical Learning, with applications in R (Springer, 2013) G. James, D. Witten, T. Hastie and R. Tibshirani.

ullet Un arbre de décision partitionne ${\mathfrak X}$ en regions:

$$\{R_1,\ldots,R_M\}$$
.

• Rappel:

$$\mathfrak{X} = R_1 \cup R_2 \cup \cdots \cup R_M$$

et

$$R_i \cap R_i = \emptyset \quad \forall i \neq j$$

• Soit $N_m = |\{i : x_i \in R_m\}|$

	total_bill	sex	smoker	day	time	size	tip
0	16.99	Female	No	Sun	Dinner	2	1.01
1	10.34	Male	No	Sun	Dinner	3	1.66
2	21.01	Male	No	Sun	Dinner	3	3.50
3	23.68	Male	No	Sun	Dinner	2	3.31
4	24.59	Female	No	Sun	Dinner	4	3.61

• Avec la partition $\{R_1, \ldots, R_M\}$, la prédiction finale est:

- Supposons qu'on ait déjà la partition, comment choisir c_1, \ldots, c_M ?
- Pour la fonction de perte $\ell(\hat{y}, y) = (\hat{y} y)^2$, comment appliquer l'ERM ?

$$c_{1}...c_{M} = \underset{i=1}{\operatorname{argmin}} \sum_{i=1}^{m} \left(\frac{y_{i}}{y_{i}} - y_{i} \right)^{2}$$

$$= \underset{i=1}{\operatorname{argmin}} \sum_{i=1}^{m} \left(\sum_{m=1}^{m} c_{m} \cdot \frac{1}{(\pi \in \mathbb{R}_{m})} - y_{i} \right)^{2}$$

$$= \underset{i=1}{\operatorname{argmin}} \sum_{i \in \mathbb{R}_{m}} \left(c_{m} - y_{i} \right)^{2}$$

$$\forall m, c_{m} = \underset{i \in \mathbb{R}_{m}}{\operatorname{argmin}} \sum_{i \in \mathbb{R}_{m}} \left(c_{m} - y_{i} \right)^{2} = \underset{i \in \mathbb{R}_{m}}{\operatorname{argmin}} \left(y_{i} \cdot \frac{1}{1} \in \mathbb{R}_{m} \right)$$

• Avec la partition $\{R_1, \dots, R_M\}$, la prédiction finale est:

$$f(x) = \sum_{m=1}^{M} c_m \mathbb{1}(x \in R_m)$$

- Supposons qu'on ait déjà la partition, comment choisir c_1, \ldots, c_M ?
- Pour la fonction de perte $\ell(\hat{y}, y) = (\hat{y} y)^2$, comment appliquer l'ERM ?

$$\hat{c}_m = \operatorname{average}(y_i \mid x_i \in R_m) = \frac{1}{\{i : x_i \in R_m\}} \sum_{\{i : x_i \in R_m\}} y_i$$

car

$$\operatorname{average}(y_i \mid x_i \in R_m) = \arg\min_{\hat{y}} \sum_{\{i: x_i \in R_m\}} \ell(\hat{y}, y_i) = \arg\min_{\hat{y}} \sum_{\{i: x_i \in R_m\}} (\hat{y} - y_i)^2$$

• Quelle est la perte associée à ce noeud ?

Quelle est la perte associée à ce noeud?

for
$$C_{m}$$
,

 $\sum_{i \in R_{m}} \ell(\hat{c}_{m}, y_{i}) = \sum_{i \in R_{m}} (y_{i} - avanguly_{i \in R_{m}})^{2}$
 $= N_{m} \times \hat{V}an(\{y_{i}: i \in R_{m}\})$

12 / 31

• Avec la partition $\{R_1, \ldots, R_M\}$, la prédiction finale est:

$$f(x) = \sum_{m=1}^{M} c_m 1(x \in R_m)$$

- Supposons qu'on ait déjà la partition, comment choisir c_1, \ldots, c_M ?
- Pour la fonction de perte $\ell(\hat{y}, y) = (\hat{y} y)^2$, comment appliquer l'ERM ?

$$\hat{c}_m = \operatorname{average}(y_i \mid x_i \in R_m) = \frac{1}{\{i : x_i \in R_m\}} \sum_{\{i : x_i \in R_m\}} y_i$$

car

$$\operatorname{average}(y_i \mid x_i \in R_m) = \arg\min_{\hat{y}} \sum_{\{i: x_i \in R_m\}} \ell(\hat{y}, y_i) = \arg\min_{\hat{y}} \sum_{\{i: x_i \in R_m\}} (\hat{y} - y_i)^2$$

• Quelle est la perte associée à ce noeud ?

$$\sum_{\{i: x_i \in R_m\}} (\hat{c}_m - y_i)^2 = \sum_{\{i: x_i \in R_m\}} (\text{average}(y_j \mid x_j \in R_m) - y_i)^2 = N_m. \hat{Var}(\{y_i: x_i \in R_m\})$$

Noeud racine, Variables réelles

- Soit $x = (x^{(1)}, \dots, x^{(d)}) \in \mathbb{R}^d$. (d variables)
- variable de test $x^{(j)}$.
- seuil $s \in \mathbb{R}$.
- Partition basée sur $x^{(j)}$ et s:

$$R_{1}(j,s) = \left\{x \mid x^{(j)} \leqslant s\right\} R_{1}(j,s) \qquad R_{2}(j,s)$$

$$R_{2}(j,s) = \left\{x \mid x^{(j)} > s\right\}$$

Noeud Racine, variables continues

• Pour chaque variable $x^{(j)}$ et seuil s,

$$\hat{c}_1(j,s) = \operatorname{average}(y_i | x_i \in R_1(j,s))$$

 $\hat{c}_2(j,s) = \operatorname{average}(y_i | x_j \in R_2(j,s))$

Noeud Racine, variables continues

• Pour chaque variable $x^{(j)}$ et seuil s,

$$\hat{c}_1(j,s) = \operatorname{average}(y_i \mid x_i \in R_1(j,s))$$

 $\hat{c}_2(j,s) = \operatorname{average}(y_i \mid x_i \in R_2(j,s))$

• Trouver j, s qui minimisent

$$\begin{split} L(j,s) &= \sum_{i:x_i \in R_1(j,s)} (y_i - \hat{c}_1(j,s))^2 + \sum_{i:x_i \in R_2(j,s)} (y_i - \hat{c}_2(j,s))^2 \\ &= N_1.\hat{Var}(\{y_i: x_i \in R_1(j,s)\}) + N_2.\hat{Var}(\{y_i: x_i \in R_2(j,s)\}) \end{split}$$

Comment ?

Trouver le seuil

- Supposons qu'on choisisse la variable de test $x^{(j)}$.
- Supposons que $x_1^{(j)} \dots x_N^{(j)}$ soient triées en ordre croissant
 - traditionnellement, choisir le seuil entre deux valeurs consécutives:

r le seuil entre deux valeurs consécutives:
$$s_j \in \left\{ \frac{1}{2} \left(x_i^{(j)} + x_{i+1}^{(j)} \right) \mid i = 1, \dots, \underbrace{N-1} \right\}.$$

- Donc, on teste N-1 seuils
- complexité pour trouver le noeud et le seuil..?

Naire: for $j \in [...d, for Sj, for i=1...N <math>\Rightarrow o(N^2d)$ Impured: $O(d) N \log N$

Trouver le seuil

- Supposons qu'on choisisse la variable de test $x^{(j)}$.
- Supposons que $x_1^{(j)} \dots x_N^{(j)}$ soient triées en ordre croissant
 - traditionnellement, choisir le seuil entre deux valeurs consécutives:

$$s_j \in \left\{ \frac{1}{2} \left(x_i^{(j)} + x_{i+1}^{(j)} \right) \mid i = 1, ..., N-1 \right\}.$$

- Donc, on teste N-1 seuils
- complexité pour trouver le noeud et le seuil..?
- \circ $O(dN^2)$

Continuer l'apprentissage de l'arbre récursivement

- \bullet On a déterminé R_1 et R_2 , on a donc un arbre avec une racine et 2 feuilles. On continue
- 2 Choisir le meilleur split (j, s) dans R_1
- 3 Choisir le meilleur split (j', s') dans R_2
- Continuer...
- Quand s'arrête-t-on ?

Controler la complexité de l'arbre

- Si l'arbre est trop grand => chaque exemple x_i possèdera sa propre partition => Surapprentissage.
- Si trop petit, underfitting
- On peut limiter la profondeur de l'arbre
- On peut ne poursuivre les divisions que sur les noeuds contenant un nombre minimum d'exemples.
- On peut faire de l'élagage à postériori (ex: CART, Breiman et al 1984):
 - Construire un arbre très grand et profond (ex. jusqu'à ce que chaque région ait ≤ 5 points).
 - Elaguer l'arbre de façon gloutonne, du bas vers le haut, tant que la performance de l'arbre estimée sur un ensemble de test ne décroit pas.

Arbres de décision pour la Classification

Arbres pour la Classification (avec perte 0/1)

- Soit $\mathcal{Y} = \{1 \dots K\}$. Même raisonnement qu'avant: on suppose qu'on a déjà les région R_i
- Le noeud m represente la region R_m , avec N_m exemples
- La proportion d'exemple de classe $k \in \mathcal{Y}$ dans R_m est

$$\hat{\eta}_{m,k} = \hat{P}(Y = k \mid X \in R_m) = \frac{1}{N_m} \sum_{\{i: x_i \in R_m\}} 1(y_i = k).$$

• Si on prédit au noeud m la classe k, alors le taux d'erreur sur les exemples d'apprentissage de R_m sera (à tracer au tableau)

de
$$R_m$$
 sera (à tracer au tableau)
$$1 - \hat{\eta}_{m,k}$$

$$C_{ij} = \text{red} \implies \text{constraints}$$
The plane pour minimizer le tour d'enveur (porte 0/1). Le plane prédite pour le 15 1/2

• Donc pour minimiser le taux d'erreur (perte 0/1), la classe prédite pour le noeud m sera

$$\hat{y}(m) = \arg\min_{k} 1 - \hat{\eta}_{m,k} = \arg\max_{k} \hat{\eta}_{m,k}$$
 present the majority class

Exemple (sous forme d'exercice)

	Student	Credit Rating	Class: Buy PDA	1) tet student Student Re
	No	Fair	No	Re Re
	No	Excellent	No	$\hat{\eta}_{1,30} = \frac{1}{2} \hat{c}_{1} = \frac{1}{2} \hat{c}_{1} = \frac{1}{2} \hat{c}_{2} = \frac{1}{2} \hat{c}_{1} = \frac{1}{2} \hat{c}_{2} = \frac{1}{2} \hat{c}_{2} = \frac{1}{2} \hat{c}_{2} = \frac{1}{2} \hat{c}_{1} = \frac{1}{2} \hat{c}_{2} = \frac{1}{2} \hat{c}_{1} = \frac{1}{2} \hat{c}_{2} = \frac{1}{2} \hat{c}_{1} = \frac{1}{2} \hat{c}_{1}$
	No	Fair	Yes	N ₁ =3 N ₂ =5 N ₂ = N ₃ N ₃ = N
	No	Fair	Yes	
>	Yes	Fair	Yes	and to rolling
	Yes	Excellent	No	Fair End
ĺ	Yes	Excellent	Yes	Mry = 3/4 M2, y== 1/4
	No	Excellent	No	Maino=1/4 (92,No=3/4)
			=)	let Rothy 23 =) ener nt= 1

Exemple (sous forme d'exercice)

Arbres de décision pour la prédiction de densité de classes (CP loss)

• But: apprendre un "soft"-classifieur, prédisant des probabilités de classe: $f: \mathcal{X} \to \Delta_K$, où Δ_K est le simplexe de probabilités de dimension K.

• Exercice: dessinez un arbre de décision comportant un seul noeud, proposant des prédiction sur les probabilités de classe

Student	Credit Rating	Class: Buy PDA	
No	Fair	No	
No	Excellent	No	
No	Fair	Yes	
No	Fair	Yes	
Yes	Fair	Yes	
Yes	Excellent	No	
Yes	res Excellent		
No Excellent		No	

Rappel: En régression, on avait:

• Avec la partition $\{R_1, \dots, R_M\}$, la prédiction finale est:

$$f(x) = \sum_{m=1}^{M} c_m \mathbb{1}(x \in R_m)$$

- Supposons qu'on ait déjà la partition, comment choisir c_1, \ldots, c_M ?
- Pour la fonction de perte $\ell(\hat{y}, y) = (\hat{y} y)^2$, l'ERM propose:

$$\hat{c}_m = \arg\min_{\hat{y}} \sum_{\{i: x_i \in R_m\}} \ell(\hat{y}, y_i) = \arg\min_{\hat{y}} \sum_{\{i: x_i \in R_m\}} (\hat{y} - y_i)^2 = \operatorname{average}(y_i \mid x_i \in R_m).$$

• et la perte associée à ce noeud est $\sum (\hat{c}_m - y_i)^2$

- Plaçons nous dans le cas $\mathcal{Y} = \{0, 1\}$. Le noeud m represente la region R_m , avec N_m exemples
- La proportion d'exemple de classe dans R_m est

$$\hat{\eta}_m = \hat{P}(Y = 1 \mid X \in R_m) = \frac{1}{N_m} \sum_{\{i: x_i \in R_m\}} 1(y_i = k).$$

- l'ERM nous propose la prédiction suivante pour la classe $1:\hat{c}_m = \arg\min_{\hat{y}} \sum_{\{i: x_i \in R_m\}} \ell(\hat{y}, y_i) = \min_{\hat{y}} \sum_{\{i: x_i \in R_m\}} \ell(\hat{y}, y_i) = \min_{\hat{y} \in R_m} \ell(\hat{y}, y_i) =$
- Si la fonction de perte est une CP-loss (estimation de probabilités conditionnelles) propre (ex: cross-entropie) alors..

 The last is force then $\mathcal{E}_m = \hat{m}_m$

- Plaçons nous dans le cas $\mathcal{Y} = \{0, 1\}$. Le noeud m represente la region R_m , avec N_m exemples
- La proportion d'exemple de classe $k \in \mathcal{Y}$ dans R_m est

$$\hat{\eta}_m = \hat{P}(Y = 1 \mid X \in R_m) = \frac{1}{N_m} \sum_{\{i: x_i \in R_m\}} 1(y_i = k).$$

- I'ERM nous propose la prédiction suivante pour la classe 1 : $\hat{c}_m = \arg\min_{\hat{v}} \sum_{\{i:x_i \in R_m\}} \ell(\hat{y}, y_i)$
- Si la fonction de perte est une CP-loss (estimation de probabilités conditionnelles) *propre* (ex: cross-entropie) alors..

$$\hat{c}_m = \hat{\eta}_m$$

• La valeur de la perte en R_m sera alors...?

- Plaçons nous dans le cas $\mathcal{Y} = \{0, 1\}$. Le noeud m represente la region R_m , avec N_m exemples
- La proportion d'exemple de classe $k \in \mathcal{Y}$ dans R_m est

$$\hat{\eta}_m = \hat{P}(Y = 1 \mid X \in R_m) = \frac{1}{N_m} \sum_{\{i: x_i \in R_m\}} 1(y_i = k).$$

- l'ERM nous propose la prédiction suivante pour la classe 1 : $\hat{c}_m = \operatorname{arg\,min}_{\hat{v}} \sum_{\{i: y_i \in R_m\}} \ell(\hat{y}, y_i)$
- Si la fonction de perte est une CP-loss (estimation de probabilités conditionnelles) propre (ex: cross-entropie) alors..

$$\hat{c}_m = \hat{\eta}_m$$

 $\hat{c}_m = \hat{\eta}_m$ • La valeur de la perte en R_m sera alors...? $\sum_{\ell} \ell(\hat{\eta}_m, y_i)$

$$\sum_{\{i:x_i\in R_m\}}\ell\left(\hat{\eta}_m,y_i\right)$$

- Plaçons nous dans le cas $\mathcal{Y} = \{0,1\}$. Le noeud m represente la region R_m , avec N_m exemples
- La valeur de la perte en R_m sera alors

$$\sum_{\{i:x_i\in R_m\}}\ell\left(\hat{\eta}_m,y_i\right)$$

• Pour la cross-entropy $\ell(\hat{\eta}, y) = y \log \hat{\eta} / (1-y) \log (1-\hat{\eta})$, cette valeur sera ...?

- Plaçons nous dans le cas $\mathcal{Y} = \{0, 1\}$. Le noeud m represente la region R_m , avec N_m exemples
- La valeur de la perte en R_m sera alors

alors
$$\sum_{\{i:x_i \in R_m\}} \ell\left(\hat{\eta}_m, y_i\right) = \bigvee_{m \times \hat{\eta}_m} \left(\widehat{\eta}_m, \chi\right) + \bigvee_{m \times (1-\hat{\eta}_m)} \left(\widehat{\eta}_m, \chi\right) + \bigvee_{m \times (1-$$

- Pour la cross-entropy $\ell(\hat{\eta}, y) = -y \log \hat{\eta} + (1-y) \log (1-\hat{\eta})$, cette valeur sera ...?
- $N_m.H_\ell = -N_m.(\hat{\eta}_m \log \hat{\eta}_m + (1 \hat{\eta}_m) \log (1 \hat{\eta}_m)) = \text{Entropie de Shannon}.$
- Si on cherche à prédire une classe plutot qu'un probabilité, on prendra $\hat{y}(R_m)=1$ si $\hat{\eta}_m>\frac{1}{2}$, 0 sinon
- Remarque: pour toute perte PC ℓ , la valeur de cette perte dans la région R_m est l'entropie généralisée $H_{\ell}(\hat{\eta}_m)$.

Two-Class Node Impurity Measures

Consider binary classification

Two-Class Node Impurity Measures

- Consider binary classification
- Let p be the relative frequency of class 1.

Two-Class Node Impurity Measures

- Consider binary classification
- Let p be the relative frequency of class 1.

ullet Here are three node impurity measures as a function of p

• Consider leaf node m representing region R_m , with N_m observations

- Consider leaf node m representing region R_m , with N_m observations
- Three measures $Q_m(T)$ of **node impurity** for leaf node m:
 - Misclassification error:

$$H_{0/1}(\hat{\eta}) = \min_{k} 1 - \hat{\eta}_{m,k}.$$

- Consider leaf node m representing region R_m , with N_m observations
- Three measures $Q_m(T)$ of **node impurity** for leaf node m:
 - Misclassification error:

$$H_{0/1}(\hat{\eta}) = \min_{k} 1 - \hat{\eta}_{m,k}.$$

• Gini index:

$$H_{\textit{Gini}}\left(\hat{\eta}\right) = \sum_{k=1}^{K} \hat{\eta}_{\textit{m},k} (1 - \hat{\eta}_{\textit{m},k})$$

- Consider leaf node m representing region R_m , with N_m observations
- Three measures $Q_m(T)$ of **node impurity** for leaf node m:
 - Misclassification error:

$$H_{0/1}(\hat{\eta}) = \min_{k} 1 - \hat{\eta}_{m,k}.$$

• Gini index:

$$H_{Gini}(\hat{\eta}) = \sum_{k=1}^{K} \hat{\eta}_{m,k} (1 - \hat{\eta}_{m,k})$$

• Entropy or deviance (equivalent to using information gain):

$$H_{CE}(\hat{\eta}) = -\sum_{k=1}^{K} \hat{\eta}_{m,k} \log \hat{\eta}_{m,k}.$$

Class Distributions: Pre-split

From Criminisi et al. MSR-TR-2011-114, 28 October 2011.

Class Distributions: Split Search

From Criminisi et al. MSR-TR-2011-114, 28 October 2011.

ullet Let R_1 and R_2 be regions corresponding to a potential node split.

- Let R_1 and R_2 be regions corresponding to a potential node split.
- Suppose we have N_1 points in R_1 and N_2 points in R_2 .

- Let R_1 and R_2 be regions corresponding to a potential node split.
- Suppose we have N_1 points in R_1 and N_2 points in R_2 .
- Let $H_{\ell}(R_1)$ and $H_{\ell}(R_2)$ be generalized entropy (the node impurity measures)

R. R.

- Let R_1 and R_2 be regions corresponding to a potential node split.
- Suppose we have N_1 points in R_1 and N_2 points in R_2 .
- Let $H_{\ell}(R_1)$ and $H_{\ell}(R_2)$ be generalized entropy (the node impurity measures)
- Then find split that minimizes the weighted average of node impurities:

$$\text{cuy entropy} = \underbrace{\frac{N_1}{N}H(R_1) + \frac{N_2}{N}H(R_2)}_{N}$$

- For building the tree, Gini and Entropy seem to be more effective.
- They push for more pure nodes, not just misclassification rate
- A good split may not change misclassification rate at all!

- For building the tree, Gini and Entropy seem to be more effective.
- They push for more pure nodes, not just misclassification rate
- A good split may not change misclassification rate at all!
- Two class problem: 4 observations in each class.
- Split 1: (3,1) and (1,3) [each region has 3 of one class and 1 of other]
- Split 2: (2,4) and (2,0) [one region has 2 of one class and 4 of other, other region pure]
- Misclassification rate for two splits are same.
- Gini and entropy split prefer Split 2.