Machine Learning for Physical Scientists

Lecture 7
Kernel Method
(Going Beyond Linear Hypothesis Efficiently)

Not linearly separable in 2 dimensions. Using logistic regression will also give large error.

Not linearly separable in 2 dimensions. Using logistic regression will also give large error.

Solution: go to higher dimension via a feature map!

$$\Phi(x_1, x_2) = (x_1, x_2, x_1^2 + x_2^2)$$

This clearly will be linearly separable in 3 dimensions!

We may simply extend beyond a linear hypothesis space with a feature map

$$\Phi: X \to F$$

where typically $|X| = d \ll |F| = p$.

We may simply extend beyond a linear hypothesis space with a feature map

$$\Phi: X \to F$$

where typically $|X| = d \ll |F| = p$.

And we may perform regression based on a much larger, but not arbitrarily large, hypothesis space (linear combination of feature vectors, instead of the original features)

$$\mathcal{H} = \{ f_{\mathbf{w}}(\mathbf{x}) = \mathbf{w}^T \Phi(\mathbf{x}) \} .$$

We may simply extend beyond a linear hypothesis space with a feature map

$$\Phi: X \to F$$

where typically $|X| = d \ll |F| = p$.

And we may perform regression based on a much larger, but not arbitrarily large, hypothesis space (linear combination of feature vectors, instead of the original features)

$$\mathcal{H} = \{ f_{\mathbf{w}}(\mathbf{x}) = \mathbf{w}^T \Phi(\mathbf{x}) \} .$$

An illustrative simple example could be $\mathbf{x} = (x_1, x_2) \mapsto \Phi(\mathbf{x}) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)$,

so the hypothesis space is no longer linear, but a polynomial of degree 2. This is particularly useful, because points that are not classified by a linear model might be easily classified by a linear model in a *feature space*.

We may simply extend beyond a linear hypothesis space with a feature map

$$\Phi: X \to F$$

where typically $|X| = d \ll |F| = p$.

And we may perform regression based on a much larger, but not arbitrarily large, hypothesis space (linear combination of feature vectors, instead of the original features)

$$\mathcal{H} = \{ f_{\mathbf{w}}(\mathbf{x}) = \mathbf{w}^T \Phi(\mathbf{x}) \} .$$

An illustrative simple example could be $\mathbf{x} = (x_1, x_2) \mapsto \Phi(\mathbf{x}) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)$,

so the hypothesis space is no longer linear, but a polynomial of degree 2. This is particularly useful, because points that are not classified by a linear model might be easily classified by a linear model in a *feature space*.

We may simply extend beyond a linear hypothesis space with a feature map

$$\Phi: X \to F$$

where typically $|X| = d \ll |F| = p$.

And we may perform regression based on a much larger, but not arbitrarily large, hypothesis space (linear combination of feature vectors, instead of the original features)

$$\mathcal{H} = \{ f_{\mathbf{w}}(\mathbf{x}) = \mathbf{w}^T \Phi(\mathbf{x}) \} .$$

An illustrative simple example could be $\mathbf{x} = (x_1, x_2) \mapsto \Phi(\mathbf{x}) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)$,

so the hypothesis space is no longer linear, but a polynomial of degree 2. This is particularly useful, because points that are not classified by a linear model might be easily classified by a linear model in a *feature space*.

Importantly, it's not difficult to see that solving Tikhonov regularization problem

$$\min_{\mathbf{w} \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n \ell\left(y_i, f_{\mathbf{w}}\left(\mathbf{x}_i\right)\right) + \lambda \|\mathbf{w}\|^2$$

is essentially the same, up to replacing $\mathbf{x} \in \mathbb{R}^D$ by the *feature vector* $\Phi(\mathbf{x}) \in \mathbb{R}^p$, as what we have done earlier in this class!

Consider

$$\mathbf{x} = egin{pmatrix} x_1 \ x_2 \ dots \ x_d \end{pmatrix} \qquad ext{and} \qquad \phi(\mathbf{x}) = egin{pmatrix} 1 \ x_1 \ dots \ x_d \ x_1 x_2 \ dots \ x_{d-1} x_d \ dots \ x_1 x_2 \ldots x_d \end{pmatrix}$$

This feature map is *very expressive*, and allows complicated *non-linear decision boundaries*; however, its dimension is $p = 2^d$ and hence is *prohibitively unbearable* (computationally)!

The kernel trick is a way to get around this dilemma by learning a function in a much higher dimensional space, without ever computing a single vector $\Phi(\mathbf{x})$ or \mathbf{w} . The magic sauce behind this is the *representer theorem*, which we will not prove here but provides a note for you to read.

The kernel trick is a way to get around this dilemma by learning a function in a much higher dimensional space, without ever computing a single vector $\Phi(\mathbf{x})$ or \mathbf{w} . The magic sauce behind this is the *representer theorem*, which we will not prove here but provides a note for you to read.

The representer theorem states that the solution to the Tikhonov regularization problem

$$\min_{\mathbf{w} \in \mathbb{R}^D} \frac{1}{n} \sum_{i=1}^n \mathbf{\ell} \left(y_i, f_{\mathbf{w}} \left(\mathbf{x}_i \right) \right) + \lambda ||\mathbf{w}||^2$$

can always be written as a linear combination of input features as

$$\hat{\mathbf{w}}^T = \sum_{i=1}^n \Phi(\mathbf{x}_i)^T w_i$$

where w_i is a scalar coefficient.

The kernel trick is a way to get around this dilemma by learning a function in a much higher dimensional space, without ever computing a single vector $\Phi(\mathbf{x})$ or \mathbf{w} . The magic sauce behind this is the *representer theorem*, which we will not prove here but provides a note for you to read.

The representer theorem states that the solution to the Tikhonov regularization problem

$$\min_{\mathbf{w} \in \mathbb{R}^{D}} \frac{1}{n} \sum_{i=1}^{n} \mathbf{\ell} \left(y_{i}, f_{\mathbf{w}} \left(\mathbf{x}_{i} \right) \right) + \lambda \|\mathbf{w}\|^{2}$$

can always be written as a linear combination of input features as

$$\hat{\mathbf{w}}^T = \sum_{i=1}^n \Phi(\mathbf{x}_i)^T w_i$$

where w_i is a scalar coefficient.

This implies that the empirically optimal hypothesis function can be written as an inner-product

$$\hat{f}_{\hat{\mathbf{w}}}(\mathbf{x}) = \hat{\mathbf{w}}^T \Phi(\mathbf{x}) = \sum_{i=1}^n w_i \Phi(\mathbf{x}_i)^T \Phi(\mathbf{x})$$

The solution depends on the input feature only via the inner product!

The kernel trick is a way to get around this dilemma by learning a function in a much higher dimensional space, without ever computing a single vector $\Phi(\mathbf{x})$ or \mathbf{w} . The magic sauce behind this is the *representer theorem*, which we will not prove here but provides a note for you to read.

The representer theorem states that the solution to the Tikhonov regularization problem

$$\min_{\mathbf{w} \in \mathbb{R}^D} \frac{1}{n} \sum_{i=1}^n \mathbf{\ell} \left(y_i, f_{\mathbf{w}} \left(\mathbf{x}_i \right) \right) + \lambda ||\mathbf{w}||^2$$

can always be written as a linear combination of input features as

$$\hat{\mathbf{w}}^T = \sum_{i=1}^n \Phi(\mathbf{x}_i)^T w_i$$

where w_i is a scalar coefficient.

This implies that the empirically optimal hypothesis function can be written as an inner-product

$$\hat{f}_{\hat{\mathbf{w}}}(\mathbf{x}) = \hat{\mathbf{w}}^T \Phi(\mathbf{x}) = \sum_{i=1}^n w_i \Phi(\mathbf{x}_i)^T \Phi(\mathbf{x})$$

$$= \sum_{i=1}^n w_i \left\langle \Phi(\mathbf{x}_i), \Phi(\mathbf{x}) \right\rangle$$

$$= K(\mathbf{x}_i, \mathbf{x})$$

$$O(n^2)$$

The solution depends on the input feature only via the inner product!

Kernel Trick

Replace an inner product with a more general function, with inner product-like property (hence the name *kernel*)

General Kernels

So Kernel method converts risk minimisation problem in high-dimensional feature space to learning the linear combination

$$\hat{f}(\mathbf{x}) = \sum_{i=1}^{n} w_i K(\mathbf{x}_i, \mathbf{x})$$

where a kernel function $K(\mathbf{x}, \mathbf{x}')$ must behave like an inner-product, that is $K(\mathbf{x}, \mathbf{x}')$ must be symmetric, and positive semi-definite.

Examples

Linear Kernel

$$K(\mathbf{x}, \mathbf{x}') = \mathbf{x}^T \mathbf{x}'$$

Similar to a good old linear classifier, but can be faster if the dimension of data is large compared to the number of data.

General Kernels

So Kernel method converts risk minimisation problem in high-dimensional feature space to learning the linear combination

$$\hat{f}(\mathbf{x}) = \sum_{i=1}^{n} w_i K(\mathbf{x}_i, \mathbf{x})$$

where a kernel function $K(\mathbf{x}, \mathbf{x}')$ must behave like an inner-product, that is $K(\mathbf{x}, \mathbf{x}')$ must be symmetric, and positive semi-definite.

Examples

Linear Kernel

$$K(\mathbf{x}, \mathbf{x}') = \mathbf{x}^T \mathbf{x}'$$

Similar to a good old linear classifier, but can be faster if the dimension of data is large compared to the number of data.

Gaussian Kernel Radial Basis Function (RBF)

$$K(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{\|\mathbf{x} - \mathbf{x}'\|^2}{2\sigma^2}\right)$$

The most popular kernel

It is a universal approximator.
(hence the name basis function)

General Kernels

So Kernel method converts risk minimisation problem in high-dimensional feature space to learning the linear combination

$$\hat{f}(\mathbf{x}) = \sum_{i=1}^{n} w_i K(\mathbf{x}_i, \mathbf{x})$$

where a kernel function $K(\mathbf{x}, \mathbf{x}')$ must behave like an inner-product, that is $K(\mathbf{x}, \mathbf{x}')$ must be symmetric, and positive semi-definite.

Examples

Linear Kernel

$$K(\mathbf{x}, \mathbf{x}') = \mathbf{x}^T \mathbf{x}'$$

Similar to a good old linear classifier, but can be faster if the dimension of data is large compared to the number of data.

Gaussian Kernel Radial Basis Function (RBF)

$$K(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{\|\mathbf{x} - \mathbf{x}'\|^2}{2\sigma^2}\right)$$

The most popular kernelIt is a universal approximator. (hence the name basis function)

Note that for RBF the feature space of the kernel has an infinite number of dimensions; for $\sigma = 1$, for example, it can be expanded as

$$\exp\left(-\frac{1}{2} \| \mathbf{x} - \mathbf{x}' \|^{2}\right) = \sum_{j=0}^{\infty} \frac{(\mathbf{x}^{\mathsf{T}} \mathbf{x}')^{j}}{j!} \exp\left(-\frac{1}{2} \| \mathbf{x} \|^{2}\right) \exp\left(-\frac{1}{2} \| \mathbf{x}' \|^{2}\right)$$

$$= \sum_{j=0}^{\infty} \sum_{\sum n_{i}=j} \exp\left(-\frac{1}{2} \| \mathbf{x} \|^{2}\right) \frac{x_{1}^{n_{1}} \cdots x_{k}^{n_{k}}}{\sqrt{n_{1}! \cdots n_{k}!}} \exp\left(-\frac{1}{2} \| \mathbf{x}' \|^{2}\right) \frac{x_{1}^{'n_{1}} \cdots x_{k}^{'n_{k}}}{\sqrt{n_{1}! \cdots n_{k}!}}$$

Kernel Machines and How to Train Them

$$\hat{\mathbf{w}} = \min_{\mathbf{w} \in \mathbb{R}^D} \sum_{i=1}^n \left(y_i - f_{\mathbf{w}} \left(\mathbf{x}_i \right) \right)^2 + \lambda ||\mathbf{w}||^2$$

Kernel Machines and How to Train Them

$$\hat{\mathbf{w}} = \min_{\mathbf{w} \in \mathbb{R}^{D}} \sum_{i=1}^{n} \left(y_{i} - f_{\mathbf{w}} \left(\mathbf{x}_{i} \right) \right)^{2} + \lambda \|\mathbf{w}\|^{2}$$

$$= \min_{\mathbf{w} \in \mathbb{R}^{D}} \sum_{i,j=1}^{n} \left(y_{j} - w_{i} K(\mathbf{x}_{i}, \mathbf{x}_{j}) \right)^{2} + \lambda \|\mathbf{w}\|^{2}$$

$$\mathbf{K} \text{ matrix of size } n^{2}$$

ridge regression

$$\hat{\mathbf{w}} = \left(X^T X + \lambda I\right)^{-1} X^T \mathbf{y}$$

Kernel Machines and How to Train Them

$$\hat{\mathbf{w}} = \min_{\mathbf{w} \in \mathbb{R}^{D}} \sum_{i=1}^{n} \left(y_{i} - f_{\mathbf{w}} \left(\mathbf{x}_{i} \right) \right)^{2} + \lambda \|\mathbf{w}\|^{2}$$

$$= \min_{\mathbf{w} \in \mathbb{R}^{D}} \sum_{i,j=1}^{n} \left(y_{j} - w_{i} K(\mathbf{x}_{i}, \mathbf{x}_{j}) \right)^{2} + \lambda \|\mathbf{w}\|^{2}$$

$$\mathbf{K} \text{ matrix of size } n^{2}$$

ridge regression

$$\hat{\mathbf{w}} = \left(X^T X + \lambda I\right)^{-1} X^T \mathbf{y}$$

kernel ridge regression

$$\hat{\mathbf{w}} = (\mathbf{K} + \lambda I)^{-1} \mathbf{y}$$

Example usage of Kernel method: RBFs for Regression (Curve-fitting)

$$h(\mathbf{x}) = \sum_{i=1}^{n} w_i \exp\left(-\parallel \mathbf{x} - \mathbf{x}_i \parallel^2 / 2\sigma^2\right)$$

Example usage of Kernel method: RBFs for Regression (Curve-fitting)

$$h(\mathbf{x}) = \sum_{i=1}^{n} w_i \exp\left(-\parallel \mathbf{x} - \mathbf{x}_i \parallel^2 / 2\sigma^2\right)$$

small σ

Example usage of Kernel method: RBFs for Regression (Curve-fitting)

$$h(\mathbf{x}) = \sum_{i=1}^{n} w_i \exp\left(-\parallel \mathbf{x} - \mathbf{x}_i \parallel^2 / 2\sigma^2\right)$$

large σ

more expressive, but can overfit

small σ

Example usage of Kernel method: RBFs for Classification

$$h(\mathbf{x}) = \operatorname{sign} \left[\sum_{i=1}^{n} w_i \exp \left(- \| \mathbf{x} - \mathbf{x}_i \|^2 / 2\sigma^2 \right) \right]$$

Bernhard Schölkopf, Christopher J.C. Burges, and Alexander J. Smola, ADVANCES IN KERNEL METHODS: SUPPORT VECTOR LEARNING, published by the MIT Press. Used with permission.