Decision Tree Classifier Result

Out put

Prediction: Purchased = 1, Not Purchased = 0.

	precision	recall	f1-score	support
0	0.96	0.90	0.93	79
1	0.83	0.93	0.87	41
accuracy			0.91	120
macro avg	0.89	0.91	0.90	120
weighted avg	0.91	0.91	0.91	120

Purchased, Class 1

• How many are correctly predicted as purchased?

Precision = 0.83

- → Out of all predicted "Purchased", 83% were actually Purchased.
- How many are completely identified as purchased?

Recall = 0.93

- → Out of all actual "Purchased" cases, the model correctly identified 93%.
- What is the balance between correctness and completeness for purchased? F1-score = 0.87
 - → Good balance between catching most Purchases (high Recall) and not making too many false alarms.
- Support = 41
 - → There were 41 actual "Purchased" cases in the test set.

Not Purchased, Class 0

• How many are correctly predicted as not purchased?

Model Precision = 0.96

- → Out of all predicted "Not Purchased", 96% were correct.
- How many are completely identified as not purchased?

Recall = 0.90

- → Out of all actual "Not Purchased", the model caught 90% of them.
- What is the balance between correctness and completeness for not purchased?

F1-score = 0.93

- → Balance between Precision & Recall.
- **Support = 79**
 - → There were 79 actual "Not Purchased" cases in the test set.

Overall Metrics

How many total predictions are correct overall?

Accuracy = 0.91 (91%)

→ The model predicted correctly in 91% of the 120 cases.

What is the average performance across both classes, treating them equally?

- **/** Macro Avg
- Precision = 0.89 → On average, 89% of predicted Purchased/Not Purchased cases were correct.
- Recall = 0.91 → On average, the model correctly identified 91% of actual Purchased/Not Purchased cases.
- F1-score = 0.90 → Overall, the model maintained a good balance between correctness and completeness across both classes. ✓

What is the average performance across both classes, considering their proportion (support)?

& Weighted Avg

- Precision = 0.91 → Taking class sizes into account, 91% of predicted Purchased/Not Purchased cases were correct.
- Recall = 0.91 → On average, the model correctly identified 91% of actual Purchased/Not Purchased cases, weighted by class frequency.
- F1-score = 0.91 → Overall, the model achieved a balanced correctness and completeness, adjusted for class distribution. ✓

🔎 Interpretation

- The model performs very well overall (91% accuracy).
- For class 0 (Not Purchased) \rightarrow higher precision (0.96) but slightly lower recall (0.90).
- For class 1 (Purchased) \rightarrow higher recall (0.93) but lower precision (0.83).
 - Meaning: it catches most buyers, but sometimes wrongly predicts a non-buyer as a buyer.