Universidad Mayor de San Simón Facultad de Ciencias y Tecnología

Nota: _	
---------	--

UMSS

CIRCUITOS ELÉCTRICOS I

TEMA 5: TEOREMAS DE CIRCUITOS ELÉCTRICOS PRÁCTICA 5

Grupo:	
Apellido (s) y	y Nombre (s):
Docentes:	M.Sc. Ing. Juan José E. MONTERO G. – Ing. Yuri PÉREZ P.
Auxiliares:	
Asignatura:	Circuitos Eléctricos I
Carrera:	Ingeniería: Eléctrica - Electrónica - Electromecánica
Semestre:	2° Semestre – 4° Semestre
Fecha de ent	rega: Chha / / / 20

Universidad Mayor de San Simón Facultad de Ciencias y Tecnología

Ingeniería: Eléctrica - Electrónica - Electromecánica

Circuitos Eléctricos I: 2º Semestre - 4º Semestre

TEMA 5: TEOREMAS DE CIRCUITOS ELÉCTRICOS

PRÁCTICA 5

Problema 1.

Aplicando la técnica de transformación de fuentes se pide:

- a) Encontrar la potencia relacionada con la fuente de 6[V] en el circuito de la figura. R.: 4.95[W]
- b) Determinar si la fuente de 6[V] consume o suministra la potencia que se calculó en (a). R.: Consume

Problema 2.

- a) Usar las transformaciones de fuentes para encontrar el voltaje "V₀" en el circuito de la figura.
 - R.: 20[V]
- b) Encontrar la potencia que suministra la fuente de voltaje de 250[V].

$$R.: -2800[W]$$

c) Determinar la potencia que suministra la fuente de corriente de 8[A]

$$R.: -480[W]$$

Problema 3.

a) Mediante una serie de transformaciones de fuentes encuentre la corriente "i₀" en el circuito de la figura.

$$R.: -1[mA]$$

b) Verifique su solución mediante el método de los voltajes de los nodos para encontrar "i₀". R.: – 1[mA]

$$V_1 = 2.7[V]$$
; $V_2 = 0.4[V]$

Problema 4.

a) Utilice una serie de transformaciones de fuentes para encontrar el voltaje "V" en el circuito de la figura.

R.: 48[V]

b) ¿Cuánta potencia suministra la fuente de 120 V al circuito?

$$R.: -374.4[W]$$

Problema 5.

- a) Encuentre la corriente en la resistencia de $5[k\Omega]$ del circuito de la figura mediante una serie de transformaciones de fuentes. R.: -4.5[mA]
- b) Use el resultado que obtuvo en la parte (a) e invierta el proceso de análisis para encontrar la potencia que genera la fuente de 120[V].

R.: 397.8[mW]

Problema 6.

Encuentre el circuito equivalente de Thévenin con respecto a las terminales "a" y "b" del circuito que se presenta en la figura. R.:

48[V]; $16[\Omega]$

Problema 7.

Calcular el circuito equivalente de Thévenin con respecto a las terminales "a" y "b" del circuito que se presenta en la figura. R.: 32[V]; $8[\Omega]$

Hallar el circuito equivalente de Norton. R.: 4[A]; $8[\Omega]$

Problema 8.

Determinar el circuito equivalente de Thévenin con respecto a las terminales "a" y "b" del circuito que se presenta en la figura. R.: 112[V]; $16[\Omega]$

Problema 9.

Calcular el circuito equivalente de Thévenin con respecto a las terminales "a" y "b" del circuito que se presenta en la figura. R.: 64.8[V]; $6[\Omega]$

Problema 10.

Encuentre el circuito equivalente de Norton con respecto a las terminales "a" y "b" del circuito que se muestra en la figura.R.: 6[A]; $6[\Omega]$

Problema 11.

Se emplea un voltímetro con resistencia interna de $100[k\Omega]$ para medir el voltaje " V_{ab} " en el circuito que se muestra. ¿Cuál es la lectura del voltímetro?. R.: 120[V]

Problema 12.

Determinar el circuito equivalente de Thévenin. R.: -5[V]; $100[\Omega]$

Problema 13.

Cuando se emplea un voltímetro para medir el voltaje "Ve" en la siguiente figura, la lectura es de 5.5[V].

a) ¿Cuál es la resistencia del voltímetro?.

- R.: 32.5[kΩ]
- b) ¿Cuál es el porcentaje de error en la lectura del voltímetro.R.: -1.1% ; $V_{e\ verdadero}=5.56111[V]$; Con voltímetro V=6.35833[V]

Problema 14.

Encuentre el circuito equivalente de Thévenin con respecto a los terminales "a" y "b" del circuito que se muestra.

Problema 15.

Determinar el circuito equivalente de Thévenin con respecto a las terminales "a" y "b" del circuito que se muestra en la figura. R.: 30[V]; $10[\Omega]$

Problema 16.

Encuentre el circuito equivalente de Thévenin con respecto a las terminales "a" y "b" del circuito que se muestra en la figura. R.: 0[V]; $12.5[\Omega]$

Problema 17.

- a) En el circuito de la figura, encontrar el valor de " R_L ", que origine la Máxima Transferencia de Potencia a " R_L ". R.: $25[\Omega]$
- b) Calcular la máxima potencia que se puede suministrar a "R_L". R.: 900[W]
- c) Al ajustar " R_L ", para la Máxima Transferencia de Potencia, ¿qué porcentaje de la potencia suministrada por la fuente de 360[V] llega a " R_L "?. R.: 35.71 %

Problema 18.

a) Encuentre el valor de "R" que permite que el circuito de la figura suministre la Máxima Potencia a las terminales "a" y "b". R.: $V_1 = 80[V]$; $V_a = 40[V]$;

 $V_{th} = 120[V]$; $I_{cc} = 40[A]$; $R = 3[\Omega]$

b) Determine la máxima potencia administrada a "R". R.: 1200[W]

c) Cuando el circuito suministra la Máxima Potencia a la resistencia de carga "R" ¿Cuánta potencia suministra la fuente de 100[V] a la red?. ¿Y la fuente de voltaje dependiente?.

R.:
$$V_1 = V_a = 60[V]$$
; $V_{\phi} = 40[V]$; $I_{100 V} = 30[A]$; $I_{V\phi} = 20[A]$; $P_{100 V} = -3000[W]$; $P_{V\phi} = -800[W]$

d) ¿Qué porcentaje de la potencia total generada por las dos fuentes se suministra a la resistencia de carga "R"?.

R.: 31.58 %

Problema 19.

La resistencia variable del circuito de la figura se ajusta para una máxima transferencia de potencia a " R_0 ". Determine el valor de " R_0 " y encuentre la máxima potencia que se puede suministrar a " R_0 ".

R.: $5[k\Omega]$; 957.03[µW]

Problema 20.

La resistencia variable " R_0 " del circuito de la figura se ajusta para una máxima transferencia de potencia a " R_0 ". Determine el valor de " R_0 " y encuentre la máxima potencia que se puede suministrar a " R_0 ".R.: 2.5[Ω]; 2250[W]

Problema 21.

Aplicando el Principio de Superposición calcular las corrientes: i1, i2, i3 e i4.

R.:
$$V_1 = 18[V]$$
; $V_2 = -4[V]$; $17[A]$;

$$6[A]; 11[A]; -1[A]$$

Problema 22.

Usando el Principio de Superposición determinar " i_0 " y " V_0 " en el circuito de la figura.

Problema 23.

Usar el principio de superposición para encontrar " V_0 " en el circuito de la figura.

R.:
$$V'_{\Delta} = 0[V]$$
; $V'_{o} = 8[V]$; $V''_{\Delta} = 10[V]$; $V''_{o} = 16[V]$; $V_{o} = 24[V]$

Problema 24.

Utilice el principio de superposición para encontrar " V_0 " en el circuito de la figura.

R.: 288[V]

Problema 25.

Con base en el principio de superposición, encuentre " V_0 " en el circuito de la figura. R.: 15[V]

Problema 26.

Encuentre la potencia que absorbe la fuente de corriente de 5[A] del circuito que se muestra en la figura. R.: 23.09[W]

Problema 27.

En el circuito de la figura, determinar la corriente " i_1 ". R.: 0[A]

1Ω ≶

1Ω

≶5Ω