函数

王二民(≥wagermn@126.com)

2019 至 2020 学年

郑州工业应用技术学院·基础教学部

常用数集

自然数集 № ^益 {0,1,2,3,···}. **整数集** ℤ ^益 {···,-3,-2,-1,0,1,2,3,···} **有理数集** ℚ ^益 { $\frac{m}{n}$ | $(m \in \mathbb{Z}) \land (n \in \mathbb{Z}) \land (n \neq 0)$ } **实数集** ℝ,可以认为是小数组成的集合。

- № 表示正整数集
- ℝ* 表示非零实数集

有界区间

$$(a,b) \stackrel{\text{def}}{=} \left\{ x \in \mathbb{R} \mid a < x < b \right\}$$

$$[a,b) \stackrel{\text{def}}{=} \left\{ x \in \mathbb{R} \mid a < x < b \right\}$$

$$(a,b) \stackrel{\text{def}}{=} \left\{ x \in \mathbb{R} \mid a < x < b \right\}$$

$$[a,b] \stackrel{\text{def}}{=} \left\{ x \in \mathbb{R} \mid a < x < b \right\}$$

其中 $a,b \in \mathbb{R}$,

- 本课程约定: 无特殊说明, 要求 *a < b*.
- 称 *a*, *b* 为区间的**端点**。
- 称 (a, b) 为这些区间的内部。

无界区间

$$(-\infty, b) \stackrel{\text{def}}{=} \{x \in \mathbb{R} \mid x < b\}$$

$$(-\infty, b] \stackrel{\text{def}}{=} \{x \in \mathbb{R} \mid x \leq b\}$$

$$(a, +\infty) \stackrel{\text{def}}{=} \{x \in \mathbb{R} \mid x > a\}$$

$$[a, +\infty) \stackrel{\text{def}}{=} \{x \in \mathbb{R} \mid x \geq a\}$$

$$(-\infty, +\infty) \stackrel{\text{def}}{=} \mathbb{R}$$

其中 $a,b \in \mathbb{R}$, 称 a,b 为对应区间的**端点**。

邻域

以 $a \in \mathbb{R}$ 为中心, $\delta \in \mathbb{R}_1$ 为半径的**邻域**

$$U(a, \delta) \stackrel{\text{def}}{=} \{x \mid |x - a| < \delta\} = (a - \delta, a + \delta)$$

$$a - \delta \qquad a + \delta \qquad x$$

表示数轴上到点 a 的距离不超过 δ 的点的集合。

以 $a \in \mathbb{R}$ 为中心, $\delta \in \mathbb{R}_+$ 为半径的**去心邻域**

$$\overset{\circ}{u}(a, \delta) \stackrel{\text{def}}{=} \left\{ x \mid 0 < |x - a| < \delta \right\} = (a - \delta, a) \cup (a, a + \delta)$$

$$\overset{\circ}{a - \delta} \overset{\circ}{a} \overset{\circ}{a + \delta} \overset{\circ}{x}$$

表示数轴上到点 a 的距离不超过 δ 且异于 a 的点的集合。

函数是一种特殊的对应法则

函数 > 函数

函数的定义

定义(函数)

设 X 和 Y 是两个集合,f 是从 X 到 Y 的对应法则。如果对于 X 的任意一个元素 x, 按照法则 f, 在 Y 中都存在唯一的元素 y 与之对应,则称 f 是从 X 到 Y 的**函数**。

称 X 为函数 f 的**定义域**(通常记为 D_f),称 Y 为函数 f 的 **陪域**,称 X 为自变量,称 Y 为因变量。

与 x 对应的 y 记为 f(x), 称为函数 f 在 x 处的**函数值**,从而 y = f(x).

关于函数记法的几点说明

- 函数名变量,如: f, F, φ, ···.
- 函数名常量,如: log, ln, sin, cos, ···.
- 函数的完整记法

$$\begin{array}{cccc}
f & : & X & \longrightarrow & Y \\
& x & \longmapsto & f(x)
\end{array}$$

- 强调定义域 X 和培域 Y 时,函数 f 可简记为 $f:X\to Y$.
- 强调对应法则时,函数 f 可简记为,例如, $f(x) = x^2$.
- 变量记法,例如 $y = x^2$.
- 因变量名与函数名相同的记法: y = y(x), u = u(t), ···.
- 函数 f 的**值域**(通常记为 R_f)为 $\{f(x) \mid x \in X\} \subset Y$.
- 函数 f 的**图象**为 $\{(x, f(x)) \mid x \in X\}$.

函数的自然定义域

称使得表达式 f(x) 成立的所有实数 x 构成的集合为函数 f 的**自然定义域**。例如

- 函数 $f(x) = \sqrt{x}$ 的自然定义域为 $[0, +\infty)$.
- ② 函数 $g(x) = \ln x$ 的自然定义域为 $(0, +\infty)$.

本课程约定,除非特殊说明

- 函数的陪域为 ℝ.
- ullet 若没有指明定义域,函数 f(x) 的定义域为其自然定义域。

求函数定义域练习

例 1. 设 $f(x) = \sqrt{x+1} + \frac{1}{x-2}$, 求函数 f 的定义域。

解. 在 \mathbb{R} 上表达式 f(x) 有意义当且仅当 $x + 1 \ge 0$ 且 $x - 2 \ne 0$, 解之得 $x \ge -1$ 且 $x \ne 2$, 所以 f 的定义域为 $[-1,2) \cup (2,+\infty)$.

可以用下面的方法指明函数的定义域,

- 函数 f(x) = sin x, x > 0 的定义域为 (0,+∞).
- ② 函数 $f(x) = \sin x, x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ 的定义域为 $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

函数的相等

在前面的约定下,两个函数相等当且仅当它们的定义域和 对应法则都相等。

例 2. 设 $f(x) = \ln x^2$, $g(x) = 2 \ln x$, 判断 f 和 g 是否相等。

解. 函数 f 的定义域为 $(-\infty,0) \cup (0,+\infty)$, 函数 g 的定义域为 $(0,+\infty)$. 所以函数 f 和 g 不相等。 ■

例 3. 设 f(x) = 1, $g(x) = \frac{x}{x}$, 判断 f 和 g 是否相等。

解. 函数 f 的定义域为 \mathbb{R} , 函数 g 的定义域为 $(-\infty,0) \cup (0,+\infty)$. 所以函数 f 和 g 不相等。

常用函数举例

例 4. 设 $c \in \mathbb{R}$,称函数 f(x) = c 为**常值函数**。

例 5. 设 $n \in \mathbb{Z}^+$, $a_0, a_1, \cdots, a_n \in \mathbb{R}$ 且 $a_n \neq 0$, 则称 $P(x) = a_0 + a_1 x + a_2 x^2 + \cdots + a_n x^n.$

为关于 *x* 的 *n 次实多项式,简称为多项式。*

例 6. 称两个多项式的商为**有理分式函数**,简称有理函数。

$$R(x) = \frac{a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n}{b_0 + b_1 x + b_2 x^2 + \dots + b_m x^m}.$$

分段函数举例

例 7. 绝对值函数

$$|x| = \begin{cases} -x & x < 0 \\ x & x \ge 0 \end{cases}$$

例 8. 符号函数

$$sgn(x) = \begin{cases} -1 & x < 0 \\ 0 & x = 0 \\ 1 & x > 0 \end{cases}$$

不难发现这两个函数有如下关系

$$|x| = \operatorname{sgn} x \cdot x$$

$$x = \operatorname{sgn} x \cdot |x|$$

常用函数举例

例 9. 单位阶越函数

$$H(x) = \begin{cases} 0 & x < 0 \\ 1 & x \ge 0 \end{cases}$$

例 10. 狄利克雷函数

$$D(x) = \begin{cases} 1 & x \in \mathbb{Q} \\ 0 & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

函数的奇偶性

定义(奇偶函数)

设函数 $f: D \to \mathbb{R}$.

- 若对任意 $x \in D$ 都有 f(-x) = f(x),则称 f 为**偶函数**;
- 若对任意 $x \in D$ 都有 f(-x) = -f(x),则称 f 为**奇函数**。

函数的奇偶性

常见奇函数

$$y = 0$$

$$y = x$$

$$y = \frac{1}{x}$$

$$y = \frac{1}{x}$$
 $y = \sin x$

常见偶函数

$$y = 0$$

$$y = 1$$
 $y = x^2$ $y = \frac{1}{x^2}$

$$y = \frac{1}{x^2}$$

$$y = \cos x$$

例 11. 判断下列函数的奇偶性

- $f(x) = x^4 + x^2 1$
- 2 $f(x) = x^2 x + 1$
- $f(x) = x^3 + x$

偶函数

非奇非偶函数

奇函数

函数的单调性

定义(函数的单调性)

设函数 $f: D \to \mathbb{R}$, 集合 $A \subset D$. 称函数 f 在集合 $A \bot$ **单 调递增**,若对任意 $x_1, x_2 \in A$ 都有

$$x_1 < x_2 \implies f(x_1) < f(x_2).$$

称函数 f 在集合 A 上**单调递减**,若对任意 $x_1, x_2 \in A$ 都有

$$x_1 < x_2 \implies f(x_1) > f(x_2).$$

若 f 在其定义域 D 上单调递增,则称 f 为**单调递增函数**。 类似地,若 f 在其定义域 D 上单调递减,则称 f 为**单调递减** 函数。单调递增函数和单调递减函数统称为**单调函数**。

函数的单调性

例 12. 函数 f(x) = x 是单调递增函数。

例 13. 函数 $f(x) = \ln x$ 是单调递增函数。

例 14. 函数 $f(x) = x^2$ 在 $(-\infty, 0]$ 上单调递减,在 $[0, +\infty)$ 上单调递增,从而在 \mathbb{R} 不单调,即 f 不是单调函数。

例 15. 函数 $f(x) = \frac{1}{x}$ 在 $(-\infty, 0)$ 上单调递减,在 $(0, +\infty)$ 上单调递减,但 f 不是单调递减函数。

函数的周期性

定义(周期函数、周期)

设函数 $f: D \to \mathbb{R}$, 若存在实数 $T \neq 0$, 使得对集合 D 中的任意 x 都有

$$f(x+T)=f(x)$$

则称 f 为**周期函数**,称 T 是 f 的一个**周期**。

如果周期函数 f 的所有正周期中存在一个最小的周期 T,则称 T 为函数 f 的最**小正周期**,也称"函数 f 的周期为 T."。

- **例** 16. 常值函数 f(x) = 1 是周期函数,但没有最小正周期性。
- **例** 17. 函数 sin x 和 cos x 的周期为 2π.
- **例** 18. 函数 tan x 的周期为 π.

函数的上界与下界

设函数 $f: D \to \mathbb{R}$, 集合 $A \subset D$. 若存在实数 M, 使得对任意 A 中的 x 都有 $f(x) \leq M$, 则称 M 为函数 f 在集合 A 上的一个上界,称函数 f 在集合 A 上有上界,否则称函数 f 在集合 A 上无上界。

例 19. 函数 $f(x) = 1 - x^2$ 在 ℝ 上有上界。

设函数 $f: D \to \mathbb{R}$, 集合 $A \subset D$. 若存在实数 M, 使得对任意 A 中的 x 都有 $f(x) \ge M$, 则称 M 为函数 f 在集合 A 上的一个下界,称函数 f 在集合 A 上有下界,否则称函数 f 在集合 A 上无下界。

例 20. 函数 $f(x) = x^2 + 3x + 1$ 在 \mathbb{R} 上有下界。

函数的有界性

设函数 $f: D \to \mathbb{R}$, 集合 $A \subset D$. 若存在实数 M 使得对于 A 中的任意 X 都有 $|f(X)| \leq M$,则称**函数** f **在集合** A **上有界**; 否则称函数 f 在集合 A 上**无界**。

特殊地,若函数 f 在其定义域 D 上有界,则称 f 为**有界** 函数;若函数 f 在其定义域 D 上无界,则称 f 为无界函数。

- 函数 $f(x) = \frac{1}{x}$ 在 $(1, +\infty)$ 上有界。
- 函数 $f(x) = \frac{1}{x}$ 在 $(0, +\infty)$ 上有下界、无上界、无界。
- 函数 $f(x) = \frac{1}{x}$ 是无界函数。
- 函数 *f*(*x*) = sin *x* 是有界函数

函数的四则运算

设 f 和 g 是两个实函数,由于实数之间有四则运算,从而 易由此定义实函数的四则运算

$$\begin{split} (f+g)(x) & \stackrel{\mathrm{def}}{=} f(x) + g(x) & x \in D_f \cap D_g \\ (f-g)(x) & \stackrel{\mathrm{def}}{=} f(x) - g(x) & x \in D_f \cap D_g \\ (f\cdot g)(x) & \stackrel{\mathrm{def}}{=} f(x) \cdot g(x) & x \in D_f \cap D_g \\ & \left(\frac{f}{g}\right)(x) & \stackrel{\mathrm{def}}{=} \frac{f(x)}{g(x)} & x \in \left\{x \in D_f \cap D_g \mid g(x) \neq 0\right\} \end{split}$$

函数的线性运算

定义实函数 $f: D \to \mathbb{R}$ 与实数 $c \in \mathbb{R}$ 的数乘运算为 $(c \cdot f)(x) \stackrel{\text{def}}{=} c \cdot f(x), \qquad x \in D.$

设 f 和 g 是两个实函数, λ 和 μ 是两个实数,定义函数 $(\lambda \cdot f + \mu \cdot g)(x) \stackrel{\text{\tiny def}}{=} \lambda \cdot f(x) + \mu \cdot g(x).$

称为函数 f 与 g 的线性组合。

函数的复合

设 f 和 g 是两个实函数,若函数 g 的输出可以当做函数 f 的输入,则可以得到一个新的函数

$$(f \circ g)(x) \stackrel{\mathrm{def}}{=} f(g(x)),$$

其定义域为 $\{x \in D_g \mid g(x) \in D_f\}$.

若记 u = g(x), 则复合函数 $f \circ g$ 也可记为

$$y = f(u), \quad u = g(x).$$

函数的复合举例

例 21. 设 $f(x) = \sin x$, $g(x) = x^2$, 则

- $\bullet (f \circ f)(x) = f(f(x)) = f(\sin x) = \sin(\sin x).$
- $(f \circ g)(x) = f(g(x)) = f(x^2) = \sin x^2$.
- $\bullet (g \circ f)(x) = g(f(x)) = g(\sin x) = \sin^2 x.$
- $(g \circ g)(x) = g(g(x)) = g(x^2) = (x^2)^2 = x^4$.

例 22. 设
$$y = \sqrt{u}$$
, $u = 1 - x^2$, 则 y 关于 x 的函数为
$$y = \sqrt{1 - x^2}$$

其定义域为 [-1,1].

反函数

设函数 $f: X \to Y$,如果对 Y 中的任意 y, 在 X 中都存在 唯一的 x 使得 y = f(x), 则称 f 是从 X 到 Y 的**一一映射**,由此可以定义从 Y 到 X 的函数 f^{-1} ,使得

$$y = f(x) \iff x = f^{-1}(y).$$

并称 f^{-1} 为函数 f 的**反函数**。

函数 f 的定义域为 X, 值域为 Y; 函数 f 的定义域为 Y, 值域为 X. 函数 f 与函数 f^{-1} 的图象关于直线 y = x 对称。

反函数练习

例 23. 函数 y = f(x) = 2x - 1 的反函数是 $x = f^{-1}(y) = \frac{1}{2}(y + 1)$.

当用变量表示函数时,习惯于用 y 表示隐变量,用 x 表示自变量,从而上面的事实也可以写成"函数 y = 2x - 1 的反函数是 $y = \frac{1}{2}(x + 1)$."。

例 24. 求函数 $f(x) = e^x$ 的反函数。

$$x = f^{-1}(y) = \ln y$$

幂函数

设 $a \in \mathbb{R}$, 称形如 $x \mapsto x^a$ 的函数为幂函数。

- 定义域与 a 有关,但在区间 (0,+∞) 上总有定义。
- 点 (1,1) 总在函数图象上。

指数函数

设 a > 0 且 a ≠ 1, 称形如 $x \mapsto a^x$ 的函数为指数函数。

- 定义域为 ℝ, 值域为 ℝ,
- 点 (0,1) 总在函数图象上。

对数函数

设 a > 0 且 a ≠ 1, 称形如 $x \mapsto \log_a x$ 的函数为对数函数。

- 定义域为 ℝ₁, 值域为 ℝ.
- 点 (1,0) 总在函数图象上。

三角函数

$$\sin^2 x + \cos^2 x = 1$$

正切
$$\tan x \stackrel{\text{def}}{=} \frac{\sin x}{\cos x}$$
 余切 $\cot x \stackrel{\text{def}}{=} \frac{\cos x}{\sin x}$

正割
$$\sec x \stackrel{\text{def}}{=} \frac{1}{\cos x}$$

余割 $\csc x \stackrel{\text{def}}{=} \frac{1}{\sin x}$

反正弦函数与反余弦函数

反正切函数

反三角函数总结

● 正弦函数 $\sin: \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \to [-1, 1]$ 的反函数为反正弦函数 $\arcsin: [-1, 1] \to \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, 且

$$y = \arcsin x \iff (\sin y = x) \land \left(y \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\right)$$

● 余弦函数 $cos: [0,\pi] \rightarrow [-1,1]$ 的反函数为反余弦函数 $arccos: [-1,1] \rightarrow [0,\pi],$ 且

$$y = \arccos x \iff (\cos y = x) \land (y \in [0, \pi])$$

● 正切函数 $\tan: \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \to (-\infty, +\infty)$ 的反函数为反正切函数 $\arctan: (-\infty, +\infty) \to \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, 且

$$y = \arctan x \iff (\tan y = x) \land \left(y \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)\right)$$

初等函数

常值函数 基 幂函数 本 指数函数 初 等 对数函数 逐 三角函数 数 反三角函数

初等函数

初等函数的分解

例 25. 设 $f(x) = \frac{\cos(x^2 + 2x)}{e^x - \ln x}$, 分析函数 f 是如何由基本初等函数 经过四则运算和复合运算形成的。

作业: 习题 1-1

- 1.(3), 1.(7),
- 2.(2),
- 9.(1),
- 11.(4).

集合

定义(集合)

称一些<mark>确定</mark>对象的总体为**集合**,并称这些对象为此集合 的**元素**。

组成集合的对象必须是确定的,即一个对象要么是这个集合的元素,要么不是这个集合的元素。

通常用大写字母表示集合,如 A, B, … 用小写字母表示集合的元素,如 a, b, …

- 当 a 是集合 S 的元素时,记为 $a \in S$ 或 $S \ni a$,
- 当 a 不是集合 S 的元素时,记为 $a \notin S$ 或 $S \ni a$.

集合的表示

列举法 列出集合的每一个元素,如

$$A = \{1, 10, 24, 58, 41, 77\}$$

$$B = \{1, 4, 9, 16, 25, \cdots\}$$

$$C = \{\cdots, -4, -2, 0, 2, 4, \cdots\}$$

描述法给出元素属于集合的充要条件,如

集合的运算

集合的交

 $A \cap B \stackrel{\mathrm{def}}{=} \{x \mid x \in A \land x \in B\}$

集合的并

 $A \cup B \stackrel{\text{def}}{=} \{x \mid x \in A \lor x \in B\}$

集合的差

 $A \setminus B \stackrel{\text{def}}{=} \{ x \mid x \in A \land x \notin B \}$

集合的补

 $\bar{A} \stackrel{\mathrm{def}}{=} \{ x \in U \mid x \notin A \} = U \setminus A$

集合的笛卡尔集

定义(集合的笛卡尔集)

设 X, Y 是两个集合,定义它们的**笛卡尔集** $X \times Y$ 为 $X \times Y \stackrel{\text{\tiny def}}{=} \{(x,y) \mid x \in X \land y \in Y\}$

集合 X 与自身的笛卡尔集 $X \times X$ 通常简记为 X^2 . 如平面 \mathbb{R}^2 就是直线 \mathbb{R} 与自身的笛卡尔集。

关系

定义(关系)

设 X, Y 是两个集合,称它们的笛卡尔集 $X \times Y$ 的子集为从集合 X 到集合 Y 的二元关系,简称**关系**。

如人与人之间的夫妻关系,父子关系,母女关系,朋友关 系,男女朋友关系等等。

实数的构成

通常我们说的实数,不仅仅指的是实数集合,通常指的是 实数系统。除了实数集合外,实数系统还包含了

- 实数上的**加法**,满足交换律、结合率,有单位元 0, 有逆元 (称为相反数)
- 实数上的**乘法**,满足交换律、结合率,有单位元 1 (异于加法的单位元,即 1 ≠ 0), 除 0 外有逆元(称为倒数)
- 实数上的**序关系**(即实数的大小关系),是全序关系,即 任意两个实数都能比较大小
- 实数的完备性

而且它们之间还要满足一系列的规律。

需要注意的事实

- 对任意 a ∈ ℝ, 有 a + 0 = a.
- 对任意 a ∈ R, 有 -a ∈ R, 且 a + (-a) = 0.
- 对任意 a ∈ ℝ, 有 a · 0 = 0.
- 对任意 a ∈ ℝ, 有 a · 1 = a.
- 对任意 $a \in \mathbb{R}^*$, 有 $a^{-1} \in \mathbb{R}$, 且 $a \cdot a^{-1} = 1$.
- 对任意 a ∈ ℝ, 有 (-1)·a = -a.

从运算的角度来看,0 是最特殊的实数,其次是 1, 再其次是 -1.

有理数集及运算的封闭性

有理数集 ℚ 被定义为整数的商构成的集合,即

$$\mathbb{Q} \stackrel{\text{def}}{=} \left\{ \frac{m}{n} \mid m \in \mathbb{Z}, n \in \mathbb{Z}^* \right\}$$

可以证明任意两个有理数的和、差、积、商还是有理数,即有理数关于加、减、乘、除(即数的四则运算)运算是封闭的。

利用这些封闭性我们可以证明

- 有理数与无理数的和还是无理数
- 非零有理数与无理数的积还是无理数

区间的特征

定义(实数的连通集)

设 I ⊂ ℝ, 若对于任意 a, b ∈ I 都有

$$[a,b] \subset I$$

则称Ⅰ为ℝ的连通集。

定理(实数的连通集是区间)

设 / ⊂ ℝ,则

/ 是 ℝ 的连通集 ⇔ / 是区间