<u>DINO-Tracker: Taming DINO for Self-Supervised Point Tracking in a Single Video</u>

Narek Tumanyan*, Assaf Singer*, Shai Bagon, Tali Dekel

Weizmann Institute of Science

Problem/Objective

tracking in video

Contribution/Key Idea

tracking model

Weizmann Institute of Science

- Tracking

Weizmann Institute of Science

- Tracking

Weizmann Institute of Science

- Overview

Input : query point $\mathbf{x_q}$, video $\{\mathbf{I}^t\}_{t=1}^T$

Output : position estimates $\{\hat{\mathbf{x}}^t\}_{t=1}^T$

Weizmann Institute of Science

DINO-Tracker

$$\mathbf{\Phi}(\mathbf{I}) = \mathbf{\Phi}_{\text{DINO}}(\mathbf{I}) + \mathbf{\Phi}_{\Delta}(\mathbf{I}) \tag{1}$$

Weizmann Institute of Science

- DINO-Tracker

$$oldsymbol{arphi}_{\mathbf{q}} = oldsymbol{\Phi}(\mathbf{I}^k)[\mathbf{q}] \quad oldsymbol{\Phi}^t = oldsymbol{\Phi}(\mathbf{I}^t)$$

$$\mathbf{S}(\mathbf{p}) = \operatorname{cos-sim}(\boldsymbol{\varphi}_{\mathbf{q}}, \boldsymbol{\Phi}^{t}(\mathbf{p})) \quad \text{where} \quad \operatorname{cos-sim}(\mathbf{a}, \mathbf{b}) = \frac{\mathbf{a}^{T} \cdot \mathbf{b}}{||\mathbf{a}||_{2} \cdot ||\mathbf{b}||_{2}}$$

Weizmann Institute of Science

DINO-Tracker

$$\hat{\mathbf{x}}^t = \frac{\sum_{\mathbf{p} \in \Omega} \mathbf{H}(\mathbf{p}) \cdot \mathbf{x}_{\mathbf{p}}}{\sum_{\mathbf{p} \in \Omega} \mathbf{H}(\mathbf{p})}$$
(2)

$$\Omega = \{ \mathbf{p} : ||\mathbf{x}_{\mathbf{p}} - \mathbf{x}_{\mathbf{p}_{max}}||_2 \le R \}$$

$$\Pi(\mathbf{x}_{\mathbf{q}}, t) = \hat{\mathbf{x}}^{t}$$
 $\mathcal{T}_{q} = \{\hat{\mathbf{x}}^{t} : \hat{\mathbf{x}}^{t} = \Pi(\mathbf{x}_{\mathbf{q}}, t), t = 1...T\}$

Weizmann Institute of Science

- Self-Supervision
- Optical flow

$$\Omega_{\texttt{flow}} = \{ (\mathbf{x}^i, \mathbf{x}^j) \text{ cycle-consistent} \}$$

1) t 프레임에서 트랙 종료

$$||\mathbf{x}^t - (\mathbf{x}^{t+1} + \mathbf{f}_{t+1 \to t}(\mathbf{x}^{t+1}))|| \ge \gamma_{\text{of}}$$

2) optical flow 와 일관되지 않는 correspondence \mathbf{x}^{j} 제거

$$\begin{aligned} ||\mathbf{x}^{j} - \mathbf{x}^{i \to j}||_{2} &\geq \gamma_{\text{of-lng}} \\ ||\mathbf{x}^{i} - (\mathbf{x}^{i \to j} + \mathbf{f}_{j \to i}(\mathbf{x}^{i \to j}))||_{2} &\leq \gamma_{\text{of}} \\ \mathbf{x}^{i \to j} &= \mathbf{x}^{i} + \mathbf{f}_{i \to j}(\mathbf{x}^{i}), \, \gamma_{\text{of-lng}} = 2px \end{aligned}$$

Weizmann Institute of Science

- Self-Supervision
- Feature correspondences
 - 1) best-buddies

$$\Omega_{\text{dino-bb}} = \left\{ \left(\mathbf{p}^i, \mathbf{p}^j \right) \text{ DINO bb} \right\}
NN(\varphi_{\text{DINO}}^i, \Phi_{\text{DINO}}(\mathbf{I}^j)) = \varphi_{\text{DINO}}^j \wedge NN(\varphi_{\text{DINO}}^j, \Phi_{\text{DINO}}(\mathbf{I}^i)) = \varphi_{\text{DINO}}^i$$
(3)

2) refined best buddies

$$\Omega_{\text{rfn-bb}} = \{ (\mathbf{p}^i, \mathbf{p}^j) \text{ refined bb} \}$$

Weizmann Institute of Science

- Self-Supervision

Feature correspondences

Fig. 8: *DINO best-buddies.* We visualize best-buddy pairs between distant frames. DINO best-buddies provide localized semantic correspondences, allowing the model to recover the object past repeating occlusions.

(5)

Narek Tumanyan*, Assaf Singer*, Shai Bagon, Tali Dekel

Weizmann Institute of Science

- Objective

$$\mathcal{L} = \mathcal{L}_{\texttt{flow}} + \lambda_1 \mathcal{L}_{\texttt{dino-bb}} + \lambda_2 \mathcal{L}_{\texttt{rfn-bb}} + \lambda_3 \mathcal{L}_{\texttt{rfn-cc}} + \lambda_4 \mathcal{L}_{\texttt{prior}}$$

$$\mathcal{L}_{ t flow} = \sum_{(i,j) \in \mathcal{C}} L_H(\Pi(\mathbf{x}^i,j),\mathbf{x}^j) + L_H(\Pi(\mathbf{x}^j,i),\mathbf{x}^i)$$

$$\mathcal{L}_{\text{dino-bb}} = \frac{1}{|\Omega_{\text{dino-bb}}|} \sum_{(\boldsymbol{\varphi}^{i}, \boldsymbol{\varphi}^{j}) \in \Omega_{\text{dino-bb}}} \frac{1}{2} w_{\text{dino-bb}}^{ij} \left(l(\boldsymbol{\varphi}^{i}, \boldsymbol{\varphi}^{j}) + l(\boldsymbol{\varphi}^{j}, \boldsymbol{\varphi}^{i}) \right)$$

$$l(\boldsymbol{\varphi}^{i}, \boldsymbol{\varphi}^{j}) = -\log \frac{\exp(\cos - \sin(\boldsymbol{\varphi}^{i}, \boldsymbol{\varphi}^{j}) / \tau)}{\sum_{\mathbf{p}} \exp(\cos - \sin(\boldsymbol{\varphi}^{i}, \boldsymbol{\Phi}^{j}(\mathbf{p})) / \tau)}$$

$$\mathcal{L}_{\texttt{rfn-bb}} = \frac{1}{|\Omega_{\texttt{rfn-bb}}|} \sum_{(\boldsymbol{\varphi}^i, \boldsymbol{\varphi}^j) \in \Omega_{\texttt{ren}}} \frac{1}{2} w_{\texttt{rfn-bb}}^{ij} \left(l(\boldsymbol{\varphi}^i, \boldsymbol{\varphi}^j) + l(\boldsymbol{\varphi}^j, \boldsymbol{\varphi}^i) \right)$$

$$\mathcal{L}_{\text{rfn-cc}} = \sum \frac{1}{2} w_{\text{rfn-cc}}^{ij} \left(L_H(\Pi(\mathbf{x}^i, j), \mathbf{x}^j) + L_H(\Pi(\mathbf{x}^j, i), \mathbf{x}^i) \right) \tag{4}$$

$$\mathcal{L}_{\mathtt{prior}} = \frac{1}{H' \cdot W'} \cdot \sum_{\mathbf{p}} \underbrace{\left[1 - \frac{|| \mathbf{\Phi}(\mathbf{I})[\mathbf{p}]||_2}{|| \mathbf{\Phi}_{\mathtt{DINO}}(\mathbf{I})[\mathbf{p}]||_2} \right]}_{\mathbf{I} + \underbrace{\left[1 - \operatorname{cos-sim}\left(\mathbf{\Phi}(\mathbf{I})[\mathbf{p}], \mathbf{\Phi}_{\mathtt{DINO}}(\mathbf{I})[\mathbf{p}]\right)\right]}_{\mathcal{L}_{\mathtt{angle}}}$$

전유진

Weizmann Institute of Science

Occlusion prediction

Fig. 3: Visibility via trajectory agreement. To determine the visibility of $\mathbf{x_q}$ at time t = o, we track $\hat{\mathbf{x}}^o$ across time and check the agreement $\Pi(\hat{\mathbf{x}}^v,t)$ between $\Pi(\hat{\mathbf{x}}^o,t)$ and $\Pi(\mathbf{x},t)$. This is done the (black and red) tracks for anchor time steps k_1, k_2 . Since these displacements are large, we classify $\mathbf{x_q}$ as occluded for t = o. For t = v, the track $\Pi(\hat{\mathbf{x}}^v,t)$ (green) agrees with $\Pi(\mathbf{x},t)$, thus $\mathbf{x_q}$ is classified as visible for t = v.

Weizmann Institute of Science

- Experiments

Method	DAVIS-256			DAVIS-480			Kinetics-256			Kinetics-480			BADJA	
	δ^x_{avg}	OA	AJ	δ^x_{avg}	OA	AJ	δ^x_{avg}	OA	AJ	δ^x_{avg}	OA	AJ	δ^{seg}	$ \delta^{3px} $
RAFT [47]	56.7	=	=	66.7	-	-	50.4	_	_	60.5	_	-	45.0	5.8
DINOv2 [38]	61.4	_	_	64.7	_	_	60.3	_	-	61.0	_	_	62.8	8.4
TAP-Net* [12]	53.4	81.4	38.4	66.4	79.0	46.0	61.7	86.6	48.5	67.1	81.5	47.7	45.4	9.6
PIPs++* [63]	71.5	_	=	73.6	_	_	68.2	_	-	70.8	_	_	59.0	9.8
$TAPIR^*$ [13]	74.7	89.4	<u>62.8</u>	77.3	89.5	65.7	69.5	89.1	57.3	69.8	86.7	57.5	<u>68.7</u>	10.5
Co-Tracker * [26]	79.2	<u>89.3</u>	65.1	<u>79.4</u>	89.5	<u>65.6</u>	<u>72.9</u>	88.9	59.9	<u>72.8</u>	88.9	<u>59.8</u>	64.0	11.2
Omnimotion [†] [51]	67.5	85.3	51.7	74.1	84.5	58.4	69.2	89.2	55.0	_	_	-	45.2	6.9
Ours^\dagger	$\overline{78.2}$	87.5	62.3	80.4	88.1	64.6	73.3	88.5	<u>59.7</u>	74.3	89.2	60.9	72.4	14.3

 $\delta^x_{avg}\,$: position accuracy

OA: occlusion accuracy

AJ: average jaccard: position + occlusion accuracy 둘다 고려

DINO-Tracker: Taming DINO for Self-Supervised Point Tracking in a Single Video

Narek Tumanyan*, Assaf Singer*, Shai Bagon, Tali Dekel

Weizmann Institute of Science

- Experiments

<u>DINO-Tracker: Taming DINO for Self-Supervised Point Tracking in a Single Video</u>

Narek Tumanyan*, Assaf Singer*, Shai Bagon, Tali Dekel

Weizmann Institute of Science

- Experiments

