Algoritmos ,		Pesaje de Fi	tros	FILAB-F-0105 Rev.02 (08/2022)
	Cédina Tananahiraéna ataua TIII 015	64-li M P-4-4-: MSD 004	Time de Ellere. Consideration Manifestoria	

Código Termohigrómetro: THI-015 Código Masa Patrón: MSP-004						Tipo de Fi	Tipo de Filtro: Gravimetria Monitoreado																				
	Peso_1		HR	T ºC	HR	т	Peso_2		HR %	T ºC	HR T	Peso_3		HR %	T 2C	HR	т	Peso_4		HR	T ºC	HR	т	Promedio	Factor	Factor	
ID FILTRO	mg	Fecha_1	% Lect	Lect	t %	ъС	mg	Fecha_2	Lect	Lect	% 20	: mg	Fecha_3	Lect	Lect	%	ъС	mg	Fecha_4	% Lect	Lect	%	ъС	Peso Final	HR	т	Responsable
D9110448												169	030 19-06-2023 15:4	6 39.2	20.9	39.4	21.1	169.014	19-06-2023 16:57	37.4	21.2	37.6	21.4	169.022	-0.2	-0.2	2 JR
C9245507												137	19-06-2023 15:4					137.325	19-06-2023 17:00	37.4	21.2	37.6	21.4	137.334	-0.2	-0.2	2 JR
C9245533												136	573 19-06-2023 15:4	8 39.2	20.9	39.4	21.1	136.551	19-06-2023 17:00	37.4	21.2	37.6	21.4	136.562	-0.2	-0.2	2 JR
C9245520												139	19-06-2023 15:4					139.779	19-06-2023 17:01	37.4	21.2		21.4	139.798	-0.2		2 JR
D9109203												165	102 19-06-2023 15:5	39.2	20.9	39.4	21.1	165.097	19-06-2023 17:02	37.4	21.2	37.6	21.4	165.100	-0.2	-0.2	2 JR
C9242818												136						136.911	19-06-2023 17:04	37.4	21.2	37.6	21.4	136.907	-0.2		
C9370503												133						133.696	19-06-2023 17:05	37.4	21.2		21.4	133.698	-0.2		2 JR
C9590954												124						124.452	19-06-2023 17:06		21.2		21.4	124.469	-0.2		
C9590955												124						124.435	19-06-2023 17:07	37.4	21.2	37.6	21.4	124.436	-0.2		2 JR
C9590965												127						127.311	19-06-2023 17:08		21.2	37.6	21.4	127.313	-0.2		2 JR
QC												99	996 19-06-2023 15:5	6 34.3	20.5	34.5	20.7	99.997	19-06-2023 17:09	36.9	20.7	37.1	20.9	99.997	-0.2	-0.2	∠ JR
																											4
																											4
																											4
																											A

Denisse Abarca M.
Coordinador de Laboratorio
Algoritmos y Mediciones
Ambientales SPS