Inductors – Decay Phase and Series-Parallel Combinations Fall 2018

### **In Class Problem**



### Find

- 1.  $v_L(t) \& i_L(t)$  for t > 0
- 2.  $v_L(t) \& i_L(t)$  if the switch is opened at  $t = 1\mu$ sec

### **Inductors in Series**



KVL: E = 
$$V_1 + V_2 + V_3 + ... + V_N$$
  
But,  $V_1 = L_1 \frac{di}{dt}$ ,  $V_2 = L_2 \frac{di}{dt}$ , ...

Therefore, 
$$E = L_1 \frac{di}{dt} + L_2 \frac{di}{dt} + \dots + L_N \frac{di}{dt}$$
  

$$= (L_1 + L_2 + L_3 + \dots + L_N) \frac{di}{dt}$$
Or  $E = L_{EQ} \frac{di}{dt}$ 

Hence: 
$$L_{EQ} = L_T = L_1 + L_2 + L_3 + ... + L_N$$



## **Inductors in Parallel**



KCL: 
$$i(t) = i_1(t) + i_2(t) + i_3(t) + ... + i_N(t)$$

But, 
$$v_N = L_N \frac{di_N}{dt}$$

So 
$$\frac{v_N}{L_N} = \frac{di_N}{dt}$$

And 
$$i_N(t) = \int \frac{v_N}{L_N} dt = \frac{1}{L_N} \int v_N dt$$



### **Inductors in Parallel**

Into our KCL equation yields:

$$i(t) = \frac{1}{L_1} \int v_1(t) dt + \frac{1}{L_2} \int v_2(t) dt + \dots + \frac{1}{L_N} \int v_N(t) dt$$

But, 
$$e(t) = v_1(t) = v_2(t) = ... = v_N(t)$$

So i(t) = 
$$(\frac{1}{L_1} + \frac{1}{L_2} + \frac{1}{L_3}) \int e(t) dt$$

Hence: 
$$i(t) = \frac{1}{L_{FO}} \int e(t) dt$$

Where 
$$L_{EQ} = \frac{1}{\frac{1}{L_1} + \frac{1}{L_2} + \frac{1}{L_3}}$$





# **In Class Problem**



a.



b.

