Lagrangian density
$$\gamma \, \mathcal{B}_{\alpha} \, \mathcal{B}^{\alpha} + \mathcal{B}^{\alpha} \, \mathcal{J}_{\alpha} + \beta \, \partial_{\alpha} \mathcal{B}^{\alpha} \, \partial_{\beta} \mathcal{B}^{\beta} + \alpha \, \partial_{\beta} \mathcal{B}_{\alpha} \, \partial^{\beta} \mathcal{B}^{\alpha}$$

No massless particles)

$$\mathcal{J}_{0^{+}}^{\sharp 1}$$

(No source constraints)

$$\mathcal{B}_{1}^{\#1} \dagger^{\alpha} \gamma +$$

0	Spin:	?
$-\frac{\gamma}{\alpha+\beta}>0$	Square mass:	•
1	Polarisations:	ગ
$\frac{1}{\alpha+\beta} > 0$	Pole residue:	`.~
е	Massive particle	

	., /			.?	
Darity:	Spin:	Square mass:	Polarisations:	Pole residue:	Massive particle
DAd	1	$-\frac{Y}{\alpha} > 0$	3	$-\frac{1}{\alpha} > 0$	e

(Unitarity is demonstrably impossible)