Medición de temperatura

Uso de termocuplas.

La medición de temperatura es uno de los problemas clásicos en sistemas electrónicos.

Los medios para hacerlo son variados y su complejidad depende fundamentalmente de la exactitud deseada en la medición. Esta está comprendida usualmente entre 1° y .01°.

Enfocaremos este problema en clases....

Puntos de interés en medición

IPTS-68 REFERENCE		
TEMPERATURES		
EQUILIBRIUM POINT	K	<u>°C</u>
Triple Point of Hydrogen	13.81	-259.34
Liquid/Vapor Phase of Hydrogen	17.042	-256.108
at 25/76 Std. Atmosphere		
Boiling Point of Hydrogen	20.28	-252.87
Boiling Point of Neon	27.102	-246.048
Triple Point of Oxygen	54.361	-218.789
Boiling Point of Oxygen	90.188	-182.962
Triple Point of Water	273.16	0.01
Boiling Point of Water	373.15	100
Freezing Point of Zinc	692.73	419.58
Freezing Point of Silver	1235.08	961.93
Freezing Point of Gold	1337.58	1064.43

Efecto Seebeck: si se abre el circuito entre el metal A y el C el resultado es una tensión (tensión de Seebeck) que depende de la diferencia de temperaturas entre 1 y 2 y la composición de los metales.

No es posible medir directamente la tensión V₁ en la figura, pues se intercalan los cables del instrumento, estableciendo dos nuevas termotensiones V₂ y V₃, a partir de las termocuplas intercaladas.

El circuito equivalente es el de la figura. J_3 es una unión Cu-Cu y no genera efecto. J_2 es unión Cu-C y resulta en V_2 .

Cortesía de Omega, Inc.

EQUIVALENT CIRCUITS

Técnicas Digitales II

Si se puede, mediante algún método, establecer una temperatura de referencia para el circuito se ha logrado medir temperatura.

$$V = (V_1 - V_2) \cong \alpha(t_{J_1} - t_{J_2})$$
 If we specify T_{J_1} in degrees Celsius:
$$T_{J_1} (^{\circ}C) + 273.15 = t_{J_1}$$

$$V = V_1 - V_2 = \alpha [(T_{J_1} + 273.15) - (T_{J_2} + 273.15)]$$

= $\alpha (T_{J_1} - T_{J_2}) = \alpha (T_{J_1} - 0)$
$$V = \alpha T_{J_1}$$

El bloque isotérmico es aislante eléctrico pero buen conductor del calor. Esto es importante pues J_{3-4} están en oposición en este ejemplo usando Fe-C.

Si se introduce un nuevo bloque isotérmico

Que puede ser asociado al anterior formando un único bloque

Que, aplicando la regla del metal intermedio (dos TC en oposición) que cancelan sus efectos

Quedando:

El circuito completo implica la medición de la temperatura del bloque de referencia usando, p.ej. un termistor como en la figura. Queda así conformado el instrumento.

Cortesía de Omega, Inc.

¿Porqué termocuplas?

- Son robustas y pueden obtenerse con muy poca masa
- Sirven para una gran variedad de temperaturas
- Se adaptan a atmósferas y ambientes hostiles
- Pueden construirse "in situ"
- Pueden integrarse en sistemas de múltiples tipos de TC con un solo bloque térmico.

Ejemplo: dos TC: Fe-C y Pt-Pt 10% Rh

PRACTICAL HARDWARE COMPENSATION

Vista del equipo

Procesamiento de señal

Se desea conectar una TC de Fe-C para medir temperatura en el rango de 0 – 300 °C con resolución de 0,1 °C. Se usará un circuito análogo a:

PRACTICAL HARDWARE COMPENSATION

Discusión.

Usando Fe-C, la termotensión es:

 V_{TC} : 51 μ V / °C.

Si se desea que la salida en tensión sea

 $V_0: 10 \text{ mV} / {}^{\circ}\text{C}$

Se requiere una ganancia de

$$G = \frac{10000}{51} \left[\mu V \right]$$

y entonces G = 196,0784. Se adopta G = 196,078

Usando un amplificador de instrumentación

$$50 \text{ K}\Omega / R_G = 195,074 \equiv R_G = 256,313 \Omega$$

El circuito de corriente queda:

para $V_{OUT} = 10 \text{ mV} / {}^{\circ}K$ R es de 10000Ω . Para el sumador se usará:

La función de transferencia es:

$$\mathsf{E}_{\mathsf{O}} = \frac{\mathsf{R}_{\mathsf{O}}}{\mathsf{R}_{\mathsf{I}}} \big(\mathsf{E}_{\mathsf{2}} - \mathsf{E}_{\mathsf{1}} \big)$$

Para este caso E_1 es V_{OUT} y E_2 es V_o , la salida del amplificador de instrumentación.

El valor de R_o se fijará a partir de la referencia del A/D.

Elección del A/D.

Como se pretende medir entre 0 y 300 °C, con 0,1 °C de resolución el conversor A/D debe tener:

$$N = \log_2 \frac{rango}{resol.}$$

que, para este caso queda N=12 bits.

Se usará el conversor ADS774 (Burr-Brown, TI)

Conversor ADS774

Es un conversor de aproximaciones sucesivas, con red de capacitores conmutados y referencia interna.

Principio de operación.

En el conversor se usa el modo de operación 0-10 V

La interfase es sencilla: se unen las salidas a un buffer y se configura de acuerdo al circuito:

La entrada 12/8 se pone a uno para operar en 12 bits en el bus. Status es el pin usado para definir el final de la conversión. Como la entrada es de 0-10V $R_o = 2R_1$

Conversión tensión-temperatura.

	TYPE E	TYPE J	TYPE K	TYPE R	TYPE S	TYPE T
	Nickel-10%	Iron(+)	Nickel-10% Chromium(+)	Platinum-13% Rhodium(+)	Platinum-10% Rhodium(+)	Copper(+)
	Chromium(+)	Versus	Versus	Versus	Versus	Versus
	Versus	Constantan(-)	Nickel-5%(-)	Platinum(-)	Platinum(-)	Constantan(-)
	Constantan(-)		(Aluminum Silicon)			
	-100°C to 1000°C ± 0.5°C	0°C to 760°C ± 0.1°C	0°C to 1370°C ± 0.7°C	0°C to 1000°C ± 0.5°C	0°C to 1750°C ± 1°C	-160°C to 400°C ±0.5°C
	9th order	5th order	8th order	8th order	9th order	7th order
a ₀	0.104967248	-0.048868252	0.226584602	0.263632917	0.927763167	0.100860910
a ₁	17189.45282	19873.14503	24152.10900	179075.491	169526.5150	25727.94369
a ₂	-282639. 0850	-218614.5353	67233.4248	-48840341.37	-31568363.94	-767345.8295
a ₃	12695339.5	11569199.78	2210340.682	1.90002E + 10	8990730663	78025595.81
a ₄	-448703084.6	-264917531.4	-860963914.9	-4.82704E + 12	-1.63565E + 12	-9247486589
a ₅	1.10866E + 10	2018441314	4.83506E + 10	7.62091E + 14	1.88027E + 14	6.97688E + 11
a ₆	-1. 76807E + 11		-1. 18452E + 12	-7.20026E + 16	-1.37241E + 16	-2.66192E + 13
a ₇	1.71842E + 12		1.38690E + 13	3.71496E + 18	6.17501E + 17	3.94078E + 14
a ₈	-9.19278E + 12		-6.33708E + 13	-8.03104E + 19	-1.56105E + 19	
ag	2.06132E + 13				1.69535E + 20	

TEMPERATURE CONVERSION EQUATION: $T = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n$ NESTED POLYNOMIAL FORM: $T = a_0 + x(a_1 + x(a_2 + x(a_3 + x(a_4 + a_5 x))))$ (5th order) where x is in Volts, T is in °C

Coeficientes de los polinomios de linealización (NIST). Ganancia total 196,078 * 2

Procedimiento:

Cada lectura de temperatura debe dividirse por el valor de la ganancia para obtener la tensión en la TC.

A este valor se lo procesa en el polinomio y se obtiene la temperatura ya linealizada.

Esto puede hacerse fuera de línea y se construye entonces una tabla. Se recomienda el uso de la forma encadenada, usando subrutinas.

Análisis de errores.

Error de cuantización.

Es inherente al proceso de conversión. Se debe a que una magnitud continua en esencia se compara contra incrementos discretos y se la aproxima por su asíntota inferior.

Este error es $\pm \frac{1}{2}$ lsb y es sistemático (no puede evitarse)

Error de la cadena de amplificación

Depende de los errores de:

- a.- la ganancia de lazo abierto del AO
- b.- la ganancia de lazo cerrado del AO (función de las tolerancias de los componentes que la definen)

Si el valor de ganancia está dado por:

$$G = -\frac{R_r}{R_e}$$

Que puede reescribirse como:

$$G = -\frac{R_r (1 + \Delta R_r)}{R_e (1 + \Delta R_e)}$$

Donde ΔR es la tolerancia del resistor en cuestión.

Si ε es e valor del error, se trata entonces que se cumpla

Error de la referencia del conversor.

Esta contribución depende de la especificación del error de la fuente de referencia del conversor y es uno de los ítems que establece cuál es su precio.

Los errores pueden resumirse en:

$$\varepsilon = e_{A/D} + e_{amplif} + e_{ref}$$

De estos, solamente el de cuantización está expresado *siempre* en términos del lsb. Los otros pueden estar definidos en porcentajes o ppm.

En el caso de este ejemplo se pide un error:

$$\varepsilon \leq 0,1 \%$$

Como el error es:

$$\varepsilon = e_{A/D} + e_{amplif} + e_{ref}$$

 $e_{A/D} = \frac{1}{2}$ lsb. Como N= 12 bits y $V_{ref} = 10$ V, entonces $\frac{1}{2}$ lsb es 1,22 mV, equivalente a 1.2 partes en 10000. Se desprecia.

Entonces cada uno de los componentes de error restantes puede ser hasta de 0,05 %

El error de ganancia entonces debe ser menor que

e $_{amplif} \le 0,05\%$, por o que las tolerancias de los resistores deben ser menores a 0,005%, o 50 ppm.

¡¡EPA!! resistores de € 20,- c/u!

y el de la referencia de tensión otro tanto.

Los valores de error de las referencias estándar están entre 0,01% y 1%. Los errores de 50 ppm son custom y son caros.

Operación:

Conviene manejarse por interrupción. Esto hace que el procesador no esté sobrecargado en cuanto a la medición.

Esquema:

La medición ha de hacerse conforme una especificación temporal.

Esto implica un reloj. Para implementar ese reloj hay muchas formas posibles y más o menos caras que van desde un reloj de tiempo real (PC-like) a implementaciones a partir de la frecuencia de línea eléctrica.

En TODOS los casos conviene sobremuestrear y promediar.