BỘ CÔNG THƯƠNG ĐẠI HỌC CÔNG NGHIỆP TP. HỒ CHÍ MINH

Bài giảng

KỸ THUẬT ĐIỆN – ĐIỆN TỬ

ELECTRICITY AND ELECTRONICS

Lecturer: Le Ngoc Tran, PhD

Email: lengoctran@iuh.edu.vn

Chapter 4: Phân tích mạch AC

Introduction of AC circuit

Average Power, Apparent Power and Power Factor

Complex Power

Polyphase circuits

Single-Phase Three-Wire Systems

Three-Phase Y-Y Connection

Power Measurement

4.1. Giới thiệu mạch AC

• Mạch điện mà nguồn áp hoặc nguồn dòng biến đổi theo thời gian được kích thích bởi một nguồn sine hoặc cosin thì được gọi là mạch xoay chiều AC.

$$v(t) = V_m \sin \omega t$$

 V_m = the *amplitude* of the sinusoid ω = the *angular frequency* in radians/s ωt = the *argument* of the sinusoid

4.1. Giới thiệu mạch AC

Biểu diễn tín hiệu điện áp hay dòng điện theo dạng hàm SINE

$$v(t) = V_m \sin \omega t$$

T được gọi là chu kỳ (period)

$$T = \frac{2\pi}{\omega} \qquad \Rightarrow \qquad \omega T = 2\pi$$

f (Hz) là tần số (frequency)

$$f = \frac{1}{T} \quad \Rightarrow \quad \omega = 2\pi f$$

 ω (rad/s); ω t: argument; (ω t + Φ): argument & Φ in the phase

$$v(t) = V_m \sin(\omega t + \phi)$$

v(t) repeats itself every T seconds is shown by replacing t by (t + T)

$$v(t+T) = V_m \sin \omega (t+T) = V_m \sin \omega \left(t + \frac{2\pi}{\omega}\right)$$

$$v(t+T) = v(t)$$

$$= V_m \sin(\omega t + 2\pi) = V_m \sin \omega t = v(t)$$

- ❖ Sức cản của các phần tử trong mạch điện (Trở kháng- IMPEDANCE)
- Mối quan hệ giữa Điện áp Dòng điện của các phần tử thụ động điện passive elements là:

$$\mathbf{V} = R\mathbf{I}, \qquad \mathbf{V} = j\omega L\mathbf{I}, \qquad \mathbf{V} = \frac{\mathbf{I}}{j\omega C}$$

Viết lại theo dạng điện áp pha và dòng pha

$$\frac{\mathbf{V}}{\mathbf{I}} = R, \qquad \frac{\mathbf{V}}{\mathbf{I}} = j\omega L, \qquad \frac{\mathbf{V}}{\mathbf{I}} = \frac{1}{j\omega C}^{\mathbf{Z}_{C}}$$

Biểu diễn định luật Ohm theo dạng pha cho các phần tử thụ động điện

$$\mathbf{Z} = \frac{\mathbf{V}}{\mathbf{I}}$$
 or $\mathbf{V} = \mathbf{Z}\mathbf{I}$

Trong đó: Z được gọi là trở kháng (impedance), đo bằng ohms.

Cách biểu diễn tín hiệu điện áp theo miền thời gian và dạng pha

$$v(t) = V_m \cos(\omega t + \phi)$$
 \iff $V = V_m / \phi$
(Time-domain representation) (Phasor-domain representation)

Sinusoid-phasor transformation.		
Time-domain representation	Phasor-domain representation	
$V_m \cos(\omega t + \phi)$	$V_m \underline{/\phi}$	
$V_m \sin(\omega t + \phi)$	$V_m / \phi - 90^\circ$	
$I_m \cos(\omega t + \theta)$	$I_m \underline{/\theta}$	
$I_m \sin(\omega t + \theta)$	$I_m/\theta-90^\circ$	

❖ BIỂU DIỂN TÍN HIỆU THEO DẠNG PHA

Sinusoids are easily expressed in <u>terms of phasors</u>, which are more convenient to work with than sine and cosine functions.

A phasor is a complex number that represents the amplitude and phase of a sinusoid.

• A complex number z can be written in <u>rectangular</u> form as

$$z = x + jy$$

where $j = \sqrt{-1}$; x is the real part of z; y is the imaginary part of z.

• The complex number z can also be written in **polar** or **exponential** form as

$$z = r \underline{/\phi} = re^{j\phi}$$

where r is the magnitude of z, and Φ is the phase of z.

❖ BIỂU DIỄN IMPEDANCE THEO DẠNG PHA

 The impedance may be expressed in rectangular form as Resistance (Trở kháng)

Impedances and admittances of passive elements.

Element	Impedance	Admittance
R	$\mathbf{Z} = R$	$\mathbf{Y} = \frac{1}{R}$
\boldsymbol{L}	$\mathbf{Z} = j\omega L$	$\mathbf{Y} = \frac{1}{j\omega L}$
\boldsymbol{C}	$\mathbf{Z} = \frac{1}{i\omega C}$	$\mathbf{Y} = j\omega C$

Where:

Reactance (Điện kháng)

- $R = \text{Re } \mathbf{Z}$ is the *resistance* and $X = \text{Im } \mathbf{Z}$ is the *reactance*.
- The <u>reactance</u> X may be <u>positive</u> or <u>negative</u>. (impedance is inductive when X is positive or capacitive when X is negative).
- Impedance $\mathbf{Z} = R + jX$ is said to be <u>inductive</u> or lagging since <u>current</u> <u>lags voltage</u>, while impedance $\mathbf{Z} = R jX$ is <u>capacitive</u> or leading because <u>current leads voltage</u>.
- The impedance, resistance, and reactance are all measured in ohms

❖ BIỂU DIỄN IMPEDANCE THEO DẠNG PHA

Expression of Impedance

$$\mathbf{Z} = R + jX = |\mathbf{Z}| \underline{/\theta}$$

$$\mathbf{Z} = |\mathbf{Z}|/\theta$$

$$|\mathbf{Z}| = \sqrt{R^2 + X^2}, \qquad \theta = \tan^{-1} \frac{X}{R}$$

$$R = |\mathbf{Z}| \cos \theta, \qquad X = |\mathbf{Z}| \sin \theta$$

4.2. Công suất của nguồn xoay chiều-CS tức thời

Instantaneous Power (công suất tức thời)

Power is transferred from the circuit to the source. This is possible because of the storage elements (capacitors and inductors) in the circuit.

4.2. Instantaneous Power - Công suất tức thời

Instantaneous Power

$$p(t) = v(t)i(t)$$
 (3.1)

$$v(t) = V_m \cos(\omega t + \theta_v)$$

$$i(t) = I_m \cos(\omega t + \theta_i)$$

where V_m and I_m are the amplitudes (or peak values), and θ_v and θ_i are the phase angles of the voltage and current, respectively.

$$\cos A \cos B = \frac{1}{2} \left[\cos(A - B) + \cos(A + B) \right]$$

$$\Rightarrow p(t) = v(t)i(t) = V_m I_m \cos(\omega t + \theta_v) \cos(\omega t + \theta_i)$$
 (3.2)

$$\Rightarrow p(t) = \frac{1}{2} V_m I_m \cos(\theta_v - \theta_i) + \frac{1}{2} V_m I_m \cos(2\omega t + \theta_v + \theta_i)$$
 (3.3)

• Instantaneous Power: $p(t) = \frac{1}{2}V_m I_m \cos(\theta_v - \theta_i) + \frac{1}{2}V_m I_m \cos(2\omega t + \theta_v + \theta_i)$

The instantaneous power changes with time and is therefore difficult to measure.=> The <u>average power</u> is more convenient to measure.

□ Definition:

The average power is the average of the instantaneous power over one period

The wattmeter, the instrument for measuring average power

Demonstrate:

- Instantaneous Power: $p(t) = \frac{1}{2}V_m I_m \cos(\theta_v \theta_i) + \frac{1}{2}V_m I_m \cos(2\omega t + \theta_v + \theta_i)$
- Average power: $P = \frac{1}{T} \int_{0}^{T} p(t) dt$

$$\Rightarrow P = \frac{1}{T} \int_0^T \frac{1}{2} V_m I_m \cos(\theta_v - \theta_i) dt + \frac{1}{T} \int_0^T \frac{1}{2} V_m I_m \cos(2\omega t + \theta_v + \theta_i) dt$$

$$P = \frac{1}{2} V_m I_m \cos(\theta_v - \theta_i) \frac{1}{T} \int_0^T dt + \frac{1}{2} V_m I_m \frac{1}{T} \int_0^T \cos(2\omega t + \theta_v + \theta_i) dt$$

integrand is constant

integrand is a sinusoid

• Average power:
$$P = \frac{1}{2} V_m I_m \cos(\theta_v - \theta_i)$$

Average power:

$$P = \frac{1}{2} V_m I_m \cos(\theta_v - \theta_i)$$

• When $\theta_v = \theta_i$, the **voltage** and **current** are **in phase**, **purely** resistive circuit or resistive load R

$$P = \frac{1}{2} V_m I_m = \frac{1}{2} I_m^2 R = \frac{1}{2} |\mathbf{I}|^2 R$$

• When θ_v - θ_i = ±90°, we have a *purely* <u>reactive</u> circuit, and

$$P = \frac{1}{2} V_m I_m \cos 90^\circ = 0$$

A resistive load (R) absorbs power at all times, while a reactive load (L or C) absorbs zero average power.

Exercise 3.6

Given that $v(t) = 120 \cos(377t + 45^\circ)$ V and $i(t) = 10 \cos(377t - 10^\circ)$ A. Find the instantaneous power and the average power absorbed by the passive linear network.

Solution Ex 3.6:

$$v(t) = 120\cos(377t + 45^{\circ}) \text{ V}$$
$$i(t) = 10\cos(377t - 10^{\circ}) \text{ A}$$

The instantaneous power:

$$p(t) = \frac{1}{2} V_m I_m \cos(\theta_v - \theta_i) + \frac{1}{2} V_m I_m \cos(2\omega t + \theta_v + \theta_i)$$

$$\Rightarrow p(t) = 344.2 + 600 \cos(754t + 35^\circ) \text{ W}$$

• The average power:

$$P = \frac{1}{2} V_m I_m \cos(\theta_v - \theta_i) = \frac{1}{2} 120(10) \cos[45^\circ - (-10^\circ)]$$
$$= 600 \cos 55^\circ = 344.2 \text{ W}$$

Exercise 3.7

Calculate the average power absorbed by an impedance $\mathbf{Z} = 30 - j70 \,\Omega$

when a voltage $V = 120/0^{\circ}$ is applied across it.

Solution Ex3.7:

The current through the impedance is

$$\mathbf{I} = \frac{\mathbf{V}}{\mathbf{Z}} = \frac{120/0^{\circ}}{30 - j70} = \frac{120/0^{\circ}}{76.16/-66.8^{\circ}} = 1.576/66.8^{\circ} \text{ A}$$

The average power is

$$P = \frac{1}{2} V_m I_m \cos(\theta_v - \theta_i) = \frac{1}{2} (120)(1.576) \cos(0 - 66.8^\circ) = 37.24 \text{ W}$$

Exercise 3.8

For the circuit shown in Figure, find the average power supplied by the source and the average power absorbed by the resistor.

Solution:

The current **I** is given by

$$\mathbf{I} = \frac{5/30^{\circ}}{4 - j2} = \frac{5/30^{\circ}}{4.472/-26.57^{\circ}} = 1.118/56.57^{\circ} \,\text{A}$$

The average power supplied by the voltage source is

$$P = \frac{1}{2}(5)(1.118)\cos(30^{\circ} - 56.57^{\circ}) = 2.5 \text{ W}$$

The current through the resistor is

$$I = I_R = 1.118 / 56.57^{\circ} A$$

and the voltage across it is

$$V_R = 4I_R = 4.472/56.57^{\circ} V$$

The average power absorbed by the resistor is

$$P = \frac{1}{2}(4.472)(1.118) = 2.5 \text{ W}$$

which is the same as the average power supplied. Zero average power is absorbed by the capacitor.

HOMEWORK 3.4

Calculate the instantaneous power and average power absorbed by the passive linear network of Fig.

$$v(t) = 80\cos(10t + 20^{\circ}) \text{ V}$$
 and $i(t) = 15\sin(10t + 60^{\circ}) \text{ A}$

Answer: $385.7 + 600 \cos(20t - 10^{\circ})$ W, 385.7 W.

HOMEWORK 3.5

A current $I = 10/30^{\circ}$ flows through an impedance $Z = 20/-22^{\circ}$ Ω . Find the average power delivered to the impedance.

Answer: 927.2 W.

HOMEWORK 3.6

In the circuit of Fig. 11.4, calculate the average power absorbed by the resistor and inductor. Find the average power supplied by the voltage source.

Answer: 9.6 W, 0 W, 9.6 W.

4.4 Apparent Power and Power Factor

REAL, REACTIVE, AND APPARENT POWER:

• Power in system with resistive and reactive components

- **REAL** -> **Resistive** (**R**)
- **REACTIVE -> L,C: Oscillates**

Apparent power (S): Công suất biểu kiến

Power Factor (PF): Hệ số công suất

4.4 Apparent Power and Power Factor

- Instantaneous Power: $p(t) = \frac{1}{2}V_m I_m \cos(\theta_v \theta_i) + \frac{1}{2}V_m I_m \cos(2\omega t + \theta_v + \theta_i)$
- Average power: $P = \frac{1}{2} V_m I_m \cos(\theta_v \theta_i)$

$$P = \frac{1}{\sqrt{2}} V_m \frac{1}{\sqrt{2}} I_m \cos(\theta_v - \theta_i) = 0.707 * V_m * 0.707 * I_m * \cos(\theta_v - \theta_i)$$

$$V_{rms}$$

Other terms of the power values

$$P = V_{\rm rms} I_{\rm rms} \cos(\theta_v - \theta_i) = S \cos(\theta_v - \theta_i)$$
 $S = V_{\rm rms} I_{\rm rms}$
 $\cos(\theta_v - \theta_i)$

Apparent power S power factor (pf)

power factor (pf)

The apparent power (in VA) is the product of the rms values of voltage and current.

Le Ngoc Trai

Complex power is important in **power analysis** because it contains all the information pertaining to the **power absorbed** by a **given load**.

$$S = V_{rms}I_{rms}^*$$

$$\mathbf{Z} = \frac{\mathbf{V}}{\mathbf{I}} = \frac{\mathbf{V}_{\text{rms}}}{\mathbf{I}_{\text{rms}}} = \frac{V_{\text{rms}}}{I_{\text{rms}}} / \theta_v - \theta_i$$

$$\mathbf{V}_{rms} = \mathbf{Z}\mathbf{I}_{rms}$$

Since
$$\mathbf{Z} = R + jX$$

$$\mathbf{S} = I_{\text{rms}}^2(R + jX) = P + jQ$$

- The **magnitude** of the **complex power** is the **apparent power**
- The **complex power** is measured in **volt-amperes** (VA)
- The <u>angle of the complex power</u> is the <u>power factor</u> angle.

Complex power (in VA) is the product of the rms voltage phasor and the complex conjugate of the rms current phasor. As a complex quantity, its real part is real power P and its imaginary part is reactive power Q.

$$\mathbf{S} = I_{\text{rms}}^2(R + jX) = P + jQ$$

where *P* and *Q* are the <u>real</u> and <u>imaginary</u> parts of the complex power

$$P = \text{Re}(\mathbf{S}) = I_{\text{rms}}^2 R$$

 $Q = \text{Im}(\mathbf{S}) = I_{\text{rms}}^2 X$

- P is the average or <u>real power</u> and it depends on the <u>load's</u> resistance R
- Q depends on the <u>load's reactance X</u> and is called the <u>reactive</u> power.

- Average power (P): $P = V_{\text{rms}}I_{\text{rms}}\cos(\theta_v \theta_i)$,
 - It is real power (*P*) in watts delivered to a load; it is the only <u>useful</u> <u>power</u>. It is the actual power dissipated by the load.
- Reactive power (Q): $Q = V_{\text{rms}}I_{\text{rms}}\sin(\theta_v \theta_i)$
 - It is a measure of the energy exchange between the source and the reactive part of the load.
 - The unit of Q is the volt-ampere reactive (VAR) to distinguish it from the real power
 - The reactive power is being transferred back and forth between the load and the source. It represents a lossless interchange between the load and the source.
 - 1. Q = 0 for resistive loads (unity pf).
 - 2. Q < 0 for capacitive loads (leading pf).
 - 3. Q > 0 for inductive loads (lagging pf).

- When S lies in the first quadrant, we have an <u>inductive load</u> and a lagging PF
- When S lies in the fourth quadrant, the load is <u>capacitive</u> and the PF is leading

It is also possible for the complex power to lie in the second or third quadrant. This requires that the load impedance have a negative resistance, which is possible with active circuits.

Exercise 3.9

The voltage across a load is $v(t) = 60 \cos(\omega t - 10^{\circ}) V$ and the current through the element in the direction of the voltage drop is $i(t) = 1.5 \cos(\omega t + 50^{\circ}) A$.

Find:

- (a) the complex and apparent powers,
- (b) the real and reactive powers,
- (c) the power factor and the load impedance.

Solution: (a) the complex and apparent powers:

$$\mathbf{V}_{\text{rms}} = \frac{60}{\sqrt{2}} / -10^{\circ}, \qquad \mathbf{I}_{\text{rms}} = \frac{1.5}{\sqrt{2}} / +50^{\circ}$$

The complex power is

$$\mathbf{S} = \mathbf{V}_{\text{rms}} \mathbf{I}_{\text{rms}}^* = \left(\frac{60}{\sqrt{2}} / -10^{\circ}\right) \left(\frac{1.5}{\sqrt{2}} / -50^{\circ}\right) = 45 / -60^{\circ} \text{ VA}$$

The apparent power is
$$S = |S| = 45 \text{ VA}$$

(b) the real and reactive powers:

$$\mathbf{S} = 45 / -60^{\circ} = 45 [\cos(-60^{\circ}) + j\sin(-60^{\circ})] = 22.5 - j38.97$$

$$P = 22.5 \text{ W}$$
 (Real powers) $Q = -38.97 \text{ VAR}$ (Reactive powers)

(c) the power factor and the load impedance: $pf = cos(-60^\circ) = 0.5$ (leading)

It is leading, because the reactive power is negative. The load impedance is

$$\mathbf{Z} = \frac{\mathbf{V}}{\mathbf{I}} = \frac{60 / -10^{\circ}}{1.5 / +50^{\circ}} = 40 / -60^{\circ} \Omega$$

which is a capacitive impedance.

HOMEWORK 3.7

For a load, $V_{rms} = 110/85^{\circ} \text{ V}$, $I_{rms} = 0.4/15^{\circ} \text{ A}$. Determine: (a) the complex and apparent powers, (b) the real and reactive powers, and (c) the power factor and the load impedance.

Answer: (a) $44\sqrt{70^{\circ}}$ VA, 44 VA, (b) 15.05 W, 41.35 VAR, (c) 0.342 lagging, $94.06 + j258.4 \Omega$.

4.6 Polyphase circuits - Mach da pha

WHY THREE PHASE SYSTEM?

• ALL electric power system in the world used 3-phase system to **GENERATE**, **TRANSMIT** and **DISTRIBUTE**

- Instantaneous power is constant thus smoother rotation of electrical machines
- More economical than single phase less wire for the same power transfer

Balanced 3-phase systems

Single-phase two-wire system:

• Single source connected to a load using two-wire system

Single-phase three-wire system:

- Two sources connected to two loads using three-wire system
- Sources have EQUAL magnitude and are IN PHASE

Balanced Two-phase three-wire system:

- Two sources connected to two loads using three-wire system
- Sources have EQUAL frequency but DIFFFERENT phases

Balanced Three-phase four-wire system:

- Three sources connected to 3 loads using four-wire system
- Sources have EQUAL frequency but DIFFFERENT phases

A single-phase three-wire source is defined as a source having three output terminals, such as a, n, and b as shown in Figure, at which the phasor voltages V_{an} and V_{nb} are equal

- (a) A single-phase three-wire source.
- (b) The representation of a single-phase three-wire source by two identical voltage sources.

$$\mathbf{V}_{an} = \mathbf{V}_{nb}$$

$$\mathbf{I}_{aA} = \frac{\mathbf{V}_{an}}{\mathbf{Z}_p} = \mathbf{I}_{Bb} = \frac{\mathbf{V}_{nb}}{\mathbf{Z}_p}$$

A simple single-phase three-wire system. The two loads are identical, and the neutral current is zero.

$$\mathbf{I}_{nN} = \mathbf{I}_{Bb} + \mathbf{I}_{Aa} = \mathbf{I}_{Bb} - \mathbf{I}_{aA} = 0$$

Thus there is no current in the neutral wire, and it could be removed with-out changing any current or voltage in the system. This result is achieved through the equality of the two loads and of the two sources.

Balanced 3-phase systems

Generation of 3-phase voltage: Generator

Balanced 3-phase systems

Generation, Transmission and Distribution

Balanced 3-phase systems

Generation, Transmission and Distribution

Balanced 3-phase systems

Y and A connections

Balanced 3-phase systems can be considered as 3 equal single phase voltage sources connected either as Y or Delta (Δ) to 3 single three loads connected as either Y or Δ

Balanced 3-phase systems

SOURCE CONNECTIONS

Source: Y connection

$$V_{an}(t) = \sqrt{2}V_{p}\cos(\omega t)$$
 \Rightarrow $V_{an} = V_{p}\angle 0^{\circ}$

$$V_{bn}(t) = \sqrt{2}V_p \cos(\omega t - 120^\circ) \Rightarrow V_{bn} = V_p \angle -120^\circ$$

$$V_{cn}(t) = \sqrt{2}V_p \cos(\omega t + 120^{\circ}) \Rightarrow V_{cn} = V_p \angle 120^{\circ}$$

Generation of 3-phase voltage: Generator

An example set of three voltages

An example set of three voltages, each of which is 120° out of phase with the other two. As can be seen, only one of the voltages is zero at any particular instant.

Balanced 3-phase systems

Source: Y connection

$$\begin{split} & v_{an}(t) = \sqrt{2} V_p \cos(\omega t) & \Rightarrow V_{an} = V_p \angle 0^o \\ & v_{bn}(t) = \sqrt{2} V_p \cos(\omega t - 120^o) \Rightarrow V_{bn} = V_p \angle -120^o \\ & v_{cn}(t) = \sqrt{2} V_p \cos(\omega t + 120^o) \Rightarrow V_{cn} = V_p \angle 120^o \end{split}$$

$$I_{a} = \frac{V_{p} \angle 0^{\circ}}{Z_{Y}}$$

$$I_{b} = \frac{V_{p} \angle -120^{\circ}}{Z_{Y}}$$

$$I_{c} = \frac{V_{p} \angle 120^{\circ}}{Z_{Y}}$$

$$\therefore I_{a} + I_{b} + I_{c} = I_{n} = 0$$
line currents

$$\begin{split} \textbf{V}_{ab} &= \textbf{V}_{an} + \textbf{V}_{nb} \\ &= \textbf{V}_{p} \angle 0^{\circ} + \textbf{V}_{p} \angle 60^{\circ} \\ &= \sqrt{3} \textbf{V}_{p} \angle 30^{\circ} \\ \\ \textbf{V}_{bc} &= \textbf{V}_{bn} + \textbf{V}_{nc} \\ &= \sqrt{3} \textbf{V}_{p} \angle -90^{\circ} \\ \\ \textbf{V}_{ca} &= \textbf{V}_{cn} + \textbf{V}_{na} \\ \\ \textbf{ed!} &= \sqrt{3} \textbf{V}_{p} \angle 150^{\circ} \end{split}$$

line-line
voltages
OR
Line
voltages

The wire connecting n and N can be removed!

$$V_{ab} = V_{p} \angle 0^{\circ}$$

$$V_{bc} = V_p \angle -120^\circ$$

$$V_{cn} = V_{p} \angle 120^{\circ}$$

$$V_{\mathsf{ab}} = V_{\mathsf{AB}}$$

$$V_{bc} = V_{BC}$$

$$V_{ca} = V_{CA}$$

$$I_{AB} = \frac{V_{AB}}{Z_A}$$

$$I_{BC} = \frac{V_{BC}}{Z_{\Delta}}$$

$$_{CA} = \frac{V_{CA}}{Z_{A}}$$

Using KCL,

Phase currents

 $\mathbf{I}_{\mathsf{a}} = \mathbf{I}_{\mathsf{AB}} - \mathbf{I}_{\mathsf{CA}}$

 $=I_{AB}(1-1\angle120^{\circ})$

 $=I_{AB}\sqrt{3}\angle-30^{o}$

 $\mathbf{I}_{\mathsf{b}} = \mathbf{I}_{\mathsf{BC}} - \mathbf{I}_{\mathsf{AB}}$

 $=I_{BC}(1-1\angle120^{\circ})$

 $=I_{BC}\sqrt{3}\angle-30^{o}$

 $I_{c} = I_{CA} \sqrt{3} \angle -30^{\circ}$

line currents

4.9 Power Measurement

 $\overline{P_{3p}=U_A I_A \cos \varphi_A + U_B I_B \cos \varphi_B + U_C I_C \cos \varphi_C}$

 $Q_{3p} = U_A I_A \sin \varphi_A + U_B I_B \sin \varphi_B + U_C I_C \sin \varphi_C$

$$S_{3p} = \sqrt{P^2_{3p} + Q_{3p}^2}$$

