Rigid Geometry

Xiang Li

In the following, \mathcal{V} is a valuation ring with fractional field K and residue field k.

1 Rigid Analytic Variety

2 Formal Scheme

3 Rigid Cohomology

Definition 3.1 (Generic Fibre, Special Fibre). Let \mathcal{X} be a formal scheme over \mathcal{V} . Then

- the generic fibre of \mathcal{X} is \mathcal{X}_K which is a rigid analytic variety over K;
- the special fibre of \mathcal{X} is \mathcal{X}_k which is an algebraic variety over k.

Lemma 3.2. Any formal scheme P over V has a special fibre P_k with an embedding $P_k \hookrightarrow P$ which is actually a homeomorphism $P_k \simeq P$.

Definition 3.3 (Specialization Map). Let P_K be the generic fibre of the formal scheme P over \mathcal{V} . There is a specialization map sp: $P_K \to P$ which is basically the reduction $P_K \to P_k$.

Definition 3.4 (**Tube**). Let $\iota: X \hookrightarrow P$ be a locally closed immersion of the algebraic variety X over k into the formal scheme P over \mathcal{V} . Then the tube of X in P is the rigid analytic variety $|X|_P := \operatorname{sp}^{-1}(\iota(X))$ (i.e., consists of points in P_K which reduce to points in X).

Lemma 3.5. $\bigcup_i X_i[P] = \bigcup_i X_i[P]$, $\bigcup_i X_i[P] = \bigcup_i X_i[P]$, $\bigcup_i X_i[P] = \bigcup_i X_i[P]$

4 Colemann Integration

Definition 4.1 (Rigid Triple/Frame). The rigid triple/frame is (X, Y, P) where

- $X \hookrightarrow Y$ is an open immersion of the algebraic variety X over k to the algebraic variety Y over k:
- $Y \hookrightarrow P$ is a closed immersion to the formal scheme P over \mathcal{V} .

Definition 4.2 (Strict Neighborhood). Let V be a rigid analytic variety. An admissible open $U \subseteq V$ is called a strict neighborhood of W if $(U, V \setminus W)$ is an admissible covering of V.

Definition 4.3 (Dagger Functor). Let (X,Y,P) be a rigid triple and V be a strict neighborhood of $]X[_P$ in $]Y[_P$. Define the dagger functor j^{\dagger} from the category of sheaves on V to itself by $j^{\dagger}(F) = \varinjlim_{U} j_{U*}(F|_{U})$ where the limit is over all U which are strict neighborhood of $]X[_P$ in $]Y[_P$ contained in V and $j_U: U \hookrightarrow V$ is the canonical embedding.

Definition 4.4 (Isocrystal). An isocrystal on the rigid triple (X, Y, P) is a $j^{\dagger}\mathcal{O}_{]Y[_{P}}$ -module together with an integrable connection.

Definition 4.5 (Overconvergent Isocrystal). An isocrystal is called overconvergent if the Taylor expansion map gives an isomorphism on a strict neighborhood of the diagonal.

Remark 4.6. The category of overconvergent isocrystals on (X, Y, P) is independent from Y and P up to equivalence, and thus is called the category of overconvergent isocrystals on X.

Definition 4.7 (F-isocrystal over K). An (overconvergent) F-isocrystal over K is an (overconvergent) isocrystal on $(\operatorname{Spec}(k), \operatorname{Spf}(\mathcal{V}))$. Essentially:

- An F-isocrystal over K is a vector space over K together with a K-linear automorphism;
- An overconvergent F-isocrystal over K is just a vector space over K.

Definition 4.8 (Abstract Coleman Functions). Let (X, Y, P) be a rigid triple, and \mathcal{F} be a locally free $j^{\dagger}\mathcal{O}_{|Y|_P}$ -module. An abstract Coleman function is a triple (M, s, y) where

- $M = (M, \nabla)$ is a unipotent isocrystal on (X, Y, P);
- $s \in \operatorname{Hom}(M, \mathcal{F});$
- y is a collection of flat sections $\{y_x \in M(]x[_P]) \mid x \in X\}$.

Definition 4.9. 1