BINARY INSTANCE-SPECIFIC COST LEARNING

- Assumes instance-specific costs for every observation: $\mathcal{D}^{(n)} = \{(\mathbf{x}^{(i)}, \mathbf{c}^{(i)})\}_{i=1}^{n}, \text{ where } (\mathbf{x}^{(i)}, \mathbf{c}^{(i)}) \in \mathbb{R}^{p} \times \mathbb{R}^{2}.$
 - Define "true class" as cost minimal class

Define observation weights:
$$|\mathbf{c}^{(i)}[1] - \mathbf{c}^{(i)}[0]|$$

Cost-Sensitive Lection ired [Fav(*)3
$$w^{(i)}$$
 $\mathbf{x}^{(1)}$ 1 1 0 0
 $\mathbf{x}^{(2)}$ 1 2 0 1
True class $\mathbf{x}^{(2)}$ 7 3 1 4

● Now solve weighted ERM: Learning goals

True class
$$y = 1$$
 $C(1,1)$ $C(1,-1)$ $C(1,-1$

NB: Instances with equal costs are effectively ignored.

MULTICLASS COSTSPECIFIC COST LEARNING

- Consider grstance specific, use $\mathbf{c}^{(l)}$ same for all $\mathbf{x}^{(l)}$ of the same class: $\mathbb{R}^{\rho} \times \mathbb{R}^{2}$.
- Define "true class" as cost minimal chase class
- Define observation weights: | ▼ □ Pred class

$$\frac{\mathbf{c}^{(i)}[1] \quad \mathbf{c}^{(i)}[2] \quad \mathbf{c}^{(i)}[3] \quad y^{(i)}}{\mathcal{R}_{\underbrace{\mathbf{c}^{(i)}[2]}_{\mathbf{X}}(2)}^{\mathbf{X}(1)}} = \sum_{i=1}^{n} w^{(i)} L_{1}^{0} \left(y^{(i)}, f \begin{pmatrix} \mathbf{x}^{(i)} \mid \theta_{3}^{2} \end{pmatrix} \right)$$

- NB: Instances with equal costs are effectively ignored Set $\mathbf{c}^{(\prime)}[y^{(\prime)}] = 0$, i.e. zero-cost for correct prediction.

CSOVO LASS GOSTS

- Cet D(t) = {(x(!))(c(!))}C\$L(x(!)(c(!)))∈Re x(R4tance specific,
- Example same for all x⁽ⁱ⁾ of the same class

	င ^(/) [1] င ^(f) ([2]ငla င (⁽⁾ [3]				
x ⁽¹⁾		0 / = 1	2 / = 2	<u>3</u> / = 3	
X (2)=	1	1 0	0 1	1 3	
Pred. x(2)=	2	2 1	0 0	3 1	

- Idea: Reduction principle to binary case (weighted fit) by
- one-versus-one (OVO). For two $x^{(j)}$ with y=2 and y=3: For class j vs. k:
- - How to deal with the label $y^{(i)}?2y^{(i)}$ can be neither i nor k.
 - How to deal with the costs $\mathbf{c}^{(i)}[j]$ and $\mathbf{c}^{(i)}[k]$?
- Set $\mathbf{c}^{(i)}[y^{(i)}] = 0$, i.e. zero-cost for correct prediction.

CSOVO LINET AL. 2014

- When training a binary classifier f^(j,k) for class j vs. k,
- Exerchoose cost min class from pair $\arg\min_{l \in \{j,k\}} \mathbf{c}^{(i)}[l]$ as ground truth $\begin{vmatrix} \mathbf{c}^{(i)}[1] & \mathbf{c}^{(i)}[2] & \mathbf{c}^{(i)}[3] \end{vmatrix}$
 - Sample weight is simply diff between the 2 costs
- $|\mathbf{c}^{(i)}[j] \mathbf{c}^{(i)}[k]|_{(2)} = 1 \qquad 0$ Example continued:_{**x**}(3)
- Idea: RedC(\(\frac{1}{1}\) p\(\frac{1}{1}\) p\(\frac{1}\) p\(\fr

CSOVO

• Example continued any classifier $f^{(j,k)}$ for class j vs. k,

 Choce^{(⊕}[t]oste(()[2]c 	la c (2 [3] br	n ¢ (a[1 vs:8]n	$\min \widetilde{\mathbf{y}}_{l}^{(i)}[1]$ vs $3^{(i)}[$	w ⁽²⁾ {1 vs 3]
Xaround@ruth 2	3	0/3	1	3
Sample weight is	imply di	ff hefween t	the 2 costs	0
$\mathbf{x}_{[2]}^{(1)}$ und \mathbf{q} ruth \mathbf{q} $\mathbf{x}_{[2]}^{(2)}$ ample weight is s	3	2/3	1 10 2 10013	1

- Wrap everything up:
 - For class j vs. k, transform all $(\mathbf{x}^{(l)}, \mathbf{c}^{(l)})$ to $(\mathbf{x}^{(l)}, \mathbf{arg} \min_{l \in \{j,k\}} \mathbf{c}^{(l)}[l])$ with sample-wise weight $\frac{\mathbf{x}^{(l)}[1] \times 2}{2}$
 - 2 xTrain a weighted binary classifier $f^{(j,k)}$ using the above 2
 - Repeat step d and 2 for different (j,k). $\tilde{y}^{(i)}[2 \text{ vs } 3]$ $w^{(i)}[2 \text{ vs } 3]$ Predict using the votes from all $\tilde{f}^{(j,k)}$.
- Theoretical guarantee: $\frac{1}{3}$ $\frac{0/1}{0/3}$ $\frac{2}{2}$ test costs of final classifier $\leq 2 \sum_{j < k}$ test cost of $f^{(j,k)}$.

CSOVO

Example continued

	c ⁽ⁱ⁾ [1]	$c^{(i)}[2]$	$c^{(i)}[3]$	c ⁽ⁱ⁾ [1 vs 3]	$\tilde{y}^{(i)}[1 \text{ vs } 3]$	$w^{(i)}[1 \text{ vs } 3]$
x ⁽¹⁾	0	2	3	0/3	1	3
x ⁽²⁾	1	0	1	-/-	-	0
x (3)	2	0	3	2/3	1	1

- For class j vs. k, transform all $(\mathbf{x}^{(i)}, \mathbf{c}^{(i)})$ to $(\mathbf{x}^{(i)}, \arg\min_{l \in \{j, k\}} \mathbf{c}^{(i)}[l])$ with sample-wise weight $|\mathbf{c}^{(i)}[j] \mathbf{c}^{(i)}[k]|$.
- Train a weighted binary classifier $f^{(j,k)}$ using the above
- Repeat step 1 and 2 for different (j, k).
- Predict using the votes from all $f^{(j,k)}$.
- Theoretical guarantee: test costs of final classifier $\leq 2 \sum_{i < k}$ test cost of $f^{(i,k)}$.

