

# **Unit 1:Data Reduction**

Mamatha.H.R

Department of Computer Science and Engineering



# **Unit 1:Data Reduction**

# Mamatha H R

Department of Computer Science and Engineering

### **Data Reduction**

PES UNIVERSITY ONLINE

**Data reduction**: Obtain a reduced representation of the data set that is much smaller in volume but yet produces the same (or almost the same) analytical results

Why data reduction? — A database/data warehouse may store terabytes of data. Complex data analysis may take a very long time to run on the complete data set.

# **Data Reduction Strategies**

### Data reduction strategies

- Dimensionality reduction, e.g., remove unimportant attributes
  - Wavelet transforms
  - Principal Components Analysis (PCA)
  - Feature subset selection, feature creation
- Numerosity reduction (some simply call it: Data Reduction)
  - Regression and Log-Linear Models
  - Histograms, clustering, sampling
  - Data cube aggregation
- Data compression



# **Data Reduction 1: Dimensionality Reduction**

# Curse of dimensionality

- When dimensionality increases, data becomes increasingly sparse
- Density and distance between points, which is critical to clustering, outlier analysis, becomes less meaningful
- The possible combinations of subspaces will grow exponentially



# **Data Reduction 1: Dimensionality Reduction**

# Dimensionality reduction

- Avoid the curse of dimensionality
- Help eliminate irrelevant features and reduce noise
- Reduce time and space required in data mining
- Allow easier visualization

# Dimensionality reduction techniques

- Wavelet transforms
- Principal Component Analysis
- Supervised and nonlinear techniques (e.g., feature selection)



# **Mapping Data to a New Space**

- Fourier transform
- Wavelet transform







**Two Sine Waves** 

**Two Sine Waves + Noise** 

**Frequency** 



### What Is Wavelet Transform?

- Decomposes a signal into different frequency subbands
  - Applicable to n-dimensional signals
- Data are transformed to preserve relative distance between objects at different levels of resolution
- Allow natural clusters to become more distinguishable
- Used for image compression





### **Wavelet Transformation**

- Discrete wavelet transform (DWT) for linear signal processing, multi-resolution analysis
- Compressed approximation: store only a small fraction of the strongest of the wavelet coefficients
- Similar to discrete Fourier transform (DFT), but better lossy compression, localized in space





### **Wavelet Transformation**



### Method:

- Length, L, must be an integer power of 2 (padding with 0's, when necessary)
- Each transform has 2 functions: smoothing, difference
- Applies to pairs of data, resulting in two set of data of length L/2
- Applies two functions recursively, until reaches the desired length

### **Wavelet Decomposition**

- Wavelets: A math tool for space-efficient hierarchical decomposition of functions
- S = [2, 2, 0, 2, 3, 5, 4, 4] can be transformed to  $S_{\wedge} = [2^{3}/_{4}, -1^{1}/_{4}, 1^{1}/_{2}, 0, 0, -1, -1, 0]$
- Compression: many small detail coefficients can be replaced by 0's, and only the significant coefficients are retained

| Resolution | Averages                 | Detail Coefficients |
|------------|--------------------------|---------------------|
| 8          | [2, 2, 0, 2, 3, 5, 4, 4] |                     |
| 4          | [2,1,4,4]                | [0,-1,-1,0]         |
| 2          | $[1\frac{1}{2}, 4]$      | $[\frac{1}{2}, 0]$  |
| 1          | $[	ilde{2}rac{3}{4}]$   | $[-1\frac{1}{4}]$   |



### **Haar Wavelet Coefficients**

Hierarchical decomposition structure (a.k.a. "error tree")



Original frequency distribution

# Coefficient "Supports"



















### Why Wavelet Transform?

- Use hat-shape filters
  - Emphasize region where points cluster
  - Suppress weaker information in their boundaries
- Effective removal of outliers
  - Insensitive to noise, insensitive to input order
- Multi-resolution
  - Detect arbitrary shaped clusters at different scales
- Efficient
  - Complexity O(N)
- Only applicable to low dimensional data



# **Principal Component Analysis (PCA)**

- Find a projection that captures the largest amount of variation in data
- The original data are projected onto a much smaller space, resulting in dimensionality reduction.
   We find the eigenvectors of the covariance matrix, and these eigenvectors define the new space





# **Principal Component Analysis (Steps)**

- Given N data vectors from n-dimensions, find  $k \le n$  orthogonal vectors (principal components) that can be best used to represent data
  - Normalize input data: Each attribute falls within the same range
  - Compute *k* orthonormal (unit) vectors, i.e., *principal components*
  - ullet Each input data (vector) is a linear combination of the k principal component vectors
  - The principal components are sorted in order of decreasing "significance" or strength
  - Since the components are sorted, the size of the data can be reduced by eliminating the *weak components*, i.e., those with low variance (i.e., using the strongest principal components, it is possible to reconstruct a good approximation of the original data)
  - Works for numeric data only



#### **Attribute Subset Selection**

- Another way to reduce dimensionality of data
- Redundant attributes
  - Duplicate much or all of the information contained in one or more other attributes
  - E.g., purchase price of a product and the amount of sales tax paid
- Irrelevant attributes
  - Contain no information that is useful for the data analysis task at hand
  - E.g., students' ID is often irrelevant to the task of predicting students' GPA



#### **Heuristic Search in Attribute Selection**

- There are  $2^d$  possible attribute combinations of d attributes
- Typical heuristic attribute selection methods:
  - Best single attribute under the attribute independence assumption: choose by significance tests
  - Best step-wise feature selection:
    - The best single-attribute is picked first
    - Then next best attribute condition to the first, ...
  - Step-wise attribute elimination:
    - Repeatedly eliminate the worst attribute
  - Best combined attribute selection and elimination
  - Optimal branch and bound:
    - Use attribute elimination and backtracking



# **Heuristic Search in Attribute Selection**

| Forward selection                                                                                                   | Backward elimination                                                                                             | Decision tree induction                                   |
|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| Initial attribute set: $\{A_1, A_2, A_3, A_4, A_5, A_6\}$                                                           | Initial attribute set: $\{A_1, A_2, A_3, A_4, A_5, A_6\}$                                                        | Initial attribute set: $\{A_1, A_2, A_3, A_4, A_5, A_6\}$ |
| Initial reduced set:<br>{}<br>=> $\{A_1\}$<br>=> $\{A_1, A_4\}$<br>=> Reduced attribute set:<br>$\{A_1, A_4, A_6\}$ | => $\{A_1, A_3, A_4, A_5, A_6\}$<br>=> $\{A_1, A_4, A_5, A_6\}$<br>=> Reduced attribute set: $\{A_1, A_4, A_6\}$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$     |



### **Attribute Creation (Feature Generation)**

- Create new attributes (features) that can capture the important information in a data set more effectively than the original ones
- Three general methodologies
  - Attribute extraction
    - Domain-specific
  - Mapping data to new space (see: data reduction)
    - E.g., Fourier transformation, wavelet transformation, manifold approaches
  - Attribute construction
    - Combining features
    - Data discretization



### **Exercise**

- ☐ Mention and explain the different data reduction strategies.
- ☐ Explain how Wavelet transform and Principal Component

  Analysis are used in the process of data reduction.



### References

### **Text Book:**

<u>Data Mining: Concepts and Techniques</u> by Jiawei Han,
 Micheline Kamber and Jian Pei, The Morgan Kaufmann Series in Data Management Systems, 3rd Edition.





# **THANK YOU**

### Dr.Mamatha H R

Professor, Department of Computer Science mamathahr@pes.edu

+91 80 2672 1983 Extn 834