

असाधारण EXTRAORDINARY

NAT II—Gos 8—39-408 (1)

PART II—Section 3—Sub-section (i)

प्राधिकार से श्रकाशित PUBLISHED BY AUTHORITY

सं. 365]

नई विल्ली, बृहस्पतिबार, अगस्त 30, 1990/भाव 8, 1912

No. 365)

NEW DELHI, THURSDAY, AUGUST 30, 1990/BHADRA 8, 1912

aanta<mark>an kaluurita</mark>ta oo kii saarattiita waxay oo kaatan taataan aa taa ya waatay ee ee ka ahaa in saa saa ka ba

इ.स. भाग में भिस्**न पुष्ठ संख्या की जाती है जिससे कियह अलग संकालन के रूप में** रक्षा जा सकी

Separate Paging is given to this Part in order that it may be filed as a separate compliation

पर्यावरण और वन मंत्रालय

(पर्यावरण, अन और वन्यजीय विभाग)

ग्रधिमुचना

नई दिल्ली, 30 ग्रगस्त, 1990

सा. का. नि. 742(अ) :--- केन्द्रीय सरकार, पर्यावरण (संरक्षण) प्रधिनियम, 1986 (1986 का 29) को धारा 25 द्वारा प्रदत गक्तियों का प्रयोग करते हुए पर्यावरण (संरक्षण) नियम, 1986 में और संशोधन करने के लिए निस्नलिखित नियम बनानी है, अर्थात :---

- ा. (1) इन नियमों का संक्षिप्त नाम पर्यावरण (संरक्षण) तीसरा संगोधन नियम, 1990 है।
 - (2) ये राजपव में प्रकाणन की नारीख को प्रबत्त होंगे।

2. पर्यावरण (संरक्षण) नियम, 1986 में, कम संख्या 31 और उससे संबंधित प्रविष्टियों के पश्चात् निस्नलिखित कम संख्यांक और प्रविष्टियों श्रन्सःस्थापित की जाएंगी, श्रर्थात ---

ऋ.सं.	उद्योग	पैराभीटर	मानक (मि. ग्रा∴/एन∵ ए म ³)
1	2	3	4
32 संघा	मशासाः	उत्सर्जन	
(軒)) क्य्पोला		
	क्षमता (गलन दर)		
	3 एमटी/घंटा से कम	कणिकीय पदार्थ	450
	3 एमटी/घंटा और अधिक	य थोक्त	150

टिप्पण : यह स्रावश्यक है कि स्टैक धान-द्वार के परे क्यूपोला के ऊपर बनाया आए और उत्पर्धन स्टैक के माध्यम से किया जाए जो क्यूपोला के व्यास से कम मे कम छह गुना होना चाहिए ।

(ख) घार्क भटटी

क्षमता: सभी भ्राकार की

कणिकीय पदार्थ

150

(ग) प्रेरण भटटी

क्षमता: सभी श्राकार की

यथोक्त

150

टिप्पण : मार्फ भटटी और प्रेरण भटटी की बाबत स्टैक के माध्यम से उत्सर्जन के त्रिसर्जन से पूर्व धूम संग्रहण करने के लिए व्यवस्था करनी पढ़ेंगी।

33. तापीय शक्ति संयंत्रः

स्टैंक अंचाई की सीमा शक्ति उत्पादन क्षमता:

-500 मे. वा. और प्रधिक

275

-200 मे. वा. /210 मे. वा. और प्रधिक किस्तु 500 मे. वा. मेकम 220

- 200 मे. वा. /210 मे. वा. से कम एच = 14 (क्यू) 0.3 जहां क्यू. कि. ग्रा./ घंटा में एस ओ_. की विसर्जन दर है और एच मीटरों में स्टैक की अंबाई है।

वाष्य उत्पादन क्षमता:

-2 टन/घंटा से कम

भ्रासपास की इमारतों की ऊंचाई का 2.1/2 गुना या 9 मीटर (जो भी भ्रायक है)

-- 2 टन /घंटा से श्रधिक 5 टन/ घंटा सक

12

 5 टम/घंटा से श्रधिक 10 टन/ घंटा सक

15

- 10 टन/घंटा से श्रधिक

18

 15 टन/घंटा से ग्रिधिक 20टन/ घंटा तक

21

1 2	3	4
	- 20 टन घंटा से प्रधिक 25 टन/	
	घेटा तक	24
	⊶ 2.5 टन/घंटा से अग्रधिक 3.0 टन घंटा तक	27
	– 30 टन/घंटा से भ धिक	30 या एच ⇒ 14 (क्यू) 0.3 फार्मूला का प्रयोग करते हुए (जो भी ग्राधिक हों) जहां क्यू के.गा./जंटा एच ओ₂ की उत्सर्जन दर है अंतर एच मीटरों में स्टैक को उत्सर्ज है
. छोटे बायलर बायलर की क्षम ती	उत्सर्जन ^६ कणिकीय पदार्थ	
- 2 टन/बंटा से कम		1600
- 2 टन से कम 15 टन/यंटा		1200
— 15 टन/घंटा से प्रधिक		150
	fv	
. तेल परिकरणी मल्कर डाइग्रावसाइ३	जस्तर्जन* श्रासवन	भरण का 0.25 कि. जी./एम. टी
	(बाथुमजलाय पन मित्रात)	
	(बायुमंजलीय पन निर्कात) – उत्प्रेरकी भंजक	भरण का 2.5 किटी/एम. टी.
	· -	
	– उत्प्रेरकी भंजक	भरण में सल्फर का 120 कि गा./एम. टी.
	– उत्प्रेरकी भंजक – सल्फर पुन प्राप्ति एक <i>रु</i>	भरण में सल्फर का 120 कि गा./एम. टी.
. ऐलुमिनियम संपंत	उत्प्रेरकी भंजक सल्फर पुन प्राप्ति एक ह अथा के भाग के लिए भरणको उपदर्शित क	भरण में सल्फर का 120 कि गा./एम टी
	 उत्प्रेरकी भंजक सल्फर पुन प्राप्ति एक क क्या के भाग के लिए भरण को उपदर्शित कः उत्सर्जन 	भरण में सल्फर का 120 कि. गा./एम.टी.
. ऐलुमिनियम संपं ल (क) ऐलुमिनिया गंयंत	 उत्प्रेरकी भंजक सर्कर पुन प्राप्ति एक क क्या के भाग के लिए भरण को उपदर्शित क उत्सर्जन प्राथमिक और दितीक कणिकीय पदार्थ 	भरण में सल्फर का 120 कि गा./एम. टी. 150 250 1 प्रतिशत अधिकतम H = 14 (क्यू) 0.3 जहां क्यू. कि. गा./घंटा
 ऐलुमिनियम संयंत (क) ऐलुमिनिया ांयंत (1) कच्की सामग्री की उठाई-धर (2) वर्षण क्षेत्र - निस्तापन 	 उत्प्रेरकी भंजक सल्फर पुन प्राप्ति एक ह असर्गन उत्सर्जन प्राथमिक और द्वितीक कणिकीय पदार्थ विलत्न कणिकीय पदार्थ कार्यन सोता क्साइड 	भरण में सल्फर का 120 कि. ग्रा./एम. टी. 150 250 1 प्रतिशत ग्राधिकतम H = 14 (क्यू) 0.3 जहां क्यू. कि. ग्रा./बंटा में एक औ2 की उत्सर्जनदर से और एच स्टैक
. ऐलुमिनियम संयं ल (क) ऐलुमिनिया नंयंत्र (1) क च्की सामग्री की उठाई-धर	 उत्प्रेरकी भंजक सल्फर पुन प्राप्ति एक ह असर्गन उत्सर्गन प्राथमिक और द्वितीक कणिकीय पदार्थ विलत्न कणिकीय पदार्थ कार्यन मोना क्साइड स्टेक ऊंचाई 	भरण में सल्फर का 120 कि. ग्रा./एम. टी. 150 250 1 प्रतिशत ग्राधिकतम H = 14 (क्यू) 0.3 जहां क्यू. कि. ग्रा./बंटा में एक औ2 की उत्सर्जनदर से और एच स्टैक

1 2 3

(3) पात्रकका

कणिकीय पदार्थ कुल फ्लोराइड (एफ) की एस एस एच एस एस पी बी एस डब्ल्यू पी बी सी डक्ल्यू स्टैक ऊंचाई 150

उत्पादित एलुमिनियम का 4.7 कि. था./एम टी उत्पादित ऐलुमिनियम का 6.0 कि. था. एमटी उत्पादित एलुमिनियम का 2.5 कि ग्रा/एमटी उत्पादित ऐलुमिनियम का 1.0 कि ग्रा/एमटी एव ⇒ 14 (नपू)0.3 जहां नपू किया/ घंटा में एस औ₂ की उत्यानि दर है और एच मीटरों में स्टैक की ऊधाई है।

टिप्पण

बीएस एस == कथ्यांघर स्टब्ड साडरवर्ग एचएस एग == कौतिज स्टब्ड साडरवर्ग पीबीएस डब्स्यू == भर्जम पूर्वसाइड चालित पीबीसी डब्स्यू == भर्जम पूर्वकेन्द्र चालित

37. पत्थर बलम एकक

विलंबित कणिकीय पदार्थ (एस पी एम) मानकों के दो भाग हैं

- (1) निम्नलिखित प्रदूषण नियंक्षण उपायी का कायन्त्रियन :
 - (क) उपस्कर के लिए ध्रुल संरोबन और लुप्तागला प्रणाली।
 - (ख) बात-रोधा बीबारी का सनिर्माण।
 - (ग) परिसर के भीतर पत्रकी सङ्कों का निर्माण।
 - (घ) परिसर के भीतर भूमि को नियमित रूप से साफ करना और गीला करना।
 - (इ.) सीमा रेखा के साथ साथ हरित पटटी की व्यवस्था करना।
 - (2) एस पी एम के लिए मालात्मक मानक: किसी नियंक्षित एकल स्थान से तथा प्रनेक एककों के बीच स्थित किसी एकक से चालीस मीटर की दूरी पर निलंबित कणिकीय पदार्थ अंग मूल्य 600 एम औ/एम एम रें कम होना चाहिए मांपन धर्ष के सभी 12 महीनों में कम से कम दो बार किया जाना चाहिए।

क. सं. उद्योग	पैरामीटर	मानक (संकेन्द्रण एम औ/एल में, पी एच, तापमान, धिनिर्दिण्ट नासक, जीवमार और जैंव श्रमापन जांच की छोड़कर)
1 2	3	4
38. पेट्रोरसायन मूल श्रौर मध्य	बहिस्राव पी एच ^४ बीओडी (पर 20 ⁸ सी 5 दिनों पर)	6.58.5 50
	** फिनोल	5
	शल्फाष्टस एस के रूप में	2
	सी ओ डी	250
	साइनाइड सी एन के रूप म	0 . 2
	*** पलोरा इड एक के रूप में	15
	कुल निसं <mark>बित पिड</mark> हैक्सा बेलें ट फोमियम	1000
,	सी ब्रार के रूप में	0.1
	क्षक्ष कुल क्रोमियम (सीग्रारके रूप में)	2.0

^{*} राज्य बोर्ड 30 एम जी/एल का बीओ डी मूल्य विहित और सकते है, यदि प्रतिप्राह् यता प्रणाली ऐसी मांग करती है।

**** कुल और हैक्सवलैंट क्रोमियम की सीमाओं को क्रोमट निकासी एकक के निर्गम पर समवित्यासन किया जाएगा इसमें यह विवक्षित है कि अंतिम रूप से अभिक्रियित वहिः स्राय में कुल हेक्सविलैंट क्रोमियम इस में बिहित से गम होगा ।

39. भैषजिक बिनिर्माण और सूत्रण	बहि:स्राय	
उद्योग	1. पी एच	5.5-9.0
	2. तेल और ग्रीस	10
	3 . कुल निलं बित पिष्ट	100
	4. बी श्री ढी (पर 20 सी 5 विनों पर)	30
	5. जैव ग्र मापन जांच	100% बहिःसात में 96 घटों के पश्चात् मछलियों का 90% जीवित रहना।
	 पारद 	0.01

^{**} फिलोल के लिए सीमा का फिलोल पंग्रंख की उत्सर्जन प्रसिक्षिया के निर्धम पर समिबन्यासन किया जाएगः परन्तु अधिय भ्ययन बिन्दु पर सीमा एमजी/एल से कम होगी ।

^{***} पत्नोराष्ट्रं की सीमा का पत्नोराष्ट्रं निकासी एकक के निर्मेग पर समित्रन्याक्षन किया जाएगा परन्तु व्ययन विन्त्रु पर क्षी-राष्ट्रं सकेंद्रण 5 एमजी/एल से कम होगा।

1	2	3	4
		7. घ्रासेंनिक	0.20
		 क्रोमियम (हैक्सामेलैंट) 	0.10
		9. मीसा	0.10
		10. सायनाइड	0.10
		11. फिनोलिक (सी ₆ एच ₅ ओ एच के रूप में)	1.00
		12 सल्फाइडस एस के रूप में	2,00
		1 अ परार्षेटस पी के रूप में	5.00

हिप्पण :

6

- 1 से 13 कम संख्या के रूप में यूचीबढ़ पैरामीटर गूनकों के लिए ग्रानिवार्य है। परन्तु ग्रेप पैरामीटर (6 में 13 तक) प्रन्य के लिए बैकाल्यक होंगे ।
- 2. राज्य बोर्ड बी ओ डी सीमा से सहसंबंधित रासायनिक आक्सीजन मांग के लिए सीमा विहित कर मंकेगा ।
- राज्यबोर्ड कृत विलीन पिंडों के लिए सीमा विहित कर सकेगा किन्तु यह प्रतिशास्त्र जन राणि के उपयोगों पर निर्नर करेगा ।
- 4. सीमाओं का, कारखाना की सीमाओं के बाहर भेजने से पूर्व प्रभिक्रिया एकक टर्मिनल पर प्रनुपालन किया आएगा।
- 5. सीमाओं के अनुपालन के लिए, 8 बंटे तक प्रत्येक बंटे में संप्रहीत संयुक्त नम्ते का विकलेपण किया जाएगा ।

40. नारामः जीवमार। बनिर्माण ग्रीर	बहि:स्नाव	•
सूत्रण उद्योग	1. तापमान	प्रतिप्रहीत जात तायमान से ऊपर 5 ² भी से अधिक नहीं होगा ।
	2. पी एच	6.5-8.5
	3. नेल और ग्रीम	10
	4. चौ औ औ	39
	(पर 20 $^\circ$ सी 5 दिनों पर)	
	 कुल निलंबित पिंड 	100
	 जैब-ग्रमापन जांच 	100% बहि : लाव में 96 यंटे के पण्यात् मछलियों का 90% जीवित रहना।
	7. (क) विनिधिष्ट नाशक जीवमारः	
	बेर्जान हैक्साक्लोराइड	10
	कार्बोरिल	10
	डी डी टी	10
	एन्डोसल्फन	10
	डामैथोट	150
	फॅनिट् <u>रो</u> थायान	10

1	2	3	4
	मैं ल		10
	कोर्	रे ह	10
	में थि	गल पैराथायःत	10
	फ़ैस	पोट	10
	प"छ्	रधम	10
	काप	ार भाक्सिक्लोर।इड	9600
	रहा प	ार मन्फोट	50
	<u> সি</u> দ	भ	1000
	भूलप	हर	30
	पैरा	क्वैट	23000
	प्रोप	ा निल	7300
	ना	'इट्रोजन	780
	(ख) भारी धातु :	
		तोबा	1.00
		में गनीज	1.00
		जिक	1.00
		पारद	0.01
		टिन	0.10
	7	कोई श्रन्य धातु जैस निकैल श्रादि	बी ग्राई एस के पेयजल मानकों के 5 गुना से श्रनधिक
	(ग)) कार्बनिक :	1.0
	फीनाल अ	ौर फीनोलिक	
		, एच₅ओ एचको रूपमें	
	(ঘ) ग्रकार्बनिक :	
	,	्र ग्रार्सेनिक एस के रूप में	0.2
		मायनाइड सीएन के रूप में	0.2
		नाइट्रेट एन ओ _उ के रूप में	50.0
		फास्फेट पी के रूप में	5,0

टिप्पण

- 1. सीमाओं का किसी तनुकरण से पूर्व ग्राभिकिया संयंत्र अंतिम सिरे पर ग्रन्पालन किया जाना चाहिए ।
- 2. जैब-म्राम।पन जांच ग्रिनिग्राही जल में मछली की उपलब्ध स्पीसीज द्वारा की जानी चाहिए।
- 3. राज्य बोर्ड कुल विलीन पिंड (टीडी एस) मरूफेंट और क्लोराइड की सीमाएं विहित कर सकेंगे परन्तु यह श्रभिग्राही जलराणि के उपयोग पर निर्भर करेगा ।
- 4. राज्य बोर्ड बीओ डी सीमा से सहसंबंधित सीओ डी सीमा विहित कर सकेगा ।
- 5. नाशक जीवमार के बारों में यह ज्ञात है जिनमें भोटाबोलाईट और आइसोमर होते हैं । यदि वो सार्थक मकेन्द्रण में पाए जाने हैं तो केन्द्रीय या राज्य बोर्ड उनके लिए, जो सूचीबङ है, मान विहित कर सकेंगे ।
- 6. उद्योगों से यह अपेक्षा की जाती है कि वे अपिशष्ट जल में नाशक जीव मार का उच्च विश्लेंबक पत्रतियों जैसें जी एक सी/एच पी एल सी द्वारा विश्लेषण करें।
- 7. सभी पैरा मीटर सुत्रकों के लिए श्रनिवार्य होंगे किन्तु श्रन्य के लिए मातवा पैरा मीटर वैकिप्क होगा ।

1	2	3	4	
41.	हैं भरी	बहि: आ ध		
	(प्राथमिक यभिक्तिया के पण्चात्) व्ययन : चैनत्र/निलका जो अप- णिष्ट जल को दितीयक यभि- किया संयंत तक ने जाए।			
	टैनरी के प्रकार			
	क्रोम टैनरीज/संयुक्त क्रोम श्रौर जनसमित टैनरीक एम एम	पीएच	6.5-9.0 600 से श्रनधिक	
		स्रक्षिप्रिया के पण्चात् कोम जल सम्मिण्ड सस्ति। में क्रोमियक संकेन्द्रण	4 5	
	—वनस्पति टैनरीज	पी एच एस एम	6.5-8.5 600 से भनधिक	

टिप्पण :उगरोक्त मानक उन टैनरी एककों को लागू होंगे जिन्होंने ऐसे मामान्य बहि:स्राव ग्रभिकिया संयंत्र (सी ई टीपी) में जिनमें दितीयक ग्रभिकिया सम्मिलित है, पूर्ण ग्रभिदाय किया है जिन्होंने कोई ग्रभिदाय नहीं किया है वे इससे पहली भ्रधिसूचना संख्या का ग्रा 42, तारीख 18 जनवरी, 1988 द्वारा गामित होंगे।

42. पेंट उद्योग	बहि:साः।	
(ग्रपशिष्ट जल विसर्जन)	पी ^{ल्} च	6.0-8.5
	निलंबित पिंड	100
	बी श्रो डी., 20° सी	50
	फिसो लिको	
	मीं एच, ग्रो एच के रूप में	. 1., 0
	सेल ग्रौर ग्रीम	10.00
	जैय श्रामापन जांच	96 घंटों में 90% जीविता
	मीमा पी बी के रूप में	0.1
	कोमियम सी स्नार के रूप में	
	हैश्सावैलेंट	0.1
	कुल	2 0
	शोबासीयृको रूप में	2.0
	निकील एन ऋगई के रूप में	2.0
	जिंक जेंड एन के रूप में	5.0
	कुल भारी धातुएं	7.0
43. श्रकाबीनिक रसायनिक उद्योग	वहि.स्राय	
(ग्रपणिष्ट जल विसर्जन)	पीए च	6.0-8.5
भाग । (क्रोमियम,	कोमियम सी भ्रार के रूप में	
मैगनीज, निकैल	हैक् मावेलेंट	0.1
तांबा, जिक, कैडमियम,	<u>কু</u> ল	2 0
मीमा ग्रीर पारद के धानुमिक	प्र) मैंगनीज एम एन के रूप में	2.0

1 2	3	4
	निकैल एन बाई के कप में	2.0
	तांबासी यूके रूप में	2.0
	जिंक जैड एन के रूप में	5.0
	भैडमियम सीडी के रूप में	0.2
	सीपीकी के रूप में	0.1
	पार व एच जी के र ूप में	0.01
	सायनाइड सी एन के रूप में	0.2
	तेल भौर ग्रीस	10.0
	निलंबित पिंड	30.0
उपरोक्त के श्रतिरिक्त कु	ल भारी घातु 7 एम जी/एल तक सीमित होंगे ।	
14. बु लियन परिष्करण	बहिस्राव	
(श्रपशिष्ट जल वसर्जन)	पीपव	6.5-8.5
	सायनाइड सी एन के रूप में	0.2
	सल्फाइड एस के रूप में	0.2
	नाइट्रेट	10.0
	मुक्तसीएल₂सी एल के रूप में	1.0
	जिंक जैंड एन के रूप में	5.0
	तांबा सी यूके रूप में	2.0
	निकौल एन भाई के रूप में	2.0
	प्रार्सेनिक ए एस के स प में	0.1
	कैडमियम सी डी के रूप में	0.2
	तेल भौर ग्रीस	10.0
	निलंबित पिंड	100
 रंजक ग्रीर रंजक 	बहि:स्राव	
मध्यक उद्योग	पीएष	6,5-8.5
(ग्रंपशिष्ट जल वसर्जन)	रंग एजन हैकक	400
	निलंबित पिड	100
	बीक्रोडी₃ 20° सी	100
	तेल भौर गी स	10
	फीनालिक सी _ठ ्रच₃	1.0
	ग्रो एच के रूप में	
	कैडमियम सी डी के रूप में	0.2
	तांबासी यूके रूप में	2.0
	मैगनीज एम एन के रूप में	2.0
	सीपीबीकेरूप में	0.1

1 2	3	4
	पारद एचजी के रूप में	0.01
	निकैल एन ग्राई के रूप में	2.0
	जिंक जेड एन के रूप में	5.0
	कोमियम सी श्रार के रूप में	
	हैक्सावेलैंट	0 . 1
	দু ন্দ	2 0
	जैव भ्रामापन जोच	96 घंडों में 90 प्रतियात जीवि ता
प्रवर्ग		मानक डी यी (ए)
(क) भोद्दर मार्डा (ख) यात्री कार	किल, स्क <mark>ृदर श्रौर तिपा</mark> हिया	8 0 8 2
(ख) यात्री कार (ग) 4 एमटी त (घ) 4 एमटी	: क के या यात्री वाणिज्यिक यान मे झिंधक श्रीर 12 एम टी 1फ के याद्री या वाणिज्यिक यान	82 85 89
(ख) यात्री कार (ग) 4 एमटी त (घ) 4 एमटी (इ) 12 एमटी	क के या यादी वाणिज्यिक यान	82
(ख) यात्री कार (ग) 4 एमटी त (घ) 4 एमटी (इ) 12 एमटी	ं क के या यात्री वाणिज्यिक यान मे ग्रिधिक श्रीर 12 एम टी 1फ के यात्री या वाणिज्यिक यान से ग्रिधिक के यात्री या वाणिज्यिक यान	82 85 89
 (ख) यात्री कार (ग) 4 एमटी त (घ) 4 एमटी (इ) 12 एमटी 7. विनिर्माण प्रक्रम 	क के या यात्री वाणिज्यिक यान से द्यधिक श्रीर 12 एम टी १४ के यात्री या वाणिज्यिक यान से श्रिधिक के यात्री या वाणिज्यिक यान पर घरेलू साधिक श्रीर संनिर्माण उपस्कर	82 85 89
 (ख) यात्री कार (ग) 4 एमटी त (घ) 4 एमटी (इ) 12 एमटी 7. विनिर्माण प्रक्रम 	क के या यात्री वाणिज्यिक यान से द्यिक श्रीर 12 एम टी तक के यात्री या वाणिज्यिक यान से श्रीधिक के यात्री या वाणिज्यिक यान पर घरेलू साधिक श्रीर संनिर्माण उपस्कर (वर्ष 1993 तक प्राप्य) 1.5 टन तक के खिड़की बातानुकलक	82 85 89 91
 (ख) यात्री कार (ग) 4 एमटी त (घ) 4 एमटी (इ) 12 एमटी 7. विनिर्माण प्रकम (क) एकटन से 1 	क के या यात्री वाणिज्यिक यान से द्यिक श्रीर 12 एम टी तक के यात्री या वाणिज्यिक यान से श्रीधिक के यात्री या वाणिज्यिक यान पर घरेलू साधिक श्रीर संनिर्माण उपस्कर (वर्ष 1993 तक प्राप्य) 1.5 टन तक के खिड़की बातानुकलक	82 85 89 91
(ख) यात्री कार (ग) 4 एमटी त (घ) 4 एमटी त (इ) 12 एमटी 7. विनिर्माण प्रकम (क) एक टन से । (ख) वायु शीतिल	क के या यात्री वाणिज्यिक यान से द्यिक श्रीर 12 एम टी तक के यात्री या वाणिज्यिक यान से श्रीधिक के यात्री या वाणिज्यिक यान पर घरेलू साधिक श्रीर संनिर्माण उपस्कर (वर्ष 1993 तक प्राप्य) 1.5 टन तक के खिड़की बातानुकलक	82 85 89 91 68 60

[संख्या नय् . 15013/2/89-सीपीडब्ल्यू) गुकुल सावल, संयुक्त सचिव

पाद टिप्पण

मूल नियम का.घा. सं. 844(घ्र), तारीख 10 नवस्वर, 1986 द्वारा प्रकाशित किने गो थे। संगोधन कारी नियम का.घा. सं. 82(घ्र), तारीख 16 फरवरी, 1987; का.घा. सं. 393(घ्र), तारीख 16 अप्रैल, 1987; की.घा. सं. 443 (घ्र) तारीख 28 प्रप्रैल, 1987; का. घा. सं. 64(घ्र), तारीख 18 जनवरी, 1988; सा.का.नि. सं. 919(घ्र) तारीख 12 सितस्बर, 1988; का.घा. सं. 8(घ्र), तारीख 3 जनवरी, 1989; सा.का. नि. सं. 913(घ्र), तारीख 24 प्रक्तूबर, 1989; का. था. सं. 114 (अ), तारीख 24 अक्तूबर, 1969 सा.का. न. सं. 1063 (घ्र), तारीख 26 दिसम्बर, 1989; का.घा. सं. 12(घ्र) तारीख 8 जनवरी, 1990; ग्रौरसा. का. सा.का. नि. सं. 54(घ्र) तारीख 5 फरवरी, 1990 दारा अकाणित किये गर्य थे।

MINISTRY OF ENVIRONMENT & FORESTS

(Department of Environment, Forests & Wildlife)

NOTIFICATION

New Delhi, the 30th Aug., 1990

- G.S.R. 742(E):—In exercise of the powers conferred by Section 25 of the Environment (Protection) Act. 1986 (29 of 1986), the Central Government hereby makes the following rules further to amend the Environment (Protection) Rules, 1986, namely:—
 - 1. (1) These rules may be called the Environment (Protection) Third Amendment Rules, 1990.
 - (2) They shall come into force on the date of their publication in the Official Gazette.
- 2. In schedule I to the Environment (Protection) Rules, 1986, after serial number 31 and the entries relating thereto the following serial numbers and entries shall be inserted, namely:—

SI. No.	In đ ustry	Parameters	Stan d ar d s (mg/Nm³)
1	2	3	4
32.	FOUNDRIES: (a) Cupola Capacity (Melting rate)	EMISSIONS	
	Less than 3 MT/hr 3 MT/hr and above	Particulate matter -d o-	450 150
Note		<u>-</u>	beyond the charging door and the emissi- atleast six times the diameter of cupola.
	(b) Arc Furnaces Capacity: All sizes	Particulate matter	150
((e) Induction Furnaces Capacity: All sizes	-do-	150

Note:—In respect of Arc Furnaces and Induction Furnaces provision has to be made for collecting the furnes before discharging the emissions through the stack.

33. THERMAL POWER PLANTS STACK HEIGHT/LIMITS

Power generation Capacity: -- 500 MW and above 275 -- 200 MW/210 MW and above to less than 500 MW 220

- Less than 200 MW/210 MW H-14(Q)^{0.3} where Q is emission rate of SO₂ in kg/h. and HiStack height in meters

Steam generating Capacity:

- Loss than 2 ton/hr 2½ times the

building height or 9 meters (whichever is more).

neighbouring

1 2	3	4
	- More than 2 ton/hr	
	to 5 ton/hr	12
	— More than 5 ton/hr to 10 ton/hr	15
	More than 10 ton/hr	18
	- More than 15 ton/hr to	10
	20 ton/hr	15
	More than 20 ton/hr to 25 ton/hr	24
	- More than 25 ton/hr to	_
	30 ton/hr	27
	— More than 30 ton/hr	30 or using formula H=14(Q) ^{0.3}
		(whichever is more) where Q is emission rate of SO ₂ in kg/hr and H-Stack height in meters.
4. SMALL BOILERS	EMISSIONS*	
Capacity of Boiler	Particulate matter	
— Less than 2 ton/hi	г	1600
- 2 to 15 ton/hr		1200
— More than 15 ton,	/hr	150
*All emissions nor	malized to 12 percent carbondioxide	
the transfer at a	manzoa to 12 percent carbonatoxiae	
. OIL REFINERIES	EMISSIONS*	
	EMISSIONS* — Distillation	0.25 kg/MT of feed*
. OIL REFINERIES	EMISSIONS*	0.25 kg/MT of feed* 2.5 kg/ MT of feed 120 kg/ MT of Sulphur in the feed
OIL REFINERIES (Sulphur dioxide)	EMISSIONS* — Distillation (Atmospheric plus Vaccum) — Catalytic Cracker — Sulphur Recovery Unit	2.5 kg/MT of feed 120 kg/MT of Sulphur in the feed
OIL REFINERIES (Sulphur dioxide)	EMISSIONS* — Distillation (Atmospheric plus Vaccum) — Catalytic Cracker — Sulphur Recovery Unit end for that part of the process under consistency.	2.5 kg/MT of feed 120 kg/MT of Sulphur in the feed
Feed indicates the fe	EMISSIONS — Distillation (Atmospheric plus Vaccum) — Catalytic Cracker — Sulphur Recovery Unit end for that part of the process under consistency. EMISSIONS	2.5 kg/MT of feed 120 kg/MT of Sulphur in the feed
Feed indicates the fe 6. ALUMINIUM PLAI (a) Alumina Plant: (i) Raw Materia Handling (ii) Recipitation	EMISSIONS — Distillation (Atmospheric plus Vaccum) — Catalytic Cracker — Sulphur Recovery Unit ed for that part of the process under consisted for that part of the process under consistency and Secondary Crusher Particulate Matter Area	2.5 kg/ MT of feed 120 kg/ MT of Sulphur in the feed ideration only.
Feed indicates the fe 6. ALUMINIUM PLAI (a) Alumina Plant: (i) Raw Materia Handling	EMISSIONS — Distillation (Atmospheric plus Vaccum) — Catalytic Cracker — Sulphur Recovery Unit ed for that part of the process under consisted for that part of the process under consistency and Secondary Crusher Particulate Matter Area	2.5 kg/ MT of feed 120 kg/ MT of Sulphur in the feed ideration only. 150
Feed indicates the fe 6. ALUMINIUM PLAI (a) Alumina Plant: (i) Raw Materia Handling (ii) Recipitation	EMISSIONS — Distillation (Atmospheric plus Vaccum) — Catalytic Cracker — Sulphur Recovery Unit ed for that part of the process under consisted for that part of the process under consistency and Secondary Crusher Particulate Matter Area Particulate Matter	2.5 kg/ MT of feed 120 kg/ MT of Sulphur in the feed ideration only. 150 250 1% max. H=14(Q) ^{0.3}
Feed indicates the fe 6. ALUMINIUM PLAI (a) Alumina Plant: (i) Raw Materia Handling (ii) Recipitation	EMISSIONS — Distillation (Atmospheric plus Vaccum) — Catalytic Cracker — Sulphur Recovery Unit end for that part of the process under consisted for the process under consisted for the process under consisted for the process under consistence for the process under c	2.5 kg/ MT of feed 120 kg/ MT of Sulphur in the feed ideration only. 150 250 1% max. H=14(Q) ^{0.3} where Q is emission rate of SO ₂ in kg/hr and H-Stack
Feed indicates the fe 6. ALUMINIUM PLAI (a) Alumina Plant: (i) Raw Materia Handling (ii) Precipitation Calcination	EMISSIONS — Distillation (Atmospheric plus Vaccum) — Catalytic Cracker — Sulphur Recovery Unit end for that part of the process under consisted for that part of the process under consistence for the process un	2.5 kg/ MT of feed 120 kg/ MT of Sulphur in the feed ideration only. 150 250 1% max. H=14(Q) ^{0.3} where Q is emission rate of
Feed indicates the fe 6. ALUMINIUM PLAI (a) Alumina Plant: (i) Raw Materia Handling (ii) Recipitation	EMISSIONS — Distillation (Atmospheric plus Vaccum) — Catalytic Cracker — Sulphur Recovery Unit ed for that part of the process under consints: EMISSIONS Il Primary and Secondary Crusher Particulate Matter Area On Particulate Matter Carbon Monoxide Stack height	2.5 kg/ MT of feed 120 kg/ MT of Sulphur in the feed ideration only. 150 250 1% max. H=14(Q) ^{0.3} where Q is emission rate of SO ₂ in kg/hr and H-Stack
Feed indicates the fe 6. ALUMINIUM PLAI (a) Alumina Plant: (i) Raw Materia Handling (ii) Precipitation Calcination	EMISSIONS — Distillation (Atmospheric plus Vaccum) — Catalytic Cracker — Sulphur Recovery Unit end for that part of the process under consistence. NTS: EMISSIONS Il Primary and Secondary Crusher Particulate Matter Area On Particulate Matter Carbon Monoxide Stack height Particulate matter Shop -do-	2.5 kg/ MT of feed 120 kg/ MT of Sulphur in the feed ideration only. 150 250 1% max. H=14(Q) ^{0.3} where Q is emission rate of SO ₂ in kg/hr and H-Stack height in meters.

	SCHEDULE—(Contd.)	<u></u>
(iii) Potroom	Particulate Matter Total Flouroide (F)	150
	VSS	4.7 kg/MT of Aluminium produced
	HSS	6.0 Kg/MT of Aluminium produced.
	PBSW	2.5 Kg/MT of Aluminium produced
	PBCW	1.0 Kg/MT of Aluminium produced.
NOTE ·	Stack height	$H=14(Q)^{0.8}$ where Q is emission rate of SO_2 in kg/hr and H—Stack height in meters.

NOIE:

VSS=VERTICAL STUD SODERBERG HSS = HORIZONTAL STUD SODERBERG PBSW=PREBACKED SIDE WORKED PBCW=PREBACKED CENTRE WORKED

37. STONE CRUSHING UNIT Suspended particulate matter (SPM)

The standards consist of two parts:

- (i) Implementation of the following pollution Control measures :
- (a) Dust containment cum suppression system for the equipment.
- (b) Construction of wind breaking walls.
- (c) Construction of the metalled roads within the premises.
- (d) Regular cleaning and wetting of the ground within the premises.
- (e) Growing of a green belt along the periphery.
- (fi) Quantitative standard for the SPM:

The suspended particulate matter contribution value at a distance of 40 meters from a controlled isolated as well as from a unit located in a cluster should be less than 600 mg/Nm⁸. The measurements are to be conducted at least twice a month for all the 12 months in a year.

Sl. In No.	ndustry	Parameter	Standards (concentrations in mg/l except for pH temperature specific pesticides and Bioassay test)
1	2	3	4
38. PE	TROCHEMICALS	EFFLUENTS	
()	Basic & intermediates)	pН	6.58.5
		*BOD	50
		(5 days at 20°C)	
		**Phenol	5
		Sulphide (as S)	2
		COD	250
		Cyanide (as CN)	0.2
		***Fluoride (as F)	15
		Total Suspended solids	1000
		Hexavalent	0.1
		Chromium (as CR)	
		****Total Chromium (as CR)	2.0

- * State Boards may prescribe the BOD value of 30 mg/l if the recepient system so demands.
- ** The limit for phenol shall be conformed to at the outlet of effluent treatment of phenol plant. However, at the final disposal point, the limit shall be less than 1 mg/1.
- *** The limit for fluoride shall be conformed to at the outlet of fluoride removal unit. However, at the disposal point fluoride concentration shall be lower than 5 mg/1.
- **** The limits for total and hexavalent chromium shall be conformed to at the outlet of the chromate removal unit. This implies that in the final treated effluent, total and hexavalent chromium shall be lower than prescribed herein.

39.	PHARMACEUTICAL MANUFACTURING AND		EFFLUENTS	
	FORMULATION INDUSTRY	1.	pН	5.5-9.0
		2.	Oil & Grease	10
		3.	Total Suspended Solids	100
		4.	BOD (5 days at 20°C)	30
		5.	Bio -assay test	90% Survival of fish after 96 hrs in 100% effluent.
		6.	Mercury	0.01
		7.	Arsenic	0.20
		8.	Chromium (Hexavalent)	0.10
		9.	Lead	0.10
	1	١٥.	Cyanide	0.10
		11.	Phenolics (as C. H. OH)	1.00

1	2	3
	12. Sulphides (as S)	2.00
	13. Phosphates (as P)	5.00

Note: __

- 1. Parameters listed as 1 to 13 are compulsory for Formulators. However, the remaining parameters (6 to 13) will be optional for others.
- 2. State Board may prescribed limit for chemical oxygen demand (COD) correlated with BOD limit.
- 3. State Board may prescribe limit for total dissolved solids depending upon uses of recipient water body.
- 4. Limits should be complied with at the terminal of the treatment unit before letting out of the factory boundary limits.
- 5. For the compliance of limits, analysis should be done in the composite sample collected every hour for a period of 8 hours.

Nitrogen

40. PESTICIDE MANUFAC-TURING AND FORMULA TION INDUSTRY

)- J L.A-		FLUENTS	
	1.	Temperature	Shall not exceed 5°C above the receiving water temperature.
	2.	pH	6.58.5
	3.	Oil & Grease	10
	4.	BOD (5 days at 20°C)	30
	5.	Total suspended solids	100
	6.	Bio-assay test	90% survival of fish after 96 hours in 100% effluent.
	7.	(a) Specific Pesticides: Benzenl hexachloride Carboryl DDT Endosulfan Diamethoate Fenitrothion Malathion Phorate Methyl Parathlon Phenthoate Pyrethrums	10 10 10 10 450 10 10 10
		Copper Oxychloride	9600
		Copper Sulphate	50
		Ziram	1000
		Sulphur	30
		Paraquat	2300
		Proponil	7300

780

1	2		3	4	·
		(b)	Heavy Metals:		
		ŕ	Copper	1.00	
			Manganese	1.00	
			Zinc	1.00	
			Mercury	0.01	
			Tin	0.10	
			Any other metal like Nickel,	Shall not	exceed 5 times the
			eto.	drinking	water standards of
				BIS.	
		(c)	Organics:		
		, ,	Phenol and phenolic com-		
			pounds as C ₆ H ₅ OH	1,0	
		(d)	Inorganics	•	
		()	Arsenics (as As)	0.2	
			Cyanide (as CN)	0.2	
			Nitrate (as NO ₈)	50.0	
			Phosphate (as P)	5.0	

NOTE :-

- 1. Limits should be complied with at the end of the treatment plant before any dilution.
- 2. Bio-assay test should be carried out with available species of fish in receiving water.
- 3. State Boards may prescribe limits of total dissolved solids (TDS) sulphates and chlorides depending on the uses of recipient water body.
- 4. State Board may prescribe COD limit correlated with BOD limit.
- 5. Pesticides are known to have metabolites and isomers. If they are found in significant concentration, standards may be prescribed for those in the list by Central or State Board.
- 6. Industries are required to analyse pesticides in waste water by advanced analytical method such as GLC/HPLC.
- 7. All the parameters will be compulsory for formulators, for others, the 7th will be optional.

41. TANNERY (after primary treatment) Disposal: Channel/Conduit Carrying waste waters to Secondary treatment plants	EFFLUENTS	
Type of Tanneries — Chrome tanneries/combined chrome & vegetable tanneries	pH SS	6.5-9.0 Not to exceed 600
	Chromium concentration after treatment in the chrome waste water stream	45
- Vegetable tanneries	pH SS	6.5—9.0 Not to exceed 600

Note: The above standards will apply to those tannery units which have made full contribution to a Common Effluent Treatment Plant (CETP) comprising secondary treatment. Those who have not contributed will be governed by earlier Notification No. S.O. 42, dated January, 18, 1988.

August	1	2	3		4
Suspended Solids 100 BOD3, 20°C 50 Phenolics as C ₃ H ₂ OH 1.0 Oil & Grease 10.0 Bio-assay test 90% survival in 96 hours Lead as Pb 0.1 Chromium as Cr Hexavalent 0.1 Total 2.0 Copper as Cu 2.0 Nickal as Ni 2.0 Zinc as Zn 5.0 Total heavy metals 7.0 All JINORGANIC CHEMICAL INDUSTRY Waste Water discharge Part I (metal compounds of Chromium, Manganese, Nickel. Copper, Zinc, Cadmium, Lead and Merctiry Chromium as Cr Hexavalent 0.1 Total 2.0 Manganese as Mn 2.0 Manganese as Mn 2.0 Manganese as Nn 2.0 Nickel as Ni 2.0 Copper as Cu 2.0 Zinc as Zn 5.0 Cadmium as Cd 0.2 Lead as Pb 0.1 Mercury as HG 0.0 Cyanide as CN 0.2 Cyanide as CN 0.2 Cyanide as CN 0.2 Oil & Grease 10.0 Suspended Solids 30.0 In addition to the above, total heavy metals are to be limited to Free Cl ₃ as Cl 1.0 Zinc as Zn 5.0 Cyanide as CN 0.2 Sulphide as S 0.2 Nitrate as N 0.0 Free Cl ₃ as Cl 1.0 Zinc as Zn 5.0 Cyanide as CN 0.2 Sulphide as S 0.2 Nitrate as N 0.0 Free Cl ₃ as Cl 1.0 Zinc as Zn 5.0 Copper as Cu 2.0 Nickel as Ni 2.0 Copper as Cu 2.0	42.	PAINT INDUSTRY	EFFLUENTS		
Solids 100 800 20 C 50 Phenolics as C ₈ H ₃ OH 1.0 Oil & Grease 10.0 Bio-assay test 20.0 Chromium as Cr Hexavalent Total 2.0 Copper as Cu Zinc as Zn 5.0 Chromium, Manganese, Nickel, Copper, Zinc, Cadmium, Lead and Mercury) Chromium as Cr Chromium, Manganese as Mn 2.0 Chromium, Manganese as Mn 2.0 Chromium, Manganese as Mn 2.0 Copper as Cu 2.0 Chromium, Manganese as Mn 2.0 Chromium, Manganese as Mn 2.0 Chromium, Lead and Mercury) Chromium as Cr Cadmium, Lead and Mercury Chromium as Cr		(Waste water discharge)	рĤ		6.0—8.5
BOD_2 20 C Phenolics as Ca H, OH 1.0			_		
Phenolics as					
Ca H, OH			-		50
Oil & Grease 10.0					
Bio-assay test Lead as Pb 0.1					
Lead as Pb					
Chromium as Cr					
Hexavalent					0.1
Total 2.0					
Copper as Cu Nickol as Ni 2.0			Hexavalent		
Nickel as Ni 2.0 Zinc as Zn 5.0 Total heavy metals 7.0 43. INORGANIC CHEMICAL INDUSTRY (Waste Water discharge) Part I (metal compounds of Chromium, Manganese, Nickel, Copper, Zinc, Cadmium, Lead and Mercury) Chromium as Cr Hoxavalent 0.1 Total 2.0 Manganese as Mn 2.0 Nickel as Ni 2.0 Copper as Cu 2.0 Zinc as Zn 5.0 Cadmium as Cd 0.2 Lead as Pb 0.1 Mercury as HG 0.01 Cyanide as CN 0.2 Oil & Grease 10.0 Suspended Solids 30.0 In addition to the above, total heavy metals are to be limited to 7mg/I. 44. BULLION REFINING EFFLUENTS (Waste-water discharge) PH 6,5—8.5 Cyanide as CN 0.2 Sulphide as S 0.2 Nitrate as N 10.0 Free Cl ₂ as Cl 1.0 Zinc as Zn 5.0 Copper as Cu 2.0 Nitrate as N 5.0 Copper as Cu 2.0 Nickel as Ni 2.0 Copper as Cu 2.0				Total	
Zinc as Zn			_ _		
Total heavy metals 7,0					
43. INORGANIC CHEMICAL INDUSTRY (Waste Water discharge) Part I (metal compounds of Chromium, Manganese, Nickel, Copper, Zinc, Cadmium, Lead and Mercury)					
INDUSTRY (Waste Water discharge)			Total heavy metals		7.0
(Waste Water discharge) Part 1 (metal compounds of Chromium, Manganese, Nickel, Copper, Zinc, Cadmium, Lead and Mercury) Chromium as Cr Hexavalent 0.1	4 3.	INORGANIC CHEMICAL			
Part I (metal compounds of Chromium, Manganese, Nickel, Copper, Zinc, Cadmium, Lead and Mercury) Chromium as Cr Hexavalent 0.1			EFFLUENTS		
Chromium, Manganese, Nickel, Copper, Zinc, Cadmium, Lead and Mercury) Chromium as Cr Hexavalent 0.1		· - /			_
Nickel, Copper, Zinc, Cadmium, Lead and Mercury) Chromium as Cr			pН		6.0 -8.5
Cadmium, Lead and Mercury) Chromium as Cr Hexavalent Cope					
Hexavalent Total Total Annganesc as Mn Nickel as Ni Copper as Cu Zinc as Zn Cadmium as Cd Lead as Pb Oil Mercury as HG Cyanide as CN Oil & Grease Suspended Solids In addition to the above, total heavy metals are to be limited to Waste-water discharge) Fig. Cyanide as CN Cyanide as CN Oil Waste-water discharge) Ph Oil Mercury as HG Oil Cyanide as CN					
Total 2.0 Manganesc as Mn 2.0 Nickel as Ni 2.0 Copper as Cu 2.0 Zinc as Zn 5.0 Cadmium as Cd 0.2 Lead as Pb 0.1 Mercury as HG 0.0 Cyanide as CN 0.2 Oil & Grease 10.0 Suspended Solids 30.0 In addition to the above, total heavy metals are to be limited to 7mg/1 44. BULLION REFINING EFFLUENTS (Waste-water discharge) PH 6.5-8.5 Cyanide as CN 0.2 Nitrate as N 10.0 Free Cl ₂ as Cl 1.0 Zinc as Zn 5.0 Copper as Cu 2.0 Nickel as Ni 2.0 Arsenic as As 0.1		Cadmium, Lead and Mercur			
Manganesc as Mn Nickel as Ni Copper as Cu Zinc as Zn Cadmium as Cd Lead as Pb Other as Cn Cyanide as CN Oil & Grease Suspended Solids In addition to the above, total heavy metals are to be limited to Suspended Solids BULLION REFINING (Waste-water discharge) Fig. 10.0 Suphide as CN O.2 Oil & Grease 10.0 Suspended Solids 30.0 In addition to the above, total heavy metals are to be limited to Margine as CN Cyanide as CN O.2 Sulphide as CN Sulphide as S O.2 Nitrate as N IO.0 Free Cl ₂ as Cl Zinc as Zn Copper as Cu Nickel as Ni Arsenic as As O.1					
Nickel as Ni 2.0					
Copper as Cu Zinc as Zn Zinc as Zn Cadmium as Cd Lead as Pb O.1 Mercury as HG Cyanide as CN Oil & Grease Oil & Grease Oil & Grease In addition to the above, total heavy metals are to be limited to In addition to the above, total heavy metals are to be limited to BULLION REFINING Waste-water discharge) FFFLUENTS Waste-water discharge PH O.2 Sulphide as CN O.2 Sulphide as S O.2 Nitrate as N IO.0 Free Cl ₂ as Cl I.0 Zinc as Zn Copper as Cu Nickel as Ni Arsenic as As O.1			-		
Zinc as Zn Cadmium as Cd Lead as Pb O.1 Mercury as HG O.001 Cyanide as CN Oil & Grease Suspended Solids Oil addition to the above, total heavy metals are to be limited to 7mg/l. 44. BULLION REFINING (Waste-water discharge) PH O.2 Sulphide as CN O.2 Sulphide as CN O.2 Sulphide as S O.2 Nitrate as N O.2					
Cadmium as Cd 0.2 Lead as Pb 0.1 Mercury as HG 0.01 Cyanide as CN 0.2 Oil & Grease 10.0 Suspended Solids 30.0 In addition to the above, total heavy metals are to be limited to 7mg/1, 44. BULLION REFINING EFFLUENTS (Waste-water discharge) pH 6.5—8.5 Cyanide as CN 0.2 Sulphide as S 0.2 Nitrate as N 10.0 Free Cl ₂ as Cl 1.0 Zine as Zn 5.0 Copper as Cu 2.0 Nickel as Ni 2.0 Arsenic as As 0.1					
Lead as Pb 0.1 Mercury as HG 0.01 Cyanide as CN 0.2 Oil & Grease 10.0 Suspended Solids 30.0 In addition to the above, total heavy metals are to be limited to 7mg/1. 44. BULLION REFINING EFFLUENTS (Waste-water discharge) pH 6.5-8.5 Cyanide as CN 0.2 Sulphide as S 0.2 Nitrate as N 10.0 Free Cl ₂ as Cl 1.0 Zinc as Zn 5.0 Copper as Cu 2.0 Nickel as Ni 2.0 Arsenic as As 0.1					
Mercury as HG Cyanide as CN Oil & Grease Oil & Grease Suspended Solids In addition to the above, total heavy metals are to be limited to 7mg/1. 44. BULLION REFINING (Waste-water discharge) PH 6,5—8.5 Cyanide as CN Cyanide as CN Sulphide as S O.2 Nitrate as N IO.0 Free Cl ₂ as Cl Zinc as Zn Copper as Cu Nickel as Ni Arsenic as As O.1					
Cyanide as CN Oil & Grease Suspended Solids Oil & Grease Oil & Oil					
Oil & Grease Suspended Solids In addition to the above, total heavy metals are to be limited to 7mg/l, 44. BULLION REFINING (Waste-water discharge) PH 6.5—8.5 Cyanide as CN Sulphide as S 0.2 Nitrate as N 10.0 Free Cl ₂ as Cl Zinc as Zn Copper as Cu Nickel as Ni Arsenic as As 0.1			·		
Suspended Solids In addition to the above, total heavy metals are to be limited to 7mg/l, 44. BULLION REFINING (Waste-water discharge) PH 6.5—8.5 Cyanide as CN Sulphide as S Nitrate as N Free Cl ₂ as Cl Zinc as Zn Copper as Cu Nickel as Ni Arsenic as As 30.0 7mg/l, 6.5—8.5 Cyanide to be limited to 7mg/l, 10.0					
In addition to the above, total heavy metals are to be limited to 7mg/1, 44. BULLION REFINING (Waste-water discharge) PH 6.5—8.5 Cyanide as CN Sulphide as S 0.2 Nitrate as N Free Cl _p as Cl Zinc as Zn Copper as Cu Nickel as Ni Arsenic as As 0.1					
44. BULLION REFINING (Waste-water discharge) pH 6.5—8.5 Cyanide as CN 0.2 Sulphide as S 0.2 Nitrate as N 10.0 Free Cl ₂ as Cl 2inc as Zn Copper as Cu Nickel as Ni Arsenic as As 0.1					
(Waste-water discharge) pH Cyanide as CN Sulphide as S Nitrate as N Free Cl ₂ as Cl Zinc as Zn Copper as Cu Nickel as Ni Arsenic as As 0.2 1.0 2.0 Note the series of the		In addition to the above, tot	al heavy metals are to	be limited to	7mg/1,
(Waste-water discharge) pH Cyanide as CN Sulphide as S Nitrate as N Free Cl ₂ as Cl Zinc as Zn Copper as Cu Nickel as Ni Arsenic as As 0.2 1.0 2.0 Note the series of the	44.	BULLION REFINING	EFFLUENTS		
Cyanide as CN Sulphide as S Nitrate as N Free Cl ₂ as Cl Zinc as Zn Copper as Cu Nickel as Ni Arsenic as As 0.2 1.0 2.0 0.1					6,5-8.5
Sulphide as S 0.2 Nitrate as N 10.0 Free Cl ₂ as Cl 1.0 Zinc as Zn 5.0 Copper as Cu 2.0 Nickel as Ni 2.0 Arsenic as As 0.1			_		0.2
Free Cl ₂ as Cl Zinc as Zn Copper as Cu Nickel as Ni Arsenic as As 1.0 2.0 0.1			•		0.2
Zinc as Zn 5.0 Copper as Cu 2.0 Nickel as Ni 2.0 Arsenic as As 0.1			_		10.0
Zinc as Zn 5.0 Copper as Cu 2.0 Nickel as Ni 2.0 Arsenic as As 0.1			Free Cl ₂ as Cl		
Nickel as Ni 2.0 Arsenic as As 0.1					
Arsenic as As 0.1			Copper as Cu		
			Nickel as Ni		
Cadmium as Cd 0.2			Arsenic as As		
·			Cadmium as Cd		0.2
Oil and Grease 10.0					
Suspended Solids 100			Suspended Solids		100

1	2	3	4
15.	DYE AND DYE INTER- MEDIATE INDUSTRY (Waste-water discharge)	EFFLUENTS	
		рН	6.0—8.5
		Colour, Hazen	
		Unit	400.0
		Suspended Solids	0,001
		BOD ₅ 20° C	100.0
		Oil and Grease	10.0
		Phenolics as	1.0
		C ₀ H ₃ OH	1.0
		Cadmium as Cd	0.2
		Copper as Cu	2.0
		Manganese as Mn Lead as Pb	2.0
			0.1 0.01
		Mercury as Hg Nickel as Ni	
		Zinc as Zn	2.0 5.0
		Chromium as Cr	2,0
		Hexavalent	0.1
		Total	2.0
		Bio-assay test	90 percent survival in 96 hours.
		SCHEDULE	,
SI. No.	Cat e gory		Standards, dB (A)
 I	2		3
46.		OMOBILES (FREE FIELD FACTURING STAGE) TO	AT ONE METER IN BE ACHIEVED BY THE YEAR 1992.
	(a) Motorcycle, Scooters	& Three Wheelers	80
	(b) Passenger Cars		82
	(c) Passenger or Commer	cial Vehicles upto 4 MT	85
	(d) Passenger or Comme	rcial Vehicles above 4 MT:	and upto 12 MT 89
	(e) Passenger or Commer	rcial Vehicles exceeding 12 M	AT 91
4 7.	THE MANUFACTURIN	ES AND CONSTRUCTION NG STAGE TO BE ACH	EQUIPMENTS AT IEVED BY THE
	YEAR, 1993		

[भाग	ग्}[क्षंड ३(1)]	भारत का राजपतः ग्रमधारण -		19
1	2		3	
	(b) Air coolers		60	-
	(c) Refrigerators		46	
	(d) Diesel generators for G	lomestic purposes	8590	
	(c) Compactors (rollers) F	ront loaders, Concrete mixers, Cranes	(movable)	
	Vibrators and Saws		75	

[No. Q. 15013/2/89-CPW)] MUKUL SANWAL. Jt. Secy.

Foot Note:

Principal rules published vide S.O. No. 844(E), dated the 19th November, 1986. Amending Rules published vide S.O. No. 82(E), dated the 16th February, 1987, S.O. 393(E), dated 16th April, 1987; S.O. 443(E), dated the 28th April, 1987; S.O. 64(E), dated the 18th January, 1988; G.S.R. 919 (E), dated the 12th September, 1988; S.O. 8(E), dated the 3rd January, 1989; G.S.R. 913(E), dated 24th October, 1989; S.O. 914(E), dated 24th October, 1989; G.S.R. 1063(E), dated 26th December, 1989; S.O. 12(F), dated 8th January, 1990 and G.S.R. 54(E), dated 5th February, 1990.