線形代数学・同演習 A

7月5日分 演習問題

- 1. 行列式の積公式 $\det(AB) = \det(A)\det(B)$ を , 行列式の公式*1を用いて証明せよ .
- 2. 次の行列式を計算せよ.

 $3. \ A, D$ を正方行列とし,特に A は正則であるとする.このとき以下を示せ.

(a)
$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} I & O \\ CA^{-1} & I \end{pmatrix} \begin{pmatrix} A & O \\ O & D - CA^{-1}B \end{pmatrix} \begin{pmatrix} I & A^{-1}B \\ O & I \end{pmatrix}.$$
(b) $\begin{pmatrix} A & B \\ C & D \end{pmatrix} = \det(A)\det(D - CA^{-1}B).$

4.~A,B,C,D を n 次正方行列 , λ を任意の実数とするとき , 次が成り立つことを示せ .

$$(1) \begin{vmatrix} A & B \\ C & D \end{vmatrix} = \begin{vmatrix} A + \lambda C & B + \lambda D \\ C & D \end{vmatrix} \qquad (2) \begin{vmatrix} A & B \\ B & A \end{vmatrix} = |A + B| \cdot |A - B|$$

- 5. n 次の交代行列 $^{*2}X$ について,以下を示せ.
 - (a) n が奇数ならば, det(X) = 0,
 - (b) n が偶数ならば,ある多項式 $^{*3}\mathrm{Pf}(X)$ が存在して $\det(X)=(\mathrm{Pf}(X))^2$.
- 6. 4 次交代行列 $A = \begin{pmatrix} 0 & -a & -b & -d \\ a & 0 & -c & -e \\ b & c & 0 & -f \\ d & e & f & 0 \end{pmatrix}$ のパフィアン $\operatorname{Pf}(X)$ を求めよ .*4

 $^{^{*1}\}det A=\sum_{\sigma\in S_n}\mathrm{sgn}(\sigma)a_{1\sigma(1)}\cdots a_{n\sigma(n)}$ のことです. *2 交代行列とは, $X+\ ^tX=O$ を満たす正方行列のことです.

^{*3} この多項式 $\operatorname{Pf}(X)$ をパフィアン (Pfaffian) という.

^{*4} 符号は , $J=\begin{pmatrix}0&-1&0&0\\1&0&0&0\\0&0&0&-1\\0&0&1&0\end{pmatrix}$ のとき $\mathrm{Pf}(J)=1$ となるように決める .