

Features

- 2/3-port EtherCAT Slave Controller (ESC) with2 Integrated Fast Ethernet PHYs
- Standard EtherCAT Slave Controller (ESC)
 - 8 Fieldbus Memory Management Units (FMMUs)
 - 8 Sync Managers
 - 64-bit distributed clock
 - 9K bytes RAM

Integrated Fast Ethernet PHYs

- Compliant with IEEE 802.3/802.3u 100BASE-TX/100BASE-FX
- PHY loopback mode
- Supports twisted pair crossover detection and auto-correction (HP Auto-MDIX)
- Automatic polarity detection and correction
- 3rd Ethernet MII Port for Flexible EtherCAT Network Configurations
- Up to 32 Digital/General Purpose IOs
 - Each IO is configurable individually and mapped to FMMU directly
- SPI Slave Interface
 - Supports Mode 3 timing modes
 - Supports MSB first transfer fashion
- Local Bus Interface
 - Supports 8-bit or 16-bit data bus width
 - Supports Asynchronous Local Bus
 - Supports BHE with 16-bit data bus width
- Bridge
 - Supports function and ESC registers mirror with selectable synchronous conditions
- 3-channel PWM Controller
 - Adjustable frequency, phase align and BBM (Break Before Make) for all channels
 - Adjustable duty cycle, phase shift, and signal polarity per channel

Target Applications

- Industrial Automation
- Motion/Motor Control
- Digital I/O Control
- Communication Module

Document No: AX58100/V1.09/12/12/24

- Adjustable step pulse width, polarity and the delay time for direction change
- Incremental and Hall Encoder Interface
 - Support single ended ABZ with configurable counting constant, polarity and Multiple Zsignal functions support
 - Supports clockwise/counter clockwise (CW/CCW) and direction-count (DIR/CLK) Inputs
 - Supports Hall sensor

Step & Direction Controller

- Emergency Stop Input
- Configurable Watchdog for Outputs and Inputs Monitoring
- IRQ Event Output
 - Interrupts for EtherCAT related events
 - Interrupts for Application related events
 - Interrupts for Watchdog Timeout

SPI Master Interface

- Programmable SPI clock frequency up to 50MHz
- Supports 4 timing modes
- Supports MSB/LSB first transfer fashion
- Supports up to 8 SPI devices selection
- Supports up to 8 channels, each channel with 8 bytes read/write buffer
- Supports ADC Data Ready and DAC Data Loaded indication
- Supports periodic data acquisition
- Supports late sample for high latency device
- Supports external interrupt input
- Supports I²C Master Interface
- Integrates On-chip Power-on Reset Circuit
- 80-pin LQFP RoHS Compliant Package
- Operating Temperature Range: -40 to +105°C
 - DAC/ADC Converters Control
 - Sensors Data Acquisition
 - Robotics

1

Operator HMI Interfaces

Typical Applications Diagram

Figure 0-1: AX58100 Typical Applications Diagram

Copyright © 2018-2024 ASIX Electronics Corporation. All rights reserved.

DISCLAIMER

No part of this document may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, for any purpose, without the express written permission of ASIX. ASIX may make changes to the product specifications and descriptions in this document at any time, without notice.

ASIX provides this document "as is" without warranty of any kind, either expressed or implied, including without limitation warranties of merchantability, fitness for a particular purpose, and non-infringement.

Designers must not rely on the absence or characteristics of any features or registers marked "reserved", "undefined" or "NC". ASIX reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. Always contact ASIX to get the latest document before starting a design of ASIX products.

TRADEMARKS

ASIX, the ASIX logo are registered trademarks of ASIX Electronics Corporation. All other trademarks are the property of their respective owners.

EtherCAT® is a registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany.

Table of Contents

1	INTRO	DUCTION	8
	1.1 Gen	NERAL DESCRIPTION	8
		OCK DIAGRAM	
	1.3 PING	OUT DIAGRAM	9
	1.4 SIG	NAL DESCRIPTION	10
	1.4.1	General	
	1.4.2	PDI Digital IO / GPIO	
	1.4.3	ESC PDI / Function SPI Slave Interface	
	1.4.4	ESC PDI / Function Local Bus Interface	
	1.4.5	PWM Motor Controller	
	1.4.6	Incremental / Hall Encoder Interface	
	1.4.7	SPI Master	
	1.4.8	Port 2 MII	14
2	FUNCT	ION DESCRIPTION	15
	2.1 CLC	OCKS/RESETS	15
		IERCAT SLAVE CONTROLLER (ESC)	
		IERNET PHY	
	2.4 Bri	DGE FUNCTION	15
	2.5 I/O	WATCHDOG	16
		M Controller	
	2.7 INC	REMENTAL AND HALL ENCODER INTERFACE	16
	2.8 SPI	MASTER CONTROLLER	16
3	CHIP C	ONFIGURATION AND MEMORY MAP DESCRIPTION	17
		OTSTRAP PINS FOR CHIP CONFIGURATION	
		RDWARE CONFIGURATION EEPROM (HWCFGEE)	
	3.2.1	EEPROM Contents Detailed Descriptions	
		MORY MAP	
	3.3.1	ESC Memory Map	
	3.3.2	Function Register Map	
	3.3.3	Memory Map between ESC Memory and Function Registers	34
4	ELECT	RICAL SPECIFICATIONS	36
-		Characteristics	
	4.1 DC	Absolute Maximum Ratings	
	4.1.1 4.1.2	Recommended Operating Condition	
	4.1.2 4.1.3	Leakage Current and Capacitance	
	4.1.3 4.1.4	DC Characteristics of 3.3V with 5V Tolerant I/O Pins	30 37
		VER CONSUMPTION	
		VER-ON-RESET (POR) SPECIFICATION	
		VER-UP SEQUENCE	
		TIMING CHARACTERISTICS	
	4.5.1	I ² C Timing	
	4.5.2	Port 2 MII Timing	
	4.5.3	Distributed Clocks SYNC/LATCH	
	4.5.4	Digital I/O Timing	
	4.5.5	ESC PDI SPI Slave Timing	
	4.5.6	Function SPI Slave Timing	
	4.5.7	ESC PDI Local Bus Timing	
	4.5.8	Function Local Bus Timing	
	4.5.9	PWM Motor Controller Timing	
	4.5.10	Incremental and Hall Encoder Interface Timing	
	4.5.11	SPI Master Timing	66

	4.5.12	RSTO, EEPROM and EEP_DONE Timing	. 69
5	PACKA	GE INFORMATION	. 71
6	ORDER	ING INFORMATION	. 72
7	DEVISI	ON HISTORY	73

List of Figures

FIGURE 0-1: AX58100 TYPICAL APPLICATIONS DIAGRAM	
FIGURE 1-1: AX58100 BLOCK DIAGRAM	8
FIGURE 1-2: AX58100 PINOUT DIAGRAM	
FIGURE 3-1: AX58100 I ² C EEPROM LAYOUT	20
FIGURE 14-1: POWER ON RESET (POR) TIMING DIAGRAM	39
FIGURE 14-2: POWER-UP SEQUENCE TIMING DIAGRAM	
FIGURE 14-3: WRITE ACCESS (1 ADDRESS BYTE, UP TO 16 KBIT EEPROMS)	41
FIGURE 14-4: WRITE ACCESS (2 ADDRESS BYTES, 32 KBIT - 4 MBIT EEPROMS)	
FIGURE 14-5: READ ACCESS (1 ADDRESS BYTE, UP TO 16 KBIT EEPROMS)	
FIGURE 14-6: PORT 2 MII TX TIMING DIAGRAM.	
FIGURE 14-7: PORT 2 MII RX TIMING DIAGRAM	
FIGURE 14-8: MDC/MDIO WRITE ACCESS	
FIGURE 14-9: MDC/MDIO READ ACCESS.	
FIGURE 14-10: LATCH TIMING	
FIGURE 14-11: SYNC TIMING	
FIGURE 14-12: DIGITAL INPUT: INPUT DATA SAMPLED AT SOF, IO CAN BE READ IN THE SAME FRAME	
FIGURE 14-13: DIGITAL INPUT: INPUT DATA SAMPLED WITH LATCH_IN	
FIGURE 14-14: DIGITAL INPUT: INPUT DATA SAMPLED WITH SYNCO/1	
FIGURE 14-15: DIGITAL OUTPUT TIMING	
FIGURE 14-16: BASIC MOSI/MISO TIMING	
FIGURE 14-17: PDI SPI SLAVE READ ACCESS (2 BYTE ADDRESSING, 1 BYTE READ DATA) WITH WAIT STATE BYTE	
FIGURE 14-18: PDI SPI SLAVE READ ACCESS (2 BYTE ADDRESSING, 2 BYTE READ DATA) WITH WAIT STATE BYTE	
FIGURE 14-19: PDI SPI SLAVE WRITE ACCESS (2 BYTE ADDRESSING, 1 BYTE WRITE DATA)	
FIGURE 14-20: PDI SPI SLAVE WRITE ACCESS (3 BYTE ADDRESSING, 1 BYTE WRITE DATA)	
FIGURE 14-21: FUNCTION SPI SLAVE WITH SHARE PIN TIMING DIAGRAM	
FIGURE 14-22: FUNCTION SPI SLAVE WITH INDIVIDUAL PIN TIMING DIAGRAM	
FIGURE 14-23: PDI LOCAL BUS READ ACCESS (WITHOUT PRECEDING WRITE ACCESS)	
FIGURE 14-24: PDI LOCAL BUS WRITE ACCESS (WRITE AFTER RISING EDGE LWRN, WITHOUT PRECEDING WRITE	
ACCESS)	
FIGURE 14-25: PDI LOCAL BUS SEQUENCE OF TWO WRITE ACCESSES AND A READ ACCESS	
FIGURE 14-26: PDI LOCAL BUS WRITE ACCESS (WRITE AFTER FALLING EDGE LWRN	
FIGURE 14-27: FUNCTION LOCAL BUS SIGNAL READ ACCESS	
FIGURE 14-28: FUNCTION LOCAL BUS WRITE ACCESS (LATE SAMPLE = 0)	
FIGURE 14-29: FUNCTION LOCAL BUS WRITE ACCESS (LATE SAMPLE = 1)	
FIGURE 14-30: PWMX TIMING	
FIGURE 14-31: ONLY PWM CHANNEL 2 SHIFT DIAGRAM	
FIGURE 14-32: BBM (BREAK BEFORE MAKE) TIMING DIAGRAM	
FIGURE 14-33: ONE SHOT WITH MULTI STEP TIMING DIAGRAM	
FIGURE 14-34: ABZ TIMING DIAGRAM	
FIGURE 14-35: CW/CCW TIMING DIAGRAM	
FIGURE 14-36: CLK/DIR TIMING DIAGRAM	
FIGURE 14-37: HALL TIMING DIAGRAM	
FIGURE 14-38: SPI MASTER TIMING	
FIGURE 14-39: MMISO /MMOSIO TIMING	
FIGURE 14-40: SPI MDRLD READY TIMEOUT TIMING	
FIGURE 14-41: SPI MTRG TRIGGER PULSE TIMEOUT	
FIGURE 14-42: SPI MDRLD TRIGGER LDAC GAP AND WIDTH TIMING.	
FIGURE 14-43: POWER UP TO RSTO, EEPROM AND EEP DONE TIMING	
FIGURE 14-44: RSTN TO RSTO, EEPROM AND EEP_DONE TIMING	
FIGURE 14-45: REGISTER RESET TO RSTO, EEPROM AND EEP DONE TIMING	
1. COLD 1. COLD DE REDE TO ROTO, ELI ROTTATO LEI _DOTE I INITIO	, 0

List of Tables

TABLE 1-1: COMMON PIN DESCRIPTION	
TABLE 1-2: ETHERNET PHY PIN DESCRIPTION.	
TABLE 1-3: POWER/GROUND PIN DESCRIPTION	
TABLE 1-4: PDI DIGITAL I/O, GPIO PIN DESCRIPTION	
TABLE 1-5: PDI SPI SLAVE INTERFACE PIN DESCRIPTION	
TABLE 1-6: PDI LOCAL BUS INTERFACE PIN DESCRIPTION	13
TABLE 1-7: PWM MOTOR CONTROLLER PIN DESCRIPTION	
TABLE 1-8: INCREMENTAL/HALL ENCODER INTERFACE PIN DESCRIPTION	13
TABLE 1-9: SPI MASTER PIN DESCRIPTION	14
TABLE 1-10: PORT 2 MII PIN DESCRIPTION	
TABLE 3-1: BOOTSTRAP PINS CONFIGURATION	17
TABLE 3-2: ESC MEMORY MAP	31
TABLE 3-3: FUNCTION REGISTER MAP	
TABLE 3-4: ESC MEMORY AND FUNCTION REGISTERS MIRROR MAPPING TABLE	35
TABLE 14-1: AX58100 POWER CONSUMPTION	38
TABLE 14-2: THERMAL CHARACTERISTICS	
TABLE 14-3: POWER ON RESET (POR) TIMING TABLE	
TABLE 14-4: POWER-UP SEQUENCE TIMING TABLE	
TABLE 14-5: I ² C EEPROM TIMING TABLE	
TABLE 14-6: PORT 2 MII TX TIMING TABLE	
TABLE 14-7: PORT 2 MII RX TIMING TABLE.	
TABLE 14-8: MDC/MDIO TIMING TABLE	
TABLE 14-9: DC SYNC/LATCH TIMING CHARACTERISTICS	
TABLE 14-10: DIGITAL I/O TIMING TABLE	
TABLE 14-11: PDI SPI SLAVE TIMING TABLE	
TABLE 14-12: FUNCTION SPI WITH SHARE PIN TIMING TABLE	
TABLE 14-13: FUNCTION SPI WITH INDIVIDUAL PIN TIMING TABLE	
TABLE 14-14: PDI LOCAL BUS TIMING TABLE.	
TABLE 14-15: FUNCTION LOCAL BUS ACCESS TIMING	
TABLE 14-16: PWMX TIMING TABLE	
TABLE 14-17: PWMX SHIFT TIMING TABLE	
TABLE 14-18: PWMX BBM TIMING TABLE	
TABLE 14-19: STEP FUNCTION TIMING TABLE.	
TABLE 14-20: INCREMENTAL AND HALL ENCODER TIMING TABLE	
TABLE 14-21: SPI MASTER TIMING TABLE	
TABLE 14-22: RSTO, EEPROM AND EEP DONE TIMING TABLE	70

1 Introduction

1.1 General Description

The AX58100 is a 2/3-port EtherCAT Slave Controller (ESC), licensed from Beckhoff Automation, with two integrated Fast Ethernet PHYs which support 100Mbps full-duplex operation and HP Auto-MDIX. The AX58100 supports the CANopen over EtherCAT (CoE), File Access over EtherCAT (FoE), Vendor Specific-protocol over EtherCAT (VoE), etc. Standard EtherCAT protocols provide a cost-effective solution for industrial automation applications, such as motion/motor/digital I/O control, Digital to Analog (DAC)/Analog to Digital (ADC) converters control, sensors data acquisition, and robotics, to be applied in industrial fieldbus.

The AX58100 provides either a three-channel PWM controller or a Step/Direction controller, and also provides an Increment/Hall encoder interface for closed-loop motor control, a SPI master controller for DAC/ADC converter control and sensors data acquisition, 32 DIOs for industrial I/O control and an I/O watchdog for functional safety.

The AX58100 provides two Process Data Interfaces (PDI), SPI slave and Local Bus, which support the connection with most popular MCU and DSP on those non-EtherCAT fieldbus applications. The AX58100 also provides two memory spaces, ESC and Function, users can decide which to access by using chip select. The bridge will synchronize two memory spaces' contents for EtherCAT Master to remotely control AX58100 functions (PWM, SPI master etc.). The AX58100 reports the ESC and Functions interrupt events to interrupt status registers and supports level or edge interrupt trigger mode to inform external MCU/DSP to manage these ESC and Functions interrupt events. AX58100 supports a configurable individual function SPI slave interface to enhance SPI slave bandwidth.

The AX58100, in 80-pin LQFP with EPAD, supports the RoHS compliant package and industrial grade operating temperature, which range from -40 to 105°C.

1.2 Block Diagram

Figure 1-1: AX58100 Block Diagram

1.3 Pinout Diagram

AX58100 is housed in an 80-pin E-PAD LQFP package.

Figure 1-2: AX58100 Pinout Diagram

1.4 Signal Description

Following abbreviations are used in "Type" column of below pin description tables. Note that some I/O pins with multiple signal definitions on the same pin may have different attributes in "Type" column for different signal definition.

AB	Analog Bi-directional I/O	\mathbf{PU}	Internal Pull-Up (75K)
ΑI	Analog Input	PD	Internal Pull-Down (75K)
AO	Analog Output	P	Power/Ground pin
B5	Bi-directional I/O, 3.3V with 5V tolerant	S	Schmitt Trigger
I5	Input, 3.3V with 5V tolerant	T	Tri-state
O5	Output, 3.3V with 5V tolerant	4m	4mA driving strength
I3	Input, 3.3V	8m	8mA driving strength
O3	Output, 3.3V		

For example, pin 6 in AX58100 package can be LAT_IN, MISO or LRDY. If LAT_IN is selected, its Type is I5; if MISO or LRDY is selected, its Type is O5 or O5/T. In other words, the T (tri-state) only takes effect in LRDY signal mode while LAT_IN and MISO signal mode don't. Users should refer to the table specific to the desired function for exact pin type definition.

The multi-function pin settings are configured by the I²C Hardware Configuration EEPROM (HWCFGEE). Please refer to Section 3.2 for details.

1.4.1 General

Pin Name	Type	Pin No	Pin Description
TEST	I5/PD/S	59	Test mode enable For normal operation, please always tie to logic low or NC.
RSTn	I5/PU/S	57	Reset Input, active low RST_N is the hardware reset input used to reset this chip. This input is AND with internal Power-On-Reset (POR) circuit, which generates the main system reset for this chip.
RSTO\ RSTO_POL	O5/8m	58	Reset Output This pin is input direction during chip reset stage used to bootstrap the mode setting to decide the RSTO polarity, please refer to Section 3.1.
XSCI	AI	31	Crystal 25MHz Input
XSCO	AB	30	Crystal 25MHz Output
SCL	O5/T/4m/ S	62	I ² C Serial Clock line for I ² C master controller SCL is a tri-stateable output, which requires an external pull-up resistor.
SDA	B5/T/4m/ S	63	I ² C Serial Data line for I ² C master controller. SDA is a tri-stateable output, which requires an external pull-up resistor.
PDI_EMU	I5	61	PDI Emulation enable
EEP_DONE	O5/8m	21	This pin asserted high indicates that the EEPROM is successfully loaded (Checksum matched) and the PDI can be used.
LED_RUN\ EEP_SIZE	B5/4m	19	LED_RUN is input direction during chip reset stage used to bootstrap the mode setting to decide the EEPROM size configuration, please refer to Section 3.1.
LED_ERR\ 3PORT_MODE	B5/4m	20	LED_ERR is input direction during chip reset stage used to bootstrap the mode setting to decide the Port 2 MII enable configuration, please refer to Section 3.1.
SYNC_LATCH[0]	B5/8m	2	Distributed Clocks SyncSignal output or LatchSignal input 0
SYNC_LATCH[1]	B5/8m	3	Distributed Clocks SyncSignal output or LatchSignal input 1
NC	I3	56	Reserved. Please connect to GND.

Table 1-1: Common Pin Description

Pin Name	Type	Pin No	Pin Description
P0 TXOP	AB	38	PHY 0 differential Transmitted Positive signal In the copper mode, the differential data is transmitted to the media on the TXOP/TXON signal pair in the MDI mode.
			In the fiber mode, the signal pair should be connected to the TX+/TX- pin of the fiber transceiver.
P0_TXON	AB	37	PHY 0 differential Transmitted Negative signal
P0_RXIP	AB	36	PHY 0 differential Received Positive signal In the copper mode, the differential data from the media is received on the RXIP/RXIN signal pair in the MDI mode. In the fiber mode, the signal pair should be connected to the RX+/RX- pin of the fiber transceiver.
P0_RXIN	AB	35	PHY 0 differential Received Negative signal
P0_SD	AB	34	PHY 0 fiber mode Signal Detect SD < 0.2V, Copper mode-1.0V < SD < 1.8V, Fiber mode without detected signal. Generate far-end fault SD > 2.4V, Fiber mode with detected signal
P0_ACT\ P0_FIBER	B5/4m	40	PHY 0 Link/Activity LED This pin is input direction during chip reset stage used to bootstrap the mode setting to decide the PHY 0 media mode, please refer to Section 3.1.
P1_TXOP	AB	23	PHY 1 differential Transmitted Positive signal Same as PHY0 TXOP/ON description
P1_TXON	AB	24	PHY 1 differential Transmitted Negative signal
P1_RXIP	AB	25	PHY 1 differential Received Positive signal Same as PHY0 RXIP/IN description
P1_RXIN	AB	26	PHY 1 differential Received Negative signal
P1_SD	AB	27	PHY 1 fiber mode Signal Detect Same P0_SD description
P1_ACT\ P1_FIBER	B5/4m	41	PHY 1 Link/Activity LED This pin is input direction during chip reset stage used to bootstrap the mode setting to decide the PHY 1 media mode, please refer to Section 3.1.
RSET_BG	AO	33	PHY off-chip Bias Resistor Connects an external resistor of 12 K Ω ± 1% to the PCB analog ground.

Table 1-2: Ethernet PHY Pin Description

Pin Name	Type	Pin No	Pin Description
VCC3IO	D	10, 45,	Digital Power for I/O pins, 3.3V
VCC3IO	Ρ	65, 77	Please add a 0.1uF bypass capacitor between each VCC3IO and GND.
VCCK	P	5, 16, 29, 46, 55, 72	Digital Power for core, 1.2V Please add a 0.1uF bypass capacitor between each VCCK and GND.
VCC33A	P	22, 28, 32, 39	Analog Power for Ethernet PHY, 3.3V Please add a 0.1uF bypass capacitor between VCC33A and GND.
VCC12A_PLL	P	54	Analog Power for PLL, 1.2V. Please add a 0.1uF bypass capacitor between VCC12A_PLL and GND.
GND	P	EPAD	Ground for all Analog and Digital Power.

Table 1-3: Power/Ground Pin Description

1.4.2 PDI Digital IO / GPIO

Pin Name	Type	Pin No	Pin Description
IO[31:24]	B5/8m	18, 15, 13, 11, 8, 76, 75, 73	Digital/General Purpose I/O[31:24]
IO[23:16]	B5/8m	70, 68, 66, 42, 52, 50, 48, 44	Digital /General Purpose I/O[23:16]
IO[15:8]	B5/8m	17, 14, 12, 9, 7, 49, 74, 71	Digital /General Purpose I/O[15:8]
IO[7:0]	B5/8m	69, 67, 53, 60, 51, 4, 47, 43	Digital /General Purpose I/O[7:0]
SOF	O5/8m	79	Start-of-Frame
EOF	O5/8m	80	End-of-Frame
OE_EXT	I5	64	Output Enable
OUTVLD	O5/8m	78	Output data Valid/Output event
LAT_IN	I5	6	external data Latch
WD_TRIG	O5/8m	1	Watchdog Trigger

Note: The IO[31:0] in PDI Digital mode is for DIO[31:0], in PDI SPI slave mode is for GPIO[31:0] Table 1-4: PDI Digital I/O, GPIO Pin Description

1.4.3 ESC PDI / Function SPI Slave Interface

Pin Name	Type	Pin No	Pin Description
SCS_ESC	I5	79	SPI Chip Select for ESC
SCS_FUNC	I5	80	SPI Chip Select for Function
SCLK	I5	64	SPI Clock
MOSI	I5	78	SPI data MOSI
MISO	O5	6	SPI data MISO
SINT	O5/T	1	SPI Interrupt
FSCLK	I5	9	Function SPI Clock
FMOSI	I5	12	Function SPI data MOSI
FMISO	O5	7	Function SPI data MISO
SFINT	O5/T	49	SPI Function Interrupt

Note 1: The Function SPI slave could share pin with ESC or use independent pin, please refer to Section 3.2.

Note 2: "Function" means the design for PWM, Incremental/Hall Encoder, SPI Master, I/O Watchdog and Bridge function, excluding ESC.

Table 1-5: PDI SPI Slave Interface Pin Description

1.4.4 ESC PDI / Function Local Bus Interface

Pin Name	Type	Pin No	Pin Description
LECSn	I5	79	Local bus ESC Chip Select
LFCSn	I5	80	Local bus Function Chip Select
LRDn	I5	64	Local bus Read
LWRn	I5	78	Local bus Write
LBHE	I5	68	Local bus Byte High Enable (16-bit width only)
LRDY	O5/T	6	Local bus Ready
LINT	O5/T	1	Local bus Interrupt
LA[13:0]	15	66, 42, 52, 50, 48, 44, 17, 14, 12, 9, 7, 49, 74, 71	Local bus Address bus
LDA[15:8]	B5	18, 15, 13, 11, 8, 76, 75, 73	Local bus Data bus [15:8]
LDA[7:0]	B5	69, 67, 53, 60, 51, 4, 47, 43	Local bus Data bus [7:0]

Note: "Function" means the design for PWM, Incremental/Hall Encoder, SPI Master, I/O Watchdog and Bridge function, excluding ESC.

Table 1-6: PDI Local Bus Interface Pin Description

1.4.5 PWM Motor Controller

Pin Name	Type	Pin No	Pin Description
PWM1L	O5/T	8	PWM 1 Low pin or STEP pin
PWM1H	O5/T	76	PWM 1 High pin or DIR pin
PWM2L	O5/T	75	PWM 2 Low pin
PWM2H	O5/T	73	PWM 2 High pin
PWM3L	O5/T	70	PWM 3 Low pin
PWM3H	O5/T	68	PWM 3 High pin
PULA	O5	66	Pulse A, programmable point A
PULB	O5	42	Pulse B, programmable point B
PULZ	O5	52	Pulse Z, PWM period start point
PULC	O5	50	Pulse C, PWM period central point
PULAB	O5	48	Pulse AB, toggle when programmable point A and B
EMn	I5	11	Emergency input, active low

Table 1-7: PWM Motor Controller Pin Description

1.4.6 Incremental / Hall Encoder Interface

Pin Name	Type	Pin No	Pin Description
ENCA	I5	13	ENC input A, Sin., CW, CLK, or HALL A
ENCB	I5	15	ENC input B, Cos., CCW, DIR, or HALL B
ENCZ	I5	18	ENC input Z, Zero point or HALL C

Table 1-8: Incremental/Hall Encoder Interface Pin Description

1.4.7 SPI Master

Pin Name	Type	Pin No	Pin Description
MSS[3:0]	O5	69, 67, 53, 60	SPI Master Slave Select
MSCLK	O5	43	SPI Master SCLK
MMOSI	O5	47	SPI Master MOSI
MMISO	I5	4	SPI Master MISO
MINT	I5	51	SPI Master Interrupt in
MTRG	I5	74	SPI Master Trigger in
MDRLD	B5	71	SPI Master ADC Data Ready / DAC Data Loaded

Table 1-9: SPI Master Pin Description

1.4.8 Port 2 MII

Pin Name	Type	Pin No	Pin Description
MCLK	O5	18	MII Clock 25 MHz clock source for Ethernet PHYs
LINK	I5	44	LINK Provided by the PHY if a 100 Mbps (Full Duplex) link is established.
MDC	O5	50	PHY Management Interface clock
MDIO	B5	48	PHY Management Interface data
TXD[3]	O5	68	Transmit data [3]
TXD[2:1] \ TX_SH[1:0]	O5	66, 42	Transmit data [2:1] This pin is input direction during chip reset stage used to bootstrap the mode setting to decide the external PHY's TXD phase shift, please refer to Section 3.1.
TXD[0] \ LINK_POL	O5	52	Transmit data [0] These pins are input direction during chip reset use to bootstrap the mode setting to decide external PHY's LINK polarity, please refer to Section 3.1.
TX_EN	O5	70	Transmit enable
RX_CLK	I5	15	Receive Clock
RXD[3:0]	I 5	8, 76, 75, 73	Receive data
RX_ER	I5	11	Receive error
RX_DV	I5	13	Receive data valid

Table 1-10: Port 2 MII Pin Description

2 Function Description

2.1 Clocks/Resets

The AX58100 requires a crystal (25MHz, ± 25 PPM at room temperature) as the clock source. Internal PLL generates the 100MHz clock for EtherCAT Slave Controller (ESC) and also for other functions.

The AX58100 has three reset sources. First, during the VCCK power-on, the internal Power-On-Reset (POR) can generate a reset pulse to reset all the function blocks when the VCCK power pin rises to a certain threshold voltage level. The second reset is RSTn pin, which is to do the fundamental reset. And third, EtherCAT command reset, the EtherCAT master can send reset sequence to force AX58100 reset. AX58100 also supports a reset output RSTO polarity bootstrap configuration (RSTO_POL).

2.2 EtherCAT Slave Controller (ESC)

The AX58100 implements a 3-port EtherCAT slave controller (ESC), licensed from Beckhoff Automation, with 9 Kbytes Process Data RAM, 8 Fieldbus Memory Management Units (FMMUs), 8 Sync-Managers and a 64-bit Distributed Clock.

Port 0 and 1 integrate embedded Ethernet PHYs, and port 2 is an optional MII interface which are multi-function pins shared with other interfaces (i.e. PWM, Hall, Local Bus, Digital I/O). Packets are forwarded in the following order: **Port 0->EtherCAT Processing Unit->Port 1->Port 2**.

The Process Data Interface (PDI, also named host interface) provides SPI slave, asynchronous 8/16-bit microcontroller interface (also named Asynchronous Local Bus) and Digital I/O. The SPI slave and asynchronous 8/16-bit Local Bus interface will be used when external MCU in employed the slave system, and the Digital I/O is used for when direct I/O control.

The AX58100 supports function register mirror from/to ESC memory space. The mirror registers located at process data memory address from 0x3000 to 0x33FF.

For detailed information about the EtherCAT technology, the EtherCAT core mechanisms, and major features, we refer to the official standard documentations and guidelines available from ETG (www.ethercat.org, ETG.1000), IEC (http://www.iec.ch, IEC61158, IEC61784-2, IEC 61800-7), and Beckhoff (http://www.beckhoff.de, technical specification) web sites.

2.3 Ethernet PHY

The AX58100 is embedded two DSP-based Ethernet PHYs, which are fully compliant with the 100BASE-TX and 100BASE-FX Ethernet standards such as IEEE 802.3u, and ANSI X3.263-1995 (FDDI-TP-PMD). In copper mode, it supports the MDI/MDIX auto-crossover function (HP Auto-MDIX).

2.4 Bridge Function

The AX58100 has two memory spaces, one for ESC and another for AX58100 specific functions. The bridge handles data synchronization between ESC's memory and function registers, and uses EthterCAT packet's SOF, EOF, ESC control signal: SYNCx and LATx, PDI chip select (ESC and function) asserts and de-assert, the PWM cycle starts, register writes and register data change, total 13 sources to synchronize two space's register content. Each function mirror could be enabled independent, the interrupt related registers mirror (INTCR and INTSR) are also enabled when any function mirror is enabled.

2.5 I/O Watchdog

The I/O Watchdog is for AX58100 safety engine and used to monitor I/O signals toggle status and an emergency stop input (EMn) pin. When I/O signals don't match a pattern or keep over excepted time, the watchdog will be triggered, or EMn input pin asserted which would force I/O pads to enter default level. The default level is configurable which could be driven low, high or Tristate.

2.6 PWM Controller

The PWM control module provides Pulse Width Modulation (PWM) and STEP / DIR to control motor driving. The PWM mode has eight pins. There are three pairs of control signal. Each control signal pair has a high pulse pin (PWMxH) and low pulse pin (PWMxL) control power drive circuit. Others are two alignment pins, PULZ and PULC point cycle start and central time, and three programmable trigger pins, PULA PULB and PULAB. The step pulse mode has 2 pins, step (STEP) and direction (DIR), which connect to step motor controller and share PWM1H/L pins.

The PWM supports up to 12.5MHz output frequency, and programmable polarity, timing adjustment.

2.7 Incremental and Hall Encoder Interface

The AX58100 provides an interface with a linear or rotary incremental encoder to get position information, and supports four input modes, including the Sin/Cos mode (A / B / Z pins), Clock-Wise mode (CW / CCW / Z pins), Direction-Clock mode (DIR / CLK / Z pins) and the Hall mode (A / B / C pins). It can accumulate positions in three modes, Sin/Cos, Clock-Wise and Direction-Clock modes, and calculate the GAP time in Hall mode.

The Sin/Cos mode supports input frequency up to 8.33MHz, CW/CCW and DIR/CLK up to 16.66MHz, and the Hall mode up to 2.77MHz respectively.

2.8 SPI Master Controller

The Serial Peripheral Interface (SPI) master controller provides a full-duplex, synchronous serial communication interface (4 wires) to flexibly work with numerous SPI peripheral devices or microcontroller with the SPI slave. The SPI master controller supports 4 types of interface timing modes, namely, mode 0, 1, 2, and 3 to allow working with most SPI devices available. It also supports MSB/LSB first data transfer.

The SPI master controller supports 8 channels, which could sequentially access per device, and supports variable transfer length up to 8 bytes each channel. It also supports multi-channel access to the same device, and the data length could be up to 64bytes. For high performance applications, the SPI master controller supports continuous transfer data between the SPI device and data registers.

The SPI master controller provides 4 chip select, supports one-cold encode output (up to 4 devices), or uses binary encode output (use an external binary decoder) up to 8 devices.

The SPI master controller supports standard SPI device access without glue logic circuit. Besides, it supports "trigger data ready input" for ADC application, and also supports "data loaded indication out" and "data path daisy chain" for DAC application.

The MSCLK (SPI clock) is programmable by software and can run up to 50MHz.

3 Chip Configuration and Memory Map Description

3.1 Bootstrap Pins for Chip Configuration

The AX58100 supports five multi-function bootstrap pins (pin 19, 20, 58, 40, and 41) for five hardware configurations, i.e. external I^2C EEPROM size, ESC supported port number, RSTO polarity and integrated port 0/1 PHY media mode; and it also supports other three multi-function bootstrap pins (pin 42, 52, 66) for the configuration of port 2 MII signals. User needs to utilize an external resistor to pull up / down these bootstrap pins.

Pins	Signal Name	Description
		I ² C EEPROM Size
19	EEP_SIZE	0: 1 Kbit to 16Kbit
		1: 32Kbit to 4Mbit
		ESC port number
20	3PORT_MODE	0: 2 ports mode
		1: 3 ports mode
		RSTO Reset Output Polarity
58	RSTO_POL	0: Active Low
		1: Active High
		Device emulation (0x0141.0)
61	PDI_EMU	0: Device status register is controlled by PDI
	_	1: Device status register is identical to device control register
		Port 0 PHY media mode
40	P0_FIBER	0: Copper mode
		1: Fiber mode
	P1_FIBER	Port 1 PHY Media mode
41		0: Copper mode
		1: Fiber mode
66	TX_SH [1]	Port 2 MII TXD Align position
		2'b00: Align with MCLK,
42	TV CILIO	2'b01: Delay 1/4 phase with MCLK
42	TX_SH [0]	2'b10: Delay 1/2 phase with MCLK
		2'b11: Delay 3/4 phase with MCLK
		Port 2 MII LINK Polarity
52	LINK_POL	0: Active Low
		1: Active High

Table 3-1: Bootstrap Pins Configuration

3.2 Hardware Configuration EEPROM (HWCFGEE)

The AX58100 I²C master controller supports the communication to external I²C devices and an I²C Hardware Configuration EEPROM Loader to support loading the EtherCAT Slave Information (ESI) from external I²C EEPROM during chip reset. The AX58100 supports I²C EEPROM with EEPROM size from 1 Kbit (128 bytes) to 4 Mbit (500Kbytes).

The AX58100 I2C Hardware Configuration EEPROM layout is shown in following figure.

EEPROM	EEPROM	Parameter	ESC Register
Byte Offset	Word Offset	FIGG. C	Offset
0.00		ESC Configuration Area	0.0140
<u>0x00</u>	000	PDI Control	<u>0x0140</u>
<u>0x01</u>	0x00	ESC Configuration (bit 2 is also mapped to ESC register 0x0110.2)	<u>0x0141</u>
<u>0x02</u>	0x01	PDI Configuration	<u>0x0150</u>
<u>0x03</u>	0.001	Sync/Latch [1:0] Configuration	<u>0x0151</u>
0x05 - 0x04	0x02	Pulse Length of SyncSignals	<u>0x0983 - 0x0982</u>
0x07 - 0x06	0x03	Extended PDI Configuration	0x0153 - 0x0152
<u>0x09 - 0x08</u>	0x04	Configured Station Alias	<u>0x0013 - 0x0012</u>
<u>0x0A</u>	0.05	Host Interface Extend Setting and Drive Strength	
0x0B	0x05	Reserved, shall be zero	
0x0C	0.06	Reserved, shall be zero	
<u>0</u> x0D	0x06	Multi-Function Select and Drive Strength	
0x0F - 0x0E	0x07	Checksum	
0x13 - 0x10	0x09 - 0x08	Vendor ID	
0x17 - 0x14	0x0B - 0x0A	Product Code	
0x1B - 0x18	0x0D - 0x0C	Revision Number	
0x1F - 0x1C	0x0F - 0x0E	Serial Number	
0x27 - 0x20	0x13 - 0x10	Reserved	
01127 01120	01110	Bootstrap Mailbox Config	
0x29 - 0x28	0x14	Bootstrap Receive Mailbox Offset	
0x2B - 0x2A	0x15	Bootstrap Receive Mailbox Size	
0x2D - 0x2C	0x16	Bootstrap Send Mailbox Offset	
0x2F - 0x2E	0x17	Bootstrap Send Mailbox Size	
		Mailbox Sync Man Config	
0x31 - 0x30	0x18	Standard Receive Mailbox Offset	
0x33 - 0x32	0x19	Standard Receive Mailbox Size	
0x35 - 0x34	0x1A	Standard Send Mailbox Offset	
0x37 - 0x36	0x1B	Standard Send Mailbox Size	
0x39 - 0x38	0x1C	Mailbox Protocol	
0x3F - 0x3A	0x1F - 0x1D	Reserved	
0x7B - 0x40	0x3D - 0x20	Reserved	
0x7D - 0x7C	0x3E	Size	
0x7F - 0x7E	0x3F	Version	
ES	SC Category 1 (for	AX58100 Bridge Access Configuration if used) *N	ote1
$0x81 \sim 0x80$	0x40	Category 1 Type (Default: 0x0001)	
$0x83 \sim 0x82$	0x41	Category 1 Data Size (words) (Default: 0x0021)	
<u>0x84</u>	0x42	MCTLR Access Control	<u>0x0580</u>

EEPROM Byte Offset	EEPROM Word Offset	Parameter	ESC Register Offset
0x85		PXCFGR Access Control	<u>0x0581</u>
0x86	0-42	PTAPPR Access Control	<u>0x0582</u>
0x87	0x43	PTBPPR Access Control	<u>0x0583</u>
0x88	0.44	PPCR Access Control	<u>0x0584</u>
0x89	0x44	PBBMR Access Control	<u>0x0585</u>
0x8A	0.45	P1CTRLR Access Control	<u>0x0586</u>
0x8B	0x45	P1SHR Access Control	<u>0x0587</u>
0x8C	0.46	P1HPWR Access Control	<u>0x0588</u>
0x8D	0x46	P2CTRLR Access Control	<u>0x0589</u>
0x8E	0.47	P2SHR Access Control	<u>0x058A</u>
0x8F	0x47	P2HPWR Access Control	0x058B
0x90	0.40	P3CTRLR Access Control	0x058C
0x91	0x48	P3SHR Access Control	0x058D
0x92	0.40	P3HPWR Access Control	0x058E
0x93	0x49	SGTR Access Control	0x058F
0x94		SHPWR Access Control	0x0590
0x95	0x4A	TDLYR Access Control	0x0591
0x96	0.45	STNR Access Control	0x0592
0x97	0x4B	SCFGR Access Control	0x0593
0x98		SCTRLR Access Control	0x0594
0x99	0x4C	SCNTR Access Control	0x0595
0x9A	0 45	ECNTVR Access Control	0x0596
0x9B	0x4D	ECNSTR Access Control	0x0597
0x9C	0 45	ELATR Access Control	0x0598
0x9D	0x4E	EMODR Access Control	0x0599
0x9E	0.45	ECLRR Access Control	0x059A
0x9F	0x4F	HALSTR Access Control	0x059B
0xA0	0.50	WTR Access Control	0x059C
0xA1	0x50	WCFGR Access Control	0x059D
0xA2	0.51	WTPVCR Access Control	0x059E
0xA3	0x51	WMSPR Access Control	0x059F
0xA4	0.50	WMMR Access Control	0x05A0
0xA5	0x52	WOMR Access Control	0x05A1
0xA6	0.52	WOER Access Control	0x05A2
0xA7	0x53	WOPR Access Control	0x05A3
0xA8	0.54	WTPVR Access Control	0x05A4
0xA9	0x54	SPICFGR Access Control	0x05A5
0xAA	0.55	SPIBRR Access Control	0x05A6
0xAB	0x55	SPIDBSR Access Control	0x05A7
0xAC	0.74	SPIDTR Access Control	0x05A8
0xAD	0x56	SPIRPTR Access Control	0x05A9
0xAE	0.55	SPILTR Access Control	0x05AA
0xAF	0x57	SPIPRLR Access Control	<u>0x05AB</u>
0xB0	0	SPI01BCR Access Control	0x05AC
0xB1	0x58	SPI23BCR Access Control	0x05AD
0xB2	0. 70	SPI45BCR Access Control	0x05AE
0xB3	0x59		
		SPI67BCR Access Control	0x05AF

EEPROM Byte Offset	EEPROM Word Offset	Parameter	ESC Register Offset	
0xB5		SPI47SSR Access Control	<u>0x05B1</u>	
0xB6	0x5B	SPIINTSR Access Control	<u>0x05B2</u>	
0xB7	UX3B	SPITSR Access Control	<u>0x05B3</u>	
0xB8		SPIPOSR Access Control	<u>0x05B4</u>	
0xB9	0x5C	SPI Data Status (SPIDSR and SPIDSMR) Access Control	<u>0x05B5</u>	
0xBA	0-5D	SPIC0DR Access Control	<u>0x05B6</u>	
0xBB	0x5D	SPIC1DR Access Control	<u>0x05B7</u>	
0xBC	050	SPIC2DR Access Control	<u>0x05B8</u>	
0xBD	0x5E	SPIC3DR Access Control	<u>0x05B9</u>	
0xBE	0.50	SPIC4DR Access Control	<u>0x05BA</u>	
0xBF	0x5F	SPIC5DR Access Control	<u>0x05BB</u>	
0xC0	0x60	SPIC6DR Access Control	<u>0x05BC</u>	
0xC1	UXOU	SPIC7DR Access Control	<u>0x05BD</u>	
0xC2	0x61	SPIMCR Access Control	<u>0x05BE</u>	
0xC3	UXO1	INTCR Access Control	<u>0x05BF</u>	
0xC4	0x62	INTSR Access Control	<u>0x05C0</u>	
<u>0xC5</u>	0x02	Function Mirror Enable	<u>0x05C1</u>	
Other ESC Categories Information (Subdivided in Categories)				
		Category Strings		
		Category Generals		
		Category FMMU		
		Category SyncManager		
		Category Tx - / RxPDO for each PDO		

Figure 3-1: AX58100 I²C EEPROM Layout

- Note 1: Reserved words or reserved bits of the ESC Configuration Area should be filled with 0.
- **Note 2:** When (re-) configuring the EEPROM from an EtherCAT master system special care must be taken. Not every master allows writing a category 1 entry to the EEPROM. There are different ways to write this into the EEPROM for automatically loading access control configuration when AX58100 booting.
 - 1. Use preprogrammed I²C EEPROM.
 - 2. Use a different category, e.g., 2049, first. Then overwrite the upper byte with 0 with a single EEPROM byte writes.

The AX58100 HWCFGEE contents from offset 0x00 to 0x7F are mandatory, as well as the general category (at least the minimum I2C EEPROM size is 2Kbit, and for the complex devices with many categories should be equipped with 32 Kbit EEPROMs or larger one). The ESC Configuration Area is used for AX58100 hardware configuration. All other areas are used by the EtherCAT master or the local application.

The ESC Configuration Area (EEPROM offset 0x00 to 0x0F) is automatically read by AX58100 after poweron or reset. It contains the PDI configuration, Distributed Clocks settings, and Configured Station Alias. The consistency of the ESC Configuration Area data is secured with a checksum.

The EtherCAT Master can invoke reloading the EEPROM contents. In this case, the Configured Station Alias register 0x0012:0x0013 and ESC Configuration register bits 0x0141 [1,4,5,6,7] (enhanced link detection) are not transferred into the registers. They are only transferred at the initial EEPROM loading after power-on or reset.

To use AX58100 bridge functionalities, users should define the Bridger Access Configuration parameters in the first category located at EEPROM offset 0x80. The Category Type must be 0x0001and the Category Data Size

must be 0x0021 so the AX58100 will automatically load the EEPROM Bridger Access Configuration parameters into the Bridge Access Configuration registers memory area starting at 0x0580 after power-on or reset.

3.2.1 EEPROM Contents Detailed Descriptions

PDI Control (0x00)

Bit	Description
7:0	PDI Control [7:0] 0x00: Interface deactivated (no PDI) 0x04: Digital I/O 0x05: SPI Slave 0x08: 16-bit Asynchronous Local Bus 0x09: 8-bit Asynchronous Local Bus Others: reserved

ESC Configuration (0x01)

Bit	Description		
0	Device emulation enables (control of AL status)		
1	Enhanced Link detection all ports		
3:2	Reserved		
4	Enhanced Link port 0		
5	Enhanced Link port 1		
6	Enhanced Link port 2		
7	Reserved		

PDI Configuration (0x02)

Digital I/O

Bit	Description					
0	OUTVALID polarity					
1	OUTVALID mode					
2	Unidirectional/Bidirectional mode					
3	Watchdog behavior					
5:4	Input DATA is sampled					
7:6	Output DATA is updated					

SPI Slave

Bit	Description	
1:0	SPI mode	
3:2	SPI_IRQ output driver/polarity	
4	SPI_SEL polarity	
5	Data Out sample mode	
7:6	Reserved	

Asynchronous Local Bus

Bit	Description
1:0	BUSY/RDY driver/polarity
3:2	IRQ driver/polarity
4	BHE/Byte Enable polarity
7:5	Reserved

EtherCAT Slave Controller

Sync/Latch[1:0] Configuration (0x03)

Bit	Description
1:0	SYNC0 output driver/polarity
2	SYNC0/LATCH0 configuration
3	SYNC0 mapped to AL Event Request
5:4	SYNC1 output driver/polarity
6	SYNC1/LATCH1 configuration
7	SYNC1 mapped to AL Event Request

Pulse Length SyncSignals (0x05 - 0x04)

Bit	Description
15:0	Pulse length of SyncSignal

Extended PDI Configuration (0x07 - 0x06) Digital I/O / SPI Slave (for GPIO)

	Description		
Bit	Description		
	Digital I/O or GPIO		
0	Digital I/O or GPIO are configured in pairs (1:0) as inputs or outputs:		
	0: Input		
	1: Output		
1	3:2 pair (0: Input, 1: Output)		
2	5:4 pair (0: Input, 1: Output)		
3	7:6 pair (0: Input, 1: Output)		
4	9:8 pair (0: Input, 1: Output)		
5	11:10 pair (0: Input, 1: Output)		
6	13:12 pair (0: Input, 1: Output)		
7	15:14 pair (0: Input, 1: Output)		
8	17:16 pair (0: Input, 1: Output)		
9	19:18 pair (0: Input, 1: Output)		
10	21:20 pair (0: Input, 1: Output)		
11	23:22 pair (0: Input, 1: Output)		
12	25:24 pair (0: Input, 1: Output)		
13	27:26 pair (0: Input, 1: Output)		
14	29:28 pair (0: Input, 1: Output)		
15	31:30 pair (0: Input, 1: Output)		

Asynchronous Local Bus

nemonous Boeur Bus		
Bit	Description	
0	Read BUSY delay	
1	Perform internal write	
10:2	Reserved	
11	23:22 pair (data bus 8-bit width only) (0: Input, 1: Output)	
12	25:24 pair (data bus 8-bit width only) (0: Input, 1: Output)	
13	27:26 pair (data bus 8-bit width only) (0: Input, 1: Output)	
14	29:28 pair (data bus 8-bit width only) (0: Input, 1: Output)	
15	31:30 pair (data bus 8-bit width only) (0: Input, 1: Output)	

Configured Station Alias (0x09 - 0x08)

Bit	Description
15:0	Alias Address used for node addressing

Host Interface Extend Setting and Drive Strength (0x0A)

Digital I/O

Bit	Description
4:0	Reserved
	Control Driving Select:
5	0: 4mA
	1: 8mA
	IO [9:0] Driving Select:
6	0: 4mA
	1: 8mA
	IO [15:10] Driving Select:
7	0: 4mA
	1: 8mA

SPI Slave / Asynchronous Local Bus

Bit	Description
3:0	Interrupt Edge Pulse Length (INTP_LEN)
3.0	Interrupt Edge Pulse = (INTP_LEN+1) * 100ns
	The trigger type of interrupt signal, SINT / LINT
4	0: Level trigger.
	1: Edge trigger.
	Control Driving Select:
5	0: 4mA
	1: 8mA
	IO [9:0] Driving Select:
6	0: 4mA
	1: 8mA
	IO [15:10] Driving Select:
7	0: 4mA
	1: 8mA

Multi-Function Select and Drive Strength (0x0D)

Bi	Description
	IO [9:0] select:
0	0: IO [9:0]
	1: MTRG, MDRLD, MSS [3:0], MINT, MMISO, MMOSI, MSCLK,
	Note: in Local Bus mode this bit no function
	IO [15:10] (SPI slave separates) select:
1	0: IO [15:10]
1	1: IO [15:14], FMOSI, FSCLK, FMISO, SFINT
	Note: in Local Bus mode this bit no function
	IO [21:16] select:
2	0: IO [21:16]
2	1: PULA, PULB, PULZ, PULZ, PULAB, IO [16]
	Note: in Local Bus mode this bit no function
	IO [25:22] select:
3	0: IO [25:22]
	1: PWM2L, PWM2H, PWM3L, PWM3H
	Note: in Local Bus 16 bits mode this bit no function
	IO [28:26] select:
4	0: IO [28:26]
	1: EM, PWM1L, PWM1H
	Note: in Local Bus 16 bits mode this bit no function
	IO [31:29] select:
5	0: IO [31:29]
	1: ENCZ, ENCB, ENCA
	Note: in Local Bus 16 bits mode this bit no function

6	IO [21:16] Driving Select: 0: 4mA 1: 8mA
7	IO [31:22] Driving Select: 0: 4mA
	1: 8mA

Note: When MII port 2 enable, the IO [31:16] pins are forced to MII port 2

Checksum (0x0F - 0x0E)

Bit	Description
15:0	Checksum Low byte contains remainder of division of EEPROM offset 0x00 to 0x0D as unsigned number divided by the polynomial X^8+X^2+X+1 (initial value 0xFF)
	For debugging purposes, it is possible to disable the checksum validation with a checksum value of 0x88A4. Note that NEVER use this for production!

Category 1 Type (0x81 - 0x80)

	Bit	Description
1	15:0	Category 1 Type MUST be 0x0001

Category 1 Data Size (0x83 - 0x82)

•			
	Bit	Description	
	15:0	Category 1 Data Size (words) MUST be 0x0021	

MCTLR Access Control (0x84)

Bit	Description
3:0	Sync. Source Select 0x0: Always triggered 0x1: Start Of Frame (SOF) 0x2: End Of Frame (EOF) 0x3: SYNC0 signal 0x4: LATCH0 signal 0x5: SYNC1 signal 0x6: LATCH1 signal 0x7: After write access 0x8: Trigger when data value changes 0x9: PDI Chip Select Assert 0xA: PDI Chip Select De-assert 0xC: FUNC Chip Select De-assert
	0xD: Trigger at start of MFC PWM cycle Others: Always triggered
4	ESC Access Enable 0: Writeable with Function Host Interface 1: Writeable with ESC
7:5	Reserved

The Bit Definitions of the other parameters from EEPROM offset 0x85 to 0xC4 are the same as the Bit Definitions of EEPROM offset 0x84.

Function mirror enable (0xC5)

Bit	Description					
	PWM function register mirror:					
0	0: Disable PWM function register mirror					
	1: Enable PWM function register mirror					
	ENC function register mirror:					
1	0: Disable ENC function register mirror					
	1: Enable ENC function register mirror					
	SPI Master function register mirror:					
2	0: Disable SPI Master function register mirror					
	1: Enable SPI Master function register mirror					
	IO Watchdog function register mirror:					
3	0: Disable IO Watchdog function register mirror					
	1: Enable IO Watchdog function register mirror					
7:4	Reserved					

3.3 Memory Map

This section introduces the memory mapping in AX58100. AX58100 provides SPI and Local Bus slave interfaces for both ESC PDI and Function to access the internal registers. Section 3.3.1 introduces the ESC memory map which can be accessed by PDI SPI or Local bus interface, and section 3.3.2 introduces the Function register map which can be accessed by Function SPI or Local Bus interface. Due to the Function registers can be accessed by PDI interface and EtherCAT Master directly. So, section 3.3.3 introduces the relationship between Function and ESC PDI through the Bridge function.

3.3.1 ESC Memory Map

ESC Address	Length (Bytes) Description						
	ESC Information						
0x0000	1	Туре					
<u>0x0001</u>	1	Revision					
<u>0x0002</u>	2	Build					
<u>0x0004</u>	1	FMMUs supported					
<u>0x0005</u>	1	SyncManagers supported					
<u>0x0006</u>	1	RAM Size					
<u>0x0007</u>	1	Port Descriptor					
<u>0x0008</u>	2	ESC Features supported					
		Station Address					
<u>0x0010</u>	2	Configured Station Address					
<u>0x0012</u>	2	Configured Station Alias					
		Write Protection					
<u>0x0020</u>	1	Write Register Enable					
<u>0x0021</u>	1	Write Register Protection					
<u>0x0030</u>	1	ESC Write Enable					
<u>0x0031</u>							
		Data Link Layer					
<u>0x0040</u>	1	ESC Reset ECAT					
<u>0x0041</u>	1	ESC Reset PDI					
<u>0x0100</u>	4	ESC DL Control					
<u>0x0108</u>	2	Physical Read/Write Offset					
<u>0x0110</u>	2	ESC DL Status					
		Application Layer					
<u>0x0120</u>	2	AL Control					
<u>0x0130</u>	2	AL Status					
<u>0x0134</u>	2	AL Status Code					
<u>0x0138</u>	1	RUN LED Override					
<u>0x0139</u>	1	ERR LED Override					
	1	PDI					
<u>0x0140</u>	1	PDI Control					
<u>0x0141</u>	1	ESC Configuration					
<u>0x0150</u>	1	PDI Configuration					
<u>0x0151</u>	1	Sync/Latch PDI Configuration					
<u>0x0152</u>	2	Extended PDI Configuration					
	Interrupts						
<u>0x0200</u>	2	ECAT Event Mask					
<u>0x0204</u>	4	AL Event Mask					
<u>0x0210</u>	2	ECAT Event Request					

0x0220	4	AL Event Request					
Error Counters							
0x0300 4x2 RX Error Counter [3:0]							
0x0308	4x1	Forwarded RX Error counter [3:0]					
0x030C	1	ECAT Processing Unit Error Counter					
0x030D	1	PDI Error Counter					
0x030E	1	PDI Error Counter PDI Error Code					
0x0310	4x1	Lost Link Counter [3:0]					
0.00310	IXI	Watchdogs					
0x0400							
0x0410	2	Watchdog Time PDI					
0x0420	2	Watchdog Time Process Data					
0x0440	2	Watchdog Status Process Data					
0x0442	1	Watchdog Counter Process Data					
0x0443	1	Watchdog Counter PDI					
0.10 1 10		I ² C EEPROM Interface					
<u>0x0500</u>	1	EEPROM Configuration					
0x0501	1	EEPROM PDI Access State					
0x0502	2	EEPROM Control/Status					
0x0504	4	EEPROM Address					
0x0508	4	EEPROM Data					
<u>0x0300</u>	<u> </u>	MII Management Interface					
0x0510	2	MII Management Control/Status					
0x0512	1	PHY Address					
0x0513	1	PHY Address PHY Register Address					
0x0514	2	PHY Data					
0x0516	1	MII Management ECAT Access State					
0x0517	1	MII Management PDI Access State					
Bridge Access Configuration (Refer to Section 9.3 of AX58100 Full datasheet)							
0x0580	1	MCTLR Access Control Register					
0x0581	1	PXCFGR Access Control Register					
0x0582	1	PTAPPR Access Control Register					
0x0583	1	PTBPPR Access Control Register					
0x0584	1	PPCR Access Control Register					
0x0585	1	PBBMR Access Control Register					
0x0586	1	P1CTRLR Access Control Register					
0x0587	1	P1SHR Access Control Register					
0x0588	1	P1HPWR Access Control Register					
0x0589	1	P2CTRLR Access Control Register					
0x058A	1	P2SHR Access Control Register					
0x058B	1	P2HPWR Access Control Register					
0x058C	1	P3CTRLR Access Control Register					
0x058D	1	P3SHR Access Control Register					
0x058E	1	P3HPWR Access Control Register					
0x058F	1	Step Gap Time Access Control Register					
0x0590	1	SHPWR Access Control Register					
0x0591	1	TDLYR Access Control Register					
0x0592	1	Step Target Number Access Control Register					
0x0593	1	SCFGR Access Control Register					
0x0594	1	SCTRLR Access Control Register					
0x0595	1	Step Counter Content Access Control Register					
0x0596	1	Encoder Counter Value Access Control Register					
0x0597	1 Encoder Constant Access Control Register						

0x0598	1	Encoder Latched Access Control Register				
0x0599	1	EMODR Access Control Register				
0x059A	1	ECLRR Access Control Register				
0x059B	1	HALSTR Access Control Register				
0x059C	1	Watchdog Timer Access Control Register				
0x059D	1	WCFGR Access Control Register				
0x059E	1	·				
	1	WTPVCR Access Control Register				
0x059F		Watchdog monitored Polarity Access Control Register				
0x05A0	1	Watchdog monitored Mask Access Control Register Watchdog Output Mask Access Control Register				
0x05A1						
0x05A2	1	Watchdog Output Enable Access Control Register				
0x05A3	1	Watchdog Output Polarity Access Control Register				
0x05A4	1	Watchdog Timer Peak value Access Control Register				
0x05A5	1	SPICFGR Access Control Register				
0x05A6	1	SPIBRR Access Control Register				
0x05A7	1	SPIDBSR Access Control Register				
0x05A8	1	SPIDTR Access Control Register				
0x05A9	1	SPIRPTR Access Control Register				
0x05AA	1	SPILTR Access Control Register				
0x05AB	1	SPIPRLR Access Control Register				
0x05AC	1	SPI01BCR Access Control Register				
0x05AD	1	SPI23BCR Access Control Register				
0x05AE	1	SPI45BCR Access Control Register				
0x05AF	1	SPI67BCR Access Control Register				
0x05B0	1	SPI03SSR Access Control Register				
0x05B1	1	SPI47SSR Access Control Register				
0x05B2	1	SPINTSR Access Control Register				
0x05B3	1	SPITSR Access Control Register				
0x05B4	1	SPIPOSR Access Control Register				
0x05B5	1	SPI Data Status (SPIDSR and SPIDSMR) Access Control Register				
0x05B6	1	SPICODR Access Control Register				
0x05B7	1	SPIC1DR Access Control Register				
0x05B8	1	SPIC2DR Access Control Register				
0x05B9	1	SPIC3DR Access Control Register				
0x05BA	1	SPIC4DR Access Control Register				
0x05BB	1	SPIC5DR Access Control Register				
0x05BC	1	SPIC6DR Access Control Register				
0x05BD	1	SPIC7DR Access Control Register				
0x05BE	1	SPIMCR Access Control Register				
0x05BF	1	INTCR Access Control Register				
0x05C0	1	INTSR Access Control Register				
0x05C1	1	Function Mirror Enable Register				
0x0600:0x067F		FMMU[7:0]				
<u>+0x0</u>	4	Logical Start Address				
<u>+0x4</u>	2	Length				
<u>+0x6</u>	1	Logical Start bit				
<u>+0x7</u>	1	Logical Stop bit				
<u>+0x8</u>	2	Physical Start Address				
<u>+0xA</u>	1	Physical Start bit				
<u>+0xB</u>	1	Type				
<u>+0xC</u>	1	Activate				
+0xD	3	Reserved				
0x0800:0x083F		SyncManager[7:0]				

+0x0	+0x0 2 Physical Start Address						
	+0x0 2 Physical Start Address +0x2 2 Length						
+0x2 + 0x4	1	Control Register					
+0x5	1	Status Register					
+0x6	1	· ·					
+0x0 +0x7	1	Activate PDI Control					
0x0900:0x09FF	1	Distributed Clocks (DC)					
UXU9UU:UXU9FF		DC – Receive Times					
0x0900	4	Receive Time Port 0					
0x0904	4	Receive Time Port 1					
0x0904 0x0908	4	Receive Time Port 2					
0x090C	4	Receive Time Fort 3					
<u>0x070C</u>	'	DC - Time Loop Control Unit					
<u>0x0910</u>	4(W)/8(R)	System Time					
0x0918	8	Receive Time ECAT Processing Unit					
0x0920	8	System Time Offset					
0x0928	4	System Time Offset System Time Delay					
0x0928	4	System Time Delay System Time Difference					
0x0930	2	Speed Counter Start					
0x0932	2	Speed Counter Diff					
$\frac{0x0932}{0x0934}$	1	System Time Difference Filter Depth					
0x0935	1	Speed Counter Filter Depth					
<u> </u>	<u> </u>	DC – Cyclic Unit Control					
0x0980	1	Cyclic Unit Control					
		DC – SYNC Out Unit					
<u>0x0981</u>	1	Activation					
<u>0x0982</u>	2	Pulse Length of SyncSignals					
<u>0x0984</u>	1	Activation Status					
<u>0x098E</u>	1	SYNC0 Status					
0x098F	1	SYNC1 Status					
<u>0x0990</u>							
<u>0x0998</u>	8	Next SYNC1 Pulse					
<u>0x09A0</u>							
<u>0x09A4</u>	4	SYNC1 Cycle Time					
		DC – Latch In Unit					
<u>0x09A8</u>	1	Latch0 Control					
<u>0x09A9</u>	1	Latch1 Control					
<u>0x09AE</u>	1	Latch0 Status					
<u>0x09AF</u>	1	Latch1 Status					
<u>0x09B0</u>	8	Latch0 Time Positive Edge					
<u>0x09B8</u>	8	Latch0 Time Negative Edge					
<u>0x09C0</u>	8	Latch1 Time Positive Edge					
<u>0x09C8</u>	8	Latch1 Time Negative Edge					
		DC – SyncManager Event Times					
<u>0x09F0</u>	4	EtherCAT Buffer Change Event Time					
<u>0x09F8</u>	4	PDI Buffer Start Event Time					
<u>0x09FC</u>	4	PDI Buffer Change Event Time					
		ESC specific					
<u>0x0E00</u>	8	Product ID					
<u>0x0E08</u>	8	Vendor ID					
	Digital Input/Output						
<u>0x0F00</u>	4	Digital I/O Output Data					

0x0F10	4	General Purpose Outputs						
0x0F18	4	General Purpose Gutputs General Purpose Inputs						
<u>0X0110</u>	User RAM/Extended ESC features							
0x0F80	128	User RAM/Extended ESC Features						
0.001.00	Process Data RAM							
0x1000	4	Digital I/O Input Data						
0x1000	8KB	Process Data RAM						
0.000	Function Register Mirror (Refer to Section 3.3.2)							
		Write / Read						
0x3000	2	Motor Control Register						
0x3002	2	PWM Pulse X Configure Register						
0x3004	2	PWM Trigger A Pulse Position Register						
0x3006	2	PWM Trigger B Pulse Position Register						
0x3008	2	PWM Period Cycle Register						
0x300A	2	PWM Pulse Break Before Make Register						
0x300C	2	PWM1Control Register						
0x300E	2	PWM1 Counter Shift Register						
0x3010	2	PWM1 High Pulse Width Register						
0x3012	2	PWM2 Control Register						
0x3014	2	PWM2 Shift Register						
0x3016	2	PWM2 High Pulse Width Register						
0x3018	2	PWM3 Control Register						
0x301A	2	PWM3 Counter Shift Register						
0x301C	2	PWM3 High Pulse Width Register						
0x3020	4	Step Gap Time Register						
0x3024	2	Step High Pulse Width Register						
0x3026	2	Direction Transform Delay Step Register						
0x3028	4	Step Target Number Register						
0x302C	2	Step Configure Register						
0x302E	2	Step Control Register						
0x3040	4	Encoder Counter Value Register						
0x3044	4	Encoder Constant Register						
0x304C	2	Encoder Mode configuration Register						
0x304E	2	Encoder Clear Register						
0x3060	4	Watchdog Timer Register						
0x3064	2	Watchdog Control Register						
0x3066	2	Watchdog Timer Peak Value Clear Register						
0x3068	4	Watchdog Monitored Signals Polarity Register						
0x306C	4	Watchdog Monitored Signals Mask Register						
0x3070	4	Watchdog Output Mask Register						
0x3074	4	Watchdog Output Enable Register						
0x3078	4	Watchdog Output Polarity Register						
0x3080	2	SPI Configure Register						
0x3082	2	SPI Baud Rate Register						
0x3084	2	SPI Delay Byte and SS Register						
0x3086	2	SPI Delay Transfer Register						
0x3088	2	SPI RDY / Pulse Time Register						
0x308A	2	SPI LDAC Time Register						
0x308C	2	SPI Pulse/ RDY/ LDAC Register						
0x3090	2	SPI 0/1 Byte Count Register						
0x3092	2	SPI 2/3 Byte Count Register						
0x3094	2	SPI 4/5 Byte Count Register						
0x3096	2 SPI 6/7 Byte Count Register							
0x3098	2	SPI 0/1/2/3 slave Select Register						

0x309A	2	SPI 4/5/6/7 slave Select Register			
0x30B0	8	SPI Channel 0 Data Register			
0x30B8	8	SPI Channel 1 Data Register			
0x30C0	8	SPI Channel 2 Data Register			
0x30C8	8	SPI Channel 3 Data Register			
0x30D0	8	SPI Channel 4 Data Register			
0x30D8	8	SPI Channel 5 Data Register			
0x30E0	8	SPI Channel 6 Data Register			
0x30E8	8	SPI Channel 7 Data Register			
0x30F2	2	SPI Master Control Register			
0x3100	2	Interrupt Configure Register			
0x3102	2	Interrupt Status Register			
		Read Only			
0x3230	4	Step Counter Content Register			
0x3248	4	Encoder Latched Register			
0x3250	2	Hall State Register			
0x327C	4	Watchdog Timer Peak Value Register			
0x32A8	2	SPI Interrupt Status Register			
0x32AA	2	SPI Timeout Status Register			
0x32AC	2	SPI Pulse Overrun Status Register			
0x32AE	2	SPI Data Status Register			
0x32B0	8	SPI Channel 0 Data Register			
0x32B8	8	SPI Channel 1 Data Register			
0x32C0	8	SPI Channel 2 Data Register			
0x32C8	8	SPI Channel 3 Data Register			
0x32D0	8	SPI Channel 4 Data Register			
0x32D8	8	SPI Channel 5 Data Register			
0x32E0	8	SPI Channel 6 Data Register			
0x32E8	8	SPI Channel 7 Data Register			
0x32F0	2	SPI Data Status Mirror Register			

Table 3-2: ESC Memory Map

3.3.2 Function Register Map

Address Offset	Name	Description		
0x000	MCTLR	Motor Control Register		
0x002	PXCFGR	PWM Pulse X Configure Register		
0x004	PTAPPR	PWM Trigger A Pulse Position Register		
0x006	PTBPPR	PWM Trigger B Pulse Position Register		
0x008	PPCR	PWM Period Cycle Register		
0x00A	PBBMR	PWM Pulse Break Before Make Register		
0x00C	P1CTRLR	PWM1Control Register		
0x00E	P1SHR	PWM1 Counter Shift Register		
0x010	P1HPWR	PWM1 High Pulse Width Register		
0x012	P2CTRLR	PWM2 Control Register		
0x014	P2SHR	PWM2 Shift Register		
0x016	P2HPWR	PWM2 High Pulse Width Register		
0x018	P3CTRLR	PWM3 Control Register		
0x01A	P3SHR	PWM3 Counter Shift Register		
0x01C	P3HPWR	PWM3 High Pulse Width Register		
0x020	SGTLR	Step Gap Time Low Register		
0x020	SGTHR	Step Gap Time High Register		
0x024	SHPWR	Step High Pulse Width Register		
0x024 0x026	TDLYR	direction Transform Delay step Register		
0x028	STNLR	Step Target Number Low Word Register		
0x02A	SCECE	Step Target Number High Word Register		
0x02C	SCFGR SCFPL P	Step Configure Register		
0x02E	SCTRLR	Step Control Register		
0x030	SCNTLR	Step Counter Content Low Register		
0x032	SCNTHR EGNTH P	Step Counter Content High Register		
0x040	ECNTVLR	Encoder Counter value Low Register		
0x042	ECNTVHR	Encoder Counter value High Register		
0x044	ECNSTLR	Encoder Constant Low Register		
0x046	ECNSTHR	Encoder Constant High Register		
0x048	ELATLR	Encoder Latched Low Register		
0x04A	ELATHR	Encoder Latched High Register		
0x04C	EMODR	Encoder Mode Configuration Register		
0x04E	<u>ECLRR</u>	Encoder Clear Register		
0x050	HALSTR	Hall State Register		
0x060	WTLR	Watchdog Timer Low Register		
0x062	<u>WTHR</u>	Watchdog Timer High Register		
0x064	<u>WCFGR</u>	Watchdog Configure Register		
0x066	<u>WTPVCR</u>	Watchdog Timer Peak Value Clear Register		
0x068	<u>WMPLR</u>	Watchdog Monitored Polarity Low Register		
0x06A	<u>WMPHR</u>	Watchdog Monitored Polarity High Register		
0x06C	<u>WMMLR</u>	Watchdog Monitored Mask Low Register		
0x06E	<u>WMMHR</u>	Watchdog Monitored Mask High Register		
0x070	WOMLR	Watchdog Output Mask Low Register		
0x072	WOMHR	Watchdog Output Mask High Register		
0x074	WOELR	Watchdog Output Enable Low Register		
0x076	WOEHR	Watchdog Output Enable High Register		
0x078	WOPLR	Watchdog Output Polarity Low Register		
0x07A	WOPHR	Watchdog Output Polarity High Register		
0x07C	WTPVLR	Watchdog Timer Peak Value Low Register		
0x07E	WTPVHR	Watchdog Timer Peak Value High Register		
0x080	SPICFGR	SPI Configure Register		
0x082	SPIBRR	SPI Baud Rate Register		

<u>SPIDBSR</u>	SPI Delay Byte and SS Register
<u>SPIDTR</u>	SPI Delay Transfer Register
<u>SPIRPTR</u>	SPI RDY / Pulse Time Register
<u>SPILTR</u>	SPI LDAC Time Register
<u>SPIPRLR</u>	SPI Pulse/ RDY/ LDAC Register
SPI01BCR	SPI 0/1 Byte Count Register
SPI23BCR	SPI 2/3 Byte Count Register
SPI45BCR	SPI 4/5 Byte Count Register
SPI67BCR	SPI 6/7 Byte Count Register
SPI03SSR	SPI 0/1/2/3 slave Select Register
SPI47SSR	SPI 4/5/6/7 slave Select Register
<u>SPINTSR</u>	SPI Interrupt Status Register
<u>SPITSR</u>	SPI Timeout Status Register
<u>SPIPOSR</u>	SPI Pulse Overrun Status Register
<u>SPIDSR</u>	SPI Data Status Register
SPIC0DR	SPI Channel 0 Data Register
SPIC1DR	SPI Channel 1 Data Register
SPIC2DR	SPI Channel 2 Data Register
SPIC3DR	SPI Channel 3 Data Register
SPIC4DR	SPI Channel 4 Data Register
SPIC5DR	SPI Channel 5 Data Register
SPIC6DR	SPI Channel 6 Data Register
SPIC7DR	SPI Channel 7 Data Register
<u>SPIDSMR</u>	SPI Data Status Mirror Register
<u>SPIMCR</u>	SPI Master Control Register
<u>INTCR</u>	Interrupt Configure Register
<u>INTSR</u>	Interrupt Status Register
<u>ESTOR</u>	ESC State Override register
<u>HSTSR</u>	Host interface Status Register
Reserved	Reserved
	SPIDTR SPIRPTR SPILTR SPIRPLR SPIPRLR SPIO1BCR SPI23BCR SPI45BCR SPI67BCR SPI67BCR SPI03SSR SPI47SSR SPINTSR SPINTSR SPINTSR SPIDSR SPICODR SPIC1DR SPIC2DR SPIC2DR SPIC4DR SPIC4DR SPIC5DR SPIC5DR SPIC6DR SPIC7DR SPIC7DR SPIC7DR SPIDSMR SPIMCR INTCR INTSR ESTOR HSTSR

Table 3-3: Function Register Map

3.3.3 Memory Map between ESC Memory and Function Registers

Function	ESC A	ddress		
Address	R/W	RO	Name	Description
0x000	0x3000	-	MCTLR	Motor Control Register
0x002	0x3002	-	PXCFGR	PWM Pulse X Configure Register
0x004	0x3004	_	PTAPPR	PWM Trigger A Pulse Position Register
0x006	0x3006	_	PTBPPR	PWM Trigger B Pulse Position Register
0x008	0x3008	_	PPCR	PWM Period Cycle Register
0x00A	0x300A	_	PBBMR	PWM Pulse Break Before Make Register
0x00C	0x300C	_	P1CTRLR	PWM1Control Register
0x00E	0x300E	_	P1SHR	PWM1 Counter Shift Register
0x010	0x3010	_	P1HPWR	PWM1 High Pulse Width Register
0x012	0x3012	_	P2CTRLR	PWM2 Control Register
0x014	0x3014	_	P2SHR	PWM2 Shift Register
0x016	0x3016	_	P2HPWR	PWM2 High Pulse Width Register
0x018	0x3018	_	P3CTRLR	PWM3 Control Register
0x01A	0x301A	_	P3SHR	PWM3 Counter Shift Register
0x01C	0x301C	_	P3HPWR	PWM3 High Pulse Width Register
0x020			SGTLR	Step Gap Time Low Register
0x023	0x3020	-	SGTHR	Step Gap Time High Register
0x024	0x3024	_	SHPWR	Step High Pulse Width Register
0x026	0x3026	_	TDLYR	direction Transform Delay step Register
0x028	0X3020		STNLR	Step Target Number Low Word Register
0x02A	0x3028	-	STNHR	Step Target Number High Word Register
0x02C	0x302C	-	SCFGR	Step Configure Register
0x02E	0x302E	-	SCTRLR	Step Control Register
0x030	OASOZE		SCNTLR	Step Counter Content Low Register
0x030	-	0x3230	SCNTHR	Step Counter Content High Register
0x040			ECNTVLR	Encoder Counter value Low Register
0x040	0x3040	-	ECNTVHR	Encoder Counter value High Register
0x044			ECNSTLR	Encoder Constant Low Register
0x046	0x3044	-	ECNSTHR	Encoder Constant High Register
0x048			ELATLR	Encoder Latched Low Register
0x04A	-	0x3248	ELATHR	Encoder Latched High Register
0x04C	0x304C	_	EMODR	Encoder Mode Configuration Register
0x04E	0x304E	_	ECLRR	Encoder Clear Register
0x050	- OASO 1E	0x3250	HALSTR	Hall State Register
0x060		0.00.000	WTLR	Watchdog Timer Low Register
0x062	0x3060	-	WTHR	Watchdog Timer High Register
0x064	0x3064	-	WCFGR	Watchdog Configure Register
0x066	0x3066	-	WTPVCR	Watchdog Timer Peak Value Clear Register
0x068			WMPLR	Watchdog Monitored Polarity Low Register
0x06A	0x3068	-	WMPHR	Watchdog Monitored Polarity High Register
0x06C	_		WMMLR	Watchdog Monitored Mask Low Register
0x06E	0x306C	-	WMMHR	Watchdog Monitored Mask High Register
0x070			WOMLR	Watchdog Output Mask Low Register
0x070	0x3070	-	WOMHR	Watchdog Output Mask High Register
0x074	_		WOELR	Watchdog Output Enable Low Register
0x074	0x3074	-	WOEHR	Watchdog Output Enable High Register
0x078	_		WOPLR	Watchdog Output Polarity Low Register
0x078	0x3078	-	WOPHR	Watchdog Output Polarity High Register
0x07C			WTPVLR	Watchdog Timer Peak Value Low Register
0x07E	-	0x327C	WTPVHR	Watchdog Timer Peak Value High Register
0x080	0x3080	_	SPICFGR	SPI Configure Register
0x082	0x3082	-	SPIBRR	SPI Baud Rate Register
UNUUL	0A3002		DITIDICIL	DI I Buda Ruto Register

0.004	0.2004		CDIDDCD	CDI D.1. D. (1 CC D
0x084	0x3084	-	SPIDBSR	SPI Delay Byte and SS Register
0x086	0x3086	1	<u>SPIDTR</u>	SPI Delay Transfer Register
0x088	0x3088	-	<u>SPIRPTR</u>	SPI RDY / Pulse Time Register
0x08A	0x308A	-	<u>SPILTR</u>	SPI LDAC Time Register
0x08C	0x308C	ı	<u>SPIPRLR</u>	SPI Pulse/ RDY/ LDAC Register
0x090	0x3090	ı	SPI01BCR	SPI 0/1 Byte Count Register
0x092	0x3092	ı	SPI23BCR	SPI 2/3 Byte Count Register
0x094	0x3094	ı	SPI45BCR	SPI 4/5 Byte Count Register
0x096	0x3096	ı	SPI67BCR	SPI 6/7 Byte Count Register
0x098	0x3098	ı	SPI03SSR	SPI 0/1/2/3 slave Select Register
0x09A	0x309A	ı	SPI47SSR	SPI 4/5/6/7 slave Select Register
0x0A8	-	0x32A8	<u>SPINTSR</u>	SPI Interrupt Status Register
0x0AA	-	0x32AA	<u>SPITSR</u>	SPI Timeout Status Register
0x0AC	-	0x32AC	<u>SPIPOSR</u>	SPI Pulse Overrun Status Register
0x0AE	-	0x32AE	SPIDSR	SPI Data Status Register
0x0B0	0x30B0	0x32B0	SPIC0DR	SPI Channel 0 Data Register
0x0B8	0x30B8	0x32B8	SPIC1DR	SPI Channel 1 Data Register
0x0C0	0x30C0	0x32C0	SPIC2DR	SPI Channel 2 Data Register
0x0C8	0x30C8	0x32C8	SPIC3DR	SPI Channel 3 Data Register
0x0D0	0x30D0	0x32D0	SPIC4DR	SPI Channel 4 Data Register
0x0D8	0x30D8	0x32D8	SPIC5DR	SPI Channel 5 Data Register
0x0E0	0x30E0	0x32E0	SPIC6DR	SPI Channel 6 Data Register
0x0E8	0x30E8	0x32E8	SPIC7DR	SPI Channel 7 Data Register
0x0F0	-	0x32F0	SPIDSMR	SPI Data Status Mirror Register
0x0F2	0x30F2	-	SPIMCR	SPI Master Control Register
0x100	0x3100	-	INTCR	Interrupt Configure Register
0x102	0x3102	=	<u>INTSR</u>	Interrupt Status Register

Table 3-4: ESC Memory and Function Registers Mirror Mapping Table

4 Electrical Specifications

4.1 DC Characteristics

4.1.1 Absolute Maximum Ratings

Symbol	Parameter	Rating	Units
VCCK	Digital core power supply	- 0.5 to 1.6	V
VCC3IO, VCC33A	Power supply of 3.3V I/O and Ethernet PHY	- 0.5 to 4.6	V
VCC12A_PLL	Analog power supply for PLL	- 0.5 to 1.6	V
$ m V_{IN}$	Input voltage of 3.3V I/O with 5V tolerant.	- 0.5 to 5.8	V
$T_{ m STG}$	Storage temperature.	- 65 to 150	°C
$I_{ m IN}$	DC input current.	50	mA
I _{OUT}	Output short circuit current.	50	mA

Note:

Permanent device damage may occur if absolute maximum ratings are exceeded. Functional operation should be restricted in the recommended operating condition section of this datasheet. Exposure to absolute maximum rating condition for extended periods may affect device reliability.

4.1.2 Recommended Operating Condition

Symbol	Parameter	Min	Тур	Max	Units
VCC3IO	Power supply of 3.3V I/O	2.97	3.3	3.63	V
VCC33A	Analog power supply for Ethernet PHY	2.97	3.3	3.63	V
VCCK	Digital core power supply	1.08	1.2	1.32	V
VCC12A_PLL	Analog power supply for PLL	1.08	1.2	1.32	V
Tj	operating junction temperature	-40	25	125	°C
Ta	operating ambient temperature	-40	-	105	°C

4.1.3 Leakage Current and Capacitance

Symbol	Parameter	Conditions	Min	Тур	Max	Units
	1 0	3.3V with 5V tolerant I/O pins. Vin = 5 or 0V.	ı	<±1	ı	μΑ
C_{IN}	Input capacitance.	3.3V with 5V tolerant I/O pins.	ı	2.3	-	pF

4.1.4 DC Characteristics of 3.3V with 5V Tolerant I/O Pins

Symbol	Parameter	Conditions	Min	Тур	Max	Units
VCC3IO	Power supply of 3.3V I/O.	3.3V I/O	2.97	3.3	3.63	V
Vil	Input low voltage.	LVTTL	ı	ı	0.8	V
Vih	Input high voltage.	LVIIL	2.0	ı	-	V
Vt-	Schmitt trigger negative going threshold voltage.	LVTTL	0.8	1.1	-	V
Vt+	Schmitt trigger positive going threshold voltage	going threshold	ı	1.6	2.0	V
Vol	Output low voltage.	$Iol = 4 \sim 8mA$	ı	ı	0.4	V
Voh	Output high voltage.	$Ioh = 4 \sim 8mA$	2.4	ı	-	V
Vopu (1)	Output pull-up voltage for 5V tolerant IO	With internal pull- up resistor	VCC3IO - 0.9	ı	-	V
Rpu	Input pull-up resistance.		40	75	190	ΚΩ
Rpd	Input pull-down resistance.		40	75	190	ΚΩ
	Input leakage current.	Vin = 5 or 0V	ı	±1	-	μΑ
	Input leakage current with pull-up resistance.	Vin = 0 V	ı	-45	-	μΑ
Iin	Input leakage current with pull-down resistance.	Vin = VCC3IO	-	45	-	μΑ

Note: This parameter indicates that the pull-up resistor for the 5V tolerant I/O pins cannot reach VCC3IO DC level even without DC loading current.

4.2 Power Consumption

Item	Conditions	VCCIO + VCC33A	VCCK + VCC12A_PLL	Units
Digital IO (32 I/O Output)	Power on, Unlinked (Typ.)	120	33	mA
	INIT state, Linked (Typ.)	135	48	mA
	OP state, Linked (Typ.)	160	50	mA

Note: Above current value are typical values measured on AX58100 Test board.

Table 4-1: AX58100 Power Consumption

Symbol	Description	Condition	Min	Тур	Max	Unit
θìC	Thermal resistance of junction to case		ı	16	-	°C/W
Ө	Thermal resistance of junction to ambient	Still air	-	28.3	-	°C/W
$\Psi_{ m JT}$	Junction to Top of the Package Characterization Parameter		-	1.49	-	°C/W

Table 4-2: Thermal Characteristics

4.3 Power-On-Reset (POR) Specification

Below figures and table show the two POR circuit spec during power ramp-up/down.

Figure 4-1: Power On Reset (POR) Timing Diagram

Symbol	Description	Conditions	Min.	Typ.	Max.	Units
VCCK	Power supply voltage to be detected	-	1.0	1.2	1.32	V
V _{rr}	VCCK rise relax voltage	-	1	0.72	0.9	V
V_{fr}	VCCK fall release voltage	-	1	0.63	0.85	V
T_{rst}	Reset time after POR trigger up	VCCK slew rate = 1.0V / 1µs	1.8	2.5	4.8	μs
T_{drop}	Drop time of VCCK to reset	VCCK slew rate = 2.5V / 1µs	0.2	0.4	0.9	μs

Table 4-3: Power On Reset (POR) Timing Table

4.4 Power-up Sequence

Figure 4-2: Power-up Sequence Timing Diagram

Symbol	Parameter	Conditions	Min	Typ	Max	Units
T _{rise3}	3.3V power supply rise time.	From 0V to 3.3V.	1	400	-	us
T _{rise2}	1.2V power supply rise time.	From 0V to 1.2V.	1	200	-	us
T_{23}	VCCK rising to 1.2V to VCC3IO rising to 3.3V interval.		-	200	-	us
T_{rst}	RSTn asserted low level interval.	From VCC3IO rising to 3.3V to RSTn going high.	ı	40	-	us
T_{clk}	25MHz crystal oscillator start-up time.	From VCC3IO rising to 3.3V to clock stable of 25MHz crystal oscillator.		1	60	ms
$T_{Startup}$	Startup time	PDI operational after power good, without I2C EEPROM loading error		-	70	ms

Note: The above typical timing data is measured from AX58100 test board.

Table 4-4: Power-up Sequence Timing Table

4.5 AC Timing Characteristics

4.5.1 I²C Timing

Figure 4-3: Write access (1 address byte, up to 16 Kbit EEPROMs)

Figure 4-4: Write access (2 address bytes, 32 Kbit - 4 Mbit EEPROMs)

Figure 4-5: Read access (1 address byte, up to 16 Kbit EEPROMs)

Comple of	Dou		Typical		Tīmita
Symbol Parameter		rameter	Up to 16 Kbit	32 Kbit-4 Mbit	Units
T_{Clk}	EEPROM clock per	iod	6.72 (≈ 1	150 KHz)	us
T _{Write}	Write access time (v	without errors)	250 310		us
т	Read access time	2 words	440	500	us
Read	(without errors):	configuration (8 Words)	1.16	1.22	ms
T_{Delay}	Time until configurater Reset is gone	ration loading begins	65.5		us

Table 4-5: I²C EEPROM Timing Table

4.5.2 Port 2 MII Timing

Figure 4-6: Port 2 MII TX Timing Diagram

Symbol	Description	Min	Тур	Max	Units
T _{CLK25}	MCLK output	-	40	ı	ns
T _{TX_delay}	TX_EN/TXD[3:0] delay after rising edge of MCLK	-	-	2	ns
T _{PHY_TX_CLK}	Delay between MCLK and TX_CLK output of the PHY	-	PHY dependent	-	ns
TPHY_TX_setup	PHY setup time	PHY dependent	-	1	ns
T _{PHY_TX_hold}	PHY hold time	PHY dependent	-	-	ns

Table 4-6: Port 2 MII TX Timing Table

Figure 4-7: Port 2 MII RX Timing Diagram

Symbol	Description	Min	Тур	Max	Units
T _{RX_CLK}	RX_CLK period (100 PPM with maximum FIFO Size only)	ı	40	-	ns
T_{RX_setup}	RX_DV/RX_ER/RXD[3:0] valid before rising edge of RX_CLK	2.1	-	-	ns
T _{RX_hold}	RX_DV/RX_ER/RXD[3:0] valid after rising edge of RX_CLK	0.5	-	-	ns

Table 4-7: Port 2 MII RX Timing Table

Figure 4-8: MDC/MDIO Write access

Figure 4-9: MDC/MDIO Read access

Symbol	Description	Min	Тур	Max	Units
T_{MDC}	MDC period		400 (≈ 2.5 MHz)		ns
T_{Write}	MI Write access time		25.6		us
T_{Read}	MI Read access time		25.4		us
T _{MI_startup}	Time between reset end and the first access of MI Link detection and configuration		1.34		ms

Table 4-8: MDC/MDIO Timing Table

4.5.3 Distributed Clocks SYNC/LATCH

Symbol	Description	Min	Тур	Max	Units
T_{DC_LATCH}	Time between LATCH 0/1 events	12			ns
$T_{DC_SYNC_Jitter}$	SYNC 0/1 output jitter			12	ns

Table 4-9: DC SYNC/LATCH timing characteristics

Figure 4-10: LATCH timing

Figure 4-11: SYNC timing

4.5.4 Digital I/O Timing

Figure 4-12: Digital Input: Input data sampled at SOF, IO can be read in the same frame

Figure 4-13: Digital Input: Input data sampled with LATCH_IN

Figure 4-14: Digital Input: Input data sampled with SYNC0/1

Figure 4-15: Digital Output timing

Symbol	Description	Min	Тур	Max	Units
T_{DATA_setup}	Input data valid before LAT_IN	5	-	-	ns
T _{DATA_hold}	Input data valid after LAT_IN	2	-	-	ns
T _{LAT_IN}	LAT_IN high time	4	-	-	ns
T_{SOF}	SOF high time	-	40	-	ns
Tsof_to_data_setup	Input data valid after SOF, so that Inputs can be read in the same frame	0	-	1.2	us
$T_{SOF_to_DATA_hold}$	Input data invalid after SOF	1.6	-	-	us
$T_{input_event_delay}$	Time between consecutive input events	440	-	-	ns
T _{OUTVLD}	OUTVLD high time	-	80	-	ns
$T_{DATA_to_OUTVLD}$	Output data valid before OUTVLD	79	-	-	ns
Twd_trig	WD_TRIG high time	-	40	-	ns
T _{DATA_to_WD_TRIG}	Output data valid after WD_TRIG	-	-	20	ns
T _{DATA_to_EOF}	Output data valid after EOF	-	-	20	ns
T _{DATA_to_SYNC}	Output data valid after SYNC0/1	-	-	20	ns
Toe_ext_to_data_invalid	Outputs zero or Outputs hi-Z after OE_EXT set to low	0	-	9.5	ns
$T_{output_event_delay}$	Time between consecutive output events	320	-	-	ns
T _{OUT_EXT_valid}	OUT_EXT valid before OUTVLD	_	80	-	ns
Tout_ext_invalid	OUT_EXT invalid after OUTVLD	-	80	-	ns

Table 4-10: Digital I/O timing Table

4.5.5 ESC PDI SPI Slave Timing

*Refer to timing diagram for relevant edges of SCLK

Figure 4-16: Basic MOSI/MISO timing

Symbol	Description	Min	Тур	Max	Units
T_{SCLK}	SCLK Period	33 (≤30MHz)	-	-	ns
$T_{SEL_to_CLK}$	First SCLK cycle after SCS_ESC asserted	5	-	-	ns
	Deassertion of SCS_ESC SPI mode 0/2, SPI mode 1/3 with normal data out sample	5			ne
Tclk_to_sel	after last SCLK cycle SPI mode 1/3 with late data out sample sample	T _{CLK} /2+ 5	ı	-	ns
${ m T}_{ m read}$	Only for read access between address/command and first data byte. Can be ignored if BUSY or Wait State Bytes are used.		-	-	ns
Taccess_delay	Delay between SPI accesses	40	-	-	ns
T _{MOSI_setup}	MOSI valid before SCLK edge	3	-	-	ns
T_{MOSI_hold}	MOSI valid after SCLK edge	0	ı	-	ns
T _{SCLK_to_MISO_valid}	MISO valid after SCLK edge	-	-	10.5	ns
T _{SCLK_to_MISO_invalid}	MISO invalid after SCLK edge	0	-	-	ns
T_{IRQ_delay}	Internal delay between AL event and SINT output to enable correct reading of the interrupt registers.	-	180	-	ns

Table 4-11: PDI SPI Slave Timing Table

Figure 4-17: PDI SPI Slave read access (2 byte addressing, 1 byte read data) with Wait State byte

Figure 4-18: PDI SPI Slave read access (2 byte addressing, 2 byte read data) with Wait State byte

Figure 4-19: PDI SPI Slave write access (2 byte addressing, 1 byte write data)

Figure 4-20: PDI SPI Slave write access (3 byte addressing, 1 byte write data)

4.5.6 Function SPI Slave Timing

Figure 4-21: Function SPI Slave with share pin Timing Diagram

Symbol	Description	Min	Тур	Max	Units
T_{SCLK}	SCLK clock frequency	-	-	50	MHz
T_{DO}	MISO data valid time after SCLK edge	9.2	-	-	ns
T_{SU}	MOSI data setup time before SCLK edge	2	-	-	ns
$T_{ m HD}$	MOSI data hold time after SCLK edge	2	-	-	ns
T_{CSSP}	SCS setup time before MISO active	7.6	-	-	ns
T_{DHD}	SCS hold time after SCLK edge	21	-	-	ns
T _{CSHD}	MISO data hold time after SCS de-assert	2.6	-	-	ns
T_{GN}	SCS negation to next SCS assertion time	40	-	-	ns

Table 4-12: Function SPI with share pin Timing Table

Figure 4-22: Function SPI Slave with individual pin Timing Diagram

Symbol	Description	Min	Тур	Max	Units
T_{SCLK}	SCLK clock frequency	-	-	47	MHz
T_{DO}	MISO data valid time after SCLK edge	10.5	-	1	ns
T_{SU}	MOSI data setup time before SCLK edge	2	-	-	ns
$T_{ m HD}$	MOSI data hold time after SCLK edge	2	-	-	ns
T_{CSSP}	SCS setup time before MISO active	7.7	ı	ı	ns
T_{DHD}	SCS hold time after SCLK edge	21	ı	ı	ns
T_{CSHD}	MISO data hold time after SCS de-assert	2.5	-	-	ns
T_{GN}	SCS negation to next SCS assertion time	40	-	-	ns

Table 4-13: Function SPI with individual pin Timing Table

4.5.7 ESC PDI Local Bus Timing

Figure 4-23: PDI Local Bus Read access (without preceding write access)

Figure 4-24: PDI Local Bus Write access (write after rising edge LWRn, without preceding write access)

Figure 4-25: PDI Local Bus Sequence of two write accesses and a read access

Note: The first write access to ADR1 is performed after the first rising edge of WR. After that, the ESC is internally busy writing to ADR1. After CS is deasserted, BUSY is not driven any more, nevertheless, the ESC is still writing to ADR1.

Hence, the second write access to ADR2 is delayed because the write access to ADR1 has to be completed first. So, the second rising edge of WR must not occur before BUSY is gone. After the second rising edge of WR, the ESC is busy writing to ADR2. This is reflected with the BUSY signal as long as CS is asserted.

The third access in this example is a read access. The ESC is still busy writing to ADR2 while the falling edge of RD occurs. In this case, the write access to ADR2 is finished first, and afterwards, the read access to ADR3 is performed. The ESC signals BUSY during both write and read access

Figure 4-26: PDI Local Bus Write access (write after falling edge LWRn

Symbol	D	escription	Min	Тур	Max	Units
Tog., pygy	BUSY driven an	d valid after CS			45	ne
T _{CS_to_BUSY}	assertion		-	-	45	ns
T _{ADR_BHE_setup}	ADR and BHE v	alid before RD	0	_	_	ns
	assertion					113
T _{RD_to_DATA_driven}		n after RD assertion	0	-	-	ns
$T_{RD_to_BUSY}$		fter RD assertion	0	-	10	ns
		ne (RD assertion to BUSY				
		0]). Additional 20 ns if de	elayed read b	ousy output is	configured.	
		g write access or				
		$T_{WR_to_RD} \ge T_{prec_write} + T_{Coll} \text{ or}$		-	T_{read_int}	
		rite after falling edge of				
	WR				T	
	1.1				T _{read_int} +	
	with preceding w		-	-	$T_{ ext{prec_write}} + T_{ ext{Coll}} -$	
$T_{\rm read}$	$T_{WR_to_RD} < T_{prec_}$	write + 1 Coll				ns
	8-bit access, abso	luta waret anna			$T_{WR_to_RD}$	
	with preceding w					
	$(T_{WR \text{ to } RD} = min)$		-	- - - -	420	
	$T_{\text{Coll}} = max$	prec_write —max,				
		1				
		solute worst case				
	with preceding w		-	-	560	
	$(T_{WR_to_RD}=min, T_{max})$	prec_write —IIIax,				
	T _{Coll} =max)	0 1:4			220	
$\mathrm{T_{read_int}}$	Internal read time	8-bit access	-	-	220	ns
_	Time for	16-bit access 8-bit access			300	
Т	preceding write	8-bit access			180	ns
$T_{ m prec_write}$	access	16-bit access			260	113
		normal read busy				
_	after device	output			5	
$T_{BUSY_to_DATA_valid}$	BUSY is	delayed read busy		-	1.7	ns
	deasserted	output			-15	
TADE BUE to DATA involi						
d	DATA invalid at	ter ADR or BHE change	0	-	-	ns
	DATA bus releas	sed after CS deassertion				
$T_{CS_RD_to_DATA_release}$	or RD deassertio		2.5	-	7.5	ns
T _{CS_to_BUSY_release}		fter CS deassertion	2.5	-	8.5	ns
	Delay between C					-
T_{CS_delay}	assertion	ob deassertion an	5	-	-	ns
	Delay between R	D deassertion				
$T_{ m RD_delay}$	and assertion	deassertion	5	-	-	ns
		Write DATA valid				
$T_{ADR_BHE_DATA_setup}$	before WR deass		6.5	-	-	ns
_		Write DATA valid after	_			
$T_{ADR_BHE_DATA_hold}$	WR deassertion	vviite Billi valia artei	2	-	-	ns
T _{WR_active}	WR assertion tim	ne	8.5	-	_	ns
		ertion after BUSY				-110
$T_{BUSY_to_WR_CS}$	deassertion		0	-	-	ns
		after WR deassertion	-	_	12	ns
$T_{WR_to_BUSY}$					12	112
T		me (WR assertion to BUS	y deassertion	on) I		
$\mathrm{T_{write}}$		rite after falling edge of	0	-	T_{write_int}	ns
	WR (act. low)				c_iiit	

	1.1 1.	•. •		l				
	with preceding w				Twrite int-			
		int (Write after rising		-	T_{WR_delay}			
	edge -of WR)				1uo.u.y			
	without precedin							
		int (Write after rising		-	0			
	edge of WR)							
		olute worst case with				ns		
	preceding write a			_	180			
	min, T _{WR_int} =max	x, Write after rising			100			
	edge of WR)							
	16-bit access, abs	solute worst case						
	with preceding w			_	260			
		$\Gamma_{WR_int} = max, Write$		_	200			
	after rising edge of WR)							
T_{write_int}		8-bit access	_	_	180	ns		
write_int	time	16-bit access			260	115		
T_{WR_delay}		VR deassertion and	5	_	_	ns		
- WR_delay	assertion	<u></u>				115		
		RD access directly						
		follows WR access			•			
T.	-	with the same address			20			
T_{Coll}	Extra read delay	(8-bit accesses or 8-bit	-	=	-	-		ns
		WR and 16-bit RD)						
		different addresses or			0			
	D.L. L. V	16-bit accesses						
$T_{WR_to_RD}$	•	VR deassertion and RD	0	-	-	ns		
	assertion	1 W/D 1 1						
T	Time both CS an		_					
$T_{CS_WR_overlap}$		taneously (only if	5	-	-	ns		
	CS is deasserted	/						
Т	Time both CS an		-					
$T_{CS_RD_overlap}$		taneously (only if	5	-	-	ns		
	CS is deasserted							
T		tween AL event and		100				
T_{IRQ_delay}		enable correct reading of	-	180	-	ns		
	the interrupt regi	sters.						

Table 4-14: PDI Local Bus Timing Table

4.5.8 Function Local Bus Timing

Figure 4-27: Function Local Bus Signal Read Access

Figure 4-28: Function Local Bus Write Access (Late Sample = 0)

Figure 4-29: Function Local Bus Write Access (Late Sample = 1)

Symbol	Description	Min	Тур	Max	Units
T_{CS}	LFCSn back to back	30	-	-	ns
T _{CS2RD}	LFCSn to LRDn	0	-	-	ns
T _{CS2WR}	LFCSn to LWR,	0	-	-	ns
T_{RD2CS}	LRDn to LFCSn	0	-	-	ns
Twr2cs	LWRn to LFCSn	0	-	-	ns
T_{AS}	LA setup time	0	-	-	ns
T_{AH}	LA hold time	0	-	-	ns
T_{A2D}	LA change to LDA valid	-	-	40	ns
T_{RD}	LRDn pulse	T_{RD2D}	-	-	ns
T_{RD2D}	LRDn to LRDY	-	-	80	ns
T_{WR}	LWRn pulse	30	-	-	ns
Twr2rdy	LWRn assert to LRDY assert	-	-	60	ns
T _{WR2WR}	LWRn back to back (late sample)	100	-	-	ns
T _{DS_NOR}	LDA setup time	0	-	-	ns
T _{DH_NOR}	LDA hold time	40	-	-	ns
T _{DS_LAT}	LDA setup time with Late Sample	10	-	-	ns
TDHIAT	LDA hold time with Late Sample	10	_	_	ns

Table 4-15: Function Local Bus Access Timing

4.5.9 PWM Motor Controller Timing

Note: PWMx mean PWM 1 to PWM 3

Figure 4-30: PWMx Timing

Symbol	Description	EN8X	Min	Тур	Max	Units
Т	DWM Pariod Cyalo	x1	-	PPC * 10	-	ns
T_{PPC}	PWM Period Cycle	x8	ı	PPC * 80	-	ns
т	PWM x High pulse Width set by PxHPWR	x1	-	$PxHPV * 10^{*1}$	-	ns
T_{PxHP}	r www x riigii puise widdi set by rxrr wk	x8	-	$PxHPV * 80^{*1}$	-	ns
Т	PWM x Low pulse Width set by PxHPWR	x1	ı	$PxHPV * 10^{*1}$	-	ns
T_{PxLP}		x8	ı	$PxHPV * 80^{*1}$	-	ns
т	Pulse width for PULZ, PULC, PULA, PULB, and	x1	ı	PXHPW * 10	-	ns
T_{PXHPW}	PULAB	x8	ı	PXHPW * 80	-	ns
т	PWM Trigger Pulse A Position in PWM Period	x1	ı	PTAPP * 10	-	ns
T_{PAPP}	Cycle	x8	ı	PTAPP * 80	-	ns
Т	PWM Trigger Pulse B Position in PWM Period	x1	-	PTBPP * 10	_	ns
T_{PBPP}	Cycle	x8	-	PTBPP * 80	_	ns

Note *1: "x" = 1 ~ 3

Table 4-16: PWMx Timing Table

Figure 4-31: Only PWM Channel 2 Shift Diagram

Symbol	Description	EN8X	Min	Тур	Max	Units
	PWM pulse was postponed raising time	x1	-	P1SHIFT * 10	-	ns
T _{P1SHT}	(addition with P1SHR) and the pulse width stays the same	x8	-	P1SHIFT * 80	-	ns
T _{P2SHT}	Diagon reference T	x1	-	P2SHIFT * 10	-	ns
1 P2SHT	Please reference T _{PISHT} content	x8	-	P2SHIFT * 80	-	ns
Т	Diagram of the T	x1	-	P3SHIFT * 10	-	ns
T _{P3SHT}	Please reference T _{P1SHT} content	x8	-	P3SHIFT * 80	-	ns

Table 4-17: PWMx Shift Timing Table

Figure 4-32: BBM (Break Before Make) Timing Diagram

Symbol	Description	EN8X	Min	Тур	Max	Units
т	High pulse was postponed raising and	x1	ı	PBBMH * 10	-	ns
T_{BBMH}	reduce pulse width	x8	ı	PBBMH * 80	-	ns
т	Low pulse was postponed falling and	x1	ı	PBBML * 10	-	ns
T_{BBML}	addition pulse width	x8	-	PBBML * 80	-	ns

Table 4-18: PWMx BBM Timing Table

Figure 4-33: One Shot with multi Step Timing Diagram

Symbol	Description	Min	Тур	Max	Units
T_{SGT}	Step Pulse to Pulse Gap time set by SGTLR and SGTHR	-	SGT * 10	-	ns
T_{SPW}	Step Pulse Width set by SHPWR Note: Step frequency = $1/(T_{SPW} + T_{SGT})$	-	SPW * 10	-	ns
T_{SPDY}	Direction Transform Delay Time set by TDLYR	-	SPDT * 10	-	ns

Table 4-19: Step function timing table

4.5.10 Incremental and Hall Encoder Interface Timing

Figure 4-34: ABZ Timing Diagram

Figure 4-35: CW/CCW Timing Diagram

Figure 4-36: CLK/DIR Timing Diagram

Figure 4-37: Hall Timing Diagram

Symbol	Description	Min	Тур	Max	Units
T_{SK}	AB state keep time	30	-	-	ns
T_{Z}	Z Pulse Width	30	-	ı	ns
T_{CWH}	CW high time	30	-	ı	ns
T_{CWL}	CW low time	30	-	ı	ns
T_{CCWH}	CCW high time	30	-	ı	ns
T_{CCWL}	CCW low time	30	-	ı	ns
T_{CLKH}	CLK high time	30	-	ı	ns
T_{CLKL}	CLK low time	30	-	ı	ns
T_{C2D}	CLK to DIR time	30	-	ı	ns
T_{D2C}	DIR to CLK time	30	-	1	ns
T_{HK}	Hall state keeps time	60	_	-	ns

Table 4-20: Incremental and Hall Encoder Timing Table

4.5.11 SPI Master Timing

Figure 4-38: SPI Master Timing

Figure 4-39: MMISO /MMOSIO Timing

Figure 4-40: SPI MDRLD Ready Timeout Timing

Figure 4-41: SPI MTRG Trigger Pulse Timeout

Figure 4-42: SPI MDRLD Trigger LDAC Gap and Width Timing

Symbol	Description	Min	Тур	Max	Units
	Clock				
T _{SCLK}	MSCLK Period	-	$T_{ m SCLKH+} \ T_{ m SCLKL}$	-	ns
T_{SCLKH}	MSCLK high	-	5 * Divide	-	ns
T_{SCLKL}	MSCLK low	-	5 * Divide	-	ns
	Bus Timing	or S			
	MSS[x] to MSCLK (Mode0/1 without DBS1K)	-	(DBS + 1) * Tsclk	-	ns
	MSS[x] to MSCLK (Mode2/3 without DBS1K)	-	(DBS + 0.5) * Tsclk	-	ns
T_{DBS1}	MSS[x] to MSCLK (Mode0/1 with DBS1K)	-	((1024 * (DBS + 1)) + 1) * Tsclk	-	ns
	MSS[x] to MSCLK (Mode2/3 with DBS1K)	-	((1024 * (DBS + 1)) + 0.5) * Tsclk	-	ns
	Byte to byte (Mode0/1 without DBS1K)	-	(DBS + 0.5) * Tsclk	-	ns
	Byte to byte (Mode2/3 without DBS1K)	-	(DBS + 0.5) * Tsclk	-	ns
T_{DBS2}	Byte to byte (Mode0/1 with DBS1K)	-	((1024 * (DBS + 1)) + 0.5) * Tsclk	-	ns
	Byte to byte (Mode2/3 with DBS1K)	-	((1024 * (DBS + 1)) + 0.5) * Tsclk	-	ns
	MSCLK to MSS[x] (Mode0/1 without DBS1K)	-	(DBS + 0.5) * Tsclk	-	ns
	MSCLK to MSS[x] (Mode2/3 without DBS1K)	-	(DBS + 1.0) * Tsclk	-	ns
T_{DBS3}	MSCLK to MSS[x] (Mode0/1 with DBS1K)	-	((1024 * (DBS + 1)) + 0.5) * Tsclk	-	ns
	MSCLK to MSS[x] (Mode2/3 with DBS1K)	-	((1024 * (DBS + 1)) + 1.0) * Tsclk	-	ns
т	MSS[x] gap (without DT1K)	-	(DT + 2) * Tsclk	-	ns
T_{DT1}	MSS[x] gap (with DT1K)	-	(1024 * (DT + 1) + 2) * Tsclk	-	ns
T_{MISET}	MMISO setup time	10.5	-	-	ns
$T_{ m MIHD}$	MMISO hold time	0	-	-	ns
T_{MODLY}	MMOSI output delay	-	-	0.5	ns
T_{RT}	MDRLD ready timeout (RDY mode)	-	(1 + SPIRPT) * 1024 * Tsclk	-	ns
T_{PT}	MTRG timeout	-	(1 + SPIRPT) * 1024 * Tsclk	-	ns
T _{LDACG}	MDRLD Gap (LDAC mode)	-	((LDACG1K * 1023) + 1) * (LDGAP + 1) * Tsclk	-	ns
T_{LDACW}	MDRLD Width (LDAC mode)	-	(LDACG1K * 1023 + 1) * (LDWID + 1) * Tsclk	-	ns

Table 4-21: SPI Master Timing Table

4.5.12 RSTO, EEPROM and EEP_DONE Timing

Figure 4-43: Power up to RSTO, EEPROM and EEP_DONE Timing

Figure 4-44: RSTn to RSTO, EEPROM and EEP_DONE Timing

Figure 4-45: Register Reset to RSTO, EEPROM and EEP_DONE Timing

Symbol	Description	Min	Тур	Max	Units
T_{RSTO}	The period of chip internal reset counter	-	63	-	ms
T_{RSTi}	RSTn asserted to RSTO active	ı	0	-	ns
$T_{RST2EEP}$	RSTn de-asserted to start EEPROM Loading	ı	61.5	-	ms
T_{EEP_LOAD}	EEPROM loading period (Checksum Matched)	ı	1.5	-	ms
T _{EEP_DONE}	RSTn de-asserted to EEP_DONE active	-	63	-	ms

Table 4-22: RSTO, EEPROM and EEP_DONE timing table

5 Package Information

80 81

VARIATIONS (ALL DIMENSIONS SHOWN IN MM)			
SYMBOLS	MIN.	NOM.	MAX.
А			1.60
A1	0.05		0.15
A2	1.35	1.40	1.45
b	0.13	0.18	0.23
С	0.09		0.20
D	12.00 BSC		
D1	10.00 BSC		
E	12.00 BSC		
E1	10.00 BSC		
е	0.40 BSC		
L	0.45	0.60	0.75
L1	1.00 REF		
θ	0,	3.5 °	7*

 THERMALLY ENHANCED DIMENSIONS(SHOWN IN MM)

 PAD SIZE
 D2
 E2

 MIN.
 MAX.
 MIN.
 MAX.

 21*X18*
 4.71
 5.69
 3.88
 4.72

Recommended PCB Footprint for 80-pin LQFP lead Free package

Symbol	Description	Typical Dimension
e	Lead pitch	0.40 mm
b	Pad width	0.20 mm
L	Pad length	2.00 mm
U	-	5.70 mm
V	-	7.80 mm
W	-	10.00 mm

6 Ordering Information

Part Number	Description
AX58100 LT	80-pin LQFP lead Free package, Industrial temperature range: -40 to 105°C.

7 Revision History

Revision	Date	Comments	
V0.20	2018/06/11	Preliminary release.	
V0.30	2018/07/27	1. Changed the pin name, type and descriptions of pin #56 in Section 1.3, 1.4. 2. Removed the "VCC33D" descriptions in Section 14.	
		3. Modified some descriptions in Section 2.1, 3.2.1, 9.2, 9.4.1.4. Updated Figure 0-1.	
V1.00	2018/09/26	 Changed some pin definitions in Section 1.4. Added a new bootstrap pin definition in Section 3.1. Modified some EEPROM layout and bit definitions in Section 3.2. Changed the default value of EEPROM word offset 0x41 to 0x0021. 	
		5. Modified some ESC Memory Map and Function Registers Map definitions in Section 3.3.	
		6. Updated some timing spec. and waveforms in Section 4.7. Modified some descriptions in Features and Section 1.1, 2.8. Updated Figure 1-1, 1-2.	
V1.01	2018/10/05	1. Modified some descriptions in Section 1.1, 2.4, 3, 5. 2. Corrected a typo in Figure 1-2.	
V1.02	2018/11/07	1. Modified a typo in Section 6.	
V1.03		 Modified some information in Section 4.2. Updated some description in Section 5. 	
V1.04	2019/09/11	Corrected some typos and modified some descriptions	
V1.05	2020/05/19	1. Updated power consumption value in section 4.2 2. Added section 4.5.12 for RSTO, EEPROM and EEP_DONE timing 3. Added some description for EEP_DONE in section 1.4.1 4. Updated Digital IO Timing in section 4.5.4	
V1.06	2021/06/30	Corrected some description in Section 3.2	
V1.07		Modified some descriptions in Section 4.5.4	
V1.08		Removed ESC's register 0x518 description in Section 3.3.1	
V1.09		Modified T _{SCLK} information in Table 4-11 and 4-13 Added Recommended PCB Footprint in Section 5	

4F, No.8, Hsin Ann RD., Hsinchu Science Park, Hsinchu, Taiwan, R.O.C.

TEL: +886-3-5799500 FAX: +886-3-5799558

Email: support@asix.com.tw
Web: https://www.asix.com.tw