

STEP-01

### **BACKGROUND**

Mini soap in 3P Factory

KGF Capacity Constraint

NMSCC Cost 7.4 Crore BDT per year









### **BACKGROUND**

What Can We Do....?

Absorbing Mini Soap line in an already existing factory.

The First Suggestion

WHY NOT KGF?? CHALLENGE!!

### **ARCE**

Key Head

**IRR** 

Pay Back KGF

85%

ck 1.1yrs

**ARCE** 

31.5%

2.8yrs



STEP-02

### LOSS STRATIFICATION



Increasing Soap CPT trend due to decreased volume

3p labor cost to bag noodles for lily(Extra pressure on KGF for 3p intake)

High cost of sack and poly for bagging noodles

High transport cost to transfer noodles in lily



We will fit lily line In Soap plant

### **SFD Layout**







### **Line-5** Is Selected



### **CU Evaluation**

### **Considering LTCP Volume**

OEE of the line is considered as 70%, Increase in OEE by 500 BPS will lead to CU dropping to around 80%, hence no risk from that side.

| Year                        | 2020  | 2021  | 2022  | 2023  | 2024  | 2025  | 2026  |
|-----------------------------|-------|-------|-------|-------|-------|-------|-------|
| Envelope & Carton Vol (MT)  | 41020 | 37228 | 40265 | 41768 | 43095 | 44258 | 45443 |
| Flow wrap                   | 3675  | 2862  | 3071  | 3271  | 3352  | 3518  | 3728  |
| YOY Growth (Flow Wrap)      |       | -22%  | 7%    | 7%    | 2%    | 5%    | 6%    |
| Total (Env + Carton + FLow) | 44695 | 40090 | 43336 | 45039 | 46447 | 47776 | 49171 |
| CU % Including Lily         |       |       | 77%   | 79%   | 82%   | 84%   | 87%   |

What we require

To feed 7% Growth





### **Decision Making**

AT LINE-5 Two Run Strategies Could be Implemented

#### Plan-A

We dedicatedly run 35g or 100g and do change over in between when required

#### Plan-B

Simultaneously run 35g in one side of Stamper and 100g in another side

Stamper could go up to 42 Strokes per minute

|                          | PLAN-                       | A          | PLAN-B              |                               |  |  |  |  |
|--------------------------|-----------------------------|------------|---------------------|-------------------------------|--|--|--|--|
|                          | 35g OR 100g Ru              | n Strategy | 35g AND             | 100g Run Strategy             |  |  |  |  |
| SKU                      | 35g                         | 100g       | 35g                 | 100g                          |  |  |  |  |
| No. of Cavity            | 24                          | 14         | 12                  | 7                             |  |  |  |  |
|                          | 380                         | 360        | BOSCH Max Speed-380 | ACMA Max Speed-360            |  |  |  |  |
| Stamper Stroke           | 15/16                       | 25/26      | 32                  | 32                            |  |  |  |  |
|                          |                             |            |                     | Stamper Becomes a Bottle Neck |  |  |  |  |
| Daily                    | 13.41                       | 36.29      | 13.41               | 22.58                         |  |  |  |  |
| Average Monthly Demand   | 350                         |            | 350                 | 677.376                       |  |  |  |  |
| Run per Month(Day)       | 26                          | 4          | 30                  | 30                            |  |  |  |  |
| Volume per Month         | 350                         | 145.152    | 402.192             | 677.376                       |  |  |  |  |
| Total Monthly Production | 495.15                      | 2          |                     | 1079.568                      |  |  |  |  |
| Delta Volume per Month   | 584.416<br><b>6311.6928</b> |            |                     |                               |  |  |  |  |
| Delta Volume per Annum   |                             |            |                     |                               |  |  |  |  |



#### Cons of Plan-A:

- ❖ Number of Change Over is high
- Change Over loss is High
- Inconsistent delivery

#### Pros of Plan-B:

- Number of Change Over is ZERO
- Change Over loss is ZERO
- Consistent Delivery







### **Option Evaluation**

What we require

To feed 7% Growth

**Two Machine** Layout Not feasible 2\*300 UPM constraint **New Flow Wrap** Machine **One Machine High Cost** A Capex of 3 1\*500 UPM **Crore BDT** Minimum Capex NOW?? **Upgrade the existing Flow Wrap Machine** from 300 to 400 UPM **Maximum Profit** 



STEP-04

### **Cross Functional Team Formation**







### **Work Plan**

|       | 07 Step Approach                      | TO DO                                                                                                                   | Jan | Feb | Mar | Apr | lay J | un | Jul | ug | Бер   | Oct | VoV  | )ec |
|-------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-------|----|-----|----|-------|-----|------|-----|
|       | Definition of Pilot Area              | Background                                                                                                              |     |     |     |     |       |    |     |    |       |     |      |     |
|       | Loss Stratification                   | Loss Stratification                                                                                                     |     |     |     |     |       |    |     |    |       |     |      |     |
| Plan  | Project Selection                     | SFD Layout, Line Selection, CU Evaluation, Decision Making, Option Evaluation, Work Plan                                |     |     |     |     |       |    |     |    |       |     |      | V   |
|       | Team Building                         | Cross Functional Team Formation, Vision                                                                                 |     |     |     |     |       |    |     |    | CH CH | cī  | PLAN |     |
| Do    | Understanding M/C<br>& Process        | Understanding M/C & Process: Billet Formation, Soap Bar<br>Formation, Soap Bar Wrapping, 5G Analysis, Fishbone Analysis |     |     |     | ١   |       |    |     |    | , re  | 1   | DO   | X   |
| Check | Cost Benefit Analysis                 | Cost Benefit Analysis (PQCDM)                                                                                           |     |     |     |     |       | П  |     |    |       |     |      |     |
| Act   | Follow Up and<br>Horizontal Expansion | Standardization                                                                                                         |     |     |     |     |       |    |     |    |       |     |      |     |



STEP-04

### Vision







### **Understanding M/C & Process**







### Understanding M/C & Process: Billet Formation



soap mixing in Mixer after addition Of all ingredients as per SOP



Mixed soap is transferred to roll mill through transfer belt where soap grit controlled



From rollmill soap is transferred to duplex plodder. In pre-plodder, foreign particle of soap is removed by a mesh filter.

In final plodder vacuum is created to make the soap air free



Soap bar after eye plate is Cut in specified length by Electronic cutter into bsillet



Air free soap is coming out of Eye plate (fixes bar orientation) as soap billet after going through Extrusion process



After vacuum, soap is heated At 60-70degree C at cone heater for Smooth billet surface



### Understanding M/C & Process: Soap Bar Formation



After electronic cutter, billet is fed into the USN 2750 stamper through conveyor



Billet lifter arm sucks the billet for lifting from the conveyor through vacuum



Lifter arm lifts the billet and puts it on the lower die surface



Soap bar is finally formed and discharged through flexlink conveyor



Tablet lifter arm lifts the soap bar from lower die surface and discharges to the delivery conveyor belt



Upper die and lower die presses against each other to form soap bar





### **Understanding M/C & Process: Soap Bar**



Through flexlink and IL5 Conveyors soap bar is fed to the wrapping machine IL5210 BOSCH



Soap bar transfer from flexlink conveyor to IL5 conveyor where soap bar is separated through speed synchronization



Soap bar is being transferred From IL5 to finger conveyor where Soap bar is being pocketed and Stabilized to maintain certain repeat Length between soap bar



Generating a string of 12 soap sachet in a row which is to be packed manually by 3p



Sachet is being sealed and cut in the batch cutter section



Laminate in the sachet forming box forms the sachet with soap bar inside



Reel holder holds the laminate reel and transfers the laminate to sachet forming box



## STEP-05 5G ANALYSIS



| GO TO THE SPOT          | Mixer, Plodder, Cutter, Stamper                                                    |
|-------------------------|------------------------------------------------------------------------------------|
| EXAMINE THE OBJECTS     | EXAMINE THE BILLET DIMENSIONS                                                      |
| CHECK FACTS AND FIGURES | JAMMING BEFORE HIGH OFFCUT BENT BILLET STAMPER RECYCLE                             |
| REFER TO THEORY         | STAMPER JAMMING DUE TO DIFFERENTIAL PLODDING, HIGH OFFCUT RECYCLE, UNSTABLE BILLET |
| FOLLOW THE STANDARD     | LINE STABILIZATION                                                                 |





→ Maximum

Stability

Capacity

Offcut Recycle

Differential plodding

When same plodder is used to make different dimension billets

> CAN NOT AGGREGATE!



Use similar dimension billet for both **SKUs** 



BILLET LOW STRENGTH

Reduced dimension of billets result in low strength of billet



### STEP-05

## Trial and Error Target offcut recycling: Less than 40%

#### Trial 1:



#### **Decision: Change die orientation**

Trail 2:



#### Issues that arise from high offcut recycling:

- Overload on stamper
- Stamper lifetime reduction
- Soap becomes hard



|   | No. of Cavity | Stamper Strokes |
|---|---------------|-----------------|
| • | 9             | 45              |
| • | 12            | 32              |
|   |               |                 |



**Capacity Unlock** 



Trail 2 (Cont):

W-29mm
H-44mm

L-690mm

Offcut recycling: 55%





**Decision: Change billet dimension** 

Trial 3:

L-670mm

W-20.8mm

H-42mm

Weight-670g

Offcut recycling: 34.8%



Before



After



Offcut Reduced, Capacity Unlocked

### STEP-05 5G ANALYSIS







### 4M (fishbone) Analysis- Flexlink conveyor







#### RCA- FLEXLINK CONVEYOR

| pher                        | nomenon |                                          |                                        | concept advancing meth                                                                      | od                                                  |                 | countermeasures                                  |
|-----------------------------|---------|------------------------------------------|----------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------|--------------------------------------------------|
| where                       | what    | why                                      | why                                    | why                                                                                         | why                                                 | why             |                                                  |
|                             |         | 1. flexlink<br>guider rough<br>surface   | 1.CLIR ensured                         |                                                                                             |                                                     |                 |                                                  |
|                             |         | 2.sticky soap                            | 2. high<br>moisture soap<br>from mixer | 2. low TFM noodle from<br>dryer                                                             | 2.Dryer<br>operation to be<br>fixed at >74.6<br>TFM |                 |                                                  |
| Bosch<br>infeed<br>flexlink | jamming | 3. flexlink<br>conveyor<br>rough surface | 3.CLIR ensured                         |                                                                                             |                                                     |                 |                                                  |
| conveyor                    | TILL!   | 4.Soap<br>rotation on<br>conveyor        | 4.soap colliding with each other       | 4. soap bar getting stuck with each other at guider end at while rotating at 90degree angle | momentum high                                       | angle 90 degree | 1. Conevyor travelling angle change to 45 degree |
|                             |         |                                          |                                        |                                                                                             |                                                     |                 |                                                  |

Kaizen1
Before:





Soap travelling angle was at 90degree

#### After:



Soap travelling angle is 45degree and soap is travelling smoothly



### **Kaizen-1 Animation**





### STEP-05 5G ANALYSIS







### 4M (FISHBONE) Analysis- BOSCH







### RCA - BOSCH

| phe   | nomenon |                                                                   |                                                                                                                                                                          | concept advancing i                                                                                                                                                                      | method                                                                                                                                                      |                                                                                                     |     | countermeasures                                                                 |
|-------|---------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----|---------------------------------------------------------------------------------|
| where | what    | why                                                               | why                                                                                                                                                                      | why                                                                                                                                                                                      | why                                                                                                                                                         | why                                                                                                 | why | 1. Gap between                                                                  |
| BOSCH |         | 2.Heater temperature low 3. Jaw pressure low 4. sealing jaw dirty | 1.1 double soap in sachet  1.2 Soap rotation in vertical position in pocket conveyor  2. heater temperature fixed at 180degree 3. jaw pressure adjusted  4. CLIR ensured | 1.1.1 Soap tilting Gap conveyor to finger conveyor  1.2.1 guider and conveyor rough surface 1.2.2 Finger contact area low with respect to soap length (62mm) 1.2.3 improper finger shape | 1.1.1 Gap between two conveyor (18mm) is high with respect to soap bar width (25mm)  1.2.1 CLIR ensured 1.2.2 Finger size (7mm) with respect to soap length | 1.1.1 Gap<br>conveyor dia<br>(10mm) and<br>flexlink<br>conveyor drive<br>(40mm) dia is<br>different |     | the conveyor to be reduced  2. finger size increase with respect to soap length |
|       |         | 5. Cutter<br>sharpness low                                        | 5. Cutter<br>replacement SOP<br>developed                                                                                                                                |                                                                                                                                                                                          |                                                                                                                                                             |                                                                                                     |     |                                                                                 |





### **Before:**



Finger conveyor drive roller dia 40mm

### **After:**



3 roller added of dia 10mm to reduce the conveyors gap to 8mm





## KAIZEN-3 Before:



Finger width 7mm







### KAIZEN-3

### **After:**



Finger width 20mm









### **Kaizen-2 Animation**





### **Kaizen-3 animation**





STEP-06

### **Cost Benefit Analysis**

Capex:3.9 Cr

NMSCC cost leverage 407bps

NMSCC cost savings 5.6Cr BDT/Yr

**Skin Cleansing GM Improvement 45 bps** 

DNS KGF CPT decrease 2-3%

Plastic saving 920kg





### **Cost Benefit Analysis (PQCDM)**



### P- Addition of Lily Volume 3000T/yr



Q-Better Governance and more skilled labor



C- Savings 5.6Cr BDT/ Year



D- Better quality, product delivery from safer environment



**S- Better Governance** 



M-Passionate workforce as own creative work has been recognized







### **Future Plan**

Mini: Home Expansion Capacity Increase



Installing Up-Spiral & Down-Spiral After L-5 Stamper



# Thank You!!!

