- (a) True; $\mathbb{Z}_{10}^{\times} = \{1, 3, 7, 9\}$, and $(3) = \{1, 3, 9, 7\}$, so \mathbb{Z}_{10}^{\times} is cyclic.
- (b) True, |Sn/Anl=2, & 2 is prime, so Sn/An is cyclic (all groups of prime order are cyclic)
- (c) False; this is only true if R has no nontrivial zero-divisors.
- (d) True; in fact all subgroups of (Z,+) have the form n.Z.
- (e) True; X^3+X+1 has no noots since $\mathbb{Z}_2=\{0,1\}$, $0^3+0+1=1$ & $1^3+1+1=1$, hence it is irreducible since the degree is 3, and irred. polysin F[X] (Fa field) generate maximal ideals, so the quotient $\mathbb{Z}_2[X]/(X^3+X+1)$ is a field.

(i) it is useful to first white or as a product of disjoint cycles:

$$\sigma = (156)(134)^{-1}(2546)(37)^{-1}
= (156)(143)(2546)(37)
= (14356)(2546)(37)
= (14)(26)(35)(37)
= (14)(26)(375)$$

Therefore $o(\sigma) = LCM(2,2,3) = [6]$.

(ii) $\sigma = odd \cdot odd \cdot even = even$, so indeed $\sigma \in A_7$.

(b)
$$\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 4 & 7 & ? & ? & 6 & 3 \end{pmatrix}$$
rnissing entries: 1 and 5

So there are two cases:

- 1) $\tau(4)=1$ & $\tau(5)=5$. Then as disjoint cycles: $\tau=(1\ 2\ 4)(3\ 7)$ (which is odd)
- 2) $\tau(4)=5$ & $\tau(5)=1$, Then $\tau = (1245)(37)$ (which is even)

So $\tau \in A_7 \Rightarrow case 2$ is correct: $\tau(4)=5 \& \tau(5)=1$.

(c) For n73, we can let $\sigma = (12)$ $\tau = (2,3)$ in Sn. Then $\sigma \tau = (123)$ & $\tau \sigma = (132)$, so $\sigma \tau \neq \tau \sigma$; this shows that Sn is non-abelian.

- (a) By Lagrange's theorem, any subgroup of a group G of order p2 has order 1,p, or p2. Hence any mopes subgroup has order lorp. The only order - 1 subgroup is flag, which is cyclic. Any order-p subgroup is cyclic since all prime-order groups one cyclic.
 - (b) Let $H \leq \mathbb{Z}_8$ be the image of φ . Then we have a surjective group hom. $\mathbb{Z}_{24} \rightarrow H$ will know $\{0,8,16\}$ $\mathbb{Z}_{24}/\{0,8,16\}\cong H$ (fund thin of apoly homs) SU => |Z24|/150.8,163| = 1H] \Rightarrow 24/3 = 1H1 \Rightarrow 1H1=8. So H must be all of Zg (since 1281=8), so q is susjective.
- (c) By the fund thm again,

 $G/K \cong im \varphi$

& by Lagrange's thm. $\lim \varphi | \text{divides } |H| = 10$. But |G/K|= |G|/|K| divides |G|= 6; so limical is a common divisor of 6 & 10... the only possibilities are 1 & 2.

So either $\lim \varphi = 1$, in which case $\frac{6}{1\kappa l} = 1$ & 1Kl = 6, $|im\varphi|=2$, in which case $\frac{6}{1Kl}=2$ & |Kl=3|

So indeed IKI must be either 3 or 6.

4 H=G st. Vx,yeG, x'y'xyeH.

(a) Suppose $h \in H$ & $g \in G$. Then $ghg^{-1} = (ghg^{-1}h^{-1})h$ & selling $x=g^{-1}$, $y=h^{-1}$, we see that $ghg^{-1}h^{-1} = x^2y^2xy \in H$,

> => (ghg-1h-1)h & H since H is closed under mult Hence ghg-1 & H. This is true for all geG, heH, so H & G.

(b) For any two elements Hx, Hy & G/H,

Hx Hy = Hxy

& HyHx = Hyx

So these one equal iff Hxy = Hyx, which holds iff $xy(yx)^{-1} \in H$, i.e. $xyx^{2}y^{2} \in H$. But this holds, since $xyx^{2}y^{2} = u^{2}v^{2}uv$, where $u=x^{2}8v=y^{2}$, 8 this lies in H by assumption.

(5)

(a) $\varphi^{-1}(P)$ is nonempty since $\varphi(D_R)=D_S \in P \Longrightarrow O_R \in \varphi^{-1}(P)$. $\varphi^{-1}(P)$ is closed under subtraction since $\forall a,b \in \varphi^{-1}(P)$,

 $\varphi(a-b) = \varphi(a) - \varphi(b) \in P$

since $\varphi(a), \varphi(b) \in P \otimes P$ is closed under subtraction. $\Rightarrow \alpha - b \in \varphi^{-1}(P)$.

φ-'(P) is sticky, since Vae φ-'(P) & reR,

> $\varphi(ar) = \varphi(a) \cdot \varphi(r) \in P$ since $\varphi(a) \in P \otimes P$ is sticky $\& \varphi(ra) = \varphi(r) \cdot \varphi(a) \in P$ for the same season. $\Rightarrow \text{ or } \& ra \text{ are both in } \varphi'(P).$

(b) Suppose that $ab \in \varphi'(P)$. $(a, b \in R)$ Then $\varphi(ab) \in P$, so $\varphi(a) \varphi(b) \in P$. Since P is prime, either $\varphi(a) \in P$ or $\varphi(b) \in P$. Hence either $a \in \varphi'(P)$ on $b \in \varphi'(P)$.

This shows that $\varphi'(P)$ is a prime ideal of P

Observe that $2^2+4\cdot2+2=4+1+2=0$ in \mathbb{Z}_7 so 2 is a poot of X^2+4X+2 .

> Factoring it out gives $\chi^2 + 4\chi + 2 = (\chi - 2)(\chi + 6)$ on equivalently, (X+5)(X+6).

- (b) Let J = (X+5). Then J = I since any multiple of (X+5)(X+6) is a multiple of (X+5), but $J \neq I$ since X+5 \notin (X²+4X+7) (no elf. of (X2+4X+Z) can have degree 1). // T= (X+6) is the other possible answer.
- (c) Both X+5 & X+6 are zero-divisors in 图[闪/I; both are nonzero, since I has no degree (elements, but their product is $\overline{X^2+4X+2} = 0$.
- (d) Division algorithm:

- (a) No such two groups exist, since any group of order 5 is cyclic (since 5 is prime) & hence isomorphic to \mathbb{Z}_5 , so any two order-5 groups are isomorphic to each other.
- (b) \mathbb{Z}_6 (or indeed any \mathbb{Z}_n which is a commutative sing with but not an integral domain; note that 2.3=0, but $2.3\neq 0$ in \mathbb{Z}_6 .
- (c) In \mathbb{Z} , $\{0\}$ is a prime ideal $(ab=0 \Rightarrow a=0 \text{ or } b=0)$, but it is not maximal since for example $2\mathbb{Z}$ is a larger proper ideal.
- (d) $x^2+x = \underline{x(x+1)},$ & $x^2+x = x^2+7x+12 = (\underline{x+3})(x+4)$ in \mathbb{Z}_6
 - So there give two different factorizations; one can check that the factors of x(x+1) are not constant multiples of the the factors in (x+3)(x+4).
- (e) There is no noot of X^4-Z in \mathbb{Z}_5 , as we can check by trial &ernor: $0^4=0 \neq 2 \qquad | \text{ or, a quicken south:}$ $1^4=1 \neq 2 \qquad \text{Fermatis little theorem implies that}$ $2^4=4^2=1 \neq 2 \qquad \forall x\neq 0 \text{ in } \mathbb{Z}_5, \quad x^4=1 \neq 2.$ $3^4=4^2=1 \neq 2 \qquad \qquad \forall 4^4=1^2=1 \neq 2.$

(all anithmetic is in Zs)