High-precision Analyser for Lunar Orbits (HALO)

Quentin Gautier^{1,2}, Yang Yang^{2,*}, Andrew Dempster¹

¹Australian Center for Space Engineering Research, School of Electrical Engineering and Telecommunications, UNSW, Sydney, NSW 2052, Australia, ²School of Mechanical and Manufacturing Engineering, UNSW, Sydney, NSW 2052, Australia

*Space Engineering Lecturer, yang.yang16@unsw.edu.au

Moon to Mars Initiative

Artemis human exploration program & Australia's contribution to Artemis

Trailblazer Program Australian-made rover, **Roo-ver**

Coordinate Systems

Earth-Moon rotating frame (image credit: Keidai Ilyama 2019)

Earth-Moon rotating frame

CR3BP model in the Earth-Moon rotating frame (image credit: Marta Lopez Castro)

- Moon centred rotating frame
- Moon centred inertial frame

High-precision Analyser for Lunar Orbits (HALO)

HALO functionalities

Force Models

Field forces

- Lunar gravitational field: 350 × 350 harmonics model from the GRAIL mission
- Point mass attraction: Sun and Jupiter, JPL DE430
- Earth gravitational attraction: 100 × 100 harmonics model, EGM2008
- General relativistic correction
- Surface forces
 - Solar radiation pressure: spherical satellite geometry
 - Earth albedo

Lunar gravity model by the GRAIL mission

Assessments in Low Lunar Orbit

Lunar Reconnaissance Orbiter (LRO): perilune 60 km and apolune 130 km Scenario : February 1, 2020, over a four-day window, ~48 orbit rev Reference orbit: Horizons System (nasa.gov)

- Final Pos LRO
- Final Pos Propagation

LRO Trajectory in the Moon centered inertial frame

Propagation errors compared to the LRO reference orbit

Assessments in Low Lunar Orbit

Assessments in Elliptical Lunar Polar Orbit

Clementine: perilune 415 km, and apolune 2939 km

Scenario: 15-hour time span on April 15, 1994 (three orbit rev)

The Clementine spacecraft in the Moon centered inertial frame

Propagation errors compared to the Clementine reference orbit

Assessments in Elliptical Lunar Polar Orbit

Magnitudes of perturbations for Clementine in the elliptical lunar orbit

Assessments in Near Rectilinear Halo Orbit

CAPSTONE: 9:2 synodic resonance, perilune 1,610km and apolune

69,918 km

Scenario: time span of 6.5 days from 25 November 2022, ~ 1 orbital rev

CAPSTONE trajectory in the Moon centred rotational frame

Propagation errors compared to the CAPSTONE reference orbit

Assessments in Near Rectilinear Halo Orbit

Magnitudes of perturbations for CAPSTONE in NRHO

Assessments in Distant Retrograde Orbit

Artemis I/Orion: 14-day period, perilune 70,100 km and apolune 94,800 km Scenario: time span of 1 days from 29 November 2022

Orion trajectory in the Moon centred rotational frame

Propagation errors compared to the Orion reference orbit

Assessments in Distant Retrograde Orbit

Preliminary Mission Design - Periodic NRHO Optimisation

Optimised NRHO trajectory in the Moon centred rotational frame

Optimised NRHO trajectory in the Moon centred inertial frame

Preliminary Mission Design - Periodic DRO Optimisation

Optimised DRO trajectory in the Moon centred rotational frame

Optimised NRHO trajectory in the Moon centred inertial frame

Preliminary Mission Design - Lambert Transfer Optimisation

 Δv of 4.470 km/s and a position error of 251 km

Initial situation of a Lambert transfer between the Gateway NRHO and an ELFO

 Δv of 0.816 km/s and a position error of 122 km

Converged situation of a Lambert transfer between the Gateway NRHO and an ELFO

Concluding Remarks

- HALO: Specialised tool for precise lunar orbit modelling and mission design with open-source flexibility.
- Enables detailed analysis of LLO, ELFO, NRHO, and DRO, offering insights into orbit dynamics and mission planning.
- Validated lunar orbit propagator ensures accurate and reliable orbit predictions for cislunar missions.

Preprint: <u>HALO: A High-Precision Orbit Propagation Tool for Mission Design in the Cis-Lunar</u>

Domain

Github: https://github.com/Quent2G/High-precision-Analyser-of-Lunar-Orbits

Any questions?

Dr Yang Yang Email: yang.yang16@unsw.edu.au

