1 Cinemática Escalar/Vetorial

2 Conceitos Fundamentais

- Movimento: variação da posição no tempo em relação a um referencial.
- Repouso: posição constante em relação ao referencial.
- Referencial: sistema usado como base para descrever o movimento.

3 Cinemática Escalar (1D)

- Posição: s
- Deslocamento: $\Delta s = s_f s_0$
- Velocidade média: $v_m = \frac{\Delta s}{\Delta t}$
- Aceleração média: $a_m = \frac{\Delta v}{\Delta t}$

4 Movimento Retilíneo Uniforme (MRU)

- Velocidade constante: a = 0
- Equação horária: $s = s_0 + vt$

5 Movimento Retilíneo Uniformemente Variado (MRUV)

- Aceleração constante.
- $s = s_0 + v_0 t + \frac{1}{2} a t^2$
- $v = v_0 + at$
- $v^2 = v_0^2 + 2a(s s_0)$
- $\Delta s = \frac{(v+v_0)}{2} \cdot t$

6 Cinemática Vetorial (2D e 3D)

- posição: $\vec{r}(t) = x(t)\hat{i} + y(t)\hat{j} + z(t)\hat{k}$
- Deslocamento vetorial: $\Delta \vec{r} = \vec{r}_f \vec{r}_0$
- Velocidade vetorial: $\vec{v}(t) = \frac{d\vec{r}}{dt}$
- Aceleração vetorial: $\vec{a}(t) = \frac{d\vec{v}}{dt}$

7 Lançamento Oblíquo

Separação dos movimentos:

- Horizontal (MRU): $x(t) = x_0 + v_{0x}t$
- Vertical (MRUV): $y(t) = y_0 + v_{0y}t \frac{1}{2}gt^2$

Outras fórmulas:

- Velocidade inicial: $\vec{v}_0 = v_0 \cos \theta \,\hat{i} + v_0 \sin \theta \,\hat{j}$
- Alcance: $A = \frac{v_0^2 \sin(2\theta)}{q}$
- Altura máxima: $H = \frac{v_0^2 \sin^2 \theta}{2g}$
- Tempo de subida: $t_s = \frac{v_0 \sin \theta}{g}$
- Tempo total: $t = \frac{2v_0 \sin \theta}{q}$

8 Gráficos

- $s \times t$: inclinação = velocidade.
- $v \times t$: área = deslocamento; inclinação = aceleração.
- $a \times t$: área = variação da velocidade.

9 Tipos de Movimento

- MRU:
 - $\rightarrow v > 0$: progressivo
 - $\rightarrow v < 0$: retrógrado
- MRUV:

 $\rightarrow v \cdot a > 0$: acelerado

 $\rightarrow v \cdot a < 0$: retardado

10 Estática e Dinâmica

11 Conceitos Fundamentais

- Grandezas escalares: possuem apenas módulo (ex: massa, tempo).
- Grandezas vetoriais: possuem módulo, direção e sentido (ex: força, aceleração).
- Força resultante: vetor que representa o efeito combinado de todas as forças aplicadas.
- Diagrama de corpo livre: representação de todas as forças atuantes sobre um corpo.

12 Equilíbrio do Corpo Rígido e da Partícula

Condições de equilíbrio:

$$\sum \vec{F} = 0 \quad \text{(equilibrio translational)}$$

$$\sum \vec{\tau} = 0 \quad \text{(equilibrio rotational)}$$

Torque (momento de uma força):

$$\tau = rF\sin\theta$$

$$\vec{\tau} = \frac{d\vec{L}}{dt}$$

$$\tau = I.\alpha$$

$$\alpha = \frac{d^2\theta}{dt^2}$$

$$\frac{d^2\theta}{dt^2} + \frac{g}{L}\sin\theta = 0 \quad \text{MHS}$$

$$\frac{d^2\theta}{dt^2} + \omega^2 \sin \theta = 0 \quad \text{MHS}$$

Solução geral EDO:

$$\theta(t) = \theta_0 \cos(\omega t + \varphi)$$

12.1 Rotação de um Corpo Rígido

$$\omega = \frac{d\theta}{dt}, \quad \alpha = \frac{d\omega}{dt}$$

12.2 Relação entre coroas e catracas

Como a corrente impõe a mesma velocidade linear na periferia das duas engrenagens:

$$v_{\text{coroa}} = v_{\text{catraca}} = R_c \cdot \omega_c = R_k \cdot \omega_k$$

13 Leis Fundamentais da Dinâmica (Leis de Newton)

- 1ª Lei (Inércia): um corpo em repouso ou em MRU permanece assim se a força resultante for nula.
- 2ª Lei: Princípio Fundamental da Dinâmica:

$$\vec{F}_{\text{resultante}} = m\vec{a}$$

 3ª Lei (Ação e Reação): forças trocadas entre dois corpos são iguais em módulo, mesma direção e sentidos opostos.

14 Gravitação Universal

Lei da Gravitação Universal:

$$F = G \frac{m_1 m_2}{r^2}$$

Campo gravitacional:

$$g = \frac{GM}{r^2}$$

Energia potencial gravitacional:

$$E_p = -\frac{GMm}{r}$$

15 Demonstração da Velocidade de Escape

A velocidade de escape é a mínima velocidade necessária para um corpo escapar da gravidade de um planeta, sem considerar resistência do ar.

15.1 Conservação de Energia

Considerando um corpo de massa mlançado da superfície de um planeta de massa M e raio R:

• Energia mecânica inicial:

$$E_{\text{inicial}} = \frac{1}{2}mv^2 - \frac{GMm}{R}$$

• Energia mecânica final (no infinito):

$$E_{\text{final}} = 0$$

Aplicando a conservação da energia:

$$\frac{1}{2}mv^2 - \frac{GMm}{R} = 0 \Rightarrow \frac{1}{2}v^2 = \frac{GM}{R} \Rightarrow v = \sqrt{\frac{2GM}{R}}$$
• e: coeficiente de restituição et v_{final}: velocidade relativa do

Conclusão: A velocidade de escape depende apenas da massa e do raio do corpo celeste, e não da massa do objeto lançado.

16 Forças Movimento no Circular

$$F_c = \frac{mv^2}{r} \quad \text{(força centrípeta)}$$

$$v = \omega r \quad \text{(velocidade tangencial)}$$

$$a_c = \frac{v^2}{r} \quad \text{(aceleração centrípeta)}$$

17 Impulso e Quantidade de Movimento

Quantidade de movimento:

$$\vec{p} = m\vec{v}$$

Impulso:

$$\vec{I} = \vec{F} \Delta t$$

Teorema do impulso:

$$\vec{I} = \Delta \vec{p}$$

Coeficiente de 18 Restituição

O coeficiente de restituição (e) é uma medida que descreve a elasticidade de uma colisão entre dois corpos. Ele relaciona a velocidade relativa dos corpos antes e depois da colisão.

18.1 Definição

O coeficiente de restituição é dado por:

$$e = \frac{v_{\rm afastamento}}{v_{\rm aproximação}} = \frac{v_2' - v_1'}{v_1 - v_2}$$

Onde:

- v_{final} : velocidade relativa dos corpos após a colisão
- v_{inicial} : velocidade relativa dos corpos antes da colisão

18.2 Valores doCoeficiente de Restituição

- e = 1: colisão perfeitamente elástica (não há perda de energia cinética).
- e = 0: colisão perfeitamente inelástica (os corpos permanecem juntos após a colisão).

• 0 < e < 1: colisão parcialmente elástica.

19 Momento de Inércia

O momento de inércia (I) representa a resistência de um corpo à variação de seu movimento rotacional em torno de um eixo. Ele depende da distribuição de massa em relação ao eixo de rotação.

1. Momento de inércia para ponto material

$$I = m \cdot r^2$$

- m: massa do ponto (kg)
- r: distância ao eixo de rotação (m)

19.1 2. Momento de inércia para corpos contínuos

$$I = \int r^2 \, \mathrm{d}m$$

19.2 Momentos de inércia usuais

• Disco ou cilindro sólido (eixo pelo centro, perpendicular à base):

$$I = \frac{1}{2}MR^2$$

• Aro ou anel fino (eixo pelo centro, perpendicular ao plano):

$$I = MR^2$$

• Esfera sólida (eixo pelo centro):

$$I = \frac{2}{5}MR^2$$

• Esfera oca (casca esférica fina):

$$I = \frac{2}{3}MR^2$$

• Haste fina (eixo pelo centro, perpendicular à haste):

$$I = \frac{1}{12}ML^2$$

• Haste fina (eixo pela extremidade):

$$I = \frac{1}{3}ML^2$$

19.3 Teorema dos Eixos Paralelos (Steiner)

Seja I_{cm} o momento de inércia em relação ao centro de massa, então para um eixo paralelo a uma distância d:

$$I = I_{cm} + Md^2$$

20 Referenciais Inerciais e Não Inerciais

Referencial Inercial

Definição: Um referencial é dito inercial, quando em repouso relativo às estrelas fixas distantes. se nele a Primeira Lei de Newton é válida:

Se
$$\vec{F}_{\text{resultante}} = 0 \Rightarrow \vec{v} = \text{constante}$$

Características:

- Não está acelerado.
- Permite aplicação direta das Leis de Newton.
- Exemplo: Espaço profundo, ou um carro em movimento retilíneo uniforme.

20.1 Referencial Não Inercial

Definição: Um referencial é não inercial quando está acelerado em relação a um inercial. Nele, a Primeira Lei de Newton não se aplica diretamente sem a introdução de forças fictícias.

Características:

- Está acelerado (linear ou rotacionalmente).
- Surgem forças fictícias, como:
 - Força centrífuga(pseudoforça)
 - Força de Coriolis: é uma força fictícia que aparece em referenciais rotacionais, como a Terra, e age sobre corpos em movimento dentro desse referencial. O efeito Coriolis pode ser visto como uma correção dinâmica que aparece quando a conservação do momento angular é "quebrada" por se analisar o movimento num referencial rotativo.

$$\vec{F}_C = -2m\vec{\omega} \times \vec{v}$$

- * \vec{F}_C : força de Coriolis
- * m: massa do corpo
- * $\vec{\omega}$: vetor velocidade angular do referencial
- * \vec{v} : velocidade do corpo no referencial
- Força inercial (associada à aceleração do referencial)
- Exemplo: Interior of a carro that freia/brusca mudança de direço, Terra (com rotaço), elevador em aceleraço.
- A terra não é uma referencial inercial:

$$a_{cp} = \frac{g}{290} = 0.03369 m/s^2$$

, com boa aproximação podemos assumir a terra um referencial inercial.

20.2 Observação:

Essa força só aparece em referenciais acelerados (não inerciais) e é essencial para descrever corretamente movimentos na superfície da Terra.

20.3 Comparação Resumida

	Referencial	Referencial
Aspecto	Inercial	Não Inercial
Aceleração	Nula	≠ de zero
L. Newton	Válidas	$\exists \vec{F} \text{ fictícias}$
Exemplo	deep space	Carro em curva

21 Trabalho e Energia Cinética

Trabalho de uma força constante:

$$W = Fd\cos\theta$$

Energia cinética:

$$E_c = \frac{1}{2}mv^2$$

Teorema da energia cinética:

$$W_{\text{resultante}} = \Delta E_c$$

22 Força de Atrito

Atrito estático:

$$f_e \le \mu_e N$$

Atrito cinético:

$$f_c = \mu_c N$$

23 9. Energia Potencial

Potencial gravitacional:

$$E_n = mqh$$

Potencial elástica:

$$E_{p,\text{el}} = \frac{1}{2}kx^2$$

24 Conservação da Energia Mecânica

Em sistemas conservativos:

$$E_m = E_c + E_p = \text{constante}$$

25 Lei de Hooke

Força elástica:

$$F = -kx$$

25.1 Constante da mola ao ser cortada ao meio

Se uma mola ideal com constante elástica k e comprimento L for cortada ao meio, cada metade terá comprimento $\frac{L}{2}$.

Como a constante elástica é inversamente proporcional ao comprimento:

$$k \propto \frac{1}{L}$$

Ao cortar a mola:

$$k' = \frac{kL}{L/2} = 2k$$

Logo, cada metade da mola terá constante elástica 2k, ou seja, será duas vezes mais rígida que a mola original.

Energia potencial armazenada:

$$E_{p,\text{el}} = \frac{1}{2}kx^2$$

25.2 Leis de Kepler

- 1ª Lei: Órbitas elípticas, com o Sol em um dos focos.
- 2ª Lei: Áreas iguais em tempos iguais. Consequência direta da conservação do momento angular:

$$\vec{L} = \vec{r} \times \vec{p} = \text{constante}$$

$$\frac{dA}{dt} = \frac{1}{2}|\vec{r} \times \vec{v}| = \text{constante}$$

•
$$3^{\underline{a}}$$
 Lei: $\frac{T^2}{R^3} = \frac{4\pi^2}{GM}$

26 Conser. Momento Angular

O momento angular \vec{L} de um corpo é dado por:

$$\vec{L} = I \cdot \vec{\omega}$$

Onde:

- \vec{L} : momento angular
- *I*: momento de inércia
- $\vec{\omega}$: velocidade angular

26.1 Princípio da Conservação

Se o **torque resultante externo** sobre um sistema é nulo:

$$\vec{L}_{ ext{inicial}} = \vec{L}_{ ext{final}} \quad \Rightarrow \quad I_1 \omega_1 = I_2 \omega_2$$

Aplicações

- Patinadores puxando os braços e girando mais rápido
- Estrelas colapsando em pulsares
- Satélites e giroscópios

27 Hidrostática

O **Princípio de Arquimedes** afirma que:

Todo corpo total ou parcialmente imerso em um fluido em repouso sofre a ação de uma força vertical para cima, denominada empuxo, de intensidade igual ao peso do fluido deslocado. Essa força de empuxo é dada por:

$$E = \rho_f \cdot g \cdot V_d$$

28 Fluido em Equilíbrio

Fluido em repouso está sujeito apenas a forças normais e pressões. A pressão se transmite igualmente em todas as direções no interior do fluido.

29 Conceito de Pressão

$$P = \frac{F}{A}$$

Unidade: Pascal (Pa), onde $1 \text{ Pa} = 1 \text{ N/m}^2$.

30 Densidade

$$\rho = \frac{m}{V}$$

Unidade: kg/m³. Densidade da água: $\rho_{\text{água}} = 10^3 \,\text{kg/m}^3$.

31 Pressão de uma Coluna de Líquido

$$P = \rho q h$$

Onde: ρ é a densidade, g a gravidade, h a profundidade.

32 Conservação da Massa (Eq. da Continuidade)

Para um fluido incompressível:

$$A_1v_1 = A_2v_2$$

Onde:

- A: área da seção transversal
- v: velocidade do fluido

33 Equação de Bernoulli

Expressa a conservação da energia para fluidos ideais:

$$P + \frac{1}{2}\rho v^2 + \rho gh = \text{constante}$$

Onde:

- P: pressão
- ρ : densidade
- v: velocidade
- h: altura

34 Princípio de Pascal

Uma variação de pressão aplicada a um fluido incompressível em equilíbrio transmite-se integralmente a todos os pontos do fluido e às paredes do recipiente.

35 Pressão Atmosférica

Pressão exercida pelo ar ao nível do mar:

$$P_{\rm atm} \approx 1.0 \times 10^5 \, {\rm Pa} = 1 \, {\rm atm}$$

36 Experiência de Torricelli

 $P_{\rm atm} = \rho g h, {\rm com} \ h = 0.76 \, {\rm m} \ ({\rm coluna \ de \ mercúrio})$

37 Lei de Stevin

$$\Delta P = \rho g \Delta h$$

Válida para qualquer ponto de um mesmo fluido em equilíbrio.

38 Vasos Comunicantes

Se o fluido for o mesmo, os níveis de líquido se igualam:

$$h_1 = h_2 \quad (\text{para } \rho_1 = \rho_2)$$

39 Conservação do Momento Angular

O momento angular \vec{L} de um corpo é dado por:

$$\vec{L} = I \cdot \vec{\omega}$$

Onde:

- \vec{L} : momento angular
- 1: momento de inércia
- $\vec{\omega}$: velocidade angular

39.1 Princípio da Conservação

Se o torque resultante externo sobre um sistema é nulo:

$$\vec{L}_{\text{inicial}} = \vec{L}_{\text{final}} \implies I_1 \omega_1 = I_2 \omega_2$$

39.2 Aplicações

- Patinadores puxando os braços e girando mais rápido
- Estrelas colapsando em pulsares
- Satélites e giroscópios

40 Prensa Hidráulica

Aplicação do Princípio de Pascal:

$$\frac{F_1}{A_1} = \frac{F_2}{A_2}$$

Permite multiplicar força aplicando pressão a um fluido entre dois êmbolos de áreas diferentes.

41 Equilíbrio térmico e temperatura

• Temperatura é uma medida da energia cinética média das partículas.

- Dois corpos estão em equilíbrio térmico quando não trocam mais calor entre si.
- Lei Zero da Termodinâmica: Se A está em equilíbrio com B, e B com C, então A está em equilíbrio com C.

42 Escalas termométricas

- Principais escalas: Celsius (°C), Fahrenheit (°F), Kelvin (K).
- Conversões:

$$T(K) = T(^{\circ}C) + 273,15$$

 $T(^{\circ}F) = \frac{9}{5}T(^{\circ}C) + 32$

43 Dilatação dos sólidos e líquidos

- Dilatação linear: $\Delta L = L_0 \alpha \Delta T$
- Dilatação superficial: $\Delta A = A_0 \cdot 2\alpha \cdot \Delta T$
- Dilatação volumétrica: $\Delta V = V_0 \beta \Delta T$, com $\beta = 3\alpha$
- Dilatação aparente dos líquidos: $\Delta V_{ap} = V_0(\gamma_{\text{líq}} \beta_{rec})\Delta T$

44 Estudo térmico dos gases

- Gases ideais obedecem à equação de estado e ignoram interações intermoleculares.
- Variáveis de estado: P, V, T, n.
- Hipóteses: moléculas puntiformes, colisões elásticas, movimento aleatório.

45 Lei geral dos gases perfeitos

$$PV = nRT$$

Onde:

• $R = 8.31 \,\mathrm{J/mol} \cdot \mathrm{K}$ (constante dos gases)

46 Equação de Clapeyron

$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$$

47 Transformações gasosas

- Isotérmica ($\Delta T = 0$): PV = constante (Lei de Boyle)
- Isobárica $(\Delta P = 0)$: $\frac{V}{T} =$ constante (Lei de Charles)
- Isocórica ($\Delta V = 0$): $\frac{P}{T} =$ constante (Lei de Gay-Lussac)
- adiabático (Q=0)
 - $\rightarrow PV^{\gamma} = \text{constante}$
 - $\rightarrow TV^{\gamma-1} = \text{constante}$
 - $\rightarrow P^{1-\gamma}T^{\gamma} = \text{constante}$
 - $\rightarrow \gamma = \frac{C_p}{C_v}$
 - \rightarrow gás monoatômico: $\gamma = \frac{5}{3}$
 - \rightarrow gás diatômico: $\gamma = \frac{7}{5}$
 - $\rightarrow C_p = C_v + R$
 - ightarrow U = $\frac{3}{2}nRT$ Energia Interna, gases monoatômico
 - \rightarrow U = $\frac{f}{2}nRT$, f graus de liberdade.

$$\rightarrow W = \int \frac{nRT}{V} dV$$

48 Princípio da conservação da energia

- Energia interna se conserva em sistemas isolados.
- Base do **Primeiro Princípio da** Termodinâmica.

49 Mudanças de estado físico

- Fusão, vaporização, solidificação, condensação, sublimação.
- Ocorrem à temperatura constante.
- Energia envolvida depende da massa e do calor latente.

50 Quantidade de calor

- Calor sensível: $Q = mc\Delta T$
- Calor latente: Q = mL
- Unidade no SI: Joule (J)

51 Propagação do calor

51.1 Condução térmica - Lei de Fourier da Condução de Calor

$$Q = -kA\frac{dT}{dx}$$

51.2 Convecção

• Transferência por movimentação de massa em fluidos.

51.3 Radiação

$$P = \sigma A T^4$$

Onde $\sigma = 5.67 \times 10^{-8} \,\text{W/m}^2 \text{K}^4$

52 Princípios da Termodinâmica

52.1 Primeiro Princípio

$$\Delta U = Q - W \longrightarrow Q = W + \Delta U$$

52.2 Segundo Princípio

- O calor não flui espontaneamente de um corpo frio para um corpo quente.
- Entropia tende a aumentar.

O que é entropia?

A entropia (S) é uma função de estado que mede o grau de desordem de um sistema, a quantidade de microestados possíveis, e a irreversibilidade de processos.

Definição termodinâmica

Para processos reversíveis:

$$\Delta S = \int \frac{dQ_{\rm rev}}{T}$$

Para temperatura constante (isotérmico):

$$\Delta S = \frac{Q_{\text{rev}}}{T}$$

Segunda Lei da Termodinâmica

$$\Delta S_{\text{total}} \ge 0$$

- $\Delta S_{\text{total}} = 0$: processo reversível
- $\Delta S_{\text{total}} > 0$: processo irreversível

Entropia estatística (Boltzmann)

$$S = k_B \ln \Omega$$

- $k_B = 1.38 \times 10^{-23} \,\mathrm{J/K}$
- Ω : número de microestados possíveis

Unidade

Joules por kelvin (J/K)

Exemplos onde a entropia aumenta

- Derretimento de gelo
- Expansão de gás
- Mistura de substâncias

52.3 Terceiro Princípio

• A entropia de um cristal perfeito é zero no zero absoluto (0 K).

53 Definição

Uma máquina térmica converte calor em trabalho, operando entre duas fontes térmicas.

54 Rendimento

$$\eta = \frac{W}{Q_f} = \frac{Q_f - Q_r}{Q_f} = 1 - \frac{Q_r}{Q_f}$$

- η : rendimento
- W: trabalho útil
- Q_q : calor absorvido da fonte quente
- Q_f : calor rejeitado à fonte fria

55 Rendimento da Máquina de Carnot

$$\eta_{\text{Carnot}} = 1 - \frac{T_f}{T_q}$$

56 Refrigerador/Termodinâmica

O **refrigerador** transfere calor do meio frio para o quente, usando trabalho externo.

- Retira calor Q_f do interior (frio).
- Rejeita calor Q_q para o exterior (quente).
- Gasta trabalho W: $Q_q = Q_f + W$

Coeficiente de performance (COP):

$$K = \frac{Q_f}{W}$$

Quanto maior K, mais eficiente é o refrigerador.

- T_q : temperatura da fonte quente (em K)
- T_f : temperatura da fonte fria (em K)

57 Equivalente mecânico do calor

• Experiência de Joule:

$$1 \text{ cal} = 4.186 \text{ J}$$

58 Movimento Vibratório e Ondulatório

58.1 Movimento Periódico

- Amplitude (A): valor máximo da oscilação.
- Período (T): tempo para uma oscilação completa.
- Frequência (f): número de oscilações por segundo, $f = \frac{1}{T}$.
- Unidade de frequência: hertz (Hz).

59 Movimento Harmônico Simples (MHS)

• Posição em função do tempo:

$$x(t) = A\cos(\omega t + \varphi)$$

- ω : frequência angular, $\omega = 2\pi f$
- φ : fase inicial
- Velocidade: $v(t) = -A\omega \sin(\omega t + \varphi)$
- Aceleração: $a(t) = -A\omega^2 \cos(\omega t + \varphi) = -\omega^2 x(t)$

60 Oscilador Harmônico

• Sistema massa-mola:

$$F = -kx \implies m\ddot{x} = -kx$$

• Solução: MHS com:

$$\omega = \sqrt{\frac{k}{m}}, \quad T = 2\pi\sqrt{\frac{m}{k}}, \quad f = \frac{1}{2\pi}\sqrt{\frac{k}{m}}$$

61 Pêndulo Simples

• Para pequenos ângulos ($\theta < 10^{\circ}$), o movimento é aproximadamente harmônico:

$$T = 2\pi \sqrt{\frac{L}{q}}$$

• Onde L é o comprimento e g a aceleração da gravidade.

62 Classificação das Ondas

- Quanto à natureza:
 - Mecânicas (necessitam meio): som, ondas em corda.
 - Eletromagnéticas (propagam no vácuo): luz, micro-ondas.
- Quanto à direção da vibração:
 - Transversais: vibração ⊥ propagação (ex: luz).
 - Longitudinais: vibração || propagação (ex: som).

63 Velocidade de propagação de uma onda unidimensional

$$v = \lambda f$$

Onde:

- λ é o comprimento de onda.
- f é a frequência.

64 Ondas Periódicas

$$y(x,t) = A\cos(kx - \omega t + \varphi)$$

- $k = \frac{2\pi}{\lambda}$: número de onda
- $\omega = 2\pi f$: frequência angular

65 Reflexão e refração de um pulso numa corda

- Reflexão em extremidade fixa: inversão de fase.
- Reflexão em extremidade livre: sem inversão.
- Refração: mudança de meio altera velocidade e comprimento de onda.

66 Frente de onda

- Superfície formada por pontos que vibram em fase.
- Representa a forma da propagação (plana, esférica, etc).

67 Fenômenos Ondulatórios

67.1 Reflexão

- Onda retorna ao encontrar um obstáculo.
- Lei da reflexão: ângulo de incidência
 = ângulo de reflexão.

67.2 Refração

- Mudança de direção ao passar de um meio para outro com velocidade diferente.
- A frequência permanece constante.

67.3 Difração

- Capacidade de contornar obstáculos e atravessar fendas.
- Mais evidente quando $\lambda \sim$ dimensão da fenda.

67.3.1 Dispersão em uma Rede de Difração

67.3.2 Equação da Rede de Difração

A condição para os máximos de interferência é dada por:

$$d\sin\theta = m\lambda$$

Onde:

- d: espaçamento entre as fendas (passo da rede)
- θ : ângulo de difração
- m: ordem do máximo (inteiro)
- λ : comprimento de onda da luz

67.3.3 Dispersão Angular

A dispersão angular D é definida como a variação do ângulo de difração com o comprimento de onda:

$$D = \frac{d\theta}{d\lambda} = \frac{m}{d\cos\theta}$$

- A dispersão aumenta com a ordem m
- A dispersão é maior para redes com menor espaçamento d (mais linhas por mm)
- Aumenta com o ângulo θ , pois $\cos \theta$ diminui

67.4 Polarização

- Ocorre apenas com ondas transversais.
- Restrição da direção de oscilação.

67.5Superposição

- Ondas que se encontram somam-se ponto a ponto.
- Pode ser construtiva (reforço) ou destrutiva (cancelamento).

67.6 Ondas estacionárias

- Resultam da superposição de duas ondas idênticas que se propagam em sentidos opostos.
- Formam nós (amplitude nula) e ventres (amplitude máxima).

67.7 Interferência de ondas bidimensionais

- Padrões de interferência gerados por duas fontes coerentes.
- Franja de interferência depende da diferença de caminho óptico:

 $\Delta s = n\lambda$ (interferência construtiva)

 $\Delta s = \left(n + \frac{1}{2}\right)\lambda$ (interferência destrutiva) • $m \in \mathbb{Z}$ é a ordem da interferência.

68 Condições para Interferência em Filmes Finos (Incidência Normal)

Quando a luz incide perpendicularmente a um filme fino de espessura d e índice de refração n, a diferenca de caminho óptico entre os dois feixes refletidos é:

$$\Delta = 2nd$$

A condição de interferência depende da ocorrência (ou não) de inversão de fase ao refletir nas interfaces.

Interferência Construtiva

• Com inversão de fase em uma das interfaces:

$$2nd = \left(m + \frac{1}{2}\right)\lambda$$

• Sem inversão de fase (ou inversão em ambas):

$$2nd = m\lambda$$

Interferência Destrutiva

• Com inversão de fase em uma das interfaces:

$$2nd = m\lambda$$

Sem inversão de fase (ou inversão em ambas):

$$2nd = \left(m + \frac{1}{2}\right)\lambda$$

Onde:

- n é o índice de refração do filme;
- $d \notin a$ espessura do filme;
- λ é o comprimento de onda da luz no ar;

Acústica: Natureza e car-69 acterísticas do som

70 Natureza do Som

- O som é uma onda mecânica longitudinal que se propaga em meios materiais (sólidos, líquidos e gases).
- É gerado por um corpo em vibração e necessita de um meio material para se propagar (não se propaga no vácuo).

- A propagação ocorre devido à compressão e rarefação das partículas do meio.
- A velocidade do som depende do meio e da sua temperatura. No ar, a $\approx 340\,\mathrm{m/s}$ (a 20°C).

71 Características Físicas do Som

- Frequência (f): número de vibrações por segundo. Está relacionada à altura do som (grave ou agudo).
 - Sons audíveis: 20 Hz $\leq f \leq$ 20 000 Hz
 - Infrassons: $f < 20 \,\mathrm{Hz}$ Ultrassons: $f > 20 \,000 \,\mathrm{Hz}$
- Intensidade (I): quantidade de energia transportada pela onda sonora por unidade de área. Relaciona-se com o volume (forte ou fraco).

$$I = \frac{P}{A}$$

Onde P é a potência da fonte sonora e A é a área.

• Nível Sonoro (β): medido em decibéis (dB).

$$\beta = 10 \log \left(\frac{I}{I_0}\right)$$

Onde $I_0 = 10^{-12} \,\mathrm{W/m}^2$ é a intensidade de referência.

- **Timbre**: característica que permite distinguir sons de mesma frequência e intensidade produzidos por fontes diferentes. Está relacionado com a forma da onda sonora e os harmônicos presentes.
- Velocidade do som (v): depende da densidade e da rigidez do meio. É

maior em sólidos, intermediária em líquidos e menor em gases.

$$v = \sqrt{\frac{E}{\rho}}$$
 (em sólidos)

$$v = \sqrt{\frac{\gamma RT}{M}}$$
 (em gases ideais)

Onde E é o módulo de elasticidade, ρ é a densidade, γ é o coeficiente adiabático, R é a constante universal dos gases, T é a temperatura e M a massa molar.

72 Fenômenos Acústicos

- Reflexão do som: retorno do som ao encontrar obstáculos (eco).
- Refração: mudança de direção ao passar de um meio para outro com velocidade distinta.
- Difração: contorno de obstáculos e passagem por frestas.
- Interferência: superposição de ondas sonoras, gerando reforço ou cancelamento.
- Ressonância: amplificação das vibrações quando a frequência natural de um sistema coincide com a frequência da fonte sonora.
- Efeito Doppler: variação aparente da frequência sonora devido ao movimento relativo entre fonte e observador.

73 Aplicações e Limites da Audição Humana

 A audição humana é sensível a frequências entre aproximadamente 20 Hz e 20 kHz.

- Sons com intensidade acima de 120 dB podem causar dor (limiar da dor).
- Utilizações práticas: ultrassonografia, sonar, acústica de ambientes, isolamento acústico.

74 Óptica e Ondulatória

75 Óptica Geométrica

75.1 Propagação da Luz

- A luz propaga-se em linha reta em meios homogêneos e transparentes.
- Três princípios fundamentais: propagação retilínea, reversibilidade e independência dos raios de luz.

75.2 Espelhos Planos

- A imagem formada é virtual, direita e do mesmo tamanho do objeto.
- Propriedades: simetria em relação ao plano do espelho, conservação do ângulo de incidência.

75.3 Refração da Luz e Índice de Refração

- Refração: mudança de direção da luz ao passar de um meio para outro.
- Lei de Snell-Descartes:

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$

• Índice de refração:

$$n = \frac{c}{v}$$

Onde c é a velocidade da luz no vácuo e v no meio.

75.4 Reflexão Total

- Ocorre quando a luz passa de um meio mais refringente para um menos refringente com ângulo maior que o ângulo crítico.
- Aplicação: fibras ópticas.
- $n_1 \cdot \sin(\theta_1) = n_2 \cdot \sin(90^\circ)$

75.5 Lâminas e Prismas

- Lâminas planas provocam apenas deslocamento lateral do feixe de luz.
- Prismas desviam e dispersam a luz branca em seus componentes (dispersão).

75.6 Dispersão da Luz

- A velocidade da luz depende do comprimento de onda no meio material.
- Cada cor sofre um desvio diferente ao atravessar prismas, formando o espectro visível.

75.7 Lentes Esféricas

- Podem ser convergentes(f > 0) ou divergentes.
- Equação de Gauss para lentes delgadas:

$$\frac{1}{f} = \frac{1}{p} + \frac{1}{p'}$$

Onde f é a distância focal, p a distância do objeto e p' da imagem.

- $f = \frac{R}{2}$
- Aumento Linear: $A = \frac{i}{O} = -\frac{p}{p'}$
- côncavo: convergente (imagem: Real ou virtual)
- convexo: divergente (somente virtual)

 Espelhos convexos ampliam o campo de visão e diminuem a imagem.

76 Equação dos Fabricantes de Lentes

A equação dos fabricantes de lentes relaciona o índice de refração da lente, os raios de curvatura das faces e a vergência (potência) da lente.

76.1 Fórmula:

$$\frac{1}{f} = (n-1)\left(\frac{1}{R_1} - \frac{1}{R_2}\right)$$

Onde:

- f: distância focal da lente (em metros)
- n: índice de refração do material da lente
- R₁: raio de curvatura da face anterior
- R_2 : raio de curvatura da face posterior

Observações sobre os sinais:

- R > 0: centro de curvatura à direita da superfície
- R < 0: centro de curvatura à esquerda da superfície
- Para lentes convergentes (como biconvexas), f > 0
- Para lentes divergentes (como bicôncavas), f < 0

76.2 Vergência (potência da lente):

$$\mathcal{P} = \frac{1}{f}$$
 (em dioptrias, D)

76.3 Associação de Lentes Delgadas

Potência de associação:

$$P_{\rm eq} = P_1 + P_2 + \dots + P_n$$

Onde $P = \frac{1}{f}$ (com f em metros e P em dioptrias).

76.4 Formação de Imagens

- Utiliza-se construção geométrica com raios notáveis.
- A natureza da imagem (real ou virtual, direita ou invertida, aumentada ou reduzida) depende da posição do objeto em relação ao foco e ao centro óptico.

76.5 Instrumentos Ópticos

- Lupa: lente convergente que aumenta o tamanho angular do objeto observado.
- Microscópio simples: uma única lente convergente usada como lupa.
- Luneta astronômica: utiliza duas lentes objetiva (imagem real e invertida) e ocular (amplia a imagem).

77 Óptica Física e Ondulatória

77.1 Natureza da Luz

- A luz possui natureza dual: comporta-se como onda (fenômenos de interferência, difração e polarização) e como partícula (efeito fotoelétrico).
- Como onda, é uma onda eletromagnética transversal.

77.2 Fenômenos de Interferência

• Superposição de ondas que resulta em reforço (interferência construtiva) ou cancelamento (destrutiva).

77.3 Experiência de Young

- Demonstra a natureza ondulatória da luz.
- Fenda dupla produz padrões de interferência em um anteparo.
- Distância entre franjas:

$$\Delta y = \frac{\lambda L}{d}$$

Onde λ é o comprimento de onda da luz, L a distância até o anteparo e d a distância entre fendas.

77.4 Polarização da Luz

- Luz natural é não polarizada (os vetores do campo elétrico vibram em todos os planos perpendiculares à direção de propagação).
- Polarização restringe a vibração da luz a um plano.
- Evidência da natureza transversal da luz.

78 Síntese

- A óptica estuda tanto a propagação da luz (geométrica) quanto seus aspectos ondulatórios (física).
- Instrumentos ópticos e fenômenos ondulatórios da luz são essenciais para tecnologias modernas (óptica oftálmica, telescópios, interferômetros, fibras ópticas).

Velocidade da Luz/Constantes Fundamentais

A velocidade da luz no vácuo é dada por:

$$c = \frac{1}{\sqrt{\varepsilon_0 \mu_0}}$$

Onde:

- c: velocidade da luz no vácuo
- ε_0 : permissividade elétrica do vácuo
- μ_0 : permeabilidade magnética do vácuo

78.1 Valores das constantes:

 $\varepsilon_0 \approx 8.854 \times 10^{-12} \,\mathrm{F/m}$ (farads por metro)

 $\mu_0 = 4\pi \times 10^{-7} \,\mathrm{N/A}^2$ (newtons por ampère ao quad-

Resultado:

$$c \approx 3.0 \times 10^8 \,\mathrm{m/s}$$

79 Eletricidade e Magnetismo

80 Eletrostática

80.1 Eletrização

- Métodos: atrito, contato e indução.
- Cargas elétricas: positivas e negativas, quantizadas e conservadas.

80.2 Lei de Coulomb

$$F = k \frac{|q_1 q_2|}{r^2}$$

• Força de interação entre duas cargas puntiformes no vácuo.

80.3 Potencial Elétrico

O potencial elétrico gerado por uma distribuição contínua de carga é dado por:

$$V(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \int \frac{dq}{|\vec{r} - \vec{r'}|}$$

Onde:

- \vec{r} : ponto onde se calcula o potencial,
- $\vec{r'}$: ponto onde está o elemento de carga dq,
- ε_0 : permissividade do vácuo.

81 Tipos de Distribuição

81.1 Distribuição Linear de Carga (fio)

Densidade linear: $\lambda = \frac{dq}{dl}$

$$V(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \int \frac{\lambda \, dl'}{|\vec{r} - \vec{r'}|}$$

81.2 Distribuição Superficial de Carga (superfície)

Densidade superficial: $\sigma = \frac{dq}{dA}$

$$V(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \int \frac{\sigma \, dA'}{|\vec{r} - \vec{r'}|}$$

81.3 Distribuição Volumétrica de Carga (volume)

Densidade volumétrica: $\rho = \frac{dq}{dV}$

$$V(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \int \frac{\rho \, dV'}{|\vec{r} - \vec{r'}|}$$

82 Observações

- O potencial elétrico é uma grandeza escalar
- A simetria do sistema pode facilitar os cálculos.
- Para pontos distantes, pode-se usar aproximações (ex: dipolo).

82.1 Campo de Forças Coulombianas e Campo Elétrico

$$\vec{E} = \frac{\vec{F}}{q} = k \frac{Q}{r^2} \hat{r}$$

- Campo elétrico gerado por uma carga pontual.
- $\vec{E} = -\nabla V$

82.2 Linhas de Força

- Representação gráfica da direção e sentido do campo elétrico.
- Saem de cargas positivas e entram em cargas negativas.

82.3 Trabalho e Potencial Eletrostático

• Potencial elétrico:

$$V = k \frac{Q}{r}$$

• Energia potencial elétrica:

$$U = qV$$

• Trabalho da força elétrica:

$$W = -\Delta U$$

83 Corrente Contínua e Resistência

83.1 Corrente Elétrica

• Corrente:

$$I = \frac{dQ}{dt}$$

• Sentido convencional: do positivo para o negativo.

83.2 Resistência Elétrica e Lei de Ohm

$$U = RI$$

$$P = Ri^2 = R. \left(\frac{U}{R}\right)^2 = \frac{U^2}{R} = U.i$$

Densidade de Carga Elétrica

A densidade de carga descreve como a carga elétrica (Q) está distribuída no espaço. Existem três tipos principais:

1. Densidade Linear de Carga

Utilizada quando a carga está distribuída ao longo de uma linha (como em fios):

$$\lambda = \frac{dQ}{dl}$$

- λ : densidade linear de carga (C/m)
- dQ: quantidade infinitesimal de carga
- *dl*: elemento infinitesimal de comprimento

2. Densidade Superficial de Carga

Usada quando a carga está distribuída sobre uma superfície (como em chapas condutoras):

$$\sigma = \frac{dQ}{dA}$$

- σ : densidade superficial de carga (C/m²)
- dA: elemento de área

3. Densidade Volumétrica de Carga

Usada quando a carga está distribuída em todo um volume:

$$\rho = \frac{dQ}{dV}$$

- ρ : densidade volumétrica de carga (C/m³)
- dV: elemento de volume

83.3 Campo Elétrico: Placa Infinita

$$\vec{E} = \frac{\sigma}{\epsilon_0} \hat{x}$$

83.4 Associação de Resistores

- Série: $R_{eq} = R_1 + R_2 + \dots$
- Paralelo: $\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \dots$

83.5 Resistividade e Temperatura

$$R = \rho \frac{L}{A}, \quad \rho(T) = \rho_0 [1 + \alpha (T - T_0)]$$

83.6 Efeito Joule

$$Q = RI^2t$$

83.7 Geradores e Receptores

- Geradores fornecem energia elétrica (ex: baterias).
- Receptores consomem energia elétrica (ex: motores).
- Equação geral do gerador:

$$U = \mathcal{E} - rI$$

• Para receptores:

$$U = \mathcal{E} + rI$$

83.8 Pilhas em Série e Paralelo

- Série: $\mathcal{E}_{eq} = \mathcal{E}_1 + \mathcal{E}_2 + \dots$
- Paralelo: mesma \mathcal{E} , menor resistência interna.

83.9 Leis de Kirchhoff

- Lei das malhas (tensões): soma das ddps em um circuito fechado é zero.
- Lei dos nós (correntes): soma das correntes que entram num nó é igual à soma das que saem.

83.10 Instrumentos de Medida

- Amperímetro: mede corrente ligado em série.
- Voltímetro: mede tensão ligado em paralelo.
- Multímetro: mede corrente, tensão e resistência.
- Ponte de Wheatstone: circuito para medir resistências desconhecidas com alta precisão.

84 Magnetismo e Indução

84.1 Campo Magnético Gerado por Corrente Elétrica

• Fio retilíneo:

$$\oint \vec{B}.d\vec{l} = \mu_0 I_{eng}, \rightarrow B = \frac{\mu_0 I}{2\pi r}$$

• Espira circular:

$$B = \frac{\mu_0 I}{2R}$$

• Solenóide (interior):

$$B = u_0 nI$$

Onde n é o número de espiras por unidade de comprimento.

85 Campo Magnético de uma Onda Eletromagnética

Uma onda eletromagnética é composta por um campo elétrico \vec{E} e um campo magnético \vec{B} que oscilam perpendicularmente entre si e à direção de propagação.

85.1 Representação vetorial

Em uma onda plana no vácuo propagando-se na direção x, temos:

$$\vec{E}(x,t) = E_0 \cos(kx - \omega t) \,\hat{y}$$
$$\vec{B}(x,t) = B_0 \cos(kx - \omega t) \,\hat{z}$$

- \vec{E} : campo elétrico (direção \hat{y})
- \vec{B} : campo magnético (direção \hat{z})
- Propagação: direção \hat{x}
- $E_0 \in B_0$: amplitudes dos campos
- $k = \frac{2\pi}{\lambda}$: número de onda
- $\omega = 2\pi f$: frequência angular

Relação entre os campos

Como a onda se propaga no vácuo, temos:

$$\frac{E_0}{B_0} = c \quad \Rightarrow \quad B_0 = \frac{E_0}{c}$$

• c: velocidade da luz no vácuo ($c \approx 3 \times 10^8 \text{ m/s}$)

Direções ortogonais

A orientação dos vetores segue a regra da mão direita:

 $\vec{E}\times\vec{B}=$ direção da propagação da onda

Energia transportada pela onda

A densidade de energia média associada aos campos é:

$$u = \frac{1}{2}\varepsilon_0 E^2 + \frac{1}{2} \frac{B^2}{\mu_0}$$

E o vetor de Poynting (densidade de fluxo de energia) (Energia/Área.tempo):

$$\vec{S} = \frac{1}{\mu_0} \vec{E} \times \vec{B}$$

85.2 Força Magnética e Força Elétrica

• Força de Lorentz:

$$\vec{F} = q\vec{E} + q\vec{v} \times \vec{B}$$

• Regra/Mão Direita: $F = |q|vB\sin\theta$

Se a partícula tem massa m e entra perpendicularmente no campo magnético:

• Raio da trajetória:

$$R = \frac{m \cdot v}{|q| \cdot B}$$

• Período do movimento:

$$T = \frac{2\pi m}{|q| \cdot B}$$

85.3 Trabalho realizado pela força magnética

$$W = \vec{F} \cdot \vec{d} = 0$$

86 Força Magnética sobre um Fio com Corrente

$$\vec{F} = I \cdot \vec{L} \times \vec{B}$$

$$F = I \cdot L \cdot B \cdot \sin \theta.$$

Regra da Mão Esquerda

86.1 Eletroímã

 Solenóide com núcleo ferromagnético, que se magnetiza quando a corrente circula.

86.2 Indução Eletromagnética

• Lei de Faraday:

$$\mathcal{E} = -\frac{d\Phi_B}{dt}$$

Onde $\Phi_B = B \cdot A \cdot \cos \theta$ is a magnético flux.

In an enrolamento with N espiras, temos that a força eletromotriz is \mathcal{E} (cada espira) times N.

86.3 Lei de Lenz

 O sentido da corrente induzida é tal que seu campo magnético se opõe à variação do fluxo que a gerou.

86.4 Campo Elétrico Induzido

• Um campo elétrico pode ser gerado por variação de campo magnético:

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

87 Equações de Maxwell com Corrente de Deslocamento

As equações de Maxwell descrevem os campos elétrico (\vec{E}) e magnético (\vec{B}) . A quarta equação, conhecida como Lei de Ampère-Maxwell, inclui a **corrente de deslocamento**.

Forma Diferencial (Leis)

Gauss (elétrica)
$$\nabla \cdot \vec{E} = \frac{\rho}{\varepsilon_0}$$

Gauss (magnética) $\nabla \cdot \vec{B} = 0$

Faraday da indução
$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

Ampère-Maxwell
$$\nabla \times \vec{B} = \mu_0 \vec{J} + \mu_0 \varepsilon_0 \frac{\partial \vec{E}}{\partial t}$$

87.0.1 Corrente de deslocamento (forma diferencial)

$$\vec{J}_d = \varepsilon_0 \frac{\partial \vec{E}}{\partial t}$$

87.1 Forma Integral

Gauss
$$\oint_{\partial V} \vec{E} \cdot d\vec{A} = \frac{1}{\varepsilon_0} \int_V \rho \, dV$$
 stante de Planck.

Magnetismo $\oint_{\partial V} \vec{B} \cdot d\vec{A} = 0$ Lei de Stefan-Boltzmann:

Faraday $\oint_{\partial S} \vec{E} \cdot d\vec{l} = -\frac{d}{dt} \int_S \vec{B} \cdot d\vec{A}$ $P = \sigma A T^4$,

Ampère-Maxwell $\oint_{\partial S} \vec{B} \cdot d\vec{l} = \mu_0 \int_S \vec{J} \cdot d\vec{A} + \text{ onde } P \text{ \'e a potência total (W)}, A \text{ a \'area}$
 $\mu_0 \varepsilon_0 \frac{d}{dt} \int_S \vec{E} \cdot d\vec{A}$ $\sigma = 5.670 \times 10^{-8} \text{ W m}^{-2} \text{ K}^{-4}$

87.2 deCorrente deslocamento (forma integral)

$$I_d = \varepsilon_0 \frac{d}{dt} \int_S \vec{E} \cdot d\vec{A}$$

Constantes envolvidas

- ε_0 permissividade elétrica do vácuo
- μ_0 permeabilidade magnética do
- ρ densidade de carga elétrica
- \vec{J} densidade de corrente elétrica
- \vec{J}_d densidade de corrente de deslocamento

Física Moderna 88

89 Radiação do Corpo Negro e Constante de Planck

- Um corpo negro ideal absorve toda radiação incidente.
- A distribuição espectral da energia emitida depende da temperatura.
- Planck introduziu a quantização da energia:

$$E = h\nu$$

onde $h \approx 6.626 \times 10^{-34} \,\mathrm{J\cdot s}$ é a constante de Planck.

Lei de Stefan-Boltzmann:

$$P = \sigma A T^4,$$

$$\sigma = 5,670 \times 10^{-8} \; \mathrm{W \, m^{-2} \, K^{-4}}.$$

Lei de Wien:

$$\lambda_{\max} T = b,$$

onde λ_{\max} é o comprimento de onda de máxima emissão (m), T a temperatura (K) e

$$b = 2.898 \times 10^{-3} \text{ m K}.$$

90 Efeito Fotoelétrico

- A luz incide sobre um metal e ejeta elétrons.
- Einstein explicou usando fótons com energia $E = h\nu$.

• Equação do efeito fotoelétrico:

$$K_{\text{máx}} = h\nu - \phi$$

onde ϕ é a função trabalho do material.

91 Efeito Compton

- Espalhamento de fótons por elétrons livres.
- Mostra o comportamento corpuscular da radiação:

$$\Delta \lambda = \lambda' - \lambda = \frac{h}{m_e c} (1 - \cos \theta)$$

92 Dualidade Onda-Partícula

• Toda partícula possui propriedades ondulatórias:

$$\lambda = \frac{h}{p}$$

(relação de De Broglie).

 Confirmada por experimentos de difração de elétrons.

93 Trabalho sobre uma carga elétrica

Quando uma carga elétrica q se desloca em um campo elétrico, o **trabalho** realizado pelo campo é dado por:

$$W = q \cdot \Delta V$$

Onde:

- W: trabalho (em joules)
- q: carga elétrica (em coulombs)
- ΔV : diferença de potencial elétrico (em volts)

Observações:

- Se $\Delta V > 0$, o campo realiza trabalho negativo (carga contra o campo).
- Se $\Delta V < 0$, o campo realiza trabalho positivo (carga a favor do campo).
- O trabalho depende do potencial inicial e final, não do caminho percorrido (campo conservativo).

94 Teoria da Relatividade Restrita

94.1 Postulados

- 1. As leis da Física são as mesmas em todos os referenciais inerciais.
- 2. A velocidade da luz no vácuo é a mesma para todos os observadores inerciais.

94.2 Consequências

• Dilatação do tempo:

$$\Delta t = \frac{\Delta t_0}{\sqrt{1 - \frac{v^2}{c^2}}}$$

• Contração do comprimento:

$$L = L_0 \sqrt{1 - \frac{v^2}{c^2}}$$

94.3 Energia Relativística

• Energia total:

$$E = \gamma mc^2 \quad \text{com } \gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$$

• Energia em repouso:

$$E_0 = mc^2$$

• Relação energia-momento:

$$E^2 = (pc)^2 + (mc^2)^2$$

95 Modelos Atômicos

95.1 Rutherford

- Descoberta do núcleo atômico.
- Átomo com núcleo positivo e elétrons ao redor.
- Instável segundo a eletrodinâmica clássica.

95.2 Bohr

• Níveis de energia quantizados:

$$E_n = -\frac{13.6}{n^2} \,\text{eV}$$

- Transições entre níveis explicam linhas espectrais do hidrogênio.
- As órbitas estáveis(estacionárias) ao redor do núcleo sem emitir radiação.
- Mudar de órbita → Absorção ou Emissão.

95.3 Modelo Atômico de Bohr

No modelo de Bohr, a luz é emitida quando um elétron salta de um nível mais externo (n_i) para um mais interno (n_f) , liberando um fóton com energia específica:

$$E = h\nu = \frac{hc}{\lambda}$$

A fórmula de Rydberg permite calcular o comprimento de onda emitido:

$$\frac{1}{\lambda} = R \left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right)$$

Onde:

- λ é o comprimento de onda (m),
- R é a constante de Rydberg ($R \approx 1,097 \times 10^7 \,\mathrm{m}^{-1}$),
- n_i é o nível inicial (mais energético),
- n_f é o nível final (menos energético).

95.3.1 Séries Espectrais do Hidrogênio

- Lyman: região ultravioleta (UV), com transições para $n_f = 1$ e $n_i > 1$.
- Balmer: região visível, com transições para $n_f = 2$ e $n_i > 2$.
- Paschen: região do infravermelho, com transições para $n_f = 3$ e $n_i > 3$.
- Brackett: região do infravermelho, com transições para $n_f = 4$ e $n_i > 4$.
- Pfund: região do infravermelho, com transições para $n_f = 5$ e $n_i > 5$.

95.3.2 Observações

- A série de Balmer é a única cujas linhas estão no espectro visível.
- As outras séries estão em faixas não visíveis (UV e infravermelho).
- Cada transição corresponde a uma linha espectral com comprimento de onda específico.

96 Princípio da Incerteza de Heisenberg

 É impossível conhecer simultaneamente posição e momento com precisão arbitrária:

$$\Delta x \cdot \Delta p \ge \frac{\hbar}{2}$$

onde $\hbar = \frac{h}{2\pi}$.

97 Radioatividade

- Decaimento espontâneo de núcleos instáveis.
- Três tipos principais:
 - Alfa (α): emissão de núcleo de hélio.

- **Beta** (β^-): emissão de elétron (ou pósitron em β^+).
- Gama (γ) : radiação eletromagnética de alta energia.
- Lei do decaimento:

$$N(t) = N_0 e^{-\lambda t}$$

• Meia-vida:

$$t_{1/2} = \frac{\ln 2}{\lambda}$$

98 Energia Nuclear

- Baseada na equivalência massaenergia de Einstein.
- Fissão nuclear: divisão de núcleos pesados (ex: ²³⁵U).
- Fusão nuclear: união de núcleos leves (ex: deuterônio + trítio).
- Liberação de energia:

$$\Delta E = \Delta m \cdot c^2$$

• Aplicações: reatores nucleares, armas, medicina.