

Image Filtering

CS172 Computer Vision I

Instructor: Jiayuan Gu

Agenda

Image Representations

- Filtering
 - Convolution
 - Sharpening
 - Smoothing
 - Gaussian Kernel
 - Denoising

Types of Images

Source: Ulas Bagci

Binary Image

Source: Ulas Bagci

Grayscale Image

Color Image

Source: Ulas Bagci

Color Image

Source: Ulas Bagci

Filtering

Convolution

Motivation: Image Denoising

How can we reduce noise in a photograph?

Moving average

- Let's replace each pixel with a weighted average of its neighborhood
- The weights are called the filter kernel
- What are the weights for the average of a 3x3 neighborhood?

"box filter"

Defining Convolution

Let f be the image and g be the kernel. The output of convolving f with g is denoted f * g.

$$(f * g)[m,n] = \sum_{k,l} f[m-k,n-l]g[k,l]$$

Key Properties

• Shift invariance: same behavior regardless of pixel location:

filter(shift(f)) = shift(filter(f))

Linearity:

filter(
$$f_1 + f_2$$
) =
filter(f_1) + filter(f_2)

 Theoretical result: any linear shift-invariant operator can be represented as a convolution

Properties in More Detail

- Commutative: a * b = b * a
 - Conceptually no difference between filter and signal
- Associative: a * (b * c) = (a * b) * c
 - Often apply several filters one after another: (((a * b₁) * b₂) * b₃)
 - This is equivalent to applying one filter: a * (b₁ * b₂ * b₃)
- Distributes over addition: a * (b + c) = (a * b) + (a * c)
- Scalars factor out: ka * b = a * kb = k (a * b)
- Identity: unit impulse e = [..., 0, 0, 1, 0, 0, ...],a * e = a

Dealing with Edges

If we convolve image *f* with filter *g*, what is the size of the output?

Dealing with Ddges

- If the filter window falls off the edge of the image, we need to pad the image
 - Zero pad (or clip filter)
 - Wrap around
 - Copy edge
 - Reflect across edge

0	0	0
0	1	0
0	0	0

Original

Filtered (no change)

Original

Shifted left By 1 pixel

Original

Blur (with a box filter)

Original

(Note that filter sums to 1)

Source: D. Lowe

Original

Sharpening filter

- Accentuates differences with local average

Filtering

Sharpening and Smoothing

Sharpening

before after

Sharpening

What does blurring take away?

Let's add it back in.

Revisit: Smoothing with Box Filter

- What's wrong with this picture?
- What's the solution?

Source: D. Forsyth

Revisit: Smoothing with Box Filter

- What's wrong with this picture?
- What's the solution?
 - To eliminate edge effects, weight contribution of neighborhood pixels according to their closeness to the center

"fuzzy blob"

Gaussian Kernel

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\left(\frac{x^2 + y^2}{2\sigma^2}\right)}$$

$$5 \times 5$$
, $\sigma = 1$

Gaussian Kernel

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\left(\frac{x^2+y^2}{2\sigma^2}\right)}$$

$$\sigma = 2 \text{ with } 30 \times 30 \text{ kernel}$$

Standard deviation σ : determines extent of smoothing

Choosing Kernel Width

 The Gaussian function has infinite support, but discrete filters use finite kernels

Choosing Kernel width

• Rule of thumb: set filter half-width to about 3σ

Gaussian vs. Box Filtering

Gaussian Filters

- Remove high-frequency components from the image (low-pass filter)
- Convolution with self is another Gaussian
 - So can smooth with small- σ kernel, repeat, and get same result as larger- σ kernel would have
 - Convolving two times with Gaussian kernel with std. dev. σ is same as convolving once with kernel with std. dev. $\sqrt{2}\sigma$
- Separable kernel
 - Factors into product of two 1D Gaussians
 - Discrete example:

$$\begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \end{bmatrix}$$

Separability of the Gaussian filter

- The 2D Gaussian can be expressed as the product of two functions, one a function of x and the other a function of y.
- In this case the two functions are the (identical) 1D Gaussian.

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} e^{-\left(\frac{x^2+y^2}{2\sigma^2}\right)}$$

$$= \left(\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{x^2}{2\sigma^2}}\right) \left(\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{y^2}{2\sigma^2}}\right)$$

Why is separability useful?

- Separability means that a 2D convolution can be reduced to two 1D convolutions (one along rows and one along columns)
- What is the complexity of filtering an n×n image with an m×m kernel?
 - O(n² m²)
- What if the kernel is separable?
 - O(n² m)

Filtering

Denoising

Different Types of Noise

Original

Salt and pepper noise

Impulse noise

Gaussian noise

- Salt and pepper noise: contains random occurrences of black and white pixels
- Impulse noise: contains random occurrences of white pixels
- Gaussian noise: variations in intensity drawn from a Gaussian normal distribution

Gaussian Noise

- Mathematical model: sum of many independent factors
- Good for small standard deviations
- Assumption: independent, zero-mean noise

Source: M. Hebert

Reducing Gaussian Noise

Smoothing with larger standard deviations suppresses noise, but also blurs the image

Reducing Salt-and-Pepper Noise

What's wrong with the results?

Alternative Idea: Median Filtering

- A median filter operates over a window by selecting the median intensity in the window
- Is median filtering linear?

Is median filtering linear?

Let's check linearity

$$\begin{bmatrix}
1 & 1 & 1 \\
1 & 1 & 2 \\
2 & 2 & 2
\end{bmatrix} + \begin{bmatrix}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{bmatrix}$$

Median Filter

- What advantage does median filtering have over Gaussian filtering?
 - Robustness to outliers

Median Filter

Source: M. Hebert

Gaussian vs. Median Filtering

Credit to Lana Lazebnik