

Week 9

Crashing Projects

Gantt Charts with Resources

Recall: Project Scheduling

Project scheduling:

- Represents the conversion of project goals into an achievable methodology for their completion; a timetable and the network logic that relates project activities to each other in a coherent fashion
- Clearly illustrates the *interdependence* of all tasks and work packages
- Helps with master scheduling of organizational resources
- Identification of critical activities & distinguishes them from the less critical
- Provides expectation for when the project will be completed & dates on which various project activities must start & end
- Helps with coordination of activities that are dependent on each other

Reducing the Critical Path

When might we want to accelerate a project's finish time?

- Often the TE (estimated time) for a project is not acceptable to the sponsors
- Market needs change and the completion of the project is required earlier than anticipated
- The project has slipped significantly behind schedule
- The contractual situation provides more incentive to avoid schedule slippage (e.g., late delivery penalties)

The process of accelerating a project is referred to as *crashing*

Primary methods for crashing:

- Work overtime
- Allocating additional resources to specific activities (increase the quantity of resources)
- Hiring additional resources
- Incentive payments for early completion
- Improving existing resources' productivity
- Compromise quality and/or reduce project scope
- Outsourcing portions of the project to be completed within a shorter period than would have been possible if the same work was to be completed by internal resources

Crashing the Project

- Optimize time/cost trade-offs
- Shorten activities on the critical path
- Cease crashing when:
 - the target completion time is reached
 - the crashing cost exceeds the penalty cost

Crashing process

- Define the project logic
- Add the duration for each activity
- Establish the project critical path
- Calculate the cost of crashing each activity
- Calculate the cost of crashing per unit time
- Calculate the most cost-effective crash sequence
- Check the critical path
- Crash the network up to crash limit

Time/Cost Trade-Offs for Crashing Activities

Crashed

Normal

Crashed

Activity Duration

Cost

Slope = <u>crash cost</u> – <u>normal cost</u> normal time - <u>crash time</u>

Normal

We can calculate various

combinations of time/cost

trade-offs for a project's crash

options by calculating the

slope for each activity

Normal Point Slope = <u>crash cost</u> – <u>normal cost</u> normal time - <u>crash time</u>

Example – Crash Slope

SUPPOSE:

NORMAL ACTIVITY DURATION = 8 WEEKS NORMAL COST = \$14,000

CRASHED ACTIVITY DURATION = 5 WEEKS CRASHED COST = \$23,000

Slope =
$$\frac{$23,000 - $14,000}{8 \text{ weeks} - 5 \text{ weeks}}$$

Example – Project Crashing

Suppose we have a project with the following 8 activities and we want to accelerate our project by crashing.

What do we need to do?

		Normal		Cras	hed
Activity	Predecessors	Duration	Cost	Duration	Cost
А	_	5 days	\$ 1,000	3 days	\$ 1,500
В	Α	7 days	700	6 days	1,000
C	Α	3 days	2,500	2 days	4,000
D	Α	5 days	1,500	5 days	1,500
Е	C, D	9 days	3,750	6 days	9,000
F	В	4 days	1,600	3 days	2,500
G	D	6 days	2,400	4 days	3,000
Н	E, F, G	8 days	9,000	5 days	15,000
Total costs =			\$22,450		\$37,500

Slope = crash cost – normal cost normal time - crash time

\$300/day

\$2,000/day

15,000

\$37,500

Which activities are optimal for crashing?

1) Calculate the crash cost of each activity (slope)

8 days

2) Decide which activities we should crash

E, F, G

Н

Total costs =

		Normal		Crashed		
Activity	Predecessors	Duration	Cost	Duration	Cost	Crash cost
А	_	5 days	\$ 1,000	3 days	\$ 1,500	\$250/day
В	Α	7 days	700	6 days	1,000	\$300/day
С	Α	3 days	2,500	2 days	4,000	\$1,500/day
D	Α	5 days	1,500	5 days	1,500	
Е	C, D	9 days	3,750	6 days	9,000	\$1,750/day
F	В	4 days	1,600	3 days	2,500	\$900/day
G	D	6 days	2,400	4 days	3,000	\$300/day

9,000

\$22,450

5 days

What is the critical path? A - D - E - HHow many days is it? 27 days

Original CP: A – D – E – H 27 days

Activity

If we crash all activities—does CP remain the same?

A (3), B (6), C (2), D (5), E (6), F (3), G (4), H (5)

Crash cost

A: \$250/day

B: \$300/day **C:** \$1,500/day

D: -----

E: \$1,750/day

F: \$900/day

G: \$300/day

H: \$2,000/day

Recall: normal cost = \$22,450 normal time = 27 days

Critical path activities we can crash	Project duration	Project cost
	27 days	\$22,450
A (2 days @ \$250/day)	26 days 25 days	\$22,700 \$22,950
E (3 days @ \$1,750/day)	24 days 23 days 22 days	\$24,700 \$26,450 \$28,200
H (3 days @ \$2,000/day)	21 days 20 days 19 days	\$30,200 \$32,200 \$34,200

Crash cost

A: \$250/day

B: \$300/day

C: \$1,500/day

): -----

E: \$1,750/day

F: \$900/day

G: \$300/day

H: \$2,000/day

Activity – Budget Effects of Crashing the Project

Normal

The cost of crashing a project must always be considered against the time saved in expediting the activity's schedule.

Assume the critical path is A-C-D-H (57 days)

	Normal		Crasiled			
Activity	Cost	Duration	Extra Cost	Duration	Crash Cost	
А	\$2,000	10 days	\$2,000	7 days		
В	\$1,500	5 days	\$3,000	3 days		
С	\$3,000	12 days	\$1,500	9 days		
D	\$5,000	20 days	\$3,000	15 days		
E	\$2,500	8 days	\$2,500	6 days		
F	\$3,000	14 days	\$2,500	10 days		
G	\$6,000	12 days	\$5,000	10 days		
Н	\$9,000	15 days	\$3,000	12 days		

Crashed

The cost of crashing a project must always be considered against the time saved in expediting the

At what point is it no longer economically viable to continue crashing activities?

Crash Cost

\$667/day

\$1,500/day

\$500/day

\$600/day

\$1,250/day

\$625/day

\$2,500/day

\$1,000/day

Balancing act:

Duration

7 days

3 days

9 days

15 days

6 days

10 days

10 days

12 days

activity's	schedule.		
Assume th (57 days)	ie critical p	ath is A-	C-D-H

Assume the critical path is A-C-D-H						
(57 days)						
	No	rmal	Cras	hed		
Activity	Cost	Duration	Extra Cost	Du		
А	\$2,000	10 days	\$2,000	7 d		
В	\$1,500	5 days	\$3,000	3 d		
С	\$3,000	12 days	\$1,500	9 d		
D	\$5,000	20 days	\$3,000	15		
E	\$2,500	8 days	\$2,500	6 d		

14 days

12 days

15 days

\$2,500

\$5,000

\$3,000

\$3,000

\$6,000

\$9,000

F

G

Н

Activity – Budget Effects of Crashing the Project

\$33,500 (crashed C)

\$35,500 (crashed A)

\$38,500 (crashed H)

54 days

51 days

48 days

At what point is it no longer economically viable to continue crashing activities?

\$10,800

\$10,200

\$9,600

\$47,300

\$46,700

\$48,100

Balancing act:

Total normal project days = 57 days							
Also suppose th	nat the project team	will be charged	the following:				
1) Overhead	1) Overhead at \$200/day fixed rate						
 A series of late penalties will kick in if the project is not completed in 50 days 							
Project duration							
57 days (normal) \$32,000 (normal) \$5,000 \$11,400 \$48,400							

 Overhead at \$200/day fixed rate A series of late penalties will kick in if the project is not completed in 50 days 							
Project duration Direct costs Late penalties Overhead costs Total costs							
\$32,000 (normal)	\$5,000	\$11,400	\$48,400				
	of late penalties will l	of late penalties will kick in if the property of late penalties Late penalties Late penalties	of late penalties will kick in if the project is not composite penalties. Direct costs Late penalties Overhead costs				

\$3,000

\$1,000

\$0

Slope = <u>crash cost - normal cost</u> normal time - crash time

What other considerations may be relevant for deciding which activities to crash?

Activity	Pred	Normal Time	Crash Time	Normal Cost	Crash Cost	\$/week
Α		14	9	500	1500	
В	Α	5	4	1000	1600	
С	Α	10	8	2000	2900	
D	B, C	8	5	1000	2500	
Е	D	6	5	1300	1900	
F	D	9	6	1500	3000	
G	E, F	7	4	600	1800	
Н	G	15	11	1600	3600	

Slope = <u>crash cost - normal cost</u> normal time - crash time

What other considerations may be relevant for deciding which activities to crash?

CP: A, C, D, F, G, H

Activity	Pred	Normal	Crash	Normal	Crash	\$/week
		Time	Time	Cost	Cost	
Α		14	9	500	1500	200
В	Α	5	4	1000	1600	600
С	Α	10	8	2000	2900	450
D	B, C	8	5	1000	2500	500
Е	D	6	5	1300	1900	600
F	D	9	6	1500	3000	500
G	E, F	7	4	600	1800	400
Н	G	15	11	1600	3600	500

What other considerations may be relevant for deciding which activities to crash?

CP: A, C, D, F, G, H

normal time - crash time

Activity	Pred	Normal	Crash	Normal	Crash	\$/week
		Time	Time	Cost	Cost	
Α		14	9	500	1500	200
В	Α	5	4	1000	1600	600
С	Α	10	8	2000	2900	450
D	B, C	8	5	1000	2500	500
Е	D	6	5	1300	1900	600
F	D	9	6	1500	3000	500
G	E, F	7	4	600	1800	400
Н	G	15	11	1600	3600	500

Slope = <u>crash cost – normal cost</u> normal time - crash time

What other considerations may be relevant for deciding which activities to crash?

CP: A, C, D, F, G, H

Activity	Pred	Normal	Crash	Normal	Crash	\$/week
		Time	Time	Cost	Cost	
Α		14	9	500	1500	200
В	Α	5	4	1000	1600	600
С	Α	10	8	2000	2900	450
D	B, C	8	5	1000	2500	500
Е	D	6	5	1300	1900	600
F	D	9	6	1500	3000	500
G	E, F	7	4	600	1800	400
Н	G	15	11	1600	3600	500

Slope = <u>crash cost — normal cost</u> normal time - crash time

Activity	Pred	Normal Time	Crash Time	Normal Cost	Crash Cost	\$/week
Α		14	9	500	1500	200
В	Α	5	4	1000	1600	600
С	Α	10	8	2000	2900	450
D	B, C	8	5	1000	2500	500
Е	D	6	5	1300	1900	600
F	D	9	6	1500	3000	500
G	E, F	7	4	600	1800	400
Н	G	15	11	1600	3600	500

Gantt Charts and Resource Levelling

B. Gantt Charts & Resource Levelling

Frequently used in project management, a Gantt chart provides a graphical illustration of a schedule that helps to plan, coordinate, and track specific tasks in a project.

Gantt Chart Advantages

- They provide an excellent presentation tool for illustrating groups of milestones and demonstrating individual resources scheduled to time
- They can be used in status reporting to show how much of the plan has been completed by displaying the progress of an activity in the same or a parallel bar, or using colour
- They provide graphic illustration of resource levelling
- They are easy to create, comprehend, and update

Gantt Chart Disadvantages

- Estimates must be completed before chart can be drawn
- A Gantt chart does not effectively address the dependencies between jobs
- It is difficult to show two sets of dates when using techniques such as earliest start date and latest start
- It is difficult to show slack and critical path
- Changes to the schedule require a redrawing of the chart
- The same chart cannot show several scheduling possibilities
- The Gantt chart does not highlight <u>WBS elements</u> with the highest risk of failure or delay

Gantt Chart With Resources in MS Project

					Descrip	tion		Predecessor		Activity D	uration
				Α	Contrac	t signing		None		5	
Activity –					Questio	nnaire design		Α		5	
		antt Chart		С	Target r	narket ID		Α		6	
				D	Survey	sample		В, С		13	
				E	Develop	presentation	1	В		6	
				F	Analyse	results		D		4	
				G	Demogr	aphic analysis	5	С		9	
				Н	Present	ation to client		E, F, G		2	
	0	5	10		,	15		20	25		30
		<u> </u>	10			13		20	23		30
A											
В											
D											
E											
F											
G											
Н											

Resource Leveling

Activi	ty Pr	ed	Dι	ıratio	n Sta	affing														
Α	-		8		5															
В	Α		12		2															
С	Α		15	i	3															
D	В		3		5															
E	С		9		2															
F	Е		7		4															
G	D		8		5															
H	A		12		3															
J	Н		6		1															
	2	4	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40
Α																				
В																				
С																				
D																				
E																				
F																				
G																				
Н																				
J																				

Class Activity

1. Calculate the expected time for each network task using the table below (unit of analysis = days)

Activity	Predecessor	Most	Most Likely	Most Pessimistic	TE	Staffing
		Optimistic (a)	(m)	(b)		
Α	-	13	18	35		2
В	-	7	17	45		3
С	-	6	8	22		4
D	Α	12	14	22		2
E	B,C	7	10	13		4
F	B,C	6	12	28		3
G	B,C	2	4	8		2
Н	С	6	10	19		5
	G,H	6	11	21		2
J	D,E	4	7	18		1

Activity	Predecessor	Most	Most Likely	Most Pessimistic	TE	Staffing
		Optimistic (a)	(m)	(b)		
Α	-	13	18	35	20	2
В	-	7	17	45	20	3
С	-	6	8	22	10	4
D	Α	12	14	22	15	2
E	B,C	7	10	13	10	4
F	B,C	6	12	28	14	3
G	B,C	2	4	8	4	2
Н	С	6	10	19	11	5
I	G,H	6	11	21	12	2
J	D,E	4	7	18	8	1

2. Draw the network diagram using either AON format.

Activity	Predecessor
Α	-
В	-
С	-
D	Α
Ε	B,C
F	B,C
G	B,C
Н	С
ı	G,H
J	D,E

Forward pass, backward pass and critical path

5. Complete the Gantt charts to show activities and the staffing requirements

Complete the table below, by filling in the Slope and the Maximum Crash Time

Activity	Normal Time	Normal Cost (\$)	Crash Time	Crash Cost (\$)	Slope	Maximum Crash Time
Α		2,000	18	2,500		
В		5,000	17	6,500		
С		5,500	9	7,000		
D		1,000	11	3,000		
E		3,700	7	5,000		
F		1,300	12	2,000		
G		2,600	3	3,400		
Н		6,100	9	6,700		
1		500	10	2,000		
J		2,200	7	3,800		

Slope = <u>crash cost – normal cost</u> normal time - crash time

Activity	Normal Time	Normal Cost (\$)	Crash Time	Crash Cost (\$)	Slope	Maximum Crash Time
Α	20	2,000	18	2,500	250	2
В	20	5,000	17	6,500	500	3
С	10	5,500	9	7,000	1500	1
D	15	1,000	11	3,000	500	4
Е	10	3,700	7	5,000	433	3
F	14	1,300	12	2,000	350	2
G	4	2,600	3	3,400	800	1
Н	11	6,100	9	6,700	300	2
1	12	500	10	2,000	750	2
J	8	2,200	7	3,800	1600	1

7. Using direct costs, what is the lowest cost to complete the project 6 days early?

7. Using direct costs, what is the lowest cost to complete the project 6 days early?

Direct crashed cost, 6 days early = \$32,400