Gas Absorption

Isabel Coelhoso

imrc@fct.unl.pt

Engenharia Química e Biológica

Processos de Separação

Operation of a tray column

Operation of a tray column

Anomalies on the operation of a tray column

Anomalies on the operation of a tray column

Leaking

Flooding

Anomalies on the operation of a tray column

Areas of perforated trays

Engenharia de Processos de Separação, E. G. Azevedo, A.M. Alves (2009)

Evaluation of the diameter- tray columns

Fair correlation [*Pet/Chem Eng.* 33(10) , 45 (1961)]

 U_{nf} = gas velocity through net area at flood, m/s C_{sbf} = capacity parameter corrected for surface tension, m/s

 σ = liquid surface tension, mN/m (dyn/cm)

 $\rho_L = \text{liquid density, kg/m}^3$ $\rho_G = \text{gas density, kg/m}^3$

Example 14.1 Column sizing and rating

An absorber column is to be designed for lowering the concentration of acetone in a stream of air using water as the absorbent. The results of a simulation run are summarized herewith:

	Mole Fraction				
	Absorbent	Gas Feed	Liquid Bottoms	Vapor Overhead	
Nitrogen		0.771	1.0×10^{-5}	0.763	
Oxygen		0.207	5.0×10^{-6}	0.205	
Acetone		0.015	0.005	8.19×10^{-5}	
Water	1.00	0.007	0.995	0.032	
Flow rate, kmol/hr	2000.0	725.0	1992.5	732.5	
Temperature, °C	26.0	27.0	23.0	25.0	
Pressure, kPa	105.0	105.0	105.0	100.0	
Molecular weight	18.01	29.22	18.21	28.51	
Density, kg/m3	997.0	1.23	998.0	1.15	

The absorber will be a trayed column, using sieve trays with the following specifications:

Hole area/total tray area	$A_h/A = 0.10$	Additional properties and specifications include the following:	
Hole diameter	$d_h = 3/16 \text{ inch}$, , , , , , , , , , , , , , , , , , ,	0
Weir height Tray thickness	$h_w = 2.0 \text{ inch}$ $l_t = 0.078 \text{ inch}$	Surface tension	$\sigma = 68 \text{ dyne/cm}$
Height of downcomer clearance	$h_a = 1.5$ inch	Foaming factor	$F_F = 0.80$
Tray spacing	18 inch	Froth density in the downcomer Fraction of flood velocity	$\phi_d = 0.5$ f = 0.75

Escolher zona da coluna para o cálculo

$$F = \left(\frac{LM_L}{VM_V}\right) \left(\frac{\rho_V}{\rho_L}\right)^{0.5}$$
$$= \left(\frac{2000.0 \times 18.01}{732.5 \times 28.51}\right) \left(\frac{1.15}{997.0}\right)^{0.5} = 0.0586$$

C_{sbf}:

• Tray spacing, 18-in = 457mm

$$=> C_{\rm sbf} = 0.085 \; {\rm m/s}$$
 Flow parameter = L/O
$$U_{\rm nf} = C_{\rm sbf} \left(\frac{\rho_L - \rho_V}{\rho_V}\right)^{0.5} \left(\frac{\sigma}{20}\right)^{0.2} => U_{\rm nf} = 3.2 \; {\rm m/s}$$

$$=> U = 0.75*3.2 \; {\rm m/s} = 2.4 \; {\rm m/s}$$

Diâmetro?

G= 732.5*28.51/1.15=18159.6 m³/h

U=2.4 m/s= 8640 m/h

 $A_h = 2.1 \text{ m}^2$

Como $A_h/A=0.1$ $A= 21 \text{ m}^2$

D = 5.2 m

Pressure drop in a packing column

Point K is the loading point
Point L is the flooding point for the given liquid flow.

Loading point is a point where liquid hold up starts to increase and caused a change in the slope of the pressure drop

Flooding point is a point where the gas velocity will result in the pressure drop start to become almost vertical. Liquid rapidly accumulates, the entire column filled with liquid.

Evaluation of the diameter-packing columns

Random packing

Engenharia de Processos de Separação, E. G. Azevedo, A.M. Alves (2009)

Amonia is absorbed from air at atmospheric pressure and temperature of 20°C with water in a column operating in countercurrent mode.

The gas flowrate is 43.6 m³/h and the water flowrate is 37.5 kg/h.

If amonia is reduced from 3.52% (v/v) to 1.3% (v/v) determine:

- a) The compostion of amonia in the water leaving the column.
- b) The minimum water flowrate.

The equilibrium line is $Y^*=1.3X$ with Y and X molar ratios.

- a) XA1=0.0198
- b) Ls min=1469 mol/h