Sicurezza delle Reti

Prof. Stefano Bregni

I Appello d'Esame 2021-22 – 25 giugno 2022

Cognome e nome:

(stampatello) (firma leggibile)

Matricola:

NB: In ogni esercizio, ogni risposta non giustificata adeguatamente, anche con pochissime parole, avrà valore nullo.

Domanda 1

(svolgere su questo foglio nello spazio assegnato) (7 punti)

Bob adotta il sistema di firma elettronica di El Gamal e pubblica p = 137, $\alpha = 13$, $\beta = \alpha^a \mod p = 90$, tenendo segreto l'esponente a ($1 \le a \le p-2$).

Bob estrae il numero casuale segreto k (nonce) con MCD(k, p-1) = 1. Usando sempre questo stesso valore di k, Bob calcola le seguenti firme A_1 e A_2 per i rispettivi messaggi P_1 e P_2 .

$$A_1 = (r_1, s_1) = (12, 24)$$
 $P_1 = 100$
 $A_2 = (r_2, s_2) = (12, 100)$ $P_2 = 104$

Oscar intercetta i due messaggi firmati. Sulla base di essi e delle informazioni pubbliche, calcolare
$$k$$
 e a (anacco del nonce ripetulo).

 $S \equiv K^{-1}(P-ar) \pmod{(p-1)} \rightarrow SK \equiv P-ar \pmod{(p-1)}$
 $(24 K \equiv 100 - a12 \pmod{136})$
 $(24 K \equiv 100 - a12 \pmod{136})$
 $(26 K \equiv 4 \pmod$

39 = 5 (mad 34) 37 = 23 (mad 36) Dai daki pullia;

4 = 5.23 = 13 (mod 34)

a; = 13 (47,81,115 (ma) 136)

(b = xa (md p) 90 Ear (m) 237

Pag. 1/9

Sicurezza delle Reti

Prof. Stefano Bregni

I Appello d'Esame 2021-22 – 25 giugno 2022

Cognome e nome:

(stampatello) (firma leggibile)

Matricola:

Domanda 2

(svolgere su questo foglio nello spazio assegnato) (5 punti)

Bob adotta il sistema di cifratura a chiave pubblica RSA. Pubblica il modulo n = 17399 e un esponente di cifratura scelto tra $e_1 = 39$, $e_2 = 1823$, $e_3 = 1113$.

- a) Fattorizzare n con il metodo di Fermat. Verificare la correttezza dei dati forniti in base alle ipotesi del metodo RSA. Scegliere il valore corretto tra i tre esponenti e_1 , e_2 , e_3 .
- b) Alice trasmette a Bob il messaggio cifrato C = 3, calcolato utilizzando il valore corretto dell'esponente e. Decifrarlo e calcolare il corrispondente messaggio in chiaro P.

a)
$$M = 14399 = 127.137$$

 $Q(m) = 126.176 = 14736 = 24.3.7.17$
 $Q[Q(m)] = 6606$
 $T(C)(39,14136) = 3 NO
 $T(C)(1113,14136) = 21 NO$ =) $e = 1823$ ($e(q(m))$
 $T(C)(1123,14136) = 1 OK$
b) $Ol = e^{-1}$ ($mod Q(m)$)
 $Com Endish Enkyo: $d = 47$ ($mod 14136$)
 $P = C^{-1}$ mod $M = 3^{47}$ mod $M = 3^{47}$$$

Sicurezza delle Reti Prof. Stefano Bregni	I Appello d'Esame 2021-22 – 25 giugno 202
Cognome e nome:	(stampatello
Matricola:	(firma leggibile
(svolgere su questo fog	Domanda 3 glio nello spazio assegnato) (7 punti)
a) Spiegare cosa significa affermare che una generic Perché una funzione di $hash h = h(x)$ non può mai	
 b) Definire la proprietà di unidirezionalità di una fun Definire la proprietà di resistenza debole alle colla Mettere in evidenza per cosa differiscono le due di 	isioni di una funzione di hash $h = h(x)$.
c) Si consideri una ipotetica funzione di hash $h = n$ elemento generatore di \mathbb{Z}_p^* , e m è un intero qualsia	$h(m) = \alpha^m \mod p$, dove p è un primo "grande e sicuro", α è un si. Si dica se tale funzione $h = h(m)$ è
- invertibile? (spiegare perché SI o perché NO)	
NO	
- unidirezionale? (spiegare perché SI o perché NO)	
· 51	
- (almeno) debolmente resistente alle collisioni? (sp	iegare perché SLo perchè NO)

NO

Domanda 4

(svolgere su questo foglio nello spazio assegnato) (5 punti)

Alice e Bob adottano il protocollo di *Diffie-Hellman* per l'instaurazione della loro chiave simmetrica K_{AB} . Alice pubblica p=107 e $\alpha=9$. Alice sceglie $1 \le x \le p-2$ (segreto). Bob sceglie $1 \le y \le p-2$ (segreto).

Oscar osserva i numeri scambiati da Alice e Bob:

Alice → Bob:

 $\alpha^x \equiv 13 \pmod{p}$

Alice ← Bob:

 $\alpha^y \equiv 13 \pmod{p}$

a) Oscar deduce che, per un caso fortuito, Alice e Bob hanno scelto lo stesso valore per x e y. E' corretto? Verificare se esistono più valori di x e y ($x \ne y$, $1 \le x \le p-2$, $1 \le y \le p-2$) tali che $\alpha^x \equiv \alpha^y \equiv 13 \pmod{p}$.

b) Sulla base delle informazioni conosciute da Oscar, calcolare gli esponenti segreti x e y con l'algoritmo Baby Step Giant Step (tutti i valori possibili se ne esistono più di uno) e la chiave K_{AB} .

$$N = |\nabla p_{1}| = 11 \quad X^{-1} = 12 \quad (m_{10} + 104)$$

$$d^{-N} = 40 \quad (m_{10} + 107)$$

$$\frac{1}{2} \quad X^{0} \quad K \quad (m_{10} + 107)$$

$$\frac{1}{2} \quad \frac{1}{2} \quad \frac{1}{2} \quad \frac{1}{2} \quad X^{0} = (m_{10} + 107)$$

$$\frac{1}{2} \quad \frac{1}{2} \quad \frac{1}{2} \quad \frac{1}{2} \quad X^{0} = (m_{10} + 107)$$

$$\frac{1}{2} \quad \frac{1}{2} \quad \frac{1}{2} \quad \frac{1}{2} \quad X^{0} = (m_{10} + 107)$$

$$\frac{1}{2} \quad \frac{1}{2} \quad \frac{1}{2}$$

Sicurezza delle Reti	
Prof. Stefano Bregni	I Appello d'Esame 2021-22 – 25 giugno 2022
Cognome e nome:	(stampatello)
	(firma leggibile)
Matricola:	

Domanda 5

(rispondere su questo foglio negli spazi assegnati) (12 punti) (NB: ogni risposta non giustificata adeguatamente, anche con pochissime parole, avrà valore nullo).

1) Quali sono i valori possibili dell'ordine di un elemento $\alpha \in \mathbb{Z}_{19}^*$?

(2 punti)

1,2,3,6,9,18

2) L'equazione $x^2 \equiv 2 \pmod{109}$ ha soluzione? Se la risposta è sì, calcolarne le radici. L'equazione $x^2 \equiv -2 \equiv 107 \pmod{109}$ ha soluzione? Se la risposta è sì, calcolarne le radici.

(2 punti)

P=101 primo \Rightarrow l'eq. ho religione re $a^{p:1} = 1 \pmod{p}$ $(\pm 2)^{54} = -1 \pmod{100} = 1$ regions \Rightarrow elle due eq. he show, $(NS: 100 = 1 \pmod{4})$

3) Ricevi una mail da <stefano.bregni@polimi.it>, in cui il mittente presenta un certificato per "SUBJECT: Stefano Bregni" emesso da Verisign. Che procedura segui per verificare l'autenticità del certificato? Se il certificato risulta valido, puoi concludere che il mittente è il tuo Professore, oppure devi fare qualcos'altro per esserne certo? (2 punti)

Sicurezza delle Reti

Prof. Stefano Bregni

I Appello d'Esame 2021-22 – 25 giugno 2022

Cognome e nome:

(stampatello) (firma leggibile)

Matricola:

4) Utilizzo uno scrambler autosincronizzante di ordine M = 48 per mascherare i miei dati trasmessi su un canale pubblico. Come calcolo il numero di polinomi esistenti non riducibili di grado 48, tra cui scegliere quello del mio scrambler (non è richiesto fornire i dettagli)? Scelgo un polinomio tra di essi e lo rendo pubblico. Chiunque in ascolto sul canale può leggere i miei dati? (2 punti)

5) Dati un algoritmo di cifratura $E_K(X)$ e rispettivo algoritmo di decifratura $D_K(X)$, si considerino le funzioni di cifratura doppia $C = E_{K_2}(E_{K_1}(P))$ e sua decifratura $P = D_{K_1}(D_{K_2}(C))$, con due chiavi K_1 e K_2 ciascuna di lunghezza n = 32 bit. I messaggi in chiaro P e cifrato C abbiano entrambi lunghezza 64 bit. Il calcolo delle funzioni $X = D_K(Y)$ e $Y = E_K(X)$ richiede lo stesso tempo $T = 1 \mu s$.

Si tenta un attacco *Meet-in-the-Middle* per trovare la coppia di chiavi K_1 , K_2 .

- a) Descrivere il procedimento. Precisare quali informazioni è necessario conoscere.
- b) Quanto tempo richiede il completamento dell'attacco con successo?
- c) Quale occupazione di memoria [byte] è necessaria per completare l'attacco con successo?

Shrows dea 2^{32} a 2^{33} operation $E_{k}(x)$ or $D_{k}(y)$ I tot da 4295 a 9590 recombi (1, 18 one = 2,39 one) 2^{35} byte = 32 Gbyte