SMART SOLUTIONS FOR RAILWAYS

TEAM MEMBERS: - 4

- 1. SANJANA R
- 2. SANJAY S
- 3. SANJAY T
- 4. SARAVANAMUTHU G

ABSTRACT:

The main driver behind Smart Railways is efficiency. Advanced technologies such as automation, artificial intelligence (AI), and machine learning have the potential to revolutionize the railway industry. The implementation of digital technologies will lead to operational efficiency, cost benefits, higher customer value, and faster and better services in the railway sector. Integrated security, predictive maintenance, and asset management are a few of the new areas of technology deployment. Smart Solutions for railways is designed to reduce the work load of the user and also the use of paper.

LITERATURE SURVEY:

S.NO	PAPER NAME	ADVANTAGES	DISADVANTAGES	CONCEPTS
1.	Automatic Water level monitoring and Seat availability details in train using Wireless	Water management is used for water monitoring. IR sensor for	High performance	Water sensor, IR sensor, wireless network.

	Sensor Network.	seat availability		
2.	5G key technologies for smart railways.	5G based technologies for spatial modulation	Low communication latency	5G edge, hybrid multicloud.
3.	Remote sensors	Used for extension of railroad systems.	Redesigning not possible. Advancement is not applicable	Remote sensors, RFID.
4.	Internet of things in high-speed railway	High speed railway to access multiple technologies.	Environmental sensing of IOT service.	MIOT, Transceiver.
5.	Railway experiment on point electric heating system	Simplicity and efficient	Requires manual application for switching	Pulse width modulation
6.	Smart railway feasibility and applications	Low power consumption and high reliability	Requires various transmission and reception schemes	Long range radios.
7.	Railway ticketing with GPS as ticket checker	It helps in ticket checking facility.	GPS can disable automatically due to manual errors.	Advanced communicat ion control and computing technologie s
8.	Passenger monitoring model for	It helps passengers travel using a	It is applicable only for	It is used in reading ticket

	easily	transportation	passenger	control,
	accessible	card.	monitoring	monitors
	public trains			passenger,
				RFID ticket
				inspection
9.	High speed	Feasibility of	Unnecessary	Cellular
	railway	cellular	handovers can be	networks
	control and	network for	caused.	
	communicatio	high- speed		
	n system	railway		
10.	Failure	Reliability,	Failure can occur	Internet of
	management	security and	in	things
	strategies for	solution to	communication	
	IOT based	failure in	channel	
	railway	management		
	system			
11.	Train collision	The control	It is not	RFID tag,
	avoidance by	room can	considered as	GSM
	using RFID	identify and	much safe	module
		avoid the	because of	controller
		collision	improper	and android
		before hand	communication.	device.