Problem 1.

Consider two topologies on \mathbb{R} : the Euclidean (or usual) topology \mathcal{T}_E , and the topology \mathcal{T}_{CF} in which the *closed* sets are \mathbb{R} and all the finite subsets of \mathbb{R} .

- (a) Suppose $f: (\mathbb{R}, \mathcal{T}_E) \to (\mathbb{R}, \mathcal{T}_E)$ is continuous. Prove that it is also continuous as a map $(\mathbb{R}, \mathcal{T}_E) \to (\mathbb{R}, \mathcal{T}_{CF})$.
- (b) Give an example of a continuous map $g:(\mathbb{R},\mathcal{T}_E)\to(\mathbb{R},\mathcal{T}_{CF})$ that is *not* continuous as a map $(\mathbb{R},\mathcal{T}_E)\to(\mathbb{R},\mathcal{T}_E)$.

Suggestion: Try strictly increasing piecewise linear maps.

(c) Find all continuous maps $f:(\mathbb{R},\mathcal{T}_{CF})\to(\mathbb{R},\mathcal{T}_E)$.

Solution

Part (a)

Let $f: (\mathbb{R}, \mathcal{T}_E) \to (\mathbb{R}, \mathcal{T}_{CF})$. f is continuous iff $\forall U \subset \mathcal{T}_{CF}$ when U open in $\mathcal{T}_{CF} \implies f^{-1}(U)$ is open in \mathcal{T}_E . Let

$$U = \left(\bigcup_{i=1}^{N} x_i\right)^{\mathsf{c}}$$

be an open set in the topology \mathcal{T}_{CF} , then by De Morgan's Laws

$$U = \bigcap_{i=1}^{N} x_i^{\mathsf{c}}$$

where x_i^c is open in \mathcal{T}_E , and because finite intersections of open sets is open, U must be open in \mathcal{T}_E . The mapping $f:(\mathbb{R},\mathcal{T}_E)\to(\mathbb{R},\mathcal{T}_E)$ is continuous $\Longrightarrow f^{-1}(U)$ is open, thus f is continuous.

- Part (b)
- Part (c)

Problem 2.

Markus Foote

(a) Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces let $f, g: (X, \mathcal{T}_X) \to (Y, \mathcal{T}_Y)$ be continuous maps, and suppose that (Y, \mathcal{T}_Y) is Hausdorff. Prove that

$$E(f,g) = \{ x \in X \mid f(x) = g(x) \}$$

is closed in (X, \mathcal{T}_X) .

(b) Give an example of two continuous maps f,g with E(f,g) not closed. (If possible, try to find an example with (X, \mathcal{T}_X) Hausdorff.)

Solution

Part (a)

Problem 3.

Let (X, d) be a metric space, let $x \in X$ and let $A \subset X$ be non-empty. Define the distance between x and A, denoted d(x, A), by

MATH 5510: Topology: HW 3

$$d(x, A) = \inf\{d(x, y) \mid y \in A\}.$$

- (a) Prove that d(x, A) is a continuous function of x.

 Suggestion: Prove more: it is a Lipschitz function, with Lipschitz constant 1.
- (b) Prove that $d(x, A) = 0 \iff x \in \overline{A}$.
- (c) Prove that, if A is closed, then there exists a continuous function $f: X \to \mathbb{R}$ so that $A = \{x \in X | f(x) = 0\}.$
- (d) Suppose $A, B \subset X$ are closed sets, non-empty, and disjoint: $A \cap B = \emptyset$. Prove that there exists a continuous function $g: X \to [0, 1]$ such that

$$g(x) = 0 \iff x \in A \text{ and } g(x) = 1 \iff x \in B.$$

Suggestion: Experiment with functions with d(x, A) + d(x, B) as denominator.

(e) Prove that if A and B are disjoint, non-empty, closed sets as above, there exist open sets $U, V \subset X$ so that $A \subset U, B \subset V$ and $U \cap V = \emptyset$.

Solution

Part (a)