Tree Depth

Problem 2: Large Data Set / Jupyter Notebook

Entries = 10,000 Classes = 3 Attributes = 17

Examine and Analyze Data:

To get an idea of a possible "best fit", 1,530 decision trees were systematically created and compared with varying tree depths and test/train split ratios. Results below. The test/train splits were all stratified to promote consistency.

Test Data Ratio										
Tree Fit	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	Mean
1	91.2%	91.2%	91.2%	91.2%	91.2%	91.2%	91.2%	91.2%	91.2%	91.2%
2	98.9%	98.7%	98.8%	98.8%	98.8%	98.8%	98.8%	98.7%	98.7%	98.8%
3	98.7%	98.8%	98.9%	98.8%	98.7%	98.8%	98.6%	98.5%	98.5%	98.7%
4	98.8%	98.8%	98.8%	98.7%	98.7%	98.6%	98.6%	98.5%	98.3%	98.7%
5	98.6%	98.7%	98.8%	98.8%	98.7%	98.6%	98.6%	98.5%	98.1%	98.7%
6	98.9%	98.9%	98.8%	98.7%	98.5%	98.5%	98.6%	98.4%	98.2%	98.7%
7	99.0%	98.9%	98.8%	98.7%	98.7%	98.5%	98.4%	98.3%	98.1%	98.7%
8	98.7%	98.8%	98.8%	98.6%	98.7%	98.6%	98.3%	98.2%	98.1%	98.6%
9	98.8%	98.9%	98.8%	98.6%	98.6%	98.6%	98.3%	98.0%	97.9%	98.6%
10	98.8%	98.8%	98.7%	98.5%	98.5%	98.4%	98.4%	98.2%	98.1%	98.5%
11	98.7%	98.7%	98.7%	98.6%	98.4%	98.3%	98.3%	98.2%	98.0%	98.5%
12	98.9%	98.5%	98.5%	98.6%	98.5%	98.3%	98.1%	98.2%	98.0%	98.4%
13	98.5%	98.5%	98.7%	98.4%	98.4%	98.3%	98.2%	98.2%	98.0%	98.4%
14	98.6%	98.5%	98.5%	98.5%	98.4%	98.3%	98.2%	97.9%	98.2%	98.4%
15	98.6%	98.5%	98.5%	98.5%	98.3%	98.3%	98.2%	98.2%	98.2%	98.4%
16	98.5%	98.5%	98.5%	98.5%	98.3%	98.3%	98.1%	98.1%	97.8%	98.4%
17	98.5%	98.4%	98.4%	98.6%	98.2%	98.2%	98.2%	98.0%	97.9%	98.3%

A maximum tree depth of 2 yields the most accurate decision tree (explanation as to why coming later). Additionally, tree fit appears to drop off when the test/train ratio exceeds 30%. Based on these results, a tree depth of 2 was chosen and the test/train ratio was set to the Scikit default of 25%.

Create the Final Tree

Tree Depth = 2 Test/Train Ratio = 0.25Tree Fit (Score) $\approx 98.8\% - 99.0\%$

The biggest factor in categorizing the data into classes is an entry's *redshift* value. Therefore, a maximum tree depth of 2 gave the best fit. Anything greater causes overfitting and ultimately reduces the tree's accuracy.

Below is an auto-generated, two-deep, binary decision tree and a simplified, non-binary version.

