Flamingo: a Visual Language Model for Few-Shot Learning

Петров Олег Поклонская Мария Орлов Александр

Введение

Few-shot learning (FSL)

Query

Armadillo or Pangolin?

Few-Shot Learning

Query:

Support Set:

Что такое Flamingo?

Flamingo — это новая зрительно-языковая модель (VLM) от DeepMind

VLM должна уметь принимать *мультимодальный* вход, а выдавать – текст

Может решать различные задачи: классификацию, captioning, visual dialogue, visual question answering и т.д., при этом она может быстро адаптироваться под FSL задачи*

^{*} всего из нескольких примеров выдавать хорошие результаты

Пример

SotA модель

Вдохновение

Большие LM (good few-short learners):

- 1. Вход: примеры + подсказки (prompt), запрос
- 2. Выход: текст, продолжение запроса

Flamingo: аннотированные визуальные данные на входе:

- 1. Классификация
- 2. Субтитры
- 3. Ответы на вопросы

Архитектура

Две предобученные frosen-модели:

- 1. CV-модель: "восприятие" визуальных данных
- 2. Большая LM: базовая форма рассуждения

Инновация: связующая архитектура

Цель: сохранить "знания" моделей

Perceiver-based архитектура: доступ к HD

Подход

В общем

Flamingo моделирует следующее правдоподобие:

$$p(y|x) = \prod_{\ell=1}^{L} p(y_{\ell}|y_{<\ell}, x_{\leq \ell}),$$

– вероятность появления текста y при условии изображения x.

Здесь:

 $y_\ell - \ell$ -ый языковой токен

 $y_{<\ell}$ – набор предшествующих токенов

 $x_{\leq \ell}$ – набор визуальных токенов в мультимодальной последовательности

В общем

Vision Encoder

Vision Encoder: Normalizer-Free ResNet (NFNet) F6

- Contrastive learning
- Two-term contrastive loss (Radford)
- Эмбеддинги из последней стадии
- Для видео: независимое покадровое кодирование

Все признаки переводятся в 1D на вход Perceiver Resampler

Perceiver Resampler

Perceiver Resampler: трансформер

- Переменный размер признаков в фиксированный
- Число queries предопределяется
- Число токенов на выходе равно числу queries
- К и V не обучаются

Перекрестное внимание

Обучение

Обучение и данные

Large LMs:

- 1. Большой объем данных
- 2. General-purpose генерация текста под запрос

Flamingo: обучение критически важно:

- 1. Много тщательно подобранных мультимодальных данных
- 2. Никаких данных, аннотированных для МL-целей (?)
- 3. Адаптация через FSL без подстройки под задачу

Данные

- Смесь из трех типов наборов данных
 - M3W dataset
 - o image-text пары
 - o video-text пары
- Все из Интернета

M3W (MultiModal Massive Web)

Обеспечивает few-shot возможности модели

- Парсинг HTML из 43М страниц
- Расположение изображений относительно текста
 - o <image> токен на позиции изображения в тексте
 - <EOC> токен выучен из словаря
- Случайные 256 токенов из документа
 - Первые 5 изображений

image/video-text

- ALIGN dataset (1.8M)
 - 12.4 токенов на изображение
- Собственное LTIP-дополнение (312M)
 - 20.5 токенов на изображение
- VTP (27M) с короткими видео
- Препроцессинг по аналогии с M3W

Оптимизация

Weighted sum of per-dataset expected NLL of text, given the visual inputs:

$$\sum_{m=1}^{M} \lambda_m \cdot \mathbb{E}_{(x,y) \sim \mathcal{D}_m} \left[-\sum_{\ell=1}^{L} \log p(y_{\ell}|y_{<\ell}, x_{\leq \ell}) \right]$$

Здесь: \mathcal{D}_m , λ_m – набор данных и его вес

Значения λ_m важны

Градиенты накапливаются: лучше, чем "round-robin" подход

Адаптация

In-context learning

Open/close-ended evaluations

- Open-ended:
 - 3-beam search
- Close-ended:
 - Получаем всевозможные ответы
 - \circ Создаем пары $(image, answer_i)$
 - Ранжируем ответы по правдоподобию

Эксперименты

Method	FT	Shot	OKVQA (I)	VQAv2 (I)	(I) 0000	MSVDQA (V)	VATEX (V)	VizWiz (I)	Flick30K (I)	MSRVTTQA (V)	iVQA (V)	YouCook2 (V)	STAR (V)	VisDial (I)	TextVQA (I)	NextQA (I)	HatefulMemes (I)	RareAct (V)
Zero/Few shot SOTA			[34]	[114]	[124]	[58]				[58]	[135]		[143]	[79]			[85]	[85]
	X		43.3	38.2	32.2	35.2	= 1	(-		19.2	12.2	7	39.4	11.6		7	66.1	40.7
	0.000	(X)	(16)	(4)	(0)	(0)	200.000	-5500000	10.000,000	(0)	(0)	EX1100000	(0)	(0)	0.0000000		(0)	(0)
	X	0	41.2	49.2	73.0	27.5	40.1	28.9	60.6	11.0	32.7	55.8	39.6	46.1	30.1	21.3	53.7	58.4
Flamingo-3B	X	4	43.3	53.2	85.0	33.0	50.0	34.0	72.0	14.9	35.7	64.6	41.3	47.3	32.7	22.4	53.6	-
	X	32	45.9	57.1	99.0	42.6	59.2	45.5	71.2	25.6	37.7	76.7	41.6	47.3	30.6	26.1	56.3	-
Flamingo-9B	X	0	44.7	51.8	79.4	30.2	39.5	28.8	61.5	13.7	35.2	55.0	41.8	48.0	31.8	23.0	57.0	57.9
	X	4	49.3	56.3	93.1	36.2	51.7	34.9	72.6	18.2	37.7	70.8	42.8	50.4	33.6	24.7	62.7	_
	X	32	51.0	60.4	106.3	47.2	57.4	44.0	72.8	29.4	40.7	77.3	41.2	50.4	32.6	28.4	63.5	-
	X	0	50.6	56.3	84.3	35.6	46.7	31.6	67.2	17.4	40.7	60.1	39.7	52.0	35.0	26.7	46.4	60.8
Flamingo	X	4	57.4	63.1	103.2	41.7	56.0	39.6	75.1	23.9	44.1	74.5	42.4	55.6	36.5	30.8	68.6	1
	X	32	57.8	67.6	113.8	52.3	65.1	49.8	75.4	31.0	45.3	86.8	42.2	55.6	37.9	33.5	70.0	-
Pretrained FT SOTA			54.4	80.2	143.3	47.9	76.3	57.2	67.4	46.8	35.4	138.7	36.7	75.2	54.7	25.2	79.1	
	V	(X)	[34] (10K)	[140] (444K)	[124] (500K)	[28] (27K)	[153] (500K)	[65] (20K)	[150] (30K)	[51] (130K)	[135] (6K)	[132] (10K)	[128] (46K)	[79] (123K)	[137] (20K)	[129] (38K)	[62] (9K)	12

Method	VQAV2		COCO	VATEX	VizWiz		MSRVTTQA	VisDial		YouCook2	TextVQA		HatefulMemes
	test-dev	test-std	test	test	test-dev	test-std	test	valid	test-std	valid	valid	test-std	test seen
32 shots	67.6		113.8	65.1	49.8		31.0	56.8	- 2	86.8	36.0	2	70.0
Fine-tuned	82.0	82.1	138.1	84.2	65.7	65.4	47.4	61.8	59.7	118.6	57.1	54.1	86.6
SotA	81.3 [†]	81.3 [†]	149.6	81.4 [†]	57.2 [†]	60.6 [†]	46.8	75.2	75.4 [†]	138.7	54.7	73.7	84.6 [†]
	F1227	F1001	F1101	F1.501	rees.	CCC1	5513	rezon.	F1001	F1221	C1071	FO 43	£1.501

[51]

[79]

[123]

[132]

[137]

[84]

[152]

[65]

[65]

[133]

[133]

[119]

[153]