Problem §1 (2.22) Let C_n denote a cyclic group of order n, D_n denote the n^{th} dihedral group, and S_n the n^{th} symmetric group.

- (a) Prove that C_2 and S_2 are isomorphic.
- (b) Prove that \mathcal{D}_3 and \mathcal{S}_3 are isomorphic.
- (c) Let $m \geq 3$. Prove that for every n, \mathcal{C}_m and \mathcal{S}_n are not isomorphic.
- (d) Prove that for every $n \geq 4$, \mathcal{D}_n and \mathcal{S}_n are not isomorphic.
- (e) More generally, let $m \geq 4$ and $n \geq 4$. Prove that \mathcal{D}_m and \mathcal{S}_n are not isomorphic.
- (f) Prove that \mathcal{D}_4 and \mathcal{Q} are not isomorphic.

Solution:

- (a) $C_2 = \{e, g\}$, $S_2 = \{e, \pi\}$. Define a mapping $\phi : C_2 \to \S_2$, where $\phi(e) = e$, $\phi(g) = \pi$. ϕ is clearly a bijective homomorphism; thus C_2 is isomorphic to S_2 .
- (b) Let $\phi_3: \mathcal{D}_3 \to \mathcal{S}_3$ be the mapping that sends every $\sigma \in \mathcal{D}_3$ to the $\pi \in \mathcal{S}_3$ such that $\sigma(i) = \pi(i)$, $i \in \{1, 2, 3\}$. Problem 1 from last week's problem set shows that a map $\phi_n: \mathcal{D}_n \to \mathcal{S}_n$, as defined above, is a homomorphism, is injective for all $n \in \mathbb{Z}^+$, and surjective for $1 \leq n \leq 3$. Hence ϕ_3 is bijective, and so \mathcal{D}_3 is surjective to \mathcal{S}_3 . (Alternatively, one could simply list all permutations in \mathcal{S}_3 and all transformations in \mathcal{D}_3 , and observe that such a ϕ_3 is isomorphic. The reader is spared the work here.)
- (c) We begin with two lemmas.

Lemma 1. Let G, H be groups, and let G be cyclic. If G is isomorphic to H, then H is cyclic.

Proof. Given groups G, H, suppose G is cyclic and let $f: G \to H$ be an isomorphism.

Let $g_0 \in G$ be a generator for G, and let $f(g) = h \in H$ for some $g \in G$. Since G is cyclic, $g = g_0^m$ for some $m \in \mathbb{Z}$. Then

$$h = f(g) = f(g_0^m)$$

$$= f(g_0 \cdot \dots \cdot g_0)$$

$$= f(g_0)^m = h_0^m \text{ for some } h_0 \in H.$$

Hence for any $h \in H$, $h = h_0^m$ for some $h_0 \in H$. Thus any $h \in H$ is in $\langle h_0 \rangle$, and so H is cyclic as well. \square

Lemma 2. Let G be a group. If G is cyclic, then any subgroup H < G is cyclic.

Proof. Let G be a group, and let H < G. Suppose G is cyclic. Then for any $g \in G$, $g = g_0^m$, where g_0 is a generator of G.

Let $h \in H$. Since G is cyclic and $h \in G$, $h = g_0^m$ for some $m \in \mathbb{Z}$. Let $k \in \mathbb{Z}$ be the smallest k such that $g_0^k \in H$. Then for any $h = g_0^m \in H$, we have m = kq + r for some $q, r \in \mathbb{Z}$, $0 \le r < k$. Thus

$$g_0^m = g_0^{kq+r}$$
$$= g_0^{kq} g_0^r.$$

Since H is a subgroup, any $h \in H$ has $h^{-1} \in H$. Thus

$$g_0^m = g_0^{kq} g^r$$

$$g_0^{-kq} g_0^m = g_0^r$$

$$g_0^{m-kq} = g_0^r,$$

and by closure, $g_0^r \in H$ as well. But k is the smallest integer such that $g_0^k \in H$, and $0 \le r < k$; thus r = 0 (otherwise, we have a contradiction).

Thus for any $h \in H$, $h = (g_0^k)^q$, and so H is a cyclic group generated by g_0^k . \square

From Lemma 2, we get its contrapositive: if a subgroup H of a group G is not cyclic, then G is not cyclic, and we make one observation: S_3 is not cyclic (one can easily see that any $\pi \in S_3$ does not generate S_3). From the contrapositive to Lemma 2, since S_3 is a subgroup of S_n , and S_3 is not cyclic, S_n is not cyclic. Taking the contrapositive of Lemma 1, (if G is cyclic and H is not cyclic, H is not isomorphic to G), since S_n is not cyclic and C_m is cyclic, they are not isomorphic.

- (d) Recall that \mathcal{D}_n has order 2n, while \mathcal{S}_n has order n!. Since for any n > 3, $2n \neq n!$, \mathcal{D}_n is not isomorphic to \mathcal{S}_n .
- (e) We start with another lemma:

Lemma 3. Let G, H be groups. If G is isomorphic to H, then for any $g \in G$, the corresponding (unique) $f(g) = h \in H$ has the same order as g.

Proof. Let $f: G \to H$ be an isomorphism, let $g \in G$ have order n, and let $f(g) = h \in H$. Recall that for a homomorphism, f(e) = e', where $e' \in H$ is the identity. Then

$$f(e) = f(g^n) = f(g) \cdot \dots \cdot f(g)$$
$$= f(g)^n$$
$$= h^n = e'.$$

Since f is isomorphic, and any $g^m \neq e$ when $m \in \mathbb{Z}$ and m < n, n is the smallest positive integer such that $h^n = e'$; that is, $h \in H$ has order n as well. \square

Now, consider the dihedral group \mathcal{D}_m . We observe that all flips have order 2: if we flip an n-gon twice, we get back to the original shape (formally, if we define a flip $f_j(i) = m - j + i$, then $f_j(f_j(i)) = f_j(m-i+j) = m - (m-i+j) + j = m - m - j + j + i = i$ for all $0 \le j < m$. Refer back to problem set 2 for a more complete definition of the dihedral group.) Additionally, we observe that there are only two rotations with order 3: given a rotation

$$r_i(i) = i + j, \ j \in \{0, \dots, m - 1\},\$$

 $r_j^3(i) = i$ only when $i+3j \mod m = i$; that is, $3j \mod m \equiv 0$. Since $j \in \{0,\ldots,m-1\}$, this is only the case when $j = \frac{m}{3}$ or $\frac{2m}{3}$. Thus \mathcal{D}_m only has two elements of order 3.

On the other hand, S_n clearly has more than 2 elements with order 3: one can easily choose permutations $\pi_1 = (123)$, $\pi_2 = (124)$, $\pi_3 = (234)$ for any S_n when $n \ge 4$.

By the Lemma, if \mathcal{D}_m and \mathcal{S}_n were isomorphic, then any $\pi \in \mathcal{S}_n$ with order k would correspond with a unique $\sigma \in \mathcal{D}_m$, also with order k; specifically, elements with order 3 in \mathcal{S}_n would have to map to unique elements of order 3 in \mathcal{D}_m . However, there are more elements with order 3 in \mathcal{S}_n than there are in \mathcal{D}_m ; hence no such isomorphism exists between the two sets.

(f) In \mathcal{Q} , there are 6 elements with order 4: $\pm i$, $\pm j$, and $\pm k$; and 1 element with order 2: -1. However, in \mathcal{D}_4 , there are only 2 elements with order 4: r_1 and r_3 ; and 5 with order 2: all flips, and r_2 . Thus, since the number of elements with order 2 and order 4 are different, by Lemma 3 they cannot be isomorphic.

Problem §2 (2.28) Consider the dihedral group $\mathcal{D}_4 = \{e, \rho_1, \rho_2, \rho_3, \phi_1, \phi_2, \phi_3, \phi_4\}$ and the quaternion group $\mathcal{Q} = \{\pm 1, \pm i, \pm j, \pm k\}$. For each of the following groups and subgroups, explicitly write down the cosets

(a)
$$G = \mathcal{D}_4, H = \{e, \phi_1\}$$

(b)
$$G = \mathcal{D}_4, H = \{e, \phi_1, \phi_2, phi_3\}$$

(c)
$$G = \mathcal{D}_4, H = \{e, \phi_2\}$$

(d)
$$G = Q, H = \{\pm 1\}$$

(e)
$$G = \mathcal{Q}, H = \{\pm 1, \pm i\}$$

Solution:

(a)

$$eH = \{e, \phi_1\} \qquad \rho_1 H = \{\rho_1, \phi_2\} \qquad \rho_2 H = \{\rho_2, \phi_3\} \qquad \rho_3 H = \{\rho_3, \phi_4\}$$

$$\phi_1 H = \{\phi_1, e\} \qquad \phi_2 H = \{\phi_2, \rho_1\} \qquad \phi_3 H = \{\phi_3, \rho_2\} \qquad \phi_4 H = \{\phi_4, \rho_3\}.$$

(b)

$$eH = \{e, \rho_1, \rho_2, \rho_3\} \qquad \rho_1 H = \{\rho_1, \rho_2, \rho_3, e\} \qquad \rho_2 H = \{\rho_2, \rho_3, e, \rho_1\} \qquad \rho_3 H = \{\rho_3, e, \rho_1, \rho_2\}$$

$$\phi_1 H = \{\phi_1, \phi_4, \phi_3, \phi_2\} \qquad \phi_2 H = \{\phi_2, \phi_1, \phi_4, \phi_3\} \qquad \phi_3 H = \{\phi_3, \phi_2, \phi_1, \phi_4\} \qquad \phi_4 H = \{\phi_4, \phi_3, \phi_2, \phi_1\}.$$

(c)

$$eH = \{e, \rho_2\} \qquad \qquad \rho_1 H = \{\rho_1, \rho_3\} \qquad \qquad \rho_2 H = \{\rho_2, e\} \qquad \qquad \rho_3 H = \{\rho_3, \rho_1\}$$

$$\phi_1 H = \{\phi_1, \phi_3\} \qquad \qquad \phi_2 H = \{\phi_2, \phi_4\} \qquad \qquad \phi_3 H = \{\phi_3, \phi_1\} \qquad \qquad \phi_4 H = \{\phi_4, \phi_2\}.$$

(d)

$$\begin{array}{lll} 1H = \{\pm 1\} & -1H = \{\pm 1\} & iH = \{\pm i\} & -iH = \{\pm i\} \\ jH = \{\pm j\} & -jH = \{\pm j\} & kH = \{\pm k\} & -kH = \{\pm k\}. \end{array}$$

(e)

$$1H = \{\pm 1, \pm i\} \qquad -1H = \{\pm 1, \pm i\} \qquad iH = \{\pm i, \pm 1\} \qquad -iH = \{\pm i, \pm 1\}$$

$$jH = \{\pm j, \pm k\} \qquad -jH = \{\pm j, \pm k\} \qquad kH = \{\pm k, \pm j\} \qquad -kH = \{\pm k, \pm j\}.$$

Problem §3

(2.31) Let G be a group. The **center** of G is defined

$$Z(G) = \{g \in G \mid gg' = g'g \text{ for every } g' \in G\}.$$

- (a) Prove that Z(G) is a subgroup of G.
- (b) When does Z(G) equal G?
- (c) Compute the center of the symmetric group S_n .
- (d) Compute the center of the dihedral group \mathcal{D}_n .
- (e) Compute the center of the quaternion group Q.

(2.34) Let G be a finite group whose only subgroups are $\{e\}$ and G. Prove that either $G = \{e\}$, or G is a cyclic group whose order is prime.

Solution:

(2.31)

(a) Let $g_1, g_2 \in Z(G)$. Then for any $g' \in G$, we have

$$g'(g_1g_2) = (g'g_1)g_2 = (g_1g')g_2 = g_1(g'g_2) = g_1(g_2g') = g_1g_2g'.$$

Hence g_1g_2 commutes with every $g' \in G$, and so $g_1g_2 \in Z(G)$.

By definition, $e \in Z(G)$.

Let $g \in Z(G)$. Then gg' = g'g for any $g' \in G$. From this, we get

$$gg' = g'g$$

$$g^{-1}gg' = g^{-1}g'g$$

$$g' = g^{-1}g'g$$

$$g'g^{-1} = g^{-1}g'gg^{-1}$$

$$g'g^{-1} = g^{-1}g'.$$

Hence for any $g \in Z(G)$, $g^{-1} \in Z(G)$.

Therefore Z(G) is a subgroup of G.

- (b) Suppose Z(G) = G. Then for any $g \in Z(G)$, $g \in G$. Additionally, for every $g \in Z(G)$, gg' = g'g for any $g' \in G$. Thus if Z(G) = G, by definition G is an Abelian group. (If G is cyclic, Z(G) = G as well; but all cyclic groups are Abelian).
- (c) $Z(S_n) = \{e\}$; in other words, S_n has a trivial center.

Proof. Consider the set of bijective permutations \prod , where for some $\pi_j \in \prod$,

$$\pi_j(i) = \begin{cases} i & i = j \\ k \text{ (for some } k \neq i) & i \neq j \end{cases}, i, j, k \in \{1, 2, \dots, n\}$$

Let $\pi_i \in \prod$, $i \in \{1, ..., n\}$, and consider any permutation π not in \prod (except e). Suppose $\pi(i) = j$ for some $j \in \{1, ..., n\}$, and let k be some number in $\{1, ..., n\}$ such that $\pi_i(j) = k$. Then

$$\pi_i \circ \pi(i) = \pi_i(j) = k,$$

while

$$\pi \circ \pi_i(i) = \pi(i) = i.$$

Hence $\pi_i \pi \neq \pi \pi_i$, and so any $\pi \notin \prod$ (except obviously e) does not commute with any $\pi_i \in \prod$.

Since for any $n \geq 3$, there exists some non-trivial $\pi_i \in \prod$, and some non-trivial $\pi \notin \prod$, the only element that commutes with every $pi \in \mathcal{S}_n$ is e; therefore $Z(\mathcal{S}_n) = \{e\}$. \square

(d) For odd $n \ge 3$, $Z(\mathcal{D}_n) = \{e\}$; for even $n \ge 3$, $Z(\mathcal{D}_n) = \{e, r_{\frac{n}{2}}\}$, where $r_{\frac{n}{2}}$ is the half (180°) rotation.

Proof. Recall (from my problem set 2) that $V_n = \{0, \dots, n-1\}$, arithmetic is defined modulo n, a rotation $r_j \in \mathcal{D}_n$ is defined

$$r_i(i) = i + j, \ j \in V_n,$$

a flip is defined

$$f_j(i) = n - i + j, \ j \in V_n,$$

and \mathcal{D}_n is composed entirely of rotations and flips; that is,

$$\mathcal{D}_n = \{ \sigma \mid \sigma = r_1^j f_0^k, \ j \in V_n, \ k \in \{0, 1\} \}.$$

From this, we see three things:

• f_j has order 2 (and so $f_j = f_j^{-1}$): $f_j(f_j(i)) = f_j(n-i+j) = n - (n-i+j) + j = i$.

- $r_j^{-1} = r_{n-j}$: $r_{n-j}(r_j(i)) = r_{n-j}(i+j) = i+j+n-j = i+n = i$, and $r_j(r_{n-j})(i) = r_j(i+n-j) = i+n-j+j = i+n = i$.
- $f_j r_i f_j = r_i^{-1}$: $f_j(r_i(f_j(k))) = f_j(r_i(n-k+j)) = f_j(n-k+j+i) = n (n-k+j+i) + j = n n + k i j + j = k i = k + (n-i) = r_i^{-1}(k)$.

Now, observe that any rotation commutes with another rotation, and not every flip commutes with every other flip. Thus, any center must be a rotation that commutes with every flip (because then the rotation commutes with all rotations and all flips); in other words, for $r_j \in \mathcal{D}_n$, we must have $r_j f = f r_j$ for some flip f. From above, we have

$$fr_j f = r_j^{-1}$$

$$ffr_j f = fr_j^{-1}$$

$$r_j f = fr_j^{-1}.$$

Thus r_j commutes with any f if $r_j = r_j^{-1}$. We know that $r_j^{-1} = r_{n-j}$; thus $r_j = r_{n-j}$ requires j = n - j, or equivalently $j = \frac{n}{2}$. For odd n, this is not closed in \mathbb{Z} ; thus $r_{\frac{n}{2}} \in \mathcal{D}_n$ only if n is even.

By definition, e commutes with every element in \mathcal{D}_n . Therefore, $Z(\mathcal{D}_n) = \{e\}$ when n is odd, and $Z(\mathcal{D}_n) = \{e, r_{\frac{n}{2}}\}$ when n is even. \square

- (e) From the definition of the quaternion group \mathcal{Q} , one can clearly see that none of i, j, k commute $(ij = k \neq -k = ij, jk = i \neq -i = kj, \text{ etc.})$, while ± 1 do commute (1 is the identity, and for any $a \in \{i, j, k\}, -1 \cdot a = -a = a \cdot -1$); hence $Z(\mathcal{Q}) = \{\pm 1\}$.
 - (2.34) We start with two lemmas: