Building Reliable and Fault Resilient Mobile Ad Hoc Networks

Sarad A V, Vipin M, Sankar K AU-KBC Research Centre, M.I.T Campus of Anna University.

Contents

- Mobile Ad-Hoc
- Characteristics
- Reliability Fault Resilience
- Graph approach
- Binary tree and cycle
- Topology Building
 - Three Pass
 - Five Pass
- Interconnecting Tree
- Simulation results

Mobile Ad-Hoc

- Connected with wireless link
- Union of arbiter graph
- Nodes are Free to move randomly
- Self organizing
- Changing wireless topology

Characteristics

- Equal node capabilities
 - root node have the capability of initiating enumeration
- Distributed architecture
- Self organizing
- Wireless connectivity

Reliability Fault Resilience Trade off

- Reliability
 - Extra information on each node
 - Multiple route paths
- Trade off
 - No of route paths to
 - Resolve
 - Maintain
- Suggested Approach
 - Utilizing adjacency matrix with special cycles

Graph Approach

- Each node is aware of its neighbors
- Build tree based on wireless reachable
- A sub graph from the all possible connectivity graph

Binary tree and cycle

 Make adjacency matrix based on first two short paths

- Consider only Node deletion
 - Is consider more severe than edge deletion
- Type 1 and Type 2 cycles also used

Topology Building

Building and propagating of Adjacency matrix

- Tree Pass
 - Simple
 - Good for balanced tree structured network
- Five Pass
 - More broadcast required
 - Good for Unbalanced tree structured network

Three Pass

- Binary_Enumeration
- Binary_Enumeration_Reply
- Binary_Broadcast

Adjacency matrix

Adjacency matrix

Five Pass

- Binary_Join_Cycle
- Binary_Node_Count
- Binary_Second_Numbering
- Binary_Consolidate_Toplogy
- Binary_Broadcast_Topology

Why require five pass

- Unbalance tree
- Reduce the size of adjacency matrix

Interconnecting Tree

 Edge nodes are responsible for inter tree communication

 Differentiated based on Tree ID

Simulation results

Total number of nodes vs. Number of deleted nodes

Total number of nodes vs. Number of cycles

Total number of nodes vs. Number of deleted nodes

Number of nodes deleted for a sample of 100 nodes	Number of nodes deleted for a sample of 200 nodes	Number of Unreachable nodes
20	24	5
41	45	10
57	62	15
59	67	17
-	72	18
-	76	20
-	75	22
_	-	23

Thank You

Questions?