SCHOOL OF MATHEMATICS AND STATISTICS UNSW Sydney

MATH5425 Graph Theory Term 1, 2025 Problem Sheet 3, Probabilistic Method

- 1. Consider the uniform model of random graphs on the vertex set $\{1, \ldots, n\}$. Recall that $\Pr(ij \text{ is an edge}) = \frac{1}{2}$, independently for each $1 \le i < j \le n$.
 - (a) For $1 \leq i < j \leq n$ let X_{ij} be the indicator variable for the event that $\{i, j\}$ is an edge in a uniformly random graph. Calculate $\mathbb{E}X_{ij}$.
 - (b) What is counted by $\sum_{1 \le i \le j \le n} X_{ij}$?
 - (c) Let X be the number of edges in a uniformly random graph on n vertices. Using linearity of expectation, prove that $\mathbb{E}X = \frac{1}{2} \binom{n}{2}$.

(Compare this proof with the direct proof given in lectures: which do you prefer?)

2. Let Ω be the set of all functions $g: S \to \{1, \ldots, k\}$ for some finite set S and positive integer k. Form the random function $f \in \Omega$ using the following procedure: choose $f(a) \in \{1, \ldots, k\}$ uniformly at random, independently for each $a \in S$.

(Note: choosing an element uniformly at random from a set B means "according to the uniform probability distribution on B", with each element of B equally likely to be chosen.)

- (a) Calculate $|\Omega|$.
- (b) Let $f_0 \in \Omega$ be any fixed function in Ω . Prove that $\Pr(f = f_0) = 1/|\Omega|$.
- 3. Let Ω be the set of all subsets of a given finite set S, and $p \in \mathbb{R}$ with $0 \le p \le 1$. Define the map $\pi : \Omega \to [0,1]$ by $\pi(X) = p^{|X|}(1-p)^{|S|-|X|}$ for all $X \subseteq S$.
 - (a) Show that π is a probability distribution (i.e., $\sum_{X\subseteq S} \pi(X) = 1$).
 - (b) Now consider a random subset Y of S constructed by the following procedure: put $a \in Y$ with probability p, independently for each element $a \in S$.

Prove that for any subset Y_0 of S we have $\Pr(Y = Y_0) = \pi(Y_0)$. (That is, the probability distribution on Ω which results from this procedure is exactly given by π .)

(In (b), you can imagine flipping a biased coin which has Pr(heads) = p, independently for each $a \in S$, and place $a \in Y$ if the coin comes up heads.)

(... Please turn over for Question 4)

4. A dominating set in a graph is a set of vertices $U \subseteq V$ such that every vertex which is not in U has a neighbour in U. Suppose that G has n vertices and minimum degree $\delta \geq 1$. We will prove that G has a dominating set of at most

$$n(1 + \ln(\delta + 1))/(\delta + 1)$$

vertices, using the probabilistic method.

- (a) For a given $p \in [0, 1]$, choose a random subset X of V using the procedure of Question 3(b). Let $Y = Y_X$ be the random set of all vertices in V X that do not have a neighbour in X. Calculate $\mathbb{E}|X|$ and prove that $\mathbb{E}|Y| \leq n(1-p)^{\delta+1}$.
- (b) Hence show that G has a dominating set of size at most

$$np + n(1-p)^{\delta+1}.$$

(c) Use the bound $1-p \le e^{-p}$ (which is a very good approximation when p is small) to (approximately) minimise the above expression, completing the proof.