# Week 6 Revision notes

# Week 6 - Routing Concepts and Protocols

# 1. Introduction to Routing

#### Definition of Routing:

- Routing is the process of moving data packets from one network to another, ensuring they reach their correct destination.
- This is a critical function of the Internet, allowing devices across different networks to communicate.

#### Role of Routers:

- Routers are devices designed specifically to perform routing. They operate at the Network Layer (Layer 3) of the OSI model.
- Routers connect separate networks and make decisions about the best path for data packets based on their routing tables.



# 2. Basic Routing Process

# • Three Main Steps in Routing:

#### 1. De-encapsulation:

The router removes the data link layer headers and trailers from the incoming packet,
revealing the network layer (Layer 3) information.

### 2. Routing Decision:

 The router examines the destination IP address in the packet and uses its routing table to find the best path.

#### 3. Re-encapsulation and Forwarding:

 The router places the network layer packet in a new data link frame for the next network segment and forwards it through the correct interface.

#### Routing Tables:

 Routing tables are essential tools for routers, listing possible paths and helping them decide where to forward packets.

#### Core Elements in Routing Tables:

- **Destination Network**: The network address for packet destinations.
- **Next Hop**: The address of the next router in the path to the destination.
- Metric: A value that indicates the "cost" of the route (e.g., hop count or delay).
- Timestamp: Shows when the routing information was last updated.

# 3. Types of Routing

### Static Routing:

Routes are manually configured by the network administrator.

#### Advantages:

- Simple setup, predictable, and requires less overhead.
- Effective for small networks with few routers or where paths rarely change.

# Disadvantages:

- Difficult to manage on large networks.
- · Cannot automatically adapt to network failures.

#### Best For:

 Small networks or networks with a single path to the destination (e.g., hub-and-spoke topologies).

# Dynamic Routing:

Routers automatically discover and update routes through communication with other routers.

#### Advantages:

- Automatically adapts to changes in network topology, such as new devices or link failures.
- · Ideal for larger, more complex networks.

### Disadvantages:

- Requires more processing power, memory, and bandwidth.
- · Can be initially more complex to set up.

#### Process:

- Initialization: Routers identify directly connected networks.
- Information Sharing: Routers exchange updates about their known routes.
- Continuous Updates: Routers periodically check and adjust routes to ensure the most efficient paths.



# 4. Key Routing Protocols

# Static Routing Protocols:

 Requires manual input and adjustments by the network administrator. It is typically used when routes are fixed and rarely change.

### Dynamic Routing Protocols:

 Enable routers to discover paths and adjust routes automatically, using specific algorithms to determine the best path.

### Types of Dynamic Routing Protocols:

- Interior Gateway Protocols (IGP): Used within a single organization (autonomous system).
  - Examples: RIP (Routing Information Protocol), EIGRP (Enhanced Interior Gateway Routing Protocol), OSPF (Open Shortest Path First).
- Exterior Gateway Protocols (EGP): Used between organizations (across autonomous systems).
  - Example: BGP (Border Gateway Protocol).



# 5. Routing Algorithms

# Distance Vector Algorithm:

- Based on the Bellman-Ford Algorithm, this method helps routers determine the best path by sharing their distance to each network.
- Routing Information Protocol (RIP):
  - A simple distance-vector protocol using hop count as a metric, RIP updates routing tables every 30 seconds.
  - Limitations: Suitable for smaller networks due to a maximum hop count of 15.

### Link State Algorithm:

- Based on Dijkstra's Least-Cost Algorithm, routers determine the shortest path by sharing information only about their directly connected links.
- Open Shortest Path First (OSPF):
  - OSPF calculates the best path by considering link states and only updates when there are changes.
  - Process:
    - Routers announce their presence with Hello messages.
    - They then send Link State Advertisements (LSAs) containing information about their connected networks.
    - Routers use the LSAs to build a network map and calculate the shortest paths to each destination.

#### Path Vector Algorithm:

- Used by Border Gateway Protocol (BGP), which is designed for large-scale inter-network routing.
- BGP Characteristics:
  - Uses AS (Autonomous System) paths rather than just hop counts.
  - Ensures reliable routing between organizations by preventing loops and making route selection decisions based on policies.



# 6. Routing Table Management

Types of Routing Table Entries:

- Directly Connected Networks: Networks physically connected to the router.
- Remote Networks: Networks reachable through other routers.
- **Default Routes**: Used as a last resort when there is no specific route for a destination.

#### Routing Table Optimization Techniques:

- Route Summarization: Combines multiple entries into a single summary route, reducing table size.
- Default Routes: Acts as a catch-all for unspecified destinations, preventing routing tables from growing too large.



# 7. Comparison of Static and Dynamic Routing

| Static Routing                                 | Dynamic Routing                            |
|------------------------------------------------|--------------------------------------------|
| Simple to set up and maintain                  | Automatically adapts to network changes    |
| Limited to small or stable networks            | Suitable for large, complex networks       |
| No automatic rerouting in case of link failure | Can detect and reroute around failed paths |
| Best for predictable and small environments    | Ideal for dynamic, evolving networks       |



# 8. Summary of Routing Protocols

# RIP (Routing Information Protocol):

- Distance-vector protocol, good for small networks, limited by a maximum of 15 hops.
- Metric: Hop count, with periodic updates.

#### EIGRP (Enhanced Interior Gateway Routing Protocol):

- Advanced protocol that balances elements of both distance-vector and link-state protocols.
- Uses bandwidth and delay metrics, providing quick recovery from network changes.

# OSPF (Open Shortest Path First):

- Link-state protocol using Dijkstra's algorithm for efficient routing.
- Updates only occur with network changes, saving bandwidth and ensuring fast convergence.

### BGP (Border Gateway Protocol):

- Path vector protocol, essential for internet routing between organizations.
- Tracks AS paths to prevent loops, enables policy-based routing, and manages routes across multiple organizations.