C5g

Strong and Weak Acids

corrosive l

What precautions should you take when working with acids?

Acid names	Formulae	Concentration mol/dm³	Colour of universal indicator	рЯ	Strong or Weak acid?
Hydrochloric acid	HCl	1.0			
Sulfuric acid	$\mathcal{H}_2\mathcal{S}O_4$	1.0			
Nitric acid	HNO3	1.0			
Ethanoic acid	СН₃СООН	1.0			

<u>Conu</u>	<u>clusions</u>
	1. ethanoic acid is a acid
,	2. hydrochloric, nitric and sulfuric acids are acids
	3. strong acids have a pH than weak acids of the same concentration
<u>Whi</u>	y are some acids stronger than others?
• .	Acids are chemicals that (dissociate) in water to produces ions
• .	An acid is strong if it ionises in water (100% of molecules ionise):
Higher LEARN	e.g.
•	Weak acids only ionise in water note that there is an
Higher LEARN	e.g. e.g. ou can see from the previous equation that the ionisation of a weak acid is an example of a
-	reaction and produces an equilibrium mixture
• .	is a measurement of the number of moles of hydrogen ions, $\mathcal{H}^{\!\scriptscriptstyle{+}}$ in solution
the_	the hydrogen ion concentration, the the pH number

• So, the pH of a wed	than the pH of a strong acid of the concentration.
<u>Higher Only</u>	Sain the difference hotevery asid strongth and asid concentrations
- 1	lain the difference between acid strength and acid concentration: the concentration of an acid is a measure of
STRENGTH:	How strong or weak an acid is i.e. its strength, is a measure of
	strong =
	weak =

Comparing the Reactions of Strong and Weak Acids

Both Strong and weak acids will perform these reactions:

metal + acid	>	salt +	hydrogen
metal oxide + acid	>	salt +	water
metal hydroxide + acid	>	salt +	water
Metal carbonate + acid	>	salt + water	+ carbon dioxide

Experiment 1 – Compare the reaction of magnesium with HCl and CH₃COOH (ethanoic acid)

<u>UI</u>	bset	vat	ions	5
				-

Experiment 2 –

CH₃COOH (ethanoic acid)

1	. The magnesium fizzes	: wit	h HCl
2	. The magnesium disapp	pears with	i HCl
3	. The test tube with H	Cl gets (more exot	hermic)
4	. Gas makes a	with a lighted splint	
	lusion Both ethanoic acid and hy	drochloric acid react with magnesium t	o give
• <u>I</u>	Ethanoic acid reacts	than hydrochloric a	acid because there are fewer
_		(H ⁺). Fewer H ⁺ means fewer	with Mg so the rate of reaction
7.	vill be	·	

Compare the reaction of calcium carbonate, $CaCO_3$ with HCl and

TOTAL volume produced by both gases = 24cm³

Conclusions

•	Both ethanoic acid and hydrochloric acid react with calcium carbonate to give					
	2HCl + СаСОз	-·	CaCl ₂	+	CO_2 + \mathcal{H}_2O	
•	Magnesium and calcium carbon	ate react slower with ethanoi	c acid than	with h	hydrochloric acid o	f the same

Explanation: the weak acid, CH_3COOH ionises less so fewer H^4 means that there are fewer collisions with $CaCO_3$ which results in a slower rate of reaction

Summary (<u>HIGH LEVEL</u>)

Strong acid means almost ______% ionisation therefore there is a greater ______ of hydrogen ions, \mathcal{H}^{+} . This leads to a greater ______ frequency between reactant molecules and \mathcal{H}^{+} so the rate of reaction is faster.

IMPORTANT

So, the volume of gas produced depends on the _______ of acid and NOT on the strength.

Comparing the electrical conductivity of strong and weak acids

Results

Acid 1.0 mol/dm³	Electrical conductivity
Hydrochloric Acid HCl	
Ethanoic acid СН ₃ СООН	

<u>Conclusion</u>

• ethanoic acid has a electrical conductivity than hydrochloric acid of the same concentration Why?				
• electrolysis of both ethanoic acid and hydrochloric acid makes hydrogen at the negative electrode Why?				
+	reduction			
Higher Only Ethanoic acid is conductive than hydrochloric acid of the same concentration because: 1. ethanoic acid is and hydrochloric acid is 2. HCl has a concentration of hydrogen ions to carry the charge				

Weak acids can be really useful

One use for weak acids is as **descalers** – removing limestone from metal surfaces e.g. sinks and washing machines

Weak acids can be more useful than dilute strong acids

1.

2.

<u> Higher Only</u>

You must also be able to explain why a weak acid may be more useful than the more dilute strong acid but you must refer to the "hydrogen ion

concentration" in