

## PATENTANWÄLTE GULDE HENGELHAUPT ZIEBIG

European Patent and Trademark Attorneys
Patente Marken Design Lizenzen

#### GULDE HENGELHAUPT ZIEBIG Schützenstraße 15-17, 10117 Berlin

Anmelder:

LayTec Gesellschaft für in-situ und Nano-Sensorik Hardenbergstr. 36

10623 Berlin

Klaus W. Gulde, Dipl.-Chem.
Jürgen D. Hengelhaupt, Dipl.-Ing.\*
Dr. Marlene K. Ziebig, Dipl.-Chem.\*\*
Wilfried H. Goesch, Dipl.-Ing.\*

Schützenstraße 15-17 D-10117 Berlin

Tel.: 030/264 13 30 Fax: 030/264 18 38

e-mail: PatentAttorneys.GHZ@t-online.de Internet:http://www.berlin-patent.net

Unser Zeich/our reference P104200DE-Goe Datum/date Berlin, 30.11.2000

10

5

15

Verfahren zur Messung von Kennwerten, insbesondere der Temperatur eines mehrschichtigen Materials während des Schichtenaufbaus

20

Verfahren zur Messung von Kennwerten, insbesondere der Temperatur eines mehrschichtigen Materials während des Schichtenaufbaus

15

20

25

30

10

#### Beschreibung

Die Erfindung betrifft ein Verfahren zur Messung von Kennwerten, insbesondere der Temperatur eines mehrschichtigen Materials während des Schichtenaufbaus, insbesondere eines Halbleiterschichtsystems während der Epitaxie, bei konstanten Prozeßbedingungen. Das Verfahren kann in-situ bei der metallorganischen Gasphasenepitaxie (MOVPE), Molekularstrahlepitaxie (MBE) oder ähnlicher Verfahren angewandt werden und ermöglicht die Bestimmung der Probentemperatur unter Standardwachstumsbedingungen.

Die genaue Kenntnis der Temperatur ist für das Wachstum von Halbleiterschichtsystemen und Halbleiterbauelementen extrem wichtig, da praktisch alle wesentlichen Wachstumsparameter wie z.B. Wachstumsrate, Zusammensetzung, Dotierungseinbau temperaturabhängig sind. Natürlich können diese Kennwerte nach Ende des Wachstumsprozesses bestimmt werden. Zur Einflußnahme auf den Wachstumsprozeß und zur Übertragbarkeit der Prozeßbedingungen auf andere Anlagen ist jedoch die aktuelle Kenntnis der Temperatur unerläßlich.

Die Probentemperatur hängt wesentlich von äußeren Parametern (Belegung der Reaktorwände, Art des Trägergases, Form und

40

dessen Rotationsgeschwindigkeit Größe des Probenträgers, etc.) ab. Daher muß in der Praxis häufig eine Temperaturkalibrierung der Temperaturmeßeinrichtung durchgeführt werden (die alte Kalibrierung verliert bei Veränderung eines Parameters ihre Gültigkeit). Ein herkömmliches Verfahren Temperaturkalibrierung verwendet spezielle Kalibrierproben, z. B. Eutektika oder Schmelzproben. Diese Kalibrierung kann dann nur bei einer festen, durch den Schmelzpunkt oder Umschlagpunkt des Materials vorgegebenen Temperatur erfolgen. Ein Temperaturvergleich zwischen verschiedenen Reaktoren, z. B. zum Übertragen von Prozessen von einer Anlage auf die nächste, ist daher nur bei dieser einen Temperatur möglich. In der Regel liegt die eigentliche Wachstumstemperatur nicht bei dieser Umschlagtemperatur und das Verfahren ist daher zum Abgleich der eigentlichen Wachstumstemperatur nur bedingt geeignet und daher problematisch. Die Kalibrierung ist außerdem sehr zeitaufwendig.

Zur Temperaturmessung in einer MBE- oder MOVPE-Anlage sind im wesentlichen zwei Verfahren bekannt:

Messung mit Thermoelementen:

5

10

15

20

25

30

35

Im Probenträger (Suszeptor, i.d.R. aus Graphit gefertigt) auf dem die Probe liegt, befindet sich ein Thermoelement. Die vom Thermoelement gemessene Temperatur entspricht nur dann der wahren Probentemperatur, wenn die Probe mit dem Suszeptor im thermischen Gleichgewicht steht. Dies ist im Realfall nicht unbedingt der Fall. Moderne, kommerzielle Epitaxiesysteme verfügen i.d.R. über rotierende Proben. Bei der MOVPE ist der Suszeptor dabei oft mehrteilig. Im Hauptsuszeptor befindet sich ein zusätzlicher Teller der durch einen Gasstrom gedreht und getragen wird. Durch diese Konstruktion ist der thermische Kontakt zwischen geheiztem Suszeptor (mit Thermoelement) und Probe stark herabgesetzt. Zu-

sätzliche Effekte wie z.B. Kühlung durch den Gasstrom, veränderte Abstrahlung oder Ausbildung eines Strahlungsgleichgewichtes im Reaktor durch Belegung der Innenwände können zu weiteren Abweichungen führen. Genaue Form, Größe und Belegung des Suszeptors und des Reaktors haben einen Einfluß auf die Größe der Abweichung der Probentemperatur von der Thermoelementtemperatur.

Mit Thermoelementen kann in jedem Fall nur die Temperatur des Suszeptors gemessen werden. Die wahre Temperatur der Probe kann davon abweichen, z.B. aufgrund veränderter Abstrahlung oder Ausbildung eines Strahlungsgleichgewichtes im reaktor oder eines schlechten thermischen Kontaktes.

#### 2. Messung mit Pyrometern:

5

10

15

20

25

30

35

Große Multi-Wafer-Anlagen arbeiten mitunter mit planetarischer Rotation, das heißt, mehrere Probenträger drehen sich auf einem Teller um eine Achse und außerdem um sich selbst. Da sich hier Thermoelemente nicht einsetzen lassen, wird die Temperatur mittels Pyrometrie gemessen. Dabei wird die thermische Emission von infrarotem Licht der Probe detektiert. Das Verfahren setzt eine genaue Kenntnis der Emissivität des gemessenen Materials voraus, um aus der Messung die Temperatur fehlerfrei bestimmen zu können. Außerdem ist Pyrometrie nur in einem eingeschränkten Temperaturbereich verwendbar (ab ca. 300°C).

Um die Thermoelement- bzw. Pyrometertemperatur auf die wahre Probentemperatur zu kalibrieren, werden, wie oben bereits beschrieben, Schmelzpunktbestimmungen oder Eutektikumskalibrierungen benutzt. Dabei werden spezielle Substanzen mit genau bekannten Schmelz- oder Umschlagpunkten im Epitaxiesystem erhitzt und die Temperaturdifferenz bestimmt. Dies kann nur in einem separaten Wachstums-Lauf erfolgen, da spe-

zielle, für das Wachstum nicht taugliche Proben benutzt werden müssen. Außerdem entsprechen nicht alle Bedingungen im Reaktor den realen Wachstumsbedingungen.

10

15

20

25

30

35

Es ist aus der US-A 5.403.433 außerdem bekannt, Reflexionsdaten zur Temperaturbestimmung heranzuziehen. Dabei wird die
Lage der kritischen Punkte eines Halbleiters vermessen, indem die temperaturabhängige Verschiebung der fundamentalen
Bandkante bestimmt wird. Letztere kann durch Messung des
Streulichtes von der Probenrückseite bestimmt werden, da das
Streulicht nur dann meßbar ist, wenn die Probe für die verwendete Lichtwellenlänge durchsichtig wird. Nachteil ist,
daß eine Transmissionsmessung aufwendig und in-situ kaum
machbar ist. Außerdem ist die sehr genaue Kenntnis der optischen Eigenschaften des verwendeten Materials (Temperaturabhängigkeit der dielektrischen Funktion bzw. des Brechungsindex und der Absorptionskonstante) nötig.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art anzugeben, das die in-situ-Messung der Temperatur einer Probe bei wesentlich verringertem Aufwand erlaubt.

Erfindungsgemäß wird die Aufgabe gelöst durch die Merkmale im kennzeichnenden Teil des Anspruchs 1 im Zusammenwirken mit den Merkmalen im Oberbegriff. Zweckmäßige Ausgestaltungen der Erfindung sind Gegenstand der Unteransprüche.

Danach wird das Material mit einer konstanten Beleuchtungsenergie beleuchtet, seine Reflektivität über der Zeit gemessen und daraus die Lage eines Extremwertes der Fabry-PerotOszillationen der jeweiligen Schicht bestimmt, aus der die
Schicht-Wachstumsrate und anhand vorermittelter Vergleichswerte die Prozeßtemperatur und/oder die Schichtzusammenset-

zung ermittelt wird. In der folgenden Beschreibung wird aus Gründen der einfacheren Darstellung davon ausgegangen, daß als Extremwert das erste Minimum verwendet wird, das sich meßtechnisch am schnellsten und leichtesten auswerten läßt. Genauso gut könnte jedoch ein anderer Extremwert verwertet werden.

Es wurde gefunden, daß sich durch Messung der Reflektivität einer Probe nach Bestimmung des ersten Minimums der Fabry-Perot-Oszillation direkt auf die Temperatur der Probe und auf weitere Kennwerte schließen läßt, wenn die Photonenenergie während des Vorgangs, bei dem die Messung erfolgen soll, konstant gehalten wird.

Die meisten Epitaxieanlagen können mit einem optisch transparenten Fenster ausgestattet werden, so daß optische Messungen unter senkrechtem Einfall erfolgen können. Mittels optischer Verfahren kann die Reflektivität der Probe gemessen werden. Genauer gesagt, eine Meßgröße DC (Spannung eines Detektors) ist der Reflektivität einer Probe sowie Einflußfaktoren der Meßanordnung proportional:

Die Apparatefunktion kann durch geeignetes Normieren des Meßsignals eliminiert werden, so daß die Reflektivität als solche bestimmt werden kann. Da auch der Bezugsmeßwert nicht als absolute Größe bekannt sein muß, reicht die Messung der auf ein Ausgangsmaterial bezogenen Reflektivität.

Das vorgestellte Verfahren basiert somit auf der Messung einer Detektorspannung DC bei einer festen Photonenenergie im IR-, visuellen oder UV-Spektralbereich und der Bestimmung eines ersten Minimums der Detektorspannung (Transientenmes-

sung) während des Wachstums eines definierten Schichtenstapels.

Um während des Wachstums des Schichtenstapels die Materialqualität zu überwachen, können vor und nach dem Wachstum RAS-Spektren (Reflexions-Anisotropie-Spektroskopie) gemessen werden. Zusätzlich kann ein RAS-Signal auch während des Wachstums parallel zur DC-Transiente gemessen werden. Aufgrund der hohen Oberflächensensitivität der RAS kann so eine Degradation der Schicht frühzeitig angezeigt werden.

10

15

20

25

30

35

wird bei dem zum Stand der Technik oben beschriebenen Verfahren die Temperaturabhängigkeit der dielektrischen Funktion ausgenutzt, indem bei bekannter Temperaturabhängigkeit des Brechungsindex aus dem gemessenen Brechungsindex eine Temperatur abgeleitet wird, ist immer eine Datenbankauswertung notwendig, bei der der Wert des Brechungsindex für das benutzte Material mit der Temperatur verknüpft wird. Damit geht eine etwaige Ungenauigkeit in der Datenbank voll in die Temperaturmessung ein. Um den Brechungsindex überhaupt aus der gemessenen Kurve bestimmen zu können, ist in jedem Fall eine Simulation (Rechnung) der Messung mit Fit notwendig.

Nach dem vorliegenden Verfahren werden dagegen zum Vergleich von Temperaturen und zur Kalibrierung direkt gemessene Rohdaten, nämlich der Reflektivitätswert des ersten Minimums der Fabry-Perot-Oszillationen genutzt. Damit geht beim Relativvergleich von Temperaturen, z. B. zwischen verschiedenen Anlagen, keine Datenbank ein und es ist keine Rechnung oder Simulation notwendig. Natürlich kann durch einen zusätzlichen Datenbank-Fit die Meßgenauigkeit weiter erhöht werden. Erst wenn dem gemessenen Reflektivitätswert des Minimums eine absolute Temperatur zugeordnet werden soll, ist eine Kalibrierkurve zum Ablesen des Temperaturwertes nötig. Aber

5 auch hierfür wird keine Datenbank für den Brechungsindex benötigt.

10

20

30

Die Erfindung soll nachstehend anhand eines Ausführungsbeispiels näher erläutert werden. In den zugehörigen Zeichnungen zeigen

- Fig. 1 eine an sich bekannte Anordnung zur kombinierten Reflexions- und RAS-Messung einer Probe,
- 15 Fig. 2 die Temperaturabhängigkeit des Realteils der dielektrischen Funktion für GaAs und AlAs,
  - Fig. 3 den Zusammenhang zwischen den Fabry-Perot-Oszillationen und der Temperatur,
  - Fig. 4 eine aus Datenbankspektren errechnete Kalibrierkurve für die Reflektivität in Abhängigkeit von der Temperatur,
- 25 Fig. 5 eine gemessene Kalibrierkurve für die Reflektivität in Abhängigkeit von der Temperatur,
  - Fig. 6 die Anwendung des Verfahrens für eine Kalibrierung von MOVPE-Reaktoren,
  - Fig. 7 den Zusammenhang zwischen den Fabry-Perot-Oszillationen und der Wachstumsrate bei der Epitaxie anhand einer Modellrechnung,
- Fig. 8 den gemessenen und mit Datenbankwerten gefitteten Verlauf der Reflektivität bei einer bestimmten Temperatur,

- Fig. 9 die Reflektivitäts-Transiente beim Wachsen eines ternären Materials,
  - Fig. 10 eine sich daraus ergebende Kalibrierkurve für den Al-Gehalts des ternären Materials und
  - Fig. 11 die Reflektivitäts-Transiente bei der Epitaxie eines 5-Schichten-Stapels.
    - Fig. 1 zeigt eine Anordnung zur kombinierten Reflexions- und RAS-Messung einer Probe in einer MOVPE-Anlage. Das Licht einer Xenonlampe 1 wird über ein Polarisationsprisma 2 und einen Strahlteiler 3 auf einen rotierenden Probenhalter 4 mit einer Probe 5 fokussiert. Ein erster Spiegel 6 dient zur Fokussierung des Lichts auf die Probe 5. Von der Probe 5 wird das Licht auf einen sphärischen Spiegel 7 reflektiert. Der sphärische Spiegel 7 hat eine kompensierende Funktion bezüglich der Taumelbewegung, die der rotierende Probenträger 4 ausführt. Das Licht läuft dann in sich zurück zum Strahlteiler 3. Mittels eines Photoelastischen Modulators 8 kann das Licht moduliert und über ein weiteres Polarisationsprisma 9 abgefragt werden. Über weitere Spiegel 10, 11 wird das Licht auf einen Monochromator 12 fokussiert und mittels eines Silizium-Dioden-Detektors 13 detektiert.
- Der Probenträger 4 befindet sich dabei in einem MOVPE-Reaktor 14, wobei das Licht durch ein optisches Fenster 15 auf die Probe 5 gelangt.
- Der am Anfang und gegebenenfalls auch am Ende an Hand der Detektorspannung DC gemessene Buffer (Material A) erlaubt eine Normierung der gemessenen Transiente, was zur Eliminierung der Apparatefunktion führt:

 $DC/DC_{Material A} = R/R_{Material A}$ 

10

15

20

Die Apparatefunktion enthält alle Anteile des Meßsignals, die nicht von der Probe, sondern nur vom verwendeten optischen System abhängen; z.B. ist das die Intensitätsverteilung der Xenonlampe 1, die spektrale Empfindlichkeit des Detektors 13 etc.

Die Reflektivitiät der Probe 5 hängt von den optischen Eigenschaften (dielektrische Funktion  $\epsilon_1$ ,  $\epsilon_2$  bzw. Brechungsindex n und Absorption k) ab, die temperaturabhängig sind. Beim Wachstum beobachtet man aufgrund des Brechungsindex-Unterschiedes und der sich einstellenden Vielstrahlinterferenz an der Probenoberfläche die bekannten Fabry-Perotoszillationen.

Es wurde nun gefunden, daß die Tiefe des ersten Minimums der Fabry-Perot-Oszillationen während des Wachstums von Material B direkt als Maß für die Temperatur genutzt werden kann, wenn die Reflektivität an einer geeigneten, konstant gehaltenen Photonenenergie gemessen wird. Die Tiefe dieses Minimums hängt nur von der Temperatur ab und nicht von anderen Parametern wie z.B. der Wachstumsrate. Das Minimum stellt sich bei dem Wachstumsprozeß je nach der angestrebten Wachstumsrate innerhalb weniger Sekunden oder Minuten ein.

Um auf diese einfache Weise die Temperaturabhängigkeit der dielektrischen Funktion zu messen, muß die Photonenenergie geeignet gewählt werden. Fig. 2 zeigt als Beispiel die Temperaturabhängigkeit des Realteils der dielektrischen Funktion für GaAs und AlAs. Für das Verfahren wird zweckmäßig eine energetische Position verwendet, bei der die Temperaturempfindlichkeit des einen Materials groß ist, während die des anderen Materials klein ist. Zusätzlich sollte bei dieser Energie im betrachteten Temperaturbereich kein kritischer

5 Punkt liegen, sondern ein monotoner Bereich. Dadurch, daß bei GaAs und AlAs die jeweiligen kritischen Punkte weit getrennt liegen, läßt sich ein Energiebereich finden, in dem diese Forderungen gut erfüllt sind: E= 2.6 ... 3.1 eV (gestrichelter Bereich). In diesem Bereich gilt: R=R(ε₁) (da AlAs fast absorptionsfrei ist) und ε₁(AlAs) ≈ const, somit ist die Temperaturabhängigkeit von GaAs über ε₁(GaAs) direkt als ε₁(T) meßbar.

Fig. 3 zeigt die Abhängigkeit des ersten Minimums der Fabry-Perot-Oszillationen von der Temperatur anhand eines Schichtenstapels, wobei für das Verfahren folgendes Materialsystem gewählt wurde:

Material A (Substrat) = Galliumarsenid (GaAs)

15

25

30

35

Material B (erste Schicht) = Aluminiumarsenid (AlAs), 50 nm

Material A (zweite Schicht) = Galliumarsenid (GaAs), 200 nm

Die Lage des Minimums verschiebt sich, wobei sich auch dessen Tiefe verändert. Die Darstellung zeigt, daß der Wert des Reflexionsparameters  $R/R_{\text{GaAs}}$  an der Stelle des Minimums als ein Maß für die aktuelle Temperatur herangezogen werden kann.

Da der gemessene Relativwert des Reflexionsparameters  $R_{\rm schicht}/R_{\rm GaAs}$  an der Stelle des Minimums ein Maß für die Temperatur ist, kann für Relativvergleiche zwischen verschiedenen Wachstumsanlagen diese Größe sofort herangezogen werden, ohne daß Absolutwerte der Reflektivität bekannt sein müssen. Für die Messung einer absoluten Temperatur muß entweder eine genaue Datenbank der dielektrischen Funktionen der beiden verwendeten Materialien A und B zur Verfügung stehen (Erstellung solch einer Datenbank über in-situ Messungen mit

spektroskopsicher Ellipsometrie oder mit Reflexionsmessungen wie hier vorgestellt) oder ein Kalibrierpunkt mittels Eutektikumseichung erzeugt werden. Die so erhaltene Kalibrierkurve ist dann universell an jeder Epitaxieanlage gültig.

In Fig. 4 ist eine solche, aus Datenbankspektren berechnete Kalibrierkurve aufgetragen.

15

20

25

30

In Fig. 5 ist eine sich aus den Messungen der Minima bei verschiedenen Temperaturen ergebende Kalibrierkurve ebenfalls für eine Photonenenergie von E = 2,65 eV dargestellt. Gezeigt ist der für die III-V-Epitaxie interessante Temperaturbereich.

Mit einer solchen Kalibrierkurve ist es dann möglich, andere vorhandene Temperaturmeßeinrichtungen, wie sie eingangs beschrieben wurden, zu kalibrieren.

Fig. 6 zeigt eine solche Kalibrierung verschiedener Anlagen. Eingetragen sind Meßwerte von drei verschiedenen MOVPE-Anlagen mit rotierender und nichtrotierender Probe. Die Probentemperatur wird mittels Thermoelementen gemessen. Die nominellen, von den Thermoelementen angezeigten Temperaturen der rotierenden Proben (gestrichelte Geraden) weichen deutlich voneinander und von der der nichtrotierenden Probe ab. Die Messung der nichtrotierenden Probe zeigt hinreichend genau die wahre Temperatur. Aus der Forderung, daß die Kurven alle deckungsgleich sein sollen, kann die Temperaturabweichung für jeden Reaktor bestimmt werden.

Fig. 7 zeigt die Verschiebung der ersten Minima der FabryPerot-Oszillationen bei einer konstanten Temperatur und verschiedenen Wachstumsraten. Erkennbar ist, daß die Minima
gleich tief sind, sich jedoch mit sinkender Wachstumsrate

24°.

auf der Zeitachse verschieben. Bei ansonsten gleichbleibenden Bedingungen kann deshalb auch die Wachstumsrate der Schichten aus der gemessenen Transiente bestimmt werden.

10

15

20

25

30

35

Hierfür werden Transienten für mehrere Wachstumsraten ermittelt, von denen eine in Fig. 8 gezeigt ist. Zur präziseren Auswertung der gemessenen Reflexionstransienten kann der Kurvenverlauf mittels Datenbanken simuliert werden und die entsprechenden Parameter (Brechungsindex n. Absorption k. Wachstumsraten  $r_1$ ,  $r_2$ ) angepaßt/gefittet werden. Dies erlaubt entweder eine sehr genaue, vom Rauschen der einzelnen Meßpunkte im Minimum entkoppelte Bestimmung der Tiefe des Minimums oder alternativ bei bekannter Temperatur die Erstellung/Verbesserung einer Datenbank für diese Werte, die als solche später zum Vergleich mit gemessenen Kurven dienen kann.

Durch Erweiterung des Schichtenstapels um zwei weitere Schichten kann mit dem Verfahren im gleichen Run neben der Temperatur auch die Komposition eines ternären Materials nebst der zugehörigen Wachstumsrate gemessen werden. Der Schichtenstapel wird dann beispielsweise wie folgt gewählt: Material A - ca. 50 nm Material B - ca. 200 nm Material A - ca. 50 nm ternäres Material C - ca. 200 nm Material A.

Aus den ersten drei Schichten wird wie oben erläutert die Temperatur sowie die Wachstumsraten von Material A und B bestimmt. Mit der nun bekannten Temperatur ist es möglich, aus den letzten beiden Schichten die Zusammensetzungsabhängigkeit der dielektrischen Funktion von Material C von der Temperaturabhängigkeit zu trennen, wenn zuvor eine Kalibrierkurve für die Zusammensetzung des ternären Materials C ermittelt wurde. Damit kann die Tiefe des ersten Minimums der Fabry-Perot-Oszillationen des ternären Materials C direkt

als Maß für die Zusammensetzung von Material C benutzt werden. Denn genau wie die Temperatur verändert die Zusammensetzung den Brechungsindex und damit die dielektrische Funktion. Durch die geschickte Wahl des Schichtenstapels und den zweistufigen Meßprozeß, können beide Effekte sauber getrennt werden.

Die Fig. 9 bis 11 zeigen die Anwendung dieser Methode für Al<sub>x</sub>Ga<sub>1-x</sub>As. Gemäß Fig. 9 wird die Transiente für das ternäre Material C Al<sub>x</sub>Ga<sub>1-x</sub>As gemessen. Aus den Minima der ersten Fabry-Perot-Oszillation läßt sich eine Kalibrierkurve in Abhängigkeit vom Al-Gehalt ermitteln, wie Fig. 10 zeigt. Fig. 11 zeigt eine Simulation einer kompletten Messung zur Bestimmung von Wachstumsrate (r), Temperatur (T) und Aluminium-Gehalt (x) in einem Run.

20

25

15

Der besondere Vorteil des Verfahrens ist die einfache Entkopplung von den Effekten, die durch Wachstumsratenänderung
verursacht werden, von denen, die durch Temperaturveränderung verursacht werden. Nur durch die geschickte Wahl des
Schichtenstapels und die Messung bei einer geeigneten Photonenenergie können Wachstumsrate und Temperatur aus einer
Transiente eindeutig bestimmt werden. Damit ist auch der
Vergleich von Temperaturen zwischen verschiedenen
Wachstumsanlagen möglich.

30

35

Die Messung kann insbesondere dann als verläßlich gelten, wenn vor und nach dem Wachstum eines A-B-A-Schichtenstapels der Wert der Reflektivität gleich groß ist. Dies ist der Grund, warum in der Schichtstruktur vor und nach der Schicht B zweckmäßig eine Schicht A gewachsen wird.

Durch Degradation der Schichten könnte eine fehlerhafte Temperaturinformation gemessen werden. Jedoch bietet ein gleichzeitig gemessenes RAS-Signal ein "Frühwarnsystem", da sich Degradationen im RAS-Signal deutlich früher zeigen, als in der Reflektivität der Probe.

Der Temperaturbereich, in dem das Verfahren angewandt werden kann, ist praktisch nicht beschränkt, sofern mit einer geeigneten Photonenenergie gearbeitet wird, und solange für das benutzte Material einkristallines Wachstum (Epitaxie) möglich ist.

10

25

Es ist sicherzustellen, daß die Messungen immer bei der exakt gleichen Photonenenergie erfolgen. Bei Verwendung einer
Xenon-Hochdrucklampe als Lichtquelle für das Reflektometer
kann die Lage der Emissionslinie bei E=2.65eV ausgenutzt
werden. Die spektrale Lage der Linie hängt von praktisch
keinen äußeren Parametern ab und kann daher auch probenunabhängig genau angefahren werden.

Die Genauigkeit des Verfahrens hängt dann im wesentlichen nur vom Signal-Rausch-Verhältnis des für die Reflexionsmessung verwendeten Spektrometers ab. Für das gezeigte Beispiel erlaubte das Signal-Rausch-Verhältnis des optischen Systems eine Meßgenauigkeit von ±5K.

Das Verfahren kann vor jedem Epitaxieablauf zur präzisen
Temperaturkalibrierung eines Thermoelements oder Pyrometers
eingesetzt werden (Zeitaufwand kleiner 1h). Die erreichbare
Genauigkeit der Temperaturmessung für vergleichende Messungen beträgt mindestens ±5K. Damit ist ein Kalibrieren der
Reaktortemperatur für die tatsächlich vorhandene Suszeptor/Reaktorkonfiguration möglich.

Bei horizontalen Ein-Wafer-Reaktoren hångt die wahre Probentemperatur auch vom Belegungszustand des Liner-Rohres ab (Temperaturdifferenz > 10K), während das Thermoelement konstante Temperatur anzeigt. Diese sonst nicht meßbare Temperaturdifferenz kann mittels des vorgestellten Verfahrens gemessen werden.

5

# Bezugszeichenliste

- l Xenonlampe
- 2 Polarisationsprisma
- 3 Strahlteiler
- 10 4 Probenhalter
  - 5 Probe
  - 6 Spiegel
  - 7 Sphärischer Spiegel
  - 8 Modulator
- 15 9 Polarisationsprisma
  - 10 Spiegel
  - 11 Spiegel
  - 12 Monochromator
  - 13 Silizium-dioden-Detektor
- 20 14 MOVPE-Reaktor
  - 15 Optisches Fenster
  - T Temperatur
  - r Wachstumsrate
  - x Aluminiumgehalt

20

30

35

### Patentansprüche

1. Verfahren zur Messung von Kennwerten, insbesondere der Temperatur eines mehrschichtigen Materials während des Schichtenaufbaus, insbesondere eines Halbleiterschichtsystems während der Epitaxie, bei konstanten Prozeßbedingungen,

das Material mit einer konstanten Beleuchtungsenergie beleuchtet, seine Reflektivität über der Zeit gemessen und daraus die Lage eines Extremwertes der Fabry-Perot-Oszillationen der jeweiligen Schicht bestimmt wird, aus der die Schicht-Wachstumsrate und anhand vorermittelter Vergleichswerte die Prozeßtemperatur und/oder die Schichtzusammensetzung ermittelt wird.

- 2. Verfahren nach Anspruch 1,
  dadurch gekennzeichnet, daß
  als Extremwert das erste Minimum der Fabry-PerotOszillationen verwertet wird.
  - 3. Verfahren nach Anspruch 1 oder 2, gekennzeichnet dadurch, daß die aktuell gemessene Reflektivität zur Reflektivität eines Referenzmaterials, auf dem mindestens eine Schicht aufgebaut wird, ins Verhältnis gesetzt wird.
  - 4. Verfahren nach einem der vorhergehenden Ansprüche,

gekennzeichnet dadurch, daß

am Ende eines Prozeßschrittes oder des gesamten Prozesses eine Schicht aus dem gleichen Material wie ein Substratmaterial, auf dem mindestens eine Schicht aufgebaut
wird, gewachsen und dessen Kennwerte mit den zu Beginn
des Prozesses vorliegenden Kennwerten verglichen werden.

- 5. Verfahren nach einem der vorhergehenden Ansprüche, gekennzeichnet dadurch, daß die Materialeigenschaften während des Prozesses zeitparallel, mindestens aber vor Prozeßbeginn und nach Prozeßende durch eine RAS-Messung überwacht werden.
- 20 6. Verfahren nach einem der vorhergehenden Ansprüche, gekennzeichnet dadurch, daß die Reflektivität bei dem betrachteten Extremwert der Fabry-Perot-Oszillationen zur Bestimmung der Prozeßtemperatur herangezogen wird.
  - 7. Verfahren nach einem der vorhergehenden Ansprüche, gekennzeichnet dadurch, daß die Prozeßzeit bis zum betrachteten Extremwert der Fabry-Perot-Oszillationen zur Bestimmung der Schicht-Wachstumsrate herangezogen wird.
- 8. Verfahren nach einem der vorhergehenden Ansprüche,

  gekennzeichnet dadurch, daß

  bei zuvor ermittelter Prozeßtemperatur die Reflektivität

  beim betrachteten Extremwert der Fabry-Perot-

25

30

Oszillationen einer ternåren Schicht zur Bestimmung von deren Zusammensetzung herangezogen wird.

9. Verfahren nach einem der vorhergehenden Ansprüche,
gekennzeichnet dadurch, daß
die Beleuchtungsenergie in einem Bereich gewählt wird,
in dem die Temperaturabhängigkeit des Realteils der dielektrischen Funktion der beteiligten Materialien monoton
ist.

20

25

### Zusammenfassung

Verfahren zur Messung von Kennwerten, insbesondere der Tem10 peratur eines mehrschichtigen Materials während des Schichtenaufbaus

Die Erfindung bezieht sich auf ein Verfahren zur Messung von Kennwerten, insbesondere der Temperatur eines mehrschichtigen Materials während des Schichtenaufbaus, insbesondere eines Halbleiterschichtsystems während der Epitaxie, bei konstanten Prozeßbedingungen.

Bisher bekannte Verfahren unter Verwendung von Thermoelementen oder Pyrometern sind ungenau. Andere verlangen die genaue Kenntnis der optischen Eigenschaften des verwendeten Materials.

Nach dem Verfahren wird das Material mit einer konstanten Beleuchtungsenergie beleuchtet, seine Reflektivität über der Zeit gemessen und daraus die Lage eines Extremwertes der Fabry-Perot-Oszillationen der jeweiligen Schicht bestimmt, aus der die Schicht-Wachstumsrate und anhand vorermittelter Vergleichswerte die Prozeßtemperatur und/oder die Schichtzusammensetzung ermittelt wird.

Das Verfahren kann in-situ bei der metallorganischen Gasphasenepitaxie (MOVPE), Molekularstrahlepitaxie (MBE) oder ähnlicher Verfahren angewandt werden und ermöglicht die Bestimmung der Probentemperatur unter Standardwachstumsbedingungen.

Fig. 3





Fig. 2





Fig. 4









Fig. 8



 $\mathcal{I}^{*}$ 

Fig. 9 Fig. 10

