Supporting Information

Rational Design of a Peptide Ligase from HRV-3C Protease

Xuchao Zhou, Xiaoken Lin, Yuhang Sheng, Lishu Chen, Heming Li, Yijie Wang, Xuzhi Wang, Liya Ma, Keyi Yang, Jiwei Ye, Kedu Jin, Le Chang, Xinya Hemu*

State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China

*hemuxinya@cpu.edu.cn

Contents

Supporting Information	1
Rational Design of a Peptide Ligase from HRV-3C Protease	
1. Plasmid map	
2. Primer Table	
3. Force Field Parameters	
4. Docking Simulations	
5. MM/PBSA calculations	
Bibliography	

1. Plasmid map

Figure 1: Plasmid map of pET-47b(+)-NT-HRV3CP used for protein expression. Key features are indicated, including the T7 promoter, the N-terminal His-tag, the coding sequence for NT^* -HRV3CP, and the kanamycin resistance gene (KanR) for selection. The total size of the plasmid is 5.9kb

2. Primer Table

Primer Name	e Sequence (5'-3')	Target Mutant
Design 1		
19-24-F	AACCATTTTAAACAGACGAATGGTCATAATGTTTTTACGCAG	Mutagenesis of residues 19-24
19-24-R	CGTCTGTTTAAAATGGTTTTTACCGGTCTGGGTATTCATGA	
105-107-F	GTAAATTTACCTGCATGAACAACCAGGGTTGCATCA	Mutagenesis of residues 105-107
105-107-R	CATGCAGGTAAATTTACCAACACCATCCTGGAAGT	
Design 2		
19-26-F	AAGCCATAATCGGTCAGAATGGTCATAATGTTTTTACGCAGC	Mutagenesis of residues 19-26
19-26-R	${\tt CTGACCGATTATGGCTTTTATAGCGGTCTGGGTATTCATGATCC}$	G
106-107-F	GGTAAACAGGCTGCTATGAACAACCAGGGTTGCA	Mutagenesis of residues 106-107
106-107-R	CATAGCAGCCTGTTTACCAACACCATCCTGGAAGT	
143-145-F	CACAATTACCCGGTTTGGTTGCATAATCATAACGAATC	Mutagenesis of residues 143-145
143-145-R	CAAACCGGGTAATTGTGGTGGTGTTCTGTGTGCA	

Table 1: Primers used for site-directed mutagenesis in this study.

3. Force Field Parameters

All quantum chemical calculations were performed using the ORCA 6.1 program package. The additional bonding interactions mediated by the ester intermediate are detailed below. The complete enzyme-substrate ester intermediate structures were optimized at the GFN1-xTB[1] level of theory with the ALPB(water) solvation model. Based on the optimized geometry, the ester intermediate moiety was extracted. The N-terminal and C-terminal of the intermediate were capped with methylacetyl (ACE) and N-methyl (NME), then subjected to electronic structure calculations. RESP2 (0.5)[2] charges were fitted using Multiwfn at the wB97X-2-D4/def2-TZVPP level using the RIJCOSX def2-TZVPP/C auxiliary basis set and the SMD solvation model for water and the gas phase. Vibrational frequency analysis were calculated at the wB97X-D4/def2-TZVP level using the RIJCOSX auxiliary basis set and the CPCM solvation model for water.

Bonded parameters were parametrized in Sobtop, with all atoms assigned AMBER force field atom types. Bond and angle parameters were derived via the mSeminario method using the Hessian matrix obtained from vibrational frequency analysis. For dihedral parameters, prebuilt bonded parameters were prioritized where available, then missing ones were supplemented by mSeminario method. The derived RESP charges are provided in Chapter 3.6.

The bonded model from Marina et al. was used to describe zinc coordination in Zn²⁺-binding proteins[3]. For Ca²⁺-binding proteins, the 12-6 non-bonded model from Merz et al. was applied.

3.1 SER&PHE : Subtilisin/Aqualigase

Bonds

i	j	func	c0	c1
SER-OG	PHE-C	1	0.133242	3.000599E+05

Pairs

i	j	func
SER-CA	PHE-C	1
SER-HB1	PHE-C	1
SER-HB2	PHE-C	1
SER-CB	PHE-CA	1
SER-CB	PHE-O	1
SER-OG	PHE-CB	1
SER-OG	PHE-N	1
SER-OG	PHE-HA	1

Angles

i	j	k	func	c0	c1
SER-CB	SER-OG	PHE-C	1	129.029	1.404181E+03
SER-OG	PHE-C	PHE-CA	1	122.974	5.531702E+02
SER-OG	PHE-C	PHE-O	1	119.052	5.002754E+02

Dihedrials

i	j	k	1	func	c0	c1	c2
SER-CA	SER-CB	SER-OG	PHE-C	9	0.000	1.60247	3
SER-CA	SER-CB	SER-OG	PHE-C	9	180.000	3.34720	1
SER-CB	SER-OG	PHE-C	PHE-CA	9	180.000	11.29680	2
SER-CB	SER-OG	PHE-C	PHE-O	9	180.000	11.29680	2
SER-CB	SER-OG	PHE-C	PHE-O	9	180.000	5.85760	1
SER-OG	PHE-C	PHE-CA	PHE-N	9	0.000	0.00000	2
SER-OG	PHE-C	PHE-CA	PHE-CB	9	0.000	0.00000	2
SER-OG	PHE-C	PHE-CA	РНЕ-НА	9	0.000	0.00000	2
SER-OG	PHE-CA	PHE-C	PHE-O	4	180.000	43.93200	2

3.2 CYM&PHE : Subtiligase

Bonds

i	j	func	c0	c1
CYM-SG	PHE-C	1	0.174644	1.377031E+05

Pairs

i	j	func
CYM-CA	PHE-C	1
CYM-HB1	PHE-C	1
CYM-HB2	PHE-C	1
CYM-CB	PHE-CA	1
CYM-CB	PHE-O	1
CYM-SG	PHE-CB	1
CYM-SG	PHE-N	1
CYM-SG	PHE-HA	1

Angles

i	j	k	func	c0	c1
CYM-CB	CYM-SG	PHE-C	1	101.781	1.299887E+03
CYM-SG	PHE-C	PHE-CA	1	114.088	6.376070E+02
CYM-SG	PHE-C	PHE-O	1	123.254	4.820048E+02

Dihedrals

i	j	k	1	func	c0	c1	c2
CYM-CA	СҮМ-СВ	CYM-SG	PHE-C	9	0.000	1.39467	3
CYM-SG	PHE-C	PHE-CA	PHE-N	9	0.000	0.00000	2
CYM-SG	PHE-C	PHE-CA	PHE-CB	9	0.000	0.00000	2
CYM-SG	PHE-C	PHE-CA	PHE-HA	9	0.000	0.00000	2
CYM-SG	PHE-CA	PHE-C	PHE-O	4	180.000	43.93200	2
СҮМ-СВ	CYM-SG	PHE-C	PHE-CA	2	-162.148	6.430506E+02	
СҮМ-СВ	CYM-SG	PHE-C	PHE-O	2	12.828	5.975791E+02	

3.3 CYM&GLN: HRV-3C

Bonds

i	j	func	c0	c1
GLN-C	CYS-SG	1	0.178541	1.302229E+05

Pairs

i	j	func
CYM-CA	GLN-C	1
CYM-HB1	GLN-C	1
CYM-HB2	GLN-C	1
CYM-CB	GLN-CA	1
CYM-CB	GLN-O	1
CYM-SG	GLN-CB	1
CYM-SG	GLN-N	1
CYM-SG	GLN-HA	1

Angles

i	j	k	func	c0	c1
GLN-CA	GLN-C	CYM-SG	1	122.720	4.691712E+02
GLN-O	GLN-C	CYM-SG	1	117.165	3.303963E+02
GLN-C	CYM-SG	СҮМ-СВ	1	105.765	1.446423E+03

Dihedrials

i	j	k	1	func	c0	c1	c2
GLN-N	GLN-CA	GLN-C	CYM-SG	9	0.000	0.00000	2
GLN-CB	GLN-CA	GLN-C	CYM-SG	9	0.000	0.00000	2
GLN-HA	GLN-CB	GLN-C	CYM-SG	9	0.000	0.00000	2
GLN-CA	GLN-O	GLN-C	CYM-SG	4	180.000	43.93200	2
GLN-CA	GLN-C	CYM-SG	СҮМ-СВ	2	74.560	5.047826E+02	
GLN-O	GLN-C	CYM-SG	СҮМ-СВ	2	-111.419	3.908476E+02	

3.4 CYS&ASN : Butelase 2/Bu2g(V/GA)

Bonds

i	j	func	c0	c1
ASN-C	CYM-SG	1	0.174440	1.909970E+05

Pairs

i	j	func
CYM-CA	ASN-C	1
CYM-HB1	ASN-C	1
CYM-HB2	ASN-C	1
СҮМ-СВ	ASN-CA	1
CYM-CB	ASN-O	1
CYM-SG	ASN-CB	1
CYM-SG	ASN-N	1
CYM-SG	ASN-HA	1

Angles

i	j	k	func	c0	c1
CYM-CB	CYM-SG	ASN-C	1	104.365	1.477785E+03
CYM-SG	ASN-C	ASN-CA	1	126.659	3.730087E+02
CYM-SG	ASN-C	ASN-O	1	120.447	4.222326E+02

Dihedrals

i	j	k	1	func	c0	c1	c2
CYM-CA	CYM-CB	CYM-SG	ASN-C	9	0.000	1.39467	3
CYM-SG	ASN-C	ASN-CA	ASN-N	9	0.000	0.00000	2
CYM-SG	ASN-C	ASN-CA	ASN-HA	9	0.000	0.00000	2
CYM-SG	ASN-C	ASN-CA	ASN-CB	9	0.000	0.00000	2
CYM-SG	ASN-CA	ASN-C	ASN-O	4	180.000	43.93200	2
СҮМ-СВ	CYM-SG	ASN-C	ASN-CA	2	-63.583	7.735360E+02	
СҮМ-СВ	CYM-SG	ASN-C	ASN-O	2	114.594	7.366940E+02	

${\it 3.5~SER\&TYR: Trypsin/Trypsiligase}$

Bonds

i	j	func	c0	c1
SER-OG	TYR-C	1	0.133800	2.829375E+05

Pairs

i	j	func
SER-CA	TYR-C	1
SER-HB1	TYR-C	1
SER-HB2	TYR-C	1
SER-CB	TYR-CA	1
SER-CB	TYR-O	1
SER-OG	TYR-CB	1
SER-OG	TYR-N	1
SER-OG	TYR-HA	1

Angles

i	j	k	func	c0	c1
SER-CB	SER-OG	TYR-C	1	123.588	1.146986E+03
SER-OG	TYR-C	TYR-CA	1	121.247	5.311808E+02
SER-OG	TYR-C	TYR-O	1	118.972	4.967151E+02

Dihedrals

i	j	k	1	func	c0	c1	c2
SER-CA	SER-CB	SER-OG	TYR-C	9	0.000	1.60247	3
SER-CA	SER-CB	SER-OG	TYR-C	9	180.000	3.34720	1
SER-CB	SER-OG	TYR-C	TYR-CA	9	180.000	11.29680	2
SER-CB	SER-OG	TYR-C	TYR-O	9	180.000	11.29680	2
SER-CB	SER-OG	TYR-C	TYR-O	9	180.000	5.85760	1
SER-OG	TYR-C	TYR-CA	TYR-N	9	0.000	0.00000	2
SER-OG	TYR-C	TYR-CA	TYR-CB	9	0.000	0.00000	2
SER-OG	TYR-C	TYR-CA	TYR-HA	9	0.000	0.00000	2
SER-OG	TYR-CA	TYR-C	TYR-O	4	180.000	43.93200	2

3.6 Ester Intermediate's Atom Charge

	S	ER&PHE : Sul	til	isin/Aqualiga	ise		
	SER			РНЕ			
Atom name	Atom Type	RESP Charge	T	Atom name	Atom Type	RESP Charge	
N	N	-0.099980		N	N	-0.639300	
Н	Н	0.209561		Н	Н	0.298096	
CA	XC	-0.428951	Τ	CA	CX	0.453849	
HA	H1	0.194192	Τ	HA	H1	0.021223	
СВ	2C	0.065268	Τ	СВ	CT	-0.574547	
HB1	H1	0.142267	Τ	HB1	НС	0.136210	
HB2	H1	0.142267	Т	HB2	HC	0.136210	
OG	OH	-0.411480	Τ	CG	CA	0.414377	
С	С	0.865695	Τ	CD1	CA	-0.314557	
О	О	-0.700476	Τ	HD1	HA	0.175905	
			Т	CE1	CA	-0.103927	
			Т	HE1	HA	0.135433	
			Т	CZ	CA	-0.204169	
			Т	HZ	HA	0.145660	
			Т	CE2	CA	-0.032029	
			Т	HE2	HA	0.125047	
			Т	CD2	CA	-0.385551	
			Ī	HD2	HA	0.209969	
			Т	С	С	0.619919	
			Т	0	O2	-0.596185	
		CYM & PH	E :	Subtiligase			
	CYM				PHE		
Atom name	Atom Type	RESP Charge		Atom name	Atom Type	RESP Charge	
N	N	-0.399439		N	N	-0.484043	
Н	Н	0.234766		Н	Н	0.271790	
CA	XC	0.008866		CA	CX	0.153457	
HA	H1	0.072497		HA	H1	0.120438	
СВ	2C	0.108853	Π	СВ	CT	-0.260217	
HB1	H1	0.108853		HB1	НС	0.099320	
HB2	H1	-0.067044	Π	HB2	HC	0.099320	
SG	SH	-0.108677		CG	CA	0.249433	
С	С	0.752511	Π	CD1	CA	-0.274204	
О	0	-0.686425		HD1	HA	0.162808	
				CE1	CA	-0.111861	
				HE1	HA	0.142556	
				CZ	CA	-0.184474	
_							

				HZ	НА	0.144202
				CE2	CA	-0.108849
				HE2	HA	0.139198
				CD2	CA	-0.266143
				HD2	HA	0.187509
				С	С	0.405373
				О	O2	-0.510373
		CYM & G	LN	: HRV-3C		
	CYM				GLN	
Atom name	Atom Type	RESP Charge		Atom name	Atom Type	RESP Charge
N	N	-0.584409		N	N	-0.433087
Н	Н	0.343441		Н	Н	0.210571
CA	XC4	-0.232359	—	CA	CX	0.194266
HA	H1	0.194115	—	HA	H1	0.054944
СВ	CT	-0.263114		СВ	2C	-0.031403
HB3	H1	0.174374		HB2	HC	0.039304
HB2	H1	0.174374	—	HB3	HC	0.039304
SG	SH	-0.050250	—	CG	2C	-0.237631
С	С	0.932639	—	HG2	HC	0.102703
0	О	-0.649238	—	HG3	HC	0.102703
				CD	С	0.843780
				OE1	О	-0.681942
				NE2	N	-0.982784
				HE21	Н	0.434188
				HE22	Н	0.403924
				С	С	0.338698
				O	O2	-0.437110
	CY	M & ASN : Bu	tela	se 2/Bu2g(V/	GA)	
	CYM				ASN	
Atom name	Atom Type	RESP Charge	1	Atom name	Atom Type	RESP Charge
N	N	0.196967		N	N	-0.959374
Н	Н	0.083926		Н	Н	0.407511
CA	XC	-0.653926		CA	CX	0.567236
HA	H1	0.186371		HA	H1	0.068667
СВ	CT	-0.258915		СВ	2C	-0.811920
HB1	H1	0.215073		HB1	HC	0.166786
HB2	H1	0.215073		HB2	HC	0.166786
SG	SH	-0.163123		CG	С	1.075060
С	С	1.108068		OD1	О	-0.723788
0	О	-0.698781		ND2	N	-0.994454

				HD21	Н	0.416590
				HD22	Н	0.423083
			—	С	С	0.519970
				0	O2	-0.552887
SER & TYR : Trypsin/Trypsiligase						
SER				TYR		
Atom name	Atom Type	RESP Charge		Atom name	Atom Type	RESP Charge
N	N	-0.572133		N	N	-0.542960
Н	Н	0.327313		Н	Н	0.314216
CA	XC	-0.118844		CA	CX	0.239564
HA	H1	0.110435		HA	H1	0.088779
СВ	2C	-0.199754		СВ	CT	-0.522172
HB1	H1	0.139968		HB1	НС	0.213591
HB2	H1	0.139968		HB2	НС	0.213591
OG	ОН	-0.246829		CG	CA	0.088667
С	С	1.004785	—	CD1	CA	-0.090570
0	О	-0.714530	—	HD1	HA	0.157691
			—	CE1	CA	-0.434305
			—	HE1	HA	0.208851
			—	CZ	С	0.490648
			—	ОН	ОН	-0.640941
			—	НН	НО	0.445892
			—	CE2	CA	-0.346052
				HE2	HA	0.208206
				CD2	CA	-0.153404
				HD2	HA	0.150136
				С	С	0.633235
				О	O2	-0.593045

4. Docking Simulations

Based on the established Ester Intermediate structure, a grid box was defined surrounding the amide carbonyl group. The center of the grid was set at the centroid of the amide carbonyl group, with the grid dimensions set to $50 \times 50 \times 50$ points. Affinity maps were then generated using AutoGrid4. The docking process was performed using AutoDock Vina with the AD4 scoring function, and the exhaustiveness parameter was set to 50. After 5,000 docking runs, the conformation with the substrate N-terminus positioned closest to the electrophilic carbon atom of the amide carbonyl group was selected as the initial structure for subsequent LiGaMD3 simulations.

5. MM/PBSA calculations

Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) is a powerful computational approach used to estimate the binding affinity(ΔG) of a ligand to a receptor. The binding energy for each trajectory frame is evaluated using the following equations:

The binding energy ($\Delta G_{\rm bind}$) can be decomposed into contributions of different interactions and expressed as the sum of enthalpic and entropic contributions:

$$\Delta G_{\text{bind}} = \Delta H - T\Delta S = \Delta E_{\text{mm}} + \Delta G_{\text{solv}} - T\Delta S \tag{1}$$

where the molecular mechanics energy ($\Delta E_{\rm mm}$) is further decomposed into bonded and non-bonded terms:

$$\Delta E_{\rm mm} = \Delta E_{\rm bonded} + \Delta E_{\rm non-bonded}$$

$$= (\Delta E_{\rm bonds} + \Delta E_{\rm angles} + \Delta E_{\rm dihedrals}) + (\Delta E_{\rm ele} + \Delta E_{\rm vdw})$$
(2)

The solvation free energy ($\Delta G_{
m solv}$) is composed of polar and non-polar contributions:

$$\Delta G_{\rm solv} = \Delta G_{\rm polar} + \Delta G_{\rm non\text{-}polar} = \Delta G_{\rm PB} + (\gamma \cdot {\rm SASA} + b) \tag{3}$$

where $\Delta E_{\rm mm}$, $\Delta G_{\rm solv}$ and $T\Delta S$ are the changes in the gas-phase molecular mechanics energy, solvation free energy, and conformational entropy upon ligand binding. $\Delta G_{\rm polar}$ is the electrostatic or polar component of the solvation free energy evaluated by the Poisson-Boltzmann (PB) model, and $\Delta G_{\rm non-polar}$ is the hydrophobic or nonpolar component proportional to the molecular solvent accessible surface area (SASA).Because of only the relative binding free energies of similar ligands are needed and heavy computational cost, changes in the conformational entropy are neglected. Final binding energy terms are averaged over multiple configurations or several MD snapshots. To calculate the binding free energy and interaction between the Mutants of HRV-3C and its substrates. We utilized the gmx_MMPBSA program to perform calculations. Using the first frame of the trajectory as the reference for alignment with the Mutants of HRV-3C protein backbone, trajectory segments exhibiting plateaued RMSD profiles with no substantial global changes are selected. These segments are evenly divided into 3*1000 snapshots.

Bibliography

- [1] S. Grimme, C. Bannwarth, and P. Shushkov, "A Robust and Accurate Tight-Binding Quantum Chemical Method for Structures, Vibrational Frequencies, and Noncovalent Interactions of Large Molecular Systems Parametrized for All spd-Block Elements (Z = 1–86)," *Journal of Chemical Theory and Computation*, vol. 13, no. 5, pp. 1989–2009, 2017, doi: 10.1021/acs.jctc.7b00118.
- [2] F.-Y. Dupradeau *et al.*, "The R.E.D. tools: advances in RESP and ESP charge derivation and force field library building," *Phys. Chem. Chem. Phys.*, vol. 12, no. 28, pp. 7821–7839, 2010, doi: 10.1039/C0CP00111B.
- [3] M. Macchiagodena, M. Pagliai, C. Andreini, A. Rosato, and P. Procacci, "Upgrading and Validation of the AMBER Force Field for Histidine and Cysteine Zinc(II)-Binding Residues in Sites with Four Protein Ligands," *Journal of Chemical Information and Modeling*, vol. 59, no. 9, pp. 3803–3816, 2019, doi: 10.1021/acs.jcim.9b00407.