Image Processing and Visual Communications

Frequency Domain Image Restoration

Zhou Wang

Dept. of Electrical and Computer Engineering University of Waterloo

Linear Filtering

Spatial Domain Filtering: Convolution

$$x(m,n) \longrightarrow h(m,n) \longrightarrow y(m,n)$$

$$y(m,n) = \sum_{k,l=-\infty}^{\infty} h(k,l)x(m-k,n-l) = h(m,n) \otimes x(m,n)$$

• Frequency Domain Filtering: Multiplication

$$X(u,v) = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} x(m,n)e^{-j(um+vn)}$$
$$x(m,n) \otimes h(m,n) \xrightarrow{F} X(u,v)H(u,v)$$

Linear Filtering: Periodic Noise Removal

• Frequency Domain Filtering

frequency domain

band rejection

Linear Filtering: Periodic Noise Removal

• Frequency Domain Filtering

before after

Blur

out-of-focus blur

motion blur

From Prof. Xin Li

Question 1: How do you know they are blurred? I've not shown you the originals!

Question 2: How do I deblur an image?

Linear Blur Model

• Spatial domain

Linear Blur Model

• Frequency (2D-DFT) domain

From Prof. Xin Li

Gaussian blur

motion blur

Blurring Effect

Gaussian blur

motion blur

From [Gonzalez & Woods]

Image Restoration: Deblurring/Deconvolution

Non-blind deblurring/deconvolution

Given: observation y(m,n) and blurring function h(m,n)Design: g(m,n), such that the **distortion** between x(m,n) and $\hat{x}(m,n)$ is minimized

Blind deblurring/deconvolution

Given: observation y(m,n)Design: g(m,n), such that the **distortion** between x(m,n) and $\hat{x}(m,n)$ is minimized

Deblurring: Inverse Filtering

Deblurring: Pseudo-Inverse Filtering

Inverse filter:
$$G(u,v) = \frac{1}{H(u,v)}$$

What if at some (u,v), H(u,v)is 0 (or very close to 0)?

Pseudo-inverse filter:
$$G(u,v) = \begin{cases} \frac{1}{H(u,v)} & |H(u,v)| > \delta \\ 0 & |H(u,v)| \le \delta \end{cases}$$
 small threshold

small

Inverse and Pseudo-Inverse Filtering

blurred image

$$G(u,v) = \begin{cases} \frac{1}{H(u,v)} & |H(u,v)| > \delta \\ 0 & |H(u,v)| \le \delta \end{cases}$$

12

More Realistic Distortion Model

What happens when an inverse filter is applied?

$$\hat{X}(u,v) = Y(u,v)G(u,v) = \frac{X(u,v)H(u,v) + W(u,v)}{H(u,v)}$$

$$= X(u,v) + \frac{W(u,v)}{H(u,v)}$$
close to zero at high frequencies

Radially Limited Inverse Filtering

Radially limited inverse filter:

$$G(u,v) = \begin{cases} \frac{1}{H(u,v)} & \sqrt{u^2 + v^2} \le R \\ 0 & \sqrt{u^2 + v^2} > R \end{cases}$$

Motivation

- Energy of image signals is concentrated at low frequencies
- Energy of noise uniformly is distributed over all frequencies
- Inverse filtering of image signal dominated regions only

Radially Limited Inverse Filtering

Image size: 480x480

Radially limited inverse filtering:

Blurred

R = 40

R = 70 From [Gonzalez & Woods]

R = 85

Wiener (Least Square) Filtering

Wiener filter:
$$G(u,v) = \frac{H * (u,v)}{|H(u,v)|^2 + K}$$

$$K = \frac{\sigma_W^2}{\sigma_X^2} \quad \text{noise power}$$
signal power

• Optimal in the least MSE sense, i.e. G(u, v) is the best possible linear filter that minimizes

error energy =
$$E\left\{ \left| \hat{X}(u,v) - X(u,v) \right|^2 \right\}$$

Have to estimate signal and noise power

Wiener Filtering

Blurred image

Inverse filtering

Radially limited inverse filtering R = 70

Wiener filtering

Inverse vs. Wiener Filtering

18

Wiener Image Denoising

• What if no blur, but only noise, i.e. h(m,n) is an impulse or H(u, v) = 1?

Wiener filter:

$$G(u,v) = \frac{H * (u,v)}{|H(u,v)|^2 + K} \quad \text{where} \quad K = \frac{\sigma_W^2}{\sigma_X^2}$$
for $H(u,v) = 1$

Wiener denoising filter:

$$G(u,v) = \frac{1}{1+K} = \frac{1}{1+\sigma_W^2 / \sigma_X^2} = \frac{\sigma_X^2}{\sigma_X^2 + \sigma_W^2}$$

Wiener Image Denoising

adding noise noise var = 400

local Wiener denoising

Summary of Linear Image Restoration Filters

Inverse filter:

$$G(u,v) = \frac{1}{H(u,v)}$$

Pseudo-inverse filter:

$$G(u,v) = \begin{cases} \frac{1}{H(u,v)} & |H(u,v)| > \delta \\ 0 & |H(u,v)| \le \delta \end{cases}$$

Radially limited inverse filter:

$$G(u,v) = \begin{cases} \frac{1}{H(u,v)} & \sqrt{u^2 + v^2} \le R \\ 0 & \sqrt{u^2 + v^2} > R \end{cases}$$

Wiener filter:

$$G(u,v) = \frac{H^*(u,v)}{|H(u,v)|^2 + K}$$
 where $K = \frac{\sigma_W^2}{\sigma_X^2}$

Wiener denoising filter:

$$G(u,v) = \frac{\sigma_X^2}{\sigma_X^2 + \sigma_W^2}$$

Examples

• A blur filter h(m,n) has a 2D-DFT given by

$$H(u,v) = \begin{bmatrix} 1 & -0.3 - 0.3j & 0 & -0.3 + 0.3j \\ -0.3 - 0.3j & 0.1j & 0 & 0.1 \\ 0 & 0 & 0 & 0 \\ -0.3 + 0.3j & 0.1 & 0 & -0.1j \end{bmatrix}$$

- Find the deblur filter G(u,v) using
 - 1) The inverse filtering approach
 - 2) The pseudo-inverse filtering approach, with $\delta = 0.05$
 - 3) The pseudo-inverse filtering approach, with $\delta = 0.2$
 - 4) Wiener filtering approach, with $\sigma_X^2 = 625$ and $\sigma_W^2 = 125$

Examples

1) Inverse filter

$$G(u,v) = \frac{1}{H(u,v)} = \begin{bmatrix} 1 & -1.67 + 1.67 j & Inf & -1.67 - 1.67 j \\ -1.67 + 1.67 j & -10 j & Inf & 10 \\ Inf & Inf & Inf & Inf \\ -1.67 - 1.67 j & 10 & Inf & 10 j \end{bmatrix}$$

2) Pseudo-inverse filter, with $\delta = 0.05$

$$G(u,v) = \begin{cases} \frac{1}{H(u,v)} & |H(u,v)| > \delta \\ 0 & |H(u,v)| \le \delta \end{cases} = \begin{bmatrix} 1 & -1.67 + 1.67j & 0 & -1.67 - 1.67j \\ -1.67 + 1.67j & -10j & 0 & 10 \\ 0 & 0 & 0 & 0 \\ -1.67 - 1.67j & 10 & 0 & 10j \end{bmatrix}$$

Examples

3) Pseudo-inverse filter, with $\delta = 0.2$

$$G(u,v) = \begin{cases} \frac{1}{H(u,v)} & |H(u,v)| > \delta \\ 0 & |H(u,v)| \le \delta \end{cases} = \begin{bmatrix} 1 & -1.67 + 1.67j & 0 & -1.67 - 1.67j \\ -1.67 + 1.67j & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ -1.67 - 1.67j & 0 & 0 & 0 \end{bmatrix}$$

4) Wiener filter, with $\sigma_X^2 = 625$ and $\sigma_W^2 = 125$

$$K = \frac{\sigma_W^2}{\sigma_X^2} = \frac{125}{625} = 0.2$$

$$G(u,v) = \frac{H^*(u,v)}{|H(u,v)|^2 + K} = \begin{bmatrix} 0.83 & -0.79 + 0.79j & 0 & -0.79 - 0.79j \\ -0.79 + 0.79j & -0.48j & 0 & 0.48 \\ 0 & 0 & 0 & 0 \\ -0.79 - 0.79j & 0.48 & 0 & 0.48j \end{bmatrix}$$

Advanced Image Restoration

- Adaptive Processing
 - Spatial adaptive
 - Frequency adaptive
- Nonlinear Processing
 - Thresholding, coring ...
 - Iterative restoration
- Advanced Transformation / Modeling
 - Advanced image transforms, e.g., wavelet ...
 - Statistical image modeling
- Blind Deblurring / Deconvolution

Frequency-domain Method: Homomorphic Filtering

Frequency-domain Method: Homomorphic Filtering

before after