1 Trivial example 1

Consider the graph

where A is located at (0,1), B is located at (0,-1) and C is located at (h,0). Denote the distance from A or B to C by l. The supplies are $s_A = (1,0)$, $s_B = (0,1)$ and $s_C = (-1,-1)$. Consider the trivial cost function c(x,y) = |x+y| where x,y are the amounts of (signed) flow. Then

$$\partial c(0,0) = \operatorname{conv} \{(1,1), (-1,-1), (1,-1), (-1,1)\}$$

or with inequalities $\partial c(0,0) = \{z: |e_i^T z| \le 1 \,\forall i\}$. Obviously, an optimal flow is

$$f = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}.$$

An optimal dual solution is $\phi_A = (l, l)$, $\phi_B = (l, l)$ and $\phi_C = (0, 0)$. It can be easily checked that this satisfies all constraints. The derivative of ϕ is

$$D\phi = \begin{pmatrix} -l/h & 0 \\ -l/h & 0 \end{pmatrix}.$$

We now check whether $D\phi$ meets the constraints, i.e. if $||e_i^T D\phi|| \le 1$. We see that $||e_i^T D\phi|| = l/h > 1$ for all i. This is maybe surprising, as the flow f is globally optimal (with respect to all possible graph topologies).

Observation 1 Even if the global optimum is found, the dual constraints might not be satisfied.

Since $e_i^T D\phi = (-l/h, 0)$, this suggests that we should add an edge parallel to (1,0) to the graph.