Suites réelles

1 Suites de nombres réels

1.1 Notion de suite réelle

Définition 1 (Suite réelle)

Une suite réelle est une application définie sur \mathbb{N} (ou une partie $I \subset \mathbb{N}$), à valeurs dans \mathbb{R} :

$$\begin{array}{ccc} u: & \mathbb{N} & \longrightarrow & \mathbb{R} \\ & n & \longmapsto & u(n) = u_n \end{array}$$

Une telle suite est notée u ou $(u_n)_{n\in\mathbb{N}}$ ou encore $(u_n)_{n\geqslant 0}$ (parfois simplement (u_n)).

Pour tout $n \in \mathbb{N}$ fixé, le réel u_n est appelé "terme d'indice n".

L'ensemble des suites réelles indexées par \mathbb{N} est noté $\mathbb{R}^{\mathbb{N}}$ (plutôt que $\mathcal{F}(\mathbb{N}, \mathbb{R})$!)

Plus généralement, l'ensemble des suites réelles indexées par $I \subset \mathbb{N}$ est noté \mathbb{R}^I . (exemple : $\mathbb{R}^{\mathbb{N}^*}$)

A Attention!

De la même façon qu'il ne faut pas confondre l'application $f \in \mathcal{F}(\mathbb{R}, \mathbb{R})$ et le réel $f(x) \in \mathbb{R}$, on prendra garde à ne par confondre <u>la suite</u> $(u_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}}$ et <u>le n-ième terme</u> $u_n \in \mathbb{R}$!

Ne pas écrire : "La suite u_n est croissante" ou bien " u_n converge"

Écrire: "La suite $(u_n)_{n\geqslant 0}$ est croissante" ou bien " $(u_n)_{n\in\mathbb{N}}$ converge"

Une suite peut être définie de plusieurs manières :

 $\boxed{1}$ Suite définie explicitement : Pour tout $n \in \mathbb{N}$, on donne l'expression de u_n en fonction de n.

Exemples

On définit : $\forall n \in \mathbb{N}^*, \ u_n = \sqrt{\frac{n+1}{n}}, \qquad \forall n \in \mathbb{N}, \ v_n = (-1)^n, \qquad \forall n \geqslant 1, \ w_n = \left(1 + \frac{1}{n}\right)^n.$

Suite définie par récurrence : Pour tout $n \in \mathbb{N}$, on donne l'expression de u_{n+1} en fonction de u_n . (Ou bien l'expression de u_{n+2} en fonction de u_{n+1} et $u_n \dots$)

Exemples

- On définit la suite $(u_n)_{n\in\mathbb{N}}$ en posant $u_0=3$ et $\forall n\in\mathbb{N},\ u_{n+1}=\sqrt{u_n}$.
- On définit la suite $(s_n)_{n\in\mathbb{N}}$ en fixant $s_0=120$ et $\forall n\in\mathbb{N},\ s_{n+1}=\left\{\begin{array}{ll}3s_n+1 & \text{si }s_n \text{ est impair}\\\frac{s_n}{2} & \text{si }s_n \text{ est pair}\end{array}\right.$
- On définit la suite $(v_n)_{n\geqslant 0}$ en posant $v_0=1, v_1=1$ et $\forall n\in\mathbb{N}, v_{n+2}=v_n+v_{n+1}$.
- On définit la suite $(w_n)_{n\geqslant 0}$ en posant $\begin{cases} w_0 = 1, \ w_1 = -1, \ w_2 = 2 \\ \forall n \geqslant 3, \ w_n = w_{n-1} + 2w_{n-2} w_{n-3} \end{cases}$
- 3 Suite définie implicitement : Pour tout $n \in \mathbb{N}$, on définit u_n comme l'unique solution d'une équation.

Exemple

On définit la suite $(u_n)_{n\in\mathbb{N}}$ en posant, pour tout $n\in\mathbb{N},$ u_n l'unique solution de l'équation

$$\ln(x) = x^{-n} \text{ sur } \mathbb{R}_+^*.$$

(En général, on demandera de justifier que cette équation a bien un unique solution pour tout $n \in \mathbb{N}$!)

1.2 Définitions et propriétés générales

Définition 2 (Opérations sur les suites)

Soient u et v deux suites de $\mathbb{R}^{\mathbb{N}}$, soit $\lambda \in \mathbb{R}$.

- u + v est la suite définie par : $\forall n \in \mathbb{N}, (u + v)_n = u_n + v_n$.
- λu est la suite définie par : $\forall n \in \mathbb{N}, \ (\lambda u)_n = \lambda u_n$.
- uv est la suite définie par : $\forall n \in \mathbb{N}, (uv)_n = u_n v_n$.
- $\frac{u}{v}$ est la suite définie par : $\forall n \in \mathbb{N}, \ \left(\frac{u}{v}\right)_n = \frac{u_n}{v_n}$ (si $\forall n \in \mathbb{N}, \ v_n \neq 0$).

■ Définition 3 (Suite majorée, minorée, bornée)

On dit que $u \in \mathbb{R}^{\mathbb{N}}$ est majorée/minorée/bornée, lorsque l'ensemble $A = \{u_n, n \in \mathbb{N}\}$ l'est.

Autrement dit:

- $(u_n)_{n\in\mathbb{N}}$ est majorée $\iff \exists M \in \mathbb{R}, \forall n \in \mathbb{N}, u_n \leqslant M$.
- $(u_n)_{n\in\mathbb{N}}$ est minorée $\iff \exists m\in\mathbb{R}, \forall n\in\mathbb{N}, u_n\geqslant m$.
- $(u_n)_{n\in\mathbb{N}}$ est bornée $\iff \exists K\in\mathbb{R}, \forall n\in\mathbb{N}, |u_n|\leqslant K$.

Exemples

- La suite $(\frac{1}{n})_{n\in\mathbb{N}^*}$ est minorée par 0, majorée par 1 (donc bornée).
- La suite $(\sin(n))_{n\in\mathbb{N}}$ est bornée par 1 : $\forall n\in\mathbb{N}, |\sin(n)| \leq 1$.
- La suite $(n^3 + 1)_{n \in \mathbb{N}}$ est minorée par 0, non majorée.

Remarque 1

On dit aussi qu'une suite est "positive" si elle est minorée par 0, "négative" si elle est majorée par 0. (ou bien "à terme positifs", "à termes négatifs")

■ Définition 4 ("à partir d'un certain rang")

On dira qu'une propriété $\mathcal{P}(n)$ est vraie à partir d'un certain rang lorsqu'il existe un entier $N \in \mathbb{N}$ tel que $\mathcal{P}(n)$ est vraie pour tout $n \geq N$.

Exemples

• La suite $(u_n)_{n\in\mathbb{N}}$ est constante à partir d'un certain rang si et seulement si :

$$\exists N \in \mathbb{N}, \forall n \geqslant N, u_{n+1} = u_n.$$

Dans ce cas, on dit que la suite est stationnaire.

C'est par exemple le cas pour la suite définie par : $\forall n \in \mathbb{N}, u_n = \left\lfloor \frac{5}{n} \right\rfloor$. En posant N = 6, on a : $\forall n \ge N$, $u_n = 0$.

En posant T = 0, on $\alpha : \forall n \geqslant T$, $\alpha_n = 0$.

• La suite $(v_n)_{n\in\mathbb{N}}$ définie par $\forall n\in\mathbb{N},\ v_n=2^n$ satisfait : $v_n>1000$ à partir d'un certain rang. (en choisissant N=10, on a $\forall n>N,\ v_n>1000$)

1.3 Sens de variation d'une suite

■ Définition 5 (Sens de variation)

Une suite réelle $u \in \mathbb{R}^{\mathbb{N}}$ est dite :

- Croissante lorsque : $\forall n \in \mathbb{N}, u_n \leqslant u_{n+1}$
- **Décroissante** lorsque : $\forall n \in \mathbb{N}, u_{n+1} \leqslant u_n$
- Strictement croissante lorsque : $\forall n \in \mathbb{N}, u_n < u_{n+1}$
- Strictement décroissante lorsque : $\forall n \in \mathbb{N}, u_{n+1} < u_n$.

On dit que u est **monotone** lorsque (u est croissante) ou (u est décroissante).

On dit que u est **strictement monotone** lorsque

(u est strictement croissante) ou (u est strictement décroissante).

Proposition 1 (Conséquences immédiates)

- Si $(u_n)_{n\in\mathbb{N}}$ est croissante alors pour tous $m \leq n$, $u_m \leq u_n$.
- Si $(u_n)_{n\in\mathbb{N}}$ est décroissante alors pour tous $m \leq n$, $u_m \geq u_n$.
- Si $(u_n)_{n \in \mathbb{N}}$ est strictement croissante alors pour tous m < n, $u_m < u_n$.
- Si $(u_n)_{n \in \mathbb{N}}$ est strictement décroissante alors pour tous $m < n, u_m > u_n$.

Preuve:

Supposons $(u_n)_{n\in\mathbb{N}}$ croissante. On a donc $\forall k\in\mathbb{N},\ u_{k+1}-u_k\geqslant 0$.

Pour tous $m \le n$, on peut écrire : $u_n - u_m = \sum_{k=m}^{n-1} (u_{k+1} - u_k) \ge 0$, d'où $u_m \le u_n$.

De même dans les autres cas.

Listons différentes méthodes permettant de déterminer le sens de variation d'une suite.

Ξ Méthode : Déterminer le sens de variation en étudiant $(u_{n+1}-u_n)$ ou $\frac{u_{n+1}}{u_n}$

Étude de la différence de deux termes consécutifs :

- Si on a $\forall n \in \mathbb{N}, u_{n+1} u_n \ge 0$, alors la suite $(u_n)_{n \ge 0}$ est croissante.
- Si on a $\forall n \in \mathbb{N}, u_{n+1} u_n \leq 0$, alors la suite $(u_n)_{n \geq 0}$ est décroissante.

Si les inégalités sont strictes, la suite est strictement croissante/décroissante.

Étude du ratio de deux termes consécutifs: A Pour une suite à termes strictement positifs

- Si on a $\forall n \in \mathbb{N}, \ \frac{u_{n+1}}{u_n} \geqslant 1$, alors la suite $(u_n)_{n \geqslant 0}$ est croissante.
- Si on a $\forall n \in \mathbb{N}, \ \frac{u_{n+1}}{u_n} \leqslant 1$, alors la suite $(u_n)_{n \geqslant 0}$ est décroissante.

Si les inégalités sont strictes, la suite est strictement croissante/décroissante.

A Attention!

Si $(u_n)_{n\in\mathbb{N}}$ est à termes strictement négatifs, les conclusions pour le ratio sont inversées!

$$\frac{u_{n+1}}{u_n} \geqslant 1 \Longrightarrow u_{n+1} \leqslant u_n \quad \text{et} \quad \frac{u_{n+1}}{u_n} \leqslant 1 \Longrightarrow u_{n+1} \geqslant u_n.$$

Exercice 1

On définit la suite $(u_n)_{n\in\mathbb{N}}$ en posant : $\forall n\in\mathbb{N},\ u_n=\sum_{k=1}^n\frac{1}{k}$

On définit la suite $(v_n)_{n\in\mathbb{N}}$ en posant : $\forall n\in\mathbb{N}, v_n=n!$

On définit la suite $(w_n)_{n\in\mathbb{N}}$ en posant $w_0=1$ et $\forall n\in\mathbb{N},\ w_{n+1}=\frac{w_n}{1+nw_n^2}$

Déterminer les sens de variations de ces suites.

- Pour tout $n \in \mathbb{N}$, $u_{n+1} u_n = \sum_{k=1}^{n+1} \frac{1}{k} \sum_{k=1}^{n} \frac{1}{k} = \frac{1}{n+1} > 0$, d'où $(u_n)_{n \in \mathbb{N}}$ strictement croissante.
- Pour tout $n \in \mathbb{N}$, on a bien $v_n > 0$ et $\frac{v_{n+1}}{v_n} = \frac{(n+1)!}{n!} = (n+1) \geqslant 1$, d'où $(v_n)_{n \in \mathbb{N}}$ croissante (pas strictement!).
- On montre facilement par récurrence que $\forall n \in \mathbb{N}, w_n > 0$: $w_0 = 1 > 0$ et si jamais $w_n > 0$, on a $w_{n+1} = \frac{w_n}{1 + nw_n^2} > 0$.

Par suite, pour tout $n \in \mathbb{N}$, $\frac{w_{n+1}}{w_n} = \frac{1}{1 + nw_n^2} \le 1$ d'où $(w_n)_{n \in \mathbb{N}}$ décroissante (pas strictement!)

₩ Méthode : Déterminer le sens de variation d'une suite définie explicitement

On considère une suite donnée explicitement : $\forall n \in \mathbb{N}, \ u_n = f(n)$ où $f : \mathbb{R}_+ \to \mathbb{R}$.

- Si la fonction f est croissante sur \mathbb{R}_+ , alors la suite $(u_n)_{n\in\mathbb{N}}$ est croissante. En effet, pour tout $n\in\mathbb{N}$: $u_{n+1}=f(n+1)\geqslant f(n)=u_n$.
- Si la fonction f est décroissante sur \mathbb{R}_+ , alors la suite $(u_n)_{n\in\mathbb{N}}$ est décroissante. En effet, pour tout $n\in\mathbb{N}$: $u_{n+1}=f(n+1)\leqslant f(n)=u_n$.

Si la fonction f est strictement croissante/décroissante, alors la suite $(u_n)_{n\in\mathbb{N}}$ également.

A Attention!

Ne pas confondre avec le cas d'une fonction définie par récurrence : $\forall n \in \mathbb{N}, \ u_{n+1} = f(u_n)$.

Exercice 2

On pose : $\forall n \in \mathbb{N}, \ u_n = \frac{n}{n+1}$. Déterminer le sens de variation de $(u_n)_{n \in \mathbb{N}}$.

On peut écrire $\forall n \in \mathbb{N}, \ u_n = f(n), \ \text{où } f \text{ est la fonction définie par : } \forall x \in \mathbb{R}_+, \ f(x) = \frac{x}{x+1}.$

4

f est dérivable sur \mathbb{R}_+ et : $\forall x \in \mathbb{R}_+, \ f'(x) = \frac{(x+1)-x}{(x+1)^2} = \frac{1}{(x+1)^2} > 0.$

On en déduit que f est strictement croissante sur \mathbb{R}_+ . Il en résulte que $(u_n)_{n\in\mathbb{N}}$ est strictement croissante.

₹ Méthode : Déterminer le sens de variation d'une suite définie par récurrence (simple)

On considère une suite donnée par récurrence : $u_0 \in \mathbb{R}$ et $\forall n \in \mathbb{N}, \ u_{n+1} = f(u_n)$ où $f: \mathbb{R} \to \mathbb{R}$.

- 1 Deviner le sens de variation en calculant les premiers termes :
 - Si $u_1 = f(u_0) \geqslant u_0$, on prévoit que la suite sera croissante.
 - Si $u_1 = f(u_0) \leq u_0$, on prévoit que la suite sera décroissante.
- Poser $\mathcal{P}(n)$: " $u_n \leqslant u_{n+1}$ " ou bien $\mathcal{P}(n)$: " $u_n \geqslant u_{n+1}$ " et montrer par récurrence que $\mathcal{P}(n)$ est vrai pour tout $n \in \mathbb{N}$.

Ce raisonnement s'adapte pour montrer la croissance/décroissance stricte.

Remarque 2

Pour qu'une suite définie par la récurrence $u_{n+1} = f(u_n)$ soit monotone (croissante ou décroissante), il est en fait nécessaire que la fonction f soit croissante! L'hérédité dans la récurrence de l'étape 2s'appuie en effet sur la croissance de la fonction f:

Si on a $u_{n+1} \leqslant u_n$ alors par croissance de f $f(u_{n+1}) \leqslant f(u_n)$ i.e $u_{n+2} \leqslant u_{n+1}$.

Attention!

Parfois f n'est pas définie sur \mathbb{R} tout entier, mais seulement sur un domaine de définition $D_f \subset \mathbb{R}$. Dans ce cas, pour vérifier que la suite $(u_n)_{n\in\mathbb{N}}$ est bien définie, il faut au préalable montrer que :

$$\forall n \in \mathbb{N}, u_n \in D_f \text{ (par récurrence)}$$

Exercice 3

1. On définit la suite $(u_n)_{n\in\mathbb{N}}$ par : $u_0=2$ et $\forall n\in\mathbb{N},\ u_{n+1}=\sqrt{u_n}$.

Montrer que cette suite est bien définie et déterminer son sens de variation.

- 2. Même question en posant cette fois $u_0 = \frac{1}{2}$.
- 1. Une récurrence immédiate montre que $\forall n \in \mathbb{N}, u_n > 0$.

En effet, $u_0 = 2 > 0$ et si $u_n > 0$, $u_{n+1} = \sqrt{u_n}$ est bien défini et strictement positif.

La suite $(u_n)_{n\in\mathbb{N}}$ est donc bien définie.

On note que $u_1 = \sqrt{2} \simeq 1.4 < 2$, donc $u_1 < u_0$.

Montrons par récurrence que pour tout $n \in \mathbb{N}$, $u_{n+1} < u_n$.

Initialisation : $u_1 = \sqrt{2} < u_0 = 2$ (déjà vu).

<u>Hérédité</u>: soit $n \in \mathbb{N}$. Supposons $u_{n+1} < u_n$, montrons $u_{n+2} < u_{n+1}$.

On a $u_{n+1} < u_n$, donc $\sqrt{u_{n+1}} < \sqrt{u_n}$ i.e $u_{n+2} < u_{n+1}$.

Ceci achève la récurrence : on a montré que $(u_n)_{n\in\mathbb{N}}$ est strictement décroissante.

2. À nouveau, par récurrence immédiate, $\forall n \in \mathbb{N}, u_n > 0$.

Par contre cette fois, $u_1 = \sqrt{\frac{1}{2}} = \frac{1}{\sqrt{2}} \simeq \frac{1}{1.4} > \frac{1}{2}$, donc $u_1 > u_0$. Montrons par récurrence que pour tout $n \in \mathbb{N}$, $u_{n+1} > u_n$.

Initialisation : $u_1 = \sqrt{\frac{1}{2}} > u_0 = \frac{1}{2}$ (déjà vu).

<u>Hérédité</u>: soit $n \in \mathbb{N}$. Supposons $u_{n+1} > u_n$, montrons $u_{n+2} > u_{n+1}$.

On a $u_{n+1} > u_n$, donc $\sqrt{u_{n+1}} > \sqrt{u_n}$ i.e $u_{n+2} > u_{n+1}$.

Ceci achève la récurrence : on a montré que $(u_n)_{n\in\mathbb{N}}$ est strictement croissante.

2 Suites récurrentes classiques

2.1 Suites arithmétiques (rappels)

■ Définition 6 (Progression arithmétique)

On dit qu'une suite $u \in \mathbb{R}^{\mathbb{N}}$ est arithmétique lorsqu'il existe une constante $r \in \mathbb{R}$ telle que

$$\forall n \in \mathbb{N}, \ u_{n+1} = u_n + r.$$

Le réel r est appelé "raison" de la suite.

Exemple

Suite des entiers naturels pairs : $u_0 = 0$ et $\forall n \in \mathbb{N}, u_{n+1} = u_n + 2$.

Proposition 2 (Sens de variation d'une suite arithmétique)

Soit $u \in \mathbb{R}^{\mathbb{N}}$ une suite arithmétique de raison r.

- Si r = 0, u est constante.
- Si r > 0, u est strictement croissante.
- Si r < 0, u est strictement décroissante.

Preuve rapide:

C'est évident en étudiant le signe de $u_{n+1} - u_n = r$.

Proposition 3 (Terme général d'une suite arithmétique)

Soit $u \in \mathbb{R}^{\mathbb{N}}$ une suite arithmétique de raison $r \in \mathbb{R}$. Alors

$$\forall n \in \mathbb{N}, \ u_n = u_0 + nr$$

et plus généralement,

$$\forall (n,m) \in \mathbb{N}^2, \ u_n = u_m + (n-m)r.$$

Preuve rapide:

Le premier point se démontre par récurrence immédiate :

$$u_0 = u_0 + 0 \times r$$
 et si $u_n = u_0 + nr$ on a $u_{n+1} = u_n + r = u_0 + nr + r = u_0 + (n+1)r$.

Le second point découle du premier : pour tous $n, m \in \mathbb{N}$,

$$u_n - u_m = (u_0 + nr) - (u_0 + mr) = (n - m)r$$
 d'où $u_n = u_m + (n - m)r$.

A Attention!

Si la suite arithmétique $u=(u_n)_{n\in\mathbb{N}^*}$ est indexée par \mathbb{N}^* , u_0 n'est bien-sûr pas défini!

On utilisera alors: $\forall n \in \mathbb{N}^*, u_n = u_1 + (n-1)r$.

2.2 Suites géométriques (rappels)

Définition 7 (Progression géométrique)

On dit qu'une suite $u \in \mathbb{R}^{\mathbb{N}}$ est géométrique lorsqu'il existe une constante $q \in \mathbb{R}$ telle que

$$\forall n \in \mathbb{N}, \ u_{n+1} = q \times u_n.$$

Le réel q est appelé "raison" de la suite.

Exemples

 $u=(2^n)_{n\in\mathbb{N}}$ est géométrique de raison 2. $v=\left(\frac{1}{2^n}\right)_{n\in\mathbb{N}}$ est géométrique de raison $\frac{1}{2}$.

Remarque 3

Ceci explique l'appellation "somme géométrique" pour la somme $\sum_{k=0}^{n} x^k$: il s'agit de la somme des premiers termes de la suite géométrique : $u_0 = 1$ et $\forall n \in \mathbb{N}, \ u_{n+1} = x \times u_n$.

Proposition 4 (Sens de variation d'une suite géométrique)

Soit $u \in \mathbb{R}^{\mathbb{N}}$ une suite géométrique de raison q.

- Si q > 1 et $u_0 > 0$, u est positive et strictement croissante.
- Si q > 1 et $u_0 < 0$, u est négative et strictement décroissante.
- Si q = 1 ou $u_0 = 0$, u est constante.
- Si 0 < q < 1 et $u_0 > 0$, u est positive et strictement décroissante.
- Si 0 < q < 1 et $u_0 < 0$, u est négative et strictement croissante.
- Si q < 0 et $u_0 \neq 0$, u n'est pas monotone (son signe alterne).

Preuve rapide:

Ces points s'obtiennent en étudiant le ratio $\frac{u_{n+1}}{u_n}=q$ (attention au signe de $u_n\,!)$

Proposition 5 (Terme général d'une suite géométrique)

Soit u une suite géométrique de raison $q \in \mathbb{R}$. Alors

$$\forall n \in \mathbb{N}, \ u_n = \underline{u_0} \times \underline{q^n}$$

et plus généralement,

$$\forall (n,m) \in \mathbb{N}^2, \ u_n = \underline{u_m} \times \underline{q^{n-m}}.$$

Preuve:

Similaire à celle faite dans le cas d'une progression arithmétique.

A Attention!

Si la suite géométrique $u=(u_n)_{n\in\mathbb{N}^*}$ est indexée par \mathbb{N}^* , u_0 n'est bien-sûr pas défini! On utilisera alors : $\forall n\in\mathbb{N}^*$, $u_n=u_1\times q^{n-1}$.

2.3 Suites arithmético-géométriques

Définition 8 (Progression arithmético-géométrique)

On dit qu'une suite $u \in \mathbb{R}^{\mathbb{N}}$ est arithmético-géométrique lors qu'il existe deux constantes $r \in \mathbb{R}$ et $q \in \mathbb{R}$ telles que :

$$\forall n \in \mathbb{N}, \ u_{n+1} = qu_n + r.$$

Remarque 4

Si q = 1, la suite est arithmétique de raison r.

Si q=0, la suite est constante égale à r.

Si r=0, la suite est géométrique de raison q.

₹ Méthode : Déterminer le terme général d'une suite arithmético-géométrique

Soit $u \in \mathbb{R}^{\mathbb{N}}$ satisfaisant la relation : $\forall n \in \mathbb{N}$, $u_{n+1} = qu_n + r$ avec $q \neq 1$.

- Introduire la constante $\alpha \in \mathbb{R}$ telle que $\alpha = q\alpha + r$ (autrement dit, $\alpha = \frac{r}{1-q}$).
- 2 Introduire la suite $v = u \alpha$, c'est à dire : $\forall n \in \mathbb{N}, \ v_n = u_n \alpha$.
- $\boxed{3}$: Vérifier que v est géométrique de raison q: pour tout $n \in \mathbb{N}$,

$$\begin{cases} u_{n+1} = qu_n + r \\ \alpha = q\alpha + r \end{cases} \text{ donc } u_{n+1} - \alpha = qu_n + r - (q\alpha + r) = q(u_n - \alpha) \text{ i.e. } v_{n+1} = qv_n.$$

- $\boxed{4}$ En déduire l'expression de $v_n: \forall n \in \mathbb{N}, v_n = v_0 \times q^n \pmod{v_0 = u_0 \alpha}$
- 5 En déduire l'expression de u_n : $\forall n \in \mathbb{N}, \ u_n = v_n + \alpha = v_0 \times q^n + \alpha \quad (\text{avec } v_0 = u_0 \alpha)$

Remarque 5

Cette méthode s'adapte bien-sûr aux suites $(u_n)_{n\geq 1}$ indexées par \mathbb{N}^* .

Dans ce cas on fera bien attention à exprimer v_n en fonction de v_1 (et donc u_n en fonction de u_1).

Exercice 4

On pose $u_1 = 2$ et $\forall n \in \mathbb{N}^*$, $u_{n+1} = 2u_n + 1$. Déterminer l'expression de u_n en fonction de n.

On introduit $\alpha \in \mathbb{R}$ tel que $\alpha = 2\alpha + 1$, c'est à dire $\alpha = -1$.

Pour tout $n \ge 1$, posons $v_n = u_n - \alpha$, c'est à dire $v_n = u_n + 1$, et vérifions que v est une suite géométrique de raison 2.

Pour tout $n \ge 1$, $v_{n+1} = u_{n+1} + 1 = 2u_n + 1 + 1 = 2u_n + 2 = 2(u_n + 1) = 2v_n$.

On en déduit que $\forall n \ge 1$, $v_n = v_1 \times 2^{n-1} = (u_1 + 1) \times 2^{n-1} = 3 \times 2^{n-1}$.

Enfin, on conclut que $\forall n \ge 1$, $u_n = v_n - 1 = 3 \times 2^{n-1} - 1$.

2.4 Suites récurrentes linéaires d'ordre 2

lacksquare Définition 9 (Récurrence linéaire d'ordre 2)

Une suite $u \in \mathbb{R}^{\mathbb{N}}$ est dite récurrente linéaire d'ordre 2 lorsqu'il existe deux constantes $a, b \in \mathbb{R}$ (avec $b \neq 0$) telles que :

$$\forall n \in \mathbb{N}, \ u_{n+2} = \underbrace{au_{n+1} + bu_n}.$$

Remarque 6

S'agissant d'une suite récurrente d'ordre 2 (un terme est défini en fonction des deux précédents), une telle suite est entièrement déterminée par la donnée des deux premiers termes u_0 et u_1 .

Exemple

La suite de Fibonacci définie par : $u_0 = u_1 = 1$ et $\forall n \in \mathbb{N}, u_{n+2} = u_{n+1} + u_n$ est à récurrence linéaire d'ordre 2.

Æ Méthode : Déterminer le terme général d'une suite à récurrence linéaire d'ordre 2

Soit $u \in \mathbb{R}^{\mathbb{N}}$ satisfaisant la relation : $\forall n \in \mathbb{N}, \ u_{n+2} = au_{n+1} + bu_n$ (avec $b \neq 0$)

1 Résoudre l'**équation caractéristique** associée : $x^2 = ax + b$, i.e $x^2 - ax - b = 0$

2 - A Si l'équation caractéristique a deux solutions réelles distinctes q_1 et q_2 , $(\Delta > 0)$ le terme général est de la forme : $u_n = \lambda q_1^n + \mu q_2^n$ avec $\lambda, \mu \in \mathbb{R}$ à determiner.

 $\boxed{2 - B}$ Si l'équation caractéristique a une seule solution réelle $q, \quad (\Delta = 0)$ le terme général est de la forme : $\underline{u_n = (\lambda + n\mu)q^n}$ avec $\lambda, \mu \in \mathbb{R}$ à determiner.

 $\boxed{3}$ Déterminer les valeurs de λ et μ à l'aide des 2 premiers termes de la suite.

Remarques 7

- Pour le moment, on se contente d'admettre que cette méthode fonctionne.
- Le cas où l'équation caractéristique n'admet pas de racine réelle ($\Delta < 0$) est hors programme.

Exercice 5

On pose $u_0 = 1$, $u_1 = -2$ et $\forall n \in \mathbb{N}$, $u_{n+2} = -2u_{n+1} - u_n$. Déterminer l'expression de u_n en fonction de n.

L'équation caractéristique est $x^2 = -2x - 1$ i.e $x^2 + 2x + 1 = 0$ i.e $(x + 1)^2 = 0$.

Cette équation a une seule racine réelle : q = -1.

On sait donc que le terme général sera de la forme $u_n = (\lambda + n\mu) \times (-1)^n$, avec $\lambda, \mu \in \mathbb{R}$ à déterminer.

Connaissant les valeurs des deux premiers termes :

$$\begin{cases} u_0 &= 1 \\ u_1 &= -2 \end{cases} \iff \begin{cases} (\lambda + 0\mu) \times (-1)^0 &= 1 \\ (\lambda + \mu) \times (-1)^1 &= -2 \end{cases} \iff \begin{cases} \lambda &= 1 \\ -\lambda - \mu &= -2 \end{cases} \iff \begin{cases} \lambda &= 1 \\ \mu &= 1 \end{cases}$$

Conclusion: $\forall n \in \mathbb{N}, \ u_n = (1+n) \times (-1)^n.$

$\grave{\mathbf{A}}$ savoir faire à l'issue de ce chapitre :

- Déterminer le sens de variation d'une suite avec la méthode adaptée.
- Déterminer le terme général d'une suite arithmétique / géométrique.
- Déterminer le terme général d'une suite arithmético-géométrique.
- Déterminer le terme général d'une suite à récurrence linéaire d'ordre 2.

Pour suivre

• Calculer le terme général d'une suite avec d'autres outils (somme télescopique, introduction d'une autre suite...)

Pour les ambitieux

{ Ø