1. Problem description

Specie M transport between two domains (left domain 1 and right domain 2).

- 1) Diffusion in both domains can be described by Fick's law, Specie M has different diffusivities in different materials.
- 2) Dirichlet boundary conditions are applied at most left and most right.
- 3) At the interface consider the following
 - a) Fluxes are matched from both domains
 - b) The reaction is

$$k_f \\ M(1) \rightleftharpoons M(2) \\ k_h$$

With the first order reaction rate assuming a quasi-steady-state

$$ReactionRate = \frac{dC_1}{dt} = k_f C_1 - k_b C_2 \approx 0$$

2. Model in 1-D

2.1. Governing equation

In domain 1 (0 $\leq x_1 < 1$)

$$D_1 \frac{\partial^2 C_1}{\partial x_1^2} = 0 \tag{1}$$

In domain 2 (1 $< x_2 \le 2$)

$$D_2 \frac{\partial^2 C_2}{\partial x_2^2} = 0 \tag{2}$$

Where $D_1 = 4$, $D_2 = 2$.

2.2. Boundary condition

$$C_1|_{x=0} = 1 (3)$$

$$C_2|_{x=2} = 0 (4)$$

2.3. At the interface

$$J_1 = J_2$$

or

Or

$$-D_1 \frac{dC_1}{dx_1} \Big|_{x=1} = -D_2 \frac{dC_2}{dx_2} \Big|_{x=1}$$
 (5)

Also due to the reactions, it should satisfy

$$J_{interface} = R = k_f C_1 - k_b C_2$$

$$k_f C_1 - k_b C_2 = 0$$
(6)

Where $k_f = 1, k_b = 2$.

2.4. Analytic solution:

$$\begin{cases} C_1 = -0.2x_1 + 1 & 0 \le x_1 < 1 \\ C_2 = -0.4x_2 + 0.8 & 1 < x_2 \le 2 \end{cases}$$
 (7)

3. MOOSE way

3.1. Overview

MOOSE works on "kernel" which represent a piece of physics (one or more operators or terms in a PDE, like $\nabla \cdot D\nabla u$)

Equation	Kernel	Remark
(1)	MatDiffusion	MOOSE provide
(2)	MatDiffusion	MOOSE provide
(3)	DirichletBC	MOOSE provide

(4)	DirichletBC	MOOSE provide	
(5)	InterfaceDiffusion	MOOSE provide	
(6)	InterfaceReaction	User defined	

As we can notice, for this simple question MOOSE can provide most of the kernels except for InterfaceReaction Kernel (Eq.(6)).

3.2. Details for InterfaceReaction Kernel

Similar to InterfaceDiffusion kernel $^{[1]}$, in order to write a kernel to operate the variable (u_1 for master, u_2 for neighbor) for InterfaceReaction, we need to get the Residual $^{[2]}$ (computeQpResidual) and Jacobian $^{[2][3]}$ (computeQpJacobian) for master domain and neighbor domain respectively.

Residual (computeQpResidual)

Residual for element (master domain)	$\psi_1 \cdot (k_f u_1 - k_b u_2)$
Residual for neighbor	$-\psi_2 \cdot (k_f u_1 - k_b u_2)$

Where ψ_1 is the test function of master domain, ψ_2 is the test function of neighbor domain. The negative sign in element (master domain), think of a NeumannBC.

Jacobian (computeQpJacobian)

Kernel code		Understanding and explanation	
computeQpJacobian() case Moose::	Jac=	Domain	Get derivative w.r.t.
ElementElement	$\psi_1 \cdot k_f \phi_1$	master	u_1
NeighborNeighbor	$-\psi_2\cdot(-k_b\phi_2)$	neighbor	U ₂
NeighborElement	$-\psi_2 \cdot (k_f \phi_1)$	neighbor	U ₁
ElementNeighbor	$\psi_1 \cdot (-k_b \phi_2)$	master	U ₂

Where ϕ_1 is the shape function of master domain, ϕ_2 is the shape function of neighbor domain.

3.3. Result and discussion

The code [4] has been implemented to 1-D geometry giving the results agree with the analytic solution (ElementL2Error is at the order of E-17).

Jacobian is analyzed by the method provided by MOOSE [5], the result shows the No errors detected. :-).

¹ http://mooseframework.org/wiki/MooseSystems/InterfaceKernels/

² http://mooseframework.org/wiki/MooseTraining/FEM/NumericalImplementation/

³ http://mooseframework.org/moose/application_development/jacobian_definition.html

⁴ https://github.com/wesleyzzz/InterfaceReaction1.git

⁵ http://mooseframework.org/wiki/JacobianDebugging/