CSE 411: Machine Learning

Reinforcement Learning

Dr Muhammad Abul Hasan

Department of Computer Science and Engineering Green University of Bangladesh muhammad.hasan@cse.green.edu.bd

Fall 2023

Outline

Reinforcement Learning

L Learning never exhausts the mind. - Leonardo da Vinci

Next Up ...

Reinforcement Learning

Reinforcement Learning

Basic Idea:

- Receive feedback in the form of rewards
- Agent's utility is defined by the reward function
- Must (learn to) act so as to maximize expected rewards

Reinforcement Learning

- RL algorithms attempt to find a policy for maximizing cumulative reward for the agent over the course of the problem.
- Typically represented by a Markov Decision Process
- RL differs from supervised learning in that correct input/output pairs are never presented, nor sub-optimal actions explicitly corrected.

Grid World

- The agent lives in a grid
- Walls block the agent's path
- The agent's actions do not always go as planned:
 - 80% of the time, the action North takes the agent North (if there is no wall there)
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put
- Small "living" reward each step
- Big rewards come at the end
- Goal: maximize sum of rewards*

Grid Futures

Deterministic Grid World:

Stochastic Grid World

Next Up ...

1 Reinforcement Learning

- An MDP is defined by:
 - \square A set of states $s \in S$
 - \square A set of actions $a \in A$
 - ullet A transition function T(s, a, s')
 - Prob that a from s leads to s'
 - i.e., P(s'|s,a)
 - Also called the model
 - \square A reward function R(s, a, s')
 - Sometimes just R(s) or R(s')
 - A start state (or distribution)
 - Maybe a terminal state
 - \square A discount factor: γ
- MDPs are a family of non-deterministic search problems.

What is Markov about MDPs?

- "Markov" generally means that given the present state, the future and the past are independent
- For Markov decision processes, "Markov" means:

$$P(s_{t+1} = s' | S_t = s_t, A_t = a_t, S_{t-1} = s_{t-1}, A_{t-1} = a_{t-1}, \dots, S_0 = s_0)$$

$$\equiv P(s_{t+1} = s' | S_t = s_t, A_t = a_t)$$

Solving MDPs

- In deterministic single-agent search problems, want an optimal **plan**, or sequence of actions, from start to a goal
- In an MDP, we want an optimal policy $\pi^*: S \to A$
 - $lue{}$ A policy π gives an action for each state
 - An optimal policy maximizes expected utility if followed
 - Defines a reflex agent

Optimal policy when R(s, a, s') = -0.03 for all non-terminals s

Recap: Defining MDPs

- Markov decision processes:
 - \square States S
 - Start state s0
 - Actions A
 - \square Transitions P(s'|s,a) (or T(s,a,s'))
 - Rewards R(s, a, s') (and discount γ)
- MDP quantities so far:
 - Policy = Choice of action for each state
 - Utility (or return) = sum of discounted rewards

Optimal Utilities

- Fundamental operation: compute the values (optimal expectimax utilities) of states s
- Why? Optimal values define optimal policies!
- Define the value of a state s: V * (s) = expected utility starting in s and acting optimally
- Define the value of a q-state (s,a):Q*(s,a) '
 = expected utility starting in s, taking action a and thereafter acting optimally
- Define the optimal policy: $\pi * (s) = \text{optimal}$ action from state s

0.812	0.868	0.912	-1	3	Ī
0.762		0.660	-1	2	t
0.705	0.655	0.611	0.388	1	t
1	2	3	4		1

Value Iteration

- Idea:
 - □ Start with $V_0^*(s) = 0$, which we know is right (why?)
 - Given V_i^* , calculate the values for all states for depth i+1:

$$V_{i+1} \leftarrow \max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V_i(s')]$$

- This is called a value update or Bellman update
- Repeat until convergence
- Theorem: will converge to unique optimal values
 - Basic idea: approximations get refined towards optimal values
 - Policy may converge long before values do

Example: Value Iteration

Information propagates outward from terminal states and eventually all states have correct value estimates

Example: Value Iteration

Information propagates outward from terminal states and eventually all states have correct value estimates

Discounted Rewards

- Rewards in the future are worth less than an immediate reward
 - Because of uncertainty: who knows if/when you're going to get to that reward state

Thank You!