PATENT ABSTRACTS OF JAPAN

(11) Publication number:

03-209435

(43) Date of publication of application: 12.09.1991

(51) Int. CI.

1/136 GO2F 1/1333

(21) Application number: 02-005237

(71) Applicant: SEIKO INSTR INC

(22) Date of filing:

12.01.1990

(72) Inventor: TSUNODA YUKIYOSHI

ITO KOKICHI

(54) ACTIVE MATRIX TYPE ELECTROOPTICAL DEVICE

(57) Abstract:

PURPOSE: To prevent the electrostatic destruction of an element by coating a substrate surface, where a switching element is aformed, with an inorganic metal oxide film. CONSTITUTION: A device is composed of an upper substrate 1, column electrode 2, lower substrate 3, row electrode 4, liquid crystal layer 6 and inorganic metal oxide film 8. The whole surface of the lower substrate forming the switching element is coated with the inorganic metal oxide film 8. For this coating, solvent is applied to the surface of the substrate forming the switching element by printing. Further, by burning the film at a high temperature, organic substances in the printed film are almost removed and the inorganic metal oxide film 8 having satisfactory insulation ability is formed. Thus, the electrostatic destruction of the switching element can be prevented.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's

19日本国特許庁(JP)

10 符許出願公開

⑫公開特許公報(A)

平3-209435

®Int. Cl. ⁵

識別記号

庁内整理番号

四公開 平成3年(1991)9月12日

G 02 F 1/136

1/1333 5 0 5

9018-2H 8806-2H

審査請求 未請求 請求項の数 3 (全4頁)

❷発明の名称

アクテイプマトリックス型電気光学装置

②特 顋 平2-5237

②出 願 平2(1990)1月12日

仰発明者 角田

幸 袋

東京都江東区亀戸6丁目31番1号 セイコー電子工業株式

会社内

⑩発明者 伊藤

耕吉

東京都江東区亀戸6丁目31番1号 セイコー電子工業株式

会社内

⑪出 願 人 セイコー電子工業株式

会社

四代 理 人 弁理士 林 敬之助

明細書

1. 発明の名称

アクティブマトリックス型電気光学装置

を使って構成された非線形抵抗素子である請求項 1に記載のアクティブマトリックス型電気光学装

2. 特許請求の範囲

- (1) 2枚の基板間に液晶が封入され少なくとも一方の基板の内面には複数のスイッチング素子が形成されているアクティブマトリックス型電気光学装置において、スイッチング素子が形成されている基板面が無機金属酸化膜でコーティングされていることを特徴とするアクティブマトリックス型電気光学装置。
- (2) 前記無機金属酸化膜は、SiO2、TiO2、TiO2、ZrO2を主成分とする有機化合物を溶媒に溶かした状態で基板面に塗布した後、UV光を照射し更に加熱することによって形成された膜である請求項1に記載のアクティブマトリックス型電気光学装置。
- (3) 前記スイッチング素子はSIN×、SIO ×、SIC×等の電気的に非線形な特性を持つ膜

3. 発明の詳細な説明

東京都江東区亀戸6丁目31番1号

[産業上の利用分野]

本発明は、大型面像表示、コンピュータ端末、 光学シャッターなどに利用される液晶とスイッチング素子を使ったアクティブマトリックス型電気 光学装置に関する。

[発明の概要]

本発明は基板上に複数のスイッチング素子が形成されているアクティブマトリックス型電気光学装置において、基板面をSiOz、TiOz、ZrOzを主成分とする無機金属酸化膜でコーティングすることにより製造工程中での素子の静電破壊を防止するとともに、スイッチング素子の非対称性に起因する動作不良が軽減されるようにした。

(従来の技術)

時計や電卓などの表示用として登場した液晶表

示装置は、断質の向上と大型化に伴いコンピュータ端末や光シャッターなど表示以外の用途も含にた広い分野で電気光学装置として使われるようになってきた。特に基板表面上の各画彙にスイッチ電気光学装置はその優れた表示特性により今後の発展が期待されている。アクティブマトリックス電気光学装置はMIM (Metal-Insulator-Metal)やMSI (Metal-Semi-Insulator)などの二端子型と三端子型のTFT (Thin-Film-Transistor)に大別される。

代表的な二端子型アクティブマトリックス型電気光学装置であるMS1パネルの断面図を第2図(a)に、画彙部分の平面図を第2図(b)に、(b)のA-A・部分の断面拡大図を第2図(C)に示す。第2図(a)(b)(c)において、1は上括板、2は列電板、3は下搭板、4は行電極、5は函業電極、6は液晶層、7は非線形膜である。行電極4と画彙電極5の間にSINx等の電気的

素子の持つ非対称性による動作不良が発生してしまうことである。

素子の非対称性による動作不良について簡単圧 説明する。第3図はスイッチング素子の電流電圧 特性を示す図であり、換軸は電圧、繰軸は電流流 対数である。SiNxのような非線形膜を使ってあ ってもであり、関軸は電圧が同じなり、 スイッチング素子では印加される電圧が同じななど。 のたは電圧が同じ2Vでもその極性により△Iであ っても電性が変わると電流の大きにより△Iであ のたは電圧が同じ2Vでもその極性により △Iで は電圧が同じ2Vでもそのを性にない でのため第2図の従来のアクティブマを このため第2図では、駆動回路から交流電圧には でのため第2回では、取動回路から交流電圧には でのたが異常を通して液晶層に印加されが原因とない での、バイアスがかかって足くなったり異常表示が で、バイアスがかない。 になどの動作不良を起こす場合が多かった。 (深頭を解決するための手段)

本発明は上記の欠点を解決するために成されたものであり、スイッチング素子が形成された基板面をSiO,、TiO,、2r0,を主成分とす

に非線形な験7が挟まれた構造となっており全体 としてスイッチング素子を構成している。行電極 4がm本、列電極7がn本ならばm×n画案のア・ クティブマトリックス型電気光学装置となる。

次に動作について説明する。非線形膜では低電圧では抵抗は高いが高電圧になるにつれて抵抗対低くなる性質を持っている。従って液晶層6に対してON電圧がかかっているときは非線形態ではなり画素電低5に電荷を書き込むできるが、OFF電圧がかかると非線形像保入できるが、OFF電圧がかかると非線形像保入はほとんど絶縁体に近くなり響えられた電気圧をマイとんど絶縁体にでコントロールすることに取動と同りでカス駆動においてもスタティック駆動においてもスタティックを関し、良好なコントラストや視角特性が得られる。

(発明が解決しようとする課題)

ところが従来のアクティブマトリックス型電気 光学装置には2つの大きな欠点があった。1つは 製造工程中で発生する静電気によりスイッチング 素子が破壊し易いこと、もう1つはスイッチング

る無機金属酸化族でコーティングすることにより 素子の静電破壊を防止するとともに、素子の非対 \ 称性に起因する動作不良を軽減する。

(作用)

基板面を無限金属酸化膜でコーティングすることにより液晶層とスイッチング素子の間に良好な 絶縁膜が形成されるので、印加される電圧の直流 成分はほとんどカットされてしまい交流成分だけ が液晶層に加えられる。このため素子の非対称性 に起因する動作不良はほぼ完全に防止できる。またスイッチング素子の表面をコーティングしておけば製造工程中で発生する静電気で素子を破壊する る危険性もほとんどなくなる。

以下、実施例により本発明を詳述する。 (実施例)

第1図は本発明のアクティブマトリックス型電気光学装置の断面図である。第1図において、1は上基板、2は列電極、3は下基板、4は行電極、6は液晶層、8は無機金属酸化膜である。第1図の電気光学装置は、無機金属酸化膜8がスイッチ

ング素子の された下基板全面にコーティング されている以外は第2図(b)と全く同じなので 平面図を省略する。

次に無限金属散化膜8の形成方法について順を 追って説明する。

- (1) SIO1、TIO1、2rO1の有機化合物を適当な割合で混合し、ヘキシレングリコール等の浴媒に溶かす。
- (2) スイッチング素子が形成された基板面に上 記の溶液を印刷により塗布する。
- (3)約100℃で印刷版を乾燥させる。
- (4)高圧水銀ランプでUV光を膜に照射する。
- (5) 約300℃で腰を焼成する。高温で焼成することによって印刷膜中の有機物はほとんど除去され、良好な絶縁性を持つ無機会属酸化膜8が形成される。

上記の形成方法において、SIO』、TIO』、 ZIO』の割合を変えることにより無機金属酸化 膜8の屈折率を変化させることができるので、下 番板3や画素電煙等の屈折率も考慮して電気光学

酸化膜を追加するだけでアクティブマトリックス 型電気光学装置の動作不良を軽減できるばかりで なく、工程中でのスイッチング素子の静電破壊も 防止することができる。

4. 図面の簡単な説明

第1図は本発明のアクティブマトリックス型電気光学装置の断面図、第2図は代表的なアクティブマトリックス型電気光学装置であるMSIパネルの図であり、(a)は断面図、(b)は菌素部の平面図、(c)は(b)のAーA・部の断面拡大図、第3図はスイッチング素子の電流電圧特性を示す図である。

- 1・・・上番板
- 2・・・列電極
- 3・・・下基板
- 4・・・行電極
- 5・・・ 函素電極
- 6・・・液晶層

装置全体の反射率あるいは透過中等が最適になる。場ように3つの成分の割合を決めることになる。場合によっては3つの内の2成分で最適な囲折率が得られることもある。また本実施例では、落板上に治液を煙布する方法として印刷を用いたが、次の方法を利用しても本発明には全く影響がない。以上のような方法で無数を打きでしない。以上のような方法で無数を打きまでもない。以上のような方法で無数を打成した下基板3を、この後上基板1と貼り合わせ更に液晶を封入することにより第1図の電気光学装置が完成する。

第1図のアクティブマトリックス型電気光学袋 置を動作させたところ、スイッチング素子の非対 称性に起因すると考えられるような動作不良は全 く観られず極めて良好な動作特性を示した。また ぞれまでの製造工程中でしばしば発生していたス イッチング素子の静電破壊も全くなくなり歩留ま りが飛躍的に向上した。

[発明の効果]

以上詳述したように、本発明によれば無機金属

7···SINx倍

8・・・無機金属酸化膜

以上

出願人 セイコー電子工業株式会社 代理人 弁理士 林 敬 之 助

(b) nA-A' 部 n 町 面 拡大 図 第 2 図 (c)

ストング素3の電流電圧特性 第 3 図

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
Потиев.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.