

Assuming that a model and the simulation are reliably accurate, computer simulation has the following advantages [14]:

- 1. System performance can be observed under all conceivable conditions.
- 2. Results of field-system performance can be extrapolated with a simulation model for prediction purposes.
- 3. Decisions concerning future systems presently in a conceptual stage can be examined.
- 4. Trials of systems under test can be accomplished in a much reduced period of time.
- 5. Simulation results can be obtained at lower cost than real experimentation.
- 6. Study of hypothetical situations can be achieved even when the hypothetical situation would be unrealizable in actual life at the present time.
- 7. Computer modeling and simulation is often the only feasible or safe technique to analyze and evaluate a system.

TABLE Summary of Through- and Across-Variables for Physical Systems

System	Variable Through Element	Integrated Through Variable	Variable Across Element	Integrated Across Variable
Electrical	Current, i	Charge, q	Voltage difference, v_{21}	Flux linkage, λ_2
Mechanical translational	Force, F	Translational momentum, P	Velocity difference, v_{21}	Displacement difference, y ₂₁
Mechanical rotational	Torque, T	Angular momentum, h	Angular velocity difference, ω_{21}	Angular displacement difference, θ_{21}
Fluid	Fluid volumetric rate of flow, Q	Volume, V	Pressure difference, P ₂₁	Pressure momentum, γ ₂₁
Thermal	Heat flow rate, q	Heat energy, H	Temperature difference, T ₂₁	

TABLE 2.4 Summary of Describing Differential Equations for Ideal Elements

Type of Element	Physical Element	Describing Equation	Energy $m{E}$ or Power ${\cal P}$	Symbol
	Electrical inductance	$v_{21} = L \frac{di}{dt}$	$E=\frac{1}{2}Li^2$	v_2 v_1 v_1
Inductive storage	Translational spring	$v_{21} = \frac{1}{K} \frac{dF}{dt}$	$E = \frac{1}{2} \frac{F^2}{K}$	$v_2 \circ f$
	Rotational spring	$\omega_{21} = \frac{1}{K} \frac{dT}{dt}$	$E = \frac{1}{2} \frac{T^2}{K}$	$\omega_2 \circ \overbrace{\hspace{1cm}}^{K} \circ \downarrow \gamma$
	Fluid inertia	$P_{21} = I \frac{dQ}{dt}$	$E = \frac{1}{2} IQ^2$	$P_2 \circ \bigcap_{P} Q \circ P$
	Electrical capacitance	$i = C \frac{dv_{21}}{dt}$	$E=\frac{1}{2}Cv_{21}^2$	$v_2 \circ \downarrow \downarrow C \circ v_1$
	Translational mass	$F = M \frac{dv_2}{dt}$	$E=\frac{1}{2}Mv_2^2$	$F \xrightarrow{v_2} M \qquad v_1 = constan$
Capacitive storage	Rotational mass	$T = J \frac{d\omega_2}{dt}$	$E=\frac{1}{2}J\omega_2^2$	$T \longrightarrow \omega_1 $ $\omega_1 = 0$ constant
	Fluid capacitance	$Q = C_f \frac{dP_{21}}{dt}$	$E=\frac{1}{2}C_fP_{21}^2$	$Q \xrightarrow{P_2} C_f \circ P$
	Thermal capacitance	$q = C_t \frac{d\tau_2}{dt}$	$E = C_i \tau_2$	$q \xrightarrow{\mathcal{T}_2} C_t \xrightarrow{\mathcal{T}_1} = $ $constan$
	Electrical resistance	$i=\frac{1}{R}v_{21}$	$\mathcal{P} = \frac{1}{R} v_{21}^2$	v_2 v_2 v_2
	Translational damper	$F=fv_{21}$	$\mathcal{P}=fv_{21}^2$	$F \longrightarrow 0$ $f \circ v$
Energy dissipators	Rotational damper	$T = f\omega_{21}$	$\mathcal{P}=f\omega_{21}^2$	$T \longrightarrow \omega_2 \longrightarrow \int_f \omega_2 \omega_1$
	Fluid resistance	$Q = \frac{1}{R_f} P_{21}$	$\mathcal{P} = \frac{1}{R_f} P_{21}^2$	$P_2 \circ \longrightarrow P$
	Thermal resistance	$q=\frac{1}{R_t}\mathrm{T}_{21}$	$\mathcal{P} = \frac{1}{R_t} T_{21}$	\mathcal{I}_{2} 0-\ldots

Element or System

G(s)

1. Integrating circuit, filter

$$\frac{V_2(s)}{V_1(s)} = \frac{1}{RCs + 1}$$

2. Differentiating circuit

$$\frac{V_2(s)}{V_1(s)} = \frac{RCs}{RCs + 1}$$

3. Differentiating circuit

$$\frac{V_2(s)}{V_1(s)} = \frac{s + 1/R_1 C}{s + (R_1 + R_2)/R_1 R_2 C}$$

4. Lead-lag filter circuit

$$\frac{V_2(s)}{V_1(s)} = \frac{(1 + s\tau_a)(1 + s\tau_b)}{\tau_a \tau_b s^2 + (\tau_a + \tau_b + \tau_{ab})s + 1}$$
$$= \frac{(1 + s\tau_a)(1 + s\tau_b)}{(1 + s\tau_1)(1 + s\tau_2)}$$

5. dc motor, field-controlled, rotational actuator

$$\frac{\theta(s)}{V_f(s)} = \frac{K_m}{s(Js+f)(L_fs+R_f)}$$

6. dc motor, armature-controlled, rotational actuator

$$\frac{\theta(s)}{V_a(s)} = \frac{K_m}{s[(R_a + L_a s)(Js + f) + K_b K_m]}$$

TABLE 2.7 Continued

Element or System

G(s)

7. ac motor, two-phase control field, rotational actuator

 $\frac{\theta(s)}{V_c(s)} = \frac{K_m}{s(\tau s + 1)}$ $\tau = J/(f - m)$ m = slope of linearized torque-speed curve (normally negative)

8. Amplidyne, voltage and power amplifier

 $\frac{V_o(s)}{V_c(s)} = \frac{(K/R_c R_q)}{(s\tau_c + 1)(s\tau_q + 1)}$ $\tau_c = L_c/R_c, \quad \tau_q = L_q/R_q$ For the unloaded case, $i_d \approx 0$, $\tau_c \approx \tau_q$, $0.05 \text{ s} < \tau_c < 0.5 \text{ s}$ $V_{12} = V_q, V_{34} = V_d$

9. Hydraulic actuator

 $\frac{Y(s)}{X(s)} = \frac{K}{s(Ms + B)}$ $K = \frac{Ak_x}{k_p}, \quad B = \left(f + \frac{A^2}{k_p}\right)$ $k_x = \frac{\partial g}{\partial x}\Big|_{x_0}, \quad k_p = \frac{\partial g}{\partial P}\Big|_{P_0},$ g = g(x, P) = flow A = area of piston

10. Gear train, rotational transformer

Gear ratio = $n = \frac{N_1}{N_2}$ $N_2 \theta_L = N_1 \theta_m, \quad \theta_L = n \theta_m$ $\omega_L = n \omega_m$

Element or System

G(s)

11. Potentiometer, voltage control

$$\frac{V_2(s)}{V_1(s)} = \frac{R_2}{R} = \frac{R_2}{R_1 + R_2}$$
$$\frac{R_2}{R} = \frac{\theta}{\theta_{\text{max}}}$$

12. Potentiometer error detector bridge

$$V_2(s) = k_s(\theta_1(s) - \theta_2(s))$$
$$V_2(s) = k_s\theta_{\text{error}}(s)$$

$$k_s = \frac{V_{\text{battery}}}{\theta_{\text{max}}}$$

13. Tachometer, velocity sensor

$$V_2(s) = K_t \omega(s) = K_t s \theta(s);$$

$$K_t = constant$$

14. dc amplifier

$$\frac{V_2(s)}{V_1(s)} = \frac{k_a}{s\tau + 1}$$

 $R_{\rm o}$ = output resistance

 $C_{\rm o}$ = output capacitance

$$\tau = R_{\rm o} C_{\rm o}, \, \tau \ll 1$$

and is often negligible for servomechanism amplifier

15. Accelerometer, acceleration sensor

$$x_{o}(t) = y(t) - x_{in}(t),$$

$$\frac{X_{o}(s)}{X_{in}(s)} = \frac{-s^{2}}{s^{2} + (f/M)s + K/M}$$

For low-frequency oscillations, where $\omega < \omega_n$,

$$\frac{X_{\rm o}(j\omega)}{X_{\rm in}(j\omega)} \simeq \frac{\omega^2}{K/M}$$

TABLE 2.7 Continued

Element or System

G(s)

16. Thermal heating system

$$\frac{T(s)}{q(s)} = \frac{1}{C_t s + (QS + 1/R)}, \text{ where}$$

 $au = au_{
m o} - au_e = ext{temperature difference}$ due to thermal process

 C_t = thermal capacitance

Q =fluid flow rate = constant

S = specific heat of water

 R_t = thermal resistance of insulation

q(s) = rate of heat flow of heating element

17. Rack and pinion

 $x = r\theta$ converts radial motion to linear motion

A pancake dc motor with a flat wound armature and a permanent magnet rotor. These motors are capable of providing high torque with a low rotor inertia. A typical mechanical time constant is in the range of 15 ms. (Courtesy of Mavilor Motors.)