MESI Protocol

Multi-processor System

A memory system is coherent if

- If P1 writes to address X, and later on P2 reads X, and there are no other writes to X in between
 - ⇒ P2's read returns the value written by P1's write
- 2. Writes to the same location are serialized: two writes to location X are seen in the same order by all processors

MESI Protocol

- Each cache line can be in one of 4 states
 - Invalid Line's data is not valid
 - Shared Line is valid and not dirty, copies may exist in other processors
 - Exclusive Line is valid and not dirty,
 other processors do not have the line in their local caches
 - Modified Line is valid and dirty,
 other processors do not have the line in their local caches

Multi-processor System: Example

- P1 reads 1000
- P1 writes 1000

Multi-processor System: Example

- P1 reads 1000
- P1 writes 1000
- P2 reads 1000
- L2 snoops 1000
- P1 writes back 1000
- P2 gets 1000

Multi-processor System: Example

- P1 reads 1000
- P1 writes 1000
- P2 reads 1000
- L2 snoops 1000
- P1 writes back 1000
- P2 gets 1000
- P2 requests for ownership with write intent

Core Valid Bits and Inclusion

L2 keeps track of the presence of each line in each of the Core's L1 caches

- Determine if it needs to send a snoop to a processor
- Determine in what state to provide a requested line (S,E)
- Maintain Core Valid Bits (CVB) per cache line
- ⇒ Need to guarantee that the L1 caches in each Core are inclusive of the L2 cache

When L2 evicts a line

- L2 sends a snoop invalidate to all processors that have it
- If the line is modified in the L1 cache of one of the processors (in which case it exist only in that processor)
 - The processor responds by sending the updated value to L2
 - When the line is evicted from L2, the updated value gets written to memory

MESI Protocol States

State	Valid	Modified	Copies may exist in other processors
Invalid	No	N.A.	N.A
Shared	Yes	No	Yes
Exclusive	Yes	No	No
Modified	Yes	Yes	No

A modified line must be exclusive

- Otherwise, another processor which has the line will be using stale data
- Therefore, before modifying a line, a processor must request ownership of the line

MESI Protocol Example

- A four-processor shared-memory system implements MESI protocol
- For the following sequence of memory references, show the state of the line containing the variable X in each processor's cache after each reference is resolved
- Each processors start out with the line containing X invalid in their cache

	P0's state	P1's state	P2's state	P3's state
Initial State	I	I	I	I
P0 reads X	E	I	I	I
P1 reads X	5	5	I	I
P2 reads X	5	5	5	I
P3 writes X	I	I	I	М
P0 reads X	S	I	I	S

CVBs
0000
1000
1100
1110
0001
1001