HAI ĐỒ THỊ HÀM SỐ ĐỐI XỨNG VỚI NHAU 1 ĐIỂM, 1 ĐƯỜNG THẮNG

Bài toán 1:

Xét đường cong (C_0) : y = f(x) và điểm I(a;b).

Tìm đường cong (C) đối xứng với (C_0) qua I.

Phương pháp giải.

Xét điểm $M(x_0; y_0) \in (C_0), N(x; y) \in (C)$ đối xứng với nhau qua điểm I(a; b), ta có

$$\begin{cases} x_0 = 2a - x \\ y_0 = 2b - y \end{cases}$$

Thay x_0 , y_0 vào phương trình của (C_0) , ta được:

$$2b-y=f(2a-x) \Leftrightarrow y=2b-f(2a-x) \Rightarrow (C): y=2b-f(2a-x).$$

Bài toán 2:

Xét đường cong (C_0) : y = f(x) và đường thẳng Δ : y = ax + b.

Tìm đường cong (C) đối xứng với (C_0) qua Δ .

Phương pháp giải.

Xét điểm $M(x_0; y_0) \in (C_0), N(x; y) \in (C)$, ta có hệ phương trình đối xứng

$$\begin{cases} a \left(\frac{x + x_0}{2} \right) - \frac{y + y_0}{2} + b = 0 \\ \frac{x - x_0}{a} = \frac{y - y_0}{-1} \end{cases} \Leftrightarrow \begin{cases} x_0 = x - \frac{2a(ax - y + b)}{a^2 + 1} \\ y_0 = y + \frac{2(ax - y + b)}{a^2 + 1} \end{cases}.$$

Thay x_0, y_0 tìm được vào phương trình của (C_0) ta sẽ suy ra (C) cần tìm.

Kiến thức đã biết:

- Hàm số $y = ax^4 + bx^2 + c$ có đồ thị nhận trục tung làm trục đối xứng.
- Đồ thị của hai hàm số $y = a^x$, $y = \log_a x$ (0 < $a \ne 1$) đối xứng với nhau qua đường thẳng y = x.

Câu 1. Hỏi đồ thị của hàm số nào dưới đây đối xứng với đồ thị của hàm số $y = \frac{3x+2}{x-2}$ qua trục hoành?

A.
$$y = -\frac{3x+2}{x-2}$$
. B. $y = \frac{-3x+2}{x-2}$. C. $y = \frac{3x+2}{x+2}$. D. $y = -\frac{3x+2}{x+2}$.

B.
$$y = \frac{-3x+2}{x-2}$$

C.
$$y = \frac{3x+2}{x+2}$$

D.
$$y = -\frac{3x+2}{x+2}$$
.

Câu 2. Hỏi đồ thị của hàm số nào dưới đây đối xứng với đồ thị hàm số $y = \frac{x}{x-1}$ qua trục tung?

A.
$$y = \frac{x}{x+1}$$
.

B.
$$y = -\frac{x}{x+1}$$
. D. $y = -\frac{x}{x-1}$. D. $y = \frac{x}{x-1}$.

D.
$$y = -\frac{x}{x-1}$$
.

D.
$$y = \frac{x}{x-1}$$

Câu 3. Nếu gọi (G_1) là đồ thị hàm số $y = a^x$ và (G_2) là đồ thị hàm số $y = \log_a x$ với $0 < a \ne 1$. Mệnh đề nào dưới đây đúng?

- **A.** (G_1) và (G_2) đối xứng với nhau qua trục hoành.
- **B.** (G_1) và (G_2) đối xứng với nhau qua trục tung.
- C. (G_1) và (G_2) đối xứng với nhau qua đường thẳng y = x.
- **D.** (G_1) và (G_2) đối xứng với nhau qua đường thẳng y = -x.

Câu 4. Hỏi đồ thị của hàm số nào dưới đây đối xứng với đồ thị của hàm số $y = -\log_a x \ (0 < a \ne 1)$ qua đường thẳng y = x?

A.
$$y = a^x$$
.

B.
$$y = a^{-x}$$
.

C.
$$y = -a^x$$
.

D.
$$y = a^{\frac{1}{x}}$$
.

Câu 5. Hỏi đồ thị của hàm số nào dưới đây đối xứng với đồ thị hàm số $y = \log_a(x+1)$ ($0 < a \ne 1$) qua đường thẳng y = x?

A.
$$y = a^{x+1}$$
.

B.
$$y = a^x + 1$$
.

C.
$$y = a^x - 1$$
.

D.
$$y = a^{-x-1}$$
.

Câu 6. Hỏi đồ thị của hàm số nào dưới đây đối xứng với đồ thị của hàm số $y = a^{\frac{1}{x}} (0 < a \ne 1)$ qua đường thẳng y = x?

A.
$$y = \log_a \left(\frac{1}{x}\right)$$
.

A.
$$y = \log_a \left(\frac{1}{x} \right)$$
. B. $y = \log_{\frac{1}{a}} \left(\frac{1}{x} \right)$. C. $y = -\frac{1}{\log_a x}$. D. $y = \frac{1}{\log_a x}$.

C.
$$y = -\frac{1}{\log_a x}$$
.

D.
$$y = \frac{1}{\log_a x}$$

Câu 7. Hỏi đồ thị của hàm số nào dưới đây đối xứng với đồ thị của hàm số $y = \log_a x \ (0 < a \ne 1)$ qua đường thẳng y = x + 1?

A.
$$y = -a^{x+1} - 1$$
.

B.
$$y = a^{x+1} - 1$$
.

C.
$$y = a^{x+1} + 1$$
.

C.
$$y = a^{x+1} + 1$$
. D. $y = -a^{x+1} + 1$.

Câu 8. Cho đồ thị (C): $y = \frac{(x-1)^2}{x-2}$. Tìm hàm số f(x) có đồ thị đối xứng với (C) qua điểm I(1;1).

A.
$$f(x) = -\frac{x^2 + 1}{x}$$
. B. $f(x) = \frac{x^2}{x - 1}$. D. $f(x) = -\frac{x^2}{x - 1}$. D. $f(x) = \frac{x^2 + 1}{x}$.

B.
$$f(x) = \frac{x^2}{x-1}$$
.

D.
$$f(x) = -\frac{x^2}{x-1}$$
.

D.
$$f(x) = \frac{x^2 + 1}{x}$$

Câu 9. Tìm tập hợp tất cả các giá trị thực của tham số m để đồ thị hàm số $y = x^3 + mx^2 + 7x + 3$ có hai điểm phân biệt đối xứng nhau qua gốc toạ độ.

A.
$$(-\infty;0)$$
.

D.
$$(-\infty; -3)$$
.

Câu 10. Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số $y = x^3 - 3x^2 + m$ có hai điểm phân biệt đối xứng với nhau qua gốc tọa độ.

A.
$$0 < m < 1$$
.

B.
$$m > 0$$
.

C.
$$m \le 0$$
.

D.
$$m > 1$$
.

ĐÁP ÁP

1A	2A	3C	4B	5C	6D	7C	8D	9A	10B

LÒI GIẢI CHI TIẾT

Câu 1. Ta có
$$Ox: y = 0 \Rightarrow \begin{cases} x_0 = x \\ y_0 = -y \end{cases} \Rightarrow -y = \frac{3x+2}{x-2} \Leftrightarrow y = -\frac{3x+2}{x-2} \text{ (A)}.$$

Câu 4. Xét điểm $M(x_0; y_0) \in (C_0)$: $y = -\log_a x, N(x; y) \in (C)$ đối xứng với nhau qua đường thẳng y = x.

Ta có
$$\begin{cases} \frac{x+x_0}{2} - \frac{y+y_0}{2} = 0\\ \frac{x-x_0}{1} = \frac{y-y_0}{-1} \end{cases} \Leftrightarrow \begin{cases} x = y_0\\ y = x_0 \end{cases}.$$

Thay x_0, y_0 vào phương trình của (C), ta được $x = -\log_a y \Leftrightarrow y = a^{-x}$.

Chọn đáp án B.

Câu 5. Xét điểm $M(x_0; y_0) \in (C_0)$: $y = \log_a(x+1), N(x; y) \in (C')$ cần tìm, sao cho M, N đối xứng với nhau qua đường thẳng y = x.

Ta có hê điều kiên:

$$\begin{cases} \frac{x+x_0}{2} - \frac{y+y_0}{2} = 0 \\ \frac{x-x_0}{1} = \frac{y-y_0}{-1} \end{cases} \Leftrightarrow \begin{cases} x = y_0 \\ y = x_0 \end{cases}$$

thay $x_{_{0}},y_{_{0}}$ vào phương trình của $(C_{_{0}})$, ta được:

$$x = \log_a(y+1) \Leftrightarrow y+1 = a^x \Leftrightarrow y = a^x - 1.$$

Chọn đáp án C.

Câu 6. Xét điểm $M(x_0; y_0) \in (C_0)$: $y = a^{\frac{1}{x}}, N(x; y) \in (C)$ và M, N đối xứng với nhau qua đường thẳng y = x.

Ta có hệ điều kiện:
$$\begin{cases} \frac{x+x_0}{2} - \frac{y+y_0}{2} = 0 \\ \frac{x-x_0}{1} = \frac{y-y_0}{-1} \end{cases} \Leftrightarrow \begin{cases} x = y_0 \\ y = x_0 \end{cases} \Rightarrow$$

thay x_0, y_0 vào phương trình của (C_0) , ta được: $x = a^{\frac{1}{y}} \Leftrightarrow \frac{1}{y} = \log_a x \Leftrightarrow y = \frac{1}{\log_a x}$.

Chọn đáp án D.

Câu 7. Xét điểm $M(x_0; y_0) \in (C_0)$: $y = \log_a x, N(x; y) \in (C)$ đối xứng với nhau qua đường thẳng y = x + 1.

Ta có
$$\begin{cases} \frac{x + x_0}{2} - \frac{y + y_0}{2} + 1 = 0 \\ \frac{x - x_0}{1} = \frac{y - y_0}{-1} \end{cases} \Leftrightarrow \begin{cases} x_0 = y - 1 \\ y_0 = x + 1 \end{cases}$$

Thay x_0, y_0 vào phương trình của (C_0) , ta được $x+1=\log_a(y-1) \Leftrightarrow y=1+a^{x+1}$. Chọn đáp án C.

Câu 8. Xét điểm $M(x_0; y_0) \in (C), N(x; y) \in (C')$ cần tìm, ta có $\begin{cases} x_0 = 2 - x \\ y_0 = 2 - y \end{cases}$

Thay vào phương trình của (C), ta được $2-y = \frac{\left[(2-x)-1\right]^2}{(2-x)-2} \Leftrightarrow y = \frac{x^2+1}{x}$.

Chọn đáp án D.

Câu 9. Xét hai điểm $A(x_0; y_0), B(-x_0; -y_0) \in (C), (x_0 \neq 0)$ ta có

$$\begin{cases} y_0 = x_0^3 + mx_0^2 + 7x_0 + 3 \\ -y_0 = -x_0^3 + mx_0^2 - 7x_0 + 3 \end{cases} \Leftrightarrow 2mx_0^2 + 6 = 0 \Rightarrow m < 0.$$

Chọn đáp án A.

Câu 10. Ta có
$$\begin{cases} y_0 = x_0^3 - 3x_0^2 + m \\ -y_0 = -x_0^3 - 3x_0^2 + m \end{cases} \Rightarrow 2m - 6x_0^2 = 0 \Rightarrow m > 0.$$

Chọn đáp án B.