2. Preprocessing

KUBIG 학술부

Contents

- 1. Descriptive Statistics
- 2. Data Cleansing
- 3. Data Reduction
- 4. Data Transformation

1. Descriptive Statistics

(1) 중심 경향 측정 : Mean, Median, Mode

1. Descriptive Statistics

(2) 산포(Variation) 측정 : Range, Quartile, IQR

1. Descriptive Statistics

(3) Box Plot – Skewedness, and Symmetric

Contents

- 1. Descriptive Statistics
- 2. Data Cleansing
- 3. Data Reduction
- 4. Data Transformation

(1) Missing Imputation

- 행제거/열제거
- Global value로 결측치 대체

	Missingvalues									
PassengerId	Survived	Pclass	Sex	Age	SibSp	Parch	ricket	Fare	Cabin	Embarked
1	0	3	male	22	1	0	A/5 21171	7.15		s
2	1	1	female	38	1	9	PC 17599	71.2133	C85	С
3	1	3	female	26	0	0	STON/O2. 3101282	7.925	-	s
4	1	1	female	35	1	0	113803	53.1	C123	s
5	0	3	male	35	0	0	373450	8.05	-	s
6	0	3	male	-	0	0	330877	8.4583		Q

(1) Missing Imputation

- 결측치 obs와 동일한 범주에 속하는 obs의 평균/중위수 활용
- 가장 가능성이 높은 값으로 결측치 채우기.

Regression, Bayesian, Decision Tree, KNN, or other models

(2) Outlier

 Outlier – data objects with characteristics that are considerably different than most of the other data objects in the data set

Different from Noise

(2) Outlier Detection

- Internally/Externally studentized residual
- Leverage
- Cook's Distance
- 1.5*IQR ...
- Anomaly/Novelty Detection

- 삭제
- 상, 하한선 제한
- 케이스 분리 분석

(3) Noise

Noise refers to modification of original values

(3) Noise

Noise refers to modification of original values

- Binning : 근접한 다른 값을 참고하여 정렬한 데이터 값을 평활화
- Regression

가격으로 정렬 (달러 기준): 4, 8, 15, 21, 21, 24, 25, 28, 34

동일빈도 빈으로 분할:

Bin 1: 4, 8, 15 Bin 2: 21, 21, 24 Bin 3: 25, 28, 34

빈 평균으로 평활화 :

Bin 1: 9,9,9 Bin 2: 22, 22, 22 Bin 3: 29, 29, 29

빈 경계로 평활화 :

Bin 1: 4, 4, 15 Bin 2: 21, 21, 24 Bin 3: 25, 25, 34

Contents

- 1. Descriptive Statistics
- 2. Data Cleansing
- 3. Data Reduction
- 4. Data Transformation

(1) Dimension Reduction

 Curse of Dimensionality: dimensionality increases, data becomes sparse in data space

- 1. Density와 Distance의 정의에 따라, clustering과 outlier detection에 크게 영향을 준다.
- 2. Complexity -> infeasible algorithms

Difference btw max and min distance btw any pair of points

- (1) Dimension Reduction PCA (Principal Component Analysis)
 - PCA find projection that captures the largest amount of variation in data

(1) Dimension Reduction – PCA (Principal Component Analysis)

Find eigenvectors of the covariance matrix

$$Z = XU$$
 U: eigenvector matrix Z: Principal Components

 Transform the original data based on the eigenvector (new space)

(1) Dimension Reduction – PCA (Principal Component Analysis)

(2) PCA – Choosing number of Principal Components

Scree plot

Y축 : eigenvalue(Variance of PC's)

X축: Principal Components

- Explains 90% of total variance
- 단점 : 각 Principal Components의 해석이 어렵다.

Contents

- 1. Descriptive Statistics
- 2. Data Cleansing
- 3. Data Reduction
- 4. Data Transformation

4. Data Transformation

(1) Need of data transformation

4. Data Transformation

(2) Scaling methods

Min-Max Normalization

$$x_{new} = \frac{x - x_{min}}{x_{max} - x_{min}}$$

원 데이터 값 간의 관계를 유지하면서 해당 attribute를 0~1 사이의 값으로 나타낸다.

Range : [0, 1]

Standardization

$$x_{new} = \frac{x - \mu}{\sigma}$$

값의 scale이 다른 두 변수가 J는 max(|a 있을 때, 이 변수들의 scale 최소 정수. 차이를 제거해 주는 효과가 있다.

N(0,1)

Decimal scaling

$$x_{new} = \frac{x_i}{10^j}$$

J는 $\max(|x_{new}|) < 1$ 를 만족하는 최소 정수.

Range: [-1, 1]

END

