# Wavedeform Unfolding



- y the waveform.
- **A** the matrix of basis functions created with SPE templates shifted in time.
- **x** the result of unfolding.

## Non-negative Least Squares problem

Given matrix A size of MxN and vector y size of N, vector x size of M is the solution to

$$\min_{x} || Ax-y ||_{2}^{2} >= 0$$

The complementary problem can be created\*:

$$w = A^{T}y-A^{T}Ax$$
:  $w <= 0$ ,  $x >= 0$ ,  $x^{T}w=0**$ 

$$x^{T}w = x^{T}(A^{T}y-A^{T}Ax) = x^{T}A^{T}y-x^{T}A^{T}Ax = y^{T}y-y^{T}y = 0$$

<sup>\*</sup> A FAST NON-NEGATIVITY-CONSTRAINED LEAST SQUARES ALGORITHM, RASMUS BRO AND SIJMEN DE JONG, JOURNAL OF CHEMOMETRICS, VOL. 11, 393–401 (1997)

<sup>\*\*</sup> J. van Santen, N.Whitehorn. IceCube internal note on Photosplines icecube 201011001 v2.

## getPulses:

<u>constants:</u> **SPES\_PER\_BIN** = 5 - number of basis functions to unfold per bin, **PERIOD\_NS** = 5.0 ns - sampling period (waveform bin)





template:  $c*((exp(-(x-x0)/b1)+exp((x-x0)/b2))^p)$ c, x0, b1, b2, width, min - template parameters

function **spePulseShape** which returns template value at given time **t**.

## Prepare the A (basis) matrix (bins x number of spes)

i index - bin number - number of bins in waveform (nbins)

j index - spe number

data - template value at the time



#### Create 1D arrays:

| Name (array name)           | size (bins)                                                             | values (of each bin)                                                                                                      |
|-----------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| bin edges ( <b>redges</b> ) | nbins (number of bins)                                                  | spacing: <b>PERIOD_NS</b> * edge number (0,5,10) ns                                                                       |
| data (y)                    | nbins                                                                   | waveform data * weight                                                                                                    |
| pulse start times           | SPE_PER_BIN * nbins (number of spes)                                    | spacing: evenly distributed along the waveform length (-5,-4,-3,0,1,2,) ns                                                |
| pulse template              | size of template (55 ns) / (PERIOD_NS / SPE_PER_BIN / 2 - 0.5 ns) = 110 | pulse template values at each time from <b>min</b> to last <b>pulse template</b> bin. (values at -5, -4.5, -4,, 0, 1,) ns |

## Prepare the A (basis) matrix (bins x number of spes)

- Estimate max number of matrix elements (3 cycles). Needed to initialize cholmod matrix.
- Initialize the matrix A
- Fill it with basis:
- Cycle through all the <u>bin</u>s:
  - o if weight if the <u>bin</u> = 0 continue; position
  - find first SPE affecting the <u>bin</u> (its start time is no more than one template width in the past)
  - find the last SPE affecting the <u>bin</u> (its start time is no more than one template min in the future)
  - o for each SPE between the first and the last:
    - find which exact bin of pulse template contributes to this <u>bin</u> from that SPE. (find time difference between the <u>bin</u> and SPE and take value of corresponding bin from pulse template)
    - i index bin number
    - j index that SPE number
    - data the found pulse template value at the time

matrix A is ready and can be given to NNLS along with **data** to find the x (y=Ax)



#### NNLS $w = A^{T}y-A^{T}Ax$ , w <= 0, x >= 0, $x^{T}w = 0$

input: A, y, tolerance, min\_iter, max\_iter, npos, norm
output: x

max size = nbins\*SPE\_PER\_BIN

- **P** passive set =  $\{0\}$  elements of **x** with those indexes will be > 0
- **Z** active set =  $\{0,1,..., \text{ number of columns}\}\$  elements of  $\mathbf{x}$  with those indexes = 0 (initially  $\mathbf{x} = \{0\}$ )

#### It can be shown that for optimal solution x, $w\{Z\} < 0$ , $w\{P\} = 0$

Main loop: (optimization of w. finds least negative element of w and moves it into passive set P, it goes on until we are done or max\_iter is reached)

#### calculate:

- $\rightarrow$  w = A'Ax--A'y; (cholmod own procedure)
- → wmax = max{w{Z}}; (one cycle (comparison))
- → wmin = max{w{P}}; (one cycle)

#### see if:

- → Z is empty;
- → wmax <= 0;</p>
- → wmax < tolerance and -wmin < tolerance

if true done

### NNLS $w = A^{T}y-A^{T}Ax$ , $w \le 0$ , $x \ge 0$ , $x^{T}w = 0$

Main loop: (continued) if wmax > 0

move index of wmax into passive set P.

Second loop: ( •every cycle goes through whole passive set P)

- create a submatrix Ap of A (yp of y), what contains only columns with passive set indexes;
- Solve LS problem p = Ap/yp by QR decomposition (SuiteSparseQR);
  - if p completely positive, set x = p; Main loop;
  - if there are negative elements of p for each of them find q = x/(x-p);
  - find alpha= min{q};
    - for passive set P indexes find new x = x + alpha\*(p-x);
  - if there are any elements of x < 0 set them to zero and move their indexes to active set Z;
  - if alpha =0 (equilibrium) done;

return x;

♦ SuiteSparseQR\_C\_backslash\_default :

A = QR, where Q is orthogonal and R is upper triangular.

Ax=y, A=QR; A<sup>T</sup>Ax=A<sup>T</sup>y; R<sup>T</sup>Q<sup>T</sup>QRx=R<sup>T</sup>Q<sup>T</sup>y; R<sup>T</sup>Rx=R<sup>T</sup>Q<sup>T</sup>y; (Q<sup>T</sup>Q=I) Rx=Q<sup>T</sup>y