5-ая неделя

2.10.2023

Билет 15 (Теорема о дифференцируемости обратного отображения). Пусть $E \subseteq \mathbb{R}^n$, $a \in IntE$, $\Phi : E \to \mathbb{R}^n$, $\Phi(a) = b \in Int\Phi(E)$, Φ дифференцируема в a, $\Phi'(a)$ обратима $(\det \Phi'(a) \neq 0)$. Тогда Φ^{-1} дифференцируема в b и $(\Phi^{-1})'(b) = (\Phi'(a))^{-1}$

Билет 16 (Теорема о гладкости обратного отображения (достаточное условие диффеоморфности)). O, \tilde{O} открытые, $\Phi: O \to \tilde{O}$ - диффеоморфизм на $C^r \stackrel{def}{\Longrightarrow} \Phi$ обратима $u \Phi \in C^r(O \to \tilde{O}), \Phi^{-1} \in C^r(\tilde{O} \to O).$ Если O - открытое, $O \subseteq \mathbb{R}^n, \Phi \in C^r(O \to \mathbb{R}^n), \Phi$ обратимо (как отображение на свой образ) $u \det \Phi'(x) \neq 0$

Тогда $\Phi^{-1} \in C^r(\Phi(O) \to O)$ ($\forall x \in O(\Phi^{-1})(\Phi(x)) = (\Phi'(x))^{-1}$)

Билет 17 (Теорема о локальной обратимости регулярного отображения). $\Phi: \mathbb{R}^n \supseteq O \to \mathbb{R}^n$, O открытое; Φ регулярное $\stackrel{def}{\Longrightarrow} \Phi \in C^1(O \to \mathbb{R}^n)$, $rank\Phi'(x)$ максимальной в каждой точке O. Пусть $\mathbb{R}^n \supseteq O$ открытое, $\Phi \in C^r(O \to \mathbb{R}^n)$, Φ регулярно в O. Тогда $\forall a \in O$ \exists окрестность $U_a: \Phi|_{U_a}$ - диффеоморфизм класса C^r , в частности обратимо.

Билет 18 (Теорема о неявном отображении). *Пусть* $m, n, r \in \mathbb{N}$, $\mathbb{R}^{n+m} \supseteq O$ открытое, $x \in \mathbb{R}^n$, $y \in \mathbb{R}^m$, $x^0 \in \mathbb{R}^n$, $y^0 \in \mathbb{R}^m$, $F \in C^r(O \to \mathbb{R}^m)$ и F' обратима.

Тогда $\exists oкpecmнocmu\ U_{x^0}, U_{y^0}\ u\ f: U_{x^0} \to U_{y^0}\ makue,\ что:$

- 1. $F(x,y) = 0 \Leftrightarrow y = f(x) \in U_{x^0} \times U_{y^0}$
- 2. $f \in C^r(U_{x^0} \to U_{y^0})$
- 3. $f'(x) = -(F'_y(x, f(x)))^{-1} \cdot F'_x(x, f(x))$

Билет 27 ((с леммой) (версия по лекции)). $\sum_{k=1}^{\infty} f_k(x)$ равномерно сходится на $E, \varphi(x)$ ограничен на $E \Rightarrow \sum_{k=1}^{\infty} \varphi(x) f_k(x)$ равномерно сходится на E

Билет 28 (Примеры исследования рядов на равномерную сходимость).

Теорема (Признак Лейбница равномерной сходимости). Skipped

Теорема (Признак равномерной сходимости для монотонных последовательностей). Skipped

Билет 29 (Перестановка пределов для последовательностей). Пусть $E \in \mathbb{R}^n$, $x_0 \in E$, $f_n : E \to \mathbb{C}$, $f_n(x)$ равномерно сходится на E, $\forall k \in N \ \exists \lim_{x \to x_0} f_k(x) \in \mathbb{R}$.

Тогда $\lim_{x\to x_0}\lim_{k\to\infty} f_k(x) = \lim_{k\to\infty}\lim_{x\to x_0} f_k(x)$, оба предела существуют в \mathbb{R} .

Следствие 1. Skipped