COMP9334 Revision Questions for Week 4B

Question 1

The Python function $sim_mm1_func()$ (in the file $sim_mm1_lib.py$) simulates an M/M/1 queue with arrival rate λ and service rate μ over a time period of T. It returns the average response time for the given λ , μ and T.

We would like to investigate the effect of the length of simulation T on the simulation. Let us fix $\lambda = 0.7$ and $\mu = 1$. For each of the following values of T: 1000, 5000, 10000 and 50000, perform the simulation 20 times (with a different set of random numbers) and record the value of the average mean response time.

Answer the following:

- 1. What is the mean response time according to the M/M/1 result?
- 2. For each value of T used, compute the mean and standard deviation over 20 experiments.
- 3. How does the graded deviation Pary Willert Exam Help

Note the Python file $sim_mm1_lib.py$ contains the Python function $sim_mm1_func()$. If you call the function $sim_mm1_func(0)/7/11/000$, it will simulate an M/M/1 queue with $\lambda=0.7$, $\mu=1$ and T=1000. The casest is to import the file and then call the function.

Question 2

Write a simulation program (in whatever language yet prefer) to simulate an M/M/2 queue. You should be able to control the arrival rate λ , service rate μ and the length of simulation T.

Use your M/M/2 and M/M/1 simulation program to compare:

- 1. The mean response time of an M/M/1 queue with $\lambda = 0.9$ and $\mu = 1$.
- 2. The mean response time of an M/M/2 queue with $\lambda=0.9$ and for each server, $\mu=0.5$

Simulate each of the above configurations 10 times and record the mean response time in the simulation. You may use a simulation time of T = 1000.

You have learnt in Week 3 that the the first system should have a smaller mean response time. Did your simulation results also suggest a smaller mean response time for the first system?