Analisis y Diseño de Algoritmos

Juan Gutiérrez

August 19, 2022

```
INSERTION-SORT (A)

1 for j = 2 to A.length

2 key = A[j]

3 // Insert A[j] into the sorted sequence A[1..j-1].

4 i = j-1

5 while i > 0 and A[i] > key

6 A[i+1] = A[i]

7 i = i-1

8 A[i+1] = key
```

Figure 1: Tomada del libro Cormen, Introduction to Algorithms

Figure 2: Tomada del libro Cormen, Introduction to Algorithms

Invariante: Al inicio de cada iteracion del for de las lineas 1–8, el subarreglo A[1..j-1] consiste en los elementos de A[1..j-1] pero ordenados de manera no descendente.

INSERTION-SORT (A)		cost	times
1	for $j = 2$ to A. length	c_1	n
2	key = A[j]	c_2	n - 1
3	$/\!\!/$ Insert $A[j]$ into the sorted		
	sequence $A[1 j - 1]$.	0	n - 1
4	i = j - 1	c_4	n - 1
5	while $i > 0$ and $A[i] > key$	C5	$\sum_{j=2}^{n} t_j$
6	A[i+1] = A[i]	c_6	$\sum_{j=2}^{n} (t_j - 1)$
7	i = i - 1	c ₇	$\sum_{j=2}^{n} (t_j - 1)$
8	A[i+1] = key	C8	n-1

Figure 3: Tomada del libro Cormen, Introduction to Algorithms

 $O(g(n)) = \{f(n) : \text{existen constantes positivas } c, n_0$ tales que $0 \le f(n) \le cg(n)$ para todo $n \ge n_0\}$

Figure 4: Tomada del libro Cormen, Introduction to Algorithms

Ejemplo 2.1. Probar que $n^2 + 10n + 2 = O(n^2)$

Ejemplo 2.2. Probar
$$n^2/2 + 3n = O(n^2)$$

Ejemplo 2.3. Probar n/100 no es O(1).

Ejemplo 2.4. Probar que $an + b = O(n^2)$ para todo a > 0.

Notacion Omega

Dada una función g(n), definimos $\Omega(g(n))$ según

 $\Omega(g(n)) = \{f(n) : \text{existen constantes positivas } c, n_0$ tales que $0 \le cg(n) \le f(n)$ para todo $n \ge n_0\}$

Dada una función g(n), definimos $\Theta(g(n))$ según

$$\Theta(g(n)) = \{f(n) : \text{existen constantes positivas } c_1, c_2, n_0$$
 tales que $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$ para todo $n \ge n_0\}.$

Figure 4: Tomada del libro Cormen, Introduction to Algorithms

Ejemplo 2.1. Demostrar que $\frac{1}{2}n^2 - 3n = \Theta(n^2)$.

Ejemplo 2.2. Demostrar que $6n^3 \neq \Theta(n^2)$.

Ejercicio 2.1. $an^2 + bn + c = \Theta(n^2)$ para todo a > 0.

Dada una función g(n), definimos o(g(n)) según $o(g(n))=\{f(n): \text{para cada constante }c>0$ existe una constante n_0 tal que $0\leq f(n)< cg(n)$ para todo $n\geq n_0\}$

Ejemplo 2.7.
$$2n = o(n^2)$$

Ejemplo 2.8. $2n^2 \neq o(n^2)$

Observación 2.4. f(n) = o(g(n)) si y solo si $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$.

Notacion ω

Dada una función g(n), definimos $\omega(g(n))$ según

 $\omega(g(n)) = \{f(n) : \text{para cada constante } c > 0 \}$

existe una constante n_0 tal que $0 \leq cg(n) < f(n)$ para todo $n \geq n_0 \}$

Transitividad

- $f(n) = \Theta(g(n)), g(n) = \Theta(h(n)), \text{ entonces } f(n) = \Theta(h(n))$
- f(n) = O(g(n)), g(n) = O(h(n)), entonces f(n) = O(h(n))
- $f(n) = \Omega(g(n)), g(n) = \Omega(h(n)), \text{ entonces } f(n) = \Omega(h(n))$
- f(n) = o(g(n)), g(n) = o(h(n)),entonces f(n) = o(h(n))
- $f(n) = \omega(g(n)), g(n) = \omega(h(n)),$ entonces $f(n) = \omega(h(n))$

Reflexividad

- $f(n) = \Theta(f(n))$
- $\bullet \ f(n) = O(f(n))$
- $\bullet \ f(n) = \Omega(f(n))$

Simetría

• $f(n) = \Theta(g(n))$ entonces $g(n) = \Theta(f(n))$

Simetría transpuesta

- f(n) = O(g(n)) si y solo si $g(n) = \Omega(f(n))$
- f(n) = o(g(n)) entonces $g(n) = \omega(f(n))$

Observación 2.6. Existen funciones no comparables, por ejemplo n $y \, n^{1+\sin n}.$

Gracias