Appendix 4: Correlations Between Complexity Measures

25 March, 2021

Session Info

```
Give the session info (reduced).
## [1] "R version 3.6.3 (2020-02-29)"
## [1] "x86_64-pc-linux-gnu"
```

Load Libraries

If the libraries are not installed yet, you need to install them using, for example, the command: install.packages("ggplot2").

```
library(readr)
library(ggplot2)
library(gridExtra)
library(GGally)
library(ggrepel)
library(psych)
library(ggcorrplot)
```

Give the package versions.

```
## ggcorrplot psych ggrepel GGally gridExtra ggplot2 readr ## "0.1.3" "2.0.12" "0.9.0" "2.0.0" "2.3" "3.3.3" "1.4.0"
```

Load the Data

The participants' results are loaded as csv files directly from the github repository into separate data frames. We only use the name of the first author (lower case) to name the data frame.

```
#Track A (Parallel Bible Corpus, PBC)
gutierrez.results <- read_csv("https://raw.githubusercontent.com/IWMLC/language-complexity-metrics/mast
# remove the parentheses in column names
colnames(gutierrez.results) <- sub("\\(", "", colnames(gutierrez.results))
colnames(gutierrez.results) <- sub("\\\)", "", colnames(gutierrez.results))
# replace "+" by "."
colnames(gutierrez.results) <- gsub("\\+", ".", colnames(gutierrez.results))
oh.results <- read_csv("https://raw.githubusercontent.com/IWMLC/language-complexity-metrics/master/PBCt
#TRACK B (Universal Dependencies, UD)
brunato.results <- read_csv("https://raw.githubusercontent.com/IWMLC/language-complexity-metrics/master
coltekin.results <- read_csv("https://raw.githubusercontent.com/IWMLC/language-complexity-metrics/mastes
semenuks.results <- read_csv("https://raw.githubusercontent.com/IWMLC/language-complexity-metrics/mastes</pre>
```

```
sinnemaki.results <- read_csv("https://raw.githubusercontent.com/IWMLC/language-complexity-metrics/mast
sozinova.results <- read_csv("https://raw.githubusercontent.com/IWMLC/language-complexity-metrics/maste</pre>
```

Sanity check, look at the number of rows and columns of the data frames.

```
#Track A (should be 49 rows)
track.a.rows <- c(nrow(gutierrez.results), nrow(oh.results))</pre>
print(track.a.rows) # this corresponds to the number of languages
## [1] 49 49
track.a.cols <- c(ncol(gutierrez.results)-2, ncol(oh.results)-2)</pre>
print(track.a.cols) # this is the number of measures per team
## [1] 12 3
#Track B (should be 63 rows)
track.b.rows <- c(nrow(brunato.results), nrow(coltekin.results),</pre>
                  nrow(semenuks.results), nrow(sinnemaki.results),
                  nrow(sozinova.results))
print(track.b.rows) # this corresponds to the number of languages
## [1] 63 63 63 63 63
track.b.cols <- c(ncol(brunato.results)-2, ncol(coltekin.results)-2,</pre>
                  ncol(semenuks.results)-2, ncol(sinnemaki.results)-2,
                  ncol(sozinova.results)-2)
print(track.b.cols) # this is the number of measures per team
## [1] 11 6 2 6 2
```

Preprocessing

Put data into a single data frame.

Remove certain measures. To include all measures, this code can just be commented out. Note, however, that there are certain measures in Track A which are redundant in the sense that they only differ in whether the Bible texts are fully parallelized or not. In Track B, some measures given by the same team have strong positive correlations, e.g. the number of tokens in a sentence (BV_n_tokens) and the average number of tokens per clause (BV_avg_token_per_clause). We hence just keep one of the strongly correlated measures to not inflate the number of correlated data points. Also there are measures with many NAs in Track B, i.e. "SI_double_dl", "SI_head_dl", "SI_zero_dl", which are removed here.

Invert the values (by substracting them from 1) for the measure "CR_inflection_accurracy" in Track B. Note that higher values in the original measure mean *lower* rather than higher complexity.

```
track.b$CR_inflection_accuracy <- 1-track.b$CR_inflection_accuracy</pre>
```

Center and scale all numerical columns to make them more comparable.

```
# keep meta-information columns again
track.a.scaled <- cbind(track.a[1:2], scale(track.a[3:ncol(track.a)]))
track.b.scaled <- cbind(track.b[1:2], scale(track.b[3:ncol(track.b)]))</pre>
```

Check the first 6 rows of the data.

```
#head(track.a.scaled)
#head(track.b.scaled)
```

Remove the first two columns of data frames (useful for plotting).

```
track.a.short <- track.a.scaled[, 3:ncol(track.a)]
track.b.short <- track.b.scaled[, 3:ncol(track.b)]</pre>
```

Scatterplots by Track

TRACK A

For visual reference, we here firstly give scatterplots between selected measures of the respective track. The Spearman correlation coefficient is reported instead of the Pearson correlation coefficient. This is because we are only interested whether there is a correlation between the rankings of complexities, regardless of whether this is a linear relationship. We therefore also use the local regression smoothers in the plots (loess) rather than linear models (lm). Note: warning messages are disabled here as there are datasets with NAs, and for each plot this throws a warning message using the ggpairs() plotting function. NAs are dealt with by removing the entire row containing an NA value.

TRACK B

Same for the Track B data. Not all measures are included here (there would be 24). To include them all, the "columns" argument in the code below might be removed.

Significant Correlations after Correction for Multiple Testing

Not all of the correlations displayed above are going to be significant after correcting for multiple testing. We therefore use the corr.test() function here, since it enables us to choose a correction method, i.e. Holm-Bonferroni. The Bonferroni method would be more conservative, however, it is pointed out in MacDonald (2014, p. 254-260) that it is appropriate only when tests are independent of one another. Since we here run pairwise tests by complexity measures, our tests are not independent (the same measure is tested against others multiple times). We therefore apply the Holm-Bonferroni method (see also the descriptions in the

vignette invoked by the command "?p.adjust()"). Note that NAs are here deleted in pairs of columns, rather than across a whole row.

TRACK A

Calculate Spearman rank correlations with p-values adjusted by the Holm-Bonferroni method.

```
cor.results.a <- corr.test(track.a.short, method = "spearman",</pre>
                          use = "pairwise.complete.obs", adjust = "holm")
```

Give correlogram of selected measures.

```
correlogram.TrackA <- ggcorrplot(cor.results.a$r, p.mat = cor.results.a$p, type = "lower",</pre>
     outline.col = "white", colors = c("#3C77AE", "white", "#AE3C3C"),
     lab = T, insig = "pch")
correlogram.TrackA
```


Safe to file.

```
ggsave("Figures/Corrs/correlogram_TrackA.pdf", correlogram.TrackA,
       dpi = 300, scale = 1, width = 5.5, height = 5.5, device = cairo_pdf)
```

TRACK B

Reorder columns to have measures of the same domain together.

```
col_order <- c("BV_char_per_tok", "CR_inflection_accuracy", "CR_ttr",</pre>
               "CR_msp", "CR_mfe", "CR_cfe_form_feat", "CR_cfe_feat_form",
               "SI_dm", "SI_hm", "SBS_INF", "SBS_DER", "BV_n_tokens",
               "BV_verbal_head_per_sent", "BV_verbal_root_perc", "BV_avg_links_len",
```

1 ## 2 ## 3 0.1042120149 0.419644762 0.354494808 -0.03051694 0.65660540 ## 4 -0.4142382073 -0.369912715 -0.625341201 -0.60889296 -0.40117200 0.5082350317 0.490218708 1.052364889 0.14415716 1.28196175 0.298757104 ## 6 -0.3376085815 0.589140585 0.24827254 1.46458262 ## 7 0.4016707747 0.485597376 1.388236459 0.03066197 1.41331554 1.129441984 -1.035049699 1.12661272 ## 8 -0.6131451340 2.38120309 ## 9 -3.3479979861 -2.635788677 -0.183372462 -1.23134817 -1.72537388 ## 10 -0.0869977777 -0.191174227 -0.322179912 -0.54490365 0.14126474 ## 0.441436055 -0.80112508 11 0.7679493989 -0.698914957 0.19824449 ## 12 0.4470033087 0.429155126 -0.687586350 0.28228248 0.49322349 1.724286400 -0.02361676 ## 13 1.2829319931 1.228518845 0.22836053 ## 14 0.0287309618 -1.154975665 -0.740286408 -0.64067327 -0.50420210## 15 -0.3089793016 -1.131404051 -0.814229199 -0.67037369 -0.61730816 ## 16 -0.910425456 -1.206954145 -0.51301542 -0.48413367 -0.6311199512 -1.164288777 -1.282499870 -0.59805434 -0.61115800 ## 17 -0.1091412557 0.644365188 0.85495590 ## 18 1.3330436636 0.570317109 0.46432644 ## 19 -1.0173103201 -1.187987196 -0.832391749 0.15490996 -1.39955023 20 1.6750711432 0.955944764 1.538195317 0.46984553 0.59523937 21 2.2247350990 1.421234046 1.889085444 0.36740192 ## 0.71399634 ## 22 -0.3191925126 -0.562571559 -0.223068264 -0.63233853 -0.50199025 ## 23 -0.539014035 -1.080931489 -0.39694195 -0.52860670 0.1953329543 ## 24 0.0085336799 1.063785249 -1.254353792 1.45542533 0.90702806 ## 25 0.0455391143 1.336331151 0.733078556 1.03541814 0.35225902 ## 26 -0.0392760600 1.435083955 -0.201734169 1.45918955 1.11062097 ## 27 -1.6779295203 -0.003263521 -0.685107024 -0.23670868 -0.11609345 -1.121879598 -1.125095783 -0.77324029 -0.27164884 ## 28 -1.0690402341 ## 29 0.4644057078 0.810161448 0.795275849 0.16061670 0.46086095 ## 30 1.2183256071 0.200537801 -0.26961309 0.189733469 0.75160009 ## 31 0.8446322115 -1.714382329 0.064382731 -0.91751642 -1.66143363 ## 32 -0.3279718363 -0.440472573 -0.441943104 -0.44321244 -0.37960412 ## 33 -0.0794135226 -0.558091121 -1.154432459 -0.27074769 -0.39933209 ## 34 -0.515625584 -0.573911018 -0.45575742 -0.14327985 0.0574696959 35 -2.245567869 -0.479593184 -1.13528621 -2.57024352 -3.1525011433 36 -1.9525258299 -1.748521014 2.328290138 -1.23520817 -2.57024352## ## 37 -1.9531225131 -1.682765652 2.439474542 -1.24991044 -2.57024352 ## 38 0.6277629789 1.393055190 -1.445687279 1.83123297 0.75965854 ## 39 0.2812856979 1.280100242 -0.118648954 1.36210851 1.05308377 0.979375483 1.070309428 ## 40 0.34774918 0.6161738762 1.11238191 ## 41 0.0207526594 -0.811700832 -0.354403899 -0.76923253 -0.72820004 -0.698957226 -0.475484338 -0.78958033 -0.94245652 ## 42 0.9333625096 ## 43 -0.0009643613 -0.144369146 -0.327732172 -0.50121639 0.13493796 ## 44 0.0245909669 -0.050237675 -0.403257111 -0.53668417 0.06902399 ## 45 0.744293370 0.933956650 0.15781598 0.4596034153 1.43633257 ## 46 0.6962893779 0.673818050 1.005483924 0.02092016 1.31067458 ## 47 -0.3721524480 -0.351004703 -0.303405870 -0.53380762 -0.55593018 0.838269858 -1.156938372 1.62681968 0.82377947 ## 48 -0.6034754673

```
## 49
         0.1194089858
                                 0.434058247 0.301777348 0.10423478
                                                                      0.46847471
                                              1.410063615 -0.19664095
## 50
         1.0047235545
                                 0.504547657
                                                                        0.21355456
## 51
         0.8870587935
                                 0.922876875
                                              1.411235845
                                                           0.17691145
                                                                        0.68340020
                                 0.631324334
                                              0.977480930
                                                           0.10360021
## 52
         0.2675726824
                                                                        1.21488325
##
  53
         0.0694179250
                                 0.725441715
                                              0.811523676
                                                           0.07612858
                                                                        0.68550663
## 54
        -0.1992476846
                                -0.266439953 -0.310408794 -0.52025763 -0.34005391
## 55
        -0.2899258253
                                -0.449884311 -0.100324951 -0.55826244 -0.22711421
## 56
         0.4634435246
                                 0.805709189 -0.004067259 0.45479417 -0.14017450
## 57
        -0.0812082554
                                -0.120882069 -0.755740986 -0.41111057
                                                                        0.14929230
## 58
         0.6058761054
                                -0.007870764 -0.549516074 -0.23987404
                                                                        0.12284433
## 59
         1.1465378083
                                 1.002834381
                                              0.891415110 2.12243396
                                                                        0.71414432
##
  60
         1.3545187241
                                 0.316566504
                                              0.115149698 4.45210554 -0.22224725
##
  61
         0.3571339054
                                 0.561032176
                                              1.251170675 -0.13816985
                                                                       0.83725227
##
  62
        -1.3549823208
                                -1.404133117 -1.332374976 -0.93284071 -0.45960421
##
                                          NA -1.583122858 -1.23320090 -2.57024352
  63
        -0.6622357055
##
      CR_cfe_form_feat CR_cfe_feat_form
                                              SI_dm
                                                         SI_hm
                                                                    SBS_INF
## 1
          -0.764887514
                          -0.2048453481
                                         0.43235739 -0.3052322 -1.18826015
##
  2
           1.169809712
                          -0.3078945224
                                         0.43235739 -0.3052322 -0.18969895
## 3
                                         0.43235739 -0.3052322 -0.10384382
          -1.135856695
                          -0.0883839195
## 4
          -0.196687731
                          -0.1213086897
                                         0.43235739 -0.3052322 -0.33499225
## 5
           0.077242163
                          -0.3131366908 -0.21833387 -0.3052322
                                                                0.44959155
                                        0.15621893 -0.3052322
## 6
           0.313024463
                          -0.1103563021
                                                                0.47865021
                          -0.2687758805 -0.12692327 -0.3052322
## 7
          -0.020564926
                                                                0.52884244
                                         0.35487202 -0.3052322
## 8
           0.337432457
                           0.3639715322
                                                                1.29625521
                          -0.6703426248
## 9
           0.331990498
                                         0.09221557 -0.3052322 -1.44054215
## 10
          -0.089532326
                          -0.1413100586
                                         0.42800175 -0.3052322 -0.67577107
                                         0.43235739 -0.3052322 -0.30857529
## 11
           2.206341249
                          -0.2613338735
## 12
           0.967635549
                           0.0008109525
                                         0.43235739 -0.3052322
                                                                0.51299226
## 13
                          -0.2241758442 -0.76128863 -0.3052322 0.61073503
          -0.488061528
## 14
           0.481442316
                                        0.43235739 -0.3052322 -0.76030535
                           0.0526657754
## 15
           0.002967505
                          -0.1456681312
                                         0.43235739 -0.3052322 -0.79200571
## 16
          -0.061177565
                          -0.0731514677
                                         0.43235739 -0.3052322 -0.69426295
## 17
          -0.154364377
                          -0.1126393497
                                         0.43235739 -0.3052322 -0.92805307
                                         0.42570869 -0.3052322
## 18
           0.494387174
                           0.4550594094
                                                                1.18002058
##
          -0.799020989
                           0.7589543626 -3.71421692
                                                     3.8885877
  19
                                                                 0.29505232
## 20
                          -0.1827949571 -0.69091003 0.9851739
          -0.478794033
                                                                1.16945379
## 21
          -1.119490408
                          -0.3206931102 -0.37484518 0.6096684
                                                                1.04265237
## 22
                           0.2290637033
                                        0.43235739 -0.3052322 -0.25309966
          -0.252440870
## 23
                                         0.43235739 -0.3052322 -0.23857033
          -0.851581691
                           0.1687163595
## 24
           0.677985938
                          -0.4893525990
                                         0.43235739 -0.3052322
                                                                0.70055270
  25
           0.680720387
                           0.5322409787
                                         0.43235739 -0.3052322
                                                                1.70175560
                          -0.0012744737
                                         0.43235739 -0.3052322
## 26
           0.117733570
                                                                1.72685171
## 27
          -0.094785703
                          -0.2048817521
                                         0.43235739 -0.3052322 -0.24649542
##
                                         0.43235739 -0.3052322 -0.49481488
  28
           3.445289412
                          -0.5855786334
## 29
           0.175210894
                          -0.2826561856
                                         0.04640087 -0.3052322 0.26203111
## 30
                          -0.2909146811 -3.71421692 3.8885877 -0.44066010
          -0.318310125
## 31
          -0.852336022
                          -0.2802535251 -3.71421692 0.7471311 -1.33091175
## 32
          -0.774909339
                           0.0499926855
                                         0.43235739 -0.3052322 -0.11044806
##
  33
          -0.948041760
                          -0.0528276639
                                         0.43235739 -0.3052322 -0.18045302
##
  34
          -0.579564565
                           0.3497479898
                                         0.43235739 -0.3052322 -0.28744172
## 35
                                         0.43235739 -0.3052322 -1.12618029
          -0.449078782
                           0.0566910119
## 36
          -1.269831259
                          -0.6458375676
                                         0.43235739 -0.3052322 -1.45507148
                                         0.43235739 -0.3052322 -1.49998032
## 37
          -1.023097689
                          -0.6367573830
## 38
           1.152433160
```

```
## 39
           0.650466328
                          ##
  40
          -0.351945203
                          -0.1978973947
                                         0.20414934 -0.3052322 0.46544173
                           0.0809100381
##
  41
          -0.551896784
                                         0.43235739 -0.3052322 -0.81710182
                                         0.43235739 -0.3052322 -0.97296191
## 42
          -0.700473039
                           0.0545639812
##
  43
          -0.037025505
                          -0.1612282184
                                         0.42137706 -0.3052322 -0.61237036
## 44
           0.237281555
                          -0.1453092923
                                         0.42445790 -0.3052322 -0.58727425
## 45
          -0.233717298
                           0.0386554562
                                         0.26534049 -0.3052322 0.28580638
## 46
           0.076231898
                          -0.1129097790
                                         0.26068083 -0.3052322 0.11409612
## 47
           0.682969910
                          -0.2151996709
                                         0.43235739 -0.3052322 -0.45651028
## 48
           1.268128669
                           0.9767643811
                                         0.43235739 -0.3052322
                                                                0.71111948
  49
          -0.915767172
                          -0.2077316611
                                         0.43235739 -0.3052322
                                                                0.03748693
## 50
          -0.526828750
                          -0.2964896857
                                         0.08305890 -0.3052322 -0.10516467
## 51
          -0.358815003
                          -0.1018585806
                                         0.24718387 -0.3052322
                                                                 0.59884739
                                         0.40661826 -0.3052322
                                                                 0.14711732
## 52
           0.039040689
                          -0.1343517041
## 53
                                         0.33220790 -0.3052322 0.31486504
          -0.148801186
                          -0.1481383990
## 54
                                         0.43235739 -0.3052322 -0.35084243
          -0.657839871
                          -0.2825001687
## 55
                                         0.43235739 -0.3052322 -0.41820568
          -0.836993470
                          -0.2384565928
  56
                          -0.3025275404
                                         0.16967473 -0.3052322
##
          -0.231885351
                                                                0.12202121
## 57
           0.090281312
                          -0.1598968741
                                         0.40167450 -0.3052322 -0.57406576
## 58
          -0.120554186
                          -0.1376176582
                                         0.40858506 -0.3052322 -0.43405586
## 59
          -0.967923769
                          -0.0027046288 -2.10188196 3.8885877
                                                                1.33059727
                           7.3787989929 -2.55617967 3.0852644 4.80310705
## 60
          -0.833827974
## 61
                          -0.2165674192 -0.11179439 -0.3052322 -0.05233075
           0.185448243
##
  62
           4.632323442
                          -0.4432235969
                                        0.43235739 -0.3052322 -0.69294210
##
  63
          -0.297108038
                                     NA -0.85654226 -0.3052322 -1.45110894
##
           SBS DER
                   BV_n_tokens BV_verbal_head_per_sent BV_verbal_root_perc
##
  1
      -0.340651828
                    1.125665621
                                             0.353387896
                                                                  0.12660563
##
  2
      -0.520427298
                    2.965365537
                                             1.446980421
                                                                 -4.44118514
  3
##
       0.001216280 -0.729022638
                                           -1.087663662
                                                                  0.51960290
## 4
     -0.440854549
                    2.164380400
                                            0.690108734
                                                                  0.66341250
## 5
      -0.269920495
                    0.240252566
                                            -0.878909699
                                                                 -0.51791166
##
  6
      -0.178559191 -0.879109170
                                            -0.217866612
                                                                  0.40855499
## 7
      -0.281709051 -0.224602382
                                                                 -0.66389228
                                           -1.090812118
## 8
     -0.467378799 -1.527888500
                                            0.562165647
                                                                  1.88413606
## 9
       0.511071302
                   0.994988485
                                            3.499325867
                                                                  0.59425897
       0.098471862 -0.040232802
## 10
                                            -0.250352841
                                                                 -0.31643320
       0.366661498
                   0.041547088
                                           -1.641812677
                                                                 -0.14087073
## 12 -0.782722656
                   1.074879333
                                            0.938671237
                                                                  0.55616006
## 13 -0.172664913 -0.710455831
                                            -1.066160029
                                                                 -0.52104660
## 14 -0.426118855 -0.516781912
                                           -0.736647153
                                                                 -1.65031090
  15 -0.272867634 -0.048205080
                                            -0.233717954
                                                                 -0.48518350
## 16 -0.440854549 -0.061229785
                                             0.204695887
                                                                  0.26857027
  17 -0.296444745
                   0.846672740
                                            0.416193791
                                                                  0.08858123
  18 -0.432013132 -0.812425935
                                             0.133029215
                                                                  0.97063375
  19 -0.476220215
                   1.129002310
                                            -0.045894506
                                                                 -0.83554387
## 20 -0.057726498 -1.618317206
                                            -0.537698844
                                                                  0.03513697
## 21
       0.051317640 -0.838593033
                                           -0.474298881
                                                                 -0.51959255
## 22 -0.526321576
                   0.967851108
                                           -0.213504197
                                                                 -0.12288819
  23 -0.608841464
                   0.688749370
                                            -0.331706512
                                                                 -1.01474631
  24 -0.585264353 -1.339839376
                                             0.621690835
                                                                  1.56065735
  25 -0.650101408 -0.637721884
                                                                  1.78702699
                                             1.351012075
## 26 -0.650101408 -0.970189231
                                            0.542556096
                                                                  0.86566809
## 27
       0.260564499 1.204840185
                                            0.488226675
                                                                  0.46453080
## 28 -0.608841464 0.421355117
                                           -0.074359733
                                                                  1.08756520
```

```
## 29 -0.054779359 0.589679371
                                            -0.257138382
                                                                  -0.43848528
## 30
       0.879463659 0.781299532
                                            -0.063476781
                                                                   0.57025254
       0.372555775
                    0.530125181
                                             0.247792246
                                                                   0.02592547
## 32 -0.499797326
                    0.410334910
                                            -0.586849459
                                                                  -0.47628420
## 33 -0.602947186
                    1.304343706
                                             0.412192322
                                                                   0.27497087
                                            -0.807855243
## 34 -0.493903048
                   0.002260029
                                                                  -1.81579912
## 35 -0.426118855
                   0.642767251
                                             0.128222281
                                                                  -0.61890903
## 36
       5.521207357 -0.947260761
                                             1.766141750
                                                                   0.06158669
## 37
       4.354140370 -0.927320787
                                             0.215422267
                                                                  -0.40560972
## 38 -0.558740103 -0.278602094
                                             0.885464286
                                                                  -0.35098839
  39 -0.449695965 -1.239205618
                                             0.306485573
                                                                   0.60676792
## 40 -0.007625137 -0.512438725
                                             0.446747349
                                                                   0.37501524
       0.089630445 -0.512082607
                                            -1.090192651
                                                                  -0.06132369
       0.151520361 -0.835071046
                                                                  -2.74465913
                                            -2.463152247
## 43 -0.175612052 -0.493240574
                                            -0.834910144
                                                                  -0.53930933
## 44 -0.157929219 -0.222885493
                                            -0.812592535
                                                                  -1.16496924
       0.396132886 -1.768977534
                                            -1.695900766
                                                                   1.58714535
       0.740948132 -1.353980558
                                            -1.527716286
                                                                   1.02253499
## 47 -0.449695965 0.938756911
                                             0.003953795
                                                                  -0.22355107
## 48 -0.526321576 0.137254382
                                             2.121553113
                                                                   0.83064412
## 49 -0.196242024 0.715278575
                                             0.771562412
                                                                   0.92173834
      0.826415159 0.199956644
                                            -0.828652959
                                                                   0.02412977
## 51 -0.210977718 -0.104944867
                                                                  -0.31239507
                                            -0.134237147
## 52
       0.357820081 -1.379529346
                                            -1.541560334
                                                                   0.21650000
## 53
       0.381397192 -0.152146712
                                            -0.522981059
                                                                   0.24132013
## 54 -0.490955909 2.032910728
                                             0.992844442
                                                                   0.38200978
## 55 -0.396647466 1.364149416
                                             1.038524718
                                                                  -0.08825126
## 56 -0.264026218 0.610540991
                                            -0.321149167
                                                                  -0.22503487
## 57 -0.160876358 -0.167793907
                                             0.290818658
                                                                   0.25499127
                                            -0.855761468
## 58 -0.040043664 -0.397652326
                                                                  -0.11998446
## 59 -0.022360831 -1.251658425
                                             0.097054719
                                                                  -0.37437105
## 60 -0.747356990 -1.113759317
                                             0.599398214
                                                                   0.74711776
      0.973772102 -0.232704737
                                            -0.535035944
                                                                  -0.21434148
## 62 -0.461484521 1.358210463
                                             0.520898904
                                                                   1.17679550
       0.546436968 -0.637547751
                                             1.667446564
                                                                   0.20332383
##
      BV_avg_links_len BV_avg_subordinate_chain_len BV_subordinate_pre
## 1
            2.09243539
                                         0.441897979
                                                              -0.1403422
## 2
            0.51986231
                                         1.782339005
                                                              -1.0079731
## 3
           -0.77265563
                                        -1.185880180
                                                              -0.3936576
## 4
            0.71161424
                                         0.573792436
                                                              -0.3636057
## 5
           -0.15981615
                                        -0.917835441
                                                              -0.6147766
## 6
           -0.81634676
                                        -0.804364366
                                                              -0.4387427
## 7
           -0.35204100
                                        -0.958421235
                                                              -0.4922567
## 8
           -1.28653298
                                         0.290895687
                                                               0.4174365
## 9
            2.66874454
                                         2.592433405
                                                               2.5632383
## 10
            0.06067893
                                        -0.208907744
                                                              -0.2789602
                                        -1.964047576
## 11
            1.59654426
                                                              -0.6359679
## 12
            0.10974114
                                         0.862882381
                                                              -0.3830921
## 13
           -0.53072829
                                        -0.755350829
                                                              -0.6144441
## 14
           -0.79472698
                                        -0.300891251
                                                              -0.6093822
## 15
           -0.22855165
                                         0.072698091
                                                              -0.3766580
## 16
           -0.05379588
                                         0.182746830
                                                              -0.3894242
## 17
            0.62004845
                                         0.645457513
                                                              -0.1956373
## 18
           -0.59804270
                                        -0.018861742
                                                               0.7051664
```

```
## 19
            2.39398238
                                           0.708605364
                                                                -0.1317135
##
  20
           -1.81395649
                                         -0.514708733
                                                                 0.4273918
##
  21
            -0.91237135
                                         -0.444523218
                                                                -0.5117473
##
  22
            0.11650902
                                                                -0.4031365
                                          -0.109417680
##
  23
            -0.30144782
                                          -0.177693723
                                                                -0.4983150
                                          0.437495724
##
  24
           -1.07030990
                                                                 0.3635254
## 25
            1.03803804
                                          0.540188198
                                                                 0.5317450
## 26
            -0.07737705
                                          0.218648316
                                                                 0.4447362
##
  27
            0.19835853
                                          0.203327717
                                                                -0.2682047
##
  28
            1.83925721
                                           0.223861101
                                                                 0.8966193
##
   29
            0.30416735
                                           0.289807642
                                                                -0.5387394
##
   30
            1.24877486
                                          -0.380575778
                                                                -0.5113796
##
   31
            -0.48640590
                                           0.020520480
                                                                -0.4378801
                                          -0.635523227
                                                                -0.4712879
##
  32
           -0.51822008
##
  33
            0.27494646
                                          0.594026572
                                                                -0.2179310
##
  34
            1.83499028
                                           0.115089191
                                                                -0.7650372
  35
            0.37394837
                                                                 3.2033683
##
                                           1.186970417
##
   36
            0.05474346
                                           1.160826731
                                                                 2.6943058
##
  37
            -0.18099471
                                          2.213840564
                                                                 3.5499824
##
   38
            0.10945269
                                           1.144847811
                                                                 0.1170908
##
  39
            -0.65312795
                                          0.000612195
                                                                 0.3678733
## 40
            -0.56264551
                                          -0.270754870
                                                                -0.2770327
## 41
            0.62308924
                                         -0.705802058
                                                                -0.3038530
##
  42
            -0.62787816
                                         -2.134895399
                                                                -0.7216778
## 43
           -0.61402060
                                         -0.398217984
                                                                -0.6458221
  44
            -0.36730477
                                         -0.216327508
                                                                -0.5778297
  45
           -2.30160889
                                         -2.653774941
##
                                                                -0.9086415
##
   46
            -1.82948914
                                          -2.260695005
                                                                -0.8664700
##
  47
            0.10609583
                                          0.132276638
                                                                -0.2451817
## 48
            0.28263626
                                           0.932610599
                                                                -0.1161442
## 49
            0.06180112
                                           0.838574927
                                                                -0.2187304
##
  50
           -0.12770476
                                         -1.100767221
                                                                -0.6128861
##
  51
            -0.21811283
                                         -0.309327687
                                                                -0.3491838
##
  52
            -1.59484174
                                         -1.978133468
                                                                -0.5020043
##
   53
            0.01263833
                                          -0.156348461
                                                                -0.5678342
##
  54
            0.63431110
                                          0.911513418
                                                                -0.1852634
## 55
            0.20093352
                                          -0.005681645
                                                                -0.5470819
## 56
            0.20088672
                                          0.327332161
                                                                -0.5591730
## 57
            -0.26656092
                                           0.120554119
                                                                -0.5303646
## 58
           -0.38210743
                                         -0.487522316
                                                                -0.4594442
   59
            -0.70750885
                                          -0.157249647
                                                                 1.7516882
   60
##
            -0.03603216
                                          0.879762063
                                                                 2.7491053
##
   61
            -0.39947480
                                          -0.743999955
                                                                -0.5969519
##
            2.30775598
                                                                 0.5787058
  62
                                          0.528648699
##
   63
            -0.95424618
                                           1.781416916
                                                                 0.1198844
##
      BV_subordinate_post BV_avg_verb_edges
                                                    S_{idMean}
                                                                   S_{idSD}
                                                                             SI_dep_dl
## 1
               0.892903421
                                   1.98576759 -1.3568436916 -0.17345277
                                                                            0.54954775
##
  2
               2.268443901
                                   0.06410904 -1.5863483091
                                                               0.34629485 -0.31408118
##
  3
             -0.640792593
                                  -0.14441090 -0.6077700045
                                                               1.22953223
                                                                            0.42982106
##
  4
               1.006118797
                                   1.71471879 -0.5194843659
                                                               1.32633290
                                                                            1.04304203
## 5
              -0.058963440
                                  -0.31049697
                                                0.7190170356
                                                               0.28422360 -0.45606952
## 6
             -0.242179111
                                  -0.27239435
                                               1.1682772849 -0.71129745 -0.99229402
                                               1.3472284641 0.14267310 -0.52088314
## 7
             -0.352163553
                                  -0.53585624
## 8
              -0.175616423
                                  -0.35917691 0.2784064948 -1.46598953 -1.54737683
```

```
## 9
             -1.053273978
                                -0.67651060 0.3128954417 -0.02251246 1.56733410
                                           0.2383497613 -0.02998084 -0.30945538
                                0.54189030
## 10
              0.243564744
## 11
             -1.059405371
                                0.96446954
                                            0.4258445331 0.20172379 0.27444167
                                -0.07450237 -0.9842163328
                                                          0.57383563 -0.08022851
## 12
              1.085175363
##
  13
             -0.008822739
                                -0.10927346
                                            1.4467815647 -0.70233882 -0.94266771
## 14
                                                         0.30293357
              0.198659023
                                -0.94356338
                                            0.5287128298
                                                                      0.41663736
## 15
              0.376761927
                                -0.49421998 -0.1375133604
                                                          0.03660201
                                                                      0.77579295
                                                          0.24956868
## 16
              0.565782061
                                0.43014147 -0.2915944659
                                                                      0.37340425
## 17
              0.870217568
                                0.59868001 -0.8518121959
                                                          0.42220773
                                                                      1.83343673
##
  18
             -0.730125518
                                0.42021724
                                            0.1905245931 -0.19175788 -1.29726561
##
  19
              0.687387481
                                0.36649836
                                            NA
##
  20
             -0.837048934
                                -1.72891257
                                            1.1910209159 -0.16844564 -1.09057294
## 21
              0.303094148
                                -0.76850543
                                            0.8935888898 -1.09002351 -1.05790122
## 22
              0.505706339
                                0.49859383 -1.1818062105
                                                                      1.00713066
                                                         1.69051481
## 23
              0.405691652
                                -0.67594238 -1.8052066154 1.55958579
                                                                      1.60317753
## 24
             -0.089357897
                                -0.43203894
                                            0.7135259290 -2.15501867 -1.49550209
##
  25
                                            1.0097459674 -2.16679240
                                                                      0.42997213
              0.104976830
                                0.31538739
  26
             -0.264761885
                                            1.3873605540 -1.51076355
##
                                -0.40859350
                                                                      0.42313012
##
  27
              0.745045712
                                -0.12653367 -0.5462488880 0.72109092
                                                                      0.95685248
                                                          1.12104088
##
  28
             -0.712548715
                                2.22362613 -0.7309108555
                                                                      0.82403733
##
  29
              0.833941692
                                0.66741851
                                           1.0123749307 -0.21726119
                                                                     -0.55002668
## 30
                                1.74708369 -0.0492317161 -0.92506349
              0.255667756
                                                                              NΑ
              0.742616608
                                                          0.83209640
## 31
                                -0.17407347 -0.0691837708
                                                                              NA
##
  32
             -0.047858560
                                -0.15366785 -0.9914647135
                                                          1.73102084
                                                                      1.22801679
## 33
              0.876327706
                                0.38596275 -1.6071692134 1.07778021
                                                                      1.10675061
   34
              0.918400406
                                0.37453836 -1.2206425479 -0.62723879
                                                                      0.87266689
                                 1.26553544 -2.3639047198 0.84784566
##
  35
             -2.859064826
                                                                      0.99333786
##
   36
             -2.064567700
                                -1.89805740 -2.2157937148 -1.09649016 -0.42122706
                               -1.19747814 0.7627639236 -1.19647194 -1.15858120
##
  37
             -2.161603171
##
  38
                                -0.43182368
                                            1.4636559555 -2.44275749 -1.23585627
              0.863319709
## 39
             -0.355551459
                                -0.69952939
                                            1.9955413747 -2.60542383 -1.17562861
##
  40
              0.158756804
                                -0.68328730
                                            ##
   41
             -0.230849183
                                0.47735551
                                            0.4736339218 0.02566832
                                                                     1.56519173
                                -1.93597062 -0.3176669172 -0.04292098
                                                                     1.53450328
##
  42
             -1.240454139
              0.374650720
                                0.40261008
                                            0.8014307033
                                                          0.06322727 -0.23008586
##
   43
##
  44
              0.488499727
                                0.10653390
                                            0.9035584070 0.01106543 -0.53388290
## 45
             -1.538470105
                                -0.70245434
                                            0.1912664201 -0.13120974 -1.39431889
                                -0.58533289 -0.0051921895 -0.40705471 -1.26334161
## 46
             -1.198171354
                                -0.29308740 -0.9066517673
                                                          1.41304441 1.39567382
## 47
              0.438445004
              0.877569059
                                0.46381825
                                            0.8499804345 -0.22651216 -1.50083797
##
  48
##
  49
              1.189221612
                                1.00774488
                                            0.4244604440
                                                          1.16594217 -0.35357294
                                            0.0001212286
## 50
             -0.197277469
                                -0.63913285
                                                          0.31180670 -0.40158500
## 51
              0.305267879
                                -0.64528217
                                            1.3285377246 0.31326468 -0.59190610
                                            0.1849675831 -0.11202374 -0.64096974
## 52
             -1.306933467
                                -0.92320275
## 53
              0.586839090
                                1.29127045
                                            0.8459444547 -0.35113227 -0.63429037
                                0.95662693 -0.2577059605
## 54
              1.052644555
                                                          1.26143756 0.71531090
## 55
              0.773302165
                                -0.44003824 -0.8169750185
                                                          1.73749756
                                                                      1.04086136
## 56
              0.891570308
                                0.85276706
                                            0.1804266128 -0.74106489 -0.58395604
                                0.90222919
                                            0.2207180299 -0.26047194 -0.63558605
## 57
              0.721301507
## 58
              0.082331572
                                0.64071336
                                            ## 59
             -2.039133018
                                -2.10605786
                                            0.2365428125 -1.13803974
                                                                              NA
## 60
             -2.491742335
                                -1.23105526 -1.3079742606 0.05536483 -0.43635674
## 61
              0.044769818
                                -0.53392855 0.6035523178 -0.23718340 -0.46225987
## 62
             -0.063305404
                                2.97436051 -0.9394453516 0.95045488 1.24166140
```

Same as above for Track A.

```
cor.results.b <- corr.test(track.b.short.reorder, method = "spearman",</pre>
                                                                          use = "pairwise.complete.obs", adjust = "holm")
# produce correlogram
correlogram.TrackB <- ggcorrplot(cor.results.b$r, p.mat = cor.results.b$p, type = "lower";</pre>
               outline.col = "white", colors = c("#3C77AE", "white", "#AE3C3C"),
               lab = T, insig = "pch")
correlogram.TrackB
                                         S idSD
                                                                                                                                                                                                                                                  0.59
                                                                                                                                                                                                                                        -0.52-0.61
                                    S idMean
                                                                                                                                                                                                                               -0.16 0.27 0.21
                  BV_avg_verb_edges
                                                                                                                                                                                                                      0.44 -0.19 0.26 0.24
                 BV_subordinate_post
                                                                                                                                                                                                            -0.21-0.04-0.07 -0X1 0X7
                   BV_subordinate_pre
BV_avg_subordinate_chain_len
                                                                                                                                                                                                    0.63 0.4 0×1 -0.31 × 0×2
                                                                                                                                                                                           0.53 0.4 0.38 0.64 -0.31 0.29 0.53
                       BV_avg_links_len
                  BV_verbal_root_perc
                                                                                                                                                                                 0)(1 0)(9 0.43 -0)(12 0)(6 )( -0)(13-0)(19
        BV_verbal_head_per_sent
                                                                                                                                                                        0.43 0.38 0.86 0.64 0.37 0.08 -0.21-0.02 0.02
                                                                                                                                                                                                                                                                Corr
                                                                                                                                                                                                                                                                        1 0
                                                                                                                                                               0.31 -0.14 0.77 0.4 -0.07 0.65 0.6 -0.47 0.66 0.6
                               BV n tokens
                                                                                                                                                                                                                                                                       0.5
                                                                                                                                                     -0.27-0.38-0x1-0.29-0.41-0.28 -0.3 -0x24 0x6 -0x23-0x17
                                   SBS_DER
                                                                                                                                                                                                                                                                       0.0
                                                                                                                                            -0.34-0.39 × 0.26 -0.3 -0.47 0.46 -0.43-0.41 0.5 -0.33-0.62
                                     SBS INF
                                                                                                                                                                                                                                                                        -0.5
                                                                                                                                   <mark>0)2/2 0√1 -</mark>0√1 0√1 -0√07-0√06-0√02 <mark>0√√7</mark> -0√13 -0√2 0√02 -0√1 -0√18
                                          SI hm
                                                                                                                         -0.57-0.35-0.39 0.31 0.2 0.00 0.34 0.26 0.00 0.31 -0.41 0.36 0.51
                                          SI dm
                      CR_cfe_feat_form
                                                                                                                0)49 0)85 0)81 -0.34-0)45-0)43 0)83 -0)41-0)41 0)82 -0)62 0)81 -0)49 0)43 0)44
                                                                                                      -0.42 0.4 -0.38 0.47 -0.27 0.01 0.42 0.25 0.09 0.07 -0.02 0.02 0.22 0.29 -0.48-0.21
                      CR_cfe_form_feat
                                                                                             0.31 -0.43 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0
                                        CR_mfe
                                                                                    0.77 0)(7 0)(2 -0.39 0)(4 0.95 -0.3 -0.4 0)(6 0.27 -0.33 -)(1 0)(5 -0)(04 -)(2 0.5 -0.4 -0.68
                                       CR_msp
                                                                           0)23 0.39 -0.27-0.23-0.43 0.2 0.33 0.53 -0.4 -0.35-0.08-0.32-0.46 -0.2 -0.47-0.38 0.42 -0.22-0.42
                                                                 0.35 0.87 0.82 0×4 -0×03-0.39 0×5 0.85 -0×09-0.44 × 0×9 -0.42 -0×2 -0×14 0×1 -0×23 0.58 -0.5 -0.69
             CR inflection accuracy
                        BV_char_per_tok 0.47 0.48 0.47 0.49 -0x17 0x1 -0.52 0.37 0.47 0x2 -0.36-0.45 -0x1 -0.37-0.55-0.35-0x16-0x23 0.36 -0x25-0.43
                                                                                                                                                     BV and a blockfirde drait len
                                                                                                                                                                                    Survey and Subortificate Deep
                                                                          or de bim lea
                                                                                                                         , in 5 Mr
                                                                                                                                              W. Pal Andread Lord Base
                                                                                                                                                                           W subodinate Die
                                                                                                                                                                                              AN AND THE BIRDS
                                                                                                                                                                                                                    Signear
                                                                                    of de led form
```

Safe to file.

Detailed Scatterplots

We here plot the highest *positive* and *negative* correlations (in terms of Spearman coefficients) which are still significant after the Holm-Bonferroni correction *and* which are found between measures proposed by *different* participants (there are many measures by the same participants that highly correlate). These are hand-picked from the correlograms above.

TRACK A (Highest Positive Correlation)

```
track.a.positive.detailed <- ggplot(track.a, aes(x = GM_TTR_fullyparallelised, y = 0_WID)) +</pre>
  geom_point(alpha = 0.3) +
  geom_smooth(method = loess, alpha = 0.3) +
  geom_label_repel(data = track.a[track.a$language == "Fijian"
                                  track.a$language == "Sango"
                                  track.a$language == "Vietnamese"
                                  | track.a$language == "English"
                                  | track.a$language == "Georgian"
                                  | track.a$language == "Russian"
                                  track.a$language == "Swahili"
                                  | track.a$language == "Basque"
                                  | track.a$language == "Finnish"
                                  track.a$language == "Turkish"
                                  | track.a$language == "Korean"
                                  track.a$language == "Kalaallisut"
                                  track.a$language == "Burmese", ],
                   min.segment.length = 0,
                   #nudge_x = 0.1,
                   aes(label = language),
                       size = 3) +
  ggtitle("a) High Positive Correlation Track A (r = 0.81)") +
  xlab("Type-Token-Ratio (GM TTR fullyparallelized)") +
  ylab("Word Information Density (0 WID)") +
  theme(legend.position = "none")
# track.a.positive.detailed
```

Some comments: This plot shows that the Type-Token Ratio (TTR) and the Word Information Density (WID) are highly correlated across the languages of the Parallel Bible Corpus sample. Burmese (mya) is an outlier here with very high TTR and WID. This is an artifact of the writing system, since it does not delimit orthographic words by white spaces, but rather phrases. For Kalaallisut, on the other hand, the result makes sense (if we accept the latinized writing proposed for this language). Some of the low TTR languages include Sango (sag), Fijian (fij), Thai (tha), and Yoruba (yor).

TRACK B (Highest Positive Correlation)

```
#track.b <- track.b[track.b$id != "uig", ] # remove the outlier Uyghur (uig)

track.b.positive.detailed <- ggplot(track.b, aes(x = CR_msp, y = SBS_INF)) +
   geom_point(alpha = 0.3) +
   geom_smooth(method = loess, alpha = 0.3) +
   geom_label_repel(data = track.b[track.b$language == "Chinese")</pre>
```

```
| track.b$language == "Vietnamese"
                                   track.b$language == "English"
                                   track.b$language == "Russian"
                                  track.b$language == "Old Church Slavonic"
                                  | track.b$language == "Basque"
                                  | track.b$language == "Finnish"
                                  | track.b$language == "Turkish"
                                  | track.b$language == "Latin"
                                  | track.b$language == "Uyghur"
                                  track.b$language == "Ancient Greek", ],
                   min.segment.length = 0,
                   #nudge_x = 0.1,
                   aes(label = language),
                   size = 3) +
 ggtitle("b) High Positive Correlation Track B (r = 0.95)") +
 xlab("Mean Size of Morphological Paradigms (CR_msp)") +
 ylab("Inflectional Entropy (SBS_INF)") +
 theme(legend.position = "none")
# track.b.positive.detailed
```

Some comments: This plot shows the correlation between the so-called Mean Size of Morphological Paradigms (MSP), which is defined by CR as "simply the number of word-form types divided by the number of lemma types", and the difference in unigram entropy of word tokens in the original texts and the lemmatized texts (INF) as defined by SBS. It is certainly not unexpected, but reassuring, to see these measures highly correlated. The outlier to the high end Uyghur (uig) is likely not an artifact, as this language indeed has many productive morphological paradigms. Other languages to the high end of morphological complexity include Ancient Greek (grc), Classical Latin (lat), Turkish (tur), and Old Church Slavonic (chu). Languages to the low end are Vietnamese (vie), Indonesian (ind), Mandarin Chinese (cmn), and Afrikaans (afr). Note that the very low morphological complexity scores of Korean (kor) are an artifact of the way the Korean data is presented in the UD. Namely, the "lemmas" given for Korean are actually merely morphologically segmented forms rather than inflectionally neutralized forms as for the other languages. Thus, it makes sense that the MSP is exactly 1 and the INF is 0.

TRACK A (Highest Negative Correlation)

Some comments: This plot shows a negative correlation between type-token-ratios in parallel texts

(GM_TTR_fullyparallelised) and syllable information density (O_SID). This can be seen as a trade-off between the diversity of word types and the information carried by syllables. Languages with agglutinative morphology, e.g. Finnish and Turkish have many word types, but low syllable information density. Languages with rather isolating morphology, e.g. English and French, have fewer word types, but more information-dense syllables.

Track B (Highest Negative Correlation)

```
track.b <- track.b[track.b$language != "Korean", ] # remove the outlier Korean
track.b.negative.detailed <- ggplot(track.b, aes(x = CR mfe, y = SI dep d1)) +
  geom_point(alpha = 0.3) +
  geom smooth(method = loess, alpha = 0.3) +
  geom_label_repel(data = track.b[track.b$language == "Chinese"
                                  track.b$language == "Vietnamese"
                                  | track.b$language == "German"
                                  track.b$language == "English"
                                  | track.b$language == "Hungarian"
                                  | track.b$language == "Greek"
                                  | track.b$language == "Russian"
                                  track.b$language == "Old Church Slavonic"
                                  track.b$language == "Basque"
                                  | track.b$language == "Finnish"
                                  track.b$language == "Turkish"
                                  | track.b$language == "Latin"
                                  | track.b$language == "Uyghur"
                                  | track.b$language == "Ancient Greek", ],
                   min.segment.length = 0,
                   #nudge x = 0.1,
                   aes(label = language),
                   size = 3) +
  ggtitle("d) High Negative Correlation Track B (r = -0.74)") +
  xlab("Morphological Feature Entropy (CR_mfe)") +
  ylab("Dependency Length in Possessive NP (SI dep dl)") +
  theme(legend.position = "none")
# track.b.negative.detailed
```

Combine Scatterplots

We here combine the four scatterplots with some of the highest positive and negative correlations in one panel.

Conclusions

Some more general observations based on these analyses include:

• Many of the measures proposed by the same participants highly correlate. This is the case, for instance, for the measures proposed by GM in Track A, but also measures of BV in Track B. In the case of GM, this is because many of the measures are virtually the same, but with minor shades of modification. In the case of BV, while at first sight the measures seem to conceptually differ, they essentially boil down

to the same underlying causes. For example, the number of tokens in a sentence highly predicts the average maximal depth of a tree over the sentence. So, arguably most of these positive intra-participant correlations are driven by redundancy in the proposed measures.

- There are several strong positive correlations between simple measures relating to the number of types and tokens (GM_TTR_fullyparallelised, BV_n_tokens, etc.), and measures of information density (O_WID, S_idSD). Interestingly, this is the case for both tracks, since Oh used the Bible texts, and Semenuks used the UD. Information density is generally assumed to be a measure which has psycholinguistic relevance in terms of language processing. However, the fact that it is highly predictable by some of the simplest word frequency measures (TTR) potentially goes to show that the underlying principles driving complexity are fairly similar.
- A negative correlation which seems robust in Track A is found between syllable information density (O_SID) and measures of lexical diversity like TTR (although there are few data points in O_SID). This is potential evidence for a trade-off between syllable complexity and word complexity reported also in earlier studies. A negative correlation in Track B which seems both robust and potentially interesting is that the dependency lengths in noun phrases with marked possessives (SI_dep_dl) apparently are in an inverse relationship with different measures of inflectional complexity.

References

McDonald, J.H. (2014). Handbook of Biological Statistics (3rd ed.). Sparky House Publishing, Baltimore, Maryland. online at http://www.biostathandbook.com