Maths-JEE-Mains-Formulas

October 20, 2025

Cla	$\operatorname{ssLesson}$	Concept Union	Formula / Key Point $ [\ A \cup B = \{x : x \in A \text{ or } x \in B\}\] $	Explanation of variables $A, B \text{ are sets; } x \text{ is an element belonging to } A \text{ or } B$
11	Sets			
		Intersection	[$A \cap B = \{x : x \in A \text{ and } x \in B\}$]	A, B are sets; x is an element common to both A and B
		Complement	[A' = U - A]	A is a subset of universal set U ; A' is complement of A
		Cardinality	$[\ n(A\cup B)=n(A)+n(B)-n(A\cap B)\]$	n(X) is number of elements in set X
11	Relations	Function	A relation where every input has	Input = domain
	&		exactly one output	element, Output =
	Functions			range element
		Domain and Range	Set of inputs (domain), outputs (range)	Domain = all possible inputs; Range = all possible outputs
		Types of	One-one, onto, bijective	Describes function
		Functions	one one, enter, algebra	properties
11	Trigonometrly dentities		$\sin^2 x + \cos^2 x = 1,$	x is the angle in
		023,1011010100	$1 + \tan^2 x = \sec^2 x, 1 + \cot^2 x = \csc^2 x$	radians or degrees
		Angle Formulas	$[\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B]$	A, B are angles
		Double	$\sin 2A = 2\sin A\cos A,$	A is angle
		Angle	$\cos 2A = \cos^2 A - \sin^2 A$	Ü
11	$\mathbf{Complex}$	General	[z=a+ib]	a, b are real numbers;
	Numbers	Form		$i = \sqrt{-1}$
		Conjugate	$ [\bar{z} = a - ib] $ $ [z = \sqrt{a^2 + b^2}] $	Conjugate of z
		Modulus	$[\ z = \sqrt{a^2 + b^2}\]$	Magnitude of complex number z
11	Quadratic Equations	Roots	$\left[x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \right]$	a, b, c are coefficients of $ax^2 + bx + c = 0$
		Discriminant	$[D = b^2 - 4ac]$	D determines nature of roots

Clas	$\operatorname{ssLesson}$	Concept	Formula / Key Point	Explanation of variables
		Sum & Product of Roots	$\left[\alpha + \beta = -\frac{b}{a}, \alpha \beta = \frac{c}{a} \right]$	α, β are roots
11	Sequence & Series	AP nth Term	$[\ a_n=a+(n-1)d\]$	a = first term, $d = $ common difference, $n = $ term number
		AP Sum	$\left[\ S_n = \tfrac{n}{2}[2a + (n-1)d] \ \right]$	Sum of first n terms in AP
		GP nth Term	$[\ a_n=ar^{n-1}\]$	a = first term, $r = $ common ratio
		GP Sum (finite)	$\left[\ S_n = a \frac{r^n-1}{r-1}, \ r \neq 1 \ \right]$	Sum of first n terms in GP
		GP Sum (infinite)	$\left[S_{\infty} = \frac{a}{1-r}, r < 1 \right]$	Sum of infinite GP
11	Permutation & Combination	on Permutation	$\left[\ _{n}P_{r}=\frac{n!}{(n-r)!}\ \right]$	Number of arrangements of r objects from n
		Combination	$\left[\ _{n}C_{r}=\frac{n!}{r!(n-r)!}\ \right]$	Number of ways to choose r objects from n
11	Binomial Theorem	Property Expansion	$ [{}_{n}C_{r} =_{n} C_{n-r}] $ $ [(x+a)^{n} = \sum_{k=0}^{n} {n \choose k} x^{n-k} a^{k}] $	Symmetry property $n = \text{power}; k = \text{index}; \binom{n}{k} = \text{binomial coefficient}$
		General Term	$[T_{k+1} = \binom{n}{k} x^{n-k} a^k]$	Term number $k+1$
11	Straight Lines	Slope	$[\ m = \frac{y_2 - y_1}{x_2 - x_1}\]$	Slope of line through points (x_1, y_1) and (x_2, y_2)
		Point-Slope Form	$[\ y-y_1=m(x-x_1)\]$	Equation of line with slope m through (x_1, y_1)
		Slope-Interce Form	p[ty = mx + c]	m = slope, c = y-intercept
		Distance	$[\ \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}\]$	Distance between two points
		Angle Between	$\left[\ \tan \theta = \left \frac{m_1 - m_2}{1 + m_1 m_2} \right \ \right]$	θ = angle between lines with slopes
11	Conic Sections	Lines Circle	$[\ (x-h)^2 + (y-k)^2 = r^2\]$	m_1, m_2 Center at (h, k) ; radius = r
	500010115	Parabola	$[y^2 = 4ax, x^2 = 4ay]$	a = distance from vertex to focus
		Ellipse	$\left[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \right]$	a, b = semi-major and semi-minor axes

Cla	ssLesson	Concept Hyperbola	Formula / Key Point	Explanation of variables $a, b = \text{real numbers}$ defining hyperbola shape
			$\left[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \right]$	
11	3D Geometry	Distance in 3D	$\left[\begin{array}{l} \sqrt{(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2} \\ \end{array}\right]$	Distance between points (x_1, y_1, z_1) and (x_2, y_2, z_2)
		Section Formula	$\left[\;\left(\frac{mx_2+nx_1}{m+n},\frac{my_2+ny_1}{m+n},\frac{mz_2+nz_1}{m+n}\right)\;\right]$	Divides segment in ratio $m:n$
11	Limits & Deriva- tives	Limit Laws	$[\lim_{x\to a} f(x) = L]$	Limit of function f as x approaches a
	uives	Standard Limits	$\left[\lim_{x \to 0} \frac{\sin x}{x} = 1, \lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2} \right]$	Standard trigonometric limits
11	Mathematic Reason- ing	Derivatives chogical Connectives	$\left[\begin{array}{l} \frac{d}{dx}x^n = nx^{n-1}, \frac{d}{dx}\sin x = \cos x \end{array}\right]$ And (), Or (), Not (¬), If-then (→), Iff ()	Derivative formulas Basic logical operators
	8	Contrapositiv	$\forall q \neg q \rightarrow \neg p$	Negation of p and q
11	Statistics	Mean	$\left[\ \bar{x} = \frac{\sum f_i x_i}{\sum f_i} \ \right]$	x_i values, f_i frequencies
		Variance	$\left[\begin{array}{c}\sigma^2=\frac{\sum(x_i-\bar{x})^2}{n}\end{array}\right]$	n = total number of observations
		Standard Deviation	$[\ \sigma = \sqrt{\sigma^2}\]$	Square root of variance
11	Probability	Probability	$[P(A) = \frac{\text{Favourable}}{\text{Total}}]$	Probability of event A
		Complement	[P(A') = 1 - P(A)]	Probability of complement of A
		Addition Rule	$[P(A \cup B) = P(A) + P(B) - P(A \cap B)$	Probability of union of A and B
		Independence	$e[P(A \cap B) = P(A) \cdot P(B)]$	For independent events A and B
12	${\bf Relations} \\ \&$	Types of Relations	Reflexive: $(a, a) \in R$ Symmetric: If $(a, b) \in R$ then $(b, a) \in R$ Transitive: If	a, b, c are elements in set; R is a relation
	Functions		$(a,b),(b,c) \in R \text{ then } (a,c) \in R$	defined on the set
		Equivalence Relation	Relation which is reflexive, symmetric, and transitive	Same as above
		Functions	One-one, Onto, Inverse Function,	Functions mapping
			Composite Function	elements from one set to another
12	Inverse Trigono- metric Functions	Principal Values	$[\sin^{-1} x, \cos^{-1} x, \tan^{-1} x \text{ defined on restricted domains }]$	x is a real number within the domain of respective functions

Cla	$\operatorname{ssLesson}$	Concept Properties Addition Formulas	Formula / Key Point	Explanation of variables x is a real number; π is the constant pi x, y are real numbers; domain condition:
			$ \left[\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}, \tan^{-1} x + \cot^{-1} x = \frac{\pi}{2} \right] \left[\tan^{-1} x + \tan^{-1} y = \tan^{-1} \left(\frac{x+y}{1-xy} \right) \right] $ (if $xy < 1$)	
12	Matrices	Types of Matrices Matrix Operations	Square, Diagonal, Scalar, Identity, Zero Matrix Addition, Subtraction, Multiplication, Transpose For (2×2) : [$ A =ad-bc$]; For (3×3) :	xy < 1 Classifications of matrix types Basic matrix operations A is matrix; a, b, c, d
		Inverse Matrix	Expansion by minors $ [A^{-1} = \frac{1}{ A } \operatorname{adj} A \text{ (if } A \neq 0)] $	are entries of matrix A^{-1} is inverse of matrix A ; $ A $ determinant; $adj = adjoint$
12	Determina	nts roperties	[$ A = A^T $, If two rows/columns are equal, then $ A = 0$]	A is determinant; A^T transpose
		Expansion	Expansion along row or column	Method to compute determinant
		Cramer's Rule	$[x = \frac{ D_x }{ D }, \text{ etc. }]$	$ D $ is determinant of coefficient matrix; $ D_x $ is determinant with column replaced
12	Continuity & Differentiability	Continuity	[f continuous at $x=a$ if $\lim_{x\to a} f(x) = f(a)$]	f is function; $x \to a$ means approaching a
	uability	Differential	f differentiable at $x = a$ if derivative exists; differentiability continuity	f'(x) derivative of $f(x)$
		Derivative Formulas	$[(x^n)' = nx^{n-1}, (\sin x)' = \cos x,$ $(\ln x)' = \frac{1}{x}]$	Standard derivatives; x variable, n constant
12	Application of Derivatives		Slope of tangent = $f'(x)$; Equation of tangent and normal lines	f'(x) is derivative at x
	010 02	Incr/Decr	[$f'(x) > 0$ increasing, $f'(x) < 0$ decreasing]	f'(x) first derivative
12	Integrals	Maxima & Minima Indefinite	[$f'(x) = 0$ and sign changes of $f'(x)$ for maxima/minima] [$\int x^n dx = \frac{x^{n+1}}{n+1} + C$, $\int e^x dx = e^x + C$]	$f'(x)$ is first derivative $n \neq -1$, C is constant
		Integral Definite Integral Properties	$\left[\int_{a}^{b} f(x) dx = F(b) - F(a) \text{ where } F'(x) = f(x) \right]$ Linearity, additivity over intervals	of integration $F'(x) = f(x), a, b$ are integration limits Basic integral properties

Cla	$\operatorname{ssLesson}$	Concept	Formula / Key Point	Explanation of variables
12	Application of Integrals	sArea under curve	[Area = $\int_a^b f(x) dx$]	f(x) function; limits a to b
	8	Area between curves	$\left[\begin{array}{l} \int_a^b (f(x)-g(x)) dx, \text{where} f(x) \geq g(x) \\ \right]$	f(x) upper curve; $g(x)$ lower curve
12	Differential Equations	Order and Degree Separable Equations General	Order: highest derivative order; Degree: power of highest derivative $\left[\frac{dy}{dx} = g(x) h(y)\right]$ Solution includes arbitrary constants;	Definitions of order & degree y dependent variable; x independent General vs particular
12	Vectors	Solution Vector Operations Dot Product	particular solution satisfies conditions Addition, subtraction, scalar multiplication $ [\ \vec{a} \cdot \vec{b} = \vec{a} \ \vec{b} \cos \theta = a_1 b_1 + a_2 b_2 + a_3 b_3 \] $	solution Basic vector operations \vec{a}, \vec{b} are vectors; θ angle between; a_i, b_i components
12	Three Dimensional	Cross Product Direction Cosines	[$\vec{a} \times \vec{b}$ is a vector perpendicular to both \vec{a} and \vec{b}] Cosines of angles with coordinate axes: l, m, n	\vec{a}, \vec{b} vectors l, m, n are direction cosines
12	try Linear Program-	Equation of Line Equation of Plane Objective Function	$\left[\begin{array}{l} \frac{x-x_1}{l} = \frac{y-y_1}{m} = \frac{z-z_1}{n} \end{array}\right]$ $\left[\begin{array}{l} ax + by + cz + d = 0 \end{array}\right]$ $\left[\begin{array}{l} Z = ax + by \end{array}\right]$	(x_1, y_1, z_1) point; l, m, n direction ratios (a, b, c) is normal vector a, b are coefficients; x, y are variables to
	ming	Feasible Region Corner Point Method	Set of points satisfying constraints $ \mbox{Evaluate } Z \mbox{ at vertices of feasible region} \\ \mbox{to find optimum} $	optimize Region in domain satisfying constraints Method to find optimum at vertices
12	Probability	Conditional Probability	$ [P(A B) = \frac{P(A \cap B)}{P(B)}, P(B) > 0] $ $ n[P(A \cap B) = P(A) P(B A) = P(B) P(A B)] $ $ [P(A_i B) = \frac{P(A_i) P(B A_i)}{\sum_j P(A_j) P(B A_j)}] $	A,B are events Joint and conditional probabilities A_i are mutually exclusive events; B is given event