TOPOLOGÍA. Examen del Tema 3

- Licenciatura de Matemáticas. GRUPO 2^0 A - Curso 2010/11 Profesor: Rafael López Camino

Nombre:

Razonar las respuestas

- 1. Sean en \mathbb{R} las topologías τ_1 y τ_2 del punto excluido para p=1 y q=2, respec. En $(\mathbb{R}^2, \tau_1 \times \tau_2)$, hallar el interior y la adherencia de la diagonal principal.
- 2. Se considera en \mathbb{R} la topología τ_S que tiene por base $\beta_S = \{[a,b); a < b, a, b \in \mathbb{R}\}$ y τ_d la de base $\beta_d = \{[a,\infty); a \in \mathbb{R}\}$. En el producto $(\mathbb{R} \times \mathbb{R}, \tau_S \times \tau_d)$ probar que el conjunto $D = \{(x,x); x \in \mathbb{R}\}$ es homeomorfo a (\mathbb{R}, τ_S) y $A = \{(x,-x); x \in \mathbb{R}\}$ tiene la topología discreta.
- 3. Estudiar la continuidad de $f:(\mathbb{R},\tau_S)\to(\mathbb{R}^2,\tau_u\times\tau_S),\,f(x)=(x,x+1).$

1. Sean en \mathbb{R} las topologías τ_1 y τ_2 del punto excluido para p=1 y q=2, respec. En $(\mathbb{R}^2, \tau_1 \times \tau_2)$, hallar el interior y la adherencia de la diagonal principal.

Solución. Sea $D = \{(x, x); x \in \mathbb{R}\}$ la diagonal principal. Una base de entornos en la topología $\tau_1 \times \tau_2$ de (x, y) es

$$\beta_{(x,y)} = \{\{x,1\} \times \{y,2\}\} = \{(x,y),(x,2),(1,y),(1,2)\}.$$

Por tanto, una base de entornos de (x, x) es

$$\beta_{(x,x)} = \{\{x,1\} \times \{x,2\}\} = \{(x,x), (x,2), (1,x), (1,2)\},\$$

que al menos tiene al punto (1,2) que no está en la diagonal principal. Esto quiere decir que $\{(x,x),(x,2),(1,x),(1,2)\}\not\subset D$ y por tanto, el interior es el vacío.

Si (x,y) no está en la diagonal principal, entonces $x \neq y$, y por tanto, el conjunto $\{(x,y),(x,2),(1,y),(1,2)\}$ intersecará a D si x=2 o y=1. Por tanto,

$$\overline{D} = \{(2, y); y \in \mathbb{R}\} \cup \{(x, 1); x \in \mathbb{R}\}.$$

- 2. Se considera en \mathbb{R} la topología τ_S que tiene por base $\beta_S = \{[a,b); a < b, a, b \in \mathbb{R}\}$ y τ_d la de base $\beta_d = \{[a,\infty); a \in \mathbb{R}\}$. En el producto $(\mathbb{R} \times \mathbb{R}, \tau_S \times \tau_d)$ probar que el conjunto $D = \{(x,x); x \in \mathbb{R}\}$ es homeomorfo a (\mathbb{R}, τ_S) y $A = \{(x,-x); x \in \mathbb{R}\}$ tiene la topología discreta. Solución.
 - (a) Se define $f: D \to (\mathbb{R}, \tau_S)$ mediante f(x, x) = x, cuya inversa es $g: (\mathbb{R}, \tau_S) \to D$, g(x) = (x, x). La aplicación g es continua, ya que al componer con la proyecciones tenemos $p \circ g = 1_R$ en (\mathbb{R}, τ_S) y $p' \circ g: (\mathbb{R}, \tau_S) \to (\mathbb{R}, \tau_d)$ es continua, pues $(p' \circ g)^{-1}([a, \infty) = [a, \infty) \in \tau_S$. Por otro lado, la aplicación f es continua, ya que

$$f^{-1}([a,b)) = \{(x,x); x \in [a,b)\} = ([a,b) \times [a,\infty)) \cap D \in (\tau_S \times \tau_d)_{|D}.$$

(b) Para (x, -x) una base de entornos en A es

$$\{([x,y)\times[-x,\infty))\cap A; y>x\}=\{(x,-x\}.$$

3. Estudiar la continuidad de $f:(\mathbb{R},\tau_S)\to (\mathbb{R}^2,\tau_u\times \tau_S), \, f(x)=(x,x+1).$ Solución. Al componer con la primera proyección, tenemos la aplicación identidad $1_{\mathbb{R}}:(\mathbb{R},\tau_S)\to (\mathbb{R},\tau_u)$ que es continua, pues $1_{\mathbb{R}}^{-1}((a,b))=(a,b)\in \tau_S.$ Con la segunda, $(p'\circ f)^{-1}([a,b))=[a-1,b-1)$, que está en $\tau_S.$