# Stochastic Gradient Descent with Momentum and Line Searches

David Nardi MSc student in Artificial Intelligence, University of Florence 3rd February 2024

#### Abstract

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

#### Contents

| 1                         | Intr                                 | roduction              | 2 |
|---------------------------|--------------------------------------|------------------------|---|
|                           | 1.1                                  | Classification task    | 2 |
|                           | 1.2                                  | Optimization problem   | 2 |
| 2                         | Mini-batch gradient descent variants |                        |   |
|                           | 2.1                                  | Fixed step-size        | 6 |
|                           | 2.2                                  | Stochastic line search | 6 |
|                           | 2.3                                  | Fixed momentum term    | 7 |
| 3 Experiments             |                                      | 8                      |   |
| 4 Mathematical background |                                      | 9                      |   |
|                           |                                      |                        |   |

#### 1 Introduction

#### 1.1 Classification task

#### 1.2 Optimization problem

Given the following dataset

$$\mathcal{D} = \{ (x^{(i)}, y^{(i)}) \mid x^{(i)} \in \mathcal{X}, y^{(i)} \in \mathcal{Y}, i = 1, 2, \dots, N \}$$

the general Machine Learning optimization problem for the supervised learning subset is formulated as follows

$$\min_{w \in \mathbb{R}^p} f(w) = L(w) + \lambda \Omega(w) = \begin{cases} L(w) = \frac{1}{N} \sum_{i=1}^{N} \ell_i(w) \\ \Omega_{\ell_2} = \frac{1}{2} ||w||_2^2 \end{cases}$$

where L(w) is called *loss function*, and it is a finite-sum, and  $\Omega(w)$  it's the *regularization term* with its coefficient  $\lambda$ . There are three regularization possible choices, the  $\ell_2$  regularization was chosen for this problem.

The task performed is the binary classification, using the Logistic Regression model. Every machine learning model has its own loss function, the logistic regression uses the log-loss (figure 1a on page 4), for one single dataset sample  $\ell_i = \log(1 + \exp(-y^{(i)}w^Tx^{(i)}))$ , follows the resulting optimization problem

$$\min f(w) = \frac{1}{N} \sum_{i=1}^{N} \log(1 + \exp(-y^{(i)} w^{T} x^{(i)})) + \lambda \frac{1}{2} ||w||^{2}$$
(1)

where i = 1, ..., N are the dataset samples,  $\mathcal{Y} = \{-1, 1\}$  is the set of the possible values for the response variable, corresponding to the negative or positive class.  $\mathcal{X} \subseteq \mathbb{R}^{(p+1)}$  are dataset examples, p+1 means that there are p features and the intercept. The 1/N term isn't always used, we choose to use that term for scaling issues.

We defined the matrix associated to the dataset and the model weights as follow

$$X^T = \begin{pmatrix} 1 & x_1^{(1)} & x_2^{(1)} & \dots & x_p^{(1)} \\ 1 & x_1^{(2)} & x_2^{(2)} & \dots & x_p^{(2)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_1^{(N)} & x_2^{(N)} & \dots & x_p^{(N)} \end{pmatrix} \in \mathbb{R}^{N \times (p+1)} \qquad x^{(i)} = \begin{pmatrix} 1 \\ x_1^{(i)} \\ x_2^{(i)} \\ \vdots \\ x_p^{(i)} \end{pmatrix} \quad w = \begin{pmatrix} b \\ w_1 \\ w_2 \\ \vdots \\ w_p \end{pmatrix}$$

the constant column is added for the intercept. We can see that every  $x^{(i)}$  is a column vector

$$\nabla f(w) = \frac{1}{N} X^T r + \lambda w, \quad r_i = -y^{(i)} \sigma(-y^{(i)} w^T x^{(i)})$$

$$\nabla^2 f(w) = \frac{1}{N} X D X^T + \lambda I, \quad d_{ii} = \sigma(y^{(i)} w^T x^{(i)}) \sigma(-y^{(i)} w^T x^{(i)})$$

 $r \in \mathbb{R}^N$ ,  $D \in \mathbb{R}^{N \times N}$ 

**Proposition 1.** Problem (1) admits a unique optimal solution.

*Proof.* The objective function  $f(w): \mathbb{R}^{(p+1)} \to \mathbb{R}$ ,  $f(w) \in C^2(\mathbb{R}^{(p+1)})$ 

First thing we prove the existence of an optimal solution, that is the global minimum. The derivatives

$$\begin{split} \nabla f(w) &= \frac{1}{N} X^T r + \lambda w, \quad r_i = -y^{(i)} \sigma(-y^{(i)} w^T x^{(i)}), r \in \mathbb{R}^N \\ \nabla f_i(w) &= \frac{1}{N} x^{(i)} r_i + \lambda w \\ \nabla^2 f(w) &= \frac{1}{N} X D X^T + \lambda I_{(p+1)}, \quad d_{ii} = \sigma(y^{(i)} w^T x^{(i)}) \sigma(-y^{(i)} w^T x^{(i)}), D \in \mathbb{R}^{N \times N} \end{split}$$

where  $\sigma(z)$  is the sigmoid function, see figure 1b on the next page the second order derivative is positive-defined, this because of the square of the euclidean norm, this implies that the objective function is coercive. By a corollary of the Weirstrass theorem we prove that the function admits global minimum.

$$y = \begin{pmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(N)} \end{pmatrix} \in \{-1, 1\}$$

$$f(w) = \sum_{i=1}^{N} \log(1 + \exp(-y^{(i)}w^Tx^{(i)}))$$
  $f_i(w) = \log(1 + \exp(-y^{(i)}w^Tx^{(i)}))$ 



- $uv \gg 0$ : the example is labelled correctly
- $uv \ll 0$ : the class assigned to the example is the wrong one
- the hessian matrix is positive defined  $\forall w$ , this means that the objective function, which is quadratic, is coercive and for the continuity that function admits global minimum, so f(w) has finite inferior limit
- the hessian matrix being positive defined implies also that the objective function is strictly convex (on the other hand the loss function is just convex, due to its hessian matrix being positive semi-defined), this implies that if the global minimum exists, that solution is unique
- a global minimum is a point that satisfy  $\nabla f(w^*) = 0$ , which is a sufficient condition implied by the convexity of the problem, see figure 1a on the preceding page
- the  $\ell_2$  regularization implies that the objective function is strongly convex, this speeds up the convergence
- further more we can assume that  $\nabla f(w)$  is Lipschitz-continuous with constant L

### 2 Mini-batch gradient descent variants

see algorithm 1

#### 2.1 Fixed step-size

Algorithm 1: Mini-batch Gradient Descent with fixed or decreasing step-size

```
given w^0 \in \mathbb{R}^n, k=0 e \{\alpha_k\} \mid \alpha_k = \alpha \vee \alpha_k = \frac{\alpha_0}{k+1} while (\|\nabla f(w^k)\| > \varepsilon(1+|f(w)|)) shuffle \{1,\ldots,N\} and split B_1,\ldots,B_{N/M} such that 1<|B_t|=M\ll N set y_0=w^k for t=1,\ldots,N/M get mini-batch indices from B_t approximate true gradient \nabla f_{i_t}(w) = \frac{1}{M} \sum_{j\in B_t} \nabla f_j(y_{t-1}) compute direction d_t = -\nabla f_{i_t}(y_{t-1}) make a (internal) step y_t = y_{t-1} + \alpha_k d_t end for update weights w^{k+1} = y_{N/M} epoch ends k=k+1 end while
```

#### 2.2 Stochastic line search

#### Algorithm 2: Mini-batch Gradient Descent with Armijo line search

```
given w^0 \in \mathbb{R}^{p+1}, \gamma \in (0,1), \, \delta \in (0,1), \, \alpha_0 \in \mathbb{R}^+
_{2} k = 0
|\mathbf{while}| (\|\nabla f(w^k)\| > \varepsilon(1+|f(w)|))
    shuffle \{1,\ldots,N\} and split B_1,\ldots,B_{N/M} such that 1<|B_t|=M\ll N
    \mathtt{set}\ y_0=w^k
    for t=1,\ldots,N/M
     get mini-batch indices i_t from B_t
     approximate true gradient 
abla f_{i_t}(w) = rac{1}{M} \sum_{j \in B_t} 
abla f_j(y_{t-1})
     compute direction d_t = -\nabla f_{i_t}(y_{t-1})
     lpha = \mathtt{reset}() , q = 0
10
     compute potential next step y_t = y_{t-1} + \alpha d_t
11
     while (f_{i_t}(y_t) > f_{i_t}(y_{t-1}) + \gamma \alpha \nabla f_{i_t}(y_{t-1})^T d_t)
12
       reduce step-size \alpha = \delta \alpha
13
       rejections counter q=q+1
14
     end while
15
     set optimal mini-batch step-size lpha_t=lpha
16
     make a (internal) step y_t = y_{t-1} + \alpha_t d_t
17
    end for
    update weights w^{k+1} = y_{N/M}
    epoch ends k=k+1
21 end while
```

#### 2.3 Fixed momentum term

Algorithm 3: Mini-batch Gradient Descent with fixed Momentum term and fixed step-size

```
given w^0 \in \mathbb{R}^{p+1}, \{\alpha_k\} = \alpha, \{\beta_k\} = \beta \in (0,1)
_{2} k = 0
   while (\|\nabla f(w^k)\| > \varepsilon(1+|f(w)|))
    shuffle \{1,\ldots,N\} and split B_1,\ldots,B_{N/M} such that 1<|B_t|=M\ll N
    set y_0=w^k, d_0=0
    for t = 1, \ldots, N/M
     get mini-batch indices i_t from B_t
     approximate true gradient 
abla f_{i_t}(w) = rac{1}{M} \sum_{j \in B_t} 
abla f_j(y_{t-1})
     compute direction d_t = - ig( (1-eta) 
abla f_{i_t}(y_{t-1}) + eta d_{t-1} ig)
     make a (internal) step y_t = y_{t-1} + \alpha_k d_t
10
    end for
11
    update weights w^{k+1} = y_{N/M}
    epoch ends k = k + 1
14 end while
```

#### Algorithm 4: Mini-batch Gradient Descent with Armijo line search for step-size and Momentum correction

```
given w^0 \in \mathbb{R}^{p+1}, \gamma \in (0,1), \delta_a \in (0,1), \alpha_0 \in \mathbb{R}^+, \delta_m \in (0,1), \beta_0 \in (0,1)
_{2} k = 0
3 while (\|\nabla f(w^k)\| > \varepsilon(1+|f(w)|))
    shuffle \{1,\ldots,N\} and split B_1,\ldots,B_{N/M} such that 1<|B_t|=M\ll N
    set y_0=w^k, d_0=0
    for t = 1, \ldots, N/M
      get mini-batch indices i_t from B_t
      approximate true gradient \nabla f_{it}(w) = \frac{1}{M} \sum_{j \in B_t} \nabla f_j(y_{t-1}) compute potential next direction d_t = -\left((1-\beta)\nabla f_{i_t}(y_{t-1}) + \beta d_{t-1}\right)
      q_m = 0
10
      while (\nabla f_{i_t}(y_{t-1})^T d_t \geq 0)
11
       reduce momentum term eta=\delta_meta
12
       rejections counter q_m = q_m + 1
13
      end while
14
      set optimal mini-batch momentum term eta_t = eta
15
      \alpha = \mathtt{reset}() , q_a = 0
16
      compute potential next step y_t = y_{t-1} + \alpha d_{t-1}
17
      while (f_{i_t}(y_t) > f_{i_t}(y_{t-1}) + \gamma \alpha \nabla f_{i_t}(y_{t-1})^T d_t)
18
       reduce step-size lpha=\delta_alpha
19
       rejections counter q_a=q_a+1
20
      end while
21
      set optimal mini-batch step-size \alpha_t = \alpha
      make a (internal) step y_t = y_{t-1} + \alpha_t d_t
24 end for
25 update weights w^{k+1} = y_{N/M}
epoch ends k = k + 1
27 end while
```

```
Algorithm 5: Mini-batch Gradient Descent with Armijo line search for step-size and Momentum restart
 given w^0 \in \mathbb{R}^{p+1}, \gamma \in (0,1), \delta_a \in (0,1), \alpha_0 \in \mathbb{R}^+, \delta_m \in (0,1), \{\beta_k\} = \beta \in (0,1)
3 while (\|\nabla f(w^k)\| > \varepsilon(1+|f(w)|))
    shuffle \{1,\ldots,N\} and split B_1,\ldots,B_{N/M} such that 1<|B_t|=M\ll N
    set y_0=w^k, d_0=0
    for t=1,\ldots,N/M
     get mini-batch indices i_t from B_t
     approximate true gradient 
abla f_{i_t}(w) = rac{1}{M} \sum_{j \in B_t} 
abla f_j(y_{t-1})
     compute potential next direction d_t = -((1-eta)\nabla f_{i_t}(y_{t-1}) + eta d_{t-1})
     if (\nabla f_{i_t}(y_{t-1})^T d_t \geq 0)
10
       restart direction d_t=d_0
11
      end if
12
      \alpha = \mathtt{reset}(), q_a = 0
13
      compute potential next step y_t = y_{t-1} + \alpha d_{t-1}
     while (f_{i_t}(y_t) > f_{i_t}(y_{t-1}) + \gamma \alpha \nabla f_{i_t}(y_{t-1})^T d_t)
       reduce step-size lpha=\delta_alpha
      rejections counter q_a=q_a+1
17
     end while
     set optimal mini-batch step-size lpha_t=lpha
19
     make a (internal) step y_t = y_{t-1} + lpha_t d_t
20
    end for
    update weights w^{k+1} = y_{N/M}
epoch ends k = k + 1
24 end while
```

### 3 Experiments

## Mathematical background

**Theorem 1** (Weirstrass theorem). Let  $f: \mathbb{R}^n \to \mathbb{R}$  be a continuous function and  $S \subseteq \mathbb{R}^n$  a compact set. Then function f admits global minimum in S.

**Corollary 2** (Sufficient condition). If function  $f: \mathbb{R}^n \to \mathbb{R}$  is a continuous and coercive function, then f admits global minimum in  $\mathbb{R}^n$ .

**Proposition 2** (Coercivity of a quadratic function). A quadratic function  $f(x) = \frac{1}{2}x^TQx - c^Tx$ is said to be coercive if and only if the symmetric matrix  $Q \in \mathbb{R}^{n \times n}$  is positive-defined.

**Proposition 3** (Unique global minimum). Let  $S \subseteq \mathbb{R}^n$  be a convex set, let  $f: S \to \mathbb{R}$  be a strictly convex function. Then the global minimum, if exists, is unique.

**Definition 1** (Convex function). Let  $S \subseteq \mathbb{R}^n$  be a convex set, a function  $f: S \to \mathbb{R}$  is said to be convex if the hessian matrix is semi-positive-defined. If the hessian matrix is positive-defined then the function is strictly convex.