模拟电路的仿真分析举例--共射放大电路仿真

(P142-153)

学习:第五章

本次实验无需验收。

本次实验无需书写实验报告。

请视情况提交课后作业完整文件夹至FTP。

- 实验目的
- 1. 熟悉ORCAD-PSPICE软件的使用方法。
- 2. 理解共射放大电路放大特性。
- 3. 了解共射放大电路的设计方法。
- 4. 学习共射放大电路的仿真分析方法。

仿真实验任务(波形幅度测量请用峰峰值),实际操作为实验6-P283

下述实验任务分别以R」=∞和R」=1K时仿真测量,请注意R」不同对测量结果的影响。

- 1. 仿真分析静态工作点("Bias Point"或"DC Sweep") 调节Wb,使Q点满足要求($I_{CO} = 6mA$ 多考),查看各点的静态电压值。
- 2. 电压放大倍数的测量(Time Domain(Transient)) 仿真Us、Ui、Uo以及Ub、Uc、Ue的波形,并且求出有关电压增益,注意Cb、Cc以及Ce 的作用和影响。
- 3. 查看输出饱和失真、截止失真现象以及观测最大不失真输出电压峰峰值(Time Domain (Transient))
 - 峰峰值设为400mV;查看输出饱和失真、截止失真现象。 应用参数变量方法;改变输入信号幅度,仿真测出最大不失真输出电压峰峰值约8.0V。
- 4.输入电阻和输出电阻的测量 ("AC Sweep/Noise") 注意实际测量方法和仿真方法的异同。
- 5. 测量上限频率和下限频率("AC Sweep/Noise") 在不失真的条件下,保持输入幅度不变,改变频率,来仿真测量输出。
 - 注意:前述1,2,3,4,5请保持静态工作点不变下测量。
- 6. 观察静态工作点对输出波形的影响("Bias Point"或"DC Sweep"和Time Domain(Transient)) 饱和失真、截止失真、同时出现。
- 7.选做:(1)把 R_{e2} 短接重新测量上述参数。(P146中 R_{e2} 被短接的)(2)三个电容开路或短路对上述参数的影响。

实际共射放大电路实验板 ($R_L = \infty$ 、 $R_L = 1$ kΩ)

参考P145实验仿真电路图:POT电位器(库:POT/BREAKOUT)

设置VSIN的属性

	Α	
	SCHEMATIC1 : PAGE1	田工六法八七
AC		(用于交流分析)
Bias Value Power	σw	VID D D 4//1000 1/1
Color	Default	
DC	-	
Designator		
DF	0	\rightarrow BT \pm \pm \pm \pm
FREQ	1kHz	(用于直流分析
Graphic	VSIN.Normal	112 2
ID		
Implementation		
Implementation Path		
Implementation Type	PSpice Model	
Location X-Coordinate	240	
Location Y-Coordinate	180	
Name	INS44	
Part Reference	V1	
PCB Footprint		
PHASE	0	
Power Pins Visible		
Primitive	DEFAULT	
PSpiceOnly	TRUE	
PSpiceTemplate	V^@REFDES %+ %- ?DC D	
Reference	V1	
Source Library	DACADENCE\SPB_16.3	
Source Package	VSIN	
Source Part	VSIN.Normal	三月于瞬态分析
TD	0	או נוליטידעיו ב כדו
Value	VSIN	
VAMPL	10	
VOFF	0	

1. R_L = ∞及R_L = 1K时,仿真分析静态工作点

- 选择静态工作点分析 "Bias Point" 在Schematic图上直接显示V和I。
- 设置直流扫描分析 "DC Sweep ",以电源电压 /1为扫描对象,在 Probe中查看Q点数据。
- 用直流扫描分析确定电路参数

问题1:用PSPICE如何仿真分析放大电路的静态工作点?应设置何种分析方式?为什么要设置合适的静态工作点?

Analysis Setup (Bias Point)

Analysis Setup (DC Sweep)

P149实验仿真电路图:POT电位器;PARAM

用直流扫描分析确定电路参数

确定SET=0.7681

2、 $R_L = ∞$ 及 $R_L = 1$ K时,电压放大倍数的测量

- 设置瞬态分析Time Domain (Transient);
- 查看仿真Us、Ui、Uo以及Ub、Uc、Ue的波形,并且求出有关电压增益;
 注意相位关系
- 电压传输特性曲线;

注意:Cb、Cc以及Ce的作用和影响。

Analysis Setup (**Time Domain (Transient)**)

P153 图5.47电路的电压传输特性曲线

3. 查看输出饱和失真、截止失真现象以及观测最大不失真输出电压峰峰值

- 设置瞬态分析 "Time Domain (Transient)" ;
- 将输入正弦信号峰峰值设为400 mV;分别仿真 $RL=1 \text{k}\Omega$ 和RL开路两种情况;查看输出电压波形,判断输出饱和失真、截止失真。
- 应用参数变量方法。当R_L = ∞时,改变输入信号幅度,仿真测出最大不失真输出电压。注意如果达不到峰峰值约8.5V要求请重新设置静态工作点,同时请重新仿真上述1和2的任务。(注:实际实验中以开路,刚出现饱和失真为判断标准)

Time Domain (Transient) 设置

了解应用参数变量方法,测量最大不失真。

了解两重扫描

带载的时候看波峰截止缩顶失真

注意:测量最大不失真一般测量开路的时候,以饱和削顶失真为准

了解

RL=100meg

了解开路的时候看波谷饱和削顶失真

了解

4.输入电阻和输出电阻的测量

分别在R_L = ∞及R_L = 1K

- 设置交流分析 "AC Sweep/Noise" ;
- 绘制频率特性曲线,在曲线上求出输入电阻。
- 把输入的AC设置为0,在输出端把RL用一个Vsin代替设置AC=10mv(注意是小信号),在AC Sweep上可求出输出电阻。

注意设置AC为小信号,即使输出不能超出最大不失真输出。

5. R₁ = ∞及R₁ = 1K时,测量上限频率和下限频率

- 设置交流分析 "AC Sweep/Noise" ;
- 绘制频率特性曲线,在曲线上测量出上限频率和下限频率。
- 同时还可以观测相频特性和电压增益。

注意设置AC为小信号,即使输出不能超出最大不失真输出。

注意区分输出电压频率特性与电压放大倍数频率特性的不同

问题2:用orcad测试放大电路的电压放大倍数和频率特性应设置何种分析方式?

问题3:能否用交流扫描分析求放大电路的最大不失真输出电压?

Analysis Setup (AC Sweep/Noise)

P122 表5.12 交流扫描分析附加项含义

输入电阻(AC SWEEP)

输入AC=0,输出AC=10mv

输出电阻(AC SWEEP)

6. R_L = ∞及R_L = 1K时,观察静态工作点对输出波形的影响

- 选择静态工作点分析 "Bias Point" 在Schematic图上直接显示V和I。
- ■设置瞬态分析 "Time Domain (Transient)" ;
- •在前述静态工作点(参考 $I_{CQ} = 6 \text{ mA}$)且 $R_L = ∞$ 的情况下,增大输入信号使输出电压保持没有失真(较大的输出电压利于失真的观察)。然后调节电位器Wb,改变电路的静态工作点,使电路分别产生较为明显的截止失真或饱和失真,测出此时相应的集电极静态电流大小,记录示波器显示的失真波形。

思考题

问题1:用orcad如何仿真分析放大电路的静态工作点?应设置何种分析方式? 为什么要设置合适的静态工作点?

问题2:用orcad测试放大电路的电压放大倍数和频率特性应设置何种分析方

式?

问题3:能否用交流扫描分析求放大电路的最大不失真输出电压?

问题4:用orcad测试放大电路的输出电压波形应设置何种分析方式?

课后作业

本次实验无需验收。

本次实验无需书写实验报告,请在实验教程中自行完成PPT中的思考题。

但请留存仿真实验数据以备下次实验应用。

请视情况提交下述"选做课后作业1"和"选做课后作业2"完整文件夹至FTP。

- 1、请提交做好的整个EDA文件夹的内容;请配上word文档说明。
- 2、提交时需压缩文件,压缩文件名的命名"座号_姓名.rar"。
- 3、提交的位置和截止时间:

"选做04 模拟电路的仿真分析举例_下次上课前提交"

选做课后作业1

如下两图所示,请仿真V1(VPWL)和电容C1两端的时域波形。 V1:分段线性源设置请参见P125。

阻尼振荡器电路图

分段线性源设置图

分段线性信号源(VPWL、IPWL)P125

参数名称	参数含意	隐含值	单位
\mathcal{T}_{i}	第 <i>i</i> 个时间点		S
V_{i} 或 I_{i}	对应了时间点的幅度值		V或A

选做课后作业2

如下电路图,应用参数扫描分析设置(Parametric Sweep),在Value List上设置500 1K 2K三个频率,然后请仿真V1(Vsine)和电容C1两端的时域波形。

下次实验

实验6 模拟电路认识实验---晶体管共射极放大电路(P283~288)

本学期的研究(选做)

研究内容:放大电路的失真研究。

参考资料:见FTP上 "04 放大电路的失真研究.pdf"。

请仿真实现,并且请写一份研究报告;提交至FTP (提交要求:座号姓名.rar)

1、请提交做好的整个EDA文件夹的内容;请配上word文档说明。

2、提交时需压缩文件,压缩文件名的命名"座号_姓名.rar"。

3、提交的位置和截止时间:

"选做放大电路的失真研究_截止考试周前"