Laboratório de ECAi05

Universidade Federal de Itajubá – Campus Avançado de Itabira

Disciplina: ECAi05 - Laboratório de Sistemas de Controle I

Objetivo

Este laboratório tem como finalidade analisar, de maneira isolada, as respostas típicas de controladores básicos.

- O objetivo dessa experiência é analisar a ação de um controlador puramente proporcional, o qual pode ser implementado com um amplificador operacional e elementos passivos.
 - (a) Abra o programa

lab4_prg1

Ajuste o *Signal Generator* com uma onda senoidal de amplitude 1 V e frequência 1 kHz (sem offset). Ajuste o resistor R_1 igual a 100 k Ω , R_2 igual a 200 k Ω . Rode o programa esboce as formas de onda $v_i(t)$ e $v_o(t)$ no gabarito abaixo.

(b)	Qual a relação das amplitudes entre $v_o(t)$ e $v_i(t)$? Há alguma correspondência entre a relação das resistências de R_2 por R_1 ? Justifique.			
(c)	Modifique a amplitude, frequência e formas de onda de $v_i(t)$ no $\emph{Signal Ge-}$			
` ,	nerator. Tais modificações alteram a relação entre $v_o(t)$ e $v_i(t)$? Justifique.			

- 2. O objetivo dessa experiência é analisar a ação de um integrador prático (observe que há um resistor em paralelo ao capacitor na realimentação), que também pode ser implementado com um amplificador operacional e elementos passivos.
 - (a) Abra o programa

lab4_prg2

Ajuste o *Signal Generator* com uma onda quadrada de amplitude 1 V e frequência 1 kHz (sem offset). Ajuste o resistor R_1 igual a 10 k Ω , R_2 igual a 100 k Ω e o capacitor C igual a 33 nF. Rode o programa esboce as formas de onda $v_i(t)$ e $v_o(t)$ no gabarito abaixo.

(b) Com base no esboço, por que esse circuito recebe o nome de integrador? (c) Altere o resistor R_1 para 20 k Ω e verifique o efeito em $v_o(t)$. Quais as mudanças ocorridas? (d) Modifique a forma de onda de $v_i(t)$, o que pode se afirmar? 3. O objetivo dessa experiência é analisar a ação de um derivador prático (observe que há um resistor em série ao capacitor na entrada). (a) Abra o programa lab4_prg3 Ajuste o Signal Generator com uma onda triangular de amplitude 1 V e frequência 1 kHz (sem offset). Ajuste o resistor R_1 igual a 2 k Ω , R_2 igual a 20 k Ω e o capacitor C igual a 33 nF. Rode o programa esboce as formas de onda $v_i(t)$ e $v_o(t)$ no gabarito abaixo. (b) Com base no esboço, por que esse circuito recebe o nome de derivador?

Universidade Federal de Itajubá – Campus Avançado de Itabira

(c) Altere o resistor R_2 para 10 k Ω e verifique o efeito em $v_o(t)$. Quais as mudanças ocorridas?

(d) Modifique a forma de onda de $v_i(t)$, o que pode se afirmar?

(e) Feche todos os programas.

Atividades Complementares

O relatório deve ser entregue APENAS em formato PDF até **7 dias** após a aula prática conforme tarefa cadastrada no SIGAA. O guia deve ser entregue com os itens preenchidos. As atividades complementares devem ter o <u>enunciado</u>, <u>desenvolvimento</u> e <u>conclusões</u> também anexados ao guia. Não há necessidade de capa e afins, apenas identificação de nome e número de matrícula da dupla.

 Demonstre que as funções apresentadas abaixo são as funções práticas do integrador e do derivador, respectivamente. O resultado é coerente? Justifique.

$I_P(s) =$	$-\frac{1}{R_1C_1s + (R_1/R_2)}$	$D_P(s) = -\frac{R_2 C_1 s}{R_1 C_1 s + 1}$	