CLAIMS

- 1 1. A method of forming a wear-resistant reinforcing coating on a substrate, the method
- 2 comprising:
- 3 (a) applying a liquid matrix material to the substrate;
- 4 (b) disposing reinforcing fibers in the liquid matrix material;
- 5 (c) placing particulate in contact with the liquid matrix material on an opposite
- side of the fibers from the substrate; and
- 7 (d) hardening the liquid matrix material, thereby forming a composite of
- 8 reinforcing fibers in a matrix of the hardened liquid matrix material with the
- 9 wearing surface of particulate.
- 1 2. The method in accordance with claim 1, wherein the substrate is a solid substrate.

1	3. The method in accordance with claim 2, wherein the solid substrate is concrete.
1	4. The method in accordance with claim 2, wherein the solid substrate is asphalt pavement.
1	5. The method in accordance with claim 2, wherein the solid substrate is wood.
1	6. The method in accordance with claim 2, wherein the solid substrate is fiberglass composite.
1	7. The method in accordance with claim 2, wherein the solid substrate is metal.
1	8. The method in accordance with claim 2, wherein the solid substrate is modular bricks.
1	9. The method in accordance with claim 1, wherein the substrate is particulate.
1	10. The method in accordance with claim 9, wherein the particulate is soil.
1	11. The method in accordance with claim 9, wherein the particulate is sand.
1	12. The method in accordance with claim 9, wherein the particulate is gravel.

- 1 13. The method in accordance with claim 9, wherein the particulate is a combination
- 2 selected from the group of soil, sand and gravel.
- 1 14. The method in accordance with claim 1, further comprising the step of interposing a
- 2 membrane between the substrate and the liquid matrix material for preventing the liquid
- 3 matrix material from adhering substantially to the substrate.
- 1 15. The method in accordance with claim 14, wherein the membrane is plastic sheeting.
- 1 16. The method in accordance with claim 14, wherein the membrane is a release agent.
- 1 17. The method in accordance with claim 14, wherein the substrate is a solid substrate.
- 1 18. The method in accordance with claim 17, wherein the solid substrate is concrete.
- 1 19. The method in accordance with claim 17, wherein the solid substrate is asphalt
- 2 pavement.
- 1 20. The method in accordance with claim 17, wherein the solid substrate is wood.

- 3 (b) reinforcing fibers disposed in the matrix for reinforcing the matrix; and
- 4 (c) particulate adhered to the matrix on an opposite side of the fibers from the
- 5 substrate.
- 1 30. The wear-resistant reinforcing coating in accordance with claim 29, wherein the
- 2 substrate is a solid substrate.
- 1 31. The wear-resistant reinforcing coating in accordance with claim 29, wherein the
- 2 substrate is particulate.
- 1 32. The wear-resistant reinforcing coating in accordance with claim 29, further
- 2 comprising a membrane interposed between the substrate and the matrix, thereby
- 3 preventing adhesion of the matrix to the substrate.
- 1 33. The wear-resistant reinforcing coating in accordance with claim 32, wherein the
- 2 substrate is a solid substrate.
- 1 34. The wear-resistant reinforcing coating in accordance with claim 32, wherein the
- 2 substrate is particulate.

1 35. A method of forming a wear-resistant reinforcing coating on a solid substrate, the 2 method comprising: 3 (a) applying a liquid matrix material to the substrate; (b) interposing a membrane between the substrate and the liquid matrix material 4 5 for preventing the liquid matrix material from adhering substantially to the solid substrate; 6 7 (c) disposing reinforcing fibers in the liquid matrix material; 8 (d) placing particulate in contact with the liquid matrix material on an opposite 9 side of the fibers from the substrate; and 10 (e) hardening the liquid matrix material, thereby forming a composite of reinforcing fibers in a matrix of the hardened liquid matrix material with the 11 wearing surface of particulate. 12 A wear-resistant reinforcing coating formed on a solid substrate, the coating 1 comprising: 2 3 (a) a matrix adjacent the substrate; (b) a membrane interposed between the substrate and the matrix, thereby 4 5 preventing adhesion of the matrix to the substrate; 6 (c) reinforcing fibers disposed in the matrix for reinforcing the matrix; and 7 (d) particulate adhered to the matrix on an opposite side of the fibers from the

substrate.

8

37. A method of forming a reinforced floor having a substrate, the method comprising: 1 (a) applying a liquid matrix material to the substrate; 2 (b) disposing reinforcing fibers in the liquid matrix material; 3 (c) hardening the liquid matrix material, thereby forming a composite of 4 reinforcing fibers in a matrix of hardened liquid matrix material, wherein an 5 exposed surface of the reinforcement is unsuitable for foot traffic; and 6 (d) mounting a layer of rigid flooring material to said substrate above said 7 composite of reinforcing fibers, said layer of flooring material having a wearing 8 surface that is suitable for traffic. 9 38. A reinforced floor having a planar substrate, the reinforced floor comprising: 1 2 (a) a hardened, planar matrix mounted to the substrate; (b) reinforcing fibers disposed in the matrix; 3 (c) a planar layer of rigid flooring material mounted to the substrate above the 4 reinforcing fibers, said layer of flooring material having a planar wearing surface 5 6 that is suitable for traffic. 39. A modular flooring unit of a discrete size and weight that can be lifted by a human, 1

the flooring unit comprising:

(a) a planar matrix;

2

3

(b) reinforcing fibers embedded in the matrix for reinforcing the matrix; 4 5 (c) particulate mounted to a major surface of the matrix. 40. The flooring unit in accordance with claim 39, wherein the particulate mounted to 1 2 the matrix forms the traffic-bearing surface of the flooring unit. 41. A method of forming a modular flooring unit of a size and weight that can be lifted 1 2 by a human, the method comprising: (a) placing a liquid matrix material in a receptacle; 3 4 (b) disposing reinforcing fibers in the liquid matrix material; (c) placing particulate in contact with the liquid matrix material on an opposite 5 side of the fibers from the substrate; and 6 7 (d) hardening the liquid matrix material, thereby forming a composite of reinforcing fibers in a matrix of the hardened liquid matrix material with a traffic-8 bearing surface of particulate. 9 42. A method of forming a wear-resistant reinforcing coating on a substrate, the method 1 comprising: 2 (a) aligning a composite with the substrate, the composite comprising a hardened 3 matrix embedded with reinforcing fibers; 4

(b) applying an adhesive between the composite and the substrate;

5

- (c) forcing the composite against the substrate with the adhesive in a layer interposed between the composite and the substrate;

 (d) applying adhesive to the composite on a side of the composite opposite the substrate;

 (e) placing particulate in contact with the adhesive; and
- 11 (f) hardening the adhesive, thereby forming a wearing surface of particulate.