STAT 432: Basics of Statistical Learning

Regression Splines

Shiwei Lan, Ph.D. <shiwei@illinois.edu>

http://shiwei.stat.illinois.edu/stat432.html

March 15, 2019

University of Illinois at Urbana-Champaign

Outline

- From Linear to Nonlinear: Histogram Regression
- Basis Functions
- Piecewise Polynomials
- B-Splines and Natural Cubic Splines
- Smoothing Splines

Linear vs. Nonlinear models

- · Up to now, we mostly focused on linear models. Why?
 - · Convenient and easy to fit
 - Easy to interpret
 - An approximation to the true underlying function f(x)
 - Tend not to overfit (when p is small)
- However, nothing is really perfectly linear in practice
- How to relax this restriction and fit more flexible models?

Linear vs. Nonlinear models

- In this lecture, we will focus on the case that only one variable is involved (p=1)
- We are interested in approximating the regression function f(x)
- One idea is to include higher order terms, or nonlinear transformations.
- For example, x^2 , x^3 , $\log(x)$, \sqrt{x} , etc.

5/50

U.S. birthrates 1917 - 2003

Linear vs. Nonlinear models

- · Another idea is to estimate the regression function locally.
- A model we learned earlier was the kNN, and one essential idea is to model f(x) at a local region.
- In this lecture, we will try another approach, while also motivated from a local estimation
- We will first illustrate a simple model called the histogram regression

Histogram Regression

- Suppose we observe a set of observations $\{x_i, y_i\}_{i=1}^n$, note that x_i are univariate.
- Then we can choose several "knots" on the range of x_i . This can be by either an educated decision or based on quantiles.
- Based on these knots, we can isolate the interval between two adjacent knots.
- Suppose the interval that contains a given testing point x is $\phi(x)$, then the prediction at this point is

$$\widehat{f}(x) = \frac{\sum_{i=1}^{n} Y_i \ I\{X_i \in \phi(x)\}}{\sum_{i=1}^{n} I\{X_i \in \phi(x)\}}$$

10/50

Histogram Regression

- · The histogram regression is still not flexible enough
- However, based on this idea of splitting into intervals and fit curves within interval, we will introduce a new concept called splines.
- · First, we introduce the idea of basis functions

Basis Functions

Linear vs. Nonlinear models

 Additive model: stepping outside the linear model, lets assume that our model has the form

$$f(x) = \sum_{m=1}^{M} \beta_m h_m(x)$$

- We can consider different types of $h_m(x)$
 - $h_m(x) = x$: the original linear model (univariate)
 - $h_m(x) = x^2, x^3, \ldots$: polynomials
 - $h_m(x) = I(a_m \le x < b_m)$: step function / histogram regression

Linear vs. Nonlinear models

- This is essential a type of feature engineering
- The approach is straight forward: We create nonlinear functions
 of x as features, and then fit a linear regression on this set of
 new features.
- These features are called the basis functions
- Hence, for this lecture, we will focus on how to construct basis functions

Piecewise Polynomials

Piecewise Constant

• For example, consider the piecewise constant on four regions:

$$h_1(x) = \mathbf{1}\{x < \xi_1\},$$
 $h_2(x) = \mathbf{1}\{\xi_1 \le x < \xi_2\},$ $h_3(x) = \mathbf{1}\{\xi_2 \le x < \xi_3\},$ $h_4(x) = \mathbf{1}\{\xi_3 \le x\}.$

- ξ_1 , ξ_2 and ξ_3 are called knots. For the birthrate data, we use three knots: 1936, 1960, 1978
- Because we are fitting a constant on each region, its just the mean of observations in that interval.

Piecewise Linear

 We can also fit a linear function at each region by considering four additional basis functions:

$$h_5(x) = x\mathbf{1}\{x < \xi_1\},$$
 $h_6(x) = x\mathbf{1}\{\xi_1 \le x < \xi_2\},$ $h_7(x) = x\mathbf{1}\{\xi_2 \le x < \xi_3\},$ $h_8(x) = x\mathbf{1}\{\xi_3 \le x\}.$

- We can of course increase the degree, but a clear drawback is that the function is not continuous.
- · How to force continuity?

Force Continuity

· If we set the constraint that

$$f(\xi_1^-) = f(\xi_1^+)$$

to force continuity.

- Note that our function f has 8 basis, 4 for linear and 4 for slopes.
- · This implies

$$\beta_1 + \xi_1 \beta_5 = \beta_2 + \xi_1 \beta_6$$

 However, solving a constrained linear model seems to be difficult. Is there a easier way to construct the basis?

Force Continuity

• The trick is to incorporate the constrains into the basis functions:

$$h_1(x) = 1, h_2(x) = x, h_3(x) = (x - \xi_1)_+,$$

 $h_4(x) = (x - \xi_2)_+, h_5(x) = (x - \xi_3)_+,$

where $(\cdot)^+$ denotes the positive part.

- How many parameters in the original basis? 8
- How many constrains? 3
- Hence, essentially we only need 5 parameters.

Linear Spline

The final model is

$$f(x) = \sum_{m=1}^{5} \beta_m h_m(x)$$

- We can then check that any linear combination of these five functions lead to
 - · Continuous everywhere
 - · Linear everywhere except the knots
 - · Has a different slope for each region
- This can be easily done using R function bs in the package splines.

Polynomial Spline

- · In general, we may need to consider
 - · The number of degrees in each region
 - · The number of knots
 - · The locations of the knots
- · Selecting the knots can be difficult
- See our R Lab examples

Cubic Splines

- A common choice is cubic splines, which uses cubic functions within each region. However, continuity of the first and second order at the knots is forced.
- For each knot ξ , we need the following 4 basis functions:

$$h_1(x) = 1$$
, $h_2(x) = x$, $h_3(x) = x^2$, $h_4(x) = (x - \xi)^3$.

- However, the first three basis are shared by all knots.
- Cubic spline function with K knots:

$$f(x) = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \sum_{k=1}^{K} b_k (x - \xi_k)_+^3$$

The degrees of freedom for a cubic spline:

 $(\# \text{ regions}) \times (4 \text{ per region}) - (\# \text{ knots}) \times (3 \text{ constraints per knot})$

B-Splines and Natural Cubic

Spline

B-Spline basis

- The previous definitions are known as regression splines
- An alternative (computationally more efficient) way of defining the spline basis is proposed by de Boor (1978)
- Each basis function is nonzero over at most (degree + 1) consecutive intervals
- The resulting design matrix is banded

Construct the B-Spline basis

• Create augmented knot sequence τ :

$$\tau_1 = \dots = \tau_M = \xi_0$$

$$\tau_{M+j} = \xi_j, \quad j = 1, \dots K$$

$$\tau_{M+K+1} = \dots = \tau_{2M+K+1} = \xi_{K+1}$$

where ξ_0 and ξ_{K+1} are the left and right boundary points.

Construct the B-Spline basis

• Denote $B_{i,m}(x)$ the ith B-spline basis function of order m for the knot sequence τ , $m \leq M$. We recursively calculate them as follows:

$$B_{i,1}(x) = \begin{cases} 1 & \text{if} \quad \tau_i \le x < \tau_{i+1} \\ 0 & \text{o.w.} \end{cases}$$

$$B_{i,m}(x) = \frac{x - \tau_i}{\tau_{i+m-1} - \tau_i} B_{i,m-1}(x) + \frac{\tau_{i+m} - x}{\tau_{i+m} - \tau_{i+1}} B_{i+1,m-1}(x)$$

Generating B-Spline basis in R

```
| > library(splines)
|2 > bs(x, df = NULL, knots = NULL, degree = 3, intercept = FALSE)
```

- df: degrees of freedom (the total number of basis)
- knots: specify knots. By default, these will be the quantiles of x
- degree: degree of piecewise polynomial, default 3 (cubic splines)
- intercept: if TRUE, an intercept is included, default FALSE
- Return a matrix of dimension n× df

B-Spline Basis

Natural Cubic Splines

- Polynomials fit to data tends to be erratic near the boundaries, and extrapolation can be dangerous
- Natural cubic splines (NCS) forces the second and third derivatives to be zero at the boundaries, i.e., $\min(x)$ and $\max(x)$
- Hence, the fitted model is linear beyond the two extreme knots $(-\infty, \xi_1]$ and $[\xi_K, \infty)$
- The constraint frees up 4 degrees of freedom (two for each end). The degrees of freedom of NCS is just the number of knots ${\cal K}.$

Extrapolating beyond the boundaries

Constructing Natural Cubic Splines

 Starting with a basis for cubic splines, and derive the reduced bases by imposing the boundary constraints, we obtain the basis functions

$$N_1(x) = 1$$
, $N_2(x) = x$, $N_{k+2}(x) = d_k(x) - d_{K-1}(x)$

where

$$d_k(x) = \frac{(x - \xi_k)_+^3 - (x - \xi_K)_+^3}{\xi_K - \xi_k}, \quad k = 1, \dots, K - 2$$

• We can check that each of the basis functions $N_k(x)$'s has zero second and third derivatives for $x \leq \xi_1$ and $x \geq \xi_K$

NCS Basis

Generating Natural Cubic Spline basis in R

```
| > library(splines)
| > ns(x, df = NULL, knots = NULL, intercept = FALSE)
```

- df: degrees of freedom (the total number of basis)
- knots: specify knots. By default, these will be the quantiles of x
- intercept: if TRUE, an intercept is included, default FALSE
- Return a matrix of dimension $n \times df$

Smoothing Splines

Smoothing Splines

- B-splines and NCS are both methods that construct a n × M basis matrix F, and then model the outcome using a linear regression on F.
- Inevitably, we need to select the order of the spline, the number of knots (AIC, BIC, CV) and even the location of knots (difficult)
- Is there a method that we can select the number and location of knots automatically?

Smoothing Splines

• Smoothing Splines: Let's start with an easy but "horrible" solution, by putting knots at all the observed data points $(x_1, \ldots x_n)$:

$$\mathbf{y}_{n\times 1} = \mathbf{F}_{n\times n} \boldsymbol{\beta}_{n\times 1}$$

Instead of selecting knots, let's use ridge-type shrinkage

$$\mathsf{minimize}_{\boldsymbol{\beta}} \ \|\mathbf{y} - \mathbf{F}\boldsymbol{\beta}\|^2 + \lambda \boldsymbol{\beta}^\mathsf{T} \boldsymbol{\Omega} \boldsymbol{\beta}$$

where Ω will be defined later and λ can be chosen by CV or GCV.

In fact, the solution can be derived from a different aspect

• Let $W^2([a,b])$ be a second-order Sobolev space on [a,b], equipped with L_2 norm:

$$\left\{g:g,g' \text{ are absolutely continuous and } \int_a^b \left[g''(x)\right]^2 \! dx < \infty \right\}$$

- $W^2[a,b]$ is an infinitely-dimensional function space
- Global polynomial functions and cubic spline (including NCS) functions are in $W^2[a,b]$.
- Find the best function in $W_2[a,b]$ to approximate f

 Suppose, instead of using splines to approximate the function f, we do a penalized residual sum of squares

$$\mathsf{RSS}(g,\lambda) = \frac{1}{n} \sum_{i=1}^n \left(y_i - g(x_i) \right)^2 + \lambda \int_a^b [g''(x)]^2 dx$$

- The first term measures the closeness between the fitted model, $g(x_i)$, and the observed data y_i .
- The second term penalizes the roughness/curvature (second derivative) of the fitted function
- $\int_a^b [g''(x)]^2 dx$ is called the roughness penalty

- λ is the smoothing parameter that controls the bias-variance trade-off
- $\lambda = 0$: interpolate the data, over-fitting
- $\lambda = \infty$: $g'' \equiv 0 \Longrightarrow$ linear least-squares regression
- It turns out that the solution to the penalized residual sum of squares has to be a NCS
- · This avoids the knot selection problem?

Theorem

Let the two bounds $a = \min_i x_i$ and $b = \max_i x_i$. Then, for any λ , the solution \widehat{g} for the penalized residual sum of squares approach,

$$\widehat{g} = \underset{g \in W^2([a,b])}{\operatorname{arg\,min}} \operatorname{\mathit{RSS}}(g,\lambda)$$

can be represented by a set of NCS basis with knots at the n observed data points x_1, \ldots, x_n

Proof*

Intuition: Let g be any function in $W^2[a,b]$ and \widetilde{g} be a function represented by NCS basis with

$$g(x_i) = \widetilde{g}(x_i), \quad i = 1, \dots, n.$$

Note: We can always find such \widetilde{g} since the NCS consists of n basis. Then, IF we can show

$$\int \left[g''(x)\right]^2 dx \ge \int \left[\widetilde{g}''(x)\right]^2 dx,$$

Then the NCS "representation" of g has a smaller penalty, hence, we will always prefer the NCS solution.

Proof*

Hence, its left to show (with some abbreviations) that

$$\int g''^2 dx \ge \int \widetilde{g}''^2 dx.$$

We define the difference of the two solutions:

$$h(x) = g(x) - \widetilde{g}(x)$$

So $h(x_i) = 0$ for i = 1, ..., n, by the definition of $\widetilde{g}(x)$. Then

$$\int g''^2 dx = \int \left[\widetilde{g}'' + h'' \right]^2 dx$$

$$= \underbrace{\int \widetilde{g}''^2 dx}_{\text{NCS Penalty}} + \underbrace{\int h''^2 dx}_{\geq 0} + \underbrace{2 \int \widetilde{g}'' h'' dx}_{?}$$

W.L.O.G., assume that x_i 's are ordered. The the cross-term is

$$\begin{split} \int \widetilde{g}''h''dx &= \widetilde{g}''h'\big|_a^b - \int_a^b h'\widetilde{g}^{(3)}dx \qquad \text{(integration by parts)} \\ &= 0 - \int_a^b h'\widetilde{g}^{(3)}dx \qquad \left(\widetilde{g}''(a) = \widetilde{g}''(b) = 0\right) \\ &= -\sum_{i=1}^{n-1} \widetilde{g}^{(3)}(x_j^+) \int_{x_j}^{x_{j+1}} h'dx \qquad \left(\widetilde{g}^{(3)} \text{constant piecewise}\right) \\ &= -\sum_{i=1}^{n-1} \widetilde{g}^{(3)}(x_j^+) \big(h(x_{j+1}) - h(x_j)\big) \\ &= 0 \quad \left(h(x_j) = 0\right) \end{split}$$

• Hence the optimal solution in $W^2[a,b]$ has a finite sample representation using NCS basis:

$$\widehat{g}(x) = \sum_{j=1}^{n} \beta_j N_j(x),$$

• N_j 's are a set of natural cubic spline basis functions with knots at each of the unique x_i values

 We can then rewrite the objective function in the penalized RSS approach as

$$\sum_{i=1}^{n} (y_i - g(x_i))^2 = (\mathbf{y} - \mathbf{F}\boldsymbol{\beta})^{\mathsf{T}} (\mathbf{y} - \mathbf{F}\boldsymbol{\beta})$$

where ${f F}$ is an n imes n matrix with ${f F}_{ij} = N_j(x_i)$

• The penalty function in that approach becomes

$$\int_{a}^{b} g''(x)^{2} dx = \int \left(\sum_{j} \beta_{i} N_{i}''(x)\right)^{2} dx$$
$$= \sum_{j,k} \beta_{j} \beta_{k} \int N_{j}''(x) N_{k}''(x) dx$$
$$= \beta^{\mathsf{T}} \Omega \beta$$

where Ω is an $n \times n$ matrix with $\Omega_{jk} = \int N_j''(x)N_k''(x)dx$.

• Hence our goal is to find β that minimizes

$$\mathsf{RSS}(\boldsymbol{\beta}, \lambda) = \|\mathbf{y} - \mathbf{F}\boldsymbol{\beta}\|^2 + \lambda \boldsymbol{\beta}^\mathsf{T} \Omega \boldsymbol{\beta}$$

This is a ridge penalized function and the solution is

$$\widehat{\boldsymbol{\beta}} = \arg\min_{\boldsymbol{\beta}} \mathsf{RSS}(\boldsymbol{\beta}, \lambda)$$
$$= (\mathbf{F}^\mathsf{T} \mathbf{F} + \lambda \Omega)^{-1} \mathbf{F}^\mathsf{T} \mathbf{y}$$

This method is called the smoothing spline.

Remarks

 The smoothing spline version of the "hat" matrix is called the smoother matrix

$$\widehat{f} = \mathbf{F}(\mathbf{F}^{\mathsf{T}}\mathbf{F} + \lambda \Omega)^{-1}\mathbf{F}^{\mathsf{T}}\mathbf{y}$$
$$= \mathbf{S}_{\lambda}\mathbf{y}$$

- · This method also obeys the bias-variance trade-off.
- What happens when $\lambda \to 0$ or $\lambda \to \infty$?

Remarks

· The degrees of freedom of a smoothing spline is

$$df = Trace(S_{\lambda})$$

which ranges between 0 and n.

Tune λ using GCV:

$$\mathsf{GCV} = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{y_i - \widehat{g}(x_i)}{1 - \frac{1}{n} \mathsf{Trace}(\mathbf{S}_{\lambda})} \right)^2$$

Smoothing Splines in R

```
| > library(splines)
| > smooth.spline(x, y = NULL, w = NULL, df, cv = FALSE)
```

- cv: FALSE uses GCV. TRUE uses Leave-one-out CV
- df: degrees of freedom between 1 and n, let GCV decide it automatically
- w: can be used if x has replicates