Political participation and subjective well-being

Polina Revina

Course on Bayesian Statistics IPSA-HSE Summer School 2019

How does subjective well-being affect political participation?

- Institutional trust and subjective well-being across the EU, Hudson (2006)
- Formal institutions and subjective well-being: Revisiting the cross-country evidence, Bjørnskov, Dreher (2010)
- Income, sense of community and subjective well-being: Combining economic and psychological variables, Jorgensen, Jamieson, Martin (2010)
- Subjective well-being and political participation: A comparison of unemployed and employed youth, Lorenzini (2015)
- Depression and political participation, C Ojeda (2015)

Data

- European Social Survey (ESS), France, round 8 (2016)
- 1871 observations
- DV: **confidence in own ability to participate in politics** (ordinal variable ranging from 1 -- total lack of confidence to 5 -- full confidence)
- IVs:
 - Subjective general health (health): 1 -- very good, 5 -- very bad
 - Take part in social activities compared to others of same age (sclact): 1 -- much less than most, 5 -- much more than most
 - How many people with whom you can discuss intimate and personal matters (inprdsc): None, 1, 2, 3, 4-6, 7-9, 10 or more
 - Respondent or household member victim of burglary/assault last 5 years (crmvct): 1 -- yes, 2 no
 - Feeling of safety of walking alone in local area after dark (aesfdrk): 1 -- very safe, 2 -- safe, 3 -- unsafe, 4 -- very unsafe
 - Feeling about household's income nowadays (hincfel): 1 -- living comfortably on present income, 2 -- coping on present income, 3 -- Difficult on present income, 4 -- Very difficult on present income

Descriptive statistics

cptppo	la sclmeet	sclact	inprdsc	health	hlthhmp	crmvct	aesfdrk	hincfel
1:462	Min. :1.000	Min. :1.000	Min. :0.000	Min. :1.000				
2:733	1st Qu.:4.000	1st Qu.:3.000	1st Qu.:2.000	1st Qu.:2.000	1st Qu.:2.000	1st Qu.:2.000	1st Qu.:1.000	1st Qu.:1.000
3:548	Median :6.000	Median :3.000	Median :3.000	Median :2.000	Median :3.000	Median :2.000	Median :2.000	Median :2.000
4: 87	Mean :5.273	Mean :2.919	Mean :2.624	Mean :2.369	Mean :2.618	Mean :1.774	Mean :1.976	Mean :1.912
5: 41	3rd Qu.:6.000	3rd Qu.:3.000	3rd Qu.:4.000	3rd Qu.:3.000	3rd Qu.:3.000	3rd Qu.:2.000	3rd Qu.:2.000	3rd Qu.:2.000
	Max. :7.000	Max. :5.000	Max. :6.000	Max. :5.000	Max. :3.000	Max. :2.000	Max. :4.000	Max. :4.000

Fitting the model with rstanarm

Convergence diagnostics visualization: traceplots (1)

The degree of convergence of a random Markov Chain (R hat)

nearm	Sciact	mpruse	CITIVCL	acsiuik	1 2	2 3	3 4	415	
0.9998180	0.9993694	0.9992266	0.9997213	0.9996663	0.9994174	0.9994988	0.9997952	0.9995736	
mean_PPI	D:1 mean_	_PPD:2 m	ean_PPD:;	3 mean_H	PPD:4 mo	ean_PPD:5			
1.0005829	0.999	6228 1	.0000948	0.9995	668 1.0	0000094			

select innedse cemvet aesfdek

haalth

Autocorrelation diagnostics: plots

The ratio of effective sample size to N

Stationarity diagnostics: Geweke test

Posterior predictive checks: observed vs. replicated densities

PPC: histograms of observed and rep. data

PPC: Observed variance vs. replicated variances

PPC: Observed mean vs. replicated mean

Model comparison

```
rst_reduce_sclact <- stan polr(cptppola ~ health +</pre>
                         inprdsc +
                         crmvct + aesfdrk + hincfel, data = euro,
                       prior = NULL)
rst reduce inprdsc <- stan polr(cptppola ~ health +</pre>
                         sclact +
                         crmvct + aesfdrk + hincfel, data = euro,
                       prior = NULL)
```

WAIC

```
      Model 1:
      Model 2:

      Estimate
      SE

      elpd_waic
      -2535.492 27.114
      elpd_waic
      -2538.009 27.136

      p_waic
      10.331 0.297
      p_waic
      9.332 0.270

      waic
      5070.983 54.227
      waic
      5076.018 54.273
```

LOO CV

```
Model 3:

Estimate SE
elpd_loo -2554.254 26.945
p_loo 9.349 0.281
looic 5108.508 53.890
```

```
Model 2:

Estimate SE
elpd_loo -2538.019 27.137
p_loo 9.342 0.271
looic 5076.038 54.273
```

LOO CV and WAIC (baseline model vs rst_reduce_sclact)

```
LOO
elpd diff
          se
  -2.418 2.672
WAIC
elpd diff
          se
  -2.419
           2.672
```

LOO CV (baseline model vs rst_reduce_inprdsc)

```
LOO
elpd diff
         se
-18.653
        6.250
WAIC
elpd diff
           se
 -18.654
           6.250
```

Results of fitting Ordinal Regression Model

term	I	estimate	std.error	conf.low	conf.high
:	- -	:	: -	: -	:
health	ī	-0.124	0.047	-0.220	-0.031
sclact	I	0.156	0.052	0.055	0.262
inprdsc	I	0.186	0.031	0.125	0.247
crmvct	I	-0.225	0.102	-0.422	-0.026
aesfdrk	I	-0.190	0.046	-0.280	-0.100
hincfel	I	-0.211	0.057	-0.323	-0.094
1 2		-1.375	0.335	-2.022	-0.713
2 3		0.379	0.333	-0.262	1.038
3 4		2.466	0.343	1.807	3.132
4 5		3.665	0.368	2.961	4.411

Odd ratios

```
health sclact inprdsc crmvct aesfdrk hincfel
0.9223587 1.1440367 1.1991595 0.7601553 0.8395769 0.8091215
```