

All Competitions > c2c2017-1 > Flipping the Matrix

Flipping the Matrix

Problem

Submissions

Leaderboard

Discussions

Sean invented a game involving a $2n \times 2n$ matrix where each cell of the matrix contains an integer. He can reverse any of its rows or columns any number of times, and the goal of the game is to maximize the sum of the elements in the $n \times n$ submatrix located in the upper-left corner of the $n \times n$ matrix (i.e., its upper-left quadrant).

Given the initial configurations for q matrices, help Sean reverse the rows and columns of each matrix in the best possible way so that the sum of the elements in the matrix's upper-left quadrant is maximal. For each matrix, print the maximized sum on a new line.

Input Format

The first line contains an integer, q, denoting the number of queries. The subsequent lines describe each of the q queries in the following format:

- 1. The first line of each query contains an integer, n.
- 2. Each line i the 2n subsequent lines contains 2n space-separated integers describing the respective values of row i in the matrix.

Constraints

- $1 \le q \le 16$
- 1 < n < 128
- $0 \leq matrix[i][j] \leq 4096$, where $0 \leq i,j < 2n$.

Output Format

You must print q lines of output. For each query (i.e., matrix), print the maximum possible sum of the elements in the matrix's upper-left quadrant.

Sample Input

Sample Output

414

Explanation

We start out with the following $2n \times 2n$ matrix:

$$matrix = egin{bmatrix} 112 & 42 & 83 & 119 \ 56 & 125 & 56 & 49 \ 15 & 78 & 101 & 43 \ 62 & 98 & 114 & 108 \ \end{bmatrix}$$

We can perform the following operations to maximize the sum of the $n \times n$ submatrix in the upper-left corner:

1. Reverse column 2 ([83, 56, 101, 114] \rightarrow [114, 101, 56, 83]), resulting in the matrix:

$$matrix = egin{bmatrix} 112 & 42 & 114 & 119 \ 56 & 125 & 101 & 49 \ 15 & 78 & 56 & 43 \ 62 & 98 & 83 & 108 \end{bmatrix}$$

2. Reverse row 0 ([112, 42, 114, 119] \rightarrow [119, 114, 42, 112]), resulting in the matrix:

$$matrix = egin{bmatrix} 119 & 114 & 42 & 112 \ 56 & 125 & 101 & 49 \ 15 & 78 & 56 & 43 \ 62 & 98 & 83 & 108 \end{bmatrix}$$

When we sum the values in the $n \times n$ submatrix in the upper-left quadrant, we get 119 + 114 + 56 + 125 = 414. Thus, we print 414 on a new line.

```
f in

Contest ends in an hour

Submissions: 0

Max Score: 30

Difficulty: Medium

Rate This Challenge:
```


Join us on IRC at #hackerrank on freenode for hugs or bugs.

Contest Calendar | Interview Prep | Blog | Scoring | Environment | FAQ | About Us | Support | Careers | Terms Of Service | Privacy Policy | Request a Feature