PARTITION AROUND MEDOIDS

(KMediods)

AIM: Implementation of PAM (Partition Around Medoids) algorithm

PROGRAM:

- 1 import pandas as pd
- 2 import numpy as np
- 3 from sklearn_extra.cluster import KMedoids
- 4 from sklearn import preprocessing
- 5 import matplotlib.pyplot as plt
- 1 df=pd.read_csv("C:\\Users\\hp\\Downloads\\iris.csv")
- 2 df.head()

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa

- 1 x=df
- 2 y=df['Species']
- 1 le=preprocessing.LabelEncoder()
- 2 x['Species']=le.fit_transform(x['Species'])
- 3 y=le.transform(y)
- 1 cols=x.columns
- 1 from sklearn.preprocessing import MinMaxScaler
- 2 ms=MinMaxScaler()
- 3 x=ms.fit_transform(x)
- 1 km=KMedoids(n_clusters=4,random_state=0)
- 2 km.fit(x)
- KMedoids
 KMedoids(n_clusters=4, random_state=0)

```
1 km.inertia_
33.72823230032503
 labels=km.labels_
correct_labels=sum(y==labels)
print("Result:%d out of %d samples were correctly labeled,"%(correct_labels,y.size))
Result:50 out of 150 samples were correctly labeled,
 print('Accuracy score:{0:0.2f}'.format(correct_labels/float(y.size)))
Accuracy score:0.33
```