Computação Móvel e Ubíqua

Instituto de Informática - UFG

Middleware para computação móvel, loT e nuvem

Roteiro

- Modelo geral de aplicações
- Visão geral do ambiente computacional
- Middleware de mensagens/eventos: Kafka
- Middleware para Web Services: gRPC e Protocol Buffers
- Alternativas:
 - MQTT
 - RESTful
 - serverless computing / function-as-a-service)

Modelo geral de aplicações

Mobilidade, ubiquidade

Modelo abstrato

 Recursos físicos (ex.: dispositivos IoT) acessíveis como serviços

Modelo concreto 0

Acesso direto aos dispositivos (geralmente local apenas)

Modelo concreto 1

 Acesso via serviços hospedados em um ou mais servidores na rede local

Modelo concreto 2

Acesso via serviços hospedados na nuvem

Modelo concreto 3

Acesso via serviços hospedados na névoa e/ou na nuvem

Modelo geral de aplicações

Mobilidade, ubiquidade

Modelo abstrato

 Recursos físicos (ex.: dispositivos IoT) acessíveis como serviços

Modelo concreto 1

 Acesso via serviços hospedados em um ou mais servidores na rede local

Modelo concreto 2

Acesso via serviços hospedados na nuvem

Modelo concreto 3

 Acesso via serviços hospedados na névoa e/ou na nuvem

Ambiente computacional

(usado no curso)

- Nuvem pública AWS EC2
- Dispositivos Raspberry Pi com sensores
- Apache Kafka comunicação com dispositivos
- gRPC e Protocol Buffers serviços Web, acesso dos clientes

Apache Kafka

Middleware para streaming de eventos

- Broker (ou cluster de brokers) recebe, armazena e repassa mensagens relativas a eventos
- Clientes
 - Publisher: produz eventos (ex.: sensor que capta e transmite dados)
 - Subscriber (ou consumer): recebe eventos de interesse
- Tópicos: usados para organizar os eventos no broker e repassá-los para os consumidores interessados

Apache Kafka

Arquitetura de mensagens básica: tópicos e partições

Apache Kafka

Usaremos para comunicação nuvem <—> dispositivo

- In a nutshell: streaming-based persistent pub-sub middleware
- Instale o servidor Kafka na máquina que atuará como broker
 - https://www.apache.org/dyn/closer.cgi?path=/kafka/3.3.1/kafka_2.13-3.3.1.tgz
 - Quickstart: https://kafka.apache.org/quickstart (instruções gerais para instalação e uso do broker)
 - Obs.: edite o arquivo **config/server.properties** para colocar o endereço IP da máquina na qual você vai rodar o broker altere a variável **advertised.listeners**, que deverá ficar assim:
 - advertised.listeners=PLAINTEXT://<endereçoIP>:9092
- Kafka-Python Client: https://github.com/dpkp/kafka-python
 - instale nas máquinas onde haverá clientes (consumers e/ou producers)

gRPC e Protocol Buffers

- Service-oriented RPC Middleware, with support for a variety of interaction patterns
- Quickstart in Python:
 - https://grpc.io/docs/languages /python/quickstart/

Arquitetura de sistema

Com apenas sensores

- Produtor na rede local lê sensores e publica no broker (na nuvem)
- Consumidor recebe eventos e escreve em um BD compartilhado
- Serviço Web responde requisições para acesso ao sensor (virtual)
- Obs.: assume que sensores estão fisicamente ligados ao dispositivo onde roda o Produtor (Raspberry Pi)
 - Do contrário usar um protocolo leve (MQTT, CoAP) para comunicação entre sensores e Produtor.

Arquitetura de sistema

Com sensores e atuadores

 Cliente envia comandos aos atuadores via serviço Web

 Produtor (na nuvem) publica os comandos

 Consumidor (na rede local) recebe eventos (comandos) e os executa nos atuadores.

Source code: https://github.com/professorfabio/CMU-StarterProject.git

Projeto

Ideias

- Construir um "digital twin" de um ambiente físico
- Construir uma aplicação ubíqua continuidade transparente entre dispositivos
- Controle autônomo de dispositivos do ambiente com base em sensores e regras
- Aplicação móvel que se adapta à localização do usuário
- Localização indoors como contexto para uma aplicação adaptativa
- Aplicação móvel adaptativa baseada em contexto
- Virtualização de dispositivos loT na nuvem e/ou na fog
- Offloading de funções de uma aplicação móvel