

MOTOROLA

RECTIFIERS AND ZENER DIODES DATA

Index and Cross-Reference

875. b.

Selector Guides

2

Rectifier Data Sheets

3

Zener Diode Data Sheets

4

•			
			,

MOTOROLA

RECTIFIERS AND ZENER DIODES DATA BOOK

Prepared by Technical Information Center

This book presents technical data for the broad line of Motorola Silicon Rectifiers and Zener Diodes. Complete specifications for the individual devices are provided in the form of data sheets. In addition, a comprehensive selector guide and industry cross-reference guide are included to simplify the task of choosing the best set of components required for a specific application.

The information in this book has been carefully checked and is believed to be accurate; however, no responsibility is assumed for inaccuracies.

Motorola reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Motorola does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. Motorola products are not authorized for use as components in life support devices or systems intended for surgical implant into the body or intended to support or sustain life. Buyer agrees to notify Motorola of any such intended end use whereupon Motorola shall determine availability and suitability of its product or products for the use intended. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Employment Opportunity/Affirmative Action Employer.

Series E ©MOTOROLA INC., 1988 Previous Edition ©1987 "All Rights Reserved"

Designer's, POWERTAP, SUPERBRIDGE, Surm	etic, and SWITCHMODE are trademarks of Motorola Inc.
	•
	ii

Index and Cross-Reference

	Pages				
Rectifiers	1-2	to	1-34		
Zener Diodes	1-35	to	1-80		

RECTIFIER INDEX CROSS-REFERENCE

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
1M353 1N253 1N254 1N255 1N256 1N316,A 1N317,A 1N318,A 1N319,A 1N320,A 1N321,A 1N321,A		1N1204B 1N1200B 1N1202B 1N1204B 1N1206B 1N4001 1N4002 1N4003 1N4004 1N4005 1N4007	3-5 3-5 3-5 3-5 3-5 3-33 3-33 3-33 3-33	1N535 1N536 1N537 1N538 1N539 1N540 1N547 1N560 1N561 1N561 1N562 1N563 1N596		1N4005 1N4001 1N4002 1N4003 1N4004 1N4004 1N4005 1N4006 1N4007 MR1128 MR1130 1N4005	3-33 3-33 3-33 3-33 3-33 3-33 3-33 3-3
1N323,A 1N324,A 1N325,A 1N326,A 1N327,A 1N329,A 1N332 1N333 1N333 1N334 1N335 1N336		1N4001 1N4002 1N4003 1N4004 1N4006 1N4007 1N4007 1N1204B 1N1204B 1N1204B 1N1204B 1N1204B	3-33 3-33 3-33 3-33 3-33 3-33 3-5 3-5 3-	1N597 1N598 1N599,A 1N600,A 1N601,A 1N602,A 1N603,A 1N604,A 1N605,A 1N606A, 1N6067,A		1N4006 1N4007 1N4001 1N4002 1N4003 1N4003 1N4004 1N4004 1N4005 1N4005 1N1199B 1N1200B	3-33 3-33 3-33 3-33 3-33 3-33 3-33 3-3
1N337 1N338 1N339 1N340 1N341 1N342 1N343 1N344 1N345 1N345 1N347 1N347		1N1202B 1N1200B 1N1200B 1N1200B 1N1204B 1N1204B 1N1204B 1N1204B 1N1202B 1N1202B 1N1202B 1N1200B	3-5 3-5 3-5 3-5 3-5 3-5 3-5 3-5 3-5 3-5	1N609,A 1N610,A 1N611,A 1N612,A 1N613,A 1N614,A 1N1095 1N1096 1N1100 1N1101 1N1101		1N1202B 1N1202B 1N1204B 1N1204B 1N1206B 1N1206B 1N4005 1N4005 1N4002 1N4002 1N4003 1N4004	3-5 3-5 3-5 3-5 3-5 3-33 3-33 3-33 3-33
1N349 1N350 1N351 1N352 1N354 1N355 1N359,A 1N360,A 1N361,A 1N362,A 1N363,A 1N363,A		1N1200B 1N1200B 1N1202B 1N1204B 1N1206B 1N1206B 1N4001 1N4002 1N4003 1N4004 1N4006 1N4007	3-5 3-5 3-5 3-5 3-5 3-33 3-33 3-33 3-33	1N1104 1N1105 1N1115 1N1116 1N1117 1N1118 1N1119 1N1120 1N1124,A 1N1125,A 1N1126,A 1N1127,A		1N4005 1N4006 1N1200B 1N1202B 1N1204B 1N1204B 1N1206B 1N1206B MR1122 MR1124 MR1124 MR1124	3-33 3-33 3-5 3-5 3-5 3-5 3-5 3-5 3-200 3-200 3-200 3-200
1N365,A 1N440,B 1N441,B 1N442,B 1N443,B 1N444,B 1N530 1N530 1N531 1N532 1N533 1N533		1N4007 1N4002 1N4003 1N4004 1N4004 1N4005 1N4005 1N4002 1N4003 1N4004 1N4004 1N4004	3-33 3-33 3-33 3-33 3-33 3-33 3-33 3-3	1N1128,A 1N1169,A 1N1183 1N1183A 1N1184 1N1186 1N1186 1N1186A 1N1188 1N1188A 1N1190 1N1190A	1N1183A 1N1183A 1N1184A 1N1184A 1N1186A 1N1186A 1N1188A 1N1188A 1N1189A 1N1190A	MR1126 1N4004	3-200 3-33 3-2 3-2 3-2 3-2 3-2 3-2 3-2 3-2 3-

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
1N1199 1N1199A 1N1199B 1N1199C 1N1200 1N1200A 1N1200B 1N1202 1N1202A 1N1202B 1N1202B 1N1204 1N1204A	1N1199 1N1199A 1N1199B 1N1200 1N1200A 1N1200B 1N1202 1N1202A 1N1202B 1N1204 1N1204	1N1199B	3-3 3-4 3-5 3-5 3-3 3-4 3-5 3-3 3-4 3-5 3-3	1N1434 1N1435 1N1436 1N1437 1N1438 1N1443,A,B 1N1444,A,B 1N1486 1N1487 1N1488 1N1489 1N1489		1N1183A 1N1184A 1N1186A 1N1188A 1N1190A 1N4007 MR1130 1N4005 1N4002 1N4003 1N4004 1N4004	3-2 3-2 3-2 3-2 3-33 3-200 3-33 3-33 3-3
1N1204B 1N1206 1N1206A 1N1206B 1N1206C 1N1217,A,B 1N1219,A,B 1N1220,A,B 1N1221,A,B 1N1222,A,B 1N1222,A,B	1N1204B 1N1206 1N1206A 1N1206B	1N1206B 1N4001 1N4002 1N4003 1N4003 1N4004 1N4004 1N4005	3-5 3-3 3-4 3-5 3-5 3-33 3-33 3-33 3-33	1N1491 1N1492 1N1537 1N1538 1N1539 1N1540 1N1541 1N1542 1N1543 1N1544 1N1551 1N1551		1N4005 1N4005 1N1199B 1N1200B 1N1202B 1N1202B 1N1204B 1N1204B 1N1206B 1N1206B 1N1206B 1N1200B 1N1200B	3-33 3-33 3-5 3-5 3-5 3-5 3-5 3-5 3-5 3-
1N1224, A, B 1N1225, A, B 1N1225, A, B 1N1227, A, B 1N1229, A, B 1N1229, A, B 1N1230, A, B 1N1231, A, B 1N1232, A, B 1N1233, A, B 1N1234, A, B 1N1234, A, B 1N1235, A, B		1N4005 1N4006 1N4006 1N1199B 1N1200B 1N1202B 1N1202B 1N1204B 1N1204B 1N1206B 1N1206B MR1128	3-33 3-33 3-5 3-5 3-5 3-5 3-5 3-5 3-5 3-	1N1553 1N1554 1N1555 1N1556 1N1557 1N1558 1N1559 1N1560 1N1581 1N1582 1N1582 1N1583 1N1583		1N1204B 1N1204B 1N1206B 1N4002 1N4003 1N4004 1N4004 1N4005 1N1199B 1N1200B 1N1202B 1N1204B	3-5 3-5 3-5 3-33 3-33 3-33 3-33 3-5 3-5
1N1236,A,B 1N1251 1N1252 1N1253 1N1254 1N1255,A 1N1256 1N1257 1N1258 1N1259 1N1260 1N1261		MR1128 1N4001 1N4002 1N4003 1N4004 1N4004 1N4005 1N4005 1N4006 1N4006 1N4007	3-200 3-33 3-33 3-33 3-33 3-33 3-33 3-33	1N1585 1N1586 1N1587 1N1612 1N1613 1N1614 1N1615 1N1616 1N1646 1N1645 1N1646 1N1646		1N1204B 1N1206B 1N1206B 1N1199 1N1200 1N1202 1N1204 1N1206 1N4001 1N4003 1N4003 1N4003 1N4004	3-5 3-5 3-5 3-3 3-3 3-3 3-33 3-33 3-33
1N1301 1N1302 1N1304 1N1306 1N1341,AB 1N1342,AB 1N1343,AB 1N1344,AB 1N1345,AB 1N1346,AB 1N1347,AB 1N1347,AB	loritu bas an B a	1N1183A 1N1184A 1N1186A 1N1188A 1N1199B 1N1200B 1N1202B 1N1202B 1N1204B 1N1204B 1N1206B 1N1206B	3-2 3-2 3-2 3-5 3-5 3-5 3-5 3-5 3-5 3-5 3-5	1N1648 1N1650 1N1651 1N1652 1N1653 1N1653 1N1692 1N1693 1N1694 1N1695 1N1696 1N1697		1N4004 1N4004 1N4004 1N4005 1N4005 1N4005 1N4002 1N4003 1N4004 1N4004 1N4005 1N4005	3-33 3-33 3-33 3-33 3-33 3-33 3-33 3-3

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
1N1701 1N1702 1N1703 1N1704 1N1705 1N1706 1N1707 1N1708 1N1709 1N1710 1N1711 1N1711		1N4001 1N4002 1N4003 1N4004 1N4004 1N4005 1N4001 1N4002 1N4003 1N4004 1N4004 1N4004	3-33 3-33 3-33 3-33 3-33 3-33 3-33 3-3	1N2086 1N2103 1N2104 1N2105 1N2106 1N2107 1N2108 1N2116 1N2117 1N2154 1N2154 1N2155		1N4005 1N4001 1N4002 1N4003 1N4004 1N4004 1N4005 1N4004 1N4006 1N1183A 1N1184A 1N1186A	3-33 3-33 3-33 3-33 3-33 3-33 3-33 3-3
1N1763 1N1764 1N1907 1N1908 1N1909 1N1910 1N1911 1N1911 1N1912 1N1913 1N1914 1N1915 1N1916		1N4004 1N4005 1N4001 1N4002 1N4003 1N4004 1N4004 1N4005 1N4005 1N4006 1N4006 1N4006	3-33 3-33 3-33 3-33 3-33 3-33 3-33 3-3	1N2157 1N2158 1N2159 1N2160 1N2216 1N2218 1N2220 1N2222,A 1N2224,A 1N2226,A 1N2228,A 1N2230,A		1N1188A 1N1188A 1N1190A 1N1190B 1N1206B 1N1206B MR1128 MR1130 * 1N1199B 1N1202B	3-2 3-2 3-2 3-5 3-5 3-5 3-200 3-200 3-5 3-5 3-5
1N2013 1N2014 1N2015 1N2016 1N2017 1N2018 1N2019 1N2020 1N2021 1N2022 1N2022 1N2023 1N2024		1N4001 1N4002 1N4003 1N4003 1N4004 1N4004 1N4004 1N4004 1N1186A 1N1188A 1N1188A	3-33 3-33 3-33 3-33 3-33 3-33 3-33 3-2 3-2	1N2232,A 1N2234,A 1N2236,A 1N2238,A 1N2240,A 1N2242,A 1N2244,A 1N2246A 1N2248A 1N2250A 1N2252A 1N2252A		1N1204B 1N1204B 1N1206B 1N1206B MR1128 MR1130 * 1N1199B 1N1200B 1N1202B 1N1204B 1N1204B	3-5 3-5 3-5 3-200 3-200 — 3-5 3-5 3-5 3-5 3-5
1N2025 1N2026 1N2027 1N2028 1N2029 1N2030 1N2031 1N2069,A 1N2071,A 1N2071,A 1N2072		1N1188A 1N1199B 1N1202B 1N1204B 1N1204B 1N1206B 1N1206B 1N4003 1N4003 1N4004 1N4005 1N4001 1N4001	3-2 3-5 3-5 3-5 3-5 3-5 3-33 3-33 3-33 3	1N2256A 1N2258A 1N2260A 1N2262A 1N2266 1N2270 1N2282 1N2282 1N2283 1N2284 1N2285 1N2286		1N1206B 1N1206B MR1128 MR1130 1N1199B 1N1206B 1N1206B 1N1188A 1N1188A 1N1190A 1N1190A	3-5 3-5 3-200 3-200 3-5 3-5 3-2 3-2 3-2 3-2
1N2074 1N2075 1N2076 1N2077 1N2078 1N2079 1N2080 1N2081 1N2082 1N2083 1N2083 1N2084 1N2085		1N4003 1N4003 1N4004 1N4004 1N4004 1N4005 1N4001 1N4002 1N4003 1N4004 1N4004 1N4005	3-33 3-33 3-33 3-33 3-33 3-33 3-33 3-3	1N2287 1N2348 1N2349 1N2350 1N2446 1N2447 1N2448 1N2449 1N2450 1N2451 1N2452		1N1190A MR1120 MR1121 MR1122 1N1183A 1N1184A 1N1186A 1N1186A 1N1188A 1N1188A 1N1188A	3-2 3-200 3-200 3-200 3-2 3-2 3-2 3-2 3-2 3-2 3-2 3-2 3-2

^{*}These devices are manufactured by Motorola but no data sheet available — Consult Factory.

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
1N2454 1N2455 1N2456 1N2457 1N2457 1N2458 1N2459 1N2460 1N2461 1N2462 1N2463 1N2464 1N2464		1N1190A 1N1190A 1N1190A 1N1190A 1N1183A 1N1184A 1N1186A 1N1186A 1N1188A 1N1188A 1N1188A	3-2 3-2 3-2 3-2 3-2 3-2 3-2 3-2 3-2 3-2	1N2864,A 1N2865 1N3072 1N3073 1N3074 1N3075 1N3076 1N3077 1N3078 1N3079 1N3080 1N3081	·	1N5397 1N4007 1N4001 1N4002 1N4003 1N4003 1N4004 1N4004 1N4004 1N4004 1N4005 1N4005	3-41 3-33 3-33 3-33 3-33 3-33 3-33 3-33
1N2466 1N2467 1N2468 1N2469 1N2482 1N2483 1N2484 1N2485 1N2486 1N2487 1N2487 1N2488		1N1190A 1N1190A 1N1190A 1N1190A 1N14003 1N4004 1N4005 1N5393 1N5395 1N5395 1N5397	3-2 3-2 3-2 3-33 3-33 3-33 3-41 3-41 3-41 3-41	1N3082 1N3083 1N3084 1N3106 1N3189 1N3190 1N3191 1N3192 1N3193 1N3194 1N3195 1N3196		1N5393 1N5395 1N5397 1N4006 1N4003 1N4004 1N4005 • 1N4003 1N4004 1N4005 1N4005	3-41 3-41 3-41 3-33 3-33 3-33 3-33 3-33
1N2491 1N2492 1N2493 1N2494 1N2495 1N2496 1N2497 1N2501 1N2502 1N2505 1N2505 1N2506 1N2512		1N1199B 1N1200B 1N1202B 1N1204B 1N1204B 1N1206B 1N1206B 1N4006 1N4007 1N4006 1N4007 1N1200B	3-5 3-5 3-5 3-5 3-5 3-5 3-5 3-33 3-33 3	1N3208 1N3209 1N3210 1N3211 1N3212 1N3253 1N3254 1N3255 1N3256 1N3486 1N3491 1N3492	1N3208 1N3209 1N3210 1N3211 1N3212	1N4003 1N4004 1N4005 1N4006 1N4007	3-6 3-6 3-6 3-6 3-33 3-33 3-33 3-33 3-3
1N2513 1N2514 1N2515 1N2516 1N2517 1N2609 1N2610 1N2611 1N2612 1N2613 1N2614 1N2615		1N1202B 1N1204B 1N1204B 1N1206B 1N1206B 1N4001 1N4002 1N4003 1N4004 1N4004 1N4005 1N4005	3-5 3-5 3-5 3-5 3-5 3-33 3-33 3-33 3-33	1N3493 1N3495 1N3563 1N3569 1N3570 1N3571 1N3572 1N3573 1N3574 1N3611 1N3612 1N3613	1N3493 1N3495	1N4007 MR1121 MR1122 MR1124 MR1124 MR1126 MR1126 1N4003 1N4004 1N4005	3-7 3-7 3-33 3-200 3-200 3-200 3-200 3-200 3-200 3-33 3-33
1N2616 1N2617 1N2786 1N2787 1N2788 1N2789 1N2858,A 1N2859,A 1N2860,A 1N2861,A 1N2862,A 1N2863,A		1N4006 1N4007 1N1186A 1N1188A 1N1186A 1N1186A 1N5391 1N5392 1N5393 1N5395 1N5395 1N5397	3-33 3-33 3-2 3-2 3-2 3-2 3-41 3-41 3-41 3-41 3-41	1N3614 1N3615 1N3616 1N3617 1N3618 1N3619 1N3620 1N3621 1N3622 1N3623 1N3623 1N3639		1N4006 MR1120 MR1121 MR1122 MR1122 MR1124 MR1124 MR1126 MR1126 MR1128 MR1130 1N5393	3-33 3-200 3-200 3-200 3-200 3-200 3-200 3-200 3-200 3-200 3-200 3-41

^{*}These devices are manufactured by Motorola but no data sheet available — Consult Factory.

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
1N3640 1N3641 1N3642 1N3649 1N3650 1N3659 1N3660 1N3661 1N3663 1N3670,A 1N3671,A	1N3659 1N3660 1N3661 1N3663 MR1128 MR1128 MR1128	1N5395 1N5397 1N5398 MR1128 MR1128	3-41 3-41 3-41 3-200 3-200 3-11 3-11 3-11 3-200 3-200 3-200	1N4012 1N4013 1N4014 1N4015 1N4139 1N4140 1N4141 1N4142 1N4143 1N4144 1N4145 1N4245		MR1130 MR1130 1N4719 1N4720 1N4721 1N4722 1N4723 1N4724 1N4725 1N4003 1N4004 1N4005	3-200 3-200 3-34 3-34 3-34 3-34 3-34 3-34 3-33 3-33 3-33
1N3673,A 1N3766 1N3768 1N3866 1N3867 1N3868 1N3869 1N3879 1N3879A 1N3880 1N3880 1N3880A	1N3879 1N3880 1N3881	1N1190A 1N1190A 1N4003 1N4004 1N4005 1N4007 1N3879	3-200 3-2 3-2 3-33 3-33 3-33 3-13 3-13 3-13 3-13 3-13	1N4246 1N4247 1N4248 1N4249 1N4383GP 1N4384GP 1N4385GP 1N4585GP 1N4586GP 1N4364 1N4365 1N4366		1N4006 1N4007 1N5393 1N5395 1N5397 1N5398 1N5399 1N4002 1N4003 1N4004 1N4004 1N4005	3-33 3-33 3-41 3-41 3-41 3-41 3-33 3-33
1N3881A 1N3883 1N3883A 1N3889 1N3889A 1N3890 1N3890A 1N3891 1N3891A 1N3893 1N3893A 1N3899	1N3883 1N3889 1N3890 1N3891 1N3893 1N3899	1N3881 1N3883 1N3889 1N3890 1N3891 1N3893	3-13 3-13 3-13 3-18 3-18 3-18 3-18 3-18	1N4367 1N4368 1N4369 1N4719 1N4720 1N4721 1N4722 1N4723 1N4724 1N4725 1N4816,GP 1N4817,GP	1N4719 1N4720 1N4721 1N4722 1N4723 1N4724 1N4725	1N4005	3-33 ——————————————————————————————————
1N3900 1N3901 1N3903 1N3909 1N3910 1N3911 1N3913 1N3924 1N3938 1N3939 1N3940 1N3957	1N3900 1N3901 1N3903 1N3909 1N3910 1N3911 1N3913	MR1130 * * * 1N4007	3-23 3-23 3-23 3-28 3-28 3-28 3-28 3-200 — — — 3-33	1N4818,GP 1N4819,GP 1N4820,GP 1N4821,GP 1N4822,GP 1N4933GP 1N4935GP 1N4935GP 1N4937GP 1N4937GP 1N4942 1N4943	1N4933 1N4934 1N4935 1N4936 1N4937	1N5393 1N5395 1N5395 1N5396 1N5397	3-41 3-41 3-41 3-41 3-35 3-35 3-35 3-35 3-35 3-35 3-35 3-3
1N3981 1N3982 1N3983 1N3987 1N3989 1N4001 1N4002 1N4003 1N4004 1N4005 1N4006 1N4007	1N4001 1N4002 1N4003 1N4004 1N4005 1N4006 1N4007	1N4003 1N4004 1N4005 MR1128 MR1130	3-33 3-33 3-200 3-200 3-33 3-33 3-33 3-3	1N4944 1N4945 1N4946 1N4948 1N5004 1N5005 1N5006 1N5007 1N5052 1N5053 1N5054 1N5055		1N4936 1N4937 1N4937 MR818 1N5392 1N5393 1N5395 1N5397 1N5398 1N5398 1N5399 1N4934	3-35 3-35 3-177 3-41 3-41 3-41 3-41 3-41 3-41 3-41 3-35

^{*}These devices are manufactured by Motorola but no data sheet available — Consult Factory.

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
1N5056 1N5057 1N5058 1N5059GP 1N5060GP 1N5061GP 1N5062GP 1N5170 1N5170 1N5171 1N5172 1N5173 1N5174		1N4935 1N4936 1N4937 MR5060 MR5060 MR5061 MR5061 1N5391 1N5391 1N5392 1N5395	3-35 3-35 3-35 3-227 3-227 3-227 3-227 3-41 3-41 3-41 3-41 3-41	1N5615GP 1N5616GP 1N5617GP 1N5618GP 1N5619GP 1N5620GP 1N5621GP 1N5622GP 1N5623GP 1N5623GP 1N5624,GP 1N5624,GP 1N5625,GP		1N4935 1N4004 1N4936 1N4005 1N4937 1N4006 MR817 1N4007 MR818 MR502 MR504 MR506	3-35 3-33 3-35 3-35 3-35 3-177 3-33 3-177 3-167 3-167 3-167
1N5175 1N5176 1N5177 1N5178 1N5185,GP 1N5186,GP 1N5187,GP 1N5188,GP 1N5189,GP 1N5190,GP 1N5197 1N5198		1N5397 1N5397 1N5398 1N5399 MR850 MR851 MR852 MR854 MR856 MR856 MR500 MR501	3-41 3-41 3-41 3-41 3-192 3-192 3-192 3-192 3-192 3-167 3-167	1N5627GP 1N5802 1N5803 1N5804 1N5805 1N5806 1N5807 1N5808 1N5809 1N5810 1N5811 1N5811	MUR2505	MR508 MUR405 MUR410 MUR410 MUR415 MUR415 MUR415 MUR405 MUR410 MUR410 MUR410 MUR415	3-167 3-234 3-234 3-234 3-234 3-234 3-234 3-234 3-234 3-234 3-234 3-234 3-257
1N5199 1N5200 1N5201 1N5206 1N5391 1N5391GP 1N5392 1N5392GP 1N5393 1N5393GP 1N5393GP 1N5394GP 1N5395	1N5391 1N5392 1N5393	MR502 MR504 MR506 1N4936 1N5391 1N5392 1N5393 1N5395	3-167 3-167 3-167 3-35 3-41 3-41 3-41 3-41 3-41 3-41 3-41 3-41	1N5813 1N5814 1N5815 1N5816 1N5817 1N5818 1N5819 1N5820 1N5821 1N5821 1N5822 1N5823 1N5824	MUR2510 MUR2510 MUR2515 MUR2515 1N5817 1N5818 1N5819 1N5820 1N5821 1N5821 1N5822 1N5823 1N5824		3-257 3-257 3-257 3-257 3-47 3-47 3-47 3-51 3-51 3-55 3-55
1N5395GP 1N5396GP 1N5397 1N5397GP 1N5398GP 1N5398GP 1N5399 1N5399GP 1N5400 1N5401 1N5401 1N5402 1N5406	1N5397 1N5398 1N5399 1N5400 1N5401 1N5402 1N5406	1N5395 1N5397 1N5397 1N5398 1N5399	3-41 3-41 3-41 3-41 3-41 3-41 3-41 3-45 3-45 3-45 3-45	1N5825 1N5826 1N5827 1N5827 1N5828 1N5829 1N5830 1N5831 1N5832 1N5833 1N5834 1N5898 1N5899	1N5825 1N5826 1N5827 1N5828 1N5829 1N5830 1N5831 1N5832 1N5833 1N5834	1N4719 1N4720	3-55 3-60 3-60 3-60 3-64 3-64 3-69 3-69 3-69 3-34 3-34
1N5415 1N5416 1N5417 1N5418 1N5419 1N5420 1N5550 1N5551 1N5552 1N5553 1N5554 1N5614GP		MR850 MR851 MR852 MR854 MR856 MR856 MR502 MR504 MR506 MR508 MR508 MR510 1N4003	3-192 3-192 3-192 3-192 3-192 3-192 3-167 3-167 3-167 3-167 3-3-33	1N5900 1N5901 1N5902 1N5903 1N5904 1N6095 1N6096 1N6097 1N6098 1N6304 1N6305 1N6306	1N6095 1N6096 1N6097 1N6098 MUR7005 MUR7010 MUR7015	1N4721 1N4722 1N4723 1N4724 1N4725	3-34 3-34 3-34 3-34 3-73 3-73 3-77 3-77

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
1N6391 1N6392 1N6457 1N6458 1N6459 1N6460 2/A4 2AF1 2AF2 2AF3 2AF4 2AF6	MBR3545 MBR6545	MBR12045CT MBR12045CT MBR12045CT MBR12045CT 1N4004 MR501 MR502 MR504 MR504 MR506	3-116 3-128 3-138 3-138 3-138 3-138 3-138 3-167 3-167 3-167 3-167 3-167 3-167	3BFR4 3BFR6 3CFS10 3E1 3E2 3E4 3E05 3E6 3E8 3E10 3F10 3F20		MR854 MR856 1N4007 MR501 MR502 MR504 MR501 MR506 MR508 MR510 MR1121 MR1121	3-192 3-192 3-33 3-167 3-167 3-167 3-167 3-167 3-167 3-200 3-200
2AF8 2AF10 2AFR1 2AFR2 2AFR3 2AFR4 2AFR6 2KBP08 2KBP10 3A1 3A2 3A2	:	MR508 MR510 MR851 MR852 MR854 MR854 MR856 MR501 MR501 MR502 MR504	3-167 3-167 3-192 3-192 3-192 3-192 3-192 	3F30 3F40 3F50 3F60 3F80 3F100 3L03 3L05 3N246 3N247 3N248 3N249	*	MR1124 MR1124 MR1126 MR1126 MR1128 MR1130 MR850 MR850	3-200 3-200 3-200 3-200 3-200 3-200 3-192 3-192
3A05 3A6 3A8 3A15 3A30 3A50 3A100 3A200 3A300 3A400 3A500 3A500 3A600		MR501 MR506 MR508 MR501 MR501 MR501 MR501 MR502 MR504 MR504 MR506 MR506	3-167 3-167 3-167 3-167 3-167 3-167 3-167 3-167 3-167 3-167 3-167 3-167	3N250 3N251 3N252 3N253 3N254 3N255 3N256 3N257 3N258 3N259 3S11 3S12		MR501 MR502	
3A800 3A1000 3AF1 3AF2 3AF3 3AF4 3AF6 3AF8 3AF10 3AFR1 3AFR2 3AFR3		MR508 MR510 MR501 MR502 MR504 MR504 MR506 MR508 MR510 MR851 MR851 MR852 MR854	3-167 3-167 3-167 3-167 3-167 3-167 3-167 3-167 3-167 3-192 3-192 3-192	3S14 3S16 3S105 3SF1 3SF2 3SF4 3SM0 3SM2 3SM4 3SM6 3SM8 4AF05	MR504 MR506 MR501 MR851 MR852 MR854 MR510 MR502 MR504 MR504 MR506 MR508 1N3491		3-167 3-167 3-192 3-192 3-192 3-167 3-167 3-167 3-167 3-7
3AFR4 3AFR6 3BF1 3BF2 3BF3 3BF4 3BF6 3BF8 3BF10 3BFR1 3BFR2 3BFR3		MR854 MR856 MR501 MR502 MR504 MR504 MR506 MR508 MR510 MR851 MR852 MR854	3-192 3-192 3-167 3-167 3-167 3-167 3-167 3-167 3-192 3-192 3-192	4AF1 4AF2 4AF4 4AF6 4D4 4D6 4FB5 4FB10 4FB20 4FB30 4FB40 4FC	1N3492 1N3493 1N3495 1N4004 1N4005 1N4933 1N4934 1N4935 1N4936 1N4936 1N4934	1N3495	3-7 3-7 3-7 3-7 3-33 3-33 3-35 3-35 3-35

^{*}These devices are manufactured by Motorola but no data sheet available — Consult Factory.

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
4FC5 4FC10 4FC20 4FC30 4FC40 5A 5A1 5A2 5A3 5A4 5A4 5A5 5A6		1N4933 1N4934 1N4935 1N4936 1N4936 1N4936 1N4004 1N4002 1N4003 1N4004 1N4004 1N4005 1N4005	3-35 3-35 3-35 3-35 3-35 3-33 3-33 3-33	6FV10 6FV20 6FV30 6FV40 6FV50 6FV60 8AF05 8AF1 8AF2 8AF4 8D4	MR5005 MR5010 MR5020 MR5040	1N3880 1N3881 1N3883 1N3883 MR1366 MR1366	3-13 3-13 3-13 3-13 3-13 3-13 3-225 3-225 3-225 3-225 3-225 3-33 3-33
5A8 5A10 6A05 6A1 6A2 6A4 6A6 6A6F 6A700 6A800 6A900 6A1000		1N4006 1N4007 MR750 MR751 MR752 MR754 MR756 MR1366 MR1128 MR1128 MR1130 MR1130	3-33 3-33 3-173 3-173 3-173 3-173 3-173 3-13 3-200 3-200 3-200 3-200	10B 10B1 10B2 10B3 10B4 10B5 10B6 10B8 10B10 10BR 10C1 10C2		MR1121 1N4002 1N4003 1N4004 1N4004 1N4005 1N4005 1N4006 1N4007 1N3880 1N4002 1N4003	3-200 3-33 3-33 3-33 3-33 3-33 3-33 3-33
6AL1 6AL2 6AL3 6AL4 6AL6 6ALR1 6ALR2 6ALR3 6ALR4 6ALR6 6F5A 6F10A,B		MR751 MR752 MR754 MR754 MR756 MR821 MR822 MR822 MR824 MR824 MR826 1N1199B 1N1200B	3-173 3-173 3-173 3-173 3-173 3-183 3-183 3-183 3-183 3-183 3-5 3-5	10C3 10C4 10C5 10C6 10C8 10C10 10D1 10D2 10D3 10D4 10D5 10D6		1N4004 1N4004 1N4005 1N4005 1N4006 1N4007 1N5392 1N5393 1N5395 1N5395 1N5397 1N5397	3-33 3-33 3-33 3-33 3-33 3-41 3-41 3-41
6F20A,B 6F30A,B 6F40A,B 6F50A,B 6F60A,B 6F70A,B 6F80A,B 6F90A,B 6F900A,B 6F100A,B 6FL5 6FL10SXX 6FL20SXX	1N3880 1N3881	1N1202B 1N1204B 1N1204B 1N1206B 1N1206B MR1128 MR1128 MR1130 MR1130 1N3879	3-5 3-5 3-5 3-5 3-200 3-200 3-200 3-200 3-13 3-13 3-13	10D8 10D10 10DL1 10DL2 10H3P 10HR3P 10TQ020 10TQ030 10TQ035 10TQ040 10TQ045 11DQ03	MBR1035 MBR1035 MBR1045 MBR1045	1N5398 1N5399 1N4934 1N4935 MR1121 1N3880 MBR1035	3-41 3-41 3-35 3-35 3-200 3-13 3-92 3-92 3-92 3-92 3-92 3-92 3-47
6FL30 6FL40SXX 6FL50 6FL60SXX 6FT5 6FT10 6FT30 6FT40 6FT50 6FT60 6FT60 6FV5	1N3883 MR1366	1N3883 MR1366 1N3879 1N3880 1N3881 1N3883 1N3883 MR1366 MR1366 1N3879	3-13 3-13 3-13 3-13 3-13 3-13 3-13 3-13	11DQ04 11DQ05 11DQ06 12A6F 12A8F 12A10F 12A700 12A800 12A900 12A1000 12CTQ030 12CTQ030	MBR1535CT	1N5819 MBR150 MBR160 MR1376 * * MR1128 MR1128 MR1130 MR1130 MBR1535CT	3-47 3-83 3-83 3-18 — 3-200 3-200 3-200 3-200 3-98 3-98

 $^{{}^{\}star}\mathrm{These}$ devices are manufactured by Motorola but no data sheet available — Consult Factory.

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
12CTQ035 12CTQ035 12CTQ040 12CTQ040 12CTQ045 12CTQ045 12F5,A,B 12F10,A,B 12F15,A,B 12F20,A,B 12F30,A,B 12F30,A,B	MBR1535CT MBR1545CT MBR1545CT	MBR1535CT MBR1545CT 1N1199B 1N1200B 1N1202B 1N1202B 1N1204B 1N1204B	3-98 3-98 3-98 3-98 3-98 3-5 3-5 3-5 3-5 3-5 3-5	18FB10 18FB20 18FB30 18FB40 18FC5 18FC10 18FC20 18FC30 18FC40 20A1 20A2 20A3		1N4934 1N4935 1N4936 1N4936 1N4933 1N4934 1N4935 1N4936 1N4936 1N4002 1N4003 1N4004	3-35 3-35 3-35 3-35 3-35 3-35 3-35 3-35
12F50,A,B 12F60,A,B 12F80B 12F100B 12FL5,502 12FL10,502 12FL20,502 12FL30,502 12FL40,502 12FL50,502 12FL60,502 12FL50,502 12FL50,502		1N1206B 1N1206B MR1128 MR1130 1N3889 1N3890 1N3891 1N3893 1N3893 MR1376 MR1376 1N3889	3-5 3-200 3-200 3-18 3-18 3-18 3-18 3-18 3-18 3-18 3-18	20A4 20A5 20A6 20A6F 20A8 20A8F 20A10 20A10F 20B 20BR 20CTQ030 20CTQ035	MBR2035CT MBR2035CT5	1N4004 1N4005 1N4005 MR1386 1N4006 1N4007 MR1122 1N3881	3-33 3-33 3-23 3-23 3-33 — 3-33 — 3-200 3-13 3-102 3-102
12FT10 12FT20 12FT30 12FT40 12FT50 12FT60 12FV5 12FV10 12FV20 12FV20 12FV30 12FV40 12FV40 12FV50		1N3890 1N3891 1N3893 1N3893 MR1376 MR1376 1N3889 1N3890 1N3891 1N3893 1N3893 MR1376	3-18 3-18 3-18 3-18 3-18 3-18 3-18 3-18	20CTQ040 20CTQ045 20D05 20D1 20D2 20D4 20D6 20D8 20D10 20F10 20F20 20F30	MBR2045CT MBR2045CT	MR500 MR501 MR502 MR504 MR506 MR508 MR510 MR1121 MR1122 MR1124	3-102 3-102 3-167 3-167 3-167 3-167 3-167 3-167 3-200 3-200 3-200
12FV60 16F5 16F10 16F15 16F20 16F30 16F40 16F50 16F60 16F80 16F80 16F100 16MB05W		MR1376 MR1120 MR1121 MR1122 MR1122 MR1124 MR1124 MR1126 MR1126 MR1128 MR1130 MDA2500	3-18 3-200 3-200 3-200 3-200 3-200 3-200 3-200 3-200 3-200 3-200 3-155	20F40 20FQ020 20FQ030 20FQ035 20FQ040 20FQ045 20H3P 20HR3P 21DQ03 21DQ04 21FQ030 21FQ035	MBR3520 MBR3535 MBR3535 MBR3545 MBR3545 MBR3545	MR1124 MR1122 1N3881 1N5821 1N5822	3-200 3-116 3-116 3-116 3-116 3-116 3-200 3-13 3-51 3-51 3-116 3-116
16MB10W 16MB20W 16MB40W 16MB60W 16MB80W 16MB100W 18FA5 18FA10 18FA20 18FA30 18FA40 18FB5		MDA2501 MDA2502 MDA2504 MDA2506 MDA3508 MDA3510 1N4933 1N4934 1N4935 1N4936 1N4936 1N4933	3-155 3-155 3-155 3-155 3-159 3-159 3-35 3-35 3-35 3-35 3-35 3-35 3-35	21FQ040 21FQ045 25FQ010 25FQ015 25FQ020 25FQ025 25FQ030 25PW5 25PW10 25PW20 25PW30 25PW40	MBR3545 MBR3545	1N5829 1N5829 1N5829 1N5830 1N5830 1N3491 1N3492 1N3493 1N3495 1N3495	3-116 3-116 3-64 3-64 3-64 3-64 3-7 3-7 3-7 3-7 3-7

^{*}These devices are manufactured by Motorola but no data sheet available — Consult Factory.

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
25PW50 25PW60 25PW60 26MB05A 26MB10A 26MB20A 26MB40A 26MB60A 26MB80A 26MB100A 28CPQ030 28CPQ040 30A6F		1N3495 1N3495 MDA2500 MDA2501 MDA2502 MDA2504 MDA2506 MDA3508 MDA3510 MBR3035PT MBR3045PT MR1396	3-7 3-7 3-155 3-155 3-155 3-155 3-155 3-159 3-159 3-114 3-114 3-28	40B 40BR 40C 40CDQ020 40CDQ030 40CDQ035 40CDQ040 40CDQ045 40D1 40D2 40D4 40D6	MBR3035CT MBR3035CT MBR3035CT MBR3045CT MBR3045CT	MR751 MR752 MR754 MR756	3-200 3-13 3-33 3-110 3-110 3-110 3-110 3-173 3-173 3-173 3-173
30A8F 30A10F 30B 30BR 30CT 30CTQ030 30CTQ035 30CTQ040 30CTQ045 30DL1 30DL2 30DL2 30DQ02	MBR2535CT MBR2535CT MBR2545CT MBR2545CT MR851 MR851 MR852 1N5820	MR1123 1N3882 1N4004	3-200 3-13 3-33 3-108 3-108 3-108 3-108 3-192 3-192 3-51	40D8 40H3P 40HF5 40HF10 40HF15 40HF20 40HF30 40HF40 40HF50 40HF60 40HFL10SXX 40HFL20SXX		MR756 MR1124 1N1183A 1N1184A 1N1186A 1N1186A 1N1187A 1N1188A 1N1190A 1N1190A MUR5005 MUR5020	3-173 3-200 3-2 3-2 3-2 3-2 3-2 3-2 3-2 3-2 3-264 3-264
30DQ03 30DQ04 30FQ030 30FQ045 30FQ35A 30FQ35A 30FQ45A 30H3P 30HR3P 30QHC030 30QHC045	1N5821 1N5822	MBR3535 MBR3545 * * * * * * * * * * * * * * * * * * *	3-51 3-51 3-116 3-116 	40HR3P 40SL01 40SL02 40SL04 40SL05 40SL06 50H3P 50HQ020 50HQ030 50HQ035 50HQ040 50HQ045	MBR6020 MBR6035 MBR6035 MBR6045 MBR6045	1N3883 MR851 MR852 MR854 MR850 MR850 MR856 MR1125	3-13 3-192 3-192 3-192 3-192 3-192 3-200 3-120 3-124 3-124 3-124 3-124
30S1 30S2 30S3 30S4 30S5 30S6 30S8 30S10 31DQ03 31DQ04 31DQ05 31DQ05 31DQ06		MR501 MR502 MR504 MR504 MR506 MR506 MR508 MR510 1N5821 1N5822 MBR350 MBR360	3-167 3-167 3-167 3-167 3-167 3-167 3-167 3-51 3-51 3-86 3-86	50SQ030 50SQ040 51HQ045 52HQ030 52SQ035 52HQ040 52HQ045 55HQ015 55HQ015 55HQ020 55HQ020 55HQ020 60B	MBR6035 MBR6035 MBR6035 MBR6045 MBR6045	1N5824 1N5825 MBR6015L MBR6020L MBR6025L MBR6030L MR1126	3-55 3-55 3-124 3-124 3-124 3-124 3-120 3-120 3-120 3-120 3-200
35MB5A 35MB10A 35MB20A 35MB40A 35MB60A 35MB80A 35MB100A 40A50 40A100 40A200 40A400 40A600		MDA3500 MDA3501 MDA3502 MDA3504 MDA3506 MDA3508 MDA3510 1N1183A 1N1184A 1N1186A 1N1188A 1N1190A	3-159 3-159 3-159 3-159 3-159 3-159 3-159 3-2 3-2 3-2 3-2 3-2 3-2	60BR 60C 60CDQ020 60CDQ030 60CDQ035 60CDQ040 60CDQ045 60CR 60H3P 60HF10 60HF20 60HF30	MBR3035CT MBR3035CT MBR3035CT MBR3045CT MBR3045CT MBR3045CT	MR1366 1N4005 1N4937 MR1126 1N1184A 1N1186A 1N1187A	3-13 3-33 3-110 3-110 3-110 3-110 3-35 3-200 3-2 3-2 3-2 3-2

^{*}These devices are manufactured by Motorola but no data sheet available — Consult Factory.

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
60HF40 60HF50 60HF60 60HR3P 60S1 60S2 60S3 60S4 60S5 60S6 60S8 60S10		1N1188A 1N1189A 1N1190A MR1366 MR751 MR752 MR754 MR754 MR756 MR756 MR508 MR508	3-2 3-2 3-2 3-13 3-173 3-173 3-173 3-173 3-173 3-167 3-167	363M 388A 388B 388C 388D 388F 388H 388K 388M 407A 407B		MR856 1N4933 1N4934 1N4935 1N4935 1N4936 1N4936 1N4937 1N4937 1N1199B 1N1200B 1N1202B	3-192 3-35 3-35 3-35 3-35 3-35 3-35 3-35 3-3
75HQ030 75HQ035 75HQ040 75HQ045 80B 80C 80H3P 80SQ030 80SQ035 80SQ040 80SQ045 85HQ030	MBR8035 MBR8035 MBR8045 MBR8045 MBR8035	MR1128 1N4006 MR1128 1N5824 1N5825 1N5825 1N5825	3-134 3-134 3-134 3-134 3-200 3-33 3-200 3-55 3-55 3-55 3-55 3-134	407D 407F 407H 407K 407M 408A 408B 408C 408D 408F 408H 408K		1N1202B 1N1204B 1N1204B 1N1206B 1N1206B 1N1206B 1N1200B 1N1202B 1N1202B 1N1204B 1N1204B 1N1204B 1N1204B 1N1206B	3-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5
85HQ035 85HQ040 85HQ045 100B 100C 100H3P 100JB05L 100JB1L 100JB2L 100JB4L 100JB4L 100JB6L 100JB8L	MBR8035 MBR8045 MBR8045	MR1130 1N4007 MR1130 MDA2500 MDA2501 MDA2502 MDA2504 MDA2506 MDA3508	3-134 3-134 3-200 3-33 3-200 3-155 3-155 3-155 3-155 3-155 3-155 3-155	408M 409A 409B 409C 409D 409F 409H 409K 409M 418A 418B 418C		1N1206B 1N1199B 1N1200B 1N1202B 1N1202B 1N1204B 1N1204B 1N1206B 1N1206B 1N1183A 1N1184A 1N1186A	3-5 3-5 3-5 3-5 3-5 3-5 3-5 3-5 3-2 3-2 3-2
100JB10L 200CNQ020 200CNQ030 200CNQ035 200CNQ040 200CNQ045 201CNQ020 201CNQ030 201CNQ035 201CNQ040 201CNQ040 201CNQ045 250JB05L		MDA3510 MBR30035CT MBR30035CT MBR30035CT MBR30045CT MBR30045CT MBR20035CT MBR20035CT MBR20035CT MBR20045CT MBR20045CT MBR20045CT MBR20045CT MDA2500	3-159 3-144 3-144 3-144 3-144 3-142 3-142 3-142 3-142 3-142 3-155	418D 418F 418H 418K 419A 419B 419C 419D 419F 419H 419K		1N1186A 1N1188A 1N1188A 1N1190A 1N1190A 1N1183A 1N1184A 1N1186A 1N1186A 1N1188A 1N1188A 1N1188A 1N1190A	3-2 3-2 3-2 3-2 3-2 3-2 3-2 3-2 3-2 3-2
250JB1L 250JB2L 250JB4L 250JB6L 250JB8L 250JB10L 363A 363B 363D 363F 363H 363K		MDA2501 MDA2502 MDA2504 MDA2506 MDA3508 MDA2510 MR850 MR851 MR852 MR854 MR854 MR854 MR856	3-155 3-155 3-155 3-155 3-155 3-159 3-152 3-192 3-192 3-192 3-192 3-192	419M 469-1 469-2 469-3 673-1S 673-2S 673-3S 673-4S 673-5S 673-6S 40108 40109		1N1190A MDA2501 MDA2502 MDA2504	3-2 3-155 3-155 3-155 — — — — — — — — 3-5 3-5

^{*}These devices are manufactured by Motorola but no data sheet available — Consult Factory.

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
40110 40111 40112 40113 40114 40115 40266 40267 40642 40643 40644 A14A		1N1202B 1N1204B 1N1204B 1N1206B 1N1206B 1N1206B MR1128 MR501 MR502 MR817 MR817 MR817 1N4002	3-5 3-5 3-5 3-5 3-5 3-200 3-167 3-167 3-177 3-177 3-177 3-33	A129E A129M A139E A139M A300 A327A A327B A327C A327F A500 A800 A1000		MR1376 MR1376 MR1386 MR1386 1N4004 MR1121 MR1122 MR1124 MR1120 1N4005 1N4006 1N4007	3-18 3-18 3-23 3-23 3-33 3-200 3-200 3-200 3-300 3-33 3-33
A14B A14C A14D A14E A14F A14M A14N A14P A15A A15B A15C A15D		1N4003 1N4004 1N4004 1N4005 1N4005 1N4005 1N4006 1N4007 MR501 MR502 MR504 MR504	3-33 3-33 3-33 3-33 3-33 3-33 3-33 3-167 3-167 3-167 3-167	AA50 AA100 AA200 AA300 AA400 AA500 AA600 AA800 AA1000 AB50 AB100 AB200		1N4001 1N4002 1N4003 1N4004 1N4004 1N4005 1N4005 1N4006 1N4007 MR501 MR501 MR502	3-33 3-33 3-33 3-33 3-33 3-33 3-33 3-167 3-167 3-167
A15E A15F A15M A15N A18A A28A A28B A28C A28D A28D A28F A40A A40B	1N3209 1N3210	MR506 MR501 MR506 MR508 1N3890 1N3890 1N3891 1N3892 1N3893 1N3889	3-167 3-167 3-167 3-167 3-18 3-18 3-18 3-18 3-18 3-18 3-18 3-18	AB300 AB400 AB500 AB600 AB800 AB1000 AC50 AC100 AC200 AC300 AC400 AC400		MR504 MR504 MR506 MR506 MR508 MR510 MR501 MR501 MR502 MR504 MR504 MR504 MR504	3-167 3-167 3-167 3-167 3-167 3-167 3-167 3-167 3-167 3-167 3-167
A40D A40F A44A A44B A44C A44D A44F A50 A1100 A114A A114B A114C	1N3212 1N3208	1N3492 1N3493 1N3494 1N3495 1N3491 1N4001 1N4002 1N4934 1N4935 1N4936	3-6 3-6 3-7 3-7 3-7 3-7 3-7 3-33 3-33 3-	AC600 AC800 AC800 AC1000 AR16 AR17 AR18 AR19 AR20 AR21 AR22 AR23		MR506 MR508 MR508 MR510 1N4001 1N4002 1N4003 1N4004 1N4004 1N4005 1N4005 1N4005	3-167 3-167 3-167 3-167 3-33 3-33 3-33 3-33 3-33 3-33 3-33 3-
A114D A114E A114F A114M A114N A115A A115B A115C A115D A115E A115E A115F A115F		1N4936 1N4937 1N4933 1N4937 MR817 MR851 MR852 MR854 MR854 MR856 MR856 MR856	3-35 3-35 3-35 3-37 3-177 3-192 3-192 3-192 3-192 3-192 3-192 3-192 3-192	AR24 AR25A AR25B AR25D AR25F AR25G AR25H AR25J AR25K AR25M ARS25A ARS25B		1N4007 MR2500 MR2501 MR2502 MR2504 MR2504 MR2506 MR2506 MR2508 MR2510 MR2500 MR2501	3-33 3-217 3-217 3-217 3-217 3-217 3-217 3-217 3-217 3-217 3-217 3-217

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
ARS25D ARS25G ARS25J ARS25K ARS25M B50 B100 B200 B300 B400 B500 B600		MR2502 MR2504 MR2506 MB2508 MR2510 1N4001 1N4002 1N4003 1N4004 1N4004 1N4005 1N4005	3-217 3-217 3-217 3-217 3-217 3-33 3-33 3-33 3-33 3-33 3-33 3-33	BY107 BY111 BY112 BY113 BY114 BY116 BY117 BY118 BY121 BY121 BY123 BY124 BY125		1N5398 1N4001 1N4004 1N4003 1N5398 1N4004 1N5398 1N5398 1N4001 1N4003 1N4004 1N4004	3-41 3-33 3-33 3-33 3-41 3-41 3-41 3-33 3-33
B800 B1000 BA50 BA100 BA200 BA300 BA400 BA500 BA600 BA800 BA1000 BF4-05L		1N4006 1N4007 1N4001 1N4002 1N4003 1N4004 1N4004 1N4005 1N4005 1N4006 1N4007 1N4001	3-33 3-33 3-33 3-33 3-33 3-33 3-33 3-3	BY126 BY128 BY141 BY201 BY202 BY202 BY203 BY204 BY205 BY206 BY207 BY207 BY208 BY209		1N4006 1N4007 1N4001 MR1120 MR1121 MR1122 MR1124 MR1124 MR1126 MR1126 MR1128 MR1130	3-33 3-33 3-200 3-200 3-200 3-200 3-200 3-200 3-200 3-200 3-200
BF4-10L BF4-20L BF4-40L BF4-60L BF4-80L BF5-05L BF5-10L BF5-20L BF5-20L BF5-40L BF5-80L		1N4002 1N4003 1N4004 1N4005 1N4006 1N4007 MR501 MR501 MR502 MR504 MR504 MR506 MR508	3-33 3-33 3-33 3-33 3-33 3-167 3-167 3-167 3-167 3-167 3-167	BY211 BY212 BY213 BY214 BY215 BY216 BY217 BY218 BY219 BY229-200 BY229-400 BY229-600		MR1120 MR1121 MR1122 MR1124 MR1124 MR1126 MR1126 MR1128 MR1130 MUR820 MUR820 MUR840 MUR860	3-200 3-200 3-200 3-200 3-200 3-200 3-200 3-200 3-200 3-241 3-241 3-241
BF5-100L BF6-05L BF6-10L BF6-20L BF6-40L BF6-60L BF6-80L BF6-100L BR251 BR252 BR254 BR256		MR510 MR501 MR501 MR502 MR504 MR506 MR508 MR510 MDA2501 MDA2501 MDA2504 MDA2506	3-167 3-167 3-167 3-167 3-167 3-167 3-167 3-155 3-155 3-155 3-155	BY229-800 BY239-200 BY239-400 BY239-600 BY239-800 BY239-1000 BY2001 BY2002 BY2101 BY2102 BY2102 BY2201 BY2202		MUR880 MR2402 MR2404 MR2406 * * MR1130 MR1130 MR1130 MR1130 MR1130 MR1130 MR1130	3-241 3-207 3-207 3-207 — 3-200 3-200 3-200 3-200 3-200 3-200 3-200
BR351 BR352 BR354 BR356 BR358 BR2505 BR3505 BR3510 BY18 BY101 BY102 BY106		MDA3501 MDA3502 MDA3504 MDA3506 MDA3508 MDA2500 MDA3500 MDA3510 1N3882 MR1124 1N4003 1N5398	3-159 3-159 3-159 3-159 3-159 3-155 3-159 3-159 3-13 3-200 3-33 3-41	BYS76 BYS79 BYS80 BYS92-40 BYS92-45 BYS92-50 BYS93-40 BYS93-45 BYS95-40 BYS95-45 BYS95-50	MBR7545	MBR3045CT MBR20045CT MBR20045CT MBR30045CT MBR30045CT MBR30045CT MBR30050CT MBR12045CT MBR12045CT MBR12045CT	3-132 3-110 3-142 3-142 3-142 3-144 3-144 3-138 3-138 3-138

^{*}These devices are manufactured by Motorola but no data sheet available — Consult Factory.

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
BYS97-40 BYS97-45 BYS97-50 BYS98-40 BYS98-45 BYS98-50 BYV19-30 BYV19-35 BYV19-40 BYV19-45 BYV27-50 BYV27-100	MBR1035 MBR1035 MBR1045 MBR1045	MBR20045CT MBR20045CT MBR20050CT MBR12045CT MBR12045CT MBR12045CT MBR12050CT	3-142 3-142 3-142 3-138 3-138 3-138 3-92 3-92 3-92 3-92 3-92 3-229 3-229	BYX30-300,R BYX30-400,R BYX30-500,R BYX30-600,R BYX38-300,R BYX38-900,R BYX38-1200,R BYX42-300,R BYX42-900,R BYX42-500,R BYX42-600,R		1N3902 1N3903 MR1386 MR1386 MR1122 MR1126 MR1130 MR1130 MR1122 MR1124 MR1126 MR1126	3-23 3-23 3-23 3-23 3-200 3-200 3-200 3-200 3-200 3-200 3-200 3-200
BYV27-150 BYV28-50 BYV28-100 BYV28-150 BYV32-50 BYV32-100 BYV32-150 BYV32-200 BYV33-30 BYV33-35 BYV33-40 BYV33-45	MBR2035CT MBR2035CT MBR2045CT MBR2045CT	MUR115 MUR405 MUR410 MUR415 MUR1605CT MUR1610CT MUR1615CT MUR1620CT	3-229 3-234 3-234 3-252 3-252 3-252 3-252 3-102 3-102 3-102 3-102	BYX48/300 BYX48/600 BYX48/900 BYX20200R BYX21100 BYX21200 BYX21200R BYX36150 BYX36300 BYX36600 BYX36400 BYY216400 BYY20		MR1124 MR1126 MR1130 1N3493R 1N3492 1N3493 1N3493R 1N4003 1N4003 1N4004 1N3495 1N3493R	3-200 3-200 3-200 3-7 3-7 3-7 3-7 3-33 3-33 3-33 3-7 3-7
BYV43-30 BYV43-35 BYV43-40 BYV43-45 BYW29-50 BYW29-100 BYW29-150 BYW29-600 BYW29-700 BYW29-800 BYW30-50 BYW30-50	MBR2535CT MBR2535CT MBR2545CT MBR2545CT MBR2545CT MUR860 MUR870 MUR880	MUR805 MUR810 MUR815	3-108 3-108 3-108 3-108 3-241 3-241 3-241 3-241 3-241 3-241 	BYY20/200 BYY21/200 BYY31 BYY32 BYY33 BYY34 BYY35 BYY36 BYY37 CER67,A,B,C CER68,A,B,C CER69,A,B,C		1N3493R 1N3493R 1N4003 1N4003 1N4004 1N4004 1N5397 1N5399 1N5399 1N4001 1N4001 1N4002 1N4003	3-7 3-7 3-33 3-33 3-33 3-33 3-41 3-41 3-41 3-33 3-33
BYW30-150 BYW31-50 BYW31-100 BYW31-150 BYW51-50 BYW51-100 BYW77-50 BYW77-100 BYW77-150 BYW78-50 BYW78-100	MUR2505 MUR2510 MUR2515 MUR1605CT MUR1610CT MUR1615CT MUR7005 MUR7005	MUR2505 MUR2510 MUR2515		CER70,A,B,C CER71,A,B,C,D CER73,A,B,C,D CER500,A,B,C D50 D100 D300 D500 D800 D1000 D1000 D1000		1N4004 1N4005 1N4006 1N4007 1N4005 1N4001 1N4002 1N4004 1N4005 1N4006 1N4007 1N4002	3-33 3-33 3-33 3-33 3-33 3-33 3-33 3-3
BYW78-150 BYW80-50 BYW80-50R BYW80-100 BYW80-100 BYW80-150 BY280-150R BYW80-200 BYX21L100 BYX21L200 BYX21L400R BYX30-200,R	MUR7015 MUR805 MUR810 MUR815 MUR820	MUR805R MUR810R MUR815R 1N3492 1N3493 1N3495R 1N3901	3-266 3-241 3-241 3-241 3-241 3-241 3-241 3-7 3-7 3-7 3-7 3-7	D1201B D1201D D1201F D1201M D1201N D1201P D2201A D2201B D2201D D2201F D2201M D2201N		1N4003 1N4004 1N4001 1N4005 1N4006 1N4007 1N4934 1N4935 1N4936 1N4933 1N4937 MR816	3-33 3-33 3-33 3-33 3-33 3-35 3-35 3-35

^{*}These devices are manufactured by Motorola but no data sheet available — Consult Factory.

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
D2406A D2406B D2406C D2406D D2406F D2406M D2412A D2412B D2412C D2412D D2412F D2412M		1N3880 1N3881 1N3882 1N3883 1N3879 MR1366 1N3890 1N3891 1N3892 1N3892 1N3893 1N3889 MR1376	3-13 3-13 3-13 3-13 3-13 3-18 3-18 3-18	EASD83-4 ED3100 ED3101 ED3102 ED3104 ED3106 ED3108 ED3110 ED8307 ED8310 EGP10A EGP10B	MUR105 MUR110	MBR3045PT 1N4001 1N4002 1N4003 1N4004 1N4005 1N4006 1N4007 MR1366 MR1376	3-114 3-33 3-33 3-33 3-33 3-33 3-33 3-13 3-1
D2520A D2520B D2520C D2520D D2520F D2520M D2540A D2540A D2540B D2540C D2540D D2540D D2540F D2540M		1N3900 1N3901 1N3902 1N3903 1N3899 MR1386 1N3910 1N3911 1N3912 1N3913 1N3909 MR1396	3-23 3-23 3-23 3-23 3-23 3-28 3-28 3-28	EGP10C EGP10D EGP20A EGP20B EGP20C EGP20D EGP30A EGP30B EGP30C EGP30D EGP50A EGP50B	MUR115 MUR120 MUR405 MUR410 MUR415 MUR420 MUR405 MUR405 MUR405	MUR405 MUR410 MUR415 MUR420	3-229 3-229 3-234 3-234 3-234 3-234 3-234 3-234 3-234 3-234 3-234
D2601A D2601B D2601D D2601F D2601M D2601N D1-42 D1-44 D1-46 D1-48 D1-52 D1-54		MR811 MR812 MR814 MR810 MR816 MR818 1N4003 1N4004 1N4005 1N4006 1N4003 1N4004	3-177 3-177 3-177 3-177 3-177 3-177 3-33 3-33	EGP50C EGP50D EM501 EM502 EM503 EM504 EM505 EM506 EM508 EM510 ER1 ER2	MUR415 MUR420	1N4002 1N4003 1N4004 1N4004 1N4005 1N4005 1N4006 1N4007 1N4001 1N4935	3-234 3-234 3-33 3-33 3-33 3-33 3-33 3-3
DI-56 DI-58 DI-72 DI-74 DI-76 DI-78 DI-410 DI-510 DI-510 DSR1201 DSR1203 DSR1203		1N4005 1N4006 1N4003 1N4004 1N4005 1N4006 1N4007 1N4007 1N4007 MR501 MR504 MR506	3-33 3-33 3-33 3-33 3-33 3-33 3-33 3-3	ER4 ER6 ER11 ER21 ER31 ER41 ER51 ER61 ER61 ER81 ER181 ER182 ER183		1N4936 1N4937 1N4002 1N4003 1N4004 1N4004 1N4005 1N4005 1N4006 1N4006 1N4001 1N4002 1N4003	3-35 3-35 3-33 3-33 3-33 3-33 3-33 3-33
DT230A DT230F DT230G DT230H E1 E2 E2 E3 E4 E6 E8 E10		1N4002 1N4001 1N4003 1N4004 1N4002 1N4003 1N4003 1N4004 1N4004 1N4005 1N4006 1N4007	3-33 3-33 3-33 3-33 3-33 3-33 3-33 3-3	ER184 ER185 ER186 ER187 ER2000 ER2001 ER2002 ER2003 ER2004 ER2005 ER2006 ERA22	•	1N4004 1N4005 1N4006 1N4007 MR501 MR501 MR502 MR504 MR504 MR506 MR506	3-33 3-33 3-33 3-167 3-167 3-167 3-167 3-167 3-167

^{*}These devices are manufactured by Motorola but no data sheet available — Consult Factory.

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
ERA34 ERA38 ERA81 ERA82 ERA83 ERA84 ERA91 ERB06 ERB24C ERB24D ERB28 ERB28D		1N5819	3-47 	ESAC85 ESAC87 ESAC92 ESAC93 ESAD25 ESAD33 ESAD33 ESAD75 ESAD81 ESAD83 ESAD85 ESAD85	MUR1520 MBR3045CT	MUR3020PT MUR3040PT	3-247 3-259 — 3-259 — 3-259 — 3-110 —
ERB29 ERB35 ERB38 ERB43 ERB44 ERB81 ERB84 ERB91 ERB93 ERC06 ERC20 ERC24	MUR120 1N4935-7 MUR120 1N4936-7		3-229 	ESM980-100 ESM980-200 ESM980-300 ESM980-400 F1 F2 F3 F4 F5 F6 F8 F10	MUR1510 MUR1520 MUR1530 MUR1540	1N4934 1N4935 1N4004 1N4004 1N4937 1N4005 1N4006 1N4007	3-247 3-247 3-247 3-247 3-35 3-35 3-33 3-33 3-33 3-33 3-33 3-3
ERC25 ERC33 ERC35 ERC38 ERC47 ERC62 ERC80 ERC81 ERC84 ERC90 ERC91 ERC91 ERD07	MUR140-160 MBR1045 MBR745 *- MUR820 MUR420		3-229 3-92 3-90 3-241 3-234	F12100B FE1A FE1B FE1C FE1D FE2A FE2B FE2C FE2D FE3A FE3B FE3C		MR1130 MUR105 MUR110 MUR115 MUR120 MUR405 MUR410 MUR415 MUR415 MUR420 MUR405 MUR405 MUR410 MUR415	3-200 3-229 3-229 3-229 3-234 3-234 3-234 3-234 3-234 3-234 3-234
ERD27,77 ERD28 ERD29 ERD33 ERD75 ERD80 ERD81 ERE75 ERE81 ERG24,74 ERG81,A ESAB82-4	1N3899-3901 1N5828 1N3909-13	MBR3045PT 1N3909-11 1N5834 MBR6045 MBR1545CT		FE3D FE5A FE5B FE5C FE5D FE6A FE6B FE6C FE6D FE8A FE8B FE8C	MUR805 MUR810 MUR815	MUR420 MUR405 MUR410 MUR415 MUR420 MUR405 MUR405 MUR410 MUR415 MUR420	3-234 3-234 3-234 3-234 3-234 3-234 3-234 3-234 3-241 3-241
ESAB33 ESAB82 ESAB85 ESAB92 ESAC25 ESAC31 ESAC33 ESAC33 ESAC75 ESAC81 ESAC82 ESAC82	MUR820 MBR745 * MUR820 * MUR1520 MUR820 * * MBR1045		3-241 3-90 — 3-241 — 3-247 3-241 — 3-92 —	FE8D FE8F FE8G FE16A FE16C FE16D FE16F FE16G FEP16AT FEP16BT FEP16CT	MUR820 MUR830 MUR840	MUR1605CT MUR1610CT MUR1615CT MUR1620CT MUR1630CT MUR1640CT MUR1605CT MUR1610CT MUR1615CT	3-241 3-241 3-252 3-252 3-252 3-252 3-252 3-252 3-252 3-252 3-252 3-252 3-252

^{*}These devices are manufactured by Motorola but no data sheet available — Consult Factory.

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
FEP16DT FEP16FT FEP16GT FEP16JT FES8AT FES8BT FES8CT FES8DT FES8FT FES8GT FES8HT		MUR1620CT MUR1640CT MUR1660CT MUR1660CT MUR805 MUR810 MUR815 MUR815 MUR840 MUR840 MUR840 MUR840 MUR860	3-252 3-252 3-252 3-252 3-252 3-241 3-241 3-241 3-241 3-241 3-241	FRP805 FRP810 FRP815 FRP820 FRP1605CC FRP1610CC FRP1615CC FRP1620CC FST120 FST121 FST160 FST200	MUR805 MUR810 MUR815 MUR820 MUR1605CT MUR1610CT MUR1615CT MUR1620CT	MBR12050CT MBR12045CT MBR20045CT MBR20050CT	3-241 3-241 3-241 3-252 3-252 3-252 3-252 3-252 3-138 3-138 3-142 3-142
FES8JT FES16AT FES16BT FES16CT FES16CT FES16FT FES16HT FES16JT FR061 FR061L FR062	1N4933	MUR860 MUR1505 MUR1510 MUR1515 MUR1520 MUR1540 MUR1540 MUR1560 MUR1560 1N4933	3-241 3-247 3-247 3-247 3-247 3-247 3-247 3-247 3-35 3-35 3-35	FST201 FST1240 FST1245 FST1250 FST1540 FST1545 FST1550 FST2040 FST2045 FST3045 FST3045 FST3050	MBR1545CT MBR1545CT * MBR1545CT * MBR1545CT * MBR2045CT MBR2045CT MBR2545CT MBR2545CT	MBR20045CT	3-142 3-98 3-98 3-98 3-98 3-102 3-102 3-108 3-108
FR062L FR063 FR063L FR064 FR065 FR065L FR065L FR1 FR2 FR3 FR4 FR6	1N4934 1N4935 1N4936 1N4937	1N4935 1N4936 1N4937 1N4934 1N4935 1N4936 1N4936 1N4937	3-35 3-35 3-35 3-35 3-35 3-35 3-35 3-35	FST6035 FST6040 FST6045 FST6050 FST16035 FST16040 FST16045 FST16050 FST20035 FST20040 FST20045 FST20050		MBR12035CT MBR12045CT MBR12045CT MBR12050CT MBR20045CT MBR20045CT MBR20045CT MBR20050CT MBR20045CT MBR20045CT MBR20045CT MBR20045CT MBR20045CT MBR20045CT	3-138 3-138 3-138 3-138 3-142 3-142 3-142 3-142 3-142 3-142 3-142 3-142
FR101 FR102 FR103 FR104 FR105 FR251 FR252 FR253 FR254 FR255 FR301 FR302	1N4933 1N4934 1N4935 1N4936 1N4937 MR850 MR851	MR850 MR851 MR852 MR854 MR856	3-35 3-35 3-35 3-35 3-192 3-192 3-192 3-192 3-192 3-192 3-192	FST30035 FST30040 FST30045 FST30050 G1 G1A G1B G1D G1G G1J G1K G1M		MBR30035CT MBR30045CT MBR30045CT MBR30050CT 1N4002 1N5391 1N5392 1N5393 1N5395 1N5397 1N5398 1N5399	3-144 3-144 3-144 3-144 3-33 3-41 3-41 3
FR303 FR304 FR305 FR601 FR602 FR603 FR604 FR605 FRM3205CC FRM3210CC FRM3215CC FRM3220CC	MR852 MR854 MR856 MUR3005PT MUR3010PT MUR3015PT MUR3020PT	MR820 MR821 MR822 MR824 MR826	3-192 3-192 3-192 3-183 3-183 3-183 3-183 3-259 3-259 3-259 3-259 3-259	G2A G2B G2D G2G G2J G2K G2M G3A G3B G3D G3F G3G		1N5391 1N5392 1N5393 1N5395 1N5397 1N5398 1N5399 MR500 MR501 MR502 MR504 MR504	3-41 3-41 3-41 3-41 3-41 3-167 3-167 3-167 3-167 3-167

^{*}These devices are manufactured by Motorola but no data sheet available — Consult Factory.

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
G3H G3J G3K G3M G4A G4B G4D G4G G4J G4K G4M G6		MR506 MR506 MR508 MR510 MR500 MR501 MR502 MR504 MR506 MR506 MR508 MR510 1N4005	3-167 3-167 3-167 3-167 3-167 3-167 3-167 3-167 3-167 3-167 3-167 3-33	GI910 GI911 GI912 GI914 GI916 GI917 GI918 GI1001 GI1002 GI1003 GI1004 GI1101	MR910 MR911 MR912 MR914 MR916 MR917 MR918	MUR105 MUR110 MUR115 MUR120 MUR405	
G8 G10 G100A G100B G100D G100F G100G G100H G100J G100K G100M GER4001		1N4006 1N4007 1N4001 1N4002 1N4003 1N4004 1N4004 1N4005 1N4005 1N4006 1N4007 1N4001	3-33 3-33 3-33 3-33 3-33 3-33 3-33 3-3	GI1102 GI1103 GI1104 GI1301 GI1302 GI1303 GI1304 GI1401 GI1402 GI1403 GI1404 GI2401	MUR805 MUR810 MUR815 MUR820 MUR1605CT	MUR410 MUR415 MUR420 MUR405 MUR410 MUR415 MUR420	3-234 3-234 3-234 3-234 3-234 3-234 3-241 3-241 3-241 3-241 3-252
GER4002 GER4003 GER4004 GER4005 GER4006 GER4007 GI500 GI501 GI502 GI504 GI506 GI508	MR500 MR501 MR502 MR504 MR506 MR508	1N4002 1N4003 1N4004 1N4005 1N4006 1N4007	3-33 3-33 3-33 3-33 3-33 3-167 3-167 3-167 3-167 3-167 3-167	G12402 G12403 G12404 G12500 G12501 G12502 G12504 G12506 G12508 G12510 G15823 G15824	MUR1610CT MUR1615CT MUR1620CT MR2500 MR2501 MR2502 MR2504 MR2506 MR2508 MR2510	1N5823 1N5824	3-252 3-252 3-252 3-217 3-217 3-217 3-217 3-217 3-217 3-55 3-55
GI510 GI750 GI751 GI752 GI754 GI756 GI758 GI810 GI811 GI812 GI814 GI816	MR510 MR750 MR751 MR752 MR754 MR756 MR758 MR810 MR811 MR811 MR814 MR816		3-167 3-173 3-173 3-173 3-173 3-173 3-173 3-177 3-177 3-177 3-177 3-177	GI5825 GIB2500 GIB2501 GIB2502 GIB2504 GIB2506 GIB2508 GIB2510 GIB3500 GIB3501 GIB3501 GIB3502 GIB3504		1N5825 MDA2500 MDA2501 MDA2502 MDA2504 MDA2506 MDA3508 MDA3510 MDA3500 MDA3501 MDA3501 MDA3502 MDA3504	3-55 3-155 3-155 3-155 3-155 3-155 3-159 3-159 3-159 3-159 3-159 3-159
GI817 GI818 GI820 GI821 GI822 GI824 GI856 GI850 GI851 GI852 GI854 GI856	MR817 MR818 MR820 MR821 MR822 MR824 MR826 MR850 MR851 MR852 MR854 MR854		3-177 3-183 3-183 3-183 3-183 3-183 3-183 3-192 3-192 3-192 3-192 3-192 3-192	GIB3506 GIB3508 GIB3510 GP10A GP10B GP10D GP10G GP10J GP10K GP10M GP15A GP15B		MDA3506 MDA3508 MDA3510 1N4001 1N4002 1N4003 1N4004 1N4005 1N4006 1N4007 1N5391 1N5392	3-159 3-159 3-159 3-33 3-33 3-33 3-33 3-33 3-33 3-33 3-

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
GP15D GP15G GP15J GP15M GP20A GP20B GP20D GP20G GP20J GP20K GP20M GP25A		1N5393 1N5395 1N5397 1N5399 1N5391 1N5392 1N5393 1N5395 1N5397 1N5398 1N5399 MR500	3-41 3-41 3-41 3-41 3-41 3-41 3-41 3-41	HER151 HER152 HER153 HER154 HER155 HER301 HER302 HER303 HER304 HER305 HER801 HER801	MUR405 MUR410 MUR420 MUR430 MUR440 MUR805 MUR810	MUR105 MUR110 MUR120 MUR130 MUR140	3-229 3-229 3-229 3-229 3-229 3-234 3-234 3-234 3-234 3-234 3-241 3-241
GP25B GP25D GP25G GP25J GP25K GP25M GP30A GP30B GP30B GP30D GP30G GP30J GP30K		MR501 MR502 MR504 MR506 MR508 MR510 MR500 MR501 MR502 MR502 MR504 MR504 MR506 MR508	3-167 3-167 3-167 3-167 3-167 3-167 3-167 3-167 3-167 3-167 3-167 3-167	HER803 HER804 HER805 HFR-5 HFR-10 HFR-150 HFR-200 HGR-5 HGR-10 HGR-20 HGR-30 HGR-40	MUR820 MUR830 MUR840	1N4933 1N4934 1N4935 1N4935 1N4001 1N4002 1N4003 1N4004 1N4004	3-241 3-241 3-241 3-35 3-35 3-35 3-35 3-33 3-33 3-33 3-3
GP30M GP80A GP80B GP80D GP80G GP80J GP80K GR1 GR2 GR2 GR4 GR6 H800	MUR805 MUR810 MUR820 MUR840 MUR860 MUR860	MR510 1N4934 1N4935 1N4936 1N4937 1N4006	3-167 3-241 3-241 3-241 3-241 3-241 3-35 3-35 3-35 3-35 3-35 3-35	HGR-60 HR100 HR200 HR400 HR600 HRF100 HRF200 HRF400 HRF600 IRD3899,R IRD3901,R	1N3899,R 1N3900,R 1N3901,R	1N4005 1N5401 1N5402 1N5404 1N5406 MR851 MR852 MR854 MR856	3-33 3-45 3-45 3-45 3-192 3-192 3-192 3-192 3-23 3-23 3-23
H1000 HB50 HB100 HB200 HB300 HB400 HB500 HB600 HB800 HB1000 HC67 HC68		1N4007 MR501 MR501 MR502 MR504 MR504 MR506 MR506 MR508 MR510 1N4001 1N4002	3-33 3-167 3-167 3-167 3-167 3-167 3-167 3-167 3-167 3-33 3-33	IRD3902,R IRD3903,R IRD3909,R IRD3910,R IRD3911,R IRD3913,R IRD3913,R ITS5817 ITS5818 ITS5819 ITS5823 ITS5824	1N3902,R 1N3903,R 1N3909,R 1N3910,R 1N3911,R 1N3912,R 1N3913,R 1N5817 1N5818 1N5819	1N5823 1N5824	3-23 3-28 3-28 3-28 3-28 3-28 3-47 3-47 3-47 3-55 3-55
HC69 HC70 HC71 HC72 HC73 HC300 HC500 HER101 HER102 HER103 HER104 HER105	MUR105 MUR110 MUR120 MUR130 MUR140	1N4003 1N4004 1N4005 1N4006 1N4007 1N4722 1N4723	3-33 3-33 3-33 3-33 3-34 3-34 3-229 3-229 3-229 3-229 3-229 3-229	ITS5825 J05 J1 J2 J4 J6 J8 J10 KBC301 KBC302 KBC304 KBC501		1N5825 1N5391 1N5392 1N5393 1N5395 1N5397 1N5398 1N5399 *	3-55 3-41 3-41 3-41 3-41 3-41 3-41 — —

^{*}These devices are manufactured by Motorola but no data sheet available — Consult Factory.

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
KBC502 KBC504 KBC3005 KBC5001 KBP005 KBP01 KBP02 KBP04 KBP06 KBP08 KBP10 KBP10			 3-155	M68,A,B,C M69,A,B,C M70,A,B,C M71,A,B,C M72,A,B,C M73,A,B,C M100A M100B M100D M100F M100G M100H		1N4002 1N4003 1N4004 1N4005 1N4006 1N4007 1N4001 1N4002 1N4003 1N4004 1N4004 1N4004	3-33 3-33 3-33 3-33 3-33 3-33 3-33 3-3
KBPC10-01 KBPC10-02 KBPC10-04 KBPC10-06 KBPC10-08 KBPC10-10 KBPC12-005 KBPC12-01 KBPC12-02 KBPC12-04 KBPC12-06 KBPC12-06 KBPC12-08		MDA2501 MDA2502 MDA2504 MDA2506 MDA3508 MDA3510 MDA2500 MDA2501 MDA2502 MDA2504 MDA2506 MDA3508	3-155 3-155 3-155 3-155 3-159 3-159 3-155 3-155 3-155 3-155 3-155 3-159	M100J M100K M100M M500,A,B,C MB214 MB215 MB217 MB218 MB219 MB220 MB221 MB221		1N4005 1N4006 1N4007 1N4005 1N4934 1N4935 1N4936 1N4937 1N4937 MR817 1N4934 1N4935	3-33 3-33 3-33 3-35 3-35 3-35 3-35 3-35
KBPC12-10 KBPC15-005 KBPC15-01 KBPC15-02 KBPC15-04 KBPC15-06 KBPC15-08 KBPC25-005 KBPC25-01 KBPC25-01 KBPC25-02 KBPC25-02		MDA3510 MDA2500 MDA2501 MDA2502 MDA2504 MDA2506 MDA3508 MDA3510 MDA2500 MDA2501 MDA2501 MDA2502 MDA2502	3-159 3-155 3-155 3-155 3-155 3-155 3-159 3-155 3-155 3-155 3-155	MB224 MB225 MB226 MB228 MB229 MB230 MB231 MB232 MB233 MB233 MB234 MB235 MB236		1N4936 1N4937 1N4937 MR501 MR502 MR504 MR504 MR506 MR506 MR506 MR508 MR510 1N4002	3-35 3-35 3-35 3-167 3-167 3-167 3-167 3-167 3-167 3-167 3-33
KBPC25-06 KBPC25-08 KBPC25-10 KBPC35-005 KBPC35-01 KBPC35-04 KBPC35-04 KBPC35-06 KBPC35-08 KBPC35-10 KBU4A KBU4B		MDA2506 MDA3508 MDA3510 MDA3500 MDA3501 MDA3502 MDA3504 MDA3506 MDA3508 MDA3510	3-155 3-159 3-159 3-159 3-159 3-159 3-159 3-159 3-159 	MB237 MB238 MB239 MB240 MB241 MB242 MB243 MB244 MB245 MB245 MB246 MB247 MB248		1N4003 1N4004 1N4004 1N4005 1N4005 1N4006 1N4007 1N4002 1N4003 1N4004 1N4004 1N4004	3-33 3-33 3-33 3-33 3-33 3-33 3-33 3-3
KBU4D KBU4G KBU6A KBU6B KBU6D KBU6G M0 M2 M4 M6 M8 M67,A,B,C		1N4007 1N4007 1N4003 1N4004 1N4005 1N4006 1N4001	 3-33 3-33 3-33 3-33 3-33 3-33	MB249 MB250 MB251 MBR030 MBR040 MBR115P MBR120P MBR130P MBR140P MBR320 MBR320 MBR320P MBR330	MBR030 MBR040 MBR115P MBR120P MBR130P MBR320P MBR320 MBR320P MBR330	1N4005 1N4006 1N4007	3-33 3-33 3-31 3-81 3-47 3-47 3-47 3-47 3-47 3-86 3-51 3-86

^{*}These devices are manufactured by Motorola but no data sheet available — Consult Factory.

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
MBR330P MBR340 MBR340P MBR350 MBR360 MBR735 MBR745 MBR1035 MBR1045 MBR1045 MBR1060 MBR1070 MBR1080	MBR330P MBR340 MBR340P MBR350 MBR360 MBR735 MBR745 MBR1035 MBR1045 MBR1060 MBR1070 MBR1080		3-51 3-86 3-51 3-86 3-86 3-90 3-90 3-92 3-92 3-92 3-96 3-96	MDA2508 MDA2510 MDA3500 MDA3501 MDA3502 MDA3504 MDA3506 MDA3506 MDA3510 MDA4002 MDA4004 MDA4006	MDA2508 MDA2510 MDA3500 MDA3501 MDA3502 MDA3504 MDA3506 MDA3508 MDA3510 MDA4002 MDA4004 MDA4006		3-155 3-155 3-159 3-159 3-159 3-159 3-159 3-159 3-163 3-163 3-163
MBR1535CT MBR1645CT MBR1645 MBR2035CT MBR2045CT MBR2045CT MBR2070CT MBR2080CT MBR2080CT MBR2080CT MBR2050CT MBR2535CT MBR2545CT	MBR1535CT MBR1545CT MBR1635 MBR1645 MBR2035CT MBR2045CT MBR2060CT MBR2070CT MBR2080CT MBR2080CT MBR2050CT MBR2053CT MBR2535CT		3-98 3-98 3-100 3-100 3-102 3-102 3-106 3-106 3-106 3-106 3-108 3-108	MDA4008 MPR10 MR100 MR200 MR400 MR500 MR501 MR502 MR504 MR506 MR508 MR510	MR500 MR501 MR502 MR504 MR506 MR506 MR508 MR510	1N4007 1N5392 1N5393 1N5395	3-163 3-33 3-41 3-41 3-41 3-167 3-167 3-167 3-167 3-167 3-167 3-167
MBR3020CT MBR3035CT MBR3035PT MBR3045CT MBR3045PT MBR3520 MBR3535 MBR3545,H,H1 MBR5825,H,H1 MBR5831,H,H1 MBR6035,B MBR6045,B	MBR3020CT MBR3035CT MBR3035PT MBR3045CT MBR3045PT MBR3520 MBR3535 MBR3545,H,H1 MBR5825,H,H1 MBR5831,H,H1 MBR6035 MBR6045		3-110 3-110 3-114 3-114 3-116 3-116 3-116 3-55 3-64 3-124 3-124	MR600 MR750 MR751 MR752 MR754 MR756 MR758 MR760 MR800 MR810 MR811 MR811	MR750 MR751 MR752 MR752 MR756 MR758 MR760 MR810 MR811 MR812	1N5397 1N5398	3-41 3-173 3-173 3-173 3-173 3-173 3-173 3-173 3-41 3-177 3-177
MBR6045,H,H1 MBR6535 MBR6545 MBR7535 MBR7545 MBR8035 MBR8045 MBR10100 MBR12045CT MBR12045CT MBR12050CT MBR12060CT	MBR6045,H,H1 MBR6535 MBR6545 MBR7535 MBR7545 MBR8035 MBR8045 MBR10100 MBR12045CT MBR12045CT MBR12050CT MBR12050CT		3-124 3-128 3-128 3-132 3-132 3-134 3-134 3-96 3-138 3-138 3-138 3-138	MR814 MR816 MR817 MR818 MR820 MR821 MR822 MR824 MR826 MR830 MR831 MR831	MR814 MR816 MR817 MR818 MR820 MR821 MR822 MR824 MR824 MR830 MR831 MR831		3-177 3-177 3-177 3-177 3-183 3-183 3-183 3-183 3-191 3-191 3-191
MBR20035CT MBR20045CT MBR20050CT MBR20060CT MBR20100CT MBR30035CT MBR30045CT MDA2500 MDA2501 MDA2502 MDA2504 MDA2506	MBR20035CT MBR20045CT MBR20050CT MBR20060CT MBR20100CT MBR30035CT MBR30045CT MDA2500 MDA2501 MDA2502 MDA2502 MDA2504 MDA2506		3-142 3-142 3-142 3-142 3-106 3-144 3-155 3-155 3-155 3-155 3-155	MR834 MR836 MR850 MR851 MR852 MR854 MR856 MR860 MR861 MR861 MR862 MR870 MR871	MR834 MR836 MR850 MR851 MR852 MR854 MR856	MUR5005 MUR5010 MUR5020 MUR5005 MUR5010	3-191 3-192 3-192 3-192 3-192 3-192 3-192 3-264 3-264 3-264 3-264 3-264

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
MR872 MR1000 MR1120 MR1121 MR1122 MR1123 MR1124 MR1125 MR1126 MR1126 MR1128 MR1130 MR1366	MR1120 MR1121 MR1122 MR1123 MR1124 MR1125 MR1126 MR1128 MR1130 MR1366	MUR5020 1N5399	3-264 3-4 3-200 3-200 3-200 3-200 3-200 3-200 3-200 3-200 3-200 3-200 3-200	MUR410 MUR415 MUR420 MUR430 MUR440 MUR450 MUR460 MUR470 MUR470 MUR480 MUR490 MUR605CT MUR610CT	MUR410 MUR415 MUR420 MUR430 MUR440 MUR450 MUR460 MUR470 MUR470 MUR480 MUR490 MUR605CT MUR610CT		3-234 3-234 3-234 3-234 3-234 3-234 3-234 3-234 3-234 3-239 3-239
MR1376 MR1386 MR1396 MR2000 MR2001 MR2002 MR2004 MR2006 MR2008 MR2010 MR2400 MR2400F	MR1376 MR1386 MR1396 MR2000 MR2001 MR2002 MR2004 MR2006 MR2008 MR2010 MR2400 MR2400F		3-18 3-23 3-28 3-203 3-203 3-203 3-203 3-203 3-203 3-203 3-207 3-211	MUR615CT MUR620CT MUR805 MUR810 MUR815 MUR820 MUR830 MUR840 MUR850 MUR860 MUR860 MUR880	MUR615CT MUR620CT MUR805 MUR810 MUR815 MUR820 MUR830 MUR840 MUR850 MUR860 MUR860 MUR870 MUR880		3-239 3-239 3-241 3-241 3-241 3-241 3-241 3-241 3-241 3-241 3-241 3-241
MR2401 MR2401F MR2402 MR2402F MR2404F MR2404F MR2406F MR2500 MR2501 MR2501 MR2502 MR2504	MR2401 MR2401F MR2402 MR2402F MR24044 MR2404F MR2406F MR2500 MR2501 MR2501 MR2501		3-207 3-211 3-207 3-211 3-207 3-211 3-207 3-211 3-217 3-217 3-217	MUR890 MUR1100 MUR1505 MUR1510 MUR1515 MUR1520 MUR1530 MUR1540 MUR1550 MUR1560 MUR1605CT MUR1610CT	MUR890 MUR1100 MUR1505 MUR1510 MUR1515 MUR1520 MUR1530 MUR1540 MUR1550 MUR1560 MUR1605CT MUR1605CT		3-241 3-229 3-247 3-247 3-247 3-247 3-247 3-247 3-247 3-252 3-252
MR2506 MR2508 MR2510 MR2535L MR2540L MR5005 MR5010 MR5020 MR5030 MR5040 MR5060 MR5061	MR2506 MR2508 MR2510 MR2535L MR2540L MR5005 MR5010 MR5020 MR5030 MR5030 MR5040 MR5060		3-217 3-217 3-217 3-223 3-223 3-225 3-225 3-225 3-225 3-225 3-227 3-227	MUR1615CT MUR1620CT MUR1630CT MUR1640CT MUR1650CT MUR1660CT MUR2505 MUR2510 MUR2515 MUR2520 MUR3005PT MUR3010PT	MUR1615CT MUR1620CT MUR1630CT MUR1640CT MUR1650CT MUR1660CT MUR2505 MUR2510 MUR2515 MUR2520 MUR3005PT MUR3010PT		3-252 3-252 3-252 3-252 3-252 3-257 3-257 3-257 3-257 3-257 3-259 3-259
MUR105 MUR110 MUR115 MUR120 MUR130 MUR140 MUR150 MUR170 MUR160 MUR170 MUR180 MUR190 MUR190 MUR405	MUR105 MUR110 MUR115 MUR120 MUR130 MUR140 MUR150 MUR160 MUR170 MUR170 MUR180 MUR190 MUR405		3-229 3-229 3-229 3-229 3-229 3-229 3-229 3-229 3-229 3-229 3-229 3-234	MUR3015PT MUR3020PT MUR3030PT MUR3050PT MUR3050PT MUR3060PT MUR4100 MUR5005 MUR5010 MUR5015 MUR5015 MUR5020 MUR7005	MUR3015PT MUR3020PT MUR3030PT MUR3040PT MUR3050PT MUR3060PT MUR4100 MUR5005 MUR5010 MUR5015 MUR5015 MUR5015 MUR5020 MUR7005		3-259 3-259 3-259 3-259 3-259 3-259 3-234 3-264 3-264 3-264 3-264 3-266

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
MUR7010 MUR7015 MUR7020 MUR8100 MUR10005CT MUR10015CT MUR10015CT MUR10020CT MUR20005CT MUR20015CT MUR20015CT MUR20015CT MUR20015CT MUR20015CT	MUR7010 MUR7015 MUR7020 MUR8100 MUR10005CT MUR10015CT MUR10015CT MUR10020CT MUR20005CT MUR20015CT MUR20015CT MUR20015CT MUR20015CT MUR20015CT MUR20020CT		3-266 3-266 3-266 3-241 3-269 3-269 3-269 3-271 3-271 3-271 3-271	NS30004 P100A P100B P100D P100G P100J P100K P100M P300A P300A P300B P300D P300F		1N3913 1N5391 1N5392 1N5393 1N5395 1N5397 1N5398 1N5399 MR500 MR501 MR501 MR502 MR504	3-28 3-41 3-41 3-41 3-41 3-41 3-167 3-167 3-167 3-167
MUR20030CT MUR20040CT MURD305 MURD310 MURD315 MURD320 MURD605CT MURD610CT MURD615CT MURD610CT MURD610CT NS500 NS501	MUR20030CT MUR20040CT MURD305 MURD310 MURD315 MURD320 MURD605CT MURD610CT MURD615CT MURD620CT	1N4933 1N4934	3-273 3-275 3-275 3-275 3-275 3-275 3-278 3-278 3-278 3-278 3-35 3-35	P300G P300H P300J P300K P300M P600A P600B P600D P600G P600J PA305 PA310		MR504 MR506 MR506 MR508 MR510 MR750 MR751 MR752 MR754 MR756 1N4001 1N4002	3-167 3-167 3-167 3-167 3-167 3-173 3-173 3-173 3-173 3-173 3-33 3-3
NS502 NS504 NS505 NS506 NS1000 NS1001 NS1002 NS1004 NS1005 NS1006 NS2000 NS2001		1N4935 1N4936 1N4937 1N4937 1N4933 1N4934 1N4935 1N4936 1N4937 1N4937 MR850 MR851	3-35 3-35 3-35 3-35 3-35 3-35 3-35 3-35	PA315 PA320 PA320 PA330 PA330 PA340 PA350 PA360 PHBR1635 PHBR1640 PHBR1645 PHS2401 PHS2401	MBR1635 MBR1645 MBR1645 MUR1605CT MUR1610CT	1N4003 1N4003 1N4004 1N4004 1N4004 1N4005 1N4005	3-33 3-33 3-33 3-33 3-33 3-100 3-100 3-100 3-252 3-252
NS2002 NS2003 NS2004 NS2005 NS2006 NS3000 NS3001 NS3002 NS3002 NS3003 NS3004 NS3005 NS3006		MR852 MR854 MR856 MR856 MR856 MR850 MR851 MR852 MR854 MR854 MR856 MR856	3-192 3-192 3-192 3-192 3-192 3-192 3-192 3-192 3-192 3-192 3-192 3-192 3-192	PHS2403 PHS2404 PS405 PS410 PS415 PS420 PS425 PS430 PS435 PS430 PS450 PS450	MUR1615CT MUR1620CT	1N4001 1N4002 1N4003 1N4003 1N4004 1N4004 1N4004 1N4004 1N4005 1N4005	3-252 3-252 3-33 3-33 3-33 3-33 3-33 3-3
NS6000 NS6001 NS6002 NS6003 NS6004 NS6005 NS6006 NS12006 NS30000 NS30001 NS30002 NS30003		1N3879 1N3880 1N3881 1N3882 1N3883 MR1366 MR1366 MR1376 1N3909 1N3910 1N3911 1N3912	3-13 3-13 3-13 3-13 3-13 3-13 3-13 3-18 3-28 3-28 3-28 3-28 3-28	PT505 PT510 PT515 PT520 PT525 PT520 PT540 PT550 PT560 PT560 PT580 PZ-140B		1N4001 1N4002 1N4003 1N4003 1N4004 1N4004 1N4004 1N4005 1N4005 1N4006 1N3493 1N3493	3-33 3-33 3-33 3-33 3-33 3-33 3-33 3-3

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
R200 R400 R600 R710XPT R711X R711XPT R712X R712XPT R714X R714XPT R800 R1000	R710XPT R711XPT R712XPT R714XPT	1N4003 1N4004 1N4005 R711XPT R712XPT R714XPT 1N4006 1N4007	3-33 3-33 3-281 3-281 3-281 3-281 3-281 3-281 3-281 3-33 3-33	RG2A RG2B RG2D RG2G RG2J RG3-A RG3A RG3B RG3D RG3F RG3G RG3H		MR850 MR851 MR852 MR854 MR856 MR850 MR850 MR851 MR851 MR852 MR854 MR854 MR854	3-192 3-192 3-192 3-192 3-192 3-192 3-192 3-192 3-192 3-192 3-192 3-192
R302506 R302512 R1420010 R1420110 R1420210 R1420410 R1420610 R3020606 R3020612 R3400006 R3400106 R3400206		MR1366 MR1376 1N4933 1N4934 1N4935 1N4936 1N4937 MR1366 MR1376 MR750 MR751 MR751	3-13 3-18 3-35 3-35 3-35 3-35 3-35 3-13 3-18 3-173 3-173 3-173	RG3J RG4A RG4B RG4D RG4G RG4J RG1122 RG1123 RGM30A RGM30B RGM30D RGM30D		MR856 MR850 MR851 MR852 MR854 MR856 1N4001 1N4002 MUR3005PT MUR3010PT MUR3010PT MUR3040PT	3-192 3-192 3-192 3-192 3-192 3-192 3-33 3-33 3-259 3-259 3-259 3-259
R3400306 R3400406 R3400506 R3400606 R3400706 R3400806 R3401006 R3401006 R4020530 R4020620 R4020630 RA251	MR2501	MR754 MR754 MR754 MR756 MR756 MR758 MR760 MR760 MR1396 MR1386 MR1386	3-173 3-173 3-173 3-173 3-173 3-173 3-173 3-173 3-173 3-28 3-23 3-28 3-217	RGP10A RGP10B RGP10D RGP10F RGP10G RGP10H RGP10J RGP10K RGP15M RGP15A RGP15B RGP15B		1N4933 1N4934 1N4935 1N4936 1N4936 MR818 1N4937 MR817 MR817 MR818 MR850 MR851 MR851	3-35 3-35 3-35 3-35 3-35 3-177 3-35 3-177 3-177 3-192 3-192 3-192
RA252 RA253 RA254 RA255 RA256 RA258 RA2505 RA2510 RG1-A RG1-B RG1-D RG1-G	MR2502 MR2503 MR2504 MR2505 MR2506 MR2506 MR2508 MR2510	1N4933 1N4934 1N4935 1N4936	3-217 3-217 3-217 3-217 3-217 3-217 3-217 3-217 3-35 3-35 3-35 3-35	RGP15G RGP15J RGP20A RGP20B RGP20D RGP20G RGP25A RGP25A RGP25B RGP25D RGP25F RGP25G		MR854 MR856 MR850 MR851 MR852 MR854 MR856 MR850 MR851 MR851 MR852 MR854	3-192 3-192 3-192 3-192 3-192 3-192 3-192 3-192 3-192 3-192 3-192 3-192
RG1-J RG1-K RG1-M RG1A RG1B RG1D RG1F RG1G RG1H RG1J RG1K RG1M		1N4937 MR818 1N4933 1N4934 1N4935 1N4935 1N4936 1N4936 1N4937 1N4937 MR817 MR818	3-35 3-177 3-177 3-35 3-35 3-35 3-35 3-35 3-35 3-35 3-	RGP25H RGP25J RGP30A RGP30B RGP30D RGP30F RGP30G RGP30H RGP30J RGP80A RGP80B RGP80B	MUR805 MUR810 MUR820	MR856 MR856 MR850 MR851 MR852 MR854 MR854 MR856 MR856	3-192 3-192 3-192 3-192 3-192 3-192 3-192 3-192 3-241 3-241 3-241

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
RGP80G RGP80J RGP80K RGP5005 RGP5010 RGP5020 RGP5040 RGP5060 RGP5080 RGP5080 RGP5100 RIV020 RIV020	MUR840 MUR860 MUR880	MR810 MR811 MR812 MR814 MR816 MR817 MR818 MR852 MR854	3-241 3-241 3-241 3-177 3-177 3-177 3-177 3-177 3-177 3-192 3-192	RUR805 RUR810 RUR815 RUR820 RURD805 RURD810 RURD815 RURD820 RURD1610 RURD1615 RURD1620 SOF	MUR805 MUR810 MUR815 MUR820 MUR1605CT MUR1610CT MUR1615CT MUR1620CT	MUR3010PT MUR3015PT MUR3020PT MR818	3-241 3-241 3-241 3-241 3-252 3-252 3-252 3-252 3-259 3-259 3-259 3-177
RIV060 RL005 RL010 RL020 RL040 RL060 RL061 RL062 RL063 RL064 RL065 RL065 RL066	1N4001 1N4002 1N4003 1N4004 1N4005 1N4006	MR856 1N4933 1N4934 1N4935 1N4936 1N4937	3-192 3-35 3-35 3-35 3-35 3-35 3-33 3-33 3-3	S0M S1A1F S1A2F S1A3F S1A4F S1A5F S1A10F S1A12F S1ABF S1AGF S2F S2M		1N4007 1N4934 1N4935 1N4936 1N4936 1N4937 MR818 * MR817 1N4937 1N4935 1N4003	3-33 3-35 3-35 3-35 3-35 3-35 3-177 — 3-177 3-35 3-35 3-33
RL067 RL080 RL100 RL151 RL152 RL153 RL154 RL155 RL156 RL157 RL251 RL251	1N4007	MR817 MR818 1N5391 1N5392 1N5393 1N5395 1N5397 1N5398 1N5399 1N5400 1N5401	3-33 3-177 3-177 3-41 3-41 3-41 3-41 3-41 3-41 3-45 3-45	S3A1 S3A1F S3A2F S3A2F S3A3 S3A3F S3A4F S3A4F S3A5F S3A5F S3A6F		1N5401 MR851 1N5402 MR852 1N5403 MR854 1N5404 MR854 1N5405 MR856 1N5406 MR856	3-45 3-192 3-45 3-192 3-45 3-192 3-45 3-192 3-45 3-192 3-45 3-192
RL253 RL254 RL255 RMC005 RMC010 RMC020 RMC040 RMC060 RMC080 RMC100 RP300A RP300B	MR850 MR851	1N5402 1N5404 1N5406 1N4933 1N4934 1N4935 1N4936 1N4937 MR817 MR818	3-45 3-45 3-45 3-35 3-35 3-35 3-35 3-177 3-177 3-192 3-192	S3A7 S3A8 S3A9 S3A10 S3A12F S3A025 S4F S4M S5A1 S5A1F S5A2 S5A2F		MR508 MR508 MR510 MR510 * 1N5400 1N4936 1N4004 MR501 MR821 MR502 MR822	3-167 3-167 3-167 3-167 — 3-45 3-35 3-35 3-167 3-183 3-167 3-183
RP300D RP300G RP300J RT05 RT10 RT20 RT30 RT40 RT60 RUD810 RUD815 RUD820	MR852 MR854 MR856 MR856 MUR1610CT MUR1615CT MUR1620CT	1N3889 1N3890 1N3891 1N3892 1N3893 MR1376	3-192 3-192 3-192 3-18 3-18 3-18 3-18 3-18 3-18 3-252 3-252 3-252 3-252	S5A3 S5A3F S5A4F S5A5 S5A5F S5A6F S5A6F S5A6F S5A8 S5A10 S5A12F S5A025		MR504 MR824 MR504 MR824 MR506 MR826 MR506 MR508 MR508 MR510	3-167 3-183 3-167 3-183 3-167 3-183 3-167 3-183 3-167 3-167 3-167

^{*}These devices are manufactured by Motorola but no data sheet available — Consult Factory.

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
S6A1 S6A2 S6A3 S6A4 S6A5 S6A6 S6F S6M S8F S8M S25A1 S25A3		MR751 MR752 MR754 MR754 MR756 MR756 1N4937 1N4005 MR817 1N4006 1N1184A 1N1187A	3-173 3-173 3-173 3-173 3-173 3-173 3-35 3-33 3-177 3-33 3-2 3-2	SB840 SB845 SB850 SB860 SB800 SB1020 SB1035 SB1040 SB1045 SB1620 SB1630 SB1650	MBR1060 MBR1060 • MBR1035 MBR1035 MBR1045 MBR1045 MBR1535CT MBR1535CT	MBR745 MBR745	3-90 3-90 3-96 3-96 3-92 3-92 3-92 3-92 3-98 3-98
\$25A4 \$25A05 \$25A6 \$40A1 \$40A2 \$40A3 \$40A4 \$40A5 \$40A6 \$1010 \$1020 \$1030		1N1188A 1N1183A 1N1190A 1N1184A 1N1186A 1N1187A 1N1188A 1N1189A 1N1190A 1N4002 1N4003 1N4004	3-2 3-2 3-2 3-2 3-2 3-2 3-2 3-2 3-33 3-33 3-33	SB1660 SB1680 SB3020 SB3030 SB3040 SB3045 SBP1030T SBP1035T SBP1040T SBP1045T SBP1630T SBP1635T	MBR3035CT MBR3035CT MBR3045CT MBR3045CT MBR1535CT MBR1535CT MBR1545CT MBR1545CT MBR1545CT MBR1535CT MBR1535CT		3-110 3-110 3-110 3-110 3-110 3-98 3-98 3-98 3-98 3-98 3-98
\$1040 \$1050 \$1060 \$1070 \$1080 \$1090 \$10100 \$-3A1 \$-3A2 \$-3A3 \$-3A4 \$-3A5		1N4004 1N4005 1N4005 1N4006 1N4006 1N4007 1N4007 MR501 MR502 MR504 MR504 MR504	3-33 3-33 3-33 3-33 3-33 3-167 3-167 3-167 3-167 3-167	SBP1640T SBP1645T SBP1650T SBP1660T SBR1040 SBR1045 SBR1645 SBR1650 SBR3540 SBR3540 SBR3550	MBR1545CT MBR1545CT * * * * * * * * * * * * * * * * * * *		3-98 3-98 — 3-92 3-92 3-100 3-100 — 3-116 3-116
S-3A6 S-3A8 S-3A10 S-5A1 S-5A2 S-5A3 S-5A4 S-5A6 SB120 SB130 SB140		MR506 MR508 MR510 MR751 MR752 MR754 MR754 MR756 MR756 1N5817 1N5818 1N5819	3-167 3-167 3-167 3-173 3-173 3-173 3-173 3-173 3-173 3-47 3-47	SBR8040 SBR8045 SBR8050 SBS520T SBS530T SBS535T SBS535T SBS545T SBS545T SBS820T SBS820T SBS830T SBS835T SBS830T SBS835T SBS840T	MBR8045 MBR8045 * MBR735 MBR735 MBR735 MBR745 MBR745	MBR735 MBR735 MBR735 MBR745	3-134 3-134 3-90 3-90 3-90 3-90 3-90 3-90 3-90 3
SB150 SB160 SB320 SB330 SB340 SB350 SB360 SB520 SB530 2B540 SB820 SB830		MBR150 MBR160 MBR320 MBR330 MBR340 MBR350 MBR360 1N5823 1N5824 1N5825 MBR735 MBR735	3-87 3-83 3-86 3-86 3-86 3-86 3-55 3-55 3-55 3-90 3-90	SBS845T SBS850T SBS860T SBS1030T SBS1035T SBS1045T SBS1045T SBS1640T SBS1630T SBS1635T SBS1645T	MBR1035 MBR1035 MBR1045 MBR1045 MBR1635 MBR1635 MBR1635 MBR1645 MBR1645	MBR745 MBR1060 MBR1060	3-90 3-96 3-96 3-92 3-92 3-92 3-100 3-100 3-100 3-100

^{*}These devices are manufactured by Motorola but no data sheet available — Consult Factory.

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
SBT3040 SBT3045 SBT3050 SD1 SD2 SD4 SD05 SD6 SD8 SD31 SD32 SD41	MBR3045CT MBR3045CT *	1N4002 1N4003 1N4004 1N4001 1N4005 1N4006 MBR3545 MBR3545	3-110 3-110 - 3-33 3-33 3-33 3-33 3-33 3-31 3-116 3-116 3-73	SEN2100 SEN3100 SES5001 SES5002 SES5003 SES5301 SES5302 SES5303 SES5401 SES5401C SES5402 SES5402	MUR805 MUR1605CT MUR810 MUR1610CT	MR510 MR510 MUR105 MUR110 MUR115 MUR405 MUR410 MUR415	3-167 3-167 3-229 3-229 3-229 3-234 3-234 3-234 3-241 3-252 3-241 3-252
SD51 SD71 SD72 SD75 SD241 SEN105 SEN105FR SEN110 SEN110FR SEN120 SEN120FR SEN130	SD51	MBR7545 MBR7545 MBR7545 1N4001 1N4933 1N4002 1N4934 1N4003 1N4936 1N4004	3-73 3-132 3-132 3-132 3-110 3-33 3-35 3-35 3-33 3-35 3-33 3-35 3-33	SES5403 SES5403C SES5404 SES5404C SES5501 SES5502 SES5503 SES5504 SES5601C SES5602C SES5603C SES5701	MUR815 MUR1615CT MUR820 MUR1620CT MUR1505 MUR1510 MUR1515 MUR1515 MUR1520		3-241 3-252 3-241 3-252 3-247 3-247 3-247 3-247 ————————————————————————————————————
SEN140 SEN140FR SEN150 SEN150FR SEN160 SEN160FR SEN180 SEN205 SEN205FR SEN210 SEN210FR SEN210FR SEN220		1N4004 1N4936 1N4005 1N4937 1N4005 1N4937 1N4006 MR501 MR850 MR501 MR851 MR851 MR502	3-33 3-35 3-33 3-35 3-33 3-35 3-33 3-167 3-192 3-167 3-192 3-167	SES5702 SES5703 SES5801 SES5802 SES5803 SGR100 SGR200A SGR400A SGR600A SGR800A SGR1000A SI-1A	MUR2510 MUR2515 MUR5005 MUR5010 MUR5015	1N4002 1N4003 1N4004 1N4005 1N4006 1N4007 MR501	3-257 3-257 3-264 3-264 3-264 3-33 3-33 3-33 3-33 3-33 3-33 3-33
SEN220FR SEN230FR SEN240 SEN240FR SEN250FR SEN260 SEN260FR SEN280 SEN300 SEN300 SEN305 SEN305FR SEN310		MR852 MR854 MR504 MR854 MR856 MR506 MR856 MR508 MR501 MR501 MR850 MR501	3-192 3-192 3-167 3-192 3-167 3-192 3-167 3-167 3-167 3-167 3-167 3-167	SI-2A SI-3A SI-4A SI-5A SI-6A SI-8A SI-10A SI-50E SI-100E SI-200E SI-300E SI-400E		MR502 MR504 MR504 MR506 MR506 MR508 MR508 1N4001 1N4002 1N4003 1N4004 1N4004	3-167 3-167 3-167 3-167 3-167 3-167 3-33 3-33 3-33 3-33 3-33
SEN310FR SEN320 SEN320FR SEN330FR SEN340FR SEN350 SEN350FR SEN360 SEN360FR SEN360FR SEN380 SEN1100		MR851 MR502 MR852 MR854 MR504 MR504 MR506 MR506 MR506 MR506 MR506 MR508 1N4007	3-192 3-167 3-192 3-192 3-167 3-192 3-167 3-192 3-167 3-192 3-167 3-33	SI-500E SI-600E SI-800E SI-1000E SI1 SI2 SI3 SI4 SI5 SI6 SI7 SI8		1N4005 1N4005 1N4006 1N4007 1N5392 1N5393 1N5394 1N5395 1N5396 1N5397 1N5398	3-33 3-33 3-33 3-41 3-41 3-41 3-41 3-41

^{*}These devices are manufactured by Motorola but no data sheet available — Consult Factory.

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Númber	Motorola Direct Replacement	Motorola Similar Replacement	Page #
SI9 SI10 SI31 SI32 SI71 SI72 SI231 SI232 SL3 SL5 SL8 SL10		1N5399 1N5399 MBR3535 MBR3545 MBR7545 MBR7540 MBR3045CT MBR3045CT MR1123 MR1125 MR1128 MR1130	3-41 3-41 3-116 3-116 3-132 3-132 3-110 3-110 3-200 3-200 3-200 3-200 3-200	SR303 SR304 SR305 SR306 SR710 SR711 SR712 SR713 SR714 SR716 SR716F SR802	MBR330 MBR340 MBR350 MBR360		3-86 3-86 3-86
SL50 SL91 SL92 SL93 SL100 SL200 SL300 SL400 SL500 SL600 SL608 SL610		MR1120 1N4002 1N4003 1N4004 MR1121 MR1122 MR1123 MR1124 MR1125 MR1125 MR1126 1N4006 1N4007	3-200 3-33 3-33 3-33 3-200 3-200 3-200 3-200 3-200 3-200 3-200 3-33 3-33	SR803 SR804 SR1002 SR1003 SR1004 SR1006 SR1602 SR1603 SR1604 SR2462 SR3502 SR3512	MBR1035 MBR1035 MBR1045 MBR1060	MBR735 MBR745 MBR1535CT MBR1535CT MBR1545CT 1N4004 1N4002 1N4001	3-90 3-90 3-92 3-92 3-92 3-96 3-98 3-98 3-98 3-33 3-33
SL708 SL710 SL800 SL800X SL1000 SL1000X SLA5191 SLA5198 SLA5199 SLA5200 SLA5201 SLA-11		1N4006 1N4007 MR1128 MR1128 MR1130 MR1130 MR501 MR501 MR502 MR504 MR504 MR506 1N4001	3-33 3-33 3-200 3-200 3-200 3-200 3-167 3-167 3-167 3-167 3-167 3-33	SR3946 SR5005 SR5010 SR5020 SR5030 SR5040 SR6134 SR6323 SR6385 SR6404 SR6560 SR6560		1N4005 MR5005 MR5010 MR5020 MR5030 MR5040 1N4003 1N4001 1N4003 1N4006 1N4006 1N4002 1N4004	3-33 3-225 3-225 3-225 3-225 3-225 3-33 3-33
SLA-12 SLA-13 SLA-14 SLA-15 SLA-16 SLA-17 SLA-18 SLA-19 SLA-21 SLA-22 SLA-22 SLA-23 SLA-24		1N4002 1N4003 1N4004 1N4004 1N4005 1N4005 1N4006 1N4007 MR501 MR501 MR502 MR504	3-33 3-33 3-33 3-33 3-33 3-33 3-33 3-167 3-167 3-167 3-167	SR6592 SR6593 SRP100A SRP100B SRP100D SRP100G SRP300A SRP300A SRP300B SRP300D SRP300G SRP300J	1N4937 MR856	1N4006 1N4007 1N4933 1N4934 1N4935 1N4936 MR850 MR851 MR851 MR852 MR854	3-33 3-33 3-35 3-35 3-35 3-35 3-192 3-192 3-192 3-192 3-192
SLA-25 SLA-26 SLA-27 SLA-28 SLA-29 SPA25 SPB25 SPC25 SPD25 SR105 SR106 SR302	MBR150 MBR160 MBR320	MR504 MR506 MR506 MR508 MR510 MDA2501 MDA2501 MDA2504 MDA2504	3-167 3-167 3-167 3-167 3-155 3-155 3-155 3-155 3-83 3-83 3-86	SRP600A SRP600B SRP600D SRP600G SRP600J SRS105 SRS110 SRS120 SRS140 SRS160 SRS180 SRS205		MR820 MR821 MR822 MR824 MR826 1N4001 1N4002 1N4003 1N4004 1N4005 1N4006 MR501	3-183 3-183 3-183 3-183 3-183 3-33 3-33

^{*}These devices are manufactured by Motorola but no data sheet available — Consult Factory.

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
SRS210 SRS220 SRS240 SRS260 SRS305 SRS310 SRS320 SRS360 SRS380 SRS1100 SRS2100		MR501 MR502 MR504 MR506 MR508 MR501 MR501 MR502 MR502 MR506 MR508 1N4007 MR510	3-167 3-167 3-167 3-167 3-167 3-167 3-167 3-167 3-167 3-167 3-167 3-167	T1000 T3889 T3890 T3891 T3892 T3893 T3899 T3900 T3901 T3902 T3903 T3909		1N4007 	3-33
SRS3100 SRSFR105 SRSFR110 SRSFR120 SRSFR140 SRSFR160 SRSFR180 SRSFR205 SRSFR205 SRSFR210 SRSFR210 SRSFR220 SRSFR230		MR510 1N4933 1N4934 1N4935 1N4936 1N4937 1N4937 MR817 MR850 MR850 MR851 MR852 MR854	3-167 3-35 3-35 3-35 3-35 3-35 3-177 3-192 3-192 3-192 3-192	T3910 T3911 T3912 T3913 TA5 TA10 TA20 TA40 TA50 TA60 TA80 TA80 TA100		1 N4001 1 N4002 1 N4003 1 N4004 1 N4001 1 N4005 1 N4006 1 N4007	
SRSFR240 SRSFR250 SRSFR260 SRSFR305 SRSFR310 SRSFR320 SRSFR340 SRSFR350 SRSFR350 SRSFR360 SRSFR1100 ST2FR10P		MR854 MR856 MR856 MR850 MR851 MR852 MR854 MR854 MR856 MR856 MR818 1N3890	3-192 3-192 3-192 3-192 3-192 3-192 3-192 3-192 3-192 3-197 3-18	TA200 TA300 TA400 TA500 TA600 TA800 TA1000 TA9225A TA9225B TA9225C TFR1105 TFR110	MUR1510 MUR1515 MUR1520	1N4003 1N4004 1N4004 1N4005 1N4005 1N4006 1N4007	3-33 3-33 3-33 3-33 3-33 3-33 3-247 3-247 3-247 3-13
ST2FR20P ST2FR30P ST2FR40P ST2FR60P ST210E ST210P ST220E ST220P ST230E ST230P ST240E ST240P		1N3891 1N3892 1N3893 MR1376 1N3209 MR1121 1N3210 MR1122 1N3211 MR1123 1N3212 MR1124	3-18 3-18 3-18 3-18 3-6 3-200 3-6 3-200 3-6 3-200 3-6 3-200 3-6 3-200	TFR120 TFR140 TFR305 TFR310 TFR320 TFR340 TFR605 TFR610 TFR620 TFR640 TFR1205 TFR1210		1 N3881 1 N3883 1 N3879 1 N3880 1 N3881 1 N3883 1 N3879 1 N3880 1 N3881 1 N3883 1 N3889 1 N3899	3-13 3-13 3-13 3-13 3-13 3-13 3-13 3-13
ST260P ST280P ST410P ST420P ST430P ST440P ST450P ST460P ST2100P T12A6F T20A6F T30A6F		MR1126 MR1128 1N1184A 1N1186A 1N1187A 1N1188A 1N1189A 1N1190A MR1130	3-200 3-200 3-2 3-2 3-2 3-2 3-2 3-2 3-200 — —	TFR1220 TFR1240 TG4 TG6 TG8 TG24 TG26 TG28 TG84 TG86 TG88 TG88	MUR140 MUR160 MUR180 MUR440 MUR460 MUR480 MUR860 MUR860 MUR880 MUR880	1N3891 1N3893	3-18 3-129 3-229 3-229 3-234 3-234 3-234 3-241 3-241 3-241 3-252

^{*}These devices are manufactured by Motorola but no data sheet available — Consult Factory.

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
TG286 TIR101A TIR101B TIR101C TIR101D TIR102A TIR102B TIR102C TIR102D TIR201A TIR201B TIR201B TIR201C	MUR1660CT		3-252 — — — — — — — — — —	TM34 TM37 TM38 TM39 TM41 TM42 TM43 TM44 TM47 TM48 TM48 TM49 TM51		1N1204B 1N1204B 1N1204B 1N1204B 1N1204B 1N1204B 1N1204B 1N1204B 1N1204B 1N1204B 1N1204B 1N1204B	3-5 3-5 3-5 3-5 3-5 3-5 3-5 3-5 3-5 3-5
TIR201D TIR202A TIR202B TIR202C TIR202D TK5 TK10 TK11 TK20 TK21 TK30 TK40		1N4001 1N4002 1N4002 1N4002 1N4003 1N4003 1N4004 1N4004		TM52 TM53 TM61 TM62 TM63 TM64 TM65 TM66 TM67 TM68 TM68 TM69 TM74		1N1206B 1N1206B 1N1206B 1N1206B 1N1206B 1N1206B 1N1206B 1N1206B 1N1206B 1N1206B 1N1206B 1N1206B 1N1206B	3-5 3-5 3-5 3-5 3-5 3-5 3-5 3-5 3-5 3-5
TK41 TK50 TK60 TK61 TKF5 TKF10 TKF20 TKF40 TKF50 TKF50 TKF80 TKF80 TKF100		1N4004 1N4005 1N4005 1N4005 1N4933 1N4934 1N4935 1N4936 1N4937 1N4937 MR817 MR817	3-33 3-33 3-33 3-33 3-35 3-35 3-35 3-35	TM75 TM76 TM78 TM79 TM84 TM85 TM86 TM88 TM89 TM104 TM105 TM105		MR1128 MR1128 MR1128 MR1128 MR1128 MR1128 MR1128 MR1128 MR1128 MR1130 MR1130 MR1130	3-200 3-200 3-200 3-200 3-200 3-200 3-200 3-200 3-200 3-200 3-200 3-200
TM1 TM2 TM3 TM4 TM5 TM7 TM8 TM9 TM11 TM12 TM13 TM17		1N1199B 1N1199B 1N1199B 1N1199B 1N1199B 1N1199B 1N1199B 1N1199B 1N1200B 1N1200B 1N1200B 1N1200B	3-5 3-5 3-5 3-5 3-5 3-5 3-5 3-5 3-5 3-5	TR53 TR151 TR153 TR203 TR203 TR251 TR252 TR253 TR300 TR301 TR301 TR302 TR302 TR303 TR351		1N1183A 1N3210 1N1186A 1N1188A 1N3211 1N3211 1N1188A 1N3211 1N3211 1N3211 1N3211 1N1187 1N3212	3-2 3-6 3-2 3-6 3-6 3-6 3-6 3-6 3-6 3-6
TM18 TM19 TM21 TM22 TM23 TM24 TM27 TM28 TM29 TM31 TM32 TM33		1N1200B 1N1200B 1N1202B 1N1202B 1N1202B 1N1202B 1N1202B 1N1202B 1N1202B 1N1204B 1N1204B 1N1204B 1N1204B	3-5 3-5 3-5 3-5 3-5 3-5 3-5 3-5 3-5 3-5	TR353 TR401 TR403 TR503 TR503 TR1120 TR1121 TR1122 TR1122 TR1123 TR1124 TR1125 TR1126		1N1188A 1N3212 1N1188A 1N1189 1N1190 MR1120 MR1121 MR1122 MR1123 MR1124 MR1125 MR1126	3-2 3-6 3-2 3-2 3-2 3-200 3-200 3-200 3-200 3-200 3-200 3-200

^{*}These devices are manufactured by Motorola but no data sheet available — Consult Factory.

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
TR1128 TR1130 TS3 TS5 TS10 TS20 TS40 TS50 TS60 TS60 TS60 TS80 TS-1 TS-2		MR1128 MR1130 1N4933 1N4933 1N4934 1N4935 1N4936 1N4937 1N4937 MR817 1N4002 1N4003	3-200 3-200 3-35 3-35 3-35 3-35 3-35 3-35 3-37 3-177 3-33 3-33	UES1504 UES2401 UES2402 UES2403 UES2404 UES2601 UES2602 UES2603 UES2604 UES2605 UES2606 UF4001	MUR1520 MUR1620CT MUR105	MUR1605CT MUR1610CT MUR1615CT MUR3005PT MUR3010PT MUR3015PT MUR3020PT MUR3030PT MUR30340PT	3-247 3-252 3-252 3-252 3-252 3-259 3-259 3-259 3-259 3-259 3-259 3-259 3-259
TS-4 TS-05 TS-6 TS-8 TSV TW5 TW10 TW20 TW30 TW40 TW50 TW50 TW60		1N4004 1N4001 1N4005 1N4006 1N4933 1N4001 1N4002 1N4003 1N4004 1N4004 1N4005 1N4005	3-33 3-33 3-33 3-35 3-35 3-33 3-33 3-33	UF4002 UF4003 UF4004 UF5400 UF5401 UF5402 UF5403 UF5404 USD320C USD335C USD345C USD420	MUR110 MUR120 MUR140 MUR405 MUR410 MUR420 MUR420 MUR430 MUR440	MBR3035CT MBR3035CT MBR3045CT MBR3520	3-229 3-229 3-229 3-234 3-234 3-234 3-234 3-110 3-140 3-140 3-116
TW80 TW100 UES701 UES702 UES703 UES704 UES801 UES802 UES803 UES804 UES804 UES1001 UES1002	MUR2505 MUR2510 MUR2515 MUR2520 MUR7005 MUR7010 MUR7015 MUR5020	1N4006 1N4007 MUR105 MUR110	3-33 3-33 3-257 3-257 3-257 3-257 3-266 3-266 3-266 3-266 3-264 3-229 3-229	USD435 USD445 USD520 USD535 USD545 USD620 USD620C USD635 USD635 USD640C USD640C USD640C USD645	MBR8035 MBR8035 MBR8045 MBR735 MBR1535CT MBR735 MBR1535CT MBR745 MBR745 MBR745	MBR3535 MBR3545	3-116 3-116 3-134 3-134 3-134 3-90 3-98 3-90 3-98 3-90 3-98 3-90
UES1003 UES1101 UES1102 UES1103 USE1104 USE1105 USE1106 UES1301 UES1302 UES1302 UES1303 UES1304 UES1305		MUR115 MUR105 MUR110 MUR115 MUR120 MUR130 MUR140 MUR405 MUR410 MUR415 MUR415 MUR415 MUR415 MUR420 MUR430	3-229 3-229 3-229 3-229 3-229 3-229 3-234 3-234 3-234 3-234 3-234	USD645C USD720 USD720C USD735 USD735C USD740C USD740C USD745C USD745C USD745C USD820 USD820 USD825 USD840	MBR1545CT MBR1035 MBR1535CT MBR1035 MBR1535CT MBR1045 MBR1545CT MBR1045 MBR1545CT MBR1635 MBR1635 MBR1635 MBR1635		3-98 3-92 3-98 3-92 3-98 3-92 3-98 3-100 3-100
UES1306 UES1401 UES1402 UES1403 UES1404 UES1420 UES1421 UES1422 UES1423 UES1501 UES1502 UES1503	MUR805 MUR810 MUR815 MUR820 MUR860 MUR870 MUR880 MUR890 MUR1505 MUR1510 MUR1515	MUR440	3-234 3-241 3-241 3-241 3-241 3-241 3-241 3-241 3-247 3-247 3-247	USD845 USD920 USD935 USD940 USD945 UT111 UT112 UT113 UT114 UT115 UT117 UT117	MBR1645 MBR1635 MBR1635 MBR1645 MBR1645	1N4001 1N4002 1N4003 1N4004 1N4004 1N4005 1N4005	3-100 3-100 3-100 3-100 3-100 3-33 3-33

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
UT119 UT211 UT212 UT213 UT214 UT215 UT225 UT225 UT234 UT235 UT236 UT237 UT242		1N4006 1N4004 1N4004 1N4004 1N4005 1N4005 1N4005 1N4003 1N4004 1N4002 1N4005 1N4003	3-33 3-33 3-33 3-33 3-33 3-33 3-33 3-3	UTR40 UTR41 UTR42 UTR50 UTR51 UTR52 UTR60 UTR61 UTR62 UTR2305 UTR2310 UTR2320		1N4936 1N4936 1N4936 1N4937 1N4937 1N4937 1N4937 1N4937 1N4937 MR850 MR851 MR851	3-35 3-35 3-35 3-35 3-35 3-35 3-35 3-35
UT244 UT245 UT247 UT249 UT251 UT252 UT254 UT255 UT257 UT257 UT258 UT261 UT262		1N4004 1N4005 1N4005 1N4002 1N4002 1N4003 1N4004 1N4005 1N4005 1N4006 MR501 MR502	3-33 3-33 3-33 3-33 3-33 3-33 3-33 3-3	UTR2340 UTR2350 UTR2360 UTR3305 UTR3310 UTR3320 UTR3340 UTR3350 UTR4305 UTR4310 UTR4320 UTR4340		MR854 MR856 MR856 MR850 MR851 MR852 MR854 MR856 MR856 MR850 MR851 MR852 MR852	3-192 3-192 3-192 3-192 3-192 3-192 3-192 3-192 3-192 3-192 3-192 3-192
MT264 MT265 UT267 UT268 UT338 UT347 UT361 UT362 UT363 UT364 UT2005 UT2010		MR504 MR506 MR506 MR508 1N4005 1N4007 1N4006 1N4006 1N4007 MR501 MR501	3-167 3-167 3-167 3-167 3-33 3-33 3-33 3-33 3-33 3-33 3-167 3-167	UTR4350 UTR4360 UTX105 UTX110 UTX115 UTX120 UTX125 UTX205 UTX210 UTX215 UTX220 UTX220 UTX225		MR856 MR856 1N4933 1N4934 1N4935 1N4935 1N4935 1N4933 1N4934 1N4935 1N4935 1N4935	3-192 3-192 3-35 3-35 3-35 3-35 3-35 3-35 3-35 3-3
UT2020 UT2040 UT2060 UT3005 UT3010 UT3020 UT3040 UT3060 UT4005 UT4010 UT4020 UT4040		MR502 MR504 MR506 MR501 MR501 MR502 MR504 MR506 MR501 MR501 MR501 MR502 MR504	3-167 3-167 3-167 3-167 3-167 3-167 3-167 3-167 3-167 3-167 3-167 3-167	UTX3105 UTX3110 UTX3115 UTX3120 UTX4105 UTX4110 UTX4115 UTX4120 V322 V324 V326 V330	1N5402 1N5404 1N5406 MR500	MR850 MR851 MR852 MR852 MR850 MR851 MR852 MR852	3-192 3-192 3-192 3-192 3-192 3-192 3-192 3-45 3-45 3-45 3-45 3-167
UT4060 UTR01 UTR02 UTR10 UTR11 UTR12 UTR20 UTR21 UTR22 UTR30 UTR31 UTR31		MR506 1N4933 1N4933 1N4934 1N4934 1N4934 1N4935 1N4935 1N4935 1N4936 1N4936 1N4936	3-167 3-35 3-35 3-35 3-35 3-35 3-35 3-35 3-3	V330X V331 V331X V332 V332X V334 V334X V336 V336X V338 V342 V344	MR850 MR501 MR851 MR502 MR852 MR504 MR854 MR506 MR856 MR508 1 N5402 1 N5404		3-192 3-167 3-192 3-167 3-192 3-167 3-192 3-167 3-192 3-167 3-45 3-45

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
V346 V350 V350X V351 V351X V352 V3522 V354 V3544X V356 V356X V358	1N5406 MR500 MR850 MR501 MR501 MR502 MR502 MR504 MR854 MR856 MR506 MR508		3-45 3-167 3-192 3-167 3-192 3-167 3-192 3-167 3-192 3-167 3-192 3-167	VL648 VL848 VL1048 VSK12 VSK13 VSK14 VSK32 VSK41 VSK51 VSK62 VSK63 VSK64	MBR1535CT MBR1535CT MBR1545CT MBR3545 SD41 SD51 MBR735 MBR735 MBR745	MDA2506 MDA2508 MDA2510	3-155 3-155 3-155 3-98 3-98 3-98 3-116 3-73 3-77 3-90 3-90 3-90
V3310 V3510 VHE205 VHE210 VHE215 VHE220 VHE605 VHE610 VHE615 VHE620 VHE701 VHE701	MR510 MR510 MUR105 MUR110 MUR115 MUR120 MUR405 MUR410 MUR415 MUR420	MUR2505 MUR2510	3-167 3-167 3-229 3-229 3-229 3-229 3-234 3-234 3-234 3-234 3-257 3-257	VSK72 VSK120 VSK130 VSK140 VSK320 VSK330 VSK340 VSK520 VSK530 VSK540 VSK540 VSK920 VSK935	MBR7540 1N5819 MBR320 MBR330 MBR340	1N5817 1N5818 1N5823 1N5824 1N5825 MBR1535CT MBR1535CT	3-132 3-47 3-47 3-47 3-86 3-86 3-55 3-55 3-55 3-55 3-98
VHE703 VHE704 VHE801 VHE802 VHE803 VHE804 VHE1401 VHE1402 VHE1402 VHE1404 VHE2401 VHE2401	MUR7005 MUR7010 MUR7015 MUR7020 MUR805 MUR810 MUR815 MUR815 MUR820 MUR1605CT MUR1610CT	MUR2515 MUR2520	3-257 3-257 3-266 3-266 3-266 3-241 3-241 3-241 3-241 3-252 3-252	VSK945 VSK1020 VSK1035 VSK1045 VSK1520 VSK1530 VSK1540 VSK2003 VSK2004 VSK2020 VSK2035 VSK2045	MBR1035 MBR1035 MBR1045 1N5829 1N5830 1N5831 MBR20045CT MBR20050CT MBR20035CT MBR2035CT MBR2035CT MBR2035CT	MBR1545CT	3-98 3-92 3-92 3-64 3-64 3-64 3-142 3-102 3-102 3-102
VHE2403 VHE2404 VK048 VK148 VK248 VK448 VK648 VK848 VK1048 VL148 VL148 VL148 VL248 VL448	MUR1615CT MUR1620CT	MDA3500 MDA3501 MDA3502 MDA3502 MDA3506 MDA3506 MDA3508 MDA3510 MDA2500 MDA2501 MDA2501 MDA2502 MDA2504	3-252 3-252 3-159 3-159 3-159 3-159 3-159 3-159 3-155 3-155 3-155 3-155	VSK2420 VSK2435 VSK2445 VSK3020S VSK3020T VSK3030S VSK3030T VSK3040S VSK3040T VSK4020 VSK4020 VSK4040	MBR2535CT MBR2535CT MBR2545CT MBR3535 MBR3035CT MBR3535 MBR3035CT MBR3545 MBR3045CT 1N5832 1N5833		3-108 3-108 3-108 3-116 3-110 3-116 3-110 3-116 3-110 3-69 3-69 3-69

ZENER INDEX CROSS-REFERENCE

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
.25T110 .25T110A .25T5.6A .4T110 .4T110B .4T12 .4T12A .4T12B .4T5.6 .4T5.6A .4T5.6B	1N5272A 1N5272A 1N5272B 1N5242A 1N5242A 1N5242B 1N5232A 1N5232A 1N5232A	1N5272B 1N5272B 1N5232B	4-40 4-40 4-40 4-40 4-40 4-40 4-40 4-40	1.5KE20A 1.5KE22 1.5KE220 1.5KE220A 1.5KE22A 1.5KE24A 1.5KE24A 1.5KE250 1.5KE250A 1.5KE27A 1.5KE27A	1.5KE20A 1.5KE22 1.5KE220 1.5KE220A 1.5KE22A 1.5KE24 1.5KE250 1.5KE250 1.5KE250A 1.5KE27 1.5KE27A 1.5KE27A		4-59 4-59 4-59 4-59 4-59 4-59 4-59 4-59
.4T6.8 .4T6.8A .4T6.8B .4Z110D .4Z110D10 .4Z110D5 .4Z6.8D .4Z6.8D10 .4Z6.8D5 .5M110Z10 .5M110Z5 .5M110ZS	1N5235A 1N5235A 1N5235B 1N5272A 1N5272A 1N5272B 1N5235A 1N5235A 1N5235B 1N5235B 1N5272A 1N5272B		4-40 4-40 4-40 4-40 4-40 4-40 4-40 4-40	1.5KE30A 1.5KE33 1.5KE33A 1.5KE36 1.5KE36A 1.5KE39 1.5KE39A 1.5KE43 1.5KE43 1.5KE47 1.5KE47 1.5KE47 1.5KE47A	1.5KE30A 1.5KE33 1.5KE33A 1.5KE36 1.5KE36A 1.5KE39 1.5KE39A 1.5KE43 1.5KE43 1.5KE47 1.5KE47 1.5KE47 1.5KE47A		4-59 4-59 4-59 4-59 4-59 4-59 4-59 4-59
.5M2.4ZS .5M2.4ZS10 .5M2.4ZS5 1.5KE10 1.5KE100 1.5KE100A 1.5KE10A 1.5KE11 1.5KE110 1.5KE110 1.5KE110A 1.5KE110A 1.5KE114 1.5KE114	1.5221A 1N5221A 1N5221B 1.5KE10 1.5KE100 1.5KE100A 1.5KE10A 1.5KE11 1.5KE110 1.5KE110 1.5KE110A 1.5KE11A 1.5KE11A		4-40 4-40 4-59 4-59 4-59 4-59 4-59 4-59 4-59 4-59	1.5KE51A 1.5KE56 1.5KE56A 1.5KE6.8 1.5KE6.8A 1.5KE62 1.5KE62A 1.5KE68 1.5KE68A 1.5KE7.5 1.5KE7.5A	1.5KE51A 1.5KE56 1.5KE56A 1.5KE6.8 1.5KE6.8A 1.5KE62 1.5KE62A 1.5KE68 1.5KE68 1.5KE7.5 1.5KE7.5		4-59 4-59 4-59 4-59 4-59 4-59 4-59 4-59
1.5KE120 1.5KE120A 1.5KE12A 1.5KE13 1.5KE130 1.5KE130A 1.5KE13A 1.5KE15 1.5KE150 1.5KE150A 1.5KE150A 1.5KE15A 1.5KE16	1.5KE120 1.5KE120A 1.5KE12A 1.5KE13 1.5KE130 1.5KE130A 1.5KE13A 1.5KE15 1.5KE150 1.5KE150 1.5KE150A 1.5KE15A 1.5KE16		4-59 4-59 4-59 4-59 4-59 4-59 4-59 4-59	1.5KE75A 1.5KE8.2 1.5KE8.2A 1.5KE82 1.5KE9.1 1.5KE9.1 1.5KE9.1A 1.5KE91 1.5KE91A 1.5R200 1.5R200A 1.5R200A	1.5KE75A 1.5KE8.2 1.5KE8.2A 1.5KE82 1.5KE82A 1.5KE9.1 1.5KE9.1A 1.5KE91A	1N5956A 1N5956A 1N5956B	4-59 4-59 4-59 4-59 4-59 4-59 4-59 4-65 4-65
1.5KE160 1.5KE160A 1.5KE16A 1.5KE170 1.5KE170A 1.5KE18 1.5KE180 1.5KE180A 1.5KE18A 1.5KE20 1.5KE20 1.5KE200	1.5KE160 1.5KE160A 1.5KE16A 1.5KE170 1.5KE170A 1.5KE18 1.5KE180A 1.5KE180A 1.5KE18A 1.5KE20 1.5KE200 1.5KE200A		4-59 4-59 4-59 4-59 4-59 4-59 4-59 4-59	1.5R6.8 1.5R6.8B 1.5R6.8B 1/2R110 1/2R110A 1/2R110B 1/2R6.8 1/2R6.8A 1/2R6.8B 1/4LZ2.2D 1/4LZ2.2D10 1/4LZ2.2D5	1N5272A 1N5272A 1N5272B 1N5235A 1N5235A 1N5235B	1N5921A 1N5921A 1N5921B 1N5921B 1N5221A 1N5221A 1N5221B	4-65 4-65 4-65 4-40 4-40 4-40 4-40 4-40 4-40 4-40 4-4

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
1/4LZ6.8D 1/4LZ6.8D10 1/4LZ6.8D5 1/4M2.4AZ10 1/4M2.7AZ10 1/4M3.0AZ10 1/4M3.0AZ10 1/4M3.0AZ10 1/4M3.9AZ10 1/4M3.9AZ10 1/4M4.3AZ10 1/4M4.3AZ10 1/4M4.7AZ10	1/4M2.4AZ10 1/4M2.7AZ10 1/4M24Z10 1/4M3.0AZ10 1/4M3.6AZ10 1/4M3.6AZ10 1/4M3.9AZ10 1/4M4.3AZ10 1/4M4.7AZ10	1N5235A 1N5235A 1N5235B	4-40 4-40 4-2 4-2 4-2 4-2 4-2 4-2 4-2 4-2 4-2 4-2	10PZ200B 10PZ6.8 10PZ6.8A 10PZ6.8B 10R200 10R200A 10R200B 10R6.8 10R6.8A 10R6.8B 10RZ200	1N3015B 1N3999 1N3999 1N3999A 1N3015A 1N3015A 1N3015B 1N3999 1N3999 1N3999 1N3999A 1N3015A		4-15 4-27 4-27 4-27 4-15 4-15 4-15 4-27 4-27 4-27 4-15 4-15
1/4M5.1AZ10 1/4M5.6AZ10 1/4M6.2AZ10 1/4M6.2T10 1/4M7.5Z10 1/4M7.5Z10 1/4M9.1Z10 1/4M10Z10 1/4M11Z10 1/4M12Z10 1/4M13Z10 1/4M13Z10 1/4M14Z10	1/4M5.1AZ10 1/4M5.6AZ10 1/4M6.2AZ10 1/4M6.8Z10 1/4M7.5Z10 1/4M7.5Z10 1/4M9.1Z10 1/4M10Z10 1/4M11Z10 1/4M12Z10 1/4M13Z10 1/4M14Z10		4-2 4-2 4-2 4-2 4-2 4-2 4-2 4-2 4-2 4-2	10RZ200B 10RZ6.8 10RZ6.8A 10RZ6.8B 10RZ00 10T200A 10T200B 10T6.8 10T6.8A 10T6.8B 10Z200 10Z200A	1N3015B 1N3999 1N3999 1N3999A 1N3015A 1N3015A 1N3015B 1N3999 1N3999 1N3999 1N3999A 1N3015A		4-15 4-27 4-27 4-27 4-15 4-15 4-15 4-27 4-27 4-27 4-15 4-15
1/4M15Z10 1/4M16Z10 1/4M17Z10 1/4M18Z10 1/4M19Z10 1/4M20Z10 1/4M20Z10 1/4M24Z10 1/4M25Z10 1/4M25Z10 1/4M30Z10 1/4M30Z10	1/4M15Z10 1/4M16Z10 1/4M17Z10 1/4M18Z10 1/4M19Z10 1/4M20Z10 1/4M22Z10 1/4M24Z10 1/4M25Z10 1/4M25Z10 1/4M27Z10 1/4M30Z10 1/4M33Z10		4-2 4-2 4-2 4-2 4-2 4-2 4-2 4-2 4-2 4-2	10Z200B 10Z200D(R) 10Z200D(R)10 10Z200D(R)5 10Z3.9 10Z3.9A 10Z3.9B 1N370 1N371 1N372 1N372 1N373	1N3015B 1N3015RA 1N3015RA 1N3015RA 1N3993 1N3993 1N3993A	1N5221B 1N5221A 1N5225A 1N5227A 1N5227A	4-15 4-15 4-15 4-15 4-27 4-27 4-27 4-40 4-40 4-40 4-40 4-40
1/4M36Z10 1/4M39Z10 1/4M43Z10 1/4M45Z10 1/4M50Z10 1/4M50Z10 1/4M56Z10 1/4M56Z10 1/4M68Z10 1/4M68Z10 1/4M68Z10 1/4M82Z10	1/4M36Z10 1/4M39Z10 1/4M43Z10 1/4M45Z10 1/4M47Z10 1/4M50Z10 1/4M50Z10 1/4M56Z10 1/4M62Z10 1/4M68Z10 1/4M68Z10 1/4M75Z10 1/4M8Z10		4-2 4-2 4-2 4-2 4-2 4-2 4-2 4-2 4-2 4-2	1N375 1N376 1N377 1N378 1N379 1N380 1N381 1N383 1N384 1N385 1N386 1N387		1N5230A 1N5233A 1N5236A 1N5238A 1N5240A 1N5243A 1N5246A 1N5252A 1N5255A 1N5258A 1N5258A 1N5260A	4-40 4-40 4-40 4-40 4-40 4-40 4-40 4-40
1/4M91Z10 1/4M100Z10 1/4M105Z10 1/4Z110D 1/4Z110D10 1/4Z110D5 1/4Z6.8D 1/4Z6.8D10 1/4Z6.8D5 10LZ7.5D5 10PZ200 10PZ200A	1/4M91Z10 1/4M100Z10 1/4M105Z10 1/4M105Z10 1N4000A 1N3015A 1N3015A	1N5272A 1N5272A 1N5272B 1N5235A 1N5235A 1N5235B	4-2 4-2 4-40 4-40 4-40 4-40 4-40 4-40 4-	1N465 1N465A 1N466 1N466A 1N467 1N467A 1N468 1N468A 1N469 1N469A 1N470		1N5223A 1N5223B 1N5226A 1N5226B 1N5228B 1N5228B 1N5230A 1N5230B 1N5232B 1N5232B 1N5232B 1N5235B	4-40 4-40 4-40 4-40 4-40 4-40 4-40 4-40

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
1N664 1N665 1N666 1N667 1N668 1N669 1N670 1N671 1N672 1N674 1N675 1N746	1N746	1N5237A 1N5242A 1N5245B 1N5248A 1N5251A 1N5251A 1N5254A 1N5266B 1N5271A 1N5276A 1N5230A 1N5234B	4-40 4-40 4-40 4-40 4-40 4-40 4-40 4-40	1N755A1JTXV 1N756 1N756A 1N756A1JAN 1N756A1JTXV 1N756A1JTXV 1N757 1N757A 1N757A1JAN 1N757A1JXV 1N757A1JTXV 1N757A1JTXV	1N755A1JTXV 1N756A 1N756A 1N756A1JAN 1N756A1JTX 1N756A1JTXV 1N757A 1N757A 1N757A1JAN 1N757A1JTX 1N757A1JTXV 1N757A1JTXV	·	4-4 4-4 4-4 4-4 4-4 4-4 4-4 4-4 4-4 4-4
1N746A 1N746A1JAN 1N746A1JTX 1N746A1JTXV 1N7477 1N747A 1N747A1JAN 1N747A1JTX 1N747A1JTXV 1N748 1N748A 1N748A1JAN	1N746A 1N746A1JAN 1N746A1JTX 1N746A1JTXV 1N7477 1N747A 1N747A1JAN 1N747A1JTX 1N747A1JTXV 1N748 1N748A 1N748A1JAN		4-4 4-4 4-4 4-4 4-4 4-4 4-4 4-4 4-4 4-4	1N758A 1N758A1JAN 1N758A1JTX 1N758A1JTXV 1N759A 1N759A 1N759A1JAN 1N759A1JTX 1N759A1JTXV 1N821 1N821-1JAN 1N821-1JAN	1N758A 1N758A1JAN 1N758A1JTX 1N758A1JTXV 1N759A 1N759A 1N759A1JTX 1N759A1JTX 1N759A1JTXV 1N821 1N821-1JAN 1N821-1JAN		4-4 4-4 4-4 4-4 4-4 4-4 4-4 4-10 4-10
1N748A1JTX 1N748A1JTXV 1N749 1N749A 1N749A1JAN 1N749A1JTX 1N749A1JTXV 1N750 1N750A 1N750A1JAN 1N750A1JTX 1N750A1JTXV	1N748A1JTX 1N748A1JTXV 1N749 1N749A 1N749A1JAN 1N749A1JTX 1N749A1JTXV 1N750 1N750A 1N750A1JAN 1N750A1JTX 1N750A1JTXV		4-4 4-4 4-4 4-4 4-4 4-4 4-4 4-4 4-4 4-4	1N821-1JTXV 1N821A 1N821JAN 1N821JTX 1N821JTXV 1N823 1N823-1JAN 1N823-1JTX 1N823-1JTXV 1N823-1JTXV 1N823JAN 1N823JAN	1N821-1JTXV 1N821A 1N821JAN 1N821JTX 1N821JTXV 1N823 1N823-1JAN 1N823-1JTX 1N823-1JTXV 1N823A 1N823JAN 1N823JAN		4-10 4-10 4-10 4-10 4-10 4-10 4-10 4-10
1N751 1N751A 1N751A1JAN 1N751A1JTX 1N751A1JTXV 1N7522 1N752A 1N752A1JAN 1N752A1JTX 1N752A1JTXV 1N753 1N753A	1N751A 1N751A 1N751A1JAN 1N751A1JTX 1N751A1JTXV 1N752A 1N752A 1N752A1JAN 1N752A1JTX 1N752A1JTXV 1N753A 1N753A		4-4 4-4 4-4 4-4 4-4 4-4 4-4 4-4 4-4	1N823JTXV 1N824 1N824 1N825 1N825-1JAN 1N825-1JTX 1N825-1JTXV 1N825A 1N825JAN 1N825JTXV 1N825JTXV 1N826	1N823JTXV 1N823 1N823A 1N825 1N825-1JAN 1N825-1JTX 1N825-1JTXV 1N825A 1N825JAN 1N825JTX 1N825JTXV	1N825	4-10 4-10 4-10 4-10 4-10 4-10 4-10 4-10
1N753A1JAN 1N753A1JTX 1N753A1JTXV 1N754 1N754A 1N754A1JAN 1N754A1JTX 1N754A1JTXV 1N755 1N755A 1N755A1JAN 1N755A1JAN	1N753A1JAN 1N753A1JTX 1N753A1JTXV 1N754A 1N754A 1N754A1JAN 1N754A1JTX 1N754A1JTXV 1N755A 1N755A 1N755A 1N755A1JAN 1N755A1JTX		4-4 4-4 4-4 4-4 4-4 4-4 4-4 4-4 4-4 4-4	1N827 1N827-1JAN 1N827-1JTX 1N827-1JTXV 1N827A 1N827JAN 1N827JTXV 1N827JTXV 1N828 1N829 1N829-1JAN 1N829-1JTX	1N827 1N827-1JAN 1N827-1JTX 1N827-1JTXV 1N827A 1N827JAN 1N827JTX 1N827JTXV 1N829 1N829 1N829-1JAN 1N829-1JTX	1N827	4-10 4-10 4-10 4-10 4-10 4-10 4-10 4-10

Industry Part Number	Motorola Direct	Motorola Similar		Industry Part Number	Motorola Direct Replacement	Motorola Similar	Dog #
Part Number	Replacement	Replacement	Page #	Part Number	керіасетепт	Replacement	Page #
1N829-1JTXV 1N829A 1N829JAN 1N829JTX 1N829JTX 1N829JTXV 1N957A 1N957B 1N958A 1N958B 1N958B 1N959B 1N959B	1N829-1JTXV 1N829A 1N829JAN 1N829JTX 1N829JTX 1N829JTXV 1N957A 1N957B 1N958A 1N958B 1N959A 1N959B 1N959B		4-10 4-10 4-10 4-10 4-10 4-4 4-4 4-4 4-4 4-4 4-4	1N971A 1N971B 1N971B1JAN 1N971B1JTX 1N971B1JTXV 1N972B 1N972B 1N972B1JAN 1N972B1JTX 1N972B1JTX 1N972B1JTXV 1N973A 1N973B	1N971A 1N971B 1N971B1JAN 1N971B1JTX 1N971B1JTXV 1N972B 1N972B 1N972B1JAN 1N972B1JTX 1N972B1JTX 1N972B1JTXV 1N973B		4-4 4-4 4-4 4-4 4-4 4-4 4-4 4-4 4-4
1N960B 1N961A 1N961B 1N962A 1N962B 1N962B1JAN 1N962B1JTX 1N962B1JTXV 1N963A 1N963B 1N963B1JAN 1N963B1JTX	1N960B 1N961A 1N961B 1N962A 1N962B 1N962B1JAN 1N962B1JTX 1N962B1JTXV 1N963A 1N963B 1N963B1JAN 1N963B1JAN		4-4 4-4 4-4 4-4 4-4 4-4 4-4 4-4 4-4 4-4	1N973B1JAN 1N973B1JTX 1N973B1JTXV 1N974B 1N974B 1N974B1JAN 1N974B1JTX 1N974B1JTXV 1N975A 1N975B 1N975B1JAN 1N975B1JTX	1N973B1JAN 1N973B1JTX 1N973B1JTXV 1N974A 1N974B 1N974B1JAN 1N974B1JTX 1N974B1JTXV 1N975A 1N975B 1N975B1JAN 1N975B1JTX		4-4 4-4 4-4 4-4 4-4 4-4 4-4 4-4 4-4
1N963B1JTXV 1N964A 1N964B 1N964B1JAN 1N964B1JTX 1N964B1JTXV 1N965A 1N965B 1N965B1JAN 1N965B1JTX 1N965B1JTXV 1N965B1JTXV	1N963B1JTXV 1N964A 1N964B 1N964B1JAN 1N964B1JTX 1N964B1JTXV 1N965A 1N965B 1N965B1JAN 1N965B1JTXV 1N965B1JTXV 1N965B1JTXV		4-4 4-4 4-4 4-4 4-4 4-4 4-4 4-4 4-4	1N975B1JTXV 1N976A 1N976B 1N976B1JAN 1N976B1JTX 1N976B1JTXV 1N977A 1N977B 1N977B1JAN 1N977B1JTXV 1N977B1JTXV 1N977B1JTXV	1N975B1JTXV 1N976A 1N976B 1N976B1JAN 1N976B1JTX 1N976B1JTXV 1N977A 1N977B 1N977B1JAN 1N977B1JTXV 1N977B1JTXV 1N977B1JTXV		4-4 4-4 4-4 4-4 4-4 4-4 4-4 4-4 4-4 4-4
1N966B 1N966B1JAN 1N966B1JTX 1N966B1JTXV 1N967A 1N967B 1N967B1JAN 1N967B1JTX 1N967B1JTXV 1N968B 1N968B 1N968B1JAN	1N966B 1N966B1JAN 1N966B1JTX 1N966B1JTXV 1N9667A 1N967B 1N967B1JAN 1N967B1JTX 1N967B1JTXV 1N968B 1N968B 1N968B1JAN		4-4 4-4 4-4 4-4 4-4 4-4 4-4 4-4 4-4 4-4	1N978B 1N978B1JAN 1N978B1JTX 1N978B1JTXV 1N979A 1N979B 1N979B1JAN 1N979B1JTX 1N979B1JTX 1N979B1JTXV 1N980A 1N980B 1N980B1JAN	1N978B 1N978B1JAN 1N978B1JTX 1N978B1JTXV 1N979A 1N979B 1N979B1JAN 1N979B1JTX 1N979B1JTXV 1N980A 1N980B 1N980B1JAN		4-4 4-4 4-4 4-4 4-4 4-4 4-4 4-4 4-4
1N968B1JTX 1N968B1JTXV 1N969A 1N969B 1N969B1JAN 1N969B1JTX 1N969B1JTXV 1N970A 1N970B 1N970B1JAN 1N970B1JTX 1N970B1JTXV	1N968B1JTX 1N968B1JTXV 1N969A 1N969B 1N969B1JAN 1N969B1JTX 1N969B1JTXV 1N970A 1N970B 1N970B1JAN 1N970B1JTX 1N970B1JTXV		4-4 4-4 4-4 4-4 4-4 4-4 4-4 4-4 4-4 4-4	1N980B1JTX 1N980B1JTXV 1N981A 1N981B 1N981B1JAN 1N981B1JTX 1N981B1JTXV 1N982B 1N982B 1N982B1JAN 1N982B1JTX 1N982B1JTXV	1N980B1JTX 1N980B1JTXV 1N981B 1N981B 1N981B1JAN 1N981B1JTX 1N981B1JTXV 1N982B 1N982B 1N982B1JAN 1N982B1JTX 1N982B1JTXV		4-4 4-4 4-4 4-4 4-4 4-4 4-4 4-4 4-4 4-4

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
1N983A 1N983B 1N983B1JAN 1N983B1JTX 1N983B1JTXV 1N984A 1N984B 1N984B1JAN 1N984B1JTXV 1N984B1JTXV 1N984B1JTXV 1N985A 1N985B	1N983A 1N983B 1N983B1JAN 1N983B1JTX 1N983B1JTXV 1N984B 1N984B 1N984B1JAN 1N984B1JTXV 1N984B1JTXV 1N984B1JTXV 1N985A 1N985B		4-4 4-4 4-4 4-4 4-4 4-4 4-4 4-4 4-4 4-4	1N1369 1N1369A 1N1370 1N1370A 1N1371A 1N1371A 1N1372 1N1372A 1N1373 1N1373 1N1373A 1N1374		1N2999A 1N2999B 1N3000A 1N3000B 1N3001A 1N3001B 1N3002A 1N3002B 1N3003A 1N3003B 1N3004A 1N3004B	4-15 4-15 4-15 4-15 4-15 4-15 4-15 4-15
1 N986A 1 N986B 1 N987A 1 N987B 1 N988A 1 N988B 1 N989A 1 N989B 1 N990A 1 N990B 1 N991A 1 N991B	1 N986A 1 N986B 1 N987A 1 N987B 1 N988A 1 N988B 1 N989A 1 N989B 1 N990A 1 N990B 1 N991A 1 N991B		4-4 4-13 4-13 4-13 4-13 4-13 4-13 4-13 4	1N1375 1N1375A 1N1416 1N1417 1N1418 1N1419 1N1420 1N1421 1N1422 1N1423 1N1424 1N1424		1N3005A 1N3005B 1N2972B 1N2976B 1N2979B 1N2982B 1N2985B 1N2985B 1N3001B 1N3005B 1N3011B 1N30738A	4-15 4-15 4-15 4-15 4-15 4-15 4-15 4-15
1N992A 1N992B 1N1313 1N1313A 1N1351 1N1351A 1N1352 1N1352A 1N1353 1N1353A 1N13534 1N1356	1N992A 1N992B	1N4102 1N4102 1N2974A 1N2974B 1N2975A 1N2975B 1N2976A 1N2976B 1N2977A 1N2980A	4-13 4-28 4-28 4-15 4-15 4-15 4-15 4-15 4-15 4-15	1N1426 1N1427 1N1428 1N1429 1N1430 1N1431 1N1432 1N1482 1N1482 1N1484 1N1484 1N1485 1N1507		1N4742A 1N4744A 1N4746A 1N4748A 1N4750A 1N4760A 1N4764A 1N3995A 1N3998A 1N4732A 1N4735A 1N4730	4-36 4-36 4-36 4-36 4-36 4-36 4-27 4-27 4-27 4-36 4-36 4-36
1N1356A 1N1357 1N1357A 1N1358 1N1358A 1N1359 1N1359A 1N1360A 1N1361 1N1361 1N1361A 1N1362 1N1362A		1N2980B 1N2982A 1N2982B 1N2984B 1N2984B 1N2985A 1N2985B 1N2986B 1N2988B 1N2988B 1N2989A 1N2989B	4-15 4-15 4-15 4-15 4-15 4-15 4-15 4-15	1N1507A 1N1508 1N1508A 1N1509 1N1509A 1N1510 1N1510A 1N1511 1N1511A 1N1512 1N1512 1N1512A 1N1513		1N4730A 1N4732 1N4732A 1N4734 1N4734A 1N47366 1N4736A 1N4738 1N4738 1N4740 1N4740 1N4740A	4-36 4-36 4-36 4-36 4-36 4-36 4-36 4-36
1N1363 1N1363A 1N1364 1N1364 1N1365 1N1365A 1N1365 1N1366 1N1366 1N1367 1N1367 1N1368 1N1368	plarity has an R	1N2990A 1N2990B 1N2991A 1N2991B 1N2992B 1N2992B 1N2993A 1N2993B 1N2995A 1N2995B 1N2997A 1N2997B	4-15 4-15 4-15 4-15 4-15 4-15 4-15 4-15	1N1513A 1N1514 1N1515 1N1515A 1N15156 1N15166 1N1516A 1N1517 1N1517A 1N1518 1N1518 1N1518		1N4742A 1N4744 1N4744A 1N4746 1N4746A 1N4748 1N4748 1N4750 1N4750A 1N4730 1N4730A 1N4730A 1N4732	4-36 4-36 4-36 4-36 4-36 4-36 4-36 4-36

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
1N1519A 1N1520 1N1520A 1N1521A 1N1521A 1N1522 1N1522A 1N1523 1N1523A 1N1524 1N1524A 1N1524A		1N4732A 1N4734 1N4734A 1N4736 1N4736A 1N4738 1N4738A 1N4740 1N4740A 1N4740A 1N4742 1N4742A 1N4744	4-36 4-36 4-36 4-36 4-36 4-36 4-36 4-36	1N1609 1N1609A 1N1735 1N1743 1N1744 1N1765 1N1766A 1N1766A 1N1767 1N1767A 1N1767A		1N2988RA 1N2988RB 1N823 1N2974A 1N4740 1N4734 1N4734 1N4735 1N4735A 1N4736 1N4736A 1N4737	4-15 4-15 4-10 4-15 4-36 4-36 4-36 4-36 4-36 4-36 4-36 4-36
1N1525A 1N1526 1N1526A 1N1527 1N1527A 1N1528 1N1528A 1N1588 1N1588A 1N1589 1N1589 1N1589A 1N1590		1N4744A 1N4746 1N4746A 1N4748 1N4748A 1N4750 1N4750A 1N3993A 1N3993A 1N3995A 1N3995A 1N3995A 1N3997A	4-36 4-36 4-36 4-36 4-36 4-36 4-36 4-27 4-27 4-27 4-27 4-27	1N1768A 1N1769 1N1769A 1N1770 1N1770A 1N1771 1N1771A 1N1772 1N1772A 1N1773 1N1773 1N1773A		1N4737A 1N4738 1N4738A 1N4739A 1N4739A 1N4740 1N4740A 1N4741A 1N4741A 1N4742 1N4742 1N4742A 1N4743	4-36 4-36 4-36 4-36 4-36 4-36 4-36 4-36
1N1590A 1N1591 1N1591A 1N1592 1N1592A 1N1593 1N1593A 1N1594A 1N1594A 1N1595 1N1595A 1N1596		1N3997A 1N2970RA 1N2970RB 1N2972RA 1N2972RB 1N2974RA 1N2974RB 1N2976RA 1N2976RB 1N2979RB 1N2979RB 1N2982RA	4-27 4-15 4-15 4-15 4-15 4-15 4-15 4-15 4-15	1N1774A 1N1775 1N1775A 1N1776 1N1776 1N17777 1N1777A 1N17778 1N1778A 1N1779 1N1779A 1N1780		1N4743A 1N4744 1N4744A 1N4745 1N4745A 1N4745A 1N4746A 1N4747 1N4747 1N4747 1N4748 1N4748 1N4749	4-36 4-36 4-36 4-36 4-36 4-36 4-36 4-36
1N1596A 1N1597A 1N1598 1N1598A 1N1599 1N1599A 1N1600 1N1600A 1N1601 1N1601A 1N1602 1N1602A		1N2982RB 1N2985RB 1N2988RA 1N2998RB 1N3993A 1N3993A 1N3995A 1N3995A 1N3997A 1N3997A 1N2970RA 1N2970RB	4-15 4-15 4-15 4-15 4-27 4-27 4-27 4-27 4-27 4-15 4-15	1N1780A 1N1781 1N1781A 1N1782 1N1782A 1N1783 1N1783A 1N1784 1N1784 1N1785 1N1785 1N1785		1N4749A 1N4750 1N4750A 1N4751A 1N4751A 1N4752 1N4752A 1N4753 1N4753 1N4754 1N4754 1N4754 1N4755	4-36 4-36 4-36 4-36 4-36 4-36 4-36 4-36
1N1603 1N1603A 1N1604 1N1604A 1N1605 1N1605A 1N1606 1N1606A 1N1607 1N1607A 1N1608A		1N2972RA 1N2972RB 1N2974RA 1N2974RB 1N2976RB 1N2976RB 1N2979RA 1N2979RB 1N2982RA 1N2982RA 1N2982RB 1N2985RB	4-15 4-15 4-15 4-15 4-15 4-15 4-15 4-15	1N1786A 1N1787 1N1787A 1N1788 1N1788A 1N1789 1N1789A 1N1790 1N1790A 1N1791 1N1791A 1N1792		1N4755A 1N4756 1N4756A 1N4757 1N4757A 1N4758 1N4758A 1N4759 1N4759A 1N4760 1N4760A 1N4761	4-36 4-36 4-36 4-36 4-36 4-36 4-36 4-36

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
1117004		1N4761A	4-36	1N1829A		1N2995B	4-15
1N1792A		1N4761A 1N4762					4-15
1N1793			4-36	1N1830		1N2997A	
1N1793A		1N4762A	4-36	1N1830A		1N2997B	4-15
1N1794		1N4763	4-36	1N1831		1N2999A	4-15
1N1794A		1N4763A	4-36	1N1831A		1N2999B	4-15
1N1795		1N4764	4-36	1N1832		1N3000A	4-15
1N1795A		1N4764A	4-36	1N1832A		1N3000B	4-15
1N1803		1N3997RA	4-27	1N1833		1N3001A	4-15
1N1803A		1N3997RA	4-27	1N1833A		1N3001B	4-15
1N1804		1N3998RA	4-27	1N1834		1N3002A	4-15
1N1804A		1N3998RA	4-27	1N1834A		1N3002B	4-15
1N1805		1N2970A	4-15	1N1835		1N3003A	4-15
1		1	1 1			Ì	
1N1805A		1N2970B	4-15	1N1835A		1N3003B	4-15
1N1806		1N2971A	4-15	1N1836		1N3004A	4-15
1N1806A	1	1N2971B	4-15	1N1836A		1N3004B	4-15
1N1807	ļ	1N2972A	4-15	1N1876		1N4740	4-36
1N1807A		1N2972B	4-15	1N1877		1N4742	4-36
1N1808	1	1N2973A	4-15	1N1878		1N4744	4-36
1N1808A		1N2973B	4-15	1N1879		1N4746	4-36
1N1809		1N3007A	4-15	1N1880		1N4748	4-36
1N1809A	J	1N3007B	4-15	1N1881		1N4750	4-36
1N1810		1N3008A	4-15	1N1882		1N4752	4-36
1N1810A		1N3008B	4-15	1N1883		1N4754	4-36
1N1811		1N3009A	4-15	1N1884		1N4756	4-36
10110	Ì	1N0000D	1 445	1N1885	ľ	1N4758	4-36
1N1811A		1N3009B	4-15 4-15	1N1886	i	1N4750 1N4760	4-36
1N1812	}	1N3011A	4-15				
1N1812A		1N3011B	4-15	1N1887	1	1N4762	4-36
1N1813		1N3012A	4-15	1N1888		1N4764	4-36
1N1813A		1N3012B	4-15	1N1891		1N2972A	4-15
1N1814	1	1N3014A	4-15	1N1892		1N2974A	4-15
1N1814A		1N3014B	4-15	1N1893		1N2976A	4-15
1N1815	ł	1N3015A	4-15	1N1894	ļ	1N2979A	4-15
1N1815A		1N3015B	4-15	1N1895	ł	1N2982A	4-15
1N1816	1	1N2977A	4-15	1N1896	Ì	1N2985A	4-15
1N1816A	}	1N2977B	4-15	1N1897		1N2988A	4-15
1N1817		1N2979A	4-15	1N1898		1N2990A	4-15
1N1817A		1N2979B	4-15	1N1899		1N2992A	4-15
1N1818		1N2980A	4-15	1N1900	ļ	1N2995A	4-15
1N1818A		1N2980B	4-15	1N1901	1	1N2999A	4-15
1N1819		1N2982A	4-15	1N1902		1N3001A	4-15
1N1819A		1N2982B	4-15	1N1903		1N3003A	4-15
1N1820		1N2984A	4-15	1N1904	1	1N3005A	4-15
1N1820A	1	1N2984B	4-15	1N1905	1	1N3008A	4-15
1N1821		1N2985A	4-15	1N1906		1N3011A	4-15
1N1821A	ĺ	1N2985B	4-15	1N1927		1N5228A	4-40
1N1822		1N2986A	4-15	1N1928		1N5230A	4-40
1N1822A		1N2986B	4-15	1N1929	ĺ	1N5230A 1N5232A	4-40
1N1823		1N2988A	4-15	1N1929 1N1930		1N5235A	4-40
							1
1N1823A		1N2988B	4-15	1N1931		1N5237A	4-40
1N1824	1	1N2989A	4-15	1N1932	1	1N5240A	4-40
1N1824A		1N2989B	4-15	1N1933		1N5242A	4-40
1N1825	1	1N2990A	4-15	1N1934	1	1N5245A	4-40
1N1825A]	1N2990B	4-15	1N1935	İ	1N5248A	4-40
1N1826		1N2991A	4-15	1N1936		1N5251A	4-40
1N1826A	}	1N2991B	4-15	1N1937		1N5254A	4-40
1N1827		1N2992A	4-15	1N1938		1N5257A	4-40
1N1827A	ĺ	1N2992B	4-15	1N1939	1	1N5259A	4-40
1N1828		1N2993A	4-15	1N1940		1N5261A	4-40
1N1828A		1N2993B	4-15	1N1941		1N5263A	4-40
1N1829		1N2995A	4-15	1N1942		1N5266A	4-40
	L	L	L	L	L	L	

Industry Part Number	Motorola Direct	Motorola Similar	Page #	Industry Part Number	Motorola Direct	Motorola Similar	Done 4
Part Number	Replacement	Replacement	Page #	Part Number	Replacement	Replacement	Page #
1N1943 1N1944 1N1945 1N1946 1N1947 1N1954 1N1955 1N1956 1N1957 1N1958 1N1959 1N1960		1N5268A 1N5271A 1N5273A 1N5276A 1N5279A 1N5228A 1N5230A 1N5232A 1N5235A 1N5237A 1N5237A 1N5240A 1N5242A	4-40 4-40 4-40 4-40 4-40 4-40 4-40 4-40	1N2038 1N2039 1N2040 1N2041 1N2042 1N2043 1N2044 1N2045 1N2046 1N2047 1N2048 1N2049		1N4745 1N4747 1N4749 1N3995A 1N3997A 1N2970RA 1N2973RA 1N2974RB 1N2977RA 1N2980RA 1N2983RA 1N2986RA	4-36 4-36 4-36 4-27 4-27 4-15 4-15 4-15 4-15 4-15 4-15 4-15
1N1961 1N1962 1N1963 1N1964 1N1965 1N1966 1N1967 1N1968 1N1969 1N1970 1N1971 1N1972		1N5245A 1N5248A 1N5251A 1N5254A 1N5257A 1N5259A 1N5261A 1N5263A 1N5266A 1N5266A 1N5268A 1N5271A	4-40 4-40 4-40 4-40 4-40 4-40 4-40 4-40	1N2387 1N2498 1N2498 1N2499 1N2499 1N2500 1N2500A 1N2765 1N2765A 1N2783 1N2937 1N2970A	1N2970A	1N4751 1N2974A 1N2974B 1N2975A 1N2975B 1N2976A 1N2976B 1N823A 1N825A 1N825A 1N3000A 1N2996A	4-36 4-15 4-15 4-15 4-15 4-15 4-10 4-10 4-15 4-15 4-15
1N1973 1N1974 1N1981 1N1982 1N1983 1N1984 1N1985 1N1986 1N1987 1N1988 1N1989 1N1990		1N5276A 1N5279A 1N5228A 1N5230A 1N5232A 1N5235A 1N5237A 1N5240A 1N5242A 1N5245A 1N5248A 1N5248A	4-40 4-40 4-40 4-40 4-40 4-40 4-40 4-40	1N2970B 1N2970BJAN 1N2970BJTX 1N2970RA 1N2970RB 1N2971A 1N2971B 1N2971BJAN 1N2971BJTX 1N2971BJTX 1N2971BJTX 1N2971BJTX	1N2970B 1N2970BJAN 1N2970BJTX 1N2970RA 1N2970RB 1N2971A 1N2971BJAN 1N2971BJTX 1N2971BJTX 1N2971BJTX 1N2971BJTX 1N2971RB 1N2971RB		4-15 4-15 4-15 4-15 4-15 4-15 4-15 4-15
1N1991 1N1992 1N1993 1N1994 1N1995 1N1996 1N1997 1N1998 1N1999 1N2000 1N2001 1N2001		1N5254A 1N5257A 1N5259A 1N5261A 1N5263A 1N5266A 1N5268A 1N5271A 1N5273A 1N5276A 1N5279A 1N3005A	4-40 4-40 4-40 4-40 4-40 4-40 4-40 4-40	1N2972B 1N2972BJAN 1N2972BJTX 1N2972RA 1N2972RB 1N2973B 1N2973BJAN 1N2973BJTX 1N2973RA 1N2973RA 1N2973RB 1N2974A	1N2972B 1N2972BJAN 1N2972BJTX 1N2972RA 1N2972RB 1N2973A 1N2973B 1N2973BJAN 1N2973BJTX 1N2973RA 1N2973RB 1N2973RB 1N2973RB		4-15 4-15 4-15 4-15 4-15 4-15 4-15 4-15
1N2009 1N2010 1N2011 1N2012 1N2012A 1N2012A 1N2032 1N2033 1N2034 1N2035 1N2036 1N2037		1N3007A 1N3008A 1N3009A 1N3011A 1N3011B 1N3011B 1N4732 1N4734 1N4736 1N4739 1N4740 1N4743	4-15 4-15 4-15 4-15 4-15 4-15 4-36 4-36 4-36 4-36 4-36 4-36 4-36	1N2974B 1N2974BJAN 1N2974BJTX 1N2974RA 1N2974RB 1N2975B 1N2975BJAN 1N2975BJTX 1N2975RA 1N2975RA 1N2975RB 1N2975RB	1N2974B 1N2974BJAN 1N2974BJTX 1N2974RA 1N2974RB 1N2975A 1N2975B 1N2975BJAN 1N2975BJTX 1N2975BJTX 1N2975RA 1N2975RB 1N2975RB		4-15 4-15 4-15 4-15 4-15 4-15 4-15 4-15

Industry	Motorola Direct	Motorola Similar	Da	Industry	Motorola Direct	Motorola Similar	Da. "
Part Number	Replacement	Replacement	Page #	Part Number	Replacement	Replacement	Page #
1N2976B 1N2976BJAN 1N2976BJTX 1N2976RA 1N2976RB 1N2977A 1N2977B 1N2977BJAN 1N2977BJTX 1N2977RJ 1N2977RA 1N2977RB 1N2977RB	1N2976B 1N2976BJAN 1N2976BJTX 1N2976RA 1N2976RB 1N2977A 1N2977BJAN 1N2977BJAN 1N2977BJTX 1N2977RA 1N2977RB 1N2977RB		4-15 4-15 4-15 4-15 4-15 4-15 4-15 4-15	1N2986RB 1N2987A 1N2987B 1N2987B 1N2987B 1N2988A 1N2988B 1N2988BJAN 1N2988BJTX 1N2988RA 1N2988RB 1N2989A 1N2989B	1N2986RB 1N2987A 1N2987B 1N2987RA 1N2988A 1N2988B 1N2988BJAN 1N2988BJTX 1N2988RA 1N2988RB 1N2988RB 1N2989A 1N2989B		4-15 4-15 4-15 4-15 4-15 4-15 4-15 4-15
1N2978B 1N2978RA 1N2978RB 1N2979A 1N2979B 1N2979BJAN 1N2979BJTX 1N2979RA 1N2979RB 1N2980A 1N2980B	1N2978B 1N2978RA 1N2978RB 1N2979A 1N2979B 1N2979BJAN 1N2979BJTX 1N2979RA 1N2979RB 1N2980A 1N2980B		4-15 4-15 4-15 4-15 4-15 4-15 4-15 4-15	1N2989BJAN 1N2989BJTX 1N2989RA 1N2989RB 1N2990A 1N2990BJAN 1N2990BJTX 1N2990BJTX 1N2990PA 1N2990RB 1N2991A 1N2991B	1N2989BJAN 1N2989BJTX 1N2989RA 1N2989RB 1N2990A 1N2990B 1N2990BJAN 1N2990BJTX 1N2990RA 1N2990RB 1N2991A 1N2991B		4-15 4-15 4-15 4-15 4-15 4-15 4-15 4-15
1N2980BJTX 1N2980RA 1N2980RB 1N2981A 1N2981B 1N2981RB 1N2982A 1N2982B 1N2982B 1N2982BJAN 1N2982BJTX 1N2982RA	1N2980BJTX 1N2980RA 1N2980RB 1N2981A 1N2981B 1N2981RA 1N2981RB 1N2982A 1N2982B 1N2982BJAN 1N2982BJTX 1N2982BJTX		4-15 4-15 4-15 4-15 4-15 4-15 4-15 4-15	1N2991BJAN 1N2991BJTX 1N2991BA 1N2991BB 1N2992A 1N2992B 1N2992BJAN 1N2992BJTX 1N2992BA 1N2992BB 1N2992BB 1N2993A 1N2993B	1N2991BJAN 1N2991BJTX 1N2991RA 1N2991RB 1N2992A 1N2992B 1N2992BJAN 1N2992BJTX 1N2992RA 1N2992RA 1N2992RB 1N2993A 1N2993B		4-15 4-15 4-15 4-15 4-15 4-15 4-15 4-15
1N2982RB 1N2983A 1N2983B 1N2983BJAN 1N2983BJTX 1N2983RA 1N2983RB 1N2984A 1N2984B 1N2984BJAN 1N2984BJTX 1N2984BJTX	1N2982RB 1N2983A 1N2983BJAN 1N2983BJAN 1N2983BJTX 1N2983RA 1N2983RB 1N2984A 1N2984B 1N2984BJAN 1N2984BJTX 1N2984BJTX 1N2984RA		4-15 4-15 4-15 4-15 4-15 4-15 4-15 4-15	1N2993BJAN 1N2993BJTX 1N2993RA 1N2993RB 1N2994B 1N2994B 1N2994BA 1N2995A 1N2995B 1N2995B 1N2995RA 1N2995RB 1N2996A	1N2993BJAN 1N2993BJTX 1N2993RA 1N2993RB 1N2994A 1N2994B 1N2994BA 1N2995A 1N2995B 1N2995RA 1N2995RB 1N2995RB		4-15 4-15 4-15 4-15 4-15 4-15 4-15 4-15
1N2984RB 1N2985A 1N2985B 1N2985BJAN 1N2985BJTX 1N2985RA 1N2985RB 1N2986A 1N2986B 1N2986BJAN 1N2986BJTX 1N2986RJAN	1N2984RB 1N2985A 1N2985B 1N2985BJAN 1N2985BJTX 1N2985RA 1N2985RB 1N2986A 1N2986B 1N2986BJAN 1N2986BJTX 1N2986BJTX 1N2986RA		4-15 4-15 4-15 4-15 4-15 4-15 4-15 4-15	1N2996B 1N2996BJAN 1N2996BJTX 1N2996RA 1N2996RB 1N2997B 1N2997B 1N2997BJAN 1N2997BJTX 1N2997RA 1N2997RB 1N2997RB	1N2996B 1N2996BJAN 1N2996BJTX 1N2996RA 1N2996RB 1N2997A 1N2997B 1N2997BJAN 1N2997BJTX 1N2997RA 1N2997RA 1N2997RB 1N2998A		4-15 4-15 4-15 4-15 4-15 4-15 4-15 4-15

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
1N2998B 1N2998RA 1N2998RB 1N2999A 1N2999B 1N2999BJAN 1N2999BJTX 1N2999RA 1N2999RB 1N3000A 1N3000B	1N2998B 1N2998RA 1N2998RB 1N2999A 1N2999B 1N2999BJAN 1N2999BJTX 1N2999RA 1N2999RB 1N3000A 1N3000B		4-15 4-15 4-15 4-15 4-15 4-15 4-15 4-15	1N3008RB 1N3009A 1N3009B 1N3009BJAN 1N3009BJTX 1N3009RA 1N3009RB 1N3010A 1N3010B 1N3010RA 1N3010RB 1N3010RB	1N3008RB 1N3009A 1N3009B 1N3009BJAN 1N3009BJTX 1N3009RA 1N3009RB 1N3010A 1N3010B 1N3010RA 1N3010RB 1N3010RB 1N3011A		4-15 4-15 4-15 4-15 4-15 4-15 4-15 4-15
1N3000BJTX 1N3000RA 1N3000RB 1N3001B 1N3001B 1N3001BJAN 1N3001BJTX 1N3001RA 1N3001RB 1N3002A 1N3002B 1N3002BJAN	1N3000BJTX 1N3000RA 1N3000RB 1N3001B 1N3001B 1N3001BJAN 1N3001BJTX 1N3001RA 1N3001RB 1N3002A 1N3002B 1N3002BJAN		4-15 4-15 4-15 4-15 4-15 4-15 4-15 4-15	1N3011B 1N3011BJAN 1N3011BJTX 1N3011RA 1N3011RB 1N3012A 1N3012BJAN 1N3012BJAN 1N3012BJTX 1N3012RA 1N3012RB 1N3012RB 1N3013A	1N3011B 1N3011BJAN 1N3011BJTX 1N3011RA 1N3011RB 1N3012A 1N3012B 1N3012BJAN 1N3012BJAN 1N3012BJAN 1N3012BJAN 1N3012RA 1N3012RB 1N3013A		4-15 4-15 4-15 4-15 4-15 4-15 4-15 4-15
1N3002BJTX 1N3002RA 1N3002RB 1N3003B 1N3003BJAN 1N3003BJAN 1N3003BJTX 1N3003RA 1N3003RB 1N3004A 1N3004B 1N3004BJAN	1N3002BJTX 1N3002RA 1N3002RB 1N3003B 1N3003BJAN 1N3003BJAN 1N3003BJTX 1N3003RA 1N3003RB 1N3004A 1N3004B 1N3004BJAN		4-15 4-15 4-15 4-15 4-15 4-15 4-15 4-15	1N3013B 1N3013BJAN 1N3013BJTX 1N3013RA 1N3013RB 1N3014A 1N3014B 1N3014BJAN 1N3014BJTX 1N3014RA 1N3014RB 1N3014RB	1N3013B 1N3013BJAN 1N3013BJTX 1N3013RA 1N3013RB 1N3014A 1N3014B 1N3014BJAN 1N3014BJTX 1N3014RA 1N3014RB 1N3014RB		4-15 4-15 4-15 4-15 4-15 4-15 4-15 4-15
1N3004BJTX 1N3004RA 1N3004RB 1N3005A 1N3005BJAN 1N3005BJAN 1N3005BJTX 1N3005RA 1N3006A 1N3006A 1N3006B	1N3004BJTX 1N3004RA 1N3004RB 1N3005A 1N3005B 1N3005BJAN 1N3005BJTX 1N3005RA 1N3005RB 1N3006A 1N3006B 1N3006RA		4-15 4-15 4-15 4-15 4-15 4-15 4-15 4-15	1N3015B 1N3015BJAN 1N3015BJTX 1N3015RA 1N3015RB 1N3016A 1N3016B 1N3016BJAN 1N3016BJAN 1N3016BJTX 1N3017B 1N3017B	1N3015B 1N3015BJAN 1N3015BJTX 1N3015RA 1N3015RB 1N3016A 1N3016B 1N3016BJAN 1N3016BJTX 1N3017A 1N3017B		4-15 4-15 4-15 4-15 4-15 4-21 4-21 4-21 4-21 4-21 4-21 4-21
1N3006RB 1N3007A 1N3007B 1N3007BJAN 1N3007BJTX 1N3007RA 1N3007RB 1N3008A 1N3008B 1N3008BJAN 1N3008BJTX 1N3008RA	1N3006RB 1N3007A 1N3007B 1N3007BJAN 1N3007BJTX 1N3007RA 1N3007RB 1N3008A 1N3008B 1N3008BJAN 1N3008BJTX 1N3008BJTX		4-15 4-15 4-15 4-15 4-15 4-15 4-15 4-15	1N3017BJTX 1N3018A 1N3018B 1N3018BJAN 1N3018BJTX 1N3019A 1N3019B 1N3019BJAN 1N3019BJTX 1N3020A 1N3020B 1N3020BJAN	1N3017BJTX 1N3018A 1N3018B 1N3018BJAN 1N3018BJTX 1N3019A 1N3019B 1N3019BJAN 1N3019BJTX 1N3020A 1N3020B 1N3020BJAN		4-21 4-21 4-21 4-21 4-21 4-21 4-21 4-21

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
1N3343B 1N3343BJAN 1N3343BJTX 1N3343RA 1N3343RB 1N3344A 1N3344B 1N3344BJAN 1N3344BJTX 1N3344BJAN 1N3344BJAN 1N3344BJAN 1N3344BJAN	1N3343B 1N3343BJAN 1N3343BJTX 1N3343RA 1N3344RB 1N3344A 1N3344B 1N3344BJAN 1N3344BJTX 1N3344RA 1N3344RB 1N3344RB 1N3344RB		4-17 4-17 4-17 4-17 4-17 4-17 4-17 4-17	1N3424 1N3427 1N3428 1N3429 1N3430 1N3431 1N3432 1N3433 1N3434 1N3435 1N3436 1N3437		1N5261A 1N5268A 1N5271A 1N5273A 1N5276A 1N5279A 1N5281A 1N4738 1N4740 1N4742 1N4744 1N4744	4-40 4-40 4-40 4-40 4-40 4-36 4-36 4-36 4-36 4-36
1N3345B 1N3345BJAN 1N3345BJTX 1N3345RA 1N3345RB 1N3346A 1N3346B 1N3346BJAN 1N3346BJTX 1N3346RA 1N3346RB 1N3346RB	1N3345B 1N3345BJAN 1N3345BJTX 1N3345RA 1N3345RB 1N3346A 1N3346BJAN 1N3346BJAN 1N3346BJAN 1N3346RA 1N3346RB 1N3346RB		4-17 4-17 4-17 4-17 4-17 4-17 4-17 4-17	1 N3438 1 N3439 1 N3440 1 N3441 1 N3443 1 N3444 1 N3445 1 N3446 1 N3447 1 N3448 1 N3449 1 N3450		1N4748 1N4750 1N4752 1N4754 1N4735 1N4736 1N4738 1N4740 1N4742 1N4744 1N4746 1N4748	4-36 4-36 4-36 4-36 4-36 4-36 4-36 4-36
1N3347B 1N3347BJAN 1N3347RA 1N3347RA 1N3347RB 1N3348A 1N3348BJAN 1N3348BJTX 1N3348RA 1N3348RA 1N3348RB 1N3349A	1N3347B 1N3347BJAN 1N3347BJTX 1N3347RA 1N3347RB 1N3348A 1N3348BJAN 1N3348BJTX 1N3348RA 1N3348RA 1N3348RB 1N3349RB		4-17 4-17 4-17 4-17 4-17 4-17 4-17 4-17	1 N3451 1 N3452 1 N3453 1 N3454 1 N3457 1 N3459 1 N3477 1 N3477A 1 N3496 1 N3497 1 N3498 1 N3499		1N4750 1N4751 1N4752 1N4754 1N4760 1N4764 1N5221A 1N5221B 1N823 1N825 1N827 1N829	4-36 4-36 4-36 4-36 4-36 4-36 4-40 4-10 4-10 4-10 4-10
1N3349B 1N3349BJAN 1N3349BJTX 1N3349RA 1N3349RB 1N3350B 1N3350BJAN 1N3350BJTX 1N3350BJTX 1N3350RA 1N3350RB 1N3411	1N3349B 1N3349BJAN 1N3349BJTX 1N3349RA 1N3349RB 1N3350B 1N3350BJAN 1N3350BJAN 1N3350BJTX 1N3350RA 1N3350RA	1N5234A	4-17 4-17 4-17 4-17 4-17 4-17 4-17 4-17	1N3500 1N3501 1N3502 1N3503 1N3504 1N3506 1N3507 1N3508 1N3509 1N3510 1N3511 1N3512		1N821 MZ640 MZ620 MZ610 MZ605 1N5226B 1N5227B 1N5228B 1N5229B 1N5230B 1N5231B 1N5231B	4-10 4-101 4-101 4-101 4-101 4-40 4-40 4
1N3412 1N3413 1N3414 1N3415 1N3416 1N3417 1N3418 1N3419 1N3420 1N3421 1N3422 1N3423		1N5235A 1N5236A 1N5237A 1N5240A 1N5242A 1N5242A 1N5248A 1N5251A 1N5251A 1N5256A 1N5257A 1N5259A	4-40 4-40 4-40 4-40 4-40 4-40 4-40 4-40	1N3513 1N3514 1N3515 1N3516 1N3517 1N3518 1N3519 1N3520 1N3521 1N3522 1N3523 1N3524		1N5234B 1N5235B 1N5236B 1N5237B 1N5239B 1N5240B 1N5241B 1N5242B 1N5244B 1N5245B 1N5245B 1N5246B 1N5246B	4-40 4-40 4-40 4-40 4-40 4-40 4-40 4-40

	Motorola	Motorola			Motorola	Motorola	
Industry Part Number	Direct Replacement	Similar Replacement	Page #	Industry Part Number	Direct Replacement	Similar Replacement	Page #
1N3321RB 1N3322A 1N3322B 1N3322RA 1N3322RB 1N3323A 1N3323B 1N3323BJAN 1N3323BJTX 1N3323BJTX 1N3323RA 1N3323RB 1N3323RB	1N3321RB 1N3322A 1N3322B 1N3322RA 1N3322RB 1N3323A 1N3323B 1N3323BJAN 1N3323BJTX 1N3323BJTX 1N3323RA 1N3323RB 1N3323RB		4-17 4-17 4-17 4-17 4-17 4-17 4-17 4-17	1N3332RB 1N3333A 1N3333RA 1N3333RB 1N3334A 1N3334B 1N3334B 1N3334BJAN 1N3334BJTX 1N3334RA 1N3334RB 1N3334RB	1N3332RB 1N3333A 1N3333RA 1N3333RA 1N3333RB 1N3334A 1N3334B 1N3334BJAN 1N3334BJTX 1N3334RA 1N3334RB 1N3335A		4-17 4-17 4-17 4-17 4-17 4-17 4-17 4-17
1N3324B 1N3324BJAN 1N3324BJTX 1N3324RB 1N3325A 1N3325B 1N3325BJAN 1N3325BJTX 1N3325BJAN 1N3325BJAN 1N3325BJAN 1N3325BA 1N3325RB 1N3325RB	1N3324B 1N3324BJAN 1N3324BJTX 1N3324RB 1N3325A 1N3325B 1N3325BJAN 1N3325BJTX 1N3325BJTX 1N3325RA 1N3325RB 1N3325RB		4-17 4-17 4-17 4-17 4-17 4-17 4-17 4-17	1N3335B 1N3335BJAN 1N3335BJTX 1N3335RA 1N3335RB 1N3336A 1N3336BJAN 1N3336BJAN 1N3336BJTX 1N3336RA 1N3336RA 1N3336RB 1N3336RB	1N3335B 1N3335BJAN 1N3335BJTX 1N3335BA 1N3335BB 1N3336A 1N3336B 1N3336BJJAN 1N3336BJTX 1N3336BA 1N3336BA 1N3336BA 1N3336BA		4-17 4-17 4-17 4-17 4-17 4-17 4-17 4-17
1N3326B 1N3326BJAN 1N3326BJTX 1N3326RB 1N3327A 1N3327B 1N3327BJAN 1N3327BJAN 1N3327BJAN 1N3327BJAN 1N3327BJAN 1N3327BA 1N3327RB 1N3327RB	1N3326B 1N3326BJAN 1N3326BJTX 1N3326RA 1N3326RB 1N3327A 1N3327BJAN 1N3327BJAN 1N3327BJAN 1N3327RA 1N3327RA 1N3327RB 1N3328A		4-17 4-17 4-17 4-17 4-17 4-17 4-17 4-17	1N3337B 1N3337BJAN 1N3337BJTX 1N3337RA 1N3337BB 1N3338A 1N3338B 1N3338BJAN 1N3338BJTX 1N3338BJA 1N3338BJA 1N3338BA 1N3338RA 1N3338RB	1N3337B 1N3337BJAN 1N3337BJTX 1N3337RA 1N3337RB 1N3338A 1N3338B 1N3338BJAN 1N3338BJTX 1N3338RA 1N3338RA 1N3338RB 1N3339A		4-17 4-17 4-17 4-17 4-17 4-17 4-17 4-17
1N3328B 1N3328BJAN 1N3328BJTX 1N3328RA 1N3328RB 1N3329A 1N3329B 1N3329RA 1N3329RB 1N3330A 1N3330B	1N3328B 1N3328BJAN 1N3328BJTX 1N3328RA 1N3328RB 1N3329A 1N3329B 1N3329RA 1N3329RB 1N3330A 1N3330B 1N3330BJAN		4-17 4-17 4-17 4-17 4-17 4-17 4-17 4-17	1N3339B 1N3339BJAN 1N3339BJA 1N3339BA 1N3339BB 1N3340A 1N3340B 1N3340BJAN 1N3340BJTX 1N3340BJ 1N3340BJ 1N3340BB 1N3340BB 1N3340BB	1N3339B 1N3339BJAN 1N3339BJTX 1N3339RA 1N3339RB 1N3340A 1N3340BJAN 1N3340BJAN 1N3340BJAN 1N3340BJAN 1N3340BJAN 1N3340BA 1N3340RB		4-17 4-17 4-17 4-17 4-17 4-17 4-17 4-17
1N3330BJTX 1N3330RA 1N3330RB 1N3331A 1N3331B 1N3331RA 1N3331RB 1N3332A 1N3332B 1N3332B 1N3332BJAN 1N3332BJTX 1N3332BJTX 1N3332RA	1N3330BJTX 1N3330RA 1N3330RB 1N3331A 1N3331B 1N3331RA 1N3331RB 1N3332A 1N3332B 1N3332B 1N3332BJAN 1N3332BJTX 1N3332RA		4-17 4-17 4-17 4-17 4-17 4-17 4-17 4-17	1N3341B 1N3341BJAN 1N3341BJTX 1N3341RA 1N3342RB 1N3342B 1N3342BJAN 1N3342BJTX 1N3342RA 1N3342RB 1N3342RB 1N3342RB	1N3341B 1N3341BJAN 1N3341BJTX 1N3341RA 1N3341RB 1N3342A 1N3342B 1N3342BJAN 1N3342BJTX 1N3342RA 1N3342RA 1N3342RB 1N3343A		4-17 4-17 4-17 4-17 4-17 4-17 4-17 4-17

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
1N3050BJTX 1N3051A 1N3051B 1N3051BJAN 1N3051BJTX 1N3098 1N3098 1N3099 - 1N3099 - 1N3100 1N3100 1N3100A	1N3050BJTX 1N3051A 1N3051B 1N3051BJAN 1N3051BJTX	1N3046A 1N3046A 1N3048A 1N3048A 1N3050A 1N3050A 1N3051A	4-21 4-21 4-21 4-21 4-21 4-21 4-21 4-21	1N3310RB 1N3311A 1N3311B 1N3311BJAN 1N3311BJTX 1N3311RA 1N3311RB 1N3312A 1N3312B 1N3312BJAN 1N3312BJAN 1N3312BJAN 1N3312BJAN 1N3312BJAN	1N3310RB 1N3311A 1N3311B 1N3311BJAN 1N3311BJTX 1N3311RA 1N3311RB 1N3312A 1N3312B 1N3312BJAN 1N3312BJTX 1N3312BJTX		4-17 4-17 4-17 4-17 4-17 4-17 4-17 4-17
1N3101A 1N3102 1N3102A 1N3103A 1N3103A 1N3104 1N3104 1N3105A 1N3105A 1N3112 1N3154A 1N3181	1N2977B	1 N3051A 1 N3008A 1 N3008A 1 N3011A 1 N3011A 1 N3014A 1 N3014A 1 N3015A 1 N3015A 1 N4737A	4-21 4-15 4-15 4-15 4-15 4-15 4-15 4-15 4-36 4-15 4-40	1N3312RB 1N3313A 1N3313RA 1N3313RA 1N3313RB 1N3314A 1N3314B 1N3314BJAN 1N3314BJTX 1N3314RA 1N3314RA 1N3314RB 1N3314RB	1N3312RB 1N3313A 1N3313B 1N3313RA 1N3313RB 1N3314A 1N3314B 1N3314BJAN 1N3314BJAN 1N3314RB 1N3314RA 1N3314RB		4-17 4-17 4-17 4-17 4-17 4-17 4-17 4-17
1N3198 1N3305A 1N3305BJAN 1N3305BJAN 1N3305BJTX 1N3305RA 1N3306R 1N3306B 1N3306BJAN 1N3306BJAN 1N3306BJAN 1N3306BJAN 1N3306BJAN	1N3305A 1N3305B 1N3305BJAN 1N3305BJTX 1N3305RA 1N3305RB 1N3306A 1N3306B 1N3306BJAN 1N3306BJTX 1N3306BJTX	1N5221B	4-40 4-17 4-17 4-17 4-17 4-17 4-17 4-17 4-17	1N3315B 1N3315BJAN 1N3315BJTX 1N3315BA 1N3315BB 1N3316A 1N3316B 1N3316B 1N3316BB 1N3317B 1N3317B 1N3317B	1N3315B 1N3315BJAN 1N3315BJTX 1N3315RA 1N3315RB 1N3316A 1N3316B 1N3316RA 1N3316RB 1N3317A 1N3317B 1N3317B		4-17 4-17 4-17 4-17 4-17 4-17 4-17 4-17
1N3306RB 1N3307A 1N3307BJAN 1N3307BJAN 1N3307BJTX 1N3307RA 1N3308B 1N3308B 1N3308B 1N3308BJAN 1N3308BJTX 1N3308RJTX	1N3306RB 1N3307A 1N3307B 1N3307BJAN 1N3307BJTX 1N3307RA 1N3307RB 1N3308A 1N3308B 1N3308BJAN 1N3308BJTX 1N3308BJTX		4-17 4-17 4-17 4-17 4-17 4-17 4-17 4-17	1N3317BJTX 1N3317RA 1N3317RB 1N3318A 1N3318B 1N3318RA 1N3318RB 1N3319A 1N3319B 1N3319BJAN 1N3319BJAN 1N3319BJTX 1N3319RA	1N3317BJTX 1N3317RA 1N3317RB 1N3318A 1N3318B 1N3318RA 1N3318RB 1N3319A 1N3319B 1N3319BJAN 1N3319BJTX 1N3319BJTX		4-17 4-17 4-17 4-17 4-17 4-17 4-17 4-17
1N3308RB 1N3309A 1N3309B 1N3309BJAN 1N3309BJTX 1N3309RB 1N3310A 1N3310A 1N3310B 1N3310BJAN 1N3310BJTX 1N3310BJTX	1N3308RB 1N3309A 1N3309B 1N3309BJAN 1N3309BJTX 1N3309RA 1N3310A 1N3310B 1N3310B 1N3310BJAN 1N3310BJTX 1N3310RA		4-17 4-17 4-17 4-17 4-17 4-17 4-17 4-17	1N3319RB 1N3320A 1N3320B 1N3320BJAN 1N3320BJTX 1N3320RA 1N3320RB 1N3321A 1N3321B 1N3321BJAN 1N3321BJAN 1N3321BJTX 1N3321RA	1N3319RB 1N3320A 1N3320B 1N3320BJAN 1N3320BJTX 1N3320RA 1N3320RB 1N3321A 1N3321B 1N3321BJAN 1N3321BJAN 1N3321BJAN		4-17 4-17 4-17 4-17 4-17 4-17 4-17 4-17

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
1N3020BJTX 1N3021A 1N3021B 1N3021BJAN 1N3021BJTX 1N3022A 1N3022B 1N3022BJAN 1N3022BJTX 1N3023A 1N3023B 1N3023BJAN	1N3020BJTX 1N3021A 1N3021B 1N3021BJAN 1N3021BJTX 1N3022A 1N3022B 1N3022BJAN 1N3022BJTX 1N3023A 1N3023B 1N3023BJAN		4-21 4-21 4-21 4-21 4-21 4-21 4-21 4-21	1N3035BJTX 1N3036A 1N3036B 1N3036BJAN 1N3036BJTX 1N3037A 1N3037B 1N3037BJAN 1N3037BJTX 1N3038A 1N3038B 1N3038BJAN	1N3035BJTX 1N3036A 1N3036B 1N3036BJAN 1N3036BJTX 1N3037A 1N3037B 1N3037BJAN 1N3037BJTX 1N3037BJTX 1N3038A 1N3038B 1N3038BJAN		4-21 4-21 4-21 4-21 4-21 4-21 4-21 4-21
1N3023BJTX 1N3024A 1N3024BJAN 1N3024BJAN 1N3025BJTX 1N3025B 1N3025BJAN 1N3025BJAN 1N3025BJTX 1N3026A 1N3026B 1N3026BJAN	1N3023BJTX 1N3024A 1N3024BJAN 1N3024BJAN 1N3024BJTX 1N3025A 1N3025B 1N3025BJAN 1N3025BJTX 1N3026A 1N3026B 1N3026BJAN		4-21 4-21 4-21 4-21 4-21 4-21 4-21 4-21	1N3038BJTX 1N3039A 1N3039BJAN 1N3039BJAN 1N3039BJTX 1N3040A 1N3040B 1N3040BJAN 1N3041BJAN 1N3041B	1N3038BJTX 1N3039A 1N3039BJAN 1N3039BJAN 1N3039BJTX 1N3040A 1N3040B 1N3040BJAN 1N3040BJTX 1N3041A 1N3041B 1N3041B		4-21 4-21 4-21 4-21 4-21 4-21 4-21 4-21
1N3026BJTX 1N3027A 1N3027B 1N3027BJAN 1N3027BJAN 1N3027BJTX 1N3028A 1N3028BJAN 1N3028BJAN 1N3028BJTX 1N3029A 1N3029B 1N3029BJAN	1N3026BJTX 1N3027A 1N3027B 1N3027BJAN 1N3027BJTX 1N3028A 1N3028B 1N3028BJAN 1N3028BJTX 1N3029BJAN 1N3029B		4-21 4-21 4-21 4-21 4-21 4-21 4-21 4-21	1N3041BJTX 1N3042A 1N3042BJAN 1N3042BJAN 1N3042BJTX 1N3043A 1N3043B 1N3043BJAN 1N3044BJTX 1N3044B 1N3044B	1N3041BJTX 1N3042A 1N3042BJAN 1N3042BJAN 1N3042BJTX 1N3043A 1N3043B 1N3043BJAN 1N3043BJTX 1N3044A 1N3044B		4-21 4-21 4-21 4-21 4-21 4-21 4-21 4-21
1N3029BJTX 1N3030A 1N3030B 1N3030BJAN 1N3030BJTX 1N3031A 1N3031B 1N3031BJAN 1N3031BJTX 1N3032B 1N3032B 1N3032B	1N3029BJTX 1N3030A 1N3030B 1N3030BJAN 1N3030BJTX 1N3031A 1N3031B 1N3031BJAN 1N3031BJTX 1N3032A 1N3032A 1N3032B		4-21 4-21 4-21 4-21 4-21 4-21 4-21 4-21	1N3044BJTX 1N3045A 1N3045B 1N3045BJAN 1N3045BJTX 1N3046A 1N3046B 1N3046BJAN 1N3046BJTX 1N3047A 1N3047B	1N3044BJTX 1N3045A 1N3045BJAN 1N3045BJAN 1N3045BJTX 1N3046A 1N3046B 1N3046BJAN 1N3046BJTX 1N3047B 1N3047B		4-21 4-21 4-21 4-21 4-21 4-21 4-21 4-21
1N3032BJTX 1N3033A 1N3033B 1N3033BJAN 1N3033BJTX 1N3034A 1N3034B 1N3034BJAN 1N3034BJTX 1N3035A 1N3035B 1N3035BJAN	1N3032BJTX 1N3033A 1N3033B 1N3033BJAN 1N3033BJTX 1N3034A 1N3034B 1N3034BJAN 1N3034BJTX 1N3035A 1N3035B 1N3035BJAN		4-21 4-21 4-21 4-21 4-21 4-21 4-21 4-21	1N3047BJTX 1N3048A 1N3048BJAN 1N3048BJTX 1N3049BJTX 1N3049B 1N3049BJAN 1N3049BJTX 1N3050A 1N3050B	1N3047BJTX 1N3048A 1N3048B 1N3048BJAN 1N3048BJTX 1N3049A 1N3049BJAN 1N3049BJTX 1N3050A 1N3050B		4-21 4-21 4-21 4-21 4-21 4-21 4-21 4-21

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
1N3525 1N3526 1N3527 1N3528 1N3529 1N3530 1N3531 1N3532 1N3533 1N3534 1N3553 1N3675	1N4736	1N5250B 1N5251B 1N5252B 1N5254B 1N5256B 1N5257B 1N5258B 1N5259B 1N5259B 1N5260B 1N5261B 1N821	4-40 4-40 4-40 4-40 4-40 4-40 4-40 4-40	1 N3691A 1 N3691B 1 N3692 1 N3692A 1 N3692B 1 N3693A 1 N3693A 1 N3693B 1 N3694 1 N3694B 1 N3694B	1N4752 1N4752A 1N4753 1N4753 1N4753A 1N4754 1N4754 1N4754 1N4755 1N4755 1N4755 1N4755 1N4755A		4-36 4-36 4-36 4-36 4-36 4-36 4-36 4-36
1N3675A 1N3675B 1N3676 1N3676A 1N3677A 1N3677A 1N3677B 1N3677B 1N3678A 1N3678B 1N3679	1N4736 1N4736A 1N4737 1N4737 1N4737A 1N4738 1N4738 1N4738A 1N4739 1N4739 1N4739 1N4739 1N4739A		4-36 4-36 4-36 4-36 4-36 4-36 4-36 4-36	1N3695A 1N3695B 1N3696 1N3696A 1N3696B 1N3697 1N3697A 1N3697B 1N3698 1N3698 1N3698B 1N3698B	1N4756 1N4756A 1N4757 1N4757 1N4757A 1N4758 1N4758 1N4758 1N4758 1N4759 1N4759 1N4759 1N4759 1N4759A		4-36 4-36 4-36 4-36 4-36 4-36 4-36 4-36
1N3679A 1N3679B 1N3680 1N3680A 1N3680B 1N3681 1N3681B 1N3681B 1N3682 1N3682A 1N3682B 1N3683	1N4740 1N4740A 1N4741 1N4741 1N4741A 1N4742 1N4742 1N4742 1N4742 1N4743 1N4743 1N4743 1N4744		4-36 4-36 4-36 4-36 4-36 4-36 4-36 4-36	1N3699A 1N3699B 1N3700 1N3700A 1N3700B 1N3701 1N3701A 1N3701B 1N3702 1N3702A 1N3702B 1N3702B	1N4760 1N4760A 1N4761 1N4761 1N4761A 1N4762 1N4762 1N4762A 1N4763 1N4763 1N4763 1N4763A		4-36 4-36 4-36 4-36 4-36 4-36 4-36 4-36
1N3683A 1N3683B 1N3684 1N3684A 1N3684B 1N3685 1N3685A 1N3685B 1N3686 1N3686A 1N3686B 1N3686B	1N4744 1N4744A 1N4745 1N4745 1N4745A 1N4746 1N4746 1N4746A 1N4747 1N4747 1N4747		4-36 4-36 4-36 4-36 4-36 4-36 4-36 4-36	1N3703A 1N3703B 1N3779 1N3780 1N3781 1N3782 1N3783 1N3784 1N3821 1N3821A 1N3821AJAN 1N3821AJTX	1N4764 1N4764A 1N3821 1N3821A 1N3821A 1N3821AJAN 1N3821AJTX	1N821A 1N821A 1N823A 1N825A 1N827A 1N827A	4-36 4-36 4-10 4-10 4-10 4-10 4-10 4-21 4-21 4-21 4-21
1N3687A 1N3687B 1N3688 1N3688A 1N3688B 1N3689 1N3689B 1N3690B 1N3690A 1N3690B 1N3690B	1N4748 1N4748A 1N4749 1N4749 1N4749A 1N4750 1N4750 1N4750A 1N4751 1N4751 1N4751A		4-36 4-36 4-36 4-36 4-36 4-36 4-36 4-36	1N3822 1N3822AJAN 1N3822AJTX 1N3823AJAN 1N3823A 1N3823AJAN 1N3823AJAN 1N3823AJTX 1N3824AJAN 1N3824A	1N3822 1N3822AJAN 1N3822AJTX 1N3823 1N3823A 1N3823AJAN 1N3823AJTX 1N3824 1N3824A 1N3824AJAN 1N3824AJAN		4-21 4-21 4-21 4-21 4-21 4-21 4-21 4-21

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
1N3825 1N3825A 1N3825AJAN 1N3825AJTX 1N3826 1N3826A 1N3826AJAN 1N3826AJTX 1N3827 1N3827A 1N3827AJAN 1N3827AJAN 1N3827AJTX	1N3825 1N3825A 1N3825AJAN 1N3825AJTX 1N3826 1N3826A 1N3826AJAN 1N3826AJTX 1N3827 1N3827A 1N3827A 1N3827AJAN 1N3827AJTX		4-21 4-21 4-21 4-21 4-21 4-21 4-21 4-21	1N3997AJTX 1N3997R 1N3997RA 1N3997RB 1N3998 1N3998A 1N3998AJAN 1N3998AJTX 1N3998R 1N3998RA 1N3998RB 1N3998RB 1N3999	1N3997AJTX 1N3997R 1N3997RA 1N3998 1N3998A 1N3998AJAN 1N3998AJTX 1N3998R 1N3998RA	1N3996RA 1N3998RA	4-27 4-27 4-27 4-27 4-27 4-27 4-27 4-27
1N3828 1N3828A 1N3828AJAN 1N3828AJTX 1N3829 1N3829A 1N3829AJAN 1N3829AJTX 1N3830 1N3830A 1N3830AJAN 1N3830AJTX	1N3828 1N3828A 1N3828AJTX 1N3828AJTX 1N3829 1N3829A 1N3829AJAN 1N3829AJTX 1N3830 1N3830A 1N3830AJAN 1N3830AJTX		4-21 4-21 4-21 4-21 4-21 4-21 4-21 4-21	1N3999A 1N3999AJAN 1N3999AJTX 1N3999R 1N3999RB 1N4000 1N4000A 1N4000AJAN 1N4000AJTX 1N4000R 1N4000R	1N3999A 1N3999AJAN 1N3999AJTX 1N3999R 1N3999RA 1N4000 1N4000A 1N4000AJAN 1N4000AJTX 1N4000R 1N4000R	1N3999RA	4-27 4-27 4-27 4-27 4-27 4-27 4-27 4-27
1N3949 1N3951 1N3984 1N3985 1N3986 1N3993 1N3993A 1N3993AJAN 1N3993AJTX 1N3993R 1N3993RA 1N3993RA	1N3993 1N3993A 1N3993AJAN 1N3993AJTX 1N3993R 1N3993RA	1N2984B 1N5934B 1N3997A 1N3998A 1N3998A	4-15 4-65 4-27 4-27 4-27 4-27 4-27 4-27 4-27 4-27	1N4000RB 1N4010 1N4016 1N4016A 1N4016B 1N4017 1N4017A 1N4017B 1N4018 1N4018B 1N4018B 1N4019	1N4000RB	1N821 1N2972A 1N2972A 1N2972B 1N2973A 1N2973A 1N2973B 1N2974A 1N2974A 1N2974B 1N2974B	4-27 4-10 4-15 4-15 4-15 4-15 4-15 4-15 4-15 4-15
1N3994 1N3994A 1N3994AJAN 1N3994AJTX 1N3994R 1N3994RB 1N3995 1N3995 1N3995A 1N3995AJAN 1N3995AJTX 1N3995AJTX	1N3994 1N3994AJAN 1N3994AJTX 1N3994R 1N3994R 1N3995A 1N3995A 1N3995AJAN 1N3995AJTX 1N3995R	1N3993RA	4-27 4-27 4-27 4-27 4-27 4-27 4-27 4-27	1N4019A 1N4019B 1N4020 1N4020A 1N4020B 1N4021 1N4021A 1N4021B 1N4022 1N4022A 1N4022B 1N4022B		1N2975A 1N2975B 1N2976A 1N2976A 1N2976B 1N2977A 1N2977A 1N2977B 1N2979A 1N2979A 1N2979B 1N2980A	4-15 4-15 4-15 4-15 4-15 4-15 4-15 4-15
1N3995RA 1N3995RB 1N3996 1N3996A 1N3996AJAN 1N3996AJTX 1N3996R 1N3996RA 1N3996RB 1N3997 1N3997 1N3997AJAN	1N3995RA 1N3996 1N3996A 1N3996AJAN 1N3996AJTX 1N3996RA 1N3997 1N3997 1N3997AJAN	1N3995RA 1N3996RA	4-27 4-27 4-27 4-27 4-27 4-27 4-27 4-27	1N4023A 1N4024B 1N4024 1N4024A 1N4024B 1N4025 1N4025A 1N4025B 1N4026 1N4026A 1N4026B 1N4027		1N2980A 1N2980B 1N2982A 1N2982A 1N2982B 1N2984A 1N2984B 1N2984B 1N2985A 1N2985A 1N2985B	4-15 4-15 4-15 4-15 4-15 4-15 4-15 4-15

ZENER INDEX CROSS-REFERENCE (Continued)

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
1N4027A 1N4027B 1N4028 1N4028A 1N4028B 1N4029 1N4029B 1N4029B 1N4030 1N4030A 1N4030B 1N4030B		1N2986A 1N2986B 1N2988A 1N2988A 1N2988B 1N2989A 1N2989B 1N2990A 1N2990A 1N2990B 1N2990B	4-15 4-15 4-15 4-15 4-15 4-15 4-15 4-15	1N4101-1JTX 1N4101-1JTXV 1N4102-1JAN 1N4102-1JTX 1N4102-1JTX 1N4103-1JTXV 1N4103-1JAN 1N4103-1JTX 1N4103-1JTXV 1N4103-1JTXV 1N4104-1JAN	1N4101-1JTX 1N4101-1JTXV 1N4102 1N4102-1JAN 1N4102-1JTX 1N4102-1JTXV 1N4103 1N4103-1JAN 1N4103-1JTX 1N4103-1JTXV 1N4103-1JTXV 1N4104 1N4104-1JAN		4-28 4-28 4-28 4-28 4-28 4-28 4-28 4-28
1N4031A 1N4031B 1N4032 1N4032A 1N4032B 1N4033 1N4033A 1N4033B 1N4034 1N4034A 1N4034A 1N4034B 1N4035		1N2991A 1N2991B 1N2992 1N2992A 1N2992B 1N2993A 1N2993A 1N2993B 1N2995A 1N2995A 1N2995B 1N2995B	4-15 4-15 4-15 4-15 4-15 4-15 4-15 4-15	1N4104-1JTX 1N4104-1JTXV 1N4105 1N4106 1N4107 1N4108 1N4109 1N4110 1N4111 1N4111 1N4111 1N41113 1N4114	1N4104-1JTX 1N4104-1JTXV 1N4105 1N4106 1N4107 1N4108 1N4109 1N4110 1N4111 1N4111 1N4112 1N4113		4-28 4-28 4-28 4-28 4-28 4-28 4-28 4-28
1N4035A 1N4035B 1N4036 1N4036A 1N4036B 1N4037 1N4037 1N4037A 1N4037B 1N4038 1N4038 1N4038B 1N4039		1N2997A 1N2997B 1N2999A 1N2999A 1N2999B 1N3000A 1N3000A 1N3001B 1N3001A 1N3001B 1N3001B 1N3002A	4-15 4-15 4-15 4-15 4-15 4-15 4-15 4-15	1N4115 1N4116 1N4117 1N4118 1N4119 1N4120 1N4121 1N4122 1N4123 1N4123 1N4124 1N4125 1N4125	1N4115 1N4116 1N4117 1N4118 1N4119 1N4120 1N4121 1N4122 1N4123 1N4123 1N4124 1N4125 1N4126		4-28 4-28 4-28 4-28 4-28 4-28 4-28 4-28
1N4039A 1N4039B 1N4040 1N4040A 1N4040B 1N4041 1N4041A 1N4041B 1N4042 1N4042A 1N4042B 1N4095		1N3002A 1N3002B 1N3003A 1N3003A 1N3003B 1N3004A 1N3004A 1N3004B 1N3005A 1N3005A 1N3005B 1N5231A	4-15 4-15 4-15 4-15 4-15 4-15 4-15 4-15	1N4127 1N4128 1N4129 1N4130 1N4131 1N4132 1N4133 1N4134 1N4135 1N4158 1N4158	1N4127 1N4128 1N4129 1N4130 1N4131 1N4132 1N4133 1N4134 1N4135	1N4736 1N4736 1N4736A	4-28 4-28 4-28 4-28 4-28 4-28 4-28 4-28
1N4096 1N4097 1N4099 1N4099-1JAN 1N4099-1JTX 1N4099-1JTXV 1N4100 1N4100-1JAN 1N4100-1JTX 1N4100-1JTXV 1N4101 1N4101-1JAN	1N4099 1N4099-1JAN 1N4099-1JTX 1N4099-1JTXV 1N4100 1N4100-1JAN 1N4100-1JTX 1N4100-1JTXV 1N4101 1N4101-1JAN	1N4763A 1N4764A	4-36 4-28 4-28 4-28 4-28 4-28 4-28 4-28 4-28	1N4159 1N4159A 1N4159B 1N4160 1N4160A 1N4160B 1N4161 1N4161A 1N4161B 1N4161B 1N4162 1N4162A 1N4162B		1N4737 1N4737 1N4737A 1N4738 1N4738 1N4738 1N4739 1N4739 1N4739 1N4740 1N4740 1N4740	4-36 4-36 4-36 4-36 4-36 4-36 4-36 4-36

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
1N4163 1N4163B 1N4164B 1N4164 1N4164B 1N4165B 1N4165B 1N4165B 1N4166 1N4166A 1N4166B		1N4741 1N4741 1N4741A 1N4742 1N4742 1N4742 1N4742A 1N4743 1N4743 1N4743A 1N4744 1N4744	4-36 4-36 4-36 4-36 4-36 4-36 4-36 4-36	1N4183 1N4183A 1N4183B 1N4184 1N4184A 1N4184B 1N4185 1N4185 1N4185B 1N4186 1N4186A 1N4186B		1N4761 1N4761 1N4761A 1N4762 1N4762 1N4762 1N4763 1N4763 1N4763 1N4764 1N4764 1N4764	4-36 4-36 4-36 4-36 4-36 4-36 4-36 4-36
1N4167 1N4167A 1N4167B 1N4168A 1N4168A 1N4168B 1N4169 1N4169A 1N4169B 1N4170 1N4170A 1N4170A		1N4745 1N4745 1N4745A 1N4746 1N4746 1N4746A 1N4747 1N4747 1N4747A 1N474748 1N4748 1N4748A	4-36 4-36 4-36 4-36 4-36 4-36 4-36 4-36	1N4194 1N4194A 1N4195B 1N4195B 1N4195B 1N4196A 1N4196A 1N4196B 1N4197 1N4197A		1N2970A 1N2970A 1N2970B 1N2971A 1N2971A 1N2971B 1N2972A 1N2972A 1N2972B 1N2973A 1N2973A 1N2973B	4-15 4-15 4-15 4-15 4-15 4-15 4-15 4-15
1N4171 1N4171A 1N4171B 1N4172 1N4172A 1N4172B 1N4173 1N4173A 1N4173B 1N4174 1N4174 1N4174A		1N4749 1N4749 1N4749A 1N4750 1N4750 1N4750A 1N4751 1N4751 1N4751 1N4751A 1N4752 1N4752	4-36 4-36 4-36 4-36 4-36 4-36 4-36 4-36	1N4198 1N4198A 1N4198B 1N4199 1N4199A 1N4199B 1N4200 1N4200A 1N4200B 1N42011 1N4201A 1N4201B		1N2974A 1N2974A 1N2974B 1N2975A 1N2975B 1N2975B 1N2976A 1N2976A 1N2976B 1N2977A 1N2977A 1N2977B	4-15 4-15 4-15 4-15 4-15 4-15 4-15 4-15
1N4175 1N4175A 1N4175B 1N4176 1N4176A 1N4176B 1N4177 1N4177A 1N4177B 1N4177B 1N4178 1N4178A 1N4178B		1N4753 1N4753 1N4753A 1N4754 1N4754 1N4754 1N4755 1N4755 1N4755 1N4755A 1N4756 1N4756	4-36 4-36 4-36 4-36 4-36 4-36 4-36 4-36	1N4202 1N4202A 1N4202B 1N4203 1N4203A 1N4203B 1N4204 1N4204A 1N4204B 1N4204B 1N4205 1N4205A		1N2978A 1N2978A 1N2978B 1N2979A 1N2979A 1N2979B 1N2980A 1N2980A 1N2980B 1N2981A 1N2981A	4-15 4-15 4-15 4-15 4-15 4-15 4-15 4-15
1N4179 1N4179A 1N4179B 1N4180 1N4180A 1N4180B 1N4181 1N4181B 1N4181B 1N4182 1N4182A 1N4182B		1N4757 1N4757 1N4757A 1N4758 1N4758 1N4758A 1N4759 1N4759 1N4759 1N4759A 1N4760 1N4760 1N4760A	4-36 4-36 4-36 4-36 4-36 4-36 4-36 4-36	1N4206 1N4206A 1N4206B 1N4207 1N4207A 1N4207B 1N4208 1N4208A 1N4208B 1N4209 1N4209A 1N4209A		1N2982A 1N2982B 1N2983A 1N2983A 1N2983A 1N2983B 1N2984A 1N2984A 1N2984B 1N2985A 1N2985A	4-15 4-15 4-15 4-15 4-15 4-15 4-15 4-15

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
1N4210 1N4210B 1N4210B 1N4211 1N4211A 1N4211B 1N4212 1N4212A 1N4212B 1N4213 1N42133 1N4213B		1N2986A 1N2986B 1N2987A 1N2987A 1N2987B 1N2987B 1N2988A 1N2988A 1N2988B 1N2989A 1N2989A 1N2989A	4-15 4-15 4-15 4-15 4-15 4-15 4-15 4-15	1N4230 1N4230A 1N4230B 1N4231 1N4231A 1N4231B 1N4232 1N4232A 1N4232B 1N4233 1N4233A 1N4233A		1N3006A 1N3006A 1N3006B 1N3007A 1N3007A 1N3007B 1N3008A 1N3008A 1N3008B 1N3009A 1N3009A 1N3009B	4-15 4-15 4-15 4-15 4-15 4-15 4-15 4-15
1N4214 1N4214B 1N4215B 1N4215B 1N4215B 1N4216 1N4216 1N4216B 1N4216B 1N4217 1N4217		1N2990A 1N2990A 1N2990B 1N2991A 1N2991A 1N2991B 1N2992A 1N2992A 1N2992B 1N2993A 1N2993A 1N2993B	4-15 4-15 4-15 4-15 4-15 4-15 4-15 4-15	1N4234 1N4234A 1N4234B 1N4235 1N4235A 1N4235B 1N4236 1N4236A 1N4236B 1N4237 1N4237		1N3010A 1N3010A 1N3010B 1N3011A 1N3011A 1N3011B 1N3012A 1N3012A 1N3012B 1N3013A 1N3013A 1N3013B	4-15 4-15 4-15 4-15 4-15 4-15 4-15 4-15
1N4218 1N4218A 1N4218B 1N4219 1N4219A 1N4219B 1N4220 1N4220A 1N4220B 1N4220B 1N42211		1N2994A 1N2994B 1N2995B 1N2995A 1N2995B 1N2996A 1N2996A 1N2996B 1N2997A 1N2997A 1N2997B	4-15 4-15 4-15 4-15 4-15 4-15 4-15 4-15	1N4238 1N4238A 1N4238B 1N4239 1N4239A 1N4239B 1N4258 1N4258A 1N4258B 1N4259B		1N3014A 1N3014A 1N3014B 1N3015A 1N3015A 1N3015B 1N2970A 1N2970A 1N2970B 1N2971A 1N2971A 1N2971B	4-15 4-15 4-15 4-15 4-15 4-15 4-15 4-15
1N4222 1N4222A 1N4222B 1N4223B 1N4223A 1N4223B 1N4224 1N4224A 1N4224B 1N42245 1N4225 1N4225		1N2998A 1N2998A 1N2998B 1N2999A 1N2999A 1N3999B 1N3000A 1N3000B 1N3001A 1N3001A 1N3001B	4-15 4-15 4-15 4-15 4-15 4-15 4-15 4-15	1N4260 1N4260A 1N4260B 1N4261 1N4261A 1N4261B 1N4262 1N4262A 1N4262B 1N4263 1N4263A 1N4263A		1N2972A 1N2972A 1N2972B 1N2973A 1N2973A 1N2973B 1N2974A 1N2974A 1N2974A 1N2975A 1N2975A	4-15 4-15 4-15 4-15 4-15 4-15 4-15 4-15
1N4226 1N4226A 1N4226B 1N4227 1N4227A 1N4227B 1N4228 1N4228 1N4228A 1N4228B 1N4229 1N4229A 1N4229B		1N3002A 1N3002A 1N3002B 1N3003A 1N3003A 1N3003B 1N3004A 1N3004A 1N3004B 1N3005A 1N3005A 1N3005B	4-15 4-15 4-15 4-15 4-15 4-15 4-15 4-15	1N4264 1N4264A 1N4264B 1N4265 1N4265A 1N4265B 1N4266 1N4266A 1N4266A 1N4267 1N4267A		1N2976A 1N2976B 1N2977A 1N2977A 1N2977B 1N2977B 1N2979A 1N2979B 1N2979B 1N2980A 1N2980A 1N2980B	4-15 4-15 4-15 4-15 4-15 4-15 4-15 4-15

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
1N4268 1N4268A 1N4268B 1N4269 1N4269A 1N4269B 1N4270 1N4270A 1N4270B 1N4271 1N4272B		1N2982A 1N2982A 1N2982B 1N2984A 1N2984A 1N2984B 1N2985A 1N2985A 1N2985B 1N2986A 1N2988A 1N2988A	4-15 4-15 4-15 4-15 4-15 4-15 4-15 4-15	1N4289 1N4289A 1N4289B 1N4290 1N4290A 1N4290B 1N4291 1N4291 1N4291B 1N4291B 1N4292 1N4292B		1N3009A 1N3009A 1N3009B 1N3011A 1N3011A 1N3011B 1N3012A 1N3012A 1N3012B 1N3014A 1N3014A	4-15 4-15 4-15 4-15 4-15 4-15 4-15 4-15
1N4273 1N4273A 1N4273B 1N4274 1N4274A 1N4274B 1N4275 1N4275A 1N4275B 1N4275B 1N4276A 1N4276A 1N4276A		1N2989A 1N2989A 1N2989B 1N2990A 1N2990A 1N2990B 1N2991A 1N2991A 1N2991B 1N2991B 1N2992A 1N2992A 1N2992B	4-15 4-15 4-15 4-15 4-15 4-15 4-15 4-15	1N4293 1N4293A 1N4293B 1N4321 1N4323 1N4323A 1N4323B 1N4323B 1N4324 1N4324B 1N4324B 1N4324B 1N4325		1N3015A 1N3015A 1N3015B 1N5369B 1N4736 1N4736 1N4736A 1N4737 1N4737 1N4737 1N4737A 1N4738 1N4738	4-15 4-15 4-15 4-15 4-36 4-36 4-36 4-36 4-36 4-36 4-36 4-36
1N4277 1N4277A 1N4277B 1N4278 1N4278A 1N4278B 1N4279 1N4279A 1N4279B 1N4280 1N4280 1N4280A		1N2993A 1N2993A 1N2993B 1N2995A 1N2995B 1N2995B 1N2997A 1N2997A 1N2997B 1N2999A 1N2999A 1N2999B	4-15 4-15 4-15 4-15 4-15 4-15 4-15 4-15	1N4325B 1N4326A 1N4326A 1N4326B 1N4327 1N4327A 1N4327B 1N4328 1N4328 1N4328A 1N4328B 1N4329 1N4329A	-	1N4738A 1N4739 1N4739 1N4739A 1N4740 1N4740 1N4740A 1N47411 1N4741 1N4741A 1N4741A 1N4742	4-36 4-36 4-36 4-36 4-36 4-36 4-36 4-36
1N4281 1N4281A 1N4281B 1N4282 1N4282A 1N4282B 1N4283A 1N4283A 1N4283B 1N4284B		1N3000A 1N3000A 1N3000B 1N3001A 1N3001A 1N3001B 1N3002A 1N3002A 1N3002B 1N3003A 1N3003A 1N3003B	4-15 4-15 4-15 4-15 4-15 4-15 4-15 4-15	1N4329B 1N4330A 1N4330A 1N4331B 1N4331A 1N4331B 1N4332 1N4332A 1N4332B 1N4333 1N4333A		1N4742A 1N4743 1N4743 1N4743A 1N4744 1N4744 1N4744A 1N4745 1N4745 1N4745 1N4745 1N4746	4-36 4-36 4-36 4-36 4-36 4-36 4-36 4-36
1N4285 1N4285A 1N4285B 1N4286 1N4286A 1N4286B 1N4287 1N4287A 1N4287B 1N4288 1N4288 1N4288A 1N4288B		1N3004A 1N3004A 1N3004B 1N3005A 1N3005A 1N3005B 1N3007A 1N3007A 1N3007B 1N3008A 1N3008A 1N3008B	4-15 4-15 4-15 4-15 4-15 4-15 4-15 4-15	1N4333B 1N4334 1N4334A 1N4334B 1N4335 1N4335A 1N4335B 1N4336 1N4336A 1N4336B 1N4337		1N4746A 1N4747 1N4747 1N4747A 1N4748 1N4748 1N4748 1N4749 1N4749 1N4749 1N4749 1N4750	4-36 4-36 4-36 4-36 4-36 4-36 4-36 4-36

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
1N4337B 1N4338 1N4338A 1N4338B 1N4339 1N4339A 1N4339B 1N4340 1N4340A 1N4340B 1N4341 1N4341A		1N4750A 1N4751 1N4751A 1N4751A 1N4752 1N4752 1N4752 1N4753 1N4753 1N4753 1N4753 1N47534 1N4754	4-36 4-36 4-36 4-36 4-36 4-36 4-36 4-36	1N4401 1N4402 1N4403 1N4404 1N4405 1N4406 1N4407 1N4408 1N4409 1N4410 1N4411 1N4411		1N4737 1N4738 1N4739 1N4740 1N4741 1N4742 1N4743 1N4744 1N4745 1N4746 1N4747 1N4748	4-36 4-36 4-36 4-36 4-36 4-36 4-36 4-36
1N4341B 1N4342 1N4342A 1N4342B 1N4343 1N4343A 1N4343B 1N4344 1N4344A 1N4344B 1N4344B 1N4345		1N4754A 1N4755 1N4755 1N4755A 1N4756 1N4756 1N4756 1N4757 1N4757 1N4757 1N4757A 1N4758 1N4758	4-36 4-36 4-36 4-36 4-36 4-36 4-36 4-36	1N4413 1N4414 1N4415 1N4416 1N4417 1N4418 1N4419 1N4420 1N4421 1N4421 1N4422 1N4423 1N4424		1N4749 1N4750 1N4751 1N4752 1N4753 1N4754 1N4755 1N4756 1N4757 1N4757 1N4758 1N4759 1N4760	4-36 4-36 4-36 4-36 4-36 4-36 4-36 4-36
1N4345B 1N4346 1N4346A 1N4346B 1N4347 1N4347A 1N4347B 1N4348 1N4348A 1N4348B 1N4348B 1N4349		1N4758A 1N4759 1N4759 1N4759A 1N4760 1N4760 1N4760A 1N4761 1N4761 1N4761A 1N4761A 1N4762 1N4762	4-36 4-36 4-36 4-36 4-36 4-36 4-36 4-36	1N4425 1N4426 1N4427 1N4428 1N4460 1N4461 1N4462 1N4463 1N4464 1N4465 1N4466 1N4467		1N4761 1N4762 1N4763 1N4764 1N4735A 1N4735A 1N4737A 1N4738A 1N4739A 1N4740A 1N4741A 1N4742A	4-36 4-36 4-36 4-36 4-36 4-36 4-36 4-36
1N4349B 1N4350 1N4350A 1N4350B 1N4351 1N4351A 1N4351B 1N4360 1N4370 1N4370A 1N4370A1JAN 1N4370A1JTX	1N4370 1N4370A 1N4370A1JAN 1N4370A1JTX	1N4762A 1N4763 1N4763 1N4763A 1N4764 1N4764 1N4764 1N476A	4-36 4-36 4-36 4-36 4-36 4-36 4-36 4-4 4-4 4-4 4-4	1N4468 1N4469 1N4470 1N4471 1N4472 1N4473 1N4474 1N4475 1N4476 1N4477 1N4478		1N4743A 1N4744A 1N4745A 1N4746A 1N4747A 1N4748A 1N4749A 1N4750A 1N4751A 1N4752A 1N4753A 1N4754A	4-36 4-36 4-36 4-36 4-36 4-36 4-36 4-36
1N4370A1JTXV 1N4371 1N4371A1JAN 1N4371A1JTX 1N4371A1JTX 1N4371A1JTXV 1N4372 1N4372A 1N4372A1JAN 1N4372A1JTX 1N4372A1JTX 1N4372A1JTXV 1N4400	1N4370A1JTXV 1N4371 1N4371A 1N4371A1JAN 1N4371A1JTX 1N4371A1JTXV 1N4372 1N4372A 1N4372A1JAN 1N4372A1JTX 1N4372A1JTX	1N4736	4-4 4-4 4-4 4-4 4-4 4-4 4-4 4-4 4-4 4-36	1N4480 1N4481 1N4482 1N4483 1N4484 1N4485 1N4486 1N4487 1N4488 1N4489 1N4499		1N4755A 1N4756A 1N4757A 1N4758A 1N4759A 1N4760A 1N4761A 1N4762A 1N4763A 1N4764A 1N4735A 1N4735A	4-36 4-36 4-36 4-36 4-36 4-36 4-36 4-36

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
1N4504 1N4549A 1N4549BJAN 1N4549BJTX 1N4549BA 1N4549RA 1N4549RB 1N4550B 1N4550B 1N4550BJAN 1N4550BJTX 1N4550BJTX	1N4549A 1N4549B 1N4549BJAN 1N4549BJTX 1N4549RA 1N4549RB 1N4550A 1N4550B 1N4550BJAN 1N4550BJTX 1N4550RA	1N5388A	4-51 4-17 4-17 4-17 4-17 4-17 4-17 4-17 4-1	1N4568 1N4568A 1N4568AJAN 1N4568AJTX 1N4568AJTXV 1N4569 1N4569A 1N4569AJAN 1N4569AJTXV 1N4569AJTXV 1N4570 1N4570A	1N4568 1N4568AJAN 1N4568AJTX 1N4568AJTXV 1N4569 1N4569A 1N4569AJAN 1N4569AJTX 1N4569AJTXV 1N4569AJTXV 1N4570		4-32 4-32 4-32 4-32 4-32 4-32 4-32 4-32
1N4550RB 1N4551A 1N4551BJAN 1N4551BJTX 1N4551RA 1N4551RB 1N4551RB 1N4552A 1N4552B 1N4552BJAN 1N4552BJTX 1N4552BJTX	1N4550RB 1N4551A 1N4551B 1N4551BJAN 1N4551BJTX 1N4551RA 1N4551RB 1N4552A 1N4552B 1N4552BJAN 1N4552BJTX 1N4552BJTX		4-17 4-17 4-17 4-17 4-17 4-17 4-17 4-17	1N4570AJAN 1N4570AJTX 1N4570AJTXV 1N4571 1N4571A 1N4571AJAN 1N4571AJTX 1N4571AJTXV 1N4572 1N4572A 1N4572AJAN 1N4572AJTX	1N4570AJAN 1N4570AJTX 1N4570AJTXV 1N4571 1N4571A 1N4571AJAN 1N4571AJTX 1N4571AJTXV 1N4572 1N4572A 1N4572A 1N4572AJAN 1N4572AJTX		4-32 4-32 4-32 4-32 4-32 4-32 4-32 4-32
1N4552RB 1N4553B 1N4553BJAN 1N4553BJTX 1N4553RA 1N4553RB 1N4554RA 1N4554B 1N4554BJAN 1N4554BJTX 1N4554BJTX 1N4554BJTX	1N4552RB 1N4553B 1N4553BJAN 1N4553BJTX 1N4553RA 1N4553RB 1N4553RB 1N4554A 1N4554B 1N4554BJAN 1N4554BJTX 1N4554BJTX		4-17 4-17 4-17 4-17 4-17 4-17 4-17 4-17	1N4572AJTXV 1N4573 1N4573AJAN 1N4573AJAN 1N4573AJTX 1N4573AJTXV 1N4574 1N4574A 1N4574AJAN 1N4574AJTX 1N4574AJTXV 1N4574AJTXV	1N4572AJTXV 1N4573 1N4573AJAN 1N4573AJAN 1N4573AJTXV 1N4573AJTXV 1N4574 1N4574A 1N4574AJAN 1N4574AJTXV 1N4574AJTXV 1N4574AJTXV		4-32 4-32 4-32 4-32 4-32 4-32 4-32 4-32
1N4554RB 1N4555A 1N4555B 1N4555RA 1N4555RB 1N4556A 1N4556B 1N4556RA 1N4556RB 1N4565 1N4565 1N4565A	1N4554RB 1N4555A 1N4555B 1N4555RA 1N4555RB 1N4556A 1N4556B 1N4556RA 1N4556RB 1N4565 1N4565 1N4565A		4-17 4-17 4-17 4-17 4-17 4-17 4-17 4-17 4-17 4-17 4-32 4-32 4-32	1N4575A 1N4576 1N4576A 1N4577 1N4577A 1N4577B 1N4578A 1N4579 1N4579A 1N4580 1N4580A 1N4581	1N4575A 1N4576 1N4576A 1N4577 1N4577A 1N4578 1N4578A 1N4579 1N4579A 1N4580 1N4580A 1N4581		4-32 4-32 4-32 4-32 4-32 4-32 4-32 4-32
1N4565AJTX 1N4565AJTXV 1N4566 1N4566A 1N4566AJAN 1N4566AJTX 1N4566AJTXV 1N4567 1N4567A 1N4567AJAN 1N4567AJTX 1N4567AJTX	1N4565AJTX 1N4565AJTXV 1N4566 1N4566A 1N4566AJTX 1N4566AJTXV 1N4566AJTXV 1N4567 1N4567A 1N4567AJAN 1N4567AJTXV		4-32 4-32 4-32 4-32 4-32 4-32 4-32 4-32	1N4581A 1N4582 1N4582A 1N4583 1N4583A 1N4584A 1N4584A 1N4611 1N4611B 1N4611C 1N4611C	1N4581A 1N4582 1N4582A 1N4583 1N4583A 1N4584 1N4584	1N4576A 1N4577A 1N4578A 1N4579A 1N4581A	4-32 4-32 4-32 4-32 4-32 4-32 4-32 4-32

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
1N4612A 1N4612B 1N4612C 1N4613 1N4613A 1N4613B 1N4613C 1N4614 1N4614-1JAN 1N4614-1JTX 1N4614-1JTX 1N4614-1JTXV	1N4614 1N4614-1JAN 1N4614-1JTX 1N4614-1JTXV 1N4615	1N4582A 1N4583A 1N4584A 1N4581A 1N4582A 1N4583A 1N4584A	4-32 4-32 4-32 4-32 4-32 4-32 4-32 4-28 4-28 4-28 4-28 4-28	1N4627-1JAN 1N4627-1JTX 1N4627-1JTXV 1N4628 1N4629 1N4630 1N4631 1N4632 1N4633 1N4634 1N4635 1N4635	1N4627-1JAN 1N4627-1JTX 1N4627-1JTXV	1N4736A 1N4737A 1N4738A 1N4739A 1N4740A 1N4741A 1N4742A 1N4742A 1N4742A	4-28 4-28 4-28 4-36 4-36 4-36 4-36 4-36 4-36 4-36 4-36
1N4615-1JAN 1N4615-1JTX 1N4615-1JTXV 1N4616-1JAN 1N4616-1JTX 1N4616-1JTXV 1N4617-1JTXV 1N4617-1JAN 1N4617-1JTXV 1N4617-1JTXV 1N4617-1JTXV 1N4618	1N4615-1JAN 1N4615-1JTX 1N4615-1JTXV 1N4616-1JAN 1N4616-1JTX 1N4616-1JTXV 1N4617-1JTXV 1N4617-1JAN 1N4617-1JTX 1N4617-1JTXV 1N4617-1JTXV		4-28 4-28 4-28 4-28 4-28 4-28 4-28 4-28	1N4637 1N4638 1N4639 1N4640 1N4641 1N4642 1N4643 1N4644 1N4645 1N4646 1N4647 1N4647		1N4745A 1N4746A 1N4747A 1N4748A 1N4749A 1N4750A 1N4751A 1N4752A 1N4753A 1N4754A 1N4755A 1N4756A	4-36 4-36 4-36 4-36 4-36 4-36 4-36 4-36
1N4618-1JAN 1N4618-1JTX 1N4618-1JTXV 1N4619-1JAN 1N4619-1JTX 1N4619-1JTXV 1N4620-1JTXV 1N4620-1JAN 1N4620-1JTXV 1N4620-1JTXV 1N4620-1JTXV	1N4618-1JAN 1N4618-1JTX 1N4618-1JTXV 1N4619-1JAN 1N4619-1JTX 1N4619-1JTXV 1N4620-1JTXV 1N4620-1JAN 1N4620-1JTXV 1N4620-1JTXV 1N4620-1JTXV		4-28 4-28 4-28 4-28 4-28 4-28 4-28 4-28	1N4649 1N4650 1N4651 1N4652 1N4653 1N4654 1N4655 1N4656 1N4656 1N4657 1N4658 1N4659 1N4660		1N4728A 1N4729A 1N4730A 1N4731A 1N4732A 1N4733A 1N4734A 1N4735A 1N4736A 1N4737A 1N4738A 1N4739A	4-36 4-36 4-36 4-36 4-36 4-36 4-36 4-36
1N4621-1JAN 1N4621-1JTX 1N4621-1JTXV 1N4622 1N4622-1JAN 1N4622-1JTX 1N4622-1JTXV 1N4623-1JTXV 1N4623-1JAN 1N4623-1JTX 1N4623-1JTXV 1N4623-1JTXV	1N4621-1JAN 1N4621-1JTX 1N4621-1JTXV 1N4622 1N4622-1JAN 1N4622-1JTX 1N4622-1JTXV 1N4623-1JAN 1N4623-1JAN 1N4623-1JTX 1N4623-1JTX 1N4623-1JTXV 1N4624		4-28 4-28 4-28 4-28 4-28 4-28 4-28 4-28	1N4661 1N4662 1N4663 1N4664 1N4665 1N4666 1N4667 1N4668 1N4669 1N4670 1N4671 1N4672		1N4740A 1N4741A 1N4742A 1N4743A 1N4744A 1N4745A 1N4746A 1N4747A 1N4748A 1N4749A 1N4750A 1N4751A	4-36 4-36 4-36 4-36 4-36 4-36 4-36 4-36
1N4624-1JAN 1N4624-1JTX 1N4624-1JTXV 1N4625-1JAN 1N4625-1JTX 1N4625-1JTXV 1N4626-1JTXV 1N4626-1JAN 1N4626-1JTX 1N4626-1JTXV 1N4626-1JTXV	1N4624-1JAN 1N4624-1JTX 1N4624-1JTXV 1N4625-1JAN 1N4625-1JTX 1N4625-1JTXV 1N4626-1JAN 1N4626-1JTX 1N4626-1JTX 1N4626-1JTX 1N4626-1JTXV 1N4627		4-28 4-28 4-28 4-28 4-28 4-28 4-28 4-28	1N4673 1N4674 1N4675 1N4676 1N4677 1N4678 1N4679 1N4680 1N4681 1N4682 1N4683 1N4684	1N4678 1N4679 1N4680 1N4681 1N4682 1N4683 1N4684	1N4752A 1N4753A 1N4754A 1N4755A 1N4756A	4-36 4-36 4-36 4-36 4-34 4-34 4-34 4-34

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
1N4685	1N4685		4-34	1N4741A	1N4741A		4-36
1N4686	1N4686		4-34	1N4742	1N4742	į .	4-36
1N4687	1N4687		4-34	1N4742A	1N4742A	}	4-36
1N4688	1N4688		4-34	1N4743	1N4743	1	4-36
1N4689	1N4689]	4-34	1N4743A	1N4743A	}	4-36
1N4690	1N4690		4-34	1N4744	1N4744	t	4-36
1N4691	1N4691		4-34	1N4744A	1N4744A	}	4-36
1N4692	1N4692		4-34	1N4745	1N4745	ł	4-36
1N4693	1N4693		4-34	1N4745A	1N4745A	}	4-36
1N4694	1N4694		4-34	1N4746	1N4746		4-36
1N4695 1N4696	1N4695 1N4696		4-34 4-34	1N4746A 1N4747	1N4746A 1N4747		4-36 4-36
1N4697	1N4697		4-34	1N4747A	1N4747A		4-36
1N4698 1N4699	1N4698 1N4699		4-34 4-34	1N4748	1N4748		4-36
1N4700	1N4700		4-34	1N4748A 1N4749	1N4748A 1N4749		4-36 4-36
1N4701	1N4700 1N4701		4-34	1N4749A	1N4749 1N4749A		4-36
1N4702	1N4702		4-34	1N4750	1N4749A 1N4750		4-36
1N4703	1N4703		4-34	1N4750A	1N4750A		4-36
1N4704	1N4704		4-34	1N4751	1N4751		4-36
1N4705	1N4705		4-34	1N4751A	1N4751A		4-36
1N4706	1N4706		4-34	1N4752	1N4752		4-36
1N4707	1N4707		4-34	1N4752A	1N4752A	1	4-36
1N4708	1N4708		4-34	1N4753	1N4753		4-36
1N4709	1N4709		4-34	1N4753A	1N4753A	į	4-36
1N4710 1N4711	1N4710 1N4711		4-34 4-34	1N4754 1N4754A	1N4754 1N4754A	1	4-36 4-36
1N4712	1N4712		4-34	1N4755	1N4755	1	4-36
1N4713	1N4713		4-34	1N4755A	1N4755A		4-36
1N4714	1N4714		4-34	1N4756	1N4756		4-36
1N4715	1N4715		4-34	1N4756A	1N4756A	}	4-36
1N4716	1N4716		4-34	1N4757	1N4757		4-36
1N4717	1N4717		4-34	1N4757A	1N4757A		4-36
1N4728	1N4728		4-36	1N4758	1N4758	ĺ	4-36
1N4728A 1N4729	1N4728A 1N4729		4-36 4-36	1N4758A 1N4759	1N4758A 1N4759		4-36 4-36
1N4729A	1N4729A		4-36	1N4759A	1N4759A		4-36
1N4730	1N4730	l	4-36	1N4760	1N4760	1	4-36
1N4730A 1N4731	1N4730A	1	4-36 4-36	1N4760A	1N4760A		4-36
1N4731A	1N4731 1N4731A	,	4-36	1N4761 1N4761A	1N4761 1N4761A		4-36 4-36
1N4732	1N4732	1	4-36	1N4761A	1N4761A		4-36
1N4732A	1N4732A	1	4-36	1N4762A	1N4762A		4-36
1N4733	1N4733		4-36	1N4763	1N4763	1	4-36
1N4733A	1N4733A		4-36	1N4763A	1N4763A		4-36
1N4734	1N4734		4-36	1N4764	1N4764		4-36
1N4734A 1N4735	1N4734A 1N4735		4-36 4-36	1N4764A 1N4831A	1N4764A	1N4739	4-36 4-36
1N4735A	1N4735A		4-36	1N4831B		1N4739A	4-36
1N4736	1N4736		4-36	1N4832		1N4740	4-36
1N4736A	1N4736A		4-36	1N4832A		1N4740	4-36
1N4737	1N4737		4-36	1N4832B		1N4740A	4-36
1N4737A 1N4738	1N4737A 1N4738		4-36 4-36	1N4833		1N4741	4-36
1N4738A	1N4738A	1	4-36	1N4833A 1N4833B		1N4741 1N4741A	4-36 4-36
1N4739	1N4739		4-36	1N4834		1N4741A 1N4742	4-36
1N4739A	1N4739A		4-36	1N4834A		1N4742	4-36
1N4740	1N4740		4-36	1N4834B		1N4742A	4-36
1N4740A	1N4740A		4-36	1N4835		1N4743	4-36
1N4741			4-36	1N4835A	,	1N4743	4-36

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
1N4835B 1N4836 1N4836A 1N4836B 1N4837 1N4837A 1N4837B 1N4838 1N4838 1N4838B 1N4838B 1N4839 1N4839A		1N4743A 1N4744 1N4744 1N4744A 1N4745 1N4745 1N4745A 1N4746 1N4746 1N4746A 1N4747	4-36 4-36 4-36 4-36 4-36 4-36 4-36 4-36	1N4855B 1N4856 1N4856A 1N4856B 1N4881 1N4882 1N4883 1N4884 1N4889 1N4890 1N4890 1N4890A		1N4763A 1N4764 1N4764 1N4764A 1N4747 1N4753 1N4742A 1N4747A 1N3000B MZ640 MZ640 MZ640	4-36 4-36 4-36 4-36 4-36 4-36 4-36 4-36
1N4839B 1N4840 1N4840B 1N4840B 1N4841 1N4841B 1N4842 1N4842 1N4842A 1N4842B 1N4843 1N4843A		1N4747A 1N4748 1N4748 1N4748A 1N4749 1N4749 1N4749 1N4750 1N4750 1N4750A 1N4751	4-36 4-36 4-36 4-36 4-36 4-36 4-36 4-36	1N4891A 1N4892 1N4892A 1N4893 1N4893A 1N4894 1N4894A 1N4895 1N4895A 1N4955 1N4955 1N4955		MZ640 MZ620 MZ620 MZ620 MZ620 MZ610 MZ610 MZ610 MZ610 1N5342B 1N5343B 1N5344B	4-101 4-101 4-101 4-101 4-101 4-101 4-101 4-101 4-51 4-51
1N4843B 1N4844 1N4844B 1N4845 1N4845 1N4845A 1N4845B 1N4846 1N4846A 1N4846B 1N4846B 1N4847		1N4751A 1N4752 1N4752 1N4752A 1N4753 1N4753 1N4753 1N4754 1N4754 1N4754 1N4755 1N4755	4-36 4-36 4-36 4-36 4-36 4-36 4-36 4-36	1N4957 1N4958 1N4959 1N4960 1N4961 1N4962 1N4963 1N4964 1N4965 1N4966 1N4967 1N4968		1N5346B 1N5347B 1N5348B 1N5349B 1N5350B 1N5352B 1N5352B 1N5357B 1N5357B 1N5357B 1N5359B 1N5359B 1N5361B	4-51 4-51 4-51 4-51 4-51 4-51 4-51 4-51
1N4847B 1N4848 1N4848A 1N4848B 1N4849 1N4849A 1N4849B 1N4850 1N4850A 1N4850B 1N4851 1N4851		1N4755A 1N4756 1N4756 1N4756 1N4756A 1N4757 1N4757 1N4757A 1N4758 1N4758 1N4758 1N4759 1N4759	4-36 -436 4-36 4-36 4-36 4-36 4-36 4-36	1N4969 1N4970 1N4971 1N4972 1N4973 1N4974 1N4975 1N4976 1N4977 1N4978 1N4979 1N4980		1N5363B 1N5364B 1N5365B 1N5366B 1N5367B 1N5368B 1N5369B 1N5370B 1N5372B 1N5373B 1N5374B 1N5374B 1N5375B	4-51 4-51 4-51 4-51 4-51 4-51 4-51 4-51
1N4851B 1N4852 1N4852A 1N4852B 1N4853 1N4853A 1N4853B 1N48534 1N48544 1N48544 1N4854B 1N4855 1N4855		1N4759A 1N4760 1N4760 1N4760A 1N4761 1N4761 1N4761A 1N4762 1N4762 1N4762 1N4763 1N4763	4-36 4-36 4-36 4-36 4-36 4-36 4-36 4-36	1N4981 1N4982 1N4983 1N4984 1N4985 1N4986 1N4987 1N4988 1N5008 1N5008 1N5008A		1N5377B 1N5378B 1N5379B 1N5380B 1N5381B 1N5383B 1N5384B 1N5386B 1N5386B 1N5386B 1N4728 1N4728 1N4728A	4-51 4-51 4-51 4-51 4-51 4-51 4-51 4-51

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
1N5009A 1N5010 1N5010A 1N5011 1N5011A 1N5012 1N5012A 1N5013 1N5013A 1N5014 1N5014A 1N5015		1N4729A 1N4730 1N4730A 1N4731 1N4731A 1N4732 1N4732A 1N4733 1N4733A 1N4733A 1N4734 1N4734 1N4735	4-36 4-36 4-36 4-36 4-36 4-36 4-36 4-36	1N5045A 1N5046 1N5046A 1N5047 1N5047A 1N5048 1N5048A 1N5049 1N5049A 1N5050 1N5050A		1N4758A 1N4759 1N4759A 1N4760 1N4760A 1N4761 1N4761A 1N4762 1N4762A 1N4763 1N4763 1N4763A	4-36 4-36 4-36 4-36 4-36 4-36 4-36 4-36
1N5015A 1N5016 1N5016A 1N5017 1N5017A 1N5018 1N5018A 1N5019 1N5019A 1N5020 1N5020A 1N5020A		1N4735A 1N4736 1N4736A 1N4737 1N4737A 1N4738 1N4738 1N4739 1N4739A 1N4740 1N4740A 1N4741	4-36 4-36 4-36 4-36 4-36 4-36 4-36 4-36	1N5051A 1N5063 1N5064 1N5065 1N5066 1N5067 1N5068 1N5070 1N5071 1N5072 1N5072		1N4764A 1N4736A 1N4737A 1N4738A 1N4739A 1N4740A 1N4741A 1N4743A 1N4743A 1N4744A 1N4745A 1N4746A	4-36 4-36 4-36 4-36 4-36 4-36 4-36 4-36
1N5021A 1N5022 1N5022A 1N5023A 1N5023A 1N5025 1N5025A 1N5026 1N5026A 1N5028 1N5028A 1N5030		1N4741A 1N4742 1N4742A 1N4743A 1N4743A 1N4744 1N4744 1N4745 1N4745A 1N4746A 1N4746A 1N4746A	4-36 4-36 4-36 4-36 4-36 4-36 4-36 4-36	1N5074 1N5075 1N5076 1N5077 1N5078 1N5079 1N5080 1N5082 1N5084 1N5086 1N5087 1N5087		1N4748A 1N4749A 1N4750A 1N4751A 1N4752A 1N4753A 1N4755A 1N4755A 1N4756A 1N4756A 1N4758A 1N4758A	4-36 4-36 4-36 4-36 4-36 4-36 4-36 4-36
1N5030A 1N5031 1N5031A 1N5032 1N5032A 1N5034 1N5034 1N5035 1N5035 1N5035A 1N5036A 1N5036A		1N4747A 1N4748 1N4748A 1N4749 1N4749A 1N4750 1N4750A 1N4751 1N4751A 1N4752 1N4752A 1N4753	4-36 4-36 4-36 4-36 4-36 4-36 4-36 4-36	1N5090 1N5092 1N5094 1N5095 1N5118 1N5122 1N5126 1N5127 1N5128 1N5221 1N5221A 1N5221B	1N5221A 1N5221A 1N5221B	1N4760A 1N4761A 1N4762A 1N4763A 1N5341B 1N5371B 1N5382B 1N5385B 1N5385B	4-36 4-36 4-36 4-51 4-51 4-51 4-51 4-51 4-40 4-40
1N5037A 1N5038 1N5038A 1N5039 1N5039A 1N5041 1N5041A 1N5042 1N5043 1N5043 1N5043 1N5044 1N5045		1N4753A 1N4754 1N4754A 1N4755 1N4755A 1N4756A 1N4756A 1N4757A 1N4757A 1N4757A 1N4757A 1N4757A	4-36 4-36 4-36 4-36 4-36 4-36 4-36 4-36	1N5222 1N5222A 1N5222B 1N5223 1N5223A 1N5223B 1N5224 1N5224B 1N5224B 1N5224B 1N5225 1N5225A	1N5222A 1N5222A 1N5222B 1N5223A 1N5223A 1N5223B 1N5224A 1N5224A 1N5224A 1N5224A 1N5225A 1N5225A		4-40 4-40 4-40 4-40 4-40 4-40 4-40 4-40

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
1N5226 1N5226A 1N5226B 1N5227 1N5227A 1N5227B 1N5228 1N5228A 1N5228B 1N5228B 1N5229	1N5226A 1N5226B 1N5226B 1N5227A 1N5227A 1N5227B 1N5228A 1N5228A 1N5228A 1N5228B 1N5229A 1N5229A		4-40 4-40 4-40 4-40 4-40 4-40 4-40 4-40	1N5246 1N5246A 1N5246B 1N5247 1N5247A 1N5247B 1N5248 1N5248A 1N5248A 1N5248B 1N5249	1N5246A 1N5246A 1N4246B 1N5247A 1N5247A 1N5247B 1N5248A 1N5248A 1N5248B 1N5248B 1N5249A		4-40 4-40 4-40 4-40 4-40 4-40 4-40 4-40
1N5229B 1N5230 1N5230A 1N5230B 1N5231 1N5231A 1N5231B 1N5232 1N5232A 1N5232B 1N5232B 1N5233A 1N5233A 1N5233B	1N5229B 1N5230A 1N5230A 1N5230B 1N5231A 1N5231A 1N5231B 1N5232A 1N5232A 1N5232A 1N5232A 1N5233A 1N5233A 1N5233B		4-40 4-40 4-40 4-40 4-40 4-40 4-40 4-40	1N5249B 1N5250 1N5250A 1N5250B 1N5251 1N5251A 1N5251B 1N5252 1N5252A 1N5252A 1N5252B 1N5253 1N5253A 1N5253B	1N5249B 1N5250A 1N5250A 1N5250B 1N5251A 1N5251A 1N5251B 1N5252A 1N5252A 1N5252B 1N5253A 1N5253A 1N5253B		4-40 4-40 4-40 4-40 4-40 4-40 4-40 4-40
1N5234 1N5234A 1N5234B 1N52355 1N5235A 1N5235B 1N5236 1N5236A 1N5236B 1N5237 1N5237A 1N5237B	1N5234A 1N5234B 1N5235A 1N5235A 1N5235A 1N5235B 1N5236A 1N5236A 1N5236B 1N5237A 1N5237A 1N5237B		4-40 4-40 4-40 4-40 4-40 4-40 4-40 4-40	1N5254 1N5254A 1N5254B 1N5255 1N5255A 1N5255B 1N5256 1N5256A 1N5256B 1N5257 1N5257A	1N5254A 1N5254B 1N5255B 1N5255A 1N5255B 1N5255B 1N5256A 1N5256A 1N5256B 1N5257A 1N5257A 1N5257B		4-40 4-40 4-40 4-40 4-40 4-40 4-40 4-40
1N5238 1N5238A 1N5238B 1N5239B 1N5239A 1N5239B 1N5240 1N5240A 1N5240B 1N5240B 1N52411 1N5241B	1N5238A 1N5238B 1N5239B 1N5239A 1N5239A 1N5239B 1N5240A 1N5240A 1N5240B 1N5241A 1N5241B		4-40 4-40 4-40 4-40 4-40 4-40 4-40 4-40	1N5258 1N5258A 1N5258B 1N5259 1N5259A 1N5259B 1N52600 1N5260A 1N5260B 1N5261 1N5261A 1N5261B	1N5258A 1N5258A 1N5258B 1N5259A 1N5259A 1N5259B 1N5260A 1N5260A 1N5260B 1N5261A 1N5261A 1N5261B		4-40 4-40 4-40 4-40 4-40 4-40 4-40 4-40
1N5242 1N5242A 1N5242B 1N5243 1N5243A 1N5243B 1N5244 1N5244A 1N5244B 1N5244B 1N5245 1N5245A 1N5245A	1N5242A 1N5242B 1N5243B 1N5243A 1N5243B 1N5243B 1N5244A 1N5244A 1N5244B 1N5245A 1N5245B		4-40 4-40 4-40 4-40 4-40 4-40 4-40 4-40	1N56262 1N5262A 1N5262B 1N5263 1N5263A 1N5263B 1N5264 1N5264A 1N5264B 1N5265 1N52655 1N5265A	1N5262A 1N5262A 1N5262B 1N5263A 1N5263A 1N5263B 1N5264A 1N5264A 1N5264B 1N5265A 1N5265A 1N5265A		4-40 4-40 4-40 4-40 4-40 4-40 4-40 4-40

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
1N5266 1N5266A 1N5266B 1N5267 1N5267A 1N5267B 1N5268 1N5268 1N5268A 1N5268B 1N5269 1N5269 1N5269A	1N5266A 1N5266B 1N5266B 1N5267A 1N5267A 1N5267B 1N5268A 1N5268A 1N5268B 1N5268B 1N5269A 1N5269A 1N5269A		4-40 4-40 4-40 4-40 4-40 4-40 4-40 4-40	1N5286 1N5286JAN 1N5286JTX 1N5286JTXV 1N5287 1N5287JAN 1N5287JTX 1N5287JTXV 1N5288JTXV 1N5288JTX 1N5288JTX	1N5286 1N5286JAN 1N5286JTX 1N5286JTXV 1N5287 1N5287JAN 1N5287JTX 1N5287JTXV 1N5288 1N5288JAN 1N5288JTX 1N5288JTX		4-47 4-47 4-47 4-47 4-47 4-47 4-47 4-47
1N5270 1N5270A 1N5270B 1N5271 1N5271A 1N5271B 1N5272 1N5272A 1N5272B 1N5272B 1N5273 1N5273A 1N5273B	1N5270A 1N5270A 1N5270B 1N5271A 1N5271A 1N5271B 1N5272A 1N5272A 1N5272A 1N5272A 1N5273A 1N5273A 1N5273B		4-40 4-40 4-40 4-40 4-40 4-40 4-40 4-40	1N5289 1N5289JAN 1N5289JTX 1N5289JTV 1N5290 1N5290JAN 1N5290JTX 1N5290JTXV 1N5291JAN 1N5291JAN 1N5291JTX 1N5291JTX	1N5289 1N5289JAN 1N5289JTX 1N5289JTXV 1N5290 1N5290JAN 1N5290JTX 1N5290JTXV 1N5291 1N5291JAN 1N5291JAN 1N5291JTX 1N5291JTX		4-47 4-47 4-47 4-47 4-47 4-47 4-47 4-47
1N5274 1N5274A 1N5274B 1N5275 1N5275A 1N5275B 1N5276 1N5276A 1N5276B 1N5276B 1N5277 1N5277A	1N5274A 1N5274A 1N5274B 1N5275A 1N5275A 1N5275B 1N5276A 1N5276A 1N5276B 1N5276B 1N5277A 1N5277A		4-40 4-40 4-40 4-40 4-40 4-40 4-40 4-40	1N5292 1N5292JAN 1N5292JTX 1N5292JTXV 1N5293 1N5293JAN 1N5293JTX 1N5293JTXV 1N5294JTXV 1N5294JAN 1N5294JTX 1N5294JTX	1N5292 1N5292JAN 1N5292JTX 1N5292JTXV 1N5293 1N5293JAN 1N5293JTX 1N5293JTXV 1N5294 1N5294JAN 1N5294JTX 1N5294JTX		4-47 4-47 4-47 4-47 4-47 4-47 4-47 4-47
1N5278 1N5278A 1N5278B 1N5279 1N5279A 1N5279A 1N5279B 1N5280A 1N5280A 1N5280B 1N5281B	1N5278A 1N5278A 1N5279A 1N5279A 1N5279A 1N5279B 1N5280A 1N5280A 1N5280B 1N5281A 1N5281A 1N5281B		4-40 4-40 4-40 4-40 4-40 4-40 4-40 4-40	1N5295 1N5295JAN 1N5295JTX 1N5295JTXV 1N5296 1N5296JAN 1N5296JTX 1N5296JTXV 1N5297JTXV 1N5297JTX 1N5297JTX	1N5295 1N5295JAN 1N5295JTX 1N5295JTXV 1N5296 1N5296JAN 1N5296JTX 1N5296JTXV 1N5297 1N5297JAN 1N5297JAN 1N5297JTX 1N5297JTX		4-47 4-47 4-47 4-47 4-47 4-47 4-47 4-47
1N5283 1N5283JAN 1N5283JTX 1N5283JTXV 1N5284 1N5284JAN 1N5284JTX 1N5284JTXV 1N5285 1N5285JAN 1N5285JTX	1N5283 1N5283JAN 1N5283JTX 1N5283JTXV 1N5284 1N5284JAN 1N5284JTX 1N5284JTXV 1N5285 1N5285JAN 1N5285JTX		4-47 4-47 4-47 4-47 4-47 4-47 4-47 4-47	1N5298 1N5298JAN 1N5298JTX 1N5298JTXV 1N5299 1N5299JAN 1N5299JTXV 1N5299JTXV 1N5300 1N5300JAN 1N5300JTX	1N5298 1N5298JAN 1N5298JTX 1N5298JTXV 1N5299 1N5299JAN 1N5299JTX 1N5299JTXV 1N5300 1N5300JAN 1N5300JTX 1N5300JTXV		4-47 4-47 4-47 4-47 4-47 4-47 4-47 4-47

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
1N5301 1N5301JAN 1N5301JTX 1N5301JTXV 1N5302 1N5302JAN 1N5302JTX 1N5302JTXV 1N5303 1N5303JAN 1N5303JTX 1N5303JTX	1N5301 1N5301JAN 1N5301JTX 1N5301JTXV 1N5302 1N5302JAN 1N5302JTX 1N5302JTXV 1N5303 1N5303JAN 1N5303JTX 1N5303JTX		4-47 4-47 4-47 4-47 4-47 4-47 4-47 4-47	1N5333D 1N5334 1N5334A 1N5334B 1N5334C 1N5334D 1N5335 1N5335A 1N5335B 1N5335C 1N5335D 1N5335D	1N5333D 1N5334A 1N5334A 1N5334B 1N5334C 1N5334D 1N5335A 1N5335A 1N5335B 1N5335B 1N5335C 1N5335D 1N5336A		4-51 4-51 4-51 4-51 4-51 4-51 4-51 4-51
1N5304 1N5304JAN 1N5304JTX 1N5305JTX 1N5305JAN 1N5305JTX 1N5305JTX 1N5306JTXV 1N5306JAN 1N5306JTX 1N5306JTX	1N5304 1N5304JAN 1N5304JTXV 1N5305 1N5305JAN 1N5305JTX 1N5305JTXV 1N5306JTXV 1N5306JAN 1N5306JTX 1N5306JTX		4-47 4-47 4-47 4-47 4-47 4-47 4-47 4-47	1N5336A 1N5336B 1N5336C 1N5336D 1N5337 1N5337A 1N5337B 1N5337C 1N5337C 1N5337D 1N5338 1N5338A 1N5338A	1N5336A 1N5336B 1N5336C 1N5336D 1N5337A 1N5337A 1N5337B 1N5337C 1N5337D 1N5337D 1N5338A 1N5338A 1N5338B		4-51 4-51 4-51 4-51 4-51 4-51 4-51 4-51
1N5307 1N5307JAN 1N5307JTX 1N5307JTXV 1N5308JAN 1N5308JAN 1N5308JTX 1N5308JTXV 1N5309 1N5309JAN 1N5309JTX 1N5309JTXV	1N5307 1N5307JAN 1N5307JTX 1N5307JTXV 1N5308 1N5308JAN 1N5308JTX 1N5308JTXV 1N5309 1N5309JAN 1N5309JTXV		4-47 4-47 4-47 4-47 4-47 4-47 4-48 4-47 4-47	1N5338C 1N5338D 1N5339 1N5339A 1N5339B 1N5339C 1N5339D 1N5340A 1N5340B 1N5340C 1N5340D 1N5340D	1N5338C 1N5338D 1N5339A 1N5339A 1N5339B 1N5339C 1N5339D 1N5340A 1N5340B 1N5340C 1N5340D 1N5341A		4-51 4-51 4-51 4-51 4-51 4-51 4-51 4-51
1N5310 1N5310JAN 1N5310JTX 1N5310JTXV 1N5311JAN 1N5311JTX 1N5311JTX 1N5311JTXV 1N5312JTX 1N5312JAN 1N5312JTX 1N5312JTX	1N5310 1N5310JAN 1N5310JTX 1N5310JTXV 1N5311 1N5311JAN 1N5311JTX 1N5311JTXV 1N5312 1N5312JAN 1N5312JTX 1N5312JTX		4-47 4-47 4-47 4-47 4-47 4-47 4-47 4-47	1N5341A 1N5341B 1N5341C 1N5341D 1N5342 1N5342A 1N5342B 1N5342C 1N5342D 1N5343 1N5343A 1N5343B	1N5341A 1N5341B 1N5341C 1N5341D 1N5342A 1N5342A 1N5342B 1N5342C 1N5342D 1N5342D 1N5343A 1N5343A 1N5343B		4-51 4-51 4-51 4-51 4-51 4-51 4-51 4-51
1N5313 1N5313JAN 1N5313JTX 1N5313JTXV 1N5314JTXV 1N5314JAN 1N5314JTX 1N5314JTXV 1N5333 1N5333A 1N5333B 1N5333C	1N5313 1N5313JAN 1N5313JTX 1N5313JTXV 1N5314JTX 1N5314JAN 1N5314JTX 1N5314JTXV 1N5333A 1N5333A 1N5333B 1N5333C		4-47 4-47 4-47 4-47 4-47 4-47 4-47 4-51 4-51 4-51 4-51	1N5343C 1N5343D 1N5344 1N5344A 1N5344B 1N5344C 1N5344D 1N5345 1N5345A 1N5345B 1N5345B	1N5343C 1N5343D 1N5344A 1N5344B 1N5344B 1N5344C 1N5344D 1N5345A 1N5345A 1N5345B 1N5345B 1N5345D		4-51 4-51 4-51 4-51 4-51 4-51 4-51 4-51

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
1N5346 1N5346A 1N5346B 1N5346C 1N5346D 1N5347 1N5347A 1N5347B 1N5347C 1N5347C 1N5347D 1N5348 1N5348A	1N5346A 1N5346A 1N5346B 1N5346C 1N5346D 1N5347A 1N5347A 1N5347B 1N5347C 1N5347C 1N5348A 1N5348A		4-51 4-51 4-51 4-51 4-51 4-51 4-51 4-51	1N5358 1N5358A 1N5358B 1N5358C 1N5358D 1N5359 1N5359A 1N5359B 1N5359C 1N5359D 1N5360 1N5360A	1N5358A 1N5358A 1N5358B 1N5358C 1N5358D 1N5359A 1N5359A 1N5359B 1N5359B 1N5359C 1N5359D 1N5360A 1N5360A		4-51 4-51 4-51 4-51 4-51 4-51 4-51 4-51
1N5348B 1N5348C 1N5349D 1N5349 1N5349A 1N5349B 1N5349C 1N5349D 1N5350 1N5350A 1N5350B 1N5350B	1N5348B 1N5348C 1N5348D 1N5349A 1N5349A 1N5349B 1N5349C 1N5349D 1N5350A 1N5350A 1N5350B 1N5350B		4-51 4-51 4-51 4-51 4-51 4-51 4-51 4-51	1 N5360B 1 N5360C 1 N5360D 1 N5361 1 N5361A 1 N5361B 1 N5361C 1 N5361D 1 N5362 1 N5362A 1 N5362B 1 N5362C	1N5360B 1N5360C 1N5360D 1N5361A 1N5361A 1N5361B 1N5361C 1N5361D 1N5362A 1N5362A 1N5362B 1N5362C		4-51 4-51 4-51 4-51 4-51 4-51 4-51 4-51
1N5350D 1N5351 1N5351A 1N5351B 1N5351C 1N5351C 1N5352 1N5352A 1N5352B 1N5352B 1N5352C 1N5352D 1N5353	1N5350D 1N5351A 1N5351A 1N5351B 1N5351C 1N5351D 1N5352A 1N5352A 1N5352B 1N5352B 1N5352C 1N5352D 1N5353A		4-51 4-51 4-51 4-51 4-51 4-51 4-51 4-51	1 N5362D 1 N5363 1 N5363A 1 N5363B 1 N5363C 1 N5363D 1 N5364 1 N5364A 1 N5364B 1 N5364C 1 N5364D 1 N5364D	1N5362D 1N5363A 1N5363A 1N5363B 1N5363C 1N5363D 1N5364A 1N5364A 1N5364B 1N5364C 1N5364D 1N5364D		4-51 4-51 4-51 4-51 4-51 4-51 4-51 4-51
1N5353A 1N5353B 1N5353C 1N5353D 1N5354 1N5354A 1N5354B 1N5354B 1N5354C 1N5354D 1N5355 1N5355A 1N5355A	1N5353A 1N5353B 1N5353C 1N5353D 1N5354A 1N5354A 1N5354B 1N5354C 1N5354C 1N5355A 1N5355A 1N5355A		4-51 4-51 4-51 4-51 4-51 4-51 4-51 4-51	1N5365A 1N5365B 1N5365C 1N5365D 1N5366 1N5366A 1N5366B 1N5366C 1N5366C 1N5366D 1N5367A 1N5367A	1N5365A 1N5365B 1N5365C 1N5365C 1N5366A 1N5366A 1N5366B 1N5366C 1N5366C 1N5366D 1N5367A 1N5367A 1N5367B		4-51 4-51 4-51 4-51 4-51 4-51 4-51 4-51
1N5355C 1N5355D 1N5356A 1N5356A 1N5356B 1N5356C 1N5356D 1N5357 1N5357A 1N5357A 1N5357B 1N5357C 1N5357D	1N5355C 1N5355D 1N5356A 1N5356A 1N5356B 1N5356C 1N5356D 1N5357A 1N5357A 1N5357B 1N5357C 1N5357D		4-51 4-51 4-51 4-51 4-51 4-51 4-51 4-51	1N5367C 1N5368D 1N5368A 1N5368B 1N5368B 1N5368C 1N5368D 1N5369D 1N5369A 1N5369B 1N5369B 1N5369C 1N5369D	1N5367C 1N5367D 1N5368A 1N5368A 1N5368B 1N5368C 1N5368D 1N5369A 1N5369A 1N5369B 1N5369B 1N5369D		4-51 4-51 4-51 4-51 4-51 4-51 4-51 4-51

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
1N5370 1N5370A 1N5370B 1N5370C 1N5370C 1N5371D 1N5371A 1N5371A 1N5371B 1N5371C 1N5371D 1N5372 1N5372	1N5370A 1N5370A 1N5370B 1N5370C 1N5370C 1N5371A 1N5371A 1N5371B 1N5371C 1N5371D 1N5372A 1N5372A		4-51 4-51 4-51 4-51 4-51 4-51 4-51 4-51	1N5382 1N5382A 1N5382B 1N5382C 1N5382D 1N5383 1N5383A 1N5383B 1N5383C 1N5383D 1N5384 1N5384	1N5382A 1N5382B 1N5382B 1N5382C 1N5382D 1N5383A 1N5383A 1N5383B 1N5383C 1N5383D 1N5384A 1N5384A		4-51 4-51 4-51 4-51 4-51 4-51 4-51 4-51
1N5372B 1N5372C 1N5372D 1N5373 1N5373A 1N5373B 1N5373C 1N5373D 1N5374 1N5374A 1N5374B 1N5374B	1N5372B 1N5372C 1N5372D 1N5373A 1N5373A 1N5373B 1N5373C 1N5373D 1N5374A 1N5374A 1N5374B 1N5374B		4-51 4-51 4-51 4-51 4-51 4-51 4-51 4-51	1N5384B 1N5384C 1N5384D 1N5385 1N5385A 1N5385B 1N5385C 1N5385D 1N5386 1N5386A 1N5386A 1N5386B 1N5386C	1N5384B 1N5384C 1N5384D 1N5385A 1N5385A 1N5385B 1N5385C 1N5385D 1N5386A 1N5386A 1N5386B 1N5386B		4-51 4-51 4-51 4-51 4-51 4-51 4-51 4-51
1N5374D 1N5375 1N5375A 1N5375B 1N5375D 1N5375D 1N5376 1N5376A 1N5376B 1N5376C 1N5376D 1N5376D 1N5377	1N5374D 1N5375A 1N5375A 1N5375B 1N5375C 1N5375D 1N5376A 1N5376A 1N5376B 1N5376C 1N5376C 1N5376D 1N53776D		4-51 4-51 4-51 4-51 4-51 4-51 4-51 4-51	1N5386D 1N5387 1N5387A 1N5387B 1N5387C 1N5387D 1N5388 1N5388A 1N5388B 1N5388B 1N5388C 1N5388D 1N5388D	1N5386D 1N5387A 1N5387B 1N5387B 1N5387C 1N5387D 1N5388A 1N5388B 1N5388B 1N5388C 1N5388D 1N5388D		4-51 4-51 4-51 4-51 4-51 4-51 4-51 4-51
1N5377A 1N5377B 1N5377C 1N5377D 1N5377B 1N5378B 1N5378B 1N5378C 1N5378D 1N5379D 1N5379 1N5379A	1N5377A 1N5377B 1N5377C 1N5377D 1N5378A 1N5378A 1N5378B 1N5378C 1N5378D 1N5379D 1N5379A 1N5379A 1N5379B		4-51 4-51 4-51 4-51 4-51 4-51 4-51 4-51	1N5518B 1N5518B-1JTX 1N5518B-1JTX 1N5518B1JTX 1N5519A 1N5519B 1N5519B-1JTX 1N5519B-1JTX 1N5519B1JTX 1N5520A 1N5520B	1N5518B 1N5518B-1JTX 1N5518B-1JTX 1N5518B1JTX 1N5519B 1N5519B-1JTX 1N5519B-1JTX 1N5519B-1JTX 1N5519B1JTX 1N5520A 1N5520B		4-55 4-55 4-55 4-55 4-55 4-55 4-55 4-55
1N5379C 1N5379D 1N5380 1N5380A 1N5380B 1N5380C 1N5380D 1N5381 1N5381A 1N5381B 1N5381B 1N5381C 1N5381D	1N5379C 1N5379D 1N5380A 1N5380A 1N5380B 1N5380C 1N5380C 1N5381A 1N5381A 1N5381B 1N5381C 1N5381D		4-51 4-51 4-51 4-51 4-51 4-51 4-51 4-51	1N5521A 1N5521B 1N5521B1JTX 1N5522A 1N5522B 1N5522B1JTX 1N5523A 1N5523B 1N5523B1JTX 1N5523B1JTX 1N5524A 1N5524B	1N5521A 1N5521B 1N5521B1JTX 1N5522A 1N5522B 1N5522B1JTX 1N5523A 1N5523B 1N5523B1JTX 1N5524A 1N5524B 1N5524B1JTX		4-55 4-55 4-55 4-55 4-55 4-55 4-55 4-55

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
1N5525A 1N5525B 1N5525B1JTX 1N5526B 1N5526B 1N5526B1JTX 1N5527A 1N5527B 1N5527B1JTX 1N5527B 1N5528A 1N5528B	1N5525A 1N5525B 1N5525B1JTX 1N5526B 1N5526B 1N5526B1JTX 1N5527A 1N5527B 1N5527B1JTX 1N5528A 1N5528B 1N5528B		4-55 4-55 4-55 4-55 4-55 4-55 4-55 4-55	1N5545A 1N5545B 1N5545B1JTX 1N5546B 1N5546B 1N5546B1JTX 1N5555 1N5555 1N5556 1N5557 1N5558 1N5629 1N5629A	1N5545A 1N5545B 1N5545B1JTX 1N5546B 1N5546B 1N5546B1JTX	1N6283 1N6283A 1N6289A 1N62803A 1N6267 1N6267A	4-55 4-55 4-55 4-55 4-55 4-59 4-59 4-59
1N5529A 1N5529B 1N5529B1JTX 1N5530A 1N5530B 1N5530B1JTX 1N5531A 1N5531B 1N5531B1JTX 1N5532A 1N5532B	1N5529A 1N5529B 1N5529B1JTX 1N5530A 1N5530B 1N5530B1JTX 1N5531A 1N5531B 1N5531B1JTX 1N5532B 1N5532B		4-55 4-55 4-55 4-55 4-55 4-55 4-55 4-55	1N5630 1N5630A 1N5631A 1N5631A 1N56322 1N5632A 1N5633 1N5633A 1N5634 1N5634A 1N5635		1N6268 1N6268A 1N6269 1N6269A 1N6270 1N6270A 1N6271 1N6271A 1N6272 1N6272A 1N6273 1N6273A	4-59 4-59 4-59 4-59 4-59 4-59 4-59 4-59
1,05533A 1,05533B 1,05533B1JTX 1,05534A 1,05534B 1,05534B1JTX 1,05535A 1,05535B 1,05535B 1,05536B 1,05536B 1,05536B 1,05536B 1,05536B	1N5533A 1N5533B 1N5533B1JTX 1N5534A 1N5534B 1N5534B1JTX 1N5535A 1N5535B 1N5535B 1N5536B 1N5536B 1N5536B 1N5536B		4-55 4-55 4-55 4-55 4-55 4-55 4-55 4-55	1N5636 1N5636A 1N5637 1N5637A 1N5638 1N5638A 1N5639 1N5639A 1N5640 1N5640A 1N5641A		1N6274 1N6274A 1N6275 1N6275A 1N6276 1N6276A 1N6277 1N6277A 1N6278 1N6278 1N6279 1N6279	4-59 4-59 4-59 4-59 4-59 4-59 4-59 4-59
1N5537A 1N5537B 1N5537B1JTX 1N5538A 1N5538B 1N5538B1JTX 1N5539A 1N5539B 1N5539B1JTX 1N5540B 1N5540B	1N5537A 1N5537B 1N5537B1JTX 1N5538A 1N5538B 1N5538B1JTX 1N5539A 1N5539B 1N5539B1JTX 1N5540B 1N5540B		4-55 4-55 4-55 4-55 4-55 4-55 4-55 4-55	1N5642 1N5642A 1N5643A 1N5643A 1N56444 1N5644A 1N5645 1N5645A 1N5646 1N5646A 1N56451 1N5651		1 N6280 1 N6280A 1 N6281A 1 N6281A 1 N6282 1 N6282A 1 N6283 1 N6283A 1 N6284A 1 N6284A 1 N6289A 1 N6299	4-59 4-59 4-59 4-59 4-59 4-59 4-59 4-59
1N5541A 1N5541B 1N5541B1JTX 1N5542A 1N5542B 1N5542B1JTX 1N5543A 1N5543B 1N5543B1JTX 1N5544A 1N5544B	1N5541A 1N5541B 1N5541B1JTX 1N5542B 1N5542B1JTX 1N5542B1JTX 1N5543A 1N5543B 1N5543B1JTX 1N5544B 1N5544B		4-55 4-55 4-55 4-55 4-55 4-55 4-55 4-55	1N5652A 1N5653 1N5653A 1N5654 1N5654 1N5655 1N5655 1N5656 1N5656 1N5656A 1N5657 1N5657 1N5657A		1N6290A 1N6291 1N6291A 1N6292 1N6292A 1N6293 1N6293A 1N6294 1N6294 1N6295 1N6295A 1N6296	4-59 4-59 4-59 4-59 4-59 4-59 4-59 4-59

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
1N5658A 1N5659 1N5659A 1N5660 1N5660A 1N5661 1N5661A 1N5662 1N5662A 1N5663 1N5663 1N5663A		1N6296A 1N6297 1N6297A 1N6298 1N6298A 1N6299 1N6299A 1N6300 1N6300A 1N6301 1N6301A 1N6301A	4-59 4-59 4-59 4-59 4-59 4-59 4-59 4-59	1N5857 1N5858 1N5859 1N5860 1N5861 1N5862 1N5863 1N5864 1N5865 1N5866 1N5867 1N5868		1N5241A 1N759 1N964A 1N5244A 1N965A 1N966A 1N5247A 1N967A 1N5249A 1N968A 1N969A 1N970A	4-40 4-4 4-40 4-4 4-40 4-40 4-40 4-4 4-4
1N5664A 1N5665 1N5665A 1N5728 1N5729 1N5730 1N5731 1N5732B 1N5733B 1N5734B 1N5734B 1N5735B		1N6302A 1N6303 1N6303A 1N5230B 1N5231B 1N5232B 1N5234B 1N5235B 1N5236B 1N5236B 1N5237B 1N5239B 1N5240B	4-59 4-59 4-59 4-40 4-40 4-40 4-40 4-40 4-40 4-40 4-4	1N5869 1N5870 1N5871 1N5872 1N5873 1N5874 1N5875 1N5876 1N5877 1N5878 1N5879 1N5889		1N5253A 1N971A 1N5255A 1N972A 1N973A 1N974A 1N975A 1N976A 1N977A 1N978A 1N978A 1N979A	4-40 4-4 4-4 4-4 4-4 4-4 4-4 4-4 4-4 4-4
1N5738B 1N5739B 1N5740B 1N5741B 1N5742B 1N5743B 1N5744B 1N5745B 1N5746B 1N5746B 1N5747B		1N5242B 1N5243B 1N5245B 1N5246B 1N5248B 1N5250B 1N5251B 1N5252B 1N5254B 1N5256B 1N5256B 1N5256B 1N5257B 1N5257B	4-40 4-40 4-40 4-40 4-40 4-40 4-40 4-40	1N5881 1N5882 1N5883 1N5884 1N5885 1N5886 1N5887 1N5888 1N5889 1N5899 1N5891 1N5891		1N980A 1N981A 1N982A 1N983A 1N5269A 1N985A 1N985A 1N986A 1N987A 1N988A 1N5275A 1N989A	4-4 4-4 4-4 4-40 4-4 4-4 4-4 4-4 4-4 4-4
1N5750 1N5751 1N5752 1N5753 1N5837 1N5838 1N5839 1N5840 1N5841 1N5841 1N5842 1N5843 1N5844		1N5259B 1N5260B 1N5261B 1N5262B 1N4370 1N5222A 1N4371 1N5224A 1N4372 1N746 1N747 1N748	4-40 4-40 4-40 4-4 4-4 4-4 4-4 4-4 4-4 4	1N5893 1N5894 1N5895 1N5896 1N5897 1N5908 1N5913 1N5913A 1N5913B 1N5914 1N59144 1N5914B	1N5908 1N5913A 1N5913A 1N5913B 1N5914A 1N5914A 1N5914B	1N990A 1N5278A 1N991A 1N5280A 1N992A	4-4 4-40 4-4 4-40 4-59 4-65 4-65 4-65 4-65 4-65 4-65
1N5845 1N5846 1N5847 1N5848 1N5849 1N5850 1N5851 1N5852 1N5853 1N5854 1N5855 1N5856		1N749 1N750 1N751 1N752 1N752 1N5233A 1N753 1N754 1N755 1N756 1N5238A 1N757 1N758	4-4 4-4 4-4 4-4 4-4 4-4 4-4 4-4 4-4 4-4	1N5915 1N5915A 1N5915B 1N5916 1N5916A 1N5916B 1N5917 1N5917A 1N5917B 1N5918 1N5918A 1N5918B	1N5915A 1N5915A 1N5915B 1N5916A 1N5916A 1N5916B 1N5917A 1N5917A 1N5917B 1N5918A 1N5918A 1N5918B		4-65 4-65 4-65 4-65 4-65 4-65 4-65 4-65

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
1N5919 1N5919A 1N5919B 1N5920 1N5920A 1N5920B 1N5921 1N5921A 1N5921B 1N5922B 1N5922A 1N5922B	1N5919A 1N5919A 1N5919B 1N5920A 1N5920A 1N5920B 1N5921A 1N5921A 1N5921B 1N5922B		4-65 4-65 4-65 4-65 4-65 4-65 4-65 4-65	1N5939 1N5939A 1N5939B 1N5940 1N5940A 1N5940B 1N5941 1N5941A 1N5941B 1N5942 1N5942A 1N5942B	1N5939A 1N5939A 1N5939B 1N5940A 1N5940A 1N5940B 1N5941A 1N5941A 1N5941B 1N5942A 1N5942A 1N5942B		4-65 4-65 4-65 4-65 4-65 4-65 4-65 4-65
1N5923 1N5923A 1N5923B 1N5924 1N5924A 1N5924B 1N5925 1N5925A 1N5925A 1N5925B 1N5926 1N5926A 1N5926B	1N5923A 1N5923A 1N5923B 1N5924A 1N5924A 1N5924B 1N5925A 1N5925A 1N5925B 1N5926A 1N5926A 1N5926A 1N5926B		4-65 4-65 4-65 4-65 4-65 4-65 4-65 4-65	1N5943 1N5943A 1N5943B 1N5944 1N5944A 1N5944B 1N5945 1N5945A 1N5945A 1N5946A 1N5946A	1N5943A 1N5943A 1N5943B 1N5944A 1N5944A 1N5944B 1N5945A 1N5945A 1N5945B 1N5946A 1N5946A 1N5946B		4-65 4-65 4-65 4-65 4-65 4-65 4-65 4-65
1N5927 1N5927A 1N5927B 1N5928 1N5928A 1N5928B 1N5929 1N5929A 1N5929A 1N5929B 1N5930 1N5930A 1N5930B	1N5927A 1N5927A 1N5927B 1N5928A 1N5928A 1N5928B 1N5929A 1N5929A 1N5929B 1N5930A 1N5930A 1N5930B		4-65 4-65 4-65 4-65 4-65 4-65 4-65 4-65	1N5947 1N5947A 1N5947B 1N5948 1N5948A 1N5948B 1N5949 1N5949A 1N5949A 1N5950 1N5950	1N5947A 1N5947A 1N5947B 1N5948A 1N5948B 1N5949A 1N5949A 1N5949B 1N5950A 1N5950A 1N5950B		4-65 4-65 4-65 4-65 4-65 4-65 4-65 4-65
1N5931 1N5931A 1N5931B 1N5932 1N5932A 1N5932B 1N5933 1N5933A 1N5933B 1N5933B 1N5934 1N59344 1N5934B	1N5931A 1N5931A 1N5931B 1N5932A 1N5932A 1N5932B 1N5933A 1N5933A 1N5933B 1N5934A 1N5934A 1N5934B		4-65 4-65 4-65 4-65 4-65 4-65 4-65 4-65	1N5951 1N5951A 1N5951B 1N5952 1N5952A 1N5952B 1N5953 1N5953A 1N5953B 1N5954 1N59544	1N5951A 1N5951A 1N5951B 1N5952A 1N5952A 1N5952B 1N5953A 1N5953A 1N5953B 1N5954A 1N5954A 1N5954B		4-65 4-65 4-65 4-65 4-65 4-65 4-65 4-65
1N5935 1N5935A 1N5935B 1N5936 1N5936A 1N5937 1N5937 1N5937B 1N5937B 1N5938 1N5938A	1N5935A 1N5935A 1N5935B 1N5936A 1N5936A 1N5936B 1N5937A 1N5937A 1N5937B 1N5937B 1N5938A 1N5938A		4-65 4-65 4-65 4-65 4-65 4-65 4-65 4-65	1N5955 1N5955A 1N5955B 1N5956 1N5956A 1N5956B 1N5985A 1N5985B 1N5986A 1N5986B 1N5987A 1N5987B	1 N5955A 1 N5955A 1 N5955B 1 N5956A 1 N5956A 1 N5956B 1 N5985A 1 N5985B 1 N5986A 1 N5986B 1 N5987A 1 N5987B		4-65 4-65 4-65 4-65 4-65 4-68 4-68 4-68 4-68 4-68 4-68

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
1N5988A 1N5988B 1N5989A 1N5989B 1N5990A 1N5990B 1N5991A 1N5991B 1N5992A 1N5992B 1N5993A 1N5993B	1N5988A 1N5988B 1N5989A 1N5989B 1N5990A 1N5990B 1N5991A 1N5991B 1N5992A 1N5992B 1N5993A 1N5993B		4-68 4-68 4-68 4-68 4-68 4-68 4-68 4-68	1N6018 1N6018A 1N6018B 1N6019 1N6019A 1N6019B 1N6020 1N6020A 1N6020B 1N6021A 1N6021A	1N6018A 1N6018A 1N6018B 1N6019A 1N6019A 1N6019B 1N6020A 1N6020A 1N6020B 1N6021A 1N6021A 1N6021B		4-68 4-68 4-68 4-68 4-68 4-68 4-68 4-68
1N5994A 1N5994B 1N5995A 1N5995B 1N5996B 1N5996B 1N5997A 1N5997B 1N5998A 1N5998B 1N5999A 1N5999B	1N5994A 1N5994B 1N5995A 1N5995B 1N5996A 1N5996B 1N5997A 1N5997B 1N5998A 1N5998B 1N5999A 1N5999B		4-68 4-68 4-68 4-68 4-68 4-68 4-68 4-68	1N6022 1N6022A 1N6022B 1N6023 1N6023A 1N6023B 1N6024 1N6024A 1N6024A 1N6024B 1N6025 1N6025A	1N6022A 1N6022B 1N6023A 1N6023A 1N6023B 1N6024A 1N6024A 1N6024B 1N6025A 1N6025A 1N6025B		4-68 4-68 4-68 4-68 4-68 4-68 4-68 4-68
1N6000A 1N6000B 1N6001A 1N6001B 1N6002A 1N6002B 1N6003A 1N6003B 1N6004A 1N6004B 1N6005A 1N6005B	1N6000A 1N6000B 1N6001A 1N6001B 1N6002A 1N6002B 1N6003A 1N6003B 1N6004A 1N6004B 1N6005A 1N6005B		4-68 4-68 4-68 4-68 4-68 4-68 4-68 4-68	1N6267 1N6267A 1N6268 1N6268A 1N6269 1N6269A 1N6270 1N6270A 1N6271A 1N6271A 1N6272 1N6272	1N6267 1N6267A 1N6268 1N6268A 1N6269 1N6269A 1N6270 1N6270A 1N6271A 1N6271A 1N6271A 1N6272 1N6272A		4-59 4-59 4-59 4-59 4-59 4-59 4-59 4-59
1N6006A 1N6006B 1N6007A 1N6007B 1N6008A 1N6008B 1N6009A 1N6009B 1N6010A 1N6010B 1N6011A 1N6011B	1N6006A 1N6006B 1N6007A 1N6007B 1N6008A 1N6008B 1N6009A 1N6009B 1N6010A 1N6010B 1N6011A 1N6011B		4-68 4-68 4-68 4-68 4-68 4-68 4-68 4-68	1N6273 1N6273A 1N6274 1N6274 1N6275 1N6275 1N6275A 1N6276 1N6276 1N6277 1N6277A 1N62778 1N6278	1N6273 1N6273A 1N6274 1N6274 1N6275 1N6275A 1N6276 1N6276 1N6277 1N6277A 1N6277A 1N62778		4-59 4-59 4-59 4-59 4-59 4-59 4-59 4-59
1N6012A 1N6012B 1N6013A 1N6013B 1N6014A 1N6014B 1N6015A 1N6015B 1N6016A 1N6016B 1N6017A 1N6017B	1N6012A 1N6012B 1N6013A 1N6013B 1N6014A 1N6014B 1N6015A 1N6015B 1N6016A 1N6016B 1N6017A 1N6017B		4-68 4-68 4-68 4-68 4-68 4-68 4-68 4-68	1N6279 1N6279A 1N6280 1N6280A 1N6281 1N6281A 1N6282 1N6282A 1N6283 1N6283A 1N6284 1N6284A	1N6279 1N6279A 1N6280 1N6280A 1N6281 1N6281A 1N6282 1N6282A 1N6283 1N6283A 1N6284A		4-59 4-59 4-59 4-59 4-59 4-59 4-59 4-59

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
1N6285 1N6285A 1N6286 1N6286A 1N6287 1N6287 1N6288 1N6288 1N6288 1N6289 1N6289A 1N6290 1N6290A	1N6285 1N6285A 1N6286 1N6286A 1N6287 1N6287 1N6288 1N6288 1N6288 1N6289 1N6289A 1N6290 1N6290A		4-59 4-59 4-59 4-59 4-59 4-59 4-59 4-59	1\$7030A 1\$7160 1\$7160A 1\$7160A 1\$7160A 1\$7160 3\$E23.9D5 3\$E24.3D5 3\$E24.7D5 3\$E25.1D5 3\$E25.6D5 3\$E26.8D5	1N5913B 1N5246A 1N5246B 3EZ3.9D5 3EZ4.3D5 3EZ4.7D5 3EZ5.1D5 3EZ5.6D5 3EZ6.2D5 3EZ6.8D5	1N4764 1N4734	4-65 4-40 4-40 4-36 4-36 4-71 4-71 4-71 4-71 4-71 4-71 4-71
1N6291 1N6291A 1N6292 1N6292A 1N6293 1N6293A 1N6294 1N6294A 1N6295 1N6295A 1N6296	1N6291 1N6291A 1N6292 1N6292A 1N6293 1N6293A 1N6294 1N6294A 1N6295 1N6295A 1N6296		4-59 4-59 4-59 4-59 4-59 4-59 4-59 4-59	3EZ7.5D5 3EZ8.2D5 3EZ9.1D5 3EZ10D5 3EZ11D5 3EZ12D5 3EZ13D5 3EZ14D5 3EZ15D5 3EZ16D5 3EZ16D5 3EZ16D5 3EZ17D5 3EZ16D5	3EZ7.5D5 3EZ8.2D5 3EZ9.1D5 3EZ10D5 3EZ11D5 3EZ12D5 3EZ12D5 3EZ14D5 3EZ14D5 3EZ15D5 3EZ15D5 3EZ15D5 3EZ15D5 3EZ15D5 3EZ17D5 3EZ17D5		4-71 4-71 4-71 4-71 4-71 4-71 4-71 4-71
1N6297 1N6297A 1N6298 1N6298A 1N6299 1N6299A 1N6300 1N6300A 1N6301A 1N6301A 1N6301A 1N6302	1N6297 1N6297A 1N6298 1N6298A 1N6299 1N6299A 1N6300 1N6300A 1N6301A 1N6301A 1N6301A 1N6302		4-59 4-59 4-59 4-59 4-59 4-59 4-59 4-59	3EZ19D5 3EZ20D5 3EZ22D5 3EZ24D5 3EZ27D5 3EZ28D5 3EZ30D5 3EZ30D5 3EZ36D5 3EZ36D5 3EZ39D5 3EZ43D5 3EZ43D5 3EZ47D5	3EZ19D5 3EZ20D5 3EZ22D5 3EZ24D5 3EZ27D5 3EZ28D5 3EZ38D5 3EZ30D5 3EZ33D5 3EZ39D5 3EZ39D5 3EZ47D5		4-71 4-71 4-71 4-71 4-71 4-71 4-71 4-71
1N6303 1N6303A 1N6373 1N6374 1N6375 1N6376 1N6377 1N6378 1N6379 1N6380 1N6381 1N6382	1N6303 1N6303A 1N6373 1N6374 1N6375 1N6376 1N6377 1N6378 1N6379 1N6380 1N6381 1N6381		4-59 4-59 4-59 4-59 4-59 4-59 4-59 4-59	3EZ51D5 3EZ56D5 3EZ62D5 3EZ68D5 3EZ75D5 3EZ82D5 3EZ91D5 3EZ100D5 3EZ110D5 3EZ120D5 3EZ120D5 3EZ120D5 3EZ140D5	3EZ51D5 3EZ56D5 3EZ62D5 3EZ68D5 3EZ75D5 3EZ82D5 3EZ91D5 3EZ100D5 3EZ110D5 3EZ120D5 3EZ120D5 3EZ140D5 3EZ140D5		4-71 4-71 4-71 4-71 4-71 4-71 4-71 4-71
1N6383 1N6384 1N6385 1N6386 1N6387 1N6388 1N6389 1S2030 1S2030A 1S2160 1S2160A 1S7030	1N6383 1N6384 1N6385 1N6386 1N6387 1N6388 1N6389 1N5226A 1N5226A 1N5226B 1N5246A 1N5246B 1N5913A		4-59 4-59 4-59 4-59 4-59 4-59 4-40 4-40 4-40 4-65	3EZ150D5 3EZ160D5 3EZ170D5 3EZ180D5 3EZ190D5 3EZ200D5 5Z5338 5Z5364 BZX84C3V3 BZX84C4V3 COD16041 COD16042	3EZ150D5 3EZ160D5 3EZ170D5 3EZ180D5 3EZ190D5 3EZ200D5 1N5338A 1N5364A	MMBZ5226B MMBZ5229B MZ2360 MZ2361	4-71 4-71 4-71 4-71 4-71 4-71 4-51 4-51 4-98 4-98 4-104

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
COD16045 COD16046 COD16049 COD16050 CD3100001 CD3100025 CD3112016 CD3112032 CD3168 CD3174 CL1020 CL1520	1N5262A 1N5268A	MZ2360 MZ2361 MZ2360 MZ2361 1N4728 1N4753 1N4736 1N4752	4-104 4-104 4-104 4-104 4-36 4-36 4-36 4-36 4-40 4-40 4-47 4-47	MC6403 MC6404 MC6405 MC6406 MC6407 MC6424 MC6425 MCL1300 MCL1301 MCL1302 MCL1303 MCL1304	MCL1300 MCL1301 MCL1302 MCL1303 MCL1304	1N823 1N825 1N825 1N827 1N827 1N829 1N829	4-10 4-10 4-10 4-10 4-10 4-10 4-75 4-75 4-75 4-75 4-75
CL2210 CL2220 CL3310 CL3320 CL4710 CL4720 CL6810 ICT-5 ICT-8 ICT-10 ICT-12 ICT-12		1N5283 1N5306 1N5287 1N5310 1N5290 1N5314 1N5293 ICTE-5 ICTE-8 ICTE-10 ICTE-12 ICTE-15	4-47 4-47 4-47 4-47 4-47 4-47 4-59 4-59 4-59 4-59 4-59	MCT821 MCT821A MLL746 MLL746A MLL747 MLL747A MLL748A MLL748A MLL749 MLL749A MLL750 MLL750A	MLL746 MLL74747 MLL7477 MLL747A MLL748 MLL749A MLL749A MLL749A MLL750 MLL750A	1N821 1N821A	4-10 4-10 4-76 4-76 4-76 4-76 4-76 4-76 4-76 4-76
ICT-18 ICT-22 ICT-36 ICT-45 ICTE-5 ICTE-5 ICTE-10 ICTE-12 ICTE-15 ICTE-18 ICTE-18 ICTE-22 ICTE-36	ICTE-5 ICTE-8 ICTE-10 ICTE-12 ICTE-15 ICTE-18 ICTE-22 ICTE-36	ICTE-18 ICTE-22 ICTE-36 ICTE-45	4-59 4-59 4-59 4-59 4-59 4-59 4-59 4-59	MLL751 MLL751A MLL752A MLL752A MLL753A MLL753A MLL754 MLL7555 MLL7555 MLL7556 MLL756	MLL751 MLL751A MLL752A MLL752A MLL753A MLL753A MLL754 MLL755 MLL755 MLL755A MLL755A MLL756 MLL756		4-76 4-76 4-76 4-76 4-76 4-76 4-76 4-76
ICTE-45 LVA43 LVA43A LVA43B LVA43C LVA100 LVA100A LVA100B LVA100C LVA343 LVA343A LVA343A LVA343B	ICTE-45	1N5521A 1N5521B 1N5521C 1N5521D 1N5530A 1N5530B 1N5530C 1N5530C 1N5530D 1N5521A 1N5521B 1N5521B	4-59 4-55 4-55 4-55 4-55 4-55 4-55 4-55	MLL757 MLL757A MLL758A MLL758A MLL759 MLL759A MLL957A MLL957B MLL958A MLL958B MLL959A MLL959B	MLL757 MLL757A MLL758A MLL758A MLL7599 MLL759A MLL957A MLL957B MLL958A MLL958B MLL959A MLL959A		4-76 4-76 4-76 4-76 4-76 4-76 4-76 4-76
LVA343C LVA3100 LVA3100A LVA3100B LVA3100C MC6007 MC6007A MC6030 MC6030A MC6400 MC6401 MC6402	playity has an B	1N5521D 1N5530A 1N5530B 1N5530C 1N5530D 1N746 1N759 1N957A 1N977A 1N821 1N821 1N823	4-55 4-55 4-55 4-55 4-55 4-4 4-4 4-4 4-10 4-10 4-10	MLL960A MLL960B MLL961A MLL961B MLL962A MLL963A MLL963B MLL964A MLL964B MLL965A MLL965B	MLL960A MLL960B MLL961A MLL961B MLL962A MLL962B MLL963A MLL963B MLL964A MLL964B MLL965A MLL965A		4-76 4-76 4-76 4-76 4-76 4-76 4-76 4-76

Part Number Replacement Page # Part Number Replacement Page #	Industria	Motorola	Motorola Similar		Industri	Motorola Direct	Motorola Similar	
ML1966B ML1966B 4-76				Page #				Page #
ML1967A ML1967A ML1967A 4-76 ML14119 ML14119 4-91 ML1968A ML1968A ML1968A 4-76 ML14121 ML14121 4-91 ML1968B ML1968B 4-76 ML14122 ML14122 4-91 ML1969B ML1969B ML1969B 4-76 ML14123 ML14123 4-91 ML1970A ML1970A 4-76 ML14125 ML14125 4-91 ML1970A ML1970A ML1970A 4-76 ML14125 ML14126 4-91 ML1970B ML1970B ML1970B 4-76 ML14126 ML14126 4-91 ML1970A ML1970A ML1971A 4-76 ML14127 ML14127 4-91 ML1971A ML1971A ML1971A 4-76 ML14127 ML14127 4-91 ML1972A ML1972A 4-76 ML14128 ML14128 4-91 ML1972A ML1972A ML1972A 4-76 ML14129 ML14129 4-91 ML1973A ML1973A ML1973A 4-76 ML14129 ML14130 4-91 ML1973B ML1973B 4-76 ML14131 ML14131 4-91 ML1973A ML1973A ML1973A 4-76 ML14131 ML14131 4-91 ML1973A ML1973A ML1973A 4-76 ML14131 ML14131 4-91 ML1973A ML1973A ML1973A 4-76 ML14131 ML14131 4-91 ML1973B ML1973B 4-76 ML14131 ML14131 4-91 ML1977A ML1977A ML1977A 4-76 ML14131 ML14131 4-91 ML1977B ML1977A ML1977A 4-76 ML14131 ML14131 4-91 ML1977B ML1977A ML1977A 4-76 ML14137 ML14134 4-91 ML1977B ML1977A ML1977A 4-76 ML14137 ML14135 4-91 ML1977B ML1977A ML1977A 4-76 ML147370A ML14370A 4-76 ML1977B ML1977B ML1977B 4-76 ML1977B ML1977B ML1977A 4-76 ML147371 ML14371A 4-76 ML1977B ML1977								
MIL1967B MIL1967B MIL1967B MIL196BB MIL1970A MIL1970A 4-76 MIL1124 MIL14124 MIL1970B MIL1971B MIL1971B MIL1971B MIL1971B MIL1971B MIL1971B MIL1971B MIL1971B MIL1971B MIL1972B MIL1972B MIL1972B MIL1972B MIL1972B MIL1972B MIL1973A MIL1973A MIL1973A MIL1973A MIL1973A MIL1973B 4-76 MIL14133 MIL1973B MIL1973B MIL1973B 4-76 MIL1973B M								
MLI-988A MLI-988A 4-76 MLL4121 ML1-4121 4-811 MLI-989A MLI-989B MLI-989B MLI-989B MLI-989B MLI-989B MLI-970A MLI-970A MLI-970A MLI-970A MLI-970B 4-76 MLL4125 MLI-4126 4-811 MLI-970A MLI-970B 4-76 MLI-4125 MLI-4126 4-811 MLI-971A MLI-971A 4-76 MLI-4127 MLI-4127 4-811 MLI-971A MLI-971A 4-76 MLI-4127 MLI-4128 4-811 MLI-971A MLI-971A 4-76 MLI-4127 MLI-4128 4-811 MLI-971A MLI-971A 4-76 MLI-4127 MLI-4128 4-811 MLI-972B MLI-972B MLI-972B MLI-972B MLI-972B MLI-972B MLI-972B MLI-973B MLI-9								
MILS98B MILS98B 4-76 MILL122 MIL123 4-81 MILS98B MILS98B 4-76 MILL124 MILL123 4-81 MILS970B MILS970B 4-76 MILL126 MILL125 4-81 MILS970B MILS970B 4-76 MILL126 MILL126 4-81 MILS971B MILS971B 4-76 MILL126 MILL127 4-81 MILS971B MILS971B 4-76 MILL128 MILL127 4-81 MILS971B MILS972A 4-76 MILL128 MILL128 4-81 MILS972A MILS972A 4-76 MILL129 MILL130 4-81 MILS973A MILS973A 4-76 MILL131 MILL131 4-81 MILS973A MILS973A 4-76 MILL131 MILL132 4-81 MILS973A MILS973A 4-76 MILL133 MILL133 4-81 MILS973A MILS973A 4-76 MILL135 MILL135 4-81 MILS973A MILS975A 4-76 MILL135 MILL135 4-81 MILS975A MILS975A 4-76 MILL135 MILL135 4-81 MILS976A MILS976A 4-76 MILL1370A MILL1370A 4-76 MILS976A MILS976A 4-76 MILL1370A MILL1370A 4-76 MILS977A MILS977A 4-76 MILL1371A MILL1371A 4-76 MILS977A MILS977A 4-76 MILL1371A MILL1371A 4-76 MILS978B MILS978B 4-76 MILL1371A MILL1371A 4-76 MILS978B MILS978B 4-76 MILL1616 MILL1616 4-81 MILS978B MILS978B 4-76 MILL1617 MIL1617 4-81 MILS978B MILS978B 4-76 MILL1617 MIL1617 4-81 MILS98B MILS98B MILS98B 4-76 MILL1620 MILL1619 4-81 MILS98B MILS98B MILS98B 4-76 MILL1620 MILL1619 4-81 MILS98B MIL								
MLIS99A MLIS99A MLIS9BA 4-76 MLI-123 MLI-123 MLI-124 4-81 MLI-1270A MLIS970B 4-76 MLI-125 MLI-126 MLI-126 MLI-1270B MLI-1270B MLI-1270B MLI-1270B MLI-1270B MLI-1270B MLI-1271A MLI-1272A MLI-1272A MLI-1272A MLI-1272B MLI-1272B MLI-1272B MLI-1272B MLI-1272B MLI-1272B MLI-1272B MLI-1272B MLI-1273B ML								
ML1970A ML1970A ML1970B ML1970B ML1970B ML1971B ML1971B ML1971B ML1971B ML1971B ML1971B ML1971B ML1971B ML1972B ML1972B ML1972B ML1972B ML1973B ML1975B ML1975B ML1975B ML1975B ML1975B ML1976B ML1976B ML1977B ML1979B ML19								
MLL970B MLL970B MLL971B MLL971B MLL971B MLL971B MLL971B MLL971B MLL971B MLL972A 4-76 MLL412C MLL412C MLL412C 4-81 MLL972B MLL972B 4-76 MLL412B MLL412B MLL412B MLL972B 4-76 MLL4130 MLL4130 MLL973B MLL975A MLL975A MLL975B ML1975B ML143S MLL413S ML1413S ML1413S ML1413S ML1975A ML1975B ML1975B ML1975B ML1975B ML1975B ML1475B ML1475B ML1477B ML1477D								
MLI971A ML1971A ML1971A ML1971B ML197B ML1472B ML1412B ML1972B ML1973A 4-76 ML14131 ML14131 ML14131 ML14131 ML14131 ML1413B ML1973B ML1973B ML1974A 4-76 ML1413B ML1413B ML1413B ML1974B ML1974B ML1975B ML1975B ML1975B ML1975B ML1975B ML1975B ML1976B ML1976B ML1976B ML1976B ML1976B ML1977B ML1979B M								
MLL971B MLL972B 4-76 MLL4128 MLL4128 4-81								
MIL1972A MIL1972B MIL1972B MIL1972B MIL1973A MIL1973A MIL1973A MIL1973A MIL1973A MIL1973A MIL1973A MIL1973A MIL1973B MIL1973A MIL1973A MIL1973A MIL1973B MIL1974A MIL1974A MIL1974A MIL1974A MIL1974B MIL1974B MIL1975A MIL1975A MIL1975A MIL1975A MIL1975B MIL1975A MIL1975B MIL1975B MIL1975B MIL1975B MIL1975B MIL1975B MIL1975B MIL1976B MIL1976B MIL1976B MIL1976B MIL1976B MIL1976B MIL1976B MIL1976B MIL1976B MIL1977B MIL1977A MIL1977A MIL1977A MIL1977A MIL1977A MIL1977B MIL1978B MIL1978A MIL1978B MIL1978B MIL1978B MIL1978B MIL1978B MIL1980A MIL1980A MIL1980A MIL1980A MIL1980A MIL1980A MIL1980B								
ML1972B				1		1		
ML1973A ML1973B ML1973B ML1973B ML1973B ML1973B ML1973B ML1973B ML1973B ML1974A ML1974A ML1974A ML1974A ML1974B ML1974B ML1975A ML1975A ML1975A ML1975A ML1975B ML1975B ML1975B ML1975B ML1976A ML1976A ML1976A ML1976A ML1976A ML1976A ML1976A ML1976A ML1976A ML1976B ML1976A ML1976A ML1976A ML1977A ML1977A ML1977A ML1977A ML1977A ML1977A ML1977B ML1977B ML1977B ML1977B ML1977B ML1977B ML1977B ML1977B ML1977B ML1978B ML1979B ML1979B ML1979B ML1979B ML1979B ML1979B ML1979B ML1979B ML1979B ML1980A ML1980A ML1980A ML1980A ML1980A ML1980A ML1980B ML19								
ML1973B							·	
ML1974B	MLL973B							
ML1975A								
ML1975B ML1976A 4-76 ML14370A ML14370A 4-76 ML1976B ML1976B 4-76 ML14370A ML14370A 4-76 ML1977A ML1977B 4-76 ML14371A ML14371A 4-76 ML1977B ML1977B 4-76 ML14371A ML14372A ML14372A 4-76 ML1978A ML1978B 4-76 ML14372A ML14372A 4-76 ML1978B 4-76 ML14615 ML14615 4-81 ML1979B 4-76 ML14615 ML14615 4-81 ML1979B 4-76 ML14616 ML14615 4-81 ML1979B 4-76 ML14616 ML14615 4-81 ML1980B 4-76 ML14616 ML14616 4-81 ML1980B 4-76 ML14617 ML14617 4-81 ML1981B 4-76 ML14618 ML14618 4-81 ML1981B 4-76 ML14621 ML14619 4-81 ML1982B ML1622 ML14622								
ML1976A ML1976B ML1976B A-76 ML14371A ML14371A ML14377A ML1977B ML1978A ML14372A ML14372A ML14372A A-76 ML14372A ML14372A ML14372A A-76 ML1978B ML1978B ML1978B ML1978B ML1978B ML1978B ML1978B ML1979B ML1979B ML1979B ML1979B ML1979B ML1980A ML180A ML180A ML180A ML180A ML180A ML180B ML1980A ML1980A ML1980A ML1980A ML1980B ML1980B ML1981A ML180B ML1481B ML1481B ML1481B ML181B ML181B ML181B ML180B ML1982A ML180B ML1462D ML1462D ML1462D ML180B ML1982B ML1982B ML1982B ML1982B ML1982B ML1982B ML1983B ML1984B ML1985A ML1985A ML1985B ML1986B								
ML1976B ML1976B 4-76 ML14371 ML14371A 4-76 ML1977B ML1977B 4-76 ML14371A ML14371A 4-76 ML14977B ML1977B 4-76 ML14372A ML14372A 4-76 ML14978B ML1978B 4-76 ML14614 ML14614 4-81 ML1978A ML1979A 4-76 ML14616 ML14615 4-81 ML1979B ML1979B ML1979B 4-76 ML14616 ML14615 4-81 ML1980A ML1980A 4-76 ML14616 ML14616 4-81 ML1980B ML1980B 4-76 ML14616 ML14618 ML14618 4-81 ML1981A ML1981B 4-76 ML14619 ML14618 ML14618 4-81 ML1981B ML1982A ML1982B ML1982B ML1982B ML1982B ML1982B ML1983B ML1984A 4-76 ML14624 ML14624 4-81 ML1984B								
MLL977B MLL977B 4-76 MLL4371A MLL4372A 4-76 MLL97B MLL97B 4-76 MLL4372A MLL4372A 4-76 MLL97BA MLL97BB 4-76 MLL4614 MLL4372A 4-76 MLL97BB MLL97BB 4-76 MLL4615 4-81 MLL97BB MLL97BB 4-76 MLL4615 4-81 MLL97BB MLL97BB 4-76 MLL4615 4-81 MLL98DA ML198DA 4-76 MLL4615 ML4616 4-81 MLL98DA ML198DA 4-76 MLL4617 ML4616 4-81 ML198DA ML198DA 4-76 ML14618 ML14617 4-81 ML198DA ML198DA 4-76 ML14618 ML14619 4-81 ML1981B 4-76 ML14620 ML14620 4-81 ML1982B ML1982BA 4-76 ML14622 ML14621 4-81 ML1982B ML1982BA 4-76 ML14622 ML14621 4-81 M								
MIL1978A MIL1978B MIL1978B MIL1978B MIL1978B MIL1979B MIL1979A 4-76 MIL14615 MIL14615 MIL14615 MIL14615 MIL14615 MIL14615 MIL14615 MIL14616 MIL14617 4-81 MIL1980A MIL1980B MIL1980B 4-76 MIL14618 MIL14618 MIL14618 MIL14818 MIL1981A MIL1981A MIL1981A MIL1981B M-76 MIL14619 MIL14619 MIL14619 4-81 MIL1982B MIL1982B 4-76 MIL14620 MIL14620 4-81 MIL1982B MIL1982B MIL1982B MIL1982B MIL1983A MIL1983A MIL1983A MIL1983A MIL1983B MIL1984B MIL1984B MIL1984B MIL1984B MIL1984B MIL1984B MIL1984B MIL1984B MIL1984B MIL1985B MIL1985B MIL1986B MIL1								
MLL978B MLL978B 4-76 MLL4614 MLL4615 4-81 MLL979B MLL979B 4-76 MLL4616 MLL4616 4-81 MLL980A MLL980B 4-76 MLL4617 MLL4617 4-81 MLL980B MLL980B 4-76 MLL4618 MLL4618 4-81 MLL981B MLL981B 4-76 MLL4619 MLL4619 4-81 MLL981B 4-76 MLL4621 ML4621 4-81 MLL982B MLL982B 4-76 MLL4621 ML4621 4-81 MLL982B ML1982B 4-76 ML14622 ML4621 4-81 MLL983B ML1983A 4-76 ML14622 ML4622 4-81 ML1983B ML983B 4-76 ML14623 ML4624 4-81 ML1983B ML1983B 4-76 ML14625 ML4624 4-81 ML1984A ML1984A 4-76 ML14625 ML4625 4-81 ML1985B ML1985B 4-76 ML14625 ML4	MLL977B	MLL977B		4-76	MLL4372	MLL4372A		1
MIL1979A MIL1979B MIL1979B MIL1979B MIL1980A MIL1980A MIL1980A MIL1980A MIL1980B MIL1980B MIL1980B MIL1980B MIL1980B MIL1981B MIL1981B MIL1981B MIL1981B MIL1981B MIL1981B MIL1982A MIL1982A MIL1982B MIL1982B MIL1982B MIL1982B MIL1983A MIL1983A MIL1983B MIL1984B MIL1984B MIL1985B MIL1985B MIL1986B MIL1988B MIL1988B MIL1988B MIL1988B MIL1988B MIL1988B MIL1988B MIL1988B								
MIL1978B MIL1978B 4-76 MIL14616 MIL14616 4-81 MIL1980A MIL1980B 4-76 MIL14618 MIL14618 MIL14618 MIL1981A MIL1981A 4-76 MIL14618 MIL14618 MIL14618 MIL1481B MIL1981B MIL1981B 4-76 MIL14619 MIL14619 4-81 MIL1982A MIL1982A 4-76 MIL14620 MIL14621 4-81 MIL1982B MIL1982B 4-76 MIL14621 MIL14621 4-81 MIL1982B MIL1982B 4-76 MIL14622 MIL14622 4-81 MIL1983A MIL1983A 4-76 MIL14623 MIL14624 4-81 MIL1983B MIL1983B 4-76 MIL14624 MIL14624 4-81 MIL1984A MIL1984B MIL1984B 4-76 MIL14625 MIL14626 4-81 MIL1985B MIL1985B MIL1985B MIL1985B MIL1985B MIL1985B MIL1985B MIL1986B 4-76 MIL14678 MIL14678 4-85 MIL1400 MIL1400 4-81 MIL14681 MIL14681 4-85 MIL1400 MIL14100 MIL14100 4-81 MIL14682 MIL14683 MIL14683 4-85 MIL14102 MIL14102 MIL14102 4-81 MIL14685 MIL14686 4-85 MIL14104 MIL14105 MIL14105 MIL14105 MIL14105 MIL14106 MIL14106 MIL14106 MIL14107 MIL14107 MIL14107 MIL14107 MIL14107 MIL14107 MIL14108 MIL14108 MIL14689 MIL14688 MIL14689 MIL14689 MIL14689 MIL14689 MIL14689 MIL14689 MIL14689 MIL14689 MIL14689 MIL14109 MIL141								
MIL1880A MIL1880B MIL1880B MIL1880B MIL1880B MIL1880B MIL1881B MIL1881B MIL1881B MIL1881B MIL1881B MIL1881B MIL1881B MIL1882A MIL1882A MIL1882A MIL1882B MIL1882B MIL1882B MIL1882B MIL1883B MIL18623 MIL14623 MIL14623 4-81 MIL1893B MIL1883B 4-76 MIL14625 MIL14623 4-81 MIL14623 4-81 MIL1894B MIL1984B 4-76 MIL14625 MIL14625 4-81 MIL1895B MIL18626 MIL14627 MIL14627 4-81 MIL1895B MIL1896A 4-76 MIL14679 MIL								
MLL980B MLL981A MLL981A MLL981A ML1461B 4-81 MLL981B MLL981B 4-76 MLL4619 MLL4619 4-81 MLL982A ML1982B 4-76 MLL4620 4-81 MLL982B ML1982B 4-76 ML4621 ML4621 4-81 MLL983B ML1983A 4-76 ML4623 ML4623 4-81 MLL983B ML1983B 4-76 ML4623 ML4624 4-81 MLL983B ML1983B 4-76 ML4624 ML14624 4-81 ML1983B ML1983B 4-76 ML4625 ML14624 4-81 ML1984B 4-76 ML4625 ML14625 4-81 ML1985B ML1985B 4-76 ML4626 ML4626 4-81 ML1985B ML1985B 4-76 ML4627 ML4678 ML4679 4-85 ML1986B ML1986B 4-76 ML4679 ML4679 4-85 ML14099 ML41099 ML4108 ML4680 ML4680<		MLL980A						
MLL981B ML1982A 4-76 MLL4620 MLL4621 4-81 MLL982B ML1982B 4-76 MLL4621 MLL4622 4-81 MLL983A ML1983A 4-76 MLL4623 MLL4623 4-81 MLL983B ML1983B 4-76 MLL4624 MLL4623 4-81 MLL984A ML1984B 4-76 MLL4625 MLL4626 4-81 ML1985A ML1985A 4-76 MLL4627 MLL4626 4-81 ML1985B ML1985B 4-76 ML14627 ML14626 4-81 ML1985B ML1985B 4-76 ML14627 ML14626 4-81 ML1986A 4-76 ML14678 ML14678 4-85 ML1986B ML1986B 4-76 ML14679 ML14679 4-85 ML1986B ML14099 ML14680 ML14680 ML4680 4-85 ML14100 ML4100 4-81 ML14682 ML14681 4-85 ML24101 ML24101 4-81 ML24682	MLL980B	MLL980B			MLL4618	MLL4618		
MIL982A ML1982B 4-76 MLL4621 ML14621 4-81 MIL982B ML1983A ML1983A 4-76 MIL4622 MIL4623 4-81 MIL983B ML1983B ML1983B MIL4623 MIL4623 4-81 MIL983B ML1983B 4-76 MIL4624 MIL4623 4-81 MIL984A ML1984B 4-76 MIL4625 MIL4625 4-81 MIL985B ML1985A 4-76 MIL4626 MIL4627 4-81 MIL985B ML1985B 4-76 MIL4627 MIL4678 4-85 MIL1986A MIL986B 4-76 MIL4679 MIL4678 4-85 MIL1986B MIL986B 4-76 MIL4680 MIL4680 4-85 MIL4099 MIL4099 4-81 MIL4680 MIL4681 4-85 MIL4100 MIL4100 4-81 MIL4683 MIL4682 4-85 MIL4101 4-81 MIL4683 MIL4684 4-85 MIL4102 MIL4684 MIL4683							i	
MLL982B MLL983A 4-76 MLL4622 MLL4623 4-81 MLL983B MLL983B 4-76 MLL4623 ML4623 4-81 MLL984B MLL984B 4-76 MLL4624 MLL4624 4-81 MLL984B MLL984B 4-76 MLL4626 MLL4626 4-81 MLL985A ML1985B 4-76 MLL4678 MLL4627 4-81 ML1985B ML1985B 4-76 MLL4678 MLL4678 4-85 ML1986B ML1986B 4-76 MLL4678 MLL4679 4-85 ML1986B ML1986B 4-76 ML14678 ML14679 4-85 ML14099 ML14099 4-81 ML14680 ML14680 4-85 ML14100 ML4100 4-81 ML14681 ML4681 4-85 ML14101 ML4101 4-81 ML14682 ML4683 4-85 ML14101 ML14103 4-81 ML14682 ML4683 4-85 ML14102 ML14103 4-81 M								
MLL983A MLL983B 4-76 MLL4623 MLL4623 4-81 MLL984A MLL984B 4-76 MLL4625 MLL4625 4-81 MLL984B MLL984B 4-76 MLL4626 MLL4626 4-81 MLL985A MLL985A 4-76 MLL4627 ML4627 4-81 ML1985B ML1985B 4-76 MLL4678 MLL4678 4-85 ML1986A 4-76 MLL4679 MLL4679 4-85 ML1986B ML4680 ML4680 ML4680 4-85 ML1986B ML4099 ML4680 ML4681 4-85 ML4099 ML4100 ML4681 ML4681 4-85 ML14100 MLL4101 ML4682 ML4682 ML4681 ML4101 ML4101 4-81 ML4682 ML4683 4-85 ML4102 ML4102 4-81 ML4683 ML4683 4-85 ML4103 ML4103 4-81 ML4685 ML4685 4-85 ML4104 ML4686								
MLL983B MLL983B 4-76 MLL4624 MLL4624 4-81 MLL984A MLL984B 4-76 MLL4625 MLL4625 4-81 MLL985B MLL985A 4-76 MLL4626 MLL4627 4-81 MLL985B MLL985B 4-76 MLL4678 MLL4678 4-85 ML1986A ML1986B 4-76 MLL4679 MLL4679 4-85 ML1986B ML1986B 4-76 MLL4680 MLL4680 4-85 ML14099 ML4099 4-81 MLL4681 MLL4680 4-85 ML14100 ML14100 4-81 ML14682 ML14682 4-85 ML14101 ML14102 4-81 ML14683 ML14683 4-85 ML14102 ML14103 4-81 ML14683 ML14684 4-85 ML14103 ML14103 4-81 ML14685 ML14684 4-85 ML14104 ML14105 4-81 ML14686 ML14686 4-85 ML14106 ML14105 4-81								
MIL1984B ML1985A 4-76 MIL1626 MIL1627 4-81 MIL1985A ML1985B 4-76 MIL1678 MIL1678 4-81 MIL1986B ML1986A 4-76 MIL1679 MIL14679 4-85 MIL1986B MIL1986B 4-76 MIL1680 MIL14680 4-85 MIL1999 MIL100 4-81 MIL1681 MIL1681 4-85 MIL100 MIL1100 4-81 MIL1682 MIL1682 4-85 MIL101 MIL1100 4-81 MIL1682 MIL1682 4-85 MIL1101 MIL1100 4-81 MIL1683 MIL1682 4-85 MIL1102 MIL1100 4-81 MIL1683 MIL1683 4-85 MIL102 MIL1100 4-81 MIL1683 MIL1683 4-85 MIL102 MIL1103 4-81 MIL1684 4-85 MIL103 MIL1684 4-81 MIL1685 MIL1686 4-85 MIL104 MIL100 MIL1686 MIL1686	MLL983B	MLL983B		4-76		MLL4624	,	4-81
MLL985A MLL985B 4-76 MLL4627 MLL4678 4-81 MLL986B MLS985B 4-76 MLL4679 MLL4679 4-85 MLL986B MLL986B 4-76 MLL4680 ML4680 4-85 MLL4099 ML4099 4-81 MLL4681 ML4682 4-85 MLL4100 ML4100 4-81 MLL4682 ML4682 4-85 MLL4101 ML4101 4-81 ML4683 ML4682 4-85 MLL4102 ML4101 4-81 ML4683 ML4683 4-85 ML4102 ML4103 ML4684 ML4684 4-85 ML4103 ML4103 ML4684 ML4685 4-85 ML4104 ML4104 4-81 ML4685 ML4686 4-85 ML4104 ML4105 ML4686 ML4686 ML4686 4-85 ML4105 ML4105 ML4687 ML4687 ML4688 4-85 ML4106 ML4106 4-81 ML4687 ML4689 4-85								
MLL985B MLL986A MLL986A 4-76 MLL4678 MLL4679 4-85 MLL986B MLL986B 4-76 MLL4679 ML4679 4-85 MLL4099 ML4099 4-81 MLL4681 ML4681 4-85 MLL4100 ML4100 4-81 MLL4682 4-85 MLL4101 ML4101 4-81 ML4683 ML4683 4-85 MLL4102 ML4102 4-81 ML4683 ML4683 4-85 ML4102 ML4103 4-81 ML4684 ML4684 4-85 ML4103 ML4103 4-81 ML4685 ML4685 4-85 ML4104 ML4104 4-81 ML4686 ML4686 4-85 ML4105 ML4106 4-81 ML4687 ML4686 4-85 ML4105 ML4106 4-81 ML4687 ML4688 4-85 ML4106 ML4106 4-81 ML4688 ML4688 4-85 ML4107 ML4688 ML4689 ML4689 4-85<								
MLL986A MLL986B 4-76 MLL4679 MLL4680 4-85 MLL099B MLL4099 4-81 MLL4680 ML4680 4-85 MLL4100 ML4100 4-81 MLL4681 ML4682 4-85 MLL4101 ML4101 4-81 MLL4682 ML4682 4-85 MLL4102 ML4102 4-81 ML4683 ML4683 4-85 MLL4102 ML4103 4-81 ML4684 ML4684 4-85 ML4103 ML4103 4-81 ML4685 ML4685 4-85 ML4104 ML4104 4-81 ML4686 ML4686 4-85 ML4105 ML4105 4-81 ML4687 ML4686 4-85 ML4106 ML4106 4-81 ML4687 ML4688 4-85 ML4107 ML4688 ML4688 ML4689 4-85 ML4108 ML4108 ML4690 ML4690 4-85 ML4109 ML4690 ML4690 ML4691 4-85 ML4110 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
MLL986B MLL986B 4-76 MLL4680 MLL4681 4-85 MLL4099 4-81 MLL4681 MLL4681 4-85 MLL4100 MLL4100 4-81 MLL4682 MLL4682 4-85 MLL4101 MLL4101 ML4683 ML4683 4-85 MLL4102 ML4102 4-81 ML4683 ML4683 4-85 MLL4103 ML4103 4-81 ML4685 ML4685 4-85 MLL4104 ML4104 4-81 ML4685 ML4685 4-85 ML4105 ML4104 4-81 ML4686 ML4686 4-85 ML4105 ML4105 4-81 ML4687 ML4686 4-85 ML4106 ML4106 4-81 ML4687 ML4688 4-85 ML4107 ML4688 ML4688 ML4689 4-85 ML4108 ML4108 4-81 ML4689 ML4689 4-85 ML4109 ML4109 ML4691 ML4691 ML4691 4-85 ML4110								
MLL4100 MLL4100 4-81 MLL4682 MLL4683 4-85 MLL4101 ML4102 4-81 MLL4683 ML4683 4-85 MLL4102 ML4102 4-81 ML4684 ML4684 4-85 ML4103 ML4103 4-81 ML4685 ML4685 4-85 ML4104 ML4104 4-81 ML4685 ML4686 4-85 ML4105 ML4105 4-81 ML4686 ML4686 4-85 ML4105 ML4106 4-81 ML4687 ML4687 4-85 ML4106 ML4106 4-81 ML4688 ML4688 4-85 ML4107 ML4107 4-81 ML4689 ML4689 4-85 ML4108 ML4108 4-81 ML4699 ML4699 4-85 ML4109 ML4109 4-81 ML4691 ML4691 4-85 ML4110 ML4109 4-81 ML4691 ML4691 4-85 ML4110 ML4109 4-81 ML4692 ML4691	MLL986B	MLL986B		4-76	MLL4680	MLL4680		4-85
MIL4101 MLL4102 4-81 MIL4683 MLL4684 4-85 MIL4102 MLH4103 4-81 MIL4684 MIL4684 4-85 MIL4103 MIL4103 4-81 MIL4685 MIL4685 4-85 MIL4104 MIL4104 4-81 MIL4686 MIL4686 4-85 MIL4105 MIL4105 4-81 MIL4687 MIL4687 4-85 MIL4106 MIL4106 4-81 MIL4688 MIL4688 4-85 MIL4107 MIL4107 4-81 MIL4689 MIL4688 4-85 MIL4108 MIL4108 4-81 MIL4699 MIL4689 4-85 MIL4109 MIL4109 4-81 MIL4690 MIL4690 4-85 MIL4110 MIL4110 4-81 MIL4691 MIL4691 4-85 MIL4110 MIL4691 MIL4692 MIL4692 4-85 MIL4111 MIL4693 MIL4693 MIL4693 4-85 MIL4112 MIL4694 MIL4694 MIL4694 4-85								4-85
MLL4102 MLL4103 4-81 MLL4684 MLL4685 4-85 MLL4103 MLL4103 4-81 MLL4685 MLL4685 4-85 MLL4104 MLL4104 4-81 MLL4686 MLL4686 4-85 MLL4105 MLL4105 4-81 MLL4687 MLL4687 4-85 MLL4106 ML4106 4-81 MLL4688 MLL4688 4-85 MLL4107 MLL4107 4-81 MLL4689 MLL4688 4-85 MLL4108 ML4108 4-81 MLL4690 MLL4690 4-85 ML14109 ML14109 ML4691 ML4690 ML4691 4-85 ML14110 ML4110 4-81 ML14691 ML4691 4-85 ML14110 ML4111 4-81 ML14692 ML14692 4-85 ML14111 ML4111 4-81 ML14693 ML14693 4-85 ML14112 4-81 ML14694 ML4694 4-85 ML14113 4-81 ML14695 ML4695 4-8								
MLL4103 MLL4103 4-81 MLL4685 MLL4686 4-85 MLL4104 4-81 MLL4686 MLL4686 4-85 MLL4105 MLL4105 4-81 MLL4687 MLL4687 4-85 MLL4106 ML4106 4-81 MLL4688 MLL4688 4-85 MLL4107 MLL4107 4-81 MLL4689 MLL4689 4-85 MLL4108 ML4108 4-81 MLL4690 ML4690 4-85 ML14109 ML4109 4-81 ML4691 ML4691 4-85 ML14110 ML4110 4-81 ML4691 ML4691 4-85 ML24111 ML4111 4-81 ML4692 ML4692 4-85 ML4111 4-81 ML4693 ML4693 4-85 ML4111 4-81 ML4694 ML4694 4-85 ML4113 4-81 ML4695 ML4695 4-85 ML4114 4-81 ML4695 ML4696 4-85 ML4114 4-81 ML4695<								
MLL4104 MLL4105 MLL4105 4-81 MLL4686 MLL4687 MLL4687 4-85 MLL4106 MLL4106 4-81 MLL4688 MLL4688 4-85 MLL4107 MLL4107 4-81 MLL4689 MLL4689 4-85 MLL4108 ML4108 4-81 MLL4690 ML4690 4-85 ML24109 ML4109 4-81 ML4691 ML4691 4-85 ML24110 ML24109 4-81 ML24692 ML4691 4-85 ML24110 ML24110 4-81 ML24692 ML4692 4-85 ML24111 4-81 ML2693 ML2693 4-85 ML24112 4-81 ML2693 ML2694 4-85 ML2412 4-81 ML2695 ML2694 4-85 ML2413 4-81 ML2695 ML2695 4-85 ML2414 4-81 ML2696 ML2696 4-85 ML2415 ML2415 4-81 ML2697 ML2697 ML2697								
MLL4106 MLL4106 4-81 MLL4688 MLL4688 4-85 MLL4107 4-81 MLL4689 MLL4689 4-85 MLL4108 ML4108 4-81 MLL4690 ML4690 4-85 ML14109 ML4109 4-81 ML4691 ML4691 4-85 ML14110 4-81 ML4692 ML4692 4-85 ML14111 4-81 ML14692 ML4692 4-85 ML14111 4-81 ML14693 ML14693 4-85 ML14112 4-81 ML14694 ML4694 4-85 ML14113 ML4113 4-81 ML4695 ML4695 4-85 ML14114 ML4114 4-81 ML4696 ML4696 4-85 ML14115 4-81 ML4697 ML4697 4-85								
MLL4107 MLL4107 4-81 MLL4689 MLL4689 4-85 MLL4108 MLL4108 4-81 MLL4690 MLL4690 4-85 MLL4109 MLL4109 4-81 MLL4691 ML4691 4-85 MLL4110 ML4110 4-81 MLL4692 ML4692 4-85 MLL4111 ML4111 4-81 MLL4693 ML4693 4-85 ML4112 ML4112 4-81 ML4694 ML4694 4-85 ML4113 ML4113 4-81 ML4695 ML4695 4-85 ML4114 ML4114 4-81 ML4696 ML4696 4-85 ML4115 ML4115 4-81 ML4697 ML4697 4-85								
MLL4108 MLL4108 4-81 MLL4690 MLL4690 4-85 MLL4109 MLL4109 4-81 MLL4691 MLL4691 4-85 MLL4110 MLL4110 4-81 MLL4692 ML4692 4-85 MLL4111 ML4111 4-81 MLL4693 ML4693 4-85 ML4112 ML4112 4-81 ML4694 ML4694 4-85 ML4113 ML4113 4-81 ML4695 ML4695 4-85 ML4114 ML4114 4-81 ML4696 ML4696 4-85 ML4115 ML4115 4-81 ML4697 ML4697 4-85			}					
MLL4109 MLL4109 4-81 MLL4691 MLL4691 4-85 MLL4110 MLL4110 4-81 MLL4692 MLL4692 4-85 MLL4111 MLL4111 4-81 MLL4693 MLL4693 4-85 MLL4112 MLL4112 4-81 MLL4694 MLL4694 4-85 MLL4113 MLL4113 4-81 MLL4695 ML4695 4-85 MLL4114 MLL4114 4-81 MLL4696 ML4696 4-85 MLL4115 ML4115 4-81 MLL4697 ML4697 4-85								
MLL4111 MLL4111 4-81 MLL4693 MLL4693 4-85 MLL4112 MLA112 4-81 MLL4694 4-85 MLL4113 ML4113 4-81 MLL4695 ML4695 4-85 ML14114 ML14114 4-81 ML14696 ML4696 4-85 ML15 ML4115 4-81 ML14697 ML4697 4-85	MLL4109	MLL4109		4-81				4-85
MLL4112 MLL4112 4-81 MLL4694 MLL4694 4-85 MLL4113 MLL4113 4-81 MLL4695 MLL4695 4-85 MLL4114 MLL4114 4-81 MLL4696 MLL4696 4-85 MLL4115 4-81 MLL4697 MLL4697 4-85								
MLL4113 MLL4113 4-81 MLL4695 MLL4695 4-85 MLL4114 MLL4114 4-81 MLL4696 MLL4696 4-85 MLL4115 4-81 MLL4697 MLL4697 4-85							1	
MLL4114 MLL4114 4-81 MLL4696 MLL4696 4-85 MLL4115 4-81 MLL4697 MLL4697 4-85								
MLL4115 MLL4115 4-81 MLL4697 MLL4697 4-85								
	MLL4115							
MLL4116	MLL4116	MLL4116		4-81	MLL4698	MLL4698		4-85

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
MLL4699 MLL4700 MLL4701 MLL4702 MLL4703 MLL4704 MLL4705 MLL4706 MLL4707 MLL4708 MLL4709 MLL4709 MLL4710	MLL4699 MLL4700 MLL4701 MLL4702 MLL4703 MLL4704 MLL4705 MLL4706 MLL4707 MLL4707 MLL4708 MLL4709 MLL4709		4-85 4-85 4-85 4-85 4-85 4-85 4-85 4-85	MLL4748A MLL4749 MLL4749A MLL4750 MLL4750A MLL4751 MLL4751A MLL4752 MLL4752 MLL4752A MLL47533 MLL4753A	MLL4748A MLL4749 MLL4749A MLL4750 MLL4750A MLL4751A MLL4751A MLL4752 MLL4752 MLL4753 MLL4753 MLL4753A MLL4754		4-87 4-87 4-87 4-87 4-87 4-87 4-87 4-87
MLL4711 MLL4712 MLL4713 MLL4714 MLL4715 MLL4716 MLL4717 MLL4728 MLL4728 MLL4728 MLL4729 MLL4729 MLL4729A MLL4730	MLL4711 MLL4712 MLL4713 MLL4714 MLL4715 MLL4716 MLL4717 MLL4728 MLL4728 MLL4728 MLL4729 MLL4729 MLL4729A MLL4729A		4-85 4-85 4-85 4-85 4-85 4-85 4-87 4-87 4-87 4-87 4-87	MLL4754A MLL4755 MLL4755A MLL47566 MLL47576A MLL47577 MLL4757A MLL47588 MLL4758A MLL47599 MLL4759A MLL4760	MLL4754A MLL4755 MLL4755A MLL47566 MLL4756A MLL4757A MLL4757A MLL4758 MLL4758 MLL4759 MLL4759A MLL4759A		4-87 4-87 4-87 4-87 4-87 4-87 4-87 4-87
MLL4730A MLL4731 MLL4731A MLL4732 MLL4732A MLL4733A MLL4733A MLL4734A MLL4735A MLL4735A MLL4735A MLL4736	MLL4730A MLL4731 MLL4731A MLL4732 MLL4732A MLL4733A MLL4733A MLL4734A MLL4735A MLL4735A MLL4735A MLL4736		4-87 4-87 4-87 4-87 4-87 4-87 4-87 4-87	MLL4760A MLL4761 MLL4761A MLL4762A MLL4763A MLL4763A MLL4764 MLL4764A MLL5221 MLL5221A MLL5221B	MLL4760A MLL4761 MLL4761A MLL4762 MLL4763 MLL4763 MLL4764 MLL4764 MLL4764A MLL5221A MLL5221A		4-87 4-87 4-87 4-87 4-87 4-87 4-87 4-87
MLL4736A MLL4737 MLL4737A MLL4738 MLL4738A MLL4739 MLL4740 MLL4740 MLL4741 MLL4741A MLL4741A	MLL4736A MLL4737 MLL4737A MLL4738 MLL4738A MLL4739 MLL4739A MLL4740 MLL4740A MLL4741A MLL4741A		4-87 4-87 4-87 4-87 4-87 4-87 4-87 4-87	MLL5222 MLL5222A MLL5222B MLL5223 MLL5223A MLL5223B MLL5224A MLL5224A MLL5224A MLL5225 MLL5225	MLL5222A MLL5222B MLL5223A MLL5223A MLL5223B MLL5223B MLL5224A MLL5224A MLL5224B MLL5225A MLL5225A MLL5225B		4-92 4-92 4-92 4-92 4-92 4-92 4-92 4-92
MLL4742A MLL4743 MLL4744 MLL4744 MLL4745 MLL4745 MLL4746 MLL4746 MLL4746A MLL4747 MLL4747	MLL4742A MLL4743 MLL4743A MLL4744 MLL47445 MLL4745A MLL4745A MLL4746A MLL4746A MLL4747A MLL4747A MLL4747A		4-87 4-87 4-87 4-87 4-87 4-87 4-87 4-87	MLL5226 MLL5226A MLL5226B MLL5227 MLL5227A MLL5227B MLL5228 MLL5228A MLL5228B MLL5228B MLL5229A MLL5229A	MLL5226A MLL5226B MLL5227A MLL5227A MLL5227B MLL5227B MLL5228A MLL5228A MLL5228B MLL5229A MLL5229A MLL5229A		4-92 4-92 4-92 4-92 4-92 4-92 4-92 4-92

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
MLL5230 MLL5230A MLL5230B MLL5231 MLL5231A MLL5231B MLL5232 MLL5232A MLL5232A MLL5233A MLL5233A MLL5233B	MLL5230A MLL5230B MLL5231B MLL5231A MLL5231B MLL5232A MLL5232A MLL5232A MLL5232B MLL5233A MLL5233A MLL5233B		4-92 4-92 4-92 4-92 4-92 4-92 4-92 4-92	MLL5249 MLL5249A MLL5249B MLL5250 MLL5250A MLL5250B MLL5251 MLL5251A MLL5251B MLL5252 MLL5252B	MLL5249A MLL5249B MLL5249B MLL5250A MLL5250A MLL5251B MLL5251A MLL5251B MLL5251B MLL5252A MLL5252A MLL5252B		4-92 4-92 4-92 4-92 4-92 4-92 4-92 4-92
MLL5234 MLL5234A MLL5234B MLL52355 MLL5235A MLL5235B MLL5236A MLL5236A MLL5236B MLL5237 MLL5237 MLL5237A MLL5237B	MLL5234A MLL5234B MLL5235A MLL5235A MLL5235B MLL5236A MLL5236A MLL5236B MLL5237A MLL5237A MLL5237B		4-92 4-92 4-92 4-92 4-92 4-92 4-92 4-92	MLL5253 MLL5253A MLL5253B MLL5254 MLL5254A MLL5254B MLL52555 MLL5255A MLL5255B MLL5256B MLL5256A MLL5256A MLL5256B	MLL5253A MLL5253A MLL5253B MLL5254A MLL5254B MLL5255A MLL5255A MLL5255B MLL5256A MLL5256A MLL5256A MLL5256A		4-92 4-92 4-92 4-92 4-92 4-92 4-92 4-92
MLL5238 MLL5238A MLL5238B MLL52399 MLL5239B MLL52400 MLL5240A MLL5241A MLL5241A MLL5241B	MLL5238A MLL5238B MLL5239B MLL5239B MLL5239B MLL5240A MLL5240B MLL5241A MLL5241A MLL5241B		4-92 4-92 4-92 4-92 4-92 4-92 4-92 4-92	MLL5257 MLL5257A MLL5257B MLL5258B MLL5258B MLL5258B MLL5259A MLL5259A MLL5259B MLL52600 MLL5260A MLL5260A	MLL5257A MLL5257A MLL5257B MLL5258A MLL5258B MLL5259B MLL5259A MLL5259A MLL5259B MLL5260A MLL5260A MLL5260A		4-92 4-92 4-92 4-92 4-92 4-92 4-92 4-92
MLL5241 MLL5241A MLL5241B MLL5242 MLL5242A MLL5242B MLL5243A MLL5243A MLL5243B MLL5244 MLL5244A MLL5244A	MLL5241A MLL5241B MLL5242A MLL5242A MLL5242B MLL5243A MLL5243A MLL5243B MLL5244A MLL5244A MLL5244A		4-92 4-92 4-92 4-92 4-92 4-92 4-92 4-92	MLL5261 MLL5261A MLL5261B MLL5262 MLL5262A MLL5262B MLL5263 MLL5263A MLL5263A MLL5264A MLL5264A	MLL5261A MLL5261B MLL5262A MLL5262A MLL5262B MLL5263A MLL5263A MLL5263B MLL5264A MLL5264A MLL5264A		4-92 4-92 4-92 4-92 4-92 4-92 4-92 4-92
MLL5245 MLL5245A MLL5245B MLL5246 MLL5246A MLL5246B MLL5247 MLL5247A MLL5247B MLL5247B MLL5248 MLL5248	MLL5245A MLL5245B MLL5246A MLL5246A MLL5246B MLL5247A MLL5247A MLL5247B MLL5247B MLL5248A MLL5248A MLL5248B		4-92 4-92 4-92 4-92 4-92 4-92 4-92 4-92	MLL5265 MLL5265A MLL5265B MLL5266 MLL5266A MLL5266B MLL52677 MLL5267A MLL5267B MLL5268B MLL5268B	MLL5265A MLL5265B MLL5266A MLL5266A MLL5266A MLL5267A MLL5267A MLL5267B MLL5268A MLL5268A MLL5268B		4-92 4-92 4-92 4-92 4-92 4-92 4-92 4-92

Industry	Motorola Direct	Motorola Similar		Industry	Motorola Direct	Motorola Similar	
Part Number	Replacement	Replacement	Page #	Part Number	Replacement	Replacement	Page #
MLL5269 MLL5269A MLL5269B MLL5270 MLL5270A MLL5270B MLV746A MLV7474A MLV749A MLV749A MLV750A MLV751A	MLL5269A MLL5269A MLL5269B MLL5270A MLL5270A MLL5270B	1N746A 1N747A 1N748A 1N749A 1N750A 1N751A	4-92 4-92 4-92 4-92 4-92 4-4 4-4 4-4 4-4 4-4 4-4	MMBZ5244B MMBZ5245B MMBZ5246B MMBZ5246B MMBZ5247 MMBZ5247B MMBZ5247B MMBZ5248B MMBZ5248B MMBZ5249B MMBZ5249B	MMBZ5244B MMBZ5245B MMBZ5246B MMBZ5246B MMBZ5246B MMBZ5247B MMBZ5247B MMBZ5248B MMBZ5248B MMBZ5248B MMBZ5249B MMBZ5249B MMBZ5249B		4-98 4-98 4-98 4-98 4-98 4-98 4-98 4-98
MLV752A MLV753A MLV754A MLV755A MLV755A MLV757A MLV759A MLV759A MLV4371A MLV4371A MLV4372A MMBZ5226	MMBZ5226B	1N752A 1N753A 1N754A 1N755A 1N756A 1N757A 1N758A 1N759A 1N4370A 1N4371A 1N4372A	4-4 4-4 4-4 4-4 4-4 4-4 4-4 4-4 4-98	MMBZ5250B MMBZ5251 MMBZ5251B MMBZ5252B MMBZ5252B MMBZ5253B MMBZ5253B MMBZ5254 MMBZ5254B MMBZ5254B MMBZ5255B MMBZ5255B	MMBZ5250B MMBZ5251B MMBZ5251B MMBZ5252B MMBZ5252B MMBZ5253B MMBZ5253B MMBZ5254B MMBZ5254B MMBZ5254B MMBZ5255B MMBZ5256B		4-98 4-98 4-98 4-98 4-98 4-98 4-98 4-98
MMBZ5226B MMBZ5227 MMBZ5227B MMBZ5228 MMBZ5228 MMBZ5229 MMBZ5229B MMBZ5230 MMBZ5230B MMBZ5231B MMBZ5231B	MMBZ5226B MMBZ5227B MMBZ5227B MMBZ5228B MMBZ5228B MMBZ5229B MMBZ5229B MMBZ5230B MMBZ5230B MMBZ5231B MMBZ5231B MMBZ5231B		4-98 4-98 4-98 4-98 4-98 4-98 4-98 4-98	MMBZ5256B MMBZ5257 MMBZ5257B MPT-5 MPT-8 MPT-10 MPT-12 MPT-15 MPT-18 MPT-22 MPT-36 MPT-36	MMBZ5256B MMBZ5257B MMBZ5257B	MPTE-5 MPTE-8 MPTE-10 MPTE-12 MPTE-15 MPTE-18 MPTE-22 MPTE-36 MPTE-45	4-98 4-98 4-59 4-59 4-59 4-59 4-59 4-59 4-59 4-59
MMBZ5232B MMBZ5233 MMBZ5233B MMBZ5234 MMBZ5234B MMBZ5235 MMBZ5235B MMBZ5235B MMBZ5236B MMBZ5237B MMBZ5237B MMBZ5237B MMBZ5237B	MMBZ5232B MMBZ5233B MMBZ5233B MMBZ5234B MMBZ5234B MMBZ5235B MMBZ5235B MMBZ5236B MMBZ5236B MMBZ5237B MMBZ5237B MMBZ5237B MMBZ5237B		4-98 4-98 4-98 4-98 4-98 4-98 4-98 4-98	MPTE-5 MPTE-8 MPTE-10 MPTE-12 MPTE-15 MPTE-18 MPTE-22 MPTE-36 MPTE-45 MPZ5-16A MPZ5-16B MPZ5-32A	MPTE-5 MPTE-8 MPTE-10 MPTE-12 MPTE-15 MPTE-18 MPTE-22 MPTE-36 MPTE-45 MPZ5-16A MPZ5-16B MPZ5-32A		4-59 4-59 4-59 4-59 4-59 4-59 4-59 4-59
MMBZ5238B MMBZ5239 MMBZ5239B MMBZ5240 MMBZ5240B MMBZ5241B MMBZ5241B MMBZ5242B MMBZ5242B MMBZ5243B MMBZ5243B MMBZ5243B	MMBZ5238B MMBZ5239B MMBZ5239B MMBZ5240B MMBZ5241B MMBZ5241B MMBZ5241B MMBZ5242B MMBZ5242B MMBZ5243B MMBZ5243B MMBZ5243B MMBZ5243B		4-98 4-98 4-98 4-98 4-98 4-98 4-98 4-98	MPZ5-32B MPZ5-32C MPZ5-180A MPZ5-180B MPZ5-180C MR2520L MR2525L MR2535L MR2540 MR2540L MTZ607	MPZ5-32B MPZ5-32C MPZ5-180A MPZ5-180B MPZ5-180C MR2535L MR2535L MR2535L MR2540 MR2540L 1N746 1N759		4-99 4-99 4-99 4-99 3-233 3-233 3-233 3-233 4-4 4-4

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
MTZ630 MTZ630A MZ92-2.7 MZ92-3.0 MZ92-3.3 MZ92-3.6 MZ92-3.9 MZ92-4.3 MZ92-4.7 MZ92-5.1 MZ92-5.6 MZ92-6.2	1N957 1N977A	1N4371 1N4372 1N746 1N747 1N748 1N749 1N750 1N751 1N752 1N753	4-4 4-4 4-4 4-4 4-4 4-4 4-4 4-4 4-4 4-4	MZ500-14 MZ500-15 MZ500-16 MZ500-17 MZ500-18 MZ500-19 MZ500-20 MZ500-21 MZ500-21 MZ500-22 MZ500-23 MZ500-24 MZ500-25		1N5237A 1N5239A 1N5249A 1N5241A 1N5242A 1N5242A 1N5245A 1N5246A 1N5246A 1N5250A 1N5250A 1N5251A	4-40 4-40 4-40 4-40 4-40 4-40 4-40 4-40
MZ92-6.8 MZ92-7.5 MZ92-8.2 MZ92-9.1 MZ92-10 MZ92-12 MZ92-13 MZ92-15 MZ92-16 MZ92-18 MZ92-20 MZ92-22		1N754 1N755 1N756 1N757 1N758 1N759 1N964A 1N966A 1N966A 1N9667A 1N968A 1N968A	4-4 4-4 4-4 4-4 4-4 4-4 4-4 4-4 4-4	MZ500-26 MZ500-27 MZ500-28 MZ500-29 MZ500-30 MZ500-31 MZ500-32 MZ500-33 MZ500-34 MZ500-35 MZ500-36 MZ500-37		1N5254A 1N5256A 1N5257A 1N5258A 1N5259A 1N5260A 1N5261A 1N5262A 1N5263A 1N5263A 1N5266A 1N5266A	4-40 4-40 4-40 4-40 4-40 4-40 4-40 4-40
MZ92-24 MZ92-27 MZ92-30 MZ92-33 MZ92-36 MZ92-39 MZ92-43 MZ92-47 MZ92-51 MZ92-56 MZ92-62 MZ92-68		1N970A 1N971A 1N972A 1N973A 1N974A 1N975A 1N976A 1N977A 1N978A 1N979A 1N980A 1N981A	4-4 4-4 4-4 4-4 4-4 4-4 4-4 4-4 4-4	MZ500-38 MZ500-39 MZ500-40 MZ605 MZ610 MZ620 MZ623-12 MZ623-12A MZ623-12B MZ623-14 MZ623-14A MZ623-14B	MZ605 MZ610 MZ620	1N5268A 1N5270A 1N5271A 1N4745A 1N4745A 1N4745A 1N4746A 1N4746A 1N4746A	4-40 4-40 4-40 4-101 4-101 4-36 4-36 4-36 4-36 4-36 4-36
MZ92-75 MZ92-82 MZ92-91 MZ92-100 MZ92-110 MZ92-120 MZ92-130 MZ92-150 MZ92-160 MZ92-180 MZ92-200 MZ500-1		1N982A 1N983A 1N984A 1N985A 1N985A 1N987A 1N988A 1N989A 1N990A 1N991A 1N991A 1N992A 1N5221A	4-4 4-4 4-4 4-13 4-13 4-13 4-13 4-13 4-1	MZ623-18 MZ623-18A MZ623-18B MZ623-25 MZ623-25A MZ623-25A MZ623-9B MZ623-9B MZ623-9B MZ623-9B MZ620-9B MZ640 MZ1000-1 MZ1000-2	MZ640	1N4749A 1N4749A 1N4749A 1N4755A 1N4755A 1N4755A 1N4743A 1N4743A 1N4743A 1N4743A	4-36 4-36 4-36 4-36 4-36 4-36 4-36 4-36
MZ500-2 MZ500-3 MZ500-4 MZ500-5 MZ500-6 MZ500-7 MZ500-8 MZ500-9 MZ500-10 MZ500-11 MZ500-12 MZ500-13		1N5223A 1N5225A 1N5226A 1N5227A 1N5228A 1N5229A 1N5230A 1N5231A 1N5232A 1N5234A 1N5235A 1N5235A	4-40 4-40 4-40 4-40 4-40 4-40 4-40 4-40	MZ1000-3 MZ1000-4 MZ1000-5 MZ1000-6 MZ1000-7 MZ1000-8 MZ1000-9 MZ1000-10 MZ1000-11 MZ1000-12 MZ1000-13 MZ1000-14		1N4730 1N4731 1N4732 1N4733 1N4734 1N4735 1N4736 1N4737 1N4738 1N4739 1N4740 1N4740	4-36 4-36 4-36 4-36 4-36 4-36 4-36 4-36

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
MZ1000-15 MZ1000-16 MZ1000-17 MZ1000-18 MZ1000-19 MZ1000-20 MZ1000-21 MZ1000-22 MZ1000-23 MZ1000-24 MZ1000-25 MZ1000-26	·	1N4742 1N4743 1N4744 1N4745 1N4746 1N4747 1N4748 1N4749 1N4750 1N4751 1N4752 1N4753	4-36 4-36 4-36 4-36 4-36 4-36 4-36 4-36	P6KE30A P6KE33A P6KE33A P6KE366 P6KE36A P6KE39A P6KE439A P6KE43 P6KE47 P6KE47A P6KE47A	P6KE30A P6KE33 P6KE33A P6KE36 P6KE36A P6KE39 P6KE39A P6KE43 P6KE43 P6KE47 P6KE47A P6KE47A		4-106 4-106 4-106 4-106 4-106 4-106 4-106 4-106 4-106 4-106 4-106
MZ1000-27 MZ1000-28 MZ1000-29 MZ1000-30 MZ1000-31 MZ1000-32 MZ1000-33 MZ1000-34 MZ1000-35 MZ1000-36 MZ1000-37 MZ2360	MZ2360	1N4754 1N4755 1N4756 1N4757 1N4758 1N4759 1N4760 1N4761 1N4763 1N4763 1N4764	4-36 4-36 4-36 4-36 4-36 4-36 4-36 4-36	P6KE51A P6KE56 P6KE56A P6KE62 P6KE62A P6KE68 P6KE68A P6KE75 P6KE75A P6KE82 P6KE82 P6KE82A	P6KE51A P6KE56 P6KE56A P6KE62 P6KE62A P6KE68 P6KE68A P6KE75 P6KE75A P6KE82 P6KE82 P6KE82A P6KE91		4-106 4-106 4-106 4-106 4-106 4-106 4-106 4-106 4-106 4-106 4-106
MZ2361 MZ5555 MZ5556 MZ5557 MZ5557 MZ5558 P6KE6.8 P6KE7.5 P6KE7.5 P6KE7.5A P6KE8.2 P6KE8.2 P6KE8.2A P6KE9.1	P6KE6.8 P6KE6.8A P6KE7.5 P6KE7.5A P6KE8.2 P6KE8.2A P6KE9.1	1N6283A 1N6287A 1N6289A 1N6303A	4-104 4-59 4-59 4-59 4-106 4-106 4-106 4-106 4-106 4-106 4-106	P6KE91A P6KE100 P6KE100A P6KE110 P6KE110A P6KE120 P6KE120A P6KE130A P6KE1500 P6KE150A P6KE150A	P6KE91A P6KE100 P6KE100A P6KE110 P6KE110 P6KE120 P6KE120A P6KE130A P6KE130A P6KE150 P6KE150A P6KE160		4-106 4-106 4-106 4-106 4-106 4-106 4-106 4-106 4-106 4-106 4-106 4-106
P6KE9.1A P6KE10 P6KE10A P6KE11 P6KE11A P6KE12 P6KE12A P6KE13 P6KE13 P6KE15A P6KE15A P6KE15A	P6KE9.1A P6KE10 P6KE10A P6KE11 P6KE11A P6KE12 P6KE12A P6KE13 P6KE13 P6KE15A P6KE15 P6KE15A		4-106 4-106 4-106 4-106 4-106 4-106 4-106 4-106 4-106 4-106 4-106 4-106	P6KE160A P6KE170 P6KE170A P6KE180 P6KE180A P6KE200 P6KE200A PD6000 PD6000A PD6020A PD6020A PD6020A	P6KE160A P6KE170 P6KE170A P6KE180 P6KE180A P6KE200 P6KE200A	1N746 1N759 1N957A 1N968A 1N746	4-106 4-106 4-106 4-106 4-106 4-106 4-106 4-4 4-4 4-4 4-4
P6KE16A P6KE18 P6KE18A P6KE20 P6KE20A P6KE22 P6KE22A P6KE24 P6KE24A P6KE27 P6KE27A P6KE30	P6KE16A P6KE18 P6KE18A P6KE20 P6KE20A P6KE22 P6KE22A P6KE24 P6KE24 P6KE27 P6KE27 P6KE27A P6KE30		4-106 4-106 4-106 4-106 4-106 4-106 4-106 4-106 4-106 4-106 4-106 4-106 4-106	PD6041A PD6061 PD6061A PD6201 PD6201A PD6201B PD6201C PD6210 PD6210A PD6210B PD6210C PR6105	1N825	1N759 1N957A 1N968A 1N5221A 1N5221B 1N5221C 1N5221D 1N5530A 1N5530B 1N5530C 1N5530D	4-4 4-4 4-40 4-40 4-40 4-55 4-55 4-55 4-

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
PR6105A PR6450 PR6450A PRD105 PRD110 PRD120 PRD140 PRD160 PS3535 PS3539 PS3546 PS3549	1N827 1N825 1N827 MZ605 MZ610 MZ620 MZ640 MZ640 1N4570A 1N4573A 1N4565A		4-10 4-10 4-101 4-101 4-101 4-101 4-101 4-32 4-32 4-32 4-32	SA40 SA40A SA43 SA43A SA45 SA45A SA45A SA48A SA5.0 SA5.0 SA5.0A SA5.1 SA5.1A	SA40 SA40A SA43 SA43A SA45 SA45A SA45A SA48A SA5.0 SA5.0 SA5.0A SA5.1		4-110 4-110 4-110 4-110 4-110 4-110 4-110 4-110 4-110 4-110 4-110
SA10 SA100 SA100A SA10A SA11 SA110 SA110A SA11A SA12 SA120 SA120A SA12A	SA10 SA100 SA100A SA10A SA11 SA110 SA110A SA11A SA11A SA12 SA120 SA120 SA120A SA12A		4-110 4-110 4-110 4-110 4-110 4-110 4-110 4-110 4-110 4-110 4-110 4-110	SA54 SA54A SA6.0 SA6.0A SA6.5 SA6.5 SA60 SA60 SA60A SA64 SA64A SA7.0 SA7.0A	SA54 SA54A SA6.0 SA6.0A SA6.5 SA6.5A SA60 SA60A SA64 SA64 SA7.0 SA7.0		4-110 4-110 4-110 4-110 4-110 4-110 4-110 4-110 4-110 4-110 4-110
SA13 SA130 SA130A SA13A SA14 SA144 SA15 SA150 SA150A SA150A SA16 SA16	SA13 SA130 SA130A SA13A SA14 SA144 SA15 SA150 SA150A SA15A SA15A SA16 SA160		4-110 4-110 4-110 4-110 4-110 4-110 4-110 4-110 4-110 4-110 4-110	SA7.5 SA7.5A SA70 SA70A SA75 SA75A SA78A SA78A SA8.0 SA8.0A SA8.5 SA8.5	SA7.5 SA7.5A SA70 SA70A SA75 SA75A SA78A SA78A SA8.0 SA8.0 SA8.5 SA8.5		4-110 4-110 4-110 4-110 4-110 4-110 4-110 4-110 4-110 4-110 4-110
SA160A SA16A SA17 SA170 SA170A SA170A SA17A SA18 SA18A SA20 SA20A SA22 SA22A	SA160A SA16A SA17 SA170 SA170A SA170A SA17A SA18 SA18A SA20 SA20 SA20 SA22		4-110 4-110 4-110 4-110 4-110 4-110 4-110 4-110 4-110 4-110 4-110 4-110	SA85 SA85A SA9.0 SA9.0A SA90 SA90A SG1910 SG1911 SG1912 SG1920 SG1922 SS1	SA85 SA85A SA9.0 SA9.0A SA90 SA90A	MZ2360 MZ2360 MZ2360 MZ2361 MZ2361 MZ2361 MZ2360	4-110 4-110 4-110 4-110 4-110 4-110 4-104 4-104 4-104 4-104 4-104 4-104
\$A24 \$A24A \$A26 \$A26A \$A28 \$A28A \$A30 \$A30A \$A33A \$A33 \$A33A \$A36 \$A36A	SA24 SA24A SA26 SA26A SA28A SA30 SA30A SA33 SA33A SA33A SA36		4-110 4-110 4-110 4-110 4-110 4-110 4-110 4-110 4-110 4-110 4-110	SS1-2 STB567 SV7401 UZ3016 UZ3016A UZ3016B UZ3051 UZ3051A UZ3051B UZ3235 UZ3235A UZ3235A		MZ2361 MZ2361 MZ605 1N3016 1N3016A 1N3016B 1N3051 1N3051A 1N3051B 1N5235 1N5235A 1N5235B	4-104 4-104 4-101 4-21 4-21 4-21 4-21 4-21 4-21 4-40 4-40

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page #
UZ3281		1N5281	4-40	UZ4747		1N4747	4-36
UZ3281A	1	1N5281A	4-40	UZ4747A	Ì	1N4747A	4-36
UZ3281B	1	1N5281B	4-40	UZ4748		1N4748	4-36
UZ3470	1	1N2970	4-15	UZ4748A	1	1N4748A	4-36
UZ3470A	ł	1N2970A	4-15	UZ4749	Ì	1N4749	4-36
UZ3470B	1	1N2970B	4-15	UZ4749A	{	1N4749A	4-36
UZ3515	}	1N3015	4-15	UZ4750		1N4750	4-36
UZ3515A	ł	1N3015A	4-15	UZ4750A		1N4750A	4-36
UZ3515B		1N3015B	4-15	UZ4751	1	1N4751	4-36
UZ4116	}	1N5384A	4-51	UZ4751A		1N4751A	4-36
UZ4116A	1	1N5384A	4-51	UZ4752		1N4752	4-36
UZ4116B		1N5384B	4-51	UZ4752A		1N4752A	4-36
UZ4706	}	1N5342A	4-51	UZ4753		1N4753	4-36
UZ4706A	1	1N5342A	4-51	UZ4753A	 	1N4753A	4-36
UZ4706B	1	1N5342B	4-51	UZ4754		1N4754	4-36
UZ4736	1	1N4736	4-36	UZ4754A	Ì	1N4754A	4-36
UZ4736A	1	1N4736A	4-36	UZ4755		1N4755	4-36
UZ4737		1N4737	4-36	UZ4755A	ł	1N4755A	4-36
UZ4737A	}	1N4737A	4-36	UZ4756	j	1N4756	4-36
UZ4738	1	1N4738	4-36	UZ4756A	}	1N4756A	4-36
UZ4738A	}	1N4738A	4-36	UZ4757	ľ	1N4757	4-36
UZ4739		1N4739	4-36	UZ4757A		1N4757A	4-36
UZ4739A	ŀ	1N4739A	4-36	UZ4758		1N4758	4-36
UZ4740		1N4740	4-36	UZ4758A		1N4758A	4-36
UZ4740A		1N4740A	4-36	UZ4759		1N4759	4-36
UZ4741	j	1N4741	4-36	UZ4759A	[1N4759A	4-36
UZ4741A	}	1N4741A	4-36	UZ4760	ľ	1N4760	4-36
UZ4742	ľ	1N4742	4-36	UZ4760A		1N4760A	4-36
UZ4742A	1	1N4742A	4-36	UZ4761	}	1N4761	4-36
UZ4743	}	1N4743	4-36	JZ4761A		1N4761A	4-36
UZ4743A	1	1N4743A	4-36	UZ4762		1N4762	4-36
UZ4744	1	1N4744	4-36	UZ4762A		1N4762A	4-36
UZ4744A	1	1N4744A	4-36	UZ4763	1	1N4763	4-36
UZ4745	1	1N4745	4-36	UZ4763A	}	1N4763A	4-36
UZ4745A	1	1N4745A	4-36	UZ4764	1	1N4764	4-36
UZ4746		1N4746	4-36	UZ4764A	1	1N4764A	4-36
UZ4746A	1	1N4746A	4-36			1	1

RECTIFIERS

Motorola is the world's leading supplier of rectifiers, including those for use in switching power supplies. Wafer fabrication technology has constantly improved, leading to the product offering outlined in this selector guide. Today's Motorola rectifiers embody the same precision technology as the most advanced ICs, and are capable of passing stringent environmental testing, including under the hood of an automobile.

In addition to improved quality, rectifier product trends are toward higher operating temperature, faster switching times, plastic packages (translate lower cost) and use of dual rectifier modules.

ZENER DIODES

Motorola's standard Zeners and Avalanche Regulator diodes comprise the largest inventoried line in the industry. Continuous development of improved manufacturing techniques have resulted in computerized diffusion and test, as well as critical process controls learned from surface-sensitive MOS fabrication. Resultant high yields lower factory costs. Check the following features for application to your specific requirements:

 Wide selection of package materials and styles:

Plastic (Surmetic) for low cost, mechanical ruggedness

Glass for highest reliability, lowest cost Metal for highest power

- Power ratings from 0.25 to 50 Watts
- Breakdown voltages from 1.8 to 200 V in approximately 10% steps
- Available tolerances from 10% (low cost) to as tight as 1% (critical applications) with off-theshelf delivery
- Special selection of electrical characteristics available at low cost due to high-volume lines (check your Motorola sales representative for special quotations)
- JAN/JANTX(V) availability
- Special glass now used in DO-35 type packages is compatible with low temperature alloy processes, yielding sharper breakdown and low leakage.

Contents

	Page
Schottky (High-Speed, Low Voltage)	2-2
Ultrafast Recovery	2-6
Fast Recovery	2-8
General-Purpose	2-10
Bridges	2-12

Selector Guides

2

Zener and Avalanche Regulator Diodes General Purpose	2-13
Voltage Reference Diodes Temperature Compensated Reference Devices	2-16
Special Purpose Regulators Field-Effect Current Regulator Diodes	
Transient Suppressors General Purpose	
Lead Tape Packaging Standards for Axial-Lead Components	2-22
Surface Mount Tape and Reel	2-23

Schottky Rectifiers

SWITCHMODE Schottky Power Rectifiers with the high speed and low forward voltage drop characteristic of Schottky's metal/silicon junctions are produced with ruggedness and temperature performance comparable to silicon-junction rectifiers. Ideal for use in low voltage, high frequency power supplies and as very fast clamping diodes, these devices feature switching times less than 10 ns, and are offered in current ranges from 0.5 to 300 amperes, and reverse voltages to 60 volts

In some current ranges, devices are available with junction

temperature specifications of 125°C, 150°C, 175°C. Devices with higher T_J ratings can have significantly lower leakage currents, but higher forward-voltage specifications. These parameter tradeoffs should be considered when selecting devices for applications that can be satisfied by more than one device type number.

All devices are connected cathode to case or cathode to heatsink, where applicable. Reverse polarity may be available on some devices upon special request. Contact your Motorola representative for more information.

		**I _O , AVE	RAGE RECTIF	IED FORWARI	CURRENT (Amperes)	
	0.5	1.	.0			5.0	
	299-02	59-04	362B-01	267	7-03	369A-04	60-01
	(DO-204AH) Glass	Plastic	MLL41 Glass	Pla	stic	Plastic	Metal
	Glass	riastic ,	Leadless	1 10	1	○ ► ¬	ivietai
	/	/					
	/				4		
	#	9		S			7 .
		/				t a	
VRRM	/	/					
(Volts)							
15		MBR115P					
20		1N5817	MBRL120	1N5820	MBR320	MBRD320	1N5823
25							
30	MBR030	1N5818	MBRL130	1N5821	MBR330	MBRD330	1N5824
35							
40	MBR040	1N5819	MBRL140	1N5822	MBR340	MBRD340	1N5825
45							
50		MBR150††			MBR350	MBRD350	
60		MBR160††			MBR360	MBRD360	
70							
80							
90							
100							
IFSM (Amps)	5.0	25	20	80	80	75	500
†T _C @ Rated I _O (°C)						125	
†T _L @ Rated I _O (°C)	75	90	75	95			80
T _J (Max) (°C)	150	125	150	125	150	150	125
Max VF @ IFM ≃ IO	0.65 T _L = 25°C	*0.60 T _L = 25°C	*0.69 T _L = 25°C	*0.525 T _L = 25°C	***0.740 T _L = 25°C	0.45 T _C = 125°C	*0.38 T _C = 25°C

TX versions available

^{*} Values are for the 40-Volt units. The lower voltage parts provide lower limits and higher voltage units provide slightly higher limits.

^{**} IO is total device output

^{***} Values are for 60 volt units The lower voltages parts ≤40 volts provide lower limits

[†] Must be derated for reverse power dissipation. See Data Sheet

^{††} $T_J (Max) = 150$ °C

There are many other standard features in Motorola Schottky rectifiers that give added performance and reliability.

- 1. GUARDRINGS are included in all Schottky die for reverse voltage stress protection from high rates of dv/dt to virtually eliminate the need for snubber networks. The guardring also operates like a zener and avalanches when subjected to voltage transients.
- 2 MOLYBDENUM DISCS on both sides of the die minimize fatigue from power cycling in all metal product. The plastic TO-220 devices have a special solder formulation for the same purpose
- 3 QUALITY CONTROL monitors all critical fabrication operations and performs selected stress tests to assure constant processes

	-	**IO, AV	ERAGE RECT	FIED FORWAR	D CURRENT (Amperes)		
6.0	7.5	10	1	5	16	20		25
369A-04 Plastic			221A-04 (TO-220AB) Plastic	56-03 (DO-203AA) (DO-4) Metal	221B-01 (TO-220AC) Plastic	221A-04 (TO-220AB) Plastic	(DO-:	o-03 203AA) O-4) etal
MBRD620CT	1/		///	1N5826	//	//	1N5829	
MBRD630CT				1N5827			1N5830	1N6095
	MBR735	MBR1035	MBR1535CT		MBR1635	MBR2035CT		
MBRD640CT				1N5828			1N5831	1N6096
	MBR745	MBR1045	MBR1545CT		MBR1645	MBR2045CT		
MBRD650CT								
MBRD660CT		MBR1060				MBR2060CT		
		MBR1070				MBR2070CT		
		MBR1080				MBR2080CT		
		MBR1090				MBR2090CT		
		MBR10100				MBR20100CT		
	150	150	150	500	150	150	800	400
	105	135	105	85	125	135	85	70
	150	150	150	125	150	150	125	125
	0.57 T _C = 125°C	0.57 T _C = 125°C	0.72 @ 15 A T _C = 125°C	*0.50 T _C = 25°C	0.57 T _C ≈ 125°C	0.72 @ 20 A T _C = 125°C	*0.48 T _C = 25°C	0.86 @ 78.5 A T _C = 70°C

^{*} Values are for the 40-Volt units. The lower voltage parts provide lower limits

^{**} IO is total device output

		**IO, AVERAGE RECTIFIED FORWARD CURRENT (Amperes)									
		30		35	40	50					
	11-03 (TO-204AA) Metal ⊶➡	221A-04 (TO-220AB) Plastic	340-02 (TO-218AC) Plastic	56-03 (DO-203AA) Metal	257 (DO-2 Me	03AB)					
VRRM (Volts)	(40 Mil Pins)	Col									
15	(40 10111 7 1113)										
20	MBR3020CT			MBR3520	1N5832						
25	111011002001				1110002						
30					1N5833	1N6097					
35	MBR3035CT	MBR2535CT	MBR3035PT	MBR3535							
40					1N5834	1N6098					
45	SD241 MBR3045CT	MBR2545CT	MBR3045PT	SD41 MBR3545,H,H1***							
50											
60											
IFSM (Amps)	400	300	400	600	800	800					
†T _C @ Rated I _O (°C)	105	125	105	90	75	70					
†TL @ Rated I _O (°C)											
Tj (Max) (°C)	150	150	150	. 150	125	125					
Max VF @	0.72 @ 30 A T _C = 125°C	0.73 @ 30 A T _C = 125°C	0.72 @ 30 A T _C = 125°C	0.55 T _C = 25°C	*0.59 T _C = 25°C	0.86 @ 157 A T _C = 70°C					

^{*} Values are for the 40-Volt units. The lower voltage parts provide lower limits

[&]quot;IO is total device output
"H & H1 versions are Hi-Rel Processed Parts (Non JAN, JTX)

[†] Must be derated for reverse power dissipation. See Data Sheet

		**IO, AVE	RAGE RECTIF	IED FORWAR	D CURRENT (A	mperes)		
60		65	75	80	120	2	00	300
		257-01 DO-203AB Metal				Pla	C-01 astic ER TAP	
	•				0			∌
	MBR6015L						MBR20015CTL	
	MBR6020L						MBR20020CTL	
	MBR6025L						MBR20025CTL	
	MBR6030L						MBR20030CTL	
MBR6035		MBR6535	MBR7535	MBR8035	MBR12035CT	MBR20035CT		MBR30035CT
			MBR7540					
SD51 MBR6045,H,H1***		MBR6545	MBR7545	MBR8045	MBR12045CT	MBR20045CT		MBR30045CT
					MBR12050CT	MBR20050CT		MBR30050CT
					MBR12060CT	MBR20060CT		MBR30060CT
800	1000	800	1000	1000	1500	1500	1500	2500
90	120	120	90	120	140	140	140	140
150	150	175	150	175	175	175	175	175
*0.6 T _C = 125°C	0.38 (<i>u</i> T _C = 150°C	0.62 T _C = 150°C	0 60 T _C = 125°C	0.59 T _C = 150°C	0.68 T _C = 125°C	0.71 T _C = 125°C	0.48 (<i>a</i> T _C = 150°C	0.64 T _C = 125°C

[&]quot; I_O is total device output
" H & H1 versions are Hi-Rel Processed Parts (Non JAN, JTX)

Ultrafast Recovery Rectifiers

EXPANDING the SWITCHMODE Rectifier family are these ultrafast devices with reverse recovery times of 25 to 100 nanoseconds. They complement the broad Schottky offering for use in the higher voltage outputs and internal circuitry of switching power supplies as operating frequencies increase from 20 kHz to 250 kHz. Additional package styles and operating current levels are planned.

All devices are connected cathode to case or cathode to heatsink, where applicable. Reverse polarity may be available on some devices upon special request. Contact your Motorola representative for more information

		**IO, A	VERAGE RECTI	FIED FORWARD	CURRENT (Amp	peres)	
	1.0	3.0	4.0	6	.0	8.0	15
,	59-04 (DO-41) Plastic	369A-04 Plastic	267-03 Plastic	369A-04 Plastic	221A-04 (TO-220AB) Plastic	(TO-2	B-01 20AC) istic
У Р ЕНМ		e de la companya della companya della companya de la companya della companya dell					C
(Volts)							I
50	MUR105	MURD305	MUR405	MURD605CT	MUR605CT	MUR805	MUR1505
100	MUR110	MURD310	MUR410	MURD610CT	MUR610CT	MUR810	MUR1510
150	MUR115	MURD315	MUR415	MURD615CT	MUR615CT	MUR815	MUR1515
200	MUR120	MURD320	MUR420	MURD620CT	MUR620CT	MUR820	MUR1520
300	MUR130		MUR430			MUR830	MUR1530
400	MUR140		MUR440			MUR840	MUR1540
500	MUR150		MUR450			MUR850	MUR1550
600	MUR160		MUR460			MUR860	MUR1560
700	MUR170		MUR470			MUR870	
800	MUR180		MUR480			MUR880	
900	MUR190		MUR490			MUR890	
1000	MUR1100		MUR4100			MUR8100	
IFSM (Amps)	35	75	125	63	75	100	200
T _A @ Rated I _O (°C)	50		80				
T _C @ Rated I _O (°C)		158		145	130	150	150
T _J (Max) (°C)	175	175	175	175	175	175	175
t _{rr} ns	25/50/75	35	25/50/75	35	35	35/60/100	35/60

^{**} IO is total device output

		IO, AVERAG	E RECTIFIED FO	RWARD CURRE	NT (Amperes)		*************************************	
16	25		30	50	70	100 200		
221A-04 (TO-220AB) Plastic	56-03 (DO-203AA)	(TO-2	0-02 218AC) astic	257-01 (DO-203AB) Metal		357C-01 Plastic POWER TAP		
MUR1605CT	MUR2505	R710XPT	MUR3005PT	MUR5005	MUR7005	MUR10005CT	MUR20005CT	
MUR1610CT	MUR2510	R711XPT	MUR3010PT	MUR5010	MUR7010	MUR10010CT	MUR20010CT	
MUR1615CT	MUR2515		MUR3015PT	MUR5015	MUR7015	MUR10015CT	MUR20015CT	
MUR1620CT	MUR2520	R712XPT	MUR3020PT	MUR5020	MUR7020	MUR10020CT	MUR20020CT	
MUR1630CT			MUR3030PT				MUR20030CT	
MUR1640CT		R714XPT	MUR3040PT				MUR20040CT	
MUR1650CT			MUR3050PT					
MUR1660CT			MUR3060PT					
100	500	150	400	600	1000	400	800	
150	145	100	150	125	125	140	95	
175	175	150	175	175	175	175	175	
35	50	100	35	50	50	50	50	

^{**} IO is total device output

Fast Recovery Rectifiers

. available for designs requiring a power rectifier having maximum switching times ranging from 200 ns to 750 ns. These devices are offered in current ranges of 1.0 to 50 amperes and in voltages to 1000 volts.

All devices are connected cathode to case or cathode to heatsink, where applicable. Reverse polarity may be available on some devices upon special request. Contact your Motorola representative for more information

	i _O	AVERAGE RECTI	FIED FORWARD C	URRENT (Amperes	:)
	1,			3.0	5.0
•	59- Pla		60-01 Metal	267-02 Plastic	194-04 Plastic
VARM (Volts)			1/2		
50	†1N4933	MR810	MR830	MR850	MR820
100	†1N4934 MR811		MR831	MR851	MR821
200	†1N4935 MR812		MR832	MR852	MR822
400	†1N4936 MR814		MR834	MR854	MR824
600	†1N4937	MR816	MR836	MR856	MR826
800		MR817			
1000		MR818			
IFSM (Amps)	30	30	100	100	300
TA @ Rated IO (°C)	75 75			*90	*55
T _C @ Rated I _O (°C)	100		100		
T _J (Max) (°C)	150 150		150	175	175
t _{rr} (μs)	0.2	0.75	0.2	0.2	0.2

^{*} Must be derated for reverse power dissipation. See Data Sheet

[†] Package Size 0 120" Max Diameter by 0 260" Max Length

	I _O , A	VERAGE RECTI	FIED FORWARD	CURRENT (Am	peres)
	6.0	12	20	24	30
	(DO-	5A-02 203AA) etal	42A-01 (DO-203AB) Metal	339-02 Plastic Note 1	42A-01 (DO-203AB) Metal
^V RRM (Volts)					
50	1N3879	1N3889	1N3899	MR2400F	1N3909
100	1N3880	1N3890	1N3900	MR2401F	1N3910
200	1N3881	1N3891	1N3901	MR2402F	1N3911
400	1N3883	1N3893	1N3903	MR2404F	1N3913
600	MR1366	MR1376	MR1386	MR2406F	MR1396
800					
1000					
IFSM (Amps)	150	200	250	300	300
T _A @ Rated I _O (°C)					
T _C @ Rated I _O (°C)	100	100	100	125	100
TJ (max) (°C)	150	150	150	175	150
t _{rr} μs	0.2	0.2	0,2	0.2	0.2

TX versions available

Note 1. Meets mounting configuration of TO-220 outline

General-Purpose Rectifiers

Motorola offers a wide variety of low-cost devices, packaged to meet diverse mounting requirements Avalanche capability is available in the axial lead 1 5, 3 and 6 amp packages shown below to provide protection from transients.

All devices are connected cathode to case or cathode to heatsink, where applicable Reverse polarity may be available on some devices upon special request Contact your Motorola representative for more information

		IO, AVERA	GE RECTIFIED FO	RWARD CURRENT	(Amperes)	
	1.0	1.5	1	6.0		
	59-03 (DO-41) Plastic	59-04 Plastic	60-01 Metal	267-03 Plastic	267-02 Plastic	194-04 Plastic
VRRM (Volts)		/	/	/	/	
50	†1N4001	**1N5391	1N4719	**MR500	1N5400	MR750
100	†1N4002	**1N5392	1N4720	**MR501	1N5401	MR751
200	†1N4003	1N5393 *MR5059	1N4721	**MR502	1N5402	MR752
400	†1N4004	1N5395 *MR5060	1N4722	**MR504	1N5404	MR754
600	†1N4005	1N5397 *MR5061	1N4723	**MR506	1N5406	MR756
800	†1N4006	1N5398	1N4724	MR508		MR758
1000	†1N4007	1N5399	1N4725	MR510		MR760
IFSM (Amps)	30	50	300	100	200	400
TA @ Rated IO (°C)	75	TL = 70	75	95	T _L = 105	60
T _C @ Rated I _O (°C)				-		
T」(Max) (°C)	175	175	175	175	175	175

[†] Package Size 0 120" Max Diameter by 0 260" Max Length

^{* 1}N5059 series equivalent Avalanche Rectifiers

^{**} Avalanche versions available, consult factory

		I	O, AVERAGE F	RECTIFIED FO	RWARD CURF	RENT (Ampere	s)	
	12	20	24	25	3		40	50
	(DO-2	A-02 203AA) etal	339-02 Plastic Note 1	193-04 Plastic Note 2	43-02 (DO-21) Metal		42A-01 (DO-203AB) Metal	43-04 Metal
VRRM (Volts)					/	\$ 3		F
50	MR1120 1N1199,A,B	MR2000	MR2400	MR2500	1N3491	1N3659	1N1183A	MR5005
100	MR1121 1N1200,A,B	MR2001	MR2401	MR2501	1N3492	1N3660	1N1184A	MR5010
200	MR1122 1N1202,A,B	MR2002	MR2402	MR2502	1N3493	1N3661	1N1186A	MR5020
400	MR1124 1N1204,A,B	MR2004	MR2404	MR2504	1N3495	1N3663	1N1188A	MR5040
600	MR1126 1N1206,A,B	MR2006	MR2406	MR2506		Note 3	1N1190A	Note 3
800	MR1128	MR2008		MR2508		Note 3	Note 3	Note 3
1000	MR1130	MR2010		MR2510		Note 3	Note 3	Note 3
IFSM (Amps)	300	400	400	400	300	400	800	600
TA @ Rated IO (°C)								
T _C @ Rated I _O (°C)	150	150	125	150	130	100	150	150
T _J (Max) (°C)	190	175	175	175	175	175	190	195

Note 1. Meets mounting configuration of TO-220 outline Note 2. Request Data Sheet for Mounting Information Note 3. Available on special order

Rectifier Bridges

Motorola SUPERBRIDGES offer cost effectiveness and reliability in single phase applications Assemblies combine pretested "button" rectifier cells for low assembly cost and high yields. Performance of four individual diodes is achieved with reliability of the whole assembly comparable to that of a single unit. Assemblies feature versatile slip-on/solder/wire wrap terminals.

	IO, DC OUTP	UT CURRENT	(Amperes)
	25	35	40
	309A-03	309/	4-02
V _{RRM} (Volts)	SQ R	1-3/8" SQ -	RI.
50	MDA2500	MDA3500	
100	MDA2501	MDA3501	
200	MDA2502	MDA3502	MDA4002
400	MDA2504	MDA3504	MDA4004
600	MDA2506	MDA3506	MDA4006
800	MDA2508	MDA3508	MDA4008
1000	MDA2510	MDA3510	
IFSM (Amps)	400	400	800
TA @ Rated Io			

Tc @ Rated Io

(°C) T_J (Max)

(°C)

RECOGNIZED E61980

Dimensions given are nominal

55

175

55

175

35

175

Zener and Avalanche Regulator Diodes

General-Purpose Regulator Diodes

	250 mW	250 mW	250 mW	250 mW	350 mW	400 mW Low Noise		500 mW	
Nominal Zener Voltage	Low Level Cathode = Polarity Mark	Low Noise Cathode = Polarity Mark	Low Level Cathode = Polarity Mark	Low Noise Cathode = Polarity Mark	Cathode = Polarity Mark	Low Leakage Cathode = Polarity Mark	c	alhode = Polarity I	Hark
(*Note 1)	(*Note	s 2,11)	(*Note 2)	(*Note 2)	(*Notes 5 13)	(*Note 3)	(*Note 4)	(*Note 8)	(*Note 9)
		D	Case 299-02		Case 318-05 Style 8) 29	Case 99-02		
				Glass DO-204AH	SOT-23		/ G	ilass	
	Gla Case	ass 362-01		(DO-35)	(TO-236AA/ AB)		DO- (Di	204AH O-35)	
1.8 2.0 2.2 2.4	MLL4678 MLL4679 MLL4680 MLL4681	MLL4614 MLL4615 MLL4616 MLL4617	1N4678 1N4679 1N4680 1N4681	1N4614 1N4615 1N4616 1N4617			1N4370	1N5221A	1N5985A
2.5 2.7	MLL4682	MLL4618	1N4682	1N4618			1N4371	1N5223A	
2.8 3.0 3.3	MLL4683 MLL4684	MLL4619 MLL4620	1N4683 1N4684	1N4619 1N4620	MMBZ5226B	1N5518A	1N4372 1N746	1N5225A 1N5226A	1N5986A 1N5987A 1N5988A
3.6 3.9 4.3 4.7 5.1 5.6 6.0 6.2	MLL4685 MLL4686 MLL4687 MLL4688 MLL4689 MLL4690 MLL4691	MLL4621 MLL4622 MLL4623 MLL4624 MLL4625 MLL4625 MLL4626	1N4685 1N4686 1N4687 1N4688 1N4689 1N4690	1N4621 1N4622 1N4623 1N4624 1N4625 1N4626	MMBZ5227B MMBZ5228B MMBZ5229B MMBZ5230B MMBZ5231B MMBZ5232B MMBZ5233B MMBZ5233B	1N5519A 1N5520A 1N5521A 1N5522A 1N5523A 1N5524A 1N5525A	1N747 1N748 1N749 1N750 1N751 1N752	1N5227A 1N5228A 1N5229A 1N5230A 1N5231A 1N5232A	1N5989A 1N5990A 1N5991A 1N5992A 1N5993A 1N5994A
6.8	MLL4692	MLL4099	1N4692	1N4099	MMBZ5235B	1N5526A	1N754	1N5235A	1N5996A
7.5	MLL4693	MLL4100	1N4693	1N4100	MMBZ5236B	1N5527A	1N957A 1N755 1N958A	1N5236A	1N5997A
8.2	MLL4694	MLL4101	1N4694	1N4101	MMBZ5237B	1N5228A	1N756 1N959A	1N5237A	1N5998A
8.7	MLL4695	MLL4102	1N4695	1N4102	MMBZ5238B			1N5238A	
9,1	MLL4696	MLL4103	1N4696	1N4103	MMBZ5239B	1N5529A	1N757 1N960A	1N5239A	1N5999A
10	MLL4697	MLL4104	1N4697	1N4104	MMBZ5240B	1N5530A	1N758 1N961A	1N5240A	1N6000A
11	MLL4698 MLL4699	MLL4105 MLL4106	1N4698 1N4699	1N4105 1N4106	MMBZ5241B MMBZ5242B	1N5531A 1N5532A	1N962A 1N759	1N5241A 1N5242A	1N6001A 1N6002A
							1N963A		
13 14 15 16 17 18	MLL4700 MLL4701 MLL4702 MLL4703 MLL4704 MLL4705	MLL4107 MLL4108 MLL4109 MLL4110 MLL4111 MLL4111	1N4700 1N4701 1N4702 1N4703 1N4704 1N4705	1N4107 1N4108 1N4109 1N4110 1N4111 1N4112	MMBZ5243B MMBZ5244B MMBZ5245B MMBZ5246B MMBZ5247B MMBZ5248B	1 N5533A 1 N5334A 1 N5335A 1 N5336A 1 N5337A 1 N5338A	1N964A 1N965A 1N966A 1N967A	1N5243A 1N5244A 1N5245A 1N5246A 1N5247A 1N5248A	1N6003A 1N6004A 1N6005A 1N6006A
19 20 22 24 25 27	MLL4706 MLL4707 MLL4708 MLL4709 MLL4710 MLL4711	MLL4113 MLL4114 MLL4115 MLL4116 MLL4117 MLL4118	1N4706 1N4707 1N4708 1N4709 1N4710 1N4711	1N4113 1N4114 1N4115 1N4116 1N4117 1N4118	MMBZ5249B MMBZ5250B MMBZ5251B MMBZ5252B MMBZ5253B MMBZ5254B	1N5539A 1N5540A 1N5541A 1N5542A 1N5543A	1N968A 1N969A 1N970A 1N971A	1N5249A 1N5250A 1N5251A 1N5252A 1N5253A 1N5254A	1N6007A 1N6008A 1N6009A 1N6010A
28 30 33 36 39 43	MLL4712 MLL4713 MLL4714 MLL4715 MLL4716 MLL4717	MLL4119 MLL4120 MLL4121 MLL4122 MLL4123 MLL4124	1N4712 1N4713 1N4714 1N4715 1N4716 1N4717	1N4119 1N4120 1N4121 1N4122 1N4123 1N4124	MMBZ5255B MMBZ5256B MMBZ5257B	1 N5544A 1 N5545A 1 N5546A	1N972A 1N973A 1N974A 1N975A 1N976A	1N5255A 1N5256A 1N5257A 1N5258A 1N5259A 1N5260A	1N6011A 1N6012A 1N6013A 1N6014A 1N6015A
47 51 56 60 62 68		MLL4125 MLL4126 MLL4127 MLL4128 MLL4129 MLL4130		1N4125 1N4126 1N4127 1N4128 1N4129 1N4130			1N977A 1N978A 1N979A 1N980A 1N981A	1N5261A 1N5262A 1N5263A 1N5264A 1N5265A 1N5266A	1N6016A 1N6017A 1N6018A 1N6019A 1N6020A
75 82 87 91 100		MLL4130 MLL4132 MLL4133 MLL4134 MLL4135		1N4131 1N4132 1N4133 1N4134 1N4135			1N981A 1N983A 1N983A 1N984A 1N985A 1N986A	1N5267A 1N5267A 1N5268A 1N5269A 1N5270A 1N5271A 1N5272A	1N6020A 1N6021A 1N6022A 1N6023A 1N6024A 1N6025A
120 130 140 150 160 170 180 200							1N987A 1N988A 1N989A 1N990A 1N991A 1N992A	†1N5273A †1N5274A †1N5275A †1N5275A †1N5277A †1N5277A †1N5278A †1N5279A †1N5281A	

[☐] JAN JANTX(V) available, ±5% only

^{† 1}N5273A-1N5281A supplied in DO-7 glass package

^{*}See Notes --- page 2-15

General-Purpose Regulator Diodes (continued)

	. 500	mW	1	Watt	1 Watt	1.5 Watt	5 Watt
Nominal Zener Voltage	Cath	ode = ty Mark	Cath Polar	ode = ity Mark	Cathode to Case	Cathode = Polarity Mark	Cathode = Polarity Mark
("Note 1)	(*Notes 4,11)	(*Notes 9,11)	(*Note 6)	(*Notes 6,12)	(*Note 7)	(*Note 8)	(*Note 8)
, }		lass	Glass Case 59-04	Glass	Metal Case 52-03	Sumetic 30	Sumetic 40
-	Case	362-01	(DO-41)	Case 362B-01	(DO-13)	(DO-41)	Case 17-02
1.8 2.0 2.2 2.4 2.5 2.7 2.8 3.0 3.3	MLL4370 MLL4371 MLL4372 MLL746	MLL5221A MLL5222A MLL5223A MLL5224A MLL4225A MLL5226A	1N4728	MLL4728	1N3821	1N5913A	1N5333A
3.6	MLL747	MLL5227A	1N4729	MLL4729	1N3822	1N5914A	1N5334A
3.9 4.3 4.7 5.1 5.6 6.0 6.2	MLL748 MLL749 MLL750 MLL751 MLL752 MLL753	MLL5228A MLL5229A MLL5230A MLL5231A MLL5232A MLL5233A MLL5234A	1N4730 1N4731 1N4732 1N4733 1N4734	MLL4730 MLL4731 MLL4732 MLL4733 MLL4734 MLL4735	1N3823 1N3824 1N3825 1N3826 1N3827 1N3828	1N5915A 1N5916A 1N5917A 1N5918A 1N5919A 1N5920A	1N5335A 1N5336A 1N5337A 1N5338A 1N5339A 1N5341A
6.8	MLL754	MLL5235A	1N4736	MLL4736	1N3829	1N5921A	1N5342A
7.5	MLL957A MLL755 MLL958A	MLL5236A	1N4737	MLL4737	1N3016A 1N3830 1N3017A	1N5922A	1N5343A
8.2	MLL756 MLL959A	MLL5237A	1N4738	MLL4738	1N3018A	1N5923A	1N5344A
8.7		MLL5238A					1N5345A
9.1	MLL757 MLL960A	MLL5239A	1N4739	MLL4739	1N3019A	1N5924A	1N5346A
10	MLL758 MLL961A	MLL5240A	1N4740	MLL4740	1N3020A	1N5925A	1N5347A
11	MLL962A	MLL5241A	1N4741	MLL4741	1N3021A	1N5926A	1N5348A
12	MLL759 MLL963A	MLL5242A	1N4742	MLL4742	1N3022A	1N5927A	1N5349A
13 14 15 16 17 18	MLL964A MLL965A MLL966A MLL967A	MLL5243A MLL5244A MLL5245A MLL5246A MLL5247A MLL5248A	1N4743 1N4744 1N4745 1N4746	MLL4743 MLL4744 MLL4745 MLL4746	1N3023A 1N3024A 1N3025A 1N3026A	1N5928A 1N5929A 1N5930A 1N5931A	1N5350A 1N5351A 1N5352A 1N5353A 1N5354A 1N5355A
19 20 22 24 25 27	MLL968A MLL969A MLL970A MLL971A	MLL5249A MLL5250A MLL5251A MLL5252A MLL5253A MLL5254A	1N4747 1N4748 1N4749 1N4750	MLL4747 MLL4748 MLL4749 MLL4750	1N3027A 1N3028A 1N3029A 1N3030A	1N5932A 1N5933A 1N5934A 1N5935A	1N5356A 1N5357A 1N5358A 1N5359A 1N5360A 1N5361A
28 30 33 36 39 43	MLL972A MLL973A MLL974A MLL975A MLL976A	MLL5255A MLL5256A MLL5257A MLL5258A MLL5259A MLL5260A	1N4751 1N4752 1N4753 1N4754 1N4755	MLL4751 MLL4752 MLL4753 MLL4754 MLL4755	1 N3031A 1 N3032A 1 N3033A 1 N3034A 1 N3035A	1 N5936A 1 N5937A 1 N5938A 1 N5939A 1 N5940A	1N5362A 1N5363A 1N5364A 1N5365A 1N5366A 1N5367A
47 51 56 60 62 68	MLL977A MLL978A MLL979A MLL980A MLL981A	MLL5261A MLL5262A MLL5263A MLL5264A MLL5265A MLL5266A	1N4756 1N4757 1N4758 1N4759 1N4760	MLL4756 MLL4751 MLL4758 MLL4759 MLL4760	1N3036A 1N3037A 1N3038A 1N3039A 1N3040A	1N5941A 1N5942A 1N5943A 1N5944A 1N5945A	1N5368A 1N5369A 1N5370A 1N5371A 1N5372A 1N5373A
75 82 87 91 100	MLL982A MLL983A MLL984A MLL985A	MLL5268A MLL5268A MLL5269A MLL5270A	1N4761 1N4762 1N4763 1N4764	MLL4761 MLL4762 MLL4763 MLL4764	1N3040A 1N3041A 1N3042A 1N3043A 1N3044A	1N5945A 1N5946A 1N5947A 1N5958A 1N5949A	1N5373A 1N5374A 1N5375A 1N5376A 1N5377A 1N5378A
110 120 130 150 160 170 175 180 200	MLL986A				1N3045A 1N3046A 1N3047A 1N3048A 1N3049A 1N3050A 1N3050A 1N3051A	1N5950A 1N5951A 1N5952A 1N5952A 1N5953A 1N5954A 1N5955A 1N5955A	1N5379A 1N5380A 1N5831A 1N5383A 1N5384A 1N5385A 1N5386A 1N5386A

^{*}See Notes — page 2-15

Nominal Zener Voltage	10 Watt Cathode to Case = 1N3993 & MZT2970 Series Anode to Case = 1N2970 Series	50 Watt Cathode to Case = MZT4549 Series Anode to Case = 1N4557A Series
(*Note 1)	(*Notes 9,10)	(*Notes 9,10)
	Metal Case 56-03 DO-203AA	Metal Case 58-01 (DO-5 Type)
1 8 2.0 2.2 2.4 2.5 2.7 2.8 3.0 3.3		
3.6 3.9 4.3 4.7 5.1 5.6 6.0	1N3993&R 1N3994&R 1N3995&R 1N3996&R 1N3997&R	1N4549A&RA 1N4550A&RA 1N4551A&RA 1N4551A&RA 1N4552A&RA 1N4553A&RA
6.2 6.8	1N3998&R 1N3999&R 1N2970A&RA	1N4554A&RA 1N4555A&RA 1N3305A&RA
7.5	1N4000&R 1N2971A&RA	1N4556A&RA 1N3306A&RA
8.2	1N2972A&RA	1N3307A&RA
8.7		
91	1N2973A&RA	1N3308A&RA
10	1N2974A&RA 1N2975A&RA	1N3309A&RA
12	1N2976A&RA	1N3310A&RA 1N3311A&RA
13 14 15 16 17 18	1N2977A&RA 1N2878A&RA 1N2979A&RA 1N2980A&RA 1N2980A&RA	1N3312A&RA 1N3313A&RA 1N3314A&RA 1N3315A&RA 1N3315A&RA 1N3317A&RA
19 20 22 24 25 27	1N2983A&RA 1N2984A&RA 1N2985A&RA 1N2986A&RA 1N2986A&RA	1N331BA&RA 1N331BA&RA 1N332DA&RA 1N332A&RA 1N3322A&RA 1N3322A&RA
28 30 33 36 39 43	1N2989A&RA 1N2990A&RA 1N2991A&RA 1N2991A&RA 1N2992A&RA 1N2993A&RA	1N3324A&RA 1N3325A&RA 1N3326A&RA 1N3327A&RA 1N3327A&RA
47 50 51	1N2996A&RA	1N33330A&RA
52 56 60	1N2997A&RA 1N2999A&RA	1N3332A&RA 1N3334A&RA 1N3335A&RA
62 68	1N3000A&RA 1N3001A&RA	1N3336A&RA
75 82 87	1N3002A&RA 1N3003A&RA	1 N3337A&HA 1 N333BA&HA 1 N3339A&HA
91 100 105	1N3004A&RA 1N3005A&RA	1N3340A&RA
110	1N3007A&RA 1N3008A&RA	1N3342A&RA 1N3343A&RA
130	1N3009A&RA	1N3345A&FA 1N3345A&FA 1N3345A&FA 1N3346A&FA
150 160 170 175 180	1N3011A&BA 1N3012A&BA 1N3014A&BA	1N3347A&RA 1N3347A&RA
200	1N3014A&HA 1N3015A&HA	1N3350A&RA

NOTES

 The Zener Voltage is measured at approx-The Zener voltage is measured an approximately 1/4 the rated power, with the following exceptions the 1N4678–4717 is measured with $\underline{l}_{ZT}=50~\mu\text{Adc}$, the 1N4614/1N4099 is measured with $\underline{l}_{ZT}=250~\mu\text{Adc}$, the 1N4370/1N746 and the 1N5221-5242 are measured with $I_{ZT}=20$ mAdc, the 1N5985A-6012A is measured with $I_{ZT}=50$ mA, 1N6013A-6023A is measured with $I_{ZT}=$ 2 0 mA, 1N6024–6025 is measured with I_{ZT} = 1 0 mA

Tolerances

```
2 No suffix = \pm 5\%
   C suffix = 2%
   D suffix = 1%
```

3 A Suffix = \pm 10% with guaranteed limits on Vz, VF, and IR only B suffix = \pm 5% C suffix = \pm 2% D suffix = \pm 1%

4 MLL4370/1N4370/1N746 series No suffix = $\pm 10\%$ A suffix = $\pm 5\%$

C suffix = 2% D suffix = 1% MLL957/1N957 series A suffix = $\pm 10\%$ B suffix = $\pm 5\%$ C suffix = 2%

D suffix = 1%

Military parts in 1N4370/746/962/4099/4614/ 5518 series supplied in DO-7 Military parts in 1N4370/746/962/4099/4614/5518 are also available in the cost effective DO-204AH (DOavailable in the cost entertive 00-2044n (00-2048n (00-2 non -1 version The -1 versions appear on MIL-STD 701 as the preferred parts for new designs

```
5 No suffix = ± 10% with guaranteed limits
      on V<sub>Z</sub>, V<sub>F</sub> and I<sub>R</sub> only
A suffix = ±10%
B suffix = ±5%
```

 $\begin{array}{ll} 6 & \text{No suffix} = \pm\,10\% \\ & \text{A suffix} = \pm\,5\% \\ & \text{C suffix} = \,2\% \\ & \text{D suffix} = \,1\% \\ \end{array}$

7 1N3821 series No suffix = +10%A suffix = $\pm 5\%$ A suffix = $\pm 10\%$ B suffix = $\pm 5\%$ 1N3016 series

C suffix = $\pm 2\%$ D suffix = $\pm 1\%$ A suffix = $\pm 10\%$ B suffix $= \pm 5\%$

A suffix = $\pm 10\%$ B suffix = $\pm 5\%$

Exception 1N3993-1N4000 No suffix = $\pm 10\%$ A suffix = $\pm 5\%$

10 RA and RB = Reverse Polarity Types Available

- 11 Available in 8 mm Tape and Reel T1 Cathode Facing Sprocket Holes T2 Anode Facing Sprocket Holes
- 12 Available in 12 mm Tape and Reel T1 Cathode Facing Sprocket Holes T2 Anode Facing Sprocket Holes
- 13 Available in 8 mm tape and reel, both T1 and T2 options

Voltage Reference Diodes

Temperature Compensated Reference Devices

current (JEDEC Standard #5). Temperature Coefficient is also specified but should be considered as a reference only not a maximum rating.

Devices in this table are hermetically sealed structures. Includes JAN, JANTX and JTXV Devices.

,				AVERAGE TEMPERATURE COEFFICIENT OVER THE OPERATING RANGE									
		*	0.01 %/	ొ	0.005 %	/°C	0.002 %	∕°C	0.001 %	~c	0.0005 %	6/°C	
V _Z Volts	Test Current mAdc	Test* Temp Points	Device Type	A VZ Max Volts	Device Type	Δ V _Z Max Volts	Device Type	A VZ Max Volts	Device Type	Δ VZ Max Voits	Device . Type	Δ VZ Max Volts	Case
6.2 A 6.2 A	7 5 7.5	A A	1N821 1N821A	0.096 0 096	1N823 1N823A	0.048 0.048	1N825 1N825A	0 019 0 019	1N827 1N827A	0 009 0 009	1N829 1N829A	0 005 0 005	299-02
6.4	0 5 0.5 1.0 1.0 2.0 2 0 4 0 4 0	B A B A B A	1N4565 1N4565A 1N4570 1N4570A 1N4575 1N4575A 1N4580 1N4580A	0 018 0 099 0 048 0 099 0 048 0.099 0 048 0.099	1N4566 1N4566A 1N4571 1N4571A 1N4576 1N4576A 1N4581	0 024 0 050 0 024 0 050 0 024 0.025 0 024 0.050	1N4567 1N4567A 1N4572 1N4572A 1N4577 1N4577A 1N4582	0 010 0 020 0 010 0 020 0 010 0 020 0.010	1N4568 1N4568A 1N4573 1N4573A 1N4578 1N4578A 1N4583	0 005 0 010 0 005 0 010 0 005 0 010 0 005 0 010	1N4569 1N4569A 1N4574 1N4574A 1N4579 1N4579A 1N4584	0 002 0 005 0 002 0 005 0 002 0.005 0 002 0.005	DO-204AH (DO-35)

 \triangle Non-suffix — Z_{ZT} = 15, "A" Suffix — Z_{ZT} = 10 \square -1 and non-1 JAN/JANTX(V) available, \pm 5% only, Military parts in the 1N821, -1 and 1N4565, -1 series and supplied in the DO-7 package. **Test Temperature Points °C: A** = -55, 0, +25, +75, +100 **B** = 0, +25, +75 **C** = -55, 0, +25, +75, +100, +150

Precision Reference Diodes (CASE 51-02, DO-204AA)

Designed, manufactured and tested for ultra-high stability of voltage with time and temperature change. Use of special measurement equipment and voltage standards provide calibration directly traceable to the National Bureau of Standards.

		Tempe Stat	CERTIFIED VOLTAGE TIME STABILITY OVER 1000 HOURS OF OPERATION (Parts/Million Change)									
				<5 PPM	1000 HR	<10 PPM	1/1000 HR	<20 PPN	/1000 HR	<40 PPN	1/1000 HR	
Reference Voltage Volts	Test Current mA	Current	Δ V _Z (mV)	OP Temp Range °C	Device Type	Change μV Max	Device Type	Change µV Max	Device Type	Change	Device Type	Change
6.2±5%	7.5	2.5	25,75,100	MZ605	30	MZ610	60	MZ620	120	MZ640	240	

Special Purpose Regulators

Field-Effect Current Regulator Diodes

High impedance diodes whose "constant current source" characteristic complements the "constant voltage" of the zener line. Currents are available from 0.22 to 4.7 mA, with usable voltage range from a minimum limit of 1.0 to 2.5 V, up to a voltage compliance of 100 V, for the 1N5283 series, or 70 V, for the MCL1300 series.

	·		
	- · ·	Glass Case 51-02 DO-204AA (DO-7)	•
Reg. Current Ip @VT = 25 V mA Nom	Device Type	Knee Imp Z _K (« V _K = 6.0 V MΩ Min	Limiting Voltage (a IL = 0.8 lp Volts Max
0.22	1N5283	2 75	1 00
0.24	1N5284	2 35	1 00
0.27	1N5285	1 95	1 00
0.30	1N5286	1 60	1 00
0.33	1N5287	1 35	1 00
0.39	1N5288	1 00	1 05
0.43	1N5289	0 870	1 05
0.47	1N5290	0 750	1 05
0.56	1N5291	0 560	1 10
0.62	1N5292	0 470	1 13
0.68	1N5293	0 400	1 15
0.75	1N5294	0 335	1 20
0.82	1N5295	0 290	1 25
0.91	1N5296	0 240	1 29
1.00	1N5297	0 205	1 35
1.10	1N5298	0 180	1 40
1.20	1N5299	0 155	1 45
1.30	1N5300	0 135	1 50
1.40	1N5301	0 115	1 55
1.50	1N5302	0 105	1 60
1.60	1N5303	0 092	1 65
1.80	1N5304	0 074	1 75
2.00	1N5305	0 061	1 85
2.20	1N5306	0 052	1 95
2.40	1N5307	0 044	2 00
2.70	1N5308	0 035	2 15
3.00	1N5309	0 029	2 25
3.30	1N5310	0 024	3 35
3.60	1N5311	0 020	2 50
3.90	1N5312	0 017	2 60
4.30	1N5313	0 014	2 75
4.70	1N5314	0 012	2 90
0.5 ± .03	MCL1300	0 500	1 00
1.0 ± 0.6	MCL1301	0 200	1 50
2.0 ± 0.6	MCL1302	0 100	2 00
3.0 ± 0.6	MCL1303	0 050	2 00
4.0 ± 0.6	MCL1304	0 025	2 50

[☐] JAN/JANTX (V) availability

Low-Voltage Regulators

High-conductance silicon diodes designed as stable forward-reference sources for transistor amplifier biasing and similar applications. Available in high reliability glass construction or economic plastic packaging.

ELECTRICAL CHARACTERISTICS

 $(T_A = 25^{\circ}C \text{ unless otherwise noted})$

Forward Reference Voltage		I _F Test Current	Leakage Current IR (# VR		Current		Device	
Min	Max	mA	μΑ	Volts	Type	Case		
0.63	0.71	10	10	50	MZ2360	59-04 Surmetic		
1.24	1.38	10	10	50	MZ2361	59-03 Surmetic		

Transient Suppressors

General-Purpose

Transient suppressors are designed for applications requiring protection of voltage sensitive electronic devices in danger of destruction by high energy voltage transients. Select from standard factory available types or design the suppressor to meet specific needs by paralleling cells. For specific options, i.e., non-standard voltage, higher power capacity, and package configurations, consult factory.

PEAK POWER DISSIPATION @ 1.0 ms = 500 WATTS -- CASE 59-04

,		V _{BR} Volts	,	IRS Max Re Surge C Am	everse Current	VRS Max Re Voltage (Vol	everse @ IRSM
1		Ma	x			<u></u>	
Device	Min	Non "A"	"A"	Non "A"	' "A"	Non "A"	"A"
SA5 0,A	64	7.3	7	52	54 3	96	92
SA6.0,A	6 67	8 15	7 37	43 9	48 5	11 4	103
SA6 5,A	7 22	8 82	7 98	40 7	44 7	123	112
SA7 0,A	7 78	9 51	8 6	37 8	41 7	13 3	12
SA7 5,A	8 33	10 2	9 21	35	38 8	143	129
SA8 0,A	8 89	10 9	93	33 3	36 7	15	13 6
SA8 5,A	9 44	11 5	10.4	31 4	34 7	15 9	14 4
SA9 0,A	10	122	11 1	29 5	32 5	16 9	15 4
SA10,A	11 1	13 6	123	26 6	29 4	18 8	17
SA11,A	122	14 9	13 5	24 9	27 4	20 1	18 2
SA12,A	133	163	147	22 7	25 1	22	199
SA13,A	14 4	17 6	15 9	21	23 2	23 8	21 5
SA14,A	15 6	19 1	17 2	19 4	21 5	25 8	23 2
SA15,A	16 7	20 4	18 5	18 8	20 6	26 9	24 4
SA16,A	178	21 8	19 7	17 6	19 2	28 8	26
SA17,A	18 9	23 1	20 9	16 4	18 1	30 5	27 6
SA18,A	20	24 4	22 1	15 5	17.2	32 2	29 2
SA20,A	22 2	27 1	24 5	13 9	15 4	35 8	32 4
SA22,A	24 4	29 8	26 9	12 7	14 1	39 4	35 5
SA24,A	26 7	32 6	29 5	11 6	128	43	38 9
SA26,A	28 9	35 3	31 9	10 7	119	26 6	42 1
SA28,A	31 1	38	34 4	9 9	11	50	45 4
SA30,A	33 3	40 7	36 8	93	103	53 5	48 4
SA33,A	36 7	44 9	40 6	8 5	9 4	59	53 3
SA36,A	40	48 9	44 2	78	8 6	64 3	58 1
SA40,A	44.4	54 3	49 1	7	7 8	71 4	64 5
SA43,A	47 8	58 4	52 8	65	7 2	76 7	69 4
SA45,A	50	61 1	55 3	62	6 9	80 3	72 7
SA48,A	53 3	65 1	58 9	58	6.5	85 5	77 4
SA51,A	56 7	69 3	62 7	55	6 1	91 1	82 4
SA54,A	60	73 3	66 3	5 2	57	96 3	87 1
SA60,A	66 7	81 5	73 7	47	52	107	96 8
SA64,A	71 1	86.9	78 6	4 4	49	114	103

CASE 59-04

(continued)

PEAK POWER DISSIPATION @ 1.0 ms = 500 WATTS — CASE 59-04 — continued

		V _{BR} Volts		IRS Max Re Surge C Am	verse current	^V RSM Max Reverse Voltage @ I _{RSM} Volts	
		Ma	x				
Device	Min	Non "A"	"A"	Non "A"	"A"	Non "A"	"A"
SA70,A	77 8	95 1	86	4	4 4	125	113
SA75,A	83 3	102	92 1	3 7	4 1	134	121
SA78,A	86 7	106	95 8	3 6	4	139	126
SA85,A	94 4	115	104	3 3	36	151	137
SA90,A	100	122	111	3 1	3 4	160	146
SA100,A	111	136	123	28	3 1	179	162
SA110,A	122	149	135	26	28	196	177
SA120,A	133	163	147	23	26	214	193
SA130,A	144	176	159	22	2 4	231	209
SA150,A	167	204	185	19	2 1	268	243
SA160,A	178	218	197	17	19	287	259
SA170,A	189	231	209	16	18	304	275

PEAK POWER DISSIPATION @ 1.0 ms = 600 WATTS

Breakdow	n Voltage		IRSM	V _{RSM}	
V(BR) Volts Nom	@lŢ mA	Device Type	Maximum Reverse Surge Current Amp	Maximum Reverse Voltage @ IRSM Volts	
6.8	10	P6KE6 8	56	10 8	
7.5	10	P6KE7 5	51	117	
8.2	10	P6KE8 2	48	12 5	
9.1	10	P6KE9 1	44	13 8	
10	10	P6KE10	40	15	
11	10	P6KE11	37	16 2	
12	10	P6KE12	35	173	
13	10	P6KE13	32	19	
15	10	P6KE15	27	22	a
16	10	P6KE16	26	23 5	/
18	10	P6KE18	23	26 5	/
20	10	P6KE20	21	29 1	
22	10	P6KE22	19	31 9	
24	10	P6KE24	17	34 7	A 7
27	10	P6KE27	15	39 1	9 //
30	10	P6KE30	14	43 5	/
33	10	P6KE33	12 6	47 7	
36	10	P6KE36	11 6	52	
39	10	P6KE39	10 6	56 4	
43	10	P6KE43	96	61 9	•
47	10	P6KE47	8 9	67 8	CASE 17-02
51	10	P6KE51	8 2	73 5	OAGE 17 02
56	10	P6KE56	7 4	80 5	
62	10	P6KE62	6.8	89	
68	10	P6KE68	6 1	98	
75	10	P6KE75	5 5	108	
82	10	P6KE82	5 1	118	
91	10	P6KE91	48	131	
100	10	P6KE100	4 2	144	
110	10	P6KE110	38	158	
120	10	P6KE120	35	173	
130	10	P6KE130	3 2	187	
150	10	P6KE150	28	215	
160	10	P6KE160	26	230	
170	10	P6KE170	25	244	
180	10	P6KE180	23	258	
200	10	P6KE200	2 1	287	

Breakdown Voltage for Standard is ± 10% Tolerance, ± 5% version is available by adding "A", i.e., P6KE6.8A. Clipper (back to back) versions are available by ordering with a "C" or "CA" suffix, i.e., P6KE6.8C or P6KE6.8CA

TRANSIENT SUPPRESSORS (continued)

PEAK POWER DISSIPATION @ 1.0 ms = 1500 WATTS

V(BR) Volts	vn Voltage @IT mA	Devic	e Type	IRSM Maximum Reverse Surge Current Amp	VRSM Maximum Reverse Voltage @ IRSM Volts	Case
~~~~~			стуре			
6.0	10	1N5908		120	8.5	41-1
6.8	10	1N6267	1 5KE6 8	139	10 8	
7.5	10	1N6268	1 5KE7 5	128	11.7	1 1
8.2	10	1N6269	1 5KE8 2	120	12.5	
9.1	10	1N6270	1 5KE9 1	109	13 8	
10	10	1N6271	1 5KE10	100	15 0	
11	10	1N6272	1 5KE11	93	16 2	
12	10	1N6273	1 5KE12	87	173	
13	10	1N6274	1 5KE13	79	190	1 1
15	10	1N6275	1 5KE15	68	22 0	
16	10	1N6276	1 5KE16	64	23 5	
18	10	1N6277	1 5KE18	56 5	26 5	
20	10	1N6278	1 5KE20	51 5	29 1	
22	10	1N6279	1 5KE22	47 0	31 9	
24	10	1N6280	1 5KE24	43 0	34 7	
27	10	1N6281	1 5KE27	38 5	39 1	} }
30	10	1N6282	1 5KE30	34 5	43 5	
33	10	1N6283	1 5KE33	31 5	47 7	
36	10	1N6284	1 5KE36	29 0	52	
39	10	1N6285	1 5KE39	26 5	56 4	
43	10	1N6286	1 5KE43	24	61 9	
47	10	1N6287	1 5KE47	22 2	67 8	
51	10	1N6288	1 5KE51	20 4	73 5	
56	10	1N6289	1 5KE56	18 6	80 5	1
62	10	1N6290	1 5KE62	16 9	89	1 1
68	10	1N6291	1 5KE68	15 3	98	
75	10	1N6292	1 5KE75	13 9	108	
82	10	1N6293	1 5KE82	12 7	118	
91	10	1N6294	1 5KE91	11 4	131	
100	10	1N6295	1 5KE100	10 4	144	
110	10	1N6296	1 5KE110	9 5	158	
120	10	1N6297	1 5KE120	8 7	173	
130	10	1N6298	1 5KE130	8 0	187	
150	10	1N6299	1 5KE150	7 0	215	
160	10	1N6300	1 5KE160	6 5	230	
170	10	1N6301	1 5KE170	6 2	244	
180	10	1N6302	1 5KE180	5 8	258	
200	10	1N6303	1 5KE200	5 2	287	
220	10		1 5KE220	4 3	344	
250	10		1 5KE250	5 0	360	ì <b>廿</b>

Breakdown Voltage for Standard is  $\pm$  10% Tolerance,  $\pm$  5% version is available by adding "A", i.e., 1N6267A, 1 5KE6 8A. Clipper (back to back) versions are available by ordering the 1 5KE series with a "C" or "CA" suffix, i.e., 1 5KE6 8C or 1 5KE6 8CA





#### PEAK POWER DISSIPATION @ 1.0 ms = 1500 WATTS

VRWM Working Peak Reverse Voltage (Blocking or Stand-Off Voltage)	Device Type	Clipper (Back To Back) Version	IRSM Maximum Reverse Surge Current Amp	VRSM Maximum Reverse Voltage @ IRSM Volts	Case
5.0	1N6373 / ICTE-5 / MPTE-5	ICTE-5C	160	9 4	41-11
8.0	1N6374 / ICTE-8 / MPTE-8	1N6382	100	15	1
10	1N6375 / ICTE-10 / MPTE-10	1N6383	90	16 7	1
12	1N6376 / ICTE-12 / MPTE-12	1N6384	70	21 2	
15	1N6377 / ICTE-15 / MPTE-15	1N6385	60	25	
18	1N6378 / ICTE-18 / MPTE-18	1N6386	50	30	
22	1N6379 / ICTE-22 / MPTE-22	1N6387	40	37 5	
36	1N6380 / ICTE-36 / MPTE-36	1N6388	23	65 2	
45	1N6381 / ICTE-45 / MPTE-45	1N6389	19	78 9	<b>†</b>

#### PEAK POWER DISSIPATION @ 1.0 ms = 8000 WATTS

VR Operating Voltage			I _R Reverse Current	Δ V _Z Breakdown Voltage		V _C Clamping Voltage		VF Forward Voltage		
Nom Vdc	V(RMS)	Device Type	μΑ	Min Volts	lZT @ mA	Max Volts @	lpp Amp	Volts @	lF Amp	Case
14	10	MPZ5-16A	50	16	0.4	24	200	1 5	10	119-01
14	10	MPZ5-16B		16	0.4	20	200	1		
28	20	MPZ5-32A	1 1	32	02	50	100			1 1
28	20	MPZ5-32B		32	02	45	100	1 1 '	1	! !
28	20	MPZ5-32C		32	02	40	100	1 1 :		
165	117	MPZ5-180A	1	180	0 03	250	20	1 1		
165	117	MPZ5-180B	1 1	180	0 03	225	20	1 1 .		
165	117	MPZ5-180C	<b>†</b>	180	0 03	205	20	<b>,</b>	<b>Y</b>	<b>†</b>

# **Automotive Transient Suppressors**

Automotive Transient Suppressors are designed for protection against over-voltage conditions in the auto electrical system including the "LOAD DUMP" phenomenon that occurs when the battery open circuits while the car is running

AUTOMOTIVE TRANSIENT SUPPRESSOR					
	CASE 194-01 MR2535L	CASE 194-04 MR2540L			
V _{RRM} (Volts)	20	20			
IO (Amp)	35	50			
V _(BR) (Volts)	24-32	24-32			
IRSM* (Amp)	110	150			
T _C @ Rated I _O (°C)	150	150			
T (°C)	175	175			



^{*} Time Constant = 10 ms, Duty Cycle  $\leq$  1 0%,  $T_{\mbox{\scriptsize C}}$  = 25°C

#### **Lead Tape Packaging Standards for Axial-Lead Components**

1.0 SCOPE — This document covers packaging requirements for the following axial-lead components' use in automatic testing and assembly equipment Motorola Case 51 (DO-7), Case 52 (DO-13), Case 59 (DO-41), Case 267, Case 299 (DO-35), Case 59-04 and Case 17 Packaging, as covered in this document, shall consist of axial-lead components mounted by their leads on pressure-sensitive tape, wound onto a reel

2.0 PURPOSE — This document establishes Motorola standard practices for lead-tape packaging of axial-lead components and meets the requirements of EIA Standard RS-296-D "Lead-taping of components on axial lead configuration for automatic insertion," level

#### 3.0 REQUIREMENTS

#### 3.1 Component Leads

- **3.1.1** Component leads shall not be bent beyond dimension E from their nominal position. See Figure 2
- 3.1.2 The "C" dimension shall be governed by the overall length of the reel packaged component. The distance between flanges shall be 0.059 inch to 0.315 inch greater than the overall component length. See Figures 2 and 3.
- **3.1.3** Cumulative dimension "A" tolerance shall not exceed 0 059 over 5 in consecutive components

**ORIENTATION** — All polarized components must be oriented in one direction. The cathode lead tape shall be blue, and the anode tape shall be white See Figure 1

#### 3.3 Reeling

- **3.3.1** Components on any reel shall not represent more than two date codes when date code identification is required
- $\begin{tabular}{ll} \bf 3.3.2 & --- & Components leads shall be positioned perpendicularly between pairs of 0 250 inch tape. See Figure 2 \\ \end{tabular}$
- **3.3.3** A minimum 1 inch leader of tape shall be provided before the first and last component on the reel

- 3.3.4 50 lb Kraft paper is wound between layers of components as far as necessary for component protection Width of paper is 0 062 inch to 0 750 inch less than "C" dimension of reel See Figure 3
- 3.3.5 Components shall be centered between tapes such that the difference between D1 and D2 does not exceed 0.055
- 3.3.6 Staple shall not be used for splicing. No more than 4 layers of tape shall be used in any splice area and no tape shall be offset from another by more than 0.031 inch noncumulative. Tape splices shall overlap at least 6 inches for butt joints and at least 3 inches for lap joints, and shall not be weaker than unspliced tape.
- 3.3.7 Quantity per reel shall be as indicated in Table 1 Orders for tape and reeled product will only be processed and shipped in full reel increments. Scheduled orders must be in releases of full reel increments or multiples thereof. High volume orders and releases may be reeled on 14.00 inch reels at Motorola's option, therefore making the quantity per reel twice that shown for the 10.50 inch reels.
- 3.3.8 A maximum of 0 25% of the components per reel quantity may be missing without consecutive missing per level 1 of RS-
- 3.3.9 The single face roll pad shall be placed around the finished reel and taped securely Each reel shall then be placed in an appropriate container
- **3.4 MARKING** Minimum reel and carton marking shall consist of the following. See Figure 3

Part number

Purchase order number

Juantity

Date of reeling (when applicable)

Manufacturer's name

Electrical value (when applicable)

Date codes (when applicable, see note 3 3 1)

Tape (when applicable)

4.0 — Requirements differing from this Motorola standard shall be negotiated with the factory

The packages indicated in the following table are suitable for lead tape packaging. The table indicates the specific devices (rectifiers and/or zeners) that can be obtained from Motorola in reel packaging, and provides the appropriate packaging specification.

TABLE 1 — PACKAGING DETAILS (ALL DIMENSIONS IN INCHES)

	Product	Quantity Per Reel	Component	Tape	Reel Dimensions		Max Off Alignment	Item
Case Type	Category	(Item 3.3.7)	Spacing A	Spacing B	C	D (max)	E	Number
Case 51-02 (DO-7)	All	3000	0 200 ± 0 020	2.062 ± 059	3 00	14.00	0 047	1
Case 299-02 (DO-35)	Zeners	3000	$0200\pm0020$	2.062 ± 059	3 00	14.00		2
Case 17-02	Zeners	2000	0 200 ± 0 015	2.062 ± .059	3.00	14 00		3
Case 59-03 (DO-41)	Zeners	3000	$0200\pm0015$	2.062 ± 059	3.00	14.00		4
Case 59-01 (DO-41)	Zeners	3000	$0.200 \pm 0.015$	2.062 ± .059	3 00	14 00	1	5
Case 59-01 (DO-41)	Rectifiers	6000	$0.200 \pm 0.020$	2 062 ± 059	3.00	14 00		6
Case 59-04	Rectifiers	5000	$0\ 200\ \pm\ 0\ 020$	2 062 ± .059	3 00	14.00		7
Case 52-03 (DO-13)	Zeners	1500	$0.400 \pm 0.020$	2 500 ± .059	3 81	14 00		8
Case 267-02	Rectifiers	1500	$0.400 \pm 0.020$	2 062 ± 059	3 00	14 00		9
Case 41-11	Zeners	1250	$0\ 200\ \pm\ 0\ 020$	2.062 ± 059	3 00	14.00	1	10
Case 194-01	Rectifiers	900	$0.500 \pm 0.020$	1.875 ± .059	3 00	14 00		11
Case 194-04	Rectifiers	900	$0400\pm0020$	1 875 ± 059	3 00	14 00		12

#### LEAD TAPE PACKAGING STANDARDS FOR AXIAL-LEAD COMPONENTS (continued)

FIGURE 1 - REEL PACKING



FIGURE 2 - COMPONENT SPACING



FIGURE 3 - REEL DIMENSIONS



#### SURFACE MOUNT TAPE AND REEL

In conjunction with the industry trend to use automatic placement equipment for microminiature components, Motorola offers MLL34 and SOT-23 devices in the industry accepted 8 mm tape and reel format MLL41 devices are offered in 12 mm tape. The current packaging method is plastic tape with embossed cavities, which serve as a pocket for the individual device. A sealing tape is then applied to retain the device.

Tape & Reel Options MLL34, MLL41



Polarity band indicates cathode

Option 1 = T1 Designator, Cathode Facing Sprocket Holes Option 2 = T2 Designator, Anode Facing Sprocket Holes

- Device Orientation: Either in T1 (Option 1) or T2 (Option 2) configuration
- Quantity Per 7" Reel: 2,000 devices for MLL34.
   1,000 devices for MLL41.
   3,000 devices for SOT-23.
- Minimum Order Quantity 1 reel.

For ordering information, please contact your local Motorola representative (See listing on back cover.)

#### Tape & Reel Options SOT-23



2,7,0

Option 1 = T1 Designator Option 2 = T2 Designator

# Rectifier Data Sheets 3

## 1N1183A thru 1N1190A

#### **MEDIUM-CURRENT RECTIFIERS**

 $\ldots$  for applications requiring low forward voltage drop and rugged construction.

- High Surge Handling Ability
- Rugged Construction
- Reverse Polarity Available; Eliminates Need for Insulating Hardware in Many Cases
- · Hermetically Sealed

#### 20-AMP RECTIFIERS

SILICON DIFFUSED-JUNCTION



#### *MAXIMUM RATINGS

Rating	Symbol	1N1183A	1N1184A	1N1186A	1N1188A	1N1190A	Unit
Peak Repetitive Reverse Voltage	V _{RRM} V _{RWM} V _R	50	100	200	400	600	Volts
Average Half-Wave Rectified Forward Current With Resistive Load @ T _A = 150°C	Ю	40	40	40	40	40	Amp
Peak One Cycle Surge Current (60 Hz and 150°C Case Temperature)	^I FSM	800	800	800	800	800	Amp
Operating Junction Temperature	Tj	-65 to +200			°C		
Storage Temperature	T _{stg}	-65 to +200			°C		

#### *ELECTRICAL CHARACTERISTICS (All Types) at 25°C Case Temperature

Characteristic	Symbol	Value	Unit
Maximum Forward Voltage at 100 Amp DC Forward Current	VF	1.1	Volts
Maximum Reverse Current at Rated DC Reverse Voltage	IR	5.0	mAdc

#### THERMAL CHARACTERISTICS

Characteristic	Symbol	Typical	Unit	
Thermal Resistance, Junction to Case	$R_{ heta JC}$	1.0	°C/W	

^{*}Indicates JEDEC registered data.

## MECHANICAL CHARACTERISTICS

CASE: Welded, hermetically sealed construction

FINISH: All external surfaces corrosion-resistant and the terminal lead is readily solderable

WEIGHT: 25 grams (approx.)

POLARITY: Cathode connected to case (reverse polarity available denoted by Suffix

R, i.e.: 1N3212R)
MOUNTING POSITION: Any

MOUNTING POSITION: Any MOUNTING TORQUE: 25 in-lb max



	MILLIM	MILLIMETERS INCH		HES
MIC	MIN	MAX	MIN	MAX
Α	_	20 07	_	0 790
В	16 94	17 45	0 669	0 687
С	_	11 43	_	0 450
D	_	9 53	_	0 375
E	2 92	5 08	0 115	0 200
F	_	2 03	_	0 080
J	10 72	11 51	0 422	0 453
K	19 05	25 40	0 750	1 00
L	3 96	-	0 156	_
P	5 59	6 32	0 220	0 249
Q	3 56	4 45	0 140	0 175
R	_	16 94	_	0 667
S	_	2.26	_	0 089

CASE 42A-01 DO-203AB METAL

## 1N1199 thru 1N1206

#### **MEDIUM-CURRENT SILICON RECTIFIERS**

Silicon rectifiers for medium-current applications requiring

- High Current Surge —240 Amperes @ T_J = 190°C
- Peak Performance at Elevated Temperature —
   12 Amperes @ T_C = 150°C

#### *MAXIMUM RATINGS

Characteristic	Symbol	1N 1199	1N 1200	1N 1202	1N 1204	1N 1206	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _R WM V _R	50	100	200	400	600	Volts
Average Rectified Forward Current (Single phase, resistive load, 60 Hz, T _C = 150°C)	10	12			>	Amp	
Non-Repetitive Peak Surge Current (Surge applied at rated load conditions, half wave, single phase, 60 Hz)	IFSM	240 (for 1 cycle)			-	Amp	
Operating Junction Temperature Range	TJ	-65 to +190					°C

#### *THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	20	°C/W

#### *ELECTRICAL CHARACTERISTICS

Characteristic and Conditions	Symbol	Max	Unit
Maximum Instantaneous Forward Voltage (IF = 40 A, T _C = 25°C)	٧F	18	Volts
Maximum Instantaneous Reverse Current (Rated voltage, T _C = 150°C)	¹R	10	mA

^{*}Indicates JEDEC registered data

#### MECHANICAL CHARACTERISTICS

CASE: Welded, hermetically sealed construction

FINISH: All external surfaces are corrosion-resistant and the terminal lead is readily solderable

POLARITY: Cathode to case (reverse polarity units are available and denoted by an "R" suffix, i.e., 1N1202R)

MOUNTING POSITION: Any
MOUNTING TORQUE: 15 in-lb max

MAXIMUM TERMINAL TEMPERATURE FOR SOLDERING PURPOSES: 275°C for

10 seconds at 3 kg tension. **WEIGHT:** 6 grams (approx.)

#### MEDIUM-CURRENT SILICON RECTIFIERS

50-600 VOLTS 12 AMPERES

DIFFUSED JUNCTION





STYLE 1 PIN 1 CATHODE 2 ANODE STYLE 2 PIN 1 ANODE 2. CATHODE

#### NOTES

- 1 DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION INCH.

	MILLIMETERS INC			HES
DIM	MIN	MAX	MIN	MAX
Α	10 75	11 12	0.423	0.438
C	-	10.28	_	0.405
D	4 07	4 69	0.160	0 185
Ε	1 91	4 44	0 075	0 175
F	2 29	2 41	0.090	0.095
J	10.72	11.50	0.422	0.453
K	18.80	20.32	0.740	0.800

CASE 245A-02 DO-203AA METAL

## 1N1199A thru 1N1206A

#### MEDIUM-CURRENT SILICON RECTIFIERS

Silicon rectifiers for medium-current applications requiring:

- High Current Surge —240 Amperes @ T_J = 200°C
- Peak Performance at Elevated Temperature —
   12 Amperes @ T_C = 150°C

# MEDIUM-CURRENT SILICON RECTIFIERS

50-600 VOLTS 12 AMPERES

**DIFFUSED JUNCTION** 

#### *MAXIMUM RATINGS

Characteristic	Symbol	1N 1199A	1 N 1200A	1N 1202A	1N 1204A	1 N 1206A	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	VRRM VRWM VR	50	100	200	400	600	Volts
Non-Repetitive Peak Reverse Voltage (Halfwave, single phase, 60 Hz peak)	VRSM	100	200	350	600	800	Volts
Average Rectified Forward Current (Single phase, resistive load, 60 Hz, T _C = 150°C)	Ю	12				Amp	
Non-Repetitive Peak Surge Current (Surge applied at rated load conditions, half wave, single phase, 60 Hz)	IFSM	240 (for 1 cycle) ———>				Amp	
Operating and Storage Junction Temperature Range	T _J , T _{Stg}	-		5 to +2	00 —		°C

#### *THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	20	°C/W

#### *ELECTRICAL CHARACTERISTICS

Characteristic and Conditions	Symbol	Max	Unit
Maximum Instantaneous Forward Voltage (IF = 40 A, T _C = 25°C)	٧F	1 35	Volts
Maximum Average Reverse Current at Rated Conditions 1N1199A 1N1200A 1N1202A 1N1204A 1N1206A	IRO	3 0 2.5 2.0 1.5 1.0	mA

^{*}Indicates JEDEC registered data

#### **MECHANICAL CHARACTERISTICS**

CASE: Welded, hermetically sealed construction

FINISH: All external surfaces are corrosion-resistant and the terminal lead is readily solderable

POLARITY: Cathode to case (reverse polarity units are available and denoted by an "R" suffix, i.e., 1N1202RA)

MOUNTING POSITION: Any MOUNTING TORQUE: 15 in-lb max

MAXIMUM TERMINAL TEMPERATURE FOR SOLDERING PURPOSES: 275°C for

10 seconds at 3 kg tension. **WEIGHT:** 6 grams (approx.)





STYLE 1: PIN 1. CATHODE 2. ANODE

STYLE 2.
PIN 1. ANODE
2 CATHODE

#### NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.

	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α	10.75	11 12	0.423	0.438
С	-	10.28	_	0.405
D	4.07	4.69	0.160	0 185
E	1.91	4.44	0.075	0.175
F	2.29	2.41	0.090	0.095
J	10.72	11.50	0.422	0.453
K	18.80	20.32	0.740	0.800

CASE 245A-02 DO-203AA METAL

## 1N1199B thru 1N1206B

#### **MEDIUM-CURRENT SILICON RECTIFIERS**

Compact, highly efficient silicon rectifiers for medium-current applications requiring:

- High Current Surge 250 Amperes @ T_J = 200°C
- Peak Performance at Elevated Temperature 12 Amperes @ T_C = 150°C

## MEDIUM-CURRENT SILICON RECTIFIERS

50-600 VOLTS 12 AMPERES

DIFFUSED JUNCTION

#### *MAXIMUM RATINGS

Characteristic	Symbol	1N 1199B	1 N 1200B	1 N 1202B	1N 1204B	1N 1206B	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	50	100	200	400	600	Volts
Non-Repetitive Peak Reverse Voltage (Halfwave, single phase, 60 Hz peak)	VRSM	100	200	350	600	800	Volts
Average Rectified Forward Current (Single phase, resistive load, 60 Hz, T _C = 150°C)	Ю	12				Amp	
Non-Repetitive Peak Surge Current (Surge applied at rated load conditions, half wave, single phase, 60 Hz)	¹ FSM	250 (for 1 cycle)					Amp
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-		5 to +2	00	<del>_</del>	°C

#### *THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta}$ JC	20	°C/W

#### *ELECTRICAL CHARACTERISTICS

Characteristic and Conditions	Symbol	Max	Unit
Maximum Instantaneous Forward Voltage (IF = 40 A, T _C = 25°C)	VF	1 2	Volts
Maximum Reverse Current (Rated dc voltage, T _C = 150°C)	IR	10	mA
Maximum Average Reverse Current at Rated Conditions	IRO	0 9	mA
DC Forward Voltage (I _F = 12 A, T _C = 25°C)	VF	1 1	Volts
Reverse Recovery Time (IFM = 40 A, di/dt = 25 A/ $\mu$ s to IFM = 0, tp $\geqslant$ 4 0 $\mu$ s, 60 pulses/second, 25°C)	t _{rr}	50	μs

^{*}Indicates JEDEC registered data

#### MECHANICAL CHARACTERISTICS

CASE: Metal, hermetically sealed construction

FINISH: All external surfaces are corrosion-resistant and the terminal lead is readily solderable

POLARITY: Cathode to case (reverse polarity units are available and denoted by an "R" suffix, i.e., 1N1202RB)

MOUNTING POSITION: Any
MOUNTING TORQUE: 15 in-lb max

MAXIMUM TERMINAL TEMPERATURE FOR SOLDERING PURPOSES: 275°C for

10 seconds at 3 kg tension. WEIGHT: 6 grams (approx.)





STYLE 1 PIN 1. CATHODE

ANODE

STYLE 2⁻ PIN 1. ANODE 2. CATHODE

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.

	MILLIN	IETERS	INC	HES
DIM	MIN	MIN MAX		MAX
Α	10 75	11.12	0 423	0.438
С	_	10.28	_	0.405
D	4.07	4 69	0.160	0 185
E	1.91	4.44	0.075	0 175
F	2.29	2 41	0 090	0.095
J	10.72	11.50	0 422	0.453
K	18 80	20.32	0.740	0.800

CASE 245A-02 DO-203AA METAL

## 1N3208 thru 1N3212

#### **MEDIUM-CURRENT RECTIFIERS**

.  $\,$  . for applications requiring low forward voltage drop and rugged construction.

- High Surge Handling Ability
- Rugged Construction
- Reverse Polarity Available; Eliminates Need for Insulating Hardware in Many Cases
- Hermetically Sealed

#### 15-AMP RECTIFIERS

SILICON DIFFUSED-JUNCTION



#### *MAXIMUM RATINGS

Rating	Symbol	1N3208 1N3208R	1N3209 1N3209R	1N3210 1N3210R	1N3211 1N3211R	1N3212 1N3212R	Unit
DC Blocking Voltage	VR	50	100	200	300	400	Volts
RMS Reverse Voltage	VR(RMS)	35	70	140	210	280	Volts
Average Half-Wave Rectified Forward Current With Resistive Load @ T _C = 150°C	10	15	15	15	15	15	Amp
Peak One Cycle Surge Current (60 Hz and 25°C Case Temperature)	IFSM	250	250	250	250	250	Amp
Operating Junction Temperature	TJ	-65 to +175					°C
Storage Temperature	T _{stg}	-	-65 to +175				

#### *ELECTRICAL CHARACTERISTICS (All Types) at 25°C Case Temperature

Characteristic	Symbol	Value	Unit
Maximum Forward Voltage at 40 Amp DC Forward Current	VF	1 5	Volts
Maximum Reverse Current at Rated DC Reverse Voltage	I _R	1 0	mAdc

#### THERMAL CHARACTERISTICS

Characteristic	Symbol	Typical	Unit
Thermal Resistance, Junction to Case	$R_{\theta}$ JC	17	°C/W

^{*}Indicates JEDEC registered data.

#### **MECHANICAL CHARACTERISTICS**

CASE: Welded, hermetically sealed construction

FINISH: All external surfaces corrosion-resistant and the terminal lead is readily solderable

WEIGHT: 25 grams (approx.)

POLARITY: Cathode connected to case (reverse polarity available denoted by Suffix

R, i.e.: 1N3212R)

MOUNTING POSITION: Any MOUNTING TORQUE: 25 in-lb max



# 1N3491 thru 1N3495

#### **Designers Data Sheet**

#### **MEDIUM-CURRENT SILICON RECTIFIERS**

... compact, highly efficient silicon rectifiers.

#### Designer's Data for "Worst Case" Conditions

The Designers Data Sheet permits the design of most circuits entirely from the information presented Limit curves — representing device characteristics boundaries — are given to facilitate "worst case" design.

#### SILICON RECTIFIERS 25 AMPERE

50-400 VOLTS DIFFUSED JUNCTION



#### *MAXIMUM RATINGS

Rating	Symbol	1N3491	1N3492	1N3493	1N3494	1N3495	Unit	
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	50	100	200	300	400	Volts	
RMS Reverse Voltage	VR(RMS)	35	70	140	210	280	Volts	
Average Rectified Forward Current (Single phase, resistive load, 60 Hz, see Figure 3) T _C = 100°C	lo	 	25					
Nonrepetitive Peak Surge Current (surge applied at rated load conditions, see Figure 5)	IFSM	, ,	300 (for 1/2 cycle)					
Operating and Storage Junction Temperature Range	T _J , T _{stg}			-65 to +175			°C	

#### THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	1 2	°C/Watt

#### MECHANICAL CHARACTERISTICS

CASE: Welded, hermetically sealed construction

FINISH: All external surfaces corrosion-resistant and the terminal lead is readily solderable

POLARITY: CATHODE TO CASE (reverse polarity units are available upon request and are designated by an "R" suffix i.e. MR327R or 1N3491R)

MOUNTING POSITIONS: Any



^{*}Indicates JEDEC registered data for 1N3491-1N3495

#### *ELECTRICAL CHARACTERISTICS

Characteristic and Conditions	Symbol	Max	Unit
Instantaneous Forward Voltage Drop (IF = 57 Amps, TJ = 25°C)	٧F	1 7	Volts
Full Cycle Average Reverse Current (18 Amp AV and $V_r$ , single phase, 60 Hz, $T_C$ = 150°C) 1N3491 1N3492	I _{R(AV)}	10 10	mA
1 N 3 4 9 3 1 N 3 4 9 4 1 N 3 4 9 4 1 N 3 4 9 5 1 N 3 4 9 5		8 0 6 0 4 0	
DC Reverse Current (Rated V _R , T _C = 25°C)	IR	1 0	mA

3



FIGURE 2 — MAXIMUM FORWARD POWER DISSIPATION



#### 1N3491 thru 1N3495





#### FIGURE 4 — MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE







#### TYPICAL DYNAMIC CHARACTERISTICS













#### MOUNTING PROCEDURES

MR327-MR331 and 1N3491-1N3495 rectifiers are designed to be press-fitted in a heat sink in order to attain full device ratings. Recommended procedures for this type of mounting are as follows.

1. Drill a hole in the heat sink 0.499 ± .001 inch in diameter.

2. Break the hole edge as shown to prevent shearing off the knurled edge of the rectifier when it is

- pressed into the hole.

  3. The depth and width of the break should be 0.010 inch maximum to retain maximum heat sink
  - surface contact.
- surface contact.

  1. To prevent damage to the rectifier during press-in, the pressing force should be applied only on the shoulder ring of the rectifier case as shown in the figure.

  5. The pressing force should be applied evenly about the shoulder ring to avoid tilting or canting of the rectifier case in the hole during the press-in operation. Also, the use of a light industrial lubricant will be of considerable aid.

## 1N3659 thru 1N3663

#### LOW COST RECTIFIERS FOR MEDIUM CURRENT INDUSTRIAL AND COMMERCIAL APPLICATIONS

- High Surge Handling Ability
- Rugged Construction
- Reverse Polarity Available
- Hermetically Sealed

#### 30-AMP **RECTIFIERS**

SILICON DIFFUSED-JUNCTION



#### *MAXIMUM RATINGS (TC = 25°C unless otherwise noted)

Rating	Symbol	1N3659 1N3659R	1N3660 1N3660R	1N3661 1N3661R	1N3662 1N3662R	1N3663 1N3663R	Unit
Peak Repetitive Reverse Voltage DC Blocking Voltage	V _{RRM} V _R	50	100	200	300	400	Volts
RMS Reverse Voltage	V _R (RMS)	35	70	140	210	280	Volts
Average Half-Wave Rectified Forward Current with Resistive Load @ 100°C case @ 150°C case	10	30					Amp Amp
Peak One Cycle Surge Current (150°C case temp, 60 Hz)	^I FSM	400					Amp
Operating Junction Temperature	TJ	-65 to +175					°C
Storage Temperature	T _{stg}	-		-65 to +200			°C

#### *ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	1N3659 1N3659R	1N3660 1N3660R	1N3661 1N3661R	1N3662 1N3662R	1N3663 1N3663R	Unit
Maximum Forward Voltage at 25 Amp DC Forward Current	VF	1 2	1 2	1 2	1 2	1 2	Volts
Instantaneous Forward Voltage Drop (IF = 78 5 Amps, T _J = 25°C)	VF		1 4				
Maximum Full Cycle Average Reverse Current @ Rated PIV and Current (as half-wave rectifier, resistive load, 150°C)	I _{R(AV)}	50	4 5	40	3 5	30	mA

#### *THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case	$R_{\theta}JC$	1 2	°C/W

*Indicates JEDEC registered data

#### MECHANICAL CHARACTERISTICS

CASE: Welded hermetically sealed construction

FINISH: All external surfaces corrosion resistant, terminals readily solderable

WEIGHT: 9 grams (approx)

ı e : 1N3660R) MOUNTING POSITION: Any

POLARITY: Cathode connected to case (reverse polarity available denoted by Suffix R,



#### 1N3659 thru 1N3663



1N3659-1N3663 rectifiers are designed for press-fitted mounting in a heat sink. Recommended procedures for this type of mounting are as follows:

- 1. Drill a hole in the heat sink 0.499  $\pm$  .001 inch in diameter.
- 2. Break the hole edge as shown to prevent shearing off the knurled edge of the rectifier when it is pressed into the hole.
- 3. The depth of the break should be 0.010 inch maximum to retain maximum heat sink surface contact with the knurled rectifier surface.
- 4. Width of the break should be 0.010 inch as shown.

These procedures will allow proper entry of the rectifier knurled surface, provide good rectifier-heat sink surface contact, and assure reliable rectifier operation. If the break is made too deep, thereby reducing contact area for heat transfer, reliability of operation will be impaired.

These devices can be mounted in a thin chassis by inserting the rectifier through an additional heat sink plate which is mounted in intimate contact with the upper side of the chassis. This provides additional contact area for the rectifier knurled edge, as well as additional heat sink capacity.



THIN-CHASSIS MOUNTING

## 1N3879 thru 1N3883 MR1366

#### Designers Data Sheet

# STUD MOUNTED FAST RECOVERY POWER RECTIFIERS

. . . designed for special applications such as dc power supplies, inverters, converters, ultrasonic systems, choppers, low RF interference, sonar power supplies and free wheeling diodes. A complete line of fast recovery rectifiers having typical recovery time of 150 nanoseconds providing high efficiency at frequencies to 250 kHz.

#### Designer's Data for "Worst Case" Conditions

The Designers Data sheets permit the design of most circuits entirely from the information presented. Limit curves — representing boundaries on device characteristics — are given to facilitate "worst case" design.

#### *MAXIMUM RATINGS

Rating	Symbol	1N3879	1N3880	1N3881	1N3882	1N3883	MR 1366	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	VRRM VRWM VR	50	100	200	300	400	600	Volts
Non Repetitive Peak Reverse Voltage	V _{RSM}	75	150	250	350	450	650	Volts
RMS Reverse Voltage	VR(RMS)	35	70	140	210	280	420	Volts
Average Rectified Forward Current (Single phase, resistive load, T _C = 100°C)	10	60						
Non-Repetitive Peak Surge Current (surge applied at rated load continuous)	IFSM	150 (one cycle)						Amps
Operating Junction Temperature Range	TJ	-65 to +150						οс
Storage Temperature Range	T _{stg}	-65 to +175						°C
		1					- 1	

#### THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	R _θ JC	30	°C/W

Motorola guarantees the listed value, although parts having higher values of thermal resistance will meet the current rating Thermal resistance is not required by the JEDEC registration

#### *ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Min	Тур	Max	Unit
Instantaneous Forward Voltage (IF = 19 Amp, T _J = 150°C)	٧F	-	12	15	Volts
Forward Voltage $(I_F = 6.0 \text{ Amp}, T_C = 25^{\circ}\text{C})$	٧Ł	-	10	14	Volts
Reverse Current (rated dc voltage) T _C = 25 ^o C T _C = 100 ^o C	I _R	-	10 0 5	15 1 0	μA mA

#### REVERSE RECOVERY CHARACTERISTICS

Characteristic	Symbol	Min	Тур	Max	Unit
Reverse Recovery Time  *(IFM = 1 0 Amp to V _R = 30 Vdc, Figure 16)  (IFM = 36 Amp, di/dt = 25 A/µs, Figure 17)	t _{rr}		150 200	200 400	ns
Reverse Recovery Current *(IF = 1 0 Amp to V _R = 30 Vdc, Figure 16)	IRM(REC)	-	-	20	Amp

*Indicates JEDEC Registered Data for 1N3879 Series

FAST RECOVERY POWER RECTIFIERS 50-600 VOLTS 6 AMPERES





#### NOTES.

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982
- 2. CONTROLLING DIMENSION INCH.

	MILLIN	METERS	INC	HES
DIM	MIN MAX		MIN	MAX
Α	10 75	10 75   11.12		0 438
С	_	10.28	_	0.405
D	4.07	4 69	0.160	0.185
Ε	1 91	4.44	0.075	0.175
F	2.29	2.41	0 090	0.095
J	10.72	11.50	0 422	0 453
K	18.80	20.32	0.740	0 800

CASE 245A-02 DO-203AA METAL

#### MECHANICAL CHARACTERISTICS

CASE: Welded, hermetically sealed
FINISH: All external surfaces corrosion
resistant and readily solderable

POLARITY: Cathode to Case

WEIGHT: 5 6 Grams (approximately)
MOUNTING TORQUE: 15 in-lbs max.



#### FIGURE 2 - MAXIMUM SURGE CAPABILITY



#### NOTE 1



















#### 3

#### TYPICAL DYNAMIC CHARACTERISTICS





#### TYPICAL RECOVERED STORED CHARGE DATA









#### FIGURE 16 — JEDEC REVERSE RECOVERY CIRCUIT



#### NOTE 2

Reverse recovery time is the period which elapses from the time that the current, thru a previously forward biased rectifier diode, passes thru zero going negatively until the reverse current recovers to a point which is less than 10% peak reverse current

Reverse recovery time is a direct function of the forward current prior to the application of reverse voltage

For any given rectifier, recovery time is very circuit dependent. Typical and maximum recovery time of all Motorola fast recovery power rectifiers are rated under a fixed set of conditions using  $I_{\rm F}=1.0$  A,  $V_{\rm R}=30$  V. In order to cover all circuit conditions, curves are given for typical recovered stored charge versus commutation. di/dt. for various levels of forward current and for junction temperatures of  $25^{\rm O}{\rm C}$ ,  $75^{\rm O}{\rm C}$ ,  $100^{\rm O}{\rm C}$ , and  $150^{\rm O}{\rm C}$ .

To use these curves, it is necessary to know the forward current level just before commutation, the circuit commutation di/dt, and the operating junction temperature. The reverse recovery test current waveform for all Motorola fast recovery rectifiers is shown.



From stored charge curves versus di/dt, recovery time ( $t_{rr}$ ) and peak reverse recovery current ( $I_{RM(REC)}$ ) can be closely approximated using the following formulas

$$t_{rr} = 1.41 \text{ x} \left[ \frac{Q_R}{d_I/dt} \right]^{-1/2}$$

## 1N3889 thru 1N3893 MR1376

#### Designers Data Sheet

# STUD MOUNTED FAST RECOVERY POWER RECTIFIERS

. . . designed for special applications such as dc power supplies, inverters, converters, ultrasonic systems, choppers, low RF interference, sonar power supplies and free wheeling diodes. A complete line of fast recovery rectifiers having typical recovery time of 150 nanoseconds providing high efficiency at frequencies to 250 kHz.

#### Designer's Data for "Worst Case" Conditions

The Designers Data sheets permit the design of most circuits entirely from the information presented Limit curves — representing boundaries on device characteristics — are given to facilitate "worst case" design

#### *MAXIMUM RATINGS

Rating	Symbol	1N3889	1N3890	1N3891	1N3892	1N3893	MR 1376	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	VRRM VRWM VR	50	100	200	300	400	600	Volts
Non-Repetitive Peak Reverse Voltage	VRSM	75	150	250	350	450	650	Volts
RMS Reverse Voltage	VR (RMS)	35	70	140	210	280	420	Volts
Average Rectified Forward Current (Single phase, resistive load, T _C = 100°C)	0	12						Amps
Non-Repetitive Peak Surge Current (Surge applied at rated load conditions)	^I FSM	200 — > (one cycle)						Amp
Operating Junction Temperature Range	Тј	-65 to +150						°C
Storage Temperature Range	T _{stg}	-	-65 to +175					

#### THERMAL CHARACTERISTICS

Characteristics	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	20	oC/M

Motorola guarantees the listed value, although parts having higher values of thermal resistance will meet the current rating. Thermal resistance is not required by the JEDEC registration

#### *ELECTRICAL CHARACTERISTICS

Characteristic	Sym	ool Min	Тур	Max	Unit
Instantaneous Forward Voltage (i _F = 38 Amp, T _J = 150°C)	VF	-	12	15	Volts
Forward Voltage (I _F = 12 Amp, T _C = 25°C)	V _F	-	10	14	Volts
Reverse Current (rated dc voltage) TC TC	= 25°C   I _F = 100°C	-	10 0 5	25 3 0	μA mA

#### *REVERSE RECOVERY CHARACTERISTICS

Characteristic	Symbol	Mın	Тур	Max	Unit
Reverse Recovery Time $(I_F = 1.0 \text{ Amp to V}_R = 30 \text{ Vdc}, \text{Figure 16})$ $(I_{FM} = 36 \text{ Amp, di/dt} = 25 \text{ A/}\mu\text{s, Figure 17})$	t _{rr}	-	150 200	200 400	ns
Reverse Recovery Current (I _F = 1.0 Amp to V _R = 30 Vdc, Figure 16)	IRM(REC)	-	_	20	Amp

^{*}Indicates JEDEC Registered Data for 1N3889 Series.

#### FAST RECOVERY POWER RECTIFIERS

50-600 VOLTS 12 AMPERES





#### NOTES

- 1 DIMENSIONING AND TOLERANCING PER ANSI Y14 5M, 1982
- 2. CONTROLLING DIMENSION. INCH

	MILLIN	IETERS IN		HES	
DIM	MIN	MAX	MIN	MAX	
Α	10 75	10 75 11.12		0 438	
С	_	10 28	-	0 405	
D	4 07	4 69	0 160	0 185	
E	1 91	4 44	0 075	0 175	
F	2.29	2.41	0.090	0.095	
J	10.72	11.50	0.422	0.453	
K	18 80 20 32		0 740	0 800	

CASE 245A-02 DO-203AA METAL

#### MECHANICAL CHARACTERISTICS

CASE: Welded, hermetically sealed FINISH: All external surfaces corrosion resistant and readily solderable

POLARITY: Cathode to Case
WEIGHT: 5.6 grams (approximately)
MOUNTING TORQUE: 15 in-lb max





# NOTE 1 Ppk Ppk DUTY CYCLE, D = $t_0/t_1$ PEAK POWER, Ppk, is peak of an equivalent square power pulse acquired in the following procedure is recommended The temperature of the case should be measured using a thermocouple placed on the case at the temperature reference point (see Note 3). The thermal mass connected to the case is normally large enough so that it will not significantly respond to heat surges generated in the diode as a result of pulsed operation once steady state conditions are achieved. Using the measured value of T_C, the junction temperature may be determined by $T_J = T_C + \triangle T_{JC}$ where $\triangle T_{JC}$ is the increase in junction temperature above the case temperature it may be determined by $\triangle T_{JC} = Ppk \ R_{DC} (D + (1 - D) \ r(t_1 + t_p) + r(t_p) - r(t_1)]$ where $r(t_1) = normalized$ value of transient thermal resistance at time, t, from Figure 3, i.e. $r(t_1 + t_p) = normalized$ value of transient thermal resistance at time $t_1 + t_p$



#### SINE WAVE INPUT







#### **SQUARE WAVE INPUT**







#### 3

#### TYPICAL DYNAMIC CHARACTERISTICS





#### TYPICAL RECOVERED STORED CHARGE DATA









#### FIGURE 16 — JEDEC REVERSE RECOVERY CIRCUIT



#### NOTE 2

Reverse recovery time is the period which elapses from the time that the current, thru a previously forward biased rectifier diode, passes thru zero going negatively until the reverse current recovers to a point which is less than 10% peak reverse current

Reverse recovery time is a direct function of the forward current prior to the application of reverse voltage.

For any given rectifier, recovery time is very circuit dependent. Typical and maximum recovery time of all Motorola fast recovery power rectifiers are rated under a fixed set of conditions using  $I_F=1.0\ A,\ V_R=30\ V.$  In order to cover all circuit conditions, curves are given for typical recovered stored charge versus commutation di/dt for various levels of forward current and for junction temperatures of  $25^{\rm o}C,\ 75^{\rm o}C,\ 100^{\rm o}C,\ and\ 150^{\rm o}C.$ 

To use these curves, it is necessary to know the forward current level just before commutation, the circuit commutation di/dt, and the operating junction temperature. The reverse recovery test current waveform for all Motorola fast recovery rectifiers is shown.



From stored charge curves versus di/dt, recovery time ( $t_{rr}$ ) and peak reverse recovery current (IRM(REC)) can be closely approximated using the following formulas

$$t_{rr} = 1.41 \times \left[ \frac{Q_R}{di/dt} \right]^{1/2}$$

 $I_{RM(REC)} = 1.41 \times \left[Q_R \times di/dt\right]^{1/2}$ 

## 1N3899 thru 1N3903 MR1386

#### **Designers Data Sheet**

#### STUD MOUNTED FAST RECOVERY POWER RECTIFIERS

. . . designed for special applications such as dc power supplies, inverters, converters, ultrasonic systems, choppers, low RF interference, sonar power supplies and free wheeling diodes. A complete line of fast recovery rectifiers having typical recovery time of 150 nanoseconds providing high efficiency at frequencies to 250 kHz.

#### Designers Data for "Worst Case" Conditions

The Designers Data sheets permit the design of most circuits entirely from the information presented. Limit curves – representing boundaries on device characteristics – are given to facilitate "worst case" design.

#### *MAXIMUM RATINGS

Rating	Symbol	1N3899	1N3900	1N3901	1N3902	1N3903	MR 1386	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	50	100	200	300	400	600	Volts
Non-Repetitive Peak Reverse Voltage	V _{RSM}	75	150	250	350	450	650	Volts
RMS Reverse Voltage	VR(RMS)	35	70	140	210	280	420	Volts
Average Rectified Forward Current (Single phase, resistive load, T _C = 100°C)	lo	-	20					
Non-Repetitive Peak Surge Current (surge applied at rated load conditions)	IFSM	250 (one cycle)						Amps
Operating Junction Temperature Range	Т	-65 to +150						°c
Storage Temperature Range	T _{stg}	-			+175 —			°C

#### *THERMAL CHARACTERISTICS

Character*stic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	18	°C/W

#### *ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Mın	Тур	Max	Unit
Instantaneous Forward Voltage (i _F = 63 Amp, T _J = 150°C)	٧F	_	12	15	Volts
Forward Voltage (I _F = 20 Amp, T _C = 25 ^o C)	VF	_	11	14	Volts
Reverse Current (rated dc voltage) $T_C = 25^{\circ}C$ $T_C = 100^{\circ}C$	¹R	1 1	10 0.5	50 6 0	μA mA

#### *REVERSE RECOVERY CHARACTERISTICS

Characteristic	Symbol	Min	Тур	Max	Unit
Reverse Recovery Time	trr				ns
(IF = 1.0 Amp to VR = 30 Vdc, Figure 16)	1 "	_	150	200	
(I _{FM} = 36 Amp, di/dt = 25 A/μs, Figure 17)	1		200	400	i
Reverse Recovery Current	IRM(REC)				Amp
(IF = 1 0 Amp to VR = 30 Vdc, Figure 16)	1111111207	-		30	

*Indicates JEDEC Registered Data for 1N3899 Series

#### FAST RECOVERY POWER RECTIFIERS

50-600 VOLTS 20 AMPERES





	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	-	20 07	_	0 790
В	16 94	17 45	0 669	0 687
С		11 43	_	0 450
D	_	9 53	_	0 375
E	2 92	5 08	0 115	0 200
F	_	2 03	_	0 080
J	10 72	11 51	0 422	0 453
K	19 05	25 40	0 750	1 00
L	3 96		0 156	_
P	5 59	6 32	0 220	0 249
Q	3 56	4 45	0 140	0 175
R	_	16 94	_	0 667
S	_	2 26	_	0 089

CASE 42A-01 DO-203AB METAL

#### **MECHANICAL CHARACTERISTICS**

CASE: Welded, hermetically sealed FINISH: All external surfaces corrosion resistant and readily solderable

POLARITY: Cathode to Case WEIGHT: 17 grams (approximately) MOUNTING TORQUE: 25 in-lb max





where
r(t) = normalized value of transient thermal resistance at time, t, from Figure

3, i.e.  $r(t_1 + t_p) = normalized$  value of transient thermal resistance at time  $t_1 + t_p$ 



# 











#### TYPICAL DYNAMIC CHARACTERISTICS





#### TYPICAL RECOVERED STORED CHARGE DATA





#### STORED CHARGE DATA





#### FIGURE 16 — JEDEC REVERSE RECOVERY CIRCUIT



#### NOTE 2

Reverse recovery time is the period which elapses from the time that the current, thru a previously forward biased rectifier diode, passes thru zero going negatively until the reverse current recovers to a point which is less than 10% peak reverse current

Reverse recovery time is a direct function of the forward current prior to the application of reverse voltage

For any given rectifier, recovery time is very circuit dependent. Typical and maximum recovery time of all Motorola fast recovery power rectifiers are rated under a fixed set of conditions using  $I_F=1.0~\text{A}$ ,  $V_R=30~\text{V}$ . In order to cover all circuit conditions, curves are given for typical recovered stored charge versus commutation. di/dt. for various levels of forward current and for junction temperatures of  $25^{\rm O}\text{C}$ ,  $75^{\rm O}\text{C}$ ,  $100^{\rm O}\text{C}$ , and  $150^{\rm O}\text{C}$ 

To use these curves, it is necessary to know the forward current level just before commutation, the circuit commutation di/dt, and the operating junction temperature. The reverse recovery test current waveform for all Motorola fast recovery rectifiers is shown.



From stored charge curves versus di/dt, recovery time  $(t_{rl})$  and peak reverse recovery current  $(I_{RM(REC)})$  can be closely approximated using the following formulas:

$$t_{rr} = 1.41 \text{ x} \left[ \frac{Q_R}{\text{di/dt}} \right]^{1/2}$$

## 1N3909 thru 1N3913 MR1396

#### **Designers Data Sheet**

#### STUD MOUNTED FAST RECOVERY POWER RECTIFIERS

. . . designed for special applications such as dc power supplies, inverters, converters, ultrasonic systems, choppers, low RF interference, sonar power supplies and free wheeling diodes. A complete line of fast recovery rectifiers having typical recovery time of 150 nanoseconds providing high efficiency at frequencies to 250 kHz.

#### Designer's Data for "Worst Case" Conditions

The Designers Data sheets permit the design of most circuits entirely from the information presented. Limit curves — representing boundaries on device characteristics -- are given to facilitate "worst case" design

#### *MAXIMUM RATINGS

Rating	Symbol	1N3909	1N3910	1N3911	1N3912	1N3913	MR 1396	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	VRRM VRWM VR	50	100	200	300	400	600	Volts
Non-Repetitive Peak Reverse Voltage	V _{RSM}	75	150	250	350	450	650	Volts
RMS Reverse Voltage	V _R (RMS)	35	70	140	210	280	420	Volts
Average Rectified Forward Current (Single phase, resistive load, T _C = 100°C)	10	30						Amps
Non-Repetitive Peak Surge Current (surge applied at rated load conditions)	IFSM	300						Amp
Operating Junction Temperature Range	TJ	-65 to +150						°C
Storage Temperature Range	T _{stg}	-		-65 t	o +175 —			°c

#### THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	R _θ JC	12	oC/M

#### *ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Mın	Тур	Max	Unit
Instantaneous Forward Voltage (ip = 93 Amp, T _J = 150°C)	٧F	-	12	15	Volts
Forward Voltage (I _F = 30 Amp, T _C = 25°C)	VF	-	11	14	Volts
Reverse Current (rated dc voltage) $T_C = 25^{\circ}C$ $T_C = 100^{\circ}C$	I _R	-	10 0 5	25 1 0	μA mA

#### *REVERSE RECOVERY CHARACTERISTICS

Characteristic	Symbol	Min	Тур	Max	Unit
Reverse Recovery Time (IF = 1 0 Amp to VR = 30 Vdc, Figure 16) (IFM = 36 Amp, di/dt = 25 A/µs, Figure 17)	trr	_	150 200	200 400	ns
Reverse Recovery Current (IF = 1 0 Amp to VR = 30 Vdc, Figure 16)	IRM(REC)	-	15	20	Amp

^{*}Indicates JEDEC Registered Data for 1N3909 Series

#### FAST RECOVERY POWER RECTIFIERS

50-600 VOLTS 30 AMPERES





	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α		20 07	_	0 790
В	16 94	17 45	0 669	0 687
С	_	11 43	-	0 450
D	_	9 53	_	0 375
E	2 92	5 08	0 115	0 200
F	_	2 03	_	0 080
J	10 72	11 51	0 422	0 453
K	19 05	25 40	0 750	1 00
L	3 96	_	0 156	_
P	5 59	6 32	0 220	0 249
Q	3 56	4 45	0 140	0 175
R	_	16 94	_	0 667
S	_	2 26	_	0 089

CASE 42A-01 DO-203AB METAL

#### MECHANICAL CHARACTERISTICS

CASE: Welded, hermetically sealed

FINISH: All external surfaces corrosion resistant and readily solderable

POLARITY: Cathode to Case

WEIGHT: 17 Grams (Approximately)

MOUNTING TORQUE: 25 in-lbs max.





#### NOTE 1



#### FIGURE 3 - THERMAL RESPONSE



#### SINE WAVE INPUT



IF(AV), AVERAGE FORWARD CURRENT (AMP)



FIGURE 8 - TYPICAL REVERSE CURRENT



#### SQUARE WAVE INPUT



#### FIGURE 7 - CURRENT DERATING





#### TYPICAL DYNAMIC CHARACTERISTICS





#### TYPICAL RECOVERED STORED CHARGE DATA









#### FIGURE 16 — JEDEC REVERSE RECOVERY CIRCUIT



#### NOTE 3

Reverse recovery time is the period which elapses from the time that the current, thru a previously forward biased rectifier diode, passes thru zero going negatively until the reverse current recovers to a point which is less than 10% peak reverse current

Reverse recovery time is a direct function of the forward current prior to the application of reverse voltage

For any given rectifier, recovery time is very circuit dependent. Typical and maximum recovery time of all Motorola fast recovery power rectifiers are rated under a fixed set of conditions using I  $_{\rm F}=1.0$  A, V  $_{\rm R}=30$  V. In order to cover all circuit conditions, curves are given for typical recovered stored charge versus commutation di/dt for various levels of forward current and for junction temperatures of  $25^{\rm O}$ C,  $75^{\rm O}$ C,  $100^{\rm O}$ C, and  $150^{\rm O}$ C.

To use these curves, it is necessary to know the forward current level just before commutation, the circuit commutation di/dt, and the operating junction temperature. The reverse recovery test current waveform for all Motorola fast recovery rectifiers is shown.



From stored charge curves versus di/dt, recovery time ( $t_{rr}$ ) and peak reverse recovery current ( $l_{RM(REC)}$ ) can be closely approximated using the following formulas

$$t_{rr} = 1.41 \text{ x} \left[ \frac{Q_R}{dt/dt} \right]^{1/2}$$

$$I_{RM(REC)} = 1.41 \times \left[Q_R \times di/dt\right]^{1/2}$$

## 1N4001 thru 1N4007

#### **GENERAL-PURPOSE RECTIFIERS**

. . . subminiature size, axial lead mounted rectifiers for generalpurpose low-power applications.

**LEAD MOUNTED** SILICON RECTIFIERS

50-1000 VOLTS DIFFUSED JUNCTION

*MAXIMUM RATINGS									
Rating	Symbol	1N4001	1N4002	1N4003	1N4004	1N4005	1N4006	1N4007	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	50	100	200	400	600	800	1000	Volts
Non-Repetitive Peak Reverse Voltage (halfwave, single phase, 60 Hz)	V _{RSM}	60	120	240	480	720	1000	1200	Volts
RMS Reverse Voltage	V _{R(RMS)}	35	70	140	280	420	560	700	Volts
Average Rectified Forward Current (single phase, resistive load, 60 Hz, see Figure 8, T _A = 75°C)	10	10						Amp	
Non-Repetitive Peak Surge Current (surge applied at rated load conditions, see Figure 2)	¹ FSM	30 (for 1 cycle) ————————————————————————————————————						Amp	
Operating and Storage Junction Temperature Range	T _J ,T _{stg}	-		6!	5 to +1	75 —		-	°C

#### *ELECTRICAL CHARACTERISTICS

Characteristic and Conditions	Symbol	Тур	Max	Unit
Maximum Instantaneous Forward Voltage Drop (iF = 1 0 Amp, $T_J = 25^{\circ}C$ ) Figure 1	٧F	0 93	1 1	Volts
Maximum Full-Cycle Average Forward Voltage Drop ( $I_O = 1.0$ Amp, $T_L = 75^{0}$ C, 1 inch leads)	VF(AV)	-	0.8	Volts
Maximum Reverse Current (rated dc voltage)  T _J = 25°C  T _J = 100°C	I _R	0 05 1.0	10 50	μΑ
Maximum Full-Cycle Average Reverse Current (I _O = 1 0 Amp, T _L = 75°C, 1 inch leads	IR(AV)	-	30	μА

^{*}Indicates JEDEC Registered Data

#### **MECHANICAL CHARACTERISTICS**

CASE: Transfer Molded Plastic

MAXIMUM LEAD TEMPERATURE FOR SOLDERING PURPOSES: 350°C, 3/8" from case for 10 seconds at 5 lbs. tension

FINISH: All external surfaces are corrosion-resistant, leads are readily solderable

POLARITY: Cathode indicated by color band

WEIGHT: 0.40 Grams (approximately)





#### NOTES:

- ALL RULES AND NOTES ASSOCIATED WITH
   JEDEC DO-41 OUTLINE SHALL APPLY.
- 2. POLARITY DENOTED BY CATHODE BAND.
  3. LEAD DIAMETER NOT CONTROLLED WITHIN "F" DIMENSION

	MILLIM	MILLIMETERS INCHES		
DIM	MIN	MAX	MIN	MAX
Α	4.07	5 20	0 160	0.205
В	2.04	2 71	0 080	0.107
O	0 71	0.86	0.028	0 034
F	_	1 27		0.050.
K	27 94		1 100	_

**CASE 59-03** DO-41 PLASTIC

## 1N4719 thru 1N4725

#### LEAD MOUNTED POWER RECTIFIERS

having low forward voltage drop and hermetic metal packages High surge current capability and good thermal characteristics provide reliable operation

•  $R_{\theta JA} = 30^{\circ}C/W$ 

#### **SILICON RECTIFIERS**

3.0 AMPERES 50-1000 VOLTS DIFFUSED JUNCTION



*MAXIMUM RATINGS (Both Package Types) TA = 25°C unless otherwise noted

Rating	Symbol	1N4719	1N4720	1N4721	1N4722	1N4723	1N4724	1N4725	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	VRRM VRWM VR	50	100	200	400	600	800	1000	Volts
Nonrepetitive Peak Reverse Voltage (one half-wave, single phase, 60 cycle peak)	VRSM	100	200	300	500	720	1000	1200	Volts
RMS Reverse Voltage	VR(RMS)	35	70	140	280	420	560	700	Volts
Average Rectified Forward Current (single phase, resistive load, 60 Hz, T _A = 75°C)	10	30					<b>*</b>	Amp	
Nonrepetitive Peak Surge Current (superimposed on rated current at rated voltage, T _A = 75°C)	IFSM	300 (for 1/2 cycle)					<b>&gt;</b>	Amp	
Operating and Case Temperature	Tی, T _{stq}	-			-65 to +175	· ——			°C

#### **ELECTRICAL CHARACTERISTICS**

Characteristic	Symbol	Max Limit	Unit
*Instantaneous Forward Voltage (IF = 3.0 A, TJ = 75°C, Half Wave Rectifier)	٧F	10	Volts
*Full Cycle Average Reverse Current (IO = 3.0 Amps and Rated VR, TA = 75°C, Half Wave Rectifier)	I _{R(AV)}	1.5	mA
DC Reverse Current (Rated V _R , T _A = 25°C)	^I R	0.5	mA

^{*}Indicates JEDEC Registered Data

#### MECHANICAL CHARACTERISTICS

CASE: Welded, hermetically sealed construction
FINISH: All external surfaces corrosion-resistant and leads readily solderable

**POLARITY**. CATHODE TO CASE **MOUNTING POSITIONS**. Any



## 1N4933 thru 1N4937

#### Designers Data Sheet

#### AXIAL-LEAD, FAST-RECOVERY RECTIFIERS

. . . designed for special applications such as dc power supplies, inverters, converters, ultrasonic systems, choppers, low RF interference and free wheeling diodes. A complete line of fast recovery rectifiers having typical recovery time of 150 nanoseconds providing high efficiency at frequencies to 250 kHz.

#### Designer's Data for "Worst Case" Conditions

The Designers Data Sheet permits the design of most circuits entirely from the information presented Limit curves – representing device characteristics boundaries – are given to facilitate "worst case" design

#### *MAXIMUM RATINGS Rating Symbol 1N4933 1N4934 1N4935 1N4936 1N4937 Unit Peak Repetitive Reverse Voltage VRRM 100 200 400 600 Volts Working Peak Reverse Voltage VRWM ¹ DC Blocking Voltage VR Nonrepetitive Peak Reverse Voltage 150 250 450 650 Volts VRSM RMS Reverse Voltage VR(RMS) 35 70 140 280 420 Volts Average Rectified Forward Current 10 1.0 Amp (Single phase, resistive load, TA = 75°C) Nonrepetitive Peak Surge Current **IFSM** 30 Amps (Surge applied at rated load conditions) Operating Junction Temperature Range ΤJ -65 to +150 οс °C Storage Temperature Range -65 to +175 Tstg

#### *THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient (Typical Printed Circuit-Board Mounting)	$R_{\theta JA}$	65	°C/W

#### *ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Min	Тур	Max	Unit
*Instantaneous Forward Voltage (₁F = 3 14 Amp, TJ ≈ 150°C)	٧F	=	10	1 2	Voits
Forward Voltage (I _F = 1 0 Amp, T _A = 25 ^o C)	٧F	-	10	12	Volts
*Reverse Current (Rated dc Voltage) T _A = 25 ^o C T _A = 100 ^o C	I _R	-	1 0 50	5 0 100	μА

#### *REVERSE RECOVERY CHARACTERISTICS

Characteristic	Symbol	Min	Тур	Max	Unit
Reverse Recovery Time (IF = 1 0 Amp to VR = 30 Vdc) (Figure 21) (IFM = 15 Amp, di/dt = 10A/µs (Figure 22)	t _{rr}	-	150 175	200 300	ns
Reverse Recovery Current (IF = 1 0 Amp to VR = 30 Vdc) (Figure 21)	¹ RM(REC)	-	10	20	Amp
*Indicates IEDEC Registered Date			<u> </u>	L	Ь

#### FAST RECOVERY RECTIFIERS

50-600 VOLTS 1 AMPERE



#### NOTES

- 1 ALL RULES AND NOTES ASSOCIATED WITH JEDEC
- DO 41 OUTLINE SHALL APPLY
- 2 POLARITY DENOTED BY CATHODE BAND 3 LEAD DIAMETER NOT CONTROLLED WITHIN "F"
- 3 LEAD DIAMETER NOT CONTROLLED WITHIN DIMENSION

	MILLIM	ETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	5 97	6 60	0 235	0 260	
В	2 79	3 05	0 110	0 120	
D	0.76	0.86	0 030	0 034	
K	27 94	_	1 100	_	

CASE 59-04 DO-41 PLASTIC

#### MECHANICAL CHARACTERISTICS

CASE: Transfer Molded Plastic

FINISH: External leads are readily solderable

POLARITY: Cathode indicated by polarity band

WEIGHT: 0.4 Gram (approximately)











# **MAXIMUM CURRENT RATINGS**

SINE WAVE INPUT
FIGURE 6 – EFFECT OF LEAD LENGTHS,
RESISTIVE LOAD



SQUARE WAVE INPUT
FIGURE 7 – EFFECT OF LEAD LENGTHS,
RESISTIVE LOAD



FIGURE 8 - 1/8" LEAD LENGTH, VARIOUS LOADS



FIGURE 9 - 1/8" LEAD LENGTHS, VARIOUS LOADS



FIGURE 10 – PRINTED CIRCUIT BOARD MOUNTING, VARIOUS LOADS



FIGURE 11 – PRINTED CIRCUIT BOARD MOUNTING, VARIOUS LOADS





# FIGURE 13 – THERMAL RESISTANCE 80 70 80 HEADS TO HEAT SINK, EQUAL LENGTH MAXIMUM TYPICAL 10 10 11/8 11/4 3/8 1/2 5/8 3/4 7/8 1





FIGURE 14 - THERMAL CIRCUIT MODEL (For Heat Conduction Through The Leads)



# 8

# TYPICAL DYNAMIC CHARACTERISTICS





# TYPICAL RECOVERED STORED CHARGED DATA









FIGURE 21 - JEDEC REVERSE RECOVERY CIRCUIT



# NOTE 3

Reverse recovery time is the period which elapses from the time that the current, thru a previously forward biased rectifier diode, passes thru zero going negatively until the reverse current recovers to a point which is less than 10% peak reverse current.

Reverse recovery time is a direct function of the forward current prior to the application of reverse voltage

For any given rectifier, recovery time is very circuit dependent. Typical and maximum recovery time of all Motorola fast recovery power rectifiers are rated under a fixed set of conditions using  $I_F=1.0~\rm A,\ V_R=30~\rm V.$  In order to cover all circuit conditions, curves are given for typical recovered stored charge versus commutation di/dt for various levels of forward current and for junction temperatures of  $25^{\rm o}C$ ,  $75^{\rm o}C$ ,  $100^{\rm o}C$ , and  $150^{\rm o}C$ .

To use these curves, it is necessary to know the forward current level just before commutation, the circuit commutation di/dt, and the operating junction temperature. The reverse recovery test current waveform for all Motorola fast recovery rectifiers is shown.



From stored charge curves versus di/dt, recovery time ( $t_{rr}$ ) and peak reverse recovery current ( $I_{RM(REC)}$ ) can be closely approximated using the following formulas

$$t_{rr} = 1.41 \times \left[ \frac{Q_R}{di/dt} \right]^{1/2}$$

$$I_{RM(REC)} = 1.41 \times \left[Q_R \times di/dt\right]^{1/2}$$

# FIGURE 22 — TYPICAL REVERSE LEAKAGE



# FIGURE 23 - NORMALIZED REVERSE CURRENT



# MOTOROLA SEMICONDUCTOR TECHNICAL DATA

# 1N5391 thru 1N5399

# Designers Data Sheet

# "SURMETIC" RECTIFIERS

... subminiature size, axial lead-mounted rectifiers for generalpurpose, low-power applications.

# Designers Data for "Worst Case" Conditions

The Designers Data Sheets permit the design of most circuits entirely from the information presented. Limits curves-representing boundaries on device characteristics-are given to facilitate "worst-case" design.

# *MAXIMUM RATINGS

Rating	Symbol	1N5391	1N5392	1N5393	1N5395	1N5397	1N5398	1N5399	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	VRRM VRWM VR	50	100	200	400	600	800	1000	Volts
Nonrepetitive Peak Reverse Voltage (Halfwave, Single Phase, 60 Hz)	VRSM	100	200	300	525	800	1000	1200	Volts
RMS Reverse Voltage	VR(RMS)	35	70	140	280	420	560	700	Volts
Average Rectified Forward Current (Single Phase, Resistive Load, 60 Hz, T _L = 70°C, 1/2" From Body)	10	1.5				-	Amp		
Nonrepetitive Peak Surge Current (Surge Applied at Rated Load Conditions, See Figure 2)	IFSM	50 (for 1 cycle)				Amp			
Storage Temperature Range	T _{stg}	T _{stg} -65 to +175			°C				
Operating Temperature Range	TL				°c				
DC Blocking Voltage Temperature	TL	-			- 150	· —			°c

# *ELECTRICAL CHARACTERISTICS

Characteristic and Conditions	Symbol	Тур	Max	Unit
Maximum Instantaneous Forward Voltage Drop (IF = 4.7 Amp Peak, T _L = 170°C, 1/2 Inch Leads)	٧F	-	1.4	Volts
Maximum Reverse Current (Rated dc Voltage) (T _L = 150 ^o C)	IR	250	300	μА
Maximum Full-Cycle Average Reverse Current (1) (I _O = 1.5 Amp, T _L = 70°C, 1/2 Inch Leads)	IR(AV)	-	300	μА

^{*}Indicates JEDEC Registered Data.

NOTE 1: Measured in a single-phase, halfwave circuit such as shown in Figure 6.25 of EIA RS-282, November 1963. Operated at rated load conditions IO = 1.5 A, Vr = VRWM, TL = 70°C.

# MECHANICAL CHARACTERISTICS

CASE: Transfer molded plastic

MAXIMUM LEAD TEMPERATURE FOR SOLDERING PURPOSES: 240°C. 1/8" from case for 10 seconds at 5 lbs. tension

FINISH: All external surfaces are corrosion-resistant, leads are readily solderable

POLARITY: Cathode indicated by color band WEIGHT: 0.40 grams (approximately)

# LEAD-MOUNTED SILICON RECTIFIERS

50-1000 VOLTS **DIFFUSED JUNCTION** 





- ALL RULES AND NOTES ASSOCIATED WITH JEDEC
   DO-41 OUTLINE SHALL APPLY
- 2 POLARITY DENOTED BY CATHODE BAND
- 3 LEAD DIAMETER NOT CONTROLLED WITHIN "F" DIMENSION
- MILLIMETERS INCHES DIM MIN MAX MIN MAX A 597 660 0235 0260 B 279 305 0110 0120 0.76 0.86 0.030 0.034

**CASE 59-04** PLASTIC



FIGURE 2 - MAXIMUM NONREPETITIVE SURGE CURRENT FSM, PEAK SURGE CURRENT (AMP) -1 CYCLE VRSM APPLIED AFTER SURGE SURGE APPLIED AT RATED LOAD CONDITIONS T. = 170°C, f = 60 Hz 10 20 50 10 2 በ 5.0 10 100 NUMBER OF CYCLES



FIGURE 4 - TYPICAL TRANSIENT THERMAL RESISTANCE



The temperature of the lead should be measured using a thermocouple placed on the lead as close as possible to the tie point. The thermal mass connected to the tie point is normally large enough so that it will not significantly respond to heat surges generated in the diode as a result of pulsed operation once steady-

state conditions are achieved. Using the measured value of  $T_L$ , the junction temperature may be determined by.

$$T_J = T_L + \triangle T_{JL}.$$



















FIGURE 13 – RECTIFICATION WAVEFORM EFFICIENCY FOR SINE WAVE



# FIGURE 14 – RECTIFICATION WAVEFORM EFFICIENCY FOR SQUARE WAVE



# RECTIFIER EFFICIENCY NOTE

The rectification efficiency factor  $\sigma$  shown in Figures 13 and 14 was calculated using the formula

$$\sigma = \frac{P_{dc}}{P_{rms}} = \frac{\frac{V^{2}_{O}(dc)}{R_{L}}}{\frac{V^{2}_{O}(rms)}{R_{L}}} \bullet 100\% = \frac{V^{2}_{O}(dc)}{V^{2}_{O}(ac) + V^{2}_{O}(dc)} \bullet 100\% \quad (1)$$

For a sine wave input  $V_m sin$  ( $\omega t$ ) to the diode, assumed lossless, the maximum theoretical efficiency factor becomes 40%, for a square wave input of amplitude  $V_m$ , the efficiency factor becomes 50% (A full wave circuit has twice these efficiencies).

As the frequency of the input signal is increased, the reverse recovery time of the diode (Figure 11) becomes significant, resulting in an increasing ac voltage component across R_L which is opposite in polarity to the forward current thereby reducing the value of the efficiency factor  $\sigma$ , as shown in Figures 13 and 14.

It should be emphasized that Figures 13 and 14 show waveform efficiency only, they do not account for diode losses. Data was obtained by measuring the ac component of Vo with a true rms voltmeter and the dc component with a dc voltmeter. The data was used in Equation 1 to obtain points for the Figures.

# MOTOROLA SEMICONDUCTOR I TECHNICAL DATA

# 1N5400 thru 1N5406

# LEAD MOUNTED STANDARD RECOVERY RECTIFIERS

... designed for use in power supplies and other applications having need of a device with the following features

- High Current to Small Size
- High Surge Current Capability
- Low Forward Voltage Drop
- Economical Plastic Package
- Available in Volume Quantities

# STANDARD RECOVERY RECTIFIERS

50-600 VOLTS 3 AMPERE



### MAXIMUM BATINGS

Rating	Symbol	1N5400	1N5401	1N5402	1N5404	1N5406	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	50	100	200	400	600	Volts
Nonrepetitive Peak Reverse Voltage	V _{RSM}	100	200	300	525	800	Volts
Average Rectified Forward Current (Single Phase Resistive Load, (1/2" Leads, T _L = 105°C)	ю	30				Amp	
Nonrepetitive Peak Surge Current (Surge Applied at Rated Load Conditions)	¹ FSM	200 (one cycle)			Amp		
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-		65 to +1	75		°C

# THERMAL CHARACTERISTICS

Characteristic	Symbol	Тур	Unit
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	53	°C/W
(PC Board Mount, 1/2" Leads)			

# *ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Min	Тур	Max	Unit
Instantaneous Forward Voltage (1) (IF = 9 4 Amp)	٧F	_	_	1 2	Volts
Average Reverse Current (1)  DC Reverse Current (Rated dc Voltage, T _L = 150°C)	I _{R(AV)} I _R	_ _	_	500 500	μА

*JEDEC Registered Data.

 Measured in a single-phase half-wave circuit such as shown in Figure 6.25 of EIA RS-282, November 1963. Operated at rated load conditions T_L = 105°C, I_O=3 0 A, V_r=V_{RWM}.



MILLIMETERS INCHES DIM MIN MAX MIN MAX Α 9 39 0.370 В 6 35 0 250 1 32 0 048 0 052 D 1 22 25 40 1 000

> CASE 267-02 PLASTIC

# MECHANICAL CHARACTERISTICS

Case: Transfer Molded Plastic Finish: External Leads are Plated, Leads are readily Solderable Polarity: Indicated by Cathode Band Weight: 1 1 Grams (Approximately) Maximum Lead Temperature for Soldering Purposes: 240°C, 8t from case for 10 s

at 5 0 lb tension



FIGURE 2 - MAXIMUM NONREPETITIVE SURGE CURRENT SURGE APPLIED AT RATED LOAD 300 PEAK SURGE CURRENT (AMPS) CONDITIONS f = 60 Hz 200 100 90 80 70 60 50 40 | 10 20 30 50 7.0 10 20 30 70 NUMBER OF CYCLES

### FIGURE 3 - CURRENT DERATING VARIOUS LEAD LENGTHS IF(AV), AVERAGE FORWARD CURRENT (AMP) = 1/32RESISTIVE LOAD 7.0 BOTH LEADS TO HEAT SINK WITH LENGTHS 6 0 AS SHOWN 50 4.0 1/2 3 0 2 0 40 60 80 100 120 140 160 180 T_L LEAD TEMPERATURE (°C)



Data shown for thermal resistance junction to ambient  $(R_{\theta,j,k})$  for the mountings shown is to be used as typical guideline values for preliminary engineering or in case the tie point temperature cannot be measured.

# TYPICAL VALUES FOR $R_{ heta JA}$ IN STILL AIR

MOUNTING	L	EAD LEN	GTH, L (I	N)	ĺ	
METHOD	1/8	1/4	1/2	3/4	R⊕JA	
1	50	51	53	55	°C/W	
22	58	59	61	63	°C/W	
3		28				

MOUNTING METHOD 3

# MOUNTING METHOD 1

P.C. Board Where Available Copper Surface area is small





# MOTOROLA SEMICONDUCTOR I TECHNICAL DATA

1N5817 MBR115P 1N5818 MBR120P 1N5819 MBR130P MBR140P

# **AXIAL LEAD RECTIFIERS**

... employing the Schottky Barrier principle in a large area metal-tosilicon power diode State-of-the-art geometry features epitaxial construction with oxide passivation and metal overlap contact. Ideally suited for use as rectifiers in low-voltage, high-frequency inverters, free wheeling diodes, and polarity protection diodes.

- · Extremely Low vF
- Low Stored Charge, Majority Carrier Conduction
- Low Power Loss/High Efficiency

# *MAXIMUM RATINGS

WAXIMUW KATINGS						
Ratıng	Symbol	MBR115P	1N5817 MBR120P	1N5818 MBR130P	1N5819 MBR140P	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	15	20	30	40	V
Non-Repetitive Peak Reverse Voltage	VRSM	15	24	36	48	٧
RMS Reverse Voltage	VR(RMS)	10	14	21	28	٧
Average Rectified Forward Current (2) $ \begin{aligned} & (\text{VR}(\text{equiv}) \leqslant 0 \text{ 2 VR}(\text{dc}), \\ & \text{T}_{L} = 90^{\circ}\text{C}, \\ & \text{R}_{\theta}\text{JA} = 80^{\circ}\text{C/W}, \text{P C Board} \\ & \text{Mounting, see Note 2, T}_{A} = 55^{\circ}\text{C}) \end{aligned} $	10		1	0		А
Ambient Temperature (Rated $V_R(dc)$ , $P_F(AV) = 0$ , $R_{\theta JA} = 80^{\circ}C/W$ )	TA	90	85	80	75	°C
Non-Repetitive Peak Surge Current (Surge applied at rated load conditions, half-wave, single phase 60 Hz, T _L = 70 ⁰ C)	I _{FSM}	-	25 (for o	ne cycle	) ——	А
Operating and Storage Junction Temperature Range (Reverse Voltage applied)	T _J , T _{stg}	-	<b>-</b> −65 to	+125 •		°C
Peak Operating Junction Temperature (Forward Current applied)	T _{J(pk)}	-	15	50 —		°C

# *THERMAL CHARACTERISTICS (Note 2)

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	80	°C/W

# *ELECTRICAL CHARACTERISTICS (T_L = 25°C unless otherwise noted) (2)

Characteristic	Symbol	1N5817	1N5818	1N5819	MBR115P MBR120P MBR130P	MBR140P	Unit
Maximum Instantaneous Forward	٧F						٧
Forward Voltage (1) (IF = 0 1 A)		0 320	0 330	0 340	0 350	0 350	
(IF = 1 0 A)		0 450	0 550	0 600	0 550	0 600	
(IF = 3 0 A)		0 750	0 875	0 900	0 850	0 900	
Maximum Instantaneous Reverse Current @ Rated dc Voltage (1)	İR						mA
(T _L = 25°C)	1	10	10	10	10	10	
(T _L = 100 ^o C)	1	10	10	10	10	10	

(1) Pulse Test Pulse Width = 300  $\mu$ s, Duty Cycle = 20%

(2) Lead Temperature reference is cathode lead 1/32" from case

*Indicates JEDEC Registered Data for 1N5817-19

# SCHOTTKY BARRIER RECTIFIERS

1 AMPERE 15, 20, 30, 40 VOLTS





	MILLIN	TETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	5 97	6 60	0 235	0 260
В	2 79	3 05	0 110	0 120
D	0.76	0.86	0 030	0 034
K	27 94	_	1 100	_

CASE 59-04 PLASTIC

# MECHANICAL CHARACTERISTICS

CASE Transfer molded plastic
FINISH. All external surfaces
corrosion-resistant and the terminal

leads are readily solderable
POLARITY . . . Cathode indicated by

polarity band MOUNTING POSITIONS . Any

SOLDERING . . . 220°C 1/16" from case for ten seconds

# 1N5817, 1N5818, 1N5819, MBR115P, MBR120P, MBR130P, MBR140P

### NOTE 1 -- DETERMINING MAXIMUM RATINGS

Reverse power dissipation and the possibility of thermal runaway must be considered when operating this rectifier at reverse voltages above 0.1 V_{RWM}. Proper derating may be accomplished by use of equation (1)

$$T_{A(max)} = T_{J(max)} - R_{\theta} J A^{P} F(AV) - R_{\theta} J A^{P} R(AV)$$
 (1)

TA(max) = Maximum allowable ambient temperature where T_{J(max)} = Maximum allowable junction temperature

(125°C or the temperature at which thermal runaway occurs, whichever is lowest)

PF(AV) = Average forward power dissipation

PR(AV) = Average reverse power dissipation

 $R_{\theta JA}$  = Junction-to-ambient thermal resistance

Figures 1, 2, and 3 permit easier use of equation (1) by taking reverse power dissipation and thermal runaway into consideration The figures solve for a reference temperature as determined by

$$T_{R} = T_{J(max)} - R_{\theta} J A^{P} R(AV)$$
 (2)

Substituting equation (2) into equation (1) yields

$$T_{A(max)} = T_{R} - R_{\theta} J_{A} P_{F}(AV)$$
 (3)

Inspection of equations (2) and (3) reveals that TR is the ambient temperature at which thermal runaway occurs or where T_J = 125°C, when forward power is zero. The transition from one boundary condition to the other is evident on the curves of Figures 1, 2, and 3 as a difference in the rate of change of the slope in the vicinity of 115°C. The data of Figures 1, 2, and 3 is based upon dc conditions. For use in common rectifier circuits, Table 1 indicates suggested factors for an equivalent dc voltage to use for conservative design, that is

$$V_{R(equiv)} = V_{in}(PK) \times F$$
 (4)

The factor F is derived by considering the properties of the various rectifier circuits and the reverse characteristics of Schottky diodes.

EXAMPLE Find TA(max) for 1N5818 operated in a 12-volt dc supply using a bridge circuit with capacitive filter such that  $I_{DC} = 0.4 \text{ A } (I_{F(AV)} = 0.5 \text{ A}), I_{(FM)}/I_{(AV)} = 10, Input Voltage$ = 10  $V_{(rms)}$ ,  $R_{\theta}JA = 80^{\circ}C/W$ .

Step 1 Find VR (equiv). Read F = 0 65 from Table 1,

 $V_{R(equiv)} = (1.41)(10)(0.65) = 9.2 V.$ 

Step 2. Find T_R from Figure 2 Read T_R = 109°C

@  $V_R = 9.2 \text{ V}$  and  $R_{\theta JA} = 80^{\circ}\text{C/W}$ Step 3 Find  $P_{F(AV)}$  from Figure 4 **Read  $P_{F(AV)} = 0.5 \text{ W}$ 

$$@\frac{I(FM)}{I(AV)} = 10 \text{ and } I_{F(AV)} = 0.5 \text{ A}$$

Step 4. Find TA(max) from equation (3)

 $T_{A(max)} = 109 - (80)(0.5) = 69^{\circ}C.$ 

**Values given are for the 1N5818. Power is slightly lower for the 1N5817 because of its lower forward voltage, and higher for the 1N5819. Variations will be similar for the MBR-prefix devices, using PF(AV) from Figure 7.

TABLE 1 - VALUES FOR FACTOR F

Circuit	Full Wave, Half Wave Bridge				1	Wave, 「apped*†
Load	Resistive	Capacitive*	Resistive	Capacitive	Resistive	Capacitive
Sine Wave	0.5	1 3	05	0 65	10	1 3
Square Wave	0 75	1.5	0 75	0 75	1.5	1.5

*Note that  $V_R(PK) \approx 2.0 \ V_{IR}(PK)$  †Use line to center tap voltage for  $V_{IR}$ 

FIGURE 1 - MAXIMUM REFERENCE TEMPERATURE 1N5817/MBR115P/MBR120P



FIGURE 3 - MAXIMUM REFERENCE TEMPERATURE 1N5819/MBR140P



FIGURE 2 - MAXIMUM REFERENCE TEMPERATURE 1N5818/MBR130P



VR, DC REVERSE VOLTAGE (VOLTS)



# 1N5817, 1N5818, 1N5819, MBR115P, MBR120P, MBR130P, MBR140P

# THERMAL CHARACTERISTICS



### NOTE 2 - MOUNTING DATA

Data shown for thermal resistance junction-to-ambient (R $_{ heta \, \mathrm{JA}}$ ) for the mountings shown is to be used as typical guideline values for preliminary engineering, or in case the tie point temperature cannot be measured

# TYPICAL VALUES FOR $\mathbf{R}_{\theta}\mathbf{JA}$ IN STILL AIR

Mounting		Lead Length, L (in)					
Method	1/8	1/4	1/2	3/4	$R_{\theta JA}$		
1	52	65	72	85	°C/W		
2	67	80	87	100	°C/W		
3		5		°C/W			

# Mounting Method 1

P C Board with 1-1/2" X 1-1/2"

copper surface

Mounting Method 3 P.C. Board with 1-1/2" X 1-1/2"

copper surface



Mounting Method 2

Vector Pin Mounting



### NOTE 3 - THERMAL CIRCUIT MODEL (For heat conduction through the leads)



Use of the above model permits junction to lead thermal resistance for any mounting configuration to be found. For a given total lead length, lowest values occur when one side of the rectifier is brought as close as possible to the heat sink. Terms in the model signify

TA = Ambient Temperature

T_C = Case Temperature

T_L = Lead Temperature

 $T_{J}^{-}$  = Junction Temperature

 $R_{\theta S}$  = Thermal Resistance, Heat Sink to Ambient R₀₁ = Thermal Resistance, Lead to Heat Sink

 $R_{\theta J}$  = Thermal Resistance, Junction to Case

PD = Power Dissipation

(Subscripts A and K refer to anode and cathode sides, respectively.) Values for thermal resistance components are

 $R_{\theta L} = 100^{\circ} C/W/in$  typically and  $120^{\circ} C/W/in$  maximum

 $R_{\theta J} = 36^{\circ}$ C/W typically and  $46^{\circ}$ C/W maximum

### I(FM) = π (Resistive Load) I(AV) Capacitive Loads 10 de

FIGURE 6 - FORWARD POWER DISSIPATION

1N5817-19

50

3 0

Sine Wave

P F(AV), AVERAGE POWER DISSIPATION (WATTS) 10 07 Square Wave 05 03 Tj ≈ 125°C 0 40 02 08 10

IF(AV), AVERAGE FORWARD CURRENT (AMP)

FIGURE 7 - FORWARD POWER DISSIPATION MBR115P-140P











### NOTE 4 - HIGH FREQUENCY OPERATION

Since current flow in a Schottky rectifier is the result of majority carrier conduction, it is not subject to jucntion diode forward and reverse recovery transients due to minority carrier injection and stored charge Satisfactory circuit analysis work may be performed by using a model consisting of an ideal diode in parallel with a variable capacitance (See Figure 11.)

Rectification efficiency measurements show that operation will be satisfactory up to several megahertz. For example, relative waveform rectification efficiency is approximately 70 per cent at 2.0 MHz, e.g., the ratio of dc power to RMS power in the load is 0.28 at this frequency, whereas perfect rectification would yield 0.406 for sine wave inputs. However, in contrast to ordinary junction diodes, the loss in waveform efficiency is not indicative of power loss. It is simply a result of reverse current flow through the diode capactiance, which lowers the dc output voltage.

(For 50 V and 60 V, see MBR150, 160 Data Sheet)

# MOTOROLA **SEMICONDUCTOR** I **TECHNICAL DATA**

1N5820 MBR320P 1N5821 MBR330P **MBR340P** 1N5822

# **Designers Data Sheet**

# **AXIAL LEAD RECTIFIERS**

... employing the Schottky Barrier principle in a large area metal-to-silicon power diode. State-of-the-art geometry features epitaxial construction with oxide passivation and metal overlap contact. Ideally suited for use as rectifiers in low-voltage, high-frequency inverters, free wheeling diodes, and polarity protection diodes.

- Extremely Low ve
- Low Stored Charge, Majority
- Low Power Loss/High Efficiency
- Carrier Conduction

### Designer's Data for Worst-Case Conditions

The Designers Data sheets permit the design of most circuits entirely from the information presented Limit curves-representing boundaries on device characteristics-are given to facilitate worst-case design

# *MAXIMUM RATINGS

Rating	Symbol	1N5820 MBR320P	1N5821 MBR330P	1N5822 MBR340P	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	20	30	40	٧
Non-Repetitive Peak Reverse Voltage	V _{RSM}	24	36	48	٧
RMS Reverse Voltage	VR(RMS)	14	21	28	V
$\label{eq:average Rectified Forward Current(2)} $$ VR(equiv) \le 0.2 VR(dc), T_L = 95^{\circ}C \\ (R_{\theta}JA = 28^{\circ}C/W, P.C. Board \\ Mounting, see Note 2)$	10		30		А
Ambient Temperature Rated $VR(dc)$ , $PF(AV) = 0$ $R_{\theta JA} = 28^{\circ}C/W$	TA	90	85	80	°C
Non-Repetitive Peak Surge Current (Surge applied at rated load condi- tions, half wave, single phase 60 Hz, T _L = 75 ^o C)	¹ FSM	80	(for one cy	cle)	A
Operating and Storage Junction Temperature Range (Reverse Voltage applied)	T _J , T _{stg}	-	-65 to +125	<b>-</b>	°C
Peak Operating Junction Temperature (Forward Current Applied)	T _{J(pk)}	-	150 —		°C

### *THERMAL CHARACTERISTICS (Note 2)

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	28	°C/W

# *ELECTRICAL CHARACTERISTICS (T₁ = 25°C unless otherwise noted) (2)

Characteristic	Symbol	1N5820	1N5821	1N5822	MBRP	Unit
Maximum Instantaneous	VF					V
Forward Voltage (1)		i	İ		1	
(iF = 10 Amp)	1	0 370	0 380	0 390	0 400	
(iF = 30 Amp)	1	0 475	0 500	0 525	0 550	
(IF = 9 4 Amp)		0 850	0 900	0.950	0 950	
Maximum Instantaneous	İR					mA
Reverse Current @ Rated	1	l	l	l		
dc Voltage (1)	i	ł	l	ĺ	1	
TL = 25°C	i	20	20	2.0	20	
T _L = 100°C	1	20	20	20	20	

- (1) Pulse Test Pulse Width = 300 us. Duty Cycle = 2 0%
- (2) Lead Temperature reference is cathode lead 1/32" from case
- *Indicates JEDEC Registered Data for 1N5820-22

# SCHOTTKY BARRIER RECTIFIERS

3.0 AMPERES 20, 30, 40 VOLTS





# MECHANICAL CHARACTERISTICS

Transfer molded plastic CASE FINISH. . . . All external surfaces corrosion-resistant and the terminal leads are readily solderable

POLARITY .... Cathode indicated by polarity band MOUNTING POSITIONS . . . . . . . . . Any

for ten seconds

# 1N5820, 1N5821, 1N5822, MBR320P, MBR330P, MBR340P

### NOTE 1 - DETERMINING MAXIMUM RATINGS

Reverse power dissipation and the possibility of thermal runaway must be considered when operating this rectifier at reverse voltages above  $0.1\ V_{RWM}$ . Proper derating may be accomplished by use of equation (1).

$$T_A(max) = T_J(max) - R_{\theta}JAP_F(AV) - R_{\theta}JAP_R(AV)$$
 (1)

where T_{A(max)} = Maximum allowable ambient temperature

T_J(max) = Maximum allowable junction temperature

(125°C or the temperature at which thermal runaway occurs, whichever is lowest)

 $P_{F(AV)}$  = Average forward power dissipation  $P_{R(AV)}$  = Average reverse power dissipation

 $R_{\theta JA}$  = Junction-to-ambient thermal resistance

Figures 1, 2, and 3 permit easier use of equation (1) by taking reverse power dissipation and thermal runaway into consideration. The figures solve for a reference temperature as determined by equation (2).

$$T_{R} = T_{J(max)} - R_{\theta JA} P_{R(AV)}$$
 (2)

Substituting equation (2) into equation (1) yields

 $T_{A(max)} = T_{R} - R_{\theta}J_{A}P_{F}(AV)$ 

Inspection of equations (2) and (3) reveals that  $T_{\mbox{\scriptsize Pl}}$  is the ambient temperature at which thermal runaway occurs or where  $T_{\mbox{\scriptsize J}}=125^0C$ , when forward power is zero. The transition from one boundary condition to the other is evident on the curves of Figures 1, 2, and 3 as a difference in the rate of change of the

slope in the vicinity of 115°C. The data of Figures 1, 2, and 3 is based upon dc conditions. For use in common rectifier circuits, Table 1 indicates suggested factors for an equivalent dc voltage to use for conservative design, that is:

$$V_{R(equiv)} = V_{(FM)} \times F$$
 (4)

The factor F is derived by considering the properties of the various rectifier circuits and the reverse characteristics of Schottky diodes

EXAMPLE. Find  $T_A(_{max})$  for 1N5821 operated in a 12-volt dc supply using a bridge circuit with capacitive filter such that  $1_{DC}=2.0~A~(1_F(A_V)=1.0~A),~I_{\{FM\}}/I_{\{AV\}}=10,$  Input Voltage  $=10~V(_{rms}),~R_{\theta,l}A=40^{\circ}C/W.$ 

.. VR(equiv) = (1.41)(10)(0.65) = 9.2 V.

Step 2. Find 
$$T_R$$
 from Figure 2. Read  $T_R = 108^{\circ}C$ 

@  $V_R = 9.2$  V and  $R_{\theta JA} = 40^{\circ}$ C/W. Step 3. Find  $P_{F(AV)}$  from Figure 6. **Read  $P_{F(AV)} = 0.85$  W

@ 
$$\frac{I(FM)}{I(AV)} = 10$$
 and  $I_{F(AV)} = 1.0$  A.

Step 4 Find TA(max) from equation (3).

 $T_{A(max)} = 108 - (0.85)(40) = 74^{\circ}C.$ 

**Values given are for the 1N5821 Power is slightly lower for the 1N5820 because of its lower forward voltage, and higher for the 1N5822. Variations will be similar for the MBR-prefix devices, using  $P_{F(AV)}$  from Figure 7.

### TABLE 1 - VALUES FOR FACTOR F

(3)

Circuit	Half Wave				Full Wave, Conter Tapped*1	
Load	Resistive	Capacitive*	Resistive	Capacitive	Resistive	Capacitive
Sine Wave	05	13	05	0.65	1.0	1 3
Square Wave	0 75	1.5	0.75	0 75	1 5	1 5

*Note that  $V_{R(PK)} \approx 2.0 V_{In(PK)}$ . †Use line to center tap voltage for  $V_{In}$ .

FIGURE 1 - MAXIMUM REFERENCE TEMPERATURE



FIGURE 3 - MAXIMUM REFERENCE TEMPERATURE



FIGURE 2 - MAXIMUM REFERENCE TEMPERATURE





# 1N5820, 1N5821, 1N5822, MBR320P, MBR330P, MBR340P





FIGURE 7 – FORWARD POWER DISSIPATION MBR320P-340P



### NOTE 2 - MOUNTING DATA

Data shown for thermal resistance junction-to-ambient ( $R_{\theta}$ JA) for the mountings shown is to be used as typical guideline values for preliminary engineering, or in case the tie point temperature cannot be measured.

TYPICAL VALUES FOR RAIA IN STILL AIR

TITICAL VALUES FOR REJA IN STILL AIN							
Mounting		Lead Len	gth, L (in)				
Method	1/8	1/4	1/2	3/4	$R_{\theta}JA$		
1	50	51	53	55	°C/W		
2	58	59	61	63	°C/W		
3		28					

### NOTE 3 - APPROXIMATE THERMAL CIRCUIT MODEL



Use of the above model permits junction to lead thermal resistance for any mounting configuration to be found. For a given total lead length, lowest values occur when one side of the rectifier is brought as close as possible to the heat sink. Terms in the model signify.

TA = Ambient Temperature

T_C = Case Temperature

T₁ = Lead Temperature

T_J = Junction Temperature

 $R_{\theta S}$  = Thermal Resistance, Heat Sink to Ambient  $R_{\theta L}$  = Thermal Resistance, Lead to Heat Sink

 $R_{\theta}J$  = Thermal Resistance, Junction to Case

PD = Total Power Dissipation = PF + PR

PF = Forward Power Dissipation

P_R = Reverse Power Dissipation

(Subscripts (A) and (K) refer to anode and cathode sides, respectively ) Values for thermal resistance components are

 $R_{\theta L}$ = 42°C/W/in typically and 48°C/W/in maximum

 $R_{\theta J} = 10^{\circ}$ C/W typically and  $16^{\circ}$ C/W maximum

The maximum lead temperature may be found as follows

$$T_L = T_{J(max)} - \Delta T_{JL}$$

where  $\Delta T_{JL} \approx R_{\theta JL} \cdot P_D$ 











# NOTE 4 - HIGH FREQUENCY OPERATION

Since current flow in a Schottky rectifier is the result of majority carrier conduction, it is not subject to junction diode forward and reverse recovery transients due to minority carrier injection and stored charge. Satisfactory circuit analysis work may be performed by using a model consisting of an ideal diode in parallel with a variable capacitance. (See Figure 11.)

# MOTOROLA SEMICONDUCTOR TECHNICAL DATA

# 1N5823, 1N5824 1N5825 MBR5825,H,H1

# **Designers Data Sheet**

# **HOT CARRIER POWER RECTIFIERS**

.. employing the Schottky Barrier principle in a large area metal-to-silicon power diode. State-of-the-art geometry features epitaxial construction with oxide passivation and metal overlap contact Ideally suited for use as rectifiers in low-voltage, high-frequency inverters, free-wheeling diodes, and polarity-protection diodes.

- Extremely Low v_F
- Low Stored Charge, Majority Carrier Conduction
- Low Power Loss/ High Efficiency

 "H" & "H1" Version Available Similar to TX Processing

# Designer's Data for "Worst Case" Conditions

The Designers Data sheets permit the design of most circuits entirely from the information presented Limit curves — representing boundaries on device characteristics — are given to facilitate "worst case" design

# SCHOTTKY BARRIER RECTIFIERS

5 AMPERE 20, 30, 40 VOLTS



### *MAXIMUM RATINGS

Rating	Symbol	1N5823	1N5824	1N5825 MBR5825H, H1	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	20	30	40	Volts
Non-Repetitive Peak Reverse Voltage	VRSM	24	36	· 48	Volts
RMS Reverse Voltage	VR(RMS)	14	21	28	Volts
Average Rectified Forward Current $ \begin{array}{l} VR(\text{equiv}) \leqslant 0.2 \ VR_{\text{(dc)}}, \ T_{\text{C}} = 75^{\circ}\text{C} \\ VR(\text{equiv}) \leqslant 0.2 \ VR_{\text{(dc)}}, \ T_{\text{L}} = 80^{\circ}\text{C} \\ R_{\theta}JA = 25^{\circ}\text{C}/W, P \in \text{Board} \\ \text{Mounting, See Note 3)} \end{array} $	lo	15 50			Amp
Ambient Temperature Rated VR (dc)· PF(AV) = 0 R _{θJA} = 25°C/W	TA	65	60	55	°C
Non-Repetitive ^I Peak Surge Current (Surge applied at rated load conditions, halfwave, single phase 60 Hz)	IFSM	500 (for 1 cycle)			Amp
Operating and Storage Junction Temperature Range (Reverse Voltage applied)	T _J , T _{Stg}	-	65 to +12	5	°C
Peak Operating Junction Temperature (Forward Current Applied)	T _{J(pk)}		150 -		°C

# *THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta}$ JC	30	°C/W

# *ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic	Symbol	1N5823	1N5824	1N5825 MBR5825H, H1	Unit
Maximum Instantaneous Forward Voltage (1)	VF				Volts
(IF = 3 0 Amp)	1	0 330	0 340	0 350	
(IF = 5 0 Amp)	1	0 360	0.370	0.380	!
(IF = 15 7 Amp)		0.470	0.490	0 520	ł
Maximum Instantaneous Reverse Current	iR				mA
@ rated dc Voltage	"	1	İ	}	İ
T _C = 25°C		10	10	10	1
T _C = 100°C	}	100	125	150	

⁽¹⁾ Pulse Test Pulse Width = 300 µs, Duty Cycle = 2.0% *Indicates JEDEC Registered Data for 1N5823-1N5825

### NOTE 1 DETERMINING MAXIMUM BATINGS

Reverse power dissipation and the possibility of thermal runaway must be considered when operating this rectifier at reverse voltages above 0.1 VRWM Proper derating may be accomplished by use of equation (1)

$$T_{A(max)} = T_{J(max)} - R_{\theta JA} P_{F(AV)} - R_{\theta JA} P_{R(AV)}$$
 (1)

TA(max) = Maximum allowable ambient temperature

T_{J(max)} = Maximum allowable junction temperature (125°C or the temperature at which thermal runaway occurs, whichever is lowest).

PF(AV) = Average forward power dissipation

PR(AV) = Average reverse power dissipation

 $R_{\theta JA}$  = Junction-to-ambient thermal resistance Figures 1, 2 and 3 permit easier use of equation (1) by taking reverse power dissipation and thermal runaway into consideration The figures solve for a reference temperature as determined by equation (2)

$$T_{R} = T_{J(max)} - R_{\theta JA} P_{R(AV)}$$
 (2)

Substituting equation (2) into equation (1) yields

 $T_{A(max)} = T_{R} - R_{\theta JA} P_{F(AV)}$ 

Inspection of equations (2) and (3) reveals that TR is the ambient temperature at which thermal runaway occurs or where T_J = 125°C, when forward power is zero. The transition from one boundary condition to the other is evident on the curves of Figures 1, 2 and 3 as a difference in the rate of change of the slope in the vicinity of 115°C The data of Figures 1, 2 and 3 is based upon dc conditions For use in common rectifier circuits, Table I indicates suggested factors for an equivalent dc voltage to use for conservative design, i e

$$V_{R(equiv)} = V_{IN(PK)} \times F$$
 (4)

The Factor F is derived by considering the properties of the various rectifier circuits and the reverse characteristics of Schottky diodes

Example Find TA(max) for 1N5825 operated in a 12-Volt dc supply using a bridge circuit with capacitive filter such that IDC 10 A (IF(AV) = 5 A), I(PK)/I(AV) = 10, Input Voltage = 10 V(rms),  $R_{\theta JA} = 10^{0}$ C/W

Find VR(equiv) Read F = 0 65 from Table 1 .. Step 1

VR(equiv) = (1.41)(10)(0 65) = 9 2 V

Find Tp from Figure 3. Read Tp = 113°C @ Vp = Step 2

9.2 V & R_{0 JA} = 10°C/W. Find P_{F(AV)} from Figure 4 **Read P_{F(AV)} = 55 W Step 3 @ (PK) = 10 & IF(AV) = 5 A

I(AV) Find  $T_{A(max)}$  from equation (3)  $T_{A(max)} = 113-(10)$  (5.5) = 58°C. Step 4

** Value given are for the 1N5825. Power is slightly lower for the other units because of their lower forward voltage.

# TABLE I - VALUES FOR FACTOR F

(3)

Circuit	Half Wave		Full Wave, Bridge			II Wave, er Tapped *†
Load	Resistive	Capacitive*	Resistive	Capacitive	Resistive	Capacitive
Sine Wave	0.5	13	05	0 65	10	13
Square Wave	0.75	1.5	0 75	0 75	15	15

*Note that VR(PK) ~ 2 Vin(PK)

†Use line to center tap voltage for Vin





FIGURE 3 - MAXIMUM REFERENCE TEMPERATURE 1N5825 AND MBR5825H, H1



FIGURE 2 - MAXIMUM REFERENCE TEMPERATURE - 1N5824







# THERMAL CHARACTERISTICS



### NOTE 2 - FINDING JUNCTION TEMPERATURE





# FIGURE 6 - APPROXIMATE THERMAL CIRCUIT MODEL



Use of the above model permits calculation of average junction temperature for any mounting situation. Lowest values of thermal resistance will occur when the cathode lead is brought as close as possible to a heat dissipator, as heat conduction through the anode lead is small Terms in the model are defined as follows

*Case temperature reference is at cathode end

# TEMPERATURES

T_A = Ambient

TAA = Anode Heat Sink Ambient TAK = Cathode Heat Sink Ambient

T_{LA} = Anode Lead T_{LK} = Cathode Lead T_J = Junction

 $R_{\theta CA}$  = Case to Ambient

ResA = Anode Lead Heat Sink to Ambient

ROSK = Cathode Lead Heat Sink to Ambient

 $R_{\theta LA}$  = Anode Lead  $R_{\theta LK}$  = Cathode Lead

 $R_{\theta CL}$  = Case to Cathode Lead  $R_{\theta JC}$  = Junction to Case

ROJA = Junction to Anode Lead (S bend)



# FIGURE 8 - MAXIMUM SURGE CAPABILITY 1000 IFSM, PEAK HALF WAVE CURRENT (AMP) Prior to surge, the rectifier is operated such 700 that TJ = 100°C, VRRM may be applied be tween each cycle of surge 500 300 200 100 10 2.0 50 5.0 20

NUMBER OF CYCLES





# NOTE 4 – HIGH FREQUENCY OPERATION

Since current flow in a Schottky rectifier is the result of majority carrier conduction, it is not subject to junction diode forward and reverse recovery transients due to minority carrier injection and stored charge. Satisfactory circuit analysis work may be performed by using a model consisting of an ideal diode in parallel with a variable capacitance. (See Figure 10)

Rectification efficiency measurements show that operation will be satisfactory up to several megahertz. For example, relative waveform rectification efficiency is approximately 70 per cent at 2 0 MHz, e.g., the ratio of dc power to RMS power in the load is 0 28 at this frequency, whereas perfect rectification would yield 0 406 for sine wave inputs. However, in contrast to ordinary junction diodes, the loss in waveform efficiency is not indicative of power loss, it is simply a result of reverse current flow through the diode capacitance, which lowers the dc output voltage.

# 1N5823, 1N5824, 1N5825, MBR5825H, H1



# **MECHANICAL CHARACTERISTICS**

 $\textbf{CASE:} \ \textbf{Welded, hermetically sealed construction}.$ 

FINISH: All external surfaces corrosion-resistant and the terminal leads are readily solderable

WEIGHT: 2 4 grams (approximately)
POLARITY: Cathode to case
MOUNTING POSITONS: Any



1N5826 1N5827 1N5828

# Designers Data Sheet

# HOT CARRIER POWER RECTIFIER

employing the Schottky Barrier principle in a large area metal-to-silicon power diode. State of the art geometry features epitaxial construction with oxide passiva-tion and metal overlap contact. Ideally suited for use as rectifiers in low-voltage, high-frequency inverters, free wheeling diodes, and polarity protection diodes

- Extremely Low vF
- Low Stored Charge, Majority Carrier Conduction
- Low Power Loss/High Efficiency
- High Surge Capacity

# **SCHOTTKY** BARRIER RECTIFIERS

15 AMPERE 20,30,40 VOLTS



- 1 ALL RULES AND NOTES ASSOCIATED WITH REFERENCED DO-4 OUTLINE SHALL APPLY
- 2 DIMENSIONING AND TOLERANCING PER ANSI Y14 5M, 1982 3 CONTROLLING DIMENSION INCH

	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
A		12 82		0 505
В	10 77	11 09	0 424	0 437
C		10 28		0 405
D		6 35		0 250
E	1 53	-	0 060	-
F	1 91	4 44	0 075	0 175
J	10 72	11 50	0 422	0 453
K	15 24	20 32	0 600	0 800
P	4 14	4 80	0 163	0 189
a	1 53	2 41	0 060	0 095
R	674	10 76	0 265	0 424

**CASE 56-03** DO-203AA METAL

### Designer's Data for "Worst Case" Conditions

The Designers Data sheets permit the design of most circuits entirely from the information presented. Limit curves — representing boundaries on device characteristics — are given to facilitate "worst case" design

# *MAXIMUM RATINGS

Rating	Symbol	1N5826	1N5827	1N5828	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	20	30	.40	Volts
Non-Repetitive Peak Reverse Voltage	V _{RSM}	24	36	48	Volts
Average Rectified Forward Current $V_{R(equiv)} \le 0.2 V_{R(dc)}, T_{C} = 85^{\circ}C$	10	-	15		Amp
Ambient Temperature  Rated $V_{R(dc)}$ , $P_{F(A V)} = 0$ , $R_{\theta JA} = 5.0^{\circ}C/W$	Тд	95	90	85	°C
Non-Repetitive Peak Surge Current (surge applied at rated load conditions, halfwave, single phase, 60 Hz)	^I FSM	500	O (for 1 cy	cle) —>	Amp
Operating and Storage Junction Temperature Range (Reverse voltage applied)	TJ,T _{stg}	-	-65 to +12	5	°C
Peak Operating Junction Temperature (Forward Current Applied)	TJ(pk)	-	150		°C

# *THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	2.5	°C/W

# *ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted.)

Characteristic	Symbol	1N5826	1N5827	1N5828	Unit
Maximum Instantaneous Forward Voltage (1)	٧F				Volts
(IF = 8 0 Amp)	1	0 380	0.400	0.420	
(ı _F = 15 Amp)		0.440	0.470	0.500	
(ıբ = 47 1 Amp)		0.670	0.770	0 870	
Maximum Instantaneous Reverse	iR				mA
Current @ rated dc Voltage (1)		10	10	10	
T _C = 100 ^o C		75	75	75	

*Indicates JEDEC Registered Data

(1) Pulse Test Pulse Width = 300 μs, Duty Cycle = 2 0%.

# **MECHANICAL CHARACTERISTICS**

CASE: Welded, hermetically sealed FINISH: All external surfaces corrosion resistant and terminal leads are

readily solderable POLARITY: Cathode to Case **MOUNTING POSITION: Any** 

MOUNTING TORQUE: 15 in-lb max

### NOTE 1: DETERMINING MAXIMUM RATINGS

Reverse power dissipation and the possibility of thermal runaway must be considered when operating this rectifier at reverse voltages above 0.2 VRWM. Proper derating may be accomplished by use of equation (1):

 $T_{A(max)} = T_{J(max)} - R_{\theta JA} P_{F(AV)} - R_{\theta JA} P_{R(AV)}$ 

TA(max) = Maximum allowable ambient temperature

T_{J(max)} = Maximum allowable junction temperature (125°C or the temperature at which thermal runaway occurs, whichever is lowest).

PF(AV) = Average forward power dissipation

PR(AV) = Average reverse power dissipation

 $R_{\theta JA}$  = Junction-to-ambient thermal resistance

Figures 1, 2 and 3 permit easier use of equation (1) by taking reverse power dissipation and thermal runaway into consideration. The figures solve for a reference temperature as determined by equation (2):

$$T_{R} = T_{J(max)} - R_{\theta JA} P_{R(AV)}$$
 (2)

Substituting equation (2) into equation (1) yields:

$$T_{A(max)} = T_{R} - R_{\theta JA} P_{F(AV)}$$
 (3)

Inspection of equations (2) and (3) reveals that TR is the ambient temperature at which thermal runaway occurs or where T_J = 125°C, when forward power is zero. The transition from one boundary condition to the other is evident on the curves of Figures 1, 2 and

3 as a difference in the rate of change of the slope in the vicinity of 115°C. The data of Figures 1, 2 and 3 is based upon dc conditions. For use in common rectifier circuits, Table I indicates suggested factors for an equivalent dc voltage to use for conservative

design; i.e.: VR(equiv) = Vin(PK) x F

The Factor F is derived by considering the properties of the various rectifier circuits and the reverse characteristics of Schottky diodes.

Example: Find TA(max) for 1N5828 operated in a 12-Volt dc supply using a bridge circuit with capacitive filter such that  $I_{DC}$  = 10 A ( $I_{F(AV)}$  = 5 A),  $I_{(PK)}/I_{(AV)}$  = 20, Input Voltage = 10 V(rms),  $R_{\theta,JA}$  =  $5^{\circ}$ C/W.

Step 1: Find VR(equiv). Read F = 0.65 from Table I ... VR(equiv) = (1.41)(10)(0.65) = 9.18 V

Find TR from Figure 3. Read TR = 121°C @ VR = 9.18 Step 2: & R . JA = 5°C/W

Find PF(AV) from Figure 4.**Read PF(AV) = 10 W Step 3:

(PK) = 20 & IF(AV) = 5 A Find  $T_{A(max)}$  from equation (3).  $T_{A(max)} = 121-(5)(10)$ Step 4:

* Value given are for the 1N5828. Power is slightly lower for the

other units because of their lower forward voltage.

TABLE I - VALUES FOR FACTOR F

Circuit	Half Wave		Full Wave, Bridge			Wave, Tapped * †
Load	Resistive	Capacitive *	Resistive	Capacitive	Resistive	Capacitive
Sine Wave	0.5	1.3	0.5	0.65	1.0	1.3
Square Wave	0.75	1.5	0.75	0.75	1.5	1.5

^{*}Note that VR(PK) ≈ 2 V_{ID}(PK)

= 71°C





FIGURE 2 - MAXIMUM REFERENCE TEMPERATURE - 1N5827







^{*†}Use line to center tap voltage for Vin.

^{*}No external heat sink.





NUMBER OF CYCLES











# NOTE 2 - HIGH FREQUENCY OPERATION

Since current flow in a Schottky rectifier is the result of majority certifier conduction, it is not subject to junction diode forward and reverse recovery transients due to minority carrier injection and stored charge. Satisfactory circuit analysis work may be performed by using a model consisting of an ideal diode in parallel with a variable capacitance. (See Figure 11)

Rectification efficiency measurements show that operation will be satisfactory up to several megahertz. For example, relative waveform rectification efficiency is approximately 70 per cent at 2 0 MHz, e.g., the ratio of dc power to RMS power in the load is 0 28 at this frequency, whereas perfect rectification would yield 0 406 for sine wave inputs. However, in contrast to ordinary junction diodes, the loss in waveform efficiency is not indicative of power loss, it is simply a result of reverse current flow through the diode capacitance, which lowers the dc output voltage.

# MOTOROLA SEMICONDUCTOR TECHNICAL DATA

# Designer's Data Sheet

# **Hot Carrier Power Rectifiers**

... employing the Schottky Barrier principle in a large area metal-to-silicon power diode. State of the art geometry features epitaxial construction with oxide passivation and metal overlap contact. Ideally suited for use as rectifiers in low-voltage, high-frequency inverters, free wheeling diodes, and polarity protection diodes.

- Extremely Low v_F
- Low Power Loss/High Efficiency
- Low Stored Charge, Majority Carrier Conduction
- High Surge Capacity
- High Reliability Processing Similar to JAN, JTX Processing Available (See Note 3)

# **MAXIMUM RATINGS**

Rating	Symbol	*1N5829	*1N5830	*1N5831 MBR5831H,H1	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _R WM V _R	20	30	40	Volts
Nonrepetitive Peak Reverse Voltage	V _{RSM}	24	36	48	Volts
Average Rectified Forward Current $VR(equiv) \le 0.2 VR(dc)$ , $T_C = 85^{\circ}C$	<u>-</u> 0	25			Amps
Ambient Temperature Rated $V_{R(dc)}$ , $P_{F(AV)} = 0$ , $R_{\theta JA} = 3.5^{\circ}C/W$	ТА	90	85	80	°C
Nonrepetitive Peak Surge Current (surge applied at rated load conditions, halfwave, single phase, 60 Hz)	IFSM	800 (for 1 cycle)			Amps
Operating and Storage Junction Temperature Range (Reverse voltage applied)	TJ, T _{stg}	- 65 to + 125			°C
Peak Operating Junction Temperature (Foward Current Applied)	T _{J(pk)}	150			°C

1N5829 1N5830 1N5831 MBR5831H, H1

> 25 AMPERE 20, 30, 40 VOLTS



# MECHANICAL CHARACTERISTICS

CASE: Welded, hermetically sealed

FINISH: All external surfaces corrosion resistant and terminal leads are readily solderable.

POLARITY: Cathode to Case MOUNTING POSITION: Any MOUNTING TORQUE:

15 in-lb max

### THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	1.75	°C/W

# ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic	Symbol	*1N5829	*1N5830	*1N5831 MBR5831H,H1	Unit
Maximum Instantaneous Forward Voltage ⁽¹⁾ (iF = 10 Amps) (iF = 25 Amps) (iF = 78.5 Amps)	٧F	0.360 0.440 0.720	0.370 0.460 0.770	0.380 0.480 0.820	Volts
Maximum Instantaneous Reverse Current @ Rated dc Voltage ⁽¹⁾ (T _C = 100°C)	iR	20 150	20 150	20 150	mA

^{*}Indicates JEDEC Registered Data.

Designer's Data for "Worst Case" Conditions — The Designer's Data Sheet permits the design of most circuits entirely from the information presented. Limit curves — representing boundaries on device characteristics — are given to facilitate "worst case" design.

⁽¹⁾ Pulse Test: Pulse Width = 300  $\mu$ s, Duty Cycle = 2%.

# 1N5829, 1N5830, 1N5831, MBR5831H, H1

# **NOTE 1: DETERMINING MAXIMUM RATINGS**

Reverse power dissipation and the possibility of thermal runaway must be considered when operating this rectifier at reverse voltages above 0.2 V_{RWM}. Proper derating may be accomplished by use of equation (1):

 $T_{A(max)} = T_{J(max)} - R_{\theta JA} P_{F(AV)} - R_{\theta JA} P_{R(AV)}$  (1) where

T_{A(max)} = Maximum allowable ambient

temperature

T_{J(max)} = Maximum allowable junction

temperature (125°C or the temperature at which thermal runaway occurs,

whichever is lowest).

PF(AV) = Average forward power dissipation

PR(AV) = Average reverse power dissipation

 $R_{\theta JC}$  = Junction-to-ambient thermal resistance

Figures 1, 2 and 3 permit easier use of equation (1) by taking reverse power dissipation and thermal runaway into consideration. The figures solve for a reference temperature as determined by equation (2):

$$T_{R} = T_{J(max)} - R_{\theta JA} P_{R(AV)}$$
 (2)

Substituting equation (2) into equation 91) yields:

$$T_{A(max)} = T_{R} - R_{\theta JA} P_{F(AV)}$$
 (3)

Inspection of equations (2) and (3) reveals that  $T_R$  is the ambient temperature at which thermal runaway occurs or where  $T_J=125^{\circ}C$ , when forward power is zero. The transition from one boundary condition to the other is evident on the curves of Figures 1, 2 and 3 as a difference in the rate of change of the slope in the vicinity of 115°C.

The data of Figures 1, 2 and 3 is based upon dc conditions. For use in common rectifier circuits, Table 1 indicates suggested factors for an equivalent dc voltage to use for conservative design; i.e.:

$$V_{R(equiv)} = V_{in(PK)} \times F$$
 (4)

The Factor F is derived by considering the properties of the various rectifier circuits and the reverse characteristics of Schottky diodes.

Example: Find  $T_{A(max)}$  for 1N5831 operated in a 12-Volt dc supply using a bridge circuit with capacitive filter such that  $I_{DC} = 16$  A ( $I_{F(AV)} = 8$  A),  $I_{(PK)}/I_{(AV)} = 20$ , Input Voltage = 10 V(rms),  $R_{\theta,JA} = 5^{\circ}C/W$ .

Step 1: Find  $V_{R(equiv)}$ . Read F = 0.65 from Table 1  $V_{R(equiv)}$  = (1.41)(10)(0.65) = 9.18 V

Step 2: Find  $T_R$  from Figure 3. Read  $T_R = 113^{\circ}C$  @  $V_R = 9.18 \& R_{\theta JA} = 5^{\circ}C/W$ 

Step 3: Find  $P_{F(AV)}$  from Figure 4.** Read  $P_{F(AV)} = 12.8$ 

$$W @ \frac{I(PK)}{I(AV)} = 20 \& I_{F(AV)} = 8 A$$

Step 4: Find  $T_{A(max)}$  from equation (3).  $T_{A(max)} = 113$ (5) (12.8) = 49°C

**Value given are for the 1N5828. Power is slightly lower for the other units because of their lower forward voltage.

Table 1. Values for Factor F

Circuit Load	Half	Wave	Full Wave, Bridge		Full Wave Center Tapped††	
Load	Resistive	Capacitive†	Resistive	Capacitive	Resistive	Capacitive
Sine Wave	0.5	1.3	0.5	0.65	1	1.3
Square Wave	0.75	1.5	0.75	0.75	1.5	1.5

†Note that VR(PK) ≈ 2 Vin(PK)

ttUse line to center tape voltage for Vin.



Figure 1. Maximum Reference Temperature — 1N5829
ttino external Heat Sink



Figure 2. Maximum Reference Temperature — 1N5830



Figure 3. Maximum Reference Temperature — 1N5831



Figure 4. Forward Power Dissipation



Figure 5. Typical Forward Voltage



Figure 6. Maximum Surge Capability



Figure 7. Current Derating

# 1N5829, 1N5830, 1N5831, MBR5831H, H1



Figure 8. Thermal Response



Figure 9. Normalized Reverse Current



Figure 10. Typical Reverse Current



Figure 11. Capacitance

# **NOTE 2 — HIGH FREQUENCY OPERATION**

Since current flow in a Schottky rectifier is the result of majority carrier conduction, it is not subject to junction diode forward and reverse recovery transients due to minority carrier injection and stored charge. Satisfactory circuit analysis work may be performed by using a model consisting of an ideal diode in parallel with a variable capacitance. (See Figure 11.)

Rectification efficiency measurements show that operation will be satisfactory up to several megahertz. For example, relative waveform rectification efficiency is approximately 70 percent at 2 MHz, e.g., the ratio of dc power to RMS power in the load is 0.28 at this frequency, whereas perfect rectification would yield 0.406 for sine

wave inputs. However, in contrast to ordinary junction diodes, the loss in waveform efficiency is not indicate of power loss; it is simply a result of reverse current flow through the diode capacitance, which lowers the dc output voltage.

# NOTE 3 — HI-REL PROGRAM OPTIONS





# MOTOROLA SEMICONDUCTOR TECHNICAL DATA

1N5832 1N5833 1N5834

# **Designers Data Sheet**

# HOT CARRIER POWER RECTIFIER

employing the Schottky Barrier principle in a large area metal-to-silicon power diode State of the art geometry features epitaxial construction with oxide passiva-tion and metal overlap contact. Ideally suited for use as rectifiers in low-voltage, high-frequency inverters, free wheeling diodes, and polarity protection diodes

- Extremely Low vp
- Low Power Loss/High Efficiency
- Low Stored Charge, Majority
- High Surge Capacity
- Carrier Conduction

# Designer's Data for "Worst Case" Conditions

The Designers Data sheets permit the design of most circuits entirely from the information presented. Limit curves - representing boundaries on device characteristics - are given to facilitate "worst case" design

# *MAXIMUM RATINGS

Rating	Symbol	1N5832	1N5833	1N5834	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	VRRM VRWM VR	20	30	40	Volts
Non-Repetitive Peak Reverse Voltage	V _{RSM}	24	36	48	Volts
Average Rectified Forward Current VR(equiv) ≤ 0.2 VR(dc), TC = 75°C	10	4	40		Amp
Ambient Temperature Rated $V_R(d_C)$ , $P_F(AV) = 0$ , $R_{\theta JA} = 2.0^{\circ}C/W$	тд	100	95	90	°c
Non-Repetitive Peak Surge Current (surge applied at rated load conditions halfwave, single phase, 60 Hz)	IFSM	800	Amp		
Operating and Storage Junction Temperature Range (Reverse voltage applied)	TJ,T _{stg}	-65 to +125			°c
Peak Operating Junction Temperature (Forward Current Applied)	T _{J(pk)}	150			°C

# *THERMAL CHARACTERISTICS

1	Characteristic	Symbol	Max	Unit
	Thermal Resistance, Junction to Case	$R_{\theta JC}$	10	°C/W

# *ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted )

Characteristic	Symbol	1N5832	1N5833	1N5834	Unit
Maximum Instantaneous Forward Voltage (1)	٧F				Volts
(i _F = 10 Amp) (i _F = 40 Amp) (i _F = 125 Amp)		0.360 0.520 0.980	0 370 0 550 1.080	0 380 0.590 1 180	
Maximum Instantaneous Reverse Current @ rated dc Voltage (1) $T_C = 100^{\circ}C$	İR	20 150	20 150	20 150	mA

*Indicates JEDEC Registered Data.

(1) Pulse Test. Pulse Width = 300 μs, Duty Cycle = 2.0%

# SCHOTTKY BARRIER RECTIFIERS

40 AMPERE 20,30,40 VOLTS





TERM 1 CATHODE 2 ANODE (CASE)

NOTES 1 DIM "P" IS DIA

2 CHAMFER OR UNDERCUT ON ONE OR BOTH ENDS OF HEXAGONAL BASE IS OPTIONAL

- 3 ANGULAR ORIENTATION AND CONTOUR OF TERMINAL ONE IS OPTIONAL
- 4 THREADS ARE PLATED
- 5 DIMENSIONING AND TOLERANCING PER ANSI Y14 5,

	MILLIN	METERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	16 94	17 45	0 669	0 687
В	-	16 94	-	0 667
C		11 43	_	0 450
D	_	9 53	_	0 375
E	2 92	5.08	0 115	0 200
F		2 03	_	0 080
J	10 72	11 51	0 422	0 453
K		25 40	_	1 000
L	3 86	-	0 156	_
P	5 59	6 32	0 220	0 249
Q	3 56	4 45	0 140	0 175
R	_	20 16		0 794
S		2 26		0 089

CASE 257-01 DO-203AB METAL

# NOTE 1: DETERMINING MAXIMUM RATINGS

Reverse power dissipation and the possibility of thermal runaway must be considered when operating this rectifier at reverse voltages above 0.2 VRWM. Proper derating may be accomplished by use of equation (1)

 $T_{A(max)} = T_{J(max)} - R_{\theta JA} P_{F(AV)} - R_{\theta JA} P_{R(AV)}$ where

T_{A(max)} = Maximum allowable ambient temperature

 $T_{J(max)} = Maximum allowable junction temperature (125°C)$ or the temperature at which thermal runaway occurs, whichever is lowest).

PF(AV) = Average forward power dissipation

PR(AV) = Average reverse power dissipation

 $R_{\theta JC}$  = Junction-to-ambient thermal resistance

Figures 1, 2 and 3 permit easier use of equation (1) by taking reverse power dissipation and thermal runaway into consideration. The figures solve for a reference temperature as determined by

$$T_{R} = T_{J(max)} - R_{\theta JA} P_{R(AV)}$$
 (2)

Substituting equation (2) into equation (1) yields

$$T_{A(max)} = T_{R} - R_{\theta JA} P_{F(AV)}$$
(3)

Inspection of equations (2) and (3) reveals that TR is the ambient temperature at which thermal runaway occurs or where T_J = 125°C, when forward power is zero. The transition from one boundary condition to the other is evident on the curves of Figures 1, 2 and

3 as a difference in the rate of change of the slope in the vicinity of 115°C. The data of Figures 1, 2 and 3 is based upon dc conditions. For use in common rectifier circuits, Table I indicates suggested factors for an equivalent dc voltage to use for conservative

design; i.e. VR(equiv) = ·Vin(PK) × F

The Factor F is derived by considering the properties of the various rectifier circuits and the reverse characteristics of Schottky diodes.

Example Find  $T_{A(max)}$  for 1N5834 operated in a 12-Volt dc supply using a bridge circuit with capacitive filter such that  $I_{DC}$  = 30 A (IF(AV) = 15 A), I(PK)/I(AV) = 10, Input Voltage = V(rms),  $R_{\theta JA} = 3^{O}C/W$ .

Find VR(equiv). Read F = 0 65 from Table I .. Step 1 V_{R(equiv)} = (10)(1.41)(0.65) = 9.18 V

Step 2: Find T_R from Figure 3. Read T_R = 118°C @ V_R = 9 18 V  $R_{\theta JA} = 3^{\circ}C/W$ 

Find  $P_{F(AV)}$  from Figure 4 †Read  $P_{F(AV)} = 20 \text{ W}$ Step 3: 1(PK) = 10 & I_{F(AV)} = 15 A

(AV)

Find  $T_{A(max)}$  from equation (3).  $T_{A(max)} = 118-(3)(20)$ Step 4 = 58°C

†Values given are for the 1N5834 Power is slightly lower for the other units because of their lower forward voltage.

# TABLE I - VALUES FOR FACTOR F

Circuit	Half Wave		Half Wave Full Wave, Bridge		Full Wave, Center Tapped (1),(2)	
Load	Resistive	Capacitive (1)	Resistive	Capacitive	Resistive	Capacitive
Sine Wave	0.5	1.3	0.5	0.65	1.0	1.3
Square Wave	0.75	1.5	0.75	0.75	1.5	1.5

(1) Note that VR(PK) ≈ 2 V_{In(PK)}

(2)Use line to center tap voltage for Vin

FIGURE 1 - MAXIMUM REFERENCE TEMPERATURE - 1N5832



FIGURE 2 - MAXIMUM REFERENCE TEMPERATURE - 1N5833







FIGURE 4 - FORWARD POWER DISSIPATION



^{*}No external heat sink.









#### FIGURE 9 - NORMALIZED REVERSE CURRENT 5.0 REVERSE CURRENT (NORMALIZED) .VR = VRWM 30 2.0 10 07 05 0.3 0.2 è 0.1 0 07 0 05 25 TC, CASE TEMPERATURE (°C)

#### FIGURE 10 - TYPICAL REVERSE CURRENT 500 TJ = 125°C 200 100 10000 REVERSE CURRENT 50 20 œ 1N5832 1N5833 - 30 V 1N5834 - 40 V 05 24 28 20

#### FIGURE 11 - CAPACITANCE 8000 6000 Tj = 2500 4000 <u>吳</u>3000 C, CAPACITANCE () 1N5832 RNN 600 0 2 04 06 10 20 40 60 20 VR, REVERSE VOLTAGE (VOLTS)

#### NOTE 2: HIGH FREQUENCY OPERATION

VR, REVERSE VOLTAGE (VOLTS)

Since current flow in a Schottky rectifier is the result of majority carrier conduction, it is not subject to junction diode forward and reverse recovery transients due to minority carrier injection and stored charge. Satisfactory circuit analysis work may be performed by using a model consisting of an ideal diode in parallel with a variable capacitance. (See Figure 11).

Rectification efficiency measurements show that operation will be satisfactory up to several megahertz. For example, relative waveform rectification efficiency is approximately 70 per cent at 2.0 MHz, e.g., the ratio of dc power to RMS power in the load is 0.28 at this frequency, whereas perfect rectification would yield 0.406 for sine wave inputs. However, in contrast to ordinary junction diodes, the loss in waveform efficiency is not indicative of power loss, it is simply a result of reverse current flow through the diode capacitance, which lowers the dc output voltage.

#### MECHANICAL CHARACTERISTICS

CASE: Welded, hermetically sealed FINISH: All external surfaces corrosion resistant and terminal lead is readily solderable.

POLARITY: Cathode to Case MOUNTING POSITION: Any MOUNTING TORQUE: 25 in-lb max SOLDER HEAT: See Note 3

#### NOTE 3: SOLDER HEAT

The excellent heat transfer property of the heavy duty copper anode terminal which transmits heat away from the die requires that caution be used when attaching wires. Motorola suggests a heat sink be clamped between the eyelet and the body during any soldering operation.

### 1N6095 1N6096 SD41

#### SWITCHMODE POWER RECTIFIERS

using the Schottky Barrier principle with a platinum barrier metal These state-of-the-art devices have the following features

- Guardring for Stress Protection
- O Low Forward Voltage
- o 150°C Operating Junction Temperature Capability
- Guaranteed Reverse Avalanche

#### SCHOTTKY BARRIER RECTIFIERS

25 and 30 AMPERES 30 to 45 VOLTS



#### **MAXIMUM RATINGS**

Rating	Symbol	1N6095*	1N6096*	SD41	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _R WM V _R	30	40	45 35 45	Volts
Average Rectified Forward Current (Rated $V_R$ )	10	25 T _C = 70°C	25 T _C = 70°C	30 T _C = 105°C	Amps
Case Temperature (Rated $V_{\mbox{\scriptsize R}}$ )	TC	105	105	_	°C
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)	IFSM	400	400	600	Amp
Peak Repetitive Reverse Surge Current (2 0 μs, 1 0 kHz) See Figure 10 (1)	IRRM	2 0	2 0	2 0	Amps
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to + 125	-65 to + 125	-55 to + 150°C	°C
Peak Operating Junction Temperature (Forward Current Applied)	T _{J(pk)}	150	150	150	°C
Voltage Rate of Change $(Rated V_R)$	dv/dt	_	_	700	V/μs

#### THERMAL CHARACTERISTICS

Characteristic	Symbol	1N6095*	1N6096*	SD41	Unit
Maximum Thermal Resistance, Junction to Case	$R_{ heta}JC$	-	20	<del>-</del>	°C/W

#### **ELECTRICAL CHARACTERISTICS**

Characteristic	Symbol	1N6095*	1N6096*	SD41	Unit
Maximum Instantaneous Forward Voltage (2) ( $I_F = 30$ Amp, $T_C = 125^{\circ}$ C) ( $I_F = 78$ 5 Amp, $T_C = 70^{\circ}$ C)	٧F	0 86	 0 86	0 55 —	Volts
Maximum Instantaneous Reverse Current (2) (Rated dc Voltage, T _C = 125°C)	¹R	250	250	125 @ V _R = 35 V	mA
Capacitance (100 kHz ≥ f ≥ 1 0 MHz)	Ct	6000 V _R = 1 0 V	6000 V _R = 1 0 V	2000 V _R = 5 0 V	pF

*Indicates JEDEC Registered Data

(1) Not JEDEC requirement, but a Motorola product capability

(2) Pulse Test Pulse Width = 300  $\mu$ s, Duty Cycle  $\leqslant$  2 0%

10

07

03

026



FIGURE 1 -- TYPICAL FORWARD VOLTAGE

# T_J = 150°C 100°C 100°C

25°C

50

70 100

1000

10

0 1

0 01

10

30

20

10

50 70

NUMBER OF CYCLES AT 60 Hz

IR, REVERSE CURRENT (mA)



#### HIGH FREQUENCY OPERATION

v_F, INSTANTANEOUS FORWARD VOLTAGE (VOLTS)

Since current flow in a Schottky rectifier is the result of majority carrier conduction, it is not subject to junction diode forward and reverse recovery transients due to minority carrier injection and stored charge. Satisfactory circuit analysis work may be performed by using a model consisting of an ideal diode in parallel with a variable capacitance. (See Figure 4.)

Rectification efficiency measurements show that operation will be satisfactory up to several megahertz. For example, relative waveform rectification efficiency is approximately 70 per cent at 2 0 MHz, e.g., the ratio of dc power to RMS power in the load is 0 28 at this frequency, whereas perfect rectification would yield 0.406 for sine wave inputs. However, in contrast to ordinary junction diodes, the loss in waveform efficienty is not indicative of power loss, it is simply a result of reverse current flow through the diode capacitance, which lowers the dc output voltage.



IF(AV), AVERAGE FORWARD CURRENT (AMPS)

60

80

100



120

T_C, CASE TEMPERATURE (°C)

140

160







#### FIGURE 9 — SCHOTTKY RECTIFIER





Motorola builds quality and reliability into its Schottky Rectifiers

First is the chip, which has an interface metal between the platinum-barrier metal and nickel-gold ohmic-contact metal to eliminate any possible interaction with the barrier. The indicated guardring prevents dv/dt problems, so snubbers are not required. The guardring also operates like a zener to absorb over-voltage transients.

Second is the package. There are molybdenum disks which closely match the thermal coefficient of expansion of silicon on each side of the chip. The top copper lead is also stress-reliefed.

These two features give the unit the capability of passing stringent thermal fatigue tests for 5,000 cycles. The top copper lead provides a low resistance to current and therefore does not contribute to device heating, a heat sink should be used when attaching wires.

Third is the redundant electrical testing. The device is tested before assembly in "sandwich" form, with the chip between the moly disks. It is tested again after assembly. As part of the final electrical test, devices are 100% tested for dv/dt at 1,600 V/ $\mu s$  and reverse avalanche

### FIGURE 10 — TEST CIRCUIT FOR dv/dt AND REVERSE SURGE CURRENT





#### MOUNTING TORQUE: 15 in-lb max

#### NOTES

- 1 ALL RULES AND NOTES ASSOCIATED WITH REFERENCED DO-4 OUTLINE SHALL APPLY
- 2 DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 3 CONTROLLING DIMENSION INCH

1	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α	_	12 82	_	0 505
В	10 77	11 09	0 424	0 437
С		10 28	_	0 405
D	_	6 35	_	0 250
E	1.53	_	0 060	
F	1 91	4 44	0.075	0 175
J	10 72	11 50	0 422	0 453
K	15 24	20.32	0.600	0 800
P	4 14	4 80	0 163	0 189
Q	1 53	2 41	0 060	0 095
R	674	10 76	0 265	0 424

CASE 56-03 DO-203AA METAL

### 1N6097 1N6098 SD51

#### SWITCHMODE POWER RECTIFIERS

.. using a platinum barrier metal in a large area metal-to-silicon power diode. State-of-the-art geometry features epitaxial construction with oxide passivation and metal overlap contact. Ideally suited for use as rectifiers in low-voltage, high-frequency inverters, freewheeling diodes, and polarity-protection diodes.

- Guaranteed Reverse Avalanche
- Extremely Low vp
- Low Stored Charge, Majority Carrier Conduction
- Guardring for Stress Protection
- Low Power Loss/High Efficiency
- o 150°C Operating Junction Temperature Capability
- O High Surge Capacity

#### SCHOTTKY BARRIER RECTIFIERS

60 AMPERES 20 to 45 VOLTS



CASE 257-01 DO-203AB METAL

#### MAXIMUM RATINGS

Rating	Symbol	1N6097*	1N6098*	SD51	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	VRRM VRWM VR	30	40	45 35 45	Volts
Peak Repetitive Forward Current (Rated V _R , Square Wave, 20 kHz)	IFRM	_	_	120 T _C = 90°C	Amps
Average Rectified Forward Current (Rated V _R )	lo	50 T _C = 70°C	50 T _C = 70°C	_	Amps
Case Temperature (Rated V _R )	TC	115	115	_	°C
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)	IFSM	4		Amps	
Peak Repetitive Reverse Surge Current (2) (2 0 $\mu$ s, 1 0 kHz) See Figure 10	IRRM	20			Amps
Operating Junction Temperature Range (Reverse Voltage Applied)	TJ	-65 to +125	-65 to +125	-65 to +150	°C
Storage Temperature Range	T _{stg}	-65 to +125	-65 to +125	-65 to +165	°C
Voltage Rate of Change (Rated V _R )	dv/dt	_	<del>_</del>	700	V/μs

#### THERMAL CHARACTERISTICS

Characteristic	Symbol	1N6097*	1N6098*	SD51	Unit
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	4	—— 10 ——		°C/W

#### ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic	Symbol	1N6097*	1N6098*	SD51	Unit
Maximum Instantaneous Forward Voltage (2)	٧F				Volts
(IF = 157 Amp, T _C = 70°C)		0 86	0 86	_	
(r _F = 60 Amp)		-	_	0 70	
(IF = 60 Amp, T _C = 125°C)		-	_	0 60	
(IF = 120 Amp, T _C = 125°C)	′	_	_	0 84	
Maximum Instantaneous Reverse Current (2)	'R			200	mA
(Rated Voltage, T _C = 125°C)	1	250	250	50	
(Rated Voltage, T _C = 25°C)	1	-	_	@ V _R = 35 V	
DC Reverse Current	I _B	250	250	_	mA
(Rated Voltage, T _C = 115°C)					
Maximum Capacitance	Ct	7000	7000	4000	pF
$(100 \text{ kHz} \leqslant f \leqslant 1.0 \text{ MHz})$	,	V _R = 1.0 Vdc	V _R = 1 0 Vdc	V _R = 5 0 Vdc	•

^{*}Indicates JEDEC Registered Data

⁽¹⁾ Not a JEDEC requirement, but of Motorola product capability.

⁽²⁾ Pulse Test Pulse Width = 300  $\mu$ s, Duty Cycle = 2 0%







### NOTE 1 HIGH FREQUENCY OPERATION

Since current flow in a Schottky rectifier is the result of majority carrier conduction, it is not subject to junction diode forward and reverse recovery transients due to minority carrier injection and stored charge. Satisfactory circuit analysis work may be performed by using a model consisting of an ideal diode in parallel with a variable capacitance. (See Figure 4).

Rectification efficiency measurements show that operation will be satisfactory up to several megahertz. For example, relative waveform rectification efficiency is approximately 70 per cent at 2 0 MHz, e.g., the ratio of dc power to RMS power in the load is 0 28 at this frequency, whereas perfect rectification would yield 0 406 for sine wave inputs. However, in contrast to ordinary junction diodes, the loss in waveform efficiency is not indicative of power loss, it is simply a result of reverse current flow through the diode capacitance, which lowers the dc output voltage.













FIGURE 9 - SCHOTTKY RECTIFIER



Motorola builds quality and reliability into its Schottky Rectifiers First is the chip, which has an interface metal between the platinum-barrier metal and nickel-gold ohmic-contact metal to eliminate any possible interaction with the barrier. The indicated guardring prevents dv/dt problems, so snubbers are not mandatory. The guardring also operates like a zener to absorb overvoltage transients.

Second is the package. There are molybdenum disks which closely match the thermal coefficient of expansion of silicon on each side of the chip. The top copper lead has a stress relief

feature which protects the die during assembly. These two features give the unit the capability of passing stringent thermal fatigue tests for 5,000 cycles. The top copper lead provides a low resistance to current and therefore does not contribute to device heating, a heat sink should be used when attaching wires.

Third is the redundant electrical testing. The device is tested before assembly in ''sandwich'' form, with the chip between the moly disks. It is tested again after assembly. As part of the final electrical test, devices are 100% tested for dv/dt at 1,600 V/ $\mu s$  and reverse avalanche





4 THREADS ARE PLATED
5 DIMENSIONING AND TOLERANCING PER ANSI Y14 5,

	MILLIMETERS		INCI	HES
DIM	MIN	MAX	MIN	MAX
A	16.94	17 45	0 669	0 687
В		16 94		0 667
С	-	11.43	_	0 450
D	_	9 53		0.375
E	2 92	5 08	0.115	0 200
F	-	2 03	_	0 080
J	10 72	11 51	0 422	0 453
K	_	25 40	_	1 000
L	3 86		0 156	
P	5.59	6 32	0 220	0 249
Q	3 56	4 45	0.140	0.175
R	_	20.16		0 794
S	_	2 26		0 089

CASE 257-01 DO-203AB METAL MECHANICAL CHARACTERISTICS
CASE: Welded, hermetically sealed
FINISH: All external surfaces corrosion
resistant and terminal lead is readily
solderable.
POLARITY: Cathode to Case

MOUNTING POSITION: Any MOUNTING TORQUE: 25 in-lb max SOLDER HEAT: The excellent heat transfer property of the heavy duty copper anode terminal which transmits heat away from the die requires that caution be used when attaching wires. Motorola suggests a heat sink be clamped between the eyelet and the body during any soldering operation

1

# MOTOROLA SEMICONDUCTOR I TECHNICAL DATA

### MBR030 MBR040

#### **Advance Information**

#### **SWITCHMODE RECTIFIERS**

... designed for use in switching power supplies, inverters, and as free wheeling diodes, these devices have the following features:

- Low Forward Voltage
- Low Leakage Current
- o DO-204AH (DO-35) Glass Package

#### **MAXIMUM RATINGS**

Rating	Symbol	MBR030	MBR040	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	30	40	Volts
Average Rectified Forward Current (Rated V _R ) $T_L = 90^{\circ}C, L = 36''$ $T_A = 60^{\circ}C, L = 36'', (Mt. Method #1)$	^I F(AV)	<b>↓</b> 0	.5 <del></del>	Amps
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)	IFSM	<b>⋖</b> 15	.0 ——	Amps
Operating Junction and Storage Temperature	T _J , T _{Stg}	- 65 to	+ 150	

#### THERMAL CHARACTERISTICS

Characteristic	Symbol	Тур	Max	Unit
Thermal Resistance, Junction to Lead = 3/6"	R _€ JL	180	190	°C/W

#### **ELECTRICAL CHARACTERISTICS**

Characteristic	Symbol	Тур	Max	Unit
Instantaneous Foward Voltage (1)	٧F			Volts
(ip = 0.1 A, T _J = 25°C)		0.460	0.500	
$(i_F = 0.5 \text{ A}, T_J = 25^{\circ}\text{C})$		0.610	0.750	
Reverse Current	iR	l	1	mA
(Rated dc Voltage, T _J = 150°C)		0.6	1.0	
(Rated dc Voltage, T _J = 25°C)	1	0.003	0.001	

(1) Pulse Test: Pulse Width = 300 µs, Duty Cycle ≤ 20%.

This document contains information on a new product. Specifications and information herein are subject to change without notice

### **SCHOTTKY RECTIFIERS**

0.5 AMPERE 30-40 VOLTS





#### All JEDEC dimensions and notes apply

#### NOTES

- PACKAGE CONTOUR OPTIONAL WITHIN A AND B
   HEAT SLUGS, IF ANY, SHALL BE INCLUDED
   WITHIN THIS CYLINDER, BUT NOT SUBJECT TO
   THE MINIMUM LIMIT OF R
- 2 LEAD DIAMETER NOT CONTROLLED IN ZONE F TO ALLOW FOR FLASH, LEAD FINISH BUILDUP AND MINOR IRREGULARITIES OTHER THAN HEAT SLUIGS
- 3 POLARITY DENOTED BY CATHODE BAND 4. DIMENSIONING AND TOLERANCING PER ANSI Y14 5, 1973

#### **MECHANICAL CHARACTERISTICS**

CASE: Glass

FINISH: External leads are plated and are readily solderable

**POLARITY:** Cathod indicated by polarity band. **WEIGHT:** 0.2 Gram (approximately).

MAXIMUM LEAD TEMPERATURE FOR SOLD-ERING PURPOSES: 230°C, 1/8" from case for 10

seconds.

FIGURE 1 — TYPICAL FORWARD VOLTAGE



FIGURE 2 — CURRENT DERATING, PRINTED CIRCUIT BOARD MOUNTING



FIGURE 3 — TYPICAL CAPACITANCE



FIGURE 4 — CURRENT DERATING, LEAD TEMPERATURE



FIGURE 5 — FORWARD POWER DISSIPATION



____

Data shown for thermal resistance junction to ambient  $(\theta_{\rm JA})$  for the mountings shown is to be used as typical guideline values for preliminary engineering or in case the tep joint temperature cannot be measured TYPICAL VALUES FOR  $\theta_{\rm JA}$  IN STILL AIR

# | MOUNTING | 1/8 | 1/4 | 3/8 | R.JA | 1 | 200 | 225 | 250 | °C/W | 2 | 210 | 235 | 260 | °C/W | 3 | 150 | °C/W |







MBR115P MBR120P MBR130P MBR140P See Page 3-47

### **Axial Lead Rectifiers**

... employing the Schottky Barrier principle in a large area metal-to-silicon power diode. State-of-the-art geometry features epitaxial construction with oxide passivation and metal overlap contact. Ideally suited for use as rectifiers in low-voltage, high-frequency inverters, free wheeling diodes, and polarity protection diodes.

- Low Reverse Current
- Low Stored Charge, Majority Carrier Conduction
- Low Power Loss/High Efficiency
- Highly Stable Oxide Passivated Junction

#### Mechanical Characteristics:

Case: Void free, transfer molded

Finish: All external surfaces corrosion-resistant and the terminal leads are readily

solderable

Polarity: Cathode indicated by polarity band

Mounting Positions: Any

Soldering: 220°C 1/16" from case for ten seconds

## **MBR150 MBR160**

SCHOTTKY BARRIER RECTIFIERS 1 AMPERE 50, 60 VOLTS



#### **MAXIMUM RATINGS**

Rating	Symbol	MBR150	MBR160	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	50	60	Volts
RMS Reverse Voltage	VR(RMS)	35	42	Volts
Average Rectified Forward Current (2) ( $V_{R(equiv)} \le 0.2 V_{R(dc)}$ , $T_{L} = 90^{\circ}$ C, $R_{\theta JA} = 80^{\circ}$ C/W, P.C. Board Mounting, see Note 3, $T_{A} = 55^{\circ}$ C)	Ю		1	Amp
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions, half-wave, single phase, $60 \text{ Hz}$ , $T_L = 70^{\circ}\text{C}$ )	IFSM	25 (for one cycle)		Amps
Operating and Storage Junction Temperature Range (Reverse Voltage applied)	T _J , T _{stg}	-65 to +150		°C
Peak Operating Junction Temperature (Forward Current applied)	T _{J(pk)}	150		°C

#### THERMAL CHARACTERISTICS (Notes 3 and 4)

, , , , , , , , , , , , , , , , , , , ,			
Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	80	°C/W

#### ELECTRICAL CHARACTERISTICS (T_L = 25°C unless otherwise noted) (2)

Characteristic	Symbol	Max	Unit
Maximum Instantaneous Forward Voltage (1) (iF = 0.1 A) (iF = 1 A) (iF = 3 A)	VF	0.550 0.750 1.000	Volt
Maximum Instantaneous Reverse Current @ Rated dc Voltage (1) ( $T_L = 25^{\circ}C$ ) ( $T_L = 100^{\circ}C$ )	IR	0.5 5	mA

⁽¹⁾ Pulse Test Pulse Width = 300  $\mu$ s, Duty Cycle  $\leq$  2%

⁽²⁾ Lead Temperature reference is cathode lead 1/32" from case.



10 T_J = 150°C REVERSE CURRENT (mA) 100°0 0.5 0.2 75°C 0 1 0.05 0 02 0 01 è 0 005 0 002 0.001 VR, REVERSE VOLTAGE (VOLTS)

Figure 2. Typical Reverse Current*

*The curves shown are typical for the highest voltage device in the voltage grouping. Typical reverse current for lower voltage selections can be estimated from these same curves if  $V_R$  is sufficiently below rated  $V_R$ .



Figure 1. Typical Forward Voltage

Figure 3. Forward Power Dissipation

#### THERMAL CHARACTERISTICS



Figure 4. Thermal Response

#### MBR150, MBR160



Figure 5. Steady-State Thermal Resistance

#### NOTE 3 - MOUNTING DATA:

Data shown for thermal resistance junction-to-ambient (R $_{ heta JA}$ ) for the mounting shown is to be used as a typical guideline values for preliminary engineering or in case the tie point temperature cannot be measured.

Typical Values for  $R_{ heta JA}$  in Still Air

Mounting	Le	0			
Method	1/8	1/4	1/2	3/4	$R_{\theta}JA$
1	52	65	72	85	°C/W
2	67	80	87	100	°C/W
3			50		°C/W

#### NOTE 4 - THERMAL CIRCUIT MODEL: (For heat conduction through the leads)



Use of the above model permits junction to lead thermal resistance for any mounting configuration to be found. For a given total lead length, lowest values occur when one side of the rectifier is brought as close as possible to the heat sink. Terms in the model signify:

T_A = Ambient Temperature

 $T_C$  = Case Temperature

T_L = Lead Temperature Res = Thermal Resistance, Heat Sink to Ambient

T_J = Junction Temperature

 $R_{\theta L}$  = Thermal Resistance, Lead to Heat Sink

 $R_{\theta J}$  = Thermal Resistance, Junction to Case

PD = Power Dissipation

#### 200 $T_J = 25^{\circ}C$ f = 1 MHz 100 C, CAPACITANCE (pF) 70 60 50 40 30 10 20 30 40 90 VR, REVERSE VOLTAGE (VOLTS)

Figure 6. Typical Capacitance

Mounting Method 1 P C. Board with 1-1/2" x 1-1/2" copper surface.







Mounting Method 3

(Subscripts A and K refer to anode and cathode sides, respectively.) Values for thermal resistance components are  $R_{\theta L} = 100^{\circ} C/W/in$  typically and  $120^{\circ} C/W/in$  maximum.

 $R_{\theta J} = 36^{\circ}C/W$  typically and  $46^{\circ}C/W$  maximum.

#### NOTE 5 - HIGH FREQUENCY OPERATION:

Since current flow in a Schottky rectifier is the result of majority carrier conduction, it is not subject to junction diode forward and reverse recovery transients due to minority carrier injection and stored charge. Satisfactory circuit analysis work may be performed by using a model consisting of an ideal diode in parallel with a variable capacitance. (See Figure 6.)

Rectification efficiency measurements show that operation will be satisfactory up to several megahertz. For example, relative waveform rectification efficiency is approximatley 70 percent at 2 MHz, e.g., the ratio of dc power to RMS power in the load is 0.28 at this frequency, whereas perfect rectification would yield 0 406 for sine wave inputs. However, in contrast to ordinary junction diodes, the loss in waveform efficiency is not indicative of power loss: it is simply a result of reverse current flow through the diode capacitance, which lowers the dc output voltage.

#### **OUTLINE DIMENSIONS**



### MBR320 MBR340 MBR330 MBR350 MBR360

#### **AXIAL LEAD RECTIFIERS**

... employing the Schottky Barrier principle in a large area metal-to-silicon power diode. State-of-the-art geometry features epitaxial construction with oxide passivation and metal overlap contact. Ideally suited for use as rectifiers in low-voltage, high-frequency inverters, free wheeling diodes, and polarity protection diodes.

- Extremely Low v_F
- Low Power Loss/High Efficiency
- Highly Stable Oxide Passivated Junction
- Low Stored Charge, Majority Carrier Conduction

#### SCHOTTKY BARRIER RECTIFIERS

3.0 AMPERES 20, 30, 40, 50, 60 VOLTS



#### **MAXIMUM RATINGS**

Rating	Symbol	MBR320	MBR330	MBR340	MBR350	MBR360	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _R WM V _R	20	30	40	50	60	٧
Average Rectified Forward Current  TA = 65°C  (R _B JA = 28°C/W, P.C. Board Mounting, see Note 3)	Ю	3.0					А
Nonrepetitive Peak Surge Current (2) (Surge applied at rated load conditions, half wave, single phase 60 Hz, T _L = 75°C)	^I FSM	80					Α
Operating and Storage Junction Temperature Range (Reverse Voltage applied)	T _J , T _{stg}	– 65 to 150°C					°C
Peak Operating Junction Temperature (Forward Current Applied)	T _{J(pk)}	150					°C

#### THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient, (see Note 3, Mounting Method 3)	$R_{\theta JA}$	28	°C/W

#### **ELECTRICAL CHARACTERISTICS** ( $T_L = 25^{\circ}C$ unless otherwise noted )(2)

Characteristic	Symbol	MBR320	MBR330	MBR340	MBR350	MBR360	Unit
Maximum Instantaneous Forward Voltage (1) (iF = 1.0 Amp)	٧F		0.500		0.0	600	٧
(if = 3.0 Amp) (if = 9.4 Amp)			0.600 0.850		0.1 0.1 1.4		
Maximum Instantaneous Reverse Current @ Rated dc Voltage (1) T _I = 25°C	'R			0.60			mA
T _L = 100°C				20			

⁽¹⁾ Pulse Test. Pulse Width = 300  $\mu$ s, Duty Cycle = 2.0%

⁽²⁾ Lead Temperature reference is cathode lead 1/32" from case

#### 2

### MBR320, MBR330, MBR340, MBR350, MBR360

#### MBR320, 330 AND 340





*The curves shown are typical for the highest voltage device in the voltage grouping. Typical reverse current for lower voltage selections can be estimated from these same curves if  $V_R$  is sufficiently below rated  $V_R$ .







#### **MBR350 AND 360**











### MBR320, MBR330, MBR340, MBR350, MBR360

#### NOTE 3 - MOUNTING DATA

Data shown for thermal resistance junction-to-ambient ( $R_{\theta JA}$ ) for the mountings shown is to be used as typical guideline values for preliminary engineering, or in case the tie point temperature cannot be measured.

TYPICAL VALUES FOR RAIA IN STILL AIR

The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s							
Mounting	Lead Length, L (in)						
Method	1/8	1/4	1/2	3/4	ROJA		
1	50	51	53	55	°C/W		
2	58	59	61	63	°C/W		
3		°C/W					

#### Mounting Method 1

P.C Board where available copper surface is small.



#### Mounting Method 2

Vector Push-In Terminals T-28



#### Mounting Method 3

P.C. Board with 2-1/2" × 2-1/2" copper surface



#### **OUTLINE DIMENSIONS**



- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.

	MILLIN	ETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	9.40	9.65	0.370	0.380	
В	4.83	5.33	0.190	0.210	
D	1.22	1.32	0.048	0.052	
К	25.40	_	1.000	_	

CASE 267-03 PLASTIC

#### **MECHANICAL CHARACTERISTICS**

CASE ... Void free, transfer molded
FINISH ... ... All external surfaces
corrosion-resistant and the terminal
leads are readily solderable
POLARITY ... ... Cathode indicated by
polarity band
MOUNTING POSITIONS ... ... Any
SOLDERING ... ... 220°C 1/16" from case
for ten seconds

# MBR320P MBR330P MBR340P See Page 3-51

#### SWITCHMODE POWER RECTIFIERS

using the Schottky Barrier principle with a platinum barrier metal. These state-of-the-art devices have the following features.

- Guardring for Stress Protection
- Low Forward Voltage
- 150°C Operating Junction Temperature
- Guaranteed Reverse Avalanche
- Epoxy Meets UL94, VO at 1/8"

# **MBR735 MBR745**

#### SCHOTTKY BARRIER RECTIFIERS

7.5 AMPERES 35 and 45 VOLTS



#### MAXIMUM RATINGS

Rating	Symbol	MBR735	MBR745	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	VRRM VRWM VR	35	45	Volts
Average Rectified Forward Current (Rated V _R ) T _C = 105°C	lF(AV)	7 5	7 5	Amps
Peak Repetitive Forward Current (Rated V _R , Square Wave, 20 kHz) T _C = 105°C	^I FRM	15	15	Amps
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)	IFSM	150	150	Amps
Peak Repetitive Reverse Surge Current (2 0 μs, 1 0 kHz)	IRRM	10	10	Amps
Operating Junction Temperature	TJ	-65 to +150	-65 to +150	°C
Storage Temperature	T _{stg}	-65 to +175	-65 to +175	°C
Voltage Rate of Change (Rated V _R )	dv/dt	1000	1000	V/µs
THERMAL CHARACTERISTICS				
Maximum Thermal Resistance, Junction to Case	$R_{\theta}$ JC	30	30	°C/W
Maximum Thermal Resistance, Junction to Ambient	$R_{\theta}$ JA	60	60	°C/W
ELECTRICAL CHARACTERISTICS				
Maximum Instantaneous Forward Voltage (1) ( $\mu_F = 7.5$ Amp, $T_C = 125^{\circ}C$ ) ( $\mu_F = 15$ Amp, $T_C = 125^{\circ}C$ ) ( $\mu_F = 15$ Amp, $T_C = 25^{\circ}C$ )	٧F	0 57 0 72 0 84	0 57 0 72 0 84	Volts
Maximum Instantaneous Reverse Current (1) (Rated dc Voltage, T _C = 125°C) (Rated dc Voltage, T _C = 25°C)	'R	15 0 1	15 0 1	mA

(1) Pulse Test Pulse Width = 300  $\mu s,$  Duty Cycle  $\leqslant 2.0\%$ 













### MBR1035 MBR1045

#### **SWITCHMODE POWER RECTIFIERS**

using the Schottky Barrier principle with a platinum barrier metal These state-of-the-art devices have the following features.

- Guardring for Stress Protection
- Low Forward Voltage
- 150°C Operating Junction Temperature
- Guaranteed Reverse Avalanche
- Epoxy Meets UL94, V0 at 1/8"

#### SCHOTTKY BARRIER RECTIFIERS

10 AMPERES 20 to 45 VOLTS



#### **MAXIMUM RATINGS**

Rating	Symbol	MBR1035	MBR1045	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	VRRM VRWM VR	35	45	Volts
Average Rectified Forward Current (Rated $V_{R}$ ) T $_{C}$ = 135 $^{\circ}$ C	I _{F(AV)}	10	10	Amps
Peak Repetitive Forward Current (Rated $V_R$ , Square Wave, 20 kHz) $T_C$ = 135°C	IFRM	20	20	Amps
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)	IFSM	150	150	Amps
Peak Repetitive Reverse Surge Current (2 0 μs, 1 0 kHz) See Figure 12	IRRM	10	1 0	Amps
Operating Junction Temperature	TJ	-65 to + 150	-65 to + 150	°C
Storage Temperature	T _{stg}	-65 to +175	-65 to +175	°C
Voltage Rate of Change (Rated VR)	dv/dt	1000	1000	V/µs

#### THERMAL CHARACTERISTICS

Characteristic	Symbol	MBR1035	MBR1045	Unit
Maximum Thermal Resistance, Junction to Case	$R_{\theta}$ JC	20	2 0	°C/W

#### **ELECTRICAL CHARACTERISTICS**

Characteristic	Symbol	MBR1035	MBR1045	Unit
Maximum Instantaneous Forward Voltage (1) (IF = 10 A, $T_C$ = 125°C) (IF = 20 A, $T_C$ = 125°C) (IF = 20 A, $T_C$ = 25°C)	٧F	0 57 0 72 0 84	0 57 0 72 0 84	Volts
Maxımum Instantaneous Reverse Current (1) (Rated dc Voltage, T _C = 125°C) (Rated dc Voltage, T _C = 25°C)	'R	15 0 1	15 0 1	mA

⁽¹⁾ Pulse Test  $\,$  Pulse Width = 300  $\mu s,\,$  Duty Cycle  $\leqslant 2$  0%









FIGURE 5 — CURRENT DERATING, INFINITE HEATSINK



FIGURE 6 — CURRENT DERATING,  $R_{\theta JA} = 16^{\circ} \text{ C/W}$ 



FIGURE 7 — FORWARD POWER DISSIPATION



FIGURE 8 — CURRENT DERATING, FREE AIR



FIGURE 9 — THERMAL RESPONSE



#### MBR1035, MBR1045

#### HIGH FREQUENCY OPERATION

Since current flow in a Schottky rectifier is the result of majority carrier conduction, it is not subject to junction diode forward and reverse recovery transients due to minority carrier injection and stored charge. Satisfactory circuit analysis work may be performed by using a model consisting of an ideal diode in parallel with a variable capacitance. (See Figure 10.)

Rectification efficiency measurements show that operation will be satisfactory up to several megahertz. For example, relative waveform rectification efficiency is approximately 70 per cent at 2 0 MHz, e.g., the ratio of dc power to RMS power in the load is 0 28 at this frequency, whereas perfect rectification would yield 0.406 for sine wave inputs. However, in contrast to ordinary junction diodes, the loss in waveform efficieny is not indicative of power loss, it is simply a result of reverse current flow through the diode capacitance, which lowers the dc output voltage.



#### FIGURE 11 - SCHOTTKY RECTIFIER







Motorola builds quality and reliability into its Schottky Rectifiers

First is the chip, which has an interface metal between the barrier metal and aluminum-contact metal to eliminate any possible interaction between the two. The indicated guardring prevents dv/dt problems, so snubbers are not mandatory. The guardring also operates like a zener to absorb over-voltage transients.

Second is the package. The Schottky chip is bonded to the copper heat sink using a specially formulated solder. This gives the unit the capability of passing 10,000 operating thermal-fatigue cycles having a  $\Delta T_J$  of 100°C. The epoxy molding compound is rated per UL 94, V0 @ 1/8". Wire bonds are 100% tested in assembly as they are made.

Third is the electrical testing, which includes 100% dv/dt at 1600 V/ $\mu$ s and reverse avalanche as part of device characterization





	STYLE Pin	E 1 N 1 2 3 4	N/A	DE	
	MILLIN	ET	ERS	INC	HES
DIM	MIN	٨	/AX	MIN	M/
A	15 11	1	5 75	0 595	0.6
В	9 65	1	0 29	0 380	0.4

INITERIA		MILLIMICICAS		neo
DIM	MIN	MAX	MIN	MAX
A	15 11	15 75	0 595	0 620
В	9 65	10 29	0 380	0 405
С	4 06	4 82	0 160	0 190
D	0 64	0.89	0 025	0 035
F	3 61	3 73	0 142	0 147
G	4 83	5 33	0 190	0 210
H	2 79	3 30	0 110	0 130
J	0 36	0 56	0 014	0 022
K	12 70	14 27	0 500	0 562
L	1 14	1 27	0 045	0 050
Q	2 54	3 04	0 100	0 120
R.	2 04	2 79	0 080	0 110
S	1 14	1 39	0 045	0 055
T	5 97	6 48	0 235	0.255
11	0.76	1 27	0.030	0.050

### Switchmode Power Rectifiers

... using the Schottky Barrier principle with a platinum barrier metal. These state-of-theart devices have the following features:

- Guard-Ring for Stress Protection
- Low Forward Voltage
- 150°C Operating Junction Temperature
- Guaranteed Reverse Avalanche
- Epoxy Meets UL94, VO at 1/8"
- Low Power Loss/High Efficiency
- High Surge Capacity
- Low Stored Charge Majority Carrier Conduction

MBR1060 MBR1070 MBR1080 MBR1090 MBR10100

SCHOTTKY BARRIER RECTIFIERS 10 AMPERES 60-100 VOLTS



#### **MAXIMUM RATINGS**

	Symbol	MBR					
Rating		1060	1070	1080	1090	10100	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	60	70	80	90	100	Volts
Average Rectified Forward Current (Rated V _R ) T _C = 133°C	lF(AV)	10					Amps
Peak Repetitive Forward Current (Rated V _R , Square Wave, 20 kHz) T _C = 133°C	^I FRM	20					Amps
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)	IFSM	150					Amps
Peak Repetitive Reverse Surge Current (2 μs, 1 kHz)	IRRM	0.5				Amp	
Operating Junction Temperature	TJ	-65 to +150			°C		
Storage Temperature	T _{stg}	-65 to +175			°C		
Voltage Rate of Change (Rated VR)	dv/dt	1000					V/μs

#### THERMAL CHARACTERISTICS

ı	Maximum Thermal Resistance — Junction to Case	$R_{\theta JC}$	2	°C/W	l
ì	— Junction to Ambient	RAIA	60	1	

#### **ELECTRICAL CHARACTERISTICS**

Maximum Instantaneous Forward Voltage (1) (iF = 10 Amp, T _C = 125°C) (iF = 10 Amp, T _C = 25°C) (iF = 20 Amp, T _C = 125°C) (iF = 20 Amp, T _C = 25°C)	٧F	0.7 0.8 0.85 0.95	Volts
Maximum Instantaneous Reverse Current (1) (Rated dc Voltage, T _C = 125°C) (Rated dc Voltage, T _C = 25°C)	iR	150 0.15	mA

⁽¹⁾ Pulse Test: Pulse Width = 300  $\mu$ s, Duty Cycle  $\leq$  2%.

### MBR1060, MBR1070, MBR1080, MBR1090, MBR10100



Figure 1. Typical Forward Voltage



Figure 2. Typical Reverse Current



Figure 3. Current Derating, Case



Figure 4. Current Derating, Ambient



Figure 5. Forward Power Dissipation



### MBR1535CT MBR1545CT

#### SWITCHMODE POWER RECTIFIERS

using the Schottky Barrier principle with a platinum barrier metal These state-of-the-art devices have the following features

- Center-Tap Configuration
- Guardring for Stress Protection
- Low Forward Voltage
- 150°C Operating Junction Temperature
- Guaranteed Reverse Avalanche
- Epoxy Meets UL94, VO at 1/8"

#### SCHOTTKY BARRIER RECTIFIERS

15 AMPERES 35 and 45 VOLTS



#### MAXIMUM RATINGS

Rating		Symbol	MBR1535CT	MBR1545CT	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage		VRRM VRWM VR	35	45	Volts
Average Rectified Forward Current T _C = 105°C (Rated V _R )	Per Diode Per Device	^I F(AV)	7 5 15	7 5 15	Amps
Peak Repetitive Forward Current, T _C = 105°C (Rated V _R , Square Wave, 20 kHz) Per Diode		IFRM	15	15	Amps
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)		I _{FSM}	150	150	Amps
Peak Repetitive Reverse Surge Current (2 0 μs, 1 0 kHz)		IRRM	1 0	10	Amps
Operating Junction Temperature		TJ	-65 to +150	-65 to +150	°C
Storage Temperature		T _{stg}	-65 to +175	-65 to +175	°C
Voltage Rate of Change (Rated V _R )		dv/dt	1000	1000	V/µs
THERMAL CHARACTERISTICS PER DIODE					
Maximum Thermal Resistance, Junction to Case		$R_{\theta}$ JC	30	30	°C/W
Maximum Thermal Resistance, Junction to Ambient		$R_{\theta JA}$	60	60	°C/W
ELECTRICAL CHARACTERISTICS PER DIODE					
Maximum Instantaneous Forward Voltage (1) ( $_{1F}$ = 7 5 Amp, $_{C}$ = 125°C) ( $_{1F}$ = 15 Amp, $_{C}$ = 125°C) ( $_{1F}$ = 15 Amp, $_{C}$ = 25°C)		VF	0 57 0 72 0 84	0 57 0 72 0 84	Volts
Maximum Instantaneous Reverse Current (1) (Rated dc Voltage, $T_C$ = 125°C) (Rated dc Voltage, $T_C$ = 25°C)		'R	15 0 1	15 0 1	mA

⁽¹⁾ Pulse Test Pulse Width = 300  $\mu$ s, Duty Cycle  $\leqslant$  2 0%













### MBR1635 MBR1645

#### SWITCHMODE POWER RECTIFIERS

using the Schottky Barrier principle with a platinum barrier metal These state-of-the-art devices have the following features

- Guardring for Stress Protection
- Low Forward Voltage
- 150°C Operating Junction Temperature
- Guaranteed Reverse Avalanche

#### SCHOTTKY BARRIER RECTIFIERS

16 AMPERES 35 and 45 VOLTS



Rating	Symbol	MBR1635	MBR1645	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	35	45	Volts
Average Rectified Forward Current (Rated V _R ) T _C = 125°C	lF(AV)	16	16	Amps
Peak Repetitive Forward Current (Rated V _R , Square Wave, 20 kHz) T _C = 125°C	IFRM	32	32	Amps
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)	IFSM	150	150	Amps
Peak Repetitive Reverse Surge Current (2 Ο μs, 1 Ο kHz)	IRRM	1 0	1 0	Amps
Operating Junction Temperature	TJ	-65 to +150	-65 to +150	°C
Storage Temperature	T _{stg}	-65 to +175	-65 to +175	°C
Voltage Rate of Change (Rated V _R )	dv/dt	1000	1000	V/µs
THERMAL CHARACTERISTICS				
Maximum Thermal Resistance, Junction to Case	$R_{\theta JC}$	1 5	1 5	°C/W
ELECTRICAL CHARACTERISTICS		·		
Maximum Instantaneous Forward Voltage (1) (IF = 16 Amp, T _C = 125°C) (IF = 16 Amp, T _C = 25°C)	٧F	0 57 0 63	0 5 7 0 6 3	Volts
Maximum Instantaneous Reverse Current(1) (Rated dc Voltage, T _C = 125°C) (Rated dc Voltage, T _C = 25°C)	'R	40 0 2	40 0 2	mA













# **MBR2035CT MBR2045CT**

#### SWITCHMODE POWER RECTIFIERS

using the Schottky Barrier principle with a platinum barrier metal These state-of-the-art devices have the following features

- Guardring for Stress Protection
- Low Forward Voltage
- 150°C Operating Junction Temperature
- Guaranteed Reverse Avalanche
- Epoxy Meets UL94, VO at 1/8"

#### SCHOTTKY BARRIER RECTIFIERS

20 AMPERES 35 and 45 VOLTS



#### MAXIMUM RATINGS

Rating	Symbol	MBR2035CT	MBR2045CT	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _R WM V _R	35	45	Volts
Average Rectified Forward Current (Rated V _R ) T _C = 135°C	lF(AV)	20	20	Amps
Peak Repetitive Forward Current Per Diode Leg (Rated V _R , Square Wave, 20 kHz) T _C = 135°C	IFRM	20	20	Amps
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)	^I FSM	150	150	Amps
Peak Repetitive Reverse Surge Current (2 0 μs, 1 0 kHz) See Figure 11	IRRM	10	10	Amps
Operating Junction Temperature	Tj	-65 to +150	-65 to +150	°C
Storage Temperature	T _{stg}	-65 to +175	-65 to +175	°C
Voltage Rate of Change (Rated V _R )	dv/dt	1000	1000	V/μs
THERMAL CHARACTERISTICS				
Maximum Thermal Resistance, Junction to Case	$R_{ heta JC}$	20	2 0	°C/W
ELECTRICAL CHARACTERISTICS				
Maximum Instantaneous Forward Voltage (1) ( $_{\text{IF}}$ = 10 Amp, $_{\text{CC}}$ = 125°C) ( $_{\text{IF}}$ = 20 Amp, $_{\text{CC}}$ = 125°C) ( $_{\text{IF}}$ = 20 Amp, $_{\text{CC}}$ = 25°C)	٧F	0 57 0 72 0 84	0 57 0 72 0 84	Volts
Maximum Instantaneous Reverse Current (1) (Rated dc Voltage, $T_C$ = 125°C) (Rated dc Voltage, $T_C$ = 25°C)	'R	15 0 1	15 0 1	mA

⁽¹⁾ Pulse Test Pulse Width = 300 µs, Duty Cycle ≤ 2 0%









FIGURE 5 - CURRENT DERATING, INFINITE HEATSINK



FIGURE 6 — CURRENT DERATING,  $R_{\theta JA}$  = 16° C/W



FIGURE 7 - FORWARD POWER DISSIPATION



FIGURE 8 - CURRENT DERATING, FREE AIR



FIGURE 9 - THERMAL RESPONSE



#### HIGH FREQUENCY OPERATION

Since current flow in a Schottky rectifier is the result of majority carrier conduction, it is not subject to junction diode forward and reverse recovery transients due to minority carrier injection and stored charge. Satisfactory circuit analysis work may be performed by using a model consisting of an ideal diode in parallel with a variable capacitance. (See Figure 10.)

Rectification efficiency measurements show that operation will be satisfactory up to several megahertz. For example, relative waveform rectification efficiency is approximately 70 per cent at 2 0 MHz, e.g., the ratio of dc power to RMS power in the load is 0.28 at this frequency, whereas perfect rectification would yield 0.406 for sine wave inputs. However, in contrast to ordinary junction diodes, the loss in waveform efficienty is not indicative of power loss, it is simply a result of reverse current flow through the diode capacitance, which lowers the dc output voltage.





### Switchmode Power Rectifiers

... using the Schottky Barrier principle with a platinum barrier metal. These state-of-theart devices have the following features:

- 20 Amps Total (10 Amps Per Diode Leg)
- Guard-Ring for Stress Protection
- Low Forward Voltage
- 150°C Operating Junction Temperature
- Guaranteed Reverse Avalanche
- Epoxy Meets UL94, VO at 1/8"
- Low Power Loss/High Efficiency
- High Surge Capacity
- Low Stored Charge Majority Carrier Conduction

MBR2060CT MBR2070CT MBR2080CT MBR2090CT MBR20100CT

SCHOTTKY BARRIER RECTIFIERS 20 AMPERES 60-100 VOLTS





#### MAXIMUM RATINGS PER DIODE LEG

D.	Symbol					MBR			١
Rating		2060CT	2070CT	2080CT	2090CT	20100CT	Unit		
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	60	70	80	90	100	Volts		
Average Rectified Forward Current (Rated V _R ) T _C = 133°C	lF(AV)	10					Amps		
Peak Repetitive Forward Current (Rated V _R , Square Wave, 20 kHz) T _C = 133°C	IFRM	20				Amps			
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)	IFSM	150				Amps			
Peak Repetitive Reverse Surge Current (2 μs, 1 kHz)	IRRM	0.5				Amp			
Operating Junction Temperature	TJ	-65 to +150				°C			
Storage Temperature	T _{stg}	-65 to +175				°C			
Voltage Rate of Change (Rated V _R )	dv/dt			1000			V/µs		

#### THERMAL CHARACTERISTICS

					1
1	Maximum Thermal Resistance — Junction to Case	$R_{\theta}$ JC	2	°C/W	ı
	— Junction to Ambient	$R_{\theta}JA$	60		l

#### **ELECTRICAL CHARACTERISTICS PER DIODE LEG**

Maximum Instantaneous Forward Voltage (1) (if = 10 Amp, $T_C = 125^{\circ}C$ ) (if = 10 Amp, $T_C = 25^{\circ}C$ ) (if = 20 Amp, $T_C = 125^{\circ}C$ ) (if = 20 Amp, $T_C = 25^{\circ}C$ )	VF	0.7 0.8 0.85 0.95	Volts
Maximum Instantaneous Reverse Current (1) (Rated dc Voltage, T _C = 125°C) (Rated dc Voltage, T _C = 25°C)	IR	150 0 15	mA

(1) Pulse Test Pulse Width = 300  $\mu$ s, Duty Cycle  $\leq$  2%

### MBR2060CT, MBR2070CT, MBR2080CT, MBR2090CT, MBR20100CT



Figure 1. Typical Forward Voltage Per Diode





Figure 3. Current Derating, Case



Figure 4. Current Derating, Ambient



Figure 5. Average Power Dissipation and Average Current



## **MBR2535CT MBR2545CT**

### **SWITCHMODE POWER RECTIFIERS**

using the Schottky Barrier principle with a platinum barrier metal. These state-of-the-art devices have the following features.

- Guardring for Stress Protection
- Low Forward Voltage
- 150°C Operating Junction Temperature
- Guaranteed Reverse Avalanche

### SCHOTTKY BARRIER RECTIFIERS

30 AMPERES 35 and 45 VOLTS



MAXIMUM RATINGS		T		
Rating	Symbol	MBR2535CT	MBR2545CT	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	VRRM VRWM VR	35	45	Volts
Average Rectified Forward Current (Rated $V_R$ ) $T_C = 130^{\circ}C$	I _{F(AV)}	30	30	Amps
Peak Repetitive Forward Current Per Diode Leg (Rated V _R , Square Wave, 20 kHz) T _C = 130°C	IFRM	30	30	Amps
Nonrepetitive Peak Surge Current per Diode Leg (Surge applied at rated load conditions halfwave, single phase, 60 Hz)	IFSM	150	150	Amps
Peak Repetitive Reverse Surge Current (2 0 $\mu$ s, 1 0 kHz)	IRRM	10	10	Amps
Operating Junction Temperature	TJ	-65 to + 150	-65 to + 150	°C
Storage Temperature	T _{stg}	-65 to +175	-65 to +175	°C
Voltage Rate of Change (Rated V _R )	dv/dt	1000	1000	V/μs
THERMAL CHARACTERISTICS PER DIODE LEG				
Maximum Thermal Resistance, Junction to Case	$R_{\theta}$ JC	1 5	1 5	°C/W
ELECTRICAL CHARACTERISTICS PER DIODE LEG			·	
Maximum Instantaneous Forward Voltage (1) ( $_{1F}$ = 30 Amp, $_{TC}$ = 125°C) ( $_{1F}$ = 30 Amp, $_{TC}$ = 25°C)	٧F	0 73 0 82	0 73 0 82	Volts
Maximum Instantaneous Reverse Current (1) (Rated dc Voltage, $T_C$ = 125°C) (Rated dc Voltage, $T_C$ = 25°C)	'R	40 0 2	40 0 2	mA













MBR3020CT MBR3035CT MBR3045CT SD241

### **SWITCHMODE POWER RECTIFIERS**

using the Schottky Barrier principle with a platinum barrier metal. These state-of-the-art devices have the following features.

- Dual Diode Construction
- Guardring for Stress Protection
- Low Forward Voltage
- 150°C Operating Junction Temperature
- Guaranteed Reverse Avalanche

### SCHOTTKY BARRIER RECTIFIERS

30 AMPERES 20 to 45 VOLTS



### **MAXIMUM RATINGS**

Symbol	MBR3020CT	MBR3035CT	MBR3045CT	SD241	Unit
VRRM VRWM VR	20	35	45	45	Volts
Ю	30 15	30 15	30 15	30 15	Amps
IFRM	30	30	30	30	Amps
^I FSM	400	400	400	400	Amps
IRRM	2 0	2 0	2 0	20	Amps
Tj	-65 to + 150	-65 to + 150	-65 to + 150	-65 to +150	°C
T _{stg}	-65 to +175	-65 to +175	-65 to +175	-65 to +175	°C
T _J (pk)	175	175	175	175	°C
dv/dt	1000	1000	1000	1000	V/µs
	VRRM VRWM VR IO  IFRM  IFSM  IRRM  TJ  Tstg  TJ(pk)	VRRM VRWM VR  10 30 15  1FRM 30  1FSM 400  IRRM 2 0  TJ -65 to +150  Tstg -65 to +175  TJ(pk) 175	VRRM VRWM VR         20         35           IO         30         30           15         15           1FRM         30         30           IFSM         400         400           IRRM         20         20           TJ         -65 to + 150         -65 to + 150           Tstg         -65 to +175         -65 to +175           TJ(pk)         175         175	VRRM VRWM VR         20         35         45           IO         30         30         30           15         15         15         15           IFRM         30         30         30           IFSM         400         400         400           IRRM         20         20         20           TJ         -65 to + 150         -65 to + 150         -65 to + 150           Tstg         -65 to +175         -65 to +175         -65 to +175           TJ(pk)         175         175         175	VRRM VRWM VR         20         35         45         45           IO         30         30         30         30           15         15         15         15         15           IFRM         30         30         30         30           IFSM         400         400         400         400           IRRM         20         20         20         20           TJ         -65 to + 150         -65 to + 150         -65 to + 150         -65 to + 150           Tstg         -65 to + 175         -65 to + 175         -65 to + 175         -65 to + 175           TJ(pk)         175         175         175         175

Maximum Thermal Resistance, Junction to Case				
Maximum Thermal Resistance, Junction to Case	I Kaic			

### **ELECTRICAL CHARACTERISTICS PER DIODE**

Maximum Instantaneous Forward Voltage (1)	٧F				1	Volts
(IF = 10 Amp, T _C = 125°C)		_		_	0 47	l
(IF = 20 Amp, T _C = 125°C)	1	0 60	0 60	0 60	0 60	]
(IF = 30 Amp, T _C = 125°C)		0 72	0 72	0 72	-	1
(IF = 30 Amp, T _C = 25°C)		0 76	0 76	0 76	_	
Maximum Instantaneous Reverse Current(1)	'R					mA
(Rated dc Voltage, T _C = 125°C)	ł	60	60	60	100	ì i
(Rated dc Voltage, T _C = 25°C)		10	10	10	V _R = 35 V	
Capacitance	Ct	2000	2000	2000	2000	pF

⁽¹⁾ Pulse Test Pulse Width = 300  $\mu$ s, Duty Cycle  $\leqslant$  2 0%









VF, INSTANTANEOUS FORWARD VOLTAGE (VOLTS)



#### FIGURE 6 — THERMAL RESPONSE PER DIODE LEG



#### HIGH FREQUENCY OPERATION

Since current flow in a Schottky rectifier is the result of majority carrier conduction, it is not subject to junction diode forward and reverse recovery transients due to minority carrier injection and stored charge. Satisfactory circuit analysis work may be performed by using a model consisting of an ideal diode in parallel with a variable capacitance. (See Figure 7.)

Rectification efficiency measurements show that operation will be satisfactory up to several megahertz. For example, relative waveform rectification efficiency is approximately 70 per cent at 2 0 MHz, e.g., the ratio of dc power to RMS power in the load is 0 28 at this frequency, whereas perfect rectification would yield 0 406 for sine wave inputs. However, in contrast to ordinary junction diodes, the loss in waveform efficienty is not indicative of power loss, it is simply a result of reverse current flow through the diode capacitance, which lowers the dc output voltage.

### FIGURE 7 - CAPACITANCE



FIGURE 8 — TEST CIRCUIT FOR REPETITIVE REVERSE CURRENT



### MBR3020CT, MBR3035CT, MBR3045CT, SD241

### FIGURE 9 - SCHOTTKY RECTIFIER





Motorola builds quality and reliability into its Schottky Rectifiers

First is the chip, which has an interface metal between the platinum-barrier metal and nickel-gold ohmic-contact metal to eliminate any possible interaction with the barrier. The indicated guardring prevents dv/dt problems, so snubbers are not required. The guardring also operates like a zener to absorb over-voltage transients.

Second is the package. There are molybdenum disks which closely match the thermal coefficient of expansion of silicon on each side of the chip. The pin-to-chip aluminum leadwire

provides stress relief. These two features give the unit the capability of passing stringent thermal fatigue tests for 5,000 cycles. Copper-core steel pins match the expansion coefficient of the glass and are long enough (0.440 in min.) to reach through a heat sink to a printed circuit board.

Third is the redundant electrical testing. The device is tested before assembly in "sandwirch" form, with the chip between the moly disks. It is tested again after assembly. As part of the final electrical test, devices are 100% tested for dv 'dt at 1,600 V.' $\mu$ s and reverse avalanche.



### MECHANICAL CHARACTERISTICS

CASE Welded, hermetically sealed

FINISH: All external surfaces corrosion resistant and terminal lead is readily solderable

POLARITY: Cathode to Case
MOUNTING POSITION. Any

	MILLIN	METERS	INC	HES	
DIM	MIN	MIN MAX		MAX	
Α	-	39 37	-	1 550	
В	_	22.23	-	0 875	
C	6 35	11 43	0 250	0 450	
D	0 97	1 09	0 038	0 043	
E	- 3 43		~	0 135	
F	30 1	5 BSC	1 187 BSC		
G	10 9	2 BSC	0 430 BSC		
Н	5 4	6 BSC	0 215 BSC		
J	16 8	9 BSC	0.66	5 BSC	
K	11 18	12 19	0 440	0.480	
Q	3 84	4 09	0.151	0 161	
R	_	26 67	-	1 050	
V	3.84	4 09	0 151	0 161	

CASE 11-03 TO-204AA METAL

NOTES

1 DIAMETERS Q, V AND SURFACE T ARE DATUMS
2 POSITIONAL TOLERANCE FOR HOLE Q

(♣ | Ø 0 25 (0 010) ⊗ T | V ⊗ | 3 POSITIONAL TOLERANCE FOR LEADS | Ø | Ø 0 30 (0 012) ⊗ T | V ⊗ 0 ⊗ 0

4 DIMENSIONING AND TOLERANCING PER ANSI Y14 5, 1973

STYLE 4
PIN 1 ANODE 1
2 ANODE 2
CASE COMMON CATHODE

### MBR3035PT MBR3045PT

### **SWITCHMODE POWER RECTIFIERS**

. . using the Schottky Barrier principle with a platinum barrier metal These state-of-the-art devices have the following features.

- Dual Diode Construction Terminals 1 and 3 May Be Connected For Parallel Operation At Full Rating
- Guardring For Stress Protection
- Low Forward Voltage
- 150°C Operating Junction Temperature
- Guaranteed Reverse Avalanche

### SCHOTTKY BARRIER RECTIFIERS

30 AMPERES 35 to 45 VOLTS



### **RATINGS**

Rating		Symbol	Maximum	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	Working Peak Reverse Voltage MBR3035PT MBR3045PT		35 45	Volts
Average Rectified Forward Current (Rated V _R ) T _C = 105°C	Per Device Per Diode	I _{F(AV)}	30 15	Amps
Peak Repetitive Forward Current, Per Diode (Rated V _R , Square Wave, 20 kHz)		^I FRM	30	Amps
Nonrepetitive Peak Surge Current (Surge Applied at rated load cond halfwave, single phase, 60 Hz)	itions	IFSM	200	Amps
Peak Repetitive Reverse Current, Pe (2 0 μs, 1 0 kHz) See Figure 6	er Diode	IRRM	20	Amps
Operating Junction Temperature		TJ	-65 to +150	°C
Storage Temperature  Peak Surge Junction Temperature (Forward Current Applied)		T _{stg}	-65 to +175	°C
		T _{J(pk)}	175	°C
Voltage Rate of Change (Rated $V_R$ )		dv/dt	1000	V/μs

### THERMAL CHARACTERISTICS PER DIODE

ELECTRICAL CHARACTERISTICS PER	DIODE		<b>.</b>
Thermal Resistance, Junction to Ambient	$R_{\theta}JA$	40	°C/W
Thermal Resistance, Junction to Case	$H_{\theta}$ JC	14	°C/ W

Instantaneous Forward Voltage (1) ( $_{IF}$ = 20 Amp, $_{TC}$ = 125°C) ( $_{IF}$ = 30 Amp, $_{TC}$ = 125°C) ( $_{IF}$ = 30 Amp, $_{TC}$ = 25°C)	٧F	0 60 0 72 0 76	Volts
Instantaneous Reverse Current (1) (Rated dc Voltage, T _C = 125°C) (Rated dc Voltage, T _C = 25°C)	ЧR	100 1.0	mA

(1) Pulse Test Pulse Width = 300  $\mu$ s, Duty Cycle  $\leq$  2 0%



#### NOTES

- DIMENSIONING AND TOLERANCING PER ANSI Y14 5M, 1982
- 2. CONTROLLING DIMENSION INCH

	MILLIMETERS		INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	20 32	21 08	0 800	0 830	
В	15 49	15 90	0 610	0 626	
C	4 19	5 08	0 165	0 200	
D	1 02	1 65	0 040	0 065	
E	1 35	1 65	0 053	0 065	
G	5 21	5 72	0 205	0 225	
H	2 65	2 94	0 104	0 116	
J	0 38	0 64	0 015	0 025	
K	12 70	15 49	0 500	0 610	
L	15 88	16 51	0 625	0 650	
N	12 19	12 70	0 480	0 500	
Q	4 04	4 22	0 159	0 166	

CASE 340-02 TO-218AC PLASTIC

### **MBR3035PT, MBR3045PT**













FIGURE 6 - TEST CIRCUIT FOR REPETITIVE

### MBR3520 MBR3535 MBR3545, H, H1

### SWITCHMODE POWER RECTIFIERS

using a platinum barrier metal in a large area metal-to-silicon power diode. State-of-the-art geometry features epitaxial construction with oxide passivation and metal overlap contact. Ideally suited for use as rectifiers in low-voltage, high-frequency inverters, freewheeling diodes, and polarity-protection diodes.

- Guardring for dv/dt Stress Protection
- Guaranteed Reverse Surge Current/Avalanche
- 150°C Operating Junction Temperature

### SCHOTTKY BARRIER RECTIFIERS

35 AMPERES 20 to 45 VOLTS



#### MAXIMUM RATINGS

Rating	Symbol	MBR3520	MBR3535	MBR3545, H, H1*	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	VRRM VRWM VR	20	35	45	Volts
Peak Repetitive Forward Current (Rated V _R , Square Wave, 20 kHz, T _C = 110°C)	^I FRM	-	70 -	•	Amps
Average Rectified Forward Current (Rated V _R , T _C = 110°C)	I _{F(AV)}	-	35		Amps
Peak Repetitive Reverse Surge Current (2 0 μs, 1 0 kHz) See Figure 8	IRRM	-	20-		Amps
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)	IFSM	-	600	*	Amps
Operating Junction Temperature	TJ	4	-65 to +	150	°C
Storage Temperature	T _{stg}	4	-65 to +1	75	°C
Voltage Rate of Change (Rated V _R )	dv/dt	4	1000		V/μs

### THERMAL CHARACTERISTICS

i	Characteristic	Symbol	Тур	Max	Unit
	Thermal Resistance, Junction-to-Case	$R_{\theta}$ JC	1 3	1 5	°C/W

### **ELECTRICAL CHARACTERISTICS PER DIODE**

Characteristic	Symbol	Тур	Max	Unit
Instantaneous Forward Voltage (1)	٧F			Volts
(IF = 35 Amp, T _C = 125°C)		0 49	0 55	
(IF = 35 Amp, T _C = 25°C)		0 55	0 63	
(IF = 70 Amp, T _C = 125°C)		0 60	0 69	
Instantaneous Reverse Current (1)	'R			mA
(Rated Voltage, T _C = 125°C)		60	100	
(Rated Voltage, T _C = 25°C)		01	03	
Capacitance (V _R = 1 0 Vdc, 100 kHz > f > 1.0 MHz, T _C = 25°C)	Ct	3000	3700	pF

^{*}H and H1 devices include extra testing. See Figure 10

⁽¹⁾ Pulse Test Pulse Width = 300  $\mu$ s, Duty Cycle = 2 0%

0L 60



3-117

140

T_C, CASE TEMPERATURE (°C)

l_{pk} I_{AV}

IF(AV), AVERAGE FORWARD CURRENT (AMPS)

 $\pi$  (Resistive Load)

30

40



### HIGH FREQUENCY OPERATION

Since current flow in a Schottky rectifier is the result of majority carrier conduction, it is not subject to junction diode forward and reverse recovery transients due to minority carrier injection and storod charge. Satisfactory circuit analysis work may be performed by using a model consisting of an ideal diode in parallel with a variable capacitance. (See Figure 7.)

Rectification efficiency measurements show that operation will be satisfactory up to several megahertz. For example, relative waveform rectification efficiency is approximately 70 per cent at 2 0 MHz, e.g., the ratio of dc power to RMS power in the load is 0.28 at this frequency, whereas perfect rectification would yield 0.406 for sine wave inputs. However, in contrast to ordinary junction diodes, the loss in waveform efficiency is not indicative of power loss, it is simply a result of reverse current flow through the diode capacitance, which lowers the dc output voltage.





MOUNTING TORQUE: 15 in-lb max

### MBR3520, MBR3535, MBR3545, H, H1

**FIGURE 9 — SCHOTTKY RECTIFIER** 



Motorola builds quality and reliability into its Schottky Rectifiers First is the chip, which has an interface metal between the platinum-barrier metal and nickel-gold ohmic-contact metal to eliminate any possible interaction with the barrier. The indicated guardring prevents dv/dt problems, so snubbers are not mandatory. The guardring also operates like a zener to absorb overvoltage transients.

Second is the package There are molybdenum disks which closely match the thermal coefficient of expansion of silicon on each side of the chip. The top copper lead is also stress-reliefed to prevent damage during assembly. These two features give the

unit the capability of passing powered thermal fatigue tests for 5,000 cycles. The top copper lead provides a low resistance to current and therefore does not contribute to device heating, a heat sink should be used when attaching wires.

Third is the redundant electrical testing. The device is tested before assembly in "sandwich" form, with the chip between the moly disks. It is tested again after assembly. As part of the final electrical test, devices are 100% tested for dv/dt at 1,600 V/ $\mu s$  and reverse avalanche. Devices are also 100% reverse scope tested for trace anomalies.

### FIGURE 10 - HI-REL PROGRAM OPTIONS



MBR5825, H, H1 See Page 3-55 MBR5831, H, H1 See Page 3-64

### Switchmode Power Rectifiers

... using a platinum barrier metal in a large area metal-to-silicon power diode. State-ofthe-art geometry features epitaxial construction with oxide passivation and metal overlap contact. Ideally suited for use as rectifiers in low-voltage, high frequency inverters, free-wheeling diodes, and polarity-protection diodes.

- Guaranteed Reverse Avalanche
- Guardring for dv/dt Stress Protection
- 175°C Operating Junction Temperature
- Extremely Low Forward Voltage

### MBR6015L MBR6020L MBR6025L MBR6030L

SCHOTTKY RECTIFIERS 60 AMPERES 15 TO 30 VOLTS



### **MAXIMUM RATINGS**

Rating		Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	MBR6015L MBR6020L MBR6025L MBR6030L	VRRM VRWM VR	15 20 25 30	Volts
Peak Repetitive Forward Current (Rated V _R , Square Wave, 20 kHz) T _C = 90°C		IFRM	150	Amps
Average Rectified Forward Current (Rated V _R ) T _C = 120°C		ю	60	Amps
Peak Repetitive Reverse Surge Current (2 μs, 1 kHz) See Figure 7		IRRM	2	Amps
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)		IFSM	1000	Amps
Operating Junction Temperature		TJ	-65 to +150	°C
Storage Temperature Range		T _{stg}	-65 to +175	°C
Voltage Rate of Change (Rated V _R )		dv/dt	1000	V/μs

### THERMAL CHARACTERISTICS

Maximum Thermal Resistance, Junction to Case	H _θ JC	0.8	°C/W
ELECTRICAL CHARACTERISTICS			
Maximum Instantaneous Forward Voltage (1) (iF = 30 Amps, T _C = 25°C) (iF = 60 Amps, T _C = 25°C) (iF = 30 Amps, T _C = 150°C) (iF = 60 Amps, T _C = 150°C)	VF	0.42 0.48 0.30 0.38	Volts
Maximum Instantaneous Reverse Current (1) (Rated Voltage, T _C = 25°C) (Rated Voltage, T _C = 125°C)	i _R	50 280	mA
Capacitance $(V_R = 1 \text{ Vdc}, 100 \text{ kHz} \le f \le 1 \text{ MHz})$	Ct	6000	pF

(1) Pulse Test: Pulse Width  $\leq$  300  $\mu$ s, Duty Cycle  $\leq$  2%.

### MBR6015L, MBR6020L, MBR6025L, MBR6030L



Figure 1. Typical Forward Voltage



Figure 2. Typical Reverse Current*

^{*}The curves shown are typical for the highest voltage device in the voltage grouping. Typical reverse current for lower voltage selections can be estimated from these same curves if V_R is sufficiently below rated V_R.



Figure 3. Capacitance

## NOTE 1 HIGH FREQUENCY OPERATION

Since current flow in a Schottky rectifier is the result of majority carrier conduction, it is not subject to junction diode forward and reverse recovery transients due to minority carrier injection and stored charge. Satisfactory circuit analysis work may be performed by using a model consisting of an ideal diode in parallel with a variable capacitance. (See Figure 4.)

Rectification efficiency measurements show that operation will be satisfactory up to several megahertz. For example, relative waveform rectification efficiency is approximately 70 percent at 2 MHz, e.g., the ratio of dc power to RMS power in the load is 0.28 at this frequency, whereas perfect rectification would yield 0.406 for sine wave inputs. However, in contrast to ordinary junction diodes, the loss in waveform efficiency is not indicative of power loss; it is simply a result of reverse current flow through the diode capacitance, which lowers the dc output voltage.



Figure 4. Test Circuit for dv/dt and Reverse Surge Current

### MBR6015L, MBR6020L, MBR6025L, MBR6030L



Figure 5. Forward Current Derating



Figure 6. Power Dissipation

#### NOTE 2



To determine maximum junction temperature of the diode in a given situation, the following procedure is recommended:

The temperature of the case should be measured using a thermocouple placed on the case. The thermal mass connected to the case is normally large enough so that it will not significantly respond to heat surges generated

in the diode as a result of pulsed operation once steady-state conditions are achieved. Using the measured value of T_C, the junction temperature may be determined by:  $T_J \,=\, T_C \,+\, \Delta T_{JC}$ 

where  $\Delta T_{C}$  is the increase in junction temperature above the case temperature. It may be determined by:

 $\Delta T_{JC} = P_{pk} \cdot R_{\theta JC} [D + (1 - D) \cdot r(t_1 + t_p) + r(t_p) - r(t_1)]$ where

r(t) = normalized value of transient thermal resistance at time, t, from Figure 7, i.e.:

 $r(t_1-t_p)=$  normalized value of transient thermal resistance at time  $t_1+t_p$ .



Figure 7. Thermal Response

### MBR6015L, MBR6020L, MBR6025L, MBR6030L



Motorola builds quality and reliability into its Schottky Rectifiers.

First is the chip, which has an interface metal between the platinum-barrier metal and nickel-gold ohmic-contact metal to eliminate any possible interaction with the barrier. The indicated guardring prevents dv/dt problems, so snubbers are not mandatory. The guardring also operates like a zener to absorb overvoltage transients.

Second is the package. There are molybdenum disks which closely match the thermal coefficient of expansion of silicon on each side of the chip. The top copper lead has a stress relief feature which protects the die during assembly. These two features give the unit the capability of passing stringent thermal fatique tests for 5,000 cycles. The top copper lead provides a low resistance to current and therefore does not contribute to device heating; a heat sink should be used when attaching wires.

Third is the redundant electrical testing. The device is tested before assembly in "sandwich" form, with the chip between the moly disks. It is tested again after assembly. As part of the final electrical test, devices are 100% tested for dv/dt at 1,600 V/ $\mu$ s and reverse avalanche.

Figure 8. Schottky Rectifier

### **OUTLINE DIMENSIONS**



### NOTES

- 1 DIM "P" IS DIA.
- 2 CHAMFER OR UNDERCUT ON ONE OR BOTH ENDS OF
- HEXAGONAL BASE IS OPTIONAL
- 3 ANGULAR ORIENTATION AND CONTOUR OF TERMINAL ONE IS OPTIONAL
- THREADS ARE PLATED
- 5 DIMENSIONING AND TOLERANCING PER ANSI Y14 5,

### MECHANICAL CHARACTERISTICS

CASE: Welded, hermetically sealed

FINISH: All external surfaces corrosion resistant and

terminal lead is readily solderable

POLARITY: Cathode-to-Case **MOUNTING POSITION:** Anv

MOUNTING TORQUE: 25 in-lb max

SOLDER HEAT: The excellent heat transfer property of the heavy duty copper anode terminal which transmits heat away from the die requires that caution be used when attaching wires. Motorola suggests a heat sink be clamped between the eyelet and the body during any soldering operation.

### MBR6035 MBR6045, H, H1

### **SWITCHMODE POWER RECTIFIERS**

using a platinum barrier metal in a large area metal-to-silicon power diode. State-of-the-art geometry features epitaxial construction with oxide passivation and metal overlap contact. Ideally suited for use as rectifiers in low-voltage, high-frequency inverters, freewheeling diodes, and polarity-protection diodes.

- Guaranteed Reverse Avalanche
- Guardring for dv/dt Stress Protection
- 150°C Operating Junction Temperature
- Low Forward Voltage

### **SCHOTTKY RECTIFIERS**

60 AMPERES 35 AND 45 VOLTS



CASE 257-01 DO-203AB METAL

### **MAXIMUM RATINGS**

Rating	Symbol	MBR6035 MBR6035B	MBR6045, H, H1* MBR6045B	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	35	45	Volts
Peak Repetitive Forward Current (Rated V _R , Square Wave, 20 kHz) T _C = 100°C	IFRM	120	-	Amps
Average Rectified Forward Current (Rated V _R ) T _C = 100°C	10	60		Amps
Peak Repetitive Reverse Surge Current (2 0 μs, 1 0 kHz) See Figure 7	IRRM	20	-	Amps
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)	IFSM	800		Amps
Operating Junction Temperature	TJ	-65 to +	150	°C
Storage Temperature	T _{stg}	<b>←</b> 65 to +	175	°C
Voltage Rate of Change (Rated V _R )	dv/dt	1000	) —	V/μs

### THERMAL CHARACTERISTICS

Characteristic	Symbol	Тур	Max	Unit
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	0 85	10	°C/W

### **ELECTRICAL CHARACTERISTICS**

Characteristic	Symbol	Тур	Max	Unit
Instantaneous Forward Voltage (1)	٧F			Volts
(IF = 60 Amp, T _C = 25°C)		0 65	0 70	
(IF = 60 Amp, T _C = 125°C)		0 5 7	0 60	
(IF = 120 Amp, T _C = 125°C)		0.70	0 76	
Instantaneous Reverse Current (1)	'B			mA
(Rated Voltage, T _C = 25°C)		01	03	
(Rated Voltage, T _C = 125°C)		55	100	
Capacitance (V _R = 1 0 Vdc, 100 kHz ≤ 1 0 MHz)	Ct	3000	3700	pF

^{*}H and H1 devices include extra testing (1) Pulse Test Pulse Width = 300  $\mu$ s, Duty Cycle = 2 0%







NOTE 1
HIGH FREQUENCY OPERATION

Since current flow in a Schottky rectifier is the result of majority carrier conduction, it is not subject to junction diode forward and reverse recovery transients due to minority carrier injection and stored charge. Satisfactory circuit analysis work may be performed by using a model consisting of an ideal diode in parallel with a variable capacitance. (See Figure 4.)

Rectification efficiency measurements show that operation will be satisfactory up to several megahertz. For example, relative waveform rectification efficiency is approximately 70 per cent at 2 0 MHz, e.g., the ratio of dc power to RMS power in the load is 0 28 at this frequency, whereas perfect rectification would yield 0 406 for sine wave inputs. However, in contrast to ordinary junction diodes, the loss in waveform efficiency is not indicative of power loss; it is simply a result of reverse current flow through the diode capacitance, which lowers the dc output voltage.



### FIGURE 5 - FORWARD CURRENT DERATING



### FIGURE 6 - POWER DISSIPATION Square Wave PF(AV). AVERAGE POWER DISSIPATION WATTS) 50% Duty Cycle (Capacitive Load) $I_{pk}$ ۱A۷ 30 = π (Resistive Load)-20 T_J = 125°C 40

### FIGURE 7 - TEST CIRCUIT FOR dv/dt

IF(AV), AVERAGE FORWARD CURRENT (AMPS)

### NOTE 2 DUTY CYCLE, D = t_p/t₁ PEAK POWER, P_{pk}, is peak of an

equivalent square power pulse

To determine maximum junction temperature of the diode in a given situation, the following procedure is recommended

The temperature of the case should be measured using a thermocouple placed on the case. The thermal mass connected to the case is normally large enough so that it will not significantly respond to heat surges generated in the diode as a result of pulsed operation once steady-state conditions are achieved. Using the measured value of T_C, the junction temperature may be

determined by  $T_J = T_C + \Delta \, T_{JC}$  where  $\Delta \, T_C$  is the increase in junction temperature above the case temperature it may be determined by

 $\Delta T_{JC} = P_{pk} \cdot R \theta_{JC} [D + (1 - D) \cdot r(t_1 + t_p) + r(t_p) - r(t_1)] \text{ where } r(t) = \text{normalized value of transient thermal resistance at time, } t, \text{ from } t \in T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} = T_{JC} =$ 

Figure 8, i.e.  $r(t_1 + t_0) = normalized$  value of transient thermal resistance at time  $t_1 + t_0$ 

### AND REVERSE SURGE CURRENT



### FIGURE 8 - THERMAL RESPONSE



### MBR6035, MBR6045, H, H1,

FIGURE 9 - SCHOTTKY RECTIFIER





Motorola builds quality and reliability into its Schottky Rectifiers First is the chip, which has an interface metal between the platinum-barrier metal and nickel-gold ohmic-contact metal to eliminate any possible interaction with the barrier. The indicated guardring prevents dv/dt problems, so snubbers are not mandatory. The guardring also operates like a zener to absorb overvoltage transients.

Second is the package. There are molybdenum disks which closely match the thermal coefficient of expansion of silicon on each side of the chip. The top copper lead has a stress relief

feature which protects the die during assembly. These two features give the unit the capability of passing stringent thermal fatigue tests for 5,000 cycles. The top copper lead provides a low resistance to current and therefore does not contribute to device heating, a heat sink should be used when attaching wires.

Third is the redundant electrical testing. The device is tested before assembly in "sandwich" form, with the chip between the moly disks. It is tested again after assembly. As part of the final electrical test, devices are 100% tested for dv/dt at 1,600 V/ $\mu s$  and reverse avalanche.

### HI-REL PROGRAM OPTIONS

The MBR6045 is also available with two levels of extra testing similar to "TX" screening and including Group A and B inspection programs Both the MBR6045H and MBR6045H1 go through 100% screening consisting of high temperature storage, temperature cycling, constant acceleration and hermetic seal testing

prior to a sample being submitted to Group A and B inspection After completion of Group B inspection, the MBR6045H is available without additional screening MBR6045H1 devices are further processed through a high temperature reverse bias (HTRB) and forward burn-in Consult factory for details



### NOTES.

- 1. DIM "P" IS DIA.
- CHAMFER OR UNDERCUT ON ONE OR BOTH ENDS OF HEXAGONAL BASE IS OPTIONAL.
- 3. ANGULAR ORIENTATION AND CONTOUR OF TERMINAL ONE IS OPTIONAL.
- 4. THREADS ARE PLATED.
- DIMENSIONING AND TOLERANCING PER ANSI Y14.5, 1973

	MILLIM	IETERS	INC	HES		
DIM	MIN	MAX	MIN	MAX		
Α	16.94	17.45	0.669	0.687		
В	_	16 94	-	0.667		
C	_	11.43	_	0.450		
D		9.53	-	0.375		
E	2.92	5.08	0.115	0 200		
F	_	2.03	_	0.080		
J	10 72	11 51	0 422	0 453		
K	_	25.40	_	1.000		
L	3.86	_	0.156	1		
P	5.59	6.32	0.220	0.249		
Q	3.56	4.45	0.140	0.175		
R	_	20.16		0.794		
S		2.26	_	0.089		

#### MECHANICAL CHARACTERISTICS

CASE: Welded, hermetically sealed

FINISH All external surfaces corrosion resistant and terminal lead is readily solderable

POLARITY Cathode-to-Case

MOUNTING POSITION: Any

MOUNTING TORQUE: 25 in-lb max

SOLDER HEAT The excellent heat transfer property of the heavy duty copper ande terminal which transmits heat away from the die requires that caution be used when attaching wires. Motorola suggests a heat sink be clamped between eyelet and the body during any soldering operation.

CASE 257-01 DO-203AB METAL

## **MBR6535 MBR6545**

### SWITCHMODE POWER RECTIFIERS

. using a platinum barrier metal in a large area metal-to-silicon power diode. State-of-the-art geometry features epitaxial construction with oxide passivation and metal overlap contact. Ideally suited for use as rectifiers in low-voltage, high frequency inverters, free-wheeling diodes, and polarity-protection diodes.

- Guaranteed Reverse Avalanche
- Guardring for dv/dt Stress Protection
- 175°C Operating Junction Temperature
- Low Forward Voltage

### HIGH TEMPERATURE SCHOTTKY RECTIFIERS

65 AMPERES 35 and 45 VOLTS



CASE 257-01 DO-203AB METAL

### MAXIMUM RATINGS

Rating	Symbol	MBR6535	MBR6545	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _R WM V _R	35	45	Volts
Peak Repetitive Forward Current (Rated V _R , Square Wave, 20 kHz) T _C = 120°C	IFRM	130	130	Amps
Average Rectified Forward Current (Rated $V_R$ ) $T_C = 120$ °C	10	65	65	Amps
Peak Repetitive Reverse Surge Current (2 0 μs, 1 0 kHz) See Figure 7	IRRM	2 0	2 0	Amps
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)	IFSM	800	800	Amps
Operating Junction Temperature and Storage Temperature	T _J , T _{stg}	-65 to +175	-65 to +175	°C
Voltage Rate of Change (Rated V _R )	dv/dt	1000	1000	V/µs
THERMAL CHARACTERISTICS				
Maximum Thermal Resistance, Junction to Case	$R_{\theta JC}$	10	10	°C/W
ELECTRICAL CHARACTERISTICS				
Maximum Instantaneous Forward Voltage (1) (IF = 65 Amp, $T_C$ = 25°C) (IF = 65 Amp, $T_C$ = 150°C) (If = 130 Amp, $T_C$ = 150°C)	٧F	0 78 0 62 0 73	0 78 0 62 0 73	Volts
Maximum Instantaneous Reverse Current (1) (Rated Voltage, T _C = 25°C) (Rated Voltage, T _C = 150°C)	'R	0 07 125	0 07 125	mA
Capacitance $(V_R = 1.0 \text{ Vdc}, 100 \text{ kHz} \leqslant f \leqslant 1.0 \text{ MHz})$	Ct	3700	3700	pF

(1) Pulse Test  $\,$  Pulse Width = 300  $\mu s,\,$  Duty Cycle  $\leqslant 2$  0%







### NOTE 1 HIGH FREQUENCY OPERATION

Since current flow in a Schottky rectifier is the result of majority carrier conduction, it is not subject to junction diode forward and reverse recovery transients due to minority carrier injection and stored charge. Satisfactory circuit analysis work may be performed by using a model consisting of an ideal diode in parallel with a variable capacitance. (See Figure 4.)

Rectification efficiency measurements show that operation will be satisfactory up to several megahertz. For example, relative waveform rectification efficiency is approximately 70 per cent at 2.0 MHz, e.g., the ratio of dc power to RMS power in the load is 0.28 at this frequency, whereas perfect rectification would yield 0.406 for sine wave inputs. However, in contrast to ordinary junction diodes, the loss in waveform efficiency is not indicative of power loss, it is simply a result of reverse current flow through the diode capacitance, which lowers the dc output voltage.



#### FIGURE 5 — FORWARD CURRENT DERATING



### FIGURE 6 - POWER DISSIPATION



### NOTEO



To determine maximum junction temperature of the diode in a given situation, the following procedure is recommended

The temperature of the case should be measured using a thermocouple placed on the case. The thermal mass connected to the case is normally large enough so that it will not significantly respond to heat surges generated in the diode as a result of pulsed operation once steady-state conditions are achieved. Using the measured value of T_C, the junction temperature may be determined by

determined by  $T_{J}=T_{C}+\Delta T_{JC}$  where  $\Delta T_{C}$  is the increase in junction temperature above the case temperature. It may be determined by

 $\Delta T_{JC} = P_{pk} * R_{\theta,JC} [D + (1 - D) * r(t_1 + t_p) + r(t_p) - r(t_1)]$  where r(t) = normalized value of transient thermal resistance at time, t, from  $R_{aug} = R_{aug}$ 

Figure 8, i.e.  $r(t_1+t_p) = \text{normalized value of transient thermal resistance at time } t_1+t_p$ 

### FIGURE 7 — TEST CIRCUIT FOR dv/dt AND REVERSE SURGE CURRENT



#### FIGURE 8 — THERMAL RESPONSE



### FIGURE 9 - SCHOTTKY RECTIFIER





Motorola builds quality and reliability into its Schottky Rectifiers First is the chip, which has an interface metal between the platinum-barrier metal and nickel-gold ohmic-contact metal to eliminate any possible interaction with the barrier. The indicated quardring prevents dv/dt problems, so snubbers are not mandatory The guardring also operates like a zener to absorb overvoltage transients

Second is the package. There are molybdenum disks which closely match the thermal coefficient of expansion of silicon on each side of the chip. The top copper lead has a stress relief

> CASE 257-01 DO-203AB

METAL

feature which protects the die during assembly. These two features give the unit the capability of passing stringent thermal fatigue tests for 5,000 cycles. The top copper lead provides a low resistance to current and therefore does not contribute to device heating, a heat sink should be used when attaching wires

Third is the redundant electrical testing. The device is tested before assembly in "sandwich" form, with the chip between the moly disks. It is tested again after assembly. As part of the final electrical test, devices are 100% tested for dv/dt at 1,600 V/μs and reverse avalanche



### NOTES

- 1. DIM "P" IS DIA.
- 2. CHAMFER OR UNDERCUT ON ONE OR BOTH ENDS OF HEXAGONAL BASE IS OPTIONAL
- 3. ANGULAR ORIENTATION AND CONTOUR OF TERMINAL ONE IS OPTIONAL
- 4. THREADS ARE PLATED.
- 5. DIMENSIONING AND TOLERANCING PER ANSI Y14.5,

	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α	16.94	17.45	0 669	0.687
В	-	16.94	1	0 667
C	_	11.43	_	0 450
D	_	9.53	_	0.375
E	2 92	5.08	0.115	0 200
F	_	2.03		0.080
J	10 72	11 51	0 422	0.453
K		25.40	1	1.000
L	3.86	_	0.156	_
P	5 59	6.32	0 220	0.249
a	3.56	4 45	0.140	0.175
R	_	20 16		0 794
S	_	2.26		0.089

STYLE 2. TERM 1. ANODE 2. CATHODE (CASE)

**MECHANICAL CHARACTERISTICS** CASE: Welded, hermetically sealed

FINISH: All external surfaces corrosion resistant and terminal

lead is readily solderable. POLARITY: Cathode-to-Case **MOUNTING POSITION: Any** MOUNTING TORQUE: 25 in-lb max

SOLDER HEAT: The excellent heat transfer property of the heavy duty copper anode terminal which transmits heat away from the die requires that caution be used when attaching wires. Motorola suggests a heat sink be clamped between the eyelet and the

body during any soldering operation.

### MBR7535 MBR7540 MBR7545

### SWITCHMODE POWER RECTIFIERS

... employing the Schottky Barrier principle in a large area metalto-silicon power diode. State-of-the-art geometry features epitaxial construction with oxide passivation and metal overlap contact (deally suited for use as rectifiers in low-voltage, high-frequency inverters, free-wheeling diodes, and polarity-protection diodes.

- Extremely Low v_F
- Low Stored Charge, Majority Carrier Conduction
- Low Power Loss/ High Efficiency
- High Surge Capacity

### SCHOTTKY BARRIER RECTIFIERS

75 AMPERES 20 to 45 VOLTS





### MECHANICAL CHARACTERISTICS

CASE: Welded, hermetically sealed FINISH: All external surfaces corrosionresistant and terminal lead is readily solderable.

POLARITY: Cathode to Case MOUNTING POSITIONS: Any MOUNTING TORQUE: 25 in-lb max



### NOTES

1 DIM "P" IS DIA

- CHAMFER OR UNDERCUT ON ONE OR BOTH ENDS OF HEXAGONAL BASE IS OPTIONAL.
- 3 ANGULAR ORIENTATION AND CONTOUR OF TERMINAL ONE IS OPTIONAL
- 4 THREADS ARE PLATED
- 5 DIMENSIONING AND TOLERANCING PER ANSI Y14 5, 1973

	MILLIM	ETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	16 94	17 45	0 669	0 687
В	_	16 94	_	0 667
С	_	11 43	_	0 450
D	_	9 53		0 375
E	2 92	5 08	0 115	0 200
F		2.03	_	0 080
J	10 72	11 51	0 422	0 453
K	_	25 40	_	1 000
L	3 86	_	0 156	_
2	5 59	6 32	0 220	0 249
Q	3 56	4 45	0 140	0 175
R	_	20 16	_	0 794
S	-	2 26	_	0 089

CASE 257-01 DO-203AB METAL

### MBR7535, MBR7540, MBR7545

### **MAXIMUM RATINGS**

Rating	Symbol	MBR7535	MBR7540	MBR7545	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	35	40	45	Volts
Peak Repetitive Forward Current (Rated V _R , Square Wave, 20 kHz)	1 _{FRM}	150 T _C =90°C			Amp
Average Rectified Forward Current (Rated $V_R$ )	lo	70 T _C =90°C			Amp
Non-repetitive Peak Surge Current (Surge applied at rated load conditions, halfwave, single phase, 60 Hz)	I _{FSM}	1000			Amp
Operating and Storage Junction Temperature Range	T _J , T _{stg}	−65 to +150			°C
Peak Operating Junction Temperature (Forward Current Applied)	T _{J(pk)}	175			°C
Voltage Rate of Change (Rated $V_R$ )	dv/dt	1000			V/μs

### THERMAL CHARACTERISTICS

Characteristic	Symbol	MBR7535	MBR7540	MBR7545	Unit
Thermal Resistance, Junction to Case	R _{e,IC}	0.8		°C/W	

### ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic	Symbol	MBR7535	MBR7540	MBR7545	Unit
Maximum Instantaneous Forward Voltage (1) ( $i_F = 60 \text{ Amp, T}_C = 125^{\circ}\text{C}$ ) ( $i_F = 220 \text{ Amp, T}_C = 125^{\circ}\text{C}$ )	v _F		0.60 0.90		Volts
Maximum Instantaneous Reverse Current (1) (Rated dc Voltage, T _C = 125°C)	ⁱ R	150	200	250	mA
Capacitance ( $V_R = 5.0 \text{ Vdc}$ , 100 kHz $\leq f \leq 1.0 \text{ MHz}$ )	C _t		4000		pF

(1) Pulse Test: Pulse Width = 300  $\mu$ s, Duty Cycle = 20%





## **MBR8035 MBR8045**

### SWITCHMODE POWER RECTIFIERS

using a platinum barrier metal in a large area metal-to-silicon power diode. State-of-the-art geometry features epitaxial construction with oxide passivation and metal overlap contact. Ideally suited for use as rectifiers in low-voltage, high frequency inverters, freewheeling diodes, and polarity-protection diodes.

- Guaranteed Reverse Avalanche
- Guardring for dv/dt Stress Protection
- 175°C Operating Junction Temperature
- Low Forward Voltage

### **SCHOTTKY RECTIFIERS**

80 AMPERES 35 and 45 VOLTS



CASE 257-01 DO-203AB METAL

### **MAXIMUM RATINGS**

Rating	Symbol	MBR8035	MBR8045	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	VRRM VRWM VR	35	45	Volts
Peak Repetitive Forward Current (Rated V _R , Square Wave, 20 kHz) T _C = 120°C	IFRM	160	160	Amps
Average Rectified Forward Current (Rated V _R ) T _C = 120°C	10	80	80	Amps
Peak Repetitive Reverse Surge Current (2 0 $\mu$ s, 1 0 kHz) See Figure 7	IRRM	20	2 0	Amps
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)	IFSM	1000	1000	Amps
Operating Junction Temperature and Storage Temperature	TJ, T _{stg}	-65 to +175	-65 to +175	°C
Voltage Rate of Change (Rated V _R )	dv/dt	1000	1000	V/µs
THERMAL CHARACTERISTICS				•
Maximum Thermal Resistance, Junction to Case	$R_{\theta JC}$	0 80	0 80	°C/W
ELECTRICAL CHARACTERISTICS				
Maximum Instantaneous Forward Voltage (1) (iF = 80 Amp, $T_C$ = 25°C) (iF = 80 Amp, $T_C$ = 150°C) (iF = 160 Amp, $T_C$ = 150°C)	٧F	0 72 0 59 0 67	0 72 0 59 0 67	Volts
Maximum Instantaneous Reverse Current (1) (Rated Voltage, T _C = 25°C) (Rated Voltage, T _C = 150°C)	'R	1 O 150	1 O 150	mA
Capacitance (V _R = 1 0 Vdc, 100 kHz $\leq$ f $\leq$ 1 0 MHz)	Ct	5000	5000	pF

(1) Pulse Test  $\,$  Pulse Width = 300  $\mu s,\,$  Duty  $\,$  Cycle  $\leqslant 2$  0%







### NOTE 1 HIGH FREQUENCY OPERATION

Since current flow in a Schottky rectifier is the result of majority carrier conduction, it is not subject to junction diode forward and reverse recovery transients due to minority carrier injection and stored charge. Satisfactory circuit analysis work may be performed by using a model consisting of an ideal diode in parallel with a variable capacitance. (See Figure 4.)

Rectification efficiency measurements show that operation will be satisfactory up to several megahertz. For example, relative waveform rectification efficiency is approximately 70 per cent at 2.0 MHz, e.g., the ratio of dc power to RMS power in the load is 0.28 at this frequency, whereas perfect rectification would yield 0.406 for sine wave inputs. However, in contrast to ordinary junction diodes, the loss in waveform efficiency is not indicative of power loss, it is simply a result of reverse current flow through the diode capacitance, which lowers the dc output voltage.



### FIGURE 6 - POWER DISSIPATION



3

### FIGURE 7 — TEST CIRCUIT FOR dv/dt AND REVERSE SURGE CURRENT







FIGURE 9 - SCHOTTKY RECTIFIER



Motorola builds quality and reliability into its Schottky Rectifiers First is the chip, which has an interface metal between the platinum-barrier metal and nickel-gold ohmic-contact metal to eliminate any possible interaction with the barrier. The indicated guardring prevents dv/dt problems, so snubbers are not mandatory. The guardring also operates like a zener to absorb overvoltage transients.

Second is the package. There are molybdenum disks which closely match the thermal coefficient of expansion of silicon on each side of the chip. The top copper lead has a stress relief

feature which protects the die during assembly. These two features give the unit the capability of passing stringent thermal fatigue tests for 5,000 cycles. The top copper lead provides a low resistance to current and therefore does not contribute to device heating, a heat sink should be used when attaching wires.

Third is the redundant electrical testing. The device is tested before assembly in "sandwich" form, with the chip between the moly disks. It is tested again after assembly. As part of the final electrical test, devices are 100% tested for dv/dt at 1,600 V/ $\mu s$  and reverse avalanche.



#### NOTES

- 1 DIM "P" IS DIA
- 2 CHAMFER OR UNDERCUT ON ONE OR BOTH ENDS OF HEXAGONAL BASE IS OPTIONAL
- 3 ANGULAR ORIENTATION AND CONTOUR OF TERMINAL ONE IS OPTIONAL
- 4 THREADS ARE PLATED
- 5 DIMENSIONING AND TOLERANCING PER ANSI Y14 5, 1973

	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	16 94	17 45	0 669	0 687
В	_	16 94	_	0 667
C	_	11 43	-	0 450
D	-	9 53	_	0 375
E	2 92	5 08	0 115	0 200
F	_	2 03	-	0 080
J	10 72	11 51	0 422	0 453
K	_	25 40	_	1 000
L	3 86		0 156	_
P	5 59	6 32	0 220	0 249
Q	3 56	4 45	0 140	0 175
R	-	20 16		0 794
S		2 26		0 089

STYLE 2 TERM 1 ANODE 2 CATHODE (CASE)

CASE 257-01 DO-203AB METAL

### MECHANICAL CHARACTERISTICS

CASE: Welded, hermetically sealed

FINISH: All external surfaces corrosion resistant and terminal lead is readily

solderable
POLARITY: Cathode-to-Case
MOUNTING POSITION: Any
MOUNTING TORQUE: 25 in-lb max

**SOLDER HEAT:** The excellent heat transfer property of the heavy duty copper anode terminal which transmits heat away from the die requires that caution be used when attaching wires. Motorola suggests a heat sink be clamped between the eyelet and the body during any soldering operation.

MBR12035CT MBR12045CT MBR12050CT MBR12060CT

### SCHOTTKY BARRIER RECTIFIERS

120 AMPERES 35 to 60 VOLTS





#### NOTES.

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14 5M, 1982.
- 2. CONTROLLING DIMENSION INCH.

	MILLIN	ETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
_ A	87.63	92.20	3 450	3 630
В	17 78	20.57	0.700	0.810
С	15 63	16 00	0 615	0 630
E	3.05	3 30	0.120	0.130
F	11 05	11.30	0.435	0.445
G	34.80	35.05	1.370	1.380
Н	0 18	0 68	0.007	0.027
N	1/4-20UNC-2B		1/4-20	JNC-2B
Q	6 86	7 23	0.270	0 285
R	80.01	BSC	3.150 BSC	
U	15.24	16 00	0.600 0.630	
٧	8.39	9.52	0 330	0.375
W	4 32	4.82	0.170	0 190

### CASE 357C-01 POWER TAP

Terminal Penetration: Terminal Torque: Mounting Torque — Outside Holes:* 0.280 max 25–40 in-lb max 30–40 in-lb max

*Center Hole Must be Torqued First:

8-10 in-lb max

(Hated dc Voltage, T_J = 25°C)
(1) Pulse Test. Pulse Width = 300 µs, Duty Cycle ≤ 20%

### **SWITCHMODE POWER RECTIFIERS**

... using the Schottky Barrier principle with a platinum barrier metal. These state-of-the-art devices have the following features:

- Dual Diode Construction May Be Paralleled For Higher Current Output
- Guardring For Stress Protection
- Low Forward Voltage
- 175°C Operating Junction Temperature
- Guaranteed Reverse Avalanche

### **MAXIMUM RATINGS**

Rating		Symbol	Max	Unit
Peak Repetitive Reverse Voltage	MBR12035CT MBR12045CT	V _{RRM}	35 45	Volts
Working Peak Reverse Voltage DC Blocking Voltage	MBR12050CT MBR12060CT	V _{RWM} V _R	50 60	
Average Rectified Forward Current (Rated V _R ) T _C = 140°C	Per Device Per Leg	lF(AV)	120 60	Amps
Peak Repetitive Forward Current, Per Leg (Rated V _R , Square Wave, 20 kHz), T _C = 140°C		IFRM	120	Amps
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)		^I FSM	800	Amps
Peak Repetitive Reverse Current, Per Leg (2.0 μs, 1.0 kHz) See Figure 6		IRRM	2.0	Amps
Operating Junction and Storage To	emperature	T _J ,T _{stg}	-65 to +175	°C
Voltage Rate of Change (Rated VR	)	dv/dt	1000	V/μs

### THERMAL CHARACTERISTICS PER LEG

Thermal Resistance, Junction to Case	$R_{ heta}JC$	0.85	°C/W

### **ELECTRICAL CHARACTERISTICS PER LEG**

Instantaneous Forward Voltage (1)	VF VF		Volts
(IF = 60 Amp, T _J = 125°C)		0.590	
(i _F = 120 Amp, T _J = 175°C)	1	0.620	}
(i _F = 120 Amp, T _J = 125°C)		0.680	
$(i_F = 120 \text{ Amp, Tj} = 25^{\circ}\text{C})$		0.830	
Instantaneous Reverse Current (1)	iR		mA
(Rated dc Voltage, T _J = 125°C)	1 "	25	
(Rated dc Voltage, T _J = 25°C)		0.25	

### MBR12035CT, MBR12045CT, MBR12050CT, MBR12060CT













### POWERTAP **Switchmode Power Rectifiers**

... using the Schottky Barrier principle with a platinum barrier metal. These stateof-the-art devices have the following features:

- Dual Diode Construction May Be Paralleled For Higher Current Output
- · Guardring For Stress Protection
- Low Forward Voltage
- 150°C Operating Junction Temperature
- Guaranteed Reverse Avalanche



### **MAXIMUM RATINGS**

Rating		Symbol	Max	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	MBR20015CTL MBR20020CTL MBR20025CTL MBR20030CTL	V _{RRM} V _{RWM} V _R	15 20 25 30	Volts
Average Rectified Forward Current (Rated V _R ) T _C = 140°C	Per Device Per Leg	^I F(AV)	200 100	Amps
Peak Repetitive Forward Current, Pe (Rated V _R , Square Wave, 20 kHz)		^I FRM	200	Amps
Nonrepetitive Peak Surge Current Pe (Surge applied at rated load condit halfwave, single phase, 60 Hz)	-	IFSM	1500	Amps
Peak Repetitive Reverse Current, Pe (2 μs, 1.0 kHz) See Figure 6	er Leg	IRRM	2	Amps
Storage Temperature		T _{stg}	-65 to +175	°C
Operating Junction and Storage Te	mperature	T _J ,T _{stg}	-65 to +150	°C
Voltage Rate of Change (Rated V _R )		dv/dt	1000	V/μs

### THERMAL CHARACTERISTICS PER LEG

Thermal Resistance, Junction to Case	$R_{ heta JC}$	0.4	°C/W	
ELECTRICAL CHARACTERICTICS DER LEC				

### **ELECTRICAL CHARACTERISTICS PER LEG**

Instantaneous Forward Voltage (1) (iF = 100 Amp, T _J = 150°C) (iF = 200 Amp, T _J = 150°C) (iF = 100 Amp, T _J = 25°C) (iF = 200 Amp, T _J = 25°C)	VF	0.39 0.48 0.46 0.55	Volts
Instantaneous Reverse Current (1) (Rated dc Voltage, T _J = 100°C) (Rated dc Voltage, T _J = 25°C)	¹R	500 5	mA

(1) Pulse Test Pulse Width = 300  $\mu$ s, Duty Cycle  $\leq$  2.0%.

Terminal Penetration: 0.280 max Terminal Torque: 25-40 in-lb max 30-40 in-lb max Mounting Torque — Outside Holes:* *Center Hole Must be Torqued First: 8-10 in-lb max

**MBR20015CTL** MBR20020CTL MBR20025CTL MBR20030CTL

LOW VF SCHOTTKY BARRIER RECTIFIERS 200 AMPERES 15 to 30 VOLTS



### **OUTLINE DIMENSIONS** ● → 0 25 (2 00) (1 A (6 E (6 )

- 1 DIMENSIONING AND TOLERANCING PER ANSI Y14 5M, 1982
- 2 CONTROLLING DIMENSION INCH

	MILLIM	ILLIMETERS INCHES		
DIM	MIN	MAX	MIN	MAX
Α	87 63	92 20	3 450	3 630
В	17 78	20 57	0 700	0 810
C	15 63	16 00	0 615	0 630
E	3 05	3 30	0 120	0 130
F	11 05	11 30	0 435	0 445
G	34 80	35 05	1 370	1 380
Н	0 18	0 68	0 007	0 027
N	1/4-20UNC-2B		1/4-201	JNC-2B
Q	6 86	7 23	0 270	0 285
R	80 01	BSC	3 150 BSC	
U	15 24	16 00	0 600	0 630
V	8 39	9 52	0 330	0 375
w	4.32	4.82	0.170	0.190

CASE 357C-01 POWERTAP

### MBR20015CTL, MBR20020CTL, MBR20025CTL, MBR20030CTL



Figure 1. Typical Forward Voltage



*The curves shown are typical for the highest voltage device in the voltage grouping. Typical reverse current for lower voltage selections can be estimated from these same curves if V_R is sufficiently below rated V_R.

Figure 2. Typical Instantaneous Reverse Current, Per Leg*



Figure 3. Forward Current Derating, Per Leg



Figure 5. Typical Capacitance, Per Leg



Figure 4. Power Dissipation Per Leg



Figure 6. Test Circuit For Repetitive Reverse Current

MBR20035CT MBR20045CT MBR20050CT MBR20060CT

### SCHOTTKY BARRIER RECTIFIERS

200 AMPERES 35 to 60 VOLTS





#### NOTES:

- 1 DIMENSIONING AND TOLERANCING PER ANSI Y14 5M, 1982.
- 2. CONTROLLING DIMENSION, INCH.

	MILLIN	IETERS INCHES		
DIM	MIN	MAX	MIN	MAX
Α	87.63	92.20	3.450	3 630
В	17.78	20.57	0 700	0.810
С	15 63	16 00	0 615	0.630
E	3.05	3.30	0.120	0.130
F	11.05	11.30	0 435	0 445
G	34 80	35 05	1.370	1 380
Н	0.18	0.68	0.007	0.027
N	1/4-200	JNC-2B	1/4-201	JNC-2B
Q	6.86	7.23	0 270	0.285
R	80 01	BSC	3.150 BSC	
U	15.24	16.00	0.600 0.630	
٧	8 39	9.52	0.330	0.375
W	4.32	4.82	0.170	0 190

### CASE 357C-01 POWER TAP

Terminal Penetration: 0.280 mx
Terminal Torque: 25-40 in-lb max

Mounting Torque — Outside Holes:*

30-40 in-lb max

*Center Hole Must be

Torqued First: 8–10 in-lb max

### **SWITCHMODE POWER RECTIFIERS**

... using the Schottky Barrier principle with a platinum barrier metal. These state-of-the-art devices have the following features:

- Dual Diode Construction May Be Paralleled For Higher Current Output
- Guardring For Stress Protection
- Low Forward Voltage
- 175°C Operating Junction Temperature
- Guaranteed Reverse Avalanche

### MAXIMUM RATINGS

Rating		Symbol	Max	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	MBR20035CT MBR20045CT MBR20050CT MBR20060CT	V _{RRM} V _{RWM} V _R	35 45 50 60	Volts
Average Rectified Forward Current Per Device (Rated V _R ) T _C = 140°C Per Leg		lF(AV)	200 100	Amps
Peak Repetitive Forward Current, Per Leg (Rated V _R , Square Wave, 20 kHz), T _C = 140°C		IFRM	200	Amps
Nonrepetitive Peak Surge Current Per Leg (Surge applied at rated load conditions halfwave, single phase, 60 Hz)		^I FSM	1500	Amps
Peak Repetitive Reverse Current, Per Leg (2.0 µs, 1.0 kHz) See Figure 6		IRRM	2.0	Amps
Operating Junction and Storage Temperature		T _J ,T _{stg}	-65 to +175	°C
Voltage Rate of Change (Rated V _R )		dv/dt	1000	V/μs

#### THERMAL CHARACTERISTICS PER LEG

Thermal Resistance, Junction to Case	$R_{\theta JC}$	0.5	°C/W

### **ELECTRICAL CHARACTERISTICS PER LEG**

Instantaneous Forward Voltage (1)	VF		Volts
(if = 200 Amp, T _J = 175°C)		0.650	
(iF = 200 Amp, T _J = 125°C)		0.825	
(iF = 100 Amp, T _J = 125°C)		0.710	ļ
(i _F = 100 Amp, T _J = 25°C)		0.800	
Instantaneous Reverse Current (1)	iR		mA
(Rated dc Voltage, T _J = 125°C)		50	
(Rated dc Voltage, T _J = 25°C)		0.5	

(1) Pulse Test: Pulse Width = 300  $\mu$ s, Duty Cycle  $\leq$  2.0%.

### MBR20035CT, MBR20045CT, MBR20050CT, MBR20060CT







v_F, INSTANTANEOUS FORWARD VOLTAGE (VOLTS)



FIGURE 4 - POWER DISSIPATION, PER LEG



FIGURE 5 - CAPACITANCE, PER LEG



FIGURE 6 — TEST CIRCUIT FOR REPETITIVE REVERSE CURRENT



# POWER TAP **Switchmode Power Rectifiers**

... using the Schottky Barrier principle with a platinum barrier metal. These state-of-theart devices have the following features:

- Dual Diode Construction May Be Paralleled For Higher Current Output
- · Guardring For Stress Protection
- Low Forward Voltage
- 175°C Operating Junction Temperature
- Guaranteed Reverse Avalanche



# MBR30035CT **MBR30045CT MBR30050CT MBR30060CT**

**SCHOTTKY BARRIER** RECTIFIERS 300 AMPERES **35 TO 60 VOLTS** 



#### **MAXIMUM RATINGS**

Rating		Symbol	Max	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	MBR30035CT MBR30045CT MBR30050CT MBR30060CT	V _{RRM} V _{RWM} V _R	35 45 50 60	Volts
Average Rectified Forward Current (Rated V _R ) T _C = 140°C	Per Device Per Leg	lF(AV)	300 150	Amps
Peak Repetitive Forward Current, Pe (Rated V _R , Square Wave, 20 kHz),		^I FRM	300	Amps
Nonrepetitive Peak Surge Current P (Surge applied at rated load cond halfwave, single phase, 60 Hz)		^I FSM	2500	Amps
Peak Repetitive Reverse Current, Pe (2 μs, 1 kHz) See Figure 6	r Leg	IRRM	2	Amps
Operating Junction and Storage Te	mperature	TJ, Tstg	-65 to +175	°C
Voltage Rate of Change (Rated VR)		dv/dt	1000	V/μs

### THERMAL CHARACTERISTICS PER LEG

Thermal Resistance, Junction to Case	R _{⊕JC}	0.4	°C/W
LECTRICAL CHARACTERISTICS PER LEG			
Instantaneous Forward Voltage (1)	VF		Volts
$(i_F = 150 \text{ Amps}, T_C = 175^{\circ}C)$		0 57	1
$(i_F = 150 \text{ Amps}, T_C = 125^{\circ}C)$		0.64	
(i _F = 150 Amps, T _C = 25°C)		0.74	
$(i_F = 300 \text{ Amps}, T_C = 125^{\circ}C)$		0.78	
$(i_F = 300 \text{ Amps}, T_C = 25^{\circ}C)$		0 82	
Instantaneous Reverse Current (1)	IВ		mA
(Rated dc Voltage, T _C = 125°C)		75	İ
(Rated dc Voltage, T _C = 25°C)		0.8	1

(1) Pulse Test. Pulse Width = 300  $\mu$ s, Duty Cycle  $\leq$  2%

# **OUTLINE DIMENSIONS**

N SOCKERS TAGES	
TH TEL PRINCES TANKS	
C U V E T RUMENAM	

- 1 DIMENSIONING AND TOLERANCING PER ANSI Y14 5M, 1982 2 CONTROLLING DIMENSION INCH

	MILLIMETERS		INCHES			
DIM	MIN	MAX	MIN	MAX		
Α	87 63	92 20	3 450	3 630		
В	17 78	20 57	0 700	0 810		
С	15 63	16 00	0 615	0 630		
E	3 05	3 30	0 120	0 130		
F	11 05	11.30	0 435	0 445		
G	34 80	35 05	1 370	1.380		
н	0 18	0 68	0.007	0 027		
N	1/4-201	JNC-2B	1/4-20UNC-2B			
Q	6 86	7 23	0 270	0 285		
R	80 01	BSC	3 150	BSC		
U	15 24	16 00	0 600	0 630		
V	8 39	9 52	0 330	0 375		
W	4 32	4 82	0 170	0 190		

CASE 357C-01 POWERTAP

Terminal Penetration: Terminal Torque:

0.280 max 25-40 in-lb max

Mounting Torque -Outside Holes:*

30-40 in-lb max

*Center Hole Must be Torqued First:

8-10 in-lb max

# MBR30035CT, MBR30045CT, MBR30050CT, MBR30060CT



Figure 1. Typical Forward Voltage (Per Leg)



Figure 2. Typical Reverse Current (Per Leg)*

*The curves shown are typical for the highest voltage device in the voltage grouping. Typical reverse current for lower voltage selections can be estimated from these same curves if V_R is sufficiently below rated V_R.



Figure 3. Current Derating (Per Leg)



Figure 4. Power Dissipation (Per Leg)



Figure 5. Capacitance (Per Leg)



Figure 6. Test Circuit For Repetitive Reverse Current

# **Switchmode Power Rectifiers DPAK Surface Mount Package**

... designed for use as output rectifiers, free wheeling, protection and steering diodes in switching power supplies, inverters and other inductive switching circuits. These stateof-the-art devices have the following features:

- Extremely Fast Switching
- Extremely Low Forward Drop
- Platinum Barrier with Avalanche Guardrings
- Guaranteed Reverse Avalanche

#### **Mechanical Characteristics**

- Case: Epoxy, Molded
- Finish: All External Surface Corrosion Resistance and Terminal Leads are Readily Solderable
- Lead Formed for Surface Mount
- · Available in 16 mm Tape and Reel or Plastic Rails
- Compact Size
- Lead and Mounting Surface Temperature for Soldering Purposes 260°C Max. for 10 Seconds



**MBRD320 MBRD330 MBRD340** MBRD350 **MBRD360** 

SCHOTTKY BARRIER RECTIFIERS 3 AMPERES **20 TO 60 VOLTS** 



#### **MAXIMUM RATINGS**

Dating		MBRD					11
Rating	Symbol	320	330	340	350	360	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	20	30	40	50	60	Volts
Average Rectified Forward Current (T _C = +125°C, Rated V _R )	lF(AV)	3				Amps	
Peak Repetitive Forward Current, T _C = +125°C (Rated V _R , Square Wave, 20 kHz)	IFRM	6				Amps	
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)	^I FSM	75				Amps	
Peak Repetitive Reverse Surge Current (2 μs, 1 kHz)	IRRM	1				Amp	
Operating Junction Temperature	TJ	- 65 to + 150				°C	
Storage Temperature	T _{stg}	-65 to +175			°C		
Voltage Rate of Change (Rated V _R )	dv/dt			1000			V/µs

#### THERMAL CHARACTERISTICS

Maximum Thermal Resistance, Junction to Case	$R_{\theta JC}$	6	°C/W
Maximum Thermal Resistance, Junction to Ambient (1)	$R_{\theta JA}$	80	°C/W

#### **ELECTRICAL CHARACTERISTICS**

Maximum Instantaneous Forward Voltage (2) iF = 3 Amps, T _C = +25°C iF = 3 Amps, T _C = +125°C iF = 6 Amps, T _C = +25°C iF = 6 Amps, T _C = +125°C	VF	0.6 0.45 0.7 0.625	Volts
Maximum Instantaneous Reverse Current (2) (Rated dc Voltage, T _C = +25°C) (Rated dc Voltage, T _C = +125°C)	iR	0.2 20	mA

⁽¹⁾ Rating applies when surface mounted on the minimum pad size recommended. (2) Pulse Test: Pulse Width = 300 μs, Duty Cycle ≤ 2%.

## MBRD320, MBRD330, MBRD340, MBRD350, MBRD360

#### TYPICAL CHARACTERISTICS



Figure 1. Typical Forward Voltage



Figure 4. Current Derating, Case



*The curves shown are typical for the highest voltage device in the voltage grouping. Typical reverse current for lower voltage selections can be estimated from these curves if V $\gamma$  is sufficient below rated V $\gamma$ 

Figure 2. Typical Reverse Current



Figure 3. Average Power Dissipation



Figure 5. Current Derating, Ambient



Figure 6. Typical Capacitance



#### **OUTLINE DIMENSIONS**



# **MOTOROLA** SEMICONDUCTOR

# Switchmode Power Rectifiers **DPAK Surface Mount Package**

- ... in switching power supplies, inverters and as free wheeling diodes, these state-ofthe-art devices have the following features:
- Extremely Fast Switching
- Extremely Low Forward Drop
- o Platinum Barrier with Avalanche Guardrings
- Guaranteed Reverse Avalanche

#### **Mechanical Characteristics**

- · Case: Epoxy, Molded
- o Finish: All External Surface Corrosion Resistance and Terminal Leads are Readily Solderable
- Lead Formed for Surface Mount
- o Available in 16 mm Tape and Reel or Plastic Rails
- Lead and Mounting Surface Temperature for Soldering Purposes 260°C Max. for 10 Seconds



# MBRD620CT MBRD630CT MBRD640CT MBRD650CT MBRD660CT

SCHOTTKY BARRIER RECTIFIERS 6 AMPERES **20 TO 60 VOLTS** 



#### **MAXIMUM RATINGS**

Patie -		Complete			MBRD			11
Rating		Symbol	620CT	630CT 640CT 650CT 66	660CT	Unit		
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage		V _{RRM} V _{RWM} V _R	20	30	40	50	60	Volts
Average Rectified Forward Current T _C = 130°C (Rated V _R )	Per Diode Per Device	lF(AV)						Amps
Peak Repetitive Forward Current, T _C = 130°C (Rated V _R , Square Wave, 20 kHz) Per Diode		IFRM			6			Amps
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwa	ve, single phase, 60 Hz)	IFSM			75			Amps
Peak Repetitive Reverse Surge Current (2 μs, 1 k	Hz)	IRRM			1			Amp
Operating Junction Temperature		TJ		- (	55 to +	150		°C
Storage Temperature		T _{stg}		- 6	35 to + 1	175		°C
Voltage Rate of Change (Rated V _R )		dv/dt			1000			V/μs

#### THERMAL CHARACTERISTICS PER DIODE

Maximum Thermal Resistance, Junction to Case	$R_{\theta}$ JC	6	°C/W	1
Maximum Thermal Resistance, Junction to Ambient (1)	$R_{\theta JA}$	80	°C/W	7

## **ELECTRICAL CHARACTERISTICS PER DIODE**

Maximum Instantaneous Forward Voltage (2) iF = 3 Amps, T _C = 25°C iF = 3 Amps, T _C = 125°C iF = 6 Amps, T _C = 25°C iF = 6 Amps, T _C = 125°C	VF	0.7 0.65 0.9 0.85	Volts	
Maximum Instantaneous Reverse Current (2) (Rated dc Voltage, T _C = 25°C) (Rated dc Voltage, T _C = 125°C)	^I R	0.1 15	mA	

⁽¹⁾ Rating applies when surface mounted on the minimum pad size recommended. (2) Pulse Test: Pulse Width = 300  $\mu$ s, Duty Cycle  $\leq 2\%$ 

## MBRD620CT, MBRD630CT, MBRD640CT, MBRD650CT, MBRD660CT

#### TYPICAL CHARACTERISTICS



Figure 1. Typical Forward Voltage, Per Leg



Figure 4. Current Derating, Case, Per Leg



^{*}The curves shown are typical for the highest voltage device in the voltage grouping. Typical reverse current for lower voltage selections can be estimated from these curves if  $V_R$  is sufficient below rated  $V_R$ 

Figure 2. Typical Reverse Current,* Per Leg



Figure 3. Average Power Dissipation, Per Leg



Figure 5. Current Derating, Ambient, Per Leg

# MBRD620CT, MBRD630CT, MBRD640CT, MBRD650CT, MBRD660CT



Figure 6. Typical Capacitance, Per Leg







# **Switchmode Rectifiers**

... designed for use in switching power supplies, inverters, and as free wheeling diodes, these devices have the following features:

- Low Forward Voltage
- Low Leakage Current
- Leadless Package for Surface Mount Technology

#### Mechanical Characteristics:

Case: Glass

Finish: End caps are plated and are readily solderable

Polarity: Cathode indicated by polarity band

Maximum Lead Temperature For Soldering Purposes:

230°C, @ end cap for 10 seconds.

# MBRL120 MBRL130 MBRL140

LEADLESS SCHOTTKY RECTIFIERS 1 AMPERE 20-40 VOLTS





#### **MAXIMUM RATINGS**

Rating	Symbol		11-14		
Rating	Symbol	120	130	140	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _R WM V _R	20	30	40	Volts
Average Rectified Forward Current (Rated $V_R$ ) $T_C = 75^{\circ}C$ , $T_A = 50^{\circ}C$ , Mounting Per Note 1	l _{F(AV)}	1			Amp
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)	^I FSM	20			Amps
Operating Junction and Storage Temperature	T _J , T _{stg}		°C		

#### THERMAL CHARACTERISTICS

Characteristic	Symbol	Тур	Max	Unit
Thermal Resistance, Junction to End Cap	$R_{\theta}JC$	40	65	°C/W

#### **ELECTRICAL CHARACTERISTICS**

Characteristic	Symbol	Max	Unit
Instantaneous Forward Voltage (1) (iF = 1 A, TJ = 25°C)	٧F	0.690	Volts
(IF = 1 A, T _J = 125°C)		0.650	
Reverse Current	IR.		mA
(Rated dc Voltage, T _J = 125°C)		10	
(Rated dc Voltage, T _J = 25°C)		0.1	

⁽¹⁾ Pulse Test: Pulse Width = 300  $\mu$ s, Duty Cycle  $\leq$  2%.



Figure 1. Typical Forward Voltage



^{*}The curves shown are typical for the highest voltage device in the voltage grouping. Typical reverse current for lower voltage selections can be estimated from these same curves if  $V_R$  is sufficiently below rated  $V_R$ .

Figure 2. Typical Reverse Current*



Figure 3. Typical Capacitance



Figure 4. Forward Power Dissipation



Figure 5. Current Derating, Printed Circuit
Board Mounting









## **MDA2500 Series**

#### RECTIFIER ASSEMBLY

utilizing individual void-free molded rectifiers, interconnected and mounted on an electrically isolated aluminum heat sink by a high thermal-conductive epoxy resin.

- 400 Ampere Surge Capability
- Electrically Isolated Base
- UL Recognized
- 1800 Volt Heat Sink Isolation



SINGLE-PHASE FULL-WAVE BRIDGE

> 25 AMPERES 50-600 VOLTS

#### **MAXIMUM RATINGS**

			MDA						
Rating (Per Diode)	Symbol	2500	2501	2502	2504	2506	2508	2510	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	50	100	200	400	600	800	1000	Volts
DC Output Voltage Resistive Load Capacitive Load	Vdc	30 50	62 100	124 200	250 400	380 600	500 600	620 1000	Volts
Sine Wave RMS Input Voltage	V _R (RMS)	35	70	140	280	420	560	700	Volts
Average Rectified Forward Current (Single phase bridge resistive load, 60 Hz, T _C = 55°C)	Ю		25					Amp	
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions)	IFSM	400					Amp		
Operating and Storage Junction Temperature Range	TJ, T _{stg}			-6	5 to +	175			°C

#### THERMAL CHARACTERISTICS

Characteristic	Symbol	Тур	Max	Unit
Thermal Resistance, Junction to Case	R ₀ JC			°C/W
Each Die		4.5	60	
Total Bridge		2.0	2.8	

## **ELECTRICAL CHARACTERISTICS** (T_C = 25°C unless otherwise noted)

Characteristic	Symbol	Mın	Тур	Max	Unit
Instantaneous Forward Voltage (Per Diode) (IF = 40 A)*	٧F	-	0 95	1 05	Volts
Reverse Current (Per Diode) (Rated V _R )	I _R	-	-	10	μΑ

#### **MECHANICAL CHARACTERISTICS**

CASE: Plastic case with an electrically isolated aluminum base.

POLARITY: Terminal designation embossed on case:

- + DC output
- -DC output
- AC not marked

MOUNTING POSITION: Bolt down. Highest heat transfer efficiency accomplished through the surface opposite the terminals. Use silicone heat sink compound on mounting surface for maximum heat transfer.

WEIGHT: 25 grams (approx.)

TERMINALS: Suitable for fast-on connections. Readily solderable, corrosion resistant. Soldering recommended for applications greater than 15 amperes. MOUNTING TORQUE: 20 in-lb max

*Pulse Width = 100 ms, Duty Cycle ≤ 2%





#### NOTES

- 1 DIMENSION "Q" SHALL BE MEASURED ON HEATSINK SIDE OF PACKAGE
- 2 DIMENSIONS "F" AND "G" SHALL BE MEASURED AT THE REFERENCE PLANE.

	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	25 65	26 16	1 010	1 030
С	12 44	13 97	0 490	0 550
D	6 10	6 60	0 240	0 260
F	10 01	10 49	0 394	0 413
G	19 99	21 01	0 787	0 827
_J_	0 71	0.86	0 028	0 034
K	9 52	11 43	0 375	0 450
L	1 52	2 06	0 060	0 081
P	2 79	2 92	0 110	0 115
Q	4 42	4 67	0 174	0 184

CASE 309A-03











FIGURE 6 - TYPICAL THERMAL RESPONSE



NOTE 1

To determine maximum junction temperature of the diode in a given situation, the following procedure is recommended.

The temperature of the case should be measured using a thermocouple placed on the case at the temperature reference point (see the outline drawing on page 1). The thermal mass connected to the case is normally large enough so that it will not significantly respond to heat surges generated in the diode as a result of pulsed operation once steady state conditions are achieved. Using the measured value of T_C the junction temperature may be determined by

$$T_J = T_C + \triangle T_{JC}$$

where  $\triangle \, T_{JC}$  is the increase in junction temperature above the case temperature. It may be determined by

 $\triangle \mathsf{TJC} = \mathsf{P}_{pk} \bullet \mathsf{R}_{\theta \mathsf{JC}} \left[ \mathsf{D} + (\mathsf{1} - \mathsf{D}) \bullet \mathsf{r}(\mathsf{t}_1 + \mathsf{t}_p) + \mathsf{r}(\mathsf{t}_p) - \mathsf{r}(\mathsf{t}_1) \right]$ 

ere

r(t)= normalized value of transient thermal resistance at time, t, from Figure 6, i.e.,  $r(t_1\ +\ t_p)=$  normalized value of transient thermal resistance at time  $t_1+t_p$ 







#### AMBIENT TEMPERATURE DERATING INFORMATION



#### NOTE 2: THERMAL COUPLING AND EFFECTIVE THERMAL RESISTANCE

In multiple chip devices where there is coupling of heat between die, the junction temperature can be calculated as follows

(1)  $\Delta T_{J1} = R_{\theta 1} P_{D1} + R_{\theta 2} K_{\theta 2} P_{D2} + R_{\theta 3} K_{\theta 3} P_{D3} + R_{\theta 4} K_{\theta 4} P_{D4}$  where  $\Delta T_{J1}$  is the change in junction temperature of diode 1,  $R_{\theta 1}$  through 4 is the thermal resistance of diodes 1 through 4,  $P_{D1}$  through 4 is the power dissipated in diodes 1 through 4,  $K_{\theta 2}$  through 4 is the thermal coupling between diode 1, and diodes 2 through 4

An effective package thermal resistance can be defined as follows.

(2) 
$$R_{\theta}(EFF) = \Delta T_{J1}/P_{DT}$$

where PDT is the total package power dissipation

Assuming equal thermal resistance for each die, equation (1) simplifies to

(3) 
$$\Delta T_{J1} = R_{\theta 1}(P_{D1} + K_{\theta 2}P_{D2} + K_{\theta 3}P_{D3} + K_{\theta 4}P_{D4})$$

For the conditions where  $P_{D1}$  =  $P_{D2}$  =  $P_{D3}$  =  $P_{D4}$ ,  $P_{DT}$  = 4  $P_{D1}$ , equation (3) can be further simplified and by substituting into equation (2) results in

(4) 
$$R_{\theta}(EFF) = R_{\theta 1}(1 + K_{\theta 2} + K_{\theta 3} + K_{\theta 4})/4$$

When the case is used as a reference point, coupling between opposite die is negligible for the MDA2500, and coupling between adjacent die is approximately 6%.

#### FIGURE 10B - IERC HEAT SINK UP3



#### NOTE 3: SPLIT LOAD DERATING INFORMATION

Bridge rectifiers are used in two basic configurations as shown by circuits A and B of Figure 11. The current derating data of Figure 4 applies to the standard bridge circuit (A) where  $I_A = I_B$ . For circuit B where  $I_A = I_B$ , derating information can be calculated as follows

(6) 
$$T_{R(max)} = T_{J(max)} - \Delta T_{J1}$$

Where  $T_{R(max)}$  is the reference temperature (either case or ambient),  $\Delta T_{JJ}$  can be calculated using equation (3) in Note 2. For example, to determine  $T_{C(max)}$  for the MDA2500 with the following capacitive load conditions:

$$I_A = 20$$
 A average with a peak of 60 A,  
 $I_B = 10$  A average with a peak of 70 A,

first calculate the peak to average ratio for  $I_A I_{\{PK\}}/I_{\{AV\}} = 60/10 = 60$  (Note that the peak to average ratio is on a per diode basis and each diode provides 10 A average.)

From Figure 5, for an average current of 20 A and an  $I_{\{PK\}}/I_{\{AV\}}=60$  , read  $P_{DT\{AV\}}=40$  watts or 10 watts/diode. Thus  $P_{D1}=P_{D3}=10$  watts

Similarly, for a load current IB of 10 A, diode #2 and diode #4 each see 50 A average resulting in an  $I(p_K)/I(q_N)$  = 14 Thus, the package power dissipation for 10 A is 20 watts or 50 watts/diode Therefore,  $P_{D2} = P_{D4} = 50$  watts

The maximum junction temperature occurs in diodes #1 and #3. From equation (3) for diode #1,

$$\Delta T_{J1} = 10[10 + 0(5) + 0.06(10) + 0.06(5)]$$
  
 $\Delta T_{J1} \approx 109^{\circ}C.$ 

Thus,  $T_{C(max)} = 175 - 109 = 66^{\circ}C$ 

The total package dissipation in this example is

$$P_{DT(AV)} = 2 \times 10 + 2 \times 50 = 30 \text{ watts},$$

which must be considered when selecting a heat sink.

# FIGURE 11 – BASIC CIRCUIT USES FOR BRIDGE RECTIFIERS





3-158

# **MDA3500** Series

#### RECTIFIER ASSEMBLY

. . . utilizing individual void-free molded MR2500 Series rectifiers, interconnected and mounted on an electrically isolated aluminum heat sink by a high thermal-conductive epoxy resin.

- 400 Ampere Surge Capability
- Electrically Isolated Base —1800 Volts
- UL Recognized
- Cost Effective in Lower Current Applications



#### SINGLE-PHASE FULL-WAVE BRIDGE

35 AMPERES 50-1000 VOLTS

#### **MAXIMUM RATINGS**

					MD	Α			
Rating (Per Diode)	Symbol	3500	3501	3502	3504	3506	3508	3510	Unit
Peak Repetitive Reverse Voltage	VRRM								
Working Peak Reverse Voltage	VRWM	50	100	200	400	600	800	1000	Volts
DC Blocking Voltage	٧R								
DC Output Voltage Resistive Load Capacitive Load	Vd€ Vdc	30 50	62 100	124 200	250 400	380 600	500 800	630 1000	Volts Volts
Sine Wave RMS Input Voltage	V _R (RMS)	35	70	140	280	420	560	700	Volts
Average Rectified Forward Current (Single phase bridge resistive load, 60 Hz, T _C = 55°C)	10	35					Amp		
Non-Repetitive Peak Surge Current (Surge applied at rated load conditions)	^I FSM	400						Amp	
Operating and Storage Junction Temperature Range	TJ,T _{stg}	-			5 to +	175		-	°C

#### THERMAL CHARACTERISTICS (Total Bridge)

Characteristic	Symbol	Тур	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta}JC$	1 4	1 87	oC/M

## **ELECTRICAL CHARACTERISTICS** (T_C = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Instantaneous Forward Voltage (Per Diode) (IF = 55 A)*	٧F	-	1 0	1 1	Volts
Reverse Current (Per Diode) (Rated V _R )	1 _R	_	-	10	μΑ

#### MECHANICAL CHARACTERISTICS

CASE: Plastic case with an electrically isolated aluminum base.

POLARITY: Terminal designation embossed on case:

- +DC output
- -DC output
- AC not marked

MOUNTING POSITION: Bolt down. Highest heat transfer efficiency accomplished through the surface opposite the terminals. Use silicone grease on mounting surface for maximum heat transfer.

WEIGHT: 40 grams (approx.)

TERMINALS: Suitable for fast-on connections. Readily solderable, corrosion resistant. Soldering recommended for applications greater than 15 amperes.

MOUNTING TORQUE: 20 in-lb max





#### NOTES

- 1 DIMENSION "Q" SHALL BE MEASURED ON HEATSINK SIDE OF PACKAGE
- 2 DIMENSIONS F AND G SHALL BE MEASURED AT THE REFERENCE PLANE

i	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	34 80	35 18	1 370	1 385
C	12 44	13.97	0 490	0 550
D	6 10	6 60	0 240	0 260
F	13 97	14 50	0 550	0 571
G	28 00	29 00	1 100	1 142
J	0.71	0 86	0 028	0 034
K	9 52	11 43	0 375	0 450
L	1 52	2 06	0 060	0 081
P	2 79	2 92	0 110	0 115
Q	4 32	4 83	0 170	0 190

CASE 309A-02

^{*}Pulse Width = 100 ms, Duty Cycle ≤ 2%















#### NOTE 1



To determine maximum junction temperature of the diode in a given situation, the following procedure is recommended

The temperature of the case should be measured using a thermocouple placed on the case at the temperature reference point (see the outline drawing on page 1). The thermal mast connected to the case is normally large enough so that it will not significantly reapond to heat surges generated in the dode as a result of pulsed operation once stacely state conditions are achieved. Using the measured value of TC, the junction temperature may be determined by

TJ = TC + 
$$\triangle$$
 TJC

where  $\triangle$  TJC is the increase in junction temperature above the case temperature. It may be determined by  $\triangle T_{JC} = P_{pk} \bullet R_{\theta JC} [D + (1 - 0) \bullet r(t_1 + t_p) + r(t_p) - r(t_1)]$ 

where

r (t1 + tp) = normalized value of transient thermal resistance at time t1 + tp

#### FIGURE 7 - CAPACITANCE



### FIGURE 8 - FORWARD RECOVERY TIME



FIGURE 9 - REVERSE RECOVERY TIME



#### AMBIENT TEMPERATURE DERATING INFORMATION

#### FIGURE 10A - THERMALLOY HEATSINK 6005B



## FIGURE 10B - IERC HEATSINK UP3 AND NO HEATSINK



#### NOTE 2: THERMAL COUPLING AND EFFECTIVE THERMAL RESISTANCE

In multiple chip devices where there is coupling of heat between die, the junction temperature can be calculated as follows:

(1) 
$$\Delta T_{J1} = R_{\theta 1} P_{D1} + R_{\theta 2} K_{\theta 2} P_{D2} + R_{\theta 3} K_{\theta 3} P_{D3} + R_{\theta 4} K_{\theta 4} P_{D4}$$

Where AT 11 is the change in junction temperature of diode 1 Re1 thru 4 is the thermal resistance of diodes 1 through 4 PD1 thru 4 is the power dissipated in diodes 1 through 4  $K_{\theta 2}$  thru 4 is the thermal coupling between diode 1 and diodes 2 through 4.

An effective package thermal resistance can be defined as follows

(2) 
$$R_{\theta}(EFF) = \Delta T_{J1}/P_{DT}$$

Where PDT is the total package power dissipation

Assuming equal thermal resistance for each die, equation (1) simplifies to

(3)  $\Delta T_{J1} = R_{\theta 1} (P_{D1} + K_{\theta 2}P_{D2} + K_{\theta 3}P_{D3} + K_{\theta 4}P_{D4})$ 

For the conditions where  $P_{D1} = P_{D2} = P_{D3} = P_{D4}$ ,  $P_{DT} = 4 P_{D1}$ , equation (3) can be further simplified and by substituting into equation (2) results in

(4) 
$$R_{\theta}(EFF) = R_{\theta 1} (1 + K_{\theta 2} + K_{\theta 3} + K_{\theta 4})/4$$

When the case is used as a reference point, coupling between die is neglegible for the MDA3500. When the bridge is used without a heatsink, coupling between die is approximately 70% and R₀₁ is 30°C/W,

 $\therefore R_{\theta(EFF)} = 30 [1 + (3) (.7)]/4 = 23^{\circ}C/W$ 

#### NOTE 3: SPLIT LOAD DERATING INFORMATION

Bridge rectifiers are used in two basic configurations as shown by circuits A and B of Figure 11. The current derating data of Figure 4 applies to the standard bridge circuit (A) where  $I_A = I_B$ . For circuit B where IA = IB, derating information can be calculated as follows:

(6) 
$$T_{R(Max)} = T_{J(Max)} - \Delta T_{J1}$$

Where TR(Max) is the reference temperature (either case or ambient)

△T_{J1} can be calculated using equation (3) in Note 2.

For example, to determine T_{C(Max)} for the MDA3500 with the following capacitive load condutons.

IA = 20 A average with a peak of 60 A

IB = 10 A average with a peak of 70 A

First calculate the peak to average ratio for IA. I(PK)/I(AV) = 60/10 = 60. (Note that the peak to average ratio is on a per diode basis and each diode provides 10 A average).

From Figure 5, for an average current of 20 A and an I(PK)/  $I_{(AV)}=6.0$  read  $P_{DT(AV)}=40$  watts or 10 watts/diode. Thus  $P_{D1}=P_{D3}=10$  watts. Similarly, for a load current  $I_B$  of 10 A, diode #2 and diode

#4 each see 5.0 A average resulting in an I(PK)/I(AV) = 14.

Thus, the package power dissipation for 10 A is 20 watts or 5.0 watts/diode  $\therefore$  PD2 = PD4 = 5.0 watts.

The maximum junction temperature occurs in diode #1 and #3. From equation (3) for diode #1  $\triangle T_{J1}$  = (7.5) (10), since coupling is negligible.  $^{\triangle}T_{J1} \approx 75^{O}C$ 

Thus T_{C(Max)} = 175 -75 = 100°C

The total package dissipation in this example is:

 $P_{DT(AV)} = 2 \times 10 + 2 \times 5.0 = 30$  watts, which must be considered when selecting a heat sink.

#### FIGURE 11- BASIC CIRCUIT USES FOR BRIDGE RECTIFIERS





# **Rectifier Assembly**

... utilizing individual void-free molded rectifiers, interconnected and mounted on an electrically isolated aluminum heat sink by a high thermal-conductive epoxy resin.

- Surge and Overload Capability of 525 A
- Electrically Isolated Base
- High Current, Low v_F
- 2500 V Isolation

#### **Mechanical Characteristics**

CASE: Plastic case with an electrically isolated aluminum base.

POLARITY: Terminal-designation embossed on case

- +DC output
- DC output
- AC not marked

MOUNTING POSITION: Bolt down. Highest heat transfer efficiency accomplished through the surface opposite the terminals. Use silicon grease

on mounting surface for maximum heat transfer.

WEIGHT: 40 grams (approx.)

TERMINALS: Suitable for fast-on connections. Readily solderable, corrosion resistant.

Soldering recommended for applications greater than

15 Amperes.

MOUNTING TORQUE: 20 in-lb max

# **MDA4002 MDA4004 MDA4006 MDA4008**



40 AMPERES 200-800 VOLTS



#### **MAXIMUM RATINGS**

		MDA				
Rating (Per Díode)	Symbol	4002	4004	4006	4008	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	200	400	600	800	Volts
DC Output Voltage — Resistive Load — Capacitive Load	Vdc	124 200	250 400	375 600	500 800	Volts
Sine Wave RMS Input Voltage	VR (RMS)	140	280	420	560	Volts
Average Rectified Forward Current (Single phase bridge resistive load, 60 Hz, T _C = 35°C)	10	40			Amps	
Non-Repetitive Peak Surge Current (Surge applied at rated load conditions)	IFSM	525			Amps	
Operating and Storage Junction Temperature Range	T _J , T _{stg}	- 65 to + 175			°C	

#### THERMAL CHARACTERISTICS (Total Bridge)

Characteristic	Symbol	Тур	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	1.4	1.87	°C/W

#### **ELECTRICAL CHARACTERISTICS** (T_C = 25°C unless otherwise noted).

Characteristic	Symbol	Min	Тур	Max	Unit
Instantaneous Forward Voltage (IF = 40 A)*	٧F	_	0.95	1.05	Volts
Reverse Current (Per Diode) (Rated V _R )	1 _R	_		10	μΑ

*300 µs < 2% DC



HEATSINK SIDE OF PACKAGE

2 DIMENSIONS F AND G SHALL BE MEASURED AT

THE REFERENCE PLANE

	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
A	34 80	35 18	1 370	1 385
С	12 44	13 97	0 490	0 550
D	6 10	6 60	0 240	0 260
F	13 97	14 50	0 550	0 571
G	28 00	29 00	1 100	1 142
	0 71	0.86	0 028	0 034
K	9 52	11.43	0 375	0 450
L	1 52	2 06	0 060	0.081
P	2 79	2 92	0 110	0 115
Q	4 32	4 83	0 170	0 190

CASE 309A-02



Figure 1. Forward Voltage



Figure 4. Current Derating



Figure 2. Non-Repetitive Surge Current



Figure 3. Forward Voltage Temperature Coefficient



Figure 5. Forward Power Dissipation

## MDA4002, MDA4004, MDA4006, MDA4008



Figure 6. Typical Thermal Response



DUTY CYCLE,  $D = t_p/t_1$ PEAK POWER,  $P_{pk}$ , is peak of an equivalent square power pulse

To determine maximum junction temperature of the diode in a given situation, the

To determine maximum junction temperature of the diode in a given situation, the following procedure is recommended. The temperature of the case should be measured using a thermocouple placed on the case at the temperature reference point (see the outline drawing on page 1). The thermal mass connected to the case is normally large enough so that it will not significantly respond to heat surges generated in the diode as a result of pulsed operation once steady state conditions are achieved Using the measured value of  $\Gamma_C$ , the junction temperature may be determined.  $T_L = \Gamma_C + \Delta T_{LC}$  where  $\Delta T_{LC}$  is the increase in junction temperature above the case temperature it may be determined by

may be determined by  $\Delta T_{JC} = P_{pk} \bullet R_{\partial JC} [D + (1 - D) \bullet r(t_1 + t_p) + r(t_p) - r(t_1)]$  where

r(t) = normalized value of transient thermal resistance at time, t, from Figure 8, i.e., r(t₁ + t_p) = normalized value of transient thermal resistance at time t₁ + t_p



Figure 7. Capacitance



Figure 8. Forward Recovery Time



Figure 9. Reverse Recovery Time

#### AMBIENT TEMPERATURE DERATING INFORMATION



Figure 10A. Thermalloy Heatsink 6005B

#### (FM) IF(AV), AVERAGE FORWARD CURRENT (AMP) $\pi$ (Resistive and Inductive Loads) F(AV) Capacitive Loads Top 3 Curves $R_{ heta JA} \approx 15\,5^{\circ} \text{C/W}$ Lower 3 Curves Are For No Heat Sink and $R_{ heta JA} \approx 23^{\circ} C/W$ 0 40 60 80 100 120 140 160 180 TA, AMBIENT TEMPERATURE (°C)

Figure 10B. IERC Heatsink UP3 and No Heatsink

#### Note 2: Thermal Coupling and Effective Thermal Resistance

In multiple chip devices where there is coupling of heat between die, the junction temperature can be calculated as follows

(1)  $\Delta T_{J1} = R_{\theta 1} P_{D1} + R_{\theta 2} K_{\theta 2} P_{D2} + R_{\theta 3} K_{\theta 3} P_{D3}$ + Re4 Ke4 PD4

Where  $\Delta T_{J1}$  is the change in junction temperature of diode 1

Re1 thru 4 is the the thermal resistance of diodes 1 through 4  $P_{D1}^{-}$  thru 4 is the power dissipated in diodes 1 through 4

 $K_{\theta 2}$  thru 4 is the thermal coupling between diode 1 and diodes 2 through 4.

An effective package thermal resistance can be defined as follows:

(2)  $R_{\theta(EFF)} = \Delta T_{J1}/P_{DT}$ 

Where PDT is the total package power dissipation

Assuming equal thermal resistance for each die, equation (1) sim-

(3)  $\Delta T_{J1} = R_{\theta 1} (P_{D1} + K_{\theta 2} P_{D2} + K_{\theta 3} P_{D3} + K_{\theta 4} P_{D4})$ For the conditions where  $P_{D1} = P_{D2} = P_{D3} = P_{D4}$ ,  $P_{DT} = 4 P_{D1}$ ,

equation (3) can be further simplified and by substituting into equation

(4) R $_{\theta}$ (EFF) = R $_{\theta}$ 1 (1 + K $_{\theta}$ 2 + K $_{\theta}$ 3 + K $_{\theta}$ 4)/4 When the case is used as a reference point, coupling between die is negligible for the MDA3500 When the bridge is used without a heatsink, coupling between die is approximately 70% and R $_{\theta 1}$  is 30°C/W,

 $R_{\theta(FFF)} = 30 [1 + (3) (7)]/4 = 23^{\circ}C/W$ 

#### Note 3: Split Load Derating Information

Bridge rectifiers are used in two basic configurations as shown by circuits A and B of Figure 11. The current derating data of Figure 4 applies to the standard bridge circuit (A) where IA = IB. For circuit B where IA = IB, derating information can be calculated as follows:

(6)  $T_{R(Max)} = T_{J(Max)} - \Delta T_{J1}$ 

Where T_{R(Max)} is the reference temperature (either case or ambient) ΔT_{J1} can be calculated using equation (3) in Note 2

For example, to determine TC(Max) for the MDA3500 with the following capacitive load conditions.

IA = 20 A average with a peak of 60 A

IB = 10 A average with a peak of 70 A

First calculate the peak to average ratio for IA I(PK)/I(AV) = 60/10 = 60. (Note that the peak to average ratio is on a per diode basis and each diode provides 10 A average)

From Figure 5, for an average current of 20 A and an I(PK)/I(AV) 6.0 read PDT(AV) = 40 watts or 10 watts/diode Thus PD1 = PD3 = 10

Similarly, for a load current IB of 10 A, diode #2 and diode #4 each see 5.0 A average resulting in an I(PK)/I(AV) = 14.

Thus, the package power dissipation for 10 A is 20 watts or 5 0 watts/ diode .  $P_{D2} = P_{D4} = 5.0$  watts.

The maximum junction temperature occurs in diode #1 and #3 From equation (3) for diode #1  $\Delta T_{J1}$  = (7.5) (10), since coupling is negligible  $\Delta T_{J1} \approx 75^{\circ}C$ 

Thus  $T_{C(Max)} = 175 - 75 = 100^{\circ}C$ 

The total package dissipation in this example is

 $P_{DT(AV)} = 2 \times 10 + 2 \times 50 = 30$  watts, which must be considered when selecting a heat sink



Figure 11. Basic Circuit Uses for **Bridge Rectifiers** 



# MR500 MR501 MR502 MR504 MR506 MR508 MR510

## Designers Data Sheet

# MINIATURE SIZE, AXIAL LEAD MOUNTED STANDARD RECOVERY POWER RECTIFIERS

. . . designed for use in power supplies and other applications having need of a device with the following features:

- High Current to Small Size
- High Surge Current Capability
- Low Forward Voltage Drop
- · Economical Plastic Package
- · Available in Volume Quantities

# STANDARD RECOVERY POWER RECTIFIERS

50-1000 VOLTS 3 AMPERE



#### Designer's Data for "Worst Case" Conditions

The Designers Data sheets permit the design of most circuits entirely from the information presented. Limit curves — representing boundaries on device characteristics — are given to facilitate "worst case" design.

#### **MAXIMUM RATINGS**

Rating	Symbol	MR500	MR501	MR502	MR504	MR506	MR508	MR510	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _R WM V _R	50	100	200	400	600	800	1000	Volts
Non-Repetitive Peak Reverse Voltage	VRSM	75	150	250	450	650	850	1050	Volts
Average Rectified Forward Current (Single phase resistive load, $T_Z$ = 95°C, PC Board Mounting) (1) (EIA Standard Conditions L = 1/32″, $T_L$ = 85°C)	10				— 30 — — 80 —				Amp
Non-Repetitive Peak Surge Current (surge applied at rated load conditions)	^I FSM	-			— 100 — (one cycle)				Amp
Operating and Storage Junction Temperature Range (2)	T _J ,T _{stg}	₹			-65 to +175	i			°C

#### THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient (Recommended Printed Circuit Board Mounting, See Note 2).	$R_{\theta}JA$	28	°C/W

#### **ELECTRICAL CHARACTERISTICS**

Characteristic	Symbol	Mın	Тур	Max	Unit
Instantaneous Forward Voltage (3)	٧F				Voits
(IF = 9.4 Amp, T _J = 175 ⁰ C)	1 1	_	09	1.0	ļ
(i _F = 9.4 Amp, T _J = 25 ^o C)			1.04	1.1	
Reverse Current (rated dc voltage) (3)	I _R				μΑ
T _{.1} = 25 ^o C	1 1	_	01	50	ł
T _J = 100°C	1 1	-	2.8	25	1

- (1) Derate for reverse power dissipation.
- (2) Derate as shown in Figure 1.
- (3) Pulse Test. Pulse Width = 300 μs, Duty Cycle = 2.0%

#### MECHANICAL CHARACTERISTICS

Case: Transfer Molded Plastic
Finish: External Leads are Plated,
Leads are readily Solderable
Polarity: Indicated by Cathode Band
Weight: 1.1 Grams (Approximately)
Maximum Lead Temperature for
Soldering Purposes:
300°C, 1/8″ from case for 10 s

at 5.0 lb. tension

#### NOTE 1: DETERMINING MAXIMUM RATINGS

Reverse power dissipation and the possibility of thermal runaway must be considered when operating this rectifier at reverse voltages above 200 volts. Proper derating may be accomplished by use of equation (1):

$$T_{A(max)} = T_{J(max)} - R_{\theta JA}P_{F(AV)} - R_{\theta JA}P_{R(AV)}$$
where

TA(max) = Maximum allowable ambient temperature

T_J(max) = Maximum allowable junction temperature (175°C or the temperature at which thermal runaway occurs, whichever is lowest.)

PF(AV) = Average forward power dissipation

PR(AV) = Average reverse power dissipation

R_{0JA} = Junction-to-ambient thermal resistance

Figure 1 permits easier use of equation (1) by taking reverse power dissipation and thermal runaway into consideration. The figure solves for a reference temperature as determined by equation (2):

$$T_{R} = T_{J(max)} - R_{\theta JA} P_{R(AV)}$$
 (2)

Substituting equation (2) into equation (1) yields:

$$T_{A(max)} = T_{R} - R_{\theta JA} P_{F(AV)}$$
(3)

Inspection of equations (2) and (3) reveals that  $T_R$  is the ambient temperature at which thermal runaway occurs or where  $T_J = 175^{\circ}C$ ,

when forward power is zero. The transition from one boundary condition to the other is evident on the curves of Figure 1 as difference in the rate of change of the slope in the vicinity of 165°C. The data of Figure 1 is based upon dc conditions. For use in common rectifier circuits, Table 1 indicates suggested factors for an equivalent dc voltage to use for conservative design; i.e.:

$$V_{R(equiv)} = V_{in}(PK) \times F$$
 (4

The Factor F is derived by considering the properties of the various rectifier circuits and the rectifiers reverse characteristics.

Example: Find  $T_{A(max)}$  for MR510 operated in a 400 Volt dc supply using a full wave center-tapped circuit with capacitive filter such that  $I_{DC} = 6.0$  A,  $(I_{F(AV)} = 3.0$  A),  $I_{(PK)}/I_{(AV)} = 10$ , input Voltage = 283 V(rms) (line to center tap),  $R_{BJA} = 28^{\circ}C/W$ .

Step 1: Find V_{R(equiv)}. Read F = 1.11 from Table 1 ∴ V_{R(equiv)} = 1.41)(283)(1.11) = 444 V

Step 2: Find  $T_R$  from Figure 1. Read  $T_R$  = 167°C @  $V_R$  = 444 V &  $R_{\theta JA}$  = 28°C/W.

Step 3: Find PF(AV) from Figure 8. Read PF(AV) = 4 W

$$@\frac{I_{PK}}{I_{AV}} = 10 & I_{F(AV)} = 3.0 A$$

Step 4: Find  $T_{A(max)}$  from equation (3).  $T_{A(max)} = 167-(28)$ (4) = 55°C.

TABLE I - VALUES FOR FACTOR F

Circuit	Half Wave Full V			ve, Bridge		Wave Tapped*†
Load	Resistive	Capacitive*	Resistive	Capacitive	Resistive	Capacitive
Sine Wave	0.45	1.11	0.45	0.55	0.90	1.11
Square Wave	0.61	1.22	0.61	0.61	1.22	1.22

^{*}Note that VR(PK) ≈ 2 Vin(PK)

[†]Use line to center tap voltage for Vin.





#### **CURRENT DERATING**

(Reverse Power Loss Neglected)



FIGURE 4 - SEVERAL LEAD LENGTHS



FIGURE 5 - 1/8" LEAD LENGTH



FIGURE 6 - MAXIMUM FORWARD VOLTAGE



FIGURE 7 — FORWARD VOLTAGE TEMPERATURE COEFFICIENT







#### THERMAL CHARACTERISTICS

FIGURE 10 - THERMAL RESPONSE



#### FIGURE 11 - STEADY-STATE THERMAL RESISTANCE





FIGURE 12 - APPROXIMATE THERMAL CIRCUIT MODEL



# TYPICAL DYNAMIC CHARACTERISTICS

 $(T_J = 25^{\circ}C)$ 











#### RECTIFIER EFFICIENCY NOTE

#### FIGURE 17 — SINGLE-PHASE HALF-WAVE RECTIFIER CIRCUIT



The rectification efficiency factor  $\boldsymbol{\sigma}$  shown in Figure 15 was calculated using the formula

$$\sigma = \frac{P_{(dc)}}{P_{(rms)}} = \frac{\frac{V_{O}^{2}(dc)}{R_{L}}}{\frac{V_{O}^{2}(rrms)}{R_{L}}} \cdot 100\% = \frac{V_{O}^{2}(dc)}{V_{O}^{2}(ac) + V_{O}^{2}(dc)} \cdot 100\% (1)$$

For a sine wave input  $V_m$  sin ( $\omega t$ ) to the diode, assumed lossless, the maximum theoretical efficiency factor becomes:

$$\sigma_{\text{(sine)}} = \frac{\frac{V^2 \text{m}}{\pi^2 \text{R}_{\perp}}}{\frac{V^2 \text{m}}{4 \text{R}_{\perp}}} \cdot 100\% = \frac{4}{\pi^2} \cdot 100\% = 40.6\%$$
 (2)

For a square wave input of amplitude  $V_m$ , the efficiency factor becomes.

$$\sigma_{\text{(square)}} = \frac{\frac{V^2_{\text{m}}}{2R_{\text{L}}}}{\frac{V^2_{\text{m}}}{R_{\text{L}}}} \cdot 100\% = 50\% \text{ (3)}$$

(A full wave circuit has twice these efficiencies)

As the frequency of the input signal is increased, the reverse recovery time of the diode (Figure 14) becomes significant, resulting in an increasing ac voltage component across R_L which is opposite in polarity to the forward current, thereby reducing the value of the efficiency factor o, as shown on Figure 15.

It should be emphasized that Figure  $\overline{15}$  shows waveform efficiency only; it does not provide a measure of diode losses. Data was obtained by measuring the ac component of  $V_0$  with a true rms ac voltmeter and the dc component with a dc voltmeter. The data was used in Equation 1 to obtain points for the figure.

#### **OUTLINE DIMENSIONS**



25.40

U

- 1.000

CASE 267-03
PLASTIC

MR750 MR751 MR752 MR754 MR756 MR758 MR760

## Designers Data Sheet

#### HIGH CURRENT LEAD MOUNTED RECTIFIERS

- O Current Capacity Comparable To Chassis Mounted Rectifiers
- Very High Surge Capacity
- O Insulated Case

#### Designer's Data for "Worst Case" Conditions

The Designers Data sheets permit the design of most circuits entirely from the information presented. Limit curves — representing boundaries on device characteristics — are given to facilitate "worst case" design

HIGH CURRENT LEAD MOUNTED SILICON RECTIFIERS 50-1000 VOLTS DIFFUSED JUNCTION



#### *MAXIMUM RATINGS

Characteristic	Symbol	MR750	MR751	MR752	MR754	MR756	MR758	MR760	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	VRRM VRWM VR	50	100	200	400	600	800	1000	Volts
Non-Repetitive Peak Reverse Voltage (halfwave, single phase, 60 Hz peak)	VRSM	60	120	240	480	720	960	1200	Volts
RMS Reverse Voltage	VR(RMS)	35	70	140	280	420	560	700	Volts
Average Rectified Forward Current (single phase, resistive load, 60 Hz) See Figures 5 and 6	IO	4	6		0°C, 1/8" Lea °C, P.C. Boar		1)		Amp
Non-Repetitive Peak Surge Current (surge applied at rated load conditions)	IFSM	4		40	00 (for 1 cycl	e)			Amp
Operating and Storage Junction Temperature Range	TJ, T _{stg}	4			-65 to +175	i———		<del>-</del>	°C

#### **ELECTRICAL CHARACTERISTICS**

Characteristic and Conditions	Symbol	Max	Unit
Maximum Instantaneous Forward Voltage Drop (iF = 100 Amp, T _J = 25°C)	٧F	1.25	Volts
Maximum Forward Voltage Drop (IF = 6.0 Amp, TA = 25°C, 3/8" leads)	V _F	0.90	Volts
	IR	25 1.0	μA mA

### MECHANICAL CHARACTERISTICS

CASE: Transfer Molded Plastic

MAXIMUM LEAD TEMPERATURE FOR SOLDERING PURPOSES: 350°C 3/8"

from case for 10 seconds at 5 0 lbs. tension

FINISH: All external surfaces are corrosion-resistant, leads are readily solderable

POLARITY: Indicated by diode symbol

WEIGHT: 2 5 Grams (approx )











## MR750, MR751, MR752, MR754, MR756, MR758, MR760









Use of the above model permits junction to lead thermal resistance for any mounting configuration to be found. Lowest values occur when one side of the rectifier is brought as close as possible to the heat sink as shown below. Terms in the model signify

T_A = Ambient Temperature T_C = Lead Temperature T_C = Case Temperature

R⊕S = Thermal Resistance, Heat Sink to Ambient  $R_{\theta L}$  = Thermal Resistance, Lead to Heat Sink  $R_{\theta J}$  = Thermal Resistance, Junction to Case  $P_F$  = Power Dissipation

= Junction Temperature

(Subscripts A and K refer to anode and cathode sides respectively ) Values for thermal resistance components are

Rel = 40°C/W/IN Typically and 44°C/W/IN Maximum

R₀ J = 2°C/W Typically and 4°C/W Maximum

Since Rg. I is so low, measurements of the case temperature, Tc, will be approx imately equal to junction temperature in practical lead mounted applications When used as a 60 Hz rectifier, the slow thermal response holds  $T_{\parallel}P_{\parallel}X_{\parallel}$  close to  $T_{\parallel}A_{\parallel}X_{\parallel}G$ ). Therefore maximum lead temperature may be found from  $T_{\parallel}=175^{\circ}-R_{\parallel}g_{\parallel}L$  Pr. Pr may be found from Figure 7. The recommended method of mounting to a P.C. board is shown on the sketch,

where R_{θJA} is approximately 25°C/W for a 1-1/2" x 1-1/2" copper surface area Values of 40°C/W are typical for mounting to terminal strips or P C boards where available surface area is small



FIGURE 8 - STEADY STATE THERMAL RESISTANCE



## MR750, MR751, MR752, MR754, MR756, MR758, MR760

#### TYPICAL DYNAMIC CHARACTERISTICS





#### FIGURE 11 - JUNCTION CAPACITANCE 1000 700 500 300 T_ = 25°C CAPACITANCE (pF) 00 00 00 00 00 ŝ 50 30 20 10 10 20 30 70 10 30 50 70 100 VR, REVERSE VOLTAGE (VOLTS)



#### FIGURE 13 - SINGLE-PHASE HALF-WAVE RECTIFIER CIRCUIT



For a square wave input of 2RL amplitude V_m, the efficiency factor becomes:  $\sigma$ (square) 100% = 50% (3) V²m

The rectification efficiency factor  $\sigma$  shown in Figure 9 was calculated using the formula:

$$\sigma = \frac{P(dc)}{P(rms)} = \frac{\frac{V_{o}^{2}(dc)}{R_{L}}}{\frac{V_{o}^{2}(rms)}{R_{L}}} \cdot 100\% = \frac{V_{o}^{2}(dc)}{V_{o}^{2}(ac) + V_{o}^{2}(dc)} \cdot 100\% (1)$$

For a sine wave input  $V_m$  sin  $(\omega t)$  to the diode, assumed lossless, the maximum theoretical efficiency factor becomes:

(A full wave circuit has twice these efficiencies)

 $V^2_{\mathsf{m}}$ 

4R₁

 $\sigma$ (sine)

As the frequency of the input signal is increased, the reverse recovery time of the diode (Figure 10) becomes significant, resulting in an increasing ac voltage component across R_L which is opposite in polarity to the forward current, thereby reducing the value of the efficiency factor  $\sigma$ , as shown on Figure 9

(2)

It should be emphasized that Figure 9 shows waveform efficiency only; it does not provide a measure of diode losses Data was obtained by measuring the ac component of Vo with a true rms ac voltmeter and the dc component with a dc voltmeter. The data was used in Equation 1 to obtain points for Figure 9.

# MR810 thru MR814 MR816 thru MR818

#### Designers Data Sheet

#### SUBMINIATURE SIZE, AXIAL LEAD MOUNTED FAST RECOVERY POWER RECTIFIERS

...designed for special applications such as dc power supplies, inverters, converters, ultrasonic systems, choppers, low RF interference and free-wheeling diodes. A complete line of fast recovery rectifiers having typical recovery time of 350 nanoseconds providing high efficiency at frequencies to 100 kHz.

#### DESIGNER'S DATA FOR "WORST CASE" CONDITIONS

The Designers Data Sheet permits the design of most circuits entirely from the information presented. Limit curves — representing device characteristic boundaries — are given to facilitate "worst case" design.

#### MAXIMUM RATINGS

Rating	Symbol	MR810	MR811	MR812	MR813	MR814	MR816	MR817	MR818	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	VRRM VRWM VR	50	100	200	300	400	600	800	1000	Volts
Non-Repetitive Peak Reverse Voltage	VRSM	100	200	300	400	500	800	1000	1200	Volts
RMS Reverse Voltage	VR(RMS)	35	70	140	210	280	420	560	700	Volts
Average Rectified Forward Current (Single phase, resistive load, TA = 75°C)	10	-				10			-	Amp
Non-Repetitive Peak Surge Current (surge applied at rated load conditions) (T _A = 75°C)	IFSM	•				30			-	Amps
Operating Junction Temperature Range	TJ	-			65 t	o +150 —			_	°C
Storage Temperature Range	T _{stg}	-			— -65 t	o +175 —				°C

#### THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient (Typical Primted Circuit Board Mounting)	R _θ JA	65	°C/W

#### **ELECTRICAL CHARACTERISTICS**

Characteristic	Symbol	Mın	Тур	Max	Unit
Instantaneous Forward Voltage (i _F = 3 14 Amp, T _J = 150 ^o C)	٧F	-	11	1 2	Volts
Forward Voltage (IF = 1 0 Amp, T _A = 25°C)	VF	-	10	12	Volts
Reverse Current (rated dc voltage) T _A = 25°C T _A = 100°C	I _R		1 0 50	10 100	μА

#### REVERSE RECOVERY CHARACTERISTICS

Characteristic	Symbol	Min	Тур	Max	Unit
Reverse Recovery Time (I $_{\rm F}$ = 1.0 Amp to V $_{\rm R}$ = 30 Vdc) (Figure 21) (I $_{\rm F}$ = 20 mA, I $_{\rm R}$ = 2 0 mA, Tektronix S-Plug-In) (Figure 22)	t _{rr}	=	350 1 5	750 3 0	ns μs
Reverse Recovery Current (IF = 1 0 Amp to V _B = 30 Vdc)(Figure 21)	IRM(REC)	-	~	30	Amp

**FAST RECOVERY** POWER RECTIFIERS 50-1000 VOLTS 1 AMPERE



- 1. ALL RULES AND NOTES ASSOCIATED WITH JEDEC DO-41 OUTLINE SHALL APPLY.
- 2. POLARITY DENOTED BY CATHODE BAND.
- 3. LEAD DIAMETER NOT CONTROLLED WITHIN "F" DIMENSION

	MILLIM	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	5.97	6.60	0.235	0.260
В	2.79	3.05	0.110	0.120
D	0.76	0.86	0.030	0.034
K	27.94	_	1.100	

## **MECHANICAL CHARACTERISTICS**

CASE: Transfer Molded Plastic

FINISH: External leads are plated and are readily solderable

POLARITY: Cathode indicated by

Polarity band

WEIGHT: 0.4 Grams (Approximately)











#### **MAXIMUM CURRENT RATINGS** (SEE NOTES 1 and 2)



SINE WAVE INPUT









# SQUARE WAVE INPUT



#### FIGURE 9 - 1/8" LEAD LENGTH, VARIOUS LOADS



#### FIGURE 11 - PRINTED CIRCUIT BOARD MOUNTING, VARIOUS LOADS



0.01



#### FIGURE 13 - THERMAL RESISTANCE



#### NOTE 1

0 0 5 0 1 0 2 0 4 1 0 2 0 4 0 10 20 40 100 200 400 1000 2000 5000

t, TIME (ms)



To determine maximum junction temperature of the diode in a given situation, the following procedure is recommended

The temperature of the case should be measured using a thermocouple placed on the case as close as possible to the tie point. The thermal mass connected to the tie point is normally large enough so that it will not significantly respond to heat surges generated in the diode as a result of nulsed operation once steadystate conditions are achieved. Using the measured value of TC, the junction temperature may be determined by

$$T_J = T_C + \triangle T_{JC}$$

where  $\triangle \mathsf{TJC}$  is the increase in junction temperature above the case temperature It may be determined by

 $\Delta TJC = P_{pk} \cdot R_{\theta JC} \left[ D + (1 - D) \cdot r(t_1 + t_p) + r(t_p) - r(t_1) \right]$ where

r(t) = normalized value of transient thermal resistance at time, t, from Figure 12. i.e..  $r(t_1 + t_0) = normalized$  value of transient thermal resistance at time  $t_1 + t_0$ 

FIGURE 14 - THERMAL CIRCUIT MODEL





NOTE 2



Use of the above model permits junction to lead thermal resistance for any mounting configuration to be found. For a given total lead length, lowest values occur when one side of the rectifier is brought as close as possible to the heat sink. Terms in the model signify

 $R_{\theta}S$  = Thermal Resistance, Heat Sink to Ambient  $R_{\theta}L$  = Thermal Resistance, Lead to Heat Sink  $R_{\theta}J$  = Thermal Resistance, Junction to Case PD= Power Dissipation TA = Ambient Temperature T_L = Lead Temperature Tc = Case Temperature Ty = Junction Temperature PD = Power Dissipation (Subscripts A and K refer to anode and cathode sides respectively) Values for thermal resistance components are  $R_{\rm L} = 1.12^{\circ}{\rm CM/m}$  . Typically and  $1.28^{\circ}{\rm CM/m}$  Maximum  $R_{\rm R} = 1.12^{\circ}{\rm CM/m}$  . Typically and  $1.28^{\circ}{\rm CM/m}$  Maximum  $R_{\rm R} = 1.8^{\circ}{\rm CM/m}$  . Typically and  $3.0^{\circ}{\rm CM}$  Maximum  $R_{\rm R} = 1.00^{\circ}{\rm CM/m}$  . The maximum lead temperature may be calculated as follows:  $T_{\rm L} = 1.50^{\circ}{\rm -cT_{\rm L}}$ .

I L = 160° -  $\triangle$ 1 JL -  $\triangle$ 1 T -  $\triangle$ 2 T -  $\triangle$ 3 L -  $\triangle$ 4 D -  $\triangle$ 4 D -  $\triangle$ 4 D -  $\triangle$ 5 R -  $\triangle$ 5 P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P - P -

#### TYPICAL DYNAMIC CHARACTERISTICS





# TYPICAL RECOVERED STORED CHARGE DATA (SEE NOTE 3)









#### FIGURE 21 — JEDEC REVERSE RECOVERY CIRCUIT



#### NOTE 3

Reverse recovery time is the period which elapses from the time that the current, thru a previously forward biased rectifier diode, passes thru zero going negatively until the reverse current recovers to a point which is less than 10% peak reverse current.

Reverse recovery time is a direct function of the forward current prior to the application of reverse voltage

For any given rectifier, recovery time is very circuit dependent. Typical and maximum recovery time of all Motorola fast recovery power rectifiers are rated under a fixed set of conditions using I  $_{\rm F}=1.0$  A,  ${\rm V_R}=30$  V. In order to cover all circuit conditions, curves are given for typical recovered stored charge versus commutation di/dt for various levels of forward current and for junction temperatures of  $25^{\rm O}{\rm C}$ ,  $75^{\rm O}{\rm C}$ ,  $100^{\rm O}{\rm C}$ , and  $150^{\rm O}{\rm C}$ .

To use these curves, it is necessary to know the forward current level just before commutation, the circuit commutation di/dt, and the operating junction temperature. The reverse recovery test current waveform for all Motorola fast recovery rectifiers is shown.



From stored charge curves versus di/dt, recovery time  $(t_{rf})$  and peak reverse recovery current  $(I_{RM(REC)})$  can be closely approximated using the following formulas

$$t_{rr} = 1.41 \times \left[ \frac{Q_R}{di/dt} \right]^{1/2}$$

 $I_{RM(REC)} = 1.41 \times \left[Q_R \times di/dt\right]^{1/2}$ 

#### FIGURE 22 — TYPICAL REVERSE LEAKAGE



#### FIGURE 23 — TYPICAL REVERSE LEAKAGE



# MOTOROLA SEMICONDUCTOR TECHNICAL DATA

# MR820 MR821 MR822 MR824 MR826

#### **Designers Data Sheet**

# SUBMINIATURE SIZE, AXIAL LEAD MOUNTED FAST RECOVERY POWER RECTIFIERS

. . . designed for special applications such as dc power supplies, inverters, converters, ultrasonic systems, choppers, low RF interference and free wheeling diodes. A complete line of fast recovery rectifiers having typical recovery time of 150 nanoseconds providing high efficiency at frequencies to 250 kHz.

#### Designer's Data for "Worst Case" Conditions

The Designers Data sheets permit the design of most circuits entirely from the information presented Limit curves – representing boundaries on device characteristics – are given to facilitate "worst case" design

#### MAXIMUM RATINGS

Rating	Symbol	MR820	MR821	MR822	MR824	MR826	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	50	100	200	400	600	Volts
Non-Repetitive Peak Reverse Voltage	V _{RSM}	75	150	250	450	650	Volts
RMS Reverse Voltage	V _{R(RMS)}	35	70	140	280	420	Volts
Average Rectified Forward Current (Single phase, resistive load, TA = 55°C) (1)	10	-	50				
Non-Repetitive Peak Surge Current (Surge applied at rated load conditions)	¹ FSM	4		— 300 —			Amp
Operating and Storage Junction Temperature Range (2)	T _J ,T _{Stg}	-		-65 to +175	5		°C

#### THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient (Recommended Printed Circuit Board Mounting, See Note 6)	$R_{ heta}$ JA	25	°C/W

#### **ELECTRICAL CHARACTERISTICS**

Characteristic	Symbol	Mın	Тур	Max	Unit
Instantaneous Forward Voltage (IF = 15 7 Amp, T _J = 150 ^o C)	٧F	_	0 75	1 05	Volts
Forward Voltage (I _F = 5 0 Amp, T _J ≈ 25 ^o C)	VF	_	0.9	1.1	Volts
Maximum Reverse Current, (rated dc voltage) $T_J = 25^{\circ}C$ $T_J = 100^{\circ}C$		-	5 0 0 4	25 1 0	μA mA

#### REVERSE RECOVERY CHARACTERISTICS

Characteristic	Symbol	Mın	Тур	Max	Unit
Reverse Recovery Time (I _F = 1 0 Amp to V _R = 30 Vdc, Figure 25) (I _{FM} = 15 Amp, $d_1/d_1 = 25 A/\mu_s$ , Figure 26)	t _{rr}	-	150 150	200 300	ns
Reverse Recovery Current (IF = 1 0 Amp to VR = 30 Vdc, Figure 25)	IRM(REC)	_	-	20	Amp

⁽¹⁾ Must be derated for reverse power dissipation See Note 3

(2) Derate as shown in Figure 1

FAST RECOVERY POWER RECTIFIERS 50-600 VOLTS 5.0 AMPERES



	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	8 43	8 69	0 332	0 342
В	5 94	6.25	0.234	0 246
D	1 27	1.35	0 050	0 053
K	25.15	25 65	0 990	1 010

CASE 194-04 PLASTIC

#### MECHANICAL CHARACTERISTICS

CASE: Transfer Molded Plastic

FINISH: External Surfaces are Corrosion Resistant

POLARITY: Indicated by Diode Symbol

WEIGHT: 2.5 Grams (Approximately)
MAXIMUM LEAD TEMPERATURE
FOR SOLDERING PURPOSES:

 $350^{O}C,\;3/8^{\prime\prime}$  from case for 10 s

at 5.0 lb. tension.

#### **MAXIMUM CURRENT AND TEMPERATURE RATINGS**

FIGURE 1 – MAXIMUM ALLOWABLE JUNCTION TEMPERATURE



# NOTE 1 MAXIMUM JUNCTION TEMPERATURE DERATING

When operating this rectifier at junction temperatures over approximately  $85^{\circ}\text{C}$ , reverse power dissipation and the possibility of thermal runaway must be considered. The data of Figure 1 is based upon worst case reverse power and should be used to derate  $T_{\text{J}(\text{max})}$  from its maximum value of 175°C. See Note 3 for additional information on derating for reverse power dissipation.

When current ratings are computed from  $T_{J(max)}$  and reverse power dissipation is also included, ratings vary with reverse voltage as shown on Figures 2 thru 5.

# RESISTIVE LOAD RATINGS PRINTED CIRCUIT BOARD MOUNTING — SEE NOTE 6

IF(AV), AVERAGE FORWARD CURRENT (AMP)

20 40

FIGURE 2 – SINE WAVE INPUT

70

60

70

VR = 10 V (PK)

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

100 V

10

20 40



FIGURE 3 - SQUARE WAVE INPUT

TA, AMBIENT TEMPERATURE (°C)



160





#### **MAXIMUM CURRENT RATINGS**

#### NOTE 2

Current derating data is based upon the thermal response data of Figure 29 and the forward power dissipa-tion data of Figures 19 and 20. Since reverse power dissipation is not considered in Figures 6 thin 11, addi-tional derating for reverse voltage and for junction to amblent thermal resistance must be applied. See Noted



#### SQUARE WAVE INPUT



TI. LEAD TEMPERATURE (°C)

FIGURE 8 - 1/8" LEAD LENGTH, VARIOUS LOADS

(AV)

BOTH LEADS TO HEAT SINK

IF(AV), AVERAGE FORWARD CURRENT

4 (

0 75 85 95

#### FIGURE 9 - 1/8" LEAD LENGTH, VARIOUS LOADS



CAPACITIVE

LOADS

10

135 145



125 TL, LEAD TEMPERATURE (°C)

115

#### FIGURE 11 - PRINTED CIRCUIT BOARD MOUNTING, **VARIOUS LOADS**





TA, AMBIENT TEMPERATURE (°C)

#### REVERSE POWER DISSIPATION AND CURRENT

#### NOTE 3

#### DERATING FOR REVERSE POWER DISSIPATION

In this rectifier, power loss due to reverse current is generally not negligible For reliable circuit design, the maximum junction temperature must be limited to either 175°C or the temperature which results in thermal runaway. Proper derating may be accomplished by use of equation 1 or equation 2.

Equation 1 TA = T1 - (175 - TJ(max)) - PR ReJA

T1 = Maximum Allowable Ambient Temperature neglecting reverse power dissipation (from Figures 10 or 11)

T_{J(max)} = Maximum Allowable Junction Tempera ture to prevent thermal runaway or 175°C, which ever is lower (See Figure 1)

 $P_R$  = Reverse Power Dissipation (From Figure 12 or 13, adjusted for  $T_{J(max)}$  as shown below)

R_{ØJA} = Thermal Resistance, Junction to Ambient

When thermal resistance, junction to ambient, is over  $20^{\rm O}$ C/W, the effect of thermal response is negligible. Satisfactory derating may be found by using

Equation 2 TA = TJ(max) - (PR + PF) ReJA

Pr = Forward Power Dissipation (See Figures 19 & 20) Other terms defined above

The reverse power given on Figures 12 and 13 is calculated for  $T_J=150^{\circ}C$ . When  $T_J$  is lower,  $P_R$  will decrease, its value can be found by multiplying  $P_R$  by the normalized reverse current from Figure 14 at the temperature of interest

The reverse power data is calculated for half wave rectification circuits. For full wave rectification using either a bridge or a center tapped transformer, the data for resistive loads is equiva-

lent when Vp is the line to line voltage across the rectifiers. For capacitive loads, it is recommended that the dc case on Figure 13 be used, regardless of input waveform, for bridge circuits For be used, regardless of input waveform, for bridge circuits. For capacitively loaded full wave center-tapped circuits, the 20.1 data of Figure 12 should be used for sine wave inputs and the capacitive load data of Figure 13 should be used for square wave inputs regardless of  $|(\rho_{\rm th}/1|_{\rm QM})|$  for these two cases,  $\nabla p$  is the voltage across one leg of the transformer

#### EXAMPLE

Find Maximum Ambient Temperature for I $_{AV}$  = 2 A, Capacitive Load of Ip $_{K}/I_{AV}$  = 20 , Input Voltage = 120 V (rms) Sine Wave, R $_{\theta JA}$  = 25°C/W, Half Wave Circuit

#### Solution 1

Step 1 Find Vp, Vp = √2 V_{in} = 169 V V_{R(pk)} = 338 V Step 2 Find T_{J(max)} from Figure 1 Read T_{J(max)} = 119°C Step 3 Find P_R(max) from Figure 12 Read P_R = 770 mW@140°C

Step 4 Find I_R normalized from Figure 12 Head r_R = 7/mm\squares 140°C Step 5 Correct P_R to T_J(max) P_R = I_R(norm) x P_R (Figure 12) P_R = 0.4 x 770 = 310 mW

Step 6 Find P_F from Figure 19 Read P_F = 2.4 W

Step 7 Compute  $T_A$  from  $T_A$  =  $T_J(max) \cdot (P_R + P_F 1 \, R_{\theta} J_A)$   $T_A$  = 119 - (0 31 + 2 4) (25)  $T_A$  = 51°C

#### Solution 2

Steps 1 thru 5 are as above

Step 6 Find T_A = T₁ from Figure 10 Read T_A = 115°C Step 7 Compute T_A from T_A = T₁ · (175 · (T_J(max)) P_R R_ØJ_A T_A = 115 · (175 · 119) · (0 31) (25)

TA = 51°C

At times, a discrepancy between methods will occur because thermal response is factored into Solution 2

#### FIGURE 12 - SINE WAVE INPUT DISSIPATION



VP, PEAK APPLIED VOLTAGE (VOLTS)

#### FIGURE 13 - SOUARE WAVE INPUT DISSIPATION



Vp. PEAK APPLIED VOLTAGE (VOLTS)

#### FIGURE 14 - NORMALIZED REVERSE CURRENT



TI JUNCTION TEMPERATURE (°C)

#### FIGURE 15 - TYPICAL REVERSE CURRENT



Vp. REVERSE VOLTAGE (VOLTS)

#### STATIC CHARACTERISTICS



FIGURE 17 - MAXIMUM SURGE CAPABILITY 400 VRRM MAY BE APPLIED
BETWEEN EACH CYCLE OF
SURGE. THE TJ NOTED IS NON-REPETITIVE IFSM, PEAK HALF WAVE CURRENT TJ PRIOR TO SURGE 200 T_J = 25°C 175°C 100 REPETITIVE 80 175°C 60 40 20 30 10 10 50 70 NUMBER OF CYCLES AT 60 Hz



#### MAXIMUM FORWARD POWER DISSIPATION





# TYPICAL RECOVERED STORED CHARGE DATA (See Note 4)









#### NOTE 4

Reverse recovery time is the period which elapses from the time that the current, thru a previously forward biased rectifier diode, passes thru zero going negatively until the reverse current recovers to a point which is less than 10% peak reverse current

Reverse recovery time is a direct function of the forward current prior to the application of reverse voltage

For any given rectifier, recovery time is very circuit dependent. Typical and maximum recovery time of all Motorola fast recovery power rectifiers are rated under a fixed set of conditions using  $i_F \neq 1.0~A,~V_R = 30~V.~In~order~to~cover~all~circuit conditions, curves are given for typical recovered stored charge versus commutation~di/dt~for various levels of forward current and for junction temperatures of <math display="inline">25^{\rm O}C,~75^{\rm O}C,~100^{\rm O}C,$  and  $150^{\rm O}C,$ 

To use these curves, it is necessary to know the forward current level just before commutation, the circuit commutation di/dt, and the operating junction temperature. The reverse recovery test current waveform for all Motorola fast recovery rectifiers is shown.



From stored charge curves versus di/dt, recovery time  $(t_{rr})$  and peak reverse recovery current  $(I_{RM(REC)})$  can be closely approximated using the following formulas:

$$t_{rr} = 1.41 \text{ x} \left[ \frac{Q_R}{d_I/dt} \right]^{1/2}$$

 $I_{RM(REC)} = 1.41 \times \left[Q_R \times di/dt\right]^{1/2}$ 

#### **DYNAMIC CHARACTERISTICS**

FIGURE 25 — JEDEC REVERSE RECOVERY CIRCUIT



#### FIGURE 26 — FORWARD RECOVERY TIME

10 70 TJ = 25°C tfr. FORWARD RECOVERY TIME (μs) 5 0 30 1.0 0 7 0.5 03 0.2 0 1 50 100 1.0 IF, FORWARD CURRENT (AMP)

#### FIGURE 27 — JUNCTION CAPACITANCE



#### THERMAL CHARACTERISTICS

#### FIGURE 28 - THERMAL RESPONSE



#### NOTE 5

To determine maximum junction temperature of the diode in a given situation, the following procedure is recommended

The temperature of the lead should be measured using a thermocouple placed on the lead as close as possible to the tie point. The thermal mass connected to the tie point is normally large enough so that it will not significantly respond to heat surges generated in the diode as a result of pulsed operation once steady-state conditions are achieved. Using the measured value of  $T_{\rm L}$ , the junction temperature may be determined by

$$T_J = T_L + \triangle T_{JL}$$

where  $\Delta / T_{JL}$  is the increase in junction temperature above the lead temperature. It may be determined by

 $\triangle$  T_{JL} =  $P_{pk}$   $\bullet$  R_{$\theta$ JL} [D + (I - D)  $\cdot$  r(t₁ + t_p) + r(t_p) - r(t₁)] where r(t) = normalized value of transient thermal resistance at time t from Figure 29, i.e.:

 $r(t_1 \, + \, t_p) \, = \, \text{normalized value of transient thermal resistance at time} \, t_1 + \, t_p.$ 



DUTY CYCLE = t_p/t₁
PEAK POWER, P_{pk}, is peak of an equivalent square power pulse

#### FIGURE 29 — STEADY-STATE THERMAL RESISTANCE



# NOTE 6 RUSA PULA RUJA RUJK RUK MUSK TAK

Use of the above model permits junction to lead thermal resistance for any mounting configuration to be found. Lowest values occur when one side of the rectifier is brought as close as possible to the heat sink as shown below. Terms in the model stanify:

 $T_A = Ambient Temperature$   $R_{\theta S} = Thermal Resistance, Heat sink to Ambient$ 

 $T_L$  = Lead Temperature  $R_{\theta L}$  = Thermal Resistance, Lead to Heat Sink

 $T_C$  = Case Temperature  $R_{\theta,J}$  = Thermal Resistance, Junction to Case

 $T_J$  = Junction Temperature  $P_D$  = Power Dissipation =  $P_F$  +  $P_R$  = Forward Power Dissipation

 $P_{R}^{'}=\text{Reverse Power Dissipation}$  (Subscripts A and K refer to anode and cathode sides respectively) Values for thermal resistance components are.

 $R_{\theta\,L}=40^{o}\text{C/W/IN}$  . Typically and  $44^{o}\text{C/W/IN}$  Maximum.  $R_{\theta\,J}=2^{o}\text{C/W}$  Typically and  $4^{o}\text{C/W}$  Maximum.

Since  $R_{\theta,J}$  is so low, measurements of the case temperature,  $T_{C}$ , will be approximately equal to junction temperature in practical lead mounted applications. When used as a 60 Hz rectifier, the slow thermal response holds  $T_J(p_K)$  close to  $T_J(A_J)$ . Therefore maximum lead temperature may be found as follows:

$$T_L = T_{J(max)} - \triangle T_{JL}$$
where

△T_{JL} can be approximated as follows:

 $\Delta T_{JL} \approx R_{BJL} \cdot P_D$ ,  $P_D$  is the sum of forward and reverse power dissipation shown in Figures 12 & 19 for sine wave operation and Figures 13 & 20 for square wave operation

The recommended method of mounting to a P.C. board is shown on the sketch, where  $R_{\theta\,JA}$  is approximately  $25^{\,0}\text{C/W}$  for a 1–1/2"  $\times$  1–1/2" copper surface area. Values of  $40^{\,0}\text{C/W}$  are typical for mounting to terminal strips or P.C. boards where available surface area is small.



# MOTOROLA SEMICONDUCTOR I TECHNICAL DATA

# MR830 MR831 MR832 MR834 MR836

#### HERMETICALLY SEALED, AXIAL LEAD MOUNTED FAST RECOVERY POWER RECTIFIERS

. . . designed for special applications such as dc power supplies, inverters, converters, ultrasonic systems, choppers, low RF interference and free wheeling diodes. A complete line of fast recovery rectifiers having typical recovery time of 150 nanoseconds providing high efficiency at frequencies to 250 kHz.

#### FAST RECOVERY POWER RECTIFIERS 50-600 VOLTS 3 AMPERES

#### MAXIMUM RATINGS

Rating	Symbol	MR830	MR831	MR832	MR834	MR836	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	VRRM VRWM VR	50	100	200	400	600	Volts
Average Rectified Forward Current (Single phase, resistive load, TC = 100°C)	10	•		3 O			Amps
Non-Repetitive Peak Surge Current (surge applied at rated load conditions)	IFSM	100				Amps	
Operating Junction Temperature Range	TJ	-		-65 to +19	50 ——	-	°C
Storage Temperature Range	T _{stg}	-		-65 to +17	75		°c

#### **ELECTRICAL CHARACTERISTICS**

Characteristic	Symbol	Mın	Max	Unit
Forward Voltage (I _F = 3 0 Adc, T _A = 25°C)	V _F		1.1	Volts
Reverse Current (rated DC Voltage) T _A = 25 ⁰ C	l _R	-	0.5	mA
T _A = 100°C		-	1.5	

#### REVERSE RECOVERY CHARACTERISTICS

Characteristic	Symbol	Mın	Тур	Max	Unit
Reverse Recovery Time	t _{rr}				
$(I_F = 1.0 \text{ Amp to } V_R = 30 \text{ Vdc})$		-	150	200	ns
(I _{FM} = 15 Amp, dı/dt = 25 A/µs)		-	150	300	ns
Reverse Recovery Current	IRM(REC)				Amp
(IF = 1 0 Amp to VR = 30 Vdc)	1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-		2.0	



CASE 60-01 METAL

#### MECHANICAL CHARACTERISTICS

CASE: Welded, hermetically sealed
FINISH: All external surfaces corrosion
resistant and leads readily solderable

POLARITY: Cathode to Case
WEIGHT: 2.4 Grams (Approximately)

# MOTOROLA SEMICONDUCTOR TECHNICAL DATA

#### MR850 MR851 MR852 MR854 **MR856**

### **Designers Data Sheet**

#### SUBMINIATURE SIZE, AXIAL LEAD MOUNTED **FAST RECOVERY POWER RECTIFIERS**

. . . designed for special applications such as dc power supplies, inverters, converters, ultrasonic systems, choppers, low RF interference and free wheeling diodes. A complete line of fast recovery rectifiers having typical recovery time of 150 nanoseconds providing high efficiency at frequencies to 250 kHz.

#### Designer's Data for "Worst Case" Conditions

The Designers Data sheets permit the design of most circuits entirely from the information presented Limit curves — representing boundaries on device characteristics — are given to facilitate "worst case" design.

#### MAXIMUM RATINGS

Rating	Symbol	MR850	MR851	MR852	MR854	MR856	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	VRRM VRWM VR	50	100	200	400	600	Volts
Non-Repetitive Peak Reverse Voltage	VRSM	75	150	250	450	650	Volts
RMS Reverse Voltage	V _{R(RMS)}	35	70	140	280	420	Volts
Average Rectified Forward Current (Single phase resistive load, T _A = 90°C) (1)	ю	30					Amp
Non-Repetitive Peak Surge Current (surge applied at rated load conditions)	^I FSM	100 (one cycle)					Amp
Operating and Storage Junction Temperature Range (2)	T _J ,T _{stg}	-		-65 to +17	5		°C

#### THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient (Recommended Printed Circuit Board Mouting, See Note 6, Page 8)	R _{θJA}	28	oc/M

#### **ELECTRICAL CHARACTERISTICS**

Characteristic	Symbol	Min	Тур	Max	Unit
Instantaneous Forward Voltage (IF = 9.4 Amp, T _J = 175°C)	٧F	-	0.9	11	Volts
Forward Voltage (I _F = 3.0 Amp, T _J = 25 ^o C)	VF	-	1.04	1.25	Volts
Reverse Current (rated dc voltage) T _{.j} = 25°C	1 _B	_	2.0	10	μА
( MR850		- 1		150	ļ
MR851	ŀ		60	150	
T_J = 100°C ( MR852	i	-	- '	200	
MR854		- 1	-	250	ļ.
MR856			100	300	

#### REVERSE RECOVERY CHARACTERISTICS

Characteristic	Symbol	Min	Тур	Max	Unit
Reverse Recovery Time	t _{rr}				ns
(IF = 1.0 Amp to VR = 30 Vdc, Figure 25)		-	150	200	1
(I _F = 15 Amp, di/dt = 10 A/μs, Figure 26)		_	200	300	1
Reverse Recovery Current (I _F = 1.0 Amp to V _R = 30 Vdc, Figure 25)	RM(REC)	-	-	20	Amp

⁽¹⁾ Must be derated for reverse power dissipation. See Note 2, Page 4 (2) Derate as shown in Figure 1

**FAST RECOVERY POWER RECTIFIERS** 50-600 VOLTS 3 AMPERE



#### NOTES:

- 1. DIMENSIONING & TOLERANCING PER ANSI Y14.5, 1982.
- 2. CONTROLLING DIMENSION: INCH.

	MILLIN	ETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α		9.39	_	0.370
В	_	6 35	_	0 250
D	1 22	1.32	0 048	0.052
K	25 40	_	1.000	_

**CASE 267-02 PLASTIC** 

#### MECHANICAL CHARACTERISTICS

Case: Transfer Molded Plastic Finish: External Leads are Plated, Leads are readily Solderable Polarity: Cathode Indicated by Po-

larity Band

Weight: 1.1 Grams (Approximately) Maximum Lead Temperature for

Soldering Purposes:

300°C, 1/8" from case for 10 s at 5.0 lb. tension

#### MAXIMUM CURRENT AND TEMPERATURE RATINGS

FIGURE 1 - MAXIMUM ALLOWABLE JUNCTION TEMPERATURE



# NOTE 1 MAXIMUM JUNCTION TEMPERATURE DERATING

When operating this rectifier at junction temperatures over  $120^{9}\text{C}$ , reverse power dissipation and the possibility of thermal runaway must be considered. The data of Figure 1 is based upon worst case reverse power and should be used to derate  $T_{J(max)}$  from its maximum value of  $175^{9}\text{C}$ . See Note 2 for additional information on derating for reverse power dissipation.

When current ratings are computed from  $T_{J(max)}$  and reverse power dissipation is also included, ratings vary with reverse voltage as shown on Figures 2 thru 5.

#### **RESISTIVE LOAD RATINGS**

Printed Circuit Board Mounting - See Note 6, Page 8









#### **MAXIMUM CURRENT RATINGS**

Current derating data is based upon the thermal response data of Figure 29 and the forward power dissipation data of Figures 19 and 20. Since reverse power dissipation is not considered in Figures 6 thru 11, additional derating for reverse voltage and for junction to ambient thermal resistance must be applied. See Note 2

#### SINE WAVE INPUTS

# FIGURE 6 – EFFECT OF LEAD LENGTHS, RESISTIVE LOAD



FIGURE 8 - 1/8" LEAD LENGTH, VARIOUS LOADS



FIGURE 10 – PRINTED CIRCUIT BOARD MOUNTING, VARIOUS LOADS



#### **SQUARE WAVE INPUTS**

# FIGURE 7 – EFFECT OF LEAD LENGTHS, RESISTIVE LOAD



FIGURE 9 - 1/8" LEAD LENGTH, VARIOUS LOADS



FIGURE 11 – PRINTED CIRCUIT BOARD MOUNTING, VARIOUS LOADS



#### REVERSE POWER DISSIPATION AND CURRENT

#### NOTE 2 DERATING FOR REVERSE POWER DISSIPATION

In this rectifier, power loss due to reverse current is generally not negligible For reliable circuit design, the maximum junction temperature must be limited to either 175°C or the temperature which results in thermal runaway Proper derating may be accomplished by use of equation 1 or equation 2

Equation 1 TA = T1 - (175 - TJ(max)) - PR ROJA

Where

T₁ = Maximum Allowable Ambient Temperature neglecting reverse power dissipation (from Figures 10 or 11)

T_{J(max)} = Maximum Allowable Junction Temperature to prevent thermal runaway or 175°C, which ever is lower. (See Figure 1)

PR = Reverse Power Dissipation (From Figure 12 or 13, adjusted for T_{J(max)} as shown below)

R₀JA = Thermal Resistance, Junction to Ambient

When thermal resistance, junction to ambient, is over 20°C/W, the effect of thermal response is negligible. Satisfactory derating may be found by using

Equation 2  $T_A = T_{J(max)} - (P_R + P_F) R_{\theta JA}$ 

PF = Forward Power Dissipation (See Figures 19 & 20) Other terms defined above.

The reverse power given on Figures 12 and 13 is calculated for  $T_J=150^{o}C$  . When  $T_J$  is lower,  $P_R$  will decrease, its value can be found by multiplying  $P_R$  by the normalized reverse current from Figure 14 at the temperature of interest

The reverse power data is calculated for half wave rectification For full wave rectification using either a bridge or a center-tapped transformer, the data for resistive loads is equiva-lent when Vp is the line to line voltage across the rectifiers. For capacitive loads, it is recommended that the dc case on Figure 13 be used, regardless of input waveform, for bridge circuits For

capacitively loaded full wave center-tapped circuits, the 20 1 data of Figure 12 should be used for sine wave inputs and the capacitive load data of Figure 13 should be used for square wave inputs regardless of  $I_{(pk)}/I_{(av)}$  For these two cases, Vp is the voltage across one leg of the transformer

Example 1 Find maximum ambient temperature for IAV = 2 A, capacitive load of IpK/I_{AV} = 20, Input Voltage = 60 V (rms), sine wave,  $R_{\theta JA} = 28^{\circ}$ C/W, half wave

Solution 1 (using Equation 1)

Find Vp,  $V_P = \sqrt{2} V_{in} = 85 V$ ,  $V_{R(pk)} = 170$ Step 1 Step 2 Find  $T_{J(max)}$  from Figure 1 Read  $T_{J(max)} = 157^{\circ}C$ 

Find  $P_{R(max)}$  from Figure 12 Read  $P_{R}$  = 360 mW @ 150°C Step 3

Find I normalized from Figure 14 Read I R (norm) Step 4

Correct  $P_R$  to  $T_{J(max)}$ .  $P_R = I_{R(norm)} \times P_R$  (Figure 12)  $P_R = 1.5 \times 360 = 540 \text{ mW}$ 

Step 6 Find TA = T1 from Figure 10 Read T1 = 94°C

Compute  $T_A$  from  $T_A = T_1 \cdot (175 \cdot T_{J(max)} \cdot P_R R_{\theta JA} + T_A = 94 \cdot (175 \cdot 157) \cdot (0.54) (28)$   $T_A = 61^{O}C$ Step 7

Solution 2 (using Equation 2)

Steps 1 thru 5 are as Solution 1

Step 5

Step 6 Find Pp from Figure 19 Read Pp = 3 0 W

Step 7 Compute TA from TA = TJ(max) - (PR + PF) ROJA T_A = 157 - (0 54 + 3)28 T_A = 58°C

The discrepancy occurs because thermal response is factored into solution 1, and advantage is taken of the cooling time after the power pulse and before reverse voltage achieves its maximum 61°C is a satisfactory ambient temperature





#### FIGURE 13 - REVERSE POWER DISSIPATION, SQUARE WAVE



#### FIGURE 14 - NORMALIZED REVERSE CURRENT



#### FIGURE 15 - TYPICAL REVERSE CURRENT



VR. REVERSE VOLTAGE (VOLTS)

#### STATIC CHARACTERISTICS



#### TYPICAL RECOVERED STORED CHARAGE DATA









#### NOTE 3

Reverse recovery time is the period which elapses from the time that the current, thru a previously forward biased rectifier diode, passes thru zero going negatively until the reverse current recovers to a point which is less than 10% peak reverse current.

Reverse recovery time is a direct function of the forward current prior to the application of reverse voltage

For any given rectifier, recovery time is very circuit dependent. Typical and maximum recovery time of all Motorola fast recovery power rectifiers are rated under a fixed set of conditions using I  $_{\rm F}=1.0$  A, V  $_{\rm R}=30$  V. In order to cover all circuit conditions, curves are given for typical recovered stored charge versus commutation di/dt for various levels of forward current and for junction temperatures of  $25^{\rm O}$ C,  $75^{\rm O}$ C,  $100^{\rm O}$ C, and  $150^{\rm O}$ C.

To use these curves, it is necessary to know the forward current level just before commutation, the circuit commutation di/dt, and the operating junction temperature. The reverse recovery test current waveform for all Motorola fast recovery rectifiers is shown.



From stored charge curves versus di/dt, recovery time  $(t_{rr})$  and peak reverse recovery current  $(I_{RM(REC)})$  can be closely approximated using the following formulas:

$$t_{rr} = 1.41 \times \left[ \frac{\Omega_R}{di/dt} \right]^{1/2}$$

 $I_{RM(REC)} = 1.41 \times \left[Q_R \times di/dt\right]^{1/2}$ 

#### **DYNAMIC CHARACTERISTICS**

#### FIGURE 25 — JEDEC REVERSE RECOVERY CIRCUIT



R1 = 50 Ohms
R2 = 250 Ohms
D1 = 1N4723
D2 = 1N4901
D3 = 1N4934
SCR1 = MCR729 10
C1 = 0 5 to 50 µF
C2 ~ 4000 µF
L1 = 10 - 27 µH
T1 = Variac Adjusts I_(PK) and di/dt
T2 = 1
T3 = 1.1 (to trigger circuit)

6

#### FIGURE 26 — FORWARD RECOVERY TIME



#### FIGURE 27 — JUNCTION CAPACITANCE



#### FIGURE 28 — THERMAL RESPONSE



#### FIGURE 29 — STEADY-STATE THERMAL RESISTANCE



### MR850, MR851, MR852, MR854, MR856

To determine maximum junction temperature of the diode in a given situation, the following procedure is recommended

The temperature of the lead should be measured using a thermocouple placed on the lead as close as possible to the tie point. The thermal mass connected to the tie point is normally large enough so that it will not significantly respond to heat surges generated in the diode as a result of pulsed operation once steady-state conditions are achieved. Using the measured value of T_L, the junction temperature may be determined by

$$T_J = T_L + \Delta T_{JL}$$

where  $\triangle$  T  $_{J\,L}$  is the increase in junction temperature above the lead temperature. It may be determined by

$$\triangle \ \mathsf{T_{JL}} = \mathsf{P_{pk}} \ \cdot \mathsf{R}_{\theta \mathsf{JL}} \ \{\mathsf{D} + (\mathsf{I} - \mathsf{D}) \ \cdot \mathsf{r}(\mathsf{t_1} + \mathsf{t_p}) + \mathsf{r}(\mathsf{t_p}) - \mathsf{r}(\mathsf{t_1})\}$$

#### where r(t) = normalized value of transient thermal resistance at time t from Figure 29, i.e.

$$r(t_1 + t_p) = normalized$$
 value of transient thermal resistance at time  $t_1 + t_p$ 



#### NOTE 5

Use of the above model permits junction to lead thermal resistance for any mounting configuration to be found. For a given total lead length, lowest values occur when one side of the rectifier is brought as close as possible to the heat sink. Terms in the model signify.

 $T_A$  = Ambient Temperature  $R_{\theta S}$  = Thermal Resistance, Heat

T_L = Lead Temperature

P_F + P_R

P_F = Forward Power Dissipation
P_R = Reverse Power Dissipation

(Subscripts A and K refer to anode and cathode sides respectively ) Values for thermal resistance components are

 $R_{\theta L} \approx 46^{\circ}$ C/W/IN Typically and  $48^{\circ}$ C/W/IN Maximum  $R_{\theta J} = 10^{\circ}$ C/W Typically and  $16^{\circ}$ C/W Maximum

The maximum lead temperature may be found as follows

TL = T_{J(max)} -  $\triangle$  T_{JL}

△T II can be approximated as follows

 $\Delta T_{JL} \approx R_{\theta JL} \cdot P_D$ ,  $P_D$  is the sum of forward and reverse power dissipation shown in Figures 2 and 4 for sine wave operation and Figures 3 and 5 for square wave operation

#### THERMAL CIRCUIT MODEL





#### NOTE 6

Data shown for thermal resistance junction-to-ambient  $\{R_{\theta,j,A}\}$  for the mountings shown is to be used as typical guideline values for preliminary engineering or in case the tie point temperature

#### TYPICAL VALUES FOR $R_{ heta JA}$ IN STILL AIR

MOUNTING	L	LEAD LENGTH, L (IN)					
METHOD	1/8	1/4	1/2	3/4	R∂JA		
1	50	51	53	55	°C/W		
2	58	59	61_	63	°C/W		
3		2	18		°C/W		

#### MOUNTING METHOD 1

P C Board Where Available Copper Surface area is small



### MOUNTING METHOD 2 Vector Pin Mounting



#### MOUNTING METHOD 3



# MOTOROLA SEMICONDUCTOR I TECHNICAL DATA

### MR1120 thru MR1126 MR1128 MR1130

0.00

#### **MEDIUM-CURRENT SILICON RECTIFIER**

 $\label{lem:medium-current} Medium-current silicon rectifiers feature high surge current capacity, and low forward voltage drop.$ 

#### MEDIUM-CURRENT SILICON RECTIFIERS

50-1000 VOLTS 12 AMPERES



#### **MAXIMUM RATINGS**

Rating	Symbol	MR 1120	MR 1121	MR 1122	MR 1123	MR 1124	MR 1125	MR 1126	MR 1128	MR 1130	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	50	100	200	300	400	500	600	800	1000	Volts
Non-Repetitive Peak Reverse Voltage (one half-wave, single phase, 60 cycle peak)	VRSM	100	200	300	400	500	600	720	100	1200	Volts
RMS Reverse Voltage	V _{R(RMS)}	35	70	140	210	280	350	420	560	700	Volts
Average Rectified Forward Current (single phase, resistive load, 60 Hz, T _C = 150°C)	10	12							Amp		
Peak Repetitive Forward Current (T _C = 150°C)	IFRM	75								Amp	
Non-Repetitive Peak Surge Current (superimposed on rated current at rated voltage, T _C = 150°C)	IFSM	300 (for 1/2 cycle)							Amp		
12t Rating (non-repetitive, 1 ms <t 3="" <8="" ms)<="" td=""><td>1²t</td><td colspan="7">375</td><td>A_(rms)2s</td></t>	1 ² t	375							A _(rms) 2s		
Maximum Junction Operating and Storage Temperature Range	T _J , T _{stg}	-				65 to +1	90			-	°C

#### **ELECTRICAL CHARACTERISTICS (All Types)**

	, poo,		
Characteristic	Symbol	Max	Unit
Full Cycle Average Forward Voltage Drop (I _O = 12 Amps and Rated V _r , T _C = 150°C, Half Wave Rectifier)	V _{F(AV)}	0 55	Volts
DC Forward Voltage Drop (I _F = 12 Adc, T _C = 25°C)	VF	10	Volts
Full Cycle Average Reverse Current (IO = 12 Amps and Rated $V_r$ , $T_C = 150^{\circ}C$ , Half Wave Rectifier)	I _{R(AV)}	1 5	mA
DC Reverse Current (Rated V _R , T _C = 25°C)	IR	0.5	mA



- NOTES:

  1. DIMENSIONING AND TOLERANCING PER ANSI
  - Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH.

	MILLIMETERS		INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	10.75	11.12	0.423	0.438	
С	_	10.28	_	0 405	
D	4.07	4.69	0 160	0.185	
E	1.91	4.44	0.075	0 175	
F	2.29	2.41	0.090	0.095	
J	10.72	11.50	0.422	0 453	
K	18.80	20.32	0.740	0.800	

### MR1120 thru MR1126, MR1128, MR1130

#### THERMAL CHARACTERISTICS

Maximum Steady State DC Thermal Resistance, R_{6JC}: 2.5°C/Watt

#### **MECHANICAL CHARACTERISTICS**

CASE: Welded, hermetically sealed construction.

FINISH: All external surfaces corrosion-resistant and the terminal lug is readily solderable.

POLARITY: CATHODE-TO-CASE (reverse polarity units are available upon request and are designated by an

"R" suffix i.e. MR1120R).

MOUNTING POSITIONS: Any
STUD TORQUE: 15 in-lbs maximum.













# MOTOROLA SEMICONDUCTOR TECHNICAL DATA

MR1366 See Page 3-13 MR1376 See Page 3-18 MR1386 See Page 3-23 MR1396 See Page 3-28

#### MEDIUM-CURRENT SILICON RECTIFIERS

... compact, highly efficient silicon rectifiers for medium-current applications requiring:

- High Current Surge 400 Amperes @ T_J = 175°C
- Peak Performance @ Elevated Temperature 20 Amperes @ T_C = 150°C
- Low Cost
- Compact, Molded Package For Optimum Efficiency in a Small Case Configuration

### MR2000 Series

MEDIUM-CURRENT SILICON RECTIFIERS 50-1000 VOLTS 20 AMPERES DIFFUSED JUNCTION

#### MAXIMUM RATINGS MR MR MR MR 2004 MR 2006 MR 2008 MR 2001 2002 Peak Repetitive Reverse Voltage VRRM Volts Working Peak Reverse Voltage 50 100 200 400 600 800 1000 VRWM DC Blocking Voltage ٧R Non-Repetitive Peak Reverse VRSM 120 240 480 720 960 1200 Volts Voltage (halfwave, single phase, 60 Hz peak) RMS Forward Current Amp (RMS) Amp Average Rectified Forward Current 20 (Single phase, resistive load, 60 Hz, T_C = 150°C) Non-Repetitive Peak Surge Cur-- 400 (for 1 cycle) -Amp rent (surge applied @ rated load conditions, half wave, single phase, 60 Hz) °C Operating and Storage Junction - -65 to +175 - $T_{J}$ , $T_{stg}$ Temperature Range

#### THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta}JC$	13	°C/W

#### ELECTRICAL CHARACTERISTICS

Characteristic and Conditions	Symbol	Max	Unit
Maximum Instantaneous Forward Voltage (IF = 63 Amp, $T_C = 25^{\circ}C$ )	٧F	1 1	Volts
Maximum Reverse Current (rated dc voltage) $T_C = 25^{\circ}$ C $T_C = 100^{\circ}$ C	^I R	100 500	μА



#### NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.

	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α	10.75	11.12	0.423	0.438
С	_	10.28	_	0.405
D	4.07	4.69	0.160	0.185
E	1.91	4.44	0 075	0.175
F	2.29	2.41	0.090	0.095
J	10.72	11.50	0.422	0.453
K	18.80	20.32	0.740	0.800

CASE 245A-02 DO-203AA METAL

#### MECHANICAL CHARACTERISTICS

CASE: Void Free, Transfer Molded.

FINISH: All External Surfaces are Corrosion-Resistant and the Terminal Lead is Readily Solderable.

POLARITY: Cathode to Case (Reverse Polarity Units are Available and Designated by an "R" Suffix i.e., MR2000SR).

MOUNTING POSITIONS: Any
MOUNTING TORQUE: 15 in-lb max

MAXIMUM TERMINAL TEMPERATURE FOR SOLDERING PURPOSES: 275°C for

10 Seconds @ 3 Kg Tension.
WEIGHT: 6 Grams (Approximately).













#### FIGURE 6 - THERMAL RESPONSE



#### NOTE 1



To determine maximum junction temperature of the diode in a given situation, the following

procedure is recommensed. The temperature of the case should be measured using a thermocouple placed on the case at the temperature reference point (see the outline drawing on page 1). The thermal mass connected to the case is normally large enough so that it will not spinificantly respond to heat surges generated in the diode as a result of pulsed operation once steady state conditions are achieved. Using the measured value of TC, the junction temperature may be determined by  $T_J = T_C + \Delta T_{JC}$ 

where  $\Delta$  T  $_{\rm JC}$  is the increase in junction temperature above the case temperature. It may be determined by  $\triangle T_{JC} = P_{pk} \bullet R_{OJC} \{D + (1 - D) \bullet r(t_1 + t_p) + r(t_p) - r(t_1)\}$ 

r(t) = normalized value of transient thermal resistance at time, t, from Figure 6,  $\tau e$  ,  $r(t_1 + t_p)$  = normalized value of transient thermal resistance at time  $t_1 + t_p$ 

#### FIGURE 7 - CAPACITANCE



#### FIGURE 8 - FORWARD RECOVERY TIME



#### FIGURE 9 - REVERSE RECOVERY TIME



#### FIGURE 10 - RECTIFICATION WAVEFORM EFFICIENCY



#### RECTIFICATION EFFICIENCY NOTE

#### FIGURE 11 - SINGLE-PHASE HALF-WAVE RECTIFIER CIRCUIT



The rectification efficiency factor  $\boldsymbol{\sigma}$  shown in Figure 10 was calculated using the formula

$$\sigma = \frac{P_{dc}}{P_{rms}} = \frac{V_{Q(dc)}^{2}}{\frac{R_{L}}{V_{Q(rms)}^{2}}} \bullet 100\% = \frac{V_{Q(dc)}^{2}}{V_{Q(ac)}^{2} + V_{Q(dc)}^{2}} \bullet 100\% \quad (1)$$

For a sine wave input  $V_{m}$  sin  $(\omega t)$  to the diode, assume lossless, the maximum theoretical efficiency factor becomes

$$\sigma_{\text{(sine)}} = \frac{\frac{\text{V}^2_{\text{m}}}{\pi^2 \text{R}_{\text{L}}}}{\frac{\text{V}^2_{\text{m}}}{4 \text{R}_{\text{L}}}} \bullet 100\% = \frac{4}{\pi^2} \bullet 100\% = 40.6\%$$
 (2)

For a square wave input of amplitude  $\boldsymbol{V}_{\boldsymbol{m}},$  the efficiency factor becomes:

$$\frac{V_{m}^{2}}{7(\text{square})} = \frac{\frac{V_{m}^{2}}{2R_{L}}}{\frac{V_{m}^{2}}{R_{L}}} \bullet 100\% = 50\%$$
 (3)

(A full wave circuit has twice these efficiencies)

As the frequency of the input signal is increased, the reverse recovery time of the diode (Figure 9) becomes significant, resulting in an increasing ac voltage component across  $R_{L}$  which is opposite in polarity to the forward current, thereby reducing the value of the efficiency factor  $\sigma_{\rm r}$  as shown on Figure 10.

It should be emphasized that Figure 10 shows waveform efficiency only; it does not provide a measure of diode losses. Data was obtained by measuring the ac component of  $V_{\rm Q}$  with a true rms ac voltmeter and the dc component with a dc voltmeter. The data was used in Equation 1 to obtain points for Figure 10.

# MOTOROLA SEMICONDUCTOR TECHNICAL DATA

# MR2400 thru MR2406

# TAB-MOUNTED MEDIUM-CURRENT SILICON RECTIFIERS

... compact, highly efficient silicon rectifiers for medium current applications requiring:

- High Current Surge 400 Amperes @ Tj = 175°C
- $\mbox{\bf @}$  Peak Performance @ Elevated Temperature 24 Amperes @  $T_{\mbox{\footnotesize C}}$  = 150°C
- Low Cost
- Same Mounting as a TO-220AB

# MEDIUM-CURRENT SILICON RECTIFIERS

50-600 VOLTS 24 AMPERES



#### **MAXIMUM RATINGS**

Rating	Symbol	MR2400	MR2401	MR2402	MR2404	MR2406	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	50	100	200	400	600	Volts
Nonrepetitive Peak Reverse Voltage (half wave, single phase, 60 Hz peak)	VRSM	60	120	240	480	720	Volts
Average Rectified Forward Current (Single phase, resistive load, 60 Hz, T _C = 150°C)	10	24					
Nonrepetitive Peak Surge Current (surge applied @ rated load conditions, half wave, single phase, 60 Hz)	IFSM	400 (for 1 cycle)					
Operating and Storage Junction Temperature Range	TJ, T _{stg}	-65 to +175					

#### THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	R _θ JC	0.8	°C/W
Thermal Resistance, Junction to Air PC Board Mount, Perpendicular to Surface	$R_{\theta}JA$	55	°C/W

#### **ELECTRICAL CHARACTERISTICS**

Characteristics and Conditions	Symbol	Max	Unit
Maximum Instantaneous Forward Voltage (iF = 75 4 Amp, TC = 25°C)	٧F	1 18	Volts
Maximum Reverse Current (rated dc voltage) TC = 25°C TC = 100°C	IR	25 1.0	μA mA

#### **MECHANICAL CHARACTERISTICS**

CASE: Plastic encapsulated, metal tabs.

FINISH: All external surfaces are corrosion resistant and the leads are readily solderable.

POLARITY: Cathode to tab with hole, Reverse polarity available by adding "R" Suffix, MR2402R

MOUNTING TORQUE: 8 in-1b max

MAXIMUM TEMPERATURE FOR SOLDERING PURPOSES: 350°C, 3/8" from case for 10 seconds.

WEIGHT: 3 6 Grams (Approximately).













Ppk DUTY CYCLE, D = tp/t1

Ppk PEAK POWER, Ppk, is peak of an equivalent square power pulse

Time

To determine maximum unction temperature of the

To determine maximum junction temperature of the diode in a given situation, the following procedure is recommended

The temperature of the case should be measureed using a thermocouple placed on the case at the temperature reference point. The thermal mass connected to the case is normally large enough so that it will not significantly respond to heat surges generated in the diode as a result of pulsed operation once steady-state conditions are achieved. Using the measured value of  $T_{\rm C}$ , the junction temperature may be determined by

$$T_J = T_C + \Delta T_{JC}$$

where  $\Delta {\rm TJC}$  is the increase in junction temperature above the case temperature. It may be determined by

$$\Delta T_{JC} = P_{pk} \circ R_{\theta JC} [D + (1 - D) \circ r(t1 + t_p) + r(t_p) - r(t1)]$$
where

r(t) = normalized value of transient thermal resistance at time, t, from Figure 3, i e

 $r(t1 + t_p) = normalized value of transient thermal resis$  $tance at time <math>t1 + t_p$ 







FIGURE 10 - RECTIFICATION WAVEFORM EFFICIENCY



#### RECTIFICATION EFFICIENCY NOTE



The rectification efficiency factor  $\sigma$  shown in Figure 10 was calculated using the formula

$$\sigma = \frac{P_{dc}}{P_{rms}} = \frac{\frac{V_{O}^{2}(dc)}{R_{L}}}{\frac{V_{O}^{2}(rms)}{R_{L}}} \bullet 100\% = \frac{V_{O}^{2}(dc)}{V_{O}^{2}(ac) + V_{O}^{2}(dc)} \bullet 100\% \quad (1)$$

For a sine wave input  $V_m$  sin  $(\omega t)$  to the diode, assume lossless, the maximum theoretical efficiency factor becomes

$$\sigma_{\text{(sine)}} = \frac{\frac{\text{v}^2 \text{m}}{\pi^2 \text{R}_L}}{\frac{\text{v}^2 \text{m}}{4 \text{R}_L}} \bullet 100\% = \frac{4}{\pi^2} \bullet 100\% = 40.6\%$$
 (2)

For a square wave input of amplitude V_m, the efficiency factor becomes

$$\sigma_{\text{(square)}} = \frac{\frac{\text{V}^2 \text{m}}{2\text{R}_L}}{\text{V}^2 \text{m}} \bullet 100\% = 50\%$$
(3)

(A full wave circuit has twice these efficiencies)

As the frequency of the input signal is increased, the reverse recovery time of the diode (Figure 9) becomes significant, resulting in an increasing ac voltage component across  $\mathsf{R}_\mathsf{L}$  which is opposite in polarity to the forward current, thereby reducing the value of the efficiency factor  $\sigma$ , as shown on Figure 10

It should be emphasized that Figure 10 shows waveform efficiency only, it does not provide a measure of diode losses Data was obtained by measuring the ac component of VO with a true rms ac voltmeter and the dc component with a dc voltmeter The data was used in Equation 1 to obtain points for Figure 10



5 08 **CASE 339-02** PLASTIC (Meets TO-220AB except dimension "C")

0 200

N 5.84 6 86 0.230 0.270

> 2 54 3 05 0 100 0 120 0 139 0 147

3 53 3 73

# MOTOROLA SEMICONDUCTOR I TECHNICAL DATA

# MR2400F thru MR2406F

# TAB-MOUNTED FAST RECOVERY POWER RECTIFIERS

designed for special applications such as dc power supplies, inverters, converters, ultrasonic systems, choppers, low RF interference, sonar power supplies and free wheeling diodes. A complete line of fast recovery rectifiers having typical recovery time of 150 nanoseconds providing high efficiency at frequencies to 250 kHz.

- O Same Mounting as a TO-220AB
- O Cost Effective in Low Current Applications
- O Lead or Chassis Mounted
- O High Surge Current Capability

# FAST RECOVERY POWER RECTIFIERS

50-600 VOLTS 24 AMPERES



#### **MAXIMUM RATINGS**

Rating	Symbol	MR2400F	MR2401F	MR2402F	MR2404F	MR2406F	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	50	100	200	400	600	Volts
Nonrepetitive Peak Reverse Voltage	VRSM	75	150	250	450	650	Volts
RMS Reverse Voltage	V _{R(RMS)}	35	70	140	280	420	Volts
Average Rectified Forward Current (Single phase, resistive load, T _C = 125°C)	lo	24					Amp
Nonrepetitive Peak Surge Current (surge applied @ rated load conditions)	İFSM	-300 (for 1 cycle)					Amp
Operating Junction Temperature Range	TJ	-65 to +150					
Storage Temperature Range	T _{stg}	-65 to +175					

#### THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta}JC$	08	°C/W
Thermal Resistance, Junction to Air, PC Board Mount, Perpendicular to Surface	$R_{\theta JA}$	55	°C/W

#### **ELECTRICAL CHARACTERISTICS**

Characteristic	Symbol	Min	Тур	Max	Unit
Instantaneous Forward Voltage (I _F = 75 Amp, T _J = 150°C)	٧F		1 15	1.29	Volts
Forward Voltage (I _F = 24 Amp, T _C = 25°C)	VF		1.00	1.15	Volts
Reverse Current (rated dc voltage) T _C = 25°C T _C = 100°C	I _R	_	10 0.5	25 1 0	μA mA
T _C = 150°C	1 1	_	7.0	10	mA

#### REVERSE RECOVERY CHARACTERISTICS

Characteristic	Symbol	Min	Тур	Max	Unit
Reverse Recover Time — Soft Recovery ( $I_F = 10$ Amp to $V_R = 30$ Vdc, Figure 19) ( $I_{FM} = 36$ Amp, $d_I/dt = 25$ A/ $\mu$ s, Figure 20)	t _{rr}	_	150 200	200 300	ns
Reverse Recovery Current (I _F = 1 O Amp to V _R = 30 Vdc, Figure 19)	IRM(REC)	_	_	4.0	Amp



# FIGURE 2 - MAXIMUM SURGE CAPABILITY



#### NOTE 1



To determine maximum junction temperature of the diode in a given situation, the following procedure is

The temperature of the case should be measureed using a thermocouple placed on the case at the temperature reference point. The thermal mass connected to the case is normally large enough so that it will not significantly respond to heat surges generated in the diode as a result of pulsed operation once steady-state conditions are achieved. Using the measured value of TC, the junction temperature may be determined by

$$T_J = T_C + \Delta T_{JC}$$

where  $\Delta \text{T}_{\text{JC}}$  is the increase in junction temperature above the case temperature. It may be determined by

$$\Delta T_{JC} = P_{pk} \bullet R_{\theta JC} [D + (1 - D) \bullet r(t1 + t_p) + r(t_p) - r(t1)]$$
  
where

r(t) = normalized value of transient thermal resistance at time, t, from Figure 3, i e

 $r(t1 + t_p) = normalized value of transient thermal resis$ tance at time t1 + tp



#### K

#### **CHASSIS MOUNT RATING DATA**





#### **Square Wave Input**



### FIGURE 6 — CURRENT DERATING



#### FIGURE 7 — CURRENT DERATING



#### PRINTED CIRCUIT BOARD RATING DATA







#### TYPICAL DYNAMIC CHARACTERISTICS









#### TYPICAL MOUNTING DATA



# Figure 14 shows the current carrying capability of a device mounted on a printed circuit board with a typical TO-220 type heatsink having a sink-to-air thermal resistance of 12°C/W Allowing another 2°C/W for $R_{\theta,JC}$ plus $R_{\theta,CS}$ (case-to-sink) puts the total at 14°C/W as indicated The unit and heatsink were mounted perpendicular to the printed circuit board for this data

NOTE 2

#### MR2400F thru MR2406F

# TYPICAL RECOVERED STORED CHARGE DATA (See Note 3)









NOTE 3

Reverse recovery time is the period which elapses from the time that the current, thru a previously forward biased rectifier diode, passes thru zero going negatively until the reverse current recovers to a point which is less than 10% peak reverse current

Reverse recovery time is a direct function of the forward current prior to the application of reverse voltage

For any given rectifier, recovery time is very circuit dependent. Typical and maximum recovery time of all Motorola fast recovery power rectifiers are rated under a fixed set of conditions using  $I_F=10\ A$ ,  $V_R=30\ V$ . In order to cover all circuit conditions, curves are given for typical recovered stored charge versus commutation. di/dt. for various levels of forward current and for junction temperatures of  $25^{\rm o}C$ ,  $75^{\rm o}C$ ,  $100^{\rm o}C$ , and  $150^{\rm o}C$ .

To use these curves, it is necessary to know the forward current level just before commutation, the circuit commutation di/dt, and the operating junction temperature. The reverse recovery test current waveform for all Motorola fast recovery rectifiers is shown.



From stored charge curves versus di/dt, recovery time ( $t_{rr}$ ) and peak reverse recovery current ( $I_{RM(REC)}$ ) can be closely approximated using the following formulas

$$t_{rr} = 1.41 \times \left[ \frac{Q_R}{di/dt} \right]^{1/2}$$

 $I_{RM(REC)} = 1.41 \times \left[Q_R \times di/dt\right]^{1/2}$ 





di/dt tb Time 0.25 IR(REC) -I_{R(REC)} = 35 A MAX SOFT RECOVERY

FIGURE 20 - REVERSE RECOVERY CHARACTERISTIC

CASE 339-02 PLASTIC (Meets TO-220AB except dimension "C")

3 73 0 139 0 147 5 08

0 200

2.54 3 05 0 100 0 120

Q 3.53

#### **MECHANICAL CHARACTERISTICS**

CASE: Plastic Encapsulated, Metal Tabs.

FINISH: All external surfaces are corrosion resistant and are readily solderable.

POLARITY: Cathode to Tab with hole; Reverse polarity available by adding "R" Suffix, MR2402FR.

WEIGHT: 3.6 Grams (Approximately). MOUNTING TORQUE: 8 in-lbs max.

MAXIMUM TEMPERATURE FOR SOLDERING PURPOSES: 350°C, 3/8" from case for 10 seconds.

## MR2500 Series

#### **MEDIUM-CURRENT SILICON RECTIFIERS**

... compact, highly efficient silicon rectifiers for medium-current applications requiring:

- High Current Surge 400 Amperes @ T_J = 175^oC
- Peak Performance @ Elevated Temperature -25 Amperes @  $T_C = 150$ °C
- Low Cost
- Compact, Molded Package For Optimum Efficiency in a Small Case Configuration
- Available With a Single Lead Attached

#### MAXIMUM RATINGS

Characteristic	Symbol	MR 2500	MR 2501	MR 2502	MR 2504	MR 2506	MR 2508	MR 2510	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	VRRM VRWM VR	50	100	200	400	600	800	1000	Volts
Non-Repetitive Peak Reverse Vojtage (half wave, single phase, 60 Hz peak)	VRSM	60	120	240	480	720	960	1200	Volts
Average Rectified Forward Current (Single phase, resistive load, 60 Hz, TC = 150°C)	10	25				Amp			
Non-Repetitive Peak Surge Current (surge applied @ rated load conditions, half wave, single phase, 60 Hz)	IFSM	400 (for 1 cycle)				Amp			
Operating and Storage Junction Temperature Range	T _J ,T _{stg}	-	-65 to +175				°C		

#### THERMAL CHARACTERISTICS

11121111112			
Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	1 0	°C/W
(Single Side Cooled)	1		

#### **ELECTRICAL CHARACTERISTICS**

Characteristics and Conditions	Symbol	Max	Unit
Maximum Instantaneous Forward Voltage (iF = 78 5 Amp, $T_C = 25^{\circ}C$ )	٧F	1 18	Volts
Maximum Reverse Current (rated dc voltage) $T_C = 25^{\circ}C$ $T_C = 100^{\circ}C$	I _R	100 500	μА

#### MECHANICAL CHARACTERISTICS

CASE: Transfer Molded Plastic

FINISH: All External Surfaces are Corrosion Resistant and the Contact Areas Readily Solderable.

POLARITY: Indicated by dot on Cathode Side

MOUNTING POSITIONS: Any

MAXIMUM TEMPERATURE FOR SOLDERING PURPOSES: 250°C

WEIGHT: 1.8 Grams (Approximately)

# MEDIUM-CURRENT SILICON RECTIFIERS

50 - 1000 VOLTS 25 AMPERES DIFFUSED JUNCTION







	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	8.43	8.69	0.332	0.342
В	4.19	4.45	0.165	0.175
D	5.54	5.64	0.218	0.222
F	5.94	6.25	0.234	0.246
М	5° N	IOM	5° N	IOM

CASE 193-04 PLASTIC















To determine maximum junction temperature of the diode in a given situation, the following procedure is recommended

The temperature reference point (see the outline drawing on page 1). The thermal mass connected to the exemperature reference point (see the outline drawing on page 1). The thermal mass connected to the case is normally large enough so that it will not sponficially respond to heat surges generated in the diode as a result of pulsed operation once steady state conditions are achieved. Using the measured value of TiC, the junction temperature may be determined by  $T_{\rm J} = T_{\rm C} \cdot \Delta T_{\rm JC}$ 

where  $\Delta T_{JC}$  is the increase in junction temperature above the case temperature. It may be determined by

determined by  $\Delta T_{JC} = P_{pk} \bullet R_{IIJC} \{D \cdot (1 \quad D) \bullet r(i_1 + i_p) \cdot r(i_p) \quad r(i_1)\}$ 

r(t) = normalized value of transient thermal resistance at time. t -from Figure 6... i.e.,  $r(t_1+t_p)$  – normalized value of transient thermal resistance at time  $t_1+t_p$ 







#### FIGURE 10 - RECTIFICATION WAVEFORM EFFICIENCY



#### RECTIFICATION EFFICIENCY NOTE

#### FIGURE 11 - SINGLE-PHASE HALF-WAVE RECTIFIER CIRCUIT



The rectification efficiency factor  $\boldsymbol{\sigma}$  shown in Figure 10 was calculated using the formula

$$\sigma = \frac{P_{dc}}{P_{rms}} = \frac{\frac{V_{O}^{2}(dc)}{R_{L}}}{\frac{V_{O}^{2}(rms)}{R_{L}}} \bullet 100\% = \frac{V_{O}^{2}(dc)}{V_{O}^{2}(ac) + V_{O}^{2}(dc)} \bullet 100\% \quad (1)$$

For a sine wave input  $V_{\bm{m}}$  sin  $(\omega t)$  to the diode, assume lossless, the maximum theoretical efficiency factor becomes

$$\sigma_{\{\text{sine}\}} = \frac{\frac{V_{\text{m}}^2}{\pi^2 R_{\text{L}}}}{\frac{V_{\text{m}}^2}{4R_{\text{L}}}} \bullet 100\% = \frac{4}{\pi^2} \bullet 100\% = 40.6\%$$
 (2)

For a square wave input of amplitude  $\boldsymbol{V}_{\boldsymbol{m}},$  the efficiency factor becomes

$$\sigma_{\text{(square)}} = \frac{\frac{V_{\text{m}}^2}{2R_{\text{L}}}}{\frac{V_{\text{m}}^2}{R_{\text{L}}}} \bullet 100\% = 50\%$$
 (3)

(A full wave circuit has twice these efficiencies)

As the frequency of the input signal is increased, the reverse recovery time of the diode (Figure 9) becomes significant, resulting in an increasing ac voltage component across  $R_L$  which is opposite in polarity to the forward current, thereby reducing the value of the efficiency factor  $\sigma$ , as shown on Figure 10

It should be emphasized that Figure 10 shows waveform efficiency only; it does not provide a measure of diode losses Data was obtained by measuring the ac component of  $V_{\rm O}$  with a true rms ac voltmeter and the dc component with a dc voltmeter The data was used in Equation 1 to obtain points for Figure 10

#### MR2500 Series

#### ASSEMBLY AND SOLDERING INFORMATION

There are two basic areas of consideration for successful implementation of button rectifiers:

- 1. Mounting and Handling
- Soldering

each should be carefully examined before attempting a finished assembly or mounting operation.

#### MOUNTING AND HANDLING

The button rectifier lends itself to a multitude of assembly arrangements but one key consideration must always be included:

## One Side of the Connections to the Button Must Be Flexible!

This stress relief to the button should also be chosen for maximum contact area to afford the best heat transfer — but not at the expense of flexibility. For an annealed copper terminal a thickness of 0.015" is suggested.



Strain Relief Terminal

The base heat sink may be of various materials whose shape and size are a function of the individual application and the heat transfer requirements.

Common Materials	Advantages and Disadvantages
Steel	Low Cost; relatively low heat conductivity
Copper	High Cost; high heat conductivity
Aluminum	Medium Cost; medium heat conductivity Relatively expensive to plate and not all platers can process aluminum.

Handling of the button during assembly must be relatively gentle to minimize sharp impact shocks and avoid nicking of the plastic. Improperly designed automatic handling equipment is the worst source of unnecessary shocks. Techniques for vacuum handling and spring loading should be investigated.

The mechanical stress limits for the button diode are as follows:

 Compression
 32 lbs.
 142 3 Newton

 Tension
 32 lbs.
 142.3 Newton

 Torsion
 6-inch lbs.
 0.68 Newton-meters

 Shear
 55 lbs.
 244.7 Newton

#### MECHANICAL STRESS



Exceeding these recommended maximums can result in electrical degradation of the device.

#### SOLDERING

The button rectifier is basically a semiconductor chip bonded between two nickel-plated copper heat sinks with an encapsulating material of thermal-setting silicone. The exposed metal areas are also tin plated to enhance solderability.

In the soldering process it is important that the temperature not exceed 250°C if device damage is to be avoided. Various solder alloys can be used for this operation but two types are recommended for best results:

- 96.5% tin, 3.5% silver; Melting point is 221°C (this particular eutetic is used by Motorola for its button rectifier assemblies).
- 2. 63% tin, 37% lead; Melting point 183°C (eutetic). Solder is available as preforms or paste. The paste contains both the metal and flux and can be dispensed rapidly. The solder preform requires the application of a flux to assure good wetting of the solder. The type of flux used depends upon the degree of cleaning to be accomplished and is a function of the metals involved. These fluxes range from a mild rosin to a strong acid; e.g., Nickel plating oxides are best removed by an acid base flux while an activated rosin flux may be sufficient for tin plated parts.

Since the button is relatively light-weight, there is a tendency for it to float when the solder becomes liquid. To prevent bad joints and misalignment it is suggested that a weighting or spring loaded fixture be employed. It is also important that severe thermal shock (either heating or cooling) be avoided as it may lead to damage of the die or encapsulant of the part.

Button holding fixtures for use during soldering may be of various materials. Stainless steel has a longer use life while black anodized aluminum is less expensive and will limit heat reflection and enhance absorption. The assembly volume will influence the choice of materials. Fixture dimension tolerances for locating the button must allow for expansion during soldering as well as allowing for button clearance.

#### **HEATING TECHNIQUES**

The following four heating methods have their advantages and disadvantages depending on volume of buttons to be soldered.

- Belt Furnaces readily handle large or small volumes and are adaptable to establishment of "on-line" assembly since a variable belt speed sets the run rate. Individual furnace zone controls make excellent temperature control possible.
- 2. Flame Soldering involves the directing of natural gas flame jets at the base of a heatsink as the heatsink is indexed to various loading-heating-cooling-unloading positions. This is the most economical labor method of soldering large volumes. Flame soldering offers good temperature control but requires sophisticated temperature monitoring systems such as infrared.

#### ASSEMBLY AND SOLDERING INFORMATION (continued)

- 3. Ovens are good for batch soldering and are production limited. There are handling problems because of slow cooling. Response time is load dependent, being a function of the watt rating of the oven and the mass of parts. Large ovens may not give an acceptable temperature gradient. Capital cost is low compared to belt furnaces and flame soldering.
- 4. Hot Plates are good for soldering small quantities of prototype devices. Temperature control is fair with overshoot common because of the exposed heating surface. Solder flow and positioning can be corrected during soldering since the assembly is exposed. Investment cost is very low.

Regardless of the heating method used, a soldering profile giving the time-temperature relationship of the particular method must be determined to assure proper soldering. Profiling must be performed on a scheduled basis to minimize poor soldering. The time-temperature relationship will change depending on the heating method used.

#### SOLDER PROCESS EVALUATION

Characteristics to look for when setting up the soldering process:

- I Overtemperature is indicated by any one or all three of the following observations.
  - Remelting of the solder inside the button rectifier shows the temperature has exceeded 285°C and is noted by "islands" of shiny solder and solder dewetting when a unit is broken apart.
  - Cracked die inside the button may be observed by a moving reverse oscilloscope trace when pressure is applied to the unit.
  - Cracked plastic may be caused by thermal shock as well as overtemperature so cooling rate should also be checked.
- II Cold soldering gives a grainy appearance and solder build-up without a smooth continuous solder fillet. The temperature must be adjusted until the proper solder fillet is obtained within the maximum temperature limits.
- III Incomplete solder fillets result from insufficient solder or parts not making proper contact.
- IV Tilted buttons can cause a void in the solder between the heatsink and button rectifier which will result in poor heat transfer during operation. An eight degree tilt is a suggested maximum value.
- V Plating problems require a knowledge of plating operations for complete understanding of observed deficiencies.

- Peeling or plating separation is generally seen when a button is broken away for solder inspection. If heatsink or terminal base metal is present the plating is poor and must be corrected.
- Thin plating allows the solder to penetrate through to the base metal and can give a poor connection. A suggested minimum plating thickness is 300 microinches.
- Contaminated soldering surfaces may out-gas and cause non-wetting resulting in voids in the solder connection. The exact cause is not always readily apparent and can be because of
  - (a) improper plating
  - (b) mishandling of parts
  - (c) improper and/or excessive storage time

#### SOLDER PROCESS MONITORING

Continuous monitoring of the soldering process must be established to minimize potential problems. All parts used in the soldering operation should be sampled on a lot by lot basis by assembly of a controlled sample. Evaluate the control sample by break-apart tests to view the solder connections, by physical strength tests and by dimensional characteristics for part mating.

A shear test is a suggested way of testing the solder bond strength.

#### POST SOLDERING OPERATION CONSIDERATIONS

After soldering, the completed assembly must be unloaded, washed and inspected.

**Unloading** must be done carefully to avoid unnecessary stress. Assembly fixtures should be cooled to room temperature so solder profiles are not affected.

Washing is mandatory if an acid flux is used because of its ionic and corrosive nature. Wash the assemblies in agitated hot water and detergent for three to five minutes. After washing; rinse, blow off excessive water and bake 30 minutes at 150°C to remove trapped moisture.

**Inspection** should be both electrical and physical. Any rejects can be reworked as required.

#### SUMMARY

The Button Rectifier is an excellent building block for specialized applications. The prime example of its use is the output bridge of the automative alternator where millions are used each year. Although the material presented here is not all inclusive, primary considerations for use are presented. For further information, contact the nearest Motorola Sales Office or franchised distributor.

### Advance Information

## **Overvoltage Transient Suppressors**

... designed for applications requiring a low voltage rectifier with reverse avalanche characteristics for use as reverse power transient suppressors. Developed to suppress transients in the automotive system, these devices operate in the forward mode as standard rectifiers or reverse mode as power avalanche rectifier and will protect electronic equipment from overvoltage conditions.

- Avalanche Voltage 24 to 32 Volts
- High Power Capability
- Economical
- Increased Capacity by Parallel Operation
- Replaces MR2520L/2525L

#### **MECHANICAL CHARACTERISTICS:**

CASE: Transfer Molded Plastic

MAXIMUM LEAD TEMPERATURE FOR SOLDERING PURPOSES: 350°C 3/8" from case

for 10 seconds at 5 lbs. tension

FINISH: All external surfaces are corrosion-resistant, leads are readily solderable

POLARITY: Indicated by diode symbol or cathode band

WEIGHT: 2.5 Grams (approx.)

## MR2535L MR2540L

MEDIUM CURRENT OVERVOLTAGE TRANSIENT SUPPRESSORS



**CASE 194-04** MR25351

#### MAXIMUM RATINGS

Rating	Symbol	Value	Unit
DC Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	VRRM VRWM VR	20	Volts
Repetitive Peak Reverse Surge Current MR2535L MR2540L (Time Constant = 10 ms, Duty Cycle $\leq$ 1%, $T_C = 25^{\circ}C$ ) (See Figure 1)	IRSM	110 150	Amps
Average Rectified Forward Current (Single Phase, Resistive Load, 60 Hz, T _C = 150°C) MR2535L MR2540L	ю	35 50	Amps
Non-Repetitive Peak Surge Current Surge Supplied at Rated Load Conditions Halfwave, Single Phase MR2535L MR2540L	IFSM	600 800	Amps
Operating and Storage Junction Temperature Range	Tj, T _{stg}	-65 to +175	°C

#### THERMAL CHARACTERISTICS

Characteristic	Lead Length	Symbol	Max	Unit
Thermal Resistance, Junction to Lead @ Both Leads to Heat Sink, Equal Length	1/4" 3/8" 1/2"	R _θ JL	7.5 10 13	°C/W
Thermal Resistance Junction to Case		$R_{\theta JC}$	0 8*	°C/W

^{*}Typical

This document contains information on a new product. Specifications and information herein are subject to change without notice

#### **ELECTRICAL CHARACTERISTICS**

Characteristic	Symbol	Min	Max	Unit
Instantaneous Forward Voltage (1) (IF = 100 Amps, T _C = 25°C)	٧F	_	1.1	Volts
Reverse Current (V _R = 20 Vdc, T _C = 25°C)	l _R	_	200	nAdc
Breakdown Voltage (1) (I _R = 100 mAdc, T _C = 25°C)	V _(BR)	24	32	Volts
Breakdown Voltage (1) MR2535L only (I _R = 90 Amp, T _C = 150°C, PW = 80 $\mu$ s)	V _(BR)	_	40	Volts
Breakdown Voltage Temperature Coefficient	V _(BR) TC	_	0 096*	%/°C
Forward Voltage Temperature Coefficient @ I _F = 10 mA	V _{FTC}	_	2*	mV/°C

⁽¹⁾ Pulse Test Pulse Width  $\leq$  300  $\mu \rm{s}$  , Duty Cycle  $\leq$  2% * Typical



Figure 1. Surge Current Characteristics



## MR5005 MR5010 MR5020 MR5030 MR5040

## INDUSTRIAL PRESSFIT SILICON POWER RECTIFIERS

designed for use in all medium-current applications or for higher current industrial alternators and chassis mounted power supply rectifiers.

- 50 Amp @ T_C = 150°C
- 600 Amp Surge Capability
- Reverse Polarity Available
- Rugged Construction

#### MAXIMUM RATINGS

Rating	Symbol	MR5005	MR5010	MR5020	MR5030	MR5040	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	VRRM VRWM VR	50	100	200	300	400	Valts
Non Repetitive Peak Reverse Voltage	VRSM	75	150	250	400	450	Volts
RMS Reverse Voltage	VR(RMS)	35	70	140	210	280	Volts
Average Rectified Forward Current (Single phase, resistive load, T _C = 150 ⁰ C	Ю	-		50			Amp
Non-Repetitive Peak Surge Current (Surge applied at rated load conditions)	IFSM	-		600		-	Amp
Operating and Storage Junction Temperature Range	T _J ,T _{stg}	-		65 to +199	5		°C

#### THERMAL CHARACTERISTICS

Characteristic
Thermal Resistance, Junction to Case

ELECTRICAL CHARACTERISTICS					
Characteristic	Symbol	Min	Тур	Max	Unit
Instantaneous Forward Voltage	VF.	1	l		Volts
(IF = 157 Amp, T _J = 25°C)	1	-	1 10	1.18	
(IF = 50 Amp, T _J = 25°C)		-	0 95	1 00	
Reverse Current (rated dc voltage)	I _B		]		mA
(T _C = 25 ^o C)		-	0 05	02	
(T _C = 150 ^o C)		Í –	10	2.0	

Symbol

 $R_{\theta JC}$ 

Max

Unit

ocw.

#### MECHANICAL CHARACTERISTICS

CASE Welded hermetically sealed construction

FINISH: All external surfaces corrosion resistant, terminals readily solerable

WEIGHT: 9 grams (approx.)

POLARITY: Cathode connected to case (reverse polarity available denoted by Suffix R, i.e. MR5030R)

MOUNTING POSITION: Any

#### SILICON POWER RECTIFIERS

50-400 VOLTS 50 AMPERE





#### NOTES

- 1 50 TPI STRAIGHT KNURL
- 2 POLARITY, INK MARKED ON PACKAGE.

	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	15 49	16 26	0 610	0 640
В	12 73	12 83	0 501	0 505
C	5 08	6.35	0 200	0 250
D	2 46	2 62	0 097	0 103
E	2 03	4 83	0.080	0 190
Н	5 08	6 35	0 200	0 250
J		3.56		0 140
K	_	15 24		0 600

CASE 43-04 METAL













Recommended procedures for mounting are as follows

- 1 Drill a hole in the heat sink 0 499 ± 0 001 inch in diameter
- 2 Break the hole edge as shown to provide a guide into the hole and prevent shearing off the knurled side of the rectifier.

  3 The depth and width of the break should be 0.010 inch.
- maximum to retain maximum heat sink surface contact
- To prevent damage to the rectifier during press in, the pressing force should be applied only on the shoulder ring
- pressing force stoud be applied owiny on the stoudier imp.

  The pressing force should be applied evenly about the shoulder ring to avoid titting or canting of the rectifier case in the hole during the press in operation. Also, the use of a hermal lubricant such as D C. 340 will be of considerable aid.



## MR5060 MR5061

#### **AVALANCHE RECTIFIERS**

subminiature size, axial lead-mounted rectifiers for generalpurpose, low-power applications requiring avalanche protection

- Avalanche power capability
  - 1000 Watts at 20 μs
  - 450 Watts at 100 μs
- Low Forward Voltage
- Low Cost

### MAXIMUM RATINGS

Rating	Symbol	MR5060	MR5061	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	400	600	Volts
Nonrepetitive Peak Reverse Voltage (Halfwave, Single Phase, 60 Hz)	VRSM	525	800	Volts
RMS Reverse Voltage	V _R (RMS)	280	420	Volts
Average Rectified Forward Current (Single Phase, Resistive Load, 60 Hz, T _L = 70°C, 1/2" From Body)	10	1	5 Amp	
Nonrepetitive Peak Surge Current (Surge Applied at Rated Load Conditions)	^l FSM	50 (for	1 cycle)	Amp
Junction & Storage Temperature Range	T _J , T _{stg}	−65 te	o +175	°C
Nonrepetitive Peak Reverse Surge Power (t = 20 µs)	P _{RM}	10	000	Watts

#### **ELECTRICAL CHARACTERISTICS**

Characteristic and Conditions	Symbol	Тур	Max	Unit
Instantaneous Forward Voltage (If = 1 5 Amp, T _J = 25°C)	٧F	0 93	1 04	Volts
Reverse Current $T_J = 150$ °C (Rated dc Voltage) $T_J = 25$ °C	IR	250 3 0	300 5 0	μА

#### THERMAL CHARACTERISTICS

Characteristic	Symbol	Тур	Max	Unit
Thermal Resistance, Junction to Lead	$R_{\theta}$ JL			°C/W
1/4"	1	21	38	
1/2"	l	31	50	

#### MECHANICAL CHARACTERISTICS

CASE: Void free, transfer molded plastic

MAXIMUM LEAD TEMPERATURE FOR SOLDERING PURPOSES.

 $240^{\circ}\text{C},\,1/8"$  from case for 10 seconds at 5 lbs tension

FINISH. All external surfaces are corrosion-resistant, leads are readily solderable

POLARITY Cathode indicated by color band

WEIGHT. 0 40 grams (approximately)

## LEAD-MOUNTED AVALANCHE RECTIFIERS

200-400-600 VOLTS 1.5 AMPS





#### NOTES:

- 1. ALL RULES AND NOTES ASSOCIATED WITH JEDEC DO-41 OUTLINE SHALL APPLY.
- 2. POLARITY DENOTED BY CATHODE BAND.
- 3. LEAD DIAMETER NOT CONTROLLED WITHIN "F" DIMENSION.

(	MILLIM	IETERS	INCHES				
DIM	MIN	MAX	MIN	MAX			
Α	5.97	6 60	0.235	0.260			
В	2.79	3 05	0.110	0.120			
D	0.76	0.86	0 030	0.034			
K	27.94		1.100	_			

#### CASE 59-04 PLASTIC

Dimensions Within JEDEC DO-15 Outline















MUR105 MUR150 MUR110 MUR160 MUR115 MUR170 MUR120 MUR180 MUR130 MUR190 MUR140 MUR1100

#### SWITCHMODE POWER RECTIFIERS

- ... designed for use in switching power supplies, inverters and as free wheeling diodes, these state-of-the-art devices have the following features:
- Ultrafast 25, 50 and 75 Nanosecond Recovery Times
- o 175°C Operating Junction Temperature
- Low Forward Voltage
- Low Leakage Current
- o High Temperature Glass Passivated Junction
- Reverse Voltage to 1000 Volts

## **ULTRAFAST RECTIFIERS**

1.0 AMPERE 50-1000 VOLTS



#### **MAXIMUM RATINGS**

			MUR											
Rating	Symbol	105	110	115	120	130	140	150	160	170	180	190	1100	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	50	100	150	200	300	400	500	600	700	800	900	1000	Volts
Average Rectified Forward Current (Square Wave Mounting Method #3 Per Note 1)	lF(AV)	1.0 @ T _A = 1.0 @ T _A = 120°C 1.0 @ T _A = 95°C					5°C	Amps						
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions, halfwave, single phase, 60 Hz)	IFSM	35							Amps					
Operating Junction Temperature and Storage Temperature	T _J , T _{stg}	-65 to +175							°C					

#### THERMAL CHARACTERISTICS

Maximum Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	R _{6JA} See Note 1					
ELECTRICAL CHARACTERISTICS							
Maximum Instantaneous Forward Voltage (1) (iF=1.0 Amp, TJ=150°C) (iF=1.0 Amp, TJ=25°C)	VF	0.710 0.875	1.05 1.25	1.50 1.75	Volts		
Maximum Instantaneous Reverse Current (1) (Rated dc Voltage, TJ = 150°C) (Rated dc Voltage, TJ = 25°C)	iR	50 2.0	150 5.0	600 10	μА		
Maximum Reverse Recovery Time (I _F =1.0 Amp, di/dt=50 Amp/ $\mu$ s) (I _F =0.5 Amp, i _R =1.0 Amp, I _{REC} =0.25 A)	t _{rr}	35 25	75 50	100 75	ns		
Maximum Forward Recovery Time (IF=1.0 A, di/dt = 100 A/ $\mu$ s, IREC to 1.0 V)	tfr	25	50	75	ns		

(1)Pulse Test: Pulse Width = 300 µs, Duty Cycle ≤2.0%

#### MUR105, 110 AND 115











#### MUR120, 130, 140, 150, 160



2.5

IF(AV), AVERAGE FORWARD CURRENT (AMPS)

2.0

10

20

VR, REVERSE VOLTAGE (VOLTS)

FIGURE 11 - TYPICAL FORWARD VOLTAGE



FIGURE 12 — TYPICAL REVERSE CURRENT*



FIGURE 13 — CURRENT DERATING (MOUNTING METHOD #3 PER NOTE 1)



FIGURE 14 — POWER DISSIPATION





#### NOTE 1 - AMBIENT MOUNTING DATA

Data shown for thermal resistance junction-to-ambient ( $R_{Q,|Q}$ ) for the mountings shown is to be used as typical guideline values for preliminary engineering or in case the tie point temperature cannot be measured.

### TYPICAL VALUES FOR $R_{uJA}$ IN STILL AIR

MOUNTING	LEAD				
METHOD	1/8	1/4	1/2	UNITS	
1		52	65	72	°C/W
2	$R_{\theta JA}$	67	80	87	°C/W
3			°C/W		

#### **MOUNTING METHOD 1**



#### MOUNTING METHOD 2



Vector Pin Mounting

#### MOUNTING METHOD 3



P.C. Board with 1-1/2" x 1-1/2" Copper Surface

#### **MECHANICAL CHARACTERISTICS**

Case: Transfer Molded Plastic

Finish: External Leads are Plated, Leads are

readily Solderable

Polarity: Indicated by Cathode Band Weight: 1.1 Grams (Approximately) Maximum Lead Temperature for Soldering

Purposes: 240°C, 1/8" from case for 10

seconds at 5.0 lbs. tension.

#### **OUTLINE DIMENSIONS**



#### NOTES:

- ALL RULES AND NOTES ASSOCIATED WITH JEDEC DO-41 OUTLINE SHALL APPLY.
- 2. POLARITY DENOTED BY CATHODE BAND.
- 3. LEAD DIAMETER NOT CONTROLLED WITHIN "F"
- LEAD DIAMETER NOT CONTROLLED WITHIN "F DIMENSION.

	MILLIN	IETERS	INCHES				
DIM	MIN	MAX	MIN	MAX			
Α	5 97	6 60	0.235	0.260			
В	2.79	3.05	0.110	0.120			
D	0.76	0.86	0.030	0.034			
K	27.94		1.100	-			

CASE 59-04 PLASTIC

MUR405 MUR450 MUR410 MUR460 MUR415 MUR470 MUR420 MUR480 MUR430 MUR490 MUR440 MUR4100



#### **SWITCHMODE POWER RECTIFIERS**

... designed for use in switching power supplies, inverters and as free wheeling diodes, these state-of-the-art devices have the following features:

- Ultrafast 25, 50 and 75 Nanosecond Recovery Times
- 175°C Operating Junction Temperature
- Low Forward Voltage
- Low Leakage Current
- High Temperature Glass Passivated Junction
- · Reverse Voltage to 1000 Volts

# **ULTRAFAST RECTIFIERS**

4.0 AMPERES 50-1000 VOLTS



#### **MAXIMUM RATINGS**

		MUR												
Rating	Symbol	405	410	415	420	430	440	450	460	470	480	490	4100	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	50	100	150	200	300	400	500	600	700	800	900	1000	Volts
Average Rectified Forward Current (Square Wave) (Mounting Method #3 Per Note 1)	l _{F(AV)}	4.0 @ T _A = 80°C			4.0 @ T _A = 40°C				4.0	4.0 @ T _A = 35°C			Amps	
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)	IFSM	125				70							Amps	
Operating Junction Temperature and Storage Temperature	T _J , T _{stg}	- 65 to + 175							°C					

#### THERMAL CHARACTERISTICS

Maximum Thermal Resistance, Junction to Ambient	$R_{\theta JA}$		See Note 1		°C/W
ELECTRICAL CHARACTERISTICS					
Maximum Instantaneous Forward Voltage (1) ( $i_F$ = 3.0 Amp, $T_J$ = 150°C) ( $i_F$ = 3.0 Amp, $T_J$ = 25°C) ( $i_F$ = 4.0 Amp, $T_J$ = 25°C)	٧F	0.710 0.875 0.890	1.05 1.25 1.28	1.53 1.75 1.85	Volts
Maximum Instantaneous Reverse Current (1) (Rated dc Voltage, T _J = 150°C) (Rated dc Voltage, T _J = 25°C)	iR	150 5.0	250 10	900 25	μΑ
Maximum Reverse Recovery Time (I _F =1.0 Amp, di/dt=50 Amp/μs) (I _F =0.5 Amp, I _R =1.0 Amp, I _{REC} =0.25 Amp)	t _{rr}	35 25	75 50	100 75	ns
Maximum Forward Recovery Time (I _F =1.0 A, di/dt = 100 A/μs, Recovery to 1.0 V)	tfr	25	50	75	ns

(1)Pulse Test: Pulse Width = 300  $\mu$ s, Duty Cycle  $\leq$ 2.0%

#### MUR405, 410 AND 415

FIGURE 1 — TYPICAL FORWARD VOLTAGE 100 70 50 30 20 10 7.0 1F, INSTANTANEOUS FORWARD CURRENT (AMPS) 5.0 3.0 2.0 - 25°C -100^lC Tj = 175°C 1.0 0.7 0.5 0.3 0.2 0.1 0.3 0.4 0.5 0.7 0.2 0.6 8.0 0.9 10 VF, INSTANTANEOUS VOLTAGE (VOLTS)









#### MUR420, 430, 440, 450 AND 460











#### MUR470, 480, 490, 4100

FIGURE 11 — TYPICAL FORWARD VOLTAGE



FIGURE 12 — TYPICAL REVERSE CURRENT*



FIGURE 13 — CURRENT DERATING
(MOUNTING METHOD #3 PER NOTE 1)



FIGURE 14 — POWER DISSIPATION



FIGURE 15 — TYPICAL CAPACITANCE



#### NOTE 1 - AMBIENT MOUNTING DATA

Data shown for thermal resistance junction-to-ambient ( $R_{\beta JA}$ ) for the mountings shown is to be used stypical guideline values for preliminary engineering or in case the tie point temperature cannot be measured.

#### TYPICAL VALUES FOR $R_{ heta JA}$ IN STILL AIR

MOUN	NTING	LEA								
	HOD	1/8	1/4	1/2	3/4	UNITS				
1		50	51	53	55	°C/W				
2	$R_{\theta JA}$	58	59	61	63	°C/W				
3			28							

#### MOUNTING METHOD 1

P.C. Board Where Available Copper Surface area is small.



#### **MOUNTING METHOD 2**

Vector Push-In Terminals T-28



#### MOUNTING METHOD 3

P.C. Board with 1-1/2" x 1-1/2" Copper Surface



#### **MECHANICAL CHARACTERISTICS**

Case: Transfer Molded Plastic

Finish: External Leads are Plated, Leads are

readily Solderable

Polarity: Indicated by Cathode Band Weight: 1.1 Grams (Approximately) Maximum Lead Temperature for Soldering

Purposes:

300°C, 1/8" from case for 10 s

#### **OUTLINE DIMENSIONS**



## MUR605CT MUR610CT MUR615CT MUR620CT

#### SWITCHMODE POWER RECTIFIERS

... designed for use in switching power supplies, inverters and as free wheeling diodes, these state-of-the-art devices have the following features:

- o Ultrafast 35 Nanosecond Recovery Time
- 175°C Operating Junction Temperature
- o Popular TO-220 Package

# **ULTRAFAST RECTIFIERS**

6 AMPERES 50-200 VOLTS



Maximum

Unit

#### **MAXIMUM RATINGS**

Rating	Symbol	MUR605CT	MUR610CT	MUR615CT	MUR620CT	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _R WM V _R					Volts
Average Rectified Forward Current (Rated VR) TC = 130°C Per Diode Total Device	lF(AV)	-	Amps			
Peak Repetitive Forward Current Per Diode Leg (Rated V _R , Square Wave, 20 kHz) T _C = 130°C	IFRM	-		Amps		
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)	FSM			/5		Amps
Operating Junction Temperature and Storage Temperature	T _J , T _{stg}	-	——— – 65 to	+ 175		°C

# THERMAL CHARACTERISTICS PER DIODE LEG Rating

Thermal Resistance, Junction to Case	$R_{\theta JC}$	5.0-6.0	7.0	°C/W						
ELECTRICAL CHARACTERISTICS PER DIODE LEG										
Instantaneous Forward Voltage (1) (iF = 3.0 Amp, $T_C$ = 150°C) (iF = 3.0 Amp, $T_C$ = 25°C)	٧F	0.80 0.94	0.895 0.975	Volts						
Instantaneous Reverse Current (1) (Rated dc Voltage, T _C = 150°C) (Rated dc Voltage, T _C = 25°C)	'R	2.0-10 0.01-3.0	250 5.0	μА						
Reverse Recovery Time	t _{rr}	20-30	35	ns						

Typical

Symbol

(1) Pulse Test Pulse Width = 300 μs, Duty Cycle ≤ 2.0%.

 $(I_F = 1.0 \text{ Amp, } di/dt = 50 \text{ Amp}/\mu s)$ 















MUR805 MUR850 MUR810 MUR860 MUR815 MUR870 MUR820 MUR880 MUR830 MUR890 MUR840 MUR8100

#### **SWITCHMODE POWER RECTIFIERS**

... designed for use in switching power supplies, inverters and as free wheeling diodes, these state-of-the-art devices have the following features:

- Ultrafast 25, 50 and 75 Nanosecond Recovery Time
- 175°C Operating Junction Temperature
- o Popular TO-220 Package
- Epoxy meets UL94, VO @ 1/8"
- Low Forward Voltage
- Low Leakage Current
- High Temperature Glass Passivated Junction
- Reverse Voltage to 1000 Volts

# **ULTRAFAST RECTIFIERS**

8 AMPERES 50-1000 VOLTS



#### **MAXIMUM RATINGS**

		MUR												
Rating	Symbol	805	810	815	820	830	840	850	860	870	880	890	8100	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _R WM V _R	50	100	150	200	300	400	500	600	700	800	900	1000	Volts
Average Rectified Forward Current Total Device, (Rated V _R ), T _C = 150°C	¹ F(AV)	80										Amps		
Peak Repetitive Forward Current (Rated V _R , Square Wave, 20 kHz), T _C = 150°C	FM	. 16								Amps				
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)	^I FSM	100								Amps				
Operating Junction Temperature and Storage Temperature	T _J , T _{stg}	~ 65 to + 175								°C				
THERMAL CHARACTERISTICS														
Maximum Thermal Resistance, Junction to Case	$R_{\theta}$ JC	3 0 2 0								°C/W				
ELECTRICAL CHARACTERISTICS														
Maximum Instantaneous Forward Voltage (1) (IF = 8.0 Amp, T _C = 150°C) (IF = 8.0 Amp, T _C = 25°C)	٧F		0 895 0 975			1 00 1 30		1	20 50			5 .8		Volts
Maximum Instantaneous Reverse Current (1) (Rated dc Voltage, T _C = 150°C) (Rated dc Voltage, T _C = 25°C)	'R		250 5 0			500 10			0			00 !5		μА
Maximum Reverse Recovery Time (IF = 1.0 Amp, di/dt = 50 Amp/ $\mu$ s) (IF = 0.5 Amp, IR = 1.0 Amp,	t _{rr}	35 60 100						ns						
IREC = 0.25 Amp)			25				50				7	75		<u> </u>

(1) Pulse Test Pulse Width = 300 µs, Duty Cycle ≤ 2 0%

#### MUR805, 810 AND 815



100 120

TA, AMBIENT TEMPERATURE (°C)

160

### 3

#### MUR820, 830 AND 840



1.0

4.0 5.0 6.0 7.0 8.0

IF(AV), AVERAGE FORWARD CURRENT (AMPS)

#### **MUR850 AND 860**



IF(AV), AVERAGE FORWARD CURRENT (AMPS)

TA, AMBIENT TEMPERATURE (°C)

#### MUR870, 880, 890 AND 8100













#### FIGURE 22 — TYPICAL CAPACITANCE



FIGURE 23 — OUTLINE DIMENSIONS



MUR1505 MUR1530 MUR1510 MUR1540 MUR1515 MUR1550 MUR1520 MUR1560



#### SWITCHMODE POWER RECTIFIERS

... designed for use in switching power supplies, inverters and as free wheeling diodes, these state-of-the-art devices have the following features:

- Ultrafast 35 and 60 Nanosecond Recovery Time
- 175°C Operating Junction Temperature
- Popular TO-220 Package
- High Voltage Capability to 600 Volts
- Low Forward Drop
- Low Leakage Specified @ 150°C Case Temperature
- Current Derating Specified @ Both Case and Ambient Temperatures

## ULTRAFAST RECTIFIERS

15 AMPERES 50-600 VOLTS



#### **MAXIMUM RATINGS**

		MUR								
Rating	Symbol	1505	1510	1515	1520	1530	1540	1550	1560	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	50	100	150	200	300	400	500	600	Volts
Average Rectified Forward Current (Rated V _R )	(F(AV)	15					-	Amps		
Peak Repetitive Forward Current (Rated V _R , Square Wave, 20 kHz)	IFRM	30 30 30					-	Amps		
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)	^I FSM	200 150					Amps			
Operating Junction Temperature and Storage Temperature	T _J , T _{stg}	- 65 to +175							°C	

#### THERMAL CHARACTERISTICS

Maximum Thermal Resistance, Junction to Case	R _B JC 1.5										
ELECTRICAL CHARACTERISTICS											
Maximum Instantaneous Forward Voltage (1) (iF = 15 Amp, $T_C = 150^{\circ}C$ ) (iF = 15 Amp, $T_C = 25^{\circ}C$ )	٧F	0.85 1 05	1.12 1.25	1.20 1.50	Volts						
Maximum Instantaneous Reverse Current (1) (Rated dc Voltage, T _C = 150°C) (Rated dc Voltage, T _C = 25°C)	ЧR	500 10	1000 10	μА							
Maximum Reverse Recovery Time (I _F = 1.0 Amp, di/dt = 50 Amp/μs)	t _{rr}	35	60		ns						

(1) Pulse Test Pulse Width = 300 µs, Duty Cycle ≤ 20%

#### MUR1505, 1510, and 1515

FIGURE 1 — TYPICAL FORWARD VOLTAGE



FIGURE 2 - TYPICAL REVERSE CURRENT*



*The curves shown are typical for the highest voltage device in the voltage grouping. Typical reverse current for lower voltage selections can be estimated from these same curves if  $V_{\mbox{\scriptsize R}}$  is sufficiently below rated  $V_{\mbox{\scriptsize R}}$ .

FIGURE 3 - CURRENT DERATING, CASE





TA. AMBIENT TEMPERATURE (°C)

60 80 100 120

0 20

FIGURE 4 - CURRENT DERATING, AMBIENT



160

#### MUR1505 thru MUR1560

#### MUR1520, 1530, 1540



#### FIGURE 7 - TYPICAL REVERSE CURRENT* 100 T_J = 150°C 50 20 100°C 10 REVERSE CURRENT (µA) 5.0 2.0 1.0 0.5 0.2 0.1 0.05 0.02 0.01 150 200 250 300 35 V_R, REVERSE VOLTAGE (VOLTS) 100 450 0 350

*The curves shown are typical for the highest voltage device in the voltage grouping. Typical reverse current for lower voltage selections can be estimated from these same curves if VR is sufficiently below rated VR.







#### MUR1550, 1560





*The curves shown are typical for the highest voltage device in the voltage grouping. Typical reverse current for lower voltage selections can be estimated from these same curves if  $V_{R}$  is sufficiently below rated  $V_{R}$ .









## 1K C, CAPACITANCE (pF)

FIGURE 17 - TYPICAL CAPACITANCE

#### FIGURE 18 - OUTLINE DIMENSIONS

VR, REVERSE VOLTAGE (VOLTS) 

# MOTOROLA SEMICONDUCTOR TECHNICAL DATA

MUR1605CT MUR1630CT MUR1610CT MUR1640CT MUR1615CT MUR1650CT MUR1620CT MUR1660CT



# **SWITCHMODE POWER RECTIFIERS**

... designed for use in switching power supplies, inverters and as free wheeling diodes, these state-of-the-art devices have the following features:

- Ultrafast 35 and 60 Nanosecond Recovery Times
- 175°C Operating Junction Temperature
- Popular TO-220 Package
- Epoxy meets UL94, VO @ 1/8"
- High Temperature Glass Passivated Junction
- High Voltage Capability to 600 Volts
- Low Leakage Specified @ 150°C Case Temperature
- Current Derating @ Both Case and Ambient Temperatures



8 AMPERES 50-600 VOLTS



MUR

# MAXIMUM RATINGS

Rating	Symbol	1605CT	1610CT	1615CT	1620CT	1630CT	1640CT	1650CT	1660CT	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	50	100	150	200	300	400	500	600	Volts
Average Rectified Forward Current Per Leg Total Device, (Rated $V_R$ ), $T_C = 150^{\circ}C$ Total Device	IF(AV)				_	.0 6				Amps
Peak Repetitive Forward Current	IFM	16						Amps		
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)	¹ FSM	100						Amps		
Operating Junction Temperature and Storage Temperature	T _J , T _{stg}	- 65 to + 175						°C		
THERMAL CHARACTERISTICS, PER DIODE LEG										
Maximum Thermal Resistance, Junction to Case	R _Ø JC		3	.0			2	.0		°C/W
ELECTRICAL CHARACTERISTICS, PER DIODE LEG										
Maximum Instantaneous Forward Voltage (1) (i $\wp$ =8.0 Amp, T $\wp$ =150°C) (i $\wp$ =8.0 Amp, T $\wp$ =25°C)				895 975			00 30		.20 .50	Volts
Maximum Instantaneous Reverse Current (1) (Rated dc Voltage, T _C = 150°C) (Rated dc Voltage, T _C = 25°C)	iR			50 5.0		1 -	00		00	μА
Maximum Reverse Recovery Time $(I_F=1.0 \text{ Amp, di}/dt=50 \text{ Amp}/\mu\text{s})$ $(I_F=0.5 \text{ Amp, i}_R=1.0 \text{ Amp, }I_{REC}=0.25 \text{ Amp})$	t _{rr}	35 25		35			50 50		ns	

(1)Pulse Test: Pulse Width = 300  $\mu$ s, Duty Cycle  $\leq$ 2.0%

# MUR1605CT, 1610CT AND 1615CT











# MUR1620CT, 1630CT AND 1640CT











# MUR1605CT thru MUR1660CT

#### **MUR1650CT AND 1660CT**











3



#### FIGURE 17 — TYPICAL CAPACITANCE, PER LEG



## **OUTLINE DIMENSIONS**



# MOTOROLA SEMICONDUCTOR I TECHNICAL DATA

MUR2505 MUR2510 MUR2515 MUR2520



#### SWITCHMODE POWER RECTIFIERS

designed for use in switching power supplies, inverters and as free wheeling diodes, these state-of-the-art devices have the following features

- Ultrafast 50 Nanosecond Recovery Time
- Low Forward Voltage Drop
- O Hermetically Sealed Metal DO-203AA (DO-4) Package

#### MAXIMUM RATINGS

Datin -	C			11		
Rating	Symbol	2505	2510	2515	2520	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	50	100	150	200	Volts
Nonrepetitive Peak Reverse Voltage	VRSM	55	110	165	220	Volts
Average Forward Current T _C = 145°C	lF(AV)		Amps			
Nonrepetitive Peak Surge Forward Current (half cycle, 60 Hz, Sinusoidal Waveform)	IFSM	500				Amps
Operating Junction and Storage Temperature	TJ, T _{stg}	T _J , T _{Stg} -65 to +175				°C

## THERMAL CHARACTERISTICS

Rating	Symbol	All Devices	Unit
Thermal Resistance, Junction to Case	$R_{\theta}JC$	1 3	°C/W

# **ELECTRICAL CHARACTERISTICS**

Maximum Instantaneous Forward Voltage Drop	٧F		Volts
(IF = 25 Amp, T _J = 25°C)	,	0 95	
(ı _F = 25 Amp, T _J = 125°C)	1 1	0 80	Í
(IF = 50 Amp, T _J = 125°C)		0 88	
Maximum Reverse Current @ DC Voltage	I _R		
(T _J = 25°C)		10	μΑ
(T _J = 125°C)		10	mA
Maximum Reverse Recovery Time	t _{rr}	50	ns
$(I_F = 1.0 \text{ Amp}, d_1/d_1 = 50 \text{ Amp}/\mu s, V_R = 30 \text{ V},$	1 "		
T _{.1} = 25°C)	1		-

# ULTRAFAST RECTIFIERS

25 AMPERES 50 to 200 VOLTS





#### NOTES

- 1 DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH

	MILLIN	IETERS	ETERS INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	10 75	11 12	0.423	0.438	
C	_	10.28	_	0 405	
D	4 07	4 69	0.160	0.185	
E	1 91	4 44	0.075	0.175	
F	2.29	2.41	0 090	0 095	
J	10 72	11 50	0.422	0.453	
K	18.80	20.32	0.740	0.800	

CASE 245A-02 DO-203AA METAL

## MECHANICAL CHARACTERISTICS

CASE: Welded, hermetically sealed FINISH: All external surface corrosion resistant and terminal leads are readily solderable

POLARITY: Cathode to Case MOUNTING POSITIONS: Any MOUNTING TORQUE: 15 in-lb max

# MUR2505, MUR2510, MUR2515, MUR2520





*The curves shown are typical for the highest voltage device in the voltage grouping Typical reverse current for lower voltage selections can be estimated from these same curves if VR is sufficiently below rated VR









# MOTOROLA SEMICONDUCTOR I TECHNICAL DATA

# **Switchmode Power Rectifiers**

... designed for use in switching power supplies, inverters and as free wheeling diodes, these state-of-the-art devices have the following features:

- o Ultrafast 35 and 60 Nanosecond Recovery Time
- 175°C Operating Junction Temperature
- Popular TO-218 Package
- High Voltage Capability to 600 Volts
- Low Forward Drop
- Low Leakage Specified @ 150°C Case Temperature
- Current Derating Specified @ Both Case and Ambient Temperatures
- Epoxy Meets UL94, Vo @ 1/8"
- High Temperature Glass Passivated Junction

# MUR3005PT thru MUR3060PT

ULTRAFAST RECTIFIERS 30 AMPERES 50-600 VOLTS





#### **MAXIMUM RATINGS**

Dating	Symbol	}	MUR					11		
Rating		3005PT	3010PT	3015PT	3020PT	3030PT	3040PT	3050PT	3060PT	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	VRRM VRWM VR	50	100	150	200	300	400	500	600	Volts
Average Rectified Forward Current (Rated V _R ) Per Leg Per Device	lF(AV)		$^{15}_{30}$ T _C = 150°C			15 30	Γ _C = 145°C	Amps		
Peak Repetitive Forward Current, Per Leg (Rated V _R , Square Wave, 20 kHz), T _C = 150°C	İFRM		30 @ T _C = 150°C				-		0 = 145°C	Amps
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz) Per Leg	IFSM	200			1	50		Amps		
Operating Junction Temperature and Storage Temperature	T _J , T _{stg}				-65 to	+ 175				°C

## THERMAL CHARACTERISTICS PER DIODE LEG

Maximum Thermal Resistance, Junction to Case	$R_{\theta JC}$	1.5	°C/W
Junction to Ambient	$R_{\theta JA}$	40	°C/W

# **ELECTRICAL CHARACTERISTICS PER DIODE LEG**

Maximum Instantaneous Forward Voltage (1) (i $_F$ = 15 Amps, T $_C$ = 150°C) (i $_F$ = 15 Amps, T $_C$ = 25°C)	٧F	0.85 1.05	1.12 1.25	1.2 1.5	Volts
Maximum Instantaneous Reverse Current (1) (Rated dc Voltage, T _C = 150°C) (Rated dc Voltage, T _C = 25°C)	İR	500 10		1000 10	μА
Maximum Reverse Recovery Time (IF = 1 Amp, di/dt = 50 Amps/μs)	^t rr	35	(	50	ns

⁽¹⁾ Pulse Test: Pulse Width = 300  $\mu$ s, Duty Cycle  $\leq$  2%.

# MUR3005PT, 3010PT, and 3015PT



Figure 1. Typical Forward Voltage (Per Leg)



Figure 4. Current Derating, Ambient (Per Leg)



*The curves shown are typical for the highest voltage device in the voltage grouping Typical reverse current for lower voltage selections can be estimated from these same curves if VR is sufficiently below rated Vs.





Figure 3. Current Derating, Case (Per Leg)



Figure 5. Power Dissipation (Per Leg)

# R

# MUR3020PT, 3030PT, and 3040PT



Figure 6. Typical Forward Voltage (Per Leg)



Figure 9. Current Derating, Ambient (Per Leg)



*The curves shown are typical for the highest voltage device in the voltage grouping. Typical reverse current for lower voltage selections can be estimated from these same curves if  $V_R$  is sufficiently below rated  $V_R$ .

Figure 7. Typical Reverse Current (Per Leg)*



Figure 8. Current Derating, Case (Per Leg)



Figure 10. Power Dissipation (Per Leg)

## MUR3050PT and MUR3060PT



Figure 11. Typical Forward Voltage



Figure 14. Current Derating, Ambient



*The curves shown are typical for the highest voltage device in the voltage grouping. Typical reverse current for lower voltage selections can be estimated from these same curves if  $V_{R}$  is sufficiently below rated  $V_{R}$ .

Figure 12. Typical Reverse Current*



Figure 13. Current Derating, Case



Figure 15. Power Dissipation

2



Figure 16. Thermal Response



Figure 17. Typical Capacitance (Per Leg)

# **OUTLINE DIMENSIONS**



# MOTOROLA SEMICONDUCTOR I **TECHNICAL DATA**

**MUR5005 MUR5010** MUR5015 **MUR5020** 



**50 AMPERES** 50 to 200 VOLTS





- NOTES

  1 DIM "P" IS DIA

  2 CHAMPER OR UNDERCUT ON ONE OR BOTH ENDS OF HEXAGONAL BASE IS OPTIONAL

  3 ANGULAR DRIENTATION AND CONTOUR OF TERMINAL ONE IS OPTIONAL

  1 THERADS ARE PUTED

  5 DIMENSIONING AND TOLERANCING PER ANS

	MILLIN	ETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
_ A	16 94	17 45	0 669	0 687	
В		16 94	-	0 667	
С		11 43	_	0 450	
D		9 53	_	0 375	
E	2 92	5.08	0 115	0 200	
F	_	2 03	_	0 080	
J	10 72	11.51	0 422	0 453	
K	-	25 40	_	1 000	
L	3 86	-	0 156	_	
P	5 59	6 32	0 220	0 249	
Q	3 56	4 45	0 140	0 175	
R	_	20 16	_	0 794	
S	_	2 26	_	0.089	

**CASE 257-01** DO-203AB METAL

# MECHANICAL CHARACTERISTICS

CASE: Welded, hermetically sealed FINISH: All external surface corrosion resistant and terminal leads are readily solderable

**POLARITY:** Cathode to Case MOUNTING POSITIONS: Any MOUNTING TORQUE: 25 in-lb max

# SWITCHMODE POWER RECTIFIERS

. designed for use in switching power supplies, inverters and as free wheeling diodes, these state-of-the-art devices have the following features:

- Ultrafast 50 Nanosecond Recovery Time
- Low Forward Voltage Drop
- Hermetically Sealed Metal DO-203AB Package

#### **MAXIMUM RATINGS**

D-+i	C	MUR				
Rating	Symbol	5005	5010	5015	5020	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _R WM V _R	50	100	150	200	Volts
Nonrepetitive Peak Reverse Voltage	VRSM	55	110	165	220	Volts
Average Forward Current T _C = 125°C	l _{F(AV)}		Amps			
Nonrepetitive Peak Surge Forward Current (half cycle, 60 Hz, Sinusoidal Waveform)	^I FSM	600			Amps	
Operating Junction and Storage Temperature	T _J , T _{stg}	-55 to +175			°C	

# THERMAL CHARACTERISTICS

Rating	Symbol	All Devices	Unit
Thermal Resistance, Junction to Case	$R_{\theta}$ JC	10	°C/W

## **ELECTRICAL CHARACTERISTICS**

Maximum Instantaneous Forward Voltage Drop	٧F		Volts
(IF = 50 Amp, T _J = 25°C)		1 15	1
(IF = 50 Amp, T _{.J} = 125°C)		0 95	
(IF = 100 Amp, T _J = 125°C)		1 10	
Maximum Reverse Current @ DC Voltage	IR		
(T _J = 25°C)	1	10	μA
(T _J = 125°C)		10	mA
Maximum Reverse Recovery Time	trr	50	ns
$(I_F = 1.0 \text{ Amp, di/dt} = 50 \text{ Amp/}\mu\text{s, V}_R = 30 \text{ V,}$	,,,		
T ₁ = 25°C)			

# MUR5005, MUR5010, MUR5015, MUR5020



# MOTOROLA SEMICONDUCTOR TECHNICAL DATA

# Switchmode Power Rectifiers

... designed for use in switching power supplies, inverters and as free wheeling diodes, these state-of-the-art devices have the following features:

- Ultrafast 50 Nanosecond Recovery Time
- Low Forward Voltage Drop
- Hermetically Sealed Metal DO-203AB (DO-5) Package

#### **Mechanical Characteristics**

Case: Welded, hermetically sealed

Finish: All external surface corrosion resistant and terminal leads are readily solderable

Polarity: Cathode to Case Mounting Positions: Any Mounting Torque: 25 in-lb max MUR7020

ULTRAFAST
RECTIFIERS

**70 AMPERES** 

**50 TO 200 VOLTS** 

**MUR7005** 

MUR7010 MUR7015





#### **MAXIMUM RATINGS**

Rating	Sb1	MUR				Unit
Rating	Symbol	7005	7010	7015	7020	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	50	100	150	200	Volts
Nonrepetitive Peak Reverse Voltage	VRSM	55	110	165	220	Volts
Average Forward Current T _C = 125°C	lF(AV)	70			Amps	
Nonrepetitive Peak Surge Forward Current (half cycle, 60 Hz, Sinusoidal Waveform)	IFSM	1000			Amps	
Operating Junction and Storage Temperature	T _J , T _{stg}		– 55 t	o + 175		°C

# THERMAL CHARACTERISTICS

Rating	Symbol	All Devices	Unit
Thermal Resistance, Junction to Case	R _θ JC	0.8	°C/W
ELECTRICAL CHARACTERISTICS			
Maximum Instantaneous Forward Voltage Drop (iF = 70 Amps, T _J = 25°C) (iF = 70 Amps, T _J = 150°C)	٧F	0.975 0.840	Volts

(i _F = 70 Amps, T _J = 25°C) (i _F = 70 Amps, T _J = 150°C)		0.975 0.840	
Maximum Reverse Current @ DC Voltage (T _J = 25°C) (T _J = 150°C)	IR	25 30	μA mA
Maximum Reverse Recovery Time (I _F = 1 Amp, di/dt = 50 Amps/μs, V _R = 30 V, T _J = 25°C)	t _{rr}	60	ns
(I _F = 0.5 Amp, i _R = 1 Amp, I _{REC} = 0.25 A, V _R = 30 V, T _J = 25°C)		50	

# MUR7005, MUR7010, MUR7015, MUR7020



Figure 1. Typical Forward Voltage



Figure 4. Average Power Dissipation



Figure 2. Typical Reverse Current*





Figure 3. Current Derating, Case



Figure 5. Typical Capacitance



Figure 6. Thermal Response





# MUR10005CT MUR10010CT MUR10015CT **MUR10020CT**

# Advance Information

## **ULTRAFAST** SWITCHMODE POWER RECTIFIERS

- ... designed for use in switching power supplies, inverters, and as free wheeling diodes. These state-of-the-art devices have the following features:
- Dual Diode Construction
- Low Leakage Current
- Low Forward Voltage
- 175°C Operating Junction Temperature
- Labor Saving POWERTAP® Package

#### MAXIMUM RATINGS MUR Symbol 10005CT 10010CT 10015CT 10020CT Unit Rating Peak Repetitive Reverse Volts Voltage **VRRM** Working Peak Reverse Voltage VRWM DC Blocking Voltage ٧R Average Rectified Forward Amps IF(AV) Current, (Rated VR), $T_C = 140^{\circ}C$ Per Device 100 Per Leg 50 Peak Repetitive Forward 100 **IFRM** Amps Current, Per Leg, (Rated VR, Square Wave, 20 kHz), $T_C = 140^{\circ}C$ Nonrepetitive Peak Surge Amps **IFSM** 400 Current Per Leg (Surge applied at rated load conditions halfwave, single phase, 60 Hz) Operating Junction and $T_{J}$ , $T_{stg}$ -65 to +175 °C Storage Temperature

# THERMAL CHARACTERISTICS PER LEG

Rating	Symbol	Max	Unit
Thermal Resistance, Junction to Case	R _Ø JC	1.0	°C/W
ELECTRICAL CHARACTERISTICS PER LEG			

ELECTRICAL CHARACTERISTICS I EN LEC	•		
Instantaneous Forward Voltage (1) (iF = 50 Amp, T _C = 25°C)	٧F	1.10	Volts
Instantaneous Reverse Current (1) (Rated dc Voltage, T _C = 125°C) (Rated dc Voltage, T _C = 25°C)	iR	250 25	μА
Maximum Reverse Recovery Time (I _F = 1.0 Amps, di/dt = 50 Amps/μs)	t _{rr}	50	ns

(1) Pulse Test: Pulse Width = 300 µs, Duty Cycle ≤ 2.0%.

This document contains information on a new product. Specifications and information herein are subject to change without notice

# **ULTRAFAST** RECTIFIERS

100 AMPERES **50 TO 200 VOLTS** 





- DIMENSIONING AND TOLERANCING PER ANSI
- Y14.5M, 1982 2. CONTROLLING DIMENSION. INCH

	MILLIMETERS		RS INCHES			
DIM	MIN	MAX	MIN	MAX		
Α	87 63	92 20	3 450	3 630		
В	17 78	20 57	0 700	0 810		
С	15 63	16 00	0 615	0 630		
E	3 05	3 30	0 120	0 130		
F	11 05	11 30	0 435	0 445		
G	34 80	35 05	1 370	1 380		
Н	0 18	0 68	0 007	0.027		
N	1/4-201	JNC-2B	1/4-20UNC-2B			
a	6 86	7 23	0 270	0 285		
R	80 01 BSC		3 150	BSC		
U	15 24	16 00	0 600	0 630		
٧	8 39	9 52	0 330	0 375		
w	4 32	4.82	0.170	0.190		

#### CASE 357C-01 **POWER TAP**

Terminal Penetration: 0.280 max Terminal Torque: 25-40 in-lb max Mounting Torque -

30-40 in-lb max

Outside Holes:*

*Center Hole Must be Torqued First:

8-10 in-lb max

# MUR10005CT, MUR10010CT, MUR10015CT, MUR10020CT









*The curves shown are typical for the highest voltage device in the voltage grouping. Typical reverse current for lower voltage selections can be estimated from these same curves, if VR is sufficiently below rated VR.





# MOTOROLA SEMICONDUCTOR TECHNICAL DATA

# **MUR20005CT MUR20010CT MUR20015CT MUR20020CT**

# Advance Information

# ULTRAFAST SWITCHMODE POWER RECTIFIERS

- ... designed for use in switching power supplies, inverters, and as free wheeling diodes. These state-of-the-art devices have the following features:
- Dual Diode Construction
- Low Leakage Current
- Low Forward Voltage
- 175°C Operating Junction Temperature
- Labor Saving PowerTap® Package

MAXIMUM RATINGS			8.0	UR		1
					T	
Rating	Symbol	20005CT	20010CT	20015CT	20020CT	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	50	100	150	200	Volts
Average Rectified Forward Current, (Rated V _R ), T _C = 95°C Per Device Per Leg	^I F(AV)	200 100				Amps
Peak Repetitive Forward Current, Per Leg, (Rated V _R , Square Wave, 20 kHz), T _C = 95°C	IFRM	200				Amps
Nonrepetitive Peak Surge Current Per Leg (Surge applied at rated load conditions halfwave, single phase, 60 Hz)	^I FSM	800				Amps
Operating Junction and Storage Temperature	T _J ,T _{stg}		– 65 to	+ 175		°C

# THERMAL CHARACTERISTICS PER LEG

Rating	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	0.70	°C/W
FLECTRICAL CHARACTERISTICS PER LEG			

Instantaneous Forward Voltage (1) (iF = 100 Amp, T _C = 25°C)	٧F	1.25	Volts
Instantaneous Reverse Current (1) (Rated dc Voltage, T _C = 125°C) (Rated dc Voltage, T _C = 25°C)	IR	500 50	μΑ
Maximum Reverse Recovery Time (I _F = 1.0 Amps, di/dt = 50 Amps/μs)	t _{rr}	50	ns

(1) Pulse Test. Pulse Width = 300 µs, Duty Cycle ≤ 2 0%

This document contains information on a new product. Specifications and information herein are subject to change without notice

# **ULTRAFAST RECTIFIERS**

200 AMPERES 50 TO 200 VOLTS





- 1 DIMENSIONING AND TOLERANCING PER ANSI
- Y14 5M, 1982

4	CONTROLLING	DIMENSION	INCH

	MILLIN	METERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	87 63	92 20	3 450	3 630
В	17 78	20 57	0 700	0 810
С	15 63	16 00	0 615	0 630
E	3 05	3 30	0 120	0 130
F	11 05	11 30	0 435	0 445
G	34 80	35 05	1 370	1 380
Н.	0 18	0 68	0 007	0 027
N	1/4-201	JNC-2B	1/4-20	JNC-2B
Q	6 86	7 23	0 270	0 285
R	80 01	80 01 BSC		BSC
U	15 24	16 00	0 600	0 630
٧_	8 39	9 52	0 330	0 375
W	4 32	4 82	0 170	0 190

#### CASE 357C-01 POWER TAP

Terminal Penetration: 0.280 max Terminal Torque: 25-40 in-lb max

Mounting Torque -Outside Holes:*

30-40 in-lb max

*Center Hole Must be

8-10 in-lb max Torqued First:

# MUR20005CT, MUR20010CT, MUR20015CT, MUR20020CT







*The curves shown are typical for the highest voltage device in the voltage grouping. Typical reverse current for lower voltage selections can be estimated from these curves, if V_R is sufficiently below rated V_D





# MOTOROLA SEMICONDUCTOR TECHNICAL DATA

# **Ultrafast Switchmode Power Rectifiers**

... designed for use in switching power supplies, inverters, and as freewheeling diodes. These state-of-the-art devices have the following features:

- Dual Diode Construction May Be Paralleled For Higher Current Output
- Low Leakage Current
- Low Forward Voltage
- 175°C Operating Junction Temperature
- Labor Saving POWERTAP Package

# **MUR20030CT MUR20040CT**

ULTRAFAST **RECTIFIERS** 200 AMPERES 300 and 400 VOLTS



50 75

#### **MAXIMUM RATINGS**

Rating	Symbol	MUR20030CT	MUR20040CT	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	300	400	Volts
Average Rectified Forward Current, (Rated V _R ), T _C = 95°C Per Device Per Leg	I _{F(AV)}	-	00	Amps
Peak Repetitive Forward Current, Per Leg, (Rated V _R , Square Wave, 20 kHz), T _C = 95°C	FRM	200		Amps
Nonrepetitive Peak Surge Current Per Leg (Surge applied at rated load conditions halfwave, single phase, 60 Hz)	IFSM	800		Amps
Operating Junction and Storage Temperature	T _J , T _{stg}	- 65 to	+ 175	°C

## THERMAL CHARACTERISTICS PER LEG

Rating	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	0.75	°C/W
LECTRICAL CHARACTERISTICS PER LEG			•
Instantaneous Forward Voltage (1) (I _F = 100 Amp, T _C = 25°C) (I _F = 100 Amp, T _C = 125°C)	٧F	1.35 1.25	Volts
Instantaneous Reverse Current (1) (Rated dc Voltage, T _C = 125°C) (Rated dc Voltage, T _C = 25°C)	iR	500 50	μΑ

trr

(1) Pulse Test. Pulse Width = 300  $\mu$ s, Duty Cycle  $\leq$  2%.

Maximum Reverse Recovery Time

 $(I_F = 1 \text{ Amp, } d_I/dt = 50 \text{ Amps}/\mu s)$ 



Figure 1. Typical Forward Voltage





Figure 3. Current Derating (Per Leg)



Figure 4. Average Power Dissipation and Average Current



Figure 5. Capacitance (Per Leg)



# MOTOROLA SEMICONDUCTOR TECHNICAL DATA

# Switchmode Power Rectifiers **DPAK Surface Mount Package**

- ... designed for use in switching power supplies, inverters and as free wheeling diodes, these state-of-the-art devices have the following features:
- Ultrafast 35 Nanosecond Recovery Time
- Low Forward Voltage Drop
- Low Leakage

## **Mechanical Characteristics**

- · Case: Epoxy, Molded
- o Finish: All External Surface Corrosion Resistance and Terminal Leads are Readily Solderable
- Lead Formed for Surface Mount
- Available in 16 mm Tape and Reel or Plastic Rails
- Compact Size
- Lead and Mounting Surface Temperature for Soldering Purpose 260°C Max. for 10 Seconds



# **MURD305 MURD310 MURD315 MURD320**

ULTRAFAST RECTIFIERS **3 AMPERES 50 TO 200 VOLTS** 



# MAXIMUM RATINGS

Destina	C		MU	JRD		11
Rating	Symbol	305	310	315	320	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	VRRM VRWM VR	50	100	150	200	Volts
Average Rectified Forward Current (T _C = 158°C, Rated V _R )	I _{F(AV)}			3		Amps
Peak Repetitive Forward Current (Rated V _R , Square Wave, 20 kHz, T _C = 158°C)	IFRM		(	6		Amps
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions, halfwave, 60 Hz)	IFSM		7	5		Amps
Operating Junction and Storage Temperature	T _J , T _{stg}		- 65 to	+ 175		°C

# THERMAL CHARACTERISTICS

1	R _θ JA	80	°C/W
---	-------------------	----	------

#### **ELECTRICAL CHARACTERISTICS**

Maximum Instantaneous Forward Voltage Drop (2) (IF = 3 Amps, T _J = 25°C) (IF = 3 Amps, T _J = 125°C)	٧F	0.95 0.75	Volts
Maximum Instantaneous Reverse Current (2) (T _J = 25°C, Rated dc Voltage) (T _J = 125°C, Rated dc Voltage)	чR	5 500	μА
Maximum Reverse Recovery Time (IF = 1 Amp, $d_I/dt = 50 \text{ Amps}/\mu s$ , $V_R = 30 \text{ V}$ , $T_J = 25^{\circ}\text{C}$ ) (IF = 0.5 Amp, iR = 1 Amp, IREC = 0.25 A, $V_R = 30 \text{ V}$ , $T_J = 25^{\circ}\text{C}$ )	t _{rr}	35 25	ns

⁽¹⁾ Rating applies when surface mounted on the minimum pad sizes recommended. (2) Pulse Test Pulse Width = 300  $\mu$ s, Duty Cycle  $\leq$  2%

# MURD305, MURD310, MURD315, MURD320

#### TYPICAL CHARACTERISTICS



Figure 1. Typical Forward Voltage



Figure 4. Current Derating, Case



^{*}The curves shown are typical for the highest voltage device in the voltage grouping. Typical reverse current for lower voltage selections can be estimated from these curves if  $V_{\rm R}$  is sufficient below rated  $V_{\rm R}$ .

Figure 2. Typical Reverse Current*



Figure 3. Average Power Dissipation



Figure 5. Current Derating, Ambient



Figure 6. Typical Capacitance



# **OUTLINE DIMENSIONS**



# MOTOROLA SEMICONDUCTOR TECHNICAL DATA

# **Switchmode Power Rectifiers DPAK Surface Mount Package**

... designed for use in switching power supplies, inverters and as free wheeling diodes, these state-of-the-art devices have the following features:

- Ultrafast 35 Nanosecond Recovery Time
- Low Forward Voltage Drop
- Low Leakage

#### **Mechanical Characteristics**

- Case: Epoxy, Molded
- Finish: All External Surface Corrosion Resistance and Terminal Leads are Readily Solderable
- Lead Formed for Surface Mount
- Available in 16 mm Tape and Reel or Plastic Rails
- Compact Size
- Dual Rectifier Single Chip Construction
- Lead Temperature for Soldering Purpose: 260°C for 10 Seconds



# MURD605CT MURD610CT MURD615CT MURD620CT

ULTRAFAST RECTIFIERS 6 AMPERES 50 TO 200 VOLTS



#### **MAXIMUM RATINGS**

Rating	Sumbal		ML	IRD		Unit
naung	Symbol	605CT	610CT	615CT	620CT	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	VRRM VRWM VR	50	100	150	200	Volts
Average Rectified Forward Voltage Per Diode (TC = 145°C, Rated VR) Per Device	I _{F(AV)}		;	3		Amps
Peak Repetitive Forward Current (Rated V _R , Square Wave, 20 kHz, T _C = 145°C) Per Diode	lF			3		Amps
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions, halfwave, 60 Hz)	IFSM		6	3		Amps
Operating Junction and Storage Temperature	TJ, T _{stg}		-65 to	+ 175		°C

#### THERMAL CHARACTERISTICS PER DIODE

				,
Thermal Resistance, Junction to Case	$R_{\theta JC}$	9	°C/W	ļ
Junction to Ambient (1)	$R_{\theta,JA}$	80		l

# **ELECTRICAL CHARACTERISTICS PER DIODE**

Maximum Instantaneous Forward Voltage Drop (2)  iF = 3 Amps, T _C = 25°C  iF = 3 Amps, T _C = 125°C  iF = 6 Amps, T _C = 25°C  iF = 6 Amps, T _C = 125°C	٧F	1 0.95 1.2 1.1	Volts
Maximum Instantaneous Reverse Current (2) (T _J = 25°C, Rated dc Voltage) (T _J = 125°C, Rated dc Voltage)	İR	5 250	μА
Maximum Reverse Recovery Time (IF = 1 Amp, di/dt = 50 Amps/ $\mu$ s, V _R = 30 V, T _J = 25°C) (IF = 0.5 Amp, I _R = 1 Amp, I _{REC} = 0.25 A, V _R = 30 V, T _J = 25°C)	t _{rr}	35 25	ns

⁽¹⁾ Rating applies when surface mounted on the minimum pad size recommended. (2) Pulse Test: Pulse Width = 300  $\mu$ s, Duty Cycle  $\leq$  2%.

# MURD605CT, MURD610CT, MURD615CT, MURD620CT



Figure 1. Typical Forward Voltage (Per Leg)



^{*}The curves shown are typical for the highest voltage device in the voltage grouping. Typical reverse current for lower voltage selections can be estimated from these curves if VR is sufficient below rated VR.

Figure 2. Typical Leakage Current* (Per Leg)



Figure 3. Average Power Dissipation (Per Leg)



Figure 4. Current Derating, Case (Per Leg)



Figure 5. Current Derating, Ambient (Per Leg)



Figure 6. Typical Capacitance (Per Leg)



## **OUTLINE DIMENSIONS**





**SD41 See Page 3-73 SD51 See Page 3-77 SD241 See Page 3-110** 

# SWITCHMODE POWER RECTIFIERS

... designed for special applications such as dc power supplies, inverters, converters, ultrasonic systems, choppers, low RF interference, sonar power supplies and free wheeling diodes. A complete line of fast recovery rectifiers having typical recovery time of 150 nanoseconds providing high efficiency at frequencies to 50 kHz.

- O Dual Diode Construction
- O 150°C Operating Junction Temperature

# R710XPT R712XPT R711XPT R714XPT

# ULTRAFAST RECOVERY RECTIFIERS

30 AMPERES 50 to 400 VOLTS



#### MAXIMUM RATINGS

Rating		Symbol	Maximum	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	R710XPT R711XPT R712XPT R714XPT	V _{RRM} V _{RWM} V _R	50 100 200 400	Volts
Average Rectified Forward Current (Rated V _R ) T _C = 100°C	Per Device Per Diode	Ю	30 15	Amps
Peak Repetitive Forward Current, Per (1 Second at 60 Hz, T _C = 100°C)	Diode	IFRM	50	Amps
Nonrepetitive Peak Surge Current Pe (Surge applied at rated load condi halfwave, single phase, 60 Hz)		IFSM	150	Amps
Operating Junction and Storage Tem	perature	T _J , T _{stg}	-65 to +150	°C

#### THERMAL CHARACTERISTICS PER DIODE

Characteristic	Symbol	Maximum	Unit
Thermal Resistance, Junction to Case	$R_{\theta}$ JC	15	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta}$ JA	40	°C/W

#### ELECTRICAL CHARACTERISTICS PER DIODE

Characteristic	Symbol	Maximum	Unit
Instantaneous Forward Voltage (1) (IF = 15 Amp, T _C = 25°C)	٧F	1 30	Volts
Instantaneous Reverse Current (1) (Rated dc Voltage, T _C = 100°C) (Rated dc Voltage, T _C = 25°C)	'R	1 0 0 015	mA
Reverse Recovery Time (I _F = 1 0 Ampere to V _R = 30 Vdc)	t _{rr}	100	ns

(1) Pulse Test Pulse Width = 300  $\mu$ s, Duty Cycle  $\leq$  2 0%



	MILLIM	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	20 32	21 08	0 800	0 830
В	15 49	15 90	0 610	0 626
C	4 19	5 08	0 165	0 200
D	1 02	1 65	0 040	0 065
E	1 35	1 65	0 053	0 065
G	5 21	5 72	0 205	0 225
Н	2 65	2 94	0 104	0 116
J	0 38	0.64	0 015	0 025
K	12 70	15 49	0 500	0 610
L	15 88	16 51	0 625	0 650
N	12 19	12 70	0 480	0 500
Q	4 04	4 22	0 159	0 166

CASE 340-02 TO-218AC PLASTIC

# R710XPT, R711XPT, R712XPT, R714XPT













Zener Diode Data Sheets 4

# MOTOROLA SEMICONDUCTOR I TECHNICAL DATA

# 1/4M2.4AZ10 thru 1/4M105Z10

## 1/4 WATT SILICON ZENER DIODES

Hermetically sealed, all-glass case with all external surfaces corrosion resistant. Cathode end, indicated by color band, will be positive with respect to anode end when operated in the zener region. These devices are in the same 400 mW glass package as the 1N746 and 1N957 Series, but designated 1/4 Watt to allow characterization at a different test current level

# SILICON ZENER DIODES 2.4-105 VOLTS

1/4 WATT



# NOTES

- T PACKAGE CONTOUR OPTIONAL WITHIN A
  AND 8 HEAT SLUGS, IF ANY, SHALL BE
  INCLUDED WITHIN THIS CYLINDER, BUT
  NOT SUBJECT TO THE MINIMUM LIMIT
  OF 8
  2 LEAD DIAMETER NOT CONTROLLED IN
- 2 LEAD DIAMETER NOT CONTROLLED IN ZONE F TO ALLOW FOR FLASH, LEAD FINISH BUILDUP AND MINOR IRREGU LARITIES OTHER THAN HEAT SLUGS
- 3 POLARITY DENOTED BY CATHODE BAND 4 DIMENSIONING AND TOLERANCING PER ANSI Y14 5, 1973

	MILLIN	METERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	3 05	5 08	0 120	0 200
8	1 52	2 29	0 060	0 090
D	0.46	0 56	0 018	0 022
F	-	1 27		0.050
ĸ	25 40	38 10	1 000	1 500

CASE 299-02 DO-204AH GLASS

# MAXIMUM RATINGS

Junction and Storage Temperature -65°C to +175°C DC Power Dissipation 1/4 Watt (Derate 1 67 mW/°C Above 25°C)

The type numbers specified have a standard voltage ( $V_Z$ ) tolerance of  $\pm 10\%$  For closer tolerances, add suffix "5" for  $\pm 5\%$ , (3%, 2%, 1% tolerances also available)

# ELECTRICAL CHARACTERISTICS (TA = 25°C, VF = 1 5 V max @ 100 mA)

	Nominal Zener	Test	Maximum Zener Impedance	Maximum DC Zener	Reverse Leakage Curren		ent	
Type No.	Voltage @ IZT (VZ) Volts	Current (ZZT) @ IZT (IZT) mA Ohms		Current (IZM) mA	I _R Max (μA)	Test Voltage Vd		
1/4M2.4AZ10	2.4	10	60	70	75	1	1	
1/4M2.7AZ10	2.7	10	60	65	75	1	1	
1/4M3.0AZ10	30	10	55	60	50	1	1	
1/4M3.3AZ10	3 3	10	55	55	50	1	1	
1/4M3.6AZ10	3.6	10	50	52	50	1	1	

*VR1 - Test Voltage for 5% Tolerance Device

VR2 - Test Voltage for 10% Tolerance Device

# 1/4M2.4AZ10 thru 1/4M105Z10

# ELECTRICAL CHARACTERISTICS (T_A = 25°C, V_F = 1.5 V max @ 100 mA)

	Nominal	_	Maximum Zener	Maximum	Reverse Leakage Current			
	Zener Voltage @ IZT	Test Current	Impedance (Z _{ZT} ) @ I _{ZT}	DC Zener Current	I _R Max	Test Voltage Vdc*		
Type No.	(V _Z ) Volts	(IZT) mA	Ohms	(IZM) mA	(μ <b>Α</b> )	V _{R1} V _{R2}		
1/4M3.9AZ10	3.9	10	50	49	25	1	1	
1/4M4.3AZ10	4.3	10	45	46	25	1.5	15	
1/4M4.7AZ10	47	10	35	42	10	1 5	15	
1/4M5.1AZ10	5.1	10	25	39	5	1.5	15	
1/4M5.6AZ10	5 6	10	20	36	5	1.5	15	
1/4M6.2AZ10	6 2	10	15	33	5	3.5	3.5	
1/4M6 8Z10	68	9 2	70	33	150	5 2	4.9	
1/4M7 5Z10	7.5	83	8.0	30	75	5 7	54	
1/4M8 2Z10	8.2	7.6	90	26	50	6 2	59	
1/4M9.1Z10	9 1	69	10	24	25	6.9	6 6	
1/4M10Z10	10	6 3	11	21	10	7 6	7 2	
1/4M11Z10	11	57	13	19	5	8 4	80	
1/4M12Z10	12	5 2	15	18	5	9.1	8.6	
1/4M13Z10	13	4 8	18	16	5	9 9	94	
1/4M14Z10	14	4 5	20	15	5	10.6	101	
1/4M15Z10	15	4.2	22	14	5	114	108	
1/4M16Z10	16	3.9	24	13	5	12 2	115	
1/4M17Z10	17	3 7	26	125	5	130	122	
1/4M18Z10	18	3 5	28	11 5	5	13.7	130	
1/4M19Z10	19	3 3	30	11.0	5	14 4	137	
1/4M20Z10	20	3 1	33	105	5	15 2	144	
1/4M22Z10	22	2 8	40	9 5	5	16 7	158	
1/4M24Z10	24	2 6	46	90	5	18 2	173	
1/4M25Z10	25	2 5	50	80	5	190	180	
1/4M27Z10	27	2 3	58	7.5	5	20 6	194	
1/4M30Z10	30	2 1	70	70	5	22 8	21 6	
1/4M33Z10	33	1 9	85	6.5	5	25 1	238	
1/4M36Z10	36	17	100	60	5	27 4	25 9	
1/4M39Z10	39	16	120	50	5	29 7	28 1	
1/4M43Z10	43	1 5	140	4 8	5	32.7	310	
1/4M45Z10	45	1 4	150	4 5	5	34 2	32 4	
1/4M47Z10	47	1 3	160	4.3	5	35 8	33.8	
1/4M50Z10	50	12	180	4 1	5	38 0	36 0	
1/4M52Z10	52	1 2	200	40	5	39 5	37 4	
1/4M56Z10	56	11	230	38	5	42 6	40 3	
1/4M62Z10	62	10	290	3 3	5	47 1	44 6	
1/4M68Z10	68	0 92	350	3.0	5	51.7	49 0	
1/4M75Z10	75	0 83	450	28	5	56.0	54.0	
1/4M82Z10	82	0.76	550	2 5	5	62.2	59 0	
1/4M91Z10	91	0.69	700	2.3	5	69 2	65.5	
1/4M100Z10	100	0 63	900	20	5	76.0	72 0	
1/4M105Z10	105	0 60	1000	1.9	5	79.8	75 6	

^{*}V_{R1} — Test Voltage for 5% Tolerance Device

V_{R2} — Test Voltage for 10% Tolerance Device

# SPECIAL SELECTIONS AVAILABLE INCLUDE

- 1 Nominal zener voltages between those shown
- 2 Matches sets (Standard Tolerances are ±5 0%, ±3 0%, ±2 0%, ±1 0%) depending on voltage per device.
  - a Two or more units for series connection with specified tolerance on total voltage. Series matched sets make possible higher zener voltages and provide lower temperature coefficients, lower dynamic impedance and greater power handling ability b Two or more units matched to one another with any specified tolerance
- 3- Tight voltage tolerances 1 0%, 2 0%, 3 0%.

1.5KE6.8, A thru 1.5KE250, A See Page 4-59

# Designers Data Sheet

## 500-MILLIWATT HERMETICALLY SEALED **GLASS SILICON ZENER DIODES**

- Complete Voltage Range 2.4 to 110 Volts
- DO-35 Package Smaller than Conventional DO-7 Package
- Double Slug Type Construction
- Metallurgically Bonded Construction
- Oxide Passivated Die

#### Designer's Data for "Worst Case" Conditions

The Designer's Data sheets permit the design of most circuits entirely from the information presented. Limit curves - representing boundaries on device characteristics - are given to facilitate "worst case" design.

1N746 thru 1N759 1N957A thru 1N986A 1N4370 thru 1N4372

> **GLASS ZENER DIODES 500 MILLIWATTS** 2.4-110 VOLTS

#### **MAXIMUM RATINGS**

Rating	Symbol	Value	Unit
DC Power Dissipation @ T _L ≤ 50°C, Lead Length = 3/8"	PD		
*JEDEC Registration	j	400	mW
*Derate above T ₁ = 50°C		3.2	mW/ ^o C
Motorola Device Ratings		500	mW
Derate above T _L = 50 ^o C	l	3 33	mW/ ^o C
Operating and Storage Junction	T _J , T _{stg}		°c
Temperature Range			
*JEDEC Registration		-65 to +175	1
Motorola Device Ratings	1	-65 to +200	}

^{*}Indicates JEDEC Registered Data.

# **MECHANICAL CHARACTERISTICS**

MAXIMUM LEAD TEMPERATURE FOR SOLDERING PURPOSES: 230°C, 1/16" from case for 10 seconds

FINISH: All external surfaces are corrosion resistant with readily solderable leads.

POLARITY: Cathode indicated by color band. When operated in zener mode, cathode will be positive with respect to anode.

MOUNTING POSITION: Any







- 1 PACKAGE CONTOUR OPTIONAL WITHIN A AND B HEAT SLUGS, IF ANY, SHALL BE INCLUDED WITHIN THIS CYLINDER, BUT NOT SUBJECT TO THE MINIMUM LIMIT
- 2 LEAD DIAMETER NOT CONTROLLED IN ZONE F TO ALLOW FOR FLASH, LEAD FINISH BUILDUP AND MINOR IRREGU LARITIES OTHER THAN HEAT SLUGS
- 3 POLARITY DENOTED BY CATHODE BAND 4 DIMENSIONING AND TOLERANCING PER
- ANSI Y14 5 1973

	MILLIN	METERS	INCHES			
DIM	MIN	MAX	MIN	MAX		
Α	3 05	5 08	0 120	0 200		
В	1 52	2 29	0 060	0 090		
D	0.46	0 56	0 018	0 022		
F	-	1 27	-	0 050		
K	25 40	38 10	1 000	1 500		

**CASE 299-02** DO-204AH GLASS

# 1N746 thru 1N759, 1N957A thru 1N986A, 1N4370 thru 1N4372

ELECTRICAL CHARACTERISTICS ( $T_A = 25^{\circ}C$ ,  $V_F = 1.5$  V max at 200 mA for all types)

	Nominal				ımum	Maximum Reverse Leakage Current		
Type Number (Note 1)	Zener Voltage VZ [@] IZT (Note 2) Volts	Test Current I _{ZT} mA	Maximum Zener Impedance Z _{ZT} @ I _{ZT} (Note 3) Ohms	DC Zener Current   ZM (Note 4) mA		Τ _A = 25 ^o C I _R @ V _R = 1 V μA	T _A = 150 ^o C I _R @ V _R = 1 V μA	
1N4370	2.4	20	30	150	190	100	200	
1N4371	2 7	20	30	135	165	75	150	
1N4372	3 0	20	29	120	150	50	100	
1N746	33	20	28	110	135	10	30	
1N747	36	20	24	100	125	10	30	
1N748 1N749 1N750	3.9 4 3 4 7	20 20 20	23 22 19	95 85 75	115 105 95	10 2	30 30 30	
1N751	5 1	20	17	70	85	1 1	20	
1N752	5 6	20	11	65	80		20	
1N753	62	20	7	60	70	01	20	
1N754	68	20	5	55	65		20	
1N755	75	20	6	50	60	0.1	20	
1N756	82	20	8	45	55	0 1	20	
1N757	91	20	10	40	50	0 1	20	
1N 758	10	20	17	35	45	0 1	20	
1N 759	12	20	30	30	35	0 1	20	

Nominal Zener Voltage Type V _Z		Test Current	Maximum Zener Impedance (Note 3)			*Maxımum DC Zener Current IZM		Maximum Reverse Current		
Number	(Note 2)	IZT	ZZT @ IZT	ZZK @ IZK	IZK	(Note 4) mA		I _R Maximum		Voltage Vdc
(Note 1)	Volts	mA	Ohms	Ohms	mA			μA	5%	V _R 10%
1N957A	68	18 5	4.5	700	10	47	61	150	5 2	4 9
1N958A	7 5	165	5.5	700	05	42	55	75	5 7	5 4
1N959A	8 2	15	6 5	700	05	38	50	50	6 2	59
1N960A	9 1	14	7 5	700	05	35	45	25	6 9	6 6
1N961A	10	125	8 5	700	0 25	32	41	10	76	72
1N962A	11	115	9 5	700	0 25	28	37	5	8 4	8 0
1N963A	12	105	115	700	0 25	26	34	5	9.1	86
1N964A	13	95	13	700	0 25	24	32	5	99	9 4
1N965A	15	85	16	700	0 25	21	27	5	11 4	108
1N966A	16	78	17	700	0 25	19	37	5	12 2	115
1N967A	18	70	21	750	0 25	17	23	5	13 7	13 0
1N968A	20	62	25	750	0 25	15	20	5	15 2	14 4
1N969A	22	56	29	750	0 25	14	18	5	16 7	158
1N970A	24	5.2	33	750	0 25	13	17	5	18 2	173
1N971A	27	46	41	750	0 25	11	15	5	20 6	194
1N972A	30	42	49	1000	0 25	10	13	5	228	21 6
1N973A	33	38	58	1000	0 25	9 2	12	5	25 1	23 8
1N974A	36	3 4	70	1000	0 25	85	11	5	27 4	25 9
1N975A	39	3 2	80	1000	0 25	78	10	5	29 7	28 1
1N976A	43	30	93	1500	0 25	70	96	5	32 7	31 0
1N977A	47	27	105	1500	0 25	64	88	5	358	33 8
1N978A	51	25	125	1500	0 25	5.9	8 1	5	38 8	36 7
1N979A	56	22	150	2000	0 25	5 4	7.4	5	426	40 3
1N980A	62	20	185	2000	0 25	49	67	5	471	44 6
1N981A	68	18	230	2000	0 25	4.5	61	5	51 7	49 0
1N982A	75	17	270	2000	0 25	10	55	5	56 0	54 0
1N983A	82	15	330	3000	0 25	37	50	5	62 2	59.0
1N984A	91	14	400	3000	0 25	3 3	45	5	69 2	65 5
1N985A	100	13	500	3000	0 25	3.0	4.5	5 1	76	72
1N986A	110	11	750	4000	0.25	2.7	4.1	5	83 6	79.2

## NOTE 1. TOLERANCE AND VOLTAGE DESIGNATION

# **Tolerance Designation**

The type numbers shown have tolerance designations as follows:

1N4370 series:  $\pm$ 10%, suffix A for  $\pm$ 5% units,

C for  $\pm 2\%$ , D for  $\pm 1\%$ .

1N746 series:  $\pm\,10\%$ , suffix A for  $\pm\,5\%$  units,

C for  $\pm 2\%$ , D for  $\pm 1\%$ .

1N957 series:  $\pm\,10\%$  , suffix A for  $\pm\,10\%$  units,

C for  $\pm 2\%$ , D for  $\pm 1\%$ , suffix B for  $\pm 5\%$  units, C for  $\pm 2\%$ , D for  $\pm 1\%$ .

#### NOTE 2. ZENER VOLTAGE (VZ) MEASUREMENT

Nominal zener voltage is measured with the device junction in thermal equilibrium at the lead temperature of  $30^{\circ}\text{C} \pm 1^{\circ}\text{C}$  and  $3/8^{\prime\prime}$  lead length.

#### NOTE 3. ZENER IMPEDANCE (Zz) DERIVATION

 $Z_{ZT}$  and  $Z_{ZK}$  are measured by dividing the ac voltage drop across the device by the ac current applied. The specified limits are for  $I_{Z}(ac) = 0.1 I_{Z}(dc)$  with the ac frequency = 60 Hz.

# NOTE 4. MAXIMUM ZENER CURRENT RATINGS (IZM)

Maximum zener current ratings are based on the maximum voltage of a 10% 1N746 type unit or a 20% 1N957 type unit. For closer tolerance units (10% or 5%) or units where the actual zener voltage ( $V_Z$ ) is known at the operating point, the maximum zener current may be increased and is limited by the derating curve.

#### **APPLICATION NOTE**

Since the actual voltage available from a given zener diode is temperature dependent, it is necessary to determine junction temperature under any set of operating conditions in order to calculate its value. The following procedure is recommended:

Lead Temperature,  $T_L$ , should be determined from:  $T_L = \theta_L APD + TA$ 

 $\theta_{LA}$  is the lead-to-ambient thermal resistance ( $^{O}C/W$ ) and  $P_{D}$  is the power dissipation. The value for  $\theta_{LA}$  will vary and depends on the device mounting method.  $\theta_{LA}$  is generally 30-40 $^{O}C/W$  for the various clips and tie points in common use and for printed circuit board wiring.

The temperature of the lead can also be measured using a thermocouple placed on the lead as close as possible to the tie point. The thermal mass connected to the tie point is normally large enough so that it will not significantly respond to heat surges generated in the diode as a result of pulsed operation once steady-state conditions are achieved. Using the measured value of TL, the junction temperature may be determined by.

$$T_J = T_L + \Delta T_{JL}$$

 $\Delta T_{JL}$  is the increase in junction temperature above the lead temperature and may be found from Figure 1 for dc power.

$$\Delta T_{JL} = \theta_{JL} P_{D}$$

For worst-case design, using expected limits of  $I_Z$ , limits of  $P_D$  and the extremes of  $T_J(\Delta T_J)$  may be estimated. Changes in voltage,  $V_Z$ , can then be found from:

$$\Delta V = \theta_{VZ} \Delta T_{J}$$

 $\theta_{\mbox{\scriptsize VZ}},$  the zener voltage temperature coefficient, is found from Figures 3 and 4.

Under high power-pulse operation, the zener voltage will vary with time and may also be affected significantly by the zener resistance. For best regulation, keep current excursions as low as possible.

Surge limitations are given in Figure 6. They are lower than would be expected by considering only junction temperature, as current crowding effects cause temperatures to be extremely high in small spots, resulting in device degradation should the limits of Figure 6 be exceeded.





FIGURE 3 - TEMPERATURE COEFFICIENTS (-55°C to +150°C temperature range; 90% of the units are in the ranges indicated.)











This graph represents 90 percentil data points For worst case design characteristics, multiply surge power by 2/3





FIGURE 9 - TYPICAL NOISE DENSITY 10 000 Iz = 250 μA  $T_A = 25^{\circ}C$ € 1000 N_D, NOISE DENSITY (μV/ς VZ, ZENER VOLTAGE (VOLTS)







1N821, A 1N823, A 1N825, A 1N827, A 1N829, A

## Designers Data Sheet

# TEMPERATURE-COMPENSATED ZENER REFERENCE DIODES

Temperature-compensated zener reference diodes utilizing a nitride passivated junction for long-term voltage stability. A rugged, glass-enclosed, hermetically sealed structure

#### Designer's Data for "Worst-Case" Conditions

The Designers Data Sheet permits the design of most circuits entirely from the information presented. Limit data — representing device characteristic boundaries — are given to facilitate "worst-case" design.

#### **MAXIMUM RATINGS**

Junction Temperature -55 to +175 $^{\circ}$ C Storage Temperature -65 to +175 $^{\circ}$ C DC Power Dissipation 400 mW @ T_A = 50 $^{\circ}$ C

#### MECHANICAL CHARACTERISTICS

CASE: Hermetically sealed, all-glass DIMENSIONS: See outline drawing

FINISH: All external surfaces are corrosion resistant and leads are readily

solderable and weldable.

POLARITY: Cathode indicated by polarity band

WEIGHT: 0 2 Gram (approx)
MOUNTING POSITION: Any

### **ELECTRICAL CHARACTERISTICS** ( $T_A = 25^{\circ}C$ unless otherwise noted.

 $V_Z = 6.2 \text{ V} \pm 5.0\%^* \text{ @ I}_{ZT} = 7.5 \text{ mA})$ 

JEDEC Type No.	Maximum Voltage Change [△] V _Z (Volts) (Note 1)	Ambient Test Temperature °C ±1°C	Temperature Coefficient %/°C (Note 1)	Maximum Dynamic Impedance Z _{ZT} Ohms (Note 2)
1N821	0 096	-55, 0, +25, +75, +100	0 01	15
1N823	0.048	1	0.005	1
1N825	0.019		0.002	1 1
1N827	0 009		0.001	1
1N829	0 005		0 0005	1 ♥
1N821A	0 096		0 01	10
1N823A	0 048		0 005	1 1
1N825A	0.019		0.002	] ]
1N827A	0 009		0 001	]
1N829A	0.005	*	0.0005	<b>Y</b>

^{*}Tighter-tolerance units available on special request.

#### TEMPERATURE-COMPENSATED SILICON ZENER REFERENCE DIODES

6.2 V, 400 mW





	MILLIN	METERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	3 05	5 08	0 120	0 200	
В	1 52	2 29	0 060	0 090	
D	0 46	0.56	0 018	0 022	
F	-	1 27	-	0 050	
K	25 40	38 10	1 000	1 500	

All JEDEC dimensions and notes apply

CASE 299-02 DO-204AH GLASS

## 1N821, A, 1N823, A, 1N825, A, 1N827, A, 1N829, A

#### MAXIMUM VOLTAGE CHANGE versus AMBIENT TEMPERATURE



### ZENER CURRENT versus MAXIMUM VOLTAGE CHANGE

(At Specified Temperatures) (See Note 4)

MORE THAN 95% OF THE UNITS ARE IN THE RANGES INDICATED BY THE CURVES





## 1N821, A, 1N823, A, 1N825, A, 1N827, A, 1N829, A

#### MAXIMUM ZENER IMPEDANCE versus ZENER CURRENT

(See Note 2)

MORE THAN 95% OF THE UNITS ARE IN THE RANGES INDICATED BY THE CURVES.





#### NOTE 1.

Voltage Variation (AVZ) and Temperature Coefficient

All reference diodes are characterized by the "box method". This guarantees a maximum voltage variation  $(\Delta V_Z)$  over the specified temperature range, at the specified test current (I_ZT), verified by tests at indicated temperature points within the range. VZ is measured and recorded at each temperature specified. The  $\Delta V_Z$  between the highest and lowest values must not exceed the maximum  $\Delta V_Z$  given. This method of indicating voltage stability is now used for JEDEC registration as well as for military qualification. The former method of indicating voltage stability — by means of temperature coefficient — accurately reflects the voltage deviation at the temperature extremes, but is not necessarily accurate within the temperature range because reference diodes have a nonlinear temperature relationship. The temperature coefficient, therefore, is given only as a reference.

#### NOTE 2.

The dynamic zener impedance,  $Z_{ZT}$ , is derived from the 60-Hz ac voltage drop which results when an ac current with an rms value equal to 10% of the dc zener current,  $I_{ZT}$ , is superimposed on  $I_{ZT}$  Curves showing the variation of zener impedance with zener current for each series are given in Figures 4 and 5.

#### NOTE 3

These graphs can be used to determine the maximum voltage change of any device in the series over any specific temperature range. For example, a temperature change from 0 to  $+50^{\circ}$ C will cause a voltage change no greater than +31 mV or -31 mV for 1821 or 1821 A; as illustrated by the dashed lines in Figure 1. The boundaries given are maximum values. For greater resolution, an expanded view of the shaded area in Figure 1a is shown in Figure 1b

#### NOTE 4

The maximum voltage change,  $\Delta V_Z$ , Figures 2 and 3 is due entirely to the impedance of the device. If both temperature and  $I_{ZT}$  are varied, then the total voltage change may be obtained by graphically adding  $\Delta V_Z$  in Figure 2 or 3 to the  $\Delta V_Z$  in Figure 1 for the device under consideration. If the device is to be operated at some stable current other than the specified test current, a new set of characteristics may be plotted by superimposing the data in Figure 2 or 3 on Figure 1 For a more detailed explanation see AN-437 (Application Note)

## 1N957A thru 1N986A See Page 4-4

# 1N987A thru 1N992A

#### 400-MILLIWATT

SILICON ZENER DIODES



#### Advance Information

# CONSTANT -VOLTAGE REFERENCES FOR 120 thru 200-VOLT APPLICATIONS

- 400-Milliwatt
- Guaranteed Low Zener Impedance
- Guaranteed Low Leakage Current
- Controlled Forward Characteristics
- Temperature Range. −65 to +175°C
- No Heat Sink Required

#### **MAXIMUM RATINGS**

Rating	Symbol	Value	Unit
DC Power Dissipation @ T _L = 50°C  Derate above T _L = 50°C	PD	400 3.2	mW mW/ ^O C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +175	

#### MECHANICAL CHARACTERISTICS

CASE: Hermetically sealed all glass case DIMENSIONS: See outline drawing

FINISH: All external surfaces are corrosion resistant with readily solderable leads POLARITY: Cathode end indicated by color band. When operated in zener region,

the cathode end will be positive with respect to anode end

WEIGHT: 0 2 grams (approx )
MOUNTING POSITION: Any



This document contains information on a new product. Specifications and information herein are subject to change without notice



#### NOTES

- 1 PACKAGE CONTOUR OPTIONAL WITHIN A AND B HEAT SLUGS, IF ANY, SHALL BE INCLUDED WITHIN THIS CYLINDER, BUT NOT SUBJECT TO THE MINIMUM LIMIT OF R
- THE MINIMUM LIMIT OF B

  2 LEAD DIAMETER NOT CONTROLLED IN ZONE F TO
  ALLOW FOR FLASH, LEAD FINISH BUILDUP AND
  MINOR IRREGULARITIES OTHER THAN HEAT
  SLUGS
- 3 POLARITY DENOTED BY CATHODE BAND 4 DIMENSIONING AND TOLERANCING PER ANSI Y14 5, 1973

	MILLIN	ETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	3 05	5 08	0 120	0 200	
В	1 52	2 29	0 060	0 090	
D	0 46	0 56	0 018	0 022	
F	_	1 27	_	0.050	
K	25 40	38 10	1 000	1 500	

All JEDEC dimensions and notes apply

CASE 299-02 DO-204AH GLASS

#### ELECTRICAL CHARACTERISTICS (T_A = 25°C, V_F = 1.5 V max at 200 mA for all types)

Type	Nominal Zener Voltage Vz	Test Current	Maxim	um Zener Imp (Note 3)	edance	Maximum DC Zener Current IZM	Maximu	m Reverse (Note 5)	Current
Number (Note 1)	(Note 2) Volts	I _{ZT} mA	Z _{ZT} @ I _{ZT} Ohms	Z _{ZK} @ I _{ZK} Ohms	IZK mA	(Note 4) mA	I _R Maximum μA	Test ' 5%	Voltage Vdc V _R 10%
1N987A	120	1.0	900	4500	0.25	2 5	5.0	91.2	86 4
1N988A	130	0.95	1100	5000	0.25	2.3	5.0	98 8	93.6
1N989A	150	0 85	1500	6000	0 25	20	5 0	114	108
1N990A	160	0 80	1700	6500	0.25	19	5.0	121 6	115.2
1N991A	180	0 68	2200	7100	0.25	17	5 0	136 8	129 6
1N992A	200	0.65	2500	8000	0.25	15	5.0	152	144

#### NOTE 1 - TOLERANCE AND VOLTAGE DESIGNATION

#### **Tolerance Designation**

The tolerance designations are as follows.

Suffix A:  $\pm 10\%$ Suffix B:  $\pm 5\%$ Suffix C:  $\pm 2\%$ Suffix D:  $\pm 1\%$ 

#### NOTE 2 - ZENER VOLTAGE (VZ) MEASUREMENT

Nominal zener voltage is measured with the device junction in thermal equilibrium with ambient temperature of  $25^{\circ}\text{C}$ 

#### NOTE 3 - ZENER IMPEDANCE (ZZ) DERIVATION

The zener impedance is derived from the 60 cycle ac voltage, which results when an ac current having an rms value equal to 10% of the dc zener current ( $I_{ZT}$ ) is superimposed on  $I_{ZT}$ 

A cathode ray oscilloscope curve test is used to insure that each zener diode breakdown region begins at a low current level and that zener voltage remains nearly constant to a current level in excess of I_{ZM}.

#### NOTE 4 - MAXIMUM ZENER CURRENT RATINGS (IZM)

Maximum zener current ratings are based on the maximum voltage of a 20% unit. For closer tolerance units (10% or 5%) or units where the actual zener voltage (Vz) is known at the operating point, the maximum zener current may be increased and is limited by the derating curve.

#### NOTE 5 - REVERSE LEAKAGE CURRENT IR

Reverse leakage currents are guaranteed only for 5% and 10% 400 mW silicon zener diodes and are measured at  $\rm V_{\sc R}$  as shown on the table.

4

# 1N2970A thru 1N3015A

#### ZENER DIODES

Diffused-junction zener diodes for both military and highreliability industrial applications. Available with anode-to-case and cathode-to-case connections (standard and reverse polarity), i.e., 1N2970 and 1N2970R. Supplied with mounting hardware.

The type numbers shown have a standard tolerance of  $\pm 10\%$  on the nominal zener voltage. Add suffix "B" for ±5% units. (2% and 1% tolerance also available.)

#### **MAXIMUM RATINGS**

Junction and Storage Temperature: -65°C to +175°C.

DC Power Dissipation: 10 Watts. (Derate 83.3 mW/°C above 55°C).

#### 10 WATTS **ZENER DIODES**





DIM	MIN	MAX	MIN	MAX	
A		12 82		0 505	
В	10 77	11 09	0 424	0 437	STYLE 1
C		10 28		0 405	TERM 1 CATHODE
D		6 35		0 250	2 ANODE
E	1 53	_	0 060		2 ANODE
F	1.91	4 44	0 075	0 175	
J	10 72	11 50	0 422	0 453	STYLE 2
K	15 24	20 32	0 600	0 800	TERM 1 ANODE
P	4 14	4 80	0 163	0 189	<ol><li>CATHODE</li></ol>
Q	1.53	2 41	0 060	0 095	
R	674	10 76	0 265	0 424	

CASE 56-03 DO-203AA METAL

#### **ELECTRICAL CHARACTERISTICS** ( $T_C = 25$ °C unless otherwise noted, $V_F = 1.5 \text{ V max } @ I_F = 2 \text{ amp on all types.}$

	Nominal	Test	Max	Zener Impedano	:0	Max DC Zener	Ma	k. Reverse Curren	t*
Type No.	Zener Voltage Vz @ IZT Volts	Current I <mark>ZT</mark> mA	Z _{ZT} @ I _{ZT} Ohms	Z _{ZK} @ I _{ZK} Ohms	IZK mA	Current IZM mA	I _R Max (μA)	V _{R1}	V _{R2}
1N2970A	6.8	370	1.2	500	10	1,320	150	52	4.9
1N2971A	7.5	335	1.3	250	10	1,180	75	5.7	5.4
1N2972A	8.2	305	1.5	250	1.0	1,040	50	6.2	59
1N2973A	9.1	275	2.0	250	1.0	960	25	6.9	66
1N2974A	10	250	3	250	10	860	10	7.6	7.2
1N2975A	11	230	3	250	10	780	5	8.4	8.0
1N2976A	12	210	3	250	1.0	720	5	91	8.6
1N2977A	13	190	3	250	1.0	660	5	9.9	9.4
1N2978A	14	180	3	250	1.0	600	5	10.6	10.1
1N2979A	15	170	3	250	1.0	560	5	11.4	10.8

^{*}V_{R1} — Test Voltage for 5% Tolerance Device. V_{R2} — Test Voltage for 10 % Tolerance Device. No Leakage Specified as 20% Tolerance Device.

**ELECTRICAL CHARACTERISTICS** (TC =  $25\,^{\circ}$ C unless otherwise noted, VF =  $1.5\,$ V max @ IF =  $2\,$ amp on all types.)

	Nominal Zener Voltage	Test Current	Max	Zener Impedano	е	Max DC Zener Current	Ma	x. Reverse Curren	ı*
Туре Йо.	V _Z @ I _{ZT}	I _{ZT} mA	Z _{ZT} @ I _{ZT} Ohms	Z _{ZK} @ I _{ZK} Ohms	IZK mA	I _{ZM} mA	I _R Max (μA)	V _{R1}	V _{R2}
1N2980A	16	155	4	250	10	530	5	12 2	115
1N2982A	18	140	4	250	10	460	5	13 7	130
1N2983A	19	130	4	250	10	440	5	14 4	13 7
1N2984A	20	125	4	250	10	420	5	15 2	14 4
1N2985A	22	115	5	250	10	380	5	16 7	158
1N2986A	24	105	5	250	10	350	5	18 2	173
1N2988A	27	95	7	250	10	300	5	20 6	194
1N2989A	30	85	8	300	10	280	5	22 8	216
1N2990A	33	75	9	300	10	260	5	25 1	23 8
1N2991A	36	70	10	300	10	230	5	27 4	25 9
1N2992A	39	65	11	300	10	210	5	29 7	28 1
1N2993A	43	60	12	400	10	195	5	32 7	310
1N2995A	47	55	14	400	10	175	5	35 8	33 8
1N2996A	50	50	15	500	10	165	5	38 0	360
1N2997A	51	50	15	500	10	163	5	38 8	36 7
1N2998A	52	50	15	500	10	160	5	39 5	37 4
1N2999A	56	45	16	500	10	150	5	42 6	40 3
1N3000A	62	40	17	600	10	130	5	47 1	446
1N3001A	68	37	18	600	10	120	5	517	49 0
1N3002A	75	33	22	600	10	110	5	56 0	54 0
1N3003A	82	30	25	700	10	100	5	62 2	59 0
1N3004A	91	28	35	800	10	85	5	69 2	65 5
1N3005A	100	25	40	900	10	80	5	76 0	72 0
1N3006A	105	25	45	1,000	10	75	5	79 8	75 6
1N3007A	110	23	55	1,100	10	72	5	83 6	79 2
1N3008A	120	20	75	1,200	10	67	5	91 2	86 4
1N3009A	130	19	100	1,300	10	62	5	98 8	93 6
1N3010A	140	18	125	1,400	10	58	5	106 4	100 8
1N3011A	150	17	175	1,500	10	54	5	1140	108 0
1N3012A	160	16	200	1,600	10	50	5	121 6	115 2
1N3014A	180	14	260	1,850	10	45	5	136 8	129 6
1N3015A	200	12	300	2,000	10	40	5	152 0	144 0

^{*}V_{R1} — Test Voltage for 5% Tolerance Device V_{R2} — Test Voltage for 10 % Tolerance Device No Leakage Specified as 20% Tolerance Device

## 1N3016A thru 1N3051A See Page 4-21

# 1N3305A thru 1N3350A

6.8V thru 200V

# 1N4549A thru 1N4556A

3.9V thru 7.5V

____

50 WATTS
ZENER DIODES

#### **ZENER DIODES**

Units are available with anode-to-case and cathode-to-case connections (standard and reverse polarity). For reverse polarity, add suffix "R" to type number.

#### **MAXIMUM RATINGS**

Junction and Storage Temperature:  $-65^{\circ}\text{C}$  to  $+175^{\circ}\text{C}$ . DC Power Dissipation: 50 Watts. (Derate 0.5 W/C above 75°C). TOLERANCE DESIGNATION: The type numbers shown have a standard tolerance of  $\pm 10\%$  on the nominal zener voltage. Add suffix "B" for  $\pm 5\%$  units. (2% and 1% tolerance also available.)



## 1N3305A thru 1N3350A, 1N4549A thru 1N4556A

**ELECTRICAL CHARACTERISTICS** ( $T_C = 30$  °C unless otherwise specified,  $V_F = 1.5$  V max @ 10 A on all types.)

	Nominal Zener	Test	Max Ze	ner Impedance	Max DC Zener Current	ı	Reverse*		Typical Zener
50 Watt Case 58	Voltage @ IZT	Current (I _{ZT} )			75°C Case Temp (I _{ZM} )mA				Voltage Temp. Coeff.
	(V _Z ) Volts	mA	Z _{ZT @ IZT} ohms	Z _{ZK} @ l _{ZK} = 5mA ohms		I _R Max (μA)	V _{R1}	V _{R2}	%/°C
1N4549A	39	3200	0 16	400	11900	150	0.5	0.5	- 025
1N4550A	4.3	2900	0 16	500	10650	150	0.5	0.5	- 025
1N4551A	47	2650	0.12	600	9700	100	1.0	10	.010
1N4552A	5.1	2450	0.12	650	8900	20	1.0	1.0	015
1N4553A	56	2250	0.12	900	8100	20	1.0	1.0	.030
1N4554A	62	2000	0.14	1000	7300	20	2.0	2.0	040
1N3305A	68	1850	02	70	6600	150	45	4.3	040
1N4555A	68	1850	0 16	200	6650	10	2.0	20	045
1N3306A	75	1700	03	70	5900	75	5.0	47	045
1N4556A	75	1650	0 24	100	6050	10	3.0	30	.053
1N3307A	8 2	1500	0.4	70	5200	50	54	5,2	.048
1N3308A	91	1370	0.5	70	4800	25	6.1	57	051
1N3309A	10	1200	06	80	4300	10	67	63	055
1N3310A	11	1100	0.8	80	3900	5	84	80	060
1N3311A	12	1000	10	80	3600	5	91	86	065
1N3312A	13	960	11	80	3300	5	99	94	065
1N3313A	14	890	12	80	3000	5	106	10.1	.070
1N3314A	15	830	14	80	2800	5	114	108	070
1N3315A	16	780	16	80	2650	5	12 2	115	070
1N3316A	17	740	18	80	2500	5	130	122	075
1N3317A	18	700	20	80	2300	5	137	130	075
1N3318A	19	660	22	80	2200	5	14.4	13.7	.075
1N3319A	20	630	24	80	2100	5	15 2	14.4	075
1N3320A	22	570	25	80	1900	5	167	158	080
1N3321A	24	520	26	80	1750	5	18 2	173	.080
1N3322A	25	500	27	90	1550	5	190	180	.080
1N3323A	27	460	28	90	1500	5	20 6	19 4	085
1N3324A	30	420	30	90	1400	5	22.8	216	085
1N3325A	33	380	32	90	1300	5	25.1	23.8	085
1N3326A	36	350	3.5	90	1150	5	27.4	25 9	085
1N3327A	39	320	40	90	1050	5	29 7	28 1	090
1N3328A	43	290	45	90	975	5	32.7	310	090
1N3329A	45	280	45	100	930	5	34 2	32 4	.090
1N3330A	47	270	50	100	880	5	35.8	33 8	.090
1N3331A 1N3332A	50	250	5.0	100	830	5	38 0	36.0	.090
1N3332A	51 52	245 240	5 2 5 5	100	810	5	38.8	36 7	090
1N3333A	52 56			100	790	5	39 5	37 4	090
1N3334A 1N3335A	62	220 200	6 7	110 120	740 660	5	42.6 47.1	40 3	.090
1N3335A	68	180	8	140	600	5 5	51.7	44.6 49.0	.090
1N3337A	75	170	9	150	540	5	56.0	54.0	.090 .090
1N3337A	82	150	11	160	490	5	62 2	54.0 59.0	090
1N3339A	91	140	15	180	420	5	69 2	65.5	090
1N3340A	100	120	20	200	400	5	76.0	72.0	.090
1N3341A	105	120	25	210	380	5	79.8	75.6	.095
1N3342A	110	110	30	220	365	5	83.6	79.0	.095
1N3343A	120	100	40	240	335	5	91.2	86 4	.095
1N3344A	130	95	50	275	310	5	98.8	93 6	.095
1N3345A	140	90	60	325	290	5	106.4	100 8	.095
1N3346A	150	85	75	400	270	5	114.0	108.0	.095
1N3347A	160	80	80	450	250	5	121.6	115.2	.095
1N3348A	175	70	85	500	230	5	133.0	126.0	.095
1N3349A	180	68	90	525	220	5	136 8	129.6	.095
1N3350A	200	65	100	600	200	5	152.0	144 0	.100

SPECIAL SELECTIONS AVAILABLE INCLUDE: (See Selector Guide for details)

^{*}V_{R1} — Test Voltage for 5% Tolerance Device V_{R2} — Test Voltage for 10% Tolerance Device No Leakage Specified as 20% Tolerance Device

## 1N3305A thru 1N3350A, 1N4549A thru 1N4556A





100

T_C, CASE TEMPERATURE (°C)

125

150

25







### **MOTOROLA** SEMICONDUCTOR SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE **TECHNICAL DATA**



# 1N3016A thru 1N3051A

SERIES

# ieners Data Sheet

#### 1.0 WATT METAL SILICON ZENER DIODES

. . a complete series of 1.0 Watt Zener Diodes with limits and operating characteristics that reflect the superior capabilities of silicon-oxide-passivated junctions. All this in an axial-lead, metal package offering protection in all common environmental conditions

- To 100 Watts Surge Rating @ 10 ms
- Maximum Limits Guaranteed on Five Electrical Parameters
- Power Capability to MIL-S-19500 Specifications

#### Designer's Data for "Worst Case" Conditions

The Designers Data sheets permit the design of most circuits entirely from the information presented. Limit curves - representing boundaries on device characteristics - are given to facilitate "worst case" design

#### *MAXIMUM RATINGS

Rating	Symbol	Value	Unit
DC Power Dissipation @ T _A = 25°C Derate above 25°C (See Figure 1)	PD	1 0 6 67	Watt mW/ ^O C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +175	°C

Lead Temperature 230°C at a distance not less than 1/16" from the case for 10 seconds

#### MECHANICAL CHARACTERISTICS

CASE: Welded, hermetically sealed metal and glass

**DIMENSIONS:** See outline drawing

FINISH: All external surfaces are corrosion-resistant and leads are readily solderable

POLARITY: Cathode connected to the case When operated in zener mode, cathode will be positive with respect to anode

WEIGHT: 1 4 Grams (approx) MOUNTING POSITION: Any



^{*}Indicates JEDEC Registered Data

#### **1.0 WATT** ZENER REGULATOR DIODES

3.3-200 VOLTS





	MILLI	METERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	7 44	9 07	0 293	0 357	
В	5 46	5 97	0 215	0 235	
C	-	14 48	_	0 570	
D	0 64	0.89	0 025	0 035	
F		4 78	_	0 188	
J	1 14	2 54	0 045	0 100	
К	25 40	41 28	1 000	1 625	
L	25.40	41 28	1 000	1 625	

All JEDEC dimensions and notes apply

CASE 52-03 DO-13 METAL

1. ALL RULES AND NOTES ASSOCIATED
WITH DO-13 OUTLINE SHALL APPLY

## 1N3821 thru 1N3830, 1N3016A thru 1N3051A

**ELECTRICAL CHARACTERISTICS** (T_C = 25°C unless otherwise noted) V_F = 1.5 V max @ I_F = 200 mA for all types

JEDEC Type No.	*Nominal Zener Voltage Vz @ IzT	*Test Current	*Max Z	ener Impedan (Note 4)	CØ	Max	Reverse Curr (Note 5)	ent	*Max DC Zener Current
(Flangeless) (Note 1)	Valts (Note 1)	IZT mA	Z _{ZT} @ I _{ZT} Ohms	Z _{ZK} @IZK Ohms	IZK mA	la Max (Aس)	V _{R1} 5%	V _{R2} 10%	IZM mA (Note 4)
1N3821	3 3	76	10	400	10	*100	*10	10	276
1N3822	3 6	69	10	400	10	*100	*10	10	252 238
1N3823	3 9	64	90	400 400	10 10	*50 *10	*10	1.0	238
1N3824	4.3	58		L	L				1
1N3825	4 7	53	80	500	10	*10	*10	10	194
1N3826	5 1	49	70	550 600	1 0 1 0	*10 *10	*20	10	178 162
1N3827	5 6 6 2	45 41	5 0 2 0	700	10	*10	•30	30	146
1N3828							*30		i _
1N3829	68	37	15	500	10	*10 *10	*30	30	133 121
1N3830	7.5	34	15	250	10	-10	"	30	121
1N3016A	68	37	35	700	10	10	5 2	49	140
1N3017A	7.5	34	40	700	05	10	57	5 4	125
1N3018A	8 2	31	45	700	0.5	10	6 2	5 9	115
1N3019A	9 1	28	50	700	0.5	7.5	69	66	105
1N3020A	10	25	70	700	0 25	50	76	72	95
1N3021A	11	23	80	700	0 25	50	84	80	85
1N3022A	12	21	90	700	0 25	20	91	8.6	80
1N3023A	13	19	10	700	0 25	10	99	94	74
1N3024A	15	17	14	700	0 25	10	11.4	108	63
1N3025A	16	15 5	16	700	0 25	10	12 2	11 5	60
1N3026A	18	14	20	750	0 25	0.5	13 7	13 0	52
1N3027A	20	125	22	750	0 25	0.5	15 2	14 4	47
1N3028A	22 24	11 5	23 25	750 750	0 25 0 25	05 05	16 7 18 2	15 8 17 3	43 40
1N3029A	1		1						
1N3030A 1N3031A	27 30	9 5 8 5	35 40	750 1000	0 25 0 25	0.5	20 6 22 8	19 4 21 6	34 31
1N3031A	33	75	45	1000	0 25	05 05	25 1	23 8	28
1N3032A	36	7.0	50	1000	0 25	05	27 4	25 9	26
1N3034A	39	6.5	60	1000	0 25	0.5	29 7	28 1	23
1N3035A	43	6.0	70	1500	0 25	05	32 7	310	21
1N3036A	47	5.5	80	1500	0 25	0.5	35 8	33 8	19
1N3037A	51	5.0	95	1500	0 25	0 5	38 8	36 7	18
1N3038A	56	4.5	110	2000	0 25	0.5	42 6	40 3	17
1N3039A	62	40	125	2000	0 25	0.5	47 1	446	15
1N3040A	68	37	150	2000	0 25	0.5	517	49 0	14
1N3041A	75	3 3	175	2000	0 25	0 5	56 0	54 0	12
1N3042A	82	3 0	200	3000	0 25	0.5	62 2	59 0	11
1N3043A	91	28	250	3000	0 25	0.5	69 2	65 5	10
1N3044A	100	25	350	3000	0 25	0 5 0 5	76 0	72 0 79 2	90
1N3045A	110 120	23 20	450 550	4000 4500	0 25 0 25	0.5	83 6 91 2	79 2 86 4	83 80
1N3046A									t .
1N3047A 1N3048A	130 150	1 9 1.7	700 1000	5000 6000	0 25 0 25	05 05	98 8 114 0	93 6 108 0	6 9 5 7
1N3048A 1N3049A	160	1.7	1100	6500	0 25	05	1216	115 2	54
1N3049A 1N3050A	180	14	1200	7000	0 25	05	1368	129 6	49
1N3051A	200	12	1500	8000	0 25	0.5	152 0	144 0	46

^{*}JEDEC Registered Data on 1N3821 thru 1N3830 and 1N3016A thru 1N3051A (*See Notes — page 4-23)

### 1N3821 thru 1N3830, 1N3016A thru 1N3051A

#### NOTE 1 - ZENER VOLTAGE (Vz) MEASUREMENT

Motorola guarantees the zener voltage when measured at 90 seconds while maintaining the lead temperature (T  $_L$  ) at  $30^{o}$  C  $\pm$   $1^{o}$  C,  $3/8^{\prime\prime}$  from the diode body

Devices shown in table have a standard tolerance of  $\pm$  10% on the nominal zener voltage  $\pm$  5% are as follows 1N3821A, 1N3830A, 1N3016B-1N3051B

#### NOTE 2 - ZENER IMPEDANCE (ZZ) DERIVATION

The zener impedance is derived from the 60 cycle ac voltage, which results when an ac current having an rms value equal to 10% of the dc zener current ( $I_{ZT}$  or  $I_{ZK}$ ) is superimposed on  $I_{ZT}$  or  $I_{ZK}$ 

#### NOTE 3 - REVERSE LEAKAGE CURRENT IR

Reverse leakage currents are guaranteed only for 5% and 10% cener diodes and are measured at  $V_R$  as shown in the Electrical Characteristics Table

#### NOTE 4 - MAXIMUM ZENER CURRENT RATINGS (IZM)

1N3821 thru 1N3830 — Maximum zener current ratings are based on maximum voltage of 10% tolerance units

1N3016 thru 1N3051 — Maximum zener current ratings are based on maximum voltage of 5% tolerance units

#### NOTE 5 - SURGE CURRENT ( $i_r$ )

Surge current is specified as the maximum allowable peak, non-recurrent square-wave current with a specified pulse width, PW The data presented in Figures 8 and 9 may be used to find the maximum surge current for a square wave of any pulse width between 0.01 ms and 1000 ms.

#### APPLICATION NOTE

Since the actual voltage available from a given zener diode is temperature dependent, it is necessary to determine junction temperature under any set of operating conditions in order to calculate its value. The following procedure is recommended.

Lead Temperature, T_L, should be determined from

 $heta_{LA}$  is the lead-to-ambient thermal resistance ( $^{\circ}$ C/W) and  $P_D$  is the power dissipation. The value for  $heta_{LA}$  will vary and depends on the device mounting method  $heta_{LA}$  is generally 30.40 $^{\circ}$ C/W for the various clips and tie points in common use and for printed circuit board wirring

The temperature of the lead can also be measured using a thermocouple placed on the lead as close as possible to the tie point. The thermal mass connected to the tie point is normally large enough so that it will not significantly respond to heat surges generated in the diode as a result of pulsed operation once steady-state conditions are achieved. Using the measured value of T_L, the junction temperature may be determined by

$$T_J = T_L + \Delta T_{JL}$$

 $\Delta T_{JL}$  is the increase in junction temperature above the lead temperature and may be found from Figure 6 for a train of power pulses (L = 3/8 inch) or from Figure 7 for dc power

$$\Delta T_{JL} = \theta_{JL} P_{D}$$

For worst-case design, using expected limits of  $I_Z$ , limits of  $P_D$  and the extremes of  $T_J(\Delta T_J)$  may be estimated. Changes in voltage,  $V_Z$ , can then be found from

$$\Delta V = \theta_{VZ} \Delta T_{J}$$

 $heta_{
m VZ}$ , the zener voltage temperature coefficient, is found from Figures 2 and 3.

Under high power-pulse operation, the zener voltage will vary with time and may also be affected significantly by the zener resistance. For best regulation, keep current excursions as low as possible.

Data of Figure 6 should not be used to compute surge capability to the compute surge capability in the compute surge capability when the compute surge capability will be expected by considering only junction temperature, as current crowding effects cause temperatures to be extremely high in small spots resulting in device degradation should the limits of Figure 8 be exceeded



#### TEMPERATURE COEFFICIENTS AND VOLTAGE REGULATION

(90% OF THE UNITS ARE IN THE RANGES INDICATED)





#### FIGURE 4 - TYPICAL VOLTAGE REGULATION







4

FIGURE 6 - TYPICAL THERMAL RESPONSE L, LEAD LENGTH = 3/8 INCH  $\theta$ JL, JUNCTION-TO LEAD THERMAL RESISTANCE ( 0 C/W) 50 D = 02 -D = 0 1 D = 0 05 DUTY CYCLE, D = t1/t2 SINGLE PULSE AT JL = 0 JL (t) PPK
REPETITIVE PULSES AT JL = 0 JL (t, D) PPK PPK - D = 0 02 -Below 0 1 Second, Thermal NOTE Response Curve is Applicable to any Lead Length (L) SINGLE PULSE 0 003 0 005 0 01 0 03 0 05 0.5 10 30 50 10 30 50 100 200

t, TIME (SECONDS)

FIGURE 7 – TYPICAL THERMAL RESISTANCE

140

PRIMARY PATH OF

CONDUCTION IS THROUGH

THE CATHODE LEAD

1,18

1/4

3/8

1/2

5/8

3/4

7/8

10

L, LEAD LENGTH TO HEAT SINK (INCH)



FIGURE 9 - SURGE POWER FACTOR



SQUARE WAVE PULSE WIDTH (ms)

FIGURE 10 - TYPICAL CAPACITANCE



# 1N3993 THRU 1N4000

#### **ZENER DIODES**

Low-voltage, alloy-junction zener diodes in hermetically sealed package with cathode connected to case. Supplied with mounting hardware.

#### **MAXIMUM RATINGS**

Junction and Storage Temperature⁻ – 65 °C to + 175 °C. DC Power Dissipation⁻ 10 Watts. (Derate 83.3 mW/°C above 55 °C).

The type numbers shown in the table have a standard tolerance on the nominal zener voltage of  $\pm 10\%$ . A standard tolerance of  $\pm 5\%$  on individual units is also available and is indicated by suffixing "A" to the standard type number.

### ELECTRICAL CHARACTERISTICS ( $T_B = 30 \,^{\circ}\text{C} \pm 3$ ,

 $V_F = 1.5 \text{ max } @ I_F = 2 \text{ amp for all units})$ 

	Nominal Zener Voltage	Test Current	Max Zener Impedance		Max DC Zener Current	Zener Leakage	
Type No.	V _Z @ I _{ZT} Volts	IZT mA	Z _{ZT} @ l _{ZT} Ohms	Z _{ZK} @ I _{ZK} = 1.0 mA Ohms	I _{ZM} mA	IR ⊬A	V _R Volts
1N3993	3.9	640	20	400	2380	100	0.5
1N3994	43	580	15	400	2130	100	0.5
1N3995	47	530	12	500	1940	50	1.0
1N3996	5.1	490	11	550	1780	10	1.0
1N3997	56	445	10	600	1620	10	1.0
1N3998	6.2	405	1.1	750	1460	10	2.0
1N3999	6.8	370	1.2	500	1330	10	20
1N4000	7.5	335	1.3	250	1210	10	30

SPECIAL SELECTIONS AVAILABLE INCLUDE: (See Selector Guide for details)

# 10 WATTS ZENER DIODES





	MILLIN	TETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	11 94	12 83	0 470	0 505
В	10 77	11.10	0 424	0 437
C	-	10 29	_	0 405
D	-	6 35	-	0 250
E	1 91	4 45	0 075	0 175
F	1 52		0 060	-
J	10 72	11 51	0 422	0 453
К	-	20.32		0 800
P	4.14	4 80	0 163	0 189
Q	1 52	_	0.060	_
-		10.77		0.424

All JEDEC dimensions and notes apply

CASE 56-02 DO-203AA METAL

# 1N4099 thru 1N4135 **1N4614** thru 1N4627

#### LOW-LEVEL SILICON PASSIVATED ZENER DIODES

designed for 250 mW applications requiring low leakage, low impedance, and low noise.

- Voltage Range from 1 8 to 100 Volts
- First Zener Diode Series to Specify Noise 50% Lower than Conventional Diffused Zeners
- Zener Impedance and Zener Voltage Specified for Low-Level Operation at  $I_{ZT}$  = 250  $\mu A$
- Low Leakage Current In from 0 01 to 10 μA over Voltage Range

#### SILICON ZENER DIODES

(±5.0% TOLERANCE)

250 MILLIWATTS 1.8-100 VOLTS

SILICON OXIDE PASSIVATED JUNCTION



#### **MAXIMUM RATINGS**

Rating	Symbol	Value	Unit
DC Power Dissipation @ T _A = 25°C Derate above 25°C	PD	250 1 43	mW mW/°C
Junction and Storage Temperature Range	TJ, T _{stg}	-65 to +200	°C

#### MECHANICAL CHARACTERISTICS

CASE: Hermetically sealed, all-glass DIMENSIONS See outline drawing

FINISH All external surfaces are corrosion resistant and leads are readily solder-

able and weldable

POLARITY: Cathode indicated by polarity band

WEIGHT. 0 2 gram (approx )
MOUNTING POSITION. Any





#### NOTES

- 1 PACKAGE CONTOUR OPTIONAL WITHIN A AND B HEAT SLUGS, IF ANY, SHALL BE INCLUDED WITHIN THIS CYLINDER, BUT NOT SUBJECT TO THE MINIMUM LIMIT OF B
- 2 LEAD DIAMETER NOT CONTROLLED IN ZONE F TO ALLOW FOR FLASH, LEAD FINISH BUILDUP AND MINOR IRREGU-LARITIES OTHER THAN HEAT SLUGS
- 3 POLARITY DENOTED BY CATHODE BAND
- 4 DIMENSIONING AND TOLERANCING PER ANSI Y14 5, 1973

	MILLIN	METERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	3 05	5 08	0 120	0 200	
В	1 52	2 29	0 060	0 090	
D	0 46	0 56	0 018	0 022	
F	-	1 27	-	0 050	
К	25 40	38 10	1 000	1 500	

All JEDEC dimensions and notes apply

CASE 299-02 DO-204AH GLASS

## 1N4099 thru 1N4135, 1N4614 thru 1N4627

#### **ELECTRICAL CHARACTERISTICS**

(At 25°C Ambient temperature unless otherwise specified) I_{ZT} = 250 µA and V_F = 1.0 V max @ I_F = 200 mA on all Types

Type Number (Note 1)	Nominal Zener Voltage VZ (Note 1) (Volts)	Max Zener Impedance ZZT (Note 2) (Ohms)	Max Reverse Current I _R ( (µA)	@ Note 4)	Test Voltage VR (Volts)	Max Noise Density At I _{ZT} = 250 μA ND (Fig 1) (micro-volts per Square Root Cycle)	Max Zener Current I ZM (Note 3) (mA)
1N4614	1.8	1200	7.5		1.0	1.0	120
1N4615	2.0	1250	5.0		1.0	1.0	110
1N4616	2.2	1300	4.0	1	1.0	1.0	100
1N4617	2.4	1400	2.0		1.0	1.0	95
1N4618	2.7	1500	1.0	- 1	1.0	1.0	90
1N4619	3.0	1600	0.8	- 1	10	1.0	85
1N4620	3.3	1650	7.5		1.5	1.0	80
1N4621	3.6	1700	7 5		2.0	1.0	75
1N4622	3.9	1650	5.0	- 1	2.0	1.0	70
1N4623	4.3	1600	4.0	1	20	1.0	65
1N4624	4.7	1550	10	1	30	1.0 2.0	60 55
1N4625	5.1	1500	10	- 1	3.0	4.0	50
1N4626 1N4627	5.6	1400	10 10	1	4.0 5.0	4.0 5.0	45
	6.2 6.8	1200 200	10	1	5.0 5.2	40	35
1N4099 1N4100	7.5	200	10	1	5.2 5.7	40	31.8
1N4100 1N4101	8.2	200	1.0	- 1	6.3	40	29.0
1N4101	8.7	200	1.0		6.7	40	27.4
1N4103	9.1	200	1.0	- 1	7.0	40	26 2
1N4104	10	200	1.0	- (	7.6	40	24.8
1N4105	11	200	0.05	1	8.5	40	21 6
1N4106	12	200	0.05	- {	9.2	40	20.4
1N4107	13	200	0.05	ł	9.9	40	19.0
1N4108	14	200	0.05	l l	10.7	40	17.5
1N4109	15	100	0.05	j	11.4	40	16.3
1N4110	16	100	0.05		12.2	40	15.4
1N4111	17	∖.100	0.05	1 1 1	13.0	, 40	14.5
1N4112	18	\100	0 05 \	1 6 5	13.7	40	13.2
1N4113	19	150	0.05	- {	14.5	40	12.5
1N4114	20	150	0.01	- }	15.2	40	11.9
1N4115	22	150	0 01	1	16.8	40	10.8
1N4116	24	150	0.01	-	18.3	40	9.9
1N4117	25	150	0.01	İ	19.0	40	9.5
1N4118	27	150	0.01		20 5	40	8.8
1N4119	28	200	0.01	1	21.3	40	8.5
1N4120	30	200	0.01	-	22.8	40 40	7.9 7.2
1N4121	33	200	0.01	1	25.1	40	7.2 6.6
1N4122	36	200	0.01	- 1	27.4 29.7	40	6.1
1N4123	39 43	200 250	0.01 0.01	1	29.7 32.7	40	5.5
1N4124 1N4125	43	250 250	0.01	- 1	32.7 35.8	40	5.5
1N4125 1N4126	51	300	0.01	l	38.8	40	4.6
1N4120 1N4127	56	300	0.01	- 1	42.6	40	4.2
1N4127	60	400	0.01	1	45.6	40	4.0
1N4129	62	500	0.01		47.1	40	3.8
1N4130	68	700	0.01	- 1	51.7	40	3.5
1N4131	75	700	0.01	- 1	57.0	40	3.1
1N4132	82	800	0.01	- 1	62.4	40	2.9
1N4133	87	1000	0.01	1	66.2	40	2.7
1N4134	91	1200	0.01		69.2	40	2.6
1N4135	100	1500	0.01	1	76.0	40	2.3

#### NOTE 1: TOLERANCE AND VOLTAGE DESIGNATION

The type numbers shown have a standard tolerance of  $\pm 5.0\%$  on the nominal zener voltage. C for  $\pm 2.0\%$ , D for  $\pm 1\%$ .

#### NOTE 2: ZENER IMPEDANCE (ZZT) DERIVATION

The zener impedance is derived from the 60 cycle ac voltage, which results when an ac current having an rms value equal to 10% of the dc zener current ( $I_{ZT}$ ) is superimposed on  $I_{ZT}$ .

#### NOTE 3: MAXIMUM ZENER CURRENT RATINGS (IZM)

Maximum zener current ratings are based on maximum zener voltage of the individual units.

#### NOTE 4: REVERSE LEAKAGE CURRENT IR

Reverse leakage currents are guaranteed and are measured at  $\mbox{V}_{\mbox{\scriptsize R}}$  as shown on the table.

#### ZENER NOISE DENSITY

A zener diode generates noise when it is biased in the zener direction. A small part of this noise is due to the internal resistance associated with the device. A larger part of zener noise is a result of the zener breakdown phenomenon and is called microplasma noise. This microplasma noise is generally considered "white" noise with equal amplitude for all frequencies from about zero cycles to approximately 200,000 cycles. To eliminate the higher frequency components of noise a small shunting capacitor can be used. The lower frequency noise generally must be tolerated since a capacitor required to eliminate the lower frequencies would degrade the regulation properties of the zener in many applications.

Motorola is rating this series with a maximum noise density at 250 microamperes. The rating of microvolts RMS per square root cycle enables calculation of the maximum RMS noise for any bandwidth.

Noise density decreases as zener current increases. This can be seen by the graph in Figure 2 where a typical noise density is plotted as a function of zener current.

The junction temperature will also change the zener noise levels. Thus the noise rating must indicate bandwidth, current level and temperature.

The block diagram given in Figure 1 shows the method used to measure noise density. The input voltage and load resistance is high so that the zener is driven from a constant current source. The amplifier must be low noise so that the amplifier noise is negligible compared to the test zener. The filter bandpass is known so that the noise density in volts RMS per square root cycle can be calculated.

#### FIGURE 1 - NOISE DENSITY MEASUREMENT METHOD





### Ľ

## 1N4099 thru 1N4135, 1N4614 thru 1N4627





1N4370 thru 1N4372 See Page 4-4

# 1N4549A thru 1N4556A See Page 4-17

# LOW-LEVEL TEMPERATURE-COMPENSATED ZENER REFERENCE DIODES

Highly reliable reference sources utilizing a passivated junction for longterm voltage stability. Glass construction provides a rugged, hermetically sealed structure.

- Low Power Drain Devices Specified @ 0.5 mA, 1.0 mA, 2.0 mA, and 4.0 mA
- Maximum Voltage Change Specified over Test Temperature Range
- Temperature Compensation Guaranteed over Two Standard Operating Temperature Ranges

0 to 75°C -55 to 100°C

#### MAXIMUM RATINGS

Rating	Symbol	Value	Unit	
DC Power Dissipation @ T _A = 50°C Derate above 50°C	PD	400 3 2	mW/°C	
Junction and Storage Temperature Range	TJ, Tstg	-65 to +175	°C	

### MECHANICAL CHARACTERISTICS

CASE. Hermetically sealed, all-glass DIMENSIONS: See outline drawing

FINISH: All external surfaces are corrosion resistant and leads are readily solder-

able and weldable

POLARITY: Cathode indicated by polarity band

WEIGHT: 0 2 gram (approx ) MOUNTING POSITION: Any

## 1N4565 thru 1N4584

REFERENCE DIODES

LOW LEVEL
TEMPERATURE-COMPENSATED
ZENER



	ΔVZ	@ Test	Temperature	Dynamic
,	(Note 1)	Temperature	Coefficient for Reference	Imped. Ohms
TYPE	Volts Max	°c	%/°C (Note 1)	Max (Note 2)
	V _Z = 6	6.4 Volts ±5% (I	ZT = 0.5 mA)	
1N4565	0.048	<u> </u>	0.01	
1N4566	0.024	ĺ	0.005	
1N4567	0.010	0, +25,	0.002	200
1N4568	0.005	+ 75	0.001	
1N4569	0.002	ł	0.0005	
1N4565A	0.099		0.01	
1N4566A	0.050	<b>–</b> 55, 0,	0.005	
1N4567A	0.020	+ 25, + 75,	0.002	200
1N4568A	0.010	+ 100	0.001	
1N4569A	0.005		0.005	
	V _Z = 6	6.4 Volts ±5% (I	ZT = 1.0 mA)	
1N4570	0.048		0.01	
1N4571	0 024	1	0.005	
1N4572	0 010	0, +25,	0.002	100
1N4573	0.005	+ 75	0.001	
1N4574	0.002	j	0 0005	
1N4570A	0.099		0.01	
1N4571A	0.050	- 55, 0,	0.005	
1N4572A	0.020	+ 25, + 75,	0.002	100
1N4573A	0.010	+ 100	0 001	
1N4574A	0.005		0.0005	
	V _Z = 6	6.4 Volts ±5% (I	_{ZT} = 2.0 mA)	
1N4575	0.048		0.01	
1N4576	0.024	1	0.005	
1N4577	0.010	0, +25,	0.002	50
1N4578	0 005	+ 75	0.001	
1N4579	0.002		0.0005	
1N4575A	0.099	l	0.01	
1N4576A	0.050	- 55, 0,	0.005	
1N4577A	0.020	+ 25, + 75,	0.002	50
1N4578A	0.010	+ 100	0.001	
1N4579A	0.005	L	0.0005	
	V _Z = 6	i.4 Volts ±5% (I	ZT = 4.0 mA)	
1N4580	0.048	J	0.01	
1N4581	0.024	i '	0.005	
1N4582	0.010	0, +25,	0.002	25
1N4583	0.005	+ 75	0.001	
1N4584	0.002		0.0005	
1N4580A	0.099		0.01	
1N4581A	0.050	- 55, 0,	0.005	
1N4582A	0.020	+ 25, + 75,	0.002	25
1N4583A 1N4584A	0.010 0.005	+ 100	0.001 0.0005	
1N4584A	0.005	L	0.0005	

NOTE 1: Voltage Variation ( $\Delta V_Z$ ) and Temperature Coefficient.

All reference diodes are characterized by the "box method". This guarantees a maximum voltage variation ( $\Delta V_Z$ ) over the specified temperature range, at the specified test current ( $I_{ZT}$ ), verified by tests at indicated temperature points within the range. This method of indicating voltage stability is now used for JEDEC registration as well as for military qualification. The former method of indicating voltage stability—by means of temperature coefficient—accurately reflects the voltage deviation at the temperature extremes, but is not necessarily accurate within the temperature range because reference diodes have a nonlinear temperature relationship. The temperature coefficient, therefore, is given only as a reference.

NOTE 2:

The dynamic zener impedance,  $Z_{ZT}$ , is derived from the 60 Hz ac voltage drop which results when an ac current with an rms value equal to 10% of the dc zener current,  $I_{ZT}$  is superimposed on  $I_{ZT}$ . A cathode-ray tube curve-trace test on a sample basis is used to ensure that the zener has a sharp and stable knee region.

# thru 1N4717

#### ZENER REGULATOR DIODES

250 MILLIWATTS

# 1N4678

## Zener Voltage Specified @ I_{7T} = 50 μA Maximum Delta V_Z Given from 10 to 100 μA

#### ABSOLUTE MAXIMUM RATINGS

sharp breakdown voltage.

Rating	Symbol	Value	Unit
DC Power Dissipation @ T _A = 50°C	PD	250	mW
Derate above TA = 50°C		1 67	mW/ ^o C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +175	°C

ZENER REGULATOR DIODES

Low level oxide passivated zener diodes for applications requiring extremely low operating currents, low leakage, and

#### MECHANICAL CHARACTERISTICS

CASE: Hermetically sealed all glass case. **DIMENSIONS:** See outline drawing

FINISH: All external surfaces are corrosion resistant with readily solerable leads

POLARITY: Cathode end indicated by color band. When operated in zener region, the cathode end will be positive with respect to anode

WEIGHT: 0.2 grams (approx) MOUNTING POSITION: Any.





- 1 PACKAGE CONTOUR OPTIONAL WITHIN A AND B HEAT SLUGS, IF ANY, SHALL BE INCLUDED WITHIN THIS CYLINDER, BUT NOT SUBJECT TO THE MINIMUM LIMIT OFB
- 2 LEAD DIAMETER NOT CONTROLLED IN ZONE F TO ALLOW FOR FLASH, LEAD FINISH BUILDUP AND MINOR IRREGU-LARITIES OTHER THAN HEAT SLUGS
- 3 POLARITY DENOTED BY CATHODE BAND 4 DIMENSIONING AND TOLERANCING PER
- ANSI Y14 5, 1973

	MILLIMETERS		INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	3 05	5 08	0 120	0 200	
В	1 52	2.29	0 060	0 090	
D	0 46	0.56	0 018	0 022	
F	-	1 27	_	0 050	
K	25 40	38 10	1.000	1 500	
All J	All JEDEC dimensions and notes apply				

**CASE 299-02** 

DO-204AH GLASS

**ELECTRICAL CHARACTERISTICS** ( $T_A = 25^{\circ}C$ ,  $V_F = 1.5$  V max at  $I_F = 100$  mA for all types)

Туре	CHARACTER	Zener Voltage /Z @ IZT = 50 μΑ Volts		Maximum Reverse Current	Test Voltage	Maximum Zener Current	Maximum Voltage Change
Number (Note 1)	Nom (Note 1)	Min	Max	IR μA (Note	V _R Volts	IZM mA (Note 2)	ΔVz Volts (Note 4)
1N4678	18	1,710	1.890	7.5	1.0	120	0.70
1N4679	2.0	1.900	2.100	5.0	1.0	110	0.70
1N4680	2.2	2.090	2.310	4.0	1.0	100	0.75
1N4681	2.4	2.280	2.520	2.0	1.0	95	0.80
1N4682	2.7	2.565	2.835	1.0	1.0	90	0.85
1N4683	3.0	2.850	3.150	0.8	1.0	85	0.90
1N4684	3.3	3.135	3.465	7.5	1.5	80	0.95
1N4685	3.6	3.420	3.780	7.5	2.0	75	0.95
1N4686	3.9	3 705	4.095	5.0	2.0	70	0.97
1N4687	4.3	4.085	4.515	4.0	2.0	65	0.99
1N4688	4.7	4.465	4.935	10	3.0	60	0.99
1N4689	5.1	4.845	5.355	10	3.0	55	0.97
1N4690	5.6	5.320	5.880	10	4.0	50	0.96
1N4691	6.2	5.890	6.510	10	5.0	45	0.95
1N4692	6.8	6 460	7.140	10	5.1	35	0.90
1N4693	7.5	7.125	7.875	10	5.7	31.8	0.75
1N4694	8.2	7.790	8.610	1.0	6 2	29.0	0.50
1N4695	8.7	8.265	9.135	1.0	6.6	27.4	0.10
1N4696	91	8.645	9.555	1.0	6.9	26.2	0.08
1N4697	10	9.500	10.50	1.0	7.6	24.8	0.10
1N4698	11	10.45	11.55	0.05	8.4	21.6	0.11
1N4699	12	11.40	12.60	0.05	9.1	20.4	0 12
1N4700	13	12.35	13.65	0.05	9.8	19.0	0.13
1N4701	14	13.30	14.70	0.05	10.6	17.5	0.14
1N4702	15	14.25	15.75	0.05	11.4	16.3	0.15
1N4703	16	15.20	16.80	0.05	12.1	15.4	0.16
1N4704	17	16.15	17.85	0.05	12.9	14.5	0.17
1N4705	18	17.10	18.90	0.05	13.6	13.2	0.18
1N4706	19	18.05	19.95	0.05	14.4	12.5	0.19
1N4707	20	19.00	21.00	0.01	15.2	119	0.20
1N4708	22	20.90	23.10	0.01	16.7	10.8	0.22
1N4709	24	22.80	25.20	0.01	18.2	9.9	0.24
1N4710	25	23.75	26.25	0.01	19.0	9.5	0.25
1N4711	27	25.65	28.35	0.01	20.4	8.8	0.27
1N4712	28	26.60	29.40	0.01	21.2	8.5	0.28
1N4713	30	28.50	31.50	0.01	22.8	7.9	0.30
1N4714	33	31.35	34.65	0.01	25.0	7 2	0.33
1N4715	36	34.20	37.80	0.01	27.3	6.6	0.36
1N4716	39	37.05	40.95	0.01	29.6	6.1	0.39
1N4717	43	40.85	45.15	0.01	32.6	5.5	0.43

#### NOTES: 1. TOLERANCING AND VOLTAGE DESIGNATION (VZ)

The type numbers shown have a standard tolerance of  $\pm 5\%$  on the nominal Zener voltage, C for  $\pm 2\%$ , D for  $\pm 1\%$ .

Reverse leakage currents are guaranteed and measured at VR as shown on the table.

### 4. MAXIMUM VOLTAGE CHANGE (ΔVZ)

Voltage change is equal to the difference between Vz at 100  $\mu$ A and Vz at 10  $\mu$ A.

^{2.} MAXIMUM ZENER CURRENT RATINGS (IZM)

Maximum Zener current ratings are based on maximum Zener voltage of the individual units.

^{3.} REVERSE LEAKAGE CURRENT (IR)

# 1N4728, A thru 1N4764, A

## Designers Data Sheet

# ONE WATT HERMETICALLY SEALED GLASS SILICON ZENER DIODES

- Complete Voltage Range 3.3 to 100 Volts
- DO-41 Package
- Double Slug Type Construction
- Metallurgically Bonded Construction
- Oxide Passivated Die

#### Designer's Data for "Worst Case" Conditions

The Designers Data sheets permit the design of most circuits entirely from the information presented. Limit curves — representing boundaries on device characteristics — are given to facilitate "worst case" design.

#### *MAXIMUM RATINGS

Rating	Symbol .	Value	Unit
DC Power Dissipation @ T _A = 50°C Derate above 50°C	PD	1.0 6.67	Watt mW/ ^O C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200	°C

#### **MECHANICAL CHARACTERISTICS**

CASE. Double slug type, hermetically sealed glass

MAXIMUM LEAD TEMPERATURE FOR SOLDERING PURPOSES: 230°C, 1/16" from case for 10 seconds

FINISH: All external surfaces are corrosion resistant with readily solderable leads

POLARITY: Cathode indicated by color band. When operated in zener mode, cathode will be positive with respect to anode.

MOUNTING POSITION. Any



^{*}Indicates JEDEC Registered Data

# 1.0 WATT ZENER REGULATOR DIODES 3.3-100 VOLTS





	MILLIN	METERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	4 07	5 20	0 160	0 205	
В	2 04	2 71	0 080	0 107	
D	071	0 86	0 028	0 034	
F	-	1.27	_	0 050	
K	27.94	_	1 100	_	

CASE 59-03 DO-41 GLASS

#### NOTE

- 1 ALL RULES AND NOTES ASSOCIATED WITH JEDEC DO 41 OUTLINE SHALL APPLY
- 2 POLARITY DENOTED BY CATHODE
- BAND
  3 LEAD DIAMETER NOT CONTROLLED
  WITHIN "F" DIMENSION

## 1N4728, A thru 1N4764, A

*ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted) VF = 1 2 V max, IF = 200 mA for all types.

JEDEC	Nominal Zener Voltage	Test Current	Maximum 2	ce (Note 4)	Leakage Current		Surge Current @ T _A = 25 ^o C	
Type No.	Volts	^I ZT	Z2T @ 12T	ZZK @ IZK	IZK	1 _B	V _R	i _r – mA
(Note 1)	(Notes 2 and 3)	mA	Ohms	Ohms	mA	μΑ Max	Volts	(Note 5)
1N4728	33	76	10	400	1 0	100	1 0	1380
1N4729	36	69	10	400	1 0	100	1.0	1260
1N4730	3.9	64	90	400	10	50	10	1190
1N4731	43	58	9 0	400	1.0	10	10	1070
1N4732	4.7	53	80	500	10	10	10	970
1N4733	5 1	49	7.0	550	10	10	1 0	890
1N4734	56	45	5 0	600	1.0	10	2.0	810
1N4735	62	41	20	700	10	10	30	730
1N4736	68	37	3 5	700	10	10	40	660
1N4737	7 5	34	4 0	700	05	10	50	605
1N4738	8 2	31	4 5	700	0.5	10	6.0	550
1N4739	9 1	28	50	700	0.5	10	70	500
1N4740	10	25	70	700	0 25	10	76	454
1N4741	11	23	80	700	0 25	5 0	8 4	414
1N4742	12	21	90	700	0 25	50	9 1	380
1N4743	13	19	10	700	0 25	5 <b>0</b>	9 9	344
1N4744	15	17	14	700	0 25	5 <b>0</b>	114	304
1N4745	16	15 5	16	700	0 25	5 <b>0</b>	122	285
1N4746	18	14	20	750	0 25	50	13 7	250
1N4747	20	12 5	22	750	0 25	50	15 2	225
1N4748	22	115	23	750	0 25	5 <b>0</b>	16 7	205
1N4749	24	10 5	25	750	0 25	5 G	18 2	190
1N4750	27	9 5	35	750	0 25	50	206	170
1N4751	30	8 5	40	1000	0 25	50	22 8	150
1N4752	33	7 5	45	1000	0 25	5 0	25 1	135
1N4753	36	7 0	50	1000	0 25	5 0	27 4	125
1N4754	39	6 5	60	1000	0 25	50	29 7	115
1N4755	43	6 0	70	1500	0 25	50	32 7	110
1N4756	47	5 5	80	1500	0 25	50	35 8	95
1N4757	51	5 0	95	1500	0 25	5 0	38 8	90
1N4758	56	4.5	110	2000	0 25	5 0	42 6	80
1N4759	62	4 0	125	2000	0 25	5.0	47 1	70
1N4760	68	3 7	150	2000	0 25	5 0	517	65
1N4761	75	3 3	175	2000	0 25	50	56 0	60
1N4762	82	3 0	200	3000	0 25	5 0	62 2	55
1N4763	91	28	250	3000	0 25	5 0	69 2	50
1N4764	100	2 5	35 <b>0</b>	3000	0 25	5 0	76 0	45

*Indicates JEDEC Registered Data

NOTE 1 — Tolerance and Type Number Designation. The JEDEC type numbers listed have a standard tolerance on the nominal zener voltage of  $\pm 10\%$ . A standard tolerance of  $\pm 5\%$  on individual units is also available and is indicated by suffixing "A" to the standard type number. C for  $\pm 2.0\%$ . D for  $\pm 1.0\%$ .

#### NOTE 2 - Specials Available Include:

- A Nominal zener voltages between the voltages shown and tighter voltage tolerances.
- B Matched sets

For detailed information on price, availability, and delivery, contact your nearest Motorola representative

NOTE 3 — Zener Voltage (V_Z) Measurement. Motorola guarantees the zener voltage when measured at 90 seconds while maintaining the lead temperature (T_L) at 30°C  $\pm$  1°C, 3/8″ from the diode body.

NOTE 4 — Zener Impedance ( $Z_Z$ ) Derivation. The zener impedance is derived from the 60 cycle ac voltage, which results when an ac current having an rms value equal to 10% of the dc zener current ( $I_{ZT}$  or  $I_{ZK}$ ) is superimposed on  $I_{ZT}$  or  $I_{ZK}$ 

NOTE 5 — Surge Current ( $i_{\rm f}$ ) Non-Repetitive. The rating listed in the electrical characteristics table is maximum peak, non-repetitive, reverse surge current of 1/2 square wave or equivalent sine wave pulse of 1/120 second duration superimposed on the test current,  $|_{\rm 2T}$ , per JEDEC registration, however, actual device capability is as described in Figure 5

#### APPLICATION NOTE

Since the actual voltage available from a given zener diode is temperature dependent, it is necessary to determine junction temperature under any set of operating conditions in order to calculate its value. The following procedure is recommended.

Lead Temperature, TL, should be determined from

$$T_L = \theta_{LA}P_D + T_A$$

 $\theta_{LA}$  is the lead-to-ambient thermal resistance ( $^{0}\text{C/W})$  and  $P_{D}$  is the power dissipation. The value for  $\theta_{LA}$  will vary and depends on the device mounting method.  $\theta_{LA}$  is generally 30 to  $40^{0}\text{C/W}$  for the various clips and tie points in common use and for printed circuit board wiring.

The temperature of the lead can also be measured using a thermocouple placed on the lead as close as possible to the tie point. The thermal mass connected to the tie point is normally large enough so that it will not significantly respond to heat surges generated in the diode as a result of pulsed operation once steady-state conditions are achieved. Using the measured value of T_L, the junction temperature may be determined by:

$$T_J = T_L + \Delta T_{JL}$$

 $\Delta T_{JL}$  is the increase in junction temperature above the lead temperature and may be found as follows

$$\Delta T_{JL} = \theta_{JL} P_{D}$$

 $\theta_{JL}$  may be determined from Figure 3 for dc power conditions For worst-case design, using expected limits of  $I_Z$ , limits of  $P_D$  and the extremes of  $T_J(\Delta T_J)$  may be estimated. Changes in voltage,  $V_Z$ , can then be found from

$$\Delta V = \theta_{VZ} \Delta T_{J}$$

 $\theta_{VZ}$ , the zener voltage temperature coefficient, is found from Figure 2

Under high power-pulse operation, the zener voltage will vary with time and may also be affected significantly by the zener resistance. For best regulation, keep current excursions as low as possible.

Surge limitations are given in Figure 5. They are lower than would be expected by considering only junction temperature, as current crowding effects cause temperatures to be extremely high in small spots resulting in device degradation should the limits of Figure 5 be exceeded.

#### FIGURE 2 - TEMPERATURE COEFFICIENTS

 $(-55^{o}C\ \text{to}\ +150^{o}C\ \text{temperature range}; 90\%\ \text{of the units are in the ranges indicated}\ )$ 











This graph represents 90 percentile data points

For worst-case design characteristics, multiply surge power by 2/3

(OHMS)

DYNAMIC IMPEDANCE

Ž 20

0.1 0.2

05 10 20



50

IZ, ZENER CURRENT (mA)









Designer's Data Sheet

# 500 Milliwatt **Hermetically Sealed** Glass Silicon Zener Diodes

- Complete Voltage Range 2.4 to 200 Volts
- DO-204AH Package Smaller than Conventional DO-204AA Package
- Double Slug Type Construction
- Metallurgically Bonded Construction

#### **Mechanical Characteristics:**

CASE: Double slug type, hermetically sealed glass

MAXIMUM LEAD TEMPERATURE FOR SOLDERING PURPOSES: 230°C, 1/16" from case

FINISH: All external surfaces are corrosion resistant with readily solderable leads POLARITY: Cathode indicated by color band. When operated in zener mode, cathode will be positive with respect to anode

MOUNTING POSITION: Any



Figure 1. Steady State Power Derating

#### *MAXIMUM RATINGS

Rating	Symbol	Value	Unit	
DC Power Dissipation @ T _L ≤ 75°C	PD			
Lead Length = 3/8"	_	500	mW	
Derate above T _L = 75°C		4	mW/°C	
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200	°C	

^{*}Indicates JEDEC Registered Data

Designer's Data for "Worst Case" Conditions — The Designer's Data Sheet permits the design of most circuits entirely from the information presented. Limit curves — representing boundaries on device characteristics – give to facilitate "worst case" design.

# 1N5221A, B thru 1N5281A, B

**GLASS ZENER DIODES 500 MILLIWATTS** 2.4-200 VOLTS





- KOIES

  1 PACKAGE CONTOUR OPTIONAL WITHIN A AND B
  HEAT SLUGS, IF ANY, SHALL BE INCLUDED
  WITHIN THIS CYLINDER, BUT NOT SUBJECT TO
  THE MINIMUM LIMIT OF B
  2 LEAD DIAMETER NOT CONTROLLED IN ZONE F TO
- ALLOW FOR FLASH, LEAD FINISH BUILDUP AND MINOR IRREGULARITIES OTHER THAN HEAT
- 3 POLARITY DENOTED BY CATHODE BAND
- DIMENSIONING AND TOLERANCING PER ANSI Y14 5, 1973

	MILLIN	IETERS	INCHES			
DIM	MIN	MAX	MIN	MAX		
Α	3 05	5 08	0 120	0 200		
В	1 52	2 29	0 060	0.090		
D	0 46	0 56	0 018	0 022		
F	_	1 27	_	0.050		
K	25.40	38 10	1.000	1 500		

**CASE 299-02** DO-204AH

## 1N5221A, B thru 1N5281A, B

**ELECTRICAL CHARACTERISTICS** ( $T_A = 25^{\circ}C$  unless otherwise noted. Based on dc measurements at thermal equilibrium; lead length =  $3/8^{\circ}$ ; thermal resistance of heat sink =  $30^{\circ}C/W$ )  $V_F = 1.1$  max @  $I_F = 200$  mA for all types.

Nominal Zener Voltage			Max Zener Impedance A and B Suffix only		Max	x Rever	rse Lea	Max Zener Voltage		
		Test			A and B Suffix only			Non-Suffix	Temperature Coeff.	
JEDEC Type No. (Note 1)	V _Z @ I _{ZT} Volts (Note 2)	Current IZT mA	Z _{ZT} @ I _{ZT} Ohms	Z _{ZK} @ I _{ZK} = 0.25 mA Ohms	lR μA	V _R Volts		IR @ VR Used for Suffix A	(A and B Suffix only)  ### OVZ (%/°C)  (Note 3)	
		<del></del>	<b></b>					μΑ	<del></del>	
1N5221 1N5222	2.4 2.5	20	30 30	1200	100	0.95	1	200	- 0.085 - 0.085	
1N5222 1N5223	2.5	20 20	30	1250 1300	75	0.95 0.95	1	200 150	-0.085	
1N5224	2.8	20	30	1400	75	0.95	1	150	-0.080	
1N5225	3	20	29	1600	50	0.95	i	100	- 0.075	
1N5226	3.3	20	28	1600	25	0 95	1	100	- 0.070	
1N5227	3.6	20	24	1700	15	0.95	i	100	-0.065	
1N5228	3.9	20	23	1900	10	0.95	1	75	- 0.060	
1N5229	4.3	20	22	2000	5	0.95	1	50	± 0.055	
1N5230	4.7	20	19	1900	5	1.9	2	50	± 0.030	
1N5231	5.1	20	17	1600	5	1.9	2	50	±0.030	
1N5232	5.6	20	11	1600	5	2.9	3	50	+ 0.038	
1N5233	6	20	7	1600	5	3.3	3.5	50	+ 0.038	
1N5234	6.2	20	7 5	1000	5	3.8	4 5	50	+ 0.045	
1N5235	6.8	20		750		4.8		30	+ 0.050	
1N5236	7.5	20	6	500	3	5.7	6	30	+ 0.058	
1N5237 1N5238	8.2 8.7	20 20	8 8	500 600	3	6.2	6.5 6.5	30 30	+ 0.062 + 0.065	
1N5236	9.1	20	10	600	3	6.7	7	30	+0.068	
1N5240	10	20	17	600	3	7.6	8	30	+ 0.005	
1N5241	11	20	22	600	2	8	8.4	30	+0.076	
1N5242	12	20	30	600	1	8.7	9.1	10	+0.077	
1N5243	13	9.5	13	600	0.5	9.4	9.9	10	+ 0.079	
1N5244	14	9	15	600	0.1	9.5	10	10 ⁻	+ 0.082	
1N5245	15	8.5	16	600	0.1	10.5	11	10	+0.082	
1N5246	16	7.8	17	600	0.1	11.4	12	10	+0.083	
1N5247	17	7.4	19	600	0.1	12.4	13	10	+0.084	
1N5248	18	7	21	600	0.1	13.3	14	10	+ 0.085	
1N5249 1N5250	19 20	6.6 6.2	23 25	600 600	0.1 0.1	13.3	14 15	10 10	+ 0.086 + 0.086	
						-				
1N5251	22 24	5.6	29	600	0.1	16.2	17 18	10	+ 0.087	
1N5252 1N5253	24 25	5.2 5	33 35	600 600	0.1	17.1 18.1	19	10 10	+ 0.088 + 0.089	
1N5254	27	4.6	41	600	0.1	20	21	10	+0.089	
1N5255	28	4.5	44	600	0.1	20	21	10	+0.091	
1N5256	30	4.2	49	600	0.1	22	23	10	+0.091	
1N5257	33	3.8	58	700	0.1	24	25	10	+0.092	
1N5258	36	3.4	70	700	0.1	26	27	10	+0.093	
1N5259	39	3.2	80	800	0.1	29	30	10	+0.094	
1N5260	43	3	93	900	0.1	31	33	10	+ 0.095	
1N5261	47	2.7	105	1000	0.1	34	36	10	+ 0.095	
1N5262	51	2.5	125	1100	0.1	37	39	10	+0.096	
1N5263 1N5264	56 60	2.2 2.1	150 170	1300 1400	0.1	41	43 46	10 10	+ 0.096 + 0.097	
1N5265	62	2.1	185	1400	0.1	45	47	10	+0.037	
1N5266	68	1.8	230	1600	0.1	49	52	10	+0.097	
1N5266 1N5267	75	1.8	230	1700	0.1	53	52 56	10	+0.097	
1N5268	82	1.5	330	2000	0.1	59	62	10	+ 0.098	
1N5269	87	1.4	370	2200	0.1	65	68	10	+0.099	
1N5270	91	1.4	400	2300	0.1	66	69	10	+0.099	
1N5271	100	1.3	500	2600	0.1	72	76	10	+0.110	
1N5272	110	1.1	750	3000	0.1	80	84	10	+0.110	
1N5273	120	1	900	4000	0.1	86	91	10	+0.110	
1N5274	130	0.95	1100	4500 4500	0.1 0.1	94	99 106	10 10	+0.110 +0.110	
1N5275	140	0.9	1300	4500						
1N5276	150	0.85	1500	5000	0.1	108	114	10	+0.110	
1N5277 1N5278	160 170	0.8 0.74	1700 1900	5500 5500	0.1	116 116	122 129	10 10	+ 0.110 + 0.110	
1N5278 1N5279	180	0.74	2200	6000	0.1	130	137	10	+0.110	
.1102/0										
1N5280	190	0.66	2400	6500	0.1	137	144	10	+0.110	

#### 1N5221A, B thru 1N5281A, B

NOTE 1. Tolerance - The JEDEC type numbers shown indicate a tolerance of ± 10% with guaranteed limits on only Vz, IR and VF as shown in the electrical characteristics table. Units with guaranteed limits on all six parameters are indicated by suffix "A" for  $\pm$  10% tolerance, suffix "B" for  $\pm$ 5%, "C" for  $\pm$ 2% and "D" for  $\pm$ 1%.

#### NOTE 2. Special Selections† Available include:

1. Nominal zener voltages between those shown.

2. Two or more units for series connection with specified tolerance on total voltage. Series matched sets make zener voltages in excess of 200 volts possible as well as providing lower temperature coefficients, lower dynamic impedance and greater power handling ability.

3. Nominal voltages at non-standard test currents.

NOTE 3. Temperature Coefficient ( $\theta_{VZ}$ ) — Test conditions for temperature coefficient are as follows:

ture coefficient are as follows: a. |ZT = 7.5 mA, T₁ = 25°C, T₂ = 125°C (1N5221A,B through 1N5242A,B). b. |ZT = Rated |ZT, T₁ = 25°C, T₂ = 125°C (1N5243A,B through 1N5272A,B).

Device to be temperature stabilized with current applied prior to reading breakdown voltage at the specified ambient temperature.

NOTE 4. Zener Voltage  $(V_Z)$  Measurement — Nominal zener voltage is measured with the device junction in thermal equilibrium at the lead temperature of 30°C ±1°C and 3/8" lead length.

NOTE 5. Zener Impedance (Zz) Derivation — ZzT and ZzK are measured by dividing the ac voltage drop across the device by the ac current applied. The specified limits are for  $I_Z(ac) = I_Z(dc)$  with the ac frequency 60 Hz

†For more information on special selections contact your nearest

#### APPLICATION NOTE

Since the actual voltage available from a given zener diode is temperature dependent, it is necessary to determine junction temperature under any set of operating conditions in order to calculate its value. The following procedure is recommended:

Lead Temperature, T_I, should be determined from:

$$T_L = \theta_{LA}P_D + T_A.$$

 $\theta_{\mbox{\scriptsize LA}}$  is the lead-to-ambient thermal resistance (°C/W) and PD is the power dissipation. The value for  $\theta_{I} \Delta$  will vary and depends on the device mounting method.  $\theta_{IA}$  is generally 30 to 40°C/W for the various clips and tie points in common use and for printed circuit board wiring.

The temperature of the lead can also be measured using a thermocouple placed on the lead as close as possible to the tie point. The thermal mass connected to the tie point is normally large enough so that it will not significantly respond to heat surges generated in the diode as a result of pulsed operation once steady-state conditions are achieved. Using the measured value of TL, the junction temperature may be determined by:

$$T_J = T_L + \Delta T_{JL}$$
.

 $\Delta T_{II}$  is the increase in junction temperature above the lead temperature and may be found from Figure 2 for do power:

$$\Delta T_{JL} = \theta_{JL} P_{D}$$
.

For worst-case design, using expected limits of Iz, limits of PD and the extremes of  $T_J(\Delta T_J)$  may be estimated. Changes in voltage, VZ, can then be found from:

$$\Delta V = \theta_{VZ} \Delta T_{J}$$
.

 $\theta_{VZ}$ , the zener voltage temperature coefficient, is found from Figures 4 and 5.

Under high power-pulse operation, the zener voltage will vary with time and may also be affected significantly by the zener resistance. For best regulation, keep current excursions as low as possible.

Surge limitations are given in Figure 7. They are lower than would be expected by considering only junction temperature, as current crowding effects cause temperatures to be extremely high in small spots, resulting in device degradation should the limits of Figure 7 be exceeded.



Figure 2. Typical Thermal Resistance



Figure 3. Typical Leakage Current

### 1N5221A, B thru 1N5281A, B

#### **TEMPERATURE COEFFICIENTS**

(-55°C to +150°C temperature range; 90% of the units are in the ranges indicated.)



Figure 4a. Range for Units to 12 Volts



Figure 4b. Range for Units 12 to 100 Volts



Figure 4c. Range for Units 120 to 200 Volts



Figure 5. Effect of Zener Current



Figure 6a. Typical Capacitance 1-100 Volts



Figure 6b. Typical Capacitance 120-220 Volts



Figure 7a. Maximum Surge Power 2.4-9 Volts



Figure 7b. Maximum Surge Power DO-204AH 100-200 Volts



Figure 8. Effect of Zener Current on Zener Impedance



Figure 9. Effect of Zener Voltage on Zener Impedance



Figure 10. Typical Noise Density

## 1N5221A, B thru 1N5281A, B



1000 MINIMUM 500 MAXIMUM 200 IF, FORWARD CURRENT (mA) 100 50 20 10 5 0.4 0.5 0.7 0.9 VF, FORWARD VOLTAGE (VOLTS)

Figure 11. Noise Density Measurement Method

Figure 12. Typical Forward Characteristics



Figure 13. Zener Voltage versus Zener Current — Vz = 1 thru 16 Volts



Figure 14. Zener Voltage versus Zener Current — VZ = 15 thru 30 Volts

4



Figure 15. Zener Voltage versus Zener Current —  $V_Z = 30$  thru 105 Volts



Figure 16. Zener Voltage versus Zener Current —  $V_Z = 110-220$  Volts

# MOTOROLA SEMICONDUCTOR TECHNICAL DATA

1N5283 thru 1N5314

#### **CURRENT REGULATOR DIODES**

Field-effect current regulator diodes are circuit elements that provide a current essentially independent of voltage. These diodes are especially designed for maximum impedance over the operating range. These devices may be used in parallel to obtain higher currents.

#### CURRENT REGULATOR DIODES



#### **MAXIMUM RATINGS**

Rating	Symbol	Value	Unit
Peak Operating Voltage (T _J = -55° C to +200°C)	POV	100	Volts
Steady State Power Dissipation  @ T _L = 75 °C  Derate above T _L = 75 °C  Lead Length = 3/8"	PD	600 4 8	mW mW/°C
(Forward or Reverse Bias)  Operating and Storage Junction Temperature Range	T _J , T _{stg}	- 55 to +200	°C



	MILLIN	METERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
А	5 84	7 62	0 230	0 300	
В	2 16	2 72	0 085	0 107	
D	0 46	0 56	0 018	0 022	
F		1 27		0.050	
K	25 40	38 10	1 000	1 500	

All JEDEC dimensions and notes apply

#### CASE 51-02 DO-204AA GLASS

#### NOTE

- NOTES

  1 PACKAGE CONTOUR OPTIONAL WITHIN DIA B AND
  LENGTH A HEAT SLUGS, IF ANY, SHALL BE INCLUDED
  WITHIN THIS CYLINDER, BUT SHALL NOT BE SUBJECT TO
  THE MIN LIMIT OF DIA B
- 2 LEAD DIA NOT CONTROLLED IN ZONES F, TO ALLOW FOR FLASH, LEAD FINISH BUILDUP, AND MINOR IRREGULARITIES OTHER THAN HEAT SLUGS

## 1N5283 thru 1N5314

### **ELECTRICAL CHARACTERISTICS** (T_A = 25 °C unless otherwise noted)

		egulator Curre (mA) @ V _T = 2		Minimum Dynamic Impedance @ V _T = 25 V	Minimum Knee Impedance @ V _K = 6.0 V	Maximum Limiting Voltage @ I _L = 0.8 Ip (min)
Type No.	nom min max Z _T (MΩ)		•	Z _K (MΩ)	V _L (Volts)	
1N5283	0 22	0 198	0 242	25 0	2 75	1 00
1N5284	0 24	0 216	0.264	19.0	2 35	1 00
1N5285	0 27	0 243	0 297	14 0	1 95	1 00
1N5286	0 30	0 270	0 330	90	1 60	1 00
1N5287	0 33	0 297	0 363	6 6	1 35	1 00
1N5288	0 39	0 351	0 429	4 10	1 00	1 05
1N5289	0 43	0 387	0 473	3 30	0 870	1 05
1N5290	0 47	0 423	0 517	2 70	0 750	1 05
1N5291	0 56	0 504	0 616	1 90	0 560	1 10
1N5292	0 62	0 558	0 682	1 55	0 470	1 13
1N5293	0 68	0 612	0 748	1 35	0 400	1 15
1N5294	0 75	0 675	0 825	1 15	0 335	1 20
1N5295	0 82	0 738	0 902	1 00	0 290	1 25
1N5296	0 91	0 819	1 001	0 880	0 240	1 29
1N5297	1 00	0 900	1 100	0 800	0 205	1 35
1N5298	1 10	0 990	1 210	0 700	0 180	1 40
1N5299	1 20	1 08	1 32	0 640	0 155	1 45
1N5300	1 30	1 17	1 43	0 580	0 135	1 50
1N5301	1 40	1 26	1 54	0 540	0 115	1 55
1N5302	1 50	1 35	1 65	0 510	0 105	1 60
1N5303	1 60	1 44	1 76	0 475	0 092	1 65
1N5304	1 80	1 62	1 98	0 420	0 074	1 75
1N5305	2 00	1 80	2 20	0 395	0 061	1 85
1N5306	2 20	1 98	2 42	0 370	0 052	1 95
1N5307	2 40	2 16	2.64	0 345	0 044	2 00
1N5308	2 70	2 43	2 97	0 320	0 035	2 15
1N5309	3 00	2 70	3 30	0 300	0 029	2 25
1N5310	3 30	2 97	3.63	0 280	0 024	2 35
1N5311	3 60	3 24	3 96	0 265	0 020	2 50
1N5312	3 90	3 51	4.29	0 255	0 017	2 60
1N5313	4 30	3 87	4.73	0 245	0 014	2 75
1N5314	4.70	4 23	5.17	0 235	0 012	2 90

← RÉVERSE

FORWARI

4 (

-- 80

-100

DIODE CURRENT (mA)

### FIGURE 1 — TYPICAL CURRENT REGULATOR CHARACTERISTICS 1 & Z @ V Zk@Vk 3 0 2.0 ٧١ @ POV 10 --60

#### VAK, ANODE-CATHODE VOLTAGE (VOLTS)

ANODE

80 100 120 140

CATHODE

#### FIGURE 2 — TYPICAL THERMAL RESISTANCE



#### SYMBOLS AND DEFINITIONS

In - Diode Current

- IL Limiting Current: 80% of Ip minimum used to determine Limiting voltage, V_L
- Ip Pinch-off Current: Regulator current at specified Test Voltage, VT
- POV Peak Operating Voltage Maximum voltage to be applied to device
  - $\theta_1$  Current Temperature Coefficient
- VAK Anode to cathode Voltage
- $V_K$  Knee Impedance Test Voltage Specified voltage used to establish
- Knee Impedance, Z_K

  V_L Limiting Voltage: Measured at I_L V_L, together with Knee AC Impedance, Z_K, indicates the Knee characteristics of the device
- $V_T$  Test Voltage: Voltage at which  $I_P$  and  $Z_T$  are specified
- Z_K Knee AC Impedance at Test Voltage To test for Z_K, a 90 Hz signal VK with RMS value equal to 10% of test voltage, VK, is superimposed on  $V_K$ :  $Z_K = V_K/I_K$ - the re

where ik is the resultant ac current due to vk

To provide the most constant current from the diode,  $Z_K$  should be as high as possible, therefore, a minimum value of  $Z_K$  is specified  $Z_T - AC$  impedance at Test Voltage. Specified as a minimum value To test for  $Z_T$ , a 90 Hz signal with RMS value equal to 10% of Test Voltage, V_T, is superimposed on V_T

#### APPLICATION NOTE

As the current available from the diode is temperature dependent, it is necessary to determine junction temperature, T_J, under specific operating conditions to calculate the value of the diode current. The following procedure is recommended

Lead Temperature,  $T_L$ , shall be determined from.  $T_L = \theta_{LA} P_D + T_A$ 

where  $\theta_{LA}$  is lead-to ambient thermal resistance

and  $P_D$  is power dissipation  $\theta_{LA}$  is generally 30-40°C/W for the various clips and tie points in common use, and for printed circuit-board wiring

Junction Temperature, T_J, shall be calculated from

 $T_{J} = T_{L} + \theta_{JL} P_{D}$ where  $\theta_{JL}$  is taken from Figure 2

For circuit design limits of  $V_{AK}$ , limits of  $P_D$  may be estimated and extremes of  $T_J$  may be computed. Using the information on Figures 4 and 5, changes in current may be found. To improve current regulation, keep VAK low to reduce PD and keep the leads short, especially the cathode lead, to reduce  $\theta_{11}$ 

#### FIGURE 3 — TYPICAL FORWARD CHARACTERISTICS









 $^{\circ}90\%$  of the units will be in the ranges shown.

# MOTOROLA SEMICONDUCTOR TECHNICAL DATA

# Designer's Data Sheet

# 5-Watt Surmetic 40 Silicon Zener Diodes

... a complete series of 5 Watt Zener Diodes with tight limits and better operating characteristics that reflect the superior capabilities of silicon-oxide-passivated junctions. All this in an axial-lead, transfer-molded plastic package offering protection in all common environmental conditions.

- Up to 180 Watt Surge Rating @ 8.3 ms
- Maximum Limits Guaranteed on Seven Electrical Parameters
- Offered in 10%, 5%, 2% and 1% V_Z Tolerance

#### **Mechanical Characteristics:**

CASE: Void-free, transfer-molded, thermosetting plastic

FINISH: All external surfaces are corrosion resistant and leads are readily solderable POLARITY: Cathode indicated by color band. When operated in zener mode, cathode will be positive with respect to anode

MOUNTING POSITION: Any WEIGHT: 0.7 gram (approx)



Figure 1. Power-Temperature Derating Curve

#### **MAXIMUM RATINGS**

Rating	Symbol	Value	Unit
DC Power Dissipation @ T _L = 75°C Lead Length = 3/8" Derate above 75°C	P _D	5 40	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200	°C

**Designer's Data for "Worst Case" Conditions** — The Designer's Data Sheet permits the design of most circuits entirely from the information presented. Limit curves — representing boundaries on device characteristics — are given to facilitate "worst case" design.

## 1N5333A, B, C, D thru 1N5388A, B, C, D

5-WATT
ZENER REGULATOR
DIODES
3.3-200 VOLTS





1 LEAD DIAMETER & FINISH NOT CONTROLLED
WITHIN DIM "F"

	MILLIN	METERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
A	8.38	8 89	0 330	0 350	
В	3 30	3 68	0 130	0 145	
D	0 94	1 09	0 037	0 043	
F	_	1 27		0 050	
K	25 40	31 75	1 000	1 250	

CASE 17-02 GLASS

### 1N5333A, B, C, D thru 1N5388A, B, C, D

**ELECTRICAL CHARACTERISTICS** ( $T_A = 25^{\circ}C$  unless otherwise noted,  $V_F = 1.2$  Max @  $I_F = 1$  A for all types)

				ener Impedance B Suffix Only		Max Reve Leakage Cu		Applies to all Suffix	A & B Suffix Only	
JEDEC Type No.	Nominal Zener Voltage V _Z @ I _{ZT} Volts	Test Current IZT	ZZT @ IZT Ohms	Z _{ZK} @ I _{ZK} = 1 mA Ohms	l _R μΑ	@ Non & A	V _R Volts	Max Surge Current i _r , Amps	Max Voltage Regulation ΔVz, Volts	Maximum Regulator Current IZM mA
(Note 1)	(Note 2)	mA	(Note 2)	(Note 2)		Suffix	B-Suffix	(Note 3)	(Note 4)	(Note 5)
1N5333A 1N5334A 1N5335A 1N5336A 1N5337A	3.3 3.6 3.9 4.3 4.7	380 350 320 290 260	3 2.5 2 2 2	400 500 500 500 500 450	300 150 50 10 5	1 1 1 1	1 1 1 1 1	20 18.7 17.6 16.4 15.3	0.85 0.8 0.54 0.49 0.44	1440 1320 1220 1100 1010
1N5338A 1N5339A 1N5340A 1N5341A 1N5342A	5.1 5.6 6 6.2 6.8	240 220 200 200 200 175	1.5 1 1 1 1	400 400 300 200 200	1 1 1 1 10	1 2 3 4 4.9	1 2 3 3 5.2	14.4 13.4 12.7 12.4 11.5	0.39 0.25 0.19 0.1 0.15	930 865 790 765 700
1N5343A 1N5344A 1N5345A 1N5346A 1N5347A	7.5 8.2 8.7 9.1 10	175 150 150 150 150 125	1.5 1.5 2 2 2	200 200 200 200 150 125	10 10 10 7.5 5	5.4 5.9 6.3 6.6 7.2	5.7 6.2 6.6 6.9 7.6	10.7 10 9.5 9.2 8.6	0.15 0.2 0.2 0.22 0.22	630 580 545 520 475
1N5348A 1N5349A 1N5350A 1N5351A 1N5352A	11 12 13 14 15	125 100 100 100 75	2.5 2.5 2.5 2.5 2.5 2.5	125 125 100 75 75	5 2 1 1	8 8.6 9.4 10.1 10.8	8.4 9.1 9.9 10.6 11.5	8 7.5 7 6.7 6.3	0.25 0.25 0.25 0.25 0.25 0.25	430 395 365 340 315
1N5353A 1N5354A 1N5355A 1N5356A 1N5357A	16 17 18 19 20	75 70 65 65 65	2.5 2.5 2.5 3 3	75 75 75 75 75 75	1 0.5 0.5 0.5 0.5	11.5 12.2 13 13.7 14.4	12.2 12.9 13.7 14.4 15.2	6 5.8 5.5 5.3 5.1	0.3 0.35 0.4 0.4 0.4	295 280 265 250 237
1N5358A 1N5359A 1N5360A 1N5361A 1N5362A	22 24 25 27 28	50 50 50 50 50	3.5 3.5 4 5 6	75 100 110 120 130	0.5 0.5 0.5 0.5 0.5	15.8 17.3 18 19.4 20.1	16.7 18.2 19 20.6 21.2	4.7 4.4 4.3 4.1 3.9	0.45 0.55 0.55 0.6 0.6	216 198 190 176 170
1N5363A 1N5364A 1N5365A 1N5366A 1N5367A	30 33 36 39 43	40 40 30 30 30	8 10 11 14 20	140 150 160 170 190	0.5 0.5 0.5 0.5 0.5	21.6 23.8 25.9 28.1 31	22.8 25.1 27.4 29.7 32.7	3.7 3.5 3.3 3.1 2.8	0.6 0.6 0.65 0.65 0.7	158 144 132 122 110
1N5368A 1N5369A 1N5370A 1N5371A 1N5372A	47 51 56 60 62	25 25 20 20 20	25 27 35 40 42	210 230 280 350 400	0.5 0.5 0.5 0.5 0.5	33.8 36.7 40.3 43 44.6	35.8 38.8 42.6 42.5 47.1	2.7 2.5 2.3 2.2 2.1	0.8 0.9 1 1.2 1.35	100 93 86 79 76
1N5373A 1N5374A 1N5375A 1N5376A 1N5377A	68 75 82 87 91	20 20 15 15 15	44 45 65 75 75	500 620 720 760 760	0.5 0.5 0.5 0.5 0.5	49 54 59 63 65.5	51.7 56 62.2 66 69.2	2 1.9 1.8 1.7 1.6	1.5 1.6 1.8 2 2.2	70 63 58 54.5 52.5
1N5378A 1N5379A 1N5380A 1N5381A 1N5382A	100 110 120 130 140	12 12 10 10 8	90 125 170 190 230	800 1000 1150 1250 1500	0.5 0.5 0.5 0.5 0.5	72 79.2 86.4 93.6 101	76 83.6 91.2 98.8 106	1.5 1.4 1.3 1.2 1.2	2.5 2.5 2.5 2.5 2.5 2.5	47.5 43 39.5 36.6 34
1N5383A 1N5384A 1N5385A 1N5386A 1N5387A 1N5388A	150 160 170 180 190 200	8 8 8 5 5	330 350 380 430 450 480	1500 1650 1750 1750 1850 1850	0.5 0.5 0.5 0.5 0.5 0.5	108 115 122 130 137 144	114 122 129 137 144 152	1.1 1.1 1 1 0.9 0.9	3 3 3 4 5	31.6 29.4 28 26.4 25 23.6

#### NOTES:

- (1) TOLERANCE AND VOLTAGE DESIGNATION The JEDEC type numbers shown indicate a tolerance of ± 10% with guaranteed limits on only VZ, Ig. Ir. and VF as shown in the electrical characteristics table. Units with guaranteed limits on all seven parameters are indicated by suffix "A" for ± 10% tolerance and suffix "B" for ± 5%, C for ± 2% and D for ± 11%.
- (2) ZENER VOLTAGE (Vz) AND IMPEDANCE (ZzT & ZzK) Test conditions for Zener voltage and impedance are as follows: Iz is applied 40 ± 10 ms prior to reading. Mounting contacts are located 36" to 12" from the inside edge of mounting clips to the body of the diode. (TA = 25"C + 8"C 2"C)
- (3) SURGE CURRENT (_{Ir}) Surge current is specified as the maximum allowable peak, non-recurrent square-wave current with a pulse width, PW, of 8.3 ms. The data given in Figure 6 may be used to find the maximum surge current for a square wave of any pulse width between 1 ms and 1000 ms by plotting the
- applicable points on logarithmic paper. Examples of this, using the 3.3 V and 200 V zeners, are shown in Figure 7. Mounting contact located as specified in Note 3 ( $T_A = 25^{\circ}C_{-2}^{-4}$ C)
- (1) VOLTAGE REGULATION ( $\Delta V_2$ ) Test conditions for voltage regulation are as follows:  $V_2$  measurements are made at 10% and then at 50% of the  $I_2$  max value listed in the electrical characteristics table. The test currents are the same for the 5% and 10% tolerance devices. The test current time duration for each  $V_2$  measurement is 40  $\pm$  10 ms. ( $T_A = 25^{\circ}\text{C} \frac{48}{3}\text{CI}$ ). Mounting contact located as specified in Note 2.
- (5) MAXIMUM REGULATOR CURRENT (I_{ZM}) The maximum current shown is based on the maximum voltage of a 5% type unit, therefore, it applies only to the B-suffix device. The actual I_{ZM} for any device may not exceed the value of 8 watts divided by the actual V_Z of the device. T_L = 75°C at 3/8" maximum from the device body.

# 4

#### **TEMPERATURE COEFFICIENTS**



Figure 2. Temperature Coefficient-Range for Units 3 to 10 Volts



Figure 3. Temperature Coefficient-Range for Units 10 to 220 Volts



Figure 4. Typical Thermal Response L, Lead Length = 3.8 Inch



Figure 5. Typical Thermal Resistance



Figure 6. Maximum Non-Repetitive Surge Current versus Nominal Zener Voltage (See Note 3)

Data of Figure 4 should not be used to compute surge capability. Surge limitations are given in Figure 6. They are lower than would be expected by considering only junction temperature, as current crowding effects cause

temperatures to be extremely high in small spots resulting in device degradation should the limits of Figure 6 be exceeded.



Figure 7. Peak Surge Current versus Pulse Width (See Note 3)



Figure 9. Zener Voltage versus Zener Current  $V_Z = 11 \text{ thru } 75 \text{ Volts}$ 

#### **APPLICATION NOTE**

Since the actual voltage available from a given zener diode is temperature dependent, it is necessary to determine junction temperature under any set of operating conditions, in order to calculate its value. The following procedure is recommended:

Lead Temperature, T_L, should be determined from:

$$T_L = \theta_{LA} P_D + T_A$$

 $\theta_{LA}$  is the lead-to-ambient thermal resistance and  $P_D$  is the power dissipation.

Junction Temperature, TJ, may be found from:

$$T_J = T_L + \Delta T_{JL}$$

 $\Delta T_{JL}$  is the increase in junction temperature above the lead temperature and may be found from Figure

#### ZENER VOLTAGE versus ZENER CURRENT

(Figures 8, 9 and 10)



Figure 8. Zener Voltage versus Zener Current  $V_Z = 3.3$  thru 10 Volts



Figure 10. Zener Voltage versus Zener Current  $V_Z = 82 \text{ thru } 200 \text{ Volts}$ 

4 for a train of power pulses or from Figure 5 for dc power.

$$\Delta T_{JL} = \theta_{JL} P_{D}$$

For worst-case design, using expected limits of Iz, limits of PD and the extremes of TJ ( $\Delta$ TJ) may be estimated. Changes in voltage, Vz, can then be found from:

$$\Delta V = \theta_{VZ} \Delta T_{J}$$

 $\theta_{VZ}$ , the zener voltage temperature coefficient, is found from Figures 2 and 3.

Under high power-pulse operation, the zener voltage will vary with time and may also be affected significantly by the zener resistance. For best regulation, keep current excursions as low as possible.

### **MOTOROLA** SEMICONDUCTOR | TECHNICAL DATA

# 1N5518A, B thru 1N5546A, B

#### LOW VOLTAGE AVALANCHE SILICON OXIDE PASSIVATED ZENER REGULATOR DIODES

Highly reliable silicon regulators utilizing an oxide-passivated junction for long-term voltage stability. Double slug construction provides a rugged, glass-enclosed, hermetically sealed structure.

- Low Zener Noise Specified
- Low Maximum Regulation Factor
- Low Zener Impedance
- Low Leakage Current
- Controlled Forward Characteristics
- Temperature Range: -65 to + 200°C

#### LOW VOLTAGE AVALANCHE ZENER DIODES

**400 MILLIWATTS 3.3 THRU 33 VOLTS** 



#### MAXIMUM RATINGS

Rating	Symbol	Value	Unit
DC Power Dissipation @ T _A = 50°C Derate above 50°C	PD	400 3.2	mW mW/ ^O C
DC Power Dissipation @ T _L = 50°C Lead Length = 1/8" Derate above 50°C (Figure 1)	PD	500 3.3	mW mW/ ^o C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200	°C

#### MECHANICAL CHARACTERISTICS

CASE: Hermetically sealed, all-glass DIMENSIONS: See outline drawing.

FINISH: All external surfaces are corrosion resistant and leads are

readily solderable and weldable. POLARITY: Cathode indicated by polarity band.

WEIGHT: 0.2 Gram (approx) MOUNTING POSITION: Any





#### NOTES

- 1 PACKAGE CONTOUR OPTIONAL WITHIN A AND B HEAT SLUGS, IF ANY, SHALL BE INCLUDED WITHIN THIS CYLINDER, BUT NOT SUBJECT TO THE MINIMUM LIMIT OF B
- 2. LEAD DIAMETER NOT CONTROLLED IN ZONE F TO ALLOW FOR FLASH, LEAD FINISH BUILDUP AND MINOR IRREGU-LARITIES OTHER THAN HEAT SLUGS
- 3 POLARITY DENOTED BY CATHODE BAND 4. DIMENSIONING AND TOLERANCING PER ANSI Y14 5, 1973

	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α	3 05	5 08	0 120	0 200
В	1 52	2 29	0 060	0 090
D	0 46	0 56	0 018	0 022
F	1	1 27		0 050
K	25 40	38.10	1.000	1 500

All JEDEC dimensions and notes apply. CASE 299-02 DO-204AH GLASS

JEDEC	Nominal Zener Voltage Vz @ IzT	Test Current	Max Zener Impedance B-C-D Suffix ZZT @ IZT	Max Reve	rse Leakage (		B-C-D Suffix Maximum DC Zener Current IZM	B-C-D Suffix Max Noise Density at I _Z = 250 μA N _D (Figure 1)	Regulation Factor ΔVz	Low Vz Current
Type No. (Note 1)	Volts (Note 2)	I _{ZT} mAdc	Ohms (Note 3)	μAdc (Note 4)	Non & A- Suffix	B-C-D Suffix	mAdc (Note 5)	(micro-volts per square root cycle)	Volts (Note 6)	IZL mAdc
1N5518A 1N5519A 1N5520A	3.3 3.6 3.9	20 20 20	26 24 22	5 0 3 0 1 0	0 90 0.90 0.90	1 0 1 0 1.0	115 105 98	05 05 05	0.90 0.90 0.85	2.0 2.0 2.0
1N5521A 1N5522A	4.3 4.7	20 20 10	18 22	3 0 2 0	1.0 1.5	1.5	88 81	0.5 0.5	0.85 0.75 0.60	2.0 2.0 1.0
1N5523A 1N5524A 1N5525A	5.1 5.6 6.2	5 0 3.0 1 0	26 30 30	2 0 2 0 1 0	2.0 3.0 4.5	2.5 3.5 5.0	75 68 61	0 5 1.0 1.0	0 65 0.30 0 20	0 25 0.25 0 01
1N5526A 1N5527A	6 8 7.5	1.0 1.0	30 30 35	1 0 0.5	5 5 6.0	6.2 6.8	56 51	1.0	0.10 0.05	0 01
1N5528A 1N5529A 1N5530A	8 2 9 1 10 0	1.0 1.0 1.0	40 45 60	0.5 0 1 0.05	6.5 7.0 8.0	7.5 8 2 9 1	46 42 38	4 0 4 0	0 05 0 05 0.10	0 01 0.01 0 01
1N5531A 1N5532A	11.0 12.0	1.0	80 90	0.05 0.05 0.05	9.0 9.5	9.9	35 32	4.0 5.0 10	0.10 0.20 0.20	0 01
1N5533A 1N5534A 1N5535A	13.0 14.0	1.0 1.0 1.0	90 100	0 01 0 01	10 5 11 5	11.7 12.6	29 27	15 20	0.20 0 20	0.01
1N5535A 1N5536A 1N5537A	15.0 16.0 17.0	1 0	100 100 100	0 01 0.01 0.01	12.5 13 0 14.0	13.5 14.4 15.3	25 24 22	20 20 20	0 20 0.20 0 20	0.01 0.01 0.01
1N5538A 1N5539A	18.0 19.0	1.0 1.0	100 100	0.01 0.01	15.0 16 0	16.2 17.1	21 20	20 20	0.20 0 20	0 01
1N5540A 1N5541A 1N5542A	20.0 22 0 24 0	1 0 1 0 1.0	100 100 100	0.01 0 01 0 01	17.0 18 0 20.0	18.0 19.8 21.6	19 17 16	20 20 20	0 20 0 25 0 30	0 01 0 01 0 01
1N5543A 1N5544A 1N5545A 1N5546A	25.0 28 0 30.0 33 0	1.0 1.0 1.0 1.0	100 100 100 100	0 01 0.01 0 01 0.01	21.0 23.0 24.0 28.0	22 4 25 2 27.0 29 7	15 14 13 12	20 20 20 20 20	0 35 0 40 0 45 0.50	0 01 0.01 0 01 0 01

#### NOTE 1 - TOLERANCE AND VOLTAGE DESIGNATION

The JEDEC type numbers shown are  $\pm$ 10% with guaranteed limits for V₂, I_R, and V_F. Units with guaranteed limits for all six parameters are indicated by a "B" suffix for  $\pm$ 5.0% units, "C" suffix for  $\pm$ 2.0% and "D" suffix for  $\pm$ 1.0%.

#### NOTE 2 - ZENER VOLTAGE (VZ) MEASUREMENT

Nominal zener voltage is measured with the device junction in thermal equilibrium with ambient temperature of  $25^{\circ}$ C.

#### NOTE 3 - ZENER IMPEDANCE (ZZ) DERIVATION

The zener impedance is derived from the 60 Hz ac voltage, which results when an ac current having an rms value equal to 10% of the dc zener current ( $I_{ZT}$ ) is superimposed on  $I_{ZT}$ .

#### NOTE 4 - REVERSE LEAKAGE CURRENT (IR)

Reverse leakage currents are guaranteed and are measured at  $V_{\mbox{\scriptsize R}}$  as shown on the table.

#### NOTE 5 - MAXIMUM REGULATOR CURRENT (IZM)

The maximum current shown is based on the maximum voltage of a 5.0% type unit, therefore, it applies only to the "B" suffix device. The actual 12 M for any device may not exceed the value of 400 milliwatts divided by the actual  $\mbox{V}_{Z}$  of the device.

#### NOTE 6 - MAXIMUM REGULATION FACTOR ( $\Delta V_Z$ )

 $\Delta V_Z$  is the maximum difference between  $V_Z$  at  $I_{ZL}$  and  $V_Z$  at  $I_{ZL}$  measured with the device junction in thermal equilibrium.

# 4

#### ZENER NOISE DENSITY

A zener diode generates noise when it is biased in the zener direction. A small part of this noise is due to the internal resistance associated with the device. A larger part of zener noise is a result of the zener breakdown phenomenon and is called microplasma noise. To eliminate the higher frequency components of noise a small shunting capacitor can be used. The lower frequency noise generally must be tolerated since a capacitor required to eliminate the lower frequencies would degrade the regulation properties of the zener in many applications.

Motorola is rating this series with a maximum noise density at 250 microamperes, a bandwidth of 2.0 kHz and a center frequency of 2.0 kHz.

Noise density decreases as zener current increases. The junction temperature will also change the zener noise levels, thus the noise rating must indicate frequency, bandwidth, current level and temperature.

The block diagram shown in Figure 2 represents the method used to measure noise density. The input voltage and load resistance is high so that the zener is driven from a constant current source. The amplifier must be low noise so that the amplifier noise is negligible compared to the test zener. The filter frequency and bandpass is known so that the noise density in volts RMS per square root cycle can be calculated.

#### FIGURE 2 - NOISE DENSITY MEASUREMENT METHOD







FIGURE 4 - TYPICAL FORWARD CHARACTERISTICS



#### FIGURE 5 – ZENER DIODE CHARACTERISTICS AND SYMBOL IDENTIFICATION



# MOTOROLA SEMICONDUCTOR I TECHNICAL DATA

#### ZENER OVERVOLTAGE TRANSIENT SUPPRESSOR

Mosorb devices are designed to protect voltage sensitive components from high voltage, high energy transients. They have excellent clamping capability, high surge capability, low zener impedance and fast response time. These devices are Motorola's exclusive, cost-effective, highly reliable. Surmetic axial leaded package and are ideally-suited for use in communication systems, numerical controls, process controls, medical equipment, business machines, power supplies and many other industrial/consumer applications, to protect CMOS, MOS and Bipolar integrated circuits.

#### SPECIFICATION FEATURES

- Standard Voltage Range 5 0 to 200 V
- Peak Power 1500 Watts @ 1 0 ms
- Maximum Clamp Voltage @ Peak Pulse Current
- Low Leakage < 5 0 μA above 10 V</p>
- Standard Back to Back Versions Available

#### 1N5908

1N6373/ICTE-5, C MPTE-5, C thru 1N6389/ICTE-45, C MPTE-45, C

1N6267, A/1.5KE6.8, A thru 1N6303, A/1.5KE250. A

#### MOSORBS ZENER OVERVOLTAGE TRANSIENT SUPPRESSORS

5.0-200 VOLT 1500 WATT PEAK POWER 5.0 WATTS STEADY STATE



#### **MAXIMUM RATINGS**

Rating	Symbol	Value	Units
Peak Power Dissipation (1) @ T _L ≤ 25 ^o C	PPK	1500	Watts
Steady State Power Dissipation @ $T_L \le 75^{\circ}C$ , Lead Length = 3/8" Derated above $T_L = 75^{\circ}C$	PD	5 0 50	Watts mW/ ^O C
Forward Surge Current (2) @ T _A = 25°C	FSM	200	Amps
Operating and Storage Temperature Range	TJ, Tsta	-65 to +175	°C

Lead Temperature not less than 1/16" from the case for 10 seconds 230°C

#### MECHANICAL CHARACTERISTICS

CASE: Void-free, transfer-molded, thermosetting plastic

FINISH: All external surfaces are corrosion resistant and leads are readily solderable and weldable

POLARITY: Cathode indicated by polarity band. When operated in zener mode, will be positive with respect to anode

MOUNTING POSITION: Any

NOTES 1 Nonrepetitive Current Pulse per Figure 4 and Derated above  $T_{\Delta} = 25^{O}C \text{ per Figure 2}$ 

1/2 Square Wave (or equivalent), PW = 8 3 ms, Duty Cycle = 4 Pulses per minute maximum



#### NOTES

- 1 DIMENSIONING AND TOLERANCING PER ANSI Y14 5M 1982
- 2 CONTROLLING DIMENSION INCH
- 3 LEAD FINISH AND DIAMETER UNCONTROLLED IN DIM F

	MILLIM	ETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	9 14	9 52	0 360	0 375
В	4 83	5 21	0 190	0 205
D	0 97	1 07	0 038	0 042
F	_	1 27	_	0 050
K	27 94		1 100	_

CASE 41-11 PLASTIC

## 1N5908, 1N6373 thru 1N6389, 1N6267 thru 1N6303

*ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted) V_F# = 3.5 V max, I_F** = 100 A

						Clampin	g Voltage
		down			Maximum	Peak Pulse	Peak Pulse
		age	Maximum Reverse	Maximum	Reverse Voltage	Current @	Current @
	V _{BR} . (Volts)	@ I _T (mA)	Stand-Off Voltage VRWM***	Reverse Leakage @ VRWM	@ IRSM† = 120 A (Clamping Voltage)	I _{pp1†} = 30 A VC1	I _{pp2†} = 60 A V _{C2}
Device	Min	,,	(Volts)	I _R (μA)	VRSM (Volts)	(Volts max)	(Volts max)
1 N5908	6.0	1.0	5.0	300	8 5	7.6	8.0

ELECTRICAL CHARACTERISTIC (TA = 25°C unless otherwise noted) VF# = 3.5 V max, IF** = 100 A) (C suffix denotes standard back to back versions.

Test both polarities)

		Breakdown Voltage		Maximum		Maximum	Maximum Reverse	Clamping	g Voltage
				Reverse Stand-Off	Maximum Reverse	Reverse	Voltage @ IRSM†	Peak Pulse Current @	Peak Pulse Current @
JEDEC Device	Device	V _{BR} Volts Min	@ I _T (mA)	Voltage VRWM*** (Volts)	Leakage @ VRWM I _R (μΑ)	Current IRSM† (Amps)	(Clamping Voltage) VRSM(Volts)	I _{pp1†} = 1.0 A VC1 (Volts max)	I _{pp2†} = 10 A VC2 (Volts max)
1N6373	ICTE-5/MPTE-5	60	10	50	300	160	9 4	7 1	75
_	ICTE-5C/MPTE-5C	60	10	50	300	160	94	8 1	83
1N6374	ICTE-8/MPTE-8	9 4	10	80	25	100	150	113	115
1N6382	ICTE-8C/MPTE-8C	9 4	10	80	25	100	150	114	116
1N6375	ICTE-10/MPTE-10	117	10	10	20	90	167	137	141
1N6383	ICTE-10C/MPTE-10C	117	10	10	2 0	90	167	14 1	145
1N6376	ICTE-12/MPTE-12	14 1	10	12	2 0	70	21 2	16 1	165
1N6384	ICTE-12C/MPTE-12C	14 1	10	12	2 0	70	21 2	167	171
1N6377	ICTE-15/MPTE-15	176	10	15	2 0	60	25 0	20 1	20 6
1N6385	ICTE-15C/MPTE-15C	176	10	15	2 0	60	25 0	20 8	21 4
1N6378	ICTE-18/MPTE-18	21 2	10	18	2 0	50	30 0	24 2	25 2
1N6386	ICTE-18C/MPTE-18C	21 2	10	18	2 0	50	30 0	248	25 5
1N6379	ICTE-22/MPTE-22	25 9	10	22	2 0	40	37 5	298	32 0
1N6387	ICTE-22C/MPTE-22C	25 9	10	22	2 0	40	37 5	30 8	32 0
1N6380	ICTE-36/MPTE-36	42 4	10	36	2 0	23	65 2	50 6	54 3
1N6388	ICTE-36C/MPTE-36C	42 4	10	36	2 0	23	65 2	50 6	54 3
1N6381	ICTE-45/MPTE-45	52 9	10	45	20	19	78 9	63 3	70 0
1N6389	ICTE-45C/MPTE-45C	52 9	10	45	20	19	78 9	63 3	70 0

JEDEC Device Device			Breakdow	n Voltage		Working Peak Reverse	Maximum Reverse	Maximum Reverse Surge	Maximum Reverse Voltage @ IRSM (Clamping	Maxımum Temperature
	V _{BR} Volts			@ I _T Voltage (mA) VRWM		Leakage @ VRWM	Current IRSM†	Voltage) VRSM	Coefficient of VBR	
	Device	Min	Nom	Max		(Volts)	I _R (μA)	(Amps)	(Volts)	(%/°C)
1N6267	1 5KE6 8	6 12	6.8	7.48	10	5 50	1000	139	108	0 057
1N6267A	1 5KE6 8A	6.45	6.8	7 14	10	5.80	1000	143	105	0 057
1N6268	1 5KE7 5	675	7.5	8 25	10	6 05	500	128	117	0 061
1N6268A	1 5KE7 5A	7 13	7.5	7.88	10	6 40	500	132	113	0 061
1N6269	1 5KE8 2	7.38	8.2	9 02	10	6 63	200	120	125	0 065
1N6269A	1 5KE8 2A	7.79	8 2	8 6 1	10	7 02	200	124	121	0 065
1N6270	1.5KE9 1	8 19	9.1	100	10	7 37	50	109	138	0 068
1N6270A	1 5KE9 1A	8 65	9 1	9.55	1.0	7.78	50	112	13.4	0 068
1N6271	1 5KE10	9 00	10	11	1.0	8 10	10	100	150	0 073
1N6271A	1 5KE10A	9.50	10	105	10	8.55	10	103	145	0 073
1N6272	1.5KE11	9.90	11	12.1	1.0	8 9 2	50	93.0	162	0 075
1N6272A	1.5KE11A	10.5	11	116	10	9 40	5.0	960	156	0 075

## 1N5908, 1N6373 thru 1N6389, 1N6267 thru 1N6303

*ELECTRICAL CHARACTERISTICS (Continued)

						Working Peak	Maximum	Maximum Reverse	Maximum Reverse Voltage @ IRSM	Maximum
			Breakdown Voltage			Reverse Voltage	Reverse Leakage	Surge Current	(Clampling Voltage)	Temperature Coefficient
JEDEC Device	Device	Min	Volts Nom	Max	@ l _T (mA)	VRWM (Volts)	@ VRWM IR (μA)	IRSM† (Amps)	VRSM (Volts)	of V _{BR}
1N6273	1 5KE12	10.8	12	13 2	10	9 72	5.0	87.0	17.3	0 078
1N6273A	1 5KE12A	114	12	126	10	102	50	90 0	167	0 078
1N6274	1 5KE13	117	13	14 3	10	105	50	79 0	190	0 081
1N6274A	1.5KE13A	12.4	13	13.7	1.0	11.1	5.0	82.0	18.2	0.081
1N6275	1 5KE15	135	15	165	10	12 1	50	68 0	22 0	0 084
1N6275A 1N6276	1 5KE15A 1 5KE16	143	15 16	15 8 17 6	10	12 8 12 9	5 O 5 O	71 0 64 0	21 2 23 5	0 084 0 086
1N6276A	1 5KE16A	15 2	16	168	10	136	50	67.0	22 5	0 086
1N6277	1 5KE18	162	18	198	10	14.5	50	56 5	26 5	0 088
1N6277 1N6277A	1 5KE18A	17 1	18	189	10	153	50	59 5	25 2	0 088
1N6278	1 5KE20	180	20	220	10	16 2	50	515	29 1	0 090
1N6278A	1 5KE20A	190	20	210	10	17 1	50	54 0	27 7	0 090
1N6279	1 5KE22	198	22	24 2	10	178	50	470	31 9	0 092
1N6279A	1 5KE22A	20 9	22	23 1	10	188	50	490	30 6	0 092
1N6280	1 5KE24	216	24	26 4	10	19 4	50	43 0	34 7	0 094
1N6280A	1 5KE24A	22 8	24	25 2	10	20 5	50	45 0	33 2	0 094
1N6281	1 5KE27	24 3	27	29 7	10	21 8	50	38 5	39 1	0 096
1N6281A	1 5KE27A	25 7	27	28 4	10	23 1	50	40 0	37 5	0 096
1N6282 1N6282A	1 5KE30 1 5KE30A	27 0 28 5	30 30	33 0 31 5	10	24 3 25 6	5 O 5 O	34 5 36 0	43 5 41 4	0 097 0 097
	J	1 1			1	Į.		[	(	
1 N6283 1 N6283A	1 5KE33 1 5KE33A	29 7	33 33	36 3 34 7	10	26 8 28 2	5 O 5 O	31 5 33 0	47 7 45 7	0 098 0 098
1N6283A	1 5KE35A	32 4	36	39 6	10	29 1	50	290	520	0 098
1N6284A	1 5KE36A	34 2	36	378	10	30 8	50	30 0	49 9	0 099
1N6285	1 5KE39	35 1	39	429	10	31.6	50	26 5	56 4	0 100
1N6285A	1 5KE39A	37 1	39	410	10	33 3	50	28 0	53 9	0 100
1N6286	1 5KE43	38 7	43	473	10	34 8	50	24 0	619	0 101
1N6286A	1 5KE43A	409	43	45 2	10	36 8	50	25 3	59 3	0 101
1N6287	1 5KE47	423	47	517	10	38 1	50	22 2	678	0 101
1N6287A	1 5KE47A	447	47	49 4	10	40 2	50	23 2	64 8	0 101
1N6288 1N6288A	1 5KE51 1 5KE51A	45 9 48 5	51 51	56 1 53 6	10	41 3 43 6	5 O 5 O	20 4 21 4	73 5 70 1	0 102
	1	1 1		l .	)		1		i	0 102
1N6289 1N6289A	1 5KE56 1 5KE56	50 4	56 56	61 6 58 8	10	45 4 47 8	5 O 5 O	18 6 19 5	80 5 77 0	0 103
1N6289A 1N6290	1 5KE62	53 2 55 8	62	68 2	10	50 2	50	169	89 0	0 103 0 104
1N6290A	1 5KE62A	58 9	62	65 1	10	53 0	50	177	85 0	0 104
1N6291	1 5KE68	61 2	68	74 8	10	55 1	50	153	980	0 104
1N6291A	1 5KE68A	64 6	68	71 4	10	58 1	50	163	92 0	0 104
1N6292	1 5KE75	67 5	75	82 5	10	60 7	50	139	1080	0 105
1N6292A	1 5KE75A	71 3	75	78 8	10	64 1	50	14 6	1030	0 105
1N6293	1 5KE82	73 8	82	90 2	10	66 4	50	127	1180	0 105
1N6293A	1 5KE82A	77 9	82	86 1	10	70 1	5 0	13 3	1130	0 105
1 N6294	1 5KE91	819	91	100 0	10	73 7	50	11 4	131 0	0 106
1N6294A	1 5KE91A	86 5	91	95 50	10	77 8	50	120	1250	0 106
1 N6295	1 5KE100	900	100	1100	10	81 0	50	10 4	1440	0 106
1 N6295A 1 N6296	1 5KE100A 1 5KE110	95 O 99 O	100 110	105 0 121 0	10	85 5 89 2	5 O 5 O	11 0 9 5	137 0 158 0	0 106 0 107
1N6296A	1 5KE110A	105 0	110	1160	10	94 0	50	99	1520	0 107
1N6297	1 5KE120	1080	120	1320	10	97 2	50	87	173 0	0 107
1N6297A	1 5KE120 1 5KE120A	1140	120	1260	10	102 0	50	91	1650	0 107
1N6298	1 5KE130	1170	130	143 0	10	105 0	50	80	1870	0 107
1N6298A	1 5KE130A	1240	130	1370	10	1110	50	8 4	1790	0 107
1N6299	1 5KE150	135 0	150	1650	10	121 0	50	70	2150	0 108
1N6299A	1 5KE150A	1430	150	1580	10	1280	50	7 2	207 0	0 108
1N6300	1 5KE160	144 0	160	1760	10	1300	50	6.5	230 0	0 108
1N6300A	1 5KE160A	1520	160	1680	10	1360	50	68	2190	0 108

### 1N5908, 1N6373 thru 1N6389, 1N6267 thru 1N6303

*ELECTRICAL CHARACTERISTICS (Continued)

		Breakdown Voltage					Maximum Reverse	Maximum Reverse Surge	Maximum Reverse Voltage @ IRSM (Clampling	Maximum Temperature
JEDEC			V _{BR} Volts		@ l _T (mA)	Reverse Voltage VRWM	Leakage @ VRWM	Current IRSM+	Voltage) VRSM	Coefficient of VBR
Device	Device	Min	Nom	Max		(Volts)	IR (μA)	(Amps)	(Volts)	(%/°C)
1N6301	1 5KE170	153	170	187	10	138	5 0	6 2	244	0 108
1N6301A	1.5KE170A	162	170	179	10	145	50	64	234	0.108
1N6302	1 5KE180	162	180	198	10	146	50	58	258	0 108
1N6302A	1.5KE180A	171	180	189	10	154	5.0	61	246	0 108
1N6303	1 5KE200	180	200	220	10	162	50	5 2	287	0 108
1N6303A	1 5KE200A	190	200	210	10	171	50	5 5	274	0 108
	1 5KE220	198	220	242	10	175	50	43	344	0 109
	1 5KE220A	209	220	231	10	185	50	46	328	0 109
	1.5KE250	225	250	275	10	202	50	50	360	0 109
	1 5KE250A	237	250	263	10	214	50	50	344	0 109

[†]Surge Current Waveform per Figure 4 and Derate per Figure 2

To order clipper-bidirectional device in 1N6267 series, add a "C" suffix to 1 5KE device title, i.e., 1 5KE7 5C or 1 5KE7 5CA





 ${\bf FIGURE\,3-CAPACITANCE\,versus\,BREAKDOWN\,VOLTAGE}$ 





^{*}Indicates JEDEC Registered Data

^{**1/2} Square Equivalent Sine Wave, PW = 8 3 ms, Duty Cycle = 4 Pulses per Minute maximum

^{***}A Transient Suppressor is normally selected according to the maximum reverse stand-off voltage (V_{RWM}), which should be equal to or greater than the do or continuous peak operating voltage level

[#]VF applies to Non-C suffix devices only

C suffix denotes standard back-to-back versions. Test both polarities





#### FIGURE 6 — DYNAMIC IMPEDANCE





#### **APPLICATION NOTES**

#### **SPECIAL DEVICES**

Matched sets and back-to-back configurations for bidirectional applications can be ordered upon special request Contact your nearest Motorola representative

#### RESPONSE TIME

In most applications, the transient suppressor device is placed in parallel with the equipment or component to be protected. In this situation, there is a time delay associated with the capacitance of the device and an overshoot condition associated with the inductance of the device and the inductance of the connection method. The capacitive effect is of minor importance in the parallel protection scheme because it only produces a time delay in the transition from the operating voltage to the clamp voltage as shown in Figure A.

The inductive effects in the device are due to actual

turn-on time (time required for the device to go from zero current to full current) and lead inductance. This inductive effect produces an overshoot in the voltage across the equipment or component being protected as shown in Figure B. Minimizing this overshoot is very important in the application, since the main purpose for adding a transient suppressor is to clamp voltage spikes. These devices have excellent response time, typically in the picosecond range and negligible inductance. However, external inductive effects could produce unacceptable overshoot. Proper circuit layout, minimum lead lengths and placing the suppressor device as close as possible to the equipment or components to be protected will minimize this overshoot.

Some input impedance represented by  $Z_{1n}$  is essential to prevent overstress of the protection device. This impedance should be as high as possible, without restricting the circuit operation.

#### TYPICAL PROTECTION CIRCUIT







4

# MOTOROLA SEMICONDUCTOR | TECHNICAL DATA

## 1N5913A thru 1N5956A

# 1.5 WATT SURMETIC 30 SILICON ZENER DIODES

. . . A complete line of 1.5-Watt Zener Diodes offering the following advantages:

- Complete Voltage Range 3.3 to 200 Volts
- DO-41 Package Smaller than Conventional Metal Devices
- Metallurgically Bonded Construction
- JEDEC Registered Parameters
- Oxide Passivated Diode
- Molded Package

#### *MAXIMUM RATINGS

Rating	Symbol	Value	Unit
DC Power Dissipation @ T _L = 75°C, Lead Length = 3/8"	PD	15	Watts
Derate above 75°C		12	mW/ ^o C
Operating and Storage Junction Temperature Range	T _J ,T _{stg}	-55 to +200	°C

^{*}Indicates JEDEC Registered Data

#### **MECHANICAL CHARACTERISTICS**

CASE: Surmetic 30 void-free, transfer-molded, thermosetting-plastic

MAXIMUM LEAD TEMPERATURE FOR SOLDERING PURPOSES: 230°C, 1/16" from case for 10 seconds

FINISH: All external surfaces are corrosion resistant with readily solderable leads
POLARITY: Cathode indicated by color band. When operated in zener mode, cathode
will be positive with respect to anode.

**MOUNTING POSITION: Any** 



# 1.5 WATTS ZENER DIODES

3.3 - 200 VOLTS





	MILLIN	IETERS	INCHES			
DIM	MIN	MAX	MIN	MAX		
Α	4 07	5.20	0.160	0.205		
В	2 04	2.71	0.080	0 107		
D	071	086	0.028	0 034		
F		1 27		0.050		
К	27.94	-	1.100			

All JEDEC dimensions and notes apply

#### CASE 59-03 DO-41

#### NOTES PLASTIC

- 1 ALL RULES AND NOTES ASSOCIATED WITH JEDEC DO-41 OUTLINE SHALL APPLY
- 2 POLARITY DENOTED BY CATHODE BAND
- 3. LEAD DIAMETER NOT CONTROLLED WITHIN "F" DIMENSION.

#### 1N5913A thru 1N5956A

*ELECTRICAL CHARACTERISTICS (T  $_L$  = 30°C unless otherwise noted. V  $_F$ = 1.5 Volts Max @ I  $_F$  = 200 mAdc for all types.)

	Nominal	1	Max.	Zener Impedar	nce	T		Maximum DC
Motorola	Zener Voltage	Test				Max. R	leverse Current	Zener
Type	Vz@IzT	Current		_		1		Current
Number	Volts	1ZT	ZZT @ IZT		@ IZK mA	1 "1	⊚ VR Volts	1ZM
(Note 1)	(Note 2)	mA	Ohms	Ohms		μΑ		mAdc
1N5913A	3 3	1136	10	500	10	100	10	454
1N5914A	36	104 2	90	500	10	75	10	416
1N5915A	39	96 1	75	500	10	25	10	384
1N5916A	43	87 2	60	500	10	50	10	348
1N5917A	47	79 8	5.0	500	10	50	15	319
1N5918A	51	73 5	40	350	10	5.0	20	294
1N5919A	56	66 9	20	250	10	50	30	267
1N5920A	6 2	60 5	2.0	200	10	5.0	40	241
1N5921A	68	55 1	25	200	10	50	5 2	220
1N5922A	7 5	50 0	3.0	400	0.5	50	68	200
1N5923A	8 2	45 7	3 5	400	0.5	50	65	182
1N5924A	91	41 2	40	500	0.5	50	70	164
1N5925A	10	37 5	4 5	500	0 25	50	80	150
1N5926A	11	34 1	55	550	0 25	10	8 4	136
1N5927A	12	31 2	6.5	550	0 25	10	9 1	125
1N5928A	13	28 8	70	550	0 25	10	99	115
1N5929A	15	25 0	90	600	0 25	10	114	100
1N5930A	16	23 4	10	600	0 25	10	12 2	93
1N5931A	18	20 8	12	650	0 25	10	13 7	83
1N5932A	20	187	14	650	0 25	10	152	75
1N5933A	22	170	175	650	0 25	10	16 7	68
1N5934A	24	156	19	700	0 25	18	18 2	62
1N5935A	27	13 9	23	700	0 25	10	206	55
1N5936A	30	125	26	750	0 25	10	22 8	50
1N5937A	33	11 4	33	800	0 25	10	25 1	45
1N5938A	36	104	38	850	0 25	10	27 4	41
1N5939A	39	96	45	900	0 25	10	29 7	38
1N5940A	43	8 7	53	950	0 25	10	32 7	34
1N5941A	47	8 0	67	1000	0 25	10	35 8	31
1N5942A	51	7 3	70	1100	0 25	10	38 8	29
1N5943A	56	67	86	1300	0 25	10	426	26
1N5944A	62	60	100	1500	0 25	10	471	24
1N5945A	68	5 5	120	1700	0 25	10	51 7	22
1N5946A	75	5 0	140	2000	0 25	10	56 0	20
1N5947A	82	46	160	2500	0 25	10	62 2	18
1N5948A	91	4 1	200	3000	0 25	10	69 2	16
1N5949A	100	3 7	250	3100	0 25	10	76 0	15
1N5950A	110	3.4	300	4000	0 25	1.0	83 6	13
1N5951A	120	3 1	380	4500	0 25	10	91 2	12
1N5952A	130	29	450	5000	0 25	10	98 8	11
1N5953A	150	2.5	600	6000	0 25	10	114	10
1N5954A	160	2.3	700	6500	0 25	1.0	1216	90
1N5955A	180	2.1	900	7000	0 25	10	1368	80
1N5956A	200	1.9	1200	8000	0 25	1.0	152	70

^{*}Indicates JEDEC Registered Data.

#### NOTE 1 - TOLERANCE AND VOLTAGE DESIGNATION

Tolerance designation — Device tolerances of  $\pm\,10\%$  are indicated by an "A" suffix,  $\pm\,5\%$  by a "B" suffix,  $\pm\,2\%$  by a "C" suffix,  $\pm\,1\%$  by a "D" suffix.

NOTE 2 - SPECIAL SELECTIONS AVAILABLE INCLUDE

Nominal zener voltages between those shown

# 4

# TYPICAL CHARACTERISTICS TEMPERATURE COEFFICIENTS (-55°C to +150°C temperature range)





#### ZENER IMPEDANCE





# MOTOROLA SEMICONDUCTOR TECHNICAL DATA

## 1N5985A thru 1N6025A

# 500 MILLIWATT HERMETICALLY SEALED GLASS SILICON ZENER DIODES

 $\dots$  A complete line of 500 mW Zener Diodes offering the following advantages:

- Complete Voltage Range − 2.4 to 110 Volts
- DO-35 Package Smaller than Conventional DO-7 Package
- Double Slug Type Construction
- Metallurgically Bonded Construction
- JEDEC Registered
- Oxide Passivated Die

500 MILLIWATT
GLASS ZENER DIODES
2.4-110 VOLTS



#### *MAXIMUM RATINGS

Rating	Symbol	Value	Unit
DC Power Dissipation @ T _L ≤ 50°C, Lead Length = 3/8" Derate above 50°C	P _D	500 3.33	mW mW/ ^o C
Operating and Storage Junction Temperature Range	T _J ,T _{stg}	-55 to +200	°C

^{*}Indicates JEDEC Registered Data.

#### **MECHANICAL CHARACTERISTICS**

CASE: Double slug type, hermetically sealed glass

MAXIMUM LEAD TEMPERATURE FOR SOLDERING PURPOSES: 230°C, 1/16" from case for 10 seconds

FINISH: All external surfaces are corrosion resistant with readily solderable leads.

POLARITY: Cathode indicated by color band. When operated in zener mode, cathode will be positive with respect to anode.

MOUNTING POSITION: Any





#### NOTES

- PACKAGE CONTOUR OPTIONAL WITHIN A
   AND B HEAT SLUGS, IF ANY, SHALL BE
   INCLUDED WITHIN THIS CYLINDER, BUT
   NOT SUBJECT TO THE MINIMUM LIMIT
   OF B
- 2 LEAD DIAMETER NOT CONTROLLED IN ZONE F TO ALLOW FOR FLASH, LEAD FINISH BUILDUP AND MINOR IRREGU-LARITIES OTHER THAN HEAT SLUGS.
- 3 POLARITY DENOTED BY CATHODE BAND 4 DIMENSIONING AND TOLERANCING PER

Allai 114.5, 1575									
	MILLIN	METERS	INCHES						
DIM	MIN	MAX	MIN	MAX					
A	3 05	5 08	0 120	0 200					
В	1.52	2 29	0 060	0 090					

D 0 46 0 56 0 018 0 022 F - 127 - 0 050 K 25 40 38 10 1.000 1 500 All JEDEC dimensions and notes apply.

> CASE 299-02 DO-204AH GLASS

#### 1N5985A thru 1N6025A

*ELECTRICAL CHARACTERISTICS ( $T_L = 30^{\circ}$ C unless otherwise noted.) ( $V_F = 1.5$  Volts Max @  $I_F = 100$  mAdc for all types.)

	L CHANACTER	[			dance (No				eakage Cu		
1	Nominal		Z _{ZT} (	[⊚] IZT	ZZK	[©] IZK =	l f		<u> </u>	/R	Max. DC
Motorola	Zener Voltage	Tost	OH	nms	Ohms	0.25 mA	μ	Α `	į vo	lts	Zener
Туре	Vz@IzT	Current	В	Α,	В	Α,	В	Α,	В	Α,	Current
Number	Volts	'ZT		Non-		Non-		Non-	Ì	Non-	1ZM
(Note 1)	(Note 2)	mA	Suffix	Suffix	Suffix	Suffix	Suffix	Suffix	Suffix	Suffix	(Note 3)
1N5985A	2.4	5.0	100	110	1800	2000	100	100	1.0	0.5	208
1N5986A	2.7	5.0	100	110	1900	2200	75	100	1.0	0.5	185
1N5987A	3.0	5.0	95	100	2000	2300	50	100	1.0	0.5	167
1N5988A	3.3	5.0	95	100	2200	2400	25	75	1.0	0.5	152
1N5989A	3.6	5.0	90	95	2300	2500	15	50	1.0	0.5	139
1N5990A	3.9	5.0	90	95	2400	2500	10	25	1.0	1.0	128
1N5991A	4.3	5.0	88	90	2500	2500	5.0	15	1.0	1.0	116
1N5992A	4.7	5.0	70	90	2200	2500	3.0	10	1.5	1.0	106
1N5993A	5.1	50	50	88	2050	2500	2.0	5.0	2.0	1.0	98
1N5994A	5.6	5.0	25	70	1800	2200	2.0	3.0	3.0	1.5	89
1N5995A	6.2	5.0	10	50	1300	2050	1.0	2.0	4.0	2.0	81
1N5996A	6.8	5.0	8.0	25	750	1800	1.0	2.0	5.2	3.0	74
1N5997A	7.5	5.0	7.0	10	600	1300	0.5	1.0	6.0	4.0	67
1N5998A	8.2	5.0	7.0	15	600	750	0.5	1.0	6.5	5.2	61
1N5999A	9.1	5.0	10	18	600	600	0.1	0.5	7.0	6.0	55
1N6000A	10	5.0	15	22	600	600	0.1	0.5	8.0	6.5	50
1N6001A	11	5.0	18	25	600	600	0.1	0 1	8.4	7.0	45
1N6002A	12	5.0	22	32	600	600	0.1	0.1	9.1	8.0	42
1N6003A	13	5.0	25	36	600	600	0.1	0.1	9.9	8.4	38
1N6004A	15	5.0	32	42	600	600	0.1	0.1	11	9.1	33
1N6005A	16	5.0	36	48	600	600	0.1	0.1	12	9.9	31
1N6006A	18	5.0	42	55	600	600	0.1	0.1	14	11	28
1N6007A	20	5.0	48	62	600	600	0.1	0.1	15	12	25
1N6008A	22	5.0	55	70	600	600	0.1	0.1	17	14	23
1N6009A	24	5.0	62	78	600	600	0.1	0.1	18	15	21
1N6010A	27	5.0	70	88	600	700	0.1	0.1	21	17	19
1N6011A	30	5.0	78	95	600	700	0.1	0.1	23	18	17
1N6012A	33	5.0	88	110	700	800	0.1	0.1	25	21	15
1N6013A	36	5.0	95	130	700	900	0.1	0,1	27	23	14
1N6014A	39	2.0	130	170	800	1000	0.1	0.1	30	25	13
1N6015A	43	2.0	150	180	900	1100	0.1	0.1	33	27	12
1N6016A	47	20	170	200	1000	1300	0.1	0.1	36	30	11
1N6017A	51	2.0	180	225	1300	1400	0.1	0.1	39	33	98
1N6018A	56	2.0	200	240	1400	1600	0.1	0.1	43	36	8.9
1N6019A	62	2.0	225	265	1400	1700	0 1	0.1	47	39	8.0
1N6020A	68	2.0	240	280	1600	2000	0.1	0.1	52	43	74
1N6021A	75	2.0	265	300	1700	2300	0 1	0.1	56	47	67
1N6022A	82	2.0	280	350	2000	2600	0.1	0.1	62	52	6.1
1N6023A	91	2.0	300	400	2300	3000	0 1	0.1	69	56	55
1N6024A	100	10	500	800	2600	4000	0.1	0 1	76	62	5.0
1N6025A	110	10	650	950	3000	4500	0 1	0 1	84	69	4.5
i	50.0								L		L

^{*}Indicates JEDEC Registered Data

#### NOTE 1 - TOLERANCE AND VOLTAGE DESIGNATION

Tolerance designation — Device tolerances of  $\pm 10\%$  are indicated by an "A" suffix,  $\pm 5\%$  by a "B" suffix,  $\pm 2\%$  by a "C" suffix,  $\pm 1\%$  by a "D" suffix

#### NOTE 2 - SPECIAL SELECTIONS AVAILABLE INCLUDE:

(a) Nominal Zener voltages between those shown.

- (b) Matched sets: (Standard Tolerances are  $\pm 5.0\%$ ,  $\pm 2.0\%$ ,  $\pm 1.0\%$ ) a. Two or more units for series connection with specified
  - a. Two or more units for series connection with specified tolerance on total voltage Series matched sets make zener voltages in excess of 200 volts possible as well as providing lower temperature coefficients, lower dynamic impedance and greater power handling ability
  - b Two or more units matched to one another with any specified tolerance

#### NOTE 3:

This data was calculated using nominal voltages. In order to determine the maximum current handling capability on a worst case basis the following formula must be used:

 $I_{zm}(worst case) = \frac{500 \text{ mW}}{V_{z}(nom) + tolerance}$ 

#### NOTE 4:

 $Z_{ZT}$  and  $Z_{ZK}$  are measured by dividing the ac voltage drop across the device by the ac current applied. The specified limits are for  $I_Z(ac) = 0.11_Z(dc)$  with the ac frequency = 1.0 kHz.

#### TYPICAL CHARACTERISTICS

#### TEMPERATURE COEFFICIENTS (-55°C to +150°C temperature range)





FIGURE 3 - EFFECT OF ZENER CURRENT ON ZENER IMPEDANCE







Ľ

### 1N6267, A thru 1N6303, A 1N6373 thru 1N6389

See Page 4-59

## 3EZ3.9D5 thru 3EZ200D5

3-WATT
ZENER REGULATOR
DIODES
3.9-200 VOLTS





- 1 ALL RULES AND NOTES ASSOCIATED WITH JEDEC DO-41 OUTLINE SHALL APPLY
- 2 POLARITY DENOTED BY CATHODE BAND 3 LEAD DIAMETER NOT CONTROLLED WITHIN "F" DIMENSION

1 100

CASE 59-03 (DO-41)

# Designer's Data Sheet 3-Watt Surmetic 30 Silicon Zener Diodes

SEMICONDUCTOR SEMICONDUCTOR

... a complete series of 3 Watt Zener Diodes with limits and operating characteristics that reflect the superior capabilities of silicon-oxide-passivated junctions. All this in an axial-lead, transfer-molded plastic package offering protection in all common environmental conditions.

- o Surge Rating of 98 Watts @ 1 ms
- o Maximum Limits Guaranteed on Six Electrical Parameters
- o Package No Larger Than the Conventional 1 W Package

#### Mechanical Characteristics:

**MOTOROLA** 

TECHNICAL DATA

CASE: Void-free, transfer-molded, thermosetting plastic

FINISH: All external surfaces are corrosion resistant and leads are readily solderable and weldable

POLARITY: Cathode indicated by polarity band. When operated in zener mode, cathode will be positive with respect to anode

MOUNTING POSITION: Any WEIGHT: 0.4 gram (approx)



Figure 1. Power-Temperature Derating Curve

#### **MAXIMUM RATINGS**

Rating	Symbol	Value	Unit
DC Power Dissipation @ T _L = 75°C Lead Length = 3/8" Derate above 75°C	PD	3 24	Watts mW/°C
DC Power Dissipation @ T _A = 50°C Derate above 50°C	PD	1 6.67	Watt mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200	°C

Designer's Data for "Worst Case" Conditions — The Designer's Data Sheet permits the design of most circuits entirely from the information presented Limit curves — representing boundaries on device characteristics — are given to facilitate "vorst case" design



Figure 2. Typical Thermal Response L, Lead Length = 3/8 Inch

0.1



(a V 0.05 REVERSE LEAKAGE (µAdd) SPECIFIED IN ELEC CHAR. 0 03 0.01 0.005 0.003 0 002 0 001 0 0005 AS 0.0003 0.0001 500 NOMINAL VZ (VOLTS)

Figure 3. Maximum Surge Power

Figure 4. Typical Reverse Leakage

#### APPLICATION NOTE:

Since the actual voltage available from a given zener diode is temperature dependent, it is necessary to determine junction temperature under any set of operating conditions in order to calculate its value. The following procedure is recommended:

Lead Temperature, TL, should be determined from:

$$T_L = \theta_{LA} P_D + T_A$$

 $\theta_{LA}$  is the lead-to-ambient thermal resistance (°C/W) and PD is the power dissipation. The value for  $\theta_{LA}$  will vary and depends on the device mounting method.  $\theta_{LA}$  is generally 30-40°C/W for the various clips and tie points in common use and for printed circuit board wiring.

The temperature of the lead can also be measured using a thermocouple placed on the lead as close as possible to the tie point. The thermal mass connected to the tie point is normally large enough so that it will not significantly respond to heat surges generated in the diode as a result of pulsed operation once steady-state conditions are achieved. Using the measured value of TL, the junction temperature may be determined by:

$$T_J = T_L + \Delta T_{JL}$$

ΔT_{JL} is the increase in junction temperature above the lead temperature and may be found from Figure 2 for a train of power pulses (L = 3/8 inch) or from Figure 10 for dc power.

$$\Delta T_{JL} = \theta_{JL} P_{D}$$

For worst-case design, using expected limits of I7, limits of  $P_{\mbox{\scriptsize D}}$  and the extremes of T_J ( $\Delta T_{\mbox{\scriptsize J}})$  may be estimated. Changes in voltage, Vz, can then be found from:

$$\Delta V = \theta_{VZ} \Delta T_{J}$$

 $\theta_{VZ}$ , the zener voltage temperature coefficient, is found from Figures 5 and 6.

Under high power-pulse operation, the zener voltage will vary with time and may also be affected significantly by the zener resistance. For best regulation, keep current excursions as low

Data of Figure 2 should not be used to compute surge capability. Surge limitations are given in Figure 3. They are lower than would be expected by considering only junction temperature, as current crowding effects cause temperatures to be extremely high in small spots resulting in device degradation should the limits of Figure 3 be exceeded.

#### 3EZ3.9D5 thru 3EZ200D5

#### **TEMPERATURE COEFFICIENT RANGES**

(90% of the Units are in the Ranges Indicated)



Figure 5. Units To 12 Volts



Figure 6. Units 10 To 200 Volts

#### ZENER VOLTAGE versus ZENER CURRENT



Figure 7. V_Z = 3.9 thru 10 Volts



Figure 8.  $V_Z = 12 \text{ thru } 82 \text{ Volts}$ 



Figure 9. Vz = 100 thru 200 Volts



Figure 10. Typical Thermal Resistance

4

#### 3EZ3.9D5 thru 3EZ200D5

**ELECTRICAL CHARACTERISTICS** ( $T_A = 25^{\circ}C$  unless otherwise noted)  $V_F = 1.5 \text{ V max}$ ,  $I_F = 200 \text{ mA}$  for all types)

	Nominal Zener Voltage	Test	Max Z	ener Impeda (Note 3)	_ <del>-</del>	Leak Curi	age	Maximum Zener	Surge Current
Motorola Type No. (Note 1)	Vz @ I _{ZT} Volts (Note 2)	Current IZT mA	Z _{ZT} @ I _{ZT} Ohms	Z _{ZK} @ I _{ZK} Ohms	IZK mA	l _R μΑ Max @	V _R Volts	Current IZM mA	@ T _A = 25°C i _r - mA (Note 4)
3EZ3.9D5	3.9	192	4.5	400	1	80	1	630	4.4
3EZ4.3D5	4.3	174	4.5	400	1	30	1	590	4.1
3EZ4.7D5	4.7	160	4	500	1	20	1	550	3.8
3EZ5.1D5	5.1	147	3.5	550	1	5	1	520	3.5
3EZ5.6D5	5.6	134	2.5	600	1	5	2	480	3.3
3EZ6.2D5	6.2	121	1.5	700	1	5	3	435	3.1
3EZ6.8D5	6.8	110	2	700	1	5	4	393	2.9
3EZ7.5D5	7.5	100	2	700	0.5	5	5	360	2.66
3EZ8.2D5	8.2	91	2.3	700	0.5	5	6	330	2.44
3EZ9.1D5	9.1	82	2.5	700	0.5	3	7	297	2.2
3EZ10D5	10	75	3.5	700	0.25	3	7.6	270	2
3EZ11D5	11	68	4	700	0.25	1	8.4	225	1.82
3EZ12D5	12	63	4.5	700	0.25	1	9.1	246	1.66
3EZ13D5	13	58	4.5	700	0.25	0.5	9.9	208	1.54
3EZ14D5	14	53	5	700	0.25	0.5	10.6	193	1.43
3EZ15D5	15	50	5.5	700	0.25	0.5	11.4	180	1.33
3EZ16D5	16	47	5.5	700	0.25	0.5	12.2	169	1.25
3EZ17D5	17	44	6	750	0.25	0.5	13	150	1.18
3EZ18D5	18	42	6	750	0.25	0.5	13.7	159	1.11
3EZ19D5	19	40	7	750	0.25	0.5	14.4	142	1.05
3EZ20D5	20	37	7	750	0.25	0.5	15.2	135	1
3EZ22D5	22	34	8	750	0.25	0.5	16.7	123	0.91
3EZ24D5	24	31	9	750	0.25	0.5	18.2	112	0.83
3EZ27D5	27	28	10	750	0.25	0.5	20.6	100	0.74
3EZ28D5	28	27	12	750	0.25	0.5	21	96	0.71
3EZ30D5	30	25	16	1000	0.25	0.5	22.5	90	0.67
3EZ33D5	33	23	20	1000	0.25	0.5	25.1	82	0.61
3EZ36D5	36	21	22	1000	0.25	0.5	27.4	75	0.56
3EZ39D5	39	19	28	1000	0.25	0.5	29.7	69	0.51
3EZ43D5	43	17	33	1500	0.25	0.5	32.7	63	0.45
3EZ47D5	47	16	38	1500	0.25	0.5	35.6	57	0.42
3EZ51D5	51	15	45	1500	0.25	0.5	38.8	53	0.39
3EZ56D5	56	13	50	2000	0.25	0.5	42.6	48	0.36
3EZ62D5	62	12	55	2000	0.25	0.5	47.1	44	0.32
3EZ68D5	68	11	70	2000	0.25	0.5	51.7	40	0.29
3EZ75D5	75	10	85	2000	0.25	0.5	56	36	0.27
3EZ82D5	82	9.1	95	3000	0.25	0.5	62.2	33	0.24
3EZ91D5	91	8.2	115	3000	0.25	0.5	69.2	30	0.22
3EZ100D5	100	7.5	160	3000	0.25	0.5	76	27	0.2
3EZ110D5	110	6.8	225	4000	0.25	0.5	83.6	25	0.18
3EZ120D5	120	6.3	300	4500	0.25	0.5	91.2	22	0.16
3EZ130D5	130	5.8	375	5000	0.25	0.5	98.8	21	0.15
3EZ140D5	140	5.3	475	5000	0.25	0.5	106.4	19	0.14
3EZ150D5	150	5	550	6000	0.25	0.5	114	18	0.13
3EZ160D5	160	4.7	625	6500	0.25	0.5	121.6	17	0.12
3EZ170D5	170	4.4	650	7000	0.25	0.5	130.4	16	0.12
3EZ180D5	180	4.2	700	7000	0.25	0.5	136.8	15	0.11
3EZ190D5	190	4	800	8000	0.25	0.5	144.8	14	0.1
3EZ200D5	200	3.7	875	8000	0.25	0.5	152	13	0.1

#### NOTES:

- (1) TOLERANCES Suffix 1 indicates 1% tolerance, suffix 2 indicates 2% tolerance, suffix 5 indicates 5% tolerance and suffix 10 indicates 10% tolerance, any other tolerance will be considered as a special device.
- (2) ZENER VOLTAGE (V_Z) MEASUREMENT Motorola guarantees the zener voltage when measured at 40 ms ± 10 ms 3/8" from the diode body, and an ambient temperature of 25°C (+8°C, -2°C).
- (3) ZENER IMPEDANCE (ZZ) DERIVATION The zener imped-

ance is derived from the 60 cycle ac voltage, which results when an ac current having an rms value equal to 10% of the dc zener current (I_{ZT} or I_{ZK}) is superimposed on I_{ZT} or I_{ZK}.

(4) SURGE CURRENT (i_r) NON-REPETITIVE — The rating listed

(4) SURGE CURRENT (i_r) NON-REPETITIVE — The rating listed in the electrical characteristics table is maximum peak, nonrepetitive, reverse surge current of 1/2 square wave or equivalent sine wave pulse of 1/120 second duration superimposed on the test current, I_{ZT}, per JEDEC standards, however, actual device capability is as described in Figure 3.

# MOTOROLA SEMICONDUCTOR TECHNICAL DATA

## ICTE-5, C thru ICTE-45, C See Page 4-59

#### **CURRENT LIMITING DIODES**

Field-effect current limiting diodes designed for applications requiring a current reference or a constant current over a specified voltage range.

### CURRENT-LIMITER CHARACTERISTICS AND SYMBOL IDENTIFICATION



**MAXIMUM RATINGS** ( $T_A = 25$  °C unless otherwise noted)

Junction and Storage Temperature: -65°C to +200°C Peak Operating Voltage: See Table

#### ELECTRICAL CHARACTERISTICS (TA = 25 °C unless otherwise noted)

Type Number	Nominal Pinch-Off Current Note 1 Ip (mA)	Tol. (mA)	Test Volt. Note 2 V _T (Volts)	Limiter Imped. Note 3 Z _T (min) (Megohms)	Knee Imped. at 6 V Note 4 Z _K (min) (Megohms)	Limiting Voltage Note 5 V _L (max) (Volts)	Peak Operating Voltage Note 6 VPO (Volts)
MCL1300	0.5	±03	25	4 000	0 500	10	75
MCL1301	10	±06	25	0 800	0 200	15	75
MCL1302	20	±06	25	0 400	0 100	20	75
MCL1303	30	±06	25	0 300	0 050	20	75
MCL1304	40	±06	25	0 250	0 025	25	75

These specifications are preliminary Selections may be made to obtain nominal currents between those shown, as well as tighter tolerance units

#### SYMBOL DEFINITIONS:

NOTE 1 Ip - The pinch-off current is the guaranteed current at a specified V_T Ip is specified as a nominal with a tolerance

NOTE 2 VT - The test voltage for measurement of Ip.

NOTE 3 Z_T - The impedance at the test voltage, V_T, specified. To provide the most constant current Z_T should be as high as possible; thus a minimum Z_T is specified. Z_T is derived from the 90 cycle per second current which results when an AC voltage having an RMS value equal to 10% of the test voltage (V_T) is superimposed on V_T.

NOTE 4  $Z_K$  - Knee impedance is specified as a minimum also since again the highest value is desired  $V_K$  is established as 6.0 V for convenience.

NOTE 5 V_L - Limiting Voltage. This specification is provided with Z_K to indicate the sharp knee of the device. The specification is analogous to I_R and Z_K of a zener diode. V_L a maximum specification is measured at 80% on I_P tolerance.

NOTE 6 VPO - The peak-operating voltage is provided and indicates the maximum voltage to be applied to the device. The specification is necessary since the device is either power limited or breakdown limited beyond this specified voltage.

# MCL1300 thru MCL1304

CURRENT LIMITING DIODES





	MILLI	METERS	INCHES			
DIM	MIN	MAX	MIN	MAX		
А	5 84	7 62	0 230	0 300		
В	2 16	2 72	0 085	0 107		
D	0 46	0 56	0 018	0 022		
F		1 27	_	0 050		
K	25 40	38 10	1 000	1 500		

All JEDEC dimensions and notes apply

CASE 51-02 DO-204AA GLASS

NOTE

- 1 PACKAGE CONTOUR OPTIONAL WITHIN DIA B AND LENGTH A HEAT SLUGS, IF ANY, SHALL BE INCLUDED WITHIN THIS CYLINDER, BUT SHALL NOT BE SUBJECT TO THE MIN LIMIT OF DIA B
- 2 LEAD DIA NOT CONTROLLED IN ZONES F, TO ALLOW FOR FLASH, LEAD FINISH BUILDUP, AND MINOR IRREGULARITIES OTHER THAN HEAT SLUGS

# MOTOROLA SEMICONDUCTOR I TECHNICAL DATA

# 500 MILLIWATT HERMETICALLY SEALED GLASS SILICON ZENER DIODES

- Complete Voltage Range 2.4 to 110 Volts
- Leadless Package for Surface Mount Technology
- Double Slug Type Construction
- Metallurgically Bonded Construction
- Nitride Passivated Die
- Available in 8 mm Tape and Reel
   T1 Cathode Facing Sprocket Holes
   T2 Anode Facing Sprocket Holes

#### **MAXIMUM RATINGS**

Rating	Symbol	Value	Unit
DC Power Dissipation @ T _A ≤ 50°C Derate above T _A = 50°C	PD	500 3.3	mW mW/°C
Operating and Storage Junction Temperature Range	TJ, T _{stg}	-65 to +200	°C

#### **MECHANICAL CHARACTERISTICS**

CASE: Double slug type, hermetically sealed glass

MAXIMUM LEAD TEMPERATURE FOR SOLDERING PURPOSES: 230°C, for 10 seconds

FINISH: All external surfaces are corrosion resistant and readily solderable POLARITY: Cathode indicated by color band. When operated in zener mode,

cathode will be positive with respect to anode

MOUNTING POSITION: Any

## 

# MLL746 thru MLL759

MLL957A thru MLL986A

MLL4370 thru MLL4372

# LEADLESS GLASS ZENER DIODES

500 MILLIWATTS 2.4-110 VOLTS





# MLL746 thru MLL759, MLL957A thru MLL986A, MLL4370 thru MLL4372

**ELECTRICAL CHARACTERISTICS** ( $T_A = 25^{\circ}C$ ,  $V_F = 1.5 \text{ V Max } @ 200 \text{ mA for all types}$ )

	Nominal	Test		Maximum DC Zener Current IZM mA		Maximum Reverse Leakage Current		
Type Number (Note 1)	Zener Voltage VZ @ IZT (Notes 1,2,3) Volts	Current IZT (Note 2) mA	Maximum Zener Impedance Z _{ZT} @ I _{ZT} (Note 4) Ohms			T _A = 25°C I _R @ V _R = 1 V μA	T _A = 150°C I _R @ V _R = 1 V μA	
MLL4370	2.4	20	30	150	190	100	200	
MLL4371	2.7	20	30	135	165	75	150	
MLL4372	3.0	20	29	120	150	50	100	
MLL746	3.3	20	28	110	135	10	30	
MLL747	3.6	20	24	100	125	10	30	
MLL748	3.9	20	23	95	115	10	30	
MLL749	4.3	20	22	85	105	2	30	
MLL750	4.7	20	19	75 95		2	30	
MLL751	5.1	20	17	70 85		1	20	
MLL752	5.6	20	11	65	80	1	20	
MLL753	6.2	20	7	60	70	0.1	20	
MLL754	6.8	20	5	55	65	0.1	20	
MLL755	7.5	20	6	50	60	0.1	20	
MLL756	8.2	20	8	45	55	0.1	20	
MLL757	9.1	20	10	40	50	0.1	20	
MLL758	10	20	17	35	45	0.1	20	
MLL759	12	20	30	30	35	0.1	20	

	Nominal Zener Voltage				Maximum		Maximum Reverse Current			
Type Number (Note 1)	V _Z (Notes 1,2,3) Volts	IZT (Note 2) mA	Z _{ZT} @ I _{ZT} Ohms	Z _{ZK} @ I _{ZK} Ohms	IZK mA		ner Current IZM mA	I _R Maximum μA	1	oltage Vdc V _R 10%
MLL957A	6.8	18.5	4.5	700	1.0	47	61	150	5.2	4.9
MLL958A	7.5	16.5	5.5	700	0.5	42	55	75	5.7	5.4
MLL959A	8.2	15	6.5	700	05	38	50	50	6.2	5.9
MLL960A	9.1	14	7.5	700	0.5	35	45	25	6.9	6.6
MLL961A	10	12.5	8.5	700	0.25	32	41	10	7.6	72
MLL962A	11	11.5	9.5	700	0.25	28	37	5	8.4	8.0
MLL963A	12	10.5	11.5	700	0.25	26	34	5	9.1	8.6
MLL964A	13	9.5	13	700	0.25	24	32	5	9.9	9.4
MLL965A	15	8.5	16	700	0.25	21	27	5	11.4	10.8
MLL966A	16	7.8	17	700	0.25	19	37	5	12.2	11.5
MLL967A	18	7.0	21	750	0.25	17	23	5	13.7	13.0
MLL968A	20	6.2	25	750	0.25	15	20	5	15.2	14.4
MLL969A	22	5.6	29	750	0.25	14	18	5	16.7	15.8
MLL970A	24	5.2	33	750	0.25	13	17	5	18.2	17.3
MLL971A	27	4.6	41	750	0.25	11	15	5	20.6	19.4
MLL972A	30	4.2	49	1000	0.25	10	13	5	22.8	21.6
MLL973A	33	3.8	58	1000	0.25	9.2	12	5	25.1	23.8
MLL974A	36	3.4	70	1000	0.25	8.5	11	5	27.4	25.9
MLL975A	39	3.2	80	1000	0.25	7.8	10	5	29.7	28.1
MLL976A	43	3.0	93	1500	0.25	7.0	9.6	5	32.7	31.0
MLL977A	47	2.7	105	1500	0.25	6.4	8.8	5	35.8	33.8
MLL978A	51	2.5	125	1500	0.25	5.9	8.1	5	38.8	36.7
MLL979A	56	2.2	150	2000	0.25	5.4	7.4	5	42.6	40.3
MLL980A	62	2.0	185	2000	0.25	4.9	6.7	5	47.1	44.6
MLL981A	68	1.8	230	2000	0.25	4.5	6.1	5	51.7	49.0
MLL982A	75	1.7	270	2000	0.25	1.0	5.5	5	56.0	54.0
MLL983A	82	1.5	330	3000	0.25	3.7	5.0	5	62.2	59.0
MLL984A	91	1.4	400	3000	0.25	3.3	4.5	5	69.2	65.5
MLL985A	100	1.3	500	3000	0.25	3.0	4.5	5	76	72
MLL986A	110	1.1	750	4000	0.25	2.7	4.1	5	83.6	79.2

# MLL746 thru MLL759, MLL957A thru MLL986A, MLL4370 thru MLL4372

**NOTE 1. Tolerance Designation** — The type numbers shown have tolerance designations as follows:

MLL4370 series:  $\pm$  10%, suffix A for  $\pm$  5% units. MLL746 series:  $\pm$  10%, suffix A for  $\pm$  5% units. MLL957 series: suffix A for  $\pm$  10% units, suffix B for  $\pm$  5% units.

### NOTE 2. Special Selections† Available Include:

1. Nominal zener voltages between those shown.

Two or more units for series connection with specified tolerance on total voltage. Series matched sets make zener voltages in excess of 200 volts possible as well as providing lower temperature coefficients, lower dynamic impedance and greater power handling ability.

3. Nominal voltages at non-standard test currents.

NOTE 3. Zener Voltage (VZ) Measurement — Nominal zener voltage is measured with the device junction in thermal equilibrium at the case temperature of 30°C  $\pm$ 1°C.

**NOTE 4. Zener Impedance (Z_Z) Derivation** —  $Z_{ZT}$  is measured by dividing the ac voltage drop across the device by the ac current applied. The specified limits are for  $I_Z(ac) = 0.1 \times I_Z(dc)$  with the ac frequency = 1.0 kHz.

tFor more information on special selections contact your nearest Motorola representative.

#### **APPLICATION NOTE**

Since the actual voltage available from a given zener diode is temperature dependent, it is necessary to determine junction temperature under any set of operating conditions in order to calculate its value. The following procedure is recommended:

Case Temperature, T_C, should be determined from:

$$T_C = \theta_{CA}P_D + T_A.$$

 $\theta_{\text{CA}}$  is the case-to-ambient thermal resisstance (°C/W) and P_D is the power dissipation. The value for  $\theta_{\text{CA}}$  will vary and depends on the device mounting method.  $\theta_{\text{CA}}$  is generally 200°C/W for the various clips and tie points in common use and for printed circuit board wiring.

The temperature of the case can also be measured using a thermocouple placed at the case end as close as possible to the tie point. The thermal mass connected to the tie point is normally large enough so that it will not significantly respond to heat surges generated in the diode as a result of pulsed operation once steady-state conditions are achieved. Using the measured value of T_C, the junction temperature may be determined by:

$$T_J = T_C + \Delta T_{JC}$$

 $\Delta T_{JC}$  is the increase in junction temperature above the case temperature and may be found by using:

$$\Delta T_{JC} = \theta_{JC} P_{D}$$

For worst-case design, using expected limits of  $I_Z$ , limits of  $P_D$  and the extremes of  $T_J(\Delta T_J)$  may be estimated. Changes in voltage,  $V_Z$ , can then be found from:

$$\Delta V = \theta_{VZ} \Delta T_{J}$$
.

 $\theta_{VZ}$ , the zener voltage temperature coefficient, is found from Figures 2 and 3.

Under high power-pulse operation, the zener voltage will vary with time and may also be affected significantly by the zener resistance. For best regulation, keep current excursions as low as possible.

Surge limitations are given in Figure 6. They are lower than would be expected by considering only junction temperature, as current crowding effects cause temperatures to be extremely high in small spots, resulting in device degradation should the limits of Figure 6 be exceeded.

FIGURE 1 — TYPICAL LEAKAGE CURRENT



# MLL746 thru MLL759, MLL957A thru MLL986A, MLL4370 thru MLL4372

# FIGURE 2 — TEMPERATURE COEFFICIENTS (-55°C to +150°C temperature range; 90% of the units are in the ranges indicated.)











This graph represents 90 percentil data points For worst-case design characteristics, multiply surge power by 2/3

# MLL746 thru MLL759, MLL957A thru MLL986A, MLL4370 thru MLL4372











# MOTOROLA SEMICONDUCTOR TECHNICAL DATA

# MLL4099-MLL4135 MLL4614-MLL4627

# LOW NOISE LEVEL SILICON PASSIVATED ZENER DIODES

- $\dots$  designed for 250 mW applications requiring low leakage, low impedance, and low noise.
- Leadless Package for Surface Mount Technology
- Voltage Range from 1.8 to 100 Volts
- First Leadless Zener Diode Series to Specify Noise 50% Lower than Conventional Diffused Zeners
- o Low Leakage Current IR from 0.01 to 10  $\mu$ A over Voltage Range
- Available in 8mm Tape and Reel
   T1 Cathode Facing Sprocket Holes
   T2 Anode Facing Sprocket Holes

## MAXIMUM RATINGS

MAXIMOM MATINGO			
Rating	Symbol	Value	Unit
DC Power Dissipation @ T _A = 25°C Derate above 25°C	PD	250 1.43	mW mW/°C
Junction and Storage Temperature Range	TJ, T _{stg}	-65 to +200	°C

## **MECHANICAL CHARACTERISTICS**

CASE: Double slug, hermetically sealed glass

MAXIMUM LEAD TEMPERATURE FOR SOLDERING PURPOSES:

230°C for 10 seconds

FINISH: All external surfaces are corrosion resistant and readily

solderable

POLARITY: Cathode indicated by color band. When operated in the zener mode, cathode will be positive with respect to anode

**MOUNTING POSITION:** Any



# SILICON LEADLESS GLASS ZENER DIODES

(±5.0% TOLERANCE)

250 MILLIWATTS 1.8-100 VOLTS

SILICON NITRIDE PASSIVATED JUNCTION





	MILLIM	ETERS	INC	HES	
DIM MIN		MAX	MIN	MAX	
Α	3 30	3 70	0 130	0 146	
В	1 60	1 70	0 063	0 067	
R	2 49	2 59	0 098	0 102	
U	0.41	0.55	0 016	0 022	

CASE 362-01 GLASS

# MLL4099 thru MLL4135, MLL4614 thru MLL4627

# **ELECTRICAL CHARACTERISTICS**

(At 25°C Ambient temperature unless otherwise specified) IzT = 250  $\mu$ A and VF = 1.0 V max @ IF = 200 mA on all Types

Type Number (Note 1)	Nominal Zener Voltage VZ (Note 1) (Volts)	Max Zener Impedance ZZT (Note 2) (Ohms)	Max Reverse Current IR (μA)	(Not	te 3)	Test Voltage VR (Volts)	Max Noise Density At I _{ZT} = 250 μA ND (Fig 1) (micro-volts per Square Root Cycle)	Max Zener Current IZM (Note 4) (mA)
MLL4614	1.8	1200	7.5			1.0	1.0	120
MLL4615	2.0	1250	5.0		1	1.0	1.0	110
MLL4616	2.2	1300	4.0		ĺ	1.0	1.0	100
MLL4617	2.4	1400	2.0		i	1.0	1.0	95
MLL4618	2.7	1500	1.0		İ	1.0	1.0	90
MLL4619	3.0	1600	0.8			1.0	1.0	85
MLL4620	3.3	1650	7.5		1	1.5	1.0	80
MLL4621	3.6	1700	7.5			2.0	1.0	75
MLL4622	3.9	1650	5.0		ļ	2.0	1.0	70
MLL4623	4.3	1600	4.0			2.0	1.0	65
MLL4624	4.7	1550	10		]	3.0	1.0	60
MLL4625	5.1	1500	10			3.0	2.0	55
MLL4626	5.6	1400	10	i	l	4.0	4.0	50
MLL4627	6.2	1200	10			5.0	5.0	45
MLL4099	6.8	200	10		1	5.2	40	35
MLL4100	7.5	200	10		ļ	5.7	40	31.8
MLL4101	8.2	200	1.0			6.3	40	29.0
MLL4102	8.7	200	1.0			6.7	40	27.4
MLL4103	9.1	200	1.0		1	7.0	40	26.2
MLL4104	10	200	1.0			7.6	40	24.8
MLL4105	11	200	0.05		Ì	8.5	40	21.6
MLL4106	12	200	0.05			9.2	40	20.4
MLL4107	13	200	0.05		ł	9.9	40	19.0
MLL4108	14	200	0.05			10.7	40	17.5
MLL4109	15	100	0.05		i	11.4	40	16.3
MLL4110	16	100	0.05		{	12.2	40	15.4
MLL4111	17	100	0.05			13.0	40	14.5
MLL4112	18	100	0.05		Ì	13.7	40	13.2
MLL4113	19	150	0.05		1	14.5	40	12.5
MLL4114	20	150	0.01		ľ	15.2	40	11.9
MLL4115	22	150	0.01		1	16.8	40	10.8
MLL4116	24	150	0.01		1	18.3	40	9.9
MLL4117	25	150	0.01		ļ	19.0	40	9.5
MLL4118	27	150	0.01			20.5	40	8.8
MLL4119	28	200	0.01			21.3	40	8.5
MLL4120	30	200	0.01			22.8	40	7.9
MLL4121	33	200	0.01			25.1	40	7.2
MLL4122	36	200	0.01			27.4	40	6.6
MLL4123	39	200	0.01			29.7	40	6.1
MLL4124	43	250	0.01			32.7	40	5.5
MLL4125	47	250	0.01			35.8	40	5.1
MLL4126	51	300	0.01			38.8	40	4.6
MLL4127	56	300	0.01			42.6	40	4.2
MLL4128	60 62	400	0.01			45.6	40	4.0
MLL4129	62 68	500	0.01			47.1	40	3.8
MLL4130	75	700	0.01		<b>!</b>	51.7	40	3.5
MLL4131 MLL4132	82	700 800	0.01		1	57.0	40	3.1
MLL4132 MLL4133	82 87	1	0.01			62.4	40	2.9
	91	1000	0.01		<b>\</b>	66.2	40	2.7
MLL4134		1200	0.01		1	69.2	40	2.6
MLL4135	100	1500	0.01			76.0	40	2.3

## NOTE 1: TOLERANCE AND VOLTAGE DESIGNATION

The type numbers shown have a standard tolerance of  $\pm 5.0\%$  on the nominal zener voltage.

# NOTE 2: ZENER IMPEDANCE (ZZT) DERIVATION

The zener impedance is derived from the 1000 cycle ac voltage, which results when an ac current having an rms value equal to 10% of the dc zener current ( $I_{ZT}$ ) is superimposed on  $I_{ZT}$ .

# NOTE 3: REVERSE LEAKAGE CURRENT IR

Reverse leakage currents are guaranteed and are measured at  $V_{\mbox{\scriptsize R}}$  as shown on the table.

# NOTE 4: MAXIMUM ZENER CURRENT RATINGS (IZM)

Maximum zener current ratings are based on maximum zener voltage of the individual units.

# MLL4099 thru MLL4135, MLL4614 thru MLL4627

#### ZENER NOISE DENSITY

A zener diode generates noise when it is biased in the zener direction. A small part of this noise is due to the internal resistance associated with the device. A larger part of zener noise is a result of the zener breakdown phenomenon and is called microplasma noise. This microplasma noise is generally considered "white" noise with equal amplitude for all frequencies from about zero cycles to approximately 200,000 cycles. To eliminate the higher frequency components of noise a small shunting capacitor can be used. The lower frequency noise generally must be tolerated since a capacitor required to eliminate the lower frequencies would degrade the regulation properties of the zener in many applications.

Motorola is rating this series with a maximum noise density at 250 microamperes. The rating of microvolts

RMS per square root cycle enables calculation of the maximum RMS noise for any bandwidth.

Noise density decreases as zener current increases. This can be seen by the graph in Figure 2 where a typical noise density is plotted as a function of zener current.

The junction temperature will also change the zener noise levels. Thus the noise rating must indicate bandwidth, current level and temperature.

The block diagram given in Figure 1 shows the method used to measure noise density. The input voltage and load resistance is high so that the zener is driven from a constant current source. The amplifier must be low noise so that the amplifier noise is negligible compared to the test zener. The filter bandpass is known so that the noise density in volts RMS per square root cycle can be calculated.

FIGURE 1 — NOISE DENSITY MEASUREMENT METHOD





# MLL4099 thru MLL4135, MLL4614 thru MLL4627

FIGURE 3 — TYPICAL CAPACITANCE



FIGURE 4 — TYPICAL FORWARD CHARACTERISTICS



# MOTOROLA SEMICONDUCTOR TECHNICAL DATA

MLL4370 thru MLL4372 See Page 4-76

# MLL4678 thru MLL4717

LEADLESS GLASS ZENER DIODES

250 MILLIWATTS

# 250 MILLIWATT HERMETICALLY SEALED GLASS SILICON ZENER DIODES

Low level nitride passivated zener diodes for applications requiring extremely low operating currents, low leakage, and sharp breakdown voltage.

- Complete Voltage Range 1.8 to 43 Volts
- Zener Voltage Specified @ I_{ZT} = 50 μA
- Leadless Package for Surface Mount Technology
- Maximum Delta V₇ Given from 10 to 100 μA
- Available in 8 mm Tape and Reel
   T1 Cathode Facing Sprocket Holes
   T2 Anode Facing Sprocket Holes

## **ABSOLUTE MAXIMUM RATINGS**

Rating	Symbol	Value	Unit
DC Power Dissipation @ T _A = 50°C Derate above T _A = 50°C	PD	250 1.67	mW mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +175	°C



# **MECHANICAL CHARACTERISTICS**

CASE: Double slug, hermetically sealed glass

MAXIMUM LEAD TEMPERATURE FOR SOLDERING PURPOSES: 230°C for 10 seconds

FINISH: All external surfaces are corrosion resistant and readily

solderable

POLARITY: Cathode end indicated by color band. When operated in

zener mode, the cathode will be positive with respect to

anode

**MOUNTING POSITION:** Any

# FIGURE 1 — POWER TEMPERATURE DERATING CURVE





	MILLIMETERS			INCHES			
DIM	MIN	MAX	MIN	MAX			
A	3 30	3 70	0 130	0 146			
В	1 60	1 70	0 063	0 067			
R	2 49	2 59	0 098	0 102			
U	0 41	0 55	0 016	0 022			

CASE 362-01 GLASS

# MLL4678 thru MLL4717

**ELECTRICAL CHARACTERISTICS** ( $T_A = 25^{\circ}C$ ,  $V_F = 1.5 \text{ V}$  max at  $I_F = 100 \text{ mA}$  for all types)

Type Number	Zener Voltage Vz @ I _{ZT} = 50 μA Volts		Vz @ IzT = 50 μA Reverse Current Voltage				Maximum Voltage Change ΔV ₇ Volts
(Note 1)	Nom (Note 1)	Min	Max	(Note		IZM mA (Note 2)	(Note 4)
MLL4678	1.8	1.710	1.890	7.5	1.0	120	0.70
MLL4679	2.0	1.900	2.100	5.0	1.0	110	0.70
MLL4680	2.2	2.090	2.310	4.0	1.0	100	0.75
MLL4681	2.4	2.280	2.520	2.0	1.0	95	0.80
MLL4682	2.7	2.565	2.835	1.0	1.0	90	0.85
MLL4683	3.0	2.850	3.150	0.8	1.0	85	0.90
MLL4684	3.3	3.135	3.465	7.5	1.5	80	0.95
MLL4685	3.6	3.420	3.780	7.5	2.0	75	0.95
MLL4686	3.9	3.705	4.095	5.0	2.0	70	0.97
MLL4687	4.3	4.085	4.515	4.0	2.0	65	0.99
MLL4688	4.7	4.465	4.935	10	3.0	60	0.99
MLL4689	5.1	4.845	5.355	10	3.0	55	0.97
MLL4690	5.6	5.320	5.880	10	4.0	50	0.96
MLL4691	6.2	5.890	6.510	10	5.0	45	0.95
MLL4692	6.8	6.460	7.140	10	5.1	35	0.90
MLL4693	7.5	7.125	7.875	10	5.7	31.8	0.75
MLL4694	8.2	7.790	8.610	1.0	6.2	29.0	0.50
MLL4695	8.7	8.265	9.135	1.0	6.6	27.4	0.10
MLL4696	9.1	8.645	9.555	1.0	6.9	26.2	0.08
MLL4697	10	9.500	10.50	1.0	7.6	24.8	0.10
MLL4698	11	10.45	11.55	0.05	8.4	21.6	0.11
MLL4699	12	11.40	12.60	0.05	9.1	20.4	0.12
MLL4700	13	12.35	13.65	0.05	9.8	19.0	0.13
MLL4701	14	13.30	14.70	0.05	10.6	17.5	0.14
MLL4702	15	14.25	15.75	0.05	11.4	16.3	0.15
MLL4703	16	15.20	16.80	0.05	12.1	15.4	0.16
MLL4704	17	16.15	17.85	0.05	12.9	14.5	0.17
MLL4705	18	17.10	18.90	0.05	13.6	13.2	0.18
MLL4706	19	18.05	19.95	0.05	14.4	12.5	0.19
MLL4707	20	A9.00	21.00	0.01	15.2	11.9	0.20
MLL4708	22	20.90	23.10	0.01	16.7	10.8	0.22
MLL4709	24	22.80	25.20	0.01	18.2	9.9	0.24
MLL4710	25	23.75	26.25	0.01	19.0	9.5	0.25
MLL4711	27	25.65	28.35	0.01	20.4	8.8	0.27
MLL4712	28	26.60	29.40	0.01	21.2	8.5	0.28
MLL4713	30	28.50	31.50	0.01	22.8	7.9	0.30
MLL4714	33	31.35	34.65	0.01	25.0	7.2	0.33
MLL4715	36	34.20	37.80	0.01	27.3	6.6	0.36
MLL4716	39	37.05	40.95	0.01	29.6	6.1	0.39
MLL4717	43	40.85	45.15	0.01	32.6	5.5	0.43

# NOTES: 1. TOLERANCE AND VOLTAGE DESIGNATION (VZ)

The type numbers shown have a standard tolerance of  $\pm 5\%$  on the nominal zener voltage.

# 2. MAXIMUM ZENER CURRENT RATINGS (IZM)

Maximum Zener current ratings are based on maximum Zener voltage of the individual units.

# 3. REVERSE LEAKAGE CURRENT (IR)

Reverse leakage currents are guaranteed and are measured at VR as shown on the table.

# 4. MAXIMUM VOLTAGE CHANGE (ΔVZ)

Voltage change is equal to the difference between Vz at 100  $\mu$ A and Vz at 10  $\mu$ A.

# MOTOROLA SEMICONDUCTOR I TECHNICAL DATA

# MLL4728 thru MLL4764

# 1.0 WATT HERMETICALLY SEALED GLASS SILICON ZENER DIODES

- Complete Voltage Range 3.3 to 100 Volts
- Leadless Package for Surface Mount Technology
- Double Slug Type Construction
- Metallurgically Bonded Construction
- Oxide Passivated Die
- Available in 12 mm Tape and Reel T1 Cathode Facing Sprocket Holes T2 Anode Facing Sprocket Holes

# LEADLESS GLASS ZENER DIODES

1.0 WATT 3.3-100 VOLTS



# MAXIMUM RATINGS

MAXIMOM HATINGO									
Rating	Symbol	Value	Unit						
DC Power Dissipation @ T _A ≤ 50°C Derate above T _A = 50°C	PD	1.0 6.67	W mW/°C						
Operating and Storage Junction	T _J , T _{stg}	-65 to +200	°C						

#### MECHANICAL CHARACTERISTICS

**MOUNTING POSITION: Any** 

CASE: Double slug type, hermetically sealed glass

MAXIMUM TEMPERATURE FOR SOLDERING PURPOSES: 230°C, for 10 seconds

FINISH: All external surfaces are corrosion resistant and readily solderable POLARITY: Cathode indicated by color band. When operated in zener mode,

cathode will be positive with respect to anode





	MILLIN	AETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	4 80	5 20	0 189	0 205	
В	2 39	2 59	0 094	0 102	
R	3 68	4 54	0 145	0 179	
U	0 30	0.55	0 012	0 022	

CASE 362B-01 GLASS

# **MLL4728 thru MLL4764**

# **ELECTRICAL CHARACTERISTICS**

 $(T_A = 25^{\circ}\text{C})$  unless otherwise noted. Based on dc measurements at thermal equilibrium; case temperature maintained at  $30 \pm 2^{\circ}\text{C}$ .  $V_F = 1.2 \text{ V max}$  @  $I_F = 200 \text{ mA}$  for all types.)

	Nominal Zener Voltage	Test	Maximum 2	Zener Impeda	nce (Note 4)	Leakage (	Current	Surge Current @
Type No. (Note 1)	Vz @ I _{ZT} Volts (Notes 2 and 3)	Current IZT mA	Z _{ZT} @ I _{ZT} Ohms	Z _{ZK} @ I _{ZK} Ohms	IZK mA	l _R μΑ Μαχ	V _R Volts	T _A = 25°C i _r - mA (Note 5)
MLL4728	3.3	76	10	400	1.0	100	1.0	1380
MLL4729	3.6	69	10	400	1.0	100	1.0	1260
MLL4730	3.9	64	9.0	400	1.0	50	1.0	1190
MLL4731	4.3	58	9.0	400	1.0	10	1.0	1070
MLL4732	4.7	53	8.0	500	1.0	10	1.0	970
MLL4733	5.1	49	7.0	550	1.0	10	1.0	890
MLL4734	5.6	45	5.0	600	1.0	10	2.0	810
MLL4735	6.2	41	2.0	700	1.0	10	3.0	730
MLL4736	6.8	37	3.5	700	1.0	10	4.0	660
MLL4737	7.5	34	4.0	700	0.5	10	5.0	605
MLL4738	8.2	31	4.5	700	0.5	10	6.0	550
MLL4739	9.1	28	5.0	700	0.5	10	7.0	500
MLL4740	10	25	7.0	700	0.25	10	7.6	454
MLL4741	11	23	8.0	700	0.25	5.0	8.4	414
MLL4742	12	21	9.0	700	0.25	5.0	9.1	380
MLL4743	13	19	10	700	0.25	5.0	9.9	344
MLL4744	15	17	14	700	0.25	5.0	11.4	304
MLL4745	16	15.5	16	700	0.25	5.0	12.2	285
MLL4746	18	14	20	750	0.25	5.0	13.7	250
MLL4747	20	12.5	22	750	0.25	5.0	15.2	225
MLL4748	22	11.5	23	750	0.25	5.0	16.7	205
MLL4749	24	10.5	25	750	0.25	5.0	18.2	190
MLL4750	27	9.5	35	750	0.25	5.0	20.6	170
MLL4751	30	8.5	40	1000	0.25	5.0	22.8	150
MLL4752	33	7.5	45	1000	0.25	5.0	25.1	135
MLL4753	36	7.0	50	1000	0.25	5.0	27.4	125
MLL4754	39	6.5	60	1000	0.25	5.0	29.7	115
MLL4755	43	6.0	70	1500	0.25	5.0	32.7	110
MLL4756	47	5.5	80	1500	0.25	5.0	35.8	95
MLL4757	51	5.0	95	1500	0.25	5.0	38.8	90
MLL4758	56	4.5	110	2000	0.25	5.0	42.6	80
MLL4759	62	4.0	125	2000	0.25	5.0	47.1	70
MLL4760	68	3.7	150	2000	0.25	5.0	51.7	65
MLL4761	75	3.3	175	2000	0.25	5.0	56.0	60
MLL4762	82	3.0	200	3000	0.25	5.0	62.2	55
MLL4763	91	2.8	250	3000	0.25	5.0	69.2	50
MLL4764	100	2.5	350	3000	0.25	5.0	76.0	45

# MLL4728 thru MLL4764

NOTE 1. Tolerance and Type Number Designation — The type numbers listed have a standard tolerance on the nominal zener voltage of  $\pm$  10%. A standard tolerance of  $\pm$ 5% on individual units is also available and is indicated by suffixing "A" to the standard type number.

#### NOTE 2. Special Selections† Available Include:

- 1. Nominal zener voltages between those shown.
- Two or more units for series connection with specified tolerance on total voltage. Series matched sets make zener voltages in excess of 200 volts possible as well as providing lower temperature coefficients, lower dynamic impedance and greater power handling ability.
  - 3. Nominal voltages at non-standard test currents

NOTE 3. Zener Voltage (V_Z) Measurement — Nominal zener voltage is measured with the device junction in thermal equilibrium at the case temperature of  $30^{\circ}C$   $\pm 2^{\circ}C$ .

NOTE 4. Zener Impedance (Z_Z) Derivation —  $Z_{ZT}$  and  $Z_{ZK}$  are measured by dividing the ac voltage drop across the device by the ac current applied. The specified limits are for  $|_{Z}(ac)| = 0.1 \times |_{Z}(dc)$  with the ac frequency = 1.0 kHz.

†For more information on special selections contact your nearest Motorola representative.

#### APPLICATION NOTE

Since the actual voltage available from a given zener diode is temperature dependent, it is necessary to determine junction temperature under any set of operating conditions in order to calculate its value. The following procedure is recommended:

Case Temperature, T_C, should be determined from:

$$T_C = \theta_{CA}P_D + T_A.$$

 $\theta_{CA}$  is the case-to-ambient thermal resistance (°C/W) and  $P_D$  is the power dissipation. The value for  $\theta_{CA}$  will vary and depends on the

FIGURE 1 — TYPICAL LEAKAGE CURRENT



device mounting method.  $\theta_{CA}$  is generally 200°C/W for the various clips and tie points in common use and for printed circuit board wiring.

The temperature of the case can also be measured using a thermocouple placed at the case end as close as possible to the tie point. The thermal mass connected to the tie point is normally large enough so that it will not significantly respond to heat surges generated in the diode as a result of pulsed operation once steady-state conditions are achieved. Using the measured value of T_C, the junction temperature may be determined by

$$T_J = T_C + \Delta T_{JC}$$

 $\Delta T_{JC}$  is the increase in junction temperature above the case temperature and may be found by using:

$$\Delta T_{JC} = \theta_{JC}P_{D}$$

For worst-case design, using expected limits of Iz, limits of PD and the extremes of TJ( $\Delta$ TJ) may be estimated. Changes in voltage, Vz, can then be found from:

$$\Delta V = \theta_{VZ} \Delta T_{J}$$
.

 $\theta_{\mbox{\scriptsize VZ}},$  the zener voltage temperature coefficient, is found from Figures 3 and 4.

Under high power-pulse operation, the zener voltage will vary with time and may also be affected significantly by the zener resistance. For best regulation, keep current excursions as low as possible.

NOTE 5. Surge Current (i_r) Nonrepetitive — The rating listed in the electrical characteristics table is maximum peak, non-repetitive, reverse surge current of 1/2 square wave or equivalent sine wave pulse of 1/120 second duration superimposed on the test current, I_{ZT}, per JEDEC registration; however, actual device capability is as described in Figures 4 and 6.

Surge limitations are given in Figure 6. They are lower than would be expected by considering only junction temperature, as current crowding effects cause temperatures to be extremely high in small spots, resulting in device degradation should the limits of Figure 6 be exceeded.

FIGURE 2 — TYPICAL LEAKAGE CURRENT



FIGURE 3 — TEMPERATURE COEFFICIENTS @ IZT

(-55°C to +150°C temperature range; 90% of the units are in the ranges indicated.)





# FIGURE 4 — EFFECT OF ZENER CURRENT +6 0 Vz @ Iz TA = 25°C 10 mA NOTE BELOW 3 VOLTS AND ABOVE 8 VOLTS CHANGES IN ZENER CURRENT DO NOT AFFECT TEMPERATURE COFFFICIENTS Vz, ZENER VOLTAGE (VOLTS)





This graph represents 90 percentil data points. For worst-case design characteristics, multiply surge power by 2/3.

#### FIGURE 7 — EFFECT OF ZENER CURRENT ON ZENER IMPEDANCE



#### FIGURE 8 — EFFECT OF ZENER VOLTAGE ON ZENER IMPEDANCE



# FIGURE 9 — TYPICAL NOISE DENSITY



#### FIGURE 10 — NOISE DENSITY MEASUREMENT METHOD



the test zener. The filter bandpass is known so that the noise density can be calculated from the formula shown.

# FIGURE 11 — TYPICAL FORWARD CHARACTERISTICS



# MOTOROLA SEMICONDUCTOR TECHNICAL DATA

# MLL5221A thru MLL5270A

# 500 MILLIWATT HERMETICALLY SEALED GLASS SILICON ZENER DIODES

- Complete Voltage Range 2.4 to 91 Volts
- Leadless Package for Surface Mount Technology
- Double Slug Type Construction
- Metallurgically Bonded Construction
- Oxide Passivated Die

# LEADLESS GLASS ZENER DIODES

500 MILLIWATTS 2.4-110 VOLTS



#### MAXIMUM RATINGS

Rating	Symbol	Value	Unit
DC Power Dissipation @ T _A ≤ 50°C Derate above T _A = 50°C	PD	500 3 3	mW mW/°C
Operating and Storage Junction Temperature Range	TJ, T _{stg}	-65 to +200	°C

# MECHANICAL CHARACTERISTICS

CASE: Double slug type, hermetically sealed glass

MAXIMUM LEAD TEMPERATURE FOR SOLDERING PURPOSES 230°C, for 10 seconds

FINISH: All external surfaces are corrosion resistant and readily solderable

POLARITY. Cathode indicated by color band. When operated in zener mode, cathode will be positive with respect to anode.

MOUNTING POSITION Any





1	MILLIM	FIFHS	INCHES			
DIM	MIN	MAX	MIN	MAX		
A	3 30	3 70	0 130	0 146		
В	1 60	1 70	0 063	0 067		
R	2 49	2 59	0 098	0 102		
U	0 41	0.55	0 0 1 6	0 022		

CASE 362-01 GLASS

# **ELECTRICAL CHARACTERISTICS**

(T_A = 25°C unless otherwise noted Based on dc measurements at thermal equilibrium, case temperature maintained at 30 $\pm$ 2°C V_F = 1.1 max @ I_F = 200 mA for all types )

		I	Max	Zener Impedance	Ma	x Reve	se Leal	kage Current			
	Nominal Zener Voltage	Test		nd B Suffix only	A and	B Suffi	x only	Non-Suffix	Max Zener Voltage Temperature Coeff.		
Type No. (Note 1)	Vz @ IzT Volts (Note 2)	Current IZT mA	Z _{ZT} @ I _{ZT}	Z _{ZK} @ I _{ZK} = 0.25 mA Ohms	IR @ VR μΑ Volts		μ <b>A</b> Wolts		μA Volts for		(A and B Suffix only)  θ∨z (%/°C)  (Note 3)
						A	В	μА			
MLL5221A	2 4 2 5	20 20	30 30	1200 1250	100	0 95	10	200 200	-0 085 -0 085		
MLL5222A MLL5223A	25	20	30	1300	75	0 95	10	150	-0 085		
MLL5224A	2 8	20	30	1400	75	0 95	10	150	-0 080		
MLL5225A	30	20	29	1600	50	0 95	10	100	-0 075		
MLL5226A	3 3	20	28	1600	25	0 95	10	100	-0 070		
MLL5227A	3 6	20	24	1700	15	0 95	10	100	-0 065		
MLL5228A	3 9	20	23	1900	10	0 95	10	75 50	-0 060		
MLL5229A MLL5230A	4 3 4 7	20 20	22 19	2000 1900	5 O 5 O	0 95	10	50 50	±0 055 ±0 030		
	51		17	1600	50	19	20	50			
MLL5231A MLL5232A	56	20 20	11	1600	50	29	30	50 50	±0 030 +0 038		
MLL5232A	60	20	70	1600	50	33	35	50	+0 038		
MLL5234A	6 2	20	70	1000	50	38	40	50	+0 045		
MLL5235A	6 8	20	50	750	30	48	50	30	+0 050		
MLL5236A	7 5	20	60	500	30	5 7	60	30	+0 058		
MLL5237A	8 2	20	80	500	30	6 2	6 5	30	+0 062		
MLL5238A	8 7	20	80	600	30	62	65	30	+0 065		
MLL5239A MLL5240A	9 1 10	20 20	10 17	600 600	30	67 76	70 80	30 30	+0 068 +0 075		
MLL5241A	11	20	22	600	20	80	8 4	30	+0 076		
MLL5241A	12	20	30	600	10	87	91	10	+0 076		
MLL5243A	13	9 5	13	600	05	94	99	10	+0 079		
MLL5244A	14	90	15	600	01	9 5	10	10	+0 082		
MLL5245A	15	8 5	16	600	01	105	11	10	+0 082		
MLL5246A	16	78	17	600	01	114	12	10	+0 083		
MLL5247A	17	74	19	600	01	124	13	10	+0 084		
MLL5248A MLL5249A	18 19	70 66	21 23	600 600	01	133	14 14	10 10	+0 085 +0 086		
MLL5250A	20	62	25	600	01	143	15	10	+0 086		
MLL5251A	22	5 6	29	600	0 1	16 2	17	10	+0 087		
MLL5252A	24	5 2	33	600	01	17 1	18	10	+0 088		
MLL5253A	25	50	35	600	01	18 1	19	10	+0 089		
MLL5254A	27	4 6	41	600	01	20	21	10	+0 090		
MLL5255A	28	4 5	44	600	01	20	21	10	+0 091		
MLL5256A	30	4 2	49	600	01	22	23	10	+0 091		
MLL5257A	33	38	58	700	01	24	25	10	+0 092		
MLL5258A MLL5259A	36 39	3 4 3 2	70 80	700 800	01	26 29	27 30	10 10	+0 093 +0 094		
MLL5259A	43	30	93	900	01	31	33	10	+0 094		
MLL5261A	47	2 7	105	1000	01	34	36	10	+0 095		
MLL5261A	51	25	125	1100	01	37	39	10	+0 096		
MLL5263A	56	2 2	150	1300	01	41	43	10	+0 096		
MLL5264A	60	2 1	170	1400	01	44	46	10	+0 097		
MLL5265A	62	2 0	185	1400	01	45	47	10	+0 097		
MLL5266A	68	18	230	1600	01	49	52	10	+0 097		
MLL5267A	75 82	17 15	270	1700 2000	01	53 59	56 62	10 10	+0 098		
MLL5268A MLL5269A	82 87	14	330 370	2200	01	65	62 68	10	+0 098 +0 099		
MLL5203A	91	14	400	2300	01	66	69	10	+0 099		
								· · · · · · · · · · · · · · · · · · ·			

NOTE 1. Tolerance — Units with guaranteed limits on all six parameters are indicated by suffix "A" for  $\pm 10\%$  tolerance and suffix "B" for  $\pm 5.0\%$  units.

#### NOTE 2. Special Selections† Available Include.

- 1 Nominal zener voltages between those shown
- 2 Two or more units for series connection with specified tolerance on total voltage. Series matched sets make zener voltages in excess of 200 volts possible as well as providing lower temperature coefficients, lower dynamic impedance and greater power handling ability.
  - 3 Nominal voltages at non-standard test currents

NOTE 3 Temperature Coefficient ( $\theta_{VZ}$ ) — Test conditions for temperature coefficient are as follows

- a I_{ZT} = 75 mA, T₁ = 25°C,
  - T₂ = 125°C (MLL5221A,B through MLL5242A,B)
- b IZT = Rated IZT, T1 = 25°C,
- T₂ = 125°C (MLL5243A, B through MLL5270A,B)

Device to be temperature stabilized with current applied prior to reading breakdown voltage at the specified ambient temperature

NOTE 4 Zener Voltage (Vz) Measurement — Nominal zener voltage is measured with the device junction in thermal equilibrium at the case temperature of  $30^{\circ}\text{C} \pm 1^{\circ}\text{C}$ 

NOTE 5 Zener Impedance (Zz) Derivation — ZzT and ZzK are measured by dividing the ac voltage drop across the device by the ac current applied. The specified limits are for Iz(ac) = 0.1  $\times$  Iz(dc) with the ac frequency = 1.0 kHz

†For more information on special selections contact your nearest Motorola representative

#### APPLICATION NOTE

Since the actual voltage available from a given zener diode is temperature dependent, it is necessary to determine junction temperature under any set of operating conditions in order to calculate its value. The following procedure is recommended

Case Temperature, T_C, should be determined from

$$T_C = \theta_{CA}P_D + T_A$$

 $\theta_{CA}$  is the case-to-ambient thermal resistance (°C/W) and  $P_D$  is the power dissipation. The value for  $\theta_{CA}$  will vary and depends on the device mounting method  $\theta_{CA}$  is generally 200°C/W for the various clips and tie points in common use and for printed circuit board wiring

The temperature of the case can also be measured using a thermocouple placed at the case end as close as possible to the tie point. The thermal mass connected to the tie point is normally large enough so that it will not significantly respond to heat surges generated in the diode as a result of pulsed operation once steady-state conditions are achieved. Using the measured value of  $T_{\rm C}$ , the junction temperature may be determined by

$$T_J = T_C + \Delta T_{JC}$$

 $\Delta T_{JC}$  is the increase in junction temperature above the case temperature and may be found by using

$$\Delta T_{JC} = \theta_{JC}P_{D}$$

For worst-case design, using expected limits of  $I_Z$ , limits of  $P_D$  and the extremes of  $T_J(\Delta T_J)$  may be estimated. Changes in voltage,  $V_Z$ , can then be found from

$$\Delta V = \theta_{VZ} \Delta T_{J}$$

 $\theta_{\mbox{\scriptsize VZ}},$  the zener voltage temperature coefficient, is found from Figures 3 and 4

Under high power-pulse operation, the zener voltage will vary with time and may also be affected significantly by the zener resistance. For best regulation, keep current excursions as low as no suble.

Surge limitations are given in Figure 6. They are lower than would be expected by considering only junction temperature, as current crowding effects cause temperatures to be extremely high in small spots, resulting in device degradation should the limits of Figure 6 be exceeded

FIGURE 1 — TYPICAL LEAKAGE CURRENT



FIGURE 2 - TYPICAL LEAKAGE CURRENT



#### FIGURE 3 - TEMPERATURE COEFFICIENTS

(-55°C to +150°C temperature range; 90% of the units are in the ranges indicated.)











This graph represents 90 percentil data points

For worst case design characteristics, multiply surge power by 2/3

FIGURE 7 — EFFECT OF ZENER CURRENT ON ZENER IMPEDANCE



FIGURE 8 — EFFECT OF ZENER VOLTAGE ON ZENER IMPEDANCE



FIGURE 9 - TYPICAL NOISE DENSITY



#### FIGURE 10 - NOISE DENSITY MEASUREMENT METHOD



The input voltage and load resistance are high so that the zener diode is driven from a constant current source. The amplifier is low noise so that the amplifier noise is negligible compared to that of the test zener. The filter bandpass is known so that the noise density can be calculated from the formula shown.

FIGURE 11 — TYPICAL FORWARD CHARACTERISTICS









# MOTOROLA SEMICONDUCTOR I TECHNICAL DATA

#### THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Total Device Dissipation FR-5 Board,*  TA = 25°C	PD	225	mW
Derate above 25°C	1	1.8	mW/°C
Thermal Resistance Junction to Ambient	$R_{\theta JA}$	556	°C/mW
Total Device Dissipation Alumina Substrate,** T _A = 25°C	PD	300	mW
Derate above 25°C		2.4	mW/°C
Thermal Resistance Junction to Ambient	$R_{\theta JA}$	417	°C/mW
Junction and Storage Temperature	T _J , T _{stg}	150	°C

^{*}FR-5 =  $1.0 \times 0.75 \times 0.62$  in.

# MMBZ5226B thru MMBZ5257B

CASE 318-05, STYLE 8 SOT-23 (TO-236AA/AB)



**ZENER DIODES** 

Pinout: 1-Anode, 2-NC, 3-Cathode (V_F = 0.9 V Max @ I_F = 10 mA for all types.)

Device	Marking	Test Current IZT mA	Zener Voltage VZ (±5%) Nominal	Z _{ZK} I _Z = 0.25 mA Ω Max	Z _{ZT} IZ = I _{ZT} @ 10% Mod Ω Max	Max I _R μΑ	⊚ ∨ _R ∨
MMBZ5226B	8A	20	3.3	1600	28	25	1.0
MMBZ5227B	8B	20	3.6	1700	24	15	1.0
MMBZ5228B	8C	20	3 9	1900	23	10	1.0
MMBZ5229B	8D	20	43	2000	22	5.0	1.0
MMBZ5230B	8E	20	4.7	1900	19	5.0	2.0
MMBZ5231B	8F	20	5.1	1600	17	5.0	2.0
MMBZ5232B	8G	20	5 6	1600	11	5.0	3.0
MMBZ5233B	BH I	20	60	1600	70	5.0	3.5
MMBZ5234B	8J	20	6 2	1000	7 0	5.0	4.0
MMBZ5235B	8K	20	68	750	50	30	5.0
MMBZ5236B	8L	20	7.5	500	6.0	3.0	6.0
MMBZ5237B	8M	20	8.2	500	8.0	3.0	6.5
MMBZ5238B	8N	20	8.7	600	8.0	30	6.5
MMBZ5239B	8P	20	9.1	600	10	3 0	7.0
MMBZ5240B	80	20	10	600	17	3 0	8.0
MMBZ5241B	8R	20	11	600	22	2.0	8 4
MMBZ5242B	85	20	12	600	30	1.0	9 1
MMBZ5243B	8T	9.5	13	600	13	0.5	9.9
MMBZ5244B	8U	90	14	600	15	0.1	10
MMBZ5245B	V8	8.5	15	600	16	0.1	11
MMBZ5246B	8W	7.8	16	600	17	0.1	12
MMBZ5247B	8X	74	17	600	19	0.1	13
MMBZ5248B	8Y	7.0	18	600	21	0.1	14
MMBZ5249B	8Z	6.6	19	600	23	0.1	14
MMBZ5250B	81A	6.2	20	600	25	01	15
MMBZ5251B	81B	5.6	22	600	29	0.1	17
MMBZ5252B	81C	5.2	24	600	33	0.1	18
MMBZ5253B	81D	50	25	600	35	0.1	19
MMBZ5254B	81E	4.6	27	600	41	0.1	21
MMBZ5255B	81F	4.5	28	600	44	0.1	21
MMBZ5256B	81G	4.2	30	600	49	0.1	23
MMBZ5257B	81H	3.8	33	700	58	0.1	25

^{**}Alumina = 0.4 x 0.3 x 0.024 ın. 99.5% alumına.

# MOTOROLA SEMICONDUCTOR TECHNICAL DATA

# SILICON POWER TRANSIENT SUPPRESSOR

. . . designed for applications requiring protection of voltage sensitive electronic devices in danger of destruction by high energy voltage transients. Individual cells are matched to insure current-sharing under high current pulse conditions.

- Peak Surge Power Capacity Given From 0.1 ms To 10 Seconds
- Low Clamping Factor Assures Low Voltage Overshoot
- Negligible Power Loss
- Small Size and Weight
- Following Variations are Available:
  - Non-Standard Voltages
  - Higher Power Capacity
  - Other Package Configurations

# **MAXIMUM RATINGS**

Transient Power Dissipation: 40 kW Pulse Width: 0.1ms, (See Figure 1)

DC Power Dissipation: 350 Watts @  $T_C = 25$  °C

(Derate 2.33 W/°C above 25°C)

Operating Junction & Storage Temperature Range.

-65°C to +175°C

# **MECHANICAL CHARACTERISTICS**

POLARITY: Anode-to-Case is Standard. Cathode-to-Case Available

Upon Request.

# MPZ5-16 Series MPZ5-32 Series MPZ5-180 Series

# SILICON POWER TRANSIENT SUPPRESSOR





CASE 119-01 NOTE DIA "Q" 5 PLACES

# ELECTRICAL CHARACTERISTICS (TA = 25 °C, VF = 1.5 V max @ 10 A for all types)

	Nominal Operating Voltage (Note 1)		Maximum Device Clamping Factor VZ @ IZ (pulse)	Mınımum Zener Voltage		Voltage Maximum Zener Voltage Pulse Width = 1.0 ms		Maximum Reverse Current IR (max)	Typical Capacitance C (typ)
Туре	VOP(PK) Vdc	VOP(RMS) V rms	CF = Vz @ IzT (Note 2)	VZ(min) Vdc	@ IZT Adc	VZ(max) Vdc	@ IZ(pulse) Adc	@ V _R = V _{OP} (PK) μAdc	@ VR = VOP(PK) μF
MPZ5-16A	14	10	1 25	16	04	24	200	50	0 025
-16B	14	10	1 25	16	0.4	20	200	i †	0 025
-32A	28	20	1 25	32	02	50	100	i	0 011
-32B	28	20	1 25	32	02	45	100	1	0 011
-32C	28	20	1 25	32	02	40	100		0 011
-180A	165	117	1 14	180	0 03	250	20	1	0 0012
-180B	165	117	1 14	180	0 03	225	20		0 0012
-180C	165	117	1 14	180	0 03	205	20	50	0 0012





# FIGURE 2 – TYPICAL DYNAMIC ZENER VOLTAGE CHARACTERISTICS (Note 2)



- NOTE 1. Nominal operating voltage is defined as normal input voltage to device for non-operating condition. If non-sinusoidal wave or dc input is present, peak voltage input values VOP(PK) should be used to select device type.
- NOTE 2 The maximum device clamping factor  $C_F$  is a ratio of  $V_Z$  measured at  $I_Z$  (pulse) given in the Electrical Characteristics Table divided by  $V_Z$  measured at  $I_{ZT}$  under steady state conditions. This value guarantees the sharpness of the voltage breakdown of individual devices. Figure 2 demonstrates the typical sharpness of the breakdown, and indicates the voltage regulation over a wide range of currents.

△VZ = VZ @ IZ(pulse) - VZ @ IZT

# MOTOROLA SEMICONDUCTOR I TECHNICAL DATA

# **MZ600 Series**

6.2 VOLTS

#### PRECISION REFERENCE DIODES

...designed, manufactured and tested for applications requiring a precision voltage reference with ultra-high stability of voltage with time and temperature change.

Special test laboratory uses precision measurement equipment, four-terminal (separate contacts for current and voltage) measurement techniques and voltage standards to provide calibration directly traceable to the National Bureau of Standards.

# PRECISION REFERENCE DIODES with CERTIFIED ZENER VOLTAGE-TIME STABILITY







NOTES

NOTES
1 PACKAGE CONTOUR OPTIONAL WITHIN DIA B AND
LENGTH A HEAT SLUGS, IF ANY, SHALL BE INCLUDED
WITHIN THIS CYLINDER, BUT SHALL NOT BE SUBJECT TO
THE MIN LIMIT OF DIA B

2 LEAD DIA NOT CONTROLLED IN ZONES F, TO ALLOW FOR FLASH, LEAD FINISH BUILDUP, AND MINOR IRREGULARITIES OTHER THAN HEAT SLUGS

	MILLIN	METERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
_ A_	5 84	7 62	0 230	0 300	
В	2 16	2 72	0 085	0 107	
D	0 46	0 56	0 018	0 022	
F	_	1 27	-	0 050	
K	25 40	38 10	1 000	1 500	

All JEDEC dimensions and notes apply

CASE 51-02 DO-204AA GLASS

#### **OPERATING TEMPERATURE RANGE:* 25 to 100 °C.**

#### **MZ600 SERIES** (Voltage 6.2V $\pm 5\%$ , I_{ZT} = 7.5 mAdc†, $\triangle$ V_Z = 2.5 mVdc**)

Type No.	Voltags-Time Stability (μV/1000 Hours)	Parts Per Million Change (ppm/1000 Hours)
MZ605	31 Maximum	< 5
MZ610	62 Maximum	<10
MC620	124 Maximum	<20
MZ640	248 Maximum	<40

**DYNAMIC IMPEDANCE:** 10 Ohms at  $I_{ZT} = 7.5$  mAdc,  $I_{ac} = 0.75$  mA.

#### NOTES

#### †TEST CURRENT

For certification testing of time stability, Motorola maintains  $I_{ZT}$  constant and repeatable to  $\pm\,0.05~\mu\mathrm{A}$  tolerance. For voltage tolerance, impedance and voltage temperature stability  $I_{ZT}$  needs to be held to 0.01 tolerance only.

- *Maximum limits for use as a precision reference device. Limits are well below the maximum thermal limits.
- **VOLTAGE-TEMPERATURE STABILITY: Maximum allowable voltage change between voltages recorded at 25, 75 and 100 °C ambient.

# **VOLTAGE-TIME STABILITY**

( $\Delta V_Z/1000$  Hours).

The device voltage is read and recorded initially and at 168 hour intervals through 1000 hours. The maximum change of voltage between readings, taken at any of the seven points, must be less than the maximum voltage change per 1000 hour specified as Voltage-Time Stability.

## **TURN-ON CHARACTERISTICS**

Precision Reference Diodes have been tested to determine the behavior of the device under interrupted power operation. To insure specified performance, adequate time must be allowed for the device and its environment to reach thermal equilibrium. "Warm-up" time may range from 8 to 24 hours. Thermal equilibrium is reached when the chamber is cycling at the required temperature with the device energized.

After this ""warm-up" period, the device voltage will be between the minimum and the maximum voltage of those recorded at the seven points of the Voltage-Time Stability certification.

#### MOUNTING

Excellent results have been obtained by using a mechanical mounting. If necessary, the device may be soldered into a circuit using a heat sink between the heat source and the body of the diode. A low thermal EMF solder is recommended.

# **SPECIAL NOTE**

Voltage tolerance less than 50% is available upon special request.

Precision Reference Diodes capable of meeting special requirements for standard voltages regardless of required test current, temperature range, or test temperatures are available. Custom requirements of particular devices for specific applications are also available.

# VOLTAGE-CURRENT STABILITY CHARACTERISTICS

For verification of time stability, and for repeatable operation,  $I_{ZT}$  should be maintained with a tolerance of  $\pm 0.1 \, \mu A$  Figure 1 will assist in design where the supply current stability cannot be maintained to better than 0.2  $\mu A$  deviation.



△Iz, CURRENT STABILITY (µA)

# VOLTAGE-TEMPERATURE CHARACTERISTICS

# CHOICE OF OPERATING TEMPERATURE

The stability certification is performed at 65 °C  $\pm$ 0.02 °C. The operating temperature can be selected within the operating temperature range. If the desired temperature is not 65 °C, the precise voltage of the device will be different but the certified stability will still be observed.

# VOLTAGE TEMPERATURE STABILITY

For verification of time stability and/or repeatable operation, the ambient temperature should be controlled to  $\pm 0.1\,^{\circ}\text{C}$ .

Figure 2 will assist in designs where ambient temperature cannot be controlled to better than 0.2°C deviation.

# FIGURE 2 – TYPICAL VOLTAGE CHANGE, IN µV AND PPM, DUE TO AMBIENT TEMPERATURE STABILITY



△TA, AMBIENT TEMPERATURE STABILITY (°C)

# MOTOROLA SEMICONDUCTOR TECHNICAL DATA

# MZ2360 MZ2361

# FORWARD REFERENCE DIODES STABISTORS



### NOTES:

- 1. ALL RULES AND NOTES ASSOCIATED WITH JEDEC DO-41 OUTLINE SHALL APPLY.
- 2. POLARITY DENOTED BY CATHODE BAND.
- 3. LEAD DIAMETER NOT CONTROLLED WITHIN "F" DIMENSION.

	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	4 07	5 20	0.160	0 205
В	2 04	2 71	0 080	0.107
٥	0.71	0.86	0.028	0.034
F		1.27	_	0 050
K	27.94		1.100	_

# CASE 59-03 DO-41

	MILLIM	ETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	5.97	6.60	0 235	0 260	
В	2.79	3 05	0 110	0.120	
D	0.76	0.86	0.030	0.034	
K	27 94	_	1.100	_	

CASE 59-04 DO-41

# CONSTANT-VOLTAGE REFERENCE DIODES FOR LOW-VOLTAGE APPLICATIONS

...high-conductance silicon diodes designed as a stable forward reference source for biasing transistor amplifiers and similar applications.

- Guaranteed Forward Voltage Range
- Temperature Effects Provided

## **MAXIMUM RATINGS**

Rating	Symbol	Value	Unit
DC Power Dissipation  @ T _L = 30 °C ± 3 °C, Lead Length = 3/8"	PD	1.5	W
Operating and Storage Junction Temperature Range	T _J , T _{Stg}	- 65 to + 175	°C

#### **MECHANICAL CHARACTERISTICS**

CASE: Surmetic

**DIMENSIONS:** See outline drawing

FINISH: All external surfaces are corrosion resistant and leads are

readily solderable and weldable

POLARITY: Cathode indicated by polarity band. Cathode negative for

forward reference application

MOUNTING POSITIONS: Any

# **ELECTRICAL CHARACTERISTICS** ( $T_A = 25^{\circ}C$ unless otherwise noted)

	Forward Reference Voltage (1) @		1	Leakage it (Max) @		
Type Number	V _F Volts Min/Max	l _F mA	l _R μA	V _R Volts	Package	Case
MZ2360 MZ2361	0.63/0.71 1.24/1.38	10 10	10 10	5.0 5.0	Surmetic Surmetic	59-04 59-03

 Motorola guarantees the forward reference voltage when measured at 90 seconds while maintaining the lead temperature (T_I) at 30°C ±1°C, 3/8" from the diode body.

# TYPICAL FORWARD VOLTAGE CHARACTERISTICS





# TYPICAL TEMPERATURE COEFICIENT





# MOTOROLA SEMICONDUCTOR TECHNICAL DATA

# P6KE6.8, A thru P6KE200, A

#### ZENER OVERVOLTAGE TRANSIENT SUPPRESSOR

The P6KE6 8 series is designed to protect voltage sensitive components from high voltage, high energy transients. They have excellent clamping capability, high surge capability, low zener impedance and fast response time. The P6KE6 8 series is supplied in Motorola's exclusive, cost-effective, highly reliable surmetic axial leaded package and is ideally-suited for use in communication systems, numerical controls, process controls, medical equipment, business machines, power supplies and many other industrial/consumer applications.

#### **SPECIFICATION FEATURES**

- Standard Zener Voltage Range 6 8 to 200 V
- Peak Power 600 Watts @ 1 0 ms
- Maximum Clamp Voltage @ Peak Pulse Current
- Low Leakage < 5 0 μA above 10 V</li>
- Maximum Temperature Coefficient Specified

# ZENER OVERVOLTAGE TRANSIENT SUPPRESSORS

6.8-200 VOLT 600 WATT PEAK POWER 5 0 WATTS STEADY STATE



#### **MAXIMUM RATINGS**

Rating	Symbol	Value	Units
Peak Power Dissipation (1) @ T _L ≤ 25 ^o C	PPK	600	Watts
Steady State Power Dissipation  @ T _L ≤ 75 ^o C, Lead Length = 3/8"  Derated above T _L = 75 ^o C	PD	5 0 50	Watts mW/ ^O C
Forward Surge Current (2) @ T _A = 25 ^o C	IFSM	100	Amps
Operating and Storage Temperature Range	T _J , T _{stg}	-65 to +175	°C

Lead Temperature not less than 1/16" from the case for 10 seconds 230°C

#### MECHANICAL CHARACTERISTICS

CASE: Void-free, transfer-molded, thermosetting plastic

FINISH: All external surfaces are corrosion resistant and leads are readily solderable and weldable

POLARITY. Cathode indicated by polarity band. When operated in zener mode, will be positive with respect to anode.

MOUNTING POSITION: Any

NOTES 1 Non-Repetitive Current Pulse per Figure 4 and Derated above  $T_A = 25^{\circ}\text{C}$  per Figure 2

2 1/2 Square Wave (or equivalent), PW = 8 3 ms, Duty Cycle = 4 Pulses per Minute maximum



NOTE
1 LEAD DIAMETER & FINISH NOT
CONTROLLED WITHIN DIM "F"

STYLE 1. PIN 1. ANODE 2. CATHODE

	MILLIN	METERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	8 38	8 89	0.330	0 350	
В	3 30	3.68	0 130	0 145	
D	0 94	1.09	0.037	0 043	
F	_	1 27		0.050	
K	25.40	31 75	1 000	1.250	

CASE 17-02 PLASTIC

# P6KE6.8, A thru P6KE200, A

**ELECTRICAL CHARACTERISTIC** ( $T_A = 25^{\circ}C$  unless otherwise noted)  $V_F = 3.5 \text{ V max}$ ,  $I_F^{\bullet \bullet} = 50 \text{ A}$  for all types

LEEGTHIO			n Voltage			i wise noted, v p	3.5 V IIIax, 1p	Adamman Banana	Na
		VBR	-	@ I _T	Working Peak Reverse Voltage	Maximum Reverse Leakage	Maximum Reverse Surge	Maximum Reverse Voltage @ IRSM	Maximum Temperature
		(Volts)	)	(mA)	VRWM	@ V _{RWM}	Current IRSM†	(Clamping Voltage)	Coefficient of VBR
Device	Min	Nom	Max		(Volts)	I _R (μA)	(Amps)	V _{RSM} (Volts)	(%/°C)
P6KE6 8	6 12	68	7 48	10	5.50	1000	56	10.8	0.057
P6KE6 8A	6.45	68	7.14	10	5 80	1000	57	10.5	0 057
P6KE7 5	6.75	75	8 25	10	6.05	500	51	11.7	0 061
P6KE7 5A	7 13	75	7 88	10	6.40	500	53	11.3	0 061
P6KE8 2	7.38	82	9.02	10	6.63	200	48	12 5	0.065
P6KE8 2A	7.79	82	8.61	10	7 02	200	50	12 1	0 065
P6KE9 1	8.19	91	10 0	10	7 37	50	44	13.8	0 068
P6KE9 1A	8.65	9.1	9 55	10	7 78	50	45	13.4	0 068
P6KE10	9 00	10	11.0	10	8.10	10	40	15.0	0.073
P6KE10A	9.50	10	10 5	10	8 55	10	41	14.5	0 073
P6KE11	9 90	11	12 1	10	8.92	50	37	16 2	0 075
P6KE11A	10 5	11	116	10	9 40	5 0	38	15 6	0 075
P6KE12	10.8	12	13 2	10	9 72	5 0	35	17.3	0.078
P6KE12A	11.4	12	126	10	10 2	50	36	16 7	0 078
P6KE13	11.7	13	14 3	10	10 5	50	32	19 0	0 081
P6KE13A	12 4	13	13 7	10	11 1	5.0	33	18 2	0 081
P6KE15	13 5	15	16.5	10	12.1	50	27	22.0	0 084
P6KE15A	14 3	15	15 8	10	12.8	50	28 26	21 2	0 084
P6KE16	14 4	16	176	10	12 9	50	26 27	23 5	0 086
P6KE16A	15 2	16	168	10	13 6	5 0	l	22 5	0 086
P6KE18	16.2	18	198	1.0	14.5	50	23	26 5	0 088
P6KE18A	17 1	18	18.9	10	15 3	50	24 21	25 2	0 088
P6KE20	18 0	20	22 0	10	16 2	50	22	29 1 27 7	0 090 0 090
P6KE2OA	19.0	20	21 0	10	17 1	5 0	l	1	l
P6KE22	198	22	24 2	10	17.8	5 0	19	31 9	0 092
P6KE22A	20 9	22	23 1	10	18 8	50	20 17	30 6 34 7	0 092 0 094
P6KE24	21 6	24 24	26 4 25 2	10	19 4	5 0 5 0	17	33 2	0 094
P6KE24A	22 8			10	20 5		15	39 1	0 094
P6KE27	24 3	27	29 7	10	21 8	50	16	39 I 37 5	0 096
P6KE27A	25 7 27 0	27 30	28 4 33 0	1 0 1 0	23 1 24 3	5 0 5 0	14	43 5	0 097
P6KE30 P6KE30A	28.5	30	31 5	10	24 3 25 6	50	14 4	41 4	0 097
1	29.7	1	36.3		26 8	50	12 6	47 7	0 098
P6KE33 P6KE33A	31 4	33 33	36 3	1 0 1 0	28 2	50	13 2	45 7	0 098
P6KE36	32 4	36	39 6	10	29 1	50	11 6	52 0	0 099
P6KE36A	34.2	36	37 8	10	30 8	50	12	49 9	0 099
P6KE39	35 1	39	42 9	10	31 6	50	10 6	56 4	0 100
P6KE39A	37 1	39	410	10	33 3	50	11 2	53 9	0 100
P6KE43	38 7	43	47 3	10	34 8	50	96	61 9	0 101
P6KE43A	40 9	43	45 2	10	36 8	50	10 1	59 3	0 101
P6KE47	42 3	47	51 7	10	38 1	50	8 9	67 8	0 101
P6KE47A	44 7	47	49 4	10	40.2	50	93	64.8	0 101
P6KE51	45.9	51	56 1	10	41 3	50	8 2	73 5	0 102
P6KE51A	48 5	51	53.6	10	43 6	50	8 6	70 1	0 102
P6KE56	50.4	56	61 6	10	45 4	5 0	74	80 5	0.103
P6KE56A	53 2	56	58 8	1.0	47.8	5.0	78	77.0	0 103
P6KE62	55 8	62	68.2	1.0	50 2	5.0	68	89 0	0 104
P6KE62A	58 9	62	65.1	10	53 0	5.0	7 1	85 0	0 104
P6KE68	61.2	68	74.8	10	55.1	50	6 1	98.0	0 104
P6KE68A	64 6	68	71.4	1.0	58.1	50	6 5	92.0	0.104
P6KE75	67.5	75	82.5	10	60.7	50	5 5	108 0	0 105
P6KE75A	71 3	75	78.8	1.0	64.1	5.0	5 8	103 0	0.105
P6KE82	73.8	82	90.2	1.0	66.4	5.0	5 1	118.0	0 105
P6KE82A	77.9	82	86.1	1.0	70.1	5.0	5 3	1130	0.105
P6KE91	81.9	91	100.0	1.0	73.7	5.0	4 8	131.0	0.106
P6KE91A	86.5	91	95.50	1.0	77.8	5.0	4 8	125.0	0 106

#### **ELECTRICAL CHARACTERISTICS (continued)**

	Breakdown Voltage			ge	Working Peak	Maximum	Maximum	Maximum Reverse	Maximum
	V _{BR} (Volts)		@ I _T (mA)	Reverse Voltage	Reverse Leakage @ V _{RWM}	Reverse Surge Current I _{RSM} †	Voltage @ IRSM (Clamping Voltage)	Temperature Coefficient of V _{BR}	
Device	Mın	Nom	Max		(Volts)	IR (μA)	(Amps)	V _{RSM} (Volts)	(%/°C)
P6KE100	90.0	100	1100	1 0	81 0	5 0	4 2	144.0	0.106
P6KE100A	95 0	100	105 0	1.0	85.5	5 0	4 4	137 0	0 106
P6KE110	99 0	110	121 0	10	89.2	5 0	3 8	158 0	0 107
P6KE110A	105.0	110	116,0	10	94.0	5 0	4 0	152 0	0 107
P6KE120	108 0	120	132 0	10	97 2	50	3 5	173 0	0 107
P6KE120A	114.0	120	126 0	10	102.0	5 0	3 6	165 0	0 107
P6KE130	1170	130	143 0	10	105 0	50	3 2	187 0	0 107
P6KE130A	124 0	130	137 0	10	111.0	50	3 3	179 0	0 107
P6KE150	135 0	150	165 0	10	121 0	5 0	2 8	215 0	0 108
P6KE150A	143 0	150	158 0	10	128 0	5 0	2 9	207 0	0 108
P6KE160	144 0	160	176 0	10	130 0	5 0	2 6	230 0	0 108
P6KE160A	152 0	160	168 0	10	136 0	50	2 7	219 0	0 108
P6KE170	153.0	170	187 0	10	138 0	5 0	2 5	244 0	0 108
P6KE170A	162.0	170	179 0	10	145 0	5 0	2 6	234 0	0 108
P6KE180	162.0	180	198 0	10	146 0	50	2 3	258 0	0 108
P6KE180A	171 0	180	189 0	10	154 0	5 <b>0</b>	2 4	246 0	0 108
P6KE200	180 0	200	220 0	10	162 0	50	2 1	287 0	0 108
P6KE200A	190 0	200	210 0	10	171 0	5 0	2 2	274 0	0 108

[†]Surge Current Waveform per Figure 4 and Derate per Figure 2

^{*} $V_{BR}$  measured after  $I_T$  applied for 300  $\mu$ s,  $I_T$  = Square Wave Pulse or equivalent.









^{**1/2} Square or Equivalent Sine Wave, PW = 8 3 ms, Duty Cycle = 4 Pulses per Minute maximum

# P6KE6.8, A thru P6KE200, A



# **APPLICATION NOTES**

#### SPECIAL DEVICES

Matched sets and back-to-back configurations for bidirectional applications can be ordered upon special request. Contact your nearest Motorola representative.

For a bidirectional device use a C or CA suffix (i.e. P6KE10CA). Electrical characteristics apply in both directions except for VF. Available for all P/N's except P6KE6.8,A.

#### **RESPONSE TIME**

In most applications, the transient suppressor device is placed in parallel with the equipment or component to be protected. In this situation, there is a time delay associated with the capacitance of the device and an overshoot condition associated with the inductance of the device and the inductance of the connection method.

V V_{IN} (Transient)

V_{ID} = Time Delay Due to Capacitive Affect

The capactive affect is of minor importance in the parallel protection scheme because it only produces a time delay in the transition from the operating voltage to the clamp voltage as shown in Figure A.

The inductive affects in the device are due to actual turn-on time (time required for the device to go from zero current to full current) and lead inductance. This inductive affect produces an overshoot in the voltage across the equipment or component being protected as shown in Figure B. Minimizing this overshoot is very important in the application, since the main purpose for adding a transient suppressor is to clamp voltage spikes. The P6KE6.8 series has very good response time, typically < 1.0 ns and negligible inductance. However, external inductive affects could produce unacceptable overshoot. Proper circuit layout, minimum lead lengths and placing the suppressor device as close as possible to the equipment or components to be protected will minimize this overshoot.

Some input impedance represented by  $Z_{1\Pi}$  is essential to prevent overstress of the protection device. This impedance should be as high as possible, without restricting the circuit operation.



FIGURE B

# **MOTOROLA** SEMICONDUCTOR **TECHNICAL DATA**

# **Zener Overvoltage Transient Suppressor**

The SA5.0 series is designed to protect voltage sensitive components from high voltage, high energy transients. They have excellent clamping capability, high surge capability, low zener impedance and fast response time. The SA5.0 series is supplied in Motorola's exclusive, cost-effective, highly reliable surmetic axial leaded package and is ideally-suited for use in communication systems, numerical controls, process controls, medical equipment, business machines, power supplies and many other industrial/consumer applications.

# **Specification Features**

- Standard Zener Voltage Range 5 to 170 V
- Peak Power 500 Watts @ 1 ms
- Maximum Clamp Voltage @ Peak Pulse Current
- Low Leakage < 1 μA Above 8.5 Volts</li>
- Maximum Temperature Coefficient Specified

# **SA5.0** thru **SA170A**

MOSORB ZENER OVERVOLTAGE TRANSIENT SUPPRESSORS 5-170 VOLT **500 WATT PEAK POWER** 3 WATT STEADY STATE



#### **MAXIMUM RATINGS**

Rating	Symbol	Value	Units	
Peak Power Dissipation (1) @ T _L ≤ 25°C	РРК	500	Watts	
Steady State Power Dissipation $\textcircled{0}$ T _L $\leq$ 75°C, Lead Length = 3/8" Derated above T _L = 75°C	PD	3	Watts mW/°C	
Forward Surge Current (2) @ T _A = 25°C	IFSM	70	Amps	
Operating and Storage Temperature Range	T _J , T _{stg}	-55 to +175	°C	

Lead Temperature not less than 1/16" from the case for 10 seconds. 203°C

# **MECHANICAL CHARACTERISTICS**

CASE: Void-free, transfer-molded, thermosetting plastic

FINISH: All external surfaces are corrosion resistant and leads are readily solderable and weldable

POLARITY: Cathode indicated by polarity band. When operated in zener mode, will be positive with respect to anode

**MOUNTING POSITION: Any** 

NOTES 1 Nonrepetitive Current Pulse per Figure 4 and Derated above T_A = 25°C per Figure 2 2 1/2 Square Wave (or equivalent), PW = 83 ms, Duty Cycle = 4 Pulses per Minute maximum

	Break	down V	oltage					
	V _{BR}		@ I _T (mA)	Working Peak Reverse Voltage VRWM*** (Volts)	Maximum Reverse Leakage @ VRWM I _R (μA)	Maximum Reverse Surge Current I _{RSM} † (Amps)	Maximum Reverse Voltage @ IRSM (Clamping Voltage) VRSM (Volts)	Maximum Voltage Temperature Variation of VBR mV/°C
Device	(Volts) Min Max							
SA5.0	6.4	7.3	10	5	600	52	9.6	5
SA5.0A	6.4	7	10	5	600	54.3	9.2	5
SA6.0	6.67	8.15	10	6	600	43.9	11 4	5
SA6.0A	6.67	7.37	10	6	600	48 5	10.3	5
SA6.5	7.22	8.82	10	6.5	400	40.7	12.3	5
SA6.5A	7.22	7 98	10	6.5	400	44.7	11.2	5
SA7.0	7.78	9.51	10	7	150	37 8	13.3	6
SA7.0A	7.78	8.6	10	7	150	41.7	12	6
SA7.5	8.33	10.2	1	7.5	50	35	14.3	7
SA7.5A	8.33	9.21	1	7.5	50	38.8	12.9	7
SA8.0	8.89	10.9	1	8	25	33 3	15	7
SA8.0A	8.89	9.3	1	8	25	36 7	13.6	7
SA8.5	9.44	11.5	1	8.5	5	31 4	15.9	8
SA8.5A	9.44	10.4	1	8.5	5	34 7	14 4	8
SA9.0	10	12.2	1	9	1	29.5	16.9	9
SA9.0A	10	11.1	1	9	1	32.5	15.4	9
SA10	11.1	13.6	1	10	1	26.6	18.8	10
SA10A	11.1	12.3	1	10	1	29.4	17	10
SA11	12.2	14.9	1	11	1	24.9	20.1	11
SA11A	12.2	13.5	1	11	1	27 4	18.2	11
SA12	13.3	163	1	12	1	22.7	22	12
SA12A	13.3	14.7	1	12	1	25 1	19.9	12
SA13	14.4	17.6	1	13	1	21	23.8	13
SA13A	14.4	15.9	1	13	1	23.2	21.5	13
SA14	15.6	19.1	1	14	1	19.4	25 8	14
SA14A	15.6	17.2	1	14	1	21.5	23 2	14
SA15	16.7	20 4	1	15	1	18 8	26.9	16
SA15A	16.7	18.5	1	15	1	20 6	24.4	16
SA16	17 8	21.8	1	16	1	17.6	28.8	19
SA16A	17 8	19.7	1	16	1	19.2	26	17
SA17	18.9	23 1	1	17	1	16 4	30.5	20
SA17A	18.9	20.9	1	17	1	18 1	27.6	19
SA18	20	24.4	1	18	1	15 5	32.2	21
SA18A	20	22.1	1	18	1	17.2	29.2	20
SA20	22.2	27.1	1	20	1	13 9	35.8	25
SA20A	22.2	24.5	1	20	1	15 4	32.4	23
SA22	24.4	29.8	1	22	1 ,	12.7	39 4	28
SA22A	24.4	26.9	1	22	1	14.1	35 5	25
SA24	26.7	32.6	1	24	1	11.6	43	31
SA24A	26.7	29 5	1	24	1	12 8	38.9	28
SA26	28 9	35.3	1	26	1	10.7	46 6	31
SA26A	28.9	31.9	1	26	1	11.9	42 1	30
SA28	31 1	38	1	28	1	9.9	50	35
SA28A	31 1	34.4	1	28	1	11	45 4	31
SA30	33.3	40.7	1	30	1	9.3	53.5	39
SA30A	33.3	36.8	1	30	1	10 3	48.4	36
SA33	36.7	44.9	1	33	1	8.5	59 50.0	42
SA33A	36.7	40.6	1	33	11	9 4	53 3	39
SA36	40	48.9	1	36	1	78	64.3	46
SA36A	40	44.2	1	36	1	8.6	58.1	41
SA40	44.4	54.3	1	40	1	7	71.4	51
SA40A	44.4	49.1	1	40	1	7 8	64.5	46

(continued)

**ELECTRICAL CHARACTERISTICS** ( $T_A = 25^{\circ}C$  unless otherwise noted)  $V_F^* = 3.5 \text{ V Max}$ ,  $I_F^{**} = 35 \text{ A}$ 

	Breakdown Voltage							
	V _{BR} (Volts)		@ l _T	Working Peak Reverse Voltage VRWM***	Maximum Reverse Leakage @ VRWM	Maximum Reverse Surge Current IRSM†	Maximum Reverse Voltage @ IRSM (Clamping Voltage)	Maximum Voltage Temperature Variation
Device	Min	Max	(mA)	(Volts)	IR (μA)	(Amps)	V _{RSM} (Volts)	of VBR mV/°C
SA43	47.8	58.4	1	43	1	6.5	76.7	55
SA43A	47.8	52.8	1	43	1	7.2	69.4	50
SA45	50	61.1	1	45	1	6.2	80.3	58
SA45A	50	55.3	1	45	1	6.9	72.7	52
SA48	53.3	65.1	1	48	1	5.8	85.5	63
SA48A	53.3	58.9	1	48	1	6.5	77 4	56
SA51	56.7	69.3	1	51	1	5.5	91.1	66
SA51A	56.7	62.7	1	51	1	6.1	82.4	61
SA54	60	73.3	1	54	1	5.2	96.3	71
SA54A	60	66.3	1	54	1	5.7	87.1	65
SA58	64.4	78.7	1	58	1	4.9	103	78
SA58A	64.4	71.2	1	58	1	5.3	93.6	70
SA60	66.7	81.5	1	60	1	4.7	107	80
SA60A	66.7	73.7	1	60	1	5.2	96 8	71
SA64	71.1	86.9	1	64	1	4.4	114	86
SA64A	71.1	78.6	1	64	1	4.9	103	76
SA70	77.8	95.1	1	70	1	4	125	94
SA70A	77.8	86	1	70	1	4 4	113	85
SA75	83.3	102	1	75	1	3 7	134	101
SA75A	83.3	92.1	1	75	1	4.1	121	91
SA78	86.7	106	1	78	1	3 6	139	105
SA78A	86.7	95.8	1	78	1	4	126	95
SA85	94.4	115	1	85	1	3.3	151	114
SA85A	94.4	104	1	85	1	3.6	137	103
SA90	100	122	1	90	1	3.1	160	121
SA90A	100	111	1	90	1	3 4	146	110
SA100	111	136	1	100	1	2.8	179	135
SA100A	111	123	1	100	1	3.1	162	123
SA110	122	149	1	110	1	2.6	196	148
SA110A	122	135	1	110	1	2.8	177	133
SA120	133	163	1	120	1	2.3	214	162
SA120A	133	147	1	120	1	2	193	146
SA130	144	176	1	130	1	2 2	231	175
SA130A	144	159	1	130	1	2.4	209	158
SA150	167	204	1	150	1	19	268	203
SA150A	167	185	1	150	1	2.1	243	184
SA160	178	218	1	160	1	1.7	287	217
SA160A	178	197	1	160	1	1.9	259	196
SA170	189	231	1	170	1	1.6	304	230
SA170A	189	209	1	170	1	18	275	208

VF applies to non-C suffix devices only. C suffix denotes standard back-to-back versions. Test both polarities.
 1/2 square or equivalent sine wave PW = 8 3 ms, duty cycle = 4 pulses per minute maximum.
 MOSORB transient suppressors are normally selected according to the maximum reverse stand-off voltage (VRWM), which should be equal to or greater than the do or continuous peak operating voltage level.
 Surge current waveform per Figure 4 and derate per Figure 2.

To order clipper bidirectional device, add a "C" suffix to device title; i.e. SA7.5C or SA7.5CA.



Figure 1. Pulse Rating Curve



Figure 2. Pulse Derating Curve



Figure 3. Capacitance versus Breakdown Voltage



Figure 4. Pulse Waveform



Figure 5. Steady State Power Derating



Figure 6. Dynamic Impedance

## **APPLICATION NOTES**

#### **SPECIAL DEVICES**

Matched sets and back-to-back configurations for bidirectional applications can be ordered upon special request. Contact your nearest Motorola representative.

For a bidirectional device use a C or CA suffix. Electrical characteristics apply in both directions except for V_F.

#### RESPONSE TIME

In most applications, the transient suppressor device is placed in parallel with the equipment or component to be protected. In this situation, there is a time delay associated with the capacitance of the device and an overshoot condition associated with the inductance of the device and the inductance of the connection method. The capacitive affect is of minor importance in the parallel protection scheme because it only produces a time delay in the transition from the operating voltage to the clamp voltage as shown in Figure 7.

The inductive affects in the device are due to actual turn-on time (time required for the device to go from zero current to full current) and lead inductance. This inductive affect produces an overshoot in the voltage across the equipment or component being protected as shown in Figure 8. Minimizing this overshoot is very important in the application, since the main purpose for adding a transient suppressor is to clamp voltage spikes. The SA5.0 series has very good response time, typically < 1 ns and negligible inductance. However, external inductive affects could produce unacceptable overshoot. Proper circuit layout, minimum lead lengths and placing the suppressor device as close as possible to the equipment or components to be protected will minimize this overshoot.

Some input impedance represented by  $Z_{in}$  is essential to prevent overstress of the protection device. This impedance should be as high as possible, without restricting the circuit operation.

#### TYPICAL PROTECTION CIRCUIT



Figure 7



Figure 8

# **NOTES**

- 1 Index and Cross-Reference
- 2 Selector Guides
- 3 Rectifier Data Sheets
- 4 Zener Diode Data Sheets



# **Literature Distribution Centers:**

USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. EUROPE: Motorola Ltd.; European Literature Center; 88 Tanners Drive, Blakelands Milton Keynes, MK145BP, England. ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; P.O. Box 80300; Cheung Sha Wan Post Office; Kowloon Hong Kong.