Algèbre de Boole

Repères historiques

Georges Boole (1815–1864) était un mathématicien britannique qui a, entre autre, défini un représentation des opérations logiques à l'aide d'opérations mathématiques.

On appelle cette modélisation **l'algèbre de Boole** et elle est à la base du fonctionnement des ordinateurs et plus généralement de tous les systèmes électroniques.

Tu sais compter jusqu'à 1?

L'algèbre de Boole est basée sur un ensemble de 2 valeurs $B = \{0;1\}$ sur lequel on définit 2 opérations **et** et **ou**. On appelle **booléens** les élèments de B.

Puisqu'il y a peu de cas possibles, on définit ces opérations à l'aide des tableaux de ci-contre, qu'on appelle table de vérité.

а	b	a et b	а	b	a ou b
0	0	0	0	0	0
0	1	0	0	1	1
1	0	0	1	0	1
1	1	1	1	1	1

Le 0 et le 1 servent généralement à représenter une proposition fausse ou vraie. Ainsi, le **et** peut être considéré comme étant "les deux propositions sont vraies" et le **ou** comme "au moins une des deux propositions est vraie". On remarque que *a* ou *b* est vraie même si les deux sont vraies. On dit que c'est le **ou inclusif**.

On définit également une transformation **non** qui inverse la valeur de l'élément.

а	non a
0	1
1	0

Il existe de nombreuses notations pour B et les opérations.

	0	1	a et b	a ou b	non a
logique	工	Т	$a \wedge b$	$a \lor b$	$\neg a$
informatique	False	True	a & b	a b	! a
algébrique	0	1	a.b	a+b	\overline{b}

Propriétés

Toutes les égalités suivantes sont vraies pour tous bouléens a, b et c.

• Complémentarité:

$$a \text{ ou (non } a) = 1$$

$$a$$
 et (non a) = 0

non (non
$$a$$
) = a

• Commutativité:

$$a \text{ ou } b = b \text{ ou } a$$

$$a$$
 et $b = b$ et a

• Associativité:

$$(a \text{ ou } b) \text{ ou } c = a \text{ ou } (b \text{ ou } c) = a \text{ ou } b \text{ ou } c$$

 $(a \text{ et } b) \text{ et } c = a \text{ et } (b \text{ et } c) = a \text{ et } b \text{ et } c$

• Distributivité:

$$a \operatorname{et} (b \operatorname{ou} c) = (a \operatorname{et} b) \operatorname{ou} (a \operatorname{et} c)$$
 $a \operatorname{ou} (b \operatorname{et} c) = (a \operatorname{ou} b) \operatorname{et} (a \operatorname{ou} c)$

Démonstrations

L'avantage de n'avoir que 2 valeurs, c'est qu'il est facile de vérifier qu'une propriété est vraie en testant toutes les valeurs possibles.

Exercice 1 : Démontrer les deux égalités de la distributivité à l'aide des tables de vérité

<u>suiv</u>	<u> /ant</u>	<u>es :</u>		
a	b	c	b ou c	a et (b ou c)
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		

 $1 \mid 1 \mid 0$

a	b	С	a et b	a et c	(a et b) ou (a et c)
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

a	b	С	b et c	a ou (b et c)
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

a	b	С	a ou b	a ou c	(a ou b) et (a ou c)
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

Exercice 2 : Le mathématicien britannique Auguste de Morgan (1806–1871) a également contribué à développer l'algèbre de Boole à l'aide de son théorème :

non
$$(a \text{ ou } b) = (\text{non } a) \text{ et } (\text{non } b)$$

non
$$(a \text{ et } b) = (\text{non } a) \text{ ou } (\text{non } b)$$

Démontrer ce théorème à l'aide des tables ci-dessous :

	a	b	a ou b	non (a ou b)
	0	0		
İ	0	1		
	1	0		
İ	1	1		

a	b	non a	non b	(non a) et (non b)
0	0			
0	1			
1	0			
1	1			

a	b	a et b	non (a et b)
0	0		
0	1		
1	0		
1	1		

a	b	non a	non b	(non a) ou (non b)
0	0			
0	1			
1	0			
1	1			

Une nouvelle opération

En français, quand on dit "fromage ou dessert", c'est l'un ou l'autre. Ce qui n'est pas le cas du **ou** utilisé dans les booléens.

On appelle **ou exclusif** ou **xor** l'opération définie par la table ci-contre.

a	b	a xor b
0	0	0
0	1	1
1	0	1
1	1	0

Exercice 3 : Donner une expression utilisant **ou**, **et** et **non** et équivalente à *a* xor *b*.

EXERCICE 4: Soit en simplifiant les expressions, soit en utilisant les tables de vérités, simplifier les expressions suivantes:

- 1) *a* ou (*a* et *b*)
- 2) *a* et (*a* ou *b*)
- 3) *a* ou ((non *a*) et *b*)
- 4) (*a* ou *b*) et ((non *a*) ou *b*)
- 5) (*a* xor *b*) ou (*a* et *b*)
- 6) (*a* xor *b*) et (*a* ou (non *b*))

Pour aller plus loin

L'algèbre de Boole sert pour définir les bases de la logique. Pour cela, il faut définir l'implication $a \Rightarrow b$ qui signifie que si a est vraie, alors b l'est aussi. La table de vérité est ci-contre.

On peut définir l'implication par l'expression (non *a*) ou *b*.

а	b	$a \Rightarrow b$
0	0	1
0	1	1
1	0	0
1	1	1

EXERCICE 5: À l'aide de tables de vérité ou en simplifiant les expressions, démontrer que $a \Rightarrow b$ et (non b) \Rightarrow (non a).

Exercice 6: Les opérateurs et, ou, xor et \Rightarrow ne sont pas les seuls opérateurs à 2 paramètres que l'on peut définir. En fait il y en a 16.

- 1) Justifier pourquoi il n'y a que 16 opérateurs logiques à 2 paramètres. Vous pourrez regarder les tableaux de valeurs des opérateurs de base.
- 2) Compléter la table suivante en indiquant tous les opérateurs et en identifiant les opérateurs connus et en essayant d'exprimer les autres à partir des opérateurs connus.

а	b	o_0	o_1	02	03	o_4	05	06	07	08	09	010	011	012	013	014	015
0	0																
0	1																
1	0																
1	1																

EXERCICE 7: David Hilbert (1862–1943) était un mathématicien allemand qui a essayé de déterminer les axiomes de base permettant de définir et démontrer l'ensemble des propriétés mathématiques. Pour la logique il a donné une liste d'axiomes, qui peuvent s'exprimer ainsi:

- $a \Rightarrow (b \Rightarrow a)$
- $((\text{non } b) \Rightarrow (\text{non } a)) \Rightarrow (a \Rightarrow b)$
- $(a \text{ et } b) \Rightarrow a$
- $a \Rightarrow (a \text{ ou } b)$

- $(a \Rightarrow (b \Rightarrow c)) \Rightarrow ((a \Rightarrow b) \Rightarrow (a \Rightarrow c))$
- $a \Rightarrow (b \Rightarrow (a \text{ et } b))$
- $(a \text{ et } b) \Rightarrow b$
- $b \Rightarrow (a \text{ ou } b)$
- $(a \text{ ou } b) \Rightarrow ((a \Rightarrow c) \Rightarrow ((b \Rightarrow c) \Rightarrow c))$

Vérifier que ces axiomes sont vérifiés dans l'algèbre de Boole. C'est-à-dire que leurs tables de vérité ne contiennent que des 1.