А23 — Снижение орбиты МКС

А1^{0.50} Найдите зависимость давления p_h от высоты h. Зависимость может содержать интегральное выражение. Это уравнение называется основной барометрической формулой. *Подсказка*: считайте, что температура и ускорение свободного падения являются функциями h.

Для изменения давления можем записать:

$$dp_h = -g_h \rho_h dh$$
.

С учётом $ho_h = \frac{\mu P}{RT}$, получаем

$$\frac{dp_h}{p_h} = -\frac{g_h \mu}{RT_h} dh,$$

откуда

$$p_h = p_0 \exp\left(-\frac{\mu}{R} \int_0^h \frac{g_h}{T_h} dh\right),$$

где p_0 - давление при h=0.

Ответ:

$$p_h = p_0 \exp\left(-\frac{\mu}{R} \int_0^h \frac{g_h}{T_h} dh\right)$$

A2^{0.30} Получите стандартную барометрическую формулу: зависимость давления от высоты p_h^{sta} , считая, что температура и ускорение свободного падения не зависят от h. Рассчитайте величину $h_0 = \frac{RT}{\mu g_0}$ при T=425 К.

Подставляя в основную барометрическую формулу $g_h = g_0$, $T_h = T$, получаем стандартную барометрическую формулу:

$$p_h^{sta} = p_0 \exp\left(-\frac{h}{h_0}\right), \qquad h_0 = \frac{RT}{\mu g_0} \approx 12.4_{\mathrm{KM}}.$$

Ответ:

$$p_h^{sta} = p_0 \exp\left(-\frac{h}{h_0}\right) h_0 = \frac{RT}{\mu g_0} \approx 12.4$$
km

А3^{0.60} Получите уточнённую барометрическую формулу: зависимость давления от высоты p_h^{imp} , считая, что температура постоянна, а ускорение свободного падения зависит от высоты h. Подсказка: для последнего используйте линейное приближение, считая $z_h = h/R_E \ll 1$.

Далее в решении для удобства используется величина $z_h \equiv \frac{h}{R_E}$.

Ускорение свободного падения задаётся формулой:

$$g_h = \frac{GM_E}{R_E^2(1+z_h)^2} = \frac{g_0}{(1+z_h)^2}.$$

В линейном приближении

$$g_h \approx g_0(1-2z_h).$$

С учётом этого получаем

$$p_h^{imp} = p_0 \exp\left(-rac{\mu}{RT} \int\limits_0^h g_0(1-2z_h)dh
ight) = p_0 \exp\left(-rac{h(1-z_h)}{h_0}
ight).$$

Ответ:

$$p_h^{imp} = p_0 \exp\left(-\frac{h(1-z_h)}{h_0}\right)$$

 ${\bf A4^{0.40}}$ Рассчитайте отношение значений давлений, вычисленных по стандартной и по уточнённой барометрическим формулам при $h=4.0\times10^5$ м. Далее используйте уточнённую формулу.

Найдём отношение полученных барометрических формул:

$$\frac{p_h^{imp}}{p_h^{sta}} = \frac{\exp\left(-\frac{h(1-z_h)}{h_0}\right)}{\exp\left(-\frac{h}{h_0}\right)} = e^{\frac{h^2}{h_0 R_E}}.$$

Для $h=4.0 imes 10^5 ext{м}$ получим

$$\frac{p_h^{imp}}{p_h^{sta}} \approx 7.54.$$

Отношение получилось значительно большим единицы, что оправдывает использование улучшенной формулы.

Ответ:

$$\frac{p_h^{imp}}{p_h^{sta}} = e^{\frac{h^2}{h_0 R_E}} \approx 7.54$$

А5 $^{0.20}$ Найдите плотность воздуха ho_h и концентрацию нейтральных молекул воздуха n_h на высоте h, используя линейное приближение.

В силу соотношений $ho = \mu P/RT$ и $n =
ho N_A/\mu$ получим

$$\rho_h = \rho_0 \exp\left(-\frac{h(1-z_h)}{h_0}\right), n_h = N_A \frac{\rho_0}{\mu} \exp\left(-\frac{h(1-z_h)}{h_0}\right).$$

Ответ:

$$\rho_h = \rho_0 \exp\left(-\frac{h(1-z_h)}{h_0}\right) n_h = N_A \frac{\rho_0}{\mu} \exp\left(-\frac{h(1-z_h)}{h_0}\right)$$

B1^{0.50} Найдите скорость станции v_h и период обращения τ_h , если станция движется по орбите высотой h.

Центробежная сила компенсируется гравитационной. Запишем второй закон Ньютона:

$$g_h = rac{v_h}{R_E(1+z_h)},$$
 где $g_h = rac{g_0}{(1+z_h)^2}.$

Отсюда получаем искомые величины:

$$v_h = \sqrt{\frac{g_0 R_E}{1 + z_h}}, \tau_h = 2\pi \frac{R_E + h}{v_h} = 2\pi \sqrt{\frac{R_E}{g_0}} (1 + z_h)^{3/2}.$$

Ответ:

$$v_h = \sqrt{\frac{g_0 R_E}{1 + z_h}} \tau_h = 2\pi \sqrt{\frac{R_E}{g_0}} (1 + z_h)^{3/2}$$

Страница 2 из 7 ≈ ∞

 ${f B2^{0.50}}$ Найдите полную энергию E_S станции, двигающейся по круговой орбите радиусом R_E+h .

Полная энергия складывается из кинетической

$$E_K = \frac{M_S \cdot v_h^2}{2}$$

и потенциальной

$$E_P = -M_S g_h R_E (1 + z_h).$$

Подставляя v_h из прошлого пункта получаем выражение для E_S :

$$E_S = E_K + E_P = -\frac{M_S g_0 R_E}{2(1 + z_h)}.$$

Ответ:

$$E_S = -\frac{M_S g_0 R_E}{2(1+z_h)}$$

B3^{1.00} На станцию действует некоторая суммарная тормозящая сила \vec{F}_{drag} . В результате МКС замедляется, и высота её орбиты уменьшается на dh за малое время dt. Запишите закон изменения энергии МКС, считая известным значение F_{drag} .

Работа тормозящей силы F_{drag} за время dt:

$$dA_{drag} = -F_{drag} \cdot v_h \cdot dt.$$

При малом **уменьшении** высоты полёта станции dh изменение полной энергии составит:

$$dE_S = -\frac{M_S g_0}{(1+z_h)^2} dh.$$

Тогда закон изменения энергии запишется в виде:

$$dE_S = dA_{drag}, \frac{M_S g_0}{(1 + z_h)^2} dh = F_{drag} v_h dt.$$

Ответ:

$$\frac{M_S g_0}{2(1+z_h)^2} dh = F_{drag} v_h dt$$

B4^{0.50} Найдите скорость снижения станции u_h . *Подсказка*: скорость снижения зависит от силы трения, от высоты станции и от её массы.

С учетом закона сохранения энергии из прошлого пункта получаем:

$$u_h = \frac{dh}{dt} = \frac{2F_{drag}}{M_S g_0} v_h (1 + z_h)^2 = \frac{2F_{drag}}{M_S} \sqrt{\frac{R_E}{g_0}} (1 + z_h)^{3/2}.$$

Ответ:

$$u_h = \frac{2F_{drag}}{M_S} \sqrt{\frac{R_E}{g_0}} (1 + z_h)^{3/2}$$

B5^{0.50} Найдите изменение высоты H_h станции за один оборот вокруг Земли и полное время T_h , за которое станция упадёт на поверхность Земли с начальной высоты h.Подсказка: используйте соотношения $h_0 \ll h \ll R_E$.

Выражение для H_h получаем, используя выражения для u_h и τ_h :

$$H_h = u_h \tau_h = \frac{4\pi R_E}{M_S g_0} F_{drag} (1 + z_h)^3.$$

Для нахождения T_h запишем:

$$dh = u_h dt = \frac{2F_{drag}}{M_S} \sqrt{\frac{R_E}{g_0}} (1 + z_h)^{3/2} dt,$$

откуда

$$dt = \frac{M_S}{2F_{drag}} \sqrt{\frac{g_0}{R_E}} \frac{dh}{(1+z_h)^{3/2}}, T_h = \frac{M_S}{2F_{drag}} \sqrt{\frac{g_0}{R_E}} \int_0^h \frac{1}{(1+z_h)^{3/2}} dh.$$

Интегрируя, получаем:

$$T_h = \frac{M_S R_E}{F_{drag}} \sqrt{\frac{g_0}{R_E}} \left(1 - \frac{1}{\sqrt{1 + z_h}} \right).$$

С учётом $z_h \ll 1$, можем использовать приближение

$$\frac{1}{\sqrt{1+z_h}}\approx 1-\frac{z_h}{2}.$$

Тогда выражение для T_h принимает вид:

$$T_h = \frac{M_S h}{2 F_{drag}} \sqrt{\frac{g_0}{R_E}}.$$

Ответ:

$$T_h = rac{M_S R_E}{F_{drag}} \sqrt{rac{g_0}{R_E}} \left(1 - rac{1}{\sqrt{1 + z_h}}
ight) pprox rac{M_S h}{2 F_{drag}} \sqrt{rac{g_0}{R_E}}$$

C1^{0.50} Найдите силу сопротивления воздуха F_{air} , скорость уменьшения высоты орбиты u_h^{air} и изменение высоты за один оборот H_h^{air} в этом случае.

Считая, что молекулы до столкновения со станцией покоятся, запишем закон сохранения импульса при столкновении МКС с молекулами общей массой dm:

$$M_s v_h = M_s (v_h + dv_h) + dm \cdot v_h, M_s \cdot dv_h = -dm \cdot v_h.$$

За время dt станция сталкивается с молекулами массой $dm = \rho_h v_h S dt$. Подставим это в полученное ранее выражение:

$$M_S \cdot dv_h = -\rho_h v_h^2 S dt, F_{air} = \left| M_S \frac{dv_h}{dt} \right| = \rho_h v_h^2 S.$$

Подставляя F_{air} в выражения для u_h и H_h , получаем:

$$u_h^{air} = \frac{2\rho_0 S \sqrt{g_0 R_E^3}}{M_S} (1+z_h)^{1/2} \cdot \exp\left(-\frac{h(1-z_h)}{h_0}\right), H_h^{air} = \frac{4\pi S R_E^2}{M_S} \rho_0 \cdot (1+z_h)^2 \cdot \exp\left(-\frac{h(1-z_h)}{h_0}\right).$$

Ответ:

$$F_{air} = \rho_h v_h^2 S u_h^{air} = \frac{2\rho_0 S \sqrt{g_0 R_E^3}}{M_S} (1+z_h)^{1/2} \cdot \exp\left(-\frac{h(1-z_h)}{h_0}\right) H_h^{air} = \frac{4\pi S R_E^2}{M_S} \rho_0 \cdot (1+z_h)^2 \cdot \exp\left(-\frac{h(1-z_h)}{h_0}\right)$$
 Страница 4 из 7

С2^{0.50} Найдите полное время T_h^{air} , за которое станция упадёт на поверхность Земли с начальной высоты h из-за сопротивления атмосферы. *Подсказка*: используйте соотношения $h_0 \ll h \ll R_E$.

Аналогично пункту В5 получаем интегральное выражение для T_h^{air} :

$$T_h^{air} = rac{M_S}{2
ho_0 S \sqrt{g_0 R_E^3}} \int\limits_0^h \left(1 - rac{h}{2R_E}
ight) e^{h/h_0} dh.$$

Интегрирование дает:

$$T_h^{air} = \frac{M_S h_0}{2\rho_0 S \sqrt{g_0 R_E^3}} \left(1 - \frac{h - h_0}{2R_E} \right) \cdot e^{h/h_0}.$$

С учётом всех приближений ответ упрощается:

$$T_h^{air} = \frac{M_S h_0}{2\rho_0 S \sqrt{g_0 R_E^3}} \cdot e^{h/h_0}.$$

Примечание. Приближения можно было использовать уже в интегральной формуле, что существенно упростило бы вычисление интеграла.

Ответ:

$$T_h^{air} = \frac{M_S h_0}{2\rho_0 S \sqrt{g_0 R_E^3}} \left(1 - \frac{h - h_0}{2R_E} \right) \cdot e^{h/h_0} \approx \frac{M_S h_0}{2\rho_0 S \sqrt{g_0 R_E^3}} \cdot e^{h/h_0}$$

 $\mathbf{D1^{0.30}}$ Найдите среднюю (за 24 часа) тормозящую силу F_{ion} , обусловленную столкновениями с этими частицами. Ночью ионизацией молекул можно пренебречь.

Найдите также плотность ионизированных молекул кислорода ρ_{ion} .

Выражение для тормозящей силы со стороны ионов аналогично выражению из пункта С1. Так как станция проводит примерно половину времени с неосвещённой (ночной) стороны Земли, а ночью ионизацией можно пренебречь, выражение для средней силы следующее:

$$F_{ion} = \frac{1}{2} \rho_{ion} \cdot S \cdot v_h^2.$$

Плотность ионов выражается через из концентрацию как

$$\rho_{ion} = \frac{\mu_{ion}}{N_A} \cdot n_{ion},$$

где $\mu_{ion} = \frac{1}{2}\mu_{O_2}$

Ответ:

$$F_{ion} = \frac{1}{2}\rho_{ion}Sv_h^2\rho_{ion} = \frac{\mu_{ion}}{N_A}n_{ion}$$

D2^{0.70} Найдите скорость уменьшения высоты орбиты станции u_h^{ion} , связанную со взаимодействием с ионами атомарного кислорода. Найдите также изменение высоты за один оборот H_h^{ion} в этом случае. *Подсказка*: используйте соотношения $h_0 \ll h \ll R_E$.

Подставляя F_{ion} в выражения для u_h и H_h , получаем:

$$u_h^{ion} = \rho_{ion} \cdot \frac{S\sqrt{g_0 R_E^3}}{M_S} (1+z_h)^{1/2}, H_h^{ion} = u_h^{ion} \tau_h = \frac{2\pi S R_E^2 \rho_{ion}}{M_S} (1+z_h)^2.$$

Ответ:

$$u_h^{ion} = \rho_{ion} \frac{S\sqrt{g_0 R_E^3}}{M_S} (1 + z_h)^{1/2} H_h^{ion} = u_h^{ion} \tau_h = \frac{2\pi S R_E^2 \rho_{ion}}{M_S} (1 + z_h)^2$$

Е1 $^{0.60}$ Оцените величину возникающего в проводящих частях станции тока I_{ind} .

За время dt на станцию попадает dN ионов:

$$dN = n_{ion} \cdot v_h \cdot S \cdot dt$$
.

Возникающий ток:

$$I_{ion} \approx e \frac{dN}{dt} = e \cdot S \cdot n_{ion} \cdot \sqrt{\frac{g_0 R_E}{1 + z_h}}$$

Ответ:

$$I_{ion} \approx e \cdot S \cdot n_{ion} \cdot \sqrt{\frac{g_0 R_E}{1 + z_h}}$$

E2^{0.60} Получите приближённое выражение для тормозящей силы Ампера F_{ind} в направлении, противоположном направлению движению станции.

Пусть ϕ - угол между магнитным полем Земли \vec{B} , направленным вдоль меридианов, и скоростью МКС \vec{v} . Для простоты считайте, что длина станции L равна корню квадратному из её площади S. Кроме того, вместо подсчёта среднего значения $\sin(\phi)$ вы можете аппроксимировать его значением $\sin(\pi/2 - \theta)$. Вы можете использовать дискретное число точек для подсчёта среднего значения.

В каждый момент времени ток I_{ion} направлен перпендикулярно поверхности земли, а значит и вектору магнитного поля. Модуль силы Ампера, действующей на станцию:

$$|F_{amp}| = ILB.$$

Тогда, проектируя силу Ампера на ось, сонаправленную со скоростью станции, получим выражение для силы в момент, когда угол между скоростью станции и магнитным полем равен ϕ :

$$F_{ind}(\phi) = |F_{amp}| \sin \phi = ILB \sin \phi.$$

Используя $\langle \sin \phi \rangle = \sin(\pi/2 - \theta)$, получим:

$$\langle F_{ind}(\phi) \rangle = F_{ind} = ILB\cos\theta = e \cdot S^{3/2} \cdot n_{ion} \cdot B \cdot \cos\theta \cdot \sqrt{\frac{g_0 R_E}{1 + z_b}}.$$

Ответ:

$$F_{ind} = e \cdot S^{3/2} \cdot n_{ion} \cdot B \cdot \cos \theta \cdot \sqrt{\frac{g_0 R_E}{1 + z_h}}$$

E3^{0.80} Найдите скорость снижения станции из-за её взаимодействия с магнитным полем Земли. Найдите также изменение высоты за один оборот H_h^{ind} в этом случае. *Подсказка*: используйте соотношение $h \ll R_E$.

Подставляя F_{ion} в выражения для u_h и H_h , получаем:

$$u_h^{ind} = 2n_{ion} \frac{eBS^{3/2}R_E\cos\theta}{M_S}(1+z_h), H_h^{ind} = \frac{4\pi eB(SR_E)^{3/2}\cos\theta}{M_S\sqrt{g_0}}(1+z_h)^{5/2}.$$

страница 6 из 7 ∞

Ответ:

$$u_h^{ind} = 2n_{ion} \frac{eBS^{3/2}R_E\cos\theta}{M_S}(1+z_h) H_h^{ind} = \frac{4\pi eB(SR_E)^{3/2}\cos\theta}{M_S\sqrt{g_0}}(1+z_h)^{5/2}$$

F1 ^{0.40}	Рассчитай	те необходи	мые величи	ины и запол	тните Табл	ицу 1 в л	исте	ответов.
h, км	T_h^{air} , дней	<i>u_{air}</i> , м/день	<i>u_{ion},</i> м/день	<i>u_{ind}</i> ,м/день	∑, м/день	u_{ISS} , м/день		
350								
375								
400								
410								

Значения столбцов 2-6 считаем по полученным нами ранее формулам, значения столбца 7 оцениваем из графиков, данных в начале задачи.

Ответ:

<i>h</i> , км	T_h^{air} , дней	<i>u_{air},</i> м/день	u_{ion} , м/день	<i>u_{ind}</i> ,м/день	∑,м/день	u _{ISS} , м/день
350	358	171	0.67	1.3	173	~ 170 [в 2008]
375	2688	28.7	0.67	1.3	30.7	_
400	20181	4.9	0.67	1.3	6.9	≤ 100 [в 2021]
410	45205	2.4	0.67	1.3	4.4	≤ 70 [B 2022]

	F2 ^{0.40}	Рассчит	гайте н	еобходимь	іе величины	И	заполните	Таблицу	2	В	листе	ответов.
	h, км	H_h^{air} , M	H_h^{ion} , M	H_h^{ind} , M								
	350											
	375											
	400											
	410											
L												

Ответ:

h, км	H_h^{air} , M	H_h^{ion} , M	H_h^{ind} , M
350	10.6	0.04	0.08
375	1.8	0.04	0.08
400	0.31	0.04	0.08
410	0.15	0.04	0.08

F3^{0.20} МКС обращается по орбите на высотах выше 380 км. Расположите три рассмотренных эффекта торможения станции в порядке убывания их влияния.

На основе значений в таблицах делаем вывод.

Ответ:

- Сопротивление атмосферы
- Сила Ампера
- Столкновения с ионизированными молекулами кислорода