

Docenti (Turno A-L)

Alex Graudenzi: alex.graudenzi@unimib.it

Stefania Bandini: stefania.bandini@unimib.it

Fondamenti dell'Informatica

Corso di Laurea Triennale in Informatica - 1° anno

Anno Accademico 2023/2024

Dip. di Informatica, Sistemistica e Comunicazione | Univ. di Milano-Bicocca

elearning: https://elearning.unimib.it/course/view.php?id=49487

Limitazioni della logica proposizionale

La logica proposizionale parla di **proprietà generali**ma è incapace di parlare di oggetti specifici e delle loro proprietà

Quindi, è anche impossibile sviluppare argomenti logici che dipendono di questi oggetti

Per esempio, non possiamo fare affermazioni esistenziali

Esempio

Uno zio ha un fratello che è un genitore

Esistono mammiferi carnivori e tutti i carnivori sono predatori

La relazione "essere avo di" è transitiva

Siccome Luca è più alto di Andrea,

Andrea non può essere il più alto della classe

Linguaggi predicativi

Vogliamo un linguaggio logico capace di:

- o riferirsi a oggetti, concetti, proprietà e relazioni; e
- fare affermazioni particolari o universali
 potenzialmente con pronomi e aggettivi indefiniti

Per fare ciò, utilizziamo:

- costanti,
- variabili,
- quantificatori

Linguaggi predicativi II

Introdurremo una logica di primo ordine (FOL)

dove le variabili si riferiscono a **individui** (oggetti)

Come quantificatori useremo

∘ esiste (∃)

∘ per ogni (∀)

che fanno riferimento alle variabili

un, alcuni, alcune

ogni, tutti, tutte

Differenza fra predicati VS. funzioni

Nella logica predicativa:

l <u>PREDICATI</u> ritornano un valore di verità:

Sì o no, vero o falso

li indicheremo con prima lettera Maiuscola

Le **FUNZIONI** ritornano **oggetti**

le indicheremo con prima lettera minuscola (così come le costanti)

Esempio:

```
predicato: Genitore_di(x,y) (forma prefissa)

Genitore_di(paolo,michela) = VERO \leftrightarrow se\ Paolo\ e\ genitore\ di\ Michela

funzione: matricola_di(x)

matricola_di(alex) = 20203
```

Relazione fra predicati e funzioni

```
Predicato (binario) Data_di_nascita(x,y)

restituisce un valore di verità se la data di nascita di x è y
```

```
Funzione (unaria) data_di_nascita(x) 
restituisce un oggetto, un nome
```

Possiamo mettere in relazione i predicati con le funzioni attraverso il predicato uguaglianza =

```
\forall x. \forall y (Data\_di\_nascita(x,y) \longleftrightarrow data\_di\_nascita(x) = y)
\forall x. \forall y (Data\_di\_nascita(x,y) \longleftrightarrow = (data\_di\_nascita(x), y))
```

Simboli

Il linguaggio della logica dei predicati è definito da insiemi potenzialmente infiniti di:

- \circ variabili $\boldsymbol{\mathcal{V}} = x_1, x_2, \ldots, y_1, \ldots$
- \circ simboli di costanti $\boldsymbol{\mathcal{C}} = a_1, a_2, \ldots, b, \ldots,$
- \circ simboli predicativi $\mathcal{P} = P_1, Q, \dots$ associati ad un'arietà (predicati unari, binari, ecc.) su quanti oggetti stiamo predicando
- \circ simboli funzionali $\mathcal{F} = f_1, g, \dots$ associati ad un'arietà (funzioni unarie, binarie, ecc.) a quanti argomenti applichiamo tale funzione

Questi insiemi formano la <u>segnatura del linguaggio</u> £

Le formule sono costruite tramite:

- \circ i costruttori logici $(\neg, \land, \lor, \rightarrow, \leftrightarrow)$, e
- ∘ i quantificatori (∃, ∀)

Alcune proprietà

variabili $oldsymbol{\mathcal{V}}$ costanti $oldsymbol{\mathcal{C}}$ simboli predicativi $oldsymbol{\mathcal{P}}$

simboli funzionali ${\boldsymbol{\mathcal{F}}}$

Gli insiemi ${m \mathcal{C}}$ e ${m \mathcal{F}}$ possono essere vuoti

 ${oldsymbol{\mathcal{V}}}$ e ${oldsymbol{\mathcal{P}}}$ non sono mai vuoti

 ${oldsymbol{\mathcal{V}}}$ è sempre infinito (e numerabile)

Il **predicato di uguaglianza =** è in \mathcal{P} (l'identità)

Le costanti sono un tipo particolare di funzioni funzioni nullarie o zero-aria, che non hanno argomenti

I simboli predicativi ${\cal P}$ e i simboli funzionali ${\cal F}$ sono associati ad un'arietà cioè il numero di parametri oppure oggetti che manipolano

- ∘ I predicati **𝒯** ritornano sì o no
- ∘ Le funzioni **F** ritornano **oggetti**

L'arietà si rappresenta con:

- o un apice (Pn: Pè un predicato n-ario) oppure
- ∘ un quoziente (P/n)

Es. Siciliano¹ = Siciliano/1 = Siciliano(x) \rightarrow predicato unario

PresidenteDi⁴ = PresidenteDi/4 = PresidenteDi(x,y,n,t) \rightarrow predicato 4-ario

```
Esempio
```

variabili $oldsymbol{\mathcal{V}}$ costanti $oldsymbol{\mathcal{C}}$

simboli predicativi $oldsymbol{\mathcal{P}}$

simboli funzionali $oldsymbol{\mathcal{F}}$

Il predicato di uguaglianza = è binario

=²

(arietà 2)

è VERO se i due termini sono uguali

Il predicato Genitore_di è binario

Genitore_di(anna,bob), genitore_di²

(arietà 2)

è VERO se anna è genitore di bob

La funzione matricola_di è unaria

ritorna la matricola di uno studente

Repeat: i predicati ritornano valore di verità, le funzioni ritornano oggetti

Quantificazione

I **QUANTIFICATORI** si riferiscono a

- \circ un oggetto potenzialmente sconosciuto (\exists) \rightarrow quantificatore esistenziale
 - ESISTE ALMENO UNO/A...
- \circ a ogni oggetto di un dominio (\forall) \rightarrow quantificatore universale
 - PER TUTTI/E, OGNI...

Quantificazione esistenziale 3

«Qualche messicano vive in Italia»

- 2 predicati: «essere messicano» unario, «vivere in» binario
- 1 costante: Italia
- ∃x (Messicano(x) ∧ ViveIn(x,Ita))

«Esiste una stella più grande del Sole»

- o 2 predicati: «essere una stella» unario, «essere più grande di» binario
- 1 costante: Sole
- ∃x (Stella(x) ∧ PiùGrandeDi(x,Sole))

«Ci sono pianeti abitati»

«Lorenzo viaggia con qualcuno»

Quantificazione universale \(\forall \)

«Tutti i pianeti orbitano intorno al Sole»

- o 2 predicati: «essere un pianeta» unario, «orbitare intorno a» binario
- 1 costante: Sole
- $\circ \forall x. (Pianeta(x) \rightarrow OrbitaIntornoA(x,Sole))$

(non è un 1, perché?)

«Non esistono creature aliene»

Tradotto: «tutte le creature NON sono aliene»

 $\forall x. (Creatura(x) \rightarrow \neg Aliena(x))$

«Tutti gli studenti hanno una matricola»

«Ogni animale è mortale»

Attenzione!

Nel nostro sistema logico (linguaggio) NON useremo:

- ∘ ∄ (che equivale a !∃)
- ∘ ∃!

Perché possiamo costruirli con i simboli a disposizione

Predicati: forma prefissa vs. infissa

I predicati si possono scrivere in modi diversi:

- Forma prefissa
 - OrbitaIntornoA(x, Sole)

- Forma infissa
 - ∘ x *OrbitaIntornoA* Sole

In alcuni casi può essere utile la notazione infissa, per esempio con l'uguaglianza =(x, Sole) è equivalente a x = Sole

Il linguaggio della teoria dei numeri (naturali)

variabili $oldsymbol{\mathcal{V}}$ costanti $oldsymbol{\mathcal{C}}$

simboli predicativi $oldsymbol{\mathcal{P}}$

simboli funzionali ${\boldsymbol{\mathcal{F}}}$

Simbolo di costante C: 0

Simboli di predicato \mathcal{P} :

$$\circ \leq (x,y) \longrightarrow x \leq y$$

$$\circ =(x,y) \rightarrow x = y$$

(minore o uguale) VERO o FALSO

(uguale)

VERO o FALSO

Simboli di funzione **F**:

s(0)

$$+(s(0),s(0)) = s(0)+s(0)$$

$$x(s(0),s(0)) = s(0) \times s(0)$$

(successivo)

(somma)

(prodotto)

Espressioni formali

Questi ingredienti insieme producono *espressioni formali* che ci aiutano a rappresentare la conoscenza

«esiste un numero maggiore di 0»

$$\exists x. (0 \le x \land \neg (0 = x))$$

in forma prefissa $\exists x.(\leq (0,x) \land \neg = (0,x)$

o «il successore di qualunque numero naturale è maggiore di 0»

$$\forall x.(0 \le s(x) \land \neg(0 = s(x)))$$

o «la somma di due numeri è sempre maggiore o uguale agli addendi»

$$\forall x. \forall y. (x \le x + y \land y \le x + y)$$

in forma prefissa
$$\forall x. \forall y. (\leq (x,+(x,y)) \land \leq (y,+(x,y))$$

Altri esempi

«La somma è commutativa»

$$\forall x. \ \forall y.(x + y = y + x)$$
 in forma prefissa: $\forall x. \ \forall y.(=(+(x,y),+(y,x))$

«La somma di un numero e il successore di un altro è uguale al successore della somma dei due numeri»

$$\forall x. \ \forall y.(x + s(y) = s(x + y))$$

«Ogni numero diverso da 0 è il successore di qualche numero»

$$\forall x.(\neg(x=0) \rightarrow \exists y.(x=s(y)))$$

«Non esiste un numero più grande di tutti gli altri»

FORMULE BEN FORMATE

Formalizzazione

Ora introduciamo formalmente l'insieme delle formule ben formate (fbf) della logica dei predicati

Ci serve introdurre prima:

- i termini
- ∘ gli atomi

Termini

Data una segnatura \mathcal{L} :

l'insieme dei <u>TERMINI</u> di \mathcal{L} (*Term*) è definito ricorsivamente da:

- ogni simbolo di **costante** e ogni **variabile** è un termine
 - $\mathcal{C} \cup \mathcal{V} \subseteq \text{Term}$
- ∘ se $t_1, ..., t_n \in \text{Term e } f$ è un simbolo di **funzione** n-ario ($f \in \mathcal{F}$) allora $f(t_1, ..., t_n)$ è un termine (**termine funzionale**)

Esempio:

- dati: f = matricola_di(funzione unaria), x variabile e Alex costante
 - matricola_di(x) e matricola_di(Alex) sono termini funzionali
- +(s(0),0) è un termine

I termini si riferiscono sempre a OGGETTI (NON c'è un valore di verità)

NON sono fbf!

segnatura ${oldsymbol{\mathcal{L}}}$

variabili $oldsymbol{
u}$

costanti ${m c}$

simboli predicativi $oldsymbol{\mathcal{P}}$

simboli funzionali $oldsymbol{\mathcal{F}}$

termini funzionali Term

Atomi

L'insieme **Atom** degli **ATOMI** (o *formula atomiche*) è definito ricorsivamente da:

- \circ T e \perp sono atomi (1 e 0 dell'algebra di Boole, tautologie e contraddizioni)
- se $t_1, \ldots, t_n \in Term$ e $P \in \mathcal{P}$ un simbolo di **predicato** n-ario

allora $P(t_1, \ldots, t_n)$ è un atomo

Esempio:

o Dati: Termini t1: +(s(0),0), t2: s(s(0)), e Predicato P '=' uguaglianza o =(+(s(0),0),s(s(0))) → questo è un atomo, perché può essere vero o falso (in questo caso?) in forma infissa (s(0)+0 = s(s(0))

Gli atomi – che sono fbf – parlano di PROPRIETA'

→ possono essere VERI o FALSI

Quindi, si possono combinare in formule complesse con attenzione alle variabili

segnatura £

variabili ${oldsymbol {\mathcal V}}$

costanti ${m c}$

simboli predicativi $oldsymbol{\mathcal{P}}$

simboli funzionali $oldsymbol{\mathcal{F}}$

termini funzionali Term

atomi Atom

```
Formule
```

- segnatura £
 - variabili $oldsymbol{
 u}$
 - costanti *C*
- simboli predicativi P
- simboli funzionali F
- termini funzionali Term
- atomi Atom

- Le FORMULE (fbf) sulla segnatura \mathcal{L} sono definite da: ogni atomo a ∈ Atom è una formula (formula atomica)
 - \circ se φ è una formula
 - allora anche $\neg \varphi$ lo è

(operatore unario)

- \circ se φ , ψ sono formule,
 - allora lo sono anche $\varphi \wedge \psi$, $\varphi \vee \psi$, $\varphi \rightarrow \psi$, $\varphi \leftrightarrow \psi$ (operatori binari)
- \circ se φ è una formula e x è una variabile x $\in \mathcal{V}$ allora
 - $\exists x. \varphi \in \forall x. \varphi$ sono formule

(quantificatori)

Le fbf sono atomi o combinazioni di atomi

Useremo lettere greche minuscole per denotare **formule** $(\varphi, \psi, \gamma, \dots)$ maiuscole per denotare insiemi di formule $(\Gamma, \Lambda, \Xi, ...)$

Esempi formule

- ∘ ∃x.(P(x)) è una formula
- ∘ ∃y.(P(x)) è una formula (indipendentemente dal senso)
- ∘ ∃x.(P(barack.obama)) è una formula

Sintassi esempi

«Qualunque oggetto appartiene ad un insieme di oggetti»

$$\forall x. \exists y. (x \in y)$$

«Se due insiemi di oggetti hanno gli stessi elementi, allora sono uguali»

$$\forall y. \ \forall z. (\forall x. (x \in y \iff x \in z) \Rightarrow y = z)$$

«Due più due uguale a quattro»

$$(s(s(0))+(s(s(0))) = s(s(s(s(0))))$$

È una formula atomica

in forma prefissa =(t1,t2)

Albero sintattico

«Se due insiemi di oggetti hanno gli stessi elementi, allora sono uguali»

$$\forall y. \forall z. (\forall x. (x \in y \iff x \in z) \rightarrow y = z)$$

connettivo principale ∀y

$$\circ \forall z.(\forall x.(x \in y \iff x \in z) \rightarrow y = z)$$

∘ connettivo principale ∀z

$$\circ \forall x.(x \in y \leftrightarrow x \in z) \rightarrow y = z$$

 \circ connettivo principale \rightarrow

0 ...

Precedenza tra gli operatori

Consideriamo la precedenza tra gli operatori stabilita da

$$\forall$$
, \exists , \neg , \land , \lor , \rightarrow , \leftrightarrow

Gli operatori, come nel caso proposizionale, associano a DESTRA

Per brevità, possiamo accumulare sequenze di quantificatori uguali in uno solo

$$\exists x. \exists y. \rightsquigarrow \exists xy.$$

Esempio

 $\forall x.P(x) \rightarrow \exists yz.Q(y, z) \land \neg \forall x.R(x)$ descrive la formula

$$(\forall x.P(x)) \rightarrow \left((\exists y.(\exists z.Q(y,z))) \land (\neg(\forall x.R(x))) \right)$$

Recap

Termini (oggetti):

Costanti

Variabili

Applicazione di Funzioni su Costanti e/o Variabili

Atomi (valore di verità)

Te⊥

Applicazione di Predicati a Termini

Formule ben formate (valore di verità)

Atomi combinati attraverso operatori \neg , \land , \lor , \rightarrow , \leftrightarrow e quantificatori \forall , \exists

Marinai

«Tutti i marinai amano una ragazza»

 $\forall x. \exists y. (Marinaio(x) \rightarrow (Ama(x,y) \land Ragazza(y))$ «Per ciascun marinaio, esiste una ragazza che lui ama, ognuno la propria»

 $\exists y. \forall x. (Marinaio(x) \rightarrow (Ama(x,y) \land Ragazza(y))$ *«Esiste una ragazza che è amata da tutti i marinai»*

Attenzione all'interpretazione del linguaggio naturale!

Campo d'azione

Il CAMPO D'AZIONE:

- \circ del quantificatore $\forall x$ nella formula $\forall x. \varphi \ equal \varphi$
- \circ del quantificatore $\exists x$ nella formula $\exists x. \varphi \in \varphi$

Esempio

$$\forall x.(\forall y. \neg P(x, y) \rightarrow \exists z.Q(z, w)) \lor \exists w.Q(x, w)$$

- Il campo d'azione di ∃w è Q(x, w)
- Il campo d'azione di ∀y è ¬P(x, y)
- ∘ Il campo d'azione di \forall x è (\forall y. ¬P(x, y) \rightarrow ∃z.Q(z, w))

occhio alle parentesi

Variabili LIBERE

Una formula può avere variabili SENZA quantificatori:

Es. $Alto(x) \land Rosso(x)$

Cosa vuol dire questa formula ben formata?

La variabile x è <u>LIBERA</u> (non è sotto lo scopo di qualche quantificatore)

NON possiamo assegnare un VALORE DI VERITA' alla formula

Variabili e quantificatori II

Considerate invece la formula

 $\exists x. (Alto(x) \land Rosso(x))$

che esprime che *«esiste un oggetto alto e rosso»*

Qui, la variabile x è <u>QUANTIFICATA</u> (<u>LEGATA</u> o <u>VINCOLATA</u>)

e la formula può acquisire un valore di verità

vs. variabili <u>LIBERE</u>

Variabili di un termine e di un atomo

L'insieme var(t) delle <u>VARIABILI DI UN TERMINE</u> t è definito da:

$$\circ$$
 var(t) = {t} se t $\in \mathcal{V}$

$$\circ$$
 var(t) = \emptyset se t $\in \mathcal{C}$

$$\circ \operatorname{var}(f(t_1, \ldots, t_n)) = \bigcup_{i=1}^n \operatorname{var}(ti)$$

$$\circ$$
 Es. var(+(x,s(0))) = {x}

$$var(+(x,s(y))) = \{x,y\}$$

(termine stesso se t è una variabile)

(O variabili se t è una costante)

(unione delle variabili della funzione)

(s(0) termine che si applica a costante (0), x è una variabile)(x e y sono variabili)

Un termine t è CHIUSO se var(t) = \emptyset

(se non contiene variabili)

Le VARIABILI DI UN ATOMO sono:

$$\circ$$
 var(\top) = var(\bot) = \emptyset ;

$$\circ$$
 var(P(t₁,...,t_n)) = $\bigcup_{i=1}^{n}$ var(ti)

segnatura £

variabili ${oldsymbol{
u}}$

costanti *C*

simboli predicativi $oldsymbol{\mathcal{P}}$

simboli funzionali F

termini funzionali **Term** atomi **Atom**

Occorrenza libera

Si dice che una variabile x <u>occorre libera</u> in una formula ϕ (oppure che è una variabile libera di ϕ) se c'è almeno un'occorrenza libera di x in ϕ

L'OCCORRENZA LIBERA di x in una formula ϕ è definita come segue.

- \circ Se φ è un atomo, ogni occorrenza di x in φ è libera (non ci sono quantificatori o operatori)
- Se φ è della forma ¬ψ allora le occorrenze libere di x sono quelle di ψ
- \circ Se φ è della forma ψ \wedge (oppure \vee , \rightarrow , \leftrightarrow) χ allora le occorrenze libere di x, sono quelle di x in ψ e quelle di x in χ
- ∘ Se φ è della forma ∀y.ψ oppure ∃z. ψ, se x è diverso da y, allora le occorrenze libere di x sono le occorrenze libere di x in ψ
- \circ Se φ è della forma $\forall x. \psi$ oppure $\exists x. \psi$ allora tutte le occorrenze di x sono vincolate

Variabili legate

I quantificatori ∃x e ∀x **legano** le occorrenze libere di x nel proprio campo d'azione Un'occorrenza di una variabile x è **legata** se non è libera

Le occorrenze legate sono esattamente quelle nel campo d'azione di un quantificatore

Esempio

Nella formula

$$\forall x.(P(x) \rightarrow Q(x, y))$$

- ∘ la variabile x ha due occorrenze legate da ∀, non è mai libera
- o la variabile y ha un'occorrenza libera, non è mai quantificata

Esempio II

Nella formula

$$\forall x.(\exists y.P(x, y) \rightarrow Q(x, y))$$

il campo di azione del quantificatore $\exists y \in P(x, y)$ non include Q(x, y)!

- la variabile x ha due occorrenze legate
- o la variabile y ha una occorrenza libera e una legata

Formule chiuse ed enunciati

Una formula φ è <u>CHIUSA</u> sse

nessuna variabile occorre libera in φ

Le formule CHIUSE si chiamano anche ENUNCIATI

La semantica è propriamente definita unicamente per formule chiuse

Recap sintassi logica predicativa (I)

Termini (oggetti):

Costanti bob, anna, sole, N, ...

Variabili X, y, z...

Applicazione di **Funzioni** su **Costanti** e/o **Variabili** anni_di(bob), anni_di(x)...

Atomi (valore di verità)

Te⊥

Applicazione di **Predicati** a **Termini**

Maggiore_o_uguale_di(anni_di(x),10))

Formule ben formate (valore di verità)

Atomi combinati attraverso operatori \neg , \land , \lor , \rightarrow , \longleftrightarrow e quantificatori \forall , \exists

 $\exists .x. \ \forall y. (Maggiore_o_uguale_di(anni_di(x), anni_di(y)) \land Maggiore_o_uguale_di(200, anni_di(x)))$

Recap sintassi logica predicativa (II)

<u>Variabili</u>

- Libere (se non sono sotto l'azione di un quantificatore)
- Legate (se sono quantificate)

Formule

- Aperte (con variabili libere)
- Chiuse o Enunciati (senza variabili libere)

SEMANTICA DELLA LOGICA PREDICATIVA

Semantica della logica dei predicati

Finora abbiamo soltanto introdotto le espressioni permesse nella logica dei predicati

Ma cosa *significano*?

"semantica"

Ogni formula **chiusa** riceve un valore di verità che dipende dagli elementi che la compongono

Perché non quelle aperte?

Legame con la logica proposizionale

Nella logica proposizionale si assegna un valore di verità ad ogni variabile proposizionale

• Un'<u>ASSEGNAZIONE BOOLEANA</u> è la **totale \mathcal{V}**: $\mathcal{A} \to \{0, 1\}$ che determina quali <u>proposizioni atomiche</u> sono VERE e quali FALSE

Es:
$$\mathcal{A} = \{A, B, C\}, \ \mathcal{V}_1(A) = 1, \ \mathcal{V}_1(B) = 1, \ \mathcal{V}_1(C) = 0$$

• Le assegnazioni determinano il valore delle <u>VALUTAZIONI BOOLEANE</u> $I_{v}: \mathcal{F} \to \{0, 1\}$ sulle fbf:

Es:
$$I_{\nu_1}(\neg A \rightarrow (C \leftrightarrow \neg B)) = 1$$
, $I_{\nu_1}(A \lor C) = 1$

Vogliamo estendere questa idea alla logica dei predicati

- o assegnare un valore di verità a ogni atomo
- propagarlo a formule complesse

Dobbiamo specificare anche gli oggetti di interesse

segnatura £

variabili $oldsymbol{
u}$

costanti C

simboli predicativi P

simboli funzionali $oldsymbol{\mathcal{F}}$

termini funzionali **Term** atomi **Atom**

Atomi chiusi e aperti

Gli atomi chiusi ricevono un valore di verità (VERO o FALSO)

Professore(anna)(predicato unario: Professore(x))

Dipende da come interpretiamo anna e l'insieme (relazione unaria) Professore

Amico(anna,bob) (predicato binario: Amico(x,y))

Dipende da come interpretiamo anna e la relazione binaria Amico

Pari(matricola(bob)) (predicato unario: Pari(x))

Dipende da come interpretiamo bob, la funzione matricola, e la relazione unaria Pari

NB: La funzione unaria matricola è applicata alla costante bob

Inoltre, come gestire l'uso di variabili negli atomi aperti?

- Professore(x)
- Amico(y,bob)
- Pari(matricola(x))

INTERPRETAZIONI

Interpretazione (o struttura del primo ordine)

Un'INTERPRETAZIONE (o struttura del primo ordine) è una coppia $I = (\Delta^{I}, \cdot^{I})$ tale che:

- Δ^{I} è un insieme **non vuoto** chiamato il **DOMINIO** di I
- .I è una **FUNZIONE DI INTERPRETAZIONE** che associa:
 - a ogni c \in \mathcal{C} un **elemento** $c^I \in \Delta^I$ (restituisce un elemento dominio) es. Bob, Anna saranno associati ad elementi del dominio
 - a ogni f/n $\in \mathcal{F}$ una funzione n-aria f^I: $(\Delta^{I})^{n} \to \Delta^{I}$ (restituisce una funzione su Δ^{I}) es. matricola(bob) sarà associato ad una funzione che restituisce un elemento del dominio
 - a ogni P/n $\in \mathcal{P}$ una relazione n-aria P^I $\subseteq (\Delta^I)^n$ (restituisce una relazione su Δ^I) es. se è un predicato n-ario sarà associato ad una relazione n-aria sul dominio, se unario ad un

sottoinsieme del dominio

segnatura $oldsymbol{\mathcal{L}}$

variabili $oldsymbol{
u}$

costanti $oldsymbol{c}$

simboli predicativi ${m \mathcal{P}}$ simboli funzionali ${m \mathcal{F}}$

termini funzionali **Term** atomi **Atom**

Notate la differenza fra i **simboli** (che non hanno significato di per sé) e la loro **interpretazione** (che si riflette nel dominio)

 \mathcal{V} ={x,y} , \mathcal{C} ={marco, giulia, lessie} , \mathcal{P} ={Maggiore_di{a,b},Essere_cane{a}}, \mathcal{F} ={anno_di_nascita{a}, altezza{a}} Δ^{I} ={α β γ δ ε ζ η θ ι κ λ μ ν ξ ο π ρ σ...}

 \mathcal{V} ={x,y} , \mathcal{C} ={marco, giulia, lessie} , \mathcal{P} ={Maggiore_di{a,b},Essere_cane{a}}, \mathcal{F} ={anno_di_nascita{a}, altezza{a}} Δ^{I} ={α β γ δ ε ζ η θ ι κ λ μ ν ξ ο π ρ σ...}

 ν ={x,y}, ϵ ={marco, giulia, lessie}, ϵ ={Maggiore_di{a,b},Essere_cane{a}}, ϵ ={anno_di_nascita{a}, altezza{a}} Δ I={α β γ δ ε ζ η θ ι κ λ μ ν ξ ο π ρ σ...}

Perché del primo ordine?

"del primo ordine" indica che c'è un insieme di riferimento (il dominio) e che i quantificatori possano riguardare solo gli elementi di tale insieme e NON i sottoinsiemi.

Ad esempio è consentito dire:

"per tutti gli x elementi dell'insieme vale P(x)"

ma non si può dire

"per tutti i sottoinsiemi C vale P(C)"

Esempio

```
Considerate l'interpretazione I = (\Delta^{I}, \cdot^{I}) con:
```

```
[dominio] \Delta^{I} := \{\alpha, \beta, \gamma, \delta\};
```

```
[costante] \frac{1}{\text{anna}} I := \alpha,
```

[costante] bob^I := β ;

```
[funzione] matricola<sup>I</sup> := {\langle \beta, \delta \rangle} = f(\beta)= \delta
```

[predicato unario] Professore $I := \{\gamma\}$;

[predicato unario] Pari $I := \{\delta\}$;

[predicato binario] $\overline{\text{Amico}}^{I} := \{\langle \alpha, \beta \rangle, \langle \beta, \gamma \rangle, \langle \gamma, \beta \rangle\}$

(al simbolo anna associo l'elemento $\alpha \in \Delta^{I}$)

(al simbolo bob associo l'elemento $b \in \Delta^{I}$)

(ritorna una funzione, che associa a θ l'elemento δ)

(restituisce un sottoinsieme di Δ^{\prime})

(restituisce un sottoinsieme di Δ')

(restituisce relazione binaria sul Δ^{\prime})

Come posso interpretare delle formule atomiche CHIUSE? Determinare se sono vere o false?

Professore(anna)

Amico(<mark>anna,bob</mark>)

Pari(matricola(bob))

Come posso interpretare le formule atomiche? In questo caso chiuse.

Professore(anna)

Sarà vera (in questa interpretazione I) se l'elemento che associamo ad anna cioè α è contenuto nell'insieme che interpretiamo come Professore cioè $\{\gamma\}$

FALSO

Amico(<mark>anna</mark>,bob)

Sarà vera se la coppia dei simboli che associamo ad anna, bob, cioè α , β è inclusa nell'insieme di coppie ordinate con cui interpretiamo Amico, cioè $\{\langle \alpha, \beta \rangle, \langle \beta, \gamma \rangle, \langle \gamma, \beta \rangle\}$.

VERO

Pari(matricola(bob))

La funzione matricola associa β a δ . Ora occorre controllare se δ appartiene all'insieme con cui interpretiamo Pari cioè $\{\delta\}$

VERO

```
\mathcal{C} = \{anna, bob\},\
 \mathcal{P} = \{ \text{Professore}(x), 
  Pari(x), Amico(x,y)}
    \mathcal{F} = \{ \text{matricola}(x) \}
                               \mathcal{V} = \{\}
          \Delta^{\mathbf{I}} := \{\alpha, \beta, \gamma, \delta\}
                   anna I := \alpha,
matricola<sup>I</sup> := f(\beta) = \delta;
    Professore I := \{\gamma\};
                   Pari^{I} := \{\delta\};
    Amico I := \{ \langle \alpha, \beta \rangle ,
              \langle \beta, \gamma \rangle, \langle \gamma, \beta \rangle \}
```

Formule aperte

Cosa succede se abbiamo **formule aperte**che contengono cioè **variabili libere**?

Dobbiamo assegnare una valore alle variabili libere

ASSEGNAZIONI

Assegnazione

Cosa succede quando abbiamo delle variabili?

Data un'interpretazione
$$I = (\Delta^{I}, \cdot^{I}),$$

un' ASSEGNAZIONE (in I) è una funzione totale $\eta: \mathcal{V} \to \Delta^I$

L'assegnazione n associa

un **elemento del dominio** Δ^{I} alle variabili in \mathcal{V}

Esempio:

$$C = \{anna, bob\}, P = \{Professore(x), Pari(x), Amico(x,y)\}, F = \{matricola(x)\}$$

$$\mathcal{V} = \{z\}, I = (\Delta^{I}, \cdot^{I}), \Delta^{I} := \{\alpha, \beta, \gamma, \delta\} \dots (non riportiamo l'interpretazione)$$

Amico(z,bob)

η: $\mathcal{V} \to \Delta^I$, $\eta(z) = \beta$ (con l'assegnazione associo ad una variabile un elemento del dominio)

segnatura ${m \mathcal{L}}$

variabili $oldsymbol{\mathcal{V}}$

costanti ${m c}$

simboli predicativi $oldsymbol{\mathcal{P}}$

simboli funzionali $oldsymbol{\mathcal{F}}$

termini funzionali **Term** atomi **Atom**

dominio Δ

interpretazione *I* assegnazione η

Assegnazione di termini (estensione di n)

segnatura £

variabili ${oldsymbol{\mathcal{V}}}$

costanti C

simboli predicativi P

termini funzionali Term

dominio **\Delta**

interpretazione I

simboli funzionali ${m {\mathcal F}}$ atomi Atom

assegnazione n

Data una interpretazione I e un'assegnazione $\eta: \mathcal{V} \to \Delta^I$

l'assegnazione sui <u>termini</u> $\bar{\eta}$ è definita ricorsivamente da:

• per $x \in \mathcal{V}$, $\overline{\eta}(x) = \eta(x)$

variabili come in η

• per c $\in \mathcal{C}$, $\overline{\eta}$ (c) = c^I

costanti come in **I**

• se f/n $\in \mathcal{F}$ e t_1, \ldots, t_n sono <u>termini</u>, allora

$$\overline{\eta}(f(t_1,\ldots,t_n)) = f^{I}(\overline{\eta}(t_1),\ldots,\overline{\eta}(t_n))$$

In pratica, stiamo sostituendo ogni variabile x nel termine con il valore stabilito dall'assegnazione $\eta(x)$

Per abbreviare, scriviamo t^{I. η} invece di $\overline{\eta}$ (t)

L'interpretazione dei termini dipende da due cose:

- 1. Dall'interpretazione *I* per le costanti e i simboli funzionali
- 2. Dall'assegnazione η per le variabili

SODDISFACIBILITÀ

Soddisfacibilità atomica

Un'interpretazione I e un'assegnazione η : $\mathcal{V} \to \Delta^I$ insieme

1. associano ogni **termine** \rightarrow ad un elemento del **dominio** Δ^I $\mathbf{t}^{I,\eta} \in \Lambda^I$

2. determinano univocamente un valore di verità (vero o falso) per ogni ATOMO

$$I, \eta \models P(t_1, \dots, t_n) \operatorname{sse} \langle t_1^{I, \eta}, \dots, t_n^{I, \eta} \rangle \in P^I$$

cioè se la tupla di oggetti con cui interpretiamo a tutti i termini t1...tn appartiene all'interpretazione del predicato (insieme o relazione n-aria)

$$I$$
, $\eta \models P(t_1, \ldots, t_n)$ si legge

"I, η SODDISFANO la formula atomica $P(t_1, \ldots, t_n)$ "

L'atomo è VERO nell'**interpretazione I** sotto **l'assegnazione** η

Poi trasferiremo il valore di verità alle formule

```
\mathcal{C} = \{anna, bob\},\
\mathcal{P} = \{ \text{Professore}(x), \text{Pari}(x), \text{Amico}(x,y) \}
\mathbf{\mathcal{F}} = \{\text{matricola}(x)\}
\boldsymbol{\mathcal{V}} = \{x,y,z\}
I = (\triangle^{I}, \cdot^{I})
\Delta^{I} := \{\alpha, \beta, \gamma, \delta\}
anna I := \alpha,
\mathsf{bob}^I := \beta;
matricola<sup>I</sup> := f(\beta) = \delta;
Professore I := \{\gamma\};
Pari^{I} := \{\delta\};
Amico I := \{\langle \alpha, \beta \rangle, \langle \beta, \gamma \rangle, \langle \gamma, \beta \rangle\}
\eta := \{\langle x, \alpha \rangle, \langle y, \alpha \rangle, \langle z, \beta \rangle\} (assegnazione)
\rightarrow \eta(x)=\alpha, \eta(y)=\alpha, \eta(z)=\beta
```

Esempio

```
Quali atomi sono soddisfatti da I, \eta \models ?:
```

```
Professore (x)

non è soddisfatta (\not\models) perché \eta(x) = \alpha \notin \{\gamma\}

Amico (y bob)
```

Amico(y,bob)
è soddisfatta (
$$\models$$
) perché $\eta(y) = \alpha$, bob^I := β
e $\langle \alpha, \beta \rangle \in \{\langle \alpha, \beta \rangle, \langle \beta, \gamma \rangle, \langle \gamma, \beta \rangle\}$

```
Pari(matricola(z))
è soddisfatta (\models) perché \eta(z) = \beta,
matricola I(\beta) = \delta \in \{\delta\}
```

```
\mathcal{C} = \{\text{anna, bob}\},\
```

$$\mathcal{P} = \{ Professore(x), Pari(x), Amico(x,y) \}$$

$$\mathcal{F} = \{ \text{matricola}(x) \}$$

$$\boldsymbol{\mathcal{V}} = \{x,y,z\}$$

$$I = (\triangle^{I}, \cdot^{I})$$

$$\Delta^{I} := \{\alpha, \beta, \gamma, \delta\}$$

anna
$$I := \alpha$$
,

$$\mathsf{bob}^{I} := \beta;$$

matricola^{$$I$$} := $f(\beta) = \delta$;

Professore
$$I := \{\gamma\}$$
;

Pari
$$^{I} := \{\delta\};$$

Amico
$$I := \{\langle \alpha, \beta \rangle, \langle \beta, \gamma \rangle, \langle \gamma, \beta \rangle\}$$

Come definiamo un'interpretazione η_1

Che rende vera la prima e falsa

la seconda?

Esempio

$$\eta_1 := \{\langle x, y \rangle, \langle y, \beta \rangle, \langle z, \beta \rangle\}$$

$$\rightarrow \eta_1(x) = \gamma, \eta_1(y) = \beta, \eta_1(z) = \beta$$

```
Professore(x)

è soddisfatta (\models) perché \eta_1(x) = y \in \{y\}
```

```
Amico(y,bob)

NON è soddisfatta (\not\models) perché \eta_1(y) = \beta, bob<sup>I</sup> := \beta

e \langle \beta, \beta \rangle \notin \{\langle \alpha, \beta \rangle, \langle \beta, \gamma \rangle, \langle \gamma, \beta \rangle\}
```

```
Pari(matricola(z))
è soddisfatta (\models) perché \eta_1(z) = \beta,
matricola I(\beta) = \delta \in \{\delta\}
```

 ν ={x,y}, ϵ ={marco, giulia, lessie}, ϵ ={Maggiore_di{a,b},Essere_cane{a}}, ϵ ={anno_di_nascita{a}, altezza{a}} Δ I={αβγδεζηθικλμνξοπρσ...}

«Lessie è un cane?»
Essere_cane(lessie)

Il predicato è VERO, perché l'interpretazione I:

- associa la costante lessie all'elemento del dominio <mark>δ</mark>
- L'elemento δ fa parte del sottoinsieme del dominio identificato dal predicato Essere_cane.
 Cioè δ ∈ {δ, μ}

«Marco è più alto di Giulia?»

Maggiore_di(altezza(marco),altezza(giulia))

Il predicato è VERO perché l'interpretazione I:

- Associa alla costante marco l'elemento α e alla costante giulia l'elemento β
- La funzione altezza associa ad $\alpha \rightarrow \lambda$ e a $\beta \rightarrow \gamma$
- La coppia ordinata $\langle \lambda, \gamma \rangle$ fa parte della relazione Maggiore_di, cioè $\langle \lambda, \gamma \rangle \in \{\langle \lambda, \gamma \rangle, \langle \lambda, \xi \rangle, \langle \gamma, \xi \rangle\}$

Sostituzioni

Siano \boldsymbol{I} un'interpretazione e $\eta: \boldsymbol{\mathcal{V}} \to \Delta^{\boldsymbol{I}}$ un'assegnazione

Date $x \in \mathcal{V}$ e $d \in \Delta^I$, l'assegnazione $\eta[x/d]$ è la funzione

$$\eta[x/d](y) := \begin{cases} \eta(y) & \text{se } x \neq y \\ d & \text{se } x = y \end{cases}$$

Assegna tutte le variabili che non sono x secondo η,

ma assegna $d \in \Delta^{I}$ alla variabile x

Modifica cioè l'assegnazione per la variabile x

termini funzionali Term
atomi Atom
dominio Δ
interpretazione I
assegnazione η

segnatura £

variabili ${oldsymbol{\mathcal{V}}}$

costanti C

simboli predicativi ${m {\cal P}}$

simboli funzionali F

$$\gamma$$
 $x \rightarrow \gamma$
 $y \rightarrow \beta$
 $z \rightarrow \beta$
 $a \rightarrow \gamma$
 $b \rightarrow \alpha$

$$\eta[\chi/\alpha]$$

$$y \rightarrow \beta$$

$$z \rightarrow \beta$$

$$b \rightarrow \alpha$$

Soddisfacibilità delle formule I, $\eta \models \varphi$

La soddisfacibilità di una formula si definisce ricorsivamente

(nell'interpretazione *I* rispetto all'assegnazione η)

<u>Atomi</u>

- I, $\eta \models T$ (formula sempre vera) I, $\eta \not\models \bot$ (formula sempre falsa)
- I, $\eta \models P(t_1, \ldots, t_n)$ sse $\langle t_1^{I,\eta}, ..., t_n^{I,\eta} \rangle \in P^I$

segnatura £

variabili $oldsymbol{
u}$

costanti $oldsymbol{\mathcal{C}}$

simboli predicativi $oldsymbol{\mathcal{P}}$

simboli funzionali **F**

termini funzionali **Term** atomi **Atom**

dominio **A**

interpretazione *I* assegnazione n

Operatori booleani

• I, $\eta \models \neg \varphi$ sse I, $\eta \not\models \varphi$ (data un'assegnazione e un'interpretazione una formule è sempre vera o falsa)

• I, $\eta \models \varphi \land \psi$ sse I, $\eta \models \varphi e I$, $\eta \models \psi$

• I, $\eta \models \varphi \lor \psi$ sse I, $\eta \models \varphi$ oppure I, $\eta \models \psi$

• I, $\eta \models \varphi \rightarrow \psi$ sse I, $\eta \models \neg \varphi \lor \psi$

• I, $\eta \models \varphi \leftrightarrow \psi$ sse I, $\eta \models (\varphi \rightarrow \psi) \land (\psi \rightarrow \varphi)$

Soddisfacibilità delle formule (II)

Quantificatori

• $I, \eta \models \exists x. \varphi$ sse ESISTE ALMENO UN elemento del dominio $d \in \Delta^I$ tale che

$$I, \eta[x/d] \models \varphi$$

Tale che sostituendo d a x la formula è soddisfatta

Deve esistere almeno un elemento del dominio che sostituito a x rende vera la formula

• $I, \eta \models \forall x. \varphi$ sse <u>PER OGNI</u> $d \in \Delta^I$ si verifica

$$I, \eta[x/d] \models \varphi$$

Tutti gli elementi del dominio se sostituiti a x devono rendere vera la formula

Come intuizione, pensate che I, $\eta[x/d] \models \varphi$ sostituisce tutte le occorrenze **libere** di x in φ mettendo d

segnatura ${oldsymbol{\mathcal{L}}}$

variabili $oldsymbol{\mathcal{V}}$

costanti $oldsymbol{\mathcal{C}}$

simboli predicativi $oldsymbol{\mathcal{P}}$

simboli funzionali $oldsymbol{\mathcal{F}}$

termini funzionali **Term** atomi **Atom**

dominio Δ

interpretazione I

assegnazione ${oldsymbol{\mathcal{V}}}$

```
\Delta^{I} = \{a,b,c,d\}, \mathcal{P} = \{P/1 = P(x)\}, \mathcal{V} = \{x\}
```

Intuizione

Valutiamo $\exists x. (P(x))$

```
[ciclo for]
I, \eta[x/a] \rightarrow P(a) \text{ VERO o FALSO}
I, \eta[x/b] \rightarrow P(b) \text{ VERO o FALSO}
I, \eta[x/c] \rightarrow P(c) \text{ VERO o FALSO}
I, \eta[x/d] \rightarrow P(d) \text{ VERO o FALSO}
```

Se almeno uno è vero, allora $I, \eta \models \exists x. \varphi$

Valutiamo $\forall x.(P(x))$

[ciclo for]

I, $\eta[x/a] \rightarrow P(a)$ VERO o FALSO

I, $\eta[x/b] \rightarrow P(b)$ VERO o FALSO

I, $\eta[x/c] \rightarrow P(c)$ VERO o FALSO

I, $\eta[x/d] \rightarrow P(d)$ VERO o FALSO

Se tutti sono veri, allora $I, \eta \models \forall x. \phi$

$$I = (\triangle^I, \cdot^I)$$

$$\eta := \{\langle x, \alpha \rangle, \langle y, \alpha \rangle, \langle z, \beta \rangle\}$$

$$\rightarrow \eta(x) = \alpha, \eta(y) = \alpha, \eta(z) = \beta$$

$$\circ \Delta^{\mathbf{I}} := \{\alpha, \beta, \gamma, \delta\};$$

- \circ anna $I := \alpha$,
- \circ bob^I := β ;
- \circ matricola^I := { $\langle \beta, \delta \rangle$ };
- \circ Professore $I := \{\gamma\}$;
- \circ Pari $^{I} := \{\delta\};$
- \circ Amico I := { $\langle \alpha, \beta \rangle$, $\langle \beta, \gamma \rangle$, $\langle \gamma, \beta \rangle$ }.

Data l'assegnazione n

Esempio

 $I, \eta \not\models Professore(x)$

Perché $\eta(x) = \alpha \notin \text{Professore } I := \{\gamma\}$

MA

 $I, \eta \models \exists x. Professore(x)$

Perché

 $I, \eta[x/\gamma] \models Professore(x)$

Esiste almeno un elemento del dominio $\Delta^{\mathbf{I}}$ che soddisfa la formula, cioè γ

$$I = (\triangle^I, \cdot^I)$$

$$\eta := \{\langle x, \alpha \rangle, \langle y, \alpha \rangle, \langle z, \beta \rangle\}$$

$$\rightarrow \eta(x) = \alpha, \eta(y) = \alpha, \eta(z) = \beta$$

$$\circ \Delta^{\mathbf{I}} := \{\alpha, \beta, \gamma, \delta\};$$

$$\circ$$
 anna $I := \alpha$,

$$\circ$$
 bob ^{I} := β ;

$$\circ$$
 matricola ^{I} := { $\langle \beta, \delta \rangle$ };

$$\circ$$
 Professore $I := \{\gamma\};$

$$\circ$$
 Pari ^{I} := { δ };

$$\circ$$
 Amico I := { $\langle \alpha, \beta \rangle$, $\langle \beta, \gamma \rangle$, $\langle \gamma, \beta \rangle$ }.

Data l'assegnazione η

Esempio (II)

$$I, \eta \models \exists y$$
. Professore(y)

Perché

$$I, \eta[y/\gamma] \models Professore(y)$$

Non cambia nulla se considero x, y o z

$$I = (\triangle^{I}, \cdot^{I})$$

$$\eta := \{\langle x, \alpha \rangle, \langle y, \alpha \rangle, \langle z, \beta \rangle\}$$

$$\rightarrow \eta(x) = \alpha, \eta(y) = \alpha, \eta(z) = \beta$$

$$\circ \Delta^{\mathbf{I}} := \{ \alpha, \beta, \gamma, \delta \};$$

- \circ anna $I := \alpha$,
- \circ bob^I := β ;
- \circ matricola^I := { $\langle \beta, \delta \rangle$ };
- \circ Professore $I := \{\gamma\}$;
- \circ Pari^I := { δ };
- \circ Amico I := { $\langle \alpha, \beta \rangle$, $\langle \beta, \gamma \rangle$, $\langle \gamma, \beta \rangle$ }.

Data l'assegnazione η

Esempio (III)

$$I, \eta \not\models \forall y. Professore(y)$$

Perché **NON** è vero che **tutti** gli elementi del dominio soddisfano la formula

$$I, \eta[y/\alpha] \not\models Professore(y)$$

$$I, \eta[y/\beta] \not\models Professore(y)$$

$$I, \eta[y/y] \models Professore(y) (solo qui è vera)$$

$$I, \eta[y/\delta] \not\models Professore(y)$$

Altro esempio

$$\forall x. \exists y. P(x, y)$$

In quali domini/interpretazioni è vera?

Se il dominio Δ è l'insieme degli esseri umani e P I l'insieme delle coppie A e B tali che A è padre di B allora l'enunciato: «tutti gli esseri umani hanno un padre» è vero

Se il dominio Δ è \mathbb{N} e J un'interpretazione tale che \mathbb{P}^J è l'insieme delle coppie ordinate $\langle x,y \rangle$ tale che x < y allora l'enunciato: «per ogni numero naturale ne esiste uno maggiore» è vero.

Questa formula è soddisfatta da entrambi i domini e le interpretazioni

Se però avessimo un'interpretazione K tale che P^K è l'insieme delle coppie ordinate (x,y) tale che y < xLa formula NON sarebbe sarebbe soddisfatta (0 è un numero naturale che non ha un precedente)

Recap

Dato un linguaggio e tutte le infinite formule che possiamo costruire ricorsivamente possiamo stabilire se esse siano vere o false (se sono cioè soddisfacibili)

Se abbiamo formule aperte (che includono variabili libere), serviranno:

- L'interpretazione I per tutti i simboli del linguaggio (la segnatura)
 - Predicati, funzioni e costanti
- L'assegnazione η per le variabili libere

Se abbiamo formule chiuse (in cui tutte le variabili sono legate dai quantificatori), basterà:

- ∘ L'interpretazione *I* (e solo quella)
 - es. $\exists x. Professore(x)$ ha un unico valore di verità che non dipende più dall'assegnazione (perché «le prova tutte»)

segnatura £

variabili ${oldsymbol{\mathcal{V}}}$

costanti C

simboli predicativi $oldsymbol{\mathcal{P}}$

simboli funzionali F

termini funzionali Term atomi Atom

dominio **\Delta**

interpretazione I

assegnazione n

MODELLI E TAUTOLOGIE

Modelli e tautologie

L'interpretazione I è un MODELLO della formula ϕ sse

PER OGNI assegnazione η si verifica che $I, \eta \models \varphi$

In questo caso, scriviamo $I \models \phi$ e diciamo che ϕ è VERA in I

La formula φ è <u>VALIDA</u> (o TAUTOLOGICA) sse

φ è vera **PER OGNI** interpretazione **I**

In questo caso, scriviamo ⊨ Φ

Es. $\forall x.(P(x) \lor \neg P(x))$

(non dipende dall'interpretazione scelta)

segnatura ${oldsymbol{\mathcal{L}}}$

variabili ${oldsymbol{\mathcal{V}}}$

costanti ${m c}$

simboli predicativi $oldsymbol{\mathcal{P}}$

simboli funzionali $oldsymbol{\mathcal{F}}$

termini funzionali **Term** atomi **Atom**

dominio **\D**

interpretazione *I* assegnazione n

Esempio

$$I = (\triangle^{I}, \cdot^{I})$$

- $\circ \Delta^{\mathbf{I}} := \{ \alpha, \beta, \gamma, \delta \};$
- \circ anna $I := \alpha$,
- \circ bob^I := β ;
- \circ matricola^I := { $\langle \beta, \delta \rangle$ };
- \circ Professore $^{I} := \{\gamma\};$
- \circ Pari $^{I} := \{\delta\};$
- $\circ \operatorname{Amico}^{I} := \{\langle \alpha, \beta \rangle, \langle \beta, \gamma \rangle, \langle \gamma, \beta \rangle\}.$

$$I \models \exists x. \exists y. (Professore(x) \land Amico(x, y))$$

Non ci sono variabili libere, sono entrambe quantificate

Non dipende dall'assegnazione, ma dall'interpretazione

caso che soddisfa la fbf: interpretiamo la x con $\sqrt{\ }$ e y con $\sqrt{\ }$

 $I, \eta[x/v, y/\beta]$ Professore(v) \land Amico(v, β) = \top

$$I \not\models \forall x.(x = bob \lor Amico(x, bob))$$

$$I, \eta[x/\alpha] \alpha = bob \lor Amico(\alpha, \beta) \approx F \lor T -> T$$

$$I, \eta[x/\beta] \beta = bob \lor Amico(\beta, \beta) \approx T \lor F \rightarrow T$$

$$I, \eta[x/v] v = bob \lor Amico(v, \beta) \approx F \lor T -> T$$

$$I, \eta[x/\delta] \delta = bob \lor Amico(\delta, \beta) \approx F \lor F \rightarrow F$$

$I \not\models \exists x. \forall y. (Professore(x) \land Amico(x, y))$

Occhio alla precedenza fra operatori e quantificatori!

In questo caso se $x = \sqrt{V}$, NON è in relazione con TUTTI gli elementi di Amico I

Formule chiuse

Notate che una formula con variabili libere non è possibile avere un significato univoco che sia indipendente dalle assegnazioni

Perciò, utilizziamo formule chiuse

In loro, le variabili hanno un significato nella formula, indipendente dell'assegnazione n

Recap: formule chiuse e assegnazioni

$$I, \eta \models \exists x. \varphi \longrightarrow I, \eta[x/d] \models \varphi$$

L'assegnazione originale di x in η diventa irrilevante

In una formula chiusa tutte le variabili sono legate da quantificatori

Possiamo costruire le assegnazioni finali procedendo dall'esterno verso l'interno della formula

QUANTIFICATORI + OPERATORI

Uso del quantificatore esistenziale 3

"Qualche messicano vive in Italia"

```
∃x. (Messicano(x) ∧ Vive_in(x, Italia))

"Esiste un individuo che è messicano e vive in Italia"
```

```
\exists x.(Messicano(x) \rightarrow Vive_in(x, Italia))
```

"Se c'è un individuo messicano allora vive in Italia"

Uso del quantificatore universale ∀

«Ogni (oggetto che è un) animale è mortale»

```
∀x.(animale(x) → mortale(x))«Per ogni oggetto, se è un animale, allora è mortale»
```

```
\forall x.(animale(x) \land mortale(x))
```

«ogni oggetto del dominio è un animale ed è mortale»

per essere vera richiede che nel dominio ci siano soltanto animali

Per questo si usa l'implicazione \rightarrow :

Se qualcosa ha la tal proprietà allora...

1) $\exists x. \exists y. (Puffo(x) \land Nonno(x,y))$

C'è almeno un elemento del dominio che è un puffo ed è nonno di un (altro) elemento del dominio

2) $\exists x. \forall y. (Puffo(x) \land Nonno(x,y))$

C'è almeno un elemento che è un puffo ed è nonno di tutti gli elementi del dominio

3) $\forall x. \exists y. (Puffo(x) \land Nonno(x,y))$

Ogni elemento del dominio è un puffo ed è nonno di almeno un (altro) elemento del dominio

4) $\forall x. \forall y. (Puffo(x) \land Nonno(x,y))$

Ogni elemento del dominio è un puffo ed è nonno di tutti gli elementi del dominio

5) $\exists x. \exists y. (Puffo(x) \rightarrow Nonno(x,y))$

Esiste almeno un elemento che, se è puffo, allora è nonno di un altro elemento, ma potrebbe non essere un puffo (se tutti gli elementi sono puffi, almeno uno deve essere nonno di almeno un altro elemento)

6) $\exists x. \forall y. (Puffo(x) \rightarrow Nonno(x,y))$

Esiste almeno un elemento che, se è puffo, allora è nonno di tutti gli elementi, ma potrebbe non essere un puffo (se tutti gli elementi sono puffi, almeno uno deve essere nonno di tutti gli altri elementi)

7) $\forall x. \exists y. (Puffo(x) \rightarrow Nonno(x,y))$

Ogni elemento, se è un puffo, allora è nonno di almeno un (altro) elemento del dominio

8) $\forall x. \forall y. (Puffo(x) \rightarrow Nonno(x,y))$

Ogni elemento, se è un puffo, allora è nonno di tutti gli elementi del dominio

Esercizio

Ogni studente ha una matricola

Qualcuno ha visto tutti gli episodi di "The Crown"

Uno studente ha presentato un progetto

EQUIVALENZE SEMANTICHE

Equivalenza semantica

Due formule ϕ e ψ sono <u>EQUIVALENTI</u> (scritto $\phi = \psi$)

sse per ogni interpretazione *I*:

$$I \models \phi$$
 sse $I \models \psi$

Le formule hanno lo stesso valore di verità in qualunque interpretazione

segnatura **£**

variabili ${oldsymbol{
u}}$

costanti ${m c}$

simboli predicativi ${m {\cal P}}$

simboli funzionali $oldsymbol{\mathcal{F}}$

termini funzionali **Term** atomi **Atom**

dominio **\D**

interpretazione **I** assegnazione η

Equivalenze

$$\forall x. \varphi \equiv \neg \exists x. \neg \varphi;$$
 $\exists x. \varphi \equiv \neg \forall x. \neg \varphi;$ (parsimonia) $\exists x. \exists y. \varphi \equiv \exists y. \exists x. \varphi;$ $\forall x. \forall y. \varphi \equiv \forall y. \forall x. \varphi;$

se x non occorre in ϕ , allora $\phi \equiv \exists x. \phi \equiv \forall x. \phi$

$$\forall x.(\varphi \wedge \psi) \equiv \forall x.\varphi \wedge \forall x.\psi$$

$$\exists x.(\varphi \vee \psi) \equiv \exists x.\varphi \vee \exists x.\psi$$
(i duali NON si soddisfanno)

Equivalenze II

Se x non occorre libera in ψ , allora:

$$\forall x.(\varphi \lor \psi) \equiv \forall x.\varphi \lor \psi$$

$$\exists x.(\phi \land \psi) \equiv \exists x.\phi \land \psi$$

$$\forall x. \varphi \rightarrow \psi \equiv \exists x. (\varphi \rightarrow \psi)$$

$$\exists x. \varphi \rightarrow \psi \equiv \forall x. (\varphi \rightarrow \psi)$$

$$\psi \rightarrow \forall x. \varphi \equiv \forall x. (\psi \rightarrow \varphi)$$

$$\psi \rightarrow \exists x. \varphi \equiv \exists x. (\psi \rightarrow \varphi)$$

TEORIE DEL PRIM'ORDINE

Teorie del primo ordine

Di norma, la nostra conoscenza base si poggia su un insieme di formule che assumiamo siano valide

cioè gli ASSIOMI

Una TEORIA è rappresentata da tutte le conseguenze di questi assiomi

La logica del primo ordine ci serve per **assiomatizzare certi domini**per poi **dedurre** e **dimostrare** le **conseguenze logiche** delle premesse

Conseguenze logiche

Un insieme di formule Γ è <u>SODDISFACIBILE</u> (o coerente) sse esiste un'<u>interpretazione</u> I tale che $I \models \varphi$ per ogni $\varphi \in \Gamma$ I soddisfa tutte le formule dell'insieme

Tale I è un modello di Γ $(I \models \Gamma)$

φ è una CONSEGUENZA LOGICA di Γ (scritto $\Gamma \models φ$) sse ogni modello di Γ è un modello di φ $(I \models \Gamma \Rightarrow I \models φ)$

segnatura ${m \mathcal{L}}$

variabili ${oldsymbol{\mathcal{V}}}$

costanti ${m c}$

simboli predicativi ${m {\cal P}}$

simboli funzionali $oldsymbol{\mathcal{F}}$

termini funzionali **Term** atomi **Atom**

dominio **A**

interpretazione \boldsymbol{I}

assegnazione ${oldsymbol{
u}}$

Teoria

Una **TEORIA** è un **insieme di formule** Θ che è

CHIUSO rispetto alle conseguenze

se
$$\Theta \models \varphi$$
 allora $\varphi \in \Theta$

Sia Γ un insieme di formule, chiamati **ASSIOMI**

La <u>TEORIA GENERATA da Γ</u>è l'insieme di tutte le conseguenze logiche di Γ

$$\Theta_{\Gamma} := \{ \varphi \mid \Gamma \models \varphi \}$$

Gli assiomi rappresentano le nostre assunzioni

La teoria è data da TUTTE le conseguenze logiche degli assiomi

Proprietà delle teorie

Una teoria del primo ordine Θ è:

• COERENTE/CONSISTENTE sse NON esiste una formula φ tale che

$$\Theta \models \varphi \in \Theta \models \neg \varphi$$

COMPLETA sse per ogni formula φ,

$$\Theta \models \varphi$$
 oppure $\Theta \models \neg \varphi$

NB: la nozione di conseguenza logica è infinitaria, perché posso generare formule infinte, pertanto l'insieme delle conseguenze logiche è infinito per definizione

Estensioni conservative

Se ho un insieme di assiomi da cui derivo una teoria, cosa succede se aggiungo un altro assioma?

Siano $\mathcal{L} \subseteq \mathcal{M}$ due segnature, e

 Θ , Ξ due teorie in \mathcal{L} e \mathcal{M} rispettivamente

Ξ è un' **ESTENSIONE CONSERVATIVA** di Θ sse

per ogni formula $\phi \in \mathcal{L}$ si ha:

$$\Theta \models \varphi$$
 sse $\Xi \models \varphi$

Cioè hanno lo stesso comportamento sul vocabolario ristretto ${m {\cal L}}$

segnatura ${m \mathcal{L}}$

variabili $oldsymbol{\mathcal{V}}$

costanti ${m c}$

simboli predicativi $oldsymbol{\mathcal{P}}$

simboli funzionali $oldsymbol{\mathcal{F}}$

termini funzionali **Term** atomi **Atom**

dominio **\D**

interpretazione I

assegnazione η

Teoria dei grafi

L'insieme di tutti i grafi è trivialmente definito da una segnatura con un solo simbolo di relazione binaria "Arco"

Ogni interpretazione deve definire:

un dominio

i nodi del grafo

o una relazione binaria che interpreta Arco

gli archi

Teoria dei grafi irriflessivi:

Aggiungiamo l'assioma: ∀x. ¬Arco(x,x)

Sto vincolando la teoria ad interpretazioni in cui non ci sono cappi

Teoria dei grafi non-orientati:

Assioma: $\forall xy. (Arco(x, y) \rightarrow Arco(y, x))$

Intuizione

Qualsiasi relazione binaria può essere rappresentata come un grafo

Quali sono le interpretazioni che lo soddisfano?

Inizialmente tutte quelle possibili

Ogni volta che introduco **un nuovo assioma** <u>elimino</u> alcune fra le possibili <mark>interpretazioni</mark>

Nella pratica, sto progressivamente specializzando la teoria

Es. riflessività, transitività, simmetria

Un'estensione conservativa dei grafi

Introduciamo il concetto di **cammino** fra due nodi tramite un nuovo simbolo di relazione "Cammino"

Teoria dei cammini: (chiusura transitiva di Arco)

 $\forall xy. (Arco(x, y) \rightarrow Cammino(x, y))$

 $\forall xyz. (Cammino(x, y) \land Cammino(y, z) \rightarrow Cammino(x, z))$

Come sarebbe la teoria dei **semicammini?**

Teoria dei numeri (naturali)

Assiomi (Γ)

1.
$$\forall x. \neg (x < 0)$$

2.
$$\forall xy.(x < s(y) \leftrightarrow (x < y \lor x = y))$$

3.
$$\forall x.(x \neq 0 \rightarrow \exists y.(x = s(y)))$$

4.
$$\forall xy.(x < y \rightarrow \neg(y < x))$$

5.
$$\forall xyz.(x < y \land y < z \rightarrow x < z)$$

6.
$$\forall xy.(x < y \lor x = y \lor y < x)$$

Predicati

$$=(x,y)$$

$$\neq$$
(x,y)

Funzioni

Domini possibili

 \mathbb{R}

 \mathbb{N}

. . .

Supponiamo ora di aggiungere un assioma alla volta

Assiomi

1.
$$\forall x. \neg (x < 0)$$

Sto eliminando l'interpretazione che contempla i numeri negativi, es. \mathbb{Z} , \mathbb{R}

Predicati

$$=(x,y)$$

Funzioni

Domini possibili

 \mathbb{R}

 \mathbb{N}

...

Supponiamo ora di aggiungere un assioma alla volta

Assiomi

2.
$$\forall xy.(x < s(y) \leftrightarrow (x < y \lor x = y))$$

Per tutti gli x e y, x è minore del successore di y se e solo se x è minore di y o x è uguale a y.

Sto eliminando le interpretazioni per cui questo non è vero

Predicati

$$=(x,y)$$

$$\neq$$
(x,y)

Funzioni

Domini possibili

 \mathbb{R}

 \mathbb{N}

...

Supponiamo ora di aggiungere un assioma alla volta

Assiomi

3.
$$\forall x.(x \neq 0 \rightarrow \exists y.(x = s(y)))$$

Per tutti gli x diversi da 0 esiste un y che è il suo successore

...

Predicati

$$=(x,y)$$

$$\neq$$
(x,y)

Funzioni

Domini possibili

 \mathbb{R}

 \mathbb{N}

. . .

Supponiamo ora di aggiungere un assioma alla volta

Assiomi

4.
$$\forall xy.(x < y \rightarrow \neg(y < x))$$

Sto vincolando le interpretazioni

che soddisfano queste relazioni ad essere relazioni di ordinamento

Predicati

$$=(x,y)$$

Funzioni

Domini possibili

 \mathbb{R}

 \mathbb{N}

...

Supponiamo ora di aggiungere un assioma alla volta

Assiomi

5.
$$\forall xyz.(x < y \land y < z \rightarrow x < z)$$

Tutte le interpretazioni che soddisfano questo assioma devono considerare la relazione minore come transitiva

Predicati

$$=(x,y)$$

$$\neq$$
(x,y)

Funzioni

Domini possibili

 \mathbb{R}

 \mathbb{N}

...

Supponiamo ora di aggiungere un assioma alla volta

Assiomi

6.
$$\forall xy.(x < y \lor x = y \lor y < x)$$

Tutte le interpretazioni che soddisfano questo assioma devono rispettare la tricotomia

Predicati

$$=(x,y)$$

$$\neq$$
(x,y)

Funzioni

Domini possibili

 \mathbb{R}

 \mathbb{N}

. . .

Assiomi

1.
$$\forall x. \neg (x < 0)$$

2.
$$\forall xy.(x < s(y) \leftrightarrow (x < y \lor x = y))$$

3.
$$\forall x.(x \neq 0 \rightarrow \exists y.(x = s(y)))$$

4.
$$\forall xy.(x < y \rightarrow \neg(y < x))$$

5.
$$\forall xyz.(x < y \land y < z \rightarrow x < z)$$

6.
$$\forall xy.(x < y \lor x = y \lor y < x)$$

Ogni nuovo assioma ha vincolato il numero di interpretazioni possibili (usando il simbolo di <)

Predicati

$$=(x,y)$$

$$\neq$$
(x,y)

Funzioni

Domini possibili

 \mathbb{R}

 \mathbb{N}

. . .

Aritmetica di Peano

Qual è il numero minimo di assiomi da cui posso derivare tutte le proprietà dei numeri naturali?

In questo caso, Γ sono gli 11 assiomi di Peano

La teoria è tutto quello che posso derivare da tali assiomi

Ancora sul concetto di interpretazione: rappresentazione della conoscenza

ASSIOMI (Knowledge Base KB)

Abbiamo tre blocchi, a, b, c uno sopra l'altro

Il blocco in alto è verde

Il blocco in basso non è verde

Esiste un blocco verde direttamente sopra ad un blocco non verde?

$$\Gamma = \{\text{sopra}(a,b), \text{sopra}(b,c), \text{verde}(a), \neg \text{verde}(c)\}$$

$$\alpha = \exists x \exists y (verde(x) \land \neg verde(y) \land sopra(x,y))$$

$$\Gamma \models \alpha$$
?

Caso 1: b è verde, cioè
$$I \models \text{verde(b)}$$

$$I \models \text{verde(b)} \land \neg \text{verde(c)} \land \text{sopra(b,c)}$$

$$I \models \alpha$$

Caso 2: b è non verde, cioè
$$I \not\models \text{verde(b)}$$

$$I \models \neg verde(b)$$

$$I \models \text{verde(a)} \land \neg \text{verde(b)} \land \text{sopra(a,b)}$$

$$I \models \alpha$$

Pertanto in entrambi i casi, per ogni interpretazione I, se $I \models \Gamma$ allora $I \models \alpha$.

Per cui
$$\Gamma \models \alpha$$

RAPPRESENTAZIONE DELLA CONOSCENZA

Elementi della logica dei predicati

Gli elementi principali della logica dei predicati sono:

- ullet costanti $oldsymbol{\mathcal{C}}$
- ullet simboli predicativi $oldsymbol{\mathcal{P}}$
- ullet simboli funzionali $oldsymbol{\mathcal{F}}$
- ullet variabili (quantificate) $oldsymbol{\mathcal{V}}$

segnatura £

variabili ${oldsymbol{
u}}$

costanti ${m c}$

simboli predicativi ${m {\cal P}}$

simboli funzionali $oldsymbol{\mathcal{F}}$

termini funzionali **Term** atomi **Atom**

dominio **\D**

interpretazione I

assegnazione ${oldsymbol{
u}}$

La semantica

La semantica è basata su interpretazioni

Ogni interpretazione è un "mondo possibile"

che esprime un *potenziale* significato per tutti i simboli

Interpretazioni (recap)

Un'interpretazione *I* ha:

- un $dominio \Delta$ (non vuoto) e
- una funzione d'interpretazione . I che "definisce" ogni simbolo:
 - una costante \rightarrow in un elemento di \triangle
 - un simbolo predicativo n-ario \rightarrow in una relazione in Δ^n
 - un simbolo funzionale n-ario \rightarrow in una funzione $\Delta^n \rightarrow \Delta$

Le variabili non sono interpretate:

dipendono dalla quantificazione (quantificatori universale e esistenziale)

segnatura £

variabili ${oldsymbol{\mathcal{V}}}$

costanti ${m c}$

simboli predicativi $oldsymbol{\mathcal{P}}$

simboli funzionali $oldsymbol{\mathcal{F}}$

termini funzionali **Term** atomi **Atom**

dominio Δ

interpretazione I
assegnazione n

Valori di verità

Una formula è un predicato (ossia, una "frase") che può essere vero o falso

Dipende dalla interpretazione che si considera per la logica, il nome del simbolo è irrilevante

Anche se esistono delle tautologie e delle contraddizioni

I simboli sono simboli

La logica NON legge il linguaggio naturale

- Padre(Adamo, Caino)
- $\forall x.(Umano(x) \rightarrow \exists y.Madre(y,x))$

Sono **simboli** senza un significato intrinseco

I simboli sono simboli

La logica NON legge il linguaggio naturale

- POfdskfs(Adamo, Caino)
- $\forall x.(Mklfsklf(x) \rightarrow \exists y.mkkdsm9skn(y,x))$

Sono **simboli** senza un significato intrinseco

Rappresentare cosa?

Vogliamo utilizzare la logica per **descrivere** un **dominio** (mondo) d'interesse

Utilizziamo formule come assiomi che devono essere veri

Le interpretazioni che le falsificano sono irrilevanti: non le consideriamo

In certo senso, diamo un significato ai simboli, in relazione agli altri

Dominio vs. realtà

Importante:

le formule descrivono un **dominio** che può essere o meno collegato alla realtà

Possiamo potenzialmente descrivere un mondo fantastico con caratteristiche diverse

Conoscenza con restrizione

Quando rappresentiamo conoscenza,

LIMITIAMO la classe di interpretazioni d'interesse

Ogni assioma è una **RESTRIZIONE** imposta alle interpretazioni

In generale, esistono molte interpretazioni che soddisfano questi assiomi

Si potrebbe sempre aggiungere conoscenza (assiomi) più e più dettagliata, ma non è sempre necessario

Conoscenza incompleta e compromesso

Una BASE DI CONOSCENZA è sempre incompleta

Descriviamo *quanto basta* per l'applicazione

Vogliamo rappresentare al meglio possibile un dominio

Allo stesso tempo, più dettagli producono una base di conoscenza più COMPLESSA

Si deve trovare il giusto compromesso

Da formule a linguaggio naturale

Vogliamo trasformare la conoscenza umana in un insieme di formule logiche

Problema

Il linguaggio naturale è AMBIGUO mentre la logica non lo è attenzione!

Prima di scrivere impariamo a leggere

Leggere i simboli

I simboli hanno una funzionalità specifica:

- ullet costanti $oldsymbol{\mathcal{C}}$ parlano di **entità**
- predicati **P** parlano di **tuple** con una proprietà
- funzioni **F** ci ritornano una **nuova entità**
- ullet variabili $oldsymbol{\mathcal{V}}$ "unificano" con **entità** in base al bisogno

Importanti ricordarsi di costruire formule ben formate

segnatura ${m \mathcal{L}}$

variabili ${oldsymbol{\mathcal{V}}}$

costanti ${m c}$

simboli predicativi ${m {\cal P}}$

simboli funzionali $oldsymbol{\mathcal{F}}$

termini funzionali **Term** atomi **Atom**

dominio **\D**

interpretazione *I* assegnazione η

Grande Puffo

- Ha_barba(grande_puffo)
- ∃x.(Puffo(x) ∧ Ha_barba(x))
- ∃x.(Cappello(x) ∧ Indossa(grande_puffo,x) ∧ Colore(x,rosso))
- Colore(cappello_di(grande puffo), rosso)
- $\forall x.(Puffo(x) \rightarrow \exists y.(Cappello(y) \land indossa(x,y)))$
- $\forall x.(Colore(cappello_di(x), rosso) \rightarrow x = grande_puffo)$

Fondamentale

Capire la **funzione** di ogni elemento è

fondamentale per costruire formule adatte

Proviamo a scrivere

- Puffetta indossa un vestito
- Soltanto Puffetta indossa un vestito
- Tutti i cappelli sono bianchi o rossi
- Ogni puffo ha una casa propria
- In ogni casa vive soltanto un puffo
- Qualche puffo ha una casa con il tetto rosso
- Non ci sono puffi cattivi

Altri esempi

- Tutti gli uomini sono mortali
- Non tutte le divinità sono immortali
- Ercole è figlio di una divinità e di un mortale

Definire:

- fratello
- zio

- a. Tutto è verde.
- b. Alcune cose sono verdi.
- c. Non qualsiasi cosa è verde.
- d. Non ci sono cose verdi.
- e. O tutto è verde o nulla è verde.
- f. Tutto è o verde o non verde.
- g. Alcune cose sono verdi e alcune cose non lo sono.
- h. Alcune rane sono verdi e alcune non lo sono.
- i. Vi sono rane verdi e rane testarde.
- j. Vi sono rane verdi e testarde.
- k. Alcune rane testarde non sono verdi.
- I. Tutte le rane verdi sono testrade.
- m. Ogni rana è o verde o testrada.
- n. Qualche rana è sia verde che testarda.
- o. Qualche rana verde è testarda.
- p. Qualche rana testarda è verde.
- g. Non esistono rane verdi testarde.
- r. Tutte le rane verdi saltano.
- Alcune rane verdi non saltano.
- t. Nessuna rana che salta è testarda.
- u. Ci sono rane testarde che non saltano.
- v. Ci sono rane testarde che se piove, saltano.
- w. Ci sono rane che, se piove, saltano.
- x. Se piove qualche rana testarda salta.
- y. Se non piove, nessuna rana salta.
- z. Le rane testarde saltano se e solo se piove.

- a. Tutto è verde.
- b. Alcune cose sono verdi.
- Non qualsiasi cosa è verde.
- d. Non ci sono cose verdi.
- e. O tutto è verde o nulla è verde.
- f. Tutto è o verde o non verde.
- g. Alcune cose sono verdi e alcune cose non lo sono.
- h. Alcune rane sono verdi e alcune non lo sono.
- i. Vi sono rane verdi e rane testarde.
- j. Vi sono rane verdi e testarde.
- k. Alcune rane testarde non sono verdi.
- I. Tutte le rane verdi sono testrade.
- m. Ogni rana è o verde o testrada.
- n. Qualche rana è sia verde che testarda.
- o. Qualche rana verde è testarda.
- p. Qualche rana testarda è verde.
- g. Non esistono rane verdi testarde.
- r. Tutte le rane verdi saltano.
- s. Alcune rane verdi non saltano.
- t. Nessuna rana che salta è testarda.
- u. Ci sono rane testarde che non saltano.
- v. Ci sono rane testarde che se piove, saltano.
- w. Ci sono rane che, se piove, saltano.
- x. Se piove qualche rana testarda salta.
- y. Se non piove, nessuna rana salta.
- z. Le rane testarde saltano se e solo se piove.

```
\forall x V(x)

\exists x V(x)

\neg \forall x V(x)

\neg \exists x V(x)

\forall x V(x) \lor \forall x \neg V(x) \text{ oppure } \forall x V(x) \lor \neg \exists x V(x)

\forall x (V(x) \lor \neg V(x))

\exists x V(x) \land \exists x \neg V(x)
```

$$\exists x (R(x) \land V(x)) \land \exists x (R(x) \land \neg V(x))$$

 $\exists x (R(x) \land V(x)) \land \exists x (R(x) \land T(x))$

$$\exists x (R(x) \land (V(x) \land T(x)))$$

$$\exists x ((R(x) \land T(x)) \land \neg V(x))$$

$$\forall x ((R(x) \land V(x)) \rightarrow T(x))$$

$$\forall x (R(x) \rightarrow (V(x) \lor T(x)))$$

$$\exists x (R(x) \land (Y(x)) \land T(x)))$$

 $\exists x (R(x) \land Y(x)) \land T(x))$

$$\neg\exists x((R(x) \land T(x)) \land V(x)) \\ \neg\exists x((R(x) \land V(x)) \land T(x))$$

$$\forall x((R(x) \land V(x)) \rightarrow S(x))$$

 $\exists x((R(x) \land V(x)) \land \neg S(x))$

$$\forall x((R(x) \land V(x)) \rightarrow \neg T(x))$$

$$\exists x((R(x) \land T(x)) \land \neg S(x))'$$

$$\exists x ((R(x) \land T(x)) \land (P \rightarrow S(x))$$

$$\exists x (R(x) \land (P \rightarrow S(x))$$

$$P \rightarrow \exists x ((R(x) \land T(x)) \land S(x))$$

$$\neg P \rightarrow \forall \hat{x} (\hat{R}(\hat{x}) \rightarrow \neg \hat{S}(\hat{x}))$$

$$\forall x ((R(x) \stackrel{\wedge}{\wedge} \dot{T}(x)) \rightarrow (\dot{S}(x) \leftrightarrow P))$$

SISTEMI DEDUTTIVI E TABLEAUX PREDICATIVI

Ragionamento

Dopo che abbiamo costruita una **base di conoscenza** vogliamo dedurre **conseguenze** di essa

Il processo di **ragionamento** non è altro che la dimostrazione di una tautologia

Quindi, vogliamo sviluppare un metodo algoritmico per dimostrare che una formula è una tautologia

→ SISTEMI DEDUTTIVI

RECAP 1 (da logica proposizionale) Collegamento fra sistemi

Abbiamo definiti due sistemi:

- o un <u>SISTEMA LOGICO</u> con una relazione di conseguenza ⊨
 - Semantica: se queste formule sono vere (significato) allora...
- o un SISTEMA DEDUTTIVO con una relazione di derivabilità H
 - Sintattica: manipolo le formule con regole per generare altre formule

Γ⊨ F: Fè una conseguenza logica di Γ

Γ ⊢ F : da Γ possiamo dimostrare F

Vogliamo collegare i sistemi tali che si comportino allo stesso modo In particolare identificare formule valide e teoremi

RECAP 2 (da logica proposizionale)

Il paradigma logico formale: sintassi e semantica

RECAP 3 da logica proposizionale: Correttezza e completezza

Un **sistema deduttivo** è **CORRETTO sse** per ogni F ∈ **F**

⊢ F implica ⊨ F

cioè, se F è un teorema del sistema deduttivo, allora F è una tautologia nel sistema logico

Un sistema deduttivo **corretto** è capace di dimostrare unicamente **formule valide** (ogni teorema è "vero" nel sistema logico)

Potrebbero esserci formule valide che non riesco a dimostrare

Un **sistema deduttivo** è <u>COMPLETO</u> **sse** per ogni F ∈ *F*

⊨ F implica ⊢ F

cioè, se F è una tautologia nel sistema logico, allora F è un teorema nel sistema deduttivo

Un sistema deduttivo completo è capace di dimostrare ogni formula valida

Potrebbero esserci teoremi che non corrispondono a formule valide

RECAP 4 da logica proposizionale :conseguenze logiche (II)

Per verificare che una formula $F \in \mathcal{F}$ sia una

conseguenza logica di un insieme di formule $\Gamma \subseteq \mathcal{F}$, $\Gamma = \{G_1, G_2, ..., G_n\}$

$$\Gamma \models F$$

Occorre verificare che: l'implicazione (\rightarrow) della congiunzione logica (Λ) di tali formule Γ (premesse)

con la formula F stessa (conseguenza)

sia una TAUTOLOGIA (FORMULA VALIDA)

$$\models G_1 \land G_2 \land ... \land G_n \rightarrow F$$

 $\{G_1, G_2, G_3\} \models F$

G1	G2	G3	G1 Λ G2 Λ G3		G1 ∧ G2 ∧ G3 → F
1	1	1	1	1	1
1	1	1	1	1	1
1	1	1	1	1	1
1	1	1	1	1	1
1	1	1	1	1	1
1	1	0	0	0	1
1	1	0	0	1	1
1	0	1	0	0	1
1	0	1	0	0	1
1	0	1	0	0	1
1	0	1	0	0	1
1	0	0	0	1	1
1	0	0	0	1	1
1	0	0	0	1	1
1	0	0	0	1	1
0	1	1	0	0	1
0	1	1	0	0	1
0	1	1	0	1	1
0	1	1	0	1	1
0	1	1	0	1	1
0	1	1	0	0	1
0	1	1	0	1	1
0	1	0	0	0	1
0	1	0	0	0	1
0	1	0	0	0	1
0	0	1	0	1	1
0	0	1	0	1	1
0	0	1	0	1	1
0	0	1	0	0	1
0	0	1	0	0	1
0	0	1	0	1	1
0	0	0	0	0	1

G1, G2, G3 tutte vere

Apparati deduttivi e teorie del primo ordine

Data una teoria del primo ordine $\{\phi \mid \Gamma \models \phi\}$, cioè gli assiomi $\Gamma = \{G_1, G_2, ..., G_n\}$ e tutte le loro conseguenze logiche ϕ

Vogliamo un metodo per poter **DIMOSTRARE**:

Una formula φ a partire da un insieme di assiomi Γ

$$\Gamma \vdash \varphi$$

 $\Rightarrow \Gamma \models \varphi$, cioè $\varphi \in C_n(\Gamma)$

Sotto certe condizioni:

$$\Gamma \vdash \varphi \text{ sse } \vdash G_1 \land G_2 \land ... \land G_n \rightarrow \varphi$$

 $\Rightarrow \Gamma \models \varphi \text{ sse } \models G_1 \land G_2 \land ... \land G_n \rightarrow \varphi$

Se una formula è coerente con gli assiomi

```
\Gamma \not\vdash \neg \varphi \Rightarrow \text{ esiste un'} \text{interpretazione } I, I \models \Gamma \cup \varphi
```

(φ è derivabile da Γ)(φ è conseguenza logica di Γ)

Tableaux

Adattiamo il metodo del tableaux per il caso predicativo

Ricordate che il tableau è un metodo che genera modelli:

interpretazioni che soddisfano la formula

Nel caso predicativo, dobbiamo tenere in conto anche il dominio e le entità anonime

Tableaux Predicativi

- · Domanda:
 - α è valida, soddisfacibile non valida o contraddizione?
- · Simile al caso proposizionale: costruiamo modelli mediante un albero
 - α è valida, i.e, $\vdash \alpha$?
 - F: α ... cerchiamo un modello che falsifica α
 - se il tableaux è chiuso (= non riusciamo a costruire un contromodello)
 - allora α è valida ⊢_{tab} α
 - altrimenti, costruiamo un tableaux per $F: \neg \alpha$, ovvero, $T: \alpha$,
 - se il tableaux è chiuso
 - allora α è contraddizione ... $\vdash_{tab} \neg \alpha$
 - altrimenti, α è soddisfacibile non valida ... \mathcal{F}_{tab} α , \mathcal{F}_{tab} $\neg \alpha$
- · Quali regole per trattare il caso predicativo?

Indecidibilità

Attenzione!

La logica del primo ordine è semi-decidibile

La logica del primo ordine è semidecidibile

- se ⊢_{tab} α, allora esiste una dimostrazione che termina e ci dice che ⊢_{tab} α
 - Se α è valida o contraddizione possiamo scoprirlo in un numero finito di passi

Nessun metodo può decidere in tempo finito se una formula è tautologica o meno

Diversamente al caso proposizionale, il tableaux predicativo <u>può non finire mai</u>

Perciò, serve creatività e attenzione

Restrizioni

Per semplificare la descrizione, consideriamo formule senza simboli funzionali

In realtà, per il tableau non sono diversi delle costanti, quindi non aggiungono niente al metodo

Tableaux I

I predicati <u>senza variabili</u> sono essenzialmente

proposizioni atomiche

$$P(a) \wedge R(b, a) \rightarrow P(c)$$

"pa
$$\wedge$$
 rba \rightarrow pc"

Tableaux II

Le regole per i connettivi logici proposizionali

$$\neg$$
, \land , \lor , \rightarrow , \leftrightarrow

si comportano come nel caso proposizionale

Quindi serve capire come gestire i **quantificatori** ∀, ∃ e le loro **variabili**

$T \wedge$	$S, T (X \wedge Y)$	F ^	$S, F(X \wedge Y)$
	S, TX, TY		S, FX S, FY
TV	$S, T (X \vee Y)$	F V	$S, F(X \vee Y)$
	S, TX S, TY		S, FX, FY
Т¬	S, T $(\neg X)$	F ¬	$S, F(\neg X)$
	S, FX		S, TX
$T \rightarrow$	$S, T(X \to Y)$	$F \rightarrow$	$S, F(X \to Y)$
	S, FX S, TY		S, TX, FY
$T \leftrightarrow$	$S, T (X \leftrightarrow Y)$	$F \leftrightarrow$	$S, F (X \leftrightarrow Y)$
	$\overline{S, TX, TY \mid S, FX, FY}$		$\overline{S, TX, FY \mid S, FX, TY}$

Esistenziali positivi T : 3x

Se abbiamo una formula

$$T: \exists x. \Phi(x)$$

(dove x è una variabile legata)

il tableau la sostituisce per

 $T:\Phi(a)$

dove a è una NUOVA costante (che NON è nel ramo)

Il razionale è:

- o E' sufficiente che ci sia **un** elemento del dominio che rende vera la formula
- Ma non è detto che sia uno degli elementi già incontrati nel tableaux e che rendono vere/false altre formule

Variabile legata	Possibili valori	Valore di verità
X	а	se [x/a] FALSO
	b	se [x/b] VERO
	С	se [x/c] FALSO
	d	se [x/d] VERO
	е	se [x/e] FALSO
	•••	

Universali negativi F: ∀x

Se abbiamo una formula

 $F: \forall x. \Phi(x)$

(dove x è una variabile legata)

il tableau la sostituisce per

dove a è una **NUOVA costante** (che NON è nel ramo)

F	•	Φ((a)
		•	\ - /

Il razionale è:

- ∘ E' sufficiente che ci sia **un** elemento del dominio che rende FALSA la formula
- o Ma non è detto che sia uno degli elementi già incontrati nel tableaux e che rendono vere/false altre formule

Variabile legata	Possibili valori	Valore di verità
Х	а	se [x/a] VERO
	b	se [x/a] FALSO
	С	se [x/a] VERO
	d	se [x/a] FALSO
	е	se [x/a] FALSO

Specularità

Le regole dei quantificatori sono speculari per un motivo specifico

```
\forall x. (Uomo(x) \rightarrow Mortale(x)) \ \underline{\hat{e} \ equivalente \ a} \ \neg \exists x \ \neg (Uomo(x) \rightarrow Mortale(x))
```

 $\exists x. (Uomo(x) \land Filosofo(x)) \ \underline{\hat{e} \ equivalente \ a} \ \neg \forall x \neg (Uomo(x) \land Filosofo(x))$

Altri casi

Per i casi restanti, dobbiamo stare molto attenti:

fanno referenza a TUTTI gli elementi del dominio

- ∘ T:∀ ci dice che TUTTI gli elementi del dominio devono rendere rendere vera la formula
- ∘ F:∃ ci dice che TUTTI gli elementi del dominio devono rendere rendere FALSA la formula

Universali positivi T:∀

La formula

 $T: \forall x. \Phi(x)$

Variabile legata	Possibili valori	Valore di verità
X	а	se [x/a] VERO
	b	se [x/b] VERO
	С	se [x/c] VERO
	d	se [x/d] VERO
	e	se [x/e] VERO
		VERO

dice che TUTTI gli elementi del dominio devono soddisfare Φ

Quindi, dobbiamo introdurre $\Phi(a)$ per OGNI costante a che esiste nel tableau

Ma dobbiamo tenere presente che:

- 1. nuovi oggetti possono apparire più avanti nello sviluppo
- 2. E ricordare che il dominio non può essere vuoto

Universali positivi T:∀

La formula

$$T: \forall x.\Phi(x)$$

è sostituita per
$$T: \Phi(a), T: \forall x.\Phi(x)$$

dove a è:

- una costante nel tableau, se esiste
- o se non esiste, introdurre una **nuova costante**

Es:

$$\frac{T: \forall x (P(x) \rightarrow Q(x))}{T: P(t) \rightarrow Q(t), T: \forall x (P(x) \rightarrow Q(x))}$$

Sostituiamo alla variabile x la costante t

La formula originale quantificata universalmente riappare SEMPRE nella conclusione

Il razionale è: dobbiamo verificare che ogni costante che appare nel tableau soddisfi la formula (per quello non basta una sola sostituzione e riportiamo la formula)

Esempio

F:
$$\forall x.P(x) \land Q(a) \Rightarrow \forall y.P(y)$$

T: $\forall x.P(x) \land Q(a), F: \forall y.P(y)$

T: $\forall x.P(x), T: Q(a), F: \forall y.P(y)$

F: $\forall x.P(x), T: Q(a), F: P(t)$

T: $\forall x.P(x), T: Q(a), F: P(t)$

T: $\forall x.P(x), T: Q(a), F: P(t)$

Ramo chiuso \Rightarrow formula valida

Esistenziali negativi F:3

La formula

 $F:\exists x.\Phi(x)$

dice che NESSUN elemento del dominio soddisfa Φ

È sostituita con

 $F: \Phi(a), F: \exists x.\Phi(x)$

Dove a è:

- una costante nel tableau, se esiste
- una nuova costante, se non esiste alcuna

Anche in questo caso devo riportare $F : \exists x.\Phi(x)$

Il razionale è: dobbiamo verificare che ogni costante che appare nel tableau renda falsa la formula (per quello non basta una sola sostituzione e riportiamo la formula)

Esempio

```
F: \exists x.P(x) \land Q(a) \rightarrow \exists y.P(y)
T: \exists x.P(x) \land Q(a), F: \exists y.P(y)
T : \exists x.P(x), T : Q(a), F : \exists y.P(y)
                                                       \top \exists [x/t]
T: P(t), T: Q(a), F: \exists y.P(y)
                                                                    Passaggio inutile, ma posso proseguire
                                                        F ∃ [y/a]
T: P(t), T: Q(a), F: P(a), F: \exists y.P(y)
                                                            F \exists [y/t]
T: P(t), T: Q(a), F: P(a), F: P(t), F: \exists y.P(y)
```


$T \exists$	S, T $\exists x \ \phi(x)$	$\mid F \mid \exists \mid$	S, F $\exists x \ \phi(x)$
	S, T $\phi(a)$		S, $F\phi(a)$, $F \exists x \phi(x)$
$T \forall$	S, T $\forall x \ \phi(x)$	$F \forall$	S, F $\forall x \ \phi(x)$
	S, $T\phi(a)$, $T\forall x \ \phi(x)$		S, F $\phi(a)$

Importante

Se non ho usato un ordine ottimale di sostituzione,

Portarsi dietro la formula nei due casi, ci permette di fare nuove sostituzioni e chiudere il tableau

Teniamo presente che l'obiettivo è quello di far convergere il tableau ad una soluzione in cui ci sia un atomo segnato vero e falso (se esiste)

Processo del Tableau

Si applicano le regole del tableau finché non si possono applicare più

Il tableau è aperto se NON c'è una contraddizione ovvia (senza variabili)

Ogni tableau completo aperto rappresenta l'esistenza di un modello

Conseguenze

Se da F : Φ il tableau finisce con tutti i rami chiusi Φ è una tautologia

Se da T: Φ il tableau finisce con tutti i rami chiusi Φ è una contraddizione

Altrimenti, è soddisfacibile non tautologica

Credits

Rafael Penaloza: rafael.penaloza@unimib.it

Stefania Bandini: stefania.bandini@unimib.it

Ugo Moscato: <u>ugo.moscato@unimib.it</u>

Matteo Palmonari: <u>matteo.palmonari@unimib.it</u>

G Paronitti: g.paronitti@gmail.com