

Computer Vision

Image search and Bags of Visual Words

Hansung Kim h.kim@soton.ac.uk

Quiz!

Let's test Google Lens

Text Information Retrieval

The bag data structure

- * A bag is an **unordered** data structure like a *set*, but which unlike a set allows elements to be **inserted multiple times**.
 - * sometimes called a *multiset* or a *counted set*

Bag of Words

Text processing (feature extraction)

The Vector-Space Model

- Conceptually simple:
 - Model each document by a vector
 - Model each query by a vector
 - * Assumption: documents that are "close together" in space are similar in meaning.
 - Use standard similarity measures to rank each document to a query in terms of decreasing similarity

Bag of Words Vectors

- * The lexicon (vocabulary) is the **set** of all (processed) words across all documents known to the system.
- * We can create vectors for each document with as many dimensions as there are words in the lexicon.
 - * Each word in the document's bag of words contributes a count to the corresponding element of the vector for that word.
 - In essence, each vector is a histogram of the word occurrences in the respective document.
 - Vectors will have very high number of dimensions, but will be very sparse.

The Vector-space Model

Searching the VSM

Recap: Cosine Similarity

$$cos(\theta) = \frac{p.q}{\|p\| \|q\|} = \frac{\sum_{i=1}^{n} p_i q_i}{\sqrt{\sum_{i=1}^{n} p_i^2} \sqrt{\sum_{i=1}^{n} q_i^2}}$$

Recap: Cosine Similarity

If p and q are both high dimensional and sparse, then you're going spend a lot of time multiplying 0 by 0 and adding 0 to the accumulator

These can be pre-computed and stored!

Inverted Indexes

Aardvark	[doc3:4]
Astronomy	[doc1:2]
Diet	[doc2:9; doc3:8]
•••	
Movie	[doc2:10]
Star	[doc1:13; doc2:4]
Telescope	[doc1:15]

...A map of words to lists of postings...

Inverted Indexes

Aardvark	[doc3:4]
Astronomy	[doc1:2]
Diet	[doc2:9; doc3:8]
•••	
Movie	[doc2:10]
Star	[doc1:13, doc2:4]
Telescope	[doc1:15]

A **posting** is a pair formed by a **document ID** and the **number of times** the specific word appeared in that document

Computing the Cosine Similarity

- For each word in the query, lookup the relevant postings list and accumulate similarities for only the documents seen in those postings lists
 - * much more efficient than fully comparing vectors...

Aardvark	[doc3:4]
Astronomy	[doc1:2]
Diet	[doc2:9; doc3:8]
•••	
Movie	[doc2:10]
Star	[doc1:13; doc2:4]
Telescope	[doc1:15]

Accumulation table:

doc2	10x1	
------	------	--

Aardvark	[doc3:4]
Astronomy	[doc1:2]
Diet	[doc2:9; doc3:8]
• • •	
Movie	[doc2:10]
Star	[doc1:13; doc2:4]
Telescope	[doc1:15]

Accumulation table:

doc2	$10\times1+4\times1$
doc1	13×1

Aardvark	[doc3:4]
Astronomy	[doc1:2]
Diet	[doc2:9; doc3:8]
• • •	
Movie	[doc2:10]
Star	[doc1:13; doc2:4]
Telescope	[doc1:15]

Accumulation table:

doc2	$(10\times1+4\times1) / 14.04 = 0.997$
doc1	13×1 / 19.95 = 0.652
doc3	0

Aardvark	[doc3:4]
Astronomy	[doc1:2]
Diet	[doc2:9; doc3:8]
•••	
Movie	[doc2:10]
Star	[doc1:13; doc2:4]
Telescope	[doc1:15]

$$cos(\theta) = \frac{p \cdot q}{\|p\| \|q\|} = \frac{\sum_{i=1}^{n} p_i q_i}{\sqrt{\sum_{i=1}^{n} p_i^2} \sqrt{\sum_{i=1}^{n} q_i^2}}$$

Weighting the vectors

- * The number of times a word occurs in a document reflects the importance of that word in the document.
- * Intuitions:
 - * A term that appears in many documents is not important: e.g., the, going, come, ...
 - * If a term is frequent in a document and rare across other documents, it is probably important in that document.

Possible weighting schemes

- Binary weights
 - * Only presence (1) or absence (0) of a term recorded in vector.
- Raw frequency
 - Frequency of occurrence of term in document included in vector.
- * TF-IDF (term frequency-inverse document frequency)
 - Term frequency is the frequency count of a term in a document.
 - * Inverse document frequency (idf) provides high values for rare words and low values for common words.

Vector Quantisation

Learning a Vector Quantiser

- Vector quantisation is a lossy data compression technique.
- * Given a set of vectors, a technique like K-Means clustering can be used to learn a fixed size set of representative vectors.
 - The representatives are the mean vector of each cluster in k-means
 - The set of representation vectors is called a codebook

Vector Quantisation

- Vector quantisation is achieved by representing a vector by another approximate vector, which is drawn from a pool of representative vectors.
 - Each input vector is assigned to the "closest" vector from the pool.

Visual Words

SIFT Visual Words

- * We can vector quantise SIFT descriptors (or any other local feature)
 - Each descriptor is replaced by a representative vector known as a visual word
 - * In essence the *visual word* describes a small image patch with a certain pattern of pixels
 - In many ways the process of applying vector quantisation to local features is analogous to the process of stemming words.
 - The codebook is the visual equivalent of a lexicon or vocabulary.

Bags of Visual Words

- * Once we've quantised the local features into visual words, they can be put into a bag.
 - * This is a Bag of Visual Words (BoVW)
 - We're basically ignoring where in the image (position) the local features came from (including ignoring scale)

Histograms of Bags of Visual Words

- * Like in the case of text, once we have a BoVW and knowledge of the complete vocabulary (the codebook) we can build histograms of visual word occurrences!
 - * This is rather nice... it gives us a way of aggregating a variable number of local descriptors into a fixed length vector.
 - Useful for machine learning
 - But also allows us to apply techniques for text retrieval to images

Visualising Visual Words

Visualising Visual Words

The effect of codebook size

- * There is one **key parameter** in building visual words representations **the size of the vocabulary**.
 - * Too small, and all vectors look the same
 - Not distinctive
 - Too big, and the same visual words might never appear across images
 - Too distinctive

Content-based Image Retrieval

BoVW Retrieval

- With the visual word representation, everything used for text retrieval can be applied directly to images
 - vector space model
 - cosine similarity
 - weighting schemes
 - inverted index

Optimal codebook size

- * Inverted index only gives a performance gain if the vectors are sparse (you don't want to end up explicitly scoring all documents)
- Visual words also need to sufficiently distinctive to minimise mismatching
 - Implies a very big codebook
 - * Modern research systems often use 1 Million or more visual words for SIFT vectors

Problems with big codebooks

- * There's a slight problem...
 - * Need to use k-means to learn 1 million clusters in 128 dimensions from 10's of millions of features
 - Non-trivial!
 - Vector quantisation has the same problems
 - Have to use approximate methods, like approximate k-d trees

Overall process for building a BoVW retrieval system

- Collect the corpus of images that are to be indexed and made searchable
- Extract local features from each image
- * Learn a *large* codebook from (a sample of) the features
- Vector quantise the features, and build BoVW representations for each image
- Construct an inverted index with the BoVW representations

Demo: Geo-location estimation

Demo: Geo-location estimation

Advance system by Google
 https://www.google.com/imghp?hl=en

Current research

- * Lot of interest in content-based search for *massive* datasets
 - * Two directions:
 - Hashing of local features
 - Tiny features (~16 bytes per image!)
 - Local features still used as the basis, but encoded in a different way to make dense features
 - Still uses k-means, but much smaller k
 - * known as VLAD: Vector of Locally Aggregated Descriptors
 - VLAD descriptors then vector quantised using a "product quantiser"

Summary

- * Effective and efficient text search can be achieved with bags of words, the vector-space model and inverted indexes.
- Vector-quantisation can be applied to local features, making them into visual words.
 - * Then you can apply all the same techniques used for text to make efficient retrieval systems!
 - * This is a good way of making highly scalable, effective and efficient content-based image retrieval systems

Further reading

Wikipedia has good articles

- The Vector-space model http://en.wikipedia.org/wiki/Vector_space_model
- * TF-IDF: http://en.wikipedia.org/wiki/Tf-idf
- * Inverted indexes: http://en.wikipedia.org/wiki/Inverted_index
- Vector quantisation:
 http://en.wikipedia.org/wiki/Vector_quantization
- * Bag of Visual Words (and applications): http://en.wikipedia.org/wiki/Bag-of-words model in computer vision
- * The seminal paper on using visual words for retrieval is the "Video Google" paper by Josef Sivic and Andrew Zisserman from Oxford: http://web.cs.swarthmore.edu/~turnbull/cs97/f08/paper/sivic03.pdf

Practical exercises

- * Try to build your own bag-of-words representation for a set of images
 - Use K-Mean clustering
 - Use DoG-SIFT features
 - Some tips
 - https://medium.com/@aybukeyalcinerr/bag-of-visual-words-bovwdb9500331b2f
 - https://machinelearningknowledge.ai/image-classification-using-bag-of-visual-words-model/
 - Chapter 3 of the OpenIMAJ tutorial covers k-means clustering (you might want to use an approximate variant though)
 - Chapter 5 of the OpenIMAJ tutorial covers DoG-SIFT features which can be used as a basis for your visual words.
- * With your bag of words histogram representations can you find some images that are similar to each other and some that are dissimilar?

^{*} Acknowledgements: Based on earlier Computer Vision lecture slides by Dr. Jon Hare. 48