Druhá přednáška

NAIL062 Výroková a predikátová logika

 ${\sf Jakub\ Bul\'(n\ (KTIML\ MFF\ UK)}$

Zimní semestr 2025

Druhá přednáška

Program

- sémantika výrokové logiky (pokračování)
- normální formy
- vlastnosti a důsledky teorií
- extenze teorií
- algebra výroků

Materiály

Zápisky z přednášky, Sekce 2.2.5-2.5 z Kapitoly 2

Další sémantické pojmy

- výrok φ (nad \mathbb{P}) je pravdivý, tautologie, platí (v logice), $\models \varphi$, pokud platí v každém modelu, $M_{\mathbb{P}}(\varphi) = M_{\mathbb{P}}$
- lživý, sporný, pokud nemá žádný model, $M_{\mathbb{P}}(\varphi) = \emptyset$ (Být lživý není totéž, co nebýt pravdivý!)
- nezávislý, pokud platí v nějakém modelu a neplatí v nějakém jiném modelu, tj. není pravdivý ani lživý, ∅ ⊊ M_P(φ) ⊊ M_P
- splnitelný, pokud má nějaký model, tj. není lživý, $\mathsf{M}_{\mathbb{P}}(\varphi) \neq \emptyset$

výroky φ, ψ (ve stejném jazyce) jsou (logicky) ekvivalentní, $\varphi \sim \psi$, pokud mají stejné modely, tj. $\varphi \sim \psi \Leftrightarrow M_{\mathbb{P}}(\varphi) = M_{\mathbb{P}}(\psi)$

- pravdivé: \top , $p \lor q \leftrightarrow q \lor p$
- Iživé: \bot , $(p \lor q) \land (p \lor \neg q) \land \neg p$
- nezávislé, splnitelné: p, p ∧ q
- ekvivalentní: $p \to q \sim \neg p \lor q, \neg p \to (p \to q) \sim \top$

Sémantické pojmy vzhledem k teorii

relativně k dané teorii T (omezíme se na její modely):

- pravdivý/platí v T, důsledek T, $T \models \varphi$ je-li $M_{\mathbb{P}}(T) \subseteq M_{\mathbb{P}}(\varphi)$
- Iživý/sporný v T pokud $M_{\mathbb{P}}(\varphi) \cap M_{\mathbb{P}}(T) = M_{\mathbb{P}}(T, \varphi) = \emptyset$.
- nezávislý v T pokud $\emptyset \subsetneq M_{\mathbb{P}}(T,\varphi) \subsetneq M_{\mathbb{P}}(T)$,
- splnitelný v T, konzistentní s T pokud $M_{\mathbb{P}}(T,\varphi) \neq \emptyset$
- φ a ψ jsou ekvivalentní v T, T-ekvivalentní, $\varphi \sim_T \psi$ platí-li v týchž modelech T, tj. $\varphi \sim_T \psi \Leftrightarrow \mathsf{M}_{\mathbb{P}}(T, \varphi) = \mathsf{M}_{\mathbb{P}}(T, \psi)$

např. $T = \{p \lor q, \neg r\}$:

- $\neg p \lor \neg q \lor \neg r$ je v T pravdivý
- $(\neg p \land \neg q) \lor r \text{ je } \lor T \text{ lživý}$
- $p \leftrightarrow q, p \land q$ jsou v T nezávislé, splnitelné
- platí $p \sim_T p \vee r$ (ale $p \not\sim p \vee r$)

Univerzálnost logických spojek

množina logických spojek je univerzální, pokud:

- každá booleovská funkce je pravdivostní funkcí nějakého výroku vybudovaného z těchto spojek
- ekvivalentně: každá množina modelů nad konečným jazykem je množinou modelů nějakého výroku

Tvrzení: $\{\neg, \land, \lor\}$ a $\{\neg, \rightarrow\}$ jsou univerzální.

[Důkaz na příštím slidu.]

Další zajímavé logické spojky:

■ Shefferova spojka (NAND, ↑)

 $p \uparrow q \sim \neg (p \land q),$

Pierceova spojka (NOR, ↓)

 $p\downarrow q\sim \neg(p\vee q),$

■ Exclusive-OR (XOR, ⊕)

 $p \oplus q \sim (p \vee q) \wedge \neg (p \wedge q)$

např. $\{\uparrow\}$ je univerzální, $\{\land,\lor\}$ není

Důkaz, že $\{\neg, \land, \lor\}$ a $\{\neg, \rightarrow\}$ jsou univerzální

Mějme $f: \{0,1\}^n \to \{0,1\}$, resp. $M = f^{-1}[1] \subseteq \{0,1\}^n$

Pro jediný model: $\varphi_v = \text{`musím být model } v'$

- příklad: $v = (1,0,1,0) \rightsquigarrow \varphi_v = p_1 \land \neg p_2 \land p_3 \land \neg p_4$
- obecně: $v=(v_1,\ldots,v_n)$, použijeme značení $p^1=p$, $p^0=\neg p$

$$\varphi_{v} = p_{1}^{v_{1}} \wedge p_{2}^{v_{2}} \wedge \cdots \wedge p_{n}^{v_{n}} = \bigwedge_{i=1}^{n} p_{i}^{v(p_{i})} = \bigwedge_{p \in \mathbb{P}} p^{v(p)}$$

Pro více modelů: 'musím být alespoň jeden z modelů z M'

$$\varphi_M = \bigvee_{v \in M} \varphi_v = \bigvee_{v \in M} \bigwedge_{p \in \mathbb{P}} p^{v(p)}$$

Zřejmě $\mathsf{M}(\varphi_M) = M$ neboli $f_{\varphi_M,\mathbb{P}} = f$, a φ_M používá jen $\{\neg, \land, \lor\}$. Protože $p \land q \sim \neg(p \to \neg q)$ a $p \lor q \sim \neg p \to q$, mohli bychom φ_M ekvivalentně vyjádřit i pomocí $\{\neg, \to\}$.

2.3 Normální formy

CNF a DNF

- literál je prvovýrok nebo jeho negace, $\bar{\ell}$ je opačný literál k ℓ (pro pozitivní $\ell=p$ je $\bar{\ell}=\neg p$, pro negativní $\ell=\neg p$ je $\bar{\ell}=p$)
- klauzule je disjunkce literálů $C = \ell_1 \lor \ell_2 \lor \cdots \lor \ell_n$ (jednotková klauzule je samotný literál, prázdná klauzule je \bot)
- výrok je v konjunktivní normální formě (CNF) je-li konjunkcí klauzulí (prázdný CNF výrok je ⊤)
- elementární konjunkce je konjunkce literálů $E = \ell_1 \wedge \cdots \wedge \ell_n$ (jednotková el. konjunkce je samotný literál, prázdná je \top)
- výrok je v disjunktivní normální formě (DNF) je-li disjunkcí elementárních konjunkcí (prázdný DNF výrok je ±)
- $(p \lor q) \land (p \lor \neg q) \land \neg p$ je v CNF
- $\neg p \lor (p \land q)$ je v DNF
- φ_V je v CNF i DNF, φ_M je v DNF

O dualitě

zaměníme-li 0 ↔ 1, negace zůstává stejná, z ∧ se stává ∨ a naopak

- φ nad $\{\neg, \land, \lor\}$, zaměníme-li \land, \lor a znegujeme-li prvovýroky: duální $\psi \sim \neg \varphi$, modely φ jsou nemodely ψ , $f_{\psi}(\neg x) = \neg f_{\varphi}(x)$
- CNF a DNF jsou duální pojmy
- pravdivost je duální k nesplnitelnosti

Pozorování: Výrok v CNF je pravdivý, právě když každá klauzule má dvojici opačných literálů.

Duálně: Výrok v DNF je nesplnitelný, právě když každá elementární konjunkce má dvojici opačných literálů.

Převod do normální formy: sémanticky (příklad)

mějme výrok
$$\varphi=p\leftrightarrow (q\vee \neg r)$$
 jeho modely jsou $M=\{(0,0,1),(1,0,0),(1,1,0),(1,1,1)\}$ najdeme DNF a CNF výroky se stejnými modely, tj. ekvivalentní φ

konstrukce DNF: každý model popsaný jednou elem. konjunkcí
$$\varphi_{\mathrm{DNF}} = (\neg p \wedge \neg q \wedge r) \vee (p \wedge \neg q \wedge \neg r) \vee (p \wedge q \wedge \neg r) \vee (p \wedge q \wedge r)$$

konstrukce CNF: potřebujeme nemodely

$$\overline{M} = \{(0,0,0), (0,1,0), (0,1,1), (1,0,1)\}$$

každá klauzule zakáže jeden nemodel:

$$\varphi_{\mathrm{CNF}} = (p \vee q \vee r) \wedge (p \vee \neg q \vee r) \wedge (p \vee \neg q \vee \neg r) \wedge (\neg p \vee q \vee \neg r)$$

Převod do normální formy: sémanticky

Tvrzení: Buď \mathbb{P} konečný, $M \subseteq M_{\mathbb{P}}$ libovolná. Potom existují DNF a CNF výroky $\varphi_{\mathrm{DNF}}, \varphi_{\mathrm{CNF}}$, že $M = M_{\mathbb{P}}(\varphi_{\mathrm{DNF}}) = M_{\mathbb{P}}(\varphi_{\mathrm{CNF}})$.

$$\varphi_{\text{DNF}} = \bigvee_{v \in M} \bigwedge_{p \in \mathbb{P}} p^{v(p)}$$

$$\varphi_{\text{CNF}} = \bigwedge_{v \in \overline{M}} \bigvee_{p \in \mathbb{P}} \overline{p^{v(p)}} = \bigwedge_{v \notin M} \bigvee_{p \in \mathbb{P}} p^{1-v(p)}$$

Důkaz: $\varphi_{\mathrm{DNF}} = \varphi_{M}$ říká 'jsem jeden z modelů z M'

 $arphi_{
m CNF}$ říká 'nejsem žádný z nemodelů z M', je duální k $arphi_{
m DNF}' = arphi_{\overline{M}}$ pro doplněk M, nebo přímo: modely klauzule $C_v = \bigvee_{p \in \mathbb{P}} p^{1-v(p)}$ jsou $M_C = M_{\mathbb{P}} \setminus \{v\}$, tedy každá klauzule zakáže jeden nemodel \square

Důsledek: Každý výrok (v libovolném, i nekonečném jazyce \mathbb{P}) je ekvivalentní nějakému výroku v CNF a nějakému výroku v DNF.

Důkaz: použijeme konečný jazyk $\mathbb{P}' = \text{Var}(\varphi)$, $M = M_{\mathbb{P}'}(\varphi)$

Převod do normální formy: syntakticky

Hledat všechny modely je neefektivní, lze i syntakticky pomocí ekvivalentních úprav.

Pozorování: Nahradíme-li podvýrok ψ výroku φ ekvivalentním ψ' , výsledný výrok φ' je také ekvivalentní φ .

Postup úprav:

- 1. přepiš ekvivalenci a implikaci pomocí ¬, ∧, ∨
- přesuň negace dolů (k listům) ve stromu výroku pomocí de Morganových pravidel, odstraň dvojité negace
- 3. přesuň dolů disjunkce (pro CNF) resp. konjunkce (pro DNF) pomocí distributivity \land a \lor
- 4. případně zjednoduš (odstranění duplicit, tautologií apod.)

Důkaz, že funguje: indukcí dle struktury výroku

Převod do normální formy: syntakticky (příklad)

$$\varphi = p \leftrightarrow (q \lor \neg r)$$

přepsat ekvivalence a implikace

$$p \leftrightarrow (q \lor \neg r) \sim (p \rightarrow (q \lor \neg r)) \land ((q \lor \neg r) \rightarrow p) \ \sim (\neg p \lor q \lor \neg r) \land (\neg (q \lor \neg r) \lor p)$$

negace dolů

$$(\neg p \lor q \lor \neg r) \land ((\neg q \land r) \lor p)$$

do CNF (+ seřadíme prvovýroky v klauzulích)

$$(\neg p \lor q \lor \neg r) \land (p \lor \neg q) \land (p \lor r)$$

do DNF (+ zjednodušení)

$$(\neg p \land \neg q \land r) \lor (p \land q \land r) \lor (p \land \neg r)$$

Ekvivalentní úpravy

Implikace a ekvivalence:

$$\varphi \to \psi \sim \neg \varphi \lor \psi$$
$$\varphi \leftrightarrow \psi \sim (\neg \varphi \lor \psi) \land (\neg \psi \lor \varphi)$$

Negace:

$$\neg(\varphi \land \psi) \sim \neg \varphi \lor \neg \psi$$
$$\neg(\varphi \lor \psi) \sim \neg \varphi \land \neg \psi$$
$$\neg \neg \varphi \sim \varphi$$

Konjunkce (převod do DNF):

$$\varphi \wedge (\psi \vee \chi) \sim (\varphi \wedge \psi) \vee (\varphi \wedge \chi)$$
$$(\varphi \vee \psi) \wedge \chi \sim (\varphi \wedge \chi) \vee (\psi \wedge \chi)$$

Disjunkce (převod do CNF):

$$\varphi \lor (\psi \land \chi) \sim (\varphi \lor \psi) \land (\varphi \lor \chi)$$
$$(\varphi \land \psi) \lor \chi \sim (\varphi \lor \chi) \land (\psi \lor \chi)$$

2.4 Vlastnosti a důsledky teorií

Vlastnosti teorií

- sporná: $T \models \bot$, ekvivalentně: nemá model, platí v ní vše
- bezesporná (splnitelná): není sporná, tj. má model
- kompletní: bezesporná + každý výrok je v ní pravdivý nebo lživý (nemá nezávislé výroky), ekvivalentně: právě jeden model
- ekvivalence teorií: $T \sim T'$ právě když $M_{\mathbb{P}}(T) = M_{\mathbb{P}}(T')$ (různé *axiomatizace* týchž vlastností)
- $T_1 = \{p, p \rightarrow q, \neg q\}$ je sporná
- $T_2 = \{p \lor q, r\}$ je bezesporná, ale není kompletní, např. $p \land q$ je v ní nezávislý: platí v modelu (1, 1, 1), neplatí v (1, 0, 1)
- $T_2 \cup \{\neg p\}$ je kompletní, jediným modelem je (0,1,1).
- ekvivalentní teorie: $\{p \rightarrow q, r\} \sim \{(\neg p \lor q) \land r\}$

Důsledky teorií

Buď T teorie v jazyce \mathbb{P} . Množina všech důsledků T v jazyce \mathbb{P}' :

$$\mathsf{Csq}_{\mathbb{P}'}(T) = \{ \varphi \in \mathsf{VF}_{\mathbb{P}'} \mid T \models \varphi \}$$

 $\mathsf{pokud} \ \mathbb{P}' = \mathbb{P} \colon \mathsf{Csq}_{\mathbb{P}}(T) = \{ \varphi \in \mathsf{VF}_{\mathbb{P}} \mid \mathsf{M}_{\mathbb{P}}(T) \subseteq \mathsf{M}_{\mathbb{P}}(\varphi) \}$

Tvrzení: Jsou-li T, T' teorie a $\varphi, \varphi_1, \dots, \varphi_n$ výroky v jazyce \mathbb{P} :

- (i) $T \subseteq \mathsf{Csq}_{\mathbb{P}}(T)$
- $\mathsf{(ii)} \; \; \mathsf{Csq}_{\mathbb{P}}(\mathsf{\mathit{T}}) = \mathsf{Csq}_{\mathbb{P}}(\mathsf{Csq}_{\mathbb{P}}(\mathsf{\mathit{T}}))$
- (iii) pokud $T \subseteq T'$, potom $\mathsf{Csq}_{\mathbb{P}}(T) \subseteq \mathsf{Csq}_{\mathbb{P}}(T')$
- (iv) $\varphi \in \mathsf{Csq}_{\mathbb{P}}(\{\varphi_1, \dots, \varphi_n\})$ právě když $\models (\varphi_1 \land \dots \land \varphi_n) \to \varphi$

Důkaz: snadný, použijte následující:

- M(Csq(T)) = M(T)
- je-li $T \subseteq T'$ potom $M(T) \supseteq M(T')$
- $\models \psi \rightarrow \varphi$ právě když $\mathsf{M}(\psi) \subseteq \mathsf{M}(\varphi)$

Extenze teorií: neformálně

Extenze teorie T je jakákoliv teorie, která splňuje vše, co platí v T

- dodatečné požadavky o systému: jednoduchá extenze
- přidání nových částí k systému (a v původním platí totéž, co předtím): konzervativní extenze

Úvodní příklad o barvení grafů:

- T₃ (úplná obarvení s hranovou podmínkou) je jednoduchou extenzí teorie T₁ (částečná obarvení bez ohledu na hrany)
- T'₃ (přidání nového vrcholu) je konzervativní, ale ne jednoduchou extenzí T₃
- T_3' je extenze T_1 , která není ani jednoduchá, ani konzervativní

Extenze teorií: formálně

Buď T v jazyce \mathbb{P} . Extenze teorie T je libovolná teorie T' v jazyce $\mathbb{P}' \supseteq \mathbb{P}$ splňující $\mathsf{Csq}_{\mathbb{P}}(T) \subseteq \mathsf{Csq}_{\mathbb{P}'}(T')$,

- jednoduchá: $\mathbb{P}' = \mathbb{P}$
- $\bullet \ \ \, \mathsf{konzervativn\'i:} \ \, \mathsf{Csq}_{\mathbb{P}}(\mathit{T}') = \mathsf{Csq}_{\mathbb{P}}(\mathit{T}') = \mathsf{Csq}_{\mathbb{P}'}(\mathit{T}') \cap \mathsf{VF}_{\mathbb{P}}$

"nové důsledky musí obsahovat nové prvovýroky"

Pozorování:

- 1. T' je jednoduchá extenze T, právě když $\mathbb{P}'=\mathbb{P}$ a $\mathsf{M}_{\mathbb{P}}(T')\subseteq \mathsf{M}_{\mathbb{P}}(T)$
- 2. T' je extenze T, právě když $M_{\mathbb{P}'}(T')\subseteq M_{\mathbb{P}'}(T)$. Tj. restrikce modelů T' na \mathbb{P} musí být modely $T\colon \{v\!\upharpoonright_{\mathbb{P}}\mid v\in M_{\mathbb{P}'}(T')\}\subseteq M_{\mathbb{P}}(T)$
- 3. T' je konzervativní extenze T, je-li to extenze a navíc každý model T lze expandovat na model T' (tj. každý model T získáme restrikcí $n\check{e}_{j}ak\acute{e}ho$ modelu T' na jazyk \mathbb{P}): $\{v \mid_{\mathbb{P}} \mid v \in M_{\mathbb{P}'}(T')\} = M_{\mathbb{P}}(T)$
- 4. T' je extenze T a zároveň T je extenze T', právě když $T \sim T'$
- 5. Kompletní jednoduché extenze T odpovídají modelům T (až na \sim)

Extenze teorií: příklad

- mějme $T = \{p \to q\}$ v jazyce $\mathbb{P} = \{p, q\}$, teorie $T_1 = \{p \land q\}$ v jazyce \mathbb{P} je jednoduchá extenze $T \colon \mathsf{M}_{\mathbb{P}}(T_1) \subseteq \mathsf{M}_{\mathbb{P}}(T)$
- T_1 je kompletní, až na ekvivalenci všechny jednoduché kompletní extenze T jsou: T_1 , $T_2 = \{\neg p, q\}$, a $T_3 = \{\neg p, \neg q\}$
- teorie $T' = \{p \leftrightarrow (q \land r)\} \lor \mathbb{P}' = \{p, q, r\}$ je extenzí teorie T: $\mathbb{P} \subseteq \mathbb{P}'$ a $\mathsf{M}_{\mathbb{P}'}(T') \subseteq \mathsf{M}_{\mathbb{P}'}(T)$, restrikce modelů T' na \mathbb{P} jsou $\{(0,0),(0,1),(1,1)\} \subseteq \mathsf{M}_{\mathbb{P}}(T)$
- protože dokonce $\{(0,0),(0,1),(1,1)\}=M_{\mathbb{P}}(T)$, každý model T lze rozšířit na model T', T' je konzervativní extenze T
- každý výrok v jazyce $\mathbb P$ platí v T, právě když platí v T', ale výrok $p \to r$ je novým důsledkem: platí v T' ale ne v T
- teorie $T'' = \{ \neg p \lor q, \neg q \lor r, \neg r \lor p \}$ v jazyce \mathbb{P}' je extenze T, ale není konzervativní, neboť v ní platí $p \leftrightarrow q$, což neplatí v T (nebo proto, že model (0,1) teorie T nelze rozšířit na model teorie T'')

2.5 Algebra výroků

Výroky až na ekvivalenci

Kolik existuje výroků nad $\mathbb{P} = \{p, q, r\}$? Nekonečně mnoho. Až na ekvivalenci? Tolik, kolik je možných množin modelů: $2^{2^3} = 256$.

Výroky až na ekvivalenci studujeme pomocí jejich množin modelů.

Ekvivalenční třídy: VF_P/\sim , např. $[p \to q]_\sim = \{p \to q, \neg p \lor q, \dots\}$

Přiřazení modelů: $h: V^{F_{\mathbb{P}}}/\sim \mathcal{P}(M_{\mathbb{P}})$ definované $h([\varphi]_{\sim}) = M(\varphi)$ (je dobře definované, prosté, pro konečný jazyk bijekce)

Na $VF_{\mathbb{P}}/\sim$ zavedeme operace \neg, \land, \lor pomocí reprezentantů:

$$\neg [\varphi]_{\sim} = [\neg \varphi]_{\sim}$$
$$[\varphi]_{\sim} \wedge [\psi]_{\sim} = [\varphi \wedge \psi]_{\sim}$$
$$[\varphi]_{\sim} \vee [\psi]_{\sim} = [\varphi \vee \psi]_{\sim}$$

přidáme konstanty $\bot = [\bot]_{\sim}, \top = [\top]_{\sim}$, máme *Booleovu algebru*: algebru výroků jazyka \mathbb{P} ; totéž relativně k teorii T (použijeme \sim_T)

Algebra výroků

Algebra výroků jazyka \mathbb{P} resp. teorie T:

$$\begin{aligned} \textbf{AV}_{\mathbb{P}} &= \left< \,^{\mathsf{VF}_{\mathbb{P}}} \middle/ \,^{\sim}; \,^{\neg}, \wedge, \vee, \bot, \top \right> \\ \textbf{AV}_{\mathbb{P}}(T) &= \left< \,^{\mathsf{VF}_{\mathbb{P}}} \middle/ \,^{\sim_{\mathcal{T}}}; \,^{\neg}_{\mathcal{T}}, \wedge_{\mathcal{T}}, \vee_{\mathcal{T}}, \bot_{\mathcal{T}}, \top_{\mathcal{T}} \right> \end{aligned}$$

přiřazení modelů h je prosté zobrazení algebry výroků jazyka do potenční algebry $\mathcal{P}(M_{\mathbb{P}}) = \langle \mathcal{P}(M_{\mathbb{P}}); \overline{}, \cap, \cup, \emptyset, M_{\mathbb{P}} \rangle$ zachovávající operace a konstanty: $h(\bot) = \emptyset$, $h(\top) = M_{\mathbb{P}}$, a

$$h(\neg[\varphi]_{\sim}) = \overline{h([\varphi]_{\sim})} = \overline{\mathsf{M}(\varphi)} = \mathsf{M}_{\mathbb{P}} \setminus \mathsf{M}(\varphi)$$
$$h([\varphi]_{\sim} \land [\psi]_{\sim}) = h([\varphi]_{\sim}) \cap h([\psi]_{\sim}) = \mathsf{M}(\varphi) \cap \mathsf{M}(\psi)$$
$$h([\varphi]_{\sim} \lor [\psi]_{\sim}) = h([\varphi]_{\sim}) \cup h([\psi]_{\sim}) = \mathsf{M}(\varphi) \cup \mathsf{M}(\psi)$$

tj. je to homomorfismus Booleových algeber, a nad konečným jazykem bijekce, tzv. izomorfismus; stejně pro algebru výroků teorie **Důsledek:** Pro bezespornou teorii T nad konečným jazykem $\mathbb P$ je algebra výroků $\mathbf{AV}_{\mathbb P}(T)$ izomorfní potenční algebře $\mathcal P(\mathsf{M}_{\mathbb P}(T))$ prostřednictvím zobrazení $h([\varphi]_{\sim_T}) = M(T,\varphi)$.

Počítání až na ekvivalenci

Tvrzení: Mějme n-prvkový jazyk \mathbb{P} a bezespornou teorii T mající právě k modelů. Potom v jazyce \mathbb{P} existuje až na ekvivalenci:

- 2^{2ⁿ} výroků (resp. teorií),
- 2^{2^n-k} výroků pravdivých (resp. lživých) v T,
- $2^{2^n} 2 \cdot 2^{2^n k}$ výroků nezávislých v T,
- 2^k jednoduchých extenzí teorie T (z toho 1 sporná),
- k kompletních jednoduchých extenzí T.

Dále až na *T*-ekvivalenci existuje:

- 2^k výroků,
- 1 výrok pravdivý v T, 1 lživý v T,
- 2^k − 2 výroků nezávislých v T.

Důkaz: stačí spočítat možné množiny modelů