توابع مختلط دكتر رضي

پرهام طالبيان

۳۰ مهر ۱۴۰۳

فهرست مطالب

٣																																(زی	يادآور	١
٣			•	•							•		•		•													ط	بتل	خ	د ه	عدا	1	1.1	
٣			•	•																						ھا	، ر	ژگو	وي		١.	١.١			
۵			•	•																		(ىان	ئوه	آرگ	یا	ىلە	ناس	ش		۲.	١.١	١		
۶																							لط	خت	مح	دد	ع	ان	تو		٣.	١.١	1		
۶																													(گی	سايا	همى	3	۲.۱	
٧																													نی	رو	ه د	قط	ذ	٣.١	
٧																													باز	عه	موء	مجہ	3	4.1	
٧																								(جی	عار	، خ	طه	نق		١.	۴.۱			
٧																									ی	رز	، م	طه	نق		۲.	۴.۱	1		
٧																													ی	عد	- 4	قط	ز	۵.۱	
٧																												ىتە	بس	عه	مود	مجہ	3	۶.۱	
٧																											ے	وعا	عمو	بح	ار ه	بست	٠	٧.١	
٨																							فته	یاه	عه	وس	. تر	لط	خت	م	حه	صف	,	٨.١	
٩	•	•					•		•	•	•	•	•	•	•				•			•					1	تلو	خ	، م	ىت	کاث	ذ	٩.١	
١٠																																ەم	د	فصل	۲
١.											_		_		_					_		_	_				_	_		_		ر ر حد	-	1.7	•
١١																																.10.4	,	7.7	
١١																														_				۳.۲	
۱۲																												-		_				4.7	
۱۲																																معاد		۵.۲	
14																																معاد		۶.۲	
14																																ىسى نابع		٧.٢	
۱۵																																عبے قط		۸.۲	
10																													_			ى نابع		9.7	
10																																		17	
١ω	•	•	•	•	•	•	٠	•	٠	٠	•		بی	ص	ے و	سر	ماي	ر د	۰	ی	س	\mathcal{I}	ځ '	ںب	ی ر	٠,٠	ر ر	ارک	ىس	ڡؠ	ه د	رابط)	1 * . 1	

18																						تى	اما	ىقد	ع ه	تواب	١	١.٢	
18																				یی	ما	ع ذ	تاب	١	۱۱.	١.٢			
18																(ایے	ما	ع ذ	ناب	ا ر	وآص	خو	۲	۱.۱	١.٢			
۱٧																		(تی	نلثا	من	بع	توا	٣	۱.۱	١.٢			
۱٧															(اتح	ثلث	ما	ع	نواب	ر	واص	خو	۴	۱.۱	١.٢			
۱٧																	ک	لي	بو	یپر	ھ	بع	توا	۵	٠١,	١.٢			
١٨													(بک	إلي	ربو	ایپ	ھ	ع	نواب	ر	واص	خو	۶	۱۱'	١.٢			
١٨																			p	ريت	گا	ع ا	تاب	٧	۱.۱	١.٢			
۲.	•																	(ری	ئسر	5 ,	ایی	نم	٨	٠١,	١.٢			
۲.			•	•	•	•			•	•	•		•					•					طی	خد	يل	تبد	١	۲.۲	
77																										,	jI,	انتگ	٣
77																				ائ	کم	ىا 7	ته	،س	يىد			١.٣	
77																										منح		۲.۳	
۲۳																									_			٣.٣	
۲۳																				_	_				_			۴.۳	

فصل ۱ یادآوری

١.١ اعداد مختلط

فرض كنيد

$$\mathbb{R} = \mathbb{R} \times \mathbb{R} = \{(x, y), x, y \in \mathbb{R}\}\$$

حاصلضرب دکارتی اعداد حقیقی باشد در اینصورت مجموعه اعداد مختلط که با $\mathbb C$ نمایش داده می شود عبارت از $\mathbb R^2$ به همراه اعمال جبری زیر:

١. عمل جمع

$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$$

۲. عمل ضرب

$$(x_1, y_1) \times (x_2, y_2) = (x_1x_2 - y_1y_2, x_1y_2 + y_1x_2)$$

٣. عمل ضرب اسكالر

$$\alpha(x,y) = (\alpha x, \alpha y), \ \alpha \in \mathbb{R}$$

$$\mathbb{C} = \{x + iy, x, y \in \mathbb{R}; i^2 = -1\}$$

١.١.١ ويژگي ها

۱. هر دو عدد مختلط یک زوج مرتب
$$Z=(x,y)$$
 میباشد که

$$x = Re(Z)$$
 $y = Im(z)$

۲. برای هر عدد مختلط Z = (x,y) قدرمطلق Z به صورت زیر تعریف میشود

$$|Z| = \sqrt{x^2 + y^2}$$

۳. مزدوج عدد مختلط $ar{z}$, Z=(x,y) به صورت زیر تعریف می شود

$$\bar{z} = (x, -y)$$

 $z\bar{z}=|z|^2$ داریم: z عدد مختلط .۴

ه. قسمت حقیقی و موهومی عدد مختلط z=x+iy بر حسب $ar{z}$ و $ar{z}$ به صورت زیر است

$$x = \frac{z + \bar{z}}{2} \qquad y = \frac{z - \bar{z}}{2i}$$

است به صورت زیر است .۶

$$\frac{z_1}{z_2} = \frac{z_1 \bar{z}_2}{z_2 \bar{z}_2} = \frac{z_1 \bar{z}_2}{|z_2|^2} = \left(\frac{x_1 x_2 + y_1 y_2}{x_2^2 + y_2^2}, \frac{x_2 y_1 - x_1 y_2}{x_1^2 + x_2^2}\right)$$

بین اعداد مختلط و زیر مجموعه ماتریس ها تناظر یک به یک به صورت زیر برقرار است.

$$a + ib \Leftrightarrow \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$$

اگر $a+ib \neq 0$ آنگاه

$$a+ib \Leftrightarrow \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \Leftrightarrow \sqrt{a^2+b^2} \begin{pmatrix} \frac{a}{\sqrt{a^2+b^2}} & \frac{-b}{\sqrt{a^2+b^2}} \\ \frac{b}{\sqrt{a^2+b^2}} & \frac{a}{\sqrt{a^2+b^2}} \end{pmatrix}$$

$$= \sqrt{a^2 + b^2} \begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix} \Leftrightarrow |a + ib| \exp^{i\phi}$$

که شامل یک دوران با اندازه ϕ حول مبدا و یک تجانس با ضریب $\sqrt{a^2+b^2}$ میباشد. همچنین برای ضرب در عدد مختلط هم ارزی های زیر را داریم:

$$(a+ib) \times (x+iy) \Leftrightarrow \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \times \begin{pmatrix} x \\ y \end{pmatrix} \Leftrightarrow \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \times \begin{pmatrix} x & -y \\ y & x \end{pmatrix}$$

مثال: فرض کنید z_2 ، z_2 اعداد مختلط ثابتی باشند. مکان هندسی z_2 و z_1 ، z_2 اعداد مختلط ثابتی باشند. مکان هندسی شخص کنید.

$$\left|\frac{z-z_1}{z-z_2}\right|^2 = k^2 \Leftrightarrow \left(\frac{z-z_1}{z-z_2}\right) \left(\frac{\bar{z}-\bar{z_1}}{\bar{z}-\bar{z_2}}\right) = k^2$$

 $\Leftrightarrow (k^2 - 1)z\bar{z} + (z_1 - k^2z_2)\bar{z} + (\bar{z_1} - k^2\bar{z_2})z - z_1\bar{z_1} + k^2z_2\bar{z_2} = 0$

اگر $k \neq 1$ آنگاه معادله فوق معادله یک دایره است که توسط رابطه زیر مشخص می شود

$$|z - \frac{z_1 - k^2 z_2}{1 - k^2}| = \frac{k}{|1 - k^2|} |z_1 - z_2|, \ z_1 \neq z_2$$

k=1 اگر

$$(z_1 - z_2)\bar{z} + (\bar{z_1} - \bar{z_2})z - z_1\bar{z_1} + z_2\bar{z_2} = 0 \Leftrightarrow |z - z_1| = |z - z_2|$$

که معادله عمود منصف خطی است که z_1 را به z_2 وصل می کند. نکته: دو بردار z_1 را موازی گویند هر گاه عدد حقیقی غیر صفر z_2 وجود داشته باشد

$$z_1 = kz_2 \Leftrightarrow z_1\bar{z_2} = k|z_2|^2 \Rightarrow Im\{z_1\bar{z_2}\} = 0$$

دو بردار z_1 و جود داشته باشد اگر و تنها اگر عدد حقیقی غیر صفر k وجود داشته باشد $z_1 = k z_2 e^{i\frac{\pi}{2}}$ بطوریکه

۲.۱.۱ شناسه با آرگومان

اندازه ای از زاویه θ که بردار غیر صفر z با محور حقیقی مثبت میسازد یک شناسه یا آرگومان نامیده می شود و با $\arg z$ نامیده می شود

$$\cos(\arg z) = \frac{Re\{z\}}{|z|}$$
 $\sin(\arg z) = \frac{Im\{z\}}{|z|}$

ا برای مقدار مشخص و منحصر به فرد از Argz

$$-\pi < \arg z \le \pi \quad or \quad 0 \le \arg z < 2\pi$$

به کار میبریم این مقدار θ به مقدار اصلی شناسه مرسوم است. θ داریم عدد حقیقی θ داریم

$$e^{i\theta} = \cos\theta + i\sin\theta$$

 $e^{iz} = \cos z + i \sin z$ برای عدد مختلط z نیز برابر است یعنی نمایش قطبی اعداد مختلط:

$$z = x + iy = |z|(\cos(Argz) + i\sin(Argz)) = r(\cos]\theta + i\sin\theta) = |z|e^{iArgz} = re^{i\theta}$$

٣.١.١ توان عدد مختلط

برای عدد مختلط غیر صفر $z=x+iy=r(\cos\theta+i\sin\theta)$ توان n ام به فرمول دموآر مدوف است به صورت زیر داریم

$$z^n = r^n(\cos n\theta + i\sin n\theta) = r^n \exp^{in\theta}, n \in \mathbb{Z}$$

مثال: مقدار $(1-i)^{16}$ را بدست آورید.

$$1 - i = \sqrt{1^2 + (-1)^2} e^{i(-\frac{\pi}{4})} = \sqrt{2} e^{i(-\frac{\pi}{4})}$$

$$z^{n} = r^{n}(\cos n\theta + i\sin n\theta) \Rightarrow (1-i)^{16} = \sqrt{2}^{16}(\cos(-\frac{-16\pi}{4}) + i\sin(-\frac{-16\pi}{4})) = 2^{8}(1+0i) = 2^{8}$$

ريشه عدد مختلط

 $w^n=z$ عدد مختلط $z=re^{i\theta}=r(\cos\theta_0+i\sin\theta_0)$ $z=re^{i\theta}=r(\cos\theta_0+i\sin\theta_0)$ $w=\sqrt[n]{r}(\cos\frac{2k\pi+\theta_0}{n}+i\sin\frac{2k\pi+\theta_0}{n}); k=0,1,2,\ldots,n-1$. مثال: ریشه معادله $z^4=1+i=\sqrt{2}(\cos(\frac{\pi}{4})+i\sin(\frac{\pi}{4}))$ $z=\sqrt[8]{2}(\cos\frac{2k\pi+\frac{\pi}{4}}{4}+i\sin\frac{2k\pi+\frac{\pi}{4}}{4}); k=0,1,2,3$

$$z_0 = \sqrt[8]{2}(\cos\frac{\pi}{16} + i\sin\frac{\pi}{16})$$

$$z_1 = (\cos\frac{2\pi + \frac{\pi}{4}}{4} + i\sin\frac{2\pi + \frac{\pi}{4}}{4}) = \sqrt[8]{2}(\cos\frac{\pi}{2} + \frac{\pi}{16} + i\sin\frac{\pi}{2} + \frac{\pi}{16})$$

$$z_2 = z_3$$

۲.۱ همسایگی

یک همسایگی عدد حقیقی x_0 فاصله ای به شکل (x_0-r,x_0+r) است که r یک عدد حقیقی و مثبت است.

$$N_r(x_0) = \{x \in \mathbb{R}; |x - x_0| < r\} \subseteq \mathbb{R}$$

۳.۱ نقطه درونی

S نقطه درونی z_0 را نقطه درونی $S\subseteq\mathbb{C}$ گوییم هر گاه همسایگی از z_0 داشته باشد که درون است.

۴.۱ مجموعه باز

مجموعه $S\subseteq\mathbb{C}$ را باز گوییم هرگاه دو نقطه آن درونی باشد.

1.۴.۱ نقطه خارجی

نباشد. z_0 را نقطه خارجی $S\subseteq\mathbb{C}$ گوییم هرگاه یک همسایگی z_0 در مجموعه نباشد.

۲.۴.۱ نقطه مرزی

نقطه z_0 را نقطه مرزی مجموعه $S\subseteq\mathbb{C}$ گوییم هرگاه نه نقطه داخلی و نه نقطه خارجی باشد.

۵.۱ نقطه حدی

نقطه z_0 را نقطه حدی $S\subseteq\mathbb{C}$ گوییم هرگاه

$$\forall r > 0 \quad N_r(z_0) \cap S \setminus \{z_0\} \neq \emptyset$$

۶.۱ مجموعه بسته

مجموعه $S\subseteq\mathbb{C}$ بسته است هرگاه شامل همه نقاط حدی اش باشد.

۷.۱ بستار مجموعه

بستار مجموعه $S\subseteq \mathbb{C}$ را با $ar{S}$ نمایش می دهند و شامل نقاط S و نقاط حدی S است.

٨.١ صفحه مختلط توسعه يافته

$$\mathbb{C}^\star = \mathbb{C} \cup \{\mp\infty\}$$

$$\lim_{z \to z_0} f(z) = w_0 \quad \text{im}_{z \to z_0} f(z) = w_0$$

$$\lim_{z \to \infty} f(z) = w_0$$

$$\lim_{z \to \infty} f(z) = w_0$$

$$\forall \epsilon > 0 \quad \exists \delta > 0 \quad \forall (\frac{1}{|z|} < \delta) \Rightarrow |f(z) - w_0| < \epsilon)$$

$$\lim_{z \to \infty} f(z) = w_0$$

$$\lim_{z \to z_0} f(z) = \infty$$

$$\lim_{z \to z_0} f(z) = 0$$

$$\lim_{z \to z_0} f(z) = w_0$$

$$\lim_{z \to z_0} f(z) = w_0$$

$$\lim_{z \to \infty} f(z) = w_0$$

$$\lim_{z \to \infty} f(z) = w_0$$

$$\lim_{z \to \infty} f(z) = \infty \Leftrightarrow \lim_{z \to 0} f(\frac{1}{z}) = w_0$$

$$\lim_{z \to \infty} f(z) = \infty \Leftrightarrow \lim_{z \to 0} f(\frac{1}{z}) = 0$$

$$\lim_{z \to \infty} f(z) = \infty \Leftrightarrow \lim_{z \to 0} f(\frac{1}{z}) = 0$$

$$\lim_{z \to \infty} f(z) = \infty \Leftrightarrow \lim_{z \to 0} f(\frac{1}{z}) = 0$$

٩.١ نگاشت مختلط

فرض کنید S یک مجموعه باشد تابع مختلط w را از متغیر های z=x=iy به صورت $f:S\subseteq\mathbb{C}\to\mathbb{C}$

$$w = f(z) = u(x, y) + iv(x, y)$$

 $q:S\subseteq\mathbb{R}\to\mathbb{C}$

$$w = g(t) = x(t) + iy(t) = (x(t), y(t))$$

نمایش می دهیم. تابع w=f(z) تک کقداری است اگر به ازای هر مقدار از z در حوزه تعریف S یک و تنها یک مقدار به w نسبت داده می شود.

ریست. $w = f(z) = z^2$ تک مقداریست.

تک مقداری است. Arg(z) تک مقداری است.

تک مقداریست. $Im\{z\}$, $Re\{z\}$, |z| .۳

x تعریف: تابع w=f(z) چند مقداری است اگر برای بعضی یا تمام مقادیر w=f(z) در حوزه تعریف مقادیر مختلفی به w نسبت داده شود.

$$w=f(z)=z^{rac{1}{2}}\qquad f:\mathbb{C} o\mathbb{C}$$
 تابع .۱

$$z = i$$
 $(i)^{\frac{1}{2}} = \mp \frac{\sqrt{2}}{2}(1 + i1)$

 $\arg z = 2k\pi + Argz, \quad k = 0, \mp 1, \mp 2, \ldots$ د تابع چند مقداری $K \in \mathbb{Z}$ تابع چند مقداری ۲

فصل ۲

فصل دوم

١.٢ حد

فرض کنید تابع w=f(z) در همه نقاط z از یک همسایگی محذوف z تعریف شده باشد حد تابع w=f(z) در نقطه z_0 را با نماد

$$\lim_{z \to z_0} f(z) = w_0$$

نمایش می دهیم و بدان معنی است که

$$\forall \epsilon > 0, \exists \delta > 0, \forall z > 0 (|z - z_0| < \delta \Rightarrow |f(z) - w_0| < \epsilon)$$

نکته: وقتی که $z \to z_0$ ممکن است z در امتداد مسیر های مختلف به z_0 نزدیک شود در صورت وجود حد ، حاصل تمامی حدود باهم برابر هستند. مثال: ثابت کنید نگاشت f(z) = Argz روی قسمتم منفی محور حقیقی حد ندارد.

 $z_0\in(-\infty,0)$ کنید فرض کنید

$$z_n = z_0 + \frac{i}{n} \quad ; \quad z' = z - \frac{i}{n}$$

$$f(z_n) = Arg(z_n) = \arctan(\frac{1}{nz_0}) = n$$

$$f(z'_n) = Arg(Z'_n) = \arctan(\frac{-1}{nz_0}) = -\arctan(\frac{1}{nz_0}) = -n$$

۲.۲ پیوستگی

تابع $S \subseteq \mathbb{C} \to \mathbb{C}$ در نقطه z_0 ییوسته است هرگاه

$$\lim_{z \to z_0} f(z) = f(z_0)$$

مثال: پیوستگی تابع زیر را در $z_0 = (0,0)$ را بررسی کنید.

$$f(z) = \begin{cases} \frac{\bar{z}}{z} & z \neq (0,0) \\ 1 & z = (0,0) \end{cases}$$

$$\lim_{z \to (0,0)} f(z) = \lim_{y \to 0} \frac{-iy}{iy} = -1$$

$$\lim_{z \to (0,0)} f(z) = \lim_{x \to 0} \frac{x}{x} = 1$$

حد نداريم.

• روش دوم(قطبی):

$$x = r\cos\theta, y = r\sin\theta$$

$$\lim_{z \to (0,0)} f(z) = \lim_{r \to 0} \frac{r(\cos\theta - i\sin)}{r(\cos\theta + i\sin\theta)} = \lim_{r \to 0} \frac{(\cos\theta - i\sin)}{(\cos\theta + i\sin\theta)} = \frac{(\cos\theta - i\sin)}{(\cos\theta + i\sin\theta)}$$
حد ندارد.

٣.٢ پيوستگي پکنواخت

تابع w=f(z) را در ناحیه $\mathbb R$ پیوسته یکنواخت می گوییم

$$\forall \epsilon > 0 \quad \exists \delta > 0 \quad \forall z_1, z_2(|z_1 - z_2| < \delta \Rightarrow |f(z_1) - f(z_2)| < \epsilon)$$

مثال: تابع $R=\{z\in\mathbb{C}; 0<|z|<1\}$ روی مجموعه مجموعه وی مجموعه نیست.

مثال: تابع $f(z)=rac{1}{z}$ روی مجموعه

$$R_{\eta} = \{ z \in \mathbb{C}; |z| \ge \eta, \eta > 0 \}$$

پيوسته يكنواخت هست.

۴.۲ مشتق

فرض کنید تابع f(z)=w را در دامنه $D\subseteq\mathbb{C}$ دراین صورت مشتق f(z)=w در نقطه z_0 که آن را با رض کنید تابع f(z)=w با صورت زیر تعریف می شود.

$$f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

مثال: نشان دهید تابع z=z در صفحه مختلط مشتق پذیر نیست. z=x+iy , $z_0=x_0+iy_0$ درض کنید $z_0\in\mathbb{C}$ دلخواه باشد

$$f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = \lim_{z \to z_0} \frac{\bar{z} - \bar{z_0}}{z - z_0}$$

$$\stackrel{x=x_0,z=x_0+iy}{=} \lim_{y \to y_0} \frac{x_0-iy-x_0+iy_0}{x_0-iy-x_0-iy_0} = \lim_{z \to z_0} \frac{-iy+iy_0}{iy-iy_0} = -1$$

$$\lim_{z \to z_0} \frac{\bar{z} - \bar{z_0}}{z - z_0} \stackrel{y = y_0, z = x + iy_0}{=} \lim_{x \to x_0} \frac{x - iy_0 - x_0 + iy_0}{x - iy_0 - x_0 - iy_0} = \lim_{x \to x_0} \frac{x - x_0}{x - x_0} = 1$$

۵.۲ معادلات کشی_ریمان

تابع $z_0=x_0+iy_0$ در نقطه w=f(z)=u(x,y)+iv(x,y) تابع w=f(z)=u(x,y)+iv(x,y) در نقطه زیر برقرار است.

$$\begin{cases} \frac{\partial u}{\partial x}(z_0) = \frac{\partial v}{\partial y}(z_0) \\ \frac{\partial u}{\partial y}(z_0) = \frac{\partial v}{\partial x}(z_0) \end{cases}$$

 $z_0 = (x_0, y_0)$ شرط لازم مشتق پذیری در نقطه

$$\begin{cases} u_x(z_0) = v_y(z_0) \\ u_y(z_0) = v_x(z_0) \end{cases}$$

مشتق تابع در نقطه z_0 به صورت

یا

$$f'(z_0) = \frac{\partial u}{\partial x}(z_0) + i \frac{\partial v}{\partial x}(z_0) = \frac{\partial f}{\partial x}(z_0)$$

$$f'(z_0) = \frac{\partial v}{\partial y}(z_0) - i\frac{\partial u}{\partial y}(z_0) = \frac{1}{i}\frac{\partial f}{\partial y}(z_0)$$

مثال: برای تابع

$$f(z) = \bar{z} = x - iy \quad , \quad u(x,y) = x, v(x,y) = y$$

معادلات کشی ـ ریمان در نقطه دلخواه $z=z_0$ به صورت زیر است:

$$u(x,y) = x$$
 , $v(x,y) = -y$
 $\frac{\partial u}{\partial x} = 1$, $\frac{\partial v}{\partial y} = -1$
 $\frac{\partial u}{\partial y} = 0$, $\frac{\partial v}{\partial x} = 0$

شرط لازم مشتق پذیر را ندارد پس در هیچ نقطه ای از $\mathbb C$ مشتق پذیر نیست. مثال:

$$f(z) = \begin{cases} \frac{(1+i)xy}{x^3+y^3} & z \neq 0\\ 0 & z = 0 \end{cases}$$

مشتق پذیری تابع فوق را در z=0 بررسی کنید.

$$f(z) = \begin{cases} \frac{xy}{x^3 + y^3} + i \frac{xy}{x^3 + y^3} & z \neq 0 \\ 0 & z = 0 \end{cases}$$

$$u(x, y) = \frac{xy}{x^3 + y^3} , \quad v(x, y) = \frac{xy}{x^3 + y^3}$$

$$\frac{\partial u}{\partial x}(0, 0) = \lim_{x \to 0} \frac{u(x, 0) - u(0, 0)}{x} = \lim_{x \to 0} \frac{0 - 0}{x} = 0$$

$$\frac{\partial v}{\partial y}(0, 0) = \lim_{y \to 0} \frac{v(0, y) - v(0, 0)}{y} = \lim_{y \to 0} \frac{0 - 0}{y} = 0$$

$$\frac{\partial u}{\partial y}(0, 0) = \lim_{y \to 0} \frac{u(0, y) - u(0, 0)}{y} = \lim_{y \to 0} \frac{0 - 0}{y} = 0$$

$$\frac{\partial v}{\partial x}(0, 0) = \lim_{x \to 0} \frac{v(x, 0) - v(0, 0)}{x} = \lim_{x \to 0} \frac{0 - 0}{x} = 0$$

$$f'(0,0) = \lim_{z \to (0,0)} \frac{f(z) - f(0,0)}{z} = \lim_{(x,y) \to (0,0)} \frac{\frac{(1+i)xy}{x^3+y^3} - 0}{x+iy} = \lim_{(x,y) \to (0,0)} \frac{\frac{(1+i)xy}{x^3+y^3} - 0}{x+iy} \stackrel{x=y}{=} \lim_{x \to 0} \frac{\frac{(1+i)xy}{x^3+y^3} - 0}{x+iy} \stackrel{x=y}{=} \lim_{x \to 0} \frac{(1+i)x^2}{2x^3(1+i)x} = \lim_{x \to 0} \frac{(1+i)x^2}{2x^2(1+i)} = \infty$$
تابع در $(0,0)$ مشتق پذیر نیست.

۶.۲ معادلات کشی_ریمان در مختصات قطبی

w=f(z)=u(x,y)+iv(x,y) از آنجایی که $x=r\cos\theta$ و $y=r\sin\theta$ میباشد اگر تابع در نقطه $z_0=x_0+iv(x,y)$ مشتق پذیر باشد آنگاه

$$\begin{cases} \frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}(z_0) \\ \frac{\partial v}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial \theta}(z_0) \end{cases}$$

و مشتق تابع در نقطه z_0 به صورت

$$f'(z_0) = e^{i\theta} \left(\frac{\partial u}{\partial r}(z_0) + i\frac{\partial v}{\partial r}(z_0)\right) = e^{-i\theta} \left(\frac{\partial f}{\partial r}(z_0)\right)$$

مثال: برای تابع $f(z)=\ln z$ با $f(z)=\ln z$ و 0 معادلات کشی_ریمان در نقطه دلخواه $z=re^{i\theta}\in \mathbb{C}\%(-\infty,0)$ بررسی کنید.

$$f(z) = \ln z = \ln(re^{i\theta}) = \ln r + \ln(e^{i\theta}) = \ln r + i\theta$$

که

$$u(r,\theta) = \ln r \quad , \quad v(r,\theta) = i\theta$$

$$\frac{\partial u}{\partial r} = \frac{1}{r} \quad , \quad \frac{\partial v}{\partial \theta} = 1$$

$$\frac{\partial u}{\partial r} = \frac{1}{r} = \frac{1}{r} \frac{\partial v}{\partial \theta}$$

$$\frac{\partial v}{\partial r} = 0 \quad , \quad \frac{\partial u}{\partial \theta} = 0$$

$$f'(z_0) = e^{-i\theta} \left(\frac{\partial f}{\partial r}(z_0)\right) = e^{-i\theta_0} \left(\frac{1}{r_0} + ix_0\right) = e^{-i\theta_0} \frac{1}{r_0} = \frac{1}{r_0 e^{i\theta_0}} = \frac{1}{z_0}$$

٧.٢ تابع تحليلي

۸.۲ نقطه تکین

 z_0 نقطه z_0 را تکین تابع w=f(z) گوییم هرگاه در z_0 تحلیلی باشد و در نقطه ای از همسایگی w=f(z) تحیلی باشد. مثال: z=0 برای تابع z=0 برای تابع z=0 برای تابع باشد.

۹.۲ تابع همساز

هر تابع حقیقی

$$\begin{cases} u: \mathbb{R}^2 \to \mathbb{R} \\ (x,y) \to u(x,y) \end{cases}$$

 $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ که دارای مشتقات جزئی مرتبه اول و دوم پیوسته باشد و در معادلات لاپلاس و خزئی مرتبه اول و دوم پیوسته باشد و در معادلات الاپلاس صدق کند تابع همساز نامیده می شود.

قضیه: اگر تابع u(x,y)+iv(x,y)+iv(x,y) در دامنه u(x,y)+iv(x,y)+iv(x,y) یعنی u,v در u,v مساز هستند.

تعریف:

مزدوج همسازی از u نامیده می شود. v

۱۰.۲ رابطه همسازی برای تابع تحلیلی در نمایش قطبی

اگر تابع D در دامنه D در دامنه $f(z) = u(r,\theta) + iv(r,\theta)$

$$\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0$$

مثال: نشان دهید $u=3x^2y+2x^2-y^3-2y^2$ یک تابع همساز است. تابع مزدوج همسازی آن را بدست آورید.

$$\frac{\partial u}{\partial x} = 6xy + 4x \Rightarrow \frac{\partial^2 u}{\partial x^2} = 6y + 4$$

$$\frac{\partial u}{\partial y} = 3x^2 - 3y^2 - 4y \Rightarrow \frac{\partial^2 u}{\partial y^2} = -6y - 4$$

در معادلات لاپلاس صدق می کند.

فرض کنید v مزدوج همساز u است در اینصورت u(x,y)+iv(x,y) یک تابع تحلیلی است پس در معادلات کشی_ریمان صدق می کند

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} = 6xy + 4x \Rightarrow v(x,y) = \int (6xy + 4x)dy = 3xy^2 + 4xy + g(x)$$

$$\frac{\partial u}{\partial x} = -\frac{\partial v}{\partial x} = 3x^2 - 3y^2 - 4y$$

$$\frac{\partial v}{\partial x} = -3x^2 + 3y^2 + 4y = 3y^2 + 4y + g'(x) \Rightarrow g'(x) = -3x^2 \Rightarrow g(x) = \int -3x^2 dx$$

$$g(x) = -x^3 + c$$

 $v(x,y) = 3xy^2 + 4xy - x^3 + c$

۱۱.۲ توابع مقدماتی

۱.۱۱.۲ تابع نمایی

تابع نمایی را به ازای هر عدد مختلط z=x+iy به فرم z=x+iy به فرم عدد مختلط نمایی را به ازای هر عدد مختلط می کنیم. تابع نمایی e^z در شرط کشی ریمان صدق می کند و $e^x\cos y + e^x\sin y$ مشتقات جزئی پیوسته دارد بنابراین در هر نقطه از صفحه مختلط مشتق پذیر است $(e^z)'=e^z$ لذا تابع تحلیلی است.

$$\exp(\bar{z}) = e^{\bar{z}} = e^x(\cos y - i\sin y) = e^x\cos y - i\sin y$$
مثال:

$$\begin{cases} \frac{\partial u}{\partial x} = e^x \cos y \\ \frac{\partial v}{\partial y} = -e^x \cos y \end{cases}$$

پس شرط لازم مشتق پذیر ندارد پس تحلیلی نیست.

۲.۱۱.۲ خواص تابع نمایی

$$e^z \neq 0$$
 :داریم $z = x + iy$ داریم. ۱

$$|e^z|=e$$
 .Y

$$arg(e^z) = y + 2k\pi, k \in \mathbb{Z}$$

.٣

$$e^{2\pi i}=1$$
 , $e^{z+2\pi i}=e^z$ يعنى تابع e^z متتناوب است و دوره متناوب آن

$$\arg(e^z) = \tan^- 1(\frac{Im(e^z)}{Re(e^z)}) = \tan^- 1(\frac{e^x \sin y}{e^x \cos y}) = y$$

٣.١١.٢ توابع مثلثاتي

برای هر عدد مختلط z فرمول اویلر به صورت زیر است

$$e^{iz} = \cos(z) + i\sin(z)$$

در این صورت برای هر z در صفحه مختلط با توجه به فرمول اویلر داریم:

$$e^{\mp iz} = \cos z \mp i \sin z$$

$$\cos z = \frac{e^{iz} + e^{-iz}}{2}$$
 $\sin z = \frac{e^{iz} - e^{-iz}}{2i}$

۴.۱۱.۲ خواص توابع مثلثاتی

(توابع e^z تحلیلی است. (چون تابع $\cos z$ در صفحه مختلط تحلیلی است. (چون تابع $\sin z$

$$(\sin z)' = \cos z \qquad (\cos z)' = -\sin z \quad . \Upsilon$$

۳.

$$\sin^2 z + \cos^2 z = 1$$

۴.

$$\sin(i\theta) = i \sinh \theta$$

$$\sin(i\theta) = \frac{e^{i(i\theta)} - e^{-i(i\theta)}}{2i} = \frac{e^{-\theta} - e^{+\theta}}{2i} = i \sinh \theta$$

۵.

$$\cos(i\theta) = \cosh\theta$$

۶.

 $\sin(z) = \sin(x+iy) = \sin x \cos(iy) + \cos x \sin(iy) = \sin x \cosh y + i \cos x \sinh y$ $Re(\sin z) = \sin x \cosh y \qquad Im(\sin z) = i \cos x \sinh y$

۵.۱۱.۲ توابع هایپربولیک

$$sinh z = \frac{e^z - e^{-z}}{2}$$
 $cosh z = \frac{e^z + e^{-z}}{2}$

۶.۱۱.۲ خواص توابع هابير بوليک

در صفحه مختلط تحلیلی است. $\cosh z$ و $\sinh z$.۱

$$(\cosh z)' = \sinh z$$
 $(\sinh z)' = \cosh z$

$$\cosh^2 - \sinh^z = 1$$

$$\cosh(iz) = \cos z$$

۵.

$$\sinh(z) = \sinh(x + iy) = \sinh x \cos y + i \cosh x \sin y$$

۶.

$$\cosh(z) = \cosh(x + iy) = \cosh x \cos y + i \sinh x \sin y$$

٧.١١.٢ تابع لگاريتم

لگاریتم را میتوان به عنوان مقداری چون w به طوریکه $e^w=z$ باشد، تعریف کرد. اما این تعریف با توجه به متناوب بودن تابع نمایی، وجود لگاریتم منحصر به فرد را خنثی می کند. زیرا اگر $e^w=z$ آنگاه برای هر عدد صحیح k داریم:

$$e^{w+2k\pi i} = z$$

از این رو لگاریتم عدد مختلط z را که با z انمایش می دهیم، به صورت مجموعه ای از همه

$$w = \ln z$$
 , $e^w = z$

باشد بنابراین

$$Ln(z) = \{w \in \mathbb{C}; e^w = z\}$$

بزرگه چون چند مقداری است. L بزرگه چون چند مقداری است. و ست. از معادله $z=re^w=z$ که فرض کنیم $z=re^{i(\theta+2k\pi)}$ که داریم w = u + iv

$$e^w = z \rightarrow e^{u+iv} = re^{i(\theta+2k\pi)}$$
 $e^u = r, v = \theta + 2k\pi; k \in \mathbb{Z}$

$$w=u+iv=Ln(z)=\ln r+i(\theta+2k\pi)$$
 ; $k\in\mathbb{Z}$ بنابراین

$$w = Ln(z) = \ln|z| + i\arg z$$

از آنجایی که argz چند مقداری است تابع Ln(z) چند مقداری میباشد. با انتخاب $\arg z = Argz$ لگاریتم

$$Lnz = \ln z = \ln |z| + iArqz$$

که در آن $\pi < Argz \leq \pi$ را لگاریتم اصلی مینامیم. مثال:

$$Ln1 = \{w \in \mathbb{C}; e^w = 1\} = \{2k\pi i; k \in \mathbb{Z}\}$$
$$\ln 1 = \{2k\pi i; k = 0\} = 0$$

مثال:

$$Ln(-1) = \ln |-1| + iarg(-1) = \pi i + 2k\pi i; k \in \mathbb{Z}$$

 $\ln(-1) = \pi i$

مثال:

$$Ln(1 - \sqrt{-3}) = \{\ln 2 + i(2k\pi - \frac{\pi}{3}); k \in \mathbb{Z}\}$$
$$\ln(1 - \sqrt{-3}) = \ln 2 - \frac{\pi}{3}$$

نکته: از آنجاییکه تابع تک مقداری Argz در

$$\mathbb{C}\backslash(-\infty,0]=\{z\in\mathbb{C};z+|z|\neq0\}$$

پیوسته است لذا تابع لگاریتم اصلی

$$\ln z = \ln |z| + iArgz \qquad -\pi < Argz < \pi$$

.در $\mathbb{C}\setminus(-\infty,0]$ پیوسته است

مشتق تابع لگاریتم اصلی برای هر $z\in\mathbb{C}ackslash(-\infty,0]$ تابع

 $\ln z = \ln |z| + i A r g z = \ln r + i \theta = u(r, \theta) + i v(r, \theta) \qquad \ln r = u(r, \theta), \theta = v(r, \theta)$

$$\begin{cases} u_r = \frac{1}{r} = v_\theta \\ \theta_r = -\frac{1}{r}u_\theta \end{cases}$$

$$u_r = 0, u_\theta = 0 \Rightarrow v_r = -\frac{1}{r}$$

$$\frac{d}{dz}\ln z = e^{-i\theta}\frac{\partial f}{\partial r} = e^{-i\theta(u_r + iv_r)} = e^{-i\theta(\frac{1}{r} + 0)} = \frac{1}{r}e^{-i\theta} = \frac{1}{re^{i\theta}} = \frac{1}{z}$$

۸.۱۱.۲ نمایی کسری

برای دو عدد صحیح و مثبت m و n که نسبت به هم اول باشند، تعریف می کنیم.

$$(z^{\frac{1}{n}})^m = e^{\frac{m}{n}Lnz} = e^{\frac{m}{n}}(\ln|z| + i(Argz + 2k\pi)) = e$$
 $z \neq 0, k = 0, 1, 2, \dots, n-1$

دارای n مقدار متمایز میباشد. فرض کنید c یک عدد مختلط باشد تعریف می کنیم

$$z^{c} = e^{cLnz} = e^{c(\ln|z| + i(Argz + 2k\pi))} = |z|^{2} e^{i(Argz)} e^{i(2k\pi)} \quad z \neq 0, k \in \mathbb{Z}$$

نکته: اگر C گویا نباشد، آنگاه z^c دارای بینهایت مقدار است. مثال: مقادیر z^c را بدست

$$5^{\frac{1}{2}} = e^{\frac{1}{2}Ln5} = e^{\frac{1}{2}(\ln 5 + i(Arg5 + 2k\pi))} = \sqrt{5}e^{k\pi i} = \mp\sqrt{5}$$
 ; $k = 0, 1$

مثال: مقادیر i^i را بدست آورید.

$$e^{iLni} = e^{i(\ln|i| + i(Arg5 + 2k\pi))} = e^{\frac{\pi}{2} + 2k\pi i}$$
; $k \in \mathbb{Z}$

تابع $z^{\frac{1}{n}}$ یک تابع n مقداری در ریشه n ام z

$$z^{\frac{1}{n}} = e^{\frac{1}{n}Lnz} = e^{\frac{1}{n}(\ln|z| + i(Argz + 2k\pi))} = |z|^{\frac{1}{n}} e^{i\frac{Arg(z)}{n}} e^{i\frac{2k\pi}{n}} \quad ; \quad k = 0, 1, 2, \dots, n-1$$

۱۲.۲ تبدیل خطی

$$w = az + b$$

- اسبت اما نسبت z است اما نسبت a=1 یک انتقال داریم و شکل در صفحه z است اما نسبت a=1 .۱ به مرکز مختصات به صورت متفاوت جایگذاری شده اند.
 - انگاه $z_1 o w_1$ آنگاه.۲

$$|z_1 - z_2| = |w_1 - w_2|$$
 $\arg(z_1 - z_2) = \arg(w_1 - w_2)$

۳. اگر $a \neq 0$ و آنگاه

اگر a حقیقی باشد آنگاه (آ)

|w| = |a||z| , $\arg w = \arg z$

اگر a>1 یک انبساز داریم a<1 یک انقباض داریم.

(ب) اگر a مختلط باشد یعنی

 $a = |a|e^{i\alpha}$

آنگاه نگاشت شامل یک دوران به اندازه α حول مبدا یک اقباض یا انبساط است. نگاشت

برقرار $w=rac{1}{z}$ این نگاشت تناظری یک به یک بین نقاط غیر صفر صفحه z و نقاط صفحه w برقرار می کند با فرض $z=re^{i\theta}$

$$w = \frac{1}{z} = \frac{1}{r}e^{-i\theta}$$

مثال: نگاشت $\frac{1}{2}$ هر دایره با خط راست را به یک دایره با خط راست تضویر می کند.

$$A(x^{2} + y^{2}) + Bx + Cy + D = 0$$
(1.7)

$$w = u(x, y) + iv(x, y)$$

با توجه به نگاشت $w=\frac{1}{z}$ داریم:

$$z = \frac{1}{w} = \frac{1}{u + iv} = \frac{1 \times (u - iv)}{(u + iv)(u - iv)} = \frac{u - iv}{u^2 + v^2} = x + iy$$

$$x = \frac{u}{u^2 + v^2}$$
, $y = \frac{-v}{u^2 + v^2}$

در این صورت ب جایگذاری تساوی های فوق در ۱.۲ خواهیم داشت.

$$D(u^2 + v^2) + Bu - Cu + A = 0$$

که معادله کلی خط یا دایره در صفحه w است.

فصل ۳

انتگرال

1.۳ خم پیوسته یا کمان

شکل پارامتری یک خم پیوسته یا کمان به صورت

$$\begin{cases} x = \varphi(t) \\ y = \psi(t) \end{cases} \quad a \le t \le b$$

میباشد که φ و φ در فاصله [a,b] پیوسته هستند و با فرض پیوستگی φ در فاصله

$$z(t) = \varphi(t) + i\psi(t); \quad a \le t \le b$$

منحنی پیوسته ای را تعریف می کند که در صفحه z نقطه A=z(a) را به نقطه وصل می کند. مثال: خط شکسته

$$z(t) = \begin{cases} t + it & 0 \le t \le 1 \\ t + i & 1 \le t \le 2 \end{cases}$$

متشکل از پاره خطی که از 0 تا i+i و به دنبال آن پاره خطی از i+1 تا i+2 یک خم پیوسته یا کمان است.

۲.۳ منحنی ساده

اگر منحنی پیوسته یا کمان

$$z(t) = \varphi(t) + i\psi(t); \quad a \le t \le b$$

خودش را قطع نکند و یا خودش مماس نباشد. اگر $t_1 \neq t_2$ داشته باشیم

$$z(t_1) \neq z(t_2)$$

آن را منحنی ساده یا کمان جردن مینامیم.

مثال: $1 \leq t \leq 1$ مثان جردن است که $z(t) = t + i \ln(1+t)$ مثان جردن است که A = z(0) = 1 وصل می کند.

۳.۳ کمان ساده هموار

خم پیوسته یا کمان $z(t)=\varphi(t)+i\psi(t);\quad a\leq t\leq b$ را کمان ساده هموار گوییم، هرگاه توابع φ,ψ دارای مشتقات پیوسته در $z(t)=a\leq t\leq b$ باشند.

مثال: منحنّی $z(t) = |t| + i \ln(1+t)$ $-\frac{1}{2} \le t \le \frac{1}{2}$ کمان ساده هموار است. مثال: منحنّی $z(t) = (t - \sin t) + i(1 - \cos t)$ مثال: $0 \le t \le 2\pi$ مثال: مثال: $z(t) = (t - \sin t) + i(1 - \cos t)$

۴.۳ انتگرال خط

فرض کنید C یک منحنی ساده Δ هموار باشد که به صورت

$$z(t) = x(t) + iy(t)$$
 $a \le t \le b$

- را با روی f(z)=u(x,y)+iv(x,y) را با داده شده باشد انتگرال

$$\int_C f(z)dz \quad or \quad \oint_C f(z)dz$$

نمایش داد و آن را انتگرال خطی مینامیم و به صورت

$$\int_{C} f(z)dz = \int_{C} (u + iv)(dx + idy) = \int_{C} (u dx - v dy) + i \int (v dx + u dy)$$

b

$$\int_C f(z)dz = \int_C f(z(t))z'(t) dt = \int_a^b f(x(t) + iy(t))(x'(t)iy'(t))dt$$
$$x^2 + y^2 = 1 \to x = \mp \sqrt{1 - y^2}$$
$$\begin{cases} x = \cos \theta \\ y = \sin \theta \end{cases} \qquad 0 \le \theta \le 2\pi$$

$$\begin{cases} y = y \\ x = \mp \sqrt{1 - y^2} & -1 \le y \le 1 \end{cases}$$

نکته: اگر $\gamma_1(t), \gamma_2(t)$ دو نوع نمایش پارامتری متفاوت برای فهم C باشند آنگاه

$$\int_C f(\gamma_1(t))\gamma_1'(t)dt = \int_C f(\gamma_2(t))\gamma_2'(t)dt$$

یعنی مقدار انتگرال به نحوه پارامتری کردن خم C بستگی ندارد. مثال:

$$\int_C f(z)dz \qquad f(z)_= x^2 + iy^3 \qquad (0,0) \to (1,1), \quad C: y - x^2$$

$$\int_C f(z)dz = \int_0 1f(z(t))z'(t)dt = \int_0^1 = (t^2 + it^6)(1 + 2ti)dt = \int_0^1 (t^2 - 2t^7 + i(2t^3 + t^6))dt$$

$$= \frac{1}{12} + \frac{9}{14}i$$