This article is published as part of the Dalton Transactions themed issue entitled:

Computational Chemistry of Molecular Inorganic Systems

Guest Editor: Professor Stuart MacGregor Heriot-Watt University, Edinburgh, U.K.

Published in issue 42, 2011 of Dalton Transactions

Image reproduced with the permission of Hirofumi Sato

Articles in the issue include:

COMMUNICATION:

Comparison of different ruthenium–alkylidene bonds in the activation step with N-heterocyclic carbene Ru-catalysts for olefins metathesis

Albert Poater, Francesco Ragone, Andrea Correa and Luigi Cavallo Dalton Trans., 2011, DOI: 10.1039/C1DT10959F

HOT ARTICLES:

Matrix infrared spectroscopic and density functional theoretical investigations on thorium and uranium atom reactions with dimethyl ether

Yu Gong and Lester Andrews

Dalton Trans., 2011, DOI: 10.1039/C1DT10725A

Reductive coupling of carbon monoxide by U(III) complexes—a computational study

Georgina Aitken, Nilay Hazari, Alistair S. P. Frey, F. Geoffrey N. Cloke, O. Summerscales and Jennifer C. Green

Dalton Trans., 2011, DOI: 10.1039/C1DT10692A

<u>Prediction of high-valent iron K-edge absorption spectra by time-dependent Density Functional</u> Theory

P. Chandrasekaran, S. Chantal E. Stieber, Terrence J. Collins, Lawrence Que, Jr., Frank Neese and Serena DeBeer

Dalton Trans., 2011, DOI: 10.1039/C1DT11331C

Visit the *Dalton Transactions* website for more cutting-edge inorganic and organometallic research www.rsc.org/dalton

Dalton Transactions

Cite this: Dalton Trans., 2011, 40, 11115

PAPER www.rsc.org/dalton

Infrared spectra of CH₃-MH, CH₃-M, and CH₃-MH⁻ prepared via methane activation by laser-ablated Au, Ag, and Cu atoms†

Han-Gook Cho^a and Lester Andrews*^b

Received 24th December 2010, Accepted 24th February 2011 DOI: 10.1039/c0dt01827a

Methane activation by laser-ablated, excited Group 11 metal atoms has been carried out, leading to generation of CH₃-MH, CH₃-M, and CH₃-MH⁻, which are identified in the product infrared spectra on the basis of isotopic shifts and correlation with DFT calculated frequencies. The products reveal that C-H insertion by excited Au, Ag, and Cu readily occurs, and subsequent hydride-detachment or electron addition also follows. Each type of product has similar photochemical properties regardless of the metal. DFT computed energies reveal facile hydride dissociation and high electron affinities for the insertion complexes. The methyl metal species have the shortest C-M bonds, consistent with their highest calculated effective bond order, and the CH₃-MH complexes have higher electron affinities than the metal atoms.

Introduction

Group 11 metals have played distinctive roles for making coinage, jewelry, and art since the beginning of human history. They are at the borderline between the main group elements and transitionmetals due to their d10 electronic configuration. 1-3 The coinage metals often behave as Lewis acids with their relatively large electron affinities. In particular, gold has a small atomic radius and the highest electronegativity (2.54) among transition-metals along with its strong relativistic contraction, and its chemistry has been investigated extensively. Recently there has been an upsurge of research activity in homo- and heterogeneous catalytic reactions by the coinage metals, which provide detailed information on their complexes, particularly with π systems.¹⁻³

Coinage metal complexes with carbon-metal bonds are rare. Alkyl silver was first prepared by reaction of tetra-alkyl lead and silver nitrate at liquid nitrogen temperature,4 and alkyl copper by reaction of alkyl lithium and cuprous chloride below 0° C.5 Grotjahn et al. characterized CH₃-Cu with gas phase rotational spectra.^{5a} Parnis et al. reported the formation of CuH, CH₃-CuH, and CH₃-Cu in a CH₄ matrix after UV irradiation, and provided clear evidence that the reaction proceeds with Cu excited to the ²P state, ^{6a} which is in line with the later finding of the Weisshaar group that ground state copper atoms are not reactive with alkanes in the gas phase.6c Chang et al. observed CuCH2 in the matrix IR spectra from the reaction of Cu with CH₂N₂.⁷ Rijs and O'Hair have observed anionic Ag and Cu insertion complexes (CH₃-

AgH⁻ and CH₃-CuH⁻) and dialkyl metals in the fragmentation of [RCO₂AgO₂CR]⁻ by means of mass spectrometry.⁸

Extensive recent studies have shown that C-H activation of alkanes by transition-metal atoms is in fact a general phenomenon, leading to small insertion and high oxidation-state complexes (carbenes and carbynes). 9-13 Their small sizes are amenable to highlevel computations, 14 and many of them show interesting structural distortions and photochemical reactions. In this study, we report the results of Group 11 metal atom reactions with methane in excess argon. The products are identified on the basis of isotopic shifts and correlation with DFT calculations. Thus, coinage metal atoms are also effective methane activation agents.

Experimental and computational methods

Laser ablated Au, Ag, and Cu atoms were reacted with CH₄ (Matheson, UHP grade), ¹³CH₄, CD₄, CH₂D₂ (Cambridge Isotopic Laboratories) in excess argon during condensation at 8 K using a closed-cycle refrigerator (Air Products Displex). Reagent gas mixtures ranged 0.5–5.0% (typically 2%) in argon. A small amount of CCl₄ (Fisher) was added to the sample (~0.02%) as an electron scavenger in selected experiments to gain information for the identification of ionic species as described in previous publications.^{9,15} The Nd: YAG laser fundamental radiation (1064 nm, 10 Hz repetition rate, 10 ns pulse width) was focused on rotating Au, Ag, and Cu targets using 5-10 mJ pulse⁻¹, and the ablated material was co-deposited with the argon-methane samples as illustrated.9 After initial reaction, infrared spectra were recorded at 0.5 cm⁻¹ resolution using a Nicolet 550 spectrometer with a Hg-Cd-Te range B detector. Then samples were irradiated for 20 min periods by a mercury arc street lamp (175 W) with the globe removed using a combination of optical filters and were annealed to allow further reagent diffusion.

^aDepartment of Chemistry, University of Incheon, 12-1 Songdo-dong, Yonsugu, Incheon, 406-772, South Korea

^bDepartment of Chemistry, University of Virginia, P. O. Box 400319, Charlottesville, Virginia, 22904-4319. E-mail: lsa@virginia.edu

[†] Electronic supplementary information (ESI) available. See DOI: 10.1039/c0dt01827a

To provide support for the assignment of new experimental frequencies and to correlate with related work,9-13 density functional theory (DFT) calculations were performed using the Gaussian 09 program system, 16 the B3LYP density functional, 17 the 6-311++G(3df,3pd) basis sets for H, C, and Cu¹⁸ and SDD core potential and basis sets for Au and Ag19 to provide vibrational frequencies for the reaction products. Geometries were fully relaxed during optimization, and the optimized geometry was confirmed by vibrational analysis. The BPW9120 functional and MP2²¹ method were also employed to complement the B3LYP results. The vibrational frequencies are calculated analytically, and zero-point energy is included in the calculation of binding and reaction energies. Previous investigations have shown that DFT calculated harmonic frequencies are usually slightly higher than observed frequencies, 9-13,22,23 and they provide useful predictions for the infrared spectra of new molecules.

Results and discussion

The matrix infrared spectra (Fig. 1–6 and S1–3†, and Table 1–3) from reactions of laser-ablated Au, Ag, and Cu atoms with

methane isotopomers were investigated, and DFT frequency calculations of the products (Tables S1–S9†) and their structures (Fig. 7–9) will be presented in turn.

Au + CH₄

Infrared spectra are shown in Fig. 1 for the reaction products of laser ablated Au atoms co-deposited with CH₄ and with CH₄ + CCl₄ in excess argon during condensation at 8 K. Fig. 2 and S1† show the corresponding absorptions from the deuterated and half deuterated products. Three groups of product absorptions are observed (marked "i, a, and i-" for insertion, methyl auride, and insertion product anion). The absorption groups are based on the intensity variations upon photolysis and annealing. The i absorptions vanish on visible ($\lambda > 420$ nm) irradiation, but reappear on UV (240 $< \lambda < 380$ nm) irradiation and further increase on full arc ($\lambda > 220$ nm) irradiation and annealing to \sim 50% of the original intensity. The **a** absorptions increase by \sim 5, ~25, and ~10% on visible, UV, and full arc photolysis (~40% increase in total) and decrease markedly on annealing. The iabsorptions remain almost unchanged on visible irradiation, but decrease ~30% each on UV and full arc irradiation.

Table 1 Observed frequencies and assignments for the product absorptions from Au + methane isotopomer reactions^a

Group ^b	CH ₄	CD_4	¹³ CH ₄	CH_2D_2	Description ^c
i	1853.5 1044.9	790.3	1040.2	977.0, 898.4 644.0	CH ₃ -AuH, Au-H stretch CH ₃ -AuH, CH ₃ deform CH ₃ -AuH, CH ₃ rock
a	1188.3,	925.7,	1178.4,	1123.6, 983.2	CH ₃ -Au1, CH ₃ deform
	1181.7 794.5	920.5 584.0	1173.3 790.6	784.4, 599.7, 697.7	CH ₃ Au, CH ₃ rock
i ⁻	1868.7	1341.5 858.0	1868.7	1866.6, 1345.7	CH ₃ -AuH ⁻ , Au-H stretch CH ₃ -AuH ⁻ , CH ₃ deform
	726.6	553.4	722.8		CH ₃ -AuH ⁻ , CH ₃ rock

^a Observed in an argon matrix. Frequencies are in cm⁻¹. ^b Product absorption group on the basis of intensity variation in the process of photolysis and annealing. ^c Designated product and vibrational mode.

Table 2 Observed frequencies and assignments for the product absorptions from Ag + methane isotopomer reactions^a

Group ^b	CH ₄	CD_4	¹³ CH ₄	$\mathrm{CH_2D_2}$	Description ^c
a	1076.4	824.1	1069.3	917.1	CH ₃ -Ag, CH ₃ deform
	666.1	499.1	663.6	586.7	CH ₃ –Ag, CH ₃ rock
i ⁻	1562.0	1124.2	1562.0	1560.9	CH ₃ -AgH ⁻ , Ag-H stretch

^a Observed in an argon matrix. Frequencies are in cm⁻¹. ^b Product absorption group on the basis of intensity variation in the process of photolysis and annealing. ^c Designated product and vibrational mode.

Table 3 Observed frequencies and assignments for the product absorptions from Cu + methane isotopomer reactions^a

Group ^b	CH ₄	CD_4	¹³ CH ₄	$\mathrm{CH_2D_2}$	Description ^c
CuH	1878.5 (1850) ^d	1353.9 (1333)	1879.1 (1850)	1878.7, 1353.9	CuH, Cu–H stretch
i	$1718.8 (1697)^d$	1243.7 (1229)	1717.7 (1697)	1718.9, covered	CH ₃ -CuH, Cu-H stretch
	$1012.1\ (1011)^d$	786.0 (786)	1003.6 (1003)	861.0	CH ₃ -CuH, CH ₃ deform
a	$1203.0\ (1196)^d$	920.0 (916)	1195.1 (1189)		CH ₃ -Cu, CH ₃ deform
	648.3	494.2	645	637.2, 594.4, 563.7, 498.1	CH ₃ -Cu, CH ₃ rock
i ⁻	1612.9	1165.0	1612.9	1611.9, 1166.0	CH ₃ -CuH ⁻ , Cu-H stretching

^a Observed in an argon matrix. Frequencies are in cm⁻¹. ^b Product absorption group on the basis of intensity variation in the process of photolysis and annealing. ^c Designated product and vibrational mode. ^d Observed in solid methane matrix, ref. 6a.

Fig. 1 Infrared spectra in the 1970–1770, 1250–1000, and 850–650 cm⁻¹ regions for the reaction products of the laser-ablated gold atom with CH₄ and with $CH_4 + CCI_4$ in excess argon at 8 K. (a) Au and $CH_4 + CCI_4$ (2.0 and 0.02% in argon) co-deposited for 1 h, (b) as (a) after visible ($\lambda > 420$ nm) irradiation, and (c) as (b) after UV (240–380 nm) irradiation. (d) Au and CH₄ reagent (2.0% in argon) co-deposited for 1 h, (e)–(g) as (d) after visible, UV, and full arc ($\lambda > 220$ nm) irradiation, and (h) as (g) after annealing to 26 K. a, i, and i stand for product absorption groups. Common products from CCl₄, which was added to serve as an electron scavenger in the matrix sample, are labelled.

Fig. 2 Infrared spectra in the 1450–1250 and 1000–500 cm⁻¹ regions for the reaction products of the laser-ablated gold atom with CD4 in excess argon at 8 K. (a) Au and CD₄ (2.0% in argon) co-deposited for 1 h, (b)–(d) as (a) after visible, UV, and full arc irradiation, and (e) as (d) after annealing to 26 K. a, i, and i stand for product absorption groups while P and c stand for the precursor and common absorptions from methane.

A strong i absorption observed at 1044.9 cm⁻¹ has its D and ¹³C counterparts at 790.3 and 1040.2 cm⁻¹ (H:D and 12:13 ratios of 1.322 and 1.005). Absorptions from partly deuterated products are also observed at 977.0 and 898.4 cm⁻¹ in the CH₂D₂ spectra in Fig. S1.† The strong absorption showing large D and small C shifts is assigned to the CH₃ deformation mode of the most probable insertion complex (CH₃-AuH). The observed frequency and D and ¹³C isotopic shifts (254.6 and 4.7 cm⁻¹) are compared with the B3LYP values of 1089.7, 264.6, and 5.5 cm⁻¹ for the strongest absorption. The observed product frequencies in the CH₂D₂ spectra are also in line with the B3LYP values of 1018.4 and 922.7 cm⁻¹ for CH₂D-AuD and CHD₂-AuH.

The weak i absorptions observed at 1853.5 and 644.0 cm⁻¹ in the CH₄ and CH₂D₂ spectra are assigned to the Au–H stretching and CH₃ rocking modes as shown in Table 1. The excellent agreement between the observed and computed frequencies and isotopic shifts substantiates formation of the gold insertion complex (CH₃-AuH) in the doublet ground state (Table S1†). The present results show that the ordinarily unreactive gold atom, upon excitation, undergoes C-H insertion with CH₄, producing a simple insertion complex like other transition-metals (Groups 3–10), lanthanides, and actinides.9-13 This reaffirms that C-H insertion by an excited transition-metal is a general chemical phenomenon.

The a absorption at 1181.7 cm⁻¹ shows D and ¹³C counterparts at 920.5 and 1173.3 cm⁻¹ (H:D and 12:13 ratios of 1.284 and 1.007, respectively). We assign this absorption to the CH₃ deformation mode of methyl auride (CH₃-Au) on the basis of the good agreement with the predicted values (e.g. B3LYP values of 1199.5, 922.2, and 1192.2 cm⁻¹ for CH₃-Au, CD₃-Au, and ¹³CH₃-Au shown in Table S2†). The observed frequencies of 1123.6 and 983.2 cm⁻¹ in the CH₂D₂ spectra are also consistent with the B3LYP values of 1125.6 and 999.0 cm⁻¹ for CH₂D-Au and CHD₂-Au.

The stronger a absorption at 794.5 cm⁻¹ carries D and ¹³C counterparts at 584.0 and 790.6 cm⁻¹, (compared with the B3LYP values of 803.4, 594.0, and 799.9 cm⁻¹) and it is assigned to the CH₃ rocking mode of methyl auride. The observed frequencies of 784.4, 697.7, and 599.7 cm⁻¹ in the CH₂D₂ spectra are in line with the predicted values of 790.3 cm⁻¹ for CH₂D-Au and 697.5 and 596.4 cm⁻¹ for CHD₂-Au. The observed frequencies, isotopic shifts, and good agreement with the predicted values all provide strong evidence for formation of another primary product of methane activation by gold, CH₃-Au.

Because the auride anion lies between bromide and iodide in size, 1g it may be interesting to compare some properties of CH₃I and CH₃Au. The B3LYP Mulliken charges for CH₃Au (-0.54, 0.07 × 3 and 0.32) are similar to those of CH₃I (-0.44, 0.10 × 3 and 0.14), but the dipole moment 0.20 D is smaller than that of CH₃I, 1.75 D. Likewise the methyl deformation frequencies are also similar 1181.7 and 794.5 cm⁻¹ for CH₃Au, and 1245 and 882 cm⁻¹ for CH₃I in solid argon.

The strongest product absorption in the original deposition spectra in Fig. 1 is observed at 1868.7 cm⁻¹ (marked "i-"), its D counterpart is observed at 1341.5 cm⁻¹ (H:D ratio of 1.393), and it reveals a negligible ¹³C shift, as shown in Table 1 and S3.† The frequency is also compared with the previously reported Au-H stretching frequencies of 2082, 1991.7, 1676.4, 1661.5, and 1636.0 cm⁻¹ for AuAuH, AuAuH⁻, AuH₄⁻, (H₂)AuH₃, and AuH₂^{-,24} which are not observed in this study. This strong i absorption not only decreases on UV and full arc (240 $< \lambda <$ 380 nm and $\lambda > 220$ nm) irradiation, but also disappears from the product spectrum when trace CCl₄ is added to the reagent mixture as shown in Fig. 1. Extensive work in this laboratory has demonstrated that CCl₄ is an effective electron scavenger in matrix samples,15,24 and this chemical diagnostic facilitates the identification of anion product absorptions. Isolated anions have been observed in previous laser ablation matrix isolation experiments owing to the production of electrons in the ablation process. 15,24 We assign the i absorption to the Au-H stretching mode of the methyl gold hydride anion (CH₃-AuH⁻), the most probable anionic insertion complex.

Its frequency and high absorption intensity are also well reproduced by electronic structure computations for the singlet ground state; however, the DFT and MP2 results differ somewhat as the latter tends to over estimate frequencies. For example, the B3LYP and MP2 Au-H stretching frequencies are 1843.7 and 1992.2 cm⁻¹. In addition the MP2 computation gives a C_{3v} structure similar to the previously studied Ag and Cu analogues8 while the DFT methods give a near C_{3v} structure. The distinctively very strong Au-H stretching absorption of CH₃-AuH⁻ is in contrast to the weak counterpart for CH₃-AuH. A weak possible i absorption at 726.6 cm⁻¹ shifts to 553.4 and 722.8 cm⁻¹ on deuteration and ¹³C substitution. The frequency, large D and small ¹³C shifts, and correlation with computational results allow tentative assignment of this as the CH₃ rocking mode (Table 1 and S3†). The triplet state is 241 kJ mol⁻¹ higher in energy, and the strong Au-H stretching mode predicted near 1530 cm⁻¹ is not observed. The observed frequencies and isotopic shifts and the agreement with the predicted values for the singlet ground state all support formation of the anionic gold insertion complex with a very intense infrared absorbing Au-H stretching mode.

Other plausible anionic species with an Au–H bond, such as CH₂–AuH⁻, were also examined computationally, but the predicted vibrational characteristics (strong absorptions at 1863 and 602 cm⁻¹ for CH₂–AuH⁻ and at 1765 cm⁻¹ for CH–AuH⁻) are not consistent with the observed values. The high electron affinity of gold is profound, the largest (–223 kJ mol⁻¹) in the

periodic table with the exception of the halogens. 1g,25 Various anionic gold complexes have been reported, 26 and more recently anionic Group 11 metal hydrides are also identified in the matrix spectra from reactions of laser ablated Au and electrons with H_2 . 24 The formation of an anionic species in the reaction of Au with CH_4 is, therefore, not surprising.

CH₃-AuH, CH₃-Au, and CH₃-AuH⁻ are 80, -211, and 26 kJ mol⁻¹ higher in energy than Au(²S) + CH₄, Au(²S) + CH₃, and Au⁻(¹S) + CH₄, respectively. However, the insertion reaction probably proceeds via Au(2P), which is 446 kJ mol-1 higher in energy than Au(2S),27 so the insertion product is 367 kJ mol-1 lower in energy than Au(2P) + CH₄ reagents. Nevertheless, the identified products are the most stable among the plausible products. For example, the unidentified CH₂-AuH₂, CH₂-AuH, and CH₂-AuH₂- are 157, 5.6, and 340 kJ mol⁻¹ higher than the corresponding reference energies (Au(2S) + CH₄, Au(2S) + CH₃, and Au⁻(¹S) + CH₄). The high energy of CH₃-AuH is in line with the disappearance of the i absorptions on visible irradiation, whereas during UV and full arc photolysis the i and a absorptions increase owing to ${}^{2}P \Leftarrow {}^{2}S$ excitation of Au, 27 while the i absorptions decrease as shown in Fig. 1, 2, and S1,† raising the possibility that UV irradiation causes detachment of an electron from CH₃-AuH⁻.

CH₃ is also produced by the laser plume radiation during codeposition of Au and CH₄, leaving the broad CH₃ absorption at 620–600 cm⁻¹, parallel to the previously studied reactions of laser ablated transition-metal atoms with methane.⁹⁻¹³ Milligan and Jacox showed that 121.6 nm radiation is effective for dissociation of the C–H bond during deposition of CH₄ to generate the CH₃ radical.²⁸ However, the concentration of CH₃ is still very low relative to that of CH₄, and in our previously studied reactions of transition-metals with methane, methyl metal species have not been identified.⁹⁻¹³ The ablation plume also contains electrons, providing opportunity for anionic species to form, but anionic species have only been observed in methane activation by transition-metals in the case of the Nb and Ta methylidyne anions.⁹⁻¹³

$Ag + CH_4$

The product absorptions marked "a" and "i" from Ag reactions with CH_4 and $CH_4 + CCl_4$ in Fig. 3 show intensity variations similar to those of the Au counterparts on photolysis and annealing. They remain unchanged on visible irradiation, but the a absorptions increase on UV and full arc photolysis while the i⁻ absorptions decrease. They are weaker than in the Au + CH_4 case and no i absorptions are observed.

The **a** absorption at 1076.4 cm⁻¹ is accompanied by D and ¹³C counterparts at 824.1 and 1069.3 cm⁻¹ (H/D and 12/13 ratios of 1.306 and 1.007) (Fig. 4), and the frequency, large D and small ¹³C shifts, and consistency with the Au case lead to their assignment to the CH₃ deformation mode of methyl silver (CH₃–Ag), which is the second strongest band of the product. The observed frequencies of the CH₃–Ag isotopomers are in good correlation with the B3LYP values of 1097.7, 845.4, and 1090.6 cm⁻¹ (Table S5†). The **a** absorption observed at 917.1 cm⁻¹ in the CH₂D₂ spectra is in line with the calculated value of 931.0 cm⁻¹ for CHD₂–Ag. Another **a** absorption is observed at 666.1 cm⁻¹ with D and ¹³C counterparts at 499.1 and 663.6 cm⁻¹ (H:D and 12:13 ratios of 1.335 and

Fig. 3 Infrared spectra in the 1650-1450, 1180-980, and 740-540 cm⁻¹ regions for the reaction products of the laser-ablated silver atom with CH₄ and CH₄ + CCl₄ in excess argon at 8 K. (a) Ag and CH₄ + CCl₄ (2.0 and 0.02% in argon) co-deposited for 1 h, (b) and (c) as (a) after visible and UV irradiation. (d) Ag and CH₄ reagent (2.0% in argon) co-deposited for 1 h, (e)–(g) as (d) after visible, UV, and full arc irradiation, (h) as (g) after annealing to 26 K. a and i stand for product absorption groups while w designates water residue absorptions.

Fig. 4 Infrared spectra in the 1200–800 and 650–450 cm⁻¹ regions for the reaction products of the laser-ablated silver atom with CD4 in excess argon at 8 K. (a) Ag and CD₄ (2.0% in argon) co-deposited for 1 h, (b)–(d) as (a) after visible, UV, and full arc irradiation, and (e) as (d) after annealing to 26 K. a and i stand for product absorption groups while P and c stand for the precursor and common absorptions.

1.004), and we assign it to the strongest mode, CH₃ rocking. The observed frequencies are again in an excellent agreement with the DFT values (e.g. B3LYP values of 693.6, 512.7, and 690.7 cm⁻¹), and the observed frequency of 586.7 cm⁻¹ in the CH₂D₂ spectra correlates with the predicted value of 604.6 cm⁻¹ for CHD₂-Ag, substantiating formation of CH₃-Ag.

The i absorption at 1562.0 cm⁻¹ has its D counterpart at 1124.2 cm⁻¹ (H: D ratio of 1.389), but shows no ¹³C shift. This Ag-H stretching frequency is compared with those at 1746.5, 1717.0, 1691.9, and 1427.5 cm^{-1} found for (H₂)AgH, AgH, AgAgH, and AgH₂-,²⁴ which are not observed in this study. The i- Ag-H stretching absorption also disappears on addition of CCl₄ and it is accordingly assigned to CH₃-AgH⁻. Its frequency and high absorption intensity are in reasonable agreement with the B3LYP and BPW91 computed frequencies of 1554.6 and 1575.5 cm⁻¹ and large intensities of 615 and 587 km mol⁻¹ (Table S6†). The triplet state is 223 kJ mol⁻¹ higher in energy, and the strong Ag-H

stretching mode predicted near 1280 cm⁻¹ is not observed. The observed frequencies and isotopic shifts and the agreement with the predicted values for the singlet ground state all support this assignment.

Rijs and O'Hair have shown that CH₃-AgH⁻ and CH₃-CuH⁻ are among the primary products in gas phase fragmentation reactions of [RCO₂MO₂CR]^{-.8} They examined the reaction paths by DFT calculations and collision-induced dissociation and deuterium labeling experiments, and showed that a diverse set of pathways including bond homolysis, bond heterolysis, and βhydride elimination were apparently involved. The present results reveal that a combination of laser ablation and direct reaction with alkanes is an effective method to provide the anionic coinage metal insertion complexes.

As in the Au case, CH₃-AgH, CH₃-Ag, and CH₃-AgH⁻ are 161, -154, and 43 kJ mol⁻¹ higher than Ag(2 S) + CH₄, Ag(2 S) + CH₃, and Ag⁻(¹S) + CH₄, respectively. The higher energies of the products relative to those in the Au case are consistent with the weaker product absorptions. In particular, the endothermicity of 161 kJ mol⁻¹ for CH₃-AgH is much higher than the value of 80 kJ mol⁻¹ for CH₃-AuH, providing some rationale for the absence of its absorptions. However, the anion is most likely produced by electron capture of this neutral molecule, but note that the infrared intensity of the anion Ag-H vibration is on the order of 40 times larger than for the neutral analogue. Using the Ag(²P) reagent, the reaction to form CH₃-AgH is 192 kJ mol⁻¹ exothermic. Other plausible products are still energetically even higher. For example, CH₂-AgH₂, CH₂-AgH, and CH₂-AgH₂ are 235, 125, and 373 kJ mol⁻¹ higher than the corresponding references.

Cu + CH₄

Fig. 5 shows the reaction product spectra from Cu atoms codeposited with CH₄ and with CH₄ + CCl₄ in excess argon during condensation at 8 K. Fig. 6 and S3† show the corresponding

Fig. 5 Infrared spectra in the 1950–1550, 1250–900, and 750–550 cm $^{-1}$ regions for the reaction products of the laser-ablated copper atom with CH₄ and CH₄ + CCl₄ in excess argon at 8 K. (a) Cu and CH₄ + CCl₄ (2.0 and 0.02% in argon) co-deposited for 1 h, (b) and (c) as (a) after visible and UV irradiation. (d) Cu and CH₄ reagent (2.0% in argon) co-deposited for 1 h, (e)–(g) as (d) after visible, UV, and full arc irradiation, (h) as (g) after annealing to 26 K. a, i, and i $^-$ stand for product absorption groups while w designates water residue absorptions.

Fig. 6 Infrared spectra in the 1400–1100 and 950–450 cm⁻¹ regions for the reaction products of the laser-ablated copper atom with CD_4 in excess argon at 8 K. (a) Cu and CD_4 (2.0% in argon) co-deposited for 1 h, (b)–(d) as (a) after visible, UV, and full arc irradiation, and (e) as (d) after annealing to 26 K. a, i, and i stand for product absorption groups.

absorptions from the deuterated and half deuterated products. In a parallel manner to Au, three groups of product absorptions are marked "i, a, and i" depending on the intensity variation in the process of photolysis and annealing. The absorption intensity variation of the i, a, and i absorptions are similar to those in the Au and Ag experiments.

Fig. 5 and 6 also show strong CuH and CuD absorptions at 1878.5 and 1353.9 cm⁻¹ (H:D ratio of 1.387),²⁴ which increase slightly on visible irradiation, but more than triple on UV irradiation and slightly decrease on full arc photolysis. The strong CuH absorption contrasts with the absence of the AuH and AgH absorptions. Parnis *et al.* reported the dramatic increase of the CuH absorption at 1850 cm⁻¹ along with the emergence of CH₃Cu and CH₃CuH absorptions in the methane matrix on UV (305–325 nm) irradiation.^{6α}

Billups et al. reported the results of transition metal atom reactions in solid methane after UV irradiation, including Au,

Ag, and Cu, which were assigned to the CH₃MH species.⁶ Unfortunately, these assignments are not correct: the highest frequencies reported, after calibration, are probably due to the diatomic MH molecules in solid methane.

The **i** absorption for Cu at 1718.8 cm⁻¹ shifts to 1243.7 cm⁻¹ on deuteration (H:D ratio = 1.382) and shows a negligible ¹³C shift. This Cu–H stretching frequency is compared with 1862.5 and 1497.2 cm⁻¹ for (H₂)CuH and CuH₂-,²⁴ which are observed in this study. The new Cu–H stretching absorption is assigned to CH₃–CuH, following the Au case. The observed Cu–H and Cu–D stretching frequencies and relatively low intensities are reproduced by DFT computations (*e.g.* B3LYP frequency and intensity of 1707.5 cm⁻¹ and 18 km mol⁻¹, Table S7†). A stronger **i** absorption is observed at 1012.1 cm⁻¹, and its D and ¹³C counterparts at 786.0 and 1003.6 cm⁻¹ (H:D and 12:13 ratios of 1.288 and 1.008), and it is assigned to the CH₃ deformation mode. Again the observed frequencies are in line with the DFT frequencies (*e.g.*

the B3LYP values of 1050.3, 810.8, and 1003.6 cm⁻¹). The observed i absorptions correspond with the weak absorptions emerging at 1697 and 1011 cm⁻¹ on UV irradiation in a solid methane matrix.^{6a}

Two a absorptions are observed in Fig. 5. The band at 1203.0 cm⁻¹ shifts to 920.0 cm⁻¹ on deuteration (H:D ratio of 1.308), whereas its ¹³C counterpart is at 1195.1 cm⁻¹. The other absorption at 648.3 cm⁻¹ is much stronger and its D and ¹³C counterparts are at 494.2 and 645 cm⁻¹ (H:D and 12:13 ratios of 1.312 and 1.005). They are assigned to the CH₃ deformation and rocking modes of CH₃-Cu (the two strongest bands for methyl copper) on the basis of the frequencies, large D and small ¹³C shifts, and correlation with the DFT values (Table S8†). For example the observed methyl rocking frequencies are compared with slightly higher B3LYP isotopic values of 662.7, 494.0, and 659.5 cm⁻¹. In contrast the methyl deformation frequencies are somewhat higher than the computed values. This may be due to overestimation of the C-Cu bond length (1.918 Å) in our calculation, as compared to the experimental measurement (1.8841 Å),^{5a} with corresponding underestimation of the H-to-Cu repulsion, which affects the methyl deformation frequency.

Parnis et al. have reported eight absorption frequencies for CH₃-Cu with their D and ¹³C counterparts, ^{6a} which are more than the number of vibrational modes of methyl copper (6 modes and three of them are very weak). Their 1196 cm⁻¹ band and its isotopic counterparts correspond to our 1203.0 cm⁻¹ absorption. In addition, these workers observed a band near 640 cm⁻¹ labelled CH₃, which tracks the 1196 cm⁻¹ band on irradiation, and we believe that this band should be reassigned to CH₃Cu in solid methane. The other observed frequencies do not agree with the frequencies predicted for the methyl copper (Table S8†), and thus, they probably originate from other unknown species. Recently Grotjahn et al. produced CH₃-Cu, the most studied coinage alkyl metal and determined the rotational constants in the ground (v =0) and lowest excited state of the C-Cu stretch $(v_3 = 1)$.^{5a} They determined the C-Cu bond length to be 1.8841 Å and the C-Cu stretching mode to be near 586 cm⁻¹, slightly higher than our calculated value.

An i absorption, which is the strongest product absorption in the original deposition spectrum, is also observed at 1612.9 cm⁻¹. Deuteration shifts it to 1165.0 cm⁻¹ (H:D ratio of 1.384), and it shows no ¹³C shift. Parallel to the Au and Ag cases, this absorption disappears on addition of CCl₄ (Fig. 5). We, therefore, assign it to the Cu-H stretching mode of the methyl copper hydride anion, CH₃-CuH⁻. The observed Cu-H stretching frequency and distinctively strong intensity are also reproduced by DFT computations (the B3LYP and BPW91 frequencies of 1606.1 and 1629.7 cm⁻¹) (Table S9†) for the singlet ground state anion. The triplet state is 212 kJ mol⁻¹ higher in energy, and the strong Cu-H stretching mode predicted near 1470 cm⁻¹ is not observed.

The CH₃-CuH, CH₃-Cu, and CH₃-CuH⁻ products are 85 kJ mol⁻¹ higher, 203 kJ mol⁻¹ lower, and 23 kJ mol⁻¹ lower than the $Cu(^2S) + CH_4$, $Cu(^2S) + CH_3$, and $Cu^-(^1S) + CH_4$ reagents, respectively. Since the insertion reaction proceeds with Cu(2P),6a which is 365 kJ mol-1 higher in energy than Cu(2S),27 CH₃-CuH is 279 kJ mol⁻¹ lower in energy than Cu(²P) + CH₄ reagents. The observed products are again the most stable among the corresponding plausible products. For example, the unidentified CH₂-CuH₂, CH₂-CuH, and CH₂-CuH₂ are 158, 35, and 270 kJ mol⁻¹ higher than the corresponding reagents.

Structures of small Au, Ag, and Cu complexes

The structures of the Group 11 metal complexes investigated in this study are illustrated in Fig. 7–9. The C-Au, C-Ag, and C-Cu bond lengths of the small Group 11 complexes are comparable to those of the previously introduced Au (1.9-2.3 Å),29 Ag (2.1-2.5 Å),30 and Cu $(1.9-2.3 \text{ Å})^{31}$ complexes, many of which are π -complexes. The computed C-Cu bond length of 1.918 Å for CH₃-Cu is slightly longer than that determined from the rotational spectrum (1.8841 Å).5a While CH₃-MH has a C_s structure, CH₃-M and CH₃-MH have C_{3v} structures.^{8,32}

The CH₃-M molecules contain the shortest C-M bond, consistent with the high natural effective bond obtained from NBO analysis (Table S10†),33 and the bonded C and M have mostly sp3

Fig. 7 The B3LYP structures of the identified Au products with the 6-311++G(3df,3pd) basis set for H, C, and Au. Bond distances and angles are in Å and deg. The methyl auride and anionic insertion complex (CH₃-Au and CH₃-AuH⁻) have C_{3v} structures whereas the neutral insertion complex (CH₃-AuH) possesses a C_s structure.

Fig. 8 The B3LYP structures of the Ag products with the 6-311++G(3df,3pd) basis set for H, C, and Ag. Bond distances and angles are in Å and deg. The methyl silver and anionic insertion complexes are identified in the matrix spectra (see text). The methyl silver and anionic insertion complex (CH₃-Ag and CH_3 -AgH⁻) have C_{3v} structures whereas the neutral insertion complex (CH_3 -AgH) possesses a C_s structure.

Fig. 9 The B3LYP structures of the identified Cu products with the 6-311++G(3df,3pd) basis set for H, C, and Cu. Bond distances and angles are in Å and deg. The methyl copper and anionic insertion complex (CH₃-Cu and CH₃-CuH⁻) have C_{3v} structures whereas the neutral insertion complex (CH₃-CuH) possesses a C_s structure.

and sd hybridizations. For example, the C–Au bond in CH₃–Au consists of s(14.5%) and p(85.4%) for C and s(80.4%) and d(19.5%) for Au, indicating that the C–Au bond formation apparently does not require electron promotion from the electronic configuration of gold [Xe]4f¹⁴5d¹⁰6s¹. On the other hand, the slightly longer C–Au bonds of the insertion complexes CH₃–AuH and CH₃–AuH-carry significant p contributions for Au. For example, Au has s(41.8%), p(24.1%), and d(34.0%) for the C–Au bond of CH₃–AuH and s(42.3%), p(47.0%), and d(10.4%) for that of CH₃–AuH⁻.

Reactions

The reaction medium contains M atoms, CH₄, CH₃, and electrons, and thus, combinations of them can provide sources of the primary products (CH₃-MH, CH₃-M, and CH₃-MH⁻ from M + CH_4 , M + CH_3 , and M + e^- + CH_4 , respectively). However, the concentrations of CH₃ and e⁻ in the reaction medium are low, and the alkyl metal and anionic insertion complexes have not been identified in the reactions of other transition-metal reactions while similar amounts of CH3 and electrons are believed to exist in the matrix samples.9-13 Therefore, generation of the methyl metal and anionic insertion complexes results from the unique properties of the coinage metals. The i absorptions in the original deposition spectra suggest that CH₃-MH is first produced via C-H insertion of CH₄ by M* (excited), similar to the previously studied transition-metal systems, 9-13 and the subsequent transformations to CH₃-M and CH₃-MH⁻ probably follow. The earlier coppermethane experiments demonstrated that ²P excited Cu atoms were required for the reaction,6a and excitation in the laser ablation process and through subsequent UV irradiation provides this required energy.

$$M^*(^2P) + CH_4 \to CH_3 - MH^* \to CH_3 - MH$$
 (1)

Release of H from CH₃–MH requires extra energy, which is consistent with the weak **a** absorptions in the original spectra. The excess energy from the insertion reaction or plume radiation would provide the energies for H-detachment from the Au, Ag, and Cu insertion complexes (134, 110 and 137 kJ mol⁻¹), generating the alkyl metal during co-deposition. The alkyl metals are relatively stable due to the single valence electrons (s¹) of the Group 11 metals,³⁴ leading to the much smaller H-detachment energies for the insertion complexes than those for other transition-metal analogues. For example, H-detachment energies of 290, 213, and 327 kJ mol⁻¹ are estimated for CH₃–ZrH, CH₃–NiH and CH₃–PtH. In addition, the CH₃–M molecules can be prepared by direct combination reactions (2b) as the methyl radical is produced and trapped in these experiments from laser plume photodissociation of the methane precursor.

$$CH_3-MH^* \rightarrow CH_3-M+H$$
 (2a)

$$CH_3 + M \rightarrow CH_3 - M$$
 (2b)

On the other hand, addition of an electron produced in the ablation process to the insertion complex is very exothermic. CH_3 – AuH^- is 268 kJ mol⁻¹ lower in energy than CH_3 –AuH, which is in fact larger than the electron affinity of the Au atom, 223 kJ mol⁻¹. ^{1g,25} In parallel, electron attachments to CH_3 –AgH and CH_3 –CuH lower the energies by 252 and 226 kJ mol⁻¹, which are considerably larger than the electron affinities of the Ag and Cu atoms themselves, at 126 and 119 kJ mol⁻¹. ²⁵ The higher electron affinities of the insertion complexes relative to those of the metal atoms are probably due to stabilization of negative charge by the methyl and hydride substituents: natural charges (Table S10†) on the methyl group (3 × 0.167–1.108 = –0.607) and hydride (– 0.413) for CH_3 –AuH⁻ substantiate this rationale.

$$CH_3-MH + e^- \rightarrow CH_3-MH^-$$
 (3)

The higher electron affinities of the insertion complexes also suggest that the insertion complex is probably formed first, and subsequent electron attachment produces the anionic insertion complex (CH₃–MH⁻), which is observed here owing to the very high intensity of the metal–hydride vibration. This should be more efficient than the C–H insertion reaction by the electron-rich metal anion to form the product. The electron affinities of the coinage metal insertion complexes are also much higher than those of other transition-metal analogues, for example, 83, 165, and 94 kJ mol⁻¹ for CH₃–ZrH, CH₃–NiH, and CH₃–PtH, and the electron affinities of Zr, Ni, and Pt are 41, 112, and 205 kJ mol⁻¹.²⁵ Finally, the corresponding methylene or methylidene complexes (CH₂–MH₂) are not observed probably due to their high energies.

Fig. 1–6 and S1–S3† also show that the **i** absorptions diminish upon UV and full arc irradiation while the **i** and **a** absorptions increase, suggesting that the anionic insertion complex photodetaches an electron to form the insertion and alkyl metal complexes during sample irradiation. The UV photon would provide CH₃–MH⁻ with the energy to detach an electron to generate the CH₃–MH and the excess reaction energy would in turn lead to dissociation of H to produce CH₃–M, reaction (4).

$$CH_3-MH^- + UV \rightarrow CH_3-MH^* + e^- \rightarrow CH_3-M + H + e^-$$
 (4)

A 300 nm photon corresponds to 400 kJ mol⁻¹, which is roughly equal to the transformation energy from CH₃–AuH⁻ to CH₃–M *via* CH₃–MH; those for the Ag and Cu analogues are 361 and 278 kJ mol⁻¹.

The Au and Cu spectra also show that the i absorptions almost disappear on visible irradiation while the a band (and CuH

absorption in the Cu spectra), and the CH₃ absorption remain essentially unchanged, suggesting that a visible photon dissociates the insertion complex mostly to M + CH₄ in the matrix rather than to $CH_3-M + H$ or $CH_3 + MH$.

Conclusions

Reactions of laser-ablated Group 11 metal atoms with methane isotopomers have been carried out, and the products are identified from the matrix IR spectra on the basis of frequencies, isotopic shifts, and correlation with two DFT frequency calculations. The insertion complexes (CH₃-MH) are identified along with methyl metal and anionic insertion complexes (CH3-M, and CH₃-MH⁻), showing that excited Group 11 metal atoms also readily undergo C-H insertion and subsequent reactions follow. The present results reconfirm that the C-H activation of alkanes by excited transition-metal atoms is a common phenomenon.⁹⁻¹³ Facile hydride dissociation and high electron affinity of the coinage metal insertion complexes lead to generation of the unique methyl metal and anionic insertion products from the initially formed insertion complex.

DFT computations for the primary products reproduce not only the observed vibrational characteristics but their stabilities over other plausible products as well. The calculated C-M bond lengths for the Au, Ag, and Cu complexes are appropriate and in line with those of the previously investigated Group 11 metal complexes. The methyl metal species have the shortest computed C-M bond lengths, which are consistent with their highest effective bond orders, and the CH₃-MH complexes have higher electron affinities than the metal atoms. The NBO33 analyses also show that in CH3-MH and CH₃-MH⁻, the metal atom has spd hybridization for the C-M bond, whereas in CH₃-M, the metal contributes mostly s character to the carbon-metal bond.

Acknowledgements

We gratefully acknowledge financial support from National Science Foundation (U. S.) Grant CHE 03-52487 to L. A., and support from the Korea Research Foundation (KRF) grant funded by the Korean government (MEST) (No 2010-0016527).

References

- 1 (a) H. Schmidbaur and A. Schier, Organometallics, 2010, 29, 2; (b) B. Armer and H. Schmidbaur, Angew. Chem., Int. Ed. Engl., 1970, 9, 101; (c) D. J. Gorin, B. D. Sherry and F. D. Toste, Chem. Rev., 2008, 108, 3351; (d) A. Arcadi, Chem. Rev., 2008, 108, 3266; (e) E. Jiménez-Núñez and A. M. Echavarren, Chem. Rev., 2008, 108, 3326; (f) Z. Li, C. Brouwer and C. He, Chem. Rev., 2008, 108, 3239; (g) P. Pyykko, Angew. Chem., Int. Ed., 2004, 43, 4412. (Au reviews).
- 2 (a) J.-M. Weibel, A. Blanc and P. Pale, Chem. Rev., 2008, 108, 3149; (b) W. Tyrra, Heteroat. Chem., 2002, 13, 561. (Ag reviews)
- 3 (a) B. Breit and Y. Schmidt, Chem. Rev., 2008, 108, 2928; (b) V. Caprio, Lett. Org. Chem., 2006, 3, 339. (Cu reviews).
- 4 (a) R. A. J. O'Hair, Chem. Commun., 2002, 20; (b) B. S. Rabinovitch, D. H. Dills and N. R. Larson, J. Phys. Chem., 1959, 63, 1523; (c) G. Semerano and L. Riccoboni, Ber. Dtsch. Chem. Ges. B, 1941, 74, 1089.
- 5 (a) D. B. Grotjahn, D. T. Halfen, L. M. Ziurys and A. L. Cooksy, J. Am. Chem. Soc., 2004, 126, 12621; (b) E. Nakamura, S. Mori, M. Nakamura and K. Morokuma, J. Am. Chem. Soc., 1997, 119, 4887; (c) H. Gilman, R. G. Jones and L. A. Woods, J. Org. Chem., 1952, 17, 1630. (CH₃-Cu).

- 6 (a) J. M. Parnis, S. A. Mitchell, J. Garcia-Prieto and G. A. Ozin, J. Am. Chem. Soc., 1985, 107, 8169; see also; (b) W. E. Billups, M. M. Konarski, R. H. Hauge and J. L. Margrave, J. Am. Chem. Soc., 1980, 102, 7393; (c) D. Ritter, J. J. Carroll and J. C. Weisshaar, J. Phys. Chem., 1992, 96, 10636
- 7 S.-C. Chang, Z. H. Kafafi, R. H. Hauge, W. E. Billups and J. L. Margrave, J. Am. Chem. Soc., 1987, 109, 4508.
- 8 (a) N. J. Rijs and R. A. J. O'Hair, Organometallics, 2010, 29, 2282; (b) N. J. Rijs and R. A. O'Hair, Organometallics, 2009, 28, 2684. (CH₃-AgH- and CH3-CuH-).
- 9 L. Andrews and H.-G. Cho, Organometallics, 2006, 25, 4040, and references therein (review article, Groups 4-6).
- 10 (a) H.-G. Cho and L. Andrews, Organometallics, 2007, 26, 633; (b) H.-G. Cho and L. Andrews, J. Phys. Chem. A, 2008, 112, 1519; (c) H.-G. Cho and L. Andrews, J. Phys. Chem. A, 2006, 110, 3886. (Groups 3, 4 and 5).
- 11 (a) H.-G. Cho and L. Andrews, *Inorg. Chem.*, 2008, 47, 1653; (b) H.-G. Cho and L. Andrews, Organometallics, 2007, 26, 4098; (c) H.-G. Cho and L. Andrews, Organometallics, 2008, 27, 1786. (Re and Os).
- 12 (a) H.-G. Cho and L. Andrews, J. Phys. Chem. A, 2008, 112, 12293; (b) H.-G. Cho and L. Andrews, *Organometallics*, 2009, 28, 1358. (Pt).
- 13 (a) L. Andrews and H.-G. Cho, J. Phys. Chem. A, 2005, 109, 6796; (b) J. T. Lyon, L. Andrews, P.-A Malmqvist, B. O. Roos, T. Yang and B. E. Bursten, *Inorg. Chem.*, 2007, **46**, 4917. (actinides); (c) H.-G. Cho, L. Andrews, unpublished work (lanthanides).
- 14 (a) G. von Frantzius, R. Streubel, K. Brandhorst and J. Grunenberg, Organometallics, 2006, 25, 118, and references therein; (b) N. Berkaine, P. Reinhardt and M. E. Alikhani, Chem. Phys., 2008, 343, 241; (c) G. Chung and M. S. Gordon, Organometallics, 2003, 22, 42; (d) G. T. de Jong and F. M. Bickelhaupt, J. Chem. Theory Comput., 2007, 3, 514; (e) B. O. Roos, R. Lindh, H.-G. Cho and L. Andrews, J. Phys. Chem. A, 2007, 111, 6420.
- 15 (a) L. Andrews and A. Citra, Chem. Rev., 2002, 102, 885, and references therein; (b) L. Andrews, Chem. Soc. Rev., 2004, 33, 123, and references
- 16 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. G. Johnson, W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople, GAUSSIAN 03 (Revision C.02), Gaussian, Inc., Wallingford, CT, 2004.
- 17 (a) A. D. Becke, J. Chem. Phys., 1993, 98, 5648; (b) C. Lee, Y. Yang and R. G. Parr, Phys. Rev. B, 1988, 37, 785.
- 18 K. Raghavachari and G. W. Trucks, J. Chem. Phys., 1989, 91,
- 19 D. Andrae, U. Haeussermann, M. Dolg, H. Stoll and H. Preuss, Theor. Chim. Acta, 1990, 77, 123.
- 20 (a) A. D. Becke, Phys. Rev. A: At., Mol., Opt. Phys., 1988, 38, 3098; (b) K. Burke, J. P. Perdew, Y. Wang, in Electronic Density Functional Theory: Recent Progress and New Directions, ed. J. F. Dobson, G. Vignale, M. P. Das, Plenum, 1998.
- 21 M. Head-Gordon and T. Head-Gordon, Chem. Phys. Lett., 1994, 220, 122
- 22 A. P. Scott and L. Radom, J. Phys. Chem., 1996, 100, 16502.
- 23 M. P. Andersson and P. L. Uvdal, J. Phys. Chem. A, 2005, 109, 2937.
- 24 (a) L. Andrews and X. Wang, J. Am. Chem. Soc., 2003, 125, 11751; (b) X. Wang, L. Andrews, L. Manceron and C. Marsden, J. Phys. Chem. A, 2003, 107, 8492. (Au, Ag, Cu + H₂).
- 25 http://en.wikipedia.org/wiki/Electron_affinity.
- 26 P. Schwerdtfeger, P. D. W. Boyd, A. K. Burrell, W. T. Robinson and M. J. Taylor, Inorg. Chem., 1990, 29, 3593.
- 27 C. E. Moore, Atomic energy levels as derived from the analyses of optical spectra (Circular 467 of the US National Bureau of Standards), National Bureau of Standards, Washington DC, 1958.

- 28 D. E. Milligan and M. Jacox, J. Chem. Phys., 1967, 47, 5146. (CH₃).
- 29 (a) K. Köhler, S. J. Silverio, I. Hyla-Kryspin, R. Gleiter, L. Zsolnai, A. Driess, G. Huttner and H. Lang, *Organometallics*, 1997, 16, 4970; (b) M. Pažický, A. Loos, M. J. Ferreira, D. Serra, N. Vinokurov, F. Rominger, C. Jäkel, A. S. K. Hashmi and M. Limbach, *Organometallics*, 2010, 29, 4448. (Au complexes).
- 30 (a) J. C. Barrick, D. C. Canfield and B. C. Giessen, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 1979, 35, 464; (b) B. Gil, J. Forniés, J. Gómez, E. Lalinde, A. Martin and M. T. Moreno, Inorg. Chem., 2006, 45, 7788. (C–Ag bond length).
- 31 (a) M. D. Janssen, K. Köhler, M. Herres, A. Dedieu, W. J. J. Smeets, A. L. Spek, D. M. Grove, H. Lang and G. V. Koten, *J. Am. Chem. Soc.*, 1996, 118, 4817; (b) B. J. Bellott and G. S. Girolami, *Organometallics*, 2009, 28, 2046. (C–Cu bond length).
- 32 (a) I. Antes and G. Frenking, *Organometallics*, 1995, **14**, 4263; (b) W. Nakanishi, M. Yamanaka and E. Nakamura, *J. Am. Chem. Soc.*, 2005, **127**, 1446. (CH₃–M structures).
- 33 A. E. Reed, L. A. Curtiss and F. Weinhold, Chem. Rev., 1988, 88, 899, and references therein.
- 34 http://www.webelements.com.