Módulo 1 - Diapositiva 2 Axiomas de Campo para (\mathbb{R})

Universidad de Antioquia

Facultad de Ciencias Exactas y Naturales

Temas

- \bullet Axiomas de campo para $\mathbb R$
- Propiedades de los números reales

Axiomas de Campo

Determine el o los procedimientos equivocados en el siguiente argumento:

Demostración de que 1=2

La siguiente tabla muestra las operaciones y su respectiva justificación para demostrar que 1=2 a partir de la hipótesis de que dos números reales a y b son iguales:

Operación	Justificación
a = b	Hipótesis
$ab = b^2$	Multiplicación por b en ambos lados
$-ab = -b^2$	Multiplicación por -1 en ambos lados
$a^2 - ab = a^2 - b^2$	Suma de a^2 en ambos lados
a(a-b) = (a-b)(a+b)	Factorización en ambos lados
a = a + b	Cancelación de $a-b$ en ambos lados
b=2b	Sustitución de a por b , pues $a = b$
1 = 2	Cancelación de b en ambos lados

Conclusión: 1=2

En el conjunto de los números reales se definen dos operaciones binarias: la adición (+) y la multiplicación o producto (·)

El conjunto de los números reales es cerrado respecto a la operación adición(+)

lacksquare A cada par de números reales a y b le corresponde un único número real a+b.

El conjunto de los números reales es cerrado respecto a la operación multiplicación (\cdot)

 \bullet A cada par de números reales a y b le corresponde un único número real $a \cdot b$.

Ejemplo:

- ${\color{red} \bullet}$ $1+\sqrt{2}$ es un número real porque es la suma de dos números reales.

Propiedades de la adición

1 La adición es <u>conmutativa</u>: a + b = b + a

2 La adición es asociativa: a + (b + c) = (a + b) + c

3 0 es el neutro aditivo: a + 0 = a

 \bullet -a es el <u>inverso aditivo</u> o negativo de a: a + (-a) = 0

Propiedades de la multiplicación

1 La multiplicación es conmutativa: ab = ba

2 La multiplicación es asociativa: a(bc) = (ab)c

3 1 es el neutro multiplicativo: $a \cdot 1 = a$

• $\frac{1}{a} = a^{-1}$ es el <u>inverso multiplicativo</u> (recíproco) de a: $a \cdot \left(\frac{1}{a}\right) = 1$, si $a \neq 0$,

Relación entre adición y multiplicación

1 La multiplicación es distributiva sobre la adición:

$$a(b+c) = ab + ac$$
 y $(a+b)c = ac + bc$

Las once propiedades anteriores: cinco para la suma, cinco para el producto y una que relaciona la suma con el producto son los axiomas de campo que cumplen los números reales, por esto se dice que $\mathbb R$ es un campo o se habla del campo de los números reales.

Eiemplo

- El inverso aditivo de -2 es 2 porque -2 + 2 = 0.
- ② El inverso multiplicativo de $\frac{2}{\sqrt{3}}$ es $\frac{\sqrt{3}}{2}$ porque $\frac{2}{\sqrt{3}} \cdot \frac{\sqrt{3}}{2} = 1$.

Propiedades de los números reales

La multiplicación y el cero

- $a \cdot 0 = 0$, para todo $a \in \mathbb{R}$
- Si $a, b \in \mathbb{R}$ y $a \cdot b = 0$, entonces a = 0 ó b = 0

Propiedades en la igualdad

- \bullet Si a = b y $c \in \mathbb{R}$ entonces: a + c = b + c y ac = bc.
- 2 Si ac = bc y $c \neq 0$, entonces a = b (Ley de cancelación)

Ejemplo

- **3** Ya que $\frac{1}{2} \neq 0$ y $\sqrt{3} \neq 0$, entonces $\frac{1}{2} \cdot \sqrt{3} \neq 0$.
- **3** Dado que (2-3) = (4-5), entonces $(2-3)\sqrt{2} = (4-5)\sqrt{2}$.

Propiedades de los números reales

Ley de los signos (inversos aditivos)

Para todo $a, b \in \mathbb{R}$ se cumple que:

- (-1)a = -a
- -(-a) = a
- (-a)b = a(-b) = -(ab)
- (-a)(-b) = ab

Sustracción(inverso aditivo) y división (inverso multiplicativo)

- a b = a + (-b)
- $a \div b = a \cdot \frac{1}{b} = a \cdot b^{-1}$, si $b \neq 0$

Propiedades de cocientes

Para $a, b, c, d \in \mathbb{R}$, con $b \neq 0$ y $d \neq 0$, se cumple que:

•
$$\frac{a}{b} = \frac{c}{d}$$
, si y solo si, $ad = bc$

•
$$\frac{ad}{bd} = \frac{a}{b}$$

$$\bullet \ \frac{a}{-b} = \frac{-a}{b} = -\frac{a}{b}$$

$$a + \frac{c}{d} = \frac{ad + bc}{bd}$$

•
$$\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c} = \frac{ad}{bc}$$
, con $c \neq 0$

Ejemplo.

Operaciones con fracciones

$$\frac{4}{5} - \frac{1}{7} = \frac{23}{35}$$

$$\frac{9}{15} - \frac{3}{8} = \frac{9}{40}$$

$$\frac{3}{7} \div \frac{2}{8} = \frac{12}{7}$$

Ejercicio. Determine que significa $a \div b$ si:

2
$$a \neq 0$$
 y $b = 0$

3
$$a = 0$$
 y $b = 0$

Referencias

Sullivan, M. Álgebra y Trigonometría, 7^a Edición. Editorial Pearson Prentice Hall, 2006.

Swokowski, E.W. Cole, J.A. Álgebra y Trigonometría con Geometría Analítica 13^a Edición. Editorial Cengage Learning, 2011

Zill, D. G. Dewar, J. M. Álgebra, Trigonometría y Geometría Analítica, 3^a Edición. Editorial McGraw-Hill, 2012.