What is claimed is:

1. A process of cleaning a semiconductor manufacturing system having a reaction chamber and a substrate-supporting electrode provided inside the reaction chamber, a substrate being located on the substrate-supporting electrode when forming a semiconductor film on the substrate, the process comprising:

positioning an insulating cover on the substratesupporting electrode in tight contact with the substratesupporting electrode; and

supplying a fluoride-based cleaning gas into the reaction chamber and generating a plasma in the reaction chamber.

- 2. The process of cleaning as set forth in claim 1, wherein the fluoride-based cleaning gas is one of NF $_3$, CF $_4$, C $_3$ F $_8$, C $_2$ F $_6$, and ClF $_3$.
- 3. The process of cleaning as set forth in claim 1, wherein the positioning of the insulating cover in tight contact with the substrate-supporting electrode comprises placing the insulating cover on the substrate-supporting electrode, and applying a voltage to the substrate-supporting electrode.
- 4. A process of cleaning a semiconductor manufacturing system having a reaction chamber and a substrate-supporting electrode provided inside the reaction chamber, with a substrate being placed on the substrate-supporting electrode when forming a semiconductor film on the substrate, the process comprising:

positioning an insulating cover on the substratesupporting electrode;

supplying a fluoride-based cleaning gas into the reaction

chamber, and supplying at least one of an inert gas and a fluorine-reducing gas into the reaction chamber from an approximate center of the substrate-supporting electrode through a gap between the insulating cover and the substrate-supporting electrode, a pressure in the gap being maintained to be higher than a pressure in the reaction chamber; and

generating a plasma in the reaction chamber.

- 5. The process of cleaning as set forth in claim 4, wherein the fluoride-based cleaning gas is one of NF $_3$, CF $_4$, C $_3$ F $_8$, C $_2$ F $_6$, and ClF $_3$.
- 6. The process of cleaning as set forth in claim 4, wherein the fluorine-reducing gas is H_2 or NH_3 .
- 7. The process of cleaning as set forth in claim 4, wherein the inert gas is He gas.
- 8. A process of cleaning a semiconductor manufacturing system having a reaction chamber and a substrate-supporting electrode provided inside the reaction chamber, with a substrate being placed on the substrate-supporting electrode when forming a semiconductor film on the substrate, the process comprising:

positioning an insulating cover on the substratesupporting electrode;

supplying a fluoride-based cleaning gas into the reaction chamber and then generating a plasma in the reaction chamber;

removing the insulating cover from the substratesupporting electrode to expose a surface of the substratesupporting electrode; and supplying a fluorine-reducing gas into the reaction chamber and generating a plasma.

- 9. The process of cleaning as set forth in claim 8, wherein the fluoride-based cleaning gas is one of NF₃, CF₄, C₃F₈, C₂F₆, and ClF₃.
- 10. The process of cleaning as set forth in claim 8, wherein the fluorine-reducing gas is H₂ or NH₃.
- 11. A process of cleaning a semiconductor manufacturing system having a reaction chamber and a substrate-supporting electrode provided inside the reaction chamber, with a substrate being placed on the substrate-supporting electrode when forming a semiconductor film on the substrate, the process comprising:

positioning an insulating cover on the substratesupporting electrode;

supplying a fluoride-based cleaning gas into the reaction chamber and generating a plasma in the reaction chamber;

supplying a fluorine-reducing gas into the reaction chamber and then generating a plasma;

removing the insulating cover from the substratesupporting electrode to expose a surface of the substratesupporting electrode; and

forming a silicon oxide film containing an excessive amount of silicon on the surface of the substrate-supporting electrode.

12. The process of cleaning as set forth in claim 11, wherein the fluoride-based cleaning gas is one of NF $_3$, CF $_4$, C $_3$ F $_8$, C $_2$ F $_6$, and ClF $_3$.

- 13. The process of cleaning as set forth in claim 11, wherein the fluorine-reducing gas is $\rm H_2$ or $\rm NH_3$.
- 14. A process of cleaning a semiconductor manufacturing system having a reaction chamber and a substrate-supporting electrode provided inside the reaction chamber, with a substrate being placed on the substrate-supporting electrode when forming a semiconductor film on the substrate, the process comprising:

supplying hydrogen gas and an inert gas into the reaction chamber and generating a plasma when the semiconductor manufacturing system is in a standby condition before loading the substrate into the reaction chamber.

- 15. The process of cleaning as set forth in claim 14, wherein the inert gas is Ar gas or He gas.
- 16. The process of cleaning as set forth in claim 14, further comprising generating a plasma with the substrate-supporting electrode immediately before loading the substrate into the reaction chamber.
- 17. The process of cleaning as set forth in claim 16, wherein the plasma is generated with the substrate-supporting electrode at an output power of 100-200W.
- 18. A method of manufacturing a semiconductor device comprising:

carrying out a cleaning process according to any one of claims 1 to 17;

setting the substrate on the substrate-supporting electrode in the reaction chamber;

supplying a raw material gas into the reaction chamber;

and

generating a plasma to form a semiconductor film on the substrate.

19. The process of cleaning as set forth in claim 1, wherein the positioning of the insulating cover in tight contact with the substrate-supporting electrode comprises placing the insulating cover on the substrate-supporting electrode, and clamping the insulating cover to the substrate-supporting electrode by a mechanical element.