Федеральное государственное автономное образовательное учреждение высшего образования "Самарский национальный исследовательский университет имени академика С.П. Королева" (Самарский университет)

ГИГИЕНИЧЕСКАЯ ОЦЕНКА ШУМА И ШУМОЗАЩИТА

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ

Федеральное государственное автономное образовательное учреждение высшего образования "Самарский национальный исследовательский университет имени академика С.П. Королева" (Самарский университет)

ГИГИЕНИЧЕСКАЯ ОЦЕНКА ШУМА И ШУМОЗАЩИТА

Рекомендовано редакционно-издательским советом федерального государственного автономного образовательного учреждения высшего образования «Самарский национальный исследовательский университет имени академика С.П. Королева» в качестве методических указаний по выполнению практических работ для студентов Самарского университета, обучающихся по техническим специальностям.

Самара Издательство СУ 2021

УДК 628.517.2

Составители: С. С. Козий, Ф. М. Шакиров, Т. Б. Козий

Рецензент: д-р техн. наук, проф. И. П. Попов

Гигиеническая оценка шума и шумозащита: метод. указания для практических занятий. С. С. Козий, Ф. М. Шакиров, Т. Б. Козий. /Самара: Самарский. ун-т, исп. и доп., 2021. – 46 с.

Рассматриваются общие сведения о шуме, его характеристики, влияние шума на организм человека; нормирование шума и методы борьбы с ним.

Методические указания предназначены для студентов всех форм обучения и специальностей, изучающих дисциплину «Безопасность жизнедеятельности».

Методические указания подготовлены на кафедре экологии и безопасности жизнедеятельности.

УДК 628.517.2

© Самарский государственный аэрокосмический университет, 2021.

Цели работы: изучить характер влияния потенциально вредных производственных факторов — шума, инфра- и ультразвука на организм человека, их физические характеристики, вопросы нормирования; изучить порядок гигиенической оценки условий труда при воздействии шума, инфра- и ультразвука и мероприятия по уменьшению их влияния на организм человека.

1 ШУМ 1.1 ОБЩИЕ СВЕДЕНИЯ

Шумом принято называть нежелательный звук или совокупность беспорядочно сочетающихся звуков различной частоты и интенсивности, оказывающих неблагоприятное воздействие на организм человека и мешающих его жизнедеятельности [1].

В виде нежелательного фактора звук является постоянным эффектом работающих механизмов и деятельности человека, воздействующим на рецепторы органа слуха. Ухо — это не только регистратор звука, оно неразрывно связано со структурами центральной нервной системы, играет ключевую роль в последующей передаче речи, а в целом — в понимании и осмыслении явлений окружающего мира.

Еще в начале XX века знаменитый ученый Р. Кох сравнивал шум с чумой. Разумеется, речь идет не о том, чтобы везде стояла абсолютная тишина. Длительная абсолютная тишина так же вредна для человека (его психики), как и непрерывный повышенный шум.

Так, при проектировании конструкторского бюро в Ганновере архитекторы предусмотрели все меры, чтобы ни один посторонний звук не проникал в здание — рамы с тройным остеклением, звукоизоляционные панели из ячеистого бетона и специальные пластмассовые обои, гасящие звук. Через неделю сотрудники стали жаловаться на «гнетущую тишину», они нервничали, теряли работоспособность. Администрации пришлось искусственно время от времени создавать в помещении эффект «тихого уличного шума» [2].

Каждый человек воспринимает шум по-своему. Это зависит от многих факторов: возраста, состояния здоровья, характера трудовой деятельности. Установлено, что большее влияние шум оказывает на людей занятых умственным трудом, чем физическим. Особенно беспокоит человека шум непонятного происхождения, возникающий в ночное время суток. Шум, создаваемый самим человеком, беспокоит

его значительно меньше, чем окружающих. Многочисленными исследованиями доказано, что шум снижает производительность труда на промышленных предприятиях до 30%, повышает опасность травматизма, приводит к развитию профессиональных заболеваний. В структуре профессиональных заболеваний в Российской Федерации приблизительно 17% приходится на заболевания органа слуха.

В настоящее время практически нет ни одной отрасли народного хозяйства или среды обитания человека, где шум не был бы в числе ведущих вредных факторов. Литейные и металлообрабатывающие производства, лесозаготовительные и строительные работы, добыча полезных ископаемых, текстильная и деревообрабатывающая промышленность — далеко не полный перечень производств, где шум превышает предельно допустимые значения.

Источниками шума могут быть колебания, возникающие при соударении, трении, скольжении твердых тел, истечении жидкостей и газов. Источниками колебаний являются работающие станки, ручные механизированные инструменты (электрические и пневматические пилы, отбойные, рубильные молотки, перфораторы), электрические машины (генераторы, электродвигатели, турбины), компрессоры, кузнечно-прессовое оборудование, подъёмно-транспортное и вспомогательное оборудование (вентиляционные установки, кондиционеры), лифты и транспортные средства (рисунок 1).

Рисунок 1 – Интенсивность звука, дБ, от различных источников

1.2 ФИЗИЧЕСКИЕ ХАРАКТЕРИСТИКИ ШУМА

По физической природе *шумом* называется всякий нежелательный для человека звук, обусловленный механическими колебаниями в упругих средах и телах, который находится в частотном диапазоне от 16÷20 до 20 000 Гц. Механические колебания с указанными частотами называют *звуковыми* или *слышимыми* [3].

Неслышимые человеком механические колебания с частотами ниже звукового диапазона называют *инфразвуковыми*, а с частотами выше звукового диапазона – *ультразвуковыми*.

При распространении волны частицы среды не движутся вместе с волной, а колеблются около своих положений равновесия. Вместе с волной от частицы к частице передаются лишь состояние колебательного движения и его энергия. Поэтому основным свойством волн является перенос энергии без переноса вещества. Это характерно для всех волн независимо от их природы, в том числе и для звуковых. Звуковые волны возникают при нарушении стационарного состояния среды, вследствие воздействия на нее какой-либо возмущающей силы.

Шум, как любой звук, характеризуется частотой f, интенсивностью I и звуковым давлением p.

Во время распространения звуковых колебаний в воздухе появляются области разряжения и области повышенного давления, которые и определяют величину звукового давления. Звуковым давлением называется разность между мгновенным значением давления при распространении звуковой волны и средним значением давления в невозмущенной среде. Звуковое давление изменяется с частотой, равной частоте звуковой волны.

На орган слуха человека действует среднеквадратичное значение звукового давления p_3 :

$$p_{9} = \sqrt{\frac{1}{T} \int_{0}^{T} p^{2}(t) dt}, \Pi a$$

где *p* – мгновенное значение звукового давления, Па;

T – время воздействия шума, ч.

При распространении звуковой волны происходит перенос кинетической энергии, величина которой определяется интенсивностью звука. Интенсивность звука определяется средней во времени энергией W, переносимой звуковой волной в единицу времени T сквозь единицу времени T

ничную площадку S, перпендикулярную направлению распространения волны:

$$I = \frac{W}{S \times T} \,, \quad \frac{Bm}{M^2} \,.$$

Величины звукового давления и интенсивности, с которыми приходится иметь дело на практике, изменяются в очень широких пределах: по давлению в 10^8 раз, по интенсивности — до 10^{16} раз.

Согласно биологическому закону Вебера-Фехнера, отражающего связь между изменением интенсивности раздражителя и силой вызванного им ощущения, реакция организма прямо пропорциональна относительному приращению раздражителя.

Для характеристики интенсивности звуков или шума принята измерительная система, учитывающая логарифмическую зависимость между раздражителем и слуховым восприятием — шкала логарифмических единиц, в которой каждая последующая ступень звуковой энергии больше предыдущей в 10 раз. Например, если интенсивность звука больше последующей в 10, 100, 1000 раз, то по логарифмической шкале она соответствует увеличению на 1, 2, 3 единицы. Логарифмическая единица, отражающая десятикратную ступень увеличения интенсивности звука над другим уровнем, называется белом (Б).

Весь воспринимаемый слухом диапазон интенсивности звука укладывается в 13÷14 Б. Для удобства пользуются не белом, а единицей в 10 раз меньшей — децибелом (дБ), которая приблизительно соответствует минимальному приросту звука, различаемому ухом.

В этой связи введены логарифмические величины – уровни интенсивности и звукового давления:

$$L = \lg \frac{I}{I_0},$$

где L – уровень интенсивности звука, $I_0 = 10^{-12} \; (\mathrm{Bt/m^2})$ - интенсивность звука на пороге слышимости. Порог слышимости – минимальный уровень звука, который еще различим человеком.

Ухо человека может воспринимать и анализировать звуки в широком диапазоне частот и интенсивностей. Область слышимых звуков ограничена так называемым порогами: нижний — это порог слышимости, верхний — порог болевого ощущения, при котором нормальное слуховое ощущение перерастает в болевое (рисунок 2).

Рисунок 2 – Слуховой диапазон человека по интенсивности звука и его частоте

Болевым порогом или порогом переносимости принято считать звук интенсивностью 140 дБ. Звуковые ощущения оценивают и по порогу дискомфорта (появлению ощущения щекотания, касания, слабой боли в ухе), наблюдаемого при уровне звукового давления более 120 дБ. Верхний (болевой) порог неодинаков у различных людей. А уровни порогов могут изменяться под воздействием тренировки.

Так как интенсивность звука пропорциональна квадрату звукового давления, то уровень звукового давления определяется выражением:

$$L = 20 \lg \frac{p_9}{p_0},$$

где p_{3} – среднеквадратичное значение звукового давления, Па;

 $p_0 = 2 \times 10^{-5} \ (\Pi a)$ — пороговое звуковое давление, едва различимое ухом человека при частоте 1000 Гц.

Уровнями интенсивности обычно пользуются при выполнении акустических расчетов, а уровнями звукового давления — при измерении шума и оценке его воздействия на организм человека.

Реальный звук является наложением гармоничных колебаний с большим набором частот, то есть звук обладает акустическим спект-

ром. Спектр – распределение уровней звукового давления по их частотам.

Для удобства при измерении и анализе шумов весь диапазон частот разбивают на октавы — интервалы, где конечная частота больше начальной в 2 раза: $f_2/f_1=2$, либо третьоктавные полосы с соотношением величин частотных границ: $f_2/f_1=\sqrt[3]{2}$.

Субъективно воспринимаемую величину звука называют его уровнем громкости (громкостью). Громкость является функцией интенсивности звука, частоты, времени действия физиологических особенностей слухового анализатора. Интенсивность звука субъективно ощущается как громкость, а частота определяет высоту тона. Шкала субъективной громкости является линейной, это позволяет сравнивать громкости различных источников, а также количественно оценивать эффективность шумоглушения. Наиболее неблагоприятным шумом следует считать прерывистый шум с преобладанием высокочастотного спектра.

1.3 ВОЗДЕЙСТВИЕ ШУМА НА ОРГАНИЗМ ЧЕЛОВЕКА

Шум является общебиологическим раздражителем, способным влиять на все органы и системы организма, вызывая разнообразные физиологические изменения. Эти изменения могут иметь положительную (шум прибоя, ручья, щебетания птиц), нейтральную (безразличное восприятие) и негативную окраску (неприятные, мешающие звуки) в зависимости от психоэмоционального восприятия звуков.

Шум с уровнем звукового давления до 30÷35 дБ привычен для человека и, как правило, не беспокоит его. Повышение этого уровня до 40÷70 дБ может создать значительную нагрузку на нервную систему, вызывать ухудшение самочувствия, и, при длительном воздействии, стать причиной неврозов. Воздействие шума уровнем >80 дБ приводит к частичной или полной утрате слуха — профессиональной тугоухости. При действии шума более высоких уровней (>140 дБ) возможен разрыв барабанных перепонок, контузия, а при еще более высоких (>160 дБ) и смерть.

В развитии профессиональной тугоухости выделяют 3 стадии:

Слуховую адаптацию – к концу рабочей смены слуховой порог возрастает на $10~\rm g \, B$, но через $3 \div 5 \,$ минут приходит к норме.

Слуховое утомление – к концу рабочей смены слуховой порог возрастает на 15 дБ, а время восстановления затягивается до 1 часа.

Прогрессирующая тугоухость — шум уровнем более 80дБ, довольно быстро вызывает снижение слуха и развитие тугоухости.

Сроки возникновения профессиональной тугоухости следующие: минимальный $-5\div7$ лет, средний $-10\div12$ лет и максимальный - от 15 и более (таблица 1).

Шумовые патологии подразделяются на специфические, наступающие в звуковом анализаторе, и неспецифические, возникающие в других органах и системах.

Поражение органа слуха определяется главным образом интенсивностью шума. Изменения в центральной нервной системе наступают значительно раньше, чем нарушения в звуковом анализаторе.

Таблица 1 – Возрастание тугоухости (в %) среди лиц, подвергающихся воздействию шума на протяжении трудового стажа (5÷25 лет)

Эквивалентный	Продолжительность шумового стажа, лет				
уровень шума, дБА	5	10	15	20	25
80	0	0	0	0	0
85	1	3	5	6	7
90	4	10	14	16	29
95	7	17	24	28	29
100	12	29	37	42	43
105	18	42	53	58	60
110	26	55	71	78	78

Кроме патологических изменений можно выделить следующие проявления неблагоприятного воздействия шума на организм — снижение разборчивости речи, неприятные ощущения, развитие утомления. Снижение разборчивости (внятности) речи, профессионально значимое при многих видах деятельности, обусловлено эффектами звуковой маскировки голоса производственным шумом и тесно связано со спектральными характеристиками шума. Приобретает особую значимость то, что шум, являясь информационной помехой для высшей нервной деятельности в целом, оказывает неблагоприятное влияние на протекание нервных процессов и способствует развитию утомления, так как шум увеличивает напряжение физиологических функций в процессе труда и тем самым снижает работоспособность организма.

При воздействии шума наблюдаются также отклонения в состоянии вестибулярной функции, общие неспецифические изменения в организме: головные боли, головокружение, боли в области сердца, повышение артериального давления, боли в области желудка, шум в ушах, быстрая утомляемость, раздражительность, общая слабость, ослабление памяти, понижение слуха. При медицинском осмотре наблюдается дрожание пальцев, век, пошатывание, снижение коленных и локтевых рефлексов, неустойчивость пульса, также могут быть отмечены нарушения обменных процессов. Шум вызывает снижение функций защитных систем и общей устойчивости организма к внешним воздействиям.

Степень шумовой патологии зависит в некоторой степени от индивидуальной чувствительности организма к акустическому раздражителю. Повышенная чувствительность к шуму присуща 11% людей. Женский и детский организм особенно чувствителен к шуму.

Длительное воздействие интенсивного шума на человека приводит к развитию шумовой болезни, являющейся самостоятельной формой профессиональных заболеваний.

Шумовая болезнь — это общее заболевание организма с преимущественным поражением органа слуха, центральной нервной и сердечно-сосудистой систем, развивающееся в результате длительного воздействия интенсивного шума. Формирование патологического процесса происходит при шумовом воздействии постепенно и начинается с неспецифических проявлений вегетативно-сосудистой дисфункции. Далее развиваются сдвиги со стороны центрально нервной и сердечно-сосудистой системы, затем — специфические изменения в слуховом анализаторе.

Воздействие шума на организм нередко сопровождается одновременным влиянием других вредных факторов, усиливающих воздействие основного — шума. Крайне неблагоприятно для человека сочетание влияния шума и нервно-психических нагрузок. Превышение предельно допустимого уровня вибрации на 1 дБ дополнительно усиливает потерю слуха на 1%. Одновременное влияние шума и нагревающего микроклимата (как минимум, температуры воздуха) приводит к более частому возникновению гипертонической болезни и, в целом, к увеличению показателей общей заболеваемости с временной утратой трудоспособности, включая заболевания язвенной болезнью желудочно-кишечного тракта, язвенным колитом, ишемической болезнью сердца. Если работник находится в условиях одновременного

воздействия шума и некоторых химических растворителей, эффект неблагоприятных последствий от них может быть взаимно усилен.

1.4 КЛАССИФИКАЦИЯ ШУМА

Шум классифицируется [4]:

- **по характеру спектра** на:
- а) *широкополосный* шум с непрерывным спектром шириной более 1 октавы;
- б) mональный шум, в спектре которого имеются выраженные дискретные тона.
 - **по временным характеристикам** на:
- а) *постоянный* шум, уровень которого изменяется во времени не более чем на 5дБ;
- б) *непостоянный* шум, уровень которого во времени изменяется более чем на 5дБ; в нём различают:
- *колеблющийся во времени*, уровень звука которого непрерывно изменяется во времени;
- <u>прерывистый</u>, уровень звука которого изменяется ступенчато; причем длительность интервалов, в течение которых уровень постоянен, составляет 1с;
- <u>импульсный</u>, состоящий из одного или нескольких звуковых сигналов, каждый длительностью менее 1с.

1.5 НОРМИРОВАНИЕ ШУМА

Предупреждение неблагоприятного воздействия шума на организм человека основано на его гигиеническом нормировании, целью которого является обоснование допустимых уровней, обеспечивающих предупреждение функциональных расстройств и заболеваний. В качестве критерия нормирования используют предельно допустимые уровни (ПДУ) шума.

Предельно допустимый уровень шума — это уровень фактора, который при ежедневной (кроме выходных дней) работе, но не более 40 часов в неделю в течение всего рабочего стажа не должен вызывать заболеваний или отклонений в состоянии здоровья, обнаруживаемых современными методами исследований в процессе работы или в отдаленные сроки жизни настоящего и последующего поколе-

ний. Соблюдение ПДУ шума не исключает нарушения здоровья у сверхчувствительных лиц.

Нормирование шума производится по комплексу показателей с учетом их гигиенической значимости. Таковыми являются [6]:

- а) эквивалентный уровень звука за рабочую смену,
- б) максимальные уровни звука, измеренные с временными коррекциями «S» и «I»,
 - в) пиковый уровень звука.

Уровни звукового давления для постоянного шума в октавных полосах со среднегеометрическими частотами 31,5; 63; 125; 250; 500; 1 000; 2 000; 4 000; 8 000 Гц в настоящее время не являются нормируемыми параметрами; они рассматриваются как справочные параметры, которые могут использоваться для подбора СИЗ, разработки мер профилактики, решения экспертных вопросов связи заболевания с профессией и так далее; могут измеряться и отражаться в протоколе измерения при оценке условий труда [6].

Эквивалентный (по энергии) уровень звука $L_{Aэкв}$ (дБА) непостоянного шума — уровень звука постоянного широкополосного шума, который имеет то же самое среднее квадратичное звуковое давление, что и данный непостоянный шум в течение определенного интервала времени.

 $L_{A_{\mathcal{I}KG}}$ определяется по формуле:

$$L_{A_{2KG}} = 10 \lg \frac{1}{T} \int_{0}^{T} \left(\frac{p_{A}(t)}{p_{0}} \right)^{2} dt,$$

где $p_A(t)$ — среднеквадратичная величина звукового давления с учетом коррекции по шкале «А» шумомера, Па; T — время действия шума, ч, или

$$L_{A_{2KG}} = 10 \lg \left(\frac{1}{T} \sum_{i=1}^{n} \tau_i \times 10^{0.1Li} \right),$$

где T — период наблюдения, ч; τ_i — время воздействия шума с уровнем L_i , ч; L_i — уровень звука в i промежуток времени, дБА, n — общее число промежутков времени действия шума.

Предельно допустимые уровни звука и эквивалентные уровни звука на рабочих местах устанавливаются с учетом напряженности и тяжести трудовой деятельности и приведены в таблице 2 [6] и в таблице 3 [5] для некоторых наиболее типичных видов трудовой деятельности и рабочих мест.

Таблица 2 – Предельно допустимые эквивалентные уровни звука в зависимости от напряжённости и тяжести труда, дБА

Предельно допустимые эквивалентные уровни звука, дБА						
Категории напряженности трудового процесса	Категории тяжести трудового процесса					
	легкая и средняя фи- зическая нагрузка 1 степени 2 степени					
Напряженность легкой и средней степени	80	75	75			
Напряженный труд 1 сте- пени	70	65	65			
Напряженный труд 2 сте- пени	60	-	-			
Напряженный труд 3 степени	50	-	-			

Примечание. Количественную оценку тяжести и напряженности трудового процесса по условиям труда следует проводить в соответствии с действующим документом по гигиенической оценке факторов рабочей среды и трудового процесса.

2 ХАРАКТЕРИСТИКА ИНФРАЗВУКА

 ${f N}{f H}{f \phi}{f pa}{f s}{f b}{f y}{f \kappa}$ — область акустических колебаний с частотами, лежащими ниже границы полосы слышимых частот — $20~{f \Gamma}{f q}$.

Инфразвук еще мало изученный фактор производственной среды, который способен оказывать неблагоприятное воздействие на организм человека. Он является составной частью спектров шумов, излучаемых многими технологическими агрегатами. Характерной особенностью инфразвука в отличие от слышимого и ультразвукового диа-

пазона является большая длина волны и малая частота колебаний (например, при частоте 7 Гц длина волны равна 48,5 м).

Таблица 3 – Предельно допустимые уровни звукового давления, уровни звука и эквивалентные уровни звука для основных наиболее типичных видов трудовой деятельности

Вид трудовой деятель-	-	Уровни звукового давления, дБ, в октавных полосах со среднегеометрическими частотами, Гц				Уровни звука и эквива- лентные				
ности, рабочее место	31,5	63	125	250	500	1000	2000	4000	8000	уровни звука, дБА
Творческая и научная деятельность, программирование, преподавание, обучение	98	71	61	54	65	45	42	40	38	50
Высококвалифицированная работа, требующая сосредоточенности, административно - управленческая деятельность	93	62	02	89	85	55	25	25	49	60
Операторская работа по точному графику с ин- струкцией, диспетчерская работа	96	83	74	89	63	09	27	25	54	65
Работа, требующая сосредоточенности, в помещениях лабораторий с шумным оборудованием	103	91	83	77	73	70	89	99	49	75
Постоянные рабочие места в производственных помещениях и на территории предприятий	107	95	87	82	78	75	73	71	69	80

Инфразвуковые волны мало поглощаются воздухом, могут свободно огибать препятствия, в результате чего способны распространяться на большие расстояния. Отмеченные особенности инфразвука затрудняют борьбу с ним, поскольку традиционные методы борьбы с шумом с помощью звукоизоляции и звукопоглощения мало эффективны.

Инфразвук создается различным оборудованием и возникает при:

- перемещении поверхностей больших размеров;

- наличии мощных турбулентных потоков жидкостей или газов;
- работе машины высокой единичной мощности при сравнительно низком рабочем числе оборотов, ходов или ударов;
 - ударном возбуждении конструкций;
- передвижении по местности, агрофону, дорогам, магистралям и т.п.;
- вращательном и возвратно-поступательном движении больших масс с повторением циклов не менее 20 раз/с;
- наличии замкнутых объёмов, возбуждаемых динамически (например, кабины наблюдения за технологическим процессом);
- работе крупногабаритных двигателей и рабочих органов машин (например, карьерные экскаваторы).

В современном производстве и на транспорте источниками инфразвука являются компрессоры, промышленные вентиляционные установки и системы кондиционирования воздуха, турбины, доменные и мартеновские печи, тяжелые машины с вращающимися частями, двигатели самолетов и вертолетов, реактивные двигатели космических ракет, дизельные двигатели судов и подводных лодок и другие. Источниками высоких уровней инфразвука служат и наземные средства транспорта. Например, в кабинах движущихся легковых автомобилей уровни инфразвука достигают 100 дБ в диапазоне частот 9÷16 Гц при закрытом окне и 110÷120 дБ в диапазоне от 2÷16 Гц при открытом окне. Максимальные уровни инфразвука в компрессорных, мартеновских цехах, на предприятиях металлургической промышленности (вблизи доменных и сталеплавильных печей) составляет 82÷133 дБ в октавных полосах со среднегеометрическими частотами 2; 4; 8 и 16 Гц.

2.1 КЛАССИФИКАЦИЯ ИНФРАЗВУКА

В соответствии с классификацией инфразвук, воздействующий на человека, подразделяется на [6]:

по характеру спектра:

- а) *широкополосный* инфразвук с непрерывным спектром шириной более одной октавы;
- б) *тональный* инфразвук, в спектре которого имеются слышимые дискретные составляющие. Тональный характер инфразвука устанавливают в октавных полосах частот по превышению уровня в одной полосе над соседними не менее чем на 10 дБ;

- по временным характеристикам:

- а) *постоянный* инфразвук, уровень звукового давления которого изменяется за время наблюдения не более чем в 2 раза (на 6 дБ);
- б) непостоянный инфразвук, уровень звукового давления которого изменяется за время наблюдения не менее чем в 2 раза (на 6 дБ).

2.2 ВОЗДЕЙСТВИЕ ИНФРАЗВУКА НА ЧЕЛОВЕКА

Гигиеническая проблема, связанная с воздействием инфразвука на организм человека, возникла сравнительно недавно — в 70-е годы прошлого столетия. Проведенные многочисленные исследования инфразвука свидетельствуют о том, что он оказывает выраженное неблагоприятное действие на организм человека, которое проявляется, прежде всего, в психических нарушениях, негативном влиянии на сердечно-сосудистую, дыхательную, эндокринную и другие системы, вестибулярный аппарат. Специфической для действия инфразвука реакцией организма является нарушение равновесия.

Инфрашумы воспринимаются человеком, главным образом, как физическая нагрузка: возникает утомление, головная боль, головокружение. Инфразвук силой свыше 150 дБ совершенно непереносим человеком; при 180÷190 дБ наступает смерть вследствие разрыва легочных альвеол.

Вредное воздействие инфразвука на организм человека усугубляется при совпадении частоты инфразвуковых колебаний с собственной частотой того или иного органа. Резонансные частоты для человека находятся в диапазоне 4÷15 Гц. Инфразвук частотой до 10 Гц вызывает резонансные явления со стороны крупных внутренних органов – желудка, печени, сердца, легких.

Длительное воздействие инфразвука $4\div10~\Gamma$ ц может вызвать, например, хронический гастрит, колит, сохраняющиеся длительное время после прекращения его воздействия.

Инфразвук с частотой 7 Гц совпадает с α -ритмом биотоков мозга, что вызывает нервно-психические явления, такие как чувство тревоги и страха.

Многие нервные болезни, свойственные жителям промышленных городов, вызываются инфрашумами, неслышимо проникающими сквозь самые толстые стены. По мнению некоторых ученых, даже не

очень интенсивные инфразвуки являются главным виновником нервной усталости жителей крупных городов.

При воздействии на человека повышенных уровней инфразвука наряду с указанными признаками наблюдаются также затруднения дыхания, связанные, по-видимому, с вибрацией грудной клетки, с резонансными явлениями; тошнота вследствие раздражения рецепторов различных органов; расстройства терморегуляции, выражающиеся в возникновении озноба и ознобоподобного дрожания; нарушения зрительного восприятия; многообразные вегетативные реакции, вызванные нарушением функционирования гипоталамуса и другие.

Частота различных симптомов, наблюдающихся при кратковременном воздействии инфразвука высокого уровня ($120 \div 135$ дБ), приведена в таблице 4.

Таблица 4 — Частота симптомов, наблюдающихся при кратковременном воздействии инфразвука высокого уровня (120÷135 дБ)

Симптомы	Частота
Головокружение	0,71
Тошнота	0,47
Усталость, слабость (в том числе резкая слабость)	0,71
Ощущение вибрации тела, внутренних органов	0,65
Чувство страха	0,41
Головная боль	0,61
Ощущение давления на барабанные перепонки, заложенность ушей	0,45
Обманчивые, нереальные ощущения	0,17
Вегетативные нарушения (бледность, потливость, сухость во рту, кожный зуд)	0,66
Психические нарушения (пространственная дезориентация, спутанность мыслей и др.)	0,67
Затруднение глотания	0,18
Нарушение зрения (затуманенность зрения)	0,3
Ощущение удушья	0,22
Модуляция речи	0,1
Нарушение дыхания	0,28
Ознобоподобный тремор	0,2

2.3 НОРМИРОВАНИЕ ИНФРАЗВУКА

Нормируемыми характеристиками инфразвука являются:

1) эквивалентные уровни звукового давления (L_p), дБ, в октавных полосах со среднегеометрическими частотами 2, 4, 8 и 16 Гц, определяемые по формуле:

$$L_p = 10 \lg \frac{p^2}{p_0^2},$$

где p — среднеквадратичное значение звукового давления, $\Pi a; p_0 -$ исходное значение звукового давления в воздухе, равное $2 \times 10^{-5} \Pi a$.

2) эквивалентный общий уровень инфразвука за рабочую смену, определяемый по формуле:

$$L_{2KG} = 10 \lg(\frac{1}{T} \sum_{i=1}^{n} t_i \times 10^{0.1L_i}),$$

где T — период наблюдения, ч; τ_i — продолжительность действия шума с уровнем L_i , ч; L_i — логарифмический уровень звука в i промежуток времени, дE, n — общее число промежутков времени действия инфразвука.

3) максимальный общий уровень инфразвука, измеренный с временной коррекцией S (медленно).

Предельно допустимые уровни инфразвука на рабочих местах, дифференцированные для различных видов работ, приведены в таблице 5 [6].

Таблица 5 – Предельно допустимые уровни инфразвука на рабочих местах и в общественных помещениях

Рабочие места, территория жилой	Уŗ	овни з	Γ0	Общий	
застройки, помещения жилых и об-	давления, дБ, в октавных				уровень
щественных зданий. Работы с раз-	Работы с раз- полосах со среднегеомет-			звукового	
личной степенью тяжести и напря-	рическими частотами, Гц			давления,	
женности трудового процесса:	2	4	8	16	дБ
- в средствах транспорта		105	100	95	110
- работы различной степени тяжести		95	90	85	100
- работы различной интеллектуально – эмоциональной напряженности	95	90	85	80	95

Для колеблющегося во времени и прерывистого инфразвука его максимальный текущий общий уровень не должен превышать 120 лБ.

При сокращенной рабочей неделе (менее 40 ч в неделю) ПДУ применяется без изменения.

3 ОСНОВНЫЕ СВЕДЕНИЯ ОБ УЛЬТРАЗВУКЕ И ЕГО ИСТОЧНИКИ

Ультразвук — область неслышимых человеческим ухом акустических колебаний с частотой выше $20~\kappa\Gamma$ ц.

Ультразвук, наряду со слышимыми звуками, издают тикающие часы, летящий самолет, телефонный звонок.

По своей природе ультразвуковые волны ничем не отличаются от звуковых волн слышимого диапазона. Распространение ультразвука подчиняется основным законам, общим для акустических волн любого диапазона частот.

Вместе с тем, ультразвук, обладая высокими частотами и, следовательно, малыми длинами волн, характеризуется особыми свойствами. Из-за малых длин ультразвуковые волны легче сфокусировать и соответственно получать более узкое и направленное излучение, т.е. сосредотачивать всю энергию ультразвука в нужном направлении и концентрировать её в небольшом объеме. Кроме того, ультразвуковые волны можно визуально наблюдать оптическими методами.

Источниками ультразвука являются все виды технологического оборудования, ультразвуковые приборы и аппараты промышленного, медицинского и бытового назначения, генерирующие ультразвуковые колебания в диапазоне частот от 18 кГц до 100 МГц и выше, а также оборудование, при эксплуатации которого ультразвуковые колебания возникают как сопутствующий фактор.

В настоящее время ультразвук широко применяется в различных отраслях экономики: геологии, медицине, металлургии, химической промышленности, машиностроении, радиоэлектронике и др.

Низкочастотные ультразвуковые волны, распространяющиеся контактным или воздушным путем, применяют для активного воздействия на вещества и технологические процессы: очистка, обезжиривание, сварка, механическая и термическая обработка материалов, коагуляция аэрозолей и многие другие.

В медицине ультразвук применяется для диагностики заболеваний, микромассажа тканей, ультразвуковой хирургии, стерилизации рук медперсонала и др.

При пропускании ультразвуковых колебаний через исследуемую деталь можно обнаружить в ней дефекты по характерному рассеиванию пучка и появлению ультразвуковой тени. На этом основана целая отрасль науки — ультразвуковая дефектоскопия.

Для неразрушающего контроля и в медицине – для диагностики и лечения различных заболеваний используются высокочастотный ультразвук, распространяющийся исключительно контактным путем.

3.1 КЛАССИФИКАЦИЯ УЛЬТРАЗВУКА

Для унификации критериев и методов оценки условий труда установлена гигиеническая классификация ультразвука, воздействующего на человека (таблица 6) [7].

Таблица 6 – Гигиеническая классификация ультразвука

Классифицируемый признак	Характеристика классифицируемого признака
	Контактный способ – ультразвук распространяет-
1. Способ	ся при соприкосновении рук или других частей
распространения	тела человека с источником ультразвука,
ультразвуковых	обрабатываемыми деталями и т.д.
колебаний	Воздушный способ – ультразвук распространяется
	по воздуху
2. Тип источников уль-	Ручные источники
тразвуковых колебаний	Стационарные источники
2 (Низкочастотный ультразвук - 16÷63 кГц
3. Спектральная характе-	Среднечастотный ультразвук - 125÷250 кГц
ристика ультразвука	Высокочастотный ультразвук - 1÷31,5 МГц
4. Режим генерирования	Постоянный ультразвук
ультразвуковых колебаний	Переменный ультразвук
	Источники ультразвука с магнитострикционным
5. Способ излучения уль-	генератором
тразвуковых колебаний	Источники ультразвука с пьезоэлектрическим ге-
	нератором.

3.2 ВОЗДЕЙСТВИЕ УЛЬТРАЗВУКА НА ЧЕЛОВЕКА

Ультразвуковые волны могут вызывать в организме человека различные биологические эффекты, характер которых определяется:

- 1. характеристиками ультразвуковых колебаний:
- интенсивностью;
- частотой;
- временными параметрами (постоянный, импульсный);
- 2. длительностью воздействия;
- 3. чувствительностью тканей человека.

Эффекты, вызываемые в организме человека, условно подразделяются на:

- механические, вызываемые знакопеременным смещением среды;
- физико-химические, связанные с ускорением процессов диффузии через мембраны, изменением скорости биологических реакций;
- *термические*, проявляемые в результате выделения тепла при поглощении тканями энергии ультразвуковых колебаний;
- эффекты, связанные с *возникновением в тканях ультразвуковой кавитации* (пустоты), то есть с образованием и последующим захлопыванием парогазовых пузырьков.

Происходящие под воздействием контактного или воздушного ультразвука изменения в организме человека имеют общие закономерности: малые интенсивности стимулируют, активируют, средние и большие угнетают, тормозят и могут полностью подавлять функции.

Так, при воздействии на человека контактного ультразвука низкой интенсивности (до 1,5 Bт/см²) происходит ускорение обменных процессов в организме, легкий нагрев тканей, микромассаж. Морфологических изменений внутри клеток не происходит.

Ультразвук средней интенсивности $(1,5\div3,0~\mathrm{Bt/cm^2})$ за счет увеличения переменного звукового давления вызывает обратимые реакции угнетения, в частности нервной ткани.

Контактный ультразвук высокой интенсивности $(3,0\div10,0\ \mathrm{Bt/cm^2})$ вызывает необратимые реакции угнетения, переходящие в процесс полного разрушения клеток.

Ультразвуковые колебания, генерируемые в импульсном режиме, оказывают менее выраженное, более мягкое действие на человека, чем постоянные. Мягкость действия импульсного ультразвука связана с преобладанием физико-химических эффектов действия над тепловым и механическим.

Действие ультразвука на организм человека приводит к изменениям почти во всех тканях, органах и системах: центральной и периферической нервной системе, сердечно-сосудистой, эндокринной системах, слуховом и вестибулярном анализаторах и др.

При систематическом воздействии интенсивного низкочастотного ультразвука наиболее характерным является появление вегетососудистой дистонии и астенического синдрома.

Высокочастотный ультразвук вызывает, прежде всего, поражения нейрососудистого, нейромышечного аппаратов, изменение костной структуры в виде остеопороза, остеосклероза и других изменений дегенеративно-дистрофического характера.

Лица, длительное время обслуживающие ультразвуковые установки, страдают также от головных болей, головокружений, общей слабости, болевых ощущений в области сердца, ухудшения памяти.

С 1989 г. вегетативно-сенсорная полинейропатия рук, развивающаяся при воздействии контактного ультразвука, признана профессиональным заболеванием и внесена в список профзаболеваний.

3.3 НОРМИРОВАНИЕ УЛЬТРАЗВУКА

Нормируемыми параметрами воздушного ультразвука являются эквивалентные уровни звукового давления в третьоктавных полосах со среднегеометрическими частотами 12,5; 16; 20; 25; 31,5; 40; 50; 63; 80; 100 к Γ ц, предельно допустимые значения которых приведены в таблице 7 [6, 8].

Нормируемыми параметрами контактного ультразвука являются максимальные значения усредненной во времени пикпространственной интенсивности — Ispta контактного ультразвука, распространяющегося от источника в водоподобной гелиевой среде, определяемые по формуле:

$$L_{v} = 20 \lg \frac{v}{v_0},$$

где v — пиковое значение виброскорости, м/c; v_0 — опорное значение виброскорости, равное 5×10^{-8} м/c.

Таблица 7 – Предельно допустимые уровни воздушного ультразвука на рабочих местах

Среднегеометрические частоты 1/3 октавных полос, кГц	Уровни звукового давления, дБ
12,5	80
16,0	90
20,0	100
25,0	105
31,5÷100,0	110

Предельно допустимые величины нормируемых параметров контактного ультразвука для работающих приведены в таблице 8 [6].

Таблица 8 – Предельно допустимые уровни контактного ультразвука на рабочих местах

Поддиапазоны частот, кГц	Усреднённая во времени пиковая пространственная интенсивность, Вт/см ²	Усреднённая во времени пиковая пространственная интенсивность для совместного действия воздушного и контактного УЗ, Вт/см ²
$11,2 \div 80,0$	0,03	0,017
80,0 ÷ 630,0	0,06	-
630,0 ÷ 5000,0	0,1	-

4 МЕТОДЫ БОРЬБЫ С ШУМОМ, ИНФРАЗВУКОМ И УЛЬТРАЗВУКОМ

Выбор мероприятий по ограничению неблагоприятного действия **шума** на человека производится исходя из конкретных условий: величины превышения предельно допустимого уровня, характера спектра, источника излучения. Защита работников от шума подразделяется на коллективную и индивидуальную [9].

К мерам коллективной защиты относятся:

- 1) уменьшение шума в источнике;
- 2) изменение направленности излучения шума;
- 3) рациональная планировка помещений предприятия;

- 4) акустическая обработка помещений (звукопоглощающие облицовки и поглотители);
- 5) уменьшение шума на пути его распространения от источника к рабочему месту (звукоизоляция, глушители).

В том случае, если применение коллективных мер защиты не позволяет обеспечить требования нормативов шума, либо их использование нерационально, в дополнение к ним, либо отдельно используются средства индивидуальной защиты, к которым относятся вкладыши, наушники, шлемы.

Вкладыши — самое дешевое средство, но недостаточно эффективное (снижение шума $5\div20~\mathrm{д}$ Б). Они вставляются в наружный слуховой проход и представляют собой различного рода заглушки из волокнистых материалов, изготовленных по конфигурации слухового прохода.

Наушники — это чашки из пластмассы или металла, заполненные звукопоглотителем. Для плотности прилегания чашки наушников снабжаются специальными уплотняющими кольцами, заполненными воздухом или специальными жидкостями. Степень глушения наушниками на высоких частотах составляет 20÷38 дБ.

Шлемы используются для защиты от очень сильных шумов (более 120 дБ), так как звуковые колебания воздуха воспринимаются не только ухом, но и через кости черепа.

Инфразвук может распространяться на большие расстояния вследствие незначительного поглощения в атмосфере и способности огибать препятствия. Большие длины волн, свойственные инфразвуку, определяют их выраженную дифракционную способность, а значительные величины амплитуды колебаний позволяют им воздействовать на человека на значительных расстояниях от источника.

В связи с этим для организации защиты от инфразвука необходимо использовать комплексный подход, включающий конструктивные меры снижения инфразвука в источнике образования, планировочные решения, организационные, медицинские меры профилактики и средства индивидуальной защиты.

К основным мероприятиям по борьбе с инфразвуком относятся:

- изоляция объектов, являющихся источником инфразвука, выделение их в отдельные помещения;
- использование кабин наблюдения с дистанционным управлением технологическим процессом;
 - повышение быстроходности машин, обеспечивающее перевод

максимума излучения в область слышимых частот;

- применение глушителей инфразвука с механическим преобразованием частоты волн;
 - устранение низкочастотных колебаний;
 - повышение жесткости конструкции больших размеров;
- введение в технологические цепочки специальных демпфирующих устройств малых линейных размеров, перераспределяющих спектральный состав колебаний в область более высоких частот;
- использование средств защиты органа слуха и головы от инфразвука противошумов, наушников, гермошлемов. Для повышения эффективности защиты используют комбинацию нескольких типов средств индивидуальной защиты, например, противошумные наушники и вкладыши;
- применение рационального режима труда и отдыха введение 20-минутных перерывов через каждые 2 часа работы при воздействии инфразвука с уровнями, превышающими нормативные.

Ограничение воздействия на работающих ультразвука, как неблагоприятного физического фактора производственной среды, достигается осуществлением организационно-технических, санитарногигиенических и медико-биологических мероприятий, дифференцированных с учетом частотно-амплитудных параметров, а также среды передачи.

Защита человека от действия воздушного ультразвука обеспечивается выполнением следующих мероприятий:

- использование в ультразвуковых источниках генераторов с рабочими частотами не ниже 22 кГц для исключения действия выраженного высокочастотного шума на работающих;
- оборудование звукоизолирующими кожухами и экранами стационарных ультразвуковых источников, генерирующих уровни звукового давления, превышающих нормативные значения;
- размещение ультразвуковых установок в специальных помещениях, выгородках или звукоизолирующих кабинах;
 - применение противошумов.

Ограничение неблагоприятного влияния ультразвука на персонал при контактном облучении достигается:

- исключением непосредственного контакта человека с рабочей поверхностью источника ультразвука и с контактной средой во время возбуждения в ней ультразвуковых колебаний;
 - создание автоматизированного ультразвукового оборудования;

- применение дистанционного управления источниками ультразвука;
- установление автоблокировки, то есть автоматического отключения источника ультразвука при выполнении вспомогательных операций; установление при систематической работе с источниками ультразвука 2 регламентированных перерывов 10-минутный перерыв за 1,0÷1,5 часа и 15-минутный перерыв через 1,5÷2,0 часа после обеденного перерыва для проведения профилактических процедур, а также лечебной гимнастики, витаминизации и т.д.;
- применение для защиты рук нарукавников, рукавиц или перчаток.

5 СПЕЦИАЛЬАНАЯ ОЦЕНКА УСЛОВИЙ ТРУДА

Отнесение условий труда (УТ) к определённому гигиеническому классу при воздействии на работника акустических факторов осуществляется в зависимости от соотношения фактических уровней нормируемых характеристик с их ПДУ. Числовые варианты таких соотношений, обусловливаемые ими классы условий труда при воздействии шума, инфра- и ультразвука, представлены в таблицах 9, 10, 11 [11].

При воздействии в течение рабочего дня (смены) на работника **шумов** с разными временными (постоянный шум, непостоянный шум – колеблющийся, прерывистый, импульсный) и спектральными (тональный шум) характеристиками в различных сочетаниях измеряют или рассчитывают эквивалентный уровень звука. Для получения сопоставимых данных измеренные или рассчитанные эквивалентные уровни звука импульсного и тонального шумов увеличиваются на 5 дБА, после чего полученный результат можно сравнивать с ПДУ для шума без внесения в него понижающей поправки.

При воздействии на работника постоянного **инфразвука** отнесение условий труда к классу условий труда осуществляется по результатам измерения уровня эквивалентных уровней звукового давления в октавных полосах со среднегеометрическими частотами 2; 4; 8; 16 Гц в дБ и его сравнения с соответствующим ПДУ.

При воздействии на работника непостоянного **инфразвука** отнесение условий труда к классу условий труда осуществляется по результатам измерения или расчета эквивалентного (по энергии) общего уровня инфразвука за рабочую смену в дБ и его сравнения с соответ-

ствующим ПДУ.

Таблица 9 – Классы условий труда в зависимости от превышения ПДУ уровнем шума (эквивалентным уровнем звука) на рабочем месте

Hannariya dayrana	Усло	вия труда / Классы условий труда				
Название фактора, показатель, единица	Допусти- мые УТ		Вредн	ые УТ		Опас- ные УТ
измерения	2	3.1	3.2	3.3	3.4	4
Шум, эквивалентный уровень звука, дБА, превышение ПДУ	≤ПДУ	>ПДУ до 5	> 5 до 15	> 15 до 25	> 25 до 35	>35

Таблица 10 – Классы условий труда в зависимости от превышения ПДУ уровнем инфразвука на рабочем месте

	Условия труда / Классы условий труда						
Название фактора, показа- тель, единица измерения	Допусти- мые УТ		Вредн	ые УТ		Опас- ные УТ	
	2	3.1	3.2	3.3	3.4	4	
Инфразвук, общий уровень звукового давления, дБ, превышение ПДУ	≤ПДУ	>ПДУ до 5	> 5 до 10	> 10 до 15	>15 до 20	>20	

Таблица 11 – Классы условий труда в зависимости от превышения ПДУ уровнем ультразвука на рабочем месте

Цеаранна фоктора	У	Условия труда / Классы условий труд				да
Название фактора, показатель, единица	Допусти- мые УТ		Вреді	ные УТ		Опас- ные УТ
измерения	2	3.1	3.2	3.3	3.4	4
Ультразвук воздушный, уровни звукового давления в 1/3 октавных полосах частот, дБ, превышение ПДУ	≤ПДУ	>ПДУ до 10	> 10 до 20	> 20 до 30	> 30 до 40	>40

При воздействии на работника воздушного ультразвука (в третьоктавных полосах частот от 12,5 до 100 к Γ ц) отнесение условий труда

к соответствующему классу при воздействии акустических факторов осуществляется по результатам измерения уровня звукового давления на рабочей частоте источника ультразвуковых колебаний и его сравнения с соответствующим ПДУ.

6 ОПРЕДЕЛЕНИЕ УРОВНЕЙ ЗВУКОВОГО ДАВЛЕНИЯ И УРОВНЕЙ ЗВУКА В РАСЧЁТНЫХ ТОЧКАХ

При проведении акустических расчетов наиболее часто рассматривают 3 варианта расположения рабочих мест:

- 1) в помещении с одним источником шума;
- 2) в помещении с несколькими источниками шума;
- 3) в соседнем (с шумным) помещении.
- 1. Октавные уровни звукового давления L (дE) в расчетных точках (на рабочих местах) E0 одним источником шума определяют:
 - а) в зоне прямого и отраженного звука:

$$L = L_p + 10\lg(\frac{x \times \Phi}{S} + \frac{4 \times \psi}{B}), \tag{1}$$

где L_p — октавный уровень звуковой мощности источника шума (берется из его паспорта), дБ;

- S площадь воображаемой поверхности правильной геометрической формы, окружающей источник и проходящей через расчетную точку, м². Для источников шума, у которых $2l_{max} < r$, следует рассчитывать S, учитывая варианты расположения источника шума:
 - в пространстве (на колонне в помещении)

$$S = 4\pi \times \mathbf{r}^2 \; ; \tag{1.1}$$

- в полупространстве - на полу, поверхности стены, перекрытия

$$S = 2\pi \times r^2 \tag{1.2}$$

в 1/4 пространства – в двугранном углу, образованном отражающими конструкциями (на полу, близко от одной стены, или на стене, близко от пола или потолка)

$$S = \pi \times \mathbf{r}^2; \tag{1.3}$$

 в 1/8 пространства – в трехгранном углу, образованном ограждающими/отражающими конструкциями (на полу/потолке близко от двух стен)

$$S = 0.5\pi \times \mathbf{r}^2; \tag{1.4}$$

r — расстояние от акустического центра источника шума до рабочего места или расчетной точки, м (акустический центр источника шума, расположенного на полу или стене, следует принимать совпадающим с проекцией геометрического центра источника шума на горизонтальную или вертикальную плоскость);

x — эмпирический коэффициент, учитывающий влияние ближнего акустического поля; он определяется по таблице 12 в зависимости от величины отношения r/l_{max} (причём, если выполняется неравенство $2l_{max} < r$, то x = 1);

 l_{max} – максимальный габарит источника шума;

r / l _{max}	x
0	4,0
0,5	3,5
1,0	2,0
1,5	1,4
2,0	1
2,5	1
3,0	1
4,0	1

Таблица 12 – Значения эмпирического коэффициента х

 ψ — коэффициент, учитывающий нарушение диффузности звукового поля в помещении, принимаемый по графику (рис. 3) в зависимости от отношения постоянной помещения «В» к площади ограждающих поверхностей помещения S_{ozp} ($S_{ozp} = S_{noлa} + S_{cmen} + S_{nomoлka}$);

B – акустическая постоянная помещения с источниками шума, м²:

$$B = B_{1000} \times \mu, \tag{1.5}$$

 B_{1000} – акустическая постоянная помещения на среднегеометрической частоте 1000 Гц, м². Определяется по таблице 13 в зависимости от объёма $V(V=a*b*h, \, \text{m}^3)$ и типа помещения;

 μ – частотный множитель, определяемый по таблице 14;

 Φ – фактор направленности. Это безразмерный параметр, величина которого принимается согласно шумовой характеристике источ-

ника шума:

- при отсутствии данных $\Phi = 2$;
- для источников шума с равномерным излучением звука $\Phi = 1$.

Рисунок 3 — График для определения коэффициента ψ в зависимости от отношения акустической постоянной помещения «В» к площади ограждающих поверхностей S_{OPD} .

Таблица 13 – Определение акустической постоянной помещения на среднегеометрической частоте 1000 Гц

Тип поме- щения	Описание помещения	$B_{1000}, \\ \mathbf{m}^2$
1	С небольшим количеством людей (металлообрабатывающие цехи, вентиляционные камеры, генераторные,	$\frac{V}{20}$
	машинные залы, испытательные стенды и т.д.)	20
2	С жесткой мебелью и большим количеством людей или с небольшим количеством людей и мягкой мебелью (лаборатории, ткацкие и деревообрабатывающие цехи, кабинеты и т.д.)	$\frac{V}{10}$
3	С большим числом людей и мягкой мебелью (рабочие помещения зданий управлений, залы конструкторских бюро, аудиторий учебных заведений, залы ресторанов, торговые залы магазинов, залы ожидания аэропортов и вокзалов, номера гостиниц, классные помещения в школах, читальные залы библиотек, жилые помещения и т.д.)	<u>V</u> 6
4	Помещения со звукопоглощающей облицовкой потолка и части стен	$\frac{V}{1.5}$

Таблица 14 — Частотный множитель **µ** в зависимости от объёма помещения и его назначения

Объём по-	Часто	тный мн	ожитель	μ на сре	еднегеом	иетричес	ских час	тотах					
мещения,		октавных полос, Гц											
M ³	63												
< 200	0,8												
200÷1000	0,65	0,62	0,64	0,75	1,0	1,5	2,4	4,2					
>1000	0,5	0,5	0,55	0,7	1,0	1,6	3,0	6,0					

б) в зоне прямого звука:

$$L = L_p + 10\lg \frac{x \times \Phi}{S} \quad .$$

(1.6)

в) в зоне отраженного звука:

$$L = L_n - 10\lg B + 10\lg \psi + 6 \quad . \tag{1.7}$$

- 2. Октавные уровни звукового давления в помещении **с несколь**кими источниками шума рассчитываются:
 - а) в зоне прямого и отраженного звука по формуле

$$L = 10 \lg \left[\sum_{i=1}^{m} \left(10^{0.1 L_{pi}} \times \frac{\chi_i \Phi_i}{S_i} \right) + \frac{4\psi}{B} \sum_{i=1}^{n} 10^{0.1 L_{pi}} \right], \tag{2}$$

где индекс i показывает, что соответствующая величина берется для каждого значимого источника шума;

m — количество источников шума, ближайших к расчётной точке (т.е. для которых $r_i < 5r_{min}$, где r_{min} — расстояние от расчётной точки до акустического центра ближайшего к ней источника шума, м);

n – общее количество источников шума в помещении.

б) в зоне отраженного звука по формуле

$$L = 10\lg \sum_{i=1}^{n} 10^{0.1 L_{pi}} - 10\lg B + 10\lg \psi + 6.$$
 (2.1)

Первый член в формуле (2.1) следует определять, суммируя уровни звуковой мощности источников шума по таблице 15, а если все источники шума имеют одинаковую звуковую мощность L_{po} , то

$$10\lg\sum_{i=1}^{n}10^{0.1L_{pi}}=L_{p_0}+10\lg n.$$

3. Для **соседнего с шумным помещения** ожидаемые уровни звукового давления рассчитываются:

$$L = 10\lg\left(\sum_{i=1}^{n} 10^{0.1L_{pi}}\right) + 10\lg S_{op} - 10\lg B_{uu} - 10\lg B_{u} - 10\lg R + 6, \quad (3)$$

где S_{op} – площадь ограждения, м²;

 B_{uu} и B_{u} — акустические постоянные шумного и изолированного помещений (таблица 13, формула (1.5)), м²;

R – изолирующая способность ограждения (таблица 16).

3десь $f_{\kappa p}$ — критическая частота.

Таблица 15 – Добавка на разность двух складываемых уровней шума

Разность двух скла- дываемых уровней, дБ	0	1	2	3	4	5	6	7	8	9	10	15	20
Добавка к более высокому уровню для получения суммарного уровня, дБ	3,0	2,5	2,0	1,8	1,5	1,2	1,0	8,0	9,0	5,0	6,4	0,2	0,1

Примечание: При пользовании таблицей 15 следует последовательно складывать уровни в дБ (звуковой мощности или звукового давления), начиная с максимального. Сначала следует определять разность двух складываемых уровней, затем соответствующую этой разности добавку. После этого добавку следует прибавить к большему из складываемых уровней. Полученный уровень складывают со следующим и т.д.

Требуемое снижение уровня звукового давления определяется выражением:

$$\Delta L_{mp} = L - L_{\partial on} \tag{4}$$

где $L_{\partial on}$ – допустимые по нормам уровни звукового давления, дБ; L – измеренные или расчетные уровни звукового давления в рас-

четной точке.

Материал конструкции	Плотность	Звукои	волирую	щая спос	обности	ь R, дБ
Материал конструкции	ρ, κΓ/m ³	$0,25f_{\kappa p}$	$0.5f_{\kappa p}$	$0,63f_{\kappa p}$	$f_{\kappa p}$	$2f_{\kappa p}$
Сталь	7800	35	37	-	30	39
Алюминиево – магни-	2800	28	31		22	30
евые сплавы	2800	20	31	1	22	30
Стеклопластик	1700	28	31	-	28	33
Фанера	800	26	28	-	25	30
Органическое стекло	1190	33	36	36	30	38
Силикатное стекло	2500	-	35	-	29	37

Таблица 16 – Звукоизолирующая способность ограждения

Для гигиенической оценки характера (допустимого, вредного или опасного) воздействия шума на организм работника используются не уровни звуковых давлений, а уровни звука (шума) либо эквивалентные уровни звука (шума) в расчётных точках [6].

Уровень шума — это уровень звукового давления, в частотную характеристику которого введена стандартная коррекция «А», учитывающая более плохую восприимчивость человеческого уха к звуку высоких и низких частот по отношению к средним частотам.

Эквивалентные уровни используются при описании воздействия непостоянных шумов, либо при переходе работника в течение рабочей смены с одного рабочего места на другое с разными уровнями шума на них.

Как уже оговаривалось выше, человек не слышит инфра- и ультразвук. Но, кроме того, его восприятие звука в слышимом диапазоне существенно зависит от частоты. Например, чистый тон частотой 100 Гц и уровнем звукового давления 29 дБ ощущается человеком аналогично звуку с частотой 1000 Гц и с уровнем звукового давления 10 дБ.

Поэтому, для корректной оценки воздействующего на работника шума, необходимо привести к одному знаменателю звуковые ощущений человека во всех частотных полосах. С этой целью и используется частотная коррекция «А», которая имитирует частотную характеристику слухового анализатора человека. Корректированный по характеристике «А» уровень звукового давления или измеренный по шкале «А» шумомера уровень звука, имеет единицу измерения «дБА».

Выполняется коррекция «А» следующим образом.

Корректированный по характеристике «А» уровень звукового давления L_{Aj} (дБА) в j-й октавной полосе частот вычисляется как

$$L_{Aj} = L_j - \Delta L_{Aj},\tag{5}$$

где L_j – некорректированный по характеристике «А» уровень звукового давления в j-й октавной полосе частот (по паспорту источника),

 ΔL_{Aj} – величина коррекции в *j*-й октавной полосе (таблица 17).

Таблица 17 — Величины корректирующих поправок ΔL_{Aj} , дБА по шкале «А» шумомера на среднегеометрических частотах f^* октавных полос

f^* , Гц	16	31,5	63	125	250	500	1000	2000	4000	8000
ΔL_{Aj} , дБА	80	42	26,3	16,1	8,6	3,2	0	-1,2	-1,0	1,1

Суммарный (по частотному диапазону) уровень звука L_A (одночисловая характеристика) для источника шума со сложным спектральным составом определяется по корректированным уровням звукового давления L_{Aj} во всех N октавных полосах частот на основании формулы:

$$L_A = 10lg(\sum_{j=1}^{N} 10^{0.1L}_{Aj}).$$
 (6)

Вычисленный таким образом уровень звука L_A от источника шума используется (путём его сопоставления с нормой шума — таблица 9) при определении гигиенического класса условий труда по шуму.

При воздействии на работника шума нескольких источников класс условий труда определяется по общему, создаваемому ими на рабочем месте, уровню звука $L_{A\Sigma}$, который находится по формуле:

$$L_{A\Sigma} = 10lg(\sum_{i=1}^{n} 10^{0.1L}_{Ai}), \tag{7}$$

где индекс (i) обозначает i –й из (n) источников шума,

 $-L_{Ai}$ уровень звука *i*-го источника шума из общего их числа «n».

7 ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

- 1. Получить вариант задания у преподавателя.
- 2. Занести характеристики оборудования в протокол к работе.
- 3. В соответствии с габаритными характеристиками помещения и расположенного в нём оборудования составить в масштабе план участка и указать на нём положение расчётной точки. В качестве последней может выступать точка расположения работника на одном из рабочих мест, либо центр помещения.
- 4. Обосновать выбор формулы из (1) (3), по которой будет производиться расчет характеристик в соответствии с заданием.
- 5. По плану помещения определить расстояния «*r*» от акустических центров источников шума до расчётной точки.
- 6. На основании актуальных при вашем расположении источников шума формул (1.1) (1.4) определить площади «S» воображаемых поверхностей, окружающих источники шума и проходящих через расчетную точку.
- 7. В соответствии со спецификой каждого источника шума определить его фактор направленности «Ф», а также коэффициент влияния ближнего акустического поля «х» таблица 12.
- 8. В зависимости от объёма и типа помещения по таблице 13 определить его постоянную « B_{1000} » в октавной полосе со среднегеометрической частотой 1000 Γ и.
- 9. По таблице 14 в зависимости от объёма помещения выбрать значения частотного множителя $\langle \mu \rangle$.
- 10.По формуле (1.5) рассчитать для среднегеометрических частот величины постоянной шумового помещения «B».
- 11. По площади ограждающих поверхностей « S_{ozp} » и рассчитанным значениям отношения « B/S_{ozp} » из графика рисунка 3 определить октавные величины коэффициента « ψ ».
- 12. Определить количество источников шума m, ближайших к расчётной точке (т.е. для которых $r_i < 5r_{min}$).
- 13. Для каждой среднегеометрической частоты рассчитать октавные уровни звукового давления в расчётной точке «L». В отчёте привести пример расчёта для любой из октавных полос.
- 14. Из таблицы 3 по характеру оборудования и выполняемой с его помощью работы выбрать и обосновать значения предельно допустимых уровней звукового давления « L_{don} » и уровня звука « L_{don} ».
- 15. По формуле (4) рассчитать требуемое снижение уровня звукового

- давления в октавных полосах частот « ΔL_{mp} ».
- 16. Произвести по формуле (5) коррекцию величин уровней звуковых давлений «L», которые действуют на человека в расчётной точке. Найденные значения « L_{Ai} » внести в протокол.
- 17. По формуле (6) определить суммарный уровень звука « L_A » в расчётной точке. Затем вычислить разницу $\Delta L_{Amp} = L_A L_{A\partial on}$.
- 18. На основании величины « ΔL_{Amp} » и данных таблицы 9 определить класс условий труда по шуму в расчётной точке.
- 19. В случае вредных или опасных условий труда ($\Delta L_{Amp} > 0$) разработать шумозащитные меры:
 - с учётом требуемого снижения уровней звукового давления в октавных полосах частот « ΔL_{mp} », особенностей помещения, расположенного в нём оборудования, осуществляемого технологического процесса, выбрать, обосновать и описать мероприятия и средства для уменьшения действующего на работников в расчётной точке помещения шума до допустимых величин.

ПРОТОКОЛ К РАБОТЕ

Оборудо-					вого да		r,	S,				
вание и						х часто		ц)	M	м ²	Φ	\boldsymbol{x}
параметры	63	125	250	500	1000	2000	4000	8000				
1												
2												
3												
4												
5												
μ												
В												
B/S_{opp}												
Ψ												
L, д $Б$												
$L_{\partial on}$, дБ												
ΔL_{mp} , дБ												
L_{Aj} , дБА												
L_A , д $БA$												
$L_{A\partial on}$, дБА												
ΔL_{Amp} , дБА												
КУТ												

8 ВАРИАНТЫ ЗАДАНИЙ

Вариант	Оборудование					вого дан			
заданий	Ооорудование	63	125	250	500	1000	2000	4000	8000
	Болтовой пресс А-1219	102	103	105	108	110	109	107	102
	Холодноболтовой пресс A-163	105	109	110	111	109	107	103	95
1	Гайковый автомат А-411	102	105	105	109	109	107	104	99
1	Обрезной автомат А-233	103	109	112	116	112	109	105	98
	Горячегаечный пресс AMP-130	98	104	106	108	105	103	97	93
		1	а=10; в	=6; h=	3			ı	1
	Шурупный автомат А- 1914	95	97	100	103	102	100	97	95
	Гаечный пресс А-1822	98	104	106	105	105	102	99	94
2	Резьбонакатный автомат A-2528	95	100	104	108	110	108	105	101
2	Холодновысадочный ав- томат A-121	99	102	106	109	109	107	106	101
	Закалочно-отпускной агрегат 6-300/4	93	94	95	97	95	92	88	81
		a=	=10; _B =	=10; h=	10				
	Острильный станок для дюбелей 1013	92	96	100	102	101	98	93	89
	Токарный шестишпин- дельный автомат 1265М-6	90	95	98	102	102	101	94	83
3	Токарный автомат «Нортон»	97	97	103	105	102	99	93	89
	«Кратос»	97	102	103	110	107	102	93	89
	«Грюна» (грубого волочения)	95	98	103	103	102	100	92	85
		a=	=10; в=	=16; h=	18	1			1
	Правильно-отрезной про- волочный стан И-6118	99	100	103	102	100	100	101	97
	Гвоздильный пресс ГП-2 ПТ	101	107	110	107	116	116	111	106
4	Гвоздильный автомат А-714	104	107	110	115	116	111	110	105
	Гвоздильный пресс ГП - 1	102	106	108	110	112	112	109	104
	Упаковочная машина для гвоздей	99	102	105	103	102	102	109	106
		a=	=10; в=	=16; h=	18				

	Электродообмазочный пресс с прокалочной печью АОЭ 4	103	100	103	101	100	98	97	95
•	Отрезной станок ПО 3	101	99	103	105	104	103	101	97
5	Шаровая мельница МШМ – 1В	95	105	105	105	113	109	101	92
	Аппарат сварочного участка	108	103	105	103	103	98	93	85
	Гвоздильный автомат 4115A	101	107	110	114	115	114	109	101
		a=	=10; в=	10; h=	:10		1	1	T
	Волочильный стан порошковой проволоки 4/250	90	88	87	87	81	79	75	66
	Дробилка валковая СМ-182	108	110	113	112	114	109	102	94
6	Волочильный стан «Мор- ган» 1/700	97	98	106	103	102	98	97	90
	Клеть биметалла черновая	111	110	107	108	101	99	91	80
	Клеть биметалла чистовая	110	105	105	101	97	95	90	85
				=6; h=					
	Пресс К2130Б	93	94	97	96	93	95	92	89
	Перемоточная машина фирмы «Егер»	89	89	91	92	91	89	87	79
7	Картосборочный станок типа А	91	93	95	94	93	91	90	85
	Ткацкий станок типа ДЛ	101	104	104	107	109	108	103	96
_	Металлоткацкий станок Б	90	93	96	99	101	104	100	95
				16; h=					
-	Металлоткацкий станок	90	94	98	102	104	109	105	102
	Металлоткацкий станок	94	97	97	98	100	101	96	90
8	Металлоткацкий станок ТМ-200 (тяжелые)	96	96	97	99	99	100	96	89
	Плетельный автомат СПА	95	95	97	98	99	95	93	91
	Навойный станок	94	95	94	93	93	93	88	88
				10; h=					
	Электропечь типа ДС-2	100	99	98	100	102	101	95	88
	Электропечь типа ДС-3	107	105	107	106	101	100	97	88
	Электропечь типа ДС-5	109	111	109	110	110	97	91	85
9	Бегуны размалывающие	100	103	102	97	90	88	85	79
	Бегуны смесительные (УЗТМ)	106	104	104	113	99	95	86	79
		8	a=10; в	=6; h=	:3				

	Ленточный транспортер	105	106	107	99	96	92	89	85
	Формовочная машина	110	109	103	110	111	105	104	102
	Формовочная машина	113	110	113	114	112	109	107	100
10	Шаровая мельница СМ-15	101	103	104	107	110	109	104	95
	Шаровая мельница СМ-174	99	115	117	123	123	121	117	107
				16; h=	18				
	Очистной барабан	101	105	107	113	116	113	106	96
	Термическая закалочная печь	103	110	108	107	99	89	81	81
	Пескомет модель 296М	104	110	113	105	100	96	94	91
11	Пневматическая выбивная решетка	108	115	115	113	112	113	106	96
	Вибрационное сито плоское СН-50	107	111	108	104	101	104	98	94
				10; h=					
	Трамбовка ТР-1	88	91	93	96	90	93	86	77
	Пневмомолоток типа МО-9П или КЕ-28	98	102	103	106	97	93	90	84
	Обдирочно – шлифовальный станок типа 3M634	105	99	101	100	105	105	97	84
12	Обдирочно – шлифоваль- ный станок подвесной	95	92	94	97	99	95	85	70
	Молоток типа МР-5 для обработки внутренних поверхностей изложниц	115	119	115	113	109	103	97	83
		8	=10; в	=6; h=	3				•
	Печь ёмкостью 5т	118	119	112	116	111	103	97	85
	Печь ёмкостью 5т	107	117	110	112	105	98	93	83
13	Печь ёмкостью 5т	104	112	106	108	106	99	94	82
13	Печь ёмкостью 40т	122	133	117	123	119	115	98	93
	Печь ёмкостью 40т	111	119	108	114	110	104	95	91
				16; h=			1	1	
	Печь ёмкостью 10т	120	133	119	120	117	99	95	85
	Печь ёмкостью 10т	117	128	114	109	109	102	94	90
14	Печь ёмкостью 10т	116	125	109	104	98	98	92	88
	Печь ёмкостью 40т	122	133	117	123	119	115	98	93
	Печь ёмкостью 40т	111	119	108	114	110	104	95	91
	П :: 100			10; h=		117	110	100	100
	Печь ёмкостью 100т	126	125	120	113	115	110	109	109
	Печь ёмкостью 100т	115	121	117	114	113	104	101	100
15	Печь ёмкостью 100т	115	114	111	107	101	97	92	85
	Печь ёмкостью 200т	104	105	104	102	95	89	86	83
	Печь ёмкостью 300т	108	106	104 =6; h=	105	100	95	93	90
		8	ı—10; B	-о, п=	J				

	Печь ёмкостью 400т	103	103	101	89	91	90	83	77
	Печь ёмкостью 400т	98	99	100	96	91	93	84	78
	Печь ёмкостью 400т	106	105	102	104	101	95	88	85
16	Завалочная машина	101	106	111	109	101	91	77	75
	Разливка для стали	95	104	102	98	93	85	83	81
		a=	=10; _B =	16; h=	18			•	•
	Разливочный кран	96	100	101	97	93	83	77	75
	Магнитный кран	96	101	101	91	78	76	74	73
	Конвертор ёмкостью 1 т	95	100	103	107	107	107	103	96
17	Конвертор ёмкостью 3 т	103	103	107	104	107	102	95	81
	Разливочное устройство	98	99	95	92	86	84	74	65
		a=	=10; _B =	=10; h=	:10				
	_								1
	Рейсмусовый станок	111	111	119	122	124	123	122	107
	Фуговальный станок	112	119	109	108	106	102	94	87
	Циркульная пила	96	96	97	100	104	110	116	112
18	Фрезерный станок	93	95	98	102	102	101	95	93
	Ленточная пила	97	100	101	97	99	99	99	106
		8	1=10; в	=6; h=	:3				
	П				1			1	I
	Поршневой компрессор 302 ВП-10/8,	120	117	104	102	97	90	86	84
	Поршневой компрессор ВП-20/8,	119	118	109	102	94	87	83	83
10	Поршневой компрессор 205ВП-30/8	121	127	117	108	100	94	90	89
19	Поршневой воздушный компрессор ВП-50/8	122	124	115	110	99	98	94	92
	Компрессор 5Г-100/8	124	112	101	98	99	96	91	85
		a=	=10; в=	16; h=	18				•
						· · · · · ·	· · · · · ·		
	Компрессор угловой 2CA-25	111	106	96	95	87	80	76	76
	Компрессор вертикаль- ный угловой 2СГ-50	110	108	102	97	85	86	78	75
	Компрессор вертикаль-								
	ный четырехступенчатый	105	103	97	86	80	75	71	69
20	2PK-1,5/220								
	Поршневой воздушный	100	95	84	81	75	72	67	55
	компрессор 5Г-14/220	100		Ŭ .				Ü.	
ļ	Поршневой компрессор 3Г-100/200	119	110	107	100	92	85	77	69
	или 50Т-130/200								
		a=	=10; в=	=10; h=	:10				

	Компрессор вертикаль- ный двухрядный 2PB-3/350	110	111	96	91	86	82	77	75
	Компрессор вертикаль- ный двухрядный 2PB-3,4/400	116	119	109	92	87	86	83	79
21	Турбокомпрессор К-250-61	84	79	83	82	94	99	98	89
	Центробежные компрес- соры ОК-500-92, К-345-91	102	100	95	96	104	111	107	98
	Промышленные компрессоры ВП-10/8, 2ВП-10/8, вертикальный компрессор 200В-10/8	112	112	92	95	109	110	105	106
		8	а=10; в	=6; h=	3				
	Компрессоры ВП-20/8, 160В-20/8	104	111	104	102	110	107	105	103
	Компрессоры 205ВП-30/8, ВП-50/8	106	108	117	118	115	109	106	107
22	Компрессор 5Г-100/8	107	105	104	114	123	126	128	127
22	Компрессор угловой 2CA-25	103	97	96	93	96	102	110	112
	Компрессор вертикаль- ный угловой 2СГ-50	124	117	114	107	116	124	129	124
		a=	10; _B =	16; h=	18;				
	Компрессор вертикальный четырехступенчатый 2PK-1,5/220	110	106	113	122	131	130	132	132
23	Компрессор вертикальный четырехступенчатый 2P-3/220	108	112	117	122	128	128	127	126
23	Компрессор 3Р-7/220	103	115	118	121	125	126	120	117
	Поршневой воздушный компрессор 5Г-14/220	108	112	117	123	128	128	127	126
	Поршневой компрессор 3Г-100/220	111	113	122	132	143	141	138	136
		a=	=10; _B =	10; h=	10				
	Поршневой компрессор 50T-130/200	106	110	121	127	134	135	136	136
	Компрессор вертикальный двухрядный 2PB-3/350	108	112	109	109	115	118	121	124
24	Турбокомпрессор К-250-61	119	117	120	124	124	130	133	130
	Конвектор ОК-500-92	122	132	128	126	128	133	128	122
	Компрессор центробеж- ный К-345-91	127	130	129	132	140	141	140	138
		a=	=10; в=	16; h=	18		· · · · ·	· · · · ·	
			2						

	Компрессор 160В-20/8	86	97	95	93	90	90	80	80
	Компрессор ВП-50/8	93	102	99	98	96	92	86	86
	Компрессор 5Г-100/8	99	98	96	97	98	90	85	76
25	Компрессор вертикальный	0.4							
	двухрядный 2РВ-3/350	84	91	90	90	91	86	80	80
	Компрессор 3Г-100/220	93	95	93	93	96	85	77	72
		í	а=10; в	=6; h=	3				
	Горячештамповочный	115	120	119	118	118	117	113	106
	кривошипный пресс	113	120	117	110	110	117	113	100
	Пресс ДС-135/800								
	при вырубке прямым	120	134	135	134	135	131	128	123
	штампом								
26	Пресс ДС-135/800	120	110	100	100	102	120	115	100
	при вырубке скошенным штампом	120	119	123	123	123	120	115	108
	Холодно высадочный								
	автомат А-163	105	109	110	111	109	107	103	95
	Обрезной автомат А-233	103	109	112	116	112	109	105	98
	oopesiion abromat 11 233		=10; _B =			112	10)	105	70
	Кривошипный пресс					105	100	0.7	0.2
	AMP-30	98	104	106	108	105	103	97	93
	Кривошипный пресс ГП-1	102	106	108	110	112	112	109	104
	Кривошипный пресс	93	95	99	99	94	93	92	90
27	K2 124	93	93	99	99	94	93	92	90
21	Кривошипный пресс	92	94	99	99	95	94	93	91
	K2 234		7 7	- //			71	75	71
	Кривошипный пресс	93	97	104	104	100	98	96	94
	K2 238		10	16.1	10				
	Г	a=	=10; в=	16; h=	18				
	Гидравлический пресс П 333	89	96	100	99	95	91	87	87
	Гидравлический пресс Д								
	2238	83	83	95	95	93	90	86	86
28	Молот усилием 5т	109	115	114	116	117	116	108	107
	Эксцентриковый пресс	90	91	98	102	105	104	106	92
	Гильотинные ножницы	103	104	104	106	106	105	100	99
			а=10; в						
	Токарный станок 1А62	84	87	90	92	91	87	82	80
	Токарный станок 1К36	96	94	95	98	93	90	90	86
	1551 токарно-	94	96	96	98	97	93	91	80
	карусельный станок	94	90	90	90	91	93	91	80
29	1541Б токарно-	92	96	98	100	104	95	93	82
	карусельный станок	12	70	70	100	104	73)3	02
	1К62 токарно-	91	90	95	95	96	97	98	91
	винторезный станок					70	71	70	71
		a=	=10; в=	=10; h=	:10				

30	1A112 автоматно- револьверный станок	90	92	96	97	92	87	83	74
	Токарный станок A1914 или A1916	88	92	92	95	93	88	83	79
	Токарный станок А1617	87	88	89	100	88	85	84	81
	Токарный станок АБ120	90	91	95	100	100	95	94	93
	Токарный станок А121Б	94	94	99	101	101	98	95	92
	a=10; в=16; h=18								

9 КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Дайте определение шума.
- 2. Назовите источники шума.
- 3. Какими физическими параметрами характеризуется шум?
- 4. Как вы понимаете термин «громкость звука»?
- 5. Какое воздействие оказывает шум на организм человека?
- 6. Что такое профессиональная тугоухость? Назовите 3 стадии ее развития.
- 7. Классификация шума.
- 8. Нормирование шума.
- 9. Дайте определение инфразвука. Источники инфразвука.
- 10. Классификация инфразвука.
- 11. Воздействие инфразвука на организм человека.
- 12. Нормирование инфразвука.
- 13. Ультразвук. Источники ультразвука.
- 14. Классификация ультразвука.
- 15. Воздействие ультразвука на организм человека.
- 16. Нормирование ультразвука.
- 17. Назовите методы борьбы с шумом, инфразвуком и ультразвуком.

10 СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. Белов С.В. Безопасность жизнедеятельности [Текст]: учебник для вузов / С.В.Белов, А.В. Ильницкая, А.Ф. Козьяков и др. 7-е изд. стер. М.: Высшая школа, 2007. 616 с.: ил.
- 2. Глебова Е. В. Производственная санитария и гигиена труда [Текст]: учебное пособие для вузов/ Е.В. Глебова М.: Высшая школа, 2005. 383с.: ил.
- 3. Занько Н.Г. Безопасность жизнедеятельности [Текст]: [учеб. по дисциплине «Безопасность жизнедеятельности» для всех направлений подгот. и специальностей] / Н.Г. Занько, К.Р. Малаян, О.Н. Русак. СПб., М., Краснодар: «Лань», 2010.- 671 с.: ил.
- 4. ГОСТ 12.1.003-83 (СТ СЭВ 1930-79) "Система стандартов безопасности труда. Шум. Общие требования безопасности".
- 5. CH 2.2.4/2.1.8.562-96 «Шум на рабочих местах, в помещениях жилых, общественных зданий и на территории жилой застройки».
- 6. СанПиН 2.2.4.3359-16. Санитарно-эпидемиологические требования к физическим факторам на рабочих местах.
- 7. ГОСТ 23941-2002 "Шум. Методы определения шумовых характеристик. Общие требования".
- 8. СанПиН 2.2.4/2.1.8.582-96 «Гигиенические требования при работах с источниками воздушного и контактного ультразвука промышленного, медицинского и бытового назначения».
- 9. СП 51.13330.2011 Защита от шума.
- 10.Специальная оценка условий труда: сборник нормативных актов по состоянию на 2016 год. Москва: Эксмо, 2016. 192 с.
- 11.Р 2.2.2006-05. «Руководство по гигиенической оценке факторов рабочей среды и трудового процесса. Критерии и классификация условий труда»

Учебное издание

ГИГИЕНИЧЕСКАЯ ОЦЕНКА ШУМА И ШУМОЗАЩИТА

Методические указания для выполнения практических работ

Составители Козий Софья Сергеевна, Шакиров Фарид Мигдэтович, Козий Татьяна Борисовна

Редактор Довёрстка

Подписано в печать . Формат 60×84 2/16 Бумага офсетная. Печать офсетная Усл. печ. л.
Тираж экз. Заказ . Арт. - 2021 Самарский университет. 443086 Самара, Московское шоссе, 34.

Изд-во Самарского университета

443086 Самара, Московское шоссе, 34.