IIC2413

AYUDANTÍA 3

FORMAS NORMALES

¿QUÉ VEREMOS?

Dependencia Funcional

1 Forma Normal

2 Formal Normal

3 Formal Normal

BCNF

RECORDATORIO: TIPOS LLAVES

Súper llave: Conjunto de atributos que permiten identificar el resto de datos

Candidata: Super llave, que no puede tener subconjuntos de estos atributos que sea una súper llave.

Intuitivamente: Súper llave que no se puede achicar (si se achica deja de ser única)

Primaria: Es una llave candidata que se quiere destacar (se subraya el o los atributos)

RECORDATORIO: TIPOS LLAVES

Ejemplo practico:

RUT	Email	Curso	Nombre
12345678-9	sofia@mail. com	Álgebra	Sofía
98765432-1	tomas@mail .com	Física	Tomás
12345678-9	sofia@mail. com	Cálculo	Sofía

Superllave /

Cualquier combinación de atributos que permita identificar de manera única cada fila, es una superllave.

Clave candidata /

Es la mínima combinación de atributos que identifica una fila.

RECORDATORIO: TIPOS LLAVES

Ejemplo practico:

RUT	Email	Curso	Nombre
12345678-9	sofia@mail. com	Álgebra	Sofía
98765432-1	tomas@mail .com	Física	Tomás
12345678-9	sofia@mail. com	Cálculo	Sofía

Superllaves 🔑

- (RUT, Curso, Nombre)
- (RUT, Curso, Email)
- (Email, Curso, Nombre)
- (RUT, Curso, Email, Nombre)

Clave candidata 🥕

- (Rut, Curso)
- (Email, Curso)

Dependencias y Formas Normales

El objetivo principal de las formas normales es reducir la redundancia de datos. Las dependencias funcionales son fundamentales para esto.

Dependencia funcional $X \rightarrow Y$

Se dice que Y es funcionalmente dependiente de X si y solo si cada valor de X esta asociado a un valor de Y

1NF

Cada celda debe contener un solo valor y la fila debe ser única.

id_alumno	nombre	curso
1	Juan	Matemáticas, Física
2	María	Química

Ejemplo tabla no normalizada: Ejemplo tabla normalizada (1NF):

id_alumno	nombre	curso
1	Juan	Matemáticas
1	Juan	Física
2	Maria	Química

2NF

Debe estar en 1NF y cada columna debe depender de la clave primaria completa, no solo de una parte.

Ejemplo tabla no normalizada (2NF):

ID_Alumno	ID_Curso	Nombre_Alu mno	Nombre_Cu rso	Profesor
1	101	Juan	Matemáticas	Prof. Pérez
1	102	Juan	Física	Prof. López
2	103	María	Química	Prof. Díaz

"Nombre_Alumno" solo depende de "ID_Alumno", no de toda la clave primaria (ID_Alumno, ID_Curso).

ID_Alumno → Nombre_Alumno

La llave completa es ID_Alumno,

ID_Curso

Para normalizar tenemos que hacer tres tablas

Tabla Cursos

ID_Curso	Nombre_Curso	Profesor
101	Matematicas	Prof. Pérez
102	Física	Prof. López
103	Química	Prof. Díaz

ID_Curso → Nombre_Curso, Profesor

Tabla Alumnos

ID_Alumno	Nombre_Alumno
1	Juan
2	Maria

ID_Alumno → Nombre_Alumno

Tabla Inscripciones

ID_Alumno	ID_Curso
1	101
1	102
2	103

ID_Alumno→ ID_Curso

3NF

Debe estar en 2NF y eliminar las dependencias transitivas.

Ejemplo tabla no normalizada (3NF):

ID_Alumno	Nombre	ID_Ciudad	Ciudad	País
1	Juan	10	Santiago	Chile
2	María	11	Lima	Perú

"Ciudad" y "País" dependen de "ID_Ciudad", la cual depende de "ID_Alumno", generando dependencia transitiva

ID_Alumno → Nombre,ID_CiudadID_Ciudad → Ciudad, País

3NF

Para normalizar hacemos dos tablas de manera que ciudad y pais dependan directamente de ID_Ciudad

Tabla Alumnos

ID_Alumno	Nombre	ID_Ciudad
1	Juan	10
2	María	11

Tabla Ciudades

ID_Ciudad	Ciudad	País
10	Santiago	Chile
11	Lima	Perú

- Es una extensión de la Tercera Forma Normal (3NF).
- Se usa para eliminar redundancias y anomalías de actualización en bases de datos.

<u>Incluso estando en 3NF, algunas tablas pueden:</u>

- Tener dependencias funcionales no deseadas.
- Generar inserciones imposibles o eliminaciones que borran información necesaria.
- Repetir datos innecesariamente (redundancia).

<u>Ejemplo: Anomalía de inserción</u>

Empleado(EmpleadoID, Departamento, JefeDepto)

EmpleadoID → Departamento, JefeDepto Departamento → JefeDepto

Problema:

No se puede registrar un nuevo departamento y su jefe si aún no hay empleados, porque EmpleadoID es obligatorio.

Debe estar en 3NF y cada dependencia funcional A → B, A debe ser superllave

Ejemplo tabla no normalizada (BCNF):

Curso_ID	Profesor	Departamento
C1	Ana	Matemáticas
C2	Ana	Matemáticas
C3	Juan	Física

Curso_ID → **Profesor**, **Departamento**

Profesor → **Departamento**

Súper llave: Conjunto de atributos que permiten identificar el resto de datos

Ejemplo tabla no normalizada (BCNF):

Curso_ID	Profesor	Departamento	
C1	Ana	Matemáticas	
C2	Ana	Matemáticas	
C3	Juan	Física	

El determinante Profesor no es superllave, porque no determina toda la tupla (por ejemplo, no determina el Curso_ID). Por lo que Profesor no es superllave

Para solucionar esto, descomponemos la tabla logrando que se cumpla $A \rightarrow B$, donde A es llave candidata

Profesor	Departamento	
Ana	Matemáticas	
Juan	Física	

Curso_ID	Profesor	
C1	Ana	
C2	Ana	
C3	Juan	

$\underline{\mathbf{id}}$	${f nombre_plato}$	precio	Ing 1	Ing 2	Ing 3	Ing 4
1	Ceviche	12.000	Reineta	Cebolla morada	Pimentones rojo, amarillo y verde	Jugo de limón
2	Bistec a lo pobre	15.000	Papas fritas	2 huevos	Cebolla frita	
3	Crudo	15.000	Carne molida	3 panes molde tostado	Cebolla morada picada, ají y alcaparras	Jugo de limón
4	Ceviche salmón	18.000	Salmón	Cebolla morada	Pimentones rojo, amarillo y verde	Jugo de limón
5	Ñoqui Salsa	15.000	Ñoqui	Salsas boloñesa, 4 quesos, champiñón	Queso parmesano	
6	Cazuela	10.000	Trutro Pollo	Zapallo	Papa y choclo	Arroz, zanahoria y cebolla
7	Charquicán	12.000	Papa	Zapallo	Cebolla, choclo, zanahoria y ajo	Carbe molida
8	Sushi	15.000	Salmón, Pollo	Arroz	Kanikama, camarón	Palta, queso crema, sésamo

¿Esta en 1NF?

¿Cuales son las dependencias funcionales?

Realice la descomposición de la tabla para 3NF

¿Esta en 1NF?

¿Cuales son las dependencias funcionales?

Realice la descomposición de la tabla para 3NF

¿Esta en 1NF?

La tabla no se encuentra en 1NF, ya que para estar en 1NF los campos deben ser ató micos y en el caso de los ingredientes hay listas de ellos.

¿Cuales son las dependencias funcionales?

Realice la descomposición de la tabla para 3NF

¿Esta en 1NF?

La tabla no se encuentra en 1NF, ya que para estar en 1NF los campos deben ser atómicos y en el caso de los ingredientes hay listas de ellos.

¿Cuales son las dependencias funcionales?

id \rightarrow nombre plato, precio nombre plato \rightarrow precio, lng 1, lng 2, lng 3, lng 4

Realice la descomposición de la tabla para 3NF

¿Esta en 1NF?

La tabla no se encuentra en 1NF, ya que para estar en 1NF los campos deben ser ató micos y en el caso de los ingredientes hay listas de ellos.

¿Cuales son las dependencias funcionales?

id $\cdot \rightarrow$ nombre plato, precio nombre plato \rightarrow precio, lng 1, lng 2, lng 3, lng 4

Realice la descomposición de la tabla para 3NF

plato(id plato: serial, nombre plato: string, precio: int) ingredientes(id ingrediente: serial, nombre ingrediente: string)

plato ingrediente(id plato: int, id ingrediente: int)

I Considere la siguiente tabla para un sistema de gestión de biblioteca que almacena libros, autores y las ciudades de los autores:

Libros(<u>ISBN</u>, Titulo, AutorID, NombreAutor, CiudadAutor)

Donde ISBN es la llave primaria. Se sabe que un autor puede escribir múltiples libros, pero vive en una única ciudad. Describa todas las dependencias funcionales en la tabla. Luego, explique por qué la tabla no está en Tercera Forma Normal (3NF) y proponga una reestructuración de la tabla para cumplir con 3NF y BCNF.

Libros(<u>ISBN</u>, Titulo, AutorID, NombreAutor, CiudadAutor)

Identificamos las dependencias funcionales:

- ISBN → Titulo, AutorID, Nombre Autor, CiudadAutor
- AutorID → NombreAutor, CiudadAutor

La tabla no esta en 3NF: Dado que CiudadAutor depende transitivamente de ISBN

Reestructuración:

- Libros(<u>ISBN</u>, Titulo, AutorID)
- Autores(<u>AutorID</u>, NombreAutor, Ciudad Autor)

Dada una tabla de empleados con la siguiente estructura y dependencias funcionales:

Empleados(<u>EmplD</u>, Nombre, SupervisorID, NombreSupervisor, Departamento)

Dependencias funcionales:

EmpID → **Nombre, SupervisorID, Departamento SupervisorID** → **NombreSupervisor, Departamento**

Evalúe si esta tabla está en Tercera Forma Normal (3NF). Si no lo está, proponga una descomposición que cumpla con 3NF.

Empleados (EmpID, Nombre, SupervisorID, NombreSupervisor, Departamento)

Dependencias funcionales:

 $EmpID \rightarrow Nombre, SupervisorID, Departamento$

SupervisorID \rightarrow NombreSupervisor, Departamento

Evaluacion de la tabla empleados en 3NF

La llave primaria de la tabla es EmpID, porquerque identifica de manera única la tabla.

No esta en 3NF, dado que SupervisorID no depende de EmpID, si no que esta determina NombreSupervisor y Departamento

Reestructuración:

- Empleados(<u>EmpID</u>, Nombre, SupervisorID)
- Supervisores(<u>SupervisorID</u>, NombreSupervisor, Departamento)

III Imagine una base de datos utilizada para el manejo de pedidos en un restaurante:

 $Pedidos (\underline{PedidoID}, MesaID, FechaPedido, PlatoID, Nombre Plato, Precio Plato)$

con las dependencias funcionales:

PedidoID \rightarrow MesaID, FechaPedido

 $PlatoID \rightarrow NombrePlato, PrecioPlato$

Analice la tabla con respecto a la 2NF y 3NF. Recuerde que para que una tabla esté en 2NF, debe cumplir dos criterios:

- a) Estar en Primera Forma Normal (1NF): Esto significa que la tabla debe tener sus atributos atómicos (sin grupos repetitivos) y cada registro debe ser único (generalmente asegurado por una clave primaria).
- b) Eliminación de dependencias parciales: Una tabla está en 2NF si y solo si todos sus atributos no llave dependen completamente de toda la llave primaria, y no solo de una parte de ella.

Pedidos (<u>PedidoID</u>, MesaID, FechaPedido, PlatoID, NombrePlato, PrecioPlato)

con las dependencias funcionales:

 $PedidoID \rightarrow MesaID, FechaPedido$

PlatoID → NombrePlato, PrecioPlato

Evaluacion de la tabla empleados en 2NF y 3NF

No estan en 2NF y por tanto tampoco en 3NF, dado que PlatoID, es parte de una llave candidata PedidoID y PlatoID (PedidoID puede tener más de un plato)

Reestructuración:

- Pedidos(<u>PedidoID</u>, MesaID, FechaPedido, PlatoID)
- Platos(<u>PlatoID</u>, NombrePlato, PrecioPlato)

Ejercicio adaptado Examen 2024-2

La FIA desea implementar un sistema de gestión para llevar un control eficiente de los equipos, pilotos, carreras y resultados. El sistema debe permitir registrar información sobre los equipos participantes, los pilotos, las carreras programadas y los resultados de cada carrera. A continuación, se detallan los requisitos:

- **Equipos:** Cada equipo tiene un identificador único, nombre, país de origen y año de fundación. Un equipo puede tener varios pilotos.
- **Pilotos:** Cada piloto tiene un identificador único, nombre, fecha de nacimiento y nacionalidad. Un piloto está asociado a un equipo.
- **Carreras:** Cada carrera tiene un identificador único, nombre del Gran Premio, fecha, país y número de vueltas. Una carrera puede tener múltiples resultados, uno por cada piloto participante.
- **Resultados:** Cada resultado tiene un identificador único, posición final, tiempo total y puntos obtenidos. Un resultado está asociado a una carrera y a un piloto.

Ejercicio adaptado Examen 2024-2

Explique si el modelo se encuentra en 3NF o no

Ejercicio adaptado Examen 2024-2

Explique si el modelo se encuentra en 3NF o no

El modelo anterior se encuentra en 3NF porque en todas las tablas, todos los campos dependen directamente desde su llave primaria y no poseen una dependencia transitiva dentro del modelo.

iMUCHAS!

IIC2413

AYUDANTÍA 3

FORMAS NORMALES