Neural correlates of strategy shifts in navigation behavior

Eliany Perez¹, Jeffrey Kunath¹, Adam J. Barnas¹, Zachary Boogaart¹, Natalie C. Ebner^{1,2,3}, Steven M. Weisberg¹

¹Department of Psychology, University of Florida; ²Center for Cognitive Aging and Memory, Department of Clinical and Health Psychology, University of Florida; ³Department of Aging and Geriatric Research, Institute on Aging, University of Florida

INTRODUCTION

- Navigation strategy how a person finds their way around the world, varies independently from navigation ability how successfully one can find their way^1 .
- Animal and human-based research²⁻³ reveals two main navigation strategies:

Response-based (caudate dependent) Place-based (hippocampal dependent)

- In healthy aging, older adults tend to use a caudate dependent strategy $^{4-6}$.
- Research Question: How do neural correlates of spatial navigation strategy track behavioral differences across age groups?
- Behavioral Hypothesis: Older adults will be more likely to use a familiar route compared to younger adults.
- Neural Hypothesis: Older adults will show a decrease in hippocampal activation and an increase in caudate nucleus activation compared to young adults.

RESULTS

Behavioral age and gender differences for all subjects

ROI analysis of age and gender by hippocampal and caudate activation for fMRI subsample

Whole brain analyses for task > control

Group mean (FEW corrected)

Activation by PRI (FEW corrected)

Age contrasts

METHODS

All participants were generally healthy younger and older adults; all underwent extensive health screenings to determine inclusion

Exclusion criteria: psychological disorder, severe or progressive medical illness, ineligibility for MRI, cutoff score ≤ 30 on Telephone Interview for Cognitive Status (TICS)⁷

Sample:

Behavioral		
Age group	Gender	
OA (M = 69 years)	Female	7
	Male	7
YA (M = 20 years)	Female	63
	Male	34
	Total	111

¥ 200 -

Vig 150

Learned route Available shortcut Path taken

Place response index (PRI): using path planning algorithms total number of shortcuts taken/ shortcuts + learned route + reverse learned route

PRI = shortcut taking (place strategy) = hippocampal activation⁸

fMRI Design: **Functional Functional** Resting Localizer Localizer Hippocampa • 4 BOLD runs **DSP** Alternating Control **ENCODING** and Learning

Image Acquisition: 3T Philips Achieva MR Scanner w/ 32-channel head coil Image Processing: Data were pre-processed using fmriprep, Standard whole-brain general linear model (GLM) analyses using FSL.ROIs were extracted using FSL's Harvard-Oxford

CONCLUSION

Behavioral:

- Older adults rely more on a response-based (learned route) strategy compared to younger adults.
- Younger adults find the goal more often than older adults.
- Older adult travel longer distances than younger adults to reach the goal.

fMRI:

- Unlike previous research, hippocampal/caudate activity ratio does not correlate positively with navigation strategy.
- Age-related contrasts reveal increased activity in younger adults in regions associated with decision-making (vmPFC), vestibular function, and a place-based strategy (hippocampal).
- Age- and gender-related differences exist in general hippocampal and caudal activation, which correlate differently with behavior across groups.

REFERENCES

- Weisberg & Newcombe, (2016)
- - Packard & McGaugh, (1996) Yu et al., (2021)
- Marchette et al., (2011)
- Brandt et al., (1988)

Head & Isom, (2010)

Kinishi et al., 2013 Marchette et al., (2011)

Cortical and Subcortical Atlases