Optimization Methods

Supporting Figures

${\tt S0_Figure1_Assigment_optimization_methods}$

S1_Figure1_SGD vs GD

Stochastic Gradient Descent

Gradient Descent

S2_Figure 2_SGD vs Mini-Batch GD

Stochastic Gradient Descent

Mini-Batch Gradient Descent

S4 Partion

S5_ Figure 3: The red arrows show the direction taken by one step of minibatch gradient descent with momentum. The blue points show the direction of the gradient (with respect to the current mini-batch) on each step. Rather than just following the gradient, the gradient is allowed to influence v and then take a step in the direction of v.

S6_How does Adam work

The update rule is, for $l = 1, \ldots, L$:

$$\begin{cases} v_{dW}[l] = \beta_1 v_{dW}[l] + (1 - \beta_1) \frac{\partial \mathcal{J}}{\partial W^{[l]}} \\ v_{dW}^{corrected} = \frac{v_{dW}[l]}{1 - (\beta_1)^t} \\ s_{dW}[l] = \beta_2 s_{dW}[l] + (1 - \beta_2) (\frac{\partial \mathcal{J}}{\partial W^{[l]}})^2 \\ s_{dW}^{corrected} = \frac{s_{dW}[l]}{1 - (\beta_2)^t} \\ W^{[l]} = W^{[l]} - \alpha \frac{v_{dW}^{corrected}}{\sqrt{s_{dW}^{corrected} \ell}} \end{cases}$$

where:

- . t counts the number of steps taken of Adam
- · L is the number of layers
- eta_1 and eta_2 are hyperparameters that control the two exponentially weighted averages.
- ullet lpha is the learning rate
- ε is a very small number to avoid dividing by zero

S7_Excercise6_ update_parameters_with_adam

Exercise 6 - update_parameters_with_adam

Now, implement the parameters update with Adam. Recall the general update rule is, for $l=1,\ldots,L$:

$$\begin{cases} v_{dW}^{[I]} = \beta_1 v_{dW}^{[I]} + (1 - \beta_1) \frac{\partial \mathcal{J}}{\partial W^{[I]}} \\ v_{dW}^{corrected} = \frac{v_{dW}^{[I]}}{1 - (\beta_1)^t} \\ s_{dW}^{[I]} = \beta_2 s_{dW}^{[I]} + (1 - \beta_2) (\frac{\partial \mathcal{J}}{\partial W^{[I]}})^2 \\ s_{dW}^{corrected} = \frac{s_{dW}^{[I]}}{1 - (\beta_2)^t} \\ W^{[I]} = W^{[I]} - \alpha \frac{v_{dW}^{corrected}}{\sqrt{s_{dW}^{corrected}}} \end{cases}$$