16. Suppose f is integrable on \mathbb{R}^d . If $\delta = (\delta_1, \delta_2, \dots, \delta_d)$ is a d-tuple of non-zero real numbers, and

$$f_{\delta}(x) = f(\delta x) = f(\delta_1 x_1, \delta_2 x_2, \cdots, \delta_d x_d),$$

show that f^{δ} is integrable with

$$\int_{\mathbb{R}^d} f^{\delta}(x) = |\delta_1|^{-1} \dots |\delta_d|^{-1} \int_{\mathbb{R}^d} f(x) dx.$$

Answer: Use Fubini's theorem and the relative invariance of intrgration on \mathbb{R} under dilations.

- **17.** Suppose f is defined on \mathbb{R}^2 as follows: $f(x,y) = a_n$ if $n \le x < n+1$ and $n \le y < n+1, (n \ge 0); f(x,y) = -a_n$ if $n \le x < n+1$ and $n+1 \le y < n+2, (n \ge 0)$; while f(x,y) = 0 elsewhere. Here $a_n = \sum_{k \le n} b_k$, with $\{b_n\}$ a positive sequence such that $\sum_{k=0}^{\infty} b_k = s < \infty$.
- (a) Verify that each slice f^y and f_x is integrable. Also for all x, $\int f_x(y)dy = 0$, and hence $\int (\int f(x,y)dy)dx = 0$.
- (b) However, $\int f^y(x)dx = a_0$ if $0 \le y < 1$, and $\int f^y(x)dx = a_n a_{n-1}$ if $n \le y < n+1$ with $n \ge 1$. Hence $y \to \int f^y(x)dx$ is integrable on $(0, \infty)$ and

$$\int (\int f(x,y)dx)dy = s.$$

(c) Note that $\int_{\mathbb{R}\times\mathbb{R}} |f(x,y)| dxdy = \infty$.

Answer: (c) Note that

$$\int_{\mathbb{R}\times\mathbb{R}} |f(x,y)| dx dy = \int (\int |f^y(x)| dx) dy = 2\sum_{k=0}^{\infty} a_k > 2\sum_{k=k_0}^{\infty} b_{k_0} = \infty,$$

where $b_{k_0} > 0$.

20. The problem that certain slices of measurable sets can be non-measurable may be avoided by restricting attention to Borel measurable functions and Borel sets. In fact, prove the following:

Suppose E is a Borel set in \mathbb{R}^2 . Then for every y, the slice E_y is a Borel set in \mathbb{R} .

Proof.

Consider the collection \mathcal{C} of subsets E of \mathbb{R}^2 with the property that each slice E^y is a Borel set in \mathbb{R} . Since $\bigcup_{n=1}^{\infty} E_n^y = (\bigcup_{n=1}^{\infty} E_n)^y$, $(E^c)^y = (E^y)^c$ and E^y is open whenever E is open in \mathbb{R}^2 , we have $\mathcal{B} \subset \mathcal{C}$.

- **21.** Suppose that f and g are measurable functions on \mathbb{R}^d .
- (a) Prove that f(x-y)g(y) is measurable on \mathbb{R}^{2d} .
- (b) Show that if f and g are integrable on \mathbb{R}^d , then f(x-y)g(y) is integrable on \mathbb{R}^{2d} .
- (c) Recall the definition of the convolution of f and g given by

$$(f * g)(x) = \int_{\mathbb{R}^d} f(x - y)g(y)dy.$$

Show that f * g is well defined for a.e. x(that is, f(x-y)g(y) is integrable on \mathbb{R}^d for a.e.x).

(d) Show that f * g is integrable whenever f and g are integrable, and that

$$\|f*g\|_{L^1(\mathbb{R}^d)} \leq \|f\|_{L^1(\mathbb{R}^d)} \|g\|_{L^1(\mathbb{R}^d)},$$

with equality if f and g are non-negative.

(e) The Fourier transform of an integrable function f is defined by

$$\hat{f}(\xi) = \int_{\mathbb{R}^d} f(x)e^{-2\pi ix\cdot\xi} dx.$$

Check that f is bounded and is a continuous function of ξ . Prove that for each ξ one has

$$\widehat{(f * g)}(\xi) = \widehat{f}(\xi)\widehat{g}(\xi).$$

Proof.

- (1)(2)(3)(4) By Tonelli's theorem and Fubini's theorem.
- (5) Since $|e^{-2\pi ix\cdot\xi}|=1$ for any $\xi\in\mathbb{R}^d$ and f is integrable, we have

$$\left|\hat{f}(\xi)\right| \le \int_{\mathbb{R}^d} |f(x)| \, dx \le \infty.$$

Notice $|f(x)e^{-2\pi ix\cdot\xi}| = |f(x)|$ and f is integrable, we have

$$\lim_{\xi \to \xi_0} \hat{f}(\xi) = \lim_{\xi \to \xi_0} \int_{\mathbb{R}^d} f(x) e^{-2\pi i x \cdot \xi} dx$$

$$= \int_{\mathbb{R}^d} \lim_{\xi \to \xi_0} f(x) e^{-2\pi i x \cdot \xi} dx$$

$$= \int_{\mathbb{R}^d} f(x) e^{-2\pi i x \cdot \xi_0} dx = \hat{f}(\xi_0).$$

by MCT. By Fubini's theorem, one can show that $(\widehat{f*g})(\xi) = \widehat{f}(\xi)\widehat{g}(\xi)$.