Cubo OLAP

Para el cubo Olap se hace uso de POWER BI. Inicialmente se cargan los datos desde un .xlsx

Para analizar los datos desde este cubo se han realizado 3 ventas, cada una representando sus comparaciones: Esquelas Vs. Departamentos, Periodo Vs. Tipo, Falta Vs. Valor/Interés.

Quedando de la siguiente manera:

Esquelas Vs. Departamentos, la cual nos permite analizar la cantidad de esquelas por cada uno de los departamentos, distribuidos por el estado de la esquela.

Periodo Vs. Tipo, el cual nos permite analizar los tipos de faltas por periodos (año, cuarto y mes). Esto permite analizar específicamente etapas del año en las que puede haber eventos y comparar si esto produce un alza o baja de esquelas.

Falta Vs. Valor/Interés, permite analizar cada una de las faltas con su valor, así como su acumulado e interés.

Árbol de decisión

Para el árbol de decisión se hace uso de RapidMiner se convertirá el .csv a .xlsx para revisar los datos inicialmente

Vista previa de datos

Al importar, descubrimos algunos errores:

Observamos que algunos campos se encuentran vacíos, vamos a determinar un valor para que no queden null

Para realizar las modificaciones vamos a apoyarnos de SQL y la BD que ya hemos montado. (Estas misma modificaciones se realizaron para el Cubo Olap)

Identificamos que el estado cargado, no tiene un valor

Ves_Estado	Ves_Estado_Descripcion
NULL	CARGADA

```
pupdate Esquelas
set Ves_Estado = 'CAR'
where Ves_Estado_Descripcion = 'CARGADA'
```

(2859 rows affected)

Completion time: 2022-04-30T10:00:43.7694250-06:00

Se modificaron las columnas

	Ves_Nro_Esquela	Ves_Fecha	Ves_Tipo_Falta	Ves_Falta_Descripcion	Ves_Departamento	Ves_Estado	Ves_Estado_Descripcion	Ves_Valor	Ves_Interes
1	154102	2003-06-03 00:00:00.0000000	TRANSITO	DISPUTARSE LA VIA CON OTRO VEHICULO	SAN SALVADOR	CAR	CARGADA	57.14	36.57
2	154976	2003-06-06 00:00:00.0000000	TRANSPORTE TERRESTRE	NO RESPETAR LAS PARADAS PREVIAMENTE SE♦ALIZADAS P	SAN SALVADOR	CAR	CARGADA	57.14	36.57
3	109211	2003-06-06 00:00:00.0000000	TRANSPORTE TERRESTRE	TRANSPORTAR PERSONAS EN FUNCION COMERCIAL SIN EL	SAN SALVADOR	CAR	CARGADA	34.29	21.94

Vemos departamentos que no tienen datos

select * from Esquelas where Ves_Departamento is null

```
Ves_Departamento

NULL

NULL
```

```
(146140 rows affected)

Completion time: 2022-04-30T10:13:30.8826350-06:00
```

Observamos que algunas no tienen valor, o tienen error

```
select distinct Ves_Valor from Esquelas
```

	Ves_Valor
1	57.14
2	NULL
3	34.29
4	171.43
5	CARGADA11.43
6	11.43
7	0

En este caso vemos que hay un desplazamiento de los datos, que hay que corregir


```
□update Esquelas
| set Ves_Estado = 'CAR', Ves_Estado_Descripcion = 'CARGADA', Ves_Valor='11.43'
| where Ves_Valor = 'CARGADA11.43'
```

```
(10 rows affected)
```

Una vez realizadas todas las modificaciones, se ha generado un BD de Backup, en la cual se sustituyen el nombre de los campos por sus equivalentes en número, quedando de la siguiente manera.

Tipo de falta

1	TRANSITO
2	TRANSPORTE TERRESTRE
3	TRANSPORTE CARGA

Departamentos

SAN SALVADOR	1
CHALATENANGO	2
MORAZAN	3
LA PAZ	4
SONSONATE	5
SAN MIGUEL	6
LA LIBERTAD	7
CUSCATLAN	8
SAN VICENTE	9
SANTA ANA	10
AHUACHAPAN	11
LA UNION	12
USULUTAN	13
CABAÑAS	14
Sin Determinar	15

Estado:

1	SUS	SUSPENSIVO
2	IPR	IMPROCEDENTE
3	IPT	IMPUESTA
4	PPZ	EN PAGOS A PLAZO
5	CBR	CANCELADA
6	ANC	ANALISIS COBRADA
7	INC	INCONSISTENTE
8	ANU	ANULADA
9	ANL	ANALISIS
10	SND	Sin Determinar
11	INI	PENDIENTE DE PAGO
12	ANA	ANALISIS APELADA
13	RAT	RATIFICADA
14	CAR	CARGADA
15	REV	REVOCADA
16	IRI	RECURSO INCONFORMIDAD INICIADO
17	APL	EN APELACION

Con estas modificaciones, se exporta un nuevo archivo .csv con el cual trabajaremos en rapid miner

Una vez en rapid miner, se establece el siguiente método:

Dando como resultado el siguiente árbol de decisiones:

Análisis Cubo OLAP y Árbol de Decisiones

Dado el cubo OLAP, árbol y los datos reflejados, se puede realizar el siguiente análisis.

- La esquela mas antigua registrada data de 1968
- El tipo de falta "Transito" contiene la mayor cantidad de faltas: 853,088. Mientras que "Transporte Carga" la menor con: 9134.
- Para el tipo de faltas "Transito", las 4 faltas repetidas son las siguientes:

Cantidad	Descripción de falta	
53,517	"No portar licencia de conducir"	
45,583	"Estacionarse en Zona Prohibida o Eje Preferencial"	
45,117	"No utilizar el cinturón de seguridad"	
44,559	"No portar triangulo reflectivo"	

• Para el tipo de faltas "Transporte Carga", las 4 faltas repetidas son las siguientes:

Cantidad	Descripción de falta	
2,599	"Circular vehículos que transportan carga con un peso mayor al autorizado"	
1,424	"Carecer de cubierta protectora sobre la carga"	
779	"Carecer de cinta Adhesiva reflejante u ojos de gato reglamentarios"	
517	"Llevar sobre la carga del camión o rastrados personas"	

• Para el tipo de faltas "Transporte terrestre", las 4 faltas repetidas son las siguientes:

Cantidad	Descripción de falta	
42,600	"Transportar personas en función comercial sin el permiso correspondiente"	
36,130	"Alterar las tarifas autorizadas por las autoridades"	
34,944	"Estacionarse más tiempo del necesario para subir o bajar"	
31,624	"Conducir con las puertas abiertas"	

• Los tres Departamentos con mayor cantidad de esquelas son:

Cantidad	Descripción de falta
485,201	San Salvador
146,140	Sin Determinar
82,395	La Libertad

• La esquela que mas se impone tiene un valor de \$57.14, siendo "Muy Grave".

Reglas de asociación

Para este apartado, se utiliza el archivo compartido, el cual se ha cargado en SQL Server para realizar limpieza de datos.

Reglas de asociación establece que los datos deben ser binomiales, por lo cual, como primer punto se identifican los datos que pueden ser tratados como binomiales.

Para estos datos vamos a establecer el Tipo de Placa como el ID. Se procede a limpiar los datos, estableciendo los datos como 0 y 1.

```
select distinct CONDICION_INGRESO from parque_vehicular_datos

pupdate parque_vehicular_datos
set CONDICION_INGRESO = '2'
where CONDICION_INGRESO = 'VEHICULO USADO'

select distinct ESTADO from parque_vehicular_datos
pupdate parque_vehicular_datos
set ESTADO = '2'
where ESTADO = 'ALTA'
```

Se crea una nueva tabla, en la que haremos la carga de los datos que utilizaremos para consulta

INIV	IIIONIADADA (OQEEVIIITEI ADOI	IUDIC_I - A	pradi manuranai maa
	Column Name	Data Type	Allow Nulls
Þ	TIPO_PLACA_RA	nvarchar(MAX)	
	CANTIDAD_PUERTAS_RA	float	
	COLORES_RA	nvarchar(MAX)	
	CLASE_RA	nvarchar(50)	
	MARCA_RA	nvarchar(50)	

Una vez trabajados los datos, procedemos a Rapid Miner a crear la estructura de reglas de asociación:

Con un Fp-Growth inicial, tenemos una imagen de los datos de la siguiente manera:

Ahora se procede a crear las reglas de asociación, quedando la siguiente estructura:

Resultando lo siguiente:

Size	Support	Item 1	Item 2	Item 3
1	0.657	TIPO_PLACA_RA = PARTICULAR		
1	0.417	CLASE_RA = AUTOMOVIL		
1	0.261	CANTIDAD_PUERTAS_RA = 4.00		
1	0.242	TIPO_PLACA_RA = MOTOCICLETA		
1	0.237	CLASE_RA = MOTOCICLETA		
2	0.413	TIPO_PLACA_RA = PARTICULAR	CLASE_RA = AUTOMOVIL	
2	0.252	TIPO_PLACA_RA = PARTICULAR	CANTIDAD_PUERTAS_RA = 4.00	
2	0.214	CLASE_RA = AUTOMOVIL	CANTIDAD_PUERTAS_RA = 4.00	
2	0.237	TIPO_PLACA_RA = MOTOCICLETA	CLASE_RA = MOTOCICLETA	
3	0.212	TIPO_PLACA_RA = PARTICULAR	CLASE_RA = AUTOMOVIL	CANTIDAD_PUERTAS_RA = 4.00

Como resultado podemos ver también los siguientes gráficos

rom Process					The second second
Nominal to Sinominal 51,114	TIPO_PLACA_RA	CANTIDAD_PUERTAS_RA	COLORES_RA	CLASE_RA Catagory	MARCA_RA Category
pe. None	ALQUILER	0.00	AMARILLO	ALQUILER	TOYOTA
	PARTICULAR	0.00	AMARILLO	AUTOMOVIL	ISUZU
	ALQUILER	0.00	AMARILLO	ALQUILER	TOYOTA
	ALQUILER	0.00	AMARILLO	ALQUILER	TOYOTA
	PARTICULAR	0.00	AMARILLO	AUTOMOVIL	DATSUN
	ALQUILER	0.00	AMARILLO	ALQUILER	TOYOTA
	PARTICULAR	0.00	AZUL	AUTOMOVIL	TOYOTA
	PARTICULAR	4.00	AMARILLO	AUTOMOVIL	CHEVROLET
	PARTICULAR	4.00	ROJO	AUTOMOVIL	SUBARU
	ALQUILER	0.00	AMARILLO	ALQUILER	TOYOTA
	PARTICULAR	4.00	GRIS .	AUTOMOVIL	NISSAN
	ALQUILER	0.00	AMARILLO	ALQUILER	FORD
	ALQUILER	0.00	AMARILLO	ALQUILER	DODGE
	ALQUILER	0.00	AMARILLO	ALQUILER	DODGE
	PARTICULAR	0.00	AMARILLO	AUTOMOVIL	DATSUN
	PARTICULAR	4.00	NEGRO CON FRANJAS	AUTOMOVIL.	TOYOTA

Agrupamiento con K-Means

Para los K-MEANS haremos uso de una tercer tabla creada

Se establece la siguiente estructura en rapid miner

Statistics

CANTIDAD_PUERTAS_RA

16 Distinct Values:

Value	Count	Percentage	
4.00	378,380	42.97%	^
0.00	242.072	27.49%	
2.00	200,640	23.70%	
5.00	41.338	4.69%	
3.00	0,019	1,00%	
1.00	972	0.11%	
6.00	228	0.03%	
7.00	20	0.00%	¥

Fase 2

Para esta fase, se realiza un archivo global en PowerBI, el cual contiene todos los datos necesarios para realizar el análisis.

Reporte PowerBI: https://app.powerbi.com/groups/me/reports/436e1639-aec1-4e7c-adfb-2d6aebc6e220?ctid=f9afe020-14e8-4555-b638-b98f896aa94b