For office use only	Team Control Number	For office use only
T1	0123	F1
T2		F2
T3	Problem Chosen	F3
T4	${f E}$	F4

2021 MCM/ICM Summary Sheet

Template for MCM Version v6.2.1

Summary

f iiiiiii crazy

Keywords: Complex network; shortest path

Template for MCM Version v6.2.1

LATEX Studio

February 5, 2021

Team # 0123 Page 1 of 10

Contents

1	Introduction		1
	1.1	Background	1
	1.2	Restatement of the problem	2
	1.3	notation	3
	1.4	Other Assumptions	4
2	Ana	lysis of the Problem	5
3	Calculating and Simplifying the Model		6
4	The Model Results		6
5	Validating the Model		
6	Con	clusions	7
7	A S	ummary	7
8	Eva	luate of the Model	7
9	Stre	ngths and weaknesses	7
	9.1	Strengths	8
Aj	pen	dices	8
Aj	ppen	dix A First appendix	8
Aj	Appendix B Second appendix 9		

1 Introduction

1.1 Background

• The evolutionary trajectory and intrinsic interactions of western popular music

Team # 0123 Page 2 of 10

Nowadays, it has become a more and more common phenomenon for people to listen to all kinds of music to seek pleasure and relax themselves. And we may abstract and conclude the invariable key elements in the forever-changeable styles and contents of music. That are melody, harmony, lyrics, rhythm, and timbre, etc. And in analysing the similarity and developmental portraits among some of these elements, we may have a primary clue on how the previous musicians have exerted their influence upon their same and subsequent generations of musicians and give some insights into how a new genre of music came into being.

Utilizing the interactive network model, we are able to implement the cross-tabulation of the various specimens given, and further explore the deep-rooted relationship between different musicians over time, therefore produce a elementary work on the evolutionary trajectory of music.

1.2 Restatement of the problem

From the data we retrieved.[1] We can learn that all the artist in the world has their influences. Not only to the genre of music he specialized. But also to some specific artists from the younger generation. Our first mission is to create a network that links the influencer and the follower. Through the network,we may find the indicators of "musical influence". The weight and the form of the network can show us the relationship between different artists. They may be influencers, or followers. Or they can be both.

Similarity is also an index we focus to. Since there are experts already defined some features and factors of musical compositions. Features such as danceability, energy or liveness is hard to define by amateurs like us. However, the expert quantized these features so we can process them easily. In this case, we should find out that the similarity between artists from the same genre or from different genres.

The revolution of music through a period of time is also an significant argument we are facing. Each artists is active in different eras. Thus only the artists who became active earlier can influence the latter artists. Each era has their favorites, how does people's taste varies is also an interesting problem to solve.

Our model is meant to figure out the intrinsic information from the data we already knew. By processing the data with our model, we can learn a lot of hidden information. Hence we can answer the questions like: who is the major influencer of an era and how he led the popularity, which genre of music is the most popular one, how does the fashion changes over time. At last, we may even find out which genre will lead the major revolution of music.

Team # 0123 Page 3 of 10

ESV	Ecosystem service value	
DV	Project caused decreased value	
Ak	Area of ecosystem k	
VCk	Ecological value coefficient per unit area of ecosystem k	

1.3 notation

- minimizes the discomfort to the hands, or
- maximizes the outgoing velocity of the ball.

We focus exclusively on the second definition.

- the initial velocity and rotation of the ball,
- the initial velocity and rotation of the bat,
- the relative position and orientation of the bat and ball, and
- the force over time that the hitter hands applies on the handle.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

- the angular velocity of the bat,
- the velocity of the ball, and
- the position of impact along the bat.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula. *center of percussion* [Brody 1986], Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla a faucibus semper, leo velit ultricies

Team # 0123 Page 4 of 10

tellus, ac venenatis arcu wisi vel nisl. Vestibulum diam. Aliquam pellentesque, augue quis sagittis posuere, turpis lacus congue quam, in hendrerit risus eros eget felis. Maecenas eget erat in sapien mattis porttitor. Vestibulum porttitor. Nulla facilisi. Sed a turpis eu lacus commodo facilisis. Morbi fringilla, wisi in dignissim interdum, justo lectus sagittis dui, et vehicula libero dui cursus dui. Mauris tempor ligula sed lacus. Duis cursus enim ut augue. Cras ac magna. Cras nulla. Nulla egestas. Curabitur a leo. Quisque egestas wisi eget nunc. Nam feugiat lacus vel est. Curabitur consectetuer.

Theorem 1.1. *L***T*_E*X* 666

Lemma 1.2. *TeX* .

Proof. The proof of theorem.

1.4 Assumptions

Suspendisse vel felis. Ut lorem lorem, interdum eu, tincidunt sit amet, laoreet vitae, arcu. Aenean faucibus pede eu ante. Praesent enim elit, rutrum at, molestie non, nonummy vel, nisl. Ut lectus eros, malesuada sit amet, fermentum eu, sodales cursus, magna. Donec eu purus. Quisque vehicula, urna sed ultricies auctor, pede lorem egestas dui, et convallis elit erat sed nulla. Donec luctus. Curabitur et nunc. Aliquam dolor odio, commodo pretium, ultricies non, pharetra in, velit. Integer arcu est, nonummy in, fermentum faucibus, egestas vel, odio.

- •
- •
- •
- •

Sed commodo posuere pede. Mauris ut est. Ut quis purus. Sed ac odio. Sed vehicula hendrerit sem. Duis non odio. Morbi ut dui. Sed accumsan risus eget odio. In hac habitasse platea dictumst. Pellentesque non elit. Fusce sed justo eu urna porta tincidunt. Mauris felis odio, sollicitudin sed, volutpat a, ornare ac, erat. Morbi quis dolor. Donec pellentesque, erat ac sagittis semper, nunc dui lobortis purus, quis congue purus metus ultricies tellus. Proin et quam. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Praesent sapien turpis, fermentum vel, eleifend faucibus, vehicula eu, lacus.

Team # 0123 Page 5 of 10

Figure 1: aa

2 Analysis of the Problem

Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Donec odio elit, dictum in, hendrerit sit amet, egestas sed, leo. Praesent feugiat sapien aliquet odio. Integer vitae justo. Aliquam vestibulum fringilla lorem. Sed neque lectus, consectetuer at, consectetuer sed, eleifend ac, lectus. Nulla facilisi. Pellentesque eget lectus. Proin eu metus. Sed porttitor. In hac habitasse platea dictumst. Suspendisse eu lectus. Ut mi mi, lacinia sit amet, placerat et, mollis vitae, dui. Sed ante tellus, tristique ut, iaculis eu, malesuada ac, dui. Mauris nibh leo, facilisis non, adipiscing quis, ultrices a, dui. (1)

$$a^2$$
 (1)

$$\frac{w_j^{(1)}w_j^{(2)}}{\sum_{j=1}^n w_j^{(1)}w_j^{(2)}}$$

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \frac{Opposite}{Hypotenuse} \cos^{-1}\theta \arcsin\theta$$

Morbi luctus, wisi viverra faucibus pretium, nibh est placerat odio, nec commodo wisi enim eget quam. Quisque libero justo, consectetuer a, feugiat vitae, porttitor eu, libero. Suspendisse sed mauris vitae elit sollicitudin malesuada. Maecenas ultricies eros sit amet ante. Ut venenatis velit. Maecenas sed mi eget dui varius euismod. Phasellus aliquet volutpat odio. Vestibulum ante ipsum

Team # 0123 Page 6 of 10

primis in faucibus orci luctus et ultrices posuere cubilia Curae; Pellentesque sit amet pede ac sem eleifend consectetuer. Nullam elementum, urna vel imperdiet sodales, elit ipsum pharetra ligula, ac pretium ante justo a nulla. Curabitur tristique arcu eu metus. Vestibulum lectus. Proin mauris. Proin eu nunc eu urna hendrerit faucibus. Aliquam auctor, pede consequat laoreet varius, eros tellus scelerisque quam, pellentesque hendrerit ipsum dolor sed augue. Nulla nec lacus.

$$p_j = \begin{cases} 0, & \text{if } j \text{ is odd} \\ r! (-1)^{j/2}, & \text{if } j \text{ is even} \end{cases}$$

Suspendisse vitae elit. Aliquam arcu neque, ornare in, ullamcorper quis, commodo eu, libero. Fusce sagittis erat at erat tristique mollis. Maecenas sapien libero, molestie et, lobortis in, sodales eget, dui. Morbi ultrices rutrum lorem. Nam elementum ullamcorper leo. Morbi dui. Aliquam sagittis. Nunc placerat. Pellentesque tristique sodales est. Maecenas imperdiet lacinia velit. Cras non urna. Morbi eros pede, suscipit ac, varius vel, egestas non, eros. Praesent malesuada, diam id pretium elementum, eros sem dictum tortor, vel consectetuer odio sem sed wisi.

$$\arcsin \theta = \iiint_{\varphi} \lim_{x \to \infty} \frac{n!}{r! (n-r)!}$$
 (1)

3 Calculating and Simplifying the Model

Sed feugiat. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Ut pellentesque augue sed urna. Vestibulum diam eros, fringilla et, consectetuer eu, nonummy id, sapien. Nullam at lectus. In sagittis ultrices mauris. Curabitur malesuada erat sit amet massa. Fusce blandit. Aliquam erat volutpat. Aliquam euismod. Aenean vel lectus. Nunc imperdiet justo nec dolor.

4 The Model Results

Suspendisse vel felis. Ut lorem lorem, interdum eu, tincidunt sit amet, laoreet vitae, arcu. Aenean faucibus pede eu ante. Praesent enim elit, rutrum at, molestie non, nonummy vel, nisl. Ut lectus eros, malesuada sit amet, fermentum eu, sodales cursus, magna. Donec eu purus. Quisque vehicula, urna sed ultricies auctor, pede lorem egestas dui, et convallis elit erat sed nulla. Donec luctus. Curabitur et nunc. Aliquam dolor odio, commodo pretium, ultricies non, pharetra in, velit. Integer arcu est, nonummy in, fermentum faucibus, egestas vel, odio.

Team # 0123 Page 7 of 10

5 Validating the Model

Morbi luctus, wisi viverra faucibus pretium, nibh est placerat odio, nec commodo wisi enim eget quam. Quisque libero justo, consectetuer a, feugiat vitae, porttitor eu, libero. Suspendisse sed mauris vitae elit sollicitudin malesuada. Maecenas ultricies eros sit amet ante. Ut venenatis velit. Maecenas sed mi eget dui varius euismod. Phasellus aliquet volutpat odio. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Pellentesque sit amet pede ac sem eleifend consectetuer. Nullam elementum, urna vel imperdiet sodales, elit ipsum pharetra ligula, ac pretium ante justo a nulla. Curabitur tristique arcu eu metus. Vestibulum lectus. Proin mauris. Proin eu nunc eu urna hendrerit faucibus. Aliquam auctor, pede consequat laoreet varius, eros tellus scelerisque quam, pellentesque hendrerit ipsum dolor sed augue. Nulla nec lacus.

6 Conclusions

Suspendisse vel felis. Ut lorem lorem, interdum eu, tincidunt sit amet, laoreet vitae, arcu. Aenean faucibus pede eu ante. Praesent enim elit, rutrum at, molestie non, nonummy vel, nisl. Ut lectus eros, malesuada sit amet, fermentum eu, sodales cursus, magna. Donec eu purus. Quisque vehicula, urna sed ultricies auctor, pede lorem egestas dui, et convallis elit erat sed nulla. Donec luctus. Curabitur et nunc. Aliquam dolor odio, commodo pretium, ultricies non, pharetra in, velit. Integer arcu est, nonummy in, fermentum faucibus, egestas vel, odio.

7 A Summary

Suspendisse vel felis. Ut lorem lorem, interdum eu, tincidunt sit amet, laoreet vitae, arcu. Aenean faucibus pede eu ante. Praesent enim elit, rutrum at, molestie non, nonummy vel, nisl. Ut lectus eros, malesuada sit amet, fermentum eu, sodales cursus, magna. Donec eu purus. Quisque vehicula, urna sed ultricies auctor, pede lorem egestas dui, et convallis elit erat sed nulla. Donec luctus. Curabitur et nunc. Aliquam dolor odio, commodo pretium, ultricies non, pharetra in, velit. Integer arcu est, nonummy in, fermentum faucibus, egestas vel, odio.

8 Evaluate of the Model

9 Strengths and weaknesses

Etiam euismod. Fusce facilisis lacinia dui. Suspendisse potenti. In mi erat, cur-

Team # 0123 Page 8 of 10

sus id, nonummy sed, ullamcorper eget, sapien. Praesent pretium, magna in eleifend egestas, pede pede pretium lorem, quis consectetuer tortor sapien facilisis magna. Mauris quis magna varius nulla scelerisque imperdiet. Aliquam non quam. Aliquam porttitor quam a lacus. Praesent vel arcu ut tortor cursus volutpat. In vitae pede quis diam bibendum placerat. Fusce elementum convallis neque. Sed dolor orci, scelerisque ac, dapibus nec, ultricies ut, mi. Duis nec dui quis leo sagittis commodo.

9.1 Strengths

- **Applies widely** This system can be used for many types of airplanes, and it also solves the interference during the procedure of the boarding airplane, as described above we can get to the optimization boarding time. We also know that all the service is automate.
- Improve the quality of the airport service
 Balancing the cost of the cost and the benefit, it will bring in more convenient for airport and passengers. It also saves many human resources for the airline.

References

- [1] D. E. KNUTH The book the American Mathematical Society and Addison-Wesley Publishing Company , 1984-1986.
- [2] Lamport, Leslie, : "A Document Preparation System", Addison-Wesley Publishing Company, 1986.
- [3] http://www.latexstudio.net/
- [4] http://www.chinatex.org/

Appendices

Appendix A First appendix

Aliquam lectus. Vivamus leo. Quisque ornare tellus ullamcorper nulla. Mauris porttitor pharetra tortor. Sed fringilla justo sed mauris. Mauris tellus. Sed non leo. Nullam elementum, magna in cursus sodales, augue est scelerisque sapien,

Team # 0123 Page 9 of 10

venenatis congue nulla arcu et pede. Ut suscipit enim vel sapien. Donec congue. Maecenas urna mi, suscipit in, placerat ut, vestibulum ut, massa. Fusce ultrices nulla et nisl.

Here are simulation programmes we used in our model as follow.

Input matlab source:

```
function [t,seat,aisle] = OI6Sim(n,target,seated)
pab = rand(1,n);
for i = 1:n
    if pab(i) < 0.4
        aisleTime(i) = 0;
    else
        aisleTime(i) = trirnd(3.2,7.1,38.7);
    end
end</pre>
```

Appendix B Second appendix

some more text **Input C++ source**:

```
//-----
// Name : Sudoku.cpp
// Author : wzlf11
// Version
// Version : a.0
// Copyright : Your copyright notice
// Description : Sudoku in C++.
#include <iostream>
#include <cstdlib>
#include <ctime>
using namespace std;
int table[9][9];
int main() {
   for (int i = 0; i < 9; i++) {
      table[0][i] = i + 1;
   srand((unsigned int)time(NULL));
   shuffle((int *)&table[0], 9);
   while(!put line(1))
      shuffle((int *)&table[0], 9);
```

Team # 0123 Page 10 of 10

```
for(int x = 0; x < 9; x++) {
    for(int y = 0; y < 9; y++) {
        cout << table[x][y] << " ";
    }
    cout << endl;
}
return 0;
}</pre>
```