

Molecular Physics

ISSN: 0026-8976 (Print) 1362-3028 (Online) Journal homepage: http://www.tandfonline.com/loi/tmph20

An accurate, global, ab initio potential energy surface for the H⁺ ₃ molecule

OLEG L. POLYANSKY , RITA PROSMITI , WIM KLOPPER & JONATHAN TENNYSON

To cite this article: OLEG L. POLYANSKY , RITA PROSMITI , WIM KLOPPER & JONATHAN TENNYSON (2000) An accurate, global, ab initio potential energy surface for the H $_3$ molecule, Molecular Physics, 98:5, 261-273, DOI: $\underline{10.1080/00268970009483290}$

To link to this article: http://dx.doi.org/10.1080/00268970009483290

	Published online: 01 Sep 2009.
	Submit your article to this journal 🗗
lili	Article views: 35
Q ^L	View related articles 🗹
2	Citing articles: 21 View citing articles ☑

Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tmph20

An accurate, global, *ab initio* potential energy surface for the H_3^+ molecule

OLEG L. POLYANSKY¹†, RITA PROSMITI¹‡, WIM KLOPPER²§ and JONATHAN TENNYSON¹*

¹ Department of Physics and Astronomy, University College London, Gower St., London WC1E 6BT, UK ² Department of Chemistry, University of Oslo, PO Box 1033 Blindern, N-0315 Oslo, Norway

(Received 30 September 1999; revised version accepted 25 October 1999)

A new global, ground-state, Born-Oppenheimer surface is presented for the H₃⁺ system. The energy switching approach has been used to combine different functional forms for three different regimes: a spectroscopic expansion at low energy, a Sorbie-Murrell function at high energy and known long-range terms combined with accurate diatomic potentials at large separations. At low energies we have used the ultra high accuracy *ab initio* data of Cencek *et al.* (1998, *J. chem. Phys.*, **108**, 2831). At intermediate energy we have calculated 134 new *ab initio* energies using a high accuracy, explicitly correlated procedure. The *ab initio* data of Schinke *et al.* (1980, *J. chem. Phys.*, **72**, 3909) has been used to constrain the high energy region. Two fits are presented which differ somewhat in their behaviour at energies over 45 000 cm⁻¹ above the H₃⁺ minimum. Below this energy, the fits reproduce each set of *ab initio* data close to their intrinsic accuracy. The ground state surface should provide a suitable starting point for renewed studies of the near-threshold photodissociation spectrum originally reported by Carrington *et al.* (1982, *Molec. Phys.*, **45**, 753).

1. Introduction

In this journal in 1982, Carrington et al. [1] gave a preliminary report of a truly remarkable photodissociation spectrum of the H_3^+ molecular ion. Carrington et al. observed some 27 000 clearly resolved photodissociation lines in a small, $222\,\mathrm{cm}^{-1}$, region of the infrared. In subsequent work Carrington and co-workers [2, 3] provided further information on this spectrum. In particular they analysed the underlying course grained structure of the spectrum, the isotopomer specific behaviour displayed by H_2D^+ and D_2H^+ , and the variation of the spectrum as a function of the kinetic energy release of the ionic fragment. The latter experimental analysis demonstrated that at least some of the spectrum arose from initial states which themselves are above the dissociation limit of the system. An overview of this work is

The observations of Carrington et al. have stimulated considerable theoretical activity. Initially this work was largely (semi-)classical in nature [6–11], a review of which can be found in Pollak and Schlier [12]. One problem resolved by these studies was the reason for the observed isotope effect [6, 7]. More recently a number of studies have attempted to treat the problems raised by the H₃⁺ photodissociation spectrum quantum mechanically [13–17]. However so far even the reason for the underlying coarse grained structure of the spectrum, the subject of greatest work, remains controversial [16]. A common feature of all these studies has been the use of potential energy functions which were either highly inaccurate or not designed for studies of the dissociation region.

Recently three of us (PPT) [18], in an attempt to address problems with the H₃⁺ potential, developed a global two-valued ground-state potential surface for H₃⁺, referred to below at the PPT surface. This surface used the energy switching functions of Varandas [19] to divide energy/configuration space into three regions: a low energy region which was represented by the Born-Oppenheimer portion of the spectroscopically deter-

provided by reviews of Carrington and McNab [4] and McNab [5].

^{*}Author for correspondence. e-mail: j.tennyson@ucl.ac.uk †Permanent address: Institute of Applied Physics Russian Academy of Science, Uljanov Street 46, Nizhnii Novgorod, Russia 603024.

[‡] Present address: Department of Chemistry, University of Crete, Knossos Avenue, 71409 Heraklion, Crete, Greece.

[§] Present address: Theoretical Chemistry Group, Debye Institute, Utrecht University, PO Box 80052, NL-3508 TB Utrecht, The Netherlands.

mined DPT potential of Dinelli et al. (DPT) [20], a high energy region characterized by the ab initio calculations of Schinke et al. [21] and a portion for large separations characterized by known long-range interaction terms and accurate diatomic potentials.

The PPT potential is reliable for a large range of H₃⁺ geometries including the entire dissociation region and the region where the two surfaces cross; however the PPT surface cannot be regarded as accurate. In particular the use, in the absence of better data, of the 1980 *ab initio* data of Schinke *et al.* meant that it was not possible for Prosmiti *et al.* to obtain high accuracy. Subsequent to this work Cencek *et al.* [22] reported the ultra high accuracy ('sub-microhartree') *ab initio* calculation in the low energy region of the potential. We have therefore undertaken further *ab initio* calculations which allow us to characterize a global, high accuracy surface. It is this work which we report here.

2. Electronic structure calculations

The input to determine our potential energy surface came from a number of different *ab initio* electronic structure calculations. To balance our fits it is therefore necessary to weight these points according to their accuracy.

At low energy we use the 69 potential energy points computed by Cencek *et al.* [22] at the grid points originally suggested by Meyer *et al.* (MBB) [23]. These energies have an absolute accuracy of about 0.05 cm⁻¹.

Our aim here is to construct a potential surface on which H_3^+ can dissociate. However, to constrain our fit at high energies we use the *ab initio* data of Schinke *et al*. [21]. Schinke *et al*. computed energies at 650 grid points with boundaries $0.0 a_0 \le R \le 10.0 a_0$, $0.6 a_0 \le r \le 2.6 a_0$ and $0^\circ \le \theta \le 90^\circ$ in Jacobi coordinates. In these coordinates, r is the H-H distance, R is the distance between H^+ and the centre of mass of H_2 , and θ is the angle between \mathbf{r} and \mathbf{R} . We estimate the accuracy of Schinke *et al*.'s energies to be about $300 \, \mathrm{cm}^{-1}$, by comparison with the data of Cencek *et al*. [22]. Unlike PPT, our fits used all 492 of Schinke *et al*.'s points lying below $75\,000 \, \mathrm{cm}^{-1}$.

To characterize the potential at intermediate energies, we have computed non-relativistic Born-Oppenheimer electronic energies on 134 points on the potential energy hyper-surface of the H₃⁺ ion. These cover energies up to 70 000 cm⁻¹ above the minimum of the potential. These points, which are listed with our calculated electronic energies in table 1, were chosen by extending the MBB [23] grid employed by Cencek *et al.*, choosing those points which, according to the PPT potential, lay at low energy. The MBB grid uses displacements from equilibrium in symmetry coordinates; in table 1 we have converted these to Jacobi coordinates for ease

of interpretation. In this context it should be noted that none of our newly calculated points lie in the region of the $r \sim 2.5 a_0$ and $R \ge 8 a_0$ in which the surface crossing is important [18].

Our electronic structure calculations employed the CISD-R12 method of Kutzelnigg and co-workers [24–26]—the same method used in previous accurate computations of the H₃⁺ surface [27, 28]. In the CISD-R12 method, the electronic wavefunction is approximated as

$$\Psi(1,2) = r_{12}\Phi_0(1,2) + \sum_{k=0}^{N} c_k \Phi_k(1,2), \tag{1}$$

where r_{12} is the inter-electronic distance and $\Phi_k(1,2)$ the two-electron basis set of all N singlet Slater determinants that can be built from a contracted 10s8p6d4f Gaussian basis set of atomic orbitals (AOs). The 10s8p6d4f AO basis set used here was obtained by contracting the 16s10p8d6f primitive basis set of [27, 28]. The contraction coefficients were obtained from a calculation on the bare nuclear Hamiltonian of the equilateral triangular H_3^+ ion with internuclear separation $r = 1.65 \, a_0$, as explained in [27]. The CISD-R12 energy of the H_3^+ ion in this geometry amounts to $-1.343 \, 8341 E_h$; this can be compared to the value of $-1.343 \, 8355 E_h$, $0.3 \, \text{cm}^{-1}$ lower, obtained by Cencek et al. [22] for the same geometry.

The reference wavefunction $\Phi_0(1,2)$ is the singlet twoelectron Slater determinant that is built from the molecular orbital corresponding to the lowest eigenvalue of the above-mentioned bare nuclear Hamiltonian. All calculations were performed with the DIS program [29] on the SGI/CRAY Origin 2000 of the University of Bergen, Norway.

For the set of points $(N_a = -4, -3, ..., 4, 5, N_x = 0, N_y = 0)$ computed by Cencek *et al.* [22], our present calculations deviate from their surface by at most $0.5 \,\mathrm{cm}^{-1}$, see table 2. Noting that this deviation increases in a regular manner with the distance from the equilibrium structure, we expect deviations of about $1 \,\mathrm{cm}^{-1}$ for the energy points around $50\,000 \,\mathrm{cm}^{-1}$ above the minimum. For example, we predict an error of $0.9 \,\mathrm{cm}^{-1}$ for the energy point $(N_a = -6, N_x = 0, N_y = 0)$, which lies $48\,662.9 \,\mathrm{cm}^{-1}$ above the minimum in our new calculations. However it should be noted that the present method of computation is not strictly variational and, as can be seen from table 2, energies can be too low as well as too high.

For the whole set of 133 new *ab initio* points† computed by us, we estimate—rather conservatively—an average accuracy of 3 cm⁻¹, which is three times larger than the maximum error predicted for the calculations

[†] The first point serves only to define the energy zero.

Table 1. Born-Oppenheimer electronic energies, relative to the first point at $-1.343\,834~E_h$. Geometries are defined in Jacobi coordinates. Residues for the fit are given in cm⁻¹.

					$E-V_{ES}$		
No.	r/a_0	R/a_0	$\cos \theta$	E/cm^{-1}	Fit 1	Fit 2	
1	1.65000	1.428 94	0.000 00	0.00	0.09	0.09	
2	0.99494	0.861 64	0.00000	48 662.89	7.08	7.22	
3	0.93602	0.92092	0.221 58	51 838.50	2.61	2.89	
4	1.219 59	0.85515	0.368 45	43 747.57	9.40	10.19	
5	1.149 57	0.889 53	0.19546	34 703.18	-6.23	-2.75	
6	1.083 22	0.938 10	0.00000	31 849.09	-2.78	-5.90	
7	1.020 16	1.001 94	0.21849	34 543.56	4.47	6.35	
8	1.49275	0.90191	0.637 12	63 822.46	-13.51	-44.91	
9	1.325 70	0.93181	0.364 15	29 342.52	3.48	5.23	
10	1.045 90	1.177 97	0.46036	28 377.97	-0.88	-2.69	
11	0.98463	1.289 28	0.73663	39 563.22	-7.61	-22.06	
12	1.530 27	0.99211	0.508 50	30 324.60	-12.60	-8.28	
13	1.072 18	1.408 03	0.742 14	27 911.82	-7.32	-10.36	
14	1.77427	1.075 93	0.63038	35 978.76	1.24	17.97	
15	2.226 53	1.22648	0.81069	68 307.73	-1.66	-5.61	
16	1.942 54	1.176 98	0.631 94	27 846.27	0.52	0.55	
17	2.294 22	1.31413	0.736 56	37 135.51	-7.01	-10.26	
18	2.557 03	1.457 24	0.74613	32 351.27	-13.11	-26.27	
19	3.190 09	1.731 89	0.838 59	43 187.17	7.16	37.90	
20	2.888 85	1.632 80	0.761 73	30 250.48	2.58	4.94	
21	4.51069	2.347 38	0.920 78	53 133.97	-3.78	-2.90	
22	3.339 37	1.863 76	0.785 68	30 514.57	5.86	7.27	
23	4.989 17	2.619 68	0.783 08	39 810.14	9.41	10.23	
23 24	4.044 21				-3.88	-5.01	
2 4 25		2.213 44	0.823 03	32 816.02			
	3.508 57	2.02587	0.721 51	26 511.72	11.41	12.51	
26	5.766 28	3.044 70	0.892 39	36 174.31	0.86	1.48	
27	4.355 47	2.441 00	0.777 78	32 651.81	-1.15	-1.38	
28	3.703 85	2.232 47	0.641 57	28 551.52	1.51	2.52	
29	3.275 39	2.166 50	0.472 43	25 242.08	-8.52	-8.49	
30	2.306 21	3.288 57	0.900 01	26 314.22	-0.09	-1.05	
31	4.768 75	2.747 24	0.725 78	38 153.35	10.71	24.03	
32	3.934 73	2.51277	0.53581	35 037.15	0.35	0.16	
33	3.435 73	2.501 62	0.301 93	32 955.60	-0.04	-1.57	
34	3.078 48	2.666 04	0.00000	32 241.38	7.16	7.23	
35	2.800 01	3.11466	0.438 14	33 084.67	1.10	3.41	
36	5.385 52	3.203 81	0.66584	47 953.22	-2.69	-7.09	
37	4.21717	2.945 25	0.37549	45 131.01	-2.39	9.66	
38	3.619 29	3.13440	0.00000	44 257.50	5.82	–19.59	
39	3.21449	4.13342	0.70261	45 297.34	-0.72	-3.43	
40	0.97591	1.033 98	0.13265	34 623.36	-0.61	2.07	
1 1	1.06284	1.12381	0.131 79	21 657.53	0.69	0.69	
12	1.156 16	1.221 59	0.131 94	12 342.85	0.53	0.53	
13	1.25689	1.328 87	0.133 20	6124.06	0.41	0.42	
14	1.366 30	1.447 67	0.13572	2563.87	0.02	0.01	
15	1.48605	1.580 78	0.13982	1320.62	-0.01	-0.03	
16	1.618 28	1.732 09	0.14595	2133.12	0.12	0.11	
1 7	1.76591	1.907 38	0.15493	4811.61	0.06	0.08	
48	1.933 01	2.11563	0.168 19	9234.99	0.08	0.07	
49	2.12548	2.372 14	0.188 52	15 356.34	0.02	0.02	
50	2.352 44	2.706 25	0.22223	23 222.25	0.74	0.88	
51	2.629 03	3.18705	0.287 42	33 020.20	-0.11	-2.28	
52	2.983 18	4.073 89	0.470 84	45 209.07	-1.82	-4.49	
	••					Continu	

Table 1. Continued

Table 1.	Continued	ontinuea			$E-V_{\rm ES}$		
No.	r/a_0	R/a_0	$\cos \theta$	E/cm^{-1}	Fit 1	Fit 2	
		1.228 85	0.298 57	28 859.76	4.13	3.89	
53	0.957 17 1.042 78				1.23	1.31	
54 55	1.134 58	1.336 58 1.455 86	0.300 04 0.304 52	18 512.37 11 443.00	0.48	0.49	
56	1.134 56	1.589 50	0.304 32	7177.19	0.48	0.45	
57	1.340 88	1.741 43	0.312 00	5345.99	0.42	0.43	
58	1.458 14	1.91749	0.323 28	5668.93	0.22	0.23	
59	1.587 34	2.12694	0.37260	7944.57	0.12	0.17	
60	1.731 21	2.385 79	0.37200	12 049.95	1.05	0.43	
61	1.893 49	2.725 95	0.488 44	17 954.88	3.34	3.52	
62	2.079 61	3.229 25	0.627 91	25 774.84	3.38	3.65	
63	0.938 70	1.459 92	0.51921	29 114.22	-7.05	-10.53	
64	1.023 03	1.59415	0.53016	20 576.08	0.59	0.60	
65	1.113 36	1.74696	0.548 99	15 102.76	0.26	0.15	
66	1.210 62	1.92449	0.578 40	12 278.89	0.55	0.54	
67	1.31595	2.136 64	0.623 25	11 794.78	2.35	2.58	
68	1.430 82	2.401 14	0.693 16	13 440.81	0.73	0.73	
69	1.557 14	2.755 33	0.81013	17 124.45	5.62	5.69	
70	0.769 05	1.46287	0.799 92	59 497.19	11.80	49.74	
71	0.92049	1.752 63	0.833 82	33 962.46	-3.93	-16.80	
72	1.003 58	1.93285	0.873 15	26 734.75	-4.83	-3.54	
73	1.09249	2.149 79	0.935 64	22 506.46	0.74	0.74	
74	1.129 78	0.978 42	0.00000	25 085.98	13.40	12.84	
75	1.178 11	1.020 27	0.000 00	19 294.82	0.48	0.49	
76	1.228 35	1.063 78	0.00000	14 395.59	-1.25	-1.38	
77	1.280 67	1.109 09	0.00000	10 317.16	0.41	0.40	
78	1.335 23	1.15635	0.00000	6996.33	0.67	0.73	
79	1.392 25	1.205 72	0.000 00	4376.93	0.15	0.17	
80	1.451 95	1.25742	0.00000	2409.10	-0.02	-0.05	
81	1.514 59	1.31168	0.00000	1048.78	0.10	0.07	
82	1.58049	1.368 75	0.00000	257.08	0.14	0.13	
83	1.723 54	1.492 63	0.00000	248.03	0.06	0.05	
84	1.801 60	1.560 23	0.00000	975.95	0.09	0.08	
85	1.88478	1.632 26	0.00000	2162.70	0.04	0.03	
86	1.973 79	1.709 35	0.00000	3791.32	-0.16	-0.17	
87	2.069 52	1.792 26	0.00000	5848.98	-0.31	-0.33	
88	2.173 07	1.881 93	0.00000	8327.21	-0.08	-0.08	
89	2.28581	1.979 57	0.00000	11 222.21	0.38	0.40	
90	2.409 56	2.08674	0.00000	14 535.40	0.08	0.09	
91	2.546 69	2.205 50	0.00000	18 274.30	0.02	-0.07	
92	2.700 45	2.338 66	0.00000	22 453.50	-0.02	-0.02	
93	2.875 45	2.490 21	0.00000	27 097.33	-28.40	-27.85	
94	3.320 30	2.87546	0.00000	37 937.14	-8.66	-1.61	
95	0.923 33	1.443 35	0.260 04	27 671.18	7.60	8.04	
96	0.944 27	1.921 89	0.54572	29 270.35	4.43	2.32	
97	0.968 50	2.15691	0.15405	29 009.13	5.34	6.36	
98	1.05490	2.398 28	0.171 26	25 603.34	3.91	5.95	
99	1.147 62	2.699 62	0.199 54	24 694.77	2.65	4.41	
100	1.247 65	3.100 24	0.25079	26 052.48	-0.64	-1.86	
101	1.669 63	3.022 53	0.49093	20 975.32	-8.02	-9.55	
102	1.356 24	3.69921	0.365 55	29 545.10	5.36	5.11	
103	2.18786	2.884 55	0.19187	23 916.37	1.51	1.72	
104	1.000 76	1.17687	0.103 67	24 157.61	2.62	2.60	
105	0.96282	1.61629	0.245 85	23 220.62	0.84	0.79	
						Continued	

Table 1. Continued

					E	$C - V_{\rm ES}$
No.	r/a_0	R/a_0	$\cos \theta$	E/cm^{-1}	Fit 1	Fit 2
106	1.01249	2.144 33	0.583 82	25 774.36	2.69	1.56
107	1.10205	2.393 85	0.647 20	23 172.55	10.17	8.42
108	1.19841	2.71487	0.752 15	23 052.75	-7.00	-9.79
109	1.302 70	3.171 26	0.948 09	25 338.92	0.83	0.59
110	1.59665	3.14264	0.483 72	22 452.87	0.57	-2.77
111	2.18786	2.884 55	0.19187	23 916.37	1.51	1.72
112	1.62572	0.98488	0.632 19	47 730.02	18.33	26.96
113	4.01116	3.473 76	0.00000	51 303.88	-0.23	9.87
114	3.056 54	1.622 13	0.882 50	68 962.27	4.24	-13.34
115	3.79445	2.03466	0.86246	40 684.92	16.04	35.75
116	0.894 56	0.95091	0.13447	51 945.08	-11.70	-12.48
117	1.05672	0.81616	0.19871	52 051.55	-26.93	-28.76
118	0.87972	0.99518	0.468 28	61 103.21	21.08	30.07
119	1.293 69	0.83411	0.51849	60 030.88	-61.56	-85.49
120	0.96009	1.08267	0.462 59	42 435.63	128.64	129.89
121	0.90274	1.18280	0.73782	55 396.92	291.23	322.41
122	1.40648	0.91001	0.51217	42 964.62	-45.51	-39.31
123	2.474 26	1.36001	0.81481	56 387.90	-36.47	-5.98
124	2.78237	1.522 33	0.823 64	48 224.66	-39.84	-4.04
125	6.31275	3.208 12	0.96761	68 820.90	-222.65	1330.70
126	6.63282	4.08245	0.603 04	60 136.71	-246.69	-246.69
127	4.581 00	3.967 26	0.00000	59 210.79	-3945.31	-3196.47
128	0.876 97	1.130 64	0.299 79	43 090.88	67.44	67.91
129	0.85962	1.340 18	0.51464	41 258.00	-45.26	-59.70
130	0.842 51	1.598 18	0.81065	44 669.11	-102.54	-88.21
131	1.038 31	0.899 20	0.00000	39 674.21	48.78	52.99
132	1.89090	1.08640	0.73085	56 565.49	79.99	87.39
133	2.07661	1.192 54	0.731 72	45 021.00	46.65	67.57
134	8.129 39	4.238 72	0.91701	39 517.43	36.86	28.85

Table 2. Comparison of Born-Oppenheimer electronic energies for the present calculation and that of Cencek *et al.* [22]. Calculations are for equilateral triangular H_3^+ with internuclear separation r. Energies, in cm⁻¹, are relative to the $r=1.65\,a_0$ point for each calculation.

r/a_0	[22]	This work	Δ
1.1781	19294.33	19294.82	+ 0.49
1.2807	10316.83	10317.16	+0.33
1.3922	4376.74	4376.93	+0.19
1.5146	1048.70	1048.78	+0.08
1.8016	975.99	975.95	-0.04
1.9738	3791.37	3791.32	-0.05
2.1731	8327.24	8327.21	-0.03
2.4096	14535.39	14535.40	+0.01
2.7005	22453.63	22453.50	-0.13

on the equilateral triangular geometries. The fitted potentials below reproduce the computed data in the

energy range of our new points with a standard deviation of around 5 cm⁻¹ for points which lie below 39 000 cm⁻¹. Thus, the standard deviation of the fit is of the same order of magnitude as the intrinsic accuracy of the *ab initio* calculations.

3. Analytical representation of the PES

As the functional form employed by Prosmiti et al. [18] to represent their two-valued, global ground state potential function gave physically reasonable values for all the configurations we wish to consider, we used this as a starting point for our representation of the potential. The PPT potential used a combination of two potential forms, $V_1(\mathbf{R})$ and $V_2(\mathbf{R})$, linked by the energy switching approach of Varandas [19]. Within this approach, V_2 reproduces the low energy 'spectroscopic' portions of the potential in the region of the minimum of the potential. V_1 should give a realistic representation for configurations at higher energies. The energy switching (ES) potential is written as

$$V_{ES} = f^{+}(\Delta E)V_{1}(\mathbf{R}) + f^{-}(\Delta E)V_{2}(\mathbf{R}), \tag{2}$$

where $f(\Delta E)$ is the switching function with the general form [19]

$$f^{\pm}(\Delta E) = \frac{1}{2}[1 + \tanh(\pm \gamma \Delta E)] \tag{3}$$

and

$$\gamma = \gamma_0 + \gamma_1 \Delta E^2, \qquad \Delta E = E - E_0. \tag{4}$$

Initially we used values of the switching parameters γ_0 , γ_1 and E_0 as PPT. In contrast to PPT, the value of E used to determine ΔE was taken from the V_1 potential.

The low energy 'spectroscopic' part of the potential, V_2 , was expressed in symmetry coordinates:

$$S_a = (\tilde{R}_{12} + \tilde{R}_{23} + \tilde{R}_{31})/3^{1/2},$$

$$S_x = (2R_{12} - R_{23} - R_{31})/6^{1/2} = S_e \cos(\phi),$$

$$S_y = (R_{23} - R_{31})/2^{1/2} = S_e \sin(\phi).$$
(5)

Following high accuracy fits to this region of the potential [30], the distortions were represented using simple displacement coordinates: R_{jk} is the distance between atom j and atom k. The (dissociative) breathing mode was represented using Morse coordinates

$$\tilde{R}_{jk} = \left[1 - \exp\left(-\beta \frac{R_{jk} - R_{e}}{R_{e}}\right)\right] / \beta, \tag{6}$$

where R_e is the equilibrium separation which was assumed to be 1.65 a_0 and the Morse parameter β was fixed at 1.3 [23].

In these coordinates the V_2 potential was expanded as a polynomial where

$$V_{2} = \sum_{n,m,k} V_{n,m,k} S_{a}^{n} S_{e}^{m+k} \cos(k\phi),$$

$$m = 0, 2, 4, \dots, \quad k = 0, 3, 6, \dots,$$
(7)

where $N \ge n+m+k$ gives the order of the fit. As this portion of the potential is largely determined by the *ab initio* data of Cencek *et al.* [22], V_2 was initially set to the tenth-order fit of Polyansky and Tennyson [30], which reproduces Cencek *et al.*'s data with a standard deviation of $0.04 \, \mathrm{cm}^{-1}$.

The V_1 surface was represented by the Sorbie-Murrell [31] many body expansion form. This representation of the PES for H_3^+ is a three-valued surface [32], taking into account all the dissociation schemes. In this approach, the two-body terms are the potential curves of the ground H_2 , H_2^+ and the first excited state of H_2^+ . The repulsive state of H_2^+ lies above the $H + H^+ + H$ limit, so can safely be neglected. We therefore copy PPT who followed Carter [32] and construct an approximate two-valued surface of H_3^+ , by considering two diabatic

states V_{aa} and V_{bb} , which correspond to the dissociation channels $H_2 + H^+$ and $H_2^+ + H$ respectively. In this two-valued representation, the ground and first excited states of H_3^+ are the eigenvalues of a 2 × 2 matrix. The lowest eigenvalue is given by

$$V_1 = \frac{1}{2} [V_{aa} + V_{bb} - [(V_{aa} - V_{bb})^2 + V_{ab}^2]^{1/2}].$$
 (8)

The diabatic surfaces are given by the forms,

$$V_{aa} = V_{HH}^{(2)}(R_1) + V_{HH}^{(2)}(R_2) + V_{HH}^{(2)}(R_3) + V_{aa}^{(3)}(R_1, R_2, R_3),$$
(9)

$$V_{bb} = V_{\text{HH}^{+}}^{(2)}(R_{1}) + V_{\text{HH}^{+}}^{(2)}(R_{2}) + V_{\text{HH}^{+}}^{(2)}(R_{3}) + V_{bb}^{(3)}(R_{1}, R_{2}, R_{3}), \tag{10}$$

where R_1 , R_2 , R_3 are the bond lengths of the three possible diatomic products. $V^{(2)}$ are the two-body terms and $V^{(3)}$ are the three-body terms, which are constructed with full permutation symmetry. Parameters for the two-body terms were determined by PPT using the very high accuracy *ab initio* data of Bishop and Shih [33] for H_2 , and Schwartz and Le Roy [34] for H_2^+ . These were used here.

The most important short-range (SR) three-body term is $V_{aa}^{(3)\rm SR}$. This was represented as a 7th order polynomial

$$V_{aa}^{(3)SR} = P(R_1, R_2, R_3)T(R_1, R_2, R_3)$$
 (11)

$$P(R_1, R_2, R_3) = V_0 \left(1 + \sum_{i=1}^3 C_i \rho_i + \sum_{i \leq j}^3 C_{ij} \rho_i \rho_j \right)$$

$$+ \sum_{i \leq j \leq k}^3 C_{ijk} \rho_i \rho_j \rho_k$$

$$+ \sum_{i \leq j \leq k \leq l}^3 C_{ijkl} \rho_i \rho_j \rho_k \rho_l$$

$$+ \sum_{i \leq j \leq k \leq l \leq n}^3 C_{ijkln} \rho_i \rho_j \rho_k \rho_l \rho_n$$

$$+ \sum_{i \leq j \leq k \leq l \leq n \leq m}^3 C_{ijklnm} \rho_i \rho_j \rho_k \rho_l \rho_n \rho_m$$

$$+ \sum_{i \leq j \leq k \leq l \leq n \leq m \leq z}^3 C_{ijklnmz} \rho_i \rho_j \rho_k \rho_l \rho_n \rho_m \rho_z$$

(12)

$$T(R_1, R_2, R_3) = \prod_{i=1}^{3} \left[1 - \tanh\left(\frac{g_i \rho_i}{2}\right) \right],$$

$$\rho_i = R_i - R_0, \quad i = 1, 2, 3. \tag{13}$$

Initial parameters for $V_{aa}^{(3){\rm SR}}$ were determined by fitting to our newly calculated data. The form of $V_{ab}^{(3)}$ and $V_{bb}^{(3)}$ were taken unchanged from PPT throughout the fit as the *ab initio* data we introduce here contains no new information on these terms.

The functional form used to represent the three-body terms does not display the correct behaviour when one atom/ion is well separated from the other two. To describe the charge-induced dipole and charge-quadrupole contributions we introduced long-range (LR) values known from perturbation theory [35]. This leads to revised three-body terms given by:

$$V_{aa}^{(3)} = g(R)V_{aa}^{(3)SR} + [1 - g(R)]V_{aa}^{LR}$$
 (14)

with the switching function defined by

$$g(R) = \begin{cases} 1, & R < R_{LIM}, \\ \cos^2 \left[\frac{\pi (R - R_{LIM})}{2(R_M - R_{LIM})} \right], & R_{LIM} \leqslant R \leqslant R_M, \\ 0, & R > R_M. \end{cases}$$
(15)

PPT used a long-range potential and switching functions based on one, arbitrary, definition of the Jacobi coordinate. This results in a potential which, for certain geometries, does do not reflect the full symmetry of this system. For this reason we chose R in V^{LR} and g(R) using the minimum H-H distance to define r in the three possible choices of Jacobi coordinates. This has the effect of symmetrizing the long-range part of the potential although it is possible that such a potential will display a cusp in regions where the definition of R is swapped. We have detected no problems with cusp-like behaviour in the potentials reported below.

For $V_{aa}^{(3)}$ PPT defined the switching region by $R_{LIM}=4.0\,\mathrm{a_0}$ and $R_M=10.0\,\mathrm{a_0}$. However, we found that at large values of R, $V_{aa}^{(3)\mathrm{SR}}$ introduced structure into the potential. As there is no data defining $V_{aa}^{(3)\mathrm{SR}}$ at large R these features must be regarded as artificial; they were removed by resetting R_M to $7.0\,\mathrm{a_0}$. The functional form for the upper diabatic state the V_{bb}^{LR} and the parameters for the long-range (LR) terms were taken from PPT.

Unlike PPT who determined V_1 and V_2 separately our fits were performed for the entire surface. To avoid problems with excessive correlations, we alternated between varying the parameters for each portion of the potential.

As we are using ab initio data from three different sources it is necessary to define a common energy zero and to weight the data according to its approximate accuracy. The energy zero was fixed for each data set by defining the potential of the equilateral triangle geometry with $r = 1.65 a_0$ to be zero. The weighting used in the fits was not an absolute error but a relative one. Our final fits weighted the error of our calculations as 60 times less than, and Schinke et al.'s as 19760 times less than, those of Cencek et al. Our calculations gave a few points at relatively high energy. It was found that there were too few of these for them to be fitted accurately, so 18 points, listed last in table 1, were dropped from our fits. Thus, if one assumes that the 69 points of Cencek et al. are accurate to 0.05 cm⁻¹, then this weights our 115 points with an accuracy of 3 cm⁻¹, and Schinke et al.'s 650 points with an accuracy of 988 cm⁻¹. The low weighting of the data of Schinke et al. was because this data was used merely to constrain the surface to physically reasonable values in regions where no other information is available.

Initially we used PPT's values for the switching function, $f^{\pm}(\Delta E)$. Introducing our new data allowed us to determine further parameters in V_2 . These were introduced until all parameters up to twelfth-order were included in the fit. A large number of iterations were then performed to obtain optimum parameters for both V_1 and V_2 . The more difficult fits, namely those for V_1 which are nonlinear, were performed using the sophisticated interactive nonlinear least squares (I-NoLLS) [36] program. For the linear V_2 fits, a much simpler fitting program was sufficient.

The result of this fit reproduced our input data reasonably satisfactorily but inspection of the resulting potential showed that there was a problem with unphysical holes in what should have been the high energy region. Analysis showed that this problem was due to large oscillations in V_2 outside its domain of validity. To cure this problem we investigated changing the parameters in the switching function, $f^{\pm}(\Delta E)$. Essentially these are of two types: the parameter E_0 where the switching occurs and the parameter γ determines how fast the switching occurs. As our new data leads to V_2 being determined to significantly higher energies than the DPT potential used by PPT to define V_2 , we decided to raise E_0 . Conversely the unphysical holes were caused by the switching being too soft allowing V_2 to influence regions of the potential where it was not well determined. We therefore decided to sharpen the switch over by increasing γ_2 . There is a certain arbitrariness in this procedure and in practice we found little sensitivity in our fits once γ_2 was raised above a certain value. We therefore chose a value of γ_2 at the low end of this range so as not too make the switch over excessively sharp.

Use of the new switching function not only removed problems with the artificial holes in the potential, it also gave an improved representation of our data. We used this as a starting point for more iterations fitting alternatively V_1 and V_2 . This yielded a further significant improvement in the fit of our data. However graphical analysis of our potential showed that our changes to $f^{\pm}(\Delta E)$ had introduced another problem: as the switching energy was raised, V_2 was now found to make a small but significant contribution in the longrange region. As discussed above, PPT only matched the three-body terms in V_1 to the correct long-range functions. We found it was necessary to treat V_2 in a similar fashion and generalize its definition:

$$\tilde{V}_2 = g(R)V_2 + [1 - g(R)](V_{aa}^{LR} + V_{HH}^{(2)}(r) - V_{HH}^{(2)}(r_e) + D_e),$$
(16)

where g(R) is the switching function as defined in (15) using $R_{LIM} = 4.5 \, a_0$ and $R_M = 10.0 \, a_0$; $V_{\rm HH}^{(2)}$ is the H_2 potential curve of Bishop and Shih [33] used above. The energy zeroes are made consistent by setting the energy $V_{\rm HH}^{(2)}$ to zero for at the H_2 equilibrium bond length, $r_{\rm e}$ and setting $D_{\rm e}$ to the dissociation energy of H_3^+ . For $D_{\rm e}$ we used the best available ab initio value of Röhse et al. [28] of 37 170.4 cm⁻¹. This is the same value of $D_{\rm e}$ that was used by PPT, and hence us, in parametrizing V_1 . It should be noted that the best experimentally determined dissociation energy of H_3^+ is about $320 \, {\rm cm}^{-1}$ higher than this [37] and that the theoretical $(\pm 0.5 \, {\rm cm}^{-1})$ and experimental $(\pm 20 \, {\rm cm}^{-1})$ error bars means that these values are incompatible with each other.

After performing further iterations using \tilde{V}_2 in the potential we obtained our best fit to the input data, which we call Fit 1 below. Fit 1 reproduces all Cencek et al.'s data with a standard deviation of $0.059\,\mathrm{cm}^{-1}$. It reproduces the 115 of our electronic structure used in the fit with a standard deviation of $5.8\,\mathrm{cm}^{-1}$. Table 1 gives individual residues for these newly calculated points, including those not included in the fit. Schinke et al.'s data was fitted with a standard deviation of $535\,\mathrm{cm}^{-1}$.

It is difficult to prove that a potential hyper-surface is smooth everywhere and contains no unphysical regions. Besides analysing the various residuals of our fits, we also inspected plots of the potential, see figure 1 (a) for example. These plots showed the potential to be smooth but also suggested that the result of this fit, Fit 1, was to produce a 'shoulder' in the potential for some near-linear geometries for 50 000 cm⁻¹ and above. This fea-

Figure 1. Contours of the H_3^+ potential energy surface in Jacobi coordinates with $\theta = 90^{\circ}$: (a) Fit 1 and (b) Fit 2.

ture was not present in the PPT potential and appears to be unphysical.

Although the main goal of this work was to produce an accurate potential for energies up to 40 000 cm⁻¹, we thought it desirable to construct a potential which did not show this unphysical behaviour. As there were no ab initio points calculated in the region of the shoulder, it was not possible to just manipulate the weights of the points in the shoulder region to produce smoother behaviour. As an alternative, 100 artificial points were produced using the PPT potential. When these points were weighted equal to those of Schinke et al., no significant change of the form of the potential was produced in the fit. It was necessary to increase the weighting of the points by a factor of four to be able to produce a relatively shoulder-free shape potential, see figure 1(b). Other aspects of this fit were unchanged

from the previous one except that $R_{LIM} = 4.5 a_0$ was used in equation (16).

This fit, Fit 2, represents a compromise between the form of the potential and the accuracy of the fit. The standard deviation with which Fit 2 reproduces the points of Cencek et al. and Schinke et al. increases by less than 10% to 0.069 cm⁻¹ and 711 cm⁻¹ respectively. As can be seen from table 1, Fit 2 represents the 115 of our points included in the fits with a standard deviation of 10.5 cm⁻¹, which is reduced to 6.9 cm⁻¹ if the worst 5 points are discounted. Increasing the weight of the artificial points in the fit leads to significantly larger deterioration in the results, although the shape of the potential improved somewhat further. A full resolution of these problems must await the calculation of a much more extensive grid of high accuracy electronic structure points. Such a calculations is presently beyond our computer budget.

Tables 3–5 give our final parameters for the V_2 potential, the switching function and the V_1 potential respectively. Parameters for both Fit 1 and Fit 2 are presented. Potential parameters not specified here were frozen at the values of PPT for both fits. Fortran subroutines containing these potentials can be obtained from one of the authors (JT).

We consider Fit 2 to be the best compromise between the shape of the potential and the accuracy of the fit. In short, when accurate reproduction of the *ab initio* points is required, Fit 1 should be used. If the desired potential needs to be smooth at energies of 50 000 cm⁻¹ or higher, Fit 2 should be used.

The surfaces we present are constructed within the Born-Oppenheimer approximation. Actually our treatment of the H₂ diatomic limit contains some allowance for adiabatic effects [33]. A proper treatment of adiabatic effects for the whole system would be of interest;

Table 3. Fitted coefficients for the V_2 Born-Oppenheimer potential, equation (7), in 10^{-6} atomic units. Errors, in the same units, are those given in the final iteration of the fit.

		Fit	: 1	Fit	2	
n	m	k	$V_{n,m,k}$	error	$\overline{V_{n,m,k}}$	error
0	0	0	-0.40000	0.0^{a}	-0.40000	0.0^{a}
1	0	0	4.467 30	0.0^a	4.467 29	0.0^{a}
2	0	0	204 411.007 18	6.542 21	204 417.306 39	7.706 08
0	2	0	97 853.681 20	1.71049	97 855.721 79	2.02488
3	0	0	-49416.18213	27.117 44	-49443.69231	32.05787
1	2	0	-235073.54099	10.852 51	-235062.57142	13.271 74
0	0	3	-32823.03509	2.681 27	-32825.90065	3.185 15
4	0	0	26 670.140 67	139.580 19	26 561.628 09	164.51742
2	2	0	237 716.732 91	55.104 55	237 566.798 68	65.23091
1	0	3	99 387.654 20	17.19001	99 398.354 37	20.468 38
0	4	0	-760.06693	9.979 24	-773.71059	11.85039
5	0	0	2 248.799 20	522.55676	2 906.895 59	615.98282
3	2	0	-146180.29674	194.265 92	-146392.55973	231.12549
2	0	3	-130013.62550	63.388 33	-130039.68862	73.17406
1	4	0	-13130.50435	58.123 48	-13116.92017	71.328 61
0	2	3	1 632.732 16	13.060 69	1 654.954 85	15.46293
6	0	0	-10984.10567	1 100.920 51	-10612.64380	1 300.133 51
4	2	0	67 614.837 69	631.098 05	69 629.799 44	731.448 74
3	0	3	97 480.901 90	194.729 52	97 294.540 87	229.301 49
2	4	0	44 037.665 60	161.663 06	44 492.204 76	189.788 73
1	2	3	1 902.803 13	62.524 99	1820.71902	73.32684
0	6	0	241.257 86	17.982 17	259.278 92	21.45460
0	0	6	20.762 27	2.383 33	22.197 34	2.917 51
7	0	0	-33576.69919	3 312.431 49	-38301.30973	3 900.301 94
5	2	0	-21488.78263	1 502.532 22	-21770.62836	1 774.474 77
4	0	3	-56328.31780	616.601 61	-56386.81769	715.786 15
3	4	0	-62205.94819	722.466 83	-62114.28116	852.533 39
2	2	3	-18233.71127	292.421 45	-17951.85932	343.426 85
1	6	0	-2118.62757	115.022 22	-2287.05170	141.698 70
1	0	6	-1178.76826	17.907 63	-1172.01978	20.348 00
						continue

Table 3. Continued

			Fi	t 1	Fit 2			
n	m	k	$V_{n,m,k}$	error	$V_{n,m,k}$	error		
0	4	3	0.541 90	0.490 16	-48.567 40	24.11992		
8	0	0	75 158.195 43	4 488.886 19	76 486.267 73	5 303.295 18		
6	2	0	37 795.302 10	2854.22372	29 251.591 30	3 283.991 66		
5	0	3	61 665.888 44	1019.87925	65 239.578 46	1 145.121 70		
4	4	0	69 885.589 19	1 169.188 26	65 706.681 88	1 321.930 57		
3 2	2	3	43 380.857 30	362.805 90	42 544.580 04	401.793 69		
2	6	0	5 273.175 78	247.291 32	5 122,497 54	298.617 39		
2	0	6	4 040.641 11	43.89040	3 947.616 29	42.75278		
1	4	3	-429,72494	83.231 49	-169.05463	93.983 03		
0	8	0	-133.61275	11.049 20	-119.99390	13.28472		
0	2	6	1.355 32	0.602 19	8.238 89	4.551 46		
9	0	0	82 487.068 03	8 173.053 45	95 599.814 46	9 620.024 89		
7	2	0	-43 553.747 10	5 547.795 97	-35 124.308 26	6 398.057 17		
6	0	3	-54 784.526 49	1 879.081 53	-56 206.204 70	2 206.683 17		
5	4	0	-78 239.034 41	2 307.694 08	-75 825.866 06	2 747.042 99		
4	2	3	-55 920.500 22	1 096.872 48	-56 210.749 91	1 298.139 25		
3	6	0	-4 552.838 92	754.45641	-3657.32020	889.59221		
3	0	6	-6113.43598	71.50462	-6 198.674 71	83.259 97		
2	4	3	998.651 82	343.83496	520.228 15	404.97524		
1	8	0	1 275.893 97	76.21223	1 380.664 65	93.122.52		
1	2	6	564.111.15	26.784 05	520.228 15	32.31622		
0	6	3	35.504 57	10.494 38	62.455 89			
0	0	9	-1.471 69	0.625 63		12.31523		
10	0	0	-1.471 09 -164 462.751 26	9 437.382 32	0.387 37 -172 799.660 23	0.229 29 11 134.794 24		
8	2	0						
7	0		-45 557.050 60	4 523.739 15	-36 825.643 08	5 314.295 40		
		3	-42 858.636 89	2 219.703 54	-53 125.617 63	2 524.673 19		
6	4	0	-25 696.207 04	4 277.865 86	-17 514.937 75	4 894.206 39		
5	2	3	-25 241.907 65	2 667.246 84	-26 846.724 27	3 004.361 25		
4	6	0	-6 357.229 75	1 906.184 61	-4661.55292	2 240.895 01		
4	0	6	4953.05723	344.404 18	5611.98260	349.806 58		
3	4	3	2 597.156 88	906.772 83	4 328.871 50	1 061.596 56		
2	8	0	-1997.36741	250.93648	-2381.05663	304.447 76		
2	2	6	-1855.78430	93.073 63	-1772.15467	108.04288		
1	6	3	180.321 70	56.501 61	-44.80734	64.173 61		
1	0	9	20.358 34	3.304 62	12.559 49	3.698 56		
0	10	0	9.67688	2.395 49	-10.76857	2.969 32		
0	4	6	-11.046 59	1.31901	-24.51741	1.639 28		
11	0	0	-65222.14270	6 742.538 03	-77658.37397	7 936.372 52		
9	2	0	47 356.152 20	8 121.034 22	30 189.194 83	9 235.540 50		
8	0	3	85 983.939 16	2 798.065 38	89 665.675 96	3 226.296 70		
7	4	0	174 677.722 09	5 239.260 22	165 258.924 21	6 074.079 72		
6	2	3	137 109.945 84	3 272.302 61	149 053.561 26	3 696.428 99		
5	6	0	31 232.405 86	2 219.874 54	26 585.899 13	2 559.718 47		
5	0	6	-4630.57965	518.29540	-4964.27708	538.903 20		
4	4	3	258.289 23	58.750 94	-3568.70184	1 220.936 71		
3	8	0	-599.57883	355.648 94	-477.371 00	426.20407		
3	2	6	2 685.260 47	135.601 87	2 491.674 43	153.788 12		
2	6	3	-1672.08879	99.811 54	-1247.47365	111.59404		
2	0	9	-89.13397	5.789 96	-75.45474	6.261 32		
1	10	0	-162.619 52	7.33497	-94.898 64	9.281 44		
1	4	6	-91.49030	3.95021	-47.106 83	4.908 31		
0	8	3	-15.375 16	0.365 78	-11.758 51	0.480 37		
0	2	9	0.058 63	0.000 32	0.060 82	0.00046		
-	-	-	5.050 05	0.000 52	0.000 02	continue		

Table 3. Continued

·		Fit	t 1	Fit	2	
n	n m	k	$\overline{V}_{n,m,k}$	error	$\overline{V}_{n,m,k}$	error
12	0	0	124 146.605 20	7 454.185 35	134 500.715 47	8 784.680 82
10	2	0	15 877.504 19	5 296.350 78	22 995.791 86	6 092.666 01
9	0	3	-25014.16001	1 747.415 42	-18268.52201	2 063.490 40
8	4	0	-109293.06190	2 678.779 66	-106740.69669	3 121.790 50
7	2	3	-86910.19511	1 653.193 59	-97386.24470	1 890.805 30
6	6	0	-28677.78365	1 124.792 47	-26501.64627	1 282.240 97
6	0	6	3 835.998 15	271.470 19	3 603.483 89	296.31065
5	4	3	-5561.01338	501.583 03	-3062.22678	573.62640
4	8	0	1 802.448 31	181.659 18	2014.53612	216.31963
4	2	6	-1822.14064	70.159 23	-1502.76759	78.533 50
3	6	3	1 778.567 54	56.565 26	1 549.979 87	62.584 64
3	0	9	79.981 59	3.292 64	71.56741	3.467 19
2	10	0	190.930 78	5.544 51	138.50648	7.11394
2	4	6	135.028 64	2.933 55	100.76083	3.63632
1	8	3	19.478 17	0.459 19	14.955 40	0.603 21

^a Constant held fixed in final iteration of fit.

Table 4. Parameters used to determine the switching function f^{\pm} , equation (3).

Parameter	Value
$\overline{E_0/E_h}$	0.150 243 85
$rac{E_0/E_h}{\gamma_0/E_h^{-1}} \ \gamma_1/E_h^{-3}$	60.091 57
γ_1/E_h^{-3}	1.1×10^5

in particular, for the mixed isotopomers, it would require the introduction of extra dissociation channels.

4. Conclusions

We have produced an *ab initio* potential energy surface for the important and fundamental H_3^+ molecular ion within the Born-Oppenheimer approximation. This potential is expected to be accurate to a few reciprocal centimetres at all energies below the dissociation energy of the H_3^+ system and to be reliable at energies above this. Such a potential is necessary [16] if progress is to be made on the challenging problem of analysing the near-dissociation spectrum of H_3^+ recorded by Carrington and his co-workers [1-3].

Preliminary calculations performed using the empirically derived and less accurate PPT potential [18] suggest that the vibrational states supported by these potentials are somewhat different from those found in previous studies of H_3^+ vibrational states in the dissociating region [38]. The major reason for this appears to be the accurate treatment of long-range effects included in our new potentials which lead to much more attrac-

tive potentials as the ion dissociates. Our new potentials include these long-range effects. Nuclear motion calculations using the new potentials are in progress.

Alan Carrington's experiments have proved a continuing source of inspiration to us and we wish to dedicate this paper to him. We thank Sophie Kain for help with the figure and a referee for commenting on the adiabatic effects in the H₂ potential. This work has been supported by the Research Council of Norway (Programme for Supercomputing, Grant No. NN2694K) through a grant for computer time and the United Kingdom UK Engineering and Physical Sciences Research Council. The work of OLP is supported in part by the Russian Fund for Fundamental Studies. RP gratefully acknowledges a TMR Fellowship, under contract ERBFMBICT 960901. The research of WK has been made possible by a fellowship of the Royal Netherlands Academy of Arts and Sciences.

References

- [1] CARRINGTON, A., BUTTENSHAW, J., and KENNEDY, R. A., 1982, *Molec. Phys.*, **45**, 753.
- [2] CARRINGTON, A., and KENNEDY, R. A., 1984, J. chem. Phys., 81, 91.
- [3] CARRINGTON, A., MCNAB, I. R., and WEST, Y. D., 1993, J. chem. Phys., 98, 1073
- [4] CARRINGTON, A., and McNAB, I. R., 1989, Acc. Chem. Res., 22, 218.
- [5] McNAB, I. R., 1994, Adv. chem. Phys., 89, 1.
- [6] GOMEZ-LLORENTE, J. M., and POLLAK, E., 1987, Chem. Phys. Lett., 138, 125.
- [7] PFEIFFER, R., and CHILD, M. S., 1987, Molec. Phys., 60, 1367.

Table 5.	Parameters	use	to	determine	the	short-range	three-body	term,	$V_{aa}^{(3)SR}$,
equa	tions (11)–(13	3). Err	ors	are those	given	in the final it	eration of th	e fit.	

-	Fit 1		Fit :	2
Parameter	value	error	value	error
$C_1/\mathring{\mathbf{A}}^{-1}$	-0.578 58	0.001 98	-0.571 41	0.003 31
$C_{11}/^{-2}$	0.41966	0.00985	0.50648	0.013 16
C_{12}	-1.32117	0.01031	-1.39038	0.013 37
C_{111} /Å ⁻³	-0.25080	0.024 78	-0.06768	0.028 30
C_{112}	0.44960	0.023 29	0.269 39	0.02848
C_{123}	0.11073	0.06223	0.50684	0.063 14
$C_{1111}/\text{Å}^{-4}$	-0.91092	0.030 52	-1.11217	0.031 09
C_{1112}	1.020 59	0.041 84	1.367 34	0.055 26
C_{1122}	0.101 77	0.075 04	-0.50593	0.097 04
C_{1123}	-0.34666	0.01979	-0.29397	0.02991
C_{11111}/A^{-5}	1.473 12	0.08129	1.067 22	0.058 43
C_{11112}	-1.29548	0.13285	-0.70364	0.09468
C_{11122}	-0.32708	0.04073	-0.36199	0.03527
C_{11123}	0.941 18	0.32035	-0.79432	0.28408
C_{11223}	-1.22831	0.21147	-0.07724	0.21149
$C_{111111}/\text{Å}^{-6}$	-0.68653	0.04260	-0.39936	0.035 10
C_{111112}	0.36478	0.095 32	0.09788	0.070 16
C_{111122}	1.221 16	0.16641	1.005 77	0.153 79
C_{111222}	-1.72336	0.31609	-1.43504	0.27444
C_{111123}	-0.74827	0.485 26	-0.50032	0.297 62
C_{111233}	0.862 29	0.45416	1.142 22	0.293 98
C_{112233}	-2.25344	1.321 98	-3.55267	0.91794
$C_{1111111} / Å^{-7}$	0.063 88	0.01149	0.013 63	0.007 35
$C_{1111122}$	-0.58826	0.06221	-0.47722	0.039 64
$C_{1111112}$	0.16007	0.02211	0.17697	0.01699
$C_{1111123}$	-0.39337	0.08478	-0.35202	0.075 25
$C_{1111222}$	0.361 43	0.05432	0.289 53	0.032 19
$C_{1111223}$	0.28391	0.05197	0.201 80	0.078 10
$C_{1112223}$	-0.27002	0.150 56	-0.29458	0.099 51
$C_{1122333}$	0.10965	0.09593	0.17027	0.05986
V_0^{a}/eV	3.782 643			
$R_0^a/\text{Å}$	0.891 756			
g_1^a/\mathring{A}^{-1}	0.820 040			

^a Constant fixed at value determined by PPT [18] in both fits.

- [8] BERBLINGER, M., POLLAK, E., and SCHLIER, C., 1988, J. chem. Phys., 88, 5643.
- [9] Berblinger, M., Gomez-Llorente, J. M., Pollak, E., and Schlier, C., 1988, *Chem. Phys. Lett.*, **146**, 353.
- [10] CHAMBERS, A. V., and CHILD, M. S., 1988, Molec. Phys., 65, 1337.
- [11] Berblinger, M., Schlier, C., and Pollak, E., 1989, J. chem. Phys., 93, 2319.
- [12] POLLAK, E., and SCHLIER, C., 1989, Acc. Chem. Res., 22, 223.
- [13] GOMEZ-LLORENTE, J. M., ZAKRZEWSKI, J., TAYLOR, H. S., and KULANDER, K. C., 1988, J. chem. Phys., 89, 5959.
- [14] POLAVIEJA, G. G., FULTON, N. G., and TENNYSON, J., 1994, *Molec. Phys.*, **83**, 361.
- [15] POLAVIEJA, G. G., FULTON, N. G., and TENNYSON, J., 1996, *Molec. Phys.*, **87**, 651.

- [16] HENDERSON, J. R., and TENNYSON, J., 1996, *Molec. Phys.*, **89**, 953.
- [17] MANDELSHTAM, V. A., and TAYLOR, H. S., 1997, *J. chem. Soc. Faraday Trans.*, **93**, 847.
- [18] PROSMITI, R., POLYANSKY, O. L., and TENNYSON, J., 1997, Chem. Phys. Lett., 273, 107.
- [19] VARANDAS, A. J. C., 1996, J. chem. Phys., 105, 3524.
- [20] DINELLI, B. M., POLYANSKY, O. L., and TENNYSON, J., 1995, J. chem. Phys., 103, 10433.
- [21] SCHINKE, R., DUPUIS, M., and LESTER JR, W. A., 1980, J. chem. Phys., 72, 3909.
- [22] CENCEK, W., RYCHLEWSKI, J., JAQUET, R., and KUTZELNIGG, W., 1998, *J. chem. Phys.*, **108**, 2831.
- [23] MEYER, W., BOTSCHWINA, P., and BURTON, P. G., 1986, J. chem. Phys., 84, 891.
- [24] KUTZELNIGG, W., 1985, Theor. Chim. Acta, 68, 445.

- [25] KLOPPER, W., and KUTZELNIGG, W., 1987, Chem. Phys. Lett., 134, 17.
- [26] KLOPPER, W., and RÖHSE, R., 1992, Theor. Chim. Acta, 83, 441.
- [27] RÖHSE, R., KLOPPER, W., and KUTZELNIGG, W., 1993, J. chem. Phys., 99, 8830.
- [28] RÖHSE, R., KUTZELNIGG, W., JAQUET, R., and KLOPPER, W., 1994, J. chem. Phys., 101, 2231.
- [29] RÖHSE, R., and KLOPPER, W., 1993, DIS, a CISD-R12 program for two-electron molecular systems.
- [30] POLYANSKY, O. L., and TENNYSON, J., 1999, J. chem. *Phys.*, **110**, 5056.
- [31] MURRELL, J. N., CARTER, S., FARANTOS, S. C., HUXLEY, P., and VARANDAS, A. J. C., 1984, Molecular Potential Energy Functions (New York: Wiley).

- [32] Carter, S., 1983, unpublished results (see [31], Chap. 11).
- [33] BISHOP, D. M., and SHIH, S.-K., 1976, J. chem. Phys., 64, 162.
- [34] SCHWARTZ, C., and LE ROY, R. J., 1987, J. molec. Spectrosc., 121, 420.
- [35] GIESE, C. F., and GENTRY, W. R., 1974, Phys. Rev. A, 10, 2156.
- [36] LAW, M. M., and HUTSON, J. M., 1997, Comput. Phys. Comm., 102, 252.
- [37] COSBY, P. C., and HELM, H., 1988, Chem. Phys. Lett., 152, 71.
- [38] PROSMITI, R., MUSSA, H. Y., and TENNYSON, J., 1998, Molecular Quantum States at Dissociation, edited by R. Prosmiti, J. Tennyson and D. C. Clary (Daresbury, UK: CCP6).