AEEM 3042 – Integrated Aircraft Engineering

Aircraft Performance Equations of Motion Time, Fuel, and Distance to Climb/Descend/Accel/Decel

Block 2 Schedule – Aircraft Performance

Block 2 – Aircraft Perf	ormance	
Tuesday, January 31		Table Lookup, Flight Envelope
Thursday, February 2		Thrust Required
Tuesday, February 7		Energy, Min & Max Velocities
Thursday, February 9		Rate of Climb & Ceilings
Tuesday, February 14		Material Review
Thursday, February 16		Homework Review
Tuesday, February 21	Exam #2a	
Thursday, February 23		Climb & Accel
Tuesday, February 28		Maneuver
Thursday, March 2		Airfield
Tuesday, March 7		Material Review
Thursday, March 9	Exam #2b	

Aircraft Performance

Climb = How long does it take an aircraft to get to a higher altitude? How <u>fast</u> can it climb?

How much <u>time</u> does it take to climb? How much <u>fuel</u> does it take to climb? How much <u>distance</u> will the aircraft travel during the climb?

Steady Climbing Flight

$$\sin \theta = \frac{T-D}{W} \longrightarrow V \sin \theta = \frac{(T-D)V}{W} = R/C$$
for R/C > 0 $T > D$

$$\cos \theta = \frac{L}{W} \longrightarrow L = W \cos \theta$$

Steady Climbing Flight

$$W = L \cos \theta + (T - D) \sin \theta$$

Steady Climbing Flight

$$V \sin \theta = \frac{(T-D) V}{W} = R/C$$

$$(T - D) V = T V - D V = Excess Power$$

$$\frac{(T-D)V}{W}$$
 = Specific Excess Power = R/C

Specific Excess Power

$$\frac{(T-D) V}{W} = \frac{dh}{dt} + \frac{V}{g} \frac{dV}{dt} = P_s$$

$$\frac{(T-D) V}{W} = \frac{dh}{dt} + \frac{V}{g} \frac{dV}{dt}$$

$$Rate$$

$$of$$

$$capability$$

$$Climb$$

Specific Excess Power

$$\frac{(T-D) V}{W} = \frac{dh}{dt} + \frac{V}{g} \frac{dV}{dt} = P_s$$

$$\frac{(T-D) V}{W} = \frac{dh}{dt} + \frac{V}{g} \frac{dV}{dt}$$

Rate of Climb

Climbing Flight

Minimum Time to Climb

Easier Method – assume linear R/C_{max} vs Altitude

Calculate the maximum Rate of Climb at Sea Level Calculate the maximum Rate of Climb at 30,000 ft Calculate the average Rate of Climb

Minimum Time to Climb

Easier Method

$$\mathbf{t_{min}} = \frac{\Delta \mathbf{h}}{(\mathbf{R/C})_{avg}}$$

$$(R/C)_{max} = \left[\left(\frac{W}{S} \right) \frac{Z}{3 \rho C_{D_0}} \right]^{1/2} \left(\frac{T}{W} \right)^{3/2} \left[1 - \frac{Z}{6} - \frac{Z}{2 Z (T/W)^2 (L/D)_{max}^2} \right]$$

where
$$Z=1+\sqrt{1+\frac{3}{(T/_W)^2(L/_D)^2_{max}}}$$

At Sea Level: $(R/C)_{max} = 179.8 \text{ ft/sec}$

At 30,000 ft: $(R/C)_{max} = 111.0$ ft/sec

Minimum Time to Climb

Easier Method

$$t_{\min} = \frac{\Delta h}{(R/C)_{avg}}$$

At Sea Level: $(R/C)_{max} = 179.8 \text{ ft/sec}$ At 30,000 ft: $(R/C)_{max} = 111.0 \text{ ft/sec}$

$$t_{min} = \frac{(30,000-0)}{(179.8+111.0)/2}$$

$$t_{min} = 206.3 \text{ sec} = 3.44 \text{ min}$$

What about fuel and distance?

Fuel to Climb

Easier Method – assume linear Fuel Flow vs Altitude

Calculate the Fuel Flow at Sea Level Calculate the Fuel Flow at 30,000 ft Calculate the average Fuel Flow

Fuel to Climb

Easier Method

$$\mathbf{w}_{\text{fuel}} = \dot{\mathbf{w}}_{\text{avg}} \Delta \mathbf{t}$$

At Sea Level: $\dot{w} = 10.0028$ lb/sec

At 30,000 ft: $\dot{w} = 5.5454$ lb/sec

$$w_{fuel} = \frac{(10.0028 + 5.5454)}{2} \ 206.3$$

$$w_{fuel} = 1,603.8 lb$$

Distance to Climb

Easier Method – assume linear Velocity vs Altitude

Calculate the Max Rate of Climb Velocity at Sea Level Calculate the Max Rate of Climb Velocity at 30,000 ft Calculate the average Velocity

Distance to Climb

Easier Method

$$s = V_{avg} \Delta t$$

$$V_{(R/C)_{max}} = \left[\left(\frac{T}{W} \right) \left(\frac{W}{S} \right) \frac{Z}{3 \rho C_{D_0}} \right]^{1/2}$$

where
$$Z = 1 + \sqrt{1 + \frac{3}{(T/W)^2 (L/D)^2_{max}}}$$

At Sea Level: V = 747.3 ft/sec

At 30,000 ft: V = 932.2 ft/sec

Distance to Climb

Easier Method

$$s = V_{avg} \Delta t$$

At Sea Level: V = 747.3 ft/sec At 30,000 ft: V = 932.2 ft/sec

$$s = \frac{(747.3 + 932.2)}{2}$$
 206.3

$$s = 173,240 \text{ ft} = 28.51 \text{ NM}$$

Climb Summary

Easier Method

$$t_{min} = \frac{\Delta \, h}{(R/C)_{avg}} \qquad w_{fuel} = \dot{w}_{avg} \, \, \Delta \, t \qquad s = V_{avg} \, \, \Delta \, t \label{eq:tmin}$$

	Sea Level			30,000 ft	
R/C	FFR	Velocity	R/C	FFR	Velocity
(ft/sec)	(lb/sec)	(ft/sec)	(ft/sec)	(lb/sec)	(ft/sec)
179.8	10.0028	747.3	111.0	5.5454	932.2

Time	Fuel	Distance
3.44 min	1,603.8 lb	28.51 NM

Steady Descending Flight

$$\sin \theta = \frac{D-T}{W} \longrightarrow V \sin \theta = \frac{(D-T)V}{W} = R/D$$

for
$$R/D > 0$$
 $D > T$

$$\cos \theta = \frac{L}{W} \longrightarrow L = W \cos \theta \qquad \boxed{L < W}$$

$$\tan \theta = \frac{D-T}{L} = \frac{1-(T/D)}{(L/D)}$$

Steady Gliding Flight

$$\sin \theta = \frac{D - y^0}{W} \longrightarrow V \sin \theta = \frac{D V}{W} = R/D$$

$$\cos \theta = \frac{L}{W} \longrightarrow L = W \cos \theta$$

$$\tan \theta = \frac{D - T^{0}}{L} = \frac{1 - (T^{0}_{D})}{(L^{0}_{D})} = \frac{1}{(L^{0}_{D})}$$

Time to Descend

Easier Method – assume linear Minimum Glide Angle vs Altitude

Calculate the Minimum Glide Angle and Velocity at Sea Level Calculate the Minimum Glide Angle and Velocity at 30,000 ft Calculate the average Glide Angle, average Velocity, and R/D

Time to Descend

Easier Method

$$\mathbf{t_{\theta min}} = \frac{\Delta \mathbf{h}}{(\mathbf{R}/\mathbf{D})_{avg}}$$

$$\tan \theta_{min} = \frac{1}{(L/D)_{max}}$$
 $R/D = V \sin \theta$

$$R/D = V \sin \theta$$

$$V_{\theta_{min}} = \sqrt{\frac{2}{\rho} \left(\frac{K}{C_{D_0}}\right)^{1/2} \left(\frac{W}{S}\right) \cos \theta}$$

At Sea Level: $\theta_{min} = 3.96^{\circ}$ $V_{\theta_{min}} = 385.1$ ft/sec

At 30,000 ft: $\theta_{min} = 3.96^{\circ}$ $V_{\theta_{min}} = 631.0$ ft/sec

Time to Descend

Easier Method

$$t_{\theta min} = \frac{\Delta h}{(R/D)_{avg}}$$

At Sea Level:
$$\theta_{min} = 3.96^{\circ}$$
 $V_{\theta_{min}} = 385.1$ ft/sec R/D = 26.7 ft/sec

At 30,000 ft:
$$\theta_{min} = 3.96^{\circ}$$
 $V_{\theta_{min}} = 631.0$ ft/sec R/D = 43.6 ft/sec

$$t_{\theta min} = \frac{(30,000\,-0)}{(43.6+26.7)/2}$$

$$t_{\theta min} = 853.5 \text{ sec} = 14.22 \text{ min}$$

Fuel to Descend

Easier Method – assume linear Fuel Flow vs Altitude

Since this is "gliding flight" T = 0 and FFR = 0

Distance to Descend

Easier Method – assume linear Glide Angle vs Altitude

$$R = 433,013 \text{ ft} = 71.26 \text{ NM}$$

Descent Summary

Easier Method

$$\mathbf{t_{\theta min}} = \frac{\Delta \mathbf{h}}{(\mathbf{R}/\mathbf{D})_{avg}}$$

$$w_{fuel} = 0$$

$$R = \frac{h}{\tan \theta_{\min}}$$

	Sea Level			30,000 ft	
θ_{min}	Velocity	R/D	θ_{min}	Velocity	R/D
(deg)	(ft/sec)	(ft/sec)	(deg)	(ft/sec)	(ft/sec)
3.96	385.1	26.7	3.96	631.0	43.6

Time	Fuel	Distance
14.22 min	0.0 lb	71.26 NM

Aircraft Performance

Aircraft Performance

$$L = W$$

$$L = W$$

Specific Excess Power

$$\frac{(T-D) V}{W} = \frac{dh}{dt} + \frac{V}{g} \frac{dV}{dt} = P_s$$

$$\frac{(T-D) V}{W} = \frac{dh}{dt} + \frac{V}{g} \frac{dV}{dt}$$

Level Acceleration

Acceleration capability

Textbook Method (at a specified altitude)

$$\mathbf{t}_{accel} = \int_{\mathbf{V}_1}^{\mathbf{V}_2} \frac{\mathbf{dV}}{\dot{\mathbf{V}}}$$

Accelerate from 0.50 to 0.80 M at 20,000 ft

Textbook Method (at a specified altitude)

Calculate the acceleration capability (\dot{V}_1) at initial velocity (V_1) Calculate the acceleration capability (\dot{V}_2) at final velocity (V_2) Derive the linear relationship $\dot{V} = a + b \Delta V = a + b (V_2 - V_1)$

$$\mathbf{t}_{accel} = \int_{\mathbf{V}_1}^{\mathbf{V}_2} \frac{d\mathbf{V}}{\dot{\mathbf{V}}} = \int_{\mathbf{V}_1}^{\mathbf{V}_2} \frac{d\mathbf{V}}{\mathbf{a} + \mathbf{b} \, \Delta \mathbf{V}}$$

$$t_{accel} = \frac{1}{b}[ln(a + b \Delta V) - ln a]$$

Textbook Method (at a specified altitude)

Calculate the acceleration capability (\dot{V}_1) at initial velocity (V_1) Calculate the acceleration capability (\dot{V}_2) at final velocity (V_2) Derive the linear relationship $\dot{V} = a + b \Delta V = a + b (V_2 - V_1)$

Textbook Method (at a specified altitude)

$$t_{accel} = \frac{1}{b} [ln(a + b \Delta V) - ln a]$$

since
$$\dot{V} = a + b \Delta V = a + b (V_2 - V_1)$$

$$t_{accel} = \frac{1}{b} \left[\ln \dot{V}_2 - \ln \dot{V}_1 \right]$$

Textbook Method (at a specified altitude)

$$t_{accel} = \frac{1}{b} \left[\ln \dot{V}_2 - \ln \dot{V}_1 \right]$$

Solve for b

At initial velocity (518.4 ft/sec): $\dot{V} = 6.1366$ ft/sec² At final velocity (829.5 ft/sec): $\dot{V} = 5.1774$ ft/sec²

$$a = 6.1366$$
 $b = (5.1774 - 6.1366) / (829.5 - 518.4) = -0.003083$

 $\dot{V} = 6.1366 - 0.003083 \Delta V$

$$t_{accel} = \frac{1}{-0.003083} [ln(5.1774) - ln(6.1366)]$$

$$t_{min} = 55.1 \text{ sec} = 0.92 \text{ min}$$

Easier Method – assume linear Acceleration Capability vs Velocity

Calculate the Acceleration Capability (\dot{V}_1) at initial Velocity (V_1) Calculate the Acceleration Capability (\dot{V}_2) at final Velocity (V_2) Calculate the average Acceleration Capability

Level Acceleration

$$\frac{(T-D) V}{W} = \frac{dh}{dt} + \frac{V}{g} \frac{dV}{dt}$$

Acceleration capability

Rearranging terms:

$$\frac{dV}{dt} = \frac{(T - D) g}{W}$$

Level Acceleration

$$\frac{dV}{dt} = \frac{(T-D) g}{W}$$

Accelerate from 0.50 to 0.80 M at 20,000 ft & 73,000 lb

At
$$V_1$$
 (518.4 ft/sec): $T = 18,985.5$ lb; $D = 5,062.0$ lb $\dot{V}_1 = 6.1366$ ft/sec²

At
$$V_2$$
 (829.5 ft/sec): $T = 18,985.5$ lb; $D = 7,238.4$ lb $\dot{V}_2 = 5.1774$ ft/sec²

Time to Accelerate

Easier Method

$$\mathbf{t_{accel}} = \frac{\Delta \mathbf{V}}{(\dot{\mathbf{V}})_{avg}}$$

At 20,000 ft & 518.4 ft/sec: $\dot{V} = 6.1366$ ft/sec²

At 20,000 ft & 829.5 ft/sec: $\dot{V} = 5.1774$ ft/sec²

$$t_{accel} = \frac{(829.5 - 518.4)}{(5.1774 + 6.1366)/2}$$

$$t_{accel} = 55.0 \text{ sec} = 0.92 \text{ min}$$

What about fuel and distance?

Fuel to Accelerate

Easier Method – assume linear Fuel Flow vs Velocity

Calculate the Fuel Flow at the initial Velocity Calculate the Fuel Flow at the final Velocity Calculate the average Fuel Flow

Fuel to Accelerate

$$\mathbf{w}_{\mathbf{fuel}} = \dot{\mathbf{w}}_{\mathbf{avg}} \Delta \mathbf{t}$$

At
$$V_1$$
 (518.4 ft/sec): $\dot{w} = 6.8559$ lb/sec
At V_2 (829.5 ft/sec): $\dot{w} = 6.8559$ lb/sec

$$w_{fuel} = \frac{(6.8559 + 6.8559)}{2} \quad 55.0$$

$$w_{fuel} = 377.1 lb$$

Distance to Accelerate

<u>Easier Method</u> – assume linear Velocity vs Time

Calculate the average Velocity during the Acceleration

Distance to Accelerate

$$s = V_{avg} \Delta t$$

$$s = \frac{(518.4 + 829.5)}{2} \quad 55.0$$

$$s = 37,067 \text{ ft} = 6.10 \text{ NM}$$

Acceleration Summary

$$t_{accel} = \frac{\Delta V}{(\dot{V})_{avg}} \qquad w_{fuel} = \dot{w}_{avg} \ \Delta t \qquad s = V_{avg} \ \Delta t$$

0.50 M / 20,000 ft		0.80 M / 20,000 ft			
V	FFR	Velocity	V	FFR	Velocity
(ft/sec ²)	(lb/sec)	(ft/sec)	(ft/sec ²)	(lb/sec)	(ft/sec)
6.1366	6.8559	518.4	5.1811	6.8559	829.5

Time	Fuel	Distance
55.0 sec	377.1 lb	6.10 NM

Time to Decelerate

Easier Method – assume linear Deceleration Capability vs Velocity

Calculate the Deceleration Capability (\dot{V}_1) at initial Velocity (V_1) Calculate the Deceleration Capability (\dot{V}_2) at final Velocity (V_2) Calculate the average Deceleration Capability

Level Deceleration

$$\frac{(T-D) V}{W} = \frac{dh}{dt} + \frac{V}{g} \frac{dV}{dt}$$

Deceleration capability

Rearranging terms:

$$\frac{dV}{dt} = \frac{(T - D) g}{W}$$

Level Deceleration

$$\frac{dV}{dt} = \frac{(T - D) g}{W}$$

Accelerate from 0.50 to 0.80 M at 20,000 ft & 73,000 lb

At
$$V_1$$
 (829.5 ft/sec): $T = 0$ lb; $D = 7, 238.4$ lb $\dot{V}_1 = -3.1902$ ft/sec²

At
$$V_2$$
 (518.4 ft/sec): $T = 0$ lb; $D = 5,062.0$ lb $\dot{V}_2 = -2.2310$ ft/sec²

Time to Decelerate

Easier Method

$$\mathbf{t_{decel}} = \frac{\Delta \mathbf{V}}{(\dot{\mathbf{V}})_{avg}}$$

At 20,000 ft & 829.5 ft/sec: $\dot{V} = -3.1902$ ft/sec²

At 20,000 ft & 518.4 ft/sec: $\dot{V} = -2.2310 \text{ ft/sec}^2$

$$t_{decel} = \frac{(518.4 - 829.5)}{(-3.1902 - 2.2310)/2}$$

$$t_{decel} = 114.8 \text{ sec} = 1.91 \text{ min}$$

What about fuel and distance?

Fuel to Decelerate

Easier Method – assume linear Fuel Flow vs Velocity

Since this is "decelerating flight" T = 0 and FFR = 0

Distance to Decelerate

<u>Easier Method</u> – assume linear Velocity vs Time

Calculate the average Velocity during the Acceleration

Distance to Decelerate

$$s = V_{avg} \Delta t$$

$$s = \frac{(518.4 + 829.5)}{2} \quad 114.8$$

$$s = 77,369 \text{ ft} = 12.73 \text{ NM}$$

Deceleration Summary

$$\mathbf{t_{decel}} = \frac{\Delta \mathbf{V}}{(\dot{\mathbf{V}})_{avg}}$$

$$w_{fuel} = 0$$
 $s = V_{avg} \Delta t$

0.80 M / 20,000 ft		0.50 M / 20,000 ft			
V	FFR	Velocity	V	FFR	Velocity
(ft/sec ²)	(lb/sec)	(ft/sec)	(ft/sec ²)	(lb/sec)	(ft/sec)
-3.1902	0.0	829.5	-2.2310	0.0	518.4

Time	Fuel	Distance
114.8 sec	0 lb	12.73 NM

Homework Assignments

HW #12 – Climb & Descent Time, Fuel & Distance HW #13 – Accel & Decel Time, Fuel & Distance (due by 11:59 pm ET on Monday) Reading – Chapter 6.6 - 6.4

HW Help Session

Monday 4:00 – 5:00 pm ET

Posted on Canvas

HW #12 & 13 Assignments with instructions, tips, and checklists

HW #12 & 13 Templates for data table in Excel

Questions?