Generalised Additive Models

Francisco Rodríguez-Sánchez

https://frodriguezsanchez.net

How do we model these time series?

Simpson 2018

How do we model these time series?

Simpson 2018

GAMs allow us to model non-linear relationships using smooths

Generalised Linear Model (GLM):

$$y = a + bx$$

Generalised Additive Model (GAM):

$$y = a + s(x)$$

4

Modelling non-linear time series with GAM

isotopes <- readRDS('data/isotope.rds')</pre>

	Depth	d13C	TotalC	d15N	TotalN	DryWeight	Year
1	0.2	-27.57	806.49	3.05	64.21	8.2	2007.254
2	0.4	-27.67	949.33	3.01	73.26	7.6	2006.510
3	0.8	-27.63	1305.52	2.93	93.25	11.6	2004.941
4	1.2	-27.62	1136.04	2.33	86.09	9.6	2003.269
5	1.6	-27.48	1028.27	2.09	93.80	10.9	2001.496
6	2.0	-27.39	809.91	2.66	79.98	9.9	1999.626

Modelling non-linear time series with GAM

```
library('mgcv')
m <- gam(d15N ~ s(Year), data = isotopes, method = 'REML')
Family: gaussian
Link function: identity
Formula:
d15N ~ s(Year)
Parametric coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.30958 0.02805 118 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
Approximate significance of smooth terms:
         edf Ref.df F p-value
s(Year) 7.466 8.416 70.13 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
R-sq.(adj) = 0.926 Deviance explained = 93.8%
-REML = 4.8282 Scale est. = 0.037771 n = 48
```

Visualising fitted GAM

visreg(m)

library('DHARMa')
simulateResiduals(m, plot = TRUE)

gam.check(m)


```
gam.check(m)
```

```
Method: REML Optimizer: outer newton
full convergence after 6 iterations.
Gradient range [-3.752376e-11,2.176748e-11]
(score 4.828195 & scale 0.03777081).
Hessian positive definite. eigenvalue range [2.252432.23.50383].
Model rank = 10 / 10
Basis dimension (k) checking results. Low p-value (k-index<1) may
indicate that k is too low, especially if edf is close to k'.
         k' edf k-index p-value
s(Year) 9.00 7.47 0.73 0.02 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Increasing k

```
m <- gam(d15N ~ s(Year, k = 12), data = isotopes, method = 'REML')
gam.check(m)</pre>
```

```
Method: REML Optimizer: outer newton
full convergence after 5 iterations.
Gradient range [-1.437177e-06,2.684611e-07]
(score 4.742639 & scale 0.03687964).
Hessian positive definite, eigenvalue range [2.27223,23.61084].
Model rank = 12 / 12
Basis dimension (k) checking results. Low p-value (k-index<1) may
indicate that k is too low, especially if edf is close to k'.
          k' edf k-index p-value
s(Year) 11.00 8.12 0.76 0.045 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Increasing k

```
m <- gam(d15N ~ s(Year, k = 15), data = isotopes, method = 'REML')
gam.check(m)</pre>
```

```
Method: REML Optimizer: outer newton
full convergence after 5 iterations.
Gradient range [-2.100151e-10,1.486073e-10]
(score 3.973402 & scale 0.0329899).
Hessian positive definite, eigenvalue range [1.570402,23.80022].
Model rank = 15 / 15
Basis dimension (k) checking results. Low p-value (k-index<1) may
indicate that k is too low, especially if edf is close to k'.
          k' edf k-index p-value
s(Year) 14.00 9.28 0.85 0.09.
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Visualising fitted GAM

Including temporal autocorrelation

Scale est. = 0.037268 n = 48

 $mod \leftarrow gamm(d15N \sim s(Year, k = 15), data = isotopes,$

```
correlation = corCAR1(form = ~ Year), method = 'REML')
Family: gaussian
Link function: identity
Formula:
d15N \sim s(Year, k = 15)
Parametric coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.30909 0.03489 94.84 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
Approximate significance of smooth terms:
         edf Ref.df F p-value
s(Year) 7.954 7.954 47.44 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
R-sq.(adj) = 0.929
```

Modelling infant mortality

Modelling infant mortality

```
mort <- read.csv('data/UN_GDP_infantmortality.csv')</pre>
```

	country	<pre>infant.mortality</pre>	gdp
1	Afghanistan	154	2848
2	Albania	32	863
3	Algeria	44	1531
4	American.Samoa	11	NA
5	Andorra	NA	NA
6	Angola	124	355

Modelling infant mortality with a GLM

```
librarv('MASS')
mort.glm <- glm.nb(infant.mortality ~ gdp, data = mort)</pre>
Call:
glm.nb(formula = infant.mortality ~ gdp, data = mort, init.theta = 2.460991808,
   link = log)
Coefficients:
             Estimate Std. Error z value Pr(>|z|)
(Intercept) 4.072e+00 5.727e-02 71.11 <2e-16 ***
gdp -8.675e-05 6.221e-06 -13.95 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for Negative Binomial(2.461) family taken to be 1)
   Null deviance: 385.83 on 192 degrees of freedom
Residual deviance: 202.51 on 191 degrees of freedom
  (14 observations deleted due to missingness)
AIC: 1715
```

18

Modelling infant mortality with a GLM

Modelling infant mortality with a GLM (log.gdp)

```
mort$log.gdp <- log(mort$gdp)</pre>
mort.glm.log <- glm.nb(infant.mortality ~ log.gdp, data = mort)</pre>
Call:
glm.nb(formula = infant.mortality ~ log.gdp, data = mort, init.theta = 3.119314453,
   link = log)
Coefficients:
            Estimate Std. Error z value Pr(>|z|)
(Intercept) 7.07818 0.20045 35.31 <2e-16 ***
log.gdp -0.47238 0.02647 -17.85 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for Negative Binomial(3.1193) family taken to be 1)
   Null deviance: 478.54 on 192 degrees of freedom
Residual deviance: 198.03 on 191 degrees of freedom
  (14 observations deleted due to missingness)
AIC: 1667.7
```

20

Modelling infant mortality with a GLM (log.gdp)

Modelling infant mortality with a GAM

```
librarv('mgcv')
mort.gam <- gam(infant.mortality ~ s(log.gdp), family = nb, data = mort)</pre>
Family: Negative Binomial(3.251)
Link function: log
Formula:
infant.mortality ~ s(log.gdp)
Parametric coefficients:
            Estimate Std. Error z value Pr(>|z|)
(Intercept) 3.51137 0.04257 82.49 <2e-16 ***
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Approximate significance of smooth terms:
            edf Ref.df Chi.sg p-value
s(log.gdp) 3.134 3.937 329.9 <2e-16 ***
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Modelling infant mortality with a GAM

Checking GAM

gam.check(mort.gam)

Checking GAM

```
gam.check(mort.gam)
```

```
Method: REML Optimizer: outer newton full convergence after 4 iterations.

Gradient range [4.395199e-08,2.344699e-06] (score 832.1006 & scale 1).

Hessian positive definite, eigenvalue range [0.4630879,82.57877].

Model rank = 10 / 10

Basis dimension (k) checking results. Low p-value (k-index<1) may indicate that k is too low, especially if edf is close to k'.

k' edf k-index p-value

s(log.gdp) 9.00 3.13 0.92 0.24
```

Comparing models

```
library('easystats')
compare_performance(mort.glm, mort.glm.log, mort.gam)
```

Comparison of Model Performance Indices

Name	-	Model	1	AIC (weights) A	ICc (weights) BI	C (weights)
mort.glm mort.glm.log mort.gam		negbin	1	1715.0 (<.001) 1 1667.7 (0.035) 1 1661.1 (0.965) 1	567.9 (0.041) 167	7.5 (0.816)
Name	1	RMSE	I	Sigma Score_log	Score_spherical	Nagelkerke's R2 R2
mort.glm mort.glm.log mort.gam	İ	30.034	İ	1.000 -4.437 1.000 -4.356 1.000 -4.296	0.053	0.709 0.836 0.526

Generalised Additive Mixed Models (GAMM)

Reaction time with sleep deprivation

```
library('lme4')
data('sleepstudy')
```



```
Family: gaussian
Link function: identity
Formula:
Reaction ~ s(Days) + s(Subject, bs = "re")
Parametric coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 298.51 9.05 32.98 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
Approximate significance of smooth terms:
             edf Ref.df F p-value
s(Davs) 1.006 1.011 167.65 <2e-16 ***
s(Subject) 15.892 17.000 14.35 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
R-sq.(adj) = 0.697 Deviance explained = 72.6%
-REML = 892.18 Scale est. = 960.43 n = 180
```

sgamm <- gam(Reaction ~ s(Days) + s(Subject, bs = "re"), data = sleepstudy, method = 'REML')

visreg(sgamm, xvar = 'Days', by = 'Subject')

gam.check(sgamm)


```
gam.check(sgamm)
```

```
Method: REML Optimizer: outer newton
full convergence after 7 iterations.
Gradient range [-0.0003899837,0.002002328]
(score 892.1778 & scale 960.4321).
Hessian positive definite, eigenvalue range [0.0004006477,89.76488].
Model rank = 28 / 28
Basis dimension (k) checking results. Low p-value (k-index<1) may
indicate that k is too low, especially if edf is close to k'.
             k' edf k-index p-value
s(Davs) 9.00 1.01 1.07
                                0.82
s(Subject) 18.00 15.89 NA
                               NA
```

```
Family: gaussian
Link function: identity
Formula:
Reaction ~ s(Days, Subject, k = 3, bs = "fs")
Parametric coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 298.51 9.05 32.98 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
Approximate significance of smooth terms:
                 edf Ref.df F p-value
s(Days, Subject) 45.67 53 17.11 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
R-sq.(adj) = 0.835 Deviance explained = 87.7%
-REML = 883.64 Scale est. = 523.2 n = 180
```

visreg(sgamm, xvar = 'Days', by = 'Subject')

gam.check(sgamm)


```
gam.check(sgamm)
```

```
Method: REML Optimizer: outer newton full convergence after 6 iterations.

Gradient range [-8.770485e-09,3.94499e-09]
(score 883.6432 & scale 523.1968).

Hessian positive definite, eigenvalue range [3.37416,91.60746].

Model rank = 55 / 55

Basis dimension (k) checking results. Low p-value (k-index<1) may indicate that k is too low, especially if edf is close to k'.

k' edf k-index p-value
s(Days,Subject) 54.0 45.7 1 0.46
```

· Simon Wood's book

- · Simon Wood's book
- mgcv help

- · Simon Wood's book
- mgcv help
- · G. Simpson's paper

- · Simon Wood's book
- mgcv help
- · G. Simpson's paper
- · G. Simpson's blog

- · Simon Wood's book
- mgcv help
- · G. Simpson's paper
- · G. Simpson's blog
- · Noam Ross' course

- · Simon Wood's book
- mgcv help
- · G. Simpson's paper
- · G. Simpson's blog
- · Noam Ross' course
- · HGAM paper