Bayesian Language Modelling of German Compounds

Jan Botha* Chris Dyer† Phil Blunsom*

*Department of Computer Science University of Oxford

†School of Computer Science Carnegie Mellon University

COLING 2012

Why Statistical Language Modelling?

- Central to tasks where sentences are hypothesised
 - Machine Translation
 - Speech Recognition
 - Optical Character Recognition

Task: P (Wir fahren mit der Bahn) =? We're going by train

Task: P (Wir fahren mit der Bahn) =? We're going by train

Markov assumption

Makes parameter estimation feasible

e.g.
$$P(Bahn \mid mit der) = 0.3$$

Task: P (Wir fahren mit der Bahn) =? We're going by train

Markov assumption

Makes parameter estimation feasible

e.g.
$$P(Bahn \mid mit der) = 0.3$$

Vocabulary Assumptions

Closed vocabulary, independent words

$$P($$
 Bahn | mit der) = ? Familie

Task: P (Wir fahren mit der Bahn) =? We're going by train

Markov assumption

Makes parameter estimation feasible

e.g.
$$P(Bahn \mid mit der) = 0.3$$

Vocabulary Assumptions

Closed vocabulary, independent words

$$P($$
 Bahn $|$ mit der $) = ?$ Familie Mauer

Summary

Task: P(Wir fahren mit der Bahn) = ? We're going by train

Markov assumption

Makes parameter estimation feasible

e.g.
$$P(Bahn \mid mit der) = 0.3$$

Vocabulary Assumptions

Closed vocabulary, independent words

```
P( Bahn | mit der) = ?
Familie
Mauer
Straßenbahn
U-Bahn
Bobbahn
```

Bahn train Straßenbahn tram Wir fahren mit der U-bahn metro Bobbahn bobsled Achterbahn rollercoaster

Example

Straßenbahn Wir fahren mit der U-bahn

Bobbahn

Achterbahn

Bahn

tram metro

train

bobsled

rollercoaster

Highly Productive Process

Regal

shelf

Example

Bahn *train* Straßenbahn *tram*

Straßenbahn U-bahn

Bobbahn

metro bobsled

Achterbahn

rollercoaster

Highly Productive Process

Wir fahren mit der

Regal shelf

Buchregal bookshelf

Example

Bahn *train*

Straßenbahn

tram

Wir fahren mit der

U-bahn *metro* obbahn *bobsled*

Bobbahn Achterbahn

rollercoaster

Highly Productive Process

Regal shelf

Buchregal bookshelf

Buchregalhersteller bookshelf manufacturer

Example

Bahn train

Straßenbahn

tram

Wir fahren mit der

U-bahn *metro*Bobbahn *bobsled*

Achterbahn

rollercoaster

Highly Productive Process

Regal shelf

Buchregal bookshelf

Buchregalhersteller bookshelf manufacturer

Buchregalherstellername bookshelf manufacturer's name

. .

Bahn

Compounding

Example

Straßenbahn *tram*Wir fahren mit der U-bahn *metro*Bobbahn *bobsled*

Achterbahn rollercoaster

train

Regularity

Example

Bahn train
Straßenbahn tram
U-bahn metro
Bobbahn bobsled
Achterbahn rollercoaster

Wir fahren mit der

Regularity

compound = modifiers & head

Example

Bahn train
Straßenbahn tram
Wir fahren mit der U-bahn metro
Bobbahn bobsled
Achterbahn rollercoaster

Regularity

- compound = modifiers & head
- head determines syntactic properties

Example

Bahn Straßenbahn U-bahn

Bobbahn

Achterbahn

bobsled

train

tram

metro

rollercoaster

Regularity

compound = modifiers & head

Wir fahren mit der

- head determines syntactic properties
- generalising over modifiers would reduce sparsity

Related Work: Factored Language Model

Each token w consists of k features, fixed dependencies (Bilmes & Kirchhoff, 2003)

Related Work: Factored Language Model

Each token *w* consists of *k* features, fixed dependencies (Bilmes & Kirchhoff, 2003)

Related Work: Factored Language Model

Each token *w* consists of *k* features, fixed dependencies (Bilmes & Kirchhoff, 2003)

Shortcoming: Compound lengths vary freely

Auto + bahn + geschwindigkeit + s + grenze motor way speed limit

Related Work: Splitting and Merging

Preprocess data: split compounds

(e.g. Koehn & Knight, 2003; Stymne 2008; Macherey et al. 2011)

Related Work: Splitting and Merging

Preprocess data: split compounds

(e.g. Koehn & Knight, 2003; Stymne 2008; Macherey et al. 2011)

Example			
		Context	Predicted Token
Standard:	Wir fahren	auf der	Autobahn
Split:	Wir fahren auf	der Auto	bahn

Related Work: Splitting and Merging

Preprocess data: split compounds

(e.g. Koehn & Knight, 2003; Stymne 2008; Macherey et al. 2011)

Example			
		Context	Predicted Token
Standard:	Wir fahren	auf der	Autobahn
Split:	Wir fahren auf	der Auto	bahn

Shortcoming: Important sentential context lost

- Condition head on previous words
- Condition compound-internal structure on head

- Condition head on previous words
- Condition compound-internal structure on head

- Condition head on previous words
- Condition compound-internal structure on head

- Condition head on previous words
- Condition compound-internal structure on head

- Condition head on previous words
- Condition compound-internal structure on head

- Condition head on previous words
- Condition compound-internal structure on head

but keep full surface form in model

Standard back-off smoothing

Standard back-off smoothing

```
mit der Autobahn

P(Autobahn | mit der)

P(Autobahn | ... der)

P(Autobahn | ... ...)
```

Standard back-off smoothing

Hierarchical Prior

Standard back-off smoothing

Hierarchical Prior

Conditional distributions drawn from Pitman-Yor process:

Our Model: HPYLM with Compounds

```
Proposed back-off

mit der Autobahn

P(Autobahn | mit der)

P(bahn | mit der)

P(bahn | ... der)

P(bahn | ... ...)
```

Our Model: HPYLM with Compounds

```
Proposed back-off

mit der Autobahn

P(Autobahn | mit der)

P(bahn | mit der)

P(bahn | ... der)

P(bahn | ... ...)
```

Our Model: HPYLM with Compounds

Proposed back-off mit der Autobahn P(Autobahn | mit der) P(bahn | mit der) P(bahn | ... der) P(bahn |)

Extended Hierarchical Prior

Overview of Setup

- Data from WMT '11 shared task
- Language Models
 4-gram, unless otherwise stated
 trained on 59m tokens (Europarl, news & commentary)
- English→German Translation System trained on 1.7m parallel sentences (Europarl)

Overview of Setup

- Data from WMT '11 shared task
- Language Models
 4-gram, unless otherwise stated
 trained on 59m tokens (Europarl, news & commentary)
- English→German Translation System trained on 1.7m parallel sentences (Europarl)
- Vocabulary sparsity ratio of English/German: baseline: 3.13 decompounded: 1.36

Comparison of Methods for Predicting Unseen Text

	Perplexity
Modified Kneser-Ney	299.9
HPYLM	294.1

Lower is better.

Comparison of Methods for Predicting Unseen Text

	Perplexity
Modified Kneser-Ney	299.9
HPYLM	294.1
Our model	293.6

Lower is better.

proposed: über die Auto bahn geschwindigkeits grenze

Comparison of Methods for Predicting Unseen Text

	Perplexity
Modified Kneser-Ney	299.9
HPYLM	294.1
Our model	293.6
Our model (inverted)	305.5

Lower is better.

proposed: über die Auto bahn geschwindigkeits grenze inverted: über die Auto bahn geschwindigkeits grenze

Effect of Scaling Context Size

% Relative improvement over HPYLM baseline

Higher is better.

Effect of Scaling Context Size

% Relative improvement over HPYLM baseline

Higher is better.

Missing: P(Autobahn | ...der)

Machine Translation Results

English→German

	RLEO
Modified Kneser-Ney	13.9
HPYLM	13.9
Our model	13.9
Our model (inverted)	13.7

Higher BLEU is better.

Machine Translation Results

English→German only 3.7% of reference tokens are compounds

	DLEU
Modified Kneser-Ney	13.9
HPYLM	13.9
Our model	13.9
Our model (inverted)	13.7

Higher BLEU is better.

DI EII

Compound Translation Accuracy

Compare compounds in output against reference sentences

	Precision	Recall	F-score
Modified Kneser-Ney	25.4	17.1	20.5
HPYLM	24.3	17.5	20.4
Our model	27.5	17.3	21.3
Our model (inverted)	23.7	17.2	19.9

Higher is better.

Summary

- Productive compounding is an important source of sparsity.
- Proposed n-gram language model that accounts for productive compounding.
- Improved accuracy of translated compounds, while matching baseline BLEU score

Summary

- Productive compounding is an important source of sparsity.
- Proposed n-gram language model that accounts for productive compounding.
- Improved accuracy of translated compounds, while matching baseline BLEU score
- Future Work
 - Evaluate with an MT system that outputs novel compounds
 - Model compounds that occur within context

Thank you.

	BLEU
Modified Kneser-Ney	13.9
HPYLM	13.9
Our model	13.9

	LM-training	BLEU
Modified Kneser-Ney	< 1 hour	13.9
HPYLM	3 days	13.9
Our model	6 days	13.9

	LM-training	BLEU
Modified Kneser-Ney HPYLM	< 1 hour 3 days	13.9 13.9
Our model Our model (fastapprox)	6 days 4 hours	13.9 13.6