Curso 2018/2019

- 1. La relación binaria $R \subseteq \{1,2,3\} \times \{1,2,3\}$, viene dada por $R = \{(1,2),(1,3),(2,1)\}$. Determina el enunciado correcto y razona porqué ese es el caso:
 - a) R es función, pero R^{-1} no lo es.
 - b) R no es función, pero R^{-1} sí lo es.
 - c) $R y R^{-1}$ son funciones.
 - d) ni R ni R^{-1} son funciones.
- 2. Demuestra que las dos funciones que se definen a continuación son biyecciones:
 - a) $f: \mathbb{N} \to \mathbb{N}$, donde

$$f(n) = \begin{cases} n+1 & \text{si n es par} \\ n-1 & \text{si n es impar} \end{cases}$$

b)
$$g: \mathbb{Z} \longrightarrow \mathbb{Z}$$
, donde $g(n) = (-1)^{|n|} * n$

3. La función $f: \mathbb{N} \setminus \{0\} \longrightarrow \mathbb{Z}$, donde

$$f(n) = \begin{cases} \frac{n}{2} & \text{si n es par} \\ \\ \frac{1-n}{2} & \text{si n es impar} \end{cases}$$

es

- a) inyectiva, pero no suprayectiva
- $b)\,$ suprayectiva, pero no inyectiva
- c) biyectiva
- 4. La función $f: \mathbb{N} \to \mathbb{Z}$, donde

$$f(n) = \begin{cases} \frac{n}{2} & \text{si n es par} \\ \frac{1-n}{2} & \text{si n es impar} \end{cases}$$

- es:
- a) inyectiva, pero no suprayectiva
- b) suprayectiva, pero no inyectiva
- c) biyectiva
- 5. Sea $f: A \to B$. Demuestra que las dos condiciones siguientes son equivalentes:
 - a) f es inyectiva.
 - b) Para cualquier par de funciones $g_1, g_2: C \to A$: $(g_1 \circ f = g_2 \circ f) \Rightarrow g_1 = g_2$.
- 6. Demuestra que si $f: A \to B$ es biyectiva, entonces $f^{-1}: B \to A$ también es biyectiva.

- 7. Sean $f: A \to B$ y $g: B \to C$. Demuestra que:
 - a) Si f y g son inyectivas, entonces $f \circ g$ también lo es.
 - b) Si f y g son suprayectivas, entonces $f \circ g$ también lo es.
 - c) Si f y g son biyectivas, entonces $f \circ g$ también lo es.
- 8. Demuestra que la función $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{x+2}{x-1}$ es inyectiva. Encuentra su dominio, rango y da una descripción explícita de su inversa f^{-1} .
- 9. Sea X un conjunto fijado. Para cada subconjunto $A \subseteq X$, la función característica de A se define como la función $\chi_A : X \to \{0,1\}$ dada por:

$$\chi_A(x) = \begin{cases} 0 & \text{si } x \notin A \\ 1 & \text{si } x \in A \end{cases}$$

Demuestra que la función $f: \mathcal{P}(X) \to (X \to \{0,1\})$ que hace corresponder a cada $A \in \mathcal{P}(X)$ su función característica χ_A , es una biyección.

- 10. Sea $f: A \rightarrow B$.
 - a) Dados $S, T \subseteq A$ demuestra que:
 - 1) $f(S \cup T) = f(S) \cup f(T)$
 - 2) $f(S \cap T) \subseteq f(S) \cap f(T)$
 - 3) $f(S) \setminus f(T) \subseteq f(S \setminus T)$

Demuestra además, mediante contraejemplos, que en 2) y 3) no siempre se da la igualdad.

- b) Dados $S, T \subseteq B$ demuestra que:
 - 1) $f^{-1}(S \cup T) = f^{-1}(S) \cup f^{-1}(T)$
 - 2) $f^{-1}(S \cap T) = f^{-1}(S) \cap f^{-1}(T)$
 - 3) $f^{-1}(S \setminus T) = f^{-1}(S) \setminus f^{-1}(T)$