Tower theorem

Jiang-Hua Lu

The University of Hong Kong

MATH4302 Algebra II, HKU

Monday, March 24, 2025

In this file:

• §3.1.2: Degrees of field extensions and the Tower Theorem

§3.1.2: Degrees of field extensions.

Key idea: If $K \subset L$ is a field extension, then L as a vector space over K.

Definitions.

- **1** The degree of a field extension $K \subset L$ is the dimension of L as a vector space over K and is denoted as [L : K].
- ② If $[L:K] < +\infty$, call L a finite extension of K;
- **3** If $[L:K] = +\infty$, call L an infinite extension of K.

Example. For a field F,

$$F(x) = \left\{ \frac{f(x)}{g(x)} : f, g \in F[x], g \neq 0 \right\}$$

is the field of fractions of F[x], and is an infinite extension of F.

The fundamental example again:

Lemma. If $f(x) \in K[x]$ is irreducible and has degree n, the

$$L = K[x]/\langle A(x) \rangle$$

is a field extension of K of degree n.

If
$$K = \mathbb{F}_p$$
 and if $\mathbb{F}(x) \in K[x]$
is irreducible, then L is a finish

field of order p

given p , do we always have a guadrate

 $p \neq 2$ irred poly $f(x)$ over \mathbb{F}_p ?

The Tower Theorem.

The Tower Theorem: If $K \subset L$ and $L \subset M$ are finite extensions, then $K \subset M$ is a finite extension and

$$[M:K] = [M:L][L:K].$$

$$x = \sum_{j=1}^{n} \lambda_{j} a_{j} = \sum_{j=1}^{n} \left(\sum_{i=1}^{d} M_{ji} b_{i} \right) a_{j} = \sum_{i,j} M_{ji} b_{i} a_{j}$$

is linearly indep. over K.

Suppres $\sum_{i,j} \beta_i \cdot q_j = 0 =$

$$x = \sum_{j=1}^{\infty} \lambda_j a_j = \sum_{j=1}^{\infty} \left(\sum_{i=1}^{\infty} \mathcal{M}_{ji} b_i \right) a_j = \sum_{i=1}^{\infty} \left(\sum_{$$

Orders of finite fields

Theorem. If K is a finite field, then $|K| = p^n$ for some prime number p and some integer n.

If: Let p be the characteristic of K.

So K is a field extension of

The property of the finite

If
$$(K: \mathbb{F}_p) = n$$
 then $K \stackrel{\sim}{\to} (\mathbb{F}_p)^n$

So $(K = p^n)$