Chapter 13 Notes - MC

John Yang

August 5, 2021

Contents

Vectors and the Geometry of Space	1
13.3 The Dot Product	
13.4 The Cross Product	2
13.5 Equations of Lines and Planes	6
•	
1	

13 Vectors and the Geometry of Space

13.1 Three-Dimensional Coordinate Systems

- Coordinates (x, y, z)
- 3D space is split into octants
- Projections easiest way to visualize is that the object/shape/line/point is in a glass box. If you look at the box from the chosen plane or angle and trace a 2D outline of it, it is the projection.
- The Cartesian product $\mathbb{R} \times \mathbb{R} \times \mathbb{R} = \{(x, y, z) | x, y, z \in \mathbb{R}\}$ is the set of all ordered triples of real numbers, denoted by \mathbb{R}^3
- Distance formula in three dimensions:

$$|P_1P_2| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - Z_1)^2}$$

- Sphere set of all points in 3D space a certain distance from the center.
 - Sphere with center C(h, k, l) and radius r is given by:

$$(x-h)^2 + (y-k)^2 + (z-l)^2 = r^2$$

- Sphere at the origin is given by:

$$x^2 + y^2 + z^2 = r^2$$

13.2 Vectors

- \bullet Vectors values with magnitudes and directions
- vectors are expressed in boldface and/or with an arrow over the letter: \mathbf{a} , \vec{a} , \vec{a}
- the magnitude of a vector is expressed: $|\mathbf{a}|$

- Vector addition head to tail, take the magnitude of the resultant vector from the beginning of the first vector to the end of the second vector
- ullet Scalar multiplication multiply a vector by a scalar: the magnitude is changed by a factor of c but the direction stays the same.

13.3 The Dot Product

•

13.4 The Cross Product

•

13.5 Equations of Lines and Planes

•

13.6 Cylinders and Quadric Surfaces

•