Parcours: L2-All2

SEMESTRE: 3

AU: 2020-2021

Abdelbacet Mhamdi

Docteur-Ingénieur en Génie Électrique

Technologue en GE à l'ISET de Bizerte

ÉLECTRONIQUE ANALOGIQUE

FASCICULE DE TRAVAUX PRATIQUES

Institut Supérieur des Études Technologiques de Bizerte

Disponible à l'adresse : https ://github.com/a-mhamdi/isetbz/

FICHE DE L'UNITE D'ENSEIGNEMENT (UE)

					,	_,					
CODE DE L'UE : UEF330	INTITULE DE L'UE : Electronique et Traitement du Signal										
	DOMAINE : SCIENCES, TECHNOLO	GIES ET É	TUDE	S TECH	NOLOGIQI	JES					
	ELECTRI	QUE									
PARCOURS : Automatismes et Informatique Industrielle SEMES									TRE : \$3		
	ELEMENTS CONSTITUTIFS DE L'UE (ECUE)		Vol. Horaire (en h) crédits			Coeff.		Evalu	tions		
CODE ECUE			TD	TP			DC 40%	DS 60%	EC 60%	ES 40%	
ECUEF331	Electronique Analogique	14	7		1,5	0,75	X	Х			
ECUEF332	Traitement du Signal	14	7		1,5	0,75	X	X			
ECUEF333	ECUEF333 Atelier Electronique Analogique				1,5	0.75			X	X	
	42	2	21	4,5	2.25						

Code : ECUEF333	Atelier Electronique Analogique										
OBJECTIFS	 Découvrir l'électronique de base à partir de quelques montages classiques Acquérir la maîtrise des appareils de base du laboratoire, des méthodes, des protocoles de mesures. 										

CONTENU

- Amplificateur opérationnel en régime linéaire. Utilisation dans quelques montages élémentaires. Etude de quelques fonctions électroniques, réalisées avec des AOP, mise en évidence de quelques défauts (saturation, tension de déchet, slew-rate, ...): Suiveur de tension, ampli. Inverseur, sommateur de tension, ...
- Amplificateur opérationnel en régime non-linéaire.
- Etude de quelques montages en régime de commutation. Comparateur en boucle ouverte, à hystérésis.
- Génération de signaux. Multivibrateur astable.
- Etude de quelques montages électroniques générateurs de signaux : Multivibrateurs astables réalisées avec des AOP. Génération de signaux triangulaire avec des AOP.
- Les filtres actifs
- Etude des filtres actifs du 1er ordre et du 2nd (structure de Rauch et Sellen et Kelly).
 Diagramme de BODE.
- Les boucles à verrouillage de phase (PLL).

 CODE D'HONNEUR	

THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL
Department of Physics and Astronomy

http://physics.unc.edu/undergraduate-program/labs/general-info/

"During this course, you will be working with one or more partners with whom you may discuss any points concerning laboratory work. However, you must write your lab report, in your own words.

Lab reports that contain identical language are not acceptable, so do not copy your lab partner's writing.

If there is a problem with your data, include an explanation in your report. Recognition of a mistake and a well-reasoned explanation is more important than having high-quality data, and will be rewarded accordingly by your instructor. A lab report containing data that is inconsistent with the original data sheet will be considered a violation of the Honor Code.

Falsification of data or plagiarism of a report will result in prosecution of the offender(s) under the University Honor Code.

On your first lab report you must write out the entire honor pledge:

The work presented in this report is my own, and the data was obtained by my lab partner and me during the lab period.

On future reports, you may simply write <u>"Laboratory Honor Pledge"</u> and sign your name."

Table des matières

1	ALI en régime linéaire	1
2	ALI en régime de saturation	17
3	Générateur de fonctions	24
4	Filtre actif	28

1 ALI en régime linéaire

Étudiant		 	
Note	/20	 	

Critères d'évaluation

Anticipation	(4 points)	 	
Gestion	(2 points)	 	
Expérimentation	(7 points)	 	
Consignation	(3 points)	 	
Interprétation	(4 points)	 	

Objectifs

- ★ Identifier les montages de base d'un ALI;
- ★ Déterminer les limites d'application et les précautions d'utilisation de chaque montage.

Matériel utilisé (À remplir à la fin de la manipulation.)

Appareil/ Composant	Référence	Quantité
Alimentation stabilisée		
GBF		
Oscilloscope		
Multimètre		
ALI		
Résistance		
Condensateur		

- Les deux alimentations symétriques $\pm V_{cc}$ sont omises sur les schémas, mais elles sont présentes toujours; $\pm V_{cc} = \pm 15 V$
- Il faut allumer en premier et éteindre en dernier ces deux sources d'alimentation.

Câbler le schéma sur la plaque d'essai et reproduire votre travail sur l'image ci-dessous. Visualiser, en correspondance sur l'oscilloscope, les deux tensions v_e et v_s sur deux périodes.

L'entrée v_e et la sortie v_s sont appliquées respectivement aux canaux 1 & 2. Tracer leurs allures sur l'écran de l'oscilloscope suivant et indiquer les sensibilités *Time/Div* et *Volts/Div* pour chaque canal.

Passer en mode **XY** de l'oscilloscope et visualiser la tension de sortie v_s en fonction la tension d'entrée v_e . Varier d'abord l'amplitude puis la fréquence de la tension v_e et commenter les résultats trouvés. En déduire la

Montage N° 2: $v_e(t) = 2\sin{(100\pi t)}$ $R_1 = 2.2 k\Omega$ & $R_2 = 2.2 k\Omega$ $v_e(t) \circ - v_s(t)$ Quelle valeur doit prendre la résistance R_p . Justifier la réponse.	fonction réalisée par ce montage.	
$v_e(t) = 2\sin{(100\pi t)}$ $R_1 = 2.2 k\Omega$ & $R_2 = 2.2 k\Omega$ $v_e(t) \sim v_s(t)$ Quelle valeur doit prendre la résistance R_p . Justifier la réponse.		
$v_e(t) = 2\sin{(100\pi t)}$ $R_1 = 2.2 k\Omega$ & $R_2 = 2.2 k\Omega$ $v_e(t) \sim v_s(t)$ Quelle valeur doit prendre la résistance R_p . Justifier la réponse.		
$v_e(t) = 2\sin{(100\pi t)}$ $R_1 = 2.2 k\Omega$ & $R_2 = 2.2 k\Omega$ $v_e(t) \sim v_s(t)$ Quelle valeur doit prendre la résistance R_p . Justifier la réponse.		
$v_e(t) = 2\sin{(100\pi t)}$ $R_1 = 2.2 k\Omega$ & $R_2 = 2.2 k\Omega$ $v_e(t) \sim v_s(t)$ Quelle valeur doit prendre la résistance R_p . Justifier la réponse.		
$v_e(t) = 2\sin{(100\pi t)}$ $R_1 = 2.2 k\Omega$ & $R_2 = 2.2 k\Omega$ $v_e(t) \sim v_s(t)$ Quelle valeur doit prendre la résistance R_p . Justifier la réponse.		
$v_e(t) = 2\sin{(100\pi t)}$ $R_1 = 2.2 k\Omega$ & $R_2 = 2.2 k\Omega$ $v_e(t) \sim v_s(t)$ Quelle valeur doit prendre la résistance R_p . Justifier la réponse.		
$v_e(t) = 2\sin{(100\pi t)}$ $R_1 = 2.2 k\Omega$ & $R_2 = 2.2 k\Omega$ $v_e(t) \sim v_s(t)$ Quelle valeur doit prendre la résistance R_p . Justifier la réponse.	Montage № 2 :	
$v_e(t) = 2\sin{(100\pi t)}$ $R_1 = 2.2 k\Omega$ & $R_2 = 2.2 k\Omega$ $v_e(t) \sim v_s(t)$ Quelle valeur doit prendre la résistance R_p . Justifier la réponse.	<u> </u>	V1 V2
Quelle valeur doit prendre la résistance R_p . Justifier la réponse.	$v_e(t) = 2\sin(100\pi t)$	
	$\left(R_1 \ = \ 2.2 k\Omega \right) \& \left(R_2 \ = \ 2.2 k\Omega \right)$	$v_e(t) \circ - v_s(t)$
	Quelle valeur doit prendre la résistance R _p . Justifier la répo	nse.
Déterminer l'expression de la sortie ν_s .		
Déterminer l'expression de la sortie v _s .		
Déterminer l'expression de la sortie v_s .		
	Déterminer l'expression de la sortie v_s .	

Câbler le schéma sur la plaque d'essai et reproduire votre travail sur l'image ci-dessous. Visualiser, en correspondance sur l'oscilloscope, les deux tensions v_e et v_s sur deux périodes.

L'entrée v_e et la sortie v_s sont appliquées respectivement aux canaux 1 & 2. Tracer leurs allures sur l'écran de l'oscilloscope suivant et indiquer les sensibilités *Time/Div* et *Volts/Div*.

Passer en mode **XY** de l'oscilloscope et visualiser la tension de sortie v_s en fonction la tension d'entrée v_e . Varier d'abord la tension v_e , puis changer sa forme d'onde. Comparer et commenter les résultats trouvés et en

déduire la fonction réalisée par ce montage.	
	•
Montage № 3 :	
$v_e(t) = 2\sin{(100\pi t)}$ $v_e(t) = 2\sin{(100\pi t)}$ $v_e(t) = 2\sin{(100\pi t)}$ Déterminer l'expression de la sortie v_s en fonction de v_e , R_1 et R_2 .	t)
Determiner rexpression de la sortie v_s en fonction de v_e , κ_1 et κ_2 .	
Choisir un jeu de résistances qui permet d'avoir un gain d'amplification égal à 0.5.	

Câbler le schéma sur la plaque d'essai et reproduire votre travail sur l'image ci-dessous. Visualiser, en corres-

pondance sur l'oscilloscope, les deux tensions v_e et v_s sur deux périodes.

L'entrée v_e et la sortie v_s sont appliquées respectivement aux canaux 1 & 2. Tracer leurs allures sur l'écran de l'oscilloscope suivant et indiquer les sensibilités *Time/Div* et *Volts/Div*.

Passer en mode **XY** de l'oscilloscope et visualiser la tension de sortie v_s en fonction la tension d'entrée v_e . Varier d'abord la tension v_e , puis changer sa forme d'onde. Comparer et commenter les résultats trouvés et en

déduire la fonction réalisée par ce montage.
Montage N° 4 :
$v_{e_1}(t) \circ \underbrace{\hspace{1cm}}^{R_1} \underbrace{\hspace{1cm}}^{i_1} \underbrace{\hspace{1cm}}^{R} \underbrace{\hspace{1cm}}^{i_1}$
$v_{e_1}(t) = 0.5 V$ $v_{e_1}(t) = 0.5 V$
$v_{e_2}(t) = 2\sin(100\pi t)$ $v_{e_2}(t) \circ \qquad $
$r_2 \leqslant v_+$
│
En appliquant le théorème de Millman, donner l'expression du potentiel v^- .
En appliquant la formule du diviseur de tension, donner l'expression du potentiel v^+ .
Déterminer l'expression de la sortie v_s en fonction de v_{e_1} , de v_{e_2} et des éléments du montage.

Choisir des valeurs des résistances du montage qui permettent d'avoir la sortie :

$$v_s(t) = v_{e_2}(t) - v_{e_1}(t).$$
 (1.1)

......

.....

Câbler le schéma sur la plaque d'essai et reproduire votre travail sur l'image ci-dessous. Visualiser, en correspondance sur l'oscilloscope, les deux tensions v_{e_2} et v_s sur deux périodes.

L'entrée v_{e_2} et la sortie v_s sont appliquées respectivement aux canaux 1 & 2. Tracer leurs allures sur l'écran de l'oscilloscope suivant et indiquer les sensibilités Time/Div et Volts/Div.

.....

Commenter les résultats trouvés et en déduire la fonction réalisée par ce montage.

.....

.....

Montage № 5 :

$$(r = 47 \, k\Omega) (R = 100 \, k\Omega) \, \& (C = 10 \, nF)$$

Le signal d'entrée est centré p/r à zéro.

LA FRÉQUENCE DE v_e DOIT ÊTRE INFÉRIEURE À $\frac{1}{2\pi rC}$.

Montrer que la fonction de transfert de ce montage est :

			$\mathcal{H}(s)$	s) =	$\frac{\mathcal{V}_{s}}{\mathcal{V}_{e}}$	$\frac{(s)}{(s)}$,		aved	:: V (s) =	\mathcal{L} { v (t)}			
				=	$-\frac{1}{1}$	RCs + rCs									(1.2)
· · · · · · · · · · · · · · · · · · ·															
Tracer théori	iquem	ent le:	s form	es d'oı	ndes d	le l'ent	rée v _e	et de	la sort	ie v _s . E	En indi	quero	lairen	nent to	ous les ren-
seignements	s que v	ous ju	gez in	téress	ants (a	amplit	ude, p	ériod	e et ra	pport	cycliqı	ue).			
-			,												
_	:														
-															
-															
-															
							: : : : : :								

Temps (msec)

Câbler le schéma sur la plaque d'essai et reproduire votre travail sur l'image ci-dessous. Visualiser, en correspondance sur l'oscilloscope, les deux tensions v_e et v_s sur deux périodes.

L'entrée v_e et la sortie v_s sont appliquées respectivement aux canaux 1 & 2. Tracer leurs allures sur l'écran de l'oscilloscope suivant et indiquer les sensibilités *Time/Div* et *Volts/Div*.

......

.....

.....

Montage № 6 :

$$v_e(t)$$
 est un signal carré $\left\{egin{array}{ll} v_{e\, ext{max}} &=& 1\, ext{volt} \ F &=& 100\, ext{Hz} \ \delta &=& 50\,\% \end{array}
ight.$

$$\left(\mathbf{r} \,=\,47\,\mathrm{k}\Omega
ight) \left(\mathrm{R} \,=\,220\,\mathrm{k}\Omega
ight) \,\mathrm{\&} \left(\mathrm{C} \,=\,10\,\mathrm{nF}
ight)$$

Le signal d'entrée est centré p/r à zéro.

LA FRÉQUENCE DE v_e DOIT ÊTRE SUPÉRIEURE À $\frac{1}{2\pi RC}$.

Montrer que la fonction de transfert de ce montage est :

$$\mathcal{H}(s) = \frac{\mathcal{V}_{s}(s)}{\mathcal{V}_{e}(s)}, \quad \text{avec: } \mathcal{V}(s) = \mathcal{L}\{\nu(t)\}$$

$$= -\frac{R}{r} \frac{1}{1 + RCs}. \quad (1.3)$$

......

.....

regime ii	neaire	;											
	• • • • •												
	• • • • •												
	• • • • •	• • • • •			• • • • •							• • • • •	
riquem												clairer	nent t
ts que v	ous ju	ιgez ir	ntéress	ants (a	amplit	ude, p	ériod	e et ra	pport	cycliq	ue).		
•	,	U		`	•	· 1			' '	, ,	,		
<u> </u>	:	:			,	,	· · · · · · · · · · · · · · · · · · ·				:	· · · · · · · · · · · · · · · · · · ·	:
	:	:	:	:	· · ·	· · ·	:	· · ·		:	:	:	:
	:											:	
-	<u>.</u>		: :	:	: : :	:	:			:	:	: :	<u>.</u>
	:	:	:	:	· · ·	· · ·	:			:	:	:	:
-	:	<u>:</u>	:		: : :		:		: 		:	: :	<u>:</u>
	:	:	:	:	· · ·	· · ·	:			:	:	:	:
	:											:	
<u> </u>	<u>.</u>		<u>.</u>	:	:	:		:		: : :		: : :	
<u>.</u>					• · · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·				
<u>-</u> ;	<u>:</u>	<u>.</u>	<u>:</u>	:			<u>:</u>		: : :	: : :	<u>:</u>	<u>:</u>	<u>:</u>
			:	:	:	:		:					:
<u>-</u>	<u>i </u>	:	<u>.</u>	:			: :			: : :	:	i i	:
<u> </u>			<u>.</u>				:			:	:	:	į
7	T	I	1	L	1	L	1	L	I	L	I	I	l

Temps (msec)

Câbler le schéma sur la plaque d'essai et reproduire votre travail sur l'image ci-dessous. Visualiser, en correspondance sur l'oscilloscope, les deux tensions v_e et v_s sur deux périodes.

L'entrée v_e et la sortie v_s sont appliquées respectivement aux canaux 1 & 2. Tracer leurs allures sur l'écran de l'oscilloscope suivant et indiquer les sensibilités *Time/Div* et *Volts/Div*.

Changer la tension v_e , en un signal sinusoïdal de même période. Passer en mode **XY** de l'oscilloscope et visualiser la tension de sortie v_s en fonction la tension d'entrée v_e . Augmenter par la suite progressivement la

1	ΑΠ	en	régim	ne lir	néair
	\neg	CII	ICEIII	10 111	ıcanı

- 1	

fréque lisée p		phasa	age. Co	ompa	rer et	com	ment	er le:	s résu	ıltats	trou	vés e	ten	dédu	ire la	a fon	ctio	n réa	L-

ALI en régime de saturation

Étudiant				
Note	/20			
	<u> </u>	Critères d'éva	luation	

Anticipation	(4 points)	 	
Gestion	(2 points)	 	
Expérimentation	(7 points)	 	
Consignation	(3 points)	 	
Interprétation	(4 points)	 	

- ★ Identifier rapidement et analyser les montages en mode non linéaire d'un AO;
- * Tracer la caractéristique de transfert.

Matériel utilisé (À remplir à la fin de la manipulation.)

Appareil/Composant	Référence	Quantité
Alimentation stabilisée		
GBF		
Oscilloscope		
Multimètre		
ALI		
Résistance		
Condensateur		

- ullet Les deux alimentations symétriques $\pm V_{cc}$ sont omises sur les schémas, mais elles sont présentes $\pm V_{cc} = \pm 15 V$ toujours;
- Il faut allumer en premier et éteindre en dernier ces deux sources d'alimentation.

Montage № 7 :

Décrire le fonctionnent	de ce montage ainsi que les val	eurs possibles prises par la sortie	$e v_s$.

Câbler le schéma sur la plaque d'essai et reproduire votre travail sur l'image ci-dessous. Visualiser, en correspondance sur l'oscilloscope, les deux tensions v_e et v_s sur deux périodes.

L'entrée v_e et la sortie v_s sont appliquées respectivement aux canaux 1 & 2. Tracer leurs allures sur l'écran de l'oscilloscope suivant et indiquer les sensibilités *Time/Div* et *Volts/Div*.

Passer en mode **XY** de l'oscilloscope et visualiser la tension de sortie v_s en fonction la tension d'entrée v_e . Modifier la valeur de la tension v_r et commenter les résultats trouvés. En déduire la fonction réalisée par ce mon-

Montage N° 8: $v_e(t) = 7 \sin{(100\pi t)}$ $v_r(t) = 1 V$ $R_1 = 10 k\Omega \otimes R_2 = 22 k\Omega$ Donner l'expression de la tension v^- .	rage.
$\begin{array}{c} v_e(t) = 7\sin{(100\pi t)} \\ v_r(t) = 1 V \\ \hline R_1 = 10 k\Omega \& R_2 = 22 k\Omega \\ \hline \end{array}$ Donner l'expression de la tension v^- .	
$\begin{array}{c} v_e(t) = 7\sin{(100\pi t)} \\ v_r(t) = 1 V \\ \hline R_1 = 10 k\Omega \& R_2 = 22 k\Omega \\ \hline \end{array}$ Donner l'expression de la tension v^- .	
$\begin{array}{c} v_e(t) = 7\sin{(100\pi t)} \\ v_r(t) = 1 V \\ \hline R_1 = 10 k\Omega \& R_2 = 22 k\Omega \\ \hline \end{array}$ Donner l'expression de la tension v^- .	
$\begin{array}{c} v_e(t) = 7\sin{(100\pi t)} \\ v_r(t) = 1 V \\ \hline R_1 = 10 k\Omega \& R_2 = 22 k\Omega \\ \hline \end{array}$ Donner l'expression de la tension v^- .	
$\begin{array}{c} v_e(t) = 7\sin{(100\pi t)} \\ v_r(t) = 1 V \\ \hline R_1 = 10 k\Omega \& R_2 = 22 k\Omega \\ \hline \end{array}$ Donner l'expression de la tension v^- .	
$\begin{array}{c} v_e(t) = 7\sin{(100\pi t)} \\ \hline v_r(t) = 1 V \\ \hline R_1 = 10 k\Omega \& R_2 = 22 k\Omega \\ \hline \end{array}$ Donner l'expression de la tension v^- .	Montage № 8 :
Donner l'expression de la tension ν^- . Donner l'expression de la tension ν^+ .	$\begin{array}{ c c c c c }\hline v_{\ell}(t) &=& 7\sin{(100\pi t)}\\\hline v_{r}(t) &=& 1V\\\hline R_{1} &=& 10k\Omega\\ &\& R_{2} &=& 22k\Omega\\ \end{array}$
	Donner l'expression de la tension $ u^+$.
Determiner ha sortie v _s .	
	Section in Sortic vs.

Tracer théoriquement la caractéristique $v_s=\mathit{f}(v_e)$ en précisant les deux seuils de basculement.

Déte	rn	nin	eı	'tl	ηé	or	iq	Ιu	er	n	er	nt	la	۱ ۱	/a	ıΙϵ	eu	ır	C	lu	ιr	a	p	p	0	rt	(У	c	li	qι	U(9	d	е	la	t	e	n	si	0	n	d	e	S	0	rt	ie										
										•				•				•																										•											 			
								•		•																				•																									 			

Câbler le schéma sur la plaque d'essai et reproduire votre travail sur l'image ci-dessous. Visualiser, en correspondance sur l'oscilloscope, les tensions v_e et v_s sur deux périodes.

L'entrée v_e et la sortie v_s sont appliquées respectivement aux canaux 1 & 2. Tracer leurs allures sur l'écran de l'oscilloscope suivant et indiquer les sensibilités *Time/Div* et *Volts/Div*.

Passer en mode \mathbf{XY} de l'oscilloscope et visualiser la tension de sortie v_s en fonction la tension d'entrée v_e . Varier

2. A	Llen	régime	de	saturation
------	------	--------	----	------------

7	2

a tension v_r et commenter les résultats trouvés. En déduire la fonction réalisée par ce montage.														

3 Générateur de fonctions

Étudiant														
Note	/20													
Critères d'évaluation														
Anticination	(4 noints)													

Anticipation	(4 points)	 	
Gestion	(2 points)	 	
Expérimentation	(7 points)	 	
Consignation	(3 points)	 	
Interprétation	(4 points)	 	

Objectifs

- ★ Savoir le principe de synthèse d'un circuit oscillant;
- ★ Vérifier expérimentalement les résultats théoriques.

Matériel utilisé (À remplir à la fin de la manipulation.)

Appareil/Composant	Référence	Quantité
Alimentation stabilisée		
GBF		
Oscilloscope		
Multimètre		
ALI		
Résistance		
Condensateur		

- Les deux alimentations symétriques $\pm V_{cc}$ sont omises sur les schémas, mais elles sont présentes toujours; $\pm V_{cc} = \pm 15 V$
- Il faut allumer en premier et éteindre en dernier ces deux sources d'alimentation.

3. Générateur de fonctions 25

Câbler le schéma sur la plaque d'essai et reproduire votre travail sur l'image ci-dessous. Visualiser, en correspondance sur l'oscilloscope, les deux tensions v_{s_1} et v_{s_2} sur deux périodes.

3. Générateur de fonctions 26

Montrer que la période de chaque signal est :

$$T = 4\frac{r_2}{r_1}RC \tag{3.1}$$

3. Générateur de fonctions	27

Étudiant	 	
Note /2	 	

Critères d'évaluation

Anticipation	(4 points)	 	
Gestion	(2 points)	 	
Expérimentation	(7 points)	 	
Consignation	(3 points)	 	
Interprétation	(4 points)	 	

Objectifs

- ★ Faire l'analyse d'un filtre actif;
- ★ Tracer les diagrammes de Bode.

Matériel utilisé (À remplir à la fin de la manipulation.)

Appareil/Composant	Référence	Quantité
Alimentation stabilisée		
GBF		
Oscilloscope		
Multimètre		
ALI		
Résistance		
Condensateur		

- Les deux alimentations symétriques $\pm V_{cc}$ sont omises sur les schémas, mais elles sont présentes toujours; $\pm V_{cc} = \pm 15 V$
- Il faut allumer en premier et éteindre en dernier ces deux sources d'alimentation.

Démontrer que la transmittance harmonique s'écrit comme suit

$$\mathcal{H}(j\omega) = \frac{\underline{\mathcal{V}}_{s}(j\omega)}{\underline{\mathcal{V}}_{e}(j\omega)}$$

$$= \frac{R_{2}}{R_{1} + R_{2}} \frac{R + R'}{R} \frac{1 + j \frac{RR'C}{R + R'}\omega}{1 + jR'C\omega}$$
(4.1)

 		 	 		 •	 	•	 			 	 		 	 	 	 	 	•	 	 	 	 	 	 		 	
 ٠.		 	 			 		 			 	 		 	 	 		 	•	 	 	 	 	 	 		 	
 ٠.		 	 ٠.		 •	 		 			 	 	•	 	 	 		 		 	 	 	 	 	 	٠.	 	

Mettre l'expression de ${\mathcal H}$ sous la forme suivante

Identifier K et τ .

$$\mathcal{H}(j\omega) = K \frac{1 + \frac{1}{11} j\tau\omega}{1 + j\tau\omega}. \tag{4.2}$$

 	 	 								•			•							 •	 •	 			 				 		
 	 	 																		 •		 			 				 		

Câbler le schéma sur la plaque d'essai et reproduire votre travail sur l'image ci-dessous. Visualiser, en correspondance sur l'oscilloscope, les deux tensions v_e et v_s sur deux périodes.

L'entrée v_e et la sortie v_s sont appliquées respectivement aux canaux 1 & 2. Tracer leurs allures sur l'écran de l'oscilloscope suivant et indiquer les sensibilités *Time/Div* et *Volts/Div*.

Jtiliser le mode AC SWEEP du générateur pour varier la fréquence de l'entrée de 1 mHz à 1 khz, de façon inéaire puis logarithmique, et ce pour une durée de 10 sec.
Garder actif le mode AC SWEEP du générateur, et passer en mode XY de l'oscilloscope et visualiser la tension de sortie v _s en fonction de la tension d'entrée v _e . Commenter les résultats trouvés.
de sortie v_s en fonction de la tension d'entrée v_e . Commenter les résultats trouvés.
de sortie v _s en fonction de la tension d'entrée v _e . Commenter les résultats trouvés .
de sortie v _s en fonction de la tension d'entrée v _e . Commenter les résultats trouvés.
de sortie v _s en fonction de la tension d'entrée v _e . Commenter les résultats trouvés .

Remplir la table suivante et tracer les diagrammes de Bode.

Fréquence en Hz	Pulsation en rad/sec	Gain en tension	Gain en dB	Déphasage en deg
F	$\omega = 2\pi F$	$ \mathcal{H}(j\omega) = \frac{v_{s \max}}{v_{e \max}}$	$\mathcal{H}_{ _{dB}} = 20 \log_{10} (\mathcal{H}(\jmath\omega))$	$\underline{/\mathcal{H}} = \varphi_s - \varphi_e$
10 ⁻³				
10 ⁻²				
0.1				
0.5				
0.8				
1				
2				
5				
8				
10				
12				
15				
100				
1000				

 ω (rad/sec)

Le présent fascicule s'adresse aux étudiants de la spécialité Génie Électrique, parcours Automatismes & Informatique Industrielle.

Nous traitons essentiellement les parties suivantes :

- ① Régime linéaire d'un ALI; suiveur, non inverseur, inverseur, soustracteur, dérivateur & intégrateur.
- 2 Régime de saturation d'un ALI; comparateur simple & trigger de Schmitt.
- 3 Générateur de fonctions; carrée, triangulaire & sinusoïdale
- 4 Filtre actif.

ampli-op en régime linéaire; ampli-op en régime de saturation; générateur de fonctions; filtrage actif