Causal Inference with Graphical Models

Definition, Correlation vs. Causality, Challenges, Constraint-based learning using PC algorithm, Additive Noise Model: LiNGAM, Recent developments in causal discovery

Mandar S. Chaudhary mschaudh@ncsu.edu

PhD student in Dr. Samatova's lab Department of Computer Science North Carolina State University

What is Causal Inference?

- Causal Inference is the task of learning cause-effect relationships and estimating causal effects from the data.
- A directed edge represents a potential causal relationship, whereas an undirected or a bidirected edge represents an ambiguous relationship.

• For example, the directed edge $X_2 \to X_1$ indicates X_2 is a potential cause (or parent) and X_1 is the effect (or child).

Correlation vs. Causality

This research shows there is a strong correlation between chocolate consumption and winning Nobel prize!

If Correlation == Causality

more awesome pictures at THEMETAPICTURE.COM

But the reality is...

Example

 During summer, there is an increase in ice-cream sales and the crimes committed.

Does this mean?

Example (cont.)

Challenges

- Identifying accurate cause-effect relationships is obscured by spurious associations in the data.
- Difficult to test causality in real-world applications:
 - it involves performing randomized experiments that might not be feasible
- Underdetermined data sets
 - with fewer than hundred samples and thousands of variables
 - make it even more difficult to estimate cause-effect relationships

• Goal: Test every pair of adjacent variables by performing (un)conditional independence tests to remove as many spurious associations as possible.

Conditional Independence: d-separation

- Two variables X and Y are said to be d-separated by a set of variables S if X and Y are independent conditioned on S.
 - The idea is to block the information flow between X & Y using the set of variables in S.
- Consider the following three structures between *X* and *Y*, with $S = \{Z\}$:

Conditional Independence: d-separation (cont.)

- Variable $Z \in S$:
 - ullet d-separates X and Y as it blocks the information flow between the two variables
- The variables in S should d-separate X and Y for each path that exists between them.

• The variable set S is known as the separating set (sepset).

The information flow between X and Y is blocked by Z.

$$X \perp Y \mid Z$$
 sepset $(X, Y) = Z$

Conditional Independence: v-structure

- A v-structure is a triple $X \to Z \leftarrow Y$ such that X and Y are not adjacent.
- X and Y are unconditionally independent but they are conditionally dependent given their child Z.

Conditional Independence: Statistical tests

- In real-world the real causal structure is rarely known.
- To infer the structure we have a data set and statistical tests at our disposal.

13

and Y do not have a direct

causal relationship.

Conditional Independence: Stat test: Continuous Variables

Continuous variables: Fisher's Z test

$$Z = \sqrt{N - |W| - 3} * \frac{1}{2} log_e \left(\frac{1 + \widetilde{\rho}_{X,Y|W}}{1 - \widetilde{\rho}_{X,Y|W}} \right)$$

- where $\widetilde{\rho}_{X,Y|W}$ is the sample partial correlation between two variables X and Y given a set of variables W.
- The null hypothesis, $H_0: \tilde{\rho}_{X,Y|W} = 0$ is rejected if,

$$Z > \Phi^{-1}(1-\frac{\alpha}{2})$$

• where Φ is a cumulative distribution function of a Gaussian distribution with mean 0 and variance 1.

Conditional Independence: Stat test: Categorical Variables

Binary or Discrete variables: G² test

$$G = 2 * \sum_{i} O_{i} log \left(\frac{O_{i}}{E_{i}}\right)$$

- where O_i =observed frequencies and E_i =expected frequencies of the discrete variables.
- To test if X is independent of Y given Z, a contingency table is built for every level of Z and the G-statistic is the summation over all levels.

 o_i

X\Y	0	1
0	N_{00}	N_{01}
1	N_{10}	N_{11}

$$N = N_{00} + N_{01} + N_{10} + N_{11}$$

 $\boldsymbol{E_i}$

X\Y	0	1
0	$(N_{+0}*N_{0+})/N$	$(N_{+1}*N_{0+})/N$
1	$(N_{+0}*N_{1+})/N$	$(N_{+1}*N_{1+})/N$

$$N_{+0} = N_{00} + N_{10}, N_{0+} = N_{00} + N_{01}$$

 $N_{+1} = N_{01} + N_{11}, N_{1+} = N_{10} + N_{11}$

Conditional Independence: Stat test: G-statistic

• Binary or Discrete variables: G^2 test

$$G = 2 * \sum_{i} O_{i} log \left(\frac{O_{i}}{E_{i}}\right)$$

- where O_i =observed frequencies and E_i =expected frequencies of the discrete variables.
- The *G*-statistic follows a Chi-square distribution with $I^*(J-1)^*(K-1)$ degrees of freedom where I, J and K are the number of levels of X, Y and Z, respectively.

$$p-value = pchisq(G, df, lower.tail = FALSE)$$

• The null hypothesis of independence is rejected if $p - value < \alpha$; otherwise, we fail to reject the null hypothesis.

Conditional Independence: Statistical tests

- Null hypothesis Ho: Variables are independent → delete the edge
- Alternative hypothesis H1: Variables are not independent → keep the edge

Variable type	Test	R function
Continuous	Fisher's Z test	gaussCltest
Discrete	G ² test	disCltest
Binary	G^2 test	binCltest


```
> gaussCItest(1,2,S=NULL,suffStat=list(C=cor(dat), n=nrow(dat)))
[1] 0.7581304
```

If p-value < α we reject the null hypothesis, H_0 and if p-value > α we fail to reject the null hypothesis.

- Goal: Test every pair of adjacent variables by performing (un)conditional independence tests to remove as many spurious associations as possible.
- Assumptions:
 - 1. There are no cyclic causal relations
 - for example, $X \to Y$ and $Y \to X$
 - 2. Causal faithfulness: Dependencies found by PC algorithm are characteristic of the underlying data distribution.

- Goal: Test every pair of adjacent variables by performing (un)conditional independence tests to remove as many spurious associations as possible.
- Assumptions:
 - **1.** There are no cyclic causal relations for example, $X \to Y$ and $Y \to X$
 - 2. Causal faithfulness: Dependencies found by PC algorithm are characteristic of the underlying data distribution.

$$X = \epsilon_X$$
 $Y = aX + \epsilon_Y$
 $Z = cX + bY + \epsilon_Z$

Applying d-separation does not give us any independence relations between X, Y and Z.

- Goal: Test every pair of adjacent variables by performing (un)conditional independence tests to remove as many spurious associations as possible.
- Assumptions:
 - **1.** There are no cyclic causal relations for example, $X \to Y$ and $Y \to X$
 - 2. Causal faithfulness: Dependencies found by PC algorithm are characteristic of the underlying data distribution.

$$X = \epsilon_X$$
 $Y = aX + \epsilon_Y$
 $Z = cX + bY + \epsilon_Z$

- Goal: Test every pair of adjacent variables by performing (un)conditional independence tests to remove as many spurious associations as possible.
- Assumptions:
 - **1.** There are no cyclic causal relations for example, $X \to Y$ and $Y \to X$
 - 2. Causal faithfulness: Dependencies found by PC algorithm are characteristic of the underlying data distribution.

$$X = \epsilon_X$$
 $Y = aX + \epsilon_Y$
 $Z = cX + bY + \epsilon_Z$

If
$$a.\,b+c=0$$
 then X is independent of Z!

"Spirtes et al. [2000, Theorem 3.2] show for linear models that this happens with probability zero if we assume that the coefficients are drawn randomly from positive densities."

- Goal: Test every pair of adjacent variables by performing (un)conditional independence tests to remove as many spurious associations as possible.
- Assumptions:
 - 1. There are no cyclic causal relations
 - for example, $X \to Y$ and $Y \to X$
 - 2. Causal faithfulness: Dependencies found by PC algorithm are characteristic of the underlying data distribution.
 - 3. Causal sufficiency: Absence of hidden confounders in the data.

 Goal: Test every pair of adjacent variables by performing (un)conditional independence tests to remove as many spurious associations as possible.

Assumptions:

- **1.** There are no cyclic causal relations for example, $X \to Y$ and $Y \to X$
- 2. Causal faithfulness: Dependencies found by PC algorithm are characteristic of the underlying data distribution.
- 3. Causal sufficiency: Absence of hidden confounders in the data.

• Steps:

- 1. Start with a complete undirected graph.
- 2. Perform a statistical test for every pair of adjacent variables to test whether an edge between them is spurious or not.
- 3. Orient the remaining undirected edges.
- The output of PC algorithm is a partially directed graph which represents a Markov equivalent class of graphs.

W: Weather

I: Ice-cream sales

C: Crime rate

True causal graph

$$I \perp \!\!\! \perp C|W$$

A complete undirected graph over variable set $X = \{W, I, C\}$.

W: Weather

I: Ice-cream sales

C: Crime rate

True causal graph

$$I \perp \!\!\! \perp C|W$$

A complete undirected graph over variable set $X = \{W, I, C\}$.

Step 2: Perform pairwise CI test with increasing conditioning set size, Z.

No

No

W: Weather

I: Ice-cream sales

C: Crime rate

True causal graph

A complete undirected graph over variable set $X = \{W, I, C\}.$

Step 2: Perform pairwise CI test with increasing conditioning set size, Z.

W: Weather

I: Ice-cream sales

C: Crime rate

True causal graph

A complete undirected graph over variable set $X = \{W, I, C\}.$

Step 2: Perform pairwise CI test with increasing conditioning set size, Z.

PC algorithm: Orientation Rules

W: Weather

I: Ice-cream sales

C: Crime rate

Step 2: Output

sepset(I, C) = W

 $\overline{\mathbf{I}}$ $\overline{\mathbf{C}}$

None of the orientation rules apply to this structure.

True causal graph

 $I \perp \!\!\! \perp C|W$

Step 3: Output

w

A set of Markov equivalent graphs which encode the same conditional independence relationship.

PC Algorithm: Simulation

```
File: causality.R
# PC algorithm example
# Causal structure: I <- W -> C
W <- rnorm(1000)
I < -4*W + rnorm(1000)
C <- 2*W + rnorm(1000)
dat_3 <- cbind(W, I, C)
pc_fit <- pc(suffStat=list(C=cor(dat_3), n=nrow(dat_3)), indepTest=gaussCItest,
alpha=0.05, labels=colnames(dat_3), verbose=TRUE)
plot(pc_fit, main="Estimated PDAG")
```

Additive Noise Model (ANM): Linear Non-Gaussian Acyclic Model (LiNGAM)

• Assuming causal sufficiency, exact causal graph can be identified if the data is generated from an additive noise model such that at most X or ϵ is Gaussian.

$$Y = f(X) + \epsilon$$

• Consider a variable set $X = \{X_1, X_2, ..., X_n\}$ generated from a structural equation model where X is a linear function of the disturbance variables $E = \{E_1, E_2, ..., E_n\}$, which are mutually independent and non-Gaussian.

$$\begin{bmatrix} X_1 \\ X_2 \end{bmatrix} = \begin{bmatrix} 0 & 0.6 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} + \begin{bmatrix} E_1 \\ E_2 \end{bmatrix}$$
$$X = BX + E$$
$$E = WX$$

- where W = I B
- How do we estimate W? Independent Component Analysis (ICA)!

Independent Component Analysis (ICA)

• ICA estimates the mixing matrix, W, however, the rows in the matrix can be in random order.

$$\begin{bmatrix} E_2 \\ E_1 \end{bmatrix} = \begin{bmatrix} \mathbf{0} & \mathbf{1} \\ \mathbf{1} & -\mathbf{0} & \mathbf{6} \end{bmatrix} \begin{bmatrix} X_2 \\ X_1 \end{bmatrix} \qquad \begin{bmatrix} E_1 \\ E_2 \end{bmatrix} = \begin{bmatrix} \mathbf{1} & -\mathbf{0} & \mathbf{6} \\ \mathbf{0} & \mathbf{1} \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$$

$$\begin{bmatrix} E_1 \\ E_2 \end{bmatrix} = \begin{bmatrix} 1 & -0.6 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$$

The order of rows is incorrect, as E_2 corresponds to X_1 and E_1 to X_2

An estimate of the coefficient matrix, \bar{B} , can now be computed using $\bar{B} = I - I$ \overline{W}

$$\bar{B} = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 1 & -0.6 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0.6 \\ 0 & 0 \end{bmatrix}$$

Estimation Errors in Coefficient Matrix

However, it is possible to get an estimated coefficient matrix as follows,

$$\begin{bmatrix} X_1 \\ X_2 \end{bmatrix} = \begin{bmatrix} \mathbf{0} & \mathbf{0.65} \\ -\mathbf{0.05} & \mathbf{0} \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} + \begin{bmatrix} E_1 \\ E_2 \end{bmatrix}$$

In such cases, we need to identify which path coefficients are zero by first permuting the rows and columns of \bar{B} using a permutation matrix Q, such that it minimizes the sum of elements in the upper triangular part.

$$\begin{bmatrix} X_1 \\ X_2 \end{bmatrix} = \begin{bmatrix} \mathbf{0} & \mathbf{0.65} \\ -\mathbf{0.05} & \mathbf{0} \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} + \begin{bmatrix} E_1 \\ E_2 \end{bmatrix}$$

$$\begin{bmatrix} X_1 \\ X_2 \end{bmatrix} = \begin{bmatrix} \mathbf{0} & \mathbf{0.65} \\ -\mathbf{0.05} & \mathbf{0} \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} + \begin{bmatrix} E_1 \\ E_2 \end{bmatrix}$$

$$\begin{bmatrix} X_2 \\ X_1 \end{bmatrix} = \begin{bmatrix} \mathbf{0} & -\mathbf{0.05} \\ \mathbf{0.65} & \mathbf{0} \end{bmatrix} \begin{bmatrix} X_2 \\ X_1 \end{bmatrix} + \begin{bmatrix} E_2 \\ E_1 \end{bmatrix}$$

• Finally, set the values in the upper triangular matrix to zero.

$$\begin{bmatrix} X_2 \\ X_1 \end{bmatrix} = \begin{bmatrix} \mathbf{0} & -\mathbf{0.05} \\ \mathbf{0.65} & \mathbf{0} \end{bmatrix} \begin{bmatrix} X_2 \\ X_1 \end{bmatrix} + \begin{bmatrix} E_2 \\ E_1 \end{bmatrix}$$

$$Q\bar{B}Q^T$$

$$\begin{bmatrix} X_2 \\ X_1 \end{bmatrix} = \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{65} & \mathbf{0} \end{bmatrix} \begin{bmatrix} X_2 \\ X_1 \end{bmatrix} + \begin{bmatrix} E_2 \\ E_1 \end{bmatrix}$$

$$\tilde{B} \text{ is strictly lower triangular}$$

Permutation Algorithm for Large Dimensions

- Computing coefficient matrix using exhaustive search becomes computationally expensive in large dimensions.
- An alternative approach,
 - 1. Set the m(m+1)/2 smallest (absolute) values in \widetilde{B} to zero where m=# of variables in the data.
 - 2. Test whether the resulting matrix can be permuted to a strict lower triangular matrix.
 - If yes, return the matrix as it contains the causal order of the variables.
 - If not, then set the next smallest (absolute value) element in the matrix to zero and repeat Step 2.

Prune the coefficient matrix

- The LiNGAM algorithm has additional statistical tests to further prune the edges in the causal structure.
- The steps are as follows,
 - 1. Find non-significant edges by applying Wald test at a significance level of 0.05.
 - 2. For all the non-significant edges identified by the Wald test.
 - a. Set the least significant edge in the lower triangular matrix \tilde{B} to zero.
 - b. Test if the reduced model with one reduced edge fits as good as the full model.
 - c. Further, perform a Chi-squared test on the current model with reduced edge.
 - d. If both the hypotheses are accepted, prune the edge.
 - 3. Return the updated coefficient matrix \tilde{B} .

State-of-the-Art: Causal Discovery

Improvements to PC algorithm – PC-stable, Conservative PC, PC-Max [3,6]

Improvements to the PC algorithm were proposed to overcome: (i) variable order-dependent output and (ii) errors in orienting edges.

Causal effect estimation from CPDAGs – IDA [5]

An approach to estimate lower bound of causal effect of a gene on a phenotype was developed to prioritize randomized control experiments. Assuming linearity causal effects can be estimated using linear regression.

Divide-and-conquer based approaches—Rec, SADA, SAR, CDCD [10,1,4,2]

Divide-and-conquer based approaches perform conditional independence test only on edges that connect different graph partitions thereby reducing errors in statistical tests and improving the quality of output causal graphs.

State-of-the-Art: Causal Discovery (cont.)

Additive Noise Models (ANM) – LiNGAM, DirectLiNGAM, PNL [8,9,11,12]

Data generated from the following additive noise model could lead to exact identification of the causal graph if at most one of X or ϵ is Gaussian.

$$Y = g(f(X) + \epsilon)$$

Robust Conditional Independence tests – CCI, KCIT, RCIT [7,13,14]

Conditional independence tests that utilize kernel matrices and nonlinear regression to better detect independencies between variables.

Publicly Available Tools for Causal Discovery

Software/Package	Language	Link
pcalg	R	https://cran.r-project.org/package=pcalg
bnlearn	R	http://www.bnlearn.com/
Bayes Net Toolbox	MATLAB	https://github.com/bayesnet/bnt
Causal Explorer	MATLAB	http://proceedings.mlr.press/v3/supplemental /Software WCCI08 challenge.pdf
Tetrad	Java	http://www.phil.cmu.edu/tetrad/

PC Algorithm: R Example

```
library(pcalg)
# Initialize the number of variables
rDAG <- randomDAG(10, prob=0.3, IB=0.1, uB=1)
# Visualize the generated DAG
plot(rDAG, main="A sample random DAG")
# Generate a multivariate data according to rDAG
data <- rmvDAG(1000, rDAG, errDist="normal")
# Now let's run the PC algorithm using the data
suffStat=list(C=cor(data), n=nrow(data))
pc_fit <- pc(suffStat, indepTest=gaussCltest, alpha=0.05, labels=colnames(data), verbose=TRUE)
plot(pc_fit, main="PC Output")
# Evaluate the estimated graph with the true graph
shd(rDAG, pc fit)
compareGraphs(pc_fit@graph, rDAG)
```

39

LiNGAM algorithm: R Example

```
library(pcalg)
```

plot(pc_fit)

```
# Initialize the number of variables
x1 <- runif(1000)
x2 < -0.8*x1 + runif(1000)
data <- cbind(x1, x2)
# Visualize the distribution
plot(data[, 1], data[, 2])
# Now let's run the LiNGAM algorithm using the data
lingam fit <- lingam(data, verbose=TRUE)
show(lingam_fit)
pc_fit <- pc(suffStat=list(C=cor(data), n=nrow(data)), indepTest=gaussCltest, alpha=0.05, p=ncol(data))
```

40

40

References

- 1. Cai, R., Zhang, Z. and Hao, Z., 2013, February. SADA: A general framework to support robust causation discovery. In *International Conference on Machine Learning* (pp. 208-216).
- Chaudhary, M.S., Ranshous, S. and Samatova, N.F., 2017, November. A Community-Driven Graph Partitioning Method for Constraint-Based Causal Discovery. In *International Workshop on Complex Networks and their Applications* (pp. 253-264). Springer, Cham.
- 3. Colombo, D. and Maathuis, M.H., 2014. Order-independent constraint-based causal structure learning. *The Journal of Machine Learning Research*, *15*(1), pp.3741-3782.
- 4. Liu, H., Zhou, S., Lam, W. and Guan, J., 2017. A new hybrid method for learning bayesian networks: Separation and reunion. *Knowledge-Based Systems*, *121*, pp.185-197.
- 5. Maathuis, M.H., Kalisch, M. and Bühlmann, P., 2009. Estimating high-dimensional intervention effects from observational data. *The Annals of Statistics*, *37*(6A), pp.3133-3164.
- 6. Ramsey, J., 2016. Improving Accuracy and Scalability of the PC Algorithm by Maximizing P-value. arXiv preprint arXiv:1610.00378.
- 7. Ramsey, J.D., 2014. A scalable conditional independence test for nonlinear, non-gaussian data. arXiv preprint arXiv:1401.5031.
- 8. Shimizu, S., Hoyer, P.O., Hyvärinen, A. and Kerminen, A., 2006. A linear non-Gaussian acyclic model for causal discovery. *Journal of Machine Learning Research*, 7(Oct), pp.2003-2030.
- 9. Shimizu, S., Inazumi, T., Sogawa, Y., Hyvärinen, A., Kawahara, Y., Washio, T., Hoyer, P.O. and Bollen, K., 2011. DirectLiNGAM: A direct method for learning a linear non-Gaussian structural equation model. *Journal of Machine Learning Research*, *12*(Apr), pp.1225-1248.
- 10. Xie, X. and Geng, Z., 2008. A recursive method for structural learning of directed acyclic graphs. *Journal of Machine Learning Research*, *9*(Mar), pp.459-483.

References

- 11. Zhang K, Hyvärinen A (2009) On the identifiability of the post-nonlinear causal model. In: Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence, Montreal
- 12. Zhang K, Hyvärinen A (2010) Distinguishing causes from effects using nonlinear acyclic causal models. In: JMLR Workshop and Conference Proceedings, Presented at NIPS 2008 workshop on causality. 6:157–164
- 13. Zhang K, Janzing D, Schölkopf B (2011) Kernel-based conditional independence test and application in causal discovery. In: Proceedings of the 27th Conference on Uncertainty in Artificial Intelligence (UAI 2011), Barcelona
- 14. Zhang, H., Zhou, S., Zhang, K. and Guan, J., 2017, February. Causal Discovery Using Regression-Based Conditional Independence Tests. In *AAAI* (pp. 1250-1256).

- Goal: Test every pair of adjacent variables by performing (un)conditional independence tests to remove as many spurious associations as possible.
- Assumptions:
 - 1. Causal faithfulness: Dependencies found by PC algorithm are characteristic of the underlying data distribution.
 - 2. Causal sufficiency: Absence of hidden confounders in the data.
- Steps:
 - 1. Start with a complete undirected graph.
 - 2. Perform a statistical test for every pair of adjacent variables to test whether an edge between them is spurious or not.
 - 3. Orient the remaining undirected edges.
- The output of PC algorithm is a partially directed graph which represents a Markov equivalent class of graphs.