5. Scheduling della CPU. Esercizi

• (5.1) Sia dato il seguente insieme di processi, arrivati nell'ordine $P_1,...,P_5$, tutti presenti al tempo 0 e con durata e priorità indicate:

Processo	<u>Durata</u>	priorità
P_I	10	3
P_2	1	1
P_3	2	3
P_4	1	4
P_5	5	2

1 FCFS P1 12 13 1415
2 SJF 12 14 13 15 11
3 Priorits 12 15 14 15 1

Walting (0+10+11+13+14)

turn / work

5. Scheduling della CPU. Esercizi

- (5.1) (cont.)
- disegnare gli schemi di Gantt che illustrano l'esecuzione dei processi con algoritmi di scheduling FCFS, SJF, priorità senza prelazione (numero basso indica priorità maggiore) e RR (quanto = 1).
- Calcolare il tempo di completamento (turnaround), e il tempo di attesa per ciascun processo e per ciascun algoritmo di scheduling indicato.
- 3. Dire quale algoritmo fornisce il minor tempo medio di attesa (relativo cioè a tutti i processi)

2-3	FC	FS	S	sf.	PHI	rohei	R	R
_	10	0	1	0	1	0	2	11
	11	10	2	1	6	1	4	B
_	13	11	4	2	16	٤	7	\$
_	14	13	9	4	18	16	19	9
	ر ور	14	19	ا و	191	18	19	9
	13.5	J.6	Z	(\} 2	12	8,2	9,2	3,9
)					

5. Scheduling della CPU. Esercizi

• (5.2) Si supponga che i seguenti processi arrivino in esecuzione al tempo indicato e che consumeranno la quantità di tempo indicata. Si supponga uno scheduling non pre-emptive e di decidere sulla base delle informazioni disponibili al momento in cui le decisioni vanno prese.

Processo	t. di arrivo	burst time
P_I	0.0	8
P_2	0.4	4
P_3	1.0	1

SIF con attended to the state of the state o

(2+5+14)/3 -ALS 6,87

5. Scheduling della CPU. Esercizi

- (5.2) (cont.)
- 1. Calcolare il turnaround medio dei processi usando gli algoritmi di scheduling FCFS e SJF
- quale è il turnaround medio se si lascia inattiva la CPU per la prima unità di tempo e poi si usa SJF? (l'idea è di non assegnare la CPU fino a che non sono presenti tutti i processi per prendere la decisione migliore)

5. Scheduling della CPU. Esercizi				
	5 Scheduling	della	CPU.	Esercizi

- (5.3) Dire se esiste, e quale è, la relazione fra le seguenti coppie di algoritmi di scheduling:
 - priorità e SJF
 - code multiple con retroazione e FCFS
 - priorità e FCFS
 - RR e SJF

43	sf e	un tip	- d	ا 1 مرم ا	rits
	ch.	sceglie	t ve	1001	
3	no?	1 codo	8710 12910	rtts reds	FGC
3		ng Lon	ben	<u>40 8</u> 71	100
4			_		

5.Scheduling della CPU. Esercizi

• (5.4) Si consideri un algoritmo di scheduling a breve termine che favorisce i processi che hanno usato poco la CPU di recente. Perché questo algoritmo favorisce i processi I/O bound, ma non provoca starvation nei processi CPU bound?

Vavorisce	Processi	(0	
Bound	<i>lerche</i>	oldino	meno
12 000	ms	hoh g	rorod
Starustion	perch	e un	e
oging (1.	902 n t		<u>~ vs</u>
Processo	non V	14	_{ငစုိ}
10- 20			

5. Scheduling della CPU. Esercizi

- (5.5) Spiegate le differenze tra i seguenti algoritmi di scheduling rispetto al livello di discriminazione in favore (o a sfavore) dei processi brevi:
 - FCFS
 - RR
 - code multiple con retroazione

Survey in exoltanente

Survey in exoltanente

Survey in exoltanente

Survey in exolution theory

RR > "> boxise" brew in

quante do tempe usuale

sutty

(cde... -> fororise been

per etiorita ma do

pur tempo o longhi