Nama: Irman Prayista NIM: 1103210094 Kelas: TK-45-02

Hasil Analisis Simulasi

a. Getting Started

Tutorial ini untuk membantu pengguna baru memulai dengan MoveIt melalui instalasi, konfigurasi, dan penggunaan dasar.

1. Instalasi

Proses ini meliputi penambahan repository MoveIt, update sistem, dan instalasi paket dengan command apt.

2. Konfigurasi Workspace

- Catkin Workspace: untuk membuat *workspace* menggunakan *catkin* dengan instruksi standar catkin_make. Workspace ini untuk menempatkan kode dan konfigurasi MoveIt.
- Source Workspace: untuk melakukan *source* pada workspace agar environment ROS aktif dan siap digunakan. Ini untuk memastikan workspace aktif.

3. Menjalankan MoveIt

Panduan ini untuk mempersiapkan robot agar dapat dimanipulasi di dalam simulasi atau lingkungan nyata.

4. Verifikasi & Visualisasi

Setelah mengonfigurasi, pengguna dapat menggunakan Rviz untuk memvisualisasikan robot dan pergerakannya.

b. MoveIt Quickstart in Rviz

Tutorial ini untuk memanipulasi dan merencanakan lintasan gerakan robot menggunakan Movelt.

- 1. Langkah-Langkah Kunci
 - Memulai dengan RViz: untuk membuka RViz dan mengonfigurasi plugin MoveIt
 - Load Robot Model: Pengguna memuat model robot yang diinginkan, yang bisa berupa robot yang berbeda sesuai kebutuhan.
 - Perencanaan Gerakan (Motion Planning): untuk memindahkan robot secara interaktif dengan mouse. Pengguna dapat memilih target tujuan gerakan dan MoveIt akan merencanakan lintasan yang aman bagi robot.
 - Eksekusi Gerakan: pengguna bisa mengeksekusi gerakan tersebut untuk melihat hasilnya pada model robot di RViz.

c. Move Group C++ Interface

1. MoveGroup Interface:

memudahkan perencanaan jalur (*motion planning*) dan eksekusi di robot. *MoveGroup* berkomunikasi dengan ROS untuk mengendalikan aktuator robot.

2. Perencanaan Jalur (Motion Planning):

untuk menghitung cara terbaik menggerakkan robot dari posisi awal menuju posisi target.

3. Eksekusi Pergerakan:

Pengguna bisa mengeksekusi pergerakan tersebut di robot dengan memanggil fungsi move().

4. Feedback dan Status:

untuk memeriksa apakah pergerakan berhasil, serta bagaimana mendapatkan status seperti pose dan konfigurasi *joint* robot saat ini.

d. MoveIt Commander Scripting

Tutorial MoveIt Commander Scripting untuk mengontrol robot secara programatik menggunakan MoveIt Commander di ROS.

- 1. Mengimpor Library: pengguna harus mengimpor modul Python dari MoveIt dan ROS, seperti moveit commander, rospy, dan geometry msgs.msg.
- 2. Inisialisasi Node: Node ROS harus diinisialisasi terlebih dahulu dengan rospy.init node() agar bisa berkomunikasi dengan ROS Master.
- 3. Inisialisasi Move Group: Menggunakan moveit_commander.MoveGroupCommander dapat menginisialisasi "move group", yang mengontrol kelompok bagian robot.
- 4. Mengambil Informasi Robot: get_current_pose() digunakan untuk mendapatkan status robot saat ini.
- 5. Perencanaan Gerakan: memberikan target posisi atau orientasi untuk robot dan menggunakan plan() untuk menghitung jalur gerak.
- 6. Eksekusi Gerakan: Jalur yang telah direncanakan dieksekusi menggunakan go() atau execute().

e. Pick and Place

Panduan ini mengimplementasikan operasi manipulasi robot untuk mengambil dan meletakkan objek.

- 1. Setup Robot: mengatur model robot di RViz menggunakan konfigurasi URDF.
- 2. Perencanaan Gerakan: Menggunakan MoveGroup Interface untuk merencanakan jalur robot dari posisi asal ke target, melibatkan perencanaan kinematik untuk memastikan gerakan lengan mencapai posisi objek dan menempatkannya pada lokasi tujuan.
- 3. Kontrol Gripper: Mengelola gripper untuk memegang objek, yang diintegrasikan dalam skenario menggunakan kontrol tambahan pada ujung lengan robot.
- 4. Validasi Gerakan: Menyertakan collision checking untuk memastikan gerakan robot tidak bertabrakan dengan objek atau lingkungan sekitar.
- 5. Implementasi Code: Melibatkan penggunaan kode Python atau C++ yang disediakan untuk melakukan operasi "pick and place" secara langsung.