#Predict the price of the Uber ride from a given pickup point to the agreed drop-off location. Perform following tasks:

- 1. Pre-process the dataset.
- 2. Identify outliers.
- 3. Check the correlation.
- 4. Implement linear regression and random forest regression models.
- 5. Evaluate the models and compare their respective scores like R2, RMSE, etc. Dataset link: https://www.kaggle.com/datasets/yasserh/uber-fares-dataset

```
1 #Importing the required libraries
2 import pandas as pd
3 import numpy as np
4 import seaborn as sns
5 import matplotlib.pyplot as plt

1 #importing the dataset
2 df = pd.read_csv("uber.csv")
```

▼ 1. Pre-process the dataset.

Saved successfully!

	Unnamed: 0	key	fare_amount	pickup_datetime	pickup_longitude	pickup_latitude	dropoff_long
0	24238194	2015-05-07 19:52:06.0000003	7.5	2015-05-07 19:52:06 UTC	-73.999817	40.738354	-73.9
1	27835199	2009-07-17 20:04:56.0000002	7.7	2009-07-17 20:04:56 UTC	-73.994355	40.728225	-73.9
2	44984355	2009-08-24 21:45:00.00000061	12.9	2009-08-24 21:45:00 UTC	-74.005043	40.740770	-73.9
3	25894730	2009-06-26 08:22:21.0000001	5.3	2009-06-26 08:22:21 UTC	-73.976124	40.790844	-73.9
4	17610152	2014-08-28 17:47:00.000000188	16.0	2014-08-28 17:47:00 UTC	-73.925023	40.744085	-73.9
4)

1 df.info() #To get the required information of the dataset

35725 non-null object

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 35725 entries, 0 to 35724
Data columns (total 9 columns):
# Column Non-Null Count Dtype
--- 0 Unnamed: 0 35725 non-null int64
```

```
2
         fare_amount
                             35725 non-null float64
     3
         pickup_datetime
                             35725 non-null object
     4
         pickup_longitude
                             35724 non-null float64
     5
         pickup_latitude
                             35724 non-null float64
         dropoff_longitude 35724 non-null float64
                             35724 non-null float64
     7
         dropoff latitude
         passenger_count
                             35724 non-null float64
    dtypes: float64(6), int64(1), object(2)
    memory usage: 2.5+ MB
1 df.columns #TO get number of columns in the dataset
    Index(['Unnamed: 0', 'key', 'fare_amount', 'pickup_datetime',
           'pickup_longitude', 'pickup_latitude', 'dropoff_longitude', 'dropoff_latitude', 'passenger_count'],
          dtype='object')
1 df = df.drop(['Unnamed: 0', 'key'], axis= 1) #To drop unnamed column as it isn't required
```

1 df.head()

		fare_amount	<pre>pickup_datetime</pre>	pickup_longitude	pickup_latitude	dropoff_longitude	dropoff_latitude	pass
	0	7.5	2015-05-07 19:52:06 UTC	-73.999817	40.738354	-73.999512	40.723217	
	1	7.7	2009-07-17 20:04:56 UTC	-73.994355	40.728225	-73.994710	40.750325	
Sa	ved s	successfully!	2009-08-24 × 3	-74.005043	40.740770	-73.962565	40.772647	
								•

```
1 df.shape #To get the total (Rows,Columns)
```

(35725, 7)

1 df.dtypes #To get the type of each column

fare_amount float64
pickup_datetime object
pickup_longitude float64
pickup_latitude float64
dropoff_longitude float64
dropoff_latitude float64
passenger_count float64
dtype: object

1 df.info() 2

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 35725 entries, 0 to 35724
Data columns (total 7 columns):

	() ()		
#	Column	Non-Null Count	Dtype
0	fare_amount	35725 non-null	float64
1	pickup_datetime	35725 non-null	object
2	pickup longitude	35724 non-null	float64

```
3 pickup_latitude 35724 non-null float64
4 dropoff_longitude 35724 non-null float64
5 dropoff_latitude 35724 non-null float64
6 passenger_count 35724 non-null float64
dtypes: float64(6), object(1)
memory usage: 1.9+ MB
```

1 df.describe() #To get statistics of each columns

	fare_amount	<pre>pickup_longitude</pre>	pickup_latitude	dropoff_longitude	dropoff_latitude	passenger_count
count	35725.000000	35724.000000	35724.000000	35724.000000	35724.000000	35724.000000
mean	11.394681	-72.561212	39.942645	-72.572503	39.943957	1.677024
std	10.085005	10.911110	6.047059	10.852786	6.043435	1.294493
min	0.000000	-748.016667	-74.015515	-737.916665	-74.008745	0.000000
25%	6.000000	-73.992033	40.734753	-73.991475	40.733846	1.000000
50%	8.500000	-73.981821	40.752563	-73.980170	40.752855	1.000000
75%	12.900000	-73.967196	40.767152	-73.963545	40.768076	2.000000
max	350.000000	40.774042	45.031653	40.828377	45.031598	6.000000

Filling Missing values

```
Saved successfully!

pickup_datetime 0
pickup_longitude 1
pickup_latitude 1
dropoff_longitude 1
dropoff_latitude 1
passenger_count 1
dtype: int64
```

```
1 # passengger_count has null value so replace it with mean or median value
2 df['passenger_count'].fillna(value=df['passenger_count'].mean(),inplace = True)
3 df['pickup_longitude'].fillna(value=df['pickup_longitude'].mean(),inplace = True)
4 df['pickup_latitude'].fillna(value=df['pickup_latitude'].mean(),inplace = True)
5 df['dropoff_longitude'].fillna(value=df['dropoff_longitude'].mean(),inplace = True)
6 df['dropoff_latitude'].fillna(value=df['dropoff_latitude'].mean(),inplace = True)
7
8
9
```

1 df.isnull().sum()

```
fare_amount 0
pickup_longitude 0
pickup_latitude 0
dropoff_longitude 0
dropoff_latitude 0
passenger_count 0
dtype: int64
```

1 df.dtypes

```
fare_amount float64
pickup_longitude float64
pickup_latitude float64
dropoff_longitude float64
dropoff_latitude float64
passenger_count float64
dtype: object
```

Checking outliers and filling them

```
1 df.plot(kind = "box", subplots = True, layout = (7,2), figsize=(15,20)) #Boxplot to check the outliers
    fare_amount
                              AxesSubplot(0.125,0.787927;0.352273x0.0920732)
    pickup_longitude
                           AxesSubplot(0.547727,0.787927;0.352273x0.0920732)
    pickup_latitude
                              AxesSubplot(0.125,0.677439;0.352273x0.0920732)
    dropoff_longitude
                           AxesSubplot(0.547727,0.677439;0.352273x0.0920732)
    dropoff_latitude
                              AxesSubplot(0.125,0.566951;0.352273x0.0920732)
    passenger count
                           AxesSubplot(0.547727,0.566951;0.352273x0.0920732)
    dtype: object
                                                                                                  0
       20
                                                                    -20
       15
                                                                    -40
       10
        5
                                                                    -60
Saved successfully!
                                                                                            pickup_longitude
       40
                                                                 -73.925
       30
                                                                 -73.950
                                                                 -73.975
       20
                                                                 -74.000
       10
                                                                 -74.025
        0
                               pickup latitude
                                                                                            dropoff_longitude
     40.80
                                                                      3
                                                                      2
     40.75
     40.70
```

passenger_count

```
1 #Using the InterQuartile Range to fill the values
2 def remove_outlier(df1 , col):
3    Q1 = df1[col].quantile(0.25)
4    Q3 = df1[col].quantile(0.75)
5    IQR = Q3 - Q1
6    lower_whisker = Q1-1.5*IQR
7    upper_whisker = Q3+1.5*IQR
8    df[col] = np.clip(df1[col] , lower_whisker , upper_whisker)
```

dropoff_latitude

```
9
       return df1
10
11 def treat_outliers_all(df1 , col_list):
12
       for c in col_list:
           df1 = remove_outlier(df , c)
13
14
       return df1
15
16
17
 2 df = treat_outliers_all(df , df.iloc[: , 0::])
 1 df.plot(kind = "box", subplots = True, layout = (7,2), figsize=(15,20)) #Boxplot shows that dataset is free from ou
     fare amount
                               AxesSubplot(0.125,0.787927;0.352273x0.0920732)
     pickup_longitude
                            AxesSubplot(0.547727,0.787927;0.352273x0.0920732)
     pickup latitude
                               AxesSubplot(0.125,0.677439;0.352273x0.0920732)
     dropoff_longitude
                            AxesSubplot(0.547727,0.677439;0.352273x0.0920732)
     dropoff_latitude
                               AxesSubplot(0.125,0.566951;0.352273x0.0920732)
     passenger_count
                            AxesSubplot(0.547727,0.566951;0.352273x0.0920732)
     dtype: object
                                                                   -73.94
         20
                                                                   -73.96
         15
                                                                   -73.98
         10
                                                                   -74.00
                                                                   -74.02
 Saved successfully!
                                       unt
                                                                                             pickup_longitude
                                                                  -73.925
      40.800
                                                                  -73.950
      40.775
                                                                  -73.975
      40.750
      40.725
                                                                  -74.000
      40.700
                                                                  -74.025
                                                                                             dropoff_longitude
                                pickup_latitude
       40.80
                                                                       3
                                                                       2
       40.75
                                                                       1
       40.70
```

passenger_count

1 df.head()

dropoff_latitude

	fare_amount	<pre>pickup_longitude</pre>	pickup_latitude	dropoff_longitude	dropoff_latitude	passenger_count
0	7.5	-73.999817	40.738354	-73.999512	40.723217	1.0
1	7.7	-73.994355	40.728225	-73.994710	40.750325	1.0

1 df.isnull().sum()

fare_amount	0
pickup_longitude	0
pickup_latitude	0
dropoff_longitude	0
dropoff_latitude	0
passenger_count	0
dtype: int64	

1 sns.heatmap(df.isnull()) #Free for null values

1 corr = df.corr() #Function to find the correlation

1 corr

	fare_amount	<pre>pickup_longitude</pre>	pickup_latitude	dropoff_longitude	dropoff_latitude	passen
fare_amount	1.000000	0.167049	-0.114343	0.228189	-0.133700	
pickup_longitude	0.167049	1.000000	0.268243	0.428222	0.083235	
pickup_latitude	-0.114343	0.268243	1.000000	0.053571	0.520707	
dropoff_longitude	0.228189	0.428222	0.053571	1.000000	0.249985	
dropoff_latitude	-0.133700	0.083235	0.520707	0.249985	1.000000	
passenger_count	0.018673	-0.007946	-0.011390	-0.005916	-0.007331	
4						•

¹ fig,axis = plt.subplots(figsize = (10,6))

² sns.heatmap(df.corr(),annot = True) #Correlation Heatmap (Light values means highly correlated)

Dividing the dataset into feature and target values

Dividing the dataset into training and testing dataset

```
[ 11.5 , -73.951395 , 40.770132 , -73.976775 , 40.78026 ], [ 10.5 , -73.971915 , 40.757187 , -73.992037 , 40.74269 ], [ 23.25 , -73.9299405 , 40.77417 , -73.979281 , 40.762337 ]])
```

▼ Linear Regression

Metrics Evaluation using R2, Mean Squared Error, Root Mean Sqared Error

```
1 from sklearn.metrics import r2_score

1 r2_score(y_test,prediction)
     0.0003531071428344301

1 from sklearn.metrics import mean_squared_error

1 MSE = mean_squared_error(y_test,prediction)

1 MSE
     0.7587261028954677

1 RMSE = np.sqrt(MSE)
```

0.8710488521865279

Random Forest Regression

Metrics evaluatin for Random Forest

Colab paid products - Cancel contracts here

✓ 0s completed at 5:30 PM

Saved successfully!