22 вопрос

Def: Взаимно простые многочлены

Многочлены f и g являются взаимно простыми, если их НОД равен ненулевой константе.

au h 1: Для того, что многочлен f и g из F[x] были взаимно простыми необходимо и достаточно, чтобы в F[x] существовали такие v(x) и u(x), что $v(x)\cdot f(x)+u(x)\cdot g(x)=1$ Док-во:

- 1. Необходимость: Пусть f(x) и g(x) взаимно простые многочлены в кольце F[x] \Rightarrow $\exists v(x), u(x) \in F[x]: v(x) \cdot f(x) + u(x) \cdot g(x) = d(x)$, где $d(x) = HO \mathcal{I}(f,g)$, а т.к. $HO \mathcal{I}(f,g) = 1$ \Rightarrow $v(x) \cdot f(x) + u(x) \cdot g(x) = 1$ чтд
- 2. Достаточность: Пусть $d(x)=HO {\it Д}(f,g)$. f,g многочлены из F[x]. Значит каждое слагаемое из левой части $v(x)\cdot f(x)+u(x)\cdot g(x)=1$ делится на d(x) \Rightarrow 1 делится на d(x) \Rightarrow $d(x)\neq 0$ чтд.

Свойства

1 Если многочлен f взаимно прост с каждым из многочленов g и h, то он взаимно прост и с их произведением $g \cdot h$

Док-во: т.к. f прост с каждым из многочленов g и h, то \Rightarrow $\exists v(x), u(x), v_1(x), u_1(x)$:

$$v(x)\cdot f(x)+u(x)\cdot g(x)=1; \ v_1(x)\cdot f(x)+u_1(x)\cdot h(x)=1$$

Складывая эти равенства, получим:

$$v_1(x) + f(x) \cdot v(x) + u_1(x) \cdot h(x) + v_1(x) \cdot g(x) \cdot u(x)) \cdot f(x) + (u(x) \cdot u_1(x))(g(x) \cdot h(x)) = 1$$

Применяя Th 1 (Которая выше) \Rightarrow что многочлены f и gh взаимно просты. ЧТД

 ${\it 2}$ Если fg делится на h причем многочлены f и h взаимно просты, то g делится на h

Док-во: тк f и h взаимно просты, то по Th 1 \Rightarrow $\exists v(x), u(x): v(x) \cdot f(x) + u(x) \cdot g(x) = 1$ $v(x) \cdot f(x) + u(x) \cdot g(x) = 1 \mid \cdot g(x) \implies g(x) \cdot v(x) \cdot f(x) + u(x) \cdot g(x) \cdot h(x) = g(x)$ Получаем, что первое и второе слагаемое в левой части делятся на h по условию \Rightarrow g делится на h.

 ${\it 3}$ Если f делится на g и на h, причем $HO {\it Д}(g,h)=1$ \Rightarrow f делится на gh $\it Док-во:$ тк f делится на g, то $\exists \ q:f=q\cdot g$, но f делится на h, т.к. $HO {\it Д}(g,h)=1$ то по свойству 2 g делится на h \Rightarrow f делится на $g\cdot h$. ЧТД