| CSM 7  | 0   |   |
|--------|-----|---|
| Spring | 201 | 6 |

# $\begin{array}{ccc} & \text{Discrete Mathematics and Probability Theory} \\ & \text{Graphs, Trees, Hypercubes} & Worksheet & 3 \end{array}$

| TZ  | T      |   |
|-----|--------|---|
| Kev | ı erms | ì |

Incident

Adjacent/Neighbors

Degree of a vertex

Path, walk, cycle, tour

Eulerian tour

Tree

Hypercube

## I. Graph Theory

Let G = (V, E) be an undirected graph. Match the term with the definition.

| W           | ord Bank.   |                      |                                                 |                   |
|-------------|-------------|----------------------|-------------------------------------------------|-------------------|
|             | Walk        | Cycle                | Tour                                            | Path              |
|             |             | Walk that starts and | ends at the same nod                            | e                 |
| _           |             | Sequence of edges.   |                                                 |                   |
| _           |             | Sequences of edges   | with possibly repeate                           | d vertex or edge. |
| _           |             | =                    | hat starts and ends on ices (except the first a |                   |
| What is a s | imple path? |                      |                                                 |                   |
|             |             |                      |                                                 |                   |

### Exercises

1. Given a graph G with n vertices, where n is even, prove by induction that if every vertex has degree n/2+1, then G must contain a 3-cycle.

### II. Trees

If complete graphs are "maximally connected," then trees are the opposite: Removing just a single edge disconnects the graph! Formally, there are a number of equivalent definitions of when a graph G = (V,E) is a tree, including:

What are four ways to describe trees?

| 1) | G is     | and contains |         |
|----|----------|--------------|---------|
| 2) | G is     | and has      |         |
| 3) | G is     | and          |         |
| 4) | G has no | and          | creates |
|    |          |              |         |

Theorem: G is connected and contains no cycles if and only if G is connected and has n - 1 edges.

We saw in the notes on page 8 that 1 and 2 above were saying the same thing- that is, stated rigorously,  $1 \Leftrightarrow 2$ . We will now prove that  $1 \Leftrightarrow 3$ :

Recall from the notes that a **rooted tree** is a tree with a particular node designated as the root, and the other nodes arranged in levels, "growing down" from the root. An alternative, recursive, definition of rooted tree is the following:

A rooted tree consists of a single node, the root, together with zero or more "branches," each of which is itself a rooted tree. The root of the larger tree is connected to the root of each branch



A rooted tree.

2. Prove that given any tree, selecting any node to be the root produces a rooted tree according to the definition above.

| A <b>spanning tree</b> of a graph G is a subgraph of G that contains all the vertices of G and is a tree. |
|-----------------------------------------------------------------------------------------------------------|
| 3. Prove that a graph $G = (V, E)$ is connected if and only if it contains a spanning tree.               |
|                                                                                                           |
|                                                                                                           |
|                                                                                                           |
|                                                                                                           |
|                                                                                                           |
|                                                                                                           |
|                                                                                                           |
| 4. How many distinct spanning trees does K <sub>3</sub> have? How many does K <sub>4</sub> have?          |
|                                                                                                           |
|                                                                                                           |
|                                                                                                           |
|                                                                                                           |
|                                                                                                           |

#### III. Hypercubes

What is an n dimensional hypercube? The bit definition: Two \_\_\_\_\_ x and y are \_\_\_\_\_ if and only if \_\_\_\_ and differ in bit position. Recursive definition: Define the 0-\_\_\_\_\_ as the (n-1) dimensional with vertices labeled 0x (x is \_\_\_\_\_(hint: how many remaining bits are there?). Do the same for the 1-\_\_\_\_\_ with vertices labeled \_\_\_\_\_. Then an n dimensional \_\_\_\_\_\_ is created by placing an edge between \_\_\_\_ and \_\_\_\_ in the \_\_\_\_ and \_\_\_\_ respectively. Exercises 1. How many vertices does an n dimensional hypercube have? 2. How many edges does an n dimensional hypercube have? 3. How many edges do you need to cut from a hypercube to isolate one vertex in an n-dimensional hypercube?

4. The hypercube is a popular architecture for parallel computation. Let each vertex of the hypercube represent a processor and each edge represent a communication link. Suppose we want to send a packet for vertex x to vertex y. Consider the following "bit-fixing" algorithm:

In each step, the current processor compares its address to the destination address of the packet. Let's say that the two addresses match up to the first k positions. The processor then forwards the packet and the destination address on to its neighboring processor whose address matches the destination address in at least the first k+1 positions. This process continues until the packet arrives at its destination.

Consider the following example where n = 4: Suppose that the source vertex is (1001) and the destination vertex is (0100). Give the sequence of processors that the packet is forwarded to using the bit-fixing algorithm.

| Bonus Exercises:                                                                                                                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Let $v$ be an odd degree node. Consider the longest walk starting at $v$ that does not repeat any edges (though it may omit some). Let $w$ be the final node of the walk . Show that $v \neq w$ . |
|                                                                                                                                                                                                   |
|                                                                                                                                                                                                   |
|                                                                                                                                                                                                   |
|                                                                                                                                                                                                   |
|                                                                                                                                                                                                   |
|                                                                                                                                                                                                   |
|                                                                                                                                                                                                   |
|                                                                                                                                                                                                   |
|                                                                                                                                                                                                   |
| Prove that undirected connected graph with $ V  \ge 2$ , 2 nodes have same degree                                                                                                                 |
|                                                                                                                                                                                                   |
|                                                                                                                                                                                                   |
|                                                                                                                                                                                                   |
|                                                                                                                                                                                                   |
|                                                                                                                                                                                                   |
|                                                                                                                                                                                                   |
|                                                                                                                                                                                                   |

| Prove that every undirected finite graph where every vertex has degree of at least 2 has a cycle.        |
|----------------------------------------------------------------------------------------------------------|
|                                                                                                          |
|                                                                                                          |
| Prove that every undirected finite graph where every vertex has degree of at least 3 has a cycle of even |
| length.                                                                                                  |
|                                                                                                          |
|                                                                                                          |
|                                                                                                          |
|                                                                                                          |
|                                                                                                          |