Wersja:

Imię i Nazwisko):
-----------------	----

Maksymilian Debeściak

Gru	pa^1 :
- 1	10

Grupa.	
wt s.103	cz 8–10 s.103
wt s.139	cz 8–10 s.139
wt s.141	cz12–14 s.103
zaaw.	cz12–14 s.139

Logika dla informatyków

Kolokwium nr 3, 17 stycznia 2014

Zadanie 1 (2 punkty). Jeśli istnieje relacja binarna na zbiorze liczb naturalnych N, która jest symetryczna i przechodnia, ale nie zwrotna, to w prostokąt poniżej wpisz dowolną taką relację. W przeciwnym przypadku wpisz słowa "NIE ISTNIEJE"

$$\{\langle m, n \rangle \in \mathbb{N} \times \mathbb{N} \mid m > 42 \land n > 42\}$$

Zadanie 2 (2 punkty). Rozważmy funkcję $\varphi: \mathbb{N}^{[0,1]} \to \mathbb{N}^{[2,3]}$, która dla argumentów $f \in \mathbb{N}^{[0,1]}$ przyjmuje takie wartości $\varphi(f):[2,3]\to\mathbb{N},$ że $(\varphi(f))(x)=f(x-2)\mathrm{mod}$ 3. Jeśli funkcja φ ma funkcję odwrotną, to w prostokat poniżej wpisz funkcję odwrotną do φ . W przeciwnym przypadku wpisz uzasadnienie, dlaczego funkcja odwrotna nie istnieje.

$$\varphi$$
 nie jest "na", np nie przyjmuje takiej wartości $f:\mathbb{N}\to\mathbb{N}$ że $f(n)=42$

Zadanie 3 (2 punkty). Wpisz w puste pola poniższej tabelki moce odpowiednich zbiorów.

$\mathbb{Q} \times \mathbb{N}$	$\mathbb{N} \times \{0, 1, 2\}$	$\mathcal{P}(\mathbb{Q} \times \{0,1\})$	$\mathbb{R}^{\{0,1\}}$	$\{0,1,2\}^{\mathbb{Q}}$	$(\mathbb{Q}\setminus\mathbb{N})$	$\mathbb{Q}^{\mathbb{N}}$	$\mathcal{P}(\{a,b,c\})$

Zadanie 4 (2 punkty). W zbiorze $\mathbb{N} \times \mathbb{N}$ definiujemy relację równoważności \approx wzorem

$$\langle m, n \rangle \approx \langle m', n' \rangle \stackrel{\text{df}}{\iff} \min(m, n) = \min(m', n') \wedge \max(m, n) = \max(m', n').$$

W prostokaty poniżej wpisz odpowiednio moc klasy abstrakcji pary $\langle 17,42 \rangle$ oraz moc zbioru klas abstrakcji relacji \approx .

$$|[\langle 17, 42 \rangle]_{\approx}| =$$
 2

$$|\mathbb{N} \times \mathbb{N}/_{pprox}| =$$

Zadanie 5 (2 punkty). Rozważmy funkcje

 $f: (A \times B)^C \to A^{B \times C},$

 $q: B \times C \to A$

 $h: C \to A \times B$

oraz elementy $a \in A$, $b \in B$ i $c \in C$. W tym zadaniu uznamy wyrażenie za poprawne jeśli dla każdej użytej w nim funkcji jej argument należy do dziedziny tej funkcji. Np. wyrażenie f(a) nie jest poprawne, bo $a \notin (A \times B)^C$. Wpisz słowo "TAK" w prostokąty obok tych spośród podanych niżej wyrażeń, które są poprawne. W pozostałe prostokąty wpisz słowo "NIE".

$$g(f(h))$$
 NIE $(f(g))(a)$ NIE $f(h(c))$ NIE $(f(h))(b,c)$ TAK

¹Proszę zakreślić właściwą grupę ćwiczeniową.

Imię i Nazwisko:

Maksymilian Debeściak

Grupa ⁺ :

orupa.					
wt s.103	cz 8–10 s.103				
wt s.139	cz 8–10 s.139				
wt s.141	cz 12-14 s. 103				
zaaw.	cz12-14 s.139				

Zadanie 6 (5 punktów). W zbiorze $\mathbb{N}^{\mathbb{N}}$ wszystkich funkcji z \mathbb{N} w \mathbb{N} definiujemy relację równoważności \simeq wzorem

$$f \simeq g \iff f(42) = g(42).$$

Jaką moc ma zbiór klas abstrakcji $\mathbb{N}^{\mathbb{N}}/_{\simeq}$ relacji \simeq ? Uzasadnij odpowiedź.

Zadanie 7 (5 punktów). Niech A, B i C będą niepustymi zbiorami. Udowodnij, że jeśli $|A| \leq |B|$ to $|C^A| \leq |C^B|$.

Zadanie 8 (5 punktów). Udowodnij, że zbiór

$$\{f \in \mathbb{R}^{\mathbb{N}} \mid f : \mathbb{N} \to \mathbb{R} \text{ jest r\'ożnowartościowa}\}$$

ma moc continuum.

 $^{^{1}\}mathrm{Proszę}$ zakreślić właściwą grupę ćwiczeniową.

Wersja: B

Imię i Nazwisko:

Maksymilian Debeściak

 $Grupa^1$:

Grupa.	
wt s.103	cz 8–10 s.103
wt s.139	cz 8–10 s.139
wt s.141	cz12-14 s.103
zaaw.	cz 12-14 s. 139

Logika dla informatyków

Kolokwium nr 3, 17 stycznia 2014

Zadanie 1 (2 punkty). Jeśli istnieje relacja binarna na zbiorze liczb naturalnych \mathbb{N} , która jest zwrotna i symetryczna, ale nie przechodnia, to w prostokąt poniżej wpisz dowolną taką relację. W przeciwnym przypadku wpisz słowa "NIE ISTNIEJE"

$$\{\langle m,n\rangle\in\mathbb{N}\times\mathbb{N}\mid\ |m\!-\!n|<42\}$$

Zadanie 2 (2 punkty). Rozważmy funkcję $\varphi:[0,1]^{\mathbb{N}} \to [2,3]^{\mathbb{N}}$, która dla argumentów $f \in [0,1]^{\mathbb{N}}$ przyjmuje takie wartości $\varphi(f):\mathbb{N} \to [2,3]$, że $(\varphi(f))(n)=f(n \bmod 3)+2$. Jeśli funkcja φ ma funkcję odwrotną, to w prostokąt poniżej wpisz funkcję odwrotną do φ . W przeciwnym przypadku wpisz uzasadnienie, dlaczego funkcja odwrotna nie istnieje.

$$\varphi$$
nie jest różnowa
rtościowa. Dla $f_1(n)=0$ i $f_2(n)=\lfloor\frac{n}{3}\rfloor$ mam
y $\varphi(f_1)=\varphi(f_2)$

Zadanie 3 (2 punkty). Wpisz w puste pola poniższej tabelki moce odpowiednich zbiorów.

$\mathcal{P}(\mathbb{N} \times \mathbb{Q})$	$\mathbb{N} \times \mathbb{N}$	$\{0,1\} \times \mathbb{Q}$	$\{a,b,c\}^{\mathbb{N}}$	$M_{\mathbb{Q}}$	$\mathbb{R}\setminus[0,1]$	$\mathcal{P}(\{0,1,2,3\})$	$\mathbb{N}^{\{0,1\}}$

Zadanie 4 (2 punkty). W zbiorze $\mathbb{N} \times \mathbb{N}$ definiujemy relację równoważności \approx wzorem

$$\langle m, n \rangle \approx \langle m', n' \rangle \stackrel{\text{df}}{\iff} m + n = m' + n'.$$

W prostokąty poniżej wpisz odpowiednio moc klasy abstrakcji pary (0,42) oraz moc zbioru klas abstrakcji relacji \approx .

$$|[\langle 0, 42 \rangle]_{\approx}| = \boxed{\qquad \qquad 43}$$

$$|\mathbb{N} \times \mathbb{N}/_{\approx}| =$$
 \aleph_0

Zadanie 5 (2 punkty). Rozważmy funkcje

 $f: (A \times B)^C \to C^{A \times B},$

 $g: A \times B \to C,$ $h: C \to A \times B$

oraz elementy $a \in A$, $b \in B$ i $c \in C$. W tym zadaniu uznamy wyrażenie za poprawne jeśli dla każdej użytej w nim funkcji jej argument należy do dziedziny tej funkcji. Np. wyrażenie f(a) nie jest poprawne, bo $a \notin (A \times B)^C$. Wpisz słowo "TAK" w prostokąty obok tych spośród podanych niżej wyrażeń, które są poprawne. W pozostałe prostokąty wpisz słowo "NIE".

¹Proszę zakreślić właściwą grupę ćwiczeniową.

Wersja: **B**

Imię i Nazwisko:

Maksymilian Debeściak

 $Grupa^1$:

Grupa.					
wt s.103	cz 8–10 s.103				
wt s.139	cz 8–10 s.139				
wt s.141	cz 12-14 s. 103				
zaaw.	cz12-14 s.139				

Zadanie 6 (5 punktów). W zbiorze $\mathbb{N}^{\mathbb{N}}$ wszystkich funkcji z \mathbb{N} w \mathbb{N} definiujemy relację równoważności \simeq wzorem

$$f \simeq g \iff f(42) = g(42).$$

Rozważmy funkcję identycznościową $id:\mathbb{N}\to\mathbb{N},\ id(n)=n.$ Jaką moc ma klasa abstrakcji $[id]_{\simeq}$? Uzasadnij odpowiedź.

Zadanie 7 (5 punktów). Udowodnij, że jeśli $|A| \leq |B|$ to $|\mathcal{P}(A)| \leq |\mathcal{P}(B)|$.

Zadanie 8 (5 punktów). Udowodnij, że zbiór

$$\{f \in \mathbb{N}^{\mathbb{N}} \mid f : \mathbb{N} \to \mathbb{N} \text{ jest "na"} \}$$

ma moc continuum.

 $^{^{1}\}mathrm{Proszę}$ zakreślić właściwą grupę ćwiczeniową.