PREVISÃO DE MOVIMENTOS FUTUROS DE AÇÕES DA BOLSA DE VALORES

Conteúdo

- □ Introdução
- Previsão em Ações
- □ SVM
- Método
- SVM: Experimentos Realizados
- Redes Neurais LSTM
- LSTM: Experimentos Realizados

- Previsão, em estatística é o processo de estimativas em situações de incertezas.
 Normalmente se refere a estimação de séries temporais ou dados instantâneos.
- Exemplos:
 - □ Previsão de demanda de consumo;
 - Previsão do clima;
 - □ Previsão de produção de fábricas...

- Mas e ações, é possível prever 100% o preço futuro das ações? Não! O que é possível é acertar mais do que se fosse aleatoriamente.
- Taxa de acerto:
 - □ Comparado com outras áreas é considerado baixo, por isso este tema é considerado um dos mais desafiadores. Métodos de classificação em previsão de ações acertam bem menos, em torno de 60-65%

Por que há espaço para previsão na bolsa?

- 70% das transações nos EUA são feitas por software;
- Morgan Stanley, City Group contratam dezenas de Cientistas de dados por ano;

Por que há espaço para previsão na bolsa?

Valor de Mercado das Ações do iBovespa R\$ 2.744.866.348.640,00

Valor movimentado diariamente: R\$ 6.500.000,00

Ou seja:

Apenas 0,23% do valor de mercado é negociado diariamente

Por que há espaço para previsão na bolsa?

Grande Fundo de Investimento

60,3% das ações são negociadas por estrangeiros, que em sua grande maioria são grandes investidores, fundos de pensão, grandes empresas.

25,7% são fundos, empresas e bancos brasileiros.

Por que há espaço para previsão na bolsa?

Pequeno investidor...

Aproximadamente 15% das ações são negociadas por pessoas físicas, e que por terem pequenas quantias das ações podem negociar em instantes todo o seu estoque de ações.

Por que há espaço para previsão na bolsa?

Resultado dos grandes movimentos gerados por grandes fundos: **Tendência**.

- Característica dos Dados
 - Dados estruturados
 - Série temporal não estacionária
 - Os valores são afetados por:
 - Ciclos;
 - Tendências;
 - E valores aleatórios.

□ Tendências e Ciclos

□ Tendências e Ciclos

Composição de Valor

- Fundamentos da Empresa;
- Eventos políticos;
- Situação econômica e mercadológica;
- Taxas e juros bancários;
- Decisões de investidores institucionais;
- Movimentos de outros mercados de ações;
- E a psicologia dos investidores.

Dados Iniciais (Não transformados)

Data	Onen	High [Law E	Class E	Volume =
Date	Open 💌	High 🔽	Low 🔼	Close 🔽	Volume 💌
2003-06-02	6,92	6,99	6,77	6,78	4874400
2003-06-03	6,79	6,83	6,77	6,79	2041200
2003-06-04	6,75	6,87	6,68	6,8	3501600
2003-06-05	6,76	6,83	6,76	6,78	2508000
2003-06-06	6,8	6,9	6,8	6,9	2706000
2003-06-09	6,9	6,9	6,8	6,8	1426800
2003-06-10	6,82	6,82	6,74	6,75	3268800
2003-06-11	6,76	6,85	6,71	6,73	3192000
2003-06-12	6,74	6,74	6,65	6,66	4872000
2003-06-13	6,7	6,7	6,6	6,6	3304800
2003-06-16	6,6	6,66	6,56	6,62	3888000
2003-06-17	6,67	6,74	6,64	6,67	4522800
2003-06-18	6,73	6,83	6,67	6,75	4756800
2003-06-20	6,8	6,8	6,68	6,71	5431200

Aplicação de mineração de Dados no contexto do trabalho consiste em:

- □ Transformação
 - Fase de extração de características e criação de novos atributos. Esses atributos podem refletir características como:
 - Tendência
 - Força compradora / vendedora;
 - Esgotamento de tendência.

- Transformação Extração de Indicadores Técnicos
 - Médias Móveis

□ Simples (SMA):

$$SMA_t = \frac{\sum_{i=0}^{n} C_{t-i}}{n}$$

- Transformação Extração de Indicadores Técnicos
 - Médias Móveis

□ Simples (SMA):

$$SMA_t = \frac{\sum_{i=0}^{n} C_{t-i}}{n}$$

- Transformação Extração de Indicadores Técnicos
 - Médias Móveis

□ Simples (SMA):

$$SMA_t = \frac{\sum_{i=0}^{n} C_{t-i}}{n}$$

□ Transformação – Médias Móveis

- □ Transformação Outros Indicadores
 - Taxas de mudança do preço, podendo indicar um movimento tendencioso
 - Commodity Channel Index (CCI)
 - Níveis de sobre-compra e sobre-venda
 - Williams %R, Relative Strength Index (RSI), Aroon Up e Aroon Down
 - Apontam tendências e reversões
 - Estocásticos %K e %D, Moving Average Convergence/Divergence (MACD), Indicadores Direcionais (ADX, +DI, -DI), Weighted Moving Average (WMA) e Psycological Line (PSY)

- □ Transformação
 - Z-normalization / Standardization

$$x' = \frac{(x - \mu)}{\sigma}$$

Característica dos Dados

- -Não linear;
- -Complexa;
- -Dados não paramétricos.

N. Neighbors

Característica dos Dados

Linear SVM

ADX - StochK

RBF SVM

Polynomial SVM Decision Tree Random Forest Naive-Bayes

SVM

- Structural Risk Minimization (SRM)
 - Statistical learning theory for controlling generalization to determine the ideal tradeoff between structural complexity and empirical risk

SVM

High dimensional feature mapping

- $f(x) = sgn\left(\sum_{i=1}^{N} y_i \alpha_i \cdot k(x_j, x_i) + b\right)$
- Radial Basis Function: $k(x_i, x_j) = exp(-\gamma ||x_i x_j||)^d$

Data in R^3 (separable w/ hyperplane)

Previsão em Ações - Objetivos

- Criar um método de classificação do dia seguinte em ações da bolsa de valores em "alta" ou "baixa".
- Obter o melhor conjunto de atributos (Feature Engineering);
- Simulação de compra e venda de acordo com os sinais gerados pelo modelo.
- Gerar um modelo generalista e único que possa classificar qualquer ação, não apenas a ação que foi treinado.

- Feature Engineering
 - Genetic Algorithm for Time Window Length Optimization (GATWLO)
 - Encontra o melhor conjunto de tamanhos de janelas de tempo para os atributos além de selecionar apenas os atributos mais relevantes
- Conjuntos de Dados de Treinamento
 - Ações das bolsas Down Jones:
 - Microsoft (código: MSFT);
 - Nike (código: NKE);
 - Intel (código: INTC);
 - Goldman Sachs (código: GS).
 - □ Janeiro 2000 Dezembro 2014 Amostragem de 50% com balanceamento por classe.
 - Desta amostragem, 70% foi utilizado para treinamento e 30% para testes do classificador.

- Conjuntos de Dados Simulação de Negociações
 - Ações das bolsas Down Jones:
 - YHOO: 01/01/2013 12/31/2014. Trend: Up-trend;
 - FORD: 01/01/2008 12/31/2009. Trend: Side-trend;
 - JPM: 11/01/2006 10/31/2008. Trend: Down-trend.

GA for Feature Optimization

GA for Feature Optimization

Avaliação – Algoritmo de Negociação

```
If f(x') = yes

If amount stocks = 0

Then buy
else

Then hold

If f(x') = no
if amount stocks > 0

Then sell all
```

$$RR(x) = \frac{TP(x)}{Inv} * 100$$

Experimentos Realizados

Experimentos Realizados

- Simulação
 - Up-trend rally

	RR[%]	MDD[%]	RR B&H [%]	MDD B&H [%]
AAPL	69.8	-8.93	51.4	-10.93
MSFT	43.9	-13	38.7	-13.51

Redes Neurais Recursivas

Redes Neurais Recorrentes (Recurrent Neural Network - RNN) levam em consideração a sequencia de eventos para classificação.

NN Tradicionais

RNN

Um loop permite que as informações sejam passadas de uma etapa da rede para a próxima.

Redes Neurais Recursivas

RNN levam em consideração a sequencia de eventos para classificação.

LSTMs foram desenhadas para evitar o problema de dependências de longos períodos. (Long-term dependency)

LSTM Memory Cell

(Hochreiter & Schmidhuber, 1997)

LSTMs também se organizam em cadeia. Porém com 4 camadas de redes neurais internas.

LSTM

Os estados das células fluem horizontalmente entre os blocos

Os *gates* controlam a alteração de estado de C

 C_{t-1} - Cell state

Gates

Forget gate: Controla o que será esquecido do estado

As próximas duas camadas controlam o que será armazenado no estado da célula

Atualiza o estado de Ct-1 para o Ct

Decide qual a saída baseado um sigmoid da saída anterior com o novo valor armazenado na célula

Experimento:

```
model = Sequential()
  model.add(LSTM(input_dim=5, output_dim=100,
    return_sequences=True))
  model.add(Dropout(0.25))

model.add(LSTM(
    output_dim=150, return_sequences=False))
  model.add(Dropout(0.4))

model.add(Dense(
    output_dim=1))
  model.add(Activation("sigmoid"))
```


Experimentos Realizados

- Resultados Finais
 - Resultados das Negociações

SVM

	RR[%]	RR B&H [%]
AAPL	69,8	51.4
MSFT	43,9	38.7

	RR [%]	RR B&H [%]
GE	118.9	-58.65
Pfizer	104.1	-29.22
Google	106	-15.78

LSTM

	RR[%]	RR B&H [%]
AAPL	120,6	51.4
MSFT	40,7	38.7

	RR [%]	RR B&H [%]
GE	96,1	-58.65
Pfizer	117,5	-29.22
Google	52,4	-15.78

Considerações Finais

- Conclusões
 - □ Tipo de informação complexa e de difícil previsão
 - A otimização de janelas obteve bons resultados
 - A maioria dos atributos reduziram o tamanho da janela em relação aos padrões deste mercado
 - LSTM tem um bom potencial, ainda é necessário otimização na arquitetura e alguns parâmetros

