Package 'ScaleSpikeSlab'

October 12, 2022

Type Package
Title Scalable Spike-and-Slab
Version 1.0
Date 2022-05-13
Description A scalable Gibbs sampling implementation for high dimensional Bayesian regression with the continuous spike-and-slab prior. Niloy Biswas, Lester Mackey and Xiao-Li Meng, ``Scalable Spike-and-Slab" (2022) <arxiv:2204.01668>.</arxiv:2204.01668>
License GPL (>= 2)
Imports Rcpp, stats, TruncatedNormal
LinkingTo Rcpp, RcppEigen
RoxygenNote 7.1.2
NeedsCompilation yes
Author Niloy Biswas [aut, cre] (https://orcid.org/0000-0001-9081-5702), Lester Mackey [aut], Xiao-Li Meng [aut]
Maintainer Niloy Biswas <niloy_biswas@g.harvard.edu></niloy_biswas@g.harvard.edu>
Depends R (>= $3.5.0$)
Repository CRAN
Date/Publication 2022-05-18 17:00:07 UTC
R topics documented:
riboflavin spike_slab_linear spike_slab_logistic spike_slab_params spike_slab_probit synthetic_data
Index

2 spike_slab_linear

riboflavin

Riboflavin GWAS dataset

Description

Dataset of riboflavin production by Bacillus subtilis containing n = 71 observations of a one-dimensional response (riboflavin production) and p = 4088 predictors (gene expressions). The one-dimensional response corresponds to riboflavin production.

Usage

```
data(riboflavin)
```

Format

A data frame containing a vector y of length 71 (responses) and a matrix X of dimension 71 by 4088 (gene expressions)

Details

The processed dataset is the same as in the R packages qut and hdi.

References

Buhlmann, P., Kalisch, M. and Meier, L. (2014) *High-dimensional statistics with a view towards applications in biology*. Annual Review of Statistics and its Applications 1, 255–278

Examples

```
data(riboflavin)
y <- as.vector(riboflavin$y)
X <- as.matrix(riboflavin$x)</pre>
```

spike_slab_linear

spike_slab_linear

Description

Generates Markov chain targeting the posterior corresponding to Bayesian linear regression with spike and slab priors

spike_slab_linear 3

Usage

```
spike_slab_linear(
 chain_length,
 Χ,
 у,
  tau0,
  tau1,
 q,
 a0 = 1,
 b0 = 1,
 rinit = NULL,
 verbose = FALSE,
 burnin = 0,
  store = TRUE,
 Xt = NULL,
 XXt = NULL,
  tau0_inverse = NULL,
  tau1_inverse = NULL
)
```

Arguments

chain_length	Markov chain length
Χ	matrix of length n by p
у	Response
tau0	prior hyperparameter (non-negative real)
tau1	prior hyperparameter (non-negative real)
q	prior hyperparameter (strictly between 0 and 1)
a0	prior hyperparameter (non-negative real)
b0	prior hyperparameter (non-negative real)
rinit	initial distribution of Markov chain (default samples from the prior)
verbose	print iteration of the Markov chain (boolean)
burnin	chain burnin (non-negative integer)
store	store chain trajectory (boolean)
Xt	Pre-calculated transpose of X
XXt	Pre-calculated matrix X*transpose(X) (n by n matrix)
tau0_inverse	Pre-calculated matrix inverse(I + tau0^2*XXt) (n by n matrix)
tau1_inverse	Pre-calculated matrix inverse(I + tau1^2*XXt) (n by n matrix)

Value

Output from Markov chain targeting the posterior corresponding to Bayesian linear regression with spike and slab priors

spike_slab_logistic

Examples

```
# Synthetic dataset
syn_data <- synthetic_data(n=100,p=200,s0=5,error_std=2,type='linear')
X <- syn_data$X
y <- syn_data$y

# Hyperparamters
params <- spike_slab_params(n=nrow(X),p=ncol(X))

# Run S^3
sss_chain <- spike_slab_linear(chain_length=4e3,burnin=1e3,X=X,y=y,tau0=params$tau0,tau1=params$tau1,q=params$q,a0=params$a0,b0=params$b0,verbose=FALSE,store=FALSE)

# Use posterior probabilities for variable selection
sss_chain$z_ergodic_avg[1:10]</pre>
```

```
spike_slab_logistic spike_slab_logistic
```

Description

Generates Markov chain targeting the posterior corresponding to Bayesian logistic regression with spike and slab priors

Usage

```
spike_slab_logistic(
  chain_length,
  X,
  y,
  tau0,
  tau1,
  q,
  rinit = NULL,
  verbose = FALSE,
  burnin = 0,
  store = TRUE,
  Xt = NULL,
  XXt = NULL
)
```

Arguments

```
chain_length Markov chain length
X matrix of length n by p
y Response
```

spike_slab_params 5

tau0	prior hyperparameter (non-negative real)
tau1	prior hyperparameter (non-negative real)
q	prior hyperparameter (strictly between 0 and 1)
rinit	initial distribution of Markov chain (default samples from the prior)
verbose	print iteration of the Markov chain (boolean)
burnin	chain burnin (non-negative integer)
store	store chain trajectory (boolean)
Xt	Pre-calculated transpose of X
XXt	Pre-calculated matrix X*transpose(X) (n by n matrix)

Value

Output from Markov chain targeting the posterior corresponding to Bayesian logistic regression with spike and slab priors

Examples

```
# Synthetic dataset
syn_data <- synthetic_data(n=100,p=200,s0=5,error_std=2,type='logistic')
X <- syn_data$X
y <- syn_data$y

# Hyperparamters
params <- spike_slab_params(n=nrow(X),p=ncol(X))

# Run S^3
sss_chain <- spike_slab_logistic(chain_length=4e3,burnin=1e3,X=X,y=y,tau0=params$tau0,tau1=params$tau1,q=params$q,verbose=FALSE,store=FALSE)

# Use posterior probabilities for variable selection
sss_chain$z_ergodic_avg[1:10]</pre>
```

Description

Generates hyperparameters for spike-and-slab

Usage

```
spike_slab_params(n, p)
```

Arguments

n number of observations p number of covariates 6 spike_slab_probit

Value

```
spike-and-slab hyperparameters q, tau0, tau1, a0, b0
```

Examples

```
hyper_params <- spike_slab_params(n=100,p=200)
print(hyper_params)</pre>
```

spike_slab_probit

Description

Generates Markov chain targeting the posterior corresponding to Bayesian probit regression with spike and slab priors

Usage

```
spike_slab_probit(
  chain_length,
  X,
  y,
  tau0,
  tau1,
  q,
  rinit = NULL,
  verbose = FALSE,
  burnin = 0,
  store = TRUE,
  Xt = NULL,
  XXt = NULL,
  tau0_inverse = NULL,
  tau1_inverse = NULL
)
```

Arguments

chain_length	Markov chain length
Χ	matrix of length n by p
у	Response
tau0	prior hyperparameter (non-negative real)
tau1	prior hyperparameter (non-negative real)
q	prior hyperparameter (strictly between 0 and 1)
rinit	initial distribution of Markov chain (default samples from the prior)
verbose	print iteration of the Markov chain (boolean)

synthetic_data 7

burnin	chain burnin (non-negative integer)
store	store chain trajectory (boolean)
Xt	Pre-calculated transpose of X
XXt	Pre-calculated matrix $X*transpose(X)$ (n by n matrix)
tau0_inverse	Pre-calculated matrix inverse(I + tau0^2*XXt) (n by n matrix)
tau1_inverse	Pre-calculated matrix inverse(I + tau1^2*XXt) (n by n matrix)

Value

Output from Markov chain targeting the posterior corresponding to Bayesian logistic regression with spike and slab priors

Examples

```
# Synthetic dataset
syn_data <- synthetic_data(n=100,p=200,s0=5,error_std=2,type='probit')
X <- syn_data$X
Xt <- t(X)
y <- syn_data$y

# Hyperparamters
params <- spike_slab_params(n=nrow(X),p=ncol(X))

# Run S^3
sss_chain <- spike_slab_probit(chain_length=4e3,burnin=1e3,X=X,y=y,tau0=params$tau0,tau1=params$tau1,q=params$q,verbose=FALSE,store=FALSE)

# Use posterior probabilities for variable selection
sss_chain$z_ergodic_avg[1:10]</pre>
```

synthetic_data

synthetic_data

Description

Generates synthetic linear and logistic regression data

Usage

```
synthetic_data(
   n,
   p,
   s0,
   error_std,
   type = "linear",
   scale = TRUE,
   signal = "constant"
)
```

8 synthetic_data

Arguments

n	number of observations
р	number of covariates
s0	sparsity (number of non-zero components of the true signal)
error_std	Standard deviation of the Gaussian noise (linear regression only)
type	dataset type ('linear' or 'logistic')
scale	design matrix \boldsymbol{X} has columns mean zero and standard deviation 1 (TRUE or FALSE)
signal	non-zero components of the true signal ('constant' or 'deacy')

Value

Design matrix, response and true signal vector for linear and logistic regression

Examples

```
syn_data <- synthetic_data(n=100,p=200,s0=5,error_std=2)

# syn_data$X is an n by p design matrix
dim(syn_data$X)

# syn_data$y is a length n response vector
length(syn_data$y)

# syn_data$true_beta is a length n response vector with only the first s0 entries non-zero
all(syn_data$true_beta[1:5]!=0)
all(syn_data$true_beta[-c(1:5)]==0)</pre>
```

Index

```
* datasets
riboflavin, 2
riboflavin, 2
spike_slab_linear, 2
spike_slab_logistic, 4
spike_slab_params, 5
spike_slab_probit, 6
synthetic_data, 7
```