Федеральное агентство по образованию МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ

(Национальный исследовательский университет)

Кафедра 106

КУРСОВАЯ РАБОТА

по дисциплине «Динамика полета»

Выполнил Москвитин Андрей Студент гр. М1О-403Б-18

Подпись:

Москва

РЕФЕРАТ

Курсовая работа по дисциплине «Динамика полета» 45 с., 49 рис., 0 источн., 26 табл. РАСЧЕТ ЛЁТНО-ТЕХНИЧЕСКИХ ХАРАКТЕРИСТИК.

Объектами исследования является расчет лётно-технических, взлётно-посадочных характеристик, траектории полета, диаграммы транспортных возможностей, характеристик продольной и статической устойчивости и управляемости самолета ИЛ-76

Цель работы – закрепление и систематизация знаний по динамике полета, а также овладение навыками инженерной работы в части расчета летных и пилотажных характеристик самолета.

содержание

1.	Ис	кодные данные	4
2.	Pac	ечет лётно – технических характеристик самолета	5
3.	Pac	чет траектории полета	27
	3.1.	Расчет характеристик набора высоты	27
	3.2.	Расчет характеристик крейсерского полета	30
	3.3.	Расчет характеристик участка снижения	31
	3.4.	Расчет диаграммы транспортных возможностей	35
	3.5.	Расчет взлетно-посадочных характеристик самолета	36
	3.6.	Расчет характеристик маневренности самолета	38
	3.7.	Расчет характеристик продольной статической устойчивости и управляемости	39

1. Исходные данные

Таблица 1.1 — Исходные данные для самолета ИЛ-76

Ограничение режима полета	$M \le 0.8; V_i \le 650 \frac{\text{km}}{\text{q}}$
m_0 , тонн	140
$ar{m}_{ ext{ iny ILH}}$	0.26
$ar{m}_{\scriptscriptstyle m T}$	0.39
$ar{m}_{ ext{ch}}$	0.46
$ar{P}_0$	0.315
$Ce_0, rac{\kappa r}{\pi^{ m ah*y}}$	0.54
$rac{n_{\mathtt{AB}}}{n_{\mathtt{PeB}}}$	4/2
$P_s, \frac{\mathrm{Aah}}{\mathrm{M}^2}$	535
b_a , м	140
$ar{L}_{ ext{ro}}$	3.90

2. Расчет лётно - технических характеристик самолета

Определим следующие характеристики самолета:

- 1. Зависимости от числа M (скорости) и H (высоты) полета результаты сведем в таблицы 2.1-2.7:
 - располагаемой и потребной для горизонтального установившегося полета тяги силовой установки,
 - энергетической скороподъемности,
 - часового расхода топлива,
 - километрового расхода топлива.

2. Зависимости от высоты:

- максимальной энергетической скороподъемности,
- минимального часового расхода топлива,
- минимального километрового расхода топлива,
- минимального и максимального числа M (скорости) полета (с учетом ограничений по безопасности полета),
- \bullet числа M (скорости) полета, соответствующего минимальной потребной тяги,
- ullet числа M (скорости) полета, соответствующего максимальной энергетической скороподъемности,
- скорости полета, соответствующей минимальному часовому расходу топлива,
- скорости полета, соответствующему минимальному километровому расходу топлива

3. Статический и практический потолки самолета.

Соотношения для расчета: Узловые точки по числу Маха:

$$M = [0.20.30.40.50.60.70.80.90.95]$$

$$V = Ma_H, (2.1)$$

где a_H — скорость звука на высоте H.

$$q = \frac{\rho_H V^2}{2},\tag{2.2}$$

где ρ_H — плотность воздуха на высоте H.

$$C_{y_n} = \frac{\bar{m}p_s 10}{q},\tag{2.3}$$

где $\bar{m}=0.95$ — относительная масса самолета, p_s — удельная нагрузка на крыло.

$$C_{x_n}(C_u, M) = C_{x_m}(M) + A(M) \left[C_{y_n} - C_{y_m}(M) \right]^2$$
(2.4)

где C_{y_m} — коэффициент подъемной силы при $C_x = C_{x_m}$, C_{x_m} — минимальный коэффициент лобового сопротивления, A — коэффициент отвала поляры.

$$K_n = \frac{C_{y_n}}{C_{x_n}} \tag{2.5}$$

$$P_n = \frac{\bar{m}m_0g}{K_n} \tag{2.6}$$

$$P_p(M,H) = \bar{P}_0 m_0 g \tilde{P}(H,M) \tag{2.7}$$

$$n_x = \Delta \bar{P} = \frac{(P_p - P_n)}{\bar{m}m_0 q} \tag{2.8}$$

$$V_y^* = \Delta \bar{P}V \tag{2.9}$$

$$\bar{R} = \frac{P_n}{P_n} \tag{2.10}$$

$$q_{\mathbf{q}} = Ce(M, H, \bar{R})P_n = Ce_0\tilde{C}e(H, M)\hat{C}e_{\mathbf{pp}}(R)P_n$$
(2.11)

$$q_{\text{\tiny KM}} = \frac{q_{\text{\tiny Y}}}{3.6V},$$
 (2.12)

где $q_{\mbox{\tiny H}}$ — часовой расход топлива, $q_{\mbox{\tiny KM}}$ — километровый расход топлива.

Для построение таблицы (TODO: стр 40 в курсовой)

- 1. Определим M_{\min_P} и M_{\max_P} , как точка пересечения графиков $P_n(M,H_i)$ и $P_p(M,H_i)$ рисунки @@@
- 2. Минимально допустимое число $M_{\min_{\text{доп}}}$, как точка пересечения графиков $C_{y_n}(M,H_i)$ и $C_{y_{\text{доп}}}(M)$ рисунки @@@
- 3. Максимально допустимое число M полета по условиям безопасности определяется как:

$$M_{\max_{\text{Доп}}} = \min\left\{M_{\text{пред}}, M(V_{i_{\max}}\right\},$$
 где $M(V_{i_{\max}}) = \frac{V_{i_{\max}}\sqrt{\Delta^{-1}}}{3.6a_H}, \, \sqrt{\Delta^{-1}} = \sqrt{\frac{\rho_0}{\rho_H}}$

Таблица 2.1 — Результаты расчета для высоты H=0 км

M	Λ	Λ	b	C_{y_n}	K_n	$P_n * 10^{-5}$	$P_p * 10^{-5}$	$\Delta ar{p}(n_x)$	V_y^*	$ar{R}_{ ext{ iny KP}}$	ър	$q_{\scriptscriptstyle m KM}$
I	C M	$\frac{\mathrm{KM}}{\mathrm{q}}$	$\frac{H}{{}_{\mathrm{M}}^2}$	I	I	Н	H	I	C M	I	MT H	$\frac{\mathrm{K}\Gamma}{\mathrm{K}\mathrm{M}}$
0.10	34.	123.	709.	7.166	2.06	6.325	4.045	-0.175	-5.9	1.56	34701.	283.26
0.20	.89	245.	2837.	1.791	8.40	1.553	3.798	0.172	11.7	0.41	11821.	48.25
0.30	102.	.898	6383.	962.0	14.97	0.872	3.569	0.207	21.1	0.24	8315.	22.62
0.40	136.	490.	11348.	0.448	14.97	0.872	3.396	0.193	26.3	0.26	8619.	17.59
0.5	170.	613.	17731.	0.287	11.50	1.134	3.279	0.164	28.	0.35	10763.	17.57
09.0	204.	735.	25533.	0.199	8:38	1.557	3.201	0.126	25.7	0.49	13413.	18.25
0.7	238.	858.	34754.	0.146	6.22	2.099	3.167	0.082	19.5	0.66	15761.	18.38
0.80	272.	980.	45393.	0.112	4.61	2.833	3.158	0.025	8.9	6.0	20914.	21.34
0.0	306.	1103.	57450.	0.088	3.02	4.323	3.193	-0.087	-26.5	1.35	34825.	31.59
0.95	323.	1164.	64011.	0.079	1.97	6.624	3.219	-0.261	-84.4	2.06	53864.	46.28

Рисунок $2.2-\Gamma {\rm paфик}~C_{\rm y_{non}},~C_{y_n}$

 $m_{axP} = 0.832$ 0.8 0.6 $M(P_{\rm Imin}) = 0.35$ M0.4 $M_{minP} = 0.125$ $-P_{\rm p}(H=0.0[{\rm KM}])$ - $P_{\rm II}(H=0.0[{\rm KM}])$ 0.2 0.0 0.5 1.5 0.0 4.0 [H]d 2.5 -3.5 3.0 1.0

Рисунок $2.3-\Gamma {\rm paфик}\ V_y^*(M,H)$

Рисунок $2.4 - \Gamma$ рафик $q_{\text{км}}, q_{\text{ч}}$

Рисунок $2.1 - \Gamma$ рафик располагаемой и потребной тяги

Таблица 2.2 — Результаты расчета для высоты H=2 км

7		Λ	d	C_{y_n}	K_n	$P_n * 10^{-5}$	$P_p * 10^{-5}$	$\Delta ar{p}(n_x)$	V_y^*	$ar{R}_{ ext{ iny KP}}$	$q_{ m u}$	$q_{\scriptscriptstyle m KM}$
⊠ ∪	파	KM 4	$\frac{H}{{ m M}^2}$	ı	ı	H	Н	ı	C	1	KI.	KT
33.	15	120.	557.	9.129	1.61	8.108	3.708	-0.337	-11.2	2.19	43913.	366.82
67.		239.	2227.	2.282	6.65	1.962	3.483	0.117	2.7	0.56	12280.	51.29
)	$100. \mid 35$	359.	5011.	1.014	13.28	0.983	3.266	0.175	17.5	0:30	.8098	23.97
	133. $ 47$	479.	8908.	0.571	15.77	0.827	3.085	0.173	23.0	0.27	7858.	16.41
	166. 59	599.	13919.	0.365	13.57	0.961	2.963	0.153	25.5	0.32	9006.	15.05
	200. 71	718.	20043.	0.254	10.36	1.259	2.877	0.124	24.7	0.44	11002.	15.32
ا شد ا	233. 85	838.	27281.	0.186	7.83	1.666	2.847	0.091	21.1	0.59	12882.	15.37
•	266. 95	958.	35632.	0.143	5.83	2.239	2.838	0.046	12.2	0.79	15478.	16.16
<u> </u>	299. 10	1077.	45097.	0.113	3.81	3.428	2.86	-0.044	-13.0	1.2	26469.	24.57
	316. 11	1137.	50247.	0.101	2.48	5.256	2.879	-0.182	-57.6	1.83	41009.	36.06

Рисунок $2.5 - \Gamma$ рафик располагаемой и потребной тяги

Рисунок $2.8 - \Gamma$ рафик $q_{\text{км}}, q_{\text{ч}}$

Таблица 2.3 — Результаты расчета для высоты $H=4~\mathrm{km}$

$q_{\scriptscriptstyle m KM}$	KT KM	487.17	56.12	25.84	16.13	13.34	12.9	12.78	12.97	18.94	27.69
$q_{^{\mathrm{H}}}$	KI.	56927.	13116.	.0906	7540.	7797.	9043.	10455.	12129.	19916.	30744.
$ar{R}_{ ext{KP}}$	ı	3.13	0.82	0.41	0.31	0.33	0.41	0.54	0.72	1.08	1.64
V_y^*	C	-17.8	2.8	12.8	18.7	21.8	22.1	19.8	13.5	-4.7	-38.3
$\Delta ar{p}(n_x)$	I	-0.549	0.043	0.131	0.144	0.134	0.113	0.087	0.052	-0.016	-0.124
$P_p * 10^{-5}$	H	3.357	3.093	2.89	2.726	2.609	2.522	2.470	2.453	2.509	2.542
$P_n * 10^{-5}$	H	10.522	2.536	1.18	0.850	0.858	1.043	1.336	1.776	2.720	4.162
K_n	I	1.24	5.15	11.06	15.35	15.21	12.51	9.77	7.35	4.8	3.13
C_{y_n}	I	11.780	2.945	1.309	0.736	0.471	0.327	0.240	0.184	0.145	0.131
d	$\frac{H}{^{\mathrm{M}}^2}$	431.	1726.	3883.	6903.	10786.	15532.	21141.	27612.	34947.	38938.
Λ	$\frac{\mathrm{KM}}{\mathrm{q}}$	117.	234.	351.	467.	584.	701.	818.	935.	1052.	1110.
Λ	$\frac{M}{C}$	32.	.65	.76	130.	162.	195.	227.	260.	292.	308.
M	I	0.10	0.20	0:30	0.40	0.5	09.0	0.7	0.80	0.0	0.95

Рисунок 2.11 — График $V_y^*(M,H)$

Рисунок 2.12 — График $q_{\text{км}}, q_{\text{ч}}$

Таблица 2.4 — Результаты расчета для высоты H=6 км

M	Λ	Λ	b	C_{y_n}	K_n	$P_n * 10^{-5}$	$P_p * 10^{-5}$	$\Deltaar{p}(n_x)$	V_y^*	$ar{R}_{ m kp}$	$q_{ m q}$	$q_{\scriptscriptstyle m KM}$
I	C	KM	$\frac{H}{{}_{\mathrm{M}}^2}$	I	I	H	H	I	C K	I	KT	$\frac{\mathrm{K}\Gamma}{\mathrm{K}\mathrm{M}}$
0.10	32.	114.	330.	15.38	0.95	13.803	2.769	-0.846	-26.8	4.99	73934.	648.99
0.20	63.	228.	1322.	3.845	3.92	3.332	2.574	-0.058	-3.7	1.29	18493.	81.16
0:30	95.	342.	2974.	1.709	8.78	1.487	2.444	0.073	7.	0.61	.0268	26.25
0.40	127.	456.	5287.	0.961	13.71	0.952	2.336	0.106	13.4	0.41	7460.	16.37
0.5	158.	570.	8262.	0.615	15.77	0.827	2.263	0.110	17.4	0.37	.0602	12.45
09.0	190.	684.	11897.	0.427	14.34	0.91	2.224	0.101	19.1	0.41	7770.	11.37
0.7	222.	797.	16193.	0.314	11.79	1.106	2.206	0.084	18.7	0.50	8845.	11.09
0.80	253.	911.	21150.	0.240	9.08	1.437	2.215	0.06	15.1	0.65	10105.	11.09
0.0	285.	1025.	26768.	0.19	5.96	2.188	2.263	0.006	1.6	0.97	15225.	14.85
0.95	301.	1082.	29824.	0.170	3.93	3.323	2.299	-0.078	-23.6	1.45	23971.	22.15

 $(M_{min}) = 240.502$ Рисунок 2.14 — График $C_{y_{\rm rou}},\,C_{y_n}$ 250 $V(q_{4_{min}}) = 151.896$ $V[{\rm M/c^2}]$ --- $q_{\text{\tiny KM}}(H=6.0[\text{KM}])$ --- $q_{\text{\tiny 4}}(H=6.0[\text{KM}])$ 100 10

16

Рисунок 2.15 — График $V_y^*(M, H)$

Рисунок $2.16 - \Gamma \mathrm{pad}$ ик $q_{\mathrm{км}},\,q_{\mathrm{q}}$

Таблица 2.5 — Результаты расчета для высоты $H=8~\mathrm{km}$

$q_{\scriptscriptstyle m KM}$	KT	879.56	109.87	31.56	16.43	12.15	10.42	9.87	9.84	11.81	18.11
$q_{ ext{\tiny T}}$	KI	97560.	24373.	10501.	7288.	6736.	6934.	7662.	8729.	11788.	19081.
$ar{R}_{ ext{KP}}$	I	7.78	2.02	0.94	0.58	0.45	0.44	0.49	0.60	0.88	1.29
V_y^*	C	-37.7	-10.6	6.0	7.9	12.8	15.4	16.5	15.2	5.4	-13.7
$\Delta ar{p}(n_x)$	I	-1.225	-0.172	0.010	0.064	0.083	0.083	0.076	0.062	0.03	-0.047
$P_p * 10^{-5}$	H	2.358	2.206	2.077	1.990	1.96	1.947	1.973	2.020	2.072	2.103
$P_n * 10^{-5}$	H	18.343	4,447	1.945	1.153	0.88	0.862	0.975	1.217	1.816	2.712
K_n	I	0.71	2.93	6.71	11.31	14.83	15.14	13.39	10.72	7.18	4.81
C_{y_n}	I	20.357	5.089	2.262	1.272	0.814	0.565	0.415	0.318	0.251	0.226
b	$\frac{H}{^{\mathrm{M}}^2}$	250.	.666	2247.	3995.	6242.	8988.	12234.	15979.	20223.	22533.
Λ	KM	1111.	222.	333.	444.	555.	.999	776.	887.	998.	1054.
Λ	$\frac{M}{C}$	31.	.62	.26	123.	154.	185.	216.	246.	277.	293.
M	I	0.10	0.20	0:30	0.40	0.5	09.0	0.7	0.80	0.0	0.95

Рисунок 2.18 — График $C_{y_{\rm rou}},\,C_{y_n}$

=16.559

Рисунок 2.19 — График $V_y^*(M,H)$

Рисунок $2.20-\Gamma {\rm pad}$ ик $q_{{\scriptscriptstyle \mathrm{KM}}},\,q_{{\scriptscriptstyle \mathrm{T}}}$

0.8 9.0 $V[{\rm M/c^2}]$ $V_y^*(H=8.0[\text{KM}])$ 0.0 T 2.5 5.0 15.0 -12.5 -7.5 -10.0 [W/c²]

17.5

Таблица 2.6 — Результаты расчета для высоты $H=10~\mathrm{km}$

Q _{EM}	KT KT	1214.14	151.76	45.11	19.28	11.37	9.41	8.55	8.45	10.73	15.71
g.	Z ZI F	130922.	32730.	14594.	8315.	6131.	6088.	6454.	7286.	10413.	16091.
$ar{R}_{ m ch}$	÷	13.95	3.60	1.64	96.0	0.67	0.59	09.0	69.0	0.92	1.28
*\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	g M	-52.7	-20.0	-7.0	0.5	5.8	8.8	10.0	9.4	2.8	-11.
$\Delta \bar{p}(n_x)$		-1.760	-0.334	-0.078	0.004	0.039	0.049	0.048	0.039	0.010	-0.039
$P_{\rm s} * 10^{-5}$	H	1.774	1.674	1.601	1.544	1.542	1.549	1.570	1.627	1.739	1.815
$P_n * 10^{-5}$	H	24.742	6.031	2.619	1.488	1.033	0.91	0.946	1.115	1.603	2.317
K_n		0.53	2.16	4.98	8.77	12.63	14.34	13.79	11.7	8.14	5.63
C''	#6	27.367	6.842	3.041	1.710	1.095	092.0	0.559	0.428	0.338	0.303
d	$\frac{1}{M^2}$	186.	743.	1671.	2971.	4643.	.9899	9100.	11886.	15043.	16761.
Λ	KM	108.	216.	323.	431.	539.	647.	755.	863.	.026	1024.
Λ	M C	30.	.09	.06	120.	150.	180.	210.	240.	270.	285.
M	I	0.10	0.20	0.30	0.40	0.5	09.0	0.7	0.80	0.0	0.95

Рисунок 2.22 — График $C_{\rm удоп}$, $C_{\rm yn}$

Рисунок 2.23 — График $V_y^*(M,H)$

Рисунок $2.24-\Gamma {\rm pad}$ ик $q_{{\scriptscriptstyle \mathrm{KM}}},\,q_{{\scriptscriptstyle \mathrm{T}}}$

 $V_{2}^{*} = 10.223$ $V_{2}^{*} = 10.223$ $V_{3}^{*}(H = 10.0 [\text{Kal}])$ $V_{3}^{*}(H = 10.0 [\text{Kal}])$ $V_{3}^{*}(H = 0.0 [\text{Kal}])$

Таблица 2.7 — Результаты расчета для высоты $H=12~\mathrm{km}$

ч 9км	r Kr	176742. 1663.84	43. 209.19	$32. \mid 62.23$	80. 26.78	51. 14.61	55. 9.97	92. 8.33	89. 8.46	56. 11.04	19 11 60
$ar{R}_{ m Kp}$ $q_{ m q}$	— KI	26.21 1767	6.92 44443.	3.15 19832.	$1.79 \mid 11380.$	1.19 7761.	0.95 6355.	0.89 6192.	0.93 7189.	1.17 10556.	1 EA 1 1719
V_y^* \tilde{I}	M C	-73.8 26	-32.2 6	-16.7 3	-8.1	-2.4	$0.7 \boxed{0}$	2.0 0	$\begin{vmatrix} 1.5 & 0 \end{vmatrix}$	-4.6	16.9
$\Delta ar{p}(n_x)$	I	-2.501	-0.545	-0.189	-0.068	-0.016	0.004	0.01	0.007	-0.017	0200
$P_p * 10^{-5}$	H	1.294	1.202	1.146	1.120	1.113	1.128	1.165	1.231	1.331	1 906
$P_n * 10^{-5}$	H	33.92	8.314	3.611	2.010	1.321	1.075	1.038	1.146	1.556	9 1 49
K_n	I	0.38	1.57	3.61	6.49	9.88	12.14	12.57	11.39	8.39	003
C_{y_n}	I	37.42	9.355	4.158	2.339	1.497	1.039	0.764	0.585	0.462	0.415
b	$\frac{H}{^{\mathrm{M}^2}}$	136.	543.	1222.	2173.	3396.	4890.	6655.	8693.	11002.	19959
Λ	KM 4	106.	212.	319.	425.	531.	637.	744.	850.	956.	1000
Λ	C	30.	59.	.68	118.	148.	177.	207.	236.	266.	086
M	I	0.10	0.20	0.30	0.40	0.5	0.60	0.7	0.80	0.0	0.05

Рисунок 2.26 — График $C_{y_{\rm ron}},\,C_{y_n}$

 $_{y}^{r*}(M,H)$

Рисунок 2.28 — График $q_{\text{км}}, q_{\text{ч}}$

Рисунок 2.27 — График $V_y^*(M,H)$

Таблица 2.8 — Результаты расчета для высоты $H=12.40~\mathrm{km}$

$q_{\scriptscriptstyle m KM}$	$\frac{\mathrm{K}\Gamma}{\mathrm{K}\mathrm{M}}$	1771.82	66.222	28.99	28.50	15.44	10.79	9.03	90.6	11.13	14.53
$q_{ m H}$	KI 4	188212.	47374.	21150.	121111.	8201.	.222	6714.	7698.	10637.	14663.
$ar{R}_{ ext{Kp}}$	I	29.73	7.85	3.58	2.03	1.34	1.06	0.98	1.01	1.25	1.64
V_y^*	C K	-78.9	-35.	-18.8	8.6-	-4.	-0.9	0.3	-0.2	6.5	-17.9
$\Delta ar{p}(n_x)$	I	-2.675	-0.593	-0.213	-0.083	-0.027	-0.005	0.002	-0.001	-0.024	-0.064
$P_p * 10^{-5}$	Н	1.215	1.128	1.076	1.052	1.045	1.059	1.094	1.156	1.25	1.302
$P_n * 10^{-5}$	Н	36.121	8.862	3.851	2.14	1.396	1.123	1.072	1.169	1.567	2.135
K_n	I	0.36	1.47	3.39	6.1	9.35	11.62	12.18	11.16	8.32	6.11
C_{y_n}	I	39.831	9.958	4.426	2.489	1.593	1.106	0.813	0.622	0.492	0.441
b	$\frac{H}{M^2}$	128.	510.	1148.	2042.	3190.	4594.	6253.	8167.	10336.	11516.
Λ	KM 4	106.	212.	319.	425.	531.	637.	744.	850.	.926	1009.
Λ	C	30.	59.	.68	118.	148.	177.	207.	236.	266.	280.
M	I	0.10	0.20	0:30	0.40	0.5	09.0	0.7	0.80	0.9	0.95

Рисунок $2.30-\Gamma {\rm padик}~C_{\rm y_{10} n},~C_{y_n}$

0.8

9.0

 $V_y^*(H = 12.4009[K_M])$

0.0

0.1 -

 $V[{\rm M/c^2}]$

Рисунок 2.32 — График $q_{\text{км}}, q_{\text{ч}}$

Рисунок 2.31 — График $V_y^*(M,H)$

0.5

0.4

 $V_y^*[M/c^2]$

0.2

=0.501

4. Располагаемые значение минимального и максимального числа M определяются как:

$$M_{\min} = \max \left\{ M_{\min_{\text{gon}}}, M_{\min_{P}} \right\},$$

$$M_{\text{max}} = \min \left\{ M_{\text{max}_{\text{доп}}}, M_{\text{max}_P}, M_{\text{пред}} \right\},$$

5. Число M_1 полета, соответствующее минимальной потребной тяге определяется как:

$$M_1 = M(P_{n_{\min}}) = \arg\min_{M} \Delta P_n(M)$$

 Число М₂ полета, соответствующее максимальной энергетической скороподъёмности определяется как:

$$M_2 = M(V_{y_{max}}^*) = \arg\max_{M} V_y^*(M, H_i)$$

7. Минимальные значения часового $q_{\mathbf{q}_{min}}$ и километрового $q_{\mathbf{k}\mathbf{m}_{min}}$ расхода топлива, и соответствующие им скорости полета определены на графике 2.4.1-7 и 2.5.1-7 или как:

$$q_{\mathbf{q}_{min}} = \min_{V} q_{\mathbf{q}}(V, H_i), \ V_3 = V(q_{\mathbf{q}_{min}}) = \arg\min_{V} q_{\mathbf{q}}(V, H_i)$$

$$q_{\mathrm{km}_{min}} = \min_{V} q_{\mathrm{km}}(V, H_i), \ V_4 = V(q_{\mathrm{km}_{min}}) = \arg\min_{V} q_{\mathrm{km}}(V, H_i)$$

Таблица 2.9 — Результаты для построение графика высот и скоростей

$q_{ m KM_{min}}$	KT KM	17.36	15.04	12.67	10.97	22.6	8.38	8.13	8.73
$q_{ m q_{min}}$	KT 4	115.7 149.73 0.44 8110.24 17.36	7812.45	7478.81	7077.93	6716.82	6052.28	6159.86	221.3 0.75 6711.91 8.73
M_4	I	0.44	0.51	0.75	0.76	0.76	0.77	0.75	0.75
$V_3 \qquad V_4 \qquad M_4$	$\frac{\mathrm{KM}}{\mathrm{q}}$	149.73	169.59	243.44	240.5	234.16	230.64	221.3	221.3
$V_3 \over (q_{^4\mathrm{min}})$	$\frac{\mathrm{KM}}{\mathrm{q}}$	115.7	126.36	139.57	151.9	160.22	167.74	200.65	203.6
$M_2[V_2] \ (V_{y_{max}}^*)$	$-\left[\frac{\mathrm{KM}}{\mathrm{q}}\right]$	0.49 [600.0]	0.52 [622.0]	0.56 [654.0]	$0.5 \left[570.0\right] 0.63 \left[718.0\right] 151.9 240.5 0.76 7077.93 10.97$	$0.56 \left[621.0\right] 0.72 \left[799.0\right] 160.22 234.16 0.76 6716.82 9.77$	$0.61 \left[658.0 \right] \ \left \ 0.74 \left[798.0 \right] \ \right \ 167.74 \ \left \ 230.64 \ \left \ 0.77 \ \right \ 6052.28 \ \right $	0.69 [733.0] 0.75 [797.0] 200.65 221.3 0.75 6159.86 8.13	0.74[786.0]
$M_1[V_1] \ (P_{\scriptscriptstyle m II} min)$	$-\left[\frac{\mathrm{KM}}{\mathrm{q}}\right]$	0.35 [429.0]	0.39[467.0]	0.44 [514.0]	0.5[570.0]	0.56 [621.0]	0.61[658.0]	0.69 [733.0]	0.7 [744.0]
M[V] max	$-\left[\frac{\mathrm{KM}}{\mathrm{q}}\right]$	0.612[750.0]	0.675 [808.0]	0.748 [874.0]	0.8[911.0]	0.8[887.0]	0.8[863.0]	[0.8[850.0]]	0.791 [840.0]
M[V]	$-\left[\frac{\mathrm{KM}}{\mathrm{q}}\right]$	0.252[309.0]	0.285 [341.0]	0.324 [378.0]	0.8[911.0] $0.371[423.0]$	0.8 [887.0] 0.429 [476.0]	0.503 [542.0]	0.602 [640.0]	0.664 [706.0]
M[V] max доп	$-\left[\frac{\mathrm{KM}}{\mathrm{q}}\right]$	0.612 [750.0]	0.675 [808.0]	0.748 [874.0]			0.8[863.0]	0.8[850.0]	0.8[850.0]
M[V] min доп	$-\left[\frac{\mathrm{KM}}{\mathrm{q}}\right]$	27.99 0.252 [309.0] 0.612 [750.0] 0.252 [309.0] 0.612 [750.0] 0.35 [429.0] 0.49 [600.0]	$2.0 \left \ 25.59 \left \ 0.285 \left[341.0 \right] 0.675 \left[808.0 \right] \left \ 0.285 \left[341.0 \right] \left \ 0.675 \left[808.0 \right] \left \ 0.675 \left[808.0 \right] \left \ 0.39 \left[467.0 \right] \left \ 0.52 \left[622.0 \right] \left \ 126.36 \left \ 169.59 \left \ 0.51 \right 7812.45 15.04 \right \right \right \right \\ \left \ 0.50 \left \ 0.51 \left \ 0$	4.0 22.33 0.324 [378.0] 0.748 [874.0] 0.324 [378.0] 0.748 [874.0] 0.44 [514.0] 0.56 [654.0] 139.57 243.44 0.75 7478.81 12.67 1	$6.0 \ 19.22 \ 0.371 [423.0] \ $	8.0 16.56 0.429 [476.0]	$10.0 \left 10.22 \left 0.503 \left[542.0 \right] \right \right $	12.0 2.21 0.602 [640.0]	$0.625 \left[664.0 \right] 0.8 \left[850.0 \right] 0.664 \left[706.0 \right] 0.791 \left[840.0 \right] 0.7 \left[744.0 \right] 0.74 \left[786.0 \right] 203.6 0.71 \left[840.0 \right] 0.$
H $V^*_{y_{max}}$	C IK	27.99	25.59	22.33	19.22	16.56	10.22	2.21	$12.4 \mid 0.5 \mid$
Н	KM	0.0	2.0	4.0	0.9	8.0	10.0	12.0	12.4

Рисунок $2.33 - \Gamma$ рафик области высот и скоростей установившегося горизонтального полета

Рисунок 2.34 — График $V^*_{y_{max}}(H)$

Рисунок 2.35 — График $q_{\mathbf{q}_{min}}(H), q_{\mathbf{kM}_{min}}(H)$

3. Расчет траектории полета

3.1. Расчет характеристик набора высоты

Начальные условия:

$$H_0 = 0; M_0 = 1.2 M_{min_{\pi o \pi}}, V_0 = 1.2 V_{min_{\pi o \pi}}.$$

Конечные условия:

$$(H_{\kappa}, M_{\kappa}) = \arg\min_{H,M} q_{\kappa_{\mathrm{M}}}(M, H)$$

Конечная высота принимается равная $H_{\rm k}=11$, км Соотношения для расчета :

$$\frac{dV}{dH} = \frac{V^{i+1} - V^i}{H^{i+1} - H^i} \tag{3.1}$$

$$\kappa = \frac{1}{1 + \frac{V}{g} \frac{dV}{dH}} \tag{3.2}$$

$$\theta_{\text{Haf}} = n_x \kappa 57.3 \tag{3.3}$$

$$V_{y_{\text{Haf}}} = V_{y_{max}}^* \kappa \tag{3.4}$$

$$H_{s}^{i} = H^{i} + \frac{(V^{i})^{2}}{2q} \tag{3.5}$$

$$\Delta H_{9} = H_{9}(V_{\text{Ha6}}^{i+1}, H^{i+1}) - H_{9}(V_{\text{Ha6}}^{i}, H^{i})$$
(3.6)

$$\left(\frac{1}{n_x}\right)_{\text{cp}} = 0.5 \left[\frac{1}{n_x(H_{\mathfrak{g}}^i)} + \frac{1}{n_x(H_{\mathfrak{g}}^{i+1})}\right]$$
 (3.7)

$$\left(\frac{1}{V_y^*}\right)_{\text{cd}} = 0.5 \left[\frac{1}{V_y^*(H_{\text{g}}^i)} + \frac{1}{V_y^*(H_{\text{g}}^{i+1})}\right] \tag{3.8}$$

$$\left(\frac{CeP}{V_y^*}\right)_{cp} = 0.5 \left[\frac{CeP}{V_y^*(H_9^i)} + \frac{CeP}{V_y^*(H_9^{i+1})}\right]$$
(3.9)

$$L_{\text{\tiny HA6}} = \sum \left(\frac{1}{n_x}\right)_{\text{\tiny CD}} \frac{\Delta H_{\text{\tiny 9}}}{1000} \tag{3.10}$$

$$t_{\text{\tiny Ha6}} = \sum \left(\frac{1}{V_y^*}\right)_{\text{cp}} \frac{\Delta H_{\text{\tiny 9}}}{60} \tag{3.11}$$

$$m_{T_{\text{Ha6}}} = \sum \left(\frac{CeP}{V_y^*}\right)_{\text{ev}} \frac{\Delta H_9}{3600} \tag{3.12}$$

Таблица 3.1 - Результаты расчета набора высоты

$\frac{\Delta H_{9}}{1000n_{x}}$	$_{ m KM}$	14.42	14.6	19.07	25.75	29.51	0.0
$n_{x_{ m cp}}$	ı	0.173	0.134	0.108	0.084	0.055	inf
$\Delta H_{ m 9}$	M	2983.0	2160.0	2342.0	2483.0	2203.0	0.0
H_9	M	541.0	3524.0	5684.0	8026.0	10508.0	12711.0
$V_{y_{ m Ha6}}$	$\frac{M}{C}$	20.5	23.7	19.2	15.6	15.1	10.2
θ	град.	8.7	6.7	6.1	4.5	3.9	2.5
V_y^*	C	28.0	25.6	22.3	19.2	16.6	10.2
n_x	I	0.207).148	0.123	0.096	0.075	0.044 10.2
$\frac{\Delta V}{\Delta H}$	$\frac{1}{c}$	0.035	0.004	181.8 654.4 0.009 0.123	0.011	0.004	0.0
$V_{\scriptscriptstyle m KM}$	$\frac{\mathrm{KM}}{\mathrm{q}}$	371.0	622.5	654.4	199.4 717.7	221.8 798.6 0.004	230.6 830.3
Λ	C	103.1	172.9	181.8	199.4	221.8	230.6
M наб	ı	0.3	0.52	0.56	0.63	0.72	0.77
$H_{ m y3e_{ m II}}$	M	0.0	2.0	4.0	0.9	8.0	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

Таблица 3.2- (Продолжение) Результаты расчета набора высоты

P	$\frac{CeP}{V_y^*}$	$\left(\frac{CeP}{V_y^*}\right)_{\mathrm{Cp}}$	$\frac{\Delta H_3}{3600} \left(\frac{CeP}{V_y^*}\right)_{\rm Cp}$	$L_{ m Ha6}$	$V_{y_{ m cp}}^*$	$t_{ m Ha6}$	Ce
Н	ı	ı	Kľ	KM	C	МИН	$\frac{\mathrm{K}\Gamma}{H\mathrm{Y}}$
356382.0	1057.0	764.0	632.9	17.3	0.0	1.86	0.061
294096.0	813.5	749.9	449.9	16.1	0.0	0.0 1.51	0.066
255678.0	866.6	751.0	488.5	21.7	0.0	0.0 1.89	0.065
221848.0	929.7	773.7	533.5	29.5	0.1	2.33	0.066
198227.0	869.3	915.2	560.0	40.0	40.0 0.1	2.9	0.066
160978.0	1039.7	0.0	0.0	0.0	0.0	0.0	0.066

Таблица 3.3 — Основные параметры в наборе высоты

$t_{ m Ha6}$	Мин	10.5
$L_{\scriptscriptstyle { m Ha6}}$	$ m K_{M}$	124.6
$m_{T_{ m Ha6}}$	Kr	2664.9

Рисунок 3.1 — График зависимости $L(t), m_T(t)$

Рисунок 3.2 — График зависимости $L(t), m_T(t)$

Рисунок 3.3 — Программа набора высоты

3.2. Расчет характеристик крейсерского полета

Для расчета времени $T_{\rm kp}$ и дальности $L_{\rm kp}$ крейсерского полета:

$$T_{\text{kp}} = \frac{60K_{\Gamma\Pi}}{gCe} \ln \frac{1 - \bar{m}_{T_{\text{Ha6}}} - \bar{m}_{T_{\text{np}}}}{1 - \bar{m}_{T_{\text{kp}}} - \bar{m}_{T_{\text{np}}}}$$
(3.13)

$$L_{\text{kp}} = \frac{36V K_{\Gamma\Pi}}{gCe} \ln \frac{1 - \bar{m}_{T_{\text{Ha6}}} - \bar{m}_{T_{\text{np}}}}{1 - \bar{m}_{T_{\text{kp}}} - \bar{m}_{T_{\text{np}}}}$$
(3.14)

где $\bar{m}_{\mathrm{T_{\kappa p}}} = 1 - \bar{m}_{\mathrm{cH}} - \bar{m}_{\mathrm{I}} + \bar{m}_{\mathrm{T_{Ha6}}} - \bar{m}_{\mathrm{T_{chf}}} - \bar{m}_{\mathrm{T_{ah3}}} - \bar{m}_{\mathrm{T_{np}}} = 0.1827$

Принимаем: $m_{\rm цн}=0,26$ – относительная масса пустого снаряженного самолета; $m_{\rm ch}=0,46$ – относительная масса целевой нагрузки;

 $m_{T_{\rm chi}}=0.015$ - относительная масса топлива, расходуемая при снижении и посадке; $\bar{m}_{T_{\rm ha6}}\frac{m_{T_{\rm ha6}}}{m_0}=$ - относительная масса топлива, расходуемая при наборе; высоты $m_{T_{\rm ah3}}=0.05$ - аэронавигационный запас топлива; $m_{T_{\rm np}}=0.01$ - запас топлива для маневрирования по аэродрому, опробования двигателей, взлета; $K_{\Gamma\Pi}=13.51~V=206\,{\rm Mg}^2$

 $Ce = 0.0617 \, \frac{\mathrm{Kr}}{\mathrm{H*q}}$ – удельный расход топлива на высоте крейсерского полета

Высота в конце крейсерского полета $H_{\kappa\kappa p}$ определяется как:

$$\rho_{H \,\mathrm{Kp}} = \frac{2\bar{m}_{\mathrm{K \,Kp}} P s 10}{C_{y_{\Gamma \Pi}} V_{\mathrm{K}}^2} \tag{3.15}$$

где
$$ar{m}_{ ext{\tiny KKP}} = 1 - ar{m}_{T_{ ext{\tiny Ha6}}} - ar{m}_{T_{ ext{\tiny Hp}}} - ar{m}_{T_{ ext{\tiny KP}}}$$

Результаты

Таблица 3.4 — Результаты расчета участка крейсерского полета

$T_{ m \kappa p}$	$L_{ m kp}$	$\rho_{H\mathrm{kp}}$	$H_{0\mathrm{Kp}}$	$H_{{\scriptscriptstyle { m K}}{\scriptscriptstyle { m K}}{\scriptscriptstyle { m P}}}$
МИН	KM	$\frac{\text{K}\Gamma}{\text{M}^3}$	KM	KM
298.73	3275.0	0.3421	11	11.4

3.3. Расчет характеристик участка снижения

Расчет аналогичен расчету участка набора высоты раздел 3.1. Только в качестве программы снижения принимается зависимость $M_{\rm ch}(H)$, соответствующая минимуму потребной тяги.

Начальные условия:

Скорость соответствует минимуму потребной тяги. Определяется по графику $M(P_{n \text{ min}}) = f(H)$ (Рисунок 2.2).

$$M_0 = 0.6; H_0 = 10 \,\mathrm{km}$$

Конечные условия:

Скорость в конце снижения соответствует наивыгоднейшей скорости при H = 0. $M_{\kappa}=0.30$; $H_{\kappa}=0$ Результаты расчетов приведены на таблице №3.3.2, по этим данным построили

Таблица 3.5 — Результаты расчета снижения высоты

$\frac{\Delta H_{9}}{1000n_{x}}$	KM	34.01	39.84	42.19	42.75	43.51	0.0-
$n_{x_{ m cp}}$	I	-0.063	-0.057	-0.054	-0.051	-0.048	inf
$\Delta H_{ m e}$	M	-2129.0	-2241.0	-2236.0	-2182.0	-2134.0	0.0
H_9	M	11646.0	9517.0	7276.0	5040.0	2857.0	723.0
$V_{y_{ m cH}}$	$\frac{M}{C}$	-8.1	-12.7	-15.2 7	-18.1	-21.1	-23.7
θ	град.	-3.4	-2.9	-2.7	-2.7	-2.6	-2.7
V_y^*	M C	6.5	13.6	17.9	20.7	25.6	28.0
n_x	I	-0.063	-0.056 13.6	-0.053 17.9	-0.051 20.7	-0.049 25.6	-0.047 28.0
$\frac{\Delta V}{\Delta H}$	$\frac{1}{c}$	0.004	0.007	0.008	0.007	0.005	0.0
$V_{\scriptscriptstyle m KM}$	$\frac{\mathrm{KM}}{\mathrm{q}}$	647.0	621.1	569.6 0.008	12.8 514.2	466.9	9.1 428.8
A	C IK	179.7	172.5	0.5 158.2	1.	129.7	119.1
М	I	9.0	8.0 0.56		0.44	2.0 0.39	0.0 0.35 11
$H_{ m y3e J}$	M	10.0	8.0	0.9	4.0	2.0	0.0

Таблица 3.6- (Продолжение) Результаты расчета снижения высоты

P	$\frac{CeP}{V_y^*}$	$\left(\frac{CeP}{V_y^*}\right)_{\mathrm{CP}}$	$\frac{\Delta H_{\rm b}}{3600} \left(\frac{CeP}{V_y^*}\right)_{\rm cp}$	$L_{ m cH}$	$V^*_{y_{ m cp}}$	$t_{ m cH}$	Ce
H	I	ı	KΓ	$_{ m KM}$	$\overline{\mathrm{M}}$	МИН	$\frac{\mathrm{K}\Gamma}{H^{\mathrm{H}}}$
7940.0	-115.6	-97.8	57.8	33.6	-0.1	3.31	0.117
10487.0	-98.0	-87.0	54.2	39.5	-0.1	39.5 -0.1 2.4	0.118
12651.0	-97.8	-87.4	54.3	41.8	-0.1	2.03	41.8 -0.1 2.03 0.118
14907.0	-96.2	-92.4	56.0	43.0	-0.0	43.0 -0.0 1.72	0.117
18617.0	-103.7	-100.7	59.7	44.3	-0.0	1.54	44.3 -0.0 1.54 0.118
20896.0	-104.6	0.0	0.0	0.0	0.0	0.0	0.119

Таблица 3.7 — Основные параметры снижения высоты

$t_{ m \scriptscriptstyle CH}$	Мин	11.0
$L_{\scriptscriptstyle m CH}$	$ m K_{M}$	202.1
$m_{T_{ m cH}}$	Kr	282.0

Рисунок 3.4 — График зависимости $L(t), m_T(t)$

Рисунок 3.5 — График зависимости $L(t),\,m_T(t)$

Рисунок 3.6 — Программа снижения

Рисунок 3.7 — Совмещенный график H(L) для участков набора высоты, крейсерского полета и снижения

3.4. Расчет диаграммы транспортных возможностей

Определим зависимость целевой нагрузки от дальности полета самолета $m_{\text{цн}}(L)$ (Рисунок 3.4.1) Расчет ведется для трех режимов:

- 1. Полет с максимальной коммерческой нагрузкой,
- 2. Полет с максимальным запасом топлива,
- 3. Полет без коммерческой нагрузки ($m_{\rm цн}=0$) с максимальным запасом топлива.

Режим 1.

Для данного режима определили в разделах 3.1, 3.2,3.3

$$m_{\mathrm{ijh}} = \frac{m_{\mathrm{ijh}}}{m_0}$$

Режим 2.

$$L = L_{\text{\tiny Ha6}} + L_{\text{\tiny KD}} + L_{\text{\tiny CH}}$$

Для упрощения для дальности полета и расход топлива при наборе и снижении, для всех режимов соответствует первому режиму.

$$\begin{split} \bar{m}_{\text{взл}} &= 1 \\ \bar{m}_{T_{\text{кр}}} &= \bar{m}_{T_{max}} - \bar{m}_{T_{\text{на6}}} - \bar{m}_{T_{\text{сн}}} - \bar{m}_{T_{\text{анз}}} - \bar{m}_{T_{\text{пр}}} \\ \bar{m}_{T_{max}} &= 0.5258 \\ L_{\text{кр}} &= \frac{36VK}{gCe} \ln \frac{\bar{m}_{\text{взл}} - \bar{m}_{T_{\text{на6}}} - \bar{m}_{T_{\text{пр}}}}{\bar{m}_{\text{взл}} - \bar{m}_{T_{\text{кр}}} - \bar{m}_{T_{\text{на6}}} - \bar{m}_{T_{\text{пр}}}} \\ \bar{m}_{\text{цн}} &= 1 - \bar{m}_{\text{пуст}} - \bar{m}_{T_{max}} \\ \bar{m}_{\text{пуст}} &= \frac{88500}{m_0} \end{split}$$

Режим 3.

$$\bar{m}_{\scriptscriptstyle \mathrm{B3J}} = \bar{m}_{\scriptscriptstyle \mathrm{\PiYCT}} + \bar{m}_{T_{max}}$$

Таблица 3.8 — Результаты расчета

Режим	L	$m_{\scriptscriptstyle m LH}$
$\mathcal{N}_{ar{o}}$	KM	КГ
1	3602.0	64400.0
2	6226.0	36400.0
3	9109.0	0.0

Рисунок 3.8 — График зависимости $m_{\text{ин}}(L)$

3.5. Расчет взлетно-посадочных характеристик самолета

Для расчета: скорости отрыва при взлете $V_{\text{отр}}$, длины разбега L_{p} , взлетной дистанции $L_{\text{вд}}$, скорости касания ВПП при посадке $V_{\text{кас}}$, длины пробега $L_{\text{пр}}$, посадочной дистанции $L_{\text{пд}}$.

Предполагается что:

- 1. Угол атаки при разбеге и пробеге $\alpha_{\rm p}=\alpha_{\rm n}=2^{\circ}$
- 2. Угол атаки при отрыве и касании ВПП $\alpha_{\rm orp}=\alpha_{\rm kac}=6^\circ$
- 3. Безопасная высота пролета препятствий $H_{\mbox{\tiny BSJ}}=10.7\,\mbox{м}$ и $H_{\mbox{\tiny пос}}=15\,\mbox{м}$
- 4. Тяга двигателей $P_{\text{взл}} = (1.2...1.3)P, Ce_{\text{взл}} = (1.03...1.05)Ce_0$
- 5. При пробеге по ВПП используется реверс тяги.

Соотношения для расчета:

$$V_{\text{otp}} = \sqrt{\frac{20P_s(1 - 0.9\bar{P}_{\text{взл}}\sin\alpha_{\text{otp}})}{\rho_0 C_{y_{\text{otp}}}}}$$
(3.16)

$$C_p = 0.9\bar{P}_{\text{\tiny B3,I}} - f_p \tag{3.17}$$

$$b_p = (C_{x_p} - f_p C_{y_p}) \frac{\rho_0}{2P_s 10}, \tag{3.18}$$

где $f_p = 0.02$

$$L_p = \frac{1}{2gb_p} \ln \frac{C_p}{C_p - b_p V_{\text{opp}}^2}$$
 (3.19)

$$V_2 = 1.1 V_{\text{orp}}$$
 (3.20)

$$\hat{V}_{\rm cp} = \sqrt{\frac{V_2^2 + V_{\rm orp}^2}{2}} \tag{3.21}$$

$$\hat{n}_{x_{\rm cp}} = \bar{P}_{{\scriptscriptstyle \rm B3JI}} - \frac{C_{x_{\rm opp}} \rho_0 \hat{V}_{\rm cp}^2}{P_{\circ} 20} \tag{3.22}$$

$$L_{\text{\tiny BYB}} = \frac{1}{\hat{n}_{x_{\text{\tiny CP}}}} \left(\frac{V_2^2 + V_{\text{\tiny OTP}}^2}{2g} + H_{\text{\tiny B3,II}} \right) \tag{3.23}$$

$$\bar{m}_{\text{пос}} = \bar{m}_{\text{к кр}} - \bar{m}_{T_{\text{снп}}} \tag{3.24}$$

$$V_{\text{\tiny Kac}} = \sqrt{\frac{2\bar{m}_{\text{\tiny Hoc}}P_s10}{C_{y_{\text{\tiny Kac}}}\rho_0}}$$
 (3.25)

$$\bar{P}_{\text{peB}} = \frac{P_{\text{peB}}}{m_{\text{noc}} q} \tag{3.26}$$

$$a_n = -\bar{P}_{\text{peb}} - f_n \tag{3.27}$$

$$b_n = \frac{\rho_0}{\bar{m}_{\text{про}} P_s 20} (C_{x_{\text{про}6}} - f_n C_{y_{\text{про}6}})$$
(3.28)

$$L_{\text{проб}} = \frac{1}{2qb_n} \ln \frac{a_n - b_n V_{\text{kac}}^2}{a_n}$$
 (3.29)

$$C_{y_{\text{noc}}} = 0.7C_{y_{\text{kac}}}(\alpha_{\text{kac}}) \tag{3.30}$$

$$V_{\text{пл}} = \sqrt{\frac{2\bar{m}_{\text{пос}}P_{s}10}{C_{y_{\text{пос}}}\rho_{0}}}$$
 (3.31)

$$K_{\text{noc}} = \frac{C_{y_{\text{noc}}}}{C_{x_{\text{noc}}}} \tag{3.32}$$

$$L_{\text{вуп}} = K_{\text{пос}} \left(H_{\text{пос}} + \frac{V_{\text{пл}}^2 - V_{\text{кас}}^2}{2g} \right)$$
 (3.33)

$$L_{\text{пд}} = L_{\text{проб}} + L_{\text{вуп}} \tag{3.34}$$

Результаты расчетов на таблице № 3.5.1

Таблица 3.9 — Результаты расчета

$V_{ m orp}$	$L_{ m p}$	$L_{\scriptscriptstyle m BД}$	$V_{ m kac}$	$L_{ m np}$	$L_{\scriptscriptstyle \Pi extsf{I}}$
<u>М</u> С	M	M	$\frac{M}{C}$	M	M
98.0	1781.0	2220.0	70.0	996.0	1692.0

3.6. Расчет характеристик маневренности самолета

В данном разделе определим характеристики правильного виража.

Расчеты ведутся для высоты $H = 6 \, \text{км}$.

Характеристики маневренности рассчитываются при 50%-ом выгорании топлива для массы самолета: $\bar{m}_{\rm c}=1-0.5\bar{m}_T$

Для расчета таблицы №3.6.1:

1. Максимальная допустимая нормальная перегрузка:

$$n_{y_{\text{доп}}} = \min \left\{ n_{y_{\text{9}}}, \, n_{y}(C_{y_{\text{доп}}}) \right\}$$
 $n_{y_{\text{9}}} = 3, \, n_{y}(C_{y_{\text{доп}}}) = rac{C_{y_{\text{доп}}}}{C_{y_{\Gamma\Pi}}}, \, C_{y_{\Gamma\Pi}} = rac{ar{m}_{\text{c}}P_{s}10}{q}$

2. Нормальная перегрузка предельного правильного виража

$$\begin{split} n_{y_{\mathtt{вир}}} &= \min \left\{ n_{y_{\mathtt{доп}}}, \, n_{y_P} \right\} \\ n_{y_P} &= \frac{1}{C_{y_a} \Gamma \Pi} \left(C_{y_m} + \sqrt{\frac{\bar{P} C_{y_a} \Gamma \Pi - C_{x_{\mathtt{M}}}}{A}} \right), \, \bar{P} = \frac{P_p}{mg} \end{split}$$

3. Кинематические параметры виража:

$$\omega_{\text{вир}} = \frac{g}{V} \sqrt{n_{y\,\text{вир}}^2 - 1}$$

$$r_{\text{вир}} = \frac{V}{\omega_{\text{вир}}}$$

$$t_{\text{вир}} = \frac{2\pi r_{\text{вир}}}{V}$$

4. Диапазон Маха берется: M = [0.4, 0.5, 0.6, 0.7, 0.8]

Таблица 3.10 — Расчет виража

M	V	V	q	$C_{y_{\Gamma\Pi}}$	$C_{y_{ m дon}}$	$n_{y_{ m доп}}$	$K_{\Gamma\Pi}$	$P_n * 10^{-5}$	$P_p * 10^{-5}$
-	<u>м</u> с	<u>КМ</u> Ч	$\frac{H}{{}_{ m M}^2}$	-	-	-	-	Н	Н
0.4	127.0	456.	5287.0	0.815	1.112	1.365	14.84	5.996	18.806
0.5	158.0	570.	8262.0	0.521	1.083	2.077	15.59	5.709	18.214
0.6	190.0	684.	11897.0	0.362	1.033	2.853	13.28	6.7	17.901
0.7	222.0	797.	16193.0	0.266	0.977	3.0	10.55	8.432	17.761

Таблица 3.11 — (Продолжение) Расчет виража

\bar{P}	n_{y_p}	$n_{y_{\mathtt{Bup}}}$	$\omega_{ ext{вир}}$	$r_{\scriptscriptstyle \mathrm{Bup}}$	$t_{\text{вир}}$
_	_	_	$\frac{1}{c}$	M	c
0.17	1.752	1.365	0.072	1757.4	87.2
0.165	2.088	2.077	0.113	1401.5	55.7
0.162	2.256	2.256	0.104	1817.6	60.1
0.161	2.201	2.201	0.087	2550.5	72.3

Рисунок 3.9 — График зависимости $n_{y_{\text{вир}}}(M), \, \omega_{\text{вир}}(M), \, r_{\text{вир}}(M), \, t_{\text{вир}}(M)$

3.7. Расчет характеристик продольной статической устойчивости и управляемости

Для расчета продольной статической устойчивости и управляемости необходимо определить безразмерную площадь горизонтального оперения $\bar{S}_{\Gamma {
m O}}$ из условия устойчивости и балансировки.

Для определения $\bar{S}_{\Gamma {
m O}}$ рассчитываются предельно передняя $\bar{x}_{{
m T}\Pi\Pi}$ для режима посадки

 $(H=0,\,M=0.2)$ и предельно задняя $\bar{x}_{\rm TII3}$ центровки:

$$\bar{x}_{\text{ТПП}} = \frac{-m_{Z_0 \text{ БГО}} + \bar{x}_{F \text{ БГО}} C_{y \text{ БГО}} + C_{y \text{ ГО}} \bar{S}_{\text{ГО}} K_{\text{ГО}} \bar{L}_{\text{ГО}}}{C_{y \text{ БГО}}}$$

Где $C_{y\,\text{БГО}} = C_{y_0\,\text{БГО}} + C_{y\,\text{БГО}}^{\alpha} \alpha$, $C_{y\,\text{ГО}} = C_{y\,\text{ГО}}^{\alpha_{\text{ГО}}} \left[\alpha (1 - \epsilon^{\alpha}) + \varphi_{\text{эф}} \right] < 0$, $\varphi_{\text{эф}} = \varphi_{\text{уст}} + n_{\text{в}} \delta_{max}$, $\delta_{\text{max}} = -25^{\circ}$, $\varphi_{\text{уст}} = -4^{\circ}$.

$$\bar{x}_{\text{T}\Pi 3} = \bar{x}_H + \sigma_{n \text{ min}}$$

$$\bar{x}_H = \bar{x}_F - \frac{m_z^{\bar{\omega}_z}}{\mu}, \, \mu = \frac{2P_s10}{\rho g b_a}, \, m_z^{\bar{\omega}_z} = m_z^{\bar{\omega}_z}_{z \, \text{BTO}} + m_z^{\bar{\omega}_z}_{T \, \text{O}}, \, m_z^{\bar{\omega}_z} = -C_{y \, \text{TO}}^{\alpha_{\Gamma \text{O}}} \bar{S}_{\Gamma \text{O}} \bar{L}_{\Gamma \text{O}}^2 \sqrt{K_{\Gamma \text{O}}}$$

$$\bar{x}_F = \bar{x}_{FBCO} + \Delta \bar{x}_F$$

$$\Delta \bar{x}_F \approx \frac{C_{y\Gamma O}^{\alpha_{\Gamma O}}}{C_y^{\alpha}} (1 - \varepsilon^{\alpha}) \bar{S}_{\Gamma O} \bar{L}_{\Gamma O}^2 K_{\Gamma O}, \ \sigma_{n \text{ min}} = -0.1$$

По приведенным формулам для ряда значений $\bar{S}_{\Gamma {\rm O}}=(0.01,\,0.2)$ рассчитывается таблица 3.7.1

Затем графически определяется потребная площадь ГО из условия:

$$\bar{x}_{\text{TH3}}(\bar{S}_{\text{FO}}) - \bar{x}_{\text{THH}}(\bar{S}_{\text{FO}}) = \Delta \bar{x}_{\text{a}} 1.2$$

 $\Delta \bar{x}_9 \approx 0.15$

Далее расчеты характеристик устойчивости и управляемости производятся для средней центровки:

$$\bar{x}_T = 0.5 \left[\bar{x}_{\text{TH3}} (\bar{S}_{\Gamma \text{O}}^*) + \bar{x}_{\text{THH}} (\bar{S}_{\Gamma \text{O}}^*) \right]$$

Значения величин $\bar{x}_F, \bar{x}_H, \bar{x}_{T\Pi 3}, \sigma_n$ определяются в узловых точках по M на высоте H=0 для таблицы 3.7.

$$\sigma_n = \bar{x}_T - \bar{x}_F + \frac{m_z^{\bar{\omega}_z}}{\mu}$$

Зависимости $\varphi_{\text{бал}}(M), \varphi^n(M), n_{y_p}(M)$ для трех значений высот: $H=(0\,\text{км},\,6\,\text{км},\,H_{\text{кp}}).$

$$m_z^{C_y} = \bar{x}_T - \bar{x}_F$$

$$\bar{x}_F = \bar{x}_{F\,\rm B\Gamma\rm O} + \Delta \bar{x}_{F\,\Gamma\rm O}, \ m_z^{\delta_{\rm B}} = -C_{y\,\Gamma\rm O}^{\alpha_{\Gamma\rm O}} \bar{S}_{\Gamma\rm O} \bar{L}_{\Gamma\rm O} K_{\Gamma\rm O} n_{\rm B}, \ C_{y\,\Gamma\rm O} = \frac{10 P_s \bar{m}}{q}, \ \bar{m} = 1 - 0.5 \bar{m}_T,$$

$$m_{Z_0} = m_{Z_0 \, \text{B}\Gamma\text{O}} - (1 - \varepsilon^{\alpha}) \bar{S}_{\Gamma\text{O}} \bar{L}_{\Gamma\text{O}} K_{\Gamma\text{O}} C_{y \, \Gamma\text{O}}^{\alpha_{\Gamma\text{O}}} \alpha_0$$

$$\delta_{\text{бал}} = -\frac{m_{z_0} m_z^{C_y} C_{y \, \Gamma \Pi}}{m_z^{\delta_{\text{B}}} \left(1 + \frac{m_z^{C_y}}{L_{\text{ro}}}\right)} + \frac{\varphi_{\text{уст}}}{n_{\text{B}}}$$

$$\delta^n = -57.3 \frac{C_{y \Gamma\Pi} \sigma_n}{m_z^{\delta_{\rm B}}}$$

$$n_{y_{
m p}} = 1 + rac{\delta_{
m max} + arphi_{
m yct} - \delta_{
m 6aл}}{\delta^n}$$

Таблица 3.12 — Значения для построения графика на рисунке 3.10

$\bar{S}_{{\scriptscriptstyle{\Gamma}}{\scriptscriptstyle{0}}}$	$\bar{x}_{\mathrm{T}\Pi\Pi}$	$\bar{x}_{\mathrm{T\Pi3}}$
0.01	0.2298	0.1521
0.2	-0.2594	0.551

Рисунок 3.10 — График зависимости $\bar{x}_{\mathrm{T}\Pi\Pi}(\bar{S}_{\mathrm{ro}})$

Таблица 3.13 — Результаты расчетов

M	\bar{x}_F	\bar{x}_H	$\bar{x}_{ ext{T}\Pi ext{3}}$	σ_n
0.25	0.3638	0.3678	0.2678	-0.19
0.30	0.3638	0.3678	0.2678	-0.19
0.40	0.3634	0.367	0.267	-0.1892
0.50	0.3643	0.3675	0.2675	-0.1897

Рисунок 3.11 — График зависимости $\bar{x}_F(M), \bar{x}_H(M), \bar{x}_{\text{ТПЗ}}(M), \sigma_n(M)$

Таблица 3.14 — Результаты расчетов для балансировочных зависимостей для высоты H=0 км

M	V	$arphi_{ m бал}$	φ^n	n_{y_p}
_	<u>М</u> С	град	<u>град</u> ед.перег.	-
0.25	86.0	-15.18	-37.73	1.366
0.3	103.0	-14.97	-26.29	1.534
0.4	137.0	-14.79	-15.0	1.947
0.5	171.0	-14.72	-9.78	2.46

Таблица 3.15 — Результаты расчетов для балансировочных зависимостей для высоты $H=6\,\,\mathrm{km}$

M	V	arphiбал	φ^n	n_{y_p}
-	<u>М</u> С	град	град ед.перег.	_
0.37	117.0	-15.19	-37.32	1.37
0.4	127.0	-15.1	-32.11	1.433
0.5	159.0	-14.93	-20.92	1.673
0.6	190.0	-14.9	-14.63	1.963
0.7	222.0	-15.14	-10.7	2.296

Таблица 3.16 — Результаты расчетов для балансировочных зависимостей для высоты $H=11\ {
m km}$

M	V	arphiбал	φ^n	n_{y_p}
-	<u>М</u> С	град	град ед.перег.	_
0.55	162.0	-15.23	-36.21	1.38
0.61	180.0	-15.19	-29.4	1.47
0.71	209.0	-15.44	-21.91	1.619
0.8	236.0	-19.11	-29.61	1.334

Рисунок 3.12 — График зависимости $\varphi_{\text{бал}}(M,\,H=0,6,11\,\text{км})$

Рисунок 3.13 — График зависимости $\varphi^n(M,\, H=0,6,11\,{\rm km})$

Рисунок 3.14 — График зависимости $n_{y_p}(M,\,H=0,6,11\,{\rm кm})$