Сдвиг фаз в цепи переменного тока

Дмитрий Павлов, 790 Александр Савко, 790

21 сентября 2018 г.

Содержание

1	Вст	Вступление.							
	1.1	Цель работы.	3						
	1.2	Оборудование	3						
	1.3	Экспериментальная установка	3						
2	Teo	ретическая часть.	4						
	2.1	Общий случай	4						
	2.2	Векторные диаграммы	4						
3	Осн	новная работа.	6						
	3.1	Исследование зависимости сдвига фаз между током и напряжением от R в RC —цепи	6						
	3.2	Исследование зависимости сдвига фаз между током и напряжением от R в $RL-$ цепи	6						
	3.3	Исследование зависимости сдвига фаз между током и напряжением от частоты в RLC -контуре	7						
	3.4	Исследование работы фазовращателя	8						
4	Обр	работка результатов.	9						
	4.1	<i>RC</i> -цепь	9						
	4.2	<i>RL</i> -цепь	10						
	4.3	Поиск добротности контура	11						
	4.4	Сопротивление магазина R_M при сдвиге фаз $\pi/2$	12						
5	Све	едем результаты эксперимента в таблицу.	12						
6	Вы	вол.	12						

1 Вступление.

1.1 Цель работы.

Исследование зависимости сдвига фаз между током и напряжением от сопротивления в RC- и в RL—цепи; определение добротности колебательного контура, при помощи полученной в работе зависимости сдвига фаз от частоты вблизи резонанса; оценка диапазона работы фазовращателя.

1.2 Оборудование.

- Звуковой генератор (ЗГ);
- Двухканальный электронный осциллограф (ЭО);
- Магазин емкостей;
- Магазин сопротивлений;
- Эталонная катушка индуктивности;
- Резисторы;
- Мост переменного тока.

1.3 Экспериментальная установка.

Схема для исследования сдвига фаз между током и напряжением в цепи переменного тока представлена на рис. 1. Эталонная катушка L, магазин емкостей C и магазин сопротивлений R соединены последовательно и через дополнительное сопротивление r подключены к источнику синусоидального напряжения - звуковому генератору.

Сигнал, пропорциональный току, снимается с сопротивления r, пропорциональный напряжению с генератора. Оба сигнала подаются на универсальный осциллограф. Этот осциллограф имеет два канала вертикального отклонения, что позволяет одновременно наблюдать на экране два сигнала.

Рисунок 1 — Схема для исследования сдвига фаз между током и напряжением в цепи переменного тока.

Рисунок 2 – Схема фазовращателя.

Схема фазовращателя, изображенная на рис. 2, содержит два одинаковых резистора R_1 , смонтированных на отдельной плате, магазин сопротивлений R и магазин емкостей C.

2 Теоретическая часть.

2.1 Общий случай.

Рассмотрим RLC-контур, подключённый к источнику внешней ЭДС, изменяющейся по гармоническому закону: $\mathscr{E} = \mathscr{E}_0 \cos{(\Omega t)}$.

Обозначим разность потенциалов на конденсаторе через U_C , а ток, текущий в контуре, через I. Сумма падений напряжения на элементах цепи равна ЭДС самоиндукции плюс ЭДС источника:

$$RI + U_C = -L\frac{dI}{dt} + \mathcal{E}_0 \cos \Omega t$$

При решении линейного дифференциального уравнения получаем выражение:

$$I_0 \left[R + i \left(\Omega L - \frac{1}{\Omega C} \right) \right] = \mathcal{E}_0$$

Величина, стоящая в скобках называется импедансом контура и обозначается Z

$$Z = R + i\left(\Omega L - \frac{1}{\Omega C}\right)$$

Представим импеданс Z в показательной форме:

$$Z = |Z|e^{i\psi}; |Z| = \sqrt{R^2 + \left(\Omega L - \frac{1}{\Omega C}\right)^2}; \psi = \operatorname{arctg} \frac{\Omega L - \frac{1}{\Omega C}}{R}$$
 (1)

Итого, ток отстаёт от напряжения по фазе на величину ψ , определяемую отношением мнимой и действительной частей импеданса. Амплитуда колебаний обратно пропорциональна модулю импеданса |Z|.

2.2 Векторные диаграммы.

Рассмотрим несколько частных случаев.

- 1. К источнику синусоидального напряжения подключено только чисто активное сопротивление R. В этом случае из формул (1) следует, что $\psi = 0$. Ток в активном сопротивлении совпадает по фазе с напряжением на нём.
- 2. К источнику подключена только ёмкость C (конденсатор без потерь). При этом $\psi = -\pi/2$. Ток опережает напряжение по фазе на $\pi/2$.

- 3. К источнику подключена только катушка самоиндукции с индуктивностью L, активное сопротивление которой $R_L=0$. При этом $\psi=\pi/2$. Ток в цепи отстаёт по фазе от напряжения на $\pi/2$.
- 4. В общем случае, когда к источнику последовательно подключены резистор, конденсатор и катушка самоиндукции, сдвиг фазы между то- ком и входным напряжением лежит в пределах: $-\pi/2 < \psi < +\pi/2$.

Построим векторную диаграмму напряжений для контура, изображённого на рис. В.6. К источнику переменного напряжения $\mathcal{E}_0 \cos \Omega t$ последовательно подключены резистор R, катушка индуктивности L, действительная часть импеданса которой равна r_L , и ёмкость C. Четыре вольтметра измеряют напряжения на элементах цепи, амперметр измеряет ток.

Рис. В.6. Последовательный контур

Рис. В.7. Векторная диаграмма (последовательный контур)

Отложим вектор I вдоль оси абсцисс (рис. В.7). Напряжение на резисторе совпадает по фазе с током, поэтому вектор U_R также будет направлен вдоль оси абсцисс. Напряжение на конденсаторе (без потерь) отстаёт по фазе от тока на угол $\psi=\pi/2$, поэтому вектор U_C направлен вниз вдоль оси ординат. Векторное равенство напряжений $U_{L+R}=U_L+U_R$ позволяет построить треугольник по трём сторонам. Сделаем две насечки: первую — радиусом, равным модулю вектора U_{L+R} , из начала вектора U_R (начала координат); вторую — радиусом, равным модулю вектора U_L , из конца вектора U_R . Точка пересечения насечек определяет положение векторов U_{L+R} и U_L на диаграмме. Сложив векторы U_{L+R} и U_C , получим вектор входного напряжения на контуре. Угол ψ показывает, каков сдвиг фаз между током и напряжением в цепи.

Разложим теперь вектор U_L по осям координат. Проекция U_L на ось абсцисс позволяет определить $U_{L,\text{акт}}$ — напряжение на активной части импеданса катушки, а проекция на ось ординат даёт реактивную часть $U_{L,\text{реакт}}$. Поделив эти напряжения на ток I, найдём действительную часть импеданса катушки r_L и мнимую ΩL .

3 Основная работа.

3.1 Исследование зависимости сдвига фаз между током и напряжением от R в RC—цепи.

Пользуясь схемой, изображенной на рис. 1, найдем зависимость сдвига фаз между током и напряжением от R в RC—цепи. Для этого закоротим катушку индуктивности. На магазине емкости поставим емкость C=0.5 мк $\Phi,\ \nu=1$ к Γ ц.

Рассчитаем реактивное сопротивление цепи по формуле: $X_1=1/(\Omega C)=1/(2\pi\nu C)$. Где $\Omega=2\pi\nu$ - циклическая частота.

$$X_1 = \frac{1}{\Omega C} = \frac{1}{2\pi\nu C} = \frac{1}{2\pi\cdot 1000\Gamma_{\mathrm{H}}\cdot 0.5\mathrm{mk}\Phi} = 318.3\mathrm{Om}.$$

Увеличивая сопротивление R от нуля до $10 \cdot X_1$, проведем измерения сдвига фаз ψ .

Таблица 1 – Сдвиг фаз в RC-контуре в зависимости от R.

$R, O_{\rm M}$	x, cm	x_0 , cm	ψ
0	2.5	5	0.5π
200	1.6	5	0.32π
400	1.2	4.4	0.27π
600	0.4	4.5	0.09π
900	0.6	5	0.12π
1200	0.2	4.5	0.04π

3.2 Исследование зависимости сдвига фаз между током и напряжением от R в RL-цепи.

Пользуясь схемой, изображенной на рис. 1, найдем зависимость сдвига фаз между током и напряжением от R в RL-цепи. Для этого закоротим магазин емкостей. На катушке поставим индуктивность L=50 м Γ н, $\nu=1$ к Γ ц.

Рассчитаем реактивное сопротивление цепи по формуле: $X_2 = \Omega L = 2\pi \nu C$.

$$X_2 = \Omega L = 2\pi \nu L = 2\pi \cdot 1000 \Gamma_{\rm H} \cdot 50 \Gamma_{\rm H} = 314 {\rm Om}.$$

Увеличивая сопротивление R от нуля до $10 \cdot X_2$, проведем измерения сдвига фаз ψ .

Таблица 2 – Сдвиг фаз в RL-контуре в зависимости от R.

	R, Om	x, cm	x_0 , cm	ψ
ſ	0	2.2	4.9	0.45π
	200	1.4	4.9	0.29π
	600	0.6	4.9	0.12π
	900	0.4	4.9	0.08π
	1200	0.2	4.9	0.04π

3.3 Исследование зависимости сдвига фаз между током и напряжением от частоты в RLC-контуре.

В цепи, изображенной на рис. 1, Установим значения $R=0,\,L=50$ мГн, C=0.5 мкФ. Рассчитаем резонансную частоту по формуле: $\nu=1/(2\pi\sqrt{LC})$.

$$\nu = \frac{1}{(2\pi\sqrt{LC})} = \frac{1}{2\pi\sqrt{50\text{м}\Gamma\text{H}\cdot0.5\text{м}\kappa\Phi}} = 1006\Gamma\text{ц}.$$

Снимем зависимость сдвига фаз от частоты. Для этого:

• Подберем частоту 3Γ , чтобы получить резонанс в цепи. При резонансе $\psi=0$, и нулевые значения двух синусоид должны совместиться, а при равенстве амплитуд синусоиды полностью совпадают.

$$\nu_{\rm эксп} = 1020 \Gamma$$
ц.

- Оценим по картинке на экране ЭО диапазон измерения частоты, в котором сдвиг фазы меняется от $\pi/3$ до $-\pi/3$.
- Снимем зависимость сдвига фаз от частоты в этом диапазоне, меняя частоту в обе стороны от резонансного значения. С изменением частоты меняется расстояние x_0 , которое занимает половина периода синусоиды, поэтому каждый раз фиксируем отношение x/x_0 .

Таблица 3 – Сдвиг фаз в RLC-контуре в зависимости от частоты при R=0 Ом.

ν , Гц	x, cm	x_0 , cm	ψ	ν, Гц	x, cm	x_0 , cm	ψ
910	1.6	5.3	0.3π	1020	0	4.8	0
930	1.5	5	0.3π	1040	0.5	4.8	0.1π
950	1.2	5	0.24π	1060	0.8	4.7	0.17π
970	0.9	5	0.18π	1090	1	4.6	0.22π
990	0.6	5	0.12π	1100	1.2	4.5	0.27π
1000	0.3	4.8	0.06π	1120	1.3	4.4	0.3π

• Повторим измерения сдвига фаз для сопротивления $R=100~{
m Om}.$

Таблица 4 – Сдвиг фаз в RLC-контуре в зависимости от частоты при $R=100~{\rm Om}.$

ν, Гц	x, cm	x_0 , cm	ψ	ν, Гц	x, cm	x_0 , cm	ψ
900	0.8	5.2	0.15π	1020	0	4.8	0
920	0.6	5	0.12π	1040	0.2	4.8	0.04π
940	0.4	5	0.08π	1060	0.4	4.7	0.09π
960	0.3	5	0.06π	1090	0.5	4.6	0.11π
980	0.2	4.9	0.04π	1100	0.6	4.5	0.13π
1000	0	4.8	0	1120	0.6	4.5	0.08π

Таблица 5 - Проверка приборов с помощью моста Е7-8.

Значение	Номинальное, Ом	Реальное, Ом
r	12.4	12.43
$R_{\text{кат}}$	31.5	32.77

3.4 Исследование работы фазовращателя.

Необходимо найти сопротивление R, при котором сдвиг фаз равен $\pi/2$. Соберем схему, изображенную на рис. 2, и установим C=0.5мк Φ , $\nu=1$ к Γ ц. При R=3800 Ом сдвиг фаз равен $\pi/2$.

4 Обработка результатов.

4.1 *RC*-цепь.

Для RC-цепи построим график $\psi = f(R+r)$, где R - сопротивление, выставленное на магазине сопротивлений, r - сопротивление резистора, включенного в цепь. Из графика определим сопротивление R для $\psi = \pi/2$.

Сдвиг фаз в RC-цепи в зависимости от сопротивления R

По графику определим сопротивление R, для $\psi=\pi/2$. R=, при этом рассчитанное значение: R=314 Ом.

Построим график $tg\psi=f(\frac{1}{\omega R_{\sum}C})$, где $R_{\sum}=R+r$. Построим также теоретический график (пунктир).

Сдвиг фаз в RC-цепи в зависимости от $RC\Omega$

4.2 *RL*-цепь.

Для RL-цепи построим график $\psi=f(R+r+R_L)$, где R_L - сопротивление, выставленное катушки индуктивности. Из графика определим сопротивление R для $\psi=\pi/2$.

Сдвиг фаз в RL-цепи в зависимости от сопротивления R

По графику определим сопротивление R, для $\psi=\pi/2$. R=, при этом рассчитанное значение: R=310 Ом.

Построим график $\operatorname{tg} \psi = f(\frac{\omega L}{R_1})$, где $R_1 = R + r + R_L$. Построим также теоретический график (пунктир).

Сдвиг фаз в RL-цепи в зависимости от $R/L\Omega$

4.3 Поиск добротности контура.

Найдем добротность колебательного контура при $R=0\Omega$ и $R=100\Omega$. Для этого измерим $\Delta \nu$ при сдвиге фаз $\psi=\pi/4$. Тогда $Q=\nu_0/(2\Delta \nu)$.

Добротность найденная из графиков:

$$Q_1 = \frac{\nu_0}{2\Delta\nu} = \frac{1006\Gamma_{\rm II}}{2\cdot 18\Gamma_{\rm II}} = 27.9$$
$$Q_2 = \frac{\nu_0}{2\Delta\nu} = \frac{1006\Gamma_{\rm II}}{2\cdot 20\Gamma_{\rm II}} = 25.15$$

Найдем добротность контура вторым способом: рассчитаем добротность через параметры контура R, L, C.

$$Q_{\text{\tiny Teop}} = rac{1}{r} \sqrt{rac{L}{C}} = rac{1}{12.43 ext{Om}} \sqrt{rac{0.5 ext{m} \Gamma_{ ext{H}}}{0.5 ext{m} \kappa \Phi}} = 25.5$$

Оценим погрешность:

$$\begin{split} \sigma(Q) &= \sqrt{\left(\frac{\sigma(r)}{r}\right)^2 + \frac{1}{2} \left(\frac{\sigma(L)}{L}\right)^2 + \frac{1}{2} \left(\frac{\sigma(C)}{C}\right)^2} = \\ &= \sqrt{\left(\frac{0.01}{12.4}\right)^2 + \frac{1}{2} \left(\frac{0.05}{50 \cdot 10^{-3}}\right)^2 + \frac{1}{2} \left(\frac{10^{-6}}{0.5 \cdot 10^{-6}}\right)^2} = 0.7. \\ \varepsilon(Q) &= \frac{\sigma(Q)}{Q} = \frac{0.7}{25.5} = 0.027 = 2.7\%. \end{split}$$

4.4 Сопротивление магазина R_M при сдвиге фаз $\pi/2$.

Построим векторную диаграмму фазовращателя; с ее помощью рассчитаем сопротивление магазина R_M , при котором сдвиг фаз между током и напряжением равен $\pi/2$. Сравним результат с экспериментом.

Воспользуемся рис. В.7.

Сдвиг фаз между током и напряжением равен $\pi/2$. Сопротивление магазина найдем при условии что вектора тока и напряжения на векторной диаграмме перпендикулярны, тогда получим $R_{\scriptscriptstyle \rm M}=310$ Ом, что не отличается от эксперимента: см пункт 4.1, 4.2.

5 Сведем результаты эксперимента в таблицу.

Таблица 6 – Итоговая таблица.

			Q	Q	
$L_{\rm kat}$	R_M	R_{\sum}	Рез. кривая	f(LCR)	Фазовращ. $R_M(\psi=\pi/2)$
50 мГн	0	12.4 Ом	27.9	25.5	Эксп
50 мГн	100	145.1 Ом	25.15	25.5	Teop

6 Вывод.

Изучили влияние на сдвиг фаз между током и напряжением в цепи переменного тока индуктивности, активного сопротивления и ёмкости. Полученное экспериментальным способом добротность не сильно отличается от теоретической.

Таблица 7 – Итоги.

R, Ω	Q	$\sigma(Q)$	$\varepsilon(Q)$
0	27.9	0.7	2.7%
100	25.15	0.7 Ом	2.7%