Automata Homework 1

Ali Abbasi - 98105879

November 18, 2022

1 Logic, Reasoning, Induction

1.1

1.1.1

$$p \to (q \lor r) \equiv \neg p \lor (q \lor r)$$
$$\equiv (\neg p \lor q) \lor r$$
$$\equiv \neg (p \land \neg q) \lor r$$
$$\equiv (p \land \neg q) \to r$$

1.1.2

$$\neg (p \lor q) \lor (\neg p \land q) \lor \equiv (\neg p \land \neg q) \lor (\neg p \land q) \lor (p \land q)$$
 (De Morgan)
$$\equiv \left[\neg p \land (\neg q \lor q) \right] \lor (p \land q)$$
 (Distributive)
$$\equiv \left[\neg p \land T \right] \lor (p \land q)$$

$$\equiv \neg p \lor (p \land q)$$

$$\equiv (\neg p \lor p) \land (\neg p \lor q)$$
 (Distributive)
$$\equiv T \land (\neg p \lor q)$$

$$\equiv \neg p \lor q$$

$$\equiv \neg (p \land \neg q)$$
 (De Morgan)

1.2

We are going to prove these statements both with contradiction and inference rules:

1.2.1

$$(p \to q) \implies (\neg q \to \neg p) \tag{1}$$

Proof with contradiction:

$$(p \to q) \land \neg (\neg q \to \neg p) \equiv (\neg p \lor q) \land \neg (q \lor \neg p)$$

$$\equiv (\neg p \lor q) \land (\neg q \land p)$$

$$\equiv \neg q \land p \land (\neg p \lor q) \qquad \text{(reorder)}$$

$$\equiv \neg q \land \left[(p \land \neg p) \lor (p \land q) \right] \qquad \text{(Distributive)}$$

$$\equiv \neg q \land \left[F \lor (p \land q) \right]$$

$$\equiv \neg q \land (p \land q)$$

$$\equiv p \land (\neg q \land q) \qquad \text{(Associative)}$$

$$\equiv p \land F$$

$$\equiv F$$

Thus we have a contradiction.

Proof with inference rules:

(1)
$$\neg q$$
 Assumption

(2)
$$| p \rightarrow q$$
 Premise

(3)
$$|\neg p|$$
 Modus Tollens: 1, 2

(4)
$$\neg q \rightarrow \neg p$$
 \rightarrow introduction: 1-3

1.2.2

Porof by contradiction:

$$\begin{bmatrix}
(p \to q) \land (p \to \neg q)
\end{bmatrix} \implies \neg p \tag{3}$$

$$\begin{bmatrix}
(p \to q) \land (p \to \neg q)
\end{bmatrix} \land \neg (\neg p) \equiv \begin{bmatrix}
(\neg p \lor q) \land (\neg p \lor \neg q)
\end{bmatrix} \land p$$

$$\equiv \begin{bmatrix}
\neg p \lor (q \land \neg q)
\end{bmatrix} \land p$$

$$\equiv \begin{bmatrix}
\neg p \lor F
\end{bmatrix} \land p$$

$$\equiv \neg p \land p$$

$$\equiv F$$

$$\therefore \text{ Contradiction}$$

Proof with inference rules:

(1)	p	Assumption
(2)	$ p \rightarrow q$	Premise
(3)	$\mid q$	Modus Ponens: 1, 2
(4)	$\mid p ightarrow \lnot q$	Premise
(5)	$\mid \neg p$	Modus Tollens: 3, 4
(6)		\neg elimination: 1, 5
(7)	$\lnot p$	¬ introduction: 1-6

(\perp means contradiction).

Note that we've used $p \to q$ and $p \to \neg q$ as premises for simplicity. If we don't consider them our direct premises, then we can use Simplification rule on $(p \to q) \land (p \to \neg q)$ to get to them .

1.2.3

Proof by contradiction:

$$\left[(p \lor q) \land (\neg p \lor r) \right] \implies (q \lor r) \tag{5}$$

Proof with inference rules:

(1)	$\neg (q \lor r)$	Assumption
(2)	$ \neg q \wedge \neg r$	De Morgan: 1
(3)	$ \neg q$	Simplification: 2
(4)	$\mid p \lor q$	Premise
(5)	$\mid p$	Disjunctive Syllogism: 3, 4
(6)	$\mid \neg p \lor r$	Premise
(7)	$\mid \neg r$	Simplification: 2
(8)	$\mid \neg p$	Disjunctive Syllogism: 6, 7
(9)		\neg elimination: 5, 8
(10)	$\neg\neg(q\vee r)$	\neg introduction:1-9
(11)	$q \lor r$	$\neg\neg$ elimination

1.3

1.3.1

If you write a truth table for both sides, you'll see that this equivalence does not hold. But rather we can only derive the following statement and we are going to prove that instead.

$$(p \to r_1) \land (r_1 \to r_2) \land \dots \land (r_n \to q) \implies p \to q$$
 (7)

It is easily proved using induction.

Base Case:

$$(p \to r_1) \land (r_1 \to q) \implies p \to q$$
 (8)

(1)	p	Assumption
(2)	$\mid p ightarrow r_1$	Premise
(3)	$\mid r_1$	Modus Ponens: 1, 2
(4)	$\mid r_1 \rightarrow q$	Premise
(5)	$\mid q$	Modus Ponens: 3, 4
(6)	p o q	\rightarrow introduction: 1-5

Induction Hypothesis: Let's assume for n = k this equivalence holds. Then:

$$(p \to r_1) \land (r_1 \to r_2) \land \dots \land (r_k \to z) \implies p \to z$$
 (10)

Induction Step: We can show that it also holds for n = k + 1.

1.3.2

We prove this equivalence with induction.

Base Case: for n = 1 it's obvious:

$$p = r_1$$
$$p \to q \equiv r_1 \to q$$

Induction Hypothesis: Let's assume for n = k this equivalence holds:

$$p_1 = r_1 \lor \dots \lor r_k$$
$$p_1 \to q \equiv (r_1 \to q) \land \dots \land (r_k \to q)$$

Induction Step: Now we now show that it holds for n = k + 1 as well:

$$p = \underbrace{r_1 \vee \ldots \vee r_k}_{p_1} \vee \underbrace{r_{k+1}}_{p_2} = p_1 \vee p_2$$

$$(r_1 \to q) \land \dots \land (r_k \to q) \land (r_{k+1} \to q) \equiv (p_1 \to q) \land (r_{k+1} \to q) \quad \text{(Induction Hypothesis)}$$

$$\equiv (p_1 \to q) \land (p_2 \to q)$$

$$\equiv (\neg p_1 \lor q) \land (\neg p_2 \lor q)$$

$$\equiv (\neg p_1 \land \neg p_2) \lor q \qquad \text{(Distributive law)}$$

$$\equiv \neg (p_1 \lor p_2) \lor q \qquad \text{(De Morgan)}$$

$$\equiv \neg p \lor q$$

$$\equiv p \to q \quad \therefore$$

2 Properties of sets, recursive definitions, countability and uncountability

2.1

Yes it is a equivalence relation:

- Reflexive: $\forall x \in L$ we define u and v as: $u = x, v = \epsilon$. Therefore $x = uv = vu \implies xRx$.
- Symmetric: It's obvious! (you only need to swap u and v values).
- Transitive: Assume |x| = n = i + j and x is split into u and v at index i (i.e., |u| = i, |v| = j) and y = vu. And we know yRz; i.e., if we split y at some index and swap the resulting substrings, we get z. There is three possibilities for index at which y is split. If y is split at index k = j, then x = z and xRz by reflexiveness. If y is split at $0 \le k < j$, then one can rewrite x, y, and z as follow: $y = abu, x = \underbrace{ua \quad b}_{u'}, z = \underbrace{b \quad ua}_{v'}$ (where |a| = k) and as you can see, you can convert x to z and vice versa, by swapping u' and v'. Thus xRz. You can show same thing in the case where split is done at index $j \le k < n$ with a similar procedure. Hence R is transitive.

2.2

2.2.1

We name the mentioned set S and define S recursively:

- (1) $a \in S$
- (2) $\forall x, y \in S : x + y \in S$
- (3) $\forall x, y \in S : x \times y \in S$
- $(4) \ \forall x \in S : (x) \in S$

Now we prove string $(a + a \times (a + a))$ belongs to S by constructing it step by step with the above rules:

- 1. $\xrightarrow{(1)} a \in S$
- $2. \xrightarrow{1,(2)} a + a \in S$
- 3. $\xrightarrow{2,(4)}$ $(a+a) \in S$

$$4. \xrightarrow{1,3,(3)} a \times (a+a) \in S$$

5.
$$\xrightarrow{1,4,(2)} a + a \times (a+a) \in S$$

6.
$$\xrightarrow{5,(4)} (a + a \times (a + a)) \in S$$

(Numbers in parenthesis refer to rules defined above).

2.2.2

We name the mentioned set S and define S recursively:

- (1) $\epsilon \in S$
- $(2) \ \forall x \in S: \ (x) \in S$
- (3) $\forall x, y \in S : xy \in S$

Now we prove $()(()) \in S$ by constructing it step by step:

1.
$$\xrightarrow{(1)} \epsilon \in S$$

$$2. \xrightarrow{1,(2)} () \in S$$

$$3. \xrightarrow{2,(2)} (()) \in S$$

4.
$$\xrightarrow{3,2,(3)}$$
 (())() $\in S$

2.3

We assume disks in A do not have any overlap with each other.

You can find a point (x, y) at every disk such that $x, y \in \mathbb{Q}$ (because every disk covers a range of real number in both axes, and you can find a rational number in every real range). We map every disk to one of its points with rational coordinates and since disks are disjoint, this mapping would be a one-to-one function. Thus we have mapped the set A to a subset of \mathbb{Q}^2 and as we know, \mathbb{Q} and \mathbb{Q}^2 are both countable sets. Thus $|A| \leq |\mathbb{Q}^2|$ and A is countable.

2.4

In this case, A can be uncountable. Consider only set of circles with their center at origin and a radius of $r \in (0,1]$. There can be as many (non-intersecting) circles in this set as cardinality of (0,1] which we know is higher than |J| hence it is not countable.

3 Basics of Automata

3.1

We add a new state to the automata (s) and want to determine new transition function's output for state q and letter t (i.e., $\delta'(q,t)$). There is three cases:

- 1. If q is an accepting state in A and there is some state which goes to q with t, then in the new automata, $\delta'(q,t) = s$. For example, state 4 is an accepting state and state 2 goes to 4 by receiving letter b. So in the new automata, $\delta'(4,b) = s$.
- 2. If q is not in accepting states and if all states that have an edge to q, go to q with all receiving letters (except t), then $\delta'(q,t)=s$. For example, $\delta'(2,a)=s$. Because all of in-neighbors (neighbors with an incoming edge) of 2 (only 1) are connected to 2 with $\Sigma \{a\} = b$.
- 3. If it's non of above rules applied, δ' acts similar to δ .

By applying these rules, the new state machine would be as follow:

Figure 1: New automata (A')

Note that rule number 2 is vacuously true for states 1 and s; because they have no inneighbors in transition function δ . So resulting state machine would be the same as a state machine with only states 1 and s with $\delta'(1,a) = s$, $\delta'(1,b) = s$, $\delta'(s,a) = s$, $\delta'(s,b) = s$ as its only edges.