Sprawozdanie cw4

Mateusz Nowak

Produkcje gramatyki

PI - produkcja wyjściowa z S generuje pojedynczy element siatki

PW - produkcja generująca sąsiada z lewej strony (West)

PS - produkcja generująca sąsiada od dołu (South)

PJ - produkcja łącząca poziomo dwa sąsiednie elementy (join)

Możliwym ciągiem produkcji generującym siatkę 3x3 jest m.in. : PI -> PW -> PS -> PS -> PS -> PS -> PJ -> PJ -> PJ -> PJ

Kolejne etapy generowania siatki, według powyższego ciągu produkcji

	S
PI	0 I O O O O O O O O O
PW PW ₁	$0 - \begin{bmatrix} 0 & 0 \\ 1 & 1 \\ 0 & M \end{bmatrix} - 0$ $\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$
PW PW ₂	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
PS PS _(1,0)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
PS PS _(1,1)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

PS PS _(1,2)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
PS PS _(2,0)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
PS PS _(2,1)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
PS PS _(2,2)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

PJ PJ _(1,1)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
PJ PJ _(1,2)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
PJ PJ _(2,1)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
PJ PJ _(2,2)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Alfabet w sensie teorii śladów

$$A = \{PI, PW_1 PW_2, PS_{(1,0)}, PS_{(1,1)}, PS_{(1,2)}, PS_{(2,0)}, PS_{(2,1)}, PS_{(2,2)}, PJ_{(1,1)}, PJ_{(1,2)}, PJ_{(2,1)}, PJ_{(2,2)}\}$$

W ogólnym przypadku dla generacji siatki NxM alfabet to:

$$A = \{PI\} \cup \{PW_i \mid 0 < i < N\} \cup \{PS_{(i,j)} \mid 0 < i < N \text{ oraz } 0 <= j < M \} \cup \{PJ_{(i,j)} \mid 0 < i < N \text{ oraz } 0 < j < M \}$$

kolumny liczonę od prawej do lewej (0 do M-1), wierszę od góry w dół (0 do N-1)

PW_i - dołączenie elementu z lewej(West) strony w i-tej kolumnie

PS_(i, i) - dołączenie elementu na dole(South) w i-tym wierszy oraz j-tej kolumnie

 $PJ_{(i, j)}$ - połączenie elementu w i-tym wierszy oraz j-tej kolumnie z elementem po prawej(East)

Słowo odpowiadające generacji siatki

Relacja zależności dla alfabetu A

$$\begin{split} D &= sym \{ \ \{ \ (PI, \, PW_1), \, (PI, \, PS_{(1,0)}), \, (PW_1, \, PW_2), \, (PW_1, \, PS_{(1,1)}), \, \ (PW_2, \, PS_{(1,2)}), \, \ (PS_{(1,0)}, \, PS_{(2,0)}), \\ (PS_{(1,0)}, \, PJ_{(1,1)}), \, (PS_{(1,1)}, \, PS_{(2,1)}), \, (PS_{(1,1)}, \, PJ_{(1,1)}), \, (PS_{(1,1)}, \, PJ_{(1,2)}), \, (PS_{(1,2)}, \, PS_{(2,2)}), \, (PS_{(1,2)}, \, PJ_{(1,2)}), \\ (PS_{(2,0)}, \, PJ_{(2,1)}), \, (PS_{(2,1)}, \, PJ_{(2,1)}), \, (PS_{(2,1)}, \, PJ_{(2,2)}), \, (PS_{(2,2)}, \, PJ_{(2,2)}) \}^{+} \} \cup I_A \end{split}$$

Postać normalna Foaty

$$\mathsf{FNF} = [\mathsf{PI}][\mathsf{PW}_1, \, \mathsf{PS}_{(1,0)}][\mathsf{PW}_2, \, \mathsf{PS}_{(1,1)}, \, \mathsf{PS}_{(2,0)}][\mathsf{PS}_{(1,2)}, \, \mathsf{PS}_{(2,1)}, \, \mathsf{PJ}_{(1,1)}][\mathsf{PS}_{(2,2)}, \, \mathsf{PJ}_{(1,2)}, \, \mathsf{PJ}_{(2,1)}][\mathsf{PJ}_{(2,2)}]$$

Algorytm współbieżny dla siatki NxN

zaczynamy od PI,

po PI druga klasa wykonuje produkcje PW₁, PS_(1,0),

jeśli klasa k, wykonuje PW_i to klasa k + 1 wykonuje PW_{i+1, (i+1 < N)} oraz PS_{(1,i) i < N},

jeśli klasa k, wykonuje PS_(i,j) to klasa k + 1 wykonuje PS_{(i+1,j), (i+1 < N)}

jeśli klasa k, wykonuje PS_(i,j) oraz j jest różne od 0 to klasa k + 1 wykonuje PJ_(i,j),

Wykorzystałem projekt pokazany na ćwiczeniach. Dodatkowe klasy, które stworzyłem na potrzebny zaimplementowania generacji siatki NxN to SquareElement, MatrixDrawer, PI, PW, PS, PJ, MatrixExecutor