алгебраических (n>2), трансцендентных и сеточных уравнений, как правило, определяются приближенно с заданной точностью.

Решение осуществляется в два этапа:

Первый этап. Находятся отрезки $[a_i, b_i]$, внутри каждого из которых содержится один простой или кратный корень $(x_{*_i} \in [a_i, b_i])$ (см. рис. 3.1). Этот этап называется процедурой отделения корней. По сути на нем осуществляется грубое нахождение корней x_{*_i} .

Второй этап. Грубое значение каждого корня x_{*_l} уточняется до заданной точности одним из численных методов, в которых реализуются последовательные приближения. Порядок (скорость) сходимости метода определяется так же, как в п. 1.3.1.

3.1.2. ОТДЕЛЕНИЕ КОРНЕЙ

Для отделения действительных корней полезно определять заранее число корней, а также верхнюю и нижнюю границы их расположения. Для этого используется ряд теорем.

Теорема 3.1 (о числе корней алгебраического уравнения (3.3)).

Алгебраическое уравнение (3.3) n-й степени имеет ровно n корней, действительных или комплексных, при условии, что каждый корень считается столько раз, какова его кратность.

Теорема 3.2 (о свойстве парной сопряженности комплексных корней уравнения (3.3)).

Eсли $x_{*_i} = \alpha + \beta i$ — корень алгебраического уравнения (3.3) кратности k, то число $\bar{x}_{*_i} = \alpha - \beta i$ также является корнем той же кратности.

Следствие. Алгебраическое уравнение нечетной степени имеет по крайней мере один действительный корень.

Теорема 3.3 (об оценке модулей корней уравнения (3.3)).

Пусть $A = \max\{|a_{n-1}|, \ldots, |a_0|\}, B = \max\{|a_n|, |a_{n-1}|, \ldots, |a_1|\}, \ \partial e \ a_k, \ k = \overline{0,n} -$ коэффициенты уравнения $a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 = 0$.

Тогда модули всех корней x_{*_i} (i=1,...,n) уравнения удовлетворяют неравенству

$$\frac{1}{1+\frac{B}{|a_0|}} < |x_{*i}| \le 1 + \frac{A}{|a_n|}, \quad i = 1, \dots, n,$$
(3.4)

т. е. корни уравнения расположены в кольце.

Следствие.
$$\mathit{Числa}\ r = \frac{1}{1 + \frac{B}{|a_0|}}\ u\ R = 1 + \frac{A}{|a_n|}$$
 являются соответственно

нижней и верхней границами положительных корней алгебраического уравнения $r < x_{*i}^+ < R$. Аналогично числа -R и -r служат нижней и верхней границами отрицательных корней уравнения $-R < x_{*i}^- < -r$.

Приведем полезные теоремы, используемые для более точного установления границ действительных корней алгебраических уравнений. **Теорема 3.4** (теорема Лагранжа о верхней границе положительных корней уравнения (3.3)).

Пусть $a_n > 0$ и a_i — первый отрицательный коэффициент в последовательности a_n , a_{n-1} , a_{n-2} , ..., a_1 , a_0 ; C — наибольшая из абсолютных величин отрицательных коэффициентов. Тогда за верхнюю границу положительных корней уравнения (3.3) может быть принято число

$$R = 1 + n - \sqrt{\frac{C}{a_n}}. (3.5)$$

Теорема 3.5 (о нижних и верхних границах положительных и отрицательных корней алгебраического уравнения).

 Π усть R — верхняя граница положительных корней уравнения $P_n(x)=0$,

$$R_1$$
 — верхняя граница положительных корней уравнения $P^1(x)=x^nP_n\left(rac{1}{x}
ight)=0,$

$$R_2$$
 — верхняя граница положительных корней уравнения $P^2(x) = P_n(-x) = 0$,

$$R_3$$
 — верхняя граница положительных корней уравнения $P^3(x) = x^n P_n \left(-\frac{1}{x}\right) = 0$.

Тогда положительные корни $x_{*_i}^+$ и отрицательные корни $x_{*_i}^-$ уравнения (3.3) удовлетворяют неравенствам

$$\frac{1}{R_1} \le x_{*_i}^+ \le R; \quad -R_2 \le x_{*_i}^- \le -\frac{1}{R_2}. \tag{3.6}$$

Теорема 3.6 (теорема Декарта о количестве действительных корней алгебраических уравнений).

Число S_1 положительных корней (с учетом их кратностей) алгебраического уравнения $P_n(x)=0$ равно числу перемен знаков в последовательности коэффициентов $a_n, a_{n-1}, ..., a_0$ (коэффициенты, равные нулю, не учитываются) многочлена $P_n(x)$ или меньше этого числа на четное число. Число S_2 отрицательных корней (с учетом их кратностей) алгебраического уравнения $P_n(x)=0$ равно числу перемен знаков в последовательности $a_n, a_{n-1}, ..., a_0$ многочлена $P_n(-x)$ или меньше этого числа на четное число.

Теорема 3.7 (теорема Гюа о необходимом условии действительности всех корней алгебраического уравнения).

Если алгебраическое уравнение (3.3) имеет все действительные корни, то квадрат каждого некрайнего коэффициента больше произведения двух его соседних коэффициентов.

Следствие. Если при каком-нибудь k выполнено неравенство $a_k^2 \le a_{k-1}a_{k+1}$, то уравнение (3.3) имеет по крайней мере одну пару комплексных корней.

Для отделения корней применяется следующая теорема.

Теорема 3.8. Если функция f(x), определяющая уравнение f(x) = 0, на концах отрезка $[a_i, b_i]$ принимает значения разных знаков, m.e. $f(a_i) \cdot f(b_i) < 0$, то на этом отрезке содержится по крайней мере один корень уравнения. Если же f(x) непрерывна и дифференцируема и ее первая производная сохра-

няет знак внутри отрезка $[a_i,b_i]$ $\left(\underset{[a_i,b_i]}{\operatorname{sign}}f'(x) = \operatorname{const}\right)$, то на $[a_i,b_i]$ находится только один корень x_{*_i} уравнения.