Compositionality of Vector Representations

Karlgren and Kanerva (2019) show "Holographic Reduced Reprs.":

- Addition: Preserves similarity, useful to represent bag-of-...
- Hadamard product (elem-wise multiplication),
 - Invertible; product dissimilar to its operands: $A * B \nsim A$.
 - Bipolar vectors $(\{-1,+1\}^n)$ are inverse of themselves.
 - Can represent variable assignment $\{x=a,y=b,z=c\}$ using bipolar vectors X, Y, and Z added into a vector (X*A)+(Y*B)+(Z*C). To recover the value of x, multiply by X:

$$X*(X*A) + X*(Y*B) + X*(Z*C)) = A + \mathsf{noise} + \mathsf{noise} \sim A$$

- Vector elements permutation,
 - Also invertible; dissimilar; enormous number of permutations.
 - Useful to represent structures, e.g. lists: Π_1 for CAR Π_2 for CDR: (a,b) represented with $\Pi_1(a)+\Pi_2(b)$