Очень краткое введение в математический анализ для оценщиков

К. А. Мурашев

23 октября 2021 г.

Какую бы работу не выполнял оценщик, во всех случаях он имеет дело с информацией и данными. Часто эти данные представляют собой числа либо могут быть формализованы иным образом. В любом случае требуется алгоритмическая обработка входных данных и преобразование их в информацию, а в некоторых случаях — в знания. Целью данного фрагмента является формирование общих представлений об основных понятиях и методах математического анализа, необходимых современному оценщику. Автор постарался прибегать к минимальному числу формул и сложных определений, хотя это и не вполне получилось. Поскольку конечной целью всей работы является цифровизация оценочной деятельности, в тексте приводятся короткие листинги на языках R и Python, позволяющие реализовать то, о чём говорится в тексте.

Содержание

1.	Некоторые особенности материала	2
	1.1. Список обозначений	2
2.	Последовательности	3
	2.1. Понятие множества	3
	2.2. Понятие отображения	4
3.	Функции и непрерывность)	4
4.	Производные	4
5.	Интегралы	4

1. Некоторые особенности материала

1.1. Список обозначений

Все обозначения, используемые в материале, соответствуют общепринятым в математике. Далее приводится краткая шпаргалка [1].

- № множество натуральных чисел, т.е. таких чисел, которые получаются при счёте объктов: 1,2,3,4,5.... Наименьшее натуральное число 1. Наибольшего натурального числа не существует. Натуральный ряд это последовательность всех натуральных чисел. В натуральном ряду каждое число больше предыдущего на 1. Натуральный ряд бесконечен, наибольшего натурального числа в нём не существует.
- \mathbb{Z} множество **целых чисел**, включающее в себя *натуральные числа*, все числа противоположные им по знаку, а также число ноль.
- \mathbb{Q} множество рациональных чисел, т. е. дробей вида $\frac{m}{n}$, где $m \in \mathbb{Z}$ и $n \in \mathbb{N}$. [
- \mathbb{R} множество **вещественных (действительных) чисел**, содержащее в себе все рациональные и иррациональные числа.
- \in оператор принадлежности. Запись $x \in \mathbb{Z}$ означает «х принадлежит к множеству *целых чисел*» либо «х является *целым числом*».
- $x \in X: a$ означает подмножество множества X, состоящее из элементов, удовлетворяющих условию a.
- $A \cup B$ объединение множеств A и B.
- $A \cap \mathbf{B}$ пересечение множеств A и B.
- $A \subset \mathbf{B}$ множество A является подмножеством множества B.
- $\bigcup\limits_{k=1}^{n}A_{k}$ объединение всех множеств A_{1},A_{2},\ldots,n .
- $\bigcap_{k=1}^{n} A_k$ пересечение всех множеств A_1, A_2, \dots, n .
- [a,b] **отрезок** между числами a и b т. е. множество вещественных чисел, лежащих между числами a и b, включая сами числа a и b. На математическом языке это можно записать как $[a,b]=x\in\mathbb{R}:a\leq x\leq b$. При a=b отрезок состоит из одной точки и называется вырожденным отрезком.
- (a,b) **интервал** между числами a и b т. е. множество вещественных чисел, лежащих строго между a и b, не включая их самих. На математическом языке это можно записать как $(a,b)=x\in\mathbb{R}:a< x< b$.
- [a,b),(a,b] полуинтервалы между числами a и b: $[a,b) = \{x \in \mathbb{R} : a \le x < b\},$ $(a,b] = \{x \in \mathbb{R} : a < x \le b\}.$

$$\begin{split} &[a, +\infty) \quad -\text{луч:} \ [a, +\infty)] = \{x \in \mathbb{R} : a \leq x\}. \\ &(a, +\infty) \quad -\text{луч:} \ (a, +\infty)] = \{x \in \mathbb{R} : a < x\}. \\ &(-\infty, b] \quad -\text{луч:} \ (-\infty, b] = \{x \in \mathbb{R} : x \leq b\}. \\ &(-\infty, b) \quad -\text{луч:} \ (-\infty, b) = \{x \in \mathbb{R} : x < b\}. \end{split}$$

Промежуток — *отрезок*, *интервал* либо *полуинтервал*. Промежуток любого из четырех типов обозначается $\langle a,b \rangle$. В рамках одного утверждения запись $\langle a,b \rangle$ всегда обозначает один и тот же подвид промежутка.

- $\langle a, b \rangle$ любой из двух промежутков (a,b) и [a,b).
- ∀ квантор всеобщности, используется для сокращённой записи вместо понятий «каждый», «любой», или «для всякого», «для любого» и т.п.
- ∃ квантор существования, используется для сокращённой записи вместо слов «найдётся», «существует» и т. п.

$$\sum_{k=n}^{n} a_k$$
 — сумма чисел a_k по k от m до n , т. е. $a_m + a_{m+1} + a_{m+1} + \ldots + a_n$.

 $f: X \to Y$ — функция, заданная на множестве X, множество значений которой лежит в Y (но необязательно с ним совпадает).

label description

2. Последовательности

2.1. Понятие множества

Под *множеством* понимают совокупность, класс или собрание объектов безразлично какой природы. Согласно определению основоположника теории множеств Г. Кантора [2], множество — это собрание предметов одинаковых или различных между собой, мыслимое как единое целое. Собрание предметов рассматривается как один предмет. Не следует понимать множество как совокупность действительно существующих предметов, принадлежность предметов одному множества не требует от них сосуществования во времени и пространстве. В логике множество понимается как абстрактный объект, в котором каждый предмет рассматривается с точки зрения признаков, по которым данный предмет принадлежит данному множеству. В множестве предметы становятся неразличимыми друг от друга по признакам и их только по именам.

Объект, принадлежащий данному множеству, называется его **элементом**. Множество обозначается заглавными латинскими буквами , , . Элементы, входящие в множество, обозначаются строчными латинскими буквами и заключаются в фигурные скобки: a,b,c.

Множество, содержащее конечное число элементов, называется **конечным**, а бесконечное число элементов—**бесконечным**.

Два множества называются **равными**, если содержат одинаковые элементы (= 2,4,8 = 2,2,4,8).

Элементами множества могут быть другие множества =2,3,4,5. При этом $=2,3,4,5\neq=2,3,4,5$.

Часть множества называется подмножеством данного множества. Например, $A \subset B$. EEnd.[Studopedia:mnozhestvo]

2.2. Понятие отображения

Большую роль в математике имеет установление связей между двумя множествами X и Y, связанное с рассмотрением пар объектов, образованных из элементов первого множества и соответствующих им элементов второго множества. Особое значение при этом имеет *отображение множеств*.

Пусть X и Y — произвольные множества. Отображением множества X на множество Y называется \forall правило f, по которому каждому элементу множества X сопоставляется вполне определённый (единственный) элемент множества Y. Тот факт, что f есть отображение X в Y, кратко записывают в виде: f: X - > Y.

3. Функции и непрерывность)

4. Производные

5. Интегралы

Источники информации

- [1] Computer Science Center. Введение в математический анализ. 2021. URL: https://stepik.org/course/95/info (дата обр. 22.10.2021).
- [2] Wikipedia. *Kahmop*, *Teops*. URL: https://ru.wikipedia.org/wiki/%D0%9A%D0% B0%D0%BD%D1%82%D0%BE%D1%80,_%D0%93%D0%B5%D0%BE%D1%80%D0%B3 (дата обр. 23.10.2021).