## (N-gram) Language models

CMSC 723 / LING 723 / INST 725

Hal Daumé III [he/him] 8 Oct 2019

(many slides c/o Dan Jurafsky)

#### Announcements, logistics

#### • Reminders:

- HW3 is out, due in one week (will probably require programming)
- GHC make-up exam right after class today

#### • Class project:

- Details posted to github
- We'll discuss during second half of class today
- Start finding a team!
- Project pitches on 22 October

#### Course trajectory

- Previously:
  - Distributional semantics
  - Text categorization
  - Data
- Now: Language as a sequence
  - Language modeling
  - Sequence labeling
  - Sequence transduction
- Later:
  - More structure beyond sequences
  - Interpretation of models

```
urror_mod = modifier_ob.
  mirror object to mirror
irror_mod.mirror_object
 peration == "MIRROR_X":
mirror_mod.use_x = True
irror_mod.use_y = False
mirror_mod.use_z = False
 _operation == "MIRROR_y"|
 alrror_mod.use_x = False
 lrror_mod.use_y = True
 lrror_mod.use_z = False
  operation == "MIRROR_Z":
  rror_mod.use_x = False
 lrror_mod.use_y = False
  rror_mod.use_z = True
  election at the end -add
   ob.select= 1
   er_ob.select=1
   text.scene.objects.action
   "Selected" + str(modified)
   irror ob.select = 0
 bpy.context.selected_ob_
lata.objects[one.name].sel
 int("please select exaction
 OPERATOR CLASSES ----
     x mirror to the select
  ext.ac
```

# Language Modeling

Introduction to N-grams

#### Probabilistic Language Models

- Today's goal: assign a probability to a sentence
  - Machine Translation:
    - P(high winds tonite) > P(large winds tonite)
  - Spell Correction
- Why?

- The office is about fifteen minuets from my house
  - P(about fifteen minutes from) > P(about fifteen minuets from)
- Speech Recognition
  - P(I saw a van) >> P(eyes awe of an)
- + Summarization, question-answering, etc., etc.!!

#### Probabilistic Language Modeling

 Goal: compute the probability of a sentence or sequence of words:

$$P(W) = P(w_1, w_2, w_3, w_4, w_5...w_n)$$

Related task: probability of an upcoming word:

$$P(W_5|W_1,W_2,W_3,W_4)$$

A model that computes either of these:

```
P(W) or P(w_n|w_1,w_2...w_{n-1}) is called a language model.
```

Better: the grammar But language model or LM is standard

#### How to compute P(W)

- How to compute this joint probability:
  - P(its, water, is, so, transparent, that)
- Intuition: let's rely on the Chain Rule of Probability

#### Reminder: The Chain Rule

Recall the definition of conditional probabilities

$$p(B|A) = P(A,B)/P(A)$$
 Rewriting:  $P(A,B) = P(A)P(B|A)$ 

More variables:

$$P(A,B,C,D) = P(A)P(B|A)P(C|A,B)P(D|A,B,C)$$

• The Chain Rule in General

$$P(x_1,x_2,x_3,...,x_n) = P(x_1)P(x_2|x_1)P(x_3|x_1,x_2)...P(x_n|x_1,...,x_{n-1})$$

The Chain Rule applied to compute joint probability of words in sentence

$$P(w_1 w_2 \dots w_n) = \prod_{i} P(w_i \mid w_1 w_2 \dots w_{i-1})$$

P("its water is so transparent") =

 $P(its) \times P(water|its) \times P(is|its water)$ 

× P(so | its water is) × P(transparent | its water is so)

#### How to estimate these probabilities

Could we just count and divide?

P(the | its water is so transparent that) = Count(its water is so transparent that the)

Count(its water is so transparent that)

- No! Too many possible sentences!
- We'll never see enough data for estimating these

#### Markov Assumption

## Simplifying assumption:



 $P(\text{the }|\text{ its water is so transparent that}) \approx P(\text{the }|\text{ that})$ 

## Or maybe

 $P(\text{the }|\text{ its water is so transparent that}) \approx P(\text{the }|\text{ transparent that})$ 

#### Markov Assumption

• 
$$P(w_1 w_2 \dots w_n) \approx \prod_i P(w_i | w_{i-k} \dots w_{i-1})$$

 In other words, we approximate each component in the product

$$P(w_i | w_1 w_2 \dots w_{i-1}) \approx P(w_i | w_{i-k} \dots w_{i-1})$$

#### Simplest case: Unigram model

$$P(w_1 w_2 \dots w_n) \approx \prod_i P(w_i)$$

Some automatically generated sentences from a unigram model

fifth, an, of, futures, the, an, incorporated, a, a, the, inflation, most, dollars, quarter, in, is, mass thrift, did, eighty, said, hard, 'm, july, bullish that, or, limited, the

#### Bigram model

Condition on the previous word:

$$P(w_i | w_1 w_2 \dots w_{i-1}) \approx P(w_i | w_{i-1})$$

texaco, rose, one, in, this, issue, is, pursuing, growth, in, a, boiler, house, said, mr., gurria, mexico, 's, motion, control, proposal, without, permission, from, five, hundred, fifty, five, yen

outside, new, car, parking, lot, of, the, agreement, reached this, would, be, a, record, november

#### N-gram models

- We can extend to trigrams, 4-grams, 5-grams
- In general this is an insufficient model of language
  - because language has long-distance dependencies:

"The computer(s) which I had just put into the machine room on the fifth floor is (are) crashing."

But we can often get away with N-gram models

Language Modeling

Introduction to N-grams

#### Google N-Gram Release, August 2006



#### All Our N-gram are Belong to You

Posted by Alex Franz and Thorsten Brants, Google Machine Translation Team

Here at Google Research we have been using word n-gram models for a variety of R&D projects,

• • •

That's why we decided to share this enormous dataset with everyone. We processed 1,024,908,267,229 words of running text and are publishing the counts for all 1,176,470,663 five-word sequences that appear at least 40 times. There are 13,588,391 unique words, after discarding words that appear less than 200 times.

#### Google N-Gram Release

- serve as the incoming 92
- serve as the incubator 99
- serve as the independent 794
- serve as the index 223
- serve as the indication 72
- serve as the indicator 120
- serve as the indicators 45
- serve as the indispensable 111
- serve as the indispensible 40
- serve as the individual 234

http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html

#### Google N-Gram WARNING

```
grep -i '^the [a-z][a-z]* [a-z][a-z]*ed the [a-z]*'
I then took these, lower cased them, and then merged the counts. Here are the top 25, sorted
and with counts:
    1 101500 the surveyor observed the use
       30619 the rivals shattered the farm
   3 27999 the link entitled the names
       22928 the trolls ambushed the dwarfs
       22843 the dwarfs ambushed the trolls
      21427 the poet wicked the woman
       15644 the software helped the learning
       13481 the commission released the section
      12273 the mayor declared the motion
      11046 the player finished the year
  11 10809 the chicken crossed the road
      8968 the court denied the motion
  12
       8198 the president declared the bill
  13
       7890 the board approved the following
       7848 the bill passed the house
       7373 the fat feed the muscle
  16
       7362 the report presented the findings
  18
       7115 the committee considered the report
  19
       6956 the respondent registered the domain
       6923 the chairman declared the motion
       6767 the court rejected the argument
  21
       6307 the court instructed the jury
  22
       5962 the complaint satisfied the formal
  23
       5688 the lord blessed the sabbath
        5486 the bill passed the senate
```

https://nlpers.blogspot.com/2010/02/google-5gram-corpus-has-unreasonable.html

## Google Book N-grams

• <a href="http://ngrams.googlelabs.com/">http://ngrams.googlelabs.com/</a>



# Language Modeling

**Evaluation and Perplexity** 

#### Evaluation: How good is our model?

- Does our language model prefer good sentences to bad ones?
  - Assign higher probability to "real" or "frequently observed" sentences
    - Than "ungrammatical" or "rarely observed" sentences?
- We train parameters of our model on a training set.
- We test the model's performance on data we haven't seen.
  - A **test set** is an unseen dataset that is different from our training set, totally unused.
  - An evaluation metric tells us how well our model does on the test set.

#### Training on the test set

- We can't allow test sentences into the training set
- We will assign it an artificially high probability when we set it in the test set
- "Training on the test set"
- Bad science!
- And violates the honor code

#### Extrinsic evaluation of N-gram models

- Best evaluation for comparing models A and B
  - Put each model in a task
    - spelling corrector, speech recognizer, MT system
  - Run the task, get an accuracy for A and for B
    - How many misspelled words corrected properly
    - How many words translated correctly
  - Compare accuracy for A and B

# Difficulty of extrinsic (in-vivo) evaluation of N-gram models

- Extrinsic evaluation
  - Time-consuming; can take days or weeks
- So
  - Sometimes use intrinsic evaluation: perplexity
  - Bad approximation
    - unless the test data looks just like the training data
    - So generally only useful in pilot experiments
  - But is helpful to think about.

### Intuition of Perplexity

- The Shannon Game:
  - How well can we predict the next word?
  - I always order pizza with cheese and \_\_\_\_\_

The 33<sup>rd</sup> President of the US was \_\_\_\_

I saw a \_\_\_\_

- Unigrams are terrible at this game. (Why?)
- A better model of a text
  - is one which assigns a higher probability to the word that actually occurs

mushrooms 0.1
pepperoni 0.1
anchovies 0.01
....
fried rice 0.0001
....

Play the Shannon Game with your neighbor!

#### Perplexity

The best language model is one that best predicts an unseen test set

Gives the highest P(sentence)

Perplexity is the inverse probability of the test set, normalized by the number of words:

Chain rule:

For bigrams:

$$PP(W) = P(w_1 w_2 ... w_N)^{-\frac{1}{N}}$$

$$= \sqrt[N]{\frac{1}{P(w_1 w_2 ... w_N)}}$$

$$PP(W) = \sqrt[N]{\prod_{i=1}^{N} \frac{1}{P(w_i | w_1 ... w_{i-1})}}$$

$$PP(W) = \sqrt[N]{\prod_{i=1}^{N} \frac{1}{P(w_i|w_{i-1})}}$$

Minimizing perplexity is the same as maximizing probability

#### Perplexity as branching factor

- Let's suppose a sentence consisting of random digits
- What is the perplexity of this sentence according to a model that assign P=1/10 to each digit?

$$PP(W) = P(w_1 w_2 ... w_N)^{-\frac{1}{N}}$$

$$= (\frac{1}{10}^N)^{-\frac{1}{N}}$$

$$= \frac{1}{10}^{-1}$$

$$= 10$$

#### Lower perplexity = better model

Training 38 million words, test 1.5 million words, WSJ

| N-gram<br>Order | Unigram | Bigram | Trigram |
|-----------------|---------|--------|---------|
| Perplexity      | 962     | 170    | 109     |



# Language Modeling

Generalization and zeros

#### The intuition of smoothing (from Dan Klein)

• When we have sparse statistics:

P(w | denied the)

3 allegations

2 reports

1 claims

1 request

7 total



P(w | denied the)

2.5 allegations

1.5 reports

0.5 claims

0.5 request

2 other

7 total





#### Add-one estimation

- Also called Laplace smoothing
- Pretend we saw each word one more time than we did
- Just add one to all the counts!

• MLE estimate:

$$P_{MLE}(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i)}{c(w_{i-1})}$$

Add-1 estimate:

$$P_{Add-1}(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i) + 1}{c(w_{i-1}) + V}$$

## Compare with raw bigram counts

|         | i  | want | to  | eat | chinese | food | lunch | spend |
|---------|----|------|-----|-----|---------|------|-------|-------|
| i       | 5  | 827  | 0   | 9   | 0       | 0    | 0     | 2     |
| want    | 2  | 0    | 608 | 1   | 6       | 6    | 5     | 1     |
| to      | 2  | 0    | 4   | 686 | 2       | 0    | 6     | 211   |
| eat     | 0  | 0    | 2   | 0   | 16      | 2    | 42    | 0     |
| chinese | 1  | 0    | 0   | 0   | 0       | 82   | 1     | 0     |
| food    | 15 | 0    | 15  | 0   | 1       | 4    | 0     | 0     |
| lunch   | 2  | 0    | 0   | 0   | 0       | 1    | 0     | 0     |
| spend   | 1  | 0    | 1   | 0   | 0       | 0    | 0     | 0     |

|         | i    | want  | to    | eat   | chinese | food | lunch | spend |
|---------|------|-------|-------|-------|---------|------|-------|-------|
| i       | 3.8  | 527   | 0.64  | 6.4   | 0.64    | 0.64 | 0.64  | 1.9   |
| want    | 1.2  | 0.39  | 238   | 0.78  | 2.7     | 2.7  | 2.3   | 0.78  |
| to      | 1.9  | 0.63  | 3.1   | 430   | 1.9     | 0.63 | 4.4   | 133   |
| eat     | 0.34 | 0.34  | 1     | 0.34  | 5.8     | 1    | 15    | 0.34  |
| chinese | 0.2  | 0.098 | 0.098 | 0.098 | 0.098   | 8.2  | 0.2   | 0.098 |
| food    | 6.9  | 0.43  | 6.9   | 0.43  | 0.86    | 2.2  | 0.43  | 0.43  |
| lunch   | 0.57 | 0.19  | 0.19  | 0.19  | 0.19    | 0.38 | 0.19  | 0.19  |
| spend   | 0.32 | 0.16  | 0.32  | 0.16  | 0.16    | 0.16 | 0.16  | 0.16  |

#### Add-1 estimation is a blunt instrument

- So add-1 isn't used for N-grams:
  - We'll see better methods
- But add-1 is used to smooth other NLP models
  - For text classification
  - In domains where the number of zeros isn't so huge.

## Backoff and Interpolation

- Sometimes it helps to use **less** context
  - Condition on less context for contexts you haven't learned much about
- Backoff:
  - use trigram if you have good evidence,
  - otherwise bigram, otherwise unigram
- Interpolation:
  - mix unigram, bigram, trigram
- Interpolation works better

#### Linear Interpolation

Simple interpolation

$$\hat{P}(w_n|w_{n-2}w_{n-1}) = \lambda_1 P(w_n|w_{n-2}w_{n-1}) + \lambda_2 P(w_n|w_{n-1}) + \lambda_3 P(w_n)$$
 $\sum_i \lambda_i = 1$ 

Lambdas conditional on context:

$$\hat{P}(w_n|w_{n-2}w_{n-1}) = \lambda_1(w_{n-2}^{n-1})P(w_n|w_{n-2}w_{n-1}) 
+ \lambda_2(w_{n-2}^{n-1})P(w_n|w_{n-1}) 
+ \lambda_3(w_{n-2}^{n-1})P(w_n)$$

## Kneser-Ney Smoothing: Recursive formulation

$$P_{KN}(w_i \mid w_{i-n+1}^{i-1}) = \frac{\max(c_{KN}(w_{i-n+1}^i) - d, 0)}{c_{KN}(w_{i-n+1}^{i-1})} + \lambda(w_{i-n+1}^{i-1})P_{KN}(w_i \mid w_{i-n+2}^{i-1})$$

$$c_{KN}(\bullet) = \begin{cases} count(\bullet) & \text{for the highest order} \\ continuation count(\bullet) & \text{for lower order} \end{cases}$$

Continuation count = Number of unique single word contexts for •

### Today

- Language modeling
  - What is it?
  - Ngrams for language modeling
  - Evaluation: perplexity
  - Smoothing
- Some good toolkits:
  - SRILM <a href="http://www.speech.sri.com/projects/srilm/">http://www.speech.sri.com/projects/srilm/</a>
  - KenLM <a href="https://kheafield.com/code/kenlm/">https://kheafield.com/code/kenlm/</a>

PROJECT TIME!

