

Метод максимального правдоподобия

Доцент каф. АСУ: Суханов А.Я.

Метод максимального правдоподобия

- Пусть X < R" и для каждого хєх задано распределение вероятностей на RTM с плотностью P: RM → [0,1]. Для фиксированного у ∈ Rm Мы можем рассматривать P. (у) как функцию аргумента х ∈ X, которую называют функцией правдоподобия. На практике удобнее использовать логарифмическую функцию правдоподобия: 1(x) = lnpx(y).
- Рассмотрим задачу оценивания вектора параметров х по одному наблюдению случайного вектора
 у. Один из наиболее часто используемых методов, называемый методом максимального
 правдоподобия, в качестве оценки вектора х вычисляет вектор.

$$x^{ML} \in \arg \max_{x \in X} l(x).$$

Правдоподобие позволяет сравнить несколько вероятностных распределений с разными параметрами и оценить в контексте какого из них наблюдаемые события наиболее вероятны.

Линейные измерения с одинаково распределениями независимыми шумами

Рассмотрим модель линейных измерений Ax + v, где A есть $m \times n - m$ матрица, $y \in \mathbb{R}^m$ — наблюдаемый вектор, $x \in X \subseteq \mathbb{R}^n$ - вектор оцениваемых параметров, $v \in \mathbb{R}^m$ - вектор ошибок измерений(или шум). Мы предполагаем, что все шумы v_i есть независимые одинаково распределённые случайные величины с плотностью $p: \mathbb{R} \to [0,1]$. Тогда функция правдоподобия имеет вид:

$$p_x(y) = \prod_{i=1}^{m} p(y_i - \sum_{j=1}^{n} a_{ij}x_j)$$

Логарифмическая функция правдоподобия записывается следующим образом:

$$l(x) = \ln p_x(y) = \sum_{i=1}^{m} \ln p(y_i - \sum_{j=1}^{n} a_{ij}x_j)$$

Чтобы оценить вектор параметров х по методу максимального правдоподобия, нужно решить следующую оптимизационную задачу:

$$\max \left\{ \sum_{i=1}^{m} \ln p \left(y_i - \sum_{j=1}^{n} a_{ij} x_j \right) : x \in X \right\}$$

• *Гаусовый шум*. Когда случайные величины v_i распределены по нормальному закону с матожиданием 0 и дисперсией σ^2 , то плотность задается формулой:

$$p(z) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{z^2}{2\sigma^2}}$$

Логарифмическая функция правдоподобия, определенная на $X=\mathbb{R}^n$, имеет вид:

$$l(x) = -(m/2)\ln(2\pi\sigma^2) - \frac{1}{\sigma^2} \sum_{i=1}^{m} (y_i - \sum_{j=1}^{n} a_{ij}x_j)^2 =$$
$$= -(m/2)\ln(2\pi\sigma^2) - \frac{1}{\sigma^2} ||Ax - y||_2^2$$

Поэтому оценкой \boldsymbol{x} по методу максимального правдоподобия будет і

$$x^{ML} \in \arg\min ||Ax - y||_2.$$

$$p(z) = \frac{1}{2a}e^{-|z|/a}$$

$$l(x) = -m \ln(2a) - \frac{1}{a} \sum_{i=1}^{m} \left| y_i - \sum_{j=1}^{n} a_{ij} x_j \right| = -m \ln(2a) - \frac{1}{a} ||Ax - y||_1$$

Поэтому оценкой х по методу максимального правдоподобия будет вектор:

$$\mathbf{x}^{ML} = \operatorname{arg} \min \|A_{\mathbf{x}} - \mathbf{y}\|_{1}$$

• *Однородный шум.* Когда случайные величины v_i равномерно распределены на отрезке [-a, a], то плотность распределения вероятностей

$$p(z) = \frac{1}{2a} \text{ для } z \in [-a, a]$$

Логарифмическая функция

$$l(x) = -m\ln(2a)$$

постоянна для всех х∈ X = [-а, а]". Поэтому оценкой и х по методу максимального правдоподобия будет любой вектор х, который удовлетворяет неравенствам:

$$\left| y_i - \sum_{j=1}^n a_{ij} x_j \right| \le a, \qquad i = 1, \dots, m.$$

Логистическая регрессия

• Рассмотрим случайную величину у ∈ {0,1} с

$$P(y = 1) = p, P(y = 0) = 1-p (0$$

• Предполагается, что вероятность р зависит от объясняющих переменных и ∈ R". Например, у = 1 может означать, что индивидуум в некоторой популяции страдает некоторым заболеванием. Вероятность р обнаружения болезни есть функция некоторых объясняющих переменных и, которые могут представлять возраст, вес, рост, кровяное давление и другие медицинские показатели.

Логистическая модель имеет вид

$$p = \frac{\exp(a^T u + b)}{1 + \exp(a^T u + b)}$$

где а \in R" и в \in R есть параметры модели, которые нужно определить.

Исходными данными для определения параметров а и b являются пары (u^i,y_i) (i=1,...,m), где $y_i\in\{0,1\}$ - это значение величины y, когда вектор u объясняющих переменные принял значение $u^i\in\mathbb{R}^n$.

Параметры а и b определим по методу маскимального правдоподобия.

В таком случае логистическую модель также называют логистической регрессией.

Предположим, что исходные данные упорядочены таким образом, что $y_1=\cdots=y_k=1$, а $y_{k+1}=\cdots=y_m=0$. Тогда функция максимального правдоподобия записывается следующим образом:

$$P_{a,b}(y_1,...,y_m) = \left(\prod_{i=1}^k p_i\right) * \left(\prod_{i=k+1}^m (1-p_i)\right),$$

где

$$p_i = \frac{\exp(a^T u^i + b)}{1 + \exp(a^T u^i + b)}$$
, i = 1, ..., m.

Логарифмическая функция максимального правдоподобия имеет вид:

$$l(a,b) = \sum_{i=1}^{k} \ln p_i + \sum_{i=k+1}^{m} \ln(1-p_i) =$$

$$= \sum_{i=1}^{k} \ln \frac{\exp(a^T u^i + b)}{1 + \exp(a^T u^i + b)} + \sum_{i=k+1}^{m} \ln \frac{1}{1 + \exp(a^T u^i + b)} =$$

$$= \sum_{i=1}^{k} (a^T u^i + b) - \sum_{i=1}^{m} \ln(1 + \exp(a^T u^i + b))$$

Поскольку функция l(a,b) вогнута по переменным а и b, то задача построения логистической регрессии есть задача максимизации вогнутой функции, для решения которой существую эффективные алгоритмы. Отметим также, что на практике в каждом конкретном случае возможны дополнительные ограничения на параметры а и b. Например, в задаче оценивания вероятности обнаружения болезни, если u_i есть возраст пациента, то логично потребовать, чтобы коэффицент a_i был неотрицательным, поскольку с возрастом вероятность заболевания увеличивается.

Геометрическое программирование

Рассмотрим класс оптимизационных задач, которые не являются выпуклыми, но которые могут быть преобразованы в задачи выпуклого программирования заменой переменных и преобразованием целевой функции и функций в ограничениях.

Мономы и позиномы

Функция $f: \mathbb{R}^n_{++} \to \mathbb{R}$, определённая по правилу $f(x) \stackrel{\scriptscriptstyle \mathrm{def}}{=} c x_1^{a_1} x_2^{a_2} \dots x_n^{a_n}$,

называется мономом.

В дальнейшем мы будем предполагать, что коэффиценты a_i (i = 1, ..., n) могут быть любыми действительными числами, но коэффицент с должен быть положительным. Отметим, что такое допущение не совсем согласуется с определением монома в алгебре, где предполагается, что коэффиценты a_i должны быть положительными.

Сумма мономов

$$f(x) \stackrel{\text{def}}{=} \sum_{k=1}^{K} c_k x_1^{a_{k1}} x_2^{a_{k2}} \dots x_n^{a_{kn}}$$

называется **позиномом**. Класс позиномов замкнут относительно сложения, умножения и деления на мономы.

Задача геометрического программирования

Оптимизационная задача вида:

$$f(x) \rightarrow min$$
,
 $g_i(x) \le 1$, i = 1, ..., p,
 $h_i(x) = 1$, i = 1, ..., q,
 $x_j > 0$ j = 1, ..., n,

где f , g_1 , ... , g_p есть позиномы, а h_1 , ... , h_q — мономы, называется **задачей** геометрического программирования.

Можно сказать, что задача вида (*) есть стандартная форма для задачи геометрического программирования.

В общем случае допускаются:

- а) ограничения $v_i \leq u_i(x)$, где $v_i(x)$ позином, $u_i(x)$ моном, которые можно записать в стандартной форме $g_i(x) \leq 1$, следующим образом: $g_i(x) \stackrel{\text{def}}{=} \frac{v_i(x)}{u_i(x)} \leq 1$;
- b) ограничения $v_i \leq u_i(x)$, где $v_i(x)$ и $u_i(x)$ мономы, которые можно записать в стандартной форме $h_i(x)=1$, следующим образом: $h_i(x)\stackrel{\text{def}}{=} \frac{v_i(x)}{u_i(x)}=1$;
- c) Максимизация мономиальной целевой функции $ar{f}(x)$, поскольку такая задача эквивалентна минимизации обратной целевой функции:
 - $f(x) \stackrel{\text{def}}{=} \frac{1}{\bar{f}(x)}$, которая является мономом.

Для примера, задача:

$$\frac{y^{2}}{x} \rightarrow max,$$

$$x^{2} + \frac{2y^{2}}{\sqrt{z}} \le y,$$

$$\frac{x^{3}}{y} = z^{2},$$

$$2 \le y \le 5,$$

$$x > 0, z > 0$$

переписывается в стандартной форме:

$$xy^{-2} \rightarrow min$$
,
 $x^2y^{-1} + 2yz^{-1/2} \le 1$,
 $x^3y^{-1}z^{-2} = 1$
 $2y^{-1} \le 1$, $(1/5)y \le 1$,
 $x > 0$, $z > 0$.

Сведение к задаче выпуклого программирования

Рассмотрим задачу:

$$f(x) = \sum_{k=1}^{k_0} c_k^0 x_1^{\alpha_{k1}^0} x_2^{\alpha_{k2}^0} \dots x_n^{\alpha_{kn}^0}, \qquad g_i(x) \leq 1, \ i = 1, ..., p,$$

$$g_i(x) = \sum_{k=1}^{k_i} c_k^i x_1^{\alpha_{k1}^i} x_2^{\alpha_{k2}^i} \dots x_n^{\alpha_{kn}^i}, \quad i = 1, ..., p,$$

$$h_i(x) = \overline{c_i} x_1^{\overline{\alpha_i^i}} x_2^{\overline{\alpha_i^i}} \dots x_n^{\overline{\alpha_n^i}}, \quad i = 1, ..., q$$

$$h_i(x) = \overline{c_i} x_1^{\overline{\alpha_i^i}} x_2^{\overline{\alpha_i^i}} \dots x_n^{\overline{\alpha_n^i}}, \quad i = 1, ..., q$$

$$b_{lk} \stackrel{\text{def}}{=} log c_k^i, \qquad k = 1, ..., k_l; \ i = 0, ..., p,$$

$$\overline{b_l} \stackrel{\text{def}}{=} log \overline{c_l}, \quad i = 1, ..., q,$$

$$\overline{b_l} \stackrel{\text{def}}{=} log \overline{c_l}, \quad i = 1, ..., q,$$

$$\overline{a_l} \stackrel{\text{def}}{=} (log a_1^{-i}, ..., log a_n^{-i})^T, \quad i = 1, ..., q.$$

Сделаем замену переменных $y_i = \log x_i$, тогда $x_i = e^{y_i}$, i = 1, ..., n.

В новых переменных у задача переписывается следующим образом:

$$\sum_{k=1}^{k_0} e^{a_{0k}^T y + b_{0k}} \to min,$$

$$\sum_{k=1}^{k_i} e^{a_{ik}^T y + b_{ik}} \le 1, \ i = 1, ..., p,$$

$$e^{\overline{a}_i^T y + \overline{b_i}} = 1, \qquad i = 1, ..., q.$$

Логарифмируя целевую функцию и правые и левые части ограничений, в результате получим *задачу*:

$$\tilde{f}(x) \stackrel{\text{def}}{=} log\left(\sum_{k=1}^{k_0} e^{a_{0k}^T y + b_{0k}}\right) \rightarrow min,$$

$$\widetilde{g}_i(x) \stackrel{\text{def}}{=} log\left(\sum_{k=1}^{k_i} e^{a_{ik}^T y + b_{ik}}\right) \leq 0, \qquad i = 1, ..., p,$$

$$\tilde{h}_i(x) \stackrel{\text{def}}{=} \bar{a}_i^T y + \bar{b}_i = 0, \qquad i = 1, ..., q.$$

Поскольку функция f и все функции g і являются выпуклыми, то задача является <u>задачей выпуклого программирования</u>.

Линейное программирование

Задача линейного программирования (ЛП) есть задача максимизации линейной функции при линейных ограничениях. Задачу ЛП можно записать несколькими стандартными способами. Мы здесь рассмотрим только три таких способа.

Задача ЛП в канонической форме записывается следующим образом: $max\{c^Tx:Ax\leq b\}$,

Где A – действительная матрица размера $m*n, c \in \mathbb{R}^n$, $b \in \mathbb{R}^m$, а $x = (x_1 ..., x_n)^T$ есть вектор неизвестных.

Задача ЛП в стандартной форме имеет следующий вид:

$$\max\{c^Tx: Ax = b, x \ge 0\},\$$

где A, c, в и x определяются также, как и для задачи ЛП в канонической форме. Для задачи ЛП в стандартной форме обычно предполагается, что A есть матрица полного столбцового ранга, т. e. rank A = n.

Еще одна часто встречающаяся форма задачи ЛП следующая:

$$\max\{c^Tx: Ax \le b, x \ge 0\}$$

где А, с, в их определяются как и ранее, но здесь не накладывают никаких ограничений на ранг матрицы А.

Эквивалентность задач ЛП в разных формах

$$max\{c^Tx: Ax \leq b\}, -----\rightarrow max\{c^Tx: Ax \leq b, x \geq 0\},$$

Представим вектор $x=x^+-x^-$ как разность двух неотрицательных векторов $x^+,x^-\in\mathbb{R}^n_+$.Вводя обозначения

$$\bar{x} = \begin{pmatrix} x^+ \\ x^- \end{pmatrix}, \qquad \bar{c} = \begin{pmatrix} c \\ -c \end{pmatrix}, \qquad \bar{A} = [A \mid -A],$$

Запишем задачу в форме:

$$\max\{c^Tx:Ax\leq b\},$$

$$\max\{c^Tx: Ax \le b, \quad x \ge 0\},\$$

$$\max\{\bar{c}^T\bar{x}: \bar{A}\bar{x} \le b, \quad \bar{x} \ge 0\}$$

$$\max\{c^Tx: Ax \le b, x \ge 0\}, ----\to \max\{c^T: Ax = b, x \ge 0\},\$$

Введём вектор $s = (s_1, ..., s_m)^T$ переменных недостатка.

$$\bar{x} = {x \choose s}, \ \bar{c} = {c \choose 0}, \ \bar{A} = [A|I],$$

$$\max\{\bar{c}^T\bar{x}: \bar{A}\bar{x}=b, \ \bar{x}\geq 0\}.$$

$$\max\{c^T : Ax = b, x \ge 0\}, Ax \le b, \quad Ax \ge b \longrightarrow \max\{c^T : Ax \le b\},$$

Вводя обозначения

$$\bar{b} = \begin{pmatrix} b \\ -b \\ 0 \end{pmatrix}, \qquad \bar{A} = \begin{bmatrix} A \\ -A \\ -I \end{bmatrix},$$

$$\max\{c^Tx: \bar{A}x \leq \bar{b}\}$$

Задача дробно-линейного программирования

Задача дробно-линейного программирования - это задача минимизации дробно-линейной целевой функции при линейных ограничениях:

$$\frac{c^T x + d}{u^T x + v} \to min,$$

$$Ax \le b,$$

$$Gx \le h,$$

$$u^{T}x + v > 0.$$

обобщает задачу ЛП: если u = 0 и v = 1,

$$\frac{c^T x + d}{u^T x + v} \to min,$$

$$Ax \le b,$$

$$Gx \le h,$$

$$u^T x + v > 0.$$

можно преобразовать в задачу ЛП:

$$c^{T}x + dt \rightarrow min,$$

$$Ax - bt = 0,$$

$$Gx - ht = 0,$$

$$u^{T}y + vt = 1,$$

$$t \ge 0.$$

Двойственность в линейном программировании

<u>Теория двойственности линейного программирования</u> имеет прямое отношение к проблеме оценки эффективности использования ресурсов в производственных процессах.

Рассмотрим задачу ЛП:

$$-c^{T}x \to min,$$

$$Ax \le b,$$

$$x \ge 0.$$
(*)

где $c,x\in\mathbb{R}^n$, $b,y\in\mathbb{R}^m$, а «А» есть действительная матрица размера m*n.

$$L(x,\lambda) = -c^T x + \lambda^T (Ax - b) = -b^T \lambda + (A^T \lambda - c)^T x,$$

а двойственная функция Лагранжа следующая

$$w(\lambda) = \inf_{x \in \mathbb{R}^n_+} L(x, \lambda) = -b^T \lambda + \inf_{x} (A^T \lambda - c)^T x$$

Инфимум линейной функции q^Tx на \mathbb{R}^n_+ равен -∞, если $q \notin \mathbb{R}^n_+$, и 0, если $q \geq 0$. Поэтому

$$w(\lambda) = \begin{cases} -b^T \lambda, & \text{если } A^T \lambda - c \ge 0, \\ -\infty & \text{в противном случае.} \end{cases}$$

Следовательно, двойственная задача Лагранжа для задачи ЛП

$$\max\{w(\lambda):\lambda\in\mathbb{R}^m_+\}=\{-b^T\lambda:A^T\lambda\geq c,\lambda\geq 0\}.$$

Мы показали, что для задачи ЛП

$$\max\{c^Tx: Ax \le b, x \ge 0\}$$

двойственная задача записывается следующим образом:

$$\min\{b^Ty: A^Ty \ge c, y \ge 0\}.$$

Задачи (П) и (Д) будем называть, соответственно, прямой и двойственной задачами. В отношении к прямой задаче(П) переменные x_j (j=1,...,n) называются прямыми, а переменные y_i (i=1,...,m) — Двойственными. Отметим также, что отношение двойственности симметрично, т.е задача двойственная к двойственной является прямой (докажите это!)

Теорема (двойственности) : Имеют место следующие альтернативы:

1. Обе задачи (П) и (Д) имеет допустимые решения:

$$\max\{c^T x : Ax \le b, x \ge 0\} = \min\{b^T y : A^T y \ge c, y \ge 0\}.$$

- 2. Фесли одна из задач (П) или (Д) не имеет допустимых решений, а другая имеет, то целевая функция этой задачи неограничена.
- 3. Обе задачи (П) и (Д) не имеет допустимых решений.

Допустимые решения х* и у* соответственно задач (П) и (Д) является их оптимальными решениями тогда и только тогда, когда имеют место следующие условия дополняющей нежесткости:

$$(b - Ax^*)^T y^* = 0$$
 u $(c - A^T y^*)^T x^* = 0$

Пример двойственных задач:

$$2x_{1} - 4x_{2} + 3x_{3} \rightarrow max, \qquad 9y_{1} + 5y_{2} + 4y_{3} \rightarrow min,$$

$$x_{1} + x_{2} - x_{3} = 9, \qquad y_{1} - 2y_{2} + y_{3} \ge 2,$$

$$-2x_{1} + x_{1} \le 5, \qquad y_{1} + y_{2} = -4,$$

$$x_{1} - 3x_{3} \ge 4, \qquad -y_{1} - 3y_{3} \le 3,$$

$$x_{1} \ge 0, \qquad y_{2} \ge 0,$$

$$x_{3} \le 0, \qquad y_{3} \le 0.$$

Общее правило записи

Пара двойственных задач ЛП:

Прямая задача	Двойственная задача
$\max c^T x$	$\min b^T y$
$A_i x \le b_i, \qquad i \in R_1$	$y_i \ge 0$, $i \in R_1$
$A_i x = b_i, \qquad i \in R_2$	$y_i \in \mathbb{R}$, $i \in R_2$
$A_i x \ge b_i, \qquad i \in R_3$	$y_i \leq 0, \qquad i \in R_3$
$x_j \ge 0, \qquad j \in C_1$	$y^T A^j \ge c_j, \qquad j \in C_1$
$x_j \in \mathbb{R}, j \in C_2$	$y^T A^j = c_j, \qquad j \in C_2$
$x_j \leq 0, \qquad j \in C_3$	$y^T A^j \le c_i, \qquad j \in C_3$
	,

Двойственные переменные и теневые цены

Предприятие планирует производить n видов продукции, используя m видов ресурсов: для производства единицы j-го продукта требуется a_{ij} единиц i-го ресурса. Стоимость единицы j-го продукта равна c_j . В наличии имеется b_i единиц i-го ресурса. Нужно определить план производства, с целью максимизировать прибыль. Обозначив через x_j объём выпуска продукции j-го вида (j = 1, ..., n), мы можем записать задачу поиска оптимального производственного плана следующим образом:

$$\sum_{j=1}^{n} c_j x_j \to max, \qquad z(b) \stackrel{\text{def}}{=} \max\{c^T x : Ax \le b, \qquad x \ge 0\}.$$

$$\sum_{j=1}^n a_{ij} \le b_i, \qquad i = 1, \dots, m,$$

$$x_j \geq 0, \qquad j = 1, \dots, n,$$

Пусть x^* - оптимальное базисное решение задачи, а y^* - оптимальное решение двойственной задачи. Тогда для достаточно малого $\epsilon>0$ имеем

$$z(b + \epsilon e_i) - z(b) = \max\{c^T x : Ax \le b + \epsilon e_i, \quad x \ge 0\}$$

$$- \max\{c^T x : Ax \le b, \ x \ge 0\}$$

$$= \min\{(b + \epsilon e_i)^T y : A^T y \ge c, \ y \ge 0\}$$

$$- \min\{b^T y : A^T y \ge c, \ y \ge 0\}$$

$$= (b + \epsilon e_i)^T y^* - b^T y^* = \epsilon y_i^*.$$

Теперь мы можем вычислить

$$\frac{\partial z}{\partial b_i}(b) = \lim_{\epsilon \to 0} \frac{z(b + \epsilon e_i) - z(b)}{\epsilon} = \lim_{\epsilon \to 0} \frac{\epsilon y_i^*}{\epsilon} = y_i^*.$$

Экономический смысл двойственных переменных следует из приблизительного равенства:

$$z(b+\epsilon e_i)\approx y_i^*\epsilon,$$

которое означает, что на каждую дополнительную единицу ресурса і предприятие получает прибыль равную y_i^* . Поэтому оптимальные двойственные переменные y_i^* называются **теневыми ценами.** Если теневая цена y_i^* больше цены ресурса і на рынке, то предприятию для увеличения прибыли целесообразно закупить дополнительное количество і-го ресурса. Из условия дополняющей нежёсткости $y_i^*(b_i - A_i x^*) = 0$ следует, что теневая цена неполностью использованного ресурса $(A_i x^* < b_i)$ равна нулю.

Приведённой стоимостью переменной x_j (продукта j) называется величина

$$\overline{c_j} = c_j - \sum_{i=1}^m a_{ij} y_i^*,$$

равная стоимости единицы продукта ј минус теневая стоимость ресурсов, используемых для её производства. Отметим следующие свойства приведённых стоимостей:

• Поскольку y^* - допустимое решение задачи ЛП

$$\max\{b^T y: y^T A \ge c, \qquad y \ge 0\}$$

двойственной задаче (*), то все приведённые стоимости неположительны.

• Из условия дополняющей нежёсткости $x_j^*(c_j - \sum_{i=1}^n a_{ij}y_i^*) = 0$ следует, что приведённая стоимость производимого продукта ј $(x_j^* > 0)$ равна нули, а если приведённая стоимость отрицательна, то продукт не производится $(\overline{c_j} < 0$ влечёт $x_i^* = 0)$.

СПАСИБО ЗА ВНИМАНИЕ!

г. Томск, ул. Вершинина, 47, офис 434

e-mail: aleksandr.i.sukhanov@tusur.ru

тел.: (3822) 70-15-36

tusur.ru