Financial Maths Cheat Sheet

By Marcelo Moreno - King Juan Carlos University

	Capitalizatio	n	Discount		
	$I_{0,n} = C_n - C_0$		$D_{0,n} = C_n - C_0$		
			Simple Commercial Discount Law:	$d_m = \frac{d}{}$	
Simple	Simple Capitalization Law:	$i_m = rac{i}{m}$	$C_0 = C_n \cdot (1 - d \cdot n)$	$d_m = \frac{1}{m}$	
	$C_n = C_0 \cdot (1 + i \cdot n)$	$i = i_m \cdot m$	Simple Rational Discount Law:		
			$C_0 = \frac{C_n}{(1+i\cdot n)}$		
Compound	Compound Capitalization Law:	$i_m = (1+i)^{1/m} - 1$ $i = (i_m + 1)^m - 1$	Compound Discount Law:		
	$C_n = C_0 \cdot (1+i)^n$	$i = (i_m + 1)^m - 1$	$C_0 = C_n \cdot (1 - d)^n$		
	$i_m = \frac{j_m}{m}$		m = subperiods		
Fractional			$j_m = \text{annual nominal interest rate}$		
			that pay's at m		

			-
	Simple Capitalization Laws	Compound Capitalization Laws	
End capital, C_n	$C_n = C_0 \cdot (1 + i \cdot n)$	$C_n = C_0 \cdot (1+i)^n$	
Initial capital, C_0	$C_0 = \frac{C_n}{(1+i\cdot n)}$	$C_0 = \frac{C_n}{(1+i)^n}$	100
Interest rate, i	$i = \frac{\left(\frac{C_n}{C_0} - 1\right)}{n}$	$i = \left(\frac{C_n}{C_0}\right)^{1/n} - 1$	
Periods, n	$n = \frac{\left(\frac{C_n}{C_0} - 1\right)}{i}$	$n = \frac{\log\left(\frac{C_n}{C_0}\right)}{\log(1+i)}$	

 $a^x = b \to x = \frac{\log b}{\log a} = \log_a b$

		Unitary	Geometric progression		
Temporal	Postpayable	$\mathbf{a}_{n \mid i} = \frac{1 - (1+i)^{-n}}{i}$	$A(C;q)_{n \mid i} = \begin{cases} C \cdot \frac{1 - \left(\frac{q}{1+i}\right)^n}{1+i-q} & \text{if} q \neq 1+i \\ \frac{C \cdot n}{1+i} & \text{if} q = 1+i \end{cases}$		
		$\mathbf{s}_{n \mid i} = \mathbf{a}_{n \mid i} \cdot (1+i)^n$	$S(C;q)_{n \mid i} = A(C;q)_{n \mid i} \cdot (1+i)^n$		
	Prepayable	$\ddot{\mathbf{a}}_{n \mid i} = (1+i) \cdot \mathbf{a}_{n \mid i}$	$\ddot{\mathbf{A}}(C;q)_{n \mid i} = (1+i) \cdot \mathbf{A}(C;q)_{n \mid i}$		
		$\ddot{\mathbf{s}}_{n \mid i} = (1+i) \cdot \mathbf{s}_{n \mid i}$	$\ddot{\mathbf{S}}(C;q)_{n \mid i} = (1+i) \cdot \mathbf{S}(C;q)_{n \mid i}$		
Perpetual	Postpayable	$\ddot{\mathbf{a}}_{\infty \rceil i} = \frac{1}{i}$	$A(C;q)_{\infty \mid i} = \begin{cases} \frac{C}{1+i-q} & \text{if} q < 1+i \\\\ \infty & \text{if} q \ge 1+i \end{cases}$		
			$\infty \qquad \text{if} q \ge 1 + i$		
	Prepayable	$\ddot{\mathbf{a}}_{\infty \rceil i} = (1+i) \cdot \mathbf{a}_{\infty \rceil i}$	$\ddot{\mathbf{A}}(C;q)_{\infty \rceil i} = (1+i) \cdot \mathbf{A}(C;q)_{\infty \rceil i}$		

discountedpresent value $\rightarrow V_0 = C \cdot a$

Amortization table

Period	Interest rate	Repayment term	Interests fee	Amortization fee	Live capital	Amortized capital
0	-	-	-	-	C_0	-
t_1	i_1	a_1				
t_2	i_2	a_2				
t_x	i_x	a_x				
t_n	i_n	a_n				