CompTIA Security + 6.0 Cryptography and PKI

 $Filename: comptia-secplus sy 0501-6-2-cryptography_algorithms_basics$

Title: Data Security and Privacy Practices Subtitle: CompTIA Security+ (SY0-501)

6.2 Cryptography Algorithms Basics

- 6.2 Explain cryptography algorithms and their basic characteristics.
 - o Basics
 - Plaintext = unencrypted text (readable)
 - Ciphertext = encypted text (Confidential)
 - Encryption algorithm = mathematical procedure for converting plaintext into ciphertext
 - Encryption key = a variable used in conjunction with a encryption algorithm to produce ciphertext
 - Encryption
 - Algorithm + key = Unique ciphertext
 - Symmetric-key encryption = same keys are used for encryption and decryption
 - Asymmetric-key encryption = a key pair are used in encryption and decryption
 - Hash Function/message digest = is as one-way mathmatical operation performed on a string of data that produces a fixed-length value
 - Comparison diagram
 - o Symmetric algorithms
 - AES
 - Originally Rijndael
 - Establish by NIST in 2001
 - US Government adopted in 2002
 - Symmetric
 - Key bit lengths 128, 192, 256
 - DES
 - Originally published in 1977
 - Block-cipher
 - 56 Bits
 - Brute Force vulnerabilities
 - 3DES
 - 1998
 - Increasing DES encryption perform three DES operations
 - 64 Bit Block size
 - Three Keys = 168 key bits
 - Two Keys = 122 key bits
 - One Key = 56 key bits
 - RC4
 - 1987 Ron Rivest
 - Stream Cipher
 - Fast and simplistic
 - Weak and insecure
 - Used in:
 - WEP, WPA, Formerly in SSL/TLS
 - Blowfish
 - 1993 by Bruce Schneier
 - Symmetric-key encryption
 - 64 Bit ket length
 - Alternative to DES
 - Resembles CAST-128
 - Block Cipher
 - Twofish
 - 1998 by a group of people (Bruce Schneier, Neils Ferguson)
 - symmetric-key
 - Block Cipher
 - Key bit lengths 128, 192, 256
 - o Cipher modes
 - A cipher is what is used to encrypt/decrypt data
 - A cipher-mode defines how to encrypt the data
 - CBC
 - Cipher block chaining(CCMP)
 - Uses IVs
 - Decryption will depend on all preceeding cipher-tex blocks
 - A single bit error can affect the decryption of all later cihper blocks
 - GCM
 - Galois/Counter Mode
 - Mode of operation for symmetric-key blok ciphers
 - Authenticated encryption algorithm

- ECB
 - Electronic Code Book
 - Mode of Operation for block ciphers
 - Supports seperate key encryption for each block
- CTR
 - CTM probably Counter-mode (Counter mode with Cipher Block Chaining Message Authentication Code Protocol)
 - Turns a block cipher into stream cipher
- Stream vs. block
 - Stream Ciphers
 - Faster encryption
 - Less resource consumption (CPU, Memory)
 - W
 - Block Ciphers
 - With bit lengths of 64, 128, 192, 265 data that is smaller than the size of the implementation can cause padding to be added
- o Asymmetric algorithms
 - RSA
 - Introduced in 1977 by Ron Rivest, Adi Shamir, and Leonard Adleman
 - Public key/asymmetric key cryptology
 - DSA
 - Introduce by NIST in 1991
 - Digitial Signature Algorithm
 - Diffie-Hellman
 - Groups
 - DHE
 - ECDHE
 - Uses normal DHE suite with ECC
 - Elliptic curve
 - ECC is based on an algebraic structure of elliptic cureves
 - Can use smaller keys
 - Other technologies TLS, PGP, SSH use elliptic curves
 - PGP/GPG
 - PGP
 - Used for confidentiality and authentication
 - Combines hashing, data compression, symmetric-key encryption and public-key encryption
 - Public keys are bound to a username and email
 - GPG
 - Open source or free implementation of OpenPGP
- · Hashing algorithms
 - MD5
 - Introuduced in 1992 by Ron Rivest
 - Vulnerable
 - Can be used for basic file integrity and checksum
 - SHA
 - SHA-0 = 160 Bits
 - SHA-1 = 160 Bits
 - SHA-2 = 224, 256, 384, 512
 - SHA-3 = Same as SHA-2
 - HMAC
 - Stronger than MAC as it adds a hashing function by concatenating the meassage with a secret key and hashing both
 - Strength is determined by the hashing algorithm used and the strength of the secret key
 - HMAC-MD5 vs. HMAC-SHA1
 - RIPEMD
 - RACE Integrity Primitives Evaluation Message Digest
 - 128(collisions), 160(most common), 256, 320
- Key stretching algorithms
 - Weak passwords or keys can strenghtened or increase the difficulty to attack the key
 - The key is fed into an algorithm that produces a stronger or enhanced key
 - BCRYPT
 - Password hashing function
 - Used in Unix/Linux-based systems to protect passwords
 - Salts passwords (adds bits) then encrypts with BlowFish
 - PBKDF2
 - Adds salt in a minimum of 64 Bits and hash passwords in WPA2, iOS, Cisco
- o Obfuscation
 - XOR
 - ROT13
 - http://www.rot13.com/
 - Cherokee
 - Fkhumhh (ROT3)
 - Purebxrr (ROT13)
 - Substitution ciphers
 - plain: abcdefghijklmnopqrstuvwxyz

- cipher : uhqdib meayln ofgxjc rkvstz wp
- Cherokee