

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

Лабораторная работа № 18

Дисциплина Функциональное и логическое программирование.

Тема Рекурсия на Prolog.

Студент Степанов А. О.

Группа ИУ7-63Б

Оценка (баллы)

Преподаватель Толпинская Н.Б.

ЗАДАНИЕ

Используя хвостовую рекурсию, разработать программу, позволяющую найти

- 1. n!,
- 2. п-е число Фибоначчи.

Листинг 1: Текст программы

```
predicates
1
2
       factorial (integer, integer).
3
       fibb(integer, integer).
4
5
   clauses
6
       factorial(0, Result) :- Result = 1, !.
       factorial (N, Result) :-
7
8
            NextN = N - 1,
            factorial(NextN, NextResult),
9
            Result = N * NextResult.
10
11
12
       fibb(1, Result) :- Result = 1, !.
       fibb(2, Result) :- Result = 1, !.
13
       fibb(N, Result) :-
14
            PN = N - 1, PPN = N - 2,
15
            fibb (PN, PResult), fibb (PPN, PPResult),
16
            Result = PResult + PPResult.
17
18
19
   goal
       write("5!_:_"),
20
       factorial (5, Result);
21
22
       write("f(10)::"),
23
       fibb(10, Result).
```

РЕЗУЛЬТАТ РАБОТЫ

Рис. 1: Результат работы программы

ФОРМИРОВАНИЕ ОТВЕТА

Для одного из вариантов ВОПРОСА и каждого задания составить таблицу, отражающую конкретный порядок работы системы: Т.к. резольвента хранится в виде стека, то состояние резольвенты требуется отображать в столбик: вершина – сверху! Новый шаг надо начинать с нового состояния резольвенты!

Таблица 1: factorial(4, Result)

№ ша-	Состояние резоль-	Для каких термов запускается	дальнейшие действия: прямой
га	венты, и вывод:	алгоритм унификации: Т1=Т2	ход или откат (почему и к че-
	дальнейшие дей-	и каков результат (и подстанов-	му приводит?)
	ствия (почему?)	ка)	
1	factorial(4, Result)	Подстановка: $N=4$, Result $=$	Прямой ход
		Result	
2	NextN = N - 1	Подстановка $NextN = 3$	Прямой ход
	factorial(NextN,		
	NextResult)		
	Result=N*NextResult		
3	factorial(NextN,	Подстановка: $N=3$, Result $=$	Прямой ход
	NextResult)	NextResult	
	Result=N*NextResult		
4	NextN = N - 1	Подстановка $NextN=2$	Прямой ход
	factorial(NextN,		
	NextResult)		
	Result=N*NextResult		
	Result=N*NextResult		
5	factorial(NextN,	Подстановка: $N=2$, Result $=$	Прямой ход
	NextResult)	NextResult	
	Result=N*NextResult		
	Result=N*NextResult		
6	NextN = N - 1	Подстановка $NextN=1$	Прямой ход
	factorial(NextN,		
	NextResult)		
	Result=N*NextResult		
	Result=N*NextResult		
	Result=N*NextResult		
7	factorial(NextN,	Подстановка: $N=1$, Result $=$	Прямой ход
	NextResult)	NextResult	
	Result=N*NextResult		
	Result=N*NextResult		
	Result=N*NextResult		

8	NextN = N - 1	Подстановка $NextN=0$	Прямой ход
	factorial(NextN,		
	NextResult)		
	Result=N*NextResult		
9	factorial(NextN,	Подстановка: $N=0$, Result $=$	Прямой ход
	NextResult)	NextResult	
	Result=N*NextResult		
10	Result = 1	Подстановка: Result = 1	Прямой ход
	Result=N*NextResult		
11	Result=N*NextResult	Подстановка: Result = 1	Прямой ход
	Result=N*NextResult		
	Result=N*NextResult		
	Result=N*NextResult		
12	Result=N*NextResult	Подстановка: Result $= 2$	Прямой ход
	Result=N*NextResult		
	Result=N*NextResult		
13	Result=N*NextResult	Подстановка: Result = 6	Прямой ход
	Result=N*NextResult		
14	Result=N*NextResult	Подстановка: Result $=24$	Прямой ход
15	Пусто	Результат: Result $=24$	Обратный ход

Таблица 2: fibb(4, Result)

№ ша-	Состояние резоль-	Для каких термов запускается	дальнейшие действия: прямой
га	венты, и вывод:	алгоритм унификации: Т1=Т2	ход или откат (почему и к че-
	дальнейшие дей-	и каков результат (и подстанов-	му приводит?)
	ствия (почему?)	ка)	
1	fibb(4, Result)	Подстановка: $N=4$, Result $=$	Прямой ход
		Result	
2	PN = N - 1	Подстановка: $PN = 3$	Прямой ход
	PPN = N - 2		
	fibb(PN, PResult)		
	fibb(PPN, PPResult)		

	Result = PResult + PPResult		
3	PPN = N - 2 fibb(PN, PResult) fibb(PPN, PPResult) Result = PResult + PPResult	Подстановка: PPN = 2	Прямой ход
4	fibb(PN, PResult) fibb(PPN, PPResult) Result = PResult + PPResult	Подстановка: N = 3, Result = PResult	Прямой ход
5	PN = N - 1 PPN = N - 2 fibb(PN, PResult) fibb(PPN, PPResult) Result = PResult + PPResult fibb(PPN, PPResult) Result = PResult + PPResult	Подстановка: PN = 2	Прямой ход
6	PPN = N - 2 fibb(PN, PResult) fibb(PPN, PPResult) Result = PResult + PPResult fibb(PPN, PPResult) Result = PResult + PPResult	PPN = 1	Прямой ход
7	fibb(PN, PResult) fibb(PPN, PPResult) Result = PResult + PPResult fibb(PPN, PPResult) Result = PResult + PPResult	Подстановка: N = 2, Result = PResult	Прямой ход
8	Result = 1 fibb(PPN, PPResult) Result = PResult + PPResult fibb(PPN, PPResult)	Подстановка: Result = 1	Прямой ход

	Result = PResult + PPResult		
9	fibb(PPN, PPResult)	Π одстановка: $N=1, Result=PPResult$	Прямой ход
	Result = PResult +		
	PPResult		
	fibb(PPN, PPResult)		
	Result = PResult +		
	PPResult		
10	Result = 1	Подстановка: Result $= 1$	Прямой ход
	Result = PResult +		
	PPResult		
	fibb(PPN, PPResult)		
	Result = PResult +		
	PPResult		
11	Result = PResult +	Подстановка: Result $= 2$	Прямой ход
	PPResult		
	fibb(PPN, PPResult)		
	Result = PResult +		
	PPResult		
12	fibb(PPN, PPResult)	Подстановка: $N=2$	Прямой ход
	Result = PResult +		
	PPResult		
13	Result = 1	Подстановка: Result $= 1$	Прямой ход
	Result = PResult +		
	PPResult		
14	Result = PResult +	Подстановка: Result = 3	Прямой ход
	PPResult		
15	Пусто	Результат: Result $= 3$	Обратный ход

выводы

Эффективность программы может быть достигнута за счет использования отсечения (!), которое останавливает поиск правил и фактов в программе.

ВОПРОСЫ

1. Что такое рекурсия? Как организуется хвостовая рекурсия в Prolog? Как организовать выход из рекурсии в Prolog?

Рекурсия — это ссылка на определяемый объект во время его определения. В языке Prolog рекурсия организуется при помощи правила, в котором есть обращение к тому же правилу. Выход из рекурсии в Prolog организуется при помощи отсечения.

2. Какое первое состояние резольвенты?

Первое состояние резольвенты – вопрос.

3. В каком случае система запускает алгоритм унификации? Каково назначение использования алгоритма унификации? Каков результат работы алгоритма унификации?

Пролог выполняет унификацию в двух случаях:

- когда цель сопоставляется с заголовком предложения;
- когда используется знак равенства, который является инфиксным предикатом (предикатом, который расположен между своими аргументами, а не перед ними).

```
1 goal
2          P1 = birthday(person("Ivan", "Petrov"), date("August", 2, 1980)),
3          P1 = birthday(Name, date(_, _, 1980)), write(Name).
```

При согласовании первой подцели переменная Р1 получит значение, указанное справа от знака "=". При согласовании второй подцели Р1 уже связана. Так как термы, находящиеся по обе стороны знака "=" сопоставимы, то переменная Name будет связана со значением person("Ivan", "Petrov"). При согласовании третьей подцели, стандартного предиката write, будет напечатано значение связанной переменной Name.

4. В каких пределах программы переменные уникальны?

Областью действия переменной в Prolog является одно предложение. В разных предложениях может использоваться одно имя перменной для обозначения разных объектов. Исключением является анонимная переменная. Каждая анонимная переменная – это отдельный объект.

5. Как применяется подстановка, полученная с помощью алгоритма унификации?

Если унификация прошла успешно, то применяется подстановка. Переменные связываются со значениями.

6. Как изменяется резольвента?

Преобразование резольвенты выполняется с помощью редукции.

Редукция – замена цели телом того правила, заголовок которого унифицируется с целью. Новая резольвента получается в два этапа:

- (a) В текущей резольвенте выберается одна из целей и для неё выполняется редукция ⇒ получаем новую коньюнкцию целей(новую резольвенту)
- (b) К полученной новой резольвенте применяется подстановка, как наибольший общий унификатор цели и заголовка правила, сопоставимого с этой целью.

7. В каких случаях запускается механизм отката?

В том месте программы, где возможен выбор нескольких вариантов, Пролог сохраняет в специальный стек точку возврата для последующего возвращения в эту позицию. Точка возврата содержит информацию, необходимую для возобновления процедуры при откате. Выбирается один из возможных вариантов, после чего продолжается выполнение программы.

Во всех точках программы, где существуют альтернативы, в стек заносятся указатели. Если впоследствии окажется, что выбранный вариант не приводит к успеху, то осуществляется откат к последней из имеющихся в стеке точек программы, где был выбран один из альтернативных вариантов. Выбирается очередной вариант, программа продолжает свою работу. Если все варианты в точке уже были использованы, то регистрируется неудачное завершение и осуществляется переход на предыдущую точку возврата, если такая есть. При откате все связанные переменные, которые были означены после этой точки, опять освобождаются.