One-Counter Automata and its Reachability Problem

October 7, 2020

Overview

- Preliminaries: Counter Automata and Pushdown Automata and Turing Machine.
- ► Reachability Problem.
- Some Interesting Reductions.
- Algorithm.

Reference

- [1] Haase et al. On the Complexity of Model Checking Counter Automata. Phd thesis.
- [2] Marvin L. Minsky. Recursive unsolvability of post's problem of "tag" and othertopics in theory of turing machines. The Annals of Mathematics, 74(3):437–455,1961.
- [3] Xie Li, Taolue Chen, Zhilin Wu and Mingji Xia. Computing Linear Arithmetic Representation for Reachability Relation of One-counter Automata
- [4] Wikipedia..

Counter Automata

Definition (k-Counter Automata)

Let $k \in \mathbb{N}_{>0}$ and $\mathrm{Op} = \{\mathrm{add}_i(z) \mid i \in [k], z \in \mathbb{Z}\} \cup \{\mathtt{zero}_i\}$. A k-counter automaton is a tuple $\mathcal{A} = (Q, q_0, F, \Delta, \epsilon)$ where $\epsilon : \Delta \to \mathrm{Op}$ is a additional transition labelling function.

Example

1-Counter Automata

Pushdown Automata

Definition (PDA)

A pushdown automaton is a tuple $M=(Q,\Sigma,\Gamma,\delta,q_0,Z,F)$.

- ▶ δ is a finite subset of $Q \times (\Sigma \cup \{\epsilon\}) \times \Gamma \times Q \times \Gamma^*$.
- $ightharpoonup \Sigma, \Gamma$ are the tape alphabet and stack alphabet respectively.
- Z is the initial symbol of stack representing the bottom of the stack.

One-Counter Automata and Pushdown Automata

One-counter automata is a special case of pushdown automata.

 $\Gamma = \{Z,g\}$ and the stack of PDA can be written as

$$Zg^n, n\in\mathbb{N}$$

which can be regarded as a non-negative counter.

Two-Counter Automata is Turing Equivalent

Proof sketch:

- 1. A Turing machine can be simulated by two stacks.
- A stac kcan be simulated by two counters. Where one counter is used to storing the binary number represented by the stack and the other one used for scratchpad for update.
- 3. Four counters can be simulated by two counters. Four virtual counter a,b,c,d can be encoded as a Gödel number $2^a 3^b 5^c 7^d$ by one real counter and the comparablyother counter is used as scratchpad.

Undecidable problem of TM

- ▶ Acceptance problem. $\langle TM, \omega \rangle$.
- ▶ Reachability problem. TM, c_{init} , c_f .

More generally, Rice's theorem formally state what problem is decidable about turing machine.

Theorem

Rice's Theorem If P is a non-trivial property, and the language holding the property, L_P is recognized by a turing machine M, then $L_P = \{\langle M \rangle \mid L(M) \in P\}$ is undecidable.

Hence, some important basic problems are all undecidable for counter automata.

Several Ways to Retain the Decidability

- Restrict to 1-counter automata.
- Structural restriction: flatness (no nested cycles).
- Reversal Boundness.

Reachability Problem of OCA

Definition (Configuration of OCA)

Given an OCA $\mathcal{A}=(Q,q_0,F,\Delta,\epsilon)$, we use a pair (q,c) represent the configuration of \mathcal{A} .

The semantic of an OCA can be regarded as a labelled transition system where the states are the configurations of \mathcal{A} and the transitions are induced from Δ and ϵ .

REACHABILITY PROBLEM:

Given an oca \mathcal{A} and two configurations $(s,c_s),(t,c_t)$, whether we can find a feasible run of transition system $T_{\mathcal{A}}$ such that $(s,c_s) \to_{\mathcal{A}}^* (t,c_t)$.

Complexity of OCAReach Problem

Theorem (Haase's Phd)

Reachability problem in one-counter automata is NP-complete.

Algorithm

Why the reachability of OCA is hard?

Idea of the algorithm

- Path and path flow.
- ▶ Weight and drop of a path.
- ► Support.
- Edge decomposition.
- ► Type-1, Type-2 and Type-3 certificate.