

SEQUENCE LISTING

<110> Virca, Duke

Bird, Timothy A.
Anderson, Dirk M.
Marken, John S.

<120> Human cDNAs Encoding Polypeptides Having Kinase Functions

<130> 2877-US

<160> 16

<170> PatentIn Ver. 2.0

<210> 1

<211> 181

<212> DNA

<213> Homo sapiens

<400> 1

gtacgccatg aagggtgctgc gcaaggcgcc gctgggtgcag cgccccaaga cgcaagagca 60
cacgcgcacc gagcgctcgg tgctggagct ggtgcgccag gcgccttcc tggtcacgct 120
gcactacgct ttccagacgg atgccaagct gcacacctcatc ctggactatg tgagcggcgg 180
g 181

<210> 2

<211> 221

<212> DNA

<213> Homo sapiens

<400> 2

cccgagaggt gccacatcg accgcctccg acttcgtgcg ggactcggcg gccagccacc 60
aggcggagcc cgagggcgtac gagcggcgcg tgtgcttcct gcttctgcaa ctctgcaacg 120
ggctggagca cctgaaggag cacgggatca tccaccggga cctgtgcctg gagaacctgc 180
tgctggtgca ctgcaccctc caggccggcc ccggggccccgc c 221

<210> 3

<211> 1085

<212> DNA

<213> Homo sapiens

<400> 3

cgggcagggc tggagctggg ctgggatccc gagctcgca gcagcgcagc gggccggccc 60
acctgctgggt gccctggagg ctctgagccc cggcggcgcc cgggcccacg cggAACGACG 120
ggcgagatg cgagccaccc ctctggctgc tcctgcgggt tccctgtcca ggaAGAAGCG 180
gttggagttg gatgacaact tagataccga gcgtcccgtc cagaaacgag ctcGAAGTGG 240
gcccccagccc agactgcccc cctgcctgtt gcccctgagc ccacctactg ctccAGATCG 300
tgcaactgct gtggccactg cctcccggtc tggcccttat gtcctcctgg agcccgagga 360
ggcgccccgg gcctaccagg ccctgcactg ccctacaggc actgagtata cctgcaaggt 420
gtaccccgtc caggaagccc tggccgtgt ggagccctac gcgcggctgc ccccgcacaa 480
gcatgtggct cggcccactg aggtcctggc tggtacccag ctccctctacg ccttttcac 540
tcggaccat ggggacatgc acagcctggt gcgaAGCCGC caccgtatcc ctgagcctga 600
ggctgccgtg ctcttccggcc agatggccac cgccctggcg cactgtcacc agcacggct 660
ggtcctgcgt gatctcaagc tgtgtcgct tgtcttcgt gaccgtgaga ggaAGAAGCT 720
ggtgctggag aacctggagg actcctgcgt gctgactggg ccagatgatt ccctgtggga 780
caagcacgcg tgcccagcct acgtgggacc tgagataactc agtcacggg cctcataactc 840
gggcaaggca gccgatgtct ggagcctggg cgtggcgctc ttcaccatgc tggccggcca 900
ctaccccttc caggactcggt agcctgtcct gctcttcggc aagatccgccc gcggggccta 960
cgccctgcct gcaggcctct cggccctgc ccgctgtctg gttcgctgcc tccttcgtcg 1020
ggagccagct gaacggctca cagccacagg catcctcctg caccctggc tgcgacagga 1080

cccgaa

1085

<210> 4

<211> 388

<212> DNA

<213> Homo sapiens

<400> 4

cagcgagaag ccgacatgca tcgcctcttc aatcacccca acatcctcg cctcggtggct 60
tactgtctga gggAACGGGG tgctaagcat gaggcctggc tgctgctacc attcttcaag 120
agaggtacgc tggaaatga gatagaaagg ctgaaggaca aaggcaactt cctgaccgag 180
gatcaaatcc ttggctgtct gctggggatc tgcagaggcc ttgaggccat tcattccaag 240
ggttatgcct acagagactt gaagcccacc aatatattgc ttggagatga ggggcagcca 300
gttttaatgg acttgggttc catgaatcaa gcatgcattcc atgtggaggg ctcccgccag 360
gctctgaccc tgcaggactg ggcagccc 388

<210> 5

<211> 1555

<212> DNA

<213> Homo sapiens

<400> 5

atgctaacta gtttaaacag atcttggAAC gagacgaccc gctgtggaaag agcgagcttt 60
ttggaaactgt gcacgggaca gattggacgc acaccctcg ggaggcgcga aggcatggaa 120
aatttgaagc atattatcac cttggccag gtcatccaca aacggtgtga agagatgaaa 180
tactgcaaga aacagtgccg gcgcctggc caccgcgtcc tcggcctgtat caaggcctctg 240
gagatgctcc aggaccaagg aaagaggagc gtgcctctg agaagttAAC cacagccatg 300
aaccgcttca aggctgcct ggaggaggct aatggggaga tagaaaagtt cagcaataga 360
tccaatatct gcaggtttct aacagcaagc caggacaaaa tactcttcaa ggacgtgaac 420
aggaagctga gtgatgtctg gaaggagctc tcgctgttac ttcaggttga gcaacgcatt 480
cctgtttcac ccataagcca aggagcgtcc tggcacagg aagatcagca ggatgcagac 540
gaagacaggc gagctttcca gatgctaaga agagataatg aaaaaataga agtttactg 600
agacgatttag aaatcaacat gaaagaaatc aaggaaactt tgaggcagta tttaccacca 660
aaatgcattgc aggagatccc gcaagagcaa atcaaggaga tcaagaagga gcagcttca 720
ggatccccgt ggattctgct aaggaaaaat gaagtcaagc cactttataa aggagaatac 780
cacagagctc cagtggccat aaaagtattc aaaaaactcc aggctggcag cattgcaata 840
gtgaggcaga cttcaataa ggagatcaaa accatgaaga aattcgaatc tcccaacatc 900
ctgcgtatata ttgggatttg cattgatgaa acagtgactc cgcctcaatt ctccattgtc 960
atggagtact gtgaactcg gaccctgagg gagctgttg atagggaaaa agacctcaca 1020
cttggcaagc gcatggctt agtcctgggg gcagcccgag gcctataacc gctacaccat 1080
tcagaaggcac ctgaactcca cggaaaaatc agaagctcaa acttccttgt aactcaaggc 1140
taccaagtga agcttgcagg atttgaggtt agggaaaacac agacttccat gagtttggga 1200
actacgagag aaaaagacaga cagagtcaaa tctacagcat atctctcacc tcaggaactg 1260
gaagatgtat ttatcaata ttagttaaag tctgaaatat acagctttgg aatcgctcctc 1320
tggaaatcg ccactggaga tatcccgaaa caaggctgta attctgagaa gatccgcaag 1380
ctggggctg tgaagcggca gcaggagcca ctgggtgaag actgcccttc agagctgcgg 1440
gagatcattg atgagtgcgg ggcagcaggt cgtctcggtt caagatctgt agcggccgccc 1500
cggccgtcg acgtttaaac gcgtggccct cgagaggttt tccgatccgg tcgat 1555

<210> 6

<211> 1498

<212> DNA

<213> Homo sapiens

<400> 6

cttcccgctg gacgtggagt acggaggccc agaccggagg tgcccgccctc cgccttaccc 60
gaagcacctg ctgctgcga gcaagtccgga gcagttacgac ctggacagcc tgtgcgcagg 120
catggagcag agcctccgtg cggccccaa cgagcccgag ggcggcgaca agagccgcaa 180
aagcgccaaag gggacaaag gcggaaagga taaaaagcag attcagaccc tcccggttcc 240
cgtccgcaaa aacagcagag acgaagagaa gagagagtca cgcattcaaga gctactcgcc 300
atacgcttt aagttcttca tggagcagca cgtggagaat gtcattaaaa cttaccagca 360

gaaggtaac cgaggctgc agctggagca agaaatggcc aaagctggac tctgtgaagc 420
tgagcaggag cagatgcgga agatcctcta ccagaaagag tctaattaca acaggtaaa 480
gagggccaag atggacaagt ctatgttgc caagatcaa accctggga tcggtgccct 540
tggagaagt gtccttgctt gtaagggtgga cactcacgcc ctgtacgcca tgaaggaccct 600
aaggaaaaag gatgtcctga accggaatca ggtggccac gtcaaggccg agagggacat 660
cctggccgag gcagacaatg agtgggtggt caaactctac tactccttcc aagacaaaaga 720
cagcctgtac tttgtgatgg actacatccc tggtgggac atgatgagcc tgctgatccg 780
gatggaggtc ttccctgagc acctggcccg gttctacatc gcagagctga ctttggccat 840
tgagagtgc cacaagatgg gcttcatcca ccgagacatc aagcctgata acattttgat 900
agatctggat ggtcacatta aactcacaga tttcggcctc tgcactgggt tcaggtggac 960
tcacaattcc aaatattacc agaaagggag ccatgtcaga caggacagca tggagcccg 1020
cgacctctgg gatgatgtgt ctaactgtcg gtgtggggac aggctgaaga ccctagagca 1080
gagggcgcgg aagcagcacc agaggtgcct ggcacattca ctggtgggga ctccaaacta 1140
catcgacacc gaggtgctcc tccgcaaagg gtacactcaa ctctgtgact ggtggagtgt 1200
tggagtgatt ctcttcgaga tgctggggg gcagccgccc ttttggcac ctactccac 1260
agaaaccag ctgaaggta tcaactggga gaacacgctc cacattccag cccaggtgaa 1320
gctgagccct gaggccaggg acctcatcac caagctgtgc tgctccgcag accaccgcct 1380
ggggcggaat gggccgatg acctgaaggc ccacccttc ttcagcgcca ttgacttctc 1440
cagtgacatc cggaagcatac cagcccccta cgttcccacc atcagccacc ccatggag 1498

<210> 7

<211> 60

<212> PRT

<213> Homo sapiens

<400> 7

Tyr Ala Met Lys Val Leu Arg Lys Ala Ala Leu Val Gln Arg Ala Lys
1 5 10 15

Thr Gln Glu His Thr Arg Thr Glu Arg Ser Val Leu Glu Leu Val Arg
20 25 30

Gln Ala Pro Phe Leu Val Thr Leu His Tyr Ala Phe Gln Thr Asp Ala
35 40 45

Lys Leu His Leu Ile Leu Asp Tyr Val Ser Gly Gly
50 55 60

<210> 8

<211> 73

<212> PRT

<213> Homo sapiens

<400> 8

Arg Glu Val Pro His Gln Thr Ala Ser Asp Phe Val Arg Asp Ser Ala
1 5 10 15

Ala Ser His Gln Ala Glu Pro Glu Ala Tyr Glu Arg Arg Val Cys Phe
20 25 30

Leu Leu Leu Gln Leu Cys Asn Gly Leu Glu His Leu Lys Glu His Gly
35 40 45

Ile Ile His Arg Asp Leu Cys Leu Glu Asn Leu Leu Leu Val His Cys
50 55 60

Thr Leu Gln Ala Gly Pro Gly Pro Ala
65 70

<210> 9
<211> 360
<212> PRT
<213> Homo sapiens

<400> 9
Gly Gln Gly Trp Ser Trp Ala Gly Ile Pro Ser Ser Ala Ala Ala Gln
1 5 10 15

Arg Ala Gly Pro Pro Ala Gly Ala Leu Glu Ala Leu Ser Pro Gly Gly
20 25 30

Ala Arg Ala His Ala Glu Arg Arg Gly Glu Met Arg Ala Thr Pro Leu
35 40 45

Ala Ala Pro Ala Gly Ser Leu Ser Arg Lys Lys Arg Leu Glu Leu Asp
50 55 60

Asp Asn Leu Asp Thr Glu Arg Pro Val Gln Lys Arg Ala Arg Ser Gly
65 70 75 80

Pro Gln Pro Arg Leu Pro Pro Cys Leu Leu Pro Leu Ser Pro Pro Thr
85 90 95

Ala Pro Asp Arg Ala Thr Ala Val Ala Thr Ala Ser Arg Leu Gly Pro
100 105 110

Tyr Val Leu Leu Glu Pro Glu Glu Gly Arg Ala Tyr Gln Ala Leu
115 120 125

His Cys Pro Thr Gly Thr Glu Tyr Thr Cys Lys Val Tyr Pro Val Gln
130 135 140

Glu Ala Leu Ala Val Leu Glu Pro Tyr Ala Arg Leu Pro Pro His Lys
145 150 155 160

His Val Ala Arg Pro Thr Glu Val Leu Ala Gly Thr Gln Leu Leu Tyr
165 170 175

Ala Phe Phe Thr Arg Thr His Gly Asp Met His Ser Leu Val Arg Ser
180 185 190

Arg His Arg Ile Pro Glu Pro Glu Ala Ala Val Leu Phe Arg Gln Met
195 200 205

Ala Thr Ala Leu Ala His Cys His Gln His Gly Leu Val Leu Arg Asp
210 215 220

Leu Lys Leu Cys Arg Phe Val Phe Ala Asp Arg Glu Arg Lys Lys Leu
225 230 235 240

Val Leu Glu Asn Leu Glu Asp Ser Cys Val Leu Thr Gly Pro Asp Asp
245 250 255

Ser Leu Trp Asp Lys His Ala Cys Pro Ala Tyr Val Gly Pro Glu Ile
260 265 270

Leu Ser Ser Arg Ala Ser Tyr Ser Gly Lys Ala Ala Asp Val Trp Ser
275 280 285

Leu Gly Val Ala Leu Phe Thr Met Leu Ala Gly His Tyr Pro Phe Gln

290

295

300

Asp Ser Glu Pro Val Leu Leu Phe Gly Lys Ile Arg Arg Gly Ala Tyr
305 310 315 320

Ala Leu Pro Ala Gly Leu Ser Ala Pro Ala Arg Cys Leu Val Arg Cys
325 330 335

Leu Leu Arg Arg Glu Pro Ala Glu Arg Leu Thr Ala Thr Gly Ile Leu
340 345 350

Leu His Pro Trp Leu Arg Gln Asp
355 360

<210> 10

<211> 146

<212> PRT

<213> Homo sapiens

<221> UNSURE

<222> (140)..(140)<223> UNSURE

<400> 10

Gln Arg Glu Ala Asp Met His Arg Leu Phe Asn His Pro Asn Ile Leu
1 5 10 15

Arg Leu Val Ala Tyr Cys Leu Arg Glu Arg Gly Ala Lys His Glu Ala
20 25 30

Trp Leu Leu Leu Pro Phe Phe Lys Arg Gly Thr Leu Trp Asn Glu Ile
35 40 45

Glu Arg Leu Lys Asp Lys Gly Asn Phe Leu Thr Glu Asp Gln Ile Leu
50 55 60

Trp Leu Leu Leu Gly Ile Cys Arg Gly Leu Glu Ala Ile His Ala Lys
65 70 75 80

Gly Tyr Ala Tyr Arg Asp Leu Lys Pro Thr Asn Ile Leu Leu Gly Asp
85 90 95

Glu Gly Gln Pro Val Leu Met Asp Leu Gly Ser Met Asn Gln Ala Cys
100 105 110

Ile His Val Glu Gly Ser Arg Gln Ala Leu Thr Leu Gln Asp Trp Ala
115 120 125

Ala Gln Arg Cys Thr Ile Ser Tyr Arg Ala Pro Xaa Leu Phe Ser Val
130 135 140

Gln Ser

145

<210> 11

<211> 505

<212> PRT

<213> Homo sapiens

<400> 11

Met Leu Thr Ser Leu Asn Arg Ser Trp Asn Glu Thr Thr Cys Cys Gly
1 5 10 15

Arg Ala Ser Phe Leu Glu Leu Cys Thr Gly Gln Ile Gly Arg Thr Pro
20 25 30

Leu Gly Arg Arg Glu Gly Met Glu Asn Leu Lys His Ile Ile Thr Leu
35 40 45

Gly Gln Val Ile His Lys Arg Cys Glu Glu Met Lys Tyr Cys Lys Lys
50 55 60

Gln Cys Arg Arg Leu Gly His Arg Val Leu Gly Leu Ile Lys Pro Leu
65 70 75 80

Glu Met Leu Gln Asp Gln Gly Lys Arg Ser Val Pro Ser Glu Lys Leu
85 90 95

Thr Thr Ala Met Asn Arg Phe Lys Ala Ala Leu Glu Glu Ala Asn Gly
100 105 110

Glu Ile Glu Lys Phe Ser Asn Arg Ser Asn Ile Cys Arg Phe Leu Thr
115 120 125

Ala Ser Gln Asp Lys Ile Leu Phe Lys Asp Val Asn Arg Lys Leu Ser
130 135 140

Asp Val Trp Lys Glu Leu Ser Leu Leu Gln Val Glu Gln Arg Met
145 150 155 160

Pro Val Ser Pro Ile Ser Gln Gly Ala Ser Trp Ala Gln Glu Asp Gln
165 170 175

Gln Asp Ala Asp Glu Asp Arg Arg Ala Phe Gln Met Leu Arg Arg Asp
180 185 190

Asn Glu Lys Ile Glu Ala Ser Leu Arg Arg Leu Glu Ile Asn Met Lys
195 200 205

Glu Ile Lys Glu Thr Leu Arg Gln Tyr Leu Pro Pro Lys Cys Met Gln
210 215 220

Glu Ile Pro Gln Glu Gln Ile Lys Glu Ile Lys Lys Glu Gln Leu Ser
225 230 235 240

Gly Ser Pro Trp Ile Leu Leu Arg Glu Asn Glu Val Ser Thr Leu Tyr
245 250 255

Lys Gly Glu Tyr His Arg Ala Pro Val Ala Ile Lys Val Phe Lys Lys
260 265 270

Leu Gln Ala Gly Ser Ile Ala Ile Val Arg Gln Thr Phe Asn Lys Glu
275 280 285

Ile Lys Thr Met Lys Lys Phe Glu Ser Pro Asn Ile Leu Arg Ile Phe
290 295 300

Gly Ile Cys Ile Asp Glu Thr Val Thr Pro Pro Gln Phe Ser Ile Val
305 310 315 320

Met Glu Tyr Cys Glu Leu Gly Thr Leu Arg Glu Leu Leu Asp Arg Glu

325	330	335	
Lys Asp Leu Thr Leu Gly Lys Arg Met Val Leu Val Leu Gly Ala Ala			
340	345	350	
Arg Gly Leu Tyr Arg Leu His His Ser Glu Ala Pro Glu Leu His Gly			
355	360	365	
Lys Ile Arg Ser Ser Asn Phe Leu Val Thr Gln Gly Tyr Gln Val Lys			
370	375	380	
Leu Ala Gly Phe Glu Leu Arg Lys Thr Gln Thr Ser Met Ser Leu Gly			
385	390	395	400
Thr Thr Arg Glu Lys Thr Asp Arg Val Lys Ser Thr Ala Tyr Leu Ser			
405	410	415	
Pro Gln Glu Leu Glu Asp Val Phe Tyr Gln Tyr Asp Val Lys Ser Glu			
420	425	430	
Ile Tyr Ser Phe Gly Ile Val Leu Trp Glu Ile Ala Thr Gly Asp Ile			
435	440	445	
Pro Phe Gln Gly Cys Asn Ser Glu Lys Ile Arg Lys Leu Val Ala Val			
450	455	460	
Lys Arg Gln Gln Glu Pro Leu Gly Glu Asp Cys Pro Ser Glu Leu Arg			
465	470	475	480
Glu Ile Ile Asp Glu Cys Arg Ala Ala Gly Arg Leu Val Pro Arg Ser			
485	490	495	
Val Ala Ala Ala Arg Ala Val Asp Val			
500	505		

<210> 12
<211> 499
<212> PRT
<213> Homo sapiens

<400> 12															
Phe	Pro	Leu	Asp	Val	Glu	Tyr	Gly	Gly	Pro	Asp	Arg	Arg	Cys	Pro	Pro
1															
Pro	Pro	Tyr	Pro	Lys	His	Leu	Leu	Leu	Arg	Ser	Lys	Ser	Glu	Gln	Tyr
20															
Asp	Leu	Asp	Ser	Leu	Cys	Ala	Gly	Met	Glu	Gln	Ser	Leu	Arg	Ala	Gly
35															
Pro	Asn	Glu	Pro	Glu	Gly	Gly	Asp	Lys	Ser	Arg	Lys	Ser	Ala	Lys	Gly
50															
Asp	Lys	Gly	Gly	Lys	Asp	Lys	Lys	Gln	Ile	Gln	Thr	Ser	Pro	Val	Pro
65															
Val	Arg	Lys	Asn	Ser	Arg	Asp	Glu	Glu	Lys	Arg	Glu	Ser	Arg	Ile	Lys
85															
Ser	Tyr	Ser	Pro	Tyr	Ala	Phe	Lys	Phe	Phe	Met	Glu	Gln	His	Val	Glu

100	105	110
Asn Val Ile Lys Thr Tyr Gln Gln Lys Val Asn Arg Arg Leu Gln Leu		
115	120	125
Glu Gln Glu Met Ala Lys Ala Gly Leu Cys Glu Ala Glu Gln Glu Gln		
130	135	140
Met Arg Lys Ile Leu Tyr Gln Lys Glu Ser Asn Tyr Asn Arg Leu Lys		
145	150	155
Arg Ala Lys Met Asp Lys Ser Met Phe Val Lys Ile Lys Thr Leu Gly		
165	170	175
Ile Gly Ala Phe Gly Glu Val Cys Leu Ala Cys Lys Val Asp Thr His		
180	185	190
Ala Leu Tyr Ala Met Lys Thr Leu Arg Lys Lys Asp Val Leu Asn Arg		
195	200	205
Asn Gln Val Ala His Val Lys Ala Glu Arg Asp Ile Leu Ala Glu Ala		
210	215	220
Asp Asn Glu Trp Val Val Lys Leu Tyr Tyr Ser Phe Gln Asp Lys Asp		
225	230	235
240		
Ser Leu Tyr Phe Val Met Asp Tyr Ile Pro Gly Gly Asp Met Met Ser		
245	250	255
Leu Leu Ile Arg Met Glu Val Phe Pro Glu His Leu Ala Arg Phe Tyr		
260	265	270
Ile Ala Glu Leu Thr Leu Ala Ile Glu Ser Val His Lys Met Gly Phe		
275	280	285
Ile His Arg Asp Ile Lys Pro Asp Asn Ile Leu Ile Asp Leu Asp Gly		
290	295	300
His Ile Lys Leu Thr Asp Phe Gly Leu Cys Thr Gly Phe Arg Trp Thr		
305	310	315
320		
His Asn Ser Lys Tyr Tyr Gln Lys Gly Ser His Val Arg Gln Asp Ser		
325	330	335
Met Glu Pro Ser Asp Leu Trp Asp Asp Val Ser Asn Cys Arg Cys Gly		
340	345	350
Asp Arg Leu Lys Thr Leu Glu Gln Arg Ala Arg Lys Gln His Gln Arg		
355	360	365
Cys Leu Ala His Ser Leu Val Gly Thr Pro Asn Tyr Ile Ala Pro Glu		
370	375	380
Val Leu Leu Arg Lys Gly Tyr Thr Gln Leu Cys Asp Trp Trp Ser Val		
385	390	395
400		
Gly Val Ile Leu Phe Glu Met Leu Val Gly Gln Pro Pro Phe Leu Ala		
405	410	415
Pro Thr Pro Thr Glu Thr Gln Leu Lys Val Ile Asn Trp Glu Asn Thr		
420	425	430

Leu His Ile Pro Ala Gln Val Lys Leu Ser Pro Glu Ala Arg Asp Leu
435 440 445

Ile Thr Lys Leu Cys Cys Ser Ala Asp His Arg Leu Gly Arg Asn Gly
450 455 460

Ala Asp Asp Leu Lys Ala His Pro Phe Phe Ser Ala Ile Asp Phe Ser
465 470 475 480

Ser Asp Ile Arg Lys His Pro Ala Pro Tyr Val Pro Thr Ile Ser His
485 490 495

Pro Met Glu

<210> 13

<211> 375

<212> DNA

<213> Homo sapiens

<400> 13

cttgcaggat ttgagtttag gaaaacacag acttccatga gtttggaaac tacgagagaa 60
aagacagaca gagtcaaatac tacagcatat ctctcacctc aggaactgga agatgtattt 120
tatcaatatg atgttaaagtc tgaaatatac agctttggaa tcgtcctctg ggaaatcgcc 180
actggagata tcccgtttca aggctgtaat tctgagaaga tccgcaagct ggtggctgtg 240
aagcggcagc aggagccact gggtaagac tgcccttcag agctgcggga gatcattgtat 300
gagtgccggg cccatgatcc ctctgtgcgg ccctctgtgg atgaaatctt aaagaaaactc 360
tccacccccc ctaag 375

<210> 14

<211> 125

<212> PRT

<213> Homo sapiens

<400> 14

Leu Ala Gly Phe Glu Leu Arg Lys Thr Gln Thr Ser Met Ser Leu Gly
1 5 10 15

Thr Thr Arg Glu Lys Thr Asp Arg Val Lys Ser Thr Ala Tyr Leu Ser
20 25 30

Pro Gln Glu Leu Glu Asp Val Phe Tyr Gln Tyr Asp Val Lys Ser Glu
35 40 45

Ile Tyr Ser Phe Gly Ile Val Leu Trp Glu Ile Ala Thr Gly Asp Ile
50 55 60

Pro Phe Gln Gly Cys Asn Ser Glu Lys Ile Arg Lys Leu Val Ala Val
65 70 75 80

Lys Arg Gln Gln Glu Pro Leu Gly Glu Asp Cys Pro Ser Glu Leu Arg
85 90 95

Glu Ile Ile Asp Glu Cys Arg Ala His Asp Pro Ser Val Arg Pro Ser
100 105 110

Val Asp Glu Ile Leu Lys Lys Leu Ser Thr Phe Ser Lys
115 120 125

<210> 15
<211> 1961
<212> DNA
<213> Homo sapiens

<400> 15
tcccgtgga cgtggagtac ggaggccag accggaggtg cccgcctcg ccctaccga 60
agcacctgct gctgcgcagc aagtggagc agtacgacct ggacagcctg tgcgcaggca 120
tggagcagag cctccgtcg ggccccaaacg agcccgaggg cggcgacaag agccgaaaaa 180
gcgc当地gg ggacaaaaggc ggaaaggata aaaagcagat tcagacctct cccgttccc 240
tccgcaaaaaa cagcagagac gaagagaaga gagagtcacg catcaagagc tactcgccat 300
acgccttaa gttcttcatg gagcagcactg tggagaatgt catcaaaaacc taccaggaga 360
aggttaaccg gaggctgcag ctggagcaag aaatggccaa agctggactc tgtgaagctg 420
agcaggagca gatgcggaag atcctctacc agaaagagtc taattacaac aggttaaaga 480
gggccaagat ggacaagtct atgtttgtca agatcaaaaac cctggggatc ggtgcctttg 540
gagaagtgtg cttgttttgt aaggtggaca ctcacgcccgt gtacgccatg aagaccctaa 600
gaaaaaagga tgtcctgaac cggaaatcagg tggccacgt caaggccgag agggacatcc 660
tggccgaggc agacaatgag tgggtggtca aactctacta ctccttccaa gacaaagaca 720
gcctgtactt tgtatggac tacatccctg gtggggacat gatgagcctg ctgatccgga 780
tggaggctt ccctgagcac ctggcccggt tctacatcgc agagctgact ttggccatttg 840
agagtgtcca caagatggc ttcatccacc gagacatcaa gcctgataac attttgatag 900
atctggatgg tcacattaaa ctcacagatt tcggccctg cactgggttc aggtggactc 960
acaattccaa atattaccag aaaggagcc atgtcagaca ggacagcatg gagcccagcg 1020
acctctggga tgatgtgtct aactgtcggt gtggggacag gctgaagacc ctagagcaga 1080
ggcgccggaa gcagcaccag aggtgcctgg cacattcaact ggtggggact ccaaactaca 1140
tcgcacccga ggtgctcctc cgcaaagggt acactcaact ctgtgactgg tggagtgttg 1200
gagtgattct ttgcagatg ctgggtgggc agccgcctt tttggcacct actcccacag 1260
aaacccagct gaaggtgatc aactgggaga acacgctcca cattccagcc caggtgaagc 1320
tgagccctga ggccaggac ctcatcacca agctgtgctg ctccgcagac caccgcctgg 1380
ggcggaatgg ggccgatgac ctgaaggccc accccttctt cagcgcatt gacttctcca 1440
gtgacatccg gaagcatcca gccccctacg ttcccaccat cagccaccccc atggacacct 1500
cgaatttcga ccccgtagat gaagaaagcc cttggaacga tgccagcgaa ggtagcacca 1560
aggcctggga cacactcacc tcgccccata acaagcatcc tgagcacgca ttttacgaat 1620
tcaccttccg aaggttctt gatgacaatg gctaccctt tcgatgccc aagccttcag 1680
gagcagaagc ttcacaggct gagagctcag atttagaaag ctctgatctg gtggatcaga 1740
ctgaaggctg ccagcctgtg tacgtgtaga tggggggccag gcaccccccac cactcgctgc 1800
ctcccaggc aggtcccgg agccggtgcc ctcacaggcc aatagggaaag ccgagggctg 1860
tttgcgtttt aattagtcgg tcgattactt cacttgcataat tctgctcttc accaagaaaa 1920
cccaaacagg acactttga aaacagcggt gccgcgaatt c 1961

<210> 16
<211> 588
<212> PRT
<213> Homo sapiens

<400> 16
Pro Leu Asp Val Glu Tyr Gly Gly Pro Asp Arg Arg Cys Pro Pro Pro
1 5 10 15
Pro Tyr Pro Lys His Leu Leu Arg Ser Lys Ser Glu Gln Tyr Asp
20 25 30
Leu Asp Ser Leu Cys Ala Gly Met Glu Gln Ser Leu Arg Ala Gly Pro
35 40 45
Asn Glu Pro Glu Gly Gly Asp Lys Ser Arg Lys Ser Ala Lys Gly Asp
50 55 60
Lys Gly Gly Lys Asp Lys Lys Gln Ile Gln Thr Ser Pro Val Pro Val

65	70	75	80
Arg	Lys	Asn	Ser
85	Arg	Asp	Glu
	Glu	Glu	Lys
	Arg	Glu	Ser
		Arg	Ile
			Lys
		Ser	
Tyr	Ser	Pro	Tyr
100	Ala	Phe	Lys
	Phe	Phe	Met
		Glu	Gln
		His	Val
			Glu
			Asn
Val	Ile	Lys	Thr
115	Tyr	Gln	Gln
		Lys	Val
		Asn	Arg
		Arg	Leu
			Gln
			Leu
			Glu
Gln	Glu	Met	Ala
130	Lys	Ala	Gly
		Leu	Cys
		Glu	Ala
		Gln	Glu
		Gln	Met
Arg	Lys	Ile	Leu
145	Tyr	Gln	Lys
		Glu	Ser
		Asn	Tyr
		Asn	Arg
		Arg	Leu
		Lys	Arg
Ala	Lys	Met	Asp
165	Lys	Ser	Met
		Phe	Val
		Lys	Ile
		Lys	Thr
		Leu	Gly
		Ile	
Gly	Ala	Phe	Gly
180	Glu	Val	Gly
	Cys	Leu	Leu
		Cys	Cys
		Lys	Val
		Asp	Thr
			His
Leu	Tyr	Ala	Met
195	Lys	Thr	Leu
	Arg	Lys	Lys
		Asp	Val
		Leu	Asn
		Arg	Asn
Gln	Val	Ala	His
210	Val	Lys	Ala
		Glu	Arg
		Asp	Ile
		Leu	Ala
		Glu	Ala
		Asp	
Asn	Glu	Trp	Val
225	Val	Lys	Leu
		Tyr	Tyr
		Ser	Phe
		Gln	Asp
		Lys	Asp
		Ser	Ser
Leu	Tyr	Phe	Val
245	Met	Asp	Tyr
	Ile	Pro	Gly
		Gly	Asp
		Met	Met
		Ser	Leu
Leu	Ile	Arg	Met
260	Glu	Val	Phe
	Pro	Glu	His
		Leu	Ala
		Arg	Phe
		Tyr	Ile
Ala	Glu	Leu	Thr
275	Leu	Ala	Ile
		Glu	Ser
		Val	Val
		His	Lys
		Met	Gly
		Phe	Ile
His	Arg	Asp	Ile
290	Lys	Pro	Asp
		Asn	Ile
		Ile	Asp
		Leu	Asp
		Gly	His
Ile	Lys	Leu	Thr
305	Asp	Phe	Gly
		Leu	Leu
		Cys	Cys
		Thr	Gly
		Phe	Arg
		Arg	Trp
		Trp	Thr
		Thr	His
Asn	Ser	Lys	Tyr
325	Tyr	Gln	Lys
		Gly	Ser
		His	Val
		Arg	Arg
		Gln	Gln
		Asp	Asp
Glu	Pro	Ser	Asp
340	Leu	Trp	Asp
		Asp	Val
		Ser	Asn
		Cys	Arg
		Arg	Cys
Arg	Leu	Lys	Thr
355	Leu	Glu	Gln
		Arg	Ala
		Arg	Arg
		Lys	Gln
		Gln	His
		Arg	Gln
Leu	Ala	His	Ser
370	Leu	Val	Gly
		Thr	Pro
		Asn	Tyr
		Ile	Ala
		Pro	Glu
		Val	
Leu	Leu	Arg	Lys
385	Gly	Tyr	Thr
		Gln	Gln
		Leu	Cys
		Cys	Asp
		Asp	Trp
		Trp	Trp
		Ser	Val
		Gly	

Val Ile Leu Phe Glu Met Leu Val Gly Gln Pro Pro Phe Leu Ala Pro
405 410 415

Thr Pro Thr Glu Thr Gln Leu Lys Val Ile Asn Trp Glu Asn Thr Leu
420 425 430

His Ile Pro Ala Gln Val Lys Leu Ser Pro Glu Ala Arg Asp Leu Ile
435 440 445

Thr Lys Leu Cys Cys Ser Ala Asp His Arg Leu Gly Arg Asn Gly Ala
450 455 460

Asp Asp Leu Lys Ala His Pro Phe Phe Ser Ala Ile Asp Phe Ser Ser
465 470 475 480

Asp Ile Arg Lys His Pro Ala Pro Tyr Val Pro Thr Ile Ser His Pro
485 490 495

Met Asp Thr Ser Asn Phe Asp Pro Val Asp Glu Glu Ser Pro Trp Asn
500 505 510

Asp Ala Ser Glu Gly Ser Thr Lys Ala Trp Asp Thr Leu Thr Ser Pro
515 520 525

Asn Asn Lys His Pro Glu His Ala Phe Tyr Glu Phe Thr Phe Arg Arg
530 535 540

Phe Phe Asp Asp Asn Gly Tyr Pro Phe Arg Cys Pro Lys Pro Ser Gly
545 550 555 560

Ala Glu Ala Ser Gln Ala Glu Ser Ser Asp Leu Glu Ser Ser Asp Leu
565 570 575

Val Asp Gln Thr Glu Gly Cys Gln Pro Val Tyr Val
580 585