Assignment -4

Python Programming

Assignment Date	25 October 2022
Student Name	Mr. A.Nithesh
Student Roll Number	621319205029
Maximum Marks	2 Marks

Questions:

import numpy as np import seaborn as sns
import pandas as pandas as pd from matplotlib import pyplot as plt from google.colab import drive
drive.mount('/content/drive'

Mounted at /content/drive

data=pd.read csv('/content/drive/MyDrive/Details/IBM/abalone.csv')

)

data

Shell Whole Shucked Viscera Sex Length Diameter Height Rings weight weight weight weight 0 0.455 0.365 0.095 0.5140 0.2245 15 M 0.1010 0.1500 7 1 0.350 0.265 0.090 M 0.2255 0.0995 0.0485 0.0700 0.530 0.2565 2 F 0.420 0.135 0.6770 0.1415 0.2100 9 3 M 0.440 0.365 0.125 0.5160 0.2155 0.1140 0.1550 10 7 4 П 0.330 0.255 0.080 0.2050 0.0895 0.0395 0.0550 - - ----... 4172 F 0.565 0.450 0.165 0.8870 0.3700 0.2390 0.2490 11 0.4390 0.2145 4173 M 0.590 0.440 0.135 0.9660 0.2605 10 4174 M 0.600 0.475 0.205 1.1760 0.5255 0.2875 0.3080 9 F 10 4175 0.625 0.485 0.150 1.0945 0.5310 0.2610 0.2960 4176 M 0.710 0.555 0.195 1.9485 0.9455 0.3765 0.4950 12

4177 rows × 9 columns

data.head(5)

data.tail(5)

	Sex	Length	Diameter	Height		Shucked weight	Viscera weight	Shell weight	Rin
4172	F	0.565	0.450	0.165	0.8870	0.3700	0.2390	0.2490	
4173	M	0.590	0.440	0.135	0.9660	0.4390	0.2145	0.2605	
4174	M	0.600	0.475	0.205	1.1760	0.5255	0.2875	0.3080	
4175	F	0.625	0 485	0 150	1 0945	0.5310	0 2610	0 2960	•

plt.hist(data['Height'])

plt.boxplot(data['Height'])

data.isnull()

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	R
0	False	False	False	False	False	False	False	False	F
1	False	False	False	False	False	False	False	False	F
2	False	False	False	False	False	False	False	False	F
3	False	False	False	False	False	False	False	False	F
4	False	False	False	False	False	False	False	False	F
4172	False	False	False	False	False	False	False	False	F
4173	False	False	False	False	False	False	False	False	F
4174	False	False	False	False	False	False	False	False	F
4175	False	False	False	False	False	False	False	False	F
4									•

data.notnull()

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	True	True	True	True	True	True	True	True	True

data['Rings'].hist()

data.dtypes

Sex	object
Length	float64
Diameter	float64
Height	float64
Whole weight	float64
Shucked weight	float64
Viscera weight	float64
Shell weight	float64
Rings	int64
dtype: object	

plt.scatter(data.index,data['Diameter'])

sns.stripplot(y=data['Height'])

<matplotlib.axes._subplots.AxesSubplot at 0x7f825d831310>

sns.stripplot(x=data['Sex'],y=data['Height'])

plt.figure(figsize=(5,5))

<Figure size 360x360 with 0 Axes>
<Figure size 360x360 with 0 Axes>

data['Height'].plot(kind='density')

<matplotlib.axes._subplots.AxesSubplot at 0x7f825d7a3350>

sns.barplot(x='Sex',y='Height',data=data)

<matplotlib.axes._subplots.AxesSubplot at 0x7f825d71dcd0>

sns.pairplot(data,hue="Sex",size=3)

/usr/local/lib/python3.7/dist-packages/seaborn/axisgrid.py:2076: UserWarning: Th warnings.warn(msg, UserWarning)

<seaborn.axisgrid.PairGrid at 0x7f825d625590>


```
x = np.array(data['Sex'])
y = np.power(data['Height'],2)
```

plt.plot(x,y)

plt.title("Line chart")

plt.xlabel("x-Axis")

plt.ylabel("y-Axis")

Text(0, 0.5, 'y-Axis')


```
sns.set(rc={'figure.figsize': (7,7)})
sns.set (font_scale=1.5)
fig=sns.lineplot (x=data.index, y=data['Length'], markevery=1, marker='d', data=data,
fig.set(xlabel='index')
```


TRAIN AND TEST:

from sklearn.model_selection import train_test_split

```
X=data.iloc[:,:-1]
y=data.iloc[:,-1]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.05, random_state
X_train
```

		Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight			
-	678	F	0.450	0.380	0.165	0.8165	0.2500	0.1915	0.2650			
	3009	- 1	0.255	0.185	0.065	0.0740	0.0305	0.0165	0.0200			
	1906	- 1	0.575	0.450	0.135	0.8245	0.3375	0.2115	0.2390			
	768	F	0.550	0.430	0.155	0.7850	0.2890	0.2270	0.2330			
	2781	M	0.595	0.475	0.140	1.0305	0.4925	0.2170	0.2780			
y_tra:	y_train											
	678 3009 1906 768 2781	23 4 11 11 10										
	1033											
print print	<pre>train, test</pre>											
train.Sex.replace({"M":1, "I":0, "F":-1}) ħGMēr\$exl=fēatureex=replacegth"M":Diametep;,"FHeight','Whole weight','Shucked weight', categorical_feature features = numerical=fëaexres + [categorical_feature] target = 'Rings'												
<pre>fig, axes = plt.subplots(ncols=2,figsize=(16, train[target].plot.hist(color='blue' 5)) axes[0].set(title="Train")</pre>												

X_train = train[features]
y_train = train[target]
X_test = test[features]
y_test = test[target]
X_train.head()

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Sex
4014	0.625	0.480	0.175	1.0650	0.4865	0.2590	0.285	1
3252	0.480	0.380	0.130	0.6175	0.3000	0.1420	0.175	1
305	0.200	0.145	0.060	0.0370	0.0125	0.0095	0.011	0
1857	0.505	0.400	0.145	0.7045	0.3340	0.1425	0.207	0
439	0.500	0.415	0.165	0.6885	0.2490	0.1380	0.250	1

from sklearn.compose import make_column_selector as selector
categorical_columns_selector = selector(dtype_include=object)
categorical_columns = categorical_columns_selector(data)
categorical_columns

['Sex']

data_categorical = data[categorical_columns]
data_categorical.head()

Double-click (or enter) to edit

- _
- 3 M
- 4

Colab paid products - Cancel contracts here