Rec'd PCT/PTO 03 JUN 2005

日本国特許庁 JAPAN PATENT OFFICE PCT/JP 0 3 / 1 5 4 8 6 03.1 2.0 3 RECTO 3 0 DEC 2003

WIPO

PCT

POLES J. M. J. G.

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2002年12月 3日

出 願 番 号 Application Number:

特願2002-350763

[ST. 10/C]:

[JP2002-350763]

出 願 人
Applicant(s):

日産化学工業株式会社

PRIORITY DOCUMENT SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

2003年11月14日

特許庁長官 Commissioner, Japan Patent Office 今井康

【書類名】

特許願

【整理番号】

4453000

【提出日】

平成14年12月 3日

【あて先】

特許庁長官 殿

【国際特許分類】

CO1G 19/02

CO1G 25/02

CO1G 30/00

【発明者】

【住所又は居所】

千葉県袖ヶ浦市北袖11番1 日産化学工業株式会社機

能材料研究所内

【氏名】

小山 欣也

【発明者】

【住所又は居所】

千葉県袖ヶ浦市北袖11番1 日産化学工業株式会社機

能材料研究所内

【氏名】

浅田 根子

【特許出願人】

【識別番号】

000003986

【氏名又は名称】

日産化学工業株式会社

【代表者】

藤本 修一郎

【電話番号】

047-465-1120

【手数料の表示】

【予納台帳番号】

005212

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

要約書 1

【プルーフの要否】

要

【書類名】 明細書

【発明の名称】 変性された酸化第二スズゾル及びその製造方法

【特許請求の範囲】

【請求項1】 酸化第二スズ粒子または酸化第二スズ粒子と酸化ジルコニウム粒子との複合体粒子であり、これらの酸化物が重量に基づいて $ZrO_2:SnO_2$ として $0:1\sim0.50:1$ の割合と $4\sim50$ nmの粒子径を有するコロイド粒子(A)を核としてその表面が、 $0.02\sim4.00$ のM/Sb $_2O_5$ のモル比(ただしMはアミン分子を示す。)と $1\sim20$ nmの粒子径を有するアルキルアミン含有Sb $_2O_5$ コロイド粒子(B)で被覆され、且つ(B)/(A)の重量比がそれら金属酸化物の重量比に基づいて $0.01\sim0.50$ の割合であり、そして $4.5\sim60$ nmの粒子径を有する変性された金属酸化物粒子を含有するゾル。

【請求項2】 コロイド粒子(A)が酸化第二スズである請求項1に記載の ゾル。

【請求項3】 コロイド粒子(A)が0.05:1~0.50:1のZrO2: SnO_2 重量比を有する酸化第二スズ粒子と酸化ジルコニウム粒子との複合体コロイド粒子である請求項1に記載のゾル。

【請求項4】 下記(a1)工程、(b1)工程、及び(c1)工程:

- (a 1)工程: $4\sim50$ n mの粒子径を有する酸化第二スズのコロイド粒子をS n O 2 として $1\sim50$ 重量%の濃度に含有する酸化第二スズ水性ゾルを調整する工程、
- (b1) 工程:上記(a1) 工程で得られた酸化第二スズ水性ゾルと、0.02 ~ 4.00 のM/S b 2 O 5 のモル比(ただしMはアミン分子を示す。)と 1 ~ 20 n m の粒子径を有するアルキルアミン含有S b 2 O 5 水性ゾルとを、その金属酸化物に換算したS b 2 O 5 / S n O 2 の重量割合で 0.01 ~ 0.50 に混合する工程、及び
- (c1)工程:(b1)工程で得られた水性媒体を20~300℃で0.1~50時間熟成する工程、を含む請求項1又は請求項2に記載の変性された酸化第二スズコロイド粒子の安定なゾルの製造方法。

【請求項5】 下記(a2)工程、(b2)工程、(c2)工程および(d2)工程:

(a 2)工程: $4\sim50$ nmの粒子径と $0.5\sim50$ 重量%の SnO_2 濃度を有する酸化第二スズ水性ゾルと、 ZrO_2 に換算して $0.5\sim50$ 重量%濃度のオキシジルコニウム塩の水溶液とを、 ZrO_2/SnO_2 として $0.05\sim0.5$ 0の重量比に混合し、得られた混合液を $60\sim100$ ℃で、 $0.1\sim50$ 時間加熱することにより、 $4\sim50$ nmの粒子径を有する酸化第二スズー酸化ジルコニウム複合体水性ゾルを調整する工程、

(b 2)工程:(a 2)工程で得られた酸化第二スズー酸化ジルコニウム複合体 水性ゾルと、0.02~4.00のM/Sb₂O₅のモル比(ただしMはアミン分子を示す。)と1~20nmの粒子径を有するアルキルアミン含有Sb₂O₅水性ゾルとを、Sb₂O₅/(SnO₂+ZrO₂)の重量割合で0.01~0.50に混合する工程、

(c2) 工程: (b2) 工程で得られた水性媒体を20~300℃で0.1~50時間熟成する工程、及び、

(d2)工程:(c2)工程で得られた変性された酸化第二スズー酸化ジルコニウム複合体水性ゾルを陰イオン交換体と接触させることにより、当該ゾル中に存在する陰イオンを除去する工程、を含む請求項1又は請求項3に記載の変成された酸化第二スズー酸化ジルコニウム複合体コロイド粒子の安定なゾルの製造方法。

【請求項6】 下記(a3)工程、(b3)工程、及び(c3)工程:

(a3)工程:100~300 Cの温度で水熱処理され、且つ4~50 nmの粒子径と0.5~50 重量%のS nO2 濃度を有する酸化第二スズ水性ゾルを調整する工程、

(b 3)工程:上記(a 3)工程で得られた酸化第二スズ水性ゾルと、0.02 \sim 4.00のM/Sb₂O₅のモル比(ただしMはアミン分子を示す。)と1~20 nmの粒子径を有するアルキルアミン含有Sb₂O₅水性ゾルとを、その金属酸化物に換算したSb₂O₅/SnO₂の重量割合で0.01~0.50に混合する工程、及び

(c3)工程: (b3)工程で得られた水性媒体を20~300℃で0.1~50時間熟成する工程、を含む請求項1又は請求項2に記載の変性された酸化第二スズコロイド粒子の安定なゾルの製造方法。

【請求項7】 下記(a4)工程、(b4)工程、(c4)工程および(d4)工程:

- (b4) 工程: (a4) 工程で得られた酸化第二スズー酸化ジルコニウム複合体水性ゾルと、 $0.02\sim4.00$ のM/Sb $_2O_5$ のモル比(ただしMはアミン分子を示す。)と $1\sim20$ nmの粒子径を有するアルキルアミン含有Sb $_2O_5$ 水性ゾルとを、Sb $_2O_5$ /(SnO $_2$ +ZrO $_2$)の重量割合で $0.01\sim0$.50に混合する工程、
- (c4) 工程: (b4) 工程で得られた水性媒体を20~300℃で0.1~50時間熟成する工程、及び、
- (d4) 工程: (c4) 工程で得られた変性された酸化第二スズー酸化ジルコニウム複合体水性ゾルを陰イオン交換体と接触させることにより、当該ゾル中に存在する陰イオンを除去する工程、を含む請求項1又は請求項3に記載の変成された酸化第二スズー酸化ジルコニウム複合体コロイド粒子の安定なゾルの製造方法

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、酸化スズコロイドまたは酸化第二スズー酸化ジルコニウム複合体コロイドの表面を、アルキルアミン含有Sb₂O₅コロイド粒子で被覆することによ

[0002]

本発明のゾルは、プラスチックレンズの表面に施されるハードコート剤の成分 として、その他種々の用途に用いられる。

[0003]

【従来の技術】

近年多用されるようになってきたプラスチックレンズの表面を改良するために、この表面に適用されるハードコート剤の成分として、高い屈折率を有する金属酸化物のゾルが用いられている。

[0004]

Al、Ti、Zr、Sn、Sb等の金属酸化物の $1\sim300$ n m粒子を含有させたハードコート剤が記載されている(例えば、特許文献 1 を参照)。

[0005]

酸化タングステン単独の安定なゾルは未だ知られていないが、珪酸塩の添加によって得られるWO3:SiO2:M2O(但し、Mはアルカリ金属原子又はアンモニウム基を表わす。)モル比が4~15:2~5:1であるゾルが提案されている(例えば、特許文献2を参照)。

[0006]

Si:Snのモル比が $2\sim1000:1$ であるケイ酸ースズ酸複合ゾルが提案 されている(例えば、特許文献 3 を参照)。

[0007]

 $4\sim50\,\mathrm{nm}$ の粒子径を有する原子価3、 $4\,\mathrm{Z}$ は $5\,\mathrm{om}$ 金属酸化物のコロイド粒子を核としてその表面がWO3/SnO2重量比0. $5\sim100$ であって粒子径 $2\sim7\,\mathrm{nm}$ である酸化タングステンー酸化第二スズ複合体のコロイド粒子で被覆されることによって形成された粒子径4. $5\sim60\,\mathrm{nm}$ の変性金属酸化物コロイドからなり、そしてこれら全金属酸化物を $2\sim50\,\mathrm{mm}$ 金む安定なゾルが提案されている(例えば、特許文献 $4\,\mathrm{cm}$ を参照)。

[0008]

ZrO2/SnO2として0.02~1.0の重量比と4~50nmの粒子径を有するSnO2-ZrO2複合体コロイド粒子を核として、その表面を、0.5~100のWO3/SnO2重量比と2~7nmの粒子径を有するWO3-SnO2複合コロイド粒子で被覆した構造の粒子からなる変性されたSnO2-ZrO2複合体の安定なゾルが提案されている(例えば、特許文献5を参照)。

[0009]

 $2\sim60$ n mの一次粒子径を有する金属酸化物のコロイド粒子(A)を核として、その表面を酸性酸化物のコロイド粒子からなる被覆物(B)で被覆して得られた粒子(C)を含有し、且つ(C)を金属酸化物に換算して $2\sim50$ 重量%の割合で含み、そして $2\sim100$ n mの一次粒子径を有する安定な変性金属酸化物ゾルが開示されている。そして、核の金属酸化物は SnO_2 粒子、 SnO_2-ZrO_2 複合コロイド粒子であり、被覆物にアルキルアミン含有 Sb_2O_5 粒子(M/Sb $2O_5$ モル比が $0.02\sim4.00$)であるゾルが開示されている(例えば、特許文献 6 を参照)。

[0010]

【特許文献1】

特公昭63-37142号公報(特許請求の範囲)

【特許文献2】

特開昭54-52686号公報(特許請求の範囲)

【特許文献3】

特公昭50-40119号公報(特許請求の範囲)

【特許文献4】

特開平3-217230号公報(特許請求の範囲)

【特許文献5】

特開平6-24746号公報 (特許請求の範囲)

【特許文献6】

特開2001-122621(特許請求の範囲)

[0011]

【発明が解決しようとする課題】

従来の金属酸化物ゾル、特にカチオン性の金属酸化物ゾルをハードコート剤の成分として用いると、得られたハードコート剤の安定性が充分でないのみならず、このハードコート剤の硬化皮膜の透明性、密着性、耐候性等も充分でない。またSb205 ゾルをハードコート剤成分として用いる場合には、Sb205 の屈折率が1.65~1.70程度であるから、レンズのプラスチック基材の屈折率が1.6以上のときには、もはやこのSb205 ゾルでは硬化被膜の屈折率が充分に向上しない。

[0012]

上記特開昭 5 4 - 5 2 6 8 6 号公報に記載の酸化タングステンのゾルは、タングステン酸塩の水溶液を脱陽イオン処理することにより得られるタングステン酸の水溶液に、珪酸塩を加えることにより得られているが、強酸性においてのみ安定であり、また、ハードコート剤の成分として用いる場合には、塗膜の屈折率を向上させる効果は小さい。

[0013]

上記特公昭50-40119号公報に記載のケイ酸-スズ酸複合ゾルは、ケイ酸アルカリとスズ酸アルカリの混合水溶液を脱陽イオン処理することにより得られているが、上記同様、やはりハードコート剤の成分として用いる場合には、塗膜の屈折率を向上させる効果は小さい。

[0014]

上記特開平3-217230号公報に記載の変性金属酸化物ゾルは屈折率が1.7以上で、安定であり、プラスチックレンズ用のハードコート剤の成分として用いることができ、要求されるハードコート膜の性能、例えば耐擦傷性、透明性、密着性、耐水性、耐候性などの性能をほぼ満足する事ができる。

[0015]

上記特開平6-24746号公報に記載の変性酸化第二スズー酸化ジルコニウムゾルは屈折率が1.7以上で、安定であり、プラスチックレンズ用のハードコート剤の成分として用いることができ、要求されるハードコート膜の性能、例えば耐擦傷性、透明性、密着性などの性能をほぼ満足する事ができる。

本願発明は特開平3-217230号公報や特開平6-24746号公報に記載された変成金属酸化物をハードコート膜にした際の状態、例えば耐擦傷性、透明性、密着性、耐水性、耐候性などについてさらに向上させるためのゾルであって幅広いpH領域で安定な変成された酸化第二スズまたは変成された酸化第二スズー酸化ジルコニウムの安定なゾルを提供し、プラスチックレンズ表面に施されるハードコート膜の性能向上成分として、そのハードコート用塗料に混合して用いることができる金属酸化物ゾルを提供することにある。

[0017]

【課題を解決するための手段】

第2観点として、コロイド粒子(A)が酸化第二スズである第1観点に記載の ゾル、

第3観点として、コロイド粒子 (A) が0.05:1~0.50:1のZrO2: SnO_2 重量比を有する酸化第二スズ粒子と酸化ジルコニウム粒子との複合体コロイド粒子である第1観点に記載のゾル、

第4観点として、下記(a1)工程、(b1)工程、及び(c1)工程:

- (a 1)工程: $4\sim50$ n m の粒子径を有する酸化第二スズのコロイド粒子を S n O 2 として $1\sim50$ 重量%の濃度に含有する酸化第二スズ水性ゾルを調整する工程、
- (b1) 工程:上記(a1) 工程で得られた酸化第二スズ水性ゾルと、0.02

- ~4.00のM/Sb₂O₅のモル比(ただしMはアミン分子を示す。)と1~20nmの粒子径を有するアルキルアミン含有Sb₂O₅水性ゾルとを、その金属酸化物に換算したSb₂O₅/SnO₂の重量割合で0.01~0.50に混合する工程、及び
- (c1)工程:(b1)工程で得られた水性媒体を20~300℃で0.1~50時間熟成する工程、を含む第1観点又は第2観点に記載の変性された酸化第二スズコロイド粒子の安定なゾルの製造方法、
- 第5観点として、下記(a2)工程、(b2)工程、(c2)工程および(d2)工程:
- (a 2)工程: $4\sim50$ nmの粒子径と $0.5\sim50$ 重量%のS nO 2 濃度を有する酸化第二スズ水性ゾルと、Z r O 2 に換算して $0.5\sim50$ 重量%濃度のオキシジルコニウム塩の水溶液とを、Z r O 2 / S n O 2 として $0.05\sim0.5$ 0の重量比に混合し、得られた混合液を $60\sim100$ で、 $0.1\sim50$ 時間加熱することにより、 $4\sim50$ nmの粒子径を有する酸化第二スズー酸化ジルコニウム複合体水性ゾルを調整する工程、
- (b2) 工程: (a2) 工程で得られた酸化第二スズー酸化ジルコニウム複合体水性ゾルと、 $0.02\sim4.00$ のM/Sb $_2$ O $_5$ のモル比(ただしMはアミン分子を示す。)と $1\sim20$ nmの粒子径を有するアルキルアミン含有Sb $_2$ O $_5$ 水性ゾルとを、Sb $_2$ O $_5$ /(SnO $_2$ +ZrO $_2$)の重量割合で $0.01\sim0$.50に混合する工程、
- (c2) 工程: (b2) 工程で得られた水性媒体を20~300℃で0.1~50時間熟成する工程、及び、
- (d2) 工程: (c2) 工程で得られた変性された酸化第二スズー酸化ジルコニウム複合体水性ゾルを陰イオン交換体と接触させることにより、当該ゾル中に存在する陰イオンを除去する工程、を含む第1観点又は第3観点に記載の変成された酸化第二スズー酸化ジルコニウム複合体コロイド粒子の安定なゾルの製造方法

第6観点として、下記(a3)工程、(b3)工程、及び(c3)工程: (a3)工程:100~300℃の温度で水熱処理され、且つ4~50nmの粒

(b 3)工程:上記(a 3)工程で得られた酸化第二スズ水性ゾルと、0.02 ~ 4.00 のM/Sb₂O₅のモル比(ただしMはアミン分子を示す。)と1~20nmの粒子径を有するアルキルアミン含有Sb₂O₅水性ゾルとを、その金属酸化物に換算したSb₂O₅/SnO₂の重量割合で0.01~0.50に混合する工程、及び

(c3)工程:(b3)工程で得られた水性媒体を20~300℃で0.1~50時間熟成する工程、を含む第1観点又は第2観点に記載の変性された酸化第二スズコロイド粒子の安定なゾルの製造方法、及び

第7観点として、下記(a4)工程、(b4)工程、(c4)工程および(d4)工程:

(a4)工程: $100\sim300$ Cの温度で水熱処理され、且 $04\sim50$ nmの粒子径と $0.5\sim50$ 重量%の SnO_2 濃度を有する酸化第二スズ水性ゾルと、 ZrO_2 に換算して $0.5\sim50$ 重量%濃度のオキシジルコニウム塩の水溶液とを、 ZrO_2/SnO_2 として $0.05\sim0.50$ の重量比に混合し、得られた混合液を $60\sim100$ Cで、 $0.1\sim50$ 時間加熱することにより、 $4\sim50$ nmの粒子径を有する酸化第二スズー酸化ジルコニウム複合体水性ゾルを調整する工程、

(b 4)工程:(a 4)工程で得られた酸化第二スズー酸化ジルコニウム複合体 水性ゾルと、0.02~4.00のM/Sb2O5のモル比(ただしMはアミン分子を示す。)と1~20nmの粒子径を有するアルキルアミン含有Sb2O5水性ゾルとを、Sb2O5/(SnO2+ZrO2)の重量割合で0.01~0.50に混合する工程、

(c4) 工程: (b4) 工程で得られた水性媒体を20~300℃で0.1~50時間熟成する工程、及び、

(d4)工程:(c4)工程で得られた変性された酸化第二スズー酸化ジルコニウム複合体水性ゾルを陰イオン交換体と接触させることにより、当該ゾル中に存在する陰イオンを除去する工程、を含む第1観点又は第3観点に記載の変成され

[0018]

【発明の実施の形態】

本願発明は、酸化第二スズ粒子または酸化第二スズ粒子と酸化ジルコニウム粒子との複合体粒子であり、これらの酸化物が重量に基づいて $2 r O_2 : Sn O_2$ として $0:1\sim0.50:1$ の割合と $4\sim50$ nmの粒子径を有するコロイド粒子(A)を核としてその表面が、 $0.02\sim4.00$ のM/Sb $_2O_5$ のモル比(ただしMはアミン分子を示す。)と $1\sim20$ nmの粒子径を有するアルキルアミン含有Sb $_2O_5$ コロイド粒子(B)で被覆され、且つ(B)/(A)の重量比がそれら金属酸化物の重量比に基づいて $0.01\sim0.50$ の割合であり、そして $4.5\sim60$ nmの粒子径を有する変性された金属酸化物粒子を含有するゾルである。

[0019]

上記ゾル中の粒子径は電子顕微鏡観察による粒子径で表される。

[0020]

本願発明のゾルの製造に用いられる核粒子としての酸化第二スズコロイド粒子は公知の方法、例えばイオン交換法、解膠法、加水分解法、反応法等と呼ばれる方法により、約 $4\sim50$ n m程度の粒子径を有するコロイド粒子のゾルの形態で容易につくることができる。

[0021]

上記イオン交換法の例としては、スズ酸ナトリウムのようなスズ酸塩を水素型陽イオン交換樹脂で処理する方法、或いは上記塩化第二スズ、硝酸第二スズのような第二スズ塩を水酸基型陰イオン交換樹脂で処理する方法が挙げられる。上記解膠法の例としては、第二スズ塩を塩基で中和するか、或いはスズ酸を塩酸で中和させることにより得られる水酸化第二スズゲルを洗浄した後、酸又は塩基で解膠する方法が挙げられる。上記加水分解法の例としては、スズアルコキシドを加水分解する方法、或いは塩基性塩化第二スズ塩基性塩を加熱下加水分解した後、不要の酸を除去する方法が挙げられる。上記反応法の例としては、金属スズ粉末

と酸とを反応させる方法が挙げられる。

[0022]

上記の方法で製造された酸化第二スズ水性ゾルは、そのまま使用する事も出来るが、100~300℃の温度で水熱処理した後に使用することもできる。

[0023]

水熱処理は例えばオートクレーブに上記の酸化第二スズ水性ゾルを入れ、100~300℃の温度で、0.1~200時間の処理が施される。

[0024]

これら酸化第二スズゾルの媒体は、水、親水性有機溶媒のいずれでもよいが、 媒体が水である水性ゾルが好ましい。また、ゾルのpHとしては、ゾルを安定な らしめる値がよく、通常、0.2~11.5程度がよい。本発明の目的が達成さ れる限り、酸化第二スズゾルには、任意の成分、例えば、ゾルの安定化のための アルカリ性物質、酸性物質、オキシカルボン酸等が含まれていてもよい。用いら れる酸化第二スズゾルの濃度としては、酸化第二スズとして0.5~50重量% 程度であるが、この濃度は低い方がよく、好ましくは1~30重量%である。

[0025]

本願発明のゾルの製造に用いられる核粒子としての酸化第二スズー酸化ジルコニウム複合ゾルは、上記酸化第二スズゾルにオキシジルコニウム塩をZrO2/SnO2重量比が $0.05\sim0.5$ になるように $5\sim100$ ℃で $0.5\sim3$ 時間混合し、次いでこれを $60\sim100$ ℃、 $0.1\sim50$ 時間加熱する工程により得ることができる。

[0026]

ここで用いる酸化第二スズゾルは予め水熱処理を施したゾル、又は水熱処理を 施さないゾルのいずれも使用することができる。

[0027]

用いるオキシジルコニウム塩としては、オキシ塩化ジルコニウム、オキシ硝酸ジルコニウム、オキシ硫酸ジルコニウム、オキシ酢酸ジルコニウムなどのオキシ有機酸ジルコニウム、オキシ炭酸ジルコニウム等がある。これらのオキシジルコニウム塩は固体又は水溶液として用いることができるが、ZrO2として0.5

~50重量%、好ましくは0.5~30重量%程度の水溶液として用いるのが好ましい。オキシ炭酸ジルコニルのように、水に不溶の塩でも酸化第二スズが酸性 ゾルの場合は使用することが可能である。

[0028]

酸化第二スズゾルは特にアミンなどの有機塩基で安定化されたアルカリ性のゾルを用いるのが特に好ましく、オキシジルコニウム塩との混合は5~100℃、好ましくは室温(20℃)~60℃が好ましい。そしてこの混合は撹拌下で酸化第二スズゾルにオキシジルコニウム塩を加えても、オキシジルコニウム塩水溶液に酸化第二スズゾルを加えてもよいが、後者の方が好ましい。この混合は充分行われる必要があり、0.5~3時間が好ましい。

[0029]

本願発明の被覆ゾルとして用いられるアルキルアミン含有五酸化アンチモンコロイドは下記に示す方法(酸化法、酸分解法等)で得ることができる。酸分解法の例としてはアンチモン酸アルカリを無機酸と反応させた後にアミンで解膠する方法(特開昭60-41536号、特開昭61-227918号、特開2001-123115号)、酸化法の例とアミンやアルカリ金属の共存下で三酸化アンチモンを過酸化水素で酸化する方法(特公昭57-11848号、特開昭59-232921号)や三酸化アンチモンを過酸化水素で酸化した後、アミンやアルカリ金属を添加する方法で得ることができる。

[0030]

上記のアミン含有五酸化アンチモンコロイドのアミンの例としてはアンモニウム、第四級アンモニウム又は水溶性のアミンが挙げられる。これらの好ましい例としてはイソプロピルアミン、ジイソプロピルアミン、nープロピルアミン、ジイソブチルアミン等のアルキルアミン、ベンジルアミン等のアラルキルアミン、ピペリジン等の脂環式アミン、モノエタノールアミン、トリエタノールアミン等のアルカノールアミン、テトラメチルアンモニウムハイドロオキサイド等の第4級アンモニウムが挙げられる。特にジイソプロピルアミンおよびジイソブチルアミンが好ましい。上記、アミン含有五酸化アンチモンコロイド中のアルカリ成分と五酸化アンチモンのモル比はM/Sb2O5が0.02~4.00が好ましく

[0031]

アミン含有五酸化アンチモンコロイド粒子は、微小な五酸化アンチモンのコロイド粒子であり、その粒子径は電子顕微鏡観察によりオリゴマーまたは一次粒子径が $1\sim20$ nm程度であった。アミン成分としてジイソプロピルアミン等のアルキルアミン塩が好ましく、アミン/Sb2O5のモル比は $0.02\sim4.00$ である。

[0032]

上記の被覆物には、アミン含有五酸化アンチモンコロイド粒子に、更にアルキルアミン含有シリカ粒子を加える事が出来る。

[0033]

本発明によるアミン含有S b $_2O_5$ コロイドによって表面が被覆された変成された酸化第二スズまたは変性された酸化第二スズー酸化ジルコニウム複合コロイド粒子はゾル中で負に帯電している。

[0034]

上記酸化第二スズー酸化ジルコニウム複合コロイド粒子は陽に帯電しており、Sb2O5コロイドは負に帯電している。従って、混合によりこの陽に帯電している酸化第二スズー酸化ジルコニウム複合コロイド粒子の周りに負に帯電しているSb2O5のコロイドが電気的に引き寄せられ、そして陽帯電のコロイド粒子表面上に化学結合によってSb2O5のコロイドが結合し、この陽帯電の粒子を核としてその表面を負に帯電したSb2O5が覆ってしまうことによって、変性された酸化第二スズー酸化ジルコニウム複合コロイド粒子が生成したものと考えられる。

[0035]

けれども、核ゾルとしての粒子径 $4\sim50$ nmの酸化第二スズー酸化ジルコニウム複合コロイド粒子と、被覆ゾルとしてのアミン含有 S b $2O_5$ コロイドとを混合するときに、核ゾルの金属酸化物(S n O 2 又は Z r O 2 + S n O 2) 1 0 0 重量部に対し、被覆ゾルの金属酸化物が1 重量部より少ないと、安定なゾルが得

られない。このことは、Sb2O5のコロイドの量が不足するときには、この複合体のコロイド粒子による酸化第二スズー酸化ジルコニウム複合コロイド粒子を核とするその表面の被覆が不充分となり、生成コロイド粒子の凝集が起こり易く、生成ブルを不安定ならしめるものと考えられる。従って、混合すべきSb2O5コロイド粒子の量は、酸化第二スズー酸化ジルコニウム複合コロイド粒子の全表面を覆う量より少なくてもよいが、安定な変性された酸化第二スズー酸化ジルコニウム複合コロイド粒子のゾルを生成せしめるに必要な最小量以上の量である。この表面被覆に用いられる量を越える量のSb2O5コロイド粒子が上記混合に用いられたときには、得られたゾルは、Sb2O5コロイド粒子が上記混合に用いられたときには、得られたゾルは、Sb2O5コロイド粒子のゾルと、生じた変性された酸化第二スズー酸化ジルコニウム複合コロイド粒子のゾルの安定な混合ゾルに過ぎない。

[0036]

好ましくは、酸化第二スズー酸化ジルコニウム複合コロイド粒子をその表面被覆によって変性するには、用いられる Sb_2O_5 のコロイドの量は、核ゾルの金属酸化物(SnO_2 又は ZrO_2+SnO_2)100重量部に対し、被覆ゾル中の金属酸化物として SnO_2 0重量部以下がよい。

[0037]

本願発明では核に酸化第二スズを用いる場合は、(a1)工程: $4\sim50\,\mathrm{nm}$ の粒子径を有する酸化第二スズのコロイド粒子を SnO_2 として $1\sim50\,\mathrm{m}$ 温%の濃度に含有する酸化第二スズ水性ゾルを調整する工程、($\mathrm{b}\,1$)工程:上記(a1)工程で得られた酸化第二スズ水性ゾルと、 $\mathrm{0.02}\sim4.00\,\mathrm{om}$ M/S $\mathrm{b}\,2\,\mathrm{O}\,5$ のモル比(ただしMはアミン分子を示す。)と $1\sim20\,\mathrm{nm}$ の粒子径を有するアルキルアミン含有 $\mathrm{Sb}\,2\,\mathrm{O}\,5$ 水性ゾルとを、その金属酸化物に換算した S $\mathrm{b}\,2\,\mathrm{O}\,5$ / $\mathrm{SnO}\,2$ の重量割合で $\mathrm{0.01}\sim0.50\,\mathrm{c}$ 混合する工程、($\mathrm{c}\,1$)工程:($\mathrm{b}\,1$)工程で得られた水性媒体を $\mathrm{20}\sim3\,0\,0\,\mathrm{C}$ で、 $\mathrm{0.1}\sim5\,0\,\mathrm{e}$ 間熟成する工程、から変性された酸化第二スズコロイド粒子の安定なゾルが得られる。この($\mathrm{c}\,3$)工程で得られたゾルは、($\mathrm{a}\,1$)工程の酸化第二スズゾルがアニオンを含有している場合には($\mathrm{d}\,1$)工程を追加することが出来る。即ち、($\mathrm{d}\,1$)工程:($\mathrm{c}\,3$)工程で得られた変性された酸化第二スズ水性ゾルを除イオ

ン交換体と接触させることにより、当該ゾル中に存在する陰イオンを除去し、その後 $20 \sim 300$ $\mathbb C$ で0. $1 \sim 50$ 時間熟成する工程を追加して変性された酸化第二スズコロイド粒子の安定なゾルが得られる。100 $\mathbb C$ 以上の熟成はオートクレーブを用いて行うことが出来る。このゾルは、 $4 \sim 50$ n mの粒子径を有する酸化第二スズコロイド粒子(A)を核としてその表面が、 $0.02 \sim 4.00$ のM/Sb 205のモル比(ただしMはアミン分子を示す。)と $1 \sim 20$ n mの粒子径を有するアルキルアミン含有 Sb 205 コロイド粒子(B)で被覆され、且つ(B)/(A)の重量比がそれら金属酸化物の重量比に基づいて $0.01 \sim 0.50$ 0割合であり、そして $4.5 \sim 60$ n mの粒子径を有する変性された酸化第二スズ粒子を含有するゾルである。

[0038]

また、本願発明では核に酸化第二スズと酸化ジルコニウム複合体コロイド粒子 を用いる場合は、(a 2)工程:4~50 nmの粒子径と0. 5~50重量%の SnO_2 濃度を有する酸化第二スズ水性ゾルと、 ZrO_2 に換算して $0.5\sim5$ 0重量%濃度のオキシジルコニウム塩の水溶液とを、ZrO2/SnO2</sub>として 0.05~0.50の重量比に混合し、得られた混合液を60~100℃で、0 . $1\sim5$ 0 時間加熱することにより、 $4\sim5$ 0 n mの粒子径を有する酸化第二ス ズー酸化ジルコニウム複合体水性ゾルを調整する工程、(b2)工程:(a2) 工程で得られた酸化第二スズー酸化ジルコニウム複合体水性ゾルと、0.02~ 4. $000M/Sb_2O_5$ のモル比(ただしMはアミン分子を示す。)と $1\sim2$ 0 nmの粒子径を有するアルキルアミン含有Sb205水性ゾルとを、Sb20 5/ (SnO₂+ZrO₂) の重量割合で0.01~0.50に混合する工程、 (c2) 工程: (b2) 工程で得られた水性媒体を20~300℃で0.1~5 0時間熟成する工程、及び(d2)工程:(c2)工程で得られた変性された酸 化第二スズー酸化ジルコニウム複合体水性ゾルを陰イオン交換体と接触させ、そ の後20~300℃で0.1~50時間熟成して変成された酸化第二スズー酸化 ジルコニウム複合体コロイド粒子の安定なゾルが得られる。100℃以上の熟成 はオートクレーブを用いて行うことが出来る。このゾルは、酸化物が重量に基づ いてZrO2:SnO2として0.05:1~0.50:1の割合と4~50n

mの粒子径を有する酸化第二スズ粒子と酸化ジルコニウム粒子との複合体コロイド粒子(A)を核としてその表面が、 $0.02 \sim 4.00$ の M/Sb_2O_5 のモル比(ただしMはアミン分子を示す。)と $1 \sim 20$ n mの粒子径を有するアルキルアミン含有 Sb_2O_5 コロイド粒子(B)で被覆され、且つ(B)/(A)の重量比がそれら金属酸化物の重量比に基づいて $0.01 \sim 0.50$ の割合であり、そして $4.5 \sim 60$ n mの粒子径を有する変性された酸化第二スズ粒子と酸化ジルコニウム粒子との複合体コロイド粒子を含有するゾルである。

[0039]

上記の製造方法はオートクレーブを用いて加圧下で行うことも出来る。 即ち、核にオートクレーブ処理された酸化第二スズゾルを用いる方法では、(a 3)工程:100~300℃の温度で水熱処理され、且つ4~50nmの粒子径 と 0. $5\sim5$ 0 重量%の S n O 2 濃度を有する酸化第二スズ水性ゾルを調整する 工程、(b3)工程:上記(a3)工程で得られた酸化第二スズ水性ゾルと、0 . 02~4.00のM/Sb₂O₅のモル比(ただしMはアミン分子を示す。) と $1 \sim 2$ 0 n m の粒子径を有するアルキルアミン含有 S b 2 O 5 水性ゾルとを、 その金属酸化物に換算したSb₂O₅/SnO₂の重量割合で $0.01\sim0.5$ 0に混合する工程、(c3)工程:(b3)工程で得られた水性媒体を20~3 00℃で0.1~50時間熟成する工程から変性された酸化第二スズ水性ゾルが 得られる。この(c3)工程で得られたゾルは、(a3)工程の酸化第二スズゾ ルがアニオンを含有している場合には(d3)工程を追加することが出来る。即 ち、(d3)工程:(c3)工程で得られた変性された酸化第二スズ水性ゾルを 陰イオン交換体と接触させることにより、当該ゾル中に存在する陰イオンを除去 し、その後20~300℃で0.1~50時間熟成する工程を追加して変性され た酸化第二スズコロイド粒子の安定なゾルが得られる。100℃以上の熟成はオ ートクレーブを用いて行うことが出来る。このゾルは、4~50mmの粒子径を 有する酸化第二スズコロイド粒子(A)を核としてその表面が、0.02~4. 00のM/Sb₂O₅のモル比(ただしMはアミン分子を示す。)と $1\sim20\,\mathrm{n}$ mの粒子径を有するアルキルアミン含有Sb2O5コロイド粒子(B)で被覆さ れ、且つ(B)/(A)の重量比がそれら金属酸化物の重量比に基づいて0.0

[0040]

また、核にオートクレーブ処理された酸化第二スズゾルと、酸化ジルコニウム との複合体粒子からなる水性ゾルを用いる方法では、(a 4)工程:100~3 00℃の温度で水熱処理され、且つ4~50nmの粒子径と0.5~50重量% の SnO_2 濃度を有する酸化第二スズ水性ゾルと、 ZrO_2 に換算して $0.5\sim$ 50重量%濃度のオキシジルコニウム塩の水溶液とを、ZrO2/SnO2とし て0.05~0.50の重量比に混合し、得られた混合液を60~100℃で、 $0.1 \sim 50$ 時間加熱することにより、 $4 \sim 50$ nmの粒子径を有する酸化第二 スズー酸化ジルコニウム複合体水性ゾルを調整する工程、(b4)工程:(a4)工程で得られた酸化第二スズー酸化ジルコニウム複合体水性ゾルと、0.02 \sim 4.00の M/Sb_2O_5 のモル比(ただしMはアミン分子を示す。)と $1\sim$ 20 nmの粒子径を有するアルキルアミン含有Sb205水性ゾルとを、Sb2 O_5 / $(S_nO_2 + Z_rO_2)$ の重量割合で $0.01 \sim 0.50$ に混合する工程 、(c4)工程:(b4)工程で得られた水性媒体を20~300℃で0.1~ 50時間熟成する工程、及び(d4)工程:(c4)工程で得られた変性された 酸化第二スズー酸化ジルコニウム複合体水性ゾルを陰イオン交換体と接触させ、 その後20~300℃で0.1~50時間熟成して変成された酸化第二スズー酸 化ジルコニウム複合体コロイド粒子の安定なゾルが得られる。100℃以上の熟 成はオートクレーブを用いて行うことが出来る。このゾルは、酸化物が重量に基 づいてZrO2:SnO2として0.05:1~0.50:1の割合と4~50 nmの粒子径を有する酸化第二スズ粒子と酸化ジルコニウム粒子との複合体コロ イド粒子 (A) を核としてその表面が、0.02~4.00の M/Sb_2O_5 の モル比(ただしMはアミン分子を示す。)と1~20 nmの粒子径を有するアル キルアミン含有S b 2 O 5 コロイド粒子(B) で被覆され、且つ(B) \angle (A) の重量比がそれら金属酸化物の重量比に基づいて0.01~0.50の割合であ り、そして4.5~60nmの粒子径を有する変性された酸化第二スズ粒子と酸 化ジルコニウム粒子との複合体コロイド粒子を含有するゾルである。

[0041]

本願発明のゾルを得る製造方法は、核に用いる粒子が酸化第二スズである場合と、酸化第二スズと酸化ジルコニウム複合体ゾルを用いる場合が有る。前者はルチル型の結晶構造を有し、また、それらゾルをコーティング組成物として基材に塗布し焼成したものは高い屈折率(塗膜から算出した屈折率が1.7~1.8)及び優れた透明性を有する。また、後者は、前者の性能に加え、酸化ジルコニウムを複合化することで優れた耐候(光)性能を有する。

[0042]

また、上記のそれぞれのゾルは酸化第二スズをオートクレーブ処理しない場合と、オートクレーブ処理する場合がある。後者は、前者の優れた性能を有しつつ、それらゾルをコーティング組成物として基材に塗布し焼成した塗膜は高い屈折率(塗膜から算出した屈折率が1.8~1.92)を有する。

[0043]

上記の変性された酸化第二スズー酸化ジルコニウム複合コロイド粒子は、電子顕微鏡によって観察することができ、ほぼ4.5~60nmの粒子径を有する。 上記混合によって得られたゾルはpHがほぼ1~9を有しているが、改質のために用いたオキシジルコニウム塩に由来するC1一、NO3一、CH3COOーなどのアニオンを多く含有しているために、コロイド粒子はミクロ凝集を起こしており、ゾルの透明性が低くなっている。

[0044]

上記混合によって得られたゾル中のアニオンを (d) 工程の陰イオンを除去することにより、pH3~11.5で、透明性の良い、安定な変性された酸化第二スズ-酸化ジルコニウム複合コロイド粒子のゾルを得ることができる。

[0045]

(d) 工程の陰イオン除去は上記混合によって得られたゾルを水酸基型陰イオン交換樹脂で100℃以下、好ましくは室温(20℃)~60℃位の温度で処理することにより得られる。水酸基型陰イオン交換樹脂は市販品を用いることができるが、アンバーライト410のような強塩基型のものが好ましい。

[0046]

[0047]

水熱処理(オートクレーブ処理)を施さない酸化第二スズゾルを原料に用いる(a 1~d 1)の製造方法、及び(a 2~d 2)の製造方法では、それらの(c)工程で20~100℃の温度で0.1~200時間の熟成を行う事もできるが、100~300℃の水熱処理を0.1~200時間施すことも可能である。また、水熱処理(オートクレーブ処理)を施した酸化第二スズゾルを原料に用いる(a 3~d 3)の製造方法、及び(a 4~d 4)の製造方法では、それらの(c)工程で20~100℃の温度で0.1~200時間の熟成を行う事もできるが、100~300℃の水熱処理を0.1~200時間施すことも可能である。

[0048]

本発明による変性された酸化第二スズー酸化ジルコニウムの好ましい水性複合 ゾルは、 $pH3\sim11$. 5 を有し、pHが 3 より低いとそのようなゾルは不安定 となり易い。また、このpHが 1 1. 5 を越えると、変性された酸化第二スズー酸化ジルコニウム複合コロイド粒子を覆っている S b 2 0 5 コロイドが液中に溶解し易い。更に変性された酸化第二スズー酸化ジルコニウム複合コロイド粒子のゾル中の全金属酸化物の合計濃度が 6 0 重量%を越えるときにも、このようなゾルは不安定となり易い。工業製品として好ましい濃度は 1 0 \sim 5 0 重量%程度である。

[0049]

本発明の変性金属酸化物ゾルは、本願発明の目的が達成される限り、他の任意の成分を含有することができる。特にオキシカルボン酸類を全金属酸化物の合計量に対し約30重量%以下に含有させると分散性等の性能が更に改良されたコロイドが得られる。用いられるオキシカルボン酸の例としては、乳酸、酒石酸、クエン酸、グルコン酸、リンゴ酸、グリコール等が挙げられる。また、アルカリ成分を含有する事ができ、例えば、Li、Na、K、Rb、Cs等のアルカリ金属水酸化物、NH4、エチルアミン、トリエチルアミン、イソプロピルアミン、n

ープロピルアミン等のアルキルアミン;ベンジルアミン等のアラルキルアミン;ピペリジン等の脂環式アミン;モノエタノールアミン、トリエタノールアミン等のアルカノールアミンである。これらは2種以上を混合して含有することができる。また上記の酸性成分と併用することができる。これらを全金属酸化物の合計量に対し約30重量%以下に含有させることができる。

[0050]

ゾル濃度を更に高めたいときには、最大約50重量%まで常法、例えば蒸発法、限外濾過法等により濃縮することができる。またこのゾルのpHを調整したい時には、濃縮後に、前記アルカリ金属、有機塩基(アミン)、オキシカルボン酸等をゾルに加えることによって行うことができる。特に、金属酸化物の合計濃度が10~40重量%であるゾルは実用的に好ましい。濃縮法として限外濾過法を用いると、ゾル中に共存しているポリアニオン、極微小粒子等が水と一緒に限外濾過膜を通過するので、ゾルの不安定化の原因であるこれらポリアニオン、極微小粒子等をゾルから除去することができる。

[0051]

上記混合によって得られた変性された金属酸化物コロイドが水性ゾルであるときは、この水性ゾルの水媒体を親水性有機溶媒で置換することによりオルガノゾルが得られる。この置換は、蒸留法、限外濾過法等通常の方法により行うことができる。この親水性有機溶媒の例としてはメチルアルコール、エチルアルコール、イソプロピルアルコール等の低級アルコール;ジメチルホルムアミド、N,N、ージメチルアセトアミド等の直鎖アミド類;Nーメチルー2ーピロリドン等の環状アミド類;エチルセロソルブ、エチレングリコール等のグリコール類等が挙げられる。

[0052]

【実施例】

核ゾルの調整

A-1 酸化第二スズゾルの製造

35%塩酸41kgと純水110kgを0.5m³のGL反応槽にとり、攪拌 しながらこれを70℃まで加温した後、冷却しながら35%過酸化水素水185 kgと金属スズ粉末(山石金属製、AT-SnNO200N、SnO2として99.7%を含有する。)90kgの添加を交互に18回分割して行った。過酸化水素水と金属スズの添加は始めに35%過酸化水素水10kgを、次いで金属スズを5kgを徐々に加え、反応が終了するのを待って(10~15分)過酸化水素と金属スズの添加を繰り返す方法で行った。反応は反応熱のため金属スズの添加により90~95℃になった。したがって反応温度は70~95℃であった。過酸化水素と金属スズの比はH2O2/Snモル比は2.5であった。過酸化水素水と金属スズの添加に要した時間は4.5時間であった。添加終了後、液温を90~95℃に保ちながら0.5時間熟成を行った。反応時のSn/C1当量比は1.92であった。

[0053]

熟成終了後、攪拌を止め冷却し、一晩静置した。静置により、酸化スズコロイド凝集体は沈降し、上澄み層と沈降層に2層分離した。上澄み液は透明でほとんどコロイド色を呈していなかった。上澄み液を傾斜法にて除去した。上澄み液の重量は205 k gであった。残った酸化スズコロイド凝集体スラリーに水125 k gを添加し、30℃で4時間攪拌することにより酸化スズコロイド凝集体は解膠し、酸化スズゾルとなった。

[0054]

得られた酸化スズゾルは340kgであった。このゾルは淡黄色な透明性のあるゾルであった。酸化スズコロイドの粒子径は電子顕微鏡では10nm以下であった。なお、室温1年以上放置しても安定であった。

[0055]

この淡黄色の酸化第二スズゾル322kgを水2118kgに分散させた後、これにイソプロピルアミン2.42kgを加え、80~85 $\mathbb C$ で3時間加熱熟成を行った。冷却後、この液を水酸基型陰イオン交換樹脂充填のカラムに通すことにより、アルカリ性の酸化第二水性ゾル2175kgを得た。このゾルは、安定であり、コロイド色を呈しているが、透明性が非常に高く、比重1.032、pH10.01、 $\mathbb S$ nO2含量4.14重量%、イソプロピルアミン含量0.11重量%であった。

[0056]

A-2 酸化第二スズゾルの製造

しゅう酸((COOH) $2 \cdot 2 \, \text{H}_2 \, \text{O}$) $37.5 \, \text{k} \, \text{g} \, \text{を純水} \, 220 \, \text{k} \, \text{g} \, \text{に溶解}$ し、これを $0.5 \, \text{m}^3 \, \text{oGL}$ ベッセルにとり、攪拌下しながら $70 \, \text{C}$ まで加温した後、 $35 \, \text{%過酸化水素水} \, 150 \, \text{k} \, \text{g} \, \text{と金属スズ粉末 (山石金属製、AT-SnNO200N、SnO2として <math>99.7 \, \text{%を含有する。)} \, 75 \, \text{k} \, \text{g} \, \text{を添加した。}$ 過酸化水素水と金属スズの添加は交互に $15 \, \text{回分割で行った。始めに } 35 \, \text{%過酸化水素水} \, \text{化水素水} \, 10 \, \text{k} \, \text{g} \, \text{を、次いで金属スズ } 5 \, \text{k} \, \text{g} \, \text{を添加した。}$ 反応が終了するのを待って($10 \sim 15 \, \text{分}$)この操作を繰り返した。

[0057]

添加に要した時間は2.5時間で添加終了後、液温を90℃に保ちながら1時間加熱し反応を終了させた。過酸化水素と金属スズの比は H_2O_2/S_1 の比は12.44であった。得られた酸化スズゾルの収量は13.52 kgで比重が1.22 kgでは1.22 kgで表す1.22 kgでは1.22 kgで表す

[0058]

酸化スズコロイドの粒子径は電子顕微鏡では $10\sim15$ n mで球状の分散性の良い粒子であった。このゾルは放置によりやや増粘傾向を示したが、室温6 τ 月放置ではゲル化はみとめられず安定であった。

[0059]

この淡黄色の酸化第二スズゾル230kgを水1100kgに分散させた後、これにイソプロピルアミン3.0kgを加え、ついで、この液を水酸基型陰イオン交換樹脂充填のカラムに通すことにより、アルカリ性とした後、このゾルを90℃で加熱熟成し、再度陰イオン交換樹脂を充填したカラムを通すことでアルカリ性の酸化第二スズ水性ゾルを1431kg得た。得られたゾルは安定で透明性が非常に高く、比重1.034、pH11.33、 SnO_2 含量4.04重量%、イソプロピルアミン含量0.21重量%の酸化第二スズゾルであった。

A-1で得られたアルカリ性の酸化第二スズ水性ゾルを2300gをオートクレーブにて140℃で5時間加熱熟成を行った。

A-4 オートクレーブ処理による酸化第二スズゾルの製造

A-2で得られたアルカリ性酸化第二スズゾルを800 k gをオートクレーブにて140 \mathbb{C} で 5 時間加熱熟成を行った。

B. 被覆物の調製

B-1 アルカリ成分含有五酸化アンチモンコロイドの調整

500ミリリットルの4つ口フラスコに三酸化アンチモン(広東三国製、Sb2O3として99.5%を含有する。)を52.6g、純水444gおよびジイソプロピルアミン40.2gを添加し、スターラー攪拌下で70℃に昇温後、35%過酸化水素水を53g徐々に添加した。反応終了後、ガラス濾紙(ADVANTEC製、GA-100)にて濾過した。濃度はSb2O5として9.8重量%、ジイソプロピルアミン/Sb2O5のモル比は2.2、透過型電子顕微鏡による観測で一次粒子径は、 $1\sim10$ nmであった。

[0060]

B-2 アルカリ成分含有五酸化アンチモンコロイドの調整

100リットルのベッセルに三酸化アンチモン(広東三国製、 Sb_2O_3 として99.5%を含有する。)を12.5 kg、純水66.0 kgおよび水酸化カリウム(KOHとして95%を含有する。)12.5 kgを添加し、攪拌下で、35%過酸化水素を8.4 kg徐々に添加した。得られたアンチモン酸カリウム水溶液は Sb_2O_5 として15.25重量%、水酸化カリウムとして5.36重量%、 K_2O/Sb_2O_5 のモル比は1.0であった。

[0061]

得られたアンチモン酸カリウムの水溶液を2.5重量%に希釈し、水素型陽イオン交換樹脂を充填したカラムに通液した。イオン交換後のアンチモン酸の溶液にジイソプロピルアミンを攪拌下で6.6kg添加し、アルカリ成分含有五酸化アンチモンコロイド溶液を得た。濃度はSb2O5として1.8重量%、ジイソ

[0062]

実施例1

A-1で得た水性ゾル1207.7g (SnO_2 として50gを含有する。) にB-1で調整したアミン成分含有五酸化アンチモンコロイドを51.0gを攪拌下で添加し、その金属酸化物に換算した (B) / (A) の重量割合で0.1c 混合した後90で3時間加熱熟成した。

[0063]

得られた変性された酸化第二スズ水性ゾル(希薄液)を分画分子量5万の限外 ろ過膜の濾過装置により室温で濃縮し、高濃度の変性された酸化第二スズ水性ゾ ルを270g得た。このゾルは比重1.220、pH7.90、粘度2.3c. p.、金属酸化物に換算した濃度は20.3重量%で安定であった。

[0064]

[0065]

実施例2

[0066]

得られた変性された高濃度の酸化第二スズ水性ゾルは比重 1.218、pH8 .80、粘度 2.8 c.p.、金属酸化物に換算した濃度は 20.4 重量%で安定であった。

上記の高濃度の変性された酸化第二スズ水性ゾル245gをロータリーエバポレーターにて減圧下、液温30℃以下でメタノール10リットルを少しずつ加えながら水を留去することにより、水性ゾルの水をメタノールで置換した変性された酸化第二スズメタノールゾル162gを得た。このゾルは比重1.093、pH8.34(水との等重量混合物)、粘度1.8 c.p.、金属酸化物に換算した濃度は30重量%、水分0.81重量%、電子顕微鏡観察による粒子径は5~15 nmであった。このゾルはコロイド色を呈し、透明性が高く、室温で3カ月放置後も沈降物の生成、白濁、増粘等の異常は認められず安定であった。またこのゾルの乾燥物の屈折率は1.76であった。

[0067]

実施例3

金属酸化物に換算した(B) / (A) の重量割合が0.1に混合される様に、実施例1のA-1成分の酸化第二スズコロイドをA-3成分の酸化第二スズコロイド1207.7 gに、B-1成分のアルカリ成分含有五酸化アンチモンコロイドを、B-2成分のアルカリ成分含有五酸化アンチモンコロイド277.8 gに変更した以外は実施例1と同様に行った。

[0068]

得られた変性された高濃度の酸化第二スズ水性ゾルは比重 1.220、pH8 .51、粘度 2.4c. p. 、金属酸化物に換算した濃度は 21.2 重量%で安定であった。

[0069]

上記の高濃度の変性された酸化第二スズ水性ゾル236gをロータリーエバポレーターにて減圧下、液温30℃以下でメタノール8リットルを少しずつ加えながら水を留去することにより、水性ゾルの水をメタノールで置換した変性された

酸化第二スズメタノールゾル160gを得た。このゾルは比重1.092、pH8.0(水との等重量混合物)、粘度1.2 c.p.、金属酸化物に換算した濃度は30重量%、水分0.75量%、電子顕微鏡観察による粒子径は5~15 nmであった。このゾルはコロイド色を呈し、透明性が高く、室温で3カ月放置後も沈降物の生成、白濁、増粘等の異常は認められず安定であった。またこのゾルの乾燥物の屈折率は1.87であった。

[0070]

実施例4

金属酸化物に換算した(B) / (A) の重量割合が0.1に混合される様に、実施例1のA-1成分の酸化第二スズコロイドをA-4成分の酸化第二スズコロイド1237.7gに、B-1成分のアルカリ成分含有五酸化アンチモンコロイドを、B-2成分のアルカリ成分含有五酸化アンチモンコロイドを、B-2成分のアルカリ成分含有五酸化アンチモンコロイド277.8gに変更した以外は実施例1と同様に行った。

[0071]

得られた変性された高濃度の酸化第二スズ水性ゾルは比重1.226、pH7.92、粘度3.1c.p.、金属酸化物に換算した濃度は22.0重量%で安定であった。

[0072]

上記の高濃度の変性された酸化第二スズ水性ゾル227gをロータリーエバポレーターにて減圧下、液温30℃以下でメタノール9リットルを少しずつ加えながら水を留去することにより、水性ゾルの水をメタノールで置換した変性された酸化第二スズメタノールゾル160gを得た。このゾルは比重1.084、pH8.0(水との等重量混合物)、粘度1.1cp、金属酸化物に換算した濃度は30重量%、水分0.68重量%,電子顕微鏡観察による粒子径は5~15nmであった。このゾルはコロイド色を呈し、透明性が高く、室温で3カ月放置後も沈降物の生成、白濁、増粘等の異常は認められず安定であった。またこのゾルの乾燥物の屈折率は1.92であった。

[0073]

実施例 5

- (a) 工程:オキシ塩化ジルコニウム($ZrOCl_2 \cdot 8H_2O$)を純水で溶解したオキシ塩化ジルコニウム水溶液(ZrO_2 に換算して1.68重量%を含有する。)9.16kg(ZrO_2 に換算して1.62kgを含有する。)に純水を攪拌下に500kg添加、さらに35%塩酸0.40kg添加し、ついでA-2で作成したアルカリ性酸化第二スズ水性ゾルを270kg(SnO_2 として10.8kgを含有する。)添加し、攪拌を10分間続行した。混合液は ZrO_2 / SnO_2 重量比0.15、でコロイド色を呈する透明性の良好なゾルであった。調製した混合液を攪拌下に、95℃で5時間加熱処理を行い、酸化第二スズー酸化ジルコニウム複合体ゾルを779.2kgを得た。このゾルは SnO_2 として1.38重量%、 ZrO_2 として0.21重量%、 SnO_2+ZrO_2 として1.59重量%であった。
- (b) 工程:B-2で得られたアミン含有五酸化アンチモンのコロイド水溶液 6 8.83 kg(S b $_2$ O $_5$ に換算して1.2 4 kgを含有する。)に、攪拌下に(a)工程で得られた酸化第二スズー酸化ジルコニウムの複合体ゾル 7 7 9.2 kgを、S b $_2$ O $_5$ / (S n O $_2$ + Z r O $_2$) = 0.1 の割合で徐々に添加混合した。
- (c) 工程:20~30℃で1時間の攪拌を行った。
- (d) 工程: (c) 工程で得られた混合ゾル様スラリーを水酸基型陰イオン交換樹脂が充填されたカラムに通液することにより、ゾル中に含まれる陰イオン (C 1^-) を除去した。ついで 90~95 $\mathbb C$ で2~3時間加熱熟成することで変成された酸化第二スズー酸化ジルコニウム複合体ゾルを得たこのゾルは比重1.011、粘度2.9c.p.、pH10.58で透明性の良好なゾルであった。

[0074]

得られた変成された酸化第二スズー酸化ジルコニウム複合体水性ゾル (希薄液) を分画分子量10万の限外ろ過膜のろ過装置により濃縮し、高濃度の変成された酸化第二スズー酸化ジルコニウム複合体の水性ゾルを64.7kgを得た。このゾルは比重1.233、粘度4.8c.p.、pH9.75、全金属酸化物濃度22.1重量%で安定であった。

[0075]

[0076]

実施例6

- (a) 工程: オキシ塩化ジルコニウム($ZrOCl_2 \cdot 8H_2O$)を純水で溶解したオキシ塩化ジルコニウム水溶液(ZrO_2 に換算して1.7.68重量%を含有する。)1.3.6kg(ZrO_2 に換算して2.4kgを含有する。)に純水を攪拌下で5.00kg添加し、更に3.5%塩酸0.59kg添加し、ついでA-4で作成したアルカリ性酸化第二スズ水性ゾルを3.96kg(SnO_2 として1.0kgを含有する。)添加し、攪拌を1.0分間続行した。混合液は ZrO_2 / SnO_2 重量比は0.15、pH1.72でコロイド色を呈する透明性の良好なゾルであった。調製した混合液を攪拌下に、9.5℃で5時間加熱処理を行い、酸化第二スズー酸化ジルコニウム複合体ゾル9.10.2kgを得た。このゾルは SnO_2 として1.75重量%、 ZrO_2 として1.26重量%、 SnO_2 + ZrO_2 として1.26101重量%であった。
- (c) 工程:20~30℃で、1時間攪拌を行った。
- (d) 工程: (c) 工程で得られた混合ゾル様スラリーを水酸基型陰イオン交換

[0077]

(c)工程で得られた混合ゾル様スラリーを、(d)工程で水酸基型陰イオン交換樹脂が充填されたカラムに通液することにより、ゾル中に含まれる陰イオン($C1^-$)を除去した。ついで $90\sim95$ \mathbb{C} で $2\sim3$ 時間加熱熟成することで変成された酸化第二スズー酸化ジルコニウム複合体ゾルを得た。このゾルは比重 1 . 012、粘度 3 . 0 c . p . p H 1 0 . 7 8 で透明性の良好なゾルであった。

[0078]

得られた変成された酸化第二スズー酸化ジルコニウム複合体水性ゾル(希薄液)を分画分子量10万の限外ろ過膜のろ過装置により濃縮し、高濃度の変成された酸化第二スズー酸化ジルコニウム複合体水性ゾルを69.5kgを得た。このゾルは比重1.284、粘度5.0c.p.、pH10.19、全金属酸化物濃度26.1重量%で安定であった。

[0079]

上記高濃度の変成された酸化第二スズー酸化ジルコニウム複合体水性ゾル50kgをロータリーエバポレーターにて減圧下、液温30℃以下でメタノール125kgを徐々に加えながら水を留去することにより水性ゾルをメタノールで置換した変成された酸化第二スズー酸化ジルコニウム複合体メタノールゾル36.9kgを得た。このゾルをろ過、濃度調整することで得られた変成された酸化第二スズー酸化ジルコニウム複合体メタノールゾルは比重1.086、粘度4.2c.p.、pH8.92(水との等重量混合物)、金属酸化物に換算した濃度は30.3重量%、水分0.33重量%であった。このゾルはコロイド色を呈し、透明性が高く、室温で3ヶ月放置後も沈降物の生成、白濁、増粘等の異常は認められず安定であった。また、このゾルの屈折率は1.92であった。

[0080]

【発明の効果】

本願発明はアンチモン酸アルカリ塩、アルカリ成分含有五酸化アンチモンコロイド、更にそれらにシリカ成分を加えた被覆物による作用で、従来の金属酸化物コロイドの種々の欠点(分散性、耐候性、長期安定性、ハードコート剤との相溶性)を改善することができ、優れた変性金属酸化物を得ることができる。本願発明の変性された酸化第二スズおよびまたは酸化第二スズー酸化ジルコニウム複合体コロイドをハードコート剤成分として用いると、従来の金属酸化物ブルを用いたときに見られる紫外線照射による黄変や、耐水性、耐湿性、相溶性の問題を克服することができる。

[0081]

本願発明の目的は、耐水性及び耐候性能の良好な変性された金属酸化物のコロイド粒子の安定なゾルを提供し、プラスチックレンズ表面に施されるハードコート膜の性能向上成分として、そのハードコート用塗料に混合して用いることができるゾルを提供することにある。

[0082]

本発明によって得られる表面変性された金属酸化物コロイド粒子のゾルは無色透明であって、その乾燥塗膜から算出した屈折率は約1.75~1.92を示し、また、結合強度、硬度のいずれも高く、耐候性、帯電防止性、耐熱性、耐摩耗性等も良好である。また、特に耐候性、耐湿性が従来のものに比べ格段に向上している。

[0083]

このゾルは、p H ほぼ2~9 において安定であり、工業製品として供給されるに充分な安定性も与えることができる。

[0084]

このゾルは、そのコロイド粒子が負に帯電しているから、他の負帯電のコロイド粒子からなるゾルなどとの混和性が良好であり、例えばシリカゾル、五酸化アンチモンゾル、アニオン性又はノニオン性の界面活性剤、ポリビニルアルコール等の水溶液、アニオン性又はノニオン性の樹脂エマルジョン、水ガラス、りん酸アルミニウム等の水溶液、エチルシリケイトの加水分解液、γーグリシドキシトリメトキシシラン等のシランカップリング剤又はその加水分解液などと安定に混

合し得る。

[0085]

このような性質を有する本発明のゾルは、プラスチックレンズ上にハードコート膜を形成させるための屈折率、染色性、耐薬品性、耐水性、耐湿性、耐光性、耐候性、耐摩耗性等の向上成分として特に有効であるが、その他種々の用途に用いることができる。

[0086]

このゾルを有機質の繊維、繊維製品、紙などの表面に適用することによって、これら材料の難燃性、表面滑り防止性、帯電防止性、染色性等を向上させることができる。また、これらのゾルは、セラミックファイバー、ガラスファイバー、セラミックス等の結合剤として用いることができる。更に、各種塗料、各種接着剤等に混入して用いることによって、それらの硬化塗膜の耐水性、耐薬品性、耐光性、耐候性、耐摩耗性、難燃性等を向上させることができる。その他、これらのゾルは、一般に、金属材料、セラミックス材料、ガラス材料、プラスチック材料などの表面処理剤としても用いることができる。更に触媒成分としても有用である。

【書類名】 要約書

【要約】

【課題】 プラスチックレンズの表面に施されるハードコート剤の成分、又はその他の用途に用いる安定な変性された酸化第二スズコロイドおよびまたは酸化第二スズー酸化ジルコニウム複合体のコロイドのゾルとその製造方法を提供する。

【解決手段】 酸化第二スズ粒子または酸化第二スズ粒子と酸化ジルコニウム粒子との複合体粒子であり、これらの酸化物が重量に基づいてZrO2:SnO2として0:1~0.50:1の割合と4~50nmの粒子径を有するコロイド粒子(A)を核としてその表面が、0.02~4.00のM/Sb205のモル比(ただしMはアミン分子を示す。)と1~20nmの粒子径を有するアルキルアミン含有Sb205コロイド粒子(B)で被覆され、且つ(B)/(A)の重量比がそれら金属酸化物の重量比に基づいて0.01~0.50の割合であり、そして4.5~60nmの粒子径を有する変性された金属酸化物粒子を含有するゾルである。

【選択図】 なし

特願2002-350763

出願人履歴情報

識別番号

[000003986]

1. 変更年月日 [変更理由]

1990年 8月29日

发 足 性 田 」 住 所 新規登録

任 所 名

東京都千代田区神田錦町3丁目7番地1

日産化学工業株式会社