Universidad Monteávila Álgebra Lineal

Ingenierías Ciencia de Datos, Mecatrónica y Telemática Ejercicios de Vectores en el Plano

- (1) Sean $\vec{u} = (2,3)$ y $\vec{v} = (5,4)$. Hallar $\vec{u} + \vec{v}$, $\vec{u} \vec{v}$ y $\vec{v} \vec{u}$. Representar gráficamente (se sugiere usar GeoGebra) y verificar que se cumple la ley del paralelogramo. Escoger otros pares de vectores combinado los diferentes cuadrantes y repetir el ejercicio.
- (2) Encontrar la magnitud y el ángulo que forma con el eje x para cada uno de los siguientes vectores

(a) (-4,4) (b) $(\sqrt{3},2)$ (c) $(2,\sqrt{3})$ (d) $(-\sqrt{3},-2)$ (e) $(\sqrt{3},-2)$ (f) (3,-8) (g) (10,0) (h) (1,1) (i) (-5,-5)

(3) Determinar el ángulo que forman cada par de vectores

(a) $\vec{u} = (0, 1), \ \vec{v} = (0, -1)$ (b) $\vec{u} = (2, 2), \ \vec{v} = (4, -5)$ (c) $\vec{u} = (2, -1), \ \vec{v} = (3, 6)$ (d) $\vec{u} = (0, 1), \ \vec{v} = (0, 8)$

- (4) Determina la longitud de la proyección del vector (4,5) sobre la dirección del vector (1,1).
- (5) Encontrar un vector que tenga la magnitud dada y que forme el ángulo indicado con el eje x.

(a) $\|\vec{v}\| = 1$, $\alpha = \frac{\pi}{4}$ (b) $\|\vec{v}\| = 3$, $\alpha = \frac{-\pi}{3}$ (c) $\|\vec{v}\| = \sqrt{3}$, $\alpha = \frac{\pi}{6}$ (d) $\|\vec{v}\| = \sqrt{2}$, $\alpha = \frac{3\pi}{4}$ (e) $\|\vec{v}\| = 6$, $\alpha = \frac{7\pi}{6}$ (f) $\|\vec{v}\| = 1$, $\alpha = \frac{-\pi}{6}$

- (6) ¿Cuáles de los siguientes vectores $\vec{u}_1=(1,2),\ \vec{u}_2=(0,1),\ \vec{u}_3=(-2,-4),\ \vec{u}_4=(2,4),$ $\vec{u}_5=(-2,-1),\vec{u}_6=(-6,3),\ \vec{u}_7=(-3,-6)$
 - (a) son ortogonales?
 - (b) tienen igual dirección y sentido?
 - (c) tienen igual dirección y sentidos opuestos?
- (7) Determinar cuáles de los siguientes vectores ligados son equivalentes
 - (a) $\overrightarrow{A_1B_1}$, donde $A_1 = (1,1), B_1 = (5,5)$.
 - (b) $\overrightarrow{A_2B_2}$, donde $A_1 = (3,3), B_1 = (7,7).$
 - (c) $\overrightarrow{A_3B_3}$, donde $A_1 = (0,0)$, $B_1 = (4,4)$.
 - (d) $\overrightarrow{A_4B_4}$, donde $A_1 = (-1, -2), B_1 = (1, 1).$
 - (e) $\overrightarrow{A_3B_3}$, donde $A_1 = (2,1), B_1 = (4,4)$.
- (8) Hallar la ecuación cartesiana y paramétrica de la recta que pasa por los siguientes puntos
 - (a) (0,1) y (2,3).
 - (b) (3,1) y (3,-2).

- (c) (-1,1) y (-1,-3).
- (d) (4,5) y (-3,-2).
- (9) Determinar si los siguientes puntos están sobre una recta
 - (a) $(0,2), (2,8), (\frac{1}{2}, \frac{7}{2}).$
 - (b) $(\frac{1}{2}, \frac{7}{2})$, $(3, \frac{1}{2})$, (0, 3).
- (10) Encuentre la forma vectorial de la ecuación de la recta en \mathbb{R}^2 que pasa a por el punto P=(2,-1) y es paralela a la recta con ecuación general 2x-3y=1.
- (11) Encuentre la forma vectorial de la ecuación de la recta en \mathbb{R}^2 que pasa por el punto P=(2,-1) y es perpendicular a la recta con ecuación general 2x-3y=1.
- (12) (*) Sugiera una "justificación vectorial" del hecho de que, en \mathbb{R}^2 , dos rectas con pendientes m_1 y m_2 son perpendiculares si y sólo si $m_1m_2=-1$.