Want more revision exercises? Get MathsFit HSC Mathematics for \$2.95/topic

The diagram shows the cross-section of a tunnel and a proposed enlargement. 2016

The heights, in metres, of the existing section at 1 metre intervals are shown in Table A.
Proposed enlargement

Table A: Existing heights

x	-2	-1	0	1	2
у	2	2.38	2.5	2.38	2

The heights, in metres, of the proposed enlargement are shown in Table B.

Table B: Proposed heights

X	-2	-1	0	1	2
y	2	2.78	3	2.78	2

Use Simpson's rule with the measurements given to calculate the approximate increase in area.

Form a table using the differences in the y-values:

X	-2	-1	0	1	2
Difference in y	0	0.4	0.5	0.4	0

Using two applications of Simpson's Rule:

Increase =
$$\frac{0 - (-2)}{6} [0 + 4(0.4) + 0.5] + \frac{2 - 0}{6} [0.5 + 4(0.4) + 0]$$

= 1.4

: the increase is 1.4 m²

[OR: Increase =
$$\frac{1}{3}[0+0+2(0.5)+4(0.4+0.4)] = 1.4$$
]

[OR: Increase =
$$\frac{1}{3}[2+2+2(3)+4(2.78+2.78)] - \frac{1}{3}[2+2+2(2.5)+4(2.38+2.38)] = 1.4$$
]

State Mean: 2.38

BOSTES: Notes from the Marking Centre

This information is released by BOSTES in late Term 1 2017.

^{*} These solutions have been provided by projectmaths and are not supplied or endorsed by BOSTES.