microSMD Series Surface Mount

Additional Information

Accessories

Samples

Description

The microSMD series provides surface mount overcurrent protection for applications where space is at a premium and resettable protection is desired.

Features & Benefits

- Broadest range of resettable devices available in industry
- Low resistance
- Small 1210 footprint
- Fast time-to-trip
- RoHS complaint, lead-free and halogen-free

Applications

Mobile Electronics and Batteries

- Computer
- Portable electronics
- Multimedia
- Game machines
- Telephone and broadband
- Automotive
- Industrial controls
- Battery

Agency Approvals

Agency	Agency File Number					
. SU	E74889					
® ;	78165					
\triangle	72161779					

Electrical Characteristics

Part	Ordering	I _H	I _T	V _{MAX}	I _{MAX}	P _{D MAX}	Max Tim	e-to-trip	R _{MIN}	R _{1MAX}
Number	Part Number	(A)	(A)	(V _{DC})	(A)	(W)	(A)	(s)	(Ω)	(Ω)
	1210 Size									
microSMD005F	RF1350-000	0.05	0.15	30	10	1.00	0.25	1.50	3.60	50.00
microSMD010F	RF1351-000	0.10	0.25	30	10	0.80	0.50	1.00	2.10	15.00
microSMD035F	RF1352-000	0.35	0.75	6	40	0.80	8.00	0.20	0.32	1.30
microSMD050F	RF1353-000	0.50	1.00	13.2	40	0.80	8.00	0.05	0.25	0.90
microSMD075F	RF1354-000	0.75	1.50	6	40	0.80	8.00	0.10	0.11	0.40
microSMD110F	RF1355-000	1.10	2.20	6	40	0.80	8.00	0.20	0.07	0.21
microSMD150F	RF1437-000	1.50	3.00	6	40	0.80	8.00	1.00	0.04	0.11
microSMD175F	RF1511-000	1.75	3.50	6	40	0.80	8.00	0.80	0.025	0.08
microSMD200F	RF1512-000	2.00	4.00	6	100	0.80	8.00	2.50	0.020	0.06

Notes:

Here I Hold current: maximum current device will pass without interruption in 20°C still air.

: Trip current: minimum current that will switch the device from low resistance to high resistance in 20°C still air.

 $V_{\text{\tiny MAX}}$: Maximum continuous voltage device can withstand without damage at rated current.

Image: Image: Maximum fault current device can withstand without damage at rated voltage.
Pp: Power dissipated from device when in the tripped state in 20°C still air.

R_{MIN}: Minimum resistance of device as supplied at 20°C unless otherwise specified.

R_{1MAX}: Maximum resistance measured one hour post-trip or post-reflow at 20°C.

Temperature Rerating

Maximum Ambient Temperature											
Part Number	-40°C	-20°C	0°C	20°C	25°C	40°C	50°C	60°C	70°C	80°C	85°C
	Hold Current (A)										
1210 Size											
microSMD005F	0.08	0.07	0.06	0.05	0.05	0.04	0.04	0.03	0.03	0.02	0.02
microSMD010F	0.15	0.13	0.12	0.10	0.10	0.09	0.08	0.06	0.06	0.05	0.05
microSMD035F	0.51	0.46	0.40	0.35	0.34	0.30	0.27	0.24	0.22	0.19	0.18
microSMD050F	0.76	0.66	0.58	0.50	0.48	0.42	0.38	0.35	0.29	0.25	0.23
microSMD075F	1.10	0.97	0.86	0.75	0.72	0.64	0.58	0.55	0.47	0.42	0.39
microSMD110F	1.60	1.42	1.26	1.10	1.06	0.94	0.86	0.80	0.70	0.62	0.58
microSMD150F	2.30	2.02	1.76	1.50	1.43	1.24	1.11	1.00	0.85	0.72	0.65
microSMD175F	2.80	2.45	2.10	1.75	1.70	1.55	1.45	1.35	1.25	1.15	1.10
microSMD200F	2.60	2.44	2.35	2.00	1.96	1.78	1.67	1.50	1.45	1.15	1.10

Temperature Rerating Curve

Typical Time-to-Trip Curves at 20°C

Note: The average time current curves and Temperature Rerating curve performance is affected by a number or variables, and these curves provided as guidance only. Customer must verify the performance in their application.

Physical Specifications

Terminal Pad Material	100% Matte Tin with Nickel Underplate
Soldering Characteristics	ANSI/J-STD-002 Category 3
Solder Heat Withstand	per IEC-STD 68-2-20, Test Tb, Section 5, Method 1a
Flammability Resistance	per IEC 695-2-2 Needle Flame Test for 20 seconds

Environmental Specifications

Test	Test Method	Conditions	Resistance Change
Storage Life	PS300, Section 5.3.2	60°C, 1000 hrs	±3% typ
		85°C, 1000 hrs	±3% typ
Humidity Aging	PS300, Section 5.3.1	85°C, 85% R.H., 100 hrs	±1.2% typ
Thermal Shock	MIL-STD-202, Method 107G	85°C, -40°C (20 Times)	-33% typ
птеппа эпоск	WIL-31D-202, Wethou 107G	125°C, -55°C (10 Times)	-33% typ
Vibration	MIL-STD-883C	per MIL-STD-883C	No Change
		Freon	No Change
Solvent Resistance	PS300, Section 5.2.2	Trichloroethane	No Change
		Hydrocarbons	No Change

Moisture Resistance Level	Level 2a, J-STD-020
Storage Conditions	40°C max, 70% RH max; devices should remain in original sealed bags prior to use. Devices may not meet specified values if these storage conditions are exceeded.

Dimension Figures

Figure 1

Dimensions

				Dimen	sions in Mi	illimeters (I	nches)				
Part Number		4	E	3	(1)	Е		Figure
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
				12	10 Size						
microSMD005F	3.0 (0.118)	3.43 (0.135)	0.50 (0.019)	0.85 (0.034)	2.35 (0.092)	2.80 (0.110)	0.25 (0.010)	0.75 (0.030)	0.076 (0.003)	_	1
microSMD010F	3.0 (0.118)	3.43 (0.135)	0.50 (0.019)	0.85 (0.034)	2.35 (0.092)	2.80 (0.110)	0.25 (0.010)	0.75 (0.030)	0.076 (0.003)	_	1
microSMD035F	3.0 (0.118)	3.43 (0.135)	0.38 (0.015)	0.62 (0.025)	2.35 (0.092)	2.80 (0.110)	0.25 (0.010)	0.75 (0.030)	0.076 (0.003)	_	1
microSMD050F	3.0 (0.118)	3.43 (0.135)	0.38 (0.015)	0.62 (0.025)	2.35 (0.092)	2.80 (0.110)	0.25 (0.010)	0.75 (0.030)	0.076 (0.003)	_	1
microSMD075F	3.0 (0.118)	3.43 (0.135)	0.38 (0.015)	0.62 (0.025)	2.35 (0.092)	2.80 (0.110)	0.25 (0.010)	0.75 (0.030)	0.076 (0.003)	_	1
microSMD110F	3.0 (0.118)	3.43 (0.135)	0.28 (0.011)	0.48 (0.019)	2.35 (0.092)	2.80 (0.110)	0.25 (0.010)	0.75 (0.030)	0.076 (0.003)	_	1
microSMD150F	3.0 (0.118)	3.43 (0.135)	0.51 (0.020)	1.22 (0.048)	2.35 (0.092)	2.80 (0.110)	0.25 (0.010)	0.75 (0.030)	0.076 (0.003)	_	1
microSMD175F	3.0 (0.118)	3.43 (0.135)	0.40 (0.016)	0.76 (0.030)	2.35 (0.092)	2.80 (0.110)	0.25 (0.010)	0.75 (0.030)	0.076 (0.003)	_	1
microSMD200F	3.0 (0.118)	3.43 (0.135)	0.79 (0.031)	1.17 (0.046)	2.35 (0.092)	2.80 (0.110)	0.25 (0.010)	0.75 (0.030)	0.076 (0.003)	_	1

Recommended Pad Layout

Packaging and Marking Information

Part	Tape and Reel	Standard	Part	Recommended Pad Layout Figures [mm (in)]			Agency
Number	Quantity	Package	Marking	Dimension A (Nom)	Dimension B (Nom)	Dimension C (Nom)	Recognition
			1210	Size			
microSMD005F	4,000	20,000	05	2.50 (0.098)	1.00 (0.039)	2.00 (0.079)	UL, CSA, TÜV
microSMD010F	4,000	20,000	10	2.50 (0.098)	1.00 (0.039)	2.00 (0.079)	UL, CSA, TÜV
microSMD035F	4,000	20,000	3	2.50 (0.098)	1.00 (0.039)	2.00 (0.079)	UL, CSA, TÜV
microSMD050F	4,000	20,000	50	2.50 (0.098)	1.00 (0.039)	2.00 (0.079)	UL, CSA, TÜV
microSMD075F	4,000	20,000	75	2.50 (0.098)	1.00 (0.039)	2.00 (0.079)	UL, CSA, TÜV
microSMD110F	4,000	20,000	11	2.50 (0.098)	1.00 (0.039)	2.00 (0.079)	UL, CSA, TÜV
microSMD150F	4,000	20,000	15	2.50 (0.098)	1.00 (0.039)	2.00 (0.079)	UL, CSA, TÜV
microSMD175F	4,000	20,000	17	2.50 (0.098)	1.00 (0.039)	2.00 (0.079)	UL, CSA, TÜV
microSMD200F	3,000	15,000	20	2.50 (0.098)	1.00 (0.039)	2.00 (0.079)	UL, CSA, TÜV

Solder Reflow Recommendations

Profile Feature	Pb-Free Assembly
Average ramp up rate (Ts _{MAX} to Tp)	3°C/s max
Preheat	
• Temperature min (Ts _{MIN})	150°C
• Temperature max (Ts _{MAX})	200°C
• Time (ts _{MIN} to ts _{MAX})	60-120 s
Time maintained above:	
• Temperature (T _L)	217°C
• Time (t _L)	60-150 s
Peak/Classification temperature (Tp)	260°C
Time within 5°C of actual peak temperature	
Time (tp)	30 s max
Ramp down rate	3°C/s max
Time 25°C to peak temperature	8 min max

Note: All temperatures refer to topside of the package, measured on the package body surface.

Solder Reflow

- Recommended reflow method: IR, hot air, nitrogen.
- Recommended maximum paste thickness: 0.25mm (0.010in)
- Devices can be cleaned using standard methods and aqueous solvents.
- Experience has shown the optimum conditions for forming acceptable solder fillets occur when a reasonable amount of solder paste is placed underneath each device's termination. As such, we request that customers comply with our recommended solder pad layouts.
- Customer should validate that the solder paste amount and reflow recommendations meet its application.
- We request that customer board layouts refrain from placing raised features (e.g. vias, nomenclature, traces, etc.) underneath PolySwitch devices. It is possible that raised features could negatively impact solderability performance of our devices.

Rework

Standard industry practices. (Please also avoid direct contact to the device.)

Part Ordering Number System

Tape and Reel Specifications

	micro EIA 481	
Description	microSMD005F microSMD010F microSMD035F microSMD050F microSMD110F microSMD150F microSMD175F	microSMD200F
w	8.0 ± 0.30	8.0 ± 0.30
P_{o}	4.0 ± 0.10	4.0 ± 0.10
P ₁	4.0 ± 0.10	4.0 ± 0.10
P_2	2.0 ± 0.05	2.0 ± 0.05
\mathbf{A}_{o}	2.9 ± 0.1	2.9 ± 0.1
B_{o}	3.5 ± 0.1	3.55 ± 0.1
B ₁ max	4.35	4.35
D_{o}	1.55 ± 0.05	1.55 ± 0.05
F	3.50 ± 0.05	3.50 ± 0.05
E ₁	1.75 ± 0.10	1.75 ± 0.10
E₂ min	6.25	6.25
T max	0.3	0.3
T ₁ max	0.1	0.1
K_{o}	0.9 ± 0.1	1.27 ± 0.1
A max	185	185
N min	50	50
\mathbf{W}_{1}	8.4 + 1.5/00	8.4 + 1.5/00
W ₂ max	14.4	14.4

Tape and Reel Diagrams

Figure 2

Warning

- Users should independently evaluate the suitability of and test each product selected for their own application.
- Operation beyond the maximum ratings or improper use may result in device damage and possible electrical arcing and flame.
- These devices are intended for protection against damage caused by occasional overcurrent or overtemperature fault conditions and should not be used when repeated fault conditions or prolonged trip events are anticipated.
- Contamination of the PPTC material with certain silicone-based oils or some aggressive solvents can adversely impact the performance of the devices.
- Device performance can be impacted negatively if devices are handled in a manner inconsistent with recommended electronic, thermal, and mechanical procedures for electronic components.
- PPTC devices are not recommended for installation in applications where the device is constrained such that its PTC properties are inhibited, for example in rigid potting materials or in rigid housings, which lack adequate clearance to accommodate device expansion.
- Operation in circuits with a large inductance can generate a circuit voltage (Ldi/dt) above the rated voltage of the device.

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littlefuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littlefuse.com/disclaimer-electronics.

