```
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split ,KFold, cross_val_score
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import accuracy_score
```

```
In [ ]: df = pd.read_csv("iris_data.csv")
    df
```

Out[]:		sepal.length	sepal.width	petal.length	petal.width	variety
	0	5.1	3.5	1.4	0.2	Setosa
	1	4.9	3.0	1.4	0.2	Setosa
	2	4.7	3.2	1.3	0.2	Setosa
	3	4.6	3.1	1.5	0.2	Setosa
	4	5.0	3.6	1.4	0.2	Setosa
	•••					•••
	145	6.7	3.0	5.2	2.3	Virginica
	146	6.3	2.5	5.0	1.9	Virginica
	147	6.5	3.0	5.2	2.0	Virginica
	148	6.2	3.4	5.4	2.3	Virginica
	149	5.9	3.0	5.1	1.8	Virginica

150 rows × 5 columns

Standardising Columns

[]:		sepal.length	sepal.width	petal.length	petal.width	variety
	0	-0.900681	1.019004	-1.340227	-1.315444	Setosa
	1	-1.143017	-0.131979	-1.340227	-1.315444	Setosa
	2	-1.385353	0.328414	-1.397064	-1.315444	Setosa
	3	-1.506521	0.098217	-1.283389	-1.315444	Setosa
	4	-1.021849	1.249201	-1.340227	-1.315444	Setosa
	•••					
	145	1.038005	-0.131979	0.819596	1.448832	Virginica
	146	0.553333	-1.282963	0.705921	0.922303	Virginica
	147	0.795669	-0.131979	0.819596	1.053935	Virginica
	148	0.432165	0.788808	0.933271	1.448832	Virginica
	149	0.068662	-0.131979	0.762758	0.790671	Virginica

150 rows × 5 columns

Out

For 75% training and 25% testing

Bayesian

```
In [ ]: model = GaussianNB()
    model.fit(X_train , Y_train)
    preds = model.predict(X_test)
    accuracy = accuracy_score(preds, Y_test)
    print(f"Accuracy : {accuracy}\n")
```

Accuracy : 0.9736842105263158

Decision Tree

```
In []: model = DecisionTreeClassifier()
    model.fit(X_train , Y_train)
    preds = model.predict(X_test)
    accuracy = accuracy_score(preds, Y_test)
    print(f"Accuracy : {accuracy}\n")
```

Accuracy: 0.9736842105263158

KNN with k = 4

```
In [ ]: model = KNeighborsClassifier(n_neighbors=4)
    model.fit(X_train , Y_train)
    preds = model.predict(X_test)
    accuracy = accuracy_score(preds, Y_test)
    print(f"Accuracy : {accuracy}\n")
```

Accuracy : 0.9736842105263158