CSE-221 Design & Analysis of Algorithm

Asymptotic Notation

Analyzing Algorithms

- Predict the amount of resources required:
 - memory: how much space is needed?
 - computational time: how fast the algorithm runs?
- FACT: running time grows with the size of the input
- Input size (number of elements in the input)
 - Size of an array, polynomial degree, # of elements in a matrix, # of bits in the binary representation of the input, vertices and edges in a graph

Def: Running time = the number of primitive operations (steps) executed before termination

 Arithmetic operations (+, -, *), data movement, control, decision making (if, while), comparison

Algorithm Analysis: Example

Alg.: MIN (a[1], ..., a[n])
 m ← a[1];
 for i ← 2 to n
 if a[i] < m
 then m ← a[i];

Running time:

 the number of primitive operations (steps) executed before termination

```
T(n) = 1 [first step] + (n) [for loop] + (n-1) [if condition] + (n-1) [the assignment in then] = 3n-1
```

- Order (rate) of growth:
 - The leading term of the formula
 - Expresses the asymptotic behavior of the algorithm

Typical Running Time Functions

- 1 (constant running time):
 - Instructions are executed once or a few times
- logN (logarithmic)
 - A big problem is solved by cutting the original problem in smaller sizes, by a constant fraction at each step
- N (linear)
 - A small amount of processing is done on each input element
- N logN
 - A problem is solved by dividing it into smaller problems, solving them independently and combining the solution

Typical Running Time Functions

- N² (quadratic)
 - Typical for algorithms that process all pairs of data items (double nested loops)
- N³ (cubic)
 - Processing of triples of data (triple nested loops)
- N^K (polynomial)
- 2^N (exponential)
 - Few exponential algorithms are appropriate for practical use

Growth of Functions

n	1	lgn	n	nlgn	n²	n³	2 ⁿ
1	1	0.00	1	0	1	1	2
10	1	3.32	10	33	100	1,000	1024
100	1	6.64	100	664	10,000	1,000,000	1.2×10^{30}
1000	1	9.97	1000	9970	1,000,000	10 ⁹	1.1×10^{301}

Complexity Graphs

Complexity Graphs

Complexity Graphs

Complexity Graphs (log scale)

Algorithm Complexity

Worst Case Complexity:

 the function defined by the maximum number of steps taken on any instance of size n

Best Case Complexity:

 the function defined by the *minimum* number of steps taken on any instance of size n

Average Case Complexity:

 the function defined by the average number of steps taken on any instance of size n

Best, Worst, and Average Case Complexity

Doing the Analysis

- It's hard to estimate the running time exactly
 - Best case depends on the input
 - Average case is difficult to compute
 - So we usually focus on worst case analysis
 - Easier to compute
 - Usually close to the actual running time

 Strategy: find a function (an equation) that, for large n, is an upper bound to the actual function (actual number of steps,

memory usage, etc.)

Classifying functions by their Asymptotic Growth Rates (1/2)

- asymptotic growth rate, asymptotic order, or order of functions
 - Comparing and classifying functions that ignores
 - constant factors and
 - small inputs.
- The Sets big oh O(g), big theta Θ(g), big omega
 Ω(g)

Classifying functions by their Asymptotic Growth Rates (2/2)

- O(g(n)), Big-Oh of g of n, the Asymptotic Upper Bound;
- □ Θ(g(n)), Theta of g of n, the Asymptotic Tight Bound; and
- \square $\Omega(g(n))$, Omega of g of n, the Asymptotic Lower Bound.

Big-O

$$f(n) = O(g(n))$$
: there exist positive constants c and n_0 such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$

- What does it mean?
 - If $f(n) = O(n^2)$, then:
 - f(n) can be larger than n^2 sometimes, **but...**
 - We can choose some constant c and some value n_0 such that for **every** value of n larger than n_0 : $f(n) < cn^2$
 - That is, for values larger than n_0 , f(n) is never more than a constant multiplier greater than n^2
 - Or, in other words, f(n) does not grow more than a constant factor faster than n^2 .

Visualization of O(g(n))

Big-O

$$2n^{2} = O(n^{2})$$

$$1,000,000n^{2} + 150,000 = O(n^{2})$$

$$5n^{2} + 7n + 20 = O(n^{2})$$

$$2n^{3} + 2 \neq O(n^{2})$$

$$n^{2.1} \neq O(n^{2})$$

Tight bounds

- We generally want the tightest bound we can find.
- While it is true that $n^2 + 7n$ is in $O(n^3)$, it is more interesting to say that it is in $O(n^2)$

Big Omega – Notation

• $\Omega()$ – A **lower** bound

 $f(n) = \Omega(g(n))$: there exist positive constants c and n_0 such that $0 \le f(n) \ge cg(n)$ for all $n \ge n_0$

- $-n^2=\Omega(n)$
- Let c = 1, $n_0 = 2$
- For all $n \ge 2$, $n^2 > 1 \times n$

Visualization of $\Omega(g(n))$

Θ-notation

- Big-O is not a tight upper bound. In other words $n = O(n^2)$
- • provides a tight bound

$$f(n) = \Theta(g(n))$$
: there exist positive constants c_1, c_2 , and n_0 such that $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$ for all $n \ge n_0$

In other words,

$$f(n) = \Theta(g(n)) \Rightarrow f(n) = O(g(n)) \text{ AND } f(n) = \Omega(g(n))$$

Visualization of $\Theta(g(n))$

- Code:
- a = b;

• Code:

```
sum = 0;
for (i=1; i <=n; i++)
sum += n;</pre>
```


• Code:

```
sum = 0;
for (j=1; j<=n; j++)</li>
for (i=1; i<=j; i++)</li>
sum++;
for (k=0; k<n; k++)</li>
A[k] = k;
```


• Code:

```
sum1 = 0;
for (i=1; i<=n; i++)
for (j=1; j<=n; j++)
sum1++;</pre>
```

• Code:

```
sum2 = 0;
for (i=1; i<=n; i++)</li>
for (j=1; j<=i; j++)</li>
sum2++;
```


• Code:

```
sum1 = 0;
for (k=1; k<=n; k*=2)</li>
for (j=1; j<=n; j++)</li>
sum1++;
```


• Code:

```
sum2 = 0;
for (k=1; k<=n; k*=2)</li>
for (j=1; j<=k; j++)</li>
sum2++;
```