matlab开发文档

一. 开发环境及工具

硬件运行环境为本试验所用的计算机设备,CPU为Inter(R)Xeno(R) Gold 5218 CPU @ 2.3GHz, GPU为NVIDIA GeForce RTX 4060。

开发环境基于Windows 11操作系统, matlab R2022a。

二. 程序的功能作简要介绍

1、程序的功能作简要介绍

本次《测绘程序设计》期末考核要求同学们进行"附合导线近似平差"和"高斯正算"两个程序的编写,以检验其对测绘知识和程序设计的掌握程度。

首先,要完成这个任务,需要理解并掌握附合导线近似平差和高斯正算的基本原理,以及相关的数学模型。然后,根据给定的数据和条件,进行程序设计和编码。

在程序设计中, 本程序努力做到以下几点:

1. 正确性:程序应能正确完成计算任务,得出正确的结果。

2. 完整性:程序应结构完整,包括合理的函数设计、语句调用等。

3. 规范性:程序命名、注释、变量和函数命名等应符合规范。

4. 优化性:程序应简洁易读,有良好的可读性和可维护性。

附合导线

附合导线是指连接两个已知控制点的一种导线,通常用于测量和计算两点之间的距离、角度和坐标。 在附合导线程序中,需要输入导线的起点和终点的坐标以及观测的边长和角度,程序会根据这些数据 计算出导线的长度、方位角、高程等信息,并输出相应的结果。附合导线程序的功能还包括对导线进 行平差处理,消除误差,提高测量精度。

高斯正算

高斯正算是一种用于计算坐标正反算的方法,即根据已知点的坐标和方位角计算出待测点的坐标。在 高斯正算程序中,用户需要输入已知点和待测点的坐标以及方位角等信息,程序会根据高斯投影的原 理和公式,计算出待测点的坐标,并输出结果。高斯正算程序还可以进行坐标转换和地图投影等操 作,是测量学中常用的工具之一。

2、流程图

• 顶层数据流图

附合导线

附合导线计算

高斯正算

三. 编写目的

- 期末考核共包含两道题目,即"附合导线近似平差"和"高斯正算"程序设计
- 提高程序编写水平
- 练习开发文档编写

四. 算法设计思路 (函数模块)

附合导线

function附合计算代码块

```
function [fbx,k,x,y] = TranverseFH(XB,YB,azi1,XC,YC,azi2,Ang,Dis)
   %% 解算附合导线
   % x,y 返回待定点坐标, fwi 平差后各边的方位角
   % fbx 返回角度闭合差,k全长相对闭合差
   % XB,YB,XC,YC 已知点坐标x
5
   % azi1和azi2已知起始边和终边方位角
   % Ang, Dis是观测的角度(弧度)和边长
  %数据输入和处理
  n=length(Ang); %获得观测角个数
  [radangle]=dms_rad(Ang);% 角度转换为弧度
  zb=sum(radangle); %观测角之和
  azi1=dms_rad(azi1);
  azi2=dms_rad(azi2);
  fb=zb-n*pi-azi2+azi1; %计算角度闭合差
  fb=rem(fb,2*pi); %取余数
  fbx=round(fb*206264.80); %将角度闭合差换成秒
  radangle=radangle-fb./n;
17
  for i=1:n
18
      if i==1
19
          fwj(i) = azi1-pi+radangle(i);
20
      else
21
          fwj(i)=fwj(i-1)-pi+radangle(i);
22
      end
23
  end
  dx = cos(fwj(1:n-1)).*Dis;
  dy=sin(fwj(1:n-1)).*Dis;
  fx=sum(dx)+XB-XC;
  fy=sum(dy)+YB-YC;
  fs=sqrt(fx^2+fy^2);
  Zd=sum(Dis);
  k=fix(Zd/fs);
31
  dx=dx-(fx/Zd).*Dis;%坐标增量闭合差的分配
  dy=dy-(fy/Zd).*Dis;
  for i=1:n-1
      if i==1
35
          x(i)=XB+dx(i);
36
          y(i)=YB+dy(i);
37
      else
38
          x(i)=x(i-1)+dx(i);
```

gui代码块

```
function pushbutton1_Callback(hObject, eventdata, handles)
  %pushbutton1代表是"计算",有关计算的代码都在此按钮下面
  str=get(handles.edit1, 'string');
4 X1=str2num(str);
  str=get(handles.edit2, 'string')
6 Y1=str2num(str);
  str=get(handles.edit3,'string')
8 X2=str2num(str);
  str=get(handles.edit4, 'string')
 Y2=str2num(str);
   str=get(handles.edit5,'string')
11
  azi1=str2num(str);
   str=get(handles.edit6,'string')
  azi2=str2num(str);
  %输入角度和距离
15
   str=get(handles.edit9, 'string')
  Ang=str2num(str);
  str=get(handles.edit13,'string')
  Dis=str2num(str);
   [fbx,k,x,y]=TranverseFH(X1,Y1,azi1,X2,Y2,azi2,Ang',Dis')
   str1=sprintf('%8.8f',fbx)
  set(handles.edit14, 'string', str1);
   str1=sprintf('%8.8f',k)
   set(handles.edit15,'string',str1);
   strx=[];
  for i=1:size(x:2)
      str1=sprintf('%i','%.3f','%.3f\n',i,x(i),y(i));
27
      strx=[strx str1];
28
  end
  set(handles.edit17, 'string', strx)
```

高斯正算

get_X模块

这个模块用B,a,b求解X

```
function[X]=get_X(B,a,b)

e2=sqrt(a^2-b^2)/b;

beita0=1-3/4*(e2^2)+45/64*e2^4-175/256*e2^6+11025/16384*e2^8

beita2=beita0-1

beita4=15/32*e2^4+175/384*e2^6+3675/8164*e2^8

beita6=-35/96*e2^6+735/2048*e2^8

beita8=315/1024*e2^8

c=a^2/b;

X=c*(beita0*B+(beita2*cos(B)+beita4*cos(B)^3+beita6*cos(B)^7)*sin(B));

end
```

function 坐标转化模块

```
function [x,y]=BL2xy(B,L,L0,n)
2 %10是中央经线,B是大地纬度,L是大地经度
3 switch n
   case(1)%WGS84
5
      a=6378137.0;
      b=6356752.3142;
6
   case(2)%IUGG75
      a=6378140.0;
8
      b=6356755.2881;
9
   case(3)%CGCS2000椭球坐标系,在作业中采用
10
      a=6378137.0;
11
      b=6356752.3141;
12
13 end
14 B=dms_rad(B);
15 L=dms_rad(L);
16 L0=dms_rad(L0);
17 X=get_X(B,a,b);
18 e1=sqrt(a^2-b^2)/a; %第一偏心率
```

```
19 N=a/sqrt(1-e1^2*sin(B)^2);
20 l=L-L0;%计算出距离中央经线的距离
21 t=tan(B);
22 e2=sqrt(a^2-b^2)/b;%计算第二偏心率
23 ita=e2*cos(B);
24 x=X+N/2*sin(B)*cos(B)^2+...
25 N/24*sin(B)*cos(B)^3*(5-t^2+9*ita^2+ita^4)*1^4 ...%注意等式和...中有空格
26 +N/720*sin(B)*cos(B)^5*(61-58*t^2+t^4)*1^6;
27 y=N*cos(B)*1+N/6*cos(B)^3*(1-t^2+ita^2)*1^3 ...
+N/120*cos(B)^5*(5-18*t^2+t^4+14*ita^2-58*t^2*ita^2)*1^5;
29 end
```

高斯正算输入数据

[x,y]=BL2xy(37.3915,111.5654,114,3)

五. 用户界面与交互

• 将要采用如下图形用户界面标准或产品系列的风格;

屏幕布局

六. 运行结果

1附合导线

2高斯正算

高斯正算

七. 主要变量说明表

附合导线近似平差程序【函数 TranverseFH】主要变量说明表

变量名	输入/输出	类型	说明
fbx	输出	数值	角度闭合差,单位换算 为秒
k	输出	数值	全长相对闭合差(可能是近似值)的整数部分
x	输出	数组	待定点的 X 坐标数组
у			

	输出	数组	待定点的 Y 坐标数组
XB, YB	输入	数值	已知起始点的 X 和 Y 坐标
XC, YC	输入	数值	已知终点的X和Y坐标
azi1	输入	数值	已知起始边的方位角 (度或弧度),函数内 部转换为弧度
azi2	输入	数值	已知终边的方位角(度 或弧度),函数内部转 换为弧度
Ang	输入	数组	观测的角度数组(假设输入为度,函数内部转换为弧度)
Dis	输入	数组	观测的边长数组
n	内部变量	数值	观测角的个数,通过 length(Ang) 计算得出
radangle	内部变量	数组	将观测的角度数组从度 转换为弧度后的数组
zb	内部变量	数值	观测角之和 (弧度)
fb	内部变量	数值	计算出的角度闭合差 (弧度),并取2π的余 数标准化
fwj	内部变量	数组	平差后各边的方位角数 组(弧度)
dx, dy	内部变量	数组	根据平差后的方位角和 边长计算出的坐标增量 数组
fx, fy	内部变量	数值	坐标增量的闭合差在 X 和 Y 方向上的分量
fs	内部变量	数值	坐标增量闭合差的长度 (直线距离)
Zd	内部变量	数值	所有观测边长的总和

高斯正算程序【函数BL2xy】主要变量说明表

变量名	输入/输出	类型	说明
x, y	输出	数值	投影后的平面直角坐标

			系的X和Y坐标
В	输入	数值	大地纬度,函数内部将 其从度转换为弧度
L	输入	数值	大地经度,函数内部将 其从度转换为弧度
LO	输入	数值	中央经线,函数内部将 其从度转换为弧度
n	输入	数值	椭球模型选择参数,用 于选择不同的椭球体参 数 a 和 b
а	内部变量	数值	椭球体的长半轴长度, 根据 n 的值选择不同的 数值
b	内部变量	数值	椭球体的短半轴长度, 根据 n 的值选择不同的 数值
e1	内部变量	数值	第一偏心率,根据 a 和 b 计算得出
N	内部变量	数值	卯酉圈曲率半径,根据 B、a和 e1 计算得出
I	内部变量	数值	经度差,即大地经度 L 与中央经线 L0 的差值 (弧度)
t	内部变量	数值	正切值 tan(B) 的简写, 用于后续计算
e2	内部变量	数值	第二偏心率,根据 a 和 b 计算得出
ita	内部变量	数值	由 e2 和 B 计算得出的中间变量,用于后续计算
X	内部变量	数值	由纬度 B、a 和 b 通过 get_X 函数计算得出的中间值

注意: dms_rad 函数是将角度从度分秒格式转换为弧度的辅助函数

八. 难点预估

1字体不居中

解决方案:将fontunits修改为normalization,然后将fontsize修改为0.7

2坐标位数过少的问题

九、主要程序运行截图

```
無粗器 - C:\Users\sand\Documents\IVIATLAB\sy4\TranverseFH.m
   get X.m
                 BL2xv.m
                              TranverseFH.m ×
                                                  untitled.m
                                                                  Thanv
1 🗆
       function [fbx,k,x,y] = TranverseFH(XB,YB,azi1,XC,YC,azi2,Ang,Dis)
       %% 解算附合导线
 2
 3 [-]
       % x,y 返回待定点坐标, fwj 平差后各边的方位角
       % fbx 返回角度闭合差,k全长相对闭合差
 4
       % XB,YB,XC,YC 已知点坐标x
 5
       % azi1和azi2已知起始边和终边方位角
 6
       % Ang, Dis是观测的角度(弧度)和边长
 7
      %数据输入和处理
 8
                     %获得观测角个数
      n=length(Ang);
9
       [radangle]=dms rad(Ang);% 角度转换为弧度
10
      zb=sum(radangle); %观测角之和
11
      azi1=dms rad(azi1);
12
      azi2=dms rad(azi2);
13
                              %计算角度闭合差
      fb=zb-n*pi-azi2+azi1;
14
      fb=rem(fb,2*pi); %取余数
15
      fbx=round(fb*206264.80); %将角度闭合差换成秒
16
17
      radangle=radangle-fb./n;
18
      for i=1:n
19 🖵
          if i==1
20
              fwj(i) = azi1-pi+radangle(i);
21
          else
22
              fwj(i)=fwj(i-1)-pi+radangle(i);
23
          end
24
      end
25
      dx=cos(fwj(1:n-1)).*Dis;
26
      dy=sin(fwj(1:n-1)).*Dis;
27
      fx=sum(dx)+XB-XC;
28
29
      fy=sum(dy)+YB-YC;
      fs=sqrt(fx^2+fy^2);
30
      Zd=sum(Dis);
31
      k=fix(Zd/fs);
32
      dx=dx-(fx/Zd).*Dis;%坐标增量闭合差的分配
33
      dy=dy-(fy/Zd).*Dis;
34
35 🖃
      for i=1:n-1
          if i==1
36
              x(i)=XB+dx(i);
37
              y(i)=YB+dy(i);
38
39
          else
              x(i)=x(i-1)+dx(i);
40
              y(i)=y(i-1)+dy(i);
41
42
          end
43
      end
```

```
get X.m × BL2xy.m × TranverseFH.m ×
                                         untitled.m ×
                                                      Thanverse.m
                                                                     main.m
1 🗆
       function [x,y]=BL2xy(B,L,L0,n)
 2
      %10是中央经线,B是大地纬度,L是大地经度
3
4
      switch n
5
        case(1)%WGS84
6
           a=6378137.0;
 7
          b=6356752.3142;
8
        case(2)%IUGG75
9
           a=6378140.0;
10
          b=6356755.2881;
        case(3)%CGCS2000椭球坐标系,在作业中采用
11
12
           a=6378137.0;
           b=6356752.3141;
13
14
      end
15
      B=dms_rad(B);
16
       L=dms_rad(L);
17
18
       L0=dms rad(L0);
      X=get_X(B,a,b);
19
20
      e1=sqrt(a^2-b^2)/a; %计算第一偏心率
21
      N=a/sqrt(1-e1^2*sin(B)^2);
      1=L-L0;%计算出距离中央经线的距离
22
23
      t=tan(B);
24
      e2=sqrt(a^2-b^2)/b;%计算第二偏心率
25
      ita=e2*cos(B);
26
      x=X+N/2*sin(B)*cos(B)^2+...
          N/24*sin(B)*cos(B)^3*(5-t^2+9*ita^2+ita^4)*1^4 ...%注意等式和...中有空格
27
       +N/720*sin(B)*cos(B)^5*(61-58*t^2+t^4)*1^6;
28
29
      y=N*cos(B)*1+N/6*cos(B)^3*(1-t^2+ita^2)*1^3 ...
30
           +N/120*cos(B)^5*(5-18*t^2+t^4+14*ita^2-58*t^2*ita^2)*1^5;
31
32
       end
33
```

```
get X.m × BL2xy.m ×
                            TranverseFH.m × untitled.m × Thanverse.m
        if ispc && isequal(get(hObject, 'BackgroundColor'), get(0, 'default
255
            set(hObject, 'BackgroundColor', 'white');
256
        end
257
258
259
        % --- Executes on button press in pushbutton1.
260
        function pushbutton1 Callback(hObject, eventdata, handles)
261 -
        %pushbutton1代表是"计算",有关计算的代码都在此按钮下面
262
        str=get(handles.edit1, 'string');
263
        X1=str2num(str);
264
        str=get(handles.edit2,'string')
265
        Y1=str2num(str);
266
267
        str=get(handles.edit3,'string')
268
        X2=str2num(str);
269
        str=get(handles.edit4,'string')
270
271
        Y2=str2num(str);
272
        str=get(handles.edit5,'string')
273
        azi1=str2num(str);
274
        str=get(handles.edit6, 'string')
275
        azi2=str2num(str);
276
277
        %输入角度和距离
278
        str=get(handles.edit9,'string')
279
        Ang=str2num(str);
280
        str=get(handles.edit13,'string')
281
        Dis=str2num(str);
282
        [fbx,k,x,y]=TranverseFH(X1,Y1,azi1,X2,Y2,azi2,Ang',Dis')
283
284
        str1=sprintf('%8.8f',fbx)
285
        set(handles.edit14, 'string', str1);
286
287
        str1=sprintf('%8.8f',k)
288
        set(handles.edit15, 'string', str1);
289
        strx=[];
290
        for i=1:size(x:2)
291 -
            str1=sprintf('%i','%.3f','%.3f\n',i,x(i),y(i));
292
            strx=[strx str1];
293
```

```
get_X.m × BL2xy.m × TranverseFH.m × untitled.m ×
                                                             Thanverse.m
1 🖃
       function[X]=get_X(B,a,b)
2
3
       e2=sqrt(a^2-b^2)/b;
       beita0=1-3/4*(e2^2)+45/64*e2^4-175/256*e2^6+11025/16384*e2^8
4
5
       beita2=beita0-1
       beita4=15/32*e2^4+175/384*e2^6+3675/8164*e2^8
6
       beita6=-35/96*e2^6+735/2048*e2^8
7
       beita8=315/1024*e2^8
8
9
       c=a^2/b;
       X=c*(beita0*B+(beita2*cos(B)+beita4*cos(B)^3+beita6*cos(B)^7)*sin(B));
10
11
12 🖃
       %[X]=get X(0.6571928776,6378137,6356752.3142)
       %format long g 切换输出
13 L
```