# Lecture 1B – Syntactic Structure

Violet Ka I Pun

violet@ifi.uio.no

# Programming Language

A large number of strings (typical infinite), is described by

► Syntax

► Semantics

## Programming Language

A large number of strings (typical infinite), is described by

- ► Syntax
  - Specifies how programs in the language are built up E.g., context-free grammar, regular grammar, . . .
- ▶ Semantics

## Programming Language

A large number of strings (typical infinite), is described by

- ► Syntax
  - Specifies how programs in the language are built up E.g., context-free grammar, regular grammar, . . .
- ▶ Semantics
  - Specifies what programs mean
     E.g., Operationals semantics, denotational semantics, . . .

### A finite representation of a language, consists of

- ► **T**erminals
- ► Nonterminals
- ► A Start symbol
- ► A set of production **R**ules that defines a nonterminal in terms of a sequence of terminals or non-terminals

### A finite representation of a language, consists of

- ► **T**erminals
- ► Nonterminals
- ► A Start symbol
- ► A set of production **R**ules that defines a nonterminal in terms of a sequence of terminals or non-terminals

```
\langle N(onterminals), T(erminals), S \in N, R(ules) \rangle
```

### A finite representation of a language, consists of

- ► Terminals
- ► Nonterminals
- ► A Start symbol
- ► A set of production **R**ules that defines a nonterminal in terms of a sequence of terminals or non-terminals

```
\langle N(onterminals), T(erminals), S \in N, R(ules) \rangle , where N \cap T = \emptyset
```

 $\langle N(\text{onterminals}), T(\text{erminals}), S \in N, R(\text{ules}) \rangle$ 

$$\langle$$
 **N**(onterminals), **T**(erminals), **S**  $\in$  N, **R**(ules)  $\rangle$  Context-Free Grammar (CFG):  $R \subset N \times (N+T)^+$  e.g.:  $\langle \{E, Int, Digit\}, \{0, 1, ..., 9, +, *, (,)\}, E, R \rangle$ 

```
\langle N(\text{onterminals}), T(\text{erminals}), S \in N, R(\text{ules}) \rangle
Context-Free Grammar (CFG): R \subset N \times (N+T)^+
     e.g.: \{\{E, Int, Digit\}, \{0, 1, ..., 9, +, *, (,)\}, E, R\}
BNF (Backus-Naur Form):
R = \{ E \rightarrow E + E \}
           E \rightarrow E * E
           E \rightarrow (E)
           E \rightarrow Int
          Int \rightarrow Digit
          Int \rightarrow Digit Int
       Digit \rightarrow 0
       Digit \rightarrow 1
          \dots \rightarrow \dots
       Digit \rightarrow 9 }
```

```
\langle N(\text{onterminals}), T(\text{erminals}), S \in N, R(\text{ules}) \rangle
Context-Free Grammar (CFG): R \subset N \times (N+T)^+
     e.g.: \{E, Int, Digit\}, \{0, 1, ..., 9, +, *, (,)\}, E, R\}
                                      EBNF (Extended BNF):
BNF (Backus-Naur Form):
R = \{ E \rightarrow E + E \}
           F \rightarrow F * F
           E \rightarrow (E)
                                           What is more: { } , [ ] , | , ( )
           E \rightarrow Int
          Int \rightarrow Digit
          Int \rightarrow Digit Int
       Digit \rightarrow 0
       Digit \rightarrow 1
         \dots \rightarrow \dots
       Digit \rightarrow 9 }
```

```
\langle N(\text{onterminals}), T(\text{erminals}), S \in N, R(\text{ules}) \rangle
Context-Free Grammar (CFG): R \subset N \times (N+T)^+
     e.g.: \{E, Int, Digit\}, \{0, 1, ..., 9, +, *, (,)\}, E, R\}
                                       EBNF (Extended BNF):
BNF (Backus-Naur Form):
R = \{ E \rightarrow E + E \}
           F \rightarrow F * F
           E \rightarrow (E)
                                            What is more: { } , [ ] , | , ( )
           E \rightarrow Int
          Int \rightarrow Digit
          Int \rightarrow Digit Int
       Digit \rightarrow 0
                                                              Digit \rightarrow 0 \mid 1 \mid \dots \mid 9
       Digit \rightarrow 1
         \dots \rightarrow \dots
       Digit \rightarrow 9 }
```

```
\langle N(\text{onterminals}), T(\text{erminals}), S \in N, R(\text{ules}) \rangle
Context-Free Grammar (CFG): R \subset N \times (N+T)^+
     e.g.: \{E, Int, Digit\}, \{0, 1, ..., 9, +, *, (,)\}, E, R\}
BNF (Backus-Naur Form):
                                        EBNF (Extended BNF):
R = \{ E \rightarrow E + E \}
                                                     E \rightarrow E (+ | *) E | (E) | Int
           F \rightarrow F * F
           E \rightarrow (E)
                                            What is more: { } , [ ] , | , ( )
           E \rightarrow Int
          Int \rightarrow Digit
          Int \rightarrow Digit Int
       Digit \rightarrow 0
                                                              Digit \rightarrow 0 \mid 1 \mid \dots \mid 9
       Digit \rightarrow 1
          \dots \rightarrow \dots
       Digit \rightarrow 9 }
```

```
\langle N(\text{onterminals}), T(\text{erminals}), S \in N, R(\text{ules}) \rangle
Context-Free Grammar (CFG): R \subset N \times (N+T)^+
     e.g.: \{E, Int, Digit\}, \{0, 1, ..., 9, +, *, (,)\}, E, R\}
BNF (Backus-Naur Form):
                                        EBNF (Extended BNF):
R = \{ E \rightarrow E + E \}
                                                     E \rightarrow E (+ | *) E | (E) | Int
           E \rightarrow E * E
           E \rightarrow (E)
                                            What is more: { } , [ ] , | , ( )
           E \rightarrow Int
          Int \rightarrow Digit
                                                                 Int \rightarrow Digit{Digit}
          Int \rightarrow Digit Int
       Digit \rightarrow 0
                                                              Digit \rightarrow 0 \mid 1 \mid \dots \mid 9
       Digit \rightarrow 1
          \dots \rightarrow \dots
       Digit \rightarrow 9 }
```

```
\langle N(\text{onterminals}), T(\text{erminals}), S \in N, R(\text{ules}) \rangle
Context-Free Grammar (CFG): R \subset N \times (N+T)^+
     e.g.: \{E, Int, Digit\}, \{0, 1, ..., 9, +, *, (,)\}, E, R\}
BNF (Backus-Naur Form):
                                       EBNF (Extended BNF):
R = \{ E \rightarrow E + E \}
                                                    E \rightarrow E (+ | *) E | (E) | Int
           F \rightarrow F * F
           E \rightarrow (E)
                                            What is more: { } , [ ] , | , ( )
           E \rightarrow Int
          Int \rightarrow Digit
                                                                Int \rightarrow Digit{Digit}
          Int \rightarrow Digit Int
       Digit \rightarrow 0
                                                              Digit \rightarrow 0 \mid 1 \mid \dots \mid 9
       Digit \rightarrow 1
                                            Real number?
          \dots \rightarrow \dots
       Digit \rightarrow 9 }
```

```
\langle N(\text{onterminals}), T(\text{erminals}), S \in N, R(\text{ules}) \rangle
Context-Free Grammar (CFG): R \subset N \times (N+T)^+
     e.g.: \{E, Int, Digit\}, \{0, 1, ..., 9, +, *, (,)\}, E, R\}
BNF (Backus-Naur Form):
                                       EBNF (Extended BNF):
R = \{ E \rightarrow E + E \}
                                                    E \rightarrow E (+ | *) E | (E) | Int
           E \rightarrow E * E
           E \rightarrow (E)
                                           What is more: { } , [ ] , | , ( )
           E \rightarrow Int
          Int \rightarrow Digit
                                                               Int \rightarrow Digit{Digit}
          Int \rightarrow Digit Int
       Digit \rightarrow 0
                                                             Digit \rightarrow 0 \mid 1 \mid \dots \mid 9
       Digit \rightarrow 1
                                            Real number?
          \dots \rightarrow \dots
       Digit \rightarrow 9 }
                                       .......Int.Int .Int
```

```
\langle N(\text{onterminals}), T(\text{erminals}), S \in N, R(\text{ules}) \rangle
Context-Free Grammar (CFG): R \subset N \times (N+T)^+
    e.g.: \{E, Int, Digit\}, \{0, 1, ..., 9, +, *, (,)\}, E, R\}
BNF (Backus-Naur Form):
                                    EBNF (Extended BNF):
R = \{ E \rightarrow E + E \}
                                                E \rightarrow E (+ | *) E | (E) | Int
          E \rightarrow E * E
          E \rightarrow (E)
                                        What is more: { } , [ ] , | , ( )
          E \rightarrow Int
         Int \rightarrow Digit
                                                           Int \rightarrow Digit{Digit}
         Int \rightarrow Digit Int
      Digit \rightarrow 0
                                                         Digit \rightarrow 0 \mid 1 \mid \dots \mid 9
      Digit \rightarrow 1
                                         Real number?
         \dots \rightarrow \dots
      Digit \rightarrow 9 }
```

```
BNF:

R = \left\{ \begin{array}{l} E \rightarrow E + E \\ E \rightarrow E * E \end{array} \right.

\left. \begin{array}{l} E \rightarrow (E) \\ E \rightarrow Int \end{array} \right.
```

BNF:  

$$R = \{ E \rightarrow E + E \\ E \rightarrow E * E \\ E \rightarrow (E) \\ E \rightarrow Int$$

### EBNF: $E \rightarrow E (+ | *) E | (E) | Int$

BNF: EBNF: 
$$R = \{ E \rightarrow E + E \\ E \rightarrow E * E \\ E \rightarrow (E) \\ E \rightarrow Int$$
 EBNF: 
$$E \rightarrow E (+ | *) E | (E) | Int$$



BNF: EBNF: 
$$R = \{E \rightarrow E + E \\ E \rightarrow E * E \\ E \rightarrow (E) \\ E \rightarrow Int \\ Int \rightarrow Digit \\ Int \rightarrow Digit Int$$



BNF: 
$$EBNF:$$

$$R = \{E \rightarrow E + E$$

$$E \rightarrow E * E$$

$$E \rightarrow [E]$$

$$E$$



BNF: EBNF: 
$$R = \{ E \rightarrow E + E \\ E \rightarrow E * E \\ E \rightarrow (E) \\ E \rightarrow Int \\ Int \rightarrow Digit \\ Int \rightarrow Digit Int$$
EBNF: 
$$E \rightarrow E (+ | *) E | (E) | Int$$

$$EBNF: E \rightarrow E (+ | *) E | (E) | Int$$

$$EBNF: E \rightarrow E (+ | *) E | (E) | Int$$

$$EBNF: E \rightarrow E (+ | *) E | (E) | Int$$



# **Expression Notations**

# **Expression Notations**

- ► Prefix
- ► Postfix
- ► Infix

## **Expression Notations**

- ► Prefix
- ► Postfix
- ► Infix

Programming languages use a  $\operatorname{mix}$  of them

#### **Prefix**

**▶ op** *E*<sub>1</sub> *E*<sub>2</sub>

#### **Postfix**

#### **Prefix**

- **▶ op** *E*<sub>1</sub> *E*<sub>2</sub>
  - \* + 234

#### **Postfix**

#### **Prefix**

**▶ op** *E*<sub>1</sub> *E*<sub>2</sub>

#### **Postfix**

#### **Prefix**

- **▶ op** *E*<sub>1</sub> *E*<sub>2</sub>
  - \* + 2 3 4 = \* 5 4 = 20
  - \*2 + 34

#### **Postfix**

#### **Prefix**

**▶ op** *E*<sub>1</sub> *E*<sub>2</sub>

$$*2 + 34 = *27 = 14$$

#### **Postfix**

#### **Prefix**

- **▶ op** *E*<sub>1</sub> *E*<sub>2</sub>
  - \* + 234 = \*54 = 20
  - \*2 + 34 = \*27 = 14

#### **Postfix**

- ► *E*<sub>1</sub> *E*<sub>2</sub> **op** 
  - 234 + \*

#### **Prefix**

$$*2 + 34 = *27 = 14$$

#### **Postfix**

$$234 + * = 27* = 14$$

#### **Prefix**

- **▶ op** *E*<sub>1</sub> *E*<sub>2</sub>
  - \* + 2 3 4 = \* 5 4 = 20
  - \*2 + 34 = \*27 = 14

#### **Postfix**

- ► *E*<sub>1</sub> *E*<sub>2</sub> op
  - 234 + \* = 27\* = 14
  - 23 + 4 \*

#### **Prefix**

- **▶ op** *E*<sub>1</sub> *E*<sub>2</sub>
  - \* + 234 = \*54 = 20
  - \*2 + 34 = \*27 = 14

#### **Postfix**

- ► *E*<sub>1</sub> *E*<sub>2</sub> op
  - 234 + \* = 27\* = 14
  - 23 + 4\* = 54\* = 20

#### **Prefix**

- **▶ op** *E*<sub>1</sub> *E*<sub>2</sub>
  - \* + 234 = \*54 = 20
  - \*2 + 34 = \*27 = 14

#### **Postfix**

- ► *E*<sub>1</sub> *E*<sub>2</sub> op
  - 234 + \* = 27\* = 14
  - 23 + 4\* = 54\* = 20

Parenthesis-free

- $\triangleright$   $E_1$  op  $E_2$
- ► Ambigious to decode, e.g.,

- $\triangleright$   $E_1$  op  $E_2$
- ► Ambigious to decode, e.g.,
  - 4 2 1 can be

- $\triangleright$   $E_1$  op  $E_2$
- ► Ambigious to decode, e.g.,
  - 4 2 1 can be
    - 2-1=1, or
    - $4-1=3 \leftarrow incorrect$

- $\triangleright$   $E_1$  op  $E_2$
- ► Ambigious to decode, e.g.,
  - 4 2 1 can be
    - 2-1=1 , or
    - $4-1=3 \leftarrow incorrect$
  - 2 + 3 \* 4 can be

- $\triangleright$   $E_1$  op  $E_2$
- ► Ambigious to decode, e.g.,
  - 4 2 1 can be
    - 2-1=1, or
    - $4-1=3 \leftarrow incorrect$
  - 2 + 3 \* 4 can be
    - 5 \* 4 = 20, or  $\leftarrow$  incorrect
    - 2 + 12 = 14

- $\triangleright$   $E_1$  op  $E_2$
- ► Ambigious to decode, e.g.,
  - 4 2 1 can be
    - 2-1=1 . or
    - $4-1=3 \leftarrow incorrect$
  - 2 + 3 \* 4 can be
    - 5 \* 4 = 20, or  $\leftarrow$  incorrect
    - 2 + 12 = 14
- ► Need rules for associativity and precedence

An operator can be either left or right associative

Left associative

Right associative

An operator can be either left or right associative

#### Left associative

E.g., -,+,\*,/: 
$$1-2-3=(1-2)-3 \neq 1-(2-3)$$
  
 $E \rightarrow E - Int \mid Int$ 

### Right associative

An operator can be either left or right associative

#### Left associative

E.g., -,+,\*,/ : 
$$1-2-3=(1-2)-3 \neq 1-(2-3)$$
  
 $E \rightarrow E - Int \mid Int$ 

### Right associative

E.g., expression 
$$2^{3^2} = 2^{(3^2)} \neq (2^3)^2$$
  
 $E \to Int^E \mid Int$ 

An operator can be either left or right associative

#### Left associative

E.g., -,+,\*,/: 
$$1-2-3=(1-2)-3 \neq 1-(2-3)$$
  
 $E \rightarrow E - Int \mid Int$ 

### Right associative

E.g., expression 
$$2^{3^2} = 2^{(3^2)} \neq (2^3)^2$$
  
 $E \to Int^E \mid Int$ 

Both left and right associative??

An operator can be either left or right associative

#### Left associative

E.g., -,+,\*,/ : 
$$1-2-3=(1-2)-3 \neq 1-(2-3)$$
  
 $E \rightarrow E - Int \mid Int$ 

### Right associative

E.g., expression 
$$2^{3^2} = 2^{(3^2)} \neq (2^3)^2$$
  
 $E \to Int^E \mid Int$ 

### Both left and right associative??

What about ...

- 2 + 3 \* 4 can be
  - 5\*4 = 20, or
  - 2 + 12 = 14

An operator can be either left or right associative

#### Left associative

E.g., -,+,\*,/ : 
$$1-2-3=(1-2)-3 \neq 1-(2-3)$$
  
 $E \rightarrow E - Int \mid Int$ 

### Right associative

E.g., expression 
$$2^{3^2} = 2^{(3^2)} \neq (2^3)^2$$
  
 $E \to Int^E \mid Int$ 

### Both left and right associative??

What about ...

- 2 + 3 \* 4 can be
  - 5 \* 4 = 20, or  $\leftarrow$  incorrect
  - 2 + 12 = 14

Each precedence level requires a new non-terminal symbol, plus an extra symbol for the lowest elements:

$$E \rightarrow E + E$$
  
 $E \rightarrow ...$   
 $E \rightarrow E * E$   
 $E \rightarrow Int \mid (E)$ 

Each precedence level requires a new non-terminal symbol, plus an extra symbol for the lowest elements:

$$\begin{array}{lll} E \rightarrow E + E & E \rightarrow G + E \mid G & \text{weakest} \\ E \rightarrow \dots & \dots & \dots \\ E \rightarrow E * E & G \rightarrow L * G \mid L & \text{strongest} \\ E \rightarrow Int \mid (E) & L \rightarrow Int \mid (E) & \end{array}$$

Each precedence level requires a new non-terminal symbol, plus an extra symbol for the lowest elements:

$$E \rightarrow E + E$$
  $E \rightarrow G + E \mid G$  weakest  $E \rightarrow ...$   $... \rightarrow ...$   $E \rightarrow E * E$   $G \rightarrow L * G \mid L$  strongest  $E \rightarrow Int \mid (E)$   $L \rightarrow Int \mid (E)$ 

Derive: 2 \* 3 + 4 and 2 + 3 \* 4

Each precedence level requires a new non-terminal symbol, plus an extra symbol for the lowest elements:

$$E \rightarrow E + E$$
  $E \rightarrow G + E \mid G$  weakest  $E \rightarrow ...$   $... \rightarrow ...$   $E \rightarrow E * E$   $G \rightarrow L * G \mid L$  strongest  $E \rightarrow Int \mid (E)$   $L \rightarrow Int \mid (E)$ 

Derive: 2 \* 3 + 4 and 2 + 3 \* 4

### **Associativity**

Each precedence level requires a new non-terminal symbol, plus an extra symbol for the lowest elements:

$$E \rightarrow E + E$$
  $E \rightarrow G + E \mid G$  weakest  $E \rightarrow ...$   $... \rightarrow ...$   $E \rightarrow E * E$   $G \rightarrow L * G \mid L$  strongest  $E \rightarrow Int \mid (E)$   $L \rightarrow Int \mid (E)$ 

Derive: 2 \* 3 + 4 and 2 + 3 \* 4

### **Associativity**

left: 
$$E \rightarrow E - Int$$

Each precedence level requires a new non-terminal symbol, plus an extra symbol for the lowest elements:

$$\begin{array}{lll} E \rightarrow E + E & E \rightarrow G + E \mid G & \text{weakest} \\ E \rightarrow \dots & \dots \rightarrow \dots \\ E \rightarrow E * E & G \rightarrow L * G \mid L & \text{strongest} \\ E \rightarrow Int \mid (E) & L \rightarrow Int \mid (E) \end{array}$$

Derive: 2 \* 3 + 4 and 2 + 3 \* 4

### **Associativity**

left: 
$$E \rightarrow E - Int$$

right: 
$$E \rightarrow Int^E \mid Int$$

Each precedence level requires a new non-terminal symbol, plus an extra symbol for the lowest elements:

$$\begin{array}{lll} E \rightarrow E + E & E \rightarrow G + E \mid G & \text{weakest} \\ E \rightarrow \dots & \dots \rightarrow \dots \\ E \rightarrow E * E & G \rightarrow L * G \mid L & \text{strongest} \\ E \rightarrow Int \mid (E) & L \rightarrow Int \mid (E) \end{array}$$

Derive: 2 \* 3 + 4 and 2 + 3 \* 4

### **Associativity**

left: 
$$E \rightarrow E - Int$$
 vs. right:  $E \rightarrow Int^E \mid Int$ 

On each level, all the symbols must associate equally

$$E \rightarrow P * E \mid E + P$$
, with  $P, E \rightarrow ...Int$ , gives ambiguity:

Each precedence level requires a new non-terminal symbol, plus an extra symbol for the lowest elements:

$$\begin{array}{lll} E \rightarrow E + E & E \rightarrow G + E \mid G & \text{weakest} \\ E \rightarrow \dots & \dots \rightarrow \dots \\ E \rightarrow E * E & G \rightarrow L * G \mid L & \text{strongest} \\ E \rightarrow Int \mid (E) & L \rightarrow Int \mid (E) \end{array}$$

Derive: 2 \* 3 + 4 and 2 + 3 \* 4

### **Associativity**

left: 
$$E \rightarrow E - Int$$
 vs. right:  $E \rightarrow Int^E \mid Int$ 

On each level, all the symbols must associate equally

$$E \to P * E \mid E + P$$
, with  $P, E \to ...Int$ , gives ambiguity:  
2 \* 3 + 4 can be (2 \* 3) +4 or 2 \* (3 + 4)

### Mixfix Notation

Programming languages use a mix of prefix, infix and postfix notations

### Mixfix Notation

Programming languages use a mix of prefix, infix and postfix notations

```
f(x:int) {
   if x == 1
      then return x++;
      else return ++x;
}
```

 $\mathsf{B} \to \mathsf{b} \mid \mathsf{B} \; \mathsf{B}$ 

 $\mathsf{B} \to \mathsf{b} \mid \mathsf{B} \; \mathsf{B} \quad \text{ vs. } \quad \mathsf{B} \to \mathsf{b} \mid \mathsf{b} \; \mathsf{B}$ 

$$B \rightarrow b \mid B B$$
 vs.  $B \rightarrow b \mid b B$ 

Regular language = can be defined with a **regular grammar**, i.e.,  $\langle N, T, S \in N, R \rangle$ , where each rule in R is of one of these forms:

$$B \rightarrow b \mid B B$$
 vs.  $B \rightarrow b \mid b B$ 

Regular language = can be defined with a regular grammar,

i.e., 
$$\langle N, T, S \in N, R \rangle$$
, where each rule in  $R$  is of one of these forms:  $N \to a$  for some  $a \in T$ 

$$B \rightarrow b \mid B B$$
 vs.  $B \rightarrow b \mid b B$ 

Regular language = can be defined with a regular grammar,

i.e., 
$$\langle N, T, S \in N, R \rangle$$
, where each rule in  $R$  is of one of these forms:

$$N \to a$$
 for some  $a \in T$ 

$$N 
ightarrow aN$$
 (or, equivalently,  $N 
ightarrow Na$ )

$$B \rightarrow b \mid B B$$
 vs.  $B \rightarrow b \mid b B$ 

Regular language = can be defined with a regular grammar,

i.e., 
$$\langle N, T, S \in N, R \rangle$$
, where each rule in  $R$  is of one of these forms:  $N \to a$  for some  $a \in T$   $N \to aN$  (or, equivalently,  $N \to Na$ )  $N \to \varepsilon$ 

$$B \rightarrow b \mid B \; B \quad \text{ vs. } \quad B \rightarrow b \mid b \; B$$

Regular language = can be defined with a regular grammar,

i.e., 
$$\langle N, T, S \in N, R \rangle$$
, where each rule in  $R$  is of one of these forms:  $N \to a$  for some  $a \in T$   $N \to aN$  (or, equivalently,  $N \to Na$ )  $N \to \varepsilon$ 

$$A \rightarrow aA \mid \varepsilon$$

$$B \rightarrow b \mid B B$$
 vs.  $B \rightarrow b \mid b B$ 

Regular language = can be defined with a regular grammar,

i.e., 
$$\langle N, T, S \in N, R \rangle$$
, where each rule in  $R$  is of one of these forms:  $N \to a$  for some  $a \in T$   $N \to aN$  (or, equivalently,  $N \to Na$ )  $N \to \varepsilon$ 

$$A \rightarrow aA \mid \varepsilon$$

$$B \rightarrow bB \mid b$$

$$B \rightarrow b \mid B \; B \quad \text{vs.} \quad B \rightarrow b \mid b \; B$$

Regular language = can be defined with a regular grammar,

i.e., 
$$\langle N, T, S \in N, R \rangle$$
, where each rule in  $R$  is of one of these forms:  $N \to a$  for some  $a \in T$   $N \to aN$  (or, equivalently,  $N \to Na$ )  $N \to \varepsilon$ 

$$A \rightarrow aA \mid \varepsilon$$
 $B \rightarrow bB \mid b$ 
 $T \rightarrow aA \mid bA \mid A$ 

$$B \rightarrow b \mid B B$$
 vs.  $B \rightarrow b \mid b B$ 

Regular language = can be defined with a regular grammar,

i.e., 
$$\langle N, T, S \in N, R \rangle$$
, where each rule in  $R$  is of one of these forms:  $N \to a$  for some  $a \in T$   $N \to aN$  (or, equivalently,  $N \to Na$ )  $N \to \varepsilon$ 

$$A \rightarrow aA \mid \varepsilon$$
 $B \rightarrow bB \mid b$ 
 $T \rightarrow aA \mid bA \mid A$ 
 $R \rightarrow aR \mid bR \mid a \mid b$ 

$$B \rightarrow b \mid B B$$
 vs.  $B \rightarrow b \mid b B$ 

Regular language = can be defined with a regular grammar,

i.e.,  $\langle N, T, S \in N, R \rangle$ , where each rule in R is of one of these forms:

$$egin{aligned} N & o a & \qquad & \text{for some } a \in \mathcal{T} \\ N & o a N & \qquad & \text{(or, equivalently, } N & o Na) \\ N & o arepsilon & \end{aligned}$$

• E.g..:

common notation:

$$A \rightarrow aA \mid \varepsilon$$
 $B \rightarrow bB \mid b$ 
 $T \rightarrow aA \mid bA \mid A$ 
 $R \rightarrow aR \mid bR \mid a \mid b$ 

$$B \rightarrow b \mid B B$$
 vs.  $B \rightarrow b \mid b B$ 

Regular language = can be defined with a regular grammar,

i.e., 
$$\langle N, T, S \in N, R \rangle$$
, where each rule in  $R$  is of one of these forms:

$$N o a$$
 for some  $a \in T$   $N o aN$  (or, equivalently,  $N o Na$ )

• E.g..: common notation:

$$A 
ightarrow aA \mid \varepsilon$$
 ......  $a^*$ 

$$B \rightarrow bB \mid b$$

$$T \rightarrow aA \mid bA \mid A$$

$$R \rightarrow aR \mid bR \mid a \mid b$$

$$B \rightarrow b \mid B B$$
 vs.  $B \rightarrow b \mid b B$ 

Regular language = can be defined with a regular grammar,

i.e., 
$$\langle N, T, S \in N, R \rangle$$
, where each rule in  $R$  is of one of these forms:

$$N o a$$
 for some  $a \in T$   $N o aN$  (or, equivalently,  $N o Na$ )

• E.g..: common notation:

$$T 
ightarrow aA \mid bA \mid A$$

$$R \rightarrow aR \mid bR \mid a \mid b$$

$$B \rightarrow b \mid B B$$
 vs.  $B \rightarrow b \mid b B$ 

Regular language = can be defined with a regular grammar,

i.e.,  $\langle N, T, S \in N, R \rangle$ , where each rule in R is of one of these forms:

• E.g..: common notation:

$$R \rightarrow aR \mid bR \mid a \mid b$$

#### Regular Language

$$B \rightarrow b \mid B \; B \quad \text{vs.} \quad B \rightarrow b \mid b \; B$$

Regular language = can be defined with a regular grammar,

i.e.,  $\langle N, T, S \in N, R \rangle$ , where each rule in R is of one of these forms:

$$N o a$$
 for some  $a \in T$   $N o aN$  (or, equivalently,  $N o Na$ )

• E.g..: common notation:

$$R \rightarrow aR \mid bR \mid a \mid b$$
 .....  $(a + b)^+$ 

#### Regular Language

$$B \rightarrow b \mid B B$$
 vs.  $B \rightarrow b \mid b B$ 

Regular language = can be defined with a regular grammar,

i.e.,  $\langle N, T, S \in N, R \rangle$ , where each rule in R is of one of these forms:

$$N o a$$
 for some  $a \in T$   $N o aN$  (or, equivalently,  $N o Na$ )

• E.g..: common notation:

• Regular grammar is always finite

#### Regular Language

$$B \rightarrow b \mid B \mid B \quad vs. \quad B \rightarrow b \mid b \mid B$$

Regular language = can be defined with a regular grammar,

i.e., 
$$\langle N, T, S \in N, R \rangle$$
, where each rule in  $R$  is of one of these forms:

$$N \to a$$
 for some  $a \in T$ 

$$N o aN$$
 (or, equivalently,  $N o Na$ )

$$N \to \varepsilon$$

• Finite-state machines (FSM/FSA)

z := 8 - 2 \* 3;

$$z := 8 - 2 * 3$$
;  
 $x := z + 7$ ;

```
z := 8 - 2 * 3;

x := z + 7;

x := y := z := 5
```

$$\begin{split} z &:= 8-2 * 3 \;; \\ x &:= z + 7 \;; \\ x &:= y := z := 5 \end{split} \qquad \text{Pr} \rightarrow \text{Var} := \text{Pr} \mid \text{Pr} \;; \text{Pr} \mid \text{E} \end{split}$$

```
\begin{split} z &:= 8 - 2 * 3 \; ; \\ x &:= z + 7 \; ; \\ x &:= y := z := 5 \end{split} \qquad \begin{aligned} &\text{Pr} \rightarrow \text{Var} := \text{Pr} \mid \text{Pr} \; ; \; \text{Pr} \mid \text{E} \\ &\text{E} \rightarrow \text{E} \left( \; + \; | \; - \; | \; * \; | \; / \; \right) \; \text{E} \end{aligned}
```

```
\begin{array}{l} z := 8 - 2 \ ^* \ 3 \ ; \\ x := z + 7 \ ; \\ x := y := z := 5 \end{array} \qquad \begin{array}{l} \text{Pr} \rightarrow \text{Var} := \text{Pr} \mid \text{Pr} \ ; \text{Pr} \mid \text{E} \\ \text{E} \rightarrow \text{E} \left( \ + \mid -\mid \ ^*\mid \ / \ \right) \text{E} \mid \text{Var} \mid \text{int} \mid \text{(E)} \end{array}
```

$$z := 8 - 2 * 3;$$
  
 $x := z + 7;$   
 $x := y := z := 5$ 

$$\mathsf{Pr} \to \mathsf{Var} := \mathsf{Pr} \mid \mathsf{Pr} \; ; \; \mathsf{Pr} \mid \mathsf{E}$$

Ambiguities!

 $\mathsf{E} \to \mathsf{E}$  ( + | - | \* | / )  $\mathsf{E}$  | Var | int | (E)

$$x := y := 5 : x := (y := 5)$$
 or  $(x := y) := 5$ ?

```
 \begin{split} z &:= 8 - 2 * 3 \; ; \\ x &:= z + 7 \; ; \\ x &:= y := z := 5 \end{split} \qquad  \  \  \, \text{Pr} \rightarrow \text{Var} := \text{Pr} \mid \text{Pr} \; ; \text{Pr} \mid \text{E} \\ &= E \rightarrow \text{E} \left( + \mid - \mid * \mid / \right) \text{E} \mid \text{Var} \mid \text{int} \mid \text{(E)} \end{split}
```

```
\begin{split} z &:= 8-2 * 3 \; ; \\ x &:= z+7 \; ; \\ x &:= y := z := 5 \end{split} \qquad \begin{aligned} &\text{Pr} \rightarrow \text{Var} := \text{Pr} \mid \text{Pr} \; ; \text{Pr} \mid \text{E} \\ &\text{E} \rightarrow \text{E} \left( + \mid -\mid * \mid / \right) \text{E} \mid \text{Var} \mid \text{int} \mid (\text{E}) \end{aligned}
```

```
\begin{array}{l} z := 8 - 2 * 3 \; ; \\ x := z + 7 \; ; \\ x := y := z := 5 \end{array} \qquad \begin{array}{l} \text{Pr} \rightarrow \text{Var} := \text{Pr} \mid \text{Pr} \; ; \text{Pr} \mid \text{E} \\ \\ \text{E} \rightarrow \text{E} \; ( \; + \; | \; - \; | \; * \; | \; / \; ) \; \text{E} \mid \text{Var} \mid \text{int} \mid \text{(E)} \end{array} \begin{array}{l} \text{Ambiguities!} \end{array} x := y := 5 \; ; \quad x := (\; y := 5\; ) \quad \text{or} \quad (\; x := y\; ) := 5 \quad ? \\ \\ x := 5 \; ; \; z := 3 \; ; \quad (x := 5) \; ; \; (z := 3) \quad \text{or} \quad x := (\; 5 \; ; \; z := 3) \quad ? \end{array}
```

8-2\*3: (8-2)\*3

or 8 - (2 \* 3)

```
z := 8 - 2 * 3;
 x := z + 7:
 x := y := z := 5
                          Pr \rightarrow Var := Pr \mid Pr ; Pr \mid E
                          \mathsf{E} \to \mathsf{E} (+ |-| * |/) \mathsf{E} | \mathsf{Var} | \mathsf{int} | (\mathsf{E})
 Ambiguities!
   x := y := 5 : x := (y := 5) or (x := y) := 5?
x := 5; z := 3: (x := 5); (z := 3) or x := (5; z := 3)?
      8-2*3: (8-2)*3
                                          or 8 - (2 * 3)
```

8 - 2 - 2:

```
z := 8 - 2 * 3:
 x := z + 7:
 x := y := z := 5
                         Pr \rightarrow Var := Pr \mid Pr ; Pr \mid E
                         \mathsf{E} \to \mathsf{E} (+ |-| * |/) \mathsf{E} | \mathsf{Var} | \mathsf{int} | (\mathsf{E})
 Ambiguities!
   x := y := 5 : x := (y := 5) or (x := y) := 5
x := 5; z := 3: (x := 5); (z := 3) or x := (5; z := 3)
     8-2*3: (8-2)*3
                                        or 8 - (2 * 3)
  P1; P2; P3: (P1; P2); P3
                                        or
                                            P1; (P2; P3)
     8 * 2 * 2 : (8 * 2) * 2
                                            8 * (2 * 2)
                                        or
```

INF122 (Fall'16) Lecture 1B – Syntactic Structure 12 / 18

or

8 - (2 - 2)

(8-2)-2

```
z := 8 - 2 * 3:
 x := z + 7:
 x := y := z := 5
                            \mathsf{Pr} \to \mathsf{Var} := \mathsf{Pr} \mid \mathsf{Pr} \; ; \; \mathsf{Pr} \mid \mathsf{E}
                            \mathsf{E} \to \mathsf{E} (+ |-| * |/) \mathsf{E} | \mathsf{Var} | \mathsf{int} | (\mathsf{E})
 Ambiguities!
  Precedence:
   x := y := 5 : x := (y := 5) or (x := y) := 5
x := 5; z := 3: (x := 5); (z := 3) or x := (5; z := 3)
      8-2*3: (8-2)*3
                                             or 8 - (2 * 3)
  P1; P2; P3: (P1; P2); P3
                                             or
                                                  P1; (P2; P3)
      8 * 2 * 2 :
                         (8 * 2) * 2
                                                     8 * (2 * 2)
                                             or
      8 - 2 - 2:
                         (8-2)-2
                                                      8 - (2 - 2)
                                             or
```

INF122 (Fall'16) Lecture 1B - Syntactic Structure 12 / 18

```
z := 8 - 2 * 3;
 x := z + 7:
 x := y := z := 5
                            \mathsf{Pr} \to \mathsf{Var} := \mathsf{Pr} \mid \mathsf{Pr} \; ; \; \mathsf{Pr} \mid \mathsf{E}
                            \mathsf{E} \to \mathsf{E} (+ |-| * |/) \mathsf{E} | \mathsf{Var} | \mathsf{int} | (\mathsf{E})
 Ambiguities!
  Precedence:
   x := y := 5 : x := (y := 5) or (x := y) := 5
x := 5; z := 3: (x := 5); (z := 3) or x := (5; z := 3)
      8-2*3: (8-2)*3
                                              or 8 - (2 * 3)
  Associativity:
  P1 : P2 : P3 :
                   (P1; P2); P3
                                                   P1; (P2; P3)
                                             or
      8 * 2 * 2 ·
                         (8 * 2) * 2
                                                      8 * (2 * 2)
                                             or
      8 - 2 - 2:
                         (8-2)-2
                                                      8 - (2 - 2)
                                              or
```

$$\begin{array}{l} Pr \rightarrow V := Pr \mid Pr \; ; \; Pr \mid E \\ E \rightarrow E \; (\; + \mid -\mid *\mid /\;) \; E \mid V \mid int \mid (E) \end{array}$$

$$\begin{array}{l} \mathsf{Pr} \to \mathsf{V} := \mathsf{Pr} \mid \mathsf{Pr} \ ; \ \mathsf{Pr} \mid \mathsf{E} \\ \mathsf{E} \to \mathsf{E} \ ( \ + \mid - \mid * \mid / \ ) \ \mathsf{E} \mid \mathsf{V} \mid \mathsf{int} \mid \mathsf{(E)} \end{array}$$

prec.

$$\begin{array}{l} \mathsf{Pr} \to \mathsf{V} := \mathsf{Pr} \mid \mathsf{Pr} \; ; \; \mathsf{Pr} \mid \mathsf{E} \\ \mathsf{E} \to \mathsf{E} \; \big( \; + \; | \; - \; | \; * \; | \; / \; \big) \; \mathsf{E} \mid \mathsf{V} \mid \mathsf{int} \mid \mathsf{(E)} \end{array}$$
 prec. assos. 
$$\begin{array}{l} \mathsf{0} \\ \mathsf{1} \\ \mathsf{2} \\ \mathsf{3} \end{array}$$

$$\begin{array}{c} \text{Pr} \rightarrow \text{V} := \text{Pr} \mid \text{Pr} \; ; \; \text{Pr} \mid \text{E} \\ \text{E} \rightarrow \text{E} \; ( \; + \; | \; - \; | \; * \; | \; / \; ) \; \text{E} \mid \text{V} \mid \text{int} \mid \text{(E)} \end{array}$$
 prec. assos. 
$$\begin{array}{c} \text{prec. assos.} \\ \text{c:=} \quad \quad 0 \qquad \text{right} \\ \text{:=} \qquad \quad 1 \qquad \text{right} \\ \text{+,-} \qquad \quad 2 \\ \text{*,} \quad / \qquad 3 \end{array}$$

$$Pr \rightarrow V := Pr \mid Pr \; ; \; Pr \mid E \\ E \rightarrow E \; (\; + \mid -\mid *\mid /\; ) \; E \mid V \mid int \mid (E)$$

prec. assos.

-;- 0 right

:= 1 right

+,- 2 left

\*. / 3 left

$$\begin{array}{c} \text{Pr} \rightarrow \text{V} := \text{Pr} \mid \text{Pr} \; ; \; \text{Pr} \mid \text{E} \\ \text{E} \rightarrow \text{E} \; ( \; + \; | \; - \; | \; * \; | \; / \; ) \; \text{E} \mid \text{V} \mid \text{int} \mid \text{(E)} \\ \end{array}$$
 
$$\begin{array}{c} \text{prec. assos.} \\ \text{-;-} \quad 0 \quad \text{right} \quad \text{Pr} \quad \rightarrow \quad \text{St} \mid \text{St} \; ; \; \text{Pr} \\ \vdots = \quad 1 \quad \text{right} \\ \text{+,-} \quad 2 \quad \text{left} \\ \end{array}$$
 
$$\begin{array}{c} \text{*,} \quad / \quad 3 \quad \text{left} \end{array}$$

# Parse Tree (Concrete Syntax Tree)

- ► A representation of grammars in a tree-like form
- ► Pictorially shows how the start symbol of a grammar derives a string in the language
- ► Provide syntactic information

# Parse Tree (Concrete Syntax Tree)

- ► A representation of grammars in a tree-like form
- ► Pictorially shows how the start symbol of a grammar derives a string in the language
- ► Provide syntactic information

$$\mathsf{E} ::= \mathsf{E} - \mathsf{E} \mid 0 \mid 1$$
 Expression:  $1 - 0$ 



# Parse Tree (Concrete Syntax Tree)

- ► A representation of grammars in a tree-like form
- ► Pictorially shows how the start symbol of a grammar derives a string in the language
- ► Provide syntactic information

$$E ::= E - E \mid 0 \mid 1$$
  
Expression: 1 - 0



What about for 1 - 0 - 1

# Syntactical Ambiguity

#### What about for 1 - 0 - 1



# Syntactical Ambiguity

#### What about for 1 - 0 - 1





# Syntactical Ambiguity

#### What about for 1 - 0 - 1





Two or more parse trees  $\Rightarrow$  ambigious

Parse trees can be very complicated:

E.g., the C statement, **return** a + 2;

16 / 18

Parse trees can be very complicated:

E.g., the C statement, **return** a + 2;



RETURN expression 1:1 assignment expression conditional expression Parse trees can be very complicated: E.g., the C statement, **return** a + 2; additive expression multiplicative additive '+' expression expression ► Hard to analyse, and processing multiplicative cast expression expression unary expression identifier

jump\_statement

'a'

constant

## Abstract Syntax Tree (AST)

- ► A simplified syntactic representation of the source code
- ▶ Different from parse tree:
  - Does not show the whole syntactic mess
  - Pictorises the parsed string in a structured way

## Abstract Syntax Tree (AST)

- ▶ A simplified syntactic representation of the source code
- ▶ Different from parse tree:
  - Does not show the whole syntactic mess
  - Pictorises the parsed string in a structured way



## Abstract Syntax Tree (AST)

- ▶ A simplified syntactic representation of the source code
- ▶ Different from parse tree:
  - Does not show the whole syntactic mess
  - Pictorises the parsed string in a structured way



$$\begin{array}{l} Pr \rightarrow V := Pr \mid Pr \textrm{ ; } Pr \mid E \\ E \rightarrow E \textrm{ ( } + \mid - \mid * \mid / \textrm{ ) } E \mid V \mid int \mid (E) \end{array}$$

$$\mathbf{E} \to \mathbf{E} \ \mathbf{Rs} \ | \ \mathbf{Trm}$$

 $F \rightarrow int | V | (E)$ 

$$\begin{array}{l} \mathsf{Pr} \to \mathsf{V} := \mathsf{Pr} \mid \mathsf{Pr} \ ; \ \mathsf{Pr} \mid \mathsf{E} \\ \mathsf{E} \to \mathsf{E} \ ( \ + \mid - \mid * \mid / \ ) \ \mathsf{E} \mid \mathsf{V} \mid \mathsf{int} \mid \mathsf{(E)} \end{array}$$

$${f E} 
ightarrow {f E}$$
 Rs  $|$  Trm  $|$  becomes  ${f E} 
ightarrow$  Trm New and New  $ightarrow$  Rs New  $|$   $arepsilon$ 

$$\begin{array}{l} \mathsf{Pr} \to \mathsf{V} := \mathsf{Pr} \mid \mathsf{Pr} \ ; \ \mathsf{Pr} \mid \mathsf{E} \\ \mathsf{E} \to \mathsf{E} \ ( \ + \mid - \mid * \mid / \ ) \ \mathsf{E} \mid \mathsf{V} \mid \mathsf{int} \mid \mathsf{(E)} \end{array}$$

$${f E} 
ightarrow {f E} {f Rs} \mid {f Trm} \qquad {f becomes} \ {f E} 
ightarrow {f Trm} \ {f New} \ {f and} \ {f New} \mid arepsilon$$
 e.g.,  ${f E} 
ightarrow {f M} \ {f New}$ 

$$\begin{array}{l} \mathsf{Pr} \to \mathsf{V} := \mathsf{Pr} \mid \mathsf{Pr} \ ; \ \mathsf{Pr} \mid \mathsf{E} \\ \mathsf{E} \to \mathsf{E} \ ( \ + \mid - \mid * \mid / \ ) \ \mathsf{E} \mid \mathsf{V} \mid \mathsf{int} \mid \mathsf{(E)} \end{array}$$

$$\begin{array}{l} \mathsf{Pr} \to \mathsf{V} := \mathsf{Pr} \mid \mathsf{Pr} \ ; \ \mathsf{Pr} \mid \mathsf{E} \\ \mathsf{E} \to \mathsf{E} \ ( \ + \mid - \mid * \mid / \ ) \ \mathsf{E} \mid \mathsf{V} \mid \mathsf{int} \mid \mathsf{(E)} \end{array}$$

$$\begin{array}{l} \mathsf{Pr} \to \mathsf{V} := \mathsf{Pr} \mid \mathsf{Pr} \ ; \ \mathsf{Pr} \mid \mathsf{E} \\ \mathsf{E} \to \mathsf{E} \ ( \ + \mid - \mid * \mid / \ ) \ \mathsf{E} \mid \mathsf{V} \mid \mathsf{int} \mid \mathsf{(E)} \end{array}$$

$${f E} 
ightarrow {f E} {f Rs} \mid {f Trm} \quad {f becomes} \quad {f E} 
ightarrow {f Trm} \ {f New} \ {f and} \ {f New} 
ightarrow {f Rs} \ {f New} \mid {ar \varepsilon}$$
 e.g.,  ${f E} 
ightarrow {f M} \ {f New} \quad {f and} \quad {f New} 
ightarrow + {f M} \ {f New} \mid {f -M} \ {f New} \mid {ar \varepsilon}$  change associativity to right! — manipulation of left-recursion requires something more than 'recursive descent parsing'