

Features

- Uses CRM(CQ) advanced SkyMOS2 technology
- Extremely low on-resistance R_{DS(on)}
- Excellent Q_qxR_{DS(on)} product(FOM)
- Qualified according to JEDEC criteria

Product Summary

V _{DS}	63V
R _{DS(on)@10V typ}	5.3 m Ω
R _{DS(on)@4.5V typ}	$7.3 m\Omega$
I_{D}	60A

Applications

- Synchronous Rectification for AC/DC Quick Charger
- Battery management
- UPS (Uninterrupible Power Supplies)

100% Avalanche Tested

CRSM060N06L2

Package Marking and Ordering Information

Part #	Marking	Package	Packing	Reel Size	Tape Width	Qty
CRSM060N06L2	SM060N06L2	DFN5X6	Tape&Reel	N/A	N/A	5000pcs

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Drain-source voltage	V_{DS}	63	V
Continuous drain current			
$T_C = 25^{\circ}C$ (Package limit)	I_{D}	60	Α
T _C = 25°C (Silicon limit)	₁ D	86	
T _C = 100°C (Silicon limit)		55	
Pulsed drain current ($T_C = 25$ °C, t_p limited by T_{jmax})	$I_{D\;pulse}$	240	Α
Avalanche energy, single pulse (L=0.3mH, Rg=25 Ω) ^[1]	E _{AS}	63	mJ
Gate-Source voltage	V_{GS}	±20	V
Power dissipation ($T_C = 25^{\circ}C$)	P _{tot}	78.1	W
Operating junction and storage temperature	T_j , T_{stg}	-55+150	°C

Notes:1.EAS was tested at Tj = 25° C, ID = 20.5A.

Thermal I	Resistance
-----------	------------

Parameter	Symbol	Max	Unit
Thermal resistance, junction – case	R_{thJC}	1.60	°C/W
Thermal resistance, junction – ambient	R_{thJA}	47.0	C/ W

Electrical Characteristic (at Tj = 25 °C, unless otherwise specified)

Parameter	Symbol		Unit	Test Condition			
	Syllibol	min.	typ.	max.	Oilit	rest condition	
Static Characteristic							
Drain-source breakdown voltage	BV _{DSS}	63	-	1	V	V _{GS} =0V, I _D =250μA	
Gate threshold voltage	V _{GS(th)}	1.2	1.7	2.2	V	$V_{DS}=V_{GS}$, $I_D=250\mu A$	
Zero gate voltage drain current	I _{DSS}	-	0.02	1 10	μΑ	V_{DS} =60V, V_{GS} =0V T_{j} =25°C T_{j} =125°C	
Gate-source leakage current	I_{GSS}	-	10	100	nA	$V_{GS}=\pm 20V, V_{DS}=0V$	
Drain-source on-state	P	ı	5.3	6.4		V _{GS} =10V, I _D =30A	
resistance	R _{DS(on)}	-	7.3	-	mΩ	V _{GS} =4.5V, I _D =24A	
			7.3	9.1		$V_{GS}=5V$, $I_D=24A$	
Transconductance	g _{fs}	-	98	-	S	V_{DS} =5V, I_{D} =30A	

Dvnamic Characteristic

Dynamic Characteristic						
Thermal change induce D-S voltage shift	DVDS	40	-	100	mV	V _{DS} =20V IM=10mA, ID=0.72A PT=10ms, DT=50μs
Input Capacitance	C_{iss}	-	1666	-		
Output Capacitance	C_{oss}	-	510	-	pF	$V_{GS}=0V$, $V_{DS}=30V$,
Reverse Transfer Capacitance	C _{rss}	-	34	-		f=1MHz
Gate Total Charge	Q_{G}	-	28	-		V_{GS} =10V, V_{DS} =30V, I_{D} =30A, f=1MHz
Gate-Source charge	Q_{gs}	-	7.1	-	nC	
Gate-Drain charge	Q_{gd}	-	4.3	-		
Turn-on delay time	t _{d(on)}	-	9.7	-		
Rise time	t _r	-	72	-	na	$V_{GS}=10V$, $V_{DD}=30V$, $R_{G_ext}=2.7\Omega$
Turn-off delay time	t _{d(off)}	-	24.8	-	ns	
Fall time	t _f	-	87	-		
Gate resistance	R_G	-	2	-	Ω	V _{GS} =0V, V _{DS} =0V, f=1MHz

Body Diode Characteristic

Parameter	Symbol	Value			Unit	Test Condition	
- Farameter	Syllibol	min.	typ.	max.	Oilit	rest condition	
Body Diode Forward Voltage	V_{SD}	ı	0.88	1	٧	V _{GS} =0V,I _{SD} =30A	
Body Diode Reverse Recovery Time	t _{rr}	-	27	-	ns	I _F =30A,	
Body Diode Reverse Recovery Charge	Q _{rr}	ı	49	ı	nC	dI/dt=300A/μs	

Typical Performance Characteristics

Fig 2: Transfer Characteristics 120 110 $V_{DS}=5V$ 100 90 80 **I**_o (A) 70 60 50 40 125°C 30 20 25°C 10 5

 $V_{GS}(V)$

Fig 8: Body-diode Forward
Characteristics

100
125°C
25°C

0.1
0.2
0.4
0.6
0.8
1
1.2
1.4

V_{sD} - Diode Forward Voltage(V)

Fig 9: Power Dissipation 90 80 70 60 50 40 30 20 10 0 25 75 100 125 0 50 150 T_C - Case Temperature (°C)

Fig 11: Safe Operating Area 1000 1μs Limited by 10μs 100 Rds(on) 10 1 Single pulse Tc=25°C 0.1 100 0.1 1 10 $V_{DS}\left(V\right)$

Test Circuit & Waveform

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

Symbol	Dimensions 1	In Millimeters	Dimensior	ns In Inches	
Symbol	Min.	Max.	Min.	Max.	
Α	0.80	1.20	0.031	0.047	
A1	0.00	0.05	0.000	0.002	
b	0.30	0.51	0.012	0.020	
С	0.15	0.35	0.006	0.014	
D	4.80	5.40	0.189	0.213	
е	1.27	BSC	0.050 BSC		
E	5.66	6.06	0.223	0.239	
G	0.30	0.71	0.012	0.028	
Н	5.90	6.35	0.232	0.250	
J	3.32	3.92	0.131	0.154	
K	3.61	4.25	0.142	0.167	
L1	0.05	0.25	0.002	0.010	
L2	0.00	0.15	0.000	0.006	
R	0.25	REF	0.01	0 REF	
θ	0°	12°	0°	12°	

SkyMOS2 N-MOSFET 63V, $5.3m\Omega$, 60A

Revision History

Revison	Date	Major changes
1.0	2019/1/3	Release of formal version.
1.1	2019/5/13	BVDS minimum value change & outline size revise
2.0	2019/6/25	Igss ± Supplement
3.0	2023/6/30	Add DVDS&RDS _(on) @5V,RthJL modified to RthJC
4.0	2024/9/5	Add Fig 12: Vgs(th) vs. Temperature

Disclaimer

Unless otherwise specified in the datasheet, the product is designed and qualified as a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability, such as automotive, aviation/aerospace and life-support devices or systems.

Any and all semiconductor products have certain probability to fail or malfunction, which may result in personal injury, death or property damage. Customer are solely responsible for providing adequate safe measures when design their systems.

CRM(CQ) reserves the right to improve product design, function and reliability without notice.