CALYPSO FUNCTIONAL SPECIFICATION	Page	1 / 25
Card Application	Version	1.3
Ref: 010608-NT-CalvosoGenSpecs	Date	25 October 2005

CALYPSO FUNCTIONAL SPECIFICATION Card Application

©2001 Innovatron, RATP, SNCF. All rights reserved. The following Specification includes contactless and applicative technology which are patented in several countries. Permission to copy and implement the material contained herein, is subject to a Calypso license. You may contact Innovatron for further information.

The authors of this documentation make no other representation or warranty regarding whether any particular physical implementation of any part of this specification does or does not violate, infringe, or otherwise use other patents, copyrights, trademarks, trade secrets, know-how, and/or other intellectual property of third parties, and thus any person who implements any part of this Specification should consult an intellectual property attorney before any such implementation.

Any party seeking to implement this Specification is solely responsible for determining whether their activities require another license to any technology. Innovatron, RATP, SNCF and Spirtech shall not be liable for infringements of any third party's intellectual property right.

CALYPSO FUNCTIONAL SPECIFICATIONPage2 / 25Card ApplicationVersion1.3Ref: 010608-NT-CalypsoGenSpecsDate25 October 2005

AUTHOR

Frederic LEVY contact@spirtech.com
Tel: +33- 1 40 46 36 21
Fax: +33- 1 40 46 36 29

1 rue Danton - 75006 Paris - France

REVISION LIST

Version	Date	Modifications	Author
1.3	051025	Cryptography and files contents sections updated, and several minor modifications.	SDI
1.2	031124	Removed references to unnecessary documents.	FLV
1.1	010628	Minor corrections.	FLV
1.0	010608	First release	FLV

CALYPSO FUNCTIONAL SPECIFICATION

Card Application
Ref: 010608-NT-CalypsoGenSpecs

Page Version Date 3 / 25 1.3

25 October 2005

TABLE OF CONTENTS

1	OVERVIEW	4
	1.1 Context	
	1.2 Calypso	
	1.3 Calypso Functional Specification: Card Application	
	1.4 Normative References	
	1.5 Glossary	
2	THE CALYPSO SYSTEM	8
	2.1 General Features	8
	2.2 Card Characteristics	9
3	DATA ORGANIZATION IN THE CARDS	11
	3.1 Files	11
	3.2 Calypso DF	
	3.3 Data Addressing	
4	CALYPSO FUNCTIONALITY	
	4.1 Introduction to the Card Data Management Principles	
	4.2 Main Calypso Card Commands	14
5	EXAMPLE OF DEBIT TRANSACTION	
	5.1 General Description	15
	5.2 Debit Transaction	15
6	SECURITY MECHANISMS	19
	6.1 Introduction to the Calypso Security	19
	6.2 Secret Keys	19
	6.2.1 Types of Secret Keys	19
	6.2.2 Key index, Version and Category (KVC)	
	6.2.3 Cryptographic Algorithms	
	6.2.4 Security Modules (SAM)	
	6.3 Access Conditions	
	6.4 Session Description	
	6.4.1 Secure Session Security	
	6.4.2 Ratification	
	6.5 Memory Modification Management	22
7	INTEGRATION OF CALYPSO WITH ANOTHER APPLICATION	
	7.1 Presentation	
	7.2 Electronic Purse Integration principle	23
8	FILES CONTENT	24
	8.1 Master File	24
	8.2 Calypso DF	

CALYPSO FUNCTIONAL SPECIFICATION	Page	4 / 25
Card Application	Version	1.3
Ref: 010608-NT-CalypsoGenSpecs	Date	25 October 2005

1 OVERVIEW

1.1 Context

Today, the passenger is the center of attention of the public transport operators. The objectives of ensuring a good reception, offering more comfort and security and offering personalized services, all suppose a detailed knowledge of the clients to ensure a high quality of service.

The ticketing systems are also involved in this priority given to the customers: it is not enough to provide them with access to the transportation network, it must also allow building a new relationship with them.

For any operator interested by this global customer concern, Calypso brings a solution based upon the most recent contactless technologies.

However, Calypso is not limited to a simple technical evolution replacing the ticket by a contactless card: designed by the transport operators, for the transport operators, Calypso offers a solution open, modular and complete.

1.2 Calypso

Since 1990, *Innovatron*, *RATP* and *SNCF*, have set the goal of developing a non-proprietary technology for a secure, fast and flexible public transport ticketing system.

The 10 years development program that ensued, succeeded in creating the smartcard contactless technology adapted to the public transportation uses. The technology was made accessible to all industrial companies on a fair and non-discriminatory basis, to ensure:

- The birth of this new technology, suited to the public transport needs.
- A good products compatibility.
- A fair market concurrence.

Through the *Icare* and *Calypso* European projects, associating *Brussels* in Belgium, *Lisbon* in Portugal, *Konstanz* in Germany, *Paris* in France and *Venice* in Italy, it was ensured that the technology could be adapted to many public transport environments, and could be married to other services, such as the electronic purse.

These efforts resulted in the development of the CD97 family of contactless smartcards and their applications. It also leaded to the ISO 14443 type B standard, as well as many advances in the ISO 1545 standard.

To better identify the technology, abstracted from a particular product, this "CD97" technology was renamed *Calypso* during the year 2000.

CALYPSO FUNCTIONAL SPECIFICATION	Page	5 / 25
Card Application	Version	1.3
Ref: 010608-NT-CalypsoGenSpecs	Date	25 October 2005

1.3 Calypso Functional Specification: Card Application

This document contains a functional description of the Calypso card application.

Calypso contactless cards are contactless smartcards for payment of public transport compatible with the Calypso specification. They are used as part of a secure contactless system including a central system, reloading equipment, validators, and possible other equipment:

- The central system allows keeping track of the transactions, making statistics and verifying the system security and integrity.
- The reloading equipment loads tickets (one-way tickets, season tickets, etc) and value into the cards.
- The validators are used to validate entrance in (and optionally exit from) the network system.
- Possibly: some hand-held controlling equipment, personalization machines, etc..

All parts of the system must be designed with some of the major goals of a secure contactless system in mind, particularly the speed and security of transactions. The present manual therefore contains some guidelines on the card uses, some typical transactions descriptions and guidelines on the overall system design.

CALYPSO FUNCTIONAL SPECIFICATION	Page	6 / 25
Card Application	Version	1.3
Ref: 010608-NT-CalypsoGenSpecs	Date	25 October 2005

1.4 Normative References

EN 1545-1:1998	Identification card systems - Surface transport applications - Part 1 : General data elements
EN 1545-2:1998	Identification card systems - Surface transport applications - Part 2 : Transport payment related data elements
ISO/IEC 7816-1:1998	Identification cards - Integrated circuit(s) cards with contacts - Part 1: Physical characteristics
ISO/IEC 7816-2:1999	Identification cards - Integrated circuit(s) cards with contacts - Part 2: Dimensions and location of contacts
ISO/IEC 7816-3:1999	Identification cards - Integrated circuit(s) cards with contacts - Part 3: Electronic signals and transmission protocols
ISO/IEC 7816-4:1995	Identification cards - Integrated circuit(s) cards with contacts - Part 4, Inter-industry commands for interchange
ISO/IEC 7816-5:1994	Identification cards - Integrated circuit(s) cards with contacts - Part 5: Numbering system and registration procedure for application identifiers
ISO/IEC 7816-6:1996	Identification cards - Integrated circuit(s) cards with contacts - Part 6: Inter-industry data elements
ISO 8731-1:1987	Banking - Approved algorithms for message authentication -Part 1: DEA
ISO 8372:1987	Information processing - Modes of operation for a 64-bit block cipher algorithm
ISO 8859-1:1998	Information technology 8-bit single-byte coded graphic character sets Part 1: Latin alphabet No. 1
ISO/IEC 9797:1994	Information technology - Security techniques - Data integrity mechanism using a cryptographic check function employing a block cipher algorithm
ISO/IEC 9797-1 :1999	Message authentication techniques - Part 1 : Mechanisms using a block cipher
ISO/IEC 14443-1:2000	Identification cards - Contactless IC cards - Proximity cards - Part 1: Physical characteristics
ISO/IEC 14443-2:2001	Identification cards - Contactless IC cards - Proximity cards - Part 2 : Radio frequency power and signal interface
ISO/IEC 14443-3:2001	Identification cards - Contactless IC cards - Proximity cards - Part 3 : Initialization and anticollision
ISO/IEC 14443-4:2001	Identification cards - Contactless IC cards - Proximity cards - Part 2 : Radio frequency power and signal interface
ISO/IEC 15408-2:1999	Information technology - Security techniques Evaluation criteria for IT security - Part 2: Security functional requirements
ISO/IEC 15408-3:2000	Information technology - Security techniques Evaluation criteria for

CALYPSO FUNCTIONAL SPECIFICATION	Page	7 / 25
Card Application	Version	1.3
Ref: 010608-NT-CalypsoGenSpecs	Date	25 October 2005

IT security - Part 3: Security assurance requirements

ISO/IEC 15408-4:2000 Information technology - Security techniques -- Evaluation criteria for

IT security - Part 4: Answer to select and transmission protocol

EMV 2000:version 4.0 Integrated Circuit Card - Specification for Payment System

ISBN 3-540-61512-1 DESX algorithm definition. Kilian & Rogaway, "How to Protect DES

Against Exhaustive Key Search", from CRYPTO'96. Advances in cryptology 16th annual international conference, springer verlag

1.5 Glossary

CD97 Contact and contactless microprocessor smartcard upon which these

specifications are based (Carte Déplacement 97)

Dedicated File (DF) Equivalent of a directory. A DF contains other files.

DES Ciphering algorithm producing 8 bytes of data from 8 input bytes, using a 7

bytes key (as defined in ANSI X3.92-1981)

DESX Ciphering algorithm producing 8 bytes of data from 8 input bytes, using a 15

bytes key (as defined in How to Protect DES Against Exhaustive Key Search

by Kilian & Rogaway)

DF See Dedicated File
EF See Elementary File

Elementary File (EF) File containing data. There are three types of EF defined by Calypso:

linear, cyclic and counter files.

LID,

Long file Identifier (LID) External unique number identifying a file (0000h to FFFEh, without

3FFFh). All files have an LID. The MF has an LID of 3F00h.

MAC Message Authentication Cipher. Value allowing the computation of a signature

of data.

Record The data in the files are organized in records of at least 29 data bytes.

Record Number A file may contain more than one record. The record number identifies one

record in the file. Files have record number from 1 to the maximum number of records of the file. For cyclic files, record number 1 if the most recent record

added to the file.

SAM Security Application Module.

SFI,

Short File Identifier (SFI) External unique number identifying a file (1 to 30). Some files have no

SFI.

CALYPSO FUNCTIONAL SPECIFICATION	Page	8 / 25
Card Application	Version	1.3
Ref: 010608-NT-CalypsoGenSpecs	Date	25 October 2005

2 THE CALYPSO SYSTEM

2.1 General Features

A Calypso card is part of an information system architecture, allowing transfer and verification of transport rights. The card may contain other information, for example about the card holder, the last uses of the card, etc.

As the transport rights represent a monetary value, their utilization is protected by cryptographic algorithms, preventing defrauders from forging a false card, or reloading a card without proper authorization.

The cryptographic algorithms are based on secret keys, hidden in the cards and in the Secure Application Modules (SAM). A SAM is a smart card present permanently in the equipment interacting with the cards (or remotely connected with the equipment).

After manufacturing, the card is personalized by writing in it: the secret keys and the application data.

During its life, the card will typically:

- Be loaded with new information, transport rights, transport tokens.
- Be used at a validator to access into the transport network or to gain other value, by showing the transport rights in the card, or debiting the transport tokens.
- Be controlled to check its information, or to display it to the user.

This manual will illustrate some typical transactions, and describe in detail the card data organization and commands.

A Calypso card may be used for other application than public transportation, and may have features extending its capabilities beyond the Calypso specification. This is outside the scope of the present document.

CALYPSO FUNCTIONAL SPECIFICATION	Page	9 / 25
Card Application	Version	1.3
Ref: 010608-NT-CalypsoGenSpecs	Date	25 October 2005

2.2 Card Characteristics

A Calypso card is a contactless smartcard for public transport applications. The Calypso card may also contain other applications and interfaces.

A Calypso card is a microprocessor based smartcard that:

- Complies with ISO 14443 B.
- Complies with ISO 7816-3 and ISO 7816-4 (if embedded in a smartcard format).
- Allows coding of the ISO 1545 transport data structures.
- Ensures a high security of transactions.
- Ensures fast contactless transactions.

ISO 7816 and ISO 14443 compliance

Note: Whatever the card package, the Calypso portable equipment embedding the contactless smartcard functionality will be called a *card* in these specification.

A Calypso card package may comply with the ISO 7810, ISO 7816-1 and ISO 7816-2 standards, or may be packaged differently: embedded in a wristwatch, in a paper ticket, in a mobile phone, etc. It must includes a radio antenna allowing a contactless communication.

When packaged as an ISO 7816 card, it must work in contact operations at 5V, according to the ISO 7816-3 T=0 standard. It is possible, but not required, to also allow other working voltages (e.g. 3V) and protocol support (e.g. T=1, I2C...).

The Calypso card works in contactless operations, at 13.56 MHz, according to the ISO 14443, type B, part 1, 2, 3 and 4. It may include other radio protocols.

The card data is organized in files, according to the ISO 7816-4 standard.

ISO 1545 transport data structures

A Calypso card may be used for various applications.

For public transport applications, the card data must be able to encode the ISO 1545 transport data structures, if necessary. Such an encoding is described in this manual.

The card never analyzes this data. The data may thus be coded differently for other applications. It is entirely up to the terminals using the cards (validators, reloading machines, etc.) to decide the data layout written in the card.

The card file structure allows to store at least the following information:

- application and holder information.
- 4 contracts.
- 4 counters (0 to 16.777.215 units each),
- log of at least the 3 last events,
- · other applicative data,
- card manufacturing information and secret keys.

The storage of additional information is possible but not required.

CALYPSO FUNCTIONAL SPECIFICATION	Page	10 / 25
Card Application	Version	1.3
Ref: 010608-NT-CalypsoGenSpecs	Date	25 October 2005

High security

Different types of Calypso compatible cards may offer different levels of security.

Calypso allows the use of the DES algorithm (associated with a specific hash algorithm), with 64 bits secret keys, of the DESX algorithm (associated with a specific hash algorithm), with 120 bits secret keys, and of Triple-DES algorithm, with 112 bits secret keys, offering high security levels against false card manufacturing, or unauthorized card reloading.

CALYPSO FUNCTIONAL SPECIFICATION	Page	11 / 25
Card Application	Version	1.3
Ref: 010608-NT-CalypsoGenSpecs	Date	25 October 2005

3 DATA ORGANIZATION IN THE CARDS

3.1 Files

The card data is organized in hierarchical files, and complies with ISO/IEC 7816-4.

The Calypso Specification does not define a fixed file structure layout of the card, but it does define the minimum files that must be present in a Calypso DF.

3.2 Calypso DF

A Calypso DF has the following architecture:

3.3 Data Addressing

There are two main types of files: Dedicated Files (DF, directories of files) and Elementary Files (EF, files containing data).

DF are directories that may contain Elementary Files and other Dedicated Files. The root DF of the card is called the Master File (MF).

EF are files containing data: user data organized in linear or cyclic records, counters, keys, etc. The linear, cyclic and counter files are described in more details in the next sections.

A file in the card is identified externally by its *Long Identifier* (LID). Additionally, some files may be identified by their *Short File Identifier* (SFI).

The Calypso DF may also be accessed by its name.

At any moment, one file of the card is the currently selected file, or the **current file**. This is the default file in which operations may occur, if not specified otherwise.

The selection of a file, to make it the current file, may be done directly by the Select command, or indirectly by using a command referencing this file. For example, the Read Record command (allowing reading data from a file), may be done on the currently selected file, or a on file whose SFI is specified.

CALYPSO FUNCTIONAL SPECIFICATION	Page	12 / 25
Card Application	Version	1.3
Ref: 010608-NT-CalypsoGenSpecs	Date	25 October 2005

Inside a file, the data is organized in **records**. A file may have 1, or many records. All Calypso mandatory records must exist after personalization of the card. A record that has never been written will contain only zeroes (00h).

Access to the data, for reading or modifying, is subject to access rights described in the *Security Mechanism* chapter.

Linear files

The records in a linear file are organized in sequence, from record #1 to record #N (the number of records in the file).

Any record may be accessed directly for reading of for modification.

Cyclic files

The records in a cyclic file are organized in a cycle, from the most recent (#1) to the oldest (#N). Appending a record to the file makes it the number 1, while the others are renumbered, and the oldest one is removed.

In a cyclic file, it is possible to read any record directly, but the only modifications possible are: appending a new record, and updating or "overwriting" the most recent record (overwriting means turning memory bits to "1").

Counter files

Counter files are linear files upon which, in addition to the read and update operations, two counter-specific operations may be done:

• Increase: to add a value to one, or a few, counters.

Decrease: to subtract a value from one, or a few, counters.

CALYPSO FUNCTIONAL SPECIFICATION	Page	13 / 25
Card Application	Version	1.3
Ref: 010608-NT-CalypsoGenSpecs	Date	25 October 2005

4 CALYPSO FUNCTIONALITY

4.1 Introduction to the Card Data Management Principles

When using a Calypso smartcard, the users may wish:

- To ensure that the card data is genuine. It must not be possible for defrauder to forge the data, or to modify it in the card.
- To ensure the integrity of the data written in the card, even if the card power supply is unexpectedly shut down during a single write operation, or during the synchronous update of related files in the card (for example, recording a new event in the card may be linked with a counter decrement).

Calypso Specification solves these needs by a single mechanism called the Secure Session¹.

A secure session begins by a specific command sent to the card to open the session (*Open Secure Session*), and ends by a specific command to close the session (*Close Secure Session*).

During the session, it is possible to read and write data into the card (the access may be restricted on some files by specific conditions, e.g. having presented a PIN code).

When the session closes, all the data exchanged is certified by the card, and by the SAM included in the terminal. This certification simultaneously:

- proves the authenticity of the terminal to the card (authenticating the terminal),
- proves the authenticity of the card to the terminal (authenticating the card),
- certify that the data exchanged is genuine and has not been tampered with by a defrauder.

Finally, this command also proves to the terminal that the card has been correctly updated.

The details of the secure session mechanism, as well as a special feature called the **Ratification**¹, are explained in detail in the chapter *Security Mechanisms*.

Note that the Secure Session and the Ratification described in the Calypso Specification for Ticketing are patented. Use of these technologies is subject to the Calypso Application license.

CALYPSO FUNCTIONAL SPECIFICATION	Page	14 / 25
Card Application	Version	1.3
Ref: 010608-NT-CalypsoGenSpecs	Date	25 October 2005

4.2 Main Calypso Card Commands

Security related commands:

Open Secure Session	Opens a secure session
Close Secure Session	Closes a secure session

File level command:

Select	Selects the indicated application or file
Invalidate	Invalidates the DF

Data access commands:

Read Record	Reads a record from a file
Append Record	Append a new record to a cyclic file, erasing the older record of the file
Update Record	Writes data in a file record, replacing the existing one
Write Record	Writes data over a file record (OR operation with the given and existing data)
Decrease	Decreases the value of a file counter
Decrease Multiple	Decreases the value of one to seven file counters
Increase	Increases the value of a file counter
Increase Multiple	Increases the value of one to seven file counters

CALYPSO FUNCTIONAL SPECIFICATION	Page	15 / 25
Card Application	Version	1.3
Ref: 010608-NT-CalypsoGenSpecs	Date	25 October 2005

5 EXAMPLE OF DEBIT TRANSACTION

5.1 General Description

This chapter describes an example of debit transaction with a Calypso card.

The main uses of a card will typically be, for a user:

- Getting a new card.
- Buying transport rights, loaded in the card.
- Using the card to enter (and possibly exit) the transport network (debit transaction).

These actions correspond to different processes applied to the card:

Action	Name	Description
Getting a new card	Personalization	The card must be prepared for use by having its secret keys loaded, as well as other information (discount rates, etc.).
Getting new rights	Reloading	New transport rights (contracts) must be loaded in the card, in exchange for payment.
Entering network	Debit	The card content is checked, and a new transaction is recorded in the card, before allowing entrance in the network.

5.2 Debit Transaction

The Debit Transaction may be done in contactless or in contact way.

In contactless mode, it is possible to proceed directly with the example protocol described hereafter, just after the radio link establishment.

Objectives:

The protocol below does a debit transaction at a validator point: a *validator transaction*.

The transaction described here is a theoretical transaction, given as an example of the transport commands workings. It is for a single point transport network entrance (the transaction for an entrance-exit transaction, where the price depends on the exit point, is not described here).

Operations:

- A Calypso DF is selected and the card serial number is read.
- A secure session is opened.
- The card is read to determine the rights of the card owner (environment data, holder information, last event, contracts).
- The validator determines if the card has a contract allowing entrance.
- The validator writes the new information in the card, and ask the card for a confirmation.
- Upon confirmation receipt, the green light is issued to let the card holder enter the transport network.

The protocol below does not specify all the operations that would be necessary in a real application, for example:

- Handling of reduction rates.
- Description of the transporter policies (season tickets, token price computations, etc.).
- Details of the transport debit SAM handling.

CALYPSO FUNCTIONAL SPECIFICATION	Page	16 / 25
Card Application	Version	1.3
Ref: 010608-NT-CalypsoGenSpecs	Date	25 October 2005

In the protocol given, a special feature, the *ratification*, is described. It allows to handle the case where a validator session is broken at the last step, once the card has recorded the transaction, but the validator has not received a correct confirmation. In this case, entrance is allowed for a few minutes if the card is presented again.

Remarks:

Speed of transaction is the major concern at a contactless validator. The validator operations must be optimized to the maximum in order to achieve the fastest possible transaction.

For example, in order to speed up the validator processing, and to limit the data read from the card, the events recorded in the card may contain the list of valid contracts (contract which are not virgin, nor expired).

Keys used for the example debit:

Master Debit Key (in the validator SAM).

Protocol: Debit transaction

Protocol description:

1 The validator establish the radio communication with the card. Then it selects the Calypso DF by sending the **Select** command to the card with the Calypso DF name, and gets back the card serial number with other information.

CALYPSO FUNCTIONAL SPECIFICATION	Page	17 / 25
Card Application	Version	1.3
Ref: 010608-NT-CalypsoGenSpecs	Date	25 October 2005

2 After having requested a validator challenge from the SAM, the terminal sends the **Open Secure Session** command to the card, with the validator challenge returned by the SAM, and requesting reading of the last event.

The validator receives the card challenge, the ratification data and the last transport event (which includes the list of valid contracts).

The terminal requests a session opening from the SAM, with selection of key #3 (Debit Key), and the data sent by the card (to be included in the MAC).

If the last transaction was made less than 7 minutes ago at the same entrance (indicated in the event data), then: if the ratification data indicates that the last transaction was not ratified, the validator continues directly to step 6 with a good status. If the ratification data indicates correct ratification, the validator continues to step 6 with a bad status (in the protocol described here, we refuse a second entrance with the same card before a 7 minutes lapse, but this is an applicative choice).

If one of the contracts of the contract list could authorize access to this entrance, the validator continues to step 3.

Else, the validator continues to step 6 with a bad status. (Other actions would be possible, depending on the network policy. For example, the card might contain a dedicated counter used as a "token purse" that could allow entrance if not empty, etc.)

3 The validator sends the Read Record command to the card to read a contract indicated in the contract list, and a Read Record command to read the Counters file (to read all the counters in one operation).

The validator receives the contract and the counter values. The validator determines if the contract authorizes entrance, under which conditions (possible decrement of the associated counter). If not, another contract may be read (depending of the available contracts in the contract list).

All the data exchanged are sent to the SAM to be included in the MAC.

If entrance is possible, the validator continues to step 4 if the associated counter must be decreased, or to step 5, if no counter must be decreased.

Else, and continues to step 6 with a bad status.

- 4 The validator sends a **Decrease** command to the card with the value to subtract.
 - All the data exchanged are sent to the SAM to be included in the MAC.
- The validator sends an **Append Record** command to the card to add an event in the Event Log file, filling the parameters with the date and time, location, and other information about the transaction.

All the data exchanged are sent to the SAM to be included in the MAC.

The validator continues to step 6 with a good status.

After having sent the command closing the session with the SAM, the terminal sends the Close Secure Session command to the card with the four bytes certificate returned by the SAM.

The validator receives the card four bytes certificate as answer and sends it to the SAM for validation.

CALYPSO FUNCTIONAL SPECIFICATION	Page	18 / 25
Card Application	Version	1.3
Ref: 010608-NT-CalypsoGenSpecs	Date	25 October 2005

- 7 If the current status indicates a bad transaction (no good contract, an error occurred, etc), or if the SAM indicates that the certificate is not correct, the validator issue a red light.
 - If the SAM indicates that the certificate is correct, then the card was genuine, and all the data exchanged is proved, as well as the card data updating. In this case, the validator issues a green light..
- 8 The validator radio link layer protocol informs the card to turn itself off (radio *disc* command). On receipt of this command, the card ratifies the last transaction.
- 9 The validator begin searching again for a card in the radio field.

Whenever the validator is connected to a host system, the data exchanged during the transactions, including the signatures that proves the debit transactions, are uploaded to the host for statistical analysis and possible money clearing among different transport operators.

CALYPSO FUNCTIONAL SPECIFICATION	Page	19 / 25
Card Application	Version	1.3
Ref: 010608-NT-CalypsoGenSpecs	Date	25 October 2005

6 SECURITY MECHANISMS

6.1 Introduction to the Calypso Security

This chapter describes the Calypso Specification security architecture.

The cryptographic algorithms used are DES, DESX and Triple-DES (see below).

The access to data in a Calypso card is submitted to a number of rules that may require that specific access rights be granted. These rules depend upon file access conditions specific to every file, and upon cryptographic computations using secret keys stored in the card.

A specific security mechanism is also used to change the value of these keys.

Furthermore, to handle the specific ergonomics of the contactless link, two special security features called "secure session" and "ratification" are used (and described in this chapter).

6.2 Secret Keys

6.2.1 Types of Secret Keys

The following cryptographic key types are defined:

Key 1 Issuer key	Issuer Key. It allows changing the other keys, and may be used to authorize the modification, or to verify the value, of some files data. This key is typically used to authorize modifying the data global to the application.
Key 2 Load key	It may be used to authorize the modification, or to verify the value, of some files data. This key is typically used as a reloading key.
Key 3 Debit key	It may be used to authorize the modification, or to verify the value, of some files data. This key is typically used as a debit key.
Other keys	Other keys may be defined in a Calypso DF. They might for example be used to verify the values read from the card.

All keys are 16 bytes keys, and are used as DESX or Triple-DES keys. The cryptographic algorithm used is implicit. This revision of the Calypso specification does not define a standard way to read the algorithm parameter from the card (see the specific product manual).

Remark: The DESX keys may be used as simple DES keys by setting the 8 first bytes of the key to the value 0.

6.2.2 Key index, Version and Category (KVC)

Every master key is associated with a public *Key Version and Category* (KVC) value allowing to distinguish between master keys. It is good practice, to increase the system security, to change the master key between different card supplier, and on a regular basis.

CALYPSO FUNCTIONAL SPECIFICATION	Page	20 / 25
Card Application	Version	1.3
Ref: 010608-NT-CalypsoGenSpecs	Date	25 October 2005

In order for the terminal to know which secret key to use, the terminal must read the serial number of the card (for the diversification), and the KVC (to choose the correct master key).

Furthermore, each key of a given DF can be referenced by its order number, from #1 to #N (the number of keys in the DF). The Issuer Key is always number 1, the Load Key is number 2 and the Debit Key is number 3.

6.2.3 Cryptographic Algorithms

Remark: The cryptographic algorithms are confidential. They are not detailed in the present document.

DES, DESX And Triple-DES

A cryptographic algorithm is associated with every key for diversification and use.

The DES algorithm is described in ISO/IEC 8731-1:1987.

The DESX was introduced in international papers to prevent a brute force attack on the DES, by enumerating all the possible keys. It increases the key size by 8 bytes with a simple (and fast) operation. The DESX also has the advantage that by setting the first 8 bytes of the key to zero, the DESX operation is changed to a simple DES operation.

The Triple-DES is a series of three DES operations. Several modes are defined in the ISO/IEC 9797-1:1999 and ANSI X9.52 standard.

Diversification

To increase the security of the system, the keys usually written in a card are *diversified*, so that every card has a different key value. Thus, if the keys of one card becomes known, the other cards keys are still secret.

To simplify this diversification, the keys of each card are computed from a *master key*. Generally, the card key is computed by a cryptographic operation on the card serial number, using the master key.

MAC Computation Algorithm

The MAC uses a hash function, which updates an 8 bytes digest. The MAC is the result of the last step of the digest.

Key Writing

A special mechanism allows writing the value of the keys in a Calypso DF (see the command *Change Key*). The key is securely transmitted to the card, as computed by a SAM, thus ensuring the message confidentiality (it is encrypted), integrity (it contains a signature) and replay prevention (it uses a challenge).

6.2.4 Security Modules (SAM)

The different keys are stored in the terminal in a SAM (Security Application Module). The SAM is a smart card that can authenticate a card and the data received from it, and prove to the card the authenticity of the terminal.

The SAM performs all the cryptographic computations needed to manage the Calypso applications (keys diversification, MAC computation, etc.).

A SAM contains the master keys corresponding to the terminal functions (personalization, loading or debiting).

There will typically be different kinds of SAM corresponding to the different types of terminals.

CALYPSO FUNCTIONAL SPECIFICATION	Page	21 / 25
Card Application	Version	1.3
Ref: 010608-NT-CalypsoGenSpecs	Date	25 October 2005

6.3 Access Conditions

For a specific file, the access conditions define the access mode of each data access command. For the access modes controlled by a key, they also define which key applies among the three keys of the card.

Calypso defines the following access modes:

Access mode	Description
Always	Free access : access rights are always granted.
Never	Access forbidden: access rights are never granted.
Session	Access is possible only if inside a secure session, using the corresponding key. If the session is not closed before shut down, or if an error occurs during the close, the data modifications done during the session will be canceled.
	This access mode may only be applied to modification commands (not to the Read command).

6.4 Session Description

Note: The secure session and the ratification mechanisms described below are patented, and their use is subject to a Calypso Application License.

6.4.1 Secure Session Security

The secure session performs simultaneously:

- the authentication of the card,
- the authentication of the terminal,
- the authentication of all the data exchanged during the session,
- the proof that the card modifications have been correctly done.

The session MAC ensures these authentications and proof: It is computed by the terminal (with its SAM) as described in the following diagram:

These operations are done with a high-speed algorithm to allow a very quick transaction. This is particularly important when using the card with a contactless validator.

CALYPSO FUNCTIONAL SPECIFICATION	Page	22 / 25
Card Application	Version	1.3
Ref: 010608-NT-CalypsoGenSpecs	Date	25 October 2005

All the data modification commands given during the session are automatically canceled by the card if the verification of the SAM signature fails, or is not done. The data modifications commands are: Write Record, Update Record, Append Record, Increase, Decrease and Invalidate.

Thus, the session mechanism ensures that either the modifications of the card made during the session are *all completely and correctly done*, or that *none are done*. If the session is not successfully closed (because of a bad signature, a card error, an unexpected shut down, etc.), then all the modifications done during the session are canceled.

Furthermore, a special feature, named the "ratification", allows the ground validator to handle gracefully a possible communication link problem (see the later ratification section).

These rules apply in exactly the same way in contactless and in contact modes.

6.4.2 Ratification

During any communication, it may happen that the link be broken unexpectedly. This is particularly true in contactless communication, where the card may be taken out of the validator radio field during normal use, and before the transaction completion.

The signature session is a very efficient mean to solve this problem, as an interruption before the session closing will cancel all the modifications done to the card, leaving it in the same state as it was before the session. For example, if a counter must be decreased and a network entrance event must be recorded at the same time in the card, the session mechanism will ensure that either both are completed or that none is done.

However, after the end of the session, and the validation of the changes by the card, the acknowledge (including the card signature) must still reach the validator. If the communication link is broken between the session closing, and the good reception of its acknowledge, the validator has no proof that the card is legitimate and that the transaction succeeded. In this case, the user might have paid, or have its transport rights decreased, and not be allowed entrance in the network.

The usual solution to this problem involves a complex mechanism in the validator, which must remember the cards that might fall in this case, and handle them properly if they are presented again soon after. The problem is even more complex in transport networks, where many validators may control the same network gate, and where the user might be tempted to try another validator if the previous one failed to open the gate.

To allow the user to enter the network without paying twice, while avoiding this very complex management in the validators of a network entrance or exit, the **ratification** mechanism was put in place.

6.5 Memory Modification Management

In order to ensure that the writing and erasing in eeprom cannot be corrupted by an unexpected shutdown, a Calypso card implements an automatic recovery mechanism. All data written during a secure session are either all completely and correctly written in the card, or not written at all.

CALYPSO FUNCTIONAL SPECIFICATION Page 23 / 25 Card Application Version 1.3 Ref: 010608-NT-CalypsoGenSpecs Date 25 October 2005

7 INTEGRATION OF CALYPSO WITH ANOTHER APPLICATION

7.1 Presentation

The Calypso specification do not specify in detail the association of Calypso with another application, such as an electronic purse. The Calypso specification defines a minimum set of card requirements, that may be extended by various other applications, such as electronic purse, access control, fidelity, etc.

It may be necessary, for some applications such as the electronic purse, to *combine* a Calypso operation with the application operation. A typical example is a purse debit linked to a public transport network entrance.

Calypso do not limit the method chosen to link the two applications, as long as the card is compatible with the present Calypso specification. However, a possible integration principle for an electronic purse operation is presented in this section. The same principle may be used for other types of application.

7.2 Electronic Purse Integration principle

The electronic purse integration link with a Calypso operation is made through the Session mechanism.

The purse debit is done during the session when other card data is modified. For example writing a transport event recording an entrance and debiting the electronic purse for the corresponding amount.

If the session is canceled, for example because the card was removed from the radio field during the transaction, all card modifications done during the session, including the electronic purse modification, must be canceled. The card returns to its previous state.

If the session succeeds, all modifications are validated at the same time: the purse debit and the data modifications.

The electronic purse operation is done normally, with its own security and certificate computations, under the electronic purse keys. The purse commands are also included in the Calypso MAC certificate, as all commands done during the session.

A specific problem to be addressed concerns the purse debit certificate. The card must delay the sending of the certificate to the terminal until the end of the session, since the proof of buying (certificate) must only be sent if the debit is really committed in the card. Because the certificate may be retrievable by other commands after the debit operation, it is recommended that the only command accepted after a purse debit during a session be the Close Session command.

Also, such a purse debit operation should not be cancelable, unless the other modifications done in session be canceled too.

Finally, another important problem to address is the transaction time. In order to make the whole transaction, including the purse debit, compatible with the contactless validation times, the purse debit must be optimized to be very fast (less than around 50 ms for the purse operation).

CALYPSO FUNCTIONAL SPECIFICATION Page 24 / 25 Card Application Version 1.3 Ref: 010608-NT-CalypsoGenSpecs Date 25 October 2005

8 FILES CONTENT

A Calypso card application may hold any kind of data, as it is mainly a fast and secure data holder.

This chapter describes an example of the Calypso files content, for a typical public transport application.

8.1 Master File

The Master File is the card root DF (root directory). Its management is not described by the Calypso Specification.

8.2 Calypso DF

A Calypso DF is a directory containing Calypso application (Calypso files).

The DF Name is chosen to comply with the ISO/IEC 7816-5 definition of the AID.

Environment and Holder File

The linear file *Environment* typically contains information about the transport application: its version number, the network identity (Brussels, Paris, Lisbon, etc.), a validity date, etc., and about the card holder (social profile, reduction rate, etc.).

Contracts File

The linear file *Contracts* typically contains up to four contracts.

For example, a contract may be used to store a specific set of transport rights:

- contract type,
- · validity period,
- geographical validity,
- usage restrictions (holidays, access to specific channels, etc.),
- sales information.

A contract might, for example, be a season ticket valid for a month on a specific part of the transport network, or a season ticket allowing only a round trip everyday on a specific bus line.

Apart from the contract structure itself, a contract may be used with an associated *counter*. The counter is processed independently from the contract structure. The counter is a positive value (between 0 and 16,777,215).

Counters File

The simplest use of a counter is as an amount of units. The amount may be decreased during a payment, and increased for a reloading.

It is also possible to use the counter in more complex way, for example by dividing it in two parts, one to store a date, and the other one to store a number of units. In this way it is possible to have in a counter a date for the last use, with a number of trips remaining on that date. It would thus be possible to code the usual transport contracts allowing two trips per days on a certain route, or two trips every Sundays, etc., depending on the value of an associated contract.

For example: the 14 higher order bits might indicate the date of the next authorized travel, and the 10 lower bits might indicate the remaining number of travels possible at that date. Other coding of the counter bits are possible, depending on the transport network policy.

Although the counters are handled independently, a counter is usually used in association with the corresponding contract. In this way, the application would use counter #1 with contract #1.

CALYPSO FUNCTIONAL SPECIFICATION	Page	25 / 25
Card Application	Version	1.3
Ref: 010608-NT-CalypsoGenSpecs	Date	25 October 2005

Events Log File

The Event Log file is a cyclic file containing at least the three last events.

The event record is typically used to log a card transaction. For example, it may log a card debit and may contain:

- the transaction type (entrance, exit, selection, correspondence, reloading, etc.),
- the place of transaction (network, company, line, stop, terminal),
- the date and time of transaction,
- the amount debited and the contract that allowed entrance,
- etc.

Usually, the event record also contains the *ContractList*: the list of active contracts in the card. This list contains the status of the valid contracts in the card, with a one-byte contract information. This allows the validator to read only the relevant contract in the card, speeding up the transaction.

Special Event File

The linear file *Special Event* typically contains an event upon which special processing is done:

- either events that must not be lost during normal usage of the card. For example, it might be
 used to store a parking entrance and be able to read it back after card usage in a transport
 network.
- either special events like entrance refusal description.

A special event contains the same type of information than normal event (event type, place and time, etc.).

Contract List File

The linear file Contracts is used if ContractList is too long to be stored in the Events Log file..

