Khrystian Clark

CS-225: Discrete Structures in CS

Homework 4, Part 2

Exercise Set 6.2 of the required textbook: Problem #6 (part 2), #11, #17 and Exercise Set 6.3 of the required textbook: Problem #15, #38, #42

6 (part 2).

- a. Or
- b. And
- c. $x \in A$ and $x \in B$ and $x \in C$
- d. Subsets
- 11. Suppose A, B, and C are any set. We must prove that $A \cap (B C) \subseteq (A \cap B) (A \cap C)$

Suppose x is any element of:

Set Difference: $A \cap B \cap C^c \subseteq (A \cap B) \cap (A \cap C)^c$

De Morgans: $A \cap B \cap C^c \subseteq (A \cap B) \cap A^c \cup C^c$

Distributive: $A \cap B \cap C^c \subseteq ((A \cap A^c) \cap (B \cap A^c)) \cup C^c$

Complement: $A \cap B \cap C^c \subseteq (\emptyset \cap (B \cap A^c)) \cup C^c$

Universal Bound Laws: $A \cap B \cap C^c \subseteq (\emptyset \cup C^c)$

Identity: $A \cap B \cap C^c \subseteq C^c$

Since the subset has an intersect of all common elements of A, B and C^c . Therefore it is a subset of C^c as in itself.

17. Suppose A, B and C are any set. We must prove that if $A \subseteq B$ then $A \cup C \subseteq B \cup C$

We know that all elements of A are in B because A is a subset of B.

 $A \cup C$ contains all elements of A and C.

 $B \cup C$ contains $B[B = \{A, and any other elements\}]$ and the whole set of C

Due to the fact that A is contained in B and C is contained in itself as an element,

 $A \cup C$ is a subset of $B \cup C$.

15. The statement is false because the order of operations makes the statement:

For any arbitrary element x,

 $x \in A$ and $x \notin B$, or $x \in A$ and $x \notin C$. This a subset of $x \in A$ or $x \in C$ and $x \notin B$.

By definition of the subsets of universals

By definition of inclusion in union, x cannot \notin C as a subset of x \in C. Thus the statement cannot be true.

38. $(A \cap B)^C \cap A = A - B$ [False]

De Morgans: $A^C \cup B^C \cap A = A - B$

Complement laws: $B^C \cup \emptyset = A - B$

Set difference: $B^c \cup \emptyset = A \cap B^c$

Identity: $B^c = A \cap B^c$

Therefore: $B^c \neq A \cap B^c$

 $42.\left(A-(A\cap B)\right)\cap \left(B-(A\cap B)\right)$

Set difference: $(A \cap (A \cap B)^c) \cap (B \cap (A \cap B)^c)$

De Morgans: $(A \cap A^c \cup B^c) \cap (B \cap A^c \cup B^c)$

Complement: $(\emptyset \cup B^c) \cap (U \cap A^c)$

Identity: $B^c \cap A^c$

De Morgans: $(B \cup A)^c$