

Real-time Edge-aware Image Processing with the Bilateral Grid

Jiawen Chen, Sylvain Paris, Frédo Durand

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Interactive Local Tone Mapping

- Tone map image using Durand and Dorsey [2002]
- Edge-aware brush locally adjusts parameters

Tone mapped output

Motivation – Tone Mapping

- Reduce contrast
- Spatially-varying remapping
- Edge-aware map eliminates halos [Tumblin 99] [Durand 02]

Input HDR

Echneranta repenetrantor

Thateven toppengnavoitintge bilateral filter [Durand 02]

Edge-aware Image Processing

- Output that is smooth, except at strong edges of input
- Important in computational photography
- Challenge: Performance
 - Brute force: **minutes** per MPixel
 - Fastest techniques: ~1 second / MPixel

- New data structure
- Many edge-aware operations
- Fast

Previous Work

- Optimization [Levin 04, Lischinski 06, Szeliski 06]
 - Inhomogeneous energy

Iterative PDEs

- Bilateral filter [Aurich 95, Smith 97, Tomasi 98]
 - Handles large kernels common in computational photography
 - Fast, but not enough for real time [Pham 05, Weiss 06, Paris 06, Fattal 07]
 - We build upon Paris and Durand [2006]

Gaussian Blur

$$gb(I)_{\mathbf{p}} = \sum_{\mathbf{q}} G_{\mathbf{\sigma}}(\|\mathbf{p} - \mathbf{q}\|) I_{\mathbf{q}}$$

- weighted average of neighbors
- depends only on spatial distance
- no edge term

Bilateral Filter [Aurich 95, Smith 97, Tomasi 98]

$$bf(I)_{\mathbf{p}} = \frac{1}{W_{\mathbf{p}}} \sum_{\mathbf{q}} G_{\sigma_{\mathsf{S}}}(\|\mathbf{p} - \mathbf{q}\|) G_{\sigma_{\mathsf{r}}}(|I_{\mathbf{p}} - I_{\mathbf{q}}|) I_{\mathbf{q}}$$
space intensity

- weighted average of neighbors
- depends on spatial and intensity difference

Our Contribution: the Bilateral Grid

- 3D representation for 2D image data
- Edge-aware computation is simple in the grid
 - Smooth functions on grid are piecewise-smooth in image space
- Fast (milliseconds vs. seconds)
 - Coarse resolution
 - Parallel algorithms (GPU)

Bilateral Grid - Definition

- Bilateral grid = 3D array
 - x and y correspond to pixel position
 - z corresponds to pixel intensity
 - Euclidean distance accounts for edges
 - space distance (x,y) and intensity distance (z)
- Grid can be coarsely sampled
 - E.g., 70 x 70 x 10 for an 8 megapixel image

1

2D vs. Bilateral Grid Downsampling

- Bilateral grid enables aggressive downsampling
- Extra dimension preserves edges

2D vs. Bilateral Grid Downsampling

- Bilateral grid enables aggressive downsampling
- Extra dimension preserves edges

Discussion

 Grid operations could be defined in image space

- Advantages of the Bilateral Grid
 - Edge-awareness built-in
 - Speed: aggressive downsampling

A Simple Illustration

- Classical paint brush
 - Ignores edges

- Our edge-aware brush
 - Respects edges

Stroke Writhutlassigned brush

Stroke with bilateral brush

 When mouse is held down, paint only at intensity level of initial mouse click

Input image

Bilateral Grid

Edge-aware brush used to change hue

Scribble-based Selection

- User scribbles to specify selection [Lischinski 06]
- Piecewise-smooth interpolation to get full selection
 - Respects intensity discontinuities

Inpultipoid in standard in the standard in the

Our interpolated selection

Scribble-based Selection

Scribble-based Selection

Bilateral Filter [Tomasi 98]

- Smooth image except across strong edges
- Ubiquitous in computational photography

[Oh 01, Durand 02, Eisemann 04, Petschnigg 04, Bennett 05, Bae 06, Fattal 07, Kopf 07, ...]

Filtered Output

Brute force computation: 10 minutes
With the bilateral grid: 9 ms

Bilateral Filter on the Bilateral Grid

Bilateral Filter on the Bilateral Grid

Performance: Bilateral Filter

Image size: 2 MPixels

- CPU
 - Brute force: 10 minutes
 - State of the art '06: 1 second [Weiss 06, Paris 06]
- Our Bilateral Grid with GPU
 - 2004 card (NV40): **28 ms** (36 Hz)
 - 2006 card (G80): **9 ms** (111 Hz)
- For bilateral filter, algorithm similar to Paris & Durand [06]
 - We parallelize on GPU
 - Another 2 orders of magnitude speedup

Real-Time Bilateral Filtering using the Bilateral Grid

Many Operations and Applications

- Local histogram equalization
- Interactive tone mapping

Video abstraction
 [Winnemoller 06, DeCarlo 02]

Photographic style transfer [Bae 06]

Multiscale HD Video Abstraction

 1280×720

Multiscale Abstraction: 30 Hz

Transfer of Photographic Style

- Temporally coherent transfer
- 2 orders of magnitude speedup: real-time in HD

Model

Live demo

Discussion

- Respects luminance edges
- Color bilateral grid would be 5D
 - Does not fit on current hardware
 - Luminance edges are often sufficient

Bilateral brush crosses thin lines

- Crosses thin lines
 - Diffusion vs. bilateral filter
 - Useful in many cases
- Grid resolution depends on the operator
 - E.g., for edge-aware brush:
 space sampling rate ~ brush radius
 intensity sampling rate ~ edge-awareness

Edge-aware brush

Summary: the Bilateral Grid

• 3D representation for 2D data

Intelligent downsampling

 Painting, scribble interpolation, bilateral filter, local histogram equalization

Real-time for HD video

Acknowledgements

- Jonathan Ragan-Kelley
- Aleksey Golovinskiy
- MIT Graphics Group
- Anonymous reviewers
- IMAX and Warner Brothers
- NVIDIA
- NSF, Sloan, MSR, Shell

Summary: the Bilateral Grid

• 3D representation for 2D data

Intelligent downsampling

 Painting, scribble interpolation, bilateral filter, local histogram equalization

Real-time for HD video

