1. (original) A composition comprising a compound of the formula

or pharmaceutically acceptable salts thereof together with a pharmaceutically acceptable carrier, excipient, or diluent, wherein

A is aryl or heteroaryl;

B is C₁-C₆ alkyl or C₂-C₆ alkenyl;

X is sulfur, oxygen, $=CR_4R_5$, $=NR_4$, $=NC(O)R_4$, or $=NSO_2R_4$,

Y is sulfur, oxygen, $-C(R_4)(R_5)$, $-N(R_4)$, $-NC(O)(R_4)$, $-NSO_2(R_4)$, $-S(O)_2$, or -S(O):

 R_1 is -H, -NH₂, C_1 -C₆ alkyl, C_1 -C₂ alkenyl, C_1 -C₆ alkyl-S-C₁-C₆ alkyl, C_0 -C₆ alkyl-aryl, C_0 -C₆ alkyl-C(0)OR₆, C_0 -C₆ alkyl-heteroaryl, C_0 -C₆ alkyl-heteroaryl, C_0 -C₆ alkyl-carbocyclyl, -NH-SO₂-aryl, -C₀-C₆ alkyl-C(0)NR₆R₇, -C₀-C₆ alkyl-C(S)NR₆R₇, C_0 -C₆ alkyl-heteroaryl-aryl, -NHC(0)-aryl, C_0 -C₆ alkyl-C(0)NH-C₀-C₆ alkyl-C(0)-O-R₆, C_0 -C₆ alkyl-C(0)-NH-C₀-C₆ alkyl-aryl, C_0 -C₆ alkyl-C(0)-NH-C₀-C₆ alkyl-heteroaryl, C_0 -C₆ alkyl-C(0)-NH-C₀-C₆ alkyl-carbocyclyl, -SO₂-R₆, C(0)-R₆ or -C(0)-OR₆, wherein each one of the alkyl, aryl, heteroaryl, heterocyclic and carbocyclyl are optionally substituted with one or more R₅;

 R_2 is -H, halogen, C_1 - C_6 alkyl, C_0 - C_6 alky-aryl, -NO₂, C_0 - C_6 alkyl-C(O)-OR₆, C_0 - C_6 alkyl-heteroaryl, C_0 - C_6 alkyl-heteroaryl, C_0 - C_6 alkyl-heteroaryl-aryl or -C(O)-R₆, wherein each one of the aryl, heteroaryl, heterocyclic and carbocyclyl are optionally substituted with one or more R_4 ;

R₃ is -H, C₁-C₆ alkyl or C₂-C₆ alkenyl; or

 R_3 and B together with the carbon atom to which they are attached form an alkenyl or a spirocyclic ring;

 R_4 is halogen, oxo, -C(O)OR₆, -NO₂, C_1 -C₆ alkyl optionally substituted with halo, -C₁-C₆ alkoxy optionally substituted with halo, -CH₃, -SO₂NH₂ or -C(O)-OR₆;

 R_5 is halogen, oxo, C_1 - C_6 alkoxy, C_1 - C_6 alkyl, C_0 - C_6 alkyl-aryl, -NO₂, di(C_1 - C_6 alkyl)amino, -CF₃, -OH, -SO₂NH₂ or -C(O)-OR₆; and

 R_6 and R_7 are independently -H, halogen, C_1 - C_6 alkoxy, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, aryl, di(C_1 - C_6 alkyl)amino, -CF₃, -OH or -C(O)-OR₆.

2. (original) The composition according to claim 1 wherein the compound is of the formula

$$R_1$$
 R_2 R_2

3. (original) The composition according to claim 2 wherein the compound is of the formula

- 4. (original) The composition according to claim 3 wherein R_1 is -H, C_1 - C_6 alkyl, C_1 - C_2 alkenyl, C_0 - C_6 alkyl-aryl, C_0 - C_6 alkyl-heteroaryl, C_0 - C_6 alkyl-heteroaryl-aryl, and R_2 is -H, halogen, C_1 - C_6 alkyl, C_0 - C_6 alkyl-aryl.
- 5. (original) The composition according to claim 4 wherein R_1 is -H, C_1 - C_6 alkyl, C_1 - C_2 alkenyl, C_0 - C_6 alkyl-aryl, or C_0 - C_6 alkyl-C(0)OR $_6$ and R_2 is C_0 - C_6 alky-aryl.
- 6. (original) The composition according to claim 5 wherein R_1 is -H, allyl, phenyl or benzyl and R_2 is phenyl.
- 7. (original) The composition according to claim 3 wherein the compound is of the formula

8. (original) The composition according to claim 7 wherein R_1 is -H, C_1 - C_6 alkyl, C_1 - C_2 alkenyl, C_0 - C_6 alkyl-aryl, C_0 - C_6 alkyl-heteroaryl, C_0 - C_6 alkyl-heteroaryl, C_0 - C_6 alkyl-heteroaryl-aryl, and R_4 is halogen, oxo, -NO₂, C_1 - C_6 alkyl, - C_1 - C_6 alkoxy, - C_3 - C_6 -

- 9. (original) The composition according to claim 8 wherein R_1 is -H, C_1 - C_6 alkyl, C_1 - C_2 alkenyl, C_0 - C_6 alkyl-aryl, or C_0 - C_6 alkyl-C(0)OR₆, and R_4 is halogen, -NO₂, C_1 - C_6 alkyl, - C_1 - C_6 alkoxy, -CF₃, -SO₂NH₂, or -C(0)-OR₆.
- 10. (original) The composition according to claim 9 wherein R_1 is -H, allyl, phenyl or benzyl and R_4 is chloro, bromo, fluoro, -NO₂, -OCH₃, -CF₃ or -C(O)-OH.

11. (original) A compound of the formula

or pharmaceutically acceptable salts thereof together with a pharmaceutically acceptable carrier, excipient, or diluent, wherein

A is aryl or heteroaryl;

B is C₁-C₆ alkyl or C₂-C₆ alkenyl;

X is sulfur, oxygen, $=CR_4R_5$, $=NR_4$, $=NC(0)R_4$, or $=NSO_2R_4$.

Y is sulfur, oxygen, $-C(R_4)(R_5)$ -, $-N(R_4)$ -, $-NC(O)(R_4)$ -, $-NSO_2(R_4)$ -, $-S(O)_2$ -, or -S(O)-;

 R_1 is -H, -NH₂, C_1 -C₆ alkyl, C_1 -C₂ alkenyl, C_1 -C₆ alkyl-S-C₁-C₆ alkyl, C_0 -C₆ alkyl-aryl, C_0 -C₆ alkyl-heteroaryl, C_0 -C₆ alkyl-heteroaryl, C_0 -C₆ alkyl-heteroaryl, C_0 -C₆ alkyl-heteroaryl, C_0 -C₆ alkyl-C(O)NR₆R₇, C_0 -C₆ alkyl-C(S)NR₆R₇, C_0 -C₆ alkyl-heteroaryl-aryl, -NHC(O)-aryl, C_0 -C₆ alkyl-C(O)NH-C₀-C₆ alkyl-C(O)-O-R₆, C_0 -C₆ alkyl-C(O)-NH-C₀-C₆ alkyl-aryl, C_0 -C₆ alkyl-C(O)-NH-C₀-C₆ alkyl-heteroaryl, C_0 -C₆ alkyl-C(O)-NH-C₀-C₆ alkyl-heteroaryl, C_0 -C₆ alkyl-C(O)-NH-C₀-C₆ alkyl-heteroaryl, C_0 -C₆ alkyl-C(O)-NH-C₀-C₆ alkyl-heteroaryl, aryl, heteroaryl, heterocyclic and carbocyclyl are optionally substituted with one or more R_5 ;

 R_2 is -H, halogen, C_1 - C_6 alkyl, C_0 - C_6 alkyl-aryl, -NO₂, C_0 - C_6 alkyl-C(0)-OR₆, C_0 - C_6 alkyl-heteroaryl, C_0 - C_6 alkyl-heterocyclyl, C_0 - C_6 alkyl-carbocyclyl, -N(R₆)-C(0)NR₆R₇, -NHSO₂-aryl, C_0 - C_6 alkyl-heteroaryl-aryl or -C(0)-R₆, wherein each one of the aryl, heteroaryl, heterocyclic and carbocyclyl are optionally substituted with one or more R₄;

 R_3 is -H, C_1 - C_6 alkyl or C_2 - C_6 alkenyl; or

R₃ and B together with the carbon atom to which they are attached form an alkenyl or a spirocyclic ring;

 R_4 is halogen, oxo, -C(0)OR₆, -NO₂, C₁-C₆ alkyl optionally substituted with halo, -C₁-C₆ alkoxy optionally substituted with halo, -CF₃, -SO₂NH₂ or -C(0)-OR₆;

 R_5 is halogen, oxo, C_1 - C_6 alkoxy, C_1 - C_6 alkyl, C_0 - C_6 alkyl-aryl, -NO₂, di(C_1 - C_6 alkyl)amino, -CF₃, -OH, -SO₂NH₂ or -C(O)-OR₆; and

 R_6 and R_7 are independently -H, halogen, C_1 - C_6 alkoxy, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, aryl, di(C_1 - C_6 alkyl)amino, -CF₃, -OH or -C(O)-OR₆,

provided the compound is not a compound of the formula

X and Y are independently sulfur, oxygen, -CR₄R₅, -NR₄, -NC(O)R₄, -NSO₂R₄, -SO₂, or -SO; R₁ is -H, -NH₂, C₁-C₆ alkyl, C₁-C₂ alkenyl, C₁-C₆ alkyl-S-C₁-C₆ alkyl, C₀-C₆ alkyl-aryl, C₀-C₆ alkyl-C(O)OR₆, C₀-C₆ alkyl-heteroaryl, C₀-C₆ alkyl-heterocyclyl, C₀-C₆ alkyl-carbocyclyl, -NH-SO₂-aryl, -C₀-C₆ alkyl-C(O)NR₆R₇, -C₀-C₆ alkyl-C(S)NR₆R₇, C₀-C₆ alkyl-heteroaryl-aryl, -NHC(O)-aryl, C₀-C₆ alkyl-C(O)NH-C₀-C₆ alkyl-C(O)-NH-C₀-C₆ alkyl-aryl, C₀-C₆ alkyl-C(O)-NH-C₀-C₆ alkyl-heteroaryl, C₀-C₆ alkyl-C(O)-NH-C₀-C₆ alkyl-heterocyclyl, C₀-C₆ alkyl-C(O)-NH-C₀-C₆ alkyl-carbocyclyl, -SO₂-R₆, C(O)-R₆, or -C(O)-OR₆, wherein each one of the alkyl, aryl, heteroaryl, heterocyclic and carbocyclyl are optionally substituted with one or more R₅;

 R_2 is -H, halogen, C_1 - C_6 alkyl, C_0 - C_6 alkyl-aryl, -NO₂, C_0 - C_6 alkyl-C(O)-OR₆, C_0 - C_6 alkyl-heteroaryl, C_0 - C_6 alkyl-heterocyclyl, C_0 - C_6 alkyl-carbocyclyl, -N(R_6)-C(O)NR₆R₇, -NHSO₂-aryl, C_0 - C_6 alkyl-heteroaryl-aryl, or -C(O)-R₆, wherein each one of the aryl, heteroaryl, heterocyclic and carbocyclyl are optionally substituted with one or more R_4 ;

 R_4 is halogen, oxo, -C(O)OR₆, -NO₂, C_1 -C₆ alkyl optionally substituted with halo, -C₁-C₆ alkoxy optionally substituted with halo, -CF₃, -SO₂NH₂, or -C(O)-OR₆;

 R_5 is halogen, oxo, C_1 - C_6 alkoxy, C_1 - C_6 alkyl, C_0 - C_6 alkyl-aryl, -NO₂, di(C_1 - C_6 alkyl)amino, -CF₃, -OH, -SO₂NH₂, or -C(O)-OR₆; and

 R_6 and R_7 are independently -H, halogen, C_1 - C_6 alkoxy, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, aryl, di(C_1 - C_6 alkyl)amino, -CF₃, -OH, or -C(O)-OR₆.

- 12. (currently amended) A method of inhibiting ubiquitination in a cell comprising contacting a cell in which inhibition of ubiquitination is desired with a composition according to <u>claim 1</u> any one of <u>claims 1-10 or a compound according to claim 11</u>.
- 13. (original) The method according to claim 12 wherein the cell is from a mammal.
- 14. (original) The method according to claim 13 wherein the mammal is human.
- 15. (currently amended) A method of treating cell proliferative diseases or conditions comprising administering to a patient an effective amount of a composition according to claim 1 any one of claims 1-10 or a compound according to claim 11.
- 16. (original) The method according to claim 15 wherein the cell proliferative diseases are cancers.
- 17. (original) The method according to claim 16 wherein the patient is human.
- 18. (new) A method of inhibiting ubiquitination in a cell comprising contacting a cell in which inhibition of ubiquitination is desired with a composition according to claim 2.
- 19. (new) A method of inhibiting ubiquitination in a cell comprising contacting a cell in which inhibition of ubiquitination is desired with a composition according to claim 3.
- 20. (new) A method of inhibiting ubiquitination in a cell comprising contacting a cell in which inhibition of ubiquitination is desired with a composition according to claim 7.