Mathematical Programming Homework 5

Michael Nelson

November 1, 2021

Problem 1

Exercise 1. Reformulate the following linear program into Standard Form (SF).

maximize
$$z = x_1 - x_2 + 2x_3$$

s.t. $2x_1 + 3x_2 \le 4$
 $x_1 - x_3 \ge 2$
 $x_1 + 2x_2 = 1$
 x_1 and x_2 free, $x_3 \ge 0$

For full credit, introduce as few new variables as possible and present the data of the final LP in the form:

$$x = c = A = b = b$$

Solution 1. To convert to a minimization problem, we multiply the objective function by -1:

minimize
$$\hat{z} = -x_1 + x_2 - 2x_3$$
.

Suppose $x = (x_1, x_2, x_3)$ is a feasible solution to this linear program. Observe that since $x_3 \ge 0$ and $x_1 - x_3 \ge 2$, we see that $x_1 \ge 2$. Furthermore, since $x_2 = (1 - x_1)/2$, we see that $x_2 \ge -1/2$. With this in mind, we make the following linear change of coordinates:

$$x'_1 = x_1 - 2$$

 $x'_2 = x_2 + 1/2$
 $x'_3 = x_3$

With these substitutions, the linear program becomes

minimize
$$\widehat{z} = x_1' - x_2' + 2x_3' + 3/2$$

s.t. $2x_1' + 3x_2' \le 3/2$
 $x_3' - x_1' \le 0$
 $x_1' + 2x_2' = 0$
 $x' > 0$

We also want to remove the constant function in the objective function, so we set $z' = \hat{z} + 3/2$. Next we introduce lack variables $s_1, s_2 \ge 0$ to convert the inequalities to an equalities:

$$2x'_1 + 3x'_2 + s_1 = 3/2$$
$$x'_3 - x'_1 + s_2 = 0$$

1

The linear program becomes

minimize
$$z' = x'_1 - x'_2 + 2x'_3$$

s.t. $2x'_1 + 3x'_2 + s_1 = 3/2$
 $x'_3 - x'_1 + s_2 = 0$
 $x'_1 + 2x'_2 = 0$
 $x', s_1, s_2 \ge 0$

Finally we set

$$A = \begin{pmatrix} 2 & 3 & 0 & 1 & 0 \\ -1 & 0 & 1 & 0 & 1 \\ 1 & 2 & 0 & 0 & 0 \end{pmatrix}, \quad b = \begin{pmatrix} 3/2 \\ 0 \\ 0 \end{pmatrix}, \quad \text{and} \quad c = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$$

and we clean our notation a bit and write $x = (x_1, x_2, x_3, x_4, x_5) = (x'_1, x'_2, x'_3, s_1, s_2)$ and z = z'. With these notational changes, the linear program becomes

minimize
$$z = c^{\top} x$$

s.t. $Ax = b$
 $x \ge 0$

which is in standard form.

Problem 2

Consider the following polyhedral set

$$X = \{x \in \mathbb{R}^2 \mid -2x_1 + x_2 \le 5, x_1/2 - x_2 \le 2, x_1, x_2 \ge 0\}$$

Problem 2.a

Exercise 2. Use a method of your choice to find the set of all extreme points (EPs) in *X*.

Solution 2. Let $s_1, s_2 \ge 0$ and let

$$A = \begin{pmatrix} -2 & 1 & 1 & 0 \\ 1/2 & -1 & 0 & 1 \end{pmatrix} \quad \text{and} \quad b = \begin{pmatrix} 5 \\ 2 \end{pmatrix}.$$

Then every extreme point of *X* corresponds to a basic feasible solution to

$$A\widehat{x} = b$$

$$\widehat{x} > 0$$

where $\hat{x} = (x, s)^{\top} = (x_1, x_2, s_1, s_2)$. We find all basic solutions and determine if they are feasible or not below:

- 1. The basis $\{x_1, x_2\}$ produces the basic solution $(-14/3, -13/3, 0, 0)^{\top}$, which is infeasible.
- 2. The basis $\{x_1, s_1\}$ produces the basic feasible solution $(4, 0, 13, 0)^{\top}$. It corresponds to the point $x^1 = (4, 0)^{\top}$.
- 3. The basis $\{x_1, s_2\}$ produces the basic solution $(-5/2, 0, 0, 13/4)^{\top}$, which is infeasible.
- 4. The basis $\{x_2, s_1\}$ produces the basic solution $(-2, 0, 7, 0)^{\top}$, which is infeasible.
- 5. The basis $\{x_2, s_2\}$ produces the basic feasible solution $(0, 5, 0, 7)^{\top}$. It corresponds to the point $x^2 = (0, 5)^{\top}$.
- 6. The basis $\{s_1, s_2\}$ produces the basic feasible solution $(0, 0, 5, 2)^{\top}$. It corresponds to the point $x^3 = (0, 0)^{\top}$.

After considering all possibilities, we find that the extreme points are $x^1 = (4,0)^{\top}$, $x^2 = (0,5)^{\top}$, and $x^3 = (0,0)^{\top}$.

Problem 2.b

Exercise 3. Use an appropropiate algebraic derivation and find the set of all recession directions in *X*.

Solution 3. A direction of unboundness $\hat{d} = (d, s)^{\top} = (d_1, d_2, s_1, s_2)$ must satisfy

$$A\widehat{d} = 0$$

$$\widehat{d} \ge 0$$

$$\widehat{d} \ne 0$$
(1)

Two such solutions are given by $\hat{d}^1 = (2,4,0,3)^{\top}$ and $\hat{d}^2 = (2,1,3,0)^{\top}$ corresponding to the directions $d^1 = (2,4)$ and $d^2 = (2,1)$ respectively. Note that since A has full rank, the dimension of its null space is 2, and since $\{\hat{d}^1, \hat{d}^2\}$ is linearly independent, we see that every $\hat{d} \in \mathbb{R}^4$ which satisfies $A\hat{d} = 0$ has the form

$$\widehat{d} = t_1 \widehat{d}^1 + t_2 \widehat{d}^2$$

for some $t_1, t_2 \in \mathbb{R}$. If in addition we want $\hat{d} \geq 0$, then it's easy to see that we need $t_1, t_2 \geq 0$. Also if we want $\hat{d} \neq 0$, then we need at least one of t_1 or t_2 to be nonzero.

Problem 2.c

Exercise 4. What recession directions that you found in part b are extreme? Explain.

Solution 4. Let D be the set of all $\hat{d} \in \mathbb{R}^4$ which satisfy (1). Notice that D cannot have any extreme points. Indeed, if \hat{d} is a direction of unboundness, then so too is $\hat{d}/2$, and since $\hat{d} = \hat{d}/2 + \hat{d}/2$, we see that \hat{d} cannot be an extreme point of D. To rectify this issue, we set $D_1 = \{\hat{d} \in D \mid ||\hat{d}|| = 1\}$. Now it is easy to see that $\frac{1}{\sqrt{29}}\hat{d}^1$ and $\frac{1}{\sqrt{13}}\hat{d}^2$ are the extreme points of this set.

Problem 2.d

Exercise 5. Apply the Representation Theorem and find a representation for the point $x = (4,6)^{\top} \in X$.

Solution 5. We have

$$x = {4 \choose 6}$$

$$= 2 {2 \choose 1} + \frac{4}{5} {0 \choose 5} + \frac{1}{5} {0 \choose 0}$$

$$= 2d^2 + \frac{4}{5}x^2 + \frac{1}{5}x^3$$

which shows that *x* is a convex combination of the extreme points plus a direction of unboundness.

Problem 2.c

Exercise 6. Is your representation unique? Explain.

Solution 6. No because x doesn't belong to the convex hull of x^1 , x^2 , and x^3 . For instance, another representation of x is given by

$$x = {4 \choose 6}$$

$$= {2 \choose 4} + \frac{5}{10} {4 \choose 0} + \frac{4}{10} {0 \choose 5} + \frac{1}{10} {0 \choose 0}$$

$$= d^{1} + \frac{5}{10}x^{1} + \frac{4}{10}x^{2} + \frac{1}{10}x^{3}$$

Problem 3

Exercise 7. Consider the linear program (LP) in \mathbb{R}^2 :

$$\begin{array}{ll}
\min & c^{\top} x \\
\text{s.t.} & x \in X
\end{array}$$

where X is defined as in question 2 above. Apply a method for solving LP in \mathbb{R}^2 and find the set of all optimal solutions to this LP for each cost vectors below. Write each set in an appropriate form.

- 1. Let $a = (1, 1)^{\top}$
- 2. Let $b = (2, -1)^{\top}$
- 3. Let $c = (0,1)^{\top}$

Solution 7. Recall that the extreme points of X are $x^1 = (4,0)^{\top}$, $x^2 = (0,5)^{\top}$, and $x^3 = (0,0)^{\top}$, and recall that the extreme directions of unboundedness of X are $d^1 = (2,4)^{\top}$ and $d^2 = (2,1)^{\top}$.

1. We first find the optimal solution for the cost vector $\mathbf{a} = (1,1)^{\top}$. Observe that $\mathbf{a}^{\top}\mathbf{d}^1 = 6 \ge 0$ and $\mathbf{a}^{\top}\mathbf{d}^2 = 3 \ge 0$. Therefore for any direction of unboundedness \mathbf{d} , we will have $\mathbf{a}^{\top}\mathbf{d} \ge 0$. It follows that the optimal solution will occur at one of the extreme points (or perhaps on an adjacent edge connecting two extreme points). A simple calculation shows

$$a^{\top}x^1=4$$

$$a^{\top} x^2 = 5$$

$$a^{\top}x^3=0.$$

It follows that the optimal solution for the cost vector a is x^3 with optimal value given by $a^{\top}x^3 = 0$.

2. Now we find the optimal solution for the cost vector $\mathbf{b} = (2, -1)^{\top}$. Observe that $\mathbf{b}^{\top} d^1 = 0 \ge 0$ and $\mathbf{b}^{\top} d^2 = 3 \ge 0$. Therefore for any direction of unboundedness d, we will have $\mathbf{b}^{\top} d \ge 0$. It follows that the optimal solution will occur at one of the extreme points (or perhaps on an adjacent edge connecting two extreme points). A simple calculation shows

$$\boldsymbol{b}^{\top}\boldsymbol{x}^1 = 8$$

$$\boldsymbol{b}^{\top} \boldsymbol{x}^2 = -5$$

$$\boldsymbol{b}^{\top} \boldsymbol{x}^3 = 0.$$

It follows that the optimal solution for the cost vector \mathbf{b} is \mathbf{x}^2 with optimal value given by $\mathbf{b}^{\top}\mathbf{x}^2 = -5$.

3. Finally we find the optimal solution for the cost vector $c = (0,1)^{\top}$. Observe that $c^{\top}d^1 = 4 \ge 0$ and $c^{\top}d^2 = 1 \ge 0$. Therefore for any direction of unboundedness d, we will have $c^{\top}d \ge 0$. It follows that the optimal solution will occur at one of the extreme points (or perhaps on an adjacent edge connecting two extreme points). A simple calculation shows

$$c^{\top}x^1 = 0$$

$$c^{\mathsf{T}}x^2 = 5$$

$$c^{\top}x^3=0.$$

It follows that the optimal solutions for the cost vector c occurs on the adjacent edge connecting x^1 with x^3 , so they have the form $t_1x^1 + t_2x^3$ where $t_1, t_2 \ge 0$ satisfy $t_1 + t_2 = 1$. The optimal value at these optimal points is given by $c^{\top}(t_1x^1 + t_2x^2) = 0$.

4

Problem 4

Exercise 8. Apply the Simplex Algorithm and find an optimal solution to the linear program. In every iteration, select the most negative reduced cost.

min
$$-6x_1 - 14x_2 - 13x_3$$

s.t. $x_1 + 4x_2 + 2x_3 \le 48$
 $x_1 + 2x_2 + 4x_3 \le 60$
 $x \ge 0$

Solution 8. We introduce slack variables $x_4, x_5 \ge 0$ to convert the inequality constraints to equality constraints:

min
$$-6x_1 - 14x_2 - 13x_3$$

s.t. $x_1 + 4x_2 + 2x_3 + x_4 = 48$
 $x_1 + 2x_2 + 4x_3 + x_5 = 60$
 $x \ge 0$

where now $x = (x_1, x_2, x_3, x_4, x_5)^{\top}$. Let

$$A = \begin{pmatrix} 2 & 4 & 2 & 1 & 0 \\ 1 & 2 & 4 & 0 & 1 \end{pmatrix}, \quad , \boldsymbol{b} = \begin{pmatrix} 48 \\ 60 \end{pmatrix}, \quad \boldsymbol{c} = \begin{pmatrix} -6 \\ -14 \\ -13 \\ 0 \\ 0 \end{pmatrix}$$

Then in standard form, our linear program looks like:

minimize
$$z = c^{\top} x$$

s.t. $Ax = b$
 $x > 0$

We now perform the simplex algorithm as follows

First iteration of the simplex algorithm: We begin by using the slack variables as the initial basis. Let

$$egin{aligned} x_B &= (x_4, x_5)^{ op} & x_N &= (x_1, x_2, x_3)^{ op} \ c_B &= (0, 0)^{ op} & c_N &= (-6, -14, -13)^{ op} \ B &= \begin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix} & N &= \begin{pmatrix} 2 & 4 & 2 \ 1 & 2 & 4 \end{pmatrix} \ B^{-1} &= \begin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix} & B^{-1} N &= \begin{pmatrix} 2 & 4 & 2 \ 1 & 2 & 4 \end{pmatrix} \end{aligned}$$

Our current basic solution and our current objective value are given by

$$\widehat{\boldsymbol{b}} = B^{-1}\boldsymbol{b} \qquad \qquad \widehat{\boldsymbol{z}} = \boldsymbol{c}_B^{\top} \widehat{\boldsymbol{b}} \\
= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 48 \\ 60 \end{pmatrix} \qquad \qquad = (0,0)^{\top} \begin{pmatrix} 48 \\ 60 \end{pmatrix} \\
= (48,60)^{\top} \qquad \qquad = 0$$

To determine whether or not this is optimal, we calculate the reduced cost vector:

$$\widehat{c}_{N}^{\top} = (c_{N}^{\top} - c_{B}^{\top} B^{-1} N)
= (-6, -14, -13) - (0, 0) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 4 & 2 \\ 1 & 2 & 4 \end{pmatrix}
= (-6, -14, -13).$$

The components of \hat{c}_N are negative, so the basis is not optimal. Since $(\hat{c}_N)_2$ is the more negative component, we select x_2 (the second nonbasic variable) as the entering variable. To find the leaving variable, we first calculate

$$\widehat{A}_2 = B^{-1}A_2$$

$$= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 4 \\ 2 \end{pmatrix}$$

$$= \begin{pmatrix} 4 \\ 2 \end{pmatrix}$$

where A_2 is the second column of the matrix A. Letting $\hat{a}_{i,2}$ denote the ith entry in \hat{A}_2 , we then calculate

$$\overline{x}_2 = \min_{1 \le i \le 2} \left\{ \frac{\widehat{b}_i}{\widehat{a}_{i,2}} \mid \widehat{a}_{i,2} > 0 \right\}$$
$$= \min \left\{ \frac{48}{4}, \frac{60}{2} \right\}$$

Thus the leaving variable is x_4 (the first basic variable) corresponding to the minimum of $\{\hat{b}_i/\hat{a}_{i,2} \mid \hat{a}_{i,2} > 0\}$. This completes the first iteration of the simplex algorithm.

Second iteration of the simplex algorithm: We replace x_4 with x_2 in our basis, so let

$$egin{aligned} x_B &= (x_2, x_5)^\top & x_N &= (x_1, x_4, x_3)^\top \ c_B &= (-14, 0)^\top & c_N &= (-6, 0, -13)^\top \ B &= \begin{pmatrix} 4 & 0 \ 2 & 1 \end{pmatrix} & N &= \begin{pmatrix} 2 & 1 & 2 \ 1 & 0 & 4 \end{pmatrix} \ B^{-1} &= \begin{pmatrix} 1/4 & 0 \ -1/2 & 1 \end{pmatrix} & B^{-1}N &= \begin{pmatrix} 1/2 & 1/4 & 1/2 \ 0 & -1/2 & 3 \end{pmatrix} \end{aligned}$$

Our current basic solution and our current objective value are given by

$$\widehat{\boldsymbol{b}} = B^{-1}\boldsymbol{b} \qquad \qquad \widehat{\boldsymbol{z}} = \boldsymbol{c}_{B}^{\top}\widehat{\boldsymbol{b}}$$

$$= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 48 \\ 60 \end{pmatrix} \qquad \qquad = (-14, 0)^{\top} \begin{pmatrix} 12 \\ 36 \end{pmatrix}$$

$$= (12, 36)^{\top} \qquad \qquad = -168$$

To determine whether or not this is optimal, we calculate the reduced cost vector:

$$\widehat{c}_{N}^{\top} = (c_{N}^{\top} - c_{B}^{\top} B^{-1} N)
= (-6, 0, -13) - (-14, 0) \begin{pmatrix} 1/2 & 1/4 & 1/2 \\ 0 & -1/2 & 3 \end{pmatrix}
= (1, 7/2, -6).$$

The third component of \hat{c}_N is negative, so the basis is not optimal. Since this is the only negative component, we select x_3 (the third nonbasic variable) as the entering variable. To find the leaving variable, we first calculate

$$\widehat{A}_3 = B^{-1}A_3$$

$$= \begin{pmatrix} 1/4 & 0 \\ -1/2 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 4 \end{pmatrix}$$

$$= \begin{pmatrix} 1/2 \\ 3 \end{pmatrix}$$

where A_3 is the second column of the matrix A. Letting $\widehat{a}_{i,3}$ denote the ith entry in \widehat{A}_3 , we then calculate

$$\overline{x}_3 = \min_{1 \le i \le 2} \left\{ \frac{\widehat{b}_i}{\widehat{a}_{i,3}} \mid \widehat{a}_{i,3} > 0 \right\}$$
$$= \min \left\{ \frac{12}{1/2}, \frac{36}{3} \right\}$$
$$= 12.$$

Thus the leaving variable is x_5 (the second basic variable). This completes the second iteration of the simplex algorithm.

Third iteration of the simplex algorithm: We replace x_3 with x_5 in our basis, so let

$$x_{B} = (x_{2}, x_{3})^{\top}$$
 $x_{N} = (x_{1}, x_{4}, x_{5})^{\top}$ $c_{B} = (-14, -13)^{\top}$ $c_{N} = (-6, 0, 0)^{\top}$ $S = \begin{pmatrix} 4 & 2 \\ 2 & 4 \end{pmatrix}$ $S = \begin{pmatrix} 1/3 & -1/6 \\ -1/6 & 1/3 \end{pmatrix}$ $S = \begin{pmatrix} 1/2 & 1/3 & -1/6 \\ 0 & -1/6 & 1/3 \end{pmatrix}$ $S = \begin{pmatrix} 1/2 & 1/3 & -1/6 \\ 0 & -1/6 & 1/3 \end{pmatrix}$

Our current basic solution and our current objective value are given by

$$\widehat{\boldsymbol{b}} = B^{-1}\boldsymbol{b}$$

$$= \begin{pmatrix} 1/3 & -1/6 \\ -1/6 & 1/3 \end{pmatrix} \begin{pmatrix} 48 \\ 60 \end{pmatrix}$$

$$= (6, 12)^{\top}$$

$$\widehat{\boldsymbol{z}} = \boldsymbol{c}_{B}^{\top} \widehat{\boldsymbol{b}}$$

$$= (-14, -13)^{\top} \begin{pmatrix} 6 \\ 12 \end{pmatrix}$$

$$= -240$$

To determine whether or not this is optimal, we calculate the reduced cost vector:

$$\widehat{c}_{N}^{\top} = (c_{N}^{\top} - c_{B}^{\top} B^{-1} N)$$

$$= (-6,0,0) - (-14,-13) \begin{pmatrix} 1/2 & 1/3 & -1/6 \\ 0 & -1/6 & 1/3 \end{pmatrix}$$

$$= (1,5/2,2).$$

The cost vector consists of strictly positive entries. This means that the objective function will *increase* no matter which direction we choose: we have found a local minimum at $x^* = (0,6,12)$ with objective value given by $z^* = -240$. In fact, this is a global minimum since linear programming problems are convex optimization problems.

Problem 5

Problem 5.a

Exercise 9. Let x be a feasible solution but not a basic feasible solution for Ax = b, $x \ge 0$. Prove that the columns of A corresponding to the nonzero entries of x are linearly dependent.

Solution 9. According to the book, a point *x* is a **basic solution** if

- 1. *x* satisfies the equality constraints of the linear program
- 2. the columns of the constraint matrix corresponding to the nonzero components of *x* are linearly independent.

So by definition (according to the book), the columns of A corresponding to the nonzero entries of x are linearly dependent. To complete this problem though, I'll prove the following instead:

Proposition 0.1. Let A be an $m \times n$ matrix with m < n and let $x \in \mathbb{R}^n$ such that Ax = 0, $x \ge 0$. Furthermore, suppose that x has k nonzero entries where $m < k \le n$. Then the columns corresponding to the nonzero entries of x are linearly dependent.

Proof. This follows from the fact that rank $A \leq m$. Thus the maximum size of a set of linearly independent columns of A must be less than or equal to m as well.

Problem 5.b

Exercise 10. Let x be a feasible point of $X = \{x \in \mathbb{R}^n \mid Ax = b, x \ge 0\}$ that is not an extreme point. Prove that there exists a nonzero vector $p \in \mathbb{R}^n$ such that

1.
$$Ap = 0$$
 and,

2.
$$p_i = 0$$
 if $x_i = 0$.

(Hint: use the result from part a).

Solution 10. Note that x is not a basic feasible solution since it is not an extreme point. Therefore the columns of A corresponding to the nonzero entries of x are linearly dependent and we can find a feasible direction p (where $p \neq 0$) satisfying 1 and 2 above. For instance, suppose the first k entries of x are nonzero and the remaining n - k entries are zero where $m < k \leq n$. Then the set of columns $\{A_1, \ldots, A_k\}$ is linearly dependent, say

$$a_1A_1+\cdots+a_kA_k=0$$

for some $a_1, ..., a_k \in \mathbb{R}$ not all zero. By scaling the a_i if necessary, we can assume that $|a_i| < x_i$ for all $1 \le i \le k$. Then we can set $p = (a_1, ..., a_k, 0, ..., 0)$, and p will satisfy 1 and 2 above (it will also be a feasible direction, meaning x + p is feasible).