

POZOR!

NÍŽE UVEDENÁ DATA MAJÍ OBČAS "POLITICKÝ" CHARAKTER.

AUTOR NENÍ OCHOTEN DÁT ZA UVÁDĚNÁ DATA RUKU DO OHNĚ.

UVÁDĚNÉ JEDNOTKY

- 1 BTU = British thermal unit = 1. 055 kJ
- 1 toe = tonne oil equivalent = ekvivalent ropné tuny
- = 7.4 barelů ropy
- = 1270 m³ zemního plynu
- = 2.3 tun uhlí
- = 41.9 GJ

POPULACE ROSTE A POROSTE – DNES 7.2 MLD A PŘÍRŮSTEK 1.1 % / ROK

SPOTŘEBA ROSTE A POROSTE – DNES 11.8 Gtoe = 490 EJ, PŘÍRŮSTEK 1.6%/ROK

SNAD POROSTE I HDP NA HLAVU

World Economies GDP per Capita

TAKHLE TO VYPADALO NEDÁVNO

ŽIVOTNÍ ÚROVEŇ A SPOTŘEBA ENERGIE

Global CO2 emissions from energy use

PRAVDA ZASVINÍME TROCHU ATMOSFÉRU

FOSILNÍ PALIVA PRODUKUJÍ CO2

ZEMNÍ PLYN ROPA UHLÍ

2.3 tCO₂/toe 2.8 tCO₂/toe 3.8 tCO₂/toe

Temperature anomalies in Degrees C.

A TEPLOTA ROSTE

PRIMÁRNÍ ZDROJE CELKOVÁ SPOTŘEBA 492 EJ (2008)

VÝROBA ELEKTŘINY CELKEM 20 PWh

POTENCIÁL OBNOVITELNÝCH ZDROJŮ

The technical potential of renewable energy technologies to supply energy services exceeds current demands.

ENERGY RETURN ON (ENERGY) INVESTED – EROI

CENY

RE costs are still higher than existing energy prices, but in various settings RE is already competitive.

ENERGETICKÉ ZÁSOBY

```
ROPA 190 Gt
SPOTŘEBA 4Gt / ROK – VYDRŽÍ 46 LET
ZEMNÍ PLYN 190 T m<sup>3</sup>
SPOTŘEBA 3 T m<sup>3</sup> / ROK – VYDRŽÍ 59 LET
UHLÍ
               860 G t
SPOTŘEBA 4 G t / ROK – VYDRŽÍ 118 LET
URAN
                    5.5 Mt
SPOTŘEBA 51 kT /ROK – VYDRŽÍ 108 LET
( DNEŠNÍ ZPŮSOB VYUŽITÍ )
```

HROZÍ NÁM ROPNÝ VRCHOL?

← PŘEDPOVĚZENÝ

NOVÁ NADĚJE: BŘIDLICOVÝ PLYN?

Schematic geology of natural gas resources

= ZEMNÍ PLYN ODJINUD

TECHNICKY VYUŽITELNÝ PLYN VÝSKYT

Čína 31 Tm³, Argentina 22 Tm³, Alžírsko 20 Tm³, USA 19 Tm³, Kanada 16 Tm³... $\Sigma = 200 \text{ Tm}^3$

VODNÍ ELEKTRÁRNY

SOUČASNÁ ROČNÍ VÝROBA cca 12 EJ

TEORETICKÝ POTENCIÁL cca 50 EJ

VYUŽITÍ cca 50 %

VELKÉ ELEKTRÁRNY NEGATIVNĚ OVLIVŇUJÍ ŽIVOTNÍ PROSTŘEDÍ

PŘEHRADNÍ NÁDRŽE JSOU ZDROJEM CO₂ A CH₄

MALÉ ELEKTRÁRNY JSOU MÉNĚ ÚČINNÉ

THE REAL PROPERTY.

VÝKON P = η Qρ.g. Δ h

 $\eta = \dot{U}\dot{C}INNOST, Q = PR\dot{U}TOK, \\ \rho = HUSTOTA VODY, g = \\ GRAVITAČNÍ ZRYCHLENÍ, \\ \Delta h = SPÁD$

ME Smiřice Labe

ZDE:

 $\eta = 0.8$

 $Q = 34 \text{ m}^3/\text{s}$

 $\rho = 1000$

 $kg/m^3 g = 9.8$

 $m/s^2 \Delta h = 9$

m

TAKŽE

P = 2.4 MW

VĚTRNÉ ELEKTRÁRNY

POTENCIÁL 220 EJ/a tj. 7 TW

INSTALOVÁNO 200 GW

VYUŽITÍ 20 % (?)

PROBLÉMY:

RELATIVNĚ MALÁ HUSTOTA ENERGIE VĚTRU

VÍTR NEFOUKÁVÁ PRAVIDELNĚ

JEDNODUCHÁ TEORIE:

VÝKON VĚTRU $P = 1/2 \rho AV V^2$

SÍLA NA VRTULI $F = \Delta p A = 1/2 \rho A (V^2 - V^2)$

RYCHLOST VRTULE $V_V = 1/2 (V + V)$

VÝKON NA VRTULI

 $P_{V} = F.V_{V} = 1/4 \rho (V^{2}-V'^{2}). (V+V')$ JE MAXIMÁLNÍ PRO V' = 1/3 V A ROVEN $P_{V} = 16/27 P$

REÁLNÝ VÝKON JE MENŠÍ.

 $P = 650 \text{ W/m}^2$ pro V = 10 m/s!

 $P_{VM} = 270 \text{ kW pro}$ vrtuli o $\phi = 30 \text{ m}$

FARMA V COLORADU

MOŽNOSTI V ČESKU

FOTOVOLTAIKA

DOPADAJÍCÍ FOTONY VYTVÁŘEJÍ PÁR ELEKTRON-DÍRA – TEN VYTVÁŘÍ PROUD

POTENCIÁL 9000 EJ/a tj. 300 TW INSTALOVÁNO 40 GW VYUŽITÍ 15 % (?)

JEDNODUCHÁ TEORIE

PROUD PŘI OSVĚTLENÍ

 $I_{\rm f} = e \int \gamma(\omega) E(\omega) d\omega$

 $E(\omega) = OSVĚTLENÍ,$

 $\gamma(\omega) = KVANTOVÁ VÝTĚŽNOST$

PŘI ZATÍŽENÍ $I = I_f - I_o(\exp(eU/k_BT) - 1)$

ODTUD NAPĚTÍ NA PRÁZDNO $U_{\infty} = k_{\rm B}T/e \ln(1 + l_{\rm f}/l_{\rm o})$

MAX VÝKON $P_{M} = FF.I_{f}U_{\infty}$ FF = FAKTOR ZAPLNĚNÍ

KŘEMÍKOVÝ ČLÁNEK REAGUJE JEN NA FOTONY S ENERGIÍ NAD 1.1 eV

TYPICKÉ VOLTAMPÉROVÉ CHARAKTERISTIKY

PARAMETRY ČLÁNKŮ

TYP	I _f	U_{∞}	FF	ÚČIN
	A/dm	² V	%	%
Kryst Si	4.2	0.71	83	25
poly Si	3.8	0.65	80	20
amorf Si	1.9	0.89	74	13
kryst GaAs	2.8	1.02	87	25
CdTe	2.6	0.85	75	16
CuInGaSe ₂	3.6	0.67	77	19

PROBLÉM: MALÁ HUSTOTA TOKU SLUNEČNÍ ENERGIE

1000 kWh/m²a odpovídá 228 W/m² ve dne

A CENA!

BIOMASA

POTENCIÁL 160 EJ/a tj. 5 TW INSTALOVÁNO 60 GW (85% TRADIČNÍ (?))

ŘEPKA NA SLÁMU VÝHŘEVNOST VÝNOS

13.5 MJ/kg 4 t/ha

PRO VÝROBU 1 MWa ≈ 32 TJ (VÝKON 1 MW) POTŘEBUJEME 2370 t SLÁMY a TEDY 590 ha PŮDY

ZJÁDRA

ENERGIE

FERMI – CHICAGO 2. 12. 1942, 15:20 MÍSTNÍHO ČASU

VÝHODNÉ JE ŠTĚPENÍ TĚŽKÝCH A SLUČOVÁNÍ LEHKÝCH JADER

ŠTĚPENÍ

PŘI ŠTĚPENÍ URANU (PLUTONIA, THORIA) SE UVOLŇUJÍ 2–3 NEUTRONY, KTERÉ VYVOLAJÍ DALŠÍ ŠTĚPENÍ – DOCHÁZÍ K ŘETĚZOVÉ REAKCI

UVOLNÍ SE ENERGIE

Q = A ϵ - (A₁ ϵ ₁ + A₂ ϵ ₂) = A(ϵ - ϵ _s) \approx 240 \times 0.8 MeV \approx 200 MeV cca 160 MeV FRAGMENTY, 6 MeV NEUTRONY, 30 MeV OSTATNÍ (γ , e⁻, ν)

VZNIKLÉ FRAGMENTY MAJÍ POMĚRY NÁBOJŮ A HMOTNOSTÍ PŘIBLIŽNĚ 3 : 2

PODMÍNKA MOŽNOSTI ŠTĚPENÍ - Z WEIZSÄCKEROVY FORMULE $\gamma Z^2/A^{1/3} > \beta A^{2/3}$, tj. $Z^2/A > 17$

VE SKUTEČNOSTI – DÍKY ENERGETICKÉ BARIÉŘE AŽ JÁDRA OD A ≈ 210

ÚČINNÝ PRŮŘEZ G

STŘEDNÍ POČET REAKCÍ ZA 1 ČASU NA 1 REAKČNÍM CENTRU PŘI JEDNOTKOVÉM TOKU DOPADAJÍCÍCH ČÁSTIC

POČET REAKCÍ / ČAS = $N.j.\sigma$

N = POČET REAKČNÍCH CENTER j = TOK DOPADAJÍCÍCH ČÁSTIC o = ÚČINNÝ PRŮŘEZ

ÚČINNÝ PRŮŘEZ ZÁVISÍ NA ENERGII

ROZMĚR m² V JADERNÉ FYZICE V BARNECH: 1 b = 10⁻²⁸ m²

BILANCE NEUTRONŮ

EFEKTIVNÍ POČET NEUTRONŮ NA ZÁCHYT

$$\eta = v.\sigma(n,f)/(\sigma(n,f) + \sigma(n,\gamma))$$

V = POČET UVOLNĚNÝCH NEUTRONŮ

σ(n,f) = ÚČINNÝ PRŮŘEZ ŠTĚPENÍ

σ(n,γ) = ÚČINNÝ PRŮŘEZ RADIAČNÍHO ZÁCHYTU

U 235

NEUTRONY S ENERGIÍ 2-3 MeV (RYCHLÉ)

$$V^5 = 2.65, \ \sigma^5(n,f) = 2 \ b, \ \sigma^5(n,\gamma) = 0.2 \ b$$
 DÁ $\eta = 2.4 \ NEUTRONÚ$

JE TÉŽ ÚNIK NEUTRONŮ DO OKOLÍ
PRO DOSTATEČNĚ VELKÝ – KRITICKÝ – OBJEM DOCHÁZÍ K SAMOVOLNÉMU ŠTĚPENÍ

PRO U235 JE KRITICKÝ OBJEM cca 2.5 l, ODPOVÍDAJÍCÍ KRITICKÁ HMOTNOST JE cca 47 kg

U 238

 $V^8 = 2.5$

JEN cca 60% NEUTRONŮ MÁ ENERGII DOSTATEČNOU PRO ŠTĚPENÍ (> 1.4 MeV)

Z NICH JEN cca KAŽDÝ PÁTÝ VYVOLÁ ŠTĚPENÍ

ODTUD $\eta^8 \approx 0.3$

K SAMOVOLNÉMU ŠTĚPENÍ NEDOCHÁZÍ

PŘIROZENÝ URAN = 99.3% U 238 + 0.7% U 235

U 238 DÁ – viz výše -
$$\eta^8\approx$$
 0.3
U 235 DÁ $\eta^5=$ 2.65 \times 2/(2 + 0.2 + 140 \times 0.1) \approx 0.3 ($\sigma^8(n,\gamma)=$ 0.1)
CELKEM $\eta^{nat}=$ $\eta^8+\eta^5\approx$ 0.6
ANI PŘIROZENÝ URAN SE SAMOVOLNĚ NEŠTĚPÍ

CHCEME-LI VYVOLAT ŠTĚPENÍ, MUSÍME BUĎ

OBOHATIT PŘIROZENÝ URAN

(BUĎ URANEM 235 (ASPOŇ 7 %) NEBO PLUTONIEM 239 (ASPOŇ 5 %)

NEBO

ZPOMALIT NEUTRONY

DRUHÉ VEDE KE STANDARDNÍM REAKTORŮM, PRVNÍ K REAKTORŮM MNOŽIVÝM

ÚČINNÉ PRŮŘEZY V ZÁVISLOSTI NA ENERGII

MODEROVÁNÍ

SNÍŽENÍ ENERGIE NEUTRONŮ NA cca 0.05 eV PAK $V^5=2.47$, $\sigma^5(n,f)=580$ b (!), $\sigma^5(n,\gamma)=112$ b, $\sigma^8(n,\gamma)=2.8$ b A $\eta\approx 1.3$

JSOU OVŠEM ZTRÁTY NEUTRONŮ PŘI MODEROVÁNÍ

VHODNĚ MODERÁTORY JSOU TĚŽKÁ VODA (σ_{abs} = 1.1 mb) A GRAFIT (σ_{abs} = 3.8 mb) (LEHKÁ NEABSORBUJÍCÍ JÁDRA)

OBYČEJNÁ VODA ($\sigma_{abs} = 670 \text{ mb}$) VYŽADUJE OBOHACENÍ (ASPOŇ 3 % U 235)

BILANCE NEUTRONŮ PRO REAKTOR S MODEROVÁNÍM

$$n(g+1) = k_{\infty}P_{F}P_{T} n(g)$$

n(g) – počet neutronů v g-té generaci, k_∞ - faktor zmnožení v nekonečném reaktoru

$$k_{\infty} = \epsilon pf\eta$$

Čtyřfaktorová formule

ε – zvětšení počtu štěpných neutronů díky ²³⁸U

Typicky 1.02

p – pravděpodobnost nezachycení neutronu moderátorem

0.87

f – pravděpodobnost zachycení neutronu palivem

0.71

 $η = v\sigma_f/Σ\sigma_a - počet neutronů na 1 štěpení$

1.65

Celkem typicky $k_{\infty} = 1.02 \times 0.87 \times 0.71 \times 1.65 = 1.04$

Faktory P_F a P_T popisují vliv konečných rozměrů reaktoru

$$P_F = \exp(-B_g^2 \tau)$$

únik rychlých

0.97

$$P_T = 1/(1 + L^2 B_g^2)$$

únik tepelných neutronů

0.99

т – Fermiho věk neutronů ([m²])

L – migrační délka

$$B_g^2 = (\pi/H)^2 + (2.405/R)^2$$
 pro válec geometrický parametr reaktoru

PALIVOVÝ CYKLUS

PWR

300°C, 15 MPa

BREEDER

ZMNOŽUJE PALIVO

SROVNÁNÍ ZDROJŮ

Roční vstupy a výstupy 1 000 MW elektrárny

Uhlí

250 vlaků 2,500,000 t po 100 vagónech

10,950,000 t 219,000 t 29,000 t

Ropa

11,000,000 barrelů

11 obřich tankerů

(1 barrel = 1591)

Štěpení

28 t UO₂

1.5 vagónu

Sluneční 1000 MW energie

sluneční energie

20 km² kolektorů

Fúze

180 kg deuteria 1 nákladní auto 270 kg tritia

410 kg využitelného helia

ADTT

TOK ODPADŮ Krátkodobé štěpné produkty určené ke skladování v místním technickém zařízení. Po oca 30 až 100 letech jejich radioaktivita "zmizí", tj. bude stejně vysoká jako u jiných materiálů, které nás běžně obklopují.

ЧОРНОБИЛЬ

АЭС им. ЛЕНИНА

GRAFITEM MODEROVANÝ, VODOU CHLAZENÝ REAKTOR

26. DUBNA 1986

1:23:58

MÍSTNÍHO ČASU

CO BYLO POTŘEBA K TOMU, ABY BYL JADERNÝ REAKTOR PŘINUCEN VYBUCHNOUT

ŠPATNÁ KONSTRUKCE ELEKTRÁRNY :

CITLIVÁ NA VZNIK BUBLIN, BEZ DVOU STANDARDNÍCH OCHRAN (NÁDOBA, OBÁLKA), S ODPOJITELNÝM BEZPEČNOSTNÍM ZAŘÍZENÍM A ŠPATNĚ KONSTRUOVANÝMI ŘÍDÍCÍMI TYČEMI

NEKVALIFIKOVANÝ PERSONÁL:

ŘEDITEL, OSÁDKA ELEKTROINŽENÝRŮ

EXPERIMENT

VYSTAČÍ DOBĚH TURBÍN JAKO ZDROJ ENERGIE, NEŽ SE NASTARTUJÍ DIESEL-AGREGÁTY ?

PRÚBEM: 14 H - SNÍŽENÍ VÝKONU REAKTORU, VYPNUTÍ HAVARIJNÍHO CHLAZENÍ (!), ODKLAD TESTU, 23 H - RYCHLEJŠÍ POKRAČOVÁNÍ → PŘÍLIŠNÉ SNÍŽENÍ VÝKONU (AŽ NA 30 MW MÍSTO 700 MW!) → VYSUNUTÍ REGULAČNÍCH TYČÍ (!) (200 MW), ZAPNÚTÍ ČERPADEL → TLAK A TEPLOTA MIMO POVOLENÉ MEZE → ZABLOKOVÁNÍ HAVARIJNÍCH SIGNÁLŮ (!), DALŠÍ POKLES VÝKONU → DALŠÍ TYČE VYTAŽENY RUČNĚ (!), SNÍŽENÍ NAPÁJENÍ VODOU → PÁRA, HLÁŠENÍ O MÁLO TÝČÍCH ZAHÁJENÍ TESTU (!) - ODPOJENÍ REAKTORU A HAVARIJNÍHO SYSTÉMU 2. TURBÍNY (!), PO 36 s "NĚCO" V NEPOŘÁDKU -POKUS O RUČNÍ VYPNUTÍ REAKTORU – TYČE SE ZABLOKUJÍ. 2 VÝBUCHY

DŮSLEDKY

5 MLN OSOB OZÁŘENO, Z TOHO 135 TISÍC VÝZNAMNĚJI

PŘEDPOKLÁDANÁ ÚMRTÍ: 4000 OSOB (3% VÝZNAMNĚJI OZÁŘENÉ POPULACE – "PŘIROZENÁ RAKOVINA" cca 25%)

JIŽ ZEMŘELO 56 OSOB (47 ČLENŮ OSÁDKY A ZÁCHRANÁŘŮ + 9 DĚTÍ – RAKOVINA ŠTÍTNÉ ŽLÁZY)

UVOLNILO SE 5-12 EBq RADIOAKTIVITY (MÉNĚ NEŽ 1 % JADERNÝCH ZKOUŠEK)

OKLO

ŘEKA V GABUNU U NÍŽ JSOU URANOVÉ DOLY

OD ROKU 1972 ZDE BYLO IDENTIFIKOVÁNO
VYHOŘELÝCH PREHISTORICKÝCH REAKTORŮ
(Z DOBY PŘED cca 1.8 MLD LET

REAKTORY PRACOVALY S OBOHACENÝM URANEM A BYLY MODEROVÁNY VODOU

SYSTÉM FUNGOVAL VÍCE NEŽ 150 TIS. LET S PRŮMĚRNÝM VÝKONEM cca 100 KW

REGULACE: VYPAŘOVÁNÍ VODY

(0.5 + 2.5 H CYKL)

REAKTOR VODOU MODEROVANÝ S OBOHACENÝM URANEM?

VODA Z ŘEKY, URAN V RUDNÝCH ČOČKÁCH O PRŮMĚRU cca 10 – 20 m a TLOUŠTČE cca 1 m, OBOHACENÝ?

U238 MÁ POLOČAS ROZPADU 4.5 MLD LET, U235 JEN 0.7 MLD LET → DŘÍVE BYL RELATIVNÍ PODÍL U235 VĚTŠÍ

 $\overline{p(-t) = p_o \exp(t/T_5) / (p_o \exp(t/T_5) + (1-p_o) \exp(t/T_8))}$

 $P_0 = 0.7 \% \rightarrow p(-1.8 \text{ MLD LET}) = 5.8 \% !$

DŮSLEDKY

PŘED 2 MLD LET PLATILA STEJNÁ FYZIKA JAKO DNES

RADIOAKTIVNÍ ODPAD (KROMĚ Kr) LZE UDRŽET NA JEDNOM MÍSTĚ SKORO 2 MLD LET

TAKOVÝCH REAKTORŮ BYLO ZŘEJMĚ VÍCE + V UVEDENÉ DOBĚ SE OBJEVILY PRVNÍ EUKARYONTY (BUŇKY S JÁDREM)

= NÁHODA?

ROZMÍSTĚNÍ JADERNÝCH ELEKTRÁREN 2011 (440 BLOKŮ)

FÚZE

DOBRÉ REAKCE:

D + D
$$\rightarrow$$
 (50%) He3 (0.8 MeV) + n (2.45 MeV) \rightarrow (50%) T (1.0 MeV) + p (3.02 MeV)

$$D + T \rightarrow He4 (3.5 MeV) + n (14.1 MeV)$$

D + He3 \rightarrow He4 (3.6 MeV) + p (14.7 MeV)

PROBLÉM: ODPUZOVÁNÍ

POTŘEBNÁ ENERGIE $E = e^2/4\pi\epsilon_o R \approx 360 \text{ keV}$ $\approx 4 \text{ MLD K}$

POMOHOU:

RYCHLÉ ČÁSTICE

TUNELOVÝ JEV

PRO MOŽNOST ŠTĚPENÍ JE DŮLEŽITÁ REAKČNÍ RYCHLOST <σν>

PODMÍNKA UDRŽENÍ - LAWSON

DOBA UDRŽENÍ τ ZE VZTAHU $P_{out} = E/\tau$

ZÍSKANÁ ENERGIE $n_D n_T < \sigma v > E_{ch} = 1/4 n_e^2 < \sigma v > E_{ch}$ PRO DT (resp. 1/2 $n_e^2 < \sigma v > E_{ch}$ PRO DD) $E_{ch} = ENERGIE NABITÝCH ČÁSTIC$

PŘI TEPLOTĚ T JE ENERGIE PLAZMATU $E = 2 \times 3/2 n_e k_BT$

PODMÍNKA : ZÍSKANÁ ENERGIE > ZTRÁTY $1/4 n_e^2 < \sigma v > E_{ch} > 3 n_e k_B T/\tau DÁ$

 $n_e \tau > 12 k_B T / < \sigma v > E_{ch}$

PRO DT $n_e \tau > 10^{20}$ m⁻³s PŘI 300 MLN K PRO DD $n_e \tau > 10^{22}$ m⁻³s PŘI 1 MLD K

σ, <σ**v>**, L

3 METODY UDRŽENÍ

GRAVITAČNĚ - UMĚJÍ HVĚZDY

V MAGNETICKÉM POLI - obvykle TOKAMAKY

INERCIÁLNĚ S OHŘÁTÍM – obvykle LASERY

HVĚZDY SLUNEČNÍHO TYPU

pp-CYKLUS

 $0.08~\mathrm{M}_\odot < \mathrm{M} < 1.1~\mathrm{M}_\odot$

TOKAMAK

TAMM, SACHAROV

PLAZMA V MAGNETICKÉM POLI STABILIZACE PROTÉKAJÍCÍM PROUDEM

PRINCIP:

 $n \approx 10^{20} \text{--} 10^{21} \text{ m}^{-3} \text{ (} 10^{-5} \text{--} 10^{-4} \text{ VZDUCHU)}$ $\tau \approx 1 \text{--} 10 \text{ s}$

SCHÉMA TOKAMAKU

OHŘEV

OHMICKÝ OHŘEV (NESTAČÍ : ODPOR KLESÁ S TEPLOTOU)

NEUTRÁLNÍ SVAZKY (NEUTRALIZOVANÉ URYCHLENÉ IONTY H)

RADIOFREKVENČNÍ OHŘEV(25-55 MHz)

VLASTNÍ OHŘEV PŘI FÚZI

← VYSLEDKY

REKORD: JET 1997

DT PLAZMA UVOLNĚNO 14 MJ VÝKON 13 MW Q = E_{out}/E_{in} = 0.6

REKORDNÍ ZÁZNAM

Další DT pokus snad letos

NEJVĚTŠÍ SOUČASNÝ TOKAMAK JET = JOINT EUROPEAN TORUS

JE UMÍSTĚN V OXFORSHIRU, UK

DALŠÍ KROK JE ITER

ITER

PARAMETRY TOKAMAKŮ JET A ITER

HLAVNÍ POLOMĚR [m]	3	6.2
VEDLEJŠÍ POLOMĚR [m]	1.25	2
OBJEM [m ³]	155	837
PROUD [MA]	5-7	15
MAGNETICKÉ POLE [T]	3.4	5.3
TRVÁNÍ PULZU [s]	10	> 300
TERMONUKL. VÝKON [MW]	10	500
Q = TNV/PŘÍKON	1	> 10
ENERGIE NEUTRONŮ [kW/m²]	60	600

PLÁN PRO ITER

PODROBNĚJI

PRELIMINARY

Stavba ITERu 2014-15

CO DÁL

DEMO DESIGN Balance of Plant Heating **Magnets Systems** Vacuum Vessel **Tritium** Cycle Remote Handling

PARAMETRY VARIANTY A

ELEKTRICKÝ VÝKON 1.55 GW FÚZNÍ VÝKON 5 GW HLAVNÍ POLOMĚR 9.55 m MAGNETICKÉ POLE NA OSE 7 T PROUD PLAZMATEM 30.5 MA STŘEDNÍ TEPLOTA 22 keV HUSTOTA PLAZMATU 1.1×10^{20} m⁻³ Q = 20

STLAČENÉ TERČÍKY

UDRŽENÍ JE DÁNO DOBOU ROZLETU $\tau \approx R/\sqrt{(3/2 \ k_BT/M)}$

DOSAZENÍ DO KRITÉRIA ρR > 10 kg/m²

ZA DOBU τ JE TŘEBA TERČÍK OHŘÁT POTŘEBNÁ ENERGIE E \approx 4/3 π R³.3nk_BT

VHODNÉ PARAMETRY:

0.5 mm DT KULIČKA (0.01 mg) STLAČENÁ NA POLOMĚR 0.05 mm DOBA OHĚVU cca 1 ns DODANÁ ENERGIE 0.3 MJ ZÍSKANÁ ENERGIE 3.4 MJ

STLAČENÍ TERČÍKU

Laser beams or laser-produced x rays rapidly heat the surface of the fusion target, forming a surrounding plasma envelope.

Blowoff

Fuel is compressed by the rocketlike blowoff of the hot surface material.

Inward transported thermal energy

During the final part of the capsule implosion, the fuel core reaches 20 times the density of lead and ignites at 100,000,000°C.

Thermonuclear burn spreads rapidly through the compressed fuel, yielding many times the input energy.

NATIONAL IGNITION FACILITY

NIF už funguje v Livermore, CA

Dosáhli tam už Q > 1

192 LASERŮ, S VÝKONEM 1.8 MJ, POLOMĚR KAPSLE \approx 1 mm VRSTVIČKA LEDU DT TLOUŠŤKY \approx 70 μ m VYVOLANÝ TLAK \approx 10 TPa TEPLLOTA \approx 5 keV ρ r \approx 1.5 kg m⁻² $Q \approx$ 1.9

Problém technologie : účinnost laserů

VÝSLEDEK Z NIF

