

CHURCHLANDS SENIOR HIGH SCHOOL MATHEMATICS SPECIALIST 3,4 TEST 1 SECTION TWO 2016 Year 12 Calculator Section

Nam	e	Time: 35 minutes Total: 35 marks	
1.	[1, 5, 3 marks]		
(a)	State the exact value of $(2+2\sqrt{3}i)^4$ in Cartesian form.		(1 mark)
(b)	Hence determine exact values for all the roots of $z^4 = -8$	$8\sqrt{3}i$.	(5 marks)

(c) Sketch all the roots from (b) on the Argand diagram below. Identify all the important features. (3 marks)

2. [2, 3, 2 marks]

Sketch the following regions in the complex plane.

(a)
$$-\frac{2\tau}{3} \le \arg(z) \le \frac{\pi}{3}$$
.

(2 marks)

(b)
$$|z+1-2i| \ge |z+2-4i|$$
.

(3 marks)

(c) For the region in (b) above, state the minimum value of
$$|z|$$
.

(2 marks)

- 3. [6, 2 marks]
- (a) Use de Moivre's Theorem to solve $z^5 = -iz$ Give your answers in the form $rcis\theta$ where $r \ge 0$ and $-\pi < \theta \le \pi$ [To obtain full marks for this question, you must show clearly the use of de Moivre's Theorem.]

(b) An exact solution to $z^5 = -iz$ is $z = (\frac{-\sqrt{2-\sqrt{2}}}{2}) + (\frac{-\sqrt{2+\sqrt{2}}}{2})i$

Given that $cos\theta = (\frac{-\sqrt{2-\sqrt{2}}}{2})$, use your answer in (a) and the above solution to z to show that $\theta = \frac{-5\pi}{8}$. Explain clearly how you arrived at your answer.

- 4 [4, 3, 3 marks]
- (a) Express each of the following in polar form such that $r \ge 1$ and $0 \le \theta \le 2\pi$. (4)
 - (i) $(1-i)^5$
 - (ii) $\left(-\sqrt{3}-i\right)^4$
 - (iii) $\left(-1+i\sqrt{3}\right)^{\square}$
 - (iv) $(-2+2i)^3$
- (b) **Hence,** simplify $\frac{(1-i)^5(-\sqrt{3}-i)^4}{(-1+i\sqrt{3})(-2+2i)^3}$ giving your answer in Cartesian form.

Your working steps must show clearly how you multiply and divide complex numbers expressed in polar form. (3)

(c)

The complex number z is given such that $\overline{z} = \frac{-1-i}{1-\sqrt{3}i}$. Find z, $\frac{|z|^2}{\overline{z}}$ and hence state a relationship between them. (3)