Практическое занятие авария на РОО

Тема: Оценка устойчивости функционирования объектов экономики и безопасности жизнедеятельности населения и персонала в прогнозируемых условиях чрезвычайных ситуаций: **поражающие факторы при аварии на радиационно опасном объекте.**

Учебная цель: владеть методами защиты персонала объекта связи и населения в условиях чрезвычайных ситуаций.

Воспитательная цель:

- воспитывать профессиональные качества руководителя объекта связи;
- воспитывать гордость за обучение в ведущем вузе Россвязи и принадлежность к инфокоммуникационной отрасли.

Легенда:

В результате аварии на АЭС произошел тепловой взрыв вызвавший разрушение реактора и радиоактивный выброс с последующим загрязнением местности.

Определить:

- возможную дозу облучения персонала, работающего на открытой территории;
- возможную дозу облучения персонала и жителей посёлка, находящихся в помещении или ПРУ с $K_{\text{осл}} = \dots$;
- допустимое время работы персонала и жителей посёлка на РЗМ;
- дозу облучения жителей посёлка за 8 ч. проживания на РЗМ в жилых домах или ПРУ с $K_{\text{осл}}=\cdots;$
- дозу облучения жителей посёлка за двое суток проживания на РЗМ в жилых домах или ПРУ с $K_{\text{осл}} = \dots$;
- дозу облучения жителей посёлка за 30 суток проживания на РЗМ в жилых домах с $K_{\text{осл}} = \dots$;
- пожизненную дозу облучения жителей посёлка в течение 70 лет проживания на P3M в жилых домах с $K_{0C\pi} = \cdots$;

Разработать:

инженерно-технические мероприятия по повышению БЖД персонала и населения в случае радиоактивного загрязнения местности.

ПРИМЕР РАСЧЁТА

Исходные условия:

Время начала облучения $t_{\rm H}=5$ ч., время работы персонала составляет $t_{\rm pa6}=5$ ч. Уровень радиоактивного излучения на время начала облучения составляет $P_{\rm Ha4}=7$ Р/ч. Коэффициент ослабления $K_{\rm ocn}=7$ раз. Допустимая доза облучения персонала $\mathcal{L}_{\rm дon}=4$ бэр .

Для гамма-излучения 1 рентген (1 р) примерно равен одному раду (1 рад) и одному бэр (1 бэр).

Решение:

1. Определение возможной дозы облучения персонала и жителей посёлка, работающих на открытой территории.

Определение времени окончания облучения персонала и жителей посёлка:

$$t_{\rm K} = t_{\rm H} + t_{\rm pa6} = 5 + 5 = 10$$
 часов

Уровень радиоактивного излучения в момент времени t после аварии на АЭС определяется по формуле:

$$P_t = P_{\rm H} \cdot \left(\frac{t}{t_{\rm H}}\right)^{-n},$$

где P_t — уровень радиоактивного излучения в момент времени t;

 $P_{\rm H}$ – уровень радиоактивного излучения на время начала облучения $t_{\rm H}$;

n — показатель степени, характеризующий радионуклидный состав и скорость уменьшения уровня радиоактивного излучения во времени. Для реакторов и АЭС $n=0.4\dots0.5$ (для АЭС n=0.4).

Определение уровня радиоактивного излучения на 1 час после аварии на АЭС:

$$P_1 = P(1 \text{ y.}) = P_{\text{H}} \cdot \left(\frac{1}{t_{\text{H}}}\right)^{-0.4} = 7 \times \left(\frac{1}{5}\right)^{-0.4} = 13,333 \text{ p/y,}$$

Так как уровень радиоактивного излучения на 1 час после аварии составляет 13,333 р/ч видно, что объект находится в зоне «Опасного загрязнения «В» (расстояние от АЭС до объекта до 17,4 км, а ширина до 0,69 км).

Характеристика зон радиоактивного загрязнения местности в случае аварии на РОО (по прогнозу) (1 р/ч равен 1 рад/ч)

Наименование зоны	Индекс зоны (цвет)	Расстояние зоны, длина/ ширина, км	первый по	тучения за осле РА год, ад	Мощность дозы через 1 час после РА, рад/ч	
			на внешней границе	на внутрен- ней границе	на внешней границе	на внутрен- ней границе
Радиационной опасности	М (красный)	270/18,2	5	50	0,014	0,14
Умеренного загрязнения	А (синий)	75/3,92	50	500	0,14	1,4
Сильного загрязнения	Б (зеленый)	17,4/0,69	500	1500	1,4	4,2
Опасного загрязнения	В (коричневый)		1500	5000	4,2	14
Чрезвычайно опасного загрязнения	Г (черный)		5000	-	14	-

Определение уровня радиоактивного излучения на времени окончания облучения персонала и жителей посёлка $(t_{\rm K})$:

$$P_k = P(t_k) = P_{\text{H}} \cdot \left(\frac{K_{\text{IIK}}}{K_{\text{IIH}}}\right),$$

где $K_{\text{пк}}$ и $K_{\text{пн}}$ – коэффициенты пересчета уровня радиоактивного излучения в конце и начале облучения (таблица 1).

Таблица 1 Коэффициент пересчета уровней радиоактивного излучения $K_{\rm n}$ на различное время t после аварии на АЭС

Время после аварии, <i>t</i> , час	$K_{\Pi}=t^{-0.4}$	Время после аварии, t , час	$K_{\Pi}=t^{-0,4}$	Время после аварии, <i>t</i> , час	$K_{\Pi}=t^{-0,4}$
0,5	1,320	4,5	0,545	12,0	0,370
1,0	1,000	5,0	0,525	20,0	0,303
1,5	0,850	5,5	0,508	24,0	0,282
2,0	0,760	6,0	0,490	48,0	0,213
2,5	0,700	6,5	0,474	72,0	0,182
3,0	0,645	7,0	0,465	96,0	0,162
3,5	0,610	7,5	0,447	120,0	0,146
4,0	0,575	8,0	0,434	144,0	0,137

$$P_{10} = P(10 \text{ y.}) = 7 \times \left(\frac{0,402}{0,525}\right) = 5,36 \text{ p/y},$$

Возможная доза облучения для персонала и жителей посёлка работающих на открытой территории:

$$\mathcal{A}_{\text{обл}}^{\text{АЭС}} = 1.7(P_k t_k - P_{\text{H}} t_{\text{H}}) = 1.7 \times (5.36 \times 10 - 7 \times 5) = 31.62$$
 бэр,

2. Определение возможной дозы облучения персонала и жителей посёлка, находящихся в помещении или ПРУ:

Вывод: на открытой территории за время работы в течение 5 часов персонал и жители посёлка получат возможную дозу радиоактивного облучения 31,62 бэр, что превышает допустимую дозу радиоактивного облучения в 7,9 раза.

Персонал и жители посёлка, находящиеся в помещениях или ПРУ получат возможную дозу радиоактивного облучения 4,517 бэр, что превышает допустимую дозу радиоактивного облучение в 0,645 раза.

3. Определение допустимого времени работы персонала и жителей посёлка на радиоактивно загрязнённой местности и в помещении.

Определение коэффициента А пребывания на РЗМ по формуле:

$$A = \frac{P_1}{\prod_{\text{доп}}} = \frac{13,333}{4} = 3,333$$

Определение коэффициента А пребывания в помещении по формуле:

$$A = \frac{P_1}{\prod_{\text{доп}} K_{\text{осл}}} = \frac{13,333}{4 \times 7} = 0,476$$

Если $A \le 1,0$, то время пребывания персонала и жителей населённого пункта на P3M определяется по таблице 2.

Таблица 2 Допустимая продолжительность пребывания людей на радиоактивно зараженной местности при аварии (разрушении) АЭС $T_{\text{доп}}$, ч

A	Время, прошедшее с момента аварии до начала облучения $t_{\rm H}$, ч						
A	1	2	3	4	6	8	12
0,2	7,30	8,35	10,00	11,30	12,30	14,00	16,00
0,3	4,50	5,35	6,30	7,10	8,00	9,00	10,30
0,4	3,30	4,00	4,35	5,10	5,50	6,30	7,30
0,5	2,45	3,05	3,35	<mark>4,05</mark>	<mark>4,30</mark>	5,00	6,00
0,6	2,15	2,35	3,00	3,20	3,45	4,10	4,50
0,7	1,50	2,10	2,30	2,40	3,10	3,30	4,00
0,8	1,35	1,50	2,10	2,25	2,45	3,00	3,30
0,9	1,25	1,35	1,55	2,05	2,25	2,40	3,05
1,0	1,15	1,30	1,40	1,55	2,10	2,20	2,45

Если A>1,0 , то время пребывания персонала и жителей населённого пункта на P3M определяется по формуле:

$$T_{\text{преб}} = \left(\frac{1}{1.7 \times A} + t_{\text{H}}^{0.6}\right)^{1.7} = \left(\frac{1}{1.7 \times 3.333} + 5^{0.6}\right)^{1.7} = 5.8 \text{ ч.,}$$

Время пребывания персонала и жителей населённого пункта в помещении определяется по таблице 2 и равно 4,7 часов.

Выводы:

- 1. На открытой территории первой смене можно работать не более 2 часов. (требования НРБ первой смене всегда разрешено работать на открытой территории не более 2 часов). Затем персонал необходимо укрыть в загерметизированных служебных помещениях или ПРУ.
- 2. В служебных помещениях возможно нахождение персонала не более 4,7 часов.
- 3. Работа персонала на открытой территории и в помещении производится посменно. Необходим жесткий график работы всех смен с учетом возможной дозы радиоактивного облучения.
- 4. Определение возможной дозы радиоактивного облучения жителей посёлка за 8 ч. проживания на РЗМ в домах:

$$t_k = t_{\rm H} + 8 = 5 + 8 = 13 \, \rm ч.,$$

$$P_k = P(13 \, \rm ч.) = P_{\rm H} \cdot \left(\frac{t_k}{t_{\rm H}}\right)^{-n} = 7 \times \left(\frac{13}{5}\right)^{-0.4} = 4,774 \, \rm p/ч,$$

$$\square_{\rm OGM}^{\rm HOMEH} = \frac{1,7(P_k t_k - P_{\rm H} t_{\rm H})}{K_{\rm OGH}} = \frac{1,7 \times (4,774 \times 13 - 7 \times 5)}{7} = 6,572 \, \rm Gap$$

Вывод: за 8 часов проживания населения посёлка в жилых домах жители получают возможную дозу радиоактивного облучения 6,572 бэр, что больше допустимой в 1,643 раза.

5. Определение возможной дозы радиоактивного облучения жителей посёлка за 2 суток проживания на P3M в домах:

$$t_k = t_{\rm H} + 48 = 5 + 48 = 53 \, \rm ч.,$$

$$P_k = P(53 \, \rm ч.) = P_{\rm H} \cdot \left(\frac{t_k}{t_{\rm H}}\right)^{-n} = 7 \times \left(\frac{53}{5}\right)^{-0.4} = 2,723 \, \rm бэр,$$

$${\cal A}_{\rm OGR}^{\rm HOMEIII} = \frac{1,7(P_k t_k - P_{\rm H} t_{\rm H})}{K_{\rm OGR}} = \frac{1,7 \times (2,723 \times 53 - 7 \times 5)}{7} = 26,549 \, \rm бэр$$

Вывод: требуется плановая эвакуация населения посёлка с РЗМ.

6. Определение возможной дозы радиоактивного облучения жителей посёлка за 30 суток проживания на РЗМ в домах:

$$t_k = t_{\mathrm{H}} + t_{\mathrm{pa6}} = 5 + 720 = 725 \,\mathrm{ч.},$$
 $P_k = P(t_k) = P_{\mathrm{H}} \cdot \left(\frac{t_k}{t_{\mathrm{H}}}\right)^{-n} = 7 \times \left(\frac{725}{5}\right)^{-0.4} = 0,956 \,\mathrm{бэр},$ $\mathcal{A}_{\mathrm{oбл}}^{\mathrm{помещ}} = \frac{1,7(P_k t_k - P_{\mathrm{H}} t_{\mathrm{H}})}{K_{\mathrm{och}}} = \frac{1,7 \times (0,956 \times 725 - 7 \times 5)}{7} = 159,824 \,\mathrm{бэр}$

Вывод: требуется временное переселение жителей с РЗМ.

7. Определение возможной дозы радиоактивного облучения жителей посёлка за 70 лет проживания на РЗМ в домах:

$$t_k = t_{\rm H} + t_{\rm pa6} = 5 + 604800 = 604805 \, \rm ч.,$$

$$P_k = P(t_k) = P_{\rm H} \cdot \left(\frac{t_k}{t_{\rm H}}\right)^{-n} = 7 \times \left(\frac{604805}{5}\right)^{-0.4} = 0,009 \, \rm бэр,$$

$${\cal A}_{\rm oбл}^{\rm помещ} = \frac{1,7(P_k t_k - P_{\rm H} t_{\rm H})}{K_{\rm och}} = \frac{1,7 \times (0,009 \times 604805 - 7 \times 5)}{7} = 1313,43 \, \rm бэр$$

Вывод: требуется пожизненное переселение жителей с РЗМ.

Методика проведения практического занятия

Занятие проводится методом деловой игры. Студент выступает в должности главного инженера объекта связи, а преподаватель — в качестве лица дающего оценку правильности действий экспертной группы и предлагаемой оценке.

В экспертную группу назначаются наиболее успевающие студенты:

- 1. Старший эксперт руководит экспертной группой и докладами студентов. Отвечает за правильность разработки инженерно-технических мероприятий и предлагаемой оценки докладчику.
 - 2. Эксперт отвечает за проверку правильности выполненных расчётов.
- 3. Эксперт отвечает за проверку правильности сформулированных выводов и применяемой терминологии.

Справочный материал

- 1. При дозе облучения жителей посёлка за двое суток равной или превышающей 100 бэр необходима экстренная эвакуация с РЗМ. При меньшей дозе облучения экстренная эвакуация не требуется, но необходима.
- 2. При дозе облучения жителей посёлка за 30 суток превышающей 3 бэр, требуется временное переселение жителей с РЗМ. Если к началу следующего месяца доза облучения не превышает 1 бэр переселение жителей с РЗМ можно прекратить.
- 3. При дозе облучения жителей посёлка проживающего в жилых домах в течение 70 лет равной или превышающей 100 бэр необходимо пожизненное переселение с РЗМ.
- 4. В случае РЗМ люди могут находиться на открытой территории не более двух часов в сутки (требование НРБ).

При аварии, повлекшей за собой радиоактивное загрязнение обширной территории, на основании контроля прогноза радиоактивной обстановки устанавливается зона радиационного контроля.

Зона радиационного контроля − годовая эффективная доза от **0,1** д**0 0,5 бэр**. Меры защиты населения − мониторинг радиактивности объектов окружающей среды, с\х продукции и доз внешнего и внутреннег облучения населения и его критических групп. Осуществляются меры по снижению доз и др. мер защиты.

Зона ограниченного проживания с правом отселения — годовая эффективная доза от **0,5 до 2,0 бэр**. Те же меры, что и в зоне радиационного контроля. Добровольный въезд для постоянного проживания не ограничивается, населению объясняется риск ущерба здоровью.

Зона отсления – годовая эффективная доза от **2,0 до 5,0 бэр.** Въезд для постоянного проживания не разрешен. Запрещается постоянное проживание населения репродуктивного возраста и детей. Мониторинг населения и объектов внешней среды.

Зона отчуждения — годовая эффективная доза более **5,0 бэр.** Постоянное проживание не допускается. Хоз. деятельность и природопользование регулируются специальными актами. Мониторинг и защита работающих с обязательным дозиметрическим контролем.

Необходимость эвакуации определяется вероятной дозой радиоактивного облучения человека за **первые 10 суток** с момента аварии на АЭС:

- при возможной дозе 50 Р и более планируется проведение общей эвакуации;
- при возможной дозе от 5 Р до 50 Р планируется проведение частичной эвакуации.

На территории, подвергнувшемуся радиоактивному загрязнению, после стабилизации обстановки в районе аварии в период локализации ее долговременных последствий устанавливаются зоны:

- зона отчуждения;
- зона отселения;
- зона ограниченного проживания с правом отселения;
- зона радиационного контроля.

Разработка инженерно-технических мероприятий по повышению БЖД персонала в случае радиоактивного загрязнения местности

Силами Поста РХБН объекта необходимо организовать ведение радиационной разведки на территории и в сооружениях объекта, в первую очередь в районах укрытия персонала. Контроль за мощностью дозы на объекте осуществлять через каждые 6 часов. При этом:

временно запретить всем употребление воды, продуктов питания из незащищенных источников;

силами Сводной группы РХЗ района приступить к дезактивации проходов и проездов от убежищ (ПРУ) к зданиям и сооружениям, в первую очередь обработку провести подъездов к сооружениям обеспечения (насосная станция, электроцех, ТП, гараж, котельная, ГРП, компрессорная, резервуары с топливом, пожарный резервуар, водозаборная скважина и т.д.);

для дезактивации зданий и сооружений привлечь команду пожаротушения района;

учитывая большой объем работ по дезактивации, незначительные мощности дозы в служебных помещениях (их необходимо загерметизировать) и ограниченные возможности Сводной группы РХЗ района — целесообразно использовать весь персонал объекта для работ по дезактивации оборудования и помещений объекта с использованием простейших средств защиты кожи (рабочая одежда) и простейших СИЗ органов дыхания;

разработать график очередности проведения работ по дезактивации служебных помещений и участков объекта с учетом их важности в технологической последовательности возобновления производственной деятельности;

рассмотреть вопрос возобновления производственной деятельности в отдельных структурных подразделениях до полного завершения работ по дезактивации;

создать комиссию по приемке служебных помещений и участков производства после проведения работ по их дезактивации;

разработать предложения по эксплуатации укрытий и служебных помещений в течении 25 суток в условиях радиоактивного загрязнения территории объекта и вахтового метода работы;

развернуть СОТ (станция обеззараживания транспорта) на заасфальтированной площадке в районе Северных ворот;

развернуть СОП (санитарно-обмывочный пункт) на базе душевых кабин технического отдела;

главному механику и главному энергетику оказать помощь в их развертывании, обеспечив их подключение к инженерным сетям;

всем начальникам структурных подразделений и служб особое внимание обратить на соблюдение мер безопасности при проведении работ по дезактивации;

подвоз рабочих вахт организовать в соответствии с указаниями руководителя исполнительной власти района (города) с учетом принятого вахтового метода работы.