Research Question:

Which Roads needs Traffic Signs in Victoria?

Structure

- Objective
- Why is it worth tackling and who would care?
- Dataset
- Visualisations
- Wrangling Plan
- Risk and Challenges

Objective

- Investigate which roads in Victoria is needing traffic signs based on accident and traffic volume statistics.
- Help us understand the current livability state of Victoria as we find out the current state of roads in Victoria
- To an extent, improve the livability in victoria as in the right hands, it can improve state of roads through out Victoria as it may reduce traffic and reduce accidents

Why is it worth tackling and who would care?

- This research will be most useful to traffic management department such as VicRoads to make decision on improving traffic
 - It will narrows down the location where traffic lights is needed
 - Therefore, it will possibly help narrows down the amount of traffic light simulation needed to be run

Dataset

Traffic Volume in victoria

- Type: csv
- Size: 14,675 rows
- Info: Average Annual daily traffic for all different type of vehicles in each road
- Organization: VicRoads
- Link: https://vicroadsopendata-vicroadsmaps.opendata.arcgis.com/datasets/5512df2ff41e4941bacf868053dbfba9 0
- Metadata: http://data.vicroads.vic.gov.au/metadata/evol.html

Crash Statistics

- Type: csv
- Size: 176,938 rows
- Info: Location of accidentsOrganization: DataVic
- Link: https://vicroadsopendata-vicroadsmaps.opendata.arcgis.com/datasets/1f3cb954526b471596dbffa30e56bb32 0
- Metadata:
 - http://data.vicroads.vic.gov.au/metadata/Crash%20Stats%20-%20Data%20Extract%20-%20Open%20Data.html

Traffic Lights in victoria

- Type: csv
- Size: 4,582 rows
- Info: Shows the location of traffic signals across Victoria
- Organization: VicRoads
- Link: https://vicroadsopendata-vicroadsmaps.opendata.arcgis.com/datasets/1f3cb954526b471596dbffa30e56bb32 0
- Metadata: http://data.vicroads.vic.gov.au/metadata/traffic lights.html

Visualisations

Visualisations

Main Roads

Visualisations

- --- Top 10 Road Accident ---
- 1: PRINCES 4438 accidents
- 2: HIGH 2730 accidents
- 3: NEPEAN 2107 accidents
- 4: SPRINGVALE 1447 accidents
- 5: SOUTH GIPPSLAND 1409 accidents
- 6: MONASH 1398 accidents
- 7: SYDNEY 1381 accidents
- 8: BURWOOD 1339 accidents
- 9: DANDENONG 1248 accidents
- 10: MAROONDAH 1172 accidents

Wrangling Plan

Data cleaning

- Case deletion on accident location dataset
 - Accident location dataset has small records where the roads is not specified
 - Meaning the accident may not exactly happen on the road, thus removing would be the best option

Integration

- Join Traffic Volume and Accident Location dataset through blocking of road number and road name
- Using group by method on both data set
- Create Percentage Likely Accident feature for every blocking
- This is better than raw data as we can now do analysis and prediction on this data

Wrangling Plan

- Correlation on Number of accidents and Annual Average Daily traffic
 - By using both mutual information and Pearson correlation on ALLVEHS_AADT and Percentage Likely Accident both discretized with equal length method using appropriate bin
 - Aiming to know if both factors actually has correlation
 - Expecting Heat maps of pearson correlation to be fairly clustered but not mostly clustered as accident may not be caused by amount of vehicles
 - Line graphs of ALLVEHS_AADT and Percentage Likely Accident to be more towards increasing straight line as number of bins goes up
- Make a model using train and test split methodology on existing traffic lights
 - Set a data frame where the traffic signs location with Percentage Likely Accident and average annual daily traffic of vehicles
 - Run the train and split function with possibly 80% as training set
 - Run K-nearest neighbor on new roads to show the accuracy of the conditions of new roads to be placed with traffic light to current roads with traffic lights
 - Expecting list of roads with sorted from high to low of accuracy

Risk and Challenges

Finding up to date open data

- Political and budgeting decision
 - As receiving audience has the final decision, it may trump over this research
- Not all factors are considered
 - E.g: Parking, reputation

11