7

Modivation LTL-formulas quantity universally over paths LTL: SF9 ATE Pallis(s): TF9 thus LTL permits do grandify over all paths, but not directly over some OK path existence can be modeled by checking 79. SX79 (=) not VTE Pallis (s): TF79 ⇒ ∃m∈ Pashis(s): not m≠ 9 E) ITE Pallis(s): TFP Yes more complicated statements like "it is always possible to return to store" So totard? Commot be specified in LTL in pardicular: $S_0 \not\models \Box \Diamond start$ (LTL) $S_0 S_1 \not\not\models \Box \Diamond start$ (Queille and $S_1 \not\models G_0 \downarrow G_0 \downarrow G_0$ (CTL) Syndax CTL (Clarke & Emerson 1986) for all paths formulas) STATE formulas \$:= Irve | or |-\$ [\$\P\D] = 14/44 PATH formular 9 := 0 T | TUT Defined operadors (ZTL) potentially evendually: ∃O I := ∃ (ArveUI) Tinevisably = Y (Srue U) Dotantially invariantly 74(-true V-1) always: □重:=7◆7重 Jinvoriousey JOJE - J (Anel-1) Eamples formulasover AP= {x=1, x<2, x=3} JO(x=1), ∀O(x=1), x<2 v x=1, ∃((x<2))(x≥3)), ∀(trueU(x<2)) Nou-examples: 3 (x=1 ~ to (x=3)) = 3

State, but not partie formula,
incorrect as CTL-formula, 30 (Arue U (x=1)) pash, but not a state formula, incorrect as CTL-formular Eamples: Safedy Y [TC/VTC2) mutual ,70,V7G exclusion Liveness Lien All Addi AD (reg -> AD res)

PETTSV TON (E) TITEPHATS: TITEPHA

9Er × ST

in general:

∃π∈Paths(TS): π = P

Aspec	Linear Sime	Brauching Sime 5
"believiour" in or shade s	posh-based: Mace (s)	State-based Computation tree of S
Semporal Cozic	LTL: path formula 9 SF9 => TTEPaths(s): TF9	CTL: state formulae existential path quantification universal path guantification
Complexity model checking problems	PSPACE-complede O(1751. exp(141)	PTIME O(ITSI./O)
adequal Subsumption and equivalence relations	Irace inclusion and Irace equivalence (can be checked in PSPA(E-complete)	Con los classical in
foirhess	no Special Sechnique needed	Special Sediniques Needed
Normal Forms	CTL	formulas of and & are Equivalent lemoted &= (4) if Sat(4) = Sat(4) For all Arausi Mousy Stoms TS over
Existendial Nor	mal Form (ENF)	
₩ ::= 4	rue A T T	季ロE(乗り車)E1乗のE1
Tem. For ever	y CTL-formila Shere i	s au equivalent CTL-formular
Posidive Norm	ial Form	
重 ::= /	drue false a 700	P1N [2 D1V [2] 4 4 P
Q : -	0 1 0 1 U 0 2 0, W	2
Teim. For each	CTL-Lorundon Shere is	au equivoland CTL-formula in PNI
Weak Undie:		
TFTWY	今 エト重し出	OF TEDE
= J(DWD	ned by defining: 2) := 77((\Pan(4))) 2) := 77((\Pan(4)))	


```
CTL*
         (Emerson, Halpern, 1985/86)
                                             (CTL* formulas),
stake formulas
          型 ::= Arve | が | 車 | 一 車 | ヨφ
 Syutax
           9:0 E19,9/79/04/909
                                              path formuloz
         Op := Aroe UP
                            40 =: 97
          DY:= -079
 Example
          Y [ (000 A 7 (6U []c)),
                                             not CTL-formule
          (laud) bus) OCE 1 ATON
 Semonatics
   Tor a EAP and TS = < S, Ad, ->, I, AP, L) a Drausition system,
   and all SES:
               e \in L(s)
      SFO
                                                Same as
      SFr車:的 not SF車 (ie. SK車)
                                                for
      SFENY: (SFE) And (SFY)
                                                CTL
      SF39: (5) TF9 for some TE Padhs(8).
   For all pallis IT in S:
                                        3 NEW for CTL*
       TED : O TIOJ F T
       TF GAGS ( ) TFG and TFB
                                          ( some as
       TETY : O TXY
                                           same as for CTL
       TF09 = = T=1 F9
       TF 9, U2: 4 ] j=0. (T=j= 2
                               A YOSK < j: Tzk F G)
   Sad (D) := {SES /SFQ}
   TSF重: 台 Ys, EI: S, F更.
Embedding of LTL in CTL*
Tem. TS= (S, Act, -, I, AP, L) or Drows Lion system will out terminal state
 For every LTL-formula 4 and for each SES:
                          SE AP,
```

TSF9 (=) TSF Y9

LTL-semantics

CTL*- Semandics

Reladiouship between LTL, CTL, and CTL*

Tem. For the CTL*- formula O(anoa) v VII For Shere does not exist any equivalent LTL or CTL-formula.

		, se	
	CTL	LTL	CTL*
model checking without fairness with fairness	PTIME Size(TS). IDI Size(TS). IDI. Pair	PSPA(E-complede Size(TS).exp(101) Size(TS).exp(101).lfair	PSPACE-Complede size(TS), exp(IDI) size(TS). exp(IDI), fair/
for fixed specifications	O(Size(TS))	O (size(TS))	O (size (TS))
Sodis fability Check	EXPTIME	PSPACE-complete	ZEXPTIME
best known Sednique Upper Gound	$O(\exp(1\overline{\Phi}))$	$exp(1\overline{\Phi}1)$	$\exp(\exp(\overline{\Phi}))$

Possibly the system never goes down II I down Juvariantly the system never goes down VI I down Jais always possible to start as new VII I Upz The system always eventually goes down Acid is operational until going down Y ((Upz VUpz) V down)

1