precision and recall

André Santos, afs@inesctec.pt

Common NLP tasks

- paragraph/sentence splitting
- named entity recognition
- removing/restoring diacritics

• •••

How to evaluate results?

Evaluation

- Comparison with a reference dataset (for example, a manually annotated collection of texts)
- When developing this kind of applications, dataset is often divided in (at least), two subsets:
 - · train
 - · evaluate

Example

- · Find first names in text
- For each word, determine whether it is an first name or not

Example

- Let's consider a manually annotated text
- · 60 words
- · 6 first names

Example

- And our tool's output
- 6 first names, but not exactly the same 6 names

Example ___

Accuracy

- percentage of correctly classified words
 number of correctly classified words
 total number of words
- · 57 / 60 = 0.95 = 95%

Confusion matrix

111	Actual	
	Positive	Negative
Positive	True Positive	False Positive
Positive Negative	False	True
Negative	Negative	Negative

Confusion matrix

	4.3	Actual	
		First name	Not first
7	First		4
icte	name		
Predicted	Not first	2	54
14	name		

Precision

 represents the proportion of first names correctly classified

true positives

true positives + false positives

• precision = $\frac{4}{4+1}$ = 0.8

Recall

expresses the ability to find all the relevant instances

true positives true positives + false negatives

• recall = $\frac{4}{4+2} = 0.667$

\mathbf{F}_1 score

- harmonic mean between precision and recall
- $. \ \, \boldsymbol{F_1} = 2 * \frac{\boldsymbol{precision} * \boldsymbol{recall}}{\boldsymbol{precision} + \boldsymbol{recall}}$
- $\mathbf{F_1} = 2 * \frac{0.8 * 0.667}{0.8 + 0.667} = 0.727$

Trade-off between precision and recall

- Classifiers often provide likelyhood values:
 - "I'm 8/10 sure Bruno is a first name"
- Trade-off between precision and recall can be adjusted by changing the cut-off value:
 - "Consider first names entities with a likelyhood value over 0.7"

TPR and **FPR**

True Positive Rate

true positives true positives + false negatives

False Positive Rate

false positives
false positives + true negatives

ROC curve

Receiver Operating Characteristic curve

AUC

- Area Under the Curve
- measures the area below a ROC curve
- allows comparisons which are independent of the cut-off points chosen

Limitations

- Unavailability of reference datasets
 - precision might still be measurable
- Sometimes, it is not clear what can be considered a false positive or false negative