${\bf Vorlesung smitschrift}$

DIFF II

Prof. Dr. Dorothea Bahns

Henry Ruben Fischer

Auf dem Stand vom 5. Mai 2020

Disclaimer

Nicht von Professor Bahns durchgesehene Mitschrift, keine Garantie auf Richtigkeit ihrerseits.

Inhaltsverzeichnis

1	Metrische Räume	4
2	Normierte Vektorräume	36

Kapitel 1

Metrische Räume

Vorlesung 1

Mo 20.04. 10:15

Ziel. Konvergenz, Stetigkeit ... sollten in einem allgmeineren Rahme konzeptualisiert werden.

Erinnerung (DIFF I). Eine Folge $(a_n)_{n\in\mathbb{N}}\subset\mathbb{R}$ konvergiert gegen den Grenzwert a

$$\iff \forall \varepsilon > 0 \ \exists N \in \mathbb{N} \text{ s.d. } |a_n - a| < \varepsilon \ \forall n \geqslant N$$

 $(a - \varepsilon, a + \varepsilon)$ wird auch ε -Umgebung von a in R genannt. Somit lautet die obige Definition in Worten: In jeder noch so kleinen ε -Umgebung von a befinden sich alle bis auf endlich viele Folgenglieder.

Man benötigt für die Formulierung der Definition also lediglich einen Begriff von "(kleine) Umgebung". Diesen Begriff möchten wir nun verallgemeinern.

Definition 1.1. Sei X eine Menge. Ein System \mathcal{T} von Teilmengen von X heißt Topologie auf X falls gilt:

- a) $\emptyset, X \in \mathcal{T}$.
- b) Sind U und $V \in \mathcal{T}$, so gilt $U \cap V \in \mathcal{T}$.
- c) Ist I eine Indexmenge und $U_i \in \mathcal{T}$ für alle $i \in I$, so gilt auch $\bigcup_{i \in I} U_i \in \mathcal{T}$.

Notation. Ein topologischer Raum ist ein Tupel (X, \mathcal{T}) , wobei X Menge ist und \mathcal{T} eine Topologie auf X.

Eine Teilmenge $U \subset X$ heißt offen, falls gilt $U \in \mathcal{T}$. Eine Teilmenge $A \subset X$ heißt abgeschlossen falls ihr Komplement $X \setminus A$ offen ist.

Beispiele 1.2. i) $X = \text{beliebige Menge. } \mathcal{T} = \{ \varnothing, X \}.$

Beweis. 1.1.a) klar

1.1.b)
$$\varnothing \cap X = \varnothing \in \mathcal{T}, X \cap X = X \in \mathcal{T}, \varnothing \cap \varnothing = \varnothing \in \mathcal{T}$$

1.1.c)
$$\bigcup_{i \in I} U_i = \begin{cases} X & \text{falls eins der } U_i = X \text{ ist} \\ \emptyset & \text{falls nicht} \end{cases}$$

"Klumpentopologie"

ii) $X = \mathbb{R}$

 \mathcal{T} = alle Teilmengen $U \subset \mathbb{R}$ mit der Eigenschaft:

$$\forall x \in U \ \exists \varepsilon > 0 \text{ s. d. } (x - \varepsilon, x + \varepsilon) \subset U$$

Beweis von 1.1.a), 1.1.b) und 1.1.c) als HA (etwas allgemeiner). Hier stellen wir fest, dass insbesondere die offenen Intervalle (a, b) in diesem Sinne offen (also $\in \mathcal{T}$) sind, halb-abgeschlossene und abgeschlossene dagegen nicht.

Beweis. 1. Beh Zu $x \in [a, b]$ wähle $\varepsilon = \min\{|x - a|, |x - b|\}$

2. Beh Zu
$$x = a \in [a, b)$$
 kann man kein $\varepsilon > 0$ finden s. d. $(a - \varepsilon, a + \varepsilon) \subset [a, b)$, denn $a - \varepsilon/2 \in (a - \varepsilon, a + \varepsilon)$ aber $a - \varepsilon/2 < a$, also $\notin [a, b)$.

Abgeschlossene Intervalle sind in diesem Sinn abgeschlossen, denn $\mathbb{R}\setminus[a,b]$ ist nach Definition von \mathcal{T} und Eigenschaft 1.1.c) offen.

Diese Topologie heißt Standard-Topologie auf \mathbb{R} . Wird nichts anderes gesagt, sehen wir \mathbb{R} als mit der Standard-Topologie versehen an.

Definition 1.3. Sei (X, \mathcal{T}) topologischer Raum. Sei $x \in X$. Eine Teilmenge $V \subset X$ heißt $Umgebung\ von\ x$, falls es eine offenen Menge $U \subset X$ gibt mit $x \in U$ und $U \subset V$.

Beispiele. i) V = (a, b) ist eine Umgebung für jedes $x \in (a, b)$, aber *nicht* für x = a.

ii) $(a - \varepsilon, a + \varepsilon), \varepsilon > 0$, ist eine Umgebung von x.

Lemma 1.4. Eine Teilmenge $V \subset X$ eines topologischen Raumes (X, \mathcal{T}) ist offen gdw für alle $x \in V$ gilt: V ist Umgebung von x.

Beweis. " \Longrightarrow " Ist V offen, so erfüllt U=V für jedes x die Bedingung $x\in U$ und $U\subset V\Longrightarrow V$ ist Umgebung.

" ← " Zu $x \in V$ wähle U_x s.d. $x \in U_x$, $U \subset V$. Dann gilt $V = \bigcup_{x \in U} U_x$ und das ist offen (nach 1.1.c)).

Definition 1.5 (Konvergenz in topologischen Räumen). Sei (X, \mathcal{T}) topologischer Raum. Sei $(x_n)_{n\in\mathbb{N}}$ eine Folge in X. Dann ist $(x_n)_n$ konvergent mit Grenzwert $x, x_n \to x$ in (X, \mathcal{T}) , falls es in jeder Umgebung V von x ein $N \in \mathbb{N}$ gibt, s. $d.x_n \in V \ \forall n \geqslant N$.

Beispiele. i) In der Klumpentopologie konvergieren alle Folgen gegen jedes $x \in X$.

ii) Mit unseren obigen Überlegungen folgern wir, dass Konvergenz in \mathbb{R} im Sinn von Definition 1.5 mit Konvergenz, wie wir sie in der DIFF I

Lemma 1.6. Sei (X, \mathcal{T}) toplogischer Raum. Ist (X, \mathcal{T}) ein *Hausdorff-Raum*, gibt es also zu je zwei Punkten $x, y \in X$ mit $x \neq y$ Umgebungen U von x und V von y mit $U \cap V = \emptyset$, so ist der Grenzwert einer konvergenten Folge eindeutig.

Beweis. Seien x und y Grenzwert einer Folge $(x_n)_n$. Angenommen $x \neq y$, so wähle U Umgebung von x, V Umgebung von y mit $U \cap V = \emptyset$. Dann gibt es (wegen der Konvergenz) $N \in \mathbb{N}$ s. $\mathrm{d}.x_n \in U \ \, \forall \, n \geqslant N \,$ und $M \in \mathbb{N}$ s. $\mathrm{d}.x_n \in V \ \, \forall \, n \geqslant M .$ Wiederspruch zu $U \cap V = \emptyset$.

Definition 1.7. Seien (X, \mathcal{T}) und $(Y, \tilde{\mathcal{T}})$ topologische Räume. Sei $f: X \to Y$ eine Abbildung. Dann heißt f stetig in $a \in X$, falls es zu jeder Umgebung V von $f(a) \in Y$ eine Umgebung U von a gibt, s. d. $f(U) \subset V$. f heißt stetig (auf X), falls f stetig in allen $a \in X$ ist.

Bemerkung. Wir werden später sehen, dass diese Definition für $f: \mathbb{R} \to \mathbb{R}$ mit unserer Definition aus der DIFF I übereinstimmt (ε - δ -Kriterium).

Für jede Umgebung U von a gilt: f(U) enthält auch Punkte < b, also außerhalb V

Satz 1.8. Sei $f: X \to Y$ Abbildung zwischen topologischen Räumen. Dann ist f stetig auf X gdw für jede offene Teilmenge $V \subset Y$ das $Urbild\ f^{-1}(V)$, also $\{x \in X \mid f(x) \in V\}$ offen in X ist.

Beweis. " \Longrightarrow " Sei f stetig vorausgesetzt. Sei V offen Y. Ist das Urbild $f^{-1}(V)$ leer, sind wir fertig.

Sei also $a \in f^{-1}(V)$. Dann gibt es nach Voraussetzung eine Umgebung U von a s. d. $f(U) \subset V$. Also gilt $U \subset f^{-1}(V)$. Somit besitzt also jeder Punkt $a \in f^{-1}(V)$ eine Umgebung U mit $U \subset f^{-1}(V)$ und somit ist $f^{-1}(V)$ selbst Umgebung jedes seiner Elemente $\stackrel{1.4}{\Longrightarrow} f^{-1}(V)$ ist offen.

" \Leftarrow " Sei $a \in X$ beliebig. Sei V eine Umgebung von f(a). Dann gibt es \tilde{V} offen mit $f(a) \in \tilde{V}$ und $\tilde{V} \subset V$. Nach Voraussetzung ist das Urbild $U \coloneqq f^{-1}(\tilde{V})$ offen. U enthält a, ist also Umgebung von a und es gilt $f(U) = \tilde{V} \subset V \Longrightarrow f$ ist stetig in a.

 $f^{-1}(V) = [a, c)$ ist nicht offen in \mathbb{R}

Bemerkung. Äquivalent: f ist genau dann stetig, wenn das Bild jeder abgeschlossen Menge abgeschlossen ist.

Vorsicht:

Es ist immer Offenheit in X (bzw.Y) gemeint!

Zur Veranschaulichung:

Betrachtet man im Beispiel oben als Definitionsbereich $X = [a, \infty)$, so ist die Funktion stetig! Dies ist konsistent, da [a, c) in $X = [a, \infty)$ versehen mit der Standard-Topologie tatsächlich offen ist:

Definition / Satz 1.9. Sei (X, \mathcal{T}) topologischer Raum. Sei $\tilde{X} \subset X$ eine Teilmenge. Dann induziert \mathcal{T} auf \tilde{X} eine Topologie, die sogenannte *Teilraum-Topologie* vermöge

$$T_{\tilde{X}} := \left\{ U \cap \tilde{X} \mid U \in \mathcal{T} \right\}.$$

Den (einfachen) Beweis, dass dies in der Tat eine Topologie definiert, lassen wir weg.

In unserem Beispiel ist $X = \mathbb{R}$, $\tilde{X} = [a, \infty)$ und da $(a - \varepsilon, c)$ offen in \mathbb{R} ist $(\varepsilon > 0)$, ist nach Definitionsbereich $[a, c) = (a - \varepsilon, c) \cap [a, \infty)$ offen in $[a, \infty)$.

Dies ist der tiefere Grund, weshalb man bei Funktionen den Raum, in dem sie ihre Werte annehmen (im Beispiel oben $Y = \mathbb{R}$) angeben sollte, nicht ihr Bild.

Denn in $Y=(-\infty,b)\cup[f(a),\infty)$ wäre das Bild von $[a-\varepsilon,c]$ \forall $\varepsilon>0$ in der Tat abgeschlossen, denn sein Komplement

$$Y \setminus ([b-\delta,b) \cup [f(a),f(c))) = -(-\infty,b-\delta) \cup (f(c),\infty)$$

wäre offen.

Dagegen ist

$$\mathbb{R} \setminus ([b-\delta,b) \cup [f(a),f(c))) = -(-\infty,b-\delta) \cup [b,f(a)) \cup (f(c),\infty)$$

für kein $\delta > 0$ offen.

Definition / Satz 1.10. Seien (X, \mathcal{T}_X) und (Y, \mathcal{T}_Y) topologische Räume. Betrachte das kartesische Produkt $X \times Y = \{ (x, y) \mid x \in X, y \in Y \}$. Dann nennt man das System

$$T \coloneqq \left\{ \left. U \subset X \times X \, \middle| \, U = \text{beliebige Vereinigung von Mengen der Form} \right. \\ \left. V \times W, V \in \mathcal{T}_X, W \in \mathcal{T}_Y \right. \right\}$$

Produkttopologie. Und dies definiert in der Tat eine Topologie auf $X \times Y$.

Beweis. 1.1.a) klar

1.1.b)

$$U = \bigcup_{\alpha} U_{\alpha} \times W_{\alpha}$$

$$V = \bigcup_{\beta} \tilde{V}_{\beta} \times \tilde{W}_{\beta}$$

$$U \cap V = \bigcup_{\alpha,\beta} (\underbrace{V_{\alpha} \cap \tilde{V}_{\beta}}_{\text{offen in } X}) \times (\underbrace{W_{\alpha} \cap \tilde{W}_{\beta}}_{\text{offen in } Y}).$$

1.1.c)

$$\bigcup_{\rho} \left(\bigcup_{\alpha} V_{\alpha}^{(\rho)} \times W_{\alpha}^{(\rho)} \right) = \bigcup_{\rho,\alpha} V_{\alpha}^{(\rho)} \times W_{\alpha}^{(\rho)}.$$

Wir kommen nun zu einer wichtigen Beispiel-Klasse für Topologien:

Definition 1.11. Sei X eine Menge. Eine Metrik auf X ist eine Abbildung

$$d: X \times X \to \mathbb{R}$$

mit den Eigenschaften

- a) $d(x,y) = 0 \iff x = y$,,d ist nicht ausgeartet."
- b) $d(x,y) = d(y,x) \ \forall x,y \in X$ "d ist symmetrisch."
- c) $d(x,y) \leq d(x,z) + d(z,y) \quad \forall x,y,z \in X$ "Es gilt die Dreiecksungleichung."

Ein $metrischer\ Raum$ ist ein Tupel (X,d), wobei X eine Menge ist und d eine Metrik auf X. Mist schreibt man nur X, weil Missverständnisse ausgeschlossen sind.

Bemerkung. Aus den Axiomen folgt auch

$$d(x,y) \geqslant 0 \quad \forall x, y \in X,$$

denn

Beispiele. i) \mathbb{R} , d(x,y) = |x - y|.

ii) X Menge, $d(x,y) = \begin{cases} 1 & x \neq y \\ 0 & x = y \end{cases}$, "triviale" oder "diskrete Metrik".

iii) (aus AGLA I)
$$\mathbb{R}^n$$
, $d(x,y) = \sqrt{\sum_{i=1}^n (x_i - y_i)^2}$, "Euklidische Metrik".

Eine Metrik misst den Abstand zwischen zwei Punkten. Im zweiten Beispiel sind alle verschiedenen Punkte gleich weit von einander entfernt. Für n=1 stimmt iii) mit i) überein. Mit iii) wird auch der Name der Dreiecksungleichung klar:

Definition 1.12. Sei (X,d) ein metrischer Raum. Seien $x \in X$, $\varepsilon > 0$. Dann nennt man

$$B_{\epsilon}(x) := \{ y \in X \mid d(x,y) < \epsilon \}$$

den (offenen) ε -Ball um x.

Beispiele. i) $B_{\varepsilon}(x) = (x - \varepsilon, x + \varepsilon)$.

ii)
$$B_{\varepsilon}(x) = \begin{cases} x & \varepsilon \leqslant 1 \\ X & \varepsilon > 1 \end{cases}$$

iii)
$$B_{\varepsilon}(x) =$$

Satz 1.13. Sei (X, d) ein metrischer Raum. Dann wird durch

$$\mathcal{T}_d := \{ U \subset X \mid \forall x \in U \ \exists \varepsilon > 0 \text{ s. d. } B_{\varepsilon}(x) \subset U \}$$

eine Topologie definiert.

Beweis. Als Hausaufgabe. \Box

Bemerkungen 1.14. i) 1.2.ii) ist ein Spezialfall dieser Aussage

ii) Die "offenen" ε -Bälle sind tatsächlich offen: Zu $y \in B_{\varepsilon}(x)$ wähl $\tilde{\varepsilon} := \varepsilon - d(x, y) > 0$.

Dann ist $B_{\tilde{\varepsilon}}(y) = \{ z \mid d(y, z) < \tilde{\varepsilon} \} \subset B_{\varepsilon}(x)$. Denn für alle $z \in B_{\tilde{\varepsilon}}(y)$ ist

$$d(x,z) \leqslant d(x,y) + d(y,z) < d(x,y) + \tilde{\varepsilon}$$

= $d(x,y) + \varepsilon - d(x,y) = \varepsilon$

- iii) Bezüglich der diskreten Metrik ist jede Teilmenge offen.
- iv) Die Klumpentopologie wird nicht von einer Metrik erzeugt (wenn X mehr als 1 Element enthält).

Beweis. Seien $x, y \in X$, $x \neq y$. Angenommen \exists Metrik d.

$$\implies d(x,y) \neq 0 \implies d(x,y) = c > 0$$

$$\implies B_c(x) \text{ ist offen.}$$

$$\implies B_c(x) = \varnothing \text{ oder } = X$$

$$\implies B_c(x) = X$$

 \nleq , da $y \notin B_c(x)$.

v) Ein metrischer Raum ist hausdorffsch. \rightarrow HA.

Wir formulieren nun Konvergenz und Stetigkeit für metrische Räume:

Bemerkungen 1.15. Sei (X, d) metrischer Raum.

- i) [Definition 1.3] $V \subset X$ heißt Umgebung von $x \in X$, falls es $\varepsilon > 0$ gibt s. d. $B_{\varepsilon}(x) \subset U$.
- ii) [Definition 1.5] $(x_n)_n$ konvergiert mit Grenzwert x, falls es zu jedem $\varepsilon > 0$ ein $N \in \mathbb{N}$ gibt s. d. $x_n \in B_{\varepsilon}(x) \ \forall n \geqslant N$.

iii) [Definition 1.7] Sei (Y, \tilde{d}) weiterer metrischer Raum, $f: X \to Y$ eine Abbildung. Dann ist f stetig a gdw :

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \text{s.d.} f(B_{\delta}(a)) \subset B_{\varepsilon}(f(a)).$$

Bemerkungen. i) 1.15.iii) ist das ε - δ -Kriterium.

ii) Die Einschränkung auf ε -Bälle in 1.15.ii) und 1.15.iii) (statt allgemeiner Umgebungen) ist keine echte Einschränkung: Gilt etwas für all Umgebungen, so speziell auch für ε -Bälle.

Und gilt eine Inklusion für alle ε -Bälle (etwa $x_n \in B_{\varepsilon}(x) \ \forall n \geqslant N(\varepsilon)$), so auch für beliebige Umgebungen U von x, da es immer einen ε -Ball $B_{\varepsilon}(x)$ gibt, der ganz in U enthalten ist.

Beispiele 1.16. i) \mathbb{R}^m mit der Euklidischen Metrik. $(x_n)_{n\geqslant 1}$ Folge in \mathbb{R}^m , also $n\mapsto x_n=(x_n^{(1)},\dots,x_n^{(m)})\in\mathbb{R}^m$.

ii)
$$x_n = \left(\frac{1}{n}\cos(n), \frac{1}{n}\sin(n), a, \dots, a\right)$$

Behauptung. $x_n \to (0, 0, a, \dots, a) =: x$.

Beweis. Sei $\varepsilon > 0$. Es gilt

$$d(x_n, x)^2 = \sum_{i=1}^m (x_n^{(i)} - x^{(i)})^2$$

$$= \left(\frac{1}{n}\cos(n) - 0\right)^2 + \left(\frac{1}{n}\sin(n) - 0\right)^2 + (a - a)^2 + \dots + (a - a)^2$$

$$= \frac{1}{n^2}(\cos(n)^2 + \sin(n)^2) = \frac{1}{n^2}$$

$$\Rightarrow d(x_n, x) = \frac{1}{n}$$

$$\Rightarrow d(x_n, x) < \varepsilon \quad \forall n \ge N \text{ mit } N > \frac{1}{\varepsilon}$$

$$\Rightarrow x_n \in B_{\varepsilon}(x) \quad \forall n \ge N.$$

- iii) $X = C([a, b]), d(f, g) := ||f g||_{\infty} \text{ mit } ||f g||_{\infty} = \sup_{x \in [a, b]} |f(x) g(x)|.$
- **1. Beh** d ist eine Metrik auf X.

Beweis. 1.11.a):

$$\sup_{x \in [a,b]} |f(x) - g(x)| = 0$$

$$\iff |f(x) - g(x)| = 0 \quad \forall x$$

$$\iff f(x) = g(x) \quad \forall x.$$

1.11.b):

$$|f(x) - g(x)| = |g(x) - f(x)| \quad \forall x$$
$$\implies d(f, g) = d(g, f).$$

1.11.c):

$$\begin{split} |f(x)-g(x)| &= |f(x)-h(x)+h(x)-g(x)| \\ &\leqslant |f(x)-h(x)|+|h(x)-g(x)| \\ &\stackrel{\uparrow}{\triangle-\mathrm{Ungl.f\"{u}r}} |\cdot| \text{ auf } \mathbb{R} \\ \Longrightarrow \triangle\mathrm{-Ungl.f\"{u}r} \ d. \end{split}$$

2. Beh $(f_n)_n \subset C([0,1]), f_n(x) = x^n$, konvergiert nicht (vgl.Diff I).

Beweis. Wir wissen aus der Diff I, dass wenn Konvergenz vorliegt, der Grenzwert gleich dem punktweisen Grenzwert ist. Dieser ist

$$f(x) = \begin{cases} 1 & x = 1 \\ 0 & \text{sonst} \end{cases}.$$

Aber

Beweis.

$$\sup_{x \in [0,1]} |f_n(x) - f(x)| = \sup_{x \in [0,1)} |x^n| = 1.$$

- iv) $X = C([0,1]), d(f,g) = \int_0^1 |f(x) g(x)| dx.$
- **1. Beh** d ist eine Metrik auf C([0,1]).

Beweis. HA.
$$\Box$$

2. Beh $(f_n)_n \subset C([0,1]), f_n(x) = x^n$ konvergiert, und zwar gegen $f(x) = 0 \ \forall x$.

$$\int_0^1 |f_n(x) - 0| \ dx = \int_0^1 x^n \ dx = \frac{1}{n+1} \left. x^{n+1} \right|_x^0 1 = \frac{1}{n+1}$$

$$\implies d(f_n, f) = \frac{1}{n+1} < \varepsilon \quad \forall n \geqslant N \text{ mit } N \geqslant \frac{1}{\varepsilon}.$$

Vorlesung 2

Do 23.04. 10:15

Bevor wir uns mit offenen und abgeschlossenen Mengen und sogenannten vollständigen metrischen Räumen näher befassen, beweisen wir noch zwei nützliche Lemmata zu Konvergenz und Stetigkeit:

Lemma 1.17. (X, d) sei metrischer Raum.

Eine Folge $(x_n)_n$ in X konvergiert in X gegen $a \in X$

$$\iff$$
 $(d(x_n, a))_n$ ist Nullfolge (in \mathbb{R}).

Beweis.

$$d(x_n, a) = |d(x_n, a) - 0|$$
.

Also ist

$$d(x_n, a) < \varepsilon \iff |d(x_n, a) - 0| < \varepsilon.$$

Lemma 1.18. Seien (X, d_x) und (Y, d_y) metrische Räume, $f: X \to Y$ eine Abbildung. Dann gilt:

f ist in $a \in Y$ stetig \iff für jede Folge $(a_n)_n$ mit $a_n \to a$ in X gilt

$$\lim_{n \to \infty} f(a_n) = f(\underbrace{\lim_{n \to \infty} a_n}).$$

Notation.

$$\lim_{x \to a} f(x) = f(a).$$

Beweis. " \Longrightarrow " Sei das ε - δ -Kriterium erfüllt (1.15.iii)). Sei $(x_n)_n$ Folge in X mit $x_n \to a$ in X. Sei $\varepsilon > 0$. Dann $\exists \ \delta > 0$ s. d.

$$d_Y(f(x), f(a)) < \varepsilon \ \forall x \in B_{\delta}(a) \subset X.$$

Wegen der Konvergenz $\exists N = N(\delta)$ s.d.

$$x_n \in B_{\delta}(a) \ \forall n \geqslant N$$

 $\Longrightarrow f(x_n) \in B_{\varepsilon}(f(a)) \subset Y \ \forall n \geqslant N.$

Also gilt $f(x_n) \to f(a)$.

$$, \Leftarrow$$
 " Gelte $\lim_{x\to a}(x) = f(a)$.

Angenommen, das ε - δ -Kriterium wäre verletzt. Dann gäbe es $\varepsilon > 0$ s. d.für alle $\delta > 0$ ein $x \in X$ existierte s. d.

$$x \in B_{\delta}(a)$$
 aber $f(x) \notin B_{\varepsilon}(f(a))$
also $d_y(f(x), f(a)) \ge \varepsilon$.

Insbesondere gäbe es zu $\delta = \frac{1}{n}$ ein solches x, nennen wir es x_n . Dann gilt für alle n: $d(x_n,a) < \frac{1}{n}$, aber $d_y(f(x_n),f(a)) \geqslant \varepsilon$, somit $x_n \to a$ aber $f(x_n) \not to f(a)$ (wegen 1.17). \square

Charakterisierung topologischer Grundbegriffe in metrischen Räumen

Lemma 1.19. Sei (X, d) metrischer Raum. Dann ist $A \subset X$ abgeschlossen \iff für jede Folge $(a_n)_n$, $a_n \in A$, die in X konvergiert, gilt:

$$\lim_{n\to\infty} a_n \in A.$$

Beweis. O.B.d.A. $\emptyset \neq A \neq X$.

" \Longrightarrow " Sei $(a_n)_n$, $a_n \in A$, konvergent in X. Sei $a = \lim a_n$. Angenommen $a \notin A$. Nach Voraussetzung ist $X \setminus A$ offen, also ist $X \setminus A$ Umgebung von $a \Longrightarrow \exists N$ s. d.

$$a_n \in X \setminus A \ \forall n \geqslant N \ (\text{wegen Konvergenz})$$

Denn angenommen es gibt kein solches ε . Dann gilt für $alle\ \varepsilon > 0$: $B_{\varepsilon}(b) \cap A \neq \emptyset$, also kann man zu jedem $k \geqslant 1$ ein $x_k \in A$ finden mit $d(x_k, b) < \frac{1}{k} = \varepsilon$.

$$\implies x_k = b \implies b \in A.$$

 $\not\not\subseteq$ Wiederspruch zu $b \in X \setminus A$.

Also gibt es ein solches $\varepsilon > 0$, also ist $X \setminus A$ offen.

Definition 1.20. Sei (X,d) metrischer Raum, $M \subset X$. Ein Punkt $y \in X$ heißt Rand-punkt von M, falls in jeder Umgebung von y sowohl Punkte von M als auch $X \setminus M$ liegen.

Notation. $\partial M = \{ \text{Randpunkte von } M \}$

Beispiel (\mathbb{R}^n , $d_{\text{Eukl.}}$). Kugel im \mathbb{R}^m :

$$K^n := \{ x \in \mathbb{R}^n \mid ||x - 0||_{\mathbb{R}} \leqslant R \} \subset \mathbb{R}^n$$

Sphäre:

$$\partial K^n = \{ x \in \mathbb{R}^n \mid ||x||_{\mathcal{E}} = R \} = S^{n-1}$$

Beispiel. $\mathbb{Q} \subset \mathbb{R}$. $\partial \mathbb{Q} = \mathbb{R}$.

Satz 1.21. Sei (X, d) metrischer Raum. Sei $M \subset X$. Dann gilt

- i) $M \setminus \partial M$ ist offen.
- ii) $M \cup \partial M$ ist abgeschlossen.
- iii) ∂M ist abgeschlossen.

Beweis. 1.21.i): $a \in M \setminus \partial M \implies \exists \ \varepsilon > 0 \text{ s. d.} B_{\varepsilon}(a) \cap X \setminus M = \emptyset$. Für dieses gilt auch $B_{\varepsilon} \cap \partial M = \emptyset$ (denn angenommen $\exists \ y \in B_{\varepsilon}(a) \cap \partial M$, dann wäre (da $y \in \partial M$ und $B_{\varepsilon}(a)$ eine Umgebung von y) $B_{\varepsilon}(a) \cap (X \setminus M) \neq \emptyset \not\subset VOR$).

Also gilt $B_{\varepsilon}(a) \subset M \setminus \partial M \implies \text{Beh.}$

1.21.ii): Es gilt $\partial M = \partial(X \setminus M)$ (nach Definition), $(X \setminus M) \setminus \partial(X \setminus M)$ ist offen nach 1.21.i) \Longrightarrow

$$X \setminus ((X \setminus M) \setminus \partial(X \setminus M)) = (X \setminus (X \setminus M)) \cup \partial(X \setminus M) = M \cup \partial M$$
 Manipulation mit Mengen

ist offen.

1.21.iii):

$$\partial M = (M \cup \partial M) \setminus (M \setminus \partial M)$$

$$\Longrightarrow X \setminus \partial M = X \setminus (\underbrace{M \cup \partial M}_{\text{(abgeschl. nach 1.21.ii)}}) \cup (\underbrace{M \setminus \partial M}_{\text{offen nach 1.21.ii}}).$$

Notation. Sei $M \subset X$.

$$M^{\circ} := M \setminus \partial M$$
 heißt das *Innere* von M .
 $\overline{M} := M \cup \partial M$ heißt der *Abschluss* von M .

Nach 1.19 können wir \overline{M} konstruieren, indem wir zu M noch alle Grenzwerte von Folgen $(x_n)_n, x_n \in M$, die in in X konvergieren, hinzunehmen.

Beispiel. $M = [a, b), \overline{M} = [a, b].$

Bemerkung (als Hausaufgabe).

$$M \subset X$$
 offen $\iff M \cap \partial M = \emptyset$.
 $M \subset X$ abgeschlossen $\iff \partial M \subset M$.

Vollständigkeit

Definition 1.22. Sei (X, d) ein metrischer Raum. Eine Folge $(y_n)_n \subset X$ heißt Cauchy-Folge, falls gilt

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ \text{s.d.} d(y_n, y_m) < \varepsilon \ \forall n, m \geqslant N.$$

Lemma 1.23. Sei (X, d) ein metrischer Raum. Eine konvergente Folge in X ist eine Cauchy-Folge.

Beweis. Sei $(y_n)_n$ konvergente Folge mit Grenzwert y (eindeutig wegen 1.14.v) und 1.6). Sei $\varepsilon > 0$.

Dann gibt es $N \in \mathbb{N}$ s. d. $d(y_m, y) < \varepsilon \ \forall m \geqslant N$.

$$\implies d(y_n, y_m) \leqslant d(y_n, y) + d(y, y_m) < \epsilon \ \forall n, m \leqslant N.$$

Bemerkung. Nicht jede Cauchy-Folge konvergiert:

Beispiel $((\mathbb{Q}, |\cdot|))$. $y_{n+1} = \frac{1}{2}y_n + \frac{1}{y_n}, y_0 = 1.$

Check. Es gilt für $n \geqslant 1$

$$\left[\frac{1}{y_{n+1}}, y_{n+1}\right] \subset \left[\frac{1}{y_n}, y_n\right] \tag{*}$$

und für $l_n \coloneqq y_n - \frac{1}{y_n}$

$$l_{n+1} \leqslant \frac{1}{4y_{n+1}} l_n^2 \leqslant \frac{1}{4} l_n^2$$

$$\implies d(y_n, y_m) = |y_n - y_m| \leqslant \left| y_n - \frac{1}{y_n} \right| = l_n \to 0.$$

$$\underset{\text{O.B.d.A. } m \geqslant n}{\underset{\text{Wg. (**)}}{\wedge}}$$

$$\implies y_m \in \left[\frac{1}{y_n}, y_n \right] \text{ wg. (*)}$$

 $\mathbb{Q}\subset\mathbb{R}$ und somit $(y_n)_n\subset\mathbb{R}$. In \mathbb{R} konvergiert jede Cauchy-Folge. Nennen wir den Grenzwert $a\in\mathbb{R}$. Es gilt dann

$$\underbrace{y_{n+1}}_{\rightarrow a} = \underbrace{\frac{1}{2}y_n}_{\frac{1}{2}a} + \underbrace{\frac{1}{y_n}}_{\frac{1}{a}},$$

also $a^2 = 2$. Aber $\sqrt{2} \notin \mathbb{Q}$.

Definition 1.24. Ein metrischer Raum, in dem jede Cauchy-Folge konvergiert heißt vollständig.

Beispiele 1.25. i) $\mathbb{R}, |\cdot|$ ist vollständig (Diff I).

- ii) $(C([a,b],\mathbb{R}),d_{L^1})$ mit $d_{L^1}(f,g)=\int_a^b|f(t)-g(t)|\ dt$ (vgl.HA Blatt 1, A1) ist nicht vollständig.
- iii) $(C([a, b], \mathbb{R}), d_{\sup})$, mit

$$d_{\sup} = \|f - g\|_{\infty} = \sup_{t \in [a,b]} |f(t) - g(t)|,$$

ist vollständig. Den Beweis führen wir später allgemeiner.

Zunächst einige

Betrachtungen in vollständigen metrischen Räumen

Definition 1.26. Sei (X, d) metrischer Raum, $M \subset X$,

$$\operatorname{diam}(M) \coloneqq \sup_{x,y \in M} d(x,y) \text{ "Durchmesser" (englisch "diameter")}.$$

M heißt beschränkt, falls diam $(M) < \infty$.

Bemerkung. M ist beschränkt $\iff \exists R \geqslant 0 \text{ und } a \in X \text{ s. d.} M \subset B_R(a)$

Beispiel. diam([a,b)) = b-a

Satz 1.27 (Schachtelungsprinzip). Sei (X, d) ein vollständiger metrischer Raum und sei $A_0 \subset A_1 \subset A_2 \subset \cdots$. Eine Familie nicht-leerer abgeschlossener Teilmengen von X mit

$$\operatorname{diam}(A_k) \to 0 \text{ (in } \mathbb{R}) \text{ für } k \to \infty.$$

Dann gibt es genau einen Punkt $a \in X$ der in allen A_k liegt.

Beweis. Eindeutigkeit: Angenommen $\exists x \neq y \text{ mit } x \in A_k \ \forall k \text{ und } y \in A_k \ \forall k$. Dann kann diam (A_k) keine Nullfolge sein, da $d(x,y) \neq 0$.

Existenz: Wähle $x_n \in A_n$. Dann ist $(x_n)_n$ eine Cauchy-Folge, denn

$$d(x_n, x_m) \leqslant \operatorname{diam} A_N \text{ für } n, m \geqslant N$$

 $d(x_n, x_m) \leq \operatorname{diam} A_N \text{ für}$

$$\underset{\uparrow}{\Longrightarrow} x_n \to x \text{ in } X,$$
 Vollständigkeit

Da $x_n \in A_k \ \ \forall \, n \geqslant k$, folgt mit 1.19: $x \in A_k \ \ \forall \, k$.

Ein sehr wichtiger Satz, der viele Anwendungen hat ist der folgende:

Satz 1.28 (Banach'scher Fixpunktsatz). Sei (X, d_X) ein vollständiger metrischer Raum. Sei $M \subset X$ eine abgeschlossene Teilmenge und $\Phi \colon M \to X$ eine Abbildung mit $\Phi(M \subset M)$ und es gebe $0 \leqslant L < 1$ s. d.

$$d_X(\Phi(X), \Phi(Y)) \leq Ld_X(x, y) \, \forall \, x, y \in M$$
 (" Φ ist Kontraktion").

Dann gibt es genau ein t_* s. d. $\Phi(t_*) = t_*$. Ein solches t_* heißt Fixpunkt von Φ .

$$X = \mathbb{R}, M = [0, 1], \log(2 - x^2), (WolframAlpha)$$

Beispiel.

Beweis. Eindeutigkeit: Seien $\Phi(t_*) = t_*, \ \Phi(\tilde{t}_*) = \tilde{t}_*$. Dann gilt

$$d(t_*, \tilde{t_*}) = d(\Phi(t_*), \Phi(\tilde{t_*}))$$

$$\leq d(t_*, \tilde{t_*})$$

Da L > 1 ist, folgt $d(t_*, \tilde{t_*} = 0)$, also $t_* = \tilde{t_*}$.

Existenz: Wir betrachten die Folge $x_0 \in M$ beliebig, $x_n \coloneqq \Phi(x_{n-1})$ für $n \geqslant 1$.

Behauptung. $(x_n)_n$ konvergiert in M und zwar gegen de Fixpunkt.

Beweis. • $(x_n)_n$ ist Cauchy-Folge:

Iteration liefert

$$d(x_{n+1}, x_n) \leqslant L^2 d(x_{n-1}, x_{n-2}) \leqslant \dots \leqslant L^n d(x_1, x_0).$$

Zudem gilt

$$d(x_{n+k}, x_n) \leq d(x_{n+k}, x_{n+k} - 1) + d(x_{n+k-1}, x_{n+k-2})$$

$$\vdots$$

$$+ d(x_{n+1}, x_n)$$

$$\leq \underbrace{(L^{n+k-1} + L^{n+k-2} + \dots + L^n)}_{=L^n \sum_{r=0}^{k-1} L^r \leq L^n \sum_{r=0}^{\infty} L^r = \frac{L^n}{1-L}}_{\text{geom. Reihe } (L < 1)}$$

 \implies (wegen L < 1) Beh..

- Da X vollständig ist, konvergiert $(x_n)_n$. Setze $t_* = \lim_{n \to \infty} x_n$.
- Da M abgeschlossen ist, ist $t_* \in M$ nach 1.19.
- \bullet t_* ist der gesuchte Fixpunkt:

$$t_* = \lim_{n \to \infty} x_n = \lim_{n \to \infty} \Phi(x_{n-1}) = \Phi(t_*)$$
Kontraktionen sind stetig und 1.18

$$x_0 = 0, x_1 = \ln(2 - (\ln 2)^2) \approx 0, 42, x_3 \approx 0, 60, x_4 \approx 0, 49$$

Bemerkung. Kontraktionen sind stetig: Zu $\varepsilon > 0$ wähle $\delta = \varepsilon/L$.

Bemerkung. Die Konvergenz ist recht schnell:

$$d(x_n, t_*) \leqslant \frac{L^n}{1 - L} d(x_1, x_0) \ (L < 1).$$

Alle Voraussetzungen sind notwendig, gilt eine nicht, so gibt es nicht unbedingt einen Fixpunkt (oder keinen eindeutigen).

Vorlesung 3

Mo 27.04. 10:15

Lemma 1.29 (Cauchy-Kriterium für gleichmäßige Konvergenz).

a) Sei (X, d_x) metrischer Raum, sei (Y, d_Y) ein vollständiger metrischer Raum. Sei $f_n \colon X \to Y$ Folge von Funktionen. Dann konvergiert f_n gegen f bezüglich

$$d_{\sup}(h,g) \coloneqq \sup_{t \in X} \underbrace{d_Y(f(t),g(t))}_{\in \mathbb{R}} \quad h,g \colon X \to Y$$

$$\iff \forall \ \varepsilon > 0 \ \exists \ N = N(\varepsilon) \in \mathbb{N} \text{ s. d.}$$

$$d_Y(f_n(t), f_m(t)) < \varepsilon \quad \forall t \in X \ n, m \geqslant N(\varepsilon).$$
 (*)

Notation. Man spricht von gleichmäßiger Konvergenz.

Beachte:

Der wesentliche Punkt in (*) ist, dass N unabhängig von t gewählt werden kann.

Beweis. Wir stellen zunächst fest, dass d_{sup} auf

$$\mathcal{F} := \{ f : X \to Y \mid \text{Für je zwei Funktionen gilt: } d_{\text{sup}}(f_1, f_2) < \infty \}$$

eine Metrik definiert (auch wenn Y nicht vollständig ist).

1.11.a)

$$\begin{aligned} d_{\sup}(f,g) &= 0 \\ \iff d_Y(f(t),g(t)) &= 0 \quad \forall \, t \in X \\ \iff f(t) &= g(t) \quad \forall \, t \in X \\ d_Y \text{ ist Metrik} \end{aligned}$$

1.11.b)

$$d_{\sup}(f,g) = \sup d_Y(f(t),g(t)) = \sup d_Y(g(t),f(t)) = d_{\sup}(g,f)$$

1.11.c)

$$d_{\sup}(f,g) = \sup \underbrace{d_Y(f(t),g(t))}_{\leqslant d_Y(f(t),h(t)) + d_Y(h(t),g(t))}$$

$$\leqslant \sup d_Y(f(t),h(t)) + \sup d_Y(h(t),g(t))$$

$$= d_{\sup}(f,h) + d_{\sup}(h,g)$$

Zum Beweis der Behauptung:

" ⇒ "

$$\sup_{t} d_Y(f_n(t), f(t)) < \varepsilon \quad \forall \, n \geqslant N(\varepsilon)$$

impliziert

$$d_Y(f_n(t), f(t)) < \varepsilon \quad \forall t \in X \ \forall n \geqslant N(\varepsilon),$$

somit für alle $t \in X$

$$d_Y(f_n(t), f_m(t)) \leq d_Y(f_n(t), f(t)) + d_Y(f(t), f_m(t))$$

$$< 2\varepsilon \quad \forall n, m \geqslant N(\varepsilon)$$

 $, \leftarrow$ "Gelte (*). Dann ist für jedes $t \in X$, dass $(f_n(t))_n$ ist Cauchy-Folge in Y.

Vollständigkeit von $Y \implies (f_n(t))_n$ konvergiert. Setze $f(t) := \lim_{n \to \infty} f_n(t)$.

Wir zeigen f_n konvergiert bezüglich d_{\sup} gegen f. Sei also $\varepsilon > 0$. Wähle in (*) $m \ge N(\varepsilon)$ fest. Dann gilt für alle t:

$$\varepsilon \geqslant \lim_{n \to \infty} d_Y(f_n(t), f_m(t))$$

$$= d_Y(f(t), f_m(t)).$$
 $d_Y \text{ ist stetig}$

Das gilt für alle $m \ge N(\varepsilon)$, $\forall t$, also auch für das Supremum \implies Beh..

b) Seien X, Y metrische Räume, $(f_n)_n$ eine Folge stetiger Funktionen $f_n \colon X \to Y$, die gleichmäßig konvergiere. Dann ist die Grenzfunktion $f \colon X \to Y$.

Beweis. Sei $a\in X.$ Sei $\varepsilon>0.$ Gleichmäßige Konvergenz $\implies \exists\ N=N(\varepsilon)\in \mathbb{N}$ s. d.

$$d_Y(f(t), f_n(t)) < \varepsilon \quad \forall t \in X \ \forall n \geqslant N$$

 f_n stetig in $a \implies \exists \ \delta > 0 \text{ s. d.}$

$$d_Y(d_N(t), f_N(a)) < \varepsilon \quad \forall t \text{ mit } d_X(t, a) < \delta$$

$$\Longrightarrow d_Y(f(t), f(a)) \leqslant d_Y(f(t), f_N(t)) + d_Y(f_N(t), f_N(a)) + d_Y(f_N(a), f(a)) \quad \Box$$

$$< 3\varepsilon \quad \forall t \text{ mit } d_X(t, a) < \delta.$$

Folgerung.

$$(C([a,b],\mathbb{R}),d_{\sup})$$

 $(C([a,b],\mathbb{R}),d_{\sup})$ Stellt man diese Bedingung, ist automatisch garantiert, dass $d_{\sup}(f_1,f_2) = \sup_{t \in [a,b)} |f_1(t) - f_2(t)| < \infty$

, $D \subset \mathbb{R}$, ist vollständig.

Beweis. Sei $(f_n)_n$ Cauchy-Folge in $C(D,\mathbb{R})$ bezüglich d_{\sup} , ðzu $\varepsilon > 0 \exists N = N(\varepsilon)$ s. d.

$$d_{\sup}(f_n, f_m) < \varepsilon \quad \forall n, m \geqslant N(\varepsilon)$$

$$\implies d_Y(f_n(t), f_m(t)) = |f_n(t) - f_m(t)| < \varepsilon \quad \forall n, m \geqslant N(\varepsilon) \quad \forall t \in D.$$

R ist vollständig

 $\stackrel{1.29}{\Longrightarrow}$ $(f_n)_n$ konvergiert bezüglich d_{\sup} gegen seinen punktweisen Grenzwert

$$f(t) := \lim_{n \to \infty} f_n(t)$$
 (Konvergenz in \mathbb{R})

$$\stackrel{\text{1.29.b}}{\Longrightarrow} t \mapsto f(t) \text{ ist stetig.}$$

Stetige Abbildungen auf metrischen Räumen

Lemma 1.30. Seien X, Y, Z metrische Räume, $f: X \to Y, g: Y \to Z, f(X) \subset Y$. Ist f stetig in $a \in X$ und g stetig in $b = f(a) \in \tilde{Y}$, so ist $g \circ f \colon X \to Z$ stetig in a.

Beweis. (Über Folgenstetigkeit, Lemma 1.18) Sei $x_n \to a \implies \lim f(x_n) = (a) = b$ und $\lim g(f(x_n)) = g(b) = g(f(a)) \implies \lim g \circ f(x_n) = g \circ f(a).$

Definition 1.31. Auf dem \mathbb{R}^n ist durch

$$d_{\max}(x,y) \coloneqq \max_{i \in \{1,\dots,n\}} |x_i - y_i|.$$

eine Metrik definiert.

Bemerkungen. i) $d_{\max}(x,y) = d_{\sup}(x,y)$, fasst man x und y als Abbildungen

$$x: \{1, \ldots, n\} \to \mathbb{R}$$

auf,
$$x(i) = x_i$$
.

ii) Eine Folge $(x_m)_m \subset \mathbb{R}^n$, $x_m = (x_m^1, \dots, x_m^n)$ konvergiert bezüglich $d_{\max} \iff$ Alle Komponentenfolgen $(x_m^i)_m \quad (1 \leqslant i \leqslant n)$ konvergieren in \mathbb{R} .

- iii) Es folgt: (\mathbb{R}^n, d_{\max}) ist vollständig.
- iv) $B_{\varepsilon}(a)$ bezüglich dieser Metrik:

$$\left\{ x \in \mathbb{R}^n \, \middle| \, \max_{i \in \{1, \dots, n\}} |x_i - a_i| < \varepsilon \right\},\,$$

Würfel mit Seitenlängen 2ε um a.

Lemma 1.32. Sei (X, d) metrischer Raum. Sei $@rr^n$ mit d_{\max} versehen. Eine Abbildung $f \colon X \to \mathbb{R}^n, \ f = (f_1, \dots, f_n)^T,$

$$f(y) = (f_1(y), \dots, f_n(y))^T \in \mathbb{R}^n, y \in X.$$

 $f_i: X \to \mathbb{R}, i \in \{1, ..., n\},$ "Komponenten-Funktionen", ist genau dann stetig in $a \in X$, falls alle f_i stetig in a sind.

Beweis. Mit Folgenstetigkeit direkt aus Bemerkung 1.31.ii). Hier nochmals mit ε -δ-Kriterium.

Notation. $\underline{n} = \{1, ..., n\}.$

" \Longrightarrow " Sei also $f\colon X\to\mathbb{R}^n$ stetig in a. Sei $\varepsilon>0.$ Dann $\exists~\delta>0$ s.d.

$$\max_{i \in \underline{n}} |f_i(y) - f_i(a)| < \varepsilon \,\forall \, y \in B_{\delta}(a)$$

$$\stackrel{\uparrow}{\text{bezüglich } d}$$

$$\Longrightarrow |f_i(y) - f_i(a)| < \varepsilon \quad \forall \, y \in B_{\delta}(a) \quad \forall \, i \in \underline{n}$$

$$\Longrightarrow f_i \text{ sind stetig in } a.$$

 $, \leftarrow$ "Seien also die $f_i: X \to \mathbb{R}, i \in \underline{n}$, stetig in a. Sei $\varepsilon > 0$. Dann $\exists \delta_i > 0$ s. d.

$$|f_i(y) - f_y(a)| < \varepsilon \quad \forall y \in B_{d_i}(a) \subset X.$$

Wähle $d := \min \{ \delta_1, \dots, \delta_n \}$. Dann ist

$$\max_{i \in n} |f_i(y) - f_i(a)| < \varepsilon \quad \forall y \in B_d(a).$$

Lemma 1.33. Folgende Abbildungen sind stetig:

$$\operatorname{add} \colon \mathbb{R}^2 \to \mathbb{R}, \ \operatorname{add}(x,y) = x + y$$
$$\operatorname{mult} \colon \mathbb{R}^2 \to \mathbb{R}, \ \operatorname{mult}(x,y) = x \cdot y$$
$$\operatorname{quot} \colon \mathbb{R} \times \mathbb{R}^* \to \mathbb{R}, \ \operatorname{quot}(x,y) = x/y.$$
$$\mathbb{R} \setminus \left\{ \begin{smallmatrix} 0 \end{smallmatrix} \right\}$$

Hierbei sei \mathbb{R}^2 , $\mathbb{R} \times \mathbb{R}^*$, mit d_{max} versehen.

Beweis. Sei $((x_m, y_m))_m \subset \mathbb{R}^2$ mit $(x_m, y_m) \to (x, y)$ (bezüglich d_{max})

$$\Longrightarrow_{\text{Bem 1.31.ii}} x_m \to x \text{ und } x_m \to y \text{ in } \mathbb{R}$$

$$\Longrightarrow_{\text{lim}} (x_m + y_m) = x + y$$

$$\lim_{\text{lim}} (x_m \cdot y_m) = x \cdot y$$

$$\lim_{\text{lim}} (x_m / y_m) = x / y \quad \text{(falls } y_m \neq 0, y \neq 0\text{)}.$$

Folgerung. Sei (X,d) metrischer Raum. Seien $f,g:X\to\mathbb{R}$ stetig. Dann sind auch

$$f + g \colon X \to \mathbb{R}, \ (f + g)(x) = f(x) + g(x) \text{ und}$$

 $g \cdot g \colon X \to \mathbb{R}, \ (f \cdot g)(x) = f(x) \cdot g(x)$

stetig. Gilt $g(x) \neq 0 \quad \forall x \in X$, so ist auch

$$f/g: X \to \mathbb{R}, (f/g)(x) = f(x)/g(x)$$

stetig.

Beweis.

1.32
$$\Longrightarrow$$
 $\begin{pmatrix} f \\ g \end{pmatrix} : X \to \mathbb{R}^2, \begin{pmatrix} f \\ g \end{pmatrix} (x) = \begin{pmatrix} f(x) \\ g(x) \end{pmatrix}$

ist stetig.

Es ist

$$f + g = \operatorname{add} \circ \begin{pmatrix} f \\ g \end{pmatrix}$$
$$f + g = \operatorname{mult} \circ \begin{pmatrix} f \\ g \end{pmatrix}$$
$$f/g = \operatorname{quot} \circ \begin{pmatrix} f \\ g \end{pmatrix}$$

Mit 1.33 und 1.30 folgt die Behauptung.

Beispiel. Polynomische Funktionen $\mathbb{R}^n \to \mathbb{R}$

$$x \mapsto \sum_{0 \leqslant k_i \leqslant r} c_{\underbrace{k_1 \cdots k_n}} x_1^{k_1} \cdots x_n^{k_n}$$

sind stetig.

Bemerkung 1.34. Wir werden später sehen, dass die Aussage in 1.33 auch gilt, wenn man den \mathbb{R}^2 z. B.mit dem Euklidischen Abstand versieht.

Kompaktheit

Definition 1.35. Sei (X, d) metrischer Raum, $M \subset X$. Eine offene Überdeckung von M ist eine Familie $(U_i)_{i \in I}$ von offenen Teilmengen $U_i \subset X$ mit $M \subset \bigcup_{i \in I} U_i$ (I eine beliebige Indexmenge).

Definition 1.36. $M \subset X$ heißt kompakt, falls es zu jeder offenen Überdeckung von $\bigcup_{i \in I} U_i$ von M endlich viele Indizes i_1, \ldots, i_N gibt s. d.

$$M \subset U_{i_1} \cup \cdots \cup U_{i_N}$$
.

Achtung. Ein nicht-kompakter raum kann eine endliche Überdeckung $U_1 \cup \cdots \cup U_N$ besitzen. Die Aussage der Definition ist, dass man aus *jeder* offenen Überdeckung endlich viele offene Mengen wählen kann, die M noch ganz überdecken!

Beispiele 1.37. i) [a, b] ist kompakt (Beweis später).

ii) (a,b) ist nicht kompakt (obwohl etwa (a,b) eine endliche offene Überdeckung ist!)

Beweis.

$$U_{j} = \left(a + \frac{1}{j}, b\right), \quad j \geqslant 1$$

$$\bigcup_{j} U_{j} = (a, b)$$

aber ed gibt $kein\ N$ s. d. $\bigcup_{j=1}^N U_j \supset (a,b)$, denn z. B. $a + \frac{1}{N+1} \notin \bigcup_{p=1}^N U_j$.

iii) Sei $(x_n)_n \subset X$ gegen a konvergente Folge. Dann ist $M = \{x_n \mid n \in \mathbb{N}\} \cup \{a\}$ kompakt.

Beweis. Sei $(U_j)_j$ eine offene Überdeckung von M

$$a \in M \implies \exists j_0 \text{ s.d. } a \in U_{j_0}$$

 U_{j_0} ist offen, also eine Umgebung von a.

$$\implies \exists N \text{ s.d. } x_n \in U_{i_0} \quad \forall n \geqslant N.$$

iv) Sei $(X_i, d_{\text{discrete}})$. Dann sind genau die endlichen Mengen kompakt.

Beweis. Betrachte
$$\bigcup_{x \in M} \{x\}.$$

Satz 1.38. Sei (X, d) metrischer Raum, $K \subset X$ kompakt. Dann ist K abgeschlossen und beschränkt.

Beweis. Abgeschlossen: Sei $a \in X \setminus K$. Setze zu $n \ge 1$

$$U_n := \left\{ y \in X \mid d(y, a) > \frac{1}{n} \right\}$$

 U_n ist offen (denn $X \setminus U_n = \overline{B_{1/n}(a)}$) und $\bigcup_{n=1}^{\infty} U_n = X \setminus \{a\} \supset K$. K kompakt $\Longrightarrow \exists U_{n_1}, \dots, U_{n_L} \text{ s. d.} K \subset U_{n_1} \cup \dots \cup U_{n_l}$. Setze $N \coloneqq \max\{n_1, \dots, n_l\}$. Dann ist $B_{\frac{1}{N}}(a) \subset X \setminus K \Longrightarrow X \setminus K$ ist offen \Longrightarrow Beh..

Beschränktheit: Sei $a \in X$. Dann ist $X = \bigcup_{n=1}^{\infty} B_n(a)$ und somit $(B_n(a))_n$ eine offene Überdeckung von K.

$$\Rightarrow \exists n_1, \dots, n_k \text{ s. d. } K \subset B_{n_1(a)} \cup \dots B_{n_k}(a)$$
$$\Rightarrow K \subset B_N(a) \text{ für } N = \max \{ n_1, \dots, n_k \}$$
$$\Rightarrow \operatorname{diam}(K) \leq 2N.$$

Folgerung. Konvergente Folgen sind beschränkt.

Bemerkung. Die Umkehrung von 1.38 gilt im Allgemeinen nicht!

 (X, d_{discrete}) , X habe unendlich viele Elemente. Jede Teilmenge ist abgeschlossen (da jede offen ist) und beschränkt (durch 1), aber nur die *endlichen* sind kompakt.

Lemma 1.39. Ist $K \subset X$ kompakt und $A \subset K$ ist abgeschlossen, so ist A kompakt.

Beweis. Sei $(U_i)_i$ offene Überdeckung von A. Es ist

$$(\underbrace{X \setminus A}) \cup \bigcup U_j = X \supset K$$
offen (VOR)
$$\implies \exists j_1, \dots, j_L \text{ s. d. } K \subset (X \setminus A) \cup U_{j_1} \cup \dots \cup U_{j_L}$$

$$\implies A \subset U_{j_1} \cup \dots \cup U_{j_L}.$$

Satz 1.40. Seien X, Y metrische Räume und $f: X \to Y$ stetig. Ist $K \subset X$ kompakt, so ist auch $f(K) \subset Y$ kompakt.

Beweis. Sei $(U_j)_j$ offene Überdeckung von f(K). f stetig \Longrightarrow Die Urbilder $V_j := f^{-1}(U_j)$ sind offen.

Und nach Definition ist $K \subset \bigcup_j V_j$.

$$\underset{\text{VOR}}{\Longrightarrow} \exists j_1, \dots, j_N \text{s. d.} K \subset V_{j_1} \cup \dots \cup V_{j_N}$$
$$\Longrightarrow f(K) \subset U_{j_1} \cup \dots \cup U_{j_N}.$$

Satz 1.41. Sei \mathfrak{X} kompakter metrischer Raum, $f \colon \mathfrak{X} \to \mathbb{R}$ stetig. Dann ist f beschränkt und nimmt ihr Maximum und Minimum an, $\delta \exists \ a,b \in \mathfrak{X}$

$$f(a) = \sup \{ f(x) \mid x \in \mathfrak{X} \}, \quad f(b) = \inf \{ f(x) \mid x \in \mathfrak{X} \}.$$

Beweis. 1.40 $\implies f(\mathfrak{X})$ ist kompakt. Mit 1.38 folgt: $f(\mathfrak{X})$ ist beschränkt (somit ist f beschränkt) und abgeschlossen.

Also sind sup $f(\mathfrak{X})$ und inf(\mathfrak{X}) endlich. Zudem gibt es

$$(y_k)_k \subset f(\mathfrak{X}), \quad y_k \to \sup(f(\mathfrak{X}))$$

 $(z_k)_k \subset f(\mathfrak{X}), \quad z_k \to \inf(\mathfrak{X}),$

somit (Abgeschlossenheit!)

$$\sup(f(\mathfrak{X})) \in f(\mathfrak{X})$$
$$\inf(f(\mathfrak{X})) \in f(\mathfrak{X})$$

 \implies Beh..

Beispiel. Sei (\mathfrak{X},d) metrischer Raum. $M\subset\mathfrak{X}.$ Sei $x\in\mathfrak{X}.$ Der Abstand von a zu M ist definiert als

$$dist(x, M) := \inf \{ d(x, y) \mid y \in M \}.$$

Behauptung. $x \mapsto \operatorname{dist}(x, M)$ ist stetig auf \mathfrak{X} .

Beweis. Sei $\varepsilon > 0$. Dann ist

$$|\operatorname{dist}(x, M) - \operatorname{dist}(\tilde{x}, M)| \leq d(x, \tilde{x}) < \varepsilon$$
 falls $d(x, \tilde{x}) < \varepsilon$,

denn

$$\operatorname{dist}(x, M) \leqslant d(x, \tilde{x}) + \operatorname{dist}(\tilde{x}, M) \quad \forall \, x, \tilde{x} \in \mathfrak{X}.$$

Definiere zu $K \subset \mathfrak{X}$

$$dist(K, M) := \inf \{ dist(x, M) \mid x \in K \}.$$

Behauptung. Ist M abgeschlossen, K kompakt und ist $M \cap K = \emptyset$, so gilt $\operatorname{dist}(M, K) > 0$.

Beweis. $x \mapsto \operatorname{dist}(x, M)$ ist stetig auf \mathfrak{X} , somit erst recht auf K. K ist kompakt $\Longrightarrow \exists a \in K \text{ s. d.dist}(a, M) = \operatorname{dist}(K, M)$. M abgeschlossen $\Longrightarrow \exists \varepsilon > 0 \text{ s. d.} B_{\varepsilon}(a) \subset X \setminus K$ $\Longrightarrow \operatorname{dist}(a, M) \geqslant \varepsilon$.

Achtung. i) Betrachte

$$M = \{ (x,y) \mid xy = 0 \} \subset, N = \{ (x,y) \mid xy = 1 \} \subset \mathbb{R}^2$$

$$\operatorname{dist}(M,N) = 0.$$

ii) Betrachte $B_{1/2}(1),\,B_{1/2}(2)\subset\mathbb{R}^2,\,d_{\text{Euklidisch}}.$ Distanz ist 0.

Satz / Definition 1.42. Seien \mathfrak{X}, Y metrische Räume, \mathfrak{X} kompakt. Dann ist jede stetig Abbildung $f \colon \mathfrak{X} \to Y$ sogar gleichmäßig stetig ðim ε - δ -Kriterium kann δ unabhängig von x gewählt werden:

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \text{s.d.} \ d_Y(f(x), f(\tilde{x})) < \varepsilon \quad \forall x, \tilde{x}, d_{\mathfrak{X}}(x, \tilde{x}) < \delta.$$

Beweis. Sei $\varepsilon > 0$. Dann gibt es zu $a \in \mathfrak{X}$ ein $\delta(a) > 0$ s. d.

$$d_Y(f(a), f(y)) < \varepsilon \quad \forall y \in B_{\delta(a)}(a).$$

Es gilt $\bigcup_{a \in X} B_{\frac{\delta(a)}{2}}(a) = \mathfrak{X}.$

 \mathfrak{X} ist kompakt $\implies \exists a_1, \ldots, a_N \text{ s. d.} X = \bigcup_{j=1}^N B_{\delta(a_j)/2}(a_j)$. Setze

$$\delta \coloneqq \frac{1}{2} \min \left\{ \delta(a_1), \dots, \delta(a_N) \right\}.$$

Seien jetzt x, \tilde{x} beliebig aus \mathfrak{X} mit $d_{\mathfrak{X}}(x, \tilde{x}) < \delta$. Dann gibt es ein $j \in \{1, \ldots, N\}$ s. $d.x \in B_{\delta(a_j)/2}$ und somit $\tilde{x} \in B_{\delta(a_j)}(a_j)$

$$\implies d_Y(f(x), f(a_j)) < \varepsilon \quad d_Y(f(\tilde{x}), f(a_j)) < \varepsilon$$

$$\implies d_Y(f(x), f(\tilde{x})) < 2\varepsilon \quad \forall x, \tilde{x}, \ d_{\tilde{x}}(x, \tilde{x}) < \delta.$$

Satz 1.43 (Bolzano-Weierstraß). Sei (X, d) metrischer Raum. Sei $K \subset X$ kompakt. Dann besitzt jede Folge $(x_n)_n$ in K eine Teilfolge $(x_{n_k})_k$, die gegen einen Punkt $x \in K$ konvergiert.

Beweis. Angenommen, \nexists Teilfolge, die gegen einen Punkt von K konvergiert. Dann besitzt jedes $x \in K$ eine offene Umgebung U_x , in der nur endlich viele Folgenglieder liegen (sonst könnte man eine gegen x konvergente Teilfolge konstruieren). Es gilt: $\bigcup_{x \in K} U_x \supset K$

$$\implies \exists x_1, \dots, x_N \text{ s.d. } \bigcup_{j=1}^N U_{x_j} \subset K$$

Aber dann liegen nur endlich viele x_k in K, \nleq zur Definition.

Vorlesung 4

Do 30.04. 10:15

Äquivalenz von Metriken

Wir haben gesehen, dass die Eigenschaften derselben Menge sehr verschieden sein können, je nachdem mit welcher Topologie man sie versieht.

Beispiel. \mathbb{R} mit der Standardtopologie |x-y|:

• (a, b] ist nicht offen, [a, b] ist kompakt.

 \mathbb{R} mit der diskreten Metrik d_{disk}

- Alle Teilmengen sind offen.
- Nur endliche Teilmengen sind kompakt.
- Konvergiert $x_n \to a$ (bezüglich d_{disk}), so muss gelten $\exists N \text{ s. d.} x_n = a \quad \forall n \geqslant N$ (denn $\{a\}$ ist Umgebung von a, oder anders gesagt: damit $d(x_n, a) < \varepsilon < 1$ wird, muss gelten $x_n = a$).
- Alle Abbildungen $f:(X, d_{\text{disc}}) \to (Y, d)$ sind stetig. (Beweis am einfachsten über Folgenstetigkeit).

Andererseits gilt:

 $U \subset \mathbb{R}^2$ ist offen in $(\mathbb{R}^2, d_{\text{Eukl}}) \iff U$ ist offen in $(\mathbb{R}^2, d_{\text{max}})$.

Beweis. " \Longrightarrow " Sei $a\in U \stackrel{VOR}{\Longrightarrow} \exists \ \varepsilon>0$ s. d.

$$B_{\varepsilon}^{d_{\mathcal{E}}}(a) := \left\{ x \in \mathbb{R}^2 \mid d_{\mathrm{Eukl}(x,a)} = \sqrt{(x_1 - a_1)^2 + (x_2 - a_2)^2} < \varepsilon \right\} \subset U$$

Da $B^{d_{\max}}_{\rho}(a) \subset B^{d_{\mathrm{E}}}_{\varepsilon}(a)$ für $\rho = \frac{\varepsilon}{\sqrt{2}}$, ist U auch offen (\mathbb{R}^2, d_{\max}) .

 $,, \longleftarrow \text{``Sei } a \in U \overset{VOR}{\Longrightarrow} \exists \ \varepsilon > 0 \text{ s. d.}$

$$B_{\varepsilon}^{d_{\max}}(a) = \{ x \mid d_{\max}(x, a) < \varepsilon \} \subset U.$$

Es gilt $B_{\rho}^{d_{\mathrm{E}}}(a) \subset B_{\varepsilon}^{d_{\mathrm{max}}}(a)$ für $\rho = \varepsilon$, also ist U offen in $(\mathbb{R}^2, d_{\mathrm{Eukl}})$.

Definition 1.44. Sei X eine Menge, seien d und \tilde{d} Metriken auf X. Dann nennt man d stärker (feiner) als \tilde{d} , falls jede bezüglich \tilde{d} offene Menge auch offen bezüglich d ist, und schwächer (gröber), falls \tilde{d} stärker ist als d. Ist d sowohl stärker als auch schwächer als \tilde{d} , so nennt man d und \tilde{d} äquivalent.

Beispiel. d_{max} ist äquivalent zu d_{Eukl} . d_{disk} ist stärker als d_{max} und nicht schwächer.

Bemerkungen 1.45. Sei d stärker als \tilde{d} . Dann gilt:

i) Konvergiert eine Folge bezüglich der stärkeren Metrik, so auch bezüglich der schwächeren.

(denn: Konvergiere $x_n \to a$ (bezüglich d). Sei $\varepsilon > 0$. Betrachte $B_{\varepsilon}^{\tilde{d}}(a) = U$ offen bezüglich $d \implies U$ Umgebung von a (bezüglich $d) \implies U$ Umgebung von a (bezüglich d) $\implies \exists N \text{ s. d.} x_n \in U \quad \forall n \geqslant N$.)

- ii) Ist eine Funktion $f:(X,\tilde{d})\to (Y,d_Y)$ stetig, so auch $f:(X,d)\to (Y,d_Y)$.
- iii) Ist eine Funktion $f \colon (Y, d_Y) \to (X, d)$ stetig, so auch $f \colon (Y, d_Y) \to (X, \tilde{d})$.

Beweis. f stetig \iff Urbilder offener Mengen sind offen.

- 1. $U \subset Y \implies f^{-1}(U)$ offen bezüglich $\tilde{d} \implies f^{-1}(U)$ offen bezüglich d.
- 2. Sei $U\subset X$ offen bezüglich $\tilde{d},$ also auch offen bezüglich $d\implies f^{-1}(U)$ offen in Y.

Bemerkung. Sind d und \tilde{d} äquivalent, sind die selben Folgen konvergent, die selben Mengen offen, kompakt, die selben Funktionen stetig etc.

Kapitel 2

Normierte Vektorräume

Definition 2.1. Sei V ein reeller Vektorraum. Eine *Norm* auf V ist eine Abbildung $\|\cdot\|\colon V\to\mathbb{R}$ mit

a)

$$||x|| = 0 \iff x = 0$$

b)

$$\|\lambda x\| = |\lambda| \|x\| \quad \forall \lambda \in \rho, \ x \in V$$

c)

$$||x+y|| \leqslant ||x|| + ||y|| \quad \forall x, y \in V$$

Dreiecksungleichung.

Ein normierter $VR(V, \|\cdot\|)$ ist ein VR mit einer Norm.

Beispiele. • \mathbb{R}^n mit $\|\cdot\|_{\mathcal{E}}$ Euklidische Norm auf \mathbb{R}^n

$$||x|| = \sqrt{\sum_{i=1}^{n} x_i^2} \quad x = (x_1, \dots, x_n).$$

• \mathbb{R}^n mit $\|\cdot\|_{\infty} = \|\cdot\|_{\max}$,

$$||x||_{\infty} = \max\{ |x_1|, \dots, |x_n| \}.$$

• \mathbb{R}^n mit $\|\cdot\|_p$ "p-Norm", $p \geqslant 1$, $p \in \mathbb{R}$.

$$||x||_p \left(\sum_{i=1}^n |x_i|^p\right)^{1/p} \rightarrow \text{Saal\"{u}bung}.$$

- C([a,b]) mit $||f||_{L^1} = \int_a^b |f(t)| dt$.
- $\bullet \ C([a,b]) \ \mathrm{mit} \ \|f\|_{\infty} = \sup\nolimits_{t \in [a,b]} |f(t)|.$

Lemma 2.2. Sei $(V, \|\cdot\|)$ normierter VR. Dann wird durch $d(x, y) := \|x - y\|$ eine Metrik auf V definiert ("induziert").

Beweis. 2.1.a) (Norm)
$$\implies$$
 1.11.a) (Metrik). 1.11.b) (Symmetrie der Metrik): folgt aus $||x-y|| = ||y-x||$.

Notation. Wir schreiben $(V, \|\cdot\|)$ für den *metrischen* Raum, dessen Metrik von $\|\cdot\|$, dessen Metrik von $\|\cdot\|$ induziert wird.

Bemerkung. Nicht jede Metrik auf einem Vektorraum wird von einer Norm induziert, denn induzierte Metriken erfüllen $d(\lambda x, \lambda y) = |\lambda| d(x, y)$. Die diskrete Metrik erfüllt das nicht.

Lemma 2.3. Seien d_1 und d_2 auf V von Normen $\|\cdot\|_1$ und $\|\cdot\|_2$ induziert. Dann ist d_2 stärker als d_1 genau dann, wenn es eine positive Zahl C > 0 gibt s. d.

$$||x||_1 \leqslant C||x||_2 \quad \forall \, x \in V.$$

Beweis. Bezeichne $B_r^j(0)$, r > 0, die offenen Kugeln bezüglich d_j .

", \Longrightarrow " Nach VOR ist insbesondere $B_1^1(0)$ offen bezüglich $d_2 \Longrightarrow \exists \varepsilon > 0$ s. d. $B_{\varepsilon}^2(0) \subset B_1^1(0) \Longrightarrow$ für $x \in X, x \neq 0$ gilt

$$\begin{split} & \left\| \frac{\varepsilon x}{2\|x\|_2} \right\|_2 = \frac{\varepsilon}{2} < \varepsilon \\ \Longrightarrow & \left\| \frac{\varepsilon x}{2\|x\|_2} \right\|_1 < 1 \\ \Longrightarrow & \|x\|_1 < \frac{2}{\varepsilon} \|x\|_2. \end{split}$$

" Existiere C wie oben. $B_r^2(x) \subset B_{cr}^1(x) \quad \forall x \in X, r > 0$. Denn $r > \|x - y\|_2 \geqslant \frac{1}{c}$. Sei U offen bezüglich d_1

$$\implies \forall \, x \in U \quad \exists \, \varepsilon > 0 \text{ s.d. } B^1_\varepsilon(x) \subset U$$

$$\implies B^2_{\frac{\varepsilon}{C}}(x) \subset B^1_\varepsilon(x) \subset U.$$

Folgerung. d_2 ist äquivalent zu d_1

$$\iff \exists C, \tilde{C} \text{ s. d.} \tilde{C} ||x_2|| \leqslant ||x_1|| \leqslant C ||x_2||,$$

("die Normen sind äquivalent").

Bemerkung. Äquivalenz von Normen ist eine Äquivalenz-Relation (reflexiv, symmetrisch, transitiv).

$$\left\| \frac{x}{\|x\|_2} \right\| = \frac{1}{\|x\|_2} \|x\|_1.$$

Satz 2.4. Auf \mathbb{R}^n sind alle Normen äquivalent.

Beweis. Aufgrund der Transitivität genügt es die Äquivalenz einer beliebigen Norm $\|\cdot\|$ zu $\|\cdot\|_{\infty}$ zu beweisen.

1. $\|\cdot\|_{\infty}$ ist stärker als $\|\cdot\|$: Denn sei $x = \sum_{j=1}^n x_j e_j \in \mathbb{R}^n$, $e_j = (0, \dots, \frac{1}{j-\text{te}}, \dots, 0)$. Dann ist

$$||x|| = \left\| \sum x_j e_j \right\| \leqslant |x_j| \cdot ||e_j|| \leqslant ||x||_{\infty} \underbrace{\sum_{j=1}^n ||e_j||}_{=C}$$

2. $\|\cdot\|_{\infty}$ ist schwächer als $\|\cdot\|$:

Betrachte $M := \{ x \in \mathbb{R}^n \mid ||x||_{\infty} = 1 \}$ (Einheits, sphäre" bezüglich $||\cdot||_{\infty}$, also Rand des Einheitswürfels \square).

Behauptung. $f: M \to \mathbb{R}, x \mapsto ||x||$ ist stetig bezüglich $||\cdot||_{\infty}$.

Beweis.

$$|f(x) - f(y)| = |||x|| - ||y||| \le ||x - y|| \le C||x - y||_{\infty}$$

(*) umgekehrte Dreiecksungleichung:

$$||x|| - ||y|| = ||x + y - y|| - ||y|| \stackrel{\triangle}{\leqslant} ||x + y||$$

$$||y|| - ||x|| = ||y + x - x|| - ||x|| \leqslant ||x + y||.$$

M ist abgeschlossen bezüglich $\|\cdot\|_{\infty}$ (denn $\mathbb{R}^n \setminus M = \text{Urbild der offenen Menge } \mathbb{R} \setminus \{1\}$ unter der stetigen Abbildung $x \mapsto \|\cdot\|_{\infty}$). $M \subset \text{abgeschlossenen } Quader$ und dieser ist kompakt in $(\mathbb{R}^n, \|\cdot\|_{\infty})$ (Lemma 2.5) $\Longrightarrow M$ ist kompakt (1.39).

Es folgt: f nimmt sein Minimum b an und (da f > 0) somit ist b > 0. Nach Definition ist $\|y\| \geqslant b \quad \forall y \in M$. Für alle $x \in \mathbb{R}^n \setminus \{0\}$ gilt $\frac{x}{\|x\|_{\infty}} \in M$, also ist $\left\|\frac{x}{\|x\|_{\infty}}\right\| \geqslant b$, also $\|x\| \geqslant b\|x\|_{\infty}$ und für x = 0 gilt dies ohnehin.

Lemma 2.5. Der Quader $Q = \{ x = (x_1, \dots, x_n) \in \mathbb{R}^n \mid a_j \leqslant x_j \leqslant b_j \}$ ist kompakt in $\mathbb{R}^n, \|\cdot\|_{\infty} \ (a_j \leqslant b_j).$

Beweis. Sei $(U_j)_j$ eine offene Überdeckung von Q. Angenommen, Q kann nicht durch endlich viele U_j 's überdeckt werden.

Wir konstruieren induktiv eine Folge von abgeschlossenen Teilquadern

$$Q_0 \supset Q_1 \supset Q_2 \supset \cdots$$

mit

- a) Q_n kann nicht durch endlich viele U_j 's überdeckt werden
- b) diam $Q_m = 2^{-m}$ diam Q.

Beachte:

diam $Q = \text{Länge der länsten Seite bezüglich } \|\cdot\|_{\infty}$.

Setze $Q_0=Q$. Sei Q_m konstruiert. Schreibe $Q_m=I_1\times\cdots\times I_n,\ I_j$ abgeschlossene Intervalle. Zerlege $I_j^{(1)}\cup I_j^{(2)}$ in zwei abgeschlossene Intervalle der halben Länge und setze

$$Q^{(s_1,\ldots,s_n)} := I_1^{(s_1)} \times \cdots \times I_n^{(s_n)}, \quad s_i \in \{1,2\}.$$

Das ergibt 2^n Quader mit

$$\bigcup_{s_j \in \{1,2\}} Q_m^{(s_1,\dots,s_n)} = Q_m$$

Es gibt mindestens einen Quader $Q_m^{(s_1,\ldots,s_n)}$, der nicht durch endlich viele U_j 's überdeckt werden kann. Einen solchen wählen wir als Q_{m+1} . Es gilt per Konstruktion

$$\operatorname{diam}(Q_{m+1}) = \frac{1}{2}\operatorname{diam}(Q_m) = \frac{1}{2^{m+1}}\operatorname{diam}(Q).$$

Nach dem Schachtelungsprinzip $\exists \ a \in Q_m \ \forall \ m$. Da $(U_j)_j \ Q$ überdeckt $\exists \ U_{j_0} \ \text{s. d.} a \in U_{j_0}$. U_{j_0} offen $\implies \exists \ \varepsilon > 0 \ \text{s. d.} B_{\varepsilon}^{\|\cdot\|_{\infty}}(a) \subset U_{j_0}$. Wähle m so groß, dass $\operatorname{diam}(Q_m) < \varepsilon$. $a \in Q_m \implies Q_m \subset B_{\varepsilon}^{\|\cdot\|_{\infty}}(a) \subset U_{j_0} \not\searrow \text{Widerspruch Konstruktion der } Q_m$.

Bemerkung 2.6. Aus 2.4 folgt: Q ist bezüglich jeder Norm kompakt. Bolzano-Weierstraß $(1.43) \implies \text{In } (\mathbb{R}^n, \|\cdot\|)$ hat jede beschränkte Folge eine konvergente Teilfolge.

Bemerkungen 2.7. Wir haben bereits gesehen:

- i) Auf nicht endlich-dimensionalen Vektor-Räumen sind nicht alle Normen äquivalent: $(C([a,b]),\|\cdot\|_{\infty})$ ist vollständig, $(C([a,b]),\|\cdot\|_{L^1})$ nicht.
- ii) Auf dem \mathbb{R}^n sind nicht alle Metriken äquivalent: d_{disc} ist stärker als jede Norm (und nicht schwächer).

Satz 2.8 (Heine-Borel). Eine Teilmenge $A \subset \mathbb{R}^n$ ist genau dann kompakt, wenn sie abgeschlossen und beschränkt ist. (\mathbb{R}^n hir und im Folgenden als normierter VR).

Beweis. " \Longrightarrow " Hatten wir letztes Mal (1.38) für Kompakte in metrischen Räumen bewiesen.

" \Leftarrow " It A beschränkt so ist A in einem Quader enthalten (denn $||x-y||_{\infty} \leq ||x-y||$ somit $\dim_{\|\cdot\|_{\infty}}(A) \leq C \dim_{\|\cdot\|}(A) < \infty$). Q ist kompakt (bezüglich $\|\cdot\|_{\infty}$ somit bezüglich $\|\cdot\|$). A abgeschlossen $\implies A$ kompakt (1.39).

Bemerkung. 2.8 gilt nicht in unendlich-dimensionalen Vektorräumen:

Betrachte in $\ell_1, \|\cdot\|_{\ell_1} = \sum_{k=0}^{\infty} |x_k|$ die Folge $(x^n)_n$ wobei $x^n = (x_k^n)_k$ sei mit $x_k^n = 0$ für $n \neq k$ und $(x^n)_n = 1$. Dann gilt $\|x^n\|_{\ell_1} = 1$ und

$$||x^n - x^m||_{\ell_1} = 2 \quad \forall m \in \{0, 1, \dots, n-1\}.$$

 \implies Die Folge besitzt keine konvergente Teilfolge, kann also (Bolzano-Weierstrass) nicht kompakt sein, obwohl $\{x^n \mid n \in \mathbb{N}_0\}$ beschränkt und abgeschlossen in $(\ell_1, \|\cdot\|_{\ell_1})$ ist.

Vorlesung 5

Mo 04.05. 10:15

Stetige Abbildungen in normierten Vektorräumen

Lineare Abbildungen

Satz 2.9. Seien $(V, \|\cdot\|_V)$ und $(W, \|\cdot\|_W)$ normierte Vektorräume. Sei $A \colon V \to W$ linear. Dann sind folgende Aussagen äquivalent:

- a) A ist stetig
- b) A ist stetig in 0
- c) $||A(x)||_W \leq C||x||_V$.

Beweis. 2.9.a) \implies 2.9.b) \checkmark

2.9.b) \implies 2.9.c) A stetig in $0 \implies zu \varepsilon = 1 \exists \delta > 0 \text{ s. d.}$

$$||A(y) - A(0)||_W \stackrel{\text{Lin}}{=} ||A(y)||_W < 1 \quad \forall y \in V \text{ mit } ||y - 0||_V = ||Y||_V < \delta.$$

Setze $C := 2/\delta$. Sei $x \in V \setminus \{0\}$ beliebig (für x = 0 gilt die Ungleichung 2.9.c) ohnehin). Setze $\lambda := 1/C||x||_V$ und $y := \lambda x$.

Dann ist $\|y\|_V = \frac{1}{C\|x\|_V} \|x\|_V = \delta/2 < \delta$, also $\|A(y)\|_W < 1$.

$$A(y) = A(\lambda x) = \frac{1}{C||x||_V} A(x) \implies \text{Beh.}.$$

 $(2.9.c) \implies (2.9.a)$ Es gebe C > 0 s. d.

$$||A(x)||_{W} \leqslant C||x||_{V} \quad \forall x \in V.$$

Dann gilt insbesondere für x = y - a.

$$||A(x)||_{W} = ||A(y) - A(a)|| \leqslant C||y - a||_{V}.$$
 Linearität

Sei $\varepsilon > 0$. Dann ist also

$$||A(y) - A(a)||_W < \varepsilon \quad \forall y, a \text{ mit } ||y - a||_V < \frac{\varepsilon}{C}$$

und somit ist A sogar gleichmäßig stetig.

Beispiele. i) $(C([a,b],\mathbb{R}), \|\cdot\|_{\infty}).$

$$I \colon C([a,b]) \to \mathbb{R}, \ I(f) \coloneqq \int_a^b f(t) dt.$$

I ist linear und es gilt

$$||I(f)|| \leq (b-a)||f||_{\infty}$$

 $\implies I$ ist stetig.

ii)
$$D: (C^1([a,b]), \|\cdot\|_{\infty}) \to (C([a,b]), \|\cdot\|_{\infty}), D: f \mapsto f'.$$

Behauptung. D ist nicht stetig.

Denn:. D ist linear \checkmark , aber die Bedingung aus Satz 2.9 ist verletzt: Betrachte $f_n \in C^1([0,2]), f_n = x^n$. Dann ist $||f_n||_{\infty} = 1$, aber $||Df_n||_{\infty} = n \implies$ es kann kein C > 0 geben s. d.

$$n = ||Df_n||_{\infty} \leqslant C||f_n|| = C \quad \forall n.$$

Definition. Seien V und W normierte Vektorräume. Sei $A\colon V\to W$ lineare stetige Abbildung. Die *Operatornorm* von A ist definiert als

$$||A||_{\text{op}} \coloneqq \sup_{\substack{x \in V \\ x \neq 0}} \frac{||Ax||_w}{||x||_V}.$$

Auf dem VR der stetigen linearen Funktionen $V \to W$ ist $\|\cdot\|_{op}$ eine Norm. $\|A\|_{op}$ ist die kleinste Konstante für die noch die Abschätzunge aus 2.9 gilt und es folgt

Bemerkung 2.10. Ein linearer Operator ist genau dann stetig, wenn gilt $||A||_{op} < \infty$.

Beispiel. Ist $A \colon \mathbb{R}^n \to \mathbb{R}^m$ linear, so gilt

$$A \in \operatorname{Mat}(m \times n, \mathbb{R}) \simeq \mathbb{R}^{m \cdot n}$$
.

Daher ist $\|\cdot\|_{\text{op}}$ in diesem Fall äquivalent zu in $\|\cdot\|_{\infty}$, $\|A\|_{\infty} = \max_{i,j} |A_{ij}| < \infty$, insbesondere also schwächer und somit ist A stetig.

Konkret gilt: Setze $V = (\mathbb{R}^n, \|\cdot\|_V)$, $W = (\mathbb{R}^n, \|\cdot\|_W)$. Sei $y = Ax \implies y_i = \sum_{j=1}^n A_{ij}x_j$ für $i = 1, \ldots, m$.

$$\begin{split} \|y\|_W & \stackrel{\triangle}{\leqslant} \sum_{i=1}^m \|y_i e_i\|_W \\ & \stackrel{\triangle}{\leqslant} \sum_{K \in \mathbb{Z}} |A_{ij} x_j| \, \|e_i\|_W \\ & = \sum_{i,j} |A_{ij}| \cdot |x_k| \cdot \|e_i\|_W \\ & \leqslant \|A\|_\infty \cdot \|x\|_{\ell^1} \cdot \sum_{i=1}^m \|e_i\|_W \\ & \Longrightarrow \|A\|_{\mathrm{op}} = \sup_{x \neq 0} \frac{\|Ax\|_W}{\|x\|_V} \leqslant \|A\|_\infty \cdot C_W \cdot \sup_{x \neq 0} \frac{\|x\|_{\ell^1}}{\|x\|_V}, \end{split}$$

wobei C_V eine Konstante ist mit

$$||x||_{\ell^1} \leqslant C_V \cdot ||x||_V \quad \forall x \in V = \mathbb{R}^n.$$

Bemerkung 2.11. Unsere Beschränkung auf den \mathbb{R}^n (statt beliebige endlich-dimensionale Vektorräume zuzulassen), bedeutet also keine Einschränkung, da ein Basiswechsel nach der Überlegung oben stetig ist.

Beispiele 2.12. $f: \mathbb{R}^n \to \mathbb{R}^m$.

a) Kurven $\gamma: I \to \mathbb{R}^n$, I Intervall, stetig.

Beispiele.

 $\gamma \colon [0, 2\pi] \to \mathbb{R}^2$, $t \mapsto (r \cos t, r \sin t)$, r > 0. Stetigkeit: Wir versehen \mathbb{R}^2 mit $\|\cdot\|_{\infty}$. Dann folgt die Stetigkeit von γ aus der Stetigkeit der Komponentenfunktionen $I \to \mathbb{R}$.

 $\gamma\colon\mathbb{R}\to\mathbb{R}^2,\,t\mapsto(t^2-1,t^3-1)$ genauso. Spur von $\gamma=\{\,\gamma(t)\mid t\in\mathbb{R}\,\}$

b) Gebrochen rationale Funktionen:

Beispiele.

 $f \colon \mathbb{R}^2 \to \mathbb{R}$.

$$f(x,y) = \begin{cases} \frac{x^2y}{x^2+2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0). \end{cases}$$

fist stetig: auf $\mathbb{R}^2\setminus\{\;0\;\}$ sicherlich als Verknüpfung und Produkt stetiger Funktionen:

$$f = \text{Inv} \circ p_1 \cdot p_2 \quad \text{Inv}(t) = \frac{1}{t}, \quad p_1(x, y) = x^2 + y^2, \quad p_2(x, y) = x^2 y.$$

Stetigkeit in 0: Es gilt $(x-y)^2 \geqslant 0$

$$\implies 2|xy| \leqslant x^2 + y^2$$

$$\implies \left| \frac{x^2y}{x^2 + y^2} \right| < \frac{|x|}{2}$$

für $((x_n,y_n))_n$, $(x_n,y_n) \to (0,0)$ (bezüglich irgendeiner Norm) gilt insbesondere $x_n \to 0$

$$\implies |f(x_n, y_n) - 0| = \left| \frac{x_n^2 y_n}{x_n^2 + y_n^2} \right| < \frac{|x_n|}{2} \to 0 \text{ in } \mathbb{R}.$$

 $f: \mathbb{R}^2 \to \mathbb{R}$

$$f(x,y) = \begin{cases} \frac{x^2y}{x^4 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0). \end{cases}$$

f ist stetig auf $\mathbb{R}^2\setminus\{0\}$ (siehe oben). f ist nicht stetig in 0: Betrachte etwa $(x_n,y-n)=\left(\frac{1}{n},\frac{1}{n^2}\right),\,n\geqslant 1.$ Dann gilt

$$f(x_n, y_n) = \frac{1}{n^2 n^2} \left(\frac{n^4}{2} \right) = \frac{1}{2} \gg 0.$$

Achtung:

Es gibt durchaus Folgen $(x_n, y_n) \to 0$ s. d. $f(x_n, y_n) \to 0$ (für $n \to \infty$), z. B. $(x_n, y_n) = (0, \frac{1}{n})$, wo $f(0, \frac{1}{n}) = 0$ $\forall n$ oder $(x_n, y_n) = (1/n, 1/n)$ wo

$$f(x_n, y_n) = \frac{1}{n^2} \left(\frac{n^2}{1 + 1/n^2} \right) \to 0.$$

Daher muss man, wenn man Stetigkeit zeigen will, in Argument finden, dass für alle Folgen funktioniert.

Contour-Plot: Eingezeichnet werden alle (x, y), die die gegebene Gleichung erfüllen. Von Wolfram Alpha.

Vektorräume mit Skalarprodukt

Eine spezielle Klasse von Normen sind solche, die von einem sogenannten Skalarprodukt induziert werden.

Definition 2.13. Sei V ein Vektorraum über \mathbb{R} . Ein Skalarprodukt auf V ist eine Abbildung $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$ mit

a) Linear:

$$\langle \lambda x + \mu y, z \rangle = \lambda \langle x, z \rangle + \mu \langle y, z \rangle \quad \forall x, y, z \in V, \ \lambda, \mu \in \mathbb{R}$$

b) Symmetrisch:

$$\langle x, y \rangle = \langle y, x \rangle \, \forall \, x, y \in V$$

c) Positiv definit:

$$\langle x, x \rangle \geqslant 0$$
 und $\langle x, x \rangle = 0 \iff x = 0$.

Bemerkung. Mit 2.13.b) folgt auch die Linearität im zweiten Argument.

Beispiele. • \mathbb{R}^n , $\langle x, y \rangle = \sum_{i=1}^n x_i y_i$: Euklidisches Skalarprodukt.

interpretation

Y geht durch Drehstreckung aus $x \neq 0$ hervor:

$$y = \|y\|_{\mathcal{E}} \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \frac{x}{\|x\|_{\mathcal{E}}}.$$

Dann gilt:

$$\langle x, y \rangle = \frac{\|y\|_{\mathcal{E}}}{\|x\|_{\mathcal{E}}} \left\langle x, \begin{pmatrix} \cos \alpha x_1 - \sin \alpha x_2 \\ \sin \alpha x_1 + \cos \alpha x_2 \end{pmatrix} \right\rangle$$
$$= \frac{\|y\|_{\mathcal{E}}}{(} x_1^2 \cos \alpha - \underline{x_1 x_2 \sin \alpha} + \underline{x_1 x_2 \sin \alpha} + \underline{x_2 \cos \alpha})$$
$$= \|y\|_{\mathcal{E}} \cdot \|x\| \mathcal{E} \cdot \cos \alpha.$$

Das Skalarprodukt misst die Projektion von y auf x

und umgekehrt

- \mathbb{R}^n mit $\langle x, y \rangle_W = \sum_{i=1}^n w_i x_i y_i, w = (w_1, \dots, w_n)$ Gewichtsvektor, $w_i > 0$.
- \mathbb{R}^2 mit $\langle x,y\rangle \coloneqq 2x_1y_1 x_1y_2 x_2y_1 + 2x_2y_2$ (zu überprüfen ist die Positive Definitheit).
- Kein Skalarprodukt ist das Minkowski-Produkt: \mathbb{R}^{n+1} mit $((x,y)) := x_0y_0 \sum_{i=1}^n x_iy_i$.

Denn
$$((x,x)) = 0 \iff x_0 = \pm ||\underline{x}||_{\mathcal{E}}, \ x = (x_1, \dots, x_n).$$

• C([a,b]) mit $\langle f,g\rangle = \int_a^b f(t)g(t) dd$.

Lemma 2.14. Sei V VR mit Skalarprodukt $\langle \cdot, \cdot \rangle$. Dann ist durch $||x|| \coloneqq \sqrt{\langle x, x \rangle}$ eine Norm auf V definiert.

Beweis. 2.1.a)
$$||x = 0|| \Longrightarrow \langle x, x \rangle = 0 \Longrightarrow_{2.13.c)}, ||0|| = 0 \checkmark.$$

2.1.b)
$$\|\lambda x\| = \sqrt{\lambda^2 \langle x, x \rangle} = |\lambda| \sqrt{\langle x, x \rangle} \ \forall \ \lambda \in \mathbb{R}, \ x \in V.$$

2.1.c)

$$\begin{split} \|x+y\|^2 &= \langle x+y, x+y \rangle \\ &= \|x\|^2 + 2 \, \langle x,y \rangle + \|y\|^2 \\ &\leqslant \|x\|^2 + 2 \, |\langle x,y \rangle| + \|y\|^2 \\ &\leqslant (\|x\| + \|y\|)^2 \implies \triangle, \\ \text{siche (*) unten} \end{split}$$

denn die Wurzel ist monoton wachsend.

Es gilt die Cauchy-Schwarzsche Ungleichung:

$$|\langle x, y \rangle| \leqslant ||x|| \cdot ||y||. \tag{*}$$

Beweis.

$$0 \leqslant \langle x - \lambda y, x - \lambda y \rangle = \|x\|^2 - 2\lambda \langle x, y \rangle + \lambda^2 \|y\|^2 \quad \forall \, x, y \in V \ \lambda \in \mathbb{R},$$

also speziell für $y \neq 0$ (für y = 0 gilt die Ungleichung sowieso) und $\lambda = \frac{\langle x, y \rangle}{\|y\|^2}$:

$$0 \leqslant \|x\|^2 - \frac{\langle x, y \rangle^2}{\|y\|^2}.$$

Einen Vektorraum mit Skalarprodukt betrachten wir immer als mit der von Skalarprodukt induzierten Norm, also Metrik, also Topologie.

Nicht jede Norm wird von einem Skalarprodukt induziert. Es gilt

Lemma 2.15. Sei $(V, \|\cdot\|)$ normierter VR Dann wird $\|\cdot\|$ von einem Skalarprodukt induziert genau dann, wenn die Parallelogramm-Gleichung gilt:

$$||x + y||^2 - ||x - y||^2 = 2(||x||^2 + ||y||^2) \quad \forall x, y \in V.$$

Erklärung für den Namen. \mathbb{R}^2 , $\|\cdot\| = \|\cdot\|_{\mathcal{E}}$.

 $Beweis. \ ,,\Longrightarrow$ " Sei $\|x\|=\sqrt{\langle x,x\rangle}.$ Dann gilt

$$||x + y||^{2} + ||x - y||^{2} = \langle x + y, x + y \rangle + \langle x - y, x - y \rangle$$
$$= 2||x^{2}|| + 0 + 2||y^{2}||.$$

 $, \Leftarrow$ " Erfülle $\|\cdot\|$ die Parallelogramm-Gleichung.

Behauptung. Durch "Polarisation", also

$$\langle x, y \rangle := \frac{1}{4} (\|x + y\|^2 - \|x - y\|^2)$$

ist ein Skalarprodukt definiert mit $||x|| = \sqrt{\langle x, x \rangle}$.

Beweis. 2. Beh.: $\langle x, x \rangle = \frac{1}{4} ||2x||^2 \checkmark$.

- 1. Beh.: Aus der 2. Beh.folgt die positive Definitheit aus der Nichtausgeartetheit und Positivität der Norm.
 - Die Symmetrie folgt sofort aus der Definition.
 - Linearität. Wir zeigen zunächst Additivität:

1)
$$\langle x + u, y \rangle + \langle x - u, y \rangle = \langle x, y \rangle$$

denn:

linke Seite =
$$\frac{1}{4}(\|x+u+y\|^2 - \|x+u-y\|^2)$$
 $+ \|x-u+y\|^2 - \|x-u-y\|^2$
= $\frac{1}{2}(\|x+y\|^2 + \|u\|^2 - \|x-y\|^2 - \|u\|^2)$ Parallelogramm-Gleichung
= $\frac{1}{2}(\langle x+y, x+y \rangle - \langle x-y, x-y \rangle)$
= $2\langle x, y \rangle$.

Damit auch gleich gezeigt:

- 2) $\langle 2x, y \rangle = 2 \langle x, y \rangle$ (setze u = x) und mit x = u + v, y = u v folgt
- 3) Additivität:

$$\begin{split} \langle x,y\rangle + \langle y,z\rangle &= \langle u+v,z\rangle + \langle u-v,z\rangle \\ &= 2 \, \langle u,z\rangle \\ &= \langle 2u,z\rangle \\ &= \langle z+y,z\rangle \end{split}$$

4) per Induktion $\langle nx,y\rangle=n\,\langle x,y\rangle\,\,\forall\,\,n\in\mathbb{N},\,\mathrm{denn}$

$$\begin{split} \langle (n+1)x,y\rangle &= \langle nx+x,y\rangle \\ &\stackrel{3)}{=} \langle nx,y\rangle + \langle x,y\rangle \\ &\stackrel{\mathrm{IV}}{=} n \, \langle x,y\rangle + \langle x,y\rangle \\ &= (n+1) \, \langle x,y\rangle \,. \end{split}$$

5) Für $\lambda \in -\mathbb{N}_0$ gilt

$$\begin{split} \lambda \left\langle x,y \right\rangle - \left\langle \lambda x,y \right\rangle &= \lambda \left\langle x,y \right\rangle - \left\langle \left| \lambda \right| (-x),y \right\rangle \\ &= \lambda \left\langle x,y \right\rangle - \left| \lambda \right| \left\langle -x,y \right\rangle \\ &= \lambda (\left\langle x,y \right\rangle + \left\langle -x,y \right\rangle) \\ &= 0 \end{split}$$

6) Für $\lambda \in \mathbb{Q}$, $\lambda = m/n$, $m, n \in \mathbb{Z}$:

$$n\left\langle \frac{m}{n}x,y\right\rangle \underset{4),5)}{=}\left\langle mx,y\right\rangle =m\left\langle x,y\right\rangle .$$

7) Für $\lambda \in \mathbb{R}$ existiert $(\lambda_n)_n \subset \mathbb{Q}$, $\lambda_n \to \lambda$. Da $\|\cdot\|$ stetig ist, so auch $\langle \cdot, \cdot \rangle$

$$\langle \lambda x, y \rangle = \langle \lim \lambda_n x, y \rangle$$

$$= \lim \langle \lambda_n x, y \rangle$$

$$= \lim \lambda_n \langle x, y \rangle$$

$$= \lambda \langle x, y \rangle.$$

Symmetrie ⇒ es genügt, das erste Argument zu untersuchen.

Beispiel. $\|\cdot\|_{\max}$ wird nicht von einem Skalarprodukt induziert: Sei $x=e_1,\ y=e_2.$ Dann gilt:

$$||e_1 + e_2||_{\max}^2 + ||e_1 - e_2||_{\max}^2 = 1 + 1 = 2,$$

aber

$$2(\|e_1\|_{\max}^2 + \|e_2\|_{\max}^2) = 4.$$