PREDICADOS Y CUANTIFICADORES

Introducción

- La Lógica de Predicados o Lógica de Primer Orden (POL o FOL) es una extensión de Lógica Proposicional.
- Las equivalencias y reglas de inferencia vistas en la lógica proposicional siguen siendo válidas en la lógica de predicados.
- La diferencia entre la lógica proposicional y la lógica de predicados:
- El concepto de predicado y el de cuantificador.

Predicados

- Un **predicado** es una sentencia declarativa que contiene un número definido de variables y que se vuelve en una proposición cuando las variables son sustituidas por valores.
- El dominio de un predicado es el conjunto de todos los valores que pueden ser sustituidos en las variables.

- Sentencia declarativa describe una propiedad usando notación de funciones.
- Pedro y Juan son hermanos.
- Variables
- Pedro: p
- Juan: j
- Propiedad
- Son hermanos: H
- H(p,j)

Sea P (x) el predicado con dominio los número reales:

$$P(x)=x^2 \le 10$$

- Identifique cuáles opciones contienen afirmaciones verdaderas:
- 1. P(-2) Verdadera: $(-2)2 = 4 \le 10$.
- 2. P(-6) Falsa: $(-6)2 = 36 \le 10$.
- 3. P(1)Verdadera: $(1/2)2 = 1/4 \le 10$.
- 4. P(2) Verdadera: $(2)2 = 4 \le 10$.
- 5. P(-4) Falsa: $(-4)2 = 16 \le 10$.

 \blacksquare Sea P (x, y) el predicado:

$$P(x,y) = Si x < y, entonces x^2 < y^2.$$

- Con dominio para x y para y todo el conjunto de los números reales. Identifique cuáles opciones contienen afirmaciones verdaderas:
- 1. $P(3,2): (3 < 2) \rightarrow (9 < 4)$: verdadera.
- 2. $P(-2,1):(-2<1)\rightarrow(4<1):falsa.$
- 3. $P(-3,1):(-3<1)\rightarrow(9<1):falsa.$
- 4. $P(1,1): (1/2 < 1) \rightarrow (1/4 < 1)$: cierta.
- 5. $P(1,-3): (1 < -3) \rightarrow (1 < 9)$: cierta.

Cuantificador Universal

Sea Q(x) un predicado y D el dominio de Q. Una afirmación universal es una declaración de la forma:

$$\forall x \in D, Q(x)$$

■ Y es definida a ser verdadera si y sólo si Q(x) es verdadera para todo elemento x que está en el dominio D. La afirmación es falsa si y sólo si Q(x) es falsa al menos para un elemento x del dominio.

Cuantificador Universal

- Un elemento x para el cual Q(x) es falsa se llama contraejemplo a la afirmación universal.
- Note también que ∀ se traduce en una conjunción. Si por ejemplo D = {1, a, e} entonces

 $\forall x \in D, Q(x) \equiv Q(1) \land Q(a) \land Q(e)$

Cuantificador Existencial

Sea Q(x) un predicado con dominio D. Una afirmación existencial es una declaración de la forma:

$$\exists x \in D, Q(x)$$

- Y es definida a ser verdadera si y sólo si existe en el dominio D al menos un valor de x para el cual Q(x) es verdadera.
- A este valor lo referiremos a un ejemplo para la afirmación existencial. La afirmación será falsa si para todo x en el dominio Q(x) es falsa.

Cuantificador Existencial

Note también que ∃ se traduce en una disyunción: Si por ejemplo D = {1, a, e} entonces

 $\exists x \in D, Q(x) \equiv Q(1) \lor Q(a) \lor Q(e)$

Ejemplo - Mundo de Tarski

Azul(t) = t es de color azul Rojo(t) = t es de color rojo Triangulo(t) = t es un triángulo Cuadrado(t) = t es un cuadrado Circulo(t) = t es un círculo

- Indique cuáles afirmaciones son verdaderas:
- 1. ∀t, Circulo(t)∨ Rojo(t)
- 2. ∃t, Cuadrado(t)∧ Rojo(t)
- 3. ∀t, Cuadrado(t)∧ Rojo(t)
- 4. ∀t, Triangulo(t)∨ Rojo(t)
- 5. $\exists t$, Cuadrado(t) \land Azul(t)

Con esa información...

t	Azul	Rojo	Triangulo	Cuadrado	Circulo
а	Т	F	Т	F	F
b	Т	F	Т	F	F
С	F	T	F	F	Т
d	F	T	F	F	Т
е	F	T	F	Т	F
f	F	T	F	Т	F
g	F	Т	F	Т	F

Solución ∀ t, Circulo(t) ∨ Rojo(t)

t	Azul	Rojo	Triangulo	Cuadrado	Circulo	Circulo(t) V Rojo(t)
а	Т	F	Т	F	F	F
b	Т	F	Т	F	F	F
С	F	Т	F	F	Т	T
d	F	Т	F	F	Т	T
е	F	Т	F	Т	F	Т
f	F	Т	F	Т	F	Т
g	F	Т	F	Т	F	Т

∃ t, Cuadrado(t) ∧ Rojo(t)

t	Azul	Rojo	Triangulo	Cuadrado	Circulo	$\mathbf{Cuadrado}(t) \wedge \mathbf{Rojo}(t)$
а	Т	F	Т	F	F	F
b	Т	F	Т	F	F	F
С	F	Т	F	F	Т	F
d	F	Т	F	Т	F	Т
е	F	Т	F	Т	F	Т
f	F	Т	F	Т	F	Т
g	F	Т	F	F	Т	F

∀ t, Cuadrado(t) ∧ Rojo(t)

t	Azul	Rojo	Triangulo	Cuadrado	Circulo	$\textbf{Cuadrado}(t) \land \textbf{Rojo}(t)$
а	Т	F	Т	F	F	F
b	Т	F	Т	F	F	F
С	F	Т	F	F	Т	F
d	F	Т	F	Т	F	Т
е	F	Т	F	Т	F	Т
f	F	Т	F	Т	F	Т
g	F	Т	F	F	Т	F

∀ t, Triangulo(t) ∨ Rojo(t)

$oxed{t}$	Azul	Rojo	Triangulo	Cuadrado	Circulo	$ \ \ $
а	Т	F	Т	F	F	Т
b	Т	F	Т	F	F	Т
С	F	Т	F	F	Т	Т
d	F	Т	F	Т	F	Т
е	F	Т	F	Т	F	Т
f	F	Т	F	Т	F	Т
g	F	Т	F	F	Т	Т

\exists t, Cuadrado(t) \land Azul(t)

t	Azul	Rojo	Triangulo	Cuadrado	Circulo	$\textbf{Cuadrado}(t) \land \textbf{Azul}(t)$
а	Т	F	Т	F	F	F
b	Т	F	Т	F	F	F
С	F	Т	F	F	Т	F
d	F	Т	F	Т	F	F
е	F	Т	F	Т	F	F
f	F	Т	F	Т	F	F
g	F	Т	F	F	Т	F

Ejemplo - Base de Datos

Nombre	Carrera	Edad	Hobby
Juan	ITEC	21	Leer
María	IMA	20	Música
Tomás	IIS	23	Futbol
Lalo	LATI	22	Anime
Luis IFI		21	Leer
Soledad	LCC	24	Futbol

- 1. ∃x, x es menor de 19 años.
- 2. ∃ x, x tiene como hobby el correr.
- 3. $\forall x$, x tiene como hobby leer o x es hombre.
- 4. ∀ x, si x tiene como hobby la música entonces x es mujer.
- 5. ∃ x, x tiene como carrera Letras
- Nuestro dominio consiste de las personas Juan, María, Tomás, Lalo, Luis, y Soledad.

Ejemplo - Base de Datos

- De acuerdo a las preguntas, en este ejemplo conviene definir los predicados:
- M19(t) = t tiene menos de 19 años.
- \blacksquare Co(t) = t tiene como hobby correr.
- Leer(t) = t tiene como hobby leer.
- Mus(t) = t tiene como hobby la música.
- \blacksquare H(t) = t es un hombre.
- \blacksquare M(t) = t es un mujer.
- Letras(t) = t tiene como carrera Letras.

Tabla

	M19	С	Leer	Mus	Н	M	Letras
Juan	F	F	Т	F	Т	F	F
María	F	F	F	Т	F	Т	F
Tomás	F	F	F	F	Т	H	F
Lalo	F	F	F	F	Т	Ш	F
Luis	F	F	Т	F	Т	F	F
Soledad	F	F	F	F	F	Т	F

 $\exists x, x \text{ es menor de 19 años es falsa.}$

 $\exists x, x \text{ tiene como carrera Letras es falsa.}$

 $\exists x, x \text{ tiene como hobyy correr es falsa.}$

∀ x, x tiene como hobby leer o x es hombre

	M19	С	Leer	Mus	Н	М	Letras
Juan	F	F	Т	F	Т	F	F
María	F	F	F	Т	F	Т	F
Tomás	F	F	F	F	Т	F	F
Lalo	F	F	F	F	Т	F	F
Luis	F	F	Т	F	Т	F	F
Soledad	F	F	F	F	F	Т	F

∀ x, x tiene como hobby leer o x es hombre

	M19	С	Leer	Mus	Н	М	Letras
Juan	F	F	Т	F	Т	F	F
María	F	F	F	Т	F	Т	F
Tomás	F	F	F	F	Т	F	F
Lalo	F	F	F	F	Т	F	F
Luis	F	F	Т	F	Т	F	F
Soledad	F	F	F	F	F	Т	F

∀ x, si x tiene como hobby la música, entonces x es mujer.

	M19	С	Leer	Mus	Н	М	Letras
Juan	F	F	Т	F	Т	F	F
María	F	F	F	Т	F	Т	F
Tomás	F	F	F	F	Т	F	F
Lalo	F	F	F	F	Т	F	F
Luis	F	F	Т	F	Т	F	F
Soledad	F	F	F	F	F	Т	F

Conversión

- Todos los A son B : $\forall x, x \text{ es } A \rightarrow x \text{ es } B$
- Cada A es B : $\forall x,x$ es A $\rightarrow x$ es B
- Ningún A es B : ∀x,x es A→x no es B
- Existe un A que es B : $\exists x,x$ es A $\land x$ es B
- Hay algún A que es B : ∃ x,x es A∧ x es B
- Algún A es B:∃x,x es A∧x es B
- Algunos A son B : $\exists x,x \text{ es } A \land x \text{ es } B$
- Entre todos los A alguno es B : $\exists x,x$ es A $\land x$ es B

- Para la afirmación:
 - $\forall x$, si x es político, entonces x es un buen conversador
- Usando los predicados
- \blacksquare P(x)= x es político y
- $\mathbf{C}(\mathbf{x}) = \mathbf{x}$ es un buen conversador
- 1. Entre todos los políticos, algunos son buenos conversadores. No
- 2. Todo político es un buen conversador. Sí
- 3. Cada político es un buen conversador. Sí
- 4. Algunos buenos conversadores son políticos. No
- 5. Cualquier político es un buen conversador. Sí

Negación de una Declaración Universal

La negación de una declaración universal de la forma

$$\forall x \in D, Q(x)$$

- ocurre cuando no es cierto que para todo x de D, P(x) es verdadera. Es decir, cuando existe al menos un elemento de D para el cual P es falsa.
- Su negación es la proposición

$$\exists x \in D, \neg Q(x)$$

Escrito como equivalencia:

$$\neg (\forall x \in D, Q(x)) \equiv \exists x \in D, \neg Q(x)$$

Negación de una Declaración Existencial

La negación de una declaración existencial de la forma

$$\exists x \in D, Q(x)$$

- ocurre cuando no es cierto que exista un elemento de D para el cual P es cierta. Es decir, cuando P es falsa para todos los elemento de D.
- Su negación es la proposición

$$\forall x \in D, \neg Q(x)$$

■ Escrito como equivalencia:

$$\neg (\exists x \in D, Q(x)) \equiv \forall x \in D, \neg Q(x)$$

- Indique cuáles opciones contienen una negación de: Todos los alumnos de Matemáticas Discretas(MD) son platicadores.
- 1. Todos los alumnos de MD no son platicadores.
- 2. Algunos alumnos de MD no son platicadores.
- 3. Hay un alumno de MD que es platicador.
- 4. Hay un alumno no platicador en la clase de MD.
- 5. Algún alumno de MD no es platicador.

■ Indique cuáles opciones contienen una negación de:

Existe un alumno de Matemáticas Discretas que es platicador y no acreditará el curso.

- 1. Todos los alumnos de Matemáticas Discretas acreditarán el curso.
- 2. Hay alumno de Matemáticas Discretas que si es platicador entonces acreditara el curso.
- 3. Todos los alumnos de Matemáticas Discretas no son platicadores acreditarán el curso.
- 4. Todos los alumnos de Matemáticas Discretas: si platican entonces pasarán el curso.

- Indique cuáles opciones contienen una negación de: Cualquier programa, si tiene mas de mil líneas de código tiene un bug.
- 1. Hay un programa de mas de mil líneas de código.
- 2. Algún programa tiene mas de mil líneas de código y no tiene *bug*.
- 3. Algunos programas tiene mas de mil líneas de código.
- 4. Algunos programas de mas de mil líneas de código no tiene *bug*.
- 5. Hay un programa que tiene mas de mil líneas de código que no tiene un *bug*.

Variantes de una Declaración Universal

Considere una declaración de la forma

$$\forall x \in D$$
, si $P(x)$ entonces $Q(x)$.

Su contrapositiva es la afirmación:

$$\forall x \in D$$
, si $\neg Q(x)$ entonces $\neg P(x)$.

Su recíproca es la afirmación:

$$\forall x \in D$$
, si $Q(x)$ entonces $P(x)$.

Su inversa es la afirmación:

$$\forall x \in D$$
, si $\neg P(x)$ entonces $\neg Q(x)$.

Suficiente y Necesario

- En en contexto de los cuantificadores de nuevo:
- $\forall x \in D$, r(x) es **condición suficiente** para s(x) significa:

$$\forall x \in D, r(x) \rightarrow s(x)$$

■ $\forall x \in D$, r(x) es **condición necesaria** para s(x) significa:

$$\forall x \in D, s(x) \rightarrow r(x)$$

■ $\forall x \in D$, r(x) solo si s(x) significa:

$$\forall x \in D, r(x) \rightarrow s(x)$$

Prueba por Vacuidad

- En Lógica las afirmaciones sólo pueden ser verdaderas o falsas.
- Su negación por consiguiente solo puede ser falsa o verdadera; contrariamente a lo que es la afirmación.
- Por consiguiente, una afirmación es verdadera cuando su negación es falsa.
- Este hecho simple es la base de la prueba por vacuidad

Prueba por Vacuidad

Una afirmación universal es verdadera si no existe ejemplo que haga verdadera su negación.

 $\forall x \in D$, Q(x) es verdadera si $\exists x \in D$, \neg Q(x) es falsa.

Nombre	Carrera	Edad	Hobby
Juan	ITEC	21	Leer
María	IMA	20	Música
Tomás	IIS	23	Futbol
Lalo	LATI	22	Anime
Luis	IFI	21	Leer
Soledad	LCC	24	Futbol

Indique cuáles afirmaciones son verdaderas:

- ∀ x, si x es menos de 19 años entonces x tiene como hobbie el anime.
- 2. ∀ x, si x estudia Letras tiene como hobby el futbol.
- 3. ∀ x, si x tiene como hobby correr, entonces x estudia letras.
- Nuestro dominio consiste de las personas Juan, María, Tomás, Lalo, Luis, y Soledad.

Variantes de una Declaración Universal

■ Considere una declaración de la forma:

 $\forall x \in D$, si P(x) entonces Q(x)

- Su contrapositiva es la afirmación: $\forall x \in D$, si $\neg Q(x)$ entonces $\neg P(x)$.
- Su **reciproca** es la afirmación: $\forall x \in D$, si Q(x) entonces P(x).
- Su **inversa** es la afirmación: $\forall x \in D$, si $\neg P(x)$ entonces $\neg q(x)$

Suficiente vs Necesario

■ $\forall x \in D$, r(x) es **condición suficiente** para s(x) significa:

$$\forall x \in D, r(x) \rightarrow s(x)$$

■ $\forall x \in D$, r(x) es **condición necesaria** para s(x)

$$\forall x \in D, s(x) \rightarrow r(x)$$

■ $\forall x \in D$, r(x) solo si s(x) significa:

$$\forall x \in D, r(x) \rightarrow s(x)$$

Ejemplo (1)

Indique en cuáles casos la afirmación está correctamente negada:

- Afirmación: El producto de cualquier número irracional por cualquier número racional es irracional.
 Negación: El producto de cualquier número irracional por cualquier número racional es racional.
- 2. Afirmación: Para cualquier entero n, si n^2 es par n es par. Negación: Existe un número entero n, tal que n^2 es par y n es impar.
- 3. Afirmación: Existe un entero n, tal que n² divisible por 4 y n no es divisible por 4.
 Negación: Para cualquier entero n, si n² es divisible por 4, entonces n es divisible por 4.

Ejemplo (2)

- Indique cuales afirmaciónes negadas son verdaderas:
- 1. $\forall t$, Circulo(t) \rightarrow Gris(t)
- 2. \exists *t*, tal que Cuadrado(*t*) \land Gris(*t*)
- 3. $\exists t$, tal que Cuadrado(t) \land DerechaDe(d, t)
- 4. $\forall t$, Estrella(t) \rightarrow Gris(t)

Varios Cuantificadores

- Las expresiones con varios cuantificadores son muy comúnes.
- Veremos expresiones donde se combinan dos cuantificadores.
- Si se comprende la idea en este caso, no es dificil generalizar al caso con mas cuantificadores.
- Las principales dificultades se presentan en expresiones con donde aparecen cuantificadores diferentes.

$\forall x \exists y$

- Si se quiere establecer la verdad de la declaración:
- Para cada x en A, existe un y en B tal que es verdadero P(x, y)
- Lo que debe hacerse es
- Permitirle a cualquiera escoger un elemento x cualquiera de A y probar que para tal x existe un elemento y de B para el cual P(x, y) es verdadero.
- La afirmación $\forall x \exists y, P(x, y)$ es falsa si existe una x para el cual sin importar cual sea y, P(x, y) es falso.

$\forall x \exists y$

A es todas mujeres.

B es todos los hombres.

P(x,y): x quiere a y

x es una mujer, y es un hombre.

$\exists x \forall y$

- Si se quiere establecer la verdad de la declaración:
- Existe un x en A tal que para cualquier y en B se tiene verdadero P(x, y)
- Lo que debe hacerse es
- Encontrar un elemento de A tal que para cualquiera que sea el elemento y de B se tiene que P(x, y) es verdadero.
- La afirmación $\exists x \forall y, P(x, y)$ es falsa si para toda x hay un valor de y para el cual para el cual P(x, y) es falso.

$\exists x \forall y$

A es todas mujeres.

B es todos los hombres.

P(x,y): x quiere a y

x es una mujer, y es un hombre.

Existe una mujer, a la que todos los hombres quieren.

Equivalencias con varios cuantificadores

Son válidos los siguientes hechos en la Lógica de Predicados:

$$\forall x \forall y, P(x, y) \equiv \forall y \forall x, P(x, y)$$

$$\exists x \exists y, P(x, y) \equiv \exists y \exists x, P(x, y)$$

- Suponga que el dominio para x y y es $D = \{1,2\}$ Relacione
- a) $\forall x \forall y P(x,y)$
- b) $\forall x \exists y P(x, y)$
- c) $\exists x \forall y P(x,y)$
- d) $\exists x \exists y P(x,y)$

con su equivalente en proposicional:

- 1. $P(1,1) \wedge P(1,2) \wedge P(2,1) \wedge P(2,2)$
- 2. $P(1,1) \vee P(1,2) \vee P(2,1) \vee P(2,2)$
- 3. $(P(1,1)\wedge P(1,2))\vee (P(2,1)\wedge P(2,2))$
- 4. $(P(1,1)\vee P(1,2))\wedge (P(2,1)\vee P(2,2))$
- Respuesta: a) ->1, b)->4, c)->3, d)->2

- Si AdmiraA(y, w) = y admira a w
- Indique en orden cómo se relaciona cada declaración de la lista:
- a) Hay alquien que admira a cualquiera.
- b) Todo mundo tiene alguien a quien admirar.
- c) Al menos una persona tiene alguien a quien admirar.
- Con las expresiones de la lista:
- 1. $\forall y, (\exists w, AdmiraA(y, w))$
- 2. $\exists y, (\exists w, AdmiraA(y, w))$
- 3. $\forall y, (\forall w, AdmiraA(y, w))$
- 4. $\exists y, (\forall w, AdmiraA(y, w))$
- Respuesta: a) ->4, b)->1, c)->2

- Determina las expresiones verdaderas de la siguiente lista:
- 1) $\exists x \in \mathbb{R}$ tal que $\forall y \in \mathbb{R}$, x=y+1
- 2) $\forall x \in \mathbb{R}^+, \exists y \in \mathbb{R}^+$ talque $x \cdot y = 1$
- 3) $\exists x \in \mathbb{R} + \text{talque} \forall y \in \mathbb{R} + \text{ se tiene } x \cdot y < y$
- 4) $\forall x \in \mathbb{Z}+, \exists y \in \mathbb{Z}+ \text{ talque } x=y+1$
- R: El conjunto de todos los números reales.
- R+: El conjunto de todos los números reales positivos.
- Z: El conjunto de todos los números enteros
- Z+: El conjunto de todos los números enteros positivos
- Respuesta: 2 y 3

- Indique en orden la negación de cada declaración de la lista:
- a) $\forall t \forall w, R(t, w)$
- b) $\exists t \exists w, R(t, w)$
- c) $\forall t \forall w, \neg R(t, w)$
- d) $\forall t \exists w, R(t, w)$
- Con las expresiones:
- 1. $\exists t \exists w, \neg R(t, w)$
- 2. $\exists t \forall w, \neg R(t, w)$
- 3. $\forall t \forall w, \neg R(t, w)$
- 4. $\exists t \exists w, R(t, w)$
- 5. $\forall t \exists w, \neg R(t, w)$
- Respuesta: a) ->1, b)->3, c)->4, d)->2

Nombre	Carrera	Hobby	Edad
Soledad	LCC	Correr	18
Eduardo	IMA	Cine	19
Alejandro	IMA	Correr	24
Carolina	LCC	Correr	19
Karla	IMA	Cine	21
Sofía	LCQ	Correr	23

A = {Alejandro, Carolina, Eduardo,Karla, Sofía, Soledad}

 $B = \{IMA, LCC, LCQ\}$

C = {Cine, Correr, Danza}

- Indique cuáles afirmaciones son verdaderas:
- 1. $\exists x \in A \forall z \in C, \text{Hobby}(x,z)$
- 2. $\exists y \in B \forall x \in A, Carrera(x,y)$
- 3. $\forall x \in A \exists y \in B, Carrera(x,y)$
- 4. $\exists x \in A \forall y \in B, Carrera(x,y)$

Ojo!

- Cuidado con el orden de los cuantificadores en

- De acuerdo a diagrama, indique cuáles afirmaciones son verdaderas:
- 1. $\forall x \forall y$, MismoColor(x,y) \rightarrow MismaForma(x,y)
- 2. $\forall x$, Estrella(t) \rightarrow ($\exists y$, Cuadrado(y) \land MismoColor(x,y))
- 3. $\forall x \forall y$, MismoRenglon(x,y) \rightarrow MismoColor(x,y)
- 4. $\forall x \forall y$, MismaColumna(x,y) \rightarrow MismoColor(x,y)
- 5. $\forall x$, Circulo(t) \rightarrow ($\exists y$, Estrella(y) \land MismoColor(x,y))

ARGUMENTACIÓN

En FOL

Introducción

- Veremos cómo se construyen argumentos válidos en Lógica de Primer Orden.
- Como en Cálculo Proposicional, seguiremos el método de Deducción Natural utilizando equivalencias y reglas de inferencia.
- Las equivalencias y reglas de inferencias vistas anteriormente seguirán siendo válidas y a ellas sumaremos algunas otras.

Introducción

- Cuando no es posible construir un argumento válido para un conjunto de premisas y una conclusión, puede ocurrir que la conclusión no se deduzca de las hipótesis.
- Para probar esto una alternativa: construir una interpretación donde las hipótesis y la conclusión formen un argumento inválido.
- El concepto de interpretación se incluye en esta sección.

Regla de Inferencia Modus Ponens Universal

```
\forall x \in D, P(x) \rightarrow Q(x)
P(a) para una a particular
\therefore Q(a)
```

- Considere el siguiente razonamiento:
- 1. Para todo número entero, si su cuadrado es par entonces el número es par.
- 2. k es un número entero cuyo cuadrado es par.
- 3. *k* es par.

- Considere el siguiente razonamiento:
- 1. Para todo triángulo con longitudes de lados a, b y c, si $c^2 = a^2 + b^2$ entonces triángulo es rectángulo con hipotenusa c.
- 2. El triángulo ΔDEF cumple $d^2 = e^2 + f^2$.
- 3. El triángulo ΔDEF es rectángulo con hipotenusa d.

REGLAS DE INFERENCIA EN FOL

Regla de Inferencia Modus Tollens Universal

```
\forall x \in D, P(x) \rightarrow Q(x)
\neg Q(a) para una a particular
\therefore \neg P(a)
```

- Considere el siguiente razonamiento:
- 1. Todos los humanos son mortales.
- 2. Zeus no es mortal.
- 3. Zeus no es humano.

- Considere el siguiente razonamiento:
- 1. Todas las personas normales tienen miedo a la muerte.
- 2. Rambo no tiene miedo a la muerte.
- 3. Rambo no es una persona normal.

ERRORES EN LA ARGUMENTACIÓN

Afirmación del consecuente

- En lógica, la afirmación del consecuente, también llamado error en el razonamiento, es una falacia formal que se comete al razonar según la siguiente forma argumental:
- 1. Si A, entonces B
- 2. B
- 3. Por lo tanto, A
- Es un error al tratar de <u>argumentar por la recíproca</u>.
- Los argumentos de esta forma son inválidos, porque la verdad de las premisas no garantiza la verdad de la conclusión
- Podría ser que las premisas fueran todas verdaderas y la conclusión aun así sea falsa.

- 1. Si está nevando, entonces hace frío.
- 2. Hace frío.
- 3. Por lo tanto, está nevando.
- Aun cuando ambas premisas sean verdaderas, la conclusión podría ser falsa, porque no siempre que hace frío está nevando.
- En algunos casos, los argumentos de la misma forma pueden parecer convincentes.
- 1. Si tuviera la gripe, entonces tendría la garganta irritada.
- 2. Tengo la garganta irritada.
- 3. Por lo tanto, tengo la gripe

Negación del Antecedente

- En lógica, la negación del antecedente es una falacia formal que se comete al razonar según la siguiente forma argumental:
- 1. Si A, entonces B
- 2. No A
- 3. Por lo tanto, no B
- El error radica en querer argumentar con base en la inversa.
- Los argumentos de esta forma son inválidos, porque la verdad de las premisas no garantiza la verdad de la conclusión.
- Podría ser que las premisas fueran todas verdaderas y la conclusión sea falsa.

- 1. Si está nevando, entonces hace frío.
- 2. No está nevando.
- 3. Por lo tanto, no hace frío.
- Aun cuando ambas premisas sean verdaderas, la conclusión podría ser falsa, porque podría no estar nevando y aun así hacer frío.
- 1. Si estudio, aprobaré.
- 2. No estudié.
- 3. Por lo tanto, no aprobaré.
- La primera premisa solo nos da información sobre lo qué sucederá si estudio, pero no dice nada sobre lo que sucederá si no estudio.
- Podría ser que tenga suerte o copie, y que por lo tanto apruebe aún sin haber estudiado.

- Para el siguiente razonamiento indique si (A) es un razonamiento inválido: error de la reciproca, (B)
)Razonamiento inválido: error de la inversa, (C)
 Razonamiento válido por modus tollens universal o (D)
 Razonamiento válido por modus ponens universal.
- 1. Ningún coche bueno es barato.
- 2. Porshe no es un coche barato.
- 3. Por lo tanto, *Porshe* es un buen coche.
- \forall coche, Bueno(coche) $\rightarrow \neg$ Barato(coche)
- ¬Barato(Porshe)
- Bueno(Porshe)

- Para el siguiente razonamiento indique si (A) es un razonamiento inválido: error de la recíproca., (B)
)Razonamiento inválido: error de la inversa., (C) Razonamiento válido por modus tollens universal o (D) Razonamiento válido por modus ponens universal.
- 1. Ningún estudiante dedicado reprueba Discretas.
- 2. Rosana no reprobó Discretas.
- 3. Por lo tanto, Rosana es una estudiante dedicada.

- \forall estudiante, Dedicada(estudiante) $\rightarrow \neg$ Reprueba(estudiante)
- ¬Reprobo(Rosana)
- Dedicada(Rosana)

- 1. Si una serie $\mathop{\mathring{a}}_{i=1}^{a}$ converge entonces el término i-ésimo a_i tiende a 0.
- 2. La serie $\mathring{\mathbf{a}}b_i$ no converge.
- 3. Por lo tanto, su término *i*-ésimo b_i no tiende a cero.
- Razonamiento inválido: error de la inversa.

Regla de Inferencia de Instanciación Universal

$\forall x \in D, P(x)$

∴ P(a) para cualquier a en el dominio D

Regla de Inferencia de Cuantificación Existencial

P(a) para un a en el dominio D

 $\therefore \exists x \in D, P(x)$

Regla de Inferencia de Instanciación Universal (Generalización)

P(t) para t cualquiera en el dominio D

 $\therefore \forall x \in D, P(x)$

- Para la interpretación: $D = \{a,b,c\}$
- Indique cuáles de las siguientes FBFs son válidas:

1.
$$(\exists x, R(x)) \lor (\exists x, P(x)) \rightarrow (\exists x, (R(x) \lor P(x)))$$

2.
$$(\forall x, P(x)) \land (\exists x, P(x)) \rightarrow (\exists x, (R(x) \land P(x)))$$

3.
$$\neg (\forall x, Q(x)) \rightarrow (\forall x, \neg Q(x))$$

4.
$$(\forall x, (R(x) \land P(x))) \rightarrow (\forall x, R(x)) \land (\forall x, P(x))$$

	R	P	Q
a	F	Т	Т
b	Т	F	Т
C	Т	F	Т

Argumentos Válidos en FOL

Definición

Un argumento valido en FOL es un argumento que es valido para cualquier interpretación posible.

 En el siguiente argumento valido indique en orden las opciones que lo completan:

P1:

 $\forall x, (P(x) \rightarrow Q(x) \lor R(x))$

P2: ¬*Q*(*a*)

P3 : $\neg R(a)$

C: ¬*P*(*a*)

1. $\neg Q(a)$

2. $\neg R(a)$

3. $\neg Q(a) \land \neg R(a)$

4. _____

5. _____

6. $\neg P(a)$

De Morgan en 3

hipótesis 1

modus tollens

universal con 5 y 4

Ejercicio 1

- Elabore un argumento donde se demuestre que la conclusión se deduce de la hipótesis:
- H1: S(a)
- \blacksquare H2: $\forall x ((S(x) \land \neg R(x)) \rightarrow Q(x))$
- $H3: \forall x (S(x) \rightarrow \neg R(x))$
- C: Q(a)

Ejercicio 2

- Elabore un argumento donde se demuestre que la conclusión se deduce de la hipótesis:
- H1: Q(a)
- \blacksquare H2: $\forall x (S(x) \rightarrow \neg Q(x))$
- H3: S(a)VR(a)
- C: R(a)

Variantes de una Condicional

Consideremos la afirmación

$$\forall x \in D, (P(x) \rightarrow Q(x))$$

Su contrapositiva es

$$\forall x \in D, (\neg Q(x) \rightarrow \neg P(x))$$

■ Su reciproca es

$$\forall x \in D, (Q(x) \rightarrow P(x))$$

Su inversa es

$$\forall x \in D, (\neg P(x) \rightarrow \neg Q(x))$$

Recuerda

- La implicación y su contrapositiva son lógicamente equivalentes
- Si una es verdadera la otra también.

010

■ $\forall x, r(x)$ es una **condición suficiente** para s(x) significa:

$$\forall x, r(x) \rightarrow s(x)$$

■ $\forall x, r(x)$ es una **condición necesaria** para s(x) significa:

$$\forall x, s(x) \rightarrow r(x)$$

■ $\forall x, r(x)$ **sólo si** s(x) significa:

$$\forall x, \neg s(x) \longrightarrow \neg r(x)$$

MÉTODOS DE DEMOSTRACIÓN

Introducción

- En esta sección veremos métodos alternativos de demostración, dos de ellos enfocados a conclusiones que son implicaciones.
- También veremos el método conocido como reducción al absurdo.

Método Directo

Revisemos de nuevo la tabla de verdad de la implicación:

p	q	$p \rightarrow q$
F	F	Т
F	Т	Т
Т	F	F
Т	Т	Т

- Si la hipótesis sea verdadera la única condición para que la implicación sea verdadera es que la conclusión sea verdadera.
- Método de prueba directo: probar que, bajo el supuesto de que la hipótesis es verdadera, la conclusión es verdadera.

```
H1: \neg p \rightarrow q
```

C:
$$\neg q \rightarrow r$$
 (por demostrar)

- 1. $\neg q$ Supuesto verdadero el antecedente, meta: r
- 2. $\neg(\neg p)$ Modus tollens con H1 y 1
- 3. p Doble neg. en 2
- 4. r Silogismo disjuntivo con H2 y 3
- 5. $\neg q \rightarrow r$ Método de prueba directo con 1 y 4

```
H1: p \rightarrow q \lor r
```

H2:
$$p \rightarrow \neg q$$

C:
$$p \rightarrow r$$

- 1. p Supuesto, meta r
- 2. $\neg q$ Modus ponens con H2 y 1
- 3. q V r Modus ponens con H1 y 1
- 4. r Silogismo disjuntivo con 3 y 2
- 5. $p \rightarrow r$ Método de prueba directo con 1 y 4

Demuestre

$$(p \to q) \to (p \to (p \land q))$$

$$1.(p \rightarrow q) \rightarrow (p \rightarrow (p \land q))$$

$$1.1 (p \rightarrow q)$$

1.2
$$(p \rightarrow (p \land q))$$

$$1.2.3 p \wedge q$$

$$1.2.4 p \rightarrow (p \land q)$$

$$1.3(p \rightarrow q) \rightarrow (p \rightarrow p \land q)$$

Método Indirecto

Revisemos de nuevo la tabla de verdad de la

implicación:

p	q	$p \rightarrow q$	
F	F	Т	
F	Т	Т	
Т	F	F	
Т	Т	Т	

- Si la conclusión es falsa la única condición para que la implicación sea verdadera es que la hipótesis sea falsa.
- Método de prueba indirecto: para ver que la implicación es verdadera, vea que bajo el supuesto de que la conclusión es falsa la hipótesis es falsa.

- H1: $\neg p \rightarrow q$
- H2: ¬p∨r
- \blacksquare C: $\neg q \rightarrow r$
- 1. $\neg p \rightarrow q$ Hipotesis 1.
- 2. $\neg p \lor r$ Hipótesis 2.
- 3. $\neg q \rightarrow r$ Por demostrar
 - 3.1 $\neg r$ Supuesto verdadero la negación de la conclusión, $\neg(\neg q)$
 - 3.2 ¬p Silogismo disjuntivo con 2. y 3.1
 - 3.3 q Modus ponens con 1. y 3.2
 - 3.4 $\neg(\neg q)$ Doble negación en 3.3
 - 3.5 $\neg q \rightarrow r$. Método de prueba indirecto con 3.1 y 3.4

■ Demuestre $(p \rightarrow q) \rightarrow (p \rightarrow p \land q)$

1.
$$(p \rightarrow q) \rightarrow (p \rightarrow p \land q)$$

$$1.1 \neg (p \rightarrow p \land q)$$

$$1.2 \neg (\neg p \lor p \land q)$$

1.3
$$(\neg(\neg p)) \land (\neg(p \land q))$$

$$1.4 p \wedge (\neg p \vee \neg q)$$

$$1.5 (p \land \neg p) \lor (p \land \neg q)$$

$$1.6 p \wedge \neg q$$

$$1.7 \neg (\neg (p \land \neg q))$$

$$1.8 \neg (\neg p \lor q))$$

$$1.9 \neg (p \rightarrow q)$$

1.10
$$(p \rightarrow q) \rightarrow (p \rightarrow p \land q)$$

Por demostrar

Supuesto

Equivalencia implicación en 1.1

De Morgan en 1.2

Doble negación y De Morgan en 1.3

Propiedad distributiva en 1.4

Ley de Inversas y neutro en 1.5

Doble negación en 1.6

Doble negación y De Morgan en 1.7

Equivalencia implicación en 1.8

Método indirecto con 1.1 y 1.9

Reducción al absurdo

Recuerde la regla de inferencia vista en lógica proposicional:

- Es decir, si la suposición de que *p* sea verdadera lleva a una contradicción (F) entonces *p* debe ser falsa, es decir ¬*p* debe ser verdadera.
- De esto se deriva el método de contradicción:
- Para demostrar que p es verdadero, pruebe que el supuesto de que p sea falso lleva a una contradicción lógica.

1. $\neg p \rightarrow q$ Hipótesis 1.

2. $\neg p \lor r$. Hipótesis 2.

3. $\neg q \rightarrow r$. Por demostrar

3.1 $\neg(\neg q \rightarrow r)$ Supuesto verdadero la negación de 3 (meta)

3.2 $\neg q \land \neg r$ Negación de la implicación en 3.1

3.3 $\neg q$ Simplificación conjuntiva en 3.2

3.4 $\neg r$ Simplificación conjuntiva en 3.2

3.5 p Modus tollens con 1. y 3.3

3.6 $\neg p$ Silogismo disyuntivo con 2. y 3.4

3.7 F Adición conjuntiva con 3.5 y 3.6

3.8 $\neg q \rightarrow r$ Método de contradicción con 3.1 y 3.7

■ Demuestre $(p \rightarrow \neg p) \rightarrow \neg p$

1.
$$(p \rightarrow \neg p) \rightarrow \neg p$$
 Por demostrar

Supuesto

$$1.2 \neg (p \rightarrow \neg p)$$

Por demostrar

1.2.1
$$(p \rightarrow \neg p)$$

Supuesto

$$1.2.2 \neg p$$

Modus ponens con 1.1 y 1.2.1

$$1.2.3 p \land \neg p$$

1.2.3 $p \land \neg p$ Adiciónconjuntivacon 1.2.1 y 1.2.2

Ley de inversa en 1.2.3

1.2.5 (
$$p$$
 → ¬ p)

Reducción al absurdo con 1.2.1 y 1.2.4

1.3
$$(p \rightarrow \neg p) \rightarrow \neg p$$

1.3 $(p \rightarrow \neg p) \rightarrow \neg p$ Método indirecto con 1.1 y 1.2

EJEMPLOS CON FOL

- Demuestre
- \blacksquare H1: $\forall x(P(x) \rightarrow Q(x))$
- H2: $\exists x (R(x) \land \forall y (Q(y) \rightarrow \neg S(x, y)))$
- \blacksquare C: $\exists x (R(x) \land \forall y (P(y) \rightarrow \neg S(x,y)))$
- 1. $\exists x (R(x) \land \forall y (Q(y) \rightarrow \neg S(x, y)))$ H2
- 2. $R(a) \land \forall y (Q(y) \rightarrow \neg S(a,y))$ I14 en 1
- 3. R(a) 17 en 2
- 4. $\forall y(Q(y) \to \neg S(a,y))$ 17 en 2
- 5. $\forall x (P(x) \rightarrow Q(x))$
- 6. $\forall y(P(y) \rightarrow \neg S(a,y))$ Por dem
- $6.1 P(b) \rightarrow \neg S(a,b)$ I14 en 6
- 6.1.1 *P*(*b*) Supuesto
- 6.1.2 *Q*(*b*) IU en 5 y 6.1.1
- 6.1.3 $\neg S(a,b)$ IU en 4 y 6.1.2
- $6.1.4 P(b) \rightarrow \neg S(a,b)$ MD en 6.1.1 y
- 6.2 $\forall y P(y) \rightarrow \neg S(a,y)$ I16 en 6.1
- $R(a) \land \forall y (P(y) \rightarrow \neg S(a,y))$ I4 con 3 y 6.2
- $\exists x (R(x) \land \forall y (P(y) \rightarrow \neg S(x, y)))$ I15 en 6.1

$$\mathsf{H}_1: \forall x \exists y (P(x,y) \land S(x,y))$$

$$H_2: \forall x \forall y (P(x,y) \rightarrow R(x,y))$$

$$\mathbf{C}$$
: $\forall x \exists y (R(x, y) \land S(x, y))$

1.
$$\forall x \exists y (P(x,y) \land S(x,y) \ldots H_1)$$

2.
$$\forall x \forall y (P(x,y) \rightarrow R(x,y) \dots H_2)$$

3.
$$\exists y (P(b, y) \land S(b, y))$$
 113 en 1 con $x = b$ arb.

4.
$$\forall y (P(b, y) \to R(b, y)$$
 113 en 3 con $x = b$

11.
$$\forall x \exists y (R(x, y) \land S(x, y) \dots 116 \text{ en } 10$$

$$H_{1} : \exists x \forall y (P(x) \land (Q(y) \land R(x,y) \rightarrow S(x,y)))$$

$$H_{2} : \forall x \exists y (P(x) \rightarrow (Q(y) \land T(x,y) \land \neg S(x,y)))$$

$$C : \exists x \exists y (P(x) \land Q(y) \land T(x,y) \land \neg R(x,y))$$

1.
$$\exists x \forall y (P(x) \land (Q(y) \land R(x,y) \rightarrow S(x,y)) \dots$$
 H₁

2. $\forall x \exists y (P(x) \rightarrow (Q(y) \land T(x,y) \land \neg S(x,y))) \dots$ H₂

3. $\forall y (P(a) \land (Q(y) \land R(a,y) \rightarrow S(a,y)) \dots$ I14 en 1

4. $\exists y (P(a) \rightarrow (Q(y) \land T(a,y) \land \neg S(a,y))) \dots$ I13 en 2 para $x = a$

5. $(P(a) \rightarrow (Q(b) \land T(a,b) \land \neg S(a,b))) \dots$ I14 en 4

6. $P(a) \land (Q(b) \land R(a,b) \rightarrow S(a,b)) \dots$ I13 en 3 con $y = b$

7. $P(a) \dots$ I7 en 6

8. $Q(b) \land T(a,b) \land \neg S(a,b) \dots$ I7 con 5 y 7

9. $Q(b) \dots$ I7 en 8

10. $T(a,b) \dots$ I7 en 8

11. $\neg S(a,b) \dots$ I7 en 8

12. $Q(b) \land R(a,b) \rightarrow S(a,b) \dots$ I7 en 6

13. $\neg (Q(b) \land R(a,b)) \rightarrow S(a,b) \dots$ I7 en 6

14. $\neg Q(b) \lor \neg R(a,b) \dots$ I2 en 13

15. $\neg R(a,b) \dots$ I5 con 14 y 9

16. $P(a) \land Q(b) \land T(a,b) \land \neg R(a,b) \dots$ I4 con 7, 9, 10 y 15

17. $\exists y (P(a) \land Q(y) \land T(a,y) \land \neg R(a,y) \dots$ I15 en 16

18. $\exists x \exists y (P(x) \land Q(y) \land T(x,y) \land \neg R(x,y) \dots$ I15 en 17

$$H_{1} : \forall x(P(x) \rightarrow (\exists y(Q(y) \land S(x,y))))$$

$$H_{2} : \neg \exists x \exists y(P(x) \land R(y) \land S(x,y))$$

$$C : (\exists xP(x)) \rightarrow (\exists y(Q(y) \land \neg R(y)))$$

```
\forall x (P(x) \rightarrow (\exists y (Q(y) \land S(x, y)))) \dots H_1
2.
   \neg \exists x \exists y (P(x) \land R(y) \land S(x, y)) \ldots H_2
3.
   \forall x \forall y \neg (P(x) \land R(y) \land S(x,y)) ..... E15 en 2
4.
   (\exists x P(x)) \rightarrow (\exists y (Q(y) \land \neg R(y))) \dots Por demostrar
   4.1 \exists x P(x) ..... Supuesto
   4.3 P(a) \rightarrow (\exists y (Q(y) \land S(a, y))) .... I13 con x = a
   4.8 \neg (P(a) \land R(b) \land S(a,b)) ...... I13 en 3 con x = a y y = b
   4.9 \neg P(a) \lor \neg R(b) \lor \neg R(a,b) ..... E2 en 4.8
   4.10 \neg R(b) \lor \neg S(a, b) ..... E15 en 4.9
   4.14 (\exists x P(x)) \rightarrow (\exists y (Q(y) \land \neg R(y))) \dots MD con 4.1 y 4.13
```

Proyecto Segundo Parcial

- Investigar la historia, fundamento y lógica del mundo Tarski. (mínimo una cuartilla) incluir bibliografía.
- Desarrollar el mundo de "Los conjuntos, Matemáticos Discretos, etc."
- Una entrada mínima de 4 por 4 y una máxima de 8x8, que sirva para evaluar al menos 5 propiedades, puedes utilizar caracteres especiales, colores, tamaños, etc.
- Igual que el caso pasado debe resolver 5 ejercicios de los revisados en clase y/o tareas.
- Recuerda anexar el manual de usuario de tu aplicación.
- Entregar el día 26 de octubre antes de las 23:59 horas en Blackboard. Se presenta en clase al día siguiente.

Proyecto Segundo Parcial

- La segunda opción es cubrir a nivel de tutorial los temas de
- Predicados y cuantificadores
- Argumentos
- Métodos de demostración

Se debe de mostrar al usuario teoría y práctica y mostrar 5 ejercicios a resolver y evaluar.

Entregar manual de usuario, IPO y código.