Brønsted-Lowry Definition

In the Brønsted-Lowry definition, an acid donates a proton (H⁺) in a reaction, while a base accepts a proton in a reaction:

$$HCO_3^-$$
 (aq) + H_2O (aq) $\rightleftharpoons CO_3^{2-}$ (aq) + H_3O^+ (aq)
 HA (aq) + H_2O (aq) $\rightleftharpoons A^{2-}$ (aq) + H_3O^+ (aq)

$$HCO_3^-$$
 (aq) + H_2O (aq) $\rightleftharpoons H_2CO_3$ (aq) + OH^- (aq)
 B (aq) + H_2O (aq) $\rightleftharpoons HB^+$ (aq) + OH^- (aq)

*compounds that can behave as either an acid or a base are amphiprotic.

✓ Identify and describe solutions of acids and bases using Ka, pH, and pOH.

What is the conjugate base of HPO_4^{2-} ?

a.
$$H_3PO_4$$

b.
$$H_2PO_4^-$$

d.
$$HPO_3^{2-}$$

The equilibrium constant for the reaction of a B-L acid with water, producing H_3O^+ , is the acid dissociation constant, or K_a :

$$HCO_3^-$$
 (aq) + H_2O (aq) $\rightleftharpoons CO_3^{2-}$ (aq) + H_3O^+ (aq)

For the reaction of a B-L base with water, producing OH^- the equilibrium constant is called the base dissociation constant, or K_h :

$$HCO_3^-$$
 (aq) + H_2O (aq) $\rightleftharpoons H_2CO_3$ (aq) + OH^- (aq)

Describe (quantitatively and qualitatively) the relationship between the Ka of an acid, the Kb of its conjugate base, and Kw for the auto-ionization of water.

The K_a and K_b are related through K_w , the autoionization constant for water.

Another useful measure is the pK_a and pK_b for a compound. Like pH, this is a -log of the quantity:

$$pH = -\log(H^+) \qquad \qquad pOH = -\log(OH^-)$$

$$pK_a = -\log(K_a) \qquad pK_b = -\log(K_b)$$

✓ Describe (quantitatively and qualitatively) the relationship between the Ka of an acid, the Kb of its conjugate base, and Kw for the auto-ionization of water.

The value for K_w depends on temperature, like all equilibrium constants.

At 25°C, K_w is 1.0×10^{-14} .

At 50°C, K_w is 5.5×10⁻¹⁴. What is the pH of pure water at 50°C?

a. Greater than 7

b. 7

c. Less than 7

What is the pH of a 0.050 M solution of Ba(OH)₂? Barium hydroxide dissociates completely in water.

✓ Relate Ka and pH to the equilibrium concentrations of all species present in a monoprotic acid or base solution.

A larger value of K_a means that the compound reacts more with water – it is a *stronger acid*.

A **strong acid** dissociates (nearly) completely in water. Very little of the original acidic form ("HA") remains when dissolved in water.

- approx. $K_a > 55$, or $pK_a < -1.74$
- e.g. K_a for HCl: ~10⁶
- There are 7 known strong acids (hint: they're on your Data Sheet!)

A weak acid dissociates partially: on addition to water, some of the original compound reacts, but not all.

All acids that are not "strong" (or neutral) are "weak".

A very weak acid (i.e. a neutral compound) does not produce H_3O^+ in water.

• approx. $K_a < 2 \times 10^{-16}$, or $pK_a > 15.74$

Strong/weak/very weak bases follow the same guidelines, based on K_b values.

Common strong bases: hydroxides of Groups 1 and 2 (These are on your Data Sheet too!)

$$- pK_a = 9.21$$

$$pK_a = 4.20$$

$$pK_{b} = 4.74$$

What is the % ionization of a 0.1 M solution of sodium cyanide (NaCN)? K_a for HCN is 4.9×10^{-10} .

Ions as Acids and Bases

Many acids and bases are delivered not as their fully protonated forms, but as a salt of their conjugate acid or base.

for example: sodium acetate (the salt of acetic acid)

Predicting whether a salt solution will be generally acidic, basic, or neutral is practically useful, and also helps direct equilibrium calculations.

Generally, salts that cause a change in pH are called *hydrolyzing salts* as they react with water in solution.

Acids/bases that are "very weak" (i.e. the conjugates of strong acid/base) **do not** hydrolyze – "weak" and "strong" acids/bases **do** hydrolyze.

Cation	Anion	Hydro (+)	lyzing? (-)	рН	Example
Salt of strong base	Salt of strong acid	No	No	neutral	NaCl
Salt of strong base	Salt of a weak acid	No	Yes	Basic (>7)	NaF
Salt of weak base	Salt of strong acid	Yes	No	Acidic (<7)	NH ₄ CI

^{*}Remember! The *stronger* an acid, the *weaker* its' conjugate base – so the salt (conjugate base) of a "strong" acid is a "very weak" base! (and vice versa)

Which of the following solutions should have a pH greater than 7?

2	۸۱۸		\cap	١	١
a.	Al(\CI	U	4	13

b.	Ba(CH ₃ COO) ₂
----	--------------------------------------

c. KNO₃

d. NH₄Cl

e. CH₃NH₃Br

Hint: Identify the ANION:	And <u>CATION</u> for each salt:

Cation	K_a
Fe ²⁺	3.2×10^{-10}
Zn ²⁺	2.5×10^{-10}
Ni ²⁺	2.5×10^{-11}
Fe ³⁺	6.3×10^{-3}
Cr ³⁺	1.6×10^{-4}
Al^{3+}	1.4×10^{-5}

Compound	K
Acetic acid (CH ₃ COOH)	$K_a = 1.8 \times 10^{-5}$
Ammonia (NH ₃)	$K_b = 1.8 \times 10^{-5}$
Methylamine (CH ₃ NH ₂)	$K_b = 4.4 \times 10^{-4}$