Chapter 2: Linear Transformations and Matrices

Author: Meng-Gen Tsai Email: plover@gmail.com

Section 2.4: Invertibility and Isomorphisms

Exercise 2.4.8. Let A and B be $n \times n$ matrices such that $AB = I_n$. Prove

- (a) A and B are invertible.
- (b) $A = B^{-1}$ (and hence $B = A^{-1}$). (We are in effect saying that for square matrices, a "one-sided" inverse is a "two-sided" inverse.)
- (c) State and prove analogous results for linear transformations defined on finite-dimensional vector spaces.

Proof of (a). Regard $V = M_{n \times n}(F)$ as a finite-dimensional vector space over F. Given $X \in M_{n \times n}(F)$, consider the subset V_X of V defined by

$$V_X = \{XY : Y \in \mathsf{M}_{n \times n}(F)\}.$$

- (1) $V_0 = 0$.
- (2) $V_{I_n} = V$. In general, $V_X = V$ for any invertible matrix $X \in M_{n \times n}(F)$.
- (3) V_X is a subspace of V for any $X \in M_{n \times n}(F)$.
- (4) There is a descending sequence of subspaces

$$\mathsf{V}\supseteq\mathsf{V}_X\supseteq\cdots\supseteq\mathsf{V}_{X^k}\supseteq\cdots$$

This sequence must be stationary since V is finite-dimensional, that is,

$$V_{X^k} = V_{X^{k+1}} = \cdots$$

for some k. (Descending chain condition.) In particular, $B^k = B^{k+1}C$ for some $C \in \mathsf{V}$. Multiply with A^k on the left to get $I_n = BC$. $(A^kB^k = A^{k-1}(AB)B^{k-1} = A^{k-1}B^{k-1} = \cdots = I_n.)$

(4) Since $AB = I_n$ and $BC = I_n$, $A = AI_n = A(BC) = (AB)C = I_nC = C$, or $AB = BA = I_n$. By definition of invertibility, A and B are invertible.

Proof of (b). By (a), $A = B^{-1}$ and $B = A^{-1}$. \square

Proof of (c). Let V be a finite-dimensional vector space, and let $S, T : V \to V$ be linear such that ST is invertible. Show that S and T are invertible. Let

$$\beta = \{\beta_1, ..., \beta_n\}$$

be an ordered basis for V where $n = \dim(V)$. Let $A = [S]_{\beta}$ and $B = [T]_{\beta}$. So

$$AB = [\mathsf{S}]_\beta [\mathsf{T}]_\beta = [\mathsf{ST}]_\beta = [\mathsf{I_V}]_\beta = I_n$$

(Theorem 2.11). By (a), $A=[S]_\beta$ and $B=[T]_\beta$ are invertible, or S and T are invertible (Theorem 2.18). \square