ECON675 - Assignment 3

Anirudh Yadav

October 29, 2018

Contents

1	Noi	n-linear least squares	2
	1.1	Identifiability	4
	1.2	Asymptotic normality	
	1.3	Variance estimator under heteroskedasticity	
	1.4	Variance estimator under homoskedasticity	
	1.5	MLE	
	1.6	When the link function is unknown	
	1.7	Logistic link function	
	1.8	Logistic link function, MLE	
	1.9	Some data work	
2	Sen	niparametric GMM with missing data	7
	2.1	An optimal instrument	-
	2.2	Missing completely at random	
	2.3	Missing at random	
3	Wh	nen bootstrap fails 1	. 1
	3.1	Nonparametric bootstrap fail	. 1
	3.2	Parametric bootstrap to the rescue	
	3.3	Intuition	
4	Apı	pendix 1	6
-		R code	
		STATA code	

1 Non-linear least squares

1.1 Identifiability

This is a standard M-estimation problem. The parameter vector $\boldsymbol{\beta}_0$ is assumed to solve the population problem

$$\boldsymbol{\beta}_0 = \arg\min_{\boldsymbol{\beta} \in \mathbb{R}^d} \mathbb{E}[(y_i - \mu(\boldsymbol{x}_i'\boldsymbol{\beta}))^2].$$

For β_0 to be identified, it must be the *unique* solution to the above population problem (i.e. the unique minimizer). In math, this means for all $\epsilon > 0$ and for some $\delta > 0$:

$$\sup_{\|\beta - \beta_0\| > \epsilon} M(\boldsymbol{\beta}) \ge M(\boldsymbol{\beta}_0) + \delta$$

where $M(\boldsymbol{\beta}) = \mathbb{E}[(y_i - \mu(\boldsymbol{x}_i'\boldsymbol{\beta}))^2]$. Of course $\boldsymbol{\beta}_0$ can be written in closed form if $\mu(\cdot)$ is linear. In this case, we know that

$$\boldsymbol{\beta}_0 = \mathbb{E}[\boldsymbol{x}_i \boldsymbol{x}_i']^{-1} \mathbb{E}[\boldsymbol{x}_i y_i].$$

1.2 Asymptotic normality

The M-estimator is asymptotically normal if:

- 1. $\hat{\boldsymbol{\beta}} \to_p \boldsymbol{\beta}_0$
- 2. $\beta_0 \in int(B)$ and $m(\mathbf{x}_i, \boldsymbol{\beta}) \equiv (y_i \mu(\mathbf{x}_i'\boldsymbol{\beta}))^2$ is 3 times continuously differentiable.
- 3. $\Sigma_0 = \mathbb{V}[\frac{\partial}{\partial \beta} m(\boldsymbol{x}_i; \beta_0)] < \infty$ and $H_0 = \mathbb{E}[\frac{\partial^2}{\partial \beta \partial \beta'} m(\boldsymbol{x}_i; \beta_0)]$ is full rank (and therefore invertible).

Now, the FOC for the M-estimation problem is

$$0 = \frac{1}{n} \sum_{i=1}^{n} (y_i - \mu(\boldsymbol{x}_i'\boldsymbol{\beta})) \dot{\mu}(\boldsymbol{x}_i'\boldsymbol{\beta})) \boldsymbol{x}_i$$
 (1)

where $\dot{\mu} = \frac{\partial}{\partial \beta} \mu(\mathbf{x}_i'\boldsymbol{\beta})$. So, we've converted the M-estimation problem into a Z-estimation problem. Then we can use the standard asymptotic normality result to arrive at a precise form of the asymptotic variance:

$$\sqrt{n}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}_0) \rightarrow_d \mathcal{N}(0, H_0^{-1} \Sigma_0 H_0^{-1}).$$

Now, taking the second derivative gives the Hessian

$$H_0 = \mathbb{E}\left[\frac{\partial^2}{\partial \beta \partial \beta'} m(\boldsymbol{x}_i; \beta_0)\right]$$

$$= \mathbb{E}\left[-\dot{\mu}(\boldsymbol{x}_i'\boldsymbol{\beta}_0))\dot{\mu}(\boldsymbol{x}_i'\boldsymbol{\beta}_0))\boldsymbol{x}_i\boldsymbol{x}_i' + (y_i - \mu(\boldsymbol{x}_i'\boldsymbol{\beta}_0))\ddot{\mu}(\boldsymbol{x}_i'\boldsymbol{\beta}_0))\boldsymbol{x}_i\boldsymbol{x}_i'\right]$$

$$= -\mathbb{E}\left[\dot{\mu}(\boldsymbol{x}_i'\boldsymbol{\beta}_0))^2\boldsymbol{x}_i\boldsymbol{x}_i'\right]$$

by LIE. And, the variance of the score is

$$\Sigma_0 = \mathbb{V}\left[\frac{\partial}{\partial \beta} m(\boldsymbol{x}_i; \beta_0)\right]$$

$$= \mathbb{E}\left[(y_i - \mu(\boldsymbol{x}_i'\boldsymbol{\beta}_0))^2 \dot{\mu}(\boldsymbol{x}_i'\boldsymbol{\beta}_0))^2 \boldsymbol{x}_i \boldsymbol{x}_i'\right]$$

$$= \mathbb{E}[\sigma^2(\boldsymbol{x}_i) \dot{\mu}(\boldsymbol{x}_i'\boldsymbol{\beta}_0))^2 \boldsymbol{x}_i \boldsymbol{x}_i']$$

again by LIE. Then we have the asymptotic variance

$$\boldsymbol{V}_0 = H_0^{-1} \Sigma_0 H_0^{-1}.$$

1.3 Variance estimator under heteroskedasticity

Under heteroskedasticity we can use the sandwich variance estimator

$$\widehat{\boldsymbol{V}}_{HC} = \hat{H}^{-1} \hat{\Sigma} \hat{H}^{-1},$$

where

$$\hat{H} = \frac{1}{n} \sum_{i=1}^{n} \dot{\mu}(\boldsymbol{x}_{i}'\hat{\boldsymbol{\beta}})^{2} \boldsymbol{x}_{i} \boldsymbol{x}_{i}'$$

$$\hat{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} \hat{e}_{i}^{2} \dot{\mu}(\boldsymbol{x}_{i}'\hat{\boldsymbol{\beta}})^{2} \boldsymbol{x}_{i} \boldsymbol{x}_{i}'$$

Now, to get an asymptotically valid CI for $||\beta_0||^2$ we need to use the Delta Method. First, note that:

$$\begin{split} ||\boldsymbol{\beta}_0||^2 &= \boldsymbol{\beta}_0' \boldsymbol{\beta}_0 \\ \Longrightarrow & \frac{\partial}{\partial \boldsymbol{\beta}} ||\boldsymbol{\beta}_0||^2 = 2 \boldsymbol{\beta}_0 \end{split}$$

Then, using the Delta Method

$$\sqrt{n}(||\hat{\boldsymbol{\beta}}||^2 - ||\boldsymbol{\beta}_0||^2) \to_d 2\boldsymbol{\beta}_0 \mathcal{N}(0, \boldsymbol{V}_0)
= \mathcal{N}(0, 4\boldsymbol{\beta}_0' \boldsymbol{V}_0 \boldsymbol{\beta}_0)$$

Thus, an asymptotically valid 95% CI for $||\boldsymbol{\beta}_0||^2$ is

$$CI_{95} = \left[\hat{\boldsymbol{\beta}} - 1.96\sqrt{\frac{4\hat{\boldsymbol{\beta}}'\widehat{\boldsymbol{V}}_{HC}\hat{\boldsymbol{\beta}}}{n}}, \hat{\boldsymbol{\beta}} + 1.96\sqrt{\frac{4\hat{\boldsymbol{\beta}}'\widehat{\boldsymbol{V}}_{HC}\hat{\boldsymbol{\beta}}}{n}} \right]$$

1.4 Variance estimator under homoskedasticity

Using the above results, under homoskedasticity, the asymptotic variance collapses to

$$\begin{aligned} \boldsymbol{V}_0 &= \mathbb{E}[\dot{\mu}(\boldsymbol{x}_i'\boldsymbol{\beta}_0))^2 \boldsymbol{x}_i \boldsymbol{x}_i']^{-1} \sigma^2 \mathbb{E}[\dot{\mu}(\boldsymbol{x}_i'\boldsymbol{\beta}))^2 \boldsymbol{x}_i \boldsymbol{x}_i'] \mathbb{E}[\dot{\mu}(\boldsymbol{x}_i'\boldsymbol{\beta}_0))^2 \boldsymbol{x}_i \boldsymbol{x}_i']^{-1} \\ &= \sigma^2 \mathbb{E}[\dot{\mu}(\boldsymbol{x}_i'\boldsymbol{\beta}_0))^2 \boldsymbol{x}_i \boldsymbol{x}_i']^{-1} \end{aligned}$$

The variance estimator is now takes a simpler form

$$\widehat{\boldsymbol{V}}_{HO} = \hat{\sigma}^2 \hat{H}^{-1}$$

where \hat{H} is the same as above and

$$\hat{\sigma}^2 = \frac{1}{n-d} \sum_{i=1}^{n} (y_i - \mu(\mathbf{x}_i'\hat{\boldsymbol{\beta}}))^2$$

Then, as above, the asymptotically valid 95% CI for $||\beta_0||^2$ is

$$CI_{95} = \left[\hat{\boldsymbol{\beta}} - 1.96\sqrt{\frac{4\hat{\boldsymbol{\beta}}'\widehat{\boldsymbol{V}}_{HO}\hat{\boldsymbol{\beta}}}{n}}, \hat{\boldsymbol{\beta}} + 1.96\sqrt{\frac{4\hat{\boldsymbol{\beta}}'\widehat{\boldsymbol{V}}_{HO}\hat{\boldsymbol{\beta}}}{n}}\right].$$

1.5 MLE

Given the assumption of a normal DGP we have the conditional density

$$f(y_i|\boldsymbol{x}_i) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(y_i - \mu(\boldsymbol{x}_i'\boldsymbol{\beta}_0))^2\right).$$

Then, the sample log-likelihood function is

$$\ell(\boldsymbol{\beta}, \sigma^2; \boldsymbol{X}) = n \log \left(\frac{1}{\sqrt{2\pi\sigma^2}} \right) - \frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \mu(\boldsymbol{x}_i'\boldsymbol{\beta}))^2$$

Dividing by n gives

$$\ell(\boldsymbol{\beta}, \sigma^2; \boldsymbol{X}) = \log\left(\frac{1}{\sqrt{2\pi\sigma^2}}\right) - \frac{1}{n2\sigma^2} \sum_{i=1}^n (y_i - \mu(\boldsymbol{x}_i'\boldsymbol{\beta}))^2$$

The FOC wrt $\boldsymbol{\beta}$ is

$$0 = \frac{1}{n\sigma^2} \sum_{i=1}^{n} (y_i - \mu(\mathbf{x}_i'\boldsymbol{\beta})) \dot{\mu}(\mathbf{x}_i'\boldsymbol{\beta})) \mathbf{x}_i,$$

which is equivalent to the FOC for the M-estimation problem (1) (since σ^2 just scales the FOC, it does not affect the solution). Thus,

$$\hat{oldsymbol{eta}}_{MLE} = \hat{oldsymbol{eta}}_{M.est}.$$

Now, the FOC of the log-likelihood wrt σ^2 is

$$0 = -\frac{1}{2}(2\pi\sigma^2)^{-1}2\pi + \frac{1}{2n}(\sigma^2)^{-2}\sum_{i=1}^n (y_i - \mu(\mathbf{x}_i'\hat{\boldsymbol{\beta}}))^2$$

Solving for σ^2 gives the MLE:

$$\hat{\sigma}_{ML}^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \mu(\mathbf{x}_i' \hat{\boldsymbol{\beta}}))^2,$$

which is not the same as the estimator proposed in [4], since it does not adjust for the number of regressors.

1.6 When the link function is unknown

Suppose the link function is unknown, and consider two pairs of true parameters, $(\mu_1, \boldsymbol{\beta}_1)$ and $(\mu_2, \boldsymbol{\beta}_2)$ where $\mu_2(u) = \mu_1(u/c)$ and $\boldsymbol{\beta}_2 = c\boldsymbol{\beta}_1$ for some $c \neq 0$. Then the parameters are clearly different, but $\mu_1(\boldsymbol{x}_i'\boldsymbol{\beta}_1) = \mu_2(\boldsymbol{x}_i'\boldsymbol{\beta}_2)$.

1.7 Logistic link function

The link function is

$$\mu(\boldsymbol{x}_{i}'\boldsymbol{\beta}_{0}) = \mathbb{E}[y_{i}|\boldsymbol{x}_{i}]$$

$$= \mathbb{E}[\mathbf{1}(\boldsymbol{x}_{i}'\boldsymbol{\beta}_{0} \geq \epsilon_{i})|\boldsymbol{x}_{i}]$$

$$= \Pr[\boldsymbol{x}_{i}'\boldsymbol{\beta}_{0} \geq \epsilon_{i}|\boldsymbol{x}_{i}]$$

$$= F(\boldsymbol{x}_{i}'\boldsymbol{\beta}_{0})$$

$$= \frac{1}{1 + \exp(-\boldsymbol{x}_{i}'\boldsymbol{\beta}_{0})}, \text{ if } s_{0} = 1.$$

The conditional variance of y_i is

$$\sigma^2(\boldsymbol{x}_i)\mathbb{V}[y_i|\boldsymbol{x}_i]$$

Now, note that $y_i|\boldsymbol{x}_i$ is a Bernoulli random variable, with $\Pr[y_i=1|\boldsymbol{x}_i]=F(\boldsymbol{x}_i'\boldsymbol{\beta}_0)$. Then

$$\sigma^{2}(\boldsymbol{x}_{i}) = F(\boldsymbol{x}_{i}'\boldsymbol{\beta}_{0})(1 - F(\boldsymbol{x}_{i}'\boldsymbol{\beta}_{0}))$$
$$= \mu(\boldsymbol{x}_{i}'\boldsymbol{\beta}_{0})(1 - \mu(\boldsymbol{x}_{i}'\boldsymbol{\beta}_{0}))$$

To derive an expression for the asymptotic variance, first note that for the logistic cdf: $\dot{\mu}(u) = (1 - \mu(u))\mu(u)$. Then, the asymptotic variance is

$$V_0 = H_0^{-1} \Sigma_0 H_0^{-1}.$$

where

$$H_0 = \mathbb{E}[(1 - \mu(\boldsymbol{x}_i'\boldsymbol{\beta}_0))^2 \mu(\boldsymbol{x}_i'\boldsymbol{\beta}_0)^2 \boldsymbol{x}_i \boldsymbol{x}_i']$$

and

$$\Sigma_0 = \mathbb{E}[(1 - \mu(\boldsymbol{x}_i'\boldsymbol{\beta}_0))^3 \mu(\boldsymbol{x}_i'\boldsymbol{\beta}_0)^3 \boldsymbol{x}_i \boldsymbol{x}_i']$$

1.8 Logistic link function, MLE

MLE gives the same point estimator as NLS (i.e. they have the same FOC; we did this in 672), but MLE is asymptotically efficient, so $\boldsymbol{V}_0^{ML} \leq \boldsymbol{V}_0^{NLS}$.

1.9 Some data work

(a) I estimated the logistic model with robust (HC1) standard errors in both R and Stata. The results from R are presented in Table 1. The standard errors from Stata are very slightly different, but I'm not sure why.

Table 1: Logistic Regression Estimates for s = 1-dmissing

	_	_				_
	Coef.	Std. Err.	t-stat	p-val	CI.lower	CI.upper
Const.	1.755	0.335	5.245	0.000	1.099	2.411
$S_{-}age$	1.333	0.123	10.826	0.000	1.092	1.575
$S_{-}HHpeople$	-0.067	0.023	-2.871	0.004	-0.112	-0.021
$\log(\mathrm{inc} + 1)$	-0.119	0.044	-2.707	0.007	-0.205	-0.033

(b) Table 2 presents the 95% confidence interval and p-values for each coefficient derived from 999 bootstrap replications of the t-statistic: $t^* = (\beta^* - \hat{\beta}_{obs})/se^*$. The statistics are very similar to those in Table 1, which rely on large sample approximations.

The idea for computing bootstrapped CIs is simple: for each bootstrap replication, compute t^* for each coefficient; this gives an empirical distribution for t^* ; then extract the desired quantiles from the empirical distribution, and compute the confidence intervals as

$$CI_{95}^{boot}(\beta) = \left[\hat{\beta}_{obs} + q_{0.025}^* \times \hat{s}e_{obs}, \ \hat{\beta}_{obs} + q_{0.975}^* \times \hat{s}e_{obs} \right]$$

I computed the bootstrapped p-values as

$$p^{boot} = \frac{1}{M} \sum_{i=1}^{M} \mathbf{1}[t^* \ge t_{obs}]$$

where M is the number of bootstrap replications.

Table 2: Bootstrap Statistics for the Logistic Model of s = 1-dmissing

	Coef.	CI.lower	CI.upper	p-val
Const.	1.755	1.157	2.471	0.000
$S_{-}age$	1.333	1.142	1.609	0.000
$S_{-}HHpeople$	-0.067	-0.112	-0.020	0.001
$\log(\mathrm{inc} + 1)$	-0.119	-0.216	-0.042	0.001

(c) I plot the kernel density estimate of the predicted probabilities of reporting data, $\hat{\mu}(\boldsymbol{x}_i'\hat{\boldsymbol{\beta}})$, using an Epanechnikov kernel with R's unbiased cross-validation bandwidth.

Kernel Density Plot of Predicted Probabilities

2 Semiparametric GMM with missing data

2.1 An optimal instrument

We have the conditional moment condition:

$$\mathbb{E}[m(y_i^*, t_i, \boldsymbol{x}_i; \boldsymbol{\beta}_0) | t_i, \boldsymbol{x}_i] = 0$$

By LIE

$$\mathbb{E}\big[\boldsymbol{g}(t_i,\boldsymbol{x}_i)\mathbb{E}[m(y_i^*,t_i,\boldsymbol{x}_i;\boldsymbol{\beta}_0)|t_i,\boldsymbol{x}_i]\big]=0$$

for any $g(\cdot)$. Thus,

$$\mathbb{E}\big[\mathbb{E}[\boldsymbol{g}(t_i, \boldsymbol{x}_i) m(y_i^*, t_i, \boldsymbol{x}_i; \boldsymbol{\beta}_0) | t_i, \boldsymbol{x}_i]\big] = 0$$

$$\implies \mathbb{E}[\boldsymbol{g}(t_i, \boldsymbol{x}_i) m(y_i^*, t_i, \boldsymbol{x}_i; \boldsymbol{\beta}_0)] = 0$$

Now, we want to find the optimal \boldsymbol{g} that minimizes $\operatorname{AsyVar}(\hat{\boldsymbol{\beta}})$; call it \boldsymbol{g}_0 . Let $\boldsymbol{z}_i = (t_i, \boldsymbol{x}_i)$, $\boldsymbol{w}_i = (y_i^*, t_i, \boldsymbol{x}_i)$. The GMM estimator is

$$\hat{\boldsymbol{\beta}} = \arg\min_{\boldsymbol{\beta} \in \mathbb{R}^d} \left(\frac{1}{n} \sum_{i=1}^n \boldsymbol{g}(\boldsymbol{z}_i) m(\boldsymbol{w}_i, \boldsymbol{\beta}) \right)' \boldsymbol{W} \left(\frac{1}{n} \sum_{i=1}^n \boldsymbol{g}(\boldsymbol{z}_i) m(\boldsymbol{w}_i, \boldsymbol{\beta}) \right)$$

The FOC wrt $\boldsymbol{\beta}$ is

$$0 = \left(\frac{1}{n}\sum_{i=1}^{n} \frac{\partial}{\partial \beta} \boldsymbol{g}(\boldsymbol{z}_{i}) m(\boldsymbol{w}_{i}, \boldsymbol{\beta})\right)' \boldsymbol{W} \left(\frac{1}{n}\sum_{i=1}^{n} \boldsymbol{g}(\boldsymbol{z}_{i}) m(\boldsymbol{w}_{i}, \boldsymbol{\beta})\right)$$

We can write the FOC plugging in $\hat{\beta}$:

$$0 = \left(\frac{1}{n}\sum_{i=1}^{n} \frac{\partial}{\partial \beta} \boldsymbol{g}(\boldsymbol{z}_{i}) m(\boldsymbol{w}_{i}, \hat{\boldsymbol{\beta}})\right)' \boldsymbol{W} \left(\frac{1}{n}\sum_{i=1}^{n} \boldsymbol{g}(\boldsymbol{z}_{i}) m(\boldsymbol{w}_{i}, \hat{\boldsymbol{\beta}})\right).$$

Then, if we take a mean value Taylor expansion of the last term in parentheses around the true parameter β_0 and rearrange in the usual way, we get

$$\sqrt{n}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}_0) = -\left[\boldsymbol{G}_n(\hat{\boldsymbol{\beta}})'\boldsymbol{W}\boldsymbol{G}_n(\tilde{\boldsymbol{\beta}})\right]^{-1}\boldsymbol{G}_n(\hat{\boldsymbol{\beta}})'\boldsymbol{W}\left(\frac{1}{\sqrt{n}}\sum_{i=1}^n\boldsymbol{g}(\boldsymbol{z}_i)m(\boldsymbol{w}_i,\boldsymbol{\beta}_0)\right)$$

where

$$G_n(\boldsymbol{\beta}) = \frac{1}{n} \sum_{i=1}^n \frac{\partial}{\partial \beta} g(\boldsymbol{z}_i) m(\boldsymbol{w}_i, \boldsymbol{\beta})$$

Now we just need to let things converge via LLN and CLT to get

$$\sqrt{n}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}_0) \rightarrow_d \mathcal{N}\left(0, \left[\boldsymbol{G}(\boldsymbol{\beta}_0)' \boldsymbol{W} \boldsymbol{G}(\boldsymbol{\beta}_0)\right]^{-1} \boldsymbol{G}(\boldsymbol{\beta}_0)' \boldsymbol{W} \mathbb{V}[\boldsymbol{g}(\boldsymbol{z}_i) m(\boldsymbol{w}_i, \boldsymbol{\beta}_0)] \boldsymbol{W} \boldsymbol{G}(\boldsymbol{\beta}_0 \left[\boldsymbol{G}(\boldsymbol{\beta}_0)' \boldsymbol{W} \boldsymbol{G}(\boldsymbol{\beta}_0)\right]^{-1}\right)$$

Then with the optimal weight matrix $\mathbf{W} = \mathbb{V}[\mathbf{g}(\mathbf{z}_i)m(\mathbf{w}_i, \boldsymbol{\beta}_0)]^{-1}$ the asymptotic variance collapses to

$$oldsymbol{V}_0 = ig[oldsymbol{G}(oldsymbol{eta}_0)' \mathbb{V}[oldsymbol{g}(oldsymbol{z}_i) m(oldsymbol{w}_i, oldsymbol{eta}_0)]^{-1} oldsymbol{G}(oldsymbol{eta}_0)ig]^{-1}$$

And, as shown in class, this leads to the optimal instrument

$$oldsymbol{g}_0(oldsymbol{z}_i) = \mathbb{E}\left[rac{\partial}{\partialeta}m(oldsymbol{w}_i,oldsymbol{eta})|oldsymbol{z}_i
ight] \mathbb{V}[m(oldsymbol{w}_i,oldsymbol{eta}_0)|oldsymbol{z}_i]^{-1}$$

Now, in the given case, since y_i is Bernoulli we know that

$$\mathbb{V}[m(\boldsymbol{w}_i,\boldsymbol{\beta}_0)|\boldsymbol{z}_i] = F(t_i\theta_0 + \boldsymbol{x}_i'\boldsymbol{\gamma}_0)[1 - F(t_i\theta_0 + \boldsymbol{x}_i'\boldsymbol{\gamma}_0)]$$

And

$$\mathbb{E}\left[\frac{\partial}{\partial\beta}m(\boldsymbol{w}_i,\boldsymbol{\beta})|\boldsymbol{z}_i\right] = f(t_i\theta_0 + \boldsymbol{x}_i'\boldsymbol{\gamma}_0)[t_i,\boldsymbol{x}_i]',$$

which gives the desired result. When $F(\cdot)$ is the logistic cdf we know that

$$f(u) = F(u)[1 - F(u)],$$

so that

$$\boldsymbol{g}_0(t_i, \boldsymbol{x}_i) = [t_i, \boldsymbol{x}_i]'.$$

2.2 Missing completely at random

(a) The optimal unconditional moment condition is:

$$\mathbb{E}[\boldsymbol{g}_0(t_i, \boldsymbol{x}_i) m(y_i^*, t_i, \boldsymbol{x}_i; \boldsymbol{\beta}_0)] = 0$$

Now, $y_i = s_i y_i^*$. Thus,

$$\mathbb{E}[\boldsymbol{g}_{0}(t_{i},\boldsymbol{x}_{i})m(y_{i},t_{i},\boldsymbol{x}_{i};\boldsymbol{\beta}_{0})|s_{i}=1] = \mathbb{E}[\boldsymbol{g}_{0}(t_{i},\boldsymbol{x}_{i})m(y_{i}^{*},t_{i},\boldsymbol{x}_{i};\boldsymbol{\beta}_{0})|s_{i}=1]$$

And, with the MCAR assumption, the above moment condition is identical to the optimal one. Accordingly, a feasible estimator is simply

$$\hat{\boldsymbol{\beta}}_{\texttt{MCAR,feasible}} = \arg\min_{\boldsymbol{\theta}, \boldsymbol{\gamma}} \frac{1}{n} \sum_{i=1}^{n} [s_i \boldsymbol{g}_0(t_i, \boldsymbol{x}_i) (y_i - F(t_i \boldsymbol{\theta} + \boldsymbol{x}_i' \boldsymbol{\gamma}))].$$

(b) I report the the results from using the feasible estimator below.

Table 3: Logit Results under MCAR Assumption

	Estimate	Std.Error	\mathbf{t}	p-value	CI.lower	CI.upper
dpisofirme	-0.325	0.105	-3.106	0.032	-0.518	-0.167
$S_{-}age$	-0.226	0.024	-9.326	0.000	-0.275	-0.177
$S_{-}HHpeople$	0.027	0.018	1.563	0.140	-0.006	0.061
\log_{-inc}	0.023	0.017	1.341	0.184	-0.010	0.060

2.3 Missing at random

(a) Start with the optimal moment condition

$$\mathbb{E}[\boldsymbol{g}_0(t_i,\boldsymbol{x}_i)m(y_i^*,t_i,\boldsymbol{x}_i;\boldsymbol{\beta}_0)]=0.$$

Since $y_i = s_i * y_i^*$ and $s_i \perp y_i^* | (t_i, x_i)$,

$$\mathbb{E}[s_i m(y_i^*, t_i, \boldsymbol{x}_i; \boldsymbol{\beta}_0) | t_i, x_i] = \mathbb{E}[\boldsymbol{g}(t_i, \boldsymbol{x}_i) m(y_i^*, t_i, \boldsymbol{x}_i; \boldsymbol{\beta}_0)]$$

Thus, $\mathbb{E}[s_i m(y_i^*, t_i, x_i; \beta_0)|t_i, x_i] = 0$ is equivalent to the optimal unconditional moment restriction.

(b) Here the problem is that we do not have a functional form for the propensity score $p(x_i, t_i)$. Accordingly, even if we have consistent estimator of β it might not be efficient. We could provide a functional form for the probability of not missing data $p(x_i, t_i)$ as a probit or logit estimate. Therefore, it would be a two-step approach in with the first step we estimate $p(x_i, t_i)$ and then plug it in our moment conditions. This are to be used to estimate $\hat{\beta}_{MAR}$ using GMM. This estimator would be consistent but may not be efficient, so $\hat{\beta}_{MAR}$ and $\tilde{\beta}_{MAR}$.

(c)

Table 4: Logit Results under MAR Assumption

	rasio ii 20010 respaito amasi ivilizio rissamiperon						
	Estimates	Std. Error	t	p-value	CI.lower	CI.upper	
dpisofirme	-0.322	0.096	-3.368	0.020	-0.491	-0.161	
$S_{-}age$	-0.224	0.024	-9.248	0.000	-0.270	-0.174	
$S_{-}HHpeople$	0.029	0.018	1.651	0.108	-0.006	0.061	
\log_{-inc}	0.021	0.018	1.188	0.241	-0.014	0.056	

(d) Trimming does not change the results.

Table 5: Logit Results under MAR Assumption with Trimming

	_			-		
	Estimates	Std. Error	t	p-value	CI.lower	CI.upper
dpisofirme	-0.322	0.096	-3.368	0.020	-0.491	-0.161
$S_{-}age$	-0.224	0.024	-9.248	0.000	-0.270	-0.174
$S_{-}HHpeople$	0.029	0.018	1.651	0.108	-0.006	0.061
\log_{-inc}	0.021	0.018	1.188	0.241	-0.014	0.056

3 When bootstrap fails

3.1 Nonparametric bootstrap fail

I plot the empirical distribution of the bootstrap statistic, $n(\max\{x_i\} - \max\{x_i^*\})$, below. Clearly, the empirical distribution does not coincide with the theoretical Exponential (1) distribution.

Distribution of Bootstrap Statistic

3.2 Parametric bootstrap to the rescue

Now, consider the parametric bootstrap statistic, $t_{\mathbf{p}}^* = n(\max\{x_i\} - \max\{x_i^*\})$, where

$$x_i^* \sim_{iid} \mathtt{Uniform}[0, \max\{x_i\}].$$

I plot the empirical distribution of t_p^* below. Now, the empirical distribution does seem to coincide with the theoretical Exponential (1) distribution.

3.3 Intuition

In the nonparametric case, the bootstrap statistic has a mass point at zero since $\Pr[\max\{x_i\} = \max\{x_i^*\}]$ converges to 1. However, the parametric bootstrap corrects for this "bias": in this case $\Pr[\max\{x_i\} = \max\{x_i^*\}] = 0$, since $x_i^* \sim_{iid} \text{Uniform}[0, \max\{x_i\}]$.

Distribution of Parametric Bootstrap Statistic

4 Appendix

4.1 R code

4.1.1 Question 1

```
## ECON675: ASSIGNMENT 3
## Q1: NLS
## Anirudh Yadav
## 10/24/2018
```


Load packages, clear workspace

rm(list = ls()) #clear workspace
library(foreach) #for looping
library(data.table) #for data manipulation
library(Matrix) #fast matrix calcs
library(ggplot2) #for pretty plots

library(sandwich) #for variance-covariance estimation

library(xtable) #for latex tables library(boot) #for bootstrapping

options(scipen = 999) #forces R to use normal numbers instead of scientific notation

Input data, create additional covariates

- # Get Piso Firme data
 data <- as.data.table(read.csv('PhD_Coursework/ECON675/HW3/pisofirme.csv'))
 # Create dependent variable for logistic regression</pre>
- # Create income regressor

data[,s:= 1-dmissing]

```
data[,log_inc:= log(S_incomepc+1)]
# Q9(a): Estimate logistic regression
# Estimate model
mylogit <- glm(s ~ S_age + S_HHpeople + log_inc, data = data, family = "binomial")</pre>
b.hat <- as.data.table(mylogit["coefficients"])</pre>
# Get robust standard errors
V.hat.
         <- vcovHC(mylogit, type = "HC1")
se.hat
          <- as.data.table(sqrt(diag(V.hat)))</pre>
# Compute t-stats
          <- b.hat/se.hat
t.stats
# Compute p-vals
n = nrow(data)
d = 4
p = round(2*pt(abs(t.stats[[1]]),df=n-d,lower.tail=FALSE),3)
# Compute CIs
CI.lower = b.hat - qnorm(0.975)*se.hat
CI.upper = b.hat + qnorm(0.975)*se.hat
# Mash results together
results = as.data.frame(cbind(b.hat,se.hat,t.stats,p,CI.lower,CI.upper))
colnames(results) = c("Coef.","Std. Err.","t-stat","p-val","CI.lower","CI.upper")
rownames(results) = c("Const.", "S_age", "S_HHpeople", "log_inc")
# Get latex table output
xtable(results,digits=3)
# Q9(b): Bootstrap statistics
# Define function for bootstrap statistic
boot.logit <- function(data, i){</pre>
 logit <- glm(s ~ S_age + S_HHpeople + log_inc,</pre>
           data = data[i, ], family = "binomial")
        <- vcovHC(logit, type = "HC1")
        <- sqrt(diag(V.hat))
 se
 t.boot <- (coef(logit)-coef(mylogit))/se</pre>
 return(t.boot)
# Run bootstrap replications
set.seed(123)
boot.results <- boot(data = data, R = 999, statistic = boot.logit)</pre>
\# Get 0.025/0.975 quantiles from the boot t-distribution
          <- sapply(1:4, function (i) quantile(boot.results$t[,i], c(0.025, 0.975)))</pre>
# Construct 95% CIs using bootstrapped quantiles
boot.ci.lower = b.hat + t(boot.q)[,1]*se.hat
boot.ci.upper = b.hat + t(boot.q)[,2]*se.hat
# Get p-val -- I'm not sure if this is right!!!
boot.p = sapply(1:4,function(i) 1/999*sum(boot.results$t[,i]>=t.stats[i]))
# Tabulate bootstrap results
results.b = as.data.frame(cbind(b.hat,boot.ci.lower,boot.ci.upper,boot.p))
colnames(results.b) = c("Coef.","CI.lower","CI.upper","p-val")
```

```
rownames(results.b) = c("Const.", "S_age", "S_HHpeople", "log_inc")
# Get latex table output
xtable(results.b,digits=3)
# Q9(c): Predicted probabilities
b.hat = coef(mylogit)
# Subset data
    = data[,.(S_age,S_HHpeople,log_inc)]
X[,const:= 1]
setcolorder(X,c("const","S_age","S_HHpeople","log_inc"))
# Define logistic cdf (i.e. mu function)
mu = function(u)\{(1+exp(-u))^(-1)\}
# Construct vector of x_i'*beta.hats
XB = as.matrix(X)%*%b.hat
# Compute predicted probabilities
mu.hat = mu(XB)
X[,mu.hat:=mu.hat]
#Make plot
plot(density(mu.hat,kernel="e",bw="ucv",na.rm=TRUE),main="Kernel Density Plot of Predicted Probabilities")
4.1.2 Question 2
## ECON675: ASSIGNMENT 3
## Q2: SEMIPARAMETRIC GMM W MISSING DATA
## Anirudh Yadav
## 10/26/2018
# Load packages, clear workspace
rm(list = ls())
                     #clear workspace
                     #for looping
library(foreach)
                    #for data manipulation
library(data.table)
library(dplyr)
                     #melting for ggplot
library(Matrix)
                     #fast matrix calcs
#for pretty plots
library(ggplot2)
                     #for variance-covariance estimation
library(sandwich)
library(xtable)
                     #for latex tables
library(boot)
                     #for bootstrapping
library(gmm)
options(scipen = 999)
                      #forces R to use normal numbers instead of scientific notation
# Input data, create additional covariates
# Get Piso Firme data
pisofirme <- read.csv('PhD_Coursework/ECON675/HW3/pisofirme.csv')</pre>
complete <- complete.cases(pisofirme[, 5:27])</pre>
pisofirme <- pisofirme[complete, ]</pre>
# s_i: non-missing indicator
pisofirme$nmissing <- 1 - pisofirme$dmissing</pre>
```

```
# Q2: Missing completely at random
# GMM moment condition: logistic
g_logistic <- function(theta, data) {</pre>
   a <- (data$danemia - plogis(theta[1]*data$dpisofirme + theta[2]*data$S_age + theta[3]*data$S_HHpeople + theta[4]*log(1+data$S_inc
     data$dpisofirme
   b <- (data$danemia - plogis(theta[1]*data$dpisofirme + theta[2]*data$S_age + theta[3]*data$S_HHpeople + theta[4]*log(1+data$S_inc
      data$S_age
   c <- (data$danemia - plogis(theta[1]*data$dpisofirme + theta[2]*data$S_age + theta[3]*data$S_HHpeople + theta[4]*log(1+data$S_inc
      data$S_HHpeople
   log(1+data$S_incomepc)
   cbind(a, b, c, d)
# logistic bootstrap
boot.T_logistic <- function(boot.data, ind) {</pre>
  {\tt gmm(g\_logistic,\ boot.data[ind,\ ],\ t0=c(0,0,0,0),\ wmatrix="ident",\ vcov="iid")$coefficient of the content of the content of the coefficient of the coefficie
ptm <- proc.time()</pre>
set.seed(123)
temp <- boot(data=pisofirme[pisofirme$nmissing==1, ], R=499, statistic = boot.T_logistic, stype = "i")
proc.time() - ptm
table3 <- matrix(NA, ncol=6, nrow=4)
for (i in 1:4) {
   table3[i, 1] <- temp$t0[i]
   table3[i, 2] <- sd(temp$t[, i])</pre>
   table3[i, 3] <- table3[i, 1] / table3[i, 2]
    table 3[i, 4] <-2*max(mean(temp$t[, i]-temp$t0[i]>=abs(temp$t0[i])), mean(temp$t[, i]-temp$t0[i]<=-1*abs(temp$t0[i]))) ) 
   table3[i, 5] <- 2 * temp$t0[i] - quantile(temp$t[, i], 0.975)
   table3[i, 6] <- 2 * temp$t0[i] - quantile(temp$t[, i], 0.025)
rownames(table3)=c("dpisofirme", "S_age", "S_HHpeople", "log_inc")
colnames(table3)=c("Estimate", "Std.Error", "t", "p-value", "CI.lower", "CI.upper")
# Q3(c): Missing at random
# GMM moment condition
g_MAR <- function(theta, data) {</pre>
   data <- data[data$nmissing==1, ]</pre>
   a <- (data$danemia - plogis(theta[1]*data$dpisofirme + theta[2]*data$S_age + theta[3]*data$S_HHpeople + theta[4]*log(1+data$S_inc
      data$dpisofirme * data$weights
   b <- (data$danemia - plogis(theta[1]*data$dpisofirme + theta[2]*data$S_age + theta[3]*data$S_HHpeople + theta[4]*log(1+data$S_inc
      data$S_age * data$weights
   c <- (data$danemia - plogis(theta[1]*data$dpisofirme + theta[2]*data$S_age + theta[3]*data$S_HHpeople + theta[4]*log(1+data$S_inc
      data$S_HHpeople * data$weights
   d <- (data$danemia - plogis(theta[1]*data$dpisofirme + theta[2]*data$S_age + theta[3]*data$S_HHpeople + theta[4]*log(1+data$S_inc
      log(1+data$S_incomepc) * data$weights
   cbind(a, b, c, d)
# logistic bootstrap
boot.T_MAR <- function(boot.data, ind) {</pre>
   data.temp <- boot.data[ind, ]</pre>
   fitted <- glm(nmissing ~ dpisofirme + S_age + S_HHpeople +I(log(S_incomepc+1)) - 1,
                         data = data.temp,
                         family = binomial(link = "logit"))$fitted
```

data.temp\$weights <- 1 / fitted

 ${\tt gmm(g_MAR,\ data.temp,\ t0=c(0,0,0,0),\ wmatrix="ident",\ vcov="iid")$coef}$

```
ptm <- proc.time()</pre>
set.seed(123)
temp <- boot(data=pisofirme, R=499, statistic = boot.T_MAR, stype = "i")</pre>
proc.time() - ptm
table5 <- matrix(NA, ncol=6, nrow=4)
for (i in 1:4) {
  table5[i, 1] <- temp$t0[i]
 table5[i, 2] <- sd(temp$t[, i])</pre>
  table5[i, 3] <- table5[i, 1] / table5[i, 2]</pre>
  table 5[i, 4] <-2 * max(mean(temp$t[, i]-temp$t0[i]>=abs(temp$t0[i])), mean(temp$t[, i]-temp$t0[i]<=-1*abs(temp$t0[i]))) ) 
 table5[i, 5] <- 2 * temp$t0[i] - quantile(temp$t[, i], 0.975)
  table5[i, 6] <- 2 * temp$t0[i] - quantile(temp$t[, i], 0.025)
# Q3(d): Trimming
g_MAR2 <- function(theta, data) {</pre>
  data <- data[data$nmissing==1 & data$weights<=1/0.1, ]</pre>
  a <- (data$danemia - plogis(theta[1]*data$dpisofirme + theta[2]*data$S_age + theta[3]*data$S_HHpeople + theta[4]*log(1+data$S_inc
   data$dpisofirme * data$weights
 b <- (data$danemia - plogis(theta[1]*data$dpisofirme + theta[2]*data$S_age + theta[3]*data$S_HHpeople + theta[4]*log(1+data$S_inc
   data$S_age * data$weights
  c <- (data$danemia - plogis(theta[1]*data$dpisofirme + theta[2]*data$S_age + theta[3]*data$S_HHpeople + theta[4]*log(1+data$S_inc
   data$S_HHpeople * data$weights
  d <- (data$danemia - plogis(theta[1]*data$dpisofirme + theta[2]*data$S_age + theta[3]*data$S_HHpeople + theta[4]*log(1+data$S_inc
   log(1+data$S_incomepc) * data$weights
  cbind(a, b, c, d)
# logistic bootstrap
boot.T_MAR2 <- function(boot.data, ind) {</pre>
  data.temp <- boot.data[ind, ]</pre>
 fitted <- glm(nmissing \tilde{} dpisofirme + S_age + S_HHpeople +I(log(S_incomepc+1)) - 1,
               data = data.temp,
               family = binomial(link = "logit"))$fitted
 data.temp$weights <- 1 / fitted</pre>
 gmm(g_MAR2, data.temp, t0=c(0,0,0,0), wmatrix="ident", vcov="iid")$coef
ptm <- proc.time()</pre>
set.seed(123)
temp <- boot(data=pisofirme, R=499, statistic = boot.T_MAR2, stype = "i")
proc.time() - ptm
table6 <- matrix(NA, ncol=6, nrow=4)</pre>
for (i in 1:4) {
  table6[i, 1] <- temp$t0[i]
  table6[i, 2] <- sd(temp$t[, i])
 table6[i, 3] <- table6[i, 1] / table6[i, 2]</pre>
 \label{eq:table} $$ $$ $$ $$ table 6[i, 5] <- 2 * temp$$ to[i] - quantile(temp$t[, i], 0.975) $$
  table6[i, 6] <- 2 * temp$t0[i] - quantile(temp$t[, i], 0.025)
```

4.1.3 Question 3

```
library(foreach)
                       #for looping
library(data.table)
                      #for data manipulation
                       #melting for ggplot
library(dplyr)
library(Matrix)
                       #fast matrix calcs
library(ggplot2)
                      #for pretty plots
library(sandwich)
                      #for variance-covariance estimation
library(xtable)
                      #for latex tables
                       #for bootstrapping
library(boot)
options(scipen = 999)
                       \mbox{\tt\#forces}\ R to use normal numbers instead of scientific notation
# Q1: Nonparametric bootstrap fail
set.seed(123)
N = 1000
# Simulate runif data
X = runif(N,0,1)
# Get max
x.max.obs = max(X)
# Write function for bootrap statistic
boot.stat = function(data, i){
 N*(x.max.obs-max(data[i]))
}
# Run bootsrap with 599 replications
boot.results = boot(data = X, R = 599, statistic = boot.stat)
# Make frequency plot
       = hist(boot.results$t,plot=FALSE)
h$density = h$counts/sum(h$counts)
plot(h,freq=FALSE,main="Distribution of Bootstrap Statistic",xlab="Bootstrap statistic")
# Q2: Parametric bootstrap fail
# Generate parametric bootstrap samples
X.boot = replicate(599,runif(N,0,x.max.obs))
# Compute maximums for each replications
x.max.boot = sapply(1:599,function(i) max(X.boot[,i]))
# Compute bootstrap statistic
t.boot
         = N*(x.max.obs-x.max.boot)
# Make frequency plot
        = hist(t.boot,plot=FALSE)
h2$density = h2$counts/sum(h2$counts)
plot(h2,freq=FALSE,main="Distribution of Parametric Bootstrap Statistic",xlab="Parametric bootstrap statistic",ylim=c(0,0.4),xlim=c
```

4.2 STATA code

4.2.1 Question 1

```
****************
* ECON675: ASSIGNMENT 3
* Q1: NLS
* Anirudh Yadav
* 10/24/2018
************************************
* Preliminaries
******************************
clear all
set more off
* Set working directory
global dir "/Users/Anirudh/Desktop/GitHub"
********************************
* Import data, create additional covariates
* Import LaLonde data
import delimited using "$dir/PhD_Coursework/ECON675/HW3/pisofirme.csv"
* Generate additional variables
    s = 1-dmissing
gen log_inc = log(s_incomepc+1)
*************************
* Q9(a): Estimate logistic regression
********************************
logit s s_age s_hhpeople log_inc, robust
* Q9(b): Bootstrap statistics
********************
logit s s_age s_hhpeople log_inc, vce(bootstrap, reps(999))
*****************************
* Q9(b): Predicted probabilities
*************************
logit s s_age s_hhpeople log_inc, vce(robust)
* predict propensity score
predict p
* plot kernel density estimates
twoway histogram p || kdensity p, k(gaussian) || ///
kdensity p, k(epanechnikov) || kdensity p, k(triangle) ///
leg(lab(1 "Propensity Score") lab(2 "Gaussian") ///
lab(3 "Epanechnikov") lab(4 "Triangle"))
4.2.2
      Question 2
* ECON675: ASSIGNMENT 3
* Q1: SEMIPARAMETRIC GMM
* Anirudh Yadav
* 10/24/2018
************************************
```

```
**************************
* Preliminaries
 ************************************
clear all
set more off
set matsize 10000
* Set working directory
global dir "/Users/Anirudh/Desktop/GitHub"
import delimited using "$dir/PhD_Coursework/ECON675/HW3/pisofirme.csv"
gen x3=log(S_incomepc+1)
 \texttt{gmm} \hspace{0.2cm} (\texttt{dpisofirme*(danemia-invlogit(\{t1\}*dpisofirme+\{b1\}*S\_age + \{b2\}*S\_HHpeople+\{b3\}*x3)))} \hspace{0.2cm} (S\_age*(\texttt{danemia-invlogit(\{t1\}*dpisofirme+\{b1\}*S\_age + \{b2\}*S\_Age + \{b2\}*
gen s = 1-dmissing
*Propensity Score Estimation
logit s dpisofirme S_age S_HHpeople x3, nocons
predict phat
*Generating the Instrumental Varibles
gen inst1=dpisofirme/(1-phat)
gen inst2=S_age/(1-phat)
gen inst3=S_HHpeople/(1-phat)
gen inst4=x3/(1-phat)
*GMM Estimation
gmm (s*inst1*(danemia-invlogit({t1}*dpisofirme+{b1}*S_age +{b2}*S_HHpeople+{b3}*x3))) (s*inst2*(danemia-invlogit({t1} *dpisofirme+{
+{b2}*S_HHpeople+{b3}*x3))) (s*inst4*(danemia-invlogit({t1}*dpisofirme+{b1}*S_age ///
+{b2}*S_HHpeople+{b3}*x3))), instruments(inst1 inst2 inst3 inst4)
vce(boot, reps(1000)) winit(i)
*Part 3d
*Trimming the data
drop if (1-phat)<0.1
gmm (s*inst1*(danemia-invlogit({t1}*dpisofirme+{b1}*S_age ///
+\{b2\}*S\_HHpeople+\{b3\}*x3))) \quad (s*inst2*(danemia-invlogit(\{t1\}*dpisofirme+\{b1\}*S\_age \ /// Spinore (statement of the property of the property
+{b2}*S_HHpeople+{b3}*x3))) (s*inst3*(danemia-invlogit({t1}*dpisofirme+{b1}*S_age ///
+{b2}*S_HHpeople+{b3}*x3))) (s*inst4*(danemia-invlogit({t1}*dpisofirme+{b1}*S_age ///
+{b2}*S_HHpeople+{b3}*x3))), instruments(inst1 inst2 inst3 inst4) vce(boot, reps(1000)) winit(i)
```

4.2.3 Question 3

```
* Q3.1 - nonparametric bootstrap
clear all

* generate sample
set seed 123
set obs 1000
gen X = runiform()

* save actual max
sum X
local maxX=r(max)

* run nonparametric bootstrap of max
bootstrap stat=r(max), reps(599) saving(nonpar_results, replace): summarize X

* load results
use nonpar_results, clear
```

```
* generate statistic
gen nonpar_stat = 1000*('maxX'-stat)
* plot
hist nonpar_stat, ///
plot(function exponential = 1-exponential(1,x), range(0 5) color(red))
graph export q3_1_S.png, replace
* Q3.2 - parametric bootstrap
clear all
tempname memhold
tempfile para_results
* generate sample
set seed 123
set obs 1000
gen X = runiform()
* save actual max
sum X
local maxX=r(max)
* parametric bootstrap
postfile 'memhold' max using 'para_results'
forvalues i = 1/599{
capture drop sample
gen sample = runiform(0, 'maxX')
sum sample
post 'memhold' (r(max))
postclose 'memhold'
* load results
use 'para_results', clear
* generate statistic
gen para_stat = 1000*('maxX'-max)
* plot
hist para_stat, ///
plot(function exponential = 1-exponential(1,x), range(0 5) color(red))
graph export q3_2_S.png, replace
```