Email training, N2 September 18-23

Problem 2.1. Let x_1 and x_2 are the roots of the equation $x^2 + 5x - 11$. Find a quadratic polynomial which roots are x_1x_2 and $x_1^2x_2^2$.

Solution 2.1. Since x_1 and x_2 are solution of $x^2 + 5x - 11 = 0$ the, according to Vieta theorem one has $x_1 + x_2 = -5$ and $x_1x_2 = -11$. If x_1x_2 and $x_1^2x_2^2$ are solution of $x^2 + ax + b = 0$ then $-a = x_1x_2 + x_1^2x_2^2 = x_1x_2(x_1x_2 + 1) = -110$ and $b = x_1^3x_2^3 = -1331$. So

$$x^2 - 110x - 1331 = 0$$

Answer: $x^2 - 110x - 1331 = 0$.

Problem 2.2. Simplify

$$\frac{\sqrt{2}+\sqrt{6}}{\sqrt{2+\sqrt{3}}}.$$

Solution 2.2.

$$\frac{\sqrt{2} + \sqrt{6}}{\sqrt{2 + \sqrt{3}}} = \frac{\sqrt{2} + \sqrt{6}}{\sqrt{2 + \sqrt{3}}} \cdot \frac{\sqrt{2}}{\sqrt{2}} = \frac{2 + 2\sqrt{3}}{\sqrt{4 + 2\sqrt{3}}}$$
$$= \frac{2(1 + \sqrt{3})}{\sqrt{1 + 2\sqrt{3} + 3}} = \frac{2(1 + \sqrt{3})}{1 + \sqrt{3}} = 2:$$

Problem 2.3. Find all positive integers n for which $n^2 + 3n$ is perfect square.

Solution 2.3. Note that

$$n^2 < n^2 + 3n < n^2 + 4n + 4 = (n+2)^2$$
.

Since $n^2 + 3n$ is perfect square, then it is equal to $(n+1)^2$.

$$n^2 + 3n = n^2 + 2n + 1,$$

$$n = 1.$$

Answer: n = 1.

Problem 2.4. Find all integer solutions to the equation

$$x^2 - 6xy + 13y^2 = 100.$$

Solution 2.4. Rewrite the equation in the following form

$$x^{2} - 6xy + 13y^{2} = (x - 3y)^{2} + (2y)^{2} = 100.$$

Since 100 can be written as sum of squares in the following ways

$$100 = 8^2 + 6^2 = 10^2 + 0^2$$

, therefore we have the following options

$$x - 3y = 8, 2y = 6$$

$$x - 3y = -8, 2y = 6$$

$$x - 3y = 6, 2y = 8$$

$$x - 3y = -6, 2y = -8$$

$$x - 3y = 10, 2y = 0$$

$$x - 3y = -10, 2y = 0$$

$$x - 3y = 0, 2y = 10$$

$$x - 3y = 0, 2y = -10$$

From these cases we get solutions

Answer: (17,3), (1,3), (18,4), (-18,-4), (10,0), (-10,0), (15,5), (-15,-5).

Problem 2.5. Find the number of 7-digit positive integers that all digits are ordered in

- a) strictly increasing order,
- b) strictly decreasing order.

Solution 2.5. a) part is equivalent to write expression 123456789 and remove any 2 digits. It can be done in $\binom{9}{2}$ ways.

b) part is equivalent to write expression 9876543210 and remove any 3 digits. It can be done in $\binom{10}{3}$ ways.

Answer: a) $\binom{9}{2}$, b) $\binom{10}{3}$.

Problem 2.6. A triple (1,1,1) is given. On each step one chooses 2 of them and increases by 1. Is it possible after some steps get numbers (2016, 2016, 2016).

Solution 2.6. Note that the sum of written numbers is equal 1 + 1 + 1 = 3. After first step the total sum will be equal 3 + 2 = 5, after second step 5 + 2 = 7 and so on, after *n*th step the total sum will be 3 + 2n which is odd. However, at the end we want to have 3 numbers which equal 2016, so their sum must be $3 \cdot 2016 = 6048$ which is even. We have already shown that the sum must be always odd.

Answer: Not possible.