Martingales et temps d'arrêt

Exercice 1 (Temps d'arrêt). Soit $(\Omega, \mathscr{F}, (\mathscr{F}_t)_{t\geq 0})$ un espace filtré. Parmi les variable aléatoires suivantes, lesquelles sont des temps d'arrêt?

- 1. Le minimum de deux temps d'arrêt.
- 2. Le maximum de deux temps d'arrêt.
- 3. La somme de deux temps d'arrêt.
- 4. La moyenne de deux temps d'arrêt.
- 5. La médiane de 5 temps d'arrêt.
- 6. Le premier temps à partir duquel le mouvement brownien passe un temps supérieur à 1 sans revenir en zéro.
- 7. Le premier instant où un $(\mathscr{F}_t)_{t\geq 0}$ —mouvement brownien atteint une valeur donnée $a\in\mathbb{R}$.
- 8. Le dernier zéro d'un $(\mathscr{F}_t)_{t\geq 0}$ —mouvement brownien sur l'intervalle [0,1].
- 9. Le premier instant en lequel le mouvement brownien est 1/2-Höldérien 1.
- 10. Le premier point d'intersection de deux browniens indépendants après le temps 1.
- 11. Le premier point à partir duquel deux mouvements browniens indépendants ne se rencontrent plus.
- 12. Le premier t tel que $\int_{t-1}^{t+1} B_s ds > 1$.

Exercice 2 Soit $(\Omega, \mathscr{F}, (\mathscr{F}_t)_{t\geq 0}, \mathbb{P})$ un espace de probabilité filtré et soit $(B_t)_{t\geq 0}$ un (\mathscr{F}_t) -mouvement brownien.

- 1. Trouver deux temps d'arrêt $S \leq T$ avec $S \in L^1$, tels que $\mathbb{E}[B_S^2] > \mathbb{E}[B_T^2]$.
- 2. Trouver un temps d'arrêt T tel que $\mathbb{E}[T] = +\infty$ et $\mathbb{E}[B_T^2] < \infty$.

Exercice 3 Soit $(\Omega, \mathscr{F}, (\mathscr{F}_t)_{t\geq 0}, \mathbb{P})$ un espace de probabilité filtré et soit $(B_t)_{t\geq 0}$ un (\mathscr{F}_t) -mouvement brownien. Montrer que si $S\leqslant T$ sont deux temps d'arrêt bornés, alors

$$\mathbb{E}[(B_T - B_S)^2] = \mathbb{E}[B_T^2] - \mathbb{E}[B_S^2] = \mathbb{E}[T - S].$$

Exercice 4 (Quelques martingales du mouvement brownien). Soit $(\Omega, \mathscr{F}, (\mathscr{F}_t)_{t\geq 0}, \mathbb{P})$ un espace de probabilité filtré et soit $(B_t)_{t\geq 0}$ un (\mathscr{F}_t) -mouvement brownien.

^{1.} P-presque sûrement, de tels points points (appelés « slow times ») existent dans la trajectoire du mouvement brownien, même si celui-ci est P-presque sûrement non-1/2-Höldérien.

- 1. Montrer que $(B_t)_{t>0}$ est une martingale.
- 2. Montrer que $(B_t^2 t)_{t \ge 0}$ est une martingale.
- 3. Construire une martingale à partir du processus $(B_t^3)_{t>0}$.
- 4. Construire une martingale à partir du processus $(B_t^4)_{t\geq 0}$.
- 5. Soit $\lambda \in \mathbb{C}$. Montrer que le processus $(e^{\lambda B_t \frac{\lambda^2 t}{2}})_{t>0}$ est une martingale.
- 6. Construire une martingale à partir du processus $(\cosh(\lambda B_t))_{t\geq 0}$.

Exercice 5 (**) Soit $(\Omega, \mathscr{F}, (\mathscr{F}_t)_{t\geq 0}, \mathbb{P})$ et B un (\mathscr{F}_t) -mouvement Brownien. Pour tout entier n, construire un polynôme h_n unitaire de degré n tel que $(h_n \circ B_t)_{t\geq 0}$ est une martingale, où l'on a noté

$$h_n \circ B_t = \sum_{k=0}^n h_n[k] B_t^k t^{\frac{n-k}{2}}.$$

(Indice: Charles.)

Exercice 6 (changements de mesures via les martingales) Soit $(\Omega, \mathscr{F}, (\mathscr{F}_t)_{t \in [0,T]}, \mathbb{P})$ un espace de probabilité filtré. Soit $L = (L_t)_{t \in [0,T]}$ une martingale continue fermée par L_T . On suppose que

$$\mathbb{P}(L_T > 0) = 1 \qquad \qquad \text{et} \qquad \qquad \mathbb{E}[L_T] = 1.$$

On définit une nouvelle mesure de probabilité \mathbb{P}' sur (Ω, \mathscr{F}_T) via la formule $\mathbb{P}'(A) = \mathbb{E}[\mathbf{1}_A L_T]$.

- 1. Vérifier que \mathbb{P}' est une mesure de probabilité et qu'elle est équivalente 2 à \mathbb{P} .
- 2. Montrer que pour toute variable aléatoire \mathscr{F}_t -mesurable positive X, on a $\mathbb{E}'[X] = \mathbb{E}[L_tX]$. Montrer que c'est également vrai si t est un temps d'arrêt.
- 3. Montrer qu'un procesus $(\mathscr{F}_t)_t$ -adapté $X=(X_t)_{t\in[0,T]}$ est une martingale pour la mesure \mathbb{P}' si et seulement si le processus $(X_tL_t)_{t\in[0,T]}$ est une martingale pour la mesure \mathbb{P} .

Exercice 7 Soit $X = (X_t)_{t \in [0,T]}$ une sous-martingale. Montrer que si $\mathbb{E}[X_T] = \mathbb{E}[X_0]$, alors X est une martingale.

Exercice 8 (Loi de temps d'atteinte). Soit $(B_t)_{t\geq 0}$ un mouvement brownien et a>0.

1. À l'aide de la martingale $(B_t^2 - t)_{t>0}$, calculer l'espérance de

$$T_a^* := \inf\{t \ge 0 \colon |B_t| = a\}.$$

- 2. À l'aide d'une martingale bien choisie, calculer la variance de T_a^{\star} .
- 3. À l'aide d'une martingale bien choisie, calculer la transformée de Laplace de T_a^{\star} .
- 4. Calculer la transformée de Laplace de

$$T_a := \inf\{t \ge 0 \colon B_t = a\}$$

et retrouver le fait que T_a a même loi que $(a/B_1)^2$. Que vaut $\mathbb{E}[T_a]$?

^{2.} Deux mesures μ, ν sur une même tribu sont équivalentes si elles ont les mêmes événements négligeables.

Exercice 9 (Maximum du mouvement brownien avec dérive). Soit $\{B_t\}_{t\geq 0}$ un mouvement brownien. On fixe a,b>0 et on pose

$$\tau := \inf\{t \ge 0 : B_t - bt = a\}.$$

- 1. Montrer que τ est un temps d'arrêt relativement à la filtration naturelle.
- 2. À l'aide d'une martingale bien choisie, calculer la transformée de Laplace de τ .
- 3. En déduire la probabilité que la courbe du mouvement brownien soit au dessous de la demi-droite $t \mapsto a + bt$. Pouvait-on prévoir que la réponse ne dépendrait que de ab?
- 4. Trouver la loi de la variable aléatoire

$$U := \sup_{t \ge 0} B_t - bt.$$

Exercice 10 Soit $(\Omega, \mathscr{F}, \mathbb{P})$ un espace probabilisé et \mathscr{G} une sous-tribu de \mathscr{F} . Soit X une variable aléatoire réelle telle que $e^{tX} \in L^1$ pour tout $t \in \mathbb{R}$. Montrer que X et \mathscr{G} sont indépendantes si et seulement si pour tout t réel et toute variable aléatoire positive Y qui est \mathscr{G} -mesurable, on a

$$\mathbb{E}[e^{tX} Y] = \mathbb{E}[e^{tX}] \mathbb{E}[Y].$$

Exercice 11 (Maximum du pont brownien). Soit $\{Z_t\}_{0 \le t \le 1}$ un pont brownien.

- 1. Pour $t \geq 0$ on pose $B_t = (1+t)Z_{\frac{t}{1+t}}$. Vérifier que $(B_t)_{t \geq 0}$ est un mouvement brownien.
- 2. En utilisant l'exercice précédant, déterminer la loi de la variable

$$V := \sup_{0 \le t \le 1} Z_t.$$

Exercice 12 (Une preuve du théorème d'arrêt). Sur un espace de probabilité filtré $(\Omega, \mathscr{F}, (\mathscr{F}_t)_{t\geq 0}, \mathbb{P})$, on considère une martingale continue $(M_t)_{t\geq 0}$ et un temps d'arrêt T. Le but de cet exercice est de montrer que $(M_{t\wedge T})_{t\geq 0}$ est encore une martingale. Dans tout l'exercice, "discret" signifiera à valeurs dans $\mathscr{D}_n := \{k2^{-n} \colon k \in \mathbb{N}\}$ pour un certain $n \in \mathbb{N}$.

- 1. Vérifier que la famille $\{M_{\tau} : \tau \text{ temps d'arrêt discret } \leq t\}$ est uniformément intégrable.
- 2. Montrer que si s, t et T sont discrets avec $s \le t$ deux réels non aléatoires, alors

$$\mathbb{E}[M_{t\wedge T}|\mathscr{F}_s] = M_{s\wedge T}.$$

3. Exhiber une suite de temps d'arrêt discrets qui décroît vers *T*, et conclure.

Exercice 13 (Tribu des événements antérieurs à T). Soit T un temps d'arrêt sur un espace filtré $(\Omega, \mathscr{F}, (\mathscr{F}_t)_{t>0})$. On rappelle que la tribu des événements antérieurs à T est

$$\mathscr{F}_T := \{ A \in \mathscr{F} : \forall t \ge 0, A \cap \{ T \le t \} \in \mathscr{F}_t \}.$$

- 1. Vérifier qu'il s'agit bien d'une sous-tribu de \mathcal{F} .
- 2. Soit S un temps d'arrêt tel que $S \leq T$. Montrer que $\mathscr{F}_S \subseteq \mathscr{F}_T$.
- 3. Soit $(X_t)_{t\geq 0}$ un processus continu et adapté. Montrer que $X_T\mathbf{1}_{T<\infty}$ est \mathscr{F}_T —mesurable.

Exercice 14 (Martingale à variation finie). Une fonction $f: \mathbb{R}_+ \to \mathbb{R}$ est à variation finie si

$$V_t(f) := \sup \left\{ \sum_{i=0}^{n-1} |f(t_{i+1}) - f(t_i)| \colon n \in \mathbb{N}^*, 0 = t_0 \le \dots \le t_n = t \right\} < +\infty,$$

pour tout $t \geq 0$. On rappelle que si f est continue, alors $t \mapsto V_t(f)$ l'est aussi. Soit $M = (M_t)_{t \geq 0}$ une martingale dont les trajectoires sont continues et à variation finie. Montrer que p.s., les trajectoires de M sont constantes. *Indication*: on pourra supposer que $V_t(M) \in L^{\infty}$.

Exercice 15 (Pré-Caractérisation de Lévy) Soit $(\Omega, \mathscr{F}, (\mathscr{F}_t)_{t\geq 0}, \mathbb{P})$ un espace filtré et $X=(X_t)_{t\geq 0}$ un processus adapté continu issu de zéro. On suppose que pour tout réel λ , le processus

$$(e^{\lambda X_t - \frac{t\lambda^2}{2}})_{t > 0}$$

est une (\mathcal{F}_t) -martingale. Montrer que X est un mouvement Brownien.

Exercice 16 (Caractérisation de Lévy). Sur un espace $(\Omega, \mathscr{F}, (\mathscr{F}_t)_{t\geq 0}, \mathbb{P})$, on considère une martingale continue $(M_t)_{t\geq 0}$ issue de 0 et telle que $(M_t^2-t)_{t\geq 0}$ est une martingale.

- 1. Donner un exemple d'une telle martingale.
- 2. Soit $f \in \mathscr{C}^2(\mathbb{R},\mathbb{C})$ telle que f, f' et f'' sont bornées. Montrer que pour tout $0 \le s \le t$,

$$\mathbb{E}[f(M_t)|\mathscr{F}_s] = f(M_s) + \frac{1}{2} \int_s^t \mathbb{E}[f''(M_u)|\mathscr{F}_s] du.$$

(On pourra subdiviser l'intervalle [s,t] et utiliser le développement de Taylor de f.)

3. En déduire que pour tout $\lambda \in \mathbb{R}$ et tout $0 \le s \le t$,

$$\mathbb{E}\left[e^{i\lambda(M_t - M_s)} \left| \mathscr{F}_s\right] = 1 - \frac{\lambda^2}{2} \int_s^t \mathbb{E}\left[e^{i\lambda(M_u - M_s)} \left| \mathscr{F}_s\right] du.\right]$$

- 4. En déduire que $(e^{i\lambda M_t + \frac{\lambda^2 t}{2}})_{t\geq 0}$ est une martingale pour tout $\lambda\in\mathbb{R}$.
- 5. En conclure que $(M_t)_{t>0}$ est en fait nécessairement un mouvement brownien.