9-04-2024 Shift1 Q16-30

EE24Btech11058 - P.Shiny Diavajna

A. Multiple Choice

- 1) Let $\int \frac{2-\tan x}{3+\tan x} dx = \frac{1}{2} (\alpha x + \log_e |\beta \sin x + \gamma \cos x|) + C$, where C is the constant of integration. Then $\alpha + \frac{\gamma}{\beta}$ is equal to:
 - a) 1
 - b) 7
 - c) 4
 - d) 3
- 2) A ray of light coming from the point P(1,2) gets reflected from Q on the x-axis and then passes through the point $\mathbf{R}(4,3)$. If the point $\mathbf{S}(h,k)$ is such that *PQRS* is a parallelogram, then hk^2 is equal to:
 - a) 80
 - b) 70
 - c) 60
 - d) 90
- 3) $\overrightarrow{OA} = 2\overrightarrow{a}, \overrightarrow{OB} = 6\overrightarrow{a} + 5\overrightarrow{b}$ and $\overrightarrow{OC} = 3\overrightarrow{b}$, where O is the origin. If the area of the parallelogram with adjacent sides \overrightarrow{OA} and \overrightarrow{OC} is 15 sq.units, then the area (insq.units) of the quadrilateral OABC is equal to:
 - a) 38
 - b) 32
 - c) 40
 - d) 35
- 4) Let $f(x) = x^2 + 9$, $g(x) = \frac{x}{x-9}$ and $a = (f \circ g)(10)$, $b = (g \circ f)(3)$. If e and l denote the eccentricity and the length of the latus rectum of the ellipse $\frac{x^2}{a} + \frac{y^2}{b} = 1$, then $8e^2 + l^2$ is equal to:
 - a) 16
 - b) 12
 - c) 8
 - d) 6
- 5) The parabola $y^2 = 4x$ divides the area of the circle $x^2 + y^2 = 5$ in two parts. The area of the smaller part is equal to:

 - a) $\frac{1}{3} + \sqrt{5} \sin^{-1} \left(\frac{2}{\sqrt{5}}\right)$ b) $\frac{2}{3} + \sqrt{5} \sin^{-1} \left(\frac{2}{\sqrt{5}}\right)$

 - c) $\frac{3}{3} + 5 \sin^{-1} \left(\frac{2}{\sqrt{5}} \right)^{3}$ d) $\frac{2}{3} + 5 \sin^{-1} \left(\frac{2}{\sqrt{5}} \right)$

B. Numericals

- 1) Let A be a non-singular matrix of order 3. If $det(3adj(2adj((detA)A))) = 3^{-13}.2^{-10}$ and $det(3adj(2A)) = 2^{m}.3^{n}$, then |3m + 2n| is equal to ______.
- 2) The sum of the square of the modulus of the elements in the set $\{z = a + ib : a, b \in \mathbb{Z}, z \in \mathbb{C}, |z 1| \le 1, |z 5| \le |z 5i|\}$ is _____.
- 3) Let the centre of a circle, passing through the points (0,0), (1,0) and touching the circle $x^2 + y^2 = 9$, be (h,k). Then for all possible values of the coordinates of the centre (h,k), $4(h^2 + k^2)$ is equal to
- 4) Let $f:(0,\pi)\to \mathbf{R}$ be a function given by

$$f(x) = \begin{cases} \left(\frac{8}{7}\right)^{\frac{\tan 8x}{\tan 7x}} & 0 < x < \frac{\pi}{2} \\ a - 8 & x = \frac{\pi}{2} \\ (1 + |\cot x|)^{\frac{b}{a}|\tan x|} & \frac{\pi}{2} < x < \pi \end{cases}$$

where $a, b \in \mathbb{Z}$. If f is continuous at $x = \frac{\pi}{2}$, then $a^2 + b^2$ is equal to _____.

- 5) The remainder when 428²⁰²⁴ is divided by 21 is ______.
- 6) Let $\lim_{n\to\infty} \left(\frac{n}{\sqrt{n^4+1}} \frac{2n}{(n^2+1)\sqrt{n^4+1}} + \frac{n}{\sqrt{n^4+16}} \frac{8n}{(n^2+4)\sqrt{n^4+16}} + \cdots + \frac{n}{\sqrt{n^4+n^4}} \frac{2n\cdot n^2}{(n^2+n^2)\sqrt{n^4+n^4}} \right)$ be $\frac{\pi}{k}$, using only the principal values of the inverse trigonometric functions. Then k^2 is equal to ______.
- 7) If a function f satisfies f(m+n) = f(m) + f(n) for all $m, n \in \mathbb{N}$ and f(1) = 1, then the largest natural number λ such that $\sum_{k=1}^{2022} f(\lambda + k) \le (2022)^2$ is equal to _____.
- 8) Let the set of all positive values of λ , for which the point of local minimum of the function $\left(1+x\left(\lambda^2-x^2\right)\right)$ satisfies $\frac{x^2+x+2}{x^2+5x+6}<0$, be (α,β) . Then $\alpha^2+\beta^2$ is equal to ______.
- 9) Let $A = \{2, 3, 6, 7\}$ and $B = \{4, 5, 6, 8\}$. Let R be a relation defined on $A \times B$ by $(a_1, b_1) R(a_2, b_2)$ if and only if $a_1 + a_2 = b_1 + b_2$. Then the number of elements in R is ______.
- 10) Let a, b and c denote the outcome of three independent rolls of a fair tetrahedral die, whose four faces are marked 1, 2, 3, 4. If the probability that $ax^2 + bx + c = 0$ has all real roots is $\frac{m}{n}$, gcd(m, n) = 1, then m + n is equal to ______.