6rckikose

January 30, 2025

```
[10]: import numpy as np
      import pandas as pd
      data=pd.read_csv(r'/content/hypothyroid.csv')
      data.head()
[10]:
        age sex on thyroxine query on thyroxine on antithyroid medication sick \
        41
                            f
                                                f
      1
         23
              F
                            f
                                                f
                                                                           f
                                                                                 f
      2 46
                            f
                                                f
                                                                           f
                                                                                 f
              Μ
      3 70
              F
                            t
                                                f
                                                                           f
                                                                                 f
      4 70
              F
                            f
                                                f
                                                                            f
                                                                                 f
        pregnant thyroid surgery I131 treatment query hypothyroid
                                                                      ... TT4 measured
      0
               f
                                f
                                                f
                                                                   f
                                                                                    t
               f
                                f
                                                f
      1
                                                                   f
                                                                                    t
      2
               f
                                f
                                                f
                                                                   f
                                                                                    t
                                f
                                                f
      3
               f
                                                                   f
                                                                                    t
      4
               f
                                f
                                                f
                                                                   f
         TT4 T4U measured
                             T4U FTI measured FTI TBG measured TBG referral source \
                                                                    ?
      0 125
                         t 1.14
                                                109
                                                                                  SVHC
                                                                    ?
      1 102
                                             f
                                                                f
                                                                                 other
      2 109
                            0.91
                                             t 120
                                                                    ?
                         t
                                                                f
                                                                                 other
      3 175
                         f
                               ?
                                             f
                                                  ?
                                                                f
                                                                    ?
                                                                                 other
                                                                f
          61
                           0.87
                                                 70
                                                                                   SVI
        binaryClass
      0
                  Ρ
      1
                  Р
      2
      3
                  Ρ
      [5 rows x 30 columns]
 []: data.info()
```

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 3772 entries, 0 to 3771 Data columns (total 30 columns):

#	Column	Non-Null Count	Dtype
0	age	3772 non-null	object
1	sex	3772 non-null	object
2	on thyroxine	3772 non-null	object
3	query on thyroxine	3772 non-null	object
4	on antithyroid medication	3772 non-null	object
5	sick	3772 non-null	object
6	pregnant	3772 non-null	object
7	thyroid surgery	3772 non-null	object
8	I131 treatment	3772 non-null	object
9	query hypothyroid	3772 non-null	object
10	query hyperthyroid	3772 non-null	object
11	lithium	3772 non-null	object
12	goitre	3772 non-null	object
13	tumor	3772 non-null	object
14	hypopituitary	3772 non-null	object
15	psych	3772 non-null	object
16	TSH measured	3772 non-null	object
17	TSH	3772 non-null	object
18	T3 measured	3772 non-null	object
19	T3	3772 non-null	object
20	TT4 measured	3772 non-null	object
21	TT4	3772 non-null	object
22	T4U measured	3772 non-null	object
23	T4U	3772 non-null	object
24	FTI measured	3772 non-null	object
25	FTI	3772 non-null	object
26	TBG measured	3772 non-null	object
27	TBG	3772 non-null	object
28	referral source	3772 non-null	object
29	binaryClass	3772 non-null	object
dtyp	es: object(30)		
memo	ry usage: 884.2+ KB		

memory usage: 884.2+ KB

[]: print(data.isnull().sum())

age	0
sex	0
on thyroxine	0
query on thyroxine	0
on antithyroid medication	0
sick	0
pregnant	0
thyroid surgery	0
I131 treatment	0

```
query hypothyroid
                              0
query hyperthyroid
                              0
lithium
                              0
goitre
                              0
tumor
                              0
hypopituitary
                              0
psych
                              0
TSH measured
                              0
                              0
T3 measured
                              0
Т3
                              0
TT4 measured
                              0
TT4
                              0
T4U measured
                              0
T4U
FTI measured
FTI
                              0
TBG measured
                              0
TBG
                              0
referral source
                              0
binaryClass
                              0
dtype: int64
```

[6]: from sklearn.preprocessing import LabelEncoder # Create a LabelEncoder instance enc = LabelEncoder() # Encode only categorical columns categorical_cols = data.select_dtypes(include=['object']).columns for col in categorical_cols: data[col] = enc.fit_transform(data[col]) data.info() # Check the data types again

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3772 entries, 0 to 3771
Data columns (total 30 columns):

#	Column	Non-Null Count	Dtype
0	age	3772 non-null	int64
1	sex	3772 non-null	int64
2	on thyroxine	3772 non-null	int64
3	query on thyroxine	3772 non-null	int64
4	on antithyroid medication	3772 non-null	int64
5	sick	3772 non-null	int64
6	pregnant	3772 non-null	int64
7	thyroid surgery	3772 non-null	int64

8	I131 treatment	3772 non-null	int64
9	query hypothyroid	3772 non-null	int64
10	query hyperthyroid	3772 non-null	int64
11	lithium	3772 non-null	int64
12	goitre	3772 non-null	int64
13	tumor	3772 non-null	int64
14	hypopituitary	3772 non-null	int64
15	psych	3772 non-null	int64
16	TSH measured	3772 non-null	int64
17	TSH	3772 non-null	int64
18	T3 measured	3772 non-null	int64
19	T3	3772 non-null	int64
20	TT4 measured	3772 non-null	int64
21	TT4	3772 non-null	int64
22	T4U measured	3772 non-null	int64
23	T4U	3772 non-null	int64
24	FTI measured	3772 non-null	int64
25	FTI	3772 non-null	int64
26	TBG measured	3772 non-null	int64
27	TBG	3772 non-null	int64
28	referral source	3772 non-null	int64
29	binaryClass	3772 non-null	int64
1+	ag: in+6/(20)		

dtypes: int64(30)
memory usage: 884.2 KB

[]: data.head()

[]:		age	sex on	thyr	coxine	query	on	thyro	oxine	on a	ntithy	roid	medicat	ion	\	
	0	34	1		0			·	0					0		
	1	15	1		0				0					0		
	2	40	2		0				0					0		
	3	67	1		1				0					0		
	4	67	1		0				0					0		
		sick	pregna	nt t	hyroid	surgei	су	I131	treat	tment	query	hypo	othyroid	•••	\	
	0	0		0	•		0			0			0			
	1	0		0			0			0			0	•••		
	2	0		0			0			0			0	•••		
	3	0		0			0			0			0	•••		
	4	0		0			0			0			0	•••		
		TT4 m	neasured	TT4	1 T4U r	neasure	ed	T4U	FTI r	neasur	ed FT	I T	3G measu	red	TBG	\
	0		1	28	3		1	72			1 1	0		0	0	
	1		1	3	3		0	146			0 23	4		0	0	
	2		1	10)		1	48			1 2	2		0	0	
	3		1	83	3		0	146			0 23	4		0	0	
	4		1	201	L		1	44			1 19	9		0	0	

	referral	source	binaryClass
0		1	1
1		4	1
2		4	1
3		4	1
4		3	1

[5 rows x 30 columns]

[]: data=data.drop_duplicates() data.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 3711 entries, 0 to 3771
Data columns (total 30 columns):

#	Column	Non-Null Count	Dtype
0	age	3711 non-null	int64
1	sex	3711 non-null	int64
2	on thyroxine	3711 non-null	int64
3	query on thyroxine	3711 non-null	int64
4	on antithyroid medication	3711 non-null	int64
5	sick	3711 non-null	int64
6	pregnant	3711 non-null	int64
7	thyroid surgery	3711 non-null	int64
8	I131 treatment	3711 non-null	int64
9	query hypothyroid	3711 non-null	int64
10	query hyperthyroid	3711 non-null	int64
11	lithium	3711 non-null	int64
12	goitre	3711 non-null	int64
13	tumor	3711 non-null	int64
14	hypopituitary	3711 non-null	int64
15	psych	3711 non-null	int64
16	TSH measured	3711 non-null	int64
17	TSH	3711 non-null	int64
18	T3 measured	3711 non-null	int64
19	T3	3711 non-null	int64
20	TT4 measured	3711 non-null	int64
21	TT4	3711 non-null	int64
22	T4U measured	3711 non-null	int64
23	T4U	3711 non-null	int64
24	FTI measured	3711 non-null	int64
25	FTI	3711 non-null	int64
26	TBG measured	3711 non-null	int64
27	TBG	3711 non-null	int64
28	referral source	3711 non-null	int64

29 binaryClass 3711 non-null int64

dtypes: int64(30) memory usage: 898.8 KB

[]: data.describe()

[]:		age	sex	on thyroxine	query on thy	roxine \
	count	3711.000000	3711.000000	3711.000000		000000
	mean	46.493937 1.266505		0.125034		013473
	std	20.863642	0.525220	0.330802		115306
	min	0.000000	0.000000	0.000000		000000
	25%	28.000000	1.000000	0.000000	0.0	000000
	50%	50.000000	1.000000	0.000000	0.0	000000
	75%	63.000000	2.000000	0.000000		000000
	max	93.000000	2.000000	1.000000	1.0	000000
		on antithyroi	d medication	sick	pregnant	thyroid surgery \
	count		3711.000000	3711.000000	3711.000000	3711.000000
	mean		0.011318	0.039612	0.014282	0.014282
	std		0.105795	0.195072	0.118666	0.118666
	min		0.000000	0.000000	0.000000	0.000000
	25%		0.000000	0.000000	0.000000	0.000000
	50%		0.000000	0.000000	0.000000	0.000000
	75%	0.000000		0.000000	0.000000	0.000000
	max		1.000000	1.000000	1.000000	1.000000
		I131 treatmen	t query hypo	othyroid T	T4 measured	TT4 \
	count	3711.00000		•		3711.000000
	mean	0.01589		0.063056	0.953921	119.133118
	std	0.12510	0 (0.243096	0.209685	98.238113
	min	0.00000	0 (0.000000	0.000000	0.000000
	25%	0.00000	0 (0.000000	1.000000	21.000000
	50%	0.00000	0 (0.000000	1.000000	79.000000
	75%	0.00000	0 (0.000000	1.000000	226.000000
	max	1.00000	00 1	1.000000	1.000000	241.000000
						mp.a
		T4U measured	T4U	FTI measured		TBG measured \
	count	3711.000000	3711.000000	3711.000000		3711.0
	mean	0.911884	64.854756	0.912423		0.0
	std	0.283502	31.330172	0.282718		0.0
	min	0.000000	0.000000	0.000000		0.0
	25%	1.000000	46.000000	1.000000		0.0
	50%	1.000000	57.000000	1.000000		0.0
	75%	1.000000	71.000000	1.000000		0.0
	max	1.000000	146.000000	1.000000	234.000000	0.0

TBG referral source binaryClass

```
count 3711.0
                   3711.000000 3711.000000
          0.0
                       3.267583
                                    0.921584
mean
std
          0.0
                       1.097079
                                    0.268861
          0.0
min
                      0.000000
                                    0.000000
25%
          0.0
                       3.000000
                                    1.000000
50%
          0.0
                       4.000000
                                    1.000000
75%
          0.0
                       4.000000
                                    1.000000
          0.0
max
                      4.000000
                                    1.000000
```

[8 rows x 30 columns]

```
[]: # Convert relevant columns to numeric, forcing errors to NaN
     data['age'] = pd.to_numeric(data['age'], errors='coerce')
     data['TT4'] = pd.to_numeric(data['TT4'], errors='coerce')
     data['T4U'] = pd.to numeric(data['T4U'], errors='coerce')
     data['FTI'] = pd.to_numeric(data['FTI'], errors='coerce')
     # Check for missing values after conversion
     print(data.isnull().sum())
     # Handle missing values if necessary (e.g., drop or fill)
     data = data.dropna() # Example: drop rows with missing values
     # Normalize the columns
     data['age'] = (data['age'] - data['age'].min()) / (data['age'].max() -__

data['age'].min())

     data['TT4'] = (data['TT4'] - data['TT4'].min()) / (data['TT4'].max() -__

data['TT4'].min())

     data['T4U'] = (data['T4U'] - data['T4U'].min()) / (data['T4U'].max() -__

data['T4U'].min())
     data['FTI'] = (data['FTI'] - data['FTI'].min()) / (data['FTI'].max() -,,

data['FTI'].min())
```

```
age
                              0
                               0
sex
on thyroxine
                              0
query on thyroxine
                               0
on antithyroid medication
sick
                               0
pregnant
                               0
                              0
thyroid surgery
I131 treatment
                              0
query hypothyroid
                              0
query hyperthyroid
                              0
lithium
                              0
                              0
goitre
tumor
                              0
```

	psy TSH TSH T3 T3 TT4 T4U T4U FTI FTI TBG TBG ref bin dty	measumeasumeasumeasumeasumeasumeasumeasu	ured ured ured ured ured ured sour														
[]:	dat	ta.hea	ad()														
[]:		0.365 0.161 0.430 0.720 0.720 sick 0 0 0	.290 0108 0430 0430 pre	1	5 t t)))))))	thyroid TT4 116183	0 0 1 0 surg		I13	31 l	0.493151	que	ypotl	0 0 0 0 0	 FTI	0 0 0 0 0	\
	1			1	0.0	012448			0)	1.000000		0	1.000	0000		
	2			1		041494			1		0.328767		1				
	3 4			1 1		344398 334025			0		1.000000 0.301370		0				
	0 1 2 3 4	TBG n	ıeasu		TB(G refer	rral	sour			inaryClass 1 1 1 1 1		-				

```
[5 rows x 30 columns]
```

```
[]: y=data['binaryClass']
     x=data.drop(['binaryClass'],axis=1)
[]: from sklearn.model_selection import train_test_split
     xtrain,xtest,ytrain,ytest= train_test_split(x,y,test_size=0.1,stratify=y)
     print(xtrain.shape)
     print(xtest.shape)
     print(ytrain.shape)
     print(ytest.shape)
    (3339, 29)
    (372, 29)
    (3339,)
    (372,)
[]: | # Ensure the cell that loads the training data is executed
     from sklearn.model_selection import train_test_split
     xtrain, xtest, ytrain, ytest = train_test_split(x, y, test_size=0.1, stratify=y)
     # Check for errors in data loading
     if 'xtrain' in globals():
         # Fit the XGBClassifier model
         from xgboost import XGBClassifier
         svm_model = XGBClassifier()
         svm_model.fit(xtrain, ytrain)
     else:
         print("Model not found in the notebook. Please ensure a model is trained to \sqcup
      ⇔view feature importance.")
[]: from sklearn.metrics import accuracy_score, confusion matrix, __
      ⇔classification_report
     # Make predictions on the test set
     predictions = svm_model.predict(xtest)
     # Calculate accuracy
     percentage = svm_model.score(xtest, ytest)
     # Generate confusion matrix
     res = confusion_matrix(ytest, predictions)
     # Print validation confusion matrix
     print("Validation Confusion Matrix:")
     print(res)
```

```
# Print classification report
print("Classification Report:")
print(classification_report(ytest, predictions))

# Check the accuracy on the training set
training_accuracy = svm_model.score(xtrain, ytrain) * 100
testing_accuracy = percentage * 100

print('Training Accuracy = {:.2f}%'.format(training_accuracy))
print('Testing Accuracy = {:.2f}%'.format(testing_accuracy))
```

Validation Confusion Matrix:

[[25 4] [2 347]]

Classification Report:

	precision	recall	f1-score	support
C	0.93	0.86	0.89	29
1	0.99	0.99	0.99	349
accuracy			0.98	378
macro avg	0.96	0.93	0.94	378
weighted avg	0.98	0.98	0.98	378

Training Accuracy = 100.00% Testing Accuracy = 98.41%

Since the model has performed well on the test set, it doesn't require any hyperparameter tuning.

```
[15]: from sklearn import svm
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_iris
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import make_pipeline

# Load a sample dataset (e.g., Iris)
data = load_iris()
X = data.data
y = (data.target == 2).astype(int) # Convert to binary classification (e.g.,u
class 2 vs rest)

# Split the dataset into training and test sets
Xtrain, xtest, ytrain, ytest = train_test_split(X, y, test_size=0.3,u
random_state=42)

# Create and train an SVM model with probability estimates enabled
svm_model = make_pipeline(StandardScaler(), svm.SVC(probability=True))
```

```
svm_model.fit(Xtrain, ytrain)
# Now you can use the predict_proba method as in your original code
y_pred_proba = svm_model.predict_proba(xtest)[:, 1]
# Calculate FPR, TPR and threshold values
fpr, tpr, thresholds = roc_curve(ytest, y_pred_proba)
# Plot ROC curve
plt.figure(figsize=(10, 6))
plt.plot(fpr, tpr, label='SVM (AUC = {:.3f})'.format(roc_auc_score(ytest,__
 →y_pred_proba)))
plt.plot([0, 1], [0, 1], 'k--', label='Random Classifier (AUC = 0.500)')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC Curve')
plt.legend(loc='lower right')
plt.grid(True)
plt.show()
```



```
[]: import pandas as pd import matplotlib.pyplot as plt
```

Distribution of Target Classes

