PATENT ABSTRACTS OF JAPAN

(11)Publication number :

11-082352

(43)Date of publication of application: 26.03.1999

(51)Int.CI.

F04C 29/02

F04C 29/02

(21)Application number: 09-241472

F04C 18/02

(22)Date of filing:

05.09.1997

(71)Applicant: DENSO CORP

(72)Inventor: HISANAGA SHIGERU

HAYASHI HIROYUKI TAKEMOTO TAKESHI **AKIYAMA KUNITAKA**

(54) COMPRESSOR

(57) Abstract:

PROBLEM TO BE SOLVED: To prevent the direct collision of the lubricating oil spouted from a discharge hole with an oil level inside an oil reservoir chamber so as to restrict the fluctuation of an oil level by opening a discharge hole for discharging the lubricating oil of a separating chamber to the oil reservoir chamber in the direction parallel with a liquid level inside the oil reservoir chamber.

SOLUTION: A rear housing 103 fixed to a front housing 101 of a scroll compressor mechanism and a fixed scroll 111 partition a separating chamber 121 for separating the lubricating oil from the refrigerant discharged from a discharge port and an oil reservoir chamber 130 for storing the separated lubricating oil. A circumferential inner wall surface 121a of the separating chamber 121 is formed with a lead-in hole 122 for leading the discharged refrigerant into the separating chamber 121 and a discharge hole 123 for discharging the separated lubricating oil to the oil reservoir chamber 130. At this stage, the lead-in hole 122 is arranged over the discharge hole 123, and while both the holes 122, 123 are opened in the tangent direction of a circumferential inner wall surface 121a so as to restrict the fluctuation of the oil level of the oil reservoir chamber 130 due to the discharged lubricating oil.

(19) 日本國符許庁 (JP)

(12) 公開特許公報(A)

(11)特許出回公园番号

特開平11-82352

(43)公問日 平成11年(1999) 3月26日

(51) Int.CL.6		織別記号	FI		
F 0 4 C	29/02	351	F04C 29/02	351D	
		361		3 6 1 Z	
	18/02	311	18/02	311Y	

容査節求 未留求 留求項の役 6 OL (全 9 頁)

(21)出廢番号	特顯平9-241472	(71)出風人	000004260
			株式会社デンソー
(22) 出頭日	平成9年(1997)9月5日		受知県刈谷市昭和町1丁目1番地
	•	(72)発明苷	久永 滋
			受知県刈谷市昭和叮1丁目1番地 株式会
			社デンソー内
	•	(72)発明者	林 寬之
		,	受知県刈谷市昭和叮1丁目1番地 株式会
			社デンソー内
	, 1	(72)発明者	竹本 閉
			愛知県刈谷市昭和町1丁目1番地 株式会
			社デンソー内
5		(74)代理人	弁理士 伊苡 洋二 (外1名)
			最終質に焼く

(54)【発明の名称】 圧熔机

(57)【要約】

【課題】 圧縮機の大型化を招くてとなく、冷媒と潤滑油との分離能力の向上を図る。

【解決手段】 排出孔123を貯油室130内の油面OLと平行な方向に向けて開口させる。これにより、排出孔123から吹き出される潤滑油は、先ず、固定スクロール111の端板部111aに衝突するので、吹き出された潤滑油が貯油室130内の油面OLに直接衝突することを防止できる。したがって、油面OLが変動することを抑制することができるので、潤滑油が貯油室130から分離室121に逆流してしまうことが防止でき、貯油室130の体積を拡大することなく、圧縮機100の大型化を招くことなく、分離能力の向上を図ることができる。

【論求項1】 流体を吸入圧縮する圧縮機格(110) をハウジング(101、111、103)内に有し、流 体と共に潤滑油を前記圧縮機構(110)内に吸入させ るととにより、前記圧縮機構(110)の潤滑を行う圧 縮機であって、

前記ハウジング(101、111、103)内に形成さ れ、前記圧縮機構(110)から吐出される流体から潤 滑油を分離する分離室(121)と、

前記ハウジング(101、111、103)内に形成さ 10 れ、前記分離室(121)にて分離された潤滑油を貯え る貯油室(130とを有し、

前記分離室(121)には、前記圧縮機構(110)か ら吐出される流体を前記分離室(121)内に導く導入 孔(122)、および分離された潤滑油を前記貯油室 (130)に排出する排出孔(123)が形成され、 さらに、前記排出孔(123)は、前記貯油室(13 0)内の油面(OL)と平行な方向に向けて開口してい ることを特徴とする圧縮機。

【請求項2】 前記分離室(121)の空間形状は、円 20 柱状に形成されており、前記導入孔(122)および前 記排出孔(123)は、前記分離室(121)の円周内 壁面(121a)の接線方向に向けて開口していること を特徴とする論求項1に記載の圧縮機。

【 請求項3 】 前記導入孔 (122) は、前記油面 (O L) と平行な面であって、前記排出孔(123)を含む 基準面(S。)上、または前記基準面(S。)より上方 側に位置し、

さらに、前記分離室(121)の軸線(L,)方向は、 前記油面(OL)に対して垂直な基準線(L。)に対し 30 室に形成している。 て傾いていることを特徴とする論求項2に記載の圧縮 機。

【請求項4】 前記導入孔(122) および前記排出孔 (123)は、同一の向きに向けて開口していることを 特徴とする論求項1ないし3のいずれか1つに記哉の圧 縮機。

【論求項5】 前記ハウジング(101、111、10 3)内には、前記圧縮機構(110)を駆動するシャフ ト(102)が配設されており、

前記シャフト(102)は、その軸方向が前記袖面(O 40 し)と平行になるように構成されていることを特徴とす る論求項1ないし4のいずれか1つに記載の圧縮機。 【 請求項6 】 流体を吸入圧縮する圧縮機構(110)

をハウジング(101、111、103)内に有し、流 体と共に潤滑油を前記圧縮機構(110)内に吸入させ ることにより、前記圧縮機構(110)の潤滑を行う圧 縮機であって、

前記ハウジング(101、111、103)内に形成さ れ、前記圧縮機構(110)から吐出される流体から潤 滑油を分離する分離室(121)と、

前記ハウジング(101、111、103)内に形成さ れ、前記分離室(121)にて分離された潤滑油を貯え る貯油室(130とを有し、

前記分離室(121)には、前記圧縮機構(110)か ら吐出される流体を前記分離室(121)内に導く導入 孔(122)、および分離された潤滑油を前記貯油室 (130) に排出する排出孔(123) が形成され、 さらに、前記貯油室(130)には、前記排出孔(12 3)から吹き出す潤滑油を衝突させ、前記排出孔(12 3)から吹き出す潤滑油が、前記貯油室(130)内の 油面(OL)に直接衝突することを防止する衝突壁(1 11a、140)が形成されていることを特徴とする圧

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、冷媒等の流体と共 に潤滑油を吸入させることにより、スクロール型圧縮機 構等の圧縮機構の潤滑を行う圧縮機に関するもので、車 両用冷凍サイクルの圧縮機に用いて有効である。

100021

【従来の技術】例えば冷凍サイクルの圧縮機において は、冷媒と共に潤滑油を圧縮機外に吐出すると、冷凍サ イクルの効率が低下するので、特開平7-151083 号公報に記載のごとく、圧縮機構の吐出側に冷媒と潤滑 油とを分離するオイルセパレータ等の分離室を設けてい。 る。

【0003】そして、分離室の下側(重力の向き)に、 分離した潤滑油を貯える貯油室を形成すとともに、貯油 室内の油面に対して垂直な方向に開口する排出孔を分離

[0004]

【発明が解決しようとする課題】ところで、発明者等 は、上記公報に記載のごとく、排出孔が貯油室内の油面 に対して垂直な方向に開口する分離室において、潤滑油 の分離能力について試験検討したところ、十分な分離能 力を得ることができなかった。そこで、発明者等は、十 分な分離能力を得ることができなかった原因を調査研究 したところ、以下の点が明らかになった。

【0005】すなわち、上記公報に記載の分離室では、 分離室内の潤滑油を貯油室に排出させる排出力として、 分離された潤滑油の自重を利用するといった技術的思想 の基に、排出孔を油面に対して垂直な方向に開口させて いる。しかし、分離室には圧縮機構から吐出した高圧の 冷媒(流体)が導入されることに加えて、貯油室は比較 的小さな排出孔を介して分離室に連通しているので、分 離室から貯油室に潤滑油が排出される際に、その静圧は 低下するものの助圧が上昇し、潤滑油は排出孔から噴射 されるように貯油室に吹き出される。

【0006】そして、排出孔から吹き出される潤滑油の 50 助圧により、貯油室内の油面が大きく変励するので、潤

滑油が排出孔を経由して貯油室から分離室に逆流してし まい、十分な分離能力を得ることができなくなる。また さらに、油面が大きく変励した際に、貯油室から圧縮機 構に潤滑油を供給する供給ポートの位置より、油面が低 下する場合があるので、圧縮機構に安定的に潤滑油を供 給することができない。延いては、圧縮機構の焼き付き 等を招き、圧縮機の耐久性を低下させるおそれがある。 【0007】因みに、この問題に対して、貯油室の体積 を拡大して貯油量を増大し、油面の変化を抑制するとい 化を招いてしまうという新たな問題が発生する。本発明 は、上記点に鑑み、圧縮機の大型化を招くことなく、分 離能力の向上を図ることを目的とする。

[8000]

【課題を解決するための手段】本発明は、上記目的を達 成するために、以下の技術的手段を用いる。 論求項1~ 5に記載の発明では、分離室(121)の潤滑油を貯油 室(130)に排出する排出孔(123)が、貯油室 (130)内の油面(OL)と平行な方向に向いて開口 していることを特徴とする。

【0009】 これにより、排出孔(123) から吹き出 した潤滑油が、貯油室(130)内の油面(OL)に直 接衝突することを防止できるので、その潤滑油の助圧に より、油面(OL)が変効することを抑制することがで き、潤滑油が貯油室(130)から分離室(121)に 逆流してしまうことが防止できる。したがって、本発明 によれば、貯油室(130)の体積を拡大することな く、油面(OL)が変動することを抑制することができ るので、圧縮機100の大型化を招くことなく、分離能 力の向上を図ることができる。

【0010】なお、ここで、油面(OL)と平行な方向 とは、厳密に平行を意味するものではなく、上記記載か ら明らかなように、排出孔(123)から吹き出した潤 滑油が、貯油室(130)内の油面(OL)に直接衝突 しない程度の傾きを許容するものである。 請求項2に記 載の発明では、導入孔(122)および排出孔(12 3) が、分離室 (121) の円周内壁面 (121a) の 接線方向に向けて開口していることを特徴とする。 【0011】 これにより、導入孔 (122) から分離室

(121)に入射した流体が、円周内壁面(121a) に沿って旋回する。そして、排出孔(123)も円周内 壁面(121a)の接線方向に向けて開口しているの で、その旋回流れに沿って、潤滑油が滑らかに排出孔 (123) から貯油室(130) に排出する。したがっ て、分離された潤滑油を確実に貯油室(130)に排出 することができるので、貯油室(130)への潤滑油の 排出性を向上させることとできる。延いては、分離能力 を向上させることができる。

【0012】また、潤滑油の排出性が高いので、本発明 によれば、排出孔(123)を1つとしても十分な排出 50

・性を得ることができる。延いては、排出孔(123)を 加工するための工数を低減することができるので、圧縮 機の製造原価低減を図ることができる。 論求項3 に記哉 の発明では、分離室 (121) の軸線 (L,)方向は、 抽面(OL)に対して垂直な基準線(L。)に対して傾 いていることを特徴とする。

【0013】 これにより、貯油室(130)の体積を拡 大することなく、最大抽面高さを高くするとができるの で、圧縮機の大型化を招くことなく、実質的な貯油量を った手段が考えられるが、この手段では、圧縮機の大型 10 増大することができる。したがって、さらに、分離能力 は、導入孔(122) および排出孔(123) は、同一 の向きに向けて開口していることを特徴とする。

> 【0014】 これにより、両孔(122、123)を同 一の向きから加工できるので、孔開け加工時に、ワーク であるハウジング(103)のチャッキングをやり直す 必要がない。したがって、孔開け加工の工数(時間)の 低減(短縮)を図ることができるので、生産性の向上を 図ることができる。延いては、分離能力の向上を図りつ 20 つ、圧縮機の製造原価低減を図ることができる。

【0015】論求項6に記載の発明では、貯油室(13 0) には、排出孔(123) から吹き出す潤滑油を衝突 させ、排出孔(123)から吹き出す潤滑油が、貯油室 (130)内の油面(OL)に直接衝突することを防止 する衒奕壁(111a、140)が形成されていること を特徴とする。これにより、排出孔(123)から吹き 出した潤滑油は、先ず、衝突壁(111a、140)に 衝突するので、貯油室(130)内の油面(OL)に直 接衝突することを防止できる。したがって、油面(O L)が変励することを抑制することができるので、潤滑 油が貯油室(130)から分離室(121)に逆流して しまうことが防止できる。

【0016】なお、上記各手段の括弧内の符号は、後述 する実施形態記載の具体的手段との対応関係を示すもの である。

[0017]

【発明の実施の形態】

(第1実施形態) 本実施形態は、本発明に係る圧縮機1 00を車両用冷凍サイクルに適用したものであって、図 1は圧縮機100の断面図である。図1中、110は、 冷媒(流体)を吸入圧縮する圧縮機構であり、この圧縮 機構110は、フロントハウジング101に固定された 固定スクロール(固定部)111、および固定スクロー ル111に対して可助(旋回)する可助スクロール(可 助部)112を有して構成されている。

【0018】なお、可効スクロール112は、フロント ハウジング101に回転可能に配設されたシャフト10 2により旋回駆動され、可動スクロール112の旋回と ともに、両スクロール111、112によって形成され る作動室V。の体積を拡大縮小することにより冷媒を吸

入圧縮する。因みに、本実施形態に係る圧縮機100 は、シャフト102に接続される電磁クラッチ内蔵型プ ーリ(図示せず。)を介して車両エンジンにより回転駆 励される。

【0019】また、103は、固定スクロール(シェ ル) 111を介してフロントハウジング101に固定さ れたリアハウジングであり、このリアハウジング103 は、固定スクロール111と共に、圧縮機構110の吐 出ポート113 (図2参照) から吐出される冷媒から潤 滑油を分離する分離室121、および分離室121にて 10 分離された潤滑油を貯える貯油室130を構成してい

【0020】ところで、分離室121内の空間形状は、 図1、2に示すように、円柱状に形成されており、分離 室121の円周内壁面121aには、圧縮機構110か ら吐出される冷媒を分離室121内に導く導入孔12 2、および分離された潤滑油を貯油室130に排出する 排出孔123が形成されている。そして、分離室121 の軸線方向し、(図3参照)を貯油室130内の油面0 Lに対して垂直な基準線L。に一致させた状態で、導入 20 孔122を排出孔123より上方側に位置させて、両孔 122、123を円周内壁面121aの接線方向に向け て開口させている。なお、本実施形態では、図4、5に 示すように、導入孔122および排出孔123は、固定 スクロール 1 1 1 の端板部 1 1 1 a (図 1 参照) に向け て同一の向きに開口している。

【0021】したがって、本実施形態では、導入孔12 2および排出孔123は、貯油室130内の油面OLと 平行な方向、すなわち水平方向に向けて開口しているこ ととなり、シャフト102の軸方向と一致する。また、 図1中、124は、分離室121内に同軸状に配設され た略円筒状の分離管 (セパレータパイプ) であり、その 一端側は圧縮機100の吐出口104を構成している。 なお、以下、分離室121~分離管124を総称してC S型オイルセパレータ(以下、セパレータと略す。)1. 20と呼ぶ。

【0022】因みに、本実施形態では、導入孔122を 分離管124の外壁に面する部位に形成することによ り、分離室121内に導入された冷媒を分離管124と 円周内壁面121aとの間の円筒空間内で旋回させて、 確実に潤滑油を冷媒から分離することができるようにし ている。なお、貯油室130に貯えられた潤滑油は、図 6、7に示すように、固定スクロール111とリアハウ ジング103との間に配設されたガスケット105に形 成された異形孔106aをオイル通路として、固定スク ロール111に形成されたオイル通路111bを経由し て、圧縮機構110の吸入室114に導かれる。

【0023】また、吐出ポート113から導入孔122 に至る導入通路 122 a と貯油室 130 とを離隔する隔 壁は、リアハウジング103に一体形成した突出壁(リー50 は、分離能力を向上させることができる。また、本実施

ブ) 103 a と固定スクロール 111 の端板部 111 a に一体形成した突出壁(リブ)111cとによって形成 されている。次に、本実施形態の特徴を述べる。

【0024】本実施形態によれば、排出孔123は、貯 油室130内の油面OLと平行な方向に向けて開口して いるので、酒滑油が排出孔123から噴射されるよう に、貯油室130に吹き出されても、吹き出された溜滑 油は、先ず、固定スクロール111の端板部111aに 衝突する。したがって、吹き出された潤滑油が貯油室1 30内の油面Oしに直接衝突することを防止できるの で、その潤滑油の助圧により、油面OLが変助すること を抑制することができ、潤滑油が貯油室130から分離 室121に逆流してしまうことが防止できる。

【0025】以上に述べたように、貯油室130の体積 を拡大することなく、油面OLが変動することを抑制す ることができるので、圧縮機100の大型化を招くこと なく、分離能力の向上を図ることができる。また、導入 孔122および排出孔123を同一の向きに開口させて いるので、両孔122、123を同一の向きから加工で きるので、孔開け加工時に、ワークであるリアハウジン グ103のチャッキングをやり直す必要がない。

【0026】したがって、孔開け加工の工数(時間)の 低減(短縮)を図ることができるので、生産性の向上を 図ることができる。延いては、分離能力の向上を図りつ つ、圧縮機100の製造原価低減を図ることができる。 また、本実施形態では、吐出ポート113から導入孔1 22 k至る導入通路 122 a と貯油室 130 とを離隔す る隔壁が、リアハウジング103の突出壁103aと固 定スクロール111の端板部111aの突出壁111c 30 とによって形成されているので、容易に導入通路122 aと貯油室130とを離隔することができる。

【0027】また、分離管124を分離室121内に配 設することにより、吐出口104を形成しているので、 セパレータ120と吐出口104とを一体化することが できる。したがって、セパレータ120から吐出口10 4に至る冷媒通路を廃止することができるので、前記冷 媒通路における、冷媒漏れを防止するシール構造を廃止 できる。延いては、圧縮機100の製造原価低減を図る **とができる。**

40 【0028】また、導入孔122は、分離室121の円 周内壁面 121 aの接線方向に向けて開口しているの で、導入孔122から分離室121に入射した冷媒が、 円周内壁面121aに沿って旋回する。そして、排出孔 1236円周内壁面121aの接線方向に向けて開口し ているので、その旋回流れに沿って、潤滑油が滑らかに 排出孔123から貯油室130に排出する。

【0029】したがって、分離された潤滑油を確実に貯 油室130に排出することができるので、貯油室130 への潤滑油の排出性を向上させることとできる。延いて 形態に係る圧縮機100のセパレータ120は潤滑油の 排出性が高いので、排出孔123を1つとしても十分な 排出性を得ることができる。延いては、排出孔123を 加工するための工数を低減することができるので、圧縮 機の製造原価低減を図ることができる。

【0030】(第2実施形態)上述の実施形態では、分離室121の軸線方向上、と抽面OLに対して垂直な基準線上。とを一致させたが、本実施形態は、図8に示すように、分離室121の軸線方向上、を基準線上。に対して傾けたものである。なお、この際、導入孔122は、油面OLと平行な面であって、排出孔123を含む基準面S。上、または基準面S。より上方側に位置させる必要がある。

【0031】 これにより、貯油室130の体積を拡大することなく、最大油面高さOL。 を高くするとができるので、圧縮機100の大型化を招くことなく、実質的な貯油量を増大することができる。したがって、さらに、分離能力を向上させることができる。

(第3実施形態)上述の実施形態では、排出孔123から吹き出した潤滑油(以下、この潤滑油を吹出油と呼ぶ。)を、固定スクロール111の端板部111aに衝突させることにより、吹出油が油面OLに直接衝突することを防止したが、図9に示すように、排出孔123を油面OL側に向けて開口させるとともに、排出孔123と油面OLとの間に、吹出油を衝突させる衝突壁140を新たに設けてもよい。

【0032】なお、衝突壁140を設けることにより、吹出油が油面OLに直接衝突することを防止して油面OLの変動を抑制する場合には、図9から明らかなように、排出孔123の開口方向は、基準線L。と同方向の30みならず、基準線L。と交差する方向であってもよい。(第4実施形態)本実施形態は、固定スクロール111の端板部111aに衝突した潤滑油の多くが、直接、貯油室130側に転向することを防止する遮蔽板150を端板部111aに設けたものである(図10、11参照)。これにより、油面OLの変動をさらに抑制するこ*

*とができる。

【0033】なお、本実施形態に係る遮蔽板150は、図12に示すように、リアハウジング103側に形成してもよい。ところで、また、上述の実施形態では、導入孔122および排出孔123を同一の向きに開口させたが、図10に示すように、排出孔123を導入孔122の反対側に設け、両孔122、123の開口する向きが異なるようにしてもよい。

[0034]また、上述の実施形態では、圧縮機構11 00としてスクロール型圧縮機構を用いたが、本発明はとれて限定されるものではなく、ベーン型、ローリングビストン型等その他の圧縮機構であってもよい。

【図面の簡単な説明】

[図1] 第1実施形態に係る圧縮機の断面図である(図3のD-D断面図)。

【図2】図1のB-B断面図である。

【図3】図1のC矢視図である。

【図4】図3のE-E断面図である。

【図5】図3のF-F断面図である。

【図6】図1のA-A断面図である。

【図7】ガスケットのB矢視図である。

【図8】第2実施形態に係る圧縮機の図1のC矢視に相当する図面である。

【図9】第3実施形態に係る圧縮機の断面図である

【図10】第4実施形態に係る圧縮機の図3のE-E断面に相当する断面図である。

【図11】図10のG-G断面図である。

【図12】本発明の変形例に係る図3のE-E断面に相当する断面図である。

【図13】第4実施形態に係る圧縮機の変形例に係る図3のE-E断面に相当する断面図である。

【符号の説明】

110…圧縮機構、120…CSオイルセパレータ、1 21…分離室、122…導入孔、123…排出孔、13 0…貯油室。

【図4】

Fa: 冷性+オイル放回数

【図5】

【図13】

[図1]

[図2]

[図3]

[図10]

【図11】

[図12]

フロントページの続き

(72)発明者 秋山 訓孝 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 【公報種別】特許法第17条の2の規定による補正の掲載 【部門区分】第5部門第1区分 【発行日】平成15年7月3日(2003.7.3)

【公開番号】特開平11-82352

【公開日】平成11年3月26日(1999.3.26)

【年通号数】公開特許公報11-824

【出願番号】特願平9-241472

【国際特許分類第7版】

FO4C 29/02 351

361

18/02 311

[FI]

F04C 29/02 351 D

361 Z

18/02 311 Y

【手続補正書】

【提出日】平成15年3月14日(2003.3.1.4)

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】特許請求の範囲

【補正方法】変更

【補正内容】

【特許請求の範囲】

【請求項1】 流体を吸入圧縮する圧縮機構(110)をハウジング(101、111、103)内に有し、流体と共に潤滑油を前記圧縮機構(110)内に吸入させることにより、前記圧縮機構(110)の潤滑を行う圧縮機であって、

前記ハウジング(101、111、103)内に形成され、前記圧縮機構(110)から吐出される流体から潤滑油を分離する分離室(121)と、

前記ハウジング(101、111、103)内に形成され、前記分離室(121)にて分離された潤滑油を貯える貯油室(130<u>)</u>とを有し、

前記分離室(121)には、前記圧縮機構(110)から吐出される流体を前記分離室(121)内に導く導入孔(122)、および分離された潤滑油を前記貯油室(130)に排出する排出孔(123)が形成され、さらに、前記排出孔(123)は、前記貯油室(130)内の油面(OL)と平行な方向に向けて開口していることを特徴とする圧縮機。

【請求項2】 前記分離室(121)の空間形状は、円柱状に形成されており、

前記導入孔(122)および前記排出孔(123)は、前記分離室(121)の円周内壁面(121a)の接線方向に向けて開口していることを特徴とする論求項1に記載の圧縮機。

【論求項3】 前記導入孔(122)は、前記油面(OL)と平行な面であって、前記排出孔(123)を含む基準面(S。)上、または前記基準面(S。)より上方側に位置し、

さらに、前記分離室(121)の軸線(L,)方向は、 前記油面(OL)に対して垂直な基準線(L。)に対し て傾いていることを特徴とする請求項2に記載の圧縮 機。

【請求項4】 前記導入孔(122) および前記排出孔(123)は、同一の向きに向けて開口していることを特徴とする請求項1ないし3のいずれか1つに記載の圧縮機。

【請求項5】 前記ハウジング(101、111、103) 内には、前記圧縮機構(110)を駆動するシャフト(102)が配設されており、

前記シャフト(102)は、その軸方向が前記袖面(OL)と平行になるように構成されていることを特徴とする請求項1ないし4のいずれか1つに記載の圧縮機。

【請求項6】 前記ハウジング(101、111、10 3)内に形成され、前記圧縮機構(110)から吐出された流体を前記分離室(121)に導く導入通路(12 2a)と、

前記導入通路(122a)と前記貯油室(130)とを 区画する隔壁(103a、111c)とを有しているこ とを特徴とする請求項1ないし5のいずれか1つに記載 の圧縮機。

【請求項7】 前記貯油室(130)の内壁には、前記排出孔(123)から排出され前記内壁に衝突した潤滑油が、直接、前記貯油室(130)側に転向することを防止する遮蔽板(150)が設けられていることを特徴とする請求項1ないし6のいずれか1つに記載の圧縮機。

特開平11-82352

【請求項8】 流体を吸入圧縮する圧縮機構(110)をハウジング(101、111、103)内に有し、流体と共に潤滑油を前記圧縮機構(110)内に吸入させるととにより、前記圧縮機構(110)の潤滑を行う圧縮機であって、

前記ハウジング(101、111、103)内に形成され、前記圧縮機構(110)から吐出される流体から潤滑油を分離する分離室(121)と、

前記ハウジング(101、111、103)内に形成され、前記分離室(121)にて分離された潤滑油を貯える貯油室(130)とを有し、

前記分離室(121)には、前記圧箱機構(110)から吐出される流体を前記分離室(121)内に導く導入孔(122)、および分離された潤滑油を前記貯油室(130)に排出する排出孔(123)が形成され、さらに、前記貯油室(130)には、前記排出孔(123)から吹き出す潤滑油を衝突させ、前記排出孔(123)から吹き出す潤滑油が、前記貯油室(130)内の油面(OL)に直接衝突することを防止する衝突壁(111a、140)が形成されていることを特徴とする圧縮機。