Aufgabe 4 Amplitudenmodulation (30 Punkte)

Das Signal $u_m(t)$ ist definiert als

$$u_{m}(t) = 1 \cdot \left[\cos(\Omega_{m}t) + 0.11 \cdot \cos(3\Omega_{m}t) + 0.04 \cdot \cos(5\Omega_{m}t)\right]$$

mit $\Omega_m = 2\pi\,F_m$ und $F_m = 1$ kHz. Der modulierende Träger ist $u_T = 1V\cdot\cos(\Omega_T t)$ mit $\Omega_T = 2\pi\,F_T$ und $F_T = 1$ MHz gilt. Das Signal $u_m(t)$ am Ausgang des Multiplizierers ist $u_L(t) = K\cdot u_m(t)\cdot u_T(t)$ mit $K = 0.5V^{-1}$. Die Sendeantenne entspricht einem Lastwiderstand von $R_L = 50\,\Omega$. gilt.

- a) Skizzieren Sie von $u_m(t)$ eine halbe Periode $(0 \le t \le T_m/2 = 1/(2F_m))$ indem Sie die ersten zwei Teilfunktionen grafisch addieren. Beschriften Sie die Zeichnung vollständig. (Tipp: Zeichnen Sie die zweite Teilfunktion zuerst und lassen Sie sich Platz.)
- b) Bestimmen Sie die maximalen und minimalen Wert von $u_m(t)$ (Tipp: Eventuell hilft a)).
- c) Bestimmen Sie das Spektrum $U_m(f) = \mathcal{F}\{u_m(t)\}$.
- d) Geben Sie $u_L(t)$ als einfache gewichtete Summe von Cosinusfunktionen an, d.h. es sollen keine Produkte von Sinus- oder Cosinusfunktionen auftreten.
- e) Berechnen Sie die mittleren Leistungen aller Spektrallinien des Sendesignals $u_L(t)$ in dBm und tragen Sie diese mit den Frequenzen in eine Tabelle ein.
- f) Skizzieren das Betragsspektrum für $|f F_T| \le 6F_m$ (Vollständige Beschriftung).
- g) Berechnen Sie die an R_L im Mittel insgesamt umgesetzte Leistung.

Zusatzaufgabe: Verzerrungen (25 Punkte)

Vier Systeme sollen auf die Art der durch sie verursachten Verzerrungen hin untersucht werden. Dazu wird an den Eingang jeweils das Testsignal $x(t) = 2V \cdot \cos(2\pi f t)$ angelegt mit den Signalfrequenzen $|f| \le 1$ MHz. Man beobachtet für die 4 Systeme folgende Ausgangssignale:

$y_1(t) = 1.5 \text{V} \cdot \cos(2\pi f t + \pi f/100 \text{kHz})$	$y_2(t) = 1V + 1V \cdot \cos(4\pi f t)$
$y_3(t) = 1.5V \cdot \cos(2\pi f_x t + \Theta(f_x))$ mit $\Theta(f) = -\pi (f/1\text{MHz})^2$	$y_4(t) = \frac{1.5V}{\sqrt{1 + (f/1MHz)^2}} \cos(2\pi f t + \Theta(f))$
*	mit $\Theta(f) = -\arctan(f/1\text{MHz})$

Beantworten Sie für alle vier Systeme für das beobachtet Frequenzintervall folgende Fragen:

(Ohne Begründung gibt es bei a)-c) keine Punkte! Schreiben Sie in ganzen Sätzen!)

- a) Ist das System "Verzerrungsfrei"?
- b) Ist das System "Linear" oder "Nichtlinear"?
- c) Nennen Sie ein System aus der Nachrichtentechnik, welches sich so verhalten würde.
- d) Berechnen Sie für alle linearen Systeme die Signalverzögerungszeiten für f=1 MHz. (Hinweis: $\arctan(x)'=1/(1+x^2)$)

w hofg. 1. | a1 SNR = 18 18 BSR - Kleusurensammlung % $SNR_e = \frac{P_s}{P_r} = \frac{(u_e)_A^2}{8.8.T} = \frac{(\frac{(18\mu V)^2}{25.D.})^2}{1.38.10^{-23}}$ 1.38-10-23 400 SHe- 230K

(a) SIMe = 4,32.10-12W = 5337,3 = 37,32 LB

10110 Remobility = SNRe-SNRa = 37,32 dB-18 dB = 1932 dB Numbrall: 7 = 10 Fdg = 85 54

61 SNR= 6,02 dB

SNRe = FLB + SNRa = 19,32 LB + 6,02 LB = 25,34 LB 515 2341,98 SNAe = 15 (=) P= = SMe. Pr

(E) (Me) = SMe-Pr

(F) Ue = VSNRe.Pr. A'

€) UE = √341,98.8,0.10-16W-2552 = 4,53 pV

befored des gleichen Eingangs - und Burgangsimpulone flat für den Spenningstüler: Ug = 2. Ue = 3.06 pl

Julg. 2.1 a)

 $r_2 = \frac{1}{2}$ $r_2 = \frac{1}{3}$ and dance r_3 benotions bei $R_1 = 2502$

m1 dolg. 3.1 21

Samester Fach Vigitation of Services Samester For VIII

$$\frac{u_{2}}{u_{c}} = \frac{-\frac{1}{2_{4}} \cdot \frac{1}{2_{3}}}{\frac{1}{2_{5}} \cdot (\frac{1}{2_{1}} + \frac{1}{2_{1}} + \frac{1}{2_{3}} + \frac{1}{2_{4}}) + \frac{1}{2_{3}} \cdot \frac{1}{2_{4}}}$$

10/10 Kg = -(ja) 1, -3. Rs. Hz

= 10/2. Czcq. Rz. Rs + (v). (C+Cz+Cq) R+ 1

$$\frac{d}{dt} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$$

31.01.28 Samester Fach Boy VI bufg. 3.16, $\frac{6}{2^2} = \frac{1}{2} = \frac{-3 \cdot -4 \cdot 1/2 \cdot 1/5}{2}$ (=) -3 · -4 · B= (2 - + -3/ · R2 by it water take gitt einjudicion: wg = = -3 . -4 . 112 . 135 1 Pary = (2,+1,++1)-R2 = 2-1+-3/R2 =, -1 = \frac{1}{2}. \frac{12.106}{112} -- 1 = 11. F (? ug = = + 1 + 1 + 1 + 15 (=) R_3 = -3.-4. R_2 = -3.-4. R_2 A, 65. -

Blatt 6 31.01.08 EY 6N defs. 4.1 de 42(t) = 1 V.cos (Smt).cos (Sq.t) + 0,055 cos (Smt) - cos (Sq. t) + 0,02. cos (nmt) - cos (ng. t) 1/B: cos (Rm t1 · cos (Ny·t1 =1(ein++eint). 1. (ein++e-int) = 1. (e 6 (Mm + Syl. + e + 6 (Mm - Syl-t + 2 - i (Rm + Ry 1 - t + 2 - i (Rm - Ay 1 - t) = { . (2.00(1, +1,1.t) + 2.00(1,-1). = 1 . cos (R7+Rm1-61+2.cos (Rm-R7) + (e) ulle = 4 v. cos(27+2ml.+ + 4v.cos(22-27)) + 0,0275 V. cos ((22+3/2m)+)+0,0275 V. cos ((22-1)+ 4/4 + 9,011- cos ((Ay +5 Am) t) + 0,011-cos(52 - 2) t) P/dom 1-1 + 1 m = 6289 NH2 0,969 1,25 mW 618 -A+ Am= 6,276 MH2 14 1,25mW 0,969 Ny +3 Nm = 100. 0,0275 15 125 MW -18,2 -AT +320m= 0,0275 15,125 NW -18,2 Sty + 5 Rm = 0,01 2 mW -26, 99 -17+511m= OBA 2 mW -26,99

SULE 2 GN

21.01.08

24-Ry Sing 0,05

27+22 2001 27+22 27+52

3) $u_{gos} = \sqrt{2 \cdot \left(\frac{\sqrt{2}}{\sqrt{2}}\right)^2 + 2 \cdot \left(\frac{0.0275V}{\sqrt{2}}\right)^2 + \frac{|0.01V|^2}{\sqrt{2}} \cdot 2}$

() Um 1 = 0,2517V

 $P = \frac{u_{qn}}{R} = \frac{0.2512V}{50D} = 0.005W = 5.034 = W$

2/2

65 (WS) 07108	Samester	GN	Dozent VL97
FSR	- Klausu	rensami	nlung 1/1

Prof. Dr. Ing. J. Volimer
Hochschule für Angewandte Wissenschaften Hamburg
Department für Informations- und Elektrotechnik
Informationstechnik und Kommunikationstechnik

Name: /any	
Vorname: Benjamin	
MatrNr.: 18225 K	
Anzahl der abgegebenen E	Blätter:

Klausur: Grundlagen der Nachrichtentechnik (E4a) vom 31. Januar 2009

Hinweis 1: Formeln dürfen nur aus dem aktuellen Vorlesungsskript von Prof. Missun übernommen werden (mit Quellenangabe!). Die Verwendung von Formeln aus anderen Quellen ist nur zur Kontrolle erlaubt. Der Lösungsweg ist in diesem Fall anzugeben!

Lösungen ohne Herleitungen und die korrekte Angabe der Einheiten erhalten nur eine verringerte Punktzahl.

	bearbeitet (X = ja)	mögliche Punktzahl	erreichte Punktzahl
Aufgabe 1		15	1
Aufgabe 2		20	7.3
Aufgabe 3		25	23
Aufgabe 4		30	28
Zusatzaufgabe)		(25)	
Summe		90	79

Bewertung:

157

Aufgabe 1 Empfangssystem (15 Punkte)

Bei einer effektiven Eingangsspannung von $U_E=18\mu\mathrm{V}$ und T=290 K wird am Ausgang wird ein SNR von 18dB gemessen. Ein- und Ausgangsimpedanz des Systems sind jeweils 75Ω .

- a) Welche Rauchzahl muss der Empfänger haben?
- b) Bei welcher effektiven Generatorspannung $U_{\rm G}$ sinkt das SNR auf 6,02dB?

& 45 am Enfin

Aufgabe 2 Leitung (20 Punkte)

Auf eine schwach gedämpfte Leitung (G'=0) von 100 Meter Länge wird ein Rechteckimpuls gegeben. Die Bilder zeigen die Eingangsspannung $u_1(t)$ für die Fälle $R_L=0$ Ω und $R_L=250$ Ω . Nehmen Sie den Wellenwiderstand Z_W immer als rein reellwertig an.

- a) Wie ist das Verhältnis R_G/Z_W? (Verständnisfrage ohne Rechnung.)
- b) Bestimmen Sie Z_w die Leitungsbeläge L', R', C' und den Ausbreitungskoeffizienten γ.
- c) Wie würde $u_1(t)$ für $R_G = Z_W/2$ aussehen? (Prinzipielle Beschreibung, keine Rechnung nötig)

Aufgabe 3 Filterentwurf (25 Punkte)

Mit der dargestellten Schaltung mit idealem Operationsverstärker soll ein Butterworthhochpassfilter zweiter Ordnung mit der 3dB Grenzfrequenz $f_{\rm g}$ = 1 kHz realisiert

werden.

- a) Stellen Sie die Übertragungsfunktion U_A/U_E als Funktion der Impedanzen und $j\omega$ in Normalform auf. Für einen Hochpass müssen Z_1,Z_3 und Z_4 Kapazitäten, Z_2 und Z_5 Widerstände sein. (Normalform: Nennerpolynom hat die Form $1+\alpha_1\cdot(j\omega)+\alpha_2\cdot(j\omega)^2+...$)
- b) Nun sein C_3 = 100 nF, R_2 = 400 Ω und $U_A/U_E \rightarrow$ -1 für $\omega \rightarrow \infty$. Berechnen Sie die Werte der unbekannten Bauelemente.

Aufgabe 4 Amplitudenmodulation (30 Punkte)

Cemester FSR - Klausurensammlung

Das Signal $u_m(t)$ ist definiert als

$$u_{m}(t) = 1 \cdot \left[\cos(\Omega_{m}t) + 0.11 \cdot \cos(3\Omega_{m}t) + 0.04 \cdot \cos(5\Omega_{m}t)\right]$$

 $\text{mit } \Omega_{\text{m}} = 2\pi\,F_{\text{m}} \, \text{und } F_{\text{m}} = 1 \, \text{ kHz. Der modulierende Träger ist } u_{\text{T}} = 1V \cdot \cos(\Omega_{\text{T}}t) \, \text{ mit } \Omega_{\text{T}} = 2\pi\,F_{\text{T}} \, \text{ mit } \Omega_{\text{$ und $F_T = 1$ MHz gilt. Das Signal $u_m(t)$ am Ausgang des Multiplizierers ist $u_L(t) = K \cdot u_m(t) \cdot u_T(t)$ mit $K = 0.5V^{-1}$. Die Sendeantenne entspricht einem Lastwiderstand von R_L=50 Ω . gilt.

- Skizzieren Sie von $u_m(t)$ eine halbe Periode $(0 \le t \le T_m/2 = 1/(2F_m))$ indem Sie die ersten \sqrt{a} zwei Teilfunktionen grafisch addieren. Beschriften Sie die Zeichnung vollständig. (Tipp: Zeichnen Sie die zweite Teilfunktion zuerst und lassen Sie sich Platz.)
- Bestimmen Sie die maximalen und minimalen Wert von $u_m(t)$ (Tipp: Eventuell hilft a)).
- Bestimmen Sie das Spektrum $U_{m}(f) = \mathcal{F}\{u_{m}(t)\}$.
- Geben Sie $u_L(t)$ als einfache gewichtete Summe von Cosinusfunktionen an, d.h. es sollen keine Produkte von Sinus- oder Cosinusfunktionen auftreten.
- Berechnen Sie die mittleren Leistungen aller Spektrallinien des Sendesignals $u_{\scriptscriptstyle L}(t)$ in dBm und tragen Sie diese mit den Frequenzen in eine Tabelle ein.
- Skizzieren das Betragsspektrum für $\left|f-F_{t}\right| \le 6F_{m}$ (Vollständige Beschriftung).
- Berechnen Sie die an R_L im Mittel insgesamt umgesetzte Leistung.

Zusatzaufgabe: Verzerrungen (25 Punkte)

Vier Systeme sollen auf die Art der durch sie verursachten Verzerrungen hin untersucht werden. Dazu wird an den Eingang jeweils das Testsignal $x(t) = 2V \cdot \cos(2\pi f t)$ angelegt mit den Signalfrequenzen $|f| \le 1$ MHz. Man beobachtet für die 4 Systeme folgende Ausgangssignale:

$y_i(t) = 1.5 \text{V} \cdot \cos(2\pi f t + \pi f/100 \text{kHz})$	$y_2(t) = 1V + 1V \cdot \cos(4\pi f t)$
$y_3(t) = 1.5 \text{V} \cdot \cos(2\pi f_x t + \Theta(f_x))$ mit $\Theta(f) = -\pi (f/\text{1MHz})^2$	$y_4(t) = \frac{1.5V}{\sqrt{1 + (f/IMHz)^2}} \cos(2\pi f t + \Theta(f))$
Beantworten Sie für alle vier Systems für de	mit $\Theta(f) = -\arctan(f/1\text{MHz})$

Beantworten Sie für alle vier Systeme für das beobachtet Frequenzintervall folgende Fragen: (Ohne Begründung gibt es bei a)-c) keine Punkte! Schreiben Sie in ganzen Sätzen!)

- a) Ist das System "Verzerrungsfrei"?
- b) Ist das System "Linear" oder "Nichtlinear"?
- c) Nennen Sie ein System aus der Nachrichtentechnik, welches sich so verhalten würde.
- d) Berechnen Sie für alle linearen Systeme die Signalverzögerungszeiten für $f=1 \mathrm{MHz}.$ (Hinweis: $\arctan(x)' = 1/(1+x^2)$)

GN - Lileurer 31.01.03 Benjamin Tong 1822526 Autgale 1 We = 18uV 3 = 200 2Hz T - 2904 V - 402B SNRa = 18dB R = 757 a) SAR SON SURCE = PS - UE - (18/11)2 - (18/11)2 - 75-2.1,38.10 13 W/K. 200 = 5394,76 SNP 10 lg SNP - 37,3 dB Fig - Suleds - Suleds 10(10 = 37,3 dB - 18dB = 19,3dB FB = 10 lg F => F = 10 to F = 85,11 = 101,93 b) Sula = 6.02dB F = SNPe - SNPa SNRedg= FeB + SNRoug= 19,36B + 6,026B = 25,326B SUR = 10 = 10 E532 = 340,41 Sule = PE = Cle? P. b.B.T => 16 = | SNRe . R. R. B.T = 4,52 M Da Rg = Re van Empfornsin wun UG doppelt so groß sein UG = 2 Ue = 9,04 MV

Aufgale 2) l = 100 m FSR - Klausurensammlung 5/14 Down du feicher folst: - Puil (ankende Welle list eine Doinghus - We laufait der Well les for Him and Ensuel & a) Das Vechältnis van Rg 12 murste eine Spannusskeiler verliebtnis sein of Rcy = Stary Un-Uz Tus = Un-Uz b) r = &c-Zu = Ue Odee => 0-20 A 10-250-Zw = UR UR - r. UH Ue = Uy ex Ue = ext => Un = ext lu Te 11 = x => x = lu de 1 talu = 6,93.153 15 > = 2/2.1 Z = /C) Var = (000 = 200-106 in

9

0

7/13

1 = 18W

Aufgal 2)

c) Bei Ra = Zw liest die Racke lis cun
der Seitens en B

f

245) 8 = x is

s = v (Ca)

X = Laste =>

24 Laste =>

24 Laste =>

line Fist well of

07/08/E4 GN VLM
FSR - Klausurensammlung