2(a) For and W= [-1.57 Wo	X1 XZ	$\bar{W}\chi$	(WX)	X, 1 X2
	0 0	-1.5	0	0
	0 /	-0.5	0	0
It's linear seperable	()	-05	0	0
		0.5		1
			,	
For "or" N= [-0-5] ← No	X1 XZ	WX 0	(wx)	X, V X2
For "or" W= F-0-5 > Wo	X1 Xz	WX O	(wx)	X, V X2

For "or" W= F-0-5] < Wo	X1 XZ	Ŵχ	0 (WX)	X, V X2
	0 0	-0.5	0	0
	0 /	0.5		
It's linear seperable	10	0.5		
		1.5		

For "exclusive-or", it's not linear seperable.

We can see this by the figure shown below, red dot represents class!

Black dot represents class 0

Define q	$h(\chi_1,\chi_2)$	= - X1X2	to.4x, to.4x2	, W= [-0] < Wo
	Xz	$\phi(X_1,X_2)$	$\overline{W}\phi(x)$	
	0	0	- O.	
0		0-4	0.3	
	0	0.4	Q 3	
		-0,2	-0.3	

class	
So if we use classifier SY < 0 0	
, · · · · · · · · · · · · · · · · · · ·	
We get X, Xz class which is the same as the result	
000 of exclusive-or	
0 (
(0)	
For "iff", we can use the same $\phi(X_1, X_2)$ as "exclusive-or", we define $w = \begin{bmatrix} b \end{bmatrix}$ same classifier $\{y < 0\}$	
We define W= [D.] same classifier (4 <0 class	
SO X, X2 W Ø(x,, x2) After classification	
0 0 0. 0	
0 -0.3	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	