ADVANCED PROGRAMMING Course Description

Author: Eng. Carlos Andrés Sierra, M.Sc. cavirguezs@udistrital.edu.co

Lecturer Computer Engineer School of Engineering Universidad Distrital Francisco José de Caldas

2024-III

Outline

- You don't know who I am
- 2 Course Overview
- Syllabus
- 4 Grading & Rules
- Bibliography

Outline

- 1 You don't know who I am
- Course Overview
- Syllabus
- 4 Grading & Rules
- Bibliography

- Computer Engineer, M.Sc. in Computer Engineering, and researcher for 15 years.
- 7 years as full-time associate professor at colleges, for Computer Engineering programs.
- 3 years as lecturer professor for both colleges and government STEM programs.
- Speaker in Colombia, Brasil, Bolivia, at IEEE events and colleges.

- Computer Engineer, M.Sc. in Computer Engineering, and researcher for 15 years.
- 7 years as full-time associate professor at colleges, for Computer Engineering programs.
- 3 years as lecturer professor for both colleges and government STEM programs.
- Speaker in Colombia, Brasil, Bolivia, at IEEE events and colleges.

- Computer Engineer, M.Sc. in Computer Engineering, and researcher for 15 years.
- 7 years as full-time associate professor at colleges, for Computer Engineering programs.
- 3 years as lecturer professor for both colleges and government STEM programs.
- Speaker in Colombia, Brasil,
 Bolivia, at IFFF events and colleges

- Computer Engineer, M.Sc. in Computer Engineering, and researcher for 15 years.
- 7 years as full-time associate professor at colleges, for Computer Engineering programs.
- 3 years as lecturer professor for both colleges and government STEM programs.
- Speaker in Colombia, Brasil,
 Bolivia, at IEEE events and colleges.

Advanced Programmung

- PyCon Colombia and Python Bogotá co-organizer.
 Collaborations in ScipyLATAM and Jupyter LATAM.
- 3 years as software engineer for several tech companies in Colombia.
- 3 years as Technical Leader of Machine Learning and Data Science in a USA startup.
- 1 year as MLOps Engineer for a Fintech in LATAM.

- PyCon Colombia and Python Bogotá co-organizer.
 Collaborations in ScipyLATAM and Jupyter LATAM.
- 3 years as software engineer for several tech companies in Colombia.
- 3 years as Technical Leader o Machine Learning and Data Science in a USA startup.
- 1 year as MLOps Engineer for a Fintech in LATAM.

- PyCon Colombia and Python Bogotá co-organizer.
 Collaborations in ScipyLATAM and Jupyter LATAM.
- 3 years as software engineer for several tech companies in Colombia.
- 3 years as Technical Leader of Machine Learning and Data Science in a USA startup.
- 1 year as MLOps Engineer for a Fintech in LATAM.

- PyCon Colombia and Python Bogotá co-organizer.
 Collaborations in ScipyLATAM and Jupyter LATAM.
- 3 years as software engineer for several tech companies in Colombia.
- 3 years as Technical Leader of Machine Learning and Data Science in a USA startup.
- 1 year as MLOps Engineer for a Fintech in LATAM.

Outline

- 1 You don't know who I am
- Course Overview
- Syllabus
- 4 Grading & Rules
- Bibliography

Overview

This course is designed to introduce undergraduate students to some advanced topics of object-oriented modeling and good practices of code implementation. This is not a course fully focus on software **architecture**, but it is part of main concepts of software achitecture.

Advanced Programmung

Overview

This course is designed to introduce undergraduate students to some advanced topics of object-oriented modeling and good practices of code implementation. This is not a course fully focus on software **architecture**, but it is part of main concepts of software achitecture.

Classes will consist of lectures, discussions, practical examples, and workshops. Also, you must take some readings from software architecture. In addition, there will be a semester-long project, as well one exam, four workshops, and ten additional assignmens.

Advanced Programmung

Goals

The main goal of this course is to provide undergraduate students with different **models** and **tools** for solving software problems using **object-oriented design**.

At the end of this course you should be able to **create** a software **backend** solution with a good level of **quality**. Also, you should be able to **design** robust software systems in an **agnostic** way.

Goals

The main goal of this course is to provide undergraduate students with different **models** and **tools** for solving software problems using **object-oriented design**.

At the end of this course you should be able to **create** a software **backend solution** with a good level of **quality**. Also, you should be able to **design** robust software systems in an **agnostic** way.

This is a basic course, so you must have some knowledge in:

- Programming in Java, Python, or C++.
- Object-Oriented Programming foundations
- UML and Class Diagrams basic concepts
- Git basic usage, and GitHub basic usage
- Data systems and relational model basic concepts
- Use of IDEs like VS Code, Eclipse, or PyCharm.

This is a basic course, so you must have some knowledge in:

- Programming in Java, Python, or C++.
- Object-Oriented Programming foundations.
- UML and Class Diagrams basic concepts.
- Git basic usage, and GitHub basic usage.
- Data systems and relational model basic concepts
- Use of IDEs like VS Code, Eclipse, or PyCharm.

This is a basic course, so you must have some knowledge in:

- Programming in Java, Python, or C++.
- Object-Oriented Programming foundations.
- UML and Class Diagrams basic concepts.
- Git basic usage, and GitHub basic usage.
- Data systems and relational model basic concepts
- Use of IDEs like VS Code, Eclipse, or PyCharm.

This is a basic course, so you must have some knowledge in:

- Programming in Java, Python, or C++.
- Object-Oriented Programming foundations.
- UML and Class Diagrams basic concepts.
- Git basic usage, and GitHub basic usage.
- Data systems and relational model basic concepts
- Use of IDEs like VS Code, Eclipse, or PyCharm.

This is a basic course, so you must have some knowledge in:

- Programming in Java, Python, or C++.
- Object-Oriented Programming foundations.
- UML and Class Diagrams basic concepts.
- Git basic usage, and GitHub basic usage.
- Data systems and relational model basic concepts.

Advanced Programmung

• Use of IDEs like VS Code, Eclipse, or PyCharm.

This is a basic course, so you must have some knowledge in:

- Programming in Java, Python, or C++.
- Object-Oriented Programming foundations.
- UML and Class Diagrams basic concepts.
- Git basic usage, and GitHub basic usage.
- Data systems and relational model basic concepts.
- Use of IDEs like VS Code, Eclipse, or PyCharm.

Outline

- 1 You don't know who I am
- Course Overview
- Syllabus
- 4 Grading & Rules
- Bibliography

Syllabus I

Period	Торіс	Time
Period I	Object-Oriented Programming	2 classes
	UML and Class Diagrams	2 classes
	Workshop: Classes in Python	1 session
	Inheritance, Abstraction and Polymorphism	2 classes
	Classes, Packages, and Spaces	1 class
	Workshop on Object-Oriented Relations	1 session
	Paper Revision	1 session
Period II	Object-Oriented Design	3 classes
	Workshop on Object-Oriented Design	1 session
	Resources, Memory, Serialization	2 classes
	Workshop on Resurces Management	1 session
	Test 1	1 session

Table: Schedule for Period I & II

Syllabus II

Period	Торіс	Time
Period III	UI with Python TKinter	3 classes
	Workshop on Python UI	1 session
	DataBases, DAOs, DTOs	1 class
	Workshop on PostgreSQL and SQLAlchemy	1 session
	Architecture on Layers and Monoliths	2 classes
	Workshop on Monoliths	1 session
	Questions and Answers	2 classes
	Final Test	1 session
	Projects Presentation	1 session

Table: Schedule for Period III

Outline

- You don't know who I am
- Course Overview
- Syllabus
- 4 Grading & Rules
- 6 Bibliography

Grades Percentages

Period	ltem	Percentage
	Assignments	5%
Period I	Workshops	20%
	Project	10%
	Assignments	5%
Period II	Workshops	20%
	Course Test	10%
	Paper + Poster	5%
Period III	Project Report	10%
	Project on Production	15%

Table: DataBases Foundations Grades Distribution

- All asignments must be submitted hand-written on time and in english. Grammar and spelling will not be evaluated.
- Copying and pasting from internet is forbidden. Please, develop your own solutions.
- Class attendance is not mandatory. If you miss classes, you must study by yourself.
- No cell-phones, no smartwatches, no whatsapp, no tinder, no smartanything. Just you and your brain. Pay attention at clase.
- Communications with me must be done by **email** or by **slack**. I will **not** answer any question by *WhatsApp*.

- All asignments must be submitted hand-written on time and in english. Grammar and spelling will not be evaluated.
- Copying and pasting from internet is forbidden. Please, develop your own solutions.
- Class attendance is not mandatory. If you miss classes, you must study by yourself.
- No cell-phones, no smartwatches, no whatsapp, no tinder, no smartanything. Just you and your brain. Pay attention at clase.
- Communications with me must be done by **email** or by **slack**. I will **not** answer any question by *WhatsApp*.

- All asignments must be submitted hand-written on time and in english. Grammar and spelling will not be evaluated.
- Copying and pasting from internet is forbidden. Please, develop your own solutions.
- Class attendance is **not mandatory**. If you **miss** classes, you must study by yourself.
- No cell-phones, no smartwatches, no whatsapp, no tinder, no smartanything. Just you and your brain. Pay attention at clase.
- Communications with me must be done by **email** or by **slack**. I will **not** answer any question by *WhatsApp*.

- All asignments must be submitted hand-written on time and in english. Grammar and spelling will not be evaluated.
- Copying and pasting from internet is forbidden. Please, develop your own solutions.
- Class attendance is **not mandatory**. If you **miss** classes, you must study by yourself.
- No cell-phones, no smartwatches, no whatsapp, no tinder, no smartanything. Just you and your brain. Pay attention at clase.
- Communications with me must be done by **email** or by **slack**. I will **not** answer any question by *WhatsApp*.

15/21

- All asignments must be submitted hand-written on time and in **english**. Grammar and spelling will **not** be evaluated.
- Copying and pasting from internet is forbidden. Please, develop your own solutions.
- Class attendance is **not mandatory**. If you **miss** classes, you must study by yourself.
- No cell-phones, no smartwatches, no whatsapp, no tinder, no smartanything. **Just you and your brain**. Pay attention at clase.
- Communications with me must be done by **email** or by **slack**. I will **not** answer any question by WhatsApp.

Advanced Programmung

15/21

- Always be respectful to your classmates and to me. You must be kind with everyone inside (and outside) the classroom.
- There is no a better programming language, tool, or technology
 There are only better or worse solutions.
- You must be honest with your work. If you don't know something just ask me. I will be glad to help you.
- You must be responsible with your work. If you don't submit on time, please don't cry.
- You must **not be annoying**, or affect the **classroom environment** If you do, I will ask you to **leave** the classroom.

- Always be respectful to your classmates and to me. You must be kind with everyone inside (and outside) the classroom.
- There is no a better programming language, tool, or technology. There are only **better** or **worse** solutions.
- You must be honest with your work. If you don't know something just ask me. I will be glad to help you.
- You must be responsible with your work. If you don't submit on time, please don't cry.
- You must **not be annoying**, or affect the **classroom environment** If you do, I will ask you to **leave** the classroom.

- Always be respectful to your classmates and to me. You must be kind with everyone inside (and outside) the classroom.
- There is no a better programming language, tool, or technology. There are only **better** or **worse** solutions.
- You must be honest with your work. If you don't know something, just ask me. I will be glad to help you.
- You must be responsible with your work. If you don't submit on time, please don't cry.
- You must **not be annoying**, or affect the **classroom environment** If you do, I will ask you to **leave** the classroom.

- Always be respectful to your classmates and to me. You must be kind with everyone inside (and outside) the classroom.
- There is no a better programming language, tool, or technology. There are only **better** or **worse** solutions.
- You must be honest with your work. If you don't know something, just ask me. I will be glad to help you.
- You must be responsible with your work. If you don't submit on time, please don't cry.
- You must **not be annoying**, or affect the **classroom environment** If you do, I will ask you to **leave** the classroom.

- Always be respectful to your classmates and to me. You must be kind with everyone inside (and outside) the classroom.
- There is no a better programming language, tool, or technology. There are only **better** or **worse** solutions.
- You must be honest with your work. If you don't know something, just ask me. I will be glad to help you.
- You must be responsible with your work. If you don't submit on time, please don't cry.
- You must not be annoying, or affect the classroom environment.
 If you do, I will ask you to leave the classroom.

Outline

- 1 You don't know who I am
- 2 Course Overview
- Syllabus
- 4 Grading & Rules
- 6 Bibliography

Bibliography

Recommened bibliography:

- Clean Code: A Handbook of Agile Software Craftsmanship, by Robert C. Martin.
- Refactoring: Improving the Design of Existing Code, by Martin Fowler.
- Construcción de Software Orientado a Objetos, by Bertrand Meyer.
- Thinking Java, by Bruce Eckel.
- Java2 How To Program, by Deitel & Deitel.

Bibliography

Recommened bibliography:

- Python 3 Object-Oriented Programming, by Dusty Phillips.
- Fluent Python: Clear, Concise, and Effective Programming, by Luciano Ramalho.
- Effective Python: 90 Specific Ways to Write Better Python, by Brett Slatkin.
- Python Cookbook: Recipes for Mastering Python 3, by David Beazley.

19 / 21

Outline

- You don't know who I am
- Course Overview
- Syllabus
- 4 Grading & Rules
- Bibliography

Thanks!

Questions?

www.linkedin.com/in/casierrav

