

第十三届中国数据库技术大会

DATABASE TECHNOLOGY CONFERENCE CHINA 2022

数据智能 价值创新

OceanBase

数据来源:数据库产品上市商用时间

openGauss

RASESQL

Presto在B站性能优化

郭建华+b站+研发工程师

个人简介

- 2016~2020 携程大数据离线平台
- 2020~至今 B站大数据离线平台
- 负责Presto计算引擎

目录

- 1. 架构
- 2. Presto集群现状
- 3. Presto Local Cache
- 4. Presto Index
- 5. 后续工作

Presto集群现状

- 30W/天
- 20PB/天
- 1200+Worker
- 2 IDC/6 cluster
- Presto-330

Presto集群现状

Presto Local Cache--背景

- 1. 容易受到慢DN影响,导致查询不稳定
- 2. 少量热表反复被查询
- 3. 减少网络传输,增加locality提升查询性能

Presto Local Cache--热度统计

```
select
   items
from
   tmp_db.tmp_table
where
   (log_date between '20220209' and '20220210')
   and (log_hour between '21' and '22') limit 10;
   "queryId": "20220216_085627_00000_ingkv",
   "querystr": "select items... from ai.tablexxx where log_date||log_hour_between '20220209'||'21' and '20220210'||'22' limit 10;"
   "lineageInfo": "{\"inputs\":[{\"catalogName\":\"hive\",\"schema\":\"ai\",\"table\":\"xxxx\",\"columns\":[\"key\",\"log_hour\",\"value#features\",\"log
   Info\":{\"partitionIds\":[\"log_date=20220209/log_hour=21\",\"log_date=20220209/log_hour=22\",\"log_date=20220209/log_hour=23\",\"log_date=20220210/
   log_hour=00\",\"log_date=20220210/log_hour=01\",\"log_date=20220210/log_hour=02\",\"log_date=20220210/log_hour=03\",\"log_date=20220210/log_hour=04\"
   | log_hour=05\",\"log_date=20220210/log_hour=06\",\"log_date=20220210/log_hour=07\",\"log_date=20220210/log_hour=08\",\"log_date=20220210/log_hour=09\
   log_hour=10\",\"log_date=20220210/log_hour=11\",\"log_date=20220210/log_hour=12\",\"log_date=20220210/log_hour=13\",\"log_date=20220210/log_hour=14\"
   log_hour=15\",\"log_date=20220210/log_hour=16\",\"log_date=20220210/log_hour=17\",\"log_date=20220210/log_hour=18\",\"log_date=20220210/log_hour=19\"
   log_hour=20\",\"log_date=20220210/log_hour=21\",\"log_date=20220210/log_hour=22\"],\"truncated\":false}}],\"output\":null,
   "inputTables": "[ai.xxx]",
   "inputCols": "[ai.xxx.key, ai.xxx.log date, ai.xxx.log hour, ai.xxx.value#features]"}"
```


Presto Local Cache--热度统计

Presto Local Cache--如何只缓存热表

1. 开发一个标记服务,将适合缓存的分区进行标记 2. Presto在构建split时, load partition即可识别

Presto Local Cache--架构

1. 强依赖HMS, 且频繁请求

2. 构建split,访问NN获取FileStatus

3. 读数据,访问DN读block

Presto Local Cache--架构

Presto Local Cache--Soft-Affinity调度

热点问题: 节点缩扩容问题: 1.WorkerID1 = Hash(splitID) % workerCount split5 2.WorkerID2 = Hash(splitID) % workerCount + 1 worker3 split2 split4 Task集中问题: Hive, iceberg, hudi: split1 public String getSoftAffinityFilePath() worker2 return path + start; worker1 split3

Presto Local Cache--Soft-Affinity调度

分布不均问题:

掉线一台节点, 相邻节点承载掉线节点全部负载

解决:

引入虚拟节点的概念

- 1. 更好的负载分布
- 2. 掉线节点负载均摊给各节点

Presto Local Cache--本地磁盘管理

- 1. Presto worker通过集成了AlluxioCachingFileSystem来进行热数据缓存
- 2. 读过来的数据被分成1MB为一个单位进行存储管理
- 3. 基于LRU来清理缓存块

Presto Local Cache--改进

- 1. bugs
- 一、FileSystem提前close

Caused by: java.io.IOException: Filesystem closed
 at org.apache.hadoop.hdfs.DFSClient.checkOpen(DFSClient.java:482)
 at org.apache.hadoop.hdfs.DFSInputStream.close(DFSInputStream.java:723)
 at java.base/java.io.FilterInputStream.close(FilterInputStream.java:180)
 at org.apache.hadoop.util.LineReader.close(LineReader.java:164)
 at org.apache.hadoop.mapred.LineRecordReader.close(LineRecordReader.java:291)

FileSystemCache涉及到对象回收的一个bug

prestodb-17356

二、disabled Filesystem cache情况下, viewfs 存在bug

prestodb-17366

三、insert语句存在跨namespace问题

prestodb-17389

Presto Local Cache--改进

问题2:

CacheManager只支持单路径

社区:

通过hash&mod的方式存入多磁盘

```
private Path getRoot(PageId pageId) {
  int index = pageId.hashCode() % mRoots.size();
  index = index < 0 ? index + mRoots.size() : index;
  return mRoots.get(index);
}</pre>
```

改造:

基于AvailableSpace来做磁盘选择(借鉴HDFS)

基于可用空间的策略

举例:假设有五个盘,容量分别为1g、50g、25g、5g、30g,现在需要基于该策略往某个盘写数据。

1) 校验5个盘是否处于balanced

最大容量-最小容量<平衡态的阈值(默认10g)

若平衡的话,直接RoundRobin进行选择

2) 划分为2列: highAvail与lowAvail

划分标准: 判断是否大于(最小容量+平衡态阈值)

highAvail: 50g, 25g, 30g

lowAvail: 1g, 5g

3) 根据概率,选择某列进行RoundRobin

若数据大小超过lowAvail列最大值,则选择highAvail进行轮询

平衡概率值默认为0.75,

0.75选择highAvail轮询

0.25选择lowAvail轮询

Presto Local Cache--改进

问题3:

HMS不支持获取带版本的Partition和table

开启:

hive.partition-versioning-enabled=true

异常:

UnsupportedOperationException

改造:

HMS基于分区的lastModifyTime新增版本API

Presto Local Cache--性能对比

Presto Local Cache--线上情况

- 上线6个集群
- 分区走Cache命中率40%

Presto Index--背景

- 1. ORC/parquet 内嵌index少
- 2. 文件中的index只能在worker端读的时候进行过滤
- 3. 合适的index,能过显著提升查询性能

Presto Index--架构

1. 实现index语法,构建index数据,并写入到 Hdfs中进行持久化。

2. Coordinator侧source split调度利用index 进行过滤。

3. Worker侧在读orc文件时,根据index过滤stripe或者具体的行数据。

Presto Index--indexes

1. BitMap Index

为索引字段的每个stripe构建bitmap+btree

特点:

- 1. 数据量大,低基数列
- 2. 直接读取相应行数数据
- 3. 支持区间查询和点查

缺点:

- 1. 只能在worker端过滤行
- 2. 不适合大基数列

/hive/db/tbl/000.orc					
name	height				
bob	high				
alex	middle				
sam	low				
peter	high				
kael	middle				
aux	low				

	1	2	3	4	5	6
high	1	0	0	1	0	0
middle	0	1	0	0	1	0
low	0	0	1	0	0	1

Presto Index--indexes

2. Bloomfilter Index

(1)对索引列的每个stripe维护一个 Bloomfilter对象,直接将列值读入去重后 插入BloomFilter。

特点:

- 1. 相对BitMap更节省存储
- 2. 能在coordinator过滤split
- 3. 能够适用高基数列

缺点:

1. 只能应用等值表达式"=""in"

Presto Index--indexes

3. Min-Max Index

记录了每个Stripe的min-max值

特点:

- 1. 占用空间小,
- 2. 适合coordinator过滤split

缺点:

1. 需要对column进行排序

Presto Index--column热度收集

获取colunn热度的时候,需要将能过下推到TableScan的表达式来统计column热度

思路:

Optimizer: PushPredicateIntoTableScan

- 1. 将Filter的expression 尝试将Predicate下推 到TableScan
- 2. 如果能过下推的Predicate, 表达式存在 HiveTableHandle 的effectivePredicate中

提取下推column及表达式:

使用Visitor遍历Logical Plan 在遍历到FileterNode,并且起Source为TableScan,则 可以很方便的提取Column以及下推表达式

```
select * from tmp_bdp.tmp_test_index where b = 3
and a = 'bili_live' and get_json_object(c, '$.input') = 'c'
```

Res:

"effectivePredicate":

"{\"hive:tmp_bdp:tmp_test_index.a\":{\"=\":1},\"hive:tm p bdp:tmp_test_index.b\":{\"=\":1}}",

Presto Index--column热度收集

列热度统计

col_name	使用次数	// ₍₍₎₎	CO(<=	>	>=	=	!=	in	join	group by	order by
hive:r_csc:rods_s_maincenter_aegis_log01_l_min.cti me	96931	0	0	0	4895	5170	0	855	14744	73538	3352
hive:bili_dim:examine_operator_detail_new.nickname	24461	0	0	0	0	64	0	0	37	23994	62
hive:bili_dim:examine_operator_detail_new.entrytime	23657	0	3	0	911911	4	0	1	0	23637	12
hive:bili_ogv:dim_season_hour_d.season_id	20035	92	0	25	0	1610	0	3036	3220	13662	0
hive:b_ods:ods_db485_work_todo_a_d.name	15715	0	0	0	0	15	0	15	1947	13747	6
hive:b_ods:ods_db485_work_todo_a_d.business_id	15484	0	0	0	0	0	0	0	1932	13552	0 3
hive:bili_dim:examine_operator_detail_new.area	13741	200	12	0	0	173	0	19	16	13234	318
hive:ai:recsys_avbasic_dist.avid	11089	252	49	216	333	310	0	130	5948	4230	0
nive:bili_dwd:dwd_tfc_ott_app_ubt_d.extended_fields	9444	0	0	0	0	787	0	0	787	7868	0
hive:ai:dalao_crowd_cards.id	8505	0	omo	0	0	726	0	0	1787	5218	774
hive:bili_ogv:dim_season_full_d.title	6524	283	25	74	283	487	0	80	544	4344	914

Presto Index--自动构建index

- 1. 根据上述column 热度信息进行排序
- 2. 过滤掉不合法的column信息(分区字段、非orc、复杂类型)
- 3. 根据决策树,在hms中响应表中打上index tag
- 4. 消费hms event 事件,自动构建相应index

Presto Index--如何选择index

- 1.低基数选择BitMap
- 2.点查选择Bloom
- 3.否则min-max,并且标记进行 localsort

Presto Index--语法

创建:

CREATE INDEX index_name USING bloom ON hive.schema.table (column1) WHERE p = part1;

删除:

DROP INDEX index_name (WHERE predicate);

更新:

REBUILD INDEX index_name;

查询:

SHOW INDEX (index_name);

Presto Index--性能对比

```
create index bili_infra_lineitem using bloom on bili_bdp.lineitem (partkey);
select sum(partkey), count(partkey) from bili_infra.lineitem where partkey = 2724820;
 resto> select sum(partkey), count(partkey) from bili_infra.lineitem where partkey = 2724820;
                                                                                         presto> set session index_filter_enabled=false;
                                                                                         SET SESSION
  _col0
        l_col1
                                                                                          presto> select sum(partkey), count(partkey) from bili_infra.lineitem where partkey = 2724820;
                                                                                           _col0 | _col1
 21798560 I
(1 \text{ row})
                                                                                          21798560 L
                                                                                         (1 row)
Query 20220914_033811_00005_sxiir, FINISHED, 1 node
http://jssz-bigdata-test-05.host.bilibili.co:8282/ui/guery.html?20220914_033811_00005_sxiir
                                                                                         Query 20220914_034148_00007_sxiir, FINISHED, 1 node
                                                                                         http://issz-biadata-test-05.host.bilibili.co:8282/ui/query.html?20220914_034148_00007_sxiir
plits: 46 total, 46 done (100.00%)
                                                                                         Splits: 868 total, 868 done (100.00%)
CPU Time: 2.3s total, 8.62M rows/s, 30.6MB/s, 69% active
                                                                                         CPU Time: 87.1s total, 20.7M rows/s, 73.3MB/s, 32% active
Per Node: 4.4 parallelism, 37.8M rows/s, 134MB/s
                                                                                         Per Node: 5.6 parallelism, 116M rows/s, 413MB/s
Parallelism: 4.4
                                                                                         Parallelism: 5.6
Peak Memory: 0B
0:01 [20.2M rows, 71.7MB] [37.8M rows/s, 134MB/s]
                                                                                          ):15 [1.8B rows, 6.23GB] [116M rows/s, 413MB/s]
```


Presto Index--性能对比

未来计划

- 支持物化列的读写
- 支持物化视图提升查询性能
- Native engine探索

哔哩哔哩技术

微信扫描二维码, 关注我的公众号

