

3D Face Reconstruction from a Single Image Using a Single Reference Face Shape

Ira Kemelmacher-Shlizerman, Member, IEEE, and Ronen Basri, Senior Member, IEEE

Team member: Ruiqi Liu, Yintao Xu, Sihang Xu, Jiajian Zhang

Naïve model

Assumptions:

1.a Lambertian object

2.a set of images from the same view of the same object with known light directions.

Known: source vectors S_j and pixel values $I_j(x,y)$

Unknown: surface normal N(x,y) and albedo $\rho(x,y)$

Diffuse reflection: Lambert's law

$$B = \rho(\mathbf{N} \cdot \mathbf{S})$$
$$= \rho \|\mathbf{S}\| \cos \theta$$

B: radiosity (total power leaving the surface per unit area)
ρ: albedo (反射率fraction of incident irradiance reflected by the surface)
N: unit normal
S: source vector (magnitude

proportional to intensity of the source)

(from lecutre04 light)

$$B = \rho(\mathbf{N} \cdot \mathbf{S})$$

Naïve model

Known: source vectors S_j and pixel values $I_j(x,y)$

Unknown: surface normal N(x,y) and albedo $\rho(x,y)$

$$I_{j}(x,y) = k \rho(x,y) (\mathbf{N}(x,y) \cdot \mathbf{S}_{j})$$
$$= (\rho(x,y) \mathbf{N}(x,y)) \cdot (k\mathbf{S}_{j})$$
$$= \mathbf{g}(x,y) \cdot \mathbf{V}_{j}$$

"integrability" 有限差分近似微分

For each pixel, set up a linear system:

Experiments result

75 100 125 150

175 -

Advanced model

Assumptions:

- 1.A single picture of a nearly frontal face 2.a reference 3-D face model with norms, albedo, depth.
- 3. No cast shadow, interreflection

3D Face Reconstruction from a Single Image Using a Single Reference Face Shape

Ira Kemelmacher-Shlizerman, Member, IEEE, and Ronen Basri, Senior Member, IEEE

steps:

- 1.extract key points from faces(pretrained)
- 2.take the closed region of the rounding key points

Rough alignment

steps:

- 1.extract key points from faces(pretrained)
- 2.apply rigid transformation with three key points (two eyes and nose)
- 3. dereive the intersection of obj. face and ref. face

Rough alignment

The assignment of region Ω : intersection of obj face region and ref face region

Light coefficient (general Idea)

Nth order of spherical harmonic approximation, the light reflected by a Lambertian surface:

$$R(x,y) \approx \sum_{n=0}^{N} \sum_{m=-n}^{n} l_{nm} \alpha_n Y_{nm}(x,y),$$

2th order of approximation:

Loss function:

$$\min_{\vec{l}} \sum_{(x,y)\in\Omega} \left(I(x,y) - \rho_{\text{ref}}(x,y) \vec{l}^T \vec{n}_{\text{ref}}(x,y) \right)^2.$$

Data term:

$$I(x,y) = \rho(x,y) R(x,y), \quad R(\vec{n}(x,y); \rho(x,y), \vec{l}) \approx \vec{l}^T \vec{Y}(\vec{n}(x,y)),$$

$$\vec{Y}(\vec{n}) = \left(1, \frac{1}{N}p, \frac{1}{N}q, \frac{-1}{N}, \frac{1}{N^2}pq, \frac{-1}{N^2}p, \frac{-1}{N^2}q, \frac{1}{N^2}(p^2 - q^2), \frac{3}{N^2} - 1\right)^T,$$

$$N(x, y) = \sqrt{p^2 + q^2 + 1}$$

$$I = \rho_{\text{ref}} l_0 + \frac{\rho_{\text{ref}}}{N_{\text{ref}}} (l_1 z(x+1, y) - l_1 z(x, y) + l_2 z(x, y+1) - l_2 z(x, y) - l_3,$$

$$p = z(x + 1, y) - z(x, y),$$

$$q = z(x, y + 1) - z(x, y).$$

Regularization term:

$$\lambda_1(z(x,y) - G * z(x,y)) = \lambda_1(z_{ref}(x,y) - G * z_{ref}(x,y)).$$

Experiments result®

Causes

- 1. the reference model is not "mean" enough
- 2. Is the lighting coefficient estimating method effective? *
- 3. Is the depth assumption too rigid?
- 4. Ambiguous boundary conditions

Observations from lightening coefficients

Unrobustness lightning evaluation (why?)

huge difference between reference model and actual image at eyes at some regions

scaled reference model albedo

Intersection region Ω

A more robust way

 only estimate the robust regions(manually assigned), the dark region is excluded from estimation.(i.e: to guarantee facial expression invariant)

mask

Experiment results

Computer

Images from extended yaleB databse detailed information will be in report

direction estimated from 1nd approximation term

detecting composite photos

fake photo

real photo

more natural compositing photos

- √ with known surface norm information
- √ with known albedo
- √ with known light direction

more natural compositing videos

We only have ..

more natural compositing photos

estimated from 2nd order spherical harmonic approximation

Q?&A!