T.D. 2: Integrales de linea. Longitud de curva.

Ejercicio 1

Hallar el vector tangente (normalizado) a la trayectoria $\gamma(t)=(t^2,t^3)$ en el punto (1,-1). Escribir la ecuación de la recta tangente correspondiente.

Ejercicio 2

Hallar la longitud de las siguientes curvas en el intervalo indicado :

- a) $\sigma(t) = (t, 4t, t^2), 0 \le t \le 4$.
- b) $\sigma(t) = (3t, 3t^2, 2t^3)$ entre los puntos (0, 0, 0) y (3, 3, 2).

Ejercicio 3

Hallar la masa del arco de curva

$$x = at$$
, $y = (\frac{a}{2})t^2$, $z = (\frac{a}{3})t^3$ $0 \le t \le 1$

si la densidad en cada punto vale $\rho = \sqrt{\frac{2y}{a}}$.

Ejercicio 4

Calcular la integral de línea $\int_{\sigma} y \, dx + z \, dy + x \, dz$ donde σ es la curva $x = a \cos(t), y = a \sin(t), z = bt \cos 0 \le t \le 2\pi$.

Ejercicio 5

Calcular la integral de línea $\int_{\sigma} yz \, dx + xz \, dy + xy \, dz$ donde σ está formada por los segmentos de recta que unen (1,0,0) con (0,1,0) y con (0,0,1).

Ejercicio 6

Calcular $\int_C (y^2 + z^2) dx + (z^2 + x^2) dy + (x^2 + y^2) dz$ a lo largo de la curva $C: x^2 + y^2 = 2z, x + y - z + 1 = 0$.

Ejercicio 7

Probar que $|\int_{\sigma} P(x,y) dx + Q(x,y) dy| \le L.M$ donde L es la longitud de σ y $M = \max \sqrt{P^2 + Q^2}$ a lo largo de σ .