Deep Reinforcement Learning

Dr Chang Xu

School of Computer Science

Deep RL Breakthroughs

Reinforcement Learning (RL) in a nutshell

- RL is a general-purpose framework for decision making
 - RL is for an agent to act with an environment
 - Each action influences the agent's future state
 - Feedback is given by a scalar reward signal
 - Goal: select actions to maximize future reward

Actions: muscle contractions Observations: sight, smell

Rewards: food

From the talk Introduction to Deep Reinforcement Learning From Theory to Applications by Siyi Li (HKUST)

Markov Decision Process (MDP)

- set of states S, set of actions A, initial state S_0
- transition model P(s, a, s')
 - P(frame_(t), right, frame_(t')) = 0.8
- reward function r(s)
 - $r(frame_{(t)}) = +1$

- goal: maximize cumulative reward in the long run
- policy: mapping from S to A
 - $a=\pi(s)$ or $\pi(s, a)$ (deterministic vs. stochastic)
- reinforcement learning
 - transitions and rewards usually not available
 - how to change the policy based on experience
 - how to explore the environment

Markov Decision Processes (MDPs)

- At each step t the agent:
 - Receives state s_t
 - Receives scalar reward r_t
 - Executes action at
- ▶ The environment:
 - Receives action a_t
 - \triangleright Emits state s_t
 - Emits scalar reward r_t

From the Tutorial: Deep Reinforcement Learning by David Silver, Google DeepMind

Computing return from rewards

- episodic (vs. continuing) tasks
 - "game over" after N steps
 - optimal policy depends on N; harder to analyze
- additive rewards
 - $V(s_0, s_1, ...) = r(s_0) + r(s_1) + r(s_2) + ...$
 - infinite value for continuing tasks
- discounted rewards
 - $V(s_0, s_1, ...) = r(s_0) + \gamma r(s_1) + \gamma^2 r(s_2) + ...$
 - value bounded if rewards bounded

The goal of RL is to find the policy which maximizes the expected return.

Value Function

- A value function is the prediction of the future return
- Two definitions exist for the value function
 - State value function
 - "How much reward will I get from state s?"
 - expected return when starting in s and following π

$$V^{\pi}(s) = \mathbb{E}\left\{\left.\sum_{k=0}^{\infty} \gamma^k r_k \right| s_0 = s, \pi
ight\}$$

$$V^{\pi}(s) = \mathbb{E}\left\{\left.Q^{\pi}(s,a)\right| a \sim \pi(s,\cdot)\right\}$$

- State-action value function
- "How much reward will I get from action a in state s?"
- expected return when starting in s, performing a, and following π

$$Q^{\pi}(s,a) = \mathbb{E}\left\{\left.\sum_{k=0}^{\infty} \gamma^k r_k\right| s_0 = s, a_0 = a, \pi\right\}$$

Bellman Equation and Optimality

 Value functions decompose into Bellman equations, i.e. the value functions can be decomposed into immediate reward plus discounted value of successor state

$$V^{\pi}(s) = \mathbb{E}\left\{\sum_{k=0}^{\infty} \gamma^k r_k \middle| s_0 = s, \pi\right\} \quad \longrightarrow \quad V^{\pi}(s) = \mathbb{E}\left\{R(s, a, s') + \gamma V^{\pi}(s')\right\}$$

$$Q^{\pi}(s,a) = \mathbb{E}\left\{\sum_{k=0}^{\infty} \gamma^k r_k \middle| s_0 = s, a_0 = a, \pi\right\}$$

$$Q^{\pi}(s,a) = \mathbb{E}\left\{R(s,a,s') + \gamma Q^{\pi}(s',a')\right\}$$

- An optimal value function is the maximum achievable value.

$$V^*(s) = \max_{\pi} V^{\pi}(s) \quad Q^*(s,a) = \max_{\pi} Q^{\pi}(s,a)$$

Bellman Optimality Equation

- Optimality for value functions is governed by the Bellman optimality equations.
- Two equations:

$$V^*(s) = \max_{a} \mathbb{E}\left\{R(s, a, s') + \gamma V^*(s')\right\}$$

$$Q^*(s, a) = \mathbb{E}\left\{R(s, a, s') + \max_{a'} \gamma Q^*(s', a')\right\}$$

$$\pi^*(s) = \arg\max_{a} Q^*(s, a)$$

Q-Learning

Initializing the Q(s, a) function

states

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
	Noop	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
actions	Fire	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Right	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Left	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Q-Learning

$$Q^*(s,a) = \mathbb{E}\left\{R(s,a,s') + \max_{a'} \gamma Q^*(s',a')\right\}$$

Initialize Q(s, a) arbitrarily.

Start with s.

Before taking action a, we calculate the current expected return as

After taking action a, and observing r and s', we calculate the target expected return as

$$R(s, a, s') + \max_{a'} \gamma Q(s', a')$$

$$\Delta Q(s,a) = R(s,a,s') + \max_{a'} \gamma Q(s',a') - Q(s,a)$$

$$Q(s,a) \leftarrow Q(s,a) + \alpha \Delta Q(s,a)$$

Q-Learning

$$Q^*(s, a) = \mathbb{E}\left\{R(s, a, s') + \max_{a'} \gamma Q^*(s', a')\right\}$$

Initialize Q(s, a) arbitrarily.

Repeat (for each episode)

Initialize s

Repeat (for each step of the episode)

Choose a from s using a policy

Take action a, observe r, s'

$$Q(s, a) \leftarrow Q(s, a) + \alpha[r + \gamma \max_{a'} Q(s', a') - Q(s, a)]$$

s \leftler s'

Exploration and Exploitation

```
Initialize Q(s, a) arbitrarily.

Repeat (for each episode)

Initialize s

Repeat (for each step of the episode)

Choose a from s using a policy

Take action a, observe r, s'

Update Q and s....
```

Random policy; Exploration

Greedy policy; Exploitation
$$\pi(s) = \arg \max_{a} Q(s, a)$$

 ϵ -greedy policy: With probability ϵ select a random action

Deep RL: Deep Learning + RL

- Traditional RL
- low-dimensional state spaces
- handcrafted features
- DL's representation power + RL's generalization ability
 - RL defines the objective
 - Deep Learning learns the representation

Deep Q-Learning

Deep Q-Learning

160

states

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
	Noop	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
actions	Fire	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Right	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	Left	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

#states = $256^{210 \times 160}$

Value Function Approximation

$$Q(s,a) = f(s,a,w)$$

Q-Networks

- Represent the state-action value function (discrete actions) by Q-network with weights w

$$Q_w(s,a) \approx Q^*(s,a)$$

From the Tutorial: Deep Reinforcement Learning by David Silver, Google DeepMind

Deep Q-Learning

- End-to-end learning of state-action values from raw pixels
- Input state is stack of raw pixels from last 4 frames
- Output are state-action values from all possible actions

From the Tutorial: Deep Reinforcement Learning by David Silver, Google DeepMind

Deep Q-Networks (DQN)

- Optimal Q-values obey Bellman equation

$$Q^*(s, a) = \mathbb{E}_{s'}\left\{r + \gamma \max_{a'} Q(s', a')|s, a\right\}$$

 Treat right-hand size as a target and minimize MSE loss by SGD

$$I = \left(r + \gamma \max_{a'} Q_w(s', a') - Q_w(s, a)\right)^2$$
Target

- Divergence issues using neural networks due to
 - Correlations between samples
 - Non-stationary targets

From the Tutorial: Deep Reinforcement Learning by David Silver, Google DeepMind

Experience replay

- Build data set from agent's own experience
- Sample experiences uniformly from data set to remove correlations

Algorithm

Algorithm 1 Deep Q-learning with Experience Replay

```
Initialize replay memory \mathcal{D} to capacity N
Initialize action-value function Q with random weights
for episode = 1, M do
    Initialise sequence s_1 = \{x_1\} and preprocessed sequenced \phi_1 = \phi(s_1)
    for t=1,T do
                                                                      \epsilon-greedy
         With probability \epsilon select a random action a_t
         otherwise select a_t = \max_a Q^*(\phi(s_t), a; \theta)
          Execute action a_t in emulator and observe reward r_t and image x_{t+1}
          Set s_{t+1} = s_t, a_t, x_{t+1} and preprocess \phi_{t+1} = \phi(s_{t+1})
          Store transition (\phi_t, a_t, r_t, \phi_{t+1}) in \mathcal{D}
         Sample random minibatch of transitions (\phi_i, a_i, r_i, \phi_{i+1}) from \mathcal{D}
         Set y_j = \begin{cases} r_j & \text{for terminal } \phi_{j+1} \\ r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) & \text{for non-terminal } \phi_{j+1} \end{cases}
```

Perform a gradient descent step on $(y_i - Q(\phi_i, a_i; \theta))^2$ according to

end for end for

Improvements: Target Network

- To deal with non-stationarity, target parameters \widehat{w} are held fixed

$$I = \left(r + \gamma \max_{a'} Q_w(s', a') - Q_w(s, a)\right)^2$$
 $I = \mathbb{E}_{(s, a, r, s') \sim U(D)} \left\{ \left(r + \gamma \max_{a'} Q_{\hat{w}}(s', a') - Q_w(s, a)\right)^2 \right\}$

Improvements: Double DQN

- Q-learning is known to overestimate state-action values
 - The max operator uses the same values to select and evaluate an action

$$Q^*(s,a) = \mathbb{E}_{s'}\left\{r + \gamma \max_{a'} Q(s',a')|s,a
ight\}$$

- The upward bias can be removed by decoupling the selection from the evaluation
 - Current Q-network is used to select actions
 - Older Q-network is used to evaluate actions

$$I = \mathbb{E}_{(s,a,r,s') \sim U(D)} \left\{ \left(r + \sqrt{Q_{\hat{w}_j}} (s', \operatorname{arg\,max} Q_{w_i}(s', a')) - Q_{w_i}(s, a) \right)^2 \right\}$$

From the talk Introduction to Deep Reinforcement Learning From Theory to Applications by Siyi Li (HKUST)

Improvements: Prioritized Replay

- Uniform experience replay samples transitions regardless of their significance
- Can weight experiences according to their significance
- Prioritized replay stores experiences in a priority queue according to the TD error
- Use stochastic sampling to increase sample diversity

$$|r + \gamma \max_{a'} Q_{\hat{w}}(s', a') - Q_w(s, a)|$$

$$P(i) = \frac{p_i^{\alpha}}{\sum_k p_k^{\alpha}}$$

$$p_i = |\delta_i| + \epsilon$$

From the talk Introduction to Deep Reinforcement Learning From Theory to Applications by Siyi Li (HKUST)

Imitation Learning

Imitation Learning

Reinforcement Learning

 $\pi(a|s)$

 $r \sim R(s, a)$

Imitation Learning

 $(s,a) \sim \pi_{\rm E}$

Imitation learning aims to let the agent mimic the behavior of the expert, without any reward signal.

Generative Adversarial Imitation Learning

$$\min_{\theta} \max_{\psi} \mathbb{E}_{(s,a) \sim \pi_{\theta}} \left[\log D_{\psi}(s,a) \right] + \mathbb{E}_{(s,a) \sim \pi_{E}} \left[\log (1 - D_{\psi}(s,a)) \right]$$

Imperfect Demonstrations Issues

Optimal demonstrations

GAIL

Optimal agent's policy

Imperfect demonstrations

Non-optimal agent's policy

However in many real-world tasks, it is hard to collect plenty of optimal demonstrations.

Expert

Agent

Proposed Method: Weighted GAIL

[ICML 2021] Learning to Weight Imperfect Demonstrations

$$\min_{\theta} \max_{\psi} \mathbb{E}_{(s,a) \sim \pi_{\theta}} \left[\log D_{\psi}(s,a) \right] + \mathbb{E}_{(s,a) \sim \pi_{E}} \left[w(s,a) \log(1 - D_{\psi}(s,a)) \right]$$

How to formulate a proper weight without auxiliary information?

Proposed Method

Learn from A New Policy

$$\min_{\theta} \max_{\psi} \mathbb{E}_{(s,a) \sim \rho_{\pi_{\theta}}} \left[\log D_{\psi}(s,a) \right] + \mathbb{E}_{(s,a) \sim \rho_{\pi_{E}}} \left[w(s,a) \log(1 - D_{\psi}(s,a)) \right]$$

$$\text{Variational Inference}$$

$$\min_{\theta} Div_{JS}(\rho_{\pi_{\theta}}, \rho_{\widetilde{\pi}})$$

The objective function of weighted GAIL is equal to imitate a new policy $\tilde{\pi}$, where $\rho_{\tilde{\pi}}(s,a) = w(s,a)\rho_{\pi_F}(s,a)$.

Proposed Method

Analysis on the Weight

Theorem 1. Consider an f-divergence constrained policy optimization problem as,

$$\max_{\widetilde{\pi}} L^{d_{\pi}}(\widetilde{\pi}) - \beta D_f(\rho_{\widetilde{\pi}}||\rho_{\pi})$$

s. t.
$$\sum_{\alpha} \tilde{\pi}(\alpha|s) = 1$$
, $\tilde{\pi}(\alpha|s) \in [0,1]$

where β is a hyper-parameter to balance the influence of there two terms. We have,

$$\tilde{\pi}(a|s) = \pi(a|s)f'_*(\frac{A_{\pi}(s,a) + C(s)}{\beta})$$

Consider KL divergence, we have $\tilde{\pi}(a|s) = \pi(a|s) \exp(\frac{A_{\pi}(s,a) + C(s)}{\beta})$

Proposed Method

Analysis on the Weight

Theorem 2. Given two policies $\tilde{\pi}$ and π which satisfies

$$\tilde{\pi}(a|s) = \pi(a|s) \exp((1/\beta)(A_{\pi}(s,a) + C(s)))$$

where β is a hyper-parameter and C(s) is a a function of state s. We can conclude that $\tilde{\pi}$ is generally better than π , that is,

$$V_{\widetilde{\pi}}(s) > V_{\pi}(s), \forall s \in S$$

Theorem 2 suggests that new policy is indeed better, when $w(s, a) = \exp(\frac{A_{\pi}(s, a)}{\beta})$.

$$A_{\pi}(s, a) = \log w(s, a)^{\beta}$$
The University of Sydney

$$w(s,a) = [(1/D_{\psi}^*(s,a) - 1)\pi_{\theta}(a|s)]^{\frac{1}{\beta+1}}$$

Experiment

Mujoco

Quantitive Results

Table 1: Performance of the learned agent, measured by the final x-position of the agent's body. The final x-position of WGAIL and GAIL is calculated by the average of the last 50 runs.

Method	An	t-v2	HalfChe	eetah-v2	Walke	r2d-v2	Hopper-v2		
Wichiod	Stage 1	Stage 2	Stage 1	Stage 2	Stage 1	Stage 2	Stage 1	Stage 2	
WGAIL	111.81	182.00	120.66	190.17	5.29	18.11	12.08	14.54	
GAIL	84.50	113.58	102.21	85.33	6.66	10.80	10.06	11.81	
BC	91.49	135.75	99.2	118.15	7.61	12.22	0.53	0.95	
D-REX	48.63	63.43	28.73	84.57	3.10	9.61	2.59	2.17	
T-REX	65.08	9.25	95.57	32.70	-0.12	-0.46	5.70	1.14	
2IWIL	89.03	130.14	101.43	85.94	7.63	11.66	11.02	17.54	
Expert (TRPO)	177	7.93	195	5.79	24	.71	18.63		

Atari

Quantitive Results

Table 2: The final result of the learned policy in five Atari tasks.

	BeamRider	Pong	Q*bert	Seaquest	Hero
WGAIL	1834.8	-6.0	15140.0	649.0	20042.0
GAIL	1541.2	-6.7	13955.0	590.9	20260.0
BC	1034.4	-7.2	2720.0	598.0	7670.0
Expert(PPO)	2637.45	21.0	15268.18	1840.0	27814.09

Thanks!