

Universidad \$\footnote{\chi}\ Nacional Autónoma de México

FACULTAD DE CIENCIAS

Tarea 03

Alumno:

Ramírez López Alvaro. 316276355

Profesor: Jesús Villagómez Chávez Ayudantes: Gabriela Peña Franco Martha Rubí Gutiérrez González

9 de septiembre de 2024

- 1. ¿Cuáles de las siguientes relaciones son funciones? En caso de ser función, calcula su dominio y su imagen:
 - a) $\{(n,m) \in \mathbb{Z} \times \mathbb{Z} : n, m \ge 0 \land 5n = m\}.$
 - b) $\{(n,m) \in \mathbb{Z} \times \mathbb{Z} : n, m \ge 0 \land 5m = n\}.$
 - c) $\{(n,m) \in \mathbb{Z} \times \mathbb{Z} : n, m \ge 0 \land m \le n\}.$
 - $d) \ \{(n,m) \in \mathbb{Z} \times \mathbb{Z} : n \ge 0 \land m = 3\}.$
 - $e) \{(n,m) \in \mathbb{Z} \times \mathbb{Z} : m = n^2\}.$
 - $f) \{(n,m) \in \mathbb{Z} \times \mathbb{Z} : m^2 = n^2\}.$
 - $g) \{(n,m) \in \mathbb{Z} \times \mathbb{Z} : 4n + 2m = 6\}.$
- 2. Determina la inyectividad, suprayectividad y biyectividad de las siguientes funciones:
 - a) $f: \mathbb{N} \to \mathbb{N}, f(n) = 2n$.
 - b) $f: \mathbb{N} \to \mathbb{N}, f(n) = n + 7.$
 - c) $f: \mathbb{Z} \to \mathbb{Z}, f(n) = n + 7.$
 - d) $f: A \to A/R, f(a) = [a]_R$, donde A es un conjunto y R una relación de equivalencia sobre A.
- 3. Sea $f:A\to B$ una función. Demuestra que:
 - a) f es inyectiva si y sólo si $f^{-1}[f[X]] = X$, para todo $X \subseteq A$.
 - b) f es inyectiva si y sólo si $f[X\cap Y]=f[X]\cap f[Y]$, para $X,Y\subseteq A$.
 - c) f es suprayectiva si y sólo si $f[f^{-1}[Y]] = Y$, para todo $Y \subseteq B$.
 - d) f es biyectiva si y sólo si $f[X^c] = (f[X])^c$, para todo $X \subseteq A$.
- 4. Responde las siguientes preguntas:
 - a) ¿Existe $g:\mathbb{N}\to\mathbb{N}$ función tal que $g\neq \mathrm{Id}_{\mathbb{N}}$ y $g\circ g=g$?
 - b) ¿Existe $g: \mathbb{N} \to \mathbb{N}$ función biyectiva tal que $g \neq \mathrm{Id}_{\mathbb{N}}$ y $g \circ g = g$?
 - c) ¿Existe $g: \mathbb{N} \to \mathbb{N}$ función biyectiva tal que $g \neq \mathrm{Id}_{\mathbb{N}}$ y $g \circ g = \mathrm{Id}_{\mathbb{N}}$?
- 5. (Extra) Sea $f:A\to B$ una función. Definimos la asignación $F:B\to A$ con regla de correspondencia $F(Y)=f^{-1}[Y]$. Demuestra que:
 - a) F es función.
 - b) Si f es inyectiva, entonces F es suprayectiva.
 - c) Si f es suprayectiva, entonces F es inyectiva.
 - d) Si F es suprayectiva, entonces f es inyectiva.
 - e) Si F es inyectiva, entonces F es suprayectiva.