Дискретная математика. Глава 2. Основы математической логики.

А.В.Пастор

Дискретная математика Глава 2. Основы математической логики

А.В.Пастор

19.09.2025

Дополнительные материалы по логике

1. Э. Мендельсон, Введение в математическую логику. М.: Наука, 1976.

Дискретная математика. Глава 2. Основы математической логики.

А.В.Пастор

Слайды по дискретной математике будут публиковаться по адресу https://logic.pdmi.ras.ru/~pastor/ITMO/2025-26/

Логические высказывания

- *Высказыванием* называется утверждение (утвердительное повествовательное предложение), про которое можно однозначно сказать, истинно оно или ложно.
 - ► То есть истинность или ложность логического высказывания не должна зависеть от каких-либо параметров (значений переменных и т. п).
 - ▶ Например, "a > b" это уже не высказывание, поскольку его истинность или ложность зависит от значений a и b.
 - ▶ В то же время, "3 > 2" это высказывание (истинное).
 - ▶ "Все нечетные числа простые" это тоже высказывание (ложное).
- Из простых высказываний можно составлять более сложные.
 - ▶ Например, если есть высказывание A, то можно составить высказывание "не A":
 - lacktriangle а из высказывания B можно составить высказывания
 - "A и B",
 - "A или B" (здесь **или** не исключающее!),
 - "если A, то B".
- Запишем это более формально.

Дискретная математика. Глава 2. Основы математической логики.

- Пусть нам даны высказывания A_1, A_2, \ldots, A_n . Мы хотим составить из них новое высказывание. При этом истинность или ложность нового высказывания должна зависеть только от истинности или ложности A_1, A_2, \ldots, A_n , но не от того, что именно это за высказывания.
- То есть должна быть функциональная зависимость истинности/ложности нового высказывания от истинности/ложности исходных.

Определение

Булевой функцией от n переменных называется отображение $f\colon\{0,1\}^n \to \{0,1\}.$

- Всего есть 2^{2^n} булевых функций от n переменных.
- Считается, что ложному высказыванию соответствует значение 0, а истинному значение 1. Тем самым, любое высказывание, которое можно составить из данных n высказываний, можно выразить булевой функцией от n переменных.

Дискретная математика. Глава 2. Основы математической логики.

Таблицы истинности

- Булевы функции можно задавать при помощи таблиц истинности.
- Таблица истинности это таблица с 2^n строками (где n число переменных), первые n столбцов которой соответствуют значениям переменных, а (n+1)-й столбец содержит значения функции.
- Каждая строка соответствует одной из 2^n возможных комбинаций значений аргументов: соответствующая строка из нулей и единиц записывается в первые n клеток данной строки, а в (n+1)-й клетке записывается значение функции при данных значениях аргументов (оно также может быть равно либо нулю, либо единице).

Примеры

Приведем таблицы истинности для булевых функций, соответствующих упоминавшимся ранее комбинациям.

1. Отрицание ("не x", обозначение: $\neg x$ или \overline{x}).

X	$\neg x$
0	1
1	0

Дискретная математика. Глава 2. Основы математической логики.

Таблицы истинности: примеры

2. Конъюнкция ("x и y", обозначение: x & y или $x \land y$)

математика.
Глава 2.
Основы
математической
логики.

Дискретная

А.В.Пастор

3. Дизъюнкция ("х или у", обозначение: $x \lor y$)

0 1 1
1 0 1
1 1 1
1 1 1
4 Импликация ("если х то у" обозначение: $x \supset y$ х $\to y$ или $x \Rightarrow y$

4. Импликация ("если x, то y", обозначение: $x \supset y$, $x \to y$ или $x = x \to y$

X	у	$x\supset y$
0	0	1
0	1	1
1	0	0
1	1	1

	1	
	1	
/	или х =	$\Rightarrow y$)

x & y

X

0

0

1

 $x \vee v$

x

Булевы функции двух аргументов

• Какие еще бывают булевы функции от двух переменных? Всего их 16.

X	у	0	x & y	<i>x</i> & ¬ <i>y</i>	X	¬ <i>x</i> & <i>y</i>	У	$x \oplus y$	$x \lor y$
0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1

X	У	$x \downarrow y$	$x \equiv y$	$\neg y$	$y\supset x$	$\neg x$	$x\supset y$	$x \mid y$	1
0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1

- $x \equiv y$ эквивалентность;
- x ⊕ y сложение по модулю 2;
- $x \downarrow y$ стрелка Пирса;
- *x* | *y* штрих Шеффера.

Дискретная математика. Глава 2. Основы математической логики.

Язык исчисления высказываний

- Алфавит исчисления высказываний состоит из следующих символов:
- 1. пропозициональные переменные: как правило, обозначаются латинскими буквами, возможно, с индексами;
- 2. пропозициональные связки: \neg , &, \lor , \supset ;
- 3. скобки: (,).
- Пропозициональной формулой называется последовательность символов в указанном выше алфавите, которая строится по следующим принципам:
 - 1. любая переменная формула;
 - 2. если A формула, то $\neg A$ формула;
 - 3. если A, B формулы, то (A & B), $(A \lor B)$, $(A \supset B)$ формулы.

Пример $((\neg x \lor \neg \neg y) \supset z)$

Замечание

Иногда в качестве связок используют и другие знаки логических операций. Например, \equiv , \oplus , \downarrow , \mid .

Дискретная математика. Глава 2. Основы математической логики.

Эквивалентность формул

- Каждой пропозициональной формуле соответствует булева функция.
- Однако, это соответствие не биекция. Например, формулам $(\neg x \lor y)$ и $(x \supset y)$ соответствует одна и та же булева функция.

Определение

- Формулы A и B называются эквивалентными (или равнозначными), если им соответствует одна и та же булева функция.
 - ▶ То есть, если формулы A и B принимают одинаковые значения при любых значениях входящих в них переменных.
- Обозначение: $A \sim B$.

Примеры

- 1. $\neg \neg x \sim x$; 2. $\neg (x \& y) \sim (\neg x \lor \neg y)$; 3. $\neg (x \lor y) \sim (\neg x \& \neg y)$;
- 4. $(x \supset y) \sim (\neg x \lor y);$ 5. $\neg (x \supset y) \sim (x \& \neg y);$
- 6. $(x \& (y \lor z)) \sim ((x \& y) \lor (x \& z));$
- 7. $(x \lor (y \& z)) \sim ((x \lor y) \& (x \lor z))$.

Дискретная математика. Глава 2. Основы математической логики.

Определение

- Формула A называется тавтологией (или тождественной истиной), если при любых значениях переменных принимает значение 1 (т. е. если $A \sim 1$).
- Формула A называется выполнимой, если существуют такие значения переменных, при которых A принимает значение 1.
- Формула A называется *противоречием* (или *невыполнимой*), если при любых значениях переменных принимает значение 0 (т. е. если $A \sim 0$).

Примеры

- 1. $(x \lor \neg x)$ тавтология (закон исключенного третьего);
- 2. $(x \& \neg x)$ противоречие;
- 3. $\neg(x \supset y)$ выполнимая формула (истинна при x = 1, y = 0).

Замечание

Формулы A и B эквивалентны тогда и только тогда, когда формула $(A \equiv B)$ — тавтология.

Нормальные формы

- Даны n пропозициональных переменных x_1, \ldots, x_n .
- Литералом называется выражение вида x_i , либо $\neg x_i$ (т. е. переменная, либо ее отрицание).
- Выражение вида $(L_1 \lor ... \lor L_m)$, где $L_1, ..., L_m$ литералы, называется простым дизъюнктом, а выражение $(L_1 \& ... \& L_m)$ простым конъюнктом.

Определение

- Конъюнктивная нормальная форма (КНФ) это пропозициональная формула вида ($C_1 \& C_2 \& \dots \& C_k$), где C_i простые дизъюнкты.
- Дизъюнктивная нормальная форма (ДНФ) это пропозициональная формула вида ($C_1 \lor C_2 \lor ... \lor C_k$), где C_i простые конъюнкты.
- Подформулы C_i , как в случае КНФ, так и в случае ДНФ, называют также клозами.

Примеры

- Формула $(x \lor y \lor \neg z) \& (\neg y \lor z) \& (\neg x \lor \neg z)$ КНФ;
- формула $(x \& y \& \neg z) \lor (\neg y \& z) \lor (\neg x \& \neg z) ДНФ.$

Глава 2. Основы математической логики.

Дискретная

Совершенные формы

Определение

Конъюнктивная или дизъюнктивная нормальная форма называется совершенной (СКНФ или СДНФ, соответственно), если выполняются следующие условия:

- 1. каждая переменная присутствует в каждом клозе ровно один раз;
- 2. все клозы различны (т. е. нет повторяющихся скобок);
- 3. в каждом клозе литералы упорядочены по возрастанию индексов (или по алфавиту, если переменные различные латинские буквы);
- 4. клозы упорядочены лексикографически (мы считаем, что для любой переменной x_i литерал $\neg x_i$ младше литерала x_i ; любые два клоза упорядочиваются по первому несовпадающему литералу).

Примеры

- Формула $(\neg x \lor y \lor \neg z) \& (\neg x \lor y \lor z) \& (x \lor \neg y \lor \neg z) \mathsf{CKH}\Phi$;
- формула $(\neg x \& y \& \neg z) \lor (\neg x \& y \& z) \lor (x \& \neg y \& \neg z)$ СДНФ.

Дискретная математика. Глава 2. Основы математической логики.

Лискретная

Теорема

Каждая булева функция единственным образом представляется как в виде СКНФ, так и в виде СДНФ.

Доказательство. " \exists ": Пусть $f(x_1,\ldots,x_n)$ — булева функция.

- Рассмотрим таблицу истинности функции f.
- Выберем из этой таблицы те строки, в которых получается значение 1.
- Каждой строке $(a_1,\ldots,a_n)\in\{0,1\}^n$ можно поставить в соответствие простой конъюнкт $(L_1\ \&\ldots\ \&L_n)$, где $L_i=\left\{\begin{array}{cc}x_i,&a_i=1\\ \neg x_i,&a_i=0.\end{array}\right.$
 - ▶ Этот конъюнкт принимает значение 1 тогда и только тогда, когда $x_1 = a_1, \dots, x_n = a_n$.
- Дизъюнкция всех конъюнктов, соответствующих выбранным строкам, будет СДН Φ , соответствующей функции f.
- Аналогично, к СДНФ можно привести функцию $\neg f$. Тогда, взяв отрицание полученной формулы, найдем СКНФ, соответствующую f.

Полные системы булевых функций

"!": СДНФ, соответствующая функции f, единственна, поскольку входящие в нее простые конъюнкты однозначно определяются ее таблицей истинности.

• СКНФ, соответствующая функции f, единственна, поскольку ее отрицание — это СДНФ, соответствующая $\neg f$, а она единственна.

Определение

Множество $\mathcal F$ булевых функций называется *полной системой*, если любую булеву функцию можно выразить через функции из $\mathcal F$ при помощи операции композиции.

• Другими словами, любая булева функция должна задаваться пропозициональной формулой, в которой связки соответствуют функциям из \mathcal{F} .

Следствие

Система $\{\&, \lor, \neg\}$ — полная.

Дискретная математика. Глава 2. Основы математической логики.

Приведение к СКНФ и СДНФ

- ullet Пусть булева функция f задана некоторой пропозициональной формулой.
- Как видно из доказательства теоремы, ее можно привести к СКНФ и СДНФ, при помощи ее таблицы истинности.
- Однако, часто бывает удобнее привести ее к СКНФ и СДНФ эквивалентными преобразованиями.
- Алгоритм приведения пропозициональной формулы F к СКНФ и СДНФ включает в себя следующие шаги.
 - 1. Элиминация связок. Если в формуле F используются связки, отличные от $\&, \lor, \neg$, их нужно заменить на эквивалентные им формулы, использующие только $\&, \lor, \neg$.
 - 2. Протаскивание отрицаний. Многократно применяем эквивалентности $\neg \neg A \sim A$, $\neg (A \& B) \sim (\neg A \lor \neg B)$, $\neg (A \lor B) \sim (\neg A \& \neg B)$ (где A, B произвольные подформулы) до тех пор, пока в формуле есть отрицания, применяемые к подформулам, отличным от одной переменной. В результате отрицания в формуле будут присутствовать только непосредственно перед переменными.

математика. Глава 2. Основы математической логики.

Лискретная

- Для получения СКНФ нужно использовать эквивалентность $(A \lor (B \& C)) \sim ((B \& C) \lor A) \sim ((A \lor B) \& (A \lor C))$ (где A, B, C произвольные подформулы). Такие замены производятся до тех пор, пока в формуле есть дизъюнкции, применяемые к подформулам, включающим операцию конъюнкции.
- Для получения СДНФ нужно действовать аналогично, но используя эквивалентность $(A \& (B \lor C)) \sim ((B \lor C) \& A) \sim ((A \& B) \lor (A \& C)).$

По итогам этого шага получится КНФ или ДНФ соответственно, но она может не быть совершенной.

- 4. Удаление повторяющихся переменных.
 - Если в каком-либо клозе есть несколько одинаковых литералов, оставляем только один из них.
 - Если же в клозе есть разноименные литералы от одной переменной (например, x и $\neg x$), то нужно удалить весь клоз.

Дискретная математика. Глава 2. Основы математической логики.

Приведение к СКНФ и СДНФ

5. Расщепление переменных.

Если клоз C не содержит переменной z, заменяем его на

- ($C \lor z$) & ($C \lor \neg z$) (в случае СКНФ);
- (*C* & *z*) \vee (*C* & ¬*z*) (в случае СДНФ).
- 6. Удаление повторяющихся клозов. Если клоз *С* встречается несколько раз, оставляем лишь один его экземпляр.
- 7. Сортировка. В каждом клозе упорядочиваем литералы по алфавиту (или по номерам индексов); клозы упорядочиваем лексикографически.

Дискретная математика. Глава 2. Основы математической логики.

Аксиомы и правила вывода

- Как доказать, что пропозициональная формула является тавтологией?
- Можно написать ее таблицу истинности. Или привести ее к СДНФ.
- Но есть и другой способ: можно вывести данную формулу из аксиом. То есть доказать ее в рамках некоторой формальной аксиоматической теории.
- Каждая формальная теория должна включать в себя множество формул, называемых *аксиомами* и конечное множество *правил вывода* (отношений между формулами, позволяющих из некоторых формул выводить другие).

Примеры правил вывода

- 1. Modus ponens (MP) $\frac{A, (A \supset B)}{B}$ это означает, что из формул A и $(A \supset B)$ мы можем вывести формулу B.
- 2. Правило резолюции $\frac{(x \lor A), (\neg x \lor B)}{(A \lor B)}$, где x переменная и A, B формулы (возможно, пустые).

Основы математической логики.

Дискретная

математика. Глава 2.

Пример формальной аксиоматической теории

Формальная аксиоматическая теория ${\cal L}$ включает в себя три схемы аксиом и одно правило вывода.

Схемы аксиом:

 A_1 : $(A\supset (B\supset A))$;

 A_2 : $((A \supset (B \supset C)) \supset ((A \supset B) \supset (A \supset C)))$; A_3 : $((\neg B \supset \neg A) \supset ((\neg B \supset A) \supset B))$.

Аксиомой считается любая формула, получаемая из формул A_1 – A_3 подстановкой вместо A, B и C любых формул. Подстановка, заменяющая

все вхождения переменной A на формулу F, обозначается так: [F/A].

Правило вывода: Modus ponens (MP) Определение

• Формула B выводима в теории \mathcal{L} из формул A_1, A_2, \ldots, A_n , если существует последовательность формул $A_1, A_2, \ldots, A_n, F_1, \ldots, F_k, B$, в которой каждая формула, начиная с F_1 , либо является аксиомой, либо получается из предыдущих формул при помощи правила MP.
• Обозначение: $A_1, A_2, \ldots, A_n \vdash_{\mathcal{L}} B$.

Основы математической логики.
А. В. Пастор

Дискретная математика. Глава 2.

Вывод в формальной аксиоматической теории $\mathcal L$

Определение

- Последовательность $A_1, A_2, \dots, A_n, F_1, \dots, F_k, B$ называется выводом формулы B из формул A_1, A_2, \dots, A_n .
- Запись $A_1, A_2, \dots, A_n \vdash_{\mathcal{L}} B$ называется секвенцией.
- Если список формул A_1, A_2, \dots, A_n пуст, то говорят, что формула B выводима в теории $\mathcal L$ (обозначение: $\vdash_{\mathcal L} B$).

Пример

Выведем в теории \mathcal{L} формулу $(A \supset A)$.

- 1. $((A \supset ((A \supset A) \supset A)) \supset ((A \supset (A \supset A))) \supset (A \supset A)))$ A_2 ; $[(A \supset A)/B, A/C]$
- 2. $(A \supset ((A \supset A) \supset A))$ A_1 ; $[(A \supset A)/B]$
- 3. $((A \supset (A \supset A)) \supset (A \supset A))$ MP 2, 1
- 4. $(A \supset (A \supset A))$ $A_1; [A/B]$
- 5. $(A \supset A)$ MP 4, 3

Дискретная математика. Глава 2. Основы математической логики.

Язык исчисления предикатов

- Алфавит
 - 1. предметные константы: a_1, a_2, a_3, \ldots ; 2. предметные переменные: x_1, x_2, x_3, \ldots ;
 - 3. функциональные символы: $f_1^{m_1}, f_2^{m_2}, f_3^{m_3}, \ldots$;
 - в качестве верхнего индекса указывается натуральное число, называемое местностью или арностью функционального символа;
 - т. е. f_i^m m-местный функциональный символ, ему будет соответствовать функция от m аргументов;
 - предметную константу можно рассматривать как 0-местный функциональный символ;
 - 4. предикатные символы: $P_1^{n_1}, P_2^{n_2}, P_3^{n_3}, \ldots$;
 - в качестве верхнего индекса указывается натуральное число, называемое местностью или арностью предикатного символа;
 - т. е. P_i^n n-местный предикатный символ, ему будет соответствовать n-местное отношение;
 - 5. связки: ¬, &, ∨, ⊃;
 - 6. кванторы: ∀, ∃;
 - 7. скобки: (,).

Дискретная математика. Глава 2. Основы математической логики.

Замечание

- В принципе, обозначения для предметных констант, переменных, функциональных и предикатных символов могут быть и другими. Но они должны быть заранее определены.
- Список всех используемых предметных констант, функциональных и предикатных символов (с указанием их местности) называется *сигнатурой*.

Термы

- *Термом* называется последовательность символов в указанном выше алфавите, которая строится по следующим принципам:
 - 1. любая предметная константа и любая предметная переменная терм;
 - 2. если $f_i^m m$ -местный функциональный символ и t_1, \dots, t_m термы, то $f_i^m(t_1, \dots, t_m)$ терм;
 - 3. выражение является термом только в том случае, если это следует из правил 1 и 2.

Язык исчисления предикатов: формулы

- Элементарной формулой называется выражение вида $P_j^n(t_1,\ldots,t_n)$, где P_j^n-n -местный предикатный символ и t_1,\ldots,t_n термы.
 - элементарные формулы также называют атомарными формулами или просто атомами.
- *Формулой* исчисления предикатов называется последовательность символов в указанном выше алфавите, которая строится по следующим принципам:
 - 1. любая элементарная формула формула;

из правил 1-4.

- 2. если $A = \phi$ ормула, то $\neg A = \phi$ ормула;
- 3. если A, B формулы, то $(A \& B), (A \lor B), (A \supset B)$ формулы; 4. если A — формула и x — предметная переменная. то $\forall x A$ и $\exists x A$ —
- формулы; 5. выражение является формулой только в том случае, если это следует
- В формулах вида $\forall x A$ и $\exists x A$ выражение A называется областью действия квантора $\forall x$ или $\exists x$, соответственно.

Дискретная математика. Глава 2. Основы математической логики.

Свободные и связанные вхождения переменных

- Вхождение переменной x в формулу F называется связанным, если x является переменной входящего в эту формулу квантора $\forall x$ или $\exists x$, либо находится в области действия входящего в эту формулу квантора $\forall x$ или $\exists x$.
- В противном случае, вхождение переменной x в данную формулу называется *свободным*.
- Одна и та же переменная может иметь свободные и связанные вхождения в одну и ту же формулу.

Пример

В формуле $(f(x) = 0 \supset \exists x (g(x,y) = 0))$ первое вхождение переменной x свободно, второе и третье — связанны. Единственное вхождение переменной y свободно.

- Переменная x называется *свободной переменной* формулы F, если в F есть свободное вхождение переменной x. Аналогично, x называется *связанной* переменной формулы F, если в F есть связанное вхождение переменной x.
- Переменная может быть одновременно свободной и связанной в одной и той же формуле.

математика. Глава 2. Основы математической логики.

Лискретная

- Если в формуле нет свободных переменных, она называется замкнутой.
- Если свободные вхождения переменных в формуле есть, то можно подставить вместо них какие-либо термы и получить новую формулу.
 - ▶ Пусть F формула, x_1, \ldots, x_n переменные и t_1, \ldots, t_n термы. Тогда через $F(t_1, \ldots, t_n)$ обозначается результат подстановки термов t_1, \ldots, t_n в F вместо всех свободных вхождений переменных x_1, \ldots, x_n .
 - ▶ Также результат подстановки терма t вместо всех свободных вхождений переменной x в формулу F обозначают $[F]_t^x$.
- Терм t называется свободным для переменной x в формуле F, если никакое свободное вхождение x в F не находится в области действия никакого квантора $\forall y$ или $\exists y$, где y переменная, входящая в t.

Пример

Терм x+y свободен для переменной x, но не свободен для переменной y в формуле $(f(x)=0\supset \exists x\,(g(x,y)=0)).$

Дискретная математика. Глава 2. Основы математической логики.

Интерпретации

- Выбираем множество D область интерпретации.
- Каждой предметной константе a_i ставим в соответствие элемент $\alpha_i \in D$.
- Каждому n-местному функциональному символу f_i^n ставим в соответствие n-местную операцию на D (т. е. отображение $f_i: D^n \to D$).
- Каждому n-местному предикатному символу P_i^n ставим в соответствие n-местное отношение на D (т. е. подмножество $P_i \subset D^n$).
- После этого, каждой замкнутой формуле будет соответствовать некоторое высказывание (оно истинно или ложно).
- Каждой незамкнутой формуле будет соответствовать отношение на множестве D (k-местное отношение, где k число свободных переменных).

Примеры

- 1. Формула $\exists c \ (a = b \cdot c)$ при $D = \mathbb{N}$ задает отношение делимости.

 Но при $D = \mathbb{Q}_+$ получаем универсальное отношение (все пары чисел).
- 2. Формула $\forall a \exists b (a = b \cdot b)$ при $D = \mathbb{R}$ задает ложное высказывание. А при $D = \mathbb{C}$ истинное.

Дискретная математика. Глава 2. Основы математической логики.

- Формула F называется *истинной в данной интерпретации*, если соответствующее ей отношение выполняется для всех наборов значений переменных.
 - ▶ Это эквивалентно тому, что замыкание формулы F (т. е. формула $\forall x_1 \, \forall x_2 \, \dots \, \forall x_k \, F$, где x_1, x_2, \dots, x_k свободные переменные формулы F) в данной интерпретации задает истинное высказывание.
- Формула F называется (логически) общезначимой, если она истинна в любой интерпретации.
- Формула F называется выполнимой в данной интерпретации, если соответствующее ей отношение выполняется хотя бы для одного набора значений переменных.
 - ▶ То есть формула $\exists x_1 \exists x_2 \dots \exists x_k F$, где x_1, x_2, \dots, x_k свободные переменные формулы F, в данной интерпретации задает истинное высказывание.
- Формула F называется выполнимой, если она выполнима в какой-либо интерпретации.

Дискретная математика. Глава 2. Основы математической логики.