1.6.2 Link Spamming

■Three kinds of web pages from a spammer's point of view

- ▶1, Inaccessible pages (不可达网页)
- ▶2, Accessible pages (可达网页)
 - e.g., blog comments pages
 - spammer can post links to his pages
- ▶3, Owned pages (自有网页)
 - Completely controlled by spammer
 - May span multiple domain names

1.6.2 Link Farms

□Spammer's goal:

➤ Maximize the PageRank of target page t

■Technique:

- ➤ Get as many links from accessible pages as possible to target page *t*
- ➤ Construct "link farm" to get PageRank multiplier effect

1.6.2 Link Farms

One of the most common and effective organizations for a link farm:

Supporting page/Farm page(支持页, 或称垃圾页)是own pages里面除了target page (目标页)t 以外的其他网页.

1.6.2 Analysis

N...# pages on the web

M...# of pages spammer owns

- x: PageRank contributed by accessible pages
- □ y: PageRank of target page t
- □ Rank of each "farm" page = $\frac{\beta y}{M} + \frac{1-\beta}{N}$

Very small; ignore Now we solve for **y**

1.6.2 Analysis

N...# pages on the web

M...# of pages spammer owns

x: PageRank contributed by accessible pages

y: PageRank of target page t

- \square For β = 0.85, 1/(1-β²)= 3.6, c = 0.46
- Multiplier effect for acquired PageRank
- □ By making *M* large, we can make *y* as large as we want -> Google bomb

1.6.3 Combating Spam

□ Round 1: Combating term spam

- > Analyze text using statistical methods, similar to email spam filtering
- ➤ Also useful: Detecting approximate duplicate pages
- ▶ PageRank

□ Round 2: Combating link spam

- > Detection and blacklisting of structures that look like spam farms
 - Leads to another war hiding and detecting spam farms
- ➤ TrustRank (风控算法, 也称信任指数算法) = topic-specific PageRank with a teleport set of trusted pages
 - Example: .edu domains, similar domains for non-US schools
- ➤ Spam Mass(垃圾质量), identifies the pages that are likely to be spam, and then eliminate those spam pages or to lower their PageRank value strongly

1.6.3 TrustRank: Idea

- ■Basic principle: Approximate isolation
 - ➤ It is rare for a "good" page to point to a "bad" (spam) page
 - ➤The sites with blogs or other opportunities for spammers to create links (accessible pages,可达网页) cannot be considered trustworthy, even if their own content is highly reliable
- □Sample a set of seed pages from the web (可靠网页组成的合适的 随机跳转集合)
- e.g., have an oracle (human) to identify the good pages and the spam pages in the seed set
 - >Expensive task, so we must make seed set as small as possible

1.6.3 Trust Propagation

- □Call the subset of seed pages that are identified as **good** the **trusted pages**
- Perform a topic-sensitive PageRank with teleport set = trusted pages
 - ➤ Propagate(传播) trust through links:
 - Each page gets a trust value between **0** and **1**
- Use a threshold value and mark all pages below the trust threshold as spam

- **□**Set trust of each trusted page to 1
- \square Suppose trust of page p is t_p
 - ▶ Page p has a set of out-links o_p
- \square For each $q \in O_p$, p confers the trust to q
 - $\triangleright \beta t_p / |o_p|$ for $0 < \beta < 1$
- ■Trust is additive
 - Trust of **p** is the sum of the trust conferred on **p** by all its in-linked pages
- ■Note similarity to Topic-Specific PageRank
 - Within a scaling factor, TrustRank = PageRank with trusted pages as teleport set

1.6.3 Why is it a good idea?

□Trust attenuation(信任衰减):

➤ The degree of trust conferred by a trusted page decreases with the distance in the graph

□Trust splitting(信任分裂):

- ➤ The larger the number of out-links from a page, the less scrutiny the page author gives each out-link
- Trust is **split** across out-links

1.6.3 Picking the Seed Set

■Two conflicting considerations:

- Human has to inspect each seed page, so seed set must be as small as possible
- Must ensure every good page gets adequate trust rank, so need make all good pages reachable from seed set by short paths

1.6.3 Approaches to Picking Seed Set 是 并中科技大學 计算机科学与技术学院 School of Computer Science & Technology, HUST

- □Suppose we want to pick a seed set of *k* pages. How to do that?
- □Solution 1: Have an oracle (human) to identify the good pages and the spam pages in the seed set, e.g., PageRank:
 - ➤ Pick the top **k** pages by PageRank
 - Theory is that you can't get a bad page's rank really high
- □Solution 2: Use trusted domains whose membership is controlled, like .edu, .mil, .gov
 - >assumption that it is hard for a spammer to get their pages into these domains.
 - ➤ To get a good distribution of trustworthy web pages(为了可靠网页的分布更好), should include the analogous sites from foreign countries (其他国家同类型的网站), e.g., ac.il, or edu.sg.

1.6.4 Spam Mass(垃圾质量)

- □In the **TrustRank** model, we start with good pages and propagate trust
- □Complementary view: What fraction of a page's PageRank comes from spam pages?
- □In practice, we don't know all the spam pages, so we need to estimate

1.6.4 Spam Mass Estimation

- $\square r_p$ = PageRank of page p, 网页p的PageRank值
- $\square r_p^+$ = PageRank of p with teleport into **trusted** pages only, 网页p的 TrustRank值
- □Then: What fraction of a page's PageRank comes from spam

pages?

$$r_p^- = r_p - r_p^+$$

- **Spam mass of** $p = \frac{r_p}{r_p}$ (p的垃圾质量)
 - ➤ Pages with high spam mass (e.g., close to 1) are spam.

1.6.4 Example

$$r_p^- = r_p - r_p^+$$

$$\square \text{Spam mass of } p = \frac{r_p^-}{r_p}$$

- ➤ Page **p** with high spam mass (close to 1) is spam
- >A negative or small positive spam mass, page p is probably not a spam page

	r_p	r_p^+	网页的垃圾质量
Α	3/9	54/210	0.229
В	2/9	59/210	-0.264
C	2/9	38/210	0.186
D	2/9	59/210	-0.264

- Nodes B and D are not spam
- For nodes A and C, spam mass is still closer to 0 than to 1, probable not spam

Section 1.7: Hubs and Authorities (HITS)

1 Hubs and Authorities

Matrix Formulation

Content

1.7.1 Hubs and Authorities (导航页和权威政制 Authorities (导航页和权威政制 Authorities (中航页和权威政制 Authorities (中航页和权威政制 Authorities (中航页和权威政制 Authorities (中航页 和权威政制 Authorities (中 M Authorities) Authorities (H Autho

□HITS (Hypertext超文本-Induced Topic Selection, HITS算法)

- ▶Is a measure of importance of pages or documents, similar to PageRank
- Proposed at around same time as PageRank ('98)
- □Goal: Say we want to find good newspapers
 - ➤ Don't just find newspapers. Find "experts" people who link in a coordinated way to good newspapers
- □ldea: Links as votes
 - ▶Page is more important if it has more links
 - In-coming links? Out-going links?

1.7.1 Finding newspapers

□Hubs and Authorities(导航页和权威页)

Each page has 2 scores:

- ➤ Quality as an expert (hub, 导航度值):
 - Total sum of votes of authorities pointed to
 - 导航度得分(hub)是该网页的链出网页的权威度得分之和
- ➤ Quality as a content (authority, 权威度值):
 - Total sum of votes coming from experts
 - 权威度得分(authority)是链入网页的导航度之和
- Principle of repeated improvement

Interesting pages fall into two classes:

- 1. Hubs(导航页) are pages that link to authorities
 - 有些网页不提供有关任何主题的信息,但是可以找到有关该主题的网页的信息,所以具有重要价值.
 - List of newspapers, course bulletin, list of US auto manufacturers
- 2. Authorities(权威页) are pages containing useful information
 - 有些网页提供有关某个主题的信息. 因为他们具有十分重要的价值, 他们被称为权威页.
 - Newspaper home pages, course home pages, home pages of auto manufacturers

Hub Authority Site

(Note this is idealized example. In reality graph is not bipartite and each page has both the hub and authority score)

1.7.1 Example: Expert Quality, Hub

1.7.1 Example: Reweighting

Authorities (权威度) again collect the hub (导航度) scores

1.7.2 Mutually Recursive Definition

- □A good hub(导航度) links to many good authorities(权威度)
- ■A good authority is linked from many good hubs
- Model using two scores for each node:
 - > Hub score and Authority score
 - \triangleright Represented as vectors h and a

\square Each page *i* has 2 scores:

- ➤ Authority score(权威度值): a_i
- ➤ Hub score(导航度值): h_i

HITS algorithm:

- □Initialize: $a_i^{(0)} = 1/\sqrt{N}$, $h_i^{(0)} = 1/\sqrt{N}$
- ■Then keep iterating until convergence:
 - $\forall i: \text{ Authority: } a_i^{(t+1)} = \sum_{j \to i} h_j^{(t)}$ $\forall i: \text{ Hub: } h_i^{(t+1)} = \sum_{i \to j} a_j^{(t)}$

 - >∀i: Normalize:

$$\sum_{i} \left(a_i^{(t+1)} \right)^2 = 1, \sum_{j} \left(h_j^{(t+1)} \right)^2 = 1$$

$$h_i = \sum_{i \to j} a_j$$

☐HITS converges to a single stable point

■Notation:

- \triangleright Vector $\mathbf{a} = (a_1..., a_n), \quad \mathbf{h} = (h_1..., h_n)$
- ▶Adjacency matrix \mathbf{A} (邻接矩阵, 或称链接矩阵)(NxN): $\mathbf{A}_{ij} = 1$ if $i \rightarrow j$, 0 otherwise

$$A = \begin{bmatrix} A & B & C & D & E \\ 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

 $\Box h_i = \sum_{i \to j} a_j$ can be rewritten as

$$h_i = \sum_j A_{ij} \cdot a_j$$

So: $h = A \cdot a$

Similarly, $a_i = \sum_{j \to i} h_j$ can be rewritten as

$$a_i = \sum_j A_{ji} \cdot h_j$$

So: $a = A^T \cdot h$

HITS algorithm in vector notation:

Set:
$$a_i = h_i = \frac{1}{\sqrt{n}}$$

Repeat until convergence:

$$h = A \cdot a$$

$$\triangleright a = A^T \cdot h$$

 \triangleright Normalize a and h

Then:
$$a = A^T \cdot (A \cdot a)$$

new a

Convergence criterion:

$$\sum_{i} \left(h_i^{(t)} - h_i^{(t-1)} \right)^2 < \varepsilon$$

$$\sum_{i} \left(a_i^{(t)} - a_i^{(t-1)} \right)^2 < \varepsilon$$

a is updated (in 2 steps):

$$a = A^T(A \ a) = (A^T A) \ a$$

h is updated (in 2 steps):

$$h = A(A^T h) = (A A^T) h$$

Repeated matrix powering

1.7.2 Existence and Uniqueness

 $\Box h = \lambda A a$

 $\Box a = \mu A^T h$

 $\Box h = \lambda \mu A A^T h$

 $\Box a = \lambda \mu A^T A a$

Note: λ/μ is scaling constant representing the scaling factor needed

- ■Under reasonable assumptions about A, HITS converges to vectors h* and a*:
 - ▶ h* is the principal eigenvector (主特征向量) of matrix A A⁷
 - $> a^*$ is the **principal eigenvector** of matrix $A^T A$

【备注】观察矩阵**AA**⁷和A可知, Matrix **AA**⁷ dense matrix! Matrix A sparse matrix 同理, **A**⁷ A dense matrix! **A**⁷ sparse matrix

1.7.2 Example of HITS

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \qquad A^{T} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$\mathbf{A}^{\mathrm{T}} = \begin{vmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{vmatrix}$$

$$h = A \cdot a$$
 $h(yahoo) = .58 .80 .80 .79788
 $h(amazon) = .58 .53 .53 .57577$
 $h(m'soft) = .58 .27 .27 .23211$
 $a(yahoo) = .58 .58 .62 .62628$
 $a(amazon) = .58 .58 .49 .49459$
 $a(m'soft) = .58 .58 .62 .62628$$

1.7.2 Summary: PageRank and HITS

- PageRank and HITS are two solutions to the same problem:
 - ➤ What is the value of an in-link from *u* to *v*?
 - ➤In the PageRank model, the value of the link depends on the links into u
 - ➤ In the HITS model, it depends on the value of the other links **out of** *u*

☐ The destinies of PageRank and HITS were very different

4/8/2025 126

Chapter 1 总结

- Link Analysis approaches for computing importance's of nodes in a graph:
 - ▶ PageRank
 - ➤ Topic-Specific PageRank
 - >TrustRank
 - ➤ Hubs and Authorities (HITS)

2025-4-8