2019/10/6 COMP9444 Exercises 1

COMP9444 Neural Networks and Deep Learning Term 3, 2019

Exercises 1: Perceptrons

This page was last updated: 09/29/2019 19:42:58

1. Perceptron Learning

a. Construct by hand a Perceptron which correctly classifies the following data; use your knowledge of plane geometry to choose appropriate values for the weights w_0 , w_1 and w_2 .

Training Example	X ₁	x ₂	Class
a.	0	1	_1
b.	2	0	-1
C.	1	1	+1

b. Demonstrate the Perceptron Learning Algorithm on the above data, using a learning rate of 1.0 and initial weight values of

$$W_0 = -1.5$$

$$w_1 = 0$$

$$w_2 = 2$$

In your answer, you should clearly indicate the new weight values at the end of each training step.

2. XOR Network

Construct by hand a Neural Network (or Multi-Layer Perceptron) that computes the XOR function of two inputs. Make sure the connections, weights and biases of your network are clearly visible.

Challenge: Can you construct a Neural Network to compute XOR which has only one hidden unit, but also includes shortcut connections from the two inputs directly to the (one) output.

Hint: start with a network that computes the inclusive OR, and then try to think of how it could be modified.

3. Computing any Logical Function with a 2-layer Network

Assuming False=0 and True=1, explain how each of the following could be constructed:

- a. Perceptron to compute the OR function of *m* inputs
- b. Perceptron to compute the AND function of *n* inputs

2019/10/6 COMP9444 Exercises 1

c. 2-layer Neural Network to compute the function (A \vee B) \wedge (¬ B \vee C \vee ¬ D) \wedge (D \vee ¬ E)

d. 2-Layer Neural Network to compute any (given) logical expression, assuming it is written in Conjunctive Normal Form.

Hint: in each case, first decide on the input-to-output or input-to-hidden weights, then determine the bias.

Make sure you try answering the Exercises yourself, before checking the Sample Solutions