Unconditional Bases

Definition: Let X be a Banach Space. A series $\frac{\infty}{n=1}$ Xn is unconditionally convergent if $\frac{\infty}{n=1}$ Enxn Converges for all choices of signs $\varepsilon n = \pm 1$.

Definition: Let X be a Banach space and let $\frac{\partial^{\infty}}{\partial x^{2}}$ be a Schauder basis for X.

(i) We say that $2en_{n=1}^{\infty}$ is an unconditional basis if for every $x \in X$, its expansion $x = \sum_{n=1}^{\infty} \lambda_n e_n$ converges unconditionally.

(ii) We say that $2en_{n=1}^{\infty}$ is a unconditional basic sequence if $2en_{n=1}^{\infty}$ is an unconditional basis of $(2en_{n=1}^{\infty})$.

Example: For $l \leq p < \infty$, consider lp(IN) with Schauder basis given by len 3n=1 Where for each ne IN,

$$e_n = (0, 0, 0, \dots, 1, 0, \dots)$$

nth.

We claim that $\{en\}_{n=1}^{\infty}$ is an unconditional basis for lplin). Let xelp(in). Then there are scalars $(\lambda n)_{n=1}^{\infty}$ such that $x = \sum_{n=1}^{\infty} \lambda_n e_n$. We check that $\sum_{n=1}^{\infty} \epsilon_n \lambda_n e_n$ converges for all choices $\epsilon_n = \pm 1$. In particular, we check that the sequence of partial sums is Cauchy. Observe that because xelp(in),

 $||x||_{p}^{p} = \left|\left|\sum_{n=1}^{\infty} \lambda_{n} e_{n}\right|\right|_{p}^{p} = \sum_{i=1}^{\infty} \left|\sum_{n=1}^{\infty} \lambda_{n} e_{n}(i)\right| = \sum_{i=1}^{\infty} |\lambda_{i}|^{p} < \infty$ so for any $\delta > 0$, there exists NeW such that $||x||_{p}^{p} = \sum_{i=N+1}^{\infty} |\lambda_{i}|^{p} < \varepsilon^{p}$

Now, for all n>m≥N, we have

$$\left\| \sum_{i=1}^{n} \epsilon_{i} \lambda_{i} e_{i} - \sum_{i=1}^{m} \epsilon_{i} \lambda_{i} e_{i} \right\|_{p}^{p} = \left\| \sum_{i=m+1}^{n} \epsilon_{i} \lambda_{i} e_{i} \right\|_{p}^{p} = \sum_{i=m+1}^{n} |\lambda_{i}|^{p}$$

$$\leq \sum_{i=m+1}^{\infty} |\lambda_{i}|^{p} < \epsilon^{p}$$

which shows that the sequence of partial sums are Cauchy, so $\sum_{n=1}^{\infty} E_n \lambda_n e_n$ converges, i.e. $\sum_{n=1}^{\infty} \lambda_n e_n$ converges unconditionally.

Example: Let H be a separable Hilbert space. If O is an orthonormal basis for H, then O is also an unconditional basis.

Indeed, if $O = 2e_7 f_{rer}$ is an orthonormal basis and H is separable then for every $x \in H_1$ we get $x = \sum_{rer} \langle x_r e_r \rangle e_r$.

Apply the same technique as previous example to get that O is an unconditional basis, i.e. if $FC\Gamma$ is a countable subset, say $F = \{e_{rn}\}_{n=1}^{\infty}$, then because O on F is unconditional, so is O on Γ .

Remark: Every basis equivalent to an unconditional basis is also unconditional.

Example: Let len in be the usual unit vector basis for Co(IN). For each new, let xn = = ei. We check that if $x = \frac{2}{\pi} \lambda nen$, then $x = \frac{2}{\pi} u n x n$, where un = lu - lute. Note that 2 un = lis so qui gna forms a convergent series. Also IIx II∞ = sup \ \times \mu \n= \mu \n On the other hand, for every convergent series I un

we have

$$X = \sum_{i=1}^{\infty} \mu_i X_i = \sum_{i=1}^{\infty} \left(\sum_{n=1}^{\infty} \mu_n \right) e_i \in C_0(IN)$$

Conclusion: (colin), II.llo) = (S, II.ll) where

The basis { xn 3n=1 is called the summing basis for CoUN).

Proposition: Let Zenyn=1 be a sequence in a Banach space X. TFAE:

- (i) lenin=, is an unconditional basic sequence.
- (ii) There exists K>0 s.t. $\forall \lambda_1,...,\lambda_m$ and signs $\varepsilon_n=\pm 1$ | Zei riei | = K | Z rnen |
- (iii) There exists L>O s.t. +λ1,...,λm and σ < {1,...,m}

In particular, we can extend {1,..., my to IN 30 | Z liei | = L | Z liei |

Proof (iii): Let or be any subset of IN, passibly infinite.
Then by assumption of (iii) I hier is Cauchy: For
E>0 there exists N ∈ IN such that \m>n ≥ N,
$\left\ \sum_{i=n+1}^{m} \lambda_i e_i \right\ \leq \frac{\varepsilon}{L}$. Let $z = \sigma \cap \{n_1, \dots, m\}$, let
$\mu i = \lambda i$ for all $n \leq i \leq m$, and $\mu i = 0$ otherwise. By
assumption,
$\left\ \frac{m}{\sum_{i \in \sigma} \lambda_i e_i} \right\ < \varepsilon \implies \sum_{i \in \sigma} \lambda_i e_i \text{ convergent.}$
)=N
Passing to the limit we get the claim.
J