ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ

ΗΜΕΡΗΣΙΩΝ & ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ ΤΡΙΤΗ 22 ΙΟΥΝΙΟΥ 2021

ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΠΤΑ (7)

<u>OEMA A</u>

Στις ερωτήσεις **Α1-Α4** να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στην επιλογή σας, η οποία συμπληρώνει σωστά την ημιτελή πρόταση

- Α1. Η μαγνητική ροή Φ, που διέρχεται από μια επίπεδη επιφάνεια εμβαδού S, η οποία βρίσκεται μέσα σε ομογενές μαγνητικό πεδίο
 - α) είναι μέγιστη, όταν η επιφάνεια είναι παράλληλη στις δυναμικές γραμμές του μαγνητικού πεδίου
 - β) είναι διανυσματικό μέγεθος
 - γ) είναι μέγιστη, όταν η επιφάνεια είναι κάθετη στις δυναμικές γραμμές του μαγνητικού πεδίου
 - δ) έχει μονάδα μέτρησης το 1 Tesla (1T).

Μονάδες 5

- **Α2.** Σώμα εκτελεί κίνηση, που προέρχεται από τη σύνθεση δύο απλών αρμονικών ταλαντώσεων, γύρω από το ίδιο σημείο ίδιου πλάτους και ίδιας διεύθυνσης, με συχνότητες f_1 =199Hz και f_2 =201Hz, με αποτέλεσμα να παρουσιάζονται διακροτήματα. Ο χρόνος ανάμεσα σε δύο διαδοχικούς μηδενισμούς του πλάτους είναι
 - **α)** 1 s
 - β) $\frac{1}{200}$ s
 - γ) $\frac{1}{400}$ s
 - **δ)** 0,5 s

Μονάδες 5

- **Α3.** Η γωνιακή επιτάχυνση ενός στερεού σώματος, που εκτελεί ομαλά μεταβαλλόμενη στροφική κίνηση γύρω από σταθερό άξονα περιστροφής
 - α) έχει διεύθυνση κάθετη στον άξονα περιστροφής
 - β) έχει κατεύθυνση αντίθετη από την κατεύθυνση του διανύσματος της μεταβολής της γωνιακής ταχύτητας
 - γ) έχει κατεύθυνση ίδια με την κατεύθυνση του διανύσματος της μεταβολής της γωνιακής ταχύτητας
 - δ) έχει κατεύθυνση ίδια με την κατεύθυνση του διανύσματος της αρχικής του γωνιακής ταχύτητας.

Μονάδες 5

- **Α4.** Η υδροστατική πίεση στον οριζόντιο πυθμένα ενός ανοιχτού κυλινδρικού δοχείου με κατακόρυφα τοιχώματα, το οποίο περιέχει ιδανικό υγρό σε ισορροπία και βρίσκεται εντός βαρυτικού πεδίου
 - α) είναι ανεξάρτητη από το μέτρο της επιτάχυνσης της βαρύτητας
 - β) εξαρτάται από το μέτρο της επιτάχυνσης της βαρύτητας
 - γ) είναι ανεξάρτητη από την πυκνότητα του υγρού
 - δ) εξαρτάται από το εμβαδόν του πυθμένα του δοχείου. Μονάδες 5

ΑΡΧΗ 2ΗΣ ΣΕΛΙΔΑΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ

- A5. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας, δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση, τη λέξη **Σωστό**, αν η πρόταση είναι σωστή, ή τη λέξη Λάθος, αν η πρόταση είναι λανθασμένη.
 - α) Η ροπή ζεύγους δυνάμεων είναι ίδια ως προς οποιοδήποτε σημείο του επιπέδου που αυτές ορίζουν.
 - β) Η ροή ενός ιδανικού ρευστού παρουσιάζει στροβίλους.
 - γ) Οι δυναμικές γραμμές του μαγνητικού πεδίου ενός ραβδόμορφου μαγνήτη δεν τέμνονται και είναι πάντα κλειστές.
 - δ) Ο κανόνας του Lenz είναι αποτέλεσμα της αρχής διατήρησης της ενέργειας.
 - ε) Η ένταση του μαγνητικού πεδίου κοντά στα άκρα ρευματοφόρου σωληνοειδούς έχει μέτρο ίσο με το μέτρο της έντασης του μαγνητικού πεδίου στο κέντρο του σωληνοειδούς.

Μονάδες 5

ОЕМА В

Λεπτή ομογενής σκάλα βάρους w ακουμπώντας σε Ισορροπεί, κατακόρυφο τοίχο και τραχύ οριζόντιο δάπεδο, όπως στο σχήμα 1. Εάν μ ο συντελεστής οριακής στατικής τριβής μεταξύ σκάλας και οριζοντίου δαπέδου, τότε η ελάχιστη τιμή της εφαπτομένης της γωνίας φ, για την οποία η σκάλα ισορροπεί, είναι ίση με

α) Να επιλέξετε τη σωστή απάντηση.

Μονάδες 2

β) Να δικαιολογήσετε την επιλογή σας.

Μονάδες 6

Ιδανικό ρευστό πυκνότητας ρ ρέει από δεξαμενή (Δ) μεγάλης διατομής μέσω οριζόντιου λεπτού σωλήνα, του οποίου το εμβαδόν διατομής ελαττώνεται στο μισό στο σημείο (2) όπου το ρευστό εξέρχεται στην ατμόσφαιρα. Λεπτός κατακόρυφος σωλήνας εμβαδού διατομής Α προσαρμόζεται στο σημείο (1), όπως φαίνεται στο σχήμα 2 στην ελεύθερη επιφάνεια του οποίου προσαρμόζεται έμβολο βάρους w που μπορεί να κινείται χωρίς τριβές και έχει επίσης εμβαδόν Α. Εάν το ύψος του ρευστού στη δεξαμενή είναι Η και στο λεπτό κατακόρυφο σωλήνα είναι h = H/4, τότε το βάρος του εμβόλου ισούται με

i.
$$w = \frac{\rho g H A}{2}$$

ii.
$$w = \frac{\rho gHA}{4}$$

ii.
$$w = \frac{\rho gHA}{4}$$
 iii. $w = \frac{\rho gHA}{3}$

Όπου g η βαρυτική επιτάχυνση.

ΑΡΧΗ 3ΗΣ ΣΕΛΙΔΑΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ

α) Να επιλέξετε τη σωστή απάντηση.

Μονάδες 2

β) Να δικαιολογήσετε την επιλογή σας.

Μονάδες 6

B3. Σε λείο οριζόντιο επίπεδο σφαίρα Σ_1 μάζας m_1 =m που κινείται με ταχύτητα u_1 , συγκρούεται ελαστικά, αλλά όχι κεντρικά, με δεύτερη σφαίρα Σ_2 μάζας m_2 =2m, η οποία είναι αρχικά ακίνητη.

Αμέσως μετά την κρούση, η σφαίρα Σ_1 κινείται κάθετα στην αρχική της διεύθυνση με ταχύτητα ${\upsilon'}_1$ και η σφαίρα Σ_2 κινείται με ταχύτητα ${\upsilon'}_2$ σε διεύθυνση που σχηματίζει γωνία 30^0 με την αρχική διεύθυνση κίνησης της σφαίρας Σ_1 . Στη συνέχεια, η σφαίρα Σ_1 συγκρούεται κεντρικά και πλαστικά με ακίνητη σφαίρα Σ_3 μάζας m_3 =m που βρίσκεται ακίνητη στο ίδιο λείο οριζόντιο επίπεδο, όπως φαίνεται σε κάτοψη στο σχήμα 3.

ΤΕΛΟΣ 3ΗΣ ΑΠΟ 7 ΣΕΛΙΔΕΣ

ΑΡΧΗ 4ΗΣ ΣΕΛΙΔΑΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ

Ο λόγος της τελικής κινητικής ενέργειας του συσσωματώματος των σφαιρών Σ_1 και Σ_3 προς την αρχική κινητική ενέργεια της σφαίρας Σ_1 , πριν την κρούση της με τη σφαίρα Σ_2 , είναι ίσος με:

i.
$$\frac{1}{2}$$
 ii. $\frac{1}{3}$ iii. $\frac{1}{6}$

Δίνονται:

•
$$\eta \mu 30^{\circ} = \frac{1}{2}$$
, $\sigma \nu 30^{\circ} = \frac{\sqrt{3}}{2}$

Να θεωρήσετε ότι:

- όλες οι σφαίρες είναι μικρών διαστάσεων,
- όλες οι κρούσεις είναι ακαριαίες,
- τα σώματα δεν αναπηδούν κατά την κρούση,
- κατά τις κρούσεις, δεν έχουμε απώλεια μάζας.
- α) Να επιλέξετε τη σωστή απάντηση.

Μονάδες 2

β) Να δικαιολογήσετε την επιλογή σας.

Μονάδες 7

<u>ΘΕΜΑ Γ</u>

Στο σχήμα 4 οι αγωγοί ΑΓ, ΔΖ, μεγάλου μήκους, βρίσκονται στο ίδιο οριζόντιο επίπεδο, είναι παράλληλοι μεταξύ τους, απέχουν ℓ =1m και έχουν μηδενική ωμική αντίσταση. Η ράβδος ΚΛ έχει μήκος ℓ =1m μάζα m=0,5kg, αντίσταση $R_{\text{K}\Lambda}$ =2 Ω και αρχικά είναι ακίνητη. Η ράβδος ΚΛ μπορεί να κινείται χωρίς τριβές, παραμένοντας συνεχώς κάθετη και σε επαφή με τους αγωγούς ΑΓ, ΔΖ.

Η γεννήτρια εναλλασσόμενου ρεύματος που συνδέεται στα άκρα Α,Δ περιέχει αγώγιμο πλαίσιο μηδενικής αντίστασης, το οποίο στρέφεται με σταθερή γωνιακή ταχύτητα ω γύρω από άξονα που βρίσκεται στο επίπεδό του και είναι κάθετος στις δυναμικές γραμμές ομογενούς μαγνητικού πεδίου. Η χρονική εξίσωση της στιγμιαίας τιμής της εναλλασσόμενης τάσης που εμφανίζεται στο πλαίσιο είναι $\upsilon = V \cdot \eta \mu (50 \text{nt})$ S.I. Οι αντιστάτες που φαίνονται στο σχήμα 4 έχουν τιμές $R_1 = 6\Omega$ και $R_2 = 3\Omega$. Από την αρχική θέση της ράβδου ΚΛ και στον χώρο δεξιά απ' αυτήν, υπάρχει κατακόρυφο ομογενές μαγνητικό πεδίο έντασης Β, του οποίου οι δυναμικές γραμμές έχουν διεύθυνση κάθετη στο επίπεδο της σελίδας και φορά από τον αναγνώστη προς αυτήν, όπως φαίνεται στο σχήμα 4 και καλύπτει όλη τη γραμμοσκιασμένη περιοχή.

ΑΡΧΉ 5ΗΣ ΣΕΛΙΔΑΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΏΝ ΓΕΝΙΚΏΝ ΛΥΚΕΙΩΝ

Γ1. Αρχικά, ο διακόπτης δ_1 είναι κλειστός και οι δ_2 , δ_3 είναι ανοικτοί. Τότε, η μέση ισχύς στον αντιστάτη R_1 ισούται με 12W. Υπολογίστε το πλάτος της τάσης V και την ενεργό ένταση του ρεύματος στον αντιστάτη R_1 .

Μονάδες 6

Γ2. Διατηρώντας τον διακόπτη δ_1 κλειστό και ανοιχτούς τους διακόπτες δ_2 και δ_3 , διπλασιάζουμε τη συχνότητα περιστροφής του πλαισίου στη γεννήτρια εναλλασσόμενης τάσης. Η στιγμιαία τιμή της τάσης που παράγεται τότε έχει τη μορφή $u' = V' \cdot \eta \mu(\omega' t)$. Να γραφεί η χρονική εξίσωση της στιγμιαίας ισχύος στον αντιστάτη R_1 και να υπολογιστεί η τιμή της τη χρονική στιγμή $5 \cdot 10^{-3} sec$.

Μονάδες 6

Γ3. Τη χρονική στιγμή t_0 =0, ανοίγουμε τον διακόπτη δ_1 και ασκούμε στο μέσο της ράβδου ΚΛ σταθερή οριζόντια δύναμη, κάθετη στη ράβδο μέτρου F=0,5N με φορά, όπως στο σχήμα 4. Τη στιγμή 2sec κλείνουμε τους διακόπτες δ_2 και δ_3 και παρατηρούμε ότι έκτοτε η ράβδος κινείται με σταθερή ταχύτητα. Υπολογίστε το μέτρο της έντασης B του μαγνητικού πεδίου μέσα στο οποίο κινείται η ράβδος.

Μονάδες 6

Γ4. Για το χρονικό διάστημα 0 έως 5sec, να υπολογίσετε το ποσοστό επί τοις εκατό του έργου της F που μετατρέπεται σε θερμότητα στον αντιστάτη R_2 .

Μονάδες 7

ΘΕΜΑ Δ

Η ομογενής τροχαλία Τ του σχήματος 5 μάζας M=1,5kg, αποτελείται από δύο κυκλικά τμήματα ακτίνων r και 2r αντίστοιχα, κολλημένα μεταξύ τους που στην περιφέρειά τους φέρουν λεπτή εγκοπή.

Η τροχαλία Τ μπορεί να περιστρέφεται χωρίς τριβές γύρω από ακλόνητο οριζόντιο άξονα που διέρχεται από το κέντρο της Ο. Στο εξωτερικό κυκλικό τμήμα της τροχαλίας είναι τυλιγμένο λεπτό αβαρές νήμα (1), στο ελεύθερο άκρο του οποίου είναι στερεωμένο σώμα Σ₁ μάζας m₁. Στο εσωτερικό κυκλικό τμήμα

ΑΡΧΗ 6ΗΣ ΣΕΛΙΔΑΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ

της τροχαλίας είναι τυλιγμένο λεπτό αβαρές νήμα (2), στο άλλο άκρο του οποίου είναι στερεωμένο σώμα Σ_2 , μάζας m_2 =5kg που βρίσκεται σε λείο κεκλιμένο επίπεδο γωνίας κλίσης φ (ημφ=0,6 και συνφ=0,8). Στη συνέχεια της βάσης του κεκλιμένου επιπέδου, βρίσκεται λείο οριζόντιο επίπεδο μεγάλου μήκους. Το σύστημα της τροχαλίας και των σωμάτων Σ_1 και Σ_2 ισορροπεί στο ίδιο κατακόρυφο επίπεδο.

Σώμα Σ_3 μάζας m_3 =5kg ισορροπεί δεμένο στο ελεύθερο άκρο οριζόντιου ιδανικού ελατηρίου σταθεράς k το άλλο άκρο του οποίου είναι ακλόνητα στερεωμένο. Το σώμα Σ_3 είναι δεμένο με νήμα (3) με το ελατήριο συμπιεσμένο κατά d=0,2m από τη θέση φυσικού μήκους του ελατηρίου.

Δ1. Να υπολογίσετε τη μάζα m_1 και το μέτρο της δύναμης που δέχεται η τροχαλία T από τον άξονα.

Μονάδες 7

Κόβουμε ταυτόχρονα τα νήματα (1) και (2) και απομακρύνουμε το σώμα Σ_1 . Το σώμα Σ_2 που βρίσκεται σε ύψος h=1,8m από το οριζόντιο επίπεδο, αρχίζει να κατέρχεται στο κεκλιμένο επίπεδο και, αφού φτάσει στη βάση του κεκλιμένου επιπέδου, συνεχίζει (χωρίς να παρατηρείται φαινόμενο αναπήδησης και χωρίς να μεταβάλλεται το μέτρο της ταχύτητάς του) την κίνησή του στο λείο οριζόντιο επίπεδο.

Όταν το σώμα Σ_2 βρίσκεται στο σημείο Γ του οριζοντίου επιπέδου που απέχει απόσταση $\ell=\frac{3\pi}{5}$ m από τη θέση Δ στην οποία το ελατήριο βρίσκεται στο φυσικό του μήκος, κόβεται το νήμα (3) και το σώμα Σ_3 αρχίζει να εκτελεί απλή αρμονική ταλάντωση με σταθερά επαναφοράς D=k. Το σώμα Σ_3 συγκρούεται κεντρικά ελαστικά για πρώτη φορά με το σώμα Σ_2 στη θέση Δ φυσικού μήκους του ελατηρίου.

Δ2. Να δείξετε ότι η σταθερά k του ελατηρίου είναι ίση με $125\frac{N}{m}$.

Μονάδες 5

ΑΡΧΗ 7ΗΣ ΣΕΛΙΔΑΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ

Δ3. Να γράψετε την εξίσωση της απομάκρυνσης σε συνάρτηση με τον χρόνο για την απλή αρμονική ταλάντωση που εκτελεί το σώμα Σ_3 αμέσως μετά την κρούση (t=0 η στιγμή της κρούσης και θετική κατεύθυνση η κατεύθυνση της κίνησης του σώματος Σ_3 πριν την κρούση του με το σώμα Σ_2).

Μονάδες 4

Δ4. Να υπολογίσετε τον ρυθμό μεταβολής της ορμής του σώματος Σ_3 , τη χρονική στιγμή που η κινητική ενέργεια της ταλάντωσής του είναι οκταπλάσια της δυναμικής ενέργειας της ταλάντωσής του, για πρώτη φορά μετά την κρούση με το σώμα Σ_2 , καθώς και την απόλυτη τιμή του ρυθμού μεταβολής της κινητικής ενέργειας του σώματος Σ_3 την ίδια χρονική στιγμή.

Μονάδες 6

Δ5. Να υπολογίσετε την απόσταση των σωμάτων Σ_2 και Σ_3 τη χρονική στιγμή που το σώμα Σ_3 διέρχεται από τη θέση φυσικού μήκους του ελατηρίου για πρώτη φορά μετά την κρούση με το σώμα Σ_2 .

Μονάδες 3

Δίνονται:

- η επιτάχυνση της βαρύτητας g = 10 m/s²,
- η σταθερά π είναι περίπου ίση με 3,14.

Να θεωρήσετε ότι:

- η κρούση είναι ακαριαία,
- η αντίσταση του αέρα θεωρείται αμελητέα για όλα τα σώματα,
- κατά την κρούση, δεν έχουμε απώλεια μάζας,
- ο χαρακτηρισμός «λεπτό νήμα» αφορά νήμα αμελητέου πάχους,
- τα σχήματα δεν είναι υπό κλίμακα,
- το οριζόντιο επίπεδο είναι μεγάλου μήκους και οι κινήσεις των σωμάτων, Σ_2 και Σ_3 για το ερώτημα **Δ5** πραγματοποιούνται εξ ολοκλήρου στο οριζόντιο επίπεδο.

ΟΔΗΓΙΕΣ (για τους εξεταζομένους)

- 1. Στο εξώφυλλο του τετραδίου να γράψετε το εξεταζόμενο μάθημα. Στο εσώφυλλο πάνω-πάνω να συμπληρώσετε τα ατομικά στοιχεία μαθητή. Στην αρχή των απαντήσεών σας να γράψετε πάνω-πάνω την ημερομηνία και το εξεταζόμενο μάθημα. Να μην αντιγράψετε τα θέματα στο τετράδιο και να μη γράψετε πουθενά στις απαντήσεις σας το όνομά σας.
- 2. Να γράψετε το ονοματεπώνυμό σας στο πάνω μέρος των φωτοαντιγράφων αμέσως μόλις σας παραδοθούν. Τυχόν σημειώσεις σας πάνω στα θέματα δεν θα βαθμολογηθούν σε καμία περίπτωση. Κατά την αποχώρησή σας να παραδώσετε μαζί με το τετράδιο και τα φωτοαντίγραφα.
- 3. Να απαντήσετε στο τετράδιό σας σε όλα τα θέματα μόνο με μπλε ή μόνο με μαύρο στυλό με μελάνι που δεν σβήνει. Για τα σχήματα μπορεί να χρησιμοποιηθεί και μολύβι.
- 4. Κάθε απάντηση επιστημονικά τεκμηριωμένη είναι αποδεκτή.
- 5. Διάρκεια εξέτασης: τρεις (3) ώρες μετά τη διανομή των φωτοαντιγράφων.
- 6. Ώρα δυνατής αποχώρησης: 10.00 π.μ.

ΣΑΣ ΕΥΧΟΜΑΣΤΕ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΤΕΛΟΣ ΜΗΝΥΜΑΤΟΣ

ΤΕΛΟΣ 7ΗΣ ΑΠΟ 7 ΣΕΛΙΔΕΣ