> [Systems Characterized by Lunear Constant Coefficient Difference Equations

A general linear constant coefficient difference Equino for an LTI system with 1/p X[n] and of y[n] is of the form

$$\frac{N}{2}a_ky[n+k] = \frac{M}{2}b_kx[n+k] - 4x$$

$$k=0$$

$$x[n] \stackrel{+}{\Rightarrow} x(e^{j\omega})$$
 $y[n] \stackrel{+}{\Rightarrow} y(e^{j\omega})$
 $h[n] \stackrel{+}{\Rightarrow} H(e^{j\omega})$

Then, from the convolution property, $H(e^{j\omega}) = \frac{Y(e^{j\omega})}{X(e^{j\omega})}$

$$H(e^{j\omega}) = \frac{Y(e^{j\omega})}{X(e^{j\omega})} = \left(\frac{\frac{M}{2}}{\frac{k=0}{k}} \frac{b_k e^{jk\omega}}{\frac{N}{k=0}}\right).$$

- The Difference Equn. (A): generally referred to as an N-th order Difference Equn. as it involves delays in the ofp y[n] of upto (N) time steps.
 - → Also, the denominator of Hleiw) is an Nth order polynomial in (ejw).

Example: Consider a causal LTI system described by the difference Equin.

Determine the include response!

Taking DTFT both sides [Abbly Univerty +
Tunic shift properties]

$$Y(e^{j\omega}) - \frac{3}{4}e^{-j\omega}Y(e^{j\omega}) + \frac{1}{8}e^{-j2\omega}Y(e^{j\omega}) = 2x(e^{j\omega})$$

$$\Rightarrow H(e^{j\omega}) = \frac{y(e^{j\omega})}{\chi(e^{j\omega})} = \frac{2}{1-\frac{3}{4}e^{-j\omega}+\frac{1}{8}e^{-j2\omega}}$$

This can re-written as

$$H(e^{j\omega}) = \frac{2}{\left(1 - \frac{1}{2}e^{j\omega}\right)\left(1 - \frac{1}{4}e^{j\omega}\right)}$$

Expanding by method of partial fractions: -

$$H(e^{j\omega}) = \left(\frac{2}{1-\frac{1}{2}e^{j\omega}}\right) - \left(\frac{2}{1-\frac{1}{4}e^{j\omega}}\right)$$

Through inspection: -

:
$$h[n] = 4 \left(\frac{1}{2}\right)^n u[n] - 2(\frac{1}{4})^n u[n]$$
.

Summary of Fourier Series and Transform Expressions

Continuous-Timé			Discrete-time	
	Time Domain	Frequency Domain	Time Domain	Frequency Domain
Fourier	x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jkWot}	$a_k = \frac{1}{T_0} \int_{T_0} x(t) e^{-jk\omega_0 t}$	$x[n] = \sum_{k=\langle N \rangle} a_k e^{jk} \left(\frac{2\pi}{N}\right) n$	$q_k = \frac{1}{N} \sum_{k=\langle N \rangle} x[n] e^{jk (\frac{2\pi}{N})} n$
	continuous intuné periòdic intuné	Approvide in Frequency	des crète-time de enodic in time	discrete frequency benodic in frequency.
Fourier Transform	$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} x(jw) e^{j\omega t} dw$ continuous - time apenoidic in time	X(jb)= 5xH) e jut at continuous frequency apenoidic in frequency	X[n] = 1 X(e) w) e dw 21 duscriete time apeniodic in time	X(ejw)= Z x[n] e jwn n=- contruous frequency perodic in frequency

4

Consider the sequence X[n] whose Fourier Transform $X(e^{j\omega})$ is deficted for $(-\pi \le \omega \le \pi)$ in the Figure Determine whether X[n] is periodic, real, even, and/or of finite energy.

soln' = periodicity in time domain ⇒ four ier transform is zero except possibly for impulses located at various integer multiples of the fundamental.

Not true here!

⇒ × [n] is not periodic.

From symmetry property,

real-valueds equence > Magnitude of FT even in (w)

bhase of FT odd in (w)

True in this case $x(n) \rightarrow (real)$

If x[n] is even $\Rightarrow F.T. x(e^{j\omega})$ must also be real 8 even $\therefore x(e^{j\omega}) = |x(e^{j\omega})| e^{-j2\omega} \quad \text{not real valued}$ $\Rightarrow x[n] \text{ not even}$

To test for finite Energy, use Parsoval's relation:- $\frac{2}{2} |x[n]|^2 = \frac{1}{2\pi} \int |x(e^{j\omega})|^2 d\omega$ $\int_{2\pi}^{2\pi} |x(e^{j\omega})|^2 d\omega$ Finite

X[r] has frite en ergy!

Example

The following fourfacts are given about a real signed X[n] with Fourier Transform X(eJW)

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} |\chi(e^{i\mu})|^2 d\mu = 3$$

Determini x[r].

For a real
$$x[n]$$
, od $\{x[n]\} \stackrel{\mathcal{J}}{\rightleftharpoons} j \ 9m \ (x(e^{j\omega})) = j \sin(\omega) - j \sin(e\omega)$

$$= \frac{1}{2} \left(e^{j\omega} - e^{-j\omega} - e^{-j\omega} + e^{-j2\omega} \right)$$

$$= \frac{1}{2} \left(s[n+1] - s[n+2] + s[n-2] \right)$$
Also, od $\{x[n]\} = x[n] - x[n]$ and $x[n] = 0$ for $n > 0$

$$\therefore \text{ For } n < 0, \ x[n] = 2 \text{ od } \{x[n]\} = s[n+1] - s[n+2]$$

For n=0,
$$\times \lceil n \rceil > 0$$
 need to find this?

$$\frac{1}{\sqrt{100}} \left[\frac{1}{\sqrt{100}} \times \frac{1}{\sqrt{100}} \right]^{2} dw = \frac{2}{\sqrt{100}} \left[\frac{1}{\sqrt{100}} \times \frac{1}{\sqrt{100}} \right]^{2}$$

$$\frac{1}{\sqrt{100}} \times \frac{1}{\sqrt{100}} \times \frac{$$

$$|X[0]|^2 = 1 \Rightarrow X[0] = \pm 1$$
$$X[0] = 1$$

$$\therefore \times [n] = \delta[n] + \delta[n+1] - \delta[n+2].$$