Universidade de Évora Engenharia Informática Sistemas Digitais

Termoventilador

Trabalho elaborado por:

Alexandra Correia nº40188

Mafalda Rosa nº40021

Nuno Costa nº41095

Docentes:

Pedro Salgueiro

Teresa Gonçalves

1. Módulo de controle do modo de funcionamento

- 1.1) Para esta primeira parte do trabalho usámos duas entradas, nomeadamente BLD e BM, e três saídas, R1, R2 e MV.
- 1.2) O nosso modelo de ASM é constituído por 4 estados, X, Y, Z e W. Nas caixas de decisão temos duas, porque temos duas entradas, das quais o circuito vai depender, BLD e BM. No nosso modelo de estados, se ligarmos o botão BLD, ou seja se o valor for 1, vai ficar ligado o aquecimento nível 1 e o ventilador, se carregamos outra vez, passa para o aquecimento nível 2 e o ventilador depois clicando mais uma vez passa só para o ventilador e volta a repetir o ciclo.

1.3) Tabela de transição de estados:

BLD	BM	Estado	Próximo	C	ln	Qn-	+1	1	Γ	R1	R2	MV
		Atual	Estado	X2	X1	X'2	X'1	T ₂	T ₁			
0	0	Χ	Х	0	0	0	0	0	0	0	0	0
0	0	Υ	Х	0	1	0	0	0	1	1	0	1
0	0	Z	Х	1	0	0	0	1	0	1	1	1
0	0	W	Х	1	1	0	0	1	1	0	0	1
0	1	Χ	Х	0	0	0	0	0	0	0	0	0
0	1	Υ	Χ	0	1	0	0	0	1	1	0	1
0	1	Z	Χ	1	0	0	0	1	0	1	1	1
0	1	W	Х	1	1	0	0	1	1	0	0	1
1	0	Χ	Υ	0	0	0	1	0	1	0	0	0
1	0	Υ	Υ	0	1	0	1	0	0	1	0	1
1	0	Z	Z	1	0	1	0	0	0	1	1	1
1	0	W	W	1	1	1	1	0	0	0	0	1
1	1	Χ	Υ	0	0	0	1	0	1	0	0	0
1	1	Υ	Z	0	1	1	0	1	1	1	0	1
1	1	Z	W	1	0	1	1	0	1	1	1	1
1	1	W	Υ	1	1	0	1	1	0	0	0	1

1.4) Como é observável no ponto 1.3), nós utilizámos os flip-flops T.

1.5) <u>Tabela de excitações do flip-flop T:</u>

Q*	Q	T
0	0	0
0	1	1
1	0	1
1	1	0

Mapas de karnaugh:

T2

X2 v				
X2 X1 BLD BM	00	01	11	10
00	0	0	1	1
01	0	0	1	1
11	0	1	1	0
10	0	0	0	0

T1

X2 X1				
BLD BM	00	01	11	10
00	0	1	1	0
01	0	1	1	0
11	[1	1	0	1
10	1	0	0	0

T1= $\overline{\text{BLD}}.\text{X1} + \text{BLD}.\text{BM}.\overline{\text{X2}} + \text{BLD}.\overline{\text{X1}}.\overline{\text{X2}} + \text{BLD}.\text{BM}.\overline{\text{X1}}$

R1

BLD BM	00	01	11	10
00	0	1	0	1
01	0	1	0	1
11	0	1	0	1
10	0	1	0	1

R1= X1⊕ X2

R2

X2 X1				
BLD BM	00	01	11	10
00	0	0	0	1
01	0	0	0	1
11	0	0	0	1
10	0	0	0	1

R2=X2.X1

MV

. X2 v.				
BLD BM	00	01	11	10
00	0	1	1	1
01	0	1	1	1
11	0	1	1	1
10	0	1	1	1

MV= X2 + X1

2. Módulo de controle do mecanismo de oscilação

- **2.1)** Para esta segunda parte do trabalho usámos duas entradas, nomeadamente BLD e BO, e três saídas, MO, SD e SE.
- 2.2) O nosso modelo de ASM é constituído por 6 estados, X, Y, Z, W, K e L. Nas caixas de decisão temos também duas, porque temos duas entradas, das quais o circuito vai depender, BLD e BO. Neste caso, o nosso modela de ASM funciona da seguinte forma: quando ligamos o botão BLD, o modo de oscilação fica ligado também, quando clicamos no BO, o modo de oscilação roda dois ciclos de relógio para a direita e dois ciclo de relógio para a esquerda e continua até ser desligado.

2.3) Tabela de transição de estados:

BLD	ВО	Estado	Próximo		Qn			Qn+1			Т		МО	SD	SE
		Atual	Estado	X 3	X2	X1	X'3	X'2	X'1	Тз	T ₂	T ₁			
0	0	Х	Х	0	0	0	0	0	0	0	0	0	0	0	0
0	0	Υ	Х	0	0	1	0	0	0	0	0	1	0	0	0
0	0	Z	Х	0	1	0	0	0	0	0	1	0	0	1	0
0	0	W	Х	0	1	1	0	0	0	0	1	1	0	1	0
0	0	K	Х	1	0	0	0	0	0	1	0	0	0	0	1
0	0	L	Х	1	0	1	0	0	0	1	0	1	0	0	1
0	0	-	-	-	-	-	-	-	-	-	-	-	-	-	-
0	0	-	-	-	-	-	-	-	-	-	-	-	-	-	-
0	1	Х	Х	0	0	0	0	0	0	0	0	0	1	0	0
0	1	Υ	Х	0	0	1	0	0	0	0	0	1	1	0	0
0	1	Z	Χ	0	1	0	0	0	0	0	1	0	1	1	0
0	1	W	Х	0	1	1	0	0	0	0	1	1	1	1	0
0	1	K	Х	1	0	0	0	0	0	1	0	0	1	0	1
0	1	L	Х	1	0	1	0	0	0	1	0	1	1	0	1
0	1	ı	-	-	-	-	ı	-	ı	-	-	-	-	-	-
0	1	ı	-	-	-	-	ı	-	ı	-	-	-	-	-	-
1	0	X	Υ	0	0	0	0	0	1	0	0	1	0	0	0
1	0	Υ	Υ	0	0	1	0	0	1	0	0	0	0	0	0
1	0	Z	Z	0	1	0	0	1	0	0	0	0	0	1	0
1	0	W	W	0	1	1	0	1	1	0	0	0	0	1	0
1	0	K	K	1	0	0	1	0	0	0	0	0	0	0	1
1	0	L	L	1	0	1	1	0	1	0	0	0	0	0	1
1	0	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1	0	ı	-	-	-	-	-	-	-	-	-	-	-	-	-
1	1	X	Υ	0	0	0	0	0	1	0	0	1	1	0	0
1	1	Υ	Z	0	0	1	0	1	0	0	1	1	1	0	0
1	1	Z	W	0	1	0	0	1	1	0	0	1	1	1	0
1	1	W	K	0	1	1	1	0	0	1	1	1	1	1	0
1	1	K	L	1	0	0	1	0	1	0	0	1	1	0	1
1	1	L	Υ	1	0	1	0	0	1	1	0	0	1	0	1
1	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1	1	ı	-	-	-	-	-	-	-	-	-	-	-	-	-

- 2.4) Para esta parte do trabalho também escolhemos usar flip-flops T como é visível em 2.3).
- $2.5) \ \underline{\text{Tabela de excitações do flip-flop T:}}$

Q*	ď	T
0	0	0
0	1	1
1	0	1
1	1	0

Mapas de karnaugh:

Т3

BLD BO	000	001	011	010	110	111	101	100
00	0	0	0	0	-	1	1	1
01	0	0	0	0	-	-	1	1
11	0	0	1	0	-		1	0
10	0	0	0	0	-	-	0	0

T3= BLD.BO. $\overline{X3}$.X2.X1 + \overline{BLD} .X3 + BO.X3.X1

T2

$\frac{x_3}{x_2}$ x_1								
BLD BO	000	001	011	010	110	111	101	100
00	0	0	1	1	-	-	0	0
01	0	0	1	1	-		0	0
11	0	1	1	0	-	-	0	0
10	0	0	0	0	-	-	0	0

 $T2 = BLD.BO.\overline{X3}.X1 + \overline{BLD}.X2$

T1

X3 X2 X1 BLD BO	000	001	011	010	110	111	101	100
00	0	1	1	0	-	-	1	0
01	0	1	1	0	-	_	1	0
11	[1	1	1	1	-	-	0	1
10	1	0	0	0	-	-	0	0

 $T1=\overline{X3.X1.BLD} + BLD.BO.\overline{X3} + BLD.\overline{X2.X3.X1} + \overline{BLD.X3.X2.X1} + BLD.BO.\overline{X3.X2.X1}$

MO

BLD BO	000	001	011	010	110	111	101	100
00	0	0	0	0	1	1	0	0
01	1	1	1	1	-	1	1	1
11	1	1	1	1	1	1	1	1
10	0	0	0	0	-	-	0	0

MO= BO

BLD BO	000	001	011	010	110	111	101	100
00	0	0	1	1	-	·J	0	0
01	0	0	1	1	-	-	0	0
11	0	0	1	1	-	-	0	0
10	0	0	1	1	-	[0	0

SD= X2

SE

X3 X2 X1 BLD BO	000	001	011	010	110	111	101	100
00	0	0	0	0	(-	1	1	1
01	0	0	0	0	-	-	1	1
11	0	0	0	0	-	-	1	1
10	0	0	0	0		_	1	1

SE= X3