Convolutional Sequence to Sequence Learning

FAIR-Seq

Contents

- 1. Abstract
- 2. Introduction
- 3. RNN Seq2Seq
- 4. A Convolution Architecture
- 5. Experimental Setup
- 6. Results
- 7. Conclusion

Abstract

- We introduce an architecture based entirely on convolutional neural networks
- <u>Computations</u> over all elements can be fully <u>parallelized</u> during training to better exploit the GPU hardware and optimization is easier.
- Use of gated linear Units eases gradient propagation (Dauphin et al. 2016)
- Equip each decoder layer with a separation attention module

- Convolutional layer
 - Fixed size contexts
 - But network can easily be made larger by <u>stacking several layers</u> on top of each other → <u>allows to precisely control the maximum length of</u> <u>dependencies to be modeled</u>
 - Convolutional networks <u>do not depend on</u> the computations of the <u>previous</u>
 <u>time step</u> → <u>allow parallelization</u> over every element in a sequence

- Multi-layer convolutional neural networks
 - Create <u>hierarchical representations</u> over the input sequence
 - Nearby input elements interact at lower layers while distant elements interact at higher layers
 - Provides a shorter path to capture long-range dependencies
 - Obtain a feature representation capturing relationships within a window of n words
 - Inputs to a convolutional network <u>are fed through a constant number of</u>
 <u>kernels</u> and non-linearities, whereas RNN apply up to n operations and non-linearities

- Summary of Intro
 - What we propose are...
 - Convolution Network Architecture
 - Gated linear units & Residual connections
 - Added Attention layer in every decoder layers
 - The combination of these choices enables us to tackle large scale problems

- Recent studies related Convolution
 - Bradbury et al. (2016)
 - Kalchbrenner et al. (2016)
 - Meng et al. (2015)
 - Gehring et al. (2016)

RNN Seq2Seq

RNN Seq2Seq

- Encoder input sequence $\mathbf{x} = (x_1, x_2, ..., x_m)$ returns state representation $\mathbf{z} = (z_1, z_2, ..., z_m)$
- Then Decoder generates output sequence $\mathbf{y} = (y_1, y_2, ..., y_m)$ left to right, one element at a time
- To generate y_{t+1} , the model generates like $P(y_{t+1}|y_1,y_2,...,y_t,\mathbf{z})$

Attention Mechanism

- Architectures compute c_i as a weighted sum of (z_1, z_2, \dots, z_m) at each time step
- The weights allow the network to focus on different parts of the input sequence as it generates the output sequences

- Position Embeddings
 - Position embeddings give our model a sense of which portion of the sequence in the input or output it is currently dealing with
 - Embed input elements $\mathbf{x}=(x_1,x_2,...,x_m)$ in distributional space as $\mathbf{w}=(w_1,w_2,...,w_m)$ where $w_j \in \mathbb{R}^f$
 - Equip our model with a sense of order by embedding the absolute position of input elements $\underline{p} = (p_1, p_2, ..., p_m)$ where $\underline{p}_i \in \mathbb{R}^f$
 - Combine to obtain input element representations $e = (w_1 + p_1, ..., w_m + p_m)$
 - <u>Proceed similarly for output elements that were already generated by the decode</u> network to yield output element representations

$$\mathbf{g} = (g_1, g_2, \dots, g_m)$$

- Convolutional Block Structure
 - Both encoder and decoder networks share a simple block structure that computes intermediate states <u>based on a fixed number of input elements</u>
 - Each block contains a one dimensional convolution followed by a nonlinearity
 - Stacking several blocks on top of each other increases the number of input elements represented in a state

Convolutional Block Structure

- Stacking 2 blocks with k = 3 (k is kernel size)
- Each outputs depends on 5 token element inputs
- How many Conv blocks have to stack for 25 token inputs to represent all inputs in one output element?

$$1 + (2 \times n) = 25 : n = 6$$

- Convolutional Block Structure
 - For encoder networks we ensure that the output of the convolutional layers matches the input length by padding the input at each layer
 - However, for decoder networks we have to take care that no future information is available to the decoder (Oord et al. 2016a)

- Convolutional Block Structure
 - ${f \cdot}$ We also add linear mappings to project between the embedding size f and the convolution outputs that are of size 2d

Convolutional Block Structure

- Input Source
 - *l*-th block of decoder output \rightarrow $h^l = (h_1^l, h_2^l, ..., h_m^l)$
 - *l*-th block of encoder output \rightarrow $\mathbf{z}^l = (z_1^l, z_2^l, ..., z_m^l)$
- Convolutional Block
 - $v([A B]) = A \otimes \sigma(B)$ (σ is sigmoid)

$$\leftarrow [A B] \in \mathbb{R}^{2d}, v([A B]) \in \mathbb{R}^d$$

Residual

Connection

• $h_i^l = v\left(W^l\left[h_{i-\frac{k}{2}}^{l-1}, \dots, h_{i+\frac{k}{2}}^{l-1}\right] + b_w^l\right) + h_i^{l-1}$ (Kernel width: k)

$$\leftarrow W \in \mathbb{R}^{2d \times kd}, b_w \in \mathbb{R}^{2d}$$

Residual Block

Convolutional Block Structure

- Finally, we compute a distribution over the T possible next target elements y_{i+1} by transforming the top decoder output h_i^L via a linear layer with weights W_o and b_o
- $P(y_{t+1}|y_1, y_2, ..., y_t, \mathbf{x}) = \text{softmax}(W_o h_i^L + b_o) \in \mathbb{R}^T$

- Multi-step Attention
 - To compute the attention, we combine the current decoder state h_i^l with an embedding of the previous target element g_i

•
$$d_i^l = W_d^l h_i^l + b_d^l + g_i$$

• For decoder layer l the <u>attention</u> $\underline{\alpha_{ij}^l}$ of state i and source element j is computed as <u>a dot-product between the decoder state summary</u> d_i^l and each output z_i^u of the last encoder block u

•
$$\alpha_{ij}^l = \frac{\exp(d_i^l \cdot z_j^u)}{\sum_{t=1}^m \exp(d_t^l \cdot z_t^u)}$$

Multi-step Attention

- Multi-step Attention
 - The conditional input $\underline{c_i^l}$ to the current decoder layer is **a weighted sum of** the encoder outputs as well as the input element embeddings e_i
 - $c_i^l = \sum_{j=1}^m \alpha_{ij}^l (z_j^u + e_j)$
 - It resembles key-value memory networks where the keys are the α^l_{ij} and the values are $z^u_j + e_j$
 - Encoder outputs \underline{z}_j^u represent potentially large input contexts and \underline{e}_j provides point information about a specific input element that is useful when making a prediction e_j

Multi-step Attention

- Multi-step Attention
 - This can be seen as attention with multiple 'hops' compared to single step attention
 - The attention of the <u>first layer determines a useful source context which is then fed to the second layer</u> that takes this information into account when computing attention.
 - The decoder also has immediate access to the attention history of the k-1 previous time steps

- Multi-step Attention
 - Our attention mechanism considers which words we previously attended to and performs multiple attention 'hops' per time step

- Normalization Strategy (work well in this practice)
 - We scale the output of residual blocks as well as the attention to preserve the variance of activations
 - We multiply the sum of the input and output of a residual block by $\sqrt{0.5}$ to halve the variance of the sum
 - The conditional input c_i^l generated by the attention is a <u>weighted sum of m</u> <u>vectors</u>
 - We counteract a change in variance through scaling by $m\sqrt{1/m}$; we multiply by m to scale up the inputs to their original size, assuming the attention scores are uniformly distributed

- Normalization Strategy (work well in this practice)
 - We scale the gradients for the encoder layers by the number of attention mechanisms we use; we exclude source word embeddings
 - ← Since the encoder received too much gradient otherwise

Initialization

- The motivation for our initialization is <u>maintaining the variance of activations</u> throughout the forward and backward passes
- All embeddings are initialized from a normal distribution with mean 0 and standard deviation 0.1
- For layers whose output is not directly fed to a gated linear unit, we initialize weights from $\mathcal{N}\left(0,\sqrt{\frac{1}{n_l}}\right)$ where n_l is the number of input connections to each neuron.

- Initialization
 - We initialize the GLU weights so that the input to the GLU activations have 4 times the variance of the layer input.

← If the GLU inputs are distributed with mean 0 and have sufficiently small variance, then we can approximate the output variance with ½ of the input variance

• This is achieved by drawing their initial values from $\mathcal{N}\left(0,\sqrt{\frac{4}{n_l}}\right)$

Initialization

- ullet We apply dropout to the input of some layers so that inputs are retained with a probability of p
- The application of dropout will then cause the variance to be scaled by 1/p
- We aim to restore the incoming variance by initializing the respective layers with larger weights
- Specifically, we use $\mathcal{N}\left(0,\sqrt{\frac{4p}{n_l}}\right)$ for layers whose output is subject to a GLU and $\mathcal{N}\left(0,\sqrt{\frac{p}{n_l}}\right)$

Experimental Setup

- Datasets
 - Translation
 - WMT' 16 English-Romanian
 - WMT' 14 English-German
 - WMT' 14 English-French
 - Abstractive summarization
 - Train Gigaword corpus
 - Test DUC-2004,

Experimental Setup

- Model Parameters and Optimization
 - Convolution hidden units: 512
 - # of Mini-batches: 64
 - Dropout
 - Nesterov's accelerated gradient method
 - Momentum value: 0.09
 - Renormalize gradients if their norm exceeds 0.1
 - Learning rate: 0.25

Results

	BLEU	Time (s)
GNMT GPU (K80)	31.20	3,028
GNMT CPU 88 cores	31.20	1,322
GNMT TPU	31.21	384
ConvS2S GPU (K40) $b = 1$	33.45	327
ConvS2S GPU (M40) $b = 1$	33.45	221
ConvS2S GPU (GTX-1080ti) $b = 1$	33.45	142
ConvS2S CPU 48 cores $b = 1$	33.45	142
ConvS2S GPU (K40) $b = 5$	34.10	587
ConvS2S CPU 48 cores $b = 5$	34.10	482
ConvS2S GPU (M40) $b = 5$	34.10	406
ConvS2S GPU (GTX-1080ti) $b = 5$	34.10	256

Results

Attn Layers	PPL	BLEU
1,2,3,4,5	6.65	21.63
1,2,3,4	6.70	21.54
1,2,3	6.95	21.36
1,2	6.92	21.47
1,3,5	6.97	21.10
1	7.15	21.26
2	7.09	21.30
3	7.11	21.19
4	7.19	21.31
5	7.66	20.24

Kernel width	Encoder layers		
	5	9	13
3	20.61	21.17	21.63
5	20.80	21.02	21.42
7	20.81	21.30	21.09

Kernel width	Decoder layers		
	3	5	7
3	21.10	21.71	21.62
5	21.09	21.63	21.24
7	21.40	21.31	21.33

Conclusion

- We introduce the first fully convolutional model for sequence to sequence learning
- Our model relies on gating and performs multiple attention steps
- This model may benefit from learning hierarchical representations

Q&A