CIVIO2 - STRUCTURES and MATERIALS

2) Displacements of Beams

Small Displacements

For larger angles

$$\varphi = \frac{d^2q}{dx^2}$$

$$(1 + (\frac{dq}{dx})^2)^{\frac{3}{2}}$$

4) Solve for Displacements and Angles

A) MAT#
$$| \rightarrow 0$$

 $\Phi = \frac{d^2y}{dx^2}$, Integrate Once
 $\int \Phi dx + C = \frac{dy}{dx} = \theta$
 $\theta = \int \Phi dx + C$

Moment Area Theorem # L

The change in slope between A and B in a beam is equal to the area under & diagram between A and B.

$$\theta_A$$
=?
by symmetry θ_B = Zero
 θ_A - θ_B = Shaded Area = $\frac{L}{2} \cdot \frac{PL}{4EI} \cdot \frac{1}{2}$

$$\theta_A = \frac{PL^2}{16EI}$$

displacement perpendicular to undeformed shape from the straight line

Moment Area Theorem #2

The tangental deviation & at point A between the elastic curve and the tangent drawn from B is equal to the first moment of area of the P diagram between A and B with moments taken about point A.

SAB

A→ Where to get 8
B→ Where is the tangent
A→ Where to get lever arm

SAB = AB · (lever arm)