线性规划的基本概念 与理论

徐欢乐

xuhl@dgut.edu.cn

计算机与网络安全学院,9A304

2018.3.6

凸集

(1) 凸集的概念

定义1 设集合 $S \subseteq \mathbb{R}^n$,若 $\forall x^{(1)}, x^{(2)} \in S, \lambda \in [0,1], \quad 必有 \lambda x^{(1)} + (1 - \lambda) x^{(2)} \in S, 则称 <math>S$ 为凸集。

规定:单点集{x}为凸集,空集Ø为凸集。

注: $\lambda x^{(1)} + (1 - \lambda) x^{(2)} = x^{(2)} + \lambda (x^{(1)} - x^{(2)})$ 是连接 $x^{(1)} - x^{(2)}$ 的线段。

凸集

- 例1 证明集合 $S = \{x | Ax = b\}$ 是凸集。其中,A为 $m \times n$ 矩阵,b为m维向量。
- 凸组合: 设 $\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(m)} \in \mathbb{R}^n, \lambda_j \geq 0$

$$\sum_{j=1}^{m} \lambda_{j} = 1$$
, 那么称 $\sum_{j=1}^{m} \lambda_{j} \mathbf{x}^{(j)} \mathbf{b} \mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(m)}$ 的

凸组合。

• 比较: $\mathbf{z} = \sum_{j=1}^{m} \alpha_j \mathbf{x}^{(j)}$

 $\alpha_{j} \in \mathbb{R}$ — 构成线性组合 — 线性子空间 $\alpha_{j} \ge 0$, $\Sigma \alpha_{j} > 0$ — 构成半正组合 — 凸锥 $\alpha_{j} \ge 0$, $\Sigma \alpha_{j} = 1$ — 构成凸组合 — 凸集

凸集

定理1 S是凸集⇔S中任意有限点的凸组合属于S。

- 多胞形 $H(\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, ..., \mathbf{x}^{(m)})$: 由 $\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, ..., \mathbf{x}^{(m)}$ 的所有凸组合构成。
- 单纯形: 若多胞形 H(x⁽¹⁾, x⁽²⁾, ..., x^(m))满足,
 x⁽²⁾ x⁽¹⁾, x⁽³⁾ x⁽¹⁾, ..., x^(m) x⁽¹⁾线性无关。

凸集的性质

- (2) 凸集的性质
- 1) 凸集的交集是凸集; (并?)
- 2) 凸集的内点集是凸集;(逆命题是否成立?)
- 3 凸集的闭包是凸集。(逆命题是否成立?)

多面体、极点、极方向

(1) 多面体:有限个半闭空间的交

例: $S = \{x \in \mathbb{R}^n \mid Ax = b, x \ge 0\}$

2.3 多面体、极点、极方向

- (2) 多面体的极点(顶点): $x \in S$,不存在 S 中的另外两个点 $x^{(1)}$ 和 $x^{(2)}$,及 $\lambda \in (0,1)$,使 $x = \lambda x^{(1)} + (1 \lambda) x^{(2)}$ 。
- (3) 方向: $x \in S$, $d \in \mathbb{R}^n$, $d \neq 0$ 及 $\lambda > 0$, 总有 $x + \lambda d \in S$ (可行方向)。其中,当 $d^{(1)} = \lambda d^{(2)}(\lambda > 0)$ 时,称 $d^{(1)}$ 和 $d^{(2)}$ 同方向。
 - (4) 极方向:方向 d 不能表示为两个不同方向的组合($d = \mu_1 d^{(1)} + \mu_2 d^{(2)}$)。

多面体、极点、极方向

定理5(极点特征)设A秩为m, x是5极点的充分必要条件是:

存在分解 A = (B, N) ,其中 B 为 m 阶非奇异矩阵,使 $x^{T} = (x_{B}^{T}, x_{N}^{T})$,这里 $x_{B} = B^{-1}b \ge 0$, $x_{N} = 0$ 。

●S中必存在有限多个极点(≤C_n^m)。

2.3 多面体、极点、极方向

定理6(极方向特征)设 $A = (p_1, p_2, ..., p_n)$ 秩 为m, d是5极方向的充分必要条件是: 在分解A = (B, N),其中B为m阶非奇异矩 阵,对于N中的列向量p;使B⁻¹p_i≤0, $d^{\mathsf{T}} = \alpha \left(d_{\mathsf{R}}^{\mathsf{T}}, d_{\mathsf{N}}^{\mathsf{T}} \right)$,这里 $d_B = {}^{-1}p_i, d_N = (0, ..., 1, ..., 0)$ S中必存在有限多个极方向 (≤ $(n-m)C_n^m$)。

例 题

例2 考虑多面体 $S = \{x \in \mathbb{R}^n | Ax = b, x \ge 0\}$,其中

$$\mathbf{A} = \begin{bmatrix} 3 & 2 & 1 & 0 & 0 \\ 2 & 1 & 0 & 1 & 0 \\ 0 & 3 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{b} = \begin{bmatrix} 65 \\ 40 \\ 75 \end{bmatrix}$$

即

$$3 X_{1} + 2 X_{2} + X_{3} = 65$$

$$2 X_{1} + X_{2} + X_{4} = 40$$

$$3 X_{2} + X_{5} = 75$$

$$X_{1}, X_{2}, X_{3}, X_{4}, X_{5} \ge 0$$

例题

$$A = (p_1, p_2, p_3, p_4, p_5)$$

 A 矩阵包含以下 10 个 3×3 的子矩阵:
 $B_1 = (p_1, p_2, p_3)$ $B_2 = (p_1, p_2, p_4)$
 $B_3 = (p_1, p_2, p_5)$ $B_4 = (p_1, p_3, p_4)$
 $B_5 = (p_1, p_3, p_5)$ $B_6 = (p_1, p_4, p_5)$
 $B_7 = (p_2, p_3, p_4)$ $B_8 = (p_2, p_3, p_5)$
 $B_9 = (p_2, p_4, p_5)$ $B_{10} = (p_3, p_4, p_5)$

例题

其中 $|B_4| = 0$,因而 B_4 不能构成极点和极方向。其余均为非奇异方阵,因此该问题共有9个可构成极点、极方向的子矩阵,我们称之为基。

对于基 B_3 = (p_1, p_2, p_5) ,令 X_3 =0, X_4 =0,在等式约束中令 X_3 =0, X_4 =0,解线性方程组

$$3 \quad x_1 + 2 \quad x_2 + 0 \quad x_5 = 65$$
 $2 \quad x_1 + \quad x_2 + 0 \quad x_5 = 40$
 $0 \quad x_1 + 3 \quad x_2 + \quad x_5 = 75$

得到 $X_1 = 15$, $X_2 = 10$, $X_5 = 45$, 对应的极点

$$\mathbf{x} = (x_1, x_2, x_3, x_4, x_5)^{\mathrm{T}}$$

= (15, 10, 0, 0, 45)^T

例题

类似可得到极点

$$\mathbf{x}^{(2)} = (5, 25, 0, 5, 0)^{\mathsf{T}}$$
 (对应 \mathbf{B}_{2})
 $\mathbf{x}^{(7)} = (20, 0, 5, 0, 75)^{\mathsf{T}}$ (对应 \mathbf{B}_{5})
 $\mathbf{x}^{(8)} = (0, 25, 15, 15, 0)^{\mathsf{T}}$ (对应 \mathbf{B}_{7})
 $\mathbf{x}^{(9)} = (0, 0, 65, 40, 75)^{\mathsf{T}}$ (对应 \mathbf{B}_{10})

 $\mathbf{x}^{(3)} = (0, 32.5, 0, 7.5, -22.5)^{\mathsf{T}}$ (对应 \mathbf{B}_{9})
 $\mathbf{x}^{(4)} = (65/3, 0, 0, -10/3, 75)^{\mathsf{T}}$ (对应 \mathbf{B}_{6})
 $\mathbf{x}^{(5)} = (7.5, 25, -7.5, 0, 0)^{\mathsf{T}}$ (对应 \mathbf{B}_{1})
 $\mathbf{x}^{(6)} = (0, 40, -15, 0, -45)^{\mathsf{T}}$ (对应 \mathbf{B}_{8})
不是极点。

多面体、极点、极方向

多面体 $S = \{x \in \mathbb{R}^n \mid Ax = b, x \ge 0\}$ 的极点和极方向

定理7(表示定理)考虑上述多面体5,

设A满秩, $\mathbf{x}^{(1)},\mathbf{x}^{(2)},...,\mathbf{x}^{(k)}$ 为所有极点, $\mathbf{d}^{(1)},\mathbf{d}^{(2)},...,\mathbf{d}^{(l)}$ 为所有极方向。那么,对于 $\forall \mathbf{x} \in S$, $\exists \lambda_i \geq 0$, i=1, 2, ..., k,且 $\lambda_1 + \lambda_2 + ... + \lambda_k = 1$, $\mu_j \geq 0$,j = 1,2,...,l,使

 $\mathbf{x} = \lambda_1 \mathbf{x}^{(1)} + \lambda_2 \mathbf{x}^{(2)} + \dots + \lambda_k \mathbf{x}^{(k)} + \mu_1 \mathbf{d}^{(1)} + \mu_2 \mathbf{d}^{(2)} + \dots + \mu_l \mathbf{d}^{(l)}$

表示定理的证明

- 数学归纳法
- ·对x中非零元素的个数进行归纳