1 — Translations

In this chapter, we develop a interpretation of $\lambda\mu$ in CDC. We prove some properties of this interpretation, including *soundness*. We concatenate this interpretation with van Bakel's interpretation of λ^{try} in $\lambda\mu$. This concatenation yields an interpretation of λ^{try} in CDC. This will then be used as a basis for the implementation of λ^{try} in Haskell.

1.1 Interpreting λ^{try} in $\lambda \mu$

Steffen van Bakel describes the interpretation of λ^{try} to $\lambda \mu$:

throw n(M) terms are modelled using $\lambda\mu$ -abstractions of non-occurring names. This has the effect of removing all terms it is applied to:

$$(\mu \circ .M)NOP \rightarrow (\mu \circ .M)OP \rightarrow (\mu \circ .M)P \rightarrow \mu \circ .M$$

The contents of the $\lambda\mu$ -abstraction calls c_n . This λ -variable is bound by the translation of **try** terms. This binding means that the exception handlers, represented by $\lambda x.[\![L]\!]$, are in scope for the reduction of the body of the try M.

1.2 Interpreting $\lambda \mu$ in CDC

The translation of $\lambda\mu$ -terms into CDC assumes that there is a single global prompt P_0 . It also assumes that this prompt has already been pushed onto

the stack. This means that the translation of a full $\lambda\mu$ -program M in CDC is:

Definition 1.2.1 (Initialization of stack for running M in CDC)

$$(\lambda_{P_0} . PP P_0 [M]) NP$$

This creates a new prompt P_0 which is in scope for all subterms of M. It also prepares the stack by pushing P_0 immediately. With the abstract machine prepared, the interpretation of $\lambda\mu$ terms into CDC proceeds as follows:

Definition 1.2.2 (Interpretation of $\lambda\mu$ into CDC)

To implement $\lambda\mu$ -abstractions, we capture the subcontinuation until the last occurrence of P₀ on the stack. This subcontinuation is bound to α which ensures the subcontinuation is distributed to all occurrences of α in M. P₀ is then pushed back onto the stack before the evaluation of M.

To implement named-terms, the subcontinuation β is pushed into the stack before evaluating M. This means the reduct of M will be returned to this subcontinuation. In effect, this reduces M and passes the result to β .

1.2.1 Notation

To carry out proofs, the full state of the abstract machine is displayed:

where each column corresponds to one component of the original abstract machine. Our translations only use a single prompt so we omit the final column of the abstract machine (used for representing the global prompt counter).

When an empty context is in a sequence, it has no effect on the machine: a sequence $D: \Box: D'$ is extensionally equivalent to D: D'. For this reason, we omit empty contexts from sequences. For example in the case of the following reduction

$$\operatorname{PSC} \beta M \square \operatorname{P}_0 \to_{CDC} M \square \beta : \square : \operatorname{P}_0$$

we will instead write

$$\operatorname{PSC} \beta M \square \operatorname{P}_0 \to_{CDC} M \square \beta : \operatorname{P}_0$$

1.2.2 Additional Translations

We alter μ -reduction to consume multiple variables. The application of a μ abstraction to multiple variables will consume them all at once:

Definition 1.2.3 μ -REDUCTION TO CONSUME MULTIPLE VARIABLES

$$(\mu\alpha.[\beta]M)\overline{N} \rightarrow_{\mu} \mu\alpha.[\beta](M[[\alpha]M'\overline{N}/[\alpha]M'])$$

This does not change the behaviour of μ -reduction but condenses the reduction steps. The entire applicative context is consumed. Therefore the remaining μ abstraction will point α to \square . This means that all labelled subterms $[\alpha]M'$ will be translated to PSC \square [M']. CDC reduces PSC \square [M'] to [M']. This reduction means we can discard the α labels after consuming the entire context. Given this, we can define the following translation for multiple-variable consumption:

Definition 1.2.4 Translation of multiple variable consumption to CDC

$$\llbracket M[[\alpha]M'\overline{N}/[\alpha]M']\rrbracket \quad \triangleq \quad \llbracket M\rrbracket[\square\llbracket\overline{N}\rrbracket/\alpha]$$

With this translation, the proof that $\llbracket \cdot \rrbracket$ respects \to_{μ} is easy.

1.2.3 Properties

Theorem 1.2.5 (SOUNDNESS OF $\lceil \cdot \rceil$)

$$M \to_{\mu} N \Rightarrow \exists P. \ \llbracket M \rrbracket \to^{nf} P \wedge \llbracket N \rrbracket \to^{nf} P$$

Proof. By induction on the definition of \rightarrow_{μ}

```
(\mu\alpha.[\alpha]M)\overline{N} \to \mu\alpha.[\alpha]M([\alpha]M'\overline{N}/[\alpha]M')\overline{N}:
                             \llbracket (\mu \alpha . [\alpha] M) \overline{N} \rrbracket
      \triangleq
                             [(\mu\alpha.[\alpha]M)][N]
      \triangleq
                             (WSC P<sub>0</sub> \lambda \alpha.PP P<sub>0</sub> (PSC \alpha \llbracket M \rrbracket))\llbracket \overline{N} \rrbracket
                                                                                                                                                P_0
                            WSC P<sub>0</sub> \lambda \alpha.PP P<sub>0</sub> (PSC \alpha [M])
      \rightarrow_{CDC}
                                                                                                                                      \square[N]
                                                                                                                                                                                          P_0
                           \lambda \alpha.PP P<sub>0</sub> (PSC \alpha \llbracket M \rrbracket)(\square \llbracket \overline{N} \rrbracket)
                                                                                                                                                 \rightarrow_{CDC}
                           (PP P_0 (PSC \alpha \llbracket M \rrbracket))[\square \llbracket N \rrbracket / \alpha]
                                                                                                                                                 \rightarrow_{CDC}
                           PP P<sub>0</sub> (PSC \alpha \llbracket M \rrbracket) \lceil \Box \llbracket \overline{N} \rrbracket / \alpha \rceil
                                                                                                                                                 \rightarrow_{CDC}
                           PP P<sub>0</sub> (PSC \square \llbracket \overline{N} \rrbracket \llbracket M \rrbracket \lceil \square \llbracket \overline{N} \rrbracket / \alpha \rceil)
                                                                                                                                                П
                                                                                                                                                                                               \rightarrow_{CDC}
                                                                                                                                                П
                           PSC \square \llbracket \overline{N} \rrbracket \llbracket M \rrbracket \llbracket \square \llbracket \overline{N} \rrbracket / \alpha \rrbracket
                                                                                                                                                                                          P_0
      \rightarrow_{CDC}
                                                                                                                                                 \square \llbracket \overline{N} \rrbracket : \square : \mathsf{P}_0
                           [M][\square[N]/\alpha]
      \rightarrow_{CDC}
                           [M][\square[\overline{N}]/\alpha]
                                                                                                                                      \square \llbracket \overline{N} \rrbracket
      \rightarrow_{CDC}
                                                                                                                                                                                          P_0
This final state is P. Now we must prove [N] \to^{nf} P:
                            \llbracket \mu \alpha. [\alpha] M([\alpha] M' \overline{N}/[\alpha] M') \overline{N} \rrbracket
      \triangleq
                            WSC P<sub>0</sub> \lambda \alpha.PP P<sub>0</sub> (PSC \alpha \llbracket M \llbracket (\alpha M' \overline{N} / [\alpha M'] \overline{N} \rrbracket))
                                                                                                                                                                                  P_0
                            \lambda \alpha.PP P<sub>0</sub> (PSC \alpha \llbracket M \llbracket (\alpha]M'\overline{N}/[\alpha]M']\overline{N} \rrbracket)(\Box)
                                                                                                                                                                                  \rightarrow_{CDC}
                            (PP P<sub>0</sub> (PSC \alpha \llbracket M[[\alpha]M'\overline{N}/[\alpha]M']\overline{N} \rrbracket))[\Box/\alpha]
                                                                                                                                                                                  \rightarrow_{CDC}
                           PP P<sub>0</sub> (PSC \alpha [M[[\alpha]M'\overline{N}/[\alpha]M']\overline{N}])[\square/\alpha]
                                                                                                                                                                                  \rightarrow_{CDC}
                            (PSC \alpha [M[[\alpha]M'\overline{N}/[\alpha]M']\overline{N}])[\square/\alpha]
                                                                                                                                                                                  \rightarrow_{CDC}
                                                                                                                                                                                             P_0
                            PSC \square [M[[\alpha]M'\overline{N}/[\alpha]M']\overline{N}][\square/\alpha]
      \rightarrow_{CDC}
                                                                                                                                                                                  P_0
                            [M[\alpha]M'\overline{N}/[\alpha]M']\overline{N}][\square/\alpha]
                                                                                                                                                                                  P_0
      \rightarrow_{CDC}
                            [M[\alpha]M'\overline{N}/[\alpha]M']][\square/\alpha][\overline{N}]
                                                                                                                                                                                  \rightarrow_{CDC}
                                                                                                                                                                                             P_0
                            [M[\alpha]M'\overline{N}/[\alpha]M']][\square/\alpha]
                                                                                                                                                                        \square \llbracket \overline{N} \rrbracket
      \rightarrow_{CDC}
                                                                                                                                                                                             P_0
                            [M][\square \overline{N}/\alpha][\square/\alpha]
                                                                                                                                                                        \square \llbracket \overline{N} \rrbracket
                                                                                                                                                                                             P_0
      \rightarrow_{CDC}
                            [M][\Box N/\alpha]
                                                                                                                                                                        \square \llbracket \overline{N} \rrbracket
      \rightarrow_{CDC}
```

Remark 1.2.6 α cannot occur in \overline{N} because it has been pulled in from outside the μ -abstraction. Neither can it occur in $\llbracket M \rrbracket \llbracket \Box \overline{N} / \alpha \rrbracket$ because all occurrences have been substituted for $\Box \llbracket \overline{N} \rrbracket$.

 $(\mu\alpha.[\beta]M)\overline{N} \to \mu\alpha.[\beta](M[[\alpha]M'N/[\alpha]M'])$: $\llbracket (\mu \alpha . [\beta] M) \overline{N} \rrbracket$ \triangleq $[(\mu\alpha.[\beta]M)][\overline{N}]$ \triangleq (WSC P₀ $\lambda \alpha$.PP P₀ (PSC $\beta \llbracket M \rrbracket$)) $\llbracket \overline{N} \rrbracket$ P_0 (WSC P₀ $\lambda \alpha$.PP P₀ (PSC $\beta [M]$)) $\square \llbracket \overline{N} \rrbracket$ \rightarrow_{CDC} P_0 $(\lambda \alpha. PP P_0 (PSC \beta \llbracket M \rrbracket))(\Box \llbracket \overline{N} \rrbracket)$ \rightarrow_{CDC} $(PP P_0 (PSC \beta \llbracket M \rrbracket)) [\square \llbracket \overline{N} \rrbracket / \alpha]$ \rightarrow_{CDC} PP P₀ (PSC β $\llbracket M \rrbracket$) $\lceil \Box \llbracket \overline{N} \rrbracket / \alpha \rceil$ \rightarrow_{CDC} $(\operatorname{PSC} \beta \llbracket M \rrbracket) [\square \llbracket \overline{N} \rrbracket / \alpha]$ \rightarrow_{CDC} P_0 PSC $\beta [M] [\Box [\overline{N}]/\alpha]$ \rightarrow_{CDC} P_0 $[M][\square[N]/\alpha]$ $\square \quad \beta : [] : P_0$ \rightarrow_{CDC}

```
[\mu\alpha.[\beta](M[[\alpha]M'N/[\alpha]M'])]
\triangleq
                   WSC P<sub>0</sub> \lambda \alpha.PP P<sub>0</sub> (PSC \beta \llbracket M \llbracket (\alpha M'N/[\alpha M'] \rrbracket))
                                                                                                                                     P_0
                   (\lambda \alpha. PP P_0 (PSC \beta \llbracket M \llbracket (\alpha \rbrack M'N/[\alpha \rbrack M'] \rrbracket))(\Box)
                                                                                                                                     \rightarrow_{CDC}
                                                                                                                                     (PP P<sub>0</sub> (PSC \beta \llbracket M \llbracket (\alpha M'N/[\alpha M'] \rrbracket)) \llbracket \Box/\alpha \rrbracket
\rightarrow_{CDC}
                   PP P<sub>0</sub> (PSC \beta \llbracket M \llbracket (\alpha M'N/[\alpha M'] \rrbracket) \llbracket (-\alpha M') \rrbracket)
                                                                                                                                     \rightarrow_{CDC}
                   PSC \beta \llbracket M \llbracket (\alpha] M' N / [\alpha] M' \rrbracket \rrbracket \llbracket \Box / \alpha \rrbracket
                                                                                                                                     \rightarrow_{CDC}
                                                                                                                                                              P_0
                                                                                                                                     \beta:[]:P_0
                   [M[\alpha]M'N/[\alpha]M'][\square/\alpha]
\rightarrow_{CDC}
                                                                                                                                     \square \beta:[]:P_0
                  M[\square[N]/\alpha][\square/\alpha]
\rightarrow_{CDC}
                 M[\square[N]/\alpha]
                                                                                                                                     \square \beta : [] : P_0
\rightarrow_{CDC}
          \mu\alpha.[\beta]\mu\gamma.[\delta]M \to \mu\alpha[\delta]M[\beta/\gamma]:
                                                                                                                                         (\gamma \neq \delta)
                              \llbracket \mu \alpha . [\beta] \mu \gamma . [\delta] M \rrbracket
                             WSC P<sub>0</sub> \lambda \alpha.PP P<sub>0</sub> (PSC \beta \llbracket \mu \gamma . [\delta] M \rrbracket)
                                                                                                                           P_0
          \rightarrow_{CDC}
                             (\lambda \alpha. PP P_0 (PSC \beta \llbracket \mu \gamma. [\delta] M \rrbracket))(\Box)
                                                                                                                           (PP P<sub>0</sub> (PSC \beta \llbracket \mu \gamma. [\delta] M \rrbracket)) [\Box/\alpha]
                                                                                                                           \rightarrow_{CDC}
          \rightarrow_{CDC} PP P<sub>0</sub> (PSC \beta \llbracket \mu \gamma. [\delta] M \rrbracket) [\Box/\alpha]
                                                                                                                           (PSC \beta \llbracket \mu \gamma . [\delta] M \rrbracket) [\Box / \alpha]
          \rightarrow_{CDC}
                                                                                                                                                    P_0
                            PSC \beta \llbracket \mu \gamma . [\delta] M \rrbracket [\Box / \alpha]
                                                                                                                           P_0
          \rightarrow_{CDC}
                             [\mu\gamma.[\delta]M][\Box/\alpha]
                                                                                                                           \beta:[]:P_0
          \rightarrow_{CDC}
          \triangleq
                                                                                                                                   \beta:[]:P_0
                              (WSC P<sub>0</sub> \lambda \gamma.PP P<sub>0</sub> (PSC \delta \llbracket M \rrbracket))[\Box / \alpha]
                                                                                                                          WSC P<sub>0</sub> \lambda \gamma.PP P<sub>0</sub> (PSC \delta \llbracket M \rrbracket)[\Box / \alpha]
          \rightarrow_{CDC}
                                                                                                                           \beta: []: P_0
                            (\lambda \gamma. PP P_0 (PSC \delta \llbracket M \rrbracket) [\Box/\alpha])(\beta)
                                                                                                                           \rightarrow_{CDC}
                            (PP P<sub>0</sub> (PSC \delta \llbracket M \rrbracket) [\Box/\alpha]) [\beta/\gamma]
                                                                                                                           \rightarrow_{CDC}
                                                                                                                           PP P<sub>0</sub> (PSC \delta \llbracket M \rrbracket)[\Box /\alpha][\beta /\gamma]
          \rightarrow_{CDC}
                            (\operatorname{PSC} \delta \llbracket M \rrbracket) [\Box/\alpha] [\beta/\gamma]
                                                                                                                           P_0
          \rightarrow_{CDC}
                             PSC \delta \llbracket M \rrbracket [\Box/\alpha] [\beta/\gamma]
                                                                                                                           \rightarrow_{CDC}
                                                                                                                                                    P_0
                             [M][\Box/\alpha][\beta/\gamma]
                                                                                                                           \delta:[]:P_0
          \rightarrow_{CDC}
                              [\mu\alpha[\delta]M[\beta/\gamma]]
          \triangleq
                             WSC P<sub>0</sub> \lambda \alpha.PP P<sub>0</sub> (PSC \delta [M][\beta/\gamma])
                                                                                                                           P_0
                             (\lambda \alpha. PP P_0 (PSC \delta [M][\beta/\gamma]))(\Box)
                                                                                                                           \rightarrow_{CDC}
                             (PP P<sub>0</sub> (PSC \delta [M][\beta/\gamma]))[\Box/\alpha]
                                                                                                                           \rightarrow_{CDC}
                                                                                                                           PP P<sub>0</sub> (PSC \delta [M][\beta/\gamma])[\Box/\alpha]
                                                                                                                                                        \rightarrow_{CDC}
                             (PSC \delta [M][\beta/\gamma])[\Box/\alpha]
                                                                                                                           P_0
          \rightarrow_{CDC}
          \rightarrow_{CDC} \operatorname{PSC} \delta \llbracket M \rrbracket [\beta/\gamma] [\Box/\alpha]
                                                                                                                           P_0
                             [M][\beta/\gamma][\Box/\alpha]
                                                                                                                           \delta: []: P_0
          \rightarrow_{CDC}
```

П

Remark 1.2.7 The terms $[M][\beta/\gamma][\Box/\alpha]$ and $[M][\Box/\alpha][\beta/\gamma]$ are denotationally equivalent if $\alpha \neq \beta \neq \gamma$.

```
\mu\alpha.[\beta]\mu\gamma.[\gamma]M \to \mu\alpha[\beta]M[\beta/\gamma]:
                                   \llbracket \mu \alpha . [\beta] \mu \gamma . [\gamma] M \rrbracket
                \triangleq
                                   WSC P<sub>0</sub> \lambda \alpha.PP P<sub>0</sub> (PSC \beta \ \llbracket \mu \gamma. [\gamma] M \rrbracket)
                                                                                                                                                       P_0
                \rightarrow_{CDC}
                                  (\lambda \alpha. PP P_0 (PSC \beta \llbracket \mu \gamma. [\gamma] M \rrbracket))(\Box)
                                                                                                                               \rightarrow_{CDC} (PP P<sub>0</sub> (PSC \beta \llbracket \mu \gamma. [\gamma] M \rrbracket))[\Box/\alpha]
                                                                                                                                                            \rightarrow_{CDC} PP P<sub>0</sub> (PSC \beta \llbracket \mu \gamma. [\gamma] M \rrbracket) [\Box/\alpha]
                                                                                                                               \rightarrow_{CDC} (PSC \beta \llbracket \mu \gamma. [\gamma] M \rrbracket) [\Box/\alpha]
                                                                                                                               P_0
                \rightarrow_{CDC} \operatorname{PSC} \beta \llbracket \mu \gamma. [\gamma] M \rrbracket [\Box/\alpha]
                                                                                                                               P_0
                                                                                                                               \rightarrow_{CDC}
                                  [\mu\gamma.[\gamma]M][\Box/\alpha]
                                                                                                                                        \beta : [] : P_0
                \triangleq
                                   (WSC P<sub>0</sub> \lambda \gamma.PP P<sub>0</sub> (PSC \gamma \llbracket M \rrbracket))[\Box / \alpha]
                                                                                                                               \beta:[]:P_0
                                                                                                                                        \beta:[]:P_0
                                  WSC P<sub>0</sub> \lambda \gamma.PP P<sub>0</sub> (PSC \gamma \llbracket M \rrbracket) [\Box/\alpha]
                                                                                                                               \rightarrow_{CDC}
                \rightarrow_{CDC} (\lambda \gamma.PP P_0 (PSC \gamma[M])[\Box/\alpha])(\beta)
                                                                                                                               \rightarrow_{CDC} (PP P<sub>0</sub> (PSC \gamma \llbracket M \rrbracket) [\Box/\alpha]) [\beta/\gamma]
                                                                                                                                                            \rightarrow_{CDC} PP P<sub>0</sub> (PSC \gamma \llbracket M \rrbracket)[\Box/\alpha][\beta/\gamma]
                                                                                                                               П
                                                                                                                                                            \rightarrow_{CDC} (\operatorname{PSC} \gamma \llbracket M \rrbracket) [\Box/\alpha] [\beta/\gamma]
                                                                                                                               P_0
                \rightarrow_{CDC} \operatorname{PSC} \beta \llbracket M \rrbracket [\Box/\alpha] [\beta/\gamma]
                                                                                                                               P_0
                \rightarrow_{CDC} [M][\Box/\alpha][\beta/\gamma]
                                                                                                                               \square \beta : [] : P_0
                                   [\mu\alpha[\beta]M[\beta/\gamma]]
                                   WSC P<sub>0</sub> \lambda \alpha.PP P<sub>0</sub> (PSC \beta [M][\beta/\gamma])
                                                                                                                               P_0
                \rightarrow_{CDC} (\lambda \alpha. PP P_0 (PSC \beta [M][\beta/\gamma]))(\Box)
                                                                                                                               \rightarrow_{CDC} (PP P<sub>0</sub> (PSC \beta \llbracket M \rrbracket [\beta/\gamma]))[\Box/\alpha]
                                                                                                                               \rightarrow_{CDC} PP P<sub>0</sub> (PSC \beta \llbracket M \rrbracket [\beta/\gamma])[\Box/\alpha]
                                                                                                                               \rightarrow_{CDC} (PSC \beta [M][\beta/\gamma])[\Box/\alpha]
                                                                                                                                                        P_0
                \rightarrow_{CDC} \operatorname{PSC} \beta \llbracket M \rrbracket [\beta/\gamma] [\Box/\alpha]
                                                                                                                               \square \beta:[]:P_0
                \rightarrow_{CDC} [M][\beta/\gamma][\Box/\alpha]
                                                                                                                                                                          Theorem 1.2.8 (Completeness of \llbracket \cdot \rrbracket)
                                   \llbracket M \rrbracket \to^{nf} \llbracket N \rrbracket \Rightarrow \exists Q.M \to^* N \land \llbracket N \rrbracket \to^{nf} Q
```

1.3 Interpreting λ^{try} in CDC

To come...

Proof.

By appending the interpretation of λ^{try} in $\lambda \mu$ with the interpretation of $\lambda \mu$ in CDC, we get a translation from λ^{try} to CDC:

Definition 1.3.1 Translation of λ^{try} into CDC