

INSTRUCTIONS GENERALES

- ✓ L'utilisation de la calculatrice non programmable est autorisée ;
- ✓ Le candidat peut traiter les exercices de l'épreuve suivant l'ordre qui lui convient ;
- ✓ L'utilisation de la couleur rouge lors de la rédaction des solutions est à éviter.

COMPOSANTES DU SUJET

L'épreuve est composée de quatre exercices et un problème indépendants entre eux et répartis suivant les domaines comme suit :

Exercice 1	Géométrie de l'espace	3 points
Exercice 2	Nombres complexes	3 points
Exercice 3	Calcul des probabilités	3 points
Exercice 4	Equations différentielles et calcul intégral	2.5 points
Problème	Etude de fonctions numériques et suites numériques	8.5 points

- ✓ On désigne par \overline{z} le conjugué du nombre complexe z et |z| son module
- \checkmark ln désigne la fonction logarithme népérien

0,25

0,5

0,5

NS 22F

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2022 - الموضوع - مادة: الرياضيات- مسلك علوم الحياة والأرض ومسلك العلوم الفيزيائية - خيار فرنسية

«S

Exercice 1 (3points):

Dans l'espace rapporté à un repère orthonormé direct $(O; \vec{i}, \vec{j}, \vec{k})$, on considère les points A(0,1,1), B(1,2,0) et C(-1,1,2)

- 0,5 | 1) a) Montrer que $\overrightarrow{AB} \wedge \overrightarrow{AC} = \overrightarrow{i} + \overrightarrow{k}$
 - b) En déduire que x+z-1=0 est une équation cartésienne du plan (ABC)
- 0,5 2) Soit (S) la sphère de centre $\Omega(1,1,2)$ et de rayon $R = \sqrt{2}$ Déterminer une équation de la sphère (S)
- 0.5 3) Montrer que le plan (ABC) est tangent à la sphère (S) au point A
 - 4) On considère la droite (Δ) passant par le point C et perpendiculaire au plan (ABC)
- a) Déterminer une représentation paramétrique de la droite (Δ)
 - b) Montrer que la droite (Δ) est tangente à la sphère (S) en un point D dont on déterminera les coordonnées
 - c) Calculer le produit scalaire $\overrightarrow{AC} \cdot (\overrightarrow{i} + \overrightarrow{k})$, puis en déduire la distance $d(A, (\Delta))$

Exercice 2 (3points):

Dans le plan complexe rapporté à un repère orthonormé (O, \vec{u}, \vec{v}) , on considère le point A d'affixe $a = -1 - i\sqrt{3}$, le point B d'affixe $b = -1 + i\sqrt{3}$ et la translation t de vecteur \overrightarrow{OA}

- 0,5 | 1) Prouver que l'affixe du point D image du point B par la translation t est d=-2
 - 2) On considère la rotation R de centre D et d'angle $\left(\frac{2\pi}{3}\right)$.
- 0,5 Montrer que l'affixe du point C image du point B par la rotation R est c = -4
- 0,5 | 3) a) Ecrire le nombre $\frac{b-c}{a-c}$ sous forme trigonométrique
- 0,5 b) En déduire que $\left(\frac{b-c}{a-c}\right)^2 = \frac{c-d}{b-d}$
 - 4) Soient(Γ) le cercle de centre D et de rayon 2 , (Γ') le cercle de centre O et de rayon 4 et M un point d'affixe z appartenant aux deux cercles (Γ) et (Γ')
- 0.25 a) Vérifier que |z+2|=2
- b) Prouver que $z + \overline{z} = -8$ (remarquer que |z| = 4)
- c) En déduire que les cercles (Γ) et (Γ') se coupent en un point unique qu'on déterminera

0,75

0,75

0.75

0,5

0,5

0,5

0,5

0,5

0,75

0,5

0,5

NS 22F

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2022 – الموضوع - مادة: الرياضيات- مسلك علوم الحياة والأرض ومسلك العلوم الفيزيانية - خيار فرنسية

«S

Exercice 3 (3points):

Une urne contient dix boules : trois boules blanches, trois boules vertes et quatre boules rouges indiscernables au toucher. On tire au hasard simultanément trois boules de l'urne.

- 0,75 1) Montrer que $p(A) = \frac{1}{6}$; où A est l'évènement "N'obtenir aucune boule rouge "
 - 2) Calculer p(B); où B est l'évènement "Obtenir trois boules blanches ou trois boules vertes "
 - 3) Montrer que $p(C) = \frac{1}{2}$; où C est l'évènement "Obtenir exactement une boule rouge "
 - 4) Calculer p(D); où D est l'évènement "Obtenir au moins deux boules rouges "

Exercice 4 (2.5points):

On considère la fonction h définie sur \square par $h(x) = (x+1)e^x$

- 0,75 1) a) Vérifier que $x \mapsto xe^x$ est une primitive de la fonction h sur \Box ; puis calculer $I = \int_{-1}^{0} h(x) dx$
- 0,75 b) A l'aide d'une intégration par parties calculer $J = \int_{-1}^{0} (x+1)^2 e^x dx$
 - 2) a) Résoudre l'équation différentielle (E): y'' 2y' + y = 0
 - b) Montrer que la fonction h est la solution de (E) qui vérifie les conditions h(0) = 1 et h'(0) = 2

Problème (8.5points):

On considère la fonction numérique f définie sur \Box par $f(x) = x(e^{\frac{x}{2}} - 1)^2$.

Soit (C) sa courbe représentative dans un repère orthonormé $(O; \vec{i}, \vec{j})$ (unité : 1cm)

- 1) Calculer $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to -\infty} f(x)$
- 2) Calculer $\lim_{x\to +\infty} \frac{f(x)}{x}$ et interpréter géométriquement le résultat
- 3) a) Montrer que la droite (Δ) d'équation y = x est asymptote à la courbe (C) au voisinage de $-\infty$
 - b) Etudier le signe de (f(x)-x) pour tout x de \square et en déduire la position relative de la courbe (C) et la droite (Δ)
- 4) a) Montrer que $f'(x) = (e^{\frac{x}{2}} 1)^2 + xe^{\frac{x}{2}}(e^{\frac{x}{2}} 1)$ pour tout $x de \Box$
 - b) Vérifier que $x(e^{\frac{x}{2}}-1) \ge 0$ pour tout x de \square puis en déduire le signe de la fonction dérivée f' sur \square
- 0,25 c) Dresser le tableau des variations de la fonction f sur \square

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2022 – الموضوع - مادة: الرياضيات- مسلك علوم الحياة والأرض ومسلك العلوم الفيزيانية - خيار فرنسية

«S

0,5

5) a) Montrer que $f''(x) = \frac{1}{2}e^{\frac{x}{2}}g(x)$; où

 $g(x) = (2x+4)e^{\frac{x}{2}} - x - 4$ pour tout x de

0,5

b) A partir de la courbe ci-contre de la fonction g, déterminer le signe de g(x) sur \Box (Remarque : $g(\alpha) = 0$)

0,5

c) Etudier la concavité de la courbe (*C*) et déterminer les abscisses des deux points d'inflexions.

1

6) Construire la courbe (C) dans le repère $(O; \vec{i}, \vec{j})$ (On prend : $\ln(4) \square 1, 4$, $\alpha \square -4, 5$ et $f(\alpha) \square -3, 5$)

0,5

7) a) Montrer que la fonction f admet une fonction réciproque f^{-1} définie sur \square

0,25

b) Calculer $(f^{-1})'(\ln 4)$

_

8) Soit (u_n) la suite numérique définie par $u_0 = 1$ et $u_{n+1} = f(u_n)$ pour tout $n \in \mathbb{N}$ a) Montrer par récurrence que $0 < u_n < \ln 4$ pour tout $n \in \mathbb{N}$

0,5

b) Montrer que la suite (u_n) est décroissante.

c) En déduire que la suite (u_n) est convergente.

0,5 0,25

d) Calculer la limite de la suite (u_n) .

0,5

