Rappels de Topologie

Exercice 1. Convergence dans \mathbb{R}^2 . On considère \mathbb{R}^2 , muni de la distance euclidienne. Donc si X = (x, y) et X' = (x', y'), $\operatorname{dist}(X, X') = \sqrt{|x - x'|^2 + |y - y'|^2}$.

On se donne une suite $\{X_k\}$ dans \mathbb{R}^2 , avec $X_k = (x_k, y_k)$ pour $k \geq 0$, et un point $X = (x, y) \in \mathbb{R}^2$. Démonter que $\lim_{k \to +\infty} X_k = X$ (dans \mathbb{R}^2 muni de la distance euclidienne) si et seulement si $\lim_{k \to +\infty} x_k = x$ et $\lim_{k \to +\infty} y_k = y$.

Exercice 2. Normes usuelles sur \mathbb{R}^n Rappelons la définition des normes usuelles sur l'espace vectoriel \mathbb{R}^n , comme applications de \mathbb{R}^n dans \mathbb{R}^+ : pour tout $x = (x_1, \dots, x_n) \in \mathbb{R}^n$,

$$||x||_{\infty} = \max\{|x_1|, \dots, |x_n|\},\$$

$$||x||_1 = |x_1| + \dots + |x_n|,\$$

$$||x||_2 = \sqrt{|x_1|^2 + \dots + |x_n|^2},\$$

- 1. Montrer que $\|\cdot\|_{\infty}$, $\|\cdot\|_1$ et $\|\cdot\|_2$ sont des normes dans \mathbb{R}^n .
- 2. Montrer que ces trois normes sont équivalentes.
- 3. Donner les trois distances dans l'ensemble \mathbb{R}^n induites par les normes $\|\cdot\|_{\infty}$, $\|\cdot\|_1$ et $\|\cdot\|_2$. On notera ces distances d_{∞} , d_1 et d_2 .
- 4. Dessiner deux points distincts dans \mathbb{R}^2 et représenter leur distance au sens de d_1, d_2 et d_{∞} .
- 5. Dans \mathbb{R}^2 , représenter les boules fermées $\overline{B}_{d_1}(0,1)$, $\overline{B}_{d_2}(0,1)$ et $\overline{B}_{d_{\infty}}(0,1)$.

Exercice 3. Représentation des formes linéaires. Notons $(\cdot|\cdot)$ le produit scalaire euclidien dans \mathbb{R}^n .

- 1. Soit $L: \mathbb{R}^n \longrightarrow \mathbb{R}$. Montrer que L est linéaire si et seulement si il existe un vecteur v dans \mathbb{R}^n tel que pour tout $x \in \mathbb{R}^n$, L(x) = (v|x).
- 2. On munit \mathbb{R}^n de la norme euclidienne. Quelle est alors, dans la question ci-dessus, la norme de L?

Exercice 4. Exemples concrets. Considérons les sous-ensembles suivants de \mathbb{R}^2 :

$$A = \{(x, x^3) : x < 1\},$$

$$B = \{(n, \frac{1}{n+1}) : n \in \mathbb{N}\},$$

$$C = \{(x, y) \in \mathbb{R}^2 : y \ge x^2, y > x+1\}.$$

- 1. Représenter dans le plan chacun de ces ensembles.
- 2. Lesquels de ces ensembles sont fermés? ouverts?
- 3. Déterminer leur intérieur, leur frontière et leur adhérence.
- 4. Lesquels de ces ensembles sont compacts?

Exercice 5. Graphes. On se donne une fonction $f: \mathbb{R} \to \mathbb{R}$ et on note $G_f \subset \mathbb{R}^2$ le graphe de f.

1. Rappeler la définition de G_f .

Solution: $G_f = \{(x, f(x)) | x \in \mathcal{D}_f\} \subset \mathbb{R}^2$

2. Montrer que G_f est fermé si f est continue.

Solution : Supposons f continue, montrons que G_f est fermé, utilisons la caractérisation séquentielle des fermés : Soit donc (x_n, y_n) une suite de G_f qui converge vers $(x, y) \in \mathbb{R}^2$, montrons que $(x, y) \in G_f$. On a donc $(x_n, y_n)_n \in G_f$, $\forall n \in \mathbb{N}$, on a donc $y_n = f(x_n)$, donc $f(x_n) \to y$ quand $n \to +\infty$ et comme f est continue, $f(x_n) \to f(x)$ quand $n \to \infty$, donc par unicité de a limite on a $f(x) = y \Rightarrow (x, y) \in G_f$.

3. La réciproque est-elle vraie?

Solution: faux, pourquoi??

Exercice 6. Limites. Soient $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ la fonction définie par

$$f(x,y) = \begin{cases} \sin(\frac{y^2}{x}), & x \neq 0, \\ 0, & x = 0, \end{cases}$$

- 1. Montrer que f admet la même limite selon toutes les directions en (0,0) mais que f n'est pas continue en (0,0).
- 2. Montrer que les fonctions suivantes, notées g et h, sont continues au point (0,0).

$$g(x,y) = \begin{cases} \frac{x|y|}{\sqrt{x^2 + y^2}}, & (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0), \end{cases} \quad h(x,y) = \begin{cases} (x-y)\frac{x^2}{x^2 + y^2}, & (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0). \end{cases}$$

Exercice 7. Exemples de distances

- 1. Rappeler la définition d'une norme et d'une distance. Vérifier que toute norme sur un espace vectoriel E définit une distance sur $E \times E$. La suite donne des exemples de distances qui ne viennent pas directement de normes.
- 2. Vérifier que les applications suivantes sont bien des distances.

 $d_1: (x,y) \in \mathbb{R} \times \mathbb{R} \mapsto \min(1,|x-y|),$

 $d_2: \ (x,y) \in \mathbb{R} \times \mathbb{R} \mapsto \sqrt{|x-y|} \ \ (\text{et que se passe-t-il avec} \ (x,y) \in \mathbb{R} \times \mathbb{R} \mapsto |x-y|^2?) \,,$

 $d_3: ((x_1, x_2), (y_1, y_2)) \in \mathbb{R}^2 \times \mathbb{R}^2 \mapsto \sqrt{|x_1 - y_1|} + \min(1, |x_2 - y_2|).$

3. Vérifier que les ouverts pour la distance d_1 et d_2 (resp. d_3) sont les mêmes que les ouverts pour la distance usuelle sur \mathbb{R} (resp. \mathbb{R}^2).

Exercice 8. Produit d'espaces métriques I

Soient (E_1, d_1) et (E_2, d_2) deux espaces métriques.

1. Proposer (au moins) une distance d sur l'espace produit $E_1 \times E_2$.

Solution : On a par exemple pour $(x_1, x_2), (y_1, y_2) \in (E_1, d_1) \times (E_2, d_2)$ la distance définie comme le max des distance sur chacuns des espaces métriques : $\max (d_1(x_1, y_1), d_2(x_2, y_2))$, on peut faire de même pour les deux autres distances classiques.

2. Montrer que pour toute suite $(x_k, y_k) \in (E_1 \times E_2)^{\mathbb{N}}$, et pour tout $(x, y) \in E_1 \times E_2$,

$$(x_k, y_k) \xrightarrow[k \to \infty]{} (x, y) \text{ dans } (E_1 \times E_2, d) \quad ssi \quad x_k \xrightarrow[k \to \infty]{} x \text{ dans } (E_1, d_1), \text{ et } y_k \xrightarrow[k \to \infty]{} y \text{ dans } (E_2, d_2).$$

Solution: On peut raisonner ici par équivalence en prenant la norme 1 définie sur l'ensemble produit.

Exercice 9. Fonction continue dans un espace métrique

Soit $f:(E_1,d_1)\to (E_2,d_2)$, et $x\in E_1$.

1. Montrer que f est continue au point x ssi pour tout $\epsilon > 0$, il existe $\delta > 0$ tel que

$$f(B_1(x,\delta)) \subset B_2(f(x),\epsilon)$$
.

2. Montrer que f est continue au point x ssi pour toute suite $\{x_k\}$ dans E_1 qui converge vers x dans E_1 , la suite $\{f(x_k)\}$ converge vers f(x) dans E_2 .

Exercice 10. Équivalence des normes dans \mathbb{R}^n

Soit $N: \mathbb{R}^n \to \mathbb{R}^+$ une norme, et $\| \cdot \|$ la norme Euclidienne sur \mathbb{R}^n , définie on le rappelle par

$$||x|| = \sqrt{\sum_{i=1}^{n} x_i^2}$$
, pour $x = (x_i)_{1 \le i \le n}$.

1. Montrer qu'il existe une constante M>0 telle que pour tout $x\in\mathbb{R}^n$,

$$N(x) \leq M||x||$$
.

2. Montrer alors que $N : \mathbb{R}^n \longrightarrow \mathbb{R}_+$ est une fonction continue. Remarque: On déduit de cette question que toute norme sur \mathbb{R}^n est une application continue.

Soit maintenant $S = \{x \in \mathbb{R}^n \mid ||x|| = 1\}.$

- 3. Montrer qu'il existe m > 0 tel que $m \le N(x)$ pour tout $x \in S$.
- 4. En déduire que pour tout $x \in \mathbb{R}^n$,

$$m||x|| < N(x)$$
.

5. Soient N et N' deux normes sur \mathbb{R}^n . Montrer que N et N' sont équivalentes.

Exercice 11. Caractérisation des ouverts de \mathbb{R} . Munissons \mathbb{R} de sa topologie la plus naturelle, à savoir celle qui vient de la valeur absolue $|\cdot|$.

- 1. Justifier le fait que toute réunion dénombrable d'intervalles ouverts est encore un ouvert de \mathbb{R} .
- 2. Réciproquement, on va montrer que que tout ouvert de \mathbb{R} peut s'écrire comme une réunion dénombrable d'intervalles ouverts. Considérons pour cela \mathcal{U} un ouvert de \mathbb{R} .
 - (a) Montrer que \mathcal{U} est une réunion (pas forcément dénombrable) d'intervalles ouverts.
 - (b) Utiliser la densité de $\mathbb Q$ dans $\mathbb R$ pour avoir une réunion dénombrable. Indication: On suppose $U \neq \mathbb R$. Pour $y \in \mathbb Q \cap U$, considérer l'intervalle $I_y =]y d(y)/2, y + d(y)/2$, où $d(y) = \operatorname{dist}(y, \mathbb R \setminus \mathbb U)$.

Exercice 12. (Bonus) Produit d'espaces métriques II

Soit $(E_j, d_j)_{j > 0}$ une famille dénombrable d'espaces métriques. Supposons que pour tout $j \ge 0$,

$$d_i(x_i, y_i) \le 1$$
 lorsque $(x_i, y_i) \in E_i \times E_i$. (1)

1. Montrer que

$$d: ((x_j), (y_j))_{j \ge 0} \in (\prod_{j \ge 0} E_j) \times (\prod_{j \ge 0} E_j) \longmapsto \sum_{j \ge 0} 2^{-j} d_j(x_j, y_j)$$

est une distance sur $\prod_{j \in S} E_j$.

- 2. Montrer que la suite $\{(x_j^{(k)})\}_k$ converge dans l'espace métrique produit $(\prod_j E_j, d)$ ssi chaque suite coordonnée $(x_j^{(k)})_k$ converge dans l'espace (E_j, d_j) .
- 3. Que faire si l'on n'a pas (1) d'emblée

Exercice 13. (Bonus) Caractérisation des compacts de]0,1[

1. Quels sont les sous-ensembles compacts de [0,1]? Ceux de]0,1[?