

Instituto Politécnico Nacional Escuela Superior de Computo

Ejercicio 01

"Calcular el número de impresiones"

Mora Ayala José Antonio

Análisis de Algoritmos

Análisis de Algoritmos

Determinar para los siguientes códigos el modelo matemático que determine el número de impresiones en términos de "n" que cada uno realiza de la palabra "Algoritmos" y comprobar empíricamente el resultado.

Determine una función f(n) que modele el número de impresiones de la cadena "Algoritmos" de cada función

Contraste sus funciones con la prueba empírica para los 20 valores de n= {-1,0,1,2,3,5,15,20,100,409,500,593,1000,1471,1500,2801,3000,5000,10000,20000}

- Incluir portada con los de datos del alumno, datos del trabajo y fotografía del alumno
- Incluir tabla comparativa de resultados teóricos vs empíricos
- Incluir la gráfica de cada modelo encontrado desde n=0 hasta n=500,000.
- Subir todo en un solo archivo de tipo documentos (Análisis, Comparativa y Códigos)
- Enmarcar los códigos en el documento y manejar formato de colores
- Recordar manejar encabezados y pies de página

Código:

BUCLE NUMERO 1

```
    // BUCLE 1
    for (int i = 10; i < n*5; i*=2)</li>
    {
    printf("%d, Algoritmos \n", contador);
    contador++;
    }
```

Expresión: $f(n) = \log_2 5n - \log_2 10$

Tabla comparativa del Código 1

f(n)	Resultado Empírico	Resultado Teórico	Resultado Teórico Formula ajustada
-1	0	Indefinido	Indefinido
0	0	Indefinido	Indefinido
1	0	-1	-1
2	0	0	0
3	0	0.584962501	1
4	1	1	1
15	3	2.906890596	3
20	3	3.321928095	4
100	4	5.64385619	6
409	8	7.675957033	8

LOCUII			
500	8	7.965784285	8
593	9	8.211888295	9
1000	9	8.965784285	9
1471	10	9.522581531	10
1500	10	9.550746785	10
2801	11	10.45172627	11
3000	11	10.55074679	11
5000	12	11.28771238	12
10000	13	12.28771238	13
20000	13	13.28771238	14

GRÁFICA

Imagen 1: Gráfica Bucle numero 1

BUCLE NUMERO 2

```
Bucle 2
1.
       for (int j = n; j > 1; j/=2)
3.
4.
           if (j<(n/2))
5.
           {
                for (int i = 0; i < n; i+=2)
6.
7.
                {
                    printf("Algoritmos %d \n", contador);
8.
9.
                    contador++;
10.
               }
11.
            }
12.
```

Tabla Comparativa Código numero 2			
f(n)	Resultado Empírico	Resultado Teórico	Resultado Teórico Formula ajustada
-1		Indefinido	Indefinido
0	0	Indefinido	Indefinido
1	0	-1	-2
2	0	-1	-1
3	0	-0.622556249	-2
4	0	0	0
15	8	14.30167947	8
20	20	23.21928095	20
100	200	232.1928095	200
409	1230	1365.233213	1230
500	1500	1741.446071	1500
593	2079	2138.324879	2079
1000	3500	3982.892142	3500
1471	5888	6268.358716	5888
1500	6000	6413.060089	6000
2801	12609	13237.14264	12609
3000	13500	14326.12018	13500
5000	25000	25719.28095	25000
10000	55000	56438.5619	55000
20000	120000	122877.1238	120000

Análisis de Algoritmos

Función sin ajuste

$$f(n) = \frac{n}{2}[(\log_2 n) - 2]$$

Función con ajuste

$$f(n) = \left\lceil \frac{n}{2} \right\rceil \lfloor (\log_2 n) - 2 \rfloor$$

Podemos observar que esta difiere de la primera en que debemos truncar el resultado de la primera operación hacía arriba y el del segundo operando hacía abajo, de tal forma que podremos obtener un valor más próximo hacía lo obtenido de forma empírica

GRAFICA 2

BUCLE NUMERO 3

```
//Bucle 3
       int c=1;
       for (int i = 0; i < n*5; i+=2)
6.
           for (int j = 0; j < 2*n; j++)
7.
8.
                for (int k = j; k < n; k++)
9.
10.
                {
                    // printf("Valor de K : %d\n",k);
11.
                    printf("%d\n",c);
12.
13.
                    C++;
14.
           }
15.
16.
```

Función:

$$f(n)=(\frac{n(n+1)}{2})(\frac{5n}{2})$$

Tal como sucedió con el bucle anterior fue necesario realizar un ajuste a esta expresión obtenida:

Función con Ajuste

$$f(n)=(\frac{n(n+1)}{2})\left\lceil\frac{5n}{2}\right\rceil$$

En esta ocasión basta con truncar hacía arriba la segunda parte de esta operatividad

TABLA COMPARATIVA CÓDIGO NUMERO 3			
f(n)	Resultado Empírico	Resultado Teórico	Resultado Teórico Formula ajustada
-1	0	0	0
0	0	0	0
1	3	2.5	3
2	15	15	15
3	48	45	48
4	195	100	100
15	4560	4500	4560
20	10500	10500	10500
100	1262500	1262500	1262500
409	85773435	85731512.5	85773435
500	156562500	156562500	156562500
593	261187443	261099382.5	261187443
1000	1251250000	1251250000	1251250000
1471	3982008768	3981467440	3982008768
1500	4221562500	4221562500	4221562500
2801	27481179603	27479217503	27481179603
3000	33761250000	33761250000	33761250000
5000	156281250000	1.56281E+11	1.56281E+11
10000	1250125000000	1.25013E+12	1.25013E+12
20000		1.00005E+13	1.00005E+13

Análisis de Algoritmos

GRÁFICA 3

BUCLE NUMERO 4

```
1.  // Bucle 4
2.
3.  int i,j;
4.  i=n;
5.  while (i>=0)
6.  {
7.  for(j=n;i<j;i-=2,j/=2){
8.  printf("Algoritmos");
9.  }
10. }</pre>
```

Debido a que la naturaleza lógica del programa no permite que este sea ejecutado mediante cualquier valor asignado a x, no es posible la obtención de una función

TABLA COMPARATIVA CÓDIGO NÚMERO 4

TABLA COMPARATIVA CODIGO NOMERO 4 Resultado Teórico Resultado Teórico				
f(n)	Resultado Empírico	Resultado Teórico	Formula ajustada	
-1	-	-	-	
0	-	-	-	
1	-	-	-	
2	-	-	-	
3	-	-	-	
4	-	-	-	
<i>15</i>	-	-	-	
20	-	-	-	
100	-	-	-	
409	-	-	-	
<i>500</i>	-	-	-	
<i>593</i>	-	-	-	
1000	-	-	-	
1471	-	-	-	
<i>1500</i>	-	-	-	
2801	-	-	-	
3000	-	-	-	
5000	-	-	-	
10000	-	-	-	
20000	-	-	-	

BUCLE NUMERO 5

```
1.  // Bucle 5
2.  int contador=1; ;
3.  for (int i = 1; i < 4*n; i*=2)
4.  {
5.    for (int j = i; j < 5*n; j+=3)
6.    {
7.       printf("Algoritmos %d \n",contador);
8.       contador++;
9.    }
10. }</pre>
```

$$f(n) = \left(\frac{5n(\log_2(n) + 2)}{3}\right) - \frac{(\log_2(n) + 2)(\log_2(n) + 3)}{6}$$

CICLO NUMERO 5

OIOLO NOMERO O			
f(n)	Resultado Empírico	Resultado Teórico	Resultado Teórico Formula ajustada
-1	0	Indefinido	Indefinido
0	0	Indefinido	Indefinido
1	3	2.333333	3
2	8	8	8
3	17	15.18533	16
4	32	23.33333	33
15	132	140.8726	141
20	192	203.0162	204
100	1333	1426.749	1427
409	6820	7256.669	7257
500	8486	9116.285	9117
593	10497	11058.26	11059
1000	18639	19917.12	19918
1471	29146	30672.97	30673
1500	29776	31348.52	31349
2801	59898	62764.74	62765
3000	64546	67720.87	67721
5000	114079	119027.9	119028
10000	244827	254753.7	254753
20000	522979	542876.8	542877

GRAFICA 4

Imagen 4: Gráfica Bucle número 5

