MAT 1375, Classwork18, Fall2024

ID:

Name:

1. The graph of $y = \sin^{-1}(x)$:

 $y = \sin(x)$ (the restricted sine)

 $y = \sin^{-1}(x)$ or arcsin(x) $\pi/3$ (0,0)Domain: Range: $\left| -\frac{\pi}{2} \right|$

2. How to find the value of $\sin^{-1}(x)$:

Let $\theta = \sin^{-1}(x)$. It implies $x = \frac{\sin(\theta)}{2}$ where $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$. Then find the

 θ from the following table:

θ	$-\frac{\pi}{2}$	$-\frac{\pi}{3}$	$-\frac{\pi}{4}$	$-\frac{\pi}{6}$	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\left(\frac{\pi}{2}\right)$
$sin(\theta)$	-[N/W	1/2/N	- <u>- N</u>	0	N	NN	13/2	1

3. Find the value of the given inverse sine functions.

a)
$$\sin^{-1}\left(\frac{\sqrt{2}}{2}\right)$$

b)
$$\sin^{-1}\left(-\frac{1}{2}\right)$$

a)
$$\sin^{-1}\left(\frac{\sqrt{2}}{2}\right)$$
 b) $\sin^{-1}\left(-\frac{1}{2}\right)$ c) $\sin^{-1}\left(-\frac{\sqrt{2}}{2}\right)$ d) $\sin^{-1}(-4.3)$

d)
$$\sin^{-1}(-4.3)$$

a)
$$\sin^{-1}(\frac{\sqrt{2}}{3})$$

a)
$$\sin^{-1}(\frac{\sqrt{2}}{2})$$
b) $\sin^{-1}(-\frac{1}{2})$
c) $\sin^{-1}(-\frac{\sqrt{2}}{2})$
2ot $0 = \sin^{-1}(-\frac{\sqrt{2}}{2})$
2ot $0 = \cos^{-1}(-\frac{\sqrt{2}}{2})$
2ot $0 = \cos^{-1}(-\frac{\sqrt{2}}{2})$
2ot $0 = \cos^{-1}(-\frac{\sqrt{2}}$

$$\widehat{Sin}(0) = -\frac{\sqrt{2}}{2}$$

$$0=-\frac{\pi}{6}$$

$$\delta = -\frac{\pi}{4}$$

d)
$$\sin^{4}(-4.3)$$

Let $0 = \sin^{4}(-4.3)$

$$\widehat{Sin}(\Theta) = -4.3$$

4. The graph of
$$y = \cos^{-1}(x)$$
:

COSINE

 $y = \cos(x)$ (the restricted sine)

5. How to find the value of $\cos^{-1}(x)$:

Let $\theta = \cos^{-1}(x)$. It implies $x = \frac{\cos(\theta)}{\cos(\theta)}$ where $\cos(\theta) \le \theta \le 1$. Then find the

angle θ from the following table:

U.	ic.				ها						>
	θ	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	
	$\cos(\theta)$	1	N	NN	12	0	- 1 2	- 12 Z	13 N	-	

6. Find the value of the given inverse cosine functions.

a)
$$\cos^{-1}\left(\frac{\sqrt{3}}{2}\right)$$
 b) $\cos^{-1}\left(-\frac{1}{2}\right)$ c) $\cos^{-1}\left(-\frac{\sqrt{2}}{2}\right)$ d) $\cos^{-1}(-4.3)$

b)
$$\cos^{-1}\left(-\frac{1}{2}\right)$$

c)
$$\cos^{-1}\left(-\frac{\sqrt{2}}{2}\right)$$

d)
$$\cos^{-1}(-4.3)$$

a) Let
$$0 = \omega s^{-1} \left(\frac{\sqrt{3}}{2}\right)$$

$$\Rightarrow \omega s(0) = \frac{\sqrt{3}}{2}$$

$$\cos(0) = \frac{1}{2}$$

$$0 = \frac{\pi}{6}$$

$$(0 \le \theta \le \pi)$$

b) Let
$$0 = \cos(\frac{1}{2})$$

$$\Rightarrow$$
 $\cos(0) = -\frac{1}{2}$

$$0 = \frac{2\pi}{3}$$

b) Let
$$0 = \cos^{-1}\left(\frac{1}{2}\right)$$
 c) Let $0 = \cos^{-1}\left(\frac{12}{2}\right)$

$$\Rightarrow \cos(0) = \frac{\sqrt{3}}{3} \Rightarrow \cos(0) = -\frac{1}{2} \Rightarrow \cos(0) = -\frac{\sqrt{2}}{2}$$

$$0 = \frac{3\pi}{4}$$

$$cos(0) = -4.3$$