Potenser

Når vi tænker på potenser, tænker vi på tal på formen

$$potens = grundtal^{eksponent},$$

hvor både grundtallet og eksponenten kan være alle tal, dog med den undtagelse at grundtallet og eksponenten ikke må være lig 0 på samme tid.

Hvis eksponenten er et positivt heltal, så som $1,2,3,\ldots$ osv., så udregner man potensen ved at gange grundtallet med sig selv det antal gange der står i eksponenten. Det kan skrives matematisk som

$$x^n = \underbrace{x \cdot x \cdot \dots \cdot x}_{\text{n gange}}.$$

En potens med negativ eksponent er det det samme som en brøk hvor nævneren er den samme potens men med positiv eksponent og tælleren er 1:

$$x^{-a} = \frac{1}{x^a},$$

hvor a kan være alle tal.

Hvis en potens har eksponent 0, så definerer vi potensen til at være lig med 1, altså er

$$x^0 = 1$$
,

for alle tal x bortset fra 0.

Eksempler:

1. Udregn 3^4 :

$$3^4 = 3 \cdot 3 \cdot 3 \cdot 3 = 81.$$

2. Udregn 9871⁰:

Da eksponenten er lig med nul, har vi pr. definition at

$$9871^0 = 1.$$

3. Udregn 0^4 :

$$0^4 = 0 \cdot 0 \cdot 0 \cdot 0 = 0.$$

Regneregler: For potenser har vi følgende regneregler, som vi vil benytte igen og igen i de resterende kursusgange og i vil se dem i gentagende gange i jeres videre studieforløb. Det er derfor en god idé at øve sig på disse.

1. At gange to potenser med samme grundtal er det samme som grundtallet opløftet i summen af de to eksponenter:

$$x^a \cdot x^b = x^{a+b}.$$

2. At dividere to potenser med samme grundtal er det samme som at opløfte grundtallet i forskellen af de to eksponenter:

$$\frac{x^a}{x^b} = x^{a-b}.$$

3. At gange to potenser sammen med samme eksponent er det samme som at gange grundtallene sammen først og derefter opløfte i eksponenten:

$$x^a \cdot y^a = (x \cdot y)^a.$$

4. At dividere to potenser med samme eksponent er det samme som at dividere de to grundtal og så opløfte i eksponenten:

$$\frac{x^a}{y^a} = \left(\frac{x}{y}\right)^a.$$

5. At opløfte en potens i en eksponent er det samme som at op at opløfte grundtallet i de to eksponenter ganget samme:

$$(x^a)^b = x^{a \cdot b}.$$

Eksempler:

1. Udregn $\frac{(2\cdot 3)^2}{2^3}$:

$$\frac{(2\cdot 3)^2}{2^3} = \frac{2^2\cdot 3^2}{2^3} = \frac{4\cdot 9}{8} = \frac{36}{8} = \frac{9}{2}.$$

2. Udregn $\left(\frac{2^3}{3}\right)^2$:

$$\left(\frac{2^3}{3}\right)^2 = \frac{(2^3)^2}{3^2} = \frac{2^{2 \cdot 3}}{3^2} = \frac{2^6}{3^2} = \frac{64}{9}.$$

3. Reducer $\frac{(ab)^n}{a^n}$:

$$\frac{(ab)^n}{a^n} = \frac{a^n b^n}{a^n} = b^n.$$

4. Reducer $\frac{(ab)^n - a^n}{(ab)^n}$:

$$\frac{(ab)^n - a^n}{(ab)^n} = \frac{a^n b^n - a^n}{a^n b^n} = \frac{a^n (b^n - 1)}{a^n b^n} = \frac{b^n - 1}{b^n}.$$

Da $-x = (-1) \cdot x$ får vi ved at benytte regneregel 3. ovenfor, at

$$(-x)^n = ((-1) \cdot x)^n = (-1)^n \cdot x^n.$$

Det betyder at hvis vi opløfter et tal i en lige eksponent får vi et positivt tal og hvis vi opløfter et negativt tal i en ulige eksponent, så får vi et negativt tal.

Eksempel:

1. Udregn $(-x)^2$:

$$(-x)^2 = ((-1) \cdot x)^2 = (-1)^2 \cdot x^2 = x^2.$$