Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа	P3215	К работе допущен	
Студент	Федоров Е.В.	Работа выполнена	17.10.2023
Преподаватель	Хвастунов Н.Н.	Отчет принят	

Рабочий протокол и отчет по лабораторной работе №1.02A

Движение на наклонной плоскости

1 Цель работы

- 1. Измерение модуля ускорения свободного падения.
- 2. Экспериментальная проверка эквивалентности гравитационной и инертной массы

2 Задачи

- 1. Измерение времени движения тележки по рельсу при разных углах наклона рельса к горизонту.
- 2. Исследование зависмости ускорения тележки от угла наклона рельса к горизонту. Определение ускорения свободного падения.

3 Объект исследования

Объект исследования - ускорение гравитационного падения.

4 Метод экспериментального исследования

Многократное прямое измерение ускорения тележки при прохождении определенного расстояния под определенным углом к горизонту.

5 Рабочие формулы и исходные данные

1.
$$\sin \alpha = \frac{(h_0' - h') - (h_0 - h)}{x' - x}$$
 — синус угла наклона тележки к горизонту

2.
$$\langle a \rangle = \frac{\sum_{i=1}^{N} a_i}{N}$$
 — среднее значение ускорения

3.
$$\sigma_a = \sqrt{\frac{\sum_{i=1}^N (a_i - \langle a \rangle)^2}{N-1}}$$
 – стандартное отклонение отдельного измерения

4.
$$\Delta a = \frac{\alpha_{0.95,N} \cdot \sigma}{\sqrt{N}}$$
 – погрешность измерений

5.
$$B = \frac{\sum_{j=1}^{n} a_{j} \sin(\alpha)_{j} - \frac{1}{n} \sum_{j=1}^{n} a_{j} \sum_{j=1}^{n} \sin(\alpha)_{j}}{\sum_{j=1}^{n} \sin^{2}(\alpha)_{j} - \frac{1}{n} (\sum_{j=1}^{n} \sin(\alpha)_{j})^{2}} A = \frac{1}{n} \left(\sum_{j=1}^{n} a_{j} - B \sum_{j=1}^{n} \sin(\alpha)_{j} \right)$$
 — коэфиициенты линейной зависимости по методу наименьших квадратов

6.
$$\sigma_B = \sqrt{\frac{\sum_{j=1}^n d_j^2}{D(n-2)}}$$
 — стандартное отклонение для коэффициента B , где $d_j = a_j - (A + B\sin(\alpha)_j)$, $D = \sum_{j=1}^n \sin^2(\alpha)_j - \frac{1}{n}(\sum_{j=1}^n \sin(\alpha)_j)^2$

7. $\Delta B = 2\sigma_B, \; \varepsilon_B = \frac{\Delta B}{B} \cdot 100\% \; - \;$ абсолютная и относительная погрешность для доверительной вероятности 0.9.

6 Измерительные приборы

$N_{\overline{0}}\Pi/\Pi$	Наименование	Тип прибора	Используемый диапазон	Погрешность
1	Угольник	Аналоговый	0-20 см	0.1 см
2	Программа SPARKVUE	Цифрвоой	$0.01 - 0.03\mathrm{m/c^2}$	$0.0001{\rm m/c^2}$

Таблица 1: Измерительные приборы

7 Схема установки

Рис. 1: Схема установки

8 Результаты прямых измерений и их обработки

1	2	3	4	5	6	7	8	9
n_p	<i>h</i> , м	<i>h</i> ′, м	$\sin \alpha$	i	a_i , M/c^2	$\langle a \rangle \pm \Delta a, \text{m/c}^2$	$a_i, \text{ m/c}^2$	$\langle a \rangle \pm \Delta a, \text{m/c}^2$
			1	0.0175		0.0182		
			2	0.0159		0.0191		
1	0.095	0.092	0.003	3	0.0165	0.017160 ± 0.000828	0.0187	0.019240 ± 0.000948
			4	0.0181		0.0210		
				5	0.0178		0.0192	
				1	0.099		0.103	
			2	0.1		0.103		
3	0.11	0.097	0.013	3	0.102	0.101600 ± 0.002871	0.104	0.104400 ± 0.001356
				4	0.107		0.106	
				5	0.1		0.106	
				1	0.144		0.148	0.148200 ± 0.001600
				2	0.146		0.146	
4	0.117	0.1	0.017	3	0.144	0.144000 ± 0.001673	0.148	
			4	0.145		0.151		
				5	0.141		0.148	
				1	0.183		0.182	
				2	0.181		0.185	
5	0.123	0.1	0.023	3	0.178	0.181400 ± 0.001855	0.192	0.186400 ± 0.003382
			4	0.182		0.185		
				5	0.183		0.188	
6 0.13 0				1	0.226		0.227	
		0.026	2	0.226	0.225000 ± 0.004733	0.231	0.226400 ± 0.003878	
	0.104		3	0.230		0.230		
				4	0.227		0.221	
				5	0.216		0.223	
7 0.137				1	0.263		0.265	
	0.107	0.03	2	0.262	0.263400 ± 0.001020	0.263	0.267600 ± 0.009457	
			3	0.265		0.265		
			4	0.263		0.286		
			5	0.264		0.259		

[•] $h_0 = 0.09$ м – высота точки не наклонённого рельса с координатой x = 0.7 м;

[•] $h_0' = 0.09$ м – высота точки не наклонённого рельса с координатой x = 1.7 м;

Примеры расчетов:

•
$$\langle a \rangle$$
 для $n_p = 1$: $\langle a \rangle = \frac{0.0858}{5} = 0.01716$;

• Погрешность
$$\Delta a$$
 для $n_p = 3$: $\Delta a = \frac{\sigma \cdot \alpha_{0.95,5}}{\sqrt{4}} = \frac{0.00287 \cdot 2.77644}{2} = 0.00398$

9 Расчет результатов косвенных измерений

• Коэффициент
$$B = \frac{0.021 - 1/6 \cdot 0.93 \cdot 0.112}{0.0025 - 0.002} = 9.00975;$$

- Коэффициент A = -0.01275
- Стандартное отклонение σ_B для коэффициента B: $\sigma_B = 0.3576;$

•
$$\Delta B = 2\sigma_B = 0.7153, \, \varepsilon_B = \frac{\Delta B}{B} \cdot 100\% = 7.94\%;$$

10 Расчет погрешности измерений

•
$$\Delta B = 2\sigma_B = 0.7153$$
, $\varepsilon_B = \frac{\Delta B}{B} \cdot 100\% = 7.94\%$;

11 Графики

Рис. 2: График зависимости $a = f(\sin(\alpha))$

12 Окончательные результаты

- 1. График зависимости $a = f(\sin(\alpha))$ показан на Рис. 2.
- 2. Значение коэффициента $B=9.00975,\,\Delta B=0.7153,\,\varepsilon_B=7.94\%$
- 3. Абсолютное отклонение измеренного значения модуля ускорения свободного падения от его табличного значения на широте Санкт-Петербурга: $|g_{\text{эксп.}} g_{\text{табл.}}| = |9.00975 9.8195| = 0.80974$

13 Вывод и анализ результатов работы

При выполнении данной лабораторной работы было экспериментально вычислено ускорение свободного падения на широте города Санкт-Петербург. При этом достаточно малая разность абсолютной погрешности $\Delta B \approx 0.71$ и абсолютного отклонения полученых результатов (≈ 0.8) позволяет сделать вывод о достоверности результатов.