TCP/IP Model

This is similar to OSI Model but OSI model is not used in the real world. So we use TCP/IP Model.

OLD MODEL

- Application
- Transport
- Internet
- Link

NEW MODEL

• Application: HTTP, FTP, SMTP

• Transport: TCP, UDP

• Network: IP, routers

• Data Link: Ethernet, Switches

• Physical: Cables, Network Interface Card (NIC)

ARP is the only protocol which works in both Layer 2 and Layer 3

OSI Model	TCP/IP Original	TCP/IP Updated
Application Presentation Session	Application	Application
Transport	Transport	Transport
Network	Internet	Network
Data Link Physical	Link	Data Link Physical

When data is transfered each layer adds its own info, which is known as **Encapsulation**.

When data gets to the Physical layer it is sent to the recieving device, which then starts decoding data.

DATA

Layer 5 -> Layer 4 : SEGMENT

Application - > Transport : Data -> Data + Header (eg TCP - Source and destination port etc)

Layer 3: PACKET

Network Layer: Layer 4 DATA + IP header(Source IP destination IP)

Layer 2: FRAME

DataLink Layer: Layer 3 DATA + Header (Source and Destination MAC address) + Trailer (Error

checking info to maintain data intergrity)

• Then the system checks the destination MAC if this matches with our system it is processed further.

• Then system check for the destination IP if it matches with the machine it is process further.

-Shakti Sikka