Es existiert eine Sprache, die nicht NP-schwer ist.

 \varnothing ist nicht NP-schwer. Keine nichtleere Sprache aus NP kann auf \varnothing reduziert werden, da \varnothing keine JA-Instanzen hat.

Es existiert eine Sprache, die nicht NP-schwer ist.

 \varnothing ist nicht NP-schwer. Keine nichtleere Sprache aus NP kann auf \varnothing reduziert werden, da \varnothing keine JA-Instanzen hat.

Falls $coNP \subseteq NP$, so Gilt NP = coNP.

Es genügt zu zeigen: NP \subseteq coNP

Sei $L \in NP$. Dann Gilt $L \leq_m^p SAT$ und damit $\overline{L} \leq_m^p \overline{SAT}$. Da $\overline{SAT} \in \text{coNP}$ und, nach Vorraussetzung, coNP $\subseteq NP$, Gilt auch $\overline{SAT} \in NP$. Da $\overline{L} \leq_m^p \overline{SAT}$ Gilt also auch $\overline{L} \in NP$ also $L \in \text{coNP}$.

Es existiert eine Sprache, die nicht NP-schwer ist.

 \varnothing ist nicht NP-schwer. Keine nichtleere Sprache aus NP kann auf \varnothing reduziert werden, da \varnothing keine JA-Instanzen hat.

Falls $coNP \subseteq NP$, so Gilt NP = coNP.

Es genügt zu zeigen: $NP \subseteq coNP$.

Sei $L \in NP$. Dann Gilt $L \leq_m^p SAT$ und damit $\overline{L} \leq_m^p \overline{SAT}$. Da $\overline{SAT} \in \text{coNP}$ und, nach Vorraussetzung, coNP $\subseteq NP$, Gilt auch $\overline{SAT} \in NP$. Da $\overline{L} \leq_m^p \overline{SAT}$ Gilt also auch $\overline{L} \in NP$ also $L \in \text{coNP}$.

Wenn eine coNP-schwere Sprache in NP ist, dann NP = coNP.

Zu zeigen: $coNP \subseteq NP$ (die Aussage folgt dann aus (B))

Sei $A \in NP$ coNP-schwer. Sei $L \in coNP$. Dann Gilt $L \leq_m^p A$ und, da $A \in NP$ auch $L \in NP$ (nach VL).

5/8

Es existiert eine Sprache, die nicht NP-schwer ist.

 \varnothing ist nicht NP-schwer. Keine nichtleere Sprache aus NP kann auf \varnothing reduziert werden, da \varnothing keine JA-Instanzen hat.

Falls $conP \subseteq NP$, so gift NP = conP.

Es genügt zu zeigen: NP \subseteq coNP.

Sei $L \in NP$. Dann Gilt $L \leq_m^p SAT$ und damit $\overline{L} \leq_m^p \overline{SAT}$. Da $\overline{SAT} \in \text{coNP}$ und, nach Vorraussetzung, coNP $\subseteq NP$, Gilt auch $\overline{SAT} \in NP$. Da $\overline{L} \leq_m^p \overline{SAT}$ Gilt also auch $\overline{L} \in NP$ also $L \in \text{coNP}$.

Wenn eine coNP-schwere Sprache in NP ist, dann NP = coNP.

Zu zeigen: $coNP \subseteq NP$ (die Aussage folgt dann aus (B))

Sei $A \in NP$ coNP-schwer. Sei $L \in coNP$.

Dann Gilt $L \leq_m^p A$ und, da $A \in NP$ auch $L \in NP$ (nach VL). $NP \cup conP \subseteq PSPACE$.

 $\stackrel{-}{\mathsf{Zu}}$ zeigen way $\mathsf{CPSPACE}$ (NP \subseteq PSPACE bekannt aus VL).

Sei $L \in \text{coNP}$, dann gilt $\overline{L} \in \text{NP}$, also $\overline{L} \in \text{PSPACE}$. Da PSPACE mittels DTMs definiert ist, gilt auch $L \in \text{PSPACE}$ (akzeptieren und ablehnen kann bei DTMs vertauscht werden).

Das allg. Halteproblem $H = \{w \# x \mid M_w \text{ hält auf } x\}$ ist NP-schwer. Wir zeigen $SAT \leq_m^p H$.

Da SAT entscheidbar ist (SAT \in PSPACE), existiert eine DTM M mit SAT=T(M). Sei M' eine DTM, die sich wie M verhält und in eine Endlosschleife geht, falls M die Eingabe ablehnt.

Das allg. Halteproblem $H = \{w \# x \mid M_w \text{ hält auf } x\}$ ist NP-schwer. Wir zeigen $SAT \leq_m^p H$.

Da SAT entscheidbar ist (SAT \in PSPACE), existiert eine DTM M mit SAT = T(M). Sei M' eine DTM, die sich wie M verhält und in eine Endlosschleife geht, falls M die Eingabe ablehnt.

Die Reduktionsfunktion f ist definiert als $\langle F \rangle \mapsto \langle M' \rangle \# \langle F \rangle$. Die Funktion ist total und polynomzeitberechenbar, da $|\langle M' \rangle|$ konstant ist (hängt nicht von Eingabe $|\langle F \rangle|$ ab).

Das allg. Halteproblem $H = \{w \# x \mid M_w \text{ hält auf } x\}$ ist NP-schwer. Wir zeigen $SAT \leq_m^p H$.

Da SAT entscheidbar ist (SAT \in PSPACE), existient eine DTM M mit SAT = T(M). Sei M' eine DTM, die sich wie M verhält und in eine Endlosschleife geht, falls M die Eingabe ablehnt.

Die Reduktionsfunktion f ist definiert als $\langle F \rangle \mapsto \langle M' \rangle \# \langle F \rangle$. Die Funktion ist total und polynomzeitberechenbar, da $|\langle M' \rangle|$ konstant ist (hängt nicht von Eingabe $|\langle F \rangle|$ ab).

Korrektheit:

- $\langle F \rangle \in \mathsf{SAT} \Longrightarrow M$ akzeptiert $\Longrightarrow M'$ hält.
- $\langle F \rangle \notin SAT \Longrightarrow M \text{ lehnt ab } \Longrightarrow M' \text{ hält nicht.}$

NP-LIN = Klasse aller Sprachen, deren Ja-Instanzen lineare Zertifikate haben, die in Polynomzeit verifiziert werden können. Das heißt,

$$L \in NP$$
-LIN $\Leftrightarrow \exists_{\mathsf{DTM}\ M} \ \mathsf{time}_M(n) \in O(\mathsf{poly}(n)) \land \\ \exists_{c \in \mathbb{N}} \forall_{x \in \Sigma^*} \ x \in L \Leftrightarrow \exists_{u \in \Sigma^{c|x|}} \ \langle x, u \rangle \in T(M).$

Zeigen Sie P=NP \Leftrightarrow P=NP-LIN.

Schriftlicher Test - Lösungen III NP-LIN = Klasse aller Sprachen, deren Ja-Instanzen lineare Zertifikate haben, die in Polynomzeit verifiziert werden können. Das heißt,

$$L \in \mathsf{NP} ext{-LIN} \Leftrightarrow \exists_{\mathsf{DTM}\ M} \mathsf{time}_M(n) \in O(\mathsf{poly}(n)) \land \\ \exists_{c \in \mathbb{N}} \forall_{x \in \Sigma^*} \ x \in L \Leftrightarrow \exists_{u \in \Sigma^{c|x|}} \ \langle x, u \rangle \in T(M).$$

Zeigen Sie P=NP \Leftrightarrow P=NP-LIN.

" \Rightarrow ": Es gilt P \subseteq NP-LIN, da jedes $L \in$ P das leere Zertifikat hat. NP-LIN \subseteq NP=P, da lineare Zertifikate polynomielle Länge haben.

Schriftlicher Test - Lösungen III NP-LIN = Klasse aller Sprachen, deren Ja-Instanzen lineare Zertifikate haben, die in Polynomzeit verifiziert werden können. Das heißt,

$$L \in \mathsf{NP} ext{-LIN} \Leftrightarrow \exists_{\mathsf{DTM}\ M} \mathsf{time}_M(n) \in O(\mathsf{poly}(n)) \land \\ \exists_{c \in \mathbb{N}} \forall_{x \in \Sigma^*} \ x \in L \Leftrightarrow \exists_{u \in \Sigma^{c|x|}} \ \langle x, u \rangle \in T(M).$$

Zeigen Sie P=NP \Leftrightarrow P=NP-LIN.

- " \Rightarrow ": Es gilt P \subseteq NP-LIN, da jedes $L \in$ P das leere Zertifikat hat. NP-LIN \subseteq NP=P, da lineare Zertifikate polynomielle Länge haben.
- "←": Es gilt SAT ∈ NP-LIN, da SAT ein lineares Zertifikat, nämlich eine erfüllende Variablenbelegung hat. Wir haben also ein NP-schweres Problem in NP-LIN=P also gilt P=NP.

Clique Input: Ein ungerichteter Graph G und eine Zahl $k \in \mathbb{N}$.

Question: Gibt es eine Clique Mit Mindestens k Knoten in G?

Exact Clique

Input: Ein ungerichteter Graph G und eine Zahl $k \in \mathbb{N}$.

Question: Hat die größte Clique in G genau k Knoten?

Clique Input: Ein ungerichteter Graph G und eine Zahl $k \in \mathbb{N}$.

Question: Gibt es eine Clique Mit Mindestens k Knoten in G?

Exact Clique

Input: Ein ungerichteter Graph G und eine Zahl $k \in \mathbb{N}$.

Question: Hat die größte Clique in G genau k Knoten?

Eingabe: Graph G = (V, E) mit $V = \{u_1, \dots, u_n\}$ und Zahl $k \in \mathbb{N}$.

Ausgabe: Graph G' = (V', E') und Zahl k' = k mit

$$V':=V^1\cup V^2\cup\dots V^k$$
 mit $V^\ell:=\{u_1^\ell,u_2^\ell,\dots,u_n^\ell\}$ für alle $1\leq\ell\leq k,$ $E':=\{\{u_i^\ell,u_i^h\}\mid\{u_i,u_i\}\in E\land 1\leq\ell,h\leq k\land\ell\neq h\}.$

Clique Input: Ein ungerichteter Graph G und eine Zahl $k \in \mathbb{N}$.

Question: Gibt es eine Clique Mit Mindestens k Knoten in G?

Exact Clique

Input: Ein ungerichteter Graph G und eine Zahl $k \in \mathbb{N}$.

Question: Hat die größte Clique in G genau k Knoten?

Eingabe: Graph G=(V,E) mit $V=\{u_1,\ldots,u_n\}$ und Zahl $k\in\mathbb{N}$. Ausgabe: Graph G' = (V', E') und Zahl k' = k mit

$$V':=V^1\cup V^2\cup\ldots V^k$$
 mit $V^\ell:=\{u_1^\ell,u_2^\ell,\ldots,u_n^\ell\}$ für alle $1\leq\ell\leq k,$ $E':=\{\{u_i^\ell,u_i^h\}\mid\{u_i,u_i\}\in E\land 1\leq\ell,h\leq k\land\ell\neq h\}.$

Hinweis

Hinweis

Schriftlicher Test - Lösungen IV Zeigen Sie $(G,k) \in C$ lique $\Rightarrow (G',k) \in E$ xact Clique.

Hinweis

Schriftlicher Test - Lösungen IV Zeigen Sie $(G, k) \in C$ lique $\Rightarrow (G', k) \in E$ xact Clique. Angenommen G hat eine Clique $C = \{u_{i_1}, \ldots, u_{i_k}\}$. \sim Knoten $\{u_{i_j}^j \mid 1 \leq j \leq k\}$ Bilden Clique in G', denn für alle $\ell \neq h$ Gilt $\{u_{i_\ell}, u_{i_k}\} \in E \Rightarrow \{u_{i_\ell}^\ell, u_{i_\ell}^h\} \in E'$.

Außerdem Gibt es, per Konstruktion, keine Clique mit k+1 Knoten in G', da jedes V^ℓ ein independent set in G' ist. \leadsto die Größte Clique in G' hat Genau k Knoten.

Hinweis

Schriftlicher Test - Lösungen IV Zeigen Sie $(G,k) \in C$ lique $\leftarrow (G',k) \in E$ xact Clique.

Hinweis

Zeigen Sie $(G, k) \in Clique \leftarrow (G', k) \in Exact Clique$.

Angenommen G' enthält eine Clique C der Größe k.

ightharpoonup C hat die Form $\{u_{i_j}^I \mid 1 \leq j \leq k\}$, da alle V^j independent sets sind. Außerdem Gilt $i_j \neq i_\ell$ für alle $j \neq \ell$, denn per Konstruktion Gibt es kein i mit $\{u_i^\ell, u_i^h\} \in E'$ für $\ell \neq h$.

ightarrow die Knoten $\{u_{i_j},\ldots,u_{i_k}\}$ Bilden eine Clique der Größe k in G, denn $\{u_{i_\ell}^\ell,u_{i_h}^h\}\in E'\Rightarrow\{u_{i_\ell},u_{i_h}\}\in E$ für alle $\ell\neq h$.

Hinweis