ARTIFICIAL INTELLIGENCE TOPICS for FINAL REVIEW (23CLC7 – 23CLC8)

1. UNINFORMED SEARCH and INFORMED SEARCH

- a. Tree-search algorithm vs. Graph-search algorithm
- b. Uninformed search: BFS, DFS, and UCS
- c. Informed search: Greedy Best First Search (GBFS) and A*
- d. Admissible heuristic and Consistent heuristic
- e. Draw the search tree that shows reached states during the search.

2. LOCAL SEARCH

- a. Global search vs. Local search
- b. Hill-Climbing (Hill-climbing and variants, simulated annealing, and local beam search)
- c. Genetic Algorithm

3. ADVERSARIAL SEARCH

- a. Minimax
- b. $\alpha \beta$ pruning

4. CONSTRAINT SATISFACTION PROBLEMS

- a. Formulation: Variables, Domains, and Constraints (Unary/Binary)
- b. Algorithms:
 - i. Node consistency
 - ii. Arc consistency (AC-3)
 - iii. Backtracking with Forward Checking
 - iv. Heuristics: DH, MRV, and LCV

5. PROPOSITIONAL LOGIC

- a. Syntax, Semantic (Entailment)
- b. Algorithms:
 - i. CNF conversion
 - ii. Resolution (Contradiction) ← KB in CNF
 - iii. Forward and Backward Chaining ← KB in Definite Clauses

6. FIRST-ORDER LOGIC

- a. Syntax, Semantic: Predicate, Function, Term, Quantifiers (∀, ∃)
- b. Algorithms:
 - i. Unification, CNF conversion
 - ii. Resolution ← KB in CNF
 - iii. Forward and Backward Chaining ← KB in Definite Clauses

7. MACHINE LEARNING

- a. Learning Types: Supervised, Unsupervised, and Reinforcement learning
- b. Algorithms:
 - i. ID3: Algorithm, Metrics to evaluate attributes (Entropy, Average Entropy, and Information Gain)
 - ii. Perceptron Learning Rule (both feedforward and weight update)
 - iii. Multi-layer Neural Network (both feedforward and weight update)

ID3 formulas

The Entropy measure evaluates the uncertainty of a random variable V with values v_k .

$$H(V) = \sum_{k} P(v_k) \log_2 \frac{1}{P(v_k)} = -\sum_{k} P(v_k) \log_2 P(v_k)$$

- v_k is a class in V (e.g., yes/no in binary classification).
- $P(v_k)$ is the proportion of the number of elements in class v_k to the number of elements in V.

Example 1: The class attribute V has two classes v_1 and v_2 .

$$H(V) = -P(v_1)\log_2 P(v_1) - P(v_2)\log_2 P(v_2)$$

Example 2: The class attribute V has three classes v_1 , v_2 , and v_3 .

$$H(V) = -P(v_1)\log_2 P(v_1) - P(v_2)\log_2 P(v_2) - P(v_3)\log_2 P(v_3)$$

The Average Entropy measure for an attribute X with values x_i

$$AE(X) = \sum_{i} P(X = x_i) H(X = x_i)$$

- x_i is a value of the attribute X.
- $P(X = x_i)$ is the proportion of the number of elements in value x_i to the number of elements in X.

Example : The attribute *X* has three values x_1 , x_2 , and x_3 .

$$HE(X) = P(X = x_1)H(X = x_1) + (X = x_2)H(X = x_2) + (X = x_3)H(X = x_3)$$

The Information Gain measure for an attribute X with values x_i

$$IG(X) = AE(Dataset\ before\ splitting\ by\ X) - AE(X)$$

Perceptron formulas using bias b

Forward:

$$Y(p) = \sigma\left(\sum_{i=1}^{n} w_i \cdot x_i + b\right)$$

where the step activation function is $\sigma(x) = \begin{cases} 1 & \text{if } x \ge 0 \\ 0 & \text{if } x < 0 \end{cases}$ and n is the number of perceptron inputs.

Backward:

Update the weights w_i

$$w_i = w_i - \Delta w_i = w_i - \eta \cdot x_i \cdot (\alpha - t)$$

where η is the learning rate (0 < η < 1), a is the actual value, and t is the target value.

Update the bias *b*

$$b = b - \eta \cdot \mathbf{1} \cdot (a - t)$$