Chapter 2 Crystal Dynamics

Today's lecture

Profile

Crystal dynamics

Born-Oppenheimer Approximation

Na Crystal: 2N particles N~10²³

Electrons' movement

Electron theory

Free electron theory

Energy band

theory

Atoms' movement

Crystal dynamics

Lattice Vibration

Crystal dynamics

Scientists

A. Piccard, E. Henriot, P. Ehrenfest, E. Herzen, Th. De Donder, E. Schrödinger, J.E. Verschaffelt, W. Pauli, W. Heisenberg, R.H. Fowler, L. Brillouin; P. Debye, M. Knudsen, W.L. Bragg, H.A. Kramers, P.A.M. Dirac, A.H. Compton, L. de Broglie, M. Born, N. Bohr; I. Langmuir, M. Planck, M. Skłodowska-Curie, H.A. Lorentz, A. Einstein, P. Langevin, Ch. E. Guye, C.T.R. Wilson, O.W. Richardson

Crystal dynamics

Heat Capacity

Comparison Between Experiment and Theory

Chapter 2 Crystal Dynamics

2.1 Lattice Vibration

- 2.1.1 1D Monoatomic Chain
- 2.1.2 1D Diatomic Chain
- 2.1.3 3D Crystal
- 2.1.4 Quantization of Lattice Waves

2.2 Phonon Heat Capacity

• Equation of motion • Periodic boundary condition • Dispersion relation • Lattice Waves

1D monoatomic chain

• Equation of motion • Periodic boundary condition • Dispersion relation • Lattice Waves

Two Basic Hypothesises

Our calculations will be restricted to lattice vibrations of small amplitude:

Harmonic approximation (Harmonic limit): The restoring force on each atom is approximately proportional to its displacement.

$$F = -\beta x$$

--Hook's Law

Spring!

Nearest-neighbor limit: To calculate the forces simply, only nearest-neighbor interactions of atoms be considered.

- Equation of motion - Periodic boundary condition - Dispersion relation - Lattice Waves

How to calculate β?

Atomic potential U(r) can be written in Taylor's series:

$$U(r) = U(a) + \frac{(r-a)^2}{2!} \left(\frac{d^2U}{dr^2}\right)_{r=a} + \dots$$

$$F = -\frac{\mathrm{d}U(r)}{\mathrm{d}r} = -\left[\frac{\mathrm{d}^2 U(r)}{\mathrm{d}r^2}\right]_{r=a} \cdot (r-a) = -\beta x \quad 0$$

$$\beta = \left(\frac{\mathrm{d}^2 U}{\mathrm{d}r^2}\right)_{r=a}$$

β is the force constant between nearest-neighbor atoms. It will differ for longitudinal and transverse waves in 3D space.

 $\ddot{u}_n = -\omega^2 u_n$

• Equation of motion • Periodic boundary condition • Dispersion relation • Lattice Waves

$$m \ddot{u}_{n} = \beta(u_{n+1} - 2u_{n} + u_{n-1})$$

$$u_{N+1} = u_1$$

$$u_{N+n} = u_n$$

Born-Karman boundary condition Periodic boundary condition

$$u_n = Ae^{i(kx_n - \omega t)} = Ae^{i(nak - \omega t)}$$

$$-m\omega^2 A e^{i(kna-\omega t)}$$

$$= \beta \left(A e^{i(kna+ka-\omega t)} - 2A e^{i(kna-\omega t)} + A e^{i(kna-ka-\omega t)} \right)$$

$$-m\omega^2 = \beta \left(e^{ika} - 2 + e^{-ika} \right)$$

$$m\omega^2 = 2\beta(1-\cos ka)$$

$$\omega = 2\sqrt{\frac{\beta}{m}} \left| \sin \frac{ka}{2} \right|$$

· Equation of motion · Periodic boundary condition · Dispersion relation · Lattice Waves

$$m u_n = \beta(u_{n+1} - 2u_n + u_{n-1})$$

$$u_n = Ae^{i(kx_n - \omega t)} = Ae^{i(nak - \omega t)}$$

$$\omega = 2\sqrt{\frac{\beta}{m}} \left| \sin \frac{ka}{2} \right|$$

$$e^{i(nka-\omega t)} = e^{[i(N+n)ak-\omega t]}$$

$$e^{iNka}=1$$

$$Nka = 2\pi m$$

$$k = \frac{2\pi}{Na}m$$

$$m = 0, \pm 1, \pm 2, \dots$$

Born-Karman boundary condition Periodic boundary condition · Equation of motion · Periodic boundary condition · Dispersion relation · Lattice Waves

$$m \ddot{u}_n = \beta(u_{n+1} - 2u_n + u_{n-1})$$

$$k = 4\pi/6a$$
 $\lambda = 3.00a$ $\omega_k = 1.73\omega$

$$k=3\pi/6a \quad \lambda=4.00a \quad \omega_k=1.41\omega$$

$$k = 1 \pi/6 a$$
 $\lambda = 12.00 a$ $\omega_k = 0.52 \omega$

Lattice Wave

$$u_n = Ae^{i(nak - \omega t)} \quad u_{N+1} = u_1$$

$$\omega = 2\sqrt{\frac{\beta}{m}} \left| \sin \frac{ka}{2} \right|$$

$$k = \frac{2\pi}{Na} m$$

$$m = 0, \pm 1, \pm 2, \dots$$

• Equation of motion • Periodic boundary condition • Dispersion relation • Lattice Waves

$$m\ddot{u}_{n} = \beta(u_{n+1} - 2u_{n} + u_{n-1})$$

Independent Lattice Wave

$$\omega(k) = \omega(k+G) \qquad G = m \cdot \frac{2\pi}{a} \hat{i}$$

$$k_1 = \frac{\pi}{2a} = \frac{2\pi}{\lambda_1} \qquad \lambda_1 = 4a$$

$$k_2 = \frac{5\pi}{2a} = \frac{2\pi}{\lambda_2} \qquad k_2 - k_1 = \frac{2\pi}{a} \qquad \lambda_2 = \frac{4}{5}a$$

$$u_{n} = Ae^{i(nak - \omega t)} \quad u_{N+1} = u_{1}$$

$$\omega = 2\sqrt{\frac{\beta}{m}} \left| \sin \frac{ka}{2} \right|$$

$$k = \frac{2\pi}{Na} m$$

$$m = 0, \pm 1, \pm 2, ...$$

• Equation of motion • Periodic boundary condition • Dispersion relation • Lattice Waves

$$m\ddot{u}_{n} = \beta(u_{n+1} - 2u_{n} + u_{n-1})$$

Independent Lattice Wave

$$\omega(k) = \omega(k+G) \qquad G = m \cdot \frac{2\pi}{a} \hat{i}$$

$$k_1 = \frac{\pi}{2a} = \frac{2\pi}{\lambda_1} \qquad \lambda_1 = 4a$$

$$k_2 = \frac{5\pi}{2a} = \frac{2\pi}{\lambda_2} \qquad k_2 - k_1 = \frac{2\pi}{a} \qquad \lambda_2 = \frac{4}{5}a$$

The movement of atoms with k or k+G is the same.

All independent vibrations are described by k inside BZ.

$$u_n = Ae^{i(nak-\omega t)}$$
 $u_{N+1} = u_1$

$$\omega = 2\sqrt{\frac{\beta}{m}} \left| \sin \frac{ka}{2} \right|$$

$$k = \frac{2\pi}{Na} m$$

$$m = 0, \pm 1, \pm 2, \dots$$

· Equation of motion · Periodic boundary condition · Dispersion relation · Lattice Waves

$$m \ddot{u}_n = \beta(u_{n+1} - 2u_n + u_{n-1})$$

$$u_{n} = Ae^{i(nak - \omega t)} \quad u_{N+1} = u_{1}$$

$$\omega = 2\sqrt{\frac{\beta}{m}} \left| \sin \frac{ka}{2} \right|$$

$$k = \frac{2\pi}{Na}m$$

$$m = 0, \pm 1, \pm 2, \dots$$

• Equation of motion • Periodic boundary condition • Dispersion relation • Lattice Waves

$$\omega = 2\sqrt{\frac{\beta}{m}} \left| \sin \frac{ka}{2} \right| \qquad k = \frac{2\pi}{Na} m \qquad m = 0, \pm 1, \pm 2, \dots$$

$$u_{N+n} = u_n$$

Born-Karman boundary condition Periodic boundary condition

$$-\frac{\pi}{a} \le k < \frac{\pi}{a} \qquad -\frac{\pi}{a} \le \frac{2\pi}{Na} m < \frac{\pi}{a} \qquad -\frac{N}{2} \le m < \frac{N}{2}$$

Total number of degrees of freedom

Number of independent lattice wave

N

• Equation of motion • Periodic boundary condition • Dispersion relation • Lattice Waves

Chapter 2 Crystal Dynamics

2.1 Lattice Vibration

- 2.1.1 1D Monoatomic Chain
- 2.1.2 1D Diatomic Chain
- 2.1.3 3D Crystal
- 2.1.4 Quantization of Lattice Waves

2.2 Phonon Heat Capacity

Equation of motion - Dispersion relation - Lattice Waves

• Equation of motion • Dispersion relation • Lattice Waves

$$M\ddot{u}_n = \beta \left(v_n + v_{n-1} - 2u_n \right)$$

$$m\ddot{v}_n = \beta \left(u_n + u_{n+1} - 2v_n \right)$$

$$u_{N+1} = u_1$$
$$v_{N+n} = v_n$$

$$u_n = Ae^{i(nak - \omega t)}$$

$$\upsilon_n = B e^{i[(n+1/2)ak-\omega t]}$$

$$(2\beta - M\omega^2)A - 2\beta\cos(\frac{1}{2}ak)B = 0$$

$$-2\beta\cos(\frac{1}{2}ak)A + (2\beta - m\omega^2)B = 0$$

$$\begin{vmatrix} 2\beta - M\omega^2 & -2\beta\cos(\frac{1}{2}ak) \\ -2\beta\cos(\frac{1}{2}ak) & 2\beta - m\omega^2 \end{vmatrix} = 0$$

$$\omega_{\pm}^{2} = \frac{\beta(M+m)}{Mm} \left\{ 1 \pm \sqrt{1 - \frac{4Mm}{(M+m)^{2}} \sin^{2}(\frac{1}{2}ak)} \right\}$$

$$\omega_{\pm}^2 = \frac{\beta}{Mm} [(M+m) \pm \sqrt{M^2 + m^2 + 2Mm\cos(ak)}]$$

$$k = \frac{2\pi}{Na}m$$

$$m = 0, \pm 1, \pm 2, \dots$$

Equation of motion - Dispersion relation - Lattice Waves

$$\omega_{+}^{2} = \frac{\beta}{Mm} [(M+m) + \sqrt{M^{2} + m^{2} + 2Mm\cos(ak)}] \qquad \omega_{-}^{2} = \frac{\beta}{Mm} [(M+m) - \sqrt{M^{2} + m^{2} + 2Mm\cos(ak)}]$$

Optical Branch

Upper branch is due to the "+" sign of the root.

Acoustical Branch

Lower branch is due to the "-" sign of the root.

Compare with 1D Monoatomic Chain

$$u_{n-1} \quad u_n \quad u_{n+1} \qquad \omega = 2\sqrt{\frac{\beta}{m}} \left| \sin \frac{ka}{2} \right|$$

· Equation of motion · Dispersion relation · Lattice Waves

$$\omega_{\pm}^2 = \frac{\beta}{Mm} [(M+m) \pm \sqrt{M^2 + m^2 + 2Mm\cos(ak)}]$$

"Gap" means that no vibrations can occur!

	ω_+	ω_{-}
k = 0	$\sqrt{2\beta \left(\frac{1}{M} + \frac{1}{m}\right)}$	0
$k = \frac{\pi}{a}$	$\sqrt{\frac{2\beta}{m}}$	$\sqrt{\frac{2\beta}{M}}$

- Equation of motion - Dispersion relation - Lattice Waves

$$\omega_{\pm}^2 = \frac{\beta}{Mm} [(M+m) \pm \sqrt{M^2 + m^2 + 2Mm\cos(ak)}]$$

$$M\ddot{u}_{n} = \beta \left(v_{n} + v_{n-1} - 2u_{n}\right)$$

$$u_{n} = Ae^{i(nak - \omega t)}$$

$$m\ddot{v}_{n} = \beta \left(u_{n} + u_{n+1} - 2v_{n}\right)$$

$$v_{n} = Be^{i[(n+1/2)ak - \omega t]} = B'e^{i(nak - \omega t)}$$

$$(2\beta - M\omega^2)A - \beta(1 + e^{-iak})B' = 0$$
 $-\beta(1 + e^{-iak})A + (2\beta - m\omega^2)B' = 0$

$$\frac{u_n}{v_n} = \frac{A}{B'} = \frac{\beta(1 + e^{-iak})}{2\beta - M\omega_{\pm}^2} = \frac{2\beta - m\omega_{\pm}^2}{\beta(1 + e^{-iak})}$$

$$\left(\frac{u_n}{v_n}\right)_+ = \left(\frac{A}{B'}\right)_+ < 0 \qquad \left(\frac{u_n}{v_n}\right)_- = \left(\frac{A}{B'}\right)_- > 0$$

Equation of motion - Dispersion relation - Lattice Waves

$$\omega_{\pm}^2 = \frac{\beta}{Mm} [(M+m) \pm \sqrt{M^2 + m^2 + 2Mm\cos(ak)}]$$

$$\left(\frac{u_n}{v_n}\right)_+ = \left(\frac{A}{B'}\right)_+ < 0$$

$$\frac{u_n}{v_n} = \left(\frac{A}{B'}\right)_{-} > 0$$

$$\frac{u_n}{v_n} = \frac{A}{B'} = \frac{\beta(1 + e^{-iak})}{2\beta - M\omega_{\pm}^2} = \frac{2\beta - m\omega_{\pm}^2}{\beta(1 + e^{-iak})}$$

k=0

$$\left[\left(\frac{u}{v} \right)_{+} \right]_{k=0} = -\frac{m}{M} \qquad \left[\left(\frac{u}{v} \right)_{-} \right]_{k=0} = 1$$

 $k=\pm \pi/a$

$$\left[\left(\frac{u_n}{v_n} \right)_{+} \right]_{k=\pm \frac{\pi}{a}} = 0 \qquad \left[\left(\frac{u_n}{v_n} \right)_{-} \right]_{k=\pm \frac{\pi}{a}} = \infty \qquad \omega_- \approx \frac{1}{2} a \sqrt{\frac{2\beta}{M+m}} \cdot k \propto k \\
v_k = \frac{1}{2} a \sqrt{\frac{2\beta}{M+m}} \cdot k \propto k$$

 $k\rightarrow 0$ $\omega_{-}^{2} = \frac{\beta(M+m)}{Mm} \left\{ 1 - \sqrt{1 - \frac{4Mm}{(M+m)^{2}} \sin^{2}(\frac{1}{2}ak)} \right\}$ $\approx \frac{\beta (M+m)}{Mm} \left| 1 - \sqrt{1 - \frac{4Mm}{(M+m)^2} \left(\frac{1}{2}ak\right)^2} \right|$ $\approx \frac{\beta(M+m)}{Mm} \cdot \frac{2Mm}{(M+m)^2} \left(\frac{1}{2}ak\right)^2$ $= \frac{2\beta}{M+m} \left(\frac{1}{2}ak\right)^2 \qquad (1-x)^{1/2} \xrightarrow{x\to 0} 1-(x/2)$

$$\omega_{-} \approx \frac{1}{2} a \sqrt{\frac{2\beta}{M+m}} \cdot k \propto k$$

$$v_{k} = \frac{1}{2} a \sqrt{\frac{2\beta}{M+m}}$$

Equation of motion - Dispersion relation - Lattice Waves

$$\omega_{\pm}^2 = \frac{\beta}{Mm} [(M+m) \pm \sqrt{M^2 + m^2 + 2Mm\cos(ak)}]$$

$$k = \frac{2\pi}{Na}m$$
 $m = 0, \pm 1, \pm 2, ...$

$$-\frac{\pi}{a} \le k < \frac{\pi}{a} \qquad -\frac{\pi}{a} \le \frac{2\pi}{Na} m < \frac{\pi}{a}$$

$$-\frac{N}{2} \le m < \frac{N}{2}$$

Total number of degrees of freedom

Number of independent lattice wave

原胞数 N 晶格振动波矢数 N 原胞内原子数 2 总自由度数 2N 独立格波数 2N 分支 2

分支情况

1支声学波

1支光学波

Chapter 2 Crystal Dynamics

2.1 Lattice Vibration

- 2.1.1 1D Monoatomic Chain
- 2.1.2 1D Diatomic Chain
- 2.1.3 3D Crystal
- 2.1.4 Quantization of Lattice Waves

2.2 Phonon Heat Capacity

- Lattice Waves - Dispersion relation / Phonon spectrum

	原胞 数	晶格振动 波矢数	原胞内 原子数	总自由 度数	独立格 波数	分支 数	分支情况
一维单原子链	N	N	1	N	N	1	1支声学波
一维双原子链	N	N	2	2N	2N	2	1支声学波 1支光学波
一维P原子链	N	N	Р	PN	PN	Р	1支声学波 P−1支光学波
三维单原子链 (三维单原子晶体)	N	N	1	3N	3N	3	3支声学波 (1纵2横)
三维P原子链 (三维晶体)	N	N	Р	3PN	3PN	3P	3支声学波 (1纵2横) 3P-3支光学波

Three dimensional crystal

Total number of degrees of freedom

Number of independent lattice wave

- Lattice Waves - Dispersion relation / Phonon spectrum

2 atoms per primitive cell \longrightarrow 3×2 vibration branches

Optic 3(p-1): LO (longitudinal), TO₁ (transverse), TO₁ (transverse) Acoustic (3): LA (longitudinal), TA₁ (transverse), TA₂ (transverse)

Chapter 2 Crystal Dynamics

2.1 Lattice Vibration

- 2.1.1 1D Monoatomic Chain
- 2.1.2 1D Diatomic Chain
- 2.1.3 3D Crystal
- 2.1.4 Quantization of Lattice Waves
- 2.2 Phonon Heat Capacity

Volume of 1st BZ

Density of k distribution in k space

$$v_b = \frac{(2\pi)^3}{v_a}$$

Density of k distribution in k space (3D)

$$\rho(k) = \frac{N}{(2\pi)^3} = \frac{V}{(2\pi)^3}$$

1D

$$\rho(k) = \frac{Na}{2\pi} = \frac{L}{2\pi}$$

2D

$$\rho(k) = \frac{S}{(2\pi)^2}$$

Equivalence between a vibration mode and a harmonic oscillator

We care about
$$C_v = \lim_{\Delta T \to 0} \left(\frac{\Delta E}{\Delta T} \right)_V = \left(\frac{\partial E}{\partial T} \right)_V$$

where
$$E = T_k + U_k = \frac{1}{2}m\sum \dot{u}_n^2 + \frac{1}{2}\beta\sum (u_{n-1} - u_n)^2$$

Cause
$$u_n = Ae^{-i(\omega t - kna)}$$
 (vibration mode **k**)

then
$$T_k = \frac{1}{2} m \sum_{n=1}^{N} \dot{u}_n^2 = \frac{1}{2} m \omega^2 e^{-2i\omega t} \sum_{n=1}^{N} e^{2ikna}$$

Cause
$$-\frac{\partial U_k}{\partial u_n} = \beta(u_{n-1} + u_{n+1} - 2u_n)$$

then
$$U_k = \frac{1}{2}\beta \sum_{n=1}^{N} (2u_n^2 - u_n u_{n+1} - u_n u_{n-1}) = 2\beta \sin^2(\frac{ka}{2}) e^{-2i\omega t} \sum_{n=1}^{N} e^{2ikna}$$

With the dispersion relation
$$\omega = 2\sqrt{\frac{\beta}{m}} \left| \sin \frac{ka}{2} \right|$$
 we have $U_k = \frac{1}{2} m \omega^2 e^{-2i\omega t} \sum_{n=1}^{N} e^{2ikna}$

3D Crystal

Introducing generalized coordinates $q_k = \sqrt{m} \sum_{i=1}^{N} \mathrm{e}^{-\mathrm{i}(\omega \mathrm{t}-kna)}$

and generalized momentum $p_k = \frac{dq_k}{dt} = -i\omega\sqrt{m}\sum_{k=0}^{N}e^{-i(\omega t - kna)}$

We can have $U_k = \frac{1}{2}\omega^2 q_k^2$ and $T_k = \frac{1}{2}p_k^2$

Then the energy of crystal corresponding to vibration mode **k** will be

$$E_k = T_k + U_k = \frac{1}{2} p_k^2 + \frac{1}{2} \omega^2 q_k^2$$

which is the energy of a harmonic oscillator with displacement q_k, momentum p_k and vibration frequency ω.

This tells us the equivalence between the energy of a vibration mode and the energy of a harmonic oscillator. Crystal lattice vibration energy of a monoatomic chain contain N atoms can be expressed as the summation of the energy of N harmonic oscillators.

A monoatomic chain
$$U_k = \frac{1}{2}\omega^2 q_k^2$$
 $T_k = \frac{1}{2}p_k^2$ $E_k = T_k + U_k = \frac{1}{2}p_k^2 + \frac{1}{2}\omega^2 q_k^2$

Crystal lattice vibration energy of a monoatomic chain contain N atoms can be expressed as the summation of the energy of N harmonic oscillators.

A 3D monoatomic
$$U = \frac{1}{2} \sum_{k=1}^{3N} \omega_k^2 q_k^2$$
 $T = \frac{1}{2} \sum_{k=1}^{3N} p_k^2$ $E = T + U = \frac{1}{2} \sum_{k=1}^{3N} \left(p_k^2 + \omega_k^2 q_k^2 \right)$ crystal

Crystal lattice vibration energy of a 3D monoatomic crystal contain N atoms can be expressed as the summation of the energy of 3N harmonic oscillator, whose frequencies are just the frequencies of the 3N independent vibration modes.

Harmonic Oscillator

$$\left(-\frac{\hbar^2}{2m}\frac{\mathrm{d}^2}{\mathrm{d}x^2} + \frac{1}{2}m\omega^2x^2\right)\psi(x) = E\psi(x)$$

$$E = nhv?$$

$$\xi = \sqrt{\frac{m\omega}{\hbar}}x \qquad \lambda = \frac{2E}{\hbar\omega}$$

$$\frac{\mathrm{d}^2}{\mathrm{d}\xi^2}\psi(\xi) + (\lambda - \xi^2)\psi(\xi) = 0$$

$$\frac{\mathrm{d}^2}{\mathrm{d}\xi^2}\psi - \xi^2\psi = 0$$

$$\lambda \ll \xi^2$$

$$\psi = e^{\pm \frac{1}{2}\xi^2} \longrightarrow \psi = e^{-\frac{1}{2}\xi^2}$$
 Only this solution is accepted

$$\frac{\mathrm{d}^2}{\mathrm{d}\xi^2}e^{-\frac{1}{2}\xi^2} + (\lambda - \xi^2)e^{-\frac{1}{2}\xi^2} = -(1 - \xi^2)e^{-\frac{1}{2}\xi^2} + (\lambda - \xi^2)e^{-\frac{1}{2}\xi^2} = 0$$

$$\lambda = 1$$
 $\psi_0 = e^{-\frac{1}{2}\xi^2}$ $E = \frac{1}{2}\lambda\hbar\omega = \frac{1}{2}\hbar\omega$

$$\left[\left(\psi_0^{''} \right)' + \left[(1 - \xi^2) \psi_0 \right]' \equiv 0$$

$$\psi_0^{'} = -\xi e^{-\frac{1}{2}\xi^2} = -\xi \psi_0$$

$$\frac{d^2}{d\xi^2}\psi_0' + (3-\xi^2)\psi_0' \equiv 0$$

$$\lambda = 3$$
 $\psi_1 = \psi_0' = -\xi e^{-\frac{1}{2}\xi^2}$

$$E = \frac{1}{2} \lambda \hbar \omega = \frac{3}{2} \hbar \omega$$

$$\lambda = 5$$
 $\psi_2 = (2\xi^2 - 1)e^{-\frac{1}{2}\xi^2}$

$$E_n = \left(n + \frac{1}{2}\right)\hbar\omega_{(n=0,1,2,\cdots)}$$

Crystal lattice vibration energy of a 3D monoatomic crystal contain N atoms can be expressed as the summation of the energy of 3N harmonic oscillator, whose frequencies are just the frequencies of the 3N independent vibration modes.

Energy of a harmonic oscillator with angular frequency ω

$$E = (n+1/2)\hbar\omega = (n+1/2)hv$$

Energy of a vibration mode or a lattice wave with angular frequency $\omega_i(k)$

$$E_{j}(\mathbf{k}) = (n_{j}(\mathbf{k}) + 1/2)\hbar\omega_{j}(\mathbf{k}) \quad n_{j}(\mathbf{k}) = 0,1,2,...$$

Total Energy of lattice vibration of a crystal with N unit cells, each cell having P atoms

$$E = \sum_{j=1}^{3P} \sum_{k=1}^{N} E_j(\mathbf{k}) = \sum_{j=1}^{3P} \sum_{k=1}^{N} (n_j(\mathbf{k}) + 1/2) \hbar \omega_j(\mathbf{k})$$

Phonon

$$\hbar\omega_i(\mathbf{k})$$

Photon $h\nu,\hbar\omega$

$$E_j(\mathbf{k}) = (n_j(\mathbf{k}) + 1/2)\hbar\omega_j(\mathbf{k})$$

$$E_i(\mathbf{k}) = (n_i(\mathbf{k}) + 1/2)\hbar\omega_i(\mathbf{k})$$

$$E_j(\mathbf{k}) = (n_j(\mathbf{k}) + 1/2)\hbar\omega_j(\mathbf{k})$$

Average energy of harmonic oscillators with angular frequency ω_i at temperature T

$$\overline{E_i} = \frac{\sum_{n_i} (n_i + \frac{1}{2}) \hbar \omega_i e^{-(n_i + \frac{1}{2}) \hbar \omega_i / k_B T}}{\sum_{n_i} e^{-(n_i + \frac{1}{2}) \hbar \omega_i / k_B T}} = \frac{1}{2} \hbar \omega_i + \hbar \omega_i \frac{\sum_{n_i} n e^{-nx}}{\sum_{n_i} e^{-nx}}$$

3D Crystal

 $x = \hbar \omega_i / k_B T$ and k_B is Boltzmann constant. where

Cause

$$\frac{\sum ne^{-nx}}{\sum e^{-nx}} = -\frac{d}{dx}\ln\sum e^{-nx} = \frac{d}{dx}\ln(1 + e^{-x} + e^{-2x} + \cdots) = \frac{d}{dx}\ln(1 - e^{-x}) = \frac{1}{e^x - 1}$$

We get

$$\frac{\overline{E}_{i}}{E_{i}} = \frac{1}{2}\hbar\omega_{i} + \hbar\omega_{i} \frac{1}{e^{\hbar\omega_{i}/k_{B}T} - 1} = (\frac{1}{2} + \frac{1}{e^{\hbar\omega_{i}/k_{B}T} - 1})\hbar\omega_{i} \\
\overline{n_{i}} = \frac{1}{e^{\hbar\omega_{i}/k_{B}T} - 1}$$

Average energy of harmonic oscillators with angular frequency ω_i at temperature T

$$\overline{E_i} = \frac{1}{2}\hbar\omega_i + \hbar\omega_i \frac{1}{e^{\hbar\omega_i/k_BT} - 1} = (\frac{1}{2} + \frac{1}{e^{\hbar\omega_i/k_BT} - 1})\hbar\omega_i$$

T=0K

$$\overline{E_i} = \frac{1}{2}\hbar\omega_i$$
 Zero point energy

T>>0K

$$\hbar\omega \ll k_B T$$

$$\hbar\omega << k_B T$$
 $e^x = 1 + x + \frac{x^2}{2!} + \dots$ when x<<1 $e^x = 1 + x$

$$e^{\hbar\omega/k_BT} = 1 + \frac{\hbar\omega}{k_BT}$$

$$\bar{E}_{i} = \frac{1}{2}\hbar\omega + \frac{\hbar\omega}{1 + \frac{\hbar\omega}{1 - T} - 1} = \frac{1}{2}\hbar\omega + k_{B}T \approx k_{B}T \qquad \frac{1}{2}\hbar\omega$$

3D Crystal

Average energy of harmonic oscillators with angular frequency ω, at temperature T

$$\overline{E_i} = \frac{1}{2}\hbar\omega_i + \hbar\omega_i \frac{1}{e^{\hbar\omega_i/k_BT} - 1} = (\frac{1}{2} + \frac{1}{e^{\hbar\omega_i/k_BT} - 1})\hbar\omega_i$$

Total lattice vibration energy of a crystal

$$E = \sum_{i} \overline{E}_{i} = \sum_{i} \left(\frac{1}{2} + \frac{1}{e^{\hbar \omega_{i}/k_{B}T} - 1} \right) \hbar \omega_{i} = \sum_{i} \frac{1}{2} \hbar \omega_{i} + \sum_{i} \frac{\hbar \omega_{i}}{e^{\hbar \omega_{i}/k_{B}T} - 1} = E_{0} + E(T)$$

The problem is that the summation is very difficult to obtain cause the number of independent lattice waves or equivalent harmonic oscillators is very large (10²³).

We need a new concept called "Density of state" to change the summation into integration.

The density of states $g(\omega)$ is defined as the number of oscillators (or k) per unit frequency interval.

$$g(\omega) = \frac{\mathrm{d}n}{\mathrm{d}\omega}$$

Total number of oscillators

$$\int_0^{\omega_m} g(\omega) d\omega = dNp$$

where d is dimension, N is unit cell number and p is atom number in a cell

$$E_0 = \sum_{i} \frac{1}{2} \hbar \omega_i = \int_0^{\omega_m} \frac{1}{2} \hbar \omega \mathbf{g}(\mathbf{\omega}) d\mathbf{\omega}$$

$$E(T) = \sum_{i} \frac{\hbar \omega_{i}}{e^{\hbar \omega_{i}/k_{B}T} - 1} = \int_{0}^{\omega_{m}} \frac{\hbar \omega}{e^{\hbar \omega/k_{B}T} - 1} \mathbf{g}(\boldsymbol{\omega}) d\omega$$

$$\overline{E} = E_0 + E(T) = \sum_{i} \frac{1}{2} \hbar \omega_i + \sum_{i} \frac{\hbar \omega_i}{e^{\hbar \omega_i / k_B T} - 1} = \int_0^{\omega_m} \frac{1}{2} \hbar \omega \mathbf{g}(\mathbf{\omega}) d\omega + \int_0^{\omega_m} \frac{\hbar \omega}{e^{\hbar \omega / k_B T} - 1} \mathbf{g}(\mathbf{\omega}) d\omega$$

For one branch

$$dn = g_i(\omega)d\omega = \rho_i(k)dk$$

$$\rho_{j}(k) = \begin{cases} \frac{L}{2\pi}, \text{ 1D} & g_{j}(\omega) = \rho_{j}(k) \frac{dk}{d\omega_{j}} \\ \frac{S}{4\pi^{2}}, \text{ 2D} & g(\omega) = \sum_{j=1}^{dp} g_{j}(\omega) \\ \frac{V}{8\pi^{3}}, \text{ 3D} & g(\omega) = \sum_{j=1}^{dp} g_{j}(\omega) \end{cases}$$

$$\overline{E} = E_0 + E(T) = \int_0^{\omega_m} \frac{1}{2} \hbar \omega \mathbf{g}(\mathbf{\omega}) d\omega + \int_0^{\omega_m} \frac{\hbar \omega}{e^{\hbar \omega / k_B T} - 1} \mathbf{g}(\mathbf{\omega}) d\omega$$

3D

$$g(\omega) = \sum_{j}^{3p} g_{j}(\omega) \qquad \int_{0}^{\omega_{m}} g_{j}(\omega) d\omega = N$$
$$\int_{0}^{\omega_{m}} g(\omega) d\omega = 3Np$$

$$\overline{E} = E_0 + E(T) = \sum_{j=1}^{3P} \left(\int_0^{\omega_m} \frac{1}{2} \hbar \omega_j \mathbf{g_j}(\mathbf{\omega}) d\omega_j + \int_0^{\omega_m} \frac{\hbar \omega_j}{e^{\hbar \omega_j / k_B T} - 1} \mathbf{g_j}(\mathbf{\omega}) d\omega_j \right)$$

Summary

lattice vibration ~ harmonic oscillator ~ phonon

$$E = (1/2 + n)\hbar\omega$$

$$C_{v} = \left(\frac{\partial E}{\partial T}\right)_{V}$$

$$\overline{E_i} = \frac{1}{2}\hbar\omega_i + \hbar\omega_i \frac{1}{e^{\hbar\omega_i/k_BT} - 1} = (\frac{1}{2} + \frac{1}{e^{\hbar\omega_i/k_BT} - 1})\hbar\omega_i$$

$$\overline{E} = \sum_{i} \overline{E}_{i} = \sum_{i} \frac{1}{2} \hbar \omega_{i} + \sum_{i} \frac{\hbar \omega_{i}}{e^{\hbar \omega_{i}/k_{B}T} - 1} = E_{0} + E(T)$$

$$\overline{E} = E_0 + E(T) = \int_0^{\omega_m} \frac{1}{2} \hbar \omega \mathbf{g}(\mathbf{\omega}) d\omega + \int_0^{\omega_m} \frac{\hbar \omega}{e^{\hbar \omega_i / k_B T} - 1} \mathbf{g}(\mathbf{\omega}) d\omega$$