# T320 - Introdução ao Aprendizado de Máquina II: *Classificação (Parte I)*





Felipe Augusto Pereira de Figueiredo felipe.figueiredo@inatel.br

#### A disciplina

- Continuação de T319 Introdução ao Aprendizado de Máquina I.
- *Curso introdutório* onde veremos os conceitos básicos de funcionamento dos seguintes algoritmos de *machine learning* (ML):
  - Classificadores
    - Regressão Logística
    - Regressão Softmax
  - Redes Neurais
  - Clustering
    - k-Means
- O curso terá sempre uma parte expositiva e outra prática para fixação dos conceitos introduzidos.
  - Quizzes e exercícios envolvendo os conceitos discutidos.

#### Objetivo do curso

- O objetivo principal do curso é apresentar
  - os conceitos fundamentais da teoria do aprendizado de máquina.
  - um conjunto de ferramentas (ou seja, algoritmos) de aprendizado de máquina para solução de problemas.
- Ao final do curso vocês devem ser capazes de
  - Entender e discutir sobre os principais algoritmos de ML.
  - Compreender a terminologia utilizada na área.
  - Entender o funcionamento de novos algoritmos de ML.
  - Aplicar algoritmos de ML para a resolução de problemas.





#### Critérios de Avaliação

- Dois (2) trabalhos em grupo com peso de 85% cada.
  - Envolvem questões práticas e/ou teóricas.
  - Uma parte de cada trabalho será feita presencialmente.
- Dois (2) conjuntos de exercícios (quizzes e laboratórios) com peso de 15% cada.
  - Podem sempre ser entregues até a próxima aula.
  - Devem ser resolvidos de forma individual.
  - Exercícios serão atribuídos e entregues através do MS Teams.
- Extra: 10% da nota da FETIN na segunda nota.
  - O trabalho precisa usar IA.
- Frequência
  - Gerada automaticamente pelo Teams.
  - Por favor, acompanhem suas frequências no portal.







#### Cronograma

| Aula | Data        | Dia    | Horário        | Atividade                                        |
|------|-------------|--------|----------------|--------------------------------------------------|
| 1    | 27/7/2024   | Sábado | 10:00 às 11:40 | Introdução ao Aprendizado de Máquina             |
| 2    | 3/8/2024    |        |                | Introdução ao Aprendizado de Máquina             |
| 3    | 10/8/2024   |        |                | Introdução ao Aprendizado de Máquina             |
| 4    | 17/8/2024   |        |                | Introdução ao Aprendizado de Máquina             |
| 5    | 24/8/2024   |        |                | Introdução ao Aprendizado de Máquina             |
| 6    | 31/8/2024   |        |                | Introdução ao Aprendizado de Máquina             |
| 7    | 7/9/2024*   |        |                | Introdução ao Aprendizado de Máquina             |
| 8    | 14/9/2024   |        |                | Introdução ao Aprendizado de Máquina             |
| 9    | 21/9/2024   |        |                | Introdução ao Aprendizado de Máquina             |
| 10   | 28/9/2024   |        |                | Introdução ao Aprendizado de Máquina             |
| 11   | 5/10/2024   |        |                | Avaliação Presencial I (Projeto I) (Sala I-20)   |
| 12   | 12/10/2024* |        |                | Introdução ao Aprendizado de Máquina             |
| 13   | 19/10/2024  |        |                | Introdução ao Aprendizado de Máquina             |
| 14   | 26/10/2024  |        |                | Introdução ao Aprendizado de Máquina             |
| 15   | 2/11/2024*  |        |                | Introdução ao Aprendizado de Máquina             |
| 16   | 9/11/2024   |        |                | Introdução ao Aprendizado de Máquina             |
| 17   | 16/11/2024  |        |                | Avaliação Presencial II (Projeto II) (Sala I-20) |
| 18   | 23/11/2024  |        |                | Introdução ao Aprendizado de Máquina             |
| 19   | 30/11/2024  |        |                | Introdução ao Aprendizado de Máquina             |
| 20   | 7/12/2024   |        |                | Introdução ao Aprendizado de Máquina             |

<sup>\*</sup>Feriados (reposições assíncronas)

#### Referências

- [1] Stuart Russell e Peter Norvig, "Artificial Intelligence: A Modern Approach," Prentice Hall Series in Artificial Intelligence, 3rd ed., 2015.
- [2] Aurélien Géron, "Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems", 1st ed., O'Reilly Media, 2017.
- [3] Levy Boccato, "Notas de aula do curso Tópicos em Sistemas Inteligentes II Aprendizado de Máquina" (IA006), disponíveis em <a href="https://www.dca.fee.unicamp.br/~lboccato/ia006">https://www.dca.fee.unicamp.br/~lboccato/ia006</a> 2s2019.html (2019).
- [4] Joseph Misiti, "Awesome Machine-Learning," on-line data base with several free and/or open-source books (https://github.com/josephmisiti/awesome-machine-learning).
- [5] C. M. Bishop, "Pattern Recognition and Machine Learning," Springer, 1st ed., 2006.
- [6] Coleção de livros, <a href="https://tinyurl.com/mp64ksye">https://tinyurl.com/mp64ksye</a>

#### **Avisos**

- Toda nossa comunicação (avisos, atendimentos e tarefas) será feita via Teams.
- Todas as aulas serão gravadas e os vídeos ficarão disponíveis na pasta "Recordings" dentro de "Arquivos".
- Todo material do curso está disponível no GitHub:
  - https://github.com/zz4fap/t320 aprendizado de maquina
- Entregas de exercícios (laboratórios e quizzes) devem ser feitas através do Teams.
  - Se atentem às datas e horários de entrega das atividades.
- Vídeos do minicurso de Python e de como usar o Colab estão na pasta "Recordings" dentro de "Arquivos".
- Horários de Atendimento
  - Professor: quartas-feiras das 17:30 às 18:30 e quintas-feiras das 16:00 às 17:00.
  - Monitor (*Vítor Oliveira: vitor.oliveira@ges.inatel.br*): terças-feiras das 17:30 às 19:30.
  - Atendimento remoto via Teams.

#### Classificação

- Tarefa (ou problema) de aprendizado supervisionado.
  - As saídas esperadas (rótulos) são conhecidas.
- Envolve encontrar uma função, f(x), que *mapeie* os atributos de entrada em um *conjunto finito de valores discretos*, ou seja, em classes.



f(x) aproxima o comportamento dos dados.



f(x) classifica os dados.

f(x) forma uma **fronteira de decisão**.

#### Tarefas de classificação





- Classificação de emails entre spam e ham (legítimo).
- Classificação de objetos em imagens ou vídeos.
- Detecção ou classificação de símbolos de modulações digitais.
- Classificação de modulações (QPSK, AM, FM, etc.).

#### Tarefas de classificação





- Reconhecimento de texto.
- Classificação de texto (e.g., notícias).
- Classificação de sentimentos.
- Classificação do doenças (e.g., pulmonares).





#### Definição do problema de classificação

- **Problema**: encontrar uma função, f(x), que atribua a um **exemplo de entrada**, x, uma de Q classes possíveis, as quais denotaremos como  $C_a$ ,  $q=1,\ldots,Q$ .
  - Por exemplo, as classes podem ser
    - o Spam e ham (legítimo): Q = 2.
    - $\circ$  Dígitos de 0 a 9: Q = 10.
    - $\circ$  Símbolos de uma modulação específica (e.g., QPSK: Q=4).
    - Objetos (carros, barcos, cães, gatos, etc.)
- Semelhante ao problema da *regressão linear*, existe um conjunto de treinamento com N pares de *vetores de atributos* e *rótulos*  $\{x(i); y(i)\}_{i=0}^{N-1}$  que é utilizado para treinar um *classificador*, onde
  - $x(i) = [x_1(i) \cdots x_K(i)]^T \in \mathbb{R}^{K \times 1}$  representa o *i*-ésimo vetor de atributos, o qual é composto por K atributos,  $x_1(i), \dots, x_K(i)$ ;
  - e y(i) representa o *i*-ésimo *rótulo*.

#### Como representar a saída desejada?



- A saída desejada (i.e., rótulo) de um classificador para um vetor de atributos, x(i), deve ser um valor que identifique a qual classe o vetor x(i) pertence.
- Sendo assim, a saída de um classificador é uma variável categórica (i.e., valor discreto pertencente a um conjunto finito).

#### Como representar a saída desejada?



- Portanto, para realizarmos o treinamento do modelo de classificação, nós devemos escolher uma representação numérica para as saídas desejadas.
- Assim, como veremos a seguir, duas opções podem ser adotadas, dependendo se a classificação é **binária** (Q = 2) ou **multi-classes** (Q > 2).

#### Representação da saída desejada

- Classificação binária (Q=2): existem apenas duas classes possíveis,  $C_1$  e  $C_2$ , onde  $C_1$  é chamada de classe negativa e  $C_2$  de classe positiva.
- Portanto, nesse caso, o classificador possui *uma única saída escalar* binária para indicar a *classe* correspondente ao *vetor de atributos*:

$$y(i) = \begin{cases} 0, & x(i) \in C_1 \\ 1, & x(i) \in C_2 \end{cases}.$$

- Assim,  $y(i) \in \mathbb{R}^1$ , de maneira que *o classificador realiza um* mapeamento  $\mathbb{R}^{K \times 1} \to \mathbb{R}^1$ , ou seja, y = f(x), onde  $x \in \mathbb{R}^{K \times 1}$  e  $y \in \mathbb{R}^1$ .
- Também é possível utilizar y(i) = -1 para  $x(i) \in \mathcal{C}_1$ , ou seja

$$y(i) = \begin{cases} -1, & x(i) \in C_1 \\ 1, & x(i) \in C_2 \end{cases}.$$

#### Representação da saída desejada



- Classificação multi-classes: existem mais de 2 classes possíveis (Q > 2).
- Uma estratégia bastante utilizada para representar estas classes é conhecida como codificação one-hot.





#### Representação da saída desejada

- Codificação one-hot: utiliza uma representação vetorial binária para as saídas.
  - Ou seja, as saídas são vetores com o valor 1 no elemento representando a classe do exemplo de entrada e 0 nos demais elementos.
  - Nesse caso, o classificador possui múltiplas saídas (Q saídas), cada uma representando uma classe específica.
  - Exemplo: imaginemos um *classificador de notícias* com quatro classes possíveis: *esportes, política, ciências* e *variedades*. Como seria a representação com a codificação *one-hot*?

```
esportes: \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}^T política: \begin{bmatrix} 0 & 1 & 0 & 0 \end{bmatrix}^T Assim, y(i) \in \mathbb{R}^{Q \times 1}, de maneira que o classificador realiza um mapeamento \mathbb{R}^{K \times 1} \to \mathbb{R}^{Q \times 1}. variedades: \begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix}^T
```

#### Fronteiras de decisão de um classificador



ela é uma reta.

- Antes, nós usávamos funções hipótese para aproximar o comportamento de um conjunto de dados, agora, as usaremos para separar grupos de dados (i.e., classes).
- Para facilitar o entendimento, vamos imaginar o *espaço bi-dimensional*,  $\mathbb{R}^2$ , criado pelos *atributos*  $x_1$ e  $x_2$ , mostrado na figura ao lado.
- Os *pares de atributos* pertencem a duas classes (Q = 2):
  - lacktriangle Círculos azuis pertencem à classe  $\mathcal{C}_1$ .
  - $lacktriange Triângulos vermelhos pertencem à classe <math>\mathcal{C}_2$ .

#### Fronteiras de decisão de um classificador



ela é uma reta.

- Esse espaço pode ser dividido em *duas* regiões de decisão,  $R_1$  e  $R_2$ , onde cada região corresponde a uma classe.
- As regiões de decisão são separadas por fronteiras de decisão, que nada mais são do que funções.
- Na figura, como Q=2, temos apenas uma fronteira de decisão.
- Uma fronteira de decisão corresponde a uma superfície de separação (1D, 2D, 3D, etc.) no espaço de atributos que separa as classes.

#### Fronteiras de decisão de um classificador

- As *superfícies de separação* podem ser *lineares* (e.g., retas e planos) ou *não-lineares* (e.g., círculos e elipses).
- As *superfícies de separação* são definidas por *funções* (lineares ou não) que separam as classes.
- Essas funções são normalmente chamadas de *funções discriminantes*, pois separam as classes.
- As figuras abaixo mostram *regiões de separação* em problemas de classificação *binária* e *multi-classes*.







#### Funções discriminantes



 Uma função discriminante linear pode ser escrita da seguinte forma

$$g(\mathbf{x}) = a_0 + a_1 x_1 + a_2 x_2 + \dots + a_K x_K = \mathbf{a}^T \mathbf{x},$$

que nada mais é do que uma combinação linear dos atributos em relação aos pesos, assim como nós vimos em regressão linear.

- g(x) também pode ser interpretada como um hiperplano que separa as classes.
- Um *hiperplano* pode ser 1 ponto em 1D, uma reta em 2D, um plano em 3D, etc.
  - O coeficiente  $a_0$  (**bias**) dá o deslocamento com relação à origem.
  - E o restante dos pesos determina a orientação do hiperplano.

#### Funções discriminantes



 Nosso objetivo é encontrar os pesos da função discriminante de tal forma que que a classe atribuída a um exemplo de entrada seja:

• OBS.: Podemos usar também *funções* discriminates não-lineares em relação aos atributos, e.g.,  $g(x) = a_0 + x_1^2 + x_2^2$  (eq. de um círculo centrado na origem, onde  $a_0 = -r^2$ ).



- Analisem a figura ao lado.
- Temos 2 classes, 2 atributos,  $x_1$  e  $x_2$ , e queremos encontrar uma **função discriminante**, g(x), que as separe.
- Qual formato deve ter esta função discriminante para que ela tenha boa capacidade de generalização?
  - Lembrem-se do princípio da navalha de Occam: a explicação mais simples (i.e., menos complexa) é geralmente a mais provável de estar correta.



- Qual formato deve ter esta função discriminante para que ela tenha boa capacidade de generalização?
  - O formato mais simples, seguindo o princípio da navalha de Occam, é o de uma reta traçada no plano formado por  $x_1$  e  $x_2$ .



- Visualmente, nós traçamos a reta em uma posição que separe as classes da melhor forma possível.
- A *função discriminante* que representa esta reta é definida como

$$g(\mathbf{x}) = a_0 + a_1 x_1 + a_2 x_2$$

- Agora que definimos o formato da função e sua posição no gráfico, precisamos encontrar os pesos e, com isso, definir as regiões de decisão.
- Como podemos encontrar os pesos?



- Se temos 3 incógnitas, precisamos de um sistema com 3 equações:
  - $(x_1 = 0, x_2 = 1) \rightarrow 0 = a_0 + a_2 : a_0 = -a_2$
  - $(x_1 = 1, x_2 = 2) \to 0 = a_0 + a_1 + 2a_2 : a_1 = -(a_0 + 2a_2)$
  - $(x_1 = 2, x_2 = 3) \to 0 = a_0 + 2a_1 + 3a_2 : a_1 = -(a_0 + 3a_2)/2$
- Resolvendo o sistema, encontramos  $a_0=1$ ,  $a_1=1$ ,  $a_2=-1$ , então

$$g(x) = 1 + x_1 - x_2$$



- Agora, vamos definir as **regiões de decisão** substituindo alguns valores em  $g(x) = 1 + x_1 - x_2$ .
  - $x_1 = 1$  e  $x_2 = 1$  resulta em g(x) > 0. ✓ Região da classe *positiva*,  $C_2$ .
  - $x_1 = 1$  e  $x_2 = 3$  resulta em g(x) < 0. ✓ Região da classe *negativa*,  $C_1$ .
  - $x_1 = 1$  e  $x_2 = 2$  resulta em g(x) = 0.
    - ✓ *Indeterminação*: não podemos afirmar a qual classe o exemplo pertence.
    - ✓ Podemos atribuir arbitrariamente a uma das duas classes ou escolher a classe que possui maior número de exemplos.
- O classificador pode ser implementado como uma estrutura de controle de fluxo.

#### Tarefas

- Quiz: "T320 Quiz Classificação (Parte I)" que se encontra no MS Teams.
- Exercício Prático: Laboratório #1.
  - Pode ser acessado através do link acima (Google Colab) ou no GitHub.
  - Se atentem aos prazos de entrega.
  - Instruções para resolução e entrega dos laboratórios.

### Obrigado!









