Вычислительная математика

Осень 2019

Лабораторная работа 2, прислать до 20.10.2019 23:59

Преподаватель: Маловичко М. С.

Дана СЛАУ Ax = f с матрицей 1000×1000 следующего вида:

$$A = \begin{bmatrix} 2+\beta & -1 & 0 & 0 & 0 \\ -1 & 2+\alpha & -1 & 0 & 0 \\ 0 & -1 & 2+\alpha & -1 & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & -1 & 2+\alpha & -1 \\ 0 & 0 & 0 & -1 & 2+\alpha \end{bmatrix}$$

где $\beta = 10$, $\alpha = 0.01$. Правая часть f равна

$$f_i = \begin{cases} 1, & 495 \le i \le 505 \\ 0, otherwise. \end{cases}$$

- 1. Запрограммировать метод простых итераций с выбором итерационного параметра и решить СЛАУ остановить процесс по достижении относительной невязки $\|r_k\|/\|r_0\|=1$ Е-4, где $\|r_k\|$ невязка решения на китерации. Выбрать итерационный параметр τ любым способом: вычисляя собственные числа матрицы в любом пакете, методом проб и ошибок и т.п. Убедиться, что получаемое решение близко к точному решению (например, решив это же систему методом прогонки из предыдущей лабораторной работы).
- 2. Запрограммировать метод простых итераций БЕЗ выбора итерационного параметра с диагональным предобуславливателем. Решить СЛАУ.
- 3. Решить СЛАУ методом сопряжённых градиентов без предобуславливания. Код метода сопряжённых градиентов взять откуда угодно и вставить в программу, либо вызвать библиотечную функцию.
- 4. Нарисовать графики зависимости относительной невязки $\|r_k\|/\|r_0\|$ от номера итерации для трёх случаев. Должно получиться что-то вроде такого:

Рисунок 1. Пример визуализации скорости сходимости различных итерационных методов.

5. Нарисовать три полученных решения (должны быть похожи!). Образец:

Рисунок 2. Сравнение решений, полученных различными солверами.

Требования:

- 1. Язык: C++98/Python3
- 2. Процедура умножения матрицы на вектор должна быть вынесено в отдельную функцию, которая должна вызываться из функции итерационного решателя. **Без этого задание приниматься не будет.**
- 3.Умножение матрицы системы на вектор должно выполняться <u>без размещения в памяти квадратной матрицы</u>. **Без этого задание приниматься не будет.**
- 4. Программа должна состоять из одного исходного файла: *.cpp или *.py. Код в виде *.ipnb, *.docx, *.pdf, *.jpg и т.п. приниматься не будет.
- 5. Если вам понадобится вычислять собственные числа матрицы, то можно использовать любые сторонние средства. Код метода сопряжённых градиентов можете взять где угодно и скопировать к себе в программу, либо вызвать библиотечную функцию.
- 6. Прислать на почту: (а) исходник, (б) Рисунок 1 (сходимость), (в) Рисунок 2 (сравнение решений). 1

.

 $^{^{1}}$ Да, отчёт можно не делать. Например, прислать три файла: *.cpp и два *.jpg.