

Question1 (1 points)

Find the LU decomposition of the matrix

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 0 \\ -1 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix}$$

Solutions

$$\mathbf{L} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 2 & -1 & 1 \end{bmatrix}, \mathbf{U} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Question2 (2 points)

Let **A** be the $n \times n$ matrix whose entry in the i_{th} row and j_{th} column is

$$\frac{1}{\min(i,j)}$$

for $1 \le i, j \le n$. Compute $det(\mathbf{A})$

Solution:

Let r_i denote the i_{th} row of **A**. The determinant will not be changed if we replace r_i by $r_i - r_{i-1}$ for $i \geq 2$

Because r_i and r_{i-1} agree in their first i-1 entries, the result of this row operation will be an upper triangular matrix.

So what we need to do is to calculate the entries on the main diagonal, which is $a'_{ii} = a_{ii} - a_{(i-1)i} = \frac{1}{i} - \frac{1}{i-1} = -\frac{1}{i(i-1)}$ for $i \ge 2$ and 1 for i = 1, so the determinant is

$$det \mathbf{A} = \prod_{i=2}^{n} \left(-\frac{1}{i(i-1)}\right) = \frac{(-1)^{n-1}}{n!(n-1)!}$$

Question3 (1 points)

Find the determinant of the matrix

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 & 1 \\ 0 & -1 & 2 & 4 & 2 \\ 0 & 0 & 4 & 0 & 0 \\ -3 & -6 & -9 & -12 & 4 \\ 0 & 0 & 1 & 1 & 1 \end{bmatrix}$$

Solution:

$$det(\mathbf{A}) = 28$$

Question4 (1 points)

(a) Suppose A is a 2×2 invertible matrix whose entries are all integers. Show that

$$det(\mathbf{A}) = 1 \text{ or } -1$$

given that the entries of A^{-1} are all integers too.

Solution:

From the lecture, we know that the inverse of matrix **A** can be represented as

$$\mathbf{A}^{-1} = \frac{1}{\det(\mathbf{A})} adj(\mathbf{A}) = \begin{bmatrix} \frac{a_{22}}{\det(\mathbf{A})} & -\frac{a_{12}}{\det(\mathbf{A})} \\ -\frac{a_{21}}{\det(\mathbf{A})} & \frac{a_{11}}{\det(\mathbf{A})} \end{bmatrix}$$

Since it is given that \mathbf{A}^{-1} 's entries are all integers, it can be deduced that all entries of \mathbf{A} are multiples of $det(\mathbf{A})$

Now consider $det(\mathbf{A}) = a_{11}a_{22} - a_{12}a_{21}$, because all four entries are multiples of $det(\mathbf{A})$ and we know that $det(\mathbf{A})$ is not zero since \mathbf{A} is invertible, we can see that $det(\mathbf{A})$ is a multiple of $det(\mathbf{A})^2$, then it is obvious that

$$det(\mathbf{A}) = 1 \text{ or } -1$$

(b) (bonus) Suppose A, B are 2×2 matrices whose entries are all integers, and

$$A, A + B, A + 2B, A + 3B$$
 and $A + 4B$

are all invertible and the entries of their inverse are all integers. Show that $\mathbf{A} + \mathbf{5B}$ is also invertible and the entries of its inverse are all integers.