Data Analysis

Principal component analysis

National Research University Higher School of Economics Master's Program "Big Data Systems"

Fall 2019

Data matrix

		Variables						
		V_1	V_2	•••	V_K			
als	1	x_{11}	x_{11}	•••	x_{1K}			
ndividual	2	x_{21}	٠.					
<u>:</u> ≦	÷	:						
<u>p</u>	I	x_{I1}			x_{IK}			

Many applications:

- Economics and finance: countries - economic indicators
- Marketing: brands measures of satisfaction

- Individuals = observations
- Vector $x_{\bullet k} = (x_{1k}, x_{2k}, ..., x_{Ik})^T$, k = 1, ..., K, contains the values of the variable V_k for 1, ..., I individuals.
- The $I \times K$ data matrix

$$\mathbf{X} = \{x_{ik}\} = \left(\mathbf{x}_{\bullet 1}, \mathbf{x}_{\bullet 2}, ..., \mathbf{x}_{\bullet K}\right)$$

Data matrix: example

- 10 individuals (rows): white wines from Val de Loire
- 30 variables (columns):
 - 27 continuous variables: sensory descriptors
 - 2 continuous variables: odour and overall preferences
 - 1 categorical variable: label of the wines (Vouvray Sauvignon)

	O.fruity	O.passion	O.citrus	 Sweetness	Acidity	Bitterness	Astringency	Aroma.intensity	Aroma.persistency	Visual.intensity	Odor.preferene	Overall.preference	Label
S Michaud	4.3	2.4	5.7	 3.5	5.9	4.1	1.4	7.1	6.7	5.0	6.0	5.0	Sauvignon
S Renaudie	4.4	3.1	5.3	 3.3	6.8	3.8	2.3	7.2	6.6	3.4	5.4	5.5	Sauvignon
S Trotignon	5.1	4.0	5.3	 3.0	6.1	4.1	2.4	6.1	6.1	3.0	5.0	5.5	Sauvignon
S Buisse Domaine	4.3	2.4	3.6	 3.9	5.6	2.5	3.0	4.9	5.1	4.1	5.3	4.6	Sauvignon
S Buisse Cristal	5.6	3.1	3.5	 3.4	6.6	5.0	3.1	6.1	5.1	3.6	6.1	5.0	Sauvignon
V Aub Silex	3.9	0.7	3.3	 7.9	4.4	3.0	2.4	5.9	5.6	4.0	5.0	5.5	Vouvray
V Aub Marigny	2.1	0.7	1.0	 3.5	6.4	5.0	4.0	6.3	6.7	6.0	5.1	4.1	Vouvray
V Font Domaine	5.1	0.5	2.5	 3.0	5.7	4.0	2.5	6.7	6.3	6.4	4.4	5.1	Vouvray
V Font Brûlés	5.1	8.0	3.8	 3.9	5.4	4.0	3.1	7.0	6.1	7.4	4.4	6.4	Vouvray
V Font Coteaux	4.1	0.9	2.7	 3.8	5.1	4.3	4.3	7.3	6.6	6.3	6.0	5.7	Vouvray

The PCA objectives

- Study of individuals: similarity between individuals with respect to all variables => partition between individuals
- Study of variables: linear relationships between variables => visualization of the correlation matrix
- Link between the two studies: characterization of the groups of individuals by the variables; specific individuals that help better understand links between variables

Geometrical view on data

Variables study

S.V. Petropavlovsky

• For >3

variables, the visualization is

impossible.

Data Analysis

Fall 2019

Geometrical view on data (2)

 Study the structure, i.e., the shape of the cloud of individuals.

S.V. Petropavlovsky Data Analysis Fall 2019 6 / 55

Basic statistics of the data

• Sample mean of the *k*-th variable:

$$\bar{x}_k = \frac{1}{I} \sum_{i=1}^{I} x_{ik} = \frac{1}{I} \mathbf{1}^T \boldsymbol{x}_{\bullet k}$$

where $\mathbf{1} = (\underbrace{1,...,1}_{I})^{T}$.

• Sample variance of the *k*-th variable:

$$Var(V_k) = \frac{1}{I} \sum_{i=1}^{I} (x_{ik} - \bar{x}_k)^2 = ||x_{\bullet k} - \bar{x}_k \mathbf{1}||^2$$

• Sample standard deviation of the *k*-th variable:

$$s(V_k) = \sqrt{\mathsf{Var}(V_k)} = \|\boldsymbol{x}_{\bullet k} - \bar{x}_k \boldsymbol{1}\|$$

• Sample covariation between variables V_m and V_n :

$$Cov(V_m, V_n) = \frac{1}{I} \sum_{i=1}^{I} (x_{im} - \bar{x}_m)(x_{in} - \bar{x}_n) = \frac{1}{I} (x_{\bullet m} - \bar{x}_m \mathbf{1})(x_{\bullet n} - \bar{x}_n \mathbf{1})$$

Basic statistics of the data

• Sample correlation between variables V_m and V_n :

$$r(V_m, V_n) = \frac{\mathsf{Cov}(V_m, V_n)}{s(V_m)s(V_n)}$$

S.V. Petropavlovsky Data Analysis Fall 2019 8 / 55

Centering the data

Centering the data (always):

Scaling the data

Centering AND standardizing (sometimes):

$$\frac{x_{ik}-\bar{x}_k}{s_k}$$
, i.e., $\frac{x_{\bullet k}-\bar{x}_k\mathbf{1}}{s_k}$

 Standardizing: variables are always scaled when they are not in the same units

10 / 55

Centering and scaling the data

• Matrix X is redefined via the centered sample vectors, i.e.,

$$\mathbf{X} = \{x_{ik} - \bar{x}_k\} = \left(\mathbf{x}_{\bullet 1} - \bar{x}_1 \mathbf{1}, \mathbf{x}_{\bullet 2} - \bar{x}_2 \mathbf{1}, ..., \mathbf{x}_{\bullet K} - \bar{x}_K \mathbf{1}\right)$$
(1)

or, if standardization is used,

$$\mathbf{X} = \left\{ \frac{x_{ik} - \bar{x}_k}{s_k} \right\} = \left(\frac{\boldsymbol{x}_{\bullet 1} - \bar{x}_1 \mathbf{1}}{s_1}, \frac{\boldsymbol{x}_{\bullet 2} - \bar{x}_2 \mathbf{1}}{s_2}, \dots, \frac{\boldsymbol{x}_{\bullet K} - \bar{x}_K \mathbf{1}}{s_K} \right)$$
(2)

<ロ > ←回 > ←回 > ← 直 > ・ 直 ・ りへの

S.V. Petropavlovsky Data Analysis Fall 2019 11 / 55

Sample covariance matrix

 Using centered X (1) one can compute the sample K × K covariance matrix (verify!):

$$\Sigma = \frac{1}{I} \mathbf{X}^T \mathbf{X} = \begin{pmatrix} \operatorname{Var}(V_1) & \operatorname{Cov}(V_1, V_2) & \cdots \\ \operatorname{Cov}(V_2, V_1) & \operatorname{Var}(V_2) & & \\ \vdots & & \ddots & \\ & & \operatorname{Var}(V_K) \end{pmatrix}$$
(3)

 The standardized quantities (2) give a sample K × K correlation matrix

$$\mathbf{P} = \frac{1}{I} \mathbf{X}^T \mathbf{X} = \begin{pmatrix} 1 & r(V_1, V_2) & \cdots \\ r(V_2, V_1) & 1 & & \\ \vdots & & \ddots & \\ & & & 1 \end{pmatrix}$$

S.V. Petropavlovsky Data Analysis Fall 2019 12 / 55

Trace of Σ

• The trace of Σ (sum of the diagonal elements) is a total variance of the data:

$$Tr\Sigma = Var(V_1) + Var(V_2) + ... + Var(V_K) =$$

$$\frac{1}{I} \sum_{k=1}^{K} \sum_{i=1}^{I} (x_{ik} - \bar{x}_k)^2 = \frac{1}{I} \sum_{i=1}^{I} \|x_{i\bullet} - \bar{x}\|^2 \quad (4)$$

where the vector $\mathbf{x}_{i\bullet} = (x_{i1}, x_{i2}, ..., x_{iK})^T$, i = 1, ..., I, describes the i-th individual and $\bar{\mathbf{x}} = (\bar{x}_1, \bar{x}_2, ..., \bar{x}_K)^T$ is the mean vector of variables over individuals.

• Under all subsequent approximations, we should keep this quantity as close to its genuine value as possible.

< □ > < □ > < Ē > < Ē > □ Ē · ♡Q €

S.V. Petropavlovsky Data Analysis Fall 2019 13 / 55

Reduction of dimensionality: geometry

 Geometrically, the PCA seeks for a subspace (normally, the plane) projection onto which retains as much of data variability (4) as possible:

 Two-dimensional representations of fruits: from left to right an avocado, a melon and a banana, each row corresponds to a different perspective.

Reduction of dimensionality: geometry (2)

Figure: Who is that? Depends on the viewpoint.

S.V. Petropavlovsky Data Analysis Fall 2019 15 / 55

2D example

 Find the direction (1st principal component (PC) direction) along which variability of data (more precisely, their projections on the line) is the highest

- Once the 1st PC has been found, find the direction (2nd principal component direction) such that
 - PC2 ⊥ PC1 (Why?)
 - Variability of data along which is the highest
- Repeat *K* (=number of variables) times

Another 2D example

3D example

PCA as an optimization problem

- Consider $v_1 \in \mathbb{R}^K$.
- Consider projections of individuals $x_{i\bullet}$, i = 1, ..., I, onto v_1 :

$$(\pmb{x}_{iullet}\pmb{v}_1)\pmb{e}_{\pmb{v}_1}$$

• Choose v_1 so that the (sample) variance of the projected data is maximal (verify!):

Sample variance of projected individuals = $v_1^T \mathbf{X}^T \mathbf{X} v_1 \rightarrow \max$,

$$\boldsymbol{v}_1^T \boldsymbol{v}_1 = 1.$$

Unconstraint optimization:

$$\mathcal{L} = \mathbf{v}_1^T \mathbf{X}^T \mathbf{X} \mathbf{v}_1 - \lambda (\mathbf{v}_1^T \mathbf{v}_1 - 1) \to \max$$
 (5)

Solution – an eigenvalue problem

$$\mathbf{X}^T \mathbf{X} \mathbf{v}_1 = \lambda_1 \mathbf{v}_1 \tag{6}$$

PCA as an optimization problem (2)

ullet Next, find v_2 such that the sample variance projected onto v_2

$$\boldsymbol{v}_2^T \mathbf{X}^T \mathbf{X} \boldsymbol{v}_2 \to \max,$$

$$\boldsymbol{v}_1^T \boldsymbol{v}_1 = 1, \quad \boldsymbol{v}_2^T \boldsymbol{v}_1 = 0.$$

• Again, the problem is reduced to the eigenvalue problem:

$$\mathbf{X}^T \mathbf{X} \boldsymbol{v}_2 = \lambda_2 \boldsymbol{v}_2$$

- Repeat K times.
- Recall, by definition $X^TX = \Sigma$

S.V. Petropavlovsky Data Analysis Fall 2019 20 / 55

Diagonalizing Σ

- Matrix Σ is symmetric => there exist K real eigenvalues $\lambda_1 > \lambda_2 > ... > \lambda_K$ and the respective eigenvectors $v_1, v_2, ..., v_K$
- The vector of the *i*th individual $x_{i\bullet} = (x_{i1}, x_{i2}, ..., x_{iK})^T$ is defined in some basis of \mathbb{R}^K .
- ullet Rotation of the coordinate frame such that the new basis is comprised of the eigenvectors of Σ yields the diagonal covariance matrix

$$\Sigma' = \mathbf{V}^T \Sigma \mathbf{V} = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & & \\ \vdots & & \ddots & \\ 0 & & & \lambda_K \end{pmatrix}$$
(7)

where
$$V = \begin{pmatrix} v_1, v_2, ..., v_K \\ \downarrow & \downarrow \end{pmatrix}$$

S.V. Petropavlovsky Data Analysis Fall 2019 21 / 55

Rotating the frame

Original frame:

$$\boldsymbol{x}_{i\bullet} = x_{i1} \boldsymbol{e}_1 + x_{i2} \boldsymbol{e}_2 + \dots + x_{iK} \boldsymbol{e}_K$$

• Rotated frame made up of eigenvectors (always orthogonal):

$$\boldsymbol{x}_{i\bullet} = \boldsymbol{F}_{i1} \boldsymbol{v}_1 + \boldsymbol{F}_{i2} \boldsymbol{v}_2 + \dots + \boldsymbol{F}_{iK} \boldsymbol{v}_K$$

S.V. Petropavlovsky Data Analysis Fall 2019 22 / 55

New variables

 The new coordinates are the linear combinations of the old ones

$$\begin{pmatrix} F_{i1} \\ F_{i2} \\ \vdots \\ F_{iK} \end{pmatrix} = \begin{pmatrix} \mathbf{v}_1 \to \\ \mathbf{v}_2 \to \\ \\ \mathbf{v}_K \to \end{pmatrix} \begin{pmatrix} x_{i1} \\ x_{i2} \\ \vdots \\ x_{iK} \end{pmatrix}$$
(8)

- The new variables $\tilde{V}_1,...,\tilde{V}_K$ (principal components) are uncorrelated, see (7).
- The trace of Σ (recall, the total variability of the data) is invariant under change of basis:

$$Tr\Sigma = Tr\Sigma' = \sum_{k=1}^{K} \lambda_k$$

• So, $Var(\tilde{V}_k) = \lambda_k$, k = 1, ..., K, see (7).

Reduction of dimensionality

- The key idea of the PCA is to retain just a few new basis elements v_1 , v_2 , ... (normally, 2 or 3) which provide the largest contribution to the trace $Tr\Sigma$ = total variability.
- The contributions of the new variables (8) to $Tr\Sigma$ are given by $\lambda_1 > \lambda_2 > ... > \lambda_K$.
- For example, if

$$\big(\lambda_1+\lambda_2\big)\big/\!\sum\lambda_i\approx 1$$

it suffices to retain only v_1 and v_2 :

$$\begin{pmatrix} \tilde{V}_1 \\ \tilde{V}_2 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = \begin{pmatrix} \boldsymbol{v}_1 \to & \\ \boldsymbol{v}_2 \to & \\ \boldsymbol{o} \to & \\ \vdots \\ \boldsymbol{o} \to & \end{pmatrix} \begin{pmatrix} V_1 \\ V_2 \\ V_3 \\ \vdots \\ V_K \end{pmatrix}$$

Terminology

- F_{i1} and F_{i2} are called scores of the *i*th individual on the principal components directions v_1 , v_2 and present the coordinates of individual *i* in the reduced basis $\{v_1, v_2\}$.
- Vector v_1 is called the 1st PC loading vector and so on.
- The differences between individuals (variability) will still be captured well using only two new variables, \tilde{V}_1 and \tilde{V}_2 instead of the original set V_k , k = 1, ..., K.

S.V. Petropavlovsky Data Analysis Fall 2019 25 / 55

Use of PC scores

- Back to Slide 16
- Plots of the 1st PC scores F_{i1} vs the original variables

 1st PC score is correlated with both original variables => one can judge on the orig. vars. using this PC score

4□ > 4₫ > 4½ > ½ > ½

Use of PC scores (2)

- Back to Slide 16
- Plots of the 2nd PC scores F_{i2} vs the original variables

 2nd PC score is far less correlated with both original variables => poor conclusions on the orig. vars. using this PC score

PCA via SVD

Any matrix X admits a singular value decomposition (SVD):

$$\mathbf{X}_{I \times K} = \mathbf{U}_{I \times K} \cdot \mathbf{D}_{K \times K} \cdot \mathbf{V}^{T}$$

• Matrices $V = \begin{pmatrix} v_1, v_2, ..., v_K \\ \downarrow & \downarrow \end{pmatrix}$, $U = \begin{pmatrix} u_1, u_2, ..., u_K \\ \downarrow & \downarrow \end{pmatrix}$ are orthogonal, i.e.,

$$U^T U = \mathbf{E}, \ V^T V = \mathbf{E} \tag{9}$$

Eq.(9) implies orthonormality of columns of U, V, e.g.,

$$u_1 u_2 = 0, \quad u_1 u_1 = 1$$

- **D** = diag $\{\sqrt{\lambda_1}, \sqrt{\lambda_2}, ..., \sqrt{\lambda_K}\}$
- Singular values of X

$$\sqrt{\lambda_1} \ge \sqrt{\lambda_2} \ge \dots, \ge \sqrt{\lambda_K} \ge 0$$

PCA via SVD (2)

Eigen decomposition of X^TX (verify!) :

$$\mathbf{X}^T\mathbf{X} = \mathbf{V}\mathbf{D}^2\mathbf{V}^T$$

- Hence, $v_1, v_2, ..., v_K$ and $\lambda_1, \lambda_2, ..., \lambda_K$ are the eigenvectors and eigenvalues of $\mathbf{X}^T\mathbf{X}$ (cf. Eq.(7))
- $v_1, v_2, ...$ are the 1st, 2nd ,... PC directions
- Projection of data X onto v_1 (verify!):

$$\boldsymbol{z}_1 = \mathbf{X} \boldsymbol{v}_1 = \sqrt{\lambda_1} \boldsymbol{u}_1 \tag{10}$$

- A $I \times 1$ vector $\mathbf{X}v_1$ is a linear combination of old vars (with coefs v_1) for each individual.
- z₁ is a I × 1 vector with scores (coordinates) along the 1st PC direction
- So, columns of V are the orthogonal PC directions, columns of U are the respective PC scores (up to a constant $\sqrt{\lambda_i}$).

PCA via SVD (3)

- Recall, X is centered, i.e., sum over any column is zero.
- Hence, sum of all elements of vector $\mathbf{X}v_1$ is also zero (verify!).
- Hence (verify!),

$$\mathsf{Var}(\mathbf{X} v_1) = \mathsf{Var}(\boldsymbol{z}_1) = \mathsf{Var}(\sqrt{\lambda_1} \boldsymbol{u}_1) = \frac{\lambda_1}{I}$$

• As $\lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_K$, the linear combination of old vars (10) has the largest variance.

S.V. Petropavlovsky Data Analysis Fall 2019 30 / 55

Wine example

- λ_1 and λ_2 account for 43.48% and 25.14% of the total variability => keeping only v_1 and v_2 .
- An approximate 2D depiction of similarity among wines in terms of all the variables.

Coordinates of individuals in the reduced basis

• $F_{i,1} = v_1^T x_{,i}$, $F_{i,2} = v_2^T x_{,i}$ are the coordinates of the *i*-th individual along first two PC directions v_1 and v_2 .

S.V. Petropavlovsky Data Analysis Fall 2019 32 / 55

Correlation between new and original variables

• Observations of the old variable V_k , k = 1, ..., K from **X** (for *I* individuals):

$$\boldsymbol{x}_{\bullet k} = \{x_{1k}, ..., x_{Ik}\} \tag{11}$$

• Values of the new variable $\tilde{V}_{k'}$, k' = 1, 2 (for *I* individuals):

$$F_{\bullet k'} = \{F_{1k'}, ..., F_{Ik'}\}$$
 (12)

• Correlation between V_k and $\tilde{V}_{k'}$ (using (11), (12) data sets):

$$\operatorname{cor}(V_k, \tilde{V}_{k'}) = (\boldsymbol{v}_{k'})_k \sqrt{\frac{\lambda_{k'}}{s(V_k)}}$$
(13)

• Interpretation: if (13) is positive, an individual with a high value of $\tilde{V}_{k'}$ is likely to have a high value of V_k (unobservable on the PC plot) and vice versa for negative correlation.

Correlation between variables, cntd.

 For instance, make "V Font Brules", see Slide 31, tends to have a high value of Visual. Intensity

Study of variables

 Consider the I × I matrix built from the centered AND standardized data (2)

$$\frac{1}{K}\mathbf{X}\mathbf{X}^{T} = \begin{pmatrix} 1 & \mathbf{x}_{1\bullet}\mathbf{x}_{2\bullet} & \cdots \\ \mathbf{x}_{2\bullet}\mathbf{x}_{1\bullet} & 1 & & \\ \vdots & & \ddots & \\ & & & 1 \end{pmatrix}$$

- Apply the PCA to the above matrix, i.e., find the eigenvectors $v_1, v_2, ..., v_l$ and retain a few first that keep enough variability of the data.
- The new variables, k = 1, ..., K:

$$\begin{pmatrix} G_{1k} \\ G_{2k} \\ \vdots \\ G_{Ik} \end{pmatrix} = \begin{pmatrix} v_1 \to \\ v_2 \to \\ v_I \to \end{pmatrix} \begin{pmatrix} x_{1k} \\ x_{2k} \\ \vdots \\ x_{Ik} \end{pmatrix}$$
(14)

• Keep those corresponding to the truncated basis, e.g., G_1 and G_2 .

S.V. Petropavlovsky Data Analysis Fall 2019 35 / 55

Study of variables: geometry

• The inner product:

$$\boldsymbol{x}_{\bullet k} \boldsymbol{x}_{\bullet l} = \|\boldsymbol{x}_{\bullet k}\| \|\boldsymbol{x}_{\bullet l}\| \cos \theta_{kl}$$

• Sample correlation between V_k and V_l (verify!):

$$\operatorname{cor}(V_k, V_l) = \frac{\boldsymbol{x}_{\bullet k} \boldsymbol{x}_{\bullet l}}{\|\boldsymbol{x}_{\bullet k}\| \|\boldsymbol{x}_{\bullet l}\|} = \cos \theta_{kl}$$

 Implication: the PCA provides the 2D visual representation of correlation between the original variables.

Small angles between variables mean high correlation.

S.V. Petropavlovsky Data Analysis Fall 2019 36 / 55

Study of variables: the PCA

- The same plot as in Slide 34.
- Shows the extent of correlation between the original variables.

Study of variables: the PCA (2)

• The representational quality of a variable in a given plane is its distance from the circle of radius 1.

S.V. Petropavlovsky Data Analysis Fall 2019 38 / 55

Link between the two representations

Transition formulae

$$F_s(i) = \frac{1}{\sqrt{\lambda_s}} \sum_{k=1}^K x_{ik} G_s(k)$$

$$G_s(k) = \frac{1}{I\sqrt{\lambda_s}} \sum_{i=1}^{I} x_{ik} F_s(k)$$

Quality of representation

 The quality of representation of individual i on the component s:

$$qlt_s(i) = \frac{Projected inertia of i on v_s}{Total inertia of i}$$

Quality of representation, $\cos^2 \theta$

 For individuals: similarity between individuals can only be interpreted for well projected individuals!:

```
round(res.pca$ind$cos2,2)

Dim.1 Dim.2

S Michaud 0.62 0.07

S Renaudie 0.73 0.15

S Trotignon 0.78 0.07
```

For the variables: only well projected variables can be interpreted!

```
round(res.pca$var$cos2,2)

Dim.1 Dim.2

Odor.Intensity.before.shaking 0.01 0.94

Odor.Intensity.after.shaking 0.01 0.89

Expression 0.11 0.71
```

S.V. Petropavlovsky Data Analysis Fall 2019 41 / 55

Contribution to the PCs

most

• Inertia of the sth PC explained by by the ith individual:

$$\mathsf{Ctr}_s(i) = \frac{\mathsf{Inertia\ along}\ \boldsymbol{v}_s\ \mathsf{explained\ by\ ind.}\ i}{\mathsf{Total\ inertia\ along}\ \boldsymbol{v}_s} = \frac{F_{is}^2}{\lambda_s}$$

=> Individuals with a large PC coordinate contribute the round (res.pca\$ind\$contrib,2)

• Inertia of the sth PC explained by by the kth variable:

$$\mathsf{Ctr}_s(k) = \frac{G_{ks}^2}{\lambda_s}$$

=> variables highly correlated with the sth principal component (i.e., large coordinate along v_s) contribute the most

Possible application – assessing the robustness.

Supplementary information

Supplementary data are not used for computing variability. Can be quantitative or categorical. Supplementary information do not create new dimensions.

- For the continuous variables: projection of supplementary variables on the dimensions
- For the individuals: projection.
- For the categories: projection at the barycentre of the individuals who take the categories

Supplementary information: categorical variables

How to project the supplementary categorical variables?

	X100m	Long.jump	Shot.put	High.jump	Competition
HERNU	11.37	7.56	14.41	1.86	Decastar
BARRAS	11.33	6.97	14.09	1.95	Decastar
NOOL	11.33	7.27	12.68	1.98	Decastar
BOURGUIGNON	11.36	6.80	13.46	1.86	Decastar
Sebrle	10.85	7.84	16.36	2.12	OlympicG
Clay	10.44	7.96	15.23	2.06	OlympicG

		~		
	X100m	Long.jump	Shot.put	High.jump
HERNU	11.37	7.56	14.41	1.86
BARRAS	11.33	6.97	14.09	1.95
NOOL	11.33	7.27	12.68	1.98
BOURGUIGNON	11.36	6.80	13.46	1.86
Sebrle	10.85	7.84	16.36	2.12
Clay	10.44	7.96	15.23	2.06
Decastar	11.18	7.25	14.16	1.98
Olympic G	10 92	7 27	14 62	1 98

Take the average of the variables within a category

Supplementary information: categorical variables – confidence ellipses

Figure: Confidence ellipses around the barycenter of each category

Choosing the number of components

- Percentage of variance explained by each axis: information brought by the dimension.
- Quality of the approximation:

$$\sum_{s=1}^{Q} \lambda_s / \sum_{s=1}^{K} \lambda_s$$

 Bar plot of the eigenvalues: scree test

46 / 55

Dimensionality reduction implies loss of information

Description of the dimensions

By the continuous variables:

- correlation between each variable and the principal component of rank q is calculated
- The variables are ranked w.r.t. correlation and the ones with the highest correlation (absolute values) can be retained.

```
> dimdesc(res.pca)
           $Dim.1$quanti
                                                       $Dim.2$quanti
                 corr p.value
                                                            corr p.value
O.candied.fruit 0.93 9.5e-05
                              Odor. Intensity.before.shaking 0.97 3.1e-06
                              Odor.Intensity.after.shaking 0.95 3.6e-05
Grade
                0.93 1.2e-04
Surface.feeling 0.89 5.5e-04
                              Attack.intensity
                                                            0.85 1.7e-03
Typicity
          0.86 1.4e-03
                              Expression
                                                            0.84 2.2e-03
0.mushroom 0.84 2.3e-03
                              Aroma.persistency
                                                            0.751.3e-02
Visual.intensity 0.83 3.1e-03
                              Bitterness
                                                            0.71 2.3e-02
                                                            0.66 4.0e-02
                              Aroma.intensity
   . . .
O.plante
             -0.87 1.0e-03
0.flower
             -0.89 4.9e-04
O.passion
              -0.90 4.5e-04
Freshness
               -0.91 2.9e-04
                              Sweetness
                                                           -0.78 8.0e-03
```

Description of the dimensions (2)

By the categorical variables:

- Perform a one-way analysis of variance with the coordinates of the individuals $F_{i,q}$ explained by the categorical variable
- the F-test by variable

```
> dimdesc(res.pca)
Dim.1$quali
             R.2
                     p.value
                    7.30e-05
          0.874
Label
Dim.1$category
           Estimate
                         p.value
                        7.30e-05
              3.203
Vouvray
                        7.30e-05
Sauvignon
             -3.203
```

Some practice with R ...

```
library(FactoMineR)
data(decathlon)
res <- PCA(decathlon,quanti.sup=11:12,quali.sup=13)
plot(res, habillage=13)
res$eig
\times 11()
barplot(res$eig[,1],main="Eigenvalues",names.arg=1:nrow(res$eig))
res$ind$coord
res$ind$cos2
res$ind$contrib
dimdesc(res)
aa=cbind.data.frame(decathlon[,13],res$ind$coord)
bb=coord.ellipse(aa,bary=TRUE)
plot.PCA(res,habillage=13,ellipse=bb)
#write.infile(res,file="my_FactoMineR_results.csv") #to export a list
```

S.V. Petropavlovsky Data Analysis Fall 2019 49 / 55

Example

Chicken data:

- 43 chickens (individuals)
- 7407 genes (variables)
- One categorical variable: 6 diets corresponding to different stresses
- Do genes differentially expressed from one stress to another?

Dimensionality reduction: with a few principal components, we identify the structure of the data

Example (2)

Individuals factor map (PCA)

∢□▶ ∢□▶ ∢ ≡ ▶ ∢ ≣ ▶ ∅ Q @

Example (3)

Individuals factor map (PCA)

S.V. Petropavlovsky Data Analysis Fall 2019 52 / 55

Example (4)

Individuals factor map (PCA)

Example (5)

Individuals factor map (PCA)

References

See Chapter 1 of [1] for more.

[1] F. Husson, S. Le, J. Pagès, Exploratory Multivariate Analysis by Example Using R, Second Edition, Chapman & Hall/CRC Computer Science & Data Analysis, CRC Press, 2017. URL https:

//books.google.com/books?id=nLrODgAAQBAJ