Planche nº 7. Nombres complexes

* très facile ** facile *** difficulté moyenne **** difficile I : Incontournable T : pour travailler et mémoriser le cours

Exercice nº 1 (**IT)

Calculer de deux façons les racines carrées de 1+i et en déduire les valeurs exactes de $\cos\left(\frac{\pi}{8}\right)$ et $\sin\left(\frac{\pi}{8}\right)$.

Exercice nº 2 (**T)

Résoudre dans \mathbb{C} les équations suivantes :

1)
$$z^2 + z + 1 = 0$$

2)
$$2z^2 + 2z + 1 = 0$$

3)
$$z^2 - 2z \cos \theta + 1 = 0$$
, θ réel donné.

4)
$$z^2 - (6 + i)z + (11 + 13i) = 0$$

5)
$$2z^2 - (7+3i)z + (2+4i) = 0$$
.

Exercice nº 3 (**IT) (Une construction du pentagone régulier à la règle et au compas).

1) On pose $z=e^{2i\pi/5}$ puis $\mathfrak{a}=z+z^4$ et $\mathfrak{b}=z^2+z^3$. Déterminer une équation du second degré dont les solutions sont \mathfrak{a} et \mathfrak{b} et en déduire les valeurs exactes de $\cos\left(\frac{2\pi}{5}\right)$, $\sin\left(\frac{2\pi}{5}\right)$, $\cos\left(\frac{4\pi}{5}\right)$, $\cos\left(\frac{\pi}{5}\right)$ et $\sin\left(\frac{\pi}{5}\right)$.

2) Le cercle de centre Ω d'affixe $-\frac{1}{2}$ passant par le point M d'affixe i recoupe (Ox) en deux points I et J. Montrer que $x_I + x_J = x_I \times x_J = -1$ et en déduire une construction à la règle et au compas, du pentagone régulier inscrit dans le cercle de centre O et de rayon 1 dont un des sommets est le point d'affixe 1.

3) La diagonale [AC] d'un pentagone régulier (ABCDE) est recoupée par deux autres diagonales en deux points F et G. Calculer les rapports $\frac{AF}{AC}$ et $\frac{FG}{AE}$.

Exercice no 4 (***)

$$\mathrm{Soit}\ \alpha\in]-\frac{\pi}{2},\frac{\pi}{2}[\ \mathrm{donn\'e}.\ \mathrm{R\'esoudre}\ \mathrm{dans}\ \mathbb{C}\ \mathrm{l\'equation}\ \left(\frac{1+\mathrm{i}z}{1-\mathrm{i}z}\right)^3=\frac{1+\mathrm{i}\tan\alpha}{1-\mathrm{i}\tan\alpha}.$$

Exercice no 5 (***I)

Soient A, B et C trois points du plan, deux à deux distincts, d'affixes respectives a, b et c. Montrer que :

(ABC) équilatéral
$$\Leftrightarrow$$
 j ou j² est racine de l'équation $az^2 + bz + c = 0$
$$\Leftrightarrow a^2 + b^2 + c^2 = ab + ac + bc \Leftrightarrow \frac{1}{b-c} + \frac{1}{c-a} + \frac{1}{a-b} = 0.$$

Exercice nº 6 (**T)

Résoudre dans \mathbb{C} l'équation $z^4 - (5 - 14i)z^2 - 2(5i + 12) = 0$.

Exercice nº 7 (**I)

Déterminer les complexes z tels que z, $\frac{1}{z}$ et z - 1 aient même module.

Exercice nº 8 (**IT)

On note U l'ensemble des nombres complexes de module 1. Montrer que :

$$\forall z \in \mathbb{C}, \ (z \in U \setminus \{-1\} \Leftrightarrow \exists x \in \mathbb{R}/\ z = \frac{1 + ix}{1 - ix}).$$

Exercice nº 9 (**IT)

Forme trigonométrique de $\frac{1+\cos\theta-i\sin\theta}{1-\cos\theta+i\sin\theta}$ et de $\frac{1+e^{i\theta}}{1-e^{i\theta}}$.

Exercice nº 10 (*IT)

Calculer $(1 + i\sqrt{3})^9$.

Exercice no 11 (**T)

Déterminer les racines quatrièmes de i et les racines cubiques de $-\frac{8\sqrt{2}}{1+i}$.

Exercice nº 12 (***)

Montrer que les solutions de l'équation $1+z+z^2+...+z^{n-1}-nz^n=0$ sont de module inférieur ou égal à 1.

Exercice no 13 (**T)

Pour $z \in \mathbb{C} \setminus \{1\}$, on pose $Z = \frac{1+z}{1-z}$. Déterminer et construire l'ensemble des points M d'affixes z tels que

- 1) |Z| = 1.
- **2)** |Z| = 2.
- 3) $Z \in \mathbb{R}$.
- 4) $Z \in i\mathbb{R}$.

Exercice nº 14 (*T)

Nature et éléments caractéristiques de la transformation d'expression complexe :

- 1) z' = z + 3 i
- 2) z' = 2z + 3
- 3) z' = iz + 1
- 4) z' = (1 i)z + 2 + i

Exercice nº 15 (**I)

On considère l'équation (E) : $(z-1)^n - (z+1)^n = 0$ où n est un entier naturel supérieur ou égal à 2 donné

- 1) Montrer que les solutions de (E) sont imaginaires pures.
- 2) Montrer que les solutions de (E) sont deux à deux opposées.
- 3) Résoudre (E).

Exercice no 16 (***T) (ESIM 1993)

Pour $z \in \mathbb{C}$, on pose $\operatorname{ch} z = \frac{1}{2}(e^z + e^{-z})$, $\operatorname{sh} z = \frac{1}{2}(e^z - e^{-z})$ et $\operatorname{th} z = \frac{\operatorname{sh} z}{\operatorname{ch} z}$.

- 1) Quels sont les nombres complexes z pour lesquels th z existe?
- 2) Résoudre dans \mathbb{C} l'équation th z=0.
- 3) Résoudre dans \mathbb{C} le système $\left\{ \begin{array}{l} |\operatorname{Im} z| < \frac{\pi}{2} \\ |\operatorname{th} z| < 1 \end{array} \right. .$
- 4) Montrer que la fonction th réalise une bijection de $\Delta = \left\{z \in \mathbb{C}/\left|\operatorname{Im} z\right| < \frac{\pi}{4}\right\}$ sur $U = \{z \in \mathbb{C}/\left|z\right| < 1\}$.