Multivariate Statistics (I)

5. Cluster Analysis (CA)

Contents

- **5.1 Comprehension of CA**
- **5.2** Association measurements
- **5.3** Hierarchical clustering methods
- 5.4 Non-hierarchical clustering methods
- **5.5 Numbers of Clusters**
- 5.6 CA based on the statistical models
- **5.7** R for CA : Practice Time

5.1 Comprehension of CA

Geometrical Representations of 3-dimensinal space

R-Techniques: Analyses based on the matrix of covariance or correlations between

variables.

Q-Techniques: Analyses based on the matrix of distances between

observations.

Students	Mechanics	Algebra	Statistics
Student1	65	85	85
Student2	65	80	90
Student3	30	40	50
Student4	70	83	82
Student5	35	43	52
Student6	72	82	92
Student7	40	43	48
Student8	68	83	82
Student9	25	32	43
Student10	17	51	35

Biplot

PCA/FA/CCA

b) p = 3 points in n-space

5.1 Comprehension of CA

Methods for CA

Hierarchical Clustering Methods

 single linkage, complete linkage, average linkage, centroid linkage, median linkage, Ward's linkage

Nonhierarchical Clustering Methods

- -K-means method, K-median method
- -K-medoids method : PAM(partitioning around medoids)

Statistical Model

- EII model , VII model, VEI model, ...

Association measurement:

similarity

Quantitative scale for measuring the proximity or closeness

between observations or variables.

What kind of measurements are used in clustering?

• For clustering observations, the measurements are used by some sort of distances. [Table 1.5.1] Euclidean, Standardized Euclidean, Mahalanobis, City-Block Distances

Dissimilarity

 For clustering variables, they are usually grouped on the basis of correlation coefficients or like measurement of association of binary data.

Dissimilarity

- D1) Distances bt two observations: [Table 1.5.1]
 - rth and sth observations: $x_r = (x_{r1}, ..., x_{rp})^t$, $x_s = (x_{s1}, ..., x_{sp})^t$

$$k = 2$$

$$k = 1$$

City-block distance

• Minkowski distance
$$d_{rs} = \left[\sum_{j=1}^{p} \left|x_{rj} - x_{sj}\right|^{k}\right]^{1/k}, k \ge 1$$

(2, 2)

Basic Conditions

- 1) $d_r > 0, r \neq s$.
- 3) $d_{rs} = d_{sr}$

Euclidean distance

$$= \sqrt{(-1-2)^2 + (-2-2)^2}$$
$$= \sqrt{3^2 + 4^2}$$
$$= 5$$

$$= 3 + 4$$
$$= 7$$

• D2) Distances bt two groups

Karl Pearson distance	Mahalanobis distance
$d_{hk} = \left[\frac{1}{p} \sum_{j=1}^{p} \frac{(\overline{x}_{hj} - \overline{x}_{kj})^{2}}{(s_{hj}^{2}/n_{h}) + (s_{kj}^{2}/n_{k})} \right]^{1/2}$	$d_{hk} = \left[(\overline{\boldsymbol{x}}_h - \overline{\boldsymbol{x}}_k)^t S^{-1} (\overline{\boldsymbol{x}}_h - \overline{\boldsymbol{x}}_k) \right]^{1/2}$

• D3) Distance bt two variables : $\mathbf{x}_l = (x_{1l}, ..., x_{nl})^t$, $\mathbf{x}_m = (x_{1m}, ..., x_{nm})^t$

$$d_{lm} = 1 - r_{lm} = 1 - \frac{s_{lm}}{s_{l}s_{m}}$$

•D4) Weighted Euclidean distances bt two rows in $F = (f_{rc}), r = 1, ..., I; c = 1, ..., J$ $r_i = (f_{i1}, ..., f_{iJ})^t / f_{i1}, r_j = (f_{j1}, ..., f_{jJ})^t / f_{j1}$

$$d_{ij} = \left[\sum_{c=1}^{J} \frac{1}{f_{.c}} \left(\frac{f_{ic}}{f_{i.}} - \frac{f_{jc}}{f_{j.}} \right)^{2} \right]^{1/2}$$

Similarity

• S1) Similarity of two observations of binary variable

• Binary data matrix: $X = (x_{rj}), r = 1, ..., n; j = 1, ..., p$

 $x_{ij} = \begin{cases} 1 \text{: the characteristic is present.} \\ 0 \text{: otherwise} \end{cases}$

[Table 5.2.2] 2 x 2 Association table

		obje	ct k	Totala	
		1	0	Totals	
object :	1	а	b	a + b	
object i	0	С	d	c + d	
Totals		a + c	b + d	p	

[Table 5.2.3] Similarity coefficients for binary data

• Simple matching :
$$\frac{a+d}{p}$$
 Equal weights for 1–1 matches and 0–0 matches

• Double matching :
$$\frac{2(a+d)}{2(a+d)+b+c}$$
 Double weights for 1–1 matches and 0–0 matches

• Roser-Tanimoto :
$$\frac{a+d}{a+d+2(b+c)} \ \ \text{ Double weights for unmatched pairs}$$

• Rusell-Rao :
$$\frac{a}{p}$$
 No 0-0 matches in numerator

• Jaccard :
$$\frac{a}{a+b+c}$$
 No 0-0 matches in numerator or denominator

Note: For the single linkage and complete linkage, any choice of the coefficients in red (or blue) box will produce the same grouping.

S2) Similarity for two variables in binary data

		Variable	m	Total
		1	0	Total
Variable /	1	n_{11}	n_{12}	$n_{11} + n_{12}$
	0	n_{21}	n_{22}	$n_{21} + n_{22}$
Total	al	$n_{11} + n_{21}$	$n_{12} + n_{22}$	n

Product moment correlation coefficient

$$r = \frac{n_{11}n_{22} - n_{12}n_{21}}{[(n_{11} + n_{12})(n_{21} + n_{22})(n_{11} + n_{21})(n_{12} + n_{22})]^{1/2}}$$

 $\chi^2 = nr^2$: Chi-square test statistics

[Table 1.3.1] Economic Views Data

[Example 5.2.1]

[Table 5.2.1] Binary data for economic views of two institutes

2171					경제	전망				
기관	1	2	3	4	5	6	7	8	9	10
한국은행	0	1	0	0	0	1	1	1	1	1
동서증권	1	1	0	1	1	0	1	1	1	1

$$d_{rs}^2 = \sum_{j=1}^{10} (x_{rj} - x_{sj})^2 = (0-1)^2 + (1-1)^2 + \cdots + (1-1)^2 = 4$$

[Example 5.2.2] simple matching

[Table 5.2.2] 2 x 2 association table

		동서	Tatal	
		1	0	Total
한국은행	1	5	1	6
인국근영	0	3	1	4
Tot	al	8	2	10

simple matching coefficient: $c_{rs} = (a+d)/p = (5+1)/10 = 0.6$

Similarity vs. Dissimilarity

Similarity VS. Dissimilarity
$$c_{rs} = \frac{1}{1+d_{rs}} \qquad d_{rs} = \sqrt{c_{rr}-2c_{rs}+c_{ss}} \qquad \underbrace{c_{rr}=c_{ss}=1} \\ d_{rs} = \sqrt{2(1-c_{rs})} \qquad d_{rs} > 0, \ r \neq s$$

Product moment correlation coefficient

[Table 5.2.6] 2 x 2 association table bt two economic views

		2=0	Total	
		1	0	IOtal
1=성장률 0		6	4	10
		1	3	4
To	tal	7	7	14

$$r = \frac{n_{11}n_{22} - n_{12}n_{21}}{[(n_{11} + n_{12})(n_{21} + n_{22})(n_{11} + n_{21})(n_{12} + n_{22})]^{1/2}} \longrightarrow r = \frac{6 \times 3 - 4 \times 1}{[10 \times 4 \times 7 \times 7]^{1/2}} = \frac{\sqrt{10}}{10} \simeq 0.316$$

$$\chi^2 = n \times r^2 = 14 \times (0.316)^2 \simeq 1.4$$

$$\chi^2 = \left(\frac{6-5}{\sqrt{5}}\right)^2 + \left(\frac{4-5}{\sqrt{5}}\right)^2 + \left(\frac{1-2}{\sqrt{2}}\right)^2 + \left(\frac{3-2}{\sqrt{2}}\right)^2 = 1.4 < 3.84 = \chi_1^2 (0.05)$$

Not reject H_0 : Growth rates and GNP are not related at 5%

5.3 Hierarchical clustering methods - single linkage

Nearest Neighbor Method

[Example 5.3.1] Single linkage between 5 individuals and Dendrogram

 [STEP 1]-[STEP 2] Find the distance matrix between 5 individuals.

$$D = (d_{rs}) = \begin{matrix} 1 & 0 \\ 2 & 9 & 0 \\ 3 & 7 & 0 \\ 4 & 6 & 5 & 9 & 0 \\ 5 & 1 & 1 & 0 & 2 & 8 & 0 \end{matrix}$$

 [STEP 3] Find the shørtest distance of two clusters, calculate their distance, and merge the two clusters.

$$\min_{i,k}(d_{ik}) = d_{53} = 2$$
 : new cluster (35)

• [STEP 4] New distance matrix

$$d_{(35)1} = \min(d_{31}, d_{51}) = \min(3, 11) = 3$$

$$d_{(35)2} = \min(d_{32}, d_{52}) = \min(7, 10) = 7$$

$$d_{(35)4} = \min(d_{34}, d_{54}) = \min(9, 8) = 8$$

$$d_{(UV)W} = \min(d_{UW}, d_{VW})$$

$$D_{(35)} = \begin{pmatrix} 35 \\ 1 \\ 2 \\ 4 \end{pmatrix} \begin{pmatrix} 0 \\ \hline 30 \\ 790 \\ 8650 \end{pmatrix} \rightarrow \min_{i, k} (d_{ik}) = d_{(35)1} = 3$$
: new cluster (135)

[STEP 5] Repeat [STEP 3] and [STEP 4]

$$d_{(135)2} = \min(d_{(35)2}, d_{12}) = \min(7, 9) = 7$$

$$d_{(135)4} = \min(d_{(35)4}, d_{14}) = \min(8, 6) = 6$$

$$D_{(135)} = \begin{pmatrix} 135 \\ 2 \\ 4 \end{pmatrix} \begin{pmatrix} 0 \\ 70 \\ 65 \end{pmatrix}$$

$$d_{(135)(24)} = \min(d_{(135)2}, d_{(135)4}) = \min(7, 6) = 6$$

$$\mathcal{D}_{(135,\ 24)} = \frac{(135)}{(24)} \, \begin{pmatrix} 0 \\ 6 \, 0 \end{pmatrix}$$

5.3 Hierarchical clustering methods - single linkage

[STEP 6] Visually look at the merging of the clusters through the Dendrogram.

OB1	OB2	OB3	OB4	OB5
0	9	3	6	11
9	0	7	5	10
3	7	0	9	2
6	5	9	0	8
11	10	2	8	0

[R-code 5.3.1] single linkage and dendrogram(5obsdisit-CAsingle.R)

```
# Hierachical Cluster Analysis
D<-as.dist(read.table("5obsdist.txt", header=T))
single=hclust(D, method="single") # Single Linkage
plot(single, hang=-1, main="Single Likage Dendrogram")
```

5.3 Hierarchical clustering methods – complete linkage

Farthest Neighbor Method

[Example 5.3.2] Complete linkage between 5 individuals and Dendrogram

 [STEP 1]-[STEP 2] Find the distance matrix between 5 individuals.

$$D = (d_{rs}) = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 9 & 0 \\ 3 & 7 & 0 \\ 4 & 6 & 5 & 9 & 0 \\ 5 & 11 & 10 & 28 & 0 \end{bmatrix}$$

• [STEP 3] Find the shortest distance of two clusters, calculate their distance, and merge the two clusters.

$$\min_{i,k}(d_{ik}) = d_{53} = 2$$
 : new cluster (35)

• [STEP 4] New distance matrix

$$\begin{aligned} d_{(35)1} &= \max (d_{31}, d_{51}) = \max (3, 11) = 11 \\ d_{(35)2} &= \max (d_{32}, d_{52}) = \max (7, 10) = 10 \\ d_{(35)4} &= \max (d_{34}, d_{54}) = \max (9, 8) = 9 \end{aligned}$$

$$d_{(UV)W} = \max(d_{UW}, d_{VW})$$

$$D_{(35)} = \begin{pmatrix} 35 \\ 1 \\ 2 \\ 4 \end{pmatrix} \begin{pmatrix} 0 \\ 110 \\ 1090 \\ 9650 \end{pmatrix}. \quad \min_{i, k} (d_{ik}) = d_{42} = 5$$

$$: \text{new cluster (24)}$$

[STEP 5] Repeat [STEP 3] and [STEP 4]

$$\begin{aligned} d_{(24)(35)} &= \max \left(d_{2(35)}, \, d_{4(35)} \right) = \max \left(10, \, 9 \right) = 10 \\ d_{(24)1} &= \max \left(d_{21}, \, d_{41} \right) = \max \left(9, \, 6 \right) = 9 \end{aligned}$$

$$D_{(35,24)} = \begin{pmatrix} 35 \\ (24) \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 100 \\ 11 \ 90 \end{pmatrix}$$

$$\min_{i, k} (d_{ik}) = d_{(24)1} = 9$$
: new cluster (124)

$$d_{(124)(35)} = \max(d_{1(35)}, d_{(24)(35)}) = \max(11, 10) = 11$$

$$(124), (3.5) \longrightarrow (12435)$$

5.3 Hierarchical clustering methods - complete linkage

[STEP 6] Visually look at the merging of the clusters through the Dendrogram.

method="complete"

5.3 Hierarchical clustering methods – average linkage

$$D = (d_{rs}) = \begin{bmatrix} 1 & 0 & \\ 2 & 9 & 0 \\ 3 & 7 & 0 \\ 6 & 5 & 9 & 0 \\ 5 & 11 & 10 & 2 & 8 & 0 \end{bmatrix}$$

 $\min_{i, k} (d_{ik}) = d_{53} = 2$: new cluster (35)

$$d_{(35)1} = ave(d_{31}, d_{51}) = ave(3, 11) = \frac{1}{2 \times 1}(3 + 11) = 7$$

$$d_{(35)2} = ave(d_{32}, d_{52}) = ave(7, 10) = \frac{1}{2 \times 1}(7 + 10) = 8.5$$

$$d_{(35)4} = ave(d_{34}, d_{54}) = ave(9, 8) = \frac{1}{2 \times 1}(9 + 8) = 8.5$$

$$D_{(35)} = \begin{pmatrix} (35) & 0 \\ 7 & 0 \\ 2 & (8.590) \\ 4 & (8.5650) \end{pmatrix} \checkmark$$

$$\begin{split} d_{(24)(35)} &= ave(d_{2(35)}, \ d_{4(35)}) = ave(d_{23} + d_{25} + d_{43} + d_{45}) \\ &= \frac{1}{2 \times 2} (7 + 10 + 9 + 8) = 8.5 \end{split}$$

$$\min_{i, k} (d_{ik}) = d_{(24)} = 5 : \text{new cluster (24)} \quad d_{(24)1} = ave(d_{21}, d_{41}) = \frac{1}{2 \times 1} (9 + 6) = 7.5$$

$$D_{(35, 24)} = \begin{pmatrix} 35 \\ 24 \end{pmatrix} \begin{pmatrix} 0 \\ 8.5 & 0 \\ 7 & 7.5 & 0 \end{pmatrix}$$

 $\min_{i, k} (d_{ik}) = d_{(35)1} = 7$: new cluster (135)

$$d_{(135)(24)} = ave(d_{(135)2}, d_{(135)4}) = ave(d_{12} + d_{32} + d_{52} + d_{14} + d_{34} + d_{54})$$

$$= \frac{1}{3 \times 2} (9 + 7 + 10 + 6 + 9 + 8)$$
uster (135)
$$= 8.17$$

$$D_{(135, 24)} = {(135) \choose (24)} {0 \choose 8.170}$$

$$d_{\left(UV\right)W} = ave\left(d_{UW},\ d_{VW}\right) = \frac{\displaystyle\sum_{i} \sum_{k} d_{ik}}{n_{\left(UV\right)} n_{W}}$$

method="average"

5.3 Hierarchical clustering methods -Ward linkage

$$x_{ki} = (x_{ki1}, \ ..., \ x_{kip})^t \longrightarrow \overline{x_k} = (\overline{x_{kij}}), \ k = 1, \ ..., \ g, \ i = 1, \ ..., \ n_k, \ j = 1, \ ..., \ p$$

$$\overline{x_k} = (\overline{x_{ki1}}, \ ..., \ \overline{x_{kp}})^t \longrightarrow \overline{x_k} = (\overline{x_{ki1}}, \ ..., \ \overline{x_{kp}})^t$$
 Error sum of squares :
$$ESS_k = \sum_{i=1}^{n_k} ||x_{ki} - \overline{x_k}||^2 = \sum_{i=1}^{n_k} \sum_{j=1}^p (x_{kij} - \overline{x_{kj}})^2$$

$$Min ESS = \sum_{k=1}^{g} ESS_k$$

method="ward"

[Example 5.3.4] Ward linkage of institutes in economic views [Table 1.3.5] ← [R-code 5.3.2]

기관	성장률	GNP	수출	수입	국제 흑자	연말 외채	연말 환율	실업률	소비 물가	임금 상승
한국은행	8.2	1950	698	650	98	280	630	3.0	5.7	12.0
대우증권	9.5	2100	710	620	110	270	640	2.7	4.5	12.0
동서증권	9.0	2000	690	630	100	290	630	2.6	6.0	12.0
전경련	7.8	1850	668	660	88	280	620	3.0	6.4	13.8
대한상공회의소	8.5	1928	710	670	90	290	620	3.0	6.0	10.0
중소기업중앙회	9.0	1958	710	615	95	280	603	4.0	6.0	10.0
현대자동차	8.5	1900	700	610	100	250	620	3.2	5.5	14.0
삼성물산	8.0	1900	700	640	100	280	640	2.7	5.5	10.0
선경	8.5	1950	700	620	120	300	630	2.7	7.0	12.0
대우경제연구소	7.9	1900	697	645	95	280	610	2.9	6.8	15.0
신한종합연구소	9.0	2030	700	620	100	275	630	3.0	7.0	13.0
동서경제연구소	8.5	1950	690	630	90	290	630	2.9	6.0	12.0
고려대학교	9.9	1870	729	649	123	260	616	3.4	6.1	15.8
중앙대학교	8.5	1700	700	630	90	260	620	4.0	6.0	14.0

12

5.3 Hierarchical clustering methods -Ward linkage

5.3 Hierarchical clustering methods –Ward linkage

[Data 1.3.2]

[Example 5.3.5] Hierarchical CA for KLPGA Data from [Figure 5.3.4] : [Table 5.3.3] ← [R-code 5.3.3]

Linkage Method	Group C_1	Group C_1 Group C_2	
Single	1, 2, 3, 4, 5, 6, 7, 10	10위권- 4	10위권
Complete	1, 2, 3, 4, 6	10위권- 20위권 30, 46	30위권-40위권 11, 12, 14, 17, 18, 19, 20, 22, 23, 24, 27
Average	1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 16,	10위권- 20위권 40, 41, 48, 50	30위권-40위권 21, 23, 24, 55
Ward	1, 2, 3, 4, 6,	10위권- 20위권 40, 41, 46, 48, 50	30위권-40위권 23
Characteristics	Top ranked players	Middle ranked players	Lower ranked players

•

[Example 5.4.1] K-means method

OI	variable			
Observation	X_1	X_2		
A	5	3		
B	-1	1		
C	1	-2		
D	-3	-2		

[STEP 1] Divide n observations into k initial clusters. (AB), (CD)

[STEP 2] The centroid of each cluster is calculated as the average of the observations belonging to the cluster.

Cluster	\overline{x}_1	\overline{x}_2
(AB)	$\frac{5 + (-1)}{2} = 2$	$\frac{3+1}{2}=2$
(CD)	$\frac{1 + (-3)}{2} = -1$	$\frac{-2 + (-2)}{2} = -2$

Coordinates of Centroid:

$$C_{(AB)} = (2,2), \quad C_{(CD)} = (-1,-2)$$

[Example 5.4.1] k-means method

[STEP 3] From the Euclidean distance bt centroids and observations, assign the entity to the cluster with the closest centroid.

$$d^{2}(A, C_{(AB)}) = (5-2)^{2} + (3-2)^{2} = 10$$

$$d^{2}(A, C_{(CD)}) = (5+1)^{2} + (3+2)^{2} = 61$$

$$\longrightarrow A \rightarrow (A)$$

$$d^{2}(B, C_{(AB)}) = (-1-2)^{2} + (1-2)^{2} = 10$$

$$d^{2}(B, C_{(CD)}) = (-1+1)^{2} + (1+2)^{2} = 9$$

$$\longrightarrow$$
 B \rightarrow (CD) \rightarrow (BCD)

[STEP 4] Repeat [STEP 2] – [STEP 3]

Cluster	\overline{x}_1	\overline{x}_2
(A)	5	3
(BCD)	$\frac{-1+1+(-3)}{3} = -1$	$\frac{1+(-2)+(-2)}{3} = -1$

Squared distances to cluster centroids

Cluster	A	В	С	D
$\overline{\hspace{1cm}}(A)$	0	40	41	89
(BCD)	52	4	5	5

$$d^{2}(A, C_{(A)}) = (5-5)^{2} + (3-3)^{2} = 0$$

$$d^{2}(A, C_{(BCD)}) = (5+1)^{2} + (3+1)^{2} = 52$$

$$d^{2}(A, C_{(BCD)}) = (5+1)^{2} + (3+1)^{2} = 52$$

[Example 5.4.2] K-median method

	vari	able
Observation	X_1	X_2
\overline{A}	5	3
B	-1	1
C	1	-2
D	-3	-2

[STEP 1] Divide *n* observations into K initial

clusters: (AB), (CD)

[STEP 2] The centroid of each cluster is calculated as the median of the observations in the cluster.

Cluster	x_1^M	x_2^M
(AB)	$\frac{5 + (-1)}{2} = 2$	$\frac{3+1}{2} = 2$
(CD)	$\frac{1 + (-3)}{2} = -1$	$\frac{-2 + (-2)}{2} = -2$

Centre coordinate : $C_{(AB)} = (2, 2), C_{(CD)} = (-1, -2)$

[STEP 3] After the Euclidean distance, assign the entity to the cluster with the closest centroid.

Ref: [Example 5.4.1] -[Step 3]

 $A \rightarrow (A), B \rightarrow (BCD)$

[STEP 4] Repeat [STEP 2] - [STEP 3]

Cluster	x_1^M	x_{2}^{M}
$\overline{\hspace{1cm}}(A)$	5	3
(A) (BCD)	-1	-2
	-1, 1, -3	1, -2, -2

Coordinates of centroid: $C_{(A)} = (5, 3), C_{(BCD)} = (-1, -2)$

Cluster	A	В	С	D
$\overline{\hspace{1cm}}(A)$	0	40	41	89
(BCD)	61	9	20	23 20

이 높다.

높다.

24

• [Example 5.4.4] Geographical Locations of Utility Companies

[Table 5.4.3] Mean of Variables for 4 Clusters : [R-code 5.4.1] aggregate()

난 집	정 구 여	자금 수익률	KW당 비용	연 부하율	수요 성장	판매량	핵비율	총연료 비용	특 성
C_1	1.49	8.80	192.00	51.20	1.00	3300.00	15.60	2.04	총연료비용이 높다(태평양연안)
C_2	1.00	9.33	176.50	62.10	3.42	6286.00	5.75	1.76	KW당 비용이 높다 높은 연부하율 🕇
						12375.50		0.75	자금수익률, 판매량 높다(남부)
C_4	1.23	12.86	157.71	56.57	3.04	8012.71	26.76	0.82	핵발전 비율이 높다

X1: Fixed-charge coverage ratio (income/debt)

X2: Rate of return on capital

X3: Cost per KW capacity in place

X4: Annual load factor

X5: Peak KWH demand growth from 197 to 1975

X6: Sales (KWH use per year)

X7: Percent nuclear

X8: Total fuel costs (cents per KWH)

- ◆ [Example 5.4.5] Economic View Data in [Data 1.3.5]
- ◆ [Table 5.4.4] Mean of 10 Variables for 4 Clusters

Growth /Export/Import/ Black-ink balance/ Foreign debt /Exchange rate/ Unemployed rate /Consumer price rate /Wage increase rate

군집	성장률	GNP	수출	수입	국제 흑자	연말 외채	연말 환율	실업률	소비 물가	임금 상승	특성
C_1	8.650	1976	699.75	635.0	101.0	284.38	631.25	2.83	5.960	11.63	Optimistic- Support
C_2	8.667	1853	703.33	618.3	95.0	263.33	614.33	3.73	5.833	12.67	Pessimistic
C_3	8.975	1870	729.00	649.0	123.0	260.00	616.00	3.40	6.100	15.80	Critical
C_4	7.850	1875	682.50	652.5	91.5	280.00	615.00	2.95	6.600	14.40	Critical

rd linkage K-means	대우증권 한국은행 대한상공회의소 <u>삼성물산</u> 동서증권 선경 신한종합연구소 동서경제연구소	전경련 대우경제연구소	고려대학교	중소기업중앙회 현대자동차 중앙대학교
<i>K</i> - 평균법 군집특성	낙관론-정책옹호	비관론	정책비판	정책비판

[R-code 5.4.2]

5.5 Numbers of Clusters

◆ [Example 5.5.1] Utility Data: initial number k of clusters in K-means

(a) CCC

$$CCC = \ln\left[\frac{1 - E(R^2)}{1 - R^2}\right] \frac{\sqrt{np^*}}{(0.001 + E(R^2))^{1.2}}$$

(b) Dindex

$$w(P^g) = \frac{1}{g} \sum_{k=1}^{g} \frac{1}{n_k} \sum_{\mathbf{x}_{ki} \in C_k} d(\mathbf{x}_{ki}, c_k)$$

 $w\left(P^{g-1}\right) - w\left(P^g\right)$

Slope drops very sharply after k

5.5 Numbers of Clusters

[Result 5.5.1] [R-code 5.5.1](utility-CAnclusterindex.R) : option index = "all "

```
# Index for the Number of Clusters in K-Means CA: Public Utilities
library(NbClust)
Data5.3.1<-read.table("utility.txt", header=T)
X<-Data5.3.1[,-1]
Z < -scale(X)
company=Data5.3.1[,1]
#CCC Index
ccc<-NbClust(Z, distance="euclidean", min.nc = 2, max.nc = 8,
 method = "kmeans", index = "ccc")
CCC
plot(2:8, type="b", ccc$All.index, xlab="Number of Clusters",
  ylab="CCC")
#Dindex Index
dindex<-NbClust(Z, distance="euclidean", min.nc = 2, max.nc = 8,
 method = "kmeans", index = "dindex")
dindex
#All Indices
allindex<-NbClust(Z, distance="euclidean", min.nc = 2, max.nc = 8,
method = "kmeans", index = "all", )
allindex
```

30 Indices

5.5 Numbers of Clusters

[Example 5.5.2] Iris flower data in [Data 1.3.4]

- * Among all indices:
- * 2 proposed 2 as the best number of clusters
- * 15 proposed 3 as the best number of clusters
- * 5 proposed 4 as the best number of clusters
- * 1 proposed 6 as the best number of clusters
- * 1 proposed 8 as the best number of clusters
- * 3 proposed 10 as the best number of clusters

***** Conclusion *****

* According to the majority rule, the best number of clusters is 3

Table 5.5.1] clusters of 3-means method

iristype	setosa	versicolor	virginica
1	0	2	36
2	0	48	14
3	50	0	0

R-Code: CA(Hierarchical, Nonhierarchical, Statistical model) and Number of clusters

hcluster(, method="single") method="complete"/"average"/"ward"	Hierarchical CA
kmeans(), aggregate() library(cluster), pam()	 Non-hierarchical CA k-means method K-median method K-medoids(partitioning around) method
library(NbClust), NbClust(, index="all"	CCC(cubic clustering criterion), Dindex

R-code list of Chapter 3 Cluster Analysis

economicview-distances.R	[R-코드 5.2.1]	경제관련기관 경제전망의 연관성측도인 4가지 거리계산
5obsdisit-CAsingle.R	[R-코드 5.3.1]	5명 개체간의 단일연결법과 덴드로그램
economicview-CAward.R	[R-코드 5.3.2]	경제관련기관 경제전망의 3가지 거리에 대한 와드연결법의 덴드로그램
klpga-CAamlinkages.R	[R-코드 5.3.3]	KLPGA 선수 성적의 표준화 유클리드 거리에 대한 계층적 군집분석의 덴드로그램
utility-CAward.R	[R-코드 5.3.4]	공익회사 자료의 표준화 유클리드 거리에 대한 와드연결법의 덴드로그램
utility-CAKmeansKmedoids.R	[R-코드 5.4.1]	공익회사 자료의 표준화 유클리드 거리에 대한 K -평균법과 K -대표개체법
economicview-CAKmeansKmedoids.R	[R-코드 5.4.2]	경제관련기관의 표준화 유클리드 거리에 대한 K -평균법과 K -대표개체법
utility-CAnclusterindex.R	[R-코드 5.5.1]	공익회사 자료의 표준화 유클리드 거리에 대한 K -평균법에서 군집 수를 위한 지수 구하기
iris-CAindex.R	[R-코드 5.5.2]	[그림 5.5.2]을 위한 R-코드
iris-CAmodel.R	[R-코드 5.6.1]	붓꽃(iris flower) 자료의 통계모형에 의한 군집분석 32

[R-code 5.3.3] klpga-CAamlinkages.R based on the Hierarchical Methods

```
# 표준화 유클리드 거리
# AMCA : AM Linkages
                                        ds <- as.matrix(dist(Z, method="euclidean"))
Data1.3.2<-read.table("klpga.txt", header=T)
                                        ds <- as.dist(ds)
X<-Data1.3.2
                                        round(ds, 3)
X<-as.matrix(Data1.3.2)
                                        #단일연결법
선수<-rownames(X)
                                        sinle=hclust(ds, method="single")
n < -nrow(X)
                                        plot(sinle, labels=선수, hang=-1, main="(a) Sinle Linkage")
xbar<-t(X)%*%matrix(1,n,1)/n # 평균벡터
                                        #와전연결법
I<-diag(n)
                                        complete=hclust(ds, method="complete")
J<-matrix(1,n,n)
                                        plot(complete, labels=선수, hang=-1, main="(b) Complete Linkage")
H<-I-1/n*J
                     # 중심화행렬
                                        #평균연결법
                                        average=hclust(ds, |method="average")
Y<-H%*%X
                     # 중심화 자료행렬
                                        plot(average, labels=선수, hang=-1, main="(c) Average Linkage")
S<-t(Y)%*%Y/(n-1)
               # 공분산행렬
D<-diag(1/sqrt(diag(S)))
                                        #와드연결법
                    # 표준편차행렬의 역
                                        ward=hclust(ds, method="ward")
7<-Y%*%D
                     # 표준화자료행렬
                                        plot(ward, labels=선수, hang=-1, main="(d) Ward Linkage")
colnames(Z)<-colnames(X)
```

[R-code 5.4.1] utility-CAKmeansKmedoids.R based on the Non-hierarchical Methods

```
# K-Means & K-Medoids(Partitioning Around Medoids)CA for Public Utilities
Data5.3.1<-read.table("utility.txt", header=T)
X<-Data5.3.1[,-1]
Z < -scale(X)
company=Data5.3.1[,1]
# K-means Method
kmeans <- kmeans(Z, 4) # 4 cluster solution
cluster=data.frame(company,cluster=kmeans$cluster)
C1=cluster[(cluster[,2]==1),]
C2=cluster[(cluster[,2]==2),]
C3=cluster[(cluster[,2]==3),]
C4=cluster[(cluster[,2]==4),]
C1;C2;C3;C4
# Get cluster means
aggregate(X, by=list(kmeans$cluster),FUN=mean)
# K-medoids Method
library(cluster)
kmedoids <- pam(Z, 4, metric="euclidean") # 4 cluster solution
cluster=data.frame(company,cluster=kmedoids$cluster)
C1=cluster[(cluster[,2]==1),]
C2=cluster[(cluster[,2]==2),]
C3=cluster[(cluster[,2]==3),]
C4=cluster[(cluster[,2]==4),]
C1;C2;C3;C4
# Get cluster means
aggregate(X,by=list(kmedoids$cluster),FUN=mean)
```