Nombres complexes

Olivier Sellès, transcrit par Denis Merigoux

Table des matières

1	Construction de $\mathbb C$						
	1.1	Définit	ion des lois de composition internes de \mathbb{R}^2	3			
		1.1.1	Propriétés	3			
		1.1.2	Vers la notation algébrique	3			
	1.2	Règles	$\ de\ calcul\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\$	4			
		1.2.1	Formule du binôme de Newton	4			
		1.2.2	Somme des n premiers termes d'une suite géométrique de raison z	5			
		1.2.3	Factorisations	6			
2	Conjugué, module, argument 7						
	2.1	Conjug	gué	7			
		2.1.1	Propriétés	7			
	2.2	Module	e	7			
		2.2.1	Propriétés	7			
		2.2.2	Identité du parallélogramme	7			
		2.2.3	Inégalité des modules	8			
		2.2.4	Inégalité de Cauchy-Schwarz dans \mathbb{R}^2	8			
		2.2.5	Inégalité triangulaire	8			
	2.3	Notatio	on exponentielle	10			
		2.3.1	Conjugué et module	10			
		2.3.2	Formule de Moivre	10			
		2.3.3	Forme des nombres complexe de $\mathbb U$	11			
	2.4	Argum	ents	11			
		2.4.1	Argument et écriture trigonométrique des nombres complexes	12			
		2.4.2	Formules de mise sous forme trigonométrique	12			
		2.4.3	Formules d'Euler	12			
	2.5	Exemp	les d'utilisation de l'écriture trigonométrique	12			
		2.5.1	Noyau de Dirichlet	12			
		2.5.2	Polynômes de Chebychev de la première espèce	13			
3	Racines carrées et racines n-ièmes dans $\mathbb C$						
	3.1	Recher	che pratique de racines carrées	15			
		3.1.1	Avec une forme trigonométrique	15			
		3.1.2	Sans forme trigonométrique	15			
	3.2	Équati	ons du second degré	15			
	3.3			15			
		3.3.1	Définition	15			
		3.3.2		16			
		3.3.3	Autour de \mathbb{U}_n	16			

4		ponentielles complexes	17			
	4.1	Propriétés	17			
		4.1.1 Propriété caractéristique de l'exponentielle	17			
		4.1.2 Autres propriétés	17			
5	Complément : astuces					
	5.1	Expression de $\mathcal{R}_n(z)$ en fonction de \mathbb{U}_n	18			
	5.2	Rassemblement trigonométrique	18			
	5.3	Liste de \mathbb{U}_n usuels $\overline{}$				
6	Complément : exercices classiques					
	6.1	Parties de $\mathbb C$ à trois éléments	19			
		6.1.1 Parties à deux éléments	19			
		6.1.2 Parties à 3 éléments				
	6.2					
	6.3					
	0.0	6.3.1 Définition				
		6.3.2 Simplification de l'expression de $F_n(\theta)$				
	6.4					

1 Construction de \mathbb{C}

1.1 Définition des lois de composition internes de \mathbb{R}^2

On considère l'ensemble \mathbb{R}^2 des couples $(a,b)/a,b\in\mathbb{R}$. On définit deux lois de composition interne sur \mathbb{R}^2 . – Une addition + par $\forall (a,b),(c,d)\in\mathbb{R}^2$,

$$(a,b) + (c,d) = (a+c,b+d)$$

- Une multiplication \times par $\forall (a, b), (c, d) \in \mathbb{R}^2$,

$$(a,b) \times (c,d) = (ac - bd, ad + bc)$$

1.1.1 Propriétés

- L'addition + possède les propriétés suivantes :
 - Associativité: $\forall (a, b), (a', b'), (a'', b'') \in \mathbb{R}^2$,

$$(a,b) + ((a',b') + (a'',b'')) = ((a,b) + (a',b')) + (a'',b'')$$

- \circ Possède un élément neutre, (0,0).
- \circ Tout élément de \mathbb{R}^2 possède un inverse par + appelé opposé. L'opposé du couple (a,b) est (-a,-b).
- o Commutativité: $\forall (a, b), (c, d) \in \mathbb{R}^2$,

$$(a,b) + (c,d) = (c,d) + (a,b)$$

On dit que le couple $(\mathbb{R}^2, +)$ muni des propriétés précédentes est un groupe commutatif.

- La multiplication \times possède les propriétés suivantes :
 - o Associativité: $\forall (a, b), (a', b'), (a'', b'') \in \mathbb{R}^2$,

$$(a,b) \times ((a',b') \times (a'',b'')) = ((a,b) \times (a',b')) \times (a'',b'')$$

Cette propriété non-triviale se démontre par un retour à la définition de x.

- o Possède un élément neutre : (1,0).
- \circ Commutativité: $\forall (a,b), (c,d) \in \mathbb{R}^2$,

$$(a,b) \times (c,d) = (c,d) \times (a,b)$$

o On remarque que (0,0) n'admet pas d'inverse par \times . En revanche, si $(a,b) \in \mathbb{R}^2 \setminus \{(0,0)\}$, l'inverse de (a,b) par \times est

$$\left(\frac{a}{a^2+b^2}, -\frac{b}{a^2+b^2}\right)$$

o Distributivité par rapport à $+: \forall z, z', z'' \in \mathbb{R}^2$,

$$z \times (z' + z'') = z \times z' + z \times z''$$

Le triplet $(\mathbb{R}^2, +, \times)$ est alors appelé anneau commutatif. On définit ainsi le corps des nombres complexes $(\mathbb{C}, +, \times)$. On conviendra des notations suivantes :

- Le neutre de + est noté $0_{\mathbb{C}}$. Pour $z\in\mathbb{C},$ -z désigne l'opposé de z par +.
- Le neutre de \times est noté $1_{\mathbb{C}}$. Pour $z \in \mathbb{C}^*$, $\frac{1}{z}$ désigne l'opposé de z par \times .

1.1.2 Vers la notation algébrique

On a une application naturelle de $\mathbb R$ dans $\mathbb C$:

$$\varphi: \mathbb{R} \longrightarrow \mathbb{C}$$
$$x \longmapsto (x,0)$$

Examinons les propriétés de φ pour $x, y \in \mathbb{R}$:

- $-\varphi$ est injective : $x \neq y \Rightarrow \varphi(x) \neq \varphi(y)$
- $-\varphi(x+y) = \varphi(x) + \varphi(y)$
- $-\varphi\left(xy\right) = \varphi\left(x\right) \times \varphi\left(y\right)$
- $-\varphi(1) = (1,0) = 1_{\mathbb{C}}$

 φ est ainsi un morphisme d'anneau injectif de $(\mathbb{R}, +, \times)$ dans $(\mathbb{C}, +, \times)$. L'ensemble $\Lambda = \{\varphi(x)/x \in \mathbb{R}\}$ est en bijection avec \mathbb{R} . Cet ensemble est un sous-anneau de \mathbb{C} :

$$\forall z, z' \in \Lambda, \begin{cases} z + z' \in \Lambda \\ z \times z' \in \Lambda \\ 1_{\mathbb{C}} \in \Lambda \end{cases}$$

Ainsi, φ permet d'identifier \mathbb{R} et Λ (en quelque sorte, Λ est une copie de \mathbb{R} dans \mathbb{C}). Pour $x \in \mathbb{R}$, on écrira désormais x à la place de (x,0).

Notons i le complexe (0,1). Alors $i^2=(-1,0)=-1$. D'autre part, $\forall y\in\mathbb{R},\ i\times y=(0,y)$. Soit y dans \mathbb{C} tel que z=(x,y). Alors

$$z = (x,0) + (0,y)$$
$$= x + iy$$

On écrira alors pour $z, z' \in \mathbb{C}$, zz' au lieu de $z \times z'$. La notation algébrique de tout complexe z est unique. Pour $z = x + iy \in \mathbb{C}$ avec $x, y \in \mathbb{R}$,

- -x est la partie réelle de z et se note $\Re(z)$;
- -y est la partie imaginaire de z et se note $\Im (z)$.

On en déduit donc :

- $-z \in \mathbb{R} \Leftrightarrow \Im (z) = 0$
- $-z \in i\mathbb{R} \Leftrightarrow \Re(z) = 0$ où $i\mathbb{R}$ est l'ensemble des imaginaires purs, du type iy avec $y \in \mathbb{R}$.

1.2 Règles de calcul

1.2.1 Formule du binôme de Newton

Pour $z, z' \in \mathbb{C}$ et $n \in \mathbb{N}$,

$$(z + z')^n = \sum_{k=0}^n \binom{n}{k} z^k z'^{n-k}$$

où pour tout $n \in \mathbb{N}$ et $0 \le k \le n$,

$$\binom{n}{k} = \frac{n!}{k! (n-k)!}$$

et pour tout $p \in \mathbb{N}$,

$$p! = \begin{cases} 1 & \text{si } p = 0\\ \prod_{k=1}^{p} k = 1 \times 2 \times \dots \times p & \text{si } p \neq 0 \end{cases}$$

Démonstration Soit $H_n: \langle \forall z, z' \in \mathbb{C}, (z+z')^n = \sum_{k=0}^n \binom{n}{k} z^k z'^{n-k} \rangle$

– H_0 est vraie : soient $z, z' \in \mathbb{C}$. On a :

$$(z+z')^0 = 1$$

et

$$\sum_{k=0}^{0} \binom{0}{k} z^k z^{0-k} = 1$$

– Soit $n \in \mathbb{N}$. Supposons que H_n est vrai et prouvons H_{n+1} . Soient $z, z' \in \mathbb{C}$:

$$(z+z')^{n+1} = (z+z')^n \times (z+z')$$

$$= \left[\sum_{k=0}^n \binom{n}{k} z^k z'^{n-k}\right] \times (z+z')$$

$$= \sum_{k=0}^n \binom{n}{k} z^{k+1} z'^{n-k} + \sum_{k=0}^n \binom{n}{k} z^k z'^{n+1-k}$$

Or n - k = n + 1 - (k + 1) donc

$$\sum_{k=0}^{n} \binom{n}{k} z^{k+1} z'^{n+1-(k+1)} = \sum_{p=1}^{n+1} \binom{n}{p-1} z^p z'^{n+1-p}$$

En effet, $k \in [0, n] \longrightarrow p = k + 1 \in [1, n + 1]$ est une bijection. D'où

$$(z+z')^{n+1} = \sum_{k=1}^{n+1} \left(\binom{n}{k-1} z^k z'^{n+1-k} \right) + \sum_{k=0}^{n} \left(\binom{n}{k} z^k z'^{n+1-k} \right)$$

$$= \binom{n}{n} z^{n+1} z'^0 + \sum_{k=1}^{n} \left[\left(\binom{n}{k-1} + \binom{n}{k} \right) z^k z'^{n+1-k} \right] + \binom{n}{0} z^0 z'^{n+1}$$

Or
$$\binom{n}{n} = 1 = \binom{n+1}{n+1}$$
, $\binom{n}{0} = 1 = \binom{n+1}{0}$ et, pour tout $1 \le k \le n$ (si toutefois $n \ge 1$),
$$\binom{n}{k-1} + \binom{n}{k} = \binom{n+1}{k}$$
 [Formule du triangle de Pascal]

D'où

$$(z+z')^{n+1} = \binom{n+1}{n+1} z^{n+1} z'^{n+1-n+1} + \sum_{k=1}^{n} \left(\binom{n+1}{k} z^{k} z'^{n+1-k} \right) + \binom{n+1}{0} z^{0} z'^{n+1-0}$$

$$= \sum_{k=0}^{n+1} \binom{n+1}{k} z^{k} z'^{n+1-k}$$

D'où le résultat si $n \ge 1$. Si n = 0,

$$\left(z+z'\right)^{n+1} = z+z'$$

et

$$\sum_{k=0}^{1} \binom{1}{k} z^k z'^{1-k} = z' + z$$

 $-H_n$ est héréditaire et valable pour n=0 donc H_n est vraie pour tout $n \in \mathbb{N}$.

1.2.2 Somme des n premiers termes d'une suite géométrique de raison z

Pour $z \in \mathbb{C}$ et $n \in \mathbb{N}$ on pose

$$S_n(z) = \sum_{k=0}^{n} z^k = 1 + z + z^2 + \dots + z^n$$

Or

$$z \times S_n(z) = z \times \sum_{k=0}^n z^k$$

$$= \sum_{k=0}^n z^{k+1}$$

$$= \sum_{k=1}^{n+1} z^k$$

$$= S_n(z) - 1 + z^{n+1}$$

D'où

$$(z-1) S_n(z) = z^{n+1} - 1$$

Donc, si $z \neq 1$,

$$S_n\left(z\right) = \frac{z^{n+1} - 1}{z - 1}$$

Si z = 1, $S_n(1) = n + 1$.

1.2.3 Factorisations

Soit $n \in \mathbb{N}$, $a, b \in \mathbb{C}$. Prenons $b \in \mathbb{C}^*$, alors

$$\left(\frac{a}{b} - 1\right) S_n \left(\frac{a}{b}\right) = \left(\frac{a}{b}\right)^{n+1} - 1$$

$$\Rightarrow b^{n+1} \left(\frac{a}{b} - 1\right) S_n \left(\frac{a}{b}\right) = b^{n+1} \left[\left(\frac{a}{b}\right)^{n+1} - 1\right]$$

$$\Rightarrow (a - b) b^n S_n \left(\frac{a}{b}\right) = a^{n+1} - b^{n+1}$$

$$\Rightarrow a^{n+1} - b^{n+1} = (a - b) \sum_{k=0}^{n} a^k b^{n-k}$$

Ainsi pour $a, b \in \mathbb{C}$ avec $b \neq 0$ et $n \in \mathbb{N}^*$:

$$a^{n} - b^{n} = (a - b) \sum_{k=0}^{n-1} a^{k} b^{n-1-k}$$

Or cette formule est vraie pour b=0 car, pour tout $n \in \mathbb{N}^*$, $a^n-0^n=a^n$ et

$$(a-0)\sum_{k=0}^{n-1} a^k 0^{n-1-k} = a \times a^{n-1} \operatorname{car} 0^{n-1-k} = \begin{cases} 1 & \text{si } k = n-1 \\ 0 & \text{si } k \neq n-1 \end{cases}$$
$$= a^n$$

La formule est aussi valable pour n = 0 donc $\forall a, b \in \mathbb{C}$ et $\forall \in \mathbb{N}$,

$$a^{n} - b^{n} = (a - b) \sum_{k=0}^{n-1} a^{k} b^{n-1-k}$$

Factorisations usuelles Pour n = 2,

$$a^2 - b^2 = (a - b)(a + b)$$

Pour n = 3,

$$a^{3} - b^{3} = (a - b) (a^{2} + ab + b^{2})$$

Avec b = 1,

$$a^3 - 1 = (a - 1)(a^2 + a + 1)$$

De plus,

$$a^{3} + b^{3} = (a + b) (a^{2} - ab + b^{2})$$

2 Conjugué, module, argument

2.1 Conjugué

Pour $z \in \mathbb{C}$, $\overline{z} = \Re(z) - i \Im(z)$ où \overline{z} est le conjugué de z.

2.1.1 Propriétés

$$- \Re e(z) = \frac{z+z}{2}$$

$$-\Im m(z) = \frac{z - \overline{z}}{2i}$$

Pour tout
$$z, z' \in \mathbb{C}$$
 et $n \in \mathbb{Z}$,
 $-\Re(z) = \frac{z + \overline{z}}{2}$;
 $-\Im(z) = \frac{z - \overline{z}}{2i}$;
 $-z\overline{z} = \Re(z)^2 + \Im(z)^2$.

Module 2.2

Pour $z \in \mathbb{C}$, on pose $|z| = \sqrt{z\overline{z}} = a^2 + b^2$ si z = a + ib avec $a, b \in \mathbb{R}$.

2.2.1Propriétés

$$-|z|=0 \Leftrightarrow z=0$$

$$-|zz'| = |z||z'|$$

$$-|z^{n}|=|z|^{n}$$

$$-\left|\frac{1}{z}\right| = \frac{1}{|z|}$$

2.2.2 Identité du parallélogramme

Soient $z, z' \in \mathbb{C}$. Alors

$$|z + z'|^{2} = (z + z')\overline{(z + z')}$$

$$= (z + z')(\overline{z} + \overline{z'})$$

$$= z\overline{z} + z\overline{z'} + z'\overline{z} + z'\overline{z'}$$

$$= |z|^{2} + |z'|^{2} + z'\overline{z} + \overline{z'}\overline{z}$$

$$= |z|^{2} + |z'|^{2} + 2\Re (\overline{z}z')$$

De même,

$$|z - z'|^2 = |z|^2 + |-z'|^2 + 2\Re \left(-\overline{z}z'\right)$$
$$= |z|^2 + |z'|^2 - 2\Re \left(\overline{z}z'\right)$$

D'où:

$$|z + z'|^2 + |z - z'|^2 = 2(|z|^2 + |z'|^2)$$

Géométriquement, la somme des carrés des longueurs des côtés d'un parallélogramme est égale à la somme des carrés des longueurs des diagonales.

2.2.3 Inégalité des modules

Soit $z \in \mathbb{C}$. Alors $|z|^2 = \Re(z)^2 + \Im(z)^2$, ce qui implique

$$\Re e(z)^2 \leqslant |z|^2$$

où l'égalité signifierait que $\Im (z) = 0 \Leftrightarrow z \in \mathbb{R}$. En prenant la racine carrée de ces nombres réels positifs, on obtient

$$|\Re (z)| \le |z|$$

De même,

$$|\Im m(z)| \leq |z|$$

2.2.4 Inégalité de CAUCHY-SCHWARZ dans \mathbb{R}^2

Soient $a, b, c, d \in \mathbb{R}$. Alors

$$|ac + bd| \leqslant \sqrt{a^2 + b^2} \sqrt{c^2 + d^2}$$

Démonstration Posons z = a + ib et z' = c - id. Alors $\Re e(zz') = ac + bd$ donc

$$|ac + bd| = |\Re(zz')| \le |zz'| \Leftrightarrow |ac + bd| \le \sqrt{a^2 + b^2} \sqrt{c^2 + d^2}$$

2.2.5 Inégalité triangulaire

 $\forall z, z' \in \mathbb{C} \text{ on a} :$ (1)

$$|z + z'| \leqslant |z| + |z'|$$

(2)

$$|z + z'| \geqslant ||z| - |z'||$$

Démonstration Prouvons la première inégalité : soient $z, z' \in \mathbb{C}$ et

$$\Delta = (|z| + |z'|)^2 - |z + z'|^2$$

Il s'agit de montrer que $\Delta \geqslant 0$. Or

$$\Delta = |z|^{2} + 2|z||z'| + |z'|^{2} - |z + z'|^{2}$$

$$= |z|^{2} + 2|z||z'| + |z'|^{2} - |z|^{2} - |z'|^{2} - 2\Re (\overline{z}z')$$

$$= 2(|z||z'| - \Re (\overline{z}z'))$$

Or

$$\Re \left(\overline{z}z'\right) \leqslant \left|\Re \left(\overline{z}z'\right)\right| \leqslant \left|\overline{z}z'\right| \quad \Rightarrow \quad \Re \left(\overline{z}z'\right) \leqslant \left|\overline{z}\right|\left|z'\right| \\ \Rightarrow \quad \Re \left(\overline{z}z'\right) \leqslant \left|z\right|\left|z'\right| \text{ car } |z| = |\overline{z}|$$

On a donc bien $\Delta \geqslant 0$. Examinons maintenant les cas d'égalité :

- Si
$$z = 0$$
, alors $|z'| = |z'|$

 \circ Si $z \neq 0$, alors

$$|z + z'| = |z| + |z'| \Rightarrow \Delta = 0$$

donc $\Re e(\overline{z}z') = |\Re e(\overline{z}z')| = |\overline{z}z'|$ donc $\Re e(\overline{z}z') \in \mathbb{R}_+$ et $\overline{z}z' \in \mathbb{R}$. Ainsi $\overline{z}z' = \Re e(\overline{z}z')$ donc $\overline{z}z' \in \mathbb{R}_+$. Deplus,

$$z' = \frac{\overline{z}z'}{\overline{z}}$$

$$= \frac{\overline{z}z'}{\overline{z}z}z$$

$$= \frac{\overline{z}z'}{|z|^2} \times z$$

Donc $z' = \lambda z$ avec $\lambda \ge 0$ donc les vecteurs d'affixes z et z' sont colinéaires.

Réciproquement, si $z' = \lambda z$ avec $\lambda \in \mathbb{R}_+$, on a

$$|z| + |z'| = |z| + |\lambda z|$$

$$= |z| + |\lambda| |z|$$

$$= |z| + |\lambda| |z|$$

$$= (\lambda + 1) |z|$$

De plus,

$$|z + z'| = |z + \lambda z|$$

$$= |(\lambda + 1) z|$$

$$= (\lambda + 1) |z|$$

On déduit des précédents résultats l'équivalence suivante :

$$|z + z'| = |z| + |z'| \Leftrightarrow (z = 0)$$
 ou $(\exists \lambda \in \mathbb{R}/z' = \lambda z)$

On peut reformuler ceci de manière plus symétrique :

$$|z + z'| = |z| + |z'| \Leftrightarrow \exists u \in \mathbb{C}^*, \exists \lambda, \mu \in \mathbb{R}_+ / \begin{cases} z = \lambda u \\ z' = \mu u \end{cases}$$

En effet démontrons-le.

- Sens direct : supposons que |z + z'| = |z| + |z'|
 - o Si z=0 et $z'\neq 0$, on prend alors $u=z',\ \lambda=0$ et $\mu=1$. Si z'=0, alors des valeurs qui marchent sont u=1 et $\lambda=\mu=0$.
 - o Si $z \neq 0$, on a vu que z' = tz avec $t \in \mathbb{R}_+$. On prend alors u = z, $\lambda = 1$ et $\mu = t$.
- Sens réciproque :

$$|z + z'| = |\lambda u + \mu u|$$

$$= (\mu + \lambda) |u|$$

$$|z| + |z'| = \lambda |u| + \mu |u|$$

$$= (\lambda + \mu) |u|$$

Donc |z + z'| = |z| + |z'|.

Prouvons maintenant la deuxième inégalité : $|z + z'| \ge ||z| - |z'||$. D'après l'inégalité triangulaire démontrée ci-dessus,

$$|z| = |z + z' - z'| \le |z + z'| + |-z'| \Rightarrow |z| - |z'| \le |z + z'|$$

De même,

$$\left|z'\right| - \left|z\right| \leqslant \left|z' + z\right|$$

Des deux inégalités précédentes on déduit, un nombre et son opposé étant inférieurs à la valeur absolue du même nombre,

$$||z| - |z'|| \leqslant |z + z'|$$

2.3 Notation exponentielle

On définit pour $\theta \in \mathbb{R}$,

$$e^{i\theta} = \cos\theta + i\sin\theta$$

On note que $e^{i(\theta+\varphi)}=e^{i\theta}e^{i\varphi}$, propriété caractéristique de l'exponentielle.

2.3.1 Conjugué et module

Soit $\theta \in \mathbb{R}$. On a

$$\overline{e^{i\theta}} = \cos \theta - i \sin \theta
= \cos (-\theta) + i \sin (-\theta)
= e^{-i\theta}$$

D'autre part,

$$e^{-i\theta} = \frac{1}{e^{i\theta}}$$

En combinant les deux précédents résultats,

$$\overline{e^{i\theta}} = \frac{1}{e^{i\theta}} \iff e^{i\theta} \overline{e^{i\theta}} = 1$$

$$\Leftrightarrow |e^{i\theta}|^2 = 1$$

$$\Leftrightarrow \forall \theta \in \mathbb{R}, e^{i\theta} \in \mathbb{U}$$

Remarques:

- On définit l'ensemble $\mathbb U$ comme l'ensemble des nombres complexes de module 1.
- Pour $z \in \mathbb{U}$ on a $\overline{z}z = |z|^2 = 1$ donc

$$\overline{z} = \frac{1}{z}$$

- pour $z \in \mathbb{C}^*$,

$$\overline{z}z = |z|^2 \iff z \frac{\overline{z}}{|z|^2} = 1$$

 $\Leftrightarrow \frac{1}{z} = \frac{\overline{z}}{|z|^2}$

2.3.2 Formule de Moivre

On a $\forall n \in \mathbb{Z}$ et $\forall \overline{\theta \in \mathbb{R}}$:

$$\left(e^{i\theta}\right)^n = e^{in\theta}$$

Démonstration Soit $H_n: \langle \forall \theta \in \mathbb{R}, (e^{i\theta})^n = e^{in\theta} \rangle$

- $-H_0$ est vraie : si $\theta \in \mathbb{R}$, $(e^{i\theta})^0 = 1$ et $e^{i0\theta} = 1$.
- Supposons que H_n est vraie pour un certain entier naturel n. Alors, si $\theta \in \mathbb{R}$,

$$\begin{array}{rcl} \mathbf{e}^{i(n+1)\theta} & = & \mathbf{e}^{i(n\theta+\theta)} \\ & = & \mathbf{e}^{in\theta} \mathbf{e}^{i\theta} \\ & = & \left(\mathbf{e}^{i\theta} \right)^n \mathbf{e}^{i\theta} \\ & = & \left(\mathbf{e}^{i\theta} \right)^{n+1} \end{array}$$

Donc H_n est héréditaire.

- D'après le principe de récurrence, H_n est vraie $\forall n \in \mathbb{N}$. Prouvons maintenant ce résultat pour $n \in \mathbb{Z}$.

– Pour n=-1, on a bien pour $\theta \in \mathbb{R}$:

$$e^{-i\theta} = \frac{1}{e^{i\theta}} = \left(e^{i\theta}\right)^{-1}$$

- Pour $n \in \mathbb{N}^*$ et $\forall \theta \in \mathbb{R}$,

$$(e^{i\theta})^{-n} = (\frac{1}{e^{i\theta}})^n$$

$$= (e^{-i\theta})^n$$

$$= e^{-in\theta}$$

$$= e^{i(-n)\theta}$$

 $-H_n$ est donc vraie $\forall n \in \mathbb{Z}$.

2.3.3 Forme des nombres complexe de $\mathbb U$

$$\forall z \in \mathbb{U}, \exists \theta \in \mathbb{R}/z = e^{i\theta}$$

Démonstration Soit $z = a + ib \in \mathbb{U}$ avec $a, b \in \mathbb{R}$. On a donc $|z|^2 = a^2 + b^2 = 1$ donc

$$|a| = |\Re(z)| \le |z| = 1 \text{ et } |b| = |\Im(z)| \le 1$$

- Si $a \ge 0$, alors la fonction $f: \left[0, \frac{\pi}{2}\right] \longrightarrow \mathbb{R}$ est continue et strictement décroissante donc $t \mapsto \cos t$

$$f\left(\left[0, \frac{\pi}{2}\right]\right) = [0, 1]$$

Gé $0 \le a \le 1$ donc $a \in [0,1]$ Soinc $\exists t \in \left[0,\frac{\pi}{2}\right]/a = \cos t$. De plus

$$b^{2} = 1 - a^{2}$$
$$= 1 - \cos^{2} t$$
$$= \sin^{2} t$$

- \circ Si $b \ge 0$ alors $b = \sin t$ donc $z = e^{it}$.
- \circ Si $b \le 0$ alors $b = -\sin t$ donc $z = e^{-it}$.
- Si $a\leqslant 0$, d'après le cas précédent $\exists t\in\left[0,\frac{\pi}{2}\right]/-z=\mathrm{e}^{it}$ car -z=-a-ib avec $-a\geqslant 0$. De plus |-z|=|z|=1 donc $-z\in\mathbb{U}$. Ainsi

$$z = -e^{it}$$
$$= e^{i\pi}e^{it}$$
$$= e^{i(\pi+t)}$$

On a donc

$$\mathbb{U} = \left\{ \mathrm{e}^{i\theta}/\theta \in \mathbb{R} \right\}$$

2.4 Arguments

Soit $z \in \mathbb{C}^*$. On définit l'argument de z comme l'ensemble des nombres θ réels vérifiant $z = |z| e^{i\theta}$. En réalité pour $z \in \mathbb{C}^*$ et $\theta_0 \in \arg(z)$,

$$\arg(z) = \theta_0 + 2\pi \mathbb{Z} = \{\theta_0 + 2k\pi | k \in \mathbb{Z}\}\$$

2.4.1 Argument et écriture trigonométrique des nombres complexes

Définition Soit $z \in \mathbb{C}^*$. Une écriture trigonométrique de z est un couple (r, θ) dans \mathbb{R}^2 tel que $z = re^{i\theta}$.

Remarques

- $\forall \theta \in \mathbb{R}, (0, \theta)$ est une écriture trigonométrique de 0.
- Si $z \in \mathbb{C}^*$ et $\theta \in \arg(z)$, alors $(|z|, \theta)$ est une écriture trigonométrique de z.
- Si (r, θ) est une écriture trigonométrique de z alors les écritures trigonométriques de z sont $(r, \theta + 2k\pi)$ avec $k \in \mathbb{Z}$.

2.4.2 Formules de mise sous forme trigonométrique

On a
$$\forall \theta \in \mathbb{R}$$
:
 $-1 + e^{i\theta} = 2\cos\left(\frac{\theta}{2}\right)e^{i\frac{\theta}{2}}$
 $-e^{i\theta} - 1 = 2i\sin\left(\frac{\theta}{2}\right)e^{i\frac{\theta}{2}}$

2.4.3 Formules d'Euler

Soit
$$\theta \in \mathbb{R}$$
. Alors
$$(1) \cos \theta = \Re e\left(e^{i\theta}\right) = \frac{e^{i\theta} + \overline{e^{i\theta}}}{2} \text{ donc}$$

$$\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$$

(2) De même,

$$\sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$$

2.5 Exemples d'utilisation de l'écriture trigonométrique

2.5.1 Noyau de Dirichlet

Pour $x \in \mathbb{R}$ et $n \in \mathbb{N}$,

$$D_n(x) = \sum_{k=-n}^n e^{ikx}$$

Donc

$$D_n(x) = e^{-inx} + \dots + e^{-ix} + 1 + e^{ix} + \dots + e^{inx}$$

$$= 1 + 2\cos x + 2\cos 2x + \dots + 2\cos nx$$

$$= 1 + 2\sum_{k=1}^{n} \cos kx$$

Simplifions cette expression pour exprimer la somme en fonction de n. Revenons à la définition de la fonction : pour $x \in \mathbb{R}$ et $n \in \mathbb{N}$,

$$D_n(x) = \sum_{k=-n}^n e^{ikx}$$

$$= e^{-inx} \left(1 + e^{ix} + \dots + e^{i2nx} \right) \text{ en factorisant par le premier terme.}$$

$$= e^{-inx} \sum_{k=0}^{2n} \left(e^{ix} \right)^k$$

- Si $x \in 2\pi \mathbb{Z}$, $e^{ix} = 1$ donc

$$D_n(x) = \sum_{k=-n}^{n} 1 = 2n + 1$$

- Si $x \notin 2\pi\mathbb{Z}$, alors e^{ix} ≠ 1 donc d'après la formule de la somme des premiers termes d'une suite géométrique,

$$D_{n}(x) = e^{-inx} \left(\frac{\left(e^{ix}\right)^{2n+1} - 1}{e^{ix} - 1} \right)$$

$$= e^{-inx} \frac{e^{(2n+1)ix} - 1}{e^{ix} - 1}$$

$$= e^{-inx} \frac{e^{i(2n+1)\frac{x}{2}} 2i \sin\left((2n+1)\frac{x}{2}\right)}{e^{i\frac{x}{2}} 2i \sin\frac{x}{2}} \operatorname{car} \forall x \in \mathbb{R}, e^{ix} - 1 = e^{\frac{ix}{2}} 2i \sin\left(\frac{x}{2}\right)$$

$$= e^{-inx} e^{inx} \frac{\sin\left[\left(n + \frac{1}{2}\right)x\right]}{\sin\frac{x}{2}}$$

$$= \frac{\sin\left[\left(n + \frac{1}{2}\right)x\right]}{\sin\frac{x}{2}} \text{ et ceci } \forall x \in \mathbb{R} \backslash 2\pi\mathbb{Z} \text{ et } \forall n \in \mathbb{N}$$

2.5.2 Polynômes de Chebychev de la première espèce

Soit $n \in \mathbb{N}$. Alors il existe un polynôme T_n tel que $\forall \theta \in \mathbb{R}$,

$$\cos\left(n\theta\right) = T_n\left(\cos\theta\right)$$

Démonstration Soit $n \in \mathbb{N}$. Pour $\theta \in \mathbb{R}$, $\cos(n\theta) = \Re(e^{in\theta}) = \Re((e^{i\theta})^n)$. De plus

$$\left(e^{i\theta}\right)^n = (i\sin\theta + \cos\theta)^n$$

$$= \sum_{k=0}^n \binom{n}{k} i^k \sin^k \theta \cos^{n-k} \theta$$

$$= \sum_{k=0}^n \binom{n}{k} i^k \sin^k \theta \cos^{n-k} \theta + \sum_{k=0}^n \binom{n}{k} i^k \sin^k \theta \cos^{n-k} \theta$$

Ce résultat est obtenu grâce à l'application de la formule du binôme de Newton. On remarque que dans la première somme les i^k donnent un résultat réel, et un résultat imaginaire dans la deuxième somme. Cette décomposition est donc une forme algébrique de $(e^{i\theta})^n$, dont nous cherchons la partie réelle. Ainsi :

$$\cos n\theta = \sum_{k=0}^{n} {n \choose k} i^k \sin^k \theta \cos^{n-k} \theta$$
k pair

De plus, tout entier pair de [[0,n]] s'écrit k=2p avec $p\in\mathbb{N}\cap\left[0,\frac{n}{2}\right]$. On obtient donc

$$\cos n\theta = \sum_{p \in \mathbb{N} \cap \left[0, \frac{n}{2}\right]} \binom{n}{2p} i^{2p} \sin^{2p} \theta \cos^{n-2p} \theta$$

$$= \sum_{p \in \mathbb{N} \cap \left[0, \frac{n}{2}\right]} \binom{n}{2p} (-1)^p \left(1 - \cos^2 \theta\right)^p \cos^{n-2p} \theta$$

$$= \sum_{p \in \mathbb{N} \cap \left[0, \frac{n}{2}\right]} H_p(\cos \theta)$$

Avec $\forall p \in \mathbb{N} \cap \left[0, \frac{n}{2}\right] \text{ et } \forall x \in \mathbb{R},$

$$H_p(x) = \binom{n}{2p} (-1)^p (1 - x^2)^p x^{n-2p}$$

Le polynôme de Chebychev cherché est donc, $\forall x \in \mathbb{R}$.

$$T_{n}\left(x\right) = \sum_{p \in \mathbb{N} \cap \left[0, \frac{n}{2}\right]} H_{p}\left(x\right)$$

Caractéristiques Soit $p \in \mathbb{N} \cap \left[0, \frac{n}{2}\right]$. On a alors

$$H_p(x) = \binom{n}{2p} (-1)^p (1 - x^2)^p x^{n-2p}$$

 $H_p(x)$ est un polynôme de degré n. De plus le coefficient de x^n dans H_p est $\binom{n}{2p}$. En sommant les polynômes H_p de degré n pour obtenir T_n , on obtient un polynôme de degré inférieur ou égal à n. Le coefficient de x^n dans $T_n(x)$ est alors

$$\sum_{p \in \mathbb{N} \cap \left[0, \frac{n}{2}\right]} \binom{n}{2p}$$

Cette somme est strictement positive donc non nulle donc le degré de T_n est n. Cherchons maintenant le coefficient dominant (coefficient du terme de plus haut degré).

- Pour n=0, le coefficient de x^n est 1 car $T_0=1$.
- Pour n>0, cherchons l'expression en fonction de n de la somme

$$\sum_{p\in\mathbb{N}\cap\left[0,\frac{n}{2}\right]}\binom{n}{2p}$$

On remarque que:

$$2^{n} = (1+1)^{n} = \sum_{k=0}^{n} \binom{n}{k}$$

et que

$$0 = (1-1)^n = \sum_{k=0}^n \binom{n}{k} (-1)^k$$

En sommant les deux égalités précédentes on obtient :

$$2^{n} + 0 = \sum_{k=0}^{n} \binom{n}{k} + \sum_{k=0}^{n} \binom{n}{k} (-1)^{k}$$

$$= \sum_{k=0}^{n} \binom{n}{k} \left(1 + (-1)^{k}\right)$$

$$= 2 \sum_{k=0}^{n} \binom{n}{k} \operatorname{car} \left(1 + (-1)^{k}\right) = \begin{cases} 2 & \text{si } k \text{ est paire} \\ 0 & \text{si } k \text{ est impaire} \end{cases}$$

$$= 2 \sum_{p \in \mathbb{N} \cap \left[0, \frac{n}{2}\right]} \binom{n}{2p}$$

Donc,

$$\sum_{p \in \mathbb{N} \cap \left[0, \frac{n}{2}\right]} \binom{n}{2p} = \frac{2^n}{2} = 2^{n-1}$$

 2^{n-1} est donc le coefficient dominant de T_n .

3 Racines carrées et racines n-ièmes dans $\mathbb C$

Un nombre $\omega \in \mathbb{C}$ est une racine carrée de $z \in \mathbb{C}$ lorsque

$$\omega^2 = 0$$

3.1 Recherche pratique de racines carrées

Dans la suite, on aura $z \in \mathbb{C}^*$.

3.1.1 Avec une forme trigonométrique

Si on dispose d'une écriture trigonométrique de z de la forme

$$z = re^{i\theta}$$

avec r>0 et $\theta\in\mathbb{R}$, alors les racines carrées de z sont $\pm\sqrt{r}\mathrm{e}^{i\frac{\theta}{2}}$.

3.1.2 Sans forme trigonométrique

Si on ne dispose pas d'une écriture trigonométrique de z avec des valeurs classiques, cherchons les racines carrées de z=a+ib avec $a,b\in\mathbb{R}$ sous la forme $\delta=c+id\in\mathbb{C}$ avec $c,d\in\mathbb{R}$, on a

$$\delta^{2} = z \iff \begin{cases} \delta^{2} = z \\ \left| \delta^{2} \right| = |z| \end{cases}$$

$$\Leftrightarrow \begin{cases} c^{2} - d^{2} + 2icd = a + ib \\ c^{2} + d^{2} = \sqrt{a^{2} + b^{2}} \end{cases}$$

$$\Leftrightarrow \begin{cases} c^{2} - d^{2} = a & (1) \\ c^{2} + d^{2} = \sqrt{a^{2} + b^{2}} & (2) \text{ en identifiant } \Re \text{ et } \Im \text{m} \\ 2cd = b & (3) \end{cases}$$

Ensuite,

- -(1) + (2) donne c^2 ;
- -(1)-(2) donne d^2 ;
- (3) donne le signe de cd, donc détermine les deux couples (c,d) solutions.

3.2 Équations du second degré

Soient $a, b, c \in \mathbb{C}$ avec $a \neq 0$, l'équation

$$az^2 + bz + c = 0$$

admet 2 solutions éventuellement confondues dans $\mathbb C$ qui sont

$$z = \frac{-b \pm \delta}{2a}$$

où δ est une racine carrée de $\Delta = b^2 - 4ac$.

3.3 Racines n-ièmes

3.3.1 Définition

Soient $z, \omega \in \mathbb{C}$ et $n \in \mathbb{N}^*$. On dit que ω est une racine n-ième de z lorsque

$$\omega^n = z$$

Pour $z \in \mathbb{C}$, $\mathcal{R}_n(z)$ est l'ensemble des racines n-ièmes de z.

Petite histoire (ou grand casse-tête) 3.3.2

Recherche d'une expression de \mathcal{R}_n en fonction de n Soit $z \in \mathbb{C}$ et $n \in \mathbb{N}^*$.

- Si z = 0, alors pour $\omega \in \mathbb{C}$, $\omega^n = 0 \Leftrightarrow \omega = 0$ donc $\mathcal{R}_n(0) = 0$. Si $z \in \mathbb{C}^*$, on écrit $z = re^{i\theta}$ avec r > 0 et $\theta \in \mathbb{R}$ (r = |z| et $\theta \in \arg(z)$).
 - On note que $0^n = 0$ donc $0 \notin \mathcal{R}_n$.
 - o Si $\omega \in \mathbb{C}^*$ que l'on écrit $\omega = \rho \mathrm{e}^{i\varphi}$ avec $\rho > 0$ et φ réel, alors

$$\omega^{n} = z \iff \rho^{n} e^{in\varphi} = r e^{i\theta}$$

$$\Leftrightarrow \begin{cases} \rho^{n} = r \\ n\varphi \in \theta + 2\pi \mathbb{Z} \end{cases} \quad \operatorname{car} \, \rho^{n} > 0 \text{ et } r > 0$$

$$\Leftrightarrow \begin{cases} \rho = r^{\frac{1}{n}} \\ \exists k \in \mathbb{Z}/\varphi = \frac{\theta}{n} + \frac{2k\pi}{n} \end{cases}$$

Donc

$$\mathcal{R}_n(z) = \left\{ r^{\frac{1}{n}} e^{i\left(\frac{\theta}{n} + \frac{2k\pi}{n}\right)} / k \in \mathbb{Z} \right\}$$

Caractéristiques de \mathcal{R}_n Soit $k \in \mathbb{Z}$. On effectue la division euclidienne de k par n. Alors il existe $q \in \mathbb{Z}$, $n \in \mathbb{N}$ et $0 \le r \le n-1$ tels que

$$k = nq + r \iff \frac{k}{n} = q + \frac{r}{n}$$
$$\Leftrightarrow \frac{2\pi k}{n} = 2\pi q + \frac{2\pi r}{n}$$
$$\Rightarrow e^{i\frac{2\pi k}{n}} = e^{i2\pi q}e^{i\frac{2\pi r}{n}}$$

Or $\forall \in \mathbb{Z}$, $e^{i2\pi q} = 1$ donc $e^{i\frac{2\pi k}{n}} = e^{i\frac{2\pi r}{n}}$ donc

$$\mathcal{R}_n(z) \subset \left\{ r^{\frac{1}{n}} e^{i\left(\frac{\theta}{n} + \frac{2p\pi}{n}\right)} | p \in [0, n-1] \right\}$$

L'inclusion inverse étant évidente,

$$\mathcal{R}_n(z) = \left\{ r^{\frac{1}{n}} e^{i\left(\frac{\theta}{n} + \frac{2p\pi}{n}\right)} | p \in [0, n-1] \right\}$$

Soient $k, l \in [0, n-1]$ avec $0 \le k < l \le n-1$. Alors

$$r^{\frac{1}{n}}e^{i\left(\frac{\theta}{n} + \frac{2\pi k}{n}\right)} = r^{\frac{1}{n}}e^{i\left(\frac{\theta}{n} + \frac{2\pi l}{n}\right)} \iff \frac{2\pi l}{n} \in \frac{2\pi k}{n} + 2\pi \mathbb{Z}$$

$$\Leftrightarrow \exists m \in \mathbb{Z}/\frac{2\pi l}{n} = \frac{2\pi k}{n} + 2\pi m$$

$$\Leftrightarrow \exists m \in \mathbb{Z}/\frac{l - k}{n} = m$$

Or on ne peut avoir $\frac{l-k}{n} \in \mathbb{Z}$ car $1 \leq l-k \leq n-1$. Ainsi les complexes $r^{\frac{1}{n}} e^{i\left(\frac{\theta}{n}\right)}, r^{\frac{1}{n}} e^{i\left(\frac{\theta}{n} + \frac{2\pi}{n}\right)}, \dots, r^{\frac{1}{n}} e^{i\left(\frac{\theta}{n} + \frac{2(n-1)\pi}{n}\right)}$ sont tous distincts donc l'ensemble $\mathcal{R}_n(z)$ défini par

$$\mathcal{R}_n(z) = \left\{ r^{\frac{1}{n}} e^{i\left(\frac{\theta}{n} + \frac{2p\pi}{n}\right)} | p \in [0, n - 1] \right\}$$

est fini et de cardinal n.

3.3.3 Autour de \mathbb{U}_n

On définit $\mathbb{U}_n = \mathcal{R}_n$ (1). Or $1 = e^{i0}$ donc

$$\mathbb{U}_n = \left\{ e^{i\frac{2k\pi}{n}} | k \in [[0, n-1]] \right\}$$

Remarques

- De façon générale, $\mathbb{U}_n \subset \mathbb{U}$.
- $-1 \in \mathbb{U}_n$.
- Si $z, z' \in \mathbb{U}_n$, alors $zz' \in \mathbb{U}_n$ et $\frac{1}{z} \in \mathbb{U}_n$ donc \mathbb{U}_n est un sous-groupe de (\mathbb{C}^*, \times) .
- $\, \mathbb{U}_n = \left\{ \omega^k / 0 \leqslant k \leqslant n-1 \right\} \, \text{où} \, \overset{\circ}{\omega} = \mathrm{e}^{\frac{2i\pi}{n}} \, \, \text{et} \, \, n \geqslant 2.$

_

$$\omega^{n} = 1 \iff \omega^{n} - 1 = 0$$

$$\Leftrightarrow (\omega - 1) (1 + \omega + \omega^{2} + \dots + \omega^{n-1}) = 0$$

$$\Leftrightarrow 1 + \omega + \omega^{2} + \dots + \omega^{n-1} = 0 \quad \text{car } \omega - 1 \neq 0$$

$$\Leftrightarrow \sum_{z \in \mathbb{U}_{n}} z = 0$$

On a même, pour $z \in \mathbb{U}_n \setminus \{1\}$:

$$\sum_{k=0}^{n-1} z^k = 0$$

4 Exponentielles complexes

Pour $z \in \mathbb{C}$, on pose

$$\exp(z) = e^{\Re(z)} e^{i\Im(z)}$$

où $e^{\Re(z)}$ est l'exponentielle réelle du nombre réel $\Re(z)$ et $e^{i\Im(z)} = \cos\Im(z) + i\sin\Im(z)$.

On remarque que:

- Si $z \in \mathbb{R}$, alors $\exp(z) = e^{\Re(z)} = e^z$.
- Si $\theta \in \mathbb{R}$, alors $\exp(i\theta) = e^{i\theta}e^{i\theta} = e^{i\theta}$.

4.1 Propriétés

4.1.1 Propriété caractéristique de l'exponentielle

Pour $z, z \in \mathbb{C}$,

$$\exp(z + z') = \exp(z) \exp(z')$$

Démonstration

$$\exp(z + z') = e^{\Re e(z+z')} e^{i\Im m(z+z'')}$$

$$= e^{\Re e(z) + \Re e(z')} e^{i(\Im m(z) + \Im m(z'))}$$

$$= e^{\Re e(z)} e^{i\Im m(z)} e^{\Re e(z')} e^{i\Im m(z')}$$

$$= \exp(z) \exp(z')$$

4.1.2 Autres propriétés

 $- \exp(0) = 1;$ $- \operatorname{pour} z \in \mathbb{C}, \exp(-z) = \frac{1}{\exp(z)};$ $- \forall z \in \mathbb{C} \text{ et } \forall n \in \mathbb{Z}, (\exp(z))^n = \exp(nz);$ $- |\exp(z)| = 1 \Leftrightarrow z \in i\mathbb{R};$

$$\exp(z) = 1 \iff e^{i0} = e^{\Re(z)}e^{i\Im(z)}$$

$$\Leftrightarrow \begin{cases} e^{\Re(z)} = 1 \\ \Im(z) \in 2\pi\mathbb{Z} \end{cases}$$

$$\Leftrightarrow \begin{cases} \Re(z) = 0 \\ \Im(z) \in 2\pi\mathbb{Z} \end{cases}$$

donc $z \in \{2i\pi m/m \in \mathbb{Z}\};$ - pour $z, z \in \mathbb{C},$

$$\exp(z) = \exp(z') \iff \frac{\exp(z')}{\exp(z)} = 1$$
$$\Leftrightarrow \exp(z' - z) = 1$$
$$\Leftrightarrow z' - z \in 2i\pi\mathbb{Z}$$

- Étudions la surjectivité de la fonction exp; c'est-à-dire si un complexe admet un ou plusieurs antécédents par exp. Soit $\omega \in \mathbb{C}^*$, alors $\omega = re^{i\theta}$ avec r > 0 et $\theta \in \mathbb{R}$. Pour $z \in \mathbb{C}$, on a :

$$\exp(z) = \omega \iff e^{\Re e(z)} e^{\Im m(z)} = r e^{i\theta}$$

$$\Leftrightarrow \begin{cases} r = e^{(z)} \\ \Im m(z) \in \theta + 2\pi \mathbb{Z} \end{cases}$$

$$\Leftrightarrow \begin{cases} \Re e(z) = \ln(r) \\ \Im m(z) \in \arg(\omega) \end{cases}$$

L'ensemble des nombres complexes z vérifiant $\exp(z) = \omega$ est

$$\{\ln(|\omega|) + i\alpha | \alpha \in \arg(\omega)\}\$$

5 Complément : astuces

5.1 Expression de $\mathcal{R}_n(z)$ en fonction de \mathbb{U}_n

Soit $z \in \mathbb{C}$. Si on connaît une racine n-ième de z notée a, alors

$$\mathcal{R}_n(z) = \{au | u \in \mathbb{U}_n\}$$

5.2 Rassemblement trigonométrique

, alor
$$a, b \in \mathbb{R}$$
. Alors $\exists \varphi \in \mathbb{R}$ tel que $\forall x \in \mathbb{R}$,
$$a\cos(x) + b\sin(x) = \sqrt{a^2 + b^2}\cos(x - \varphi)$$

5.3 Liste de \mathbb{U}_n usuels

On pose
$$j = e^{\frac{2i\pi}{3}}$$
:

$$- \mathbb{U}_2 = \{-1, 1\};$$

$$- \mathbb{U}_3 = \{j, j^2, 1\};$$

$$- \mathbb{U}_4 = \{i, -i, -1, 1\};$$

$$- \mathbb{U}_5 = \left\{1, e^{\frac{2i\pi}{5}}, e^{\frac{4i\pi}{5}}, e^{-\frac{2i\pi}{5}}, e^{-\frac{4i\pi}{5}}\right\};$$

$$- \mathbb{U}_6 = \{1, -1, j, -j, j^2, -j^2\}.$$

Complément : exercices classiques 6

Parties de \mathbb{C} à trois éléments... 6.1

Parties à deux éléments

Cherchons les parties A de $\mathbb C$ à deux éléments telles que $z \in A \Rightarrow z^2 \in A$.

Partie directe Soit $A = \{a, b\}$ une telle partie. Alors $a^2 \in A$ et $b^2 \in A$ donc $a^2 = a$ ou $a^2 = b$

- Si $a^2 = a$, alors a = 0 ou a = 1
 - \circ Si a=0, alors $b^2 \in \{a,b\}$ et $b \neq 0$ donc $b^2 \neq 0$ donc $b^2 = b$ donc b=1. Ainsi $A=\{0,1\}$
 - \circ Si a = 1, alors $b^2 \in \{a, b\}$ et $b \neq 1$.
 - \rightarrow Si $b^2 = b$, alors $A = \{0, 1\}$
 - \rightarrow Si $b^2 = 1$ avec $b \neq 1$, alors b = -1 donc $A = \{1, -1\}$
- Si $a^2 = b \Leftrightarrow a^2 \neq a$, on suppose $b^2 \neq b$ (si $b^2 = b$ on serait ramené au cas précédent en inversant les lettres). On a donc $\begin{cases} b^2 = a \\ a^2 = b \end{cases} \Rightarrow a^4 = a \Rightarrow a^3 = 1 \text{ car } a \neq 0. \text{ Ainsi } a \in \mathbb{U}_3 = \{1, j, j^2\} \text{ où } j = e^{\frac{2i\pi}{3}}. \text{ Or } a = \{1, j, j^2\}$ $a \neq 1 \text{ donc } a \in \{j, j^2\} \text{ donc } A = \{j, j^2\}.$

Les parties recherchées sont donc

$$A \in \{\{0,1\}, \{-1,1\}, \{j,j^2\}\}$$

Partie réciproque Réciproquement, il est clair que les parties trouvées conviennent.

6.1.2Parties à 3 éléments

Cherchons les parties A de \mathbb{C} à trois éléments telles que $z \in A \Rightarrow z^2 \in A$.

Partie directe Soit $A = \{a, b, c\}$ une telle partie (avec a, b, c distincts).

- Si $\{a,b\}$ vérifie $z \in \{a,b\}$ ⇒ $z^2 \in \{a,b\}$, alors $\{a,b\} \in \{\{0,1\},\{-1,1\},\{j,j^2\}\}$.
 - o Si $\{a,b\} = \{0,1\}$, on ne peut avoir $c^2 = c$ car $c \notin \{0,1\}$. Mais $c^2 \in \{0,1,c\}$ donc $c^2 = 0$ ou $c^2 = 1$ donc $c = -1 \text{ car } c \neq 0. \text{ Ainsi, } A = \{0, 1, -1\}.$
 - Si $\{a, b\} = \{-1, 1\}$, alors $c^2 \in \{-1, 1, c\}$ et $c \notin \{-1, 1\}$.
 - \rightarrow Si $c^2 = c$, alors $A = \{0, -1, 1\}$.
 - \rightarrow Si $c^2 = 1$, A n'existe pas car $c \notin \{-1, 1\}$.
 - \rightarrow Si $c^2 = -1$, alors $c \in \{-i, i\}$ donc $A = \{-1, 1, i\}$ ou $A = \{-1, 1, -i\}$.
 - o Si $\{a, b\} = \{j, j^2\}$, alors $c \notin \{j, j^2\}$ et $c^2 \in \{j, j^2, c\}$.
 - → Si $c^2 = c$ alors $c \in \{0, 1\}$ donc $A = \{j, j^2, 1\}$ et $A = \{j, j^2, 0\}$.
 - → Si $c^2 = j$ alors $c \in \{\pm j^2\}$ or $c \neq j^2$ donc $A = \{j, j^2, -j^2\}$.
 - \rightarrow Si $c^2 = j^2$ alors $c \in \{\pm j\}$ or $c \neq j$ donc $A = \{j, j^2, -j\}$.

On vient de traiter le cas où A contient une des sous-parties $\{0,1\}$, $\{-1,1\}$ ou $\{j,j^2\}$.

- Supposons que les sous-parties $\{0,1\}$, $\{-1,1\}$ et $\{j,j^2\}$ ne soient pas inclues dans A.
 - \circ Si $0 \in A$, alors $1 \notin A$ donc $A = \{0, b, c\}$. $b^2 \neq 0$ car $b \neq 0$ et $b^2 \neq b$ car $b \neq 1$. Ainsi $b^2 = c$ donc $A = \{a, b, b^2\}$. De même $c^2 \neq 0$ et $c^2 \neq c$ donc $c^2 = b$ donc $\{b, c\} = \{j, j^2\}$, ce qui est impossible.
 - o Si $1 \in A$, alors $0 \notin A$ donc $A = \{1, b, c\}$. On ne peut avoir $b^2 \neq b$ donc $b^2 = c$. Not même $c^2 = b$ donc $\{b,c\}=\{j,j^2\}$, ce qui est impossible.
 - $\circ \text{ Si } 0 \notin A \text{ et } 1 \notin A \text{, alors } \forall z \in A, \ z^2 \neq z \text{. Donc } a^2 \in A \text{ et } a^2 \neq a \text{. De même } \left(a^2\right)^2 \in A \text{ et } \left(a^2\right)^2 \neq a^2.$
 - \rightarrow Si $a^4 = a$, $a \neq 0$ donc $a^3 = 1$ donc $a \in \{j, j^2\}$ car $a \neq 1$.
 - \sim Si a = j, alors $a^2 = j^2$, ce qui est impossible.
 - \rightarrow Si $a = j^2$, alors $a^2 = j$, ce qui est impossible. \rightarrow Si $a^4 \neq a$, alors $(a^4)^2 \in \{a, a^2\}$ donc $A = \{a, a^2, a^4\}$. Or $a^8 \in A$ et $a^8 \neq a^4$ donc $a^8 = a$ ou $a^8 = a^2$. \rightarrow Si $a^8 = a^2$ avec $a \notin \{0, 1\}$, alors $a^6 = 1$ donc $a \in \mathbb{U}_6 = \{\pm 1, \pm i, \pm j^2\}$. De plus $a = \{-1, 1, j\}$ est
 - Si a = -j, alors $a^2 = j^2$ et $a^4 = j$, ce qui est impossible.

Si
$$a=j^2$$
, alors $a^2=j$, ce qui est impossible.
Si $a=-j^2$, alors $a^2=j$ et $a^4=j^2$, ce qui est impossible.
 \sim Si $a^8=a$, alors $a^7=1$ donc $a\in\mathbb{U}_7\backslash\{1\}$ donc $a\in\{\omega,\omega^2,\omega^3,\omega^4,\omega^5,\omega^6\}$ où $\omega=\mathrm{e}^{\frac{2i\pi}{7}}$.
Si $a=\omega$, $A=\{\omega,\omega^2,\omega^4\}$
Si $a=\omega^2$, $A=\{\omega,\omega^2,\omega^4\}$
Si $a=\omega^3$, $A=\{\omega^3,\omega^5,\omega^6\}$
Si $a=\omega^4$, $A=\{\omega,\omega^2,\omega^4\}$
Si $a=\omega^5$, $A=\{\omega^3,\omega^5,\omega^6\}$
Si $a=\omega^6$, $A=\{\omega^3,\omega^5,\omega^6\}$

Bilan Si A est une partie vérifiant la propriété, alors les différentes valeurs de A sont :

$$-\{0,1,-1\} \\ -\{1,-1,i\} \\ -\{1,-1,-i\} \\ -\{j,j^2,-j\} \\ -\{j,j^2,-j^2\} \\ -\{j,j^2,0\} \\ -\{j,j^2,1\} \\ -\{\omega,\omega^2,\omega^4\} \\ -\{\omega^3,\omega^5,\omega^6\} \\ \text{ec } \omega = e^{\frac{2i\pi}{7}}.$$

Partie réciproque Il est clair que toutes les parties trouvées conviennent (à vous le loisir des calculs!).

6.2 Racines n-ièmes primitives de 1

On rappelle que pour tout $n \ge 2$,

$$\mathbb{U}_n = \left\{ \omega^k | k \in [0, n-1] \right\} \quad \text{où } \omega = \mathrm{e}^{\frac{2i\pi}{n}}$$

Quels sont les $u \in \mathbb{U}_n$ tels que $\mathbb{U}_n = \{u^k | k \in \mathbb{Z}\}$?

Partie directe Soit $u \in \mathbb{U}_n$ et supposons que $\mathbb{U}_n = \{u^p | p \in \mathbb{Z}\}$. Alors $\exists k \in [[0, n-1]]/u = \omega^k$. De plus $\omega \in \mathbb{U}_n = \{u^p | p \in \mathbb{Z}\}$ donc $\exists p \in \mathbb{Z}/\omega = u^p = \omega^{kp}$ donc

$$\omega^{kp-1} = 1 \Leftrightarrow e^{\frac{2i\pi(kp-1)}{n}} = 1$$

Ainsi,

$$\exists m \in \mathbb{Z}/\frac{2\pi\left(kp-1\right)}{n} = 2\pi m \Leftrightarrow kp-1 = mn \Leftrightarrow kp-mn = 1$$

On reconnaît là une relation de Bézout, donc $k \wedge n = 1$. De ce fait, si ω^k est une racine primitive n-ième de 1, alors k est premier avec n.

Partie réciproque Réciproquement, supposons que $k \wedge n = 1$. D'après le théorème de Bézout, $\exists p,q \in \mathbb{Z}/kp + nq = 1$. D'où

$$\omega = \omega^{1}$$

$$= \omega^{kp+nq}$$

$$= (\omega^{k})^{p} (\omega^{n})^{q}$$

$$= (\omega^{k})^{p} \operatorname{car} \omega^{n} = 1$$

Ainsi pour tout $l \in \mathbb{N}$, $\omega^l = (\omega^k)^{pl} \in \{(\omega^k)^a / a \in \mathbb{Z}\}$ donc $\mathbb{U}_n \subset \{u^a / a \in \mathbb{Z}\}$. L'inclusion inverse étant évidente, $u = \omega^k$ est bien une racine primitive n-ième de 1.

Bilan Pour $k \in [0, n-1]$, ω^k est une racine primitive n-ième de 1 si et seulement si $k \wedge n = 1$.

6.3 Noyau de Fréjet

On rappelle l'expression du noyau de Dirichlet : $\forall n \in \mathbb{N}$ et $\forall x \notin 2\pi\mathbb{Z}$,

$$D_n(x) = \frac{\sin\left[\left(n + \frac{1}{2}\right)x\right]}{\sin\left(\frac{x}{2}\right)}$$

Si $x \in 2\pi \mathbb{Z}$,

$$D_n\left(x\right) = 2n + 1$$

6.3.1 Définition

Pour tout $n \in \mathbb{N}$, $\theta \in \mathbb{R}$, le noyau de Fréjet est définit par :

$$F_n(\theta) = \frac{1}{n+1} \sum_{k=0}^{n} D_k(\theta)$$

6.3.2 Simplification de l'expression de $F_n(\theta)$

- Si $\theta \in 2\pi \mathbb{Z}$, alors

$$F_n(\theta) = \frac{1}{n+1} \sum_{k=0}^{n} 2k + 1$$

$$= \frac{1}{n+1} \left(n+1+2 \sum_{k=0}^{n} k \right)$$

$$= \frac{1}{n+1} \left(n+1+n (n+1) \right)$$

$$= n+1$$

- Si $\theta \notin 2\pi \mathbb{Z}$, alors

$$F_{n}(\theta) = \frac{1}{n+1} \sum_{k=0}^{n} D_{k}(\theta)$$

$$= \frac{1}{n+1} \sum_{k=0}^{n} \frac{\sin\left[\left(k + \frac{1}{2}\right)\theta\right]}{\sin\left(\frac{\theta}{2}\right)}$$

$$= \frac{1}{(n+1)\sin\left(\frac{\theta}{2}\right)} \sum_{k=0}^{n} \sin\left[\left(k + \frac{1}{2}\right)\theta\right]$$

$$= \frac{1}{(n+1)\sin\left(\frac{\theta}{2}\right)} \sum_{k=0}^{n} \Im\left(e^{i(k+\frac{1}{2})\theta}\right)$$

$$= \frac{1}{(n+1)\sin\left(\frac{\theta}{2}\right)} \Im\left(\sum_{k=0}^{n} e^{i(k+\frac{1}{2})\theta}\right)$$

Or,

$$\sum_{k=0}^{n} e^{i\left(k+\frac{1}{2}\right)\theta} = e^{i\frac{\theta}{2}} \sum_{k=0}^{n} \left(e^{i\theta}\right)^{k}$$

$$= e^{i\frac{\theta}{2}} \left(\frac{e^{i\theta(n+1)} - 1}{e^{i\theta} - 1}\right)$$

$$= e^{i\frac{\theta}{2}} \left(\frac{\sin\left(\frac{(n+1)\theta}{2}\right) e^{i\theta\frac{n+1}{2}}}{\sin\left(\frac{\theta}{2}\right) e^{i\theta\frac{n+1}{2}}}\right) \quad \text{d'après } 2.4.2$$

$$= \frac{\sin\left(\frac{(n+1)\theta}{2}\right)}{\sin\left(\frac{\theta}{2}\right)} e^{i\theta\frac{n+1}{2}}$$

Ainsi,

$$\Im \left(\sum_{k=0}^{n} e^{i\left(k+\frac{1}{2}\right)\theta}\right) = \frac{\sin^{2}\left(\frac{(n+1)\theta}{2}\right)}{\sin\left(\frac{\theta}{2}\right)}$$

Donc,

$$F_n(\theta) = \frac{\sin^2\left(\frac{(n+1)\theta}{2}\right)}{(n+1)\sin\left(\frac{\theta}{2}\right)}$$

6.4 Polynômes de Chebychev de deuxième espèce

Soit $n \in \mathbb{N}$. Il s'agit de trouver un polynôme U_n tel que $\forall \theta \in \mathbb{R} \backslash \pi \mathbb{Z}$,

$$\frac{\sin\left[\left(n+1\right)\theta\right]}{\sin\theta} = U_n\left(\cos\theta\right)$$

Soit $\theta \in \mathbb{R} \setminus \pi\mathbb{Z}$, alors

$$\sin\left[\left(n+1\right)\theta\right] = \Im\left(e^{i\theta(n+1)}\right)$$

$$= \Im\left(i\sin\left[\left(n+1\right)\theta\right] + \cos\left[\left(n+1\right)\theta\right]\right)$$

$$= \Im\left(\left(i\sin\theta + \cos\theta\right)^{n+1}\right)$$

$$= \Im\left[\sum_{k=0}^{n} \binom{n+1}{k} i^{k} \sin^{k}\theta \cos^{n+1-k}\theta\right]$$

$$= \frac{1}{i} \sum_{k=0}^{n} \binom{n+1}{k} i^{k} \sin^{k}\theta \cos^{n+1-k}\theta$$

$$= \frac{1}{i} \sum_{p \in \mathbb{N} \subset \left[0, \frac{n}{2}\right]} \binom{n+1}{2p+1} (-1)^{p} i \left(1 - \cos^{2}\theta\right)^{p} \sin\theta \cos^{n-2p}\theta$$

Ainsi,

$$\frac{\sin\left[\left(n+1\right)\theta\right]}{\sin\theta} = \sum_{p\in\mathbb{N}\subset\left[0,\frac{n}{2}\right]} {n+1 \choose 2p+1} (-1)^p \left(1-\cos^2\theta\right)^p \cos^{n-2p}\theta$$
$$= U_n\left(\cos\theta\right)$$

Avec

$$U_n(x) = \sum_{p \in \mathbb{N} \subset [0, \frac{n}{2}]} {n+1 \choose 2p+1} (-1)^p (1-x^2)^p x^{n-2p}$$