Week 4 – Collective communication, topologies Main topics this week Collective communication, topologies Project match making Reading • Pacheco, Chapters 4 and 5 Lecture 7 Collective Communication and block partitioning MPI collective communication operations MPI_BCAST MPI_GATHER • MPI_SCATTER MPI_REDUCE Arguments similar to those of MPI_SEND and MPI_RECV

Implement by embedding virtual binary tree into actual topology broadcast or scatter Wek4-Collectee Communication 4 2/8/12

Other operations similarly based on trees

- · Broadcast and scatter go from root to leaves
- Gather and reduce go from leaves to roots, reduce operates on data while gather just collects it
- Other ops like MPI_ALLGATHER: all to all, communication goes in one direction then other
- Next week's lab assignment: butterfly allreduce
- Topology is butterfly
- · Communication goes in both directions

Research Computing @ CU Boulder

Veek 4 - Collective Communication

2/8/12

All that said

 You probably won't beat MPI_ALLGATHER which uses a better communication algorithm than plain old MPI_BCAST

But you can try!

Research Computing @ CU Boulder

Week 4 - Collective Communication

0/0/10

Consider an algorithm that requires collective communication

$$\begin{aligned} \alpha &= x^T y \\ x &= (\ x_1, \ \ x_2, \ \dots, \ \ x_n) \\ y &= (\ y_1, \ \ y_2, \ \dots, \ \ y_n) \end{aligned}$$

We have p processors, how to implement? first, assume p divides n

how do we divide the work?

how do we accumulate the result? does replicating data make sense?

Research Computing @ CU Boulder

Collective Communication

Data Decomposition Options

- Interleaved (cyclic)
- Easy to determine "owner" of each index
- Block
- Balances loads
- More complicated to determine owner if n not a multiple of ρ

Research Computing @ CU Boulder

Week 4 - Collective Communication

2/8/12

Block Decomposition Options

- $\, \cdot \,$ Want to balance workload when n not a multiple of p
- Each process gets either $\lceil n/p \rceil$ or $\lfloor n/p \rfloor$ elements
- Seek simple expressions
 - Find low, high indices given an owner
 - · Find owner given an index

Research Computing @ CU Boulder

Week 4 - Collective Communicatio

2/8/12

Method #1 • Let $r = n \mod p$ • If r = 0, all blocks have same size • Else • First r blocks have size $\lceil n/p \rceil$ • Remaining p - r blocks have size $\lfloor n/p \rfloor$

Method #1 Calculations • Indexing starts with 0 • First element controlled by process i $i \lfloor n/p \rfloor + \min(i,r)$ • Last element controlled by process i $(i+1) \lfloor n/p \rfloor + \min(i+1,r) - 1$ • Process controlling element j $\min(\lfloor j/(\lfloor n/p \rfloor + 1) \rfloor, \lfloor (j-r)/\lfloor n/p \rfloor)$

Method #2

- · Scatters larger blocks among processes
- First element controlled by process i
- $\lfloor in/p \rfloor$ * Last element controlled by process i

 $\lfloor (i+1)n/p \rfloor -1$ • Process controlling element j

 $\lfloor p(j+1)-1)/n \rfloor$

Examples
17 elements divided among 7 processes
17 elements divided among 5 processes
17 elements divided among 3 processes

Comparing Methods Operations Method 1 Method 2 2 Low index High index 6 4 Owner Assuming no operations for "floor" function

Pop Quiz • Illustrate how block decomposition method #2 would divide 13 elements among 5 processes. $13(0)/5 = 0 \quad 13(2)/5 = 5 \quad 13(4)/5 = 10$ $13(1)/5 = 2 \quad 13(3)/5 = 7$

#define BLOCK_LOW(id,p,n) ((i)*(n)/(p)) #define BLOCK_HIGH(id,p,n) \ (BLOCK_LOW((id)+1,p,n)-1) #define BLOCK_SIZE(id,p,n) \ (BLOCK_LOW((id)+1)-BLOCK_LOW(id)) #define BLOCK_OWNER(index,p,n) \ (((p)*(index)+1)-1)/(n))

Looping over Elements • Sequential program for (i = 0; i < n; i++) { ... } Index i on this process... • Parallel program size = BLOCL SIZE (id,p,n); for (i = 0; i < size; i++) { gi i + BLOCK_LOW(id,p,n); } ...takes place of sequential program's index i

When is a parallel implementation of our algorithm worth it? • Cost of sending k byte message: $T = t_s + k t_c$ • Cost of a floating-point operation: ω • On Frost (very roughly), • $T = (3 \times 10^{-6}) + k (6 \times 10^{-10}) \text{ sec}$ • $\omega = 4 \times 10^{-14} \text{ sec}$ 23 Tflops = 23 × 10¹² floating-point ops / second • $T/\omega = 7 \times 10^7$

Let's take it up a notch Matrix-vector multiply b = A*x (dense nxn A) One algorithm does dot products of rows of A with x Can we use what we did with dot products alone? Or do we need to reconsider? What's the best way to divide up this work? Consider costs of Arithmetic Communication

	_
Ways to partition A	
Block row Block column	
Checkerboard	
Vectors are partitioned accordingly	
Research Computing CU Boulder	
How does the picture change for	
matrix-matrix multiply?	
• C = A*B, both A and B nxn and dense (so C is, too)	
Need to partition all three matrices this time.	
Research Computing © CU Boulder Week 4 - Collective Communication	
What about matrix transpose?	
It's all about communication—no arithmetic!	