

Figure 1: TATM2 in plate notation

1 Tweet Author-Topic Model (with per-word topics)

The model is shown in Figure 1. The generative process is as follows:

- 1. For $k \in {1, ..., K}$:
 - Draw topic $\beta_k \sim \text{Dir}_V(\eta)$.
- 2. For $a \in 1, ..., A$:
 - Draw author's topic proportions $\theta_a \sim \text{Dir}_K(\alpha)$.
- 3. For each document (tweet) $d \in 1, ..., D$:
 - For each word $w \in 1, ..., N$:
 - Draw topic assignment $z_{d,n} \sim \operatorname{Mult}_K(\theta_a)$.
 - Draw word $w_{d,n} \sim \operatorname{Mult}_V(\beta_{z_{d,n}})$.

Given the hyperparameters α and η , the joint distribution of topics β , author-topic mixture θ , topic assignments **z** and words **w** is given by:

$$p(\theta, \beta, \mathbf{z}, \mathbf{w} | \alpha, \eta) = p(\theta | \alpha) p(\beta | \eta) \prod_{n=1}^{N} p(z_n | \theta) p(w_n | z_n, \beta_{z_{d,n}})$$
(1)

1.1 Complete conditionals

First, we denote θ_a to be the topic proportions of the author a of document d, i.e. $\theta_a = \theta_{as}$.

Local hidden variables. The complete conditional of the topic assignment $z_{d,n}$ is a multinomial,

$$p(z_{d,n} = k | \theta_a, \beta, w_{d,n}) \propto \exp\{\log \theta_{a,k} + \log \beta_{k,w_{d,n}}\}$$
(2)

Global hidden variables. In contrast with standard LDA, the topic proportions are now a global hidden variable. The complete conditional of the author-topic proportions is a posterior Dirichlet,

$$p(\theta_a|\beta, z_d) \propto \text{Dir}(\alpha + \sum_{d \in D_a} \sum_{n=1}^N z_{d,n}^k),$$
 (3)

where D_a is the set of documents whose author is a.

Finally, the complete conditional for the topic β_k is also a posterior Dirichlet,

$$p(\beta_k|\mathbf{z}, \mathbf{w}) \propto \text{Dir}(\eta + \sum_{d=1}^D \sum_{n=1}^N z_{d,n}^k w_{d,n})$$
 (4)

1.2 Variational parameters for batch variational inference

The variational parameters are:

- Global per-topic Dirichlets $\lambda_{1:K}$
- Global per-author Dirichlets $\gamma_{1:A}$
- Local per-word multinomials $\phi_{1:D,1:N}$

Each update of the local variables is defined as

$$\phi_{d,n} \propto \exp\{\Psi(\gamma_a) + \Psi(\lambda_{.,w_{d,n}}) - \Psi(\sum_{n} \lambda_{.,w_{d,n}})\}$$
 (5)

Each update of the global variational Dirichlets is defined as

$$\gamma_a = \alpha + \sum_{d \in D_a} \sum_{n=1}^N \phi_{d,n} \tag{6}$$

$$\lambda_k = \eta + \sum_{d=1}^{D_a} \sum_{n=1}^{N} \phi_{d,n}^k w_{d,n}$$
 (7)

1.3 Stochastic variational inference

Each update of the local variables is defined as

$$\phi_{d,n}^k \propto \exp\{\mathbb{E}[\log \theta_{a,k}] + \mathbb{E}[\log \beta_{k,w_{d,n}}]\}$$
(8)

During the updates of local variables, we utilize an intermediate local variable $\hat{\gamma}_d$, which serves as an indicator of convergence of ϕ_d during the inner loop of the E-step. Specifically,

$$\hat{\gamma}_d = \sum_{n=1}^N \phi_{d,n} \tag{9}$$

After fitting the local variables, we set the intermediate topics as

$$\hat{\lambda}_k = \eta + D \sum_{d=1}^{D_a} \sum_{n=1}^{N} \phi_{d,n}^k w_{d,n}$$
 (10)

Finally, the global topics and the global per-author distributions are updated as

$$\lambda_k^{t+1} = (1 - \rho_t)\lambda^t + \rho_t \hat{\lambda}_k \tag{11}$$

$$\gamma_a^{t+1} = \gamma_a^t + \hat{\gamma}_d \tag{12}$$