CLAIMS

1. Nitrooxyderivatives or salts thereof having the following general formula (I)

$$R-NR_{1c}-(K)_{k0}-(B)_{b0}-(C)_{c0}-NO_2$$
 (I)

5 wherein

c0 is 0 or 1;

b0 is 0 or 1, with the proviso that c0 and b0 can not be simultaneously 0;

k0 is 0 or 1;

R is the radical of an analgesic drug for chronic pain;

10 R_{1c} being H or straight or branched alkyl with from 1 to 5 carbon atoms;

K is (CO) or the bivalent radical (1C) having the following formula:

wherein the carbonyl group is bound to T_1 ; R_t and R'_t , same or different, are H, C_1 - C_{10} -alkyl, phenyl or benzyl, -COOR_y, in which $R_y = H$, C_1 - C_{10} -alkyl, phenyl, benzyl;

15 $B = -T_B - X_2 - T_{Bi}$ - wherein

 $T_B = (CO)$ or X, in which X = O, S, NH;

with the proviso that:

when b0 = 1 and k0 = 0, then $T_B = (CO)$;

when b0 = 1 and k0 = 1, being K = (CO), then $T_B = X$ as defined above;

20 $T_{BI} = (CO)$ or (X), wherein X is as defined above;

when c0 = 0, then $T_{BI} = -O_{-}$;

 X_2 is such a bivalent bridging group such as the corresponding precursor of B, having the formula Z- T_B - X_2 - T_{BI} -Z' in which Z, Z' are independently H or OH, is selected from the following compounds:

- Aminoacids: L-carnosine (CI), penicillamine (CV), N-acetylpenicillamine (CVI), cysteine (CVII), N-acetylcysteine (CVIII):

5

- Hydroxya cids: gallic acid (DI), ferulic acid (DII), gentisic acid (DIII), caffeic acid (DV), hydro caffeic acid (DVI), p-coumaric acid (DVII), vanillic acid (DVIII), syringic acid (DXI):

- aromatic polyalcohols: hydroquinone (EVIII), methoxyhydroquinone (EXI), hydroxyhydroquinone (EXII), conyferyl alcohol (EXXXII), 4-hydroxyphenetyl alcohol (EXXXIII), p-coumaric alcohol (EXXXIV):

10 $C = bivalent radical having the formula <math>-T_c-Y-$ wherein

 $T_c = (CO)$ or X being as defined above; with the proviso that when b0 = 0 and k0 = 1:

- $T_c = (CO)$ when K = (1C),
- 15 $T_c = X$ as defined above when K = (CO); and

Y has one of the following meanings:

$$R_{TIX}$$
 R_{TIIX}
 $|$
- -[C]_{nIX} - Y³ - [C]_{nIIX}-O- (III)
 $|$
 R_{TIX}
 R_{TIIX}

wherein:

20

nIX is an integer of from 0 to 5;

nIIX is an integer of from 1 to 5;

25 R_{TIX}, R_{TIX}, R_{TIIX}, the same or different, are H or straight or branched C₁-C₄-alkyl;

Y³ is a saturated, unsaturated or aromatic heterocyclic ring with 5 or 6 atoms, containing one to three heteroatoms, said heteroatoms being the same or different and selected from nitrogen, oxygen or sulphur;

or Y may be:

10

an alkylenoxy group -R'O- in which R' is straight or branched C₁-C₂₀ or a cycloalkylene with from 5 to 7 carbon atoms, and wherein in cycloalkylene ring one or more carbon atoms can be replaced by heteroatoms and the ring may present side chains of R' type, R' being as defined above;

or one of the following groups:

$$- - (CH_{2} - CH - CH_{2} - O)_{nf}, \qquad (CH_{2} - CH - CH_{2} - O)_{nf}, - ONO_{2}$$

wherein nf is an integer from 1 to 6;

wherein $R_{1f} = H$, CH_3 and nf' is an integer from 1 to 6;

wherein n3 is an integer from 0 to 5 and n3' is an integer from 1 to 3; or

in which n3 and n3' have the meaning mentioned above;

R is the radical of an analgesic drug having formula (II):

$$R_{2} \longrightarrow W \longrightarrow (CH_{2})_{m} \longrightarrow \{$$

$$R_{1} \longrightarrow (CH_{2})_{m} \longrightarrow (D)$$

wherein:

W is a carbon or nitrogen atom;

m is an integer of from 0 to 2;

 $R_0 = H$, -(CH₂)_n-COOR_y, R_y being as defined above;

5 n is an integer of from 0 to 2;

 $R_1 = H$; when W = N, R_1 is the electronic doublet on nitrogen atom (free valence);

R₂ is selected from the following groups:

- phenyl, optionally substituted with a halogen atom or with a group selected from
 OCH₃, -CF₃, nitro;
- mono or dihydroxy-substituted benzyl, preferably 3,4-dihydroxybenzyl;
 - amidino group: H₂N(C=NH)-;
 - a radical of formula (IIA), wherein optionally an ethylenic unsaturation may be present between the carbon atoms in position 1 and 2, or 3 and 4 or 4 and 5:

$$Q = (CH)_{\overline{p_{3}}} + (CH)_{\overline{p_{2}}} + (CH)_{\overline{p_{2}}} + (CH)_{\overline{p_{1}}} + (CH)_{\overline{p_{1}}} + (CH)_{\overline{p_{1}}} + (CH)_{\overline{p_{1}}} + (CH)_{\overline{p_{1}}} + (CH)_{\overline{p_{2}}} + (CH)_{\overline{p_{1}}} + (CH)_{\overline{p_{2}}} + (CH)_{$$

15 wherein:

p, p_1 , p_2 are integers, same or different, and are 0 or 1;

p₃ in an integer of from 0 to 10;

R₄ is hydrogen, straight or branched C₁-C₆-alkyl, free valence;

R₅ may have the following meanings:

20 - hydrogen,

25

- straight or branched C1-C6-alkyl,
- C3-C6-cycloalkyl,
- OR_A, R_A having the following meanings:
- straight or branched C₁-C₆-alkyl, optionally substituted with one or more halogen atoms, preferably F,
- phenyl optionally substituted with a halogen atom or with one of the following groups: -OCH₃, -CF₃, nitro;

R₆, R_{6A}, R₇, R₈, the same or different, are H, methyl or free valence, with the proviso that when an ethylenic unsaturation is present between C₁ and C₂ in radical of formula (IIA), R₄ and R₅ are free valences able to form the double bond between C₁ and C₂; if the unsaturation is between C₃ and C₄, R₆ and R₇ are free valence able to form the double bond between C₃ and C₄; is the unsaturation is between C₄ and C₅, R₇ and R₈ are free valence able to form the double bond between C₄ and C₅;

Q is H, OH, OR_B , R_B being benzyl, straight or branched C_1 - C_6 -alkyl, optionally substituted with one or more halogen atoms, preferably F, phenyl optionally substituted with a halogen atom or with one of the following groups: -OCH₃, -CF₃, nitro; or

Q may have one of the following meanings:

- straight or branched C1-C6-alkyl,
- C3-C6-cycloalkyl,
- guanidino (H₂NC(=NH)NH-).
- thioguanidino (H₂NC(=S)NH-).

in formula (II) R_2 with R_1 and with W = C form together a C_4 - C_{10} saturated or unsaturated ring.

20 2. Compounds according to claim 1, characterized in that Y³ in formula (III) is selected from:

25 (Y19)

5

10

15

$$(Y7)$$
 $(Y8)$ $(Y9)$ $(Y10)$ $(Y11)$ $(Y18)$ $(Y12)$ $(Y13)$ $(Y14)$ $(Y15)$ $(Y16)$ $(Y17)$

3. Compounds according to claim 1, characterized in that in formula (I):

c0 is 1;

b0 is 0 or 1;

k0 is 0 or 1;

10 $R_{1c} = H$;

5

K is (CO) or the bivalent radical (1C) as defined in claim 1;

 $B = -T_B - X_2 - T_{BI}$ - wherein

 $T_B = (CO)$ or X, in which X = O, S, NH;

with the proviso that:

15 when b0 = 1 and k0 = 0, then $T_B = (CO)$;

when b0 = 1 and k0 = 1, being K = (CO), then $T_B = X$ as defined above;

 $T_{BI} = (CO)$ or (X), wherein X is as defined above;

when c0 = 0, then $T_{BI} = -O$ -;

the precursor of B is N-acetylcysteine or ferulic acid;

20 $C = bivalent radical having the formula <math>-T_c-Y$ -

wherein

25

 $T_c = (CO)$ or X being as defined above;

with the proviso that when b0 = 0 and k0 = 1:

- $T_c = (CO)$ when K = (1C),

- $T_c = X$ as defined above when K = (CO); and

Y has one of the following meanings:

$$\begin{array}{c|cccc} R_{TIIX} & R_{TIIX} \\ & & & \\ & & & \\ \hline - & -[C]_{nIX} & -Y^3 - [C]_{nIIX} - O - & (III) \\ & & & \\ R_{TIX} & & R_{TIIX} \end{array}$$

5

wherein:

nIX and nIIX are 1;

R_{TIX}, R_{TIX}, R_{TIIX}, R_{TIIX} are H;

10 Y³ is selected from the following bivalent radicals:

or Y may be:

an alkylenoxy group -R'O- in which R' is straight or branched C2-C6 alkyl; or

15

wherein R_{1f} = H, CH₃ and nf' is an integer from 1 to 4;

wherein n3 is an integer from 0 to 3 and n3' is an integer from 1 to 3; R is the radical of an analgesic drug having formula (II):

$$R_{2} \xrightarrow{\begin{array}{c} R_{0} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array}}$$
 (II)

20

wherein:

W is a carbon atom;

 $R_0 = H$ or $-(CH_2)_n$ -COOH, wherein n is an integer of from 0 to 2; $R_1 = H$; R_2 is selected from the following groups: 5 - 3,4-dihydroxybenzyl; or a radical of formula (IIA) as defined in claim 1, wherein: p and p₁ are are 0 or 1: p_2 and p_3 are 0; R₄ and R₅ are hydrogen, straight or branched C₁-C₆-alkyl or free valence; 10 R_6 and R_{6A} are H; with the proviso that when an ethylenic unsaturation is present between C1 and C2 in radical of formula (IIA), R4 and R5 are free valences able to form the double bond between C₁ and C₂; Q is H, CH₃ or 15 - guanidino (H2NC(=NH)NH-), or - thioguanidino (H2NC(=S)NH-); in formula (II) R2 with R1 and with W form together a C6 saturated ring. 4. Compounds according to claims 1-3, wherein when in formula (II) W = C, m = 1 and $R_0 = -(CH_2)_n$ -COOR_y, wherein n = 1 and $R_y = H$; R_2 and R_1 with W as 20 defined above form the cyclohexane ring; the drug precursor of R having the formula R-NH2 is known as gabapentin; when in formula (II) W = C, m = 0 and R_0 if defined as for gabapentin with n =

m is 0 or 1:

25

30

as norvaline:

when in formula (II) W = C, m = 0 and R_0 if defined as for gabapentin with n = 0; $R_1 = H$; R_2 is the radical of formula (IIA) in which $p = p_1 = 1$, $p_2 = p_3 = 0$, $R_4 = R_5 = R_6 = R_{6A} = H$, Q is the guanidino group; the drug precursor of R having the formula R-NH₂ is known as arginine:

0; $R_1 = H$; R_2 is the radical of formula (IIA) in which $p = p_1 = 1$, $p_2 = p_3 = 0$, $R_4 = R_5 = R_6 = R_{6A} = H$, Q = H; the drug precursor of R having the formula R-NH₂ is known

when in formula (II) W = C, m = 0 and R_0 if defined as for gabapentin with n = 0; $R_1 = H$; R_2 is the radical of formula (IIA) in which $p = p_1 = 1$, $p_2 = p_3 = 0$, $R_4 = R_5$

= R_6 = R_{6A} = H, Q is the thioguanidino group; the drug precursor of R having the formula R-NH₂ is known as thiocitrulline;

when in formula (II) W = C, m = 1 and R_0 if defined as for gabapentin with n = 1; $R_1 = H$; R_2 is the radical of formula (IIA) in which $p = p_1 = p_2 = p_3 = 0$, $R_4 = H$, $R_5 = Q = CH_3$; the drug precursor of R having the formula R-NH₂ is known as pregabalin;

5

10

20

25

when in formula (II) W = C and has (S) configuration, m = 1 and R_0 if defined as for gabapentin with n = 1; $R_1 = H$; R_2 is the radical of formula (IIA) in which $p = p_1 = p_2 = p_3 = 0$, $R_4 = H$, $R_5 = Q = CH_3$; the drug precursor of R having the formula R-NH₂ is known as (S)3-isobutilGABA;

when in formula (II) W = C and has (S), m = 0; $R_0 = R_1 = H$; R_2 is the radical of formula (IIA) in which $p = p_1 = 1$, $p_2 = p_3 = 0$, $R_4 = R_5 = R_6 = R_{6A} = H$, Q is the guanidino group; the drug precursor of R having the formula R-NH₂ is known as agmatine;

when in formula (II) W = C, m = 0; R_0 if defined as for gabapentin with n = 2; $R_1 = H$; R_2 is the radical of formula (IIA) in which $p = p_1 = p_2 = p_3 = 0$, R_4 and R_5 are free valences and between C_1 and C_2 there is an ethylenic unsaturation, Q = H; the drug precursor of R having the formula R-NH₂ is known as vigabatrin;

when in formula (II) W = C, m = 0; R_0 if defined as for gabapentin with n = 0; $R_1 = H$; R_2 is the 3,4-dihydroxybenzyl radical; the drug precursor of R having the formula R-NH₂ is known as 2-amino-3-(3,4-dihydroxyphenylpropanoic acid (dopa).

- 5. Compounds according to claims 1-3, wherein the drug precursors of R in formula (I) are selected from lamotrigine, topiramate, zonisamide, carbamazepine, felbamate, amineptine, amoxapine, demexiptiline, desipramine, nortriptyline, tianeptine.
- 6. Compounds according to claims 1, 3 and 4 selected from:
- 1-[4-(nitrooxymethyl)benzoylaminomethyl]-cyclohexaneacetic acid (XVA),

1-[3-(nitrooxymethyl)benzoylaminomethyl]-cyclohexaneacetic acid (XVIA),

(XVIA)

1-[2-(nitrooxymethyl)benzoylaminomethyl]-cyclohexaneacetic acid (XVIIA),

5

10

(XVIIA)

1-(4-nitrooxybutanoylaminomethyl)-cyclohexaneacetic acid (XVIIIA),

(XVIIIA)

1-(nitrooxymethoxycarbonylaminomethyl)-cyclohexaneacetic acid (XIXA),

5

10

1-{[4-(nitrooxymethyl)benzoyloxy]methoxycarbonylaminomethyl}-cyclohexaneacetic acid (XXA),

(XXA)

1-{[3-(nitrooxymethyl)benzoyloxy]methoxycarbonylaminomethyl}-cyclohexaneacetic acid (XXIA),

(XXIA)

 $1-\{[2-(nitrooxymethyl)benzoyloxy] methoxy carbonylaminomethyl\}-cyclohexane acetic acid (XXIIA),\\$

1-[3-(nitrooxymethyl)phenoxycarbonylaminomethyl]-cyclohexaneacetic (XXIIIA),

acid

5 {2-methoxy-4-[(1E)-3-[4-(nitrooxybutoxy)-3-oxa-1-propenylphenoxy]-carbonylamino-methyl}-cyclohexaneacetic acid (XXIVA),

3-(S)-[4-(nitrooxymethyl)benzoylaminomethyl]-5-methyl-hexanoic acid (XXVA),

10

3-(S)-[3-(nitrooxymethyl)benzoylaminomethyl]-5-methyl-hexanoic acid (XXVIA),

5

3(S)-[2-(nitrooxymethyl)benzoylaminomethyl]-5-methyl-hexanoic acid (XXVIIA),

3(S)-[4-(nitrooxybutanoyl)aminomethyl]-5-methyl-hexanoic acid (XXVIIIA),

(XXVIIIA)

3(S)-[4-(nitrooxymethoxycarbonyl)aminomethyl]-5-methyl-hexanoic acid (XXIXA),

10 3(S)-{[2-(nitrooxymethyl)benzoyloxy]methoxycarbonylaminomethyl}-5-methyl-hexanoic acid (XXXA),

3(S)-{[3-(nitrooxymethyl)benzoyloxy]methoxycarbonylaminomethyl}-5-methyl-hexanoic acid (XXXIA),

5 3(S)-[4-(nitrooxymethyl)benzoyloxy]methoxycarbonylaminomethyl}-5-methyl-hexanoic acid (XXXIIA),

3(S)-[(3-nitrooxymethyl)phenoxycarbonylaminomethyl]-5-methyl-hexanoic

acid

10 (XXXIIIA),

3(S)-{2-methoxy-4-[(1E)-3-[4-(nitrooxybutoxy]-3-oxa-1-propenylphenoxy]carbonyl-aminomethyl}-5-methyl-hexanoic acid (XXXIVA),

(XXXIVA)

1-[4-(nitrooxybutyloxycarbonyl)aminomethyl]-cyclohexaneacetic acid (XXXVA),

5

- 7. Compounds according to claims 1-6, in combination with NO-donor compounds.
- 8. Compounds according to claim 7, wherein the NO-donors contain in the molecule radicals of the following drugs: aspirin, salicylic acid, ibuprofen, paracetamol, 10 naproxen, diclofenac and flurbiprofen.
 - 9. Pharmaceutical compositions comprising compounds according to claims 1-8 as active ingredients.

15

- 10. Compounds according to claims 1-8 to be employed as a drug.
- 11. Use of the compounds according to claims 1-8 for preparing drugs for chronic pain.
- 12. Use of the compounds according to claim 11, wherein the chronic pain is 20 neurophatic pain.