Содержание

Ι	Определения	2
1	Первообразная, неопределенный интеграл	3
	1.1 Первообразная	3
	1.2 Неопределенный интеграл	3
2	Теорема о существовании первообразной	4
3	Таблица первообразных	5
4	Равномерная непрерывность	6
5	Площадь, аддитивность площади, ослабленная аддитивность	7
	5.1 Первое определение площади	7
	5.2 Второе определение площади	7
II	І Теоремы	8
6	Теорема Кантора о равномерной непрерывности	9
7	Теорема Брауэра о неподвижной точке	10
	7.1 Игра "Текс"	10
	7.2 Сама теорема	10
8	Теорема о свойствах неопределенного интеграла	13

Часть І

Определения

1 Первообразная, неопределенный интеграл

1.1 Первообразная

$$f:\langle a,b\rangle\to\mathbb{R}$$

 $F:\langle a,b \rangle \to \mathbb{R}$ — первообразная f на $\langle a,b \rangle$, если для любого $x \in \langle a,b \rangle$, F — дифференцируема в точке x, и F'(x)=f(x).

Пример

$$f(x) = \sin x \Leftrightarrow F(x) = -\cos x + C$$

1.2 Неопределенный интеграл

Неопределенным интегралом функции f на $\langle a,b \rangle$ называют множество всех её первообразных.

Обозначение: $\int f, \int f(x)dx = \{F+C, C \in \mathbb{R}\}$, где F — любая первообразная.

2 Теорема о существовании первообразной

Пусть f непрерывна на $\langle a,b\rangle\Rightarrow$ существует такая функция F на $\langle a,b\rangle,$ что F'=f.

Доказательство

В кредит

3 Таблица первообразных

1.
$$f(x) = k$$
, $F(x) = kx$

2.
$$f(x) = x^n$$
, $F(x) = \frac{x^{n+1}}{n+1}$

3.
$$f(x) = \frac{1}{x}$$
, $F(x) = \ln|x|$

4.
$$f(x) = e^x$$
, $F(x) = e^x$

5.
$$f(x) = a^x$$
, $F(x) = \frac{a^x}{\ln a}$

$$6. \ f(x) = \sin x, \ F(x) = -\cos x$$

7.
$$f(x) = \cos x, F(x) = \sin x$$

8.
$$f(x) = \frac{1}{\sin^2 x}$$
, $F(x) = -\operatorname{ctg} x$

9.
$$f(x) = \frac{1}{\cos^2 x}$$
, $F(x) = \operatorname{tg} x$

10.
$$f(x) = \frac{1}{\sqrt{1-x^2}}, F(x) = \arcsin x$$

11.
$$f(x) = \frac{1}{1+x^2}$$
, $F(x) = \operatorname{arctg} x$

4 Равномерная непрерывность

Функция $f:\langle a,b \rangle \to \mathbb{R}$ равномерно непрерывна на $\langle a,b \rangle,$ если:

$$\forall \varepsilon > 0 \ \exists \delta > 0, \ \forall x_0, x : |x - x_0| < \delta, \ |f(x) - f(x_0)| < \varepsilon$$

5 Площадь, аддитивность площади, ослабленная аддитивность

5.1 Первое определение площади

Пусть E — множество всех ограниченных подмножество в \mathbb{R}^2 (или множество всех фигур).

Тогда площадь — это функция $\sigma: E \to [0, +\infty)$ со свойствами:

1. аддитивность

Если
$$A = A_1 \sqcup A_2 \Rightarrow \sigma(A) = \sigma(A_1) + \sigma(A_2)$$

2. нормировка

$$\sigma(\langle a, b \rangle \times \langle c, d \rangle) = (d - c)(b - a)$$

Замечание

Площадь монотонна, то есть если:

$$A \subset B \Rightarrow \sigma(A) \le \sigma(B)$$

 σ (вертикального отрезка) = 0

5.2 Второе определение площади

$$\sigma: E \to [0, +\infty)$$

- монотонна
- нормировка
- ослабленная аддитивность:

$$E=E_1\cup E_2,\, E_1\cap E_2$$
 — вертикальный отрезок, E_1 и E_2 — по разные стороны этого отрезка.
$$\sigma(E)=\sigma(E_1)+\sigma(E_2)$$

Часть II

Теоремы

6 Теорема Кантора о равномерной непрерывности

Пусть $f:X\to Y$ — метрические пространства, f непрерывна на X,X — компактно. Тогда f — равномерное непрерывно на X.

Доказательство (от противного)

Воспользуемся тем свойством, что если X — компактно, то X и секвенциально компактно.

Предположим противное:

$$\exists \varepsilon > 0 \ \delta = \frac{1}{n} \ \exists x_n, \widetilde{x_n} \colon \rho(x_n, \widetilde{x_n}) < \frac{1}{n} \ \rho(f(x_n), f(\widetilde{x_n})) \geq \varepsilon$$

Тогда выберем сходящуюся подпоследовательность из x_n $x_{n_k} \to a \in X$, $\widetilde{x_{n_k}} \to a \in X$.

Тогда
$$f(x_{n_k}) \to f(a)$$
 и $f(\widetilde{x_{n_k}}) \to f(a)$, то

$$\rho(f(x_{n_k}),f(\widetilde{x_{n_k}})) \to 0$$
 (по неравенству треугольника)

Что и противоречит изначальному условию.

7 Теорема Брауэра о неподвижной точке

Пусть $f:B(0,1)\subset \mathbb{R}^m \to B(0,1)$ — непрерывное, тогда

$$\exists x_0 : f(x_0) = x_0$$

Доказательство

7.1 Игра "Гекс"

Пусть есть поле $n \times m$, состоящее из правильных шестиугольников (гексов). Также два игрока на каждом своём ходу красят гексы в белый или чёрный цвет. Тогда для любой раскраски найдётся либо чёрная тропинка, соединяющая верхнюю и нижнюю часть поля, либо белая тропинка, соединяющая левую и правую часть поля.

Доказывается от противного

7.2 Сама теорема

Теперь заменим гексы на обычную координатную плоскость, причём игра, по сути, останется такой же. Теперь перейдём к самой теореме.

Шар с лёгкостью заменяется на обычный квадрат $[0,1] \times [0,1]$

Пусть $f:[0,1]^2 \to [0,1]^2$ — непрерывна. Тогда

$$\exists a \in [0,1]^2, f(a) = a$$

$$a \in [0, 1]^2$$

$$a = (a_1, a_2)$$

$$f(x) \in \mathbb{R}^2$$

$$f(x) = (f(x)_1, f(x)_2)$$

Доказательство

Пусть ρ — функция, заданная на $[0,1]^2 \times [0,1]^2$

$$\rho(x,y) = \max(|x_1 - y_1|, |x_2 - y_2|)$$
 — непрерывна на $[0,1]^2$

$$x_n \to a$$

$$y_n \to b$$

$$\rho(x_n, y_n) \to \rho(a, b)$$

Очевидно, что для любых $x,y:x\neq y\Rightarrow \rho(x,y)>0$

Теперь к самой теореме

Пусть для любого $x \in [0,1]^2$ $f(x) \neq x$. Тогда $\rho(x,f(x)) > 0$, но ρ непрерывно по x и $[0,1]^2$ — компакт, значит по теореме Вейерштрасса существует такое $\varepsilon > 0$, что

$$\min_{x \in [0,1]^2} \rho(x, f(x)) = \varepsilon > 0$$

По теореме Кантора для этого ε найдётся такая δ (будем считать, что $\sqrt{2}\delta<\varepsilon$), что

$$\forall x, \widehat{x} \in [0, 1]^2 : ||x - \widehat{x}|| < \delta \cdot \sqrt{2} \Rightarrow ||f(x) - f(\widehat{x})|| < \varepsilon$$

Берём $\frac{1}{n} < \varepsilon$

Доска

Узел
$$(l,k) \to (\frac{l}{n},\frac{k}{n}) \in [0,1]^2$$

$$0 \le l, k \le n$$

Красим узлы

 $v\,\,-\,$ логический узел, $v=(v_1,v_2)$

$$c(v) = \min\left\{i : \left\| f(\frac{v}{n})_i - \frac{v_i}{n} \right\| \ge \varepsilon\right\}$$

По лемме об игре в гексы есть одноцветная тропинка.

Путь v^0 — начальная точка тропинки, v^N — конечная.

$$v_1^0 = 0$$

$$f(\frac{v^0}{n}) \in [0,1]^2$$
, r.e. $f(\frac{v^0}{n})_1 \ge 0$

$$\varepsilon \le f(\frac{v^0}{n})_1$$

Аналогично для $v_1^N=1$

$$f(\frac{v^N}{n})_1 \le 1$$

$$f(\frac{v^N}{n})_1 - \frac{v_1^N}{n} \le -\varepsilon$$

$$f(\frac{v^0}{n})_1 - \frac{v_1^0}{n} \ge \varepsilon$$

Поскольку для любых x верно, что $|f(x)_1 - x_1| \ge \varepsilon$, то из этого следует, что какой-то прыжок был длиной не меньше 2ε , но такое невозможно, поскольку по условию если $||x - \widehat{x}|| < \frac{1}{n} \Rightarrow ||f(x) - f(\widehat{x})|| < \varepsilon$

8 Теорема о свойствах неопределенного интеграла

Пусть f, g имеют первообразную на $\langle a, b \rangle$. Тогда:

- 1. $\int f + \int g = \int (f + g)$ $\forall \alpha \in \mathbb{R} \int (\alpha f) = \alpha \int f$
- 2. $\forall \varphi: \langle c,d \rangle \to \langle a,b \rangle, \ \varphi$ дифференцируема $\int f(\varphi(t))\varphi'(t)dt = F(\varphi(t)) + C, \ \text{где} \ F \ \text{первообразная} \ f$
- 3. $\forall \alpha, \beta \in \mathbb{R}, \ \alpha \neq 0 : \int f(\alpha x + \beta) dx = \frac{1}{\alpha} F(\alpha x + \beta) + C$
- 4. f, g дифференцируемы на $\langle a, b \rangle$

 $f' \cdot g$ имеет первообразную на $\langle a,b \rangle$

Тогда $f \cdot g'$ тоже имеет первообразную и

$$\int f'g = fg - \int fg'$$

Доказательство

- 1. (F+G)' = f+g $(\alpha F)' = \alpha f$
- 2. $(F(\varphi(t)))' = f(\varphi(t))\varphi'(t)$
- 3. $(\frac{1}{\alpha}F(\alpha x + \beta))' = f(\alpha x + \beta)$
- 4. (fg)' = f'g + fg', r.e. $fg = \int f'g + \int fg'$