The Other Improper Integral

Chase Mathison¹

Shenandoah University

21 March 2024

Announcements

- 4 Homework
- Corrections
- Office Hours

Now let's examine a seemingly simple integral:

$$\int_{-1}^{1} \frac{1}{x^2} dx$$

Clearly the issue is that we're trying to integrate a function that has a ____ at x=0. This gives rise to the second type of improper integral.

• Suppose f(x) is continuous on the interval [a, b), then

$$\int_{a}^{b} f(x) dx =$$

② Suppose f(x) is continuous on the interval (a, b], then

$$\int_{a}^{b} f(x) dx =$$

3 Suppose f(x) is continuous on the interval [a, b], except at the point x = c, then

$$\int_{a}^{b} f(x) dx =$$

Just like before, if the lir	mits in the previous slide exist, we say the improper
integral	with the same value as the limit. If the limit fails
to exists, we say the improper integral	

Does the improper integral

$$\int_{0}^{1} \frac{1}{\sqrt{x}} dx$$

converge or diverge?

Let's take a look at the example

$$\int_{-1}^{1} \frac{1}{x^2} dx$$

one more time.

What is the value of a that gives

$$\int_{0}^{1} \frac{1}{x^{a}} dx = 2.5?$$