

A Logo-Based approach for Recognizing Multiple Products on the Shelf

Trisha Mittal, B. Laasya, Dr. Dinesh Babu J

SAI Intelligent Systems Conference 2016 21-22 September 2016 London UK

What is the Problem?

Multiple instance Recognition in Retail Scenario

Figure 1 Grocery Shelf Images from Grocery Products Database

Challenges

- 1. Ever growing dataset (many products have similar appearance, with only minor differences in the color of the package, size of the package, or some text on the box)
- 2. Per-exemplar training
- 3. Diverse backgrounds
- 4. Deformable products

We used the Grocery Products Dataset^[1].

- Cross-dataset settings
- Our algorithm was tested on 238 different products over 80 Shelves distributed over 3 categories^[2].
- Logos were extracted manually from training images of the products.

[1] George, Marian, and Christian Floerkemeier. "Recognizing Products: A Per-exemplar-label Image Classification Approach." In Computer Vision–ECCV 2014, pp. 440-455. Springer International Publishing, 2014.

[2] Results have been reported on the subset of this dataset

Figure 2 Product Images from Grocery Products Dataset. cereals, tea, rice (row-wise)

Figure 3 Grocery Shelf Images from Grocery Products Dataset

Figure 4 Manually Extracted Logos of the Products from Grocery Products Database

Figure 5 Flowchart representing the methodology followed.

Figure 5 Flowchart representing the methodology followed.

- To shortlist a set of k logos from the logo space, we compute the SIFT keypoints and descriptors (logo keypoints) of the logos in the training data, which are then extracted and stored. This is a one time computation.
- Then we extract the SIFT keypoints and descriptors of the particular shelf image (shelf keypoints). Each of the shelf keypoints are matched with the logo keypoints using a FLANN matcher.
- Once this is done, for every shelf we count the number of keypoints that got matched with it and pick top k logos based on these matched keypoints.

Figure 6 Selection of top k logos

Figure 5 Flowchart representing the methodology followed.

- The next step is to use scale invariant template match to localize the logos. This helps in selecting a few regions rather than doing an exhaustive search.
- To get rid of the false positives, we compute SIFT keypoints and descriptors within each of the selected regions. Then, match these keypoints to the corresponding logo with a FLANN matcher. If the matches are low, we eliminate the selected region.

Figure 5 Flowchart representing the methodology followed.

Figure 7 Extraction of region around the logo.

Figure 5 Flowchart representing the methodology followed.

- To do this, we extract a region around the logo and do a scale-invariant template match in RGB space separately. (To recognize products color plays an important role.)
- The best value of the summation of all the three indices is used to determine the product.

Figure 8 The final output of the Grocery Products Recognition System.

Results

The performance of our approach was evaluated using the mean Average Precision (mAP) measure.

$$mAP = \frac{TP}{TP + FP}$$

Where TP stands for True Positives and FP for False Positives.

Results

Category	Accuracy (mAP)
Cereal	80.58
Rice	90.22
Tea	71.86

Table 1 Accuracy for logo detection step.

Results

Category	Baseline Accuracy (mAP)	Accuracy (mAP)
Cereal	49.43	60.21
Rice	25.083	61.15
Tea	21.34	30.70

Table 2 Accuracy for the entire Grocery Product Recognition System.

Conclusion (USPs)

Per-exemplar training

Thank you:)