pH curve

Equivalence point when $[\Theta H^{-}] = [H_3 O^{+}]$ $pH = \log_{10}[H_3O^+]$

Henderson-Hasselbach equation:

$$pH = pK_a + \log_{10} \left(\frac{[A^-]}{[HA]} \right)$$

 $pH = pK_a$ at half equivalence point Procedure:

- Standardize NaOH $(N_1V_1 = N_2V_2)$
- Titrate weak acid with NaOH
- Equivalence point: Peak of $\frac{\Delta pH}{\Delta V}$

Hardness of water

Secondary standard: EDTA Indicator used: Erichrome Black T (EBT)

Initial color: **Red wine** due to cations in the analyte Intermediate color: Purple

Final color: Bright blue due to free EBT, Ca^{2+} chelated with EDTA

Procedure:

- Standardize EDTA
- Titrate EDTA with $CaCO_3$

Hardness in $ppm = \left(\frac{0.1 \cdot x \cdot y}{m}\right) \cdot 10^6$ x = Volume of EDTA; y = Molarity(M) of EDTAm = Mass of water sample (gm)

Iodometry

$$2Cu^{2+} + 4I^- \rightleftharpoons Cu_2I_2 + I_2$$

Forward shifted rxn. due to continuous removal of Cu_2I_2 (insol. complex)

 I_2 liberated titrated against **hypo** with starch as indicator Sources of error:

- Aerial oxidation: $4I^- + 4H^+ + O_2 \rightleftharpoons 2I_2 + 2H_2O$ Minimized by addition of Na_2CO_3 to remove
- Volatility of $I_2: I^- + I_2 \rightleftharpoons I_3^-$ Solved by adding excess I^-

Dibenzalacetone

Final product: β -hydroxy aldehyde/ketone (aldol)

Dehydration is usually exothermic

Benzaldehyde: Best reagent for cross aldol rxn (no

 α -hydrogens : single product)

Procedure:

- Synthesis of dibenzalacetone
- Recrystallization

Simple stoichiometry/aldol mechanism problems.

Schiff's base ligand

Aldehvdes + Amines = Schiff's base (mild conditons)

Schiff's base ligand formed: Salen's ligand (Mol. wt = 268.31 gm/mol

The above ligand is further grinded with

 $Cu(OAc)_2 \cdot 2H_2O$ to obtain a Cu(II) comple

Color of grinded product: Bright Yellow

Kinetics

Pseudo 1^{st} order reaction (rate constant = k')

 $-\frac{d[I_2]}{dt}=k'[I_2]^x$ $k'=k[CH_3COCH_3]^y[H^+]^z$ where the concentration terms are approximately constant

 $T = \frac{I}{I_0}$ where T is the transmittance and I, I_0 are the intensities of reflected and transmitted lights respectively

 $A = -\log_{10} T = \log_{10} \left(\frac{I_0}{I}\right)$, where A is the absorbance of the sample

Beer-Lambert law: $A = \epsilon cl$ where ϵ is the molar absorption coefficient (characteristic of absorbing species) and l is the length of sample through which light passes

Optical density : ϵc

 I_3^- : Brownish red species I_2, I_3^- : Iodinating agents

Equilibrium constant

 $K_c = \frac{[CH_3COOC_2H_5][H_2O]}{[CH_3COOH][C_2H_5OH]}$ Acid catalyzed reaction

Procedure:

- Standardize NaOH solution $(N_1V_1 = N_2V_2)$; (Phenolphthalein indicator)
- Standardize *HCl* solution (Phenolphthalein indicator)

Conductometry

Resistance $R = \rho \frac{l}{A}$, where l = distance b/w electrodes and A = area of electrodes

Conductance $\Lambda = \frac{1}{R}$

specific conductance $\kappa = \frac{1}{\rho} = \frac{1}{R} \cdot \frac{l}{A}$

Cell constant = $\frac{l}{A}$

AC current should be used, because a DC current applied to an electrolyte produces a back EMF, opposing current flow

Equivalent conductance $(\Lambda_c) = \frac{1000\kappa}{C}$

Degree of dissociation $(\alpha) = \frac{\Lambda_c}{\Lambda_0}$

Dissociation constant $(K_a) = \frac{C\alpha^2}{1-\alpha}$

Where C = concentration of solution, $\Lambda_0 = \text{conductor}$ tance at infinite dilution

Saponification

Saponification: Triglycerides + $[OH^-] \rightarrow Glycerol$ + Soap

Saponification value: Number of mg of KOH required to neutralize fatty acids resulting from **complete** hydrolysis of 1a of fat

Used for studying length of fatty acid chain

Saponification value $\propto \frac{1}{\text{Av. molecular weight}}$ Saponification value $\propto \frac{1}{\text{Length of fatty acid chain}}$

Reaction:

Triglyceride $+3KOH \rightarrow Glycerol + 3RCOOK$

RCOOK = Soap molecule