19.VI 2019. MATEMATIČKA ANALIZA, II kolokvijum - PREDISPITNE OBAVEZE

INTEGRALNI RAČUN

- 1. [1 poen] Da li je $F(x) = \cos x$ primitivna funkcija funkcije $f(x) = \sin x$ nad \mathbb{R} ? Obrazložiti odgovor! Ako nije, napisati bar jednu njenu primitivnu funkciju. Ako jeste, napisati još jednu njenu primitivnu funkciju.
- 2. **[1 poen]** Da li za funkciju $f(x) = \begin{cases} \sin x, & x \le \pi \\ 17, & x > \pi \end{cases}$ postoji neodređeni integral nad intervalom $[0, 2\pi]$? Obrazložiti odgovor! Ako postoji, odrediti ga.
- 3. **[1 poen]** Da li za funkciju $f(x) = \begin{cases} \sin x, & x \le \pi \\ 17, & x > \pi \end{cases}$ postoji određeni integral nad intervalom $[0, 2\pi]$? Obrazložiti odgovor. Ako postoji izračunati ga.
- 4. [1 poen] Napisati (bez izračunavanja integrala) kako se primenom određenog integrala izračunava deo površine ravnog lika ograničenog parabolom $y = x^2$ i pravom y = x + 1, koji se nalazi u prvom kvadrantu.
- 5. [1 poen] Formulisati teoremu o srednjoj vrednosti integrala.

BROJNI REDOVI (dodatni poeni)

- 1. **[1 poen]** Da li je red $\sum_{n=1}^{\infty} \left(\frac{2n+1}{n}\right)^n$ konvergentan? Obrazložiti odgovor.
- 2. [1 poen] Definisati apsolutnu konvergenciju reda.

DIFERENCIJALNE JEDNAČINE

1. [1 poen] Ukoliko je moguće, odrediti vrednost parametra a tako da prava y=ax bude partikularno rešenje diferencijalne jednačine $(1-x^2)y'+y^2-1=0$.

2. [1 poen] Rešiti Kleroovu diferencijalnu jednačinu $y = xy' + \frac{a}{y'}$.

3. **[1 poen]** Linijski elemenat diferencijalne jednačine $y = xy' + \frac{1}{4y'}$ u tački A(1,1) je (, ,), a jednačine tangente t i normale n njenog rešenja u tački A(1,1) su

t:

4. [1 poen] Sniziti red diferencijalnoj jednačini xy'' + y' = 4x.

[1 poen] Nakon snižavanja reda date jednačine, dobija se jednačina prvog reda - kog je ona tipa? Kojom smenom se rešava?

a)	[1 poen] ta jednačina glasi	, a njeno opšte rešenje je
b)	[1 poen] koreni karakteristične jednačine t	e jednačine su
-)	[4] - : : du Yine 7 []	
c)	[1 poen] za jednacinu $L_n[y] = e^x$ partikulai	rno rešenje $y_p(x)$ je oblika $y_p(x) =$
d)	[1 poen] za jednačinu $L_n[y] = xe^x$ partikula	arno rešenje $y_p(x)$ je oblika $y_p(x) =$
		010
e)	[1 poen] za jednačinu $L_n[y] = (x + \sin x)e^2$	019x partikularno rešenje $y_p(x)$ je oblika