The input alternates every time a 50p is inserted. Initially the input is 0 (no money inserted); state A. When 50p is inserted, the input becomes high; state B. When the second 50p is added the input is low (£1 in total); state C. When the final 50p is added, the input is once again high; state D.

The states are:

No money inserted: A/00 First 50p inserted: B/01 Second 50p inserted: C/10 Final 50p inserted: D/11

State Transition Diagram:

One input: 50p

Excitation Tables

Current State	Α	B	C	D
0	A	C	6	A
)	B	B	D	D

Current State	00	01	1 1	10
0	00	10	00	10
)	01	01		11

Q,

Current State	00	۱۵	11	lo
0	O		0	l
)	0	0 (١	1

 Q_o

Current State	00	٦١	۱٦	lo
0	0	0	0	0
) ()	1	

10

Instructions

The file "F028130_task6" was my attempt upto task 6. The following are the instructions:

- 1. Press spacebar to enter 50p, a probe will light up to confirm this.
- 2. Press spacebar again to insert another 50p, a different probe will confirm that a total of £1 has been entered.
- 3. Press spacebar again to enter the final 50p.
- 4. Press T to decide the drink. When T=0, coffee will be dispensed. When T=1, tea is dispensed.

The file "F028130_complete" is my attempt at all the tasks. Note that the user can only input one £1 coin. There are only two combinations of inputs that will result in the output to equal 1:

Firstly, like before, the user can input three 50p coins. The other option is to enter one 50p coin, and one £1 coin.

The following are the instrucions for this file:

- 1. Either press spacebar three times to enter three 50p coins (like preiously), or press spacebar once and press 1 once to enter one 50p and one £1 coin.
- 2. The next instructions are for milk and sugar options: Note that all three options can be chosen, which only makes sense if the user chooses both sugar and milk.
 - A. Press M for milk
 - B. Press S for sugar
 - C. Press P for plain
- 3. Press T for either tea or coffee. whe T=0, coffee is dispensed. when T=1, tea is dispensed.
- 4. Press D to dispense

The excitation tables below are the designs for "F028130_1pound_try". I took an approach to allow the user to input multiple $\mathfrak{L}1$ coins, however I couldn't get it to work.

In State	A	В		D
00	A	B	C	D
01	B	C	D	B
7 1	\times	×	>	>
10		D	B	

In State	00	01	1 [10
00	00	01	[]	10
0)	0)	10	<i>O</i> 1	11
1 1	×	×	>	>
10	10	11	10	01

In State	00	0	1 [10
00	Ð	0		1
01	0		0	1
)	\times	×	<u> </u>	>
10				0

$$\frac{\overline{\ln_2 \cdot \ln_1 \cdot Q_1}}{\overline{\ln_2 \cdot \ln_1 \cdot Q_1}} + \frac{\overline{\ln_2 \cdot \ln_1 \cdot Q_1}}{\overline{\ln_2 \cdot \ln_1 \cdot Q_1}} + \frac{\overline{\ln_2 \cdot \ln_1 \cdot Q_1}}{\overline{\ln_2 \cdot \ln_1 \cdot Q_1}} + \frac{\overline{\ln_2 \cdot \ln_1 \cdot Q_1}}{\overline{\ln_2 \cdot \ln_2 \cdot Q_0}} + \frac{\overline{\ln_2 \cdot \ln_1 \cdot Q_1}}{\overline{\ln_2 \cdot \ln_2 \cdot Q_0}} + \frac{\overline{\ln_2 \cdot \ln_1 \cdot Q_1}}{\overline{\ln_2 \cdot \ln_2 \cdot Q_0}} + \frac{\overline{\ln_2 \cdot \ln_2 \cdot Q_0}}{\overline{\ln_2 \cdot \ln_2 \cdot Q_0}} + \frac{\overline{\ln_2 \cdot \ln_2 \cdot Q_0}}{\overline{\ln_2 \cdot \ln_2 \cdot Q_0}} + \frac{\overline{\ln_2 \cdot \ln_2 \cdot Q_0}}{\overline{\ln_2 \cdot \ln_2 \cdot Q_0}} + \frac{\overline{\ln_2 \cdot \ln_2 \cdot Q_0}}{\overline{\ln_2 \cdot \ln_2 \cdot Q_0}} + \frac{\overline{\ln_2 \cdot \ln_2 \cdot Q_0}}{\overline{\ln_2 \cdot \ln_2 \cdot Q_0}} + \frac{\overline{\ln_2 \cdot \ln_2 \cdot Q_0}}{\overline{\ln_2 \cdot \ln_2 \cdot Q_0}} + \frac{\overline{\ln_2 \cdot \ln_2 \cdot Q_0}}{\overline{\ln_2 \cdot \ln_2 \cdot Q_0}} + \frac{\overline{\ln_2 \cdot \ln_2 \cdot Q_0}}{\overline{\ln_2 \cdot \ln_2 \cdot Q_0}} + \frac{\overline{\ln_2 \cdot \ln_2 \cdot Q_0}}{\overline{\ln_2 \cdot \ln_2 \cdot Q_0}} + \frac{\overline{\ln_2 \cdot \ln_2 \cdot Q_0}}{\overline{\ln_2 \cdot \Omega_0}} + \frac{\overline{\ln_2 \cdot \Omega_0}}{\overline{\ln_2 \cdot \Omega_0}} + \frac{\overline{\Omega_0}}{\overline{\Omega_0}} + \frac$$

In State	00	0	1 [10
00	O		1	0
0)		0	1	
)	\times	×	>	×
10	0		0	

$$\frac{1}{n_2 \cdot n_1 \cdot Q_1 \cdot Q_0} + \frac{1}{n_2 \cdot n_1 \cdot Q_1} \cdot \frac{1}{Q_1} \cdot \frac{1}{Q_1} \cdot \frac{1}{Q_1} \cdot \frac{1}{Q_2} + \frac{1}{n_2 \cdot n_1} \cdot \frac{1}{Q_2} + \frac{1}{n_2 \cdot n_1} \cdot \frac{1}{Q_2} + \frac{1}{n_2 \cdot n_2} \cdot \frac{1}{Q_2} + \frac{1}{n_2$$