Отчёт по работе 3.4.1

Диа- и парамагнетики Карташов Констанин Б04-005

I Анотация

Цель работы: Измерение магнитной восприимчивости диа- и параметрических образцов.

Оборудование:

- ⊳ электромагнит,
- ⊳ весы,
- ⊳ милливеберметр,
- ⊳ источник постоянного тока,
- ⊳ образцы диа- и парамагнетика.

II Теоретическая часть

і Краткие теоретические сведения

Магнитная восприимчивость тела может быть определена измерением сил, действующих на это тело в магнитном поле. Существуют два классических метода таких измерений: метод Фарадея и метод Гюи. В методе Гюи используется тонкий и длинный стержень, один из концов которого помещают в зазор электромагнита (в область однородного поля), а другой конец — вне зазора, где величиной магнитного поля можно пренебречь. Тогда сила, действующая на помещённый образец равна:

$$F_m = \left(\frac{\partial W_m}{\partial x}\right) \approx \chi \frac{B_0^2}{2\mu_0} S.$$

Знак силы зависит от восприимчивости χ : парамагнетики ($\chi > 0$) втягиваются в зазор электромагнита, а диамагнетики ($\chi < 0$) выталкиваются из него. Таким образов рассчитав силу действующую на образец в известном магнитном поле, можно рассчитать его магнитную восприимчивость.

іі Описание экспериментальной установки

Схема установки приведена на рис. 1. Она состоит из: Электромагнита с зазором. Поле в зазоре можно считать практически однородным так как размеры полюсов значительно превышают размер зазора. Источника питания с регулируемым постоянным током. Величина тока задаётся при помощи амперметра. Дли градуировки электромагнита используется милливеберметр. Весов на которые подвешивается образец.

Рис. 1: Схема экспериментальной установки

III Экспериментальная часть

і Построение градуировочной прямой для электромагнита

Измерим индукцию магнитного поля в зазоре пользуясь милливеберметром, пользуясь формулой $B=\Phi/S_n$. Значение $S_n=72~{\rm cm}^2$. Измерим поток Φ между полюсами при различных значениях тока на обмотке электромагнита, и посчитаем индукцию. Результаты измерений предствалены в таблице 1, на основании который построен график 2. Погрешность измерения силы тока $\Delta I=0.01~{\rm A}$, погрешность милливеберметра $\Delta \Phi=0.05~{\rm mB6}$, и следовательно погрешность измерения $\Delta B=\Delta \Phi/S_n=7~{\rm mTn}$.

I, A	0.3	0.7	1.1	1.5	1.9	2.3	2.6	3.0
Ф, мВб	0.4	1.3	2.7	3.6	4.5	5.4	6	6.7
В, мТл	56	181	375	500	625	750	833	931

Таблица 1: Данные для градуировки электромагнита

ii Определение величины χ

Измерим перегрузку ΔP для образцов при различных значениях тока. Для этого сними показания весов ΔM при различных значениях I и домножим на коэффициент g (P=mg). Данные занесём в таблицу 2, значения снятые при увеличении и уменьшении силы тока помечены значками \blacktriangle и \blacktriangledown соответственно.

Отметим измеренные значения на графике и проведём аппроксимирующие кривые пользуясь методом наименьших квадратов (рис. 3, 4, 5).

Получим значения χ и погрешности σ_{χ} пользуясь формулой:

$$\Delta P = \frac{\chi s}{2\mu_0} B^2 = \alpha B^2 \Rightarrow \chi = \frac{2\alpha\mu_0}{s} \Rightarrow \chi_{yx} = \frac{2\alpha\mu_0}{s\rho},$$

Рис. 2: График градуировочной кривой

где α — коэффициент наклона аппроксимирующей прямой рассчитанной пользуясь методом наименьших квадратов, s — площадь сечения образца $s=\pi d^2/4=\pi/4$ см². Для ${\bf Cu}$ получаем:

$$\alpha_{\blacktriangle} = -(235 \pm 6) \cdot 10^{-6} \frac{MKH}{MT\pi^2} = -(235 \pm 6) \cdot 10^{-6} \frac{H}{T\pi^2},$$

$$\alpha_{\blacktriangledown} = -(229 \pm 7) \cdot 10^{-6} \frac{MKH}{MT\pi^2} = -(229 \pm 7) \cdot 10^{-6} \frac{H}{T\pi^2}.$$

Берём среднее $\alpha_{\mathbf{Cu}} = -(2.3 \pm 0.1) \cdot 10^{-4} \; \mathrm{H/Tz^2}$, из чего получаем:

$$\chi_{\rm Cu} = -\frac{8\pi \cdot 10^{-7} \cdot (2.3 \pm 0.1) \cdot 10^{-4}}{\pi \cdot 0.005^2 \cdot 8960} = -(8.2 \pm 0.4) \cdot 10^{-10} \, \frac{{\rm M}^3}{{\rm Kr}}.$$

Для **Al** получаем:

$$\alpha_{\blacktriangle} = (467 \pm 9) \cdot 10^{-6} \frac{\text{MH}}{\text{MT}\pi^2} = (467 \pm 9) \cdot 10^{-6} \frac{\text{H}}{\text{T}\pi^2},$$

$$\alpha_{\blacktriangledown} = (462 \pm 11) \cdot 10^{-6} \, \frac{^{\rm M}{\rm H}}{^{\rm M}{\rm Tn}^2} = (462 \pm 11) \cdot 10^{-6} \, \frac{\rm H}{{\rm Tn}^2}.$$

Берём среднее $\alpha_{\mathbf{AI}} = (4.6 \pm 0.2) \cdot 10^{-4} \; \mathrm{H/T^2}$, из чего получаем:

$$\chi_{\rm Al} = \frac{8\pi \cdot 10^{-7} \cdot (4.6 \pm 0.2) \cdot 10^{-4}}{\pi \cdot 0.005^2 \cdot 2700} = (5.6 \pm 0.3) \cdot 10^{-9} \, \frac{{\rm M}^3}{{\rm K}\Gamma}.$$

Рис. 3: График для Cu

Рис. 4: График для Al

Рис. 5: График для С

I	0	0.3	0.7	1.1	1.5	1.9	2.3	2.6	3.0
Δ M ▲ Cu, мг	0	0	-2	-4	-6	-11	-14	-17	-21
<i>ΔМ</i> ▼ Cu, мг	0	-2	-3	-6	-9	-12	-16	-18	_
ΔP▲ Cu, мкH	0	0	-20	-39	-59	-108	-137	-166	-206
ΔP▼ Cu, мкH	0	-20	-30	-59	-88	-118	-157	-176	_
ΔM▲ Al, MΓ	0	0	1	4	10	17	26	32	41
ΔM▼ Al, MΓ	2	2	2	7	11	19	27	34	_
ΔP▲ Al, мкH	0	0	10	39	98	166	255	314	402
ΔP▼ Al, мкH	20	20	20	69	108	186	265	333	_
$\Delta M \blacktriangle C$, M Γ	0	8	24	37	39	39	34	28	10
<i>ΔМ</i> ∨ С, мг	8	17	33	46	46	46	37	26	_
ΔP △ C, MKH	0	78	235	363	382	382	333	274	98
<i>ΔР</i> ▼ С, мкН	78	167	323	451	451	451	363	255	_

Таблица 2: Снятые экспериментальные данные

Для **С** график получился нелинейным, что может быть связано с наличием в стержне из графита ферромагнитных примесей.

IV Выводы

Мы провели исследование поведения диа- и парамагнетиков в магнитном поле и показали, что выполняются зависимости лежащие в основе метода Гюи.

Мы нашли значения для удельной магнитной восприимчивости меди и алюминия, и получили значения:

$$\chi_{\text{Cu}} = -(8.2 \pm 0.4) \cdot 10^{-10} \, \frac{\text{M}^3}{\text{Kr}}, \quad \chi_{\text{Al}} = (5.6 \pm 0.3) \cdot 10^{-9} \, \frac{\text{M}^3}{\text{Kr}}.$$

Табличные значения:

$$\chi_{\rm Cu, \; Ta6jl.} = -8.6 \cdot 10^{-10} \; \frac{\rm m^3}{\rm kg}, \quad \chi_{\rm Al, \; Ta6jl.} = 6.1 \cdot 10^{-9} \; \frac{\rm m^3}{\rm kg}.$$

Видим, что измеренные значения достаточно близки