Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э.Баумана (национальный исследовательский университет)»

Кафедра «Прикладная математика»

Лабораторная работа №4

по дисциплине «Методы вычислений»

Численное решение краевых задач для двумерного уравнения Пуассона

Выполнили студенты группы ФН2-61

Разумов Т.Е. Швечков И.В.

1. Ответы на контрольные вопросы

1) Оцените число действий необходимое для перехода на следующий слой по времени методом переменных направлений.

На первом этапе схема является неявной по направлению x_1 и явной по направлению x_2 . Поэтому сначала поочередно для каждого индекса $j=1,2,\ldots,N_2-1$ вдоль направления x_1 проводим первое измерение, решая систему методом прогонки. На это потребуется $5N_1(N_2-2)$ операций. Затем на втором этапе схема является неявной по направлению x_2 и явной по направлению x_1 . Значит теперь мы поочередно для каждого индекса $i=1,2,\ldots,N_1-1$ вдоль направления x_2 проводим второе измерение, решая систему методом прогонки. На это потребуется $5N_2(N_1-2)$ операций. Следовательно, для перехода на следующий временной слой, потребуется $O(N_1N_2)$ арифметических операций.

2) Почему при увеличении числа измерений резко возрастает количество операций для решения неявных схем (по сравнению с одномерной схемой)?

Использование неявных разностых схем приводит к необходимости решать СЛАУ. При увеличении числа измерений повышается количество неизвестных, следовательно, возрастает количество операций.

3) Можно ли использовать метод переменных направлений в областях произвольной формы?

Метод переменных направлений применим для решения задач в области произвольной формы, если в данной области можно ввести связную сетку, имеющую два направления (то есть можно перейти от одного узла сетки к любому другому, пользуясь только данным шаблоном). Если область разделяется на прямоугольники, стороны которого параллельны осям координат, задача сведется к решению нескольких уравнений в прямоугольных областях, на границах которых будут заданы условия идеального контакта. В случае произвольных форм возникают проблемы с аппроксимацией граничных условий с порядком, соответствующим аппроксимации схемы во внетренних точках области.

4) Можно ли использовать метод переменных направлений для решения пространственных и вообще *n*-мерных задач?

Метод переменных направлений нельзя формально обобщить на случай трех пространственных переменных x_1, x_2, x_3 , так как построенная схема будет неустойчива.

Универсальным методом, пригодным для решения уравнения теплопроводности с переменными и даже разрывными коэффициентами в произвольной области любого числа измерений, является локально-одномерный метод.

Локально-одномерная схема состоит в последовательном решении уравнений

$$\begin{split} \frac{y_{ijl}^{k+1/3} - y_{ijl}^{k}}{\tau} &= \Lambda_{1} y_{ijl}^{k+1/3} + \varphi_{ijl}^{k+1/3}, \quad x_{ijl} \in \omega_{h}, \\ \frac{y_{ijl}^{k+2/3} - y_{ijl}^{k+1/3}}{\tau} &= \Lambda_{2} y_{ijl}^{k+2/3} + \varphi_{ijl}^{k+2/3}, \quad x_{ijl} \in \omega_{h}, \\ \frac{y_{ijl}^{k+1} - y_{ijl}^{k+2/3}}{\tau} &= \Lambda_{3} y_{ijl}^{k+1} + \varphi_{ijl}^{k+1}, \quad x_{ijl} \in \omega_{h}. \end{split}$$

Причем φ_{ijl} выбираются так, чтобы суммарно аппроксимировать f. В этой схеме каждое из уравнений в отдельности не аппроксимирует исходное уравнение, однако

имеет место суммарная аппроксимация $O(\tau + |h|^2)$. В данном случае

$$\begin{split} \psi_1 &= -\frac{u_{ijl}^{k+1/3} - u_{ijl}^k}{\tau} + \Lambda_1 u_{ijl}^{k+1/3} = \frac{1}{3} \frac{\partial u(x_{ijl}, t_k)}{\partial t} + L_1 u(x_{ijl}, t_k) + O(\tau + h_1^2) \\ \psi_2 &= -\frac{u_{ijl}^{k+2/3} - u_{ijl}^{k+1/3}}{\tau} + \Lambda_2 u_{ijl}^{k+2/3} = \frac{1}{3} \frac{\partial u(x_{ijl}, t_k)}{\partial t} + L_2 u(x_{ijl}, t_k) + O(\tau + h_2^2) \\ \psi_3 &= -\frac{u_{ijl}^{k+1} - u_{ijl}^{k+2/3}}{\tau} + \Lambda_3 u_{ijl}^{k+1} = \frac{1}{3} \frac{\partial u(x_{ijl}, t_k)}{\partial t} + L_3 u(x_{ijl}, t_k) + O(\tau + h_3^2) \\ L_\alpha u &= \frac{\partial^2 u}{\partial x_\alpha^2} \end{split}$$

и $\psi_1 + \psi_2 + \psi_3 = O(\tau + |h|^2).$

5) Можно ли использовать метод переменных направлений на неравномерных сетках?

Можно, но по направлению, на котором введена неравномерная сетка, скорость сходимости понизится до линейной.

2. Демонстрация работоспособности программы

2.1. Нестационарный процесс

Продемонстрируем, что данный метод имеет скорость сходимости $O(\tau^2 + h_1^2 + h_2^2)$. Решаем задачу $u_t = \Delta u$ в области $G = [0, \pi] \times [0, \pi]$, T = [0, 1]. Пусть точное решение имеет вид

$$u(x_1, x_2, t) = 100\cos x_1 \sin x_2 e^{-2t}.$$

Тогда соотвествующие решению граничные условия примут вид

$$\left. \frac{\partial u}{\partial n} \right|_{x_1 = 0} = 0, \quad \left. \frac{\partial u}{\partial n} \right|_{x_1 = \pi} = 0,$$

$$u|_{x_2=0} = 0, \quad u|_{x_2=\pi} = 0.$$

Начальное условие

$$u|_{t=0} = 100\cos x_1 \sin x_2.$$

Погрешность решения, в зависимости от изменения узлов, приведена в таблице 1, где N_1, N_2 – количиство узлов по направлению x_1, x_2 соответственно, K – количиство узлов по времени.

$N_1 = 100$	$N_2 = 100$	K = 100	$z_1 = 0.0027739$
$N_1 = 200$	$N_2 = 200$	K = 200	$z_2 = 0.000686583$
$N_1 = 400$	$N_2 = 400$	K = 400	$z_3 = 0.000170775$

Таблица 1

Из таблицы видно, что $z_1/z_2 = 4.04015$, $z_2/z_3 = 4.0204$, следовательно данный метод действительно имеет скорость сходимости $O(\tau^2 + h_1^2 + h_2^2)$.

Рис. 1. Результаты расчета при $N_1=400,\,N_2=400,\,K=400$

2.2. Стационарный процесс

Поскольку плотность источников тепловыделения и граничные условия не зависят от времени, то естественно ожидать, что решение с течением времени будет меняться все медленнее и в пределе при $t\to\infty$ распределение температуры становится стационарным. В нашей программе, в качестве критерия стационарности, был использован следующий критерий

$$\max_{i,j} |\hat{y} - y| < \tau \varepsilon.$$

Графически продемонстрируем результаты расчетов для тестовых примеров при $\epsilon=10^{-2},~N_1=400,~N_2=400,~\tau=0.0025.$

Рис. 2. Тестовый пример 1

Рис. 4. Тестовый пример 3

Покажем зависимость колличества итераций от точности є для тестового примера №3 при начальном распределении температуры $u(\vec{r},0)=1.5$ с шагами $\tau=h_1=h_2=0.0025$

ε	0.1	0.01	0.001	
Итерации	2095	2895	3712	
T-6				

Таблица 2

Для тестового примера N2 при тех же параметрах

3	0.1	0.01	0.001
Итерации	287	437	747

Таблица 3

Для тестового примера №1

ε	0.1	0.01	0.001
Итерации	234	312	514

Таблица 4