1.The following character encoding is used in a data link protocol:

A: 01000111 B: 11100011 FLAG: 011111110 ESC: 11100000

Show the bit sequence transmitted(in binary) for the four-character frame A B ESC FLAG when each of the following framing methods is used:

- (a) Byte count.
- (b) Flag bytes with byte stuffing.
- (c) Starting and ending flag bytes with bit stuffing.
- 2. Hamming code is an effective way for error correcting. Show that the # of check bits(i.e. r) in the Hamming codes described in the textbook(e.g., Fig.3-6) (almost) achieves the low bound of Eq (3-1).

- 3. Suppose you have the following 12-bit message: 010100111111
- (a) Numbering bits from right to left (ie least-significant bit on the right), insert check bits according to to Hamming's 1-bit error correction system. Indicate which bits are check bits and which are message bits.
- (b) Hamming's scheme only corrects 1-bit errors. Since it's a distance 3 code, it could also be used to detect 2-bit errors. Describe a 3-bit error (3 *1-bit errors) in the above codeword affecting only message bits (not check bits) that would be undetected (and of course uncorrected). Be sure to describe how and why the algorithm fails.

- **4.**Consider an original frame 110111011011. The generator polynomial x^4+x+1 , show the converted frame after appending the CRC.
- **5.**A 3000-km-long T1 trunk (with data rate 1.536Mbps) is used to transmit 64-byte frames. How many bits should the sequence numbers be for protocol 5 and protocol 6 respectively? The propagation speed is 6usec/km.

- **6.**Frames of 1000 bits are sent over a 1-Mbps channel using a geostationary satellite whose propagation time from the earth is 270 msec. Acknowledgements are always piggybacked onto data frames. The headers are very short. Three-bit sequence numbers are used. What is the maximum achievable channel utilization for
- (a) Stop-and-wait?
- (b) Protocol 5?
- (c) Protocol 6?