

Parcours OpenClassRooms

Data Scientist

P8 Déployez un modèle dans le cloud

Pictures used for educational purpose only

Sommaire

I.	Introduction

II. L'environnement Big Data

III. Le traitement d'image avec Spark

IV. Conclusion

I. Introduction

1) Le projet

Prototype d'**application mobile** qui permette de photographier un fruit et d'en obtenir des informations. → A terme : permettre un traitement spécifique à chaque espèce de fruit & légume en développant des **robots cueilleurs intelligents**.

I. Introduction

2) Le jeu de données

I. Introduction

3) La problématique

- → 24 fruits dans la base de données pour l'instant.
- → Jusqu'à **650 photos par fruit**, pour anticiper l'angle de vue des futures photos.

Problème : la base de données va s'agrandir avec de nouveaux fruits.

→ On risque de **dépasser les capacités de calcul** d'un seul ordinateur.

→ Ce volume de donnée important nécessite de passer à l'échelle du **cloud** et d'utiliser le **distributed computing**.

2) Le stockage des données

0	ocr-taille-fixe	EU (Paris) eu-west-3	Objects can be public
0	ocr-taille-variable	EU (Paris) eu-west-3	Objects can be public
0	ocr-taille-variable-backup	EU (Paris) eu-west-3	Bucket and objects not public

3) La mise en place de l'instance EC2 Choisir un type d'instance EC2 Debian RedHat Amazon Linux Créer l'instance Instance ID et sa clé privée cle_aws_11 Créer une clé publique PuttyGen Créer un compte AWS utilisateur Root user IAM user restricted access unrestricted access Elastic IP Créer une adresse ElasticIP 13.36.189.182 Se connecter à l'instance et sa ligne de commande

Putty

5) Principe de fonctionnement de Spark

Programme Spark	Exécute les instructions Spark	
RDD Graph	Transformations et actions Spark	Opérations effectuées par
DAGScheduler	Distribue les calculs selon le schéma MapReduce de Hadoop	Spark en arrière-plan
Master	Répartit les calculs entre les workers	
Workers	Exécutent les calculs	

[→] Dans le cadre de ce projet, le master et les workers sont hébergés sur le même serveur, l'instance EC2

6) Les librairies PySpark utilisées

[→] On peut distribuer les calculs avec des **méthodes propres** aux librairies PySpark, ou bien des **fonctions décorées**.

2) Configuration du programme Spark

→ Un programme Spark nécessite des paramétrages supplémentaires par rapport à un programme Python habituel.

SparkSession

- → point d'entrée des fonctionnalités de Spark
- → englobe tous les types de *context* : Spark, Hive, SQL, ...

```
# Spark session
spark = (SparkSession
.builder.master('local[*]')
.appName('p8_ocr')
.config('spark.hadoop.fs.s3a.access.key', ACCESS_KEY_ID)
.config('spark.hadoop.fs.s3a.secret.key', SECRET_ACCESS_KEY)
.config('spark.hadoop.fs.s3a.impl', 'org.apache.hadoop.fs.s3a.S3AFileSystem')
.config('com.amazonaws.services.s3.enableV4', 'true')
.config('spark.hadoop.fs.s3a.endpoint', 's3.' + REGION +'.amazonaws.com')
.getOrCreate())
```

SparkContext

→ connexion à un **cluster** master-workers

```
# Spark context and log level
spark_context = spark.sparkContext
spark_context.setLogLevel('WARN')
```

boto3

- → "Python Software Development Kit" conçu pour configurer et gérer des services AWS.
- → nous sert à configurer la connexion à S3

→ On peut maintenant charger les images et utiliser les méthodes de PySpark

3) Tableau de départ

fruit		jpeg	image
	apple_6	r0_0.jpeg	≈ 400 x 400 pixels RGB
	apple_6	r0_2.jpeg	
	apple_braeburn_1	r0_0.jpeg	
	apple_braeburn_1	r0_2.jpeg	

→ Objectif : en faire un tableau qui puisse être exploité par un algorithme de machine learning

4.1) Etapes de traitement des images

4.2) Etapes de traitement des images

→ Combien de composants choisir pour la réduction de dimension PCA?

5) Réduction de dimension PCA

→ Les poids des composantes varient selon le nombre d'images traitées.

→ Ces graphiques varient avec les aléas de la méthode random.choices

→ Sollicitation du serveur pour 2400 images :

→ En augmentant le nombre d'images traitées, les 80% semblent converger vers **150** composantes principales.

IV. Conclusion

1) Bilan et perspectives

Le jeu de données

- Prêt pour l'analyse dans sa forme actuelle.
- Destiné à s'agrandir, il nécessite l'appui du cloud (distributed computing)
- Majorité d'espèces de pommes (15 pommes sur 24 fruits) : risque de biais

L'environnement BigData

- Les échanges d'information se font entre les utilisateurs, l'instance EC2 et les buckets S3
- La RAM de l'instance est importante pour le bon fonctionnement du programme Spark
- La compatibilité des versions est déterminante

Le traitement d'image avec Spark

- Peu d'images : nécessite un transfer learning avec ResNet50 de Keras
- Les calculs distribués se font avec des méthodes PySpark, ou des fonctions décorées (UDF)
- La réduction de dimension PCA semble être optimale pour 150 composants.

Perspectives

- La parallélisation des calculs s'est faite sur le même serveur (mode local) : basculer sur un véritable cluster EMR.
- Diversifier les fruits
- Etudier d'autres solutions Cloud : Azure, Google Cloud, OVHcloud, ...
- Prendre les photos en proportions similaires selon l'axe de rotation
- Feature augmentation

IV. Conclusion

2) Recommandations pour le passage à l'échelle

Critères de qualité d'un outil cloud

- 1. Facilité de passage à l'échelle
- 2. Facilité de maintenance
- 3. Facilité d'exploitation des données

AWS 5 pillars

- 1. Operational excellence
- 2. Security
- 3. Reliability
- 4. Performance efficiency
- 5. Cost optimization

Fin de la présentation

Merci pour votre attention