Άσκηση 8 Dai16067 Κρυπτογραφία Μιχούλης Γεώργιος

1)

a)

 Z_5*

a |1 2 3 4 ord(a)| 1 4 4 2

b) Z₇*

a |1 2 3 4 5 6 ord(a)| 1 3 6 3 6 2

c) $Z_{13}*$

a| 1 2 3 4 5 6 7 8 9 10 11 12 ord(a) |1 12 3 6 4 12 12 4 3 6 12 2

2) g ^{ab} mod p $A = k_{pub, A} = g^a \mod p$ $B = k_{pub, B} = g^b \mod p$ $k_{AB} = g^b \mod p$

- 1. $K_{pubA} = 8$, $K_{pubB} = 32$, $K_{AB} = 78$
- 2. $K_{pubA} = 137$, $K_{pubB} = 84$, $K_{AB} = 90$
- 3. $K_{pubA} = 394$, $K_{pubB} = 313$, $K_{AB} = 206$

4)

Υπολογισμός του β : β = α d mod β .

Κρυπτογράφηση : (kE,y) = (a i mod p,x \cdot β i mod p).

Αποκρυπτογράφηση του x = y(k d E) - 1 mod p.

1.
$$(kE, y) = (29,296), x = 33$$

2.
$$(kE,y) = (125,301), x = 33$$

3.
$$(kE,y) = (80,174), x = 248$$

4.
$$(kE,y) = (320,139), x = 248$$

5) Το pub κλειδί του BOB είναι $k_{pub,B} = (p, g, B) = (31,3,18)$

$$(B = g^d \mod p \Leftrightarrow \log_g B = \log_g g^d \Leftrightarrow d = 2,6)$$

$$K_{e,1}=6=3^i \mod 31$$

 $K_M=18^i \mod p$

- υπολογίζει εφήμερο κλειδί kE = g i mod p
 - υπολογίζει κλειδί "μάσκας" kM = β i mod p
 - κρυπτογραφεί μήνυμα c=m *k_M mod p

 $X1=17 \text{ kai ID bob } x1=21 => c=m*Km \mod p => Km=20$

Με τον αντίστροφο του κλειδιού ρ =31 , αποκρυπτογραφούμε το c2 μιας και ο BOB χρησιμοποιεί το ίδιο ιδιωτικό κλειδί για την κρυπτογράφηση. Οπότε K_M^{-1} =14 m2=c2* K_M^{-1} mod p=9