Maestría en Ciencia de Datos. Matemáticas para Ciencia de Datos.

María Elena Martínez Manzanares

Septiembre 2022

Parte 1

Considera la matriz

$$M := \begin{pmatrix} 1 & 1 & 2 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 2 & 2 & 1 \end{pmatrix}$$

Sea A la matriz formada con las dos primeras columnas de M. Describe:

- 1. el dominio y el codominio de A como transformación lineal.
- 2. la imagen de A y el kernel de A.
- 3. la imagen de A^T y el kernel de A^T .

Respuesta.

- (1) El dominio es \mathbb{R}^2 y el codominio es \mathbb{R}^3 .
- (2) Dado que $(1,0,1)^T$ y $(1,0,2)^T$ son linealmente independientes, tenemos que la imagen es

span
$$\{(1,0,1)^T, (1,0,2)^T\}$$
.

Por el Teorema del Rango y la Nulidad tenemos que

$$Rango(A) + Nulidad(A) = 2$$
,

esto implica que Nulidad(A) = 0, por lo que el Kernel consiste solamente del vector cero.

(3) Notemos que
$$A^T = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 0 & 2 \end{pmatrix}$$
. Esto implica que

$$Im(A) = span \{(1,1)^T, (1,2)^T\}.$$

De nueva cuenta por el Teorema del Rango y la Nulidad, se deduce que Nulidad $(A^T) = 1$. Analizamos la matriz A^T para buscar el vector que genera el kernel.

$$\begin{pmatrix} 1 & 0 & 1 \\ 1 & 0 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}. \tag{1}$$

Por medio de matrices elementales podemos llegar a que (1) es equivalente al sistema

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

Esto implica que $x_1 = x_3 = 0$. Esto implica que

$$Kernel(A) = span \{(0, 1, 0)^T\}.$$

Decide si la transformación A es sobre, uno-a-uno, o ninguna de las dos anteriores. Además, note que claramente la tercera columna de M es una combinación lineal de las dos anteriores

$$\mathbf{col}_3 = 2\mathbf{col}_1 + 0\mathbf{col}_2.$$

Encuentra esa respuesta por medio de la pseudoinversa de A.

Respuesta. Notemos que $A : \mathbb{R}^2 \to \mathbb{R}^3$. Por lo demostrado anteriormente, sabemos que Nulidad(A) = 0, por lo tanto es 1-1. La matriz no es sobreyectiva ya que Rango(A) = 2

Por otro lado, nos interesa determinar el vector $\alpha = (\alpha_1, \alpha_2)^T$ tal que

$$A \begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix} = \text{col}_3.$$

La pseudoinversa por la izquierda de $A, A^+ = (A^T A)^{-1} A^T$ es

$$\begin{pmatrix} 2 & 0 & -1 \\ -1 & 0 & 1 \end{pmatrix}.$$

Esto implica que

$$\alpha = A^{+} \operatorname{col}_{3},$$

$$= \begin{pmatrix} 2 & 0 & -1 \\ -1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 0 \\ 2 \end{pmatrix},$$

$$= (2,0)^{T}.$$

Es decir,

$$2\operatorname{col}_1 + 0\operatorname{col}_2 = \operatorname{col}_3.$$

Sea ahora A la matriz formada con los dos primeros renglones de M. Describe:

- 1. el dominio y el codominio de A como transformación lineal.
- 2. la imagen de A y el kernel de A.
- 3. la imagen de A^T y el kernel de A^T .

Respuesta.

- (1) El dominio es \mathbb{R}^4 y el codominio es \mathbb{R}^2 .
- (2) La matriz A esta formada por dos columnas linealmente independientes, por lo que la imagen es todo \mathbb{R}^2 . Analizamos la matriz para determinar el kernel

$$\begin{pmatrix} 1 & 1 & 2 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

De este planteamiento se sigue inmediatamente que $x_4 = 0$. Por otro lado, obtenemos que $x_1 = -x_2 - 2x_3$. Esto implica que la solución viene dada por $(-x_2 - 2x_3, x_2, x_3, 0)^T$. Por lo tanto, el kernel es

$$\mathrm{span}\left\{(-1,1,0,0)^T,(-2,0,1,0)^T\right\}.$$

(3) Notemos que A^T es la matriz

$$\begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 2 & 0 \\ 1 & 1 \end{pmatrix}.$$

Esta matriz tiene dos columnas linealmente independientes, por lo que su imagen es

span
$$\{(-1, 1, 0, 0)^T, (-2, 0, 1, 0)^T\}$$
.

El kernel consiste solamente del vector cero debido a que del Teorema del Rango y la Nulidad se sigue que

$$2 = \operatorname{Rango}(A^T) + \operatorname{Nulidad}(A^T) = 2 + \operatorname{Nulidad}(A^T).$$

y esto implica que la dimensión del kernel de la matriz A^T es cero.

Describe al conjunto de soluciones Ax = b donde $b = (6,0)^T$. ¿Puedes encontrar una solución específica x^+ por medio de la pseudoinversa? Hint: Las soluciones de Ax = b es el conjunto:

$$x_{esp} + KerA = \{x = x_{esp} + x_{null} : x_{null} \in Ker(A)\}$$

donde x_{esp} es una solución específica de Ax = b. ¡Este conjunto es independiente de la solución expecífica que se use para la descripción! Respuesta.

La matriz no es uno-a-uno porque su kernel es distinto del vector cero. Por otro lado, la matriz si es sobreyectiva porque su imagen es \mathbb{R}^2 .

Notemos que

$$\begin{pmatrix}
1 & 1 & 2 & 1 \\
0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4
\end{pmatrix} = \begin{pmatrix}
6 \\
0
\end{pmatrix}.$$

Esto implica que $x_4 = 0$. Por lo tanto, $x_1 = 6 - x_2 - 2x_3$. La solución general es $(6 - x_2 - 2x_3, x_2, x_3, 0)$. Para encontrar una solución específica por medio de la pseudoinversa, considerando que A es sobreyectiva tenemos que la pseudoinversa por la derecha es $A^+ = A^T (AA^T)^{-1}$, por lo tanto

$$x = A^{+}b,$$

$$= \begin{pmatrix} \frac{1}{6} & \frac{-1}{6} \\ \frac{1}{6} & \frac{-1}{6} \\ \frac{1}{3} & \frac{-1}{3} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 6 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} 1 \\ 1 \\ 2 \\ 0 \end{pmatrix}.$$

Esto significa que

$$col_1 + col_2 + 2col_3 = (6,0)^T$$

y $\boldsymbol{x}^+ = (1,1,2,0)^T$ es una solución específica.

Parte 2

Demuestra que A es uno-a-uno si y sólo si A^T es sobre.

que Nulidad(A) = 0 y por lo tanto A es 1-1.

Demostración. (\Rightarrow). Supongamos que $A: \mathbb{R}^n \to \mathbb{R}^m$ es uno-a-uno. Eso significa que Kernel(A) = 0, lo cual implica por el Teorema del Rango y la Nulidad que Rango(A) = n. Por el resultado final de la lista de ejercicios, tenemos que $n = \text{Rango}(A) = \text{Rango}(A^T)$, y $A^T: \mathbb{R}^m \to \mathbb{R}^n$, esto significa que Rango $(A^T) = \text{Rango}(\mathbb{R}^n)$ y por lo tanto A^T es sobre. (\Leftarrow). Supongamos que $A^T: \mathbb{R}^m \to \mathbb{R}^n$ es sobreyectiva. Esto implica que Rango $(A^T) = n$. Por el resultado final de la lista de ejercicios, tenemos que Rango $(A^T) = \text{Rango}(A)$. Por el Teorema del Rango y la Nulidad tenemos que n = Nulidad(A) + Rango(A) = Nulidad(A) + n, de lo cual se sigue

Prueba en una línea que Ran A es ortogonal a Ker A^T en el sentido de que cada vector en Ran A es ortogonal a cada elemento del Ker A^T .

Demostración. Sea $v \in \text{Ran}(A)$. Entonces existe $z \in \text{Dom}(A)$ tal que Az = v. Sea $w \in \text{Ker}(A^T)$. Notemos que

$$< v, w> = < Az, v> = < z, A^T v> = < z, 0> = 0.$$

Prueba que si las columnas de una matriz A forman un conjunto linealmente independiente entonces A^TA es invertible.

Demostración. Supongamos que $A: \mathbb{R}^n \to \mathbb{R}^m$ tiene columnas linealmente independientes. La matriz $A^TA: \mathbb{R}^n \to \mathbb{R}^n$, por lo que es un operador de \mathbb{R}^n . Para demostrar que es invertible, basta entonces demostrar que es 1-1. Supongamos que $x \in \mathbb{R}^n$ es tal que $A^TAx = 0$. Por lo demostrado en un ejercicio más adelante, tenemos que A y A^TA tienen el mismo espacio nulo, eso implica que Ax = 0. Como A tiene columnas linealmente independientes, Ax = 0 implica que x = 0.

Sea w un vector en \mathbb{R}^n para algún n y $b \in \mathbb{R}$. Considere el conjunto de todos x tales que

$$< w, x > = b.$$

Da una descripción geométrica de este conjunto en términos de w y b.

Respuesta Podemos considerar la transformación $f(x) = \langle w, x \rangle$, $f: \mathbb{R}^n \to \mathbb{R}$, la cual es lineal debido a la linealidad del producto interior. Si tenemos un escalar b de tal manera que f(x) = b, entonces en este caso particular f tendrá la representación de un hiperplano que en el origen toma el valor b y que divide el espacio en dos (por arriba del hiperplano, f(x) > 0, y por debajo de el, f(x) < 0).

Cuando b = 0, el plano en el origen toma el valor 0 y en este caso el hiperplano es un subespacio vectorial que divide el espacio en dos.

 \triangle

 $\mathbf{Verifica} \ \mathbf{que} \ \mathbf{Rango} A = \mathbf{Rango} A^T = \mathbf{Rango} (A^T A) = \mathbf{Rango} (AA^T).$

Demostración. Sea $x \in Dom(A)$.

Demostraremos que Rango $A = \text{Rango}(A^T A)$, si demostramos que Kernel $A = \text{Kernel}(A^T A)$ y

consideramos el Teorema del Rango y la Nulidad. Notemos que

$$A^TAx = 0$$
, multiplicando por x^T a ambos lados $x^TA^TAx = 0$,
$$(Ax)^TAx = 0,$$

$$\langle Ax, Ax \rangle = 0,$$

$$||Ax||^2 = 0.$$

Esto implica que Ax = 0 y por lo tanto Kernel $(A^TA) \subset$ KernelA. La otra contención es trivial. Sea $y \in \text{Dom}(A^T)$. De manera análoga demostraremos ahora que Rango $A^T = \text{Rango}(AA^T)$

$$AA^Ty=0$$
, multiplicando por y^T a ambos lados
$$y^TAA^Ty=0,$$

$$(A^Ty)A^Ty=0$$

$$< A^Ty, A^Ty>=0,$$

$$||A^Ty||^2=0.$$

Esto implica que $A^Ty=0$ y por lo tanto $\operatorname{Kernel}(AA^T)\subset\operatorname{Kernel}A^T$. La otra contención es trivial. Finalmente, demostraremos que $\operatorname{Rango}A=\operatorname{Rango}A^T$. Por lo que demostramos antes, tenemos

$$\operatorname{Rango}(A) = \operatorname{Rango}(A^T A) \le \operatorname{Rango}(A^T)$$

donde la última desigualdad es debido a que A^TA es una combinación lineal de las columnas de A^T . Similarmente, tenemos que

$$\operatorname{Rango}(A^T) = \operatorname{Rango}(AA^T) \le \operatorname{Rango}(A).$$

Por lo tanto, Rango $A = \text{Rango}A^T$.