

Matemática Discreta 1

Princípio da Indução Matemática

AULA 10

Professor: Luiz Augusto Laranjeira

luiz.laranjeira@gmail.com

5- Indução

Motivação

Imagine que Jorge está subindo uma escada infinitamente alta. Como poderá saber se conseguirá alcançar um degrau arbitrariamente alto?

Façamos as seguintes premissas:

- 1) Jorge pode subir no 1º degrau.
- 2) Uma vez que Jorge esteja em um degrau qualquer ele sempre consegue subir para o degrau seguinte.

Se estas duas premissas são verdadeiras pode-se demonstrar que Jorge conseguirá alcançar qualquer degrau da escada.

5- Indução

Seja P(n) uma propriedade sobre os valores de n pertencentes a um domínio D, onde D \subseteq N.

Para se provar que P(n) é válido para qualquer n pertencente a D precisamos demonstrar que:

- 1) $P(n_1) \equiv V(n_1 \text{ tem a propriedade P, onde } n_1 \text{ é o primeiro elemento de D})$
- 2) ∀n_k ∈ D, P(n_k) → P(n_{k+1}) Se um número (elemento) do domínio D tem a propriedade P, também a terá o próximo número (elemento) deste domínio

Indução (Enunciado Alternativo)

- 1) P(1) ≡ V (1 tem a propriedade P, onde 1 é o primeiro número de D)
- 2) ∀ k ∈ D, P(k) → P(k+1) Se um número (elemento) do domínio D tem a propriedade P, também a terá o próximo número (elemento)

Indução Forte ou Completa

Princípio da Indução Matemática (PIM)

```
Se
```

- 1) $P(1) \equiv V (P(1) \text{ é verdadeira})$
- 2) $(\forall k, k \ge 1) [P(k) \equiv V => P(k+1) \equiv V]$

Então

3) $P(n) \equiv V$ para $\forall n, n \in \mathbb{N}, n \ge 1$ (isto é, $D = \mathbb{N}$)

Princípio da Indução Forte (PIF)

Se

- 1) $P(1) \equiv V (P(1) \text{ é verdadeira})$
- 2) $(\forall k, k \ge 1)$ [$P(r) \equiv V$ (para $\forall r, 1 \le r \le k$) => $P(k+1) \equiv V$]

Então 3) P(n) \equiv V para \forall n, n \in N, n \geq 1 (isto \acute{e} , D = N)

Estes princípios são, portanto equivalentes!

(*) Princípio da Boa Ordenação (PBO): toda coleção de números inteiros positivos que contenha pelo menos um elemento tem um mínimo.

Unb Princípio da Boa Ordenação

Teorema: $D \subset \mathbb{N}$ satisfaz o PBO se todo $A \subset D \subset \mathbb{N}$, $A \neq \emptyset$, tem um **menor elemento**, ou seja, \exists a \in A tal que \forall x, x \in A, x \geq a.

Demonstração:

Se $1 \in A$ então 1 é o menor elemento de A, pois $1 \le n$ para $\forall n, n \in \mathbb{N}$

Para $1 \notin A$, definamos o conjunto $X = \{x \in \mathbb{N} \mid \forall k, k \in A, k > x\}, 1 \in X$.

Se fosse verdade que $\forall x \in X => (x+1) \in X$ (por indução), teríamos $X = \mathbb{N}$ e $A = \emptyset$. Mas isto não é verdade pois, por definição, $\forall k \in A$, temos $k \notin X$, e $A \neq \emptyset$. Logo, existe (pelo menos um) $m \in X$ tal que $(m+1) \notin X$. Daí:

$$(m+1) \notin X => (m+1) \in A$$
 (1)
 $m \in X => \forall x, x \in A, x > m$ (2)
 $k \in A => k > m$ (3)

Finalmente, de (1) e (3) vem que $k \in A => k > m => k \ge (m+1)$ Fazendo a = (m+1) temos que para $x \in A => x > m, x \ge a$

cqd

Demonstração PIM => PIF

Isto é óbvio, pois a hipótese do PIM é mais fraca do que a hipótese do PIF ou, em outras palavras, a hipótese do PIF inclui a hipótese do PIM (e ainda tem condiçoes adicionais).

Demonstração PIF => PBO

Proposição: seja um conjunto A, A \subset N, A \neq Ø, que satisfaz o Princípio da Indução Forte, então A satisfaz o Princípio da Boa Ordenação. Em outras palavras A tem um **mínimo.**

Demonstração:

Vamos supor que A não tenha um mínimo (1 \notin A, senão ele seria o mínimo). Seja $\bar{A} = N - A$. Aplicando a hipótese 1 do PIF sobre \bar{A} temos que 1 ∈ \bar{A} .

Supomos que [1, x] $\subseteq \bar{A}$. Então $\forall z \in A$, z > x e, portanto, $z \ge x+1$. Daí, como $x+1 \in A$, teríamos que x+1 é o mínimo de A, o que é absurdo pois supusemos que A não tinha um mínimo. Portanto é necessário que $x+1 \in \bar{A}$.

Daí, aplicando a hipótese 2 do PIF a \bar{A} concluiríamos que $\bar{A} = N$ e que $A = \emptyset$, o que é uma contradição, já que $A \neq \emptyset$. Então, A tem que ter um mínimo. cqd

GAMA Demonstração PBO => PIM

Proposição: seja um conjunto $D \subset \mathbb{N}$, $D \neq \emptyset$, que satisfaz o Princípio da Boa Ordenação, então D satisfaz o Princípio da Indução Matemática, isto é: Se $1 \in D$ ($1 = \min D$) e $\forall x \in \mathbb{N}$, $x \in D \Rightarrow x+1 \in D$, então $D = \mathbb{N}$.

Demonstração (por contradição):

Seja T \subseteq D tal que: (1) 1 \in T (1 = min T);

(2) para $\forall x \in D, x \in T$

(3) para $\forall x \in D, x \in T \Rightarrow x+1 \in T$.

Suponhamos porém que $T \neq D$ (T não satisfaz o PIM), isto é, \exists o conjunto $\overline{T} = D - T$, $\overline{T} \neq \emptyset$. Como $\overline{T} \subseteq D$, pelo PBO existe $m \in \overline{T}$, tal que $m = \min$ de \overline{T} .

É claro que m ≠ 1, pois 1 ∈ T. Dado que m > 1, então m ≥ 2 e m -1 ≥ 1. Como m -1 < m, m -1 $\notin \overline{\mathsf{T}}$. Logo, m -1 $\in \mathsf{T}$.

Pela proposição (3) temos que (m-1)+1 \in T, ou seja, m \in T. Chegamos a uma contradição pois, por hipótese, m \in T (isto é m \notin T). Logo, $\overline{\top} = \emptyset$ e T satisfaz o PIM. Daí temos que T = D = N. cqd

PBO => PIM Verdadeiro

PBO Verdadeiro

Então PIM Verdadeiro

Demonstrações por Indução

O que se quer demonstrar é $P(n) \equiv V$, onde $n \in D \subset \mathbb{N}$

- 1) Mostrar que P(1) ≡ V (base)
- 2) Assumir que $P(k) \equiv V$ (hipótese indutiva)
- 3) Provar que $P(k) \rightarrow P(k+1)$ (passo indutivo)

Então, $P(k) \equiv V$ para $\forall k \in D, D = \mathbb{N}$

Prove que, dado um conjunto S com n elementos, o conjunto das partes de S, $\mathcal{P}(S)$, terá 2^n elementos.

Exemplo de conjunto $\mathcal{P}(S)$, o conjunto das partes do conjunto S:

$$S = \{1, 2, 3\}$$
 $\mathscr{P}(S) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}\}$ $\mathscr{P}(S) = 2^n$ para $n = 3$, $\mathscr{P}(S) = 2^3 = 8$

 $\mathcal{P}(S)$, o conjunto das partes do conjunto S (S tem *n* elementos) $\mathfrak{N}_{\mathbf{P}}(\mathcal{P}(S)) = 2^n = \text{número de elementos do conjunto } \mathcal{P}(S)$

Prove que, dado um conjunto S com n elementos, o conjunto das partes de S, $\mathcal{P}(S)$, terá $\mathfrak{N}_{P}=2^{n}$ elementos.

(1) Para n = 0 (S = Ø),
$$\mathfrak{N}_{p} = 2^{0} = 1$$
 $\mathscr{S}(S) = \{\emptyset\}$
Para n = 1, $\mathfrak{N}_{p} = 2^{1} = 2$ $\mathscr{S}(S) = \{\emptyset, \{e_{1}\}\}$

- 2) Assumimos que para n = k, $\mathfrak{N}_p = 2^k$
- 3) Precisamos provar que para n = k+1, $\mathfrak{N}_{p} = 2^{k+1}$

- (1) Para n = 0 ($S = \emptyset$), $\mathfrak{N}_p = 2^0 = 1$ $\mathscr{P}(S) = \{\emptyset\}$ Para n = 1, $\mathfrak{N}_p = 2^1 = 2$ $\mathscr{P}(S) = \{\emptyset, \{e_1\}\}$
- 2) Assumimos que, para n = k, $\mathfrak{N}_{p} = 2^{k}$
- 3) Precisamos provar que, para n = k+1, 𝒯 = 2^{k+1}
- O Triângulo de Pascal nos dá: $2^n = 1 + C_{n,1} + C_{n,2} + \dots + C_{n,n-1} + C_{n,n}$
- De (2) vem: $\mathfrak{N}_{P}(k) = 2^{k}$ (n = k)
- $\mathfrak{N}_{p}(k) = 2^{k} = 1 + C_{k,1} + C_{k,2} + \dots + C_{k,k-1} + C_{k,k}$
- $\mathfrak{I}_{p}(k+1)$ (n=k+1)
- $\mathfrak{N}_{p}(k+1) = 1 + C_{k+1,1} + C_{k+1,2} + \dots + C_{k+1,k-1} + C_{k+1,k} + C_{k+1,k+1}$

O Triângulo de Pascal nos dá: $2^{k} = 1 + C_{k,1} + C_{k,2} + ... + C_{k,k-1} + C_{k,k}$

$$\mathfrak{N}_{p}(k) = 2^{k} = 1 + C_{k,1} + C_{k,2} + \dots + C_{k,k-1} + C_{k,k}$$

$$\mathfrak{N}_{p}\left(k+1\right) \qquad (n=k+1)$$

$$\mathfrak{N}_{p}(k+1) = 1 + C_{k+1,1} + C_{k+1,2} + \dots + C_{k+1,k-1} + C_{k+1,k} + C_{k+1,k+1}$$

Usando a fórmula de Pascal: $C_{k+1,m} = C_{k,m} + C_{k,m-1}$

$$\mathfrak{N}_{\mathcal{F}}(k+1) = 1 + C_{k,1} + 1 + C_{k,2} + C_{k,1} + \dots + C_{k,k-1} + C_{k,k-2} + C_{k,k} + C_{k,k-1} + C_{k,$$

E como $C_{k,k} = C_{k+1,k+1} = 1$, para $\forall k \in \mathbb{N}$, vem:

$$\mathfrak{N}_{p} = 1 + C_{k,1} + 1 + C_{k,2} + C_{k,1} + \dots + C_{k,k-1} + C_{k,k-2} + C_{k,k} + C_{k,k-1} + C_{k,k-1}$$

$$\mathfrak{N}_{p} = 2^{k} + 2^{k} = 2.2^{k} = 2^{k+1}$$
 cqc

$$\mathfrak{N}_{p}(k+1) = 1 + C_{k+1,1} + C_{k+1,2} + \dots + C_{k+1,k-1} + C_{k+1,k} + C_{k+1,k+1}$$

Usando a fórmula de Pascal: $C_{k+1,m} = C_{k,m} + C_{k,m-1}$

$$\mathfrak{N}_{\mathcal{F}}(k+1) = 1 + C_{k,1} + 1 + C_{k,2} + C_{k,1} + \dots + C_{k,k-1} + C_{k,k-2} + C_{k,k} + C_{k,k-1} + C_{k,$$

$$C_{k+1,1} = C_{k,1} + C_{k,1-1} = C_{k,1} + C_{k,0} = C_{k,1} + 1$$

E como $C_{k,k} = C_{k+1,k+1} = 1$, para $\forall k \in \mathbb{N}$, vem:

$$\mathfrak{N}_{p} = 1 + C_{k,1} + 1 + C_{k,2} + C_{k,1} + \dots + C_{k,k-1} + C_{k,k-2} + C_{k,k} + C_{k,k-1} + C_{k,k}$$

$$\mathfrak{N}_{p} = 2^{k} + 2^{k} = 2.2^{k} = 2^{k+1}$$
 cqd

Provar que
$$1 + 2 + 2^2 + ... + 2^n = 2^{n+1} - 1$$
, $n \ge 1$

Provar que
$$1 + 2^1 + 2^2 + ... + 2^n = 2^{n+1} - 1$$
, $n \ge 1$

1)
$$1 + 2 = 2^{1+1} - 1$$

 $3 = 2^2 - 1 = 4 - 1$
 $3 = 3$

- 2) Assumimos que $1 + 2 + 2^2 + ... + 2^k = 2^{k+1} 1$ (n = k)
- 3) Precisamos provar que

$$1 + 2 + 2^{2} + ... + 2^{k+1} = 2^{k+1+1} - 1 (n = k+1)$$
 ou seja
$$1 + 2 + 2^{2} + ... + 2^{k+1} = 2^{k+2} - 1$$

Dado que
$$1 + 2 + 2^2 + ... + 2^k = 2^{k+1} - 1$$
 (hipótese indutiva)
Provar que $1 + 2 + 2^2 + ... + 2^{k+1} = 2^{k+2} - 1$ (passo indutivo)
 $1 + 2 + 2^2 + ... + 2^{k+1} = 1 + 2 + 2^2 + ... + 2^k + 2^{k+1}$
 $= 2^{k+1} - 1 + 2^{k+1}$ (pela hipótese indutiva)
 $= 2(2^{k+1}) - 1$
 $= 2^{k+1+1} - 1$
 $= 2^{k+2} - 1$

Provar que 1 + 2 + 3 + ... + n = n(n+1) / 2, $n \ge 1$

Provar que 1 + 2 + 3 + ... + n = n(n+1) / 2, $n \ge 1$

- 2) Assumimos que $1 + 2 + 3 + ... + k = k(k+1) / 2 = (k^2 + k) / 2$
- 3) Precisamos provar que

$$1 + 2 + 3 + ... + (k+1) = (k+1)(k+2) / 2 = (k^2 + 3k + 2) / 2$$

Dado que
$$1 + 2 + 3 + ... + k = (k^2 + k) / 2$$
 (hipótese indutiva)
Provar que $1 + 2 + 3 + ... + (k+1) = (k^2 + 3k + 2) / 2$ (passo indutivo)
 $1 + 2 + 3 + ... + (k+1) = 1 + 2 + 3 + ... + k + (k+1)$
 $= (k^2 + k) / 2 + (k+1)$ (pela hipótese indutiva)
 $= (k^2 + k) / 2 + (2k + 2) / 2$
 $= (k^2 + 3k + 2) / 2$
 $= (k+1)(k+2) / 2$

Provar que $2^{3n} - 1$ é divisível por 7, $n \ge 1$

Provar que $2^{3n} - 1$ é divisível por 7, $n \ge 1$

- 1) $2^{3.1} 1 = 8 1 = 7$ (n = 1) (base)
- 2) Assumimos que $2^{3k} 1$ é divisivel por 7 (n = k) (hip. Indutiva) Isto é: $2^{3k} - 1 = 7m$
- 3) Precisamos provar que $2^{3(k+1)} 1$ é divisível por 7 (passo indutivo)

 $2^{3(k+1)} - 1 = 7t$ Isto é:

Dado que

$$2^{3k} - 1 = 7m$$

(hipótese indutiva)

Provar que

$$2^{3(k+1)} - 1 = 7t$$

(passo indutivo)

$$2^{3(k+1)} - 1 = 8.2^{3k} - 1$$

= $8(7m + 1) - 1$
= $8(7m) + 8 - 1$
= $7(8m) + 7$
= $7(8m + 1)$

= 7t

(pela hipótese indutiva)

Provar que $x^n - 1$ é divisível por x - 1, $x \ne 1$

Provar que $x^n - 1$ é divisível por x - 1, $x \ne 1$

- 1) $x^1 1 = x 1$ que é divisível por x 1 (n = 1) (base)
- 2) Assumimos que $x^k 1$ é divisivel por x 1 (n = k) Isto é: $x^k 1 = (x 1)m$
- 3) Precisamos provar que $x^{k+1} 1$ é divisível por x 1 Isto é: $x^{k+1} 1 = (x 1)t$

 $x^{k} - 1 = (x - 1)m$ (hipótese indutiva) Dado que $x^{k+1} - 1 = (x - 1)t$ Provar que (passo indutivo) $x^{k+1} - 1 = x_1 x^k - 1$ $= x_1 x^k - 1 - x + x$ $= x.x^{k} - x + x - 1$ $= x(x^{k} - 1) + (x - 1)$ = x.(x-1)m + (x-1) (pela hipótese indutiva) = (x-1)[xm+1]= (x-1)t

Dado que $x^{k} - 1 = (x - 1)m$ (hipótese indutiva)

Provar que $x^{k+1} - 1 = (x - 1)t$ (passo indutivo) $x^{k+1} - 1 = x \cdot x^{k} - 1$ $x^{k} = (x - 1)m + 1$ (Hip Ind) $x^{k} = (x - 1)m + 1 = x \cdot (x - 1)m + 1$ (Hip Ind) $x^{k} = (x - 1)m + 1 = x \cdot (x - 1)m + 1$ (Hip Ind) $x^{k} = (x - 1)m + 1 = x \cdot (x - 1)m + 1$ (Hip Ind) $x^{k} = (x - 1)m + 1 = x \cdot (x - 1)m + 1$ (Hip Ind) $x^{k} = (x - 1)m + 1 = x \cdot (x - 1)m + 1$ (Hip Ind) $x^{k} = (x - 1)m + 1 = x \cdot (x - 1)m + 1$ (Hip Ind) $x^{k} = (x - 1)m + 1 = x \cdot (x - 1)m + 1$ (Hip Ind) $x^{k} = (x - 1)m + 1 = x \cdot (x - 1)m + 1$ (Hip Ind) $x^{k} = (x - 1)m + 1 = x \cdot (x - 1)m + 1$ (Hip Ind)

Provar por indução que $n^2 > 3n$, $n \ge 4$

Provar por indução que $n^2 > 3n$, $n \ge 4$

- 1) Para n=4 temos: $4^2 > 3.4$ ou 16 > 12 (base)
- 2) Assumimos que $k^2 > 3k \rightarrow 3k < k^2$ (hipótese indutiva)
- 3) Precisamos provar que $(k+1)^2 > 3(k+1)$ (passo indutivo)

```
(k+1)^2 = k^2 + 2k + 1
> 3k + 2k + 1 (pela hipótese indutiva)
> 3k + 8 + 1 (dado que k > 4)
> 3k + 9
> 3k + 3
> 3(k+1)
```


Exercício 1:

Provar que $(1 + x)^n > 1 + x^n \quad n > 1, x \neq 0$

Exercício 1:

Provar que:

$$(1 + x)^n > 1 + x^n$$

 $n, x \in \mathbb{N}, n > 1, x \neq 0$

1)
$$(1 + x)^2 = 1 + 2x + x^2 > 1 + x^2$$

$$(n = 2)$$

2)
$$(1 + x)^k > 1 + x^k$$

$$(n = k)$$

3) Precisamos provar que
$$(1 + x)^{k+1} > 1 + x^{k+1}$$

$$(n = k+1)$$

Exercício 1 (cont.)

Dado que
$$(1 + x)^k > 1 + x^k$$
 (hipótese indutiva)

Provar que $(1 + x)^{k+1} > 1 + x^{k+1}$ (passo indutivo)

 $(1 + x)^{k+1} = (1 + x)(1 + x)^k$
 $(1 + x)^{k+1} > (1 + x)(1 + x^k)$ (pela hipótese indutiva)

 $(1 + x)^{k+1} > (1 + x)(1 + x^k)$
 $(1 + x)^{k+1} > (1 + x)(1 + x^k)$
 $(1 + x)^{k+1} > (1 + x)^{k+1}$
 $(1 + x)^{k+1} > (1 + x)^{k+1}$
 $(1 + x)^{k+1} > (1 + x)^{k+1}$
 $(1 + x)^{k+1} > (1 + x)^{k+1}$

Atenção!!!

Na tentativa de provar por indução se provarmos que P(k+1) é verdadeiro sem utilizar o fato de que P(k) é verdadeiro teremos feito uma **prova direta** de P(k+1), onde k+1 é arbitrário.

Exercício 2

Provar por indução o teorema de DeMoivre:

$$(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta, \quad n \ge 1, i^2 = -1$$

Dica! Lembrar das fórmulas trigonométricas de adição:

$$\cos (\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$$

 $\sin (\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$

Exercício 3

Provar que $(\cos \theta + i \sec \theta)^n = \cos n\theta + i \sec n\theta$, $n \ge 1$, $i^2 = -1$

Para n=1, $(\cos \theta + i \sin \theta)^1 = \cos \theta + i \sin \theta$

Para n=k, $(\cos \theta + i \sec \theta)^k = \cos k\theta + i \sec k\theta$

Para n = k+1 $(\cos \theta + i \sin \theta)^{k+1} = \cos (k+1)\theta + i \sin (k+1)\theta$

Usando as fórmulas trigonométricas de adição, temos:

 $cos (k+1)\theta = cos (k\theta + \theta) = cos k\theta cos \theta - sen k\theta sen \theta$ $sen (k+1)\theta = sen (k\theta + \theta) = sen k\theta cos \theta + cos k\theta sen \theta$

Exercício 2

Provar que $(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta$

```
(\cos \theta + i \sin \theta)^k = \cos k\theta + i \sin k\theta
Dado que
                          (\cos \theta + i \sin \theta)^{k+1} = \cos (k+1)\theta + i \sin (k+1)\theta
Provar que
(\cos \theta + i \sec \theta)^{k+1} = (\cos \theta + i \sec \theta) (\cos \theta + i \sec \theta)^k
    = (\cos \theta + i \sin \theta) (\cos k\theta + i \sin k\theta)
    = \cos k\theta \cos \theta + i \sin k\theta \cos \theta + i^2 \sin k\theta \sin \theta + i \cos k\theta \sin \theta
    = \cos k\theta \cos \theta + i \sin k\theta \cos \theta - \sin k\theta \sin \theta + i \cos k\theta \sin \theta
    = (\cos k\theta \cos \theta - \sin k\theta \sin \theta) + i (\sin k\theta \cos \theta + \cos k\theta \sin \theta)
    = \cos (k\theta + \theta) + i \operatorname{sen} (k\theta + \theta)
    = \cos (k+1)\theta + i \operatorname{sen} (k+1)\theta
```