Intelligent Data Extraction & Summarization on GCP — arxiv-research-agent

Overview

This prototype implements a retrieval-augmented generation (RAG) workflow on Google Cloud Platform to answer questions over arXiv abstracts.

It uses Cloud Storage (GCS), BigQuery, Vertex AI (Gemini), Cloud Run, and Vertex AI Workbench for data prep and orchestration.

What it does

- Data prep: Ingest arXiv metadata, clean minimally, split into chunks, and store in BigQuery.
- Embeddings: Compute dense embeddings for chunks (local e5-small-v2 or Vertex embeddings).
- Vector search: Query BigQuery with similarity to fetch top-K chunks.
- Generation: Assemble a grounded prompt with retrieved chunks; Gemini produces an answer with citations.
- API: /v1/chat accepts {question, k} and returns {answer, citations, matches}.

System Architecture (GCP)

Data Flow:

GCS → Workbench: Load raw JSONL, clean, chunking.

Workbench \rightarrow BigQuery: Store arxiv_demo.chunks with embedding ARRAY.

Cloud Run: Embed query, search BigQuery vectors, synthesize with Gemini, return JSON results.

GCP Services Used (and why)

- Cloud Storage Durable lake for raw/clean dumps.
- BigQuery Analytical store + vector similarity.
- Vertex AI (Gemini) Managed generative models.
- Cloud Run Serverless FastAPI endpoint.
- Vertex Al Workbench Managed notebooks for EDA.
- Cloud Logging Request/error logs for debugging.

Agentic Workflow (Research Assistant)

Goal: Answer domain questions using grounded context from arXiv abstracts with citations.

Tools:

- Embed(text) → vector
- Search(vector, k) → BigQuery SQL similarity
- Synthesize(question, contexts[]) → Vertex Gemini

Planning:

- Embed question \rightarrow Search chunks \rightarrow Synthesize answer \rightarrow Return JSON.

Results, Challenges, and Trade-offs

What works well:

- End-to-end demo pipeline.
- Serverless infra with minimal ops.

Limitations:

- Small sample index leads to weak recall.
- Vertex API quotas restrict scale.

Key trade-offs:

- BigQuery vs Matching Engine.
- Local vs Vertex embeddings.

Evaluation (lightweight)

Qualitative checks show answers are faithful when snippets include clear signals.

Next step: Add ROUGE-L evaluation + manual ratings of 20 queries.

Productionization Approach

Scalability & Orchestration:

- Use Vertex AI Pipelines + Pub/Sub.

Security:

- IAM least-privilege, CMEK, Secret Manager.

Monitoring:

- Structured logs, Error Reporting, custom metrics.

Cost Optimization:

- Partition BigQuery, batch embeddings, autoscaling Cloud Run.

CI/CD:

Use GitHub Actions, Terraform infra, pinned versions.	