EC3303 Tutorial 1

- 1. Describe how one can design a hypothetical randomized control experiment to study the effect of having immigrant classmates on the test scores of native students. Suggest some impediments to implementing this experiment in practice.
- 2. Suppose that a researcher, using data on class size(CS) and average test scores from 100 primary 3 classes, estimates the OLS regression

$$(TestScore = 731.4 - 3.42 \times CS, R^2 = 0.10, SER = 11.0)$$

- a) A classroom has 19 students. What is the regression's prediction for that classroom's average test score?
- b) Last year, a classroom had 17 students and this year it has 22 students. What is the regression's prediction for the change in the classroom average test score?
- c) The sample average class size across the 100 classroom is 21.4. What is the sample average of the test scores across the 100 classrooms?
- 3. You are interested in examining the relationship between earnings and height. Accordingly you run a regression of *Earn* on *Height* using a sample of American workers (where the variable *Earn* represents annual labour earnings in US dollars in 2015; and where *Height* represents the height of the worker in inches in 2015). The height of individuals in your sample ranges from 48 inches to 84 inches.

You obtained the following regression output:

Earn	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
Height	707.6716	50.39502	14.04	0.000	608.8924	806.4507
_cons	-512.7336	3379.864	-0.15	0.879	-7137.594	6112.126

For all questions below, provide your **final answers** to 2 decimal places.

- a) How much more or less do we expect a person whose height is 72 inches to earn in annual earnings compared to a person whose height is only 62 inches?
- b) Suppose a person, Jane, actually earns \$33,712.97 per year. Jane is 59 inches tall. How large is the residual specific for Jane?

Stata Exercise (to be done in tutorial with the tutor)

4. The data file CPS08.dta contains data for full-time workers, aged 25-34, with a high school diploma (equivalent to Secondary, JC, and Poly qualifications) or Bachelor's as their highest degree. In this exercise, you will investigate the relationship between a worker's age and

- earnings (generally, older workers have more job experience, leading to higher productivity and earnings)
- a) Run a regression of average hourly earnings (AHE) on age (Age). What is the estimated intercept? What is the estimated slope? Use the estimated regression to answer this question: How much do earnings increase as workers age by 1 year?
- b) Ah Teck is a 26 year-old worker. Predict Ah Teck's earnings using the estimated regression. Ravin is a 30 year-old worker. Predict Ravin's earnings using the estimated regression.
- c) Does age account for a large fraction of the variance in earnings across individuals? Explain.

Supplementary Questions (serves as practice questions, but will not be discussed in the tutorial)

- 5. Labour economists are typically interested in knowing whether racial discrimination exists in the labour market. Discrimination is said to exist if someone is treated differently on the basis of his/her perceived race. Suppose you want to know whether being Asian as opposed to being Caucasian in Singapore affects your employment opportunities:
- a) How would you design a potentially workable randomized controlled experiment to study this?
- b) Can you compare the employment rates of Asian workers to employment rates of Caucasian workers in Singapore to reliably evaluate whether there is racial bias in hiring? Explain.
- 6. In the review of statistics lecture, we showed that we could use the first observation (from a sample of n) as an estimator of the population mean. This first observation estimator is unbiased but has a variance of $\sigma_{\scriptscriptstyle Y}^2$, which makes it less efficient than the sample mean \bar{Y} . Suppose you now develop another estimator, which is the simple average of the first and last observation in your sample.
- a) Show that this new estimator is also unbiased and show that it is more efficient than the estimator which only uses the first observation.
- b) Is this new estimator consistent?
- 7. Your friend has developed a new estimator \tilde{Y} to estimate the population mean.

$$\tilde{Y} = \frac{1}{n} \left(\frac{421}{2} Y_1 + \frac{123}{50} Y_2 + \frac{421}{2} Y_3 + \frac{123}{50} Y_4 + \dots + \frac{421}{2} Y_{n-1} + \frac{123}{50} Y_n \right)$$

where Y_1, Y_2, \dots, Y_n are i.i.d observations, drawn from a population with mean μ_Y and variance σ_Y^2 . Assume n is even.

- a) Is the estimator, \tilde{Y} , unbiased? Show **clearly** how you reached your conclusion.
- b) Derive an expression for the variance of the sampling distribution of \tilde{Y} , in terms of σ_Y^2 .
- c) Suppose your friend now develops another estimator of the population mean:

$$\ddot{Y} = \frac{1}{n} \left(\frac{57}{20} Y_1 + \frac{25}{30} Y_2 + \frac{57}{20} Y_3 + \frac{25}{30} Y_4 + \dots + \frac{57}{20} Y_{n-1} + \frac{25}{30} Y_n \right)$$

Should your friend use \ddot{Y} or \tilde{Y} to estimate the population mean if she had to pick one? Explain your answer clearly.