Greenfield Analysis to Find the Optimal Locations for New Facilities

Two-Stage Network Model for Facility Location Design

Two-Stage Network Model for Facility Location Design (contd.)

The objective of the network designer:

Minimizing the total cost including transportation and facility operating costs.

Factors:

- Optimal number and the optimal locations of warehouses chosen from a given set of potential locations
- Quantity of the products to be shipped from each facility to the customer site

Two-Stage Network Model for Facility Location Design (contd.)

Necessary data:

- Set of potential locations of the facilities (e.g. warehouses) and set of customers
- Demand of the products at the customer locations
- Transportation cost per unit amount of product from each potential facility location to customer location
- Maximum capacity of each facility

Mathematical Notations

Indices:

- I : Set of customer locations indexed by i
- J : Set of candidate facility locations indexed by j
- L : Set of products indexed by I

Model variables:

- X_j : 1 if a facility is set up at location j, 0 otherwise
- Y_{lji}: Quantity of product I to be shipped from the facility at location j to customer site i

Mathematical Notation (contd.)

Model Parameters:

- D_{li} : Demand for product l at customer location i
- f_j : Fixed operating and maintenance cost of a facility at candidate site j
- c_{lji} : Unit cost of shipping the product l from facility location j to customer location i
- U_{max_i} : Maximum capacity of facility at site j

Optimization Problem Formulation

Objective function to be minimized:

$$f_1 = \underbrace{\sum_{j} f_j X_j}_{\text{Operating cost}} + \underbrace{\sum_{l} \sum_{j} \sum_{i} c_{lji} Y_{lji}}_{\text{Transportation cost from facilities}}$$

Constraints:

Each customer site demand should be fullfilled for each of the products.

$$\sum_{j} Y_{lji} = D_{li}, \, \forall l \in L, i \in I$$

A facility site cannot serve a customer site unless that facility is opened.

$$Y_{lji} - D_{li}X_j \le 0, \forall l \in L, j \in J, i \in I$$

Constraints (contd.):

• Quantity of each product supplied from a facility to the customers must be less than the maximum capacity of that facility.

$$\sum_{l}\sum_{i}Y_{lji}\leq U_{\mathsf{max}_{j}}X_{j},\ \forall j\in J$$

Binary restriction

$$X_j \in \{0,1\}, \, \forall j$$

Non-negative integer restriction

$$Y_{lji} \in \mathbb{Z}^+, \ \forall l, j, i$$

Results

Figure: Pie chart for the cost.

Figure: Transportation graph for product 1.

Figure: Transportation graph for product 2.

Figure: Transportation graph for product 3.

Figure: Change in number of DCs to be set up as demand is increased.

Figure: Change in total cost as demand is increased.

Three-Stage Network Model for Facility Location Design

Three-Stage Network Model for Facility Location Design (contd.)

The objective of the network designer:

• Minimizing the total cost including transportation (factory \rightarrow facility and facility \rightarrow customer) and facility operating cost.

Factors:

- Optimal number and the optimal locations of warehouses chosen from a given set of potential locations
- Quantity of the products to be shipped from each factory to the DCs and then from each DC to the customer sites

Three-Stage Network Model for Facility Location Design (contd.)

Necessary data:

- Set of factories, potential locations of the facilities (e.g. warehouses) and set of customers
- Demand of the products at the customer locations
- Supply limit of each product at the factories
- Transportation cost per unit amount of product from each factory to facility locations and then from each facility location to customer
- Maximum capacity of each facility

Mathematical Notations

Indices:

- I : Set of customer locations indexed by i
- J : Set of candidate locations for DCs indexed by j
- K : Set of manufacturing plants indexed by k
- L : Set of products indexed by I

Model Parameters:

- D_{li} : Demand for product l at customer location i
- S_{lk} : Supply of product l at plant k

Mathematical Notations (contd.)

Model Parameters (contd.):

- U_{max_i} : Maximum capacity of DC at candidate site j
- f_j: Fixed operating and maintenance cost of a facility at candidate site
 j
- $m{\circ}$ c^{pd}_{lkj} : Unit cost of shipping the product l from plant $k o \mathsf{DC}$ at candidate location j
- c^{dc}_{lji} : Unit cost of shipping the product / from DC at candidate location $j \to {
 m customer}$ site i

Mathematical Notation (contd.)

Model variables:

- X_j : 1 if a DC is set up at location j, 0 otherwise
- z^{pd}_{lkj} : Quantity of product l to be shipped from plant $k o \mathsf{DC}$ at candidate location j
- z_{lji}^{dc} : Quantity of product l to be shipped from DC at candidate location $j \rightarrow$ customer site i

Optimization Problem Formulation

Objective function to be minimized:

$$f_1 = \underbrace{\sum_{j} f_j X_j}_{\text{Operating cost}} + \underbrace{\sum_{l} \sum_{k} \sum_{j} c^{pd}_{lkj} z^{pd}_{lkj}}_{\text{Transportation cost}} + \underbrace{\sum_{l} \sum_{j} \sum_{i} c^{dc}_{lji} z^{dc}_{lji}}_{\text{Transportation cost}}$$
of DCs
$$\underbrace{\sum_{j} f_j X_j}_{\text{Transportation cost}} + \underbrace{\sum_{l} \sum_{j} \sum_{i} c^{dc}_{lji} z^{dc}_{lji}}_{\text{Transportation cost}}$$
of DCs
$$\underbrace{\sum_{j} f_j X_j}_{\text{Transportation cost}} + \underbrace{\sum_{l} \sum_{j} \sum_{i} c^{dc}_{lji} z^{dc}_{lji}}_{\text{Transportation cost}}$$

Constraints:

 Quantity of each product shipped from a plant must be less than its supply

$$\sum_{j} z_{lkj}^{pd} \le S_{lk}, \, \forall l \in L, k \in K$$

 Quantity of each product shipped from DCs must satisfy the demand of each customer site

$$\sum_{i} z_{lji}^{dc} \leq D_{li}, \, \forall l \in L, i \in I$$

Constraints (contd.):

Quantity of each product shipped from plants to a DC candidate location must be less than the maximum throughput of DC at that location.

$$\sum_{l} \sum_{k} z_{lkj}^{pd} \leq U_{max_{j}}, \, \forall j \in J$$

 Quantity of each product shipped from a DC candidate location to customers must be less than the maximum throughput of DC at that location.

$$\sum_{l}\sum_{i}z_{lji}^{dc}\leq U_{max_{j}},\,\forall j\in J$$

Constraints (contd.):

 Total incoming products at a DC candidate location must be equal to the total outgoing products.

$$\sum_{k} z_{lkj}^{pd} = \sum_{i} z_{lji}^{dc}, \, \forall l \in L, j \in J$$

Binary restriction

$$X_j \in \{0,1\}, \, \forall j$$

Non-negative integer restriction

$$z_{lkj}^{pd} \in \mathbb{Z}^+, \ \forall I, j, k$$

$$z_{lii}^{dc} \in \mathbb{Z}^+, \ \forall l, j, i$$

Results

Figure: Pie chart for the cost.

= 6230651.00

Transportation cost: Factories → Facilities

Figure: Transportation graph Factory \rightarrow DC for product 1.

Figure: Transportation graph Factory \rightarrow DC for product 2.

Figure: Transportation graph from Factory \rightarrow DC for product 3.

Figure: Transportation graph from DC \rightarrow Customer for product 1.

Figure: Transportation graph from DC \rightarrow Customer for product 2.

Figure: Transportation graph from DC \rightarrow Customer for product 3.

Figure: Change in number of DCs to be set up as demand is increased.

Figure: Change in total cost as demand is increased.

The End