Groupe: ASD1_B_A

Estimation du temps

Pour estimer le temps de calcul d'une grande quantité de données, une mesure du temps est effectuée pour 100 valeurs. Puis, par calcul, nous avons obtenu une estimation du temps.

Quantité de données	Select Sort	QuickSort	Counting Sort
Temps en ms pour 100 éléments	80'870.55	25'073.35	8'433.70
Complexité	$O(N^2) = 10\ 000$	$O(N \cdot log(N)) = 664$	O(N) = 100
Temps unitaire	8.087	34.760	84.337
Temps pour 10 000 [en ns]	808 700 000	4 618 808	843 370
Complexité × temps unitaire	808 700 000		
Temps pour 10 000 [en ms]	808 ms	4.6 ms	0.84 ms

Comparaison des tris en fonction de la quantité des données

Nous avons comparé la durée moyenne d'exécution de chaque tri avec une même base. Il est possible de voir que la durée d'un tri par sélection est plus rapide sur des tableaux de faible taille. Le Counting Sort, est plus rapide lorsqu'on dépasse une taille de données de plus de 100 éléments.

Quantité de données	Select Sort	QuickSort	Counting Sort
10	1′744.25	1′930.15	2′139.85
100	80'870.55	25'073.35	8'433.70
1000	6′795′954.35	310'400.70	58'190.30
10 000	549'318'570.75	3′171′283.55	565′501.40
100000	54'953'453'459.50	37'961'676.25	7′165′844.80

Tableau 1 - Temps moyen (en nanoseconde) des tris en fonction d'une quantité de données

Quantité de données	Select Sort	QuickSort	Counting Sort
10	100	33.21	10
100	10'000	664.38	100
1000	1′000′000	9'965.78	1′000
10000	100'000'000	132'877.12	10'000
100000	10'000'000'000	1'660'000.00	100'000

Tableau 2 - Complexité théorique en fonction d'une quantité de données

Nous constatons que les lignes des mesures et les lignes des valeurs théoriques sont parallèles deuxà-deux, ce qui confirme la théorie.

Comparaison des tris en fonction des données

Pour les mesures suivantes, nous avons pris un tableau de 10 000 entrées. Le tableau a été rempli de valeur aléatoire entre 0 et 100. L'opération a été répétée pour les intervalles 0-1000 et 0-10'000.

Intervalle des valeurs	Select Sort	QuickSort	Counting Sort	Radix Sort
0 à 10	683'470'941.55	3′571′885.05	608'261.05	1'887'417.35
0 à 100	703′739′570.20	3'929'509.50	661'383.85	2'047'123.15
0 à 1'000	790'904'970.75	4′555′834.30	764′590.65	2'431'016.75
0 à 10'000	785'782'223.55	5′204′417.75	1'087'482.65	2'214'717.95

Tableau 3 - Temps moyen (en nanoseconde) selon un intervalle des valeurs

Nous constatons que les lignes du Select, QuickSort et Radix sont horizontal, ce qui indique que les algorithmes ne dépendent pas de la répartition des données. Le Counting sort prends un plus de temps pour les grands tableaux, ceci car sa complexité est en O(n+m) avec n la taille du tableau et m le nombre de casier. Hippothèse : pour 100'000 le Radix sort devrait être plus rapide que le Counting sort.