

Challenge UTAC

ECE Paris

Open test: Collision avoidance

Table of contents

- 1- Team presentation
- 2- Context
- 3- Goals
- 4- Initial condition
- 5- Conception
- 6- Development
- 7- Results
- 8- Final state
- 9- Perspectives

1- Team presentation ⊔⊤A□'

Guy MBOSSO MBOSSO

- Embedded systems student

Jae Yun JUN KIM

- Mentor

Naila BOUCHEMAL

- Mentor

Olivier CHESNAIS

- Supervisor

Luc BOURGEOIS

- Expert

2- Context

Rate of rear collision is around 29%

Project for road security

Autonomous vehicle and security

3-Goals

- Create a simulation environment to simulate a sudden braking situation
- Design an automatic braking system to avoid a collision when braking hard.
- Measure vehicle reaction time under different conditions
- Speed control recommendation system, considering vehicle speeds, inter-vehicular distance, and weather conditions

4- Initial condition

This project has not inherited any previous work.

Information research

Safety distance

Coulomb friction

Speed limitation

5- Conception

Reaction time

$$Tr1 = T2 - T1$$

$$Tr2 = T3 - T2$$

Control law

$$V_{control} = V_{initial} - k_p \cdot (D - d_{measured})$$

Braking condition

$$d_{\text{measured}} < \frac{\text{safety distance}}{2}$$

6- Development

Tools

- Webots
- Lidar SICK LMS 291
- Python
- ODE (Open Dynamic Engine)

Lidar characteristics

1 layer lidar

Range: up to 80 m

View: up to 180 degrees

7- Results

Tr1 measurement

Tr2 measurement

※: Collision

f = 0.8

 \Box : f = 0,5

 \blacksquare : f = 0,2

7- Results

Tr1 measurement

Tr2 measurement

※: Collision

f = 0.8

f = 0.5

I : f = 0,2

7- Results

Tr1 measurement

Tr2 measurement

*: Collision

f = 0.8

f = 0.5

: f = 0,2

8- Final state

- Simulation allowing to observe a braking scenario in various conditions
- Measurement of vehicle reaction time under different conditions
- Functional automatic braking system
- Recommendation system for autonomous vehicles

9-Perspectives

- Improving vehicle perception
- Consider other scenarios, such as changing lanes
- Use of more sophisticated controllers

Thank you!