INTERNATIONAL CONFERENCE ON ADVANCES IN SCIENCE, ENGINEERING AND ROBOTICS TECHNOLOGY (ICASERT-2019)

Statistical Approach for Classifying Sentiment Reviews by Reducing Dimension using Truncated Singular Value Decomposition

Asmaul Husna¹, Habibur Rahman² and Emrana Kabir Hashi²

¹Computer Science and Engineering, University of Information Technology and Sciences (UITS)

²Computer Science and Engineering, Rajshahi University of Engineering and Technology (RUET)

Outline

Introduction
Motivation
Objectives
Background Study
Related Works
Existing System
Proposed System
Methodology
Implementation
Result Analysis
Comparison
Conclusion, Limitation and Future Work
References

Introduction

 Sentiment analysis is the computational study of people opinions or reviews expressing in online media.

Motivation

The opportunity to capture the opinions of the general public about social events, political movements, company strategies, product preferences which has raised increasing interest both in the

- scientific community for the exciting open challenges and in the
- business world for the remarkable fallouts in marketing and financial prediction

Objectives

To design a system using suitable feature generation and extraction method with less computational cost

To create a time and cost-effective framework with fast learning speed machine learning algorithm

Background Study

Existing approaches of sentiment analysis can be grouped into four main categories [1]:

- 1. Keyword spotting
- 2. Lexical affinity
- 3. Statistical methods
- 4. Concept-based techniques

Keyword Spotting:

• Text is classified into **positive and negative** based on the presence of affect words like 'happy', 'sad', 'afraid', and 'bored'.

Lexical Affinity:

- Assigns arbitrary words as probabilistic 'affinity' for a particular emotion.
- Example: 'accident' might be assigned a 75% probability of indicating a negative affect

Background Study(Cont'd)

Statistical Methods:

 Not only learn the affective valence of affect keywords (as in the keyword spotting approach), but also to take into account the valence of other arbitrary keywords (like lexical affinity), punctuation, and word cooccurrence frequencies

Concept-Based Techniques:

- Focus on a semantic analysis of text through the use of web ontologies or semantic networks
- Handle the conceptual and affective information rather than affective words but use complex approach than statistical methods

Related works

1. B. Pang, L. Lee, and S. Vaithyanathan [2]

- **Contribution:** They have used a mixture of lexical features such as unigrams, bigrams, POS with Naive Bayes, Maximum Entropy and Support Vector Machine.
- Limitation: Lower accuracy with higher dimension.

2. D. V. N. Devi, C. K. Kumar, and S. Prasad [3]

- **Contribution:** They have used SVM in a novel way to find out the overall positive and negative scores for a particular feature.
- **Limitation:** They have showed better **accuracy only** in **higher dimensional** feature space.

Existing System

Fig. 1: Flowchart of existing system

Proposed System

Fig. 2: Flowchart of proposed system

Methodology

• Transform Text into Feature Vector Using TFIDF(Term Frequency-Inverse Document Frequency):

Term- document matrix

$$\begin{array}{ccccc} d_1 & d_2 & d_3 \\ t_1 & w_{1,1} & w_{1,2} & w_{1,3} \\ t_2 & w_{2,1} & w_{2,2} & w_{3,3} \end{array}$$

Here, d_1 , d_2 , d_3 = document/ sentence

 t_1 , t_2 = term/ word of each sentence

And $w_{1,1}$, $w_{1,2}$ $w_{3,3}$ = tf (t, d). idf(t, D) =weighted vector which represents the occurrence rate of each term in a particular document Here, tf(t, d)=log(f_{t,d})

$$idf(t, D) = log(N/N_{tEd})$$

Example of tf-idf

```
Term for document 1= {this, is, a, sample}
Term count for document 1={1,1,2,1}

Term for document 2= {this, is, another, example}
Term count for document 2={1,1,2,3}

tf(example,d2)=log(3)=0.48
idf(example,D)=log(2/1)=0.301

Finally,
tf-idf(example,d2)=0.48*0.301=0.144
```

 TSVD(Truncated Singular Value Decomposition) as Dimension Reduction Technique:

Here, M<N

Logistic Regression Algorithm for Classification:

Here, w = weight of the corresponding input

$$S(Y) = e^{\gamma}/(1+e^{\gamma})$$

SVM(Support Vector Machine) for Classification:

Linear SVM has been used as a binary classifier to classify positive and negative sentiment.

The hyperplane can be defined as $f(x)=b+W^TX$ Here,
W=weight vector
X= input
b= bias input

Fig. 3: Classification method of SVM[4]

Implementation

Dataset Description:

Movie review [5] and Yelp Restaurant Review [6] datasets are used.

- Those corpus includes 1,000 positive and 1,000 negative reviews.
- All text converted to lowercase and lemmatized, and HTML tags removed.

Hardware and Software Configuration:

- Operating System: Linux
- Language: Python 2.7
- Processor: Intel[®] Core[™] i5-3317U CPU @ 1.70GHz
- RAM: 4.00 GB

Cross Validation:

10 fold cross validation has been used.

TABLE 1: CONFUSION MATRIX WITHOUT DIMENSION REDUCTION

Movie Review Dataset					
		Actual			
Predicted		Negative		Positive	
	Classifier	SVM	LR	SVM	LR
	False	850	864	150	136
	True	154	137	846	863

Yelp Restaurant Review Dataset					
		Actual			
Predicted		Negative Positive			
	Classifier	SVM	LR	SVM	LR
	False	901	907	93	93
	True	117	106	883	894

Table 2: Result Analysis Without Dimension Reduction

MOVIE REVIEW DATASET					
CLASSIFIER	ACCURACY (%)	#FEATURES	TRAINING TIME		
SVM	84.4	12209	8.1166726		
LR	86.35	12209	0.0763286		
YELP RESTAURANT REVIEW DATASET					
CLASSIFIER	ACCURACY (%)	#FEATURES	TRAINING TIME		
SVM	89.5	12209	1.4578088		
LR	90.05	12209	0.0175273		

TABLE 3: CONFUSION MATRIX AFTER DIMENSION REDUCTION

Movie Review Dataset					
		Actual			
Predicted		Negative		Positive	
	Classifier	SVM	LR	SVM	LR
	False	818	849	182	151
	True	208	135	792	865

Yelp Restaurant Review Dataset					
		Actual			
Predicted		Negative Positive			
	Classifier	SVM	LR	SVM	LR
	False	846	901	154	99
	True	103	115	897	885

Table 4: Result Analysis After Dimension Reduction

MOVIE REVIEW DATASET					
CLASSIFIER	ACCURACY (%)	#FEATURES	TRAINING TIME		
SVM	80.5	100	0.5638779		
LR	85.7	100	0.0437935		
YELP RESTAURANT REVIEW DATASET					
CLASSIFIER	ACCURACY (%)	#FEATURES	TRAINING TIME		
SVM	88.65	100	0.5866717		
LR	89.3	100	0.0398641		

Comparison

Fig. 4: Comparison of Training Time

Fig. 5: Accuracy Comparison

Conclusion, Limitation and Future Work

Conclusion:

After reducing dimension, the accuracy are closest before and after dimension reduction. But in terms of training time, dimension reduction outperforms (42.63% Faster Training Time).

Limitation:

Unigram TF-IDF is used for converting text into vector.

Future Work:

- Bigram TF-IDF will be used for better accuracy.
- Deep Neural Network for further improvements.

References

- [1] E. Cambria, P. Gastaldo, F. Bisio, and R. Zunino, "An elm-based model for affective analogical reasoning," *Neurocomputing*, vol. 149, pp. 443–455, February 2015.
- [2] B. Pang, L. Lee, and S. Vaithyanathan, "Thumbs up? sentiment classification using machine learning techniques," in Proceedings of the ACL-02 Conference on Empirical Methods in Natural Language Processing (EMNLP), July 2002, vol. 10, pp. 79-86.
- [3] D. V. N. Devi, C. K. Kumar, and S. Prasad, "A Feature Based Approach for Sentiment Analysis by Using Support Vector Machine," *IEEE 6th International Conference on Advanced Computing*, February 2016.
- [4] "Introduction to Support Vector Machine", https://docs.opencv.org/2.4/doc/tutorials/ml/introduction_to_svm/introduction_to_svm.html.

References

- [5] B. Pang, L. Lee, "Seeing stars: exploiting class relationships for sentiment categorization with respect to rating scales," 43rd Annual Meeting on Association for Computational Linguistics, pp. 115–124, June 2005.
- [6] Yelp.com. (2019). Yelp Dataset. [online] Available at: https://www.yelp.com/dataset [Accessed 15 Apr. 2019].

