kd education academy (9582701166)

STD 11 Science chemistry Total Marks: 480 Time: 5 Hour

kd700+ neet target ch-5 thermodynamics and thermochemistry

[480] * Chemistry

1. Match List-*I* with List-*II*.

List $-I$ (Process)	List $-II$ (Conditions)
A. Isothermal process	I. No heat exchange
B. Isochoric process	II. Carried out at constant temperature
C. Isobaric process	III. Carried out at constant volume
D. Adiabatic process	IV. Carried out at constant pressure

Choose the correct answer from the options given below:

(A)
$$A-IV, B-II, C-III, D-I$$

(B)
$$A-I, B-II, C-III, D-IV$$

(C)
$$A-II, B-III, C-IV, D-I$$

(D)
$$A-IV, B-III, C-II, D-I$$

2. The work done during reversible isothermal expansion of one mole of hydrogen gas at 25°C from pressure of 20atmosphereto10atmosphere is

(Given
$$R=2.0\mathrm{calK}^{-1}\;\mathrm{mol}^{-1}$$
)

(A)
$$-413.14$$
 calories (B) 413.14 calories

- (D) 0 calorie
- 3. Which amongst the following options is the correct relation between change in enthalpy and change in internal energy?

(A)
$$\Delta H + \Delta U = \Delta n R$$

(B)
$$\Delta H = \Delta U - \Delta n_9 RT$$

(C)
$$\Delta H = \Delta U + \Delta n_g RT$$

(D)
$$\Delta H - \Delta U = -\Delta nRT$$

4. Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason R

Assertion A: In equation $\Delta_r G = -nFE_{\rm cell}$ value of $\Delta_r G$ depends on n.

Reasons $R: E_{\text{cell}}$ is an intensive property and $\Delta_r G$ is an extensive property.

In the light of the above statements, choose the correct answer from the options given below

- (A) A is false but R is true
- (B) Both A and R are true and R is the correct explanation of A
- (C) Both A and R are true and R is NOT the correct explanation of A
- (D) A is true but R is false
- 5. Which of the following p-V curve represents maximum work done?

(B)

(C)

(D)

6. Which one among the following is the correct option for right relationship between C_P and C_V for one mole of ideal gas?

(A)
$$C_P + C_V = R$$

(B)
$$C_P - C_V = R$$

(C)
$$C_P = RC_V$$

(D)
$$C_V = RC_P$$

7. If for a certain reaction $\Delta_r H$ is $30~kJ~mol^{-1}$ at 450~K, the value of $\Delta_r S($ in $JK^{-1}mol^{-1})$ for which the same reaction will be spontaneous at the same temperature is

(A)
$$-70$$

(B) 70

(C)
$$-33$$

(D) 33

- 8. In which case change in entropy is negative?
 - (A) Evaporation of water
 - (B) Expansion of a gas at constant temperature
 - (C) Sublimation of solid to gas
 - (D) $2H(g)
 ightarrow H_2(g)$
- 9. Reversible expansion of an ideal gas under isothermal and adiabatic conditions are as shown in the figure

 $AB
ightarrow ext{Isothermal expansion}$

 $AC
ightarrow ext{Adiabatic expansion}$

Which of the following options is not correct?

(A) $\Delta S_{
m isothermal} > \Delta S_{
m adiabatic}$

(B) $T_A = T_B$

	(C) $W_{isothermal} > W_{adiaba}$	atic	(D) $T_C > T_A$	
10.	The bond dissociation	n energies of $\mathrm{X}_2,\mathrm{Y}_2$ an	d ${ m XY}$ are in the ratio ${ m c}$	of $1:0.5:1.\Delta H$
	for the formation of 2	${ m XY~is~-200~kJmol^{-1}}$. The	e bond dissociation en	ergy of X_2 will
	$be kJ mol^{-1}$			
	(A) 200	(B) 100	(C) 800	(D) 400
11.	The correct thermoottemperatures is	dynamic conditions fo	or the spontaneous r	eaction at all
	(A) $\Delta H > 0$ and $\Delta S <$	0	(B) $\Delta H < 0$ and $\Delta S < 0$	0
	(C) $\Delta H < 0$ and $\Delta S =$	0	(D) $\Delta H < 0$ and $\Delta S >$	0
12.		ion of carbon to CO_2 $2g$ of CO_2 from carbo	is $-393.5\ kJ/mol$. The n and oxygen gas is	heat released
	(A) $+315kJ$		(B) $-630 kJ$	
	(C) $-3.15 kJ$		(D) None of the above	2
13.	Ratio of C_p and C_v of in 11.2 litres of it at N_v	•	mber of atom of the g	as ' X^\prime present
	(A) $6.02 imes 10^{23}$	(B) $1.2 imes 10^{23}$	(C) 3.01×10^{23}	(D) $2.01 imes 10^{23}$
14.	·		ic gases at same initia t heats of the mixture (C) 1.67	•
15.	When $100ml$ of $1MN$	TaOH solution and $10r$	nl of $10NH_2SO_4$ solut	ion are mixed
	together, the resulting	g solution will be		
	(A) Alkaline	(B) Acidic	(C) Strongly acidic	(D) Neutral
16.	If		$C+O_2 ightarrow$	$CO_2 + 94.2kcal$
	$H_2 + rac{1}{2}O_2 ightarrow H_2O + 68.5$ heat of methane will k		$+2H_2O+210.8kcal$ the	n the possible
	(A) 47.3	(B) 20	(C) 45.9	(D) -47.3
17.	The enthalpy of fusion	n of ice per mole kJ		
	(A) 18	(B) 8	(C) 80	(D) 6
18.	The mutual heat of n	eutralisation of $40gm$	of $NaOH$ and $60gm$ (CH_3COOH will
	(A) 56.1 kcal		(B) Less than $56.1kcal$	
	(C) More than $56.1kca$	ul	(D) 13.7 kcal	
19.		$CO_2(g),\ H_2O(l)$ and C_2 of combustion of met	$H_4(g)$ are $-94.0, -68.4$ hane is $kcal$	and $-17.9kcal$
	(A) -212.9	(B) -136.8	(C) -304.3	(D) -105.2

20.	the rise in temperature is T_1 . The experiment is repeated using $250ml$ each of solution, the temperature raised is T_2 . Which of the following is true				
	(A) $T_1=T_2$	(B) $T_1=2T_2$	(C) $T_1=4T_2$	(D) $T_2=9T_1$	
21.		+13.7kcal , then the h		for complete	
	(A) 13.7	(B) 27.4	(C) 6.85	(D) 3.425	
22.	$57.1kJmol^{-1}$. What was against $0.25mole$ of H		I when $0.25mole$ of Na	<i>OH</i> is titrated	
	(A) 22.5	(B) 57.1	(C) 14.3	(D) 28.6	
23.	combustion of metha		200		
	(A) 100	(B) 200	(C) 300	(D) 400	
24.	4. Enthalpy of formation of HF and HCl are $-161kJ$ and $-92kJ$ respectively. Which of the following statements is incorrect (A) HCl is more stable than HF (B) HF and HCl are exothermic compounds (C) The affinity of fluorine to hydrogen is greater than the affinity of chlorine to				
	hydrogen		-		
	(D) HF is more stable	e than <i>HCl</i>			
25.	The heat of reaction a	at constant pressure is	given by		
	(A) E_P-E_R	(B) $E_R - E_P$	(C) H_P-H_R	(D) H_R-H_P	
26.	•	thanoic acid and sodi water, then heat evolve	•	ed. If x is the	
	(A) More than x	(B) Equal to x	(C) Twice of x	(D) Less than x	
27.	(A) $HNO_3 + LiOH$	of the acid-base react	(B) $HCOOH + KOH$		
	(C) $HCl + NH_4OH$		(D) $CH_3COOH + NaOI$		
28.	In order to decompo of formation of water	se $9g$ -water $142.5kJ$ h $^{-}$ is kJ	neat is required. Hence	e the enthalpy	
	(A) -142.5	(B) $+142.5$	(C) -285	(D) $+285$	
29.		of strong acid and we	ak base is		
	(A) $57.1 kJ mol^{-1}$				
	(B) $13.7 kJ mol^{-1}$				

	(C) Less than $13.7 kcal$	mol^{-1}		
	(D) More than $13.7kcc$	$al\ mol^{-1}$		
30.	When the aqueous so solution, then what w $=57.1kJ$)		\mathcal{O}_3 is mixed with the 0.3 at kJ (Enthalpy of no	
	(A) 28.5	(B) 17.1	(C) 45.7	(D) 1.7
31.	What is the weight o $2.8kg$ of ethylene?		red for the complete o	combustion of
	(A) 9.6	(B) 96	(C) 6.4	(D) 2.8
32.	The heat of combust upon formation of 35.		is $-393.5kJ/mol$. The n and oxygen gas is	
	(A) $+315$	(B) -31.5	(C) −315	(D) $+31.5$
33.	If the heat of format formation of $0.156kg$		The amount of heat	evolved in the
	(A) -1357.9	(B) −1275.9	(C) -1572	(D) -1165.5
34.	The bond dissociatio $103kcal$ respectively. T		ion of HCl gas would b	
	(A) -44	(B) 44	(C) -22	(D) 22
35.			ol and $Cl-Cl$ bon Cl bond energy is abou	
	(A) 180	(B) 360	(C) 213	(D) 425
36.	If enthalpies of meth the bond energy of C	ane and ethane are re $-C$ bond is $calories$		calories then
	(A) 80	(B) 40	(C) 60	(D) 120
37.	The value of heat goduring neutralization.		n HCl and $40gm$ of	NaOH reacts
	(A) 76.5	(B) 13.7	(C) More than 13.7	(D) 108
38.	Enthalpy of solution dissolved in water, the	of ${\it NaOH}$ (solid) in wa e temperature of wate		/hen $NaOH$ is
	(A) Increase		(B) Decreases	
	(C) Does not change		(D) Fluctuates indefini	tely
39.	Consider the reaction $C(g)+4H(g) o CH_4(g)$ $CH_4(g) o CH_3(g)+H(g)$ The bond energy of C	$egin{aligned} \phi, \Delta H &= -x_1kcal \ g), \Delta H &= +ykcal \end{aligned}$	$g), \Delta H = -x kcal$	
	(A) $y kcal mol^{-1}$	(B) $x_1 \ kcal \ mol^{-1}$	(C) $x/4 kcal mol^{-1}$	(D) $x_1/4kcalmol^{-1}$

	$391kJmole^{-1} \ N_2(g) + 3H_2(g) -$			enthalpy	of	the	following	reaction
	(A) -93	(B) 102		(C	90		(D)	105
41.	When $50cm^3$ of is	$0.2NH_2SO_4$ is	s mixe	d with $50cm$	${\mathfrak a}^3$ of 1	1NK0	OH, the hear	t liberated
	(A) $11.46 kJ$	(B) 57.3	kJ	(C) 573 k	zJ	(D)	573J
42.	The heat of ne and that of HC			-				
	${ m kJmol}^{-1}$					6		
	(A) -68	(B) -43	.8	(C) 68		(D)	43.8
43.	The heat of new The heat release KOH is kJ			_		V/-		
	(A) 57	(B) 11.4		(C) 28.5		(D)	34.9
44.	The enthalpy o mol^{-1} respect $BaCl_2\left(s ight) + 2H_2O\left(A ight)$ (A) -29.4	ively. Calculat	e en $\mathcal{O}(s)$.	thalpy of kJ		ation	for given	
45.	Calculate the N $arepsilon_{N-H}=393kJ/m$ $arepsilon_{H-H}=436kJ/m$ $\Delta H_{vap}[N_2H_4(l)]=N_2H_4(l)+H_2(g)$ $kJ/mole$ (A) 210	nole nole = 18 kJ/mole		142kJ/mole	given) 180	bond		ta. 150
46.	The enthalpy of the bond $[e_{C=C}=145kcalc]$ (A) -10	lenergies	are,	$[e_{H-H}$			$= 99, e_{C-C} =$	
47.	The enthalpy chenergy of $C - E$	nange for the i		•	-	g)+6I		
	(A) $\frac{X}{2}$	(B) $\frac{X}{3}$		(C) $\frac{X}{6}$		(D)	Data insufficient
48.	The enthalpy of the enthalpy of of hydroxyl ion	formation of v						

40. Given the bond energies $N\equiv N,\; H-H$ and N-H bonds are $945,\,436$ and

	(A) $+228.52$	(B) -114.26	(C) -228.52	(D) $+114.2$		
49.	9. The heat evolved in the combustion of methane is given by the following equation $CH_4(g)+2O_2(g)\to CO_2(g)+2H_2O(l);$ $\Delta H=-890.3kJ$ How many grams of methane would be required to produce $445.15kJ$ of heat of					
	combustiong	nethane would be req	uned to produce 445.15	kJ of fleat of		
	(A) 4	(B) 8	(C) 12	(D) 16		
50.	-	$286KJmol^{-1}$, respecti	$C_2H_2(g), C(graphite)$ ard vely. The standard			
	(A) -226	(B) -626	(C) 226	(D) 626		
51.	reaction kJ $C_2H_4(g)+H_2(g) o C_2H$	_	the change in heat co	ntent for the		
	Bond	Bond energy (kJ)				
	C-H	413				
	C-C	348	LJ			
	C = C	610				
	H-H	436				
	(A) -128	(B) +128	(C) +256	(D) -256		
52.		on of ethylene $C_2H_4(g)$	(g) is $-1420kJ/mole$. The (kJ) on combustion is	ne number of		
	(A) 2.8	(B) 8.4	(C) 5.6	(D) 11.2		
53.			n the ratio of $2:1:2$. If H_2 is (C) H_2			
5 4						
54.			and a strong alkali is $-$ lution is mixed with 0.2			
	(A) 57	(B) 11.4	(C) 28.5	(D) 34.9		
55.	The enthalpy of comb $(i)\ 6C(s)+3H_2(g) o C_6 \ (ii)\ H_2(g)+rac{1}{2}O_2(g) o H_2 \ (iii)\ C(s)+O_2(g) o CO \kJ$	$H_{6}(l); \Delta H = +45.9kJ \ I_{2}O(l); \Delta H = -285.9kJ$	n the following data wil	ll be		

	(A) +3172.8	(B) -1549.2	(C) -3172.8	(D) -3264.6
56.		ring acid will release d by strong base $NaOE$		of heat when
	(A) 1 <i>M HCl</i>	(B) $1 M HNO_3$	(C) 1 M HClO ₄	(D) $1 M H_2 SO_4$
57.	•	s of combustion of C $kJmol^{-1},$ respectively. bl^{-1}		ν- /
	(A) -226	(B) -626	(C) 226	(D) 626
58.	strong base is $-57.3k_{ m s}$	$35.5kJmol^{-1}$. if entha $Jmol^{-1},$ of OH^- ion wi	ll be $kJmol^{-1}$	
	(A) -228.2	(B) 228.5	(C) 114.5	(D) -114.5
59.	If combustion of $4g$ o CH_4 is $kcal$	f CH_4 liberates $2.5kcal$	of heat, the heat of c	ombustion of
	(A) -20	(B) −10	(C) 2.5	(D) -5
60.	Heat of neutralisation of water in kJ/mol is	of $NaOH$ and HCl is	-57.46kJ/eq. Then hea	t of ionisation
	(A) -57.46	(B) +57.46	(C) −114.92	(D) $+114.92$
61.	What is the activation $N_2O_4(g) o 2NO_2(g)$ Data for the given rea $\Delta H = +54kJ$ and $E_a =kJ$		of this reaction?	
	(A) -54	(B) +3.2	(C) $+60.2$	(D) +111.2

62. With the help of following data, find out the change in heat content for the reaction

 $C_2H_4(g)+H_2(g) o C_2H_6(g)$

.....kJ

Bond	Bond	energy (kJ)	
C-H	413		
C-C	348		
C = C	610		
H-H	436		
(A) - 128	(B) +128	(C) +256	(D) -256

63. Based on Hess's law calculations, what is the average S-O bond energy in SO_3 if ΔH_f^o of SO_3 is $-270\,kJ\,mol^{-1}$. Bond energy of O=O is $130\,kJ\,mol^{-1}$ and heat of sublimation for S(s) is $100\,kJ\,mol^{-1}$? $kJ\,mol^{-1}$

	(A) 188.5	(B) 120	(C) 12	(D) 100		
64.	Given that the bond energy of hydrogen-hydrogen bonds is $436kJ/mol$, that of hydrogen-oxygen bonds is $464kJ/mol$, and those in oxygen molecules $496kJ/mol$, what is the approximate heat of reaction for $2H_2+O_2\longrightarrow 2H_2O$? kJ/mol					
	(A) -488	(B) -440	(C) 440	(D) 488		
65.	For the reaction $OF_{2(g)}$ bond energy ? kJ	$O_{(g)} ightarrow O_{(g)} + 2 F_{(g)} , \Delta_{rxn} H_{(g)} ,$	is $368kJ$. What is the	average <i>O</i> — <i>F</i>		
	(A) 184	(B) 368	(C) 536	(D) 736		
66.		ation of HCl by $NaOH$ thalpy of ionization of		by NH_4OH is		
	(A) -107.18	(B) 107.18	(C) 4.5	(D) -4.5		
67.		mation of N_2O and NC eaction, $2N_2O(g)+O_2(g)$	ightarrow 4NO(g) is equal to			
	(A) 8	(B) 88	(C) -16	(D) 304		
68.	• •	mation and enthalpy of espectively then find kJ/mol (B) -167.44		,		
69.		$85.5kJmol^{-1}$. if enthal				
	J	$Jmol^{-1}$, ΔH^o_f of OH^- ic		or monouclaic		
		(B) 228.5	(C) 114.5	(D) -114.5		
70.	$1mole$ of H_2SO_4 is mix	κ ed with $2moles$ of NaC	$\partial H.$ The heat evolved w	ill be		
	(A) $57.3 kJ$		(B) $2 imes 57.3 kJ$			
	(C) $57.3/2 kJ$		(D) cannot be predicte	ed		
71.		of $H\!\!-\!\!\!\!-\!$		d $364kJmol^{-1}$		
	(A) -261	(B) +103	(C) $+261$	(D) -103		
72.	Calculate the enthalpy $H_2+F_2\longrightarrow 2HF$ given that Bond energy of $H-H$ Bond energy of $F-F$ Bond energy of $H-F$ kJ	bond = 158kJ/mol	on			
	(A) 538	(B) -538	(C) 27	(D) -27		

- 73. Mixing of non-reacting gases is generally accompanied by
 - (A) Decrease in entropy

(B) Increase in entropy

(C) Change in enthalpy

- (D) Change in free energy
- 74. The entropy values $(in\,JK^{-1}\,mol^{-1})$ of $H_2(g)=130.6, Cl_2(g)=223.0$ and HCl(g)=186.7 at $298\,K$ and 1 atm pressure. Then entropy change for the reaction $H_{2(g)}+Cl_{2(g)}\to 2HCl_{(g)}$ is
 - (A) 540.3
- (B) 727.3
- (C) -166.9
- (D) 19.8
- 75. The enthalpy of water is $386 \, kJ$. What is entropy of water......kJ
 - (A) 0.5

(B) 1.03

(C) 1.5

- (D) 22.05
- 76. The standard entropies of $CO_2(g)$, C(s) and $O_2(g)$ are 213.5,5.740 and 205 JK^{-1} respectively. The standard entropy of formation of CO_2 is...... JK^{-1}
 - (A) 2.76

(B) 2.12

- (C) 1.12
- (D) 1.40
- 77. If for a given substance melting point is T_B and freezing point is T_A , then correct variation shown by graph between entropy change and temperature is

(B)

(C)

(D)

- 78. The entropy values (in JK^{-1} mol^{-1}) of $H_{2(g)}=130.6, Cl_{2(g)}=223.0$ and $HCl_{(g)}=186.7$ at $298\,K$ and $1\,atm$ pressure. Then entropy change for the reaction $H_{2(g)}+Cl_{2(g)}\to 2HCl_{(g)}$ is :-
 - (A) +540.3
- (B) +727.3
- (C) -166.9
- (D) +19.8
- 79. The heat of vaporisation and heat of fusion of H_2O are $540\,cal/g$ and $80\,cal/g$. The ratio of $\frac{\Delta_S vap}{\Delta_S fusion}$ for water is :-
 - (A) 6.75

(B) 9.23

(C) 4.94

(D) 0.2

80. For a cell,

 $4B(s)+3O_{2}\left(g
ight)
ightarrow2B_{2}O_{3}\left(g
ight)$; $E_{cell}^{o}=1.433\ volt$ What is molar entropy (in J/K) of oxygen gas

	Given $\left(\Delta_{f}H^{o} ight)_{B_{2}O_{3}}\left(g ight)$ =	$=-840rac{KJ}{mol}$				
	$(S_m^o)_{B_2O_3}\left(g ight)=280J/K$.	-mol				
	$(S_m^o)_B \ (s) = 10J/K - r$	nol				
	(A) 0.1963	(B) 1.963	(C) 15.03	(D) 150.3		
81.	Which of the following	g reaction has positiv	e entropy chang	ge ?		
	(A) $N_2(g)+3H_2(g) o 2$	$NH_3(g)$				
	(B) $H_2O(s) o H_2O(l)$					
	(C) $C_{graphite} ightarrow C_{diamond}$					
	(D) $CO_2(g) + H_2O(l) ightarrow$	$H_2CO_3(aq)$				
82.	The enthalpy change $373K$. Find ΔS in J/m	·	uid water to ste	am is $3.73KJmol^{-1}$ at		
	(A) 100	,	(B) 10			
	(C) 1000		(D) None of th	ne above		
83.	Melting point of a so	lid is xK and its late	ent heat of fusion	on is $600calmol^{-1}$. The		
	entropy change for t	fusion of $1mol$ solid	is $2calmol^{-1}K^{-1}$	$^{-1}.$ The value of x will		
	be <i>K</i>					
	(A) 100	(B) 200	(C) 300	(D) 400		
84.	The ΔH and ΔS for a	a reaction at one atn	nospheric pressi	ure are $+30.558kJ$ and		
	$0.066kJk^{-1}$ respective be zero and below of			ee energy change will ion would be		
	(A) $483K$, spontaneou	ıs	(B) $443K$, non	-spontaneous		
	(C) $443 K$, spontaneou	ıs	(D) 463 K, nor	n-spontaneous		
85.			$35.7JK^{-1}mol^{-1}M$	Which of the following		
	statements is correct					
	(A) Reversible and Iso					
	(B) Reversible and Exothermic					
	(C) Spontaneous and Endothermic					
	(D) Spontaneous and		_			
86.	Which of the following					
		(A) When ΔG is negative, the process is spontaneous				
	(B) When ΔG is zero, the process is in a state of equilibrium					
	•	(C) When ΔG is positive, the process is non-spontaneous				
	(D) None of these					
87.			3	n below. On the basis eous at all tempeature		

Page 11

Reaction	$\Delta H(KJ)$	$\Delta S(JK^{-1}$			
Redection	$mol^{-1})$	$igg mol^{-1})$			
I	+98.0	+14.8			
II	-55.5	-84.6			
III	+28.3	-17.0			
IV	-40.5	+24.6			
V	+34.7	0.0			
(A) Reaction	<i>I</i> (B)	Reaction <i>II</i>	(C) Reaction	on III	(D) Reaction <i>IV</i>
For reaction	$Ag_2O(s) \; o \; 2$	Ag(s) + (1/2)G	$O_2(g)$ the value G	of $\Delta H = 3$	$60.56~kJ~mol^{-1}$
and $\Delta S=0.0$	$066~kJK^{-1}~mod$	ℓ^{-1} . Tempera	ture at which	free energ	y change for
reaction will b	oe zero, is	K			
(A) 373	(B)	413	(C) 463		(D) 493
The enthalpie	s of combus	tion of $S(s)$ a	nd $H_2(g)$ are -30	00 and -290	$kcal \ mol^{-1}$.
Given $SO_3(g)$	$+H_2O(l) o H$	$C_2SO_4(l)$	20	/	
$\Delta H = -130~kc$	$cal\ mol^{-1}$				
$SO_2(g) + 1/2C$	$O_2(g) o SO_3(g)$)			
$\Delta H = -100 \; kc$	$cal \ mol^{-1}$				
the enthalpy	of formation	of $H_2SO_4(l)$ v	would bekcal	mol^{-1}	
(A) -300	(B)	-130	(C) -820		(D) -560
For the reacti	ion		V		
$X_2O_4(g) o 2X$	$CO_2(g)$		3		
$\Delta U = 2.1 kcal,$	$\Delta S = 20calK$	$^{-1}$ at $300K$.			
Hence ΔG is	kcal				
(A) 2.7	(B)	-3.3	(C) 9.3		(D) None
$\Delta S_{ m Total} = -40$	kJ/mol-K				
$\Delta H_{ m System} = 200$		V			
$T = 400 \ K$		\mathcal{O}'			
Find out value	e of $\Delta S_{ ext{System}}$.	kJ/mol-	$\cdot K$		
(A) -35	(B)	-10	(C) -40		(D) -5
For the react	tion $PCl_5 o I$	$PCl_3+Cl_2,\Delta H$	$I=75KJmol^{-1}$	and $\Delta S=1$	$20JK^{-1}mol^{-1}$.
At which tem	4				
(A) 625	(B)		(C) 630		(D) 600
Standard enti	ronies for <i>H</i>	C_{0} and H	Cl is $60,40$ and	160. <i>Ik</i> −1 r≏	snectively For
	-		+30kJ to b		
temperature			, 55.15	- 3. cqu	
(A) 2500	(B)	100	(C) 1500		(D) 1.5
, 2000	(5)		(0) 1000		(2) 1.0

88.

89.

90.

91.

92.

93.

94.	For the reaction at 30	0 K		
	$A(g)+B(g) o C(g)$ Δc	U=-3Kcal		
		$\Delta S = -10cal/R$	K	
	value of ΔG will be	cal		
	(A) −600	(B) -6600	(C) -6000	(D) -60
95.		done in expnading dm^3 until the volume $^{ m k}$	$16gO_2$ isothermally becomes $25dm^3$ is	at $300K$ and
	(A) $-2.01 imes10^3 J$	(B) $2.01 imes10^{-3}J$	(C) $+2.81 imes 10^3 J$	(D) $+2.01 imes10^{-6}J$
96.	Consider the following			
	$C_6H_6(l)+rac{15}{2}O_2(g) ightarrow$ Signs of $\Delta H,\Delta S$ and	$6CO_2(g)+3H_2O\left(g ight) \ \Delta G$ for the above reac	tion will be	
	(A) +, -, +	(B) -, +, -	(C) -, +, +	(D) +, +, -
97.	Which of the following	g relation is incorrect	20V	
	(A) $Kp = \left(rac{e}{RT} ight)^{\Delta G^o}$		(B) $Kp=e^{-rac{\Delta G^o}{RT}}$	
	(C) $\Delta G^o = -2.303RT$	$\log Kp$	(D) $\log K_{eq} = rac{-\Delta G^o}{2.303~RT}$	
98.	What is ΔS_{298}^o for the	on $O(l)$; $\Delta_f H^o_{298}(H_2O(l))$ given fuel cell reaction $O(l) + 4e^- ightarrow 2H_2O(l) - E^o$?	
	(A) $-0.322J/K$	(B) $-0.635kJ/K$	(C) $3.51kJ/K$	(D) $-0.322kJ/K$
99.	Three moles of an id done will be J		ontaneously into vacu	um. The work
	(A) infinite	(B) 3	(C) 9	(D) 0
100.	During an isothermal (A) Internal energy in (B) Enthalpy decrease (C) Enthalpy remains (D) Enthalpy reduces	creases es unaffected	gas its	
101.	1 mole of a diatomic	is heated through isc	choric process from 3	800K to $500K$.
	The entropy is: (A) 10.61	(B) 38.26	(C) 20.05	(D) 30
102.	Enthalpy of combu	stion of CH_4, C_2H_6 pectively. Enthalpy o	and C_3H_8 are -210 f combustion of he	.8, -368.4 and
	(A) −840	(B) -684	(C) -1000	(D) none of these

103.	ΔS_{surr} for an exotherm (A) always positive	mic reaction is		
	(B) always negative			
	(C) zero			
	(D) may be positive o	r negative		
104		_	y^\prime , then $\Delta H_{sublimation}$ wil	l ha
101.	(A) $x+y$	(B) $x-y$	(C) x/y	(D) y/x
105.	The heat of neutralis The heat released whis kJ	sation of a strong aci	d and a strong alkali solution is mixed with 0 (C) 28.5	is $57.0kJmol^{-1}$.
	(A) 57			
106.	system and its surrou Reason: The temper expansion.	undings. rature of a gas incre	eat energy is not exchanged ases when it undergood ct and the Reason is a	es an adiabatic
	(B) If both Assertion	and Reason are corre	ct but Reason is not a c	correct explanation of
	the Assertion.)	
		correct but Reason is		
		ion and Reason are in		
107.	Assertion: Mass and			
		ne is also an extensive	e parameter. ct and the Reason is a (correct explanation of
	the Assertion.	and Reason are corre	et and the Reason is a v	torrect explanation of
	(B) If both Assertion at the Assertion.	and Reason are corre	ct but Reason is not a c	correct explanation of
	(C) If the Assertion is	correct but Reason is	incorrect.	
	(D) If both the Assert	ion and Reason are in	correct.	
108.	The internal energy o			
		rease in temperature		
		crease in temperature		
		by the relation $E=m$		
100		ed with change in tem	•	
109.	Which of the followin (A) Internal energy	g is not a state function (B) Enthalpy	on (C) Work	(D) Entropy
	(7.7) Internal energy	(5) Endialpy	(C) WOIN	(D) Liftiopy

110.	In thermodynamics, a process is called reve	rsible when	
	(A) Surroundings and system change into e	each other	
	(B) There is no boundary between system a	and surroundings	
	(C) The surroundings are always in equilibr	ium with the system	
	(D) The system changes into the surrounding	ngs spontaneously	
111.	Work done during isothermal expansion of	f one mole of 1 mole o	of an ideal gas
	from $10 \ atm$ to $1 \ atm$ at $300 \ K$ is cal (Gas	s constant $=2$)	
	(A) 938.8 (B) 1138.8	(C) 1381.8	(D) 1581.8
112.	Assertion: Entropy of ice is less than water Reason: Ice has cage like structure.		
	(A) If both Assertion and Reason are correct	t and the Reason is a c	orrect explanation of
	the Assertion.		
	(B) If both Assertion and Reason are correct	t but Reason is not a co	orrect explanation of
	the Assertion.	Š	
	(C) If the Assertion is correct but Reason is		
	(D) If both the Assertion and Reason are in	correct.	
113.	Hess law is applicable for the determination	1 2	
	(A) Reaction (B) Formation	(C) Transition	(D) All of these
114.	In an endothermic reaction, the value of ΔI	<i>I</i> is	
	(A) Zero (B) Positive	(C) Negative	(D) Constant
115.	The enthalpy change of a reaction does not	depend on	
	(A) The state of reactants and products		
	(B) Nature of reactants and products		
	(C) Different intermediate reaction		
	(D) Initial and final enthalpy change of a real	action	
116.	A well stoppered thermos flask contains so	me ice cubes. This is an	example of a
	(A) Closed system	(B) Open system	
	(C) Isolated system	(D) Non-thermodynan	nic system
117.	A schematic plot of versus inverse of temperature	erature for a reaction is	s shown below
	The reaction must be		
	ln Keq		
	2.0		
	1.5×10 ⁻³ 1/T (K ⁻¹) 2.0×10 ⁻³		

(A) Exothermic			
(A) LAUGHEITHIC	:		
(B) Endotherm	ic		
(C) One with n	egligible enthalpy char	ıge	
(D) Highly spor	ntaneous at ordinary to	emperature	
in the ratio of	_	XY,X_2 and Y_2 (all diat the formation of XY is e $kJmol^{-1}$ (C) 300	
		C-H,C-C,C=C an	
reaction	$4,347,615$ and $435kJ$ m $+H_2(g) ightarrow H_3C-CH_3(g)$ (B) -250	nol^{-1} , the value of enth at $298K$ will be kJ	nalpy change for the (D) -125
and $-28kcal/m$ pentane are - given under stalkanes give	nol respectively. The he $784kcal/mol$ and -78 candard conditions. Tal	thylbutene and 2 -pentents of combustion of $2 \ kcal/mol$ respectively. king into account that what is ΔH (in $kcal/mol$	2 -methylbutane and All the values are combustion of both
/ / ==	~~	S	
$\nearrow / = $ (A) 0	(B) -4	(C) -2	(D) 2