

Extrapolative benchmarking of model-based discrete sampling methods for RNA design

Joseph D. Valencia¹, David A. Hendrix^{1,2}

Oregon State University

1. School of Electrical Engineering and Computer Science 2. Department of Biochemistry and Biophysics

Objectives

- Survey recent approaches to modelbased optimization and sampling on discrete data
- Apply sampling algorithms to RNA design
- Evaluate best practices for generalization and extrapolation of designed sequences

Background

Evaluate forward model

ribosome load

AGCCCUAUGCAUCUA

(Sample et. al 2019)

half-life

toehold switch activity

(Agarwal and Kelley 2022)

(Valeri et. al 2020)

A motivating use case -- mRNA vaccines

Require high/controllable protein expression, long half-life

Given sequence → property models, how to efficiently explore a combinatorial space?

Possible guiding principle – incorporate gradients of discrete samples

Methods

Future Directions

 Hybrid straightthrough/REINFORCE estimators

(Straight-through estimator)

 $\nabla_{\theta} f(x) \approx \nabla_{x} f(x)$

- Evaluate sample diversity
- Adaptive preconditioning for MCMC
- Gradient smoothness regularization (Miyato 2016)

Markov Chain Monte Carlo AGCCCUAUGCAUCUA Discrete Langevin Prop AGCGCAAUGCAUCUA Catagorical (Softmax)

Discrete Langevin Proposal (Zhang et. al 2022) $x \sim \text{Categorical}(\text{Softmax}(\frac{1}{2}D(x,x') - \frac{\|x_i' - x_i\|_2^2}{2\alpha}))$

► Training data (seq, property)

Taylor approx. likelihood ratio

Gibbs-with-Gradients (Grathwohl et. al 2021)

 $f(x') - f(x) \approx \nabla_x f(x)^{\mathsf{T}}(x_i' - x_i) = D(x, x')$ $x' - x \sim \text{Categorical}(\text{Softmax}(\text{vec}(D(x, x'))))$

▶ Exclusion quantile **Require:** q Require: S ▶ Excludes highest quantile by property $Z^{-} = Z \setminus \{(x, y) \in Z | Q(y) > q\}$ > Train oracle model on the full train set $f_O \leftarrow max_\theta f_\theta(y|x), \quad (x,y) \in Z$ > Train designer model on the reduced train set $f_D \leftarrow max_\theta f_\theta(y|x), \quad (x,y) \in Z^$ for $s \in S$ do $s' \leftarrow \text{DiscreteDesign}(f_D, s)$ \triangleright MCMC or PR seeded by s $y' \leftarrow f_O(s')$ D.add((s',y')) $summary \leftarrow |\{(x,y) \in D|Q(y) > q\}|$ > # designs exceeding train set maximum

Conditional sampling

AGCACCAUGCAUCUA

Algorithm 1 Extrapolative Benchmark

Require: $Z = \{(x_1, y_1), (x_2, y_x)\} \dots (x_n, y_n)\}$

Property model

Sequence Prior

$$\nabla_x \log P(x \mid y) = \nabla_x \log P(y \mid x) + \nabla_x \log P(x)$$

As generative models of RNA become more available, incorporate a prior to mitigate pathological sampling

Preliminary Results

