HỌC VIỆN CÔNG NGHỆ BƯU CHÍNH VIỄN THÔNG

CƠ SỞ DỮ LIỆU PHÂN TÁN

THIẾT KẾ CƠ SỞ DỮ LIỆU PHÂN TÁN Phân mảnh dọc

Ts. Phạm Thế Quế

Phân mảnh dọc

Định nghĩa

Phân mảnh dọc quan hệ R sinh ra các mảnh R_1 , R_2 , ..., R_r , sao cho mỗi mảnh chứa một tập con các thuộc tính của quan hệ R và khoá của nó.

Mục đích

Phân chia quan hệ R thành các mảnh nhỏ hơn là để cho nhiều ứng dụng có thể thực hiện trên một mảnh tối ưu, giảm thiểu thời gian thực hiện ứng dụng. Nâng cao hiệu năng xử lý đồng thời.

Tối ưu?

Một phân mảnh tối ưu là phân mảnh sinh ra một lược đồ phân mảnh cho phép giảm tối đa thời gian thực thi các ứng dụng chạy trên phân mảnh đó

Ma trận giá trị sử dụng thuộc tính

- \square R(A₁, A₂,..., A_n) quan hệ toàn cục
- \square Q={q₁, q₂,..., q_m} tập các ứng dụng
- Ma trận giá trị sử dụng thuộc tính định nghĩa như sau:

$$A=(use(q_i, A_j))_{m*n}$$

$$use(q_i, A_j) = \begin{cases} 1 & \text{N\'eu } q_i \text{ tham chi\'eu } \text{d\'en thu\'oc t\'inh } A_j \\ 0 & \text{Ngược lại} \end{cases}$$

$$n = |\Omega|$$
 và $m = |Q|$

Ma trận giá trị sử dụng thuộc tính

		A1	A2	••••	An
	q1	Use(q1,A1)	Use(q1,A2)		Use(q1,A _n)
$\mathbf{A} =$	q2	Use(q2,A1)	Use(q2,A2)		Use(q2,A _n)
	••••	••••	••••	•••	••••
	q _m	Use(q _m ,A1)	Use(q _m ,A2)		Use(q _m ,A _n)

Ví dụ ma trận giá trị sử dụng thuộc tính

Quan hệ: PROJ (PNO, PNAME, BUDGET, LOC) Tập các ứng dụng: q1: Kinh phí của dự án khi biết mã dự án SELECT BUDGET FROM PROJ WHERE PNO = Value q2: Tên và kinh phí của tất các dự án SELECT PNAME, BUDGET FROM PROJ q3: Tìm tên các dự án khi biết thành phố <u>SELECT PNAME FROM PROJ WHERE LOC = Value</u> q4:Tổng kinh phí của các dự án tại mỗi thành phố <u>SELECT</u> SUM(BUDGET) <u>FROM</u> PROJ <u>WHERE</u> LOC = Value

Ví dụ ma trận giá trị sử dụng thuộc tính

Ký hiệu: A1= PNO, A2=PNAME, A3=BUDGET, A4=LOC

- q1: <u>SELECT</u> A3 <u>FROM</u> PROJ <u>WHERE</u> A1= Value
- q2: <u>SELECT A2, A3 FROM PROJ</u>
- q3: <u>SELECT</u> A2 <u>FROM</u> PROJ <u>WHERE</u> A4 = Value
- q4: <u>SELECT</u> SUM(A3) <u>FROM</u> PROJ <u>WHERE</u> A4= Value

$$\mathbf{A} = \begin{bmatrix} \mathbf{A}_1 & \mathbf{A}_2 & \mathbf{A}_3 & \mathbf{A}_4 \\ \mathbf{q}_1 & 1 & 0 & 1 & 0 \\ \mathbf{q}_2 & 0 & 1 & 1 & 0 \\ \mathbf{q}_3 & 0 & 1 & 0 & 1 \\ \mathbf{q}_4 & 0 & 0 & 1 & 1 \end{bmatrix}$$

Ma trận lực hút AA(Attribute Affinity Matrix)

- \square R (A₁, A₂,..., A_n) quan hệ toàn cục
- \square Q={q₁, q₂,..., q_m} tập các ứng dụng
- Bảng tần số ứng dụng trên các site: $S = \{S_1, S_2, ..., S_t\}$
- ☐ Khi đó AA = (aff(A_i , A_i))_{n*n} Ma trận lực hút

$$aff(A_i, A_j) = \sum_{k: [(use(q_k, A_i) \land (use(q_k, A_j))] = 1 \forall S_i} ref_l(q_k)acc_l(q_k)$$

Trong đó:

- □ ref_I(q_k) là tần số truy suất của q_k trên (A_{i,}A_j) tại vị trí S_I
- acc_l (q_k) là tần số truy suất của q_k tại vị trí S_l

Ma trận lực hút AA(Attribute Affinity Matrix)

		A1	A2	•••	An
	A1	aff(A1,A1)	aff(A1,A2)		aff(A1,A _n)
AA =	A2	aff(A2,A1)	aff(A2,A2)		aff(A2,A _n)
	••••	••••	••••	•••	••••
	A _n	aff(A _n ,A1)	aff(A _n ,A2)		aff(A _n ,A _n)

Ví dụ ma trận lực hút AA

- \Box Giả sử ref_I (q_k) =1 cho tất cả q_k và S_I
- Giả sử tần số các ứng dụng trên các Site là:

Site1	Site2	Site3	
$acc_{1}(q_{1})=15$	$acc_{2}(q_{1})=20$	$acc_3(q_1)=10$	
$acc_{1}(q_{2})=5$	$acc_2(q_2)=0$	$acc_3(q_2)=0$	
$acc_{1}(q_{3})=25$	$acc_{2}(q_{3})=25$	$acc_3(q_3)=25$	
$acc_{1}(q_{4})=3$	$acc_2(q_4)=0$	$acc_{3}(q_{4})=0$	

Ví dụ ma trận lực hút AA

Site1Site2Site3
$$acc_1(q_1)=15$$
 $acc_2(q_1)=20$ $acc_3(q_1)=10$ $acc_1(q_2)=5$ $acc_2(q_2)=0$ $acc_3(q_2)=0$ $acc_1(q_3)=25$ $acc_2(q_3)=25$ $acc_3(q_3)=25$ $acc_1(q_4)=3$ $acc_2(q_4)=0$ $acc_3(q_4)=0$

$$aff(A_1, A_3) = \sum_{k=1}^{l} \sum_{l=1}^{3} acc_1(q_k) = acc_1(q_1) + acc_2(q_1) + acc_3(q_1) = 45$$

$$\mathbf{A} = \begin{bmatrix} \mathbf{A}_1 & \mathbf{A}_2 & \mathbf{A}_3 & \mathbf{A}_4 \\ \mathbf{q}_1 & 1 & 0 & 1 & 0 \\ \mathbf{q}_2 & 0 & 1 & 1 & 0 \\ \mathbf{q}_3 & 0 & 1 & 0 & 1 \\ \mathbf{q}_4 & 0 & 0 & 1 & 1 \end{bmatrix}$$

	A ₁	A ₂	A ₃	A ₄
A ₁	45	0	45	0
A ₂	0	80	5	75
A ₃	45	5	53	3
A ₄	0	75	3	78

Ví dụ ma trận lực hút AA

		A ₁	A ₂	A ₃	A ₄
AA =	A ₁	45	0	45	0
	A ₂	0	80	5	75
	A ₃	45	5	53	3
	A ₄	0	75	3	78

Thuật toán tụ nhóm

Số đo đóng góp của thuộc tính A_k khi đặt vào A_i và A_j A_k , A_i , A_j ; A_i , A_k , A_j ; A_i , A_j , A_k

$$cont(A_i, A_k, A_j) = 2[bond(A_i, A_k) + bond(A_k, A_j) - bond(A_i, A_j)]$$

☐ Cầu nối (bond) 2 thuộc tính A_x và A_y định nghĩa như sau:

bond
$$(A_x, A_y) = \sum_{z=1}^n \operatorname{aff}(A_z, A_x) \operatorname{aff}(A_z, A_y)$$

Độ đo cầu nối giữa hai thuộc tính được tính là tổng của tích 2 phần tử cùng hàng của hai cột. Vì ma trận AA đối xứng, có thể thực hiện tương tự theo hàng.

Thuật toán tụ nhóm

$$cont(A_1, A_2, A_2) = 2*135 + 2*11865 - 2*225 = 23550$$

Thuật toán tụ nhóm BEA (Bond Energy Algorithm)

Nhóm các thuộc tính của quan hệ toàn cục bằng cách hoán vị các hàng và các cột của ma trận AA, sao cho số đo hấp dẫn **cont()** là lớn nhất. Kết quả sẽ là một ma trận tụ hấp dẫn CA (Cluster Affinity). Thuật toán gồm 3 bước:

- Bước 1: Đặt cột 1 và 2 của AA vào cột 1&2 trong CA.
- □ Bước 2: Giả sử có i cột đã được đặt vào CA. Lấy lần lượt một trong (n-i) cột còn lại của AA, đặt vào cột thứ (i+1) của CA, sao cho số đo AM tại vị trí đó là lớn nhất.
- ☐ Bước 3: Sắp thứ tự hàng theo thứ tự cột

Thuật toán tụ nhóm BEA (Bond Energy Algorithm)

```
Input: AA:ma trận hấp dẫn thuộc tính
Output: CA: Ma trận hấp dẫn tụ nhóm
Begin
  (1) CA(.,1)←AA(.,1)
  (2) CA(.,2)←AA(.,2)
  (3) index ← 3
  (4) While index ≤ n do {chọn vị trí tôt nhất cho thuộc tính AA<sub>index</sub>}
  (5)
        Begin
  (6)
             For i from 1 to index-1 by 1 do
  (7)
                   Tinh cont(A_{i-1}, A_{index}, A_{i})
  (8)
             End-for
  (9)
        Tinh cont(A_{index-1}, A_{index}, A_{index+1})
  (10) loc←vị trí được đặt bởi giá trị cont lớn nhất
  (11) For j from index to loc By -1 do
  (12)
                   CA(.,j) \leftarrow AA(.,j-1)
  (13)
            End-for
  (14)
         CA(.,loc) \leftarrow AA(.,index)
            index←index+1
  (15)
        End-While
  (16)
End {BEA}
```

15

Ví dụ

Chép cột 1 và cột 2 ma trận AA vào ma trận CA

- (1) $CA(*,1) \leftarrow AA(*,1)$
- (2) $CA(*,2) \leftarrow AA(*,2)$

Ví dụ

```
index=3
While index \leq n do
   index ≤4 {thỏa mãn}
   For i from 1 to index - 1 by 1 do
        Tính cont(A_{i-1}, A_{index}, A_i)
         i=1 thứ tự (0-3-1): cont(A<sub>0</sub>,A<sub>3</sub>,A<sub>1</sub>) = 8820
         i=2 thứ tự (1-3-2): cont(A_1,A_2,A_2) = 10150
   End – for
   Điều kiện biên, thứ tự (2-3-4): cont(A_2, A_3, A_4) = 1780
   loc = 2 thứ tự (1-3-2) có cont = 10150 lớn nhất
   For j from index to Loc by – 1 do {xáo trộn hai ma trận}
       CA(*, j) := AA(*, j-1)
```

Ví dụ

index=4 While $index \le n$ do index ≤4 {thỏa mãn} For i from 1 to index - 1 by 1 do Tính cont $(A_{i-1}, A_{index}, A_i)$ i=1 thứ tự (0-4-1): cont(A_0, A_4, A_1) = i=2 thứ tự (1-4-2): $cont(A_1, A_4, A_3) = -5208$ i=3 thứ tự (2-4-3): $cont(A_3, A_4, A_5) = 23698$ End – for Điều kiện biên, thứ tự (3-4-5): cont(A_2 , A_4 , A_0) = 23730 loc =4 thứ tự (1-3-2) có cont =10150 lớn nhất

Đặt A₄ bên phải A₂

		A1	A3	A2	A4		A1	A3	A2	A4
	A1	45	45	0	0	A1	45	45	0	0
CA =	А3	45	53	5	3	CA = A2	0	5	80	75
	A2	0	5	80	75	A3	45	53	5	3
	A4	0	3	75	78	A4	0	3	75	78

- Độ đo cầu nối giữa hai thuộc tính được tính là tổng của tích 2 phần tử cùng hàng của hai cột. Vì ma trận AA đối xứng, có thể thực hiện tương tự theo hàng.
- Trong bước khởi gán, cột 1 và 2 được đặt vào vị trí 1&2 trong CA, vì A2 có thể đặt ở bên trái hoặc phải của A1.
- Nếu A_j là thuộc tính tận trái trong ma trận CA, kiểm tra đóng góp khi đặt thuộc tính A_k vào bên trái của A_j , khi đó bond $(A_{0,}A_k) = bond(A_{0,}A_i) = 0$,
- Nếu A_j là thuộc tính tận phải đã được đặt trong ma trận CA và đang kiểm tra đóng góp khi đặt thuộc tính A_k vào bên phải của A_i , Khi đó bond $(A_i, A_{k+1}) = bond(A_k, A_{k+1}) = 0$.

Xét ma trận tụ lực CA

- \Box TA = {A₁, A₂, ..., A_i } ∂ góc trái cao nhất gọi là tập đỉnh (Top)
- □ BA = $\{A_{i+1}, A_{i+2}, ..., A_n\}$ ở góc phải thấp nhất gọi là tập đáy (Bottom)

Ký hiệu	Ý nghĩa
$Q = \{q_{1}, q_{2},, q_{n}\}$	Tập các ứng dụng.
$AQ(q_i) = \{A_j use(q_i, A_j) = 1\}$	Tập các thuộc tính được truy xuất bởi ứng dụng q _i
$TQ = \{q_i \mid AQ(q_i) \subseteq TA\}$	Tập các ứng dụng chỉ truy xuất trên các thuộc tính TA
$BQ = \{q_i \mid AQ(q_i) \subseteq BA\}$	Tập các ứng dụng chỉ truy xuất trên các thuộc tính BA
$OQ = Q - \{ TQ \cup BQ \}$	Tập các ứng dụng truy xuất trên cả BA và TA

Ký hiệu

Ý nghĩa

$$CQ = \sum_{q_i \in \Omega} \sum_{\forall S_i} ref_j(q_i) acc_j(q_i)$$

Tổng chi phí truy xuất của tất cả các ứng dụng trên tất cả các vị trí

$$CTQ = \sum_{q_i \in TO} \sum_{\forall S_i} ref_j(q_i).acc_j(q_i)$$

Tổng số các truy cập đến các thuộc tính bởi các ứng dụng chỉ truy cập TA

$$CBQ = \sum_{q_i \in BQ} \sum_{\forall S_j} ref_j(q_i).acc_j(q_i)$$

Tổng số các truy cập đến các thuộc tính bởi các ứng dụng chỉ truy cập BA

$$COQ = \sum_{q_i \in OO} \sum_{\forall S_i} ref_j(q_i).acc_j(q_i)$$

Tổng số các truy cập đến các thuộc tính bởi ứng dụng truy cập cả TA và BA

Bài toán tối ưu hóa phân mảnh chính là bài toán xác định định một điểm : $1 \le z \le n$ sao cho :

$$CA = \begin{bmatrix} A1 & A3 & A2 & A4 \\ A45 & 45 & 0 & 0 \\ A3 & 45 & 53 & 5 & 3 \\ A2 & 0 & 5 & 80 & 75 \\ A4 & 0 & 3 & 75 & 78 \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} q_1 & A_2 & A_3 & A_4 \\ q_1 & 1 & 0 & 1 & 0 \\ q_2 & 0 & 1 & 1 & 0 \\ q_3 & 0 & 1 & 0 & 1 \\ q_4 & 0 & 0 & 1 & 1 \end{bmatrix}$$

Vị trí 1:

$$TA = \{ A_1 \}, \qquad TQ = \{ \}, \\ BA = \{ A_3, A_2, A_4 \}, \qquad BQ = \{ q_2, q_3, q_4 \}, \\ OQ = \{ q_1 \} \\ CTQ = 0; \\ CBQ = acc_1(q_2) + acc_2(q_2) + acc_3(q_2) + \\ acc_1(q_3) + acc_2(q_3) + acc_3(q_3) + \\ acc_1(q_4) + acc_2(q_4) + acc_3(q_4) = 83 \\ COQ = acc_1(q_1) + acc_2(q_1) + acc_3(q_1) = 45 \\ Z = CTQ^* CBQ - COQ^2 = -2025$$

A1 A3 A2 A4 **A1** 0 0 45 CA =**A3** 45 3 53 **A2** 5 80 **75 A4** 3 75 78 0

<u>Vị trí 2:</u>

$$\begin{split} \text{TA} &= \left\{ \mathsf{A}_{1,} \; \; \mathsf{A}_{3} \right\}, \; \mathsf{TQ} = \left\{ \mathsf{q}_{1} \right\}, \\ \mathsf{BA} &= \left\{ \mathsf{A}_{2}, \; \mathsf{A}_{4} \right\} \; , \; \; \mathsf{BQ} = \left\{ \mathsf{q}_{3,} \right\}, \\ \mathsf{OQ} &= \left\{ \mathsf{q}_{2,} \; \mathsf{q}_{4} \right\} \\ \mathsf{CTQ}_{2} &= \mathsf{acc}_{1}(\mathsf{q}_{1}) \; + \mathsf{acc}_{2} \; (\mathsf{q}_{1}) + \mathsf{acc}_{3} \; (\mathsf{q}_{1}) = \; 45 \\ \mathsf{CBQ}_{2} &= \; \mathsf{acc}_{1}(\mathsf{q}_{3}) + \mathsf{acc}_{2} \; (\mathsf{q}_{3}) + \mathsf{acc}_{3} \; (\mathsf{q}_{3}) = \; 75 \\ \mathsf{COQ}_{2} &= \; \mathsf{acc}_{1} \; (\mathsf{q}_{2}) + \mathsf{acc}_{2} \; (\mathsf{q}_{2}) + \mathsf{acc}_{3} \; (\mathsf{q}_{2}) + \\ &= \; \mathsf{acc}_{1} \; (\mathsf{q}_{4}) + \mathsf{acc}_{2} \; (\mathsf{q}_{4}) + \mathsf{acc}_{3} \; (\mathsf{q}_{4}) = 8 \\ \mathsf{Z} &= \; \mathsf{CTQ}^{*} \; \mathsf{CBQ} - \mathsf{COQ}^{2} = \; 3311 \end{split}$$

<u>Vị trí 3:</u>

$$\begin{split} \text{TA} &= \{ \text{A}_{1,} \, \text{A}_{3}, \, \text{A}_{2} \} \ , \, \text{TQ} = \{ \text{q}_{2,} \, \text{q}_{1} \}, \\ \text{BA} &= \{ \text{A}_{4} \} \ , \qquad \text{BQ} = \{ \, \}, \\ \text{OQ} &= \{ \text{q}_{4,} \, \text{q}_{3} \} \\ \text{CTQ}_{3} &= \text{acc}_{1}(\text{q}_{1}) \, + \text{acc}_{2} \, (\text{q}_{1}) + \text{acc}_{3} \, (\text{q}_{1}) \\ \text{acc}_{1}(\text{q}_{2}) \, + \text{acc}_{2} \, (\text{q}_{2}) \, + \text{acc}_{3} \, (\text{q}_{2}) = \, 50 \\ \text{CBQ}_{3} &= 0 \\ \text{COQ}_{3} &= \text{acc}_{1} \, (\text{q}_{3}) + \text{acc}_{2} \, (\text{q}_{3}) + \text{acc}_{3} \, (\text{q}_{3}) + \\ \text{acc}_{1} \, (\text{q}_{4}) + \text{acc}_{2} \, (\text{q}_{4}) + \text{acc}_{3} \, (\text{q}_{4}) = \, 78 \\ \text{Z} &= \text{CTQ*} \, \text{CBQ} - \text{COQ}^{2} \, = - \, 6084 \end{split}$$

Site1	Site2	Site3
$acc_{1}(q_{1})=15$	$acc_{2}(q_{1})=20$	$acc_3(q_1)=10$
$acc_{1}(q_{2})=5$	$acc_2(q_2)=0$	$acc_3(q_2)=0$
$acc_{1}(q_{3})=25$	$acc_{2}(q_{3})=25$	$acc_3(q_3)=25$
$acc_{1}(q_{4})=3$	$acc_{2}(q_{4})=0$	$acc_{3}(q_{4})=0$

Vi trí 1: Z = -2025 $V_i tri 2: Z = 3311$ Vi trí 3: Z = -6084Như vậy vị trí 2 có chi phí là lớn nhất Quan hệ PROJ chia thành 2 mảnh: $PROJ_1 \{A_1, A_3\} = PROJ_1 \{\underline{PNO}, BUDGET\}$ $PROJ_2 \{A_1, A_2, A_4\} = PROJ_2 \{\underline{PNO}, PNAME, LOC\}$

PROJ

PNO	PNAME	BUDGET	LOG
P1	Instrumentation	150000	Montreal
P2	Database Develop	135000	NewYork
P3	CAD/CAM	250000	NewYork
P4	Maintenance	310000	Paris

PROJ1

PNO	BUDGET
P1	150000
P2	135000
Р3	250000
P4	310000

PROJ2

PNO	PNAME	LOG
P1	Instrumentation	Montreal
P2	Database Develop	NewYork
P3	CAD/CAM	NewYork
P4	Maintenance	Paris