WEST Search History

Hide Items Restore Clear Cancel

DATE: Sunday, October 17, 2004

Hide?	Set Name	Query	Hit Count
	DB=PGP	B,USPT,USOC,EPAB,JPAB,DWPI; THES=ASSIGNEE; PLUR=YES	S; OP=ADJ
	L6	L4 and compress\$3 with synthesis gas with hydrogen	8
	L5	L4 and compress\$3 with synthesis gas	31
	L4	L2 and carbon dioxide with carbon monoxide with hydrogen	265
	L3	L2 and carbon dioxide	414
. [L2	L1 and synthesis gas	551
	L1	methanol with acetic acid	35084

END OF SEARCH HISTORY

Hit List

Clear Generate Collection Print Fwd Refs Bkwd Refs
Generate OACS

Search Results - Record(s) 1 through 8 of 8 returned.

☐ 1. Document ID: US 6214066 B1

Using default format because multiple data bases are involved.

L6: Entry 1 of 8

File: USPT

Apr 10, 2001

US-PAT-NO: 6214066

DOCUMENT-IDENTIFIER: US 6214066 B1

TITLE: Synthesis gas production by ion transport membranes

DATE-ISSUED: April 10, 2001

INVENTOR - INFORMATION:

NAME

CITY

STATE

ZIP CODE COUNTRY

Nataraj; Shankar

Allentown

PA

Russek; Steven Lee

Allentown

PA

US-CL-CURRENT: <u>48/198.2</u>; <u>422/239</u>, <u>423/245.3</u>, <u>423/418.2</u>, <u>423/651</u>, <u>48/127.5</u>, 48/198.1, 95/45, 95/54

		and the contract of the contra

☐ 2. Document ID: US 6110979 A

Full Title Citation Front Review Classification Date Reference

:laims| KWMC | Drawu D

L6: Entry 2 of 8

File: USPT

Aug 29, 2000

US-PAT-NO: 6110979

DOCUMENT-IDENTIFIER: US 6110979 A

TITLE: Utilization of synthesis gas produced by mixed conducting membranes

DATE-ISSUED: August 29, 2000

INVENTOR-INFORMATION:

NAME

CITY

STATE ZIP CODE

COUNTRY

Nataraj; Shankar Russek; Steven Lee Allentown Allentown PA PA

ASSIGNEE-INFORMATION:

 ${\tt NAME}$

CITY

STATE ZIP CODE COUNTRY TYPE CODE

Air Products and Chemicals, Inc.

Allentown PA

02

APPL-NO: 09/ 157544 [PALM]
DATE FILED: September 21, 1998

PARENT-CASE:

CROSS-REFERENCE TO RELATED APPLICATIONS This application is a Continuation-in-Part of Ser. No. 08/997,642, filed on Dec. 23, 1997, U.S. Pat. No. 6,048,472, which is incorporated herein by reference.

INT-CL: [07] C01 B 3/26

US-CL-ISSUED: 518/704; 252/373, 423/652 US-CL-CURRENT: 518/704; 252/373, 423/652

FIELD-OF-SEARCH: 423/650, 423/652, 423/655, 423/656, 252/373, 518/704

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

PAT-NO	ISSUE-DATE	PATENTEE-NAME	US-CL
4079017	March 1978	Crawford et al.	252/373
4791079	December 1988	Hazbun	502/4
4793904	December 1988	Mazanec et al.	204/59R
4822521	April 1989	Fuderer	252/373
5160713	November 1992	Mazanec et al.	423/648.1
5276237	January 1994	Mieville	585/500
5306411	April 1994	Mazanec et al.	204/265
5356728	October 1994	Balachandran et al.	429/8
5536488	July 1996	Mansour et al.	423/652
5580497	December 1996	Balachandran et al.	252/519
5591315	January 1997	Mezanec et al.	205/462
<u>5599383</u>	February 1997	Dyer et al.	96/8

FOREIGN PATENT DOCUMENTS

FOREIGN-PAT-NO	PUBN-DATE	COUNTRY	US-CL
0399833	November 1990	EP	
0732138	September 1996	EP	

OTHER PUBLICATIONS

Rostrup-Nielsen, J. et al., "Steam Reforming-Opportunities and Limits of the Technology", presented at the NATO ASI Study on Chemical Reactor Technology for Environmentally Safe Reactors and Predictors, Aug. 25-Sep. 5, 1991, Ontario, Canada.

Christiansen, T. S. et al. "Improve Syngas Production Using Autothermal Reforming", Hydrocarbon Processing, Mar. 1994, pp. 39-46.
Sundset, T. et al., "Evaluation of Natural Gas Based Synthesis Gas production Technologies", Catalysis Today 21 (1994), pp. 269-278, (No Month).
Reed, C.L. et al., "Production of Synthesis Gas by Partial Oxidation of Hydrocarbons" presented at the 86.sup.th AIChE meeting, Houston, Texas, Apr. 1-5,

1979.

Fong, F., "Texaco's HyTEX Process for High Pressure Hydrogen Production", presented at the KTI Symposium, Apr. 27, 1993, Caracas, Venezuela.

Osterrieth, P. J. et al., "Custom-Made <u>Synthesis Gas</u> Using Texaco's Partial Oxidation Technology", presented at the AIChE Spring National Meeting, New Orleans, LA, Mar. 9, 1988.

Balachandran, U. et al. "Ceramic Membranes For Methane Conversion", presented at the Coal Liquefaction and Gas Conversion Contractors, Review Conference, Sep. 7-8, 1994, Pittsburgh, PA.

Tsai, C.-Y. et al., "Simulation of a Nonisothermal Catalytic Membrane Reactor for Methane partial Oxidation to Syngas", Proceedings of the Third International Conference of Inorganic Membranes, Worcester, MA, Jul. 10-14, 1994.

Tsai, C.-Y. et al., "Modeling and Simulation of a Nonisothermal Catalytic Membrane Reactor", Chem. Eng Comm., 1995, vol. 134, pp. 107-132.

Tsai, C. Y., "Perovskite Dense Membrane Reactors for the Partial Oxidation of Methane to <u>Synthesis Gas</u>", May 1996 (published by UMI Dissertation Services). Cromarty, B. J. et al., "The Application of Pre-Reforming Technology in the Production of Hydrogen", presented at the NPRA Annual Meeting, Mar. 21-23, 1993, San Antonio, Texas.

Foreman, J. M., et al., "The Benefits of pre-reforming in Hydrogen Production Plants", presented at th World Hydrogen Conference, Jun. 1992.

Cromarty, B. J., "Modern Aspects of Steam Reforming for Hydrogen Plants", presented at the World Hydrogen Confernece, Jun. 1992.

Mazanec, T. J., "Electropox Gas Reforming", Electrochemical Society Proceedings,

vol. 95-24, 16 1997, pp. 16-28, (No Month).

U.S. application No. 08/721,640, Adler et al., filed Sep. 26, 1996.

U.S. application No. 08/997,642, Nataraj et al., filed Dec. 23, 1997.

U.S. application No. 08/870,012, Nataraj et al., filed Jun. 6, 1997.

U.S. application No. 09/141,909, Adler et al., filed Aug. 28, 1998.

U.S. application No. 09/157,712, Nataraj et al., filed Sep. 21, 1998.

Copy of European Search Report.

ART-UNIT: 174

PRIMARY-EXAMINER: Langel; Wayne

ATTY-AGENT-FIRM: Fernbacher; John M.

ABSTRACT:

Hydrocarbon feedstocks are converted into synthesis gas in a two-stage process comprising an initial steam reforming step followed by final conversion to synthesis gas in a mixed conducting membrane reactor. The steam reforming step converts a portion of the methane into synthesis gas and converts essentially all of the hydrocarbons heavier than methane into methane, hydrogen, and carbon oxides. The steam reforming step produces an intermediate feed stream containing methane, hydrogen, carbon oxides, and steam which can be processed without operating problems in a mixed conducting membrane reactor. The steam reforming and mixed conducting membrane reactors can be heat-integrated for maximum operating efficiency and produce synthesis gas with compositions suitable for a variety of final products. Synthesis gas produced by the methods of the invention is further reacted to yield liquid hydrocarbon or oxygenated organic liquid products.

29 Claims, 6 Drawing figures

ull	Title	Chation	Frank	Povious	Classification	D = to	Reference Claims 1000C D D	ē
u II	line	CITATION	FIGHT	Menievo	Classification	Dale	Reference Claims KWC Draw, D	£
								-

Page 4 of 16

☐ 3. Document ID: US 6077323 A

L6: Entry 3 of 8

File: USPT

Jun 20, 2000

US-PAT-NO: 6077323

DOCUMENT-IDENTIFIER: US 6077323 A

TITLE: Synthesis gas production by ion transport membranes

DATE-ISSUED: June 20, 2000

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Nataraj; Shankar Allentown PA

Russek; Steven Lee Allentown PA

ASSIGNEE-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY TYPE CODE

Air Products and Chemicals, Inc. Allentown PA 02

APPL-NO: 08/ 870012 [PALM]
DATE FILED: June 6, 1997

INT-CL: [07] $\underline{C01}$ \underline{B} $\underline{3/24}$, $\underline{C01}$ \underline{B} $\underline{31/18}$, $\underline{B01}$ \underline{J} $\underline{7/00}$, $\underline{B01}$ \underline{D} $\underline{53/22}$

US-CL-ISSUED: 48/198.1; 48/127.5, 48/127.7, 48/148.3, 422/235, 422/239, 423/418.2,

423/245.3, 252/3.73, 95/45, 95/54

US-CL-CURRENT: 48/198.1; 252/373, 422/235, 422/239, 423/245.3, 423/418.2, 48/127.5,

48/127.7, 48/198.3, 95/45, 95/54

FIELD-OF-SEARCH: 48/127.7, 48/198.1, 48/198.3, 95/45, 95/54, 422/198, 422/193,

422/207, 422/235, 422/239, 423/650, 423/651, 423/418.2, 423/245.3, 252/373

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

PAT-NO	ISSUE-DATE	PATENTEE-NAME	US-CL
4791079	December 1988	Hazbun	502/4
4793904	December 1988	Mazanec et al.	204/59R
4802958	February 1989	Mazanec et al.	204/80
4933054	June 1990	Mazanec et al.	204/80
5068058	November 1991	Bushinsky et al.	252/376
5160713	November 1992	Mazanec et al.	423/210
5276237	January 1994	Mieville	585/500
5306411	April 1994	Mazanec et al.	204/265
5356728	October 1994	Balachandran et al.	429/8
5364506	November 1994	Giir et al.	204/59
5534471	July 1996	Carolan et al.	502/4
5573737	November 1996	Balachandran et al.	422/211
5580497	December 1996	Balachandran et al.	252/519

5591315	January 1997	Mezanec et al.	205/462
5599383	February 1997	Dyer et al.	96/8
5846641	December 1998	Abeles et al.	428/312.8
5868918	February 1999	Adler et al.	205/615

FOREIGN PATENT DOCUMENTS

FOREIGN-PAT-NO	PUBN-DATE	COUNTRY	US-CL
0732138	September 1986	EP	
0399833	November 1990	EP	
0438902	July 1991	EP .	
0673675	September 1995	EP	
0682379	November 1995	EP	
0705790	April 1996	EP	
0766330	April 1997	EP	,
WO9424065	October 1994	WO	

OTHER PUBLICATIONS

Rostrup-Nielsen, J. et al., "Steam Reforming-Opportunities and Limits of the Technology", presented at the NATO ASI Study on Chemical Reactor Technology for Environmentally Safe Reactors and Predictors, Aug. 25-Sep. 5, 1991, Ontario,

Christiansen, T. S. et al. "Improve Syngas Production Using Autothermal Reforming", Hydrocarbon Processing, Mar. 1994, pp. 39-46.

Sunset, T. et al., "Evaluation of Natural Gas Based <u>Synthesis Gas</u> Production Technologies", Catalysis Today 21 (1994), pp. 269-278.

Reed, C. L. et al. "Production of <u>Synthesis Gas</u> by Partial Oxidation of Hydrocarbons" presented at the 86.sup.th AChE meeting, Houston, Texas, Apr. 1-5, 1979.

Fong, F., "Texaco's HyTEX Process for High Pressure Hydrogen Production", presented at the KTI Symposium, Apr. 27, 1993, Caracas, Venezuela.

Osterrieth, P. J. et al., "Custom-Made <u>Synthesis Gas</u> Using Texaco's Partial Oxidation Technology", presented at the AIChE Spring National Meeting, New Orleans, LA, Mar. 9, 1988.

Balachandran, U. et al. "Ceramic Membranes For Methane Conversion", presented at the Coal Liquefaction and Gas Conversion Contractors, Review Conference, Sep. 7-8, 1994, Pittsburgh, PA.

Tsai, C.-Y. et al., "Simulation of a Nonisothermal Catalytic Membrane Reactor for Methane partial Oxidation to Syngas", Proceedings of the Third International Conference of Inorganic Membranes, Worcester, MA, Jul. 10-14, 1994.

Tsai, C.-Y. et al., "Modeling and Simulation of a Nonisothermal Catalytic Membrane Reactor", Chem. Eng Comm., 1995, vol. 134, pp. 107-132.

Tsai, C. Y., "Perovskite Dense Membrane Reactors for the Partial Oxidation of Methane to Snythesis Gas", May 1996 (published by UMI Dissertation Services). ten Elshof, J. E. et al., "Oxidative Coupling of Methane in a Mixed-Conducting Perovskite Membrane Reactor". Applied Catalysis A; General 130 (1995) 195-212. Mazanec, T. J. et al., "Electropox: BP's Novel Oxidation Technology", The Role of Oxygen in Improving Chemical Processes, R. Soc. Chem. (1993), vol. 132, pp. 212-25.

Mazanec, T. J. et al., "Electrocatalytic Cells for Chemical Reaction", Solid State Ionics, 53-56 (1992) 111-118 North Holland.

Mazanec, T. J., Electropox: BP's Novel Oxidation Technology, The Activation of Dioxygen and Homogeneous Catalytic Oxidation, Edited by D. H. R. Barton et al.,

Plenum Press, New York 1993, pp. 85-96.

Mazanec, T.J., "Prospects for Ceramic Electrochemical Reactors in Industry", Solid State Ionics, 70/71 (1994) 11-19, North Holland.

Mazanec, T. J., "Electropox Gas Reforming", Electrochemical Society Proceedings, vol. 95-24, 1997, pp. 16-28.

Balachandran, U. et al., "Development of a Ceramic Membrane for Upgrading Methane to High-Value-Added Clean Fuels", Prepr. Pap.--Am. Chem. Soc., Div. Fuel Chem. (1997), 42(2), 591-595.

Balachandran, U. et al., "Dense Ceramic Membranes for Converting Methane to Syngas", Electrochemical Society Proceedings (1997), vol. 95-24, pp. 29-36. Balachandran, U. et al., "Mixed-Conducting Ceramic Membranes for Partial Oxygenation of Methan", Ceram., Trans. (1996) 65(Role of Ceramics in Advanced Electrochemical Systems), 23-35.

Schwartz, M. et al, "The Use of Ceramic Membrane Reactors for The Partial Oxidation of Methane to <u>Synthesis Gas</u>", Prepr. Pap.--Am. Chem. Soc, Div. Fuel chem. (1997), 42(2) 596-600.

Ma Y. H., et al. "The Partial Oxidation of Methane to <u>Synthesis Gas</u> by Oxygen Selective Dense Perovskite Membrane Reactors", Presented at the AIChE 1997 Spring National Meeting, Houston, TX--Mar. 9-13, 1997.

Schwartz, M., et al., "The Use of Ceramic Membrane Reactors for the Partial Oxidation of Methane to <u>Synthesis Gas</u>", Presented at the AIChE 1997 Spring national Meeting, Houston, TX--Mar. 9-13, 1997.

Udovich, C. A., et al., "Ceramic Membrane Reactor for the Partial Oxygenation of Methane to <u>Synthesis Gas</u>", Presented at the AIChE 1997 Spring National Meeting, Houston, TX--Mar. 9-13, 1997.

ART-UNIT: 174

PRIMARY-EXAMINER: Tran; Hien

ASSISTANT-EXAMINER: Kennedy; James

ATTY-AGENT-FIRM: Fernbacher; John M.

ABSTRACT:

Synthesis gas is produced from a methane-containing reactant gas in a mixed conducting membrane reactor in which the reactor is operated to maintain the product gas outlet temperature above the reactant gas feed temperature wherein the total gas pressure on the oxidant side of the membrane is less than the total gas pressure on the reactant side of the membrane. Preferably, the reactant gas feed temperature is below a maximum threshold temperature of about 1400.degree. F. (760.degree. C.), and typically is between about 950.degree. F. (510.degree. C.) and about 1400.degree. F. (760.degree. C.). The maximum temperature on the reactant side of the membrane reactor is greater than about 1500.degree. F. (815.degree. C.).

31 Claims, 6 Drawing figures

Full Title Citation Front Review Classification	n Date Reference Sentimore	Claims KWC Draw De
☐ 4. Document ID: US 6066307 A		
L6: Entry 4 of 8	File: USPT	May 23, 2000

US-PAT-NO: 6066307

DOCUMENT-IDENTIFIER: US 6066307 A

Record List Display Page 7 of 16

TITLE: Method of producing hydrogen using solid electrolyte membrane

DATE-ISSUED: May 23, 2000

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Keskar; Nitin RameshGrand IslandNY14072Prasad; RaviEast AmherstNY14051Gottzmann; Christian FriedrichClarenceNY14031

APPL-NO: 09/ 396199 [PALM]
DATE FILED: September 15, 1999

PARENT-CASE:

This application is a continuation of application Ser. No. 08/848,200 filed Apr. 29, 1997, abandoned.

INT-CL: [07] C01 B 3/02, C01 B 3/24, C01 B 3/26

US-CL-ISSUED: 423/648.1; 252/373, 423/650, 423/651, 423/652 US-CL-CURRENT: 423/648.1; 252/373, 423/650, 423/651, 423/652

FIELD-OF-SEARCH: 423/648.1, 423/650, 423/651, 423/652, 252/373

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

PAT-NO	ISSUE-DATE	PATENTEE-NAME	US-CL
3901669	August 1975	Seiter	55/16
4120663	October 1978	Fally	422/198
4536196	August 1985	Harris	423/650
4810485	March 1989	Marianowski et al.	423/648.1
5160713	November 1992	Mazanec et al.	204/265
5215729	June 1993	Boxbaum	423/648.1
5276237	January 1994	Mieville	423/418.2
5306411	April 1994	Mazanec et al.	204/265
5637259	June 1997	Galuszka et al.	423/650
5733435	March 1998	Prasad et al.	205/765

FOREIGN PATENT DOCUMENTS

FOREIGN-PAT-NO	PUBN-DATE	COUNTRY	US-CL
0748648	December 1996	EP	
0778069	November 1997	EP	
1242401	September 1989	JP	

OTHER PUBLICATIONS

Balachandran et al., "Fabrication and Characterization of Dense Ceramic Membranes for Partial Oxidation of Methane", Proc. of Coal Liquefaction and Gas Conversion Contractors 'Review Conference, Pittsburgh, PA (Aug. 29-31, 1995).

Balachandran et al., "Dense Ceramic Membranes for Converting Methane to Syngas", First International Conference on Ceramic Membranes, 188.sup.th meeting to the Electrochemical Society, Inc., Chicago, IL (Oct. 8-13, 1995).

T. J. Mazanec, "Electropox: BP'Novel Oxidation Technology", in The Activation of Dioxygen and Homogeneous Catalytic Oxidation (D. Barton et al., eds), pp. 85-96, Plenum Press, NY 1993. (No Month).

Nozaki et al., "Oxide Ion Transport for Selective Oxidation Coupling of Methane with New Membrane Reactor", AIChE J., vol. 40, No. 5, pp. 870-877 (1994). (No Month).

Nagamoto et al., "Methane Oxidation by Oxygen Transported Through Solid Electrolyte" J. Catal., vol. 126 pp. 671-673 (1990). (No Month).

ART-UNIT: 174

PRIMARY-EXAMINER: Langel; Wayne

ATTY-AGENT-FIRM: Lau; Bernard

ABSTRACT:

A process for producing synthesis gas and hydrogen by passing a compressed and heated oxygen-containing gas mixture into a reactor having at least one solid electrolyte oxygen ion transport membrane to separate transported oxygen Organic fuel reacts with the oxygen to form synthesis gas. The resulting synthesis gas is separated into hydrogen gas through at least one solid electrolyte hydrogen transport membrane to separate the transported hydrogen in the same or different separator.

19 Claims, 2 Drawing figures

Full	Title	Citation Front	Review	Classification	Date	Reference	e le efelance		Claims	KWIC	Draw. D
	······································		······································		····		······································	***************************************			•••••••••••••••••••••••••••••••••••••••
· 	5	Document ID	· 118 60	48472 Δ							

File: USPT

L6: Entry 5 of 8

Apr 11, 2000

US-PAT-NO: 6048472

DOCUMENT-IDENTIFIER: US 6048472 A

TITLE: Production of synthesis gas by mixed conducting membranes

DATE-ISSUED: April 11, 2000

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY
Nataraj; Shankar Allentown PA
Moore; Robert Byron Allentown PA
Russek; Steven Lee Allentown PA

ASSIGNEE-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY TYPE CODE

02

Air Products and Chemicals, Inc. Allentown PA

APPL-NO: 08/ 997642 [PALM]
DATE FILED: December 23, 1997

INT-CL: [07] C01 B 3/26

US-CL-ISSUED: 252/373; 423/650, 423/652 US-CL-CURRENT: 252/373; 423/650, 423/652

FIELD-OF-SEARCH: 423/650, 423/652, 423/655, 423/656, 252/373

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

PAT-NO	ISSUE-DATE	PATENTEE-NAME	US-CL
4079017	March 1978	Crawford et al.	252/373
4791079	December 1988	Hazbun	502/4
4793904	December 1988	Mazanec et al.	204/59R
4822521	April 1989	Fuderer	252/376
5160713	November 1992	Mazanec et al.	252/373
5276237	January 1994	Mieville	585/500
5306411	April 1994	Mazanec et al.	204/265
5356728	October 1994	Balachandran et al.	429/8
5536488	July 1996	Mansour et al.	423/652
5580497	December 1996	Balachandran et al.	252/519
5591315	January 1997	Mezanec et al.	205/462
5599383	February 1997	Dyer et al.	96/8
5714091	February 1998	Mazanec et al.	252/373
5868918	February 1999	Adler et al.	205/615
		•	

FOREIGN PATENT DOCUMENTS

FOREIGN-PAT-NO	PUBN-DATE	COUNTRY	US-CL
0399833	November 1990	EP	ν.
0732138	September 1996	EP .	

OTHER PUBLICATIONS

Rostrup-Nielsen, J. et al., "Steam Reforming-Opportunities and Limits of the Technology", presented at the NATO ASI Study on Chemical Reactor Technology for Environmentally Safe Reactors and Predictors, Aug. 25-Sep. 5, 1991, Ontario, Canada.

Christiansen, T. S. et al. "Improve Syngas Production Using Autothermal Reforming", Hydrocarbon Processing, Mar. 1994, pp. 39-46.

Sundset, T. et al., "Evaluation of Natural Gas Based Synthesis Gas Production Technologies", Catalysis Today 21 (1994), pp. 269-278.

Reed, C. L. et al. "Production of <u>Synthesis Gas</u> by Partial Oxidation of Hydrocarbons" presented at the 86.sup.th AIChE meeting, Houston, Texas, Apr. 1-5,

Record List Display Page 10 of 16

1979.

Fong, F., "Texaco's HyTEX Process for High Pressure Hydrogen Production", presented at the KTI Symposium, Apr. 27, 1993, Caracas, Venezuela.

Osterrieth, P. J. et al., "Custom-Made <u>Synthesis Gas</u> Using Texaco's Partial Oxidation Technology", presented at the AIChE Spring National Meeting, New Orleans, LA, Mar. 9, 1988.

Balachandran, U. et al. "Ceramic Membranes For Methane Conversion", presented at the Coal Liquefaction and Gas Conversion Contractors, Review Conference, Sep. 7-8, 1994, Pittsburgh, PA.

Tsai, C.-Y. et al., "Simulation of a Nonisothermal Catalytic Membrane Reactor for Methane partial Oxidation to Syngas", Proceedings of the Third International Conference of Inorganic Membranes, Worcester, MA, Jul. 10-14, 1994.

Tsai, C.-Y. et al., "Modeling and Simulation of a Nonisothermal Catalytic Membrane Reactor", Chem. Eng Comm., 1995, vol.. 134, pp. 107-132.

Tsai, C. Y., "Perovskite Dense Membrane Reactors for the Partial Oxidation of Methane to <u>Synthesis Gas</u>", May 1996 (published by UMI Dissertation Services). Cromarty, B. J., et al., "The Application of Pre-Reforming Technology in the Production of Hydrogen", presented at the NPRA Annual Meeting, Mar. 21-23, 1993, San Antonio, Texas.

Foreman, J. M., et al., "The Benefits of pre-reforming in Hydrogen Production Plants", presented at th World Hydrogen Conference, Jun. 1992.

Cromarty, B. J., "Modern Aspects of Steam Reforming for Hydrogen Plants", presented at the World Hydrogen Confernece, Jun. 1992.

Mazanec, T. J., "Electropox Gas Reforming", Electrochemical Society Proceedings, vol. 95-24, 16 1997, pp 16-28.

U.S. application No. 08/721,640, Adler et al., filed Sep. 26, 1996. Copy of European Search Report.

ART-UNIT: 174

PRIMARY-EXAMINER: Langel; Wayne

ATTY-AGENT-FIRM: Fernbacher; John M.

ABSTRACT:

Hydrocarbon feedstocks are converted into <u>synthesis gas</u> in a two-stage process comprising an initial steam reforming step followed by final conversion to <u>synthesis gas</u> in a mixed conducting membrane reactor. The steam reforming step converts a portion of the methane into <u>synthesis gas</u> and converts essentially all of the hydrocarbons heavier than methane into methane, hydrogen, and carbon oxides. The steam reforming step produces an intermediate feed stream containing methane, hydrogen, carbon oxides, and steam which can be processed without operating problems in a mixed conducting membrane reactor. The steam reforming and mixed conducting membrane reactors can be heat-integrated for maximum operating efficiency and produce <u>synthesis gas</u> with compositions suitable for a variety of final products.

28 Claims, 6 Drawing figures

Full Title Citation Front Review Classification Date Reference France Claims KWC Draw De Comment ID: US 5865023 A

L6: Entry 6 of 8 File: USPT Feb 2, 1999

US-PAT-NO: 5865023

Record List Display Page 11 of 16

DOCUMENT-IDENTIFIER: US 5865023 A

TITLE: Gasification combined cycle power generation process with heat-integrated chemical production

DATE-ISSUED: February 2, 1999

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Sorensen; James Christian Allentown PA Scharpf; Eric William Perkasie PA

ASSIGNEE-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY TYPE CODE

Air Products and Chemicals, Inc. Allentown PA 02

APPL-NO: 08/ 909565 [PALM]
DATE FILED: August 12, 1997

PARENT-CASE:

This is a division of application Ser. No. 08/259,649 filed Jun. 14, 1994 now U.S. Pat. No. 5,666,800.

INT-CL: [06] F02 G 3/00, F02 C 3/20

US-CL-ISSUED: 60/39.02; 60/39.05, 60/39.463, 60/39.53, 60/39.59, 60/39.12 US-CL-CURRENT: 60/775; 60/39.12, 60/39.463, 60/39.53, 60/39.59, 60/780, 60/783

FIELD-OF-SEARCH: 60/39.02, 60/39.05, 60/39.07, 60/39.12, 60/39.463, 60/39.53, 60/39.59

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

PAT-NO	ISSUE-DATE	PATENTEE-NAME	US-CL
3788066	January 1974	Nebgen	60/39.05
3796045	March 1974	Foster-Pegg	60/39.02
3877218	April 1975	Nebgen	60/39.05
4273743	June 1981	Barber	422/148
4277416	July 1981	Grant	518/793
4424667	January 1984	Fanning	60/39
4590760	May 1986	Goebel et al.	60/39.12
4608818	September 1986	Goebel et al.	60/39.12
4631915	December 1986	Frewer et al.	60/39.12
4663931	May 1987	Schiffers et al.	60/39.07
4665688	May 1987	Schiffers et al.	60/39.07
4676063	June 1987	Goebel et al.	60/39.07
4722190	February 1988	Yamamoto et al.	60/648
5179129	January 1993	Studer	518/700

5251433	October 1993	Wallace	60/39.05
5295351	March 1994	Rathbone	60/39.05
5319924	June 1994	Wallace et al.	60/39.02
5388395	February 1995	Scharpf et al.	60/39.02
5394686	March 1995	Child et al.	60/39.02
5406786	April 1995	Scharpf et al.	60/39.05
5421166	June 1995	Allam et al.	62/649
5582029	December 1996	Occhiallini et al.	62/648
5722259	March 1998	Sorenson et al.	60/39.12

FOREIGN PATENT DOCUMENTS

FOREIGN-PAT-NO	PUBN-DATE	COUNTRY	US-CL
853010	April 1985	SA	
2075124	November 1981	GB	

ART-UNIT: 376

PRIMARY-EXAMINER: Freay; Charles G.

ATTY-AGENT-FIRM: Fernbacher; John M.

ABSTRACT:

A method for improving the efficiency of a gasification combined cycle system for the coproduction of electric power and one or more chemical or liquid fuel products from a synthesis gas feed containing hydrogen and carbon monoxide. Waste heat is recovered from the chemical reaction system in the form of heated water which is used to heat and humidify one or more gas streams introduced into the combustor of the combined cycle system gas turbine. Waste refrigeration recovered from the synthesis gas purification system optionally is used to cool the air inlet to the gas turbine compressor.

17 Claims, 4 Drawing figures

Full Title Citation Front	Review Classification	Date Reference	STOPPENS ZAGO OLE	Claims	KWIC	Draw De
	······································					
☐ 7. Document ID:	US 5666800 A					
L6: Entry 7 of 8		File: USF	$^{ m PT}$	Sep	16,	1997

US-PAT-NO: 5666800

DOCUMENT-IDENTIFIER: US 5666800 A

TITLE: Gasification combined cycle power generation process with heat-integrated

chemical production

DATE-ISSUED: September 16, 1997

INVENTOR-INFORMATION:

Record List Display Page 13 of 16

NAME CITY STATE ZIP CODE COUNTRY

Sorensen; James Christian Allentown PA Scharpf; Eric William Perkasie PA

ASSIGNEE-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY TYPE CODE

Air Products and Chemicals, Inc. Allentown PA 02

APPL-NO: 08/ 259649 [PALM]
DATE FILED: June 14, 1994

INT-CL: [06] F02 G 3/00, F02 C 3/20

US-CL-ISSUED: 60/39.02; 60/39.05, 60/39.463, 60/39.12, 60/39.59

US-CL-CURRENT: 60/781; 60/39.463, 60/39.59, 60/775

FIELD-OF-SEARCH: 60/39.02, 60/39.05, 60/39.463, 60/39.53, 60/39.59, 60/39.12

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

PAT-NO	ISSUE-DATE	PATENTEE-NAME	US-CL
3788066	January 1974	Nebgen	60/39.05
3796045	March 1974	Foster-Pegg	60/39.02
3877218	April 1975	Nebgen	60/39.05
4273743	June 1981	Barber et al.	422/148
4277416	July 1981	Grant	518/703
4424667	January 1984	Fanning	60/39.181
4590760	May 1986	Goebel et al.	60/39.12
4608818	September 1986	Goebel et al.	60/39.12
4631915	December 1986	Frewer et al.	60/39.12
4663931	May 1987	Schiffers et al.	60/39.07
4665688	May 1987	Schiffers et al.	60/39.07
4676063	June 1987	Goebel et al.	60/39.07
4722190	February 1988	Yamamoto et al.	60/39.53
5179129	January 1993	Studer	518/700
5295351	March 1994	Rathbone	60/39.53
5319924	June 1994	Wallace et al.	60/39.02
5394686	March 1995	Child et al.	60/39.02
5406786	April 1995	Scharpf et al.	60/39.53

FOREIGN PATENT DOCUMENTS

FOREIGN-PAT-NO PUBN-DATE COUNTRY US-CL

853010 April 1985 ZA 2075124 November 1981 GB

Page 14 of 16

Record List Display

ART-UNIT: 343

PRIMARY-EXAMINER: Freay; Charles G.

ATTY-AGENT-FIRM: Fernbacher; John M.

ABSTRACT:

A method for improving the efficiency of a gasification combined cycle system for the coproduction of electric power and one or more chemical or liquid fuel products from a synthesis gas feed containing hydrogen and carbon monoxide. Waste heat is recovered from the chemical reaction system in the form of heated water which is used to heat and humidify one or more gas streams introduced into the combustor of the combined cycle system gas turbine. Waste refrigeration recovered from the synthesis gas purification system optionally is used to cool the air inlet to the gas turbine compressor.

2 Claims, 4 Drawing figures

Full	Title	Citation	Front	Review	Classification	Date	Reference	100		Claims	KWIC	Draw. De
						er dan man er managanna a	, account accountation accounts		39.1.1.49p.310.0.33000		3.07 (1133)7634-1-1-4531333-1-1-1	~~
	8.	Docume	nt ID:	US 51	79129 A							
1.6 · F	Entry	v 8 of 8	₹			F-	le USE	эŢ		Jan	12	1993

US-PAT-NO: 5179129

DOCUMENT-IDENTIFIER: US 5179129 A

** See image for Certificate of Correction **

TITLE: Staged liquid phase methanol process

DATE-ISSUED: January 12, 1993

INVENTOR - INFORMATION:

NAME

CITY

STATE

Studer; David W.

Wescosville

PA

ASSIGNEE-INFORMATION:

NAME

CITY

STATE ZIP CODE COUNTRY TYPE CODE

ZIP CODE

Air Products and Chemicals, Inc.

Allentown PA

02

COUNTRY

APPL-NO: 07/ 664178 [PALM]
DATE FILED: March 1, 1991

INT-CL: [05] C07C 27/06, C07C 27/08,

US-CL-ISSUED: 518/700; 518/706 US-CL-CURRENT: 518/700; 518/706

FIELD-OF-SEARCH: 518/700, 518/706

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

PAT-NO	ISSUE-DATE	PATENTEE-NAME	US-CL
2467802	April 1949	Barr	
2852350	September 1958	Kolbel et al.	23/288
4540712	September 1985	Dombek	518/700
4608818	September 1986	Goebel et al.	60/39.12
4665688	May 1987	Schiffers et al.	60/39.07
4766154	August 1988	Bonnell et al.	518/700
4946477	August 1990	Perka et al.	48/197

ART-UNIT: 126

PRIMARY-EXAMINER: Mars; Howard T.

ATTY-AGENT-FIRM: Fernbacher; John M. Simmons; James C. Marsh; William F.

ABSTRACT:

Methanol is produced from synthesis gas comprising hydrogen, carbon monoxide, and carbon dioxide in a two-stage liquid phase reactor system. Each reactor is operated in an optimum temperature range to maximize methanol productivity, and once-through product conversion of up to 9.1 moles methanol per 100 moles of synthesis gas can be achieved with reasonable catalyst utilization. Overall catalyst utilization is increased by countercurrent catalyst transfer. In an alternate mode of operation, the liquid phase reactor system is integrated with a coal gasification combined cycle (CGCC) power generation process wherein the unreacted synthesis gas is used as fuel in a gas turbine-driven electric power generator. Operation of each liquid phase reactor in the optimum temperature range maximizes the available heat of reaction which is recovered as steam; the steam is utilized in the gas turbine combustor or the CGCC steam turbine. Methanol from the liquid phase reactor system can be used as peak shaving fuel for the gas turbine.

14 Claims, 4 Drawing figures

Generate Collection Print Fwd Refs Bkwd Refs	Generate OA
Term	Documents
SYNTHESIS	436074
SYNTHESES	38632
GAS	2543006
GASES	618605
HYDROGEN	1002455
HYDROGENS	22187
COMPRESS\$3	0

COMPRESS	344675
COMPRESSA	170
COMPRESSAB	2
COMPRESSABI	1
(L4 AND COMPRESS\$3 WITH SYNTHESIS GAS WITH HYDROGEN).PGPB,USPT,USOC,EPAB,JPAB,DWPI.	8

There are more results than shown above. Click here to view the entire set.

Display Format:	_	Change Format
Previous Page	Next Pag	ge Go to Doc#

Welcome to STN International! Enter x:x

LOGINID:ssspta1202jxp

PASSWORD:

TERMINAL (ENTER 1, 2, 3, OR ?):2

```
Welcome to STN International
NEWS
                 Web Page URLs for STN Seminar Schedule - N. America
NEWS
                 "Ask CAS" for self-help around the clock
NEWS
         Jul 12
                 BEILSTEIN enhanced with new display and select options,
                 resulting in a closer connection to BABS
NEWS
         AUG 02
                 IFIPAT/IFIUDB/IFICDB reloaded with new search and display
                 fields
                 CAplus and CA patent records enhanced with European and Japan
NEWS
      5
         AUG 02
                 Patent Office Classifications
NEWS
      6
         AUG 02
                 The Analysis Edition of STN Express with Discover!
                 (Version 7.01 for Windows) now available
      7
NEWS
         AUG 27
                 BIOCOMMERCE: Changes and enhancements to content coverage
NEWS
      8
         AUG 27
                 BIOTECHABS/BIOTECHDS: Two new display fields added for legal
                 status data from INPADOC
NEWS 9
         SEP 01
                 INPADOC: New family current-awareness alert (SDI) available
NEWS 10
         SEP 01
                 New pricing for the Save Answers for SciFinder Wizard within
                 STN Express with Discover!
NEWS 11
         SEP 01
                 New display format, HITSTR, available in WPIDS/WPINDEX/WPIX
NEWS 12
         SEP 14
                 STN Patent Forum to be held October 13, 2004, in Iselin, NJ
NEWS 13
         SEP 27
                 STANDARDS will no longer be available on STN
NEWS 14
         SEP 27
                 SWETSCAN will no longer be available on STN
NEWS EXPRESS JULY 30 CURRENT WINDOWS VERSION IS V7.01, CURRENT
              MACINTOSH VERSION IS V6.0c(ENG) AND V6.0Jc(JP),
              AND CURRENT DISCOVER FILE IS DATED 11 AUGUST 2004
              STN Operating Hours Plus Help Desk Availability
NEWS HOURS
NEWS INTER
              General Internet Information
NEWS LOGIN
              Welcome Banner and News Items
NEWS PHONE
              Direct Dial and Telecommunication Network Access to STN
NEWS WWW
              CAS World Wide Web Site (general information)
```

Enter NEWS followed by the item number or name to see news on that specific topic.

All use of STN is subject to the provisions of the STN Customer agreement. Please note that this agreement limits use to scientific research. Use for software development or design or implementation of commercial gateways or other similar uses is prohibited and may result in loss of user privileges and other penalties.

FILE 'HOME' ENTERED AT 15:25:40 ON 17 OCT 2004

=> file caplus
COST IN U.S. DOLLARS

SINCE FILE TOTAL ENTRY SESSION 0.21 0.21

FULL ESTIMATED COST

FILE 'CAPLUS' ENTERED AT 15:25:53 ON 17 OCT 2004
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2004 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications. The CA Lexicon is the copyrighted intellectual property of the American Chemical Society and is provided to assist you in searching databases on STN. Any dissemination, distribution, copying, or storing of this information, without the prior written consent of CAS, is strictly prohibited.

FILE COVERS 1907 - 17 Oct 2004 VOL 141 ISS 17 FILE LAST UPDATED: 15 Oct 2004 (20041015/ED)

This file contains CAS Registry Numbers for easy and accurate substance identification.

```
=> s methanol (1) acetic acid
        171281 METHANOL
           668 METHANOLS
        171633 METHANOL
                  (METHANOL OR METHANOLS)
        206424 ACETIC
            22 ACETICS
        206433 ACETIC
                  (ACETIC OR ACETICS)
       3882956 ACID
       1449655 ACIDS
       4353917 ACID
                  (ACID OR ACIDS)
        181400 ACETIC ACID
                  (ACETIC (W) ACID)
L1
          3894 METHANOL (L) ACETIC ACID
=> s l1 and synthesis gas
       1145263 SYNTHESIS
             3 SYNTHESISES
         62662 SYNTHESES
       1180726 SYNTHESIS
                  (SYNTHESIS OR SYNTHESISES OR SYNTHESES)
       1383365 GAS
        476149 GASES
       1554119 GAS
                  (GAS OR GASES)
         14920 SYNTHESIS GAS
                  (SYNTHESIS (W) GAS)
L_2
            66 L1 AND SYNTHESIS GAS
=> s 12 and (carbon monoxide (1) carbon dioxide (1) hydrogen)
       1080374 CARBON
         24057 CARBONS
       1089138 CARBON
                  (CARBON OR CARBONS)
        161809 MONOXIDE
           963 MONOXIDES
        162321 MONOXIDE
                  (MONOXIDE OR MONOXIDES)
```

136816 CARBON MONOXIDE

(CARBON (W) MONOXIDE)

1080374 CARBON

24057 CARBONS

1089138 CARBON

(CARBON OR CARBONS)

419201 DIOXIDE

6367 DIOXIDES

420807 DIOXIDE

(DIOXIDE OR DIOXIDES)

196199 CARBON DIOXIDE

(CARBON (W) DIOXIDE)

839736 HYDROGEN

5431 HYDROGENS

842790 HYDROGEN

(HYDROGEN OR HYDROGENS)

1705 CARBON MONOXIDE (L) CARBON DIOXIDE (L) HYDROGEN

6 L2 AND (CARBON MONOXIDE (L) CARBON DIOXIDE (L) HYDROGEN)

=> d 13 ibib ab 1-6

L3 ANSWER 1 OF 6 CAPLUS COPYRIGHT 2004 ACS on STN

ACCESSION NUMBER:

2004:691478 CAPLUS

DOCUMENT NUMBER:

141:192262

TITLE:

T₁3

Methanol plant retrofit for the manufacture

of acetic acid

INVENTOR(S):

Vidalin, Kenneth Ebenes; Thiebaut, Daniel Marcel

Acetex Cyprus Limited, Cyprus

SOURCE:

U.S., 16 pp., Cont.-in-part of U.S. 6,232,352.

CODEN: USXXAM

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT: 3

PATENT INFORMATION:

PATENT ASSIGNEE(S):

PATI	ENT I	. O <i>v</i>			KIN	D	DATE			APPL	ICAT	ION I	NO.		D	ATE		
US 6	6781	014			В1	_	2004	0824	-	US 2	002-	1290:	38		2	0020	430	
US 6	62740	96			В1		2001	0814		US 1	999-	4308	88		1	9991	101	
US 6	52323	352			B1	B1 20010515 US 2000-547831							20000412					
WO 2	2001	0325	94		A1	A1 20010510				WO 2000-CY4					20001031			
	W:	ΑE,	AG,	AL,	AM,	ΑT,	AU,	AZ,	BA,	BB,	BG,	BR,	BY,	BZ,	CA,	CH,	CN,	
		CR,	CU,	CZ,	DE,	DK,	DM,	DZ,	EE,	ES,	FI,	GB,	GD,	GE,	GH,	GM,	HR,	
		HU,	ID,	IL,	IN,	IS,	JP,	KΕ,	KG,	ΚP,	KR,	KΖ,	LC,	LK,	LR,	LS,	LT,	
		LU,	LV,	MA,	MD,	MG,	MK,	MN,	MW,	MX,	ΜZ,	NO,	NΖ,	PL,	PT,	RO,	RU,	
		SD,	SE,	SG,	SI,	SK,	ŞЬ,	TJ,	TM,	TR,	TT,	TZ,	UA,	UG,	US,	UZ,	VN,	
•		YU,	ZA,	ZW,	AM,	ΑZ,	BY,	KG,	KΖ,	MD,	RU,	TJ,	TM					
	RW:	GH,	GM,	KE,	LS,	MW,	MZ,	SD,	SL,	SZ,	TZ,	UG,	ZW,	AT,	BE,	CH,	CY,	
		DE,	DK,	ES,	FΙ,	FR,	GB,	GR,	ΙE,	IT,	LU,	MC,	NL,	PT,	SE,	BF,	ВJ,	
		CF,	CG,	CI,	CM,	GA,	GN,	GW,	ML,	MR,	NE,	SN,	TD,	TG				
PRIORITY	APPI	ĹN. ∶	INFO	. :					1	US 1:	999-	4308	8 0	i	A2 1	9991	101	
									1	US 1	999-	4308	88		A2 1:	9991	101	
													31	1	A2 2	0000	412	
		- 1		_					1	WO 2	000-	CY4		1	W 2	0001	031	

AB The retrofitting of an existing methanol or methanol /ammonia plant to make acetic acid is described. The existing plant has a reformer into which natural gas or another hydrocarbon and steam (water) are fed. Synthesis gas is formed in the reformer. All or part of the synthesis gas is processed to sep. out carbon dioxide, carbon monoxide and hydrogen, and the separated carbon dioxide is the exiting to the existing methanol synthesis loop for methanol synthesis, or back into the feed to the reformer to enhance carbon monoxide formation in the synthesis gas. Any remaining

synthesis gas not fed into the carbon dioxide separator can be converted to methanol in the existing methanol synthesis loop along with carbon dioxide from the separator and/or imported carbon dioxide, and hydrogen from the separator. The separated carbon monoxide is then reacted with methanol

to produce acetic acid or an acetic

acid precursor by a conventional process.

REFERENCE COUNT:

40 THERE ARE 40 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

ANSWER 2 OF 6 CAPLUS COPYRIGHT 2004 ACS on STN

ACCESSION NUMBER:

2002:569124 CAPLUS

DOCUMENT NUMBER:

137:386864

TITLE:

Production of fuel by thermochemical transformation of

biomass

AUTHOR(S):

Claudet, Gerard

CORPORATE SOURCE: SOURCE:

PUBLISHER:

Direction l'energie nucleiare, CEA, Grenoble, Fr. Clefs CEA (2001), Volume Date 2000-2001, 44, 16-20

CODEN: CEACES; ISSN: 0298-6248 Commissariat a l'Energie Atomique

DOCUMENT TYPE:

Journal: General Review

LANGUAGE: French

A review on the need, availability, and current technologies for thermochem. transformation of biomass into fuels. The use of biomass as an energy and hydrogen source is becoming a major force in society. Biomass can be used (1) for combustion, with accompanying sulfur and nitrogen oxide pollution, as well as energy cogeneration, (2) with methanization to methane and carbon dioxide by anaerobic fermentation using animal manure and household waste, (3) for aerobic fermentation of saccharidic products such as cane sugar, amylase, and starches, to form ethanol, and (4) and thermochem. transformation, a gasification of lignocellulosic materials such as forests or straw. This route presents the most promising energy source. A chart is included outlining the power-producing processes and their biomass sources. One lignocellulosic gasification to normal methane, hydrogen, and carbon monoxide fuel gas is outlined with the various process temps. involved, starting with wet cellulose, hemicellulose, lignin, fumaric and maleic acids, acetic acid, formic acid, acetone, methanol, Me acetate, phenol, creosote, tar, and char or charcoal. The fuel gases can be further processes by combustion, synthesis to fuels such as di-Me ether and methanol, or the hydrogen purified. Specific catalysts were not mentioned.

ANSWER 3 OF 6 CAPLUS COPYRIGHT 2004 ACS on STN

ACCESSION NUMBER:

2002:505214 CAPLUS

DOCUMENT NUMBER:

137:64902

TITLE:

Bimodal acetic acid manufacture in

methanol plants

INVENTOR(S):

Vidalin, Kenneth Ebenes

PATENT ASSIGNEE(S):

USA

SOURCE:

U.S. Pat. Appl. Publ., 22 pp.

CODEN: USXXCO

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE	
US 2002085963	, A1	20020704	US 2000-751240	20001229	
US 6531630	B2	20030311			
PRIORITY APPLN. INFO.:			US 2000-751240	20001229	
AB The converting of	an exist	ing methanol	plant to make		

acetic acid is disclosed. The converted plant utilizes a steam reformer to which (a) a hydrocarbon, e.g., natural gas, or a lower alkanol, e.g., methanol, and (b) steam (water) are fed. Syngas is formed in the reformer. All or part of the syngas is processed to sep. out carbon dioxide, carbon monoxide and hydrogen, and the separated carbon dioxide is fed either to the existing methanol synthesis loop for methanol synthesis, or back into the feed to the reformer to enhance carbon monoxide formation in the syngas. When a lower alkanol is fed to the reformer, the methanol synthesis loop is shutdown and isolated from the rest of the plant. Any remaining syngas not fed to the carbon dioxide separator can be converted to methanol in the existing methanol synthesis loop along with carbon dioxide from the separator and/or imported carbon dioxide, and hydrogen from the separator. The separated carbon monoxide is then reacted with the methanol to produce acetic acid or an acetic acid precursor by a conventional process. When the methanol synthesis loop is shutdown, an imported source of methanol is used

L3 ANSWER 4 OF 6 CAPLUS COPYRIGHT 2004 ACS on STN

ACCESSION NUMBER:

2001:352292 CAPLUS

DOCUMENT NUMBER:

134:328212

TITLE:

Methanol plant retrofit for acetic

acid manufacture

INVENTOR(S):

Vidalin, Kenneth Ebenes

PATENT ASSIGNEE(S):

Acetex Limited, Cyprus

SOURCE:

U.S., 17 pp., Cont.-in-part of U.S. Ser. No. 430,888.

CODEN: USXXAM

DOCUMENT TYPE:

Patent English

LANGUAGE:

Endite

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

	PATENT NO.									APPLICATION NO.										
	US	6232	*					2001	 0515							2	0000	412		
	US	6274	096			В1	B1 20010814			1	US 1999-430888						19991101			
	WO	2001	0325	94		A1				WO 2000-CY4										
		W:	AE.					AU,												
		****			-			DM,												
				-				JP,												
								MK,	-											
								SL,												
			,	•				BY,	-		-				00,	,	02,	,		
		DM-	,	•	•	•	,	MZ,							ΔΤ.	BE.	CH.	CY.		
		KW.	- ,		•	•	,	GB,	•		•									
			•	•			•	GN,	-							DD,	DI,	ъ,		
		1226	•	CG,	,	•	•	2002				-				2	0001	021		
	БP	1226		DE																
		R:	-					ES,				ΙΙ,	шL,	ьU,	иь,	SE,	MC,	, P1,		
			•		•	-		RO,					-100			_	0001	007		
		5193						2003												
		6353																		
		2002																		
		6781				В1		2004	0824								0020			
PRIO	RIT	Y APP	LN.	INFO	. :								4308			A2 1				
													4308			A2 1				
											US 2	000-	5478	31	Ž	A 2	0000	412		
										1	WO 2	000-	CY4		1	<i>N</i> 2	0001	031		
70.770	mla.	+	£:								T ~ ~~			7						

AB The retrofitting of an existing methanol or methanol /ammonia plant to make acetic acid is disclosed. The existing plant has a reformer to which natural gas or another hydrocarbon

and steam (water) are fed for the generation of synthesis gas (i.e., CO, H2, CO2) via steam reforming. All or part of the produced synthesis gas is processed to sep. out carbon dioxide, carbon monoxide, and hydrogen, and the separated carbon dioxide is fed either to the existing methanol synthesis loop for methanol synthesis, or back into the feed to the reformer to enhance carbon monoxide formation in the synthesis gas. Any remaining synthesis gas not fed to the carbon dioxide separator can be converted to methanol by hydrogenation in the existing methanol synthesis loop along with carbon dioxide from the separator and/or imported carbon dioxide, and hydrogen from the separator. The separated carbon monoxide is then reacted with the methanol to produce acetic acid or an

acetic acid precursor by a conventional process.

REFERENCE COUNT: 16 THERE ARE 16 CITED REFERENCES AVAILABLE FOR THIS

RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L3 ANSWER 5 OF 6 CAPLUS COPYRIGHT 2004 ACS on STN

ACCESSION NUMBER:

2001:338470 CAPLUS

DOCUMENT NUMBER:

134:328210

TITLE:

Methanol plant retrofit for the manufacture

of acetic acid

INVENTOR(S):

Thiebaut, Daniel Marcel; Vidalin, Kenneth Ebennes

Acetex (Cyprus) Limited, Cyprus

PATENT ASSIGNEE(S): SOURCE:

PCT Int. Appl., 44 pp.

CODEN: PIXXD2

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT: 3

PATENT INFORMATION:

	PATENT NO.										APPLICATION NO.								
	WO 2001032594							WO 2000-CY4											
		W:	ΑE,	AG,	AL,	AM,	AT,	AU,	ΑZ,	BA,	BB,	BG,	BR,	BY,	ΒZ,	CA	, CH,	CN,	
			CR,	CU,	CZ,	DE,	DK,	DM,	DZ,	EE,	ES,	FI,	GB,	GD,	GE,	GH	, GM,	HR,	
			HU,	ID,	IL,	IN,	IS,	JP,	KΕ,	KG,	ΚP,	KR,	KΖ,	LC,	LK,	LR	, LS,	LT,	
			LU,	LV,	MA,	MD,	MG,	MK,	MN,	MW,	MX,	ΜZ,	NO,	NZ,	PL,	PT	, RO,	RU,	
			SD,	SE,	SG,	SI,	SK,	SL,	ТJ,	TM,	TR,	TT,	TZ,	UA,	UG,	US	, UZ,	VN,	
			YU,	ZA,	ZW,	AM,	ΑZ,	BY,	KG,	KZ,	MD,	RU,	ТJ,	TM					
		RW:	GH,	GM,	KΕ,	LS,	MW,	MZ ,	SD,	SL,	SZ,	TZ,	UG,	ZW,	AT,	BE	, CH,	CY,	
			DE,	DK,	ES,	FΙ,	FR,	GB,	GR,	ΙE,	IT,	LU,	MC,	NL,	PT,	SE	, BF,	ВJ,	
			CF,	CG,	CI,	CM,	GΑ,	GN,	GW,	ML,	MR,	ΝE,	SN,	TD,	TG				
	US	6274	096			В1		2001	0814	1	US 1	999-	4308	88			19991	101	
	US 6232352				В1	1 20010515 US 2000-547831							:	20000	412				
	EΡ	1226	103			A1		2002	0731]	EP 2	000-	9725	59		:	20001	031	
		R:	AT,	BE,	CH,	DE,	DK,	ES,	FR,	GB,	GR,	ΙT,	LI,	LU,	NL,	SE	, MC,	PT,	
			ΙE,	SI,	LT,	LV,	FI,	RO,	MK,	CY,	AL								
	NZ 519314					A 20031031 NZ 2000-519314						20001031							
	NO 2002002063				, A	A 20020626				NO 2002-2063					20020430				
	US	6781	014			В1		2004	0824	1	US 2	002-	1290	38		:	20020	430	
PRIO	RIT	Y APP	LN.	INFO	.:							999-				A	19991	101	
												000-		- '			20000		
																	19991		
	_,				_							000-0					20001	031	
7/10	יוי'ה י	a rati	\sim \sim \sim \sim	r r 7 m	~ ~+	212	~ 3.7 3 ~	F 7 12 CY			1 ~~			1					

AB The retrofitting of an existing methanol or methanol /ammonia plant to make acetic acid is disclosed. The existing plant has a reformer to which natural gas or another hydrocarbon and steam (water) are fed and synthesis gas produced. All or part of the synthesis gas is processed to sep. out carbon dioxide, carbon monoxide

and hydrogen, and the separated carbon dioxide is fed either to the existing methanol synthesis loop for methanol synthesis, or back into the feed to the reformer to enhance the amount of carbon monoxide formation in the synthesis gas. Any remaining synthesis gas not fed to the carbon dioxide separator can be converted to methanol in the existing methanol synthesis loop along with carbon dioxide from the separator and/or imported carbon dioxide, and hydrogen from the separator. The separated carbon monoxide is then reacted with the methanol to produce acetic acid or an acetic acid precursor by a conventional process. Also disclosed is the reaction of separated hydrogen with nitrogen, in a conventional manner, to produce ammonia and the reaction of a portion of the acetic acid in a conventional manner with oxygen and ethylene to form vinyl acetate. The nitrogen for the added ammonia capacity in a retrofit of an original methanol plant comprising an ammonia synthesis loop and the oxygen for the vinyl acetate process are obtained from a new air separation unit; process flow diagrams are presented.

REFERENCE COUNT:

THERE ARE 3 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L3 ANSWER 6 OF 6 CAPLUS COPYRIGHT 2004 ACS on STN

ACCESSION NUMBER:

1996:248990 CAPLUS

DOCUMENT NUMBER:

124:346554

TITLE:

Manufacture of ethylidene diacetate by

hydrocarbonylation of dimethyl ether-containing feeds

INVENTOR(S):

Waller, Francis J.; Studer, David W.

PATENT ASSIGNEE(S):

Air Products and Chemicals, Inc., USA

SOURCE:

U.S., 19 pp., Cont.-in-part of U.S. Ser. No. 963,771,

abandoned.
CODEN: USXXAM

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 5502243	A	19960326	US 1994-308018	19940916
CA 2093752	AA	19931016	CA 1993-2093752	19930408
CA 2093752	C	19990615		
JP 06025031	A2	19940201	JP 1993-88617	19930415
CA 2158006	AA	19960317	CA 1995-2158006	19950911
CA 2158006	С	19990831		
EP 701990	A1	19960320	EP 1995-306384	19950912
EP 701990	В1	19990310		
R: DE, DK, FR,	GB, IT	C, NL		•
PRIORITY APPLN. INFO.:			US 1992-870126	A2 19920415
			US 1992-963771	B2 19921020
			US 1994-308018	A 19940916

AB Ethylidene diacetate and other oxygenated compds. such as acetic acid, acetic anhydride, acetaldehyde, and Me acetate are produced in a catalyzed liquid phase reaction system by reacting a feed containing di-Me ether, methanol, and synthesis gas which contains hydrogen, carbon monoxide, and carbon dioxide in a liquid phase reactor containing at least acetic acid and a catalyst system consisting essentially of a Group VIII metal, Me iodide, lithium iodide, and lithium acetate, wherein the molar ratio of carbon dioxide to methanol in the feed is 5-12. The inclusion of carbon dioxide in the synthesis gas in selected amts. increases the overall yield of oxygenated acetyl compds. from the reactant

di-Me ether. When **methanol** is included in the reactor feed, the addition of **carbon dioxide** significantly improves the molar selectivity to ethylidene diacetate.