MathonGo

Q1. Let lpha and eta be the roots of the equation ${f x}^2+{f ax}+1=0,\ {f a}
eq 0$. Then the equation

whose roots are $-\left(\alpha+\frac{1}{\beta}\right)$ and $-\left(\frac{1}{\alpha}+\beta\right)$ is

///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///.

A. $x^2 = 0$

///. mathongo ///.

 $\textbf{C.} \ \textbf{x}^2 + 2\textbf{a} \textbf{x} + 4 = 0 \text{.} \ \text{mathongo} \ \text{...} \ \text{mathongo} \ \text{...} \ \text{mathongo} \ \text{...} \ \text{mathongo} \ \text{...} \ \text{mathongo} \ \text{...}$

 $\mathbf{D.} \ \mathbf{x}^2 - \mathbf{a} \mathbf{x} + 1 = 0$ ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///.

Ans: $x^2 - 2ax + 4 = 0$

Solution: $\alpha + \beta = -a$ and $\alpha\beta = 1$ /// mathongo /// mathongo /// mathongo ///

Let S and P be the sum and product of the roots of the required equation. Then,

 $S = -\alpha - \frac{1}{\beta} - \frac{1}{\alpha} - \beta = -\left(\alpha + \beta\right) - \left(\frac{1}{\alpha} + \frac{1}{\beta}\right)$ $(\alpha + \beta) - (\alpha +$

 $=-\left(lpha+eta
ight)-\left(rac{lpha+eta}{lphaeta}
ight)=-\left(-a
ight)-\left(rac{-a}{1}
ight)=2a$ hongo /// mathongo /// mathongo ///

 $\begin{array}{l} P = -\left(\alpha + \frac{1}{\beta}\right)\left(-\left(\frac{1}{\alpha} + \beta\right)\right)_{\text{ongo}} & \text{mathongo} & \text{mathongo}$

So, the required equation is though /// mathongo /// mathongo /// mathongo ///

 $x^2 - Sx + P = 0$ ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///.

i.e. $x^2 - 2ax + 4 = 0$

Q2. If the roots of the quadratic equation $ax^2 + bx + c = 0$ are $\frac{k+1}{k}$ and $\frac{k+2}{k+1}$, then the value

 \mathcal{L}_{k} mathongo \mathcal{L}_{k} mathongo \mathcal{L}_{k} mathongo \mathcal{L}_{k} mathongo \mathcal{L}_{k} mathongo \mathcal{L}_{k}

of $\left(a+b+c\right)^2$ is equal to mathongo /// mathongo // matho

B. Σa^2

 $C.b^2$ 1.4ac 1.0c 1.0c

D. b^2-2ac /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo ///

/// mathongo ///

MathonGo

Q18. The range of a for which the equation $x^2 + ax - 4 = 0$ has its smaller root in the

interval (-1, 2) is mathongo /// mathongo /// mathongo /// mathongo ///

 $A.(-\infty, +\infty)$ mathongo /// mathongo /// mathongo /// mathongo /// mathongo ///

B. (0, 3) mathongo /// mathongo // mathon

 $\mathbf{D}_{\bullet}'(-1) = \mathbf{D}_{\bullet}'(-1) = \mathbf{D}_{\bullet}'(-1$

Ans: $(-\infty, -3)$ /// mathongo /// mathongo /// mathongo /// mathongo ///

Solution: Clearly, f(-1) > 0, f(2) < 0

///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///.

since, f(0) = -4 < 0 mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///.

///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///.

or a < -3 and 4 + 2a - 4 < 0

mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo ///

 $\stackrel{\Rightarrow}{\Rightarrow}$ a $\stackrel{\leftarrow}{=}$ 0 mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///.

 $\underset{a}{\#}$ $\underset{a}{\text{mathongo}}$ $\underset{a}{\#}$ mathongo $\underset{a}{\#}$ mathongo $\underset{a}{\#}$ mathongo $\underset{a}{\#}$ mathongo $\underset{a}{\#}$

///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///.

//. mathongo //. mathongo //. mathongo //. mathongo //. mathongo //. mathongo //.

mathenas

///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///.

/// mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo ///

///. mathongo ///.

MathonGo

Q19. If f(x) is a polynomial of degree four with the leading coefficient one satisfying

$$f(1)=1, f(2)=2$$
 and $f(3)=3$, then $\left[rac{f(-1)+f(5)}{f(0)+f(4)}
ight]$ (where $[\cdot]$ represents the greatest integer

$$^{A.4}$$
 mathongo $^{\prime\prime\prime}$ mathongo $^{\prime\prime\prime}$ mathongo $^{\prime\prime\prime}$ mathongo $^{\prime\prime\prime}$ mathongo $^{\prime\prime\prime}$ mathongo $^{\prime\prime\prime}$

MathonGo

Q23. If lpha,eta and γ are the roots of the equation $x^3-13x^2+15x+189=0$ and one root

exceeds the other by 2, then the value of $|\alpha|+|\beta|+|\gamma|$ is equal to mathongo $|\alpha|$ mathongo

mathongo 7/

 $A_{\bullet}^{\prime\prime}$ 23 nathongo $/\!/\!/$ mathongo $/\!/\!/$ mathongo $/\!/\!/$ mathongo $/\!/\!/$ mathongo $/\!/\!/$ mathongo $/\!/\!/$

B. 17
/// mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo ///

n/1gnathongo /// mathongo /// mathongo /// mathongo /// mathongo ///

Ans: 19 mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///.

Solution: Let, the roots be $\alpha, \beta, \alpha + 2$.

 $S_1=lpha+eta+lpha+2=2lpha+eta+2=13\Rightarrow 2lpha+eta=11\Rightarrow eta=11-2lpha$ mothongo ///

 $S_2=lphaeta+eta(lpha+2)+(lpha+2)lpha=15$ mathongo //// mathongo //// mathongo ////

 $\Rightarrow eta(lpha+lpha+2){+}lpha(lpha+2){=}15$

 \Rightarrow (11-2lpha)(2lpha+2)+lpha(lpha+2)=15 mathongo /// mathongo /// mathongo ///

 \Rightarrow $22\alpha+22-4\alpha^2-4\alpha+\alpha^2+2\alpha=15$ mathongo /// mathongo /// mathongo ///

 $\Rightarrow 3\alpha^2 - 20\alpha - 7 = 0 \Rightarrow (\alpha - 7)(3\alpha + 1) = 0$

 $\frac{44}{3}$ $\alpha = 7$ or $-\frac{1}{3}$. $\frac{14}{3}$ mathongo $\frac{14}{3}$ mathongo $\frac{14}{3}$ mathongo $\frac{14}{3}$ mathongo $\frac{14}{3}$ mathongo $\frac{14}{3}$

 $\alpha = 7, \beta = 11 - 2\alpha = 11 - 14 = -3, \gamma = \alpha + 2 = 9$ mathong mathons $\alpha = -\frac{1}{3}, \beta = 11 - 2\alpha = 11 + \frac{2}{3} = \frac{35}{3}, \gamma = \alpha + 2 = \frac{5}{3}.$

Since, $\alpha\beta\gamma=-189$, hence we will take the first case. "Mathongo" mathongo" mathongo" "Mathongo" "M

 $|lpha|+|eta|+|\gamma|=|7|+|-3|+|9|=19$ /// mathongo /// mathongo /// mathongo /// mathongo ///

_ _ _ _ _ _ _ _ _

Q24. If equations $x^2+ax+b=0$ $\left(a,b\in R
ight)$ & $x^3+3x^2+5x+3=0$ have two common

roots, then value of $\frac{b}{a}$ is equal to mathongo /// mathongo /// mathongo ///

Ans: 1.50 hongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo ///

Solution: $x^3 + 3x^2 + 5x + 3 = 0$ has one root x = -1 mathongo /// mathongo /// mathongo /// mathongo ///

mathongo /// mathongo /// mathongo /// mathongo /// mathongo ///

Sample Task Mathongo Mathongo

Questions with Answer Keys

MathonGo

Q27. If lpha and eta are the real roots of $(\log_x 10)^3 - (\log_x 10)^2 - 6(\log_x 10) = 0$, then the value

Let
$$\log_x 10 = t$$
 mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///.

$$\therefore t^3 - t^2 - 6t = 0$$
 mathongo /// mathongo /// mathongo /// mathongo /// mathongo ///

$$\Rightarrow t(t^2-t-6)=0$$
 mathongo /// mathongo /// mathongo /// mathongo /// mathongo ///

$$\Rightarrow$$
 $t=0,-2,3$ mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///.

$$\Rightarrow \log_x 10 = 0, -2, 3$$
 mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///.

$$\Rightarrow$$
 $10 = x^0, x^{-2}, x^3$ mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///.

$$\Rightarrow x = 10^{-\frac{1}{2}}, 10^{\frac{1}{3}}$$
 mathongo /// mathongo /// mathongo /// mathongo /// mathongo ///

Let
$$\alpha=10^{-\frac{1}{2}}$$
 and $\beta=10^{\frac{1}{3}}$ mathongo /// mathongo /// mathongo /// mathongo /// mathongo ///

Now,
$$\left|\frac{1}{\log_{10}\alpha\beta}\right| = \left|\frac{1}{\log_{10}10^{-\frac{1}{6}}}\right|$$
 athongo /// mathongo /// mathongo /// mathongo ///

$$||\frac{1}{\log_{10} \alpha\beta}|| = \frac{\log - 6}{\log_{10} 10} ||\frac{1}{\log_{10} 10}|| = 6$$
 mathongo ///. mathongo ///. mathongo ///. mathongo ///.

Q28. The sum of the roots of the equation $2^{(33x-2)} + 2^{(11x+2)} = 2^{(22x+1)} + 1$ is

$$\frac{A_{\bullet}}{11}$$
 mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo ///

