Amendments To The Claims

This Listing Of Claims will replace all prior versions, and listings, of claims in the application.

Listing of Claims:

Claim 1 (Previously Presented): A process for the preparation of an salt of a carboxylic acid with an aminoalcohol of formula:

$$R^1$$
 R^2
 R^2

wherein R^1 is selected from the group consisting of 2-thienyl, 2-furanyl, phenyl, 2-thienyl substituted with at least one halogen and/or at least one C_{1-4} -alkyl or C_{1-4} -alkoxy, 2-furanyl substituted with at least one halogen and/or at least one C_{1-4} -alkyl or C_{1-4} -alkoxy, and phenyl substituted with at least one halogen and/or at least one C_{1-4} -alkyl or C_{1-4} -alkoxy, and wherein R^2 is selected from the group consisting of C_{1-4} -alkyl, phenyl, C_{1-4} -alkyl substituted with at least one halogen and/or at least one C_{1-4} -alkyl or C_{1-4} -alkoxy, and phenyl substituted with at least one halogen and/or at least one C_{1-4} -alkyl or C_{1-4} -alkoxy,

comprising asymmetrically hydrogenating a salt of a carboxylic acid with an aminoketone of formula:

$$O$$
 R^1
 R^2
 H
 H

wherein R¹ and R² are as defined above.

in the presence of a catalytic amount of a catalyst comprising a transition metal complex of a diphosphine ligand.

Claim 2 (Currently Amended): A process comprising preparing a salt of a carboxylic acid with an aminoalcohol of formula:

$$R^1$$
 R^2
 R^2

wherein R^1 is selected from the group consisting of 2-thienyl, 2-furanyl, phenyl, 2-thienyl substituted with at least one halogen and/or at least one C_{1-4} -alkyl or C_{1-4} -alkoxy, 2-furanyl substituted with at least one halogen and/or at least one C_{1-4} -alkyl or C_{1-4} -alkoxy, and phenyl substituted with at least one halogen and/or at least one C_{1-4} -alkyl or C_{1-4} -alkoxy, and wherein R^2 is selected from the group consisting of C_{1-4} -alkyl, phenyl, C_{1-4} -alkyl substituted with at least one halogen and/or at least one C_{1-4} -alkyl or C_{1-4} -alkoxy, and phenyl substituted with at least one halogen and/or at least one C_{1-4} -alkyl or C_{1-4} -alkyl or C_{1-4} -alkoxy, and phenyl substituted with at least one halogen and/or at least one C_{1-4} -alkyl or C_{1-4} -alkyl or C_{1-4} -alkoxy,

by asymmetrically hydrogenating a salt of a carboxylic acid, wherein the carboxylic acid is selected from the group consisting of substituted alkanoic C_{1-18} -alkanoic acids, substituted monocyclic aromatic acids and substituted bicyclic acids, with an aminoketone of formula:

$$R^{1}$$
 R^{2}
 R^{2}
 R^{2}

wherein R¹ and R² are as defined above.

in the presence of a catalytic amount of a catalyst comprising a transition metal complex of a diphosphine ligand[[.]], the carboxylic acid is selected from the group consisting of optionally substituted C_{1-18} -alkanoic acids and optionally substituted mono- and bicyclic aromatic acids.

Claim 3 (Previously Presented): The process of claim 2, wherein R¹ is 2-thienyl, optionally substituted with one or more halogen atoms, and R² is methyl or ethyl.

Claim 4 (Previously Presented): The process of claim 3, wherein the compound of formula II is selected from the group consisting of (S)-(-)-3-N-methylamino-1-(2-thienyl)-1-propanol, (S)-(-)-3-N-methyl-amino-1-(3-chloro-2-thienyl)-1-propanol, (R)-(+)-3-N-methylamino-1-(2-thienyl)-1-propanol and (R)-(+)-3-N-methylamino-1-(3-chloro-2-thienyl)-1-propanol.

Claim 5 (Previously Presented): The process of claim 4, wherein the transition metal is selected from the group consisting of rhodium, ruthenium or iridium.

Claim 6 (Previously Presented): The process of claim 7, wherein the diphosphine ligand is selected from the group consisting of:

$$P$$
—t-Bu P — P Ph₂ P — P Ph₂ P Ph₃ P Ph₄ P Ph₅ P Ph₆ P Ph₇ P Ph₈ P Ph₉ P

(S,S,S,S)-"Me-KetalPhos", (S) and (R)-"MeO-BiPhep", and " (R_{P,R_P,S_C,S_C}) -DuanPhos".

Claim 7 (Previously Presented): The process of claim 6, wherein the compound of formulae Ia and/or Ib is obtained from it's corresponding salt with a carboxylic acid by hydrolysis in the presence of an alkali metal hydroxide or an alkaline earth hydroxide.

Claim 8 (Previously Presented): The process of claim 1, wherein the transitional metal complex of a diphosphine ligand is a transitional metal complex of an aryldiphosphine ligand or a biaryldiphosphine ligand.

Claim 9 (Previously Presented): The process of claim 1, wherein R¹ is 2-thienyl, optionally substituted with one or more halogen atoms, and R² is methyl or ethyl.

Claim 10 (Previously Presented): The process of claim 1, wherein the transition metal is rhodium.

Claim 11 (Previously Presented): The process of claim 1, wherein the diphosphine ligand is selected from the group consisting of:

(S,S,S,S)-"Me-KetalPhos", (S) and (R)-"MeO-BiPhep", and " (R_P,R_P,S_C,S_C) -DuanPhos".

Claim 12 (Previously Presented): A process for the preparation of an salt of a carboxylic acid with an aminoalcohol of formula:

$$R^1$$
 R^2
 R^2

wherein R^1 is selected from the group consisting of 2-thienyl, 2-furanyl, phenyl, 2-thienyl substituted with at least one halogen and/or at least one C_{1-4} -alkyl or C_{1-4} -alkoxy, 2-furanyl substituted with at least one halogen and/or at least one

 C_{1-4} -alkyl or C_{1-4} -alkoxy, and phenyl substituted with at least one halogen and/or at least one C_{1-4} -alkyl or C_{1-4} -alkoxy, and wherein R^2 is selected from the group consisting of C_{1-4} -alkyl, phenyl, C_{1-4} -alkyl substituted with at least one halogen and/or at least one C_{1-4} -alkyl or C_{1-4} -alkoxy, and phenyl substituted with at least one halogen and/or at least one C_{1-4} -alkyl or C_{1-4} -alkyl or C_{1-4} -alkoxy, comprising:

(i) asymmetrically hydrogenating a salt of a carboxylic acid with an aminoketone of formula:

$$O \xrightarrow{\mathbb{R}^1} \mathbb{R}^2$$

$$\downarrow \\ \mathbb{H}$$

$$\mathbb{H},$$

wherein R1 and R2 are as defined above,

in the presence of a catalytic amount of a catalyst comprising a transition metal complex of a diphosphine ligand; and

(ii) obtaining a compound of formulae la and/or lb from its corresponding salt with a carboxylic acid by hydrolysis of said corresponding salt in the presence of an alkali metal hydroxide or an alkaline earth hydroxide.

Claim 13 (Previously Presented): The process of claim 2, wherein the substituted C_{1-18} -alkanoic acid is substituted with at least one C_{1-6} -alkyl, C_{1-6} -alkoxy, aryl, amino, protected carbonyl, halogen, hydroxyl or further carboxylic.

Claim 14 (Previously Presented): The process of claim 2, wherein the substituted monocyclic aromatic acid is substituted with at least one member selected from the group consisting of C₁₋₆-alkyl, C₁₋₆-alkoxy, halogen and hydroxyl.

Claim 15 (Previously Presented): The process of Claim 2, wherein the substituted bicyclic aromatic acid is substituted with at least one member selected from the group

consisting of C_{1-6} -alkyl, C_{1-6} -alkoxy, halogen and hydroxyl.

Claim 16 (Previously Presented): The process of claim 1, wherein the carboxylic acid is a monocarboxylic acid.