Лабораторна робота №5

Запам'ятовуючі пристрої. Лічильники та регістри.

Група: IПС – 11, ФКНК Сенечко Д. В.

Мета роботи:

- вивчення структури та дослідження роботи підсумовуючих та віднімаючих лічильників;
- вивчення способів зміни коефіцієнта перерахунку лічильників;
- дослідження роботи лічильників з коефіцієнтом перерахунку, який не дорівнює 2^n .

№1. Дослідження підсумовуючого лічильника.

Збираємо та вмикаємо схему. Подаючи на вхід C тактові імпульси за допомогою перемикача спостерігаємо за станами виходів лічильника за допомогою логічних пробників Q1, Q2 та Q3:

Отримаємо такі часові діаграми роботи підсумовуючого лічильника:

Визначаємо коефіцієнт перерахунку лічильника :

$$K_{\text{c4}} = N_c / N_{Q\text{ct}} = 8.$$

Звернемо увагу на числа, які формуються інверсними виходами тригерів лічильника. Можна помітити, що вони утворюють віднімаючий лічильник.

№2. Дослідження віднімаючого лічильника.

Збираємо та вмикаємо схему:

Отримаємо такі часові діаграми роботи віднімаючого лічильника:

Модифікуємо схему, з'єднавши входи логічного аналізатора з інверсними виходами тригерів:

Далі вмикаємо цю схему та отримуємо часові діаграми:

При порівнянні їх з діаграмами, отриманими при виконанні пункту 1, бачимо, що інверсні виходи тригерів, які ε складовими віднімаючого лічильника, утворюють підсумовуючий лічильник.

№3. Дослідження лічильника зі зміненим коефіцієнтом перерахунку.

Збираємо та вмикаємо схему. Подаючи на вхід C тактові імпульси за допомогою перемикача спостерігаємо за станами виходів лічильника за допомогою логічних пробників:

Зобразимо часові діаграми:

Проаналізувавши кількість станів даного лічильника визначаємо, що коефіцієнт перерахунку даного лічильника ${\rm K}_{\rm cq}=6.$

Модифікуємо схему комбінаційної частини лічильника у відповідності до схеми:

Отримаємо таку схему:

Зобразимо часові діаграми:

Проаналізувавши дану часову діаграму можемо підтвердити, що коефіцієнт перерахунку даного лічильника $K_{cq} = 5$.

№4. Дослідження регістра Джонсона.

Збираємо та вмикаємо схему:

Побудуємо часові діаграми роботи регістра Джонсона:

Визначимо коефіцієнт перерахунку регістра Джонсона: $K_{cq} = 6$.

№5. Дослідження регістра Джонсона, створеного на базі ЈК-тригерів.

1) Збираємо та вмикаємо схему, попередньо встановивши перемикач S у верхнє положення:

Будуємо часові діаграми роботи схеми:

Якщо порівнювати їх з діаграмами, отриманими при виконанні пункту 4, бачимо, що обидва типи регістрів мають коефіцієнт перерахунку $K_{cu} = 6$.

Відмінність часових діаграм цих регістрів полягає в тому, що початковий стан регістра Джонсона, створененого на базі D- тригерів, дорівнює 000, а початковий стан регістра Джонсона, створененого на базі JK-тригерів, дорівнює 111.

2) Встановлюємо схему в стан 000. За допомогою перемикача S подаємо короткочасний імпульс на вхід S другого тригера:

При цьому схема встановлюється в стан 010:

Подаючи на вхід C тактові імпульси за допомогою перемикача на спостерігаючи за станами виходів схеми за допомогою логічних пробників, складемо часові діаграми роботи пристрою:

Проаналізувавши дану часову діаграму бачимо, що коефіцієнт перерахунку даного лічильника $K_{cq} = 2$.

Висновки:

1. Підсумовуючий лічильник:

- Експеримент показав, що підсумовуючий лічильник має збільшення вихідного значення при кожному такті.
- Часові діаграми роботи дозволили визначити коефіцієнт перерахунку та підтвердити, що числа формуються інверсними виходами тригерів.

2. Віднімаючий лічильник:

- Порівняння часових діаграм віднімаючого лічильника з часовими діаграмами підсумовуючого лічильника показало протилежний принцип роботи.
- Модифікація схеми для підключення логічного аналізатора допомогла краще зрозуміти роботу лічильника та підтвердити його коректність.

3. Лічильник зі зміненим коефіцієнтом перерахунку:

- Модифікація комбінаційної частини лічильника зі зміненим коефіцієнтом перерахунку дозволила нам встановити бажаний коефіцієнт.
- Порівнюючи роботу лічильника з різними коефіцієнтами перерахунку, ми встановили відповідні відмінності в часових діаграмах.

4. Регістр Джонсона:

- Вивчення регістра Джонсона показало, що він має перехресні зв'язки між своїми тригерами, що дозволяє створити послідовний ряд чисел.
- Часові діаграми роботи регістра Джонсона допомогли визначити його коефіцієнт перерахунку та підтвердити правильність його роботи.

5. Регістр Джонсона на базі ЈК-тригерів:

- Встановлення схеми регістра Джонсона на базі ЈК-тригерів показало, що він може працювати у різних режимах.
- Зміна стану регістра за допомогою короткочасного імпульсу та подальші такти дозволили нам визначити його функціонування в різних умовах.

В цілому, лабораторна робота дозволила детально розглянути різні типи лічильників та регістрів, зрозуміти їх принципи роботи та можливості застосування в практичних схемах.