6.16 常態定理 Let *T* ∈

Def 自伴線運 $T = T^*$

Def 自伴方陣

Obs 自伴小觀察 Let β is an orthonormal basis of a finite-dimensional inner-product space V, then T is self-adjoint iff $[T]^{\beta}_{\beta}$ is self-adjoint.

Obs 自伴線運基本性質 If T is a self-adjoint linear operator on an inner-product space V over $F \in \{\mathbb{R}, \mathbb{C}\}$ with $\dim(V) < \infty$, then 1. each eigenvalue of T is real (even if $F = \mathbb{C}$, and) 2. the characteristic polynomial $f_T(t)$ of T splits (even if $F = \mathbb{R}$)

6.24 投影:正交 \Leftrightarrow **自伴** If T is a projection of inner-product space W, then T is an orthogonal projection of W iff T is self-adjoint

Cor 自伴線運推論 Let $T \in \mathbb{L}(V)$ for inner-product space W over $F = \mathbb{C}$ wth $\dim(V) < \infty$. If T is self-adjoint iff every eigenvalue of T is real.

Cor 常態線運推論

6.17 自伴定理

Def 么正方陣、正交方陣 Let $Q \in F^{n \times n}$ with $F \in \{\mathbb{C}, \mathbb{R}\}$, • Q is unitary if $Q^*Q = I_n$ (i.e. $Q^* = Q^{-1}$) • Q is orthogonal if $Q^tQ = I_n$ (i.e. $Q^t = Q^{-1}$)

Def 公正、正交等價 Let $A, B \in F^{n \times n}$ with $F \in \{\mathbb{C}, \mathbb{R}\}$, • A is unitarily equivalent to B if there is a unitary matrix Q with $A = Q^*BQ$ • A is orthogonally equivalent to B if there is an orthogonal matrix Q with $A = Q^tBQ$

6.19

6.20 If $A \in \mathbb{R}^{n \times n}$, then A is self-adjoint (i.e. symmetric) iff A is orthogonally (i.e. unitarily) equivalent to a diagonal matrix in $\mathbb{R}^{n \times n}$

6.21 方陣舒爾

6.18

么正定理

正交自伴定理

6.13 最短解 If E: Ax = b with $A \in F^{m \times n}$ and $b \in F^m$ is a system of linear equations with $S(E) \neq \emptyset$, then there is exactly one vector x in

$$S(E) \cap L_{A^*}(F^m)$$

w.r.t. the standard inner product. Moreover, the vector x is the unique vector in S(E) with minimum ||x||

6.12 最佳近似解

Obs 標準內積觀察

Obs 矩陣位階觀察

Obs 伴隨矩陣觀察

6.27 SVD For any matrix $A = F^{m \times n}$ with rank r,

$$A = QSR*$$

holds for:

Def \mathbb{E} **E** A self-adjoint $T \in \mathbb{L}(V)$ for inner-product space V over F is positive definite if

6.26 奇異值定理 Let $T \in \mathbb{L}(V, W)$ for inner-product spaces V and W over $F \in \{\mathbb{C}, \mathbb{R}\}$ with $\operatorname{rank}(T) = r$, $\dim(V) = n$, and $\dim(W) = m$.

6.27 SVD For any matrix $A = F^{m \times n}$

Def Pseudoinverse $T^{\dagger} \in \mathbb{L}(W, V)$ defined by $T^{\dagger} = (T')^{-1}T''$

偽反線轉定理