Cálculo Numérico

Solução Aproximada de Equações Não Lineares

Parte 01: Localização dos Zeros

UNESP - Universidade Estadual Paulista São José do Rio Preto, SP, Brasil

Introdução

Nosso objetivo aqui é a resolução de uma equação do tipo

$$f(x) = 0$$
,

onde, por exemplo,

$$f(x) = x^2 + 2x - 3,$$

$$f(x) = \sqrt{x} - e^{-x},$$

$$f(x) = x \ln(x) - 1.$$

Um número real (ou complexo) ξ é

um zero da função
$$f(x)$$
 ou

uma raiz da equação
$$f(x) = 0$$
,

se
$$f(\xi) = 0$$
.

Estaremos interessados em determinar somente os zeros reais de f(x).

Interpretação Geométrica.

Graficamente, os zeros reais são representados pelas abcissas dos pontos onde a curva da função intercepta o eixo x.

Considere a função f(x) que, no intervalo (-3.5, 4), é dada pelo gráfico:

Os zeros de f(x) no intervalo (-3.5, 4) são então

$$\xi_1 = -3.0, \quad \xi_2 = -2.0, \quad \xi_3 = -0.5 \quad \text{e} \quad \xi_4 = 2.0,$$

respectivamente.

Como obter zeros de uma função qualquer?

Com os métodos que veremos, conseguimos encontrar "boas" aproximações para zeros de uma dada função.

A ideia central destes métodos é:

partir de uma aproximação inicial para o zero e, em seguida refinar essa aproximação através de um processo iterativo.

Por isso, os métodos constam de duas fases:

- Fase I: Localização ou isolamento dos zeros, que consiste em obter um intervalo que contém o zero.
- Fase II: Refinamento, que consiste em, escolhidas aproximações iniciais no intervalo encontrado no Fase I, melhorá-las sucessivamente até se obter uma aproximação para o zero dentro de uma precisão ϵ prefixada.

Fase I: Isolamento dos Zeros

Nesta fase é feita uma análise teórica e gráfica da função f(x).

Na análise gráfica o processo mais trivial é, como vimos anteriormente, esboçar a função f(x) e localizar as abcissas dos pontos onde a curva intercepta o eixo \mathbf{x} .

Na análise teórica usamos frequentemente o seguinte teorema.

(Teorema A)

Seja f(x) uma função contínua num intervalo [a, b].

Se f(a) f(b) < 0 então existe pelo menos um ponto $x = \xi$ entre a e b que é zero de f(x).

Vamos entender o Teorema A via análise gráfica de uma função escolhida.

Teorema A e Análise Gráfica: exatamente um zero.

Temos $f(a) \times f(b) < 0$, mas f(x) tem apenas um zero em (a, b)

Aqui temos uma situação em que, como informa o Teorema A, existe pelo menos um zero no intervalo (a, b).

Mas, o intervalo (a, b) é suficientemente pequeno tal que existe exatamente um zero no intervalo.

Teorema A e Análise Gráfica: mais de um zero.

Temos $f(a) \times f(b) < 0$, mas f(x) tem mais de um zero em (a,b)

Aqui temos uma situação em que, como informa o Teorema A, existe pelo menos um zero no intervalo (a, b).

Mas, no intervalo (a, b) temos mais de um zero.

Teorema A e Análise Gráfica: resultado inconclusivo.

Temos $f(a) \times f(b) > 0$, mas f(x) ainda tem zeros em (a, b)

Embora $f(a) \times f(b) > 0$, ainda temos zeros no intervalo (a, b).

Isto é, podemos ter situações em que as extremidades do intervalo não satisfaz a condição do Teorema A, mas o intervalo pode ter zeros.

Condições suficientes para um único zero.

(Theorem A1)

Sejam f(x) e f'(x) contínuas em [a, b].

Se f(a) f(b) < 0 e se f'(x) não muda de sinal em (a,b), então existe um único zero ζ de f(x) em (a,b).

Temos $f(a) \times f(b) < 0$ e f'(x) > 0 para todo $x \in (a, b)$.

Outros tipos de verificação gráfica

Podemos também,

- a partir da equação f(x) = 0, obter uma equação equivalente g(x) = h(x),
- esboçar os gráficos das funções g(x) e h(x) no mesmo eixo cartesiano, e
- localizar os pontos onde as duas curvas se interceptam, pois neste caso

$$f(\xi) = 0 \Leftrightarrow g(\xi) = h(\xi).$$

Ex: Seja $f(x) = \cos(x) + \ln(x^2)$,

$$f(x) = 0 \Leftrightarrow \cos(x) + \ln(x^2) = 0 \Leftrightarrow \cos(x) = -\ln(x^2).$$

Logo, podemos escolher $g(x) = \cos(x)$ e $h(x) = -\ln(x^2)$.

Exemplo.

Seja $f(x) = \sin(x) - e^{-x/4}$. Neste caso,

- podemos escolher $g(x) = \sin(x)$ e $h(x) = e^{-x/4}$;
- esboçar os gráficos de g(x) e h(x);
- localizar os pontos onde as duas curvas se interceptam.

Gráficos de $g(x) = \sin(x)$ e $h(x) = e^{-x/4}$.

Isolamento de zeros por tabelamento

Usando as informações do Teorema A, uma maneira sistemática de isolar os zeros de f(x) é tabelar f(x) para vários valores de x e analizar as mudanças de sinal de f(x).

E analizar o sinal da derivada f'(x) nos intervalos em que f(x) mudou de sinal (usando o Teorema A1).

Exemplo a).

Considere a função $f(x) = 6 \arctan(x)(8x^4 - 8x^2 + 1) + 0.5$. Temos,

X	-0.4	-0.2	0.0	0.2	0.4	0.6	0.8	1.0
$f(x) \approx$	0.67	-0.32	0.5	1.32	0.32	-2.23	-2.91	5.21
sinal	+	_	+	+	+	_	_	+

Então, pela tabela e pelo Teorema A, temos pelo menos um zero no intervalo (-0.2,0), pelo menos um zero no intervalo (0.4,0.6), e pelo menos um zero no intervalo (0.8,1.0).

Gráficos de $f(x) = 6 \arctan(x)(8x^4 - 8x^2 + 1) + 0.5$.

Exemplo **b)**.

Considere a função $f(x) = 5e^{-x} - \sqrt{x}$. Temos,

X	0	1	2	3	
$f(x) \approx$	5.0	0.839	-0.737	-1.483	
sinal	+	+	_	_	

Então, pela tabela e pelo Teorema A, temos pelo menos um zero no intervalo (1,2).

Mas,

$$f'(x) = -5e^{-x} - \frac{1}{2\sqrt{x}},$$

por tanto, é negativa no intervalo (1,2).

Assim, pelo Teorema A1, concluímos que existe exatamente um zero no intervalo (1,2).

Exercícios

1) Usando a verificação gráfica (método do gráfico) ou o isolamento de zeros por tabelamento encontre intervalo que contém zeros das funções

(a)
$$f(x) = x + e^x$$

(b)
$$f(x) = x \ln(x) - 2$$

(c)
$$f(x) = cos(x) - x + 1$$

(d)
$$f(x) = ln(x) - 2x + 1$$

2) Para o intervalo que contém um zero da função $f(x) = x + e^x$ encontrado no item (a), pode-se garantir que existe um único zero desta função? Por quê?

