Flight Price Prediction

Team 6

Abdallah Hussien
David Raafat
François Adham
Karim Mohamed

Submitted To:

Eng. Omar Samir

Agenda

- 1. Business Part
 - a. Motivation
 - b. Added Value
- 2. Technical Part
 - a. Preprocessing
 - b. Visualization
 - c. Insights
 - d. MapReduce
 - e. Results

Business Part

Motivation

As stated by Harvard Business Review (HBR) travelling is one of the most common hobbies around the world as well as being essential for some careers, so we thought about making a model to book the best flight an easier decision.

Added Value

Our model is to predict flight prices knowing some data like destination, airline and class.

This model can be used in many applications like:

- Airlines can get use of it by predicting competitors' prices and make offers to get a bigger market share.
- 2. Travellers can use it to know estimated flight prices for a future trip to pick the best airline and save money.

Technical Part

Preprocessing

- 1. Explore the dataset
 - a. Check features
 - b. Check number of records
- 2. Check existing NAN values
- 3. Check how many "Categorical" feature and what are they if exist.
- 4. Check how many unique values in these categorical features.
- 5. Drop useless features like "flight" which is the flight ID.

Visualizations

Flight class correlation with price

Airline correlation with price

Distribution of flights

Days left correlation with price

Duration effect on price

Source_Destination effect on price

Number of stops effect on price

Insights

- 1. Business class price is higher than economy class.
- 2. Number of cheap flights is higher than number of expensive flights.
- 3. Less "days_left" means higher price.
- 4. More "stops" means higher price.
- 5. Source and destination do not have a significant effect on the price, but pairs of (source, destination) has a higher effect.

MapReduce

Split the dataset to m splits

- a. Map phase:
 - i. Each mapper will decompose the feature vector using QR decomposition i.e. $X_i = Q_i^{(1)}R_i^{(1)}$ where j is the block number.
 - ii. Map phase output will be a key-value pair where key will be NONE and the value will be (Q,R)
- b. Reduce phase:
 - i. Decompose each R matrix using QR decomposition i.e. $R_i^{(1)} = Q_i^{(2)}R_i^{(2)}$
 - ii. Compute $Q_{j}^{(3)}$ where $Q_{j}^{(3)} = Q_{j}^{(2)}Q_{j}^{(1)}$
 - iii. Compute V_i where $V_i = Q_i^{(3)} y_i$ where y_i is a vector of the predicted values
 - iv. Compute the weights for each feature $\beta = [R^{(2)}]^{-1} \sum V_i$

Mapper

Reducer

Results

We used the coefficient of determination equation to compute our model score which is

Coefficient of Determination (R Square)

$$R^2 = \frac{SSR}{SST}$$

Where,

- · SSR is Sum of Squared Regression also known as variation explained by the model
- · SST is Total variation in the data also known as sum of squared total
- $SSR = \sum_i (\hat{y_i} \bar{y})^2$ as sum of squared total y_i is the y value for observation i y_i bar is the mean of y value y_i bar_hat is predicted value of y for observation i · y_bar_hat is predicted value of y for

Results contd.

We tried to remove the duration feature but our model's score dropped a bit so we returned it back.

Dropping source and destination affected a lot our model's score so we returned them back.

Final results:

• Train data: **90.97**%

• Test data: **91.09**%

Thank You