Wildfire Prediction Using Deep Learning Models for Remote Sensing Data

Raghav Sharma and Rishabh Aggarwal

Problem Statement

- ▶ Develop a deep learning model to predict wildfire spread using remote sensing data
- ▶ The objective is to predict *where* the fire will spread the *next* day given fire location the previous day and other features influencing wildfire

Data

Data

- ▶ Use publicly available 'Next Day Wildfire Spread' dataset¹ that uses remote sensing images from Google Earth Engine for the US from 2012-2020
- \blacktriangleright The data is extracted as images of 64km imes 64km regions at 1 km resolution
- ► The data includes historical wildfire data and information on features that influence wildfire at same time and same location
- ▶ The historical wildfire images are processed as fire masks showing the locations of 'fire' versus 'no fire'. This includes fire masks for both days t and t+1
- ▶ 11 input features: elevation, wind direction and wind speed, minimum and maximum temperatures, humidity, precipitation, drought index, normalized difference vegetation index (NDVI), population density and energy release component (ERC)
- ► Treat previous day's fire-mask as an input feature

Preprocessing

- ► Each feature is clipped at 0.1% and 99.9% percentiles
- ▶ Normalized by subtracting mean and scaling by standard deviation
- ▶ Randomly crop 32km×32km regions

¹https://www.kaggle.com/fantineh/next-day-wildfire-spread

Examples from the dataset

Model Architecture

▶ A U-Net like convolutional neural network for image segmentation problem

Hyperparameters Tuning

	(1) Loss	(2) Dice Coefficient	(3) IoU	
	Panel A: Learning Rate			
	(drop	(dropout rate = 0.1 , batch size = 32)		
$\alpha = 0.0001$	0.0851	0.2155	0.1220	
$\alpha = 0.001$	0.0844	0.2104	0.1187	
$\alpha = 0.01$	0.0837	0.2018	0.1134	
	Panel B: Batch Size			
	(learning	(learning rate $= 0.001$, dropout rate $= 0.1$)		
Batch Size $= 16$	0.0853	0.2164	0.1225	
$Batch\;Size=32$	0.0844	0.2104	0.1187	
Batch Size = 64	0.0858	0.2177	0.1234	
	Panel C: Dropout Rate			
	(learni	(learning rate $= 0.001$, batch size $= 64$)		
Dropout Rate = 0.1	0.0858	0.2177	0.1234	
Dropout Rate = 0.2	0.1002	0.2276	0.1302	

Results

Prediction Results

	(1)	(2)	(3)
	Loss	Dice Coefficient	IoU
Validation Set	0.1443	0.2577	0.1652
Test Set	0.1849	0.2154	0.1216

Prediction Examples

Feature Analysis

- ▶ Remove the features that contain similar information i.e. highly correlated with others
- ▶ E.g. Minimum temperature highly correlated with max temp

	(1) Loss	(2) Dice Coefficient	(3) IoU
All features	0.1443	0.2577	0.1652
7 features	0.1582	0.2397	0.1372
9 features	0.1593	0.2526	0.1460

- ▶ Models with 9 features perform similarly relative to the model with all features in terms of dice coefficient
- ▶ However, IoU is highest when all features are included

Conclusion

- ▶ Develop a U-Net like convolutional neural network to predict where the wildfire will spread the next day using remote sensing images from GEE
- ▶ The model has a dice coefficient of 21.5% and IoU of 12.2%
- ▶ Including 12 features does not lead to overfitting as evident from the feature analysis

Thank You!