LEAD Dataset: How Can Labels for Sound Event Detection Vary Depending on Annotators?

APSIPA ASC 2024

Naoki Koga*, Yoshiaki Bando[†], Keisuke Imoto*

*Doshisha University, [†]National Institute of Advanced Industrial Science and Technology (AIST)

Dec. 5, 2024

Background: Sound event detection (SED)

- Task of estimating the types, onsets, and offsets of sound events[1, 2]
 - e.g., "children," "people walking"

^[1] A. Mesaros, et al., "Sound event detection in the DCASE 2017 challenge," IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 27, no. 6, pp. 992–1006, 2019.

Problem: Annotating strong labels in SED

- Variations in the types, onsets, and offsets of sound events
 - different types, onsets and offsets depending on three annotators

Related work 1: Effects of visualizations on the annotations [1]

Visualization improves the quality of strong labels assigned to sound signals.

NV: no visualization, W: waveform, S: spectrogram

^[1] M. Cartwright, et al., "Seeing sound: Investigating the effects of visualizations and complexity on crowdsourced audio annotations," ACM Transactions on Computer-Human Interaction, vol. 1, no. 29, pp. 1–21, 2017.

Related work 2: Reliable strong labels in SED [1]

Substitution of the annotation of strong labels with the annotation of multiple weak labels

What are the characteristics of the variations in strong labels?

Overview of our contributions

- Building the LEAD dataset
- Analyses with the LEAD dataset
- Experiment with the LEAD dataset

Overview of our contributions

- Building the LEAD dataset
- Analyses with the LEAD dataset
- **Experiment with the LEAD dataset**

Building the LEAD dataset

- Dataset for a better understanding of the variations in strong labels
 - The LEAD dataset provides distinct strong labels for each clip annotated by 20 different annotators.

Data source

- **LEAD dataset has 20 strong labels for 5.67 hours of sound.**
 - Sound from four previous datasets

^[1] A. Mesaros, et al., "TUT database for acoustic scene classification and sound event detection," Proc. EUSIPCO, pp. 1128–1132, 2016.

^[2] A. Mesaros, et al., "Challenge setup: Tasks, datasets and baseline system," Proc. Workshop on DCASE, pp. 85–92, 2017.

^[3] J. Salamon, et al., "Scaper: A library for soundscape synthesis and augmentation," Proc. WASPAA, pp. 344–348, 2017.

Annotation procedure

- 1. Assigning strong labels to sound signals
- 2. Assigning a confidence score (CS) to the selected class, onset, and offset for each sound event instance

Assigning strong labels to sound signals

All annotators selected classes, onsets, and offsets from the candidates.

Assigning strong labels to sound signals

All annotators selected classes, onsets, and offsets from the candidates.

Assigning confidence scores (CSs) to sound events

- Assigning a CS to the selected class, onset, and offset for each sound event instance
 - A five-point scale ranging from "very unconfident" to "very confident"

Assigning confidence scores (CSs) to sound events

- Assigning a CS to the selected class, onset, and offset for each sound event instance
 - A five-point scale ranging from "very unconfident" to "very confident"

Overview of our contributions

- Building the LEAD dataset
- Analyses with the LEAD dataset
- **Experiment with the LEAD dataset**

Overview of the analyses with the LEAD dataset

- Analysis 1: Categorizing the variations in strong labels manually
- Analysis 2: Confirming a relationship between strong labels and CSs
 - Analysis 2-a: Objective analysis of CSs
 - Analysis 2-b: Subjective analysis of CSs

Analysis 1: Categorizing the variations in strong labels

Purpose: To make the variations in strong labels distinguishable

Analysis 1: Categorizing the variations in strong labels

Purpose: To make the variations in strong labels distinguishable

Label deletion

- An event label which is not assigned to an expected sound event
 - e.g., "bird_singing" in b006.wav

Analysis 2-a: Objective analysis of CSs

- Investigating the differences of average CSs between real-world and synthetic sounds
 - No significant difference can be seen between the average CSs of URBAN-SED and other datasets.

Strong label	TUT SE 2016	TUT SE 2017	TUT AS 2016	URBAN-SED
Sound length	120 s -	– 360 s	$30 \mathrm{\ s}$	10 s
Confidence score on sound event class	3.94 ± 0.16	4.00 ± 0.17	3.94 ± 0.12	4.03 ± 0.21
Confidence score on onset/offset	4.04 ± 0.12	4.00 ± 0.19	4.11 ± 0.11	4.13 ± 0.13

Analysis 2-b: Subjective analysis of temporal CSs

Visualizing the relationship between CSs and 20 strong labels

Temporally shorter sound events with high CS were more likely to vary over time.

Overview of our contributions

- Building the LEAD dataset
- Analyses with the LEAD dataset
- Experiment with the LEAD dataset

Overview of the experiment

Pseudo-detection performance with strong labels

- Purpose: To Investigate the influence of the variations in strong labels on the detection performance in SED
- We calculated a pseudo-detection performance for each data source of the LEAD dataset.

How to calculate the pseudo-metrics

- Picking up one annotator's strong label as the ground truth
 - Calculating the metrics of the sound signals in each data source of the LEAD dataset

- Ground truth
- Predicted labels

How to calculate the pseudo-metrics

- Picking up one annotator's strong label as the ground truth
 - Calculating the metrics of the sound signals in each data source of the LEAD dataset

- Ground truth
- Predicted labels

How to calculate the pseudo-metrics

- Picking up one annotator's strong label as the ground truth
 - Calculating the metrics of the sound signals in each data source of the LEAD dataset

- **Ground truth**
- Predicted labels

Conditions of metrics

- Segment-based micro-F-score [1]
- Event-based micro-F-score [1]
- Intersection-based micro-F-score [2]

Conditions of metrics

Event-based micro-F-score [1]

Collar: 0.20 seconds

Conditions of metrics

Intersection-based micro-F-score [2]

- $\rho_{GTC} = 0.1$
 - GTC: ground truth intersection criterion
- $\rho_{DTC} = 0.1$
 - DTC: detection tolerance criterion

Ground truth intersection criteria

Predicted labels

Ground truth

Detection tolerance criteria

^[1] A. Mesaros, et al., "Metrics for polyphonic sound event detection," Applied Sciences, vol. 6, no. 6, p. 1–17, 2016.

Pseudo-detection performance

■ Event-based micro-F-score got lower performance than the intersection-based micro-F-score.

Strong label	Event-based micro-F-score	Intersection-based micro-F-score
TUT SE 2016	8.17%	53.87%
TUT SE 2017	5.33%	32.59%
TUT AS 2016	32.59%	54.25%
URBAN-SED	50.51%	40.52%

Lower

Additional experiment

Influence of the collar setting on the detection performance

- We checked the detection performance with various collar settings of the event-based micro-F-score using "water" in one sound signal.
- The collars setting: intervals of 0.1 seconds from 0.0 to 5.0 seconds

Event-based micro-F-score

- Event-based micro-F-score rapidly increased up to 1.0 seconds.
 - Collar setting should be adjusted depending on the training data.

Conclusion

Purpose of our study

■ To gain a better understanding of the variations in strong labels

Contributions

- Building a large-scale dataset including the variations
- Analyses: Classification of the variations in strong labels
- Experiment: The temporal variations in sound events affect the detection performance.

Future work

Development a robust model against the variations in strong labels with the LEAD dataset