数学分析笔记

rogeryoungh

2021年4月20日

目录

第一章	实数集与函数	1
1.1	集合	1
1.2	映射	1
1.3	关系	2
1.4	域公理	3
1.5	实数系的构造	4
	1.5.1 自然数	5
	1.5.2 整数	5
	1.5.3 有理数	6
	1.5.4 实数·Dedekind 分割	7
	1.5.5 实数·Cauchy 序列	8
第二章	数列极限	10
2.1	数列极限的概念	10
2.2	收敛数列的性质	10
2.3	数列极限存在的条件	12
2.4	Cauchy 准则	12
2.5	Stolz 公式	13
2.6	例题	13
第三章	函数极限	14
3.1	函数极限的概念	14
3.2	函数极限的性质	14
3.3	函数极限存在的条件	15
3.4	两个重要的极限	15
3.5	无穷小量与无穷大量	15
3.6	常见等价无穷小	16
第四章	函数的连续性	17
4.1	连续性的概念	17
4.2	连续函数的性质	17
4 3	初等函数的连续性	18

第五章	导数和微分	19
5.1	导数的定义	19
5.2	求导法则	20
	5.2.1 基本求导法则	20
	5.2.2 基本初等函数导数公式	20
5.3	单调性与导数	20
第六章	微分中值定理	21
6.1	拉格朗日 Lagrange 定理	21
6.2	Cauchy 中值定理	21
6.3	凹凸性	21
第七章	积分的方法与技巧	22
7.1	积分的存在性	22
	7.1.1 定积分	22
	7.1.2 可积条件	24
7.2	分项积分法	25

第一章 实数集与函数

我初次用的书是华师的数分,现在发觉基础部分有相当多的细节。仍待调整。

若无额外说明,皆在 ℝ 下。

实数集与函数的基础是集合和映射,仍有很多术语不曾了解。

参考自李逸的《基本分析讲义》。

1.1 集合

集合的交并补是熟知的。

定义有序对为 $(a,b) := \{\{a\}, \{a,b\}\}$, 其中 a 称为有序对的第一坐标, 而 b 称为第二坐标。特殊的, $(a,a) = \{a\}$ 。

定义集合的笛卡尔 Cartesian 乘积为

$$A \times B := \{(a, b) \mid a \in A \coprod b \in B\}$$

一般 $A \times B \neq B \times A$ 。同样可以推广到多个集合

$$\prod X_i := X_1 \times X_2 \times \cdots \times X_n = (X_1 \times \cdots \times X_{n-1}) \times X_n$$

其元素 x 是多层嵌套, 我们可以简记为

$$x = (\cdots (x_1, x_2), x_3), \cdots, x_n) = (x_1, \cdots, x_n)$$

称 $x_i := \operatorname{pr}_i(x)$ 为 x 的第 i 个分量,pr 是投影映射。当所有 X_i 都等于 X 时,上述乘积记为 X^n 。

1.2 映射

设 C 和 D 为两个给定的集合。

定义 1.2.1 【赋值法则】 设 $R \not\in C \times D$ 的一个子集,若满足当 $(c, d_1) \in R$ 且 $(c, d_2) \in R \Rightarrow d_1 = d_2$,称 R 是一个赋值法则。

赋值法则的定义域 Domain 和像域 Image Set 约定如下

$$\mathbf{Dom}(R) := \{ c \in C \mid \exists d \in D, (c, d) \in R \}$$
$$\mathbf{Im}(R) := \{ d \in D \mid \exists c \in C, (c, d) \in R \}$$

定义 1.2.2 设 R 为一个赋值法则,B 为满足 $Im(R) \subseteq B$ 的一个集合,记二元对 (R,B) 为一个映射,B 称为值域。定义 f 的定义域 A 和像域为 R 的定义域和像域。记作

$$f: A \to B, a \mapsto f(a)$$

称 f 的图为

$$\mathbf{graph}(f) := \{(a, f(a)) \in A \times B \mid a \in A\}$$

对任意给定的 A 的子集 A_0 , 定义 f 在 A_0 上的限制为映射

$$f\mid_{A_0}=f:A_0\to B$$

称映射 f 和 g 的复合为

$$g \circ f : A \to C, a \mapsto g(f(a))$$

显然 $g \circ f$ 仅当 $\mathbf{Im}(f) \subseteq \mathbf{Dom}(g)$ 时有定义。 $f \circ g$ 一般与 $g \circ f$ 不相等。

若映射 f 满足

- (1) $f(a_1) = f(a_2) \Rightarrow a_1, a_2$, 称 f 为单射。
- (2) 对任意的 $b \in B$ 存在 $a \in A$ 满足 f(a) = b, 称 f 为满射。
- (3) f 既是单射又是满射,称 f 为双射。

若 f 为双射, 我们定义它的逆映射 f^{-1} 为

$$f^{-1}(b) = a \Leftrightarrow f(a) = b$$

映射 \diamond : $X \times X \to X$ 通常也称为集合 X 上的运算,此时我们把 $\diamond(x,y)$ 记做 $x \diamond y$ 。对 X 中的非空子集定义

$$A \diamond B := \diamond (a \times B) = \{A \diamond b \mid a \in A, b \in B\}$$

定义 1.2.3 (1) 若 $A \diamond A \subseteq A$, 则称 A 在运算 \diamond 下封闭。

- (2) 若 $x \diamond (y \diamond z) = (x \diamond y) \diamond z$, 则称运算 \diamond 是结合的。
- (3) 若 $x \diamond y = y \diamond x$, 则称运算 \diamond 是交换的。
- (4) 若存在 $e \in X$ 使得 $e \diamond x = x \diamond e = x$, 则称 $e \to X$ 上的单位元。

如果映射定义中的 B 是一个数域,则把映射称为函数。

1.3 关系

简要提及一下关系的部分知识。称集合 $S \times S$ 的子集 C 为关系。把 $(x,y) \in C$ 记作 xCy。

定义 1.3.1 【等价关系】 若集合 S 上的关系 C 满足

- (1) 自反性:对任意的 $x \in S$ 有xCx。
- (2) 对称性: 若 xCy 则 yCx。
- (3) 传递性: 若 xCy 且 yCz 则 xCz。

则称 C 为等价关系,一般用 \sim 来表示等价关系。

记 $x \in A$ 的等价类:

$$[x] := \{ y \in A \mid y \sim x \}$$

定义 1.3.2 【序关系】 若集合 S 上的关系 C 满足

- (1) 相容性: 对任意的 $x,y \in S$ 且 $x \neq y$ 满足要么 $x \in S$ 要么 $y \in S$ 以
- (2) 非自反性: 不存在 $x \in S$ 使得 xCx。
- (3) 传递性: 若 xCy 且 yCz 则 xCz。

则称 C 为序关系, 一般用 < 来表示序关系, 称 (S,C) 为有序集。

x < y 也可以记作 y > x。记号 $x \le y$ 指的是 x < y 或 x = y,即是 x > y 的否定。若在 S 内定义了一种序,便是有序集。

定义 1.3.3 【上界】 设有序集 S 的非空子集 E, 若存在 $a \in S$ 使得任取 $x \in E$ 满足 $x \leq a$, 我们称 E 有上界, a 称为 E 的一个上界。

同样可以得到下界。

定义 1.3.4 【上确界】 设有序集 S 的非空子集 E, 且 E 有上界。若存在一个数 $a \in S$ 满足:

- (1) a 是 E 的上界: $\forall x \in E$, 有 $x \leq a$ 。
- (2) 任何小于 a 的数不是数集 E 的上界: $\forall \mu < a, \exists x_0 \in E$ 使得 $x_0 > \mu$ 。

则称数 a 为数集 E 的上确界,记作 $\sup E$ 。

类似的可定义有界集的下确界 $a = \inf E$ 。

定义 1.3.5 【最小上界性】 如果有序集 S' 的任何非空有上界子集 E 有最小上界,则称 S 有最小上界性。设 E 是有序集 S 的子集,若对任意的有上界的 E 都有 $\sup E \in S$,那么称 S 有最小上界性。

例如 $\mathbb{Q} \cap (0, \sqrt{2})$ 是 \mathbb{Q} 的非空子集,其上界 $\sqrt{2}$ 并不在 \mathbb{Q} 内。

同样的有最小下界性。可以证明,有最小上界性的一定有最大下界性。展开描述即

定理 1.3.6 设 B 是具有最小上界性的集合 S 的子集,则对任意的有下界的 B 都有 $\inf B \in S$ 。

证明 对于每个 B, 构造 L 为 B 的下界组成的集合,显然每个 B 中的元素都是 L 的上界。由最小上界性知,存在 $\sup L \in S$ 。

尝试证明 $\inf B = \sup L_{\circ}$

对于任意的 $x \in B$,若 $x < \sup L$,则存在比 $\sup L$ 小的 L 的上界 x,矛盾。故 $x \geqslant \sup L$,即 $\sup L$ 是 B 的下界。

设 B 的下界 x 有 $x > \sup L$,那么 $x \in L$,则存在比 $\sup L$ 大的 L 元素,矛盾。故不存在比 $\sup L$ 大的 B 的下界。

综上, B 的下界存在且 $\inf B = \sup L \in S$ 。

1.4 域公理

集合 F 上定义的加法 + 和乘法·若满足 $(x, y, z \in F)$

- F1 加法结合率: x + (y + z) = (x + y) + z。
- F2 加法交换律: x + y = y + x。
- F3 存在加法单位元:存在 $0 \in F$,使得对任意 $x \in F$ 有 0 + x = x。
- F4 加法逆元的存在性: 对任意 $x \in F$, 总存在 $-x \in F$, 使得 x + (-x) = 0。
- F5 乘法结合率: $x \cdot (y \cdot z) = (x \cdot y) \cdot z_0$
- F6 乘法交换律: $x \cdot y = y \cdot x$ 。
- F7 存在乘法单位元:存在 $1 \in F$,使得 $1 \neq 0$ 且对任意 $x \in F$ 有 $1 \cdot x = x$ 。
- F8 乘法逆元的存在性: 对任意 $x \in F \{0\}$, 总存在 $x^{-1} \in F$, 使得 $x \cdot x^{-1} = 0$ 。
- F9 乘法分配律: $x \cdot (y + z) = x \cdot y + x \cdot z$ 。

则称 $(F, +, \cdot)$ 为一个域。

注意 -x 只是一个记号。同样的, x^{-1} 也只是一个记号。

定义 1.4.1 【有序域】 若域 F 是满足如下条件的有序集

- (1) $\exists x, y, z \in F$ 且 y < z $\forall , x + y < x + z$
- (2) 如果 $x, y \in F$, 且 x > 0, y > 0, 则 xy > 0。

那么称 F 是一个有序域。

例如 ◎ 是有序域。

定理 1.4.2 【存在定理】 具有最小上界性的有序域 ℝ 存在, 且包容着 ℚ 作为子域。

这个命题的证明较为复杂,是从 $\mathbb Q$ 出发构造 $\mathbb R$,而且其中有很多重要的信息,决定单独一章,这里略过。

定理 1.4.3 【Achimedes 原理】 对于 $x,y \in \mathbb{R}$ 且 x > 0,那么必定存在正整数 n,使得 nx > y。

证明 设 $A = \{nx \mid n \in \mathbb{N}^+\}$,若不存在 n 则 y 将是 A 的一个上界,由最小上界性可知 A 的上确界存在。 又因为小于上确界的数 $\sup A - x$ 不是上确界,即存在 $m \in \mathbb{N}^+$ 使得 $\sup A - x < mx$,即 $\sup A < (m+1)x$,矛盾。

故必定存在 n 使得 nx > y。

定义 1.4.4 【度量空间】 称集合 X 的元素为点,若存在 X 上双变量的函数 $d: X \times X \to \mathbb{R}$,满足 $(x,y,z \in R)$

- (1) 若 $x \neq y$, 则 d(x,y); 仅 d(x,x) = 0。
- (2) 对于任意的 x, y 都有 d(x, y) = d(y, x)。
- (3) 对于任意的 z, 都有 $d(x,y) \leq d(x,z) + d(z,y)$ 。

就称 (X,d) 是一个度量空间 (度量空间),函数 d 称作其上的距离函数。

这里的空间的含义是线性空间。

对于 X 的子集 Y, 定义其距离函数

$$d_Y: Y \times Y \to \mathbb{R}, (y_1, y_2) \mapsto d_Y(y_1, y_2) = d(y_1, y_2)$$

则 (Y, d_Y) 仍是度量空间,称 d_Y 是 d 在 Y 上的诱导度量。 (Y, d_Y) 称作是 (X, d) 的子(度量)空间。

定义 1.4.5 【稠密性】 给定度量空间 (X,d), Y 是 X 的子集。如果对任意的 $x \in X$ 和任意小的 $\varepsilon > 0$, 都存在 $y \in Y$, 使得 $d(y,x) < \varepsilon$, 我们就称 Y 在 X 中是稠密的。

例 1.4.6 \mathbb{Q} 在 \mathbb{R} 中稠密: 对于 $x,y \in \mathbb{R}$ 且 x < y, 那么必定存在 $p \in \mathbb{Q}$, 使得 x 。

证明 由 Achimedes 原理,可设存在 $n \in \mathbb{N}^+$ 使得 n(y-x) > 1。 再设存在 $m_1, m_2 \in \mathbb{N}^+$,使得 $m_1 > nx, m_2 > -nx$ 。于是

$$-m_2 < nx < m_1$$

因此存在 $m \in \mathbb{N}^+$ 有 $-m_2 \leq m \leq m_1$ 使得

$$m - 1 \le nx < m \le 1 + nx < ny$$

从而存在 p = m/n 使得 x 。

1.5 实数系的构造

直到我读了陶哲轩的《实分析》时,才感到接受了实数理论。实数的定义是公理化的,不是构造性的。 更具体的说,我们不需要知道实数是什么,只需知道这些对象有什么性质,我们就可以抽象的处理它 们。从其他的数学对象出发来构造实数是可能的,有多种多样的模型,只要它们服从所有的公理并正确的 运作,都是满足的。

实数究竟有多少性质? 从自然数开始。

公理 1.5.1 【**Peano 公理**】 若集合 N 和其上的映射 v(n) 满足

- $(1) 0 \in N_{\circ}$
- (2) 若 $n \in N$,则 $v(n) \in N$ 。

- (3) 对于任意的 $n \in N$, $v(n) \neq 0$ 。
- (4) 若 $v(m) \neq v(n)$, 则 $m \neq n$ 。
- (5)【归纳原理】设 P(n) 是关于自然数的性质, 假设只要 P(n) 为真, 则 P(v(n)) 也为真; 且 P(0) 为真。那么对 N 中所有的元素 P 都为真。

那么称 N 为自然数,记作 \mathbb{N} , v(n) 称为后继函数。

1.5.1 自然数

设 $m,n \in \mathbb{N}$,定义 \mathbb{N} 上的加法+和乘法·为

$$0 + m := m, \quad v(n) + m := v(n + m)$$

 $0 \cdot m := m, \quad v(n) \cdot m := n \cdot m + m$

我们可以利用归纳原理推出我们熟悉的一些性质。

定理 1.5.2 【N 的代数算律】 对于 $a,b,c \in \mathbb{N}$ 有

- (1) 加法是结合的和交换的,且有单位元 0。
- (2) 乘法是结合的和交换的, 且有单位元 1。
- (3) 分配律: $(a+b) \cdot c = a \cdot c + b \cdot c$ 。

定义 1.5.3 【 \mathbb{N} 的序】 设 $m, n \in \mathbb{N}$ 。

- (1) 若存在 $a \in \mathbb{N}$, 使得 n = m + a, 称 m 小于等于 n, 记作 $m \le n$ 。
- (2) 若 $n \ge m$ 且 $n \ne m$, 则称 m 严格小于 n, 记作 m < n。

可以验证, < 和 ≤ 是 N 上的序关系。

定理 1.5.4 【加法保序】 对于 $a,b \in \mathbb{N}$, 若 a > b, 则 a+c > b+c。

1.5.2 整数

接下来几节,都是记 a,b,c 为当前集合的元素,x,y,z 都是被构造的集合的元素。 为了表达整数,定义二元组 (a,b),其中 $a,b\in\mathbb{N}$ 。记全体二元组的集合为 Z。我们约定

$$(a,b) = (c,d) \Leftrightarrow a+d = b+c$$

因为自然数的序是已定义的, 于是定义 Z 上的序关系

$$(a,b) \leq (c,d) \Leftrightarrow a+d \leq b+c$$

然后是定义 N 上的加法和乘法

$$(a,b) + (c,d) := (a+c,b+d)$$

 $(a,b) \cdot (c,d) := (ac,bd)$

可以验证, (n,0) 与 n 有相同的性状,我们可以令其相等,从而把自然数嵌入到整数内。至此,我们可以着手验证整数是否满足我们预想的性质。

定理 1.5.5 【 \mathbb{Z} 的代数算律】 对于 $x, y, z \in \mathbb{Z}$ 有

- (1) 加法是结合的和交换的,且有单位元 0,逆元存在。
- (2) 乘法是结合的和交换的,且有单位元1。
- (3) 分配律: $(x+y) \cdot z = x \cdot z + y \cdot z$ 。

即 Z 是一个交换环。于是

定理 1.5.6 【 \mathbb{Z} 是有序域】 (1) 加法保序: 当 $x,y,z \in \mathbb{Z}$ 且 y < z 时, x+y < x+z。

(2) 乘法保序:如果 $x, y \in \mathbb{Z}$,且 x > 0, y > 0,则 xy > 0。

我们有理由相信,(a,b) 符合我们对整数的一切想象。因此 $Z = \mathbb{Z}$ 。 另外的,定义整数的负运算为 -(a,b) = (b,a),以此定义减法

$$x - y := x + (-y)$$

可以验证

$$(a,0) - (b,0) = (a,b) = a - b$$

1.5.3 有理数

类似的,记整数的二元组 (a,b),其中 $a,b \in \mathbb{Z}, b \neq 0$,记全体二元组的集合为 Q。我们约定

$$(a,b) = (c,d) \Leftrightarrow ad = bc$$

因为整数的序是已定义的,于是定义 Q 上的序关系

$$(a,b) \leqslant (c,d) \Leftrightarrow ad \leqslant bc$$

于是定义 Q 上的加法和乘法

$$(a,b) + (c,d) := (ad + bc, b + d)$$

$$(a,b)\cdot(c,d):=(a\cdot c,b\cdot d)$$

定义加法逆元为 -(a,b) := (-a,b)。可以验证,(a,1) 与 a 有相同的性状,我们可以令其相等,从而把整数嵌入到有理数内。

至此,我们可以着手验证有理数是否满足我们预想的性质。

定理 1.5.7 【 \mathbb{Q} 的代数算律】 对于 $x,y,z \in \mathbb{Q}$ 有

- (1) 加法是结合的和交换的,且有单位元 0,逆元存在。
- (2) 乘法是结合的和交换的,且有单位元1,非零元逆元存在。
- (3) 分配律: $(x+y) \cdot z = x \cdot z + y \cdot z$ 。

即 ② 是一个域。

定理 1.5.8 【 \mathbb{Q} 是有序域】 (1) 加法保序: 当 $x, y, z \in \mathbb{Q}$ 且 y < z 时, x + y < x + z。

(2) 乘法保序: 如果 $x, y \in \mathbb{Q}$, 且 x > 0, y > 0, 则 xy > 0。

我们有理由相信, (a,b) 符合我们对有理数的一切想象。因此 $Q = \mathbb{Q}$ 。

另外,定义倒数 $(a,b)^{-1}=(b,a)$,显然 $a,b\neq 0$ 。从而定义除法

$$x/y := x \cdot y^{-1}$$

可以验证,

$$(a,1)/(b,1) = (a,b) = a/b$$

1.5.4 实数・Dedekind 分割

定义 1.5.9 【Dedekind 分割】 设 $A \subset \mathbb{Q}, A' = \mathbb{C}_{\mathbb{Q}}A$,若满足以下三个条件

- (1) $A \neq \emptyset, A' \neq \emptyset$;
- (2) 当 $p \in A, q \in A'$ 时,p < q;
- (3) 任给 $p \in A$, 存在 $q \in A$, 使得 p < q;

则称 A 为 \mathbb{Q} 的一个分割,记分割的全体为 R。

集合的相等即是 R 上的等价关系。R 上的序关系定义是

$$A \subseteq B \Leftrightarrow A \leqslant B$$

定义加法

$$A+B:=\{a+b\mid a\in A,b\in B\}$$

于是可以定义负运算

$$-A := \{ s \in \mathbb{Q} \mid \exists r > 0, -s - r \in \mathbb{C}_{\mathbb{Q}} A \}$$
$$-A := \{ s \in \mathbb{Q} \mid \exists r \in \mathbb{C}_{\mathbb{Q}} A, s < -r \}$$

然而乘法因为负数的问题,我们需要分类讨论。R 中存在加法单位元 $0^* = \{x \in \mathbb{Q} \mid x \geq 0\}$,对于正实数 $A,B \geq 0^*$,定义乘法

$$A \cdot B := \{ p \in \mathbb{Q} \mid$$
存在 $0 < a \in A,$ 存在 $0 < b \in B, p < ab \}$

同时

$$A \cdot B := \begin{cases} -((-A) \cdot B), & A < 0^*, B \geqslant 0^* \\ -(A \cdot (-B)), & A \geqslant 0^*, B < 0^* \\ -((-A) \cdot (-B)), & A < 0^*, B < 0^* \end{cases}$$

当 $A > 0^*$ 时,定义乘法逆元

$$A^{-1} := \{ s \in \mathbb{Q} \mid \exists r \in \mathbb{C}_{\mathbb{Q}} A, s < r^{-1} \}$$

当 $A < 0^*$ 时,定义乘法逆元为 $A^{-1} := -(-A^{-1})$ 。

至此,我们可以着手验证实数是否满足我们预想的性质,在 Cauchy 序列中提过了,这里不再重复。 实数和有理数的最基本的一个区别就是有最小上界性。

定理 1.5.10 R 有最小上界性。

证明 设 α 是 R 的非空子集,设 α 存在上界 B。令

$$S = \bigcup_{A \in \alpha} A$$

下证 $S = \sup A_{\circ}$

首先证明 S 是分割。显然 S 非空,又因为对任意的 $A \in \alpha$ 都有 $A \subset B$,故 $S \subset B$,因此 $S \neq \mathbb{Q}$ 。取 $p \in S, q \notin S$,于是存在 $A_0 \in \alpha$ 使得 $p \in A_0$,此时 $q \notin A_0$,故 p < q。设 $p \in S$,于是存在 $A_0 \in \alpha$ 使得 $p \in A_0$,此时存在 $q \in A_0$ 使得 p < q,且 $q \in S$ 。

其次,对任意的 $A \in \alpha$ 必然 $A \leq S$, 故 $S \neq A$ 的一个上界。若 S' < S, 则有 $s \in S, s \notin S'$, 同时存在 $A_0 \in \alpha$ 使得 $s \in A_0$, 故 $S' < A_0$, 故 S' 不是 A 的上界。

因此
$$S = \sup A_{\circ}$$

1.5.5 **实数**·Cauchy 序列

我们试图得到实数,是因为有理数还不足以表示所有的数,比如 $x^2 = 2$ 的解。得到实数和前面的方法有所不同,要复杂的多。

一个有理数上的序列 $\{a_n\}$,是一个从集合 N 到 Q 的一个映射,即我们以前说的数列。

对于 \mathbb{Q} 上的无限序列 $\{a_n\}$,若对于任意的 $\varepsilon > 0$ 存在 $N \ge 0$ 使得当 $j,k \ge N$ 时有

$$d(a_i, a_k) < \varepsilon$$

则称序列 $\{a_n\}$ 为 Cauchy 序列,记作 $\operatorname{LIM}(a_n)$ 。记 Cauchy 序列的全体为集合 R。 对于 Cauchy 序列 $\operatorname{LIM}(a_n)$, $\operatorname{LIM}(b_n)$,若对于任意的 $\varepsilon > 0$ 存在 $N \ge 0$ 使得当 $n \ge N$ 时有

$$d(a_n, b_n) < \varepsilon$$

则记作 $LIM(a_n) = LIM(b_n)$ 。

定义 R 的序关系,对于实数 x,y,若存在 Cauchy 序列满足 $x = \text{LIM}(a_n), y = \text{LIM}(b_n)$,对于 $n \ge 1$ 有 $a_n \le b_n$,则 $\text{LIM}(a_n) \le \text{LIM}(b_n)$ 。

于是定义 R 上的加法和乘法

$$LIM(a_n) + LIM(b_n) := LIM(a_n + b_n)$$

 $LIM(a_n) \cdot LIM(b_n) := LIM(a_nb_n)$

定义负运算 $-LIM(a_n) := LIM(-a_n)$ 。

定义倒数时会因为恼人的 0 出现了一些困难,解决的方法即是把 0 排出。若存在 $c \in \mathbb{Q}$ 满足 c > 0 使得 $d(a_n,0) \ge c$,则称 $\{a_n\}$ 为限制离开零的序列。若 x 为不为零的实数,则必存在一个限制离开零的 Cauchy 序列 $\mathrm{LIM}(a_n) = x$ 。

于是我们可以定义,设x为一个不为零的实数,则存在限制离开零的 Cauchy 序列 $x = LIM(a_n)$,定义倒数为

$$x^{-1} := LIM(a_n^{-1})$$

可以验证,常数 Cauchy 序列 $\{a_n\}$ 与 a 具有相同的性状,因此可以令它们相等,从而使有理数嵌入到实数中。

至此,我们可以着手验证实数是否满足我们预想的性质。

定理 1.5.11 【**R** 的代数算律】 对于 $x, y, z \in \mathbb{R}$ 有

- (1) 加法是结合的和交换的,且有单位元 0, 逆元存在。
- (2) 乘法是结合的和交换的,且有单位元1,非零元逆元存在。
- (3) 分配律: $(x+y) \cdot z = x \cdot z + y \cdot z$ 。

即 ℝ 是一个域。

定理 1.5.12 【ℝ 是有序域】 (1) 加法保序: 当 $x,y,z \in \mathbb{R}$ 且 y < z 时, x + y < x + z.

(2) 乘法保序: 如果 $x, y \in \mathbb{R}$, 且 x > 0, y > 0, 则 xy > 0。

我们有理由相信, LIM (a_n) 符合我们对实数性质的一切想象, 从而 $R = \mathbb{R}$ 。

另外, 定义 R 上的 Cauchy 序列, 若对于任意的实数 $\varepsilon > 0$ 存在 $N \ge 0$ 使得当 $j,k \ge N$ 时有

$$d(a_j, a_k) \leqslant \varepsilon$$

可以证明, R 上的 Cauchy 序列与 \mathbb{Q} 上的 Cauchy 序列等价。

若存在实数 L 满足,存在 N > 0 使得当 $n \ge N$ 时,都有 $d(a_n, L) \le \varepsilon$,则 a_n 收敛于 L,记作

$$\lim_{n \to \infty} a_n = L$$

可以验证

$$LIM(a_n) = \lim_{n \to \infty} a_n$$

第二章 数列极限

2.1 数列极限的概念

定义 2.1.1 【数列极限的 $\varepsilon - N$ 定义】 设 $\{a_n\}$ 为数列,A 为定数。若对任给的正数 ε ,总存在正整数 $N = N(\varepsilon)$,使得当 n > N 时有

$$|a_n - A| < \varepsilon$$

则称数列 $\{a_n\}$ 收敛于 A, 或称 A 为数列 $\{a_n\}$ 的极限,记作

$$\lim_{n\to\infty} a_n = A$$
, $\dot{\mathbb{R}}$ $a_n \to a(n\to\infty)$

等价定义: 任给 $\varepsilon > 0$,若在 $U(A;\varepsilon)$ 之外数列 $\{a_n\}$ 中的项至多只有有限个,则称 $\{a_n\}$ 收敛于极限 A。

若对于数列 $\{a_n\}$,不存在 A 使得 $a_n \to A$,则称数列 $\{a_n\}$ 发散。

特殊地, 若 $\lim_{n\to\infty} a_n = 0$, 则称 $\{a_n\}$ 为无穷小数列。

定义 2.1.2 【无穷大数列】 若数列 $\{a_n\}$ 满足: 对任意正数 M>0, 存在正整数 N, 使得当 n>N 时,

- (1) $a_n > M$, 则称数列 $\{a_n\}$ 发散于正无穷大,记作 $\lim a_n = +\infty$,或 $a_n \to +\infty$ 。
- (2) 有 $a_n < M$, 则称数列 $\{a_n\}$ 发散于负无穷大, 记作 $\lim_{n \to \infty} a_n = -\infty$, 或 $a_n \to -\infty$ 。

2.2 收敛数列的性质

定理 2.2.1 【唯一性】 若数列 $\{a_n\}$ 收敛,则它只有一个极限。

证明 如果数列 $\{a_n\}$ 同时以 A, B 为极限, 即任给 $\varepsilon > 0$, 总存在 N_1, N_2 , 使得

$$|a_n - A| < \varepsilon, n > N_1; \quad |a_n - B| < \varepsilon, n > N_2$$

那么当 $n > \max\{N_1, N_2\}$ 时需要恒成立

$$2\varepsilon > |a_n - A| + |a_n - B| \geqslant |A - B|$$

当 $A \neq B$ 时,对于 $2\varepsilon < |A - B|$ 不恒成立,因此只能 A = B。

定理 2.2.2 【有界性】 若数列 $\{a_n\}$ 收敛,则 $\{a_n\}$ 有界。

证明 不妨设 $\lim_{n\to\infty} a_n = A$ 。令 $\varepsilon = 1$,那么存在 n > N 使得

$$|a_n - A| \leqslant 1$$

令

$$M = \{|a_1|, \cdots, |a_N|, |A-1|, |A+1|\}$$

那么对任意正整数 n,总有 $|a_n| \leq M$ 。

定理 2.2.3 【保不等式性,保序性】 设 $\lim_{n \to A} a_n = A$, $\lim_{n \to B} b_n = B$, 则有

- (1) 如果存在 n > N 使得 $a_n \ge b_n$ 恒成立,则 $A \ge B$ 。
- (2) 反之,如果 A>B,则存在 $n>N_1$ 使得 $a_n>b_n$ 恒成立。

证明 (1) 如果设 $B-A=2\delta>0$, 那么存在 $N_2,N_3>N$

$$|a_n - A| < \delta, n > N_2;$$
 $|b_n - B| < \delta, n > N_3$

于是当 $n > \max\{N_2, N_3\}$ 时有

$$a_n < A + \delta = B - \delta < b_n$$

因此矛盾,故 $A \ge B$ 。

(2) 设 $A - B = 2\delta > 0$, 那么存在 N_2, N_3

$$|a_n - A| < \delta, n > N_2;$$
 $|b_n - B| < \delta, n > N_3$

于是存在 $N_1 = \max\{N_2, N_3\}$, 当 $n > N_1$ 时有

$$a_n > A - \delta = B + \delta > b_n$$

若 b_n 是常数列, $A \neq 0$, 我们还可得到推论: 存在 N, 使得当 n > N 时, 有

$$\frac{1}{2}|A| < |a_n| < \frac{3}{2}|A|$$

定理 2.2.4 【迫敛性, 夹逼定理】 设数列 $\{a_n\},\{b_n\},\{c_n\}$ 满足当 $n>N_0$ 有 $a_n\leqslant c_n\leqslant b_n$ 。若

$$\lim_{n \to \infty} a_n = A = \lim_{n \to \infty} c_n$$

 $\lim_{n\to\infty}b_n=A_\circ$

证明 即对于任给的 $\varepsilon > 0$,存在 N_1, N_2 ,使得当 $n > N_1$ 有

$$A - \varepsilon < a_n < A + \varepsilon$$

当 $n > N_2$ 有

$$A - \varepsilon < c_n < A + \varepsilon$$

因此当 $n > \max\{N_0, N_1, N_2\}$ 时,有

$$A - \varepsilon < a_n \leqslant b_n \leqslant c_n < A + \varepsilon$$

定理 2.2.5 【四则运算】 设 $\lim_{n\to\infty} a_n = A$, $\lim_{n\to\infty} b_n = B$, 则有

- (1) $\{\alpha a_n + \beta b_n\}$ 收敛到 $\alpha A + \beta B$, 其中 α, β 为常数。
- (2) $\{a_nb_n\}$ 收敛到 AB_\circ
- (3) 当 $B \neq 0$ 时, $\{a_n/b_n\}$ 收敛到 A/B_o

证明 (1) 任给 $\varepsilon > 0$, 存在 N_1, N_2 使得

$$|a_n - A| < \frac{\varepsilon}{2|\alpha| + 1}, n > N_1; \qquad |b_n - B| < \frac{\varepsilon}{2|\beta| + 1}, n > N_2$$

10

则当 $n > \max\{N_1, N_2\}$ 时有

$$|(\alpha a_n + \beta b_n) - (\alpha A + \beta B)| \leq |\alpha| |a_n - A| + |\beta| |b_n - B|$$

$$< \frac{\varepsilon |\alpha|}{2|\alpha| + 1} + \frac{\varepsilon |\beta|}{2|\beta| + 1}$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

(2) 由收敛数列的有界性,存在 M 使得 $|a_n| \leq M$,那么

$$0 \le |a_n b_n - AB| = |(a_n - A)b_n + A(b_n - B)| \le M|a_n - A| + |A||b_n - B|$$

由迫敛性知 $\lim_{n\to\infty} |a_n b_n - AB| = 0$ 。

(3) 由保号性的推论,存在 N 使得当 n > N 时有 $|b_n| > \frac{|B|}{2}$,那么

$$0 \leqslant \left| \frac{1}{b_n} - \frac{1}{B} \right| = \frac{|b_n - B|}{|b_n||B|} \leqslant \frac{2}{|B|^2} |b_n - B|$$

由迫敛性知 $\lim_{n\to\infty} \left| \frac{1}{b_n} - \frac{1}{B} \right| = 0$ 。

定义 2.2.6 【数列的子列】 设 $\{a_n\}$ 为数列,如果 $\{n_k\}$ 是一列严格递增的正整数,则数列 $\{a_{n_k}\}$ 称为数列 $\{a_n\}$ 的一个子列。

特殊的子列 $\{a_{2k}, a_{2k-1}\}$ 分别称为偶子列与奇子列。

定理 2.2.7 数列 $\{a_n\}$ 收敛的充要条件: $\{a_n\}$ 的任何子列都收敛。

2.3 数列极限存在的条件

定义 2.3.1 若数列 $\{a_n\}$ 各项满足关系式 $a_n \leq a_{n+1} (a_n \geq a_{n+1})$,则称 $\{a_n\}$ 为递增(递减)数列,统称为单调数列。

定理 2.3.2 【单调有界定理】 单调有界数列必有极限。

定理 2.3.3 【致密性定理】 任何有界数列必定有收敛的子列。

2.4 Cauchy 准则

定义 2.4.1 设 $\{a_n\}$ 为数列,如果任给 $\varepsilon > 0$,均存在 $N(\varepsilon)$ 使当 $m,n > N(\varepsilon)$ 时有

$$|a_m - a_n| < \varepsilon$$

则称 $\{a_n\}$ 为 Cauchy 数列或基本列。

定理 2.4.2 Cauchy 数列必定时有界数列。

证明 取 $\varepsilon = 1$,则存在 N 使得当 m, n > N 时有

$$|a_m - a_n| < 1$$

令 $M = \max\{|a_k| + 1 \mid 1 \le k \le N + 1\}$,则当 $n \le N$ 时显然有 $|a_n| \le M$,而当 n > N 时有

$$|a_n| \le |a_n - a_{N+1}| + |a_{N+1}| < 1 + |a_{N+1}| \le M$$

这说明 $\{a_n\}$ 是有界数列。

定理 2.4.3 【Cauchy 收敛准则】 $\{a_n\}$ 为 Cauchy 数列当且仅当它是收敛的。

证明 (1) 充分性: 设 $\{a_n\}$ 收敛到 A, 则任给 $\varepsilon > 0$ 存在 N, 当 n > N 时有

$$|a_n - A| \leqslant \frac{\varepsilon}{2}$$

因此当 m, n > N 时有

$$|a_m - a_n| \leqslant |a_m - A| + |A - a_n| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

这说明 a_n 为 Cauchy 数列。

(2) 必要性: Todo ……

Cauchy 收敛准则的条件称为 Cauchy 条件。

2.5 Stolz 公式

定理 2.5.1 对于任意的 $1 \le k \le n$, 设 $b_k > 0$ 且 $m \le \frac{a_k}{b_k} \le M$, 则有

$$m \leqslant \frac{\sum a_n}{\sum b_n} \leqslant M$$

定理 2.5.2 【Stolz 公式一】 设数列 $\{x_n\},\{y_n\}$,且 $\{y_n\}$ 严格单调地趋于 $+\infty$,如果

$$\lim_{n \to \infty} \frac{x_n - x_{n-1}}{y_n - y_{n-1}} = A$$

则

$$\lim_{n \to \infty} \frac{x_n}{y_n} = A$$

证明 分类讨论 Todo······

定理 2.5.3 【Stolz 公式二】 设数列 $\{y_n\}$ 严格单调地趋于 0,且数列 $\{x_n\}$ 也收敛到 0,那么如果

$$\lim_{n \to \infty} \frac{x_n - x_{n-1}}{y_n - y_{n-1}} = A$$

则

$$\lim_{n \to \infty} \frac{x_n}{y_n} = A$$

证明 分类讨论 Todo······

2.6 例题

问题 2.6.1 设 $\lim_{n\to\infty} a_n = A$, 求证: $\lim_{n\to\infty} \frac{\sum a_n}{n} = A_\circ$

解 即对于任给的 $\varepsilon > 0$,存在 $n > N_1$ 使得

$$|a_n - A| < \frac{\varepsilon}{2}$$

那么变形有

$$\left| \frac{\sum a_n}{n} - A \right| \leqslant \frac{\sum |a_n - A|}{n} = \frac{\sum_{k=1}^{N_1} |a_k - A|}{n} + \frac{\sum_{k=N_1+1}^{n} |a_k - A|}{n}$$

注意到 $\sum_{k=1}^{N_1} |a_k - A|$ 已经为定值,从而存在 $n > N_2$ 使得

$$\frac{\sum_{k=1}^{N_1} |x_k - A|}{n} < \frac{\varepsilon}{2}$$

因此当 $n > \max\{N_1, N_2\}$ 时有

$$LHS < \frac{\varepsilon}{2} + \frac{n-N_1}{n} \times \frac{\varepsilon}{2} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

第三章 函数极限

3.1 函数极限的概念

定义 3.1.1 设 f 为定义在 $[a, +\infty)$ 上的函数,A 为定数。若对任给的 $\varepsilon > 0$,存在正数 $M = M(\varepsilon) \geqslant a$,使得当 x > M 时,有

$$|f(x) - A| < \varepsilon$$

则称函数 f 当 x 趋于 $+\infty$ 时以 A 为极限,记作

类似的有 $\lim_{x \to -\infty} f(x)$ 和 $\lim_{x \to \infty} f(x)$ 。

不难证明

$$\lim_{x \to \infty} f(x) = A \Leftrightarrow \lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} f(x) = A$$

定义 3.1.2 设函数 f 在 $U^{\circ}(x_0; \delta')$ 内有定义,A 为定数。若对任给的 $\varepsilon > 0$,存在正数 $\delta < \delta'$,使得当 $0 < |x - x_0| < \delta$ 时,有 $|f(x) - A| < \varepsilon$,则称函数 f 当 x 趋于 x_0 时以 A 为极限,记作

$$\lim_{x \to x_0} f(x) = A \ \vec{\boxtimes} \ f(x) \to A(x \to x_0)$$

定义 3.1.3 设函数 f 在 $U_+^{\circ}(x_0; \delta')$ 内有定义,A 为定数。若对任给的 $\varepsilon > 0$,存在正数 $\delta < \delta'$,使得当 $x_0 < x < x_0 + \delta$ 时,有 $|f(x) - A| < \varepsilon$,则称函数 f 当 x 趋于 x_0^+ 时以 A 为极限,记作

$$\lim_{x \to x_0^+} f(x) = A \ \vec{\boxtimes} \ f(x) \to A(x \to x_0^+)$$

类似的还有左极限 $\lim_{x\to x_n} f(x)$, 统称为单侧极限。又可记为

$$f(x_0 + 0) = \lim_{x \to x_0^+} f(x) = f(x_0 - 0) = \lim_{x \to x_0^-} f(x)$$

同理还有

$$\lim_{x \to x_0} f(x) = A \Leftrightarrow \lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^-} f(x) = A$$

3.2 函数极限的性质

定理 3.2.1 【唯一性】 若极限 $\lim_{x\to x_0} f(x)$ 存在,则此极限是唯一的。

定理 3.2.2 【局部有界性】 若极限 $\lim_{x\to x_0} f(x)$ 存在,则 f 在 x_0 的某空心邻域 $U^{\circ}(x_0)$ 上有界。

定理 3.2.3【保不等式性】 设 $\lim_{x\to x_0} f(x)$ 与 $\lim_{x\to x_0} g(x)$ 均存在。若存在正数 N_0 ,使得当 $n>N_0$ 时,有 $a_n\leqslant b_n$,则 $\lim_{n\to\infty} a_n\leqslant \lim_{n\to\infty} b_n$ 。

定理 3.2.4 【迫敛性】 设 $\lim_{x\to x_0} f(x) = \lim_{x\to x_0} g(x) = A$,且在某 $U^{\circ}(x_0; \delta')$ 上有

$$f(x) \leqslant h(x) \leqslant g(x)$$

 $\mathbb{N} \lim_{x \to x_0} h(x) = A_{\circ}$

定理 3.2.5 【四则运算法则】 若 $\lim_{x \to x_0} f(x)$ 与 $\lim_{x \to x_0} g(x)$ 均存在,则

$$\lim_{x\to x_0}[f(x)\pm g(x)]=\lim_{x\to x_0}f(x)+\lim_{x\to x_0}g(x)$$

$$\lim_{x \to x_0} [f(x)g(x)] = \lim_{x \to x_0} f(x) \cdot \lim_{x \to x_0} g(x)$$

若 $\lim_{x \to x_0} g(x) \neq 0$,则

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)}$$

3.3 函数极限存在的条件

定理 3.3.1 【海涅 (Heine) 定理,归结原则】 若 f(x) 在 $U^{\circ}(x_0; \delta')$ 上有定义。 $\lim_{x \to x_0} f(x)$ 存在的充要条件是: 任何含于 $U^{\circ}(x_0; \delta')$ 且以 x_0 为极限的数列 $\{x_n\}$,极限 $\lim_{x \to x_0} f(x_n)$ 都存在且相等。

即若对任何 $x_n \to x_0 (n \to \infty)$ 有 $\lim_{n \to \infty} f(x_n) = A$,则 $\lim_{x \to x_0} f(x) = A$ 。

定理 3.3.2 设 f(x) 在点 x_0 的某空心右邻域 $U_+^{\circ}(x_0)$ 有定义,则 $\lim_{x \to x_0^+} f(x) = A$ 的充要条件是: 对任何以 x_0 为极限的递减数列 $\{x_n\} \subset U_+^{\circ}(x_0)$,有 $\lim_{n \to \infty} f(x_n) = A$ 。

定理 3.3.3 设 f(x) 为定义在 $U_+^{\circ}(x_0)$ 上的单调有界函数,则右极限 $\lim_{x\to x_0^+} f(x) = A$ 存在。

定理 3.3.4 【Cauchy 准则】 设 f(x) 在 $U^{\circ}(x_0; \delta')$ 上有定义,则 $\lim_{x \to x_0} f(x)$ 存在的充要条件是: 任给 $\varepsilon > 0$,存在正数 $\delta(<\delta')$,使得对任何 $x', x'' \in U^{\circ}(x_0, \delta)$,有 $|f(x') - f(x'')| < \varepsilon$ 。

3.4 两个重要的极限

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e$$

3.5 无穷小量与无穷大量

定义 3.5.1 【无穷小量】 设函数 f 在某 $U^{\circ}(x_0)$ 上有定义,若 $\lim_{x\to x_0} f(x) = 0$,则称 f 为当 $x\to x_0$ 时的无穷小量。

定义 3.5.2 【有界量】 设函数 f 在某 $U^{\circ}(x_0)$ 上有界,则称 f 为当 $x \to x_0$ 时的有界量。

无穷小量收敛于 0 的速度有快有慢。设当 $x \to x_0$ 时, f = g 均为无穷小量。

若 $\lim_{x\to x_0} \frac{f(x)}{g(x)} = 0$,则称当 $x\to x_0$ 时 f 为 g 的高阶无穷小量,或称 g 为 f 的低阶无穷小量。记作

$$f(x) = o(g(x))(x \to x_0)$$

特别地,f 为当 $x \to x_0$ 时的无穷小量记作

$$f(x) = o(1)(x \to x_0)$$

若存在正数 K 和 L,使得在某 $U^{\circ}(x_0)$ 上有

$$K \leqslant \left| \frac{f(x)}{g(x)} \right| \leqslant L$$

则称 f = g 为当 $x \to x_0$ 时的同阶无穷小量。特别当

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = c \neq 0$$

时, f 与 g 必为同阶无穷小量。

若 $\lim_{x\to x_0} \frac{f(x)}{g(x)} = 1$ 则称 f 与 g 是当 $x\to x_0$ 时的等价无穷小量。记作

$$f(x) \sim g(x)(x \to x_0)$$

注意并不是任何两个无穷小量都可以进行这种阶的比较。例如 $x \to 0$ 时, $x \sin \frac{1}{x}$ 和 x^2 都是无穷小 量, 但它们的比都不是有界量。

定理 3.5.3 设函数 f,g,h 在 $U^{\circ}(x_0)$ 上有定义,且有 $f(x) \sim g(x)(x \to x_0)$,则

1. 若
$$\lim_{x \to x_0} f(x)h(x) = A$$
,则 $\lim_{x \to x_0} g(x)h(x) = A$ 。
2. 若 $\lim_{x \to x_0} \frac{h(x)}{f(x)} = B$,则 $\lim_{x \to x_0} \frac{h(x)}{g(x)} = B$

定义 3.5.4 【无穷大量】 设函数 f 在某 $U^{\circ}(x_0)$ 上有定义,若对任给的 G>0,存在 $\delta>0$,使得当 $x \in U^{\circ}(x_0; \delta) \subset U^{\circ}(x_0)$ 时,有 |f(x)| > G,则称函数 $f \, \, \exists \, \, x \to x_0$ 时有非正常极限 ∞ ,记作 $\lim_{x \to a} f(x) = \infty$ 。

常见等价无穷小 3.6

实际上这些等价无穷小就是泰勒展开。

$$\frac{x}{1-x} = x + x^2 + x^3 + x^4 + x^5 + O(x^6)$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} + O(x^6)$$

$$\sin x = x - \frac{x^3}{6} + \frac{x^5}{120} + O(x^7)$$

$$1 - \cos x = \frac{x^2}{2} - \frac{x^4}{24} + O(x^6)$$

$$e^x - 1 = x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24} + \frac{x^5}{120} + O(x^6)$$

$$\tan x = x + \frac{x^3}{3} + \frac{2x^5}{15} + O(x^7)$$

$$\sqrt{x+1} - 1 = \frac{x}{2} - \frac{x^2}{8} + \frac{x^3}{16} - \frac{5x^4}{128} + \frac{7x^5}{256} + O(x^6)$$

$$\arcsin x = x + \frac{x^3}{6} + \frac{3x^5}{40} + O(x^7)$$

$$\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} + O(x^7)$$

第四章 函数的连续性

4.1 连续性的概念

定义 4.1.1 【连续性】 设函数 f 在某 $U(x_0)$ 上有定义。若

$$\lim_{x \to x_0} f(x) = f(x_0)$$

则称 f 在点 x_0 连续。

记 $\Delta x = x - x_0$,称为自变量 x 在点 x_0 的增量或改变量。设 $y_0 = f(x_0)$,相应的函数 y 在点 x_0 的增量记为

$$\Delta y = f(x) - f(x) = f(x + \Delta) - f(x_0) = y - y_0$$

连续性的 $\varepsilon - \delta$ 形式定义: 若对任给的 $\varepsilon > 0$, 存在 $\delta > 0$, 使得当 $|x - x_0| < \delta$ 时, 有 $|f(x) - f(x_0)| < \varepsilon$, 则称函数 f 在点 x_0 连续。

或者进一步表示为

$$\lim_{x \to x_0} f(x) = f\left(\lim_{x \to x_0} x\right)$$

定义 4.1.2 设函数 f 在某 $U_{+}(x_{0})$ 上有定义。若

$$\lim_{x \to x_0^+} f(x) = f(x_0)$$

则称 f 在点 x_0 右连续。同理左连续。

因此函数 f 在点 x_0 连续的充要条件是: f 在点 x_0 既是左连续, 又是右连续。

定义 4.1.3 【间断点】 设函数 f 在某 $U^{\circ}(x_0)$ 上有定义。若 f 在点 x_0 无定义,或 f 在点 x_0 有定义而不 连续,则称点 x_0 为函数 f 的间断点或不连续点。

若 $\lim_{x\to x_0} f(x) = A$,而 f 在点 x_0 无定义,或有定义但 $f(x_0) \neq A$,则称点 x_0 为 f 的可去间断点。 若函数 f 在点 x_0 的左、右极限都存在,但 $\lim_{x\to x_0^+} f(x) \neq \lim_{x\to x_0^-} f(x)$,则称点 x_0 为函数 f 的跳跃间断点。

可去间断点与跳跃间断点统称为第一类间断点,所有其他形式的间断点统称为第二类间断点。

若函数 f 在区间 I 上的每一点都连续,则称 f 为 I 上的连续函数。对于闭区间或半开区间的端点,函数在这些点上连续是指左连续或右连续。

4.2 连续函数的性质

定理 4.2.1 【局部有界性】 若函数 f 在点 x_0 连续,则 f 在某 $U(x_0)$ 上有界。

定理 4.2.2 【局部保号性】 若函数 f 在点 x_0 连续,且 $f(x_0) > 0$,则对任何正数 $r < f(x_0)$,存在某 $U(x_0)$,使得对一切 $x \in U(x_0)$,有 f(x) > r。

定理 4.2.3 【四则运算】 若函数 f,g 在点 x_0 连续,则 $f \pm g, f \cdot g, f/g$ 也都在点 x_0 连续。

定理 4.2.4 若函数 f 在点 x_0 连续, g 在点 u_0 连续, $u_0 = f(x_0)$, 则复合函数 $g \circ f$ 在 x_0 连续。

定义 4.2.5 设 f 为定义在数集 D 上的函数。若存在 $x_0 \in D$,使得对一切 $x \in D$,有 $f(x_0) \ge f(x)$,则称 f 在 D 上有最大值,并称 $f(x_0)$ 为 f 在 D 上的最大值。

定理 4.2.6 【最大、最小值定理】 若函数 f 在闭区间 [a,b] 上连续,则 f 在闭区间 [a,b] 上有最大值与最小值。

定理 4.2.7 【介值定理】 若函数 f 在闭区间 [a,b] 上连续,且 $f(a) \neq f(b)$ 。若 μ 为介于 f(a) 和 f(b) 之间的任何实数。则至少存在一点 $x_0 \in (a,b)$ 使得 $f(x_0) = \mu$ 。

定理 4.2.8 若函数 f 在 [a,b] 上严格单调并连续,则反函数 f^{-1} 在其定义域 $[\min\{f(a),f(b)\},\max\{f(a),f(b)\}]$ 上连续。

定义 4.2.9 设 f 是定义在区间 I 上的函数。若对任给的 $\varepsilon>0$ 存在 $\delta=\delta(\varepsilon)>0$ 使得对任何 $x',x''\in I$,只要 $|x'-x''|<\delta$ 就有

$$|f(x') - f(x'')| < \varepsilon$$

就称函数 f 在区间 I 上一致连续。

定理 4.2.10 【一致连续性】 若函数 f 在闭区间 [a,b] 上连续,则 f 在 [a,b] 上一致连续。

4.3 初等函数的连续性

定理 4.3.1 设 p > 0, a, b 为任意两个实数,则有

$$p^a \cdot p^b = p^{a+b}, (p^a)^b = p^{ab}$$

定理 4.3.2 指数函数 $a^x(a>0)$ 在 \mathbb{R} 上是连续的。

第五章 导数和微分

5.1 导数的定义

定义 5.1.1 设函数 y = f(x) 在点 x_0 的某邻域有定义, 若极限

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

存在,则称函数 f 在点 x_0 可导,并称该极限为函数 f 在点 x_0 的导数,记作 $f'(x_0)$ 。

定理 5.1.2 若函数 f 在点 x_0 可导,则 f 在点 x_0 连续。

定义 5.1.3 设函数 y = f(x) 在点 x_0 的某右邻域 $[x_0, x_0 + \delta]$ 上有定义,若右极限

$$\lim_{\Delta x \to 0^+} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0^+} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}, (0 < \Delta x < \delta)$$

存在,则称该极限值为 f 在点 x_0 的右导数,记作 $f'_+(x)$ 。同理有左导数。

左导数和右导数统称为单侧导数。

定理 5.1.4 若函数 y = f(x) 在点 x_0 的某邻域上有定义,则 $f'(x_0)$ 存在的充要条件是 $f'_{-}(x)$ 与 $f'_{+}(x)$ 都存在且相等。

若函数 f 在区间 I 上每一点都可导(对区间端点,仅考虑相应的单侧导数),则称 f 为 I 上的可导函数。此时对每一个 $x \in I$,都有 f 的一个导数 f'(x) (或单侧导数)与之对应。

这样就定义了一个在 I 上的函数,称为导函数,简称为导数。记作 $f',y',\frac{\mathrm{d}y}{\mathrm{d}x}$,即

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta) - f(x)}{\Delta}, x \in I$$

有时 $f'(x_0)$ 也可写作 $y'\mid_{x=x_0}$ 或 $\frac{\mathrm{d}y}{\mathrm{d}x}\mid_{x=x_0}$ 。

曲线 y = f(x) 在点 (x_0, y_0) 的切线方程是

$$y - y_0 = f'(x_0)(x - x_0)$$

定义 5.1.5 若函数 f 在点 x_0 的某邻域 $U(x_0)$ 上对一切 $x \in U(x_0)$ 有

$$f(x_0) \geqslant f(x)$$

则称 f 在点 x_0 取得极大值, 称点 x_0 为极大值点。同理有极小值点。

极大值、极小值统称为极值,极大值点、极小值点统称为极值点。

定理 5.1.6 【费马定理】 设函数 f 在点 x_0 的某邻域上有定义,且在点 x_0 可导。若点 x_0 为极值点,则必有 $f'(x_0) = 0$ 。

求导法则 5.2

定理 5.2.1 若函数 u(x) 和 v(x) 在点 x_0 可导,则函数 $f(x) = u(x) \pm v(x)$ 在点 x_0 也可导,且

$$f'(x_0) = u'(x_0) \pm v'(x_0)$$

函数 f(x) = u(x)v(x) 在点 x_0 也可导,且

$$f'(x_0) = u'(x_0)v'(x_0)$$

若 $v(x) \neq 0$,则函数 $f(x) = \frac{u(x)}{v(x)}$ 在点 x_0 也可导,且

$$f'(x_0) = \frac{u'(x_0)v(x_0) - u(x_0)v'(x_0)}{v(x_0)^2}$$

定理 5.2.2 设 y=f(x) 为 $x=\phi(x)$ 的反函数,若 $\phi(y)$ 在点 y_0 的某邻域上连续、严格单调且 $\phi'(y_0)\neq 0$, 则 f(x) 在点 $x_0 = \phi(y_0)$ 可导,且

$$f'(x_0) = \frac{1}{\phi'(y_0)}$$

定理 5.2.3 设 $u = \phi(x)$ 在点 x_0 可导, y = f(u) 在点 $u_0 = \phi(x_0)$ 可导, 则复合函数 $f \circ \phi$ 在点 x_0 可导, 且

$$(f \circ \phi)'(x_0) = f'(u_0)\phi'(x_0) = f'(\phi(x_0))\phi'(x_0)$$

基本求导法则 5.2.1

- 1. $(u \pm v)' = u' \pm v'$
- 2. (uv)' = u'v + uv'
- $3. \left(\frac{u}{v}\right) = \frac{u'v uv'}{v^2}$

基本初等函数导数公式 5.2.2

- 1. (c)' = 0 (c 为常数)
- 2. $(x^a)' = ax^{a-1}$ (a 为任意实数)
- 3. $(\sin x)' = \cos x, (\cos x)' = -\sin x, (\tan x)' = \sec^2 x$
- 4. $(\cot x)' = -\csc^2 x, (\sec x)' = \sec x \tan x, (\csc x)' = -\csc x \cot x$ 5. $(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}, (\arccos x)' = -\frac{1}{\sqrt{1-x^2}}, (\arctan x)' = \frac{1}{1+x^2}$
- 6. $(a^x)' = a^x \ln a (a > 0 \pm a \neq 1)$
- 7. $(\log_a |x|)' = \frac{1}{x \ln a} (a > 0 \perp a \neq 1)$

单调性与导数 5.3

定理 5.3.1 设 f 在区间 I 上可导,则 f(x) 在 I 上递增(减)的充要条件时

$$f'(x) \geqslant 0 (\leqslant 0)$$

定理 5.3.2 【介值定理】 设 f 为 [a,b] 上的连续函数, μ 时严格介于 f(a) 和 f(b) 之间的数,则存在 $\xi \in (a,b)$, 使得 $f(\xi) = \mu_{\circ}$

第六章 微分中值定理

6.1 拉格朗日 Lagrange 定理

定理 6.1.1 【罗尔 Rolle 中值定理】 若函数 f 在 [a,b] 上连续, 在 (a,b) 中可微, 且 f(a) = f(b)。则存在 $\xi \in (a,b)$,使得 $f'(\xi) = 0$ 。

定理 6.1.2 若函数 f 在 [a,b] 上连续, 在 (a,b) 中可微,则存在 $\xi \in (a,b)$,使得

$$f'(\xi) = \frac{f(b) - f(a)}{b - a}$$

Lagrange 公式还有下面几种等价形式

$$f(b) - f(a) = f'(\xi)(b - a), a < \xi < b$$

$$f(b) - f(a) = f'(a + \theta(b - a))(b - a), 0 < \theta < 1$$

$$f(a + h) - f(a) = f'(a + \theta h)h, 0 < \theta < 1$$

6.2 Cauchy 中值定理

定理 6.2.1 设 f,g 在 [a,b] 上连续, 在 (a,b) 中可微, 且 $g'(x) \neq 0$, 则存在 $\xi \in (a,b)$, 使得

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(\xi)}{g'(\xi)}$$

6.3 凹凸性

定义 6.3.1 设 f 为定义在区间 I 上的函数, 若对 I 上当任意两点 x_1, x_2 和任意实数 $\lambda \in (0,1)$ 总有

$$f(\lambda x_1 + (1 - \lambda)x_2) \leqslant \lambda f(x_1) + (1 - \lambda)f(x_2)$$

则称 f 为 I 上的凸函数。反之,如果总有

$$f(\lambda x_1 + (1 - \lambda)x_2) \geqslant \lambda f(x_1) + (1 - \lambda)f(x_2)$$

则称 f 为 I 上的凹函数。

第七章 积分的方法与技巧

这部分我的参考书是《积分的方法与技巧》(金玉明等)。

7.1 积分的存在性

先放这,稍后做整理。

定义 7.1.1 设函数 f 与 F 在区间 I 上都有定义。若

$$F'(x) = f(x), x \in I$$

则称 F 为 f 在区间 I 上的一个原函数。

定理 7.1.2 设 F 是 f 在区间 I 上的一个原函数,则 (1) F+C 也是 f 在 I 上的原函数,其中 C 为任意常量函数 (2) f 在 I 上的任意两个原函数之间,只可能相差一个常数。

证明 (1) 显然

$$[F(x) + C]' = F'(x) = f(x), x \in I$$

(2) 设 F 和 G 是 f 在 I 上的任意两个原函数,则有

$$[F(x) - G(x)]' = F'(x) - G'(x) = f(x) - f(x) = 0, x \in I$$

根据 Lagrange 中值定理,有

$$F(x) - G(x) \equiv C, x \in I$$

定义 7.1.3 函数 f 在区间 I 上的全体原函数称为 f 在 I 上的不定积分,记作

$$\int f(x)\mathrm{d}x = F(x) + C$$

其中 \int 称为积分号, f(x) 为被积函数, f(x)dx 为被积表达式, x 称为积分变量。

7.1.1 定积分

设闭区间 [a,b] 上有 n-1 个点,依次为

$$a = x_0 < x_1 < \dots < x_{n-1} < x_n = b$$

它们把 [a,b] 分为 n 个小区间 $\Delta_i = [x_{i-1},x_i], i=1,\cdots,n$ 。这些分点或这些闭子区间构成对 [a,b] 的一个分割,记为

$$T = \{x_0, \cdots, x_n\}$$
 或 $\{\Delta_1, \cdots, \Delta_n\}$

小区间 Δ_i 的长度为 $\Delta x_i = x_i - x_{i-1}$,并记

$$||T|| = \max_{1 \le i \le n} \{\Delta x_i\}$$

称为分割的模。

定义 7.1.4 设 f 是定义在 [a,b] 上的一个函数。对于 [a,b] 的一个分割 $T = \{\Delta_1, \dots, \Delta_n\}$,任取点 $\xi \in \Delta_i, i = 1, \dots, n$,并作和式

$$\sum_{i=1}^{n} f(\xi_i) \Delta x_i$$

称此和式为函数 f 在 [a,b] 上的一个积分和,也称黎曼和。

显然, 积分既与分割 T 与有关, 又与所选取的点集 $\{\xi_i\}$ 有关。

定义 7.1.5 设 f 是定义在 [a,b] 上的一个函数,J 是一个确定的实数。若对任给的正数 ϵ ,总存在某一正数 δ ,使得对 [a,b] 的任何分割 T,以及在其上任意选取的点集 $\{\xi_i\}$,只要 $||T|| < \delta$,就有

$$\left| \sum_{i=1}^{n} f(\xi_i) \Delta x_i - J \right| < \varepsilon$$

则称函数 f 在区间 [a,b] 上可积或黎曼可积;数 J 称为 f 在 [a,b] 上的定积分或黎曼积分,记作

$$J = \int_a^b f(x) dx = \lim_{\|T\| \to 0} \sum_{i=1}^n f(\xi_i) \Delta x_i$$

其中 f 称为被积函数, x 称为积分变量, [a,b] 称为积分区间, a,b 分别称为这个定积分的下限和上限。 **定理 7.1.6【Newton - Leibniz 公式】** 若函数 f 在 [a,b] 上连续, 且存在原函数 F, 即 $F'(x) = f(x), x \in [a,b]$, 则 f 在 [a,b] 上可积, 且

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

证明 即证对于任给的 $\varepsilon > 0$,存在 $\delta > 0$ 使得当 $||T|| < \delta$ 时有

$$\left| \sum_{i=1}^{n} f(\xi_i) \Delta x_i - [F(b) - F(a)] \right| < \varepsilon$$

对于任意分割 T,在每个小区间 $[x_{i-1},x_i]$ 上对 F(x) 使用 Lagrange 中值定理,则分别存在 $\eta_i \in (x_{i-1},x_i), i = 1, \dots, n$,使得

$$F(b) - F(a) = \sum_{i=1}^{n} F'(\eta_i) \Delta x_i = \sum_{i=1}^{n} f(\eta_i) \Delta x_i$$

又因为 f 在 [a,b] 上一致连续,因此存在 $\delta > 0$ 当 $x_1, x_2 \in [a,b]$ 且 $|x_1 - x_2| < \delta$ 时,有

$$|f(x_1) - f(x_2)| < \frac{\varepsilon}{b-a}$$

由 $\Delta x_i \leq ||T|| < \delta$ 时,任取 $\xi_i \in [x_{i-1}, x_i]$,便有 $|\xi_i - \eta_i| < \delta$,于是

$$LHS = \left| \sum_{i=1}^{n} [f(\xi_i) - f(\eta_i)] \Delta x_i \right| \leqslant \frac{\varepsilon}{b-a} \sum_{i=1}^{n} \Delta x_i = \varepsilon$$

于是 f 在 [a,b] 上可积。

7.1.2 可积条件

定理 7.1.7 若函数 f 在 [a,b] 上可积,则 f 在 [a,b] 上必定有界。

证明 反证,若 f 在 [a,b] 上无界,则对于即对于 [a,b] 的任意分割 T,必存在属于 T 的某区间 Δ_k ,使 f 在其上无界。在 $i \neq k$ 的各个区间 Δ_i 上取定 ξ_i ,记

$$G = \left| \sum_{i \neq k} f(\xi) \Delta x_i \right|$$

任意大的正数 M, 存在 $\xi_k \in \Delta_k$, 使得

$$|f(\xi_k)| > \frac{M+G}{\Delta x_k}$$

于是有

$$\left| \sum_{i=1}^{n} f(\xi) \Delta x_{i} \right| \geqslant |f(\xi_{k}) \Delta x_{k}| - \left| \sum_{i \neq k} f(\xi) \Delta x_{i} \right| > \frac{M+G}{\Delta x_{k}} \cdot \Delta x_{k} - G = M$$

有界函数不一定黎曼可积, 比如 Dirichlet 函数。

设 T 为对 [a,b] 的任意分割。由 f 在 [a,b] 上有界,它在每个 Δ_i 上存在上、下确界:

$$M_i = \sup_{x \in \Delta_i} f(x), m_i = \inf_{x = \Delta_i} f(x), i = 1, \dots, n$$

作和

$$S(T) = \sum_{i=1}^{n} M_i \Delta x_i, s(T) = \sum_{i=1}^{n} m_i \Delta x_i$$

分别称为 f 关于分割 T 的上和与下和 (或称达布上和与达布下和, 统称达布和)。 任给 $\xi_i = \Delta_i, i = 1, \cdots, n$,显然有

$$m(b-a) \leqslant s(T) \leqslant \sum_{i=1}^{n} f(\xi_i) \Delta x_i \leqslant S(T) \leqslant M(b-a)$$

与积分和相比较, 达布和只与分割 T 有关, 而与点集 $\{\xi_i\}$ 无关。

命题 7.1.8 给定分割 T,对于任何点集 $\{\xi_i\}$ 而言,上和时所有积分和的上确界,下和是所有积分和的下确界。

证明 设 Δ_i 中 M_i 是 f(x) 的上确界,故可选取点 $\xi = \Delta_i$,使 $f(\xi_i) > M_i - \frac{\varepsilon}{h-a}$,于是有

$$\sum_{i=1}^{n} f(\xi_i) \Delta x_i > \sum_{i=1}^{n} M_i \Delta x_i - \frac{\varepsilon}{b-a} \sum_{i=1}^{n} \Delta x_i = S(T) - \varepsilon$$

即 S(T) 是全体积分和的上确界。类似可证 s(T) 是全体积分和的下确界。

命题 7.1.9 设 T' 为分割 T 添加 p 个新分点后所得到的分割,则有

定理 7.1.10 函数 f 在 [a,b] 上可积的充要条件是: 人格 $\varepsilon > 0$, 总存在相应的一个分割 T 使得

$$S(T) - s(T) < \sum_{i=1}^{n} \omega_i \Delta x_i = \varepsilon$$

其中 ω 称为 f 在 Δ_i 上的振幅。

由充要条件, 我们可以得到一系列的可积函数类。

定理 7.1.11 若 f 为 [a,b] 上的连续函数,则 f 在 [a,b] 上可积。

证明 由于 f 在闭区间 [a,b] 上一致连续,即任给 $\varepsilon > 0$,存在 $\delta > 0$,对 [a,b] 中任意两点 x_1,x_2 ,只要 $|x_1 - x_2| < \delta$,便有

$$|f(x_1) - f(x_2)| < \frac{\varepsilon}{b-a}$$

所以对于在 [a,b] 的分割 T 满足 $||T|| < \delta$,在 T 所属的任一小区间 Δ_i 上,都有

$$\omega_i = M_i - m_i = \sup_{x_1, x_2 \in \Delta_i} |f(x_1) - f(x_2)| \leqslant \frac{\varepsilon}{b - a}$$

从而

$$\sum_{T} \omega_i \Delta x_i \leqslant \frac{\varepsilon}{b-a} \sum_{T} \Delta x_i = \varepsilon$$

7.2 分项积分法

若干微分式的和或差的不定积分,等于每个微分式的各自积分的和或差。

$$\int (f(x) + g(x) - h(x)) dx = \int f(x)dx + \int g(x)dx - \int h(x)dx$$

因此多项式的积分可以简单的通过积分各个单项式得到。

如果一个分式的分母为多项式,则可把它化成最简单的分式再积分。如

$$\frac{1}{x^2 - a^2} = \frac{1}{2a} \left(\frac{1}{x - a} - \frac{1}{x + a} \right)$$

这里可以通过通分后待定系数得到。于是其积分为

$$\int \frac{\mathrm{d}x}{x^2 - a^2} = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + C$$

对于更复杂的真分式的情况, 若要计算的是

$$\int \frac{mx+n}{x^2+px+q} \mathrm{d}x$$

分母不一定能直接分解, 但总能进行配方

$$x^{2} + px + q = \left(x + \frac{p}{2}\right)^{2} + q - \frac{p^{2}}{4} = t^{2} \pm a^{2}$$

再令 $A=m, B=n-\frac{1}{2}mp$,可得

$$\int \frac{mx+n}{x^2+nx+a} dx = \int \frac{At+B}{t^2+a^2} dt = A \int \frac{tdt}{t^2+a^2} + B \int \frac{dt}{t^2+a^2}$$

其中

$$A \int \frac{t dt}{t^2 \pm a^2} = \frac{A}{2} \int \frac{d(t^2 \pm a^2)}{t^2 \pm a^2} = \frac{A}{2} \ln|t^2 \pm a^2| + C$$

$$B \int \frac{dt}{t^2 + a^2} = \frac{B}{a} \arctan \frac{t}{a} + C$$

$$B \int \frac{t dt}{t^2 - a^2} = \frac{B}{2a} \ln\left|\frac{t - a}{t + a}\right| + C$$

因此当 $p^2 < 4q$ 时,可以得到

$$\int \frac{mx+n}{x^2+px+q} = \frac{A}{2} \ln|t^2+a^2| + \frac{B}{a} \arctan \frac{t}{a} + C$$
$$= \frac{m}{2} \ln|x^2+px+q| + \frac{2n-mp}{\sqrt{4q-p^2}} \arctan \frac{2x+p}{\sqrt{4q-p^2}} + C$$

当 $p^2 > 4q$ 时,可以得到

$$\int \frac{mx+n}{x^2+px+q} = \frac{A}{2} \ln|t^2 - a^2| + \frac{B}{2a} \ln\left|\frac{t-a}{t+a}\right|$$

$$= \frac{m}{2} \ln|x^2+px+q| + \frac{2n-mp}{2\sqrt{4q-p^2}} \ln\left|\frac{2x+p-\sqrt{p^2-4q}}{2x+p+\sqrt{p^2-4q}}\right| + C$$