

LOS Alamos NATIONAL LABORATORY

Impacts of streambed dynamics on nutrient and fine sediment transport in mountain rivers

Elowyn Yager¹, Nicole Hucke¹, Rachel Watts², Andrew Tranmer¹, Janice Brahney², **Joel Rowland**³, George Perkins³ and Rose Harris³

¹University of Idaho, Center for Ecohydraulics Research, 322 E. Front Street, Boise, ID 83712, USA ²Utah State University, Department of Watershed Sciences, 5200 Old Main Hill, Logan, UT 84322, USA ³Los Alamos National Laboratory, Earth and Environmental Sciences Division, Los Alamos, NM 87545, USA

Background

- Rivers typically have an armor layer of coarse sediment that protects the finer subsurface from erosion.
- Armor layer motion during high magnitude flows could release subsurface fine sediments that are enriched in Phosphorus (P) and Particulate Organic Carbon (POC).

• Hysteresis in POC, soluble reactive phosphorus (SRP), particulate phosphorus (PP), and suspended sediment (SS) may therefore be partly controlled by armor layer motion.

Methods

- Study Site: La Jara Creek
- An armored tributary of the East Fork
 Jemez River in the Valles Caldera
 National Preserve in New Mexico.
- Channel characteristics: Slope: 8-10%
 Width: 1 m
- Data were collected during high flow events in summer of 2021 and 2022
- Equipment is in two reaches:
- Upwelling
- Downwelling
 - Fieldwork still ongoing during spring and summer 2023

- Measurements

Water samples (SS, SRP, POC & PP)
Collected through stage-triggered portable ISCO samplers

These measurements were obtained with a YSI EXO2 Sonde

Laboratory Procedures

SS – Laser diffraction
method (LISST portable XR)
POC – Eurovector
elemental analyzer coupled
to an Isoprime IRMS
SRP & PP – SpectraMax M2e

Armor layer movement

RFID tracer particles and Hydrophones

Tracer particle locations were recorded

Particle sizes & distances Particle sizes & timing

- Size Class (mm)
 128
 90
 64
 45
 32
- before and after each high flow event.
 Transported distances were computed through the triangulation method using fixed reference points
- Hydrophone data is still being processed (no results yet)
- Field Experiments
- <u>Artificial pulse floods</u> Backed up and released water. Continuous water samples and RFID tracer movement was recorded
- Manually removed armor No flow manipulation, no hysteresis

Experiments were to isolate the effects of armor layer on nutrient and fine sediment concentrations in the water column

Results

- Only 3 storms have occurred during the study period: One storm occurred in 2021 and two occurred in 2022
- Hysteresis plots from the downwelling reach are displayed, but both reaches showed the same pattern type

The average value of all released constituents was higher in the downwelling reach. Same for peak values of POC and SS, but not for PP and SRP.

Notes: 1) This comparison is only available for storm 1, since all subsequent storms only have information on the downwelling reach.

2) The values seem to be similar between the upwelling and downwelling reaches within the standard error of the mean, but we need further storm data and actual bed concentrations to further prove this statement

Average concentrations for storm 1:					
Constituent	Upwelling	Downwelling			
SS (mg/L)	137.246 ± 54.4	196.498 ± 69.9			
SRP (mg/L)	0.0625 ± 0.008	0.07 ± 0.008			
PP (μmol/L)	0.443 ± 0.248	0.71 ± 0.252			
POC (mg/L)	17.31 ± 5.99	23.22 ± 8.87			

Peak concentrations for storm 1:								
Constituent	Upwelling	Downwelling						
SS (mg/L)	403.52	457.12						
SRP (mg/L)	0.09	0.088						
PP (μmol/L)	1.66	1.63						
POC (mg/L)	41.28	51.66						

RFID tracer particles: The river armor was displaced for each storm. The percent of bed that moved for each size class was considerably higher for storm 1 and 2 compared to storm 3, which could partly explain their differing hysteresis patterns.

	STORM 1			STORM 2		STORM 3		
Size Class	Percent of bed that moved (%)	Average moved Distance (cm)	Size Class	Percent of bed that moved (%)	Average moved Distance (cm)	Size Class	Percent of bed that moved (%)	Average moved Distance (cm)
128	0.00	0	128	0.00	0	128	0.00	0.00
90	28.57	19.67	90	66.67	19.89	90	33.33	18.45
64	60.00	30.33	64	43.75	21.88	64	25.00	93.63
45	57.14	56.29	45	61.90	46.93	45	19.05	40.70
32	71.43	27.50	32	48.72	36.93	32	33.33	43.02

Field Experiments: The artificial flood experiments showed consistent clockwise hysteresis for both SS and PP, but differing patterns for SRP. Further analysis is still being conducted as well as processing of POC samples.

Key Findings and current work

- Our results demonstrate how the amount of armor layer movement could impact the hysteresis patterns of released constituents.
- We are yet to determine if the timing of armor layer movement is an important factor. This will be done through the hydrophone data.
- Preliminarily, we found that downwelling reaches can potentially release higher SS and nutrient concentrations during high flow events. This is further being explored through riverbed sediment nutrient concentration comparisons in both reaches.
- We are conducting more field seasons during 2023 as well as the processing of POC samples.