# Hyperparameters tuning Part I

## Plan for the lecture

- Hyperparameter tuning in general
  - General pipeline
  - Manual and automatic tuning
  - What should we understand about hyperparameters?
- Models, libraries and hyperparameter optimization
  - Tree-based models
  - Neural networks
  - Linear models

### Plan for the lecture: models

- Tree-based models
  - GBDT: XGBoost, LightGBM, CatBoost
  - RandomForest/ExtraTrees
- Neural nets
  - Pytorch, Tensorflow, Keras...
- Linear models
  - SVM, logistic regression
  - Vowpal Wabbit, FTRL
- Factorization Machines (out of scope)
  - libFM, libFFM



## How do we tune hyperparameters

#### 1. Select the most influential parameters

a. There are tons of parameters and we can't tune all of them

## How do we tune hyperparameters

#### 1. Select the most influential parameters

- a. There are tons of parameters and we can't tune all of them
- 2. Understand, how exactly they influence the training

## How do we tune hyperparameters

#### 1. Select the most influential parameters

a. There are tons of parameters and we can't tune all of them

#### 2. Understand, how exactly they influence the training

#### 3. Tune them!

- a. Manually (change and examine)
- b. Automatically (hyperopt, etc.)

## Hyperparameter optimization software

- A lot of libraries to try:
  - Hyperopt
  - Scikit-optimize
  - Spearmint
  - GPyOpt
  - RoBO
  - SMAC3

## **Automatic hyperparameter optimization**

```
def xgb score(param):
   # run XGBoost with parameters `param`
def xgb hyperopt():
    space = {
         'eta' : 0.01,
         'max depth': hp.quniform('max depth', 10, 30,1),
         'min child weight' : hp.quniform('min child weight', 0, 100, 1),
         'subsample': hp.quniform('subsample', 0.1, 1.0, 0.1),
         'qamma' :
                            hp.quniform('gamma', 0.0, 30, 0.5),
         'colsample bytree' : hp.quniform('colsample bytree', 0.1, 1.0, 0.1),
         'objective': 'reg:linear',
         'nthread' : 28,
         'silent' : 1,
         'num round' : 2500,
         'seed' : 2441,
         'early stopping rounds':100
    best = fmin(xgb score, space, algo=tpe.suggest, max evals=1000)
```

# **Color-coding legend**

- 1. Underfitting (bad)
- 2. Good fit and generalization (good)
- 3. Overfitting (bad)

# **Color-coding legend**

- A parameter in red
  - Increasing it impedes fitting
  - Increase it to reduce overfitting
  - Decrease to allow model fit easier

# **Color-coding legend**

- A parameter in red
  - Increasing it impedes fitting
  - Increase it to reduce overfitting
  - Decrease to allow model fit easier
- A parameter in green
  - Increasing it leads to a better fit (overfit) on train set
  - Increase it, if model underfits
  - Decrease if overfits

## **Conclusion**

- Hyperparameter tuning in general
  - General pipeline
  - Manual and automatic tuning
  - What should we understand about hyperparameters?

## **Conclusion**

- Hyperparameter tuning in general
  - General pipeline
  - Manual and automatic tuning
  - What should we understand about hyperparameters?
- Models, libraries and hyperparameter optimization
  - Tree-based models
  - Neural networks
  - Linear models