Фильтр пакетов iptables

Дисциплина: Администрирование сетевых подсистем

Мишина Анастасия Алексеевна

Содержание

1	Введение	5
2	Фильтр пакетов iptables	6
3	Принцип работы iptables	8
4	Практическое применение iptables 4.1 Блокировка IP-адресов 4.2 Блокировка портов 4.3 Разрешение IP-адреса 4.4 Открытие портов 4.5 Запрет и разрешение ICMP-трафика	15 18 19 19 20 21
5	Заключение	23
Сп	исок литературы	24

Список иллюстраций

3.1	Схема работы iptables	13
4.1	Просмотр версии и текущей конфигурации iptables	17
4.2	Блокировка IP-адресов	18
4.3	Блокировка портов	19
	Разрешение IP-адреса	20
	Открытие портов	21
4.6	Запрет и разрешение ІСМР-трафика	22

Список таблиц

3.1	Список критериев	9
3.2	Основные действия с соединениями	10
3.3	Таблица Filter	11
3.4	Таблица NAT	12
4.1	Команды iptables	15

1 Введение

Фильтр пакетов iptables — это один из ключевых инструментов для управления сетевой безопасностью в Linux-системах. Он служит интерфейсом к подсистеме Netfilter в ядре Linux, которая обрабатывает входящие, исходящие и пересылаемые сетевые пакеты. С помощью iptables администраторы могут задавать правила фильтрации, которые определяют, какие пакеты будут пропускаться, блокироваться или перенаправляться.

Актуальность темы объясняется широким распространением Linux в качестве операционной системы для серверов, сетевых маршрутизаторов и межсетевых экранов. Настройка iptables позволяет обеспечить гибкую и эффективную защиту систем от несанкционированного доступа и атак, таких как DDoS, сканирование портов и других угроз.

Примером использования iptables может служить настройка брандмауэров для серверов, фильтрация трафика на границе корпоративных сетей, а также реализация политик доступа в VPN и маршрутизации на уровне операционной системы. Кроме того, iptables может использоваться для управления трафиком в домашней сети, помогая защитить устройства и данные от внешних угроз.

2 Фильтр пакетов iptables

Начнем с определения фильтра пакетов. Фильтр пакетов - программа, которая просматривает заголовки пакетов, по мере их прихода, и решает дальнейшую судьбу всего пакета. Фильтр может сбросить (DROP) пакет, т.е. как будто пакет и не приходил вовсе, принять (ACCEPT) пакет, т.е. пакет может пройти дальше, или сделать с ним что-то еще более сложное.

Зачем нужны фильтры пакетов?

- 1. Когда вы используете Linux для соединения своей локальной сети с другой сетью, например, с Интернетом, у вас есть возможность контролировать разрешение или блокировку различных типов трафика. Например, при использовании браузера может загружаться реклама какой-нибудь баннерной сети. Запрет через фильтр пакетов на прохождение всех пакетов к серверу баннерной сети или обратно, решает эту проблему.
- 2. Иногда плохо сконфигурированная машина отправляет в сеть какиелибо пакеты. В таком случае, можно настроить фильтр пакетов так, чтобы он уведомлял пользователя о таких действиях.

Как же можно фильтровать пакеты в Linux? Ядра Linux имеют способность фильтровать пакеты с версии 1.1. Однако, в середине 1998, для Linux 2.2, ядро было переработано и миру была представлена новая утилита для управления фильтром - ipchains. Далее в середине 1999, код ядра был

снова полностью преписан для версии 2.4, появилась утилита четвертого поколения "iptables". О ней и пойдет речь в данном докладе.

3 Принцип работы iptables

Iptables — популярная утилита командной строки для взаимодействия со встроенным в ядро Linux брандмауэром (он же firewall) под названием Netfilter. Утилита на текущий момент присутствует практически в любом дистрибутиве Linux.

В своей работе iptables использует механизм правил. Правила контролируют входящий и исходящий трафики и состоят в цепочках, которые разрешают или блокируют трафик.

При работе с iptables можно столкнуться со следующими терминами [1]:

1. Правила — определенные действия. Правила, используемые в iptables, предназначены для контроля входящего и исходящего сетевого трафика. Также с помощью правил можно настраивать проброс портов и создавать правила для разных протоколов. Правила состоят из критериев (некоторые из них поддерживают логическую НЕ, если перед ними поставить знак!) и цели. Критерии правил сопоставляются, а действия применяются к целевому объекту. Если критерий не удается сопоставить, то происходит обработка следующего правила. В таблицах ниже приведены списки критериев (табл. 3.1) и основных действий с соединениями (табл.3.2) [2].

Таблица 3.1: Список критериев

	Сокращен-	Поддержка	
Полный вид	ный вид	инверсии	Описание
-protocol	-p	да	указывает протокол, такие как
			tcp, udp, udplite и другие,
			поддерживаемые системой,
			ознакомиться со списком
			можно в файле /etc/protocols
—source	-S	да	указывает адрес источника
			пакета, в качестве значения
			можно указать как один
			IP-адрес, так и диапазон
-destination	-d	да	адрес получателя, синтаксис
			аналогичен предыдущему
			пункту
—match	-m	нет	подключает указанный
			модуль
—jump	-j	нет	когда правило подошло —
			выполнить указанное
			действие
-goto	-g	нет	перейти к указанной цепочке
			правил
—in-interface	-i	да	задает входящий сетевой
			интерфейс
-out-	-0	да	указывает исходящий сетевой
interface			интерфейс

	Сокращен-	Поддержка	_
Полный вид	ный вид	инверсии	Описание
—fragment	-f	да	указывает на фрагменты
			фрагментированных пакетов
-set-counters	-c	нет	устанавливает начальные
			значения счетчиков пакетов и
			байт
-destination-	-dport	да	порт получателя пакета
port			
-source-port	-sport	да	порт отправителя пакета

Таблица 3.2: Основные действия с соединениями

Действие	Описание
ACCEPT	Открывает (разрешает) соединение.
DROP	Закрывает соединение без отправки ответа
	клиенту.
QUEUE	Отправляет пакет в очередь для дальнейшего
	взаимодействия со сторонним приложением.
RETURN	Возвращает пакет на одно правило назад,
	прерывая обработку текущего правила.
REJECT	Блокирует соединение. В ответ будет
	отправлено сообщение об ошибке.
DENY	Отбрасывает входящее соединение. Отправка
	ответа не предусмотрена.
ESTABLISHED	Соединение установлено так как поступил
	уже не первый пакет в рамках данного сеанса.

- 2. Модуль дополнительный функционал который добавляет новые опции в iptables. Благодаря чему можно создавать более обширные и сложные правила для фильтрации трафика;
- 3. Цепочка последовательность или набор правил, которые определяют как будет обработан трафик;
- 4. Таблица это абстракция в iptables, в которой хранятся цепочки правил. В iptables присутствуют следующие таблицы: Raw, NAT, Filter, Mangle.
 - Таблица Filter таблица по умолчанию. Использует 3 цепочки: INPUT, FORWARD, OUTPUT (табл. 3.3).

Таблица 3.3: Таблица Filter

Цепочка	Описание		
INPUT	Управляет входящими соединениями. В		
	качестве примера можно привести		
	использование протокола SSH.		
FORWARD	Управляет входящими соединениями,		
	которые не поступают локально. Например,		
	такая ситуация обычно происходит на		
	маршрутизаторе.		
OUTPUT	Управляет исходящими соединений. В		
	качестве примера можно привести переход к		
	какому-либо сайту при помощи браузера.		

• Таблица NAT. Использует 3 цепочки: PREROUTING, POSTROUTING, OUTPUT (табл. 3.4).

Таблица 3.4: Таблица NAT

Цепочка	Описание
PREROUTING	Определяет IP-адрес назначения пакета.
POSTROUTING	Изменяет IP-адрес источника.
OUTPUT	Цепочка изменяет целевой адрес пакетов.

- Таблица Mangle предназначена для изменения IP-заголовков пакета. Содержится во всех пяти стандартных цепочках: INPUT, FORWARD, OUTPUT, PREROUTING, POSTROUTING.
- Таблица Raw предназначена для предоставления механизма для маркировки пакетов, с целью отказа от отслеживания соединений. Содержится в цепочках PREROUTING и OUTPUT.

Более подробный алгоритм работы iptables описан ниже (рис. 3.1).

Рис. 3.1: Схема работы iptables

Рассмотрим работу iptables. Сетевые пакеты поступают через сетевой интерфейс в стек TCP/IP и после базовых проверок (например, контрольной суммы) проходят через цепочки (chain). Первым обязательным этапом является цепочка PREROUTING. Далее, по таблице маршрутизации определяется, куда направить пакет: если он адресован не локальной системе, то идет в цепочку FORWARD, если локальной — в цепочку INPUT, после чего передается процессам системы.

После обработки локальной программой, при необходимости форми-

руется ответ. Он проходит через цепочку OUTPUT (или FORWARD если пакет проходящий) по правилам маршрутизации и попадает в цепочку POSTROUTING. Таблица nat и mangle может модифицировать получателя или отправителя сетевого пакета. Именно поэтому сетевой пакет несколько раз сверяется с таблицей маршрутизации.

Каждая цепочка включает таблицы (table), не связанные между собой, даже если они имеют одинаковые названия, например, nat в PREROUTING и POSTROUTING.

При прохождении цепочек пакет последовательно проверяется в каждой таблице на соответствие правилам. Если он соответствует условию, выполняется действие. Если ни одно правило не сработало, применяется политика по умолчанию (существует в каждой таблице кроме пользовательских), чаще всего это АССЕРТ (пропуск) или DROP (отклонение). Если пакет не отклонен, он передается на сетевой интерфейс в соответствии с маршрутизацией.

4 Практическое применение iptables

Для начала ознакомимся с общим синтаксисом (команды в квадратных скобках необязательные) [3]:

iptables [-t таблица] команда [критерии] [действие]

Также ознакомимся со списком команд (табл. 4.1).

Таблица 4.1: Команды iptables

Полный вид	Сокращенный вид	Описание
—append	-A	добавить правило в конец
		указанной цепочки
-check	-C	проверить существующие правила в
		заданной цепочке
-delete	-D	удалить правило с указанным
		номером в заданной цепочке
-insert	-I	вставить правило с заданным
		номером, без указания номера —
		правило будет по умолчанию
		добавлено первым
-replace	-R	заменить правило с указанным
		номером

Полный вид	Сокращенный вид	Описание
-list	-L	вывести список всех действующих
		правил со всех цепочек, если
		указать интересующую цепочку —
		вывод будет сделан только по ней
—list-rules	-S	построчный вывод всех правил во
		всех цепочках, если после ключа
		указать имя цепочки — будут
		выведены только ее правила
—flush	-F	удалить все правила, при указании
		имени цепочки — правила
		удаляться только в ней
-zero	-Z	обнулить все счетчики во всех
		цепочках, при указании цепочки —
		обнуление произойдет только в ней
-new	-N	создать пользовательскую цепочку
—delete-chain	-X	удалить пользовательскую цепочку
-policy	-P	установить политику по умолчанию
		для цепочки, обычно это АССЕРТ
		или DROP, она будет применена к
		пакетам, не попавшим ни под один
		критерий
-rename-	-E	переименовать цепочку, сначала
chain		указывается текущее имя, через
		пробел — новое
-help	-h	вывести справочную информацию
		по синтаксису iptables

Проверим установлен ли iptables с помощью команды: iptables --version. Выведем текущую конфигурацию и посмотрим на доступные правила с помощью команды iptables --list. Также просмотрим более расширенный формат вывода, где отображаются количество и размер обработанных пакетов в цепочках INPUT, FORWARD и OUTPUT, а также вывод IP-адреса и номеров портов в числовом формате (рис. 4.1).

```
root@server.aamishina.net ~]# iptables --version
iptables v1.8.10 (nf_tables)
[root@server.aamishina.net ~]# iptables --list
Chain INPUT (policy ACCEPT)
target prot opt source
ACCEPT all -- anywhere
                                           destination
                                           anywhere
Chain FORWARD (policy ACCEPT)
          prot opt source
                                           destination
Chain OUTPUT (policy ACCEPT)
                                          destination
target prot opt source
[root@server.aamishina.net ~]# iptables --line-numbers -L -v -n
Chain INPUT (policy ACCEPT 905 packets, 4317K bytes)
num pkts bytes target prot opt in out
1 36 5088 ACCEPT 0 -- lo *
                                                                             destination
                                                      0.0.0.0/0
Chain FORWARD (policy ACCEPT 0 packets, 0 bytes)
     pkts bytes target
                            prot opt in
                                                       source
                                                                             destination
Chain OUTPUT (policy ACCEPT 0 packets, 0 bytes)
num pkts bytes target prot opt in [root@server.aamishina.net ~]#
                                                       source
                                                                             destination
```

Рис. 4.1: Просмотр версии и текущей конфигурации iptables

При желании можно указать конкретную цепочку, чтобы отобразились только ее правила, например:

```
iptables -L INPUT
iptables -L FORWARD
iptables -L OUTPUT
```

При первом использование Iptables не создает и не хранит какие-либо цепочки правил, поэтому вывод команд выше будет пустым.

4.1 Блокировка ІР-адресов

Для блокировки IP-адрса необходимо добавить правило в цепочку INPUT, также необходимо указать таблицу (напомним, что если не использовать ключ -t, то правило попадет в таблицу Filter). Для примера возьмем адрес 10.0.36.126: iptables -t filter -A INPUT -s 10.0.36.126 -j REJECT, где опция

- -t указывает таблицу;
- -А указывает цепочку, в которую добавляем правила;
- - s указывает источник, к которому применяем действие;
- -j указывает действие, которое будет выполнено (REJECT отклонение трафика)

Также заблокируем всю подсеть сразу, указав ее в опции -s: iptables -A INPUT -s 10.0.36.0/255.255.255.0 -j REJECT. А если необходимо заблокировать исходящий трафик на конкретный IP-адрес, то можно использовать цепочку OUTPUT и опцию -d: iptables -A OUTPUT -d 10.0.36.126 -j REJECT (рис. 4.2).

```
root@server.aamishina.net ~]# iptables -t filter -A INPUT -s 10.0.36.126 -j REJECT
root@server.aamishina.net ~]# iptables -A INPUT -s 10.0.36.0/255.255.255.0 -j REJECT
root@server.aamishina.net ~]# iptables -A OUTPUT -d 10.0.36.126 -j REJECT root@server.aamishina.net ~]# iptables --line-number -L -v -n
 hain INPUT (policy ACCEPT 942 packets, 4320K bytes)
      pkts bytes target
                  0 REJECT
                                                                                            0.0.0.0/0
                                                                                                                       reject-with icmp-port-unreachabl
                  0 REJECT
                                                                 10.0.36.0/24
                                                                                            0.0.0.0/0
                                                                                                                       reject-with icmp-port-unreachabl
Chain FORWARD (policy ACCEPT 0 packets, 0 bytes)
                                                                                            destination
Chain OUTPUT (policy ACCEPT 42 packets, 3450 bytes)
       pkts bytes target
0 0 REJECT
                                                                  source
                                                                                            destination
                                                                  0.0.0.0/0
                                                                                                                       reject-with icmp-port-unreachabl
                                                                                            10.0.36.126
 root@server.aamishina.net ~]#
```

Рис. 4.2: Блокировка ІР-адресов

4.2 Блокировка портов

Для блокировки портов используется опция dport, где указывается порт необходимой службы или же имя службы. Например, заблокируем SSH-соединение с хоста 10.0.35.126 для протоколов TCP и UDP:

```
iptables -A INPUT -p tcp --dport ssh -s 10.0.36.126 -j REJECT iptables -A INPUT -p udp --dport ssh -s 10.0.36.126 -j REJECT
```

Исиспользованием порта сервиса SSH: iptables -A INPUT -p tcp -- dport 22 -s 10.0.36.126 -j REJECT.

Также заблокируем SSH-соединение с любого IP-адреса для протокола TCP: iptables -A INPUT -p tcp --dport ssh -j DROP (рис. 4.3).

```
root@server.aamishina.net ~]# iptables -A INPUT -p tcp --dport ssh -s 10.0.36.126 -j REJECT
root@server.aamishina.net ~]# iptables -A INPUT -p udp --dport ssh -s 10.0.36.126 -j REJECT
root@server.aamishina.net ~]# iptables -A INPUT -p tcp --dport 22 -s 10.0.36.126 -j REJECT
[root@server.aamishina.net ~]# iptables -A INPUT -p tcp --dport ssh -j DROP
[root@server.aamishina.net ~]# iptables --line-number -L -v -n
Chain INPUT (policy ACCEPT 947 packets, 4320K bytes)
     pkts bytes target
                                                                                  destination
                                                out
                                                           source
                0 REJECT
                                                          10.0.36.126
                                                                                   0.0.0.0/0
                                                                                                           reject-with icmp-port-unreachabl
                0 REJECT
                                                           10.0.36.0/24
                                                                                   0.0.0.0/0
                                                                                                           reject-with icmp-port-unreachabl
                0 REJECT
                                                           10.0.36.126
                                                                                  0.0.0.0/0
                                                                                                           tcp dpt:22 reject-with icmp-port
unreachable
                0 REJECT
                                                           10.0.36.126
                                                                                                          udp dpt:22 reject-with icmp-port
                                                                                  0.0.0.0/0
-unreachable
                0 REJECT
                                                           10.0.36.126
                                                                                  0.0.0.0/0
                                                                                                           tcp dpt:22 reject-with icmp-port
unreachable
                                                           8.8.8.8/8
                                                                                   0.0.0.0/0
                                                                                                           tcp dpt:22
Chain FORWARD (policy ACCEPT 0 packets, 0 bytes)
                                                                                   destination
num pkts bytes target
                              prot opt in
Chain OUTPUT (policy ACCEPT 47 packets, 3830 bytes)
     pkts bytes target prot opt in 0 0 REJECT 0 -- *
                                                           source
                                                                                   destination
                                                          0.0.0.0/0
                                                                                   10.0.36.126
                                                                                                           reject-with icmp-port-unreachabl
root@server.aamishina.net ~]#
```

Рис. 4.3: Блокировка портов

4.3 Разрешение ІР-адреса

Для открытия трафика по определенному IP-адресу используется действие ACCEPT: iptables -A INPUT -s 10.0.36.126 -j ACCEPT.

Можем разрешить трафик для сервера и с определенного диапазона IP-адресов, например с 10.0.36.126 до 10.0.36.156, использую модуль iprange и опцию –src-range: iptables -A INPUT -m iprange --src-range 10.0.36.126-10.0.36.156 -j ACCEPT.

Для выполнения обратной операции (разрешение трафика от сервера к определенным диапазонам IP-адресов) воспользуемся опцией —dst-range: iptables -A OUTPUT -m iprange --dst-range 10.0.36.126-10.0.36.156 -j ACCEPT (рис. 4.4).

roota	server.	aami	ishina.net	-10 i	ptab	les	-A INPUT -	m iprangesrc-ra	nge 10.0.36.126-10.0.	36.156 -i ACCEPT
									ange 10.0.36.126-10.0	
roote	server.	aam'	ishina.net	-]# i	ptab	les	line-num	iber -L -v -n		
hain	INPUT (poli	CY ACCEPT	952 p	acke	ts,	4321K byte	is)		
num	pkts by	tes	target	prot	opt	in	out	source	destination	
	θ	θ	REJECT	θ				10.0.36.126	0.0.0.0/0	reject-with icmp-port-unreachab
	θ	θ	REJECT	θ				10.0.36.0/24	0.0.0.0/0	reject-with icmp-port-unreachab
	0	Θ	REJECT	6				10.0.36.126	0.0.0.0/0	tcp dpt:22 reject-with icmp-por
unrea	chable									
•	. 0	0	REJECT	17				10.0.36.126	0.0.0.0/0	udp dpt:22 reject-with icmp-por
unrea	chable									
	. 0	U	REJECT	6		٠.		10.0.36.126	0.0.0.0/0	tcp dpt:22 reject-with icmp-por
unrea	chable 0		DROP	6				0.0.0.0/0	0 0 0 0/0	h d-4-22
	8		ACCEPT	8				10.0.36.126	0.0.0.0/0 0.0.0.0/0	tcp dpt:22
	0		ACCEPT	8				0.0.0.0/0	0.0.0.0/0	source IP range 10.0.36.126-10.
36.15		۳	ACCEPT	٥				0.0.0.0/0	0.0.0.0/0	Source 10 Tange 10.0.30.120-10.
Chain	FORWARD	(рс	olicy ACCE	PT 0 p	acke	ts,	0 bytes)			
num	pkts by	tes	target	prot	opt	in	out	source	destination	
hain	OUTPUT	(pol	licy ACCEP	T 52 p	acke	ts.	4210 bytes	·)		
			target	prot			out	source	destination	
	. 0	0	REJECT					0.0.0.0/0	10.0.36.126	reject-with icmp-port-unreachab
10.0	0 36.156	Θ	ACCEPT	θ				0.0.0.0/0	0.0.0.0/0	destination IP range 10.0.36.12

Рис. 4.4: Разрешение ІР-адреса

4.4 Открытие портов

Открывается порт с помощью опции -р. Если вам интересен полный список поддерживаемых протоколов, то можете ознакомиться с ними в файле /etc/protocols.

Задаем порт опцией dports, для открытия используем действие ACCEPT: iptables -A INPUT -p tcp --dport 22 -s 10.0.36.126 -j ACCEPT -

открытие 22 порта по протоколу ТСР для адреса 10.0.35.126.

Присутствует возможность открывать сразу несколько портов за раз, используя модуль multiport и опцию dports. Например, мы хотим открыть сразу порты 22, 80 и 443: iptables -A INPUT -p tcp -m multiport -- dports 22,80,443 -s 10.0.36.126 -j ACCEPT (рис. 4.5).

```
.
[root@server.aamishina.net ~]# iptables -A INPUT -p tcp --dport 22 -s 10.0.36.126 -j ACCEPT
root@server.aamishina.net ~]# iptables -A INPUT -p tcp -m multiport --dports 22,80,443 -s 10.0.36.126 -j ACCEPT
[root@server.aamishina.net ~]# iptables --line-number -L -v -n
Chain INPUT (policy ACCEPT 956 packets, 4321K bytes)
    pkts bytes target
               0 REJECT
                                                                          0.0.0.0/0
                                                                                               reject-with icmp-port-unreachabl
               0 REJECT
                                                    10.0.36.0/24
                                                                          0.0.0.0/0
                                                                                               reject-with icmp-port-unreachabl
               0 REJECT
                                                    10.0.36.126
                                                                          0.0.0.0/0
                                                                                               tcp dpt:22 reject-with icmp-port
-unreachable
               0 REJECT
                                                     10.0.36.126
                                                                          0.0.0.0/0
                                                                                               udp dpt:22 reject-with icmp-port
unreachable
               0 REJECT
                                                    10.0.36.126
                                                                          0.0.0.0/0
                                                                                               tcp dpt:22 reject-with icmp-port
unreachable
                                                                                               tcp dpt:22
               0 DROP
                                                    0.0.0.0/0
                                                                         0.0.0.0/0
               0 ACCEPT
                                                    10.0.36.126
                                                                         0.0.0.0/0
               0 ACCEPT
                                                    0.0.0.0/0
                                                                         0.0.0.0/0
                                                                                               source IP range 10.0.36.126-10.0
.36.156
                                                    10.0.36.126
                                                                                               tcp dpt:22
                                                                                               multiport dports 22,80,443
10
               0 ACCEPT
                                                    10.0.36.126
                                                                          0.0.0.0/0
Chain FORWARD (policy ACCEPT 0 packets, 0 bytes)
num pkts bytes target
                           prot opt in
                                                    source
                                                                         destination
Chain OUTPUT (policy ACCEPT 56 packets, 4514 bytes)
                                                                         destination
num pkts bytes target
1 0 0 REJECT
                                                    source
                                                    0.0.0.0/0
                                                                         10.0.36.126
                                                                                               reject-with icmp-port-unreachabl
               0 ACCEPT
                                                     0.0.0.0/0
                                                                          0.0.0.0/0
                                                                                               destination IP range 10.0.36.126
10.0.36.156
[root@server.aamishina.net ~]#
```

Рис. 4.5: Открытие портов

4.5 Запрет и разрешение ІСМР-трафика

Одна из распространённых возможностей Iptables — блокировка ICMPтрафика, создаваемого утилитой ping. Чтобы запретить входящие ICMPпакеты, следует выполнить следующую команду: iptables -A INPUT -j REJECT -p icmp --icmp-type echo-request. При запуске команды ping 127.0.0.1 видим, ошибки.

Чтобы разрешить трафик ICMP, необходимо выполнить команду: iptables -I INPUT 1 -p icmp --icmp-type echo-request -j ACCEPT. Однако, так как правила выполняются по порядку, то это правило

перекроется нашим первым правилом о запрете трафика. Так что необходимо использовать опцию -I с указанием места, на которое мы хотим поставить правило. Теперь ping выплоняется успешно (рис. 4.6).

```
[root@server.aamishina.net ~]# iptables -F
[root@server.aamishina.net ~]# iptables -A INPUT -j REJECT -p icmp --icmp-type echo-request
[root@server.aamishina.net ~]# ping 127.0.0.1
PING 127.0.0.1 (127.0.0.1) 56(84) bytes of data.
From 127.0.0.1 icmp_seq=1 Destination Port Unreachable
From 127.0.0.1 icmp_seq=2 Destination Port Unreachable
From 127.0.0.1 icmp_seq=3 Destination Port Unreachable
  -- 127.0.0.1 ping statistics ---
3 packets transmitted, θ received, +3 errors, 100% packet loss, time 2032ms
[root@server.aamishina.net ~]# iptables -I INPUT 1 -p icmp --icmp-type echo-request -j ACCEPT
[root@server.aamishina.net ~]# ping 127.0.0.1
PING 127.0.0.1 (127.0.0.1) 56(84) bytes of data.
64 bytes from 127.0.0.1: icmp_seq=1 ttl=64 time=0.034 ms
64 bytes from 127.0.0.1: icmp_seq=2 ttl=64 time=0.050 ms
54 bytes from 127.0.0.1: icmp_seq=3 ttl=64 time=0.063 ms
 -- 127.0.0.1 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2051ms
rtt min/avg/max/mdev = 0.034/0.049/0.063/0.011 ms
[root@server.aamishina.net ~]# iptables --line-number -L -v -n
Chain INPUT (policy ACCEPT 990 packets, 4324K bytes)
num pkts bytes target prot opt in out
1 3 252 ACCEPT 1 -- * *
2 3 252 REJECT 1 -- * *
                                                                                   source
0.0.0.0/0
                                                                                                                        destination
                                                                                                                        0.0.0.0/0
                                                                                                                                                            icmptype 8
                                                                                                                                                            icmptype 8 reject-with icmp-port
                                                                                                                         0.0.0.0/0
Chain FORWARD (policy ACCEPT 0 packets, 0 bytes)
                                                                                                                         destination
num pkts bytes target prot opt in
                                                                                      source
Chain OUTPUT (policy ACCEPT 113 packets, 9690 bytes)
num pkts bytes target prot opt in
[root@server.aamishina.net ~]#
                                                                                                                         destination
                                                                      out
                                                                                      source
```

Рис. 4.6: Запрет и разрешение ІСМР-трафика

5 Заключение

В заключение, iptables остается одним из наиболее востребованных инструментов для фильтрации пакетов в среде Linux. Его основные пре-имущества заключаются в высокой гибкости и мощных возможностях настройки, что позволяет администраторам детально контролировать входящий и исходящий трафик. Благодаря поддержке различных протоколов и возможности создания сложных правил, iptables идеально подходит для защиты серверов и сетей от несанкционированного доступа и атак.

Спрос на iptables остается высоким, особенно в среде облачных технологий и контейнеризации, где безопасность играет ключевую роль. Его интеграция с другими инструментами, такими как nftables, также позволяет расширить функциональность и упростить управление правилами. Таким образом, iptables продолжает оставаться актуальным инструментом для обеспечения сетевой безопасности в современных IT-инфраструктурах.

Список литературы

- 1. Andreasson O. Руководство по iptables (Iptables Tutorial 1.1.19). https://www.opennet.ru/docs/RUS/iptables/, 2001-2003.
- 2. Gregor N. P. Linux iptables Pocket Reference: Firewalls, NAT & Accounting. O'Reilly Media, 2004. 91 c.
- 3. Бархатов А. Обзор и практическое использование Iptables. https://timeweb.cloud/tutorials/network-security/obzor-i-prakticheskoe-ispolzovanie-iptables, 2024.