		54
Experiment 2		
	Name: Yash Sara Class: DBAD	9
	Course Outcome:	109.
	DOP: 7/9/2021	
	D08: 24/9/2021	
Teacher's Sign:		Student's Sign: Sign:
		•

Him: Implementation of DDA line drawing algorithm Telepheory: Digital Differential Analyzer (DDA): The DDA starts by calculating the smaller of de or dre for a unit increment of the other. A line is then sampled at unit increment intervals in one coordinate and corresponding integer values nearest the line path are determined for the other co-ordinate. Consider a line with positive slope, If the slope is less than or equal to 1, we sample at unit re intervals (dx=1) and compare successive y values as: Yk+= y+m. Subscript k takes integor values starting from O, for the 1st point and increased by ontil end point is reached. If value is rounded off by to nearest integer to correspond to a screen pixel. the whole of a and y i.e we sample at dy=1 and calculate consentive of values of results at results in Similar calculations are carried out to determine pixel positions along a line with negative slope. Thus, of the absolute value of the slope is less than I, we set dx = 1. If is the starting expresse point is at the left.

Rasterine it. Allews Home (69) to (11,12) (11,12) x, = 6 8 2 = 11. = 9 /2 42=12 dy = 3 = m. Xine = dx/steps = 5/5 = 1. Yime = dy/steps = 3/5 = 3/5. Plot (F(xnew), F(ynew))
" (F(6+0.5), F(0+0.5)) New Your 6 9 (F(7+0.5), F(9.6+0.5)) (F(8+0.5), F(10.2+0.5)) (F(9.40.5), F(10.8+0.5)) 10 10.2 8 10 2 10.8 (F(10+05), F(114+0.5)) 11.4 11 [F(11+05)] F(12+0.5)) 12 12 Digital Differential Analyzer Algorithm: Step 1: Start. Step 2: Declare x, y, x, y, dx, dy, x, y as indegers Step 3: Enter the value of x, 4, 1/2, 42. Step 4: Calculate dx = x2-x1 Calculate dy = 42-41 Step 5: If also (dx) > also (dy) then steps = abs (dx). steps = abs(dy). Step 6: Vinc = dre step Yine = dy/ step. assign x=x, y=y. Step 7: Set pixel (2,4). Step 8: x = x + xinc. Step 9: Set pixels (Mand (a), Mond(y)) Step 10: Repeat Step 8,9 until x= 12. Step 11: Raskerize the line AB using DDA where A(0,0) and B (84). $x_1 = 0$, $x_2 = 8$, $y_1 = 0$, $y_2 = 4$. $d_x = x_2 - x_1 = 8$. $d_y = 84 = 21$. $d_y = 4y_2 - y_1 = 4$. $d_x = 48$.

(F)	
1+(F(x 1))	
11/0/ 000000	0
0 0 0 plot (\$ (0\$+0.5), \$(0.5+0.5)) 1 0.5 plot (\$(1+05), \$(0.5+0.5))	1
2 2 1 plot (f (2+65), f (1+0.5)) 2	1
(1,10,00,00) ((10,00))	2
3 3 1.5 plot (f (3+0.5), f (1.5+0.5)) 4 4 4 2 plot (f (4+0.5), f (2+0.5)) 4	2
5 5 25 plot (f (5+05), f (2.5+0.5)) 5	3
6 6 3 plot $(\epsilon(6+0.5))$ 6	3
7 7 3.5 dot (f (+ 0.5) f (3.5 + 0.5)) 7	4
8 8 4 dot (f (8+0.5), f (4+0.5)) 8	4
Purch	
Conclusion: Advantages of DDA	
) DDA is the simplest algorithm and it closes not	
require special skills for implementation.	
ii) It is a faster method for colculating pixel position	oul.
Elimenates not multiplication by using server charace	
Disadvangtages of DDA.	
Disadvangtages of DDA. i) Floating point arithmetic in DDA alignithm is time consuming	efill
time Consuming	
in the algorithm is orientation dependant. Hence	end
point accuracy is poor.	
(iv) Rounding down takes time.	
time consuming The algorithm is orientation dependant. Hence point accuracy is poor. Rounding down takes time.	
Followed by the program code:	

CODE:

```
#include <graphics.h>
#include <conio.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
void main()
       int gd=DETECT,gm,i,errorcode;
       float x,y,dx,dy;
       int steps,r;
       int x0,x1,y0,y1;
       int color_val;
       initgraph(&gd,&gm,"C:\\TURBOC3\\BGI");
       errorcode=graphresult();
       if(errorcode!=0)
       {
              printf("Graphics error:%s\n",grapherrormsg(errorcode));
              printf("press any key to halt:");
              getch();
              exit(1);
       }
       setbkcolor(BLACK);
       x0=0,y0=0,x1=8,y1=4;
       dx=(float)(x1-x0);
      dy=(float)(y1-y0);
       steps=0;
       if(dx \ge dy)
              steps=dx;
      }
       else
       {
              steps=dy;
      }
       dx=dx/steps;
       dy=dy/steps;
       x=x0;
       y=y0;
       i=1;
       while(i<=steps)
              putpixel(x,y,RED);
              x+=dx;
              y+=dy;
```

```
i+=1;
}
//displaying thick lines
x=x0;
y=y0;
getch();
cleardevice();
outtextxy(150,50,"THICK LINE");
for(steps;steps>0;steps--)
{
       x=x+dx;
       y=y+dy;
       delay(20);
       putpixel(floor(x+0.5),floor(y+0.5),WHITE);
       putpixel(floor(x+1.5),floor(y+1.5),WHITE);
       putpixel(floor(x-1.5),floor(y-1.5),WHITE);
}
//displaying dashed lines
x=x0;
y=y0;
getch();
cleardevice();
outtextxy(150,50,"DASHED LINE");
for(steps;steps>0;steps--)
       x=x+dx;
       y=y+dy;
       delay(20);
       if(steps\%2==0)
               putpixel(floor(x+0.5),floor(y+0.5),WHITE);
       }
//displaying colored lines
x=x0;
y=y0;
color_val=0;
getch();
cleardevice();
outtextxy(150,50,"COLOR LINE");
for(steps;steps>0;steps--)
       x=x+dx;
       y=y+dy;
       delay(20);
       putpixel(floor(x+0.5),floor(y+0.5),color_val);
       color_val++;
```

```
if(color_val==15)
color_val=0;
}
getch();
closegraph();
```

