AI Project Presentation

Game Review Sentiment Analysis

Presented By: Devanshu Sawarkar, Pratham Agrawal, Devansh Motghare

PRN: 22070521090, 22070521078, 22070521076

Sem: 6th

Project Overview

- Objective: Classify game reviews to predict user recommendation (positive/negative sentiment)
- Dataset: Steam Game Review Dataset Kaggle
- Models: Naive Bayes and SVM classifiers
- **Tools**: Python, scikit-learn, NLTK, pandas

Dataset Used

- Name: Steam Game Review Dataset (Kaggle)
- Columns: review_id, title, year, user_review, user suggestion
- Size: 18000+ rows, 5 columns (7.6 GB)
- Steam is a digital distribution platform and storefront developed by Valve Corporation, primarily used for buying, downloading, and playing PC games. It's a software client that allows users to purchase and manage licenses to games, offering features like online multiplayer, community hubs, and more.

SYMBIOSIS INTERNATIONAL (DEEMED UNIVERSITY)

Data Preprocessing

- Text cleaning (lowercase, special character removal)
- Tokenization using NLTK
- Custom stopword removal (preserving sentiment-critical words)
- Word stemming with Porter Stemmer

```
def preprocess text(text):
    text = str(text).lower()
    text = re.sub(r'[^a-zA-Z\s]', '', text)
    tokens = word tokenize(text)
    stop words = set(stopwords.words('english'))
    important words = {'no', 'not', "don't", "doesn't", "didn't", ...}
    custom stopwords = stop words - important words
    tokens = [token for token in tokens if token not in custom stopwords]
    stemmer = PorterStemmer()
    tokens = [stemmer.stem(token) for token in tokens]
    return ' '.join(tokens)
```


Feature Engineering

TF-IDF Vectorization

- Max 5000 features
- Unigrams and bigrams (1–2-word phrases)
- Minimum document frequency: 2

```
tfidf_vectorizer = TfidfVectorizer(
    max_features=5000,
    ngram_range=(1,2),
    min_df=2
)
```

Top Features

Top words that influence classification:

Top Features:								
	feature	score						
1499	game	0.077965						
4822	you	0.068372						
3217	play	0.039527						
454	but	0.035777						
2923	not	0.029838						
1766	get	0.029021						
2430	like	0.028024						
2266	just	0.023855						
14	access	0.023456						
1078	earli	0.023382						
1079	earli access	0.022587						
4237	they	0.022512						
4337	time	0.021450						
1867	good	0.020876						
1477	fun	0.020730						
1000	dont	0.019103						
3014	one	0.018131						
3904	some	0.017704						
2646	me	0.017533						
2577	make	0.017460						

Model Performance

- SVM slightly outperforms Naive Bayes
- Both models show good balance between precision and recall

Model	Accuracy	Precision	Recall	F1-Score
Naïve Bayes	85%	0.85	0.84	0.84
SVM	86%	0.85	0.85	0.85

Key Insights

- Sentiment-preserving preprocessing is crucial
 - Keeping negation words improves accuracy
 - Custom stop word handling preserves review context
- Bigrams capture important phrases like "early access"
- Linear SVM provides the best performance for this task

Review: I absolutely loved playing this game, it is very good! Predicted Sentiment: Positive

Review: The graphics were terrible and the story made no sense. Predicted Sentiment: Negative

Review: A fun and addictive game, totally worth the time.

Predicted Sentiment: Positive

Review: It crashes every time I open it. Worst experience ever.

Predicted Sentiment: Negative

Review: One of the best games I've played in a long time!

Predicted Sentiment: Positive

Review: The game is okay but gets boring quickly.

Predicted Sentiment: Positive

Review: Very innovative gameplay and smooth performance.

Predicted Sentiment: Positive

Review: Too many bugs to even play. Avoid at all costs.

Predicted Sentiment: Negative

Review: The soundtrack is beautiful and the missions are exciting.

Predicted Sentiment: Positive

Review: Not impressed. Feels like an unfinished product.

Predicted Sentiment: Negative

SYMBIOSIS INTERNATIONAL (DEEMED UNIVERSITY)

Naive Bayes Results:							
	precision	recall	f1-score	support			
0	0.85	0.78	0.81	1473			
1	0.85	0.90	0.87	2026			
			0.05	2400			
accuracy			0.85	3499			
macro avg	0.85	0.84	0.84	3499			
weighted avg	0.85	0.85	0.85	3499			
SVM Results:							
	precision	recall	f1-score	support			
Ø	0.04	0.81	0.82	1472			
_	0.84			1473			
1	0.86	0.89	0.88	2026			
accuracy			0.86	3499			
macro avg	0.85	0.85	0.85	3499			
weighted avg	0.86	0.86	0.86	3499			
							

Applications

- Game developers: Automatically sort feedback by sentiment
- Distribution platforms: Highlight top positive/negative points
- Players: Quick assessment of game reception
- Market research: Track sentiment trends over time

Conclusion

- Successfully implemented a game review sentiment analysis system with 86% accuracy.
- Key achievements:
 - Effective preprocessing pipeline preserving sentiment indicators
 - Feature engineering capturing important context through n-grams
 - Robust classification performance on unseen reviews
- **Project demonstrates** how NLP techniques can extract valuable insights from user-generated content
- Business impact:
 - Helps game developers prioritize feedback
 - Enables data-driven decisions for game improvements
 - Provides automated analysis of large review volumes
- This framework can be extended to other digital products and customer feedback systems