חישוביות וסיבוכיות מבחן לדוגמה 1

פתרון לדוגמא

. , ד"ר יוחאי טוויטו, סמסטר א, תשפ"ה

מסמך זה כולל פתרון לדוגמא של המבחן. הפתרונות לשאלות הינן פתרונות לדוגמא. ניתן לפתור חלק בדרכים נוספות/אחרות, מלבד הדרך המוצעת בפתרון לדוגמא.

פתרונות

שאלה 1: מכונות טיורינג (20 נקודות)

(20 נקודות)

(נק') א'(15 נק')

<u>שיטה 1</u>

 $\sigma \in \{0, \dots, 9\} , \qquad \tau \in \{0, \dots, 9, *\} .$

מצב	סימון בסרט	מצב חדש	כתיבה	תזוזה	תנאי
X * *	σ	$X\sigma*$	√	R	
X * *	√	X * *	Q	R	
$X\sigma*$	$0,1,\ldots,9,\checkmark$	$X\sigma*$	Ω	R	
$X\tau *$	#	$Y\tau *$	Ω	R	
$Y\tau *$	σ	$Y\tau\sigma$	√	R	
$Y\tau *$	√	$Y\tau *$	Ω	R	
$Y\tau\sigma$	$0,1,\ldots,9,\checkmark$	$Y\tau\sigma$	Ω	R	
$Y \tau_1 \tau_2$	#	$Z au_1 au_2$	Ω	R	
$Z au_1 au_2$	✓	$Z au_1 au_2$	()	R	
$Z\tau_1\tau_2$	σ	back	√	L	$\sigma \geqslant \tau_1 + \tau_2 \wedge \sigma \neq \tau_1 \wedge \tau_1 \neq * \wedge \tau_2 \neq *$
Z * *		acc	Ω	R	
back	$0,1,\ldots,9,\checkmark$	back	D	L	
back		X * *	Ω	R	

שיטה 2

$$\sigma_i \in \{0, \dots, 9\} \ (1 \le i \le 3) \ , \qquad \tau \in \{0, \dots, 9, *\} \ .$$

מצב	סימון בסרט	מצב חדש	כתיבה	תזוזה	תנאי
X * *	σ_1	$X\sigma_{1}*$	√	R	
X * *	√	X * *	Ω	R	
$X\sigma_{1}*$	$0,1,\ldots,9,\checkmark$	$X\sigma_1*$	Ω	R	
$X\tau *$	#	$Y\tau *$	Ω	R	
$Y\sigma_{1}*$	σ_2	$Y\sigma_1\sigma_2$	√	R	$\sigma_1 + \sigma_2 \leqslant 9$
$Y\tau *$	✓	$Y\tau *$	Ω	R	
$Y\sigma_1\sigma_2$	$0,1,\ldots,9,\checkmark$	$Y\sigma_1\sigma_2$	Ω	R	$\sigma_1 + \sigma_2 \leqslant 9$
$Y\sigma_1\sigma_2$	#	$Z\sigma_1\sigma_2$	Ω	R	$\sigma_1 + \sigma_2 \leqslant 9$
Y * *	#	Z**	Ω	R	
$Z\sigma_1\sigma_2$	✓	$Z\sigma_1\sigma_2$	D	R	
$Z\sigma_1\sigma_2$	σ_3	back	√	L	$\sigma_3 \geqslant \sigma_1 + \sigma_2 \wedge \sigma_3 \neq \sigma_1$
Z * *	_ acc		Ω	R	
back	$0,1,\ldots,9,\checkmark$ back		()	L	
back	back X * *		Ω	R	

(5 נק') **סעיף ב'**

שאלה 2: וריאציות על מכונות טיורינג (20 נקודות)

(20 נקודות)

:טענה

TS שקול למודל T

הוכחה:

נוכיח כי:

TS מ"ט במודל T אם"ם \exists מ"ט שקולה במודל \exists

⇒ כיוון

תהי

$$M_T = (Q_T, \Sigma_T, \Gamma_T, \delta_T, q_{0T}, \mathsf{acc}_T, \mathsf{rej}_T)$$

מ"ט ממודל T. נבנה מ"ט שקולה

$$M_{TS} = (Q_{TS}, \Sigma_{TS}, \Gamma_{TS}, \delta_{TS}, q_{0TS}, \mathsf{acc}_{TS}, \mathsf{rej}_{TS})$$

TS של המודל

 M_{TS} של המעברים של הפונקצית המעברים של הפונקצית המעברים של

$$\forall q \in Q_T$$
, $\delta_{TS}(q, \sigma) = \delta_T(q, \sigma, m)$, $m \in \{L, R\}$.

⇒ כיוון

תהי

$$M_{TS} = (Q_{TS}, \Sigma_{TS}, \Gamma_{TS}, \delta_{TS}, q_{0TS}, \mathsf{acc}_{TS}, \mathsf{rej}_{TS})$$

מ"ט ממודל TS. נבנה מ"ט שקולה

$$M_T = (Q_T, \Sigma_T, \Gamma_T, \delta_T, q_{0T}, \mathsf{acc}_T, \mathsf{rej}_T)$$

T של המודל

S כאשר S, כאשר המעברים של המודל TS זהה לפונקציית המעברים במודל T, מלבד התווספה התזוזה T, כאשר מייצגת את המעבר שבו הראש לא זז.

 M_T במצב שהראש זז ימינה או שמאלה זהה לפונקצית המעברים של במצב שהראש זז ימינה או זיא הפונקצית המעברים של

$$\delta_{TS}(q_1, \sigma) = \delta_{TS}(q_2, \tau, L) \qquad \Rightarrow \quad \delta_T(q_1, \sigma) = \delta_T(q_2, \tau, L) ,$$

$$\delta_{TS}(q_1, \sigma) = \delta_{TS}(q_2, \tau, R) \qquad \Rightarrow \quad \delta_T(q_1, \sigma) = \delta_T(q_2, \tau, R) .$$

 M_T במכונה את התזוזה S במכונה

לשם כך, לכל מעבר

$$\delta_{TS}\left(q_1,\sigma\right) = \left(q_2,\tau,S\right)$$

 $: M_T$ של המ"ט M_{TS} נגדיר את המעבר הבא של נגדיר את

$$\delta_T(q_1, \sigma) = (q_{1L}, \tau, R) , \qquad \delta_T(q_{1L}, \sigma) = (q_2, \sigma, L) .$$
(*)

 σ על au על במקום וכותב את מעבר שבו הראש נשאר מדמה M_T מדמה את מעבר הזה במכונה (*): מלבד המעבר מלבוצת המצבים Q_T של M_{TS} של מלבד המעבר של לכן הקבוצת המצבים Q_{TS}

$$Q_T = Q_{TS} \cup \{q_{iL} \mid q_i \in Q_{TS}\} .$$

שאלה 3: התזה של צ'רץ'-טיורינג (20 נקודות)

(20) נקודות

השפה שעבורה עלינו למצוא דקדוק כללי היא

$$L = \left\{ a^{n^2} \middle| n \in \mathbb{N} \right\} .$$

הדקדוק הכללי הוא

$$G = (V, \Sigma, R, S)$$

כאשר

(8)

:הקבוצת המשתנים V ullet

$$V = \{A, B, [,], X, S\}$$
.

בוצת הטרמינילים: Σ

$$\Sigma = \{a\}$$

- הקבוצת הכללים שמפורטים למטה. ${\it R}$
 - המשתנה ההתחלתי S ullet

הכללים של הדקדוק הינם:

$$S \to [X] , \tag{1}$$

$$X \to AXB$$
, (2)

$$X \to \varepsilon$$
, (3)

$$AB \to BaA$$
, (4)

$$Aa \to aA$$
, (5)

$$A] \to], \tag{6}$$

$$[B \to [,$$

$$[a \to a[,$$
(8)

$$[] \rightarrow \varepsilon$$
 . (9)

עמוד 6 מתוך 10

הסבר של הכללים:

הסבר	כללים
$[A^nB^n]$ יוצרים מילים מצורה	(3) - (1)
אות A עובר את אות B בכיוון הימין ויוצר אות a כל פעם. כתוצאה, לכל אות B אנחנו יוצרים n אותיות a אותיות של a אותיות של a אותיות a אותיות של a בסה"כ.	(4)
אות A עובר את אות a בכיוון הימין.	(5)
משתנה A מתעלם כאשר הוא מגיע לאות $[$ בסוף המילה.	(6)
עובר את כל אות B בכיוון הימין ומאפס אות B כל פעם. $[$	(7)
עובר את כל אות a בכיוון הימין. $[$	(8)
] מתפטר.	(8)

שאלה 4: אי-כריעות (20 נקודות)

נתון

השפה 2MORE מוגדרת:

$$2MORE = \{ \langle M_1, M_2 \rangle \mid |L(M_1)| = |L(M_2)| + 2 \}.$$

 M_1 במילים, 2MORE היא השפה שכוללת כל זוגות של מחרוזות של מכונות טיורינג $\langle M_1, M_2 \rangle$ כך שבשפה של יש בדיוק שתי מילים יותר מהשפה של M_2 .

הרעיון של ההוכחה

 $\pm 2MORE$ קיימת רדוקציה משפה E לשפה

 $E \leqslant 2MORE$,

: כאשר $\{\langle M \rangle \mid L(M) = \varnothing\}$ לפי משפט הרדוקציה:

- לא כריעה $2MORE \Leftarrow 2$ לא כריעה.
- לא קבילה. $2MORE \Leftarrow 2MORE$ לא לא

עמוד 7 מתוך 10

הרדוקציה

(בנה פונק $\langle M_1, M_2 \rangle$ קלט של בהינתן בהינתן בהינתן $\langle M \rangle$ קלט של ביצור באופן הבא. בהינתן בהינתן בהינתן ביצור באופן הבא. בהינתן בהינתן בהינתן ביצור ביצור באופן הבא. בהינתן בהינתן בהינתן ביצור ביצור ביצור באופן הבא. בהינתן

$$\langle M \rangle \in E \quad \Rightarrow \quad \langle M_1, M_2 \rangle \in 2MORE ,$$

 $\langle M \rangle \notin E \quad \Rightarrow \quad \langle M_1, M_2 \rangle \notin 2MORE .$

נגדיר את המכונות טיורינג M_1 ו- M_2 באופן הבא:

$$x$$
 על כל קלט M_1 "

.acc
$$\leftarrow M_1$$
 אז $(x=="a")\lor(x=="b")$ אם (1

" .rej ←
$$M_1$$
 אחרת (2

x טל כל קלט $=M_2$

מריצה את המכונה M על הקלט x ועונה כמוה. ullet

נכונות הרדוקציה

$$\langle M
angle \in E$$
 אם

$$L(M_2) = \varnothing -1 L(M_1) = \{a, b\} \Leftarrow$$

$$|L(M_2)| = 0$$
 -1 $|L(M_1)| = 2 \Leftarrow$

$$|L(M_1)| = |L(M_2)| + 2 \Leftarrow$$

$$\langle M_1, M_2 \rangle \in 2MORE \Leftarrow$$

$$\langle M
angle \notin E$$
 אם

$$L(M_2) \neq \varnothing$$
 -1 $L(M_1) = \{a, b\} \Leftarrow$

$$|L(M_2)| > 0$$
 -1 $|L(M_1)| = 2 \iff$

$$|L(M_1)| < |L(M_2)| + 2 \iff$$

$$\langle M_1, M_2 \rangle \notin 2MORE \Leftarrow$$

שאלה 5: סיבוכיות זמן (20 נקודות)

פונקצית הרדוקציה:

 $\langle G',k' \rangle \in CLIQUE$ אנחנו נגדיר פונקצית הרדוקציה f שבהינתן זוג אנחנו $\langle G,k \rangle \in IS$ הקלט של (CLIQUE), כלומר (הקלט של

$$f\left(\langle G, k \rangle\right) = \langle G', k' \rangle . \tag{*1}$$

כך שהתנאי הבא מתקיים:

$$\langle G, k \rangle \in IS \quad \Leftrightarrow \quad \langle G', k' \rangle \in CLIQUE \ .$$
 (*2)

הפונקציית הרדוקציה מוגדרת לפי התנאים הבאים:

.G = (V, E) בהינתן גרף (1

אז $ar{G}=(V,ar{E})$ כאשר, הוא הגרף המשלים G'

$$\bar{E} = \{(u_1, u_2) \mid (u_1, u_2) \notin E\}$$
.

.k' = k (2

כדוגמה: בהינתן הגרף G=(V,E) שמכיל קבוצה בלתי תלוייה בגודל k=3. הפונקציית הרדוקציה יוצרת את כדוגמה: $\bar{G}=(V,\bar{E})$ את המספר $\bar{G}=(V,\bar{E})$, כמתואר בתרשים למטה:

נכונות הרדוקציה

 $.\langle G,k
angle \in IS \quad \Leftrightarrow \quad \langle G',k'
angle \in CLIQUE$ כעת נוכיח שמתקיים:

⇒ כיוון

.k בהינתן גרף G=(V,E) ושלם גריים כי $.\langle G,k
angle \in IS$ נניח כי

מכיל קבוצה בלתי תלויה בגודל k לפחות.

עמוד 9 מתוך 10

- k מכיל קבוצה בלתי תלוייה S בגודל $G \Leftarrow$
 - $.(u_1,u_2)
 otin E$ אם $u_1,u_2\in S$ אם \Leftarrow

G שני קדקודים ב- לא מחוברים בצלע של S כלומר, כל שני קדקודים ב-

$$.(u_1,u_2)\in ar{E}$$
 אם $u_1,u_2\in S$ אם \Leftarrow . $ar{G}$ כלומר, כל שני קדקודים ב- S מחוברים בצלע של

- $ar{G}$ הקבוצה S היא קליקה בגודל k של \in
- $G'=ar{G}$ של k'=k של קליקה בגודל היא קליקה היא S הקבוצה \Leftarrow
 - $\langle G', k' \rangle \in CLIQUE \Leftarrow$

⇒ כיוון

$$.k'$$
 בהינתן גרף G' ושלם $.\langle G', k'
angle \in CLIQUE$ נניח כי

- .(k'=k -ו $G'=ar{G}$,וווע הרדוקצית הרדוקצית פי ההגדרה של פי ההגדרה (כי על פי ההגדרה של הפונקצית הרדוקציה,
 - ת. מכיל קליקה בגודל לפחות. $\bar{G} \Leftarrow$
 - .k מכיל קליקה מכיל $\bar{G} \Leftarrow$
 - $.(u_1,u_2)\in ar E$ אז $u_2\in C$ וגם $u_1\in C$ אם \Leftarrow .ar C כלומר, כל שני קדקודים ב-
 - $.(u_1,u_2)\notin E$ אז $u_2\in C$ אם $u_1\in C$ אם $u_2\in C$ אם כלומר, כל שני קדקודים ב- C לא מחוברים בצלע של הגרף
 - G של k של בגודל בלתי תלוייה בגודל היא קבוצה בלתי היא קבוצה C
 - $A(G,k) \in IS \Leftarrow$