

BITS Pilani
Pilani Campus

Computer Networks (CS F303)

Virendra Singh Shekhawat Department of Computer Science and Information Systems

Second Semester 2020-2021 Module-3 < Transport layer>

- Transport Layer
- TCP Protocol
 - Connection Establishment
 - TCP Segment Structure
 - Reliable data transfer
 - Flow control
 - Timeout Estimation
 - Congestion control
 - TCP Fairness
 - TCP Variants

Fairness Goal: if K TCP sessions share same bottleneck link of bandwidth R, each should have average rate of R/K

Fairness and UDP

- Multimedia apps often do not use TCP
 - Do not want rate throttled by congestion control
- Instead use UDP
 - Send audio/video at constant rate, tolerate packet loss
- Multimedia applications running over UDP are not being fair.
 Why???

Fairness and Parallel TCP Connections

- Web browsers often use multiple parallel TCP connections
 - To transfer multiple objects within a Web page

 Application level fairness with multiple parallel TCP connections???

TCP Fairness with different RTT

- Flows sharing bottleneck link with different RTT do not get same bandwidth. Why???
 - BW is proportional to 1/RTT

Goals for Improving TCP Fairness and Throughput

- Fast window growth
 - Slow start and additive increase are too slow when bandwidth is large
 - Want to converge more quickly
- Maintain fairness with other TCP variants
 - Window growth cannot be too aggressive
- Improve RTT fairness
 - TCP Tahoe/Reno flows are not fair when RTTs vary widely

Compound TCP Implementation

- Default TCP implementation in Windows 2008 TCP Stack
- Key idea: split cwnd into two separate windows
 - Traditional, loss-based window and new, delay-based window
- wnd = min(cwnd + dwnd, adv_wnd)
 - cwnd is controlled by AIMD
 - dwnd is the delay window
- Rules for adjusting dwnd:
 - If RTT is increasing, decrease dwnd (dwnd >= 0)
 - If RTT is decreasing, increase dwnd
 - Increase/decrease are proportional to the rate of change

Compound TCP Example

- Aggressiveness corresponds to changes in RTT
- +ive: fast ramp up, more fair to flows with different RTTs
- -ive: must estimate RTT, which is challenging

- cwnd = C(t K)³ + W_{max}
 - W_{max} = cwnd before last reduction
 - β multiplicative decrease factor
 - C scaling factor
 - t is the time elapsed since last window reduction

$$K = \sqrt[3]{W\beta/C}$$

TCP CUBIC Example

- Time
- Less wasted bandwidth due to fast ramp up
- Stable region and slow acceleration help maintain fairness
 - Fast ramp up is more aggressive than additive increase
 - To be fair to Tahoe/Reno, CUBIC needs to be less aggressive

Network Layer

- Network layer service models (Datagram, MPLS and ATM)
- Forwarding versus Routing
- How a router works?
- IPv4 Datagram and Fragmentation
- IPv4 Addressing
 - Hierarchical Addressing
 - NAT, Sub Netting, IPv4 to IPv6 translation, ICMP
- Routing Algorithms and Protocols
 - Inter-domain Routing and Intra-domain routing
- Multicast Routing

Network layer

innovate achieve lead

- Transport segment from sending to receiving host
- On sending side encapsulates segments into datagrams
- On receiving side, delivers segments to transport layer
- Router examines header fields in all IP datagrams passing through it

- Datagram network
 - Network-layer connectionless service
- VC Network
 - Network-layer connection service

- Analogous to the transport-layer services, but
 - Service: host-to-host
 - No choice: network provides one or the other
 - Implementation: in network core

- No call setup at network layer
- Routers: no state about end-to-end connections
 - No network-level concept of "connection"
- Packets forwarded using destination host address
 - Packets between same src-dest pair may take different paths

- 20 bytes of TCP
- 20 bytes of IP
- = 40 bytes + app layer overhead

lead

Thank You