

CS201 DISCRETE MATHEMATICS FOR COMPUTER SCIENCE

Dr. QI WANG

Department of Computer Science and Engineering

Office: Room903, Nanshan iPark A7 Building

Email: wangqi@sustech.edu.cn

Properties of Relations

■ Reflexive Relation: A relation R on a set A is called reflexive if $(a, a) \in R$ for every element $a \in A$.

Irreflexive Relation: A relation R on a set A is called *irreflexive* if $(a, a) \notin R$ for every element $a \in A$.

Symmetric Relation: A relation R on a set A is called *symmetric* if $(b, a) \in R$ whenever $(a, b) \in R$ for all $a, b \in A$.

Antisymmetric Relation: A relation R on a set A is called antisymmetric if $(b, a) \in R$ and $(a, b) \in R$ implies a = b for all $a, b \in A$.

Transitive Relation: A relation R on a set A is called *transitive* if $(a, b) \in R$ and $(b, c) \in R$ implies $(a, c) \in R$ for all $a, b, c \in A$.

Connectivity

■ **Lemma**: Let A be a set with n elements, and R a relation on A. If there is a path from a to b with $a \neq b$, then there exists a path of length $\leq n - 1$.

$$R^* = \bigcup_{k=1}^n R^k$$

Connectivity

■ **Lemma**: Let A be a set with n elements, and R a relation on A. If there is a path from a to b with $a \neq b$, then there exists a path of length $\leq n - 1$.

$$R^* = \bigcup_{k=1}^n R^k$$

Theorem: The transitive closure of a relation R equals the connectivity relation R^* .

Connectivity

■ **Lemma**: Let A be a set with n elements, and R a relation on A. If there is a path from a to b with $a \neq b$, then there exists a path of length $\leq n-1$.

$$R^* = \bigcup_{k=1}^n R^k$$

Theorem: The transitive closure of a relation R equals the connectivity relation R^* .

Recall Finding a transitive closure corresponds to finding all pairs of elements that are connected with a directed path

Equivalence Relation

- **Definition** A relation R on a set A is called an *equivalence* relation if it is reflexive, symmetric, and transitive.
- **Definition** Let R be an equivalence relation on a set A. The set of all elements that are related to an element a of A is called the *equivalence class* of a, denoted by $[a]_R$. When only one relation is considered, we use the notation [a].

$$[a]_R = \{b : (a, b) \in R\}$$

Equivalence Classes and Partitions

■ **Theorem** Let *R* be an equivalence relation on a set *A*. Then union of all the equivalence classes of *R* is *A*:

$$A = \bigcup_{a \in A} [a]_R$$

Equivalence Classes and Partitions

■ **Theorem** Let *R* be an equivalence relation on a set *A*. Then union of all the equivalence classes of *R* is *A*:

$$A = \bigcup_{a \in A} [a]_R$$

Theorem The equivalence classes form a partition of A.

Equivalence Classes and Partitions

■ **Theorem** Let *R* be an equivalence relation on a set *A*. Then union of all the equivalence classes of *R* is *A*:

$$A = \bigcup_{a \in A} [a]_R$$

Theorem The equivalence classes form a partition of A.

Theorem Let $\{A_1, A_2, \ldots, A_i, \ldots\}$ be a partition of S. Then there is an equivalence relation R on S, that has the sets A_i as its equivalence classes.

■ **Definition** A relation R on a set S is called a *partial* ordering, or partial order, if it is reflexive, antisymmetric, and transitive. A set S together with a partial ordering R is called a partially ordered set, or poset, denoted by (S, R). Members of S are called elements of the poset.

■ **Definition** A relation R on a set S is called a *partial* ordering, or partial order, if it is reflexive, antisymmetric, and transitive. A set S together with a partial ordering R is called a partially ordered set, or poset, denoted by (S, R). Members of S are called elements of the poset.

$$S = \{1, 2, 3, 4, 5\}, R$$
 denotes the "\ge " relation

■ **Definition** A relation R on a set S is called a *partial* ordering, or partial order, if it is reflexive, antisymmetric, and transitive. A set S together with a partial ordering R is called a partially ordered set, or poset, denoted by (S, R). Members of S are called elements of the poset.

$$S = \{1, 2, 3, 4, 5\}$$
, R denotes the " \geq " relation Is R reflexive?

■ **Definition** A relation R on a set S is called a *partial* ordering, or partial order, if it is reflexive, antisymmetric, and transitive. A set S together with a partial ordering R is called a partially ordered set, or poset, denoted by (S, R). Members of S are called elements of the poset.

$$S = \{1, 2, 3, 4, 5\}$$
, R denotes the " \geq " relation Is R reflexive? Yes

■ **Definition** A relation R on a set S is called a *partial* ordering, or partial order, if it is reflexive, antisymmetric, and transitive. A set S together with a partial ordering R is called a partially ordered set, or poset, denoted by (S, R). Members of S are called elements of the poset.

Example:

 $S = \{1, 2, 3, 4, 5\}$, R denotes the " \geq " relation

Is R reflexive? Yes

Is R antisymmetric?

■ **Definition** A relation R on a set S is called a *partial* ordering, or partial order, if it is reflexive, antisymmetric, and transitive. A set S together with a partial ordering R is called a partially ordered set, or poset, denoted by (S, R). Members of S are called elements of the poset.

Example:

 $S = \{1, 2, 3, 4, 5\}$, R denotes the "\ge " relation

Is R reflexive? Yes

Is R antisymmetric? Yes

■ **Definition** A relation R on a set S is called a *partial* ordering, or partial order, if it is reflexive, antisymmetric, and transitive. A set S together with a partial ordering R is called a partially ordered set, or poset, denoted by (S, R). Members of S are called elements of the poset.

Example:

 $S = \{1, 2, 3, 4, 5\}$, R denotes the "\ge " relation

Is R reflexive? Yes

Is R antisymmetric? Yes

Is R transitive?

■ **Definition** A relation R on a set S is called a *partial* ordering, or partial order, if it is reflexive, antisymmetric, and transitive. A set S together with a partial ordering R is called a partially ordered set, or poset, denoted by (S, R). Members of S are called elements of the poset.

Example:

 $S = \{1, 2, 3, 4, 5\}$, R denotes the "\ge " relation

Is R reflexive? Yes

Is R antisymmetric? Yes

Is R transitive? Yes

■ **Definition** A relation R on a set S is called a *partial* ordering, or partial order, if it is reflexive, antisymmetric, and transitive. A set S together with a partial ordering R is called a partially ordered set, or poset, denoted by (S, R). Members of S are called elements of the poset.

Example:

 $S = \{1, 2, 3, 4, 5\}$, R denotes the "\ge " relation

Is R reflexive? Yes

Is R antisymmetric? Yes

Is R transitive? Yes

R is a partial ordering

$$S = \{1, 2, 3, 4, 5, 6\}$$
, R denotes the "|" relation

Example:

 $S = \{1, 2, 3, 4, 5, 6\}$, R denotes the "|" relation

Is R reflexive? Yes

Is R antisymmetric? Yes

Is R transitive? Yes

Example:

 $S = \{1, 2, 3, 4, 5, 6\}$, R denotes the "|" relation

Is R reflexive? Yes

Is R antisymmetric? Yes

Is R transitive? Yes

R is a partial ordering

Comparability

Definition The elements a and b of a poset (S, \preceq) are comparable if either $a \preceq b$ or $b \preceq a$. Otherwise, a and b are called *incomparable*.

Comparability

■ **Definition** The elements a and b of a poset (S, \preccurlyeq) are comparable if either $a \preccurlyeq b$ or $b \preccurlyeq a$. Otherwise, a and b are called *incomparable*.

$$S = \{1, 2, 3, 4, 5, 6\}$$
, R denotes the "|" relation

Comparability

■ **Definition** The elements a and b of a poset (S, \preccurlyeq) are comparable if either $a \preccurlyeq b$ or $b \preccurlyeq a$. Otherwise, a and b are called *incomparable*.

Example:

$$S = \{1, 2, 3, 4, 5, 6\}$$
, R denotes the "|" relation

2, 4 are comparable, 3, 5 are incomparable.

Total Ordering

Definition If (S, \preccurlyeq) is a poset and every two elements of S are comparable, S is called a *totally ordered* or *linearly ordered set*, and \preccurlyeq is called a *total order* or a *linear order*. A totally ordered set is also called a *chain*.

Total Ordering

Definition If (S, \preccurlyeq) is a poset and every two elements of S are comparable, S is called a *totally ordered* or *linearly ordered set*, and \preccurlyeq is called a *total order* or a *linear order*. A totally ordered set is also called a *chain*.

$$S = \{1, 2, 3, 4, 5, 6\}$$
, R denotes the "\ge " relation

Total Ordering

Definition If (S, \preccurlyeq) is a poset and every two elements of S are comparable, S is called a *totally ordered* or *linearly ordered set*, and \preccurlyeq is called a *total order* or a *linear order*. A totally ordered set is also called a *chain*.

Example:

$$S = \{1, 2, 3, 4, 5, 6\}$$
, R denotes the "\ge " relation

S is a chain.

Lexicographic Ordering

Definition Given two posets (A_1, \preccurlyeq_1) and (A_2, \preccurlyeq_2) , the *lexicographic ordering* on $A_1 \times A_2$ is defined by specifying that (a_1, a_2) is less than (b_1, b_2) , i.e., $(a_1, a_2) \prec (b_1, b_2)$, either if $a_1 \prec_1 b_1$ or if $a_1 = b_1$ then $a_2 \prec_2 b_2$.

Lexicographic Ordering

Definition Given two posets (A_1, \preccurlyeq_1) and (A_2, \preccurlyeq_2) , the *lexicographic ordering* on $A_1 \times A_2$ is defined by specifying that (a_1, a_2) is less than (b_1, b_2) , i.e., $(a_1, a_2) \prec (b_1, b_2)$, either if $a_1 \prec_1 b_1$ or if $a_1 = b_1$ then $a_2 \prec_2 b_2$.

Example Consider strings of lowercase English letters. A lexicographic ordering can be defined using the ordering of the letters in the alphabet. This is the same ordering as that used in dictionaries.

Lexicographic Ordering

Definition Given two posets (A_1, \preccurlyeq_1) and (A_2, \preccurlyeq_2) , the *lexicographic ordering* on $A_1 \times A_2$ is defined by specifying that (a_1, a_2) is less than (b_1, b_2) , i.e., $(a_1, a_2) \prec (b_1, b_2)$, either if $a_1 \prec_1 b_1$ or if $a_1 = b_1$ then $a_2 \prec_2 b_2$.

Example Consider strings of lowercase English letters. A lexicographic ordering can be defined using the ordering of the letters in the alphabet. This is the same ordering as that used in dictionaries.

- ♦ discreet ≺ discrete
- ♦ discreet ≺ discreetness

Hasse Diagram

A Hasse diagram is a visual representation of a partial ordering that leaves out edges that must be present because of the reflexive and transitive properties.

Hasse Diagram

A Hasse diagram is a visual representation of a partial ordering that leaves out edges that must be present because of the reflexive and transitive properties.

Hasse Diagram

- (a) A partial ordering. The loops are due to the reflexive property
 - (b) The edges that must be present due to the transitive property are deleted
 - (c) The Hasse diagram for the partial ordering (a)

Procedure for Constructing Hasse Diagram

Start with the directed graph of the relation:

Procedure for Constructing Hasse Diagram

- Start with the directed graph of the relation:
 - \diamond Remove the loops (a, a) present at every vertex due to the reflexive property

Procedure for Constructing Hasse Diagram

- Start with the directed graph of the relation:
 - \diamond Remove the loops (a, a) present at every vertex due to the reflexive property
 - \diamond Remove all edges (x, y) for which there is an element $z \in S$ s.t. $x \prec z$ and $z \prec y$. These are the edges that must be present due to the transitive property

Procedure for Constructing Hasse Diagram

- Start with the directed graph of the relation:
 - \diamond Remove the loops (a, a) present at every vertex due to the reflexive property
 - \diamond Remove all edges (x, y) for which there is an element $z \in S$ s.t. $x \prec z$ and $z \prec y$. These are the edges that must be present due to the transitive property
 - Arrange each edge so that its initial vertex is below the terminal vertex. Remove all the arrows, because all edges point upwards toward their terminal vertex.

Hasse Diagram Example

Hasse Diagram Example

Hasse Diagram Example

Definition *a* is a *maximal* (resp. *minimal*) element in poset (S, \preccurlyeq) if there is no $b \in S$ such that $a \prec b$ (resp. $b \prec a$).

Definition a is a maximal (resp. minimal) element in poset (S, \preccurlyeq) if there is no $b \in S$ such that $a \prec b$ (resp. $b \prec a$).

Example Which elements of the poset $(\{2, 4, 5, 10, 12, 20, 25\}, |)$ are maximal, and minimal?

Definition a is a maximal (resp. minimal) element in poset (S, \preccurlyeq) if there is no $b \in S$ such that $a \prec b$ (resp. $b \prec a$).

Example Which elements of the poset $(\{2, 4, 5, 10, 12, 20, 25\}, |)$ are maximal, and minimal?

Definition a is the *greatest* (resp. *least*) element of the poset (S, \preceq) if $b \preceq a$ (resp. $a \preceq b$) for all $b \in S$.

Definition a is a maximal (resp. minimal) element in poset (S, \preccurlyeq) if there is no $b \in S$ such that $a \prec b$ (resp. $b \prec a$).

Example Which elements of the poset $(\{2, 4, 5, 10, 12, 20, 25\}, |)$ are maximal, and minimal?

Definition a is the *greatest* (resp. *least*) element of the poset (S, \preceq) if $b \preceq a$ (resp. $a \preceq b$) for all $b \in S$.

Example

- **Definition** Let A be a subset of a poset (S, \preceq) .
 - $u \in S$ is called an *upper bound* (resp. *lower bound*) of A if $a \preccurlyeq u$ (resp. $u \preccurlyeq a$) for all $a \in A$.
 - $x \in S$ is called the *least upper bound* (resp. *greatest lower bound*) of A if x is an upper bound (resp. lower bound) that is less than any other upper bound (resp. lower bound) of A.

- **Definition** Let A be a subset of a poset (S, \preceq) .
 - $u \in S$ is called an *upper bound* (resp. *lower bound*) of A if $a \preccurlyeq u$ (resp. $u \preccurlyeq a$) for all $a \in A$.
 - $x \in S$ is called the *least upper bound* (resp. *greatest lower bound*) of A if x is an upper bound (resp. lower bound) that is less than any other upper bound (resp. lower bound) of A.

Example Find the greatest lower bound and the least upper bound of the sets $\{3, 9, 12\}$ and $\{1, 2, 4, 5, 10\}$, if they exist, in the poset $(\mathbf{Z}^+, |)$.

Definition (S, \preccurlyeq) is a *well-ordered set* if it is a poset such that \preccurlyeq is a total ordering and every nonempty subset of S has a least element.

Definition (S, \preccurlyeq) is a *well-ordered set* if it is a poset such that \preccurlyeq is a total ordering and every nonempty subset of S has a least element.

The Principle of Well-Ordering Induction Suppose that S is a well-ordered set. Then P(x) is true for all $x \in S$, if

Inductive Step For every $y \in S$, if P(x) is true for all $x \in S$ with $x \prec y$, then P(y) is ture.

Definition (S, \preccurlyeq) is a *well-ordered set* if it is a poset such that \preccurlyeq is a total ordering and every nonempty subset of S has a least element.

The Principle of Well-Ordering Induction Suppose that S is a well-ordered set. Then P(x) is true for all $x \in S$, if

Inductive Step For every $y \in S$, if P(x) is true for all $x \in S$ with $x \prec y$, then P(y) is ture.

Proof Consider $A = \{x \in S : P(x) \text{ is false}\}\$

Definition (S, \preccurlyeq) is a *well-ordered set* if it is a poset such that \preccurlyeq is a total ordering and every nonempty subset of S has a least element.

The Principle of Well-Ordering Induction Suppose that S is a well-ordered set. Then P(x) is true for all $x \in S$, if

Inductive Step For every $y \in S$, if P(x) is true for all $x \in S$ with $x \prec y$, then P(y) is ture.

Proof Consider $A = \{x \in S : P(x) \text{ is false}\}\$

Question: Why don't we need a basic step here?

Definition (S, \preccurlyeq) is a *well-ordered set* if it is a poset such that \preccurlyeq is a total ordering and every nonempty subset of S has a least element.

The Principle of Well-Ordering Induction Suppose that S is a well-ordered set. Then P(x) is true for all $x \in S$, if

Inductive Step For every $y \in S$, if P(x) is true for all $x \in S$ with $x \prec y$, then P(y) is ture.

Proof Consider $A = \{x \in S : P(x) \text{ is false}\}\$

Question: Why don't we need a basic step here? p. 620, Theorem 1

Lattices

Definition A partial ordered set in which every pair of elements has both a least upper bound and a greatest lower bound is called a *lattice*.

Lattices

Definition A partial ordered set in which every pair of elements has both a least upper bound and a greatest lower bound is called a *lattice*.

Lattices

Definition A partial ordered set in which every pair of elements has both a least upper bound and a greatest lower bound is called a lattice.

Example Determine whether the posets $(\{1, 2, 3, 4, 5\}, |)$ and $(\{1, 2, 4, 8, 16\}, |)$ are lattices.

Topological Sorting

• Motivation: A project is made up of 20 different tasks. Some tasks can be completed only after others have been finished. How can an order be found for these tasks?

Topological Sorting

Motivation: A project is made up of 20 different tasks. Some tasks can be completed only after others have been finished. How can an order be found for these tasks?

Topological sorting: Given a partial ordering R, find a total ordering \leq such that $a \leq b$ whenever $a R b \leq s$ is said compatible with R.

Topological Sorting for Finite Posets

```
procedure topological_sort (S: finite poset)
k := 1;
while S \neq \emptyset
a_k := a minimal element of S
S := S \setminus \{a_k\}
k := k + 1
end while
M = \{a_1, a_2, \dots, a_n\} is a compatible total ordering of S
```


Next Lecture

graph theory I ...

