FCAI fcai.fi

Representation learning

Encoder $z_t = f(e_\theta(o_t))$

Dynamics $\hat{z}_{t+1} = f(z_t + d_{\phi}(z_t, a_t))$

Latent-state consistency loss

 $f(\hat{z}_h + d_{\phi}(\hat{z}_h, a_h))$

 $\int ||f(\hat{z}_h + d_{\phi}(\hat{z}_h, a_h))||_2$

 $f(e_{\bar{\theta}}(o_{h+1}))$

 $\|f(e_{\bar{\theta}}(o_{h+1}))\|_2$

iQRL

Representation learning

Encoder
$$z_t = f(e_{\theta}(o_t))$$
 Finite Scalar Quantization

Dynamics
$$\hat{z}_{t+1} = f(z_t + d_{\phi}(z_t, a_t))$$

Latent-state consistency loss

$$\arg\min_{\theta,\phi} \sum_{h=t}^{t+H} \gamma^h \left(\frac{f(\hat{z}_h + d_\phi(\hat{z}_h, a_h))}{\|f(\hat{z}_h + d_\phi(\hat{z}_h, a_h))\|_2} \right)^\mathsf{T} \left(\frac{f(e_{\bar{\theta}}(o_{h+1}))}{\|f(e_{\bar{\theta}}(o_{h+1}))\|_2} \right)$$

$$\mathsf{Momentum\ encoder\ } \bar{\theta} \leftarrow (1-\tau)\bar{\theta} + \tau\theta$$

iQRL Algorithm

FCAI fcai.fi