Centroid Algorithm

- ► Find a centroid, a tree minimizing the sum of squared distances, for a set of trees
- Start at a tree and check if any neighbour has a better objective function
- Repeat until a local optimum is reached

Conjecture:

- We tested for up to 7 taxa treespace and a variation of different tree set sizes
- ▶ This algorithm always returned a gloabal optimal solution

Variation for application

Problems:

- Number of trees
- Unknown number of local and global optimal solution to the problem
- Hard to prove that it finds a global optimal solution

Variation:

- Greedy choice, only following the path with the most improvement in each step
- Start with a sample of the tree set and add more trees until the tree set is found
- Choice of the starting tree is important
- Return value will be a local optimum

 $Colors\ correspond\ to\ the\ cluster\ file\ 1 clustering_binary_single_cell_K047_gamma_beta.667.csv$

Figure: Comparing the MCC(yellow) vs Centroid tree (blueish), visual result is also present in the tree distances!

MDS plot for binary K047 error including burnin using R isoMDS

Figure: Summarize identified clusters seperately

MDS plot for conv_beast.trees using R isoMDS

Figure: Able to identify clusters via the true tree-distance Matrix

Choosing the number of clusters

Figure: Choosing the number of clusters with Bayesian inference criterion

- Clustering is not using the MDS, only for visualization
- ► MDS is not a perfect visualisation

Bayesian inference criterion

set of trees \mathcal{T} , clustering σ , \mathcal{R} set of summary trees $m=|\mathcal{T}|$, k clusters

$$\begin{split} \tilde{d}(\mathcal{T},\mathcal{R},\sigma) &= \frac{\sum\limits_{i=1}^{m} d(\mathcal{T}_{i},\mathcal{R}_{\sigma(i)})}{m*\frac{(n-1)(n-2)}{2}} \\ h(\mathcal{T},\mathcal{R},\sigma) &= 1 - \tilde{d}(\mathcal{T},\mathcal{R},\sigma) \end{split}$$

$$BIC &= \frac{k}{2}*ln(m) - 2*ln(h((\mathcal{T},\mathcal{R},\sigma))^{m})$$

- ▶ Defining a likelihood for data \mathcal{T} given the model \mathcal{R}, k
- Depending highly on the clustering and the summary method

MDS Distortion

Figure: A constant distortion of the distances would be ideal

- ▶ Distortion = $|D_{MDS} D_{RNNI}|$ for all trees
- \triangleright $CV = \frac{\sigma}{\mu}$, coefficient of variation for distortion

Another Application of the SoS

- Given a summary tree and a treeset
- compute the relative sum of squared distance for the summary
- relative meaning to divide by the number of trees
- Do this for different burnin percentages
- Indication for the quality of the summary tree
- Also indicates whether the posterior set has converged

Converged data

Convergence indicates the best choice of burnin-%

Figure: Good summary tree for a converged chain

Not so converged data

Convergence indicates the best choice of burnin-%

Figure: Increasing the rel. SoS value indicates that the chain has not converged

