Optimization algorithms

10/10 points (100%)

Quiz, 10 questions

✓ Congr	atulations! You passed!	Next Item
~	1/1 points	
	notation would you use to denote the 3rd layer's activations w h example from the 8th minibatch?	hen the input is
	$a^{[8]\{3\}(7)}$	
	$a^{[8]\{7\}(3)}$	
0	$a^{[3]\{8\}(7)}$	
Cor	rect	
	$a^{[3]\{7\}(8)}$	
~	1/1 points	
2. Which	of these statements about mini-batch gradient descent do you	ı agree with?
	Training one epoch (one pass through the training set) using gradient descent is faster than training one epoch using batc descent.	
0	One iteration of mini-batch gradient descent (computing on a batch) is faster than one iteration of batch gradient descent.	a single mini-
Cor		

You should implement mini-batch gradient descent without an explicit forloop over different mini-batches, so that the algorithm processes all mini-

Optimization algorithms same time (vectorization).

10/10 points (100%)

Quiz, 10 questions

Suppose your learning algorithm's cost J, plotted as a function of the number of iterations, looks like this:

Optimization algorithms

10/10 points (100%)

Quiz, 10 questions

Which of the following do you agree with?

\bigcirc	If you're using mini-batch gradient descent, this looks acceptable. But if
	you're using batch gradient descent, something is wrong.

Correct

Whether you're using batch gradient descent or mini-batch gradient descent, this looks acceptable.
Whathau value vaisa batch and dispt descent an unici batch and dispt

Whether you're using batch gradient descent or mini-batch gradient
descent, something is wrong.

1/1 points

5.

Suppose the temperature in Casablanca over the first three days of January are the

Optimization algorithms

10/10 points (100%)

Quiz, 10 questions

Jan 1st:
$$heta_1=10^oC$$

Jan 2nd: $heta_2 10^o C$

(We used Fahrenheit in lecture, so will use Celsius here in honor of the metric world.)

Say you use an exponentially weighted average with $\beta=0.5$ to track the temperature: $v_0=0$, $v_t=\beta v_{t-1}+(1-\beta)\theta_t$. If v_2 is the value computed after day 2 without bias correction, and $v_2^{corrected}$ is the value you compute with bias correction. What are these values? (You might be able to do this without a calculator, but you don't actually need one. Remember what is bias correction doing.)

$$v_2=10$$
, $v_2^{corrected}=7.5$

$$igcup_2=7.5$$
, $v_2^{corrected}=10$

Correct

$$v_2=7.5$$
, $v_2^{corrected}=7.5$

$$v_2=10$$
, $v_2^{corrected}=10$

1/1 points

6

Which of these is NOT a good learning rate decay scheme? Here, t is the epoch number.

$$\alpha = \frac{1}{\sqrt{t}} \alpha_0$$

$$lpha = 0.95^t lpha_0$$

$$\alpha = \frac{1}{1+2*t} \alpha_0$$

$$\bigcirc \quad \alpha = e^t \alpha_0$$

Correct

1/1 points

7.

Optimization also reconstructed average on the London temperature dataset. You use the following to track the temperature: $v_t = \beta v_{t-1} + (1-\beta)\theta_t$. The red line below was computed using $\beta = 0.9$. What would happen to your red curve as you vary β ? (Check the two that apply)

Increasing β will create more oscillations within the red line.

Un-selected is correct

Optimization algorithms

10/10 points (100%)

Quiz, 10 questions

1/1 points

8

Consider this figure:

These plots were generated with gradient descent; with gradient descent with momentum (β = 0.5) and gradient descent with momentum (β = 0.9). Which curve corresponds to which algorithm?

(1) is gradient descent. (2) is gradient descent with momentum (small β). (3) is gradient descent with momentum (large β)

Correct

- (1) is gradient descent with momentum (small β). (2) is gradient descent. (3) is gradient descent with momentum (large β)
- (1) is gradient descent with momentum (small β), (2) is gradient descent with momentum (small β), (3) is gradient descent
- (1) is gradient descent. (2) is gradient descent with momentum (large β) . (3) is gradient descent with momentum (small β)

1/1 points

9.

Suppose batch gradient descent in a deep network is taking excessively long to find a value of the parameters that achieves a small value for the cost function

Optimization ($\mathbf{n}^{[E]}$). Which of the following techniques could help find 10/10 points (100%)

Ouiz. 10 auestions	parameter va	lues that attain	a small value	for \mathcal{J} ? (Check a	all that apply)
--------------------	--------------	------------------	---------------	------------------------------	-----------------

	Try better random initialization for the weights	
Corr	ect	
Corr	Try tuning the learning rate $lpha$	
Corr	Try mini-batch gradient descent	
	Try initializing all the weights to zero	
Un-selected is correct		
	Try using Adam	
Corr	ect	
~	1 / 1 points	
10.		
Which	of the following statements about Adam is False?	
	The learning rate hyperparameter $lpha$ in Adam usually needs to be tuned.	
	Adam combines the advantages of RMSProp and momentum	
	We usually use "default" values for the hyperparameters eta_1,eta_2 and $arepsilon$ in Adam ($eta_1=0.9$, $eta_2=0.999$, $arepsilon=10^{-8}$)	
0	Adam should be used with batch gradient computations, not with minibatches.	

	Correct
Optimizatio	on algorithms

10/10	points	(100%)
-------	--------	--------

Quiz, 10 questions

3 Q 🖂