Intelixencia Artificial aplicada a Videoxogos Top-Down en tempo real

Grao en Enxeñaría Informática Universidade de Santiago de Compostela

Autor: Rubén Osorio López

Titor: Manuel Mucientes Molina Cotitor: Pablo Rodrígez Mier

21 de xullo de 2017

Intelixencia Artificial aplicada a Videoxogos Top-Down en tempo real

ntelixencia Artificial aplicada a Videoxogos Top-Down en tempo real

Esto é a defensa da memoria do traballo de fin de grado nombrado Intelixencia Artificial aplicada a Videoxogos Top-Down en tempo real, eu son o autor, Rubén Osorio López, e os tutores son Manuel Mucientes Molina e Pablo Rodrígez Mier

Táboa de contidos

- Introdución
- 2 Videoxogo baseado en axentes
- 3 Análise de requisitos
- 4 Xestión do proxecto
- 6 Arquitectura
- 6 Validación e probas
- Conclusións

Intelixencia Artificial aplicada a Videoxogos Top-Down en tempo real

La Táboa de contidos

2017-07-19

Durante esta presentación seguiremos unha estructura similar á memoria, centrándonos máis en alguns aspectos concretos do proxecto que expliquen en que consistiu o traballo realizado.

Validación e probas Conclusións Obxectivos

Introdución

 Proxecto que aborda a creación dun videoxogo con necesidades de comportamento complexo por parte do inimigo.

Videoxogo

Loita 1 contra 1, Top-Down en dúas dimensións

Axente

Capaz de percibir e actuar sobre o **entorno competitivo** do videoxogo mediante **sensores** e **actuadores**

Intelixencia Artificial aplicada a Videoxogos Top-Down en tempo real __Introdución

-Introdución

	dución
	 Proxecto que aborda a creación dun videoxogo con necesidades de comportamento complexo por parte de inimigo.
Vi	decroso
Lo	ita 1 contra 1, Top-Down en dúas dimensións
As	ente
	paz de percibir e actuar sobre o entorno competitivo do leoxogo mediante sensores e actuadores

De forma xeral, búscase a creación dun videoxogo que requira un inimigo con comportamento complexo. O axente que representará o inimigo necesita ser un competidor capaz, para o que se realizou unha etapa de entrenamento na que optivo a información que necesitaba.

Loita 1 contra 1 significa que soamente dous perxonaxes competirán entre eles contando ambos coas mesmas capacidades, accións posibles e atributos. Top-Down refírese ó plano picado utilizado para visualizar o combate. Por outra parte que sea en dúas dimensións implica que todo o contido do videoxogo son imaxen planas debuxadas unha a unha, sen que existan modelos en tres dimensións.

Un axente é aquilo capaz de percibir o entorno mediante sensores e actuar sobre o mesmo en consecuencia mediante actuadores, ambos son proporcionados pola súa interface co videoxogo. Ademáis atoparase nun entorno competitivo o que implica que buscará maximizar o seu rendemento mentres se minimiza o do contrincante.

Conclusións

Validación e probas

Obxectivos

Obxectivos

Intelixencia Artificial aplicada a Videoxogos Top-Down
en tempo real
Introdución
Obxectivos
Obxectivos

- Implementación do videoxogo: Xa que necesitaremos unha plataforma que nos permita que o axente e o xogador interactúen seguindo unha serie de regras comúns para competir entre eles.
- Implementación do axente: Necesitarase implementar o axente capaz de desenvolverse correctamente durante a competición.
- Realizar o entrenamento do axente: O axente necesitará obter a información necesaria para logo comportarse adecuadamente gracias ó aprendido durante a etapa de entrenamento.
- Obter datos sobre as capacidades do axente: Obteránse datos sobre o rendemento do axente contra outras implementacións máis sinxelas.
- Analizar os resultados obtidos: Coa información obtida durante todo o proxecto, e especialmente na etapa anterior, realizarase un análise que describa o que conseguiu o axente.

Conclusións

Obxectivos

Obxectivos

Implementación do videoxogo

-04

Intelixencia Artificial aplicada a Videoxogos Top-Down en tempo real
Introdución
Obxectivos
Obxectivos

- sentivos

 a Implementación do videologo
- Implementación do videoxogo: Xa que necesitaremos unha plataforma que nos permita que o axente e o xogador interactúen seguindo unha serie de regras comúns para competir entre eles.
- Implementación do axente: Necesitarase implementar o axente capaz de desenvolverse correctamente durante a competición.
- Realizar o entrenamento do axente: O axente necesitará obter a información necesaria para logo comportarse adecuadamente gracias ó aprendido durante a etapa de entrenamento.
- Obter datos sobre as capacidades do axente: Obteránse datos sobre o rendemento do axente contra outras implementacións máis sinxelas.
- Analizar os resultados obtidos: Coa información obtida durante todo o proxecto, e especialmente na etapa anterior, realizarase un análise que describa o que conseguiu o axente.

Conclusións

Obxectivos

Obxectivos

- Implementación do videoxogo
- Implementación do axente

-04

Intelixencia Artificial aplicada a Videoxogos Top-Down en tempo real

Introdución
Obxectivos
Obxectivos

Inplamentación do videlongo

Implamentación do averte

Implamentación do averte

- Implementación do videoxogo: Xa que necesitaremos unha plataforma que nos permita que o axente e o xogador interactúen seguindo unha serie de regras comúns para competir entre eles.
- Implementación do axente: Necesitarase implementar o axente capaz de desenvolverse correctamente durante a competición.
- Realizar o entrenamento do axente: O axente necesitará obter a información necesaria para logo comportarse adecuadamente gracias ó aprendido durante a etapa de entrenamento.
- Obter datos sobre as capacidades do axente: Obteránse datos sobre o rendemento do axente contra outras implementacións máis sinxelas.
- Analizar os resultados obtidos: Coa información obtida durante todo o proxecto, e especialmente na etapa anterior, realizarase un análise que describa o que conseguiu o axente.

Validación e probas

Conclusións

Obxectivos

Obxectivos

- Implementación do videoxogo
- Implementación do axente
- Realizar o adestramento do axente

Intelixencia Artificial aplicada a Videoxogos Top-Down
en tempo real
Introdución
Obxectivos
Obxectivos

ectivos

a Implementación do videoxogo
a Implementación do axente
a Realizar o adestramento do axente

- Implementación do videoxogo: Xa que necesitaremos unha plataforma que nos permita que o axente e o xogador interactúen seguindo unha serie de regras comúns para competir entre eles.
- Implementación do axente: Necesitarase implementar o axente capaz de desenvolverse correctamente durante a competición.
- Realizar o entrenamento do axente: O axente necesitará obter a información necesaria para logo comportarse adecuadamente gracias ó aprendido durante a etapa de entrenamento.
- Obter datos sobre as capacidades do axente: Obteránse datos sobre o rendemento do axente contra outras implementacións máis sinxelas.
- Analizar os resultados obtidos: Coa información obtida durante todo o proxecto, e especialmente na etapa anterior, realizarase un análise que describa o que conseguiu o axente.

Conclusións

Obsectivos

Obxectivos

- Implementación do videoxogo
- Implementación do axente
- Realizar o adestramento do axente
- Obter datos sobre as capacidades do axente

Intelixencia Artificial aplicada a Videoxogos Top-Down en tempo real -04 Introdución -Obxectivos

-Obxectivos

- Implementación do videoxogo: Xa que necesitaremos unha plataforma que nos permita que o axente e o xogador interactúen seguindo unha serie de regras comúns para competir entre eles.
- Implementación do axente: Necesitarase implementar o axente capaz de desenvolverse correctamente durante a competición.
- Realizar o entrenamento do axente: O axente necesitará obter a información necesaria para logo comportarse adecuadamente gracias ó aprendido durante a etapa de entrenamento.
- Obter datos sobre as capacidades do axente: Obteránse datos sobre o rendemento do axente contra outras implementacións máis sinxelas.
- Analizar os resultados obtidos: Coa información obtida durante todo o proxecto, e especialmente na etapa anterior, realizarase un análise que describa o que conseguiu o axente.

Conclusións

Obxectivos

Obxectivos

- Implementación do videoxogo
- Implementación do axente
- Realizar o adestramento do axente
- Obter datos sobre as capacidades do axente
- Analizar os resultados obtidos

Intelixencia Artificial aplicada a Videoxogos Top-Down en tempo real
Introdución
Obxectivos
Obxectivos

tivos

- Implementación do videoxo
- a Implementación do axente
- Analizar os resultados obtidos

- Implementación do videoxogo: Xa que necesitaremos unha plataforma que nos permita que o axente e o xogador interactúen seguindo unha serie de regras comúns para competir entre eles.
- Implementación do axente: Necesitarase implementar o axente capaz de desenvolverse correctamente durante a competición.
- Realizar o entrenamento do axente: O axente necesitará obter a información necesaria para logo comportarse adecuadamente gracias ó aprendido durante a etapa de entrenamento.
- Obter datos sobre as capacidades do axente: Obteránse datos sobre o rendemento do axente contra outras implementacións máis sinxelas.
- Analizar os resultados obtidos: Coa información obtida durante todo o proxecto, e especialmente na etapa anterior, realizarase un análise que describa o que conseguiu o axente.

Conclusións

Obxectivos

Obxectivos

- Implementación do videoxogo
- Implementación do axente
- Realizar o adestramento do axente
- Obter datos sobre as capacidades do axente
- Analizar os resultados obtidos

Intelixencia Artificial aplicada a Videoxogos Top-Down en tempo real
Introdución
Obxectivos
Obxectivos

tivos

- Implementación do videoxo
- a Implementación do axente
- Analizar os resultados obtidos

- Implementación do videoxogo: Xa que necesitaremos unha plataforma que nos permita que o axente e o xogador interactúen seguindo unha serie de regras comúns para competir entre eles.
- Implementación do axente: Necesitarase implementar o axente capaz de desenvolverse correctamente durante a competición.
- Realizar o entrenamento do axente: O axente necesitará obter a información necesaria para logo comportarse adecuadamente gracias ó aprendido durante a etapa de entrenamento.
- Obter datos sobre as capacidades do axente: Obteránse datos sobre o rendemento do axente contra outras implementacións máis sinxelas.
- Analizar os resultados obtidos: Coa información obtida durante todo o proxecto, e especialmente na etapa anterior, realizarase un análise que describa o que conseguiu o axente.

Mecánicas Prototipo de Unity Segunda aplicación Algoritmo Tipos de adestramento

Mecánicas

Movemento

Movemento libre nunha habitación rectangular.

Ataque

Permítese atacar a zona que se atopa cada onde o personaxe está mirando.

Defensa

Posibilidade de defenderse dun ataque permitindo atacar se a defensa ten éxito

Videoxogo baseado en axentes -Mecánicas

Mecánicas

Intelixencia Artificial aplicada a Videoxogos Top-Down en tempo real

lecánicas	
Movement	0
	o libre nunha habitación rectangular.
Ataque	
Permitese está mirar	atacar a zona que se atopa cada onde o personax do.
Defensa	
Posibilidas defensa te	le de defenderse dun ataque permitindo atacar se n éxito

Movemento libre nunha habitación rectangular que suma a complexidade de evitar situacións nas que non se poida escapar do contrincante por estar ó lado dunha parede ou unha esquina. Ademáis a única maneira de mirar cara unha dirección é mirar cara ela.

Como solo se permite atacar a zona directamente enfrente do personaxe é importante ter en conta cada donde se está mirando. Esto favorece unha actitude agresiva pois hai que moverse na dirección do enemigo antes de atacalo.

Pódese realizar unha maniobra defensiva de alto risco e alta recompensa que permite evitar un ataque. Se se evita con éxito poderase realizar un ataque propio pero se non serase vulnerable durante uns instantes.

Esto fai que non exista unha estratexia idónea pois un estilo agresivo perde contra un defensivo que á sua vez perde contra xogadores que busquen a contra do movemento defensivo, este último ademáis perde contra o xogador agresivo. Esta fórmula de pedra, papel, tesoiras demostrou ser ampliamente utilizada en diseño de videoxogos.

Mecánicas Prototipo de Unity Segunda aplicación Algoritmo Tipos de adestramento

Prototipo de Unity

Primeira implementación realizada con **Unity3D**, estándar de facto para videoxogos de este tamaño.

Problemas de simulación

Imposibilidade de escalar o tempo sen romper o funcionamento do videoxogo.

Intelixencia Artificial aplicada a Videoxogos Top-Down en tempo real

Videoxogo baseado en axentes

Prototipo de Unity

Prototipo de Unity

Ensinar vídeo

Mecánicas Prototipo de Unity Segunda aplicación Algoritmo Tipos de adestramento

Segunda aplicación

Implementación de un motor desde cero en C++

Intelixencia Artificial aplicada a Videoxogos Top-Down
en tempo real
Videoxogo baseado en axentes
Segunda aplicación
Segunda aplicación

Mecánicas Prototipo de Unity Segunda aplicación Algoritmo Tipos de adestramento

Algoritmo

```
1 while agent is running do
      lastState ← currentState:
      currentState ← getCurrentState();
      deltaFitness \leftarrow
       calculateFitness(currentState) - calculateFitness(lastState);
      if lastState ∈ stateActionData then
         stateActionData .updateWith(lastState,selectedAction,deltaFitness);
      else
         stateActionData .insert(lastState,selectedAction,deltaFitness);
      if currentState ∈ stateActionData then
          if randomBetween (0.1) < \epsilon then
             selectedAction \leftarrow randomAction \in allPosibleActions;
          else
12
             selectedAction \leftarrow action \in allPosibleActions
               bestWeightedAction(stateActionData,currentState) = action;
      else
14
         selectedAction \leftarrow randomAction \in allPosibleActions:
```


Intelixencia Artificial aplicada a Videoxogos Top-Down
en tempo real
Videoxogo baseado en axentes
Algoritmo
Algoritmo

ritmo

Although a morting de la best de partie de la best de la section de la best de la section de la best de la bes

Prototipo de Unity Segunda aplicación Algoritmo Tipos de adestramento

Fitness

input: playerHealth, enemyHealth, distance, lookingAtEnemy, noWallsNear output: fitness

1 fitness ← INITIAL_FITNESS_VALUE:

2 fitness ← fitness +(playerHealth * MY_HEALTH_MULTIPLIER):

3 fitness ← fitness −(enemyHealth * ENEMY_HEALTH_MULTIPLIER);

4 fitness ← fitness −(distance * DISTANCE_MULTIPLIER):

5 if lookingAtEnemy then

fitness ← fitness + LOOKING_BONUS:

7 if noWallsNear then

 $fitness \leftarrow fitness + WALL_BONUS$:

Parámetro	Valor
INITIAL_FITNESS_VALUE	1000
MY_HEALTH_MULTIPLIER	100
ENEMY_HEALTH_MULTIPLIER	100
DISTANCE_MULTIPLIER	3
LOOKING_BONUS	200
WALL_BONUS	50

Intelixencia Artificial aplicada a Videoxogos Top-Down en tempo real Videoxogo baseado en axentes -Algoritmo └─ Fitness

2017-07-19

Mecánicas Prototipo de Unity Segunda aplicación Algoritmo Tipos de adestramento

Tipos de adestramento

Contra axente baseado en regras

Pretende simular un aprendizaxe contra xogadores reais.

Contra él mesmo

Buscando unha exploración mais extensa de estados que o axente baseado en regras non pode aportar.

Intelixencia Artificial aplicada a Videoxogos Top-Down
en tempo real
Videoxogo baseado en axentes
Tipos de adestramento
Tipos de adestramento

Tipos de adestramento

Contra asente basado en regras
Pretendi simulur en aprendizara contra sugadores reais.

Contra al essente contra sugadores reais.

Contra al essente contra contra contra sugadores reais.

Unicado unha esploración ensis entensa de estados que o axente basado en reresa o moda acortar.

Casos de uso Requisitos

Casos de uso

Intelixencia Artificial aplicada a Videoxogos Top-Down
en tempo real
Análise de requisitos
Casos de uso
Casos de uso

Casos de uso Requisitos

Requisitos

- RF-1/2/3: Funcionalidades do menú
- RF-4/15: Consola con comandos/resultados RNF-1: Rendemento da aplicación
- **RF-5**: Saír da aplicación
- RF-6: Entrar na escena de combate
- **RF-7/8/9**: Moverse/Atacar/Defender
- RF-10: Gañar/Perder partida
- **RF-11**: Esgotar o tempo de combate
- RF-12: Volver ó menú
- RF-13: Visualizar combate entre axentes
- **RF-14**: Simular múltiples combates

- RNF-2: Velocidade das simulacións
- RNF-3: Extensibilidade do motor
- RNF-4: Facilidade para depurar
- RNF-5: Aplicación autocontida
- RNF-6: Extensibilidade de escenas
- RNF-7: Documentación
- RNF-8: Usabilidade da interface

Intelixencia Artificial aplicada a Videoxogos Top-Down en tempo real -07 Análise de requisitos Requisitos —Requisitos

• RF-S: Sair da aplicación

- RF-1/2/3: Funcionalidades do meni . RF-4/15: Consola con comandos/resultados . RNF-1: Rendemento da aplicación
- PEA Fetror so esceso de combat
- . RF-7/8/9: Moveme/Apacar/Defender . RF-10: Gallar/Feeder gartida • RF-11 Eurotar o tempo de combat
- . RF-13: Visualizar combate entre aventes

Metodoloxía Planificación tempora

Metodoloxía

Contexto do proxecto

- Traballador único
- Duración relativamente corta
- Necesidade de avanzar rapidamente nas etapas iniciais

Programación Extrema

- Flexibilidade ante cambios
- Evitase utilizar demasiado tempo en tarefas de xestión
- Rápida iteración
- Reunións entre sprints

Intelixencia Artificial aplicada a Videoxogos Top-Down
en tempo real

Xestión do proxecto

Metodoloxía

Metodoloxía Planificación temporal

Planificación temporal

Arquitectura do sistema

Subsistemas conectados

Intelixencia Artificial aplicada a Videoxogos Top-Down
en tempo real
Arquitectura
Arquitectura do sistema
Subsistemas conectados

Arquitectura do sistema

Bus de mensaxes

Intelixencia Artificial aplicada a Videoxogos Top-Down en tempo real

—Arquitectura

—Arquitectura do sistema

—Bus de mensaxes

Arquitectura do sistema

Arquitectura final

Intelixencia Artificial aplicada a Videoxogos Top-Down
en tempo real
Arquitectura
Arquitectura do sistema
Arquitectura final

Aplicación Validación do Axent

Validación e probas da aplicación

Probas unitarias

Unha ou mais probas por cada requisito tanto funcional como non funcional superadas na sua totalidade.

Probas de integración

Comproban a integración entre subsistemas e do o axente ca aplicación.

Intelixencia Artificial aplicada a Videoxogos Top-Down
en tempo real
Validación e probas
Aplicación
Validación e probas da aplicación

Validación e protoso da aplicación

Proba unitaria
Unha os más proba por cada requisito taxeo funcional cione nor
funcional seprende na sua totalidade.

Proba de integración entre substitute a de o assete ca
Comproba a integración entre substitute a é do a sente ca

Aplicación Validación do Axente

Comparativa de vitorias

Intelixencia Artificial aplicada a Videoxogos Top-Down
en tempo real
Validación e probas
Validación do Axente
Comparativa de vitorias

Aplicación Validación do Axente

Comparativa de estados visitados

Intelixencia Artificial aplicada a Videoxogos Top-Down 2017-07-19 en tempo real Validación e probas Validación do Axente

-Comparativa de estados visitados

Aplicación Validación do Axente

Axente escollido

Combinación de ámbolos dous métodos de adestramento.

Contra o axente baseado en regras

Favorece un aprendizaxe moi rápido nas primeiras simulacións.

Contra él mesmo

Aporta unha exploración de estados superior.

Intelixencia Artificial aplicada a Videoxogos Top-Down
en tempo real
Validación e probas
Validación do Axente
Axente escollido

Conclusións e leccións aprendidas Posibles ampliacións

Conclusións e leccións aprendidas

Logros do proxecto

- O comportamento, aspecto e rendemento da aplicación cumpriu as expectativas.
- O axente é capaz de competir contra outras implementacións e contra xogadores humanos.

Leccións aprendidas

- Importancia de ter en conta os posibles riscos do proxecto o antes posible.
- Utilidade de un deseño flexible previo á implementación.
- Calidade dos resultados de implementacións sinxelas de Intelixencia Artificial.

Intelixencia Artificial aplicada a Videoxogos Top-Down
en tempo real
Conclusións
Conclusións e leccións aprendidas
Conclusións e leccións aprendidas

Compositors e l'ecutoris appetito e rendemento da aplicación
O comportamento, aspecto e enndemento da aplicación
composit as reportativos.

O avente é capar de composit contro autora implementacións
e contra regoldores humanos.

Excelore aprendiciás

« Importancia de ter en contra os posibiles riscos de prevento o
antes posibil.

Conclusións e leccións aprendidas Posibles ampliacións

Posibles ampliacións

- Melloras de compatibilidade.
- Ampliación do proceso de probas con xogadores humanos.
- Implementación de máis técnicas para o axente.
- Novas mecánicas para o videoxogo.

Intelixencia Artificial aplicada a Videoxogos Top-Down
en tempo real
Conclusións
Posibles ampliacións
Posibles ampliacións

Posibles ampliacións

- Melloras de compatibilidade.
- Ampliación do proceso de probas con xogadores humanos
 Implementación de máis técnicas para o axente.
- Novas mecánicas para o videoxogo.