DATA VISUALISATION

PL

PRELIMINARIES

We will be deploying two Python modules dedicated to data visualisation: Matplotlib and Seaborn, so we will install them first.

```
pip install matplotlib

pip install seaborn

import pandas as pd

from matplotlib import pyplot as plt

import seaborn as sns
```

LOCAL DATA

Fisher's dataset is publicly available from Scikit-learn as well as a commaseparated variables file from a myriad of online sources.

We use the Pandas module to upload the data insto a suitable Python data structure.

```
1 # github users
2 FILE = "./data/iris.csv"
3
4 # colab and general users
5 #FILE = "/iris.csv"
6
7
8 iris = pd.read_csv(FILE)
9
10 iris
```

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalW
0	1	5.1	3.5	1.4	0.2

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalW
1	2	4.9	3.0	1.4	0.2
2	3	4.7	3.2	1.3	0.2
3	4	4.6	3.1	1.5	0.2
4	5	5.0	3.6	1.4	0.2
•••	•••	•••	•••	•••	•••
145	146	6.7	3.0	5.2	2.3
146	147	6.3	2.5	5.0	1.9

		ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalW
	147	148	6.5	3.0	5.2	2.0
	148	149	6.2	3.4	5.4	2.3
_						
	149	150	5.9	3.0	5.1	1.8

150 rows × 6 columns

SEABORN

Seaborn supplies visualisation functions that are oriented to Python data structures.

Data becomes an input parameter to a Seaborne object.

Manuals: seaborn.pydata.org/

Paper: 10.21105/joss.03021

PLOT SEPAL-LENGTH IN STACKED BARS

The hue parameter controls class separation

```
1 sns.histplot(data=iris, x="SepalLengthCm", hue=iris["Species"], multiple="stack")
2
3 plt.show()
```



```
1 # Plot histogram of classes of sepal length dimension in three sub plots
2 g = sns.FacetGrid(iris, col="Species")
3
4 g.map(sns.histplot, "SepalLengthCm")
5
6 # plt.show()
```



```
# Scatter plot between speal length vs petal length
g = sns.FacetGrid(iris, hue="Species")
g.map(sns.scatterplot, "SepalLengthCm", "SepalWidthCm", alpha=.7)
g.add_legend()
plt.show()
```


PLOT HISTOGRAMS AND SCATTERPLOTS FOR ALL DIMENSIONS IN ONE SINGLE FIGURE

Work with Seaborn's add_legend to personalise the data presentation.

```
1  g = sns.PairGrid(iris, hue="Species")
2
3  g.map_diag(sns.histplot)
4  g.map_offdiag(sns.scatterplot)
5  g.add_legend()
6
7  plt.show()
```

