HW1 Answers

Yuzhe Wang

2022/1/17

```
library(ggplot2)
library(patchwork)
library(bit64)
##
       bit
##
      'bit'
##
##
  The following object is masked from 'package:base':
##
##
## Attaching package bit64
## package:bit64 (c) 2011-2017 Jens Oehlschlaegel
## creators: integer64 runif64 seq :
## coercion: as.integer64 as.vector as.logical as.integer as.double as.character as.bitstring
## logical operator: ! & | xor != == < <= >= >
## arithmetic operator: + - * / %/% %% ^
## math: sign abs sqrt log log2 log10
## math: floor ceiling trunc round
## querying: is.integer64 is.vector [is.atomic} [length] format print str
## values: is.na is.nan is.finite is.infinite
## aggregation: any all min max range sum prod
## cumulation: diff cummin cummax cumsum cumprod
## access: length<- [ [<- [[ [[<-
## combine: c rep cbind rbind as.data.frame
## WARNING don't use as subscripts
## WARNING semantics differ from integer
## for more help type ?bit64
##
      'bit64'
##
  The following objects are masked from 'package:base':
##
##
##
       %in%, :, is.double, match, order, rank
```

```
library(data.table)

##

## 'data.table'

## The following object is masked from 'package:bit':

##

setattr

setwd("C:\\Users\\wyz_m\\Desktop\\DUKE\\courses\\ECON 613\\assignment\\A1")
getwd()
```

Exercise 1 Basic Statistics

Number of households surveyed in 2007

```
dathh2007 = fread('./data/dathh2007.csv')
length(unique(na.omit(dathh2007$idmen))) # 10498
```

[1] 10498

Number of households with a marital status "Couple with kids" in 2005

```
dathh2005 = fread('./data/dathh2005.csv')
length(dathh2005$mstatus[dathh2005$mstatus=="Couple, with Kids"]) # 3374
```

[1] 3374

Number of individuals surveyed in 2008

```
datind2008 = fread('./data/datind2008.csv')
length(unique(na.omit(datind2008$idind))) # 25510
```

[1] 25510

Number of individuals aged between 25 and 35 in 2016

```
datind2016 = fread('./data/datind2016.csv')
length(which(datind2016$age>=25 & datind2016$age<=35))</pre>
```

[1] 2765

Cross-table gender/profession in 2009

```
datind2009 = fread('./data/datind2009.csv')
table(datind2009$gender, datind2009$profession)
```

```
##
##
             0
              11 12 13
                          21 22 23 31 33 34
                                                 35
                                                                       45
                                                     37
                                                        38
                                                            42
                                                               43
##
    Female 11
               30
                    8
                       29
                          63
                             65
                                   8
                                      68
                                         85 184
                                                 50 179
                                                        78 258 437
                                                                     1 153
##
    Male
                                                                     2 95
            19
               57
                   19
                       78 213 114
                                  48
                                      98 107 142
                                                 59 260 368 110 117
##
##
            46
               47 48 52 53 54 55
                                     56 62 63 64
                                                     65
                                                        67
                                                            68
```

```
## Female 410 82 22 782 27 584 353 696 64 35 29 19 147 120 40 ## Male 340 429 215 169 182 98 101 74 443 520 246 159 237 177 82
```

Distribution of wages in 2005 and 2019

If we don't drop wage=0

```
datind2005 = na.omit(fread('./data/datind2005.csv')[,c('idind','wage','year')])
datind2019 = na.omit(fread('./data/datind2019.csv')[,c('idind','wage','year')])
datind2019$idind = as.integer64(datind2019$idind)
dat = rbind(datind2005,datind2019)
dat$year = factor(dat$year)
fun = function(x){
 gini = sum(abs(outer(x,x,"-")))/(2*length(x)^2*mean(x))
 vec=round(c(mean(x),sd(x),quantile(x,0.9)/quantile(x,0.1),gini,max(x)),4)
 names(vec)=c("mean","sd","D9/D1","Gini_coefficient","max")
 return(vec)
 }
by(dat$wage,dat$year,fun)
## dat$year: 2005
##
                                                D9/D1 Gini_coefficient
                          17318.5602
##
         11992.2575
                                                  Inf
                                                                 0.6672
##
##
        271962.0000
##
## dat$year: 2019
##
                                                D9/D1 Gini_coefficient
               mean
                                  sd
##
         15350.4739
                          23207.1850
                                                                 0.6655
##
               max
##
       1068556.0000
ggplot(data=dat,aes(wage,fill=year))+
```

```
ggplot(data=dat,aes(wage,fill=year))+
  geom_histogram(binwidth=10000,alpha=0.5)+
  facet_wrap(.~year,1,2, scales="free")+
  ggtitle(label='Wage Distribution in 2005&2019')
```

Wage Distribution in 2005&2019

If we drop wage=0

```
dat = dat[dat$wage!=0,]
by(dat$wage,dat$year,fun)
## dat$year: 2005
##
               mean
                                                 D9/D1 Gini_coefficient
##
         22443.0291
                           18076.7089
                                                8.8965
                                                                  0.3771
##
                max
##
        271962.0000
##
   dat$year: 2019
##
##
                                                 D9/D1 Gini_coefficient
               mean
                                   sd
##
         27578.8393
                          25107.1872
                                               13.8623
                                                                  0.3991
##
                max
       1068556.0000
##
ggplot(data=dat,aes(wage,fill=year))+
  geom_histogram(binwidth=10000,alpha=0.5)+
  facet_wrap(.~year,1,2, scales="free")+
  ggtitle(label='Wage Distribution in 2005&2019(exclude wage=0)')
```

Wage Distribution in 2005&2019(exclude wage=0)

Distribution of age in 2010

```
# Distribution of age in 2010
datind2010 = fread('./data/datind2010.csv')
datind2010_age = na.omit(datind2010[,c('idind','age','gender')])
summary(datind2010_age)
                                                      gender
##
        idind
                                       age
##
   Min.
           :1170001001739010001
                                  Min.
                                         : 0.00
                                                   Length: 26531
   1st Qu.:1210059706786010001
                                  1st Qu.: 19.00
                                                   Class : character
  Median :1230091301707010003
                                  Median : 40.00
                                                   Mode :character
   Mean
           :1265722996120815890
                                  Mean
                                       : 39.88
   3rd Qu.:1240920108750010003
                                  3rd Qu.: 58.00
##
   Max.
           :2241095811330010002
                                  Max.
                                         :102.00
datind2010_age$gender = factor(datind2010_age$gender)
by(datind2010_age$age,datind2010_age$gender,summary)
## datind2010_age$gender: Female
##
      Min. 1st Qu. Median
                              Mean 3rd Qu.
                                              Max.
##
      0.00
           20.00
                    42.00
                             40.82
                                     59.00
                                           102.00
##
  datind2010_age$gender: Male
##
##
     Min. 1st Qu. Median
                             Mean 3rd Qu.
                                              Max.
      0.00
           19.00
                    39.00
##
                             38.87
                                     57.00
                                             96.00
```

```
ggplot(data=datind2010_age,aes(age))+
  geom_histogram(aes(y=..density..),fill="white",color="black",binwidth=5)+
  geom_density(fill="red",color="black",alpha=.2)+
  ggtitle(label='Total age distribution')
```

Total age distribution


```
ggplot(data=datind2010_age,aes(age,fill=gender))+
  geom_histogram(binwidth=5,color="black",alpha=0.5)+
  facet_grid(.~gender)+
  ggtitle(label='Age distribution by gender in 2010')
```

Age distribution by gender in 2010

Number of individuals in Paris in 2011.

```
datind2011 = fread('./data/datind2011.csv')
dathh2011 = fread('./data/dathh2011.csv')
dat2011 = merge(datind2011,dathh2011,by=c("idmen", "year" ),all=T)
dat2011$idind = factor(dat2011$idind)
sum(by(dat2011$location, dat2011$idind, function(x) "Paris" %in% x)>0)
## [1] 3514
```

Exercise 2 Merge Datasets

Read all individual datasets from 2004 to 2019. Append all these datasets

```
require(dplyr)

## dplyr

##

## 'dplyr'

## The following objects are masked from 'package:data.table':

##

## between, first, last

## The following objects are masked from 'package:stats':
```

```
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union

datind_dirs = paste("./data/datind",2004:2019,sep = "")%>%paste(".csv",sep = "")

datind_total = fread(datind_dirs[1])
for (i in c(2:length(datind_dirs))){
   dat_temp = fread(datind_dirs[i])
   dat_temp$idind = as.integer64(dat_temp$idind)
   datind_total = rbind(datind_total, dat_temp)
}
datind_total = datind_total[,-1]
```

Read all household datasets from 2004 to 2019. Append all these datasets

```
dathh_dirs = paste("./data/dathh",2004:2019,sep = "")%>%paste(".csv",sep = "")
dathh_total = fread(dathh_dirs[1])
for (i in c(2:length(dathh_dirs))){
   dat_temp = fread(dathh_dirs[i])
   dathh_total = rbind(dathh_total, dat_temp)
}
dathh_total = dathh_total[,-1]
```

List the variables that are simultaneously present in the individual and household datasets

```
same_var = c()
for (datind_name in colnames(datind_total)){
  for (dathh_name in colnames(dathh_total)){
    if (datind_name == dathh_name){
      same_var = append(same_var,datind_name)
    }
  }
}
```

[1] "idmen" "year"

Merge the appended individual and household datasets

Number of households in which there are more than four family members

```
dat_total$idmen = factor(dat_total$idmen)
dat_total$year = factor(dat_total$year)
```

Number of households in which there are more than four family members

Number of households in which at least one member is unemployed

Number of households in which at least one member is unemployed

Number of households in which at least two members are of the same profession

Number of households in which at least two members are of the same prof

Number of individuals in the panel that are from household-Couple with kids

Number of individuals in the panel that are from household-Couple with k

Number of individuals in the panel that are from Paris

Number of individuals in the panel that are from Paris

Find the household with the most number of family members. Report its idmen

```
# Find the household with the most number of family members in each year.
max_member = apply(member,2,max)
max_member_list = list()
for (i in 1:length(colnames(member))){
  for (j in 1:length(rownames(member))){
    if (member[j,i] == max_member[i]){
      if (i-1==length(max_member_list)){
        max_member_list[[i]] = paste(rownames(member)[j],":",
                                      max_member[i], "family members")
      }
      else{
        max_member_list[[i]] = c(max_member_list[[i]],
                                 paste(rownames(member)[j],
                                        ":",max_member[i],"family members"))
      }
    }
  }
}
names(max_member_list) = 2004:2019
max_member_list
## $`2004`
## [1] "1208045118450100 : 10 family members"
```

[2] "1607839058220100 : 10 family members"

```
## [3] "1610263040580100 : 10 family members"
## [4] "1804363114960100 : 10 family members"
## $`2005`
## [1] "1607839058220100 : 11 family members"
## $\2006\
## [1] "1607839058220100 : 10 family members"
## [2] "1811109095380100 : 10 family members"
## $\2007\
## [1] "2207811124040100 : 14 family members"
## $`2008`
## [1] "1700707001000100 : 10 family members"
## [2] "1811109095380100 : 10 family members"
## [3] "2006865025180100 : 10 family members"
##
## $\2009\
## [1] "1700707001000100 : 11 family members"
##
## $`2010`
## [1] "2510263102990100 : 14 family members"
## $`2011`
## [1] "1905191114960100 : 10 family members"
## [2] "2202243098040100 : 10 family members"
## $`2012`
## [1] "1905191114960100 : 10 family members"
## [2] "2202243098040100 : 10 family members"
##
## $`2013`
## [1] "2202243098040100 : 10 family members"
## $`2014`
## [1] "2106457101960100 : 9 family members" "2200896118640100 : 9 family members"
## [3] "2209201025180100 : 9 family members" "2701042078730100 : 9 family members"
## [5] "2707811117610100 : 9 family members" "2710263020060100 : 9 family members"
## [7] "2905191059550100 : 9 family members" "2905459051770100 : 9 family members"
## $`2015`
## [1] "3000896115750100 : 12 family members"
##
## $`2016`
## [1] "3000896115750100 : 12 family members"
##
## $`2017`
## [1] "3000896115750100 : 12 family members"
## $`2018`
## [1] "3000896115750100 : 11 family members"
## $`2019`
```

```
## [1] "2806477001000100 : 9 family members" "3200528124040100 : 9 family members" ## [3] "3300896124060100 : 9 family members" "3402178051020100 : 9 family members"
```

Number of households present in 2010 and 2011.

```
dathh2010 = fread('./data/dathh2010.csv')
dathh2011 = fread('./data/dathh2011.csv')
length(intersect(na.omit(dathh2010$idmen), na.omit(dathh2011$idmen)))
## [1] 8984
```

Exercise3 Migration

Find out the year each household enters and exit the panel. Report the length of years each household stay in the panel

```
dat_total$year = as.numeric(as.character(dat_total$year))
# the year each household enters the panel (report first 10 househlod)
by(dat_total$year,dat_total$idmen,min)[1:10]
## dat_total$idmen
## 1200010012930100 1200010040580100 1200010066630100 1200010082450100
##
               2004
                                2004
                                                  2004
## 1200010086440100 1200010102990100 1200010118450100 1200020012930100
                                                  2004
                                                                   2004
##
               2004
                                2004
## 1200020017390100 1200020026420100
##
               2004
                                2004
# the year each household exits the panel (report first 10 househlod)
by(dat_total$year,dat_total$idmen,max)[1:10]
## dat_total$idmen
## 1200010012930100 1200010040580100 1200010066630100 1200010082450100
               2004
                                2005
                                                  2005
                                                                   2005
## 1200010086440100 1200010102990100 1200010118450100 1200020012930100
##
               2005
                                                  2005
                                                                   2005
## 1200020017390100 1200020026420100
               2005
                                2005
#length of years each household stay in the panel
stay_years = by(dat_total$year,dat_total$idmen,function(x) length(unique(x)))
data.frame(stay_years = stay_years[1:length(stay_years)]) %>%
  ggplot(aes(stay_years))+
  geom histogram(fill="white",color="black",binwidth=1)+
 ggtitle(label='Distribution of years household staying in the panel')
```


Base on datent, identify whether or not household moved into its current dwelling at the year of survey

```
dat_total$year = factor(dat_total$year)
dat_total$idind = as.integer64(as.character(dat_total$idind))
year_matrix = matrix(rep(2004:2019,length(unique(dat_total$idmen))),
                      length(unique(dat_total$idmen)),length(unique(dat_total$year)))
datent = by(dat_total$datent,dat_total[c('idmen','year')],unique) == year_matrix
# matrix shows that whether or not household moved into its current dwelling at the year of survey
datent[1:10,]
##
                     year
## idmen
                        2004
                              2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
##
     1200010012930100 FALSE
                                NA
                                     NA
                                          NA
                                                NA
                                                     NA
                                                          NA
                                                               NA
                                                                    NA
                                                                          NA
                                                                               NA
##
     1200010040580100 FALSE FALSE
                                     NA
                                          NA
                                                NA
                                                     NA
                                                          NA
                                                               NA
                                                                     NA
                                                                          NA
                                                                               NA
                                          NA
                                                               NA
                                                                    NA
##
     1200010066630100 FALSE FALSE
                                     NA
                                                NA
                                                     NA
                                                          NA
                                                                          NA
                                                                               NA
##
     1200010082450100 FALSE FALSE
                                     NA
                                          NA
                                                NA
                                                     NA
                                                          NA
                                                               NA
                                                                    NA
                                                                          NA
                                                                               NA
##
     1200010086440100 FALSE FALSE
                                     NA
                                          NA
                                                NA
                                                     NA
                                                          NA
                                                               NA
                                                                    NA
                                                                          NA
                                                                               NA
##
                                                                    NA
     1200010102990100 FALSE FALSE
                                     NA
                                          NA
                                                NA
                                                     NA
                                                          NA
                                                               NA
                                                                          NA
                                                                               NA
##
     1200010118450100 FALSE FALSE
                                     NA
                                          NA
                                                NA
                                                     NA
                                                          NA
                                                               NA
                                                                    NA
                                                                          NA
                                                                               NA
##
     1200020012930100 FALSE FALSE
                                          NA
                                                NA
                                                     NA
                                                          NA
                                                               NA
                                                                    NA
                                                                          NA
                                     NA
                                                                               NA
##
     1200020017390100 FALSE FALSE
                                     NA
                                          NA
                                                NA
                                                     NA
                                                          NA
                                                               NA
                                                                    NA
                                                                          NA
                                                                               NA
     1200020026420100 FALSE FALSE
##
                                          NA
                                                NA
                                                     NA
                                                          NA
                                                               NA
                                                                    NA
                                                                          NA
                                                                               NA
##
                     year
                       2015 2016 2017 2018 2019
## idmen
```

```
##
     1200010012930100
                       NA
                            NA
                                 NA
                                      NA
                                           NA
##
     1200010040580100
                       NA
                            NA
                                 NA
                                      NA
                                           NΑ
##
     1200010066630100
                       NA
                            NA
                                 NA
                                      NA
                                           NA
     1200010082450100
##
                       NA NA
                                 NA
                                      NA
                                           NA
##
     1200010086440100
                       NA
                           NA
                                 NA
                                      NA
                                           NA
##
     1200010102990100
                       NA
                           NA
                                 NA
                                      NA
                                           NA
##
     1200010118450100
                           NA
                                 NA
                                      NA
                       NA
##
                           NA
                                 NA
                                      NA
                                           NA
     1200020012930100
                       NA
##
     1200020017390100
                       NA
                           NA
                                 NA
                                      NA
                                           NA
##
     1200020026420100 NA
                           NA
                                 NA
                                      NA
                                           NA
datent[is.na(datent)] = 0
hh_surveyed_in_years = by(dat_total$idmen,dat_total$year,
                            function(x) length(unique(na.omit(x))))[1:16]
hh_datent_na_in_years = by(dat_total$datent,dat_total[c('idmen','year')],
                            function(x) is.na(unique(x))) == TRUE
hh_datent_na_in_years[is.na(hh_datent_na_in_years)] = 0
hh_datent_na_in_years = apply(hh_datent_na_in_years, 2, sum)
hh_numbers_move_dw = data.frame(year = 2004:2019, number = apply(datent,2,sum),
                               move_or_not = rep("Move to current dwelling",16))
hh_numbers_not_move_dw = data.frame(year = 2004:2019,
                                   number = hh surveyed in years -
                                     hh_datent_na_in_years - apply(datent,2,sum),
                                   move_or_not = rep("Not move to current dwelling",16))
hh numbers na dw = data.frame(year = 2004:2019, number = hh datent na in years,
                             move_or_not = rep("NA(datent)",16))
ind_move_dw = c()
ind_unique = c()
for (y in 2004:2019){
  ind_move = length(na.omit(unique(dat_total[dat_total$datent==y &
                                              dat_total$year == y,'idind'])))
  ind_move_dw = c(ind_move_dw, ind_move)
}
for (y in 2004:2019){
  ind = length(na.omit(unique(dat_total[dat_total$year == y,'idind'])))
  ind_unique = c(ind_unique, ind)
}
ind_share_move_dw = data.frame(year = 2004:2019,
                              share = round(ind_move_dw / ind_unique,4))
datent_hist = rbind(hh_numbers_move_dw, hh_numbers_not_move_dw) %>%
  rbind(hh numbers na dw)
move_dw_plot =
  ggplot(data=datent_hist,aes(x=year, y=number, fill=move_or_not))+
  geom_bar(stat = 'identity')+
  facet_wrap(.~move_or_not,1,3,scales="free_y")+
  ggtitle(label='Number of households whether or not move into its current dwelling')+
  theme(legend.position = "bottom")
move_dw_plot
```

Number of households whether or not move into its current dwelling


```
ind_share_move_dw
##
      year share
## 1
      2004 0.0273
  2
      2005 0.0287
## 3
      2006 0.0310
      2007 0.0285
## 4
## 5
      2008 0.0291
## 6
      2009 0.0260
      2010 0.0254
## 7
      2011 0.0304
## 8
      2012 0.0269
## 9
## 10 2013 0.0267
## 11 2014 0.0228
## 12 2015 0.0260
## 13 2016 0.0255
## 14 2017 0.0225
## 15 2018 0.0119
## 16 2019 0.0234
move_dw_share_plot =
  ggplot(data=ind_share_move_dw,aes(x=year, y=share))+
  geom_bar(stat = 'identity')+
  geom_text(aes(label=share, y=share+0.001), position="dodge", vjust=0,size = 8/.pt) +
  ggtitle(label='Share of individuals whether or not move into its current dwelling')
move_dw_share_plot
```

Share of individuals whether or not move into its current dwelling

Base on myear and move, identify whether or not household migrated at the year of survey.

```
migrate1 = by(dat_total$myear,dat_total[c('idmen','year')],
             function(x) return(unique(x))) == year_matrix
migrate2 = by(dat_total$move,dat_total[c('idmen','year')],
              function(x) return(unique(x))) == 2
migrate1[is.na(migrate1)] = 0
migrate2[is.na(migrate2)] = 0
migrate = migrate1 + migrate2 > 0
migrate[1:10,]
##
                     year
## idmen
                       2004
                             2005
                                   2006
                                        2007
                                               2008
                                                    2009
                                                           2010
                                                                 2011
                                                                       2012
     1200010012930100 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##
##
     1200010040580100 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
     1200010066630100 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##
##
     1200010082450100 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
     1200010086440100 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##
##
     1200010102990100 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##
     1200010118450100 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##
     1200020012930100 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
     1200020017390100 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##
     1200020026420100 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##
##
                     year
```

```
2014 2015 2016 2017 2018 2019
## idmen
##
     1200010012930100 FALSE FALSE FALSE FALSE FALSE
     1200010040580100 FALSE FALSE FALSE FALSE FALSE
##
##
     1200010066630100 FALSE FALSE FALSE FALSE FALSE
##
     1200010082450100 FALSE FALSE FALSE FALSE FALSE
##
     1200010086440100 FALSE FALSE FALSE FALSE FALSE FALSE
##
     1200010102990100 FALSE FALSE FALSE FALSE FALSE
     1200010118450100 FALSE FALSE FALSE FALSE FALSE FALSE
##
##
     1200020012930100 FALSE FALSE FALSE FALSE FALSE
     1200020017390100 FALSE FALSE FALSE FALSE FALSE FALSE
##
     1200020026420100 FALSE FALSE FALSE FALSE FALSE FALSE
hh_myear_na_in_years = by(dat_total$myear,dat_total[c('idmen','year')],
                          function(x) is.na(unique(x))) == TRUE
hh_myear_na_in_years[is.na(hh_myear_na_in_years)] = 0
hh_move_na_in_years = by(dat_total$move,dat_total[c('idmen','year')],
                         function(x) is.na(unique(x))) == TRUE
hh_move_na_in_years[is.na(hh_move_na_in_years)] = 0
hh_migrate_na_in_years = apply(hh_myear_na_in_years + hh_move_na_in_years == 2,2,sum)
hh numbers migrate = data.frame(year = 2004:2019, number = apply(migrate, 2, sum),
                               migrate_or_not = rep("Migrate",16))
hh numbers not migrate = data.frame(year = 2004:2019,
                                   number = hh surveyed in years -
                                     hh_migrate_na_in_years - apply(migrate, 2, sum),
                                   migrate_or_not = rep("Not migrate",16))
hh_numbers_na_migrate = data.frame(year = 2004:2019,
                                  number = hh_migrate_na_in_years,
                                  migrate_or_not = rep("NA(myear&move)",16))
ind_migrate_dw = c()
for (y in 2004:2019){
  ind_migrate = length(na.omit(unique(dat_total[(dat_total$myear == y
                                             | dat_total$move == 2)
                                            & dat_total$year == y,'idind'])))
  ind_migrate_dw = c(ind_migrate_dw, ind_migrate)
ind_share_migrate_dw = data.frame(year = 2004:2019,
                              share = round(ind_migrate_dw / ind_unique,4))
migrate_hist = rbind(hh_numbers_migrate, hh_numbers_not_migrate) %%
  rbind(hh numbers na migrate)
migrate plot =
  ggplot(data=migrate_hist,aes(x=year, y=number, fill=migrate_or_not))+
  geom_bar(stat = 'identity')+
  facet_wrap(.~migrate_or_not,1,3,scales="free_y")+
  ggtitle(label='Number of households whether or not the household migrated')+
  theme(legend.position = "bottom")
migrate_plot
```

Number of households whether or not the household migrated


```
ind_share_migrate_dw
```

```
##
      year share
      2004 0.0276
## 1
## 2
      2005 0.0291
## 3
      2006 0.0305
## 4
      2007 0.0274
## 5
      2008 0.0289
## 6
      2009 0.0271
## 7
      2010 0.0247
## 8
      2011 0.0280
## 9
      2012 0.0274
## 10 2013 0.0265
## 11 2014 0.0228
## 12 2015 0.0505
## 13 2016 0.0534
## 14 2017 0.0462
## 15 2018 0.0494
## 16 2019 0.0452
migrate_share_plot =
  ggplot(data=ind_share_migrate_dw,aes(x=year, y=share))+
  geom_bar(stat = 'identity')+
  geom_text(aes(label=share, y=share+0.001), position="dodge", vjust=0,size = 8/.pt) +
  ggtitle(label='Share of individuals migrated')
migrate_share_plot
```

Share of individuals migrated

Mix the two plots you created above in one graph, clearly label the graph.

move_dw_plot+migrate_plot+plot_layout(ncol=1,nrow=2)

Number of households whether or not move into its current dwelling

Number of households whether or not the household migrated

 $\verb|move_dw_share_plot+migrate_share_plot+plot_layout(| \verb|ncol=1|, \verb|nrow=2|)||$

Share of individuals whether or not move into its current dwelling

Share of individuals migrated

I like the first method better, because it is more smooth. The second method has a sudden increase after 2015 which seems to be unreal.

For households that migrate, find out how many households had at least one family member changed his/her profession or employment status.

```
# find the change in each year.
migrate_hh = apply(migrate,1,sum)>0
migrate_hh = names(migrate_hh[migrate_hh==TRUE])
dat_total$year = as.numeric(as.character(dat_total$year))
years = 2004:2019
change number = c(0)
for(y in 2:16){
  year_change = 0
  # check household migrated some year in each year from 2005
  for(hh in migrate_hh){
   hh change = 0
   temp = dat_total[dat_total$idmen==hh&dat_total$year==years[y],]
    # check whether the household is surveyed in that year
    if (dim(temp)[1]>0){
      temp[is.na(temp)] = 0
      # check whether the household migrated that year
     if (unique(temp$myear)==unique(temp$year) | unique(temp$move)==2){
        temp = dat_total[dat_total$idmen==hh&dat_total$year%in%c(years[y-1],years[y]),]
        ids_name = unique(temp$idind)
```

```
temp[is.na(temp)] = -1
        # check whether each member this year change prof or emp
        for (id in 1:length(ids_name)){
          id_temp = temp[which(temp$idind==ids_name[id]),]
          # if the member is not in the household last year, skip
          if (dim(id_temp)[1]==2){
            # if member's prof of epm changes from NA or changes to NA, he/she is also included
            if (length(unique(id_temp$profession))>1 | length(unique(id_temp$empstat))>1){
              hh change = hh change + 1
          }
       }
     }
   }
      (hh_change > 0){year_change = year_change + 1}
  change_number = c(change_number, year_change)
}
change_number_dat = data.frame(year=years, number=change_number)
ggplot(change_number_dat,aes(year,number))+
  geom_bar(stat = 'identity')+
  geom_text(aes(label=number, y=number+0.5), position="dodge", vjust=0,size = 8/.pt) +
  ggtitle(label='For households that migrate, households had at least one family
          member changedhis/her profession or employment status')
```

For households that migrate, households had at least one family member changedhis/her profession or employment status

Exercise 4 Attrition

```
dat_total$idind = as.integer64(as.character(dat_total$idind))
attrition = c(0)
attrition_rate = c(0)
for (y in 2005:2019){
 number_stay = 0
  id_first = unique(dat_total[dat_total$year==y-1,'idind'])
  id_second = unique(dat_total[dat_total$year==y,'idind'])
  for (i in 1:length(id_first)){
   if (id_first[i] %in% id_second) {number_stay = number_stay + 1}
 attrition = c(attrition, length(id_first) - number_stay)
  attrition_rate = c(attrition_rate, (length(id_first) - number_stay)/length(id_first))
}
attrition
## [1]
           0 2996 4850 4457 5873 5245 4707 5137 4599 7263 5782 5866 5784 6677 6201
## [16] 6003
attrition_rate
## [1] 0.0000000 0.1352962 0.2000743 0.1787089 0.2266955 0.2056056 0.1837882
## [8] 0.1936226 0.1698866 0.2546188 0.2198228 0.2191832 0.2172313 0.2507040
## [15] 0.2442012 0.2431250
data.frame(years = 2004:2019, attrition_rate = attrition_rate) %>%
  ggplot(aes(x = years, y = attrition_rate)) +
  geom_bar(stat = 'identity')+
 ggtitle(label='Attrition Rate')
```

