AND Gate

- · An AND gate has two or more inputs but only one output.
- The output assumes the logic 1, only when each one of its inputs is at logic 1.
- The output assumes the logic 0 even if one of its inputs is at logic 0.
- · The logic symbol & truth table are shown in below figure.
- Notation:- $C = A \cdot B$

A	В	C	
0	0	0	
0	1	0	
1	0	0	
1	1	1	

OR Gate

- An OR gate has two or more inputs but only one output.
- The output assumes the logic 0, only when each one of its inputs is at logic 0.
- The output assumes the logic 1 even if one of its inputs is at logic 1.
- The logic symbol & truth table are shown in below figure.
- Notation:- C = A + B

A	В	C
0	0	0
0	1	1
1	0	1
1	1	1

NOT Gate

- A NOT gate (also called an inverter) has only one input & one output.
- It is a device whose output is always the complement of its input.
- The output assumes the logic 1, when its input is at logic 0.
- The output assumes the logic 0, when its input is at logic 1.
- The logic symbol & truth table are shown in below figure.
- Notation:- $C = \bar{A}$

A	C
0	1
1	0

NAND Gate (Universal Gate)

- NAND means NOT AND, i.e. the AND output is NOTed.
- The output assumes the logic 0, only when each one of its inputs is at logic 1.

- The output assumes the logic 1 even if one of its inputs is at logic 0.
- · The logic symbol & truth table are shown in below figure.
- Notation:- $C = \overline{A \cdot B}$

A	В	C	
0	0	1	
0	1	1	
1	0	1	
1	1	0	

NOR Gate (Universal Gate)

- · NOR means NOT OR, i.e. the OR output is NOTed.
- The output assumes the logic 1, only when each one of its inputs is at logic 0.
- The output assumes the logic 0 even if one of its inputs is at logic 1.
- The logic symbol & truth table are shown in below figure.
- Notation:- $C = \overline{A + B}$

Α	В	C
0	0	1
0	1	0
1	0	0
1	1	0

EX-OR Gate

- An X-OR gate has two or more inputs but only one output.
- The output assumes the logic 1 when one and only one of its inputs assumes a logic 1.
- Under the conditions when both the inputs assume the logic 0, or when both the inputs assume the logic 1, the output assumes a logic 0.
- Since, an X-OR gate produces an output 1 only when the inputs are not equal, it is called an anticoincidence gate or inequality detector.
- The logic symbol & truth table are shown in below figure.
- Notation:- $C = A \oplus B$

A	В	C	
0	0	0	
0	1	1	
1	0	1	
1	1	0	

EX-NOR Gate

- An X-NOR gate has two or more inputs but only one output.
- The output assumes the logic 0 when one and only one of its inputs assumes a logic 0.
- Under the conditions when both the inputs assume the logic 1, or when both the inputs assume
 the logic 1, the output assumes a logic 0.

- Since, an X-NOR gate produces an output 1 only when the inputs are equal, it is called a coincidence gate or equality detector.
- The logic symbol & truth table are shown in below figure.
- Notation:- C = A ⊙ B

A	В	C	
0	0	1	
0	1	0	
1	0	0	
1	1	1	

Basic Gates as Universal Gates

- Implementation of NOT, AND & OR gates using NAND gate only
- 1. NOT using NAND gate
 - A NAND gate can also be used as an inverter by tying all its input terminals together and applying the signal to be inverted to the common terminal.

- 2. AND using NAND gate
 - NAND means NOT AND, i.e. the AND output is NOTed.
 - So, a NAND gate is combination of an AND gate and a NOT gate.

- 3. OR using NAND gate
 - By inverting inputs in NAND gate, a OR gate is constructed via De Morgan's theorem.
 - $\overline{A}\overline{B} = \overline{A} + \overline{B} = A + B$

- Implementation of NOT, AND & OR gates using NOR gate only
- 1. NOT using NOR gate
 - A NOR gate can also be used as an inverter by tying all its input terminals together and applying
 the signal to be inverted to the common terminal.

- 2. OR using NOR gate
 - · NOR means NOT OR, i.e. the OR output is NOTed.
 - · So, a NOR gate is combination of an OR gate and a NOT gate.

- 3. AND using NOR gate
 - By inverting inputs in NOR gate, a AND gate is constructed via De Morgan's theorem.
 - $\overline{A} + \overline{B} = \overline{A} \overline{B} = AB$

Boolean Algebra Laws

- AND laws
 - 1. $A \cdot 0 = 0$ (Null Law)
 - 2. $A \cdot 1 = A$ (Identity Law)
 - 3. $A \cdot A = A$
 - 4. $A \cdot \bar{A} = 0$
- OR laws
 - 1. A + 0 = A (Null Law)
 - 2. A + 1 = 1 (Identity Law)
 - 3. A + A = A
 - 4. $A + \bar{A} = 1$
- · Commutative laws
 - 1. A + B = B + A
 - 2. $A \cdot B = B \cdot A$
- Associative laws
 - 1. (A+B)+C=A+(B+C)
 - 2. $(A \cdot B)C = A(B \cdot C)$
- Distributive laws
 - 1. A(B+C) = AB + AC
 - 2. A + BC = (A + B)(A + C)

- Redundant Literal Rule
 - 1. $A + \overline{A}B = A + B$
 - $2. \quad A(\bar{A}+B)=AB$
- Idempotence laws
 - 1. $A \cdot A = A$
 - 2. A + A = A
- Absorption laws
 - $1. \quad A + AB = A$
 - $2. \quad A(A+B)=A$

De Morgan's Theorem

- 1. Law 1 : $\overline{A+B+C} = \overline{A} \, \overline{B} \, \overline{C}$
 - This law states that the complement of a sum of variables is equal to the product of their individual complements.

Α	В	С	A+B+C	(A+B+C)	A'	B	C'	A'B'C'
0	0	0	0	1	1	1	1	1
0	0	1	1	0	1	1	0	0
0	1	0	1	0	1	0	1	0
0	1	1	1	0	1	0	0	0
1	0	0	1	0	0	1	1	0
1	0	1	1	0	0	1	0	0
1	1	0	1	0	0	0	1	0
1	1	1	1	0	0	0	0	0

- Hence, Law 1 is proved from the above truth table.
- 2. Law 2 : $\overline{ABC} = \overline{A} + \overline{B} + \overline{C}$
 - This law states that the complement of a product of variables is equal to the sum of their individual complements.

Α	В	С	ABC	(ABC)	A'	B [']	C	A'+B'+C'
0	0	0	0	1	1	1	1	1
0	0	1	0	1	1	1	0	1
0	1	0	0	1	1	0	1	1
0	1	1	0	1	1	0	0	1
1	0	0	0	1	0	1	1	1
1	0	1	0	1	0	1	0	1
1	1	0	0	1	0	0	1	1
1	1	1	1	0	0	0	0	0

Hence, Law 2 is proved from the above truth table.

Reduction of Boolean Expression

2.
$$f = A + B[AC + (B + \bar{C})D]$$

 $= A + B[AC + BD + \bar{C}D]$ (Distributive Law)
 $= A + BAC + BBD + B\bar{C}D$ (Distributive Law)
 $= A + ABC + BD + B\bar{C}D$ (B · B = B)
 $= A(1 + BC) + BD(1 + \bar{C})$
 $= A \cdot 1 + BD \cdot 1$ (1 + A = A)
 $= A + BD$

Common Number Systems

- · There are mainly four number systems which are used in digital electronics platform.
 - 1. Decimal number system
 - o The decimal number system contains ten unique symbols 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
 - o The base or radix is 10.
 - o 9's and 10's complements are possible for any decimal number.

2. Binary number system

- o The binary number system contains two unique symbols 0, 1.
- o The base or radix is 2.
- o 1's and 2's complements are possible for any binary number.

3. Octal number system

- o The octal number system contains eight unique symbols 0, 1, 2, 3, 4, 5, 6, 7.
- o The base or radix is 8.
- o 7's and 8's complements are possible for any octal number.

4. Hexadecimal number system

- The hexadecimal number system contains sixteen unique symbols 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A,
 B, C, D, E, F.
- The base or radix is 16.
- o 15's and 16's complements are possible for any hexadecimal number.