

Subb A2

1 1. A method for treating a bone defect comprising:
2 identifying a bone site suitable for receiving an implant; and
3 introducing a strongly resorbable, poorly crystalline apatitic calcium phosphate
4 at the implant site, whereby bone is formed at the implant site.

5

6 2. A method for treating a bone defect, comprising:
7 identifying a bone site suitable for receiving an implant; and
8 introducing a hydrated precursor to a strongly resorbable, poorly crystalline
9 apatitic calcium phosphate at the implant site, whereby the hydrated precursor is
10 converted *in vivo* to a poorly crystalline apatitic calcium phosphate and whereby bone
11 is formed at the implant site.

12

13 3. The method of claim 1, wherein the poorly crystalline apatitic calcium
14 phosphate is introduced in the form selected from the group consisting of paste, putty
15 and preshaped object.

16

17 4. The method of claim 2, wherein the hydrated precursor is introduced
18 in the form selected from the group consisting of paste and putty.

19

20 5. The method of claim 3 or 4, characterized in that, said paste is
21 injectable for a time greater than about 10 minutes at about 25 °C, hardens within
22 about 10 to 60 minutes at about 37 °C.

23

24 6. The method of claim 1, wherein said poorly crystalline apatitic calcium
25 phosphate has x-ray diffraction substantially as shown in Figure 3a.

26

27 7. The method of claim 1, wherein the strongly bioresorbable, poorly
28 crystalline apatitic calcium phosphate has an X-ray diffraction pattern comprising
29 broad peaks at 2θ values of 26°, 28.5°, 32° and 33°.

1 8. The method of claim 1, wherein the strongly bioresorbable, poorly
2 crystalline apatitic calcium phosphate is characterized in that, when placed in a rat
3 intramuscular site, resorption of at least 1 g of the material is at least 80% resorbed
4 within one year.

5

6 9. The method of claim 1, wherein the strongly bioresorbable, poorly
7 crystalline apatitic calcium phosphate is characterized in that, when placed in a rat
8 intramuscular site, resorption of at least 1 g of the material is at least 80% resorbed
9 within one month.

10

11 10. The method of claim 1 or 2, wherein the implant site comprises a tooth
12 socket.

13

14 11. The method of claim 1 or 2, wherein the implant site comprises a non-
15 union bone.

16

17 12. The method of claim 1 or 2, wherein the implant site comprises a bone
18 prosthesis.

19

20 13. The method of claim 1 or 2, wherein the implant site comprises an
21 osteoporotic bone.

22

23 14. The method of claim 1 or 2, wherein the implant site comprises an
24 intervertebral space.

25

26 15. The method of claim 1 or 2, wherein the implant site comprises a
27 alveolar ridge.

28

345
1 16. The method of claim 1 or 2, wherein the implant site comprises a bone
2 fracture.
3
4

5 17. A method of preparing a ceramic implant, comprising:
6 mixing in any order,
7 (a) a reactive amorphous calcium phosphate,
8 (b) a second calcium phosphate, the second calcium phosphate and the reactive
9 amorphous calcium phosphate in a proportion to form an apatitic calcium phosphate,
10 and
11 (c) a physiological liquid, said liquid in the amount to provide a paste or putty;
12 and
13 introducing the paste or putty into an implant site.

14 18. The method of claim 17, wherein the reaction is carried out at no
15 greater than about 37 °C.

16
17 19. The method of claim 17, wherein the fluid selected from the group
18 consisting of water, a physiologically acceptable pH-buffered solution, saline solution,
19 serum and tissue culture medium.

20
21 20. The method of claim 17, wherein the paste or putty is injected into the
22 implant site.

23
24 add
a 37