- **1.** Un móvil se desplaza con velocidad $v(t) = 3t^2$ para cada instante de tiempo t, ¿cuál será la posición del móvil en el instante de tiempo t?
- 2. Verificar que son correctos los siguientes resultados.

a.
$$\int \frac{1}{\sqrt[3]{x}} dx = \frac{3}{2} x^{\frac{2}{3}} + C$$

b.
$$\int \frac{x^2-1}{x} dx = \frac{x^2}{2} - \ln |x| + C$$

c.
$$\int 5^{x}4^{x}dx = \frac{20^{x}}{\ln 20} + C$$

- **3.** Demostrar la propiedad de linealidad de la integral indefinida: $\int [af(x) + \beta g(x)] dx = a \int f(x) dx + \beta \int g(x) dx$, si $\alpha,\beta \in \Re$
- **4.** En el siguiente gráfico se muestra el gráfico de algunas primitivas de f(x) = 2x cos(x) ¿Qué relación hay entre las diferentes primitivas? Hallar la expresión analítica de la primitiva que pasa por el punto (0, 6).

5. Resolver las siguientes integrales

$$a. \quad \int \left(xe^2 + \frac{1}{\sqrt[3]{x^2}} \right) dx$$

b.
$$\int \frac{\sqrt{1+t^3}e^x + x^2}{t^3} dt$$

c.
$$\int x^2 (1 - \sqrt[3]{x})^2 dx$$

d.
$$\int \left(2senx + \frac{4}{5}y + \sqrt{3}e^{x}\right)dy$$

e.
$$\int \left(\cos x + \frac{2}{x} - x^2 \sqrt{x}\right) dx$$
 f.
$$\int \frac{1}{3 + 3x^2} + \frac{8}{\cos^2 x} dx$$

$$f. \qquad \int \frac{1}{3+3x^2} + \frac{8}{\cos^2 x} dx$$

- **6.** Un objeto se mueve a lo largo de un eje de coordenadas con una velocidad v(t) = t(1+t) medida en m/s. Su posición en el instante t = 0 es dos metros.
 - i. Hallar la posición del móvil a los diez segundos.
 - ii. Hallar la distancia recorrida por el objeto en esos diez segundos.
- 7. Hallar la ecuación del movimiento de un objeto que se mueve a lo largo de una línea recta con una aceleración constante a desde una posición inicial x_0 y con una velocidad inicial v_0 .
- 8. Un proyectil se dispara verticalmente hacia arriba desde el nivel del suelo con una velocidad inicial de 49 m/s y una aceleración constante igual a la aceleración de la gravedad, a(t) = -9.8 m/s². ¿Cuál es la velocidad en t = 2 s? ¿Cuál es la altura máxima que alcanza el proyectil? ¿Cuánto tiempo permanece en el aire el proyectil? ¿Cuál es la velocidad de impacto?
- 9. Calcular las siguientes integrales aplicando convenientemente el método de sustitución

a.
$$\int [x^2 \operatorname{sen}(4x^3) + \operatorname{tg}(x)] dx$$

b.
$$\int \left[\frac{\sqrt{\ln x}}{x} + a. e^{sen(x)} \cos(x) \right] dx$$

a.
$$\int \frac{dx}{(x+1)|n^2(x+1)|}$$

d.
$$\int r.\sqrt{h^2-r^2} dr$$

e.
$$\int \frac{dx}{(x-1)^2+9}$$

f.
$$\int \frac{dh}{\sqrt{4-9h^2}}$$

10. Sean f, g, h funciones con derivada continua en R. Calcular:

a.
$$\int g(x)g'(x)dx$$

b.
$$\int \frac{h'(x)}{\left[h(x)\right]^2} dx$$

a.
$$\int g(x)g'(x)dx$$
 b. $\int \frac{h'(x)}{\left\lceil h(x) \right\rceil^2} dx$ c. $\int f'(x).\sqrt{r+f(x)} dx$

- 11. Un cohete está en reposo en el instante t=0. Mediante mediciones en el interior del cohete se comprueba que experimenta una aceleración $a(t) = (t+1)^{\frac{1}{2}} - 1$, $\forall t \ge 0$, donde t se mide en segundos y la aceleración en m/s². Si el movimiento del cohete es rectilíneo ¿Qué velocidad tiene en el instante t=63?
- La aceleración de un móvil está dada por la fórmula $a(t) = \frac{-3v_0}{m}e^{-\frac{3t}{m}}$, siendo m la masa, v_0 la velocidad inicial y t 12. el tiempo. Si la posición inicial de dicho móvil es x_0 , hallar una expresión para la velocidad v(t) y la posición x(t) del móvil en función del tiempo.
- 13. Resolver las siguientes integrales aplicando convenientemente el método de integración por partes.

a.
$$\int x^3 \ln x dx$$

b.
$$\int \frac{x^2}{e^{3x}} dx$$

c.
$$\int x^2 arctgx dx$$

$$d. \int x \left(\cos x + \frac{\ln x}{x} \right) dx$$

e.
$$\int$$
arccoszdz

f.
$$\int \cos(\ln x) dx$$

14. Calcular las siguientes integrales aplicando convenientemente el método de descomposición en fracciones simples

a.
$$\int \frac{4h-1}{h^2-5h+6} dh$$
 b. $\int \frac{dt}{t^4-t^2}$ c. $\int \frac{x^5+x^4-8}{x^3-4x} dx$

b.
$$\int \frac{dt}{t^4 - t^2}$$

c.
$$\int \frac{x^5 + x^4 - 8}{x^3 - 4x} dx$$

- Calcular g(x) sabiendo que g'(x) = $\frac{e^{4x}}{3 + e^{4x}}$ y g(0) = -ln3 15.
- 16. Resolver las siguientes integrales:

a.
$$\int \ln(x+2y) dy$$

b.
$$\int \frac{2\ln(x)\cos(\ln(x))}{x} dx$$

c.
$$\int \frac{e^x}{e^{2x} + e^x - 2} dx$$

$$d. \int \frac{(1+\ln x)^{1/3} \ln x}{x} dx$$

Algunos ejercicios resueltos

Ejercicio 8

Un proyectil se dispara verticalmente hacia arriba desde el nivel del suelo con una velocidad inicial de 49 m/s y una aceleración constante igual a la aceleración de la gravedad, a(t) = -9.8 m/s². ¿Cuál es la velocidad en t = 2 s? ¿Cuál es la altura máxima que alcanza el proyectil? ¿Cuánto tiempo permanece en el aire el proyectil? ¿Cuál es la velocidad de impacto?

Resolución

Dado que la aceleración de un proyectil se obtiene derivando la velocidad, si conocemos la aceleración tendremos que integrarla para conocer la velocidad del mismo.

Como $a(t) = -9.8 \, m/s^2$,

$$v(t) = \int a(t)dt = \int -9.8 \, dt = -9.8t + c$$

Como la velocidad inicial, es decir, en tiempo t=0 segundos, es $v_0=v(0)=49\,m/s$, reemplazando en la fórmula obtenida para la velocidad, se tiene:

$$v(0) = -9.8 \cdot 0 + c = 49$$

Con lo cual, c = 49.

De esta forma, v(t) = -9.8t + 49 m/s.

La velocidad del proyectil a los 2 segundos será: $v(2) = -9.8 \cdot 2 + 49 = 29.4 \, m/s$.

Dado que la velocidad del proyectil se obtiene derivando su ecuación de posición, si conocemos la ecuación de la velocidad, la integraremos:

$$x(t) = \int v(t)dt = \int -9.8t + 49 dt = -\frac{9.8t^2}{2} + 49t + k$$

Como el proyectil es lanzado verticalmente hacia arriba desde el nivel del suelo, su posición inicial para el tiempo t=0 segundos es $x_0=x(0)=0$. Luego:

$$x(0) = -\frac{9.8 \cdot 0^2}{2} + 49 \cdot 0 + k = 0 \rightarrow k = 0$$

Por lo tanto,
$$x(t) = -\frac{9.8t^2}{2} + 49t$$
.

La altura máxima que alcanzará el proyectil corresponderá, por ser x(t) una función cuadrática con coeficiente principal negativo, a la componente x del vértice de la parábola que es gráfico de la ecuación de posición. Tengamos en cuenta que nuestro plano tiene eje horizontal t y eje vertical x.

Si $x(t) = at^2 + bt + c$, la componente t del vértice es $t = \frac{-b}{2a}$ y la componente y del vértice es $x = x\left(\frac{-b}{2a}\right)$.

• Para nuestros datos: $x = x\left(\frac{-49}{2(\frac{-9.8}{2})}\right) = x(5) = 122.5$. Es decir, la altura máxima alcanzada por el proyectil será 122.5 metros.

El tiempo que permanecerá en el aire lo calculamos averiguando en qué instante de tiempo t, la posición del proyectil vuelve a ser cero, esto es, además de t=0, cuál es el otro cero de x=x(t).

- Resolviendo la ecuación x(t) = 0, obtenemos t = 10. Es decir, el proyectil permanecerá en el aire 10 segundos.
- La velocidad de impacto será $v(10) = -9.8 \cdot 10 + 49 = -49 \, m/s$

Ejercicio 11

Un cohete está en reposo en el instante t=0. Mediante mediciones en el interior del cohete se comprueba que experimenta una aceleración $a(t) = (t+1)^{\frac{1}{2}} - 1$, $\forall t \ge 0$, donde t se mide en segundos y la aceleración en m/s^2 . Si el movimiento del cohete es rectilíneo ¿Qué velocidad tiene en el instante t = 63?

Resolución

Dado que la aceleración de un móvil se obtiene derivando la velocidad, si conocemos la aceleración tendremos que integrar a fin de conocer la velocidad del mismo.

Como
$$a(t) = (t+1)^{1/2} - 1$$
,

$$V(t) = \int a(t)dt = \int [(t+1)^{1/2} - 1] dt$$

Utilizando el método de sustitución, llamamos z = t + 1. De modo que dz = dt. Luego:

$$\int \left[(t+1)^{1/2} \right] dt = \int \left(z^{\frac{1}{2}} \right) dz = \frac{2}{3} z^{3/2} + C = \frac{2}{3} (t+1)^{3/2} + C$$

Entonces:

$$\int \left[(t+1)^{1/2} - 1 \right] dt = \frac{2}{3} (t+1)^{3/2} - t + C$$

En t = 0, el cohete se encuentra en reposo, por lo que v(0) = 0. A partir de este dato, buscamos el valor de la constante C:

$$v(0) = \frac{2}{3} (0+1)^{3/2} - 0 + C = 0 \rightarrow C = -\frac{2}{3}$$

La velocidad del cohete en cualquier instante t de tiempo es v(t) = $\frac{2}{3}(t+1)^{3/2} - t - \frac{2}{3}$.

En particular, a los 63 segundos la velocidad será de v(63) = $\frac{2}{3}$. 8³ - 63 - $\frac{2}{3}$. Aproximadamente, 277,6 m/s.

Ejercicio 13.b)

Resolver las siguientes integrales aplicando convenientemente el método de integración por partes.

$$\int \frac{x^2}{e^{3x}} dx$$

Resolución

Recordemos el método de integración por partes:

$$\int u.\,dv = u.\,v - \int v.\,du$$

Primero reescribimos la función a integrar como un producto de funciones

 $\int \frac{x^2}{e^{3x}} dx = \int x^2 e^{-3x} dx$ Tomando

 $u = x^2$

 $dv = e^{-3x} dx$

Tenemos

$$du = 2x dx$$

Para obtener v realizamos una pequeña sustitución $t=-3t,\ dt=-3dx$

$$v = \int dv = \int e^{-3x} dx = \int -\frac{1}{3} e^t dt = -\frac{1}{3} e^t = -\frac{1}{3} e^{-3x}$$

Luego,

$$\int \frac{x^2}{e^{3x}} dx = \int x^2 e^{-3x} dx = x^2 \left(-\frac{1}{3} e^{-3x} \right) - \int \left(-\frac{1}{3} e^{-3x} \right) 2x \, dx = x^2 \left(-\frac{1}{3} e^{-3x} \right) + \frac{2}{3} \underbrace{\int x \, e^{-3x} \, dx}_{Cálculo \ auxiliar}$$
(A)

Calculemos $\int x e^{-3x} dx$ mediante un cálculo auxiliar

Tomando

$$dv = e^{-3x} dx$$

Tenemos

$$du = dx$$
$$v = -\frac{1}{3}e^{-3x}$$

Luego

$$\int x e^{-3x} dx = x \left(-\frac{1}{3} e^{-3x} \right) - \int -\frac{1}{3} e^{-3x} dx = x \left(-\frac{1}{3} e^{-3x} \right) + \frac{1}{3} \int e^{-3x} dx = x \left(-\frac{1}{3} e^{-3x} \right) + \frac{1}{3} \left(-\frac{1}{3} e^{-3x} \right)$$
(B)

Reemplazando (B) en (A),

$$\int \frac{x^2}{e^{3x}} dx = \int x^2 e^{-3x} dx = x^2 \left(-\frac{1}{3} e^{-3x} \right) + \frac{2}{3} \left[x \left(-\frac{1}{3} e^{-3x} \right) + \frac{1}{3} \left(-\frac{1}{3} e^{-3x} \right) \right] + c$$