Reinforcement Learning

Lecture 4 Model Free Prediction

Stergios Christodoulidis

MICS Laboratory CentraleSupélec Université Paris-Saclay

https://stergioc.github.io/

Last Lecture

Iterative Policy Evaluation

$$\mathbf{v}_{k+1}(s) = \sum_{a \in \mathcal{A}} \pi(a \mid s) \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a \mathbf{v}_k(s') \right)$$

Iterative Policy Evaluation

Iterative Policy Evaluation, for estimating $V \approx v_{\pi}$

Input π , the policy to be evaluated

Algorithm parameter: a small threshold $\theta > 0$ determining accuracy of estimation Initialize V(s) arbitrarily, for $s \in \mathcal{S}$, and V(terminal) to 0

Loop:

$$\Delta \leftarrow 0$$

Loop for each $s \in S$:

$$\begin{aligned} v &\leftarrow V(s) \\ V(s) &\leftarrow \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \big[r + \gamma V(s') \big] \\ \Delta &\leftarrow \max(\Delta,|v-V(s)|) \end{aligned}$$

until $\Delta < \theta$

Policy Iteration

- Policy evaluation Estimate v_{π}
 - Iterative policy evaluation
- Policy improvement Generate $\pi' \geq \pi$
 - Greedy policy improvement

[An Introduction to Reinforcement Learning, Sutton and Barto]

Policy Iteration

Policy Iteration (using iterative policy evaluation) for estimating $\pi \approx \pi_*$

1. Initialization

$$V(s) \in \mathbb{R}$$
 and $\pi(s) \in \mathcal{A}(s)$ arbitrarily for all $s \in S$; $V(terminal) \doteq 0$

2. Policy Evaluation

Loop:

$$\Delta \leftarrow 0$$

Loop for each $s \in S$:

$$v \leftarrow V(s)$$

$$V(s) \leftarrow \sum_{s',r} p(s', r | s, \pi(s)) [r + \gamma V(s')]$$

$$\Delta \leftarrow \max(\Delta, |v - V(s)|)$$

until $\Delta < \theta$ (a small positive number determining the accuracy of estimation)

3. Policy Improvement

$$policy$$
- $stable \leftarrow true$

For each $s \in S$:

$$\begin{aligned} & \textit{old-action} \leftarrow \pi(s) \\ & \pi(s) \leftarrow \text{arg} \max_{a} \sum_{s',r} p(s',r|s,a) \big[r + \gamma V(s') \big] \end{aligned}$$

If old-action $\neq \pi(s)$, then policy-stable \leftarrow false

If policy-stable, then stop and return $V \approx v_*$ and $\pi \approx \pi_*$; else go to 2

[An Introduction to Reinforcement Learning, Sutton and Barto]

Value Iteration

$$\mathbf{v}_{k+1}(s) = \max_{a \in \mathcal{A}} \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a \mathbf{v}_k(s') \right)$$

Generalized Policy Iteration

- Policy evaluation Estimate v_{π}
 - Any policy evaluation algorithm
- Policy improvement Generate $\pi' \geq \pi$
 - Any policy improvement algorithm

[An Introduction to Reinforcement Learning, Sutton and Barto]

Synchronous Dynamic Programming Algorithms

Problem	Bellman Equation	Algorithm
Prediction	Bellman Expectation Equation	Iterative Policy Evalution
Control	Bellman Expectation Equation + Greedy Policy Improvement	Policy Iteration
Control	Bellman Optimality Equation	Value Iteration

- Algorithms are based on state-value function $v_{\pi}(s)$ or $v_{*}(s)$
- Complexity $O(mn^2)$ per iteration, for m actions and n states

Today's Lecture

Today's Lecture

- Monte-Carlo Learning
- Temporal-Difference Learning
- n-step *TD*

Model-Free RL

- Last lecture:
 - Planning by dynamic programming
 - Solve a known MDP
- This lecture:
 - Model-free prediction
 - Estimate the value function of an unknown MDP
- Next lecture:
 - Model-free control
 - Optimize the value function of an unknown MDP

Monte-Carlo Learning

Monte-Carlo Reinforcement Learning

- MC methods learn directly from episodes of experience
- MC is model-free: no knowledge of MDP transitions / rewards
- MC learns from complete episodes: no bootstrapping
- MC uses the simplest possible idea: value = mean return
- Caveat: can only apply MC to episodic MDPs
 - All episodes must terminate

Monte-Carlo Policy Evaluation

• Goal: learn v_{π} from episodes of experience under policy π

$$S_1, A_1, R_1, \dots, S_k \sim \pi$$

Recall that the return is the total discounted reward

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \cdots$$

• Recall that the value function is the expected return:

$$v_{\pi}(s) = \mathbb{E}_{\pi}[G_t \mid S_t = s]$$

Monte-Carlo policy evaluation uses empirical mean return instead of expected return

First-Visit Monte-Carlo Policy Evaluation

- To evaluate state s
- The first time-step t that state s is visited in an episode,
 - Increment counter, $N(s) \leftarrow N(s) + 1$
 - Increment total return, $S(s) \leftarrow S(s) + G_t$
 - Value is estimated by mean return, V(s) = S(s)/N(s)
- By law of large numbers, $V(s) = v_{\pi}$ as $N(s) \rightarrow \infty$

Every-Visit Monte-Carlo Policy Evaluation

- To evaluate state s
- Every time-step t that state s is visited in an episode,
 - Increment counter, $N(s) \leftarrow N(s) + 1$
 - Increment total return, $S(s) \leftarrow S(s) + G_t$
 - Value is estimated by mean return, V(s) = S(s)/N(s)
- Again, $V(s) = v_{\pi}$ as $N(s) \rightarrow \infty$

Example: Blackjack

- States (200 in total):
 - Current sum (12-21)
 - Dealer's showing card (ace or 2-10)
 - Do I have a "useable" ace? (yes-no)
- Actions
 - *hit*: Take another card (no replacement)
 - *stick*: Stop receiving cards (and terminate)
- Rewards
 - for stick:
 - +1 if sum of cards > sum of dealer cards
 - 0 if sum of cards = sum of dealer cards
 - -1 if sum of cards < sum of dealer cards
 - for hit:
 - -1 if sum of cards > 21 (and terminate)
 - 0 otherwise
- Policy: stick if sum of cards ≥ 20 , otherwise hit

Blackjack Value Function after MC Learning

[An Introduction to Reinforcement Learning, Sutton and Barto]

Incremental Mean

• The mean μ_k of a sequence $x_1, x_2, ..., x_k$ can be computed incrementally,

$$\mu_{k} = \frac{1}{k} \sum_{i=1}^{k} x_{i}$$

$$= \frac{1}{k} \left(x_{k} + \sum_{i=1}^{k-1} x_{i} \right)$$

$$= \frac{1}{k} \left(x_{k} + (k-1)\mu_{k-1} \right)$$

$$= \mu_{k-1} + \frac{1}{k} \left(x_{k} - \mu_{k-1} \right)$$

Incremental Monte-Carlo Updates

- Update V(s) incrementally after episode $S_1, A_1, R_1, \dots, S_k$
- For each state S_t with return G_t

$$N(S_t) \leftarrow N(S_t) + 1$$

$$V(S_t) \leftarrow V(S_t) + \frac{1}{N(S_t)} (G_t - V(S_t))$$

• In non-stationary problems, it can be useful to track a running mean, i.e., forget old episodes.

$$V(S_t) \leftarrow V(S_t) + \alpha(G_t - V(S_t))$$

Temporal-Difference Learning

Temporal-Difference Learning

- TD methods learn directly from episodes of experience
- TD is model-free: no knowledge of MDP transitions / rewards
- TD learns from incomplete episodes, by bootstrapping
- TD updates a guess towards a guess

MC and TD

- Goal: learn v_{π} from episodes of experience under policy π
- Incremental Monte-Carlo
 - Update value $V(S_t)$ toward actual return G_t

$$V(S_t) \leftarrow V(S_t) + \alpha(G_t - V(S_t))$$

- Simplest temporal-difference learning algorithm: TD(0)
 - Update value $V(S_t)$ toward estimated return $R_{t+1} + \gamma V(S_{t+1})$

$$V(S_t) \leftarrow V(S_t) + \alpha(R_{t+1} + \gamma V(S_{t+1}) - V(S_t))$$

- $R_{t+1} + \gamma V(S_{t+1})$ is called TD target
- $\delta_t = R_{t+1} + \gamma V(S_{t+1}) V(S_t)$ is called the TD error

Example: Driving Home

	$Elapsed\ Time$	Predicted	Predicted
State	(minutes)	$Time\ to\ Go$	$Total\ Time$
leaving office, friday at 6	0	30	30
reach car, raining	5	35	40
exiting highway	20	15	35
2ndary road, behind truck	30	10	40
entering home street	40	3	43
arrive home	43	0	43

Example: Driving Home – MC vs TD

[An Introduction to Reinforcement Learning, Sutton and Barto]

Advantages and Disadvantages of MC vs TD (1/3)

- TD can learn before knowing the outcome
 - TD can learn online after every step
 - MC must wait until end of episode before return is known
- TD can learn without the outcome
 - TD can learn from incomplete sequences
 - MC can only learn from complete sequences
 - TD works in continuing (non-terminating) environments
 - MC only works for episodic (terminating) environments

Bias/Variance Trade-Off

- Return $G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \cdots$ is an <u>unbiased</u> estimate of the v_{π}
- True TD target $R_{t+1} + \gamma v_{\pi}(S_{t+1})$ is <u>unbiased</u> estimate of v_{π}
- The TD target $R_{t+1} + \gamma V(S_{t+1})$ is a <u>biased</u> estimate of v_{π}
- TD target is much lower variance than the return:
 - Return depends on many random actions, transitions, rewards
 - TD target depends on one random action, transition, reward

Advantages and Disadvantages of MC vs TD (2/3)

- MC has high variance, zero bias
 - Good convergence properties
 - Not very sensitive to initial value
 - Very simple to understand and use
- TD has low variance, some bias
 - Usually more efficient than MC
 - TD(0) converges to $v_{\pi}(s)$
 - More sensitive to initial value

Example: Random Walk (5-states)

[An Introduction to Reinforcement Learning, Sutton and Barto]

Example: Random Walk – MC vs TD

Batch MC and TD

- MC and TD converge: $V(s) \to v_{\pi}(s)$ as experience $\to \infty$
- But what about batch solution for finite experience?

$$s_1^1, a_1^1, r_2^1, \dots s_{T_1}^1$$

 \vdots
 $s_1^K, a_1^K, r_2^K, \dots, s_{T_K}^K$

- e.g., Repeatedly sample episode $k \in [1, K]$
- Apply MC or TD(0) to episode k

Example: AB

- Two states A,B; no discounting; 8 episodes of experience
 - A, 0, B, 0
 - B, 1
 - B, 0
- What is V(A), V(B)?

Advantages and Disadvantages of MC vs. TD (3/3)

- TD exploits Markov property
 - Usually more efficient in Markov environments
- MC does not exploit Markov property
 - Usually more effective in non-Markov environments

Monte-Carlo Update

$$V(S_t) \leftarrow V(S_t) + \alpha(G_t - V(S_t))$$

[David Silver, IRL, UCL 2015]

Temporal-Difference Update

$$V(S_t) \leftarrow V(S_t) + \alpha(R_{t+1} + \gamma V(S_{t+1}) - V(S_t))$$

[David Silver, IRL, UCL 2015]

Dynamic Programming Update

$$V(S_t) \leftarrow \mathbb{E}_{\pi}[R_{t+1} + \gamma V(S_{t+1})]$$

[David Silver, IRL, UCL 2015]

Bootstrapping and Sampling

- Bootstrapping: update involves an estimate
 - MC does not bootstrap
 - DP bootstraps
 - TD bootstraps
- Sampling: update samples an expectation
 - MC samples
 - DP does not sample
 - TD samples

Unified View of Reinforcement Learning

n-Step TD

n-Step Prediction

• Instead of just looking one step in the future, let's look n steps:

[An Introduction to Reinforcement Learning, Sutton and Barto]

n-Step Return

• Consider the following n-step returns for n=1,2,...,∞

•
$$n = 1 - TD$$

$$G_{t:t+1} = R_{t+1} + \gamma V(S_{t+1})$$

• n = 2

$$G_{t:t+2} = R_{t+1} + \gamma R_{t+1} + \gamma^2 V(S_{t+2})$$

• $n = \infty$ - MC

$$G_{t:t+\infty} = R_{t+1} + \gamma R_{t+1} + \dots$$

We can define the n-step return

$$G_{t:t+n} = R_{t+1} + \gamma R_{t+1} + \dots + \gamma^n V(S_{t+n})$$

n-step temporal-difference learning

$$V(S_t) \leftarrow V(S_t) + \alpha(G_{t:t+n} - V(S_t))$$

Example: Random Walk (19-states)

Summary

- We discussed about three methods that can be used for the estimation of the value function given a policy
- MC is learning using sampling by averaging the return of many episodes
- TD is learning using bootstrapping and can use unfinished episodes
- n-step TD is lying at the space between TD and MC