Measure Theory						
TR 10:00-11:30 SC 211						
Grading Scheme						
30°/0 Assignments						
<u>, </u>						
20% Midterm Exam (March 6, 2025)						
50%. Final Exam (Same as Comprehensive)						
Material Covered						
- Measure Spaces						
rieusure spaces						
- Measurable Functions						
- Integration over Measurable Spaces						
<u> </u>						
- Differentiation and Integration						
- Signed Measures						
- Product Measures and Fubini's Theorem						
- Riesz Representation Theorem.						

Measure Spaces

Definition: Let X be a nonempty set. A σ -algebra on X

is a set Acp(X) s.t.

(ii) If A & A, then A & & A

(iii) If $(A_n)_{n=1}^{\infty}$ is a collection in A, then $\bigcup_{n=1}^{\infty} A_n \in A$

The pair (X, A) is called a measurable space and elements of A are called measurable sets.

Remark:

• By taking $An = \emptyset$ for all n > N, we see if $A_1, \ldots, A_n \in A$, then $\bigcup Ai \in A$.

• r-algebras are closed under countable intersections. Indeed, let $(An)_{n=1}^{\infty} \in A_n$ then

$$\bigcap_{n=1}^{\infty} A_n = \left(\bigcup_{n=1}^{\infty} A_n^c\right)^c$$

where each $A\hat{n} \in A_1$ so $0 \in A_1 \in A_2$ and thus $(0) A\hat{n} \in A_1$.

Examples: Let X be a nonempty set.

$$(a)$$
 $(X, P(X))$

(7) If $A = \{A \in X : A \text{ is countable or } A^c \text{ is countable } \}$, (X, A) is a measurable space.

Lemma: let X be a nonempty set. Let (Airez be a collection of σ -algebras on X. Then $\bigcap_{i \in I} A_i$ is a σ -algebra.

Corollary: If $A \in P(X)$, there exists a smallest σ -algebra containing A. This set is called the σ -algebra generated by A, and is denoted by $\sigma(A)$.

Proof: Let $I = \frac{9}{4}A : A$ is a σ -algebra and $A \in A$?

Note that $I \neq \emptyset$ bec. $P(X) \in I$. Then $\sigma(A) = \bigcap_{A \in I} A$

is a r-algebra that contains A and is smaller than every r-algebra containing A.

Definition: Let (X,d) be a metric space. The Borel σ -algebra, denoted by $\mathcal{B}(X)$ is the σ -algebra generated by the open sets.

e.g. On IR

- · · 2(a1b): a < b < 1R 1
- 9(a, 00): ac 123
- · {(-0,b): b∈ 1R}
 - · { [aib] : a < b \in 183

Note: 1B(IR) = 11R1 < 1P(IR) 1

Definition: A measure on a measurable space is a

function $\mu: A \rightarrow [0, \infty]$ such that

(i) $\mu(\emptyset) = 0$

(ii) If $(An)_{n=1}^{\infty}$ are pairwise disjoint, then $\mu\left(\prod_{n=1}^{\infty}An\right)=\sum_{n=1}^{\infty}\mu(An)$ (countable additivity).

The triple (X, A, μ) is called a measure space and for $A \in A$, the value $\mu(A)$ is called the μ -measure of A.

Remark: If $A_n = \emptyset \ \forall n > N$, we have that $\mu\left(\bigsqcup_{i=1}^{n} A_n\right) = \sum_{i=1}^{n} \mu(A_n) \text{ whenever } A_1, \dots, A_n \in \mathcal{A}$ are pairwise disjoint.

Examples:

(α) If $x \in X$, $\delta_x : \mathcal{P}(X) \to \mathbb{L}_0, \infty$ defined by $\delta_x(A) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases}$

We call ox the point-mass measure at x.

(B) Define $\mu: \mathcal{P}(x) \to [0,\infty]$ by $\mu(A) = \begin{cases} |A| & \text{if } A \text{ is finite} \\ \infty & \text{if } A \text{ is infinite}. \end{cases}$

Then μ is a measure called the counting measure.

Example: let (an) n=1 be a sequence in [0,00] and

let $\mu: \mathcal{P}(IN) \longrightarrow [0:\omega]$ by

$$\mu(A) = \sum_{n \in A} a_n$$

is a measure. Indeed,

•
$$\mu(\phi) = \sum_{n \in \phi} a_n = 0$$

Conversely, if $\mu: \mathcal{P}(IN) \to [0,\infty]$ is a measure, we claim that μ has the above form. For $n \in IN$, let $a_n = \mu(2a_1)$. Then $\forall A \in \mathcal{P}(IN)$, we know $\{a_n\}_{n \in A}\}$ is countable, pairwise disjoint, with union A, so

$$\mu(A) = \sum_{n \in A} \mu(\{n\}) = \sum_{n \in A} a_n$$

Lemma: Let $(X_1A_1\mu)$ be a measure space, let $(A_n)_{n=1}^{\infty}$ be a collection in A and let $(a_n)_{n=1}^{\infty}$ be a sequence in $[D_1, \infty]$. Define $\nu: A \to [D_1, \infty]$ by $\nu(A) = \sum_{n=1}^{\infty} a_n \mu(A \cap A_n)$

Then v is a measure.

Proof: Indeed,

•
$$\nu(\phi) = \sum_{n=1}^{\infty} a_n \mu(\phi \cap A_n) = \sum_{n=1}^{\infty} a_n \cdot o = o$$

· If (Bm) is a collection in A, pairwise

disjoint, then

$$V\left(\prod_{n=1}^{\infty}B_{n}\right)=\sum_{n=1}^{\infty}a_{n}\mu\left(\prod_{n=1}^{\infty}B_{m}\right)\cap A_{n}\right)$$

$$= \sum_{N=1}^{\infty} a_N \mu \left(\prod_{m=1}^{\infty} (\beta_m \wedge A_n) \right)$$

$$= \sum_{N=1}^{\infty} a_N \sum_{m=1}^{\infty} \mu(\beta_m \wedge A_n)$$

$$= \sum_{N=1}^{\infty} \sum_{m=1}^{\infty} a_N \mu(\beta_m \wedge A_n)$$

$$= \sum_{N=1}^{\infty} \sum_{n=1}^{\infty} a_n \mu(\beta_m \wedge A_n) \quad (\text{Fubini's Theorem})$$

$$= \sum_{n=1}^{\infty} \nu(\beta_m)$$
Remark: Let (X, \mathcal{A}, μ) be a measure space and let $E, F \in \mathcal{A}$ such that $E \subset F$. Then
$$F \setminus E = F \cap E^* \in \mathcal{A} \quad \text{that is disjoint from } E.$$
Then
$$\mu(F) = \mu((F \setminus E) \sqcup E) = \mu(F \setminus E) + \mu(E) \geqslant \mu(E).$$
Thus, measures are monotone.
In particular, if $\mu(F) < \infty$, then $\mu(E) < \infty$.

Moreover, if $\mu(E) < \infty$, then
$$\mu(F \setminus E) = \mu(F) - \mu(E).$$
Remark: If $A, B \in \mathcal{A}$ such that $\mu(A \cap B) < \infty$.
Then
$$\mu(A \cup B) = \mu(A \sqcup (B \setminus A))$$

$$= \mu(A) + \mu(B \setminus A)$$

$$= \mu(A) + \mu(B \setminus A)$$

$$= \mu(A) + \mu(B \setminus A)$$

Def: A probability space is a measure space (x, A, μ) where $\mu(x) = 1$. We call such a measure a probability measure.

In this context, X is called the sample space and any $A \in \mathcal{A}$ are the events, and $\mu(A)$ is called the probability of A.

Definition: A measure space (X, A, μ) is called (i) finite if $\mu(X) < \infty$ (by monotonicity, $\forall A \in A$, $\mu(A) < \infty$) (ii) σ - finite if there exists $(A_n)_{n=1}^{\infty}$ of A such that $\mu(A_n) < \infty$ and $X = \bigcup_{n=1}^{\infty} A_n$.

Remark: We can prove the assumptions on the sets in a o-finite measure space.

e.g. Let $B_1 = A_1$ and for n > 2, $B_n = A_n \setminus \begin{pmatrix} \tilde{U} \\ i = l \end{pmatrix}$. Then $(B_n)_{n=1}^{\infty}$ is in A, $B_n \in A_n$, and by monotonicity, $\mu(B_n) \leq \mu(A_n)$, $X = \tilde{U}$, B_n , and $B_n \cap B_n = \emptyset$ if $(B_n)_{n=1}^{\infty}$ are pairwise disjoint. (Disjointification — not a real English word, but for math, it is).

Alternatively, let $C_n = \bigcup_{i=1}^{\infty} A_i$. Then $(C_n)_{n=1}^{\infty}$ is measurable, $X = \bigcup_{n=1}^{\infty} C_n$, and $\mu(C_n) < \infty$ by the following theorem:

Theorem:	(Subadd	itivity)	lf	$(An)_{n=1}^{\infty}$	are	measurable
sets,						
	. .	<u>∞</u> 1				
μ(U	An / \leq	$\frac{2}{n=1}$ A_n .				