Problem 1

1.

D2					
0	1	7	4	11	9
5	0	12	3	23	4
2	3	0	8	3	2
3	-2	22	0	2	1
4	2	2	4	0	4
8	3	3	5	1	0

	D8					
	0	1	7	4	6	5
	5	0	7	3	5	4
	2	3	0	6	3	2
	3	-2	4	0	2	1
	4	2	2	4	0	4
•	5	3	3	5	1	0

D4					
0	1	7	4	6	5
5	0	7	3	5	4
2	3	0	6	3	2
3	-2	5	0	2	1
4	2	2	4	0	4
5	3	3	5	1	0

2.

D1					
0	1	7	∞	8	10
5	0	12	3	8	15
2	3	0	8	8	2
∞	-2	8	0	20	1
∞	8	2	4	0	8
∞	3	8	∞	1	0

D4					
0	1	7	4	24	5
5	0	12	3	23	4
2	3	0	6	26	2
3	-2	10	1	20	1
4	5	2	4	0	4
8	3	15	6	1	0

	D2					
	0	1	7	4	∞	10
	5	0	12	3	8	15
	2	3	0	6	8	2
	3	-2	10	1	20	1
_	∞	8	2	4	0	8
	8	3	15	6	1	0

D5					
0	1	7	4	24	5
5	0	12	3	23	4
2	3	0	6	26	2
3	-2	10	1	20	1
4	5	2	4	0	4
5	3	3	5	1	0

D3					
0	1	7	4	8	9
5	0	12	3	8	14
2	3	0	6	8	2
3	-2	10	1	20	1
4	5	2	4	0	4
8	3	15	6	1	0

D6					
0	1	7	4	6	5
5	0	7	3	5	4
2	3	0	6	8	2
3	-2	4	1	2	1
4	5	2	4	0	4
5	3	3	5	1	0

Problem 2

a)

b) $p = \{s, B, D, E, G, t\}$ $c_f(p) = 2$

c)

d) min cut = { {s, B, C}, {D, E, F, G, t} } = 22 By max-flow-min-cut theorem, max flow = 22

Problem 3

- a) Let T'₁ and T'₂ be the MST of G that remove edge e = (u, v) after increasing the weight, there will be two cases:
 1. e = (u, v) is still the lightest edge this mean T' = T
 - 2. there is e' = (u', v') that lighter than e = (u, v) this mean e' = (u', v') is added to connect T'_1 and T'_2 , and therefore T and T' differ by at most one edge.
- b) Assume we know the weight of edge e = (u, v) has been change to new weight.
 Go through the MST and separate the nodes into two sets(T₁, T₂) by removing edge e = (u, v) [O(V)]
 Go through all the edges and find those that can connect T₁ and T₂ as E_{connect} [O(E)]

Look for the min cost edge in $E_{connect}$, and connect T_1 and T_2 . [O(1)]