Introduction to Machine Learning

Evaluation: Simple Measures for Classification

Learning goals

- Know the definitions of misclassification error rate (MCE) and accuracy (ACC)
- Understand the entries of a confusion matrix
- Understand the idea of costs
- Know definitions of Brier score and log loss

LABELS VS PROBABILITIES

In classification we predict:

- Class labels $\rightarrow \hat{h}(\mathbf{x}) = \hat{y}$
- **2** Class probabilities $\rightarrow \hat{\pi}_k(\mathbf{x})$
- \rightarrow We evaluate based on those

LABELS: MCE

The misclassification error rate (MCE) counts the number of incorrect predictions and presents them as a rate:

$$MCE = \frac{1}{n} \sum_{i=1}^{n} [y^{(i)} \neq \hat{y}^{(i)}] \in [0; 1]$$

Accuracy is defined in a similar fashion for correct classifications:

$$ACC = \frac{1}{n} \sum_{i=1}^{n} [y^{(i)} = \hat{y}^{(i)}] \in [0; 1]$$

- If the data set is small this can be brittle
- The MCE says nothing about how good/skewed predicted probabilities are
- Errors on all classes are weighted equally (often inappropriate)

LABELS: CONFUSION MATRIX

Much better than simply reducing prediction errors to a simple number is tabulating them in a confusion matrix:

- true classes in columns
- predicted classes in rows

We can nicely see class sizes (predicted and true) and where errors occur.

True classes

		setosa	versicolor	virginica	error	n
	setosa	50	0	0	0	50
redicted	versicolor	0	46	4	4	50
Predicte classes	virginica	0	4	46	4	50
重흥	error	0	4	4	8	-
	n	50	50	50	-	150

LABELS: CONFUSION MATRIX

In binary classification

		True Class y		
		+	_	
Pred.	+	True Positive	False Positive	
		(TP)	(FP)	
ŷ	_	False Negative	True Negative	
		(FN)	(TN)	

e.g.,

- True Positive (TP) means that an instance is classified as positive which is also positive (true prediction).
- False Negative (FN) means that an instance is classified as negative which is actually positive (false prediction).

LABELS: COSTS

We can also assign different costs to different errors via a cost matrix.

Costs =
$$\frac{1}{n} \sum_{i=1}^{n} C[y^{(i)}, \hat{y}^{(i)}]$$

Example: @BB Elkan Paper! Confusion matrix discussion

Depending on certain features (age, income, profession, ...) a bank wants to decide, if it grants a 10,000 EUR loan.

Predict if a person is solvent (yes / no).

Should a bank give her/him a loan?

Examplary costs:

Loan cannot be repaid: 10,000 EUR Interest paid for the loan: 100 EUR

	True classes	
	solvent	not solvent
Predicted solvent	0	10,000
classes not solvent	100	0

LABELS: COSTS

Cost matrix

Confusion matrix

	True classes	
	solvent	not solvent
Predicted solvent	0	10,000
classes not solvent	100	0

	True classes	
	solvent	not solvent
Predicted solvent	70	3
classes not solvent	7	20

• If the bank gives every person a credit, the costs are at:

Costs =
$$\frac{1}{n} \sum_{i=1}^{n} C[y^{(i)}, \hat{y}^{(i)}]$$

= $\frac{1}{100} (-37 \cdot 7 + 0 \cdot 0 + 3 \cdot 93 + 0 \cdot 0) = 0.2$

PROBABILITIES: BRIER SCORE

Measures squared distances of probabilities from the true class labels:

$$BS1 = \frac{1}{n} \sum_{i=1}^{n} \left(\hat{\pi}(\mathbf{x}^{(i)}) - y^{(i)} \right)^{2}$$

- Fancy name for MSE on probabilities
- Usual definition for binary case, $y^{(i)}$ must be coded as 0 and 1.

PROBABILITIES: BRIER SCORE

$$BS2 = \frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{g} \left(\hat{\pi}_{k}(\mathbf{x}^{(i)}) - o_{k}^{(i)} \right)^{2}$$

- Original by Brier, works also for multiple classes
- $o_k^{(i)} = [y^{(i)} = k]$ is a 0-1-one-hot coding for labels
- For the binary case, BS2 is twice as large as BS1, because in BS2 we sum the squared difference for each observation regarding class 0 **and** class 1, not only the true class.

PROBABILITIES: LOG-LOSS

Logistic regression loss function, a.k.a. Bernoulli or binomial loss, $y^{(i)}$ coded as 0 and 1.

$$LL = \frac{1}{n} \sum_{i=1}^{n} \left(-y^{(i)} \log(\hat{\pi}(\mathbf{x}^{(i)})) - (1 - y^{(i)}) \log(1 - \hat{\pi}(\mathbf{x}^{(i)})) \right)$$

- Optimal value is 0, "confidently wrong" is penalized heavily
- Multiclass version: $LL = -\frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{g} o_k^{(i)} \log(\hat{\pi}_k(\mathbf{x}^{(i)}))$