Distance between points

School Connect: Intro to DS & AI

A Aniruddha Indian Institute of Technology, Madras

Distance =
$$\sqrt{(10-5)^2 + (20-10)^2}$$

Distance =
$$\sqrt{(10-5)^2 + (20-10)^2}$$

= $\sqrt{5^2 + 10^2}$
= $\sqrt{125}$
= 11.18

Distance =
$$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Distance =
$$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

What if the point is in higher dimensions / has more features?

Distance =
$$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

What if the point is in higher dimensions / has more features?

The Euclidean distance calculation remains the same!

Distance =
$$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

What if the point is in higher dimensions / has more features?

The Euclidean distance calculation remains the same!

If we have two points (x_1,y_1,z_1) & (x_2,y_2,z_2) The distance between them is calculated as $\sqrt{(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2}$

Student	English	French	History	Algebra	Biology	Physics	Physical
Demi	9	15	18	61	100	90	8
Nash	14	4	15	61	42	51	39

Distance between scores of Demi & Nash:

Distance =
$$\sqrt{(9-14)^2 + (15-4)^2 + (18-15)^2 + (61-61)^2 + (100-42)^2 + (90-51)^2 + (8-39)^2}$$

= $\sqrt{6001}$
= 77.466

Thank you