Question Number	Answer		Mark
12(a)	Use $V_{\text{grav}} = -\frac{GM}{r}$ to obtain ΔE	(1)	
	Equate ΔE to $\frac{1}{2}mv^2$ and re-arrangement to obtain $v = \sqrt{\frac{2GM}{r}}$	(1)	2
	Example of derivation		
	$\Delta E = m \times V_{\text{grav}} = \frac{GMm}{r}$		
	$\frac{1}{2}mv^2 = \frac{GMm}{r}$		
	$\therefore v^2 = \frac{2GM}{r}$		
	$\therefore v = \sqrt{\frac{2GM}{r}}$		
12(b)(i)	Use of $v = \sqrt{\frac{2GM}{r}}$	(1)	
	$v = 1.12 \times 10^4 (\text{m s}^{-1})$	(1)	2
	Example of calculation		
	$2 \times 6.67 \times 10^{-1}$ N m ² kg ⁻² × 5.98 × 10 ²⁴ kg		
	$v = \sqrt{\frac{2 \times 6.67 \times 10^{-1} \text{ N m}^2 \text{ kg}^{-2} \times 5.98 \times 10^{24} \text{ kg}}{6.36 \times 10^6 \text{ m}}}$		
	$v = 1.12 \times 10^4 \mathrm{m s^{-1}}$		
12(b)(ii)	There is a range of molecular speeds Or Some molecules will be travelling (much) faster than 1900 m s ⁻¹	(1)	
	Of Some morecures will be travelling (much) faster than 1700 m/s	(1)	
	So there will be some molecules with a speed greater than the escape velocity Or There will be some molecules with enough kinetic energy to escape	(1)	2
	[A correct comparison of the escape velocity $(1.1 \times 10^4 \text{ m s}^{-1})$ with		
	$\sqrt{\langle c^2 \rangle}$ (1900 m s ⁻¹) scores a maximum of 1 mark.]		
	Total for question 12		6