Université Mohammed kheider Biskra

Département de Mathématiques 1^{ième} année Master: 2021 - 2022 Module: Théorie des opérateurs

Série 2 avec correction

Exercice 1 Soit $E = l^2$, $(\lambda_n)_{n \ge 1}$ une suite bornée dans \mathbb{C} et $M = \sup_n |\lambda_n|$. Soit $T : l^2 \to l^2$ définie par :

$$Tx = y$$
, avec $y = (\lambda_n x_n)_{n>1}$ si $x = (x_n)_{n>1} \in E$.

- 1. Montrer que T est linéaire, continue, et calculer sa norme
- 2. Montrer que si l'ensemble $\{|\lambda_n|, n \geq 1\}$ est minoré par un nombre strictement positif, alors T est bijective.

Préciser dans ce cas T^{-1} .

Solution 2 si $x = (x_n)_{n \in \mathbb{N}} \in l^2$, alors

$$||Tx||_{2}^{2} = \sum_{n\geq 1} |\lambda_{n}x_{n}|^{2}$$

$$\leq M^{2} \sum_{n\geq 1} |x_{n}|^{2} = M^{2} ||x||_{2}^{2}$$

donc

$$||Tx||_2 < M ||x||_2$$
 et $Tx \in E$

Ce qui preuve que T est continue et que $||T|| \leq M$.

Soit $(e_n)_{n\in\mathbb{N}}$ la base hilbertienne canonique. Alors , \forall $n\in\mathbb{N}$, $\|Te_n\|_2 = |\lambda_n| \leq \|T\|$

D'où $M \leq ||T||$ puis ||T|| = Msoit $\alpha = \inf_{n \geq 1} |\lambda_n|$, on suppose $\alpha > 0$. Alors

$$||Tx||^2 = \sum_{n=1}^{\infty} |\lambda_n x_n|^2 \ge \alpha^2 ||x||^2$$

Donc si $Tx = 0 \Rightarrow ||Tx|| = 0 \Rightarrow ||x|| = 0 (car \alpha > 0) \Rightarrow x = 0$

 $Il\ en\ r\'esulte\ que\ T\ est\ injective$

Remarquons que $\forall n, \lambda_n \neq 0$, soit $y = (y_n)_{n \in \mathbb{N}} \in E$ et $x = \left(\frac{y_n}{\lambda_n}\right)_{n \in \mathbb{N}}$.

Alors, pour tout n, on $a \left| \frac{y_n}{\lambda_n} \right|^2 \le \frac{1}{\alpha^2} |y_n|^2$, d'où $x \in E$ et Tx = y.

Ce ci montre que T est surjectie et donc inversible et $T^{-1}y = x$ avec $y = (y_n) \in E$ et $x = \left(\frac{y_n}{\lambda_n}\right) \in E$

Exercice 3 Soit A un opérateur linéaire borné dans un espace de Hilbert (Banach) H.

- 1. Montrer que si A est inversible alors les opérateurs A et A^{-1} ont les mêmes vecteurs propres.
- 2. Montrer que si l'opérateur A^2 possède un vecteur propre alors, il en est de même pour l'opérateur A.

Solution 4 1. Remarquons tout d'abord que puisque A est inversible alors, $0 \notin \sigma(A)$. On peut donc dans tout ce qui suit supposer que $\lambda \neq 0$. On a,

$$A\left(v\right) = \lambda v \Longleftrightarrow v = A^{-1}\left(\lambda v\right) = \lambda A^{-1}\left(v\right) \Longleftrightarrow A^{-1}\left(v\right) = \lambda^{-1}v$$

Par conséquent, v est un vecteur propre de A, associé a la valeur propre λ si et seulement si, v est un vecteur propre de A^{-1} , associé a la valeur propre λ^{-1} .

2. Suppose maintenant qu'il existe $\lambda \in \mathbb{k}$ et $0 \neq v \in H$ tels que $A^2(v) = \lambda v$. Alors

$$0 = (A^2 - \lambda I)(v) = (A + \sqrt{\lambda}I)(A - \sqrt{\lambda}I)(v) = 0$$

Deux cas se présentent.

Premier cas:
$$\left(A - \sqrt{\lambda}I\right)(v) = 0$$

Dans ce cas, $\sqrt{\lambda}$ est une valeur propre de A associée au vecteur propre v.

Deuxième cas:
$$\left(A - \sqrt{\lambda}I\right)(v) \neq 0$$

Dans ce cas, $-\sqrt{\lambda}$ est une valeur propre de A associée au vecteur propre $\left(A-\sqrt{\lambda}I\right)(v)$

Exercice 5 1. Dans $l^2(\mathbb{N}; \mathbb{C})$, soit $(\lambda_n)_{n \in \mathbb{N}}$ une suite dans $\mathbb{C}\setminus\{0\}$ telle que $\lim_{n \to \infty} \lambda_n = 0$. On définit l'opérateur T sur l^2 par

$$T\left((x_n)_{n\in\mathbb{N}}\right) = (\lambda_n x_n)_{n\in\mathbb{N}}$$

Déterminer le spectre de T

2. Dans L² [0;1], considérnons l'opérateur de mutiplication

$$T:L^{2}\left[0;1\right] \rightarrow L^{2}\left[0;1\right] \ d\acute{e}finie\ par\ \left(Tf\left(x\right)
ight) =xf\left(x\right)$$

- Déterminer le spectre de T
- Montrer que T n'a de valeurs propres.

Solution 6 Comme

$$(T - \lambda I) x = (\lambda_k - \lambda) x_k, \ alors$$

 $(T - \lambda I)^{-1} y = (\frac{y_k}{\lambda_k - \lambda})$

- Il en resulte que (T λI)⁻¹ est un opérateur borné si et seulement si λ n'est pas dans l'adhérence de {λ_k} c'est à dire {λ_k} = {λ_k} ∪ {0}.
 Comme Te_k = λ_ke_k pour e_k élément de la base canonique de l². On en deduit que tous les λ_k sont des valeurs propres de T.Mais 0 n'est pas valeur propre car T esi injective (puisque tous les λ_k ≠ 0) D'où σ (T) = {λ_k} ∪ {0} et σ_p(T) = {λ_k}
- 2. Comme

$$(T - \lambda I) f(t) = (t - \lambda) f(t)$$

alors

$$(T - \lambda I)^{-1} y(t) = \left(\frac{1}{t - \lambda}\right) y(t) \text{ si } \lambda \notin [0, 1]$$

La fonction $t \mapsto \frac{1}{t-\lambda}$ est borné, d'où $(T-\lambda I)^{-1}$ est un opérateur borné. Inversement, si $\lambda \in [0,1]$, alors $\frac{1}{t-\lambda} \notin L^2[0,1]$ en raison de la singularité non intégrable en $t=\lambda$.

Supposons que λ soit une valeur propre de T avec f un vecteur propre dans $L^2[0,1]$.

Cela signifie que l'identité suivante est verifie

$$(t-\lambda)f(t) = 0 \text{ pour } t \in [0,1]$$

Il en resulte que f = 0 dans $L^2[0,1]$

Par consequent, T
 n'a pas de valeurs propres, d'où $\sigma\left(T\right)=\left[0,1\right]$ et
 $\sigma_{p}\left(T\right)=\emptyset$

Exercice 7 1. Soit $(\alpha_n)_{n\in\mathbb{N}}$ une suite bornée de nombres complexes et T l'application linéaire de $l^2 = l^2(\mathbb{N}; \mathbb{C})$ dans lui même définie par $T(x) = (\alpha_n x_n)$, pour $x = (x_n) \in l^2$,

Vérifier que T est continue et calculer son adjoint

2. Soit S l'application de $l^2 = l^2(\mathbb{N}; \mathbb{C})$ dans lui même définie par $S(x) = (0, x_0, x_1, ...,)$

Vérifier que S est continue et calculer son adjoint

Solution 8 1. On note $\|\alpha\|_{\infty} = \sup\{|\alpha_n|, n \in \mathbb{N}\}, on \ a$

$$||Tx||^2 = \sum_{n \succeq 0} |\alpha_n|^2 |x_n|^2 \le ||\alpha||_{\infty}^2 ||x||_{\infty}^2,$$

ce qui prouve que T est continue avec $||T|| \le ||\alpha||_{\infty}$.

Fixons $y \in l^2, T^*(y)$ est l'unique élément de l^2 défini par

$$< Tx, y> = < x, T^*y> pour tout x \in l^2$$

Or

$$\langle Tx, y \rangle = \sum_{n \succeq 0} \alpha_n x_n \overline{y_n} = \sum_{n \succeq 0} x_n \overline{\overline{\alpha_n} y_n}$$

Ce qui prouve

$$T^*\left(y\right) = \left(\overline{\alpha_n}y_n\right)_{n>0}$$

2. Il esr clair que dans ce cas , on a ||S(x)|| = ||x|| (S est une isométrie) Dautre part, si $y \in l^2$ et si on note $S^*(y) = (z_n)$ On a

$$\langle Sx, y \rangle = \langle x, S^*y \rangle = \sum_{n \succeq 1} x_{n-1} \overline{y_n} = \sum_{n \succeq 0} x_n \overline{y_{n+1}}$$

On doit donc avoir $S^*(y) = y_{n+1}$ c'est à dire encore $S^*(y) = (y_1, y_2, ...)$

Exercice 9 Soit $E = C([0,1] \text{ muni de la norme } |||_{\infty} \text{ et pour } f \in E, \text{ on définit}$

$$Tf(x) = \int_{0}^{x} K(x, t) f(t) dt$$

où, $K\left(,\right)\in C\left(\left[0,1\right]\times\left[0,1\right]\right)$. Soit $M=\sup_{0\leq x,t\leq1}\left|K\left(x,t\right)\right|$.

- 1. Montrer que $T \in \mathcal{L}(E)$.
- 2. Montrer que pour tout $n \ge 1$, on a $|T^n f(x)| \le \frac{M^n}{n!} x^n ||f||_{\infty}$ En déduire que, pour tout $n \ge 1$, $||T|| \le \frac{M^n}{n!}$
- 3. Déterminer le spectre de T.
- 4. Calculer l'opérateur adjoint T*, dans le cas où

$$Tf(x) = \int_{0}^{1} K(x, t) f(t) dt$$

Solution 10 La linéarité de T est évidente . Pour $x, x_0 \in [0, 1]$, on a

$$|Tf(x) - Tf(x_0)| = \left| \int_0^{x_0} \left[K(x, t) - K(x_0, t) \right] f(t) dt + \int_{x_0}^x K(x, t) f(t) dt \right|$$

$$\leq ||f||_{\infty} \int_0^{x_0} |K(x, t) - K(x_0, t)| dt + M ||f||_{\infty} |x - x_0|$$

D'où $|Tf(x) - Tf(x_0)| \to 0$ quand $x \to x_0$ et donc $Tf \in E$ D'autre part, on a

$$|Tf(x)| \le Mx \|f\|_{\infty} \tag{1}$$

D'où $||Tf|| \le M ||f||_{\infty}$ et $T \in \mathcal{L}(E)$ avec $||T|| \le M$

Montrons par recurrence que pour tout $n \ge 1$

on
$$a |T^n f(x)| \le \frac{M^n}{n!} x^n ||f||_{\infty}$$
.

C'est vrai pour n = 1, (d'aprés (1))

 $Supposons\ la\ formule\ vraie\ pour\ n,On\ a$

$$\begin{aligned} |T^{n+1}f(x)| &= \left| \int_0^x K(x,t) \, T^n f(t) dt \right| \le M \int_0^x |T^n f(t)| \, dt \\ &\le \frac{M^{n+1}}{n!} \, \|f\|_{\infty} \int_0^x t^n dt \end{aligned}$$

$$soit \ |T^{n+1}f\left(x\right)| \leq \frac{M^{n+1}}{n!} \frac{x^{n+1}}{n+1} \left\|f\right\|_{\infty} = \frac{M^{n+1}}{(n+1)!} x^{n+1} \left\|f\right\|_{\infty}$$

donc pour tout $n \ge 1$, on $a |T^n f(x)| \le \frac{M^n}{n!} ||f||_{\infty} x^n$ et ainsi , $||T^n|| \leq \frac{M^n}{n!}$.

D'aprés (2), on $a \|T^n\|^{\frac{1}{n}} \le \frac{M}{(n!)^{\frac{1}{n}}}$.

Montrons alors que nous avons $u_n = (n!)^{\frac{1}{n}} \to \infty$

En effet
$$e^n = \sum_{k=0}^{\infty} \frac{n^k}{k!} \ge \frac{n^n}{n!}$$
, d'où $n! \ge \frac{n^n}{e^n}$ et $u_n \ge \frac{n}{e}$

Par conséquent le rayon spectral r(t) de T, dont la valeur est donnée par

 $\lim_{n\to\infty} \|T^n\|^{\frac{1}{n}} \leq M \lim_{n\to\infty} u_n^{-1} \text{ est nul et } \sigma(T) = \{0\}$ $Notions \|K\|_{\infty} = \sup \{|K(x,y)|, (x,y) \in [0,1]^2\} (qui \text{ exsitent est fini car})$ K est continue) sur le compact $\left[0,1\right]^2$, on a alors

$$||Tf||^{2} = \int_{0}^{1} \left| \int_{0}^{1} K(x, y) f(y) dy \right|^{2} dx$$

$$\leq \int_{0}^{1} \left(\int_{0}^{1} |K(x, y)| |f(y)| dy \right)^{2} dx$$

$$\leq ||K||_{\infty}^{2} \int_{0}^{1} \left(\int_{0}^{1} |f(y)| dy \right)^{2} dx$$

$$\leq ||K||_{\infty}^{2} \int_{0}^{1} \int_{0}^{1} |f(y)|^{2} dy dx \quad (c.s)$$

$$\leq ||K||_{\infty}^{2} ||f||^{2}$$

ce qui prouve que T, est continue

Pour le calcule de l'adjoint on fixe $g \in L^2$, et pour tout $f \in L^2$, on a

$$\langle Tf,g \rangle = \int_0^1 \int_0^1 K(x,y)f(y)\overline{g(x)}dx$$

par le théorme de Fubini cela donne

$$\langle Tf, g \rangle = \int_0^1 f(y) \int_0^1 \frac{K(x, y)\overline{g(x)} dx}{\overline{k(x, y)} g(x)} dx$$

$$= \int_0^1 f(y) \int_0^1 \frac{K(x, y)\overline{g(x)} dx}{\overline{k(x, y)} g(x)} dx$$

on en deduit qui

$$T^*(g) = \int_0^1 \overline{k(x,y)} g(y) dy$$

Exercice 11 Soit $H = L^2([a,b]), (a < b), l'espace des classes des fonctions$ $x:[a,b]\to\mathbb{C}$ de carré sommable et soit $f:[a,b]\to\mathbb{C}$, une fonction continue fixée.

Soit $T: H \to H$ l'aplication qui à la fonction $x \in H$ fait correspondre la fonction Tx définie sur [a,b] par

$$(Tx)(t) = f(t)x(t)$$

- 1. Montrer que cet application est un opérateur linéaire continu
- 2. Calculer l'opérateur T* (l'opérateur adjoint de T)

Solution 12 $T \in L(H)$

$$|Tx(t)| = |f(t)| |x(t)| \leqslant ||f||_{\infty} |x(t)|$$

$$\Rightarrow \int_{a}^{b} |Tx(t)|^{2} dt \leqslant \int_{a}^{b} ||f||_{\infty}^{2} |x(t)|^{2} dt$$

$$\Rightarrow ||Tx||_{2} \leqslant ||f||_{\infty} ||x||_{2} \quad \forall x \in H$$

$$\Rightarrow ||T|| \leq ||f||_{\infty}$$

1. $\forall x \in H, \forall y \in H, \quad \langle Tx, y \rangle_H = \langle x, T^*y \rangle_H$

$$< Tx, y >= \int_{a}^{b} Tx(t)\overline{y(t)}dt$$
$$= \int_{a}^{b} f(t)x(t)\overline{y(t)}dt$$
$$= \int_{a}^{b} x(t)\overline{\overline{f(t)}y(t)}dt$$

1. donc $\langle Tx, y \rangle_H = \int_a^b x(t) \overline{\overline{f(t)}y(t)} dt = \langle x, f y \rangle_H$

$$T^*y(t) = \overline{f(t)}y(t)$$

 $T \in L(H)$ est autoadjoint $\iff T = T^*$ donc T est autoadjoint si $f(t) = \overline{f(t)}$ Exercice 13 Soit $H = L^2([0,1])$. Pour $f \in H$, on pose

$$Tf(x) = \int_0^x f(t) dt.$$

- 1. Montrer que T est un opérateur continu sur H.
- 2. Calculer l'adjoint de T.

Solution 14 On a

$$||Tf||^{2} = \int_{0}^{1} |\int_{0}^{x} f(t)dt|^{2} dx$$

$$= \int_{0}^{1} |\int_{0}^{x} |f(t)| \times 1dt|^{2} dx = \int_{0}^{1} \int_{0}^{x} |f(t)|^{2} \times \int_{0}^{x} 1dx$$

$$\leq \int_{0}^{1} (\int_{0}^{x} |f(t)|^{2} dt) x dx \quad (Cauchy schwartz)$$

$$\leq \int_{0}^{1} \int_{0}^{1} |f(t)|^{2} dt dx$$

$$\leq ||f||^{2}$$

- 1. ce qui prouve que T est continue, avec $||T|| \le 1$
- 2. On a

$$\int_{0}^{x} f(t)dt = \int_{0}^{1} f(t)1_{[0,x]}(t)dt$$

donc

$$< Tf, g > = \int_0^1 \int_0^1 f(t) 1_{[0,x]}(t) g(x) dt dx$$

= $\int_0^1 f(t) \left(\int_0^1 1_{[0,x]}(t) g(x) dx \right) dt$ (Fubini)

on a donc

$$T^*(g)(t) = \int_0^1 1_{[0,x]}(t)g(x)dx$$

En remarquant que $0 \le t \le x \Leftrightarrow t \le x \le 1$ on a donc

$$T^*(g)(t) = \int_t^1 g(x)dx$$

Remarquons qu'on a calvulé ici l'adjoint en supposant travailler sur l'espace réel $L^2([0,1])$. Si on travaillait sur l'espace complexe, on obtiendrait

$$T^{*}\left(g\right)\left(t\right) = \int_{0}^{1} \overline{g(x)} dx.$$