Solutions to Artin's Algebra Second Ed

Yue Yu

Contents

2	Gro	oups
		Laws of Composition
		Exercise 1.1
		Exercise 1.2
		Exercise 1.3
	2.2	Groups and Subgroups
		Exercise 2.1
		Exercise 2.2
		Exercise 2.3
		Exercise 2.4
		Exercise 2.5
		Exercise 2.6
2	2.3	Subgroups of the Additive Group of Integers
		Exercise 3.1
		Exercise 3.2
		Exercise 3.3

Chapter 2

Groups

2.1 Laws of Composition

Exercise 1.1

Proof. For any $a, b, c \in S$, we have

$$(ab)c = ac = a = ab = a(bc),$$

which implies that the law of composition is associative.

Let a be an arbitrary element in the set for which the law has an identity. Then, we have

$$a = a1 = 1a = 1,$$

which implies that the set must be {1}.

Exercise 1.2

- (1) *Proof.* la = 1 and ar = 1 imply $l = r = a^{-1}$.
- (2) *Proof.* Suppose that both a' and a'' are the inverses of a. Then a' = a'' by part (1) and so the inverse is unique.
- (3) Proof. $(ab)(b^{-1}a^{-1}) = a(bb^{-1})a^{-1} = aa^{-1} = 1$ implies that $(ab)^{-1} = b^{-1}a^{-1}$.
- (4) See Exercise 1.3.

Exercise 1.3

Proof. s has no right inverse because there is no inverse when n=1. However, s has infinitely many left inverses because there are infinitely many mappings sending n+1 to n for $n \in \mathbb{N}$.

2.2 Groups and Subgroups

Exercise 2.1

Let x be the three-cycle (1,2,3) and y be the transposition (1,2). Then we obtain the following table:

	1	x	x^2	y	xy	x^2y
1	1	x	x^2	y	xy	x^2y
x	x	x^2	1	xy	x^2y	y
x^2	x^2	1	x	x^2y	y	xy
y	y	x^2y	xy	1	x^2	x
xy	xy	y	x^2y	x	1	x^2
x^2y	x^2y	xy	y	x^2	x	1

Exercise 2.2

Proof. Denote the subset by T. By definition, every element in T has an inverse. Also, noticing that associativity and the identity follow from those of S, it suffices to prove the closure under composition. Indeed, for any $a,b \in T$, we have $(ab)^{-1} = b^{-1}a^{-1}$, which implies that $ab \in T$. Therefore, T is a group.

Exercise 2.3

- (a) $y = x^{-1}w^{-1}z$.
- (b) xyz = 1 implies $yz = x^{-1}$ and so yzx = 1. However, yxz does not necessarily equal to 1 unless x and z commute.

Exercise 2.4

- (a) $H \leq G$.
- (b) H < G.
- (c) $H \nleq G$ because there is no inverse for every element in H.
- (d) $H \leq G$.
- (e) $H \not\leq G$ because $H \not\subseteq G$.

Exercise 2.5

Proof. In G, we have $1_H 1_G = 1_H \in H$. Cancelling 1_H on both sides in H, we obtain $1_G = 1_H$. Thus, for any $a \in H$, we have $aa_G^{-1} = 1_G = 1_H = aa_H^{-1}$, which implies that $a_G^{-1} = a_H^{-1}$.

Exercise 2.6

Proof. We check the four properties in turn.

- Closure. For any $a, b \in G^{\circ}$, we have $a * b = ba \in G$ and so $a * b \in G^{\circ}$ since $G = G^{\circ}$.
- Associativity. For any $a, b, c \in G^{\circ}$, we have (a * b) * c = (ba) * c = cba = (b * c)a = a * (b * c).

- Existence of identity. The identity is the same as that in G.
- Existence of inverse. For any element in G° , the inverse is the same as that in G.

Therefore, $(G^{\circ}, *)$ is a group.

2.3 Subgroups of the Additive Group of Integers

Exercise 3.1

By the Euclidean algorithm,

$$\gcd(321,123) = \gcd(123,75) = \gcd(75,48) = \gcd(48,27) = \gcd(27,21) = \gcd(21,6) = \gcd(6,3) = 3.$$

So $3 = 47 \times 123 - 18 \times 321.$

Exercise 3.2

Proof. Let $d = \gcd(a, b)$. Then $d \mid a + b$ and so $d \mid p$, which implies that d = 1 or d = p as p is prime. However, since a, b > 0, we have d < p. Hence, d = 1.

Exercise 3.3

- (a) The greatest common divisor d of $\{a_1, \ldots, a_n\}$ should
 - divide a_1, \ldots, a_n and
 - for any $c \in \mathbb{N}$ dividing $a_1, \ldots, a_n, c \mid d$.

Proof. We prove this by induction.

Denote the gcd of $\{a_1,\ldots,a_m\}$ by d_m , where $m\in\mathbb{N}$. It is clear that the d_2 exists and it is an integer combination of a_1 and a_2 by the Euclidean algorithm. Suppose that d_k exists for some integer $k\geq 2$ and $d_k=\sum_{i=1}^k\alpha_ia_i$, where $\alpha_i\in\mathbb{Z}$. Then d_{k+1} exists because $d_{k+1}\mid d_k$ and $d_{k+1}\mid a_{k+1}$. In addition,

$$\begin{aligned} d_{k+1} &= \beta_1 d_k + \beta_2 a_{n+1} & \text{(by the Euclidean algorithm)} \\ &= \beta_1 \sum_{i=1}^k \alpha_i a_i + \beta_2 a_{n+1} & \text{(by the inductive hypothesis)} \\ &= \sum_{i=1}^k \beta_1 \alpha_i a_i + \beta_2 a_{n+1}, \end{aligned}$$

where $\beta_1, \beta_2 \in \mathbb{Z}$, which proves the assertion by induction.

(b) Proof. Denote the gcd of $\{a_1/d, \ldots, a_n/d\}$ by d'. By part (a), $d = \sum_{i=1}^n \alpha_i a_i$ for some $\alpha_i \in \mathbb{Z}$. Dividing both sides by d, we obtain $1 = \sum_{i=1}^n \alpha_i (a_i/d)$. Since d' divides $a_1/d, \ldots, a_n/d$, it divides the right-hand side and so it divides 1, which implies that d' = 1.