Санкт-Петербургский политехнический университет имени Петра Великого

Кафедра "Прикладная математика и информатика"

Отчет по Летней практике

"Алгоритмы и структуры данных"

Студент группы № 5030102/20001	Соколов Артем Николаевич
Подпись руководителя	Козлов Константин Николаевич
Санкт-Петербур	Γ
2024 год	

Оглавление

Титульный лист

Постановка задачи	3
Описание алгоритма	3
Структура кучи	3
Добавление элемента в кучу	3
Объединение двух куч.	3
Удаление минимального элемента.	4
Гекст программы	4
Описание тестирования	4
Тест 1. Добавление элемента в кучу	5
Тест 2. Удаление минимального элемента из кучи	6
Тест 3. Объединение двух куч.	9

Постановка задачи

В работе требуется реализовать структуру данных фибоначчиева куча, а также операции добавления элемента, объединения двух куч и удаления минимального элемента.

Пользователь программы может делать следующие запросы:

- Добавить элемент в кучу.
- Объединить две кучи.
- Удалить минимальный элемент из кучи.

Описание алгоритма

Структура кучи

1. Фибоначчиева куча — это куча (список деревьев), на каждое дерево которого, помимо ограничения, что значение в родителе (для min) должно быть меньше значения потомков, также присутствует ещё одно: для родителя ранга k его потомки слева направо должны быть ранга не меньше, чем от 0 до k – 1. Также в данной куче отдельно хранится минимальный элемент.

Добавление элемента в кучу

Элемент добавляется как новое дерево в кучу и, если он меньше минимального элемента, минимальный элемент заменяется на добавленный. Сложность O(1).

Объединение двух куч.

Объединяются два списка деревьев: один объединяется с концом другого. Сложность O(1).

Удаление минимального элемента.

Здесь выполняются 2 действия: удаление элемента и поиск нового с одновременным сжатием кучи.

- 1. Удаление элемента: элемент удаляется из списка по хранящейся отдельно ссылке, его потомки переносятся в корневой список деревьев.
- 2. Сжатие с поиском нового минимума:
 - а. Заводим массив, в котором индексом будет являться ранг дерева, а значением ссылка на корень дерева этого ранга.
 - b. Обходим список деревьев слева-направо, с поиском минимума.
 - с. Проверяем, что находится в массиве по рангу текущего дерева. Если там ничего нет, что записываем туда текущее дерево. Если же там уже есть дерево такого же ранга, то «подвешиваем» одно дерево к другому (в зависимости от того, у кого меньше корневой элемент), увеличивая ранг итогового дерева на 1.
 - d. Далее повторяем пункт с. для получаемого дерева до того момента, пока в массиве не окажется пустого места.

Амортизированная сложность удаления равна O(log(n))

Исходные файлы программы

Исходный код проекта: azya0/FibonacciHeap (github.com)

Весь код Фибоначчиевой кучи был реализован в .h файлах из-за использования технологии "Шаблоны".

В main.cpp файле записан код для тестирования.

Тестирование

```
5 v int main() {
        auto data1 = FibbonachiHeap<float>();
        data1.insert(1);
        data1.insert(2);
        data1.insert(3);
        data1.insert(0.5f);
        auto data2 = FibbonachiHeap<float>();
        data2.insert(1234);
        data2.insert(232);
        data2.insert(43);
        data2.insert(0.25f);
         FibbonachiHeap<float>::join(&data1, &data2);
        data1.printTop();
         std::cout << '\n' << data1.getMin() << '\n';</pre>
        data1.compress();
        data1.printTop();
        std::cout << '\n' << data1.popMin() << '\n';</pre>
        std::cout << data1.getSize() << '\n';</pre>
        return 0;
```

Рис 1. Исходные команды для тестирования

```
C:\Users\Azya\Desktop\code\university\SummerTask\build>ninja
[2/2] Linking CXX executable SummerTask.exe

C:\Users\Azya\Desktop\code\university\SummerTask\build>.\SummerTask.exe

0.25 0.5 3 2 1 1234 232 43

0.25

0.25

0.25

7
```

Рис 2. Данные вывода для тестов

Рис 3. Структура Фибоччиевой кучи после первого уплотнения

Итоги

В рамках данной работы я реализовал операции "Добавить элемент", "Получить минимальный элемент", "Удалить минимальный элемент", "Объединить две кучи" для структуры данных "Фибоначчиева куча".