

TECHNICAL MEMORANDUM

AERODYNAMIC LOADING CHARACTERISTICS INCLUDING EFFECTS OF
AEROELASTICITY OF A THIN-TRAPEZOIDAL-WING-BODY
COMBINATION AT A MACH NUMBER OF 1.43

By Thomas C. Kelly

Langley Research Center Langley Field, Va.

Declassified September 1, 1961

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
WASHINGTON
September 1959

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL MEMORANDUM X-119

AERODYNAMIC LOADING CHARACTERISTICS INCLUDING EFFECTS OF AEROELASTICITY OF A THIN-TRAPEZOIDAL-WING-BODY COMBINATION AT A MACH NUMBER OF 1,43

By Thomas C. Kelly

SUMMARY

Results have been obtained in the Langley 8-foot transonic pressure tunnel at a Mach number of 1.43 and at angles of attack from $0^{\rm O}$ to about $24^{\rm O}$ which indicate the static-aerodynamic-loads characteristics for a 2-percent-thick trapezoidal wing in combination with a body. Included are the effects of changing Reynolds number and of fixing boundary-layer transition.

The results show that aerodynamic loading characteristics at a Mach number of 1.43 are similar to those reported in NACA RM L56J12a for the same configuration at a Mach number of 1.115. Reducing the Reynolds number resulted in reductions in the deflection of the wing and caused a slight increase in the relative loading over the outboard wing sections since the deflections were in a direction to unload the tip sections. Little or no effects were seen to result from fixing boundary-layer transition at a tunnel stagnation pressure of 1,950 pounds per square foot.

INTRODUCTION

A general research program in the Langley 8-foot transonic tunnels was established to determine the aerodynamic characteristics of wingbody combinations designed to have high lift-drag ratios at transonic and supersonic speeds. As one phase of this program, the aerodynamic loading characteristics at Mach numbers from 0.80 to 1.115 and the aerodynamic force characteristics at Mach numbers from 0.80 to 1.43 were obtained for a thin trapezoidal wing in combination with various bodies. These results are available in references 1 and 2, respectively.

The aerodynamic loading characteristics at a Mach number of 1.43 are given herein for some of the configurations reported in reference 1. Tests extended over an angle-of-attack range from 0° to about 24° at Reynolds numbers of 2.48×10^6 and 1.27×10^6 based on the wing mean aerodynamic chord.

SYMBOLS AND COEFFICIENTS

b	wing span
c	airfoil section chord, measured parallel to plane of symmetry
cav	average wing chord, S/b
ē	wing mean aerodynamic chord
D	diameter
М	free-stream Mach number
ı	body length
p	local static pressure
p_{∞}	free-stream static pressure
p _t '	free-stream total pressure
q_{∞}	free-stream dynamic pressure
r	radius
r _{av}	average body radius between wing-body leading-edge and trailing-edge junctures
S	wing area
t	thickness
x	distance from leading edge of wing or nose of body (positive rearward)
У	distance measured laterally from plane of symmetry

α angle of attack of body center line

 θ meridian angle of body orifice station (At Row A, 0° . See fig. 1 and table II.)

 C_p pressure coefficient, $\frac{p - p_{\infty}}{q_{\infty}}$

Cp, sonic pressure coefficient corresponding to local Mach number of 1

 c_n wing section normal-force coefficient, $\int_0^1 (C_{p,L} - C_{p,U}) d(\frac{x}{c})$

c_{m,c/4} wing section pitching-moment coefficient about 0.25c, $\int_{0}^{1} (C_{p,L} - C_{p,U}) \left(0.25 - \frac{x}{c}\right) d\left(\frac{x}{c}\right)$

 $c_{m,\bar{c}/4}$ wing section pitching-moment coefficient about 0.25 \bar{c} , $c_{m,c/4} + c_{n}\left(\frac{x_{\bar{c}/4}}{c} - \frac{x_{c/4}}{c}\right)$

body pitching-moment coefficient about 0.25 \bar{c} , based on wing area and \bar{c} , $\frac{2\pi l^2 D_{max}}{S\bar{c}} \int_0^{1/4} \int_0^1 \cos \theta \, \frac{r}{r_{max}} \binom{C_{p,L} - C_{p,U}}{l} \frac{x_{c/4} - x}{l} \, d(\frac{x}{l}) d(\frac{\theta}{2\pi})$

 $c_{N,w}$ wing normal-force coefficient, $\int_{\frac{r_{av}}{b/2}}^{1} c_n \, \frac{c}{c_{av}} \, d\left(\frac{y}{b/2}\right)$

 $C_{m,w}$ wing pitching-moment coefficient about 0.25 \bar{c} ,

 $\int_{\frac{r_{av}}{b/2}}^{1} c_{m,\bar{c}/4} \frac{c^{2}}{c_{av}\bar{c}} d\left(\frac{y}{b/2}\right)$

 $\begin{array}{c} \text{C}_{\text{N,fw}} & \text{body normal-force coefficient based on wing area,} \\ & \frac{2\pi l D_{\text{max}}}{S} \int_{0}^{1/4} \int_{0}^{1} \cos \theta \, \frac{r}{r_{\text{max}}} \big(C_{\text{p,L}} - C_{\text{p,U}} \big) d \Big(\frac{x}{l} \Big) d \Big(\frac{\theta}{2\pi} \Big) \end{array}$

$$C_{N}$$
 total normal-force coefficient, $C_{N,w} + C_{N,fw}$

$$C_{m,\bar{c}/4}$$
 total pitching-moment coefficient about 0.25 \bar{c} , $C_{m,w} + C_{m,fw}$

line,
$$\int_{\frac{\mathbf{r_{av}}}{b/2}}^{1} \left(\frac{\mathbf{c_n c}}{\mathbf{c_{av}}}\right) \left(\frac{\mathbf{y}}{b/2}\right) d\left(\frac{\mathbf{y}}{b/2}\right)$$

Subscripts:

L lower surface

U upper surface

max maximum

APPARATUS

Tunnel

The Langley 8-foot transonic pressure tunnel, in its standard configuration, is a single-return, rectangular, slotted-throat tunnel having controls that allow for the independent variation of Mach number, density, temperature, and humidity. For the present tests, the longitudinal slots were enclosed with fairings in order to provide a M=1.43 test section. Details of the resulting nozzle shape and the test-section Mach number distribution are presented in reference 3.

Models

A three-view drawing of the wing-body configuration tested is shown in figure 1. The wing was trapezoidal in plan form and had 26.6° sweep-back of the quarter-chord line, an aspect ratio of 2.61, a taper ratio of 0.211, and 2-percent-thick symmetrical circular-arc airfoil sections parallel to the plane of symmetry, with the maximum thickness located at the midchord station. The wing was constructed of type 416 stainless steel.

The body of the configuration was designed by using Sears-Haack ordinates in order to obtain a body having minimum wave drag for a given length and volume. Design ordinates for the body are given in table I.

MEASUREMENTS AND ACCURACY

Measurements of the local static pressures over the configuration were made by use of about 137 orifices distributed over the upper and lower wing surfaces at three wing semispan locations and along five fuse-lage meridian rows. Orifice locations are given in table II. Pressure coefficients, determined from these pressure measurements, are estimated to be accurate within ±0.005 and are presented in tables III to V.

Model angle of attack was measured by means of a strain-gage attitude transmitter located in the nose of the model and is estimated to be accurate within $\pm 0.1^{\circ}$. Calibrations of the tunnel with the test section empty indicate that local deviations from the average free-stream Mach number did not exceed 0.015 during these tests. (See ref. 3.) The average free-stream Mach number was held to within ± 0.003 of the nominal value shown in the figures.

Influence coefficients obtained from a static loading of the wing and presented in reference 1 may be used in conjunction with the experimental wing section data given herein in table VI to compute wing twist angles.

TESTS

The wing-body configuration and the body alone were tested at a Mach number of 1.43 through an angle-of-attack range from 0° to about 24° . Transition strips, when used, were fixed on the model at 10 percent of the wing chord and at 10 percent of the body length. The strips were approximately 0.1 inch wide and were composed of no. 120 carborundum grains set in a plastic adhesive. Tests of the wing-body configuration were conducted with transition both fixed and natural at a tunnel stagnation pressure of about 1,950 pounds per square foot. In addition, the transition-fixed configuration was tested at a stagnation pressure of about 1,000 pounds per square foot.

The body alone was tested with transition fixed at a stagnation pressure of 1,950 pounds per square foot. Test Reynolds numbers, based on the wing mean aerodynamic chord, for stagnation pressures of 1,950 pounds per square foot and 1,000 pounds per square foot were 2.48×10^6 and 1.27×10^6 , respectively.

RESULTS

The model aerodynamic loading characteristics are shown in the following figures:

	rgui c
Pressure coefficients for wing in presence of body. Effect	2
of transition	2
of Reynolds number	3
Pressure coefficients for body in presence of wing. Effect	
of transition	4
Pressure coefficients for body in presence of wing. Effect	
of Reynolds number	5
Pressure coefficients for body alone	6
Spanwise load distributions	7
Normal-force and pitching-moment characteristics of wing-	
body configuration	8
Normal-force and pitching-moment characteristics of wing	
in the presence of the body	9
Variation of wing bending-moment coefficient with normal-	
force coefficient	10
Wing center-of-pressure locations	11
Part of total load carried by the wing	

Figure

DISCUSSION

Pressure Distributions

Pressure distributions for the wing in the presence of the body (fig. 2) are similar to those noted at a Mach number of 1.115 in reference 1. The main effect of increasing Mach number from 1.115 to 1.43 consists of a general decrease in load carried by the wing sections at a given angle of attack, as would be expected. (Compare fig. 2 with figs. 4(f) and 4(g) of ref. 1.)

The removal of the transition particles (fig. 2) had little or no effect on the pressure distributions at a turnel stagnation pressure of 1,950 pounds per square foot. It should be noted here that selection of the size of transition particles was based upon results presented in reference 4 and a tunnel stagnation pressure of 1,950 pounds per square foot. Observations of similar models while using the oil film technique described in reference 5 have indicated the presence of turbulent flow for conditions similar to those of the present tests. Although the pressure distributions presented in figure 3 are for the configuration with transition fixed, the possibility exists that at the lower tunnel pressure the transition strip was not capable of tripping the boundary layer. However, since increases in angle of attack are conducive to early transition, it is believed that the main differences in the pressure distributions over the outboard wing stations at the higher angles

of attack are caused by aeroelastic effects. Differences noted in the pressure distributions for the 0.20b/2 station near the leading edge (fig. 3) may be associated with differences in boundary-layer condition in this region.

Spanwise twist distribution for this same wing at a Mach number of 1.115 and an angle of attack of 20° presented in reference 1 indicates, as would be expected for a sweptback wing, that sizable angles of wing twist (about 1.25°) are developed which are in a direction to unload the outer wing sections. Since these elastic deformations of the wing are a direct function of the tunnel total pressure, it would be expected that the increased effective washout caused by the higher total pressures would result in a relative decrease in load carried by the outer wing sections. This effect of wing twist due to load, or aeroelasticity, is indicated by comparison of the results presented in figure 3 for the wing tested at both 1,950 pounds per square foot and 1,000 pounds per square foot. For a given angle of attack, the higher loads carried by the outboard section of the wing tested at the lower pressures indicate these sections are operating at local angles of attack somewhat higher than those for the wing tested at the higher pressure.

Pressure coefficients for the body in the presence of the wing indicate little or no effects resulting from fixing boundary-layer transition at a stagnation pressure of 1,950 pounds per square foot (fig. 4) or from varying Reynolds number (fig. 5).

Comparison of results for the body alone (fig. 6) with those for the body in the presence of the wing (fig. 4) indicates the usual increase in body loading resulting from the influence of the wing.

Spanwise Load Distributions

Spanwise load distributions (fig. 7) exhibit the same variation in shape as that noted at lower speeds in reference 1 and change from roughly elliptical in shape at the lower angles of attack to more nearly triangular at the higher angles.

The location of the wing-body juncture shown in figure 7 was obtained by taking a root-mean-square value of the body radius over the region of the fuselage intersected by the wing. The resulting value was 0.175b/2.

Normal-Force and Pitching-Moment Characteristics

Normal-force and pitching-moment characteristics are presented for the complete configuration in figure 8 and for the wing in the presence of the body in figure 9. Comparison of the results of the present tests with force results obtained for an identical configuration and reported in reference 2 indicates good agreement in the normal-force characteristics and only fair agreement in the pitching-moment characteristics.

A slight indication of the destabilizing pitching-moment curve break noted at the higher Mach numbers and normal-force coefficients of reference 1 appears at a Mach number of 1.43 for the wing-body combination. As was also noted in reference 1, no indication of this break is apparent in the curve for the wing in the presence of the body. As would be expected, the curves for the wing in the presence of the body (fig. 9) exhibit a decrease in the slope of the normal-force curve and an increase in stability level when compared with the curves for the wing-body combination (fig. 8).

Wing Bending Moments

For the exposed wing the variation with wing normal-force coefficient of the wing bending-moment coefficient referred to the body center line is presented in figure 10 and shows a near-linear increase in bending-moment coefficient with wing normal-force coefficient.

Center-of-Pressure Location

Lateral and chordwise center-of-pressure positions (fig. 11) exhibit variations similar to those shown for a Mach number of 1.115 in reference 1. Although not shown in figure 11, it would be expected that reductions in total pressure (or, conversely, increases in wing rigidity) would result in slight outboard and rearward novements of the wing center of pressure similar to those shown in reference 6 for wings which differed in rigidity. Tests of the present configuration conducted at the higher pressure would correspond to the flexible wing of reference 6, whereas those conducted at the lower pressure would correspond to the more rigid wing case because of the smaller resulting deformations.

Division of Load

The division of load between the wing and body is illustrated in figure 12 which shows that the wing carries about 78 percent of the total load at the lower normal-force coefficients. Increases in normal-force coefficient are accompanied by decreases in the percent of the load carried by the wing to a value of 74 percent at a normal-force coefficient of 1.07 (fig. 12).

CONCLUDING REMARKS

An investigation of a thin trapezoidal wing in combination with a body at a Mach number of 1.43 indicates that the aerodynamic loading characteristics at this Mach number are similar to those previously reported in NACA RM L56J12a for the same configuration at a Mach number of 1.115. Reducing the test Reynolds number by lowering the tunnel stagnation pressure resulted in reductions in deflections of the wing which caused a slight increase in the relative loading over the outboard wing sections since the deflections were in a direction to unload the tip sections. The effects of fixing boundary-layer transition were negligible for tests conducted at a tunnel stagnation pressure of 1,950 pounds per square foot.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Field, Va., June 11, 1959.

REFERENCES

- 1. Kelly, Thomas C.: Transonic Wind-Tunnel Investigation of Aerodynamic-Loading Characteristics of a 2-Percent-Thick Trapezoidal Wing in Combination With Basic and Indented Bodies. NACA RM L56J12a, 1957.
- 2. Kelly, Thomas C.: Transonic Wind-Tunnel Investigation of the Low-Lift Aerodynamic Characteristics, Including Effects of Leading-Edge Droop and Thickness, of a Thin Trapezoidal Wing in Combination With Basic and Indented Bodies. NACA RM L57IO4, 1957.
- 3. Matthews, Clarence W.: An Investigation of the Adaptation of a Transonic Slotted Tunnel to Supersonic Operation by Enclosing the Slots With Fairings. NACA RM L55H15, 1955.
- 4. Braslow, Albert L., and Knox, Eugene C.: Simplified Method for Determination of Critical Height of Distributed Roughness Particles for Boundary-Layer Transition at Mach Numbers From O to 5. NACA TN 4363, 1958.
- 5. Loving, Donald L., and Katzoff, S.: The Fluorescent-Oil Film Method and Other Techniques for Boundary-Layer Flow Visualization. NASA MEMO 3-17-59L, 1959.
- 6. Osborne, Robert S., and Mugler, J. P., Jr.: Effects of Wing Elasticity on the Aerodynamic Characteristics of a 45° Sweptback-Wing-Fuselage Combination Measured in the Langley 8-Foot Transonic Tunnel. NACA RM L52G23, 1952.

TABLE I
BODY ORDINATES

Body station,	Body
inches from	radius,
nose	in.
0 1.0 2.0 3.0 4.0 6.0 8.0 10.0 12.0 13.426 14.0 16.0 18.0 20.0 22.0 24.0 26.0 28.0 30.0 32.0 34.0 36.15	0 .282 .460 .612 .743 .969 1.150 1.290 1.404 1.475 1.552 1.552 1.590 1.606 1.594 1.560 1.501 1.414 1.300 1.158 .984 .750

Maximum body radius is 1.606 inches at body station 20.10 inches.

view looking downstream

Body-alone

TABLE II.- MODEL ORIFICE LOCATIONS

View looking downstream -.70b/2 —.20b/2 Top view - 40b/2 -

Row A Row D Row E	1 :0:
-------------------	-------

- Row D

ROW E

- Row B

Row A

1/x	ROW E	0.055	.367	154.	1.0.1 5.00.1	¥.0.	9. 9. 7.	929.	.748	8.5	15.
Location of body orifices,	Row D 8 = 1350	991.0	3	3. 2. 1	100	¥.0.	9.49.	929.	 84.	8.5	578:
of body o	Row C 8 = 90°	0.055	.367	157		15.	9.49.	929.	7.07	8.5	55
ocation	Row B 0 = 450	991.0	.367	5.4.	100	15.	549.	.676	24.	8.5	.873
ឯ	Row A 8 = 00	0.055	.367 795.			¥5;	લું ફું	.676	2.45	8.5	50.0

Row E 8 = 180°	0.055 .166 .277	78.	544. 644. 555	§ §	799.	617.	-8.8. 58.5.	ķ
Row D 8 = 1350	991.0	.387	544.	§ §	₹99:	917.	-8.6. 58.4	
Row C 8 = 90º	0.055 .166 .277	795.			,		-8.8. 58.4.	ġ
Row B 8 = 450	0.166 301.0	78.	544. 864.	§ §	₹	.719	.876 .871	
Row A 6 = 00	0.055 .166 .773	, % ;	133.	<u>;</u> ğ	% 48	, , ,	-8;8; 58.4	

Location of body orifices, x/1

30/2	Lower	0.1.5 0.15 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.2
0.70	Upper surface	0.100 1.50 1.50 2.50 3.50 1.50 6.50 6.50 6.50 6.50 6.50
Jb/2	Lower surface	0.075 .100 .150 .350 .450 .650 .850
0.40	Upper surface	0.050 .100 .350 .450 .550 .650 .1750 .850 .950
76/2	Lower	0.1150 0.150 0.350 0.350 0.550 0.550 0.550 0.550 0.550 0.550
0.8	Upper surface	0.00 %TO: %TO: %TO: %TO: %TO: %TO: %TO: %TO:
	0.20b/2 0.40b/2 0.70b/2	0.70 Lower Upper Lower Upper surface surface

TABLE III.- PRESSURE COEFFICIENTS FOR WING IN PRESENCE OF BODY

(a) Fixed transition; $p_t' = 1,950 \text{ lb/sq ft}$

	Upi	per surf	ace	Los	er surfs	ice	1	Ilm	per surf	ace	In	er surfa	
ž č	0.2b/2	0.45/2	0.7b/2	0.25/2	0.45/2	0.76/2	č	0.2b/2	0.45/2	0.75/2	 	0.4b/2	0.76/2
	<u> </u>	<u> </u>	α = 0°	L		1 3 1 1 - 7 -		1.0.2.0,2	0.40,2	$\alpha = 8^{\circ}$	0.25/2	0.40/2	0.10/2
0.050	0.003	0.072			0.046		0.050		-0.327	T	T		
.100	.023	.017	0.082	-0.001	.046	0.085	.075 .100 .150	260 234 211	336	-0.302 301	0.268	0.394 .372 .312	0.407
.250 .350	016 041	.014	.031	007 .001	005	.058	.250 .350	209 188	313 222	294	.233	.206	.339
.450 .550	035 053	033 053	002	025 041	022 032	001 022	.450 .550	174	205 203	290 320	.162	.189	.246
.650	063 052	071 070	064 079	034 059	049	047 058	.650 .750	213	206 220	333 337	.164	.172	.198
.825 .850	082	079	08ó	073	0 66	0 66	.825 .850	230	227	337	.131	.134	.154
.900 .950	094 105	080 078		082	071	062	.900 .950	232	236 235		.120	.130	.124
	·	· · · · · · · · · · · · · · · · · · ·	a = 20	,				L **		a = 12°) 	L	<u>l</u>
0.050	-0.073 053	-0.053			0.135		0.050	-0.422	-0.456			. (2)	
.100	047 056	095	-0.013 057	0.065	.124	0.166	.075 .100 .150	369 340 298	446	-0.427 415	0 117	0.614 .516	0.576
.250 .350	079 083	048 085	069 091	.044 .043	.050	.134	.250	270	430 378	403	0.417 .360	-454	0.536
.450 .550	078 097	087 093	092 116	.033	.038	.071	.450 .550	234	297 275	395 389 410	.315 .276 .286	.342 .311 .302	.419 .385
.650 .750	093 106	103 114	122 134	.005 008	.001	.017	.650 .750	259 265	273 277	412	.292 .261	.293	.359 .314 .283
.825 .850	131	122	138	018	024	.001	. 825 . 850	275	289	416	.243	.247	.270
.900 .950	137 148	132 130		032	019	016	.900 .950	283 272	292 292		.233	.242	.234
		— 	a = 4°							a = 16°			
0.050	-0.141 121	-0.145			0.219		0.050	-0.528 499	-0.553			0.701	
.100 .150	115 119	179	-0.124 130	0.126	.215	0.249	.100	467 358	533	-0.524 509	0.569	0.724 .649 .591	0.661
.250 .350	118 117	122 131	145 168	.096	.104	.201 .148	.250	311	514 457	496 484	.500 .467	.492	.609
.450 .550	117 122	127 129	175 2 0 6	.072	.083	.128	.450 .550	284 285	389 373	481 491	.425	.457 .429	.500 .516 .475
.650 .750	138 152	137 151	195 187	.048	.046	.076 .064	.650 .750	293 305	372 374	491 495	.416 .382	.419	.423
.825 .850	165	164	182	.030	.026	.051	.825 .850	323	369	490	.336	.355	.368
.900 .950	173 180	170 167		.014	.024	.025	.900 .950	327 332	360 349		.330	.348	-335
			a = 6°				•			a = 20°			
0.050	-0.234 202	-0.248			0.298		0.050	-0.586 562	-0.602	-		0 0-1	
.100	180 173	270	-0.225 233	0.197	.289	0.340	.100	562 442 387	593	-0.595	<u></u>	0.854 .796	
.250 .350	162 167	223 175	222	.168	.156	.268	.250	361 333	543 535 484	582 569 556	0.717 .672 .626	.746	0.782
.450 .550	145 167	170 172	245 275	.111	.137	.186	.450 .550	291 305	468 484	552 560	-575	.633 .595	.671 .622
.650 .750	185 192	175	282 287	.105	.108	.147	.650 .750	324	504 477	556	.553 .527 .476	.562 .527	•575 •521
.825 .850	202	202	274	.081	.081	.096	.825	361	432	557 551	.436	.453	.481 .458
.900 .950	209 216	207 204		.065	.076	.074	.900	371 379	420		.434	.436	.428
						لـــــــــــــــــــــــــــــــــــــ		-212					

TABLE III. - PRESSURE COEFFICIENTS FOR WING IN PRESENCE OF BODY - Continued

(b) Natural transition; $p_t' = 1,950 \text{ lb/sq ft}$

<u>x</u>	Upp	er surfa	.ce	Low	er surfa	ıce	<u>x</u>	Upp	er surfa	ıce	Low	er surfa	.ce
<u> </u>	0.26/2	0.45/2	0.7ь/2	0.2ъ/2	0.46/2	0.7ъ/2	c	0.21:/2	0.45/2	0.76/2	0.2ъ/2	0.4ъ/2	0.76/2
	•		a = 00							a = 120			
0.050 .075 .100 .150 .250 .350 .450 .550 .650 .750 .825 .850 .900	-0.001 .016 .012 .008 018 043 053 055 055 055	0.075 .003 002 025 039 054 071 072 080 082 079	0.061 .036 .020 020 049 069 082 086	0.012 007 .003 019 039 035 054 068 079	0.044 .044 .037 .001 014 - 027 045	0.091 .055 .019 001 022 044 055 061	0.050 .075 .100 .150 .250 .350 .450 .550 .650 .750 .825 .850 .900	-0.1.23 370 348 302 273 252 233 242 259 264 274 283	-0.460 451 433 385 305 270 275 286 292 293	-0.438 417 405 397 395 412 414 419	0.425 .362 .312 .273 .285 .293 .262 .241 .235	0.602 .520 .460 .314 .310 .302 .294	0.526 .460 .415 .388 .360 .315 .284 .271
			a = 40				α = 16°						
0.050 .075 .100 .150 .250 .350 .450 .550 .650 .750 .825 .850 .900	-0.136 117 121 115 117 117 117 157 152 166 172 178	-0.139181137135125126135162162168166	-0.130 124 148 166 183 206 200 185 179	0.129 .097 .077 .067 .067 .047 .028 .027	0.216 .211 .175 .105 .083 .070 .046	0.243 .190 .142 .118 .103 .077 .063 .056	0.050 .075 .100 .250 .350 .450 .550 .650 .750 .825 .850 .900	-0.515 -1.75 -1.76 -1.56 -1.08 -1.294 -1.278 -1.286 -1.00	-0.543 522 507 445 384 361 360 365 358 358 352 342	-0.517 498 486 473 472 483 482 484	0.562 .498 .460 .417 .421 .415 .378	0.722 .647 .590 .489 .454 .426 .416	0.650 .596 .552 .513 .473 .420 .386 .365
			a = 80							a = 20°			
0.050 .075 .100 .150 .250 .350 .450 .650 .650 .825 .850 .900	-0.289 -248 -236 -209 -206 -185 -175 -191 -210 -215 -227 -229 -234	-0.317 -333 -310 -212 -205 -199 -205 -219 -225 -234 -233	-0.301 291 284 283 316 322 326 322	0.266 .234 .181 .156 .170 .162 .132 .128 .119	0.388 .382 .315 .209 .190 .175 .171	0.393 .329 .275 .243 .223 .197 .177 .155	0.050 .075 .100 .150 .250 .350 .450 .550 .650 .750 .825 .850	-0.: 80 -:: 27 -:: 146 -:: 27 -:: 28 -:: 28 -:: 26 -:: 25 -:: 26 -:: 27 -:: 28	-0.595 591 539 490 489 502 507 478 440 436 426	-0.593 583 572 558 559 565 561 560	0.706 .669 .621 .568 .552 .525 .473 .431 .433	0.852 .794 .745 .631 .592 .559 .524	0.775 .716 .667 .621 .574 .520 .479 .455

TABLE III.- PRESSURE COEFFICIENTS FOR WING IN PRESENCE OF BODY - Concluded

(c) Fixed transition; $p_t' = 1,000 \text{ lb/sq ft}$

x	Upp	er surfa	ice	Lov	er surfa	ice	×	Upp	er surfa	ıce	Low	er surfa	ıce
<u>x</u>	0.2b/2	0.45/2	0.76/2	0.25/2	0.4ъ/2	0.76/2	x c	0.25/2	0.45/2	0.7ь/2	0.2b/2	0.4b/2	0.7ъ/2
			$\alpha = 0^{O}$						•	a = 16°)		•
0.050 .075 .100	-0.009 .002 .009 .001	0.080	0.082	0.033	0.073 .069 .050	0,118	0.050 .075 .100	-0.600 584 546	-0.598 588	-0.592	0.500	0.739	
.250 .350 .450 .550	020 036 034 069	.002 026 045 054 064	.020 009 029 051 072	.019 .011 007 023 024	.014 011 017	.076 .041 .019 .002	.150 .250 .350 .450	400 340 310 288 308	547 503 447 439	576 555 548 542 538	0.578 .519 .480 .470 .452	.616 .512 .483 .460	0.706 .640 .591 .544
.750 .825 .850	062 084 095	079 085	081 091	042 047 068	031 054 055	026 029 042	.650 .750 .825 .850	304 324 339 349	410 390 389 389	538 535 527	.438 .394 .352 .343	.436 .366	.442 .408 .377
.950	103	079					.950	332	379				
		0	a = 40	· · · · · · · · · · · · · · · · · · ·		r				α = 20 ⁰			1
0.050 .075 .100 .150 .250 .350 .450 .550 .650 .750 .825 .850	-0.203 163 143 127 131 118 149 161 169 178	-0.178 173 160 155 144 137 140 145 159 169	-0.166 165 170 174 199 210 218 218	0.159 .125 .101 .094 .081 .063 .051	0.230 .220 .184 .116 .096 .078 .065	0.269 .214 .176 .153 .126 .089 .086 .066	0.050 .075 .100 .150 .250 .350 .450 .550 .650 .750 .825 .850	-0.605 595 556 413 341 320 337 347 348	-0.603 604 572 527 528 531 513 480 468	-0.605 598 591 580 577 574 569 558 539	0.733 .703 .656 .610 .574 .544 .498	0.872 .819 .773 .658 .614 .580 .546	0.828 .758 .704 .652 .599 .540 .507 .477
.950	177	173	a = 8°				.950	389	447	~ - 2):0			
0.050	-0.379	-0.372	a = 8°				0.050	-0.597	-0.598	a = 240			
.075 .100 .150 .250 .350 .450 .550 .650 .750 .825 .825 .900	320 270 234 214 199 184 217 216 215 228 237	373 317 286 228 209 210 222 235 242 240	-0.359 349 325 334 338 345 359 367 375	0.285 .239 .193 .179 .182 .171 .146	0.388 .376 .326 .226 .206 .186 .179	0.417 .350 .297 .267 .247 .214 .187 .155	.075 .100 .150 .250 .350 .450 .550 .650 .750 .825 .850 .900	581 532 431 381 363 349 345 376 376 392 415 427 438	600 586 564 546 540 541 507 476 473 464	-0.598 590 585 576 573 576 568 551 525	0.867 .848 .781 .722 .679 .638 .589	0.990 .948 .903 .781 .729 .686 .646	0.923 .859 .799 .745 .693 .635 .597 .569
			α = 12 ⁰										
0.050 .075 .100 .150 .250 .350 .450 .550 .650 .750 .825 .850 .900	-0.543 496 412 330 296 272 242 266 265 274 283 296 287	-0.528 516 468 428 360 310 292 296 308 312 301	-0.516 496 465 459 455 465 468 475	0.434 .374 .330 .296 .313 .301 .279	0.595 .539 .474 .352 .317 .330 .308	0.562 .486 .437 .406 .367 .337 .339 .278	0 0 0 0 0 0 0 0						

TABLE IV .- PRESSURE COEFFICIENTS FOR BODY IN PRESENCE OF WING

(a) Fixed transition; pt' = 1,950 lb/sq ft

x/l	a = 00	a = 20	a = 40	a = 6°	a = 8°	1 = 12 ⁰	a = 16°	a = 20°	x/l
]	Row A				
0.055	0.086	0.072	0.041	0.042	0.028	0.003	0.009	-0.013	0.055
.166	.033	.020	.012	.004	.002	004	007	039	.166
.277	007	017	.002	013	013	027	015	044	.277
.367	.005	006	005	015	024	017	043	070	.367
.387	.020	.011	.007	004	.000	.013	.002	027	.387
.415	.006	.004	007	012	009	023	035	049	.415
.443	.008	006	016	006	003	008	039	080	.443
.498	009	03 5	059	092	109	150	187	184	.498
•5 53	017	065	098	133	167	220	260	285	-553
.581	036	077	111	148	179	242	265	285	.581
.636	041	083	119	154	189	233	282	301	.636
.664	062	101	138	178	202	252	298	318	.664
.692	069	107	143	174	201	262	300	319	.692
.719	091	131	162	196	231	292	326	358	.719
.775	060	058	060	054	054	062	037	.013	.775
.830	057	035	023	014	005	.011	.019	.026	.830
.871	020	013	003	.001	.003	.031	.019	.015	.871
1,0,	020	01)	007	.001	.00		.019	1 .01)	.011
				1	Row B				
0.166	0.019	0.015	0.014	-0.003	-0.023	-0.057	-0.085	-0.119	0.166
.277	001	016	018	017	034	061	086	147	.277
.367	022	032	046	05Ò	073	081	114	197	.367
.387	.027	.014	.008	007	023	050	083	160	.387
443	.007	020	048	069	091	148	191	265	.443
.498	-,008	047	074	116	152	222	287	392	.498
.553	082	073	lil	147	184	261	329	421	-553
.609	038	075	111	154	195	273	342	432	.609
.664	073	111	145	186	227	319	392	459	.664
.719	062	081	095	107	112	134	170	217	.719
.830	039	027	028	026	023	017	020	034	.830
.871	050	036	027	023	021	014	028	139	.871
]	Row C			!	
0.055	0.084	0.083	0.075	0.070	0.048	-0.008	-0.076	-0.161	0.055
.166	.019	.009	.024	.007	020	082	163	275	.166
.277	.009	005	010	030	040	112	213	336	.277
.277 .367	008	.002	007	030	056	141	251	349	367
	032	030	032	040	053	099	099	166	.692
.692		036	036	043	055	052	070	126	.719
.719	035	056 056	060	045	059	052	070	189	
.775	052		072	086	101	142	117	243	.775
.830	070	069	048		101				.830
.871	047	043		058		075	092	129	.871
.954	085	083	088	094	097	119	129	139	.954

TABLE IV.- PRESSURE COEFFICIENTS FOR BODY IN PRESENCE OF WING - Continued (a) Fixed transition; $p_t' = 1,950 \text{ lb/sq ft}$ - Concluded

			T		·				, —
x/l	$\alpha = 0^{\circ}$	$\alpha = 2^{\circ}$	$\alpha = 4^{\circ}$	$\alpha = 60$	$\alpha = 8^{\circ}$	$\alpha = 12^{\circ}$	$\alpha = 16^{\circ}$	$\alpha = 20^{\circ}$	x/l
					Row D				
0.166 .387 .443 .498 .553 .609 .664 .719 .775 .830	0.010 .010 .006 .001 .001 025 039 055 047 052 029	0.027 .016 .026 .045 .045 .021 .007 035 040 058	0.039 .030 .047 .079 .086 .045 016 041 068 060	0.060 .030 .055 .115 .138 .115 .091 .002 046 077 078	0.069 .029 .074 .158 .190 .163 .138 .024 050 084 090	0.081 .011 .133 .255 .280 .279 .251 .072 058 115	0.088 .008 .256 .364 .373 .385 .350 .109 051 141 153	0.119 .019 .396 .492 .486 .468 .414 .136 079 169	0.166 .387 .443 .498 .553 .609 .664 .719 .775 .830
					Row E			· · · · · ·	
0.055 .166 .277 .367 .387 .443 .498 .553 .609 .664 .719 .775 .830 .871	0.092 .012 .025 .006 .002 003 .005 .011 016 034 067 044 064 038 055	0.121 .037 .037 .024 .018 002 .053 .054 .038 .007 026 035 076 059 060	0.176 .065 .042 .038 .039 .011 .081 .098 .089 .048 .014 020 088 078 069	0.166 .093 .042 .057 .051 .019 .122 .158 .135 .102 .061 013 100 092 083	0.217 .120 .065 .077 .075 .036 .167 .216 .173 .153 .105 007 101 096 099	0.290 .206 .123 .118 .114 .079 .273 .313 .282 .268 .190 .002 095 107 119	0.377 .248 .192 .164 .168 .139 .407 .428 .400 .365 .234 .033 072 102	0.477 .347 .278 .240 .235 .205 .547 .546 .495 .445 .276 .069 052 073	0.055 .166 .277 .367 .387 .443 .498 .553 .609 .664 .719 .775 .830 .871

TABLE IV.- PRESSURE COEFFICIENTS FOR BODY IN PRESENCE OF WING - Continued

(b) Natural transition; $p_t' = 1,950 \text{ lb/sq ft}$

x/l	$\alpha = 0^{\circ}$	a = 40	$\alpha = 8^{\circ}$	$\alpha = 12^{\circ}$	$\alpha = 16^{\circ}$	$\alpha = 20^{\circ}$	x/l		
Row A									
0.055 .166 .277 .367 .387 .415 .443 .553 .581 .636 .664 .692 .719 .775 .830	0.089 .024 014 001 .015 007 014 037 041 061 070 093 058 057 021	0.043 .010 .004 002 .011 005 012 057 097 111 121 137 144 163 060 019 003	0.028 .000 015 022 .000 006 003 109 166 179 185 203 200 229 054 003	0.003 001 027 016 .009 027 005 147 216 240 231 249 258 287 057 .015 .033	0.008009018036027036182256260277297301324035 .022 .025	-0.013 038 054 054 .002 030 046 159 280 288 306 317 321 356 .011 .024 .015	0.055 .166 .277 .367 .387 .415 .443 .553 .581 .636 .664 .692 .719 .775 .830		
			1	Row B					
0.166 .277 .367 .387 .443 .498 .553 .609 .664 .719 .830	0.016 009 011 .013 008 026 041 074 064 037 045	0.010 019 046 .007 046 075 115 113 146 093 027 029	-0.024 035 073 024 092 151 177 193 227 114 022 025	-0.058060083050148220262274319132015014	-0.084 086 115 084 192 284 325 339 339 160 021 035	-0.111 133 222 184 265 408 428 471 487 200 038 120	0.166 .277 .367 .387 .443 .498 .553 .609 .664 .719 .830 .871		
			I	Row C					
0.055 .166 .277 .367 .692 .719 .775 .830 .871	0.085 .019 .000 018 031 034 051 070 044 085	0.078 .019 010 006 036 038 060 074 053 089	0.046 021 040 056 055 054 064 060 099	-0.003 080 109 138 101 049 078 136 069 118	-0.076 164 214 249 106 070 118 191 088 127	-0.159 273 335 370 187 177 171 243 124 143	0.055 .166 .277 .367 .692 .719 .775 .830 .871		

TABLE IV.- PRESSURE COEFFICIENTS FOR BODY IN PRESENCE OF WING - Continued

(b) Natural transition; $p_t' = 1,950 \text{ lb/sq ft}$ - Concluded

x/l	$\alpha = 0^{\circ}$	$\alpha = 4^{\circ}$	$\alpha = 8^{\circ}$	$\alpha = 12^{\circ}$	$\alpha = 16^{\circ}$	$\alpha = 20^{\circ}$	x/l
	,			Row D	1		
0.166 .387 .443 .498 .553 .609 .664 .719 .775 .830 .871	0.011 .000 .003 .004 .008 022 036 055 044 050 034	0.037 .032 .045 .075 .088 .065 .046 017 040 066	0.063 .030 .060 .160 .193 .163 .137 .025 050 085	0.077 .018 .104 .254 .280 .282 .254 .076 055 110 123	0.084 .013 .254 .361 .368 .390 .352 .110 053 141 156	0.118 .026 .401 .508 .500 .474 .419 .131 093 161 194	0.166 .387 .443 .498 .553 .609 .664 .719 .775 .830 .871
			I	Row E			
0.055 .166 .277 .367 .387 .443 .498 .553 .609 .664 .719 .775 .830 .871	0.095 .011 .017 .003 011 .003 .014 .016 010 031 069 043 063 063	0.161 .057 .030 .036 .039 .010 .083 .101 .090 .050 .015 023 088 077 068	0.217 .112 .056 .077 .063 .039 .169 .218 .174 .154 .104 008 105 100	0.292 .188 .118 .120 .102 .080 .276 .313 .284 .269 .195 .001 094 105 118	0.377 .239 .180 .165 .155 .139 .407 .430 .400 .365 .236 .032 072 102 134	0.473 .338 .265 .240 .231 .204 .549 .548 .495 .445 .277 .067 058 079	0.055 .166 .277 .367 .387 .443 .553 .609 .664 .719 .775 .830 .871

TABLE IV.- PRESSURE COEFFICIENTS FOR BODY IN PRESENCE OF WING - Continued

(c) Fixed transition; $p_t' = 1,000 \text{ lb/sq ft}$

	1							
x/l	α = 0°	or = 110	a = 80	a = 120	a = 150	a = 200	$\alpha = 24^{\circ}$	x/l
Row A								
0.055	0.093	-0.049	0.026	0.003	0.005	-0.017	-0.035	0.055
.166	.028	.016	.001	010	.003	022	074	.166
.277	008	011	014	021	036	081	127	.277
.367	001	007	013	026	054	088	117	.367
.387	.016	.014	.008	.003	018	058	073	387
.415	011	012	010	028	052	059	081	.415
.443	017	003	009	015	03 8	088	105	.443
.498	016	064	117	155	185	197	20 2	.498
-553	014	095	169	224	26.	273	309	-553
.581	024	108	180	246	265	294	320	.581
.636	03 2	119	193	232	285	298	30 9	.636
.664	063	139	203	255	29 ৩	311	316	.664
.692	060	142	201	266	290	311	314	.692
.719	084	158	222	288	313	342	346	.719
.775	057	0 55	057	055	033	.009	.047	.775
.830	053	020	002	.007	•00T	027	007	.830
.871	022	.005	.010	.017	011	041	043	.871
				Row B				
0.166	0.023	0.015	-0.022	-0.076	-0.13+	-0.160	-0.218	0.166
.277	006	020	036	062	085	104	215	.277
.367	006	041	065	087	10	193	312	.367
.387	.015	.012	014	046	06+	139	246	.387
.443	006	048	095	140	18/	273	290	.443
.498	014	082	148	227	305	403	465	.498
-553	021	114	179	262	31 L	409	510	-553
.609	029	121	202	267	- ⋅33+	430	475	.609
.664	066	149	222	297	367	469	490	.664
.719	058	094	111	143	20 §	224	282	.719
.830	035	033	020	025	01 5	047	152	.830
.871	~ • O##	022	021	015	023	055	171	.871
				Row C				
0.055	0.091	0.090	0.047	-0.005	-0.065	-0.151	-0.212	0.055
.166	.018	.018	027	075	16+	254	315	.166
.277	.003	010	- · Off 14	120	215	329	357	.277
.367	013	008	057	153	27 2	364	318	.367
.692	031	038	060	107	13+	165	258	.692
.719	017	036	051	057	057	076	123	.719
.775	051	059	059	081	103	126	186	-775
.830	061	075	102	136	165	219	357	.830
.871	041	- 040	054	066	09)	124	186	.871
.954	079	082	092	122	135	167	159	.954

TABLE IV.- PRESSURE COEFFICIENTS FOR BODY IN PRESENCE OF WING - Concluded

(c) Fixed transition; $p_t' = 1,000 \text{ lb/sq ft} - \text{Concluded}$

x/l	$\alpha = 0^{\circ}$	$\alpha = \mu_0$	$\alpha = 8^{\circ}$	α = 12 ⁰	$\alpha = 16^{\circ}$	$\alpha = 20^{\circ}$	$\alpha = 24^{\circ}$	x/l
	· · · · · · · · · · · · · · · · · · ·			Row	D			
0.166 .387 .443 .498 .553 .609 .664 .719 .775 .830 .871	0.019 .004 005 004 026 .001 052 044 045 020	0.045 .031 .038 .085 .089 .063 .086 020 041 061	0.061 .021 .032 .169 .168 .175 .021 048 082	0.091 .011 .051 .280 .310 .282 .278 .065 058 117	0.093 .007 .096 .394 .438 .400 .369 .098 064 141 145	0.119 .023 .211 .557 .536 .489 .442 .122 075 149 172	0.162 .061 .541 .691 .652 .592 .517 .138 086 165	0.166 .387 .443 .498 .553 .609 .664 .719 .775 .830 .871
				Row 1	E			
0.055 .166 .277 .367 .387 .443 .498 .553 .609 .664 .719 .775 .830 .871	0.101 .017 .015 .003 001 .001 .010 015 035 064 040 054 050	0.178 .060 .036 .051 .039 .004 .080 .099 .082 .057 .016 026 085 065 067	0.216 .111 .067 .079 .061 .015 .088 .225 .182 .152 .106 011 099 090	0.289 .195 .116 .123 .106 .062 .152 .337 .287 .267 .189 .001 095 102 124	0.387 .245 .190 .177 .160 .125 .404 .465 .411 .367 .242 .031 077 095 134	0.479 .334 .268 .242 .226 .190 .595 .568 .508 .449 .281 .067 049 064 142	0.589 .435 .367 .336 .311 .263 .697 .672 .607 .527 .320 .112 012 013 116	0.055 .166 .277 .367 .387 .443 .498 .553 .609 .664 .719 .775 .830 .871 .954

TABLE V .- PRESSURE COEFFICIENTS FOR BODY ALONE

[Transition fixed; p_t' = 1,950 lb/sq ft]

		r .								
x/l	a = 00	a = 20	a = 40	a = 6°	a = 8°	$\alpha = 12^{\circ}$	a = 16°	a = 20°	a = 24°	x/l
					Row	Α				
		1				···				
0.055	0.082	0.062	0.056	0.035	0.017	0.007	0.003	-0.014	-0.018	0.055
.166	.048	.036	.022	.012	.021	.005	018	042	095	.166
.277	.002	.012	012	017	020	025	024 049	045 087	077 121	.277 .367
.367 .402	.004 014	.009 028	008 038	017 032	009 025	025 0 3 0	052	043	128	.402
.402	014	038	030	024	029	031	057	086	139	.437
.472	030	027	027	032	031	027	054	071	152	.472
.506	030	034	038	036	036	045	066	088	140	.506
.541	033	039	040	039	036	048	070	095	113	.541
-575	043	046	- 043	038	040	046	076	117	164	.575
.610	044	042	042	044	038	053	102	136	148 148	.610 .645
.645	048	043	039 041	035 036	031 038	053 059	079 077	121 112	144	.676
.676 .707	043	045 042	039	036	036	057	080	107	131	.707
.748	047	041	037	034	038	058	085	137	166	.748
.790	043	039	039	038	029	069	089	109	157	.790
.831	049	043	041	040	- O+1	063	073	126	189	.831
.873	050	039	038	- 044	054	071	089	140	178	.873
.954	063	049	048	061	079	094	090	140	140	-954
	Row B									
	T			0.007	0.000	0.050	0.096	0.107	0.01.0	0.166
0.166	0.032	0.025	0.010	-0.003 027	-0.022 033	-0.050 067	-0.086 086	-0.127 137	-0.240 237	.277
.277 .367	002 026	004	010 033	049	054	071	109	191	258	.367
.402	001	005	016	022	024	050	088	186	249	.402
.437	020	027	033	031	047	063	099	183	262	.437
.472	028	034	033	041	047	068	101	171	219	.472
.506	027	033	045	046	052	072	105	157	200	.506 .541
.541	029	040	039 043	045 051	056 057	077 079	090 105	129 155	211	.575
.575 .645	046	041 041	046	050	056	071	102	134	187	.645
.676	046	050	052	053	057	079	108	145	198	.676
.707	056	053	053	053	056	078	105	140	209	.707
.748	050	047	047	047	053	069	097	139	197	.748
.790	049	039	041	045	052	070	094	138	178	.790
.831	042	043	046	047	049	066	090	140	171	.831
.873	051	049	048	047	055	072	092	136	160	.873
					Row	С				
0.055	0.087	0.086	0.076	0.072	0.038	-0.007	0.070	-0.163	-0.231	0.055
.166	.019	.027	.017	001	029	079	172	280	339	.166
.277	.010	.010	005	014	043	112	198	339	386	.277
.367	002	010	025	037	065	129	238	348	325	.367
.437	023	026	037	054	072	141	195	236	236	-437
.472	015	028	044 044	055 066	078 091	135 141	201 207	224 236	215 219	.472
.506 .541	029	035	056	067	091	150	212	226	241	.541
.575	029	032	041	058	079	129	192	237	245	.575
.610	055	058	067	081	089	143	193	243	249	.610
.645	018	028	039	056	078	126	179	212	215	.645
.676	041	051	058	071	095	144	193	220	214	.676
.707	045	052	066	082	103	139	182	192	198 158	.707
.748	032	040	052	063	084	120 113	153 136	155 155	155	.790
.790 .831	033	041	051	064	076	094	111	150	137	.831
.873	010	013	014	019	029	044	069	093	083	.873
.954	077	078	075	069	071	076	090	101	121	-954
L	<u> </u>		L	1	L		L	I	1	I

TABLE V.- PRESSURE COEFFICIENTS FOR BODY ALONE - Concluded

[Transition fixed; $p_t' = 1,950 \text{ lb/sq ft}$]

										-
x/l	$\alpha = 0^{\circ}$	α = 2 ⁰	α = 4 ⁰	a = 60	$\alpha = 8^{\circ}$	α = 12 ⁰	$\alpha = 16^{\circ}$	$\alpha = 20^{\circ}$	$\alpha = 24^{\circ}$	x/l
	Row D									
0.166 .402 .437 .472 .506 .541 .575 .610 .645 .676 .707 .748 .790 .831	0.029 009 016 021 026 035 047 050 043 051 051 046 038	0.038 011 025 017 043 048 054 053 048 056 056 051 039	0.052 010 031 024 022 046 051 064 064 064 066 063 047	0.061 012 027 033 032 043 058 063 071 056 067 072 070 069	0.069 009 033 039 038 047 065 073 076 076 076 078 078	0.081 017 038 054 059 072 065 105 108 099 105 117 102 121 112	0.097026039060067093085103135127137151132158159	0.121 026 034 048 063 086 108 137 140 142 169 156 193 194	0.158001007014033054071101115123122155149174183	0.166 .402 .437 .472 .506 .541 .575 .610 .645 .676 .707 .748 .790 .831 .873
					Row	E				
0.055 .166 .277 .367 .437 .472 .506 .541 .575 .610 .645 .748 .790 .831 .873	0.088 .026 .014 .004 012 022 031 038 048 045 045 046 042 067 035	0.104 .048 .023 .012 010 029 037 049 052 046 062 042 079 035	0.038 .038 .031 .024 010 014 010 029 033 042 051 046 060 043 074 036	0.200 .093 .067 .049 .003 002 014 028 045 045 061 047 093 052	0.200 .122 .075 .067 .013 .011 .005 018 016 033 044 058 058 059 050	0.285 .183 .118 .106 .060 .047 .038 .022 .029 .001 002 014 039 025 080 046 009	0.383 .265 .186 .169 .116 .102 .089 .066 .058 .054 .038 .027 010 .000 056 025 013	0.478 .341 .267 .247 .186 .176 .151 .132 .118 .107 .092 .079 .046 .039 011 .009 018	0.585 .447 .370 .339 .273 .263 .233 .230 .195 .174 .170 .141 .107 .098 .049 .066 013	0.055 .166 .277 .267 .437 .472 .506 .541 .575 .610 .645 .676 .748 .790 .831 .873

TABLE VI.- WING SECTION DATA [Fixed transition; $p_t' = 1,950 \text{ lb/sq ft}$]

a, deg		on normal- pefficient c _n		Section pitching-moment coefficient, c/4			
	0.20ъ/2	0.40ъ/2	0.70ъ/2	0.20ъ/2	0.40b/2	0.70b/2	
0 2 4 6 8 12 16 20	0.0123 .1194 .2090 .3194 .4103 .6026 .7852 .9542	0.0123 .1290 .2400 .3587 .4671 .6961 .9116	0.0135 .1594 .3045 .4535 .5894 .8000 1.0052 1.1755	-0.0038 0259 0456 0659 0836 1209 1583 1965	-0.0041 0264 0439 0655 0837 1257 1740 2229	-0.0036 0331 0566 0883 1186 1645 2127 2486	

Figure 1.- Model details. All linear dimensions in inches unless otherwise noted.

Figure 2.- Effect of transition on pressure coefficients for wing in presence of body. $C_{p,sonic}$ = 0.517; p_t ' = 1,950 lb/sq ft.

Figure 3.- Effect of Reynolds number on pressure coefficients for wing in presence of body. Cp,sonic = 0.517; transition fixed.

(b) $\alpha = 16^{\circ}$, 20° , and 24° .

Figure 3.- Concluded.

Figure μ .- Effect of transition on pressure coefficients for body in presence of wing. $^{\rm C}_{\rm p,sonic} = 0.517$; $p_{\rm t}' = 1,950~{\rm lb/sq}$ ft.

(b) $\alpha = 8^{\circ}$, 12°, 16°, and 20°.

Figure 4.- Concluded.

Figure 5.- Effect of Reynolds number on pressure coefficients for body in presence of wing. $c_{\rm p,sonic} = 0.517; \ {\rm transition\ fixed}.$

(b) $\alpha = 12^{\circ}$, 16° , 20° , and 24° .

Figure 5.- Concluded.

Figure 6.- Pressure coefficients for body alone. $C_{\rm p,sonic}$ = 0.517; $p_{\rm t}$ ' = 1.950 lb/sq ft.

Figure 7.- Spanwise load distributions.

Figure 8.- Normal-force and pitching-moment characteristics of wing-body configuration.

Figure 9.- Normal-force and pitching-moment characteristics of wing in presence of body.

Figure 10. - Variation of wing bending-moment coefficient (referred to body center line) with normal-force coefficient.

Figure 11.- Wing center-of-pressure locations.

Figure 12.- Fraction of total load carried by wing.