Chapter 4 (Part 1)

數論介紹

Introduction to Number Theory

Definition 4. 1

Every integer is either even or odd, but not both. An integer *n* is said to be

- (a) even if n = 2k for some integer k, and
- (b) *odd* if n = 2k + 1 for some integer k.

EXAMPLE 4.1

Show that, for every pair of odd integers, the product is odd.

Proof:

Let m and n be arbitrary odd integers.

So
$$m = 2k + 1$$
 and $n = 2l + 1$ for some $k, l \in \mathbb{Z}$

Hence,

$$mn = (2k+1)(2l+1) = 4kl + 2k + 2l + 1 = 2(2kl+k+l) + 1.$$

Since 2kl + k + l is an integer, the form displayed on

the right-hand side above shows that mn is odd.

Let $n \in \mathbb{Z}$. Show: If n^2 is odd, then n is odd.

Hint: prove by its contrapositive statement.

Proof:

Suppose n is not odd.

That is, n is even.

So n = 2k for some $k \in \mathbb{Z}$.

Hence, $n^2 = 4k^2 = 2(2k^2)$.

Since $2k^2 \in \mathbb{Z}$, n^2 is even.

That is, n^2 is not odd.

Similarly, let $n \in \mathbb{Z}$. Show: If n^2 is even, then n is even.

Hint: prove by its contrapositive statement.

Proof:

Since m is an odd number, m = 2h + 1 for some $h \in \mathbb{Z}$.

So
$$m^2 = (2h + 1)^2$$

= $4h^2 + 4h + 1 = 2(2h^2 + 2h) + 1$

Because $(2h^2 + 2h) \in \mathbb{Z}$.

So m^2 is an odd number.

Definition 4. 2

Given integers a and b, $b \neq 0$, we say that b divides a, written $b \mid a$, if a = bn for some integer n.

In this case, we also say that a is *divisible* by b, that a is a *multiple* of b, that b is a *divisor* of a, and that b is a *factor* of a.

When a is not divisible by b, we write $b \mid a$.

若 $a \cdot b \in \mathbb{Z}$ 且 $b \neq 0$,我們稱 b 整除 (divides) a,且記 b|a,若存在整數 n 使得 a = bn。當這個發生,我們稱 b 是 a 的因數 (divisor),或 a 是 b 的倍數 (multiple)。

NIU CSIE – Discrete Mathematics

EXAMPLE 4. 4

Let a, b, and c be integers. Show: If $a \mid b$ and $b \mid c$, then $a \mid c$.

Proof:

```
Suppose a \mid b and b \mid c.
So b = ak and c = bl for some k, l \in \mathbb{Z}.
Observe that c = bl = akl = a(kl).
Since kl \in \mathbb{Z}, we have established that a \mid c.
```

NIU CSIE – Discrete Mathematics

THEOREM 4. 1

For all $a, b, c \in \mathbf{Z}$

a) 1|a and a|0.

- **b**) $[(a|b) \land (b|a)] \Rightarrow a = \pm b$.
- c) $[(a|b) \land (b|c)] \Rightarrow a|c$. d) $a|b \Rightarrow a|bx$ for all $x \in \mathbb{Z}$.
- e) If x = y + z, for some $x, y, z \in \mathbb{Z}$, and a divides two of the three integers x, y, and z, then a divides the remaining integer.
- **f**) $[(a|b) \land (a|c)] \Rightarrow a|(bx+cy)$, for all $x, y \in \mathbb{Z}$. (The expression bx + cy is called a *linear combination of* b, c.) 線性組合

(c) Same as Example 4.4 *Proof*:

(d) Exercise

For all $a, b, c \in \mathbf{Z}$

a) 1|a and a|0.

b) $[(a|b) \land (b|a)] \Rightarrow a = \pm b$.

Proof:

For all $a, b, c \in \mathbf{Z}$

e) If x = y + z, for some $x, y, z \in \mathbb{Z}$, and a divides two of the three integers x, y, and z, then a divides the remaining integer.

Proof:

For all $a, b, c \in \mathbf{Z}$

f)
$$[(a|b) \land (a|c)] \Rightarrow a|(bx+cy)$$
, for all $x, y \in \mathbb{Z}$.

Proof:

If a|b and a|c, then b=am and c=an, for some $m, n \in \mathbb{Z}$.

So
$$bx + cy = (am)x + (an)y = a(mx + ny)$$

Since
$$bx + cy = a(mx + ny)$$
, with $mx + ny \in \mathbb{Z}$,

it follows that a|(bx+cy).

EXAMPLE 4.5

Let $a, b \in \mathbb{Z}$ so that 2a + 3b is a multiple of 17. (For example, we could have a = 7 and b = 1—and a = 4, b = 3 also works.) Prove that 17 divides 9a + 5b.

Proof:

We observe that $17|(2a + 3b) \Rightarrow 17|(-4)(2a + 3b)$, by Thm. 4.1(d). Also, since 17|17, it follows from Thm. 4.1(d) that 17|(17a + 17b). Hence, 17|[(17a + 17b) + (-4)(2a + 3b)], by part Thm. 4.1(e). Consequently, as [(17a + 17b) + (-4)(2a + 3b)] = [(17 - 8)a + (17 - 12)b] = 9a + 5b, we have 17|(9a + 5b).

Let $a, b \in \mathbb{Z}$ with b > 0. If $a \mid b$, then $a \leq b$.

Proof:

Suppose $a \mid b$.

So b = ak for some $k \in \mathbb{Z}$.

Case 1: $a \leq 0$.

We have $a \le 0 < b$, and the conclusion $a \le b$ is immediate.

Case 2: a > 0.

Since ak = b > 0, it must be that k > 0 too. (Otherwise, ak < 0.) Since k is an integer, $1 \le k$.

Multiplication by (the positive value) a gives that

$$a = a \cdot 1 \le a \cdot k = b$$
.

In both cases, we conclude that $a \leq b$.

Definition 4. 3

An integer p is said to be *prime* (\S \S) if p > 1 and the only positive divisors of p are 1 and p.

An integer n > 1 that is not prime is said to be composite (合成數).

The first ten primes are: 2, 3, 5, 7, 11, 13, 17, 19, 23, and 29.

The first ten composites are:

$$4 = 2 \cdot 2,$$
 $9 = 3 \cdot 3,$ $14 = 2 \cdot 7,$ $18 = 3 \cdot 6.$ $6 = 2 \cdot 3,$ $10 = 2 \cdot 5,$ $15 = 3 \cdot 5,$ $8 = 2 \cdot 4,$ $12 = 2 \cdot 6,$ $16 = 2 \cdot 8,$

Definition 4. 4

An integer *c* is said to be a *common divisor* of the integers *m* and *n* if

 $c \mid m$ and $c \mid n$.

Definition

4.5

Given integers m and n not both zero, their greatest common divisor, denoted gcd(m, n), is the unique integer d such that

- (i) d > 0,
- (ii) $d \mid m$ and $d \mid n$, and
- (iii) $\forall c \in \mathbb{Z}^+$, if $c \mid m$ and $c \mid n$, then $c \leq d$.

Definition

4.6

Given nonzero integers a and b, their least common multiple, denoted lcm(a, b), is the unique integer m such that

- (i) m > 0,
- (ii) $a \mid m$ and $b \mid m$, and
- (iii) $\forall n \in \mathbb{Z}^+$, if $a \mid n$ and $b \mid n$, then $m \leq n$.

Definition 4.7

Two integers m and n are said to be relatively prime if gcd(m, n) = 1.

EXAMPLE 4. 6

(1) gcd(18, 30) = 6. Certainly, 6 > 0, $6 \mid 18$, and $6 \mid 30$. Also, any element c in the set $\{1, 2, 3, 6\}$ of positive common divisors of 18 and 30 satisfies $c \le 6$.

(2) Observe that 14 and 9 are relatively prime, since gcd(14, 9) = 1.

Given any positive integer k, show: gcd(k, 0) = k.

Proof:

Observe that k is positive and that $k \mid k$ and $k \mid 0$. Hence, conditions (i) and (ii) are satisfied.

If $c \in \mathbb{Z}^+$ and $c \mid k$ and $c \mid 0$, then, by Theorem 4.2, we have $c \leq k$. Thus, condition (iii) is satisfied. We conclude that $k = \gcd(k, 0)$.

Prove that $\sqrt{2}$ is irrational.

Hint: proof by contradiction

Proof:

Suppose $\sqrt{2}$ was rational.

Choose m, n integers without common prime factors (always

possible) such that
$$\sqrt{2} = \frac{m}{n}$$

Show that m and n are both even,

thus having a common factor 2, a contradiction!

Want to prove both m and n are even.

$$\sqrt{2} = \frac{m}{n}$$

$$\sqrt{2}n = m$$

$$2n^2 = m^2$$

so *m* is even.

so can assume m = 2l $l \in \mathbb{Z}$

$$m^2 = 4l^2$$

$$2n^2 = 4l^2$$

$$n^2 = 2l^2$$

so *n* is even.

Well-Ordering Principle 良序原理

Well-Ordering Principle for the Integers

Each nonempty subset of the nonnegative/positive integers has a smallest element.

$$\{0, 1, 2, 3, \ldots\}$$

 $\{1, 2, 3, \ldots\}$

THEOREM 4.3

If $n \in \mathbb{Z}^+$ and n is composite, then there is a prime p such that p|n.

Proof:

If not, let *S* be the set of all composite integers that have no prime divisors. If *S* is not empty, then by the well-ordering principle, *S* has a least element *m*. But if *m* is composite, then $m = m_1 m_2$ with $1 < m_1 < m$ and $1 < m_2 < m$.

Since m_1 is not in S, m_1 is a prime or divisible by a prime, which means m is also divisible by a prime. This leads to a contradiction, and thus $S = \emptyset$.

If $n \in \mathbb{Z}^+$ and n is composite, then there is a prime p such that p|n.

Proof by contradiction:

If not,

let $S = \{ n \mid n \in \mathbb{Z}^+ \land (n \text{ is composite}) \land (n \text{ has no prime divisors}) \}.$

$$S \neq \emptyset \Rightarrow \exists m \in S, s.t. \ \forall n \in S, m \leq n$$
 (by the well-ordering principle).

m is composite
$$\Rightarrow m = m_1 m_2$$
, where $1 < m_1 < m$ and $1 < m_2 < m$.

$$m_1 \notin S \implies (m_1 \text{ is a prime}) \vee (m_1 \text{ is divisible by a prime})$$

 \Rightarrow (*m* is also divisible by a prime)

Contradiction!!!

Thus $S = \emptyset$.

(歐幾里得) 有無限多個質數。

(Euclid) There are infinitely many primes.

Proof: If not, let p_1, p_2, \dots, p_k be the finite set of primes, and let $B = p_1 p_2 \dots p_k + 1$. Since $B > p_i$ for all $1 \le i \le k$, B cannot be a prime. Hence B is a composite. So by **Theorem 4.3** there is a prime p_j and $p_j \mid B$. Since $p_j \mid B$ and $p_j \mid p_1 p_2 \dots p_k$, it follows that $p_j \mid 1$, a contradiction.

(Note: by **Theorem 4.1**(e).)

(Note: by **Theorem 4.2**, $p_j \le 1$, but the smallest prime is 2.)

Division Algorithm

Given any integer n and any positive integer d, there exist unique integers q and r such that n = dq + r and $0 \le r < d$.

Definition 4. 8

n: dividend (被除數)

d: divisor (除數)

q: quotient (商數)

r: remainder (餘數)

We also write

 $q = n \operatorname{div} d$ and $r = n \operatorname{mod} d$

EXAMPLE 4. 9

- (1) If a = 124 and b = 9, then q = 13 and r = 7. That is, 124 = 9(13) + 7. So 124 div 9 = 13 and 124 mod 9 = 7.
- (2) If a = 60 and b = 5, then q = 12 and r = 0. That is, 60 = 5(12) + 0. So 60 div 5 = 12 and 60 mod 5 = 0.

Definition 4. 9

$$a \equiv b \pmod{n}$$
, if $n \mid (a - b)$.

EXAMPLE 4.10

(Some Congruences)

$$14 \equiv 2 \pmod{12}$$
, since $12 \mid (14 - 2)$

$$-4 \equiv 8 \pmod{12}$$
, since $12 \mid (-4 - 8)$

$$34 \equiv 6 \pmod{7}$$
, since

$$25 \equiv 0 \pmod{5}$$
, since

Arithmetic Properties of Congruence

Let a_1 , a_2 , b_1 , b_2 , and n be integers with n > 1. If $a_1 \equiv a_2 \pmod{n}$ and $b_1 \equiv b_2 \pmod{n}$, then

- (a) $a_1 + b_1 \equiv a_2 + b_2 \pmod{n}$, and
- **(b)** $a_1b_1 \equiv a_2b_2 \pmod{n}$.

Proof: **(b)** Suppose
$$a_1 \equiv a_2 \pmod{n}$$
 and $b_1 \equiv b_2 \pmod{n}$.
Therefore, $n \mid (a_1 - a_2)$ and $n \mid (b_1 - b_2)$.
That is, $a_1 - a_2 = nk$ and $b_1 - b_2 = nl$ for some $k, l \in \mathbf{Z}$.
Observe that $a_1b_1 - a_2b_2 = a_1b_1 - a_1b_2 + a_1b_2 - a_2b_2 = a_1(b_1 - b_2) + b_2(a_1 - a_2) = a_1nl + b_2nk = n(a_1l - b_2k)$.
Therefore, $n \mid (a_1b_1 - a_2b_2)$, and it follows that $a_1b_1 \equiv a_2b_2 \pmod{n}$.

EXAMPLE 4.11

Note that $4 \equiv -6 \pmod{10}$ and $22 \equiv 2 \pmod{10}$. As promised by Theorem 4.5,

$$4 + 22 \equiv -6 + 2 \pmod{10}$$
 and

$$4 \cdot 22 \equiv -6 \cdot 2 \pmod{10}.$$

Let m, a_1 , a_2 , and n be integers with n > 1. If $a_1 \equiv a_2 \pmod{n}$, then

- (a) $ma_1 \equiv ma_2 \pmod{n}$, and
- **(b)** *if* $m \ge 0$, then $a_1^m \equiv a_2^m \pmod{n}$.

EXAMPLE 4. 12

Note that

$$3 \equiv -2 \pmod{5}.$$

As promised by Corollary 4.6, we also have

$$4(3) \equiv 4(-2) \pmod{5}$$

and

EXAMPLE 4. 13

Use Theorems to help with the following calculations. (1) Compute (5162387 + 83645) mod 10.

Since
$$5162387 \equiv 7 \pmod{10}$$
 and $83645 \equiv 5 \pmod{10}$, by Theorem 4.5, we get $5162387 + 83645 \equiv 5 + 7 \pmod{10}$. $\equiv 12 \pmod{10}$. $\equiv 2 \pmod{10}$.

NIU CSIE – Discrete Mathematics

(2) Compute $2^{23} \mod 5$.

Note that
$$2^4 = 16 \equiv 1 \pmod{5}$$

By Corollary 4.6,

$$2^{20} = (2^4)^5 \equiv 1^5 \equiv 1 \pmod{5}$$

By Corollary 4.6,

$$2^{23} = 2^{20} \cdot 2^3 \equiv 2^{20} \cdot 8 \equiv 1 \cdot 8 \equiv 8 \equiv 3 \pmod{5}$$

Therefore,

Euclid's Algorithm

Let x_1 and x_2 be two positive integers and we want to obtain $gcd(x_1, x_2)$.

$$x_1 > x_2$$

$$x_1 = q_1 x_2 + x_3$$

$$x_2 = q_2 x_3 + x_4$$

$$\vdots$$

$$x_{n-2} = q_{n-2} x_{n-1} + x_n$$

$$x_{n-1} = q_{n-1} x_n + 0$$

$$\gcd(x_1, x_2) = x_n$$

e.g.
$$338 > 117$$

$$338 = 2 * 117 + 104$$

$$117 = 1 * 104 + 13$$

$$104 = 8 * 13 + 0$$

$$gcd(338, 117) = 13$$

Euclid's Algorithm

Let x_1 and x_2 be two positive integers and we want to obtain $gcd(x_1, x_2)$.

 $x_1 > x_2$ 338 > 117 $x_1 \mod x_2 = x_3$ $338 \mod 117 = 104$ $x_2 \mod x_3 = x_4$ $117 \mod 104 = 13$... $x_{n-1} \mod x_n = 0$ $104 \mod 13 = 0$

The final number before reach 0 will always be the greatest common divisor.

$$\gcd(x_1, x_2) = x_n$$
 $\gcd(338, 117) = 13$

Bézout's identity

$$\forall a, b \in \mathbf{Z}^*, \exists u, v \in \mathbf{Z} \text{ such that } \gcd(a, b) = ua + vb$$

Proof: Let
$$a = x_1$$
 and $b = x_2$ suppose $a > b$

Euclid's Algorithm

$$x_1 = q_1 x_2 + x_3$$
 $x_2 = q_2 x_3 + x_4$
:

$$x_{n-2} = q_{n-2} x_{n-1} + x_n$$

$$x_{n-1} = q_{n-1} x_n + 0$$

Inversing Euclid's Algorithm

$$x_{n} = x_{n-2} - q_{n-2} x_{n-1}$$
$$x_{n-1} = x_{n-3} - q_{n-3} x_{n-2}$$

$$x_4 = x_2 - q_2 x_3$$

$$x_3 = x_1 - q_1 x_2$$

Bézout's identity

$$\forall a, b \in \mathbf{Z}^*, \exists u, v \in \mathbf{Z} \text{ such that } \gcd(a, b) = ua + vb$$

Proof: Let
$$a = x_1$$
 and $b = x_2$ suppose $a > b$

Euclid's Algorithm

$$x_{1} = q_{1}x_{2} + x_{3}$$

$$x_{2} = q_{2}x_{3} + x_{4}$$

$$\vdots$$

$$x_{n-2} = q_{n-2}x_{n-1} + x_{n}$$

$$x_{n-1} = q_{n-1} x_n + 0$$

Inversing Euclid's Algorithm

$$x_{n} = x_{n-2} - q_{n-2}(x_{n-1})$$

$$x_{n-1} = x_{n-3} - q_{n-3}(x_{n-2})$$

$$\vdots$$

$$x_{4} = x_{2} - q_{2}(x_{3})$$

$$x_{2} = x_{1} - q_{1}x_{2}$$

$$\gcd(x_1, x_2) = x_n \qquad x_n = u x_1 + v x_2$$

Example: gcd(252,198) = 18

Using the divisions performed by the Euclid Algorithm:

$$252 = 1 \times 198 + 54$$
 ----- (1)
 $198 = 3 \times 54 + 36$ ---- (2)
 $54 = 1 \times 36 + 18$ ---- (3)
 $36 = 2 \times 18$

So,
$$18 = 54 - 1 \times 36$$
 (from 3) and $36 = 198 - 3 \times 54$ (from 2)

Therefore
$$18 = 54 - 1 \times (198 - 3 \times 54) = 4 \times 54 - 1 \times 198$$

But (from 1)
$$54 = 252 - 1 \times 198$$
;

We get
$$18 = 4(252 - 1 \times 198) - 1 \times 198 = 4 \times 252 - 5 \times 198$$

If
$$ac \equiv bc \pmod{n}$$
 and $gcd(c, n) = 1$,
then $a \equiv b \pmod{n}$.

Proof:

Since $ac \equiv bc \pmod{n}$ this means $n \mid ac - bc$. Factoring the right side, we get $n \mid c(a - b)$.

Since gcd(c, n) = 1 (c and n are relative prime), by Bezout's Identity Theorem, $\exists u, v$ s.t. uc + vn = 1. So, uc (a - b) + vn (a - b) = (a - b).

We have, $n \mid c(a-b)$, thus $n \mid uc(a-b)$, and also $n \mid vn \ (a-b)$. This implies that $n \mid a-b$, in other words, $a \equiv b \pmod{n}$.

If $ac \equiv bc \pmod{n}$ and $\gcd(c, n) = 1$, then $a \equiv b \pmod{n}$.

$$24 \equiv 15 \pmod{9}$$

$$8 * 3 \equiv 5 * 3 \pmod{9}$$

$$8 \not\equiv 5 \pmod{9}$$

$$60 \equiv 15 \pmod{9}$$

$$12 * 5 \equiv 3 * 5 \pmod{9}$$

$$12 \equiv 3 \pmod{9}$$

A congruence of the form

$$ax \equiv b \pmod{n}$$

where *n* is a positive integer, *a*, *b* are integers and *x* is an integer variable is called a linear congruence.

Definition 4. 11

An integer a' such that a' $a \equiv 1 \pmod{n}$ is called a multiplicative inverse of a modulo n.

EXAMPLE 4. 16

- (1) Find a multiplicative inverse of 4 modulo 9.
- (2) Find a multiplicative inverse of 5 modulo 15.

(1)
$$1*4 = 4 \equiv -5 \pmod{9}$$
, $6*4 = 24 \equiv 6 \pmod{9}$, $2*4 = 8 \equiv -1 \pmod{9}$, $7*4 = 28 \equiv 1 \pmod{9}$, $3*4 = 12 \equiv 3 \pmod{9}$, $8*4 = 32 \equiv 5 \pmod{9}$, $4*4 = 16 \equiv 7 \pmod{9}$, $9*4 = 36 \equiv 0 \pmod{9}$, $5*4 = 20 \equiv 2 \pmod{9}$, $10*4 = 40 \equiv 4 \pmod{9}$,

Thus, 7 is a multiplicative inverse of 4 modulo 9.

(2) Where is the inverse?

If gcd(a, n) = 1 and n > 1, then a has a unique (modulo n) inverse a'.

Proof:

By Bezout's Identity Theorem, $\exists u, v \text{ s.t. } ua + vn = 1,$ so $ua + vn \equiv 1 \pmod{n}$.

Since $vn \equiv 0 \pmod{n}$, $ua \equiv 1 \pmod{n}$.

Thus u is an inverse of $a \pmod{n}$. (i.e., a' = u)

Theorem 4.8 guarantees that if $ua \equiv wa \equiv 1$ then $u \equiv w \pmod{n}$. Thus this inverse is **unique** mod n.

(Theorem 4.8 : If $ac \equiv bc \pmod{n}$ and gcd(c, n) = 1, then $a \equiv b \pmod{n}$.)

EXAMPLE 4. 17

What are the solutions of the linear congruence $4x \equiv 5 \pmod{9}$?

Since we know that 7 is an inverse for 4 mod 9, we can multiply both sides of the linear congruence:

$$7 \times 4x \equiv 7 \times 5 \pmod{9}$$

Since $28 \equiv 1 \pmod{9}$ and $35 \equiv 8 \pmod{9}$, it follows that if x is a solution, then $x \equiv 8 \pmod{9}$.

So, solutions are, 8, 17, 26, ..., and -1, -10, etc.

Diffie-Hellman Key Exchange

$$S \equiv B^a \pmod{p} \equiv g^{ba} \pmod{p} \equiv g^{ab} \pmod{p} \equiv$$

Eve may still be able to calculate a or b by a powerful computer. In order to prevent this, Alice and Bob need to choose very large p, g, a and b.

Suppose g = 7, p = 659, a = 442, calculate $A \equiv g^a \pmod{p}$

$$7^2 \equiv 49 \pmod{659}$$
 $7^4 \equiv 49 \times 49 \equiv 424 \pmod{659}$
 $7^8 \equiv 424 \times 424 \equiv 528 \pmod{659}$
 $7^{16} \equiv 528 \times 528 \equiv 27 \pmod{659}$
 $7^{32} \equiv 27 \times 27 \equiv 70 \pmod{659}$ $7^{64} \equiv 70 \times 70 \equiv 287 \pmod{659}$
 $7^{128} \equiv 287 \times 287 \equiv 653 \pmod{659}$
 $7^{256} \equiv 653 \times 653 \equiv 36 \pmod{659}$

$$7^{442} = 7^{256 + 128 + 32 + 16 + 8 + 2} \equiv 36 \times 653 \times 70 \times 27 \times 528 \times 49 \pmod{659}$$

$$\equiv \boxed{}$$

NIU CSIE – Discrete Mathematics

Lecturer: Fay Huang

Finding S^{-1} , which is the inverse of S modulo p.

Suppose
$$S = 720$$
 and $p = 1777$

Euclid's Algorithm

$$1777 \mod 720 = 337$$
 \Rightarrow $1777 - 2 \times 720 = 337$
 $720 \mod 337 = 46$ \Rightarrow $720 - 2 \times 337 = 46$
 $337 \mod 46 = 15$ \Rightarrow $337 - 7 \times 46 = 15$
 $46 \mod 15 = 1$ \Rightarrow $46 - 3 \times 15 = 1$

Goal:
$$u \times 720 + v \times 1777 = 1$$

 $u \times 720 + v \times 1777 \equiv 1 \pmod{1777}$
 $u \times 720 \equiv 1 \pmod{1777}$

EXAMPLE 4. 19 Cont.

Euclid's Algorithm

 $337 \mod 46 = 15$

$$1777 \mod 720 = 337 \implies 1777 - 2 \times 720 = 337$$

 \Rightarrow

 $337 - 7 \times 46 = 15$

$$720 \mod 337 = 46 \qquad \Rightarrow \qquad 720 - 2 \times 337 = 46$$

$$46 \mod 15 = 1 \qquad \Rightarrow \qquad 46 - 3 \times 15 = 1$$

$$720 - 2 \times 337 = 46 \implies 720 - 2 \times (1777 - 2 \times 720) = 46 \implies 5 \times 720 - 2 \times 1777 = 46$$

$$337 - 7 \times 46 = 15 \implies (1777 - 2 \times 720) - 7 \times (5 \times 720 - 2 \times 1777) = 15$$

$$\implies 15 \times 1777 - 37 \times 720 = 15$$

$$46 - 3 \times 15 = 1 \implies (5 \times 720 - 2 \times 1777) - 3 \times (15 \times 1777 - 37 \times 720) = 1$$

$$\implies 116 \times 720 - 47 \times 1777 = 1$$

$$\implies 116 \times 720 \mod 1777 = 1$$

NIU CSIE – Discrete Mathematics

Lecturer: Fay Huang