CHFM 209 - Fall 2016

Midterm Date: Wednesday Oct. 19, 2016, 7-9 PM.

Please plan to arrive 10 min early. You will not be allowed to begin the exam after 7:30 PM.

Location:

If you are in lecture:	You will write in room:	
L01	ST 140	
L02	ST 148	

Bring with you:

- Pencils and eraser for filling in Optical Scoring Sheet and for your rough work on multiple
- Pens with non-erasable ink (exams in erasable media will not be considered for regrading)
- Schulich-approved, non-programmable calculator
- Ruler
- Your Student ID card
- Water bottle and a watch (if desired)

Do not bring:

- Valuables all coats, backpacks, bags, purses, etc will be left at the front of the room. Small items may be sealed in "Integrity bags" and kept under your seat.
- Based on academic honesty policies at the UofC, your cell phone cannot be on your person while you write the midterm.
- Notes, textbooks, etc (you can leave these in your bag at the front of the room)

Exam Length: 2 hours

Grade Value: 20% of your final grade

Question types:

- Multiple choice: approximately 50% of the score (2 points each)
- Written answer: approximately 50% of the score (various points)

Topics & chapters tested:

High School Review: Including chapters 1-3, 4.1-4.4, & 16.1-16.2. See the *CHEM 209 Preparation* document on D2L for more details. See the Course Syllabus for suggested review problems. [Tutorial 1]

Big Idea: How FAST are reactions? [Tutorial 2A, 2B]				
KEY CONCEPTS	ESSENTIAL SKILLS	READINGS:	QUESTIONS:	
Chemical reactions occur at certain speeds.	 Qualitatively describe what the speed of a reaction depends upon. 	14.1	Chapter 14: 3, 5	
measured by looking at concentration changes over time.	✓ <i>Determine</i> the instantaneous and average rate of reaction from experimental data.	14.2	12, 14, 18	
	✓ Generate plots of concentration versus time for the chemical species of a reaction.	14.2	10	
	✓ Relate reactant concentration to instantaneous reaction rates using rate laws.	14.3	32 Sample 14.2	
	✓ Given experimental data, quantitatively <i>determine</i> the components of a rate law (<i>k</i> and order), using the method of initial rates.	14.3	34 Sample 14.4	
	✓ Use integrated rate laws to determine the amount of product produced (or reactant remaining) at any given point within a reaction and determine the half-life of a reaction.	14.4	43, 45, 125	
on a reactions mechanism.	✓ Determine the rate law given the mechanism of a reaction, and vice versa - for reactions with a slow first step only.	14.5, 14.6	83	
	✓ Draw and interpret a reaction energy diagram for a given reaction.	14.5, 14.6	64 Sample 14.9	
The speed of a reaction can be altered by changing temperature.	✓ Use the Arrhenius Equation to <i>determine</i> the effect of changing temperature on rate and activation energy.	14.5	59 Sample 14.8	
The speed of a reaction can be altered by the use of a catalyst.	✓ Explain how reaction speed can be modified using a catalyst	14.7	77, 78	
Big Idea: How Far does a reaction go? [Review Tutorial]				
Chemical reactions are dynamic equilibria.	✓ Qualitatively <i>describe</i> chemical equilibrium.	15.1	Chapter 15:	
The equilibrium, or extent of a reaction, is described by an equilibrium constant, K.	✓ Generate and manipulate expressions for K and Q for reactions using concentrations or partial pressures, based on a given reaction or set of related reactions.	15.2 15.3	14, 16, 18, 20, 27, 29, 81,	
	✓ Distinguish between K and Q, and use these values to determine the direction in which a reaction will proceed.	15.4	35 Sample 15.6	
	✓ Apply equilibrium principles to determine equilibrium concentrations given initial reaction conditions and K, and vice versa.	15.5	41, 45, 51, 84, 87	
Equilibria can be disturbed.	 Describe (qualitatively and quantitatively) the effect of changes in concentration, partial pressures, and volume on equilibrium. 	15.6	63, 76, 84, 87	
Equilibria can be altered.	✓ Use the van't Hoff equation to describe (qualitatively and quantitatively) the effect of changes in temperature on equilibrium.	15.6	59, 105, 109	
Acid and base solutions are equilibrium systems.	 ✓ Use K_a, pH, and pOH to <i>identify</i> and <i>describe</i> solutions of acids and bases. <u>(review material)</u> – part of Prelim. Quiz 2 	16.1	Chapter 16: 17, 23, 35, 37, 44, 49, 55	