Модель безопасности RSS or MobilEye

Стас Кикоть

Критика статистических метрик безопасности

• количество аварий на 1.000.000 км

Как быть с небольшими изменениями в коде?

• количество вмешательств водителя-инженера

Подвержены манипулированию.

Альтернатива – математическая модель

безопасного движения?

Как определить безопасность?

• Нельзя требовать безопасности при любом поведении других участников движения

• Надо требовать безопасность при "разумном" поведении других, то есть **безопасность с** точки зрения юридической ответственности

(RSS - responsibility-sensitive safety)

Как определяют виновного при столкновении?

- Правила дорожного движения
- Закон о заботе об имуществе владелец имущества должен следить, чтобы оно не причинило ущерба окружающим, предпринимая необходимые меры предосторожности. (Часто говорят:

ехать нужно не столько по правилам, сколько по здравому смыслу.)

5 принципов безопасного вождения

- Соблюдай дистанцию: ударивший сзади всегда виноват.
- Перестраивайся безопасно.
- Даже если на перекрестке обладаешь преимуществом, убедись, что путь свободен.
- Будь предельно осторожен в областях с ограниченной видимостью.
- Если можно избежать аварии, не создав новую, сделай это.

Параметры модели

Параметр	Расшифровка	Рекомендуемое значение
ρ	время реакции	1 с для нашей машины 2 с для остальных машин
λ	комфортное продольное расстояние между стоящими машинами	1 M
μ	размах поперечных колебаний двигающейся машины	0.1 м
δt	частота дискретизации анализа дорожной ситуации по времени	
abrake,max	максимальное ускорение экстренного торможения	8 м/с2
abrake,min	минимальное ускорение торможения = ускорение комфортного торможения	4 м/с2
aaccel,max	максимальное ускорение при разгоне машины	3.5 м/с2
abrake,min ^{lat}	минимальное поперечное ускорение торможения = ускорение комфортного поперечного торможения	0.8 м/с2
aaccel,maxlat	максимальное поперечное ускорение при поперечном ускорении машины	0.2 м/с2

Безопасная дистанция при движении в одном направлении:

$$d_{min} = \left[v_r \rho + \frac{a_{accel,max} \rho^2}{2} + \frac{(v_r + \rho a_{accel,max})^2}{2a_{brake,min}} - \frac{v_f^2}{2a_{brake,max}} \right]_+ + \lambda,$$

Опасная ситуация и правильная реакция

Правильные реакции на разных соседей никогда не противоречат друг-другу

Безопасная дистанция при движении навстречу

$$d_{min} = \frac{v_1 + v_{1,\rho}}{2} \rho + \frac{v_{1,\rho}^2}{2a_{brake,min}} + \frac{v_2 + v_{2,\rho}}{2} \rho + \frac{v_{2,\rho}^2}{2a_{brake,min}}$$

где v_1, v_2 — скорости автомобилей в данный момент, а $v_{1,\rho}, v_{2,\rho}$ — скорости после периода реакции.

Поперечная дистанция

определяется по тем же формулам, только скорости и ускорения измеряются поперечно

Параметр	Расшифровка	Значение
ρ	время реакции	
μ	размах поперечных колебаний двигающейся машины	
abrake,minlat	минимальное поперечное ускорение торможения = ускорение комфортного поперечного торможения	
aaccel,maxlat	максимальное поперечное ускорение при поперечном ускорении машины	0.2 м/с2

Нюанс: **поперечные колебания** размахом µ

Сочетаем продольную реакцию с поперечной

Исходное положение Опасная ситуация Правильная реакция

Неадекватное поведение других участников: маневр уклонения

Красная машина подрезает желтую.

Чтобы избежать аварии, желтая машина может:

- резко затормозить
- уйти влево

Если можно избежать аварии, не создав новую, сделай это

- нужно **уметь предсказывать траектории** других участников (постоянное ускорение?)
- **не превышать максимальных ускорений** в модели

Проезд нерегулируемых перекрестков

даже если обладаешь преимуществом, убедись что путь свободен (right of way is given, not taken)

Проезд нерегулируемых перекрестков

Расстояние между машинами c_1 и c_2, приближающимися к перекрестку по дорогам r_1 и r_2 , **безопасно**, если:

А) для каждого і, такого что c_i не обладает приоритетом, если c_i будет двигаться ρ секунд с ускорением $a_{accel,max}$, а потом затормозит с ускорением $a_{brake,min}$, то c_i успеет остановиться до выезда на перекресток;

В) (считаем, что c_1 ближе к перекрестку, чем c_2) если c_1 неожиданно затормозит с ускорением $a_{\text{brake,max}}$, а c_2 будет двигаться ρ секунд с ускорением $a_{\text{accel,max}}$, и потом затормозит с ускорением $a_{\text{brake,min}}$,

то c_2 успеет остановиться перед столкновением c_1 .

 C^*) траектории C_1 и C_2 заведомо не пересекутся

Реакция на первый опасный момент

Если предыдущий момент был безопасен благодаря A), то тормозят машины, не обладающие приоритетом.

Если предыдущий момент был безопасен благодаря В), то тормозит вторая машина.

Расстояние между машинами с₁ и с₂, приближающимися к перекрестку по дорогам r_1 и r_2 , **безопасно**, если:

А) для каждого і, такого что c_i не обладает приоритетом, если c_i будет двигаться ρ секунд с ускорением $a_{accel,max}$, а потом затормозит с ускорением $a_{brake,min}$, то c_i успеет остановиться до выезда на перекресток;

В) (считаем, что c_1 ближе к перекрестку, чем c_2) если c_1 неожиданно затормозит с ускорением $a_{brake,max}$, а c_2 будет двигаться ρ секунд с ускорением $a_{accel,max}$, и потом затормозит с ускорением $a_{brake,min}$, то c_2 успеет остановиться перед столкновением с c_1 .

 C^*) траектории c_1 и c_2 заведомо не пересекутся

Светофоры

• сигналы светофоров интерпретируются как динамический приоритет после чего применяются правила проезда нерегулируемых перекрестков, так как

даже если на перекрестке обладаешь преимуществом, убедись, что путь свободен.

• остановка на **красный свет** перед стоп линией **может быть добавлена в модель**

Движение по дороге без структуры

парковка без разметки, сложный перекресток, центральная площадь города, зона погрузки улица с пешеходами

Места с ограниченной видимостью

Итог

- модель RSS была предложена компанией MobilEye и опубликована в Arxiv
- модель пропиарена, но не опубликована ни в одном серьезном журнале
- ставит правильный вопрос и содержит интересную философию
- математически правильная ? (есть дырки, но может быть они чинятся)
- реально люди ездят с меньшей дистанцией, чем рекомендует модель