10-414/714 – Deep Learning Systems: Algorithms and Implementation

Training Large Models

Fall 2023
J. Zico Kolter and Tianqi Chen (this time)
Carnegie Mellon University

Outline

Techniques for memory saving

Parallel and distributed training

Outline

Techniques for memory saving

Parallel and distributed Training

Elements of machine learning systems

Bigger dataset requires larger model capacity. Which in turn puts demands on computing devices. The success of machine learning is a combination of all the three elements. Many recent advances requires us to push all three to their limits.

Today we will study two topics:

- How to reduce the memory consumption, so we can fit bigger models into a single device.
- How to scale up the training process

Recap: GPU memory hierarchy

Sources of memory consumption

A simplified view of a typical computational graph for training, weights are omitted and implied in the grad steps.

Sources of memory consumption

- Model weights
- Optimizer states
- Intermediate activation values

Optimizer states

Techniques for memory saving inference only

We only need O(1) memory for computing the final output of a N layer deep network by cycling through two buffers

Activation memory cost for training

Because the need to keep intermediate value around (checkpoint) for the gradient steps. Training a N-layer neural network would require O(N) memory.

We will use the following simplified view to combine gradient and forward computation

Checkpointing techniques in AD

- Only checkpoint colored nodes (step 0)
- Recompute the missing intermediate nodes in small segments (step 1, 2)

Sublinear memory cost

Forward computation

Gradient per segment with re-computation

For a N layer neural network, if we checkpoint every K layers

$$Memory\ cost = O\left(\frac{N}{K}\right) + O(K) \qquad \text{Pick}\ K = \sqrt{N}$$
 Checkpoint cost
 Re-computation cost

Outline

Programming abstractions

Parallel and distributed training

Parallel training problem

Leverage multiple (GPU) devices that are possibly distributed over several worker nodes to train a model.

Data parallel training

Loss function

$$\theta \coloneqq \theta - \frac{\alpha}{B} \sum_{i=1}^{B} \nabla_{\theta} \ell(h_{\theta}(x^{(i)}), y^{(i)})$$

Let each worker access $\frac{B}{K}$ fraction of the minibatch, and run gradient computation then sum up all gradients together.

Every worker runs the same replica of the model

Allreduce abstraction

Interface result = allreduce(float buffer[size])

Running Example

Worker 0

comm = communicator.create()

a = [1, 2, 3]

b = comm.allreduce(a, op=sum)

Worker 1

comm = communicator.create()

a = [1, 0, 1]

b = comm.allreduce(a, op=sum)

assert b == [2, 2, 4]

assert b == [2, 2, 4]

Data parallel training via allreduce

Many replicas of the same graph run in parallel

Parameter server abstraction

Interface

```
ps.push(index, gradient)
```

ps.pull(index)

Performs weight update on the server(key value store)

Data parallel training via parameter server

Many replicas of the same graph run in parallel

Communication computation overlap

Many opportunities to continue computation while sending data over the network

Model parallel training

Maps parts of the computation graph to workers

Breaking up the computation for model parallelism

Breaking up the computation for model parallelism

Partition the graph, put send/recv pairs in the boundary

Partitions tensor data across devices How to feed to the next layer?

Allgather abstraction

Interface result = alllgather(float buffer[size])

Running Example

Worker 0

comm = communicator.create()

a = [1, 2]

b = comm.allgather(a)

Worker 1

comm = communicator.create()

a = [3, 4]

b = comm. allgather(a)

assert b == [1, 2, 3, 4]

assert b == [1, 2, 3, 4]

Allgather turns sharded to replicated view

How to avoid allgather?

Start with sharded X, generate partial result(Y1, Y2), then sum them together

A typical tensor parallel pipeline involves two matmuls

Parallelization summary

Model parallel training partition by parts in the computational graph.

Data parallel training partition by data.

In all cases, leverage the opportunities to overlap compute with communication.

Advanced parallelization methods

There are more ways to parallelize a computational graph.

Some optional reference readings:

ZeRO: Memory Optimizations Toward Training Trillion Parameter Models.

Beyond Data and Model Parallelism for Deep Neural Networks.

GSPMD: General and Scalable Parallelization for ML Computation Graphs

FSDP: Fully Sharded Data Parallel

Outline

Techniques for memory saving

Parallel and distributed training