

Unsupervised Domain Adaptation

Final Project Presentation

Michele Yin, Roberto Mazzaro, Andrea Bonora, Filippo Daniotti, Giovanni Ambrosi

Outline

- 1. Introduction
- Works on DANN
 - DANN + Discrepancy loss
 - DANN + improvement for Adversarial methods and combinations
 - Incremental DANN
- 3. Gradual self training
 - Comparison with other datasets
 - Ablation study
- 4. Conclusions
 - Future works
 - Our opinion

Introduction

Two directions:

- 1. Works on DANN
 - Tried to **combine and merge** different methods
- 2. Gradual self training
 - In depth ablation analysis of a single method

Experiment Setting

Ideas:

- Start with DANN
- **Improve** it with newer methods
- Try to combine more than one method together

Why DANN:

- Simple -> fast to implement and test
- Investigate if the concept make sense
- Don't look for the greatest accuracy

Dataset: Office31

- Pros: more complex than digits, lighter than OfficeHome
- Cons: unbalanced in the 2 domains

Office31

WEBCAM (795 images)

AMAZON (2817 images)

DANN + Discrepancy loss

- Starting from DANN
 - Add a loss at the output of the feature extractor
 - Align the features before classification and discrimination
 - Maximum Mean Discrepancy Loss

$$MMD^{2}(P,Q) = ||\mu_{P} - \mu_{Q}||_{\mathcal{F}}^{2}$$
$$= \mathbb{E}_{\mathcal{X} \sim P} \left[k(x, x') \right] + \mathbb{E}_{\mathcal{Y} \sim Q} \left[k(y, y') \right] - 2\mathbb{E}_{\mathcal{X}, \mathcal{Y} \sim P, Q} \left[k(x, y) \right]$$

Coral Loss

$$\ell_{CORAL} = \frac{1}{4d^2} \|C_S - C_T\|_F^2$$

Obtained Results

- MMD loss best on Amazon -> Webcam domain, gain over 10%
- Coral loss improves of 6%
- Both losses don't provide improvements on Webcam -> Amazon direction, unbalanced dataset

Model	A->W A	A->W W	Gain	W->AW	W->AW	Gain
DANN	86.35	64.78	7	93.71	44.68	-
DANN + MMD	83.16	75.47	+10.69	95.60	42.02	-2.66
DANN + Coral	87.06	71.07	+6.29	94.34	43.25	-1.43

Experiment Setting

Ideas:

- Start with DANN
- **Improve** it with newer methods
- Try to combine more than one method together

Why DANN:

- Simple -> fast to implement and test
- Investigate if the concept make sense
- Don't look for the greatest accuracy

Dataset: Office31

- Pros: more complex than digits, lighter than OfficeHome
- Cons: unbalanced in the 2 domains

Methods Recap - DALN

- Remove the discriminator
- Use classifier + NWD module to discriminate the domain

Methods Recap - SDAT

- Find smoother minima for classification loss
- New optimizer with additional gradient computation steps

Methods Recap - JREG

- Regularization method
- Push decision boundaries further away
- Used inside FGDA

(a) Without regularization

(b) With L^2 regularization

(c) With Jacobian regularization

Methods Recap - FGDA

- Constrain feature gradients of two domains to have similar distributions
- Pseudo labels computed to obtain target loss
- Jacobian Regularization used inside

Methods Recap - RADA

- Relabel well aligned target samples as source domain
- Well aligned samples -> domain discriminator entropy higher than a threshold
- Mixup at feature level used with relabel samples to softly mix features
- Domain relabeling doesn't influence classification
- No official implementation available

Combining methods - How

FGDA + DALN: no conflicts and lighter model

- FGDA use an additional grad_discriminator to align gradient distributions
- Adversarial discriminator can be substituted by DALN

RADA + FGDA: no conflicts

- RADA change domain labels but doesn't influence classification task
- Just add FGDA

Any + SDAT: SDAT is a different optimizer so can be applied to any method

RADA + DALN: creates conflicts

RADA use domain discriminator entropy as policy to re-align samples

Obtained Results

- Almost all methods improve DANN
- RADA in A->W test doesn't improve
 - Neither worsen and relabeling started at epoch 17
 - No official code and training parameters available
- DALN in W->A is suffering the dataset imbalance
- JREG very effective but FGDA improve it a lot in W->A

Model	A->W A	A->W W	Gain	W->AW	W->AW	Gain
DANN	86.35	64.78	-	93.71	44.68	-
DANN + DALN	83.16	72.33	+7.55	95.60	39.72	-4.96
DANN + SDAT	87.06	73.58	+8.80	94.34	49.47	+4.79
DANN + JREG	85.82	73.58	+8.80	94.97	46.45	+1.77
DANN + FGDA	86.35	72.96	+8.18	96.86	52.13	+7.45
DANN + RADA	85.99	64.78	0	93.08	45.74	+1.06

Obtained Results

- FGDA + DALN seems a good idea
 - Best method in A->W test with gain of +11.32
 - In W->A test suffer the poor performances of DALN in this direction
- RADA + FGDA might be a good idea

 Increase RADA performances

 Problem are RADA poor performances due to non optimal training params.

 SDAT very sensitive to training params. -> if not well
- selected decrease performances

Model	A->W A	A->W W	Gain	W->A W	W->A W	Gain
DANN + FGDA + DALN	84.75	76.10	+11.32	93.08	49.47	+4.79
DANN + DALN + SDAT	85.64	68.55	+3.77	91.82	43.62	-1.06
DANN + FGDA + SDAT	81.21	62.89	-1.89	93.71	45.57	+0.89
DANN + DALN + DALN + SDAT	85.82	72.33	+7.55	94.97	51.42	+6.74
DANN + RADA + SDAT	83.87	70.44	+5.66	94.34	45.04	+0.36
DANN + RADA + FGDA	83.87	71.70	+6.92	94.34	43.44	-1.24
DANN + RADA + FGDA + SDAT	84.57	72.33	+7.55	93.71	46.81	+2.13

TSNE Analisy

- TSNE plots for A->W test of predicted target domain labels
- Better inter class separation
- Better intra class compactness

Incremental Method

Idea:

- Start from a trained model
- Assign a pseudo label to *k* samples
- At each iteration train the model
 - First, train the model as usual
 - **Next**, only on the new pseudo labeled samples
- At the end, a model from scratch **only** with the target data

Incremental Method

How to assign a label to the data?

- Confidence policy: select the samples with the highest confidence in the classifier predictions
- Possible issue: samples with a very low confidence will distort the training of the model
- **Possible solution:** when the confidence is lower than a certain threshold assign all the remaining data to a label without training the model anymore

Results

office31

Adversarial Future Works

- Try different training parameters to possibly obtain better results in particular with RADA and SDAT
- Try different starting architectures (e.g. CDAN)
- Test on different datasets (e.g. MNIST or officeHome) to have a better understanding
- Try a different alignment measure for RADA not based on discriminator output allowing to fuse RADA with DALN
- Try different policies for selecting samples in the incremental method (e.g. k-NN)
- Test the incremental method with different hyperparameters setting

AuxSelfTrain

Key Idea:

- gradually replace source samples with target samples
- assign pseudo-labels through self-training

Experiments

- AuxSelfTrain sample selection
 - target highest confidence pseudo-label
 - source closest to target distribution
- Ablation studies:
 - ST Full approach
 - STS source samples are randomly selected
 - STF both source and target are randomly selected

Results

Experiments: Office31

office31

- Improvements in A -> W...
- ... But drop in W -> A
- Two problems:
 - clustering fails
 - some classes are over-represented

STS experiment

Experiments: Office31

- Hypothesis: unbalanced dataset
 - A: ~3000 samples
 - W: ~800 samples
- Perform experiments balanced dataset

STS experiment

Additional Datasets

MNIST mnist-m

mnist

~4000

~4000

OfficeHome Product

Real World

~2000

~2000

MNIST-M -> MNIST

Target

Accuracy: 98.88

Loss: 0.00

Great!

Baseline is ~72%

MNIST -> MNIST-M

Target

Accuracy: 11.45

Loss: 0.10

Yikes!

Asymmetric domains

- Results show similar patterns in OfficeHome
 - R -> P good results
 - P -> R no results
- Probably due to an asymmetric domain shift
 - MNIST-M is MNIST but with **more** information
 - same for R and P
- The model only work with small domain shift
 - otherwise, it is **over-confident** on one single label

Back to Office31

Why does it perform "suspiciously well" on A -> W?

amazon has some webcam-style images

Why does it perform "suspiciously bad" on W -> A?

the domains are not balanced!

Ablation study

- ST, STS ≫ STF
 - target sample selection works

Ablation study

- ST ≅ STS
 - source sample selection does not
 - o distributions are too far

Ablation study

- ST ≅ STS
 - source sample selection does not
 - o distributions are too far

Future works

- Implement model ensemble on the target source samples selection strategy
 - requires significant computational power
- Behaviour on MNIST -> MNIST-M resembles the **mode collapse** problem of GANs
 - use toolchains from GAN literature to explore
 - add penalty/threshold when few classes are over-represented
 - cross-validation loss
- Test DANN methods on other datasets
 - provide insights on your model

Conclusion

- Avoid to over complicate the model
- **Keep** the model **simple** but exploit it better (change losses and/or optimizer)
- Some models require careful **fine-tuning** of hyperparameters
- There is **no panacea** model
 - A thorough dataset exploration is crucial
 - Pick the best DA approach given the dataset

Thank you for your attention

Thank you for your attention ...and merry christmas!