

Politechnika Wrocławska

Algorytmy
wyznaczania najkrótszych ścieżek
w rzeczywistych sieciach drogowych

Tomasz Strzałka Wydział Podstawowych Problemów Techniki 14 listopada 2014

Najkrótszą ścieżką nazywamy...

...taką ścieżkę $p=\langle v_0,v_1,\cdots,v_k\rangle$ z wierzchołka v_0 do v_k , że dla każdej pary $(i,j):1\leq i\leq j\leq k$ ścieżka $p'=\langle v_i,v_{i+1},\cdots,v_j\rangle$ jest najkrótszą ścieżką.

Własność optymalnej podstruktury

W szczególności:

jeśli istnieje ścieżka $p^{(0)}=\langle v_0,v_1,\cdots,v_k\rangle$ i jest ona najkrótsza to rekurencyjnie ścieżka $p^{(1)}=\langle v_0,v_1,\cdots,v_{k-1}\rangle$ także ma tę własność.

Najkrótszą ścieżką nazywamy...

...taką ścieżkę $p=\langle v_0,v_1,\cdots,v_k\rangle$ z wierzchołka v_0 do v_k , że dla każdej pary $(i,j):1\leq i\leq j\leq k$ ścieżka $p'=\langle v_i,v_{i+1},\cdots,v_j\rangle$ jest najkrótszą ścieżką.

Własność optymalnej podstruktury

W szczególności:

jeśli istnieje ścieżka $p^{(0)}=\langle v_0,v_1,\cdots,v_k\rangle$ i jest ona najkrótsza to rekurencyjnie ścieżka $p^{(1)}=\langle v_0,v_1,\cdots,v_{k-1}\rangle$ także ma tę własność.

Opis

Najkrótsza ścieżka: $p^{(0)} = \langle S, B, C \rangle$. Najkrótszą ścieżką jest zatem także $p^{(1)} = \langle S, B \rangle$ oraz $p^{(2)} = \langle S \rangle$.

Opis

Najkrótszą ścieżką nie jest ścieżka: $p^{(0)} = \langle S, A, B \rangle$ zatem...

Opis

... nie jest nią także ścieżka: $p^{(0)} = \langle S, A, B, C \rangle$.

Jak rozwiązać problem...

...najkrótszych ścieżek?

Opis

► *id* - identyfikator,

Opis

► A(id) - zbiór $\{i : v_{id} \leadsto i\}$,

Opis

► Pred - poprzedzający węzeł w najkrótszej ścieżce.

Opis

▶ d(i,j) - koszt przebycia drogi z V_i do V_i .

Opis

ightharpoonup d(id) - górne ograniczenie na koszt ścieżki od V_S do V_{id} .

Właściwości odległości:

$$b d(id) = \begin{cases} 0 & id = S \\ \infty & id \neq S \end{cases}$$

▶ Jeśli ścieżka $p = \langle v_0, v_1, \cdots, v_k \rangle$ jest najkrótsza wtedy dla każdego węzła v_i w tej ścieżce:

$$d(i) = \sum_{j=0}^{i-1} d(j, j+1)$$

Sens $d(id) = \infty$

► Relaksacja wierzchołków

Właściwości odległości:

$$b d(id) = \begin{cases} 0 & id = S \\ \infty & id \neq S \end{cases}$$

▶ Jeśli ścieżka $p = \langle v_0, v_1, \cdots, v_k \rangle$ jest najkrótsza wtedy dla każdego węzła v_i w tej ścieżce:

$$d(i) = \sum_{j=0}^{i-1} d(j, j+1)$$

Sens $d(id) = \infty$

► Relaksacja wierzchołków

Relaksacja wierzchołków

Operacja relaksacji:

Jeśli jesteśmy w stanie znaleźć taką ścieżkę $p = \langle v_0, v_1, \cdots, v_k \rangle$, że $d\left(v_k^{ID}\right) + d\left(k,i\right) < d\left(v_i^{ID}\right)$ to znaczy, że do $d\left(v_i^{ID}\right)$ istnieje krótsza ścieżka, niż wyliczona dotychczas. W takim przypadku aktualizuj $d\left(v_i^{ID}\right)$ i ustaw $Pred\left(v_i^{ID}\right) = v_k$.

Sens $d(id) = \infty$

Przez powyższe równanie wyrażamy fakt, że nie znamy jeszcze drogi do wierzchołka o identyfikatorze *id* (jego najkrótsza ścieżka ma koszt nieskończony - nigdy do danego węzła nie dojdziemy na podstawie posiadanych informacji).

Relaksacja wierzchołków

Operacja relaksacji:

Jeśli jesteśmy w stanie znaleźć taką ścieżkę $p = \langle v_0, v_1, \cdots, v_k \rangle$, że $d\left(v_k^{ID}\right) + d\left(k,i\right) < d\left(v_i^{ID}\right)$ to znaczy, że do $d\left(v_i^{ID}\right)$ istnieje krótsza ścieżka, niż wyliczona dotychczas. W takim przypadku aktualizuj $d\left(v_i^{ID}\right)$ i ustaw $Pred\left(v_i^{ID}\right) = v_k$.

Sens $d(id) = \infty$

Przez powyższe równanie wyrażamy fakt, że nie znamy jeszcze drogi do wierzchołka o identyfikatorze *id* (jego najkrótsza ścieżka ma koszt nieskończony - nigdy do danego węzła nie dojdziemy na podstawie posiadanych informacji).

Idea:

Wykonać wielokrotnie relaksację dla wszystkich wierzchołków (jeśli konieczne).

Przykład:

Nie mamy czasu na przykłady.

Czemu |V| - 1?

Mniej niż |V|-1

- ► Niech |*V*| = 2
- Algorytm nie wykona żadnych iteracji!

Czemu |V|-1?

Więcej niż |V|-1

- Każda iteracja próbuje przeprowadzić relaksacje każdego z węzłów sieci,
- ▶ najkrótsza ścieżka w sieci o |V| = n wierzchołkach ma maksymalnie n wierzchołków składowych,
- wezeł, bedacy źródłem, "już jest zrelaksowany".

Więcej niż $|oldsymbol{V}|-1$

Jeśli po wykonaniu |V|-1 iteracji nadal jest możliwa do wykonania operacja relaksacji znaczy to, że w podanej sieci istnieje cykl o ujemnej długości.

Czemu |V|-1?

Więcej niż |V|-1

- Każda iteracja próbuje przeprowadzić relaksacje każdego z węzłów sieci,
- ▶ najkrótsza ścieżka w sieci o |V| = n wierzchołkach ma maksymalnie n wierzchołków składowych,
- wezeł, bedacy źródłem, "już jest zrelaksowany".

Więcej niż |V|-1

Jeśli po wykonaniu |V|-1 iteracji nadal jest możliwa do wykonania operacja relaksacji znaczy to, że w podanej sieci istnieje cykl o ujemnej długości.

Relaksacja w "ujemnym cyklu"

- ▶ A jest ostatnim węzłem na "najkrótszej ścieżce". B posiada $d\left(v_{B}^{ID}\right)$ większe o wyrażenie m+n (ustalone w poprzednim cyklu). Następuje relaksacja B.,
- ▶ po relaksacji B, jest ono ostatnim węzłem na "najkrótszej ścieżce". A posiada d (v_A^{ID}) większe o wyrażenie n+m (ustalone w poprzednim cyklu). Następuje relaksacja A.,

Relaksacja w "ujemnym cyklu"

- A jest ostatnim węzłem na "najkrótszej ścieżce". B posiada $d\left(v_{B}^{ID}\right)$ większe o wyrażenie m+n (ustalone w poprzednim cyklu). Następuje relaksacja B.,
- ▶ po relaksacji B, jest ono ostatnim węzłem na "najkrótszej ścieżce". A posiada $d\left(v_A^{ID}\right)$ większe o wyrażenie n+m (ustalone w poprzednim cyklu). Następuje relaksacja A.,

Relaksacja w "ujemnym cyklu"

- ▶ A jest ostatnim węzłem na "najkrótszej ścieżce". B posiada $d\left(v_{B}^{ID}\right)$ większe o wyrażenie m+n (ustalone w poprzednim cyklu). Następuje relaksacja B.,
- ▶ po relaksacji B, jest ono ostatnim węzłem na "najkrótszej ścieżce". A posiada $d\left(v_A^{ID}\right)$ większe o wyrażenie n+m (ustalone w poprzednim cyklu). Następuje relaksacja A.,

Relaksacja w "ujemnym cyklu"

- A jest ostatnim węzłem na "najkrótszej ścieżce". B posiada $d\left(v_{B}^{ID}\right)$ większe o wyrażenie m+n (ustalone w poprzednim cyklu). Następuje relaksacja B.,
- ▶ po relaksacji B, jest ono ostatnim węzłem na "najkrótszej ścieżce". A posiada $d\left(v_A^{ID}\right)$ większe o wyrażenie n+m (ustalone w poprzednim cyklu). Następuje relaksacja A.,

Relaksacja w "ujemnym cyklu"

- ▶ A jest ostatnim węzłem na "najkrótszej ścieżce". B posiada $d\left(v_{B}^{ID}\right)$ większe o wyrażenie m+n (ustalone w poprzednim cyklu). Następuje relaksacja B.,
- ▶ po relaksacji B, jest ono ostatnim węzłem na "najkrótszej ścieżce". A posiada $d\left(v_A^{ID}\right)$ większe o wyrażenie n+m (ustalone w poprzednim cyklu). Następuje relaksacja A.,

Relaksacja w "ujemnym cyklu"

- A jest ostatnim węzłem na "najkrótszej ścieżce". B posiada $d\left(v_{B}^{ID}\right)$ większe o wyrażenie m+n (ustalone w poprzednim cyklu). Następuje relaksacja B.,
- ▶ po relaksacji B, jest ono ostatnim węzłem na "najkrótszej ścieżce". A posiada $d\left(v_A^{ID}\right)$ większe o wyrażenie n+m (ustalone w poprzednim cyklu). Następuje relaksacja A.,

Relaksacja w "ujemnym cyklu"

- ▶ A jest ostatnim węzłem na "najkrótszej ścieżce". B posiada $d\left(v_{B}^{ID}\right)$ większe o wyrażenie m+n (ustalone w poprzednim cyklu). Następuje relaksacja B.,
- ▶ po relaksacji B, jest ono ostatnim węzłem na "najkrótszej ścieżce". A posiada $d\left(v_A^{ID}\right)$ większe o wyrażenie n+m (ustalone w poprzednim cyklu). Następuje relaksacja A.,

Relaksacja w "ujemnym cyklu"

- A jest ostatnim węzłem na "najkrótszej ścieżce". B posiada $d\left(v_{B}^{ID}\right)$ większe o wyrażenie m+n (ustalone w poprzednim cyklu). Następuje relaksacja B.,
- ▶ po relaksacji B, jest ono ostatnim węzłem na "najkrótszej ścieżce". A posiada $d\left(v_A^{ID}\right)$ większe o wyrażenie n+m (ustalone w poprzednim cyklu). Następuje relaksacja A.,

Relaksacja w "ujemnym cyklu"

- ▶ A jest ostatnim węzłem na "najkrótszej ścieżce". B posiada $d\left(v_{B}^{ID}\right)$ większe o wyrażenie m+n (ustalone w poprzednim cyklu). Następuje relaksacja B.,
- ▶ po relaksacji B, jest ono ostatnim węzłem na "najkrótszej ścieżce". A posiada d (v_A^{ID}) większe o wyrażenie n+m (ustalone w poprzednim cyklu). Następuje relaksacja A.,

Relaksacja w "ujemnym cyklu"

- A jest ostatnim węzłem na "najkrótszej ścieżce". B posiada $d\left(v_{B}^{ID}\right)$ większe o wyrażenie m+n (ustalone w poprzednim cyklu). Następuje relaksacja B.,
- ▶ po relaksacji B, jest ono ostatnim węzłem na "najkrótszej ścieżce". A posiada $d\left(v_A^{ID}\right)$ większe o wyrażenie n+m (ustalone w poprzednim cyklu). Następuje relaksacja A.,

Relaksacja w "ujemnym cyklu"

- ▶ A jest ostatnim węzłem na "najkrótszej ścieżce". B posiada $d\left(v_{B}^{ID}\right)$ większe o wyrażenie m+n (ustalone w poprzednim cyklu). Następuje relaksacja B.,
- ▶ po relaksacji B, jest ono ostatnim węzłem na "najkrótszej ścieżce". A posiada $d\left(v_A^{ID}\right)$ większe o wyrażenie n+m (ustalone w poprzednim cyklu). Następuje relaksacja A.,

Relaksacja w "ujemnym cyklu"

- A jest ostatnim węzłem na "najkrótszej ścieżce". B posiada $d\left(v_{B}^{ID}\right)$ większe o wyrażenie m+n (ustalone w poprzednim cyklu). Następuje relaksacja B.,
- ▶ po relaksacji B, jest ono ostatnim węzłem na "najkrótszej ścieżce". A posiada $d\left(v_A^{ID}\right)$ większe o wyrażenie n+m (ustalone w poprzednim cyklu). Następuje relaksacja A.

Relaksacja w "ujemnym cyklu"

- ▶ A jest ostatnim węzłem na "najkrótszej ścieżce". B posiada $d\left(v_{B}^{ID}\right)$ większe o wyrażenie m+n (ustalone w poprzednim cyklu). Następuje relaksacja B.,
- ▶ po relaksacji B, jest ono ostatnim węzłem na "najkrótszej ścieżce". A posiada $d\left(v_A^{ID}\right)$ większe o wyrażenie n+m (ustalone w poprzednim cyklu). Następuje relaksacja A.,

Relaksacja w "ujemnym cyklu"

- A jest ostatnim węzłem na "najkrótszej ścieżce". B posiada $d\left(v_{B}^{ID}\right)$ większe o wyrażenie m+n (ustalone w poprzednim cyklu). Następuje relaksacja B.,
- ▶ po relaksacji B, jest ono ostatnim węzłem na "najkrótszej ścieżce". A posiada $d\left(v_A^{ID}\right)$ większe o wyrażenie n+m (ustalone w poprzednim cyklu). Następuje relaksacja A.

Generyczny algorytm Dijkstry

Pseudokod

Algorithm 1: DIJKSTRA(G, w, s)

begin

```
G = \text{ustaw } d(i) = \infty \text{ oraz } Pred(i) = NULL \text{ dla każdego węzła o}
id = i. Dodatkowo dla źródła d(i) = 0.
S = \emptyset
Q = G.V
while Q \neq \emptyset do
```

usuń z Q element o najniższym d(i) i dodaj go do S

for każdy wierzchołek $v \in A(i)$ do

| wykonaj relaksację

Generyczny algorytm Dijkstry

Przykład

Nie mamy czasu na przykłady : <

na efektywność algorytmu

Złożoność (generyczny algorytm Dijkstry)

- inicjalizujemy |V| wierzchołków,
- usuwamy łącznie |V| wierzchołków,
- ▶ wykonujemy relaksację dla |E| krawędzi (każdy wierzchołek odwiedzamy tylko raz),

Zatem

- $\blacktriangleright |V| \cdot O(INIT(?)),$
- $+ |V| \cdot O(EXTRACT_MIN(Q)),$
- $+ |E| \cdot O(UPDATE(?))$

na efektywność algorytmu

Złożoność (generyczny algorytm Dijkstry)

- ▶ inicjalizujemy |V| wierzchołków,
- usuwamy łącznie |V| wierzchołków,
- ▶ wykonujemy relaksację dla |E| krawędzi (każdy wierzchołek odwiedzamy tylko raz),

Zatem:

- $\blacktriangleright |V| \cdot O(INIT(?)),$
- $+ |V| \cdot O(EXTRACT MIN(Q)),$
- + |E| · O (UPDATE (?))

na efektywność algorytmu

Złożoność (generyczny algorytm Dijkstry)

- inicjalizujemy |V| wierzchołków,
- usuwamy łącznie |V| wierzchołków,
- ▶ wykonujemy relaksację dla |E| krawędzi (każdy wierzchołek odwiedzamy tylko raz),

Zatem:

- $\blacktriangleright |V| \cdot O(INIT(?)),$
- + $|V| \cdot O(EXTRACT MIN(Q))$,
- $+ |E| \cdot O(UPDATE(?))$

na efektywność algorytmu

Złożoność (generyczny algorytm Dijkstry)

- ▶ inicjalizujemy |V| wierzchołków,
- usuwamy łącznie |V| wierzchołków,
- ▶ wykonujemy relaksację dla |E| krawędzi (każdy wierzchołek odwiedzamy tylko raz),

Zatem:

- ► |V| · O (INIT (?)),
- + $|V| \cdot O(EXTRACT MIN(Q))$,
- $+ |E| \cdot O(UPDATE(?))$

Tablice, listy, stosy, kolejki, kubełki...

sposoby podejścia do problemu SSSP

Tablice, listy, stosy, kolejki, kubełki...

sposoby podejścia do problemu SSSP

Złożoność (generyczny algorytm Dijkstry)

 $|V| \cdot [O(INSERT(Struct, Node)) + O(EXTRACT_MIN(Struct))] + |E| \cdot O(UPDATE_STRUCT(Struct, Node))$

	Tablica	Lista	Stos	k. R-arny	k. Fibonacciego
	O (n)	0(1)	0(1)	$O(\log_R(n))$	O(1)
Ε	O(n)	O(1)	O(1)	$O(R \cdot \log_R(n))$	$O(\log(n))$
U	O(n)	O(n)	O(n)	$O\left(\log_R(n)\right)$	O(1)

Koszty amortyzacyjne

czyli jak oszukać przeznaczenie

	Sorto	wanie Szybkie	kopiec Fibonacciego		
Analiza:	WCA	randomizacja	WCA	amortyzacyjna	
S	$O(n^2)$	$O(n \cdot log(n))$	_	$O(n \cdot log(n))$	
D			$O(n \cdot log(n))$	$O(n \cdot 1)$	

Wpływ struktury sieci na czas działania

Oprócz samego algorytmu, struktur danych w nim wykorzystanych, ważnym elementem, wpływającym na zachowywanie się implementacji, jest także sposób reprezentacji samej sieci.

- Macierz incydencji
 - węzeł-węzeł
 - węzeł-krawędź
- ► listy sąsiedztwa
 - pośrednie
 - bezpośrednie
- ► Star Representation
 - ▶ forward
 - ► reverse

- Macierz incydencji
 - ▶ węzeł-węzeł
 - węzeł-krawędź
- ► listy sąsiedztwa
 - pośrednie
 - bezpośrednie
- ► Star Representation
 - ▶ forward
 - ► reverse

- Macierz incydencji
 - ▶ węzeł-węzeł
 - ▶ węzeł-krawędź
- ► listy sąsiedztwa
 - ▶ pośrednie
 - bezpośrednie
- ► Star Representation
 - ► forward
 - ► reverse

- Macierz incydencji
 - ▶ węzeł-węzeł
 - węzeł-krawędź
- listy sąsiedztwa
 - ▶ pośrednie
 - bezpośrednie
- ► Star Representation
 - ▶ forward
 - ► reverse

- Macierz incydencji
 - ▶ węzeł-węzeł
 - węzeł-krawędź
- ► listy sąsiedztwa
 - pośrednie
 - ▶ bezpośrednie
- ► Star Representation
 - ▶ forward
 - reverse

- Macierz incydencji
 - ▶ węzeł-węzeł
 - węzeł-krawędź
- ► listy sąsiedztwa
 - pośrednie
 - bezpośrednie
- ► Star Representation
 - ▶ forward
 - ► reverse

- Macierz incydencji
 - węzeł-węzeł
 - węzeł-krawędź
- ► listy sąsiedztwa
 - pośrednie
 - ▶ bezpośrednie
- ► Star Representation
 - ► forward
 - ► reverse

- Macierz incydencji
 - ▶ węzeł-węzeł
 - węzeł-krawędź
- ► listy sąsiedztwa
 - pośrednie
 - ▶ bezpośrednie
- ► Star Representation
 - ▶ forward
 - reverse

- Macierz incydencji
 - węzeł-węzeł
 - węzeł-krawędź
- ► listy sąsiedztwa
 - ► pośrednie
 - ▶ bezpośrednie
- ► Star Representation
 - ▶ forward
 - reverse

- Macierz incydencji
 - węzeł-węzeł
 - węzeł-krawędź
- ► listy sąsiedztwa
 - pośrednie
 - ▶ bezpośrednie
- ► Star Representation
 - ▶ forward
 - reverse

Opisy struktur reprezentacji sieci

Listy sąsiedztwa

Motywacja

Najbardziej intuicyjna, szybka, niewiele ustępuje złożonością FSR:

- pamięciową (bogata struktura danych)
- obliczeniową (czas operacji na listach)

Motywacja

Ustępuje funkcjonalnością cF&RSR (compact Forward and Revesre Star Representation):

brak listy poprzedników

Opisy struktur reprezentacji sieci

Listy sąsiedztwa

Motywacja

Najbardziej intuicyjna, szybka, niewiele ustępuje złożonością FSR:

- pamięciową (bogata struktura danych)
- obliczeniową (czas operacji na listach)

Motywacja

Ustępuje funkcjonalnością cF&RSR (compact Forward and Revesre Star Representation):

brak listy poprzedników

Opisy struktur reprezentacji sieci

Listy sąsiedztwa

Jak posortować topologicznie?

Motywacja

Otrzymując węzły grafu w porządku topologicznym mamy pewność, że dla każdego takiego wierzchołka wymagana jest co najwyżej jedna operacja relaksacji

wyszukiwanie najkrótszej ścieżki w czasie liniowym

Jak posortować topologicznie?

- zaczynamy od źródła
- usuwamy krawędzie, po których dotarliśmy do następnego węzła.
 - ▶ Jeśli lista poprzedników węzła jest pusta to dodaj węzeł na koniec, posortowanej topologiczne, listy
 - w przeciwnym przypadku skanuj dalej
- ► Jeśli przeszedłeś po wszystkich wierzchołkach, a w grafie nadal sa krawedzie istnieje cykl

Jak posortować topologicznie?

- zaczynamy od źródła
- usuwamy krawędzie, po których dotarliśmy do następnego węzła.
 - Jeśli lista poprzedników węzła jest pusta to dodaj węzeł na koniec, posortowanej topologiczne, listy
 - w przeciwnym przypadku skanuj dalej
- ► Jeśli przeszedłeś po wszystkich wierzchołkach, a w grafie nadal sa krawedzie istnieje cykl

Jak posortować topologicznie?

- zaczynamy od źródła
- usuwamy krawędzie, po których dotarliśmy do następnego węzła.
 - ► Jeśli lista poprzedników węzła jest pusta to dodaj węzeł na koniec, posortowanej topologiczne, listy
 - w przeciwnym przypadku skanuj dalej
- ► Jeśli przeszedłeś po wszystkich wierzchołkach, a w grafie nadal są krawędzie istnieje cykl

Jak posortować topologicznie?

- zaczynamy od źródła
- usuwamy krawędzie, po których dotarliśmy do następnego węzła.
 - Jeśli lista poprzedników węzła jest pusta to dodaj węzeł na koniec, posortowanej topologiczne, listy
 - w przeciwnym przypadku skanuj dalej
- ► Jeśli przeszedłeś po wszystkich wierzchołkach, a w grafie nadal są krawędzie istnieje cykl

Jak posortować topologicznie?

- zaczynamy od źródła
- usuwamy krawędzie, po których dotarliśmy do następnego węzła.
 - Jeśli lista poprzedników węzła jest pusta to dodaj węzeł na koniec, posortowanej topologiczne, listy
 - w przeciwnym przypadku skanuj dalej
- ► Jeśli przeszedłeś po wszystkich wierzchołkach, a w grafie nadal są krawędzie istnieje cykl

Jak posortować topologicznie?

- zaczynamy od źródła
- usuwamy krawędzie, po których dotarliśmy do następnego węzła.
 - Jeśli lista poprzedników węzła jest pusta to dodaj węzeł na koniec, posortowanej topologiczne, listy
 - w przeciwnym przypadku skanuj dalej
- ► Jeśli przeszedłeś po wszystkich wierzchołkach, a w grafie nadal są krawędzie istnieje cykl

Jak posortować topologicznie?

Problemy

- brak list poprzedników w wybranej reprezentacji
- ▶ graf nie może mieć cykli

Najszybsze algorytmy SSSP

Implementacje

- z dwoma kolejkami (TQQ)
- ► Dijkstry z kubełkami:
 - aproksymacyjnymi (DKA)
 - wielopoziomowymi (DKD dwu)

Najszybsze algorytmy SSSP

Algorytm Dijkstry z kubełkami - aproksymacyjny

Implementacje

Szkic na tablicy, jak będzie czas :

Najszybsze algorytmy SSSP

Algorytm Dijkstry z kubełkami - dwupoziomowy

Implementacje

Szkic na tablicy, jak będzie czas :

Biblioteka Take Me Home

API

Wymagania:

- ▶ pliki z danymi zgodne z formatem narzuconym podczas 9th DIMACS Implementation Challenge
- wierzchołki numerowane od 1

Podstawowe API

- ▶ logi oparte na idei biblioteki Log4j
- ► podstawowe struktury:
 - ► TMHConfig konfiguracja algorytmów
 - ► TMH konfiguracja biblioteki
- pseudo-obiektowość

Biblioteka Take Me Home

API

TMHConfig

- createTMHConfig(ścieżka do pliku z poleceniami)
 - createTMHConfig(USA-road-d.USA.ss);
- setAllowInterrupt(config,false);
- setCheckConfig(config,false);
- setGraphOrder(config,NONE);
 - ► NONE z typu wyliczeniowego GraphOrder
- setGraphStruct(config,ADJACENCY_LIST);
 - ► ADJACENCY_LISTNE z typu wyliczeniowego GraphStructAbbreviation

Biblioteka Take Me Home

API

TMHConfig

- setAlgorithm(config,BFM);
 - ▶ BFM z typu wyliczeniowego AlgorithmAbbreviation

TMH API

- ins = createTMHAlgorithmInstance(config, "* gr");
- runTMHAlgorithm(config->algorithm,ins);
- destroyTMHAlgorithmInstancje(alg,ins,false);
 - ► false czy zresetować kofigurację