AVATAR - Automatic Variance and Time of Analysis Reduction

Abstract

- Avatar ; accessed through Justine; invokes THREEDANT
- Performs 3-dimensional deterministic adjoint calculation
- Mesh independent of MC geometry
- calculates weight windows
- Can be done without user manipulation of data

Introduction

- For problems with complex geometries and with a large problem area, Monte Carlo can be an issue. The desired quantity is OOM smaller than the source. Tally of particles contributing to return signal is small, and unreliable.
- Variance Reduction Techniques
 - Weight windows
 - * depend on importance functions.
 - * bias the particles towards locations that contribute to the tally.
 - * Requires time, experience, and intuition.
 - Solution of Adjoint
 - * is recognized as an importance function for the regular forward calculation of NTE.
 - · Is computationally expensive to calculate exactly.
 - * Less precise calculation provides importance function that can be used to accelerate MC calculation.
 - · do this with few energy groups and low angular resolutionn

• AVATAR

- automatically accelerates MC calculations based on space, energy and angle.
- User sets up problem using Justine (the GUI)
- Justine runs Avatar,
 - * superimposes a weight window mesh
 - * runs THREEDANT in adjoint mode
 - * constructs weight windows from adjoint solution
 - * runs MCNP
- User has option to intervene

The Adjoint Flux

- In adjoint calculation, particles emanate from forward detectors and transport backwards.
- Can be calculated two ways
 - Stochastically with MC
 - * provides too much detail and costs just as much as a forward calculation.
 - Deterministically with discrete ordinates transport or diffusion
 - * with low resolution gives importances sufficient to speed up calculation.

AVATAR.

- Mesh Description
 - Can be in rectangular or cylindrical coordinate system
 - Coarse mesh with fine mesh intervals.
 - * Material of each mesh element is material at center of mesh element.
- Automatic Mesh Generation
 - Bounding box in each direction divided into coarse elements.
 - * Uniform mesh = dividing boundary box uniformly in each direction
 - * Smart mesh = subdividing boundary box into smaller boundary boxes that bound each MCNP cell
 - · Justine defaults to smart mesh.
 - Coarse mesh may be subdivided uniformly or logarithmically into fine meshes
 - * defuaults to uniform, which is also slightly faster.
 - User can intervene and add or delete mesh lines.
- Determinstic Adjoint Calculation
 - Executed with THREEDANTperforms deterministic discrete-ordinates transport calculation
 - * AVATAR executes a lower resolution calculation with threedant.
 - · quadrature of S4
 - · P2 legendre scattering moment expansion
 - \cdot three energy groups
 - Produces a scalar adjoint flux and average current for
 - * each mesh element
 - * each energy group.
- Weight Windows
 - In each mesh element and each group, the scalar adjoint fluxes are inverted to get lower WW boundary.
 - * WW is normalized
 - * Regions with high flux = high importance = low weight.

- $\bullet\,$ Angle-Dependent Weight Windows
- Mean Free Path Sampling
 - Particles may arrive in a location where their weights are significantly outside of the local weight window, which increases the variance in particle weights, which increases the tally variance.
 - Avatar protects against this by applying weight windows at least every mean free path that the particles travel.