AEEM 3042 – Integrated Aircraft Engineering

Block 2b Material Review

Steady Climbing Flight

$$\sin \theta = \frac{T-D}{W} \longrightarrow V \sin \theta = \frac{(T-D)V}{W} = R/C$$
for R/C > 0 $T > D$

$$\cos \theta = \frac{L}{W} \longrightarrow L = W \cos \theta \quad \boxed{L < T}$$

Steady Climbing Flight

$$V \sin \theta = \frac{(T-D) V}{W} = R/C$$

$$(T - D) V = T V - D V = Excess Power$$

$$\frac{(T-D) V}{W}$$
 = Specific Excess Power = R/C

Specific Excess Power

$$\frac{(T-D) V}{W} = \frac{dh}{dt} + \frac{V}{g} \frac{dV}{dt} = P_s$$

$$\frac{(T-D) V}{W} = \frac{dh}{dt} + \frac{V}{g} \frac{dV}{dt}$$

Rate of Climb

Climbing Flight

Minimum Time to Climb

Easier Method – assume linear R/C_{max} vs Altitude

Calculate the maximum Rate of Climb at Sea Level Calculate the maximum Rate of Climb at 30,000 ft Calculate the average Rate of Climb

Minimum Time to Climb

Easier Method

$$\mathbf{t_{min}} = \frac{\Delta \mathbf{h}}{(\mathbf{R/C})_{avg}}$$

At Sea Level: $(R/C)_{max} = 179.8 \text{ ft/sec}$ At 30,000 ft: $(R/C)_{max} = 111.0 \text{ ft/sec}$

$$t_{min} = \frac{(30,000-0)}{(179.8+111.0)/2}$$

$$t_{min} = 206.3 \text{ sec} = 3.44 \text{ min}$$

What about fuel and distance?

Fuel to Climb

Easier Method

$$\mathbf{w}_{fuel} = \dot{\mathbf{w}}_{avg} \Delta \mathbf{t}$$

At Sea Level: $\dot{w} = 10.0028$ lb/sec

At 30,000 ft: $\dot{w} = 5.5454$ lb/sec

$$w_{fuel} = \frac{(10.0028 + 5.5454)}{2}$$
 206.3

$$w_{fuel} = 1,603.8 lb$$

Distance to Climb

Easier Method

$$\mathbf{s} = \mathbf{V}_{\mathbf{avg}} \Delta \mathbf{t}$$

At Sea Level: V = 747.3 ft/sec At 30,000 ft: V = 932.2 ft/sec

$$s = \frac{(747.3+932.2)}{2}$$
 206.3

$$s = 173,240 \text{ ft} = 28.51 \text{ NM}$$

Climb Summary

$$t_{min} = \frac{\Delta \, h}{(R/C)_{avg}} \qquad w_{fuel} = \dot{w}_{avg} \, \, \Delta \, t \qquad s = V_{avg} \, \, \Delta \, t \label{eq:tmin}$$

Sea Level			30,000 ft		
R/C	FFR	Velocity	R/C	FFR	Velocity
(ft/sec)	(lb/sec)	(ft/sec)	(ft/sec)	(lb/sec)	(ft/sec)
179.8	10.0028	747.3	111.0	5.5454	932.2

Time	Fuel	Distance
3.44 min	1,603.8 lb	28.51 NM

Steady Gliding Flight

$$\sin \theta = \frac{D - y}{W}^{0} \longrightarrow V \sin \theta = \frac{D V}{W} = R/D$$

$$\cos \theta = \frac{L}{W} \longrightarrow L = W \cos \theta$$

$$\tan \theta = \frac{D - T'}{L} = \frac{1 - (T'_D)}{(L'_D)} = \frac{1}{(L'_D)}$$

Time to Descend

Easier Method – assume linear Minimum Glide Angle vs Altitude

Calculate the Minimum Glide Angle and Velocity at Sea Level Calculate the Minimum Glide Angle and Velocity at 30,000 ft Calculate the average Glide Angle, average Velocity, and R/D

Time to Descend

$$\mathbf{t_{\theta min}} = \frac{\Delta \mathbf{h}}{(\mathbf{R}/\mathbf{D})_{avg}}$$

At Sea Level:
$$\theta_{min} = 3.96^{\circ}$$
 $V_{\theta_{min}} = 385.1$ ft/sec R/D = 26.7 ft/sec

At 30,000 ft:
$$\theta_{min} = 3.96^{\circ}$$
 $V_{\theta_{min}} = 631.0$ ft/sec R/D = 43.6 ft/sec

$$t_{\theta min} = \frac{(30,000\,-0)}{(43.6+26.7)/2}$$

$$t_{\theta min} = 853.5 \text{ sec} = 14.22 \text{ min}$$

Fuel to Descend

Easier Method – assume linear Fuel Flow vs Altitude

Since this is "gliding flight" T = 0 and FFR = 0

Distance to Descend

Easier Method – assume linear Glide Angle vs Altitude

$$R = 433,013 \text{ ft} = 71.26 \text{ NM}$$

Descent Summary

$$\mathbf{t_{\theta min}} = \frac{\Delta \mathbf{h}}{(\mathbf{R}/\mathbf{D})_{avg}}$$

$$w_{fuel} = 0$$

$$R = \frac{h}{\tan \theta_{\min}}$$

Sea Level				30,000 ft	
θ_{min} Velocity R/D			θ_{min} Velocity R/D		
(deg)	(ft/sec)	(ft/sec)	(deg)	(ft/sec)	(ft/sec)
3.96	385.1	26.7	3.96	631.0	43.6

Time	Fuel	Distance
14.22 min	0.0 lb	71.26 NM

Specific Excess Power

$$\frac{(T-D) V}{W} = \frac{dh}{dt} + \frac{V}{g} \frac{dV}{dt} = P_s$$

$$\frac{(T-D) V}{W} = \frac{dh}{dt} + \frac{V}{g} \frac{dV}{dt}$$

Level Acceleration

Acceleration capability

Time to Accelerate

Easier Method

$$\mathbf{t_{accel}} = \frac{\Delta \mathbf{V}}{(\dot{\mathbf{V}})_{avg}}$$

At 20,000 ft & 518.4 ft/sec: $\dot{V} = 6.1366$ ft/sec²

At 20,000 ft & 829.5 ft/sec: $\dot{V} = 5.1774$ ft/sec²

$$t_{accel} = \frac{(829.5 - 518.4)}{(5.1774 + 6.1366)/2}$$

$$t_{accel} = 55.0 \text{ sec} = 0.92 \text{ min}$$

What about fuel and distance?

Fuel to Accelerate

$$\mathbf{w}_{\mathbf{fuel}} = \dot{\mathbf{w}}_{\mathbf{avg}} \Delta \mathbf{t}$$

At
$$V_1$$
 (518.4 ft/sec): $\dot{w} = 6.8559$ lb/sec
At V_2 (829.5 ft/sec): $\dot{w} = 6.8559$ lb/sec

$$w_{fuel} = \frac{(6.8559 + 6.8559)}{2}$$
 55.0

$$w_{fuel} = 377.1 lb$$

Distance to Accelerate

$$s = V_{avg} \Delta t$$

$$s = \frac{(518.4 + 829.5)}{2} \quad 55.0$$

$$s = 37,067 \text{ ft} = 6.10 \text{ NM}$$

Acceleration Summary

$$t_{accel} = \frac{\Delta V}{(\dot{V})_{avg}} \qquad w_{fuel} = \dot{w}_{avg} \ \Delta t \qquad s = V_{avg} \ \Delta t$$

0.50 M / 20,000 ft			8.0	0 M / 20,00	0 ft
V FFR Velocity			V	FFR	Velocity
(ft/sec ²)	(lb/sec)	(ft/sec)	(ft/sec ²)	(lb/sec)	(ft/sec)
6.1366 6.8559 518.4		5.1811	6.8559	9 829.5	

Time	Fuel	Distance
55.0 sec	377.1 lb	6.10 NM

Specific Excess Power

$$\frac{(T-D) V}{W} = \frac{dh}{dt} + \frac{V}{g} \frac{dV}{dt} = P_s$$

$$\frac{(T-D) V}{W} = \frac{dh}{dt} + \frac{V}{g} \frac{dV}{dt}$$

Level Acceleration

Acceleration capability

Time to Accelerate

Easier Method

$$\mathbf{t_{accel}} = \frac{\Delta \mathbf{V}}{(\dot{\mathbf{V}})_{avg}}$$

At 20,000 ft & 518.4 ft/sec: $\dot{V} = 6.1366$ ft/sec²

At 20,000 ft & 829.5 ft/sec: $\dot{V} = 5.1774$ ft/sec²

$$t_{accel} = \frac{(829.5 - 518.4)}{(5.1774 + 6.1366)/2}$$

$$t_{accel} = 55.0 \text{ sec} = 0.92 \text{ min}$$

What about fuel and distance?

Fuel to Accelerate

$$\mathbf{w}_{\mathbf{fuel}} = \dot{\mathbf{w}}_{\mathbf{avg}} \Delta \mathbf{t}$$

At
$$V_1$$
 (518.4 ft/sec): $\dot{w} = 6.8559$ lb/sec
At V_2 (829.5 ft/sec): $\dot{w} = 6.8559$ lb/sec

$$w_{fuel} = \frac{(6.8559 + 6.8559)}{2}$$
 55.0

$$w_{fuel} = 377.1 lb$$

Distance to Accelerate

$$s = V_{avg} \Delta t$$

$$s = \frac{(518.4 + 829.5)}{2} \quad 55.0$$

$$s = 37,067 \text{ ft} = 6.10 \text{ NM}$$

Acceleration Summary

$$t_{accel} = \frac{\Delta V}{(\dot{V})_{avg}} \qquad w_{fuel} = \dot{w}_{avg} \ \Delta t \qquad s = V_{avg} \ \Delta t$$

0.50 M / 20,000 ft			8.0	0 M / 20,00	0 ft
V FFR Velocity			V	FFR	Velocity
(ft/sec ²)	(lb/sec)	(ft/sec)	(ft/sec ²)	(lb/sec)	(ft/sec)
6.1366 6.8559 518.4		5.1811	6.8559	9 829.5	

Time	Fuel	Distance
55.0 sec	377.1 lb	6.10 NM

Time to Decelerate

Easier Method

$$\mathbf{t_{decel}} = \frac{\Delta \mathbf{V}}{(\dot{\mathbf{V}})_{avg}}$$

At 20,000 ft & 829.5 ft/sec: $\dot{V} = -3.1902$ ft/sec²

At 20,000 ft & 518.4 ft/sec: $\dot{V} = -2.2310 \text{ ft/sec}^2$

$$t_{decel} = \frac{(518.4 - 829.5)}{(-3.1902 - 2.2310)/2}$$

$$t_{decel} = 114.8 \text{ sec} = 1.91 \text{ min}$$

What about fuel and distance?

Fuel to Decelerate

Easier Method – assume linear Fuel Flow vs Velocity

Since this is "decelerating flight" T = 0 and FFR = 0

Distance to Decelerate

$$\mathbf{s} = \mathbf{V}_{\mathbf{avg}} \Delta \mathbf{t}$$

$$s = \frac{(518.4 + 829.5)}{2} \quad 114.8$$

$$s = 77,369 \text{ ft} = 12.73 \text{ NM}$$

Deceleration Summary

$$\mathbf{t}_{accel} = \frac{\Delta \mathbf{V}}{(\dot{\mathbf{V}})_{avg}}$$

$$w_{fuel} = 0$$
 $s = V_{avg} \Delta t$

0.80 M / 20,000 ft			0.5	0 M / 20,00	0 ft
V FFR Velocity			V	FFR	Velocity
(ft/sec ²)	(lb/sec)	(ft/sec)	(ft/sec ²)	(lb/sec)	(ft/sec)
-3.1902 0.0 829.5		-2.2310	0.0	518.4	

Time	Fuel	Distance
114.8 sec	0 lb	12.73 NM

Level Turning Flight

FORCES IN A STEADY LEVEL TURN

¥ Figure 6.1

Lift acts perpendicular to the Free Stream Velocity
Lift acts perpendicular the wing surface
Drag acts parallel to the Free Stream Velocity
Weight acts vertically towards the ground
Thrust is fixed in the aircraft

Bank angle ϕ

Load factor n

$$\Sigma F_z = L \cos \phi - W = 0$$

$$\cos \phi = \frac{W}{L}$$
 $n = \frac{L}{W}$

$$\phi = \arccos\left(\frac{1}{n}\right)$$
UNIVERSITY

Level Turning Flight

Turn Radius:
$$R = \frac{mV^2}{L \sin \phi} = \frac{V^2}{g \sqrt{n^2 - 1}}$$
 (tightest turn)

Turn Rate:
$$\omega = \frac{V}{R} = \frac{g\sqrt{n^2-1}}{V}$$
 (quickest turn)

To minimize turn radius for tightest turn and to maximize turn rate for quickest turn:

Highest possible load factor Lowest possible velocity

Level Turning Flight

Bank Angle φ
Load Factor n

Turn Radius R

Turn Angle ψ

Turn Rate $\omega = d\psi/dt$

Sustained Turn – turning while maintaining the same velocity and altitude

$$P_s = 0$$

Sustained Corner Velocity – speed for highest turn rate while maintaining velocity and altitude

Instantaneous Turn – turning and not maintaining the same velocity and altitude

$$P_s \neq 0$$

Corner Velocity – speed for highest turn rate

Sustained Turn

Sustained Turn – turning while maintaining the same velocity and altitude

$$P_s = 0$$

$$(n_{max})_{sust} = \sqrt{\frac{q}{K\left(W/S\right)}} \left[\frac{T}{W} - \frac{q \ C_{D_0}}{(W/S)} \right] = \left(\frac{T}{W} \right) \left(\frac{L}{D} \right)_{max}$$

$$V_{(n_{\text{max}})_{\text{sust}}} = \left(\frac{2}{\rho} \sqrt{\frac{K}{C_{D_0}}} \frac{n W}{S}\right)^{1/2}$$

Instantaneous Turn

Maneuver Diagram

Maneuver Calculations

Corner Velocity

$$V_{corner} = \sqrt{\frac{2 n_{max} (W/S)}{\rho C_{L_{max}}}}$$

CD0	0.0150	Wt	73,000	lb	CLmax	1.20	
К	0.08	Alt	0	ft	Vmax	1.14	Mach
Thrust	27,700	QMS	1481.4	lb/sqft	Max g	4.5	g's
W/S	76.84	rho	0.00237688	slugs/ft^3			
T/W	0.3795	а	1116.45	ft/sec			
		S	950	sq ft			
Maximum	Turn Rate &	Minimum T	urn Radius				
Corner Velo	city	492.4	ft/sec				
		0.4410	Mach				
Max Turn Ra	ite	16.43	deg/sec				
Min Turn Ra	dius	1718	ft				

Turn Rate

$$\omega = \frac{g\,\sqrt{n^2-1}}{V}$$

Turn Radius

$$R = \frac{V^2}{g\sqrt{n^2 - 1}}$$

$$R = \mu_r (W - L)$$

 μ_r = coefficient of rolling friction

$$0.02 < \mu_r < 0.08$$

Rotation Speed > 1.05 V_{stall}

> 1.10 V_{stall}

Obstacle Speed > 1.20 V_{stall}

$$V_{stall} = \sqrt{\frac{2 W}{\rho S C_{L_{max}}}}$$

$$V_{rot} = 1.05 V_{stall}$$

$$s_{g} = \frac{V_{TO}^{2}}{2 a}$$

where a is the average acceleration during the ground run

$$\Sigma F_{x} = T - D - R = m \frac{dV}{dt}$$

$$a = \frac{dV}{dt} = \frac{T - D - R}{W/g}$$

where T, D, and R are calculated at $0.7 V_{TO}$

$$a = \frac{dV}{dt} = \frac{T - D - R}{W/g}$$

where T, D, and R are calculated at 0.7 V_{TO}

T = Thrust at 0.7 V_{TO} at takeoff altitude

D = Drag at 0.7
$$V_{TO}$$
 at takeoff altitude
= $(C_{D_0} + \Delta C_{D_0})$ (0.5 ρ (0.7 V_{TO})² S)

 ΔC_{D_0} includes gear drag and flap drag C_{D_L} and L are considered negligible

Critical Field Length

In the event of the loss of an engine during ground roll Decision point at Critical Engine Failure Speed Decide whether to continue takeoff or abort takeoff

Only for multi-engine aircraft

Landing

Figure 6.17 The landing path and landing distance.

Landing

Approach
Speed V_{app}
> 1.20 V_{stall}

Commercial > 1.30 V_{stall}

Touchdown Speed V_{TD} > 1.10 V_{stall}

Commercial > 1.15 V_{stall}

Landing – Transition

$$S_{TR} = \left[\left(\frac{V_{TD} + V_{TR}}{2} \right) - V_W \right] \Delta t_{TR}$$

Approximate by assuming 3 seconds to rotate the nose gear to the runway and deploy deceleration devices

$$S_{TR} = 3V_{TD}$$

V_{TD} – Touchdown Velocity

V_{TR} – Transition Velocity

V_W – Wind Velocity

Landing – Ground

$$S_{Brake} = -\frac{(V_{TD} - V_W)^2}{2g\left(T/_W - \mu\right)}$$

$$0.12 < \mu_b < 0.38$$

V_{TD} – Touchdown VelocityV_w – Wind Velocity

For zero thrust and no wind

$$s_{brake} = \frac{V_{TD}^2}{2 g \mu}$$

$$s_g = s_{TR} + s_{brake}$$

AEEM 3042 – Aircraft Performance & Design

Course Exams

Will be done online via Canvas:

Exam #1 – Thursday, January 27 at 2:00 pm ET Exam #2a – Tuesday, February 17 at 2:00 pm ET

Exam #2b - Thursday, March 10 at 2:00 pm ET

Start the exam between 2:00 and 2:15 pm ET

You will have 100 minutes to complete the exam

Allowable resources include your notes, calculator, lecture slides, reference materials, spreadsheets

Academic Integrity = no help from other students!!

Questions are randomly selected

Exam will be graded automatically

Students will know their exam grade immediately after submitting

Questions during the exam should be e-mailed to the instructor

AEEM 3042 – Aircraft Performance & Design

Course Exam Tips

Be ready to take this exam!

There are 15 questions to answer (~100 points each):

- True / False

- Multiple Choice

- Matching

- Numerical values

Answers do not depend on any previous calculations, which means that there is no partial credit

You can answer the questions in any order

You can review any of the questions at any time

Do not hit the "Submit" button until you have finished

Questions?