Tien Do

Email: doxxx104 at umn dot edu Website: https://tien-d.github.io

EDUCATION

University of Minnesota, Twin Cities

Ph.D. in Computer Science

Minneapolis, MN

Expected July. 2022

University of Minnesota, Twin Cities

Bachelor in Electrical Engineering, with distinction

Minneapolis, MN

June 2015

Professional Experience

MARS lab, University of Minnesota, Twin Cities

Research Assistant

Minneapolis, MN Sep. 2015 - Present

Redmond, WA

Microsoft Hololens

Research Internship

Jun. 2021 - Sep. 2021

Google Daydream

Adecco Visual Inertial Navigation System Engineer (Contractor)

Mountain View, CA Jul. 2018 - Sep. 2018

MARS lab, University of Minnesota, Twin Cities

Undergraduate Research Assistant

Minneapolis, MN Feb. 2014 - Aug. 2015

RESEARCH EXPERIENCE

Objects reconstruction from unscripted Inertial-RGB-D egocentric data

May. 2021 - Present

- Created a device to collect a large scale egocentric IMU-RGB-D data.
- Reconstructed camera poses, scene layouts, and objects' shapes and poses from large scale IMU-RGB-D data.
- Project website: z.umn.edu/ideaDC

Learning to Detect Scene Landmarks for Camera Localization

Jun. 2021 - Nov. 2021

- Designed a novel training pipeline for camera localization by detecting semantic scene landmarks (both visible and non-visible) with sub-pixel accuracy.
- Achieved the state-of-the-art results for learned camera localization on the proposed Indoor-6 dataset.
- Publication: [C8]

Egocentric Scene Understanding via Multimodal Spatial Rectifier

Nov. 2020 - May. 2021

- An simple extension of the spatial rectifier [C4].
- Publication: [C7]

Depth Estimation from Optical Flow with Uncertainty Prediction

May. 2020 - Nov. 2020

- Designed an iterative neural network to refine a dense depth and its uncertainty of an indoor scene from a dense optical flow and triangulation.
- Publication: [C6].

Depth Completion (Indoor Structures) from Visual-Inertial SLAM

Sep. 2019 - Apr. 2020

- Designed a deep neural network to predict a dense depth from a VI-SLAM point cloud, which is noisy and sparse, by leveraging constrains between depth and surface normal on indoor planar surfaces.
- Publication: [C5].

Surface Normal Estimation for Tilted Images using Spatial Rectifier

Jan. 2019 - Mar. 2020

- Designed a spatial rectifier to improve a surface normal estimation network's performance under extreme viewpoint discrepancies, between a hand-held (training) and body/robot-mounted (testing) images.
- Designed a robust loss function and an efficient network architecture that are suitable for estimating directional (surface normal) data.
- Publication: [C4].

Gyro-less 3DOF Tracking for Mobile device

Apr. 2018 - Dec. 2018

- Designed a resources aware algorithm that can track 3DOF using camera and accelerometer for low-end commercial Android devices that are not equipped with gyroscope.
- Analyzed the camera-accelerometer system's observability.
- Publication: [C3].

Dynamically Feasible Motion Planning for Quadrotors

Sep. 2016 - Apr. 2018

- Developed and analyzed the closed-form solution for a boundary value problem capturing the quadrotor's kinematics using differential flatness.
- Integrated the closed-form motion primitives to an efficient sampling-based motion planning for quadrotor in simulated environments.

Optimal Visual Information Selection

Sep. 2016 - Apr. 2018

- Designed a convex relaxation algorithm to select a suboptimal set of visual measurements for precise 6DOF pose estimation and proved its suboptimal bounds.
- Designed simulations to illustrate the algorithm's performance against greedy-based algorithms.

Dual Cameras Quadrotor Navigation

Sep. 2015 - Aug. 2016

- Designed an algorithm for fusing inertial information and measurements from 2 decoupled forward- and downward-pointing cameras.
- Designed a resources-allocation for visual measurements between 2 cameras with different pointing directions.
- Integrated the above algorithms into a commercial-grade quadrotor Bebop.
- Publication: [C2].

Autonomous Navigation through Image-defined Paths

Aug. 2014 - Aug. 2015

- Designed a topological-map-based autonomous navigation system for a quadrotor.
- Achieved real-time navigations through many challenging environments on a commercial-grade quadrotor Bebop with its own sensors (camera, IMU, ultrasonic).
- Publications: [J1], [C1].

PUBLICATIONS

Journal Articles

[J1]. <u>Tien Do</u>, Luis C. Carrillo-Arce, and Stergios I. Roumeliotis, "High-Speed Autonomous Quadrotor Navigation through Visual and Inertial Paths". International Journal of Robotics Research (IJRR), 2019.

Conference Papers

- [C8]. <u>Tien Do</u>, Ondrej Miksik, Joseph DeGol, Hyun Soo Park, and Sudipta N. Sinha, "Learning to Detect Scene Landmarks for Camera Localization". IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022, [Oral Presentation]
- [C7]. <u>Tien Do</u>, Khiem Vuong, and Hyun Soo Park, "Egocentric Scene Understanding via Multimodal Spatial Rectifier". IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022, [Oral Presentation]
- [C6]. Tong Ke, <u>Tien Do</u>, Khiem Vuong, Kourosh Sartipi, and Stergios I. Roumeliotis, "Deep Multi-view Depth Estimation with Predicted Uncertainty". International Conference on Robotics and Automation (ICRA), 2021.
- [C5]. Kourosh Sartipi, <u>Tien Do</u>, Tong Ke, Khiem Vuong, and Stergios I. Roumeliotis, "Deep Depth Estimation from Visual-Inertial SLAM". International Conference on Intelligent Robots and Systems (IROS), 2020.
- [C4]. <u>Tien Do</u>, Khiem Vuong, Stergios I. Roumeliotis, and Hyun Soo Park, "Surface Normal Estimation of Tilted Images via Spatial Rectifier". European Conference on Computer Vision (ECCV), 2020, [Spotlight Presentation].
- [C3]. <u>Tien Do</u>, Leo Neira, Yang Yang, and Stergios I. Roumeliotis, "Attitude Tracking from a Camera and an Accelerometer on Gyro-less Devices". International Symposium on Robotics Research (ISRR), 2019.
- [C2]. Kejian J. Wu, <u>Tien Do</u>, Luis C. Carrillo-Arce, and Stergios I. Roumeliotis, "On the VINS resource-allocation problem for a dual-camera, small-size quadrotor". International Symposium on Experimental Robotics (ISER), 2016.
- [C1]. <u>Tien Do</u>, Luis C. Carrillo-Arce, and Stergios I. Roumeliotis, "Autonomous flights through image-defined paths". International Symposium on Robotics Research (ISRR), 2015, [Invited to IJRR Special Issues].

Selected Coursework

Computer Science

- Machine Learning, Professor Banerjee Arindam
- Computer Graphics, Animation and Planning in Games, Professor Stephen Guy
- Sensing and Estimation in Robotics, Professor Stergios Roumeliotis
- Computational Aspects of Matrix Theory, Professor Yousef Saad
- Sparse Matrix Computations, Professor Yousef Saad

Aerospace Engineering

- Convex Optimization methods in Control Theory, Professor Peter Seiler
- Intermediate Dynamics, Professor Richard Linares

• Advanced Dynamics, Professor Yohannes Ketema

Electrical Engineering

- Optimization Theory, Professor Tom Luo
- Detection and Estimation Theory, Professor Georgios Giannakis
- Robust control, Professor Tryphon Georgiou
- Linear System Theory, Professor Murti Salapaka

TECHNICAL SKILLS

Computer skills

- Programming language: Assembly, C/C++, Matlab, Python.
- Operating system: Ubuntu, Windows.
- Software libraries: Open CV, Open GL, Open3D, Bullet Physics Engine, PyTorch, TensorFlow.