Math 244 Sample Midterm 2 Questions

1. Solve
$$y'' - 3y' + y = x + \sin x$$
.

- **2.** Solve the initial value problem $\begin{cases} x^2y'' + xy' 4y = x^3 \\ y(1) = 1/5, \\ y'(1) = 1. \end{cases}$
- **3.** Solve $\begin{cases} (1+x^2)y' + y = 1, \\ y(0) = 0. \end{cases}$
- **4.** Let $A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{bmatrix}$. Find a matrix S and a diagonal matrix D such that $A = SDS^{-1}$ or state why this is impossible.
- **5.** Give an example of a matrix A with eigenvalue/eigenvector pairs 2, $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and -3, $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$.
- **6.** Give an example of a square matrix A which is not diagonalizable.
- **7.** Find a differential equation with solutions x and $\sin x$ (among other possible solutions).
- **8.** Show that the solutions to a linear homogeneous differential equation form a subspace. (Note: We use this fact whenever we write all solutions as $C_1y_1 + C_2y_2$ where y_1, y_2 are linearly independent solutions to the differential equation.)
- **9.** Solve $xy'' + (2x+2)y' + (x+2)y = 2e^{-x}$ if one solution to xy'' + (2x+2)y' + (x+2)y = 0 is $y = e^{-x}$.
- **10.** Solve y''' + y' = 1.
- **11.** Give an example of a 3×3 matrix A which has eigenvalue 2 with corresponding eigenvector $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ and

has eigenvalue 1/3 with corresponding eigenvectors $s \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$.