













## Background Components of the Launch Stack



### Solid Rocket Boosters (SRB's)

- each generates ~ 3.3 million lbs of thrust
- 149 feet long and 12 feet in diameter
- primary steering control for initial 120 seconds of ascent

### External Fuel Tank

- 154 feet long and 28.6 feet in diameter
- 1.6 million lbs of liquid propellants
  - Oxygen Tank: 143,351 Gallons (1.38 million pounds)

## Background Components of the Launch Stack



### Solid Rocket Boosters (SRB's)

- each generates ~ 3.3 million lbs of thrust
- 149 feet long and 12 feet in diameter
- primary steering control for initial 120 seconds of ascent

### External Fuel Tank

- 154 feet long and 28.6 feet in diameter
- 1.6 million lbs of liquid propellants
  - Oxygen Tank: 143,351 Gallons (1.38 million pounds)
  - Hydrogen Tank: 385,265 Gallons (238,000 pounds)

*The External Tank is manufactured at NASA's Michoud Assembly Facility in New Orleans LA by Lockheed Martin Corporation*









**Background**  
*Components of the Launch Stack*



**Solid Rocket Boosters (SRB's)**

- each generates ~ 3.3 million lbs of thrust
- 149 feet long and 12 feet in diameter
- primary steering control for initial 120 seconds of ascent

**External Fuel Tank**

- 154 feet long and 28.6 feet in diameter
- 1.6 million lbs of liquid propellants
  - Oxygen Tank: 143,351 Gallons  
(1.38 million pounds)
  - Hydrogen Tank: 385,265 Gallons  
(238,000 pounds)

**Orbiter**

- 122 feet long and 57 feet high
- Each of the three main engines generate 375,000 to 470,000 lbs of thrust
- The main engines burn 750 and 280 gallons per second of Hydrogen and Oxygen respectively















## The Columbia Accident

*On January 16 2003, Columbia's leading edge was impacted by a piece of foam suspected to have separated from the external tank bipod ramp at 81 seconds into its launch.*

*Columbia was traveling at Mach 2.46, at an altitude of 65,860 feet. The foam was calculated to have hit the Orbiter at 700 – 800 feet per second*

Insulating Foam Separates from Bipod Ramp and Impacts Left Wing of Columbia



Insulating Foam Separates from Bipod Ramp and Impacts Left Wing of Columbia

Frame 4912





**... colossal disasters that do occur, are ultimately failures of design, but the lessons learned from those disasters can do more to advance engineering knowledge than all the successful machines and structures in the world...**

**Henry Petroski - To Engineer is Human**



*The Bipod Ramp*



*The Bipod Ramp*



*Redesign of the External Tank Bipod Ramp*



*Old Design*



*New Design*

## The Orbiter Leading Edges



## RCC Panels 6, 8 & 9 of Specific Interest



**Leading Edge Panel Used for Full Scale Tests**



## The Reconstruction Effort



## The Debris Hanger



**The Debris Hanger**



**The Debris Hanger**



**Reconstructing the Left Wing Leading Edges**





Reconstructing the Left Wing Leading Edges



### OMS Pod Shows Impact Damage and Thermal Distress



### Reconstructing the Left Wing Leading Edges



### Reconstructing the Left Wing Leading Edges



### Port Wing RCC Panels 5 - 10



### The NASA Glenn Ballistic Impact Lab



## The NASA Glenn Ballistic Impact Lab



## BX-250 External Tank Foam Characterization

### Ballistic Research Supporting the Accident Investigation

BX-250 External Tank Foam Characterization



High Speed Video of 90  
Degree Impacts



No Vacuum  
708 ft/sec

Vacuum  
693 ft/sec

### Ballistic Research Supporting the Accident Investigation

Dyna - explicit finite element impact analysis



Dyna Predicts 90 Degree  
Foam Impact on Load Cell

Dyna is an industry  
standard commercial finite  
element analysis code  
typically used to model  
impact events



06:14:55.006797

## Ballistic Research Supporting the Accident Investigation

Dyna - explicit finite element impact analysis

Dyna Predicts 23 Degree  
Foam Impact on Load Cell

15:01:47.181455



## Reinforced Carbon-Carbon Characterization

## Ballistic Research Supporting the Accident Investigation

Ballistic Impact Tests on RCC Coupons



## Ballistic Research Supporting the Accident Investigation

Ballistic Impact Tests on RCC Coupons



## Ballistic Research Supporting the Accident Investigation

Ballistic Impact Tests on RCC Coupons



RCC Coupon Shows No Damage After 397 ft/sec Foam Impact

## Ballistic Research Supporting the Accident Investigation

Ballistic Impact Tests on RCC Coupons



400 ft/second Impact



700 ft/second Impact

## Ballistic Research Supporting the Accident Investigation

Ballistic Impact Tests on RCC Coupons



Foam Fractures RCC coupon in half at 695 ft/sec

Full Scale Impact Analysis with LS Dyna

## Ballistic Research Supporting the Accident Investigation

Dyna - explicit finite element impact analysis

Full Scale Panel Analysis



## Ballistic Research Supporting the Accident Investigation

Dyna - explicit finite element impact analysis

43,000 Panel Shell Elements  
147,000 Foam Brick Elements



## Ballistic Research Supporting the Accident Investigation

Dyna - explicit finite element impact analysis



## Ballistic Research Supporting the Accident Investigation

Dyna - explicit finite element impact analysis

RCC 1., GFM 3., VEL=775F/S



Panel 6 Edge Impact Case

## Ballistic Research Supporting the Accident Investigation

Dyna - explicit finite element impact analysis



Panel 6 Edge Impact Case RCC Damage

## Orbiter Leading Edge Full Scale Tests

Tests conducted at Southwest Research Institute



## Orbiter Leading Edge Full Scale Tests



## Orbiter Leading Edge Full Scale Tests



Installation of internal high speed cameras

### Orbiter Leading Edge Full Scale Tests



Leading edge panels mounted after camera installation

### Orbiter Leading Edge Full Scale Tests



Phantom digital cameras  
set up inside of full scale  
test article

### Orbiter Leading Edge Full Scale Tests



High intensity lights required  
both in and outside of test  
article

### Orbiter Leading Edge Full Scale Tests



### Orbiter Leading Edge Full Scale Tests



External View of RCC Panel 8 Test

### Orbiter Leading Edge Full Scale Tests



Barrel View of RCC Panel 8 Test

### Orbiter Leading Edge Full Scale Tests



External View of RCC Panel 8 Test

### Orbiter Leading Edge Full Scale Tests



Internal View of  
RCC Panel 8 Test

## Orbiter Leading Edge Full Scale Tests



## Analysis Supporting Full Scale Tests

Dyna – explicit finite element impact analysis



## LS DYNA Analysis of Panel 8 Full-Scale Test

PANEL 8 STRIKE  
Time = 0



*Return to Flight*



## Ballistic Impact Research Supporting Return to Flight

Impact Studies on RCC for Model Validation

2 grams foam  
2054 ft/sec



2 grams foam  
2054 ft/sec

8 grams ice  
650 ft/sec



8 grams ice  
650 ft/sec

## Ballistic Impact Research Supporting Return to Flight

Impact Studies on RCC for Model Validation

2 grams foam  
2371 ft/sec



2 grams foam  
2371 ft/sec

8 grams ice  
858 ft/sec



8 grams ice  
858 ft/sec

## Ballistic Impact Research Supporting Return to Flight

Impact Studies on RCC for Model Validation



## Ballistic Impact Research Supporting Return to Flight

Post Impact Specimens Tested in JSC Arcjet



### Aramis Displacement Measurement System

Photogrammetric Technique Determines Full 3-D displacements



### Aramis Displacement Measurement System

Photogrammetric Technique Determines Full 3-D displacements



Point Displacement vs Time



Displacement Contour Plot

### Aramis Adapted to Full-Scale Wing Leading Edge Tests



### Aramis Adapted to Full-Scale Wing Leading Edge Tests



## Full-Scale Leading Edge Test Setup with Aramis at SwRI



## Aramis Data Validates LS DYNA Analysis Predictions

Full Field Displacements of Wing Leading Edge Impact Test



## Aramis Data Validates LS DYNA Analysis Predictions

Principle Strain Comparison to Bonded Gauges



Aramis Indicated  
2100-2700 Microstrain

Gauge Indicated 2100  
Microstrain

Note Much Higher  
Amplitude 2" From Gauge

## Ballistic Impact Research Supporting Return to Flight

RT 455 ablator impact at approximately 300 ft/sec



### Ballistic Impact Research Supporting Return to Flight

NCFI foam impact at approximately 800 ft/sec



### Ballistic Impact Research Supporting Return to Flight

Tile Repair Putty Material Impact Testing  
45 degree 1150 feet per second



### Ballistic Impact Research Supporting Return to Flight

Tile Gap Filler Material Impact Testing  
90 degree 648 feet per second



### Ballistic Impact Research Supporting Return to Flight

Tile Gap Filler Material Impact Testing  
45 degree 604 feet per second



## Ballistic Impact Research Supporting Return to Flight

Tile Repair Putty Material Impact Testing



## Ice Formations on External Tank



## Ice Research Supporting the Return to Flight

High Density Ice (no air bubbles entrained)



## Ice Research Supporting the Return to Flight

Identification of Ice Microstructure



## **Ice Research Supporting the Return to Flight**

### **Identification of Ice Microstructure**



Transverse thin section



Longitudinal thin section

## **Impact Testing of Ice**

Hard ice impact at approximately 800 ft/sec



## **Hadland Camera Captures Fracture Wave Propagation**

700 ft per second ice impact 280,000 frames per second



## **Cordin Camera Captures Fracture Wave Propagation**

600 ft per second ice impact at 480,000 frames per second



### **Ice Impact Testing on Full Scale Leading Edge**



### **External Tank Impact Testing**



### **Ballistic Impact Research Supporting Return to Flight**

External Tank Impact Test Article with Acreage Foam



## Orbiter Windows Impact Testing

### Orbiter Windows Testing at NASA GRC



### Ballistic Impact Research Supporting Return to Flight

NCFI Foam Impact Test on Orbiter Window



Rear View



Side View

### Ballistic Impact Research Supporting Return to Flight

NCFI Foam Impact Test on Orbiter Window



## Ballistic Impact Research Supporting Return to Flight

Particulates from Booster Separation Motors a Concern with Windows



## Ballistic Impact Research Supporting Return to Flight

Aluminum Oxide particles impact orbiter windows



70 degree, 127 ft/sec



90 degree 359 ft/sec



50 degree 118 ft/sec



## Long Range Tracking Site

35 mm  
with 360 inch lens





## Long Range Tracking Site

720p HD  
150" lens

35 mm  
with 360 inch lens

70 mm film  
100" lens





**Chase Plane Video of STS-114 Launch**

















**Not all work and No Play...**



**Discovery Returns**





**What's Next...**







001

Foam failure at LOX intertank flange which Initiated Investigation





Two beams constructed from scratch on site (in hangar G) to set up two stereo camera system mounts to Shuttle fixed service structure at the 215 foot level to view two separate areas of interest on the external tank.



Dot pattern checks out for use on the tank





Two beams constructed from scratch on site (in hangar G – Air Force side of KSC) to set up two stereo camera system mounts to Shuttle fixed service structure at the 215 foot level to view two separate areas of interest on the external tank.



Shuttle technicians applying paint dots to one area of interest on tank



Shuttle technicians applying paint dots to one area of interest on tank



Shuttle technicians applying paint dots to one area of interest on tank



Paint dots successfully applied to Lox Flange area of ET





Calibrated beams in Hangar G ready for truck transport to Pad



Calibrated beams reside at Pad ground level night before lift



0530 hrs - Morning of lift on day before tanking test







## Out-of-Plane Displacements



## Section lines on ET Panel 6



## Timeline Information



Requested Milestones are Shown in Gray  
Additional Milestone is Shown in Red  
(LO2 Fast Fill Complete Was Estimated at 14:50 on USA Chart)





