IF3055 - Manajemen I/O **Disk**

Henny Y. Zubir STEI - ITB

STEI-ITB/HY/Agt-08 IF3055 – Manajemen I/O

Page 1

Ikhtisar

- Struktur Disk
- Performansi
- Penjadwalan Lengan Disk
- Pengelolaan Disk
- Keandalan Disk

Struktur Disk (1)

- Geometri fisik suatu disk dengan 2 zona
- Kemungkinan geometri virtual untuk disk ini

STEI-ITB/HY/Agt-08 IF3055 – Manajemen I/O Page 3

Struktur Disk (2)

STEI-ITB/HY/Agt-08 IF3055 – Manajemen I/O Page 4

Struktur Disk (3)

• Struktur perekaman pada CD atau CD-ROM

STEI-ITB/HY/Agt-08 IF3055 – Manajemen I/O Page 5

Struktur Disk (4)

Layout data lojik pada CD-ROM

STEI-ITB/HY/Agt-08 IF3055 – Manajemen I/O

Page 6

Penjadwalan Lengan Disk (1)

- Efisiensi penggunaan disk meliputi:
 - waktu akses
 - bandwidth disk
- Waktu akses memiliki dua komponen utama:
 - Seek time: waktu yang diperlukan untuk menggerakkan head ke silinder yang berisi sektor yang diinginkan
 - Rotational latency: waktu tambahan yg dibutuhkan untuk menunggu disk memutar sektor yang diinginkan ke head
- Seek time mendominasi → minimalkan seek time
- Seek time ≈ seek distance
- **Bandwidth disk**: merupakan banyaknya byte yang ditransfer, dibagi dengan total waktu antara permintaan pertama layanan dan penyelesaian transfer terakhir

STEI-ITB/HY/Agt-08 IF3055 – Manajemen I/O Page 7

Penjadwalan Lengan Disk (2)

- Penjadwalan disk perlu dilakukan karena:
 - urutan cluster/blok yang dibaca mempengaruhi seek time → mempengaruhi kinerja I/O secara keseluruhan
 - pada sistem multiprogramming, permintaan pengaksesan disk lebih banyak daripada yang dapat dilayani
- Tujuan penjadwalan disk:
 - mengoptimalkan kinerja I/O
 - permintaan dilayani dengan urutan pergerakan mekanis yang minimum → meminimumkan pergerakan lengan disk (seek time)

• Pergerakan head sebanyak 66 silinder

STEI-ITB/HY/Agt-08 IF3055 – Manajemen I/O Page 9

Penjadwalan Lengan Disk: SSTF (1)

- Memilih request dengan seek time minimum dari posisi head saat ini
- Mirip dengan penjadwalan SJF → dapat menyebabkan starvation pada beberapa request
- Contoh pd hal 12: total pergerakan head 236 silinder

Penjadwalan Lengan Disk: SCAN (1)

- Lengan disk mulai dari salah satu ujung disk, dan bergerak ke arah ujung lainnya
 - Melayani request hingga sampai ke ujung lainnya dari disk
 - Pergerakan head kemudian berbalik, dan terus melayani permintaan
- Disebut juga algoritma elevator
- Contoh: total pergerakan head=208 silinder

Penjadwalan Lengan Disk: C-SCAN (1)

- Memberikan waktu tunggu yg lebih lebih sedikit variasinya dibandingkan dengan SCAN
- Head melayani request dengan berpindah dari satu ujung disk ke ujung lainnya. Jika telah mencapai ujung lainnya, head kembali ke awal disk tanpa melayani request dalam perjalanan kembalinya
- Menganggap silinder sebagai list sirkuler (terhubung langsung dari silinder terakhir ke silinder pertama)

Penjadwalan Lengan Disk: C-LOOK (1)

- Variasi dari C-SCAN
- Lengan disk hanya berpindah sejauh request terakhir pada tiap arah, dan kemudian langsung berbalik arah tanpa sampai ke ujung disk

Pemilihan Algoritma Penjadwalan

- · SSTF bersifat umum dan alami
- SCAN dan C-SCAN memberikan performansi lebih baik untuk sistem dengan akses ke disk sangat tinggi
- Performansi tergantung pada tipe dan banyaknya permintaan
- Request utk layanan disk dapat dipengaruhi oleh metode alokasi file
- Algoritma penjadwalan disk sebaiknya ditulis pada modul terpisah dari OS sehingga dapat diganti dgn algoritma lain jika perlu
- SSTF atau LOOK dapat menjadi algoritma default

Pengelolaan Disk: Formatting (1)

- Low-level formatting (physical formatting): membagi disk menjadi sektor sehingga dapat ditulis/dibaca oleh disk controller
 - mengisi disk dengan struktur data khusus untuk tiap sektor (header, data area, dan trailer)
 - Header dan trailer berisi informasi yang diperlukan oleh disk controller seperti ECC (Error-Correcting Code)
 - ECC digunakan untuk mengetahui bad sector

l	Preamble	Data	ECC	
---	----------	------	-----	--

2 Ptb

STEI-ITB/HY/Agt-08 IF3055 – Manajemen I/O

Page 19

Pengelolaan Disk: Formatting (2)

- Logical formatting: membuat struktur data yang diperlukan OS untuk menyimpan data (membuat file system)
 - Mempartisi disk menjadi beberapa kelompok silinder
- Program tertentu dapat menggunakan partisi disk sebagai array blok lojik tersendiri (bukan menggunakan struktur data sistem file)
 - Contoh: untuk keperluan basis data

Pengelolaan Disk: Formatting (3)

 Ilustrasi sayatan silinder

STEI-ITB/HY/Agt-08 IF3055 – Manajemen I/O Page 21

Pengelolaan Disk: Formatting (3)

- Disk drive dialamatkan sebagai array blok lojik 1dimensi yang berukuran besar, dimana blok lojik merupakan unit transfer terkecil
- Array blok lojik ini dipetakan menjadi sektor pada disk secara sekuensial
 - Sektor 0 merupakan sektor pertama dari track pertama pada silinder terluar
 - Pemetaan berlanjut terurut pada track → track pada silinder yang sama → silinder dari luar ke dalam

Pengelolaan Disk: Formatting (4)

- a. Tanpa interleaving
- b. Interleaving tunggal
- c. Interleaving ganda

STEI-ITB/HY/Agt-08 IF3055 – Manajemen I/O Page 23

Pengelolaan Disk: Boot Block

- Boot Block
 - Program **bootstrap** digunakan untuk menjalankan program awal pada saat komputer baru dinyalakan
 - Program bootstrap dapat disimpan di ROM, namun tidak fleksibel
 - Kebanyakan sistem menyimpan bootstrap loader di ROM, yang fungsinya hanya untuk membawa bootstrap program dari disk → program bootstrap lebih fleksibel
 - Program bootstrap disimpan di boot blocks, pada lokasi yang tetap pada disk (boot disk/system disk)

Pengelolaan Disk: Bad Blocks (1)

- Pada disk sederhana seperti IDE, bad block ditangani secara manual
- Program khusus (seperti chkdsk) dijalankan untuk memeriksa block yang rusak dan ditandai; data dalam bad block biasanya hilang
- Pada disk yang lebih rumit seperti SCSI, pemeriksaan bad block dilakukan secara periodik
- Controller dapat mengganti block yang rusak dengan block cadangan

STEI-ITB/HY/Agt-08 IF3055 – Manajemen I/O Page 25

Pengelolaan Disk: Bad Blocks (2)

- a) Suatu track disk yang memiliki bad sector
- b) Mengganti bad sector dengan sector cadangan
- c) Memindahkan semua sector untuk mem-bypass bad sector

Pengelolaan Disk: Swap Space

- Swap-space ruang disk yang digunakan oleh virtual memory sebagai ekstensi dari memori utama
- Swap-space dapat diambil dari sistem file biasa, atau yang lebih umum menggunakan partisi tersendiri
- Pengelolaan swap-space
 - 4.3BSD mengalokasikan swap space ketika proses mulai; menyimpan text segment (program) dan data segment
 - Kernel menggunakan swap maps untuk melacak penggunaan swap space
 - Solaris 2 mengalokasikan swap space hanya ketika page dipaksa keluar dari memori, bukan ketika page virtual memori pertama kali dibuat

STEI-ITB/HY/Agt-08 IF3055 – Manajemen I/O Page 27

Keandalan Disk

- Beberapa perbaikan dalam teknik penggunaan disk mencakup penggunaan beberapa disk yang saling bekerjasama
- Disk striping menggunakan sekelompok disk sebagai satu unit penyimpanan
- Skema RAID dapat meningkatkan performansi dan keandalan sistem penyimpanan dengan menyimpan data redundan
 - Mirroring atau shadowing untuk memelihara duplikat tiap disk
 - Block interleaved parity menggunakan lebih sedikit redundansi

