

포트폴리오 Al Researcher 김현우

Resume

Profile

Nov. 04. 1995 Daebang, Seoul, Korea khw11044@gmail.com

https://hueykim.github.io

Short Bio

시작을 두려워하지 않는 도전정신으로, 지금까지 끊임없이 도전하며 성장하였습니다. 새로운 분야도 저에게 주어졌다면, 책임을 다하여 최고의 성과를 도출하며, 적응력과 습득력을 보여주었습니다. 앞으로도 AI 기술로 더 나은 미래를 만들기 위해 도전하고 성장해 나가겠습니다.

Education

고 려내악교	인공시능약 석사 졸업
21.03 ~ 23.02	지도교수: 이성환
한성대학교	IT융합공학 학사 졸업
15.03 ~ 21.02	지도교수: 오희석
여의도고등학교	인문계 졸업
11.03 ~ 14.02	

Military Service

육군	수송다	
16.05 ~ 18.02	GOP 운전병	

Activities

애드인에듀& RO: XYZ&PinkLab 24.10~24.12	S2와 AI를 활용한 자율주행& 로봇팔 개발자 부트캠프
KT	KT AIVLE SCHOOL 5기
24.02 ~ 24.08	AI 트랙
인프런/멋쟁이사자처럼 20.12/23.08	온라인 강의 제작 및 런칭
학술동아리 샵인클루드	동아리 창설 및 회장
19.02 ~ 21.01	다양한 공모전 수상
중앙 댄스 동아리 NOD	행사 및 자체 공연
15.03 ~ 19.01	장착 댄스, 춤 교육

Skill Set

책임감과 협업 능력

지금까지 1 1개의 프로젝트를 서로 다른 9개의 팀과 수행하였으며, 2번의 기업과제 에서 팀원으로 9번의 공모전에서 팀리더로 수상을 이끌었습니다. 자기주도적 개발역량 이 있으며, 스스로 업무를 개척합니다. 저에게 주어진 업무는 책임을 지고 완성하 며, 최고의 성과를 이끌어 냅니다.

문제 해결 능력

창의적인 사고와 혁신적인 접근을 통해, 주어진 문제를 해결할 뿐만 아니라 더 큰 가치를 창출하는 실질적 성과 창출 능력이 있습니다. 팀리더로 프로젝트를 기획하여 첫 공모전에서 한번에 2개의 상을 수상하였 으며, 첫 논문을 ACCV에 제1 저자로 게재 하였습니다. LLM&RAG를 시작한지 한달 만에 수상 경험을 쌓았으며, 로봇분야 역시 44일만에 2개의 상을 수상하였습니다.

데이터 분석 및 처리 능력

AI 연구 및 개발에서 필수적인 데이터 분석 과 처리 능력은 고품질 AI 모델을 구축하는 데 핵심입니다. 방대한 양의 데이터를 수집 하고 전처리하며, 이를 바탕으로 통찰을 도출해내는 능력이 있습니다.

AI 모델 설계 및 구현 능력

효율적인 AI 모델을 설계하고 구현하는 능력은 AI 연구자로서 필수적입니다. 또한 기술 기획에 적합한 AI 모델을 찾아내고 개발 환경에 맞게 커스텀하고 적용할 수 있어야 합니다. 저는 VisionAI부터 LLM&RAG, 로봇까지 다양한 분야에서 필요한 AI 기술을 적용할 수 있는 능력이 있습니다.

Keywords

데이터 분석

대규모 데이터를 수집, 처리, 분석을 통해 AI 모델 개발에 필요한 Insight 도출 능력

AI 모델 최적화

서비스 구현을 위해 필요한 AI 분야를 서칭하고 개발 목표 및 환경에 맞게 적용하는 능력

AI 모델 설계

Tensorflow, Pytorch 프레임워크 를 활용해 AI 모델을 설계 및 학습하여 목표 성능을 달성하는 능력

AI 로봇 프로젝트를 위한 통신

로봇제어를 위해 ROS2를 사용할 수 있으며, AI 기능별 시스템을 분리하여 HTTP 또는 TCP/UDP 통신을 이용해 로봇 프로젝트를 설계할 수 있는 능력

배움의 자세

시작을 두려워하지 않는 도전정신과 배움의 자세로 다양한 분야의 AI 프로그래밍 개발을 통해 다양한 도메인의 개발 경험을 쌓으며 성장하는 능력

Portfolio

Research Achievements

Asian Conference on Computer Vision (ACCV 2022)

게재일: 2022.12 저자: 1/4 Impact Score: 5.7 오랄 발표 선정 논문

Cross-View Self-Fusion for Self-Supervised 3D Human Pose Estimation in the Wild

요약

3D Human Pose Estimation에 대해, 어떠한 3D annotation 없는 환경에서, Multi-camera calibration을 요구하지 않고 Multi-view 2D human pose를 이용한 Self-supervised Learning Method를 제안하였습니다. 이때, 핵심 Contribution은 추정한 Epipolar Lines을 이용한 2D human pose refine을 수행하는 Cross-view self-fusion module 입니다.

1. 2D poses 2. 3D rays 3. Rotated 3D rays 4. Epipolar lines 5. Fused heatmap

Process of cross-view self-fusion

Image GT Ours Baseline

Detected Heatmap

Comparison with Visual Results

(b) Examples of refined 2D poses for SkiPose

(a) Samples of heatmaps

Research Achievements

Pattern Recognition

게재일: 2024.01

저자: 1/7

Impact Score: 19.7

MHCanonNet: Multi-Hypothesis Canonical Lifting Network for Self-supervised 3D Human Pose Estimation in the wild Video

요약

3D Human Pose Estimation에 대해, 어떠한 3D annotation 없는 환경에서, Multi-camera calibration을 요구하지 않고 Multi-view 2D human pose를 이용한 Self-supervised Learning Method를 제안하였습니다. 이때, 핵심 Contribution은 Multi-Hypothesis와 Transformer 적용입니다.

Visualization of Canonical space and Hypotheses

Architecture of our proposed network

Overview of our self-supervised training framework

Qualitative results of our approach

Corporate Collaboration Projects

골프 트레이닝을 위한 인공지능 기반 골프 스윙 분석 알고리즘 개발

🗷 🖟 # HPE # Event Detection # Active learning

기 간: 2021.05~2021.10

발주처: ㈜브이씨

근무처: 고려대학교 패턴인식 및 머신러닝 연구실

목 표:

- 골프 스윙 영상에서 골프채를 포함한 관절점 추정 알고리즘 개발
- 골프 스윙 영상에서 주요 스윙 동작 프레임 탐지 알고리즘 개발
- 골프 스윙 영상에서 라벨링을 통한 데이터셋 구축

방 법:

- HRNet기반의 Scalable Pose Network 제안
- Blur augmentation과 Refinement Network 통한 Jitter 문제 개선
- SwingNet기반의 Pose-Guided SwingNet (PGSwingNet) 제안
- Active learning과 Auto-labeling을 통한 데이터셋 라벨링

결 과:

- 2D HPE: PCKh@0.5 기준 목표성능(85%) 성취(94.24%)
- Event Detection: PCE 기준 목표성능(75%) 성취(91.09%)
- Labeling: 3,096개의 비디오 중 2,000개의 비디오 선별 후 데이터셋 구축

정성적 평가

정량적 평가

Result of proposed method (%) Percentage of Correct Events (PCE)

Address	Take-back	Backswing	Тор	Downswing	Impact	Follow- through	Finish	Average PCE	Avg w/o AD & F
50.45	83.69	89.12	80.97	96.98	99.70	96.07	40.48	79.68	91.09

Annotation 작업 진행도

후속과제: 3차원 인체 관절점 위치 추정

작업 미완료

Corporate Collaboration Projects

중대형 공간용 초고해상도 비정형 플렌옵틱 동영상 저작/재생 플랫폼 기술 개발

ETRI # VOT # PlenOpic

기 간: 2020.07~2020.11

발주처: 한국전자통신연구원(ETRI)

근무처: 한성대학교 Visual Intelligence 연구실

목 표:

- 컬러 영상에 대한 2차원 혹은 3차원 객체 추적 기술 동향 파악
- 최적의 알고리즘을 선정하고 구현 및 플렌옵틱 영상에 적용
- 제공된 영상에 대해 Ground-Truth 데이터셋 구축

방 법:

- 프레임의 포커스 정보 기반 카메라 뷰 탐색 영역 제한
- 포컬 영역 별 최대 유사도 영역 추적
- 최대 유사도에 따라 카메라 뷰를 이동하여 객체 추정 진행

결 과:

- 기존 추론 방법 대비 3개의 데이터셋에 대해 IoU 평균 48.36p% 개선
- Tracking bounding box 라벨링을 통한 데이터셋 구축

Plenoptic images

Proposed VOT Inference Method

정성적 평가

정량적 평가

Ours

플렌옵틱 영상 이름	성능 지표 2D 영상 사용		플렌옵틱 영상 사용 (제안된 방법)
NonVideo4_0	Precision (거리)	71.85	3.37
	IoU (%)	20.13	83.04
NonVideo4_1	Precision (거리)	27.39	7.03
	IoU (%)	46.03	67.53
Video3	Precision (거리)	81.08	3.08
	IoU (%)	30.98	91.66

AI CADI: 모바일 로봇과 AI를 활용한 캐디 로봇

우수상 # 애드인에듀 #XYZ # ROS2 # SAM2 # HPE # DepthAnythingV2 # FastAPI

고객경험기반 맞춤형 RAG 활용 아이스크림 로봇 AI접수원 개발

은상 # 경기도지사상 #WCRC # XYZ # RAG # LLM Fine-Tunning # FastAPI

기 간: 2024.10~2024.11

목 표:

- Aris 아이스크림 로봇으로 아이스크림 제조
- Aris의 탄생 배경에 부합하기 위해 로봇과 교감하고 상호작용하는 주문 접수 방법 고안
- AI 주문 접수원 개발과 로봇 제어 (VLA)

방 법:

- Whisper를 이용한 음성인식
- Yolo를 이용한 객체탐지
- MediaPipe를 이용한 얼굴인식
- Image Retrival과 ChromaDB를 이용한 고객인식
- LLM Fine-Tunning과 RAG를 이용한 AI 주문접수원 개발
- UFactory xArm-Python-SDK를 이용한 로봇팔 제어

결 과:

• AI 주문 접수 시스템 개발, World Creative Robot Contest 은상 수상

LangGraph를 이용한 논문 리뷰 Al Agent 개발

RAG # LLM Fine-Tunning

기 간: 2024.09~2024.10

목 표:

• 어떤 분야보다 빠르게 발전하는 AI분야 논문을 빠르게 팔로업 하기 위해 논문을 빠르게 분석하고 핵심을 제공해주는 AI Agent 필요

방 법

- Al Agent가 논문을 제대로 파악하기 위해 Layout analysis 필요
- 각 Section 별 요약으로 전체 Paper 요약
- 각 Table, Figure에 대해 이해 할 수 있는 Agent 개발
- 이를 위해 LangGraph 사용

기술:

- Streamlit, Langchain, LangGraph
- Hybrid search, Reranker, LongContextReorder, Map-reduce

Portfolio

Projects

데이콘, 재정정보 AI 검색 알고리즘 경진대회

기 간: 2024.08~2024.09

목 표:

• '열린재정'의 중앙정부 재정 정보를 바탕으로 한 RAG 기반 Chatbot을 개발하여 재정 정보 질의응답에 대한 정확한 답변을 제공하는 알고리즘 구현

방 법:

- HuggingFace, Unsloth을 이용한 LLM 파인튜닝 및 양자화
- Langchain, Hybrid search, Reranker, LongContextReorder 从8
- 문서에서 올바른 정보 추출을 위한 Document Layout Recognition

결 과:

359개의 팀 중 5위 달성

대회 리더보드

기술 흐름도

Ablation Experiment results

Reranker	Reorder	Prompt	Average F1
Х	X	Х	0.62
✓	X	Х	0.67
Х	✓	Х	0.67
1	√	1	0.74

Portfolio

Projects

LoGo, 해외진출을 희망하는 대한민국 스타트업을 위한 정보 검색 서비스

우수상 # KT #KOTRA # RAG # RAGAS # AirFlow # FastAPI

미소 인공지능 모델 개발 챌린지

대상 #(주)미소정보기술 # 과학기술정보통신부 # 한국지능정보사회진흥원 # I3D # Action Recognition

기 간: 2021.11~2021.12

목 표:

• '인공지능 학습용 데이터 구축 사업' 영유아 행동 영상 데이터를 통해 영유아 발달 장애 예측 모델 개발

방 법:

- 영유아 크기에 맞는 2D Human Pose Estimator를 얻기 위해 제공된 데이터로 훈련
- Action Recognition을 위해 I3D 모델을 사용

결 과:

• 231개의 영상 중 229개 예측 성공, 대상(1등) 수상 및 기사화

2D Human Pose estimation을 위한 구성도

Projects **Output Description Output Description Descr**

은상 #동상 # 동상 # 2020공개SW개발자대회 # 과학기술정보통신부 # 한국지능정보사회진흥원 # SSD # ObjectDetection # Flask # Pygt

기 간: 2020.01~2020.11

목 표:

- '드론비행금지구역의 영공'을 카메라를 통해 로봇이 실시간 모니터링하고 드론이 나타날 시 이를 감지하고 위치와 시간, 사진을 컨트롤센터에 전송 기능을 갖춘 시스템 개발
- '드론 탐지'와 '실시간 모니터링' 과 '알람 서비스', '즉각 반응'이 가능한 로봇을 드론비행 금 지구역(원전시설, 군사시설 등과 같은)에 배치하여 해당 지역을 지킨다

방 법:

- 라즈베리파이에 Object Detection을 수행하기 위해 Google Coral TPU를 사용한 On-Device
- Flask와 Android를 이용해 실시간 모니터링 수행
- 3D 프린터를 사용해 Turret 구조 구현

결 과:

• 하나의 프로젝트로 3개의 대회에서 수상

Web UI

APP UI

Thank You

**** 01072361195

khw11044@gmail.com

https://hueykim.github.io