# Turing Machines

Invented by Alan Turing in 1936.

A simple mathematical model of a general purpose computer.

It is capable of performing any calculation which can be performed by any computing machine.

## The Language Hierarchy





 $a^n b^n c^n$ 

WW

Context-Free Languages

 $a^n b^n$ 

Regular Languages

 $a^*$   $a^*b^*$  Finite

## A Turing Machine

### Tape



#### Read-Write head

#### Control Unit



## The Tape

No boundaries -- infinite length



Read-Write head

The head moves Left or Right



#### Read-Write head

### The head at each time step:

- 1. Reads a symbol
- 2. Writes a symbol
- 3. Moves Left or Right

#### Example:

Time 0



Time 1



- 1. Reads a
- 2. Writes k
- 3. Moves Left

#### Time 1



#### Time 2



- 1. Reads b
- 2. Writes f
- 3. Moves Right

## The Input String



Are treated as left and right brackets for the input written on the tape.

### States & Transitions





### Example:

Time 1



$$\begin{array}{ccc}
 & a \rightarrow b, R \\
 & q_2
\end{array}$$

#### Time 1



#### Time 2



$$\begin{array}{cccc}
 & a \rightarrow b, R \\
\hline
 & q_2
\end{array}$$

## Example:





#### Time 2



$$\begin{array}{ccc}
 & a \rightarrow b, L \\
\hline
 & q_2
\end{array}$$

Example:

Time 1



Time 2



$$\begin{array}{cccc}
 & & & & & & & & \\
\hline
 & q_1 & & & & & & \\
\hline
 & q_2 & & & & & \\
\end{array}$$

#### Determinism

Turing Machines are deterministic

#### Allowed



#### Not Allowed



No lambda transitions allowed

## Partial Transition Function

### Example:





#### <u> Allowed:</u>

No transition for input symbol c

## Halting

The machine *halts* if there are no possible transitions to follow

### Example:





No possible transition

HALT!!!

## Final States





· Final states have no outgoing transitions

In a final state the machine halts

## Acceptance

Accept Input



If machine halts in a final state

Reject Input



If machine halts in a non-final state or

If machine enters an *infinite loop* 

## Turing Machine Example

A Turing machine that accepts the language:

aa\*



#### Time 0





Time 1





Time 2





Time 3





Time 4





### Rejection Example

Time 0





#### Time 1



No possible Transition Halt & Reject



## Infinite Loop Example



Time 0





Time 1





Time 2







### Because of the infinite loop:

·The final state cannot be reached

The machine never halts

·The input is not accepted

## Another Turing Machine

Turing machine for the language  $\{a^nb^n\}$ 



Time 0





Time 1





Time 2





Time 3





Time 4





Time 5





Time 6





Time 7





Time 8





Time 9





Time 10





Time 11





Time 12





Time 13



## Halt & Accept



#### Observation:

If we modify the machine for the language  $\{a^nb^n\}$ 

we can easily construct a machine for the language  $\{a^nb^nc^n\}$ 

# Formal Definitions for Turing Machines

#### Transition Function

$$\delta(q_1,c) = (q_2,d,L)$$

## Turing Machine:



# Configuration



Instantaneous description:  $ca q_1 ba$ 



A Move:  $q_2 xayb \succ x q_0 ayb$ 



$$q_2 xayb \succ x q_0 ayb \succ xx q_1 yb \succ xxy q_1 b$$

$$q_2 xayb \succ x q_0 ayb \succ xx q_1 yb \succ xxy q_1 b$$

Equivalent notation: 
$$q_2 xayb \succ xxy q_1 b$$

# Initial configuration: $q_0 w$

# Input string



# The Accepted Language

For any Turing Machine M

$$L(M) = \{w: q_0 \ w \succ x_1 \ q_f \ x_2\}$$
 Initial state Final state

# Standard Turing Machine

The machine we described is the standard:

· Deterministic

Infinite tape in both directions

·Tape is the input/output file

Design a Turing machine to recognize all strings in which 010 is present as a substring.



# DFA for the previous language



# Turing machine for odd no of 1's



# Recursively Enumerable and Recursive

Languages

#### Definition:

A language is recursively enumerable if some Turing machine accepts it

Let L be a recursively enumerable language and M the Turing Machine that accepts it

For string W:

if  $w \in L$  then M halts in a final state

if  $w \notin L$  then M halts in a non-final state or loops forever

#### Definition:

A language is recursive if some Turing machine accepts it and halts on any input string

#### In other words:

A language is recursive if there is a membership algorithm for it

Let L be a recursive language

and M the Turing Machine that accepts it

For string W:

if  $w \in L$  then M halts in a final state

if  $w \notin L$  then M halts in a non-final state

### We will prove:

1. There is a specific language which is not recursively enumerable (not accepted by any Turing Machine)

2. There is a specific language which is recursively enumerable but not recursive

# Non Recursively Enumerable



# We will first prove:

 If a language is recursive then there is an enumeration procedure for it

A language is recursively enumerable
 if and only if
 there is an enumeration procedure for it

# The Chomsky Hierarchy

#### Unrestricted Grammars:

#### Productions



String of variables and terminals

String of variables and terminals

# Example unrestricted grammar:

$$S \rightarrow aBc$$

$$aB \rightarrow cA$$

$$Ac \rightarrow d$$

#### Theorem:

A language  $\,L\,$  is recursively enumerable if and only if  $\,L\,$  is generated by an unrestricted grammar

#### Context-Sensitive Grammars:

#### Productions



String of variables and terminals

String of variables and terminals

and:  $|u| \leq |v|$ 

# The language $\{a^nb^nc^n\}$ is context-sensitive:

$$S \rightarrow abc \mid aAbc$$
 $Ab \rightarrow bA$ 
 $Ac \rightarrow Bbcc$ 
 $bB \rightarrow Bb$ 
 $aB \rightarrow aa \mid aaA$ 

# The language $\{a^nb^nc^n\}$ is context-sensitive:

$$S \rightarrow abc \mid aAbc$$
 $Ab \rightarrow bA$ 
 $Ac \rightarrow Bbcc$ 
 $bB \rightarrow Bb$ 
 $aB \rightarrow aa \mid aaA$ 

#### Theorem:

```
A language L is context sensistive if and only if L is accepted by a Linear-Bounded automaton
```

#### Observation:

There is a language which is context-sensitive but not recursive

# The Chomsky Hierarchy

Non-recursively enumerable

Recursively-enumerable

Recursive

Context-sensitive

Context-free

Regular