leCampion College

5th Form Laboratory Skill: A/I /10

Name: Jada Dixon Date: October 17, 2020

Topic: Volumetric Analysis

Aim: To determine the amount of sodium carbonate needed to standardize hydrochloric acid.

Title: Standardizing HCl using 0.1M Na₂CO₃ with methyl orange indicator

Apparatus and materials: burette, pipette, methyl orange, hydrochloric acid, sodium carbonate, conical flask,

Method:

- 1. The burette was conditioned and filled with HCl.
- 2. The pipette was conditioned with sodium carbonate
- 3. Using the pipette, 20 cm³ of 0.1M sodium carbonate was transferred to a conical flask.
- 4. Three drops of methyl orange were added to the conical flask.
- 5. Hydrochloric acid was added to the conical flask until one drop changed the colour from yellow to red.
- 6. The final volume of hydrochloric acid on the burette was recorded
- 7. The titration was repeated until the values were within 0.1cm³ of each other.

Results:

	Trial 1	Trial 2	Trial 3
Final Burette reading/cm ³	25.55	27.50	28.10
Initial Burette Reading/cm ³	3.25	6.55	7.25
Volume of HCl used /cm ³	22.30	20.95	20.85

Discussion

Write the chemical equation for the reaction
2HCl(aq) + Na₂CO₃(aq) → 2NaCl(aq) + H₂O(l) + CO₂(g)

[2]

2. Calculate the average volume of HCl

(20.95+20.85)/2

=20.90cm³ [1]

 Calculate the moles of Na₂CO₃ in the pipetted volume Concentration = moles/volume Moles = concentration * volume Moles = .1mol/dm3 * .02dm3 =.002 moles

noies

4. Use the mole ratio to determine the moles of HCl in the average volume

[1]

Mol ratio HCl:Na₂CO₃ = 2:1

X: .002

X = 2*.002 X=.004 moles HCl

5. Calculate the molar concentration of HCl

Concentration = #moles/volume Concentration = 0.004mol/.0209dm³ Concentration = 0.191mol/dm³

[2

6. Calculate the mass concentration of HCl

Mass concentration = molar concentration * molar mass Mass concentration = .191mol/dm * 36.46g/mol

Mass concentration = 6.96g/dm³

[2]

Conclusion: An average of 20.90cm³ of HCl was needed to neutralize 20cm³ of sodium carbonate of concentration 0.1M. There were .002 moles of sodium carbonate, and .004 moles of hydrochloric acid, which had a molar concentration of .191mol/dm³ and a mass concentration of 6.96g/dm³.