* Predicting Wine Types

* Importing the dataset

```
import numpy as np
import natplotlib.pyplot as plt
import pandas as pd
import seaborn as ns
from sklearn.metrics import accuracy_score
from sklearn.metrics import recall_score
from sklearn.metrics import precision_score

> 0.025
```

Data Preprocessing

We will assign 1 for red wine and 0 for white wine.

 fixed_acidity	volatile_acidity	citric_acid	residual_sugar	chlorides	free_sulfur_dioxide	$total_sulfur_dioxide$	density	pН	sulphates	alcohol	quality	style
7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5	1
1 7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9.8	5	1
2 7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9.8	5	1
3 11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9.8	6	1
4 7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5	1

Data Analysis and Visualization

0490	0.0	0.21 0.	20		0.0	. 626
	free_sulfur_dioxide	total_sulfur_dioxide	density	pН	sulphates	١
0	11.0	34.0	0.99780	3.51	0.56	
1	25.0	67.0	0.99680	3.20	0.68	
2	15.0	54.0	0.99700	3.26	0.65	
	17.0	60.0	0.99800	3.16	0.58	
4	11.0	34.0	0.99780	3.51	0.56	
	***	***				
6492	24.0	92.0	0.99114	3.27	0.50	
6493	57.0	168.0	0.99490	3.15	0.46	
6494	30.0	111.0	0.99254	2.99	0.46	
6495	20.0	110.0	0.98869	3.34	0.38	
6496	22.0	98.0	0.98941	3.26	0.32	
6495	12.8 7					
6496	11.8 6					

[6497 rows x 12 columns]

069] ✓ 0.7s

	xed_acidity	volatile_acidity	citric_acid	residual_sugar	chlorides	free_sulfur_dioxide	total_sulfur_dioxide	density	pН	sulphates	alcohol	quality	style
count 64	497.000000	6497.000000	6497.000000	6497.000000	6497.000000	6497.000000	6497.000000	6497.000000	6497.000000	6497.000000	6497.000000	6497.000000	6497.000000
mean	7.215307	0.339666	0.318633	5.443235	0.056034	30.525319	115.744574	0.994697	3.218501	0.531268	10.491801	5.818378	0.246114
std	1.296434	0.164636	0.145318	4.757804	0.035034	17.749400	56.521855	0.002999	0.160787	0.148806	1.192712	0.873255	0.430779
min	3.800000	0.080000	0.000000	0.600000	0.009000	1.000000	6.000000	0.987110	2.720000	0.220000	8.000000	3.000000	0.000000
25%	6.400000	0.230000	0.250000	1.800000	0.038000	17.000000	77.000000	0.992340	3.110000	0.430000	9.500000	5.000000	0.000000
50%	7.000000	0.290000	0.310000	3.000000	0.047000	29.000000	118.000000	0.994890	3.210000	0.510000	10.300000	6.000000	0.000000
75%	7.700000	0.400000	0.390000	8.100000	0.065000	41.000000	156.000000	0.996990	3.320000	0.600000	11.300000	6.000000	0.000000
max	15.900000	1.580000	1.660000	65.800000	0.611000	289.000000	440.000000	1.038980	4.010000	2.000000	14.900000	9.000000	1.000000

sns.pairplot(df,hue='style')

886] ✓ 1m 52.6s


```
▷ 
corr = df.corr()
      corr.style.background_gradient()
1071) V 0.7s
    fixed_acidity volatile_acidity citric_acid residual_sugar chlorides free_sulfur_dioxide total_sulfur_dioxide density
                                                                                                                  pH sulphates alcohol quality
                                                                                              1.000000
                                                     -0.111981 0.298195
                                                                              -0.282735
          fixed_acidity
    volatile acidity
                                                        -0.196011 0.377124
                                                                                -0.352557
                      0.219008
                                   -0.377981 1.000000
                                                        0.142451 0.038998
                                                                                0.133126
                                                                                                                -0.329808 0.056197 -0.010493 0.085532 -0.187397
          citric acid
                                                        1.000000 -0.128940
    residual_sugar
                     -0.111981
                                   -0.196011 0.142451
                                                                                                                -0.267320 -0.185927 -0.359415 -0.036980 -0.348821
                                  0.377124 0.038998
                                                        -0.128940 1.000000
                                                                               -0.195045
                                                                                               -0.279630 0.362615
                                                                                                               chlorides 0.298195
                                   -0.352557 0.133126
                                                                                1.000000
                                                                                                0.720934 0.025717 -0.145854 -0.188457 -0.179838 0.055463 -0.471644
    free_sulfur_dioxide -0.282735
                                                                -0.195045
                                                                                                        0.032395 -0.238413 -0.275727 -0.265740 -0.041385 -0.700357
                                   -0.414476 0.195242
     total_sulfur_dioxide
                      -0.329054
                                                                -0.279630
                                                                                0.720934
                                                                                                1.000000
                                                                                               0.032395 1.000000 0.011686 0.259478 -0.686745 -0.305858
     density 0.458910
                                   0.271296 0.096154
0.261454 -0.329808
                                                        0.552517 0.36261
                                                                                               -0.238413 0.011686 1.000000 0.192123 0.121248 0.019506
               рН
                    -0.252700
                                                       -0.267320 0.044708
                                                                                -0.145854
    sulphates 0.299568
                                   0.225984 0.056197
                                                                                               -0.185927 0.395593
                                                                               -0.188457
                                                                                               -0.265740 -0.686745 0.121248 -0.003029 1.000000 0.444319 -0.032970
             alcohol
                     -0.095452
                                   -0.037640 -0.010493
                                                        -0.359415 -0.256916
                                                                                -0.179838
    quality
                                                       -0.036980 -0.200666
                                                                                               -0.041385 -0.305858 0.019506 0.038485 0.444319 1.000000 -0.119323
                      -0.076743
                                   -0.265699 0.085532
                                                                               0.055463
               style 0.486740
                                                                                               -0.700357 0.390645 0.329129 0.487218 -0.032970 -0.119323 1.000000
                                   0.653036 -0.187397
                                                       -0.348821 0.512678
                                                                               -0.471644
   Rq: density and alcohol are the most correlated features
```

sns.scatterplot(data=df, x='density', y='alcohol', hue='style')
plt.show()

```
X = dataset.values[:,range(0,12)]
y = dataset.values[:,range(12,13)]
         print(X)
        print(v)
1873] V 0.4s
... [[ 7.4 0.7 0. ... 0.56 9.4 5. ]
[ 7.8 0.88 0. ... 0.68 9.8 5. ]
      [ 7.8  0.76  0.04 ...  0.65  9.8  5. ]
      [ 6.5  0.24  0.19 ...  0.46  9.4  6.  ]
      [5.5 0.29 0.3 ... 0.38 12.8 7. ]
      [ 6. 0.21 0.38 ... 0.32 11.8 6. ]]
     [[1.]
      [1.]
      [1.]
      [0.]
      [0.]
      [0.]]
        print('dimensions de X:', X.shape)
        print('dimensions de Y:', y.shape)
1874] V 0.3s
··· dimensions de X: (6497, 12)
     dimensions de Y: (6497, 1)
```

```
Preparing the model
          def initialisation(X):
              W = np.random.randn(X.shape[1], 1)
b = np.random.randn(1)
              return (W, b)
[1875] V 0.3s
        initialisation(X)
[1076] 🗸 0.35
     (array([[ 1.15189222],
               [ 0.42954223],
               [ 0.3865618 ],
              [ 0.88198986],
              [ 0.8173989 ],
              [ 0.88860612],
               [-0.88150615],
               [-1.44645573],
               [ 0.14764371],
               [-0.13950698],
              [-0.71451461],
              [ 1.10652459]]),
       array([-1.0007181]))
          def model(X, W, b):
    Z = X.dot(W) + b
    A = 1 / (1 + np.exp(-Z))
              return A
          W,b = initialisation(X)
          model(X,W,b)
[1078] V 0.4s
 ··· array([[4.17096197e-20],
             [2.84536084e-36],
             [1.93376608e-30],
              ...,
              [2.80469319e-59],
              [4.32385208e-61],
              [2.10513749e-53]])
          def log_loss(A, y):
            return 1 / len(y) * np.sum(-y * np.log(A) - (1 - y) * np.log(1 - A))
[1079] 🗸 0.3s
          def gradients(A, X, y):
    dW = 1 / len(y) * np.dot(X.T, A - y)
    db = 1 / len(y) * np.sum(A - y)
              return (dW, db)
[1080] 🗸 0.35
          def update(dW, db, W, b, learning_rate):
             W = W - learning_rate * dW
              b = b - learning_rate * db
              return (W, b)
[1081] V 0.3s
          def predict(X, W, b):
             A = model(X, W, b)
              # print(A)
              return A >= 0.5
[1082] 		0.4s
```

```
def update(dW, db, W, b, learning_rate):
            W = W - learning_rate * dW
             b = b - learning_rate * db
            return (W, b)
[1881] V 0.3s
         def predict(X, W, b):
            A = model(X, W, b)
             # print(A)
             return A >= 0.5
[1082] 🗸 0.45
         def artificial_neuron(X, y, learning_rate = 0.1, n_iter = 100):
             W, b = initialisation(X)
             Loss = []
             for i in range(n_iter):
                A = model(X, W, b)
                 Loss.append(log_loss(A, y))
                 dW, db = gradients(A, X, y)
                 W, b = update(dW, db, W, b, learning_rate)
            y_pred = predict(X, W, b)
             plt.plot(Loss)
             print("Accuracy: ",accuracy_score(y, y_pred))
             print("Recall: ",recall_score(y, y_pred))
             print("Precision: ",precision_score(y, y_pred))
             return (W, b)
[1883] V 0.3s
         W, b = artificial_neuron(X,y)
[1884] 🗸 0.25
```

```
Accuracy: 0.8123749422810528
Recall: 0.9224515322076298
Precision: 0.5739299610894941
```

```
12 - 10 - 8 - 6 - 4 - 2 - 8 9 10 11 12 13 14 15
```

·· The type of this wine is red