Independence:
$$P(AB) = P(A)P(B)$$
 \emptyset $P(\bigcap_{\alpha \in I} A_{\alpha}) = \prod_{\alpha \in J} P(A_{\alpha}) \quad \forall \quad J \subseteq I$.

A, B, C are painwise independent but not independent.

Los P(ABC) = P(A)P(B)P(C) Lut no pair of events is independent.

with some xe [-1/4, 1] \ {0}.

Proper Let (12, T, M) be a measure space.

Then for all A, B, C,, C2, C3,... & Fi

- (a) if ASB, then $\mu(A) \leq \mu(B)$.
- (b) if A ⊆ B and $\mu(A)$ (∞, then $\mu(B) \mu(A) = \mu(B \setminus A)$. Pf: B = A ⊔ B \ A, so $\mu(B) = \mu(A) + \mu(B \setminus A)$
- (c) if $A \subseteq \bigcup_{n} C_n$ then $\mu(A) \not\subseteq \sum_{n} \mu(c_n)$

Pf: Let An = An Cn. man) & m(cn).

UAn = A since A = UCn

Let $D_n = A_n \setminus \bigcup_{m < n} A_n$. Then D_1, D_2, \ldots are disjoint 4 $\bigcup_{n} D_n = A$.

hence $\mu(A) = \sum_{n} \mu(D_n) \leq \sum_{n} \mu(A_n) \leq \sum_{n} \mu(C_n)$.

Property (c) is called "Countable sub additivity."

(d) If
$$C_n \uparrow A$$
 (i.e. $C_1 \in C_2 \subseteq C_3 \subseteq ...$ and $\bigcup_{n=1}^{\infty} (n = A)$, then $\mu(C_n) \longrightarrow \mu(A)$.

If Let $C_6 = \emptyset$. Then $\bigcup_{n=1}^{\infty} (C_n \setminus C_{n-1}) = A$, so $\sum_{n=1}^{\infty} (\mu(C_n \setminus C_{n-1})) = \mu(A)$.

and $\bigcup_{k=1}^{\infty} (C_k \setminus C_{k-1}) = C_n$ so $\mu(C_n) = \sum_{k=1}^{\infty} (\mu(C_k \setminus C_{k-1})) \longrightarrow \mu(A)$ as $n \to \infty$.

Page 1

(c) If C_k ↓ A (i.e. C₁≥C₂≥... and $\bigcap_{K} C_{K} = A$), and $M(C_{1}) < \infty$, then $M(C_{n}) \longrightarrow M(A)$. Pf let $C'_k = C_i \setminus C_k$. Then $C'_k \uparrow C_i \setminus A$, so $\mu(C'_k) \longrightarrow \mu(C_i) - \mu(A)$. but $\mu(C_k) = \mu(C_1) - \mu(C_k)$ so $\mu(C_k) \longrightarrow \mu(A)$ as $k \to \infty$.

Proper Let (12, F, M) be a menone space. Let A, B & F. Then $\mu(A \cup B) + \mu(A \cap B) = \mu(A) + \mu(B).$

$$\mu(A) = \mu(A \setminus B) + \mu(A \cap B) + \mu(B \setminus A)$$

$$\mu(B) = \mu(A \setminus B) + \mu(A \cap B)$$

$$\mu(B) = \mu(A \setminus B) + \mu(A \cap B)$$

Let $(\Omega, \mathcal{F}, \mu)$ be a finite measure space. Let $A_1, A_2, ..., A_n \in \mathcal{F}$.

Thun (a)
$$\mu(A_1 \cup A_2) = \mu(A_1) + \mu(A_2) - \mu(A_1A_2)$$
.

(b)
$$\mu(A_1 \cup A_2 \cup A_3) = \mu(A_1) + \mu(A_2) + \mu(A_3) - \mu(A_1A_2) - \mu(A_1A_3) - \mu(A_2A_3) + \mu(A_1A_2A_3)$$
.

$$(C) \quad \text{if} \quad \left(\bigcup_{k=1}^{N} A_{k} \right) = \sum_{\emptyset \text{ if } I \leq \{j_{1},...,N_{J}\}} (-1)^{|II|-1} \text{if} \left(\bigcap_{i \in I} A_{i} \right) = \sum_{k=1}^{N} (-1)^{k-1} \left(\sum_{i_{1} \in I \cap A_{i}} \text{if} \left(\bigcap_{j=1}^{N} A_{i_{j}} \right) \right) .$$