CM095 – Análise I Prof. Hudson Lima

Lista 01 - Entrega: (quarta-feira) 15/08/2018

- Resolva todos os excercícios do Capítulo 1 do livro Curso de Análise vol.I. A nota máxima desta lista é $(1+2+\cdots+N)$, onde N é o número de questões na lista.
- O valor individual das questões coincidem com o número que ela corresponde. Desta forma, a questão 1 vale 1 ponto, a questão 2 vale 2 pontos, e assim por diante.
- 1. Dados conjuntos A e B, seja X um conjunto com as seguintes propriedades:
 - (a) $X \supset A$ and $X \supset B$,
 - (b) If $Y \supset A$ and $Y \supset B$, then $Y \supset X$.

Prove que $X = A \cup B$.

- 2. Enuncie e demonstre um resultado análogo ao anterior caracterizando $A\cap B.$
- 3. Sejam $A, B \subset E$. Prove que $A \cap B = \emptyset$ se, e somente se, $A \subset B^c$. Prove também que $A \cup B = E$ se, e somente se, $A^c \subset B$.
- 4. Dados $A, B \subset E$, prove que $A \subset B$ se, e somente se, $A \cap B^c = \emptyset$.
- 5. Dê exemplos de conjuntos **não vazios** $A, B \in C$, tais que $(A \cup B) \cap C \neq A \cup (B \cap C)$.
- 6. Se $A, X \subset E$, são tais que $A \cap X = \emptyset$ e $A \cup X = E$, prove que $X = A^c$.
- 7. Se $A \subset B$, então, $B \cap (A \cup C) = (B \cap C) \cup A$, para todo conjunto C. Por outro lado, se existir C de modo que a igualdade acima seja satisfeita, então $A \subset B$.
- 8. Prove que A = B se, e somente se, $(A \cap B^c) \cup (A^c \cap B) = \emptyset$.
- 9. Prove que $(A B) \cup (B A) = (A \cup B) (A \cap B)$.

- 10. Seja $A\Delta B = (A B) \cup (B A)$. Prove que $A\Delta B = A\Delta C$ implica B = C. Examine a validez de um resultado análogo com \cap , \cup ou \times em vez de Δ .
- 11. Prove as seguintes afirmações:
 - (a) $(A \cup B) \times C = (A \times C) \cup (B \times C)$;
 - (b) $(A \cap B) \times C = (A \times C) \cap (B \times C)$;
 - (c) $(A B) \times C = (A \times C) (B \times C)$;
 - (d) $A \subset A' \in B \subset B'$ implica $A \times B \subset A' \times B'$.
- 12. Dada a função $f: A \to B$:
 - (a) prove que se tem $f(X Y) \supset f(X) f(Y)$, sejam quais forem os subconjuntos X e Y de A;
 - (b) mostre que se f é injetiva então f(X) f(Y) = f(X Y) para quaisquer X e Y contidos em A.
- 13. Mostre que a função $f: A \to B$ é injetiva se, e somente se, f(A-X) = f(A) f(X) para todo $X \subset A$.
- 14. Dada uma função $f: A \to B$, prove:
 - (a) $f^{-1}(f(X)) \supset X$ para todo $X \subset A$;
 - (b) f é injetiva se, e somente se, $f^{-1}(f(X)) = X$ para todo $X \subset A$.
- 15. Dada $f: A \to B$, prove:
 - (a) Para todo $Z \subset B$, tem-se $f(f^{-1}(Z)) \subset Z$;
 - (b) f é sobrejetiva se, e somente se, $f(f^{-1}(Z)) = Z$ para todo $Z \subset B$.
- 16. Dada uma família de conjuntos $(A_{\lambda})_{{\lambda}\in L}$, seja X um conjunto com as seguintes propriedades:
 - (a) para todo $\lambda \in L$, tem-se $X \supset A_{\lambda}$;
 - (b) se $Y \supset A_{\lambda}$ para todo $\lambda \in L$, então $Y \supset X$.

Prove que, nestas condições, tem-se $X = \bigcup_{\lambda \in L} A_{\lambda}$.

17. Enuncie e demonstre um resultado análogo ao anterior, caracterizando $\cap_{\lambda \in L} A_{\lambda}$.

- 18. Seja $f: \mathcal{P}(A) \to \mathcal{P}(A)$ uma função tal que $X \subset Y \Rightarrow f(Y) \subset f(X)$ e f(f(X)) = X. Prove que $f(\cup X_{\lambda}) = \cap f(X_{\lambda})$ e $f(\cap X_{\lambda}) = \cup f(X_{\lambda})$. [Aqui $X, Y \in X_{\lambda}$ são subconjuntos de A].
- 19. Dadas as famílias $(A_{\lambda})_{{\lambda}\in L}$ e $(B_{\mu})_{{\mu}\in M}$, forme duas famílias com índices em $L\times M$ considerando os conjuntos

$$(A_{\lambda} \cup B_{\mu})_{(\lambda,\mu) \in L \times M}$$
 e $(A_{\lambda} \cap B_{\mu})_{(\lambda,\mu) \in L \times M}$.

Prove que se tem

$$\left(\bigcup_{\lambda \in L} A_{\lambda}\right) \cap \left(\bigcup_{\mu \in M} B_{\mu}\right) = \bigcup_{(\lambda,\mu) \in L \times M} (A_{\lambda} \cap B_{\mu}),$$

$$\left(\bigcap_{\lambda \in L} A_{\lambda}\right) \cup \left(\bigcap_{\mu \in M} B_{\mu}\right) = \bigcap_{(\lambda,\mu) \in L \times M} (A_{\lambda} \cup B_{\mu}).$$

20. Seja $(A_{ij})_{(i,j)\in\mathbb{N}\times\mathbb{N}}$ uma família de conjuntos com índices no conjunto $\mathbb{N}\times\mathbb{N}$. Prove, ou disprove por contra-exemplo, a igualdade

$$\bigcup_{j=1}^{\infty} \left(\bigcap_{i=1}^{\infty} A_{ij} \right) = \bigcap_{i=1}^{\infty} \left(\bigcup_{j=1}^{\infty} A_{ij} \right).$$

21. Dados os conjuntos A, B, C, estabeleça uma bijeção entre $\mathcal{F}(A \times B; C)$ e $\mathcal{F}(A; \mathcal{F}(B; C))$.