# Introduction to Computational Chemistry

# Alexander B. Pacheco

User Services Consultant LSU HPC & LONI sys-help@loni.org

LONI Worshop Series Tulane University, New Orleans March 25, 2011





#### Outline

- Introduction
- 2 Ab Initio Methods
- Density Functional Theory
- Semi-empirical Methods
- Basis Sets
- Molecular Mechanics
- Quantum Mechanics/Molecular Mechanics (QM/MM)
- 8 Molecular Dynamics
- Computational Chemistry Programs
- 10 Example Jobs



# What is Computational Chemistry

- Computational Chemistry is a branch of chemistry that uses computer science to assist in solving chemical problems.
- Incorporates the results of theoretical chemistry into efficient computer programs.
- Application to single molecule, groups of molecules, liquids or solids.
- Calculates the structure and properties of interest.
- Computational Chemistry Methods range from
  - Mighly accurate (Ab-initio, DFT) feasible for small systems
  - Less accurate (semi-empirical)
  - Very Approximate (Molecular Mechanics) large systems





# Theoretical Chemistry: broadly can be divided into two main categories

- Static Methods ⇒ Time-Independent Schrödinger Equation
  - Quantum Chemical/Ab Initio /Electronic Structure Methods
  - Molecular Mechanics
- ② Dynamical Methods ⇒ Time-Dependent Schrödinger Equation
  - Classical Molecular Dynamics
  - Semi-classical and Ab-Initio Molecular Dynamics





#### Ab Initio Methods

- Ab Initio meaning "from first principles" methods solve the Schrödinger equation and does not rely on empirical or experimental data.
- Begining with fundamental and physical properties, calculate how electrons and nuclei interact.
- The Schrödinger equation can be solved exactly only for a few systems
  - Particle in a Box
  - Rigid Rotor
  - Harmonic Oscillator
  - Hydrogen Atom
- For complex systems, Ab Initio methods make assumptions to obtain approximate solutions to the Schrödinger equations and solve it numerically.
- "Computational Cost" of calculations increases with the accuracy of the calculation and size of the system.





# What can we predict with Ab Initio methods?

- Molecular Geometry: Equilibrium and Transition State
- Dipole and Quadrupole Moments and polarizabilities
- Thermochemical data like Free Energy, Energy of reaction.
- Potential Energy surfaces, Barrier heights
- Reaction Rates and cross sections
- Ionization potentials (photoelectron and X-ray spectra) and Electron affinities
- Frank-Condon factors (transition probabilities, vibronic intensities)
- Vibrational Frequencies, IR and Raman Spectra and Intensities
- Rotational spectra
- NMR Spectra
- Electronic excitations and UV-VIS spectra
- Electron density maps and population analyses
- Thermodynamic quantities like partition function





March 25, 2011

# **Ab Initio Theory**

- Born-Oppenheimer Approximation: Nuclei are heavier than electrons and can be considered stationary with respect to electrons. Also know as "clamped nuclei" approximations and leads to idea of potential surface
- Slater Determinants: Expand the many electron wave function in terms of Slater determinants.
- Basis Sets: Represent Slater determinants by molecular orbitals, which are linear combination of atomic-like-orbital functions i.e. basis sets





#### Born-Oppenheimer Approximation

Solve time-independent Schrödinger equation

$$\hat{H}\Psi = E\Psi$$

For many electron system:

$$\hat{H} = \underbrace{-\frac{\hbar^2}{2} \sum_{\alpha} \frac{\nabla^2_{\alpha}}{M_{\alpha}}}_{\hat{T}_n} - \underbrace{\frac{\hbar^2}{2m_e} \sum_{i} \nabla^2_{i}}_{\hat{T}_e} + \underbrace{\sum_{\alpha > \beta} \frac{e^2 Z_{\alpha} Z_{\beta}}{4\pi \epsilon_0 R_{\alpha\beta}}}_{\hat{V}_{nn}} - \underbrace{\sum_{\alpha, i} \frac{e^2 Z_{\alpha}}{4\pi \epsilon_0 R_{\alpha i}}}_{\hat{V}_{en}} + \underbrace{\sum_{i > j} \frac{e^2}{4\pi \epsilon_0 r_{ij}}}_{\hat{V}_{ee}}$$

- The wave function  $\Psi(R,r)$  of the many electron molecule is a function of nuclear (R) and electronic (r) coordinates.
- Motion of nuclei and electrons are coupled.
- However, since nuclei are much heavier than electrons, the nuclei appear fixed or stationary.





 Born-Oppenheimer Approximation: Separate electronic and nuclear motion:

$$\Psi(R,r) = \psi_e(r;R)\psi_n(R)$$

Solve electronic part of Schrödinger equation

$$\hat{H}_e\psi_e(r;R) = E_e\psi_e(r;R)$$

 BO approximation leads to the concept of potential energy surface

$$V(R) = E_e + V_{nn}$$







#### Potential Energy Surfaces

- The potential energy surface (PES) is multi-dimensional (3N-6) for non-linear molecule and 3N-5 for linear molecule)
- The PES contains multiple minima and maxima.
- Geometry optimization search aims to find the global minimum of the potential surface.
- Transition state or saddle point search aims to find the maximum of this
  potential surface, usually along the reaction coordinate of interest.







#### Wavefunction Methods

• The electronic Hamiltonian (in atomic units,  $\hbar, m_e, 4\pi\epsilon_0, e=1$ ) to be solved is

$$\hat{H}_e = -\frac{1}{2} \sum_i \nabla_i^2 - \sum_{\alpha,i} \frac{Z_\alpha}{R_{i\alpha}} + \sum_{i>j} \frac{1}{r_{ij}} + \sum_{\alpha>\beta} \frac{Z_\alpha Z_\beta}{R_{\alpha\beta}}$$

Calculate electronic wave function and energy

$$E_e = \frac{\langle \psi_e \mid \hat{H}_e \mid \psi_e \rangle}{\langle \psi_e \mid \psi_e \rangle}$$

 The total electronic wave function is written as a Slater Determinant of the one electron functions, i.e. molecular orbitals, MO's

$$\psi_e = \frac{1}{\sqrt{N!}} \begin{vmatrix} \phi_1(1) & \phi_2(1) & \cdots & \phi_N(1) \\ \phi_1(2) & \phi_2(2) & \cdots & \phi_N(2) \\ \cdots & \cdots & \cdots & \cdots \\ \phi_1(N) & \phi_2(N) & \cdots & \phi_N(N) \end{vmatrix}$$





March 25, 2011

 MO's are written as a linear combination of one electron atomic functions or atomic orbitals (AO's)

$$\phi_i = \sum_{\mu=1}^N c_{\mu i} \chi_{\mu}$$

 $c_{ui} \Rightarrow MO$  coefficients

 $\chi_{\mu} \Rightarrow$  atomic basis functions.

- Obtain coefficients by minimizing the energy via Variational Theorem.
- Variational Theorem: Expectation value of the energy of a trial wavefunction is always greater than or equal to the true energy

$$E_e = \langle \psi_e \mid \hat{H}_e \mid \psi_e \rangle \ge \varepsilon_0$$

 Increasing N ⇒ Higher quality of wavefunction ⇒ Higher computational cost





#### Ab Initio Methods

#### The most popular classes of ab initio electronic structure methods:

- Hartree-Fock methods
  - Hartree-Fock (HF)
    - Restricted Hartree-Fock (RHF): singlets
    - Unrestricted Hartree-Fock (UHF): higher multiplicities
    - Restricted open-shell Hartree-Fock (ROHF)
- Post Hartree-Fock methods
  - Møller-Plesset perturbation theory (MPn)
  - Configuration interaction (CI)
  - Coupled cluster (CC)
- Multi-reference methods
  - Multi-configurational self-consistent field (MCSCF)
  - Multi-reference configuration interaction (MRCI)
  - n-electron valence state perturbation theory (NEVPT)
  - Complete active space perturbation theory (CASPTn)





#### Hartree-Fock

Wavefunction is written as a single determinant

$$\Psi = det(\phi_1, \phi_2, \cdots \phi_N)$$

The electronic Hamiltonian can be written as

$$\hat{H} = \sum_{i} h(i) + \sum_{i>j} v(i,j)$$

where 
$$h(i) = -\frac{1}{2}\nabla_i^2 - \sum_{i,\alpha} \frac{Z_{\alpha}}{r_{i\alpha}}$$
 and  $v(i,j) = \frac{1}{r_{ij}}$ 

The electronic energy of the system is given by:

$$E = \langle \Psi | \hat{H} | \Psi \rangle$$

The resulting HF equations from minimization of energy by applying of variational theorem:

$$\hat{f}(x_1)\chi_i(x_1) = \varepsilon_i\chi_i(x_1)$$

where  $\varepsilon_i$  is the energy of orbital  $\chi_i$  and the Fock operator f, is defined as



$$\hat{f}(x_1) = \hat{h}(x_1) + \sum_{j} [\hat{J}_j(x_1) - \hat{K}_j(x_1)]$$



①  $\hat{J}_j \Rightarrow$  Coulomb operator  $\Rightarrow$  average potential at x due to charge distribution from electron in orbital  $\chi_i$  defined as

$$\hat{J}_{j}(x_{1})\chi_{i}(x_{1}) = \left[\int \frac{\chi_{j}^{*}(x_{2})\chi_{j}(x_{2})}{r_{12}}dx_{2}\right]\chi_{i}(x_{1})$$

②  $\hat{K}_j \Rightarrow \text{Exchange operator} \Rightarrow \text{Energy associated with exchange of electrons} \Rightarrow \text{No classical interpretation for this term.}$ 

$$\hat{K}_{j}(x_{1})\chi_{i}(x_{1}) = \left[\int \frac{\chi_{j}^{*}(x_{2})\chi_{i}(x_{2})}{r_{12}}dx_{2}\right]\chi_{j}(x_{1})$$

The Hartree-Fock equation are solved numerically or in a space spanned by a set of basis functions (Hartree-Fock-Roothan equations)

$$\chi_{i} = \sum_{\mu=1}^{K} C_{\mu i} \tilde{\chi}_{\mu} \qquad S_{\mu\nu} = \int dx_{1} \tilde{\chi}_{\mu}^{*}(x_{1}) \tilde{\chi}_{\nu}(x_{1})$$

$$\sum_{\nu} F_{\mu\nu} C_{\nu i} = \varepsilon_{i} \sum_{\nu} S_{\mu\nu} C_{\nu i} \qquad F_{\mu\nu} = \int dx_{1} \tilde{\chi}_{\mu}^{*}(x_{1}) \hat{f}(x_{1}) \tilde{\chi}_{\nu}(x_{1})$$

$$FC = SC\varepsilon$$





- The Hartree-Fock-Roothan equation is a pseudo-eigenvalue equation
- ② C's are the expansion coefficients for each orbital expressed as a linear combination of the basis function.
- Note: C depends on F which depends on  $C \Rightarrow$  need to solve self-consistently.
- Starting with an initial guess orbitals, the HF equations are solved iteratively or self consistently (Hence HF procedure is also known as self-consistent field or SCF approach) obtaining the best possible orbitals that minimize the energy.

#### SCF procedure

- Specify molecule, basis functions and electronic state of interest
- Form overlap matrix S
- Guess initial MO coefficients C
- Form Fock Matrix F
- Solve  $FC = SC\varepsilon$
- Use new MO coefficients C to build new Fock Matrix F
- Repeat steps 5 and 6 until C no longer changes from one iteration to the next.





#### What are Post Hartree-Fock Methods

- In Hartree-Fock theory, electron motions of independent of each other i.e. uncorrelated.
- e However, this is not true. For two electrons with same spin  $|\Psi_1(r_1)\alpha(\omega_1)\Psi_2(r_2)\alpha(\omega_2)\rangle$ , the probability of finding electron 1 at  $r_1$  and electron 2 at  $r_2$

$$\begin{split} P(r_1, r_2) dr_1 dr_2 &= \frac{1}{2} \left( |\Psi_1(r_1)|^2 |\Psi_2(r_2)|^2 + |\Psi_1(r_2)|^2 |\Psi_2(r_1)|^2 \right. \\ &- \left. [\Psi_1^*(r_1) \Psi_2(r_1) \Psi_2^*(r_2) \Psi_1(r_2) \right. \\ &+ \left. \Psi_2^*(r_1) \Psi_1(r_1) \Psi_1^*(r_2) \Psi_2(r_2) \right] \right) dr_1 dr_2 \end{split}$$

Now  $P(r_1,r_1)=0 \Rightarrow$  No two electrons with same spins can be at the same place  $\Rightarrow$  "Fermi hole"

- Same-spin electrons are correlated while different spin electrons are not.
- Energy difference between HF energy and the true energy is the correlation energy



$$E_{corr} = E_0 - E_{HF}$$



- Methods that improve the Hartree-Fock results by accounting for the correlation energy are known as Post Hartree-Fock methods
- The starting point for most Post HF methods is the Slater Determinant obtain from Hartree-Fock Methods
- Configuration Interaction (CI) methods: Express the wavefunction as a linear combination of Slater Determinants with the coeffcients obtained variationally

$$|\Psi\rangle = \sum_{I} c_{I} |\Psi_{I}\rangle$$

 Many Body Perturbation Theory: Treat the HF determinant as the zeroth order solution with the correlation energy as a pertubation to the HF equation.

$$\hat{H} = \hat{H}_0 + \lambda \hat{H}'; \varepsilon_i = E_i^{(0)} + \lambda E_i^{(1)} + \lambda^2 E_i^{(2)} + \cdots$$
$$|\Psi_i\rangle = |\Psi_i^{(0)}\rangle + \lambda |\Psi_i^{(1)}\rangle + \lambda^2 |\Psi_i^{(2)}\rangle \cdots$$

◆ Coupled Cluster Theory: The wavefunction is written as an exponential ansatz

$$|\Psi\rangle = e^{\hat{T}}|\Psi_0\rangle$$

where  $|\Psi_0\rangle$  is a Slater determinant obtained from HF calculations and  $\hat{T}$  is an excitation operator which when acting on  $|\Psi_0\rangle$  produces a linear combination of excited Slater determinants.

# Scaling

| Scaling Behavior | Method(s)              |
|------------------|------------------------|
| $N^4$            | HF                     |
| $N^5$            | MP2                    |
| $N^6$            | MP3, CISD, CCSD, QCISD |
| $N^7$            | MP4, CCSD(T), QCISD(T) |
| $N^8$            | MP5, CISDT, CCSDT      |
| $N^9$            | MP6                    |
| $N^{10}$         | MP7, CISDTQ, CCSDTQ    |



• N = Number of Basis Functions



# **Density Functional Theory**

- Density Functional Theory (DFT) is an alternative to wavefunction based electronic structure methods of many-body systems such as Hartree-Fock and Post Hartree-Fock.
- In DFT, the ground state energy is expressed in terms of the total electron density.

$$\rho_0(r) = \langle \Psi_0 | \hat{\rho} | \Psi_0 \rangle$$

 We again start with Born-Oppenheimer approximation and write the electronic Hamiltonian as

$$\hat{H} = \hat{F} + \hat{V}_{ext}$$

where  $\hat{F}$  is the sum of the kinetic energy of electrons and the electron-electron interaction and  $\hat{V}_{ext}$  is some external potential.





- Modern DFT methods result from the Hohenberg-Kohn theorem
  - The external potential  $V_{ext}$ , and hence total energy is a unique functional of the electron density  $\rho(r)$

Energy = 
$$\frac{\langle \Psi \mid \hat{H} \mid \Psi \rangle}{\langle \Psi \mid \Psi \rangle} \equiv E[\rho]$$

2 The ground state energy can be obtained variationally, the density that minimizes the total energy is the exact ground state density

$$E[\rho] > E[\rho_0], \text{ if } \rho \neq \rho_0$$

If density is known, then the total energy is:

$$E[\rho] = T[\rho] + V_{ne}[\rho] + J[\rho] + E_{nn} + E_{xc}[\rho]$$

where

$$E_{nn}[
ho]=\sum_{A>B}rac{Z_AZ_B}{R_{AB}} \qquad \qquad V_{ne}[
ho]=\int
ho(r)V_{ext}(r)dr \ J[
ho]=rac{1}{2}\intrac{
ho(r_1)
ho(r_2)}{r_{12}}dr_1dr_2$$





- If the density is known, the two unknowns in the energy expression are the kinetic energy functional  $T[\rho]$  and the exchange-correlation functional  $E_{xc}[\rho]$
- ullet To calculate T[
  ho], Kohn and Sham introduced the concept of Kohn-Sham orbitals which are eigenvectors of the Kohn-Sham equation

$$\left(-rac{1}{2}
abla^2 + v_{
m eff}(r)
ight)\phi_i(r) = arepsilon_i\phi_i(r)$$

Here,  $\varepsilon_i$  is the orbital energy of the corresponding Kohn-Sham orbital,  $\phi_i$ , and the density for an "N"-particle system is

$$\rho(r) = \sum_{i}^{N} |\phi_i(r)|^2$$

The total energy of a system is

$$E[
ho] = T_s[
ho] + \int dr \, v_{
m ext}(r) 
ho(r) + V_H[
ho] + E_{
m xc}[
ho]$$





 T<sub>s</sub> is the Kohn-Sham kinetic energy which is expressed in terms of the Kohn-Sham orbitals as

$$T_s[
ho] = \sum_{i=1}^N \int dr \; \phi_i^*(r) \left(-rac{1}{2}
abla^2
ight) \phi_i(r)$$

 $v_{\rm ext}$  is the external potential acting on the interacting system (at minimum, for a molecular system, the electron-nuclei interaction),  $V_H$  is the Hartree (or Coulomb) energy,

$$V_H = \frac{1}{2} \int dr dr' \frac{\rho(r)\rho(r')}{|r - r'|}$$

and  $E_{xc}$  is the exchange-correlation energy.

 The Kohn-Sham equations are found by varying the total energy expression with respect to a set of orbitals to yield the Kohn-Sham potential as

$$v_{\rm eff}(r) = v_{\rm ext}(r) + \int \frac{\rho(r')}{|r - r'|} dr' + \frac{\delta E_{\rm xc}[\rho]}{\delta \rho(r)}$$

where the last term  $v_{\rm xc}(r)\equiv rac{\delta E_{
m xc}[
ho]}{\delta 
ho(r)}$  is the exchange-correlation potential.

- The exchange-correlation potential, and the corresponding energy expression, are the only unknowns in the Kohn-Sham approach to density functional theory.
- ullet There are many ways to approximate this functional  $E_{\rm xc}$ , generally divided into two separate terms

$$E_{\rm xc}[\rho] = E_{\rm x}[\rho] + E_{\rm c}[\rho]$$

where the first term is the exchange functional while the second term is the correlation functional.

- Quite a few research groups have developed the exchange and correlation functionals which are fit to empirical data or data from explicity correlated methods.
- Popular DFT functionals (according to a recent poll)
  - PBE0 (PBEPBE), B3LYP, PBE, BP86, M06-2X, B2PLYP, B3PW91, B97-D, M06-L, CAM-B3LYP
  - http://www.marcelswart.eu/dft-poll/index.html
  - http://www.ccl.net/cgi-bin/ccl/message-new?2011+02+16+009





# Semi-empirical Methods

- Semi-empirical quantum methods:
  - Represents a middle road between the mostly qualitative results from molecular mechanics and the highly computationally demanding quantitative results from ab initio methods.
  - Address limitations of the Hartree-Fock claculations, such as speed and low accuracy, by omitting or parametrizing certain integrals
- integrals are either determined directly from experimental data or calculated from analytical formula with ab initio methods or from suitable parametric expressions.
- Integral approximations:
  - Complete Neglect of Differential Overlap (CNDO)
  - Intermediate Neglect of Differential Overlap (INDO)
  - Neglect of Diatomic Differential Overlap (NDDO) (Used by PM3, AM1, ...)

Semi-empirical methods are fast, very accurate when applied to molecules that are similar to those used for parametrization and are applicable to very large molecular systems.

#### Heirarchy of Methods







#### **Basis Sets**

 Slater type orbital (STO) or Gaussian type orbital (GTO) to describe the AO's

$$\chi^{\text{STO}}(r) = x^l y^m z^n e^{-\zeta r}$$
  
$$\chi^{\text{GTO}}(r) = x^l y^m z^n e^{-\xi r^2}$$

where L=l+m+n is the total angular momentun and  $\zeta,\xi$  are orbital exponents.







# Why STO

- Correct cups at  $r \to 0$
- Desired decay at  $r \to \infty$
- Correctly mimics H orbitals
- Natural Choice for orbitals
- Computationally expensive to compute integrals and derivatives.

# Why GTO

- Wrong behavior at  $r \to 0$  and  $r \to \infty$
- Gaussian × Gaussian = Gaussian
- Analytical solutions for most integrals and derivatives.
- Computationally less expensive than STO's





# Pople family basis set

- Minimal Basis: STO-nG
  - Each atom optimized STO is fit with n GTO's
  - Minimum number of AO's needed
- Split Valence Basis: 3-21G,4-31G, 6-31G
  - Contracted GTO's optimized per atom.
  - Valence AO's represented by 2 contracted GTO's
- Polarization: Add AO's with higher angular momentum (L)
  - 3-21G\* or 3-21G(d),6-31G\* or 6-31G(d),6-31G\*\* or 6-31G(d,p)
- Diffuse function: Add AO with very small exponents for systems with diffuse electron densities
  - 6-31+G\*, 6-311++G(d,p)





# Correlation consistent basis set

- Family of basis sets of increasing sizes.
- Can be used to extrapolate basis set limit.
- cc-pVDZ: Double Zeta(DZ) with d's on heavy atoms, p's on H
- cc-pVTZ: triple split valence with 2 sets of d's and 1 set of f's on heavy atom, 2 sets of p's and 1 set of d's on H
- cc-pVQZ, cc-pV5Z, cc-pV6Z
- can be augmented with diffuse functions: aug-cc-pVXZ (X=D,T,Q,5,6)





# Pseudopotentials or Effective Core Potentials

- All Electron calculations are prohibitively expensive.
- Only valence electrons take part in bonding interaction leaving core electrons unaffected.
- Effective Core Potentials (ECP) a.k.a Pseudopotentials describe interactions between the core and valence electrons.
- Only valence electrons explicitly described using basis sets.
- Pseudopotentials commonly used
  - Los Alamos National Laboratory: LanL1MB and LanL2DZ
  - Stuttgard Dresden Pseudopotentials: SDDAll can be used.
  - Stevens/Basch/Krauss ECP's: CEP-4G,CEP-31G,CEP-121G
- Pseudopotential basis are "ALWAYS" read in pairs
  - Basis set for valence electrons
  - Parameters for core electrons





#### Molecular Mechanics

- The potential energy of all systems in molecular mechanics is calculated using force fields.
- Molecular mechanics can be used to study small molecules as well as large biological systems or material assemblies with many thousands to millions of atoms.
- All-atomistic molecular mechanics methods have the following properties:
  - Each atom is simulated as a single particle
  - Each particle is assigned a radius (typically the van der Waals radius), polarizability, and a constant net charge (generally derived from quantum calculations and/or experiment)
  - Bonded interactions are treated as "springs" with an equilibrium distance equal to the experimental or calculated bond length
- The exact functional form of the potential function, or force field, depends on the particular simulation program being used.





# General form of Molecular Mechanics equations

$$E = E_{\rm bond} + E_{\rm angle} + E_{\rm torsion} + E_{
m vdW} + E_{
m elec}$$

$$= \frac{1}{2} \sum_{\rm bonds} K_b (b - b_0)^2 \qquad \qquad \text{Bond}$$

$$+\frac{1}{2}\sum_{\text{angles}}K_{\theta}(\theta-\theta_0)^2$$
 Angle

$$+\frac{1}{2}\sum_{\text{dihedrals}}K_{\phi}\left[1+\cos(n\phi)\right]^{2}$$
 Torsion

$$+\sum_{\text{nonbonds}} \left\{ \begin{array}{l} \left[ \left( \frac{\sigma}{r} \right)^{12} - \left( \frac{\sigma}{r} \right)^{6} \right] \text{ van der Waals} \\ + \frac{q_{1}q_{2}}{D_{r}} \end{array} \right.$$
 Electrostatics



#### Picture taken from

http://en.wikipedia.org/wiki/Molecular\_mechanics





#### QM/MM

- What do we do if we want simulate chemical reaction in large systems?
- Quantum Mechanics(QM): Accurate, expensive  $(\mathcal{O}(N^4))$ , suitable for small systems.
- Molecular Mechanics(MM): Approximate, does not treat electrons explicitly, suitable for large systems such as enzymes and proteins, cannot simulate bon breaking/forming
- Methods that combine QM and MM are the solution.
- Such methods are called Hybrid QM/MM methods.
- The basic idea is to partition the system into two (or more) parts
  - The region of chemical interest is treated using accurate QM methods eg. active site of an enzyme.
  - 2 The rest of the system is treated using MM or less accurate QM methods such as semi-empirical methods or a combination of the two.

$$\hat{H}_{\text{Total}} = \hat{H}_{\text{QM}} + \hat{H}_{\text{MM}} + \hat{H}_{\text{OM-MM}}^{\text{int}}$$





#### QM/MM

**ONIOM:** Divide the system into a real (full) system and the model system. Treat the model system at high and low level. The total energy of the system is given by

$$E = E(low, real) + E(high, model) - E(low, model)$$

**Empirical Valence Bond:** Treat any point on a reaction surface as a combination of two or more valence bond structures

$$H(\mathbf{R},\mathbf{r}) = \begin{vmatrix} H_{11}(\mathbf{R},\mathbf{r}) & H_{12}(\mathbf{R},\mathbf{r}) \\ H_{21}(\mathbf{R},\mathbf{r}) & H_{22}(\mathbf{R},\mathbf{r}) \end{vmatrix}$$

**Effective Fragment Potential:** Divide a large system into fragments and perform *ab initio* or DFT calculations of fragments and their dimers and including the Coulomb field from the whole system.





# Molecular Dynamics

#### Why Molecular Dynamics?

- Electronic Structure Methods are applicable to systems in gas phase under low pressure (vaccum).
- Majority of chemical reactions take place in solution at some temperature with biological reactions usually at specific pH's.
- Calculating molecular properties taking into account such environmental effects which can be dynamical in nature are not adequately described by electronic structure methods.

#### **Molecular Dynamics**

- Generate a series of time-correlated points in phase-space (a trajectory).
- Propagate the initial conditions, position and velocities in accordance with Newtonian Mechanics.  $\mathbf{F} = m\mathbf{a} = -\nabla V$
- Fundamental Basis is the Ergodic Hypothesis: the average obtained by following a small number of particles over a long time is equivalent to averaging over a large number of particles for a short time.





## Molecular Dynamics Theory

Solve the time-dependent Schrödinger equation

$$i\hbar \frac{\partial}{\partial t} \Psi(\mathbf{R}, \mathbf{r}, t) = \hat{H} \Psi(\mathbf{R}, \mathbf{r}, t)$$

with

$$\Psi(\mathbf{R}, \mathbf{r}, t) = \chi(\mathbf{R}, t)\Phi(\mathbf{r}, t)$$

and

$$\hat{H} = -\sum_{I} \frac{\hbar^{2}}{2M_{I}} \nabla_{I}^{2} + \underbrace{\frac{-\hbar^{2}}{2m_{e}} \nabla_{i}^{2} + V_{n-e}(\mathbf{r}, \mathbf{R})}_{H_{e}(\mathbf{r}, \mathbf{R})}$$

Obtain coupled equations of motion for electrons and nuclei:
 Time-Dependent Self-Consistent Field (TD-SCF) approach.

$$i\hbar \frac{\partial \Phi}{\partial t} = \left[ -\sum_{i} \frac{\hbar^{2}}{2m_{e}} \nabla_{i}^{2} + \langle \chi | V_{n-e} | \chi \rangle \right] \Phi$$

$$i\hbar \frac{\partial \chi}{\partial t} = \left[ -\sum_{i} \frac{\hbar^{2}}{2M_{I}} \nabla_{I}^{2} + \langle \Phi | H_{e} | \Phi \rangle \right] \chi$$





Define nuclear wavefunction as

$$\chi(\mathbf{R}, t) = A(\mathbf{R}, t) \exp\left[iS(\mathbf{R}, t)/\hbar\right]$$

where A and S are real.

• Solve the time-dependent equation for nuclear wavefunction and take classical limit ( $\hbar \to 0$ ) to obtain

$$\frac{\partial S}{\partial t} + \sum_{I} \frac{\hbar^2}{2M_I} (\nabla_I S)^2 + \langle \Phi | H_e | \Phi \rangle = 0$$

an equation that is isomorphic with the Hamilton-Jacobi equation with the classical Hamilton function given by

$$\mathcal{H}(\{\mathbf{R}_I\}, \{\mathbf{P}_I\}) = \sum_{I} \frac{\hbar^2}{2M_I} \mathbf{P}_I^2 + V(\{\mathbf{R}_I\})$$

where

$$\mathbf{P}_I \equiv \nabla_I S$$
 and  $V(\{\mathbf{R}_I\}) = \langle \Phi | H_e | \Phi \rangle$ 

Obtain equations of nuclear motion from Hamilton's equation

$$\frac{d\mathbf{P}_{I}}{dt} = -\frac{d\mathcal{H}}{d\mathbf{R}_{I}} \Rightarrow M\ddot{\mathbf{R}}_{I} = -\nabla_{I}V$$

$$\frac{d\mathbf{R}_{I}}{dt} = \frac{d\mathcal{H}}{d\mathbf{P}_{I}}$$





 Replace nuclear wavefunction by delta functions centered on nuclear position to obtain

$$i\hbar \frac{\partial \Phi}{\partial t} = H_e(\mathbf{r}, \{\mathbf{R}_I\}) \Phi(\mathbf{r}; \{\mathbf{R}_I\}, t)$$

- This approach of simultaneously solving the electronic and nuclear degrees of freedom by incorporating feedback in both directions is known as Ehrenfest Molecular Dynamics.
- ullet Expand  $\Phi$  in terms of many electron wavefunctions or determinants

$$\Phi(\mathbf{r}; \{\mathbf{R}_I\}, t) = \sum_i c_i(t) \Phi_i(\mathbf{r}; \{\mathbf{R}_I\})$$

with matrix elements

$$H_{ii} = \langle \Phi_i | H_e | \Phi_i \rangle$$

Inserting Φ in the TDSE above, we get

$$i\hbar \dot{c}_i(t) = c_i(t)H_{ii} - i\hbar \sum_{I,i} \dot{\mathbf{R}}_I \mathbf{d}_I^{ij}$$

with non-adiabtic coupling elements given by







- Upto this point, no restriction on the nature of  $\Phi_i$  i.e. adiabatic or diabatic basis has been made.
- Ehrenfest method rigorously includes non-adiabtic transitions between electronic states within the framework of classical nuclear motion and mean field (TD-SCF) approximation to the electronic structure.
- Now suppose, we define  $\{\Phi_i\}$  to be the adiabatic basis obtained from solving the time-independent Schrödinger equation,

$$H_e(\mathbf{r}, {\mathbf{R}_I})\Phi_i(\mathbf{r}; {\mathbf{R}_I}) = E_i({\mathbf{R}_I})\Phi_i(\mathbf{r}; {\mathbf{R}_I})$$

- The classical nuclei now move along the adiabatic or Born-Oppenheimer potential surface. Such dynamics are commonly known as Born-Oppenheimer Molecular Dynamics or BOMD.
- If we restrict the dynamics to only the ground electronic state, then we obtain ground state BOMD.
- If the Ehrenfest potential  $V(\{\mathbf{R}_I\})$  is approximated to a global potential surface in terms of many-body contributions  $\{v_n\}$ .

$$V(\{\mathbf{R}_I\}) \approx V_e^{approx}(\mathbf{R}) = \sum_{I=1}^N v_1(\mathbf{R}_I) + \sum_{I>J}^N v_2(\mathbf{R}_I, \mathbf{R}_J) + \sum_{I>J>K}^N v_3(\mathbf{R}_I, \mathbf{R}_J, \mathbf{R}_K) + \cdots$$



- Thus the problem is reduced to purely classical mechanics once the  $\{\nu_n\}$  are determined usually Molecular Mechanics Force Fields. This class of dynamics is most commonly known as **Classical Molecular Dynamics**.
- Another approach to obtain equations of motion for ab-initio molecular dynamics is to apply the Born-Oppenheimer approximation to the full wavefunction  $\Psi(\mathbf{r}, \mathbf{R}, t)$

$$\Psi(\mathbf{r}, \mathbf{R}, t) = \sum_{k} \chi(\mathbf{R}, t) \Phi_{k}(\mathbf{r}; \mathbf{R}(t))$$

where

$$H_e\Phi_k(\mathbf{r};\mathbf{R}(t)) = E_k(\mathbf{R}(t))\Phi_k(\mathbf{r};\mathbf{R}(t))$$

 Assuming that the nuclear dynamics doesn not change the electronic state, we arrive at the equation of motion for nuclear wavefunction

$$i\hbar \frac{\partial}{\partial t} \chi(\mathbf{R}, t) = \left[ \sum_{I} -\frac{\hbar^2}{2M_I} \nabla_I^2 + E_k(\mathbf{R}) \right] \chi(\mathbf{R}, t)$$





The Lagrangian for this system is given by.

$$\mathcal{L} = \hat{T} - \hat{V}$$

 Corresponding Newton's equation of motion are then obtained from the associated Euler-Lagrange equations,

$$\frac{d}{dt}\frac{\partial \mathcal{L}}{\partial \dot{\mathbf{R}}_I} = \frac{\partial \mathcal{L}}{\partial \mathbf{R}_I}$$

The Lagrangian for ground state BOMD is

$$\mathcal{L}_{\text{BOMD}} = \sum_{I} \frac{1}{2} M_{I} \dot{\mathbf{R}}_{I}^{2} - \min_{\Phi_{0}} \langle \Phi | H_{e} | \Phi \rangle$$

and equations of motions

$$M_{I}\ddot{\mathbf{R}}_{I} = \frac{d}{dt}\frac{\partial \mathcal{L}_{\text{BOMD}}}{\partial \dot{\mathbf{R}}_{I}} = \frac{\partial \mathcal{L}_{\text{BOMD}}}{\partial \mathbf{R}_{I}} = -\nabla_{I}\min_{\Phi_{0}}\langle \Phi | H_{e} | \Phi \rangle$$

#### **Extended Lagrangian Molecular Dynamics (ELMD)**

Extend the Lagrangian by adding kinetic energy of fictitious particles and obtain their equation of motions from Euler-Lagrange equations.



Molecular Orbitals:  $\{\phi_i\}$ Density Matrix:  $P_{\mu\nu} = \sum_i c_{\mu i}^* c_{\nu i}$ 



### Car-Parrinello Molecular Dynamics (CPMD)

#### CPMD and NWCHEM

$$\mathcal{L}_{\text{CPMD}} = \sum_{I} \frac{1}{2} M_{I} \dot{\mathbf{R}}_{I}^{2} + \sum_{i} \frac{1}{2} \mu_{i} \langle \dot{\phi}_{i} | \dot{\phi}_{i} \rangle - \langle \Phi_{0} | H_{e} | \Phi_{0} \rangle + \text{constraints}$$

R. Car and M. Parrinello, Phys. Rev. Lett. 55 (22), 2471 (1985)

### Atom centered Density Matrix Propagation (ADMP)

#### Gaussian 03/09

$$\mathcal{L}_{\text{ADMP}} = \frac{1}{2} \text{Tr}(\mathbf{V}^T \mathbf{M} \mathbf{V}) + \frac{1}{2} \mu \text{Tr}(\dot{\mathbf{P}} \dot{\mathbf{P}}) - E(\mathbf{R}, \mathbf{P}) - \text{Tr}[\mathbf{\Lambda}(\mathbf{P} \mathbf{P} - \mathbf{P})]$$

H. B. Schlegel, J. M. Millam, S. S. Iyengar, G. A. Voth, A. D. Daniels, G. E. Scuseria, M. J. Frisch, J. Chem. Phys. 114, 9758 (2001)

#### curvy-steps ELMD (csELMD)

#### Q-Chem

$$\mathcal{L}_{\text{csELMD}} = \sum_{I} \frac{1}{2} M_{I} \dot{\mathbf{R}}_{I}^{2} + \frac{1}{2} \mu \sum_{i < j} \dot{\Delta}_{ij} - E(\mathbf{R}, \mathbf{P}); \quad \mathbf{P}(\lambda) = e^{\lambda \Delta} \mathbf{P}(0) e^{-\lambda \Delta}$$

J.M. Herbert and M. Head-Gordon, J. Chem. Phys. 121, 11542 (2004)



### Molecular Dynamics: Methods and Programs

- Electronic energy obtained from
  - Molecular Mechanics ⇒ Classical Molecular Dynamics
    - LAMMPS
    - NAMD
    - Amber
    - Gromacs
  - Ab-Initio Methods ⇒ Quantum or Ab-Initio Molecular Dynamics
    - Born-Oppenheimer Molecular Dynamics: Gaussian, GAMESS
    - Extended Lagrangian Molecular Dynamics: VASP, CPMD, Gaussian (ADMP), NWCHEM(CPMD), QChem (curvy-steps ELMD)
    - Time Dependent Hartree-Fock and Time Dependent Density Functional Theory: Gaussian, GAMESS, NWCHEM, QChem
    - Multiconfiguration Time Dependent Hartree(-Fock), MCTDH(F)
    - Non-Adiabatic and Ehrenfest Molecular Dynamics, Multiple Spawning, Trajectory Surface Hopping
    - Quantum Nuclei: QWAIMD(Gaussian), NEO(GAMESS)





# Classical Molecular Dynamics

- Advantages
  - Large Biological Systems
  - 2 Long time dynamics
- Disadvantages
  - Cannot describe Quantum Nuclear Effects

## Ab Initio and Quantum Dynamics

- Advantages
  - Quantum Nuclear Effects
- Disadvantages
  - $\sim$  100 atoms
  - Full Quantum Dynamics ie treating nuclei quantum mechanically: less than 10 atoms
  - Picosecond dynamics at best





| Software        | QB           | Eric         | Louie        | Oliver       | Painter      | Poseidon     | Philip       | Tezpur   |
|-----------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|----------|
| Amber           | ✓            | ✓            | ✓            | ✓            | ✓            | ✓            | ✓            | <b>√</b> |
| Desmond         | ✓.           |              |              |              |              |              |              |          |
| DL_Poly         | ✓.           | √            | √.           | ✓            | ✓.           | ✓            | √            | <b>√</b> |
| Gromacs         | ✓            | <b>√</b>     | <b>√</b>     | <b>√</b>     | <b>√</b>     | √            | <b>√</b>     | <b>√</b> |
| LAMMPS          | <b>√</b>     | <b>√</b>     | <b>√</b>     | <b>√</b>     | <b>√</b>     | <b>√</b>     | ✓            | <b>√</b> |
| NAMD<br>OpenEye | <b>√</b>     | <b>V</b>     | <b>√</b>     | <b>√</b>     | <b>√</b>     | <b>√</b>     | ,            | <b>√</b> |
| CPMD            | <b>√</b>     | <b>√</b>     | <b>V</b>     | <b>V</b>     | <b>V</b>     | <b>√</b>     | <b>V</b>     | <b>V</b> |
| GAMESS          | <b>V</b>     | <b>v</b>     | <b>v</b>     | <b>v</b>     | <b>v</b>     | <b>∨</b> ✓   | 1            | <b>V</b> |
| Gaussian        | •            | <i>'</i>     | <i>'</i>     | ,<br>,       | <b>↓</b>     | •            | <i>'</i>     | <b>,</b> |
| NWCHEM          | ✓            | ✓            | ✓            | ·<br>✓       | ✓            | $\checkmark$ |              | ✓        |
| Piny_MD         | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | ✓            | $\checkmark$ | $\checkmark$ | ✓        |
| Software        | Blue         | dawg         | Ducky        | Lacumba      | a Neptui     | ne Zeke      | Pelican      | Pandora  |
| Amber           |              |              | <b>√</b>     | ✓            |              |              | ✓            |          |
| Gromacs         | ,            | /            | $\checkmark$ | $\checkmark$ | ✓            | ✓            | $\checkmark$ |          |
| LAMMPS          | ,            |              | $\checkmark$ | $\checkmark$ | ✓            | $\checkmark$ | $\checkmark$ |          |
| NAMD            | ,            |              | $\checkmark$ | $\checkmark$ | ✓            | $\checkmark$ |              |          |
| CPMD            | ,            | (            | <b>√</b>     | ✓.           | $\checkmark$ | ✓.           |              |          |
| Gaussian        | ,            | 1            | ✓            | $\checkmark$ |              | ✓            | $\checkmark$ |          |
| NWCHEM          |              | /            | /            | ,            | ,            | ,            | /            |          |

CENTER FOR COMPUTATION

Piny\_MD

## **Computational Chemistry Programs**

- Commercial Software: Q-Chem, Jaguar, CHARMM
- GPL/Free Software: ACES, ABINIT, Octopus
- http://en.wikipedia.org/wiki/Quantum\_ chemistry\_computer\_programs
- http://www.ccl.net/chemistry/links/ software/index.shtml
- http://www.redbrick.dcu.ie/~noel/ linux4chemistry/





## Job Types and Keywords

| Gaussian   | GAMESS                                                               | NWCHEM                                                                                                                                       |
|------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| # keyword  | runtyp=                                                              | task                                                                                                                                         |
| sp         | energy                                                               | energy                                                                                                                                       |
| force      | gradient                                                             | gradient                                                                                                                                     |
| opt        | optimize                                                             | optimize                                                                                                                                     |
| opt=ts     | sadpoint                                                             | saddle                                                                                                                                       |
| freq       | hessian                                                              | frequencies, freq                                                                                                                            |
| scan       | surface                                                              | ✓                                                                                                                                            |
| ✓          | ✓                                                                    | ✓                                                                                                                                            |
| irc        | irc                                                                  | ✓                                                                                                                                            |
| admp, bomd | drc                                                                  | dynamics, Car-Parrinello                                                                                                                     |
| рор        | рор                                                                  | <b>√</b>                                                                                                                                     |
| prop       | ✓                                                                    | ✓                                                                                                                                            |
| <b>√</b>   | ✓                                                                    | <b>√</b>                                                                                                                                     |
| ✓          | ✓                                                                    | <b>√</b>                                                                                                                                     |
| oniom      | ✓                                                                    | qmmm                                                                                                                                         |
|            | # keyword  sp force opt opt=ts freq scan  irc admp, bomd pop prop  v | # keyword runtyp=  sp energy force gradient opt optimize opt=ts sadpoint freq hessian scan surface  virc irc admp, bomd drc pop prop v v v v |





## Molecular Dynamics Calculations

- Gaussian:
  - BOMD: Born-Oppenheimer Molecular Dynamics
  - ADMP: Atom centered Density Matrix Propagation (an extended Lagrangian Molecular Dynamics similar to CPMD) and ground state BOMD
- GAMESS:
  - DRC: Direct Dynamics, a classical trajectory method based on "on-the-fly" ab-initio or semi-empirical potential energy surfaces
- NWCHEM:
  - Car-Parrinello: Car Parrinello Molecular Dynamics (CPMD)
  - DIRDYVTST: Direct Dynamics Calculations using POLYRATE with electronic structure from NWCHEM





#### Related HPC Tutorials

Fall Semester

#### Introduction to Gaussian/Electronic Structure Methods

Spring Semester

Introduction to Computational Chemistry: Molecular Dynamics

April 27<sup>th</sup>





## **Useful Links**

- Amber:http://ambermd.org
- Desmond:http: //www.deshawresearch.com/resources\_desmond.html
- DL\_POLY:http: //www.cse.scitech.ac.uk/ccq/software/DL\_POLY
- Gromacs:http://www.gromacs.org
- LAMMPS:http://lammps.sandia.gov
- NAMD:http://www.ks.uiuc.edu/Research/namd
- CPMD: http://www.cpmd.org
- GAMESS: http://www.msg.chem.iastate.edu/gamess
- Gaussian: http://www.gaussian.com
- NWCHEM: http://www.nwchem-sw.org
- PINY\_MD:http: //homepages.nyu.edu/~mt33/PINY\_MD/PINY.html
- Basis Set: https://bse.pnl.gov/bse/portal





## **Further Reading**

- David Sherill's Notes at Ga Tech: http://vergil.chemistry.gatech.edu/notes/index.html
- Mark Tuckerman's Notes at NYU: http://www.nyu.edu/classes/tuckerman/quant.mech/index.html
- Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory, A. Szabo and N. Ostlund
- Introduction to Computational Chemistry, F. Jensen
- Essentials of Cmputational Chemistry Theories and Models, C. J. Cramer
- Exploring Chemistry with Electronic Structure Methods, J. B. Foresman and A. Frisch
- Ab Initio Molecular Dynamics: Theory and Implementation, D. Marx and J. Hutterhttp: //www.theochem.ruhr-uni-bochum.de/research/marx/marx.pdf
- Molecular Modeling Principles and Applications, A. R. Leach
- Computer Simulation of Liquids, M. P. Allen and D. J. Tildesley
- Modern Electronic Structure Theory, T. Helgaker, P. Jorgensen and J. Olsen (Highly advanced text, second quantization approach to electronic structure theory)





# On LONI Linux Systems



### Using Gaussian on LONI Systems

- Site specific license
  - Gaussian 03 and 09
    - LSU Users: Eric
    - Latech Users: Painter, Bluedawg
  - Gaussian 03
    - ULL Users: Oliver, Zeke
    - Tulane Users: Louie, Ducky
    - Southern Users: Lacumba
  - UNO Users: No License
- Add +gaussian-03/+gaussian-09 to your .soft file and resoft
- If your institution has license to both G03 and G09, have only one active at a given time.





# Example Job submission script on Intel x86

```
#PBS -A your allocation
# specify the allocation. Change it to your allocation
# the gueue to be used.
# Number of nodes and processors
#PBS -1 walltime=1:00:00
# requested Wall-clock time.
#PBS -o q03 output
# name of the standard out file to be "output-file".
# standard error output merge to the standard output file.
#PBS -N q03test
# name of the job (that will appear on executing the qstat command).
# setup q03 variables
source $a03root/a03/bsd/a03.login
set NPROCS='wc -1 $PBS_NODEFILE | gawk '//{print $1}''
setenv GAUSS SCRDIR /scratch/$USER
# cd to the directory with Your input file
# Change this line to reflect your input file and output file
```

## Linda Access

```
set NODELIST = ( -vv -nodelist '"' 'cat $PBS_NODEFILE' '"' -mp 4)
setenv GAUSS_LFLAGS " $NODELIST "
g031 < g03job.inp > g03job.out
```

# Example Job submission script on P5

```
# @ account_no = your_allocation
# @ requirements = (Arch == "Power5")
# @ environment = LL JOB=TRUE ; MP PULSE=1200
# @ job type = parallel
# @ node_usage = shared
# @ wall clock limit = 12:00:00
# @ initialdir = /home/apacheco/g03test
# @ class = checkpt
# @ error = q03 $(jobid).err
# @ queue
# setup q03 variables
source $q03root/q03/bsd/q03.login
# setup and create Gaussian scratch directory
seteny GAUSS SCRDIR /scratch/default/$USER
mkdir -p $GAUSS SCRDIR
# cd to the directory with Your input file
# Change this line to reflect your input file and output file
```





## Sample Input

```
%chk=h2o-opt-freq.chk
mem = 51.2 mb
%NProcShared=4
#p b3lyp/6-31G opt freq
H2O OPT FREO B3LYP
H 1 r1
H 1 r1 2 a1
r1 1.05
al 104.5
```

# Input Description

checkpoint file amount of memory number of smp processors blank line Job description blank line Job Title blank line Charge Multiplicity Molecule Description 7-matrix format with variables blank line variable value

blank line





### Using GAMESS on LONI Systems

 Add +gamess-12Jan2009R1-intel-11.1 (on Queenbee) to your .soft and resoft

# Job submission script

```
#!/bin/bash
#PBS -A your_allocation
#PBS -q checkpt
#PBS -l nodes=1:ppn=4
#PBS -l nodes=1:ppn=4
#PBS -j walltime=00:10:00
#PBS -j oe
#PBS -N gamess-examl

export WORKDIR=$PBS_0_WORKDIR
export NPROCS=`wc -l $PBS_NODEFILE | gawk '//{print $1}'
export SCRDIR=/work/$USER/scr
if [ ! -e $SCRDIR ]; then mkdir -p $SCRDIR; fi
rm -f $SCRDIR/*

cd $WORKDIR
rungms h2o-opt-freq 01 $NPROCS h2o-opt-freq.out $SCRDIR
cp -p $SCRDIR/$OUTPUT $WORKDIR/
```





## Sample Input

```
SCONTRI SCFTYP=RHF RUNTYP=OPTIMIZE
   COORD=ZMT NZVAR=0 $END
 $STATPT OPTTOL=1.0E-5 HSSEND=.T. $END
 $BASTS GBASTS=N31 NGAUSS=6
   NDFUNC=1 NPFUNC=1 $END
 SDATA
H2O OPT
Cnv 2
H 1 rOH
H 1 rOH 2 aHOH
rOH = 1.05
aHOH = 104.5
 SEND
```

# Input Description

Job control data

geometry search control
6-31G\*\* basis set

molecular data control Title Symmetry group and axis

molecule description in
 z-matrix

variables

end molecular data control





### Using NWCHEM on LONI Systems

 Add +nwchem-5.1.1-intel-11.1-mvapich-1.1 (on Queenbee) to your .soft and resoft

# Job submission script

```
#!/bin/sh
#PBS -q checkpt
#PBS -M apacheco@cct.lsu.edu
#PBS -I nodes=1:ppn=4
#PBS -1 walltime=0:30:00
#PBS -V
#PBS -o nwchem_h2o.out
#PBS -o nwchem_h2o.out
#PBS -e nwchem_h2o.err
#PBS -n nwchem_h2o.err
#PBS -N nwchem_h2o
export EXEC=nwchem
export EXEC=nwchem
export EXEC_DIR=/usr/local/packages/nwchem-5.1-mvapich-1.0-intel-10.1/bin/LINUX64/
export WORK_DIR=$PBS_O_WORKDIR
export NPROCS=\wc -1 $PBS_NODEFILE |gawk '//{print $1}'\
cd $WORK_DIR
mpirun_rsh -machinefile $PBS_NODEFILE -np $NPROCS $EXEC_DIR/$EXEC \
$WORK_DIR/h2o-opt-freq.nw >6 $WORK_DIR/h2o-opt-freq.nwo
```





# Sample Input

```
title "H2O"
echo
charge 0
geometry
zmatrix
H 1 r1
H 1 r1 2 a1
variables
r1 1 05
a1 104.5
end
end
basis noprint
* library 6-31G
end
dft
XC b3lvp
mii1 + 1
end
task dft optimize
task dft energy
task dft freq
```

## **Input Description**

```
Job title
echo contents of input file
charge of molecule
geometry description in
z-matrix format
variables used with values
end z-matrix block
end geometry block
basis description
dft calculation options
job type
```



