問1

$$(1) x - 10 < 26 - 3x$$

$$x + 3x < 26 + 10$$

$$(2) -x + 1 \le 7$$

$$-x \le 7 - 1$$

$$-x \le 6$$

$$x \ge -6$$

$$(3)$$
 $8 \ge 3x + 5$

$$-3x \ge 5 - 8$$

$$-3x \ge -3$$

$$x \leq 1$$

(4)両辺に3をかけて

$$3(4x+3) > 2x-1$$

$$12x + 9 > 2x - 1$$

$$12x - 2x > -1 - 9$$

$$10x > -10$$

$$x > -1$$

問2

りんごの個数をx個とすると,

$$100x + 80(8 - x) \le 700$$

両辺を 10 で割ると

$$10x + 8(8 - x) \le 70$$

$$10x + 64 - 8x \le 70$$

$$10x - 8x \le 70 - 64$$

$$2x \le 6$$

$$x \leq 3$$

よって,3個まで買える.

問3 上の式を①,下の式を②とする.

(1)①を解くと,x > 4

②を解くと,

$$x + 8 > 2x + 2$$

$$-x > -6$$

よって,4 < x < 6

(2)①を解くと

$$3x < 4 + 8$$

②を解くと

$$x - 3x \le 4 + 2$$

$$-2x \le 6$$

$$x \ge -3$$

よって , $-3 \le x < 4$

(3)①を解くと

$$6x - 2x > 4 + 1$$

$$x > \frac{5}{4}$$

②を解くと

$$3x - 6x \le -4 - 5$$

$$-3x \leq -9$$

$$x \ge 3$$

よって, $x \ge 3$

(4)①を解くと

$$3x - 3 \le x + 5$$

$$3x - x \le 5 + 3$$

$$2x \le 8$$

$$x \leq 4$$

②の両辺を6倍して解くと

$$3 - 2x \le 2x - 1$$
$$-2x - 2x \le -1 - 3$$
$$-4x \le -4$$
$$x \ge 1$$

よって , $1 \le x \le 4$

問4

(1)
$$(x-2)(x-4) < 0$$
 よって,
$$2 < x < 4$$

(2)
$$(2x-1)(x-1) > 0$$

よって, $x < \frac{1}{2}, \ 1 < x$

(3)
$$x^2-4 \le 0$$

$$(x+2)(x-2) \le 0$$
 よって,
$$-2 \le x \le 2$$

(4)
$$(3x-2)(x-3) \ge 0$$

よって, $x \le \frac{3}{2}, \ 3 \le x$

問 5

\overline{x}		1		2		4	
x-1	_	0	+	+	+	+	+
x-2	_	_	_	0	+	+	+
x-4	_	_	_	_	_	0	+
P(x)	_	0	+	0	_	0	+

よって,
$$x < 1$$
, $2 < x < 4$

(
$$2$$
) $P(-1)=x^3+2x^2-5x-6$ とおく .
$$P(-1)=-1+2+5-6=0\ {\it {\it constant}}$$
 $x+1$ で割りきれる .

よって
$$P(x) = (x+1)(x^2+x-6)$$

$$= (x+1)(x+3)(x-2)$$

P(x)=0 となるのは , x=-3,-1,2 のときであるから , 各区間における因数の符号を調べると , 表のようになる .

x		-3		-1		2	
x+3	_	0	+	+	+	+	+
x+1	_	_	_	0	+	+	+
x-2	_	_	_	_	_	0	+
P(x)	_	0	+	0	_	0	+

よって,
$$-3 \le x \le -1$$
, $2 \le x$

問6

左辺 - 右辺 =
$$a + c - (b + d)$$

= $a + c - b - d$
= $(a - b) + (c - d)$

ここて

$$a>b$$
 より, $a-b>0$
$$c>d$$
 より, $c-d>0$ よって, $(a-b)+(c-d)>0$ したがって, $a+c>b+d$

問7

左辺 - 右辺 =
$$a^2-1$$

= $(a+1)(a-1)$
ここで, $a \ge 1$ より
 $a+1 \ge 2>0$, $a-1 \ge 0$
よって, $(a+1)(a-1) \ge 0$
したがって, $a^2 \ge 1$

等号が成り立つのは , a-1=0 , すなわち a=1 のとき .

問8

左辺 - 右辺 =
$$a^2x^2 + a^2y^2 + b^2x^2 + b^2y^2$$

 $-(a^2x^2 + 2abxy + b^2y^2)$
 $= a^2y^2 - 2abxy + b^2x^2$
 $= (ay - bx)^2 \ge 0$

よって, $(a^2+b^2)(x^2+y^2) \ge (ax+by)^2$ 等号が成り立つのは, ay - bx = 0 すなわち ay = bxのとき

問9

(1) a>0,b>0より, $\frac{1}{a}>0$, $\frac{1}{b}>0$ なので,相加平

$$a + \frac{1}{b} \ge 2\sqrt{a \cdot \frac{1}{b}} = 2\sqrt{\frac{a}{b}} \cdots \textcircled{1}$$
$$b + \frac{1}{a} \ge 2\sqrt{b \cdot \frac{1}{a}} = 2\sqrt{\frac{b}{a}} \cdots \textcircled{2}$$

①,②の辺々を掛け合わせて

$$\left(a + \frac{1}{b}\right)\left(b + \frac{1}{b}\right) \ge 2\sqrt{\frac{a}{b}} \cdot 2\sqrt{\frac{b}{a}}$$
$$= 4\sqrt{\frac{a}{b}} \cdot \frac{b}{a}$$
$$= 4\sqrt{1} = 4$$

よって,
$$\left(a+rac{1}{b}
ight)\!\!\left(b+rac{1}{a}
ight) \ge 4$$

等号が成り立つのは , $a=rac{1}{b}$, $b=rac{1}{a}$, すなわち ab = 1 のとき.

(2) a>0,b>0より, $\frac{b}{a}>0$, $\frac{a}{b}>0$ なので,相加平

$$\frac{b}{a} + \frac{a}{b} \ge 2\sqrt{\frac{b}{a} \cdot \frac{a}{b}} = 2\sqrt{1} = 2$$
よって,
$$\frac{b}{a} + \frac{a}{b} \ge 2$$

等号が成り立つのは , $\frac{b}{a}=\frac{a}{b}$, すなわち a=b のと

問 10

a>0,b>0なので,相加平均と相乗平均の大小関係 より

$$a+b \ge \sqrt{ab} \cdots \bigcirc$$

c>0,d>0なので,相加平均と相乗平均の大小関係 より

$$c+d \ge \sqrt{cd} \cdots (2)$$

①,②の辺々を掛け合わせて,

$$(a+b)(c+d) \ge 2\sqrt{ab} \cdot 2\sqrt{cd}$$

$$=4\sqrt{abcd}$$

よって, $(a+b)(c+d) \ge 4\sqrt{abcd}$

等号が成り立つのは, a=b, c=d のとき.

問 11

(1) 左辺 =
$$(x+4)^2 \ge 0$$

よって、 $x^2 + 8x + 16 \ge 0$

問 12

左辺 - 右辺 =
$$x^2 + y^2 - xy$$

= $x^2 - xy + y^2$
= $\left(x - \frac{1}{2}y\right)^2 - \frac{1}{4}y^2 + y^2$
= $\left(x - \frac{1}{2}y\right)^2 + \frac{3}{4}y^2$
ここで, $\left(x - \frac{1}{2}y\right)^2 \ge 0$, $\frac{3}{4}y^2 \ge 0$ だから
 $\left(x - \frac{1}{2}y\right)^2 + \frac{3}{4}y^2 \ge 0$
したがって, $x^2 + y^2 \ge xy$
等号が成り立つのは, $x - \frac{1}{2}y = 0$, $y = 0$,すなわち, $x = y = 0$ のとき.

問 13

等号が成り立つのは , $x+rac{1}{2}y=0$, y=0 , すなわ ち, x=y=0 のときであるが, x>y より, x, y が 同時に0になることはないから

$$\left(x+\frac{1}{2}y\right)^2+\frac{3}{4}y^2 \neq 0$$
 よって,
$$\left(x+\frac{1}{2}y\right)^2+\frac{3}{4}y^2>0$$
 したがって, $x^2+xy+y^2>0$

問 14

$$B = \left\{ \left. x \mid x^2 - 16 > 0, \; x \text{ は自然数} \right\}$$
 $= \left\{ \left. x \mid (x+4)(x-4) > 0, \; x \text{ は自然数} \right. \right\}$
 $= \left\{ \left. x \mid x < -4, \; 4 < x, \; x \text{ は自然数} \right. \right\}$
 $= \left\{ \left. x \mid 5, \; 6, \; 7, \; 8, \; \cdots \right. \right\}$

であるから

$$\overline{B} = \{1, 2, 3, 4\}$$

問 15

- (1)与式 = $\{1, 4\}$
- (2)与式 = $\{1, 2, 3, 4, 5, 6, 9\}$
- $\overline{A} = \{3, 5, 7, 8, 9, 10\}$ $\overline{B} = \{2, 6, 7, 8, 10\}$ であるから 与式 = $\{7, 8, 10\}$

(4) 求める集合は、(2) の補集合だから
与式 =
$$\{7, 8, 10\}$$

問 16

左辺 =
$$(\overline{\overline{A} \cup \overline{B}}) \cup \overline{\overline{C}}$$

= $(\overline{\overline{A}} \cap \overline{\overline{B}}) \cup C$
= $(A \cap B) \cup C$
= 右辺

問 17

- (1)真
- (2)偽 反例: x = -2 など

問 18

$$(1) ac = bc \qquad \xrightarrow{\longleftarrow} \quad a = b$$

よって

$$ac = bc \iff a = b$$

であるから,必要条件である.

$$\longrightarrow$$
 の反例は, $a=1,b=2,c=0$ など

(2)
$$x = y$$
 $x + z = y + z$

よって

$$x = y \iff x + z = y + z$$

であるから,必要十分条件である.

よって

n は 6 の倍数 \implies n は 3 の倍数 であるから,十分条件である.

←★ の反例は , n=3 など

(4)ひし形である 対角線が垂直に交わる

よって

ひし形である ⇒ 対角線が垂直に交わる であるから,十分条件である.

問 19

与えられた条件の否定は、 $\lceil n \mid$ は $3 \mid$ の倍数ではない」 $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ robons $P = \{1, 2, 4, 5, 7, 8, 10\}$

問 20

(1) 与えられた条件の否定は , $\lceil x \ge 1$ かつ $x \le 5$ 」であ るから

 $1 \le x \le 5$

(2) 与えられた条件は、「整数 n は 3 で割り切れ、かつ 5で割りきれる。」ということなので,この否定は 整数 n は 3 で割りきれないか, または 5 で割りきれ ない

問 21

逆
$$xy < 0 \rightarrow x > 0$$
 かつ $y < 0$ 裏 $x \le 0$ または $y \ge 0 \rightarrow xy \ge 0$ 対偶 $xy \ge 0 \rightarrow x \le 0$ または $y \ge 0$

問 22

(1) 与えられた命題の対偶は

「 $x \le 1$ かつ $y \le 1$ ならば, $x + y \le 2$ 」 となるので,この命題を証明する. $x \le 1$, $y \le 1$ であるから, 不等式の性質より $x + y \le 1 + 1$

すなわち , $x+y \le 2$ となる .

よって,もとの命題も真である.

(2) この命題の対偶は,

「m が偶数 , または n が偶数ならば , mn は偶数である .」となる .

 $i\)$ m ,n のうち , 一方が偶数のとき 自然数 a ,b を用いて , m=2a ,n=2b+1 と 表すと

$$mn = 2a(2b+1) = 2(2ab+a)$$
となり, mn は偶数となる.

ii) m ,n が偶数のとき 自然数 a ,b を用いて , m=2a ,n=2b と表す

$$mn = 2a \cdot 2b = 2(2ab)$$

となり, mn は偶数となる.

 ${
m i})$, ${
m ii})$ より , 対偶が真であるので , もとの命題も真である .