3F1 185+ 2 Notes Module 3: Functions Anni-Netake exam in Nov. Lonly I exam, Second score courts. - results for exam 1 upon sept 13th -post exam veflect ion in BB -KC 2 opens Minlay of week 5. FIDE adds to Hw. trut like IKC. (P)veview: 1) which one functions of x? a) write $X = \frac{h}{b}$; f(X) = 6. W, == 24 but f(=)=4+f(==26)=26 b) $x^2 + y^2 = y^2$ hu, (-2,0), (2,0) + Graph (X2+y2=43) fails bent line test.

$$f(z) = 2 - 2$$

$$f(z) = 4 + 4$$

$$f(z) = 4 + 4$$

$$f'(z) = 4 + 4$$

$$f'$$

 $z) g(x) = -4x^{2} + 5$

	1) Delle Del	_
	Say XRy it CX, y 7 & R.	U
K)	$G(1,2), (3,2), (3,1)3 \subseteq \mathbb{Z} \times \mathbb{Z}$	
x)	Lorderal puns on this graph	

3F3 Vet! A function is a velation F such that each input has only one output. - Ilvertical line test Notation:

domain codomain

finction

function

A -> B

or f(a) = exponce

and domain, codomin

implicit or

stotelo ex) f: R -> 1R or f(r)=3r+1 $V \longrightarrow 3V+1$ non-ex) $f(\frac{1}{6}) = \alpha$; Note $\frac{2}{6} = \frac{30}{36}$ yet $f(\frac{34}{31}) = 34$. 1: fails Vat. line test n/hex) Nun-ex) {(1,2), (3,2), (1,2), (3,3)3

3 -> 2 3 - Bad Def: The Vange of fiA >B is f(A) = 4 + Cn : n + A3= 666B: FACAW/ FCW=63 exists
"achieved elements in Codomain". BB-M3nes Class do bot of pl, but of p2 Telling if equation is function:

exprn_(X,y) = exprn_z(X,y) is a

function of X if you can isolate y uniquely.

 $\longrightarrow Z$

nm-ex) $y^2-x=4$

y= 4+X

y=± V++X not-unique and par X.

3F4

Non-ex) | y | + x = 3 test: Set XIO 141 +0=3 y=±3 Caution! $y^{2} + 3x = 2(x-4) + x + 8$ $y^{2} + 3x = 2x - 8 + x + 8$ $y^2 \pm 3 \times = 3 \times$ y 2 = 0 y = 0 BB M3nutes p3 +0P.

345

