

TensorRT

TensorRT

1.卸載torch和torchvision sudo pip uninstall torch torchvision

2.安裝torch2.1.0

2-1先去<u>https://forums.developer.nvidia.com/t/pytorch-for-jetson/72048</u> 下載2.1.0 or moodle下載檔案

2-2執行以下指令

sudo apt-get install python3-pip libopenblas-base libopenmpi-dev pip install Cython pip install torch-2.1.0-cp38-cp38m-linux_aarch64.whl

3.安裝torchvision0.16.0

sudo apt-get install libjpeg-dev zlib1g-dev libpython3-dev libavcodec-dev libavformat-dev libswscale-dev git clone --branch v0.16.0 https://github.com/pytorch/vision torchvision cd torchvision export BUILD_VERSION=0.16.0 python3 setup.py install --user

CLI:

yolo predict model=yolov8n.pt source='https://ultralytics.com/images/bus.jpg'

Python:

from ultralytics import YOLO

Load a model model = YOLO("yolov8n.pt") # load a pretrained model (recommended for training)

evaluate model performance on the validation set
results = model("https://ultralytics.com/images/bus.jpg")

YOLOv8→TensorRT

pip install cmake==3.27.5

pip install onnxsim

yolo export model=yolov8n.pt format=engine

```
ensorRT: starting export with TensorRT 8.5.2.2...
[02/16/2024-15:26:31] [TRT] [I] [MemUsageChange] Init CUDA: CPU +215, GPU -1, now: CPU 1849, GPU 5397 (MiB)
[02/16/2024-15:26:33] [TRT] [I] [MemUsageChange] Init builder kernel library: CPU +302, GPU +429, now: CPU 2174, GPU 5708 (MiB)
[02/16/2024-15:26:33] [TRT] [I] ------
[02/16/2024-15:26:33] [TRT] [I] Input filename: yolov8n.onnx
[02/16/2024-15:26:33] [TRT] [I] ONNX IR version: 0.0.8
[02/16/2024-15:26:33] [TRT] [I] Opset version:
[02/16/2024-15:26:33] [TRT] [I] Producer name:
                                           pytorch
[02/16/2024-15:26:33] [TRT] [I] Producer version: 2.1.0
[02/16/2024-15:26:33] [TRT] [I] Domain:
[02/16/2024-15:26:33] [TRT] [I] Model version: 0
[02/16/2024-15:26:33] [TRT] [I] Doc string:
[02/16/2024-15:26:34] [TRT] [W] onnx2trt utils.cpp:375: Your ONNX model has been generated with INT64 weights, while TensorRT does not natively support INT64. Attempting to cast down to INT32.
TensorRT: input "images" with shape(1, 3, 640, 640) DataType.FLOAT
 [ensorRT: output "output0" with shape(1, 84, 8400) DataType.FLOAT
TensorRT: building FP32 engine as yolov8n.engine
```

```
format
                         格式导出到
           'torchscript'
                        图像尺寸标量或 (高, 宽) 列表, 即 (640, 480)
           640
imasz
keras
           False
                         使用 Keras 进行TF SavedModel 导出
                         TorchScript优化移动设备
           False
optimize
                        FP16 量化
half
           False
                        INT8 量化
int8
           False
                        ONNX/TensorRT: 动态轴
dynamic
           False
                        ONNX/TensorRT: 简化模型
simplify
           False
                        ONNX: opset 版本 (可选, 默认为最新版本)
opset
           None
                         TensorRT: 工作空间大小 (GB)
workspace
                         CoreML文件:添加 NMS
           False
nms
```

嘗試改成用相機去讀取

yolo export model=yolov8n.pt format=engine

yolo detect predict model=yolov8m.engine source= 'bus.jpg' —show

目標

1.使用fp16及fp32去比較速度差距

資料集標註

Roboflow provides a full computer vision pipeline

Roboflow has products for each step of the computer vision pipeline and the ability to integrate with existing solutions for an interoperable approach to customer needs

Let's create a new workspace.

Workspaces house all of your projects and help you collaborate with teammates.

Name your workspace:

face

Choose your plan:

Invite teammates.

Add collaborators to help with labeling, upload data, train models, and more.

Invite Teammates via Email:	2 invites available
joe@email.com, sara@email.com	
Role: Admin >	

Let's create your project.

歷史紀錄:

因網路問題容易造成重複標註,可以透過這裡去看戰犯(X

建議在一開始就將資料集切開,就互相不影響。

Create

Review your selections and select a version size to create a moment-in-time snapshot of your dataset with the applied transformations.

Larger versions take longer to train but often result in better model performance. See how this is calculated >>

Maximum Version Size

Create

YOLOv8訓練、驗證&測試

Training:

yolo detect train data=data.yaml model=yolov8n.pt epochs=100 imgsz=640

```
train: ../train/images
val: ../valid/images
test: ../test/images

nc: 1
names: ['face']

roboflow:

workspace: face-kln53
project: face-2u2os
version: 1
license: CC BY 4.0
url: https://universe.roboflow.com/face-kln53/face-2u2os/dataset/1
```

data.yaml data.yaml

Google Colaboratory(Colab)


```
1 import os
 2 HOME = os.getcwd()
 3 print (HOME)
 5 !pip install ultralytics=8.0.196
 7 from IPython import display
 8 display.clear_output()
10 import ultralytics
11 ultralytics.checks()
 1 from ultralytics import YOLO
 3 from IPython.display import display, Image
 1 !mkdir {HOME} /datasets
 2 %cd {HOME} /datasets
                          i換成你的roboflow 資料集
   !pip install roboflow
 6 from roboflow import Roboflow
  rf = Roboflow(api_key="j0E2Z1MFQDnpxps93TWx")
 8 project = rf.workspace("facentust").project("face-yande")
   dataset = project.version(1).download("yolov8")
```

1 %cd {HOME} 2 3 !yolo task=detect	t mode=train mo	del=yolov8n.pt	t data={dataset.location}/data.yaml_epochs=50_imgsz=640	plots=True <u>batch=32</u>
detect	train	v8n	訓練次數	批次數量
segment	val	v8s		
classify	predict	v8m		
pose	export	v8l		
obb	track	v8x		

載下來用於推論

Inference:

yolo detect predict model=path/to/best.pt source="https://ultralytics.com/images/bus.jpg"--save

```
from ultralytics import YOLO

# Load a model
model = YOLO("path/to/best.pt") # load a custom model

# Predict with the model
results = model.predict(source="https://ultralytics.com/images/bus.jpg",save=True) # predict on an image
```

YOLOv8人臉辨識

請訓練自己的dataset

- 1.先透過USB_cam錄影或拍照(寫程式or OBS錄製or手機拍照)
- 2.上傳roboflow後進行標註
- 3.開始訓練
- 4.用相機進行即時的物件偵測
- 5.使用TensorRT進行加速推論

目標

- 1.FPS大於30(yolov8n)、13(yolov8m)、6(yolov8x)
- 2.不可辨識錯人臉

報告形式:

將程式碼與詳細註解以文字形式或圖片貼入 Word 檔,連同執行結果截圖,並加入心得報告,轉成PDF 檔。

檔案名稱以 HW3_學號命名,例如 HW3_M11201234.pdf。 將程式碼與PDF打包成zip上傳至 Moodle 2 作業區。