

IN THE CLAIMS:

Please note that all claims currently pending and under consideration in the referenced application are shown below, in clean form, for clarity. No amendments to the claims are made herein.

[Handwritten mark: a stylized 'B' with arrows pointing towards it.]

3. (Previously Amended) A method of forming a gate stack, comprising:
forming a gate dielectric layer on a silicon substrate;
B forming a polysilicon layer on top of the gate dielectric layer;
subjecting said polysilicon layer to an ion implantation of impurities;
depositing a metallic silicide film in a non-annealed state atop said polysilicon layer; and
depositing a dielectric cap layer over said metallic silicide film at a temperature below about 600 °C.

4. The method of claim 3, wherein said depositing a dielectric cap layer over said metallic silicide film is effected at a temperature of between 400° C. and 600° C.

5. The method of claim 3, wherein said depositing a dielectric cap layer over said metallic silicide film is effected at a temperature of about 500° C.

6. The method of claim 3, wherein said depositing a dielectric cap layer over said metallic silicide film is effected at a temperature sufficiently low to maintain said metallic silicide film in said non-annealed state.

7. The method of claim 3, wherein said depositing a dielectric cap layer over said metallic silicide film is effected at a temperature sufficiently low to preclude formation of silicon clusters in said metallic silicide film.

8. The method of claim 3, further comprising forming said dielectric cap layer of silicon nitride.

9. The method of claim 3, further comprising forming said metallic silicide film as a cobalt silicide film.
10. The method of claim 3, further comprising forming said metallic silicide film as a molybdenum silicide film.
11. The method of claim 3, further comprising forming said metallic silicide film as a titanium silicide film.
12. The method of claim 3, further comprising forming said metallic silicide film as a tungsten silicide film.
13. The method of claim 3, further comprising forming said metallic silicide film as a silicon rich metallic silicide film.
14. The method of claim 3, further comprising forming said metallic silicide film with a non-crystalline structure.
15. The method of claim 3, wherein said depositing said dielectric cap layer over said metallic silicide film comprises selectively depositing silicon nitride by plasma-enhanced chemical vapor deposition.
16. The method of claim 3, wherein said depositing said dielectric cap layer is achieved using a deposition technique selected from the group consisting of chemical vapor deposition, sputtering, and spin-on techniques.

17. A method for forming a gate stack, comprising:
providing a semiconductor substrate with a dielectric layer on an active surface of said semiconductor substrate, wherein a polysilicon layer is disposed over said dielectric layer;
forming a metallic silicide film in a non-annealed state over said polysilicon layer;
forming a dielectric cap on said metallic silicide film at a sufficiently low temperature that said metallic silicide film remains in said non-annealed state;
forming and patterning a resist layer on said dielectric cap;
etching said dielectric cap, said metallic silicide film, and said polysilicon layer; and
stripping said resist layer.

18. The method of claim 17, wherein forming said dielectric cap is effected at a temperature below about 600° C.

19. A method of forming a gate stack, consisting essentially of:
forming a gate dielectric layer on a silicon substrate;
forming a polysilicon layer on top of the gate dielectric layer;
subjecting said polysilicon layer to an ion implantation of impurities;
depositing a metallic silicide film in a non-annealed state atop said polysilicon layer; and
depositing a dielectric cap layer over said metallic silicide film at a temperature below about 600 °C such that the metallic silicide film remains in said non-annealed state.

20. The method of claim 19, wherein said depositing a dielectric cap layer over said metallic silicide film is effected at a temperature of between 400°C and 600°C.

21. The method of claim 19, wherein said depositing a dielectric cap layer over said metallic silicide film is effected at a temperature of about 500°C.

22. The method of claim 19, wherein said depositing a dielectric cap layer over said metallic silicide film is effected at a temperature sufficiently low to preclude formation of silicon clusters in said metallic silicide film.