Lecture 29: Expected Value and Variance

Chapter 2.4

Random Variable

Say you have a random variable X:

	2	3	1	10	11
^	~	3	4	10	TT
Pr(X = x)	15	25	10	30	20
$\frac{11(X-X)}{X}$	100	100	100	100	100

E.g. We observe X = 3 with prob .25

Say you have a random variable X:

	2	3	1	10	11
^	~	3	4	10	TT
Pr(X = x)	15	25	10	30	20
$\frac{11(X-X)}{X}$	100	100	100	100	100

E.g. We observe X = 3 with prob .25

Say you have a random variable X:

X	2	3	4	10	11
Pr(X=x)	$\frac{15}{100}$	$\frac{25}{100}$	$\frac{10}{100}$	$\frac{30}{100}$	$\frac{20}{100}$

E.g. We observe X=3 with prob .25

Is the value we expect to observe:

$$\frac{2+3+4+10+11}{5} = 6?$$

No, each of the x's have different probability of occurring.

No, each of the x's have different probability of occurring.

For each x, we assign different weights Pr(X = x) and not $\frac{1}{5}$:

$$2 \times \frac{15}{100} + 3 \times \frac{25}{100} + 4 \times \frac{10}{100} + 10 \times \frac{30}{100} + 11 \times \frac{20}{100} = 6.65$$

Expected Value

Expected Value

You can also think of the mean as the center of mass or balance point. It is 6.65 (marked with red point):

Consider the following distribution with $\mu=0$. Let's build a measure of expected "spread".

Consider the following distribution with $\mu=0$. Let's build a measure of expected "spread".

Let's define "spread" as the absolute deviation from μ : $|x - \mu|$. i.e. +'ve & -'ve deviations are treated the same.

When x=-3.0, the abs. deviation from μ is $|-3.0-\mu|=3.0$. Note P(X=x)=0.066.

When x=7.0, the abs. deviation from μ is $|7.0 - \mu| = 7.0$. Note P(X=x) = 0.030.

When x=10.0, the abs. deviation from μ is $|10.0-\mu|=10.0$. Note P(X=x)=0.011.

	Abs Deviation	Weight	
×	$ x-\mu $	P(X = x)	
-3.0	-3.0-0 =3.0	0.066	
7.0	7.0 - 0 = 7.0	0.030	
10.0	10.0 - 0 = 10.0	0.011	

So say we do this for all x and take a weighted average of the $|x - \mu|$ where the weights are P(X = x).

Voilà: Our notion of expected spread.

Variance

Estimators

Sample Mean as an Estimator