命題 0.1. 位相空間 X とその部分集合 Y を考える。ある X の被覆 $\{U_{\lambda}\}_{\lambda\in\Lambda}$ であって、任意の λ で $Y\cap U_{\lambda}$ が U_{λ} において閉であるようなものが有るとき、Y が閉であることを示せ。

(証明). 対偶を示す。Y が閉でなければ、 $x \notin Y$ かつ $x \in \operatorname{cl}_X(Y)$ なる点 x が存在する。すると $\{U_\lambda\}_{\lambda \in \Lambda}$ は X の被覆だから、この中に x の開近傍が少なくともひとつ存在する。それを U としよう。 $U \cap Y$ が U において閉集合でないことを示す。 $x \notin Y$ から、 $x \notin U \cap Y$ が得られる。あとは $x \in \operatorname{cl}_U(U \cap Y)$ が得られれば証明は終わる。

まず、X での閉集合 Z を用いて $\operatorname{cl}_U(U\cap Y)=U\cap Z$ と書く。 $x\not\in\operatorname{cl}_U(U\cap Y)=U\cap Z$ と仮定すると、 $x\in U$ なので $x\not\in Z$ が得られる。すると $U\cap(X\setminus Z)$ は x の開近傍となる。 $x\not\in Y$ かつ $x\in\operatorname{cl}_X(Y)$ から x は Y の集積点だから $U\cap(X\setminus Z)$ は (x と異なる)Y の点 y も含む。 $y\in Y$ かつ $y\in U\cap(X\setminus Z)$ な ので $y\in U\cap Y$ かつ $y\not\in Z$ 。しかし $y\in U\cap Y\subseteq U\cap Z$ なので $y\in U\cap Z$ 。したがって $x\not\in\operatorname{cl}_U(U\cap Y)$ とすると $y\not\in Z$ と $y\in Z$ が同時に得られ、矛盾。よって $x\in\operatorname{cl}_U(U\cap Y)$ かつ $x\not\in U\cap Y$ が示され、 $U\cap Y$ が U における閉集合では無いことが示される。

(証明).

 $Y \cap U_{\lambda} :: closed in U_{\lambda}$

 $\iff Y^c \cap U_{\lambda} :: \text{ open in } U_{\lambda}$

 $\iff Y^c \cap U_{\lambda} :: \text{ open in } X$

 $\Longrightarrow \bigcup_{\lambda} (Y^c \cap U_{\lambda}) :: \text{ open in } X$

 $\iff Y^c :: \text{ open in } X$

 $\iff Y :: closed in X$

ただし 2 つめの \iff は U_{λ} ::open in X から.