T.D. VI - Variables aléatoires discrètes infinies

I - Modélisation & Lois géométriques

Exercice 1. Une urne contient 3 boules blanches et 5 boules noires indistinguables au toucher. On effectue avec remise des tirages dans l'urne jusqu'à obtenir une boule blanche. On note T le premier instant où une boule blanche est tirée.

Quelle est la loi de T? Préciser l'espérance et la variance de T.

Exercice 2. Une urne contient 2 boules rouges et 3 boules noires indistinguables au toucher. On effectue avec remise des tirages dans l'urne jusqu'à obtenir une boule noire. On note T le premier instant où une boule noire est tirée.

Quelle est la loi de T? Préciser l'espérance et la variance de T.

Exercice 3. Un dé équilibré à 6 faces est lancé successivement 2 fois. On note S la variable aléatoire égale à la somme des résultats obtenus au cours de ces deux lancers.

1. Quelle est la loi de S?

On appelle manche l'expérience réalisée précédemment. Un joueur décide de jouer jusqu'à obtenir un 7 lors d'une manche. On note T la variable aléatoire égale au nombre de manches jouées quand le joueur s'arrête.

2. Quelle est la loi de T? Préciser l'espérance et la variance de T.

Exercice 4. On dispose d'une pièce qui renvoie Pile avec probabilité $\frac{1}{3}$ et Face avec probabilité $\frac{2}{3}$. On lance la pièce successivement 4 fois et on note X le nombre de faces obtenus.

1. Quelle est la loi de X?

On appelle manche l'expérience réalisée précédemment. Un joueur décide de jouer jusqu'à obtenir au moins 2 piles lors d'une manche. On note T la variable aléatoire égale au nombre de manches jouées quand le joueur s'arrête.

2. Quelle est la loi suivie par T? Préciser l'espérance et la variance de T.

Exercice 5. On dispose d'une urne U_1 contenant 2 boules rouges et 3 boules noires et d'une urne U_2 contenant 1 boule rouge et 4 boules noires. On dispose également d'une pièce équilibrée.

On appelle partie l'expérience suivante : on lance la pièce de monnaie ; si elle renvoie Pile, on tire une boule de l'urne U_1 ; sinon, on tire une boule de l'urne U_2 .

1. On note R l'événement « la boule tirée est rouge ». Déterminer $\mathbf{P}(R)$. Un joueur répète des parties en remettant à chaque fois la boule tirée dans son urne d'origine, jusqu'à ce qu'il obtienne une boule rouge. On note T le rang de la partie où il s'arrête.

2. Déterminer la loi de T. Préciser l'espérance et la variance de T.

Exercice 6. On dispose de 3 urnes numérotées de 1 à 3. Pour tout $k \in [1,3]$, l'urne numéro k contient k boules rouges et 4-k boules noires.

L'expérience consiste à choisir une urne « au hasard » puis à y tirer une boule.

1. On note N l'événement « la boule tirée est noire ». Déterminer $\mathbf{P}(N)$. Un joueur répète des expériences en remettant à chaque fois la boule tirée dans son urne d'origine, jusqu'à ce qu'il obtienne une boule noire. On note T le rang de la partie où il s'arrête.

2. Déterminer la loi de T. Préciser l'espérance et la variance de T.

II - Autour de la loi géométrique

Exercice 7. Soit T une variable aléatoire à valeurs dans \mathbb{N} telle que

$$\forall k \in \mathbb{N}, \mathbf{P}(T=k) = \frac{1}{3} \times \left(\frac{2}{3}\right)^k.$$

On pose Y = T + 1.

1. Déterminer $Y(\Omega)$, puis, pour tout $k \in Y(\Omega)$, exprimer $\mathbf{P}(Y = k)$ en fonction de $\mathbf{P}(T = k - 1)$.

2. Reconnaître la loi de la variable aléatoire Y. Préciser son espérance et sa variance.

3. En déduire l'espérance et la variance de T.

Exercice 8. Soit T une variable aléatoire à valeurs dans $\mathbb N$ telle que

$$\forall k \in \mathbb{N}, \mathbf{P}(T=k) = \frac{1}{5} \times \left(\frac{4}{5}\right)^k.$$

On pose Y = T + 1.

1. Déterminer $Y(\Omega)$, puis, pour tout $k \in Y(\Omega)$, exprimer $\mathbf{P}(Y = k)$ en fonction de $\mathbf{P}(T = k - 1)$.

2. Reconnaître la loi de la variable aléatoire Y. Préciser son espérance et sa variance.

3. En déduire l'espérance et la variance de T.

Exercice 9. (\mathscr{D}) On considère une variable aléatoire X à valeurs dans \mathbb{N}^* telle que

$$\forall n \ge 1, \mathbf{P}_{[X > n-1]}([X = n]) = \frac{2}{3}.$$

Pour tout $n \in \mathbb{N}^*$, on pose $u_n = \mathbf{P}([X > n])$.

1. Justifier que

$$[X > n - 1] = [X = n] \cup [X > n].$$

- **2.** En déduire que $u_{n-1} u_n = \mathbf{P}([X = n])$.
- **3.** Montrer que, pour tout n entier naturel non nul,

$$\mathbf{P}_{[X>n-1]}([X>n]) = 1 - \mathbf{P}_{[X>n-1]}([X=n]).$$

4. En déduire que pour tout n entier naturel non nul, $u_n = \frac{1}{3}u_{n-1}$.

5. Exprimer, pour tout n entier naturel la valeur de u_n en fonction de n puis reconnaître la loi de X.

6. Exprimer $\mathbf{P}([X \leq n])$ en fonction de n.

Exercice 10. (\mathscr{D}) Soit X_1 , X_2 deux variables aléatoires indépendantes de même loi de probabilité géométrique de paramètre $\frac{2}{3}$. On note Z la variable aléatoire égale au maximum de X_1 et de X_2 .

- **1.** Montrer que $[Z \leqslant n] = [X_1 \leqslant n] \cap [X_2 \leqslant n]$.
- **2.** En déduire la valeur de $\mathbf{P}([Z \leq n])$
- **3.** Pour tout n entier naturel non nul, en remarquant que $\mathbf{P}([Z=n]) = \mathbf{P}([Z\leqslant n]) \mathbf{P}([Z\leqslant n-1])$, déterminer $\mathbf{P}([Z=n])$.
- **4.** Vérifier que $\sum_{n=1}^{+\infty} \mathbf{P}([Z=n]) = 1$.

Exercice 11. Soit Y une variable aléatoire telle que,

$$\forall k \in \mathbb{N}, \mathbf{P}(Y = k) = e^{-k} - e^{-(k+1)}.$$

On pose Z = Y + 1.

- 1. Vérifier que $\sum_{k=0}^{+\infty} \mathbf{P}(Y=k) = 1.$
- **2.** Reconnaître la loi de Z puis en déduire son espérance et sa variance.
- **3.** En déduire l'espérance et la variance de Y.
- **4.** On considère la matrice $M=\begin{pmatrix} 1 & 0 \\ 1 & Y \end{pmatrix}$. Calculer la probabilité que M soit inversible.

Exercice 12. (\mathscr{D}) Soit X et Y deux variables éaléatoires indépendantes qui suivent une loi géométrique de paramètre $\frac{1}{3}$.

1. En utilisant le système complet d'événements $([Y=k])_{k\in\mathbb{N}^*},$ montrer que

$$\mathbf{P}(X = Y) = \sum_{k=1}^{+\infty} \mathbf{P}(X = k) \times \mathbf{P}(Y = k).$$

- **2.** Calculer $\sum_{k=1}^{+\infty} (\frac{2}{3})^{2k-2}$.
- **3.** En déduire $\mathbf{P}(X = Y)$.

III - Autour de la loi de Poisson

Exercice 13. Un serveur téléphonique ouvre sa ligne chaque minute. Chaque minute, la probabilité qu'il prenne un client est constante et égale à $\frac{1}{12}$. On note X le nombre d'appels auxquels le serveur a répondu en 1 heure.

1. Déterminer la loi de X, son espérance $\mathbf{E}[X]$ et sa variance $\mathbf{V}(X)$. On suppose qu'on peut approcher la loi de la variable aléatoire X par la loi d'une variable aléatoire Z suivant une loi de Poisson de même espérance que X. On considère la table de la loi de Poisson de paramètre S suivante :

k	0	1	2	3	4	5	6
$\mathbf{P}\left([Y=k]\right)$	0.006	0.034	0.084	0.140	0.175	0.175	0.146

- 2. Déterminer la valeur du paramètre de cette loi de Poisson.
- **3.** Déterminer des valeurs approchées de $P(X \le 3)$ puis $P(X \ge 4)$.

Exercice 14. Une entreprise produit 100 ampoules par seconde. On suppose que chaque ampoule a une probabilité de 5% d'être défectueuse. On note X la variable aléatoire égale au nombre d'ampoules défecteuses par seconde.

1. Déterminer la loi de X puis préciser son espérance et sa variance.

On suppose qu'on peut approcher la loi de la variable aléatoire X par la loi d'une variable aléatoire Z suivant une loi de Poisson de même espérance que X.

- 2. Déterminer la valeur du paramètre de cette loi de Poisson.
- **3.** À l'aide de la table de valeurs ci-dessous, calculer une valeur approchée de $\mathbf{P}([X\geqslant 10])$.

Fonction de répartition de la loi de Poisson de paramètre λ .

Par exemple, si U suit une loi de Poisson de paramètre $\lambda=3$, alors $\mathbf{P}\left([U\leqslant 4]\right)=0.815$.

k λ	1	2	3	4	5	6	7	8	9	10
0	0.368	0.135	0.05	0.018	0.007	0.002	0.000	0.000	0.000	0.000
1	0.736	0.406	0.199	0.092	0.040	0.017	0.007	0.003	0.001	0.000
2	0.920	0.677	0.423	0.238	0.125	0.062	0.030	0.014	0.006	0.003
3	0.981	0.857	0.647	0.433	0.265	0.151	0.082	0.042	0.021	0.010
4	0.996	0.947	0.815	0.629	0.440	0.285	0.173	0.100	0.055	0.030
5	0.999	0.983	0.916	0.785	0.616	0.446	0.301	0.191	0.116	0.067
6	1	0.995	0.966	0.889	0.762	0.606	0.450	0.313	0.207	0.130
7	1	0.999	0.988	0.949	0.867	0.744	0.599	0.453	0.324	0.220
- 8	1	1	0.996	0.979	0.932	0.847	0.729	0.593	0.456	0.333
9	1	1	0.999	0.992	0.968	0.916	0.930	0.717	0.587	0.458
10	1	1	1	0.997	0.986	0.957	0.901	0.816	0.706	0.583

IV - Autres lois

Exercice 15. On considère une variable aléatoire X à valeurs dans $\mathbb N$ telle que

$$\begin{cases} \mathbf{P}(X=0) &= \frac{1}{2}, \\ \mathbf{P}(X=j) &= \frac{1}{3} \left(\frac{1}{2}\right)^j, \forall j \geqslant 1. \end{cases}$$

On rappelle que $\sum_{k=1}^{+\infty} kx^{k-1} = \frac{1}{(1-x)^2}$.

Déterminer l'espérance de X.

Exercice 16. Soit X une variable aléatoire à valeurs dans $\mathbb N$ telle que,

$$\forall k \in \mathbb{N}^*, \mathbf{P}(X = k) = \frac{1}{k(k+1)}.$$

- 1. Simplifier $\frac{1}{k} \frac{1}{k+1}$.
- **2.** Vérifier que $\sum_{k=1}^{+\infty} \mathbf{P}(X=k) = 1$.
- **3.** En déduire la valeur de $\mathbf{P}(X=0)$.
- **4.** Montrer que, pour tout $n \in \mathbb{N}^*$, $\mathbf{P}(X > n) = \frac{1}{n+1}$.

Exercice 17. Soit X une variable aléatoire telle que

$$\forall n \geqslant 2, \mathbf{P}(X = n) = \frac{4(n-1)}{3^n}.$$

On admet que pour tout $x \in [0, 1]$,

$$\sum_{n=1}^{+\infty} kx^k = \frac{x}{(1-x)^2} \text{ et } \sum_{n=1}^{+\infty} k^2 x^k = \frac{x(x+1)}{(1-x)^3}.$$

- **1.** Vérifier que $\sum_{n=2}^{+\infty} \frac{4(n-1)}{3^n} = 1$.
- **2.** Calculer l'espérance de X.

Exercice 18. Soit Y une variable aléatoire à valeurs dans $\mathbb{N}^* \setminus \{1\}$ telle que

$$\forall n \geqslant 2, \mathbf{P}(Y = n) = \left(\frac{2}{3}\right)^{n-2} - \left(\frac{1}{2}\right)^{n-2}.$$

- 1. Calculer $\sum_{n=2}^{+\infty} \mathbf{P}(Y=n)$.
- **2.** Calculer $\mathbf{E}[Y]$.