Введение.

Функциональный анализ возник в результате взаимодействия и последующего обобщения на бесконечномерный случай идей и методов математического анализа, линейной алгебры. Современная математика функционального анализа. Сегодня идеи, концепции, методы, терминология, обозначения и стиль функционального анализа пронизывают чуть ли не все области математики, объединяя ее в единое целое. Сравнительно недавно ФА был преимущественно линейным. Его развитие, вызванное, прежде всего, потребностями дифференциальных уравнений, численных методов, математического программирования и других разделов математики, вызвало к жизни новые нетривиальные ветви линейного функционального анализа. Возрастающая прикладная направленность ФА делает его необходимым для прикладников инженеров, использующих В своей практике современные математические методы.

Функциональный анализ изучает множества, снабженные согласованными между собой алгебраическими и топологическими структурами, и их отображения, а также методы, с помощью которых сведения об этих структурах применяются к конкретным задачам. Как самостоятельная математическая дисциплина ФА сформировался в начале XX века в результате переосмысления обобщения ряда понятий математического анализа, алгебры и геометрии. Датой рождения ФА считается 1932 год, когда вышла в свет основополагающая монография Стефана Банаха «Теория линейных операций». За последующие десятилетия ФА глубоко проник прочти во все области математики.

Основой для широких приложений ФА является то, что большинство задач, возникающих в математике и математической физике, касается не отдельных объектов типа функций, мер или уравнений, а, скорее обширных классов таких объектов, причем на этих классах обычно существует естественная структура векторного пространства и естественная топология. Среди областей применения ФА можно указать теорию функций, теорию дифференциальных и интегральных уравнений, теорию вероятностей, методы вычислений, квантовую механику, математическую экономику и ряд других разделов математики, физики и естествознания.

Глава І

Теория меры. Интеграл Лебега.

§1 Основные понятия теории множеств.

Под множеством понимается совокупность объектов, которые понимаются как единое целое. Множество X считается заданным, если известны его элементы, то есть для любого элемента a выполнено $a \in X$ или $a \notin X$.

Определение. Если A и B — множества, то множество A называется подмножеством множества B (обозначается A ⊂ B), если каждый элемент множества A является элементом множества B.

Множество всех подмножеств множества X обозначается $\mathcal{P}(X)$. Множество, состоящее из одной точки x, обозначается $\{x\}$. Множество, не содержащее элементов, называется пустым и обозначается \emptyset . Для любого множества X выполнено $\emptyset \subset X$.

Если на множестве X задано некоторое отношение P(X) между элементами этого множества, то подмножество, состоящее из тех элементов $x \in X$, для которых соотношение P(X) истинно, будем записывать следующим образом: $\{x \mid x \in X, P(X)\}$.

Операции над множествами.

1. Объединение. Объединением множеств A и B называется множество

$$A \cup B = \{ x \mid x \in A$$
или $x \in B \}$

Если $\{A_{\nu}\}, \gamma \in \Gamma$ - семейство множеств, то объединением называется множество

$$\bigcup_{\gamma \in \Gamma} A_{\gamma} = \{x | \exists \gamma \in \Gamma, \text{что } x \in A_{\gamma}\}$$

Знаком \sqcup будем обозначать в дальнейшем объединение непересекающихся множеств. Таким образом, $A = A_1 \sqcup A_2$ означает, что $A = A_1 \cup A_2$ и $A_1 \cap A_2 = \emptyset$.

$$\coprod_{\gamma \in \Gamma} A_{\gamma} = \{x | \, \exists \gamma \in \Gamma, x \in A_{\gamma}, \text{и если } \gamma_i \neq \gamma_j, A_{\gamma_i} \cap A_{\gamma_j} = \emptyset$$

2. Пересечение. Пересечением множеств A и B называется множество

$$A \cap B = \{ x \mid x \in A \text{ и } x \in B \}$$

Если $\{A_{\gamma}\}$, $\gamma \in \Gamma$ - семейство множеств, занумерованных элементами некоторого множества Γ , то

$$\bigcap_{\gamma \in \Gamma} A_{\gamma} = \{ x | \forall \gamma \in \Gamma, x \in A_{\gamma} \}$$

3. Pазностью Разностью множеств A и B называется множество

$$A \setminus B = \{ x \mid x \in A, x \notin B \}$$

При этом, вообще говоря, не предполагается, что $A \supset B$.

Если $A \subset B$, то $A \setminus B = \emptyset$, то есть разность не очень точно отражает взаимное расположение множеств. Более точно его учитывает *симметрическая разность*.

4. Симметрическая разность.

$$A \triangle B = (A \setminus B) \cup (B \setminus A) = (A \cup B) \setminus (A \cap B)$$

Пусть $A \subset X$, дополнением множества A называется множество $CA = X \setminus A$. С понятием дополнения связан принцип двойственности, который основан на двух соотношениях:

1.
$$\bigcup_{\gamma \in \Gamma} CA_{\gamma} = C(\bigcap_{\gamma \in \Gamma} A_{\gamma}),$$

2.
$$\bigcap_{\gamma \in \Gamma} CA_{\gamma} = C(\bigcup_{\gamma \in \Gamma} A_{\gamma}).$$

Отображение множеств.

Пусть X и Y – множества. Будем говорить, что на множестве X задана функция (отображение) f со значениями в множестве Y, если каждому элементу $x \in X$ поставлен в соответствие один и только один элемент $f(x) \in Y$.

Декартово *произведение множеств*. Декартовым произведением множеств X и Y называется множество:

$$X \times Y = \{(x, y) | x \in X, y \in Y\}$$

Отношения между множествами.

Определение. Отношением между множествами X и Y называется любое подмножество R из декартового произведения $X \times Y$. Если X = Y, то отношение R называется отношением на множестве X. Обозначают XRY, $X \prec Y$.

- 1. Отношение R на множестве X называется $pe\phi$ лексивным, если $(x, x) \in R$ для $\forall x \in X$.
- 2. Отношение R на множестве X называется *симметричным*, если из того, что $(x,y) \in R$, следует, что $(y,x) \in R$.
- 3. Отношение R на множестве X называется антисимметричным, если из того, что $(x,y) \in R$ и $(y,x) \in R$ следует x=y.
- 4. Отношение R на множестве X называется mpанзитивным, если из $(x, y) \in R$ и $(y, z) \in R$ следует $(x, z) \in R$.

Отношение R на множестве X называется отношением эквивалентности, на множестве X, если оно рефлексивно, симметрично и транзитивно и записывается $x \sim y$.

Если на множестве X задано отношение эквивалентности, то множество X разбивается на классы эквивалентных между собой элементов. Класс, содержащий элемент x, обозначаем [x].

Пример. В качестве X возьмем множество целых чисел \mathbb{Z} . Введем отношение эквивалентности $x \sim y$, если x - y = 3k, $k \in \mathbb{Z}$. Множество \mathbb{Z} распадается на три класса:

$$[0] = \{\dots, -6, -3, 0, 3, 6, \dots\}$$

$$[1] = {\dots, -5, -2, 1, 4, 7, \dots}$$

$$[2] = \{\dots, -4, -1, 2, 5, 8, \dots\}$$

Отношение порядка.

Определение. Отношение R на множестве X называется отношением порядка, если оно транзитивно, рефлексивно и антисимметрично.

Обычно условие $(x, y) \in R$ в случае отношения порядка записывается в виде x < y и читается «x предшествует y» или «y следует за x».

Определение. Непустое множество X с заданным на нем отношением порядка называется упорядоченным множеством.

Пример. В качестве X возьмем множество действительных чисел \mathbb{R} . Отношение $R:(x,y)\in R \iff x\le y$ обладает следующими свойствами:

- 1. $x \le x$ (рефлексивность)
- 2. $x \le y, y \le z \Rightarrow x \le z$ (транзитивность)
- 3. $x \le y, y \le x \Rightarrow x = y$ (антисимметричность)

Поэтому отношение $x \le y$ есть отношение порядка.

Пример. Пусть X — произвольное множество. На множестве $\mathcal{P}(X)$ зададим отношение $R:(A,B) \in R \iff A \subset B$. Очевидным образом проверяются следующие отношения:

- 1. $A \subset B, B \subset C \Rightarrow A \subset C$
- 2. $A \subset A$
- 3. $A \subset B, B \subset A \Rightarrow A = B$

Поэтому отношение $A \subset B$ задает на множестве $\mathcal{P}(X)$ отношение порядка и говорят, что множество $\mathcal{P}(X)$ упорядочено по включению.

Определение. Пусть (X, \prec) - упорядоченное множество. Подмножество $A \subset X$ называется линейно упорядоченным, если для любых двух элементов x_1 , x_2 из A выполнено либо $x_1 \prec x_2$ либо $x_2 \prec x_1$.

Определение. Подмножество A называется *ограниченным сверху*, если существует элемент $x_0 \in X$ такой, что для любого $x \in A$ выполнено $x \prec x_0$. Такой элемент называется мажорантой множества A.

Определение. Элемент $m \in X$ называется *максимальным*, если из того, что m < x, следует, что x = m.

Лемма Цорна. Если в упорядоченном множестве (X, \prec) всякое линейное упорядоченное подмножество ограничено сверху, то в X существует хотя бы один максимальный элемент.

Функции или отображения.

Определение. Графиком G_f отображения $f: X \to Y$ называется множество пар $G_f = \{(x, f(x)|x \in X)\}$

Определение. Отображение $f: X \to Y$ называется *инъективным*, если из того, что $f(x_1) = f(x_2)$, следует $x_1 = x_2$.

Определение. Отображение $f: X \to Y$ называется *сюръективным*, если для любого $y \in Y$ существует $x \in X$, такой что f(x) = y.

Определение. Отображение $f: X \to Y$ называется *биективным*, если оно инъективно и сюръективно.

Определение. Если заданы два отображения $f: X \to Y$ и $g: Y \to Z$, то их композицией называется_отображение $g \circ f: X \to Z$ такое, что $(g \circ f)(x) = g(f(x))$.

Отображение $f: X \to Y$ инъективно (сюръективно) тогда и только тогда, когда существует отображение $g: Y \to X$ $(h: Y \to X)$ такое, что $g \circ f = I_X$ $(f \circ h = I_Y)$. Здесь I_X , I_Y — тождественное отображение в X и Y. Отображения g и h называют соответственно левым обратным и правым обратным для f. Если f биективно, то g = h и его называют обратным отображением для f и обозначают f^{-1} .

Основные свойства отображений описываются следующими соотношениями:

1.
$$f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$$
;

2.
$$f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$$
;

3.
$$f(A \cup B) = f(A) \cup f(B)$$

Определение. Два множества X и Y называются *равномощными*, если существует биективное отображение $f: X \to Y$.

Определение. Множество X называются *счетным*, если оно равномощно множеству \mathbb{N} натуральных чисел.

Проверка счетности конкретных множеств основана обычно на том, что объединение счетного множества счетных множеств является счетным множеством и произведение конечного числа счетных множеств счетно.

Отметим, что произведение счетного множества счетных множеств несчетно и произведение счетного множества конечных множеств, каждое из которых содержит хотя бы две различные точки, также несчетно.

Примеры.

- Множества №, ℤ, ℚ счетны.
- 2. Множество многочленов с рациональными коэффициентами счетно.
- 3. Множество [a,b], \mathbb{R} , \mathbb{C} несчетны и равномощны между собой. Их мощность называется мошностью континуума.

§2. Кольцо, полукольцо, алгебра множеств.

Для введения понятия меры нам понадобится класс множеств, удовлетворяющий по отношению к введенным операциям некоторым определенным условиям замкнутости.

Определение. Пусть задано некоторое непустое множество X. Непустое семейство $K \subset \mathcal{P}(X)$ называется *кольцом*, если оно замкнуто относительно операций пересечения и

симметрической разности, то есть из выполнения условий $A \in K$ и $B \in K$ следует, что $A \Delta B \in K$, $A \cap B \in K$.

Упражнение. Проверить справедливость следующих формул:

- 1. $A \setminus B = A \cap (A \Delta B)$;
- 2. $A \cup B = (A \cap B)\Delta(A \Delta B)$;
- 3. $(X \setminus A)\Delta(X \setminus B) = A\Delta B$;
- 4. $A \cap (B \Delta C) = (A \cap B) \Delta (A \cap C)$;

Таким образом, кольцо множеств есть система множеств, замкнутая по отношению к взятию суммы и пересечения, вычитанию и образованию симметрической разности. Очевидно, что кольцо замкнуто и по отношению к образованию любых конечных сумм и пересечений, т.е. если $A_1, A_2, ..., A_n \in K$, то:

$$\bigcup_{k=1}^{n} A_k \in \mathbf{K} , \bigcap_{k=1}^{n} A_k \in \mathbf{K} .$$

Любое кольцо содержит \varnothing , так как всегда $A \setminus A = \varnothing$. Система, состоящая только из пустого множества, представляет собой наименьшее возможное кольцо множеств.

Определение. Кольцо K называется алгеброй, если $X \in K$. X в этом случае называется единицей кольца.

Примеры.

- 1. Для любого множества X система $\mathcal{P}(X)$ всех его подмножеств представляет собой алгебру множеств.
- 2. На числовой прямой $\mathbb R$ система его конечных и счетных подмножеств представляет собой кольцо, но не алгебру.
- 3. На ℝ система его ограниченных подмножеств является кольцом.

На \mathbb{R} система его открытых подмножеств кольцо не образует.

Утверждение. Пусть непустая система $K \subset \mathcal{P}(X)$ и $K \neq \emptyset$ обладает свойствами:

- 1. $\forall A \in K \Rightarrow CA \in K$;
- 2. $\forall A, B \in \mathbb{K} \Rightarrow A \cup B \in \mathbb{K}$.

Тогда К является алгеброй.

Доказательство. $X \in K$, т.к. $X \in A \cup CA$. Покажем, что K является кольцом. Действительно:

$$A \cap B = C(CA \cup CB)$$
; $A \setminus B = A \cap CB$; $A \triangle B = (A \cup B) \setminus (A \cap B)$;

Определение. Кольцо множеств называется σ -кольцом, если оно вместе с каждой последовательностью множеств $A_1, A_2, ..., A_n$ содержит их счетное объединение, т.е.

$$\bigcup_{k=1}^{\infty} A_k \in \mathbf{K}$$

Определение. σ -алгеброй называют σ -кольцо с единицей.

Определение. Кольцо K называется σ -кольцом, если пересечение счетного числа множеств из K принадлежит K , т.е. если $A_i \in K$, то $\bigcap_{i=1}^{\infty} A_i \in K$

В теории меры часто приходится расширять произвольную систему множеств до кольца (алгебры) или σ -кольца (σ -алгебры).

Теорема 1. Для любой непустой системы множеств S существует одно и только одно кольцо K(S), содержащее S и содержащееся в любом кольце K^* , содержащем S.

Доказательство. Кольцо K , содержащее S, существует. Например, K = P(S). Легко видеть, что кольцо K определяется системой S однозначно. Для доказательства его существования рассмотрим $M = \bigcup_{A \in S} A$, объединение всех множеств, входящих в S, и кольцо P(M) всех подмножеств множества M. Пусть $\Sigma = \{K : K \subset P(M), S \subset K\}$. Пересечение $K(S) = \bigcap_{K \in \Sigma} K$ всех этих колец и будет, очевидно, искомым кольцом K(S).

Действительно, каково бы ни было кольцо K^* , содержащее S, пересечение $K = K^* \cap P(M)$ будет кольцом из Σ , так как пересечение любого множества колец есть кольцо (докажите!). Следовательно $S \subset K \subset K^*$, т.е. K удовлетворяет условию минимальности. Это кольцо называется *минимальным кольцом, порожденным* S, и обозначается K(S). Кольцо K(S) включает в себя те и только те множества, которые либо входят в S, либо получаются из множеств семейства S посредством конечного числа операций пересечения и симметрической разности.

Явное построение кольца по произвольной системе S может оказаться довольно сложной задачей. Поэтому выделяется специальный набор множеств.

Определение. Непустая система $S \subset \mathcal{P}(X)$ подмножеств множества X называется *полукольцом*, если она замкнута по отношению к образованию пересечений и обладает тем

свойством, что если $A,B\in S$, то найдется конечная система $A_1,A_2,...,A_n$ попарно непересекающихся множеств из S, что $A\setminus B=\coprod_{k=1}^n A_k$.

Отметим, что если S — полукольцо множеств, то для $A,B \in S$ элементы $A \setminus B$ и $A \cup B$ в общем случае не будут принадлежать S.

Примеры.

- 1. Всякое кольцо множеств К является полукольцом.
- 2. Совокупность промежутков [a,b) на прямой R образует полукольцо, но не кольцо.
- 3. Совокупность "полуоткрытых" прямоугольников $[a,b)\times[c,d)$ на плоскости образует полукольцо.
- 4. Если $K_1 \subset \mathcal{P}(X)$, $K_2 \subset \mathcal{P}(X)$ кольца множеств, то семейство $K_1 \times K_2 = \{A \times B : A \in K_1, B \in K_2\}$

является полукольцом (но, вообще говоря, не кольцом).

Лемма. Пусть $S \subset \mathcal{P}(X)$ – полукольцо. Если $A,B \in S$ и $B = \coprod_{k=1}^n B_k, B_k \in S$, то

$$A \setminus B = \coprod_{i=1}^{n} A_i, A_i \in S$$

Доказательство. Доказательство проводим индукцией по n. При n=1 утверждение совпадает с аксиомой полукольца. Пусть утверждение справедливо для $n=\ell-1$, тогда

$$A \setminus \left(\prod_{k=1}^{\ell-1} B_k \right) = \prod_{i=1}^m A_i .$$

Отсюда

$$\left(A \setminus \coprod_{k=1}^{\ell} B_k\right) = \left(A \setminus \coprod_{k=1}^{\ell-1} B_k\right) \setminus B_{\ell} = \left(\coprod_{i=1}^{m} A_i\right) \setminus B_{\ell} = \coprod_{i=1}^{m} \left(A_i \setminus B_{\ell}\right) = \coprod_{i=1}^{m} \coprod_{j=1}^{n_i} C_{ij} \text{ , где } C_{ij} \in S$$

Теорема 2. Пусть $S \subset \mathcal{P}(X)$ — полукольцо, тогда минимальное кольцо K(S), порожденное S, состоит из непересекающихся конечных объединений множеств из S, т.е.

$$K(S) = \left\{ A : A = \prod_{i=1}^{n(A)} A_i, A_i \in S \right\}.$$

Доказательство. Покажем, что система множеств K(S), допускающих конечное разложение на множества $A_i \in S$, образует кольцо.

Пусть A, B — произвольные множества из этой системы. Тогда

$$A = \prod_{i=1}^{n(A)} A_i, \ B = \prod_{j=1}^{m(A)} B_j, \ A_i, B_j \in S$$

Тогда согласно лемме, получаем $A_i \setminus B = \coprod_{k=1}^{n_i} A_{ik}$, где $A_{ik} \in S$. Отсюда

$$A \setminus B = \coprod_{i=1}^{n} \coprod_{k=1}^{n_i} A_{ik} \in K(S).$$

Далее

$$A \cup B = (A \setminus B) \coprod B = \left(\coprod_{i} \coprod_{k} A_{ik} \right) \coprod \left(\coprod_{j} B_{j} \right) \in K(S),$$

$$A \Delta B = (A \setminus B) \cup (B \setminus A) \in K(S),$$

$$A \cap B = (A \cup B) \setminus (A \Delta B) \in K(S).$$

Значит, K(S) действительно представляет собой кольцо, его минимальность следует из того, что любое кольцо, содержащее S, содержит и множества A, являющиеся конечными объединениями из S.

Примеры.

- 1. Пусть X = [a,b) ориентированный полуинтервал, $S = \{[\alpha,\beta) \subseteq [a,b)\}$. K(S) состоит из объединения конечного числа полуинтервалов. K(S) является алгеброй.
- 2. Пусть $X = \mathbb{R}$, $S = \{ [\alpha, \beta) \subset X \}$. K(S) состоит из множеств, являющихся конечными объединениями непересекающихся полуинтервалов. Это не алгебра.
- 3. Рассмотрим на R систему S, состоящую из открытых множеств, которые полукольцо не образуют, но могут выступать в качестве порождающей системы. В -алгебру, порожденную топологией (системой открытых множеств), входят все открытые множества, все замкнутые множества, множества типа G_{σ} счетные пересечения открытых множеств, множества типа $G_{\delta\sigma}$ счетные объединения множеств типа G_{σ} и т.д. Другими словами, это множества, получающиеся из интервалов применением счетного числа операций объединения, пересечения и разности. Порожденная топологией -алгебра называется G_{σ} обозначается G_{σ} а ее элементы G_{σ} орелевскими множествами.

§3. Понятие меры множества. Простейшие свойства меры

Определение. Пусть на некотором множестве X задано полукольцо $S \subset \mathcal{P}(X)$. Будем говорить, что на S задана *мера*, если каждому элементу $A \in S$ поставлено в соответствие вещественное число $m(A) \in \mathbb{R}$ таким образом, что выполнены следующие условия:

- 1) \forall *A* ∈ *S*: $m(A) \ge 0$ (положительность);
- 2) Если

$$A = \coprod_{i=1}^{n} A_i, \quad A, A_i \in S$$

то

$$m(A) = \sum_{i=1}^{n} m(A_i)$$

Таким образом, мера есть числовая функция множества S, т.е. $m: S \to \mathbb{R}$, но не является отображением из X в \mathbb{R} .

Примеры.

- 1. Рассмотрим полукольцо $S = \{[a,b) \subset \mathbb{R}\}, \ m([a,b)) = b-a$ является мерой в смысле определения.
- 2. Пусть полукольцо S состоит из конечных подмножеств некоторого множества X. Получим

$$m(A) = \sum_{x \in A} 1$$

то есть m(A) — количество точек в $A \in S$.

3. Пусть $S = \{[a, b) \subset \mathbb{R}\}$. Возьмем произвольную функцию $F: \mathbb{R} \to \mathbb{R}$ и положим

$$m_F\bigl([a,b)\bigr)=F(b)-F(a).$$

Для выполнения аксиомы 1) необходимо и достаточно, чтобы $F(b) - F(a) \ge 0$, если b > a, т.е. функция F была монотонно неубывающей. Проверим выполнение аксиомы 2).

Пусть

$$[a,b) = \prod_{i=1}^{n} [a_{i-1}, a_i)$$

где $a_0 = a$, $a_n = b$. Тогда

$$\sum_{i=1}^{n} m_{F}([a_{i-1}, a_{i})) = \sum_{i=1}^{n} (F(a_{i}) - F(a_{i-1})) = F(a_{n}) - F(a_{0}) =$$

$$= F(b) - F(a) = m_{F}([a, b))$$

Определение. Мера m называется cчетно-aддитивной (σ -aддитивной), если для любых $A_1, A_2, ... \in S$ таких, что

$$A = \coprod_{i=1}^{\infty} A_i \in S$$

выполнено

$$m(A) = \sum_{i=1}^{\infty} m(A_i)$$

Примеры (аддитивной, но не σ-аддитивной меры).

1. Пусть $X=\mathbb{Q}\cap [0;1)$ — рациональный полуинтервал. S — полукольцо множеств $A=\mathbb{Q}\cap [a;b),\ A\subset X$. Определим m(A)=b-a. Нетрудно видеть, что m(A) — мера. Если бы m была σ -аддитивной мерой, то мы имели бы $m(\{r_k\})=0$ для любой точки $r_k\in X$. Но с другой стороны $X=\coprod_{r_k\in X}\{\,r_k\}$

и m(X) = 1. В силу σ -аддитивности мы имели бы

$$1 = m(X) = \sum_{r_k \in X} m(\{r_k\}) = 0$$

Таким образом, m не является σ -аддитивной мерой.

2. Пусть $X = \mathbb{R}$, $S \subset \mathcal{P}(X)$, $S = \{[a,b) \subset X\}$ — полукольцо и пусть F(t) = sign(t) — порождающая меру m функция. Рассмотрим полуинтервал [-1;0). Поскольку

$$[-1;0) = \prod_{n=1}^{\infty} \left[-\frac{1}{n}, -\frac{1}{n+1} \right)$$

то $m_F([-1;0)) = F(0) - F(-1) = 1$, а

$$\sum_{n=1}^{\infty} m_F\left(\left[-\frac{1}{n}, -\frac{1}{n+1}\right]\right) = \sum_{n=1}^{\infty} \left(F\left(-\frac{1}{n+1}\right) - F\left(-\frac{1}{n}\right)\right) = 0$$

Свойство σ-аддитивности не выполняется.

Рассмотрим простейшие свойства меры на кольце.

1. Монотонность меры. Если $A, B \in K$ и $A \subseteq B$, то $m(A) \le m(B)$. Доказательство: Поскольку $B = A \sqcup (B \backslash A)$, причем $(B \backslash A) \in K$, то в силу аддитивности меры

$$m(B) = m(A) + m(B \backslash A) \tag{1}$$

откуда $m(B) \ge m(A)$.

- 2. Субтрактивность меры. Если $A, B \in K$ и $A \subseteq B$, то $m(B \setminus A) = m(B) m(A)$. Доказательство: Вытекает из равенства (1).
- 3. Если $A, B \in K$, то $m(A \cup B) = m(A) + m(B) m(A \cap B)$.

Доказательство. Так как $A \cup B = (A \setminus (A \cap B)) \sqcup B$ и $A \cap B \subset A$, то в силу свойства 2:

$$m(A \cup B) = m(A \setminus (A \cap B)) + m(B) = m(A) - m(A \cap B) + m(B).$$

4. Если $A, B \in K$, то $m(A \triangle B) = m(A) + m(B) - 2m(A \cap B)$.

Доказательство. $A\Delta B = (A \cup B) \setminus (A \cap B)$. Так как $A \cap B \subset A$, $A \cap B \subset B$:

$$m(A\Delta B) = m(A) + m(B) - m(A \cap B) - m(A \cap B).$$

5. Для любых множеств $A, B \in K$ выполняется $|m(A) - m(B)| \le m(A \Delta B)$.

Доказательство. Справедливы включения:

$$A \subset (A\Delta B) \cup B \Longrightarrow m(A) \leq m(A\Delta B) + m(B);$$

$$B \subset (A\Delta B) \cup A \Longrightarrow m(B) \leq m(A\Delta B) + m(A);$$

Откуда $|m(A) - m(B)| \le m(A\Delta B)$.

6. Для любых множеств $A, B, C \in K$ имеет место следующее неравенство:

$$m(A\Delta B) \le m(A\Delta C) + m(C\Delta B)$$
.

(Доказать!).

7. Счетная полуаддитивность меры.

Пусть $A_1,A_2,...\in K$ и $A=\bigcup_{i=1}^\infty A_i$ и пусть мера m σ -аддитивна, тогда

$$m(A) \le \sum_{i=1}^{\infty} m(A_i)$$

Доказательство. Представим множество A в виде счетного объединения попарно непересекающихся множеств B_k , определяя их следующими формулами:

$$B_1 = A_1, B_2 = A_2 \backslash A_1, \dots, B_k = A_k \backslash \bigcup_{i=1}^{k-1} A_i.$$

Тогда:

$$A = \bigcup_{i=1}^{\infty} A_i = \coprod_{k=1}^{\infty} B_k;$$

$$m(A) = \sum_{k=1}^{\infty} m(B_k) \le \sum_{i=1}^{\infty} m(A_i)$$

поскольку $B_k \subset A_k$ для $\forall k$.

Теорема 3. Длина является σ -аддитивной мерой на полукольце S, состоящем из полуинтервалов вида [a, b).

Доказательство. Нужно показать, что если A=[a,b), $A_k=[a_k,b_k)$ и $A=\coprod_{k=1}^\infty A_k$, то

$$m(A) = \sum_{k=1}^{\infty} m(A_k)$$

то есть $b - a = \sum_{k=1}^{\infty} (b_k - a_k)$.

Так как $\coprod_{k=1}^{n} A_k \subset A$ при любом n, то в силу монотонности меры имеем:

$$\sum_{k=1}^{n} (b_k - a_k) = \sum_{k=1}^{n} m(A_k) \le b - a.$$

Следовательно, ряд $\sum_{k=1}^{\infty} (b_k - a_k)$ сходится и

$$\sum_{k=1}^{\infty} (b_k - a_k) \le b - a.$$

Докажем обратное неравенство. Возьмем произвольное $\varepsilon > 0$ и по каждому из полуинтервалов $A_k = [a_k, b_k)$ построим содержащий его интервал $B_k = \left(a_k - \frac{\varepsilon}{2^{k+1}}, b_k\right)$, то есть $A_k \subset B_k$. Вместо полуинтервала A = [a, b) возьмем содержащийся в нем отрезок $B = [a, b - \frac{\varepsilon}{2}]$. Тогда $B \subset A \subset \bigcup_{k=1}^{\infty} A_k \subset \bigcup_{k=1}^n B_k$, то есть отрезок B покрыт системой интервалов B_k .

Можно воспользоваться леммой Гейне-Бореля и выделить из этого покрытия конечное подпокрытие.

Пусть $\exists n \in \mathbb{N}$, что $B \subset \bigcup_{k=1}^n B_k$, тогда длина отрезка B не превзойдет суммы длин интервалов B_k , то есть

$$b - \frac{\varepsilon}{2} - a \le \sum_{k=1}^{n} \left(b_k - a_k + \frac{\varepsilon}{2^{k+1}} \right) = \sum_{k=1}^{n} (b_k - a_k) + \frac{\varepsilon}{2}.$$

Далее получим

$$b - a \le \sum_{k=1}^{n} (b_k - a_k) + \varepsilon \le \sum_{k=1}^{\infty} (b_k - a_k) + \varepsilon$$

Ввиду произвольности ε : $b-a \leq \sum_{k=1}^{\infty} (b_k - a_k)$.

Определение. Мера μ на кольце K называется *непрерывной*, если для любых множеств $A, A_k \in K$ таких, что $A_k \subset A_{k+1}, A = \bigcup_{k=1}^{\infty} A_k$, справедливо равенство

$$\mu(A) = \lim_{k \to \infty} \mu(A_k).$$

Теорема (критерий счетной аддитивной меры). Мера μ на кольце K является σ -аддитивной тогда и только тогда, когда она непрерывна.

Доказательство. \Longrightarrow . Пусть мера σ -аддитивна и $A=\bigcup_{k=1}^\infty A_k\in K$, где $A_k\in K$ такие, что $A_k\subset A_{k+1}$. Тогда:

$$A = A_1 \coprod (A_2 \backslash A_1) \coprod (A_3 \backslash A_2) \coprod \dots$$
и

$$\mu(A) = \mu(A_1) + \sum_{k=1}^{\infty} \mu(A_k \backslash A_{k-1}) = \lim_{n \to \infty} \mu(A_n).$$

 \Leftarrow . Обратно, пусть мера μ непрерывна и пусть $A = \coprod_{k=1}^{\infty} B_k$, $B_k \in K$. Положим $A_n = \coprod_{k=1}^n B_k$. Тогда $A_n \in K$, $A_n \subset A_{n+1}$, $A = \bigcup_{n=1}^{\infty} A_n$ и в силу свойства непрерывности:

$$\mu(A) = \lim_{n \to \infty} \mu(A_n) = \lim_{n \to \infty} \sum_{k=1}^{n} \mu(B_k) = \sum_{k=1}^{\infty} \mu(B_k).$$

Определение. Пусть $K \subset \mathcal{P}(X)$ - кольцо подмножеств множества X и пусть $\mu - \sigma$ -аддитивная мера на этом кольце. Множество $A \subset X$ (необязательно принадлежащее кольцу K) называется *множеством меры нуль*, если для любого $\varepsilon > 0$ существует конечный или счетный набор $A_k \in K$ такой, что $A \subset \bigcup A_k$ и $\sum_k \mu(A_k) < \varepsilon$.

§4 Внешняя мера.

Пусть X — произвольное множество, K - алгебра подмножеств X, μ — мера на алгебре K. Естественно распространить меру μ на более широкий класс подмножеств X, например на некоторую σ -алгебру. Для этого используем понятие внешней меры.

Произвольное множество $A\subseteq X$ всегда можно покрыть множествами K, т.е. найти такие $E_1,E_2,...,\in K$, что $\bigcup_{j=1}^{\infty}E_j\supseteq A$. Например, можно положить $E_1=X,E_2=E_3=\cdots=\emptyset$. Для произвольного $A\subseteq X$ положим

$$\mu^*(A) = \inf \sum_{j=1}^{\infty} \mu(E_j)$$
 (4.1)

Где инфимум берется по всевозможным покрытиям A множествами $E_j \in K$.

Функция μ^* называется *внешней мерой*, она определена для любых подмножеств X:

$$X \supseteq A \rightarrow \mu^*(A) \in \mathbb{R}$$

Установим некоторые свойства внешней меры.

Теорема 4.1 Если $A \in K$, то $\mu^*(A) = \mu(A)$.

Доказательство. Поскольку $A \in K$, то A покрывается одним множеством $E_1 = A$, поэтому среди чисел $\sum_{j=1}^{\infty} \mu(E_j)$ в (4.1) есть число $\mu(A)$, следовательно,

$$\mu^*(A) \le \mu(A) \tag{4.2}$$

Кроме того по определению точной нижней грани для любого $\varepsilon > 0$ найдется такое покрытие $\{E_i\}$ множествами $E_i \in K$, что

$$\sum_{j=1}^{\infty} \mu\left(E_{j}\right) < \mu^{*}(A) + \varepsilon \tag{4.3}$$

Поскольку $A = A \cap (\bigcup_{j=1}^{\infty} E_j) = \bigcup_{j=1}^{\infty} (A \cap E_j)$, то учитывая счетную полуаддитивность и монотонность меры, получаем

$$\mu(A) \leq \sum_{j=1}^{\infty} \mu(A \cap E_j) \leq \sum_{j=1}^{\infty} \mu(E_j)$$

и в силу (4.3) $\mu(A) < \mu^*(A) + \varepsilon$. Т.к. ε произвольно, то отсюда следует, что

$$\mu(A) \le \mu^*(A) \tag{4.4}$$

Из (4.2) и (4.4) получаем $\mu^*(A) = \mu(A)$.

Теорема 4.2 Внешняя мера любого множества неотрицательна: $\mu^*(A) \ge 0$, причем $\mu^*(\emptyset) = 0$.

Доказательство. Неотрицательность внешней меры следует непосредственно из формулы (4.1).

Поскольку $\emptyset \in K$, то в силу теоремы 4.1 $\mu^*(\emptyset) = \mu$ (A) = 0.

Теорема 4.3 Внешняя мера монотонна, т.е.

$$A \subseteq B \Longrightarrow \mu^*(A) \le \mu^*(B)$$
.

Доказательство. По определению внешней меры

$$\mu^*(B) = \inf \sum_{j=1}^{\infty} \mu(F_j)$$

где $F_j \in K$ и $\bigcup_{j=1}^{\infty} F_j \supseteq B$, но тогда множества $\{F_j\}$ образуют также покрытие множества A, поэтому $\mu^*(A) \le \inf \sum_{j=1}^{\infty} \mu(F_j)$, т.е. $\mu^*(A) \le \mu^*(B)$.

Теорема 4.3 Внешняя мера счетно-полуаддитивная, т.е. для любых $A_1, A_2, ... \subseteq X$ имеет место неравенство

$$\mu^* \left(\bigcup_{j=1}^{\infty} A_j \right) \leq \sum_{j=1}^{\infty} \mu \left(A_j \right)$$

Доказательство. Если ряд в правой части расходится, то требуемое неравенство имеет место. Пусть этот ряд сходится. Из определения внешней меры следует, что для любого $\varepsilon > 0$ и фиксированного j можно найти последовательность множеств $\left(E_{jk}\right)_{k=1}^{\infty}$ такую, что $E_{jk} \in K$, $\bigcup_{j=1}^{\infty} E_{jk} \supseteq A_j$, и при этом

$$\sum_{k=1}^{\infty} \mu\left(E_{jk}\right) < \mu^*\left(A_j\right) + \frac{\varepsilon}{2^j} \tag{4.5}$$

Просуммировав неравенства (4.5) по j от 1 до ∞ , получим

$$\sum_{j=1}^{\infty} \sum_{k=1}^{\infty} \mu\left(E_{jk}\right) < \sum_{j=1}^{\infty} \mu^*\left(A_j\right) + \varepsilon \tag{4.6}$$

Кроме того, очевидно, $\bigcup_{j,k=1}^{\infty} E_{jk} \supseteq \bigcup_{j=1}^{\infty} A_j$ и по определению внешней меры

$$\mu^* \left(\bigcup_{j=1}^{\infty} A_j \right) \le \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} \mu \left(E_{jk} \right)$$
 (4.7)

Из (4.6) и (4.7) получаем

$$\mu^* \left(\bigcup_{j=1}^{\infty} A_j \right) \leq \sum_{j=1}^{\infty} \mu^* \left(A_j \right) + \varepsilon$$

откуда в силу произвольности ε следует требуемое.

Замечание 4.3. Иногда оказывается удобным задавать внешнюю меру не с помощью меры, заданной на алгебре множеств, а аксиоматически.

Вещественнозначную функцию μ^* , определенную на совокупности всех подмножеств $\mathcal{P}(X)$, называют внешней мерой, если:

- 1) $\mu^*(A) \ge 0(\forall A \subseteq \mathcal{P}(X)), \mu^*(\emptyset) = 0;$
- 2) μ^* монотонна;
- 3) μ^* счетно-полуаддитивна.

§5 Измеримые по Лебегу множества. Продолжение меры.

Пусть $K \subset \mathcal{P}(X)$ - алгебра множеств и на K задана σ -аддитивная мера m. Элементы из K будем называть элементарными множествами. Определим меру для множеств, не входящих в K, т.е. построим продолжение меры m. В 1902 году A. Лебегом была предложена следующая конструкция продолжения меры.

Определение. Множество $A \subset X$ называется *измеримым* по Лебегу относительно меры m, если для него выполняется равенство

$$\mu^*(A) + \mu^*(X \backslash A) = m(X)$$

На совокупности L(K,m), состоящей из измеримых по Лебегу множеств, определим меру Лебега μ (как сужение внешней меры): $\mu(A) = \mu^*(A)$.

Определение. Пусть $A \subset X$. Тогда внутренней мерой множества A назовем

$$\mu_*(A) = m(X) - \mu^*(X \backslash A)$$

Определение. Множество A называется измеримым по Лебегу, если для него внешняя мера совпадает с внутренней, т.е. $\mu_*(A) = \mu^*(A)$.

Отметим, что понятие измеримого по Лебегу множества зависит от исходной меры m.

Утверждение 1. Для любого $A \subset X$ справедливо неравенство $\mu_*(A) \leq \mu^*(A)$.

Доказательство. Из включения $X \subset A \sqcup (X \backslash A)$ имеем $\mu^*(A) = m(X) \leq \mu^*(A) + \mu^*(X \backslash A)$. Отсюда $\mu_*(A) = m(X) - \mu^*(X \backslash A) \leq \mu^*(A)$

Пример. Примером измеримого множества является множество меры нуль. Действительно, согласно определению, множество A называется множеством меры нуль, если для любого $\varepsilon > 0$ существует такое его покрытие элементарными множествами $A \subset \bigcup A_k$, что

$$\sum_{k} m(A_{k}) < \varepsilon \ \, => \ \, \inf \sum_{k=1}^{\infty} m(A_{k}) < \varepsilon \ \, => \ \, \mu^{*}(A) = 0 \ \, => \ \, \mu_{*}(A) \leq \mu^{*}(A) = 0$$

т.е. множество A меры нуль измеримо и $\mu(A)=0$.

Лемма. Для любых двух множеств A и B

$$|\mu^*(A) - \mu^*(B)| \le \mu^*(A \triangle B)$$

Доказательство. Так как $A \subset B \cup (A \triangle B)$, то $\mu^*(A) \leq \mu^*(B) + \mu^*(A \triangle B)$

Отсюда вытекает утверждение леммы в случае $\mu^*(A) \ge \mu^*(B)$. Если же $\mu^*(A) \le \mu^*(B)$, то утверждение леммы вытекает из неравенства

$$\mu^*(B) \le \mu^*(A) + \mu^*(A \triangle B),$$

устанавливаемого аналогично.

Теорема 1. (Критерий измеримости множества).

Следующие свойства эквивалентны:

- 1) множество А измеримо по Лебегу;
- 2) для любого $\varepsilon > 0$ существует элементарное множество B такое, что $\mu^*(A \triangle B) < \varepsilon$

Доказательство. Достаточность. Пусть $A \subset X$ и выполнено свойство 2.

Покажем, что $\mu^*(A) + \mu^*(X \setminus A) = m(X)$.

Т.к. множество B элементарное, то $\mu^*(B) + \mu^*(X \backslash B) = m(X)$. Из свойства

$$|\mu^*(A) - \mu^*(B)| \le \mu^*(A \triangle B) < \varepsilon$$

имеем

$$\mu^*(B) - \varepsilon \le \mu^*(A) \le \mu^*(B) + \varepsilon,$$

$$\mu^*(X \backslash B) - \varepsilon \le \mu^*(X \backslash A) \le \mu^*(X \backslash B) + \varepsilon$$

Складывая их почленно, получаем

$$m(X) - 2\varepsilon \le \mu^*(A) + \mu^*(X \setminus A) \le m(X) + 2\varepsilon$$

Ввиду произвольности ε будем иметь

$$\mu^*(A) + \mu^*(X \backslash A) = m(X)$$

Необходимость. Пусть A — измеримое множество, т.е.

$$\mu^*(A) + \mu^*(X \backslash A) = m(X) \tag{1}$$

Необходимо показать, что для любого $\varepsilon > 0$ существует элементарное множество В такое, что $\mu^*(A\Delta B) < \varepsilon$.

1-й этап. Построение множества В.

По определению внешней меры для любого $\varepsilon > 0$ существует покрытие множества А элементарными множествами B_k такое, что

$$\mu^*(A) = \inf \sum_{k=1}^{\infty} m(B_k) \Rightarrow$$

$$\mu^*(A) \le \sum_{k=1}^{\infty} m(B_k) \le \mu^*(A) + \frac{\varepsilon}{3}$$
(2)

(из определения точной нижней грани).

Последнее неравенство, в частности, означает, что числовой ряд

$$\sum_{k=1}^{\infty} m(B_k)$$

сходится. Выберем такой номер N, что

$$\sum_{k=N+1}^{\infty} m(B_k) < \frac{\varepsilon}{3}$$

Положим

$$B = \bigcup_{k=1}^{N} B_k$$

и покажем, что для него выполнено свойство 2.

2-й этап. Покажем, что $\mu^*(A\Delta B) < \varepsilon$

Поскольку $A\Delta B = (A\backslash B) \cup (B\backslash A)$, то оценим меры множеств $A\backslash B$ и $B\backslash A$.

а) Оценим $\mu^*(A \backslash B)$.

Так как $A \subset \bigcup_{k=1}^{\infty} B_k$, то $A \backslash B \subset \bigcup_{k=N+1}^{\infty} B_k$, следовательно,

$$\mu^*(A \backslash B) \le \sum_{k=N+1}^{\infty} m(B_k) < \frac{\varepsilon}{3}$$
 (3)

б) Оценим $\mu^*(B \setminus A)$.

Для множества $X \setminus A$ выберем систему элементарных множеств (C_i), такую, что

$$X\backslash A\subset\bigcup_i C_i$$

И

$$\sum_{i} m(C_i) \le \mu^*(X \backslash A) + \frac{\varepsilon}{3} \tag{4}$$

Рассмотрим в предыдущем включении пересечение левой и правой частей с множеством B. Получим

$$B \cap (X \setminus A) = B \setminus A \subset B \cap \left(\bigcup_{i} C_i\right) = \bigcup_{i} (B \cap C_i),$$

но $C_i = (C_i \backslash B) \coprod (B \cap C_i)$, поэтому

$$\mu^*(B \backslash A) \le \sum_i m(B \cap C_i) = \sum_i m(C_i) - \sum_i m(C_i \backslash B). \tag{*}$$

Заметим, что

$$X = A \coprod (X \backslash A) \subset \left(\bigcup_{i} B_{i}\right) \cup \left(\bigcup_{i} (C_{i} \backslash B)\right)$$

и, следовательно,

$$\sum_{i} m(B_i) + \sum_{i} m(C_i \backslash B) \ge m(X). \tag{5}$$

Сложив (2), (4) имеем

$$\sum_{i} m(B_i) + \sum_{i} m(C_i) \le \mu^*(A) + \mu^*(X \setminus A) + \frac{2\varepsilon}{3} = m(X) + \frac{2\varepsilon}{3}$$
 (6)

Вычитая из неравенства (6) неравенство (5) получаем

$$\sum_{i} m(C_i) - \sum_{i} m(C_i \backslash B) \le \frac{2\varepsilon}{3}$$

то есть (см. (*))

$$\mu^*(B \backslash A) \le \frac{2\varepsilon}{3}$$
 и $\mu^*(A \Delta B) \le \varepsilon$

Следствие. Множество *A* измеримо, если для любого $\varepsilon > 0$ существует измеримое множество *B* такое, что $\mu^*(A\Delta B) < \varepsilon$

Доказательство. Для множества B найдем элементарное множество B_1 такое, что $\mu^*(B_1\Delta B) \le \varepsilon$. Тогда в силу неравенства треугольника $\mu^*(A\Delta B) \le \mu^*(A\Delta C) + \mu^*(C\Delta B)$ имеем $\mu^*(A\Delta B_1) \le \mu^*(A\Delta B) + \mu^*(B_1\Delta B) \le 2\varepsilon$ и согласно теореме A – измеримое множество.

Теорема 2. Измеримые множества образуют алгебру множеств.

Доказательство. Пусть A_1, A_2 — измеримые множества. Нужно доказать, что множества $A_1 \cup A_2, \ A_1 \cap A_2, \ A_1 \wedge A_2, \ A_1 \triangle A_2$ измеримы. Возьмем $\varepsilon > 0$ и выберем элементарные множества B_1 и B_2 так, что $\mu^*(A_i \triangle B_i) < \varepsilon$, i = 1,2. Пусть $A = A_1 \cup A_2$ и $B = B_1 \cup B_2$. Так как $(A_1 \cup A_2) \triangle (B_1 \cup B_2) \subset (A_1 \triangle B_1) \cup (A_2 \triangle B_2)$, то $\mu^*(A \triangle B) \leq \mu^*(A_1 \triangle B_1) + \mu^*(A_2 \triangle B_2) < 2\varepsilon$, то есть согласно теореме 1, множество A измеримо.

Отметим, что определение измеримости симметрично относительно A и $X \setminus A$, то есть по определению если A измеримо, то и $X \setminus A$ измеримо. Поэтому множества

$$A_1 \cap A_2 = X \setminus [(X \setminus A_1) \cup (X \setminus A_2)],$$

$$A_1 \setminus A_2 = A_1 \cap (X \setminus A_2),$$

$$A_1 \Delta A_2 = (A_1 \setminus A_2) \cup (A_2 \setminus A_1)$$

измеримы.

Покажем теперь, что мера Лебега обладает свойством аддитивности.

Теорема 3. Если $A = \coprod_{i=1}^n A_i$, A_i измеримы, то $\mu(A) = \sum_{i=1}^n \mu(A_i)$.

Доказательство. 1) Доказательство достаточно провести для n=2. Согласно теореме (Если $A \subset \bigcup_k A_k$, то $\mu^*(A) \leq \sum_k \mu^*(A_k)$) выполняется неравенство $\mu(A) = \mu^*(A) \leq \sum_{i=1}^n \mu^*(A_i)$.

2) Покажем, что для измеримых множеств справедливо обратное неравенство. Выберем для $\varepsilon > 0$ элементарные множества B_1 и B_2 так, что $\mu^*(A_i \Delta B_i) < \varepsilon$, i=1,2. Если $A = A_1 \sqcup A_2$ и $B = B_1 \cup B_2$, то

$$A\Delta B \subset (A_1\Delta B_1) \cup (A_2\Delta B_2)$$

и, значит, $\mu^*(A\Delta B) < 2\varepsilon$.

Таким образом имеем $\mu(A) \ge \mu(B) - \mu(A\Delta B) \ge \mu(B) - 2\varepsilon$. (Так как $|\mu^*(A) - \mu^*(B)| \le \mu^*(A\Delta B)$).

Но $\mu(B) = \mu(B_1) + \mu(B_2) - \mu(B_1 \cap B_2)$. Так как $B_1 \cap B_2 \subset (A_1 \Delta B_1) \cup (A_2 \Delta B_2)$, то $\mu(B_1 \cap B_2) \leq 2\varepsilon$ и поэтому

$$\mu(B) \geq \mu(\mathsf{B}_1) + \mu(\mathsf{B}_2) - 2\varepsilon \geq \mu(A_1) + \mu(A_2) - 4\varepsilon.$$

$$(\mid \mu^*(A_1) - \mu^*(\mathsf{B}_1) \mid \leq \mu^*(A_1\Delta\mathsf{B}_1) < \varepsilon \Longrightarrow \mu(\mathsf{B}_1) \geq \mu(A_1) - \varepsilon)$$

В силу произвольности $\varepsilon > 0$ получаем $\mu(A) \ge \mu(A_1) + \mu(A_2)$, откуда следует утверждение теоремы.

Теорема 4. Мера Лебега является σ -аддитивной.

Доказательство. Пусть $A = \coprod_{k=1}^{\infty} A_k$, где A и A_k — измеримые множества.

- 1. Так как $A \subset \bigcup_{i=1}^{\infty} A_i$, то $\mu(A) \leq \sum_{i=1}^{\infty} \mu(A_i)$.
- 2. С другой стороны, поскольку мера Лебега аддитивна, при любом N

$$\mu\left(\bigcup_{k=1}^{N} A_k\right) = \sum_{k=1}^{N} \mu(A_k) \le \mu(A)$$

Переходя к пределу при $N \to \infty$, получаем

$$\mu(A) \ge \sum_{k=1}^{\infty} \mu(A_k)$$

Следовательно

$$\mu(A) = \sum_{k=1}^{\infty} \mu(A_k)$$

Теорема 5. Объединение счетного числа измеримых множеств измеримо.

Доказательство. Пусть $A = \bigcup_{i=1}^{\infty} A_i$, где A_i измеримы. Представим A в виде объединения непересекающихся множеств $A = \coprod_{k=1}^{\infty} A'_k$, где

$$A'_1 = A_1, A'_2 = A_2 \backslash A_1, \dots, A'_k = A_k \backslash \bigcup_{i=1}^{k-1} A_i$$

Так как $\coprod_{i=1}^n A_i' \subset A$, то согласно теореме 3 имеем $\sum_{i=1}^n \mu(A_i') \leq \mu^*(A)$. Значит ряд $\sum_{i=1}^\infty \mu(A_i')$ сходится (ряд из положительных членов, частные суммы которого ограничены сверху). Возьмем $\varepsilon > 0$ и найдем номер N такой, что $\sum_{k=N+1}^\infty \mu(A_k') < \varepsilon$. Тогда множество $C = \coprod_{i=1}^N A_i'$ измеримо.

Так как $A\Delta C = \bigcup_{k=N+1}^{\infty} A'_k$, $\mu^*(A\Delta C) < \varepsilon$, то в силу следствия из теоремы 1 множество A измеримо.

Следствие. Счетное пересечение измеримых множеств измеримо.

Доказательство. Пусть $A = \bigcap_i A_i$, где A_i измеримы. Тогда $A = X \setminus \bigcup_{i=1}^{\infty} (X \setminus A_i)$ и, согласно теореме 5, A измеримо.

Таким образом, объединяя утверждения доказанных теорем, получаем основную теорему теории меры Лебега.

Теорема 6. Если исходная мера m σ -аддитивна, то множество L(K,m) измеримых по Лебегу множеств образует σ -алгебру множеств, а мера Лебега является σ -аддитивным продолжением меры m на L(K,m).

Определение. Мера μ на кольце $K \subset \mathcal{P}(X)$ называется *полной*, если из $\mu(A) = 0$ следует, что любое подмножество $B \subset A$ принадлежит K и $\mu(B) = 0$.

Так как для множества меры нуль любое подмножество является также множеством меры нуль, то получаем, что лебеговское продолжение является полной мерой.

Определение. Мера μ , заданная на кольце $K \subset \mathcal{P}(X)$, называется σ -конечной, если существует разбиение $X = \coprod_{k=1}^{\infty} X_k$, где $X_k \in K$ и $\mu(X_k) < +\infty$.

Примеры. 1. Длина как мера на кольце, порожденном полуинтервалами в \mathbb{R} , является оконечной мерой, т.к. $\mathbb{R} = \bigcup_{-\infty}^{+\infty} [k, k+1]$.

2. Мера, определенная на конечных подмножествах из \mathbb{R} как число элементов этого подмножества, не является σ -конечной, т.к. \mathbb{R} несчетно и его нельзя представить как счетное объединение конечных множеств.

Мера неограниченных множеств в \mathbb{R}^n определяется по той же схеме, что и мера неограниченных множеств в \mathbb{R} в §10; теперь [-n,n) - полуоткрытый куб. Теоремы 10.1-10.5 также непосредственно переносятся на случай меры Лебега в \mathbb{R}^n .

§6 Некоторые сведения о неубывающих функциях.

1. Точки разрыва монотонной функции.

Пусть задана неубывающая функция $f:[a,b] \to \mathbb{R}$, т.е. $(a \le x_1 < x_2 \le b) => (f(x_1) \le f(x_2)$. Хорошо известно, что для неубывающей функции в любой точке $x_0 \in (a,b)$ существуют односторонние пределы:

$$f(x_0 - 0) = \lim_{\substack{x \to x_0 \\ x < x_0}} f(x) = \sup \{ f(x) | a \le x < x_0 \}$$
 (1)

$$f(x_0 + 0) = \lim_{\substack{x \to x_0 \\ x > x_0}} f(x) = \inf\{f(x) | x_0 < x \le b\}$$
 (2)

а в точках a и b — соответственно правосторонний предел f(a+0) и левосторонний f(b-0). Из равенств (1) и (2) и определения неубывающей функции, очевидно, следует, что

$$f(x_0 - 0) \le f(x_0) \le f(x_0 + 0) \ \forall x_0 \in (a, b)$$

Определение 1. Скачком функции в точке $x \in (a, b)$ называется число

$$\Delta_f(x) = f(x+0) - f(x-0)$$

Скачки в концах отрезка определяются так:

$$\Delta_f(a) = f(a+0) - f(a); \ \Delta_f(b) = f(b) - f(b-0)$$

Ясно, что скачок неубывающей функции в любой точке неотрицателен, причем функция f непрерывна в точке x тогда и только тогда, когда $\Delta_f(x) = 0$.

Теорема 1. Пусть f - неубывающая функция на отрезке [a,b] и $c_1,c_2,...,c_n$ - любые точки этого отрезка, тогда

$$\sum_{j=1}^{n} \Delta_f(c_j) \le f(b) - f(a) \tag{3}$$

Доказательство. Не ограничивая общности, можем считать, что точки $c_1, c_2, ..., c_n$ занумерованы в порядке возрастания. Кроме того, т.к. при отбрасывании некоторых точек c_j левая часть (3) не увеличивается, то неравенство (3) достаточно доказать для того случая, когда концы отрезка входят в число точек c_j , т.е. $a = c_1 < c_2 < \cdots < c_n = b$. Тогда

$$\sum_{j=1}^{n} \Delta_{f}(c_{j}) = f(a+0) - f(a) + f(c_{2}+0) - f(c_{2}-0) + f(c_{3}+0) - f(c_{3}-0) + \dots + f(b)$$

$$-f(b-0) \tag{4}$$

Сгруппируем слагаемые в правой части (4):

$$\sum_{j=1}^{n} \Delta_{f}(c_{j}) = -f(a) + (f(a+0) - f(c_{2} - 0)) + (f(c_{2} + 0)) - f(c_{3} - 0) + \cdots + (f(c_{n-1} + 0) - f(b - 0)) + f(b)$$
(5)

Но поскольку f- неубывающая функция, то все разности в скобках неположительны, и из (5) непосредственно следует требуемое неравенство (3)

Теорема.2 Множество точек разрыва неубывающей на отрезке функции не более чем счетно.

Доказательство. Пусть D - множество точек разрыва функции f, неубывающей на отрезке [a,b], т.е.

$$D = \{x \in [a, b] | \Delta_f(x) > 0\}$$

Тогда очевидно, $D=\bigcup_{k=1}^{\infty}D_k$, где $=\{x\in[a,b]|\Delta_f(x)\geq\frac{1}{k}\}$

и для доказательства теоремы достаточно установить, что каждое из множеств D_k конечно.

Рассмотрим некоторое D_k и пусть $c_1, c_2, \dots, c_n \in D_k$; тогда $\sum_{j=1}^n \Delta_f(c_j) \ge \frac{1}{k} \cdot n$, и в силу теоремы 1 получаем

$$f(b) - f(a) \ge \frac{n}{k}$$

откуда

$$n \le k(f(b) - f(a))$$

поэтому n не может быть как угодно большим, т.е. D_k конечно.

Следствие 1 Если $c_1, c_2, ...$ - точки разрыва неубывающей на отрезке [a, b] функции f, то $\sum_{i=1}^{\infty} \Delta_f(c_i)$ сходится и

$$\sum_{j=1}^{\infty} \Delta_f(c_j) \le f(b) - f(a) \tag{6}$$

Доказательство. Для доказательства достаточно записать неравенство (3) для точек разрыва $c_1, c_2, ..., c_n$ и перейти к пределу при $n \to \infty$

2. Функция скачков и непрерывная часть неубывающей функции.

Пусть f — неубывающая на отрезке [a, b] функция. В дальнейшем всегда предполагается, что функция f нормирована условием непрерывности слева, т.е.

$$f(x-0) = f(x) \ \forall x \in [a,b] \tag{7}$$

Если это условие не выполнено, то всегда можно добиться его выполнения, изменив значения функции f в точках разрыва, т.е. положив $f(c_k) = f(c_k - 0)$ в каждой их точек разрыва c_k . Из условия (7) следует, что

$$\Delta_f(x) = f(x+0) - f(x) \ \forall x \in [a, b]$$

Определение 2. Функцией скачков данной функции f называется функция f_d : $[a,b] \to \mathbb{R}$ определяемая следующим образом:

$$f_d(a) = 0, f_d(x) = \sum_{j:c_j < x} \Delta_f(c_j), x \in (a, b]$$
(8)

где c_1, c_2, \dots - точки разрыва функции f.

Теорема 3 Функция скачков неубывающей на отрезке непрерывной слева функции – также неубывающая и непрерывная слева функция.

Доказательство. То, что f_d - неубывающая функция, сразу следует их (8), т.к. скачки $\Delta_f(c_i)$ неотрицательны.

Покажем, что f_d непрерывна слева, т.е. что $\lim_{x\to x_0-0} f_d(x) = f_d(x_0) \quad \forall x_0 \in (a,b]$. Это означает, что для любого $\varepsilon > 0$ найдется такое $\delta > 0$, что

$$(x_0 - \delta < x < x_0) => (f_d(x_0) - f_d(x) < \varepsilon)$$

т.е.

$$\sum_{x \le c_j < x_0} \Delta_f(c_j) < \varepsilon \tag{9}$$

Если левее x_0 лежит лишь конечное число точек разрыва, то выбрав δ так, чтобы в интервале $(x_0 - \delta, x_0)$ не было точек разрыва, получим

$$f_d(x_0) - f_d(x) = 0 \quad \forall x \in (x_0 - \delta, x_0)$$

Пусть имеется бесконечное множество точек разрыва $c_j < x_0$. Обозначим эти точки $q_1,q_2,...$ Тогда в силу следствия 1 ряд $\sum_{j=1}^{\infty} \Delta_f(q_j)$ сходится, поэтому найдется такое n, что $\sum_{j=n+1}^{\infty} \Delta_f(q_j) < \varepsilon$. Выбрав δ так, чтобы точки $q_1,q_2,...,q_n$ лежали левее $x_0 - \delta$, получим, что при $x_0 - \delta < x < x_0$ выполняется (9)

Определение 3. Пусть f_d - функция скачков неубывающей на отрезке [a,b] функции f. Тогда функция $f_c = f - f_d$ называется непрерывной частью функции f.

Название «непрерывная часть» оправдывается следующей теоремой.

Теорема 4. Пусть f — неубывающая на отрезке [a,b] непрерывная слева функция. Тогда ее непрерывная часть f_c — неубывающая и непрерывная на отрезке [a,b] функция.

Доказательство.

1) Покажем сначала, что f_c - неубывающая функция. Пусть $a \le x' < x'' \le b$, тогда

$$f_{c}(x'') - f_{c}(x') = f(x'') - f_{d}(x'') - (f(x') - f_{d}(x')) = (f(x'') - f(x')) - (f_{d}(x'') - f_{d}(x'))$$

$$(10)$$

Но, как следует из определения функции скачков и из неравенства (6),

$$f_d(x'') - f_d(x') = \sum_{j:x' \le c_j < x''} \Delta_f(c_j) \le f(x'') - f(x')$$

поэтому правая часть (10) неотрицательна, следовательно, $f_c(x'') - f_c(x') \ge 0$, т.е. f_c неубывающая функция.

2) Функция f_c непрерывна слева как разность двух непрерывных слева функций. Поэтому для доказательства непрерывности f_c достаточно показать, что она непрерывна и справа, т.е. что

$$f_c(x_0 + 0) = f_c(x_0) \ \forall x_0 \in [a, b)$$

Если $x > x_0$, то

$$f_d(x) - f_d(x_0) = \sum_{j: x_0 \le c_j < x} \Delta_f(c_j) \ge \Delta_f(x_0) = f(x_0 + 0) - f(x_0)$$

Отсюда, переходя к пределу при $x \to x_0 + 0$, получим

$$f_d(x_0 + 0) - f_d(x_0) \ge f(x_0 + 0) - f(x_0)$$

откуда

$$f_c(x_0+0)-f_c(x_0) \le 0$$

Поскольку f_c - неубывающая функция, то отсюда следует, что $f_c\left(x_0+0\right)-f_c(x_0)=0$

Замечание 1. Из равенства $f = f_d + f_c$ сразу видно, что точки c_j являются точками разрыва функции f_d со скачками $\Delta_{f_d}(c_j) = \Delta_f(c_j)$ и что во всех остальных точках отрезка [a,b] функция скачков непрерывна.

Замечание 2. Если точки разрыва функции f можно занумеровать в порядке возрастания (или убывания), то функция скачков f_d в интервалах между соседними точками разрыва постоянна и ее график представляет собой ступенчатую линию. Однако функция скачков может иметь и более сложную структуру. В частности, функция скачков может и вовсе не иметь интервалов постоянства.

Приведем пример такой функции. Пусть $r_1, r_2, ..., r_n, ...$ - последовательность всех рациональных чисел отрезка [a,b] и пусть скачок функции f в точке r_k равен 2^{-k} . Тогда функция скачков $f_d(x) = \sum_{r_k < x} 2^{-k}$ разрывна во всех рациональных точках отрезка [a,b], непрерывна в иррациональных точках и строго возрастает на [a,b].

§7. Построение меры по неубывающей функции.

Мера Лебега-Стилтьесса.

Пусть, как и при построении меры Лебега, R = [a, b) - фиксированный полуинтервал числовой прямой, K - алгебра, порожденная системой всех полуинтервалов $[\alpha, \beta) \subseteq [a, b)$, т.е. алгебра множеств вида

$$A = \bigcup_{i=1}^{k} [\alpha_i, \beta_i], \qquad \alpha_{i+1} > \beta_i$$
 (1)

причем полуинтервалы в правой части можно считать попарно непересекающимися.

На [a,b) задана неубывающая, ограниченная и непрерывная слева функция f(x). Приращением функции f на полуинтервале $[\alpha,\beta) \subset [a,b)$ естественно назвать величину

$$\Delta(\alpha, \beta)f = f(\alpha) - f(\beta)$$

Для любого множества $A \in K$ вида (1) положим

$$\Delta(A)f = \sum_{i=1}^{k} \Delta(\alpha_i, \beta_i)f = \sum_{i=1}^{k} (f(\beta_i) - f(\alpha_i))$$
 (2)

Если функция f непрерывна на [a,b], то той же формулой (2) мы будем определять $\Delta(A)f$ для множества A, являющегося конечным объединением открытых (замкнутых) промежутков.

Отметим, что если f(x) = x, то $\Delta(A)f$ совпадает с длиной A и все дальнейшие построения совпадают с построением меры Лебега.

Теорема 1. Введем на алгебре K функцию μ_f , полагая $\mu_f(A) = \Delta(A)f$ $(A \in K, A \neq \emptyset)$; $\mu_f(\emptyset) = 0$. Функция μ_f является конечной мерой на K. (Без доказательства).

Определение 1 Пусть μ_f^* - внешняя мера, построенная по мере μ_f , определенной равенством (13.2). Продолжение меры μ_f на σ -алгебру μ_f^* -измеримых множеств называют мерой Лебега-Стилтьеса, построенной по неубывающей функции f.

Очевидно, μ_f - конечная полная мера. Заметим, что в случае f(x) = x мера Лебега-Стилтьеса совпадает с мерой Лебега.

Установим некоторые свойства меры Лебега-Стилтьеса; эту меру будем для упрощения записей также обозначать μ_f .

Теорема 2. Всякое одноточечное множество $\{x\} \subset [a,b)$ измеримо, причем

$$\mu_f(\{x\}) = \Delta_f(x) \tag{3}$$

Доказательство. Измеримость одноточечного множества $\{x\}$ следует из того, что его можно представить как пересечение полуинтервалов:

$$\{x\} = \bigcap_{n=k}^{\infty} \left[x, x + \frac{1}{n} \right),$$

где k выбрано таким, что $x + \frac{1}{k} \le b$. Поскольку полуинтервалы в правой части образуют убывающую последовательность, то по теореме о непрерывности

$$\mu_f(\lbrace x\rbrace) = \lim_{n \to \infty} \mu_f\left(\left[x, x + \frac{1}{n}\right)\right) = \lim_{n \to \infty} \left(f\left(x + \frac{1}{n}\right) - f(x)\right) = f(x+0) - f(x) = \Delta_f(x)$$

Теорема 3. Любой промежуток (открытый, замкнутый, полузамкнутый), лежащий на [a,b), имерим.

Доказательство. Действительно, промежуток вида $[\alpha, \beta)$ измерим по определению. Любой другой промежуток измерим как объединение или разность измеримых множеств:

$$[\alpha, \beta] = [\alpha, \beta) \cup \{\beta\},$$

$$(\alpha, \beta] = [\alpha, \beta] \setminus \{\alpha\},$$

$$(\alpha, \beta) = (\alpha, \beta) \setminus \{\beta\}$$

Теорема 4. Любое борелевское подмножество полуинтервала [a, b) измеримо.

Доказательство. Действительно, система борелевских множеств B([a,b)), как минимальная σ -алгебра, порожденная системой всех интервалов, входит в σ -алгебру всех измеримых множеств.

Замечание 1. Пусть $R = \mathbb{R}$, K- алгебра, порожденная системой всех полуинтервалов $[\alpha, \beta)$, $-\infty \le \alpha < \beta \le +\infty$. На \mathbb{R} задана неубывающая, ограниченная и непрерывная слева функция f(x). Для таких функций, как известно, существуют пределы $f(-\infty) = \lim_{x \to -\infty} f(x)$, $f(+\infty) = \lim_{x \to +\infty} f(x)$. Проведя для этого случая все предыдущие рассмотрения, мы получим конечную меру Лебега-Стилтьеса на всей числовой прямой \mathbb{R} .

Замечание 2. Пусть f - неубывающая непрерывная слева на [a,b) функция, для которой $\lim_{x\to b-0} f(x) = +\infty$. В этом случае по функции f можно построить меру Лебега-Стилтьеса, но она уже не будет конечной. Для построения этой меры заметим, что для любого $\varepsilon > 0$ функция f на $R_{\varepsilon} = [a,b-\varepsilon)$ ограничена и по ней можно построить конечную меру Лебега-Стилтьса μ_f на R_{ε} . Множество $A \subseteq [a,b)$ назовем измеримым, если для любого $\varepsilon > 0$ множество $A \cap [a,b-\varepsilon)$ измеримо в пространстве R_{ε} . В этом случае

$$\mu_f(A) \stackrel{\text{def}}{=} \lim_{\varepsilon \to 0} \mu_f(A \cap [a, b - \varepsilon))$$

Предел в правой части (конечный или бесконечный) существует, т.к. благодаря монотонности меры $\mu_f(A \cap [a,b-\varepsilon))$ - неубывающая функция от ε

Построенная мера σ – конечна, поскольку $[a,b) = \bigcup_{n=1}^{\infty} [a,b-\frac{1}{n})$, а множества $[a,b-\frac{1}{n})$ имеют конечную меру.

Замечание 3. Аналогично строится мера Лебега-Стилтьеса для все прямой $\mathbb R$ по неубывающей на $\mathbb R$ непрерывной слева неограниченной функции. Это построение проводится как и при построении меры Лебега на прямой с помощью расширяющейся системы интервалов. Полученная мера σ – конечна.

Замечание 4. Все рассмотрения этого параграфа без существенных изменений переносятся на случай n-мерного пространства \mathbb{R}^n . Так мера Лебега-Стилтьеса в \mathbb{R}^n строится по функции $f(x_1, x_2, ..., x_n)$, непрерывной слева по каждой из переменных и удовлетворяющей условию

$$\Delta_1(a_1, b_1)\Delta_2(a_2, b_2) \dots \Delta_n(a_n, b_n) f(x_1, x_2, \dots, x_n) \ge 0$$

$$\forall a = (a_1, a_2, \dots, a_n), b = (b_1, b_2, \dots, b_n) \in \mathbb{R}^n, a_k < b_k),$$

где Δ_k - разностный оператор по k-й переменной – определяется формулой:

$$\Delta_k(a_k, b_k) f(x_1, x_2, \dots, x_n) = f(x_1, \dots, x_{k-1}, b_k, x_{k+1}, \dots, x_n) - f(x_1, \dots, x_{k-1}, a_k, x_{k+1}, \dots, x_n)$$

В частности, мера Лебега ограниченных множеств в \mathbb{R}^n строится по функции $f(x_1,x_2,...,x_n)=x_1x_2...x_n$. В общем случаем мера n-мера полуинтервала [a,b) определяется равенством

$$\mu_f([a,b)) = \Delta_1(a_1,b_1)\Delta_2(a_2,b_2)...\Delta_n(a_n,b_n)f$$

Полученная мера конечна, если функция f ограниченна, и σ -конечна в случае неограниченной функции f .

§8. Измеримые функции.

Пусть X – множество, K - некоторая σ -алгебра подмножеств множества X и на K задана σ -аддитивная полная мера μ .

Определение 1. Функция $f: X \to \mathbb{R}$ называется *измеримой*, если для любого числа $c \in \mathbb{R}$ множество $X_c = \{x | f(x) < c\}$ измеримо.

Примеры.

- 1) На \mathbb{R}^1 с мерой Лебега любая непрерывная функция измерима. Действительно, множество $A_c = \{x | f(x) < c\}$ для непрерывной функции открыто (прообраз открытого) и, значит, измеримо.
- 2) Функция Дирихле

$$D(x) = \begin{cases} 0, & x \text{ иррационально} \\ 1, & x \text{ рационально} \end{cases}$$

измерима. Действительно, $A_c = \mathbb{R}$, если c > 1; $A_c = \mathbb{R} \setminus \mathbb{Q}$, если $0 < c \le 1$, и $A_c = \emptyset$, если $c \le 0$. Пример показывает, что разрывные функции могут быть измеримыми.

3) Пусть χ_A – характеристическая функция множества, т.е.

$$\chi_A = \begin{cases} 1, & x \in A \\ 0, & x \notin A \end{cases}$$

Функция χ_A измерима, если измеримо множество A, и не измерима, если не измеримо множество A.

Заметим, что если функция f измерима, то множество $\{x|f(x) < c\}$ является измеримым, так как $\{x|f(x) < c\} = \bigcap_{k=1}^{\infty} \{x|f(x) < c + \frac{1}{\nu}\}$.

Одним из свойств класса измеримых функций является его замкнутость относительно предельного перехода. Мы будем рассматривать следующие типы сходимости.

- **1.** Равномерная сходимость. Последовательность функций f_n сходится к f равномерно на множестве X, если для любого $\varepsilon > 0$ существует номер n_{ε} такой, что при $n > n_{\varepsilon}$ выполнено $|f_n(x) f(x)| < \varepsilon$ для любых $x \in X$.
- **2.** Точечная сходимость. Последовательность функций f_n сходится к функции f точечно, если для любого $x \in X$ $f_n(x) \to f(x)$.
- **3.** Сходимость почти всюду. Последовательность функций f_n (заданных на пространстве с мерой) сходится к функции f почти всюду, если $f_n(x) \to f(x)$ для всех $x \in X$, за исключением множества меры нуль. Обозначаем $f_n \stackrel{\text{п.в.}}{\longrightarrow} f$.
- **4.** Сходимость по мере. Последовательность измеримых функций f_n сходится по мере к измеримой функции f, если для любого $\delta > 0$

$$\mu(x:|f_n(x)-f(x)|>\delta) \xrightarrow[n\to\infty]{} 0$$

Очевидно, что из равномерной сходимости следует точечная сходимость, а из точечной – сходимость почти всюду. Обратное утверждение неверно.

Пример. $f_n(t) = t^n$ на [0,1] сходится к функции $f(t) \equiv 0$ почти всюду(за исключением точки t=1), но не сходится точечно. Эта же последовательность точечно сходится к функции

$$g(t) = \begin{cases} 0, t < 1, \\ 1, t = 1. \end{cases}$$

но не сходится равномерно.

Теорема 1. Если последовательность измеримых функций f_n сходится точечно к функции f, то f измерима.

Доказательство. Нужно доказать, что множество $A_c = \{x | f(x) < c\}$ измеримо. Докажем равенство

$$A_c = \bigcup_k \bigcup_n \bigcap_{m>n} \{x | f_m(x) < c - \frac{1}{k}\}$$

Это равенство показывает, что A_c можно получить из измеримых множеств $A_{mk} = \{x | f_m(x) < c - \frac{1}{k}\}$ с помощью счетных пересечений и объединений. Значит, A_c измеримо.

Пусть $x \in A_c$, т.е. f(x) < c. Тогда $\lim_{m \to \infty} f_m(x) = f(x) < c$, и, значит, для номеров k таких, что $\frac{1}{k} < c - f(x)$, т.е. $f(x) < c - \frac{1}{k}$, существует номер n такой, что существуют числа k и n такие, что $x \in A_{mk}$ для любого m > n, т.е.

$$x \in \bigcup_{k} \bigcup_{n} \bigcap_{m > n} A_{mk}$$

Обратное рассуждение также верно: последнее включение означает, что существует число k такое, что для достаточно больших m выполняется $f_m(x) < c - \frac{1}{k}$. Тогда $f(x) = \lim_{m \to \infty} f_m(x) < c$.

Следствие 1. Если последовательность измеримых функций $f_n(x)$ сходится почти всюду к функции f(x), то f(x) измерима.

Доказательство. Пусть $f_n \to f$ точечно на множестве $X_0 \subset X$ и $\mu(X \setminus X_0) = 0$. Тогда $\{x \mid f(x) < c\} = [\ \{x \mid f(x) < c\} \cap X_0\] \cup [\{x \mid f(x) < c\} \cap (X \setminus X_0)].$

Первое из этих множеств измеримо по теореме 1, а второе есть подмножество множества меры нуль, и, значит, тоже измеримо.

Спедствие 2. Если последовательность измеримых функций f_n сходится равномерно к f, то f измерима.

Следствие 3. Существует разрывная на [0;1] функция, которая не является пределом почти всюду сходящейся последовательности непрерывных функций.

В качестве такой функции можно взять любую неизмеримую функцию.

Определение 2. Функции f и g, совпадающие почти всюду, будем называть эквивалентными (обозначим $f \sim g$), если $\mu\{x|f(x) \neq g(x)\} = 0$.

Если функция f измерима, то и любая эквивалентная ей функция g тоже измерима, так как симметрическая разность множеств $\{x|f(x) < c\}$ и $\{x|g(x) < c\}$ есть множество меры нуль и, следовательно, они одновременно измеримы.

Замечание. Если функции f и g эквивалентны и последовательность f_n почти всюду сходится к f, то эта последовательность почти всюду сходится к функции g. Отсюда следует, что у сходящейся почти всюду последовательности имеется несколько пределов.

Определение. Функция $f: X \to \mathbb{R}$ называется простой, если она измерима и принимает конечное или счетное множество значений.

Теорема 2. Функция f является простой тогда и только тогда, когда $X = \coprod_k A_k$,

где множества A_k измеримы и f(x) принимает постоянное значение y_k на множестве A_k .

Доказательство. Пусть f — простая функция, $\{y_k\}$ — множество ее значений и пусть $A_k = \{x | f(x) = y_k\}$. Тогда $A_k = \{x | f(x) \le y_k\} \setminus \{x | f(x) < y_k\}$, значит, A_k измеримо и получаем представление $X = \coprod_k A_k$.

Обратно, пусть имеем представление $X = \coprod_k A_k$. Тогда

$$A_c = \{x | f(x) < c\} = \bigcup_{y_k < c} A_k$$

Пример. Функция Дирихле – простая.

Теорема 3. Для любой измеримой функции f существует равномерно сходящаяся к ней подпоследовательность простых функций.

Доказательство. Укажем явно эту последовательность. Положим $f_n(x) = \frac{m}{n}$, если $\frac{m}{n} \le f(x) < \frac{m+1}{n}$, $m = 0, \pm 1, \pm 2, ...$ Множество A_{mn} , на котором функция f_n принимает постоянное значение $\frac{m}{n}$, измеримо. По построению $|f_n(x) - f(x)| \le \frac{1}{n} \to 0$, то есть последовательность f_n сходится к f равномерно.

Теорема 4. Множество простых функций замкнуто относительно алгебраических операций, то есть если f и g — простые функции, то f+g, f-g, $f\cdot g$, f/g, где $g\neq 0$ почти всюду, - также простые функции.

Доказательство. Пусть $X = \coprod A_k$ и $f(x) = y_k$, для $x \in A_k$, а также $X = \coprod_i B_i$ и $g(x) = z_i$ для $x \in B_i$. Тогда $X = \coprod_{k,i} (A_k \cap B_i)$ и для $x \in A_k \cap B_i$ имеем $(f + g)(x) = y_k + z_i$;

$$(f-g)(x) = y_k - z_i; (fg)(x) = y_k z_i; (f/g)(x) = y_k/z_i.$$

Следствие. Множество всех измеримых функций замкнуто относительно алгебраических операций.

Доказательство. Пусть f, g — измеримые функции. В силу теоремы 3 выберем последовательности f_n и g_n простых функций, которые сходятся равномерно к f и g соответственно. Тогда $f_n \to f$, $g_n \to g$ точечно. Отсюда следует, что $f_n \pm g_n \to f \pm g$, $f_n g_n \to f g$, $f_n/g_n \to f/g$, $\lambda f_n \to \lambda f$ (λ — число) точечно и поэтому в силу теоремы 1 $f \pm g$, f g, f/g, λf измеримы.

Теорема 5 (Егорова). Пусть X — множество конечной меры и последовательность измеримых функций f_n сходится почти всюду на X к функции f. Тогда для любого $\delta > 0$ существует измеримое множество $X_{\delta} \subset X$ такое, что

- 1) на X_{δ} последовательность f_n сходится к f равномерно;
- 2) $\mu(X \setminus X_{\delta}) < \delta$.

Доказательство. Пусть $f_n(x) \to f(x)$ точечно на подмножестве $X_0 \subset X$. Для любой точки $x \in X_0$ и любого натурального m существует номер n такой, что при всех k > n выполняется неравенство $|f_k(x) - f(x)| < \frac{1}{m}$. Если обозначить

$$X_n^m = \left\{ x \middle| |f_i(x) - f(x)| < \frac{1}{m}$$
для $i > n \right\}$

то предыдущее утверждение означает, что $X_0 = \bigcup_{n=1}^{\infty} X_n^m$.

Так как $X_1^m \subset X_2^m \subset \cdots \subset X_n^m \subset \cdots$ и множества X_n^m измеримы в силу измеримости f_i и f , то

$$\lim_{n\to\infty}\mu(X_n^m)=\mu(X_0)$$

и, значит, $\mu(X_0\backslash X_n^m)\to 0, n\to\infty$. Возьмем номер n(m) таким, чтобы $\mu(X_0\backslash X_{n(m)}^m)<\frac{\delta}{2^m}$. Тогда для множества $X_\delta=\bigcap_m X_{n(m)}^m$ имеем

$$X_0 \setminus X_\delta = \bigcup_m (X_0 \setminus X_{n(m)}^m),$$

$$\mu(X_0 \setminus X_\delta) \le \sum_{m=1}^\infty \mu(X_0 \setminus X_{n(m)}^m) < \sum_{m=1}^\infty \frac{\delta}{2^m} = \delta.$$

По условию $\mu(X \setminus X_0) = 0$, и значит $\mu(X \setminus X_\delta) \le \mu(X \setminus X_0) + \mu(X_0 \setminus X_\delta) < \delta$.

Покажем, что на построенном множестве X_{δ} последовательность f_n сходится равномерно к f. По $\varepsilon > 0$ выберем номер m так, чтобы $\frac{1}{m} < \varepsilon$. Тогда для k > n(m) получаем $X_{\delta} \subset X_{n(m)}^m$, то есть для $x \in X_{\delta}$ выполняется неравенство $|f_k(x) - f(x)| < \frac{1}{m} < \varepsilon$.

3амечание. Если множество X есть множество бесконечной меры, то утверждение теоремы Егорова не выполняется.

§9. Интеграл Лебега. Определение и

основные свойства

Пусть X — пространство с конечной σ -аддитивной полной мерой μ . Если A — измеримое множество и

$$X_A(x) = \begin{cases} 1, x \in A \\ 0, x \notin A \end{cases}$$

его характеристическая функция, то интеграл Лебега от характеристической функции определим равенством

$$\int_X X_A(x) \, d\mu = \mu(A)$$

Интеграл Лебега определим таким образом, чтобы сохранились основные свойства интеграла Римана:

1) линейность:

$$\int_{Y} (\alpha f + \beta g) dx = \alpha \int_{Y} f dx + \beta \int_{Y} g dx;$$

2) *непрерывность:* если $f_n \rightrightarrows f$, то

$$\int\limits_X f_n(x)\,dx\to \int\limits_X f(x)\,dx$$

Для выполнения свойства линейности полагаем, что если

$$f(x) = \sum_{k=1}^{n} y_k X_{A_k},$$

то есть f — простая функция, принимающая конечное число значений, то

$$\int_{X} f(x) d\mu = \sum_{k=1}^{n} y_k \,\mu(A_k) \tag{1}$$

Из (1) следует неравенство

$$\left| \int_{X} f(x) \, d\mu \right| \le \sup |f(x)| \, \mu(X) \tag{2}$$

Действительно,

$$\left| \int_{X} f(x) d\mu \right| = \left| \sum y_k \mu(A_k) \right| \le \sup |y_k| \sum \mu(A_k) = \sup |y_k| \mu(X).$$

Лемма 1. Пусть последовательность f_n простых функций, принимающих конечное число значений, равномерно сходится к f. Тогда:

- 1) существует $\lim_{n\to\infty}\int_X f_n(x) d\mu$;
- 2) предел не зависит от выбора последовательности f_n .

Доказательство. Проверим, что числовая последовательность $I_n = \int_X f_n(x) \, d\mu$ является последовательностью Коши. Действительно, в силу неравенства (2)

$$|I_n - I_m| = \left| \int_X (f_n - f_m) d\mu \right| \le \sup_{x \in X} |f_n(x) - f_m(x)| \, \mu(X) \to 0, \quad n, m \to \infty$$

Значит, последовательность I_n сходится. Если g_n – другая аналогичная последовательность, равномерно сходящаяся к f , то

$$\left| \int\limits_X (f_n - g_n) d\mu \right| \le \sup_{x \in X} |f_n(x) - g_n(x)| \, \mu(X) \to 0, \quad n \to \infty$$

То есть предел не зависит от выбора последовательности f_n .

Определение 1. Интегралом Лебега ограниченной измеримой функции f на множестве X с конечной мерой μ называется число

$$\int_X f(x) d\mu \stackrel{\text{def}}{=} \lim_{n \to \infty} \int f_n(x) d\mu,$$

где f_n — последовательность простых функций, принимающих конечное число значений, равномерно сходящаяся к f.

Если измеримая функция f ограничена, то построенная в теореме 3 предыдущего параграфа последовательность f_k простых функций, равномерно сходящаяся к f, состоит из функций, принимающих конечное число значений. В лемме доказано, что существует предел интегралов от функций f_n и этот предел не зависит от выбора последовательности f_n . Поэтому данное определение корректно.

Так как предел не зависит от выбора последовательности, можно зафиксировать последовательность простых функций f_n , построенную в теореме 3 §14, $f_n(x) = \frac{k}{n}$, если $\frac{k}{n} \le f(x) < \frac{k+1}{n}$, и равномерно сходящуюся к f.

Функция f_n принимает конечное число значений $y_k = \frac{k}{n}$, где $|k| < n \sup |f(x)|$, на множествах $A_{kn} = \left\{x \middle| \frac{k}{n} \le f < \frac{k+1}{n}\right\}$. Используя определение интеграла от функции f_n , получаем эквивалентное определение интеграла Лебега от ограниченной измеримой функции.

Определение 2. Интегральной суммой Лебега S_n для функции f будем называть сумму вида

$$S_n = \sum_{k} \frac{k}{n} \mu \left\{ x \left| \frac{k}{n} \le f(x) < \frac{k+1}{n} \right\} \right\}.$$

Интегралом Лебега называется предел интегральных сумм

$$\int_{X} f(x) d\mu \stackrel{\text{def}}{=} \lim_{n \to \infty} S_n$$

Так как $S_n = \int_X f_n(x) d\mu$ для построенных выше простых функций f_n , это определение эквивалентно определению 1, причем существование предела уже доказано.

Формула для интегральных сумм Лебега позволяет описать отличие в определении интеграла Римана и интеграла Лебега. Различие в двух определениях заключается в том, что при составлении интегральных сумм Римана разбиение производится по признаку близости точек на оси Ox, а при составлении интегральных сумм Лебега по признаку близости значений функции. Одно из преимуществ второго определения состоит в том, что любая измеримая ограниченная функция интегрируема по Лебегу.

Интеграл от произвольной измеримой функции определяется аналогично, но неограниченная функция может оказаться неинтегрируемой.

Определение 3. Простая функция f, принимающая значения y_k на множествах A_k , k=1,2,..., называется интегрируемой, если ряд $\sum_{k=1}^{\infty} y_k \, \mu(A_k)$ сходится абсолютно. Если функция f интегрируема, то сумма этого ряда называется интегралом Лебега функции f, то есть

$$\int_{X} f(x)d\mu = \sum_{k} y_{k} \,\mu(A_{k}) \tag{3}$$

Отметим, что неравенство (2) и основанная на нем лемма справедлива для любых простых функций. Поэтому корректно следующее определение, аналогичное определению 1.

Определение 4. Измеримая функция f называется интегрируемой (суммируемой), если существует равномерно сходящаяся к f последовательность f_n простых интегрируемых функций. Интегралом Лебега функции f по множеству X с мерой μ называется предел интегралов Лебега от функции f_n :

$$\int_{Y} f(x)d\mu \stackrel{\text{def}}{=} \lim_{n \to \infty} \int_{Y} f_n(x) d\mu.$$

Множество всех функций, интегрируемых на множестве X по мере μ , обозначается $\mathcal{L}_1(X,\mu)$.

Свойства интеграла Лебега

- 1) $\int_A 1 \cdot d\mu = \mu(A) = \int_X X_A(x) d\mu$ по определению; здесь A измеримое.
- **2)** Если f и g интегрируемые функции, то функция f+g интегрируема и справедливо равенство

$$\int\limits_X \left[f(x) + g(x) \right] d\mu = \int\limits_X f(x) \, d\mu + \int\limits_X g(x) \, d\mu.$$

Проверим сначала свойство 2 для простых функций.

Пусть $f(x) = y_k$ при $x \in A_k$, $X = \coprod_k A_k$; $g(x) = z_i$ при $x \in B_i$, $X = \coprod_i B_i$. Тогда $f(x) + g(x) = y_k + z_i$ при $x \in A_k \cap B_i$ и $X = \coprod_{i,k} (A_k \cap B_i)$. Отсюда получаем

$$\int_X f(x)d\mu + \int_X g(x)d\mu = \sum_k y_k \mu(A_k) + \sum_i z_i \mu(B_i) =$$

$$= \sum_k y_k \sum_i (A_k \cap B_i) + \sum_i z_i \sum_k (A_k \cap B_i) =$$

$$= \sum_k \sum_i (y_k + z_i) \mu(A_k \cap B_i) = \int_X [f(x) + g(x)] d\mu.$$

Пусть теперь f и g — произвольные интегрируемые функции и пусть f_n и g_n — равномерно сходящиеся к f и g соответственно последовательности простых интегрируемых функций. Последовательность $f_n + g_n$ равномерно сходится к f + g, значит, f + g интегрируема. Переходя к пределу в равенстве

$$\int_{X} f_n(x) d\mu + \int_{X} g_n d\mu = \int_{X} (f_n + g_n) d\mu,$$

получаем свойство 2.

3) Пусть f — интегрируемая функция, $\lambda \in \mathbb{R}$. Тогда $\lambda f(x)$ — интегрируемая функция и справедливо равенство

$$\int_X \lambda f(x) \, d\mu = \lambda \int_X f(x) d\mu.$$

Для простых функций это утверждение и равенство очевидны.

Для произвольных интегрируемых функций оно устанавливается переходом к пределу.

- 4) Если функция ограничена и измерима, то она интегрируема (следствие леммы 1).
- 5) Если f интегрируемая функция и $f(x) \le c$, то

$$\int\limits_X f(x)d\mu \le c\mu(X)$$

Доказательство. Пусть $f_n(x) = \frac{k}{n}$, если $\frac{k}{n} \le f(x) < \frac{k+1}{n}$. Тогда последовательность простых функций f_n равномерно сходится к f и $f_n(x) \le f(x) \le c$. В неравенстве для простых функций

$$\int\limits_X f_n(x)d\mu \le \sup\limits_{x \in X} f_n(x)\,\mu(X) \le c\mu(X)$$

переходим к пределу при $n \to \infty$ и получаем требуемое неравенство.

Следствие 5.1. Если f интегрируема и $f(x) \ge 0$, то $\int_X f(x) d\mu \ge 0$.

Для доказательства применяем свойство 5 к неравенству $-f(x) \le 0$.

Следствие 5.2. Если f_1 и f_2 – интегрируемые функции и $f_1(x) \le f_2(x)$, то

$$\int\limits_X f_1(x)d\mu \le \int\limits_X f_2(x)d\mu$$

Утверждение следует из неравенства $f_2(x) - f_1(x) \ge 0$ и свойства 5.

6) Если $|f(x)| \le \varphi(x)$, где функция φ интегрируема, а f измерима, то f интегрируема.

Докажем сначала свойство 6 для простых функций. Пусть f и φ простые функции. Пусть имеется разбиение $X = \coprod_k A_k$, такое, что $f(x) = y_k$, $\varphi(x) = z_k$, если $x \in A_k$. При этом выполняется неравенство $|y_k| \le z_k$. Тогда, составляя ряды, получаем

$$\int_{X} f(x) d\mu = \sum_{k} y_{k} \mu(A_{k}) \le \sum_{k} |y_{k}| \mu(A_{k}) \le \sum_{k} z_{k} \mu(A_{k}).$$

Ряд для функции f мажорируется абсолютно сходящимся рядом и, значит, сам абсолютно сходится. Теперь свойство 6 устанавливается предельным переходом.

Следствие 6.1. Если $f_1(x) \le f(x) \le f_2(x)$, где f_1 и f_2 – интегрируемые функции и f – измеримая функция, то f интегрируема.

Утверждение получается из неравенства $|f(x)| \le |f_1(x)| + |f_2(x)|$.

Следствие 6.2. Если f — интегрируемая функция, а g — ограниченная ($|g(x)| \le c$) измеримая функция, то $f \cdot g$ интегрируема, причем

$$\left| \int\limits_X f(x) g(x) d\mu \right| \le c \int\limits_X |f(x)| d\mu$$

Действительно, из неравенства $-c|f(x)| \le f(x)g(x) \le c|f(x)|$ и из следствия 6.1 получаем, что произведение fg интегрируемо, и по неравенству из следствия 5.2 – требуемое неравенство.

В частности, если f – интегрируемая на X функция, то f интегрируема на любом измеримом подмножестве $A \subset X$, так как

$$\int_A f(x) d\mu = \int_X X_A(x) f(x) d\mu.$$

Если A и B — измеримые множества и $A \cap B = \emptyset$, то $X_A + X_B = X_{A \cup B}$. Поэтому, используя свойства 2 и 6, получим, что

$$\int_{A \sqcup B} f(x) d\mu = \int_{A} f(x) d\mu + \int_{B} f(x) d\mu.$$

Это свойство, как и свойство 2, называется аддитивностью интеграла Лебега.

7) Если f(x) – интегрируемая функция, то |f(x)| также интегрируема.

Для простых функций это свойство выполняется по определению (требование абсолютной сходимости ряда), для произвольных интегрируемых функций проверяется с помощью предельного перехода, причем справедливо неравенство

$$\left| \int\limits_X f(x) \, d\mu \right| \le \int\limits_X |f(x)| \, d\mu.$$

8) Если $\mu(A) = 0$, то $\int_A f(x) d\mu = 0$ для любой функции f (на множестве меры нуль любая функция измерима).

Для простых функций это свойство очевидно, а для произвольных получается предельным переходом.

Следствие 8.1. Если почти всюду на X f(x) = 0, то $\int_X f(x) d\mu = 0$.

Действительно, пусть A — множество меры нуль, вне которого f(x) = 0, тогда

$$\int_{X} f(x) d\mu = \int_{A} f(x) d\mu + \int_{X \setminus A} 0 \cdot d\mu = 0$$

Следствие 8.2. Если f(x)=g(x) почти всюду, то $\int_X f(x) d\mu = \int_X g(x) d\mu$.

9) Если f(x) — интегрируема и $\int_X |f(x)| \, d\mu = 0$, то f(x) = 0 почти всюду.

Докажем предварительно одно вспомогательное неравенство, которое будет использоваться в дальнейшем.

Лемма 2. Пусть f — интегрируемая функция, $f(x) \ge 0$, c > 0, и пусть $A_c = \{x | f(x) \ge c\}$. Тогда справедливо неравенство Чебышева

$$\mu(A_c) \le \frac{1}{c} \int_X f(x) \, d\mu.$$

Доказательство. Из свойств 2 и 5 получаем

$$\int_X f(x) d\mu = \int_{A_C} f(x) d\mu + \int_{X \setminus A_C} f(x) d\mu \ge \int_{A_C} f(x) d\mu \ge c\mu(A_c).$$

Разделив неравенство на с, получаем неравенство Чебышева.

Доказательство свойства 9. Обозначим $A_c = \{x | |f(x)| > c\}$. Тогда

$$A_0 = \{x | |f(x)| > 0\} = \bigcup_{n=1}^{\infty} A_{1/n}.$$

Нужно показать, что $\mu(A_0)=0$. По неравенству Чебышева получаем

$$\mu\left(A_{1/n}\right) \le \frac{1}{1/n} \int_{X} |f(x)| d\mu = 0.$$

Значит,

$$\mu(A_0) \le \sum_{n=1}^{\infty} \mu(A_{1/n}) = 0.$$

§10 Предельный переход под знаком интеграла

В определении интеграла Лебега заложена возможность перехода к пределу под знаком интеграла в случае равномерно сходящейся последовательности функций. Если последовательность интегрируемых функций f_n равномерно сходится к функции f, то f — интегрируемая функция и

$$\int_X f(x) d\mu = \lim_{n \to \infty} \int_X f_n(x) d\mu.$$

Действительно, так как последовательность $f_n \rightrightarrows f$, то для любого $\varepsilon > 0$ существует n_0 такое, что при $n \geq n_0$ $|f_n(x) - f(x)| \leq \varepsilon$. Отсюда вытекает неравенство $|f(x)| \leq \varepsilon + |f_{n_0}(x)|$, и из свойства 6 получаем интегрируемость функции f(x). Предельное равенство получается из неравенства:

$$\int_{X} |f_n(x) - f(x)| d\mu \le \sup |f_n(x) - f(x)| \mu(X).$$

Если последовательность f_n точечно (или почти всюду) сходится к f, то переходить к пределу под знаком интеграла нельзя. Действительно, пусть, например

$$f_n = \begin{cases} 2n, & 1/_{2n} < x < 1/_n \\ 0, & \text{для остальных} \end{cases}$$

Тогда, $f_n \to 0$ почти всюду, но

$$\int_{[0,1]} f_n(x) \, d\mu = \int_{1/2n}^{1/n} 2n \, dx = 1 \Rightarrow 0 = \int_{[0,1]} f(x) \, d\mu$$

При точечной сходимости может также оказаться, что предельная функция не интегрируема. Например, если

 $f_n(x) = \begin{cases} 1/x, & x > 1/n, \\ 0, & x \le 1/n \end{cases}$, то $f_n(x) \to \frac{1}{x}$ точечно на]0,1[, но предельная функция $\frac{1}{x}$ не интегрируема.

Теорема 1 (абсолютная непрерывность интеграла Лебега). Пусть f — интегрируемая функция. Тогда для любого $\varepsilon > 0$ существует $\delta > 0$ такое, что если $\mu(A) < \delta$, то

$$\left|\int\limits_A f(x)\,d\mu\right|<\varepsilon.$$

Доказательство. Пусть сначала f — простая функция, $f(x) = y_k$, если $x \in A_k$ и $X = \coprod_k A_k$. Тогда

$$\int_X f(x) d\mu = \sum_{k=1}^\infty y_k \mu(A_k),$$

причем ряд сходится абсолютно. Выберем номер N так, что

$$\sum_{k=N+1}^{\infty} |y_k| \mu(A_k) < \varepsilon/2.$$

Пусть $B = \coprod_{N+1}^{\infty} A_k$ и

$$c = \max_{1 \le k \le N} |y_k| = \max_{X \setminus B} |f(x)|.$$

Возьмем $\delta < \varepsilon/2c$. Пусть $\mu(A) < \delta$.

Тогда

$$\left| \int_{A} f(x) d\mu \right| \leq \int_{A \cap B} |f(x)| d\mu + \int_{(X \setminus B) \cap A} |f(x)| d\mu \leq \varepsilon / 2 + c\delta \leq \varepsilon.$$

Пусть теперь f — произвольная интегрируемая функция. Выберем простую интегрируемую функцию g так, чтобы $|f(x) - g(x)| \le \frac{\varepsilon}{2u(A)}$.

Для простой функции g по доказанному можем выбрать $\delta > 0$ так, чтобы выполнялось неравенство

$$\left| \int_A g(x) \, d\mu \right| < \varepsilon/2,$$

если $\mu(A) < \delta$. Тогда

$$\left| \int_{A} f(x) d\mu \right| \leq \int_{A} |g(x)| d\mu + \int_{A} |f(x) - g(x)| d\mu \leq \frac{\varepsilon}{2\mu(A)} \cdot \mu(A) + \frac{\varepsilon}{2} < \varepsilon.$$

Теорема 2 (σ -аддитивность интеграла Лебега). Пусть f — интегрируемая функция по множеству A и пусть $A = \coprod_k A_k$, A_k — измеримые множества. Тогда f интегрируема по каждому A_k и

$$\int_{A} f(x) d\mu = \sum_{k=1}^{\infty} \int_{A_{k}} f(x) d\mu,$$

причем ряд сходится абсолютно.

Доказательство. Докажем теорему сначала для простой функции f, принимающей значения y_1, y_2, \dots . Обозначим через $B_n = \{x \in A | f(x) = y_n\}, \ B_{kn} = \{x \in A_k | f(x) = y_n\}.$ Тогда

$$\int_{A} f(x) d\mu = \sum_{n=1}^{\infty} y_n \mu(B_n) = \sum_{n=1}^{\infty} y_n \sum_{k} \mu(B_{kn}) = \sum_{k} \sum_{n} y_n \mu(B_{kn}) = \sum_{k} \int_{A_k} f(x) d\mu$$

Так как ряд $\sum_n y_n \mu(B_n)$ сходится абсолютно, поскольку f интегрируема, и меры неотрицательны, то сходятся абсолютно и все ряды в цепочке равенств.

В случае произвольной функции f из ее интегрируемости на A вытекает, что для любого $\varepsilon > 0$ существует простая интегрируемая на A функция g, удовлетворяющая условию $|f(x) - g(x)| < \frac{\varepsilon}{\mu(A)}$.

Для g(x) по уже доказанному $\int_A g(x) d\mu = \sum_{k=1}^\infty \int_{A_k} g(x) d\mu$ и ряд сходится абсолютно.

Поэтому f также интегрируема на каждом A_k и

$$\sum_{k} \left| \int_{A_{k}} f(x) d\mu - \int_{A_{k}} g(x) d\mu \right| \leq \sum_{k} \frac{\varepsilon}{\mu(A)} \mu(A_{k}) = \varepsilon.$$

Следовательно,

$$\left| \int_A f(x) \, d\mu - \int_A g(x) d\mu \right| \le \varepsilon.$$

Это вместе с абсолютной сходимостью ряда для g(x) приводит к абсолютной сходимости ряда

$$\sum_{k} \int_{A_{k}} f(x) \, d\mu$$

и оценке

$$\left| \sum_{k} \int_{A_{k}} f(x) d\mu - \int_{A} f(x) d\mu \right| \leq \varepsilon.$$

В силу произвольности ε получаем требуемое равенство.

Теорема 3. Если $A = \coprod_{k=1}^{\infty} A_k, \ f$ интегрируема на A_k и ряд

$$\sum_{k} \int_{A_k} |f(x)| \, d\mu \tag{1}$$

сходится, то функция f интегрируема на A и интеграл

$$\int_A f(x) d\mu = \sum_k \int_{A_k} f(x) d\mu.$$

Доказательство. Сначала предположим, что f — простая функция. Пусть $X = \coprod_i B_i$ и $f(x) = y_i$, если $x \in B_i$. Положив $A_{ki} = A_k \cap B_i$, имеем

$$\int_{A_k} |f(x)| d\mu = \sum_i |y_i| \mu(A_{ki}).$$

Из сходимости ряда (1) вытекает, что сходятся ряды

$$\sum_{k} \sum_{i} |y_i| \mu(A_{ki}) = \sum_{i} |y_i| \mu(B_i \cap A)$$

Сходимость последнего ряда означает, что существует интеграл

$$\int_A f(x) d\mu = \sum_i y_i \mu(B_i \cap A).$$

В общем случае приближаем функцию f простой функцией g так, что

$$|f(x) - g(x)| < \varepsilon \tag{2}$$

Тогда

$$\int_{A} |g(x)| d\mu \le \int_{A_k} |f(x)| d\mu + \varepsilon \mu(A_k).$$

Так как ряд $\sum \mu(A_k) = \mu(A)$ сходится, то из сходимости ряда (1) вытекает сходимость ряда $\sum_k \int_{A_k} |g(x)| \, d\mu$, то есть по только что доказанному, интегрируемость на A простой функции g. Но тогда в силу (2) исходная функция f тоже интегрируема на A.

Теорема 4 (Лебега). Пусть последовательность измеримых функций f_n почти всюду сходится к функции f и пусть существует такая интегрируемая функция φ , что $|f_n(x)| \le \varphi(x)$ почти всюду. Тогда предельная функция f интегрируема и

$$\int_{X} f(x) d\mu = \lim_{n \to \infty} \int_{X} f_n(x) d\mu$$

Доказательство. По свойству 6 из предыдущего параграфа из неравенства $|f_n(x)| \le \varphi(x)$ следует, что f_n интегрируемы, а из теоремы (Если последовательность измеримых функций f_n сходится почти всюду к функции f, то f измерима), что f измерима. Так как выполнено неравенство $|f(x)| \le \varphi(x)$, то f – интегрируемая функция. Нужно показать, что для любого $\varepsilon > 0$ существует номер n_ε такой, что для $n > n_\varepsilon$ выполнено

$$\left| \int_{X} f(x) \, d\mu - \int_{X} f_n(x) \, d\mu \right| < \varepsilon.$$

По свойству абсолютной непрерывности выберем $\delta > 0$ так, чтобы выполнялось неравенство $\int_A \varphi(x) \, d\mu < \frac{\varepsilon}{3}$, если $\mu(A) < \delta$. Тогда выполняются также неравенства

$$\int_{A} |f_n(x)| d\mu < \frac{\varepsilon}{3} \, \text{и} \, \int_{A} |f(x)| d\mu < \varepsilon/3.$$

Воспользуемся теоремой Егорова: по $\delta>0$ найдем множество $X_\delta\subset X$ такое, что $\mu(X\backslash X_\delta)<\delta$ и на X_δ последовательность f_n сходится равномерно. Выберем номер n_ε так, чтобы для $n>n_\varepsilon$ выполнялось

$$\sup_{x \in X_{\delta}} |f_n(x) - f(x)| < \frac{\varepsilon}{3\mu(X)}.$$

Тогда для $n > n_{\varepsilon}$ имеем

$$\left| \int_{X} f(x) d\mu - \int_{X} f_{n}(x) d\mu \right| \leq \int_{X_{\delta}} |f(x) - f_{n}(x)| d\mu + \int_{X \setminus X_{\delta}} |f(x)| d\mu + \int_{X} |f_{n}(x)| d\mu \leq$$

$$\leq \frac{\varepsilon}{3\mu(X)} \mu(X_{\delta}) + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} \leq \varepsilon$$

Теорема 5 (Беппо-Леви). Пусть $f_1(x) \le f_2(x) \le \cdots$ — монотонно возрастающая последовательность интегрируемых функций и пусть существует постоянная c такая, что

$$\int\limits_X f_n(x) \, d\mu \le c, \ \, \text{для } n = 1,2,...$$

Тогда почти всюду существует конечный предел $f(x) = \lim_{n \to \infty} f_n(x)$, функция f интегрируема и

$$\int_{Y} f(x) d\mu = \lim_{n \to \infty} \int_{Y} f_n(x) d\mu$$

Доказательство. Не ограничивая общности теорему можно доказать для случая $f_n(x) \ge 0$, так как $\varphi_n(x) = f_n(x) - f_1(x)$ удовлетворяет всем условиям теоремы и $\varphi_n \ge 0$.

Зафиксируем точку x, получим монотонно возрастающую числовую последовательность $\{f_n(x)\}$, ограниченную снизу, которая должна иметь предел. Покажем, что предел почти всюду конечен. Пусть E — множество, где $\lim_{n\to\infty} f_n(x) = +\infty$ Тогда $E = \bigcap_N \bigcup_n E_n^N$, где $E_n^N = \{x \in X : f_n(x) \ge N\}$. Имеем

$$\int_{E_n^N} f_n(x) d\mu \ge N\mu(E_n^N).$$

Так как $\int_X f_n(x) d\mu \le c$ для любого n, мы получаем $\mu(E_n^N) \le \frac{c}{N}$, отсюда по неравенству Чебышева

$$\mu(E) = \lim_{N \to \infty} \lim_{n \to \infty} \mu(E_n^N) = 0.$$

Итак, функция f почти всюду конечна. Сведем доказательство того, что функция f интегрируема и возможен предельный переход под знаком интеграла, к теореме Лебега. Построим функцию $\varphi(X) = k$, если $x \in A_k$, где $A_k = \{x \in X : k-1 \le f(x) < k\}$. Тогда $f_n(x) \le f(x) \le \varphi(x)$ и нужно доказать, что φ интегрируема, то есть ряд $\sum_{k=1}^{\infty} k\mu(A_k)$ сходится. Для этого достаточно показать, что частные суммы ряда

$$\sum_{k=1}^{\infty} k\mu(\mathbf{A}_k) = \int_{\prod_{k=1}^{\infty} \mathbf{A}_k} \varphi(x) \, d\mu$$

ограничены в совокупности. На множестве $B_m \coprod_{k=1}^m A_k$ имеем $f_n(x) \le m$, поэтому на B_m применима теорема Лебега и

$$\int_{B_m} f(x) d\mu = \lim_{n \to \infty} \int_{B_m} f_n(x) d\mu \le c.$$

Но $\varphi(x)$ ≤ f(x) + 1 и тогда

$$\int_{B_m} \varphi(x) d\mu \le \int_{B_m} (f(x) + 1) d\mu \le c + \mu(X).$$

Следствие 1. Пусть $\varphi_n(x)$ — последовательность неотрицательных интегрируемых функций и пусть числовой ряд $\sum_{n=1}^{\infty} \int_X \varphi_n(x) \, d\mu$ сходится. Тогда почти всюду сходится ряд $\sum_{n=1}^{\infty} \varphi_n(x)$ и

$$\int_{X} \left(\sum_{n=1}^{\infty} \varphi_n(x) \right) d\mu = \sum_{n=1}^{\infty} \int_{X} \varphi_n(x) d\mu.$$

Следствие 2. Пусть $X = \coprod_1^\infty A_k$ и пусть f — измеримая функция такая, что интегралы $\int_{A_k} |f(x)| \, d\mu$ существуют и ряд

$$\sum_{k} \int_{A_{k}} |f(x)| \, d\mu$$

сходится. Тогда f интегрируема и

$$\int\limits_X f(x) \, d\mu = \sum\limits_k \int\limits_{\mathcal{A}_k} f(x) \, d\mu.$$

Теорема 6 (Фату). Если последовательность неотрицательных интегрируемых функций f_n сходится почти всюду к f и существует постоянная k такая, что $\int_X f_n(x) \, d\mu \le k$ (интегралы $\int_X f_n(x) \, d\mu$ ограничены в совокупности постоянной k), то функция f интегрируема и

$$\int\limits_{V} f(x) \, d\mu \le k.$$

Доказательство. По последовательности f_n построим новую последовательность $\varphi_n(x) = \inf_{k>n} f_k(x)$.

Функция $\varphi_n(x)$ измерима, так как

$$A_c = \{x \mid \varphi_n(x) < c\} = \bigcup_{k > n} \{x \mid f_k(x) < c\}$$

и, значит, A_c измеримо для любого c как объединение счетного числа измеримых множеств. Последовательность $\varphi_n(x)$ монотонно возрастает и $0 \le \varphi_n(x) \le f_n(x)$.

Так как $f_n(x)$ — интегрируема, $\varphi_n(x)$ — измерима \Rightarrow по свойству интеграла Лебега $\varphi_n(x)$ интегрируема.

$$\int_{X} \varphi_{n}(x) d\mu \le \int_{X} f_{n}(x) d\mu \le k$$
$$\varphi_{n}(x) \xrightarrow{\text{n.B.}} f(x)$$

Поэтому

$$\lim_{n\to\infty}\int\limits_X \varphi_n(x)\,d\mu=\int\limits_X f(x)\,d\mu\leq k.$$

Замечание. Если последовательность f_n удовлетворяет условиям теоремы Фату, то предельный переход под знаком интеграла невозможен:

$$\int\limits_X f(x) \, d\mu \neq \lim\limits_{n \to \infty} \int\limits_X f_n(x) \, d\mu$$

Пусть, например,

$$f_n(x) = \begin{cases} 2n, & \frac{1}{2n} \le x < \frac{1}{n}, & x \in [0;1] \\ 0, & \text{для остальных} \end{cases}$$

 $f_n(x) \ge 0, f_n(x) \stackrel{\text{\tiny II.B.}}{\longrightarrow} 0,$

$$\int\limits_{[0,1]} f_n(x) \, d\mu = \int\limits_{^{1}\!/_{2n}}^{^{1}\!/_{n}} 2n \, dx = 2n \left(\frac{1}{n} - \frac{1}{2n}\right) = 1,$$
 но

$$0 = \int_{[0,1]} f(x) d\mu \neq \lim_{n \to \infty} \int_{[0,1]} f_n(x) d\mu = 1$$

Пусть X — множество с σ -конечной мерой $\mu, X = \coprod_{k=1}^{\infty} X_k$, где $\mu(X_k) < +\infty$.

Определение. Измеримая функция f называется интегрируемой на X, если сходится ряд

$$\sum_{n=1}^{\infty} \int\limits_{X_k} |f(x)| \, d\mu$$

Интегралом Лебега интегрируемой функции f называется число

$$\int_X f(x) d\mu = \sum_{n=1}^{\infty} \int_{X_k} f(x) d\mu$$

§11. Сравнение интеграла Лебега с интегралом Римана.

Теорема 1 (Лебега). Если для функции f, заданной на отрезке [a,b], существует собственный интеграл Римана

$$\int_{a}^{b} f(x) \, dx,$$

то она интегрируема по Лебегу и ее интеграл Лебега

$$\int_{[a,b]} f(x) \, d\mu$$

равен интегралу Римана.

Доказательство. Построим верхнюю и нижнюю суммы Дарбу для интеграла Римана. Отрезок [a;b] разбиваем на 2^n частей точками $x_k = a + \frac{k}{2^n}(b-a)$, $0 \le k \le 2^n$.

Пусть

$$M_{nk} = \sup_{x_{k-1} \le x \le x_k} f(x), m_{nk} = \inf_{x_{k-1} \le x \le x_k} f(x)$$
 (1)

Тогда верхняя сумма Дарбу $\overline{\mathsf{S}_n}$ и нижняя сумма Дарбу $\underline{\mathsf{S}_n}$ определяются равенствами

$$\overline{S_n} = \sum_{k=1}^{2^n} M_{nk} \frac{b-a}{2^n}, \underline{S_n} = \sum_{k=1}^{2^n} m_{nk} \frac{b-a}{2^n}.$$

Построим функции $\overline{f_n}(x) = M_{nk}$, если $x_{k-1} \le x < x_k$; $\underline{f_n}(x) = m_{nk}$, если $x_{k-1} \le x < x_k$. Это простые функции и

$$\overline{S_n} = \int_{[a,b]} \overline{f_n}(x) d\mu, \qquad \underline{S_n} = \int_{[a,b]} \underline{f_n}(x) d\mu.$$

С ростом n отрезок, по которому вычисляется inf в (1), уменьшается, и, следовательно, inf увеличивается. Поэтому последовательность $\underline{f_n}(x)$ монотонно возрастает, то есть $\underline{f_n}(x) \leq \underline{f_{n+1}}(x)$. Аналогично последовательность $\overline{f_n}(x)$ монотонно убывает, то есть $\overline{f_n}(x) \geq \overline{f_{n+1}}(x)$. Так как $\underline{f_n}(x) \leq f(x)$ и $\overline{f_n}(x) \geq f(x)$, то существуют пределы

$$\lim_{n \to \infty} \underline{f_n}(x) = \underline{f}(x) \le f(x), \qquad \lim_{n \to \infty} \overline{f_n}(x) = \overline{f}(x) \ge f(x)$$

Так как $\left| \underline{f_n}(x) \right| \le \sup |f(x)|, \left| \overline{f_n}(x) \right| \le \sup |f(x)|,$ то по теореме Лебега о предельном переходе $\underline{f}(x)$ и $\overline{f}(x)$ — интегрируемые по Лебегу функции и

$$\int_{[a,b]} \overline{f}(x) d\mu = \lim_{n \to \infty} \int_{[a,b]} \overline{f_n}(x) d\mu = \lim_{n \to \infty} \overline{S_n},$$

$$\int_{[a,b]} \underline{f}(x) d\mu = \lim_{n \to \infty} \int_{[a,b]} \underline{f}_n(x) d\mu = \lim_{n \to \infty} \underline{S}_n.$$

Функция f интегрируема по Риману тогда и только тогда, когда

$$\lim_{n\to\infty} \overline{S_n} = \lim_{n\to\infty} \underline{S_n} = \int_{[a,b]} f(x) \, d\mu = I.$$

Поэтому

$$\lim_{n \to \infty} \int_{[a,b]} \left[\overline{f_n}(x) - \underline{f_n}(x) \right] d\mu = \int_{[a,b]} \left[\overline{f}(x) - \underline{f}(x) \right] d\mu = 0$$

и значит, $\overline{f}(x) = \underline{f}(x)$ почти всюду. По $\underline{f}(x) \leq \overline{f}(x)$ и $\underline{f}(x) = \overline{f}(x)$ почти всюду, f(x) интегрируема по Лебегу и

$$\int_{[a,b]} f(x) \, d\mu = I.$$

Замачание 1. Среди функций, для которых существует несобственный интеграл Римана, есть функции, неинтегрируемые по Лебегу. Это функции, для которых несобственный интеграл $\int_a^b f(x) \, dx$ существует, а $\int_a^b |f(x)| \, dx$ расходится. В качестве примера можно взять $f(x) = \frac{1}{x} \sin \frac{1}{x}$ на [0,1].

Теорема 2. Ограниченная функция f интегрируема по Риману на отрезке [a,b] тогда и только тогда, когда она почти всюду непрерывна, то есть множество точек разрыва имеет меру нуль.

Доказательство. Пусть f интегрируема по Риману. Как показано в доказательстве теоремы $1, \underline{f}(x) = \overline{f}(x)$ почти всюду. Запишем, что значит $\underline{f}(x_0) = \overline{f}(x_0)$. Возьмем $\varepsilon > 0$. Существует номер $n(\varepsilon)$ такой, что $\left|\underline{f}_n(x_0) - \overline{f}_n(x_0)\right| < \varepsilon$. Пусть x_0 принадлежит некоторому интервалу $[\alpha; \beta]$, полученному при разбиении отрезка [a, b] на 2^n частей. Тогда

$$\sup_{x \in [\alpha;\beta]} f(x) - \inf_{x \in [\alpha;\beta]} f(x) < \varepsilon$$

и значит $|f(x)-f(x_0)|<\varepsilon$ для $x\in [\alpha;\beta]$, то есть функция f непрерывна в т. x_0 . Таким образом доказана непрерывность функции f во всех точках, кроме тех точек, где $\underline{f}(x)\neq \overline{f}(x)$, и точек вида $x=\frac{k}{2^n}$, то есть всюду кроме множества меры нуль.

Проводя рассуждения в обратном порядке, получаем, что если f непрерывна почти всюду, то $f(x) = \overline{f}(x)$ почти всюду. Тогда

$$\lim_{n\to\infty} \overline{S_n} = \int_{Y} \overline{f} \, d\mu = \int_{Y} \underline{f} \, d\mu = \lim_{n\to\infty} \underline{S_n},$$

то есть по критерию интегрируемости функция f интегрируема по Риману.

Замечание 2. Следует отличать два условия: а) функция почти всюду непрерывна; б) функция почти всюду совпадает с непрерывной. Так функция Дирихле почти всюду совпадает с непрерывной функцией $f(x) \equiv 0$, но она разрывна во всех точках и не интегрируема по Риману.

Глава II

Теория нормированных векторных пространств (НВП).

§1 Линейные пространства.

Определение. Множество E элементов x, y, z, ... называется линейным пространством, если в нем определены две операции:

- I. Каждым двум элементам $x, y \in E$ поставлен в соответствие определённый элемент $x+y \in E$, называемый их суммой.
- II. Каждому элементу $x \in E$ и каждому числу (скаляру) λ поставлен в соответствие определённый элемент $\lambda x \in E$ произведение элемента x на скаляр λ так, что выполнены следующие свойства (аксиомы).

Для любых элементов $x, y, z \in E$ и любых скаляров λ, μ :

- 1) x + y = y + x;
- 2) x + (y + z) = (x + y) + z;
- 3) \exists элемент $0 \in E$ такой, что x + 0 = x;
- 4) $\lambda(\mu x) = (\lambda \mu)x$;
- 5) 1 * x = x, 0 * x = 0 (слева 0 скаляр, а справа элемент множества E);
- 6) $\lambda(x+y) = \lambda x + \lambda y$;
- 7) $(\lambda + \mu)x = \lambda x + \mu x$;

В качестве числовых множителей (скаляров) λ,μ , ... в линейном пространстве берутся вещественные или комплексные числа. В первом случае E называется вещественным (действительным) линейным пространством, во втором – комплексным линейным пространством.

Примеры.

1. Пространство \mathbb{R}^n с покоординатными операциями сложения и умножения на число – векторное пространство над полем \mathbb{R} .

2. Пространство \mathbb{C}^n с покоординатными операциями — векторное пространство над полем \mathbb{C} . \mathbb{C}^n можно также рассматривать и как векторное пространство над полем \mathbb{R} .

Определение. Подмножество L векторного пространства называется векторным подпространством, если оно замкнуто относительно операций сложения и умножения на скаляр, т.е. если $x \in L$, $y \in L$, $\lambda \in K$, то $x + y \in L$ и $\lambda x \in L$.

Пусть даны элементы $x_1, x_2, ..., x_l \in E$. Всякая сумма вида $\sum_{k=1}^l \alpha_k x_k$, где α_k числа, называется линейной комбинацией элементов $x_1, x_2, ..., x_l$.

Определение. Элементы $x_1, x_2, ..., x_l$ называются линейно-зависимыми, если существует их линейная комбинация $\sum_{k=1}^{l} \alpha_k x_k = 0$, где не все α_k равны нулю (т.е. $\sum_{k=1}^{l} |\alpha_k| > 0$). Если равенство $\sum_{k=1}^{l} \alpha_k x_k = 0$ возможно только при условии $\alpha_1 = \alpha_2 = \cdots = \alpha_l = 0$, то элементы $x_1, x_2, ..., x_l$ называются линейно независимыми.

Определение. Линейное пространство называется m-мерным, если в нем существует m линейно независимых векторов, а всякие m+1 векторов линейно зависимы.

Определение. Набор любых m линейно независимых векторов в m-мерном линейном пространстве E называется базисом в E.

Определение. _Линейное пространство E называется бесконечномерным, если для каждого натурального n в E существует n линейно независимых элементов.

§2 Нормированные векторные пространства.

Определение. Линейное пространство E называется нормированным пространством, если каждому $x \in E$ поставлено в соответствие неотрицательное число ||x|| (норма x) так, что выполнены следующие три аксиомы:

- 1) $||x|| \ge 0$; ||x|| = 0 тогда и только тогда, если x = 0; (условие невырожденности)
- 2) $\|\lambda x\| = |\lambda| \|x\|$; (условие однородности нормы)
- 3) $||x + y|| \le ||x|| + ||y||$; (неравенство треугольника).

Примеры.

1. $\mathbb{C}[0,1]$ – нормированное пространство с нормой

$$||x|| = \max_{0 \le t \le 1} |x(t)|;$$

2. $L_p(T, \mu)$ – нормированное пространство с нормой

$$||x|| = \left(\int_{T} |x(t)|^{p} d\mu\right)^{1/p}, p \ge 1$$

Свойства норм:

1) Обобщенное неравенство треугольника

E – нормированное векторное пространство; $x_1, x_2, ..., x_n \in E$.

$$||x_1 + x_2 + \ldots + x_n|| \le ||x_1|| + \ldots + ||x_n||$$

2) E — нормированное векторное пространство, тогда для $\forall x, y \in E$ справедливо обратное неравенство треугольника:

$$|||x|| - ||y||| \le ||x - y||$$

Доказательство.

По неравенству треугольника имеем:

$$x = (x - y) + y \Rightarrow ||x|| \le ||x - y|| + ||y|| \Rightarrow ||x|| - ||y|| \le ||x - y||$$

$$y = (y - x) + x \Rightarrow ||y|| \le ||y - x|| + ||x|| \Rightarrow ||y|| - ||x|| \le ||y - x||$$

Оба последних неравенства в совокупности и дают доказываемое неравенство.

Определение. Множество X называют метрическим пространством, если каждой паре его элементов x и y поставлено в соответствие вещественное число $\rho(x,y)$ (расстояние), удовлетворяющее аксиомам:

- 1) $\rho(x,y) \ge 0$; $\rho(x,y) = 0$ тогда и только тогда, когда x = y;
- 2) $\rho(x, y) = \rho(y, x)$;
- 3) $\rho(x,y) \le \rho(x,z) + \rho(z,y)$.

Метрические пространства можно считать обобщениями нормированных пространств. В нормированном пространстве можно ввести расстояние между любыми двумя его элементами по формуле:

$$\rho(x,y) = \|x - y\|$$

Лемма 1. Пусть числа p > 1 и q > 1 связаны соотношением $\frac{1}{p} + \frac{1}{q} = 1$. Тогда для $\forall u \ge 0, v \ge 0$ справедливо неравенство Юнга:

$$uv \le \frac{u^p}{p} + \frac{v^q}{q}$$

Доказательство.

Определим на $[0; +\infty)$ функцию

$$\varphi(t) = \frac{t^{p}}{p} + \frac{1}{q} - t$$

$$\varphi(0) = \frac{1}{q} > 0, \varphi'(t) = t^{p-1} - 1, \varphi''(t) = (p-1)t^{p-2} \Rightarrow$$

t=1 – единственная точка минимума функции $\varphi(t)$ на $[0;+\infty)$.

$$\varphi(1) = 0 \Rightarrow \varphi(t) \ge 0$$

Значит,

$$\frac{t^p}{p} + \frac{1}{q} \ge t$$

Положим $t = uv^{\frac{1}{1-p}}, u \ge 0, v \ge 0$

$$uv^{\frac{1}{1-p}} \le \frac{u^p v^{\frac{p}{1-p}}}{p} + \frac{1}{q}$$

$$\frac{1}{p} + \frac{1}{q} = 1 \implies \frac{1}{q} = 1 - \frac{1}{p} = \frac{p-1}{p} \implies q = \frac{p}{p-1};$$
(*)

Умножаем (*) на $v^q = v^{\frac{p}{p-1}}$.

Лемма 2. Пусть

$$p, q > 1; \frac{1}{p} + \frac{1}{q} = 1, ||x||_p = \left(\int_T |x(t)|^p d\mu\right)^{1/p}$$

Для любых функций $x \in L_p(T,\mu)$ и $y \in L_q(T,\mu)$ их произведение интегрируемо и справедливо неравенство Гёльдера:

$$\int\limits_T |x(t)y(t)|d\mu \le ||x||_p ||y||_q$$

Доказательство.

Пусть $||x_0||_p = ||y_0||_q = 1$. Зафиксируем t и применим неравенство Юнга:

$$|x_0(t)y_0(t)| \le \frac{|x_0(t)|^p}{p} + \frac{|y_0(t)|^q}{q}$$

Проинтегрируем данное неравенство и получим:

$$\int_{T} |x_{0}(t)y_{0}(t)| d\mu \le \frac{1}{p} + \frac{1}{q} = 1$$
 (1)

Если x = 0 или y = 0, то неравенство Гельдера очевидно.

Если $x \neq 0, y \neq 0$, то построим

$$x_0(t) = \frac{1}{\|x\|_p} x(t), y_0(t) = \frac{1}{\|y\|_q} y(t)$$

Подставляя их в неравенство (1), получаем

$$\frac{1}{\|x\|_p} \frac{1}{\|y\|_q} \int_T |x(t)y(t)| d\mu \le 1.$$

Умножая последнее неравенство на $||x||_p ||y||_q$, получаем неравенство Гёльдера.

Замечание 1. В случае p = 2 неравенство Гёльдера имеет вид:

$$\int_{T} |x(t)y(t)| d\mu \le \left(\int_{T} |x(t)|^{2} d\mu\right)^{1/2} \left(\int_{T} |y(t)|^{2} d\mu\right)^{1/2}$$

И называется неравенством Коши-Буняковского.

Замечание 2. Для любых комплексных чисел $\xi_1, ..., \xi_m; \eta_1, ..., \eta_m$ справедливо следующее неравенство Гёльдера для сумм:

$$\sum_{k=1}^{m} |\xi_k \eta_k| \le \left(\sum_{k=1}^{m} |\xi_k|^p\right)^{1/p} \left(\sum_{k=1}^{m} |\eta_k|^q\right)^{1/q}$$

Лемма 3. Пусть $p \geq 1$, тогда $\forall \ u(t), v(t) \in \mathbb{C}[a,b]$ справедливо неравенство Минковского:

$$||u + v||_p \le ||u||_p + ||v||_p$$

$$\left(\int_{a}^{b} |u(t) + v(t)|^{p} dt\right)^{1/p} \leq \left(\int_{a}^{b} |u(t)|^{p} dt\right)^{1/p} + \left(\int_{a}^{b} |v(t)|^{p} dt\right)^{1/p}$$

Доказательство. Если p=1, то неравенство очевидно. Пусть p>1. Тогда

$$\int_{a}^{b} |u(t) + v(t)|^{p} dt = \int_{a}^{b} |u(t) + v(t)| |u(t) + v(t)|^{p-1} dt \le$$

$$\leq \int_{a}^{b} |u(t)| |u(t) + v(t)|^{p-1} dt + \int_{a}^{b} |v(t)| |u(t) + v(t)|^{p-1} dt$$

Используя неравенство Гёльдера, получаем:

$$\int_{a}^{b} |u(t) + v(t)|^{p} dt \le ||u||_{p} \left(\int_{a}^{b} |u + v|^{(p-1)q} dt \right)^{1/q} + ||v||_{p} \left(\int_{a}^{b} |u + v|^{(p-1)q} dt \right)^{1/q} =$$

$$= \left[q = \frac{p}{p-1} \right] = \left(||u||_{p} + ||v||_{p} \right) \left(\int_{a}^{b} |u + v|^{p} dt \right)^{1/q}.$$

Разделив неравенство на интеграл, стоящий в правой части, получаем:

$$\left(\int_{a}^{b} |u+v|^{p} dt\right)^{1-\frac{1}{q}} \leq ||u||_{p} + ||v||_{p},$$

что и требовалось доказать.

Замечание. Пусть $p \ge 1$, то для любых комплексных чисел $x_1, \dots, x_m; y_1, \dots, y_m$ справедливо неравенство Минковского для сумм:

$$\left(\sum_{k=1}^{m} |x_k + y_k|^p\right)^{1/p} \le \left(\sum_{k=1}^{m} |x_k|^p\right)^{1/p} + \left(\sum_{k=1}^{m} |y_k|^p\right)^{1/p}$$

Теорема 1. Рассмотрим пространство $\mathbb{C}[a,b]$, тогда величина

$$||x||_p = \left(\int_a^b |x(t)|^p dt\right)^{1/p}$$

задает норму и это пространство обозначается $\mathcal{L}_p[a,b], p > 1$.

Доказательство. Свойства 1) и 2) — очевидны. Свойство 3) следует из неравенства Минковского.

Теорема 2. Пусть $p \in [1,+\infty)$. Элементами пространства являются бесконечные числовые последовательности $x = (x_1, ..., x_k, ...)$ и $\sum_{k=1}^{\infty} |x_k|^p < +\infty$, l_p — нормированное векторное пространство, в котором:

$$||x||_{l_p} = (\sum_{k=1}^{\infty} |x_k|^p)^{1/p}$$

§3 Геометрия и топология нормированных векторных пространств

Пусть E – нормированное векторное пространство, $x_0 \in E$.

Открытый шар: $B(x_0, r) = \{x \in E | ||x - x_0|| < r\}$

Замкнутый шар: $B[x_0, r] = \{x \in E | ||x - x_0|| \le r\}$

Сфера:
$$S(x_0, r) = \{x \in E | ||x - x_0|| = r\}$$

 \mathbb{R}^2 :

1) $||x||_C = (\sum_{i=1}^2 |x_i|^2)^{1/2} -$ сферическая норма.

$$B[0,1] = \left\{ x \in \mathbb{R}^2 \middle| \sqrt{x_1^2 + x_2^2} \le 1 \right\} -$$
круг

2) $||x||_k = \max_{i=1,2} |x_i|$ — кубическая норма.

$$B[0,1] = \left\{ x \in \mathbb{R}^2 \, \middle| \, \max |x_1| \le 1, \max |x_2| \le 1 \right\}$$

3) $||x||_0 = \sum_{i=1}^2 |x_i| = |x_1| + |x_2|$

Пусть $A \in E$. Диаметром называется $\sup_{x,y \in A} ||x - y||$.

Множество называется ограниченным, если его диаметр конечен.

Утверждение 1. Множество A ограниченно $\Leftrightarrow \exists c > 0, ||x|| \le c, \forall x \in A.$

Множество $A \subset E$ называется открытым, если каждая точка данного множества содержится в нем вместе с некоторым своим открытым шаром, т.е.

$$\forall x \in A, \exists r_x, B(x, r_x) \subset A.$$

Утверждение 2. Открытый шар в пространстве E является открытым множеством.

Доказательство. Рассмотрим шар $B(x_0,r)$. Пусть $x_1 \in B(x_0,r)$, тогда $\|x_1 - x_0\| < r$. Возьмем радиус $r_1 = r - \|x_1 - x_0\| > 0$ и построим шар $B(x_1,r_1)$. Пусть $x \in B(x_1,r_1)$, тогда $\|x - x_1\| < r_1$ и $\|x - x_0\| \le \|x - x_1\| + \|x_1 - x_0\| < r_1 + \|x_1 - x_0\| = r$.

Таким образом, $B(x_1, r_1) \subset B(x_0, r)$ и, значит, открытый шар является открытым множеством.

Утверждение 3. Пусть $\{A_i\}$ семейство открытых множеств в E, тогда множество

$$A = \bigcup_{i=1}^{\infty} A_i \in E$$

также открыто.

Доказательство. A открыто, если $\forall x \in A \ \exists r_x, B(x, r_x) \subset A$. Пусть $x \in A \ \Rightarrow \exists i_0, x \in A_{i_0} -$ открыто $\Rightarrow \exists r_x,$ что $B(x, r_x) \subset A_{i_0} \subset A$.

Утверждение 4. Пусть $\{A_i\}_{i=1}^n$ — конечное семейство открытых множеств в Е. Тогда $A = \{A_i\}_{i=1}^n \subset E$ — открыто в Е.

Доказательство.

Пусть $x \in A \Rightarrow x \in A_i$, $\forall i = \overline{1,n} \Rightarrow \exists r_i$, такое, что $B(x,r_i) \subset A_i$. Пусть $r = \min_{i=\overline{1,n}} r_i \Rightarrow B(x,r) \subset A_i$, $\forall i = \overline{1,n} \Rightarrow B(x,r) \subset A$.

Пример. $E = R, \{0\} = \bigcap_{k=1}^{\infty} (-\frac{1}{n}; \frac{1}{n}),$ т. е. утверждение 4 нельзя применить для бесконечного числа открытых множеств.

Всё пространство E содержит все шары и, значит, удовлетворяет определению открытого множества.

Пустое множество Ø также будем считать открытым.

Утверждение 5. Определённое выше семейство множеств порождает в НВП топологию, которая называется естественной топологией.

Пусть X – непустое множество. Топологией на множестве X называется множество τ подмножеств множества X ($\tau \subset \mathcal{P}(X)$), удовлетворяющее следующим условиям (аксиомам топологии):

- 1) Объединение любого множества элементов из τ принадлежит $\tau: U_{\mathcal{L}} \in \tau \Rightarrow \bigcup_{\mathcal{L}} U_{\mathcal{L}} \in \tau$;
- 2) Пересечение любых двух множеств из τ принадлежит τ ;
- 3) $X \in \tau, \emptyset \in \tau$;

Пусть $A \subset E$ подмножество пространства E. Точки пространства E могут быть поразному расположены относительно множества A.

Определение. Точка $x_0 \in E$ называется внутренней точкой множества A, если существует такой радиус r > 0, что $B(x_0, r) \subset A$. Множество всех внутренних точек множества A называется его внутренностью и обозначается int A.

Определение. Точка $x_0 \in E$ называется внешней точкой множества A, если существует такой радиус r > 0, что $B(x_0, r) \cap A = \emptyset$, то есть $B(x_0, r) \subset (E \setminus A)$.

Совокупность внешних точек множества A образует его внешность. Т.о., открытое множество — это множество, состоящее только из внутренних точек.

Определение. Точка $x_0 \in E$ называется граничной точкой множества A, если в любом шаре $B(x_0, r)$ есть точки, принадлежащие A, и точки, не принадлежащие A.

Определение. Границей множества A называется множество ∂A его граничных точек.

Граничная точка может принадлежать A, а может и не принадлежать. Поэтому возможно, что $\partial A \subset A$, или что $\partial A \cap A \neq \partial A$.

Определение. Точка $x_0 \in E$ называется точкой прикосновения множества A, если в любом шаре $B(x_0, r)$ содержится хотя бы одна точка множества A. Все точки множества A являются для него точками прикосновения.

Все точки прикосновения множества A подразделяются изолированные и предельные точки.

Определение. Точка $x_0 \in E$ называется изолированной точкой множества A, если в достаточно мелком шаре $B(x_0, r)$ нет точек из A, отличных от x_0 .

Определение. Точка $x_0 \in E$ называется предельной точкой множества A, если в любом шаре $B(x_0, r)$ содержится бесконечно много точек из A.

Предельная точка может принадлежать, а может и не принадлежать A. Например, если A - множество рациональных чисел из отрезка [0,1], то каждая точка этого отрезка – предельная для A.

Определение. Множество А называется замкнутым, если его дополнение открыто.

Определение. Совокупность всех точек прикосновения множества A называется замыканием этого множества и обозначается \overline{A} .

Любая точка $x_0 \in A$ является точкой прикосновения для множества A, т.е. $A \subset \overline{A}$, т.к. $x \in B(x_0, r) \cap A$.

Свойства замкнутых множеств описываются следующей теоремой.

Теорема 2. Пусть A - подмножество в метрическом пространстве (X, ρ) . Тогда следующие свойства эквивалентны:

- 1) Дополнение $X \setminus A$ есть открытое множество, т.е. A замкнуто;
- 2) $A \subset \overline{A}$, т.е. A содержит все свои точки прикосновения;
- 3) $A = \overline{A}$, т.е. совпадает со своим замыканием.

Доказательство.

 $1.\Leftrightarrow 2.$ Если $X\setminus A$ — открытое множество, то для любой точки $x_0\not\in A$ существует шар $B(x_0,r),r>0$, такой, что $B(x_0,r)\subset X\setminus A$, т. е. $B(x_0,r)\cap A=\emptyset$. Это означает, что $x_0\not\in \overline{A}$. Т.о., $X\setminus \overline{A}\Rightarrow \overline{A}\subset A$.

Если $\overline{A} \subset A$, то любая точка $x_0 \in X \setminus A \subset X \setminus \overline{A}$ является внешней точкой для A, т.е. существует шар $B(x_0,r),r>0$, такой, что $B(x_0,r)\cap A=\emptyset$, т.е. $B(x_0,r)\subset X\setminus A$. Эквивалентность доказана.

 $2. \Leftrightarrow 3.$ Ввиду отмеченного ранее включения $A \subset \overline{A}$ эквивалентность очевидна.

Примеры.

1. В пространстве $\mathbb{C}[0,1]$ непрерывных функций рассмотрим подмножество \mathcal{P} , состоящее из функций, являющихся полиномами, т.е. имеющих вид $p(t) = \sum_{k=0}^{n} a_k t^k$.

По теореме Вейерштрасса любая непрерывная функция может быть равномерно приближена полиномом, т.е. если $x \in \mathbb{C}[0,1]$, то для любого r>0 существует полином p такой, что |x(t)-p(t)| < r, т.е. $p \in B(x,r)$. Т.о., любая функция $x \in \mathbb{C}[0,1]$ является точкой прикосновения множества полиномов, т.е. $\overline{\mathcal{P}} = \mathbb{C}[0,1]$.

2. В пространстве \mathbb{R} вещественных чисел с естественной метрикой $\rho(x,y) = |x-y|$ рассмотрим подмножество \mathbb{Q} , состоящее из рациональных чисел. Т.к. в любом интервале $]x_0 - \mathcal{E}, x_0 + \mathcal{E}[$ существуют рациональные числа, то каждое действительное число является точкой прикосновения множества \mathbb{Q} , т.е. $\overline{\mathbb{Q}} = \mathbb{R}$.

Определим расстояние от точки $x_0 \in E$ до множества $A \subset E$ по формуле

$$\rho(x,y) = \inf_{x_0 \in A} ||x_0 - x||$$

Утверждение. Точка $x_0 \in E$ является точкой прикосновения для $A \subset E$ тогда и только тогда, когда $\rho(x_0, A) = 0$.

Доказательство. Пусть точка x_0 является точкой прикосновения множество $A \subseteq E$. Если $x_0 \in E$, то очевидно, что $\rho(x_0, A) = 0$.

Если $x_0 \notin A$, то по определению точки прикосновения в любом шаре радиуса $r_n = \frac{1}{n}$ найдется хотя бы одна точка из A, т.е. $B\left(x_0, \frac{1}{n}\right) \cap A \neq \emptyset$, но тогда

$$\rho(x_0, A) = \inf_{x_0 \in A} ||x_0 - x|| < \frac{1}{n} \to 0$$
 при $n \to \infty$.

Обратно, если $\rho(x_0,A)=0$, то по определению точки нижней грани для любого $n\in N$ найдется элемент $y\in A$, что $0\leq \|x_0-y\|\leq \frac{1}{n}$, а это означает, что

$$y \in \left(B\left(x_0, \frac{1}{n}\right) \cap A\right),$$

т.е. x_0 – точка прикосновения множества $A \subset E$.

Определение. Пусть A и B - два множества в нормированном пространстве E. Множество A называется плотным в B, если $\overline{A} \supset B$. В частности, множество A называется всюду плотным (в пространстве E), если его замыкание \overline{A} совпадает со всем пространством E. Например, множество рациональных чисел всюду плотно на числовой прямой.

Определение. Множество называется нигде не плотным, если оно не плотно ни в одном шаре, т.е. если в каждом шаре $B \subset E$ содержится другой шар B_1 , не имеющий с A ни одной общей точки.

Определение. Нормированное пространство E называется сепарабельным, если в нем имеется счетное всюду плотное множество.

§4 Предел последовательностей в нормированных векторных пространствах и их непрерывные отображения.

Определение. Последовательность точек $\{x_n\}$ нормированного векторного пространства E называется сходящейся, если существует такой элемент $x_0 \in E$, что $\|x_n - x_0\| \to 0$ при $n \to \infty$, то есть для любого $\varepsilon > 0$ $\exists N_{\varepsilon}$ такой, что для $\forall n \geq N_{\varepsilon}$, $\|x_n - x_0\| < \varepsilon$. Точка x_0 называется пределом последовательности $\{x_n\}$. В этом случае записывают

$$x_0 = \lim_{n \to \infty} x_n$$
 или $x_n \to x_0$.

Примеры.

1. $\mathbb{C}[a,b]$

Рассмотрим линейное пространство всех непрерывных на [a, b] функций.

$$||x|| = \max_{[a,b]} |x(t)|$$

Покажем, что сходимость по норме в $\mathbb{C}[a,b]$ есть равномерная сходимость. Пусть дана последовательность $\{x_n(t)\}\subset \mathbb{C}[a,b]$, и пусть она сходится к $\{x_0(t)\}\in \mathbb{C}[a,b]$, то есть $\|x_n-x_0\|\to 0, n\to\infty$. Это означает следующее: для любого $\varepsilon>0$ существует номер N такой, что при любых n>N справедливо неравенство:

$$\max |x_n(t) - x_0(t)| < \varepsilon$$

и тем более $|x_n(t)-x_0(t)|<\varepsilon$ для $\forall t\in [a,b]$. Итак, сходимость по норме в $\mathbb{C}[a,b]$ - равномерная.

Посмотрим, как выглядит в $\mathbb{C}[a,b]$ (в вещественном случае) окрестность $V_{\varepsilon}(x_0) = \{x \in \mathbb{C}[a,b]: \|x-x_0\| < \varepsilon\}$. Для этого построим графики функций $x = x_0(t) + \varepsilon$, $x = x_0(t) + \varepsilon$

 $x_0(t)-\varepsilon$. Эти два графика и отрезки прямых t=a и t=b ограничивают -полоску (полоску ширины 2ε вокруг графика $x=x_0(t)$), которая и служит ε -окрестностью точки x_0 .

В $V_{\varepsilon}(x_0)$ лежат те элементы $x \in \mathbb{C}[a,b]$, графики которых лежат строго между графиками элементов $x_0 - \varepsilon$ и $x_0 + \varepsilon$.

2. $\mathcal{L}_{p}[a,b]$

$$||x|| = \left(\int_{a}^{b} |x(t)|^{p} dt\right)^{1/p}$$

Сходимость в $\mathcal{L}_p[a,b]$ называется сходимостью в среднем.

3. $l_p, p > 1$.

Элементами пространства являются бесконечные числовые последовательности $x = (x_1, ..., x_k, ...)$ такие, что

$$\sum_{k=1}^{\infty} |x_k|^p < \infty \text{ (сходится)}$$

Если $x_n \xrightarrow{l_p} x_0$, то это означает

$$||x_n - x_0||_{l_p} = \left(\sum_i |x_i^{(n)} - x_i^{(0)}|^p\right)^{1/p} \xrightarrow[n \to \infty]{} 0 \Rightarrow |x_i^{(n)} - x_i^{(0)}| \xrightarrow[n \to \infty]{} 0$$

 $\forall i = 1, 2, ...$

Поэтому в данном случае имеем покоординатную сходимость.

Утверждение 1. В метрическом пространстве сходящаяся последовательность имеет только один предел.

Доказательство. Доказательство проведем от противного. Пусть $\exists \ 2$ предела a и b, то есть

$$||x_n - a|| \to 0$$

 $\Rightarrow 0 \le ||a - b|| \le ||x_n - a|| + ||x_n - b|| \to 0 \Rightarrow ||a - b|| = 0 \Rightarrow a = b$
 $||x_n - b|| \to 0$

Теорема. Для того чтобы точка x_0 была точкой прикосновения множества $M \subset E$, необходимо и достаточно, чтобы существовала некоторая последовательность $\{x_n\} \subset M$, сходящаяся к $x_0, x_n \neq x_0, n = 1,2,...$

Доказательство необходимости. Пусть x_0 - точка прикосновения, то есть $B(x_0,r) \cap M \neq \emptyset$. Возьмём r=1 и найдём $x_1 \in M \cap B(x_0,1)$. Возьмём $r=\frac{1}{2}$ и найдём $x_2 \in M \cap B(x_0,\frac{1}{2})$.

Продолжая это рассуждение, найдем последовательность $\{x_n\} \subset M$ такую, что $\|x_n - x_0\| < \frac{1}{n} \xrightarrow[n \to \infty]{} 0$, то есть сходящуюся к x_0 .

$$(r = \frac{1}{n}, x_n \in M \cap B(x_0, \frac{1}{n})$$

Доказательство достаточности. Пусть существует $\{x_n\} \subset M$, сходящаяся к x_0 . Это означает, что для любого r > 0 существует номер N = N(r) такой, что $x_n \in B(x_0, r)$ для всех n > N, то есть

 $M \cap B(x_0, r) \neq \emptyset \Rightarrow x_0$ – точка соприкосновения.

Следствие 1. Пусть E — нормированное векторное пространство, $M \subseteq E$, M - замкнуто, если из того, что $x_n \in M$ и $x_n \to x_0$ следует, что $x_0 \in M$.

Следствие 2. Пусть E — нормированное векторное пространство, $M \subset E$, M- плотно тогда и только тогда, когда $\forall x_0 \in E$ существует $\{x_n\} \subset M$ такая, что $x_n \stackrel{E}{\to} x_0$. (M плотно, когда его замыкание совпадает с E).

Следствие 3. Если $\{x_n\} \subset E$, $x_n \stackrel{E}{\to} x_0$, тогда \exists подпоследовательность $\{x_{n_k}\}$, $x_{n_k} \to x_0$.

Пусть E, F - нормированные векторные пространства. Рассмотрим отображение $f \colon E \to F$.

Определение. Отображение f называется непрерывным в точке $x_0 \in E$, если $\forall \varepsilon > 0$ $\exists \ \delta(\varepsilon, x_0)$ как только $\|x - x_0\| < \delta$, то $\|f(x) - f(x_0)\| < \varepsilon$.

или отображение f непрерывно в точке x_0 , если для любой окрестности U точки $f(x_0)$ найдется окрестность V точки x_0 в E такая, что $x \in V_{x_0}$ влечет $f(x) \in U$.

Теорема. Пусть $f:(X, \rho_x) \to (Y, \rho_y)$ — отображение метрических пространств. Следующие свойства эквивалентны:

- 1) f непрерывно в точке $x_0 \in X$;
- 2) для любой последовательности $x_n \to x_0$ справедливо $f(x_n) \to f(x_0)$.

Доказательство.

 $1\Rightarrow 2$. Пусть f непрерывно в точке x_0 и $x_n\to x_0$. По $\varepsilon>0$ выберем $\delta>0$ так, что из неравенства $\rho_x(x,x_0)<\delta$ следует $\rho_y(f(x),f(x_0))<\varepsilon$. Для $\delta>0$ найдем число $n(\delta)$ такое, что для $\delta>0$ $n\geq n(\delta)$ выполнено $\rho_x(x,x_0)<\delta$. Тогда $\rho_y(f(x),f(x_0))<\varepsilon$ и, значит, $f(x_n)\to f(x_0)$.

 $2\Rightarrow 1$. Пусть для любой последовательности $x_n\to x_0$ имеем $f(x_n)\to f(x_0)$. Предположим, что отображение f разрывно в точке x_0 . Это значит, что существует число $\varepsilon_0>0$ такое, что для любого $\delta>0$ существует точка $x_\delta\in X$, для которой $\rho_x(x,x_0)<\delta$, но $\rho_y(f(x),f(x_0))>\varepsilon_0$. Возьмем последовательность $\delta_n\to 0$ и выберем x_n так, что

 $\rho_x(x_n,x_0)<\delta$, но $\rho_y(f(x_n),f(x_0))>\varepsilon_0>0$. Тогда $x_n\to x_0$, но $f(x_n)$ не сходится к $f(x_0)$, что противоречит условию.

Следствие. Для непрерывности отображения f в точке x_0 достаточно, чтобы для любой последовательности $x_n \to x_0$ последовательность $f(x_n)$ была сходящейся.

Доказательство. Если для некоторой последовательности $\{x_n\}$ такой, что $x_n \to x_0$ имеем $f(x_n) \to y \neq f(x_0)$, то выбираем последовательность $\{x_n'\}$ так, что $x_{2n}' = x_n, x_{2n+1}' = x_0$. Тогда $x_n' \to x_0$, но $\{f(x_n')\}$ не сходится, так как $f(x_{2n}') \to y$ $f(x_{2n+1}') \to f(x_0)$ и $y \neq f(x_0)$.

Замечание 2. В произвольных топологических пространствах из свойства *1)* Следует *2)*, но обратное не верно.

Определение. Отображение f непрерывно в нормированном векторном пространстве E, если оно непрерывно в каждой точке.

Теорема (о непрерывном отображении) Пусть f отображение нормированного векторного пространства X в нормированное векторное пространство Y. Тогда следующие свойства эквивалентны:

- а) f непрерывно на X;
- b) $f(\bar{A}) \subset \overline{f(A)}$ для любого $A \subset X$;
- с) прообраз всякого замкнутого множества из Y замкнутое множество в X;
- d) прообраз всякого открытого множества из Y открытое множество в X;

Следствие. Пусть $f: X \to Y$ и $g: Y \to Z$ - непрерывные отображения, тогда $g^{\circ}f: X \to Z$ непрерывно.

При непрерывном отображении образ открытого множества не всегда является открытым.

Пример.
$$f: \mathbb{R} \to \mathbb{R}, f(x) = x^2, f(-1,1) = [0,1).$$

Определение. Отображение $f: X \to Y$ называется равномерно непрерывным, если для любого $\varepsilon > 0$ существует $\delta > 0$ такое, что из неравенства $||x - y|| < \delta$ следует неравенство $||f(x) - f(y)|| < \varepsilon$.

Пример.
$$f$$
: $\mathbb{C}[0,1] \to \mathbb{C}[0,1]$ $f(x) = x^2(t)$ – непрерывное, но не равномерно непрерывное.

Определение. Отображение $f: X \to Y$ удовлетворяет условию Липшица с константой c, если существует постоянная c такая, что для любых $x_1, x_2 \in X$ выполнено неравенство:

$$||f(x_1) - f(x_2)|| \le c||x_1 - x_2||$$

Отображение f, удовлетворяющее условию Липшица, является равномерно непрерывным.

Заметит, что непрерывное отображение может не быть равномерно непрерывным, а равномерно непрерывное - не удовлетворять условию Липшица.

Определение. Отображение $f: X \to Y$ называется гомеоморфизмом, если

- 1) $\exists f^{-1} \bowtie f^{-1}: Y \to X$,
- 2) f и f^{-1} непрерывные отображения.

Определение. Отображение $f: X \to Y$ называется изометрией, если

- 1) f биективно,
- 2) для любых $x \in X$ выполнено равенство $||f(x)||_Y = ||x||_X$.

§5 Эквивалентность норм в конечномерных пространствах.

Определение. Пусть E - линейное пространство и в E двумя способами введены нормы: $\|x\|_1$ и $\|x\|_2$. Нормы $\|x\|_1$ и $\|x\|_2$ называются эквивалентными, если существуют числа $\alpha > 0$, $\beta > 0$ такие, что для любых $x \in E$

$$\alpha \|x\|_1 \le \|x\|_2 \le \beta \|x\|_1$$

(пишут $||x||_1 \sim ||x||_2$).

Теорема 1. Во всяком конечномерном линейном пространстве все нормы эквивалентны.

Доказательство. Фиксируем в m — мерном линейном пространстве E базис $\{e_k\}_1^m$, и пусть

$$x=\sum_{k=1}^m \xi_k e_k$$
 — разложение произвольного элемента $x\in E$ по этому базису.

Введем в E норму:

$$||x||_c = (\sum_{k=1}^m |\xi_k|^2)^{1/2}$$

С этой нормой E можно отождествлять с евклидовым пространством E^{m} .

Пусть ||x|| - еще одна произвольная норма в E. Прежде всего, имеем оценку:

$$||x|| = \left|\left|\sum_{k=1}^{m} \xi_k e_k\right|\right| \le \sum_{k=1}^{m} ||\xi_k|| ||e_k|| \le ||x||_c = \left(\sum_{k=1}^{m} |\xi_k|^2\right)^{1/2} * \left(\sum_{k=1}^{m} |e_k|^2\right)^{1/2} = \beta ||x||_c$$

Следовательно, ||x|| подчинена $||x||_c$. Покажем, что $||x||_c$ также подчинена ||x||. Для этого рассмотрим функцию ||x|| на сфере $||x||_c = 1$.

Из неравенства $||x - y|| \ge |||x|| - ||y|||$ и полученной оценки $||x|| \le \beta ||x||_c$ имеем:

$$|||x'|| - ||x''||| \le ||x' - x''|| \le \beta ||x' - x''||_c$$

Отсюда вытекает непрерывность функции ||x|| в E^{m} .

Далее, сфера $\|x\|_c = 1$ является в E^m замкнутым и ограниченным множетсвом. Воспользуемся следующей теоремой:

функция, непрерывная на замкнутом ограниченном множестве в E^m , ограничена на нем и достигает на нем своих точной верхней и нижней граней. Согласно этой теореме найдется x_0 такое, что $\lambda = \|x_0\| = \inf \|x\|$. Очевидно, что $\lambda > 0$, так как $x_0 \neq 0$. Отсюда $\left\|\frac{x}{\|x\|_c}\right\| \geq \lambda$, откуда $\|x\| \geq \lambda \|x\|_c$.

Итак, ||x|| эквивалентна $||x||_c$.

§6 Аппроксимация нормированных векторных пространств.

Определение. Замкнутое линейное многообразие L в нормированном пространстве E называется подпространством в E.

Определим расстояние $\rho(x,L)$ от точки x до подпространства L следующим равенством:

$$\rho(x,L) = \inf_{u \in L} ||x - u||$$

Выражение $\rho(x,L)$ существует, так как множество $M = \{||x-u||, u \in L\}$ ограничено снизу числом 0.

Таким образом, выражение $\rho(x, L)$ означает, что

- 1) $||x u|| \ge \rho(x, L)$ для $\forall u \in L$;
- 2) если $r > \rho(x, L)$, то существует $u_r \in L$ такой, что $||x u_r|| < r$.

Лемма. Если $x \in L$, то $\rho(x, L) = 0$, если же $x \notin L$, то $\rho(x, L) > 0$.

Доказательство. Если $x \in L$, то, приняв u = x, видим, что ||x - u|| = 0, то есть $\inf_{u \in L} ||x - u|| = 0$. Пусть $x \notin L$. Допустим тем не менее, что $\rho(x, L) = 0$. Тогда по определению $\inf_{x \in L} ||x - u|| = 0$. Тогда по определению $\inf_{x \in L} ||x - u|| = 0$.

$$||u_n - x|| < \frac{1}{n}$$

Отсюда $u_n \to x, n \to \infty$. Вследствие замкнутости L также $x \in L$, но по условию $x \notin L$. Полученное противоречие доказывает, что $\rho(x,L) > 0$.

Определение. Если существует элемент $y \in L$ такой, что $\rho(x, L) = ||x - y||$, то y называется наилучшим элементом приближения x элементами подпространства L.

Наилучший элемент может оказаться не единственным, а может и не существовать вовсе. Оказывается, в одном из наиболее важных практических случаев, когда L конечномерно, наилучший элемент всегда существует.

Теорема 1. Пусть L - конечномерное подпространство нормированного пространства E. Для любого $x \in E$ существует (возможно, не единственный) такой элемент $y \in L$, что

$$\rho(x,L) = \|x - y\|.$$

Доказательство. Действительно, пусть $x \notin L$, тогда $\rho(x,L) = d > 0$ по Лемме. Пусть $\{e_k\}_1^m$ - базис на L, а $u = \sum_{k=1}^m \xi_k e_k$ - разложение $u \in L$ по базису. Введем на L вторую норму:

$$||x||_c = (\sum_{k=1}^m |\xi_k|^2)^{1/2}$$

Вследствие конечномерности L обе нормы эквивалентны, то есть найдутся постоянные $\alpha > 0, \beta > 0$ такие, что

$$\alpha \|u\|_c \le \|u\| \le \beta \|u\|_c \tag{1}$$

L как линейное пространство, снабженное $\|u\|_c$, обозначим через $L^m(L^m$ – евклидово пространство).

Рассмотрим в L^m функцию $\|x-u\|$. Она непрерывна на L^m , ибо для любых $u', u'' \in L^m$ (смотри (1)):

$$|||x - u'|| - ||x - u''||| \le ||u' - u''|| \le \beta ||u' - u''||_c$$

Покажем, что $\inf_{u\in L}\|x-u\|$ может достигаться только в шаре $\|u\|_c \leq r$, где $r=\alpha^{-1}(d+1+\|x\|)$.

Действительно, если ||u|| > r, то (смотри (1)):

$$||x - u|| \ge ||u|| - ||x|| \ge \alpha ||u||_c - ||x|| > \alpha r - ||x|| = d + 1$$

и, значит, вне шара $\|u\|_c \le r$ точная нижняя грань функции $\|x-u\|$ достигаться не может. Поскольку шар $\|u\|_c \le r$ является в L^m замкнутым ограниченным множеством, а функция $\|x-u\|$ непрерывна, то найдется $y \in L$ – наилучший элемент приближения x элементами из L, на котором достигается наименьшее значение $\|x-u\|$.

Рассмотрим пример, показывающий, что наилучший элемент может оказаться не единственным даже в конечномерном нормированном пространстве.

Пример. В пространстве $l_1^{(2)}$ двумерных строк $x=(\xi_1,\xi_2)$ с нормой $||x||=|\xi_1|+|\xi_2|$ возьмем точку $x_0=(1,-1)$ и одномерное подпространство L с базисным вектором e=(1,1), то есть $L=\{\alpha e; \alpha \in \mathbb{R}^1\}$.

Вычислим расстояние:

$$\rho(x_0, L) = \inf_{\alpha \in \mathbb{R}^1} ||x_0 - \alpha e|| = \inf_{\alpha \in \mathbb{R}^1} (|1 - \alpha| + |1 + \alpha|) = 2$$

Оно достигается при любых $\alpha \in [-1,1]$. Следовательно, имеется бесконечное множество наилучших элементов $y = \alpha e$, $\alpha \in [-1,1]$, приближающих x_0 с помощью элементов L.

Определение. Нормированное пространство *E* будем называть <u>строго</u> <u>нормированным</u>, если в нем равенство ||x + y|| = ||x|| + ||y|| возможно только при $y = \lambda x$, где $\lambda > 0$.

Теорема 2. В строго нормированном пространстве E для каждого $x \in E$ и каждого подпространства L может существовать не более одного наилучшего приближения x элементами L.

Доказательство. Допустим, что в некотором строго нормированном пространстве E найдутся элемент x, подпространство L и элементы $y_1, y_2 \in L$ такие, что

$$||x - y_1|| = ||x - y_2|| = d = \inf ||x - y||.$$

Пусть d > 0 (если d = 0, то $y_1 = y_2$ по 1-й аксиоме нормы). Имеем:

$$\left\| x - \frac{y_1 + y_2}{2} \right\| = \left\| \frac{x - y_1}{2} + \frac{x - y_2}{2} \right\| \le \frac{1}{2} \|x - y_1\| + \frac{1}{2} \|x - y_2\| = d$$

Следовательно, $\left\| x - \frac{y_1 + y_2}{2} \right\| = d$. Но тогда:

$$||(x - y_1) + (x - y_2)|| = ||x - y_1|| + ||x - y_2|| = 2d > 0$$

По строгой нормированности E существует $\lambda > 0$ такое, что $x - y_2 = \lambda(x - y_1)$. Если $\lambda \neq 1$, то отсюда $x = (1 - \lambda)^{-1}(y_2 - \lambda y_1) \in L$, что невозможно, ибо d > 0. Следовательно, $\lambda = 1$, но тогда $y_2 = y_1$, и теорема доказана.

§7 Банаховы пространства.

Определение. Последовательность $\{x_n\} \subset X$ называется фундаментальной, если для любого $\varepsilon > 0$ существует номер $N = N(\varepsilon)$ такой, что для любых номеров n > N и любых натуральных p выполняется неравенство $\|x_{n+p} - x_n\| < \varepsilon$.

Свойства.

- 1) Всякая фундаментальная последовательность ограничена.
- 2) Пусть $\{x_n\}$ фундаментальная, тогда и $\{\lambda x_n\}$ фундаментальна.
- 3) Пусть $\{x_n\}$ и $\{y_n\}$ фундаментальны в X, тогда $\{x_n + y_n\}$ фундаментальна.

62

- 4) Если подпоследовательность фундаментальной последовательности сходится к x, то и сама последовательность сходится к x.
 - 5) Всякая сходящаяся в X последовательность является фундаментальной.

Доказательство. Пусть $x_n \to x_0$ при $n \to \infty$. Это означает, что для любого $\varepsilon > 0$ найдется номер $N = N(\varepsilon)$ такой, что для всех номеров n > N выполняется неравенство $\|x_n - x_0\| < \varepsilon$. Поскольку n + p > N, то при n > N имеем также $\|x_{n+p} - x_0\| < \varepsilon$. По неравенству треугольника:

$$||x_{n+p} - x_n|| < ||x_{n+p} - x_0|| + ||x_0 - x_n|| < 2\varepsilon$$

то есть $\{x_n\}$ фундаментальна.

Определение. Нормированное пространство называется <u>полным</u>, если в нем всякая фундаментальная последовательность сходится. Полное нормированное пространство называется банаховым пространством.

Примеры банаховых пространств.

- 1) Пространство $\mathbb R$ банахово. Действительно, на вещественной числовой оси имеет место критерий Коши: для того чтобы последовательность $\{x_n\} \subset \mathbb R$ была сходящейся, необходимо и достаточно, чтобы она была фундаментальной. Справедливость критерия Коши в $\mathbb R$ означает, что вся вещественная ось $\mathbb R$ заполнена точками вещественными числами, на ней нет «дыр», то есть она полна.
- 2) Пространство \mathbb{R}^m , m>1 также банахово, так как в \mathbb{R}^m тоже справедлив критерий Коши.
- 3) Пространство $\mathbb{C}[a,b]$ является банаховым пространством. Пусть $\{x_n(t)\}\subset\mathbb{C}[a,b]$. Справедлив следующий критерий Коши равномерной сходимости последовательности функций: для того чтобы $\{x_n(t)\}$ сходилась в $\mathbb{C}[a,b]$, то есть равномерно на [a,b], необходимо и достаточно, чтобы она была фундаментальной в $\mathbb{C}[a,b]$.
 - 4) Неполное нормированное пространство.

Покажем, что в пространстве $\mathcal{L}_2[-1;1]$ не является полным. Рассмотрим последовательность непрерывных на [-1;1] функций $\{x_n(t)\}$, которая задается следующим образом:

$$x_n(t) = \begin{cases} -1 \text{ при } t \in \left[-1, -\frac{1}{n}\right], \\ nt \text{ при } t \in \left[-\frac{1}{n}, \frac{1}{n}\right], \\ 1 \text{ при } t \in \left[\frac{1}{n}, 1\right]. \end{cases}$$

Из графика видно, что $||x_n(t)|| \le 1$ для любых n, но тогда $||x_{n+p}(t) - x_n(t)|| \le 2$ и, следовательно,

$$\left\|x_{n+p} - x_n\right\|^2 = \int_{-1}^{1} \left|x_{n+p}(t) - x_n(t)\right|^2 dt = \int_{-1/n}^{1/n} \left|x_{n+p}(t) - x_n(t)\right|^2 dt \le 4 \int_{-1/n}^{1/n} dt = \frac{8}{n} \underset{n \to \infty}{\longrightarrow} 0$$

Итак, $\{x_n(t)\}$ фундаментальна в смысле сходимости в среднем. Заметим, что в каждой точке $t \in [-1,1]$ при $n \to \infty$ последовательность $\{x_n(t)\}$ имеем предел:

$$x_n(t) \xrightarrow[n \to \infty]{} x(t) = \begin{cases} -1 \text{ при } t \in [-1,0) \\ 0 \text{ при } t = 0, \\ 1 \text{ при } t \in (0,1]. \end{cases}$$

При этом $|x_n(t)| \leq 1$ и $|x_n(t) - x(t)| \leq 2$. Но тогда, как и выше,

$$||x_n(t) - x(t)||^2 \le \frac{8}{n} \underset{n \to \infty}{\longrightarrow} 0$$

Итак, при $n \to \infty$ $x_n(t) \to x(t)$ в среднем на [-1,1], причем x(t) разрывная на [-1,1] функция, то есть $x(t) \notin \mathcal{L}_2[-1;1]$, так как это нормированное пространство состоит из функций, непрерывных на [-1,1].

Теорема 1. (принцип вложенных шаров) Пусть в банаховом пространстве X дана последовательность замкнутых шаров $\{B[x_n,r_n]\}$ вложенных друг в друга $(B[x_{n+1},r_{n+1}] \subset B[x_n,r_n]), n=1,2,...$, причем $r_n \to 0, n \to \infty$. Тогда в X существует единственная точка, принадлежащая всем шарам.

Доказательство. Пусть $r_n \to 0$ и $B[x_n, r_n] \supset B[x_{n+1}, r_{n+1}] \supset ...$ — последовательность вложенных шаров. Докажем, что точки x_n - центры шаров — образуют последовательность Коши. Действительно, при m > n $x_m \in B[x_n, r_n]$, то есть $\|x_m - x_n\| \le r_n \to 0$ при $n \to \infty$. Так как пространство X полное, то последовательность $\{x_n\}$ сходится к некоторой точке x^* . При m > n:

$$||x^* - x_n|| \le ||x^* - x_m|| + ||x_m - x_n|| \le ||x^* - x_m|| + r_n$$

Переходя к пределу в этом неравенстве при $m \to \infty$, получаем $\|x^* - x_n\| \le r_n$, что и означает $x^* \in B[x_n, r_n], n = 1,2,...$

Верно и обратное, то есть если в нормированном векторном пространстве последовательность замкнутых вложенных шаров, радиусы которых стремятся к нулю, имеют общую точку, то это пространство – банахово пространство.

Определение. Множество M в нормированном пространстве X называется нигде не плотным в X, если в каждом шаре $S \subset X$ содержится другой шар S_1 , не содержащий точек M.

Определение. Множество в нормированном пространстве называется множеством I категории, если оно есть объединение счетного числа нигде не плотных множеств. Если M нельзя представить в виде объединения счетного числа нигде не плотных множеств, то M называется множеством II категории.

Теорема 2. (Бэра-Хаусдорфа) Всякое банахово пространство является множеством II категории.

Доказательство. Допустим противное, что банахово пространство X представимо в виде:

$$X=M_1\cup M_2\cup M_3\cup...,$$

где каждое M_i нигде не плотно в X. Возьмем какой-либо шар $\overline{S_{r_0}}(x_0)$. Так как M_1 нигде не плотно, то существует шар $\overline{S_{r_1}}(x_1)\subset \overline{S_{r_0}}(x_0)$, в котором нет точек M_1 . Можно считать, что $r_1<1$. Тогда M_2 нигде не плотно; поэтому в $\overline{S_{r_1}}(x_1)$ содержится шар $\overline{S_{r_2}}(x_2)$, не содержащий точек M_2 , так что $r_2<1/2$. Продолжая эти рассуждения, мы получим последовательность $\{\overline{S_{r_n}}(x_n)\}$ вложенных друг в друга шаров с $r_n\to 0, n\to\infty$. В силу теоремы 1 о вложенных шарах существует точка x_0 , принадлежащая всем шарам. Но $x_0\notin M_k$, ибо $x_0\in \overline{S_{r_k}}(x_k)$, в котором нет точек из M_k . Это верно при $k=1,2,\dots$ Значит, $x_0\notin X$, но $x_0=\lim_{k\to\infty}x_k$ и X полно. Полученное противоречие доказывает теорему.

§8 Ряды в нормированных и банаховых пространствах.

В нормированных пространствах X можно рассматривать ряды $\sum_{k=1}^{\infty} x_k$, где $x_k \in X$. Определение. Ряд $\sum_{k=1}^{\infty} x_k$ называется сходящимся, если последовательность частных сумм $S_n = \sum_{k=1}^n x_k$ сходится. Элемент $S = \lim_{n \to \infty} S_n$ называется суммой ряда и обозначается $S = \sum_{k=1}^{\infty} x_k$. Вместе с рядом $\sum_{k=1}^{\infty} x_k$ можем рассмотреть числовой ряд $\sum_{k=1}^{\infty} \|x_k\|$, составленный из норм элементов.

Если ряд, составленный из норм $\sum_{k=1}^{\infty} \|x_k\|$, сходится, то исходный ряд $\sum_{k=1}^{\infty} x_k$ называют абсолютно сходящимся.

Для числовых рядов в математическом анализе доказывается, что если ряд $\sum_{k=1}^{\infty} |a_k|$ сходится, то и ряд $\sum_{k=1}^{\infty} a_k$ сходится.

В нормированных пространствах справедливо следующее утверждение.

Теорема. Нормированное пространство является банаховым тогда и только тогда, когда в нем каждый абсолютно сходящийся ряд сходится.

Доказательство.

Heoбxoдимость. Пусть X - банахово пространство и пусть ряд $\sum_{k=1}^{\infty} \|a_k\|$ сходится. Рассмотрим ряд $\sum_{k=1}^{\infty} a_k$. Проверим, что частные суммы этого ряда $S_n = \sum_{k=1}^n a_k$ образуют последовательность Коши. Действительно, если m > n, то

$$||S_m - S_n|| = \left\| \sum_{k=n+1}^m a_k \right\| \le \sum_{k=n+1}^m ||a_k|| \to 0, n, m \to +\infty.$$

Так как пространство X полно, то ряд $\sum_{k=1}^{\infty} a_k$ сходится. Кроме того, выполняется неравенство $\|\sum_{k=1}^{\infty} a_k\| \leq \sum_{k=1}^{\infty} \|a_k\|$, которое является обобщением неравенства треугольника для норм.

Достаточность. Пусть в нормированном пространстве X любой абсолютно сходящийся ряд сходится. Возьмем произвольную последовательность Коши $\{x_n\}$ в X. Выберем последовательность $\{x_{n_k}\}$ так, что $\|x_{n_{k+1}}-x_{n_k}\|<1/_{2^k}$.

Тогда для ряда $x_{n_1} + \sum_{k=2}^{\infty} (x_{n_k} - x_{n_{k-1}})$ ряд, составленный из норм сходится и, значит, сходится исходный ряд. Но для этого ряда его частная сумма равна x_{n_k} и, таким образом, выделенная последовательность $\{x_{n_k}\}$ сходится. Если у последовательности Коши сходится подпоследовательность, то сходится и сама последовательность.

§9 Принцип сжимающих отображений.

Пусть $f: X \to X$ — отображение метрического пространства в себя. Точка $a \in X$ называется неподвижной точкой отображения f, если f(a) = a, то есть неподвижная точка есть решение уравнения x = f(x).

Определение. Отображение $f:(X, \rho_x) \to (X, \rho_x)$ называется сжимающим, если существует константа $0 \le \alpha < 1$ такая, что для любых $x_1, x_2 \in X$ выполнено:

$$\rho(f(x_1), f(x_2)) \le \alpha \rho(x_1, x_2) \tag{1}$$

Таким образом, сжимающее отображение есть отображение, удовлетворяющее условию Липшица с константой $\alpha < 1$.

Такое отображение всегда равномерно непрерывно и непрерывно.

Теорема 1. (**Банаха**) В полном метрическом пространстве сжимающее отображение имеет неподвижную точку, и притом только одну.

Доказательство. Единственность неподвижной точки получаем независимо от полноты пространства. Если $a = f(a), b = f(b), a \neq b$, то $0 < \rho(a,b) = \rho(f(a),f(b)) \leq \alpha\rho(a,b) < \rho(a,b)$ и получаем противоречие.

Существование неподвижной точки докажем методом последовательных приближений или методом итераций. Возьмем произвольную точку $x_0 \in X$ и построим последовательность

$$x_1 = f(x_0), x_2 = f(x_1), \dots, x_n = f(x_{n-1}), \dots$$

Покажем, что построенная последовательность $\{x_n\}$ есть последовательность Коши. Оценим сначала расстояние между соседними членами последовательности.

$$\rho(x_k, x_{k+1}) = \rho\big(f(x_{k-1}), f(x_k)\big) \leq \alpha \rho(x_{k-1}, x_k) = \alpha \rho\big(f(x_{k-2}), f(x_{k-1})\big) \leq \ldots \leq \alpha^k \rho(x_1, x_0)$$

Применяя неравенство треугольника, получаем (считая m > n)

$$\begin{split} \rho(x_n, x_m) &\leq \rho(x_n, x_{n+1}) + \rho(x_{n+1}, x_{n+2}) + \dots + \rho(x_{m-1}, x_m) \leq \\ &\leq (\alpha^n + \alpha^{n+1} + \dots + \alpha^{m-1}) \rho(x_0, x_1) = \frac{\alpha^n - \alpha^m}{1 - \alpha} \rho(x_0, f(x_0)) \end{split}$$

откуда

$$\rho(x_n, x_m) \le \frac{\alpha^n - \alpha^m}{1 - \alpha} \rho(x_0, f(x_0)) \tag{2}$$

Так как пространство X полное, то последовательность $\{x_n\}$ сходится к некоторому элементу $a \in X$. Переходя в равенстве $x_n = f(x_{n-1})$ к пределу (что обоснованно ввиду непрерывности f), получаем a = f(a).

Следствие. Для любого начального приближения x_0 последовательные приближения $x_n = f(x_{n-1})$ сходятся к неподвижной точке a отображения f, причем справедлива оценка погрешности:

$$\rho(x_n, a) \le \frac{\alpha^n}{1 - \alpha} \rho(x_0, f(x_0)) \tag{3}$$

Доказательство. Сходимость последовательных приближений доказана в теореме 1. В неравенстве (2) перейдем к пределу при $m \to \infty$ и получим неравенство (3).

Доказанная теорема кроме утверждения о существовании решения дает простой способ его приближенного построения и часто используется при численном решении уравнений вида x = f(x).

Рассмотрим несколько случаев, когда решение уравнения x = f(x) с несжимающим отображением f можно свести к рассмотрению сжимающих отображений.

Отображение f может оказаться сжимающим не на всем пространстве, а на некотором подпространстве $M \subset X$. Если неравенство выполняется на множестве M, то оно выполняется и на его замыкании \overline{M} . Поэтому множество M будем считать замкнутым. Чтобы к множеству M, рассматриваемому как самостоятельное метрическое пространство, можно было применить теорему Банаха, нужно еще, чтобы выполнялось $f(M) \subset M$, то есть M должно быть инвариантно относительно f. Рассмотрим частный случай, когда в качестве M берется замкнутый шар.

Теорема 2. (локальный принцип сжимающих отображений) Пусть X - полное метрическое пространство; на некотором шаре $B[x_0,r]$ отображение f является сжимающим с константой $\alpha < 1$ и выполнено неравенство:

$$\rho(x_0, f(x_0)) \le (1 - \alpha)r$$

Тогда в шаре $B[x_0, r]$ существует, и притом только одна, неподвижная точка отображения f.

Доказательство. Шар $B[x_0, r]$ будем рассматривать как самостоятельное метрическое пространство. Так как шар замкнут, то это пространство полное. Покажем, что f отображает шар в себя. Пусть $x \in B[x_0, r]$, то есть $\rho(x, x_0) \le r$. Тогда

$$\rho(x_0, f(x)) \le \rho(x_0, f(x_0)) + \rho(f(x_0), f(x)) \le (1 - \alpha)r + \alpha r = r$$

Значит, $f(x) \in B[x_0, r]$ и к отображению f в шаре $B[x_0, r]$ применима теорема 1.

Теорема 3. Пусть X - полное метрическое пространство и отображение $f: X \to X$ таково, что его некоторая итерация $f^N(x) = f(f \dots (f(x)))$ является сжимающим отображением. Тогда отображение f имеем, и притом единственную, неподвижную точку в X.

Доказательство. Пусть a - неподвижная точка отображения f^N . Тогда f(a) также является неподвижной точкой отображения f^N :

$$f^{N}(f(a)) = f(f^{N}(a)) = f(a)$$

Так как неподвижная точка у отображения f^N единственная, то a = f(a). Неподвижная точка отображения f является неподвижной точкой отображения f^N и, значит, не может быть двух различных неподвижных точек.

§10 Применение принципа сжимающих отображений к интегральным уравнениям Фредгольма 2-го рода.

Рассмотрим некоторое интегральное уравнение вида:

$$a(t)x(t) - \lambda \int_{T} K(t, s, x(s)) d\mu(s) = y(t), t \in T$$
 (1)

где T - некоторое пространство с мерой; a(t), y(t) — заданные на T функции; K(t,s,z) — заданная на $T \times T \times \mathbb{R}$ функция; x(t) - неизвестная функция. Чаще всего в качестве T рассматривается некоторое подмножество в \mathbb{R}^n с мерой Лебега, например отрезок $[0,1] \subset \mathbb{R}$. Решение x разыскивается в различных пространствах функций, определенных на T, в зависимости от свойств функции K(t,s,z) и y. В случае, когда рассматривается непрерывные функции, интеграл можно понимать в смысле Римана. Пространства выбираются так, чтобы для функций из этого пространства интеграл в (1) существовал.

Определение. Решением интегрального уравнения (1) называется функция x(t), при подстановке которой в уравнение выполняется равенство для всех $t \in T$ или почти всех t.

Интегральное уравнение (1) будем называть линейным, если функция K(t,s,z) линейна по z, то есть имеем вид K(t,s,z) = K(t,s)z.

Интегральное уравнение приобретает вид

$$a(t)x(t) - \lambda \int_{T} K(t,s)x(s)d\mu(s) = y(t)$$
 (2)

Функция двух переменных K(t,s) называется ядром интегрального уравнения (2).

Если $a(t) \equiv 0$, то интегральное уравнение (2) является уравнением 1-го рода, а если $a(t) \equiv 1$, то является интегральным уравнением 2-го рода. При произвольном a(t) уравнение (2) обычно называют уравнением 3-го рода.

Если y = 0, то уравнение (2) называют однородным; если $y \neq 0$, то неоднородным. Однородное линейное уравнение всегда имеет решение $x(t) \equiv 0$.

Если T = [a, b[, где $b \le +\infty$, то выделяется класс уравнений вида

$$a(t)x(t) = \lambda \int_{a}^{t} K(t,s)x(s)ds + y(t)$$
(3)

Включающих интеграл с переменным верхним пределом. Такие уравнения называют уравнениями Вольтерра.

Идея применения принципа сжимающих отображений к интегральным уравнениям заключается в следующем. Пусть имеется интегральное уравнение 2-го рода:

$$x(t) = \lambda \int_{T} K(t, s, x(s)) d\mu(s) + y(t)$$
 (4)

Соответствие $x \to \lambda \int_T K(t,s,x(s)) d\mu(s) + y(t)$ определяет отображение F множества функций на T в себя. Значение F(x) есть функция от t, заданная как интеграл, зависящий от параметра t, то есть

$$Fx(t) = \lambda \int_{T} K(t, s, x(s)) d\mu(s) + y(t)$$
 (5)

Тогда уравнение (4) записывается в виде x = F(x), то есть искомое регение есть неподвижная точка отображения F. Для того, чтобы применить принцип сжимающих отображений, нужно:

- выбрать некоторое полное метрическое пространство X, состоящее их функций, заданных на T;
- проверить, что формула (5) определяет отображение F пространства X в себя;
- проверить, что отображение F сжимающее в пространстве X.

Пусть $X = \mathbb{C}[a,b], T = [a;b].$

Теорема 1. Пусть K(t,s) - непрерывная функция переменных t,s и

$$M = \max_{(t,s)\in[a,b]\times[a,b]} |K(t,s)|$$

Если выполнено неравенство $|\lambda| < \frac{1}{M(b-a)}$, то интегральное уравнение

$$x(t) = \lambda \int_{a}^{b} K(t, s)x(s)ds + y(t)$$

имеет, и притом единственное, непрерывное решение для любой непрерывной функции y(t).

Доказательство. Зафиксируем пространство $\mathbb{C}[a,b]$. Это пространство полное. Проверим, что формула $Fx(t) = \lambda \int_a^b K(t,s)x(s)ds + y(t)$ определяет отображение пространства $\mathbb{C}[a,b]$ в себя. Так как по условию $y \in \mathbb{C}[a,b]$, то достаточно проверить, что $z(t) = \int_a^b K(t,s)x(s)ds$ есть непрерывная функция от t. Действительно, при фиксированной непрерывной функции x подынтегральная функция $\varphi(t,s) = K(t,s)x(s)$ есть непрерывная функция переменных t и s и по теореме об непрерывности интеграла, зависящего от параметра, непрерывна.

Проверим, что отображение *F* является сжимающим.

$$||F(x_{1}) - F(x_{2})|| = \max_{t} \left| \lambda \int_{a}^{b} K(t, s)(x_{1}(s) - x_{2}(s)) ds \right| \leq$$

$$\leq \max_{t} |\lambda| \int_{a}^{b} |K(t, s)| \left| \left(x_{1}(s) - x_{2}(s) \right) \right| ds \leq |\lambda| \max_{t} \int_{a}^{b} |K(t, s)| \max_{s} |x_{1}(s) - x_{2}(s)| ds =$$

$$= |\lambda| \max_{t} \int_{a}^{b} |K(t, s)| ds * ||x_{1} - x_{2}|| \leq |\lambda| M(b - a) ||x_{1} - x_{2}|| \Rightarrow \alpha = |\lambda| M(b - a) < 1$$

Поэтому F сжимающее отображение. Тогда, согласно теореме Банаха, существует, и притом единственная, неподвижная точка отображения F, то есть существует, и притом единственное, непрерывное решение x(t) рассматриваемого интегрального уравнения.

Теорема 2. Пусть T = [a, b] и пусть K(t, s, z) — непрерывная функция переменных t, s, z, удовлетворяющая условию Липшица по z, то есть для которой существует постоянная M такая, что

$$|K(t,s,z_1) - K(t,s,z_2)| \le M|z_1 - z_2|$$

Если выполнено неравенство $|\lambda| < \frac{1}{M(b-a)}$, то интегральное уравнение Фредгольма 2-го рода имеет единственное непрерывное решение для любой непрерывной функции y(t). (без доказательства).

Определение. Ядро K(t,s) интегрального уравнения называется вырожденным, если оно может быть представлено в виде:

$$K(t,s) = \sum_{k=1}^{n} a_k(t)b_k(s)$$

Будем считать, что $a_k(t)$ и $b_k(s)$, k=1,...,n, линейно независимы. Если функции $a_k(t)$ или $b_k(s)$ линейно зависимы, то, выражая часть из них через остальные, получаем для K(t,s) выражение с меньшим числом слагаемых. Решение интегрального уравнения с вырожденным ядром сводится к решению системы линейных алгебраических уравнений.

Подставив ядро в уравнение, получаем:

$$x(t) = \lambda \sum_{k=1}^{n} a_k(t) \int_a^b b_k(s) x(s) ds + y(t)$$
 (6)

и пусть $\int_a^b b_k(s)x(s)ds = c_k$.

Если уравнение $x(t) - \lambda \int_a^b K(t,s) x(s) ds = y(t)$ (*) имеем решение, то это решение имеет вид:

$$x(t) = \lambda \sum_{k=1}^{n} c_k a_k(t) + y(t), \text{где } c_k = const$$
 (7)

Поэтому решение уравнения (*) будем искать в виде (7). Подставив (7) в левую часть равенства (6), получаем равенство:

$$\lambda \sum_{k=1}^{n} c_k a_k(t) + y(t) = \lambda \sum_{k=1}^{n} a_k(t) \int_{a}^{b} b_k(s) x(s) ds + y(t)$$

Которое в силу линейной независимости функций $a_k(t)$ эквивалентно системе:

$$c_k = \int_a^b b_k(s) x(s) ds, k = 1, ..., n$$
 (8)

Подставив в (8) функцию x в виде (7), получаем систему линейных алгебраических уравнений

$$c_k = \sum_{i=1}^n d_{ki}c_i + y_k, k = \overline{1,n}$$
(9)

где

$$d_{kj} = \lambda \int_a^b b_k(s) a_j(s) ds, k, j = \overline{1, n}$$
 (10)

$$y_k = \lambda \int_a^b b_k(s) y(s) ds \tag{11}$$

эквивалентную уравнению (*) в следующем смысле: если уравнение (*) имеет решение, то оно представляется в виде (7) и коэффициенты c_k удовлетворяют системе (9); если коэффициенты $c_1, ..., c_n$ удовлетворяют системе (9), то функция x, полученная по формуле (7), является решением уравнения (*).

§11 Применение принципа сжимающих отображений к интегральным уравнениям Вольтерра 2-го рода.

Если T=[a,b[, где $b<+\infty$, то выделяется класс уравнений вида:

$$x(t) = \lambda \int_{a}^{t} K(t, s)x(s)ds + y(t)$$
 (1)

включающих интеграл с переменным верхним пределом. Такие уравнения называют уравнениями Вольтерра. Интегральное уравнение Вольтерра является частным случаем уравнения Фредгольма 2-го рода, так как определив ядро

$$K_1(t, s, z) = \begin{cases} 0, s > t \\ K(t, s, z), s \le t, \end{cases}$$

уравнение (1) можно записать в виде:

$$x(t) = \lambda \int_{a}^{b} K_{1}(t, s, x(s))ds + y(t)$$

Теорема. Пусть K(t,s) является непрерывной функцией по совокупности элементов (t,s) на замкнутом треугольнике $\Delta = \{(t,s): a \le t \le b, a \le s \le t\}$, тогда для $\forall y(t) \in \mathbb{C}[a,b]$ существует и единственно решение интегрального уравнение Вольтерра 2-го рода.

Доказательство. Воспользуемся следствием из принципа сжимающих отображений:

$$F(x) = \lambda \int_{a}^{t} K(t, s) x(s) ds + y(t), F: \mathbb{C}[a, b] \to \mathbb{C}[a, b]$$

Покажем, что $\exists N$ такое, что F^N является сжимающим отображением.

$$|F(x_1) - F(x_2)| = \left| \lambda \int_a^t K(t, s) |x_1(s) - x_2(s)| ds \right| \le |\lambda| \int_a^t |K(t, s)| \max_s |x_1(s) - x_2(s)| ds \le |\lambda| \int_a^t |K(t, s)| \max_s |x_1(s) - x_2(s)| ds \le |\lambda| \int_a^t |K(t, s)| \max_s |x_1(s) - x_2(s)| ds \le |\lambda| \int_a^t |K(t, s)| \max_s |x_1(s) - x_2(s)| ds \le |\lambda| \int_a^t |K(t, s)| \max_s |x_1(s) - x_2(s)| ds \le |\lambda| \int_a^t |K(t, s)| \max_s |x_1(s) - x_2(s)| ds \le |\lambda| \int_a^t |K(t, s)| \max_s |x_1(s) - x_2(s)| ds \le |\lambda| \int_a^t |K(t, s)| |x_1(s) - x_2(s)| ds \le |\lambda| \int_a^t |K(t, s)| |x_1(s) - x_2(s)| ds \le |\lambda| \int_a^t |K(t, s)| |x_1(s) - x_2(s)| ds \le |\lambda| \int_a^t |K(t, s)| |x_1(s) - x_2(s)| ds \le |\lambda| \int_a^t |K(t, s)| |x_1(s) - x_2(s)| ds \le |\lambda| \int_a^t |K(t, s)| |x_1(s) - x_2(s)| ds \le |\lambda| \int_a^t |K(t, s)| |x_1(s) - x_2(s)| ds \le |\lambda| \int_a^t |x_1(s) - x_2(s)| d$$

$$\leq |\lambda|M(t-a)||x_1-x_2||$$

Оценим сейчас $|F^2(x_1) - F^2(x_2)|$

$$F^{2}(x) = F(F(x)) = \lambda \int_{a}^{t} K(t, s) \left(\lambda \int_{a}^{s} K(s, \tau) x(\tau) d\tau + y(s)\right) ds + y(t)$$

$$|F^2(x_1) - F^2(x_2)| \le |\lambda|^2 \int\limits_a^t |K(t,s)| \left(\int\limits_a^s K(s,\tau) |x_1(\tau) - x_2(\tau)| d\tau\right) ds \le$$

$$\leq |\lambda|^2 M^2 \int_a^b (s-a) ds \|x_1 - x_2\| \leq |\lambda|^2 M^2 \frac{(t-a)^2}{2} \|x_1 - x_2\|$$

 $(t-a)^N$ $(h-a)^N$

$$|F^{N}(x_{1}) - F^{N}(x_{2})| \leq |\lambda|^{N} M^{N} \frac{(t - a)^{N}}{N!} ||x_{1} - x_{2}|| \leq |\lambda|^{N} M^{N} \frac{(b - a)^{N}}{N!} ||x_{1} - x_{2}||$$

$$\|F^N(x_1) - F^N(x_2)\| \le \alpha \|x_1 - x_2\|,$$

где $\alpha = |\lambda|^N M^N \frac{(b-a)^N}{N!} \Rightarrow \exists N$ такое, что $\alpha < 1$.

Поэтому F^N является сжимающим отображением. Тогда отображение F имеет, и притом единственную, неподвижную точку в X.

§12 Пополнение линейных нормированных пространств.

Теорема. (о пополнении) Всякое нормированное пространство E можно рассматривать как линейное многообразие, плотное в некотором банаховом пространстве \hat{E} .

Пространство \hat{E} при этом называется пополнением пространства E.

Доказательство. Рассмотрим всевозможные фундаментальные последовательности $\{x_n\}$ пространства E. Две такие последовательности $\{x_n\}$ и $\{x_n'\}$ будем называть эквивалентными, если

$$||x_n - x_n'|| \to 0, n \to \infty$$

Если $\{x_n\}$ и $\{x_n'\}$ эквивалентны, то будем писать $\{x_n\} \sim \{x_n'\}$.

Множество всех фундаментальных последовательностей разобьем на непересекающиеся классы: две такие последовательности $\{x_n\}$ и $\{x_n'\}$ включаем в один класс в том и только том случае, когда $\{x_n\} \sim \{x_n'\}$. Множество всех классов обозначим через \hat{E} , а сами классы - через $\hat{x},\hat{y},...$ Если $\{x_n\}$ относится к классу \hat{x} , то будем писать $\{x_n\} \in \hat{x}$ и называть $\{x_n\}$ представителем класса \hat{x} .

Превратим \hat{E} в нормированное пространство. Операцию сложения классов \hat{x} и \hat{y} определим так: если $\{x_n\} \in \hat{x}$ и $\{y_n\} \in \hat{y}$, то суммой $\hat{x} + \hat{y}$ будем называть класс, содержащий $\{x_n + y_n\}$. Наше определение $\hat{x} + \hat{y}$ не зависит от выбора представителей классов \hat{x} и \hat{y} :

Пусть
$$\{x_n'\} \sim \{x_n\}$$
 и $\{y_n'\} \sim \{y_n\} \Longrightarrow \{x_n + y_n\} \sim \{x_n' + y_n'\}$

$$||(x_n + y_n) - (x'_n + y'_n)|| \le ||x_n - x'_n|| + ||y_n - y'_n|| \underset{n \to \infty}{\longrightarrow} 0$$

Ввёдем теперь в \hat{E} операцию умножения класса на число: классом $\lambda \hat{x}$ будем называть класс, содержащий $\{\lambda x_n\}$, если $\{x_n\} \in \hat{x}$.

Упражнение 1. Покажите, что если $\{x_n\}$ фундаментальна, то $\{\lambda x_n\}$ фундаментальна.

Упражнение 2. Покажите, что если $\{x_n'\} \sim \{x_n\}$, то $\{\lambda x_n'\} \sim \{\lambda x_n\}$.

Упражнение 3. Покажите, что определение класса $\lambda \hat{x}$ не зависит от выбора представителя класса \hat{x} .

Поскольку наше определение операций в \hat{E} сводится к операциям над элементами из линейного пространства E, то \hat{E} также является линейным пространством. Роль нуля в \hat{E} играет класс 0 с представителем $\{0\}$.

Введем теперь в \hat{E} норму. Пусть $\{x_n\} \in \hat{x}$. Полагаем

$$\|\hat{x}\|_{\hat{E}} = \lim_{n \to \infty} \|x_n\|_E$$

Заметим, что предел этот существует, ибо $\{\|x_n\|\}$ фундаментальная, так как $\|\|x_n\| - \|x_m\|\| \le \|x_n - x_m\|$, а значит, и сходящаяся в силу критерия Коши для числовых последовательностей.

Кроме того, предел не зависит от выбора представителя класса \hat{x} . Если $\{x_n'\} \in \hat{x}$, то $|||x_n'|| - ||x_n||| \le ||x_n' - x_n|| \to 0, n \to \infty$

Отсюда $\lim_{n\to\infty} ||x_n'|| = \lim_{n\to\infty} ||x_n||$

Упражнение 4. Проверьте аксиомы нормы в \hat{E} .

Итак, \hat{E} - нормированное пространство.

Покажем теперь, что

- I. E можно отождествлять с некоторым линейным многообразием в \hat{E} ;
- II. E плотно в \hat{E} (в смысле отождествления, указанного в I);
- III. \hat{E} банахово пространство.

Этим теорема о пополнении будет доказана.

Доказательство предположения I. Элемент $x \in E$ отождествим с классом, содержащим стационарную последовательность $\{x\}$, то есть x, x, x, \dots . Такой класс будем обозначать через x. Ясно, что λx — это класс, содержащий $\{\lambda x\}$, а x + y — класс, содержащий $\{x + y\}$. Таким образом, множество всех классов, содержащих стационарные последовательности, является многообразием в \hat{E} . Для этого линейного многообразия мы сохраняем обозначение E.

Доказательство предположения II. Пусть класс $x \in E$, тогда $||x||_{\hat{E}} = ||x||_{E}$ (как предел постоянной). Пусть $\hat{x} \in \hat{E}$. Покажем, что существует $\{x_n\} \subset E$ такая, что $||x - x_n||_{\hat{E}} \to 0$, $n \to \infty$. Этим будет доказана плотность E в \hat{E} .

Пусть $\{x_n\} \in \hat{x}$. Из фундаментальности $\{x_n\}$ имеем: для любого $\varepsilon > 0$ найдется номер N такой, что для любых n, m > N справедливо неравенство

$$\|x_n - x_m\|_E \le \varepsilon \tag{1}$$

Фиксируем n > N и заметим, что

$$\lim_{m \to \infty} \|x_n - x_m\|_E = \|x_n - \hat{x}\|_{\hat{E}}$$
 (2)

Где $\{x_n\}_{n=1}^{\infty}$, как стационарная последовательность. Переходя в (1) у пределу при $m \to \infty$, используя (2), получим:

$$\|x_n - \hat{x}\|_{\hat{E}} \le \varepsilon$$

Это и означает, что $x_n \to \hat{x}$, $n \to \infty$

Доказательство предположения III. Пусть дана $\{\widehat{x_n}\}$ фундаментальная в \widehat{E} . Вследствие справедливости условия II найдем $\{x_n\} \subset E$ такую, что

$$\|x_n - \hat{x}\|_{\hat{E}} < \frac{1}{n}$$

Докажем, что $\{x_n\}$ сама фундаментальна: это вытекает из неравенства

 $\|x_n-x_m\|_{\hat{E}}\leq \|x_n-\hat{x}_n\|_{\hat{E}}+\|\hat{x}_n-\hat{x}_m\|_{\hat{E}}+\|\hat{x}_m-x_m\|_{\hat{E}}<\frac{1}{n}+\|\hat{x}_n-\hat{x}_m\|_{\hat{E}}+\frac{1}{m}\to 0$ при $m,n\to\infty$.

Так как $\{x_n\}$ фундаментальна в \hat{E} , то она фундаментальна и в E, ибо

$$\|x_n - x_m\|_E = \|x_n - x_m\|_{\hat{E}}$$

Но тогда существует класс \hat{x} , содержащий $\{x_n\}$. Докажем, что $\hat{x}_n \to \hat{x}$, $n \to \infty$. Действительно,

$$\|\hat{x}_n - \hat{x}\|_{\hat{E}} \le \|\hat{x}_n - x_n\|_{\hat{E}} + \|\hat{x} - x_n\|_{\hat{E}} < \frac{1}{n} + \|\hat{x} - x_n\|_{\hat{E}}$$

Тогда при $n \to \infty \|\hat{x} - x_n\|_{\hat{E}} \to 0$ вследствие II.

Теорема доказана полностью.

§13 Предгильбертовы пространства.

Определение. Будем говорить, что на векторном пространстве H(над полем K) задано скалярное произведение, если каждой паре элементов $x, y \in H$ поставлено в соответствие число $(x, y) \in K$ так, что выполнены следующие аксиомы:

- 1. $(x_1 + x_2, y) = (x_1, y) + (x_2, y), (\lambda x, y) = \lambda(x, y)$ (линейность по первой переменной)
- 2. $(x,y) = \overline{(y,x)}$ (эрмитовость)
- 3. $(x,x) \ge 0$, причем из (x,x) = 0 следует, что x = 0

В случае векторного пространства H над полем \mathbb{R} аксиома 2. имеет вид (x, y) = (y, x).

Конечномерное вещественное пространство со скалярным произведением называется евклидовым. Конечномерное комплексное пространство со скалярным произведением называется унитарным пространством.

Определение. Векторное пространство со скалярным произведением называется предгильбертовым пространством. Нормой элемента $x \in H$ в предгильбертовом пространстве H называется число $||x|| = \sqrt{(x,x)}$

Примеры предгильбертовых пространств

1. В пространстве \mathbb{C}^n (комплексное -мерное пространство) стандартное произведение имеет вил:

$$(x,y) = \sum_{k=1}^{n} x_k \overline{y_k}$$
, где $x = (x_1, ..., x_n), y = (y_1, ..., y_n)$

2. В пространстве \mathbb{R}^n стандартное скалярное произведение имеет вид:

$$(x,y) = \sum_{k=1}^{n} x_k y_k$$

3. В пространстве l_2 (бесконечные числовые последовательности такие, что ряд $\sum_{k=1}^{\infty} |x_k|^2$ сходится) зададим скалярное произведение формулой:

$$(x,y) = \sum_{k=1}^{\infty} x_k \overline{y_k}$$

4. В пространстве $\mathcal{L}_2[a;b]$ скалярное произведение задается формулой:

$$(x,y) = \int_{a}^{b} x(t)y(t)dt$$

Основные свойства скалярного произведения.

1. В любом предгильбертовом пространстве справедливо неравенство Коши-Буняковского

$$|(x,y)| \le ||x|| ||y|| \tag{3}$$

Доказательство. Если x=0 либо y=0, то неравенство очевидно. Предположим, что $y\neq 0$, и построим элемент $z\in H$ так, чтобы $z=\lambda y$ и (x-z,y)=0, то есть $(x-\lambda y,y)=0$. Для этого возьмем $\lambda=\frac{\overline{(x,y)}}{(y,y)}$. Получим

$$0 \le (x - \lambda y, x - \lambda y) = (x - \lambda y, x) - \bar{\lambda}(x - \lambda y, x) = \|x\|^2 - \lambda(y, x) = \|x\|^2 - \frac{|(x, y)|^2}{\|y\|^2}$$
 откуда $|(x, y)| \le \|x\| \|y\|$.

2. Непрерывность скалярного произведения.

Пусть
$$x_n \to x$$
, а $y_n \to y$ при $n \to \infty$. Тогда $(x_n, y_n) \to (x, y)$ при $n \to \infty$

Доказательство.
$$(x_n, y_n) - (x, y) = (x_n - x, y_n) + (x, y_n - y)$$

По неравенству Коши-Буняковского имеем:

$$|(x_n, y_n) - (x, y)| \le |(x_n - x, y_n)| + |(x, y_n - y)| \le ||x_n - x|| ||y_n|| + ||x|| ||y_n - y|| \to 0$$
 при $n \to \infty$, так как $\{||y_n||\}$ ограничена.

3. Равенство параллелограмма

Во всяком пространстве со скалярным произведением справедливо следующее равенство, которое можно трактовать как известное в геометрии (сумма квадратов параллелограмма равна сумме квадратов всех его сторон):

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2)$$

Доказательство.

$$||x + y||^2 + ||x - y||^2 = (x + y, x + y) + (x - y, x - y) = (x, x) + (x, y) + (y, x) + (y, y) + (x, x) - (x, y) - (y, x) + (y, y) = 2(||x||^2 + ||y||^2)$$

4. Ортогональные системы.

Пусть E - пространство со скалярным произведением. Если (x,y)=0, то элементы x и y будем называть ортогональными и писать $x\perp y$. Очевидно, нуль пространства E ортогонален любому элементу. Рассмотрим в E элементы $x_1,x_2,...,x_m$, все не равные 0. Если $(x_k,x_l)=0$ при любых $k,l=1,2,...,m; k\neq l$, то система элементов $x_1,x_2,...,x_m$ называется ортогональной системой.

Теорема. Пусть $x_1, x_2, ..., x_m$ - ортогональная система; тогда $x_1, x_2, ..., x_m$ линейно независимы.

Доказательство. Пусть существуют скаляры $\lambda_1,\lambda_2,\dots,\lambda_m$ такие, что

$$\lambda_1 x_1 + \lambda_2 x_2 + \dots + \lambda_m x_m = 0$$

Умножив это равенство на x_k скалярно, получим $\lambda_k(x_k, x_k) = 0$, но $(x_k, x_k) = \|x_k\|^2 > 0$. Значит, $\lambda_k = 0$. Это верно для любого $k = \overline{1,m}$. Значит, все $\lambda_k = 0$, то есть элементы $x_1, x_2, ..., x_m$ линейно независимы.

Определение. Если дана система элементов $x_1, x_2, ..., x_m$ такая, что

$$(x_k, x_l) = \delta_{kl}, k, l = \overline{1, m},$$

$$\delta_{kl}=1$$
 при $k=l,\delta_{kl}=0$ при $k\neq l(\delta_{kl}-$ символ Кронекера),

то система элементов $x_1, x_2, ..., x_m$ называется ортонормированной.

5. Процесс ортогонализации Шмидта.

Будем рассматривать системы, состоящие из бесконечного числа элементов пространства E со скалярным произведением $-\{x_k\}_{k=1}^{\infty}$. Систему $\{x_k\}$ будем называть линейно независимой, если при любом n=1,2,... система $x_1,x_2,...,x_m$ линейно независима.

Оказывается, по любой независимой системе $\{x_k\}$ можно построить ортогональную $\{l_k\}$, а также ортонормированную $\{f_k\}$ с помощью следующего процесса ортогонализации Шмидта.

Положим $e_1=x_1$ и заметим, что $e_1\neq 0$, т.к. система из одного элемента x_1 линейно независима, как часть $\{x_k\}$. Далее e_2 ищем в виде $e_2=x_2-\lambda_{21}e_1$, где скаляр λ_{21} подберем так, чтобы было $e_2\perp e_1$. Отсюда $(x_2-\lambda_{21}e_1,\ e_1)=0 \Rightarrow \lambda_{21}=\frac{(x_2,e_1)}{(e_1,e_1)}$. Итак, e_2 найдется, причем $e_2\neq 0$.

Далее рассуждаем согласно методу полной математической индукции. Пусть e_1, \dots, e_{k-1} уже построены; e_k ищем в виде.

$$e_k = x_k - \sum_{i=1}^{k-1} \lambda_{ki} l_i.$$

Скаляры λ_{ki} найдём из требования $e_k \perp e_i$; i = 1, 2, ..., k - 1.

Отсюда $\lambda_{ki} = \frac{(x_k \cdot e_i)}{(e_i \cdot e_i)}$. При этом $e_k \neq 0$. Итак, ортогональная система $\{e_k\}$ построена. Полагая $f_k = \frac{e_k}{\|e_k\|}$, получаем ортонормированную систему $\{f_k\}$.

6. Равенство Пифагора.

Пусть x_1, x_2, \dots, x_n – ортогональный набор векторов из H. Тогда $\|x_1 + \dots + x_n\|^2 = \|x_1\|^2 + \dots + \|x_n\|^2$.

Доказательство. Непосредственным вычислением получаем.

$$(x_1 + \dots + x_n, x_1 + \dots + x_n) = \sum_{k,i}^n (x_k, x_i) = \sum_{k=1}^n (x_k, x_k) = \sum_{k=1}^n ||x_k||^2$$

§14 Гильбертовы пространства.

Определение. Векторное пространство со скалярным произведением, полное относительно нормы, порожденное скалярным произведением $||x||^2 = \sqrt{(x,x)}$, называется гильбертовым пространством.

Теорема. (о пополнении) Пополнение пространства со скалярным произведением является гильбертовым пространством.

Пусть пространство E является пространством со скалярным произведением (x, y). Пополняя E как нормированное пространство с нормой $||x||^2 = \sqrt{(x, x)}$,

мы приходим к банахову пространству \hat{E} , элементами которого служат классы \hat{x} эквивалентных фундаментальных последовательностей $\{x_n\}$. Покажем, что \hat{E} является само пространством со скалярным произведением, а значит, вследствие своей полноты, и гильбертовым пространством. Пусть $\hat{x}, \hat{y} \in \hat{E}$, а $\{x_n\}$ и $\{y_n\}$ представители этих классов. Определим в \hat{E} скалярное произведение

$$(\hat{x}, \hat{y}) = \lim_{n \to \infty} (x_n, y_n)$$

При этом

$$(\hat{x}, \hat{x}) = \lim_{n \to \infty} (x_n, x_n) = \lim_{n \to \infty} ||x_n||^2 = ||\hat{x}||^2$$

Упражнение. Проверим аксиомы скалярного произведения в \hat{E} .

Пример гильбертовых пространств. \mathbb{R}^n , \mathbb{C}^n , l_2 – гильбертовы пространства.

Пространство C[0;1] со скалярным произведением $(x,y)=\int_0^1 x(t)y(t)dt$ неполно по норме $\|x\|=\left(\int_0^1 |x(t)|^2 dt\right)^{\frac{1}{2}}$ и, следовательно, является неполным предгильбертовым пространством.

2. Расстояние от точки до подпространства.

В гильбертовом пространстве, вследствие его полноты и наличия понятия ортогональности элементов, удается полностью решить задачу наилучшего приближения.

Пусть в гильбертовом пространстве H задано множество M и точки $x \in H$. Определим расстояние от точки x до множества M по формуле $\rho(x,M) = \inf_{u \in M} \|x - u\|$ **Лемма.** Если $x \in M$, то $\rho(x,M) = 0$. Если $x \notin M$ и M замкнуто, $\rho(x,M) > 0$.

Доказательство. Если $x \in M$, то при u = x имеем ||x - u|| = 0, откуда , $\rho(x, M) == 0$. По определению точкой нижней грани для любого n найдется $u_n \in M$ такое, что $||x - u_n|| < \frac{1}{n}$. Отсюда $u_n \to x$ при $n \to \infty$. Вследствие замкнутости M $x \in M$, но по условию $x \notin M$. Полученное противоречие приводит к выводу о том, что допущение $\rho(x, M) = 0$ неверно. Значит, $\rho(x, M) > 0$, и лемма доказана.

Теорема. (об аппроксимации) Пусть M - замкнутое выпуклое множество в гильбертовом пространстве H и точка $x \notin M$. Тогда существует единственный элемент $y \in M$ такой, что

$$\rho(x, M) = \|x - y\|$$

Согласно лемме $d = \rho(x, M) > 0$. Воспользуемся определением inf: для любого n найдется $u_n \in M$ такое, что

$$d \le ||x - u_n|| \le d + \frac{1}{n}.\tag{1}$$

Покажем, что последовательность $\{u_n\}$ — фундаментальная. Для этого воспользуемся равенством параллелограмма, приняв $x-u_n$ и $x-u_m$ в качестве его сторон. Диагонали параллелограмма будут тогда $2x-u_n-u_m$ и u_m-u_n . Равенство параллелограмма имеет вид:

$$2\|x - u_n\|^2 + 2\|x - u_m\|^2 = \|u_n - u_m\|^2 + \|2x - u_n - u_m\|^2.$$

Отметим, что $\frac{u_n+u_m}{2}\in M$ вследствие выпуклости M; поэтому $\|2x-u_n-u_m\|^2=$ $=4\left\|x-\frac{u_n+u_m}{2}\right\|^2\geq 4d^2$

Согласно неравенству (1) имеем

$$||x - u_n||^2 = 2||x - u_n||^2 + 2||x - u_m||^2 - 4||x - \frac{u_n + u_m}{2}||^2 << 2\left(d + \frac{1}{n}\right)^2 + 2\left(d + \frac{1}{m}\right)^2 - 4d^2 = \frac{2d}{n} + \frac{2d}{m} + \frac{2}{n^2} + \frac{2}{m^2} < \frac{8d + 4}{N}$$

если $m, n \in \mathbb{N}$, откуда и вытекает фундаментальность $\{u_n\}$. Вследствие полноты H $\{u_n\}$ сходится к некоторому элементу $y \in M$, ибо M замкнуто. Переходя к пределу в неравенстве (1) при $n \to \infty$, получим ||x - y|| = d.

Докажем, что элемент y, на котором достигается точная нижняя грань ||x - u||, единственен.

Пусть для некоторого $y^* \in M$ также $||x - y^*|| = d$. По равенству параллелограмма

$$4d^{2} = 2\|x - y\|^{2} + \|x - y^{*}\|^{2} = \|y - y^{*}\| + 4\|x - \frac{y + y^{*}}{2}\| \ge \|y - y^{*}\| + 4d^{2}$$

Следовательно, $||y - y^*|| = 0$ и $y = y^*$.

Если в трехмерном евклидовом пространстве задана плоскость L, проходящая через начало координат 0, и точка P, не лежащая на L, то существует точка $P' \in L$ такая, что |PP'| реализует расстояние от точки P до плоскости L. При этом прямая PP' перпендикулярна плоскости L.

Пусть L - подпространство в H, т.е. замкнутое линейное многообразие. Пусть $x \in H$, но $x \notin L$. Расстояние от точки x до подпространства L как и ранее определяется формулой

$$\rho(x, L) = \inf_{u \in L} ||x - u||$$

Отметим, что всякое подпространство гильбертова (или банахова) пространства является замкнутым выпуклым множеством. Поэтому имеет место следующее следствие.

Следствие 1. Существует единственный элемент $y \in L$, реализующий расстояние от точки x до подпространства L:

$$\rho(x,L) = \|x - u\|$$

Определение. Пусть L - векторное подпространство в гильбертовом пространстве H. Проекцией вектора x на L называется вектор $y \in L$ такой, что $x - y \perp L$, т.е. (x - y, l) = 0 для любого $l \in L$.

Теорема. (о проекции) Пусть H - гильбертово пространство, L - его замкнутое векторное подпространство. Для любого $x \in H$ существует (и при том единственная) его проекция на L.

Доказательство.

- 1) Если $x \in L$, то y = x является его проекцией.
- 2) Пусть $x \notin L$. Тогда, согласно следствия 1, существует вектор $y \in L$ такой, что

 $\|x-y\|=d=\inf_{l\in L}\|x-l\|$. Проверим, что вектор y является проекцией. Возьмем производный элемент $l\in L$ и покажем, что (x-y,l)=0.

По построению элемента y имеем для любого $l \in L$:

$$d = \rho(x, L) = ||x - y||$$

$$d^2 = ||x - y||^2 \le ||x - (y + \lambda l)||^2 = (x - y - \lambda l, x - y - \lambda l) = (x - y, x - y) + \lambda^2(l, l) - 2\lambda(x - y, l) = ||x - y||^2 - 2\lambda(x - y, l) + \lambda^2||l||^2$$
T.o.

$$d^{2} \le d^{2} - 2\lambda(x - y, l) + \lambda^{2} ||l||^{2} \implies \lambda^{2} ||l||^{2} - 2\lambda(x - y, l) \ge 0$$
 (1)

Значит, для любого $\lambda \in \mathbb{R}$ справедливо неравенство, что невозможно, если $(x-y,l) \neq 0$. Единственность проекции вытекает из единственности элемента наилучшей аппроксимации.

Следствие. Пусть L — подпространство в H; тогда для любого $x \in H$ справедливо разложение

$$x = y + z$$
, где $y \in L, z \in L$, (2)

причем это разложение единственное.

Для доказательства достаточно взять y, определяемый по x на основе теоремы (если $x \in L$, то y = 0), и положить x = y + (x - y), где $z = x - y \perp L$ по теореме.

Элемент y в разложении (2) принято называть проекцией (ортогональной) на подпространство L.

Определение. Пусть L - линейное многообразие в H. Совокупность всех элементов из H, ортогональных к L, называется ортогональным дополнением к L и обозначается L^{\perp} .

Теорема. L^{\perp} - подпространство в H.

Доказательство. Докажем линейность L^{\perp} . Пусть z_1 , $z_2 \in L^{\perp}$, т.е. $(z_1, y = 0)$, $(z_2, y = 0)$ для любых $y \in L$. Тогда для любых скаляров λ_1 и λ_2 .

$$(\lambda_1 z_1 + \lambda_2 z_2, y) = \lambda_1(z_1, y) + \lambda_2(z_2, y) = 0$$

для любых $y \in L$, т.е. $\lambda_1 z_1 + \lambda_2 z_2 \in L^{\perp}$.

Докажем замкнутость L^{\perp} . Пусть дана $\{z_k\} \subset L^{\perp}$ и $z_n \to z, n \to \infty$. Для любых $y \in L$ имеем $(z_n,y)=0$. Перейдя в этом равенстве к пределу при $n\to\infty$ по свойству непрерывности скалярного произведения, получим (z,y)=0 для любого $y \in L$, т.е. $z \in L^{\perp}$.

Замечание. Если, в частности, L подпространство в H, то L^{\perp} - также подпространство в H.

Теорема. Пусть L - замкнутое подпространство гильбертова пространства H, L^{\perp} - его ортогональное дополнение. Тогда H разлагается в прямую сумму $H = L \oplus L^{\perp}$, т.е. любой вектор $x \in H$ представляется, и притом единственным образом, в виде x = y + z, где $y \in L$, $z \in L^{\perp}$.

Данное утверждение следует из следствия теоремы о проекции.

Теорема. Пусть L – линейное многообразие в гильбертовом пространстве H. L плотно в H тогда и только тогда, когда $L^{\perp} = \{0\}$.

Доказательство.

Достаточность. Пусть $L^\perp=\{0\}$, т.е. если (z,y)=0 для любого $y\in L$, то z=0. Допустим, что L не плотно в H. Это означает, что существует $x_0\not\in \overline{L}$. \overline{L} — подпространство, и $x_0\not\in \overline{L}$. Тогда справедливо ортогональное разложение $x_0=y_0+z_0$, где $y_0\in \overline{L}$, а $z_0\in (\overline{L})^\perp=(L)^\perp$. При этом $z_0\neq 0$; иначе, $x_0\in \overline{L}$, $(z_0,y)=0$, для любых $y_0\in \overline{L}$ и, в частности, для любых $y\in L$. По условию такой z_0 равен 0. Мы получим противоречие, которое доказывает, что допущение о неплотности L в H неверно.

Необходимость. Пусть L плотно в H, т.е. $\overline{L} = H$. Допустим, что существует $z_0 \in H$, $z_0 \perp L$. Пусть $\{y_n\} \subset L$ и $y_n \to y \in H, n \to \infty$. Тогда $0 = (y_n, z_0) \to (y, z_0)$ при $n \to \infty$ вследствие непрерывности скалярного произведения. Значит, $(y, z_0) = 0$ для любого $y \in H$ (плотность L в H). Полагая, в частности, $y = z_0$, получим $(z_0, z_0) = 0$, откуда $z_0 = 0$

81

§15 Ряды Фурье в гильбертовом пространстве.

Пусть $\{\varphi_k\}$ - счетная ортонормированная система в гильбертовом пространстве H. Выясним, когда произвольный элемент $x \in H$ можно представить в виде ряда $x = \sum_{k=1}^{\infty} c_k \, \varphi_k$.

Предположим, что

$$x = \sum_{k=1}^{\infty} c_k \, \varphi_k \tag{1}$$

Умножив скалярно равенство (1) на φ_n , получаем

$$(x, \varphi_n) = \sum_{k=1}^{\infty} c_k (\varphi_k, \varphi_n) = c_n.$$

Определение. Число $c_n = (x, \varphi_n)$ называется коэффициентом Фурье элемента x по ортонормированной системе $\{\varphi_n\}$. Ряд $\sum_{n=1}^{\infty} c_n \, \varphi_n$ называется рядом Фурье элемента x.

Выясним, сходится ли ряд Фурье, чему равна сумма ряда Фурье, когда сумма ряда Фурье для элемента x совпадает с x.

Теорема 1. Пусть $\{\varphi_k\}$ – ортонормированная система в гильбертовом пространстве H, x – произвольный элемент, $c_k = (x, \varphi_k)$. Тогда:

- 1) числовой ряд $\sum_{k=1}^{\infty} |c_k|^2$ сходится, причем справедливо неравенство Бесселя $\sum_{k=1}^{\infty} |c_k|^2 \leq \|x\|^2$;
- 2) ряд Фурье $\sum_{k=1}^{\infty} c_k \varphi_k$ сходится;
- 3) сумма ряда Фурье есть проекция элемента x на подпространств L, порожденное системой $\{\varphi_k\}$.
- 4) элемент $x \in H$ равен сумме своего ряда Фурье тогда и только тогда, когда справедливо равенство Парсеваля Стеклова:

$$\sum_{k=1}^{\infty} |c_k|^2 = ||x||^2.$$

Доказательство.

1. Рассмотрим частную сумму ряда Фурье $x = \sum_{k=1}^n c_k \, \varphi_k$. Проверим, что разность $x - S_n$ ортогональна $\varphi_j, j = \overline{1,n}$. Действительно,

$$(x - S_n, \varphi_i) = (x, \varphi_i) - \sum_{k=1}^n c_k (\varphi_k, \varphi_i) = c_i - c_i = 0$$

Значит, в разложении элемента x в сумму

$$x = \sum_{k=1}^{n} c_k \, \varphi_k + (x - S_n)$$

все слагаемые ортогональны и по теореме Пифагора

Пусть x_1, \dots, x_n - ортогональный набор векторов из H и $x = \sum_{k=1}^\infty x_k$. Тогда

$$||x||^2 = \sum_{k=1}^{\infty} |x_k|^2$$

$$||x||^2 = \sum_{k=1}^n |c_k|^2 + ||x - S_n||^2, \tag{2}$$

отсюда $\sum_{k=1}^n |c_k|^2 \le ||x||^2$ и, значит, ряд $\sum_{k=1}^\infty |c_k|^2$ сходится, причем справедливо неравенство Бесселя $\sum_{k=1}^\infty |c_k|^2 \le ||x||^2$.

2. Покажем, что последовательность частных сумм $S_n = \sum_{k=1}^n c_k \, \varphi_k$ является последовательностью Коши. Для n > m имеем:

$$||S_n - S_m||^2 = ||\sum_{k=m+1}^n c_k \varphi_k||^2 \le \sum_{k=m+1}^n |c_k|^2 \to 0, n, m \to 0,$$

т.к.
$$\sum_{k=1}^{\infty} |c_k|^2 < +\infty$$
.

Так как пространство H полно, то ряд $\sum_{k=1}^{\infty} c_k \, \varphi_k$ сходится к элементу $S \in L$.

3. Пусть $S = \sum_{k=1}^{\infty} c_k \, \varphi_k$, тогда

$$(x - S, \varphi_i) = (x, \varphi_i) - (S, \varphi_i) = c_i - \sum_{k=1}^{\infty} c_k (\varphi_k, \varphi_i) = c_i - c_i = 0,$$

т.е. вектор x - S ортогонален подпространству, порожденному системой $\{\varphi_k\}$.

4. Переходя к пределу при $n \to \infty$ в равенстве (2), получаем

 $\|x\|^2 = \sum_{k=1}^n |c_k|^2 + \|x - S\|^2$, откуда видно, что равенство Парсеваля – Стеклова $\|x\|^2 = \sum_{k=1}^\infty |c_k|^2$ эквивалентно тому, что $\|x - S\| = 0$, т.е. x = S.

Определение. Ортонормированная система $\{\varphi_k\}$ называется полной, если из того, что $(x, \varphi_k) = 0$ для любого k, следует, что x = 0.

Из определения вытекает, что к полной системе $\{\varphi_k\}$ нельзя присоединить элемент так, чтобы она осталась ортонормированной.

Теорема 2. Пусть H – гильбертово пространство, $\{\varphi_k\}$ – ортонормированная система в H, L - подпространство в H, порожденное системой $\{\varphi_k\}$. Тогда следующие свойства эквивалентны:

- 1) любой элемент $x \in H$ является суммой своего рода Ряда Фурье;
- 2) система $\{\varphi_k\}$ полная;
- 3) для любого $x \in H$ выполнено равенство Парсеваля Стеклова $||x||^2 = \sum_{k=1}^{\infty} |c_k|^2$;
- 4) подпространство L, порожденное $\{\varphi_k\}$, совпадает с H.

Доказательство.

- 1) \Rightarrow 2). Пусть $c_k=(x,\varphi_k)=0$, тогда $x=\sum_{k=1}^\infty c_k\,\varphi_k$.
- 2) \Rightarrow 1). Элемент $y=x-\sum_{k=1}^{\infty}c_k\,\varphi_k$ по теореме 1 ортогонален всем φ_k , значит, y=0, т.е. $x=\sum_{k=1}^{\infty}c_k\,\varphi_k$.
- 1) ⇔ 3). Следует из утверждения 4) теоремы 1.
- 1) \Leftrightarrow 4). Следует из утверждения 3) теоремы 1.

Определение. Нормированное пространство X называется сепарабельным, если в нем существует счетное, плотное в X множество.

Теорема 3. Для того, чтобы в гильбертовом пространстве H существовала полная счетная ортонормированная система, необходимо и достаточно, чтобы пространство H было сепарабельным и бесконечномерным.

$\S16$ Пространство Лебега $L_1[a,b]$.

Определим банахово пространство L[a,b] как пополнение нормированного пространства $\mathcal{L}_1[a,b]$. Напомним, что элементы $\mathcal{L}_1[a,b]$ - это непрерывные на [a,b] функции x(t) с нормой

$$||x(t)|| = \int_a^b |x(t)| dt.$$

Пусть $\{x_n(t)\}$ и $\{x_n^*(t)\}$ - две последовательности непрерывных на [a,b] функций. Если последовательность $\{\{x_n(t)\}-x_n^*(t)\}$ является бесконечно малой в $\mathcal{L}_1[a,b]$, т.е. при $n\to\infty$

$$||x_n - x_n^*|| = \int_a^b |x_n(t) - x_n^*(t)| dt \to 0,$$

то последовательность $\{x_n\}$ и $\{x_n^*\}$ будем называть эквивалентными в $\mathcal{L}_1[a,b]$ или эквивалентными в среднем.

Определение. Последовательность $\{x_n\}$ непрерывных на [a,b] функций будем называть фундаментальной в среднем, если для любого $\varepsilon > 0$ найдется номер N такой, что для всех номеров n > N и всех натуральных p выполняется неравенство

$$||x_{n+p} - x_n|| = \int_a^b |x_{n+p}(t) - x_n(t)| dt < \varepsilon.$$

Согласно теореме о пополнении пространство Лебега L[a,b] состоит из элементов $\hat{x}(t)$, являющихся классами эквивалентных в среднем и фундаментальных в среднем последовательностей непрерывных функций. Две фундаментальные в среднем последовательности $\{x_n(t)\}$ и $\{x_n^*(t)\}$ являются представителями одного класса $\hat{x}(t)$ тогда и только тогда, когда они эквивалентны в среднем. Если $\{x_n(t)\} \in \hat{x}(t)$, то, по определению,

$$\|\hat{x}\|_{L[a,b]} = \lim_{n \to \infty} \int_a^b |x_n(t)| dt = \int_a^b |\hat{x}(t)| d\mu.$$

Теорема. Пространство L_1 полно.

Доказательство. Пусть $\{f_n\}$ - фундаментальная последовательность в L_1 , т.е.

$$||f_n - f_m|| \to 0$$
 при $n, m \to \infty$.

Тогда можно найти такую последовательность индексов $\{n_k\}$, что

$$||f_{n_k} - f_{n_{k+1}}|| = \int |f_{n_k}(x) - f_{n_{k+1}}(x)| d\mu < \frac{1}{2^k}.$$

Из этого неравенства и теоремы Б. Леви вытекает, что ряд

$$|f_{n_1}| + |f_{n_2} - f_{n_1}| + \dots$$

сходится почти всюду на Х. Но тогда и ряд

$$f_{n_1} + f_{n_2} - f_{n_1} + \dots$$

сходится почти всюду на X и некоторые функции

$$f(x) = \lim_{n \to \infty} f_{n_k}(x).$$

Т.о., мы показали, что фундаментальная последовательность в L_1 содержит подпоследовательность, сходящуюся почти всюду.

Покажем теперь, что подпоследовательность $\{f_{n_k}\}$ сходится к той же функции f в среднем. В силу фундаментальности последовательности $\{f_{n_k}\}$, при любом фиксированном $\varepsilon > 0$ для всех достаточно больших k и l имеем.

$$\int |f_{n_k}(x) - f_{n_l}(x)| d\mu < \varepsilon.$$

Согласно теореме Фату в этом неравенстве можно перейти к пределу под знаком интеграла при $l \to \infty$. Получаем

$$\int \left| f_{n_{\nu}}(x) - f(x) \right| d\mu \le \varepsilon,$$

откуда следует, что $f \in L_1$ и что $f_{n_k} \to f$. Но из того, что фундаментальная последовательность содержит подпоследовательность, сходящуюся к некоторому пределу, следует, что и сама она сходится к тому же пределу.

$\S17$ Пространство Лебега L_2 .

1. Определение и основные свойства.

Пространство L_1 представляет собой полное нормированное (т.е. банахово) линейное пространство. Однако оно не является евклидовым, т.к. определенную в ней норму нельзя задать с помощью какого-либо скалярного произведения. Это вытекает из "теоремы о параллелограмме". Действительно, взяв например, на отрезке $[0;2\pi]$ интегрируемые функции $f\equiv 1,g\equiv \sin x$, получаем, что соотношение

$$||f + g||^2 + ||f - g||^2 = 2(||f||^2 + ||g||^2)$$

в L_1 для них не выполняется.

Будем предполагать, что рассматриваются действительные функции f, определенные на некотором пространстве X, с заданной на нем мерой μ такой, что $\mu(X) < \infty$. Все функции предполагаются измеримыми и определенными на X почти всюду. Эквивалентные между собой функции не различаются.

Определение 1. Функция f называется функцией с интегрируемым квадратом на X, если интеграл

$$\int f^2(x)d\mu$$

Существует (конечен). Совокупность всех функций с интегрируемым квадратом на X обозначим $L_2(X,\mu)$ и L_2 .

Основные свойства функций с интегрируемым квадратом.

1. Произведение двух функций с интегрируемым квадратом есть интегрируемая функция.

Это непосредственно вытекает из неравенства

$$|f(x)g(x)| \le \frac{1}{2}(f^2(x) + g^2(x))$$

и свойства интеграла Лебега

 $\it C$ ледствие. Всякая функция $\it f$ с интегрируемым квадратом интегрируема

В самом деле, достаточно, положив $g(x) \equiv 1$, воспользоваться свойством 1.

2. Сумма двух функций из L_2 также принадлежит L_2 .

Действительно,

$$(f(x) + g(x))^2 \le f^2(x) + 2|f(x)g(x)| + g^2(x);$$

в силу свойства 1 каждая из трех функций, стоящих справа, интегрируема.

3. Если $f \in L_2$, и α - произвольное число, то $\alpha f \in L_2$.

Действительно, если $f \in L_2$, то

$$\int [\alpha f(x)]^2 d\mu = \alpha^2 \int f^2(x) d\mu < \infty$$

Свойства 2 и 3 означают, что линейные комбинации функций из L_2 снова принадлежат L_2 ; при этом, очевидно, сложение функций из L_2 и умножение их на числа удовлетворяют всем условиям, перечисленным в определении линейного пространства. Т.о., совокупность L_2 функций с интегрируемым квадратом есть линейное пространство.

Определим теперь в L_2 скалярное произведение, положив

$$(f,g) = \int f(x)g(x)d\mu \tag{1}$$

Все требования, входящие в определение скалярного произведения, при этом выполнены. **Определение 2.** Пространством L_2 называется эвклидово пространство, элементами которого служат классы эквивалентных между собой функций с интегрируемым квадратом, сложение и умножение их на числа определяются как обычные сложение и умножение функций, а скалярное произведение определяется формулой (1).

В L_2 , как и во всяком эвклидовом пространстве, выполнены неравенства Коши – Буняковского, которое в данном случае имеет вид:

$$(\int f(x)g(x)d\mu)^2 \le \int f^2(x)d\mu \int g^2(x)d\mu,$$

и неравенство треугольника, имеющее вид

$$\left(\int (f(x) + g(x))^2 d\mu\right)^{\frac{1}{2}} \le (f^2(x)d\mu)^{\frac{1}{2}} + (g^2(x)d\mu)^{\frac{1}{2}}.$$

В частности, при $g(x) \equiv 1$ неравенство Коши – Буняковского превращается в следующее неравенство:

$$(\int f(x)d\mu)^2 \le \mu(X) \int f^2(x)d\mu \tag{2}$$

Норма в L_2 определяется формулой

$$||f|| = \sqrt{(f,f)} = (f^2(x)d\mu)^{\frac{1}{2}},$$

а расстояние между элементами f и g – формулой

$$\rho(f,g) = \|f - g\| = \left(\int (f(x) - g(x))^2 d\mu \right)^{\frac{1}{2}}.$$

Величину

$$\int (f(x) - g(x))^2 d\mu = ||f - g||^2$$

Называют также средним квадратичным уклонением функций f и g друг от друга.

Сходимость функциональной последовательности в смысле нормы пространства L_2 называется сходимостью в среднем квадратичном.

Теорема 1. Пространство L_2 полно.

Доказательство. Пусть $\{f_n\}$ - фундаментальная последовательность в L_2 , т.е.

$$||f_n - f_m|| \to 0$$
 при $n, m \to \infty$.

Тогда в силу неравенства (2), получаем, что

$$\int |f_n(x) - f_m(x)| d\mu \le \left(\mu(x)\right)^{\frac{1}{2}} \left\{ \int \left(f_n(x) - f_m(x)\right)^2 d\mu \right\}^{\frac{1}{2}} \le \varepsilon \left(\mu(x)\right)^{\frac{1}{2}},\tag{3}$$

т.е. последовательность $\{f_n\}$ фундаментальна и по норме пространства L_1 . Повторяя те же рассуждения, которые были проведены при доказательстве полноты пространства L_1 , выберем из $\{f_n\}$ подпоследовательность $\{f_{n_k}\}$, сходящуюся почти всюду к некоторой функции f. В равенстве

$$\int \left(f_{n_k}(x) - f_{n_l}(x) \right)^2 d\mu \le \varepsilon,$$

Справедливом для членов этой подпоследовательности при вех достаточно больших k и l, можно, воспользовавшись теоремой Фату, перейти к пределу при $l \to \infty$. Получим

$$\int \left(f_{n_k}(x) - f(x) \right)^2 d\mu \le \varepsilon,$$

откуда следует, что $f \in L_2$ и что $f_{n_k} \to f$.

Воспользуемся сейчас тем, что если фундаментальная последовательность содержит сходящуюся подпоследовательность, то и вся эта подпоследовательность сходится к тому же пределу.

2. Сходимость в среднем квадратичном и её связь с другими типами сходимости функциональных последовательностей.

Введя в пространстве L_2 норму, мы определим тем самым для функций с интегрируемым квадратом следующее понятие сходимости: $f_n \to f$, если

$$\lim_{n\to\infty} \int [f_n(x) - f(x)]^2 d\mu = 0.$$

Эту сходимость называют сходимостью в среднем квадратичном. Рассмотрим, как эта сходимость связана с другими типами сходимости функциональных последовательностей. Считаем, что мера того пространства X, на котором функции определены, конечна.

1. Если последовательность $\{f_n\}$ сходится равномерно, то она сходится в среднем квадратичном.

Действительно, при каждом $\varepsilon > 0$ при всех достаточно больших n имеем

$$|f_n(x) - f(x)| < \varepsilon$$

и следовательно,

$$\int |f_n(x) - f(x)|^2 d\mu < \varepsilon^2 \mu(X),$$

откуда вытекает наше утверждение.

2. Если последовательность $\{f_n\}$ функций из $L_2(X,\mu)$ сходится в метрике $L_2(X,\mu)$, то она сходится и в метрике $L_1(X,\mu)$.

Действительно, в силу неравенства (2) имеем

$$\int |f_n(x) - f(x)| d\mu \le \left[\mu(X) \int \left(f_n(x) - f(x) \right)^2 d\mu \right]^{\frac{1}{2}},$$

откуда и следует наше утверждение.

- 3. Если последовательность суммируемых функций $\{f_n\}$ сходится в среднем, то она сходится на X и по мере.
- 4. Если последовательность $\{f_n\}$ сходится в среднем, то из неё можно выбрать подпоследовательность $\{f_{n_k}\}$, сходящуюся почти всюду.

Соотношения между различными типами сходимости функций, определенных на пространстве с конечной мерой, можно изобразить следующей схемой:

где пунктирная стрелка означает возможность выбора из последовательности, сходящейся по мере, подпоследовательности, сходящейся почти всюду.

В случае $\mu(X) = \infty$ (например, для функций на всей числовой прямой с мерой Лебега на ней) установленные выше связи уже не имеют смысла.

§18 Пространство Соболева $H^1(a,b)$.

Рассмотрим на [a,b] пространство $\widetilde{H}^1[a,b]$, состоящее из всевозможных функций u(x), непрерывно дифференцируемых на [a,b], со скалярным произведением

$$(u,v) = \int_{a}^{b} u(x)v(x)dx + \int_{a}^{b} u'(x)v'(x)dx$$
 (1)

и соответствующей этому скалярному произведению нормой

$$||u|| = \left(\int_a^b u^2(x)dx + \int_a^b u'^2(x)dx\right)^{\frac{1}{2}}$$
 (2)

 $H^1(a,b)$ является пополнением $\widetilde{H}^1[a,b]$ в этой норме. Элементами $H^1(a,b)$, согласно теореме о пополнении, являются классы, состоящие из последовательностей $\{u_n(x)\}\in \widetilde{H}^1[a,b]$, фундаментальных в $\widetilde{H}^1[a,b]$ в среднем, точнее, таких, что

$$\int_a^b |u_n(x) - u_m(x)|^2 dx + \int_a^b |u_n'(x) - u_m'(x)|^2 dx o 0$$
 при $n, m o \infty$.

Две такие последовательности $\{u_n(x)\}$ и $\{\hat{u}_n(x)\}$ принадлежат одному классу, если $\{\hat{u}_n(x) - u_n(x)\}$ является бесконечно малой в метрике $\widetilde{H}^1[a,b]$, т.е. если

$$\int_a^b |u_n(x) - \hat{u}_n(x)|^2 dx + \int_a^b |u_n'(x) - \hat{u}_n'(x)|^2 dx \to 0$$
 при $n \to \infty$.

Из условия фундаментальности в среднем $\{u_n(x)\}$ в $\widetilde{H}^1[a,b]$ следует, что отдельно при $n,m\to\infty$.

$$\int_{a}^{b} |u_{n}(x) - u_{m}(x)|^{2} dx \to 0, \int_{a}^{b} |u'_{n}(x) - u'_{m}(x)|^{2} dx \to 0.$$

Аналогично, из условия эквивалентности $\{u_n(x)\}$ и $\{\hat{u}_n(x)\}$ в метрике $\widetilde{H}^1[a,b]$ следует, что при $n \to \infty$.

$$\int_{a}^{b} |u_{n}(x) - \hat{u}_{n}(x)|^{2} dx \to 0, \int_{a}^{b} |u'_{n}(x) - \hat{u}'_{n}(x)|^{2} dx \to 0.$$

Согласно определению пространства $L_2[a,b]$ существуют функции $u(x) \in L_2[a,b]$ и $\omega(x) \in L_2[a,b]$ такие, что при $n \to \infty$ $u_n(x) \to u(x)$, а $u_n'(x) \to \omega(x)$ в среднем.

Определение. Пусть $\{u_n(x)\}\in \widetilde{H}^1[a,b]$. Тогда в $L_2[a,b]$ определены элементы u(x) с представителями $\{u'_n(x)\}$. $\omega(x)$ называется обобщенной производной (в смысле Соболева) от u(x). При этом пишут: $\omega(x) = u'(x)$.

Из определения обобщенной производной u'(x) видно, что она определяется не локально, в отдельных точках, а глобально сразу на всем [a,b]. Пусть $u_n(x), v_n(x) \in \widetilde{H}^1[a,b], n=1,2,...$ так что $\{u_n(x)\} \in u(x) \in \widetilde{H}^1[a,b], \{v_n(x)\} \in u(x)$

 $\in v(x) \in \widetilde{H}^1[a,b]$. Перейдем к пределу при $n \to \infty$ в равенствах.

$$(u_n, v_n) = \int_a^b u_n(x)v_n(x)dx + \int_a^b u'_n(x)v'_n(x)dx,$$
 (3)

$$||u_n|| = \left\{ \int_a^b u_n^2(x) dx + \int_a^b u_n'^2(x) dx \right\}^{\frac{1}{2}}$$
 (4)

и, согласно теореме о пополнении и определению интеграла Лебега, придем к формулам (1), (2), где теперь производные понимаются в обобщенном смысле, а интеграл – в смысле Лебега.

Определение. Функция x(t), определенная на [a,b], называется финитной, если найдется [a',b'], a < a',b < b', вне которого $x(t) \equiv 0$. (Функция финитна на $(-\infty,\infty)$, если она равна нулю вне некоторого отрезка).

Пусть $C^1[a,b]$ - множество всех непрерывно дифференцируемых на [a,b] финитных функций v(x). Если теперь u(x) непрерывно дифференцируема на [a,b], то для произвольной функции $v(x) \in C^1[a,b]$ справедливо следующее интегральное тождество:

$$\int_{a}^{b} u(x)v'(x)dx = -\int_{a}^{b} u'(x)v(x)dx,$$
(5)

проверяемое интегрированием по частям. Этим тождеством производная u'(x) полностью определяется. Допустим, что, кроме того, для любых $v(x) \in \overset{0}{C}{}^1[a,b]$ и некоторой непрерывной на [a,b] функции $\omega(x)$

$$\int_{a}^{b} u(x)v'(x)dx = -\int_{a}^{b} \omega(x)v(x)dx,$$
(6)

Вычитая эти тождества, получим, что для любых $v(x) \in \overset{0}{C}^1[a,b]$

$$\int_{a}^{b} [u'(x) - \omega(x)]v(x)dx = 0.$$

Отсюда, вследствие плотности $C^1[a,b]$ в $\mathcal{L}[a,b]$, $\omega(x) = u'(x)$ на [a,b]. Оказывается, интегральное тождество (6) можно принять за определение обобщенной производной.

Справедлива следующая лемма.

Лемма 1. Если $u \in H^1[a,b]$, то для любых $v \in C^1[a,b]$ справедливо тождество (5).

Доказательство. Пусть $\{u_n(x)\} \in u(x)$, тогда для всех $v \in C^1[a,b]$ имеем (5)

$$\int_a^b u_n(x)v'(x)dx = -\int_a^b u'_n(x)v(x)dx$$

Вследствие свойства непрерывности скалярного произведения в последнем равенстве можно перейти к пределу при $n \to \infty$. В результате мы получим тождество (5) для любой функции $u \in H^1[a,b]$.

Лемма 2. Пусть даны $u(x) \in H^1[a,b], \ \omega \in L_2[a,b]$ такие, что для всех $v(x) \in C^1[a,b]$ справедливо тождество (6). Тогда $u'(x) = \omega(x)$ (обобщенная производная).

Доказательство. Пусть $\{u_n(x)\} \in u(x)$.ю а $\{\omega_n(x)\} \in \omega(x)$. Тогда

$$\int_{a}^{b} u_{n}(x)v'(x) dx + \int_{a}^{b} \omega_{n}(x) v(x) dx = \int_{a}^{b} [u'_{n}(x) - \omega_{n}(x)] v(x) dx \to 0$$

90

при $n o \infty$ для любого $v \in \overset{\scriptscriptstyle{0}}{C^1}[a,b]$.

Пусть $z(x) \in L_2[a,b]$ - класс, представителями которого является $\{u_n'(x) - \omega_n(x)\}$. Тогда

$$\int_{a}^{b} z(x)v(x)dx = 0$$
 для любых $v \in C^{1}[a,b]$.

Отсюда $z(x) \equiv 0$.

Теорема 1. $H^1[a,b]$ вложено в C[a,b].

Доказательство. Пусть u(x) непрерывно дифференцируема на [a,b]. Согласно теореме о среднем, вследствие непрерывности u(x), найдется точка $\xi \in [a,b]$ такая, что

$$u(\xi) = \frac{1}{b-a} \int_a^b u(s) ds.$$

Поэтому на [a,b] справедливо следующее тождество:

$$u(x) = \int_{\xi}^{x} u'(s)ds + \frac{1}{b-a} \int_{a}^{b} u(s)ds.$$

С помощью неравенства Коши – Буняковского имеем:

$$|u(x)| \leq$$

$$\int_{a}^{b} |u'(s)| ds + \frac{1}{b-a} \int_{a}^{b} |u(s)| ds \leq \sqrt{b-a} \left(\int_{a}^{b} u'^{2}(s) ds \right)^{\frac{1}{2}} + + \frac{1}{\sqrt{b-a}} \left(\int_{a}^{b} u^{2}(s) ds \right)^{\frac{1}{2}} \leq k \|u\|_{\widetilde{H}^{1}[a,b]},$$
где $k = max \left(\sqrt{b-a}, \frac{1}{\sqrt{b-a}} \right).$

Следовательно, для любой непрерывно дифференцируемой на [a,b] функции u(x) справедливо неравенство.

$$||u||_{C[a,b]} \le k||u||_{\tilde{H}^1[a,b]} \tag{7}$$

Пусть теперь последовательность $\{u_n(x)\}\in \widetilde{H}^1[a,b]$ - фундаментальная в метрике $\widetilde{H}^1[a,b]$. Тогда

$$||u_n - u_m||_{C[a,b]} \le k||u_n - u_m||_{\widetilde{H}^1[a,b]} \to 0$$
 при $n, m \to \infty$.

Следовательно, $\{u_n\}$ фундаментальна в смысле равномерной сходимости и, по критерию Коши равномерной сходимости, сходится к $u(x) \in C[a,b]$. Тем более $u_n(x) \to u(x), n \to \infty$ в среднем. Т.о., в классе из $L_2[a,b]$, содержащий $\{u_n(x)\}$ в качестве представителя, содержится непрерывная функция u(x), и, значит, этот класс можно отождествить с u(x). Отождествим элементы $H^1[a,b]$ с непрерывными функциями. Пусть $\{u_n(x)\} \in u(x)$. Переходя в неравенстве $\|u_n\|_{C[a,b]} \le k \|u_n\|_{\widetilde{H}^1[a,b]}$ к пределу при $n \to \infty$, придем к неравенству (7).

Итак, сложение $H^1[a,b]$ в C[a,b] доказано.

Теорема 2. Функции из $H^1[a,b]$ абсолютно непрерывны, т.е. справедлива формула:

$$u(x) = \int_a^x u'(s)ds + u(a) \tag{8}$$

Доказательство. Пусть $\{u_n(x)\} \in u(x) \in H^1[a,b]$. Рассмотри тождество

$$u_n(x) = \int_a^x u_n'(s)ds + u_n(a).$$

Поскольку $u_n(x) \to u(x)$, $u_n(a) \to u(a)$ при $n \to \infty$,

$$\int_{a}^{x} u'_{n}(s) ds \underset{n \to \infty}{\to} \int_{a}^{x} u'(s) ds,$$

где $u'(x) \in L_2[a,b]$ - обобщенная производная функции u(x), то

$$u(x) = \int_{a}^{x} u'(s)ds + u(a).$$

§19 Компактные множества в нормированных пространствах.

Две классические леммы из математического анализа, лемма Больцано – Вейерштрасса и лемма Бореля, служат истоком понятия компактного пространства.

Лемма Больцано — Вейерштрасса. У любой ограниченной последовательности вещественных чисел существует сходящаяся подпоследовательность.

Лемма Бореля. У любого покрытия отрезка числовой прямой интервалами существует конечное подпокрытие.

Выделяют класс пространств, обладающих свойствами из лемм Больцано – Вейерштрасса и Бореля.

Определение. Множество M банахова пространства E называется компактным, если из каждой последовательности $\{x_n\} \subset M$ можно выбрать сходящуюся подпоследовательность, предел которой принадлежит M.

Из этого определения вытекает ряд следствий.

Следствие 1. Всякое компактное множество ограничено.

Допустим, что это не так. Тогда найдется $\{x_n\} \subset M$ такая, что $\|x_n\| > n$. Очевидно, что $\{x_n\}$ не компактна, а это противоречие компактности M. Значит, M ограничено.

Следствие 2. Всякое компактное множество замкнуто.

Действительно, если $\{x_n\} \subset M$ и $x_n \to x_0$, $n \to \infty$, то, так как сама $\{x_n\}$ является своей подпоследовательностью по компактности $M, x_0 \in M$, т.е. M замкнуто.

Возникает вопрос: не является ли всякое ограниченное и замкнутое множество M компактным. В общем случае это не так. Однако во всяком конечномерном банаховом пространстве всякое ограниченное замкнутое бесконечное множество компактно.

Определение. Пусть $\varepsilon > 0$ — заданное число. Множество S в НВП E называется ε - сетью для $M \subset E$, если для любой точки $x \in M$ существует точка $x' \in S$ такая, $||x - x'|| \le \varepsilon$.

Т.о., множество S является ε - сетью, если любой элемент из M может быть с точностью ε приближен к элементу из S.

Другая трактовка этого понятия: шары радиуса ε с центрами в точках из S образуют покрытие пространства X.

Определение. Множество называется вполне ограниченным, если для любого $\varepsilon > 0$ в некотором пространстве E существует конечная ε – сеть.

Теорема 1. Образ компактного множества при непрерывном отображении компактен.

Доказательство. Пусть $f: X \to Y$ — непрерывное отображение, A - компактное множество в X. Возьмем последовательность $y_n \in f(A)$. Тогда существует последовательность $x_n \in A$ такая, что $y_n = f(x_n)$. Из последовательности x_n выбирают сходящуюся подпоследовательность $x_{n_k} \to x_0$. Тогда

$$y_{n_k} = f(x_{n_k}) \to f(x_0)$$

Следствие 1. Образ компактного множества при непрерывном отображении ограничен и замкнут.

Следствие 2. Пусть X - компактное НВП и $f: X \to \mathbb{R}$ - непрерывная числовая функция. Тогда f ограничена и достигает своих точных верхней и нижней граней.

Доказательство. Ограниченность – необходимое свойство компактного множества f(X). Из замкнутости f(X) следует, что точные верхняя и нижняя грани принадлежат множеству значений.

Теорема 2. X – компактное НВП, Y – НВП, то любое непрерывное отображение $f: X \to Y$ равномерно непрерывно.

Доказательство. Предположим, что f не является равномерно непрерывным, т.е. существует $\varepsilon_0 > 0$ такое, что для любого $\delta > 0$ существует $x \in X$ и $x' \in X$ такие, что $\|x - x'\| < \delta_n$, $\|f(x) - f(x'_n)\| \ge \varepsilon_0$. Возьмем последовательность $\delta_n \to 0$ и для каждого n выберем соответствующие x_n и x'_n , т.е. такие, что $\|x_n - x_n'\| < \delta_n$ и

 $\|f(x_n) - f(x_n')\| \ge \varepsilon$. Из последовательности x_n выберем сходящуюся подпоследовательность $x_{n_k} \to x_0$.

Тогда
$$\|x_0 - x_{n_k}'\| \le \|x_0 - x_{n_k}\| + \|x_{n_k} - x_{n_k}'\| \to 0$$
, т.е. $x_{n_k}' \to x_0$. Тогда $f(x_{n_k}) \to f(x_0)$, $f(x_{n_k}') \to f(x_0)$ и значит $\|f(x_{n_k}) - f(x_{n_k}')\| \to 0$,

что противоречит выбору последовательности x_{n_k} .

В частном случае, когда X = [a, b] и $Y = \mathbb{R}$, получаем теорему Кантора.

§20 Относительная компактность (предкомпактность) множеств НВП.

Определение. Множество M нормированного пространства E называется относительно компактным (предкомпактным), если из каждой последовательности $\{x_n\} \subset M$ можно выделить фундаментальную подпоследовательность.

Заметим, что если X банахово, то указанная фундаментальная последовательность, вследствие полноты X, сходится к некоторому элементу $x_0 \in X$, однако не обязательно $x_0 \in M$. Т.о., понятие относительно компактного множества слабее понятия компактного множества.

Определение 1. Будем говорить, что множества $M \subset C[0,1]$ равностепенно непрерывно, если для любого $\varepsilon > 0$ существует $\delta > 0$ такое, что для любых точек $t_1, t_2 \in [0,1]$, для которых $|t_1 - t_2| < \delta$, и любой функции $x \in M$ выполнимо $|x(t_1) - x(t_2)| < \varepsilon$.

Пример. Конечный набор непрерывных функций равностепенно непрерывен.

Определение 2. Множество $M \subset C[0,1]$ называется *равномерно ограниченным*, если существует постоянная константа C такая, что $\max_{0 \le t \le 1} |x(t)| \le C$ для всех $x \in M$, т.е. множество M ограничено в метрическом пространстве C[0,1].

Теорема (Хаусдорфа). Множество M в нормированном пространстве X относительно компактно тогда и только тогда, когда для любого $\varepsilon > 0$ в X существует конечная ε - сеть.

Следствие 1. Если для любого $\varepsilon > 0$ для множества M существует относительно компактная ε - сеть в X, то M относительно компактно.

Следствие 2. Относительно компактное множество ограничено.

Доказательство. Пусть M относительно компактно. Пусть $\varepsilon=1$. Построим конечную ε сеть для $M:\{x_1,x_2,...,x_k\}$. Тогда для любого $x\in M$ найдется x_s такой, что $\|x-x_s\|<1$, и получаем оценку

$$||x|| \le ||x - x_s|| + ||x_s|| < 1 + ||x_s|| \le 1 + \max_{1 \le s \le k} ||x_s||,$$

т.е. М ограничено.

Теорема (Арцела - Асколи). Для того, чтобы множество $M \subset C(\bar{G})$ было относительно компактным, необходимо и достаточно, чтобы функции из M были:

- 1) равномерно ограничены;
- 2) равностепенно непрерывны.

Доказательство необходимости. Равномерная ограниченность функций из M следует из того, что всякое относительно компактное множество ограничено. Покажем, что функции из M равностепенно непрерывны. Возьмем $\varepsilon > 0$, и пусть $M_{\varepsilon} = \left\{ x_1(t), x_2(t), ..., x_{k(\varepsilon)}(t) \right\} - \varepsilon$ — сеть для M. Функции из M_{ε} непрерывны на \bar{G} , а значит, и равномерно непрерывны. Следовательно, для каждого x_i , $i = 1,2,...,k(\varepsilon)$, найдется $\delta_i = \delta_i(\varepsilon) > 0$ такое, что

$$|x_i(t') - x_i(t'')| < \varepsilon, \tag{1}$$

если только $||t'-t''|| < \delta_i$.

Возьмем $\delta = \min_{1 \leq i \leq k(\varepsilon)} \delta_i$, тогда для всех $t', t'' \in \bar{G}$, удовлетворяющих неравенству $\|t' - t''\| < \delta$, имеем неравенство (1) сразу для всех $i = 1, 2, ..., k(\varepsilon)$. Воспользуемся теперь тем, что M_{ε} – это ε - сеть для M: для любого $x \in M$ найдем $x_s \in M_{\varepsilon}$, так что $\|x - x_s\| < \varepsilon$. Если теперь $\|t' - t''\| < \delta$, то сразу для всех x имеем

$$|x(t)' - x(t'')| \le |x(t') - x_s(t')| + |x_s(t') - x_s(t'')| + |x_s(t'') - x(t'')| \le$$

$$\le 2||x - x_s|| + |x_s(t') - x_s(t'')| < 3\varepsilon.$$

Это и означает равностепенную непрерывность функций из M.

Достаточность. Пусть $\{x_n(t)\}$ - произвольная последовательность функций из M. Покажем, что из неё можно выбрать фундаментальную подпоследовательность. Возьмем $\varepsilon > 0$ и по свойству равностепенной непрерывности функций из M найдем $\delta = \delta(\varepsilon) > 0$. Поскольку \bar{G} компактно, то в \bar{G} найдется конечная $\delta(\varepsilon)$ - сеть, т.е. набор точек $\bar{G}_{\delta} = \{t_1, t_2, ..., t_{l(\varepsilon)}\}$ такие, что всякая точка $t \in \bar{G}$ удалена от одной из точек \bar{G}_{δ} на расстояние, не превышающее δ .

Рассмотрим числовую последовательность $\{x_n(t_1)\}$. Она ограничена, т.к. лежит в ограниченном множестве M. По теореме Больцано — Вейерштрассе из нее можно выделить сходящуюся подпоследовательность $\{x_{n'}(t_1)\}$ (n' пробегает подмножество натурального ряда). Возьмем теперь $\{x_{n'}(t)\}$ и рассмотрим ее в точке t_2 . Из $\{x_{n'}(t_2)\}$ снова выделим сходящуюся подпоследовательность $\{x_{n''}(t_2)\}$. Рассмотрим теперь $\{x_{n''}(t)\}$. Продолжая эти рассуждения (всего надо сделать $l(\varepsilon)$ шагов), получим подпоследовательность $\{x_{n_k}(t)\}$ последовательности $\{x_n(t)\}$, сходящуюся во всех точках δ — сети \bar{G}_{δ} .

Покажем, что $\{x_{n_k}(t)\}$ фундаментальна в $C(\bar{G})$. Этим теорема будет доказана.

Возьмем $t \in \bar{G}$ и найдем $t_s \in \bar{G}_\delta$ такое, что $\|t - t_s\| < \delta$. Используя равностепенную непрерывность функции множества M, имеем

$$\left| x_{n_{k+p}}(t) - x_{n_k}(t) \right| \le \left| x_{n_{k+p}}(t) - x_{n_{k+p}}(t_s) \right| + \left| x_{n_{k+p}}(t_s) - x_{n_k}(t_s) \right| + \left| x_{n_k}(t_s) - x_{n_k}(t_s) \right| + \left| x_{n_k}(t_s) - x_{n_k}(t_s) \right|.$$

Но последовательность $\{x_{n_k}(t_s)\}$ сходится и тем более фундаментальна. Значит, существует такой номер $K=K(\varepsilon)$, что если k>K, то $\left|x_{n_{k+p}}(t_s)-x_{n_k}(t_s)\right|<\varepsilon$ для любых натуральных p.

Следовательно, при любых k > K имеем

$$\left| x_{n_{k+p}}(t) - x_{n_k}(t) \right| < 3\varepsilon,$$

откуда

$$\left|x_{n_{k+p}} - x_{n_k}\right| \le 3\varepsilon,$$

т.е. $\{x_{n_k}(t)\}$ фундаментальна в $C(\bar{G})$.

Пример: В C[a,b] рассмотрим множество M функций x(t), непрерывно дифференцируемых на [a,b] и таких, что $x(a)=x_0$ и $|x'(t)|\leq m$ на [a,b]. (Числа x_0 и m одни и те же для всех $x\in M$). Покажем с помощью теоремы Арцела — Асколи, что M относительно компактно.

Всякая функция $x(t) \in M$ представима в виде

$$x(t) = x_0 + \int_a^t x'(s) ds.$$

Отсюда $|x(t)| \le |x_0| + m(b-a)$. Далее,

$$|x(t') - x(t'')| = \left| \int_{t'}^{t''} x'(s) ds \right| \le m|t'' - t'|.$$

Эти неравенства показывают, что функции из M равномерно ограничены и равностепенно непрерывны. Следовательно, M относительно компактно.

Теорема. В пространстве \mathbb{R}^n множество относительно компактно тогда и только тогда, когда оно ограничено.

Теорема. Множество $M \in l_p$, $1 \le p \le ∞$, относительно компактно тогда и только тогда, когда выполнены условия:

- 1) существует число C такое, что $\sum_{i=1}^{\infty}|x_i|^p \leq C$ для любого $x \in M$, т.е. множество M ограничено.
- 2) для любого $\varepsilon>0$ существует номер $n_0(\varepsilon)$ такой, что $\sum_{i=n_0+1}^\infty |x_i|^p \le \varepsilon^p$ для всех $x\in M$.

Теорема. Множество $M \subset L_p[0,1], 1 \le p \le \infty$, является относительно компактным тогда и только тогда, когда оно ограничено и равностепенно непрерывно в среднем, т.е. выполнены условия:

- 1) существует постоянная C такая, что $\int_0^1 |x(t)|^p dt \le C^p$ для каждого $x \in M$;
- 2) для любого $\varepsilon > 0$ существует $\delta > 0$ такое, что при $0 < s < \delta$

$$\int_0^1 |x(t+s) - x(t)|^p dt < \varepsilon^p$$

для всех функций x семейства M.

Глава III. Теория линейных операторов в нормированных векторных пространствах.

§ 1. Линейные ограниченные операторы.

Определение. Пусть X и У – множества произвольной природы. Пусть в X выделено подмножество D, D⊆X. Если каждому элементу x ϵ D ставится в соответствие

определенный элемент у ϵ У, то говорят, что задан оператор у=F(x). При этом множество D называется областью определения оператора F и обозначается D(F). Множество R=R(F)={y ϵ У; $y=F(x), x\epsilon D$ } называется областью значений оператора F.

Схематически действие оператора F можно изобразить следующим образом:

 $X \supseteq D(F) \xrightarrow{F} R(F) \subseteq Y$, что кратко будем записывать так: $F: X \to Y$.

При этом говорят, что элемент у является образом элемента x, а элемент x – прообразом элемента y.

Определение. Два оператора $F: X \to Y$ и $A: X \to Y$ называются равными, если совпадают их области определения (D(F)=D(A)=D) и F(x)=A(x)для всех $x \in D$.

Определение. Оператор A называется расширением оператора F (а оператор F – сужением оператора A), если D(A) ⊃ D(F) и A(x) = F(x) для всех x ∈ D(F).

Определение. Элемент $y_0 \in Y$ называется пределом F(x) при $x \to x_0$, если для любого $\epsilon > 0$ можно указать $\delta = \delta(\epsilon) > 0$, такое, что для всех x, удовлетворяющих неравенству

 $||x-x_0|| < \delta$, имеем $||F(x)-y_0|| < \varepsilon$.

Определение. Оператор $A: X \to Y$ с областью определения D(A) называется линейным, если:

- 1) D(A) линейное многообразие;
- 2) $A(\lambda_1 x_1 + \lambda_2 x_2) = \lambda_1 A x_1 + \lambda_2 A x_2$ для любых $x_1, x_2 \in D$ и любых скаляров λ_1, λ_2 .

Пусть X и У – нормированные пространства и $A: X \to Y$, A – линейный оператор, всюду заданный в X (т.е. D(A)=X).

Определение. Оператор A называется непрерывным в точке $x_0 \in X$, если $Ax \to Ax_0$ при $x \to x_0$.

Теорема 1. Пусть линейный оператор A всюду задан в банаховом пространстве X и со значениями в банаховом пространстве У непрерывен в точке 0∈ X, тогда A непрерывен в любой точке $x_0 \in X$.

Доказательство следует из равенства $Ax-Ax_0 = A(x-x_0)$. Если $x \rightarrow x_0$, то $z = x-x_0 \rightarrow 0$. По непрерывности в нуле $Az \rightarrow 0$, но тогда $Ax-Ax_0 \rightarrow 0$, что и требовалось доказать.

Определение. Пусть Ax — оператор c областью определения D(A) C X и c областью значений R(A) C Y, где X и Y — нормированные пространства. Оператор A будем называть ограниченным, если он переводит всякое ограниченное в X множество из D(A) во множество, ограниченное в Y или если существует постоянная c Y Y0 такая, что для всех X1 Y2 Y3 Y3 выполняется неравенство ограниченности

$$||A\mathbf{x}||_y \le C||x||_x.$$

Пример 1. В пространстве C[a,b] рассмотрим линейный интегральный оператор с непрерыв-ным ядром K(t,s)

$$Ax(t) = \int_{a}^{b} K(t,s)x(s)ds.$$

Покажем, что он является линейным ограниченным оператором в пространстве C[a,b].

Для любой непрерывной функции x(t) Ax(t) есть непрерывная функция от t (как интеграл, зависящий от параметра с непрерывной подынтегральной функцией).

Проверим линейность оператора А:

$$A(x_1 + x_2)(t) = \int_a^b K(t, s)[x_1(s) + x_2(s)]ds = \int_a^b K(t, s)x_1(s)ds + \int_a^b K(t, s)x_2(s)ds =$$

$$= Ax_1(t) + Ax_2(t)$$

Проверим ограниченность оператора А:

$$\begin{split} ||A|| &= \max_{[a,b]} |Ax(t)| = \max_{a \le t \le b} |\int\limits_{a}^{b} K(t,s)x(s)ds| \le C \max_{a \le t \le b} |x(t)| = C||x||, \end{split}$$
 где $C = \max_{a \le t \le b} \int\limits_{a}^{b} |K(t,s)| ds.$

Пример 2. Пусть (T,μ) — пространство с мерой, K(t,s) — измеримая функция на $T \times T$ и существует интеграл

$$\iint_{\mathbb{T}\times\mathbb{T}} |K(t,s)|^2 d\mu_s d\mu_t = M^2 < +\infty.$$

Интегральный оператор A с ядром K(t,s) вида

$$Ax(t) = \int_{T} K(t, s)x(s)d\mu_{s}$$
 (*)

ограничен в пространстве $L_2(T, \mu)$.

В силу неравенства Коши-Буняковского интеграл в (*) существует почти для всех t. Пусть y(t)=Ax(t). Тогда

$$|y(t)|^2 \le \int_T |K(t,s)|^2 d\mu_s \int_T |x(s)|^2 d\mu_s.$$

Интегрируя по t получаем

$$\int_{T} |y(t)|^2 d\mu_t \le M^2 \int_{T} |x(s)|^2 d\mu_s,$$

то есть у $\in L_2(T,\mu)$ и выполнено неравенство ограниченности $\|Ax\| \le M\|x\|$ с постоянной M.

Пример 3. Рассмотрим оператор дифференцирования

А: $C^1[a,b] \to C[a,b]$. Покажем, что оператор дифференцирования в C[a,b] есть линейный неограниченный оператор. Т.к $\frac{d}{dt}(\alpha_1x_1+\alpha_2x_2)=\alpha_1\frac{dx_1}{dt}+\alpha_2\frac{dx_2}{dt}$, то оператор $\frac{d}{dt}$ линеен.

Рассмотрим последовательность $x_n(t) = \sin nt$, $||x_n|| \le 1$ (ограничено)

$$||\frac{dx_n}{dt}|| = \max_{a \le t \le b} |ncosnt| = n, \text{ T. e. } ||Ax_n(t)|| \underset{n \to \infty}{\longrightarrow} \infty.$$

Теорема 2. Пусть А:Х→У, А-линейный оператор, Х,У- банаховы пространства,

D(A)=X. Для того чтобы A был непрерывным, необходимо и достаточно, чтобы он был ограниченным.

Доказательство. Необходимость. Пусть А непрерывен. Тогда в силу его линейности А непрерывен в точке 0. Поэтому в силу непрерывности для $\forall \varepsilon > 0 \; \exists \; \delta > 0, \forall x \; \text{таких, что}$ $||\mathbf{x}|| \leq \delta$

Имеем $||Ax|| \le \varepsilon$. Покажем, что A ограничен, т.е. $\exists c > 0$, что $||Ax|| \le c||x||$.

Возьмем произвольное x,x \neq 0, и построим $x' = \frac{\delta}{2||x||} x$

Т.к.
$$||x'|| = \frac{\delta}{2} < \delta$$
, то $||Ax'|| = ||A\left(\frac{\delta}{2||x||}x\right)|| = \frac{\delta}{2||x||}||Ax|| \le \varepsilon$.

Таким образом, неравенство ограниченности выполнено с постоянной $\frac{2\varepsilon}{\delta}$.

Достамочность. Пусть А ограничен. Тогда имеет место неравенство $||Ax|| \le c||x||$.

Отсюда, если $x \rightarrow 0$, то и $Ax \rightarrow 0$, т.е. А непрерывен в точке 0, т.е. согласно теореме 1, А непрерывен.

§ 2. Пространство линейных операторов.

Пусть A,B,C,... -линейные непрерывные операторы, определенные всюду в нормированном пространстве X и со значениями в нормированном пространстве Y. Определим на множестве всевозможных таких операторов операции сложения операторов и умножения оператора на число. Положим по определению

$$(A+B)x=Ax+Bx$$
,

$$(\lambda A)x = \lambda Ax$$

Упражнение 1. Доказать, что A+B и λA – линейные непрерывные операторы.

Упражнение 2. Доказать, что выполнены все аксиомы линейного пространства.

В получившемся линейном пространстве операторов норму введем следующим образом.

Определение. Пусть A — линейный оператор. Наименьшая из постоянных с, удовлетворяющих неравенству $||Ax||_{y} \le C||x||_{X}$ называется нормой оператора A и обозначается ||A||. При этом

$$|A| = \sup_{\substack{x \in X \\ x \neq 0}} \frac{|Ax||_{y}}{||x||_{X}} = \sup_{||x||_{X} \leq 1} ||Ax||_{y} = \sup_{||x||_{X} = 1} ||Ax||_{y}.$$

Таким образом, по определению, число ||А|| обладает двумя следующими свойствами:

- 1.) для любого $x ||Ax|| \le ||A|| ||X||$;
- 2.) для любого $\varepsilon > 0$ найдется такой элемент x',

$$||\mathbf{A}\mathbf{x}'|| > (||\mathbf{A}|| - \varepsilon)||\mathbf{x}'||$$

Проверим аксиомы нормы:

1.)
$$||A|| = \sup_{||x|| \le 1} ||Ax|| \ge 0$$
, если же $||A|| = 0$, т. е.

 $\sup_{||X|| \le 1} ||Ax|| = 0$, то ||Ax|| = 0, т. е. $Ax \equiv 0$, следовательно A — нулевой оператор.

$$2.)||\lambda A|| = \sup_{||X|| \le 1} ||\lambda \cdot Ax|| = |\lambda| \sup_{||X|| \le 1} ||Ax|| = |\lambda| ||A||$$

3.)
$$||A + B|| = \sup_{||X|| \le 1} ||Ax + Bx|| \le \sup_{||X|| \le 1} ||Ax|| + \sup_{||X|| \le 1} ||Bx|| = ||A|| + ||B||$$

Таким образом, линейная система линейных операторов есть линейное нормированное пространство. Полученное нормированное пространство линейных непрерывных операторов, действующих из всего X в Y принято обозначать L(X,Y).

Определение. Пусть дана последовательность операторов $\{A_n\}$ ⊂ L(X,Y). Будем говорить, что A_n → A ϵ L(X,Y) при n \to ∞ равномерно, если $||A_n - A|| \to 0$, $n \to \infty$.

Т.о. , равномерная сходимость последовательности линейных операторов — это сходимость по норме пространства L(X,Y).

Теорема 1. Если X нормированное, а У банахово, то L(X, У) банахово.

Доказательство. Пусть $\{A_n\}$ - фундаментальная в метрике L(X,Y) последовательность, т.е. для любого $\varepsilon > 0$ существует номер N такой, что для любых n > N и любых натуральных р выполняется неравенство $||A_{n+p} - A|| < \varepsilon$.

Пусть $x \in X$.Рассмотрим последовательность $\{A_n x\}$. Она также фундаментальна, что следует из неравенства

$$||A_{n+p}x - A_nx|| = ||(A_{n+p} - A_n)x|| \le ||A_{n+p} - A_n|| \, ||x||$$

Но У полно, следовательно $\{A_n x\}$ сходится. Положим, что

$$y = \lim_{n \to \infty} A_n x$$

Эта формула ставит в соответствие каждому х ϵX определенный элемент у ϵY , и следовательно, определяет оператор у=Ax.

Из линейности операторов A_n и свойства предела следует, что A- линейный оператор(доказать самостоятельно!). Покажем, что A ограничен. Для этого заметим, что $\{||A_n||\}$ также фундаментальна. Это следует из неравенства

$$||A_{n+p}|| - ||A_n||| \le ||A_{n+p} - A_n||$$

Но тогда $\{||A_n||\}$ ограничена, то есть существует с>0: $||A_n|| \le c$, n=1,2,...

Следовательно, $||A_n x|| \le c||x||$

Переходя в этом числовом неравенстве к пределу при п→∞, получим:

$$||Ax|| \le c||x||$$

Итак, А ограничен, значит, А $\epsilon L(X, Y)$. Теорема доказана.

§ 3. Принцип равномерной ограниченности.

Определение. Пусть дана последовательность $\{A_n\}\subset L(X,Y)$. Будем говорить, что эта последовательность сильно или поточечно сходится к оператору $A\epsilon L(X,Y)$, если для любого $x\epsilon X$ $||A_nx-Ax||\to 0, n\to\infty$.

Отметим, что если $A_n \to A$ при $n \to \infty$ равномерно, то есть по норме L(X, Y), то $A_n \to A$ при $n \to \infty$ сильно. Действительно, это сразу же следует из оценки

$$||A_n x - Ax|| \le ||A_n - A|| \, ||x||$$

Обратное неверно.

Лемма. Пусть $\{A_n\}$ ⊂ L(X,Y), и пусть существует постоянная с>0 и замкнутый шар $B[x_0,r]$ такие, что $||A_nx|| \le c$ для любых х ϵ $B[x_0,r]$ (т.е последовательность $\{A_nx\}$ равномерно ограничена на $B[x_0,r]$). Тогда $\{||A_n||\}$ ограничена.

Доказательство. Возьмем любое $x \in X$, $x \ne 0$. Тогда элемент $\hat{x} = x_0 + \frac{x}{||x||} r \in B[x_0, r]$,т.к.

$$ho(x_0,\hat{x}) = ||\hat{x} - x_0|| = \frac{||x||}{||x||} r = r$$
. Т.к. $\hat{x} \in B[x_0,r]$,то

 $\{A_n\hat{x}\}$ равномерно ограничена $||A_n\hat{x}|| \leq c$ для любого n.

Учитывая, что $||A_n x_0|| \le c$ имеем:

$$c \ge ||A_n \hat{x}|| = ||A_n x_0 + \frac{r}{||x||} ||A_n x|| \ge \frac{r}{||x||} ||A_n x|| - c$$

Отсюда $||A_nx|| \leq \frac{2c}{r}||x||$, и, следовательно, $||A_n|| \leq \frac{2c}{r}$. Лемма доказана.

Теорема 1(принцип равномерной ограниченности). Пусть X- банахово пространство, Y- нормированное пространство, $\{A_n\}\subset L(X,Y)$. Если $\{A_nx\}$ ограничена при каждом фиксированном $x\in X$, то $\{||A_n||\}$ ограничена.

Доказательство. Допустим, что теорема неверна. Тогда $\{||A_nx||\}$ не ограничена ни в каком замкнутом шаре, иначе по лемме $\{||A_n||\}$ была бы ограничена. Фиксируем шар $\overline{B_0}$. В нем $\{||A_nx||\}$ не ограничена. Значит, найдется точка $x_1 \in B_0$ - открытому шару и номер n_1 такие, что $||A_{n_1}x_1|| > 1$.По непрерывности A_{n_1} найдется шар $B_1[x_1, r_1]$ такой , что $||A_{n_1}x|| > 1$ в $\overline{B_1}$.

В $B_1\{\|A_nx\|\}$ также неограниченна, и можно найти $x_2\in B_1$ и $n_2>n_1$, так что $\|A_{n_2}x_2\|>2$ и m. д. B результате этих рассуждений находим $\{x_k\}$ и $\{\bar{B}_k\}$, причем $x_k\in B_k$, а $\bar{B}_0\supset \bar{B}_1\supset \cdots\supset \bar{B}_n\supset \cdots$ и на \bar{B}_k $\|A_{n_k}x\|\geq k$. По теореме о вложенных шарах найдется их общая точка $\bar{x}\in \bar{B}_k$, $k=1,2,\ldots$ Тогда $\|A_{n_k}\bar{x}\|\geq k$, т. е. $\{A_n\bar{x}\}$ не ограничена, а это противоречит условию теоремы. Теорема доказана.

Теорема 2(**Банаха** – **Штейнгауза**). Пусть $\{A_n\} \subset L(X, Y)$, где X-банахово пространство, У-нормированное пространство. Для того, чтобы $A_n \to A \in L(X, Y), n \to \infty$, сильно, необходимо и достаточно, чтобы:

 $1)\{\|A_n\|\}$ была ограничена;

 $2)A_n \to A$, $n \to \infty$, сильно на некотором линейном многообразии X, плотном в X.

Доказательство. Необходимость. Из условия $A_n x \to Ax$, $n \to \infty, x \in X$, следует, что $\|A_n x\| \to \|Ax\|$, $n \to \infty$, а потому $\{\|A_n x\|\}$ ограничена. Из принципа равномерной ограниченности получаем ограниченность $\{\|A_n\|\}$. В качестве X' можно взять X. Необходимость доказана.

Достаточность. Пусть $x \in X$, но $x \notin X'$. Зададим $\varepsilon > 0$ и найдем $x' \in X'$ такое, что $\|x - x'\| < \varepsilon$ (определение плотности $x' \in X$). Пусть, далее, c=sup $\|A_n\|$,n=0,1,2,..., где $A_0 = A$.

Покажем, что $A_n \to A$, $n \to \infty$, сильно:

$$||A_n x - Ax|| = ||A_n (x - x') + (A_n x' - Ax') + A(x' - x)|| \le$$

$$\le ||A_n|| ||x - x'|| + ||A_n x' - Ax'|| + ||A|| ||x' - x|| = 2c\varepsilon + ||A_n x' - Ax'||.$$

Воспользуемся сходимостью $\{A_nx'\}$ к Ax'. Найдем номер N такой, что при любых n>N , будет $\|A_nx'-Ax'\|<\varepsilon$. Тогда для всех n>N $\|A_nx-Ax\|<(2c+1)\varepsilon$, что доказывает достаточность.

§ 4. Обратные операторы.

Многие задачи могут быть записаны в виде уравнений:

$$Ax=y \tag{1}$$

где x - неизвестная функция из некоторого пространства X, y - известная функция из некоторого пространства Y, A - заданный линейный оператор из пространства X в пространство Y.

При исследовании уравнений (1) необходимо по возможности дать ответы на следующие вопросы:

- 1) существует ли решение (1) для произвольного у;
- 2) единственно ли это решение;
- 3) если не единственно, то сколько решений существует;
- 4) если не для любого у существует решение, то какие условия нужно наложить на у для существования решения;
- 5) как найти х точно или приближенно.

Определение. Пусть A:X \to Y. Оператор B:У \to X называется правым обратным к оператору A, если AB= I_y . Оператор B называется левым обратным к оператору A, если BA= I_X . Оператор B называется обратным к A (обозначается A⁻¹) , если является одновременно левым обратным и правым обратным.

Определение. Множество $N(A)=Ker=\{x\mid x\in D(A), Ax=0\}$ называется ядром оператора.

Теорема 1. Для линейного оператора А следующие утверждения эквивалентны:

- 1) решение уравнения Ax=y единственно для любого $y \in R(A)$.
- 2) $N(A)=Ker A=\{0\}$
- 3) Для оператора А существует левый обратный оператор.

Доказательство. 1)=> 2) Положим y=0. Тогда имеем уравнение $Ax=0 => N(A)=\{0\}$.

2)=> 1) Если $Ax_1 = y$ и $Ax_2 = y$, то есть x_1 и x_2 - два решения, то

$$A(x_1 - x_2) = 0 \Rightarrow x_1 - x_2 = 0 \Rightarrow x_1 = x_2$$

1)=> 3) Для у ϵ R(A) существует и единственно решение уравнения

Ax=y. Построим оператор B, который $y \in R(A)$ ставит в соответствие решение x.

(Для остальных у оператор В определен произвольным образом или вообще не определен). Тогда если y=Ax, то по построению By=BAx, т.е. $BA=I_X$.

3)=>1) Пусть существует левый обратный оператор В к оператору А. Если $Ax_1=y$, $Ax_2=y$, то $x_1=By$, $x_2=By$, т.е. $x_1=x_2$.

Теорема доказана.

Теорема 2. Для линейного оператора А следующие утверждения эквивалентны:

- 1) решение уравнения Ax=y существует для любого $y \in Y$.
- 2) R(A)=Y.
- 3) Для оператора А существует правый обратный оператор В.

Доказательство. 1) \Leftrightarrow 2). Эквивалентность 1) \Leftrightarrow 2) следует из определения множества R(A).

- $I)\Leftrightarrow 3)$. Для каждого $y\in Y$ одно из решений \overline{x} уравнения Ax=y. Тем самым определено отображение $B\colon Y\to X$, $By=\overline{x}$. По построению, если $By=\overline{x}$, то \overline{x} решение уравнения, т.е. $A\overline{x}=y$ или ABy=y, т.е. $AB=I_y$.
- 3 ⇔ 1). Если существует правый обратный оператор B к оператору A, то для любого y ∈ Y точка x = By является решением уравнения Ax = y, т.к. Ax = A(By) = y.

Уравнение Ax = y называется корректно разрешимым, если 1) решение существует для любой правой части; 2) решение единственно; 3) решение непрерывно зависит от правой части.

Из предыдущих рассуждений следует, что корректная разрешимость уравнения Ax = y эквивалентна существованию ограниченного обратного оператора A^{-1} .

Onpedenehue. Оператор A называется обратимым, если для него существует линейный обратный оператор.

Теорема 3. Оператор A^{-1} существует и одновременно ограничен на $\mathbb{R}(A)$ тогда и только тогда, когда для некоторой постоянной m>0 и любого $x\in D(A)$ выполняется неравенство $\|Ax\|\geq m\|x\|$.

Доказательство. Необходимость. Пусть A^{-1} существует и ограничен на $D(A^{-1}) = \mathbb{R}(A)$. Это означает, что найдётся c > 0 такое, что для любого $y \in D(A)$ будет $\|A^{-1}y\| \le C\|y\|$. Пользуясь тем, что y = Ax, получим:

$$||A^{-1}Ax|| \le C||Ax|| => ||Ax|| \ge \frac{1}{C}||x||$$

Достаточность. Если выполнено неравенство (1), то если Ax=0, т.е. $x \in N(A)$, то из (1) следует ||x||=0 > x=0. Значит, $N(A)=\{0\}$. Тогда существует A^{-1} , отображающий $\mathbb{R}(A)$ взаимно однозначно на D(A).

Полагая в (1) $x = A^{-1}y$, получим:

$$||y|| \ge m||A^{-1}y|| => ||A^{-1}y|| \le \frac{1}{m}||y||$$

для всех $y \in \mathbb{R}(A)$, т.е. A^{-1} ограничен на $\mathbb{R}(A)$.

Определение. Будем говорить, что линейный оператор $A: X \to Y$ непрерывно обратим, если:

- 1) $\mathbb{R}(A) = Y$
- 2) существует и ограничен A^{-1} .

Замечание. Непрерывная обратимость оператора A ⇔ корректной разрешимости уравнения вида y = Ax.

Теорема 4. (Банаха об обратном операторе). Если A - ограниченный линейный оператор, отображающий взаимно однозначно банахово пространство X на банахово пространство Y, то обратный оператор A^{-1} ограничен.

Теорема 5. Пусть X - БП, оператор $A \in L(X)$ и ||A|| < 1; тогда оператор I - A непрерывно обратим. При этом справедливы оценки:

$$||(I - A)^{-1}|| \le \frac{1}{1 - ||A||}$$

 $||I - (I - A)^{-1}|| \le \frac{||A||}{1 - ||A||}$

§ 5 Замкнутые операторы

Определение. Прямой суммой Z = X + Y двух линейных пространств X и Y называется совокупность пар $z = (x, y), x \in X, y \in Y$, для которых операции сложения пар и умножения пары на число определяются следующим образом: если $z_2 = (x_2, y_2)$ и α_1, α_2 — скаляры, то $\alpha_1 z_1 + \alpha_2 z_2 = (\alpha_1 x_1 + \alpha_2 x_2, \alpha_1 y_1 + \alpha_2 y_2)$.

Если X и Y — нормированные пространства, то норма в X + Y вводится по формуле $||z|| = ||x||_X + ||y||_Y$.

Пусть оператор y = Ax - оператор с областью определения D(A) в баховом пространстве X и с областью значений в баховом пространстве Y.

Определение. Графиком оператора A называется совокупность пар $\{x, Ax\}$, где $x \in D(A)$. График оператора является подмножеством пространства X + Y.

Определение. Линейный оператор $A: X \to Y$ называется замкнутым, если его график является замкнутым множеством в X + Y. Замкнутость графика оператора A означает, что если $x_n \in D(A)$ и $\{x_n, A_n x_n\} \to (x, y)$, то $x \in D(A)$ и y = Ax.

Так как ||z|| = ||x|| + ||y||, то определение замкнутости оператора A можно записать так: если $x_n \in D(A), x_n \to x$, а $Ax_n \to y$, то $x \in D(A)$ и y = Ax.

Теорема 1. Если D(A) = X и A ограничен (т.е. $A \in L(X,Y)$), то A замкнут.

Доказательство. Пусть $x_n \to x$ и $Ax_n \to y$ при $n \to \infty$. Так как A непрерывен, то $Ax_n \to Ax$, $n \to \infty$. Но предел единственен, поэтому y = Ax.

Теорема 2. Если A замкнут и A^{-1} существует, то A^{-1} также замкнут.

Доказательство. Рассмотрим графики операторов A и A^{-1} :

$$\{x, Ax\}, x \in D(A),$$
$$\{y, A^{-1}y\}, y \in \mathbb{R}(A).$$

105

Но график оператора A^{-1} можно записать в виде $\{Ax,x\}$, $x \in D(A)$, т.е. он получается из графика оператора A перестановкой x и Ax и, значит, также является замкнутым множеством в Y + X. Это и означает замкнутость A^{-1} .

Следствие. Если $A \in L(X,Y)$ и A^{-1} существует, то A^{-1} замкнут. Действительно, по теореме 1 A замкнут, тогда по теореме 2 A^{-1} замкнут.

Теорема 3(Банаха о замкнутом графике). Пусть A - замкнутый линейный оператор, определённый всюду в банаховом пространстве X и со значениями в Банаховом пространстве Y. Тогда оператор A ограничен.

Доказательство. На пространстве X введём новую норму $||x||_1 = ||x|| + ||Ax||$. Докажем, что $||x||_1 \sim ||x||$.

Пусть

$$\|x_n - x_m\|_1 \to 0$$
 при $n, m \to \infty => \|x_n - x_m\| + \|Ax_n - Ax_m\| \to 0 =>$ $=> \|x_n - x_m\| \to 0, \qquad \|Ax_n - Ax_m\| \to 0, \qquad n, m \to \infty$

Тогда x_n есть последовательность Коши в X, а Ax_n - последовательность Коши в Y. Значит $x_n \to x$, $Ax_n \to y$ и в силу замкнутости оператора Ax = y. Тогда $\|x_n - x\|_1 = \|x_n - x\|_1 + \|Ax_n - y\|_1 \to 0$. $\Rightarrow \|x\|_1 \sim \|x\|$.

Поэтому $\|x\|_1 \le C\|x\| => \|x\| + \|Ax\| \le C\|x\| => \|Ax\| \le C_1\|x\| =>$ $=> \|A\| \le C_1 - \text{ ограничен}.$

Следствие 1. Если A - замкнутый оператор, отображающий банахово пространство X на банахово пространство Y взаимно однозначно, т.е R(A) = Y, то оператор A^{-1} ограничен.

Доказательство. По условию теоремы D(A) = X и A - замкнут. По теореме о замкнутом графике A ограничен. По теореме Банаха $A^{-1} \in L(X,Y)$

Следствие 2(об эквивалентных нормах). Пусть на некотором линейном пространстве E заданы две нормы $\|x\|_1$ и $\|x\|_2$, по отношению к каждой из которых E - банахово пространство. Если одна из норм подчинена другой, то эти нормы эквивалентны.

Доказательство. Обозначим через X_1 пространство E с нормой $||x||_1$, а через X_2 - пространство E с нормой $||x||_2$.

Пусть, например, $\|\cdot\|_1$ подчинена $\|\cdot\|_2$. Это означает, что существует постоянная c>0 такая, что для всех x

$$||x||_1 \le c||x||_2. \tag{*}$$

Определим оператор A, отображающий X_1 на X_2 по формуле Ax = x (слева $x \in X$ как элемент из X_1 , а справа он же как элемент из X_2). Очевидно, $D(A) = X_1$, A — линеен и отображает X_1 взаимно однозначно на $R(A) = X_2$. Неравенство (*) означает, что $\|A\| \le C$, т. е. A ограничен. В силу следствия 1 $A^{-1} \in L(X_1, X_2)$, т.е.

$$||x||_2 \le ||A^{-1}|| ||x||_1$$

Поэтому $c_1 \|x\|_2 \le \|x\|_1 \le c \|x\|_2$, где $c_1 = \|A^{-1}\|^{-1}$. Это и означает эквивалентность норм.

§6 Теорема Хана-Банаха и её следствия.

Пусть X - НВП. Всякий оператор $f: X \to R$ называется функционалом. Линейным функционалом называется функционал, удовлетворяющий условию $f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)$

- 1) Линейный функционал на нормированном пространстве X называется ограниченным, если существует постоянная c>0 такая, справедливо неравенство $|f(x)| \le C ||x||$.
- 2) Нормой ограниченного линейного функционала f называется наименьшая из констант C, при которых справедливо неравенство ограниченности, т.е.

$$||f|| = \inf_{x \neq 0} C = \sup_{x \neq 0} \frac{|f(x)|}{||x||}$$

Определение. Пространство L(X,Y) линейных ограниченных функционалов на X называется сопряженным к пространству X и обозначается X^* .

Сопряженное пространство является полным нормированным пространством.

Определение. Пусть $L \subset X$ — подпространство НВП X и пусть на L задан линейный ограниченный функционал f_0 . Продолжением функционала f_0 называется линейный ограниченный функционал f на X такой, что $f(x) = f_0(x)$ для $x \in L$.

Лемма (об элементарном продолжении). Пусть X - НВП, а L - линейное многообразие в X, и пусть на L задан линейный ограниченный функционал f. Пусть $x_0 \notin L$ и L_1 - линейное многообразие всевозможных элементов вида $y + tx_0$, где $y \in L$, $t \in \mathbb{R}$. Тогда существует линейный ограниченный функционал f_1 , определённый на L_1 , совпадающий с f на L и такой, что $||f_1|| = ||f||$.

Теорема (Хана-Банаха). Пусть X — сепарабельное НВП, $x_0 < x$. Пусть на x_0 задан линейный ограниченный функционал f_0 . Тогда существует всюду определённый в X линейный ограниченный функционал f, который и является продолжением функционала f_0 такой, что $||f|| = ||f_0||$.

Замечание. Теорема утверждает, что всякий линейный ограниченный функционал, определённый на некотором линейном многообразии, можно продолжить на всё пространство с сохранением нормы.

Доказательство. Так как X сепарабельно, то существует X' - счётное, плотное в X множество. Занумеруем в последовательность $x_0, x_1, x_2...$ те элементы X', которые не попали в $D(f_0)$. Затем, согласно лемме об элементарном продолжении, последовательно продолжаем f_0 на $X_1 = X_0 + \{X_0\}$, затем на $X_2 = X_1 + \{X_1\}$ и так далее. В результате мы получим линейный ограниченный функционал f, определённый на $\tilde{X} = VX_k$ - плотном в X линейном многообразии, т.е. $\overline{D(f)} = X$. Тогда утверждение теоремы вытекает из теоремы о продолжении линейного оператора по непрерывности, в которой надо принять $Y = \mathbb{R}$.

Следствие 1. Пусть X - нормированное пространство и $x \in X$, $x \neq 0$. Тогда существует всюду заданный в X линейный ограниченный функционал f такой, что ||f|| = 1, f(x) = ||x||.

Доказательство. Рассмотрим линейное многообразие $L = \{tx\}$, где t пробегает \mathbb{R} . На L определим f так:

$$f(tx) = t||x||$$

Имеем

$$f(x) = ||x||$$
. Для $y = tx$ $|f(y)| = |t| ||x|| = ||tx||$, т.е. $||f|| = 1$.

Далее применяем теорему Хана-Банаха и продолжаем с сохранением нормы f на все X.

Следствие 2. Пусть в нормированном пространстве X задано линейное многообразие L и элемент $x_0 \notin L$ на расстоянии d>0 от L $(d=\inf_{x\neq 0}\|x_0-x\|).$

Тогда существует всюду определённый в X линейный функционал f такой, что:

- 1) f(x) = 0 для любых $x \in L$
- 2) $f(x_0)=1$
- 3) ||f|| = 1/d.

Спедствие 3. Линейное многообразие L не является плотным в банаховом пространстве X тогда и только тогда, когда найдётся $f \in X^*$, $f \neq 0$, такой, что f(x) = 0 для любых $x \in L$.

Следствие 4. Пусть $\{x_k\}_1^n$ – линейная независимая система элементов в нормированном пространстве X. Тогда найденная система линейных, всюду на X определённых, ограниченных функционалов $\{f_l\}_1^n$ такая, что $f_l(x_k) = \delta_{kl}$, k,l=1,...,n.

Такая система называется биортогональной системой.

§7 Сопряженные пространства

Определение. Рассмотрим $L(X, \mathbb{R})$ — банахово пространство линейно ограниченных функционалов, заданных на X. Это пространство называется сопряженным к X и обозначается X^* .

Теорема (Рисса об общем виде линейного ограниченного функционала в H). Пусть H - гильбертово пространство. Для любого линейного ограниченного функционала f, заданного всюду на H, существует единственный элемент $y \in H$ такой, что для всех $x \in H$

$$f(x) = (x, y).$$

При этом ||f|| = ||y||.

Доказательство. Рассмотрим множество L всех элементов $z \in H$ таких, что f(z) = 0. L - подпространство в H.

- 1. Если L = H, то f(x) = 0 для $\forall x \in H$ и можно взять y = 0 и теорема доказана.
- 2. Пусть $L \neq H$. Тогда найдётся $z \perp L$, $z_0 \neq 0$, причём можно считать, что $f(z_0) = 1$ взяв, если потребуется, вместо $z_0 = \frac{z_0}{f(z_0)}$. Пусть теперь $x \in H$, тогда $x f(x)z_0 \in L$, т. к. $f(x f(x)z_0) = f(x) f(x) = 0$.

Следовательно, $x - f(x)z_0 \perp z_0$, откуда

$$0 = (x - f(x)z_0, z_0) = (x, z_0) - f(x)||z_0||^2$$

Отсюда

$$f(x) = \frac{(x, z_0)}{\|z_0\|^2} = \left(x, \frac{z_0}{\|z_0\|^2}\right).$$

Итак, можно принять $y = z_0/\|z_0\|^2$. Покажем, что $\|f\| = \|y\|$. Действительно, $|f(x)| = |(x,y)| \le \|x\| \|y\|$ по неравенству Коши-Буняковского. Из определения нормы f имеем $\|f\| \le \|y\|$. Но кроме того,

$$||f|| = \sup_{x \neq 0} \frac{|f(x)|}{||x||} = > ||f|| \ge \frac{|f(x)|}{||x||}, \forall x \in H$$

 Π усть $x = y => \|f\| \ge \frac{|f(y)|}{\|y\|} = \frac{|(y,y)|}{\|y\|} = \|y\| => \|f\| \ge \|y\|$. Поэтому $\|f\| = \|y\|$. Докажем единственность.

Если $f(x)=(x,y_1)=(x,y_2)$, то $(x,y_1-y_2)=0$ для любых $x\in H$. Возьмём $x=y_1-y_2=>=>\|y_1-y_2\|^2=0=>y_1-y_2=0$

Замечание. Теорема Рисса указывает на возможность установления взаимно однозначного соответствия между пространствами H и H^* , сохраняющего норму. В вещественном случае это соответствие линейно. В комплексном случае это соответствие является "полулинейным" в следующем смысле:

если
$$f_1 \leftrightarrow y_1$$
, а $f_2 \leftrightarrow y_2$, то $\beta_1 f_1 + \beta_2 f_2 \leftrightarrow \overline{\beta_1} y_1 + \overline{\beta_2} y_2$.

С точностью до этого взаимно однозначного соответствия можно принять $H^* = H$, т.е. пространство, сопряженное к гильбертову пространству H, "совпадает" с H. В этом смысле можно говорить о самосопряжённости гильбертова пространства.

Теорема Рисса эффективно применяется в теории разрешимости граничных задач для уравнений с частными производными.

Определение. Будем говорить, что гильбертово пространство \widehat{H} вложено в гильбертово пространство H, если из $x \in \widehat{H}$ следует, что $x \in H$, причём существует постоянная k > 0 такая, что для всех $x \in \widehat{H}$

$$||x||_H \leq k||x||_{\widehat{H}}$$

Имеет место следующее следствие из теоремы Рисса.

Теорема. Если гильбертово пространство \widehat{H} вложено в гильбертово пространство H, то для каждого элемента $y \in H$ найдётся единственный элемент $x \in \widehat{H}$ такой, что для всех $z \in \widehat{H}$ имеет место тождество $(x,z)_{\widehat{H}} = (y,z)_H$.

Тождество это определяет оператор $A \in L(H, \widehat{H})$ такой, что для всех x = Ay; при этом $||A|| \le k$.

Доказательство. При каждом фиксированном $y \in H$ выражение $(y, z)_H$ при всевозможных $z \in \widehat{H}$ определяет линейный ограниченный функционал на \widehat{H} . Линейность функционала очевидна. Его ограниченность вытекает из оценки

$$|(y,z)_H| \le ||y||_H ||z||_H \le ||y||_H k ||z||_{\widehat{H}}$$

По теореме Рисса существует единственный элемент $x \in \widehat{H}$ такой, что $(y,z)_H = (x,z)_{\widehat{H}}$.

Тем самым всюду на H задан оператор x = Ay. (Доказать линейность A!).

Из доказанного выше неравенства следует, что

$$|(Ay, z)_{\widehat{H}}| = |(x, z)_{\widehat{H}}| = |(y, z)|_{H} \le k ||y||_{H} ||z||_{\widehat{H}}.$$

Полагая здесь, z = Ay, получим

 $||Ay||_{\widehat{H}} \le k||y||_H$, т. е. $||A|| \le k$, и, значит A ограничен.

§8 Сопряженные операторы.

Определение. Сопряженным оператором к линейному оператору $A: X \to Y$ называется оператор A^* , действующий по формуле $A^*f(x) = f(Ax)$ из пространства Y^* в пространство X^*

Определение. Сопряженным оператором к оператору A в гильбертовом пространстве H называется оператор A^* , для которого выполняется равенство

$$(Ax, y) = (x, A^*y)$$

Определение. Оператор $A: H \to H$ называется самосопряженным (или эрмитовым), если $A^* = A$, т.е. если A совпадает со своим сопряжённым.

Теорема 1. Пусть A и B – самосопряжённые операторы в H, а α и β - вещественные числа, тогда $\alpha A + \beta B$ – самосопряжённый оператор в H.

Доказательство. Пользуясь определением оператора $\alpha A + \beta B$, линейностью скалярного произведения и самосопряжённостью A и B получаем

$$((\alpha A + \beta B)x, y) = \alpha(Ax, y) + \beta(Bx, y) = \alpha(x, Ay) + \beta(x, By) = (x, \alpha Ay + \beta By) =$$
$$= (x, (\alpha A + \beta B)y).$$

Теорема 2. Если A самосопряжён, то число (Ax, x) вещественно для любых $x \in H$.

Доказательство. $(Ax, x) = (x, Ax) = \overline{(Ax, x)}$. Комплексное число (Ax, x) совпадает со своим комплексно сопряжённым, и значит, вещественно.

Теорема 3. Если оператор A – самосопряжённый, то

$$||A|| = \sup_{\|x\| \le 1} |(Ax, x)|$$

Доказательств. Пусть $C_A = \sup_{\|x\| \le 1} |(Ax, x)|$. По неравенству Коши —

Буняковского и по свойству нормы линейного оператора имеем

$$|(Ax,x)| \le ||Ax|| ||x|| \le ||A|| ||x||^2 \le ||A||,$$
если $||x|| \le 1$ $\sup_{\|x\| \le 1} |(Ax,x)| \le ||A|| => C_A \le ||A||$ (1)

Докажем теперь противоположное неравенство $||A|| \le C_A$, откуда и будет следовать утверждение теоремы.

Заметим сначала, что для любого $x \in H, x \neq 0$

$$|(Ax, x)| \le C_A ||x||^2$$
 (2)

Действительно, если $||x|| \le 1$, то из определения $\sup C_A \ge |(Ax,x)|$. Если $x \ne 0$, то $(A\frac{x}{||x||},\frac{x}{||x||}) \le C_A$, откуда, по линейности A и свойству 3 скалярного произведения получаем (2).

Рассмотрим следующие тождества:

- 1. (A(x + y), x + y) = (Ax, x) + (Ax, y) + (Ay, x) + (Ay, y) = (Ax, x) + +2Re(Ax, y) + (Ay, y)
- 2. (A(x-y), x-y) = (Ax, x) 2Re(Ax, y) + (Ay, y)

Мы воспользовались тем, что

$$(Ax, y) + (Ay, x) = (Ax, y) + (y, Ax) = (Ax, y) + (\overline{Ax, y}) = 2Re(Ax, y)$$

Вычитая из первого тождества второе, получим

$$4Re(Ax, y) = (A(x + y), x + y) - (A(x - y), x - y)$$

Оценивая по модулю и используя неравенство (2) и равенство параллелограмма, находим

$$4|Re(Ax,y)| \le |(A(x+y),x+y)| + |(A(x-y),x-y)| \le C_A(||x+y||^2 + + ||x-y||^2) = 2C_A(||x||^2 + ||y||^2)$$

Пусть ||x|| = ||y|| = 1, тогда $|Re(Ax, y)| \le C_A$ (3)

Пусть x, ||x|| = 1, таково, что $Ax \neq 0$. Положим в (3) $y = \frac{Ax}{||Ax||}$ получим:

$$\frac{|(Ax, Ax)|}{\|Ax\|} \le C_A, \text{ T. e. } \|Ax\| \le C_A$$

Это тем более верно, если Ax=0. Переходя в неравенстве $\|Ax\| \le C_A$ к $\sup_{\|x\| \le 1}$ пользуясь определением нормы линейного оператора, получим $\|A\| \le C_A$. С учётом (1) это даёт $\|A\| = C_A$, что и требовалось доказать.

§10. Вполне непрерывные (компактные) операторы.

Пусть X и Y – банаховы пространства. Через L(X,Y), как обычно, будем обозначать нормированное пространство линейных ограниченных операторов, действующих из X в Y.

Определение. Линейный оператор $A: X \to Y$ называется компактным или вполне непрерывным, если он любое ограниченное множество в X переводит в множество, относительно компактное в Y.

Вспомним, что оператор A является ограниченным (непрерывным), если он ограниченное множество переводит в ограниченное. Выделение класса ком-пактных операторов основано на том, что ограниченные множества могут не быть относительно компактными.

Определение 2. Множество всех вполне непрерывных операторов из L(X,Y) будем обозначать через $\sigma(X,Y)$.

Теорема 1. $\sigma(X,Y)$ является подпространством в L(X,Y).

Доказательство. Теорема будет доказана, если мы установим, что

 $1)\sigma(X,Y)$ - линейное многообразие в L(X,Y);

 $2)\sigma(X,Y)$ замкнуто.

Докажем 1) Пусть $A_1, A_2 \in \sigma(X, Y)$, а λ_1 и λ_2 -скаляры. Покажем, что $A = \lambda_1 A_1 + \lambda_2 A_2 \in \sigma(X, Y)$. Пусть S-единичный шар в X, AS- его образ при отображении A, и пусть $\{y_n\} \subset AS$, т.е. $y_n == \lambda_1 A_1 x_n + \lambda_2 A_2 x_n$, где $x_n \in S$ (т.е. $||x_n|| \le 1$).

112

Так как A_1 вполне непрерывен, то из последовательности $\{A_1x_n\}$ можно выделить фундаментальную подпоследовательность $\{A_1x_{n'}\}$, где $n' \in N' \subset N$.

Далее, т. к. A_2 вполне непрерывен, то из $\{A_2x_{n'}\}$ можно выделить фундамен-тальную подпоследовательность $\{A_2x_{n''}\}$, $n'' \in N'' \subset N'$. Тогда $\{Ax_{n''}\}$ фундаментальна и, следовательно, AS относительно компактна, т. е. А вполне непрерывен.

Теперь покажем, что $\sigma(X,Y)$ замкнуто. Пусть $\{A_n\} \subset \sigma(X,Y)$ и $A_n \to A$, $n \to \infty$, равномерно, т. е. по норме L(X,Y). Надо доказать, что $A \in \sigma(X,Y)$.

Пусть S-единичный шар в X. Тогда A_nS при каждом п относительно компактно. Положим $\varepsilon_n = \|A - A_n\|$, при любом $x \in S'$ имеем

$$||A_n x - Ax|| \le ||A_n - A|| ||x|| \le ||A_n - A|| = \varepsilon_n.$$

Это означает, что множество A_nS является относительно компактной ε_n -сетью множества AS. Поскольку $\varepsilon_n \to 0$ при $n \to \infty$, то для любого $\varepsilon > 0$ найдется $\varepsilon_n < \varepsilon$, и потому относительно компактная -сеть существует для любого $\varepsilon > 0$.

По следствию из теоремы Хаусдорфа AS относительно компактно, а тогда A вполне непрерывен ,т.е. $A \in \sigma(X, Y)$.

Итак, $\sigma(X, Y)$ — подпространство в L(X, Y). Теорема доказана.

Теорема 2.Если последовательность $A_n \in \sigma(X, Y)$ вполне непрерывных операторов сходится по норме к оператору $A \in \sigma(X, Y)$, то A — вполне непрерывный оператор.

Доказательство. Пусть M- ограниченное множество в X и $||x|| \le c$ для х ϵ M.

Для доказательства относительной компактности множества A(M) воспользуемся теоремой Хаусдорфа и для любого $\varepsilon > 0$ построим конечную ε -сеть для множества A(M). Сначала выберем номер n_0 так, чтобы

 $\|A_{n_0}-A\| \leq \frac{\varepsilon}{2c}$. Множество $A_{n_0}(M)$ относительно компактно. Пусть $S=(S_1,\dots,S_m)$ – конечная $\frac{\varepsilon}{2}$ - сеть для $A_{n_0}(M)$. Покажем, что S является ε -сетью для A(M). Пусть $y\in A(M)$, то есть y=Ax, $x\in A(M)$.

Существует S_i такое, что $\left\|S_i - A_{n_0}x\right\| \leq \frac{\varepsilon}{2}$. Тогда $\left\|y - S_i\right\| \leq \left\|y - A_{n_0}x\right\| + \left\|A_{n_0}x - S_i\right\| \leq \left\|A - A_{n_0}\right\| \left\|x\right\| + \frac{\varepsilon}{2} \leq \frac{\varepsilon}{2c} \cdot c + \frac{\varepsilon}{2} = \varepsilon$, что и требовалось доказать.

Теорема 3. Пусть X — банахово пространство , оператор A — вполне непрерывный, оператор $B \in L(X)$, тогда AB и BA — вполне непрерывные операторы, то есть $\in L(X)$.

Доказательство. Возьмем единичный шар $S=\{||x|| \le 1\}$. Покажем, что

1) ABS – относительно компактное множество. Т.к. В линейный и ограниченный оператор, то BS – ограниченное множество. Под действием вполне непрерывного оператора A: A(BS) – относительно компактное множество.

2) Докажем, что BAS — относительно компактное множество. Поскольку S ограниченное множество , то AS — множество относительно компактное, следовательно, под действием непрерывного оператора B вполне ограниченное множество перейдет на вполне ограниченное множество, то есть B(AS) — относительно компактное. Теорема доказана.

§11. Теория Рисса-Шаудера разрешимости уравнений 2-го рода.

Пусть А-вполне непрерывный линейный оператор, действующий в банаховом пространстве X, т. е. $A: X \to X$. ($A \in \sigma(X, X)$).

Линейное уравнение в X вида

x-Ax=y

(1)

будем называть уравнением 2-го рода.

Наряду с уравнением (1) будем рассматривать соответствующее ему одно-родное уравнение

z-Az=0,

(2)

а также сопряженное уравнение

 $f-A^*f=w$

(3)

и сопряженное однородное уравнение

 ψ - $A^*\psi$ =0

(4)

Все уравнения (1)-(4) являются уравнениями 2-го рода.

Теорема 1(о замкнутости множества значений операторов I-A и I- A^*). Пусть A- линейный вполне непрерывный оператор. Тогда множества значе-ний операторов I-A и I- A^* замкнуты и, значит, являются подпространствами в X и в X^* соответственно.

Доказательство. Пусть $\{y_n\}$ принадлежит R(I-A) — множеству значений оператора I-A. Тогда найдутся $x_n \in X$ такие, что $x_n - Ax_n = y_n$. Пусть $y_n \to y_0$ при $n \to \infty$. Покажем, что $y_0 \in R(I-A)$. Рассмотрим следующие случаи.

1). Если $\{x_n\}$ ограничена, то $\{Ax_n\}$ относительно компактна, откуда следует,

что $\{x_n\}$ также относительно компактна. Это следует из того, что

 $x_n = y_n + Ax_n$, где $\{y_n\}$ сходится, а $\{Ax_n\}$ относительно компактна. Вследст-вие относительной компактности из $\{x_n\}$ можно выделить $\{x_{n'}\}$ - подпоследо-вательность,

сходящуюся к x_0 ; тогда переходя к пределу при $n' \to \infty$ в равен-стве $x_{n'} - Ax_{n'} = y_{n'}$, получим вследствие непрерывности A, что

$$x_0 - Ax_0 = y_0$$
, T. e. $y_0 \in R(I - A)$.

2). Если $\{x_n\}$ не ограничена, то поступим следующим образом. Пусть N-подпространство нулей оператора I-A,т.е. множество всех решений уравнений (2). Введем расстояние

$$d_n = \rho(x_n, N) = \inf_{z \in N} ||x_n - z||.$$

Согласно определению нижней грани в N найдется элемент z_n такой, что

$$d_n \le \|x_n - z_n\| \le \left(1 + \frac{1}{n}\right) d_n$$

(5)

Далее, (I-A) $(x_n - z_n) = y_n$. Если $\{d_n\}$ ограничена, то, как и выше, с заменой x_n на $x_n - z_n$ получаем, что $y_0 \in R(I - A)$.

Оказывается случай неограниченности $\{d_n\}$ не возможен. В самом деле, если

 $\{d_n\}$ не ограничена, то, переходя, если нужно, к подпоследовательности, можно считать, что $d_n \to +\infty$, $n \to \infty$.

Рассмотрим элементы

$$u_n = \frac{x_n - z_n}{\|x_n - z_n\|}$$

Тогда $\|u_n\|=1$ и $(I-A)u_n=rac{y_n}{\|x_n-z_n\|} o 0, n o \infty.$

Так как
$$\left\| \frac{y_n}{\|x_n - z_n\|} \right\| = \frac{\|y_n\|}{\|x_n - z_n\|} \le \frac{\sup_n \|y_n\|}{d_n} \to 0.$$

Как и выше, отсюда следует, что найдется подпоследовательность

 $u_{n'} \rightarrow u_0$, причем $u_0 \in N$. Но

$$|x_{n'}-z_{n'}-||x_{n'}-z_{n'}||u_0=(u_{n'}-u_0)\cdot||x_{n'}-z_{n'}||$$

Причем $z_{n'} + \|x_{n'} - z_{n'}\|u_0 \in N$, следовательно, по неравенству (5) имеем

$$\|u_{n'} - u_0\| \left(1 + \frac{1}{n'}\right) d_{n'} \ge \left\| (u_{n'} - u_0) \|x_{n'} - z_{n'}\| \right\| = \|x_{n'} - \{z_{n'} + \|x_{n'} - z_{n'}\| u_0\} \| \ge d_{n'}$$

откуда $\|U_{n'} - U_0\| \ge \frac{n'}{(n'+1)}$, а это противоречит тому, что $\|U_{n'} - U_0\| \to 0$, $n' \to \infty$. Итак, $\{d_n\}$ ограничена и замкнутостьR(I-A) доказана. Замкнутость $R(I-A^*)$ является следствием вышеизложенного, ибо A^* также вполне непрерывен. Теорема доказана.

Лемма Рисса (о почти перпендикулярности). Пусть N_{n-1} — подпространство нормированного векторного пространства N_n , причем $N_{n-1} \neq N_n$. Тогда для $\forall \varepsilon \in (0,1)$

$$\exists \; z_n \notin N_{n-1}(z_n \in N_n) \; \text{т. ч.} ||z_n|| = 1 \; \text{и} \; ||x-z_n|| > 1-\varepsilon$$
 для всех $x \in N_{n-1}$, $n=2,3,\ldots$

Теорема (первая теорема Фредгольма). Пусть А- линейный вполне непрерывный оператор в банаховом пространстве X. Следующие четыре утверждения эквивалентны:

- 1) уравнение (1) имеет решение при любой правой части у;
- 2) уравнение (2) имеет только тривиальное решение;
- 3) уравнение (3) имеет решение при любой правой части w;
- 4) уравнение (4) имеет только тривиальное решение.
- 5) Если выполнено одно из условий 1) 4), то операторы I A и $I A^*$ непрерывно обратимы.

Доказательство. Доказательство проведем по схеме 1)=>2>>>>>=>4>=>1).

 $I.\ 1) => 2)$. Дано R(I-A) = X, т.е. множество значений оператора (I-A) совпадает с X. Допустим, что 2) не выполнено, т. е. подпространство нулей оператора (I-A) нетривиально:

$$N_1 = \{x \in X : x - Ax = 0\} \neq \{0\}.$$

Пусть $x_1 \in N_1$ и $x_1 \neq 0$. Рассмотрим уравнение $(I - A)x = x_1$.

По условию 1) оно имеет решения. Пусть x_2 — одно из них, т. е. $(I-A)x_2=x_1$. Применим $(I-A)^2x_2=(I-A)x_1=0$, т. е. $x_2\in N_2=\{x\in X\colon (I-A)^2x=0\}$, причем $N_1\subset N_2$ и включение строгое, т.к. $x_2\in N_2$, но $x_2\notin N_1$, иначе оказалось бы, что $x_1=0$ $((I-A)x_2=x_1)$. Продолжая эти рассуждения, получим цепочку подпространств

$$N_1 \subset N_2 \subset \cdots \subset N_n \subset N_{n+1} \subset \cdots$$

строго включенных друг в друга.

Применим лемму Рисса о почти перпендикуляре. Рассмотрим последовательность $\{Az_n\}$. Она относительно компактна, т.к. A вполне непрерывен, а $\{z_n\}$ ограничена. Эта последовательность содержит последовательность Коши.

С другой стороны покажем, что $\{Az_n\}$ не является последователь-ностью Коши. Пусть m>n:

$$\|Az_m - Az_n\| = \|Az_m - z_m + z_m + z_n - z_n - Az_n\| =$$

$$= \|z_m - (I - A)z_m + (I - A)z_n - z_n\| = \|z_m - w\|,$$
 где
$$w = z_n - (I - A)z_n + (I - A)z_m \in N_{m-1},$$
 т.к.
$$(I - A)^{m-1}[z_n - (I - A)z_n + (I - A)z_m] =$$

 $=(I-A)^{m-1}z_n-(I-A)^mz_n+(I-A)^mz_m=0$ (все слагаемые нули, т.к. $(I-A)^kz_l=0$ при $k\geq \geq l$). Поэтому $\|Az_m-Az_n\|>\frac{1}{2}$

Итак, с одной стороны, $\{Az_n\}$ относительно компактна, а с другой—

 $||Az_m - Az_n|| > \frac{1}{2}$. Полученное противоречие показывает, что допущение $N(I - A) \neq \{0\}$ неверно и I доказано.

II. 2)=>3). Дано $N(I-A)=\{0\}$. Нужно доказать, что $R(I-A^*)==X^*$. $R(I-A^*)\subset X^*-$ по определению. Покажем, что

 $X^* \subset R(I-A^*)$. Возьмем любой $f \in X^*$ и рассмотрим выражение f((I-A)x).

Оно определяет линейный ограниченный функционал $\varphi \in X^*$.

Действительно, это выражение определено на X, линейно по x и ограничено (Доказать). Кроме того, оно однозначно по x:

если
$$f((I-A)x_1) = f((I-A)x_2)$$
, то $f((I-A)(x_1-x_2)) = 0$,

откуда, всилу произвольности f, $(I - A)(x_1 - x_2) = 0$, но

$$N(I - A) = \{0\}$$
, и, значит $x_1 = x_2$.

Таким образом $f((I-A)x) = \varphi(x)$, т.е. всякий $f \in X^*$ принадлежит также и $R((I-A^*))$, т.е. 3) доказано.

III. 3)=>4). Эта часть доказательства совпадает с І. Нужно лишь в І A заменить на A^* .

IV. 4)=>1). Дано
$$N((I-A)^*)=\{0\}$$
. Надо доказать, что

R(I-A) = X. Допустим противное, что $R(I-A) \neq X$. Тогда по теореме 1 R(I-A) - подпространство в X. Пусть $y_0 \in X$ и $y_0 \notin R(I-A)$. По следствию 2 из теоремы Хана-Банаха:

(*Следствие 2.* Пусть в нормированном пространстве X задано линейное многообразие L и элемент $x_0 \notin L$ на расстоянии d>0 от L. Тогда существует всюду опеределенный в X линейный функционал f такой, что

- 1) f(x)=0 для любых $x \in L$;
- 2) $f(x_0)=1$.
- 3) $||f|| = \frac{1}{d}$).

найдется $f_0 \in X^*$ такой, что $f_0(y_0) = 1$ и $f_0(y) = 0$ для всех

$$y \in R(I - A)$$
. Но тогда $f_0((I - A)x) = 0$ для всех $x \in X$ или

 $(I-A)^*f_0(x)=0$ и из произвольности х имеем $(I-A)^*f_0=0$, т. е.

 $f_0 \in N((I-A)^*)$ и $f_0 \neq 0$. Полученное противоречие показывает, что верно 1).

V. Если выполнено одно из условий 1)-4) по доказанному выполнены и все остальные, но тогда $N((I-A))=\{0\}$, то есть I-A обратим; R(I-A)=X, и, значит, по теореме Банаха

(*Теорема*. Если A- ограниченный линейный оператор, отображающий взаимно однозначное банахово пространство X на банахово пространство Y, то обратный оператор A^{-1} ограничен.))

I-А непрерывно обратим. То же для A*. Теорема доказана.

Теорема 3 (вторая теорема Фредгольма). Пусть A – линейный вполне непрерывный оператор в X. Тогда уравнение (2) и (4) имеют одинаковое конечное число линейно независимых решений, то есть dim $N(I - A) = \dim N(I - A^*)$

Доказательство. 1. Однородное уравнение только нулевое решение, то есть $N(I - A) = \{0\}$. Тогда и $N(I - A^*) = \{0\}$ и наоброт (смотри доказательство теоремы 2).

2. Пусть теперь эти подпространство ненулевые. Докажем сначала их конечномерность. Пусть M – произвольное ограниченное множество, лежащее в N(I-A), тогда M=AM. Отсюда M относительно компактно. Следовательно, по критерию конечномерности нормированных векторных пространств

(нормированное векторное пространство E конечномерно тогда и только тогда, если единичный шар B(0,1) относительно компактен в E) множество N(I-A) конечномерно. Аналогично дело обстоит с $N(I-A^*)$.

Докажем равенство dim $N(I-A)=\dim N(I-A^*)$ размерностей подпространств нулей операторов I-A и $I-A^*$. Допустим противное, что, например,

$$\dim N(I - A) = n < m = \dim N(I - A^*).$$

Пусть $\{\varphi_i\}_1^n$ – базис в N(I-A).

Следствие 4. Пусть $\{x_k\}_1^n$ - линейная независимая система элементов в нормированном пространстве X. Тогда найдётся система линейных, всюду на X определённых, ограниченных функционалов $\{f_l\}_1^n$ такая, что $f_l(x_k) = \delta_{kl}$, k, l = 1, ..., n.

По следствию 4 из теоремы Хана-Банаха существует $\{r_i\}_1^n \subset X^*$, такая, что $r_i(\varphi_j) = \delta_{ij}$, $i,j=\overline{1,n}$. Пусть, далее, $\{\psi_i\}_1^m$ - базис в $N(I-A^*)$, а $\{z_i\}_1^m \subset X$ - биортогональная к нему система элементов, т.е. $\psi_i(z_j) = \delta_{ij}$, $i,j=\overline{1,m}$.

Рассмотрим оператор $I - \tilde{A}$, где

$$\tilde{A}x = Ax + \sum_{i=1}^{n} r_i(x)z_i \qquad (6)$$

Оператор \tilde{A} вполне непрерывен, как сумма двух вполне непрерывных операторов – оператора \tilde{A} и конечномерного оператора.

Докажем, что $N(I-\tilde{A})=\{0\}$. Действительно, уравнение $x-\tilde{A}x=0$ записывается согласно (6) так:

$$x - Ax = \sum_{i=1}^{n} r_i(x)z_i \quad (7)$$

Применяя к обеим его частям функционал ψ_k , получим

$$0 = (I - A^*)\psi_k(x) = \psi_k(x - Ax) = r_k x$$
 (8)

Мы воспользовались тем, что $\psi_k \in N(I - A^*)$ и биортогональностью систем $\{\psi_i\}_1^m$ и $\{z_i\}_1^m$. Т.к. k произвольно, то все $r_k(x) = 0$ и (7) принимает вид:

$$x - Ax = 0$$

Это означает, что $x \in N(I - A)$, т. е.

$$x = \sum_{i=1}^{n} \xi_i \varphi_i \qquad (9)$$

Применим к обеим частям этого равенства r_l и, пользуясь биортогональностью систем $\{\varphi_i\}_1^n; \{r_l\}_1^n$ и тем, что $r_l(x)=0$, получим $\xi_l=0$. Т.к l произвольно, то x=0. Итак, $N(I-\tilde{A})=\{0\}$. Нетрудно убедиться, что

$$\left(I- ilde{A}
ight)_{\psi_S}^* = (I-A^*)_{\psi_S} - \sum_{i=1}^n \psi_S(\,z_i) r_i = 0$$
 при $S>n$, т. к.

$$\psi_{s} \in N(I - A^{*})$$
 и $\psi_{s}(z_{i}) = 0$ ибо $n < S$.

Оказалось, что $N(I - \tilde{A}^*) \neq \{0\}$, а это противоречит теореме 2. Следовательно, предположение n < m неверно. Аналогичное доказательство проводится в случае n > m с заменой A на A^* . Теорема доказана

Теорема 4. (**Третья теорема Фредгольма**). Пусть A - линейный вполне непрерывный оператор X. Для того, чтобы уравнение (1) имело хоть одно решение, необходимо и достаточно, чтобы для любого решения ψ уравнения (4) выполнялось условие $\psi(y) = 0$.

Доказательство. Если $N(I-A)=\{0\}$, то $N(I-A^*)=\{0\}$ и утверждение теоремы тривиально. Пусть $N(I-A)\neq\{0\}$. Если уравнение (1) имеет решение x_0 , то для всякого $\psi\in N(I-A^*)$ имеем

$$\psi(y) = \psi((I - A)x_0) = (I - A^*)\psi(x_0) = 0$$

Обратно, пусть $\psi(y)=0$ для всех $\psi\in N(I-A^*)$. Допустим, что (1) при данном y решений не имеет, т.е. $y\notin R(I-A)$. Заметим, что R(I-A) замкнуто по теореме 1. По следствию 3 из теоремы Хана-Банаха существует $f\in X^*$ такой, что f(y)=1 и f((I-A)x)=0 для любых $x\in X$, но тогда $(I-A)^*f(x)=0$, и вследствие произвольности x, $(I-A^*)f=0$, т. е. $f\in N(I-A^*)$.

Но тогда по условию теоремы $f(y) = 0 \neq 1$. Полученное противоречие означает, что уравнение (1) разрешимо. Теорема доказана

Замечание. Для уравнения (1) с вполне непрерывным оператором A возможны только три следующие ситуации:

- 1) Оператор I A непрерывно обратим, тогда (1) имеет при любой правой части y единственное решение $x = (I A)^{-1}y$;
- 2) $N(I-A) \neq \{0\}$; если $\psi(y) \neq 0$ хоть для одного решения ψ сопряжённого однородного уравнения (4), то (1) решений не имеет;
- 3) $N(I-A) \neq \{0\}$; если $\psi(y) = 0$ для всех решений ψ уравнения (4), то общее решение уравнения (1) имеет вид $x = x_0 + \sum_{i=1}^n \xi_i \varphi_i$, где x_0 частное решение (1),

 $\{\varphi_i\}_{1}^{n}$ - базис подпространства решений уравнения (2), а n - размерность этого подпространства.

Пусть Ω - область в \mathbb{R}^n . В пространстве $L_2(\Omega)$ рассмотрим интегральное уравнение Фредгольма 2-ого рода:

$$x(t) - \int_{0}^{\infty} K(t, S)x(S)dS = y(t) \quad (10)$$

Предположим, что $\int_{\Omega} \int_{\Omega} |K(t,S)|^2 dt dS < +\infty$. Тогда интегральный оператор K с ядром K(t,S) является компактным и к уравнению (10) применимы ранее доказанные теоремы. (Отметим, что сопряжённым к $L_2(\Omega)$ является $L_2(\Omega)$). Запишем соответствующие уравнению (10) однородное, сопряжённое и сопряжённое однородное уравнения:

$$x(t) - \int_{\Omega} K(t, S)x(s)dS = 0$$
 (11)

$$K(t) - \int_{\Omega} K(S, t)u(S)dS = g(t) \quad (12)$$

$$u(t) - \int_{\Omega} K(S, t)u'(S)dS = 0 \quad (13)$$

Теорема 5 (альтернатива Фредгольма для интегральных уравнений).

Пусть K(t,S) - такое ядро, что интегральный оператор с ядром K(t,S) компактен в $L_2(\Omega)$. Тогда:

- 1) Однородные уравнения (11) и (13) имеют только нулевые решения; уравнения (10) и (12) разрешимы для любой правой части.
- 2) Уравнение (11) имеет конечное число n линейно независимых решений $x_1, x_2, ..., x_n$; уравнение (13) имеет также n линейно независимых решений $u_1, u_2, ..., u_n$; уравнение (10) разрешимо для данной функции $y \in L_2(\Omega)$ тогда и только тогда, когда

$$\int_{\Omega} y(t)u_k(t)dt = 0, \quad k = 1, 2, ..., n$$
 (14)

При выполнении условия (14) общее решение уравнения (10) имеет вид

 $x = x_0 + \sum_{i=1}^n C_k X_k$, где X_0 - частное решение уравнения (10), C_k - произвольные постоянные.

Глава IV. Элементы спектральной теории линейных операторов.

§1. Собственные значения и собственные векторы линейных операторов.

Определение и основные свойства. Пусть X – линейное пространство и A- линейный оператор, действующий в X, с областью определения D(A).

Определение. Число λ называется собственным значением оператора A, если существует вектор $x \neq 0$, $x \in D(A)$, такой, что

$$Ax = \lambda x \tag{1}$$

При этом вектор x называется собственным вектором оператора A, соответствующим собственному значению λ .

Собственные значения и собственные векторы линейных операторов играют важную роль во многих областях математики и ее приложений, особенно в математической физике. Ниже будут приведены различного рода примеры. Отметим пока, что не всякий линейный оператор имеет собственные значения.

Пример. В линейном пространстве R^2 двумерных вещественных столбцов (т.е. на плоскости) рассмотрим линейный оператор A, задаваемый матрицей

$$\begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$

Оператор A осуществляет поворот плоскости на 45° вокруг начала координат, и геометрически ясно, что он не имеет собственных векторов. (Проверьте это утверждение аналитически).

Пусть x – собственный вектор оператора A, отвечающий собственному значению λ . Тогда из (1) следует, что λx , где $\lambda \neq 0$, также является собственным вектором A, отвечающим λ . В развитие идеи предлагаем следующее упражнение.

Упражнение 1. Покажите, что множество всех собственных векторов, соответствующих одному и тому же собственному значению λ , дополненное нулевым вектором 0, образует в X линейное многообразие — собственное линейное многообразие, отвечающее собственному значению λ .

Упражнение 2. Найдите собственные значения и отвечающие им собственные линейные многообразия линейного оператора $A \ B \ R^3$, заданного матрицей

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

Докажем теперь следующее предложение.

Теорема. Собственные векторы линейного оператора, отвечающие различным его собственным значениям, линейно независимы.

Доказательство. Один собственный вектор линейного оператора x_1 , отвечающий собственному значению λ_1 , линейно независим, так как $x_1 \neq 0$. Проведем доказательство по индукции. Пусть известно, что любые k собственных значений оператора A линейно независимы. Допустим, что тем не менее существует линейно зависимая система из k+1 собственных векторов x_1, \dots, x_k, x_{k+1} , отвечающих соответственно собственным значениям $\lambda_1, \dots \lambda_k, \lambda_{k+1}$, где $\lambda_i \neq \lambda_j$ ($i \neq j$,

i,j=1,2,...,k+1). Тогда найдутся скаляры $c_1,...,c_k,c_{k+1}$, не все равные по модулю одновременно и такие, что

$$c_1 x_1 + ... + c_k x_k + c_{k+1} x_{k+1} = 0$$
 (2)

Применяя к этому равенству оператор $A - \lambda_{k+1} I$, получим

$$(A - \lambda_{k+1}I) \sum_{i=1}^{k+1} c_i x_i = \sum_{i=1}^{k+1} c_i A x_i - \sum_{i=1}^{k+1} c_i \lambda_{k+1} x_i = \sum_{i=1}^{k+1} c_i (\lambda_i - \lambda_{k+1}) x_i =$$

$$= \sum_{i=1}^{k} c_i (\lambda_i - \lambda_{k+1}) x_i = 0.$$

Но $x_1, ..., x_k$ линейно независимы по предположению индукции и следовательно,

$$c_i(\lambda_i - \lambda_{k+1}) = 0, \qquad i = 1, ..., k.$$

Отсюда $c_i=0$ (i=1,...,k), так как $\lambda_i\neq\lambda_{k+1}$ при $i\leq k$. Обращаясь к (2), видим, что $c_{k+1}=0$. Оказалось, что все $c_i=0$ (i=1,...,k,k+1).

Это противоречит тому, что не все c_i равны нулю одновременно. Следовательно, сделанное допущение о линейной зависимости $x_1, ..., x_k, x_{k+1}$ неверно.

Предлагаем несколько упражнений на определение собственных значений и собственных векторов линейных операторов.

Упражнение 3. Найдите собственные значения и собственные вектора нулевого оператора 0 и тождественного оператора I.

Упражнение 4. В линейном пространстве трехмерных комплексных столбцов найдите собственные значения и собственные векторы линейного оператора A, заданного матрицей:

$$\begin{bmatrix} 1 & 1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Упражнение 5. В вещественном линейном пространстве $C[-\pi,\pi]$ найдите собственные значения и собственные векторы(собственные функции) интегрального оператора $A(D(A) = C[-\pi,\pi])$:

$$(Ax)(t) = \int_{-\pi}^{\pi} \cos(t - s) x(s) ds$$

Упражнение 6. В вещественном линейном пространстве $C[0,\pi]$ найдите собственные векторы(собственные функции) дифференциального оператора Ax=x''(t) в следующих случаях:

- 1) $D(A)=\{x: x''(t) \in C[0,\pi], x(0)=x(\pi)=0\};$
- 2) $D(A)=\{x: x''(t) \in C[0,\pi], x'(0)=x'(\pi)=0\};$
- 3) $D(A) = \{x: x''(t) \in C[0,\pi], x(0) = x(\pi), x'(0) = x'(\pi) \}.$

§2. Собственные значения и собственные векторы линейных операторов в конечномерных пространствах.

Исследование задачи о собственных значениях и собственных векторах линейных операторов, действующих в конечномерных линейных пространствах, составляет одну из глав линейной алгебры. Здесь мы ограничимся лишь беглым изложением основных результатов.

Пусть X — m-мерное пространство и A — линейный оператор (D(A)=X); R(A) \subset X). Фиксируем в X базис $\{e_k\}_1^m$. Пусть

$$Ae_j = \sum_{i=1}^{m} \alpha_{ij} e_i , j = 1, ..., m$$
 (1)

(разложения образов базисных векторов по базису). Матрица $||\alpha_{ij}||$ называется матрицей A (в базисе $\{e_k\}$). Теперь для любого

$$\mathbf{x} = \sum_{j=1}^{n} \xi_j \, e_j \, \epsilon \, X$$

имеем

$$Ax = \sum_{i=1}^{m} (\sum_{j=1}^{m} \alpha_{ij} \xi_j) e_j$$
 (2)

Следовательно, уравнение $Ax=\lambda x$ в координатах имеет вид (δ_{ij} - символ Кронекера)

$$\sum_{j=1}^{m} \alpha_{ij} \xi_{j} = \lambda \xi_{j} \text{ или } \sum_{j=1}^{m} (\alpha_{ij} - \lambda \delta_{ij}) \xi_{j} = 0, \quad i = 1, ..., m.$$
 (3)

Для того, чтобы система (3) имела нетривиальное решение(ведь разыскиваются векторы $x \neq 0$), необходимо и достаточно, чтобы

$$det(\alpha_{ij} - \lambda \delta_{ij}) = 0 (4)$$

Уравнение (4) называется характеристическим уравнением и представляет собой уравнение m-й степени относительно λ (коэффициент при λ^m равен 1). Все собственные значения A и только они являются корнями характеристического уравнения. В случае комплексного X характеристическое уравнение имеет ровно m корней с учетом их кратности. Перейдем к определению собственных векторов. Пусть λ_0 - одно из собственных значений A. Тогда система (3) определяет собственное линейное многообразие, отвечающее λ_0 (система (3) при $\lambda = \lambda_0$ имеет нетривиальные решения, так как ее детерминант при $\lambda = \lambda_0$ обращается в нуль). Согласно теореме пункта 1 собственные векторы, отвечающие различным собственным значениям, линейно независимы.

Пусть \hat{X} — линейное многообразие в X, натянутое на всевозможные собственные векторы A. В комплексном случае $\hat{X} \neq \{0\}$. Важен случай, когда $\hat{X} = X$, то есть из собственных векторов оператора A можно набрать базис в X. В этом случае в базисе $\{f_k\}_1^m$ из собственных векторов $Af_k = \lambda_k f_k$ ($k=1,\ldots,m$) λ_k могут частично или все совпадать, матрица оператора A диагональна и

$$Ax = \sum_{i=1}^{m} \lambda_i \xi_i \, e_i$$

Так, в частности, обстоит дело, когда пространство X унитарно и A самосопряжен, то есть для всех $x,y \in X$ имеет место равенство (Ax,y) = (x,Ay).

Кроме того, собственные значения самосопряженного оператора все вещественны, а базис $\{f_k\}_1^m$ из собственных векторов оператора А можно выбрать ортогональным(или ортонормированным).

В общем случае собственных векторов оператора A может оказаться недостаточно для составления из них базиса в X.

Упражнение. Найдите собственные значения и собственные векторы оператора A, заданного в линейном пространстве двумерных комплексных столбцов формулой

$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

Матрица А является простейшей жордановой клеткой. Известная теорема о приведении произвольной матрицы к жордановой нормальной форме позволяет до конца разобраться в проблеме построения наиболее удобного базиса.

Определение 1. Пусть λ — собственное значение A. Линейное многообразие, порождаемое векторами собственного подпространства, отвечающего λ , и всевозможными присоединениями к ним векторами называется корневым линейным многообразием оператора A, отвечающим λ .

Теорема(Жордан). Во всяком комплексном конечномерном линейном пространстве X можно набрать базис, состоящий из собственных и присоединенных векторов любого линейного оператора A.

§3. Собственные значения и собственные векторы вполне непрерывных операторов.

Пусть X – банахово пространство и $A \in \sigma(X)$, то есть A – вполне непрерывный линейный оператор, действующий в X. Пусть, кроме того, λ – собственное значение оператора A, а X_{λ} - собственное подпространство, отвечающее λ .

Теорема 1. Если А вполне непрерывен, то его собственное подпространство X_{λ} , отвечающее собственному значению $\lambda \neq 0$, конечномерно.

Доказательство. Пусть $S_1(0)$ — замкнутый единичный шар в X_λ . Возьмем $\{X_n \subset S_1(0)\}$. Вследствие полной непрерывности A последовательность $\{Ax_n\}$ компактна, но $x_n = \frac{1}{\lambda_n}Ax_n$, откуда и $\{x_n\}$ компактна. Таким образом, единичный шар в X_λ компактен. Отсюда следует конечномерность подпространства X_λ .

Теорема 2. Пусть A - вполне непрерывный оператор в X. Тогда для любого $\varepsilon > 0$ вне круга $|\lambda| \le \varepsilon$ комплексной плоскости (вещественной оси) может содержаться лишь конечное число собственных значений A.

Доказательство. Допустим противное, что $A \in \sigma(X)$, но найдется $\varepsilon_0 > 0$ такое, что A имеет последовательность различных собственных значений $\{\lambda_n\}$ с $|\lambda_n| \ge \varepsilon_0$. Пусть $\{x_n\}$ – последовательность соответствующих собственных векторов. Согласно теореме пункта $1 \{x_n\}$ линейно независима.

Введем X_n — подпространство в X, натянутое на x_1 , ..., x_n . Очевидно,

$$X_1 \subset \ldots \subset X_n \subset \ldots$$

причем $X_{n+1} \neq X_n$ ни при каком п. Все X_n конечномерны и потому замкнуты. По теореме Рисса о почти перпендикуляре найдется последовательность векторов $\{y_n\}$ такая, что $y_k \in X_k$, $||y_k|| = 1$ и $||y_k - x|| \ge \frac{1}{2}$ для всех $x \in X_{k-1}(k=2,3,...)$.

Рассмотрим $\{Ay_n\}$. Так как $\{y_n\}$ ограничена и A вполне непрерывен, то $\{Ay_n\}$ компактна. Следующее ниже рассуждение покажет, что Ay_n не может быть компактной и, значит, наше допущение о наличии бесконечной последовательности собственных значений было неверным откуда и следует справедливость теоремы 2.

Итак, осталось доказать, что $\{Ay_n\}$ не компактна. Введем обозначение

$$A_{\lambda} = A - \lambda I$$

Для любых натуральных m, n (m>n) имеем

$$\begin{split} \|Ay_m - Ay_n\| &= \left\|A_{\lambda_m} y_m + \lambda_m y_m - A_{\lambda_n} y_n - \lambda_n y_n\right\| = \\ &= |\lambda_m| \left\|y_m - \left[-\frac{1}{\lambda_m} A_{\lambda_m} y_m + \frac{1}{\lambda_m} A_{\lambda_n} y_n \frac{\lambda_n}{\lambda_m} y_n\right]\right\| = |\lambda_m| \|y_m - x_{mn}\|, \text{ где} \\ &x_{mn} = -\frac{1}{\lambda_m} A_{\lambda_m} y_m + \frac{1}{\lambda_m} A_{\lambda_n} y_n + \frac{\lambda_n}{\lambda_m} y_n \in X_{m-1}. \end{split}$$

Действительно, если $y_k \in X_k$, то $y_k = \sum_{i=1}^k \alpha_i^{(k)} x_i$, так как $\{x_i\}_1^k$ - базис

в X_k . Поэтому

$$A_{\lambda_m} y_m = (A - \lambda_m I) \sum_{i=1}^m \alpha_i^{(m)} x_i = \sum_{i=1}^{m-1} \alpha_i^{(m)} (\lambda_i - \lambda_m) x_i \in X_{m-1},$$

$$y_n \in X_n \subset X_{n-1}, \qquad A_{\lambda_n} y_n \in X_{n-1} \subset X_{m-1}$$

Итак, $x_{mn} \in X_{m-1}$, но тогда $\|y_m - x_{mn}\| \ge \frac{1}{2}$ и, следовательно,

$$||Ay_m - Ay_n|| = |\lambda_m|||y_n - x_{mn}|| \ge \frac{\varepsilon_0}{2}.$$

Отсюда вытекает некомпактность $\{Ay_n\}$

Пример. Рассмотрим интегральный оператор Фредгольма

$$Kx = \int_{a}^{b} K(t, s)x(s)ds \tag{1}$$

с непрерывным в квадрате $Q = \{a \le t, s \le b\}$ комплекснозначным ядром K(t,s). Рассуждения будем вести в комплексном пространстве C[a,b]. Поскольку K вполне непрерывен, то можно воспользоваться теоремами 1 и 2. Рассмотрим задачу на собственные значения

$$\int_{a}^{b} K(t,s)x(s)ds = \lambda x(t).$$
 (2)

Согласно теореме 2 могут представиться лишь следующие три возможности.

- 1. Задача (2) имеет лишь нулевое решение: x(t)=0 при $\lambda \neq 0$.
- 2. Существует конечное число собственных значений оператора K, отличных от нуля.
- 3. Существует последовательность $\{\lambda_n\}$ собственных значений оператора K, причем $\lambda_n \to 0$ при $n\to \infty$

При этом в случаях 2 и 3 по теореме 1 собственные подпространства, отвечающие ненулевым собственным значениям, конечномерны. Эти три возможности представлены в следующем упражнении.

Упражнение. Найдите собственные значения, отличные от нуля, а также соответствующие им собственные подпространства для следующих интегральных операторов:

1)
$$Kx = \int_0^l (t-s) x(s) ds$$
 B C[0, l];

2)
$$Kx = \int_0^1 ts(t-s)x(s)ds$$
 B C[0,1];

3)
$$Kx = \int_0^\pi K(t,s)x(s)ds$$
 в $C[0,\pi]$, где $K(t,s) = \sum_{k=1}^\infty \frac{\sin kt \sin ks}{k^2}$.

§3. Собственные значения и собственные векторы линейных вполне непрерывных самосопряженных операторов.

Пусть H – гильбертово пространство и A – вполне непрерывный самосопряженный оператор в H. О собственных значениях и собственных векторах такого оператора A можно сказать уже довольно много. В частности, имеют место следующие утверждения.

Теорема 1. Если A ≠ 0, то A имеет по крайней мере одно собственное значение, отличное от нуля.

Доказательство. Так как A — самосопряженный, то

$$||A|| = \sup_{||x||=1} |(Ax, x)|$$

Но тогда найдется последовательность $\{x_n\}$, $\|x\|=1$, такая, что $|(Ax,x)|\to \|A\|$, $n\to\infty$. Так как $A\neq 0$, то числа $(Ax_n,x_n)\neq 0$ для всех достаточно больших n, причем существует подпоследовательность $\{x_{n'}\}$ такая, что $(Ax_{n'},x_{n'})\to\lambda$, где $\lambda=\|A\|$ или $\lambda=-\|A\|$. Имеем следующую оценку:

$$||Ax_{n'} - \lambda x_{n'}||^2 = (Ax_{n'} - \lambda x_{n'}, Ax_{n'} - \lambda x_{n'}) =$$

$$= ||Ax_{n'}||^2 - 2\lambda (Ax_{n'}, x_{n'}) + \lambda^2 \le 2\lambda [\lambda - (Ax_{n'}, x_{n'})].$$

(Мы учли здесь, что $\|x_{n'}\| = 1$ и $\|Ax_{n'}\| \le \|A\|^2 = \lambda^2$.)

При $n'\to\infty$ имеем $y_{n'}=Ax_{n'}-\lambda x_{n'}\to 0$. Но $\{x_{n'}\}$ ограничена, а тогда, вследствие полной непрерывности A, последовательность $\{Ax_{n'}\}$ компактна. Значит, существует ее сходящаяся подпоследовательность $\{Ax_{n''}\}$. Отсюда $x_{n''}=\frac{1}{\lambda}Ax_{n''}-\frac{1}{\lambda}y_{n''}$ также сходится, ибо

$$y_{n''} o 0, n o\infty$$
. Пусть $\mathbf{x}=\lim_{n'' o\infty}x_{n''}$; тогда $\mathbf{A}\mathbf{x}=\ \lambda\mathbf{x}, \mathbf{x} \neq 0$, ибо $||x||=\lim_{n'' o\infty}||x_{n''}||=1.$

Теорема 2. Все собственные значения линейного самосопряженного вполне непрерывного оператора А вещественны и расположены на [m,M], где

$$m = \inf_{||x||=1} (Ax, x), M = \sup_{||x||=1} (Ax, x)$$

Если $M \neq 0$, то M является наибольшим собственным значением A.

Если т ≠ 0, то т является наименьшим собственным значением А.

Доказательство. Квадратичная форма (Ax,x) вещественна. Если λ —собственное значение A и x — отвечающий λ собственный вектор, то (Ax,x)= $\lambda ||x||^2$. Отсюда (x \neq 0) λ вещественно. Далее, так как m \leq (Ax,x) \leq M при ||x||=1, то для всякого собственного значения λ имеем неравенство m $\leq \lambda \leq$ M. Осталось показать, что m и M , если они не

нули, являются собственными значениями А. В теореме 1 было доказано, что наибольшее по модулю из этих чисел является собственным значением А. Этот результат можно уточнить следующим образом. Пусть $M \neq 0$. Оператор B=MI-A также самосопряженный и, кроме того, неотрицательный (проверьте!) По обобщенному неравенству Коши-Буняковского имеем

$$(Bx, y)^2 \le (Bx, x)(By, y) \tag{1}$$

Так как $\, {
m M} = \sup_{||x||=1} (Ax,x) \,$, то найдется $\{x_n\} \, {
m c} \, \|x\| = 1$ такая, что

$$(Ax_n, x_n) \to M$$
 при $n \to \infty$

Положим в (1) $x=x_n$, $y=Bx_n$ и получим

$$||Bx_n||^4 \le (Bx_n, x_n)(B^2x_n, Bx_n) \le ||B||^3(Bx_n, x_n) = ||B||^3[M - (Ax_n, x_n)]$$

Следовательно, $Bx_n = Mx_n - Ax_n \to 0$ при $n \to \infty$.

Далее, как и теореме 1, устанавливается существование вектора такого, что Ax=Mx. Аналогично доказывается, что $m(ecnu m \neq 0)$ является собственным значением A.

Следствие 1. Если A – линейный вполне непрерывный самосопряженный оператор, то $||A|| = |\lambda_1|$, где λ_1 — наибольшее по модулю собственное значение A. В частности, это верно для всякого самосопряженного оператора в евклидовом(т.е. конечномерном гильбертовом) пространстве.

Теорема 3.(**Гильберт-Шмидт**). Если A- вполне непрерывный самосопряженный оператор в H, то при всяком $x \in H$, элемент Ax разлагается в сходящийся ряд Фурье по ортонормированной системе собственных векторов оператора A.

Доказательство. Пусть φ_1 — нормированный собственный вектор, отвечающий собственному значению λ_1 оператора А. Рассмотрим

$$H_1 = \{x \in H: (x, \varphi_1) = 0\}$$

Так как $(Ax, \varphi_1) = (x, A\varphi_1) = \lambda_1(x, \varphi_1) = 0$ для $x \in H_1$, то A переводит элементы из H_1 снова в элементы из H_1 . Поэтому можно рассматривать оператор A как оператор, действующий в H_1 . Далее, A в H_1 по-прежнему вполне в непрерывен и самосопряжен. По теореме 1 в H_1 вектор φ_2 (если только $A \neq 0$ в H_1), причём $|\lambda_1| \leq |\lambda_2|$.

Рассмотрим теперь $H_2 = \{x \in H_1: (x, \varphi_2) = 0\}$ и снова применим теорему 1. Продолжая эти рассуждения, придём к одной из двух возможностей. Или процесс оборвётся, т.е. найдётся номер такой, что на H_n , определяемом условиями $(x, \varphi_k) == 0$ (k = 1, ..., n) будет A = 0. В этом случае для любого $x \in H$ рассмотрим элемент $y = x - \sum_{k=1}^{n} (x, \varphi_k) \varphi_k$. Очевидно, $y \in H$ и, значит, Ay = 0, т. е. $Ax = \sum_{k=1}^{n} (x, \varphi_k) \lambda_k \varphi_k$, и теорема доказана.

Другая возможность: процесс продолжается неограниченно. В результате мы получаем последовательность $\{\lambda_k\}$ собственных значений A и последовательность $\{\lambda_k\}$ собственных векторов A, отвечающих этим собственным значениям. Воспользуемся теперь тем, что согласно теореме 1

$$||A||_{\mathcal{L}(H_n)}^2 = \lambda_{n+1}^2$$

Поэтому

$$A \left\| x - \sum_{k=1}^{n} (x, \varphi_k) \varphi_k \right\|^2 \le \lambda_{n+1}^k \left\| x - \sum_{k=1}^{n} (x, \varphi_k) \varphi_k \right\|^2 = \lambda_{n+1}^2 \left\{ \|x\|^2 - \sum_{k=1}^{n} |(x, \varphi_k)|^2 \right\} \le \lambda_{n+1}^2 \|x\|^2.$$

Поскольку $\lambda_k \to 0$ при $n \to \infty$ (см. теорему 2 п. 23.3), то $A[x - \sum_{k=1}^n (x, \varphi_k) \varphi_k] \to 0$, $n \to \infty$, т.е.

$$Ax = \sum_{k=1}^{\infty} (x, \varphi_k) \, \lambda_k \varphi_k \tag{2}$$

Приведём два следствия из теоремы 3.

Следствие 2. Если вполне непрерывный самосопряженный оператор A обратим, то из его собственных векторов можно набрать базис в H.

Доказательство. Применяя к обеим частям равенства (2) оператор A^{-1} , получим

$$x = \sum_{k=1}^{\infty} (x, \varphi_k) \, \varphi_k$$

т.е. всякий $x \in H$ разлагается в сходящийся к нему ряд Фурье по ортонормированной системе из собственных векторов A.

Следствие 3. Если A - вполне непрерывный самосопряженный вектор в сепарабельном гильбертовом пространстве H, то в H существует ортонормированный базис из собственных векторов оператора A.

Доказательство. Равенство (2) можно записать в виде $A[x-\sum_{k=1}^{\infty}(x,\varphi_k)\varphi_k]=0$. Отсюда видно, что элемент $x_0=x-\sum_{k=1}^{\infty}(x,\varphi_k)\varphi_k$ принадлежит N(A) - собственному подпространству оператора A, отвечающему нулевому собственному значению. Так как N(A) тоже сепарабельно, то в N(A) можно построить ортонормированный базис $\{e_k'\}_1^{\infty}$. Разлагая $x_0 \in N(A)$ по этому базису, получим

$$x = x_0 + \sum_{k=1}^{\infty} (x, \varphi_k) \varphi_k = \sum_{k=1}^{\infty} (x, e'_k) e'_k + \sum_{k=1}^{\infty} (x, e_k) e_k$$

где одна или обе суммы могут быть и конечными.

§4 Резольвентное множество и спектр линейного оператора.

Основные определения, примеры. Пусть X — комплексное банахово пространство. Рассмотрим линейный оператор $A: X \to X$ с областью определения D(A), плотной в X. Рассмотрим, далее, оператор $A - \lambda I$, где λ — комплексное число (точка на комплексной плоскости), I — единица в $\mathcal{L}(X)$.

Определение 1. Точка λ называется *регулярной точкой* оператора A, если оператор $A - \lambda I$ непрерывно обратим. Совокупность регулярных точек оператора A называется *резольвентным множеством* оператора и обозначается $\rho(A)$. Если $\lambda \in \rho(A)$, то линейный оператор $R_{\lambda}(A) = (A - \lambda I)^{-1} \in \mathcal{L}(X)$ называется резольвентой оператора A.

Выясним некоторые свойства резольвентного множества $\rho(A)$.

Теорема 1. Резольвентное множество $\rho(A)$ всегда открыто.

Доказательство. Пусть $\lambda_0 \in \rho(A)$. Это означает, что оператор $A - \lambda_0 I$ непрерывно обратим. Рассмотрим оператор $A - \lambda I$ и заметим, что справедливо следующее тождество:

$$A - \lambda I = A - \lambda_0 I - (\lambda - \lambda_0) I = (A - \lambda_0 I) \left[I - (\lambda - \lambda_0) R_{\lambda_0}(A) \right]. \tag{1}$$

Поскольку оператор $A - \lambda_0 I$ непрерывно обратим, если непрерывно обратим оператор $I - (\lambda - \lambda_0) \times R_{\lambda_0}(A)$. Воспользуемся теоремой об обратном операторе п. 12.4. Согласно этой теореме оператор $I - (\lambda - \lambda_0) \times R_{\lambda_0}(A)$ будет непрерыно обратим, если $|\lambda - \lambda_0| \|R_{\lambda_0}(A)\| < 1$. Следовательно, если $\lambda_0 \in \rho(A)$, то круг $S_r(\lambda_0)$, где $r = \|R_{\lambda_0}(A)\|^{-1}$, тоже лежит в $\rho(A)$, т.е. $\rho(A)$ открыто.

Теорема 2. Пусть $A \in \mathcal{L}(X)$. Тогда

$$\{\lambda: |\lambda| > ||A||\} \subset \rho(A)$$

Доказательство. Заметим, что $A - \lambda I = -\lambda (I - \lambda^{-1} A)$. Поэтому, если $\|\lambda^{-1} A\| \le 1$, т.е. $\|\lambda\| > \|A\|$, то $A - \lambda I$ непрерывно обратим. Теорема доказана.

Следствие. Если *A* ограничен, то $\rho(A)$ неограничено.

Определение 2. Дополнение к $\rho(A)$ (в комплексной плоскости) называется спектром оператора A и обозначается $\sigma(A)$.

Из теоремы 1 следует, что спектр любого линейного оператора A является замкнутым множеством (как дополнение к открытому множеству, см. п. 3.1).

Из теоремы 2 следует, что спектр ограниченного линейного оператора $A\sigma(A) \subset \overline{S}_{\|A\|}(0)$ (спектр A лежит в круге $|\lambda| \leq \|A\|$) и, следовательно, является ограниченным множеством. Если точка $\lambda \in \sigma(A)$, то возможны следующие три случая:

1) Оператор $A - \lambda I$ не обратим;

- 2) Оператор $A \lambda I$ обратим, но его область значений $R(A \lambda I) \neq X$;
- 3) Оператор $A \lambda I$ обратим, $R(A \lambda I) = X$, но оператор $(A \lambda I)^{-1}$ неограничен.

Замечание. Из теоремы Банаха об обратном операторе следует, что случай 3) невозможен, если D(A) = X и A ограничен.

Среди точек спектра $\sigma(A)$ важную роль играют собственные значения оператора A. Если λ - собственное значение A, то имеет место первый случай: оператор $A - \lambda I$. Действительно, $(A - \lambda I)x = 0$, где x — собственный вектор, отвечающий λ . Но тогда подпространство нулей $N(A - \lambda I) \neq \{0\}$ и, согласно теореме 1 п. 12.1, оператор $(A - \lambda I)^{-1}$ не существует. Основываясь на $\S 20$ и 21, приведем несколько примеров.

Пример 1. Если пространство X конечномерно, то спектр любого оператора состоит только из его собственных значений. В m-мерном евклидовом или унитарном пространстве X всякий самосопряженный оператор имеет ровно m собственных значений с учетом их кратности. Все собственные значения вещественны, а из отвечающих ему собственных векторов в X можно набрать ортонормированный базис.

Пример 2. Спектр $\sigma(A)$ всякого вполне непрерывного оператора в бесконечномерном банаховом пространстве X состоит из не более, чем счетного множества собственных значений, единой предельной точкой которого может служить лишь точка $\lambda=0$ (см. теорему 1 п. 23.3). Если $\lambda\neq 0$ не является собственным значением A, то λ принадлежит резольвентному множеству $\rho(A)$. Действительно, $A-\lambda I=-\lambda(I-\lambda^{-1}A)$, но оператор $\lambda^{-1}A$ вполне непрерывен (теорема 2 п. 20.1), и поскольку $N(I-\lambda^{-1}A)=N(A-\lambda I)=\{0\}$, то по первой теореме Фредгольма (теорема 2 п. 20.5) оператор $(I-\lambda^{-1}A)$, а с ним и $A-\lambda I$ непрерывно обратимы. Обратимся теперь к точке $\lambda=0$. Так как область значений $R\{A\}$ не замкнута (см. теорему 1 п. 20.6), то $0\in\sigma(A)$. Если даже $\lambda=0$ не является собственным значением A, т. е. A обратим, то A^{-1} неограничен.

Пример 3. Все сказанное в *примере 2* справедливо для всякого вполне непрерывного линейного оператора в гильбертовом пространстве H. Дополнительно к этому A имеет хоть одно собственное значение $\lambda \neq 0$, все собственные значения A вещественны (теорема 2), и справедлива теорема 3 Гильберта-Шмидта о разложении по собственным векторам, а также следствия 1 и 3.

Упражнение 1. Пусть X = C[0,1] и Ax = x'(t) (A – оператор дифференцирования). Показать, что:

- а) $\sigma(A)$ пусто, если $D(A) = \{x : x'(t) \in C[0,1], x(0) = 0\};$
- б) $\sigma(A)$ состоит из одних собственных значений, заполняющих всю комплексную плоскость, если $D(A) = \{x: x'(t) \in C[0,1]\};$
- в) $\sigma(A)$ состоит из собственных значений $2\pi in$ $(n=0,\pm 1,\pm 2,...;i-мнимая единица), если$

$$D(A) = \{x \colon x'(t) \in C[0,1], x(0) = x(1)\}$$

Упражнение 2. Пусть X = C[0,1] и Ax = tx(t) (A — оператор умножения на независимую переменную). Показать, что $\sigma(A) = [0,1]$, причем ни одна из точек спектра не является собственным значением.

Упражнение 3. Пусть X = C[0,1] и $Ax = \frac{1}{t}x(t)$,

$$D(A) = \{x : x'(t) \in C[0,1], x(0) = 0\}$$

Показать, что $\sigma(A) = [1, +\infty]$.

Упражнение 4. Пусть $X = C[0, 2\pi]$ и $Ax = e^{it}x(t)$. Показать, что $\sigma(A) = \{\lambda : |\lambda| = 1\}$, т.е. $\sigma(A)$ заполняет единичную окружность.

§5 Спектральный радиус линейного оператора.

Теорема 1. Пусть $A \in \mathcal{L}(X)$, где X — комплексное банахово пространство. Тогда существует конечный предел

$$r_{\sigma}(A) = \lim_{n \to \infty} ||A^n||^{1/n}.$$
 (1)

Имеет место соотношение

$$\inf_{n \ge 1} ||A^n||^{1/n} = r_\sigma(A) \le ||A|| \tag{2}$$

Предел (1) называется спектральным радиусом оператора A.

Доказательство. Положим $inf_{n\geq 1}\|A^n\|^{1/n}=r$. Согласно определению нижней грани для всякого $\varepsilon>0$ можно найти номер m такой, что

$$||A^m||^{1/m} > r + \varepsilon$$

Далее, всякое натуральное n представимо однозначно в виде

$$n = p_n m + q_n$$

где p_n – натуральное, а $0 \le q_n \le m - 1$.

Заметим теперь, что

$$||A^n||^{1/n} = ||A^{p_n m + q_n}||^{1/n} \le ||A^m||^{p_n/n} ||A||^{q_n/n} \le (r + \varepsilon)^{mp_n/n} ||A||^{q_n/n}$$

При $nm o \infty$ $\frac{p_n m}{n} = 1 - \frac{q_n}{n} o 1$, $\frac{q_n}{n} o 0$. Следовательно,

$$\lim_{n \to \infty} (r + \varepsilon)^{mp_n/n} ||A||^{q_n/n} = r + \varepsilon$$

Но тогда можно найти номер N такой, что для любых номеров n > N

$$(r+\varepsilon)^{mp_n/n} ||A||^{q_n/n} < (r+\varepsilon) + \varepsilon = r + 2\varepsilon$$

Таким образом, мы имеем неравенство

$$r \le ||A^n||^{1/n} < r + 2\varepsilon$$

справедливое для всех n > N. Это и означает существование предела (1) и равенство $r_{\sigma}(A) = r$ (см. формулу (2)). Осталось заметить, что $\|A^n\|^{1/n} < \|A^n\|^{n/n} == \|A\|$. Значит $r_{\sigma}(A) \leq \|A\|$. Теорема доказана.

Теорема 2. Пусть $A \in \mathcal{L}(X)$, где X — комплексное банахово пространство. Если $r_{\sigma}(A) < 1$, то оператор I - A непрерывно обратим в ряд $\sum_{k=0}^{+\infty} A_k$ сходится абсолютно. Если $r_{\sigma}(A) > 1$, то ряд $\sum_{k=0}^{+\infty} A_k$ расходится.

Доказательство. Воспользуемся следствием из признака Коши сходимости числового ряда с неотрицательными членами $\sum_{k=1}^{\infty} u_k$ (см. [18]): пусть существует $\lim_{n\to\infty} \sqrt[n]{u_k} = l$; если l < 1, то ряд $\sum_{k=1}^{\infty} ||u_k||$ сходится; если же l > 1, то этот ряд расходится.

Рассмотрим числовой ряд $\sum_{k=1}^{\infty} \|A_k\|$. Согласно теореме 1 существует $\lim_{k\to\infty} \sqrt[k]{\|A^k\|} = r_{\sigma}(A)$. Если $r_{\sigma}(A) < 1$, то ряд $\sum_{k=1}^{\infty} \|A_k\|$ сходится и, значит, ряд $\sum_{k=1}^{\infty} A_k$ сходится абсолютно. Пусть S - его сумма. Как и в доказательстве теоремы п. 12.4, убеждаемся, что S служит правым и левым обратным к I-A. Следовательно, I-A непрерывно обратим и $S=(I-A)^{-1}$. Пусть $r_{\sigma}(A)>1$. Тогда, начиная с некоторого номера, $\|A^k\|^{1/k}>1$, т.е. $\|A^k\|>1$. Но тогда ряд $\sum_{k=1}^{\infty} A_k$ расходится, так как его общий член не стремится к нулю. Теорема доказана.

Следствие. Если для некоторого $m\|A^m\| < 1$, то ряд $\sum_{k=1}^{\infty} A_k$ сходится.

Действительно, $r_{\sigma}(A) = \inf_{n>1} ||A^n||^{1/n} \ge ||A^m||^{1/m} < 1$.

Применим теперь понятие спектрального радиуса $r_{\sigma}(A)$ для уточнения теоремы 2 п. 24.1 о резольвентном множестве $\rho_{\sigma}(A)$.

Теорема 3. Пусть $A \in \mathcal{L}(X)$, X — комплексное банахово пространство. Если $|\lambda| > r_{\sigma}(A)$, то $\lambda \in \rho(A)$.

Доказательство. Рассмотрим в $\mathcal{L}(X)$ ряд $\sum_{k=0}^{\infty} \lambda^{-k-1} A^k$. Если $|\lambda| > r_{\sigma}(A)$, то

$$\lim_{k \to \infty} \|\lambda^{-k-1} A^k\|^{1/k} = |\lambda|^{-1} \lim_{k \to \infty} |\lambda^{-1}|^{1/k} \|A^k\|^{1/k} = |\lambda^{-1}| r_{\sigma}(A) < 1$$

По упомянутому выше следствию из признака Коши числовой ряд $\sum_{k=0}^{\infty} \|\lambda^{-k-1} A^k\|$ сходится и, значит, ряд - $\sum_{k=0}^{\infty} \lambda^{-k-1} A^k$ сходится абсолютно. Обозначим через $S(\lambda)$ его сумму (при $|\lambda| > r_{\sigma}(A)$), а через $S_n(\lambda)$ — его -ю частичную сумму. Легко проверить, что

$$S_n(\lambda)(A - \lambda I) = (A - \lambda I)S_n(\lambda) = I - \lambda^{-n-1}A^{n+1}$$

Переходя к пределу при $n \to \infty$ в предположении, что $|\lambda| > r_{\sigma}(A)$, получаем

$$S(\lambda)(A - \lambda I) = (A - \lambda I)S(\lambda) = I$$

Следовательно, $A - \lambda I$ непрерывно обратим, т. е. $\lambda \in \rho(A)$. Кроме того, $S(\lambda) = (A - \lambda I)^{-1} = R_{\lambda}(A)$. Теорема доказана.

Пример. Пусть K(t,s) - непрерывная функция двух переменных в треугольнике $\Delta = \{t, s: a \le t \le b\}$. Рассмотрим в C[a,b] интегральный оператор Вольтерра

$$y(t) = (Kx)(t) = \int_a^t K(t,s)x(s)ds.$$

Найдем спектральный радиус $r_{\sigma}(K)$. Положим $k = \max_{a \le t, s \le b} |K(t, s)|$ и рассмотрим последовательность $\{x_n(t)\} \subset C[a, b]$:

$$x_1(t) = \int_a^t K(t,s) x(s) ds, \quad x_2(t) = \int_a^t K(t,s) x_1(s), \dots, x_n(t) = \int_a^t K(t,s) x_{n-1}(s) ds, \dots,$$

где $x(t) \in C[a,b]$. Последовательно получаем оценки

$$|x_1(t)| \le \int_a^t |K(t,s)| |x(s)| ds \le k(t-a) \max_{[a,b]} |x(t)| = k(t-a) ||x||,$$

$$|x_2(t)| \le k \int_a^t k(s-a) ds ||x|| = k^2 \frac{(t-a)^2}{2} ||x||,$$

$$|x_n(t)| \le k \int_a^t k^{n-1} \frac{(s-a)^{n-1}}{(n-1)!} ds = k^n \frac{(t-a)^n}{n!} ||x||,$$

......

Замечая, что $x_n(t) = (K^n x)(t)$, получаем неравенство

$$||K^n x|| \le \frac{k^n (b-a)^n}{n!} ||x||, \text{ r. e. } ||K^n|| \le \frac{k^n (b-a)^n}{n!}.$$

Следовательно,

$$r_{\sigma}(A) = \lim_{n \to \infty} ||K^n||^{1/n} = 0,$$

так как $\sqrt[n]{n!} \to \infty$ при $n \to \infty$.

Итак, все точки $\lambda \neq 0$ комплексной плоскости являются точками ре-зольвентного множества интегрального оператора Вольтерра. Что касается точки $\lambda = 0$, то это единственная точка спектра оператора K. Описание его области значений R(K*) мы здесь проводить не будем, но ясно, что $R(K) \neq X$, ибо если $y \in R(K)$, то y(a) = 0.

§6 Резольвента как аналитическая оператор-функция.

Напомним, что оператор-функция $A(\lambda)$ называется аналитической в точке λ_0 , если она разлагается в некоторой окрестности точки λ_0 в степенной ряд:

$$A(\lambda) = \sum_{k=0}^{\infty} A_k (\lambda - \lambda_0)^k,$$

сходящийся (по норме $\mathcal{L}(X)$) в этой окрестности.

Пусть A - линейный оператор, действующий в X, с плотной в X областью определения D(A). Рассмотрим при $\lambda \in \rho(A)$ резольвенту A:

$$R_{\lambda}(A) = (A - \lambda I)^{-1}$$
134

Согласно формуле (1) (см. доказательство теоремы 1 п. 24.1), если $\lambda_0 \in \rho(A)$, то ряд

$$R_{\lambda}(A) = \left[I - (\lambda - \lambda_0)R_{\lambda_0}(A)\right]^{-1}R_{\lambda_0}(A) = \sum_{k=0}^{\infty} (\lambda - \lambda_0)^k R_{\lambda_0}^{k+1}(A) \quad (1)$$

сходится в круге $|\lambda - \lambda_0| < \|R_{\lambda_0}(A)\|^{-1}$. Следовательно, $R_{\lambda_0}(A)$ - аналитическая функция λ в любой точке $\lambda_0 \in \rho(A)$.

Пусть теперь $A \in \mathcal{L}(X)$. Тогда, в соответствии с теоремой 3 п. 24.2 при $|\lambda| > r_0(A)$ имеет место равенство

$$R_{\lambda}(A) = -\sum_{k=0}^{\infty} \lambda^{-k-1} A^k, \tag{2}$$

которое представляет собой разложение $R_{\lambda}(A)$ в окрестности бесконечно удаленной точки $\lambda = \infty$. Отсюда, в частности, следует, что бесконечно удаленная точка также является регулярной точкой, т. е. точкой $\rho(A)$. (см. [19]).

Из теоремы п. 24.1 в сочетании с теоремой п. 12.5 вытекает более слабый результат о справедливости разложения (2) при всех λ , $|\lambda| > ||A||$.

Формула (2) приводит к следующему интересному выводу.

Теорема. Если $A \in \mathcal{L}(X)$, то $\sigma(A)$ - непустое множество.

Доказательство. Допустим, что спектр $\sigma(A)$ пуст. Для всяких $x \in X$ и $f \in X *$ можно рассмотреть числовую функцию комплексного переменного λ :

$$\varphi(\lambda) = \langle R_{\lambda}(A)x, f \rangle.$$

Заметим, что

$$\left| \langle R_{\lambda} x, f \rangle + \sum_{k=0}^{n} \lambda^{-k-1} \langle A^{k} x, f \rangle \right| \leq \left\| R_{\lambda}(A) + \sum_{k=0}^{n} \lambda^{-k-1} A^{k} \right\| \|x\| \|f\|$$

Следовательно, из (2) вытекает, что

$$\varphi(\lambda) = -\sum_{k=0}^{n} \lambda^{-k-1} \langle A^k x, f \rangle.$$

Функция $\varphi(\lambda)$ аналитична на всей комплексной плоскости и $\varphi(\infty) = 0$. По теореме Лиувилля (см [19]) $\varphi(\lambda) \equiv 0$. Вследствие произвольности $f(R_{\lambda}(A)x) \equiv 0$, а вследствие произвольности $x(A) = (A - \lambda I)^{-1} = 0$. Это невозможно. Полученное противоречие доказывает теорему.

135