Moduli of curves Nov 6 suddiscont to the suddiscont a solvenies \mathfrak{X}/S a DM stack, $U \rightarrow \mathfrak{X}$ atlas $R = U_{\mathfrak{X}}U$, Then R3U a groupoid. good armed "ad" hallow spiritarros E. {Q-coh sheaves on X} (eqv. {Q-coh sheaves on [R=U]} (Fon U, V: SF - + to F, cocycle) Examples (1) & = BG , U = . -> BG Then Q-con sheet on X = Representation of G con sheaf = finite dim rep. I mi conil mus (2) x = [x/G] $V = X \rightarrow [x/G]$ $R = G \times X \rightarrow X$. WITH Q-con shey on & = Shey on X, iso 4. PF - aF At (91x): For y Fax.xg (mib-JE) 2 1. Bxg X9h M TO 3 M } = X TO J = "G-linearized sheet on X." (3) Pic (M1,1) = 2/127.X] = [X] = [X] = [X] Line bundle on My: of Milmore xet & For every med \$ 5 ms LE on S. B I I was iso $\Psi: f^*L_T \xrightarrow{\sim} L_s$. + compatibility

product logether.

Example - presertations for BG

$$\times/G$$

Quantity shaves on BG

 \times/G .

Hodge bundle on Mg.

det of Hodge bundle λ .

Harrests

Example: Pic (Mul) = $\mathbb{Z}/|2\pi|$.

Pf: Let d be a line bundle on Ml.1.

(E,p) inv. (E,p)

(E,p) = spec (E,p)

(E,p) = spec (E,p)

 $\times \mathbb{Z}/|2\pi|$ ($\times \mathbb{Z}/|2\pi|$)

 $\times \mathbb{Z}/|2\pi|$ ($\times \mathbb{Z}/|2\pi|$)

 $\times \mathbb{Z}/|2\pi|$ ($\times \mathbb{Z}/|2\pi|$)

 $\times \mathbb{Z}/|2\pi|$ reducing to of $\times \mathbb{Z}/|2\pi|$ ($\times \mathbb{Z}/|2\pi|$)

 $\times \mathbb{Z}/|2\pi|$ order 6 cube = hypercll inv.

 $\times \mathbb{Z}/|2\pi|$ reducing to of $\times \mathbb{Z}/|2\pi|$

gd Pic (Min) -> 2/12.

ı

Surjectivity—

Hodge bundle
$$A = A = A^{\circ}(E,p) = A^{\circ}(E,\omega_{E}) = A^{\circ}($$

Another Proof:
$C(9,t)$ a descent detum con 3×1 .
Consider j-line o, 1728.
then $S_3 \times 0 \longrightarrow 0$ etale S_3 g-trohient
=) $C(9,t)$ restricted to $S_3 \times \lambda^\circ$ gives a descent datum for a line bundle on $j^\circ =)$ must be trivial. =) \exists function $U(t)$ on λ° such that:
C(9/t) = U(9t)
Issue: U(t) may have poleo on $\lambda \setminus \lambda^\circ$. = \(\frac{3}{2} \) ph over 1728
Near a pt over (C) Stab = Z/372 > 0
Let U(t). to is a total parameter. is holomorphic for some a

 $C(9,t) = \frac{V(9t)}{V(t)} \Rightarrow C(6,0) \neq (1) \Rightarrow a \equiv 0 \pmod{3}.$ Similarly zero or pole at the other point = 0 (mod 2).

These can be taken care of by modifying U(E) by the pull back of

an element of order p. 6. (10 points) Prove that a if a prime p divides the order of a group G, then G contains an appropriate function on the f-line o.

Another proof:

Evoy elliptic curve can be written as

$$y^2 = 2c^3 + ax + b$$
. = $E_{a,b}$

Furthermore, if we let te Gm act by t: a + t'a, b + t'b, then

$$y^2 = x^3 + ax + b$$
 $x = x^3 + t^4 x + t^6 b$

Also Earb smooth

与
$$\Delta := 27 a^2 + 4b^3 \neq 0$$

Prop: We have [12-1/6m] ~ Mil.

Ketch: Right (Left -) Right):

$$P \rightarrow A'$$
 $a(tx) = t'a(x)$
 $b(tx) = t^6 b(x)$.

Construct
$$\sigma \in H^{0}(B^{\bullet}) = H^{0}(L^{6} + L^{4} + L^{2} + O + L^{2})$$

The data (0(2) 81, 0) defines a double cover of IP. This is the required elliptic curve.

(Right -> Left). Exercise.

Let us use this to compute the Picard group.

If time permits.

- · Quotient description of Mg.
- · Kot Keel-Moni, G-IT approaches to coonse space.
- . Definition of Departed / proper