

Búsqueda con Lucene

Sergio Samaniego Martínez

Índice

- Introducción
- Explicación del código
- Ejemplos de uso

Introducción

En esta segunda parte de la práctica de búsqueda con Lucene, se va a proceder a realizar el proceso de búsqueda sobre un índice ya creado de Lucene.

Para facilitar el uso de nuestro programa, se creará una interfaz de usuario que permitirá al usuario realizar distintos tipos de búsquedas (libre, booleana y por rango), poder visualizar los resultados sobre una tabla y aplicar filtros de facetas sobre dichos resultados.

Explicación de código

Tendremos 3 clases fundamentales:

- Sample.fxml: Este archivo será el encargado de introducir y definir los distintos elementos que se van a usar en la interfaz gráfica.
- Main.class: Esta clase será la encargada de inicializar la la ventana de la interfaz gráfica cargando el contenido de sample.fxml
- Controller.class: Esta clase será la encargada de controlar y realizar las distintas acciones que la aplicación va a realizar.

Sample.fxml

```
IT ( UI ell>
 <Label fx:id="searchlabel" layoutX="60" layoutY="30">Write the free search: </Label>
 <TextField fx:id="textfield" layoutX="50.0" layoutY="50.0" prefHeight="0" prefWidth="200" />
 <Label fx:id="fieldlabel" layoutX="260" layoutY="30">Select the field search: </Label>
 <ComboBox fx:id="fieldbox" layoutX="260.0" layoutY="50.0" prefWidth="150.0" promptText="choose">
     <items>
         <FXCollections fx:factory="observableArrayList" >
             <String fx:value="All" />
             <String fx:value="Author" />
             <String fx:value="Title" />
             <String fx:value="Year" />
             <String fx:value="Source Title" />
             <String fx:value="Link" />
             <String fx:value="Resume" />
             <String fx:value="AuthorKeywords" />
             <String fx:value="IndexKeywords" />
             <String fx:value="EID" />
         </FXCollections>
     </items>
 </ComboBox>
 <Button fx:id="btn" layoutX="420.0" layoutY="50.0" mnemonicParsing="false" onAction="#btnlhandle" text="Button" />
```

Main.class

```
public class Main extends Application {
   @Override
    public void start(Stage primaryStage) throws Exception{
        Parent root = FXMLLoader.load(getClass().getResource("sample.fxml"));
        primaryStage.setTitle("Information Retrieval Search");
        primaryStage.setScene(new Scene(root, 1500, 1000));
        primaryStage.show();
    public static void main(String[] args) { launch(args); }
```

Controller.class

Veremos los distintos métodos que componen esta clase como son:

- BtnHandler
- Métodos de las distintas búsquedas
- addFacets
- FilterAction

btnHandler

```
void btnlhandle(ActionEvent event) throws IOException {
   tabledocs.setEditable(true);
   String clicked = ((Control)event.getSource()).getId();
   author col.setCellValueFactory(new PropertyValueFactory<>( S: "Author"));
   title col.setCellValueFactory(new PropertyValueFactory ( ≤ "Title"));
   year col.setCellValueFactory(new PropertyValueFactory<>( s: "Year"));
   link col.setCellValueFactory(new PropertyValueFactory ( ≤ "Link"));
   authorkey col.setCellValueFactory(new PropertyValueFactory<>( 5: "AuthorKeywords"));
   indexkey col.setCellValueFactory(new PropertyValueFactory<>( S "IndexKeywords"));
   //Dependiendo del botón que haya sido clickado realizaremos una función determinada
   if(clicked.equals("btn")) {
       search = textfield.getText();
           field select = fieldbox.getValue().toString();
       doSearch();
   }else if(clicked.equals("btnbool")) {
       search = textfieldbool.getText();
       if (fieldboxbool.getValue() == null)
   }else {
       search = textfieldint.getText();
       if (fieldboxint.getValue() == null)
       doIntSearch();
```

doSearch

Con un array que contenga los distintos tokens, se recorre para ir añadiendo a bqbuilder los distintos tokens de la consulta realizada

```
Path pl = Paths.get(index_path)
   FSDirectory dir = FSDirectory.open(p1);
   IndexReader ireader = DirectoryReader.open(dir);
   IndexSearcher searcher = new IndexSearcher(ireader);
   BooleanQuery.Builder bqbuilder = new BooleanQuery.Builder();
       TermQuery q1 = new TermQuery(new Term(field, result.get(i)));
       BooleanClause bc1 = new BooleanClause(q1, BooleanClause.Occur.MUST);
       babuilder.add(bc1):
   BooleanQuery bq = bqbuilder.build();
   TopDocs tdocs = searcher.search(bq, n: 50);
       org.apache.lucene.document.Document hitDoc = searcher.doc(hits[i].doc);
       data.add(new IndexDocs(hitDoc.get("author").toString(),
                hitDoc.get("title").toString(),
               hitDoc.get("year s").toString()
               hitDoc.get("source title").toString(),
               hitDoc.get("link").toString(),
               hitDoc.get("IndexKeywords").toString()));
    tabledocs.setItems(data);
catch (IndexNotFoundException e){
   System.out.println("No se ha podido encontrar el índice en el directorio indicado");
```

doIntSearch

Al realizar la consulta se tendrán que separar los dos extremos por "."

Con esto hecho únicamente tenremos que pasarle ambos extremos al nuevo newRangeQuery

```
Path pl = Paths.get(index path)
   FSDirectory dir = FSDirectory.open(p1);
    IndexReader ireader = DirectoryReader.open(dir);
    IndexSearcher searcher = new IndexSearcher(ireader);
    Integer startpoint = Integer.valueOf(result.get(0));
    Integer endpoint = Integer.valueOf(result.get(result.size()-1));
    if(startpoint > endpoint){
        Integer aux = startpoint;
        startpoint = endpoint;
        endpoint = aux;
   Query bq = IntPoint.newRangeQuery(field, startpoint, endpoint);
    TopDocs tdocs = searcher.search(bq, n 50);
   ScoreDoc[] hits = tdocs.scoreDocs;
        org.apache.lucene.document.Document hitDoc = searcher.doc(hits[i].doc);
        data.add(new IndexDocs(hitDoc.get("author").toString(),
                hitDoc.get("year s").toString()
                hitDoc.get("source title").toString(),
                hitDoc.get("link").toString(),
                hitDoc.get("IndexKeywords").toString()));
catch (IndexNotFoundException e){
```

doBooleanSearch

- Tendremos que ser capaces de identificar los tres operadores AND, OR y NOT en nuestra consulta.
- Puesto que utilizamos diferentes analizadores, para cada tipo de campo, será necesario tratar las consultas de formas diferentes dependiendo del Analyzer utilizado

WhiteSpaceAnalyzer

```
TokenStream stream = analyzer.tokenStream( fieldName: null, new StringReader(search));
   OffsetAttribute offsetAtt = stream.addAttribute(OffsetAttribute.class);
   CharTermAttribute cAtt= stream.addAttribute(CharTermAttribute.class);
   stream.reset();
   String cad ="";
   while (stream.incrementToken()) {
       If(cAtt.toString().toLowerCase().equals("and")){
           booleans.add("AND");
           result.add(cad);
           cad = "";
       else if(cAtt.toString().toLowerCase().equals("or")){
           booleans.add("OR");
           cad = "";
       else if(cAtt.toString().toLowerCase().equals("not")){
           booleans.add("NOT");
           result.add(cad);
           cad = "":
           cad += cAtt.toString()+" ";
   result.add(cad):
   stream.end();
} catch (IOException e) {
   throw new RuntimeException(e);
```

Construcción de la búsqueda booleana

Con un array que contenga los operadores utilizados, lo iremos recorriendo para conocer de qué tipo va a ser la ocurrencia para cada uno de los tokens

```
Path p1 = Paths.get(index path);
FSDirectory dir = FSDirectory.open(pl):
IndexReader ireader = DirectoryReader.open(dir);
IndexSearcher searcher = new IndexSearcher(ireader);
BooleanQuery.Builder bqbuilder = new BooleanQuery.Builder();
    TermQuery q1 = new TermQuery(new Term(field, result.get(i).trim()));
   BooleanClause bcl:
    if(i == 0){
       bcl = new BooleanClause(q1, BooleanClause.Occur.MUST);
        ((booleans.get(i-1)).equals("AND"))
           bcl = new BooleanClause(ql, BooleanClause.Occur.MUST);
       else if ((booleans.get(i-1)).equals("OR"))
            bc1 = new BooleanClause(g1, BooleanClause.Occur.SHOULD):
            bc1 = new BooleanClause(q1, BooleanClause.Occur.MUST NOT);
    bgbuilder.add(bcl);
BooleanQuery bq = bqbuilder.build();
this.bg = bg;
TopDocs tdocs = searcher.search(bq, n: 50);
System.out.println("Hay "+tdocs.totalHits+" docs");
ScoreDoc[] hits = tdocs.scoreDocs;
```

AddFacets

```
FacetsCollector fc = new FacetsCollector();
TopDocs tdc = FacetsCollector.search(searcher, bq, n 10, fc);
for (ScoreDoc sd : tdc.scoreDocs){
   Document d = searcher.doc(sd.doc);
Facets facetas = new FastTaxonomyFacetCounts(taxoReader, fconfig, fc);
List<FacetResult> TodasDims = facetas.getAllDims( # 100);
AuthorComboBox.getItems().clear();
YearComboBox.getItems().clear();
for(FacetResult fr : TodasDims){
   LabelAndValue[] lv = fr.labelValues;
            for(int i=0; (i<20 && i< fr.labelValues.length); i++){</pre>
                AuKeyComboBox.getItems().add(lv[i].label);
            for(int i=0; (i<20 && i< fr.labelValues.length); i++){
                AuthorComboBox.getItems().add(lv[i].label);
            for(int i=0; (i<20 && i< fr.labelValues.length); i++){
                InKeyComboBox.getItems().add(lv[i].label);
            for(int i=0; (i<20 && i< fr.labelValues.length); i++){</pre>
                YearComboBox.getItems().add(lv[i].label);
FacetResult fresult = facetas.getTopChildren( 1 10, st "title");
```

filterAction

- La función se llamará al pulsar el botón Filter de la Interfaz.
- Esta función lo único que va a realizar será crear un DrillDownQuery y un DrillSideWays que se ejecutarán sobre la consulta realizada para aplicar los filtros impuestos.

Manual de usuario

Select the field search:

▼ Button

choose

Write the Point search:

Write the boolean search:

▼ Button

Select the field search:

choose

Write the free search:		Select the field search:				
information retrieval		Title	*	Butto		
Facets:	*					
Year	*					
AuthorKeywords	•		Filter			
IndexKeywords	*					

Resultados de la búsqueda

Author	Title	Year	Source	Link	Author	Index K
Moraes	Modeling information flow in dynamic info	2017	ICTIR 20	https://w	Directed	Behavio
Marrara	Aggregation operators in Information Retr	2017	Fuzzy Se	https://w	Aggrega	Decision
Hattab	Linear operators in information retrieval	2017	OpenAc	https://w	Cross pr	Image r
Mauro N	Concept-Aware geographic information re	2017	Proceedi	https://w	Informat	Informat
Kenter T	Neural networks for information retrieval	2017	SIGIR 20	https://w		Informat
Banawa	Private information retrieval from coded d	2017	IEEE Int	https://w		
Himani	A survey on medical information retrieval	2018	Smart In	https://w	Medical	Bioinfor
Ventura	Similarity measures for music information	2018	Advance	https://w	Entropy;	Entropy;
Glowack	Bandit algorithms in interactive informati	2017	ICTIR 20	https://w	Bandit a	Economi
ovanov	Information retrieval with reinforced word	2017	ACM Int	https://w	Natural I	Text pro
Garrouc	Bayesian network based information retri	2017	Proceedi	https://w	Bayesia	Bayesia
Vuong T	Proactive information retrieval via screen	2017	SIGIR 20	https://w	Proactiv	Charact
Voorhee	Using replicates in information retrieval e	2017	ACM Tra	https://w	Informat	Data mi
Banawa	Private information retrieval from coded d	2017	IEEE Int	https://w		
Himani	A survey on medical information retrieval	2018	Smart In	https://w	Medical	Bioinfor
Kobayas	Opportunities for women, minorities in inf	2017	Commu	https://w		Comput
Moskovi	JASIST special issue on biomedical inform	2017	Journal o	https://w		
Yang G	Differential privacy for information retriev	2017	ICTIR 20	https://w	Different	Data mi
Ke W.	Text retrieval based on least information	2017	ICTIR 20	https://w	Effective	Bins; En
Cheng Z	Exploring user-specific information in mu	2017	SIGIR 20	https://w	Reranki	Comput
Soulier L	On the collaboration support in informatio	2017	ACM Co	https://w	Collabor	Comput
Cheng Z	Exploring user-specific information in mu	2017	SIGIR 20	https://w	Reranki	Comput
Soulier L	On the collaboration support in informatio	2017	ACM Co	https://w	Collabor	Comput
Crane M	An exploration of serverless architectures	2017	ICTIR 20	https://w		Informat
Han B.,	Knowledge based collection selection for	2018	Informat	https://w	Collectio	Informat
Nasutio	Information Retrieval Based on the Extrac	2018	Advance	https://w	Degree;	Comput
Craswell	Neural information retrieval: introduction	2017	Informat	https://w		
Wu S., Li	Intrainstitutional EHR collections for patie	2017	Journal o	https://w		Clinical i
Kumar	A survey of Web crawlers for information	2017	Wiley Int	https://w		Data mi
Crane M	An exploration of serverless architectures	2017	ICTIR 20	https://w		Informat
Naouar	Collaborative information retrieval model	2017	Proceedi	https://w	Collabor	Image r
Polajnar E.	Using Lasso RCCA for cross-language info	2017	Commu	https://w	Alternati	Comput

Write the boolean search:

Select the field search:

▼ Button

choose

Write the Point search:

▼ Button

Select the field search:

choose

Facets:

Author

de rijke m.
lin j.
losada d.e.
parapar j.
barreiro a.
drias h.
mitra b.
khennak i.
liu j.
guo j.

Realiza el filtro

Author	Title 🔺	Year	Source	Link	Author	Index K
No auth	7th International Workshop on Informatio	2018	Studies i	https://w		
Marrara	Aggregation operators in Information Retr	2017	Fuzzy Se	https://w	Aggrega	Decision
Crane M	An exploration of serverless architectures	2017	ICTIR 20	https://w		Informat
Crane M	An exploration of serverless architectures	2017	ICTIR 20	https://w		Informat
mhof M	A study of untrained models for multimod	2017	Informat	https://w	BM25; M	
Kumar	A survey of Web crawlers for information	2017	Wiley Int	https://w		Data mi
Himani	A survey on medical information retrieval	2018	Smart In	https://w	Medical	Bioinfor
Himani	A survey on medical information retrieval	2018	Smart In	https://w	Medical	Bioinfor
Amigo E	Axiomatic thinking for information retriev	2017	SIGIR 20	https://w		Informat
Glowack	Bandit algorithms in interactive informati	2017	ICTIR 20	https://w	Bandit a	Economi
Garrouc	Bayesian network based information retri	2017	Proceedi	https://w	Bayesia	Bayesia
Naouar	Collaborative information retrieval model	2017	Proceedi	https://w	Collabor	Image r
Mauro N	Concept-Aware geographic information re	2017	Proceedi	https://w	Informat	Informat
Sharma	Deep web information retrieval process:	2017	The Dar	https://w		
rang G	Differential privacy for information retriev	2017	ICTIR 20	https://w	Different	Data mi
Cheng Z	Exploring user-specific information in mu	2017	SIGIR 20	https://w	Reranki	Comput
Cheng Z	Exploring user-specific information in mu	2017	SIGIR 20	https://w	Reranki	Comput
Kawabat	Information Retrieval and Criticality in Par	2017	Physical	https://w		Criticalit
Nasutio	Information Retrieval Based on the Extrac	2018	Advance	https://w	Degree;	Comput
Nasutio	Information Retrieval Based on the Extrac	2018	Advance	https://w	Degree;	Comput
ovanov	Information retrieval with reinforced word	2017	ACM Int	https://w	Natural I	Text pro
Nu S., Li	Intrainstitutional EHR collections for patie	2017	Journal o	https://w		Clinical i
Moskovi	JASIST special issue on biomedical inform	2017	Journal o	https://w		
Han B.,	Knowledge based collection selection for	2018	Informat	https://w	Collectio	Informat
lan B.,	Knowledge based collection selection for	2018	Informat	https://w	Collectio	Informat
Hattab	Linear operators in information retrieval	2017	OpenAc	https://w	Cross pr	Image r
Moraes	Modeling information flow in dynamic info	2017	ICTIR 20	https://w	Directed	Behavio
ruan K.	Multi-dimensional formula feature modeli	2017	SIGIR 20	https://w	Formula	Recurre
Sattari S	Multimedia information retrieval using fuz	2017	IEEE Int	https://w		Comput
Craswell	Neural information retrieval: introduction	2017	Informat	https://w		
Kenter T	Neural networks for information retrieval	2017	SIGIR 20	https://w		Informat
Rahimi	Online learning to rank for cross-languag	2017	SIGIR 20	https://w	Cross-la	Comput

Button

Debemos separar las distintas partes de la búsqueda por uno de los tres operandos como son :

- AND
- OR
- NOT

¡Gracias!

