

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Брянский государственный технический университет

Утверждаю	
Ректор университе	та
	О.Н.Федонин
« »	2017 г.

ОБРАБОТКА ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ ПОИСК МУЛЬТИСТЕПЕННОЙ ЗАВИСИМОСТИ

Методические указания к выполнению лабораторной работы № 4 для студентов очной формы обучения по направлениям подготовки 09.03.01 «Информатика и вычислительная техника», 02.03.03 «Математическое обеспечение и администрирование компьютерных систем», 09.03.04 «Программная инженерия», 13.03.01 «Теплоэнергетика и теплотехника»

Обработка экспериментальных данных. Поиск мультистепенной зависимости [Электронный ресурс]: методические указания к выполнению лабораторной работы № 4 для студентов очной формы обучения по направлениям подготовки 09.03.01 «Информатика и вычислительная техника», 02.03.03 «Математическое обеспечение и администрирование компьютерных систем», 09.03.04 «Программная инженерия», 13.03.01 «Теплоэнергетика и теплотехника». – Брянск: БГТУ, 2017. – 8 с.

Разработал: Л.И.Пугач,

канд. физ.-матем. наук, доц.

Рекомендовано кафедрой «Информатика и программное обеспечение» БГТУ (протокол №7 от 01.06.17)

Методические издания публикуются в авторской редакции

Цель работы

Целью лабораторной работы является получение практических навыков в построении аппроксимации мультистепенной зависимостью от двух переменных методом наименьших квадратов по заданной таблице данных.

Продолжительность лабораторной работы – 2 часа.

Краткие сведения

Мультистепенная зависимость — это функция от двух переменных вида $Z=KX^aY^b$ (степенная и по х и по у). Практика показала, что такой функцией можно во многих случаях успешно аппроксимировать экспериментальные данные от двух переменных. Для этого к мультистепенной зависимости применяют прием логарифмирования:

$$Z=KX^{a}Y^{b}$$
 $lnZ=ln(KX^{a}Y)^{b}$
 $lnZ=lnK+alnX+blnY$

Затем применяют замены переменных:

$$\tilde{Z} = lnZ; \; \tilde{K} = lnK; \; \tilde{X} = lnX; \; \tilde{Y} = lnY$$
 (1)

И получают линейную зависимость

$$\widetilde{Z} = \widetilde{K} + a\widetilde{X} + b\widetilde{Y},$$

которую можно найти методом множественной линейной регрессии (см. лабораторную работу № 3).

Найдя коэффициенты a,b,\widetilde{K} , необходимо вернуться к коэффициенту K по формуле $K=e^{\widetilde{K}}$ и записать ответ в виде $Z=KX^aY^b$.

Задание к лабораторной работе

Дана таблица экспериментальных данных

X	x_1	x_2	•••	x_n
Y	<i>y</i> ₁	У2	•••	y_n
Z	<i>Z</i> ₁	<i>Z</i> ₂	•••	Z_n

(конкретные числовые значения возьмите из Вашего варианта)

- 1) Добавьте к таблице строки \tilde{X} , \tilde{Y} , \tilde{Z} и пересчитайте их по формулам замены (1).
- 2) Составьте систему уравнений множественной линейной регрессии, как в лабораторной работе № 3.
- 3) Решите её (рекомендуется по правилу Крамера) и найдите коэффициенты $a,b,\widetilde{K},$
- 4) Вернитесь к коэффициенту K по формуле $K = e^{\widetilde{K}}$ и запишите ответ в виде $Z = KX^aY^b$.
- 3) Вычислите 5 значений $F_i = K x_i^a y_i^b$.
- 4) Найдите среднее квадратичное отклонение $d=\sqrt{\frac{\sum (Z_i-F_i)^2}{n}}$

(в нашей работе n=5), характеризующее точность найденной модели

Задания к вариантам

	X	1	2	3	4	5
Вариант 1	Y	2	4	6	7	9
	Z	9	15	24	30	36
	X	2	3	4	5	6
Вариант 2	Y	3	4	7	8	10
	Z	9	14	24	30	35

Вариант 3	X	3	4	5	6	7
	Y	2	3	5	7	8
	Z	10	13	24	31	34
	X	4	5	6	7	8
Вариант 4	Y	3	4	7	8	9
	Z	10	15	24	31	36
	X	5	6	7	8	9
Вариант 5	Y	3	4	6	7	9
	\overline{Z}	9	15	24	30	35
	X	6	7	8	9	10
Вариант 6	Y	3	5	6	7	9
	Z	9	15	24	30	37
	X	1	2	3	4	5
Вариант 7	Y	2	4	6	7	9
	Z	9	15	24	30	36
	X	2	3	4	5	6
Вариант 8	Y	3	4	7	8	10
	Z	9	14	24	30	35
	X	3	4	5	6	7
Вариант 9	Y	2	3	5	7	8
	Z	10	13	24	31	34
	X	4	5	6	7	8
Вариант 10	Y	3	4	7	8	9
	Z	10	15	24	31	36
	X	5	6	7	8	9
Вариант 11	Y	3	4	6	7	9
	Z	9	15	24	30	35
	X	6	7	8	9	10
Вариант 12	Y	3	5	6	7	9
	Z	9	15	24	30	37
	X	1	2	3	4	5
Вариант 13	Y	2	4	6	7	9
	Z	9	15	24	30	36

		•		•		•
Вариант 14	X	2	3	4	5	6
	Y	3	4	7	8	10
	Z	9	14	24	30	35
	X	3	4	5	6	7
Вариант 15	Y	2	3	5	7	8
	Z	10	13	24	31	34
	X	4	5	6	7	8
Вариант 16	Y	3	4	7	8	9
	Z	10	15	24	31	36
	X	5	6	7	8	9
Вариант 17	Y	3	4	6	7	9
	Z	9	15	24	30	35
	X	6	7	8	9	10
Вариант 18	Y	3	5	6	7	9
	Z	9	15	24	30	37
	X	1	2	3	4	5
Вариант 19	Y	2	4	6	7	9
	Z	9	15	24	30	36
	X	2	3	4	5	6
Вариант 20	Y	3	4	7	8	10
	Z	9	14	24	30	35
	X	3	4	5	6	7
Вариант 21	Y	2	3	5	7	8
	Z	10	13	24	31	34
	X	4	5	6	7	8
Вариант 22	Y	3	4	7	8	9
	Z	10	15	24	31	36
	X	5	6	7	8	9
Вариант 23	Y	3	4	6	7	9
	Z	9	15	24	30	35
	X	6	7	8	9	10
Вариант 24	Y	3	5	6	7	9
	Z	9	15	24	30	37

	X	1	2	3	4	5
Вариант 25	Y	2	4	6	7	9
	Z	9	15	24	30	36
	X	2	3	4	5	6
Вариант 26	Y	3	4	7	8	10
	Z	9	14	24	30	35
	X	3	4	5	6	7
Вариант 27	Y	2	3	5	7	8
	Z	10	13	24	31	34
	X	4	5	6	7	8
Вариант 28	Y	3	4	7	8	9
	Z	10	15	24	31	36
	X	5	6	7	8	9
Вариант 29	Y	3	4	6	7	9
	Z	9	15	24	30	35
Вариант 30	X	6	7	8	9	10
	Y	3	5	6	7	9
	Z	9	15	24	30	37

Контрольные вопросы

- 1. Что такое мультистепенная зависимость?
- 2. Как свести мультистепенную зависимость к линейной?
- 3. Как вернуться к виду мультистепенной зависимости?

Список рекомендуемой литературы

- 1. Овсеевич, И.А. Алгоритмы обработки экспериментальных данных/
- И.А.Овсеевич, М.: Оникс, 2012. 185 с.

Обработка экспериментальных данных. Поиск мультистепенной зависимости [Электронный ресурс]: методические указания к выполнению лабораторной работы № 4 для студентов очной формы обучения по направлениям подготовки 09.03.01 «Информатика и вычислительная техника», 02.03.03 «Математическое обеспечение и администрирование компьютерных систем», 09.03.04 «Программная инженерия», 13.03.01 «Теплоэнергетика и теплотехника». – Брянск: БГТУ, 2017. – 8 с.

ПУГАЧ ЛЕОНИД ИЗРАИЛЕВИЧ

Научный редактор А.А.Азарченков Компьютерный набор Л.И.Пугач

Темплан 2017 г., п.

Подписано в печать Формат 60х84 1/16 Бумага офсетная. Офсетная печать. Усл.печ.л. 0,46 Уч.-изд.л. 0,46 Тираж 1 экз Заказ Бесплатно.

Брянский государственный технический университет Кафедра «Информатика и программное обеспечение», тел. 56-09-84 241035, Брянск, бульвар 50 лет Октября, 7 БГТУ