## Øving 1

fredag 23. august 2024 13:19

#### Oppg. 1a)

#### Prosess:



### Regulator:



# Systemet i lukket sløyfe:



#### 1b) K=0.1



K=0.5



K=1



Vi ser at vi får raskere respons med høyere K

1c) K=0.1



#### K=0.5



K=1



Det stasjonære avviket blir mindre med større K



Vi ser at systemet ikke fungerer fordi vi får et negativt vinnivå som fortsetter å minke. Vi integrerer over k\*u(t) i modellen, og det uttrykket vil hele tiden være negativt. Derfor vil integralet fortsette å minke sammen med vinnivået.

$$\dot{y}(t) = \lambda y(t), \quad y(0) = 1$$

$$y(1) - y(0)$$

$$5(t) = Ce^{\lambda t}$$
  
 $5(0) = C = 1$   
 $5(t) = e^{\lambda t}$ 

Løsningen vokser for  $\lambda > 0$ Løsningen synker for  $\lambda < 0$ Løsningen er konstant lik 1 for  $\lambda = 0$ 

$$\dot{y}(t) = \lambda y(t) + bu(t), \quad y(0) = 0$$

$$u(t) = \begin{cases} 1 & t \ge 0 \\ 0 & t < 0 \end{cases}$$

$$Loser \quad \dot{y} = \lambda y + b \quad forst$$

$$\dot{y}(t) = Ce^{\lambda t} - \frac{b}{\lambda}$$

$$\dot{y}(0) = (-\frac{b}{\lambda} = 0) = c = \frac{b}{\lambda}$$

$$y(t) = \left(\frac{b}{\lambda}e^{\lambda t} - \frac{b}{\lambda}\right)u(t)$$
$$= \frac{b}{\lambda}u(t)\left[e^{\lambda t} - 1\right]$$

Oppg. 3a)



Vi får stående svingninger

## 3b)





Svingningene forsvinner rundt d=2

# 3c)





Ved omega = 1 beveger massen seg mest. Den får størst amplitude på 5 og fortsetter å oscillere for alltid.