

Languages and Machines

L1: Regular Languages

Jorge A. Pérez

Bernoulli Institute for Mathematics, Computer Science, and Al University of Groningen, Groningen, the Netherlands

The Course At A Glance

Different Language Classes

Basic Notation

- $ightharpoonup x \in X, \quad X \subset Y$
- $ightharpoonup orall x \in X: P(x), \exists x \in X: P(x)$
- $ightharpoonup R \subseteq X \times Y$ is a relation between X and Y
- $\blacktriangleright \ \ x\,R\,y \equiv (x,y) \in R$
- ightharpoonup G = (V, E), with $E \subseteq V \times V$ is a directed graph
- $ightharpoonup R^*$ is the reflexive, transitive closure of relation R

Induction

The theory:

- **▶** Basis: 0 ∈ N
- ▶ Inductive (or recursive) step: if $n \in \mathbb{N}$ then $n + 1 \in \mathbb{N}$ too
- ▶ Closure: we only allow a finite number of steps ($\infty \notin \mathbb{N}$)

Induction

The theory:

- **▶** Basis: 0 ∈ N
- ▶ Inductive (or recursive) step: if $n \in \mathbb{N}$ then $n + 1 \in \mathbb{N}$ too
- ▶ Closure: we only allow a finite number of steps ($\infty \notin \mathbb{N}$)

The practice:

Given f(n) = n(n+1) for all $n \in \mathbb{N}$, then f(n) is even.

- ▶ Basis: for n = 0, we have that $f(n) = 0 \cdot 1 = 0$, which is even.
- Step: We must show that if f(n) is even then f(n + 1) is even. Observe that

$$f(n+1) = (n+1)(n+2) = n(n+1) + 2(n+1) = f(n) + 2(n+1)$$

Note: f(n) is even (by IH) and 2(n+1) is also even (why?). Hence, f(n+1) must be even too. This concludes the proof.

Induction is a **proof principle** and a tool for **defining mathematical objects**!

Strings and Languages

- ightharpoonup Alphabet Σ : a finite set of indivisible elements ("letters")
- $ightharpoonup \Sigma^*$: the set of strings over Σ , defined recursively
- Language: a subset of Σ*

Examples:

- ▶ Given $\Sigma = \{a, b\}$, the empty string ϵ and non-empty strings such as ab, aaa, and bbaba are all elements of Σ^*
- ► Length: |bbaba| = 5.
- Symbol counts: $n_a(bbaba) = 2$

Operations on Strings

- ▶ Given strings u and v, the string uv is their concatenation. An associative operation: (uv)w = u(vw).
- ▶ Derived concepts: substring, prefix, suffix.
- Replication ("exponentiation"): a string concatenated with itself.
- ▶ Given a string u, its reversal u^R is u written backwards

Examples:

- lacktriangle Given u=ab and v=ba, their concatenation is uv=abba
- ▶ Replication: $a^3 = aaa$, $(ab)^2 = abab$.
- ▶ Reversal: $(abb)^R = bba$

Question:

How to define the reversal of a string, inductively?

Question:

How to define the reversal of a string, inductively?

Answer:

Let w be a finite string. We define w^R by induction on

Question:

How to define the reversal of a string, inductively?

Answer:

Let w be a finite string. We define w^R by induction on |w|:

▶ Basis: In this case, |w|=0. Then it must be the case that $w=\epsilon$. Therefore, $w^R=\epsilon$.

Question:

How to define the reversal of a string, inductively?

Answer:

Let w be a finite string. We define w^R by induction on |w|:

- ▶ Basis: In this case, |w| = 0. Then it must be the case that $w = \epsilon$. Therefore, $w^R = \epsilon$.
- Step: In this case, $|w| = n \ge 1$

Question:

How to define the reversal of a string, inductively?

Answer:

Let w be a finite string. We define w^R by induction on |w|:

- ▶ Basis: In this case, |w| = 0. Then it must be the case that $w = \epsilon$. Therefore, $w^R = \epsilon$.
- ▶ Step: In this case, $|w| = n \ge 1$ and so w = u a, with |u| = n 1. Therefore, u^R is defined and so $w^R = a \ u^R$.

Question:

How to define the reversal of a string, inductively?

Answer:

Let w be a finite string. We define w^R by induction on |w|:

- ▶ Basis: In this case, |w| = 0. Then it must be the case that $w = \epsilon$. Therefore, $w^R = \epsilon$.
- ▶ Step: In this case, $|w| = n \ge 1$ and so w = u a, with |u| = n 1. Therefore, u^R is defined and so $w^R = a \ u^R$.

In what sense is this definition inductive?

Operations on Languages

- Operations on strings can be lifted to languages (sets of strings)
- ► Concatenation of languages *X* and *Y*:

$$XY = \{uv \mid u \in X, v \in Y\}$$

 X^n denotes the concatenation of X with itself n times We define X^0 as $\{\epsilon\}$.

▶ The **Kleene star** of a set X, written X^* :

$$X^* = \bigcup_{i=0}^{\infty} X^i$$

▶ The derived operator +, defined as: $X^+ = XX^*$

Operations on Languages

Examples:

- lacksquare If $L = \{aa, bb\}$, $M = \{c, d\}$ then $LM = \{aac, aad, bbc, bbd\}$
- Powers: $\{a, b, ab\}^2 = \{aa, ab, aab, ba, bb, bab, aba, abb, abab\}$
- ► Kleene star:

$$egin{aligned} \{a,b\}^* &= \{\epsilon\} \cup \{a,b\} \cup \{aa,ab,ba,bb\} \cup \{aaa,\ldots\} \cup \cdots \ &= \{\epsilon,a,b,aa,ab,ba,bb,aaa,\ldots\} \end{aligned}$$

► Reversal: $\{ab, cd\}^R = \{ba, dc\}$

Regular Sets / Languages

- Recursively defined over an alphabet Σ from
 - ▶ Ø
 - $ightharpoonup \{\epsilon\}$
 - ▶ $\{a\}$ for all $a \in \Sigma$

by applying union, concatenation, and Kleene star.

Regular Expressions: A notation to denote regular languages

Example: The regular expression

denotes the regular set

$$\{a\}^*(\{c\}\cup\{d\})\{b\}^*$$

The regular expression of a set is not unique

1.
$$aabb \in (a^*b^*)b$$
?

- 1. $aabb \in (a^*b^*)b$?
- 2. $aabb \in (a^* | b^*)b$?

- 1. $aabb \in (a^*b^*)b$?
- 2. $aabb \in (a^* | b^*)b$? X
- 3. $aabb \in b | (b | a)^* ?$

- 1. $aabb \in (a^*b^*)b$?
- 2. $aabb \in (a^* | b^*)b$? X
- 3. $aabb \in b | (b | a)^* ? \checkmark$
- 4. $aabb \in a | (a | b)^*a$?

- 1. $aabb \in (a^*b^*)b$?
- 2. $aabb \in (a^* | b^*)b$? X
- 3. $aabb \in b | (b | a)^* ? \checkmark$
- 4. *aabb* ∈ a | (a | b)*a ? ✗
- 5. $aabb \in a(ab)^*b$?

- 1. $aabb \in (a^*b^*)b$?
- 2. $aabb \in (a^* | b^*)b$? X
- 3. $aabb \in b | (b | a)^* ? \checkmark$
- 4. *aabb* ∈ a | (a | b)*a ? ×
- 5. $aabb \in a(ab)^*b$?
- 6. $aabb \in a(abb)^+$?

- 1. $aabb \in (a^*b^*)b$?
- 2. $aabb \in (a^* | b^*)b$? X
- 3. $aabb \in b | (b | a)^* ? \checkmark$
- 4. $aabb \in a | (a | b)^*a ? X$
- 5. $aabb \in a(ab)^*b$?
- 6. $aabb \in a(abb)^+$?
- 7. $aabb \in a(abb)^+b$? \times

- 1. $aabb \in (a^*b^*)b$?
- 2. $aabb \in (a^* | b^*)b$? X
- 3. $aabb \in b | (b | a)^* ? \checkmark$
- 4. *aabb* ∈ a | (a | b)*a ? ✗
- 5. $aabb \in a(ab)^*b$? \checkmark
- 6. $aabb \in a(abb)^+$?
- 7. $aabb \in a(abb)^+b$? \times
- 8. $aabb \in a^*(ba)^*b^*$?

- 1. $aabb \in (a^*b^*)b$?
- 2. $aabb \in (a^* | b^*)b$? X
- 3. $aabb \in b | (b | a)^* ? \checkmark$
- 4. *aabb* ∈ a | (a | b)*a ? ✗
- 5. $aabb \in a(ab)^*b$?
- 6. $aabb \in a(abb)^+$?
- 7. $aabb \in a(abb)^+b$? \times
- 8. $aabb \in a^*(ba)^*b^*$? \checkmark

Give a regular expression L over $\Sigma = \{a, b, c\}$ that contains every string not containing the substring "ab".

► Strings that do not contain *a*'s are clearly acceptable:

(b|c)*
$$\subseteq L$$

Give a regular expression L over $\Sigma = \{a, b, c\}$ that contains every string not containing the substring "ab".

▶ Strings that do not contain *a*'s are clearly acceptable:

(b|c)*
$$\subseteq L$$

 \triangleright Strings that contain precisely one a are also acceptable:

$$(b | c)^*a[\epsilon | c(b | c)^*] \subseteq L$$

Give a regular expression L over $\Sigma = \{a, b, c\}$ that contains every string not containing the substring "ab".

▶ Strings that do not contain *a*'s are clearly acceptable:

(b|c)*
$$\subseteq L$$

ightharpoonup Strings that contain precisely one a are also acceptable:

$$(b \mid c)^*a[\epsilon \mid c(b \mid c)^*] \subseteq L$$

Strings with a single group of one or more a's:

$$(b \mid c)^*$$
aa $^*[\epsilon \mid c(b \mid c)^*] \subseteq L$

Give a regular expression L over $\Sigma = \{a, b, c\}$ that contains every string not containing the substring "ab".

 \triangleright Strings that do not contain *a*'s are clearly acceptable:

(b|c)*
$$\subseteq L$$

ightharpoonup Strings that contain precisely one a are also acceptable:

$$(b \mid c)^*a[\epsilon \mid c(b \mid c)^*] \subseteq L$$

Strings with a single group of one or more a's:

$$(b \mid c)^*aa^*[\epsilon \mid c(b \mid c)^*] \subseteq L$$

Strings with two groups of a's:

$$(b | c)^*aa^*c(b | c)^*aa^*[\epsilon | c(b | c)^*] \subseteq L$$

Give a regular expression L over $\Sigma = \{a, b, c\}$ that contains every string not containing the substring "ab".

We have seen that:

$$(b \mid c)^* a [\epsilon \mid c(b \mid c)^*] \subseteq L$$
 $(b \mid c)^* a a^* [\epsilon \mid c(b \mid c)^*] \subseteq L$ $(b \mid c)^* a a^* c (b \mid c)^* a a^* [\epsilon \mid c(b \mid c)^*] \subseteq L$

Continuing this line of reasoning we see that

$$L = (b | c)^* (\epsilon | [aa^*c(b | c)^*]^*aa^* [\epsilon | c(b | c)^*])$$

Proofs

- ▶ Q: When is a proof correct (enough)?
- ► A: When it convinces the reader!

Essential elements:

- What do you know?
- What do you want to prove?
- ▶ How are you going to prove it?
- ► The actual, step-by-step, proof—the proof method! Example: If we have A, then because of B we also have C. Now, because of C and D, we also have E.
- Conclusion! Finally, we see that we must indeed have Z.

- ▶ Given: $x \in \mathbb{R}$ satisfies $(\forall y \in \mathbb{R} : y > 0 \Rightarrow 0 \leq x < y)$
- ▶ To prove: x = 0

Proof:

- ▶ Given: $x \in \mathbb{R}$ satisfies $(\forall y \in \mathbb{R} : y > 0 \Rightarrow 0 \leq x < y)$
- ▶ To prove: x = 0

Proof:

Well, x could not be larger, so the statement must be true.

- ▶ Given: $x \in \mathbb{R}$ satisfies $(\forall y \in \mathbb{R} : y > 0 \Rightarrow 0 \leq x < y)$
- ▶ To prove: x = 0

Proof:

Well, x could not be larger, so the statement must be true. X

- ▶ Given: $x \in \mathbb{R}$ satisfies $(\forall y \in \mathbb{R} : y > 0 \Rightarrow 0 \leq x < y)$
- ▶ To prove: x = 0

Proof:

Well, x could not be larger **or smaller**, so the statement must be true.

- ▶ Given: $x \in \mathbb{R}$ satisfies $(\forall y \in \mathbb{R} : y > 0 \Rightarrow 0 \leq x < y)$
- ▶ To prove: x = 0

Proof:

Well, x could not be larger **or smaller**, so the statement must be true. X

- ▶ Given: $x \in \mathbb{R}$ satisfies $(\forall y \in \mathbb{R} : y > 0 \Rightarrow 0 \le x < y)$
- ▶ To prove: x = 0

Proof:

We must have x = 0.

Suppose x < 0: picking y = 1 suffices to infer that $0 \le x$. Hence, $x \not< 0$.

Now suppose x > 0: then picking y = x allows us to infer that x < x. Hence, $x \not> 0$.

- ▶ Given: $x \in \mathbb{R}$ satisfies $(\forall y \in \mathbb{R} : y > 0 \Rightarrow 0 \le x < y)$
- ▶ To prove: x = 0

Proof:

We must have x = 0.

Suppose x < 0: picking y = 1 suffices to infer that $0 \le x$. Hence, $x \not< 0$.

Now suppose x > 0: then picking y = x allows us to infer that x < x. Hence, $x \not > 0$.

- ▶ Given: $x \in \mathbb{R}$ satisfies $(\forall y \in \mathbb{R} : y > 0 \Rightarrow 0 \leq x < y)$
- ▶ To prove: x = 0

Proof:

- First consider x < 0. If we pick y = 1 then y > 0 and we should also have $0 \le x$. This is clearly contradictory, so $x \not< 0$.
- ▶ If x > 0 would hold then picking y = x would give us y > 0, and so x < y would lead to the contradiction x < x. We thus conclude that $x \not> 0$.
- ▶ Clearly, we must now have x = 0. Indeed we see that if x = 0, then $0 \le x < y$ holds for all y > 0.

- ▶ Given: $x \in \mathbb{R}$ satisfies $(\forall y \in \mathbb{R} : y > 0 \Rightarrow 0 \leq x < y)$
- ▶ To prove: x = 0

Proof:

- First consider x < 0. If we pick y = 1 then y > 0 and we should also have $0 \le x$. This is clearly contradictory, so $x \not< 0$.
- ▶ If x > 0 would hold then picking y = x would give us y > 0, and so x < y would lead to the contradiction x < x. We thus conclude that $x \not> 0$.
- ▶ Clearly, we must now have x = 0. Indeed we see that if x = 0, then $0 \le x < y$ holds for all y > 0.

- ▶ Given: $x \in \mathbb{R}$ satisfies $(\forall y \in \mathbb{R} : y > 0 \Rightarrow 0 \le x < y)$
- ightharpoonup To prove: x=0

Proof:

We proceed by case analysis on x.

We consider the three cases x < 0, x > 0, and x = 0, and show that only x = 0 can be true:

- 1. First consider x < 0. If we pick y = 1 then y > 0 and we should also have $0 \le x$. This is clearly contradictory, so $x \not< 0$.
- 2. If x > 0 would hold then picking y = x would give us y > 0, and so x < y would lead to the contradiction x < x. We thus conclude that $x \not> 0$.
- 3. Clearly, we must now have x = 0. Indeed we see that if x = 0, then $0 \le x < y$ holds for all y > 0.

Q.E.D.

- ▶ Given: $x \in \mathbb{R}$ satisfies $(\forall y \in \mathbb{R} : y > 0 \Rightarrow 0 \le x < y)$
- ightharpoonup To prove: x=0

Proof:

We proceed by case analysis on x.

We consider the three cases x < 0, x > 0, and x = 0, and show that only x = 0 can be true:

- 1. First consider x < 0. If we pick y = 1 then y > 0 and we should also have $0 \le x$. This is clearly contradictory, so $x \not< 0$.
- 2. If x > 0 would hold then picking y = x would give us y > 0, and so x < y would lead to the contradiction x < x. We thus conclude that $x \not> 0$.
- 3. Clearly, we must now have x = 0. Indeed we see that if x = 0, then $0 \le x < y$ holds for all y > 0.

Q.E.D. 🗸

Proofs: Some Hints

What proof method/technique should you use?

- ▶ Direct proof difficult → Proof by contradiction
- ightharpoonup Equivalence or set equality ightharpoonup Split into two implications
- ▶ Recursive definition → Proof by induction
- ightharpoonup General case too hard ightharpoonup Case analysis
- ightharpoonup Show something is *not* true ightharpoonup Contradiction + counter example

Preview: Context-Free Languages

lacktriangle Give a regular expression for $L=\{a^kb^k\,|\,k\in\mathbb{N}\}$

Preview: Context-Free Languages

- ▶ Give a regular expression for $L = \{a^k b^k | k \in \mathbb{N}\}$
- ▶ Impossible! The expression a*b* does *not* work.
- ► Consider the grammar *G* given by

$$S \hspace{.1in}
ightarrow \hspace{.1in} \epsilon \hspace{.1in} \mid aSb$$

▶ To show that $aabb \in L(G)$, we can write the derivation

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aabb$$

Equivalently, we can draw the corresponding derivation tree.

Taking Stock

- Basic notations
- Regular languages and regular notations
- Proofs
- There are non-regular languages: Context-free languages to the rescue!