ÜBUNGEN ZUR VORLESUNG PARTIELLE DIFFERENTIALGLEICHUNGEN II

Blatt 2

Aufgabe 5. (16 Punkte)

Sei $\Omega \subset \mathbb{R}^n$ ein offes beschränktes Gebiet mit glattem Rand $\partial \Omega \subset C^{\infty}$.

Seien $u_0: \overline{\Omega} \to \mathbb{R}$ und $f: \overline{\Omega} \times \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}$ in C^{∞} , wobei u_0 strikt konvex und f strikt positiv und konvex in $z \in \mathbb{R}$ sei.

Sei $\underline{u}:\overline{\Omega}\to\mathbb{R}$ eine strikt konvexe Lösung von

$$\begin{cases} \log \left(\frac{\det(D^2 u)}{f(\cdot, u, D u)} \right) \geq 1 & \text{in } \Omega \,, \\ \underline{u} \leq u_0 & \text{in } \Omega \,. \end{cases}$$

Betrachte die parabolische Monge-Ampére-Gleichung

$$\begin{cases} u_t = \log\left(\frac{\det(D^2u)}{f(\cdot, u, Du)}\right) - 1 & \text{in } \Omega \times (0, T), \\ u(\cdot, t) = \underline{u} & \text{auf } \partial\Omega \times (0, T), \\ u(\cdot, 0) = u_0 & \text{in } \Omega. \end{cases}$$

Formuliere die Inkompatibilitätsbedingung erster Ordnung.

Zeige:

- (i) u ist konvex auf $\Omega \times (0,T)$
- (ii) C^0 -Abschätzungen
- (iii) C^1 -Abschätzungen:
 - tangentiale und normale auf $\partial\Omega$
 - normale auf $\partial\Omega$
 - $\bullet \ \ \text{in} \ \Omega$
- (iv) C^2 -Abschätzungen:
 - \bullet doppelt tangentiale auf $\partial\Omega$
 - gemischt tangential-normale auf $\partial\Omega$
 - doppelt normale auf $\partial\Omega$
 - in Ω

Abgabe: Bis Montag, 19.11.2018, 15:00 Uhr, in die Mappe vor Büro F 402 oder in der Vorlesung.