

A Counterexample to a Conjecture of Scott and Suppes

Author(s): W. W. Tait

Source: The Journal of Symbolic Logic, Vol. 24, No. 1 (Mar., 1959), pp. 15-16

Published by: Association for Symbolic Logic Stable URL: http://www.jstor.org/stable/2964569

Accessed: 12/06/2014 17:12

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Association for Symbolic Logic is collaborating with JSTOR to digitize, preserve and extend access to The Journal of Symbolic Logic.

http://www.jstor.org

A COUNTEREXAMPLE TO A CONJECTURE OF SCOTT AND SUPPES

W. W. TAIT

In [1], it is conjectured that if S is a sentence in the first-order functional calculus with identity, and every subsystem of every finite relational system which satisfies S also satisfies S, then S is finitely equivalent to a universal sentence. (Two sentences are *finitely equivalent* if and only if they are satisfied by the same finite relational systems.) The following sentence S refutes that conjecture, and moreover S is satisfied by all finite subsystems of all (finite or infinite) relational systems which satisfy it. S contains as predicate letters only the two-place predicate letters \leq , R (and the identity symbol =).

S is the conjunction of the following three sentences:

(1) $\forall x \forall y \forall z [[x \leq y \lor y \leq x] \& [[x \leq y \& y \leq x] \supset x = y] \&$

$$[[x \le y \& y \le z] \supset x \le z]],$$

- (2) $\forall x \forall y \forall z [Rxy \supset [z \le x \lor y \le z]],$
- (3) $\forall x \forall y [[Rxy \& y \leq x] \supset \exists z [y \leq z < x \& \forall u [z \leq u \supset \sim Rzu]].$

Sentence (1) asserts that \leq is a simple ordering. (2) implies that if Rxy and $x \leq y$, then either x = y or y is the successor of x. Sentence (1) implies $\forall x [x \leq x]$, and this together with (3) implies

(4) $\forall x \sim Rxx$.

Hence (1), (2) and (3) imply that Rxy and $x \le y$ hold only if y is the successor of x.

Let $\mathfrak{A} = \langle A, \leq, R \rangle$ be a relational system which satisfies (1), (2) and (4). Since these sentences are universal, any subsystem of \mathfrak{A} will also satisfy them. A sequence (a_1, a_2, \ldots, a_n) of elements of A is called a *cycle* in \mathfrak{A} if $a_1 \leq a_2 \leq \ldots \leq a_n$, Ra_ja_{j+1} for $j=1,\ldots,n-1$, and Ra_na_1 . \mathfrak{A} satisfies (3) only if it has no cycles. If \mathfrak{A} is finite and satisfies (1), (2) and (4), then it satisfies (3) if and only if it has no cycles. If \mathfrak{B} is a subsystem of \mathfrak{A} , then every cycle of \mathfrak{B} is clearly a cycle of \mathfrak{A} . Hence, if \mathfrak{A} satisfies S, and \mathfrak{B} is a finite subsystem of \mathfrak{A} , then, since \mathfrak{B} satisfies (1), (2) and (4) and has no cycles, it satisfies (3). Thus, every finite subsystem of a relational system satisfying S also satisfies S.

For each n > 0, let $\mathfrak{A}_n = \langle \{0, 1, 2, ..., n\}, \leq, R \rangle$, where \leq is the natural ordering of $\{0, 1, 2, ..., n\}$ and Rxy means that $x \neq n$ and y = x+1 or

Received September 30, 1958.

¹ Both the sentence S and our argument have been simplified due to suggestions by D. Scott.

16 W. W. TAIT

that x = n and y = 0. Since (0, 1, 2, ..., n) is a cycle in \mathfrak{A}_n , \mathfrak{A}_n does not satisfy S, though it satisfies (1), (2) and (4). On the other hand, no proper subsystem of \mathfrak{A}_n contains cycles. Hence, every proper subsystem of \mathfrak{A}_n satisfies S. But by the remark on page 124 of [1], this proves that S is finitely equivalent to no universal sentence containing precisely n distinct variables; and this holds for every n > 0.

Notice that, by Theorem 1.8 of [2], a relational system $\mathfrak A$ with an (infinite) subsystem $\mathfrak B$ must exist such that $\mathfrak A$ satisfies S and $\mathfrak B$ does not. Indeed, such a system exists: Let A be the set of ordinal numbers $x \le \omega + 1$, let \le be the natural ordering of these ordinals, and let Rxy mean that $y = x' < \omega$ or that y = 0 and $x = \omega + 1$. Then $\mathfrak A = \langle A, \le, R \rangle$ satisfies S, but the subsystem resulting from $\mathfrak A$ by dropping the single element ω from A does not satisfy S.

REFERENCES

- [1] D. Scott and P. Suppes, Foundational aspects of theories of measure, this Journal, vol. 23 (1958), pp. 113-128.
- [2] A. Tarski, Contributions to the theory of models, II, Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, ser. A, vol. 57 (1954), pp. 582–588.

STANFORD UNIVERSITY