Rotman

INTRO TO R – DATA WRANGLING

R Workshop - 2

Plan

• Tidy Data

- Data manipulation
 - Filter, Select, etc.
 - Join datasets

Tidy Data

• A (One) way to organize tabular data

- Definition
 - Each variable forms a column.
 - Each **observation**, or **case**, forms a **row**.
 - Each type of observational unit forms a table

Messy Data – Example 1

	treatmenta	treatmentb
John Smith		2
Jane Doe	16	11
Mary Johnson	3	1

Table 1: Typical presentation dataset.

Messy Data – Example 1

	treatmenta	treatmentb
John Smith		2
Jane Doe	16	11
Mary Johnson	3	1

Table 1: Typical presentation dataset.

- Hard to retrieve data and analyze them in a consistent way
 - how many treatments in total
 - get average result by person
 - get average result by treatment
 - get overall average result

	treatmenta	${\it treatmentb}$
John Smith	_	2
Jane Doe	16	11
Mary Johnson	3	1

Table 1: Typical presentation dataset.

- Hard to retrieve data and analyze them in a consistent way
 - how many treatments in total
 - get average result by person
 - get average result by treatment
 - get overall average result

	treatmenta	treatmentb
John Smith	_	2
Jane Doe	16	11
Mary Johnson	3	1

Table 1: Typical presentation dataset.

- Hard to retrieve data and analyze them in a consistent way
 - how many treatments in total
 - get average result by person
 - get average result by treatment
 - get overall average result

Table 1: Typical presentation dataset.

- Hard to retrieve data and analyze them in a consistent way
 - how many treatments in total
 - get average result by person
 - get average result by treatment
 - get overall average result

	treatmenta	treatmentb
John Smith	_	2
Jane Doe	16	11
Mary Johnson	3	1

Table 1: Typical presentation dataset.

Messy Data – Example 2

	John Smith	Jane Doe	Mary Johnson
treatmenta		16	3
treatmentb	2	11	1

Table 2: The same data as in Table 1 but structured differently.

The Tidy Version

name	trt	result
John Smith	a	
Jane Doe	a	16
Mary Johnson	a	3
John Smith	b	2
Jane Doe	b	11
Mary Johnson	b	1

The Tidy Version – Why is it Tidy

- All column-wise operations
 - how many treatments in total
 - get average result by person
 - get average result by treatment
 - get overall average result

name	trt	result
John Smith	a	
Jane Doe	a	16
Mary Johnson	a	3
John Smith	b	2
Jane Doe	b	11
Mary Johnson	b	1

Many Ways of Being Messy

- Messy datasets have 5 common problems (Wickham, 2014)
 - 1. Column headers are values, not variable names.
 - 2. Multiple variables are stored in one column.
 - 3. Variables are stored in both rows and columns.
 - 4. Multiple types of observational units are stored in the same table.
 - 5. A single observational unit is stored in multiple tables.

Messy Data – Example 3

year	artist	time	track	date	week	rank
2000	2 Pac	4:22	Baby Don't Cry	2000-02-26	1	87
2000	2 Pac	4:22	Baby Don't Cry	2000-03-04	2	82
2000	2 Pac	4:22	Baby Don't Cry	2000-03-11	3	72
2000	2 Pac	4:22	Baby Don't Cry	2000-03-18	4	77
2000	2 Pac	4:22	Baby Don't Cry	2000 - 03 - 25	5	87
2000	2 Pac	4:22	Baby Don't Cry	2000-04-01	6	94
2000	2 Pac	4:22	Baby Don't Cry	2000-04-08	7	99
2000	2Ge+her	3:15	The Hardest Part Of \dots	2000-09-02	1	91
2000	2Ge+her	3:15	The Hardest Part Of \dots	2000-09-09	2	87
2000	2Ge+her	3:15	The Hardest Part Of \dots	2000-09-16	3	92
2000	3 Doors Down	3:53	Kryptonite	2000-04-08	1	81
2000	3 Doors Down	3:53	Kryptonite	2000-04-15	2	70
2000	3 Doors Down	3:53	Kryptonite	2000-04-22	3	68
2000	3 Doors Down	3:53	Kryptonite	2000-04-29	4	67
2000	3 Doors Down	3:53	Kryptonite	2000-05-06	5	66

Table 8: First fifteen rows of the tidied billboard dataset. The date column does not appear in the original table, but can be computed from date.entered and week.

http://vita.had.co.nz/papers/tidy-data.html

Messy Data – Example 3

year	artist	time	track	date	week	rank
2000	2 Pac	4:22	Baby Don't Cry	2000-02-26	1	87
2000	2 Pac	4:22	Baby Don't Cry	2000-03-04	2	82
2000	2 Pac	4:22	Baby Don't Cry	2000-03-11	3	72
2000	2 Pac	4:22	Baby Don't Cry	2000-03-18	4	77
2000	2 Pac	4:22	Baby Don't Cry	2000-03-25	5	87
2000	2 Pac	4:22	Baby Don't Cry	2000-04-01	6	94
2000	2 Pac	4:22	Baby Don't Cry	2000-04-08	7	99
2000	2Ge+her	3:15	The Hardest Part Of	2000-09-02	1	91
2000	2Ge+her	3:15	The Hardest Part Of \dots	2000-09-09	2	87
2000	2Ge+her	3:15	The Hardest Part Of \dots	2000-09-16	3	92
2000	3 Doors Down	3:53	Kryptonite	2000-04-08	1	81
2000	3 Doors Down	3:53	Kryptonite	2000-04-15	2	70
2000	3 Doors Down	3:53	Kryptonite	2000-04-22	3	68
2000	3 Doors Down	3:53	Kryptonite	2000-04-29	4	67
2000	3 Doors Down	3:53	Kryptonite	2000-05-06	5	66

Table 8: First fifteen rows of the tidied billboard dataset. The date column does not appear in the original table, but can be computed from date.entered and week.

http://vita.had.co.nz/papers/tidy-data.html

The Tidy Version

id	artist	track	$_{ m time}$	id	date	rank
1	2 Pac	Baby Don't Cry	4:22	1	2000-02-26	87
2	2Ge+her	The Hardest Part Of	3:15	1	2000-03-04	82
3	3 Doors Down	Kryptonite	3:53	1	2000-03-11	72
4	3 Doors Down	Loser	4:24	1	2000-03-18	77
5	504 Boyz	Wobble Wobble	3:35	1	2000 - 03 - 25	87
6	98^0	Give Me Just One Nig	3:24	1	2000-04-01	94
7	A*Teens	Dancing Queen	3:44	1	2000-04-08	99
8	Aaliyah	I Don't Wanna	4:15	2	2000-09-02	91
9	Aaliyah	Try Again	4:03	2	2000-09-09	87
10	Adams, Yolanda	Open My Heart	5:30	2	2000-09-16	92
11	Adkins, Trace	More	3:05	3	2000-04-08	81
12	Aguilera, Christina	Come On Over Baby	3:38	3	2000-04-15	70
13	Aguilera, Christina	I Turn To You	4:00	3	2000-04-22	68
14	Aguilera, Christina	What A Girl Wants	3:18	3	2000-04-29	67
15	Alice Deejay	Better Off Alone	6:50	3	2000-05-06	66
	·	·				

Table 13: Normalised billboard dataset split up into song dataset (left) and rank dataset (right). First 15 rows of each dataset shown; genre omitted from song dataset, week omitted from rank dataset.

http://vita.had.co.nz/papers/tidy-data.html

From Messy to Tidy (One Example)

	treatmenta	treatmentb
John Smith		2
Jane Doe	16	11
Mary Johnson	3	1

name	trt	result
John Smith	a	
Jane Doe	a	16
Mary Johnson	a	3
John Smith	b	2
Jane Doe	b	11
Mary Johnson	b	1

```
# A tibble: 3 x 3
 name treatmenta treatmentb
 <chr>
                  <dbl> <dbl>
1 John Smith
                     NA
2 Jane Doe
                     16
                           11
3 Mary Johnson
pivot_longer(df_messy, -name,
            names to = "treatment", values to = "result")
```

```
# A tibble: 3 x 3
 name treatmenta treatmentb
 <chr>
                  <dbl> <dbl>
1 John Smith
                     NA
2 Jane Doe
                     16
                            11
3 Mary Johnson
pivot_longer(df_messy, -name,
            names to = "treatment", values to = "result")
```

```
# A tibble: 3 x 3
 name treatmenta treatmentb
 <chr>
                  <dbl> <dbl>
1 John Smith
                     NA
2 Jane Doe
                     16
                           11
3 Mary Johnson
pivot_longer(df_messy, -name,
            names to = "treatment", values to = "result")
```

```
# A tibble: 3 x 3
               treatmenta treatmentb
  name
                               <dbl>
                    <dbl>
 <chr>
1 John Smith
                       NA
2 Jane Doe
                       16
                               11
3 Mary Johnson
pivot_longer(df_messy, -name,
             names_to = "treatment", values to = "result")
```

```
# A tibble: 3 x 3
       treatmenta treatmentb
 name
 <chr>
                   <dbl>
                            <dbl>
1 John Smith
                      NA
2 Jane Doe
                      16
3 Mary Johnson
pivot_longer(df_messy, -name,
            names to = "treatment", values_to = "result")
```

pivot_longer() result

```
# A tibble: 6 x 3
            treatment result
 name
      <chr>
1 John Smith treatmenta
                         NA
2 John Smith treatmentb
3 Jane Doe treatmenta
                         16
4 Jane Doe treatmentb
                         11
                          3
5 Mary Johnson treatmenta
6 Mary Johnson treatmentb
```

The inverse transformation: pivot_wider()

```
treatment result
 name
        <chr>
1 John Smith a
                         NA
                         16
2 Jane Doe a
3 Mary Johnson a
4 John Smith
5 Jane Doe b
6 Mary Johnson b
pivot_wider(df tidy,
          names from = treatment, values from = result)
```

The inverse transformation: pivot_wider()

```
treatment
                          result
  name
  <chr>>
                <chr>>
                           <dbl>
1 John Smith
                               NA
                               16
2 Jane Doe
3 Mary Johnson
4 John Smith
5 Jane Doe
                               11
6 Mary Johnson b
pivot wider(df tidy,
            names_from = treatment, values from = result)
```

The inverse transformation: pivot_wider()

```
treatment result
  name
            <chr>
  <chr>>
                         <dbl>
1 John Smith a
                            NA
2 Jane Doe a
                            16
3 Mary Johnson a
4 John Smith
5 Jane Doe b
6 Mary Johnson b
pivot wider(df_tidy,
           names from = treatment, values_from = result)
```

pivot_wider() result

```
# A tibble: 3 x 3
 name
 <chr> <dbl> <dbl>
1 John Smith
              NA 2
2 Jane Doe 16 11
3 Mary Johnson
```

Data manipulation: dplyr()

- Filter observations: filter()
- Select variables: select()
- Reorder rows: <u>arrange()</u>
- Create new variables: mutate()
- Collapse column values to a single summary: <u>summarise()</u>
- Group by: group by()

The Employees Table

```
> employees %>% select(FirstName, LastName, Country)
# A tibble: 9 x 3
  FirstName LastName
                    Country
 <chr> <chr> <chr>
1 Nancy Davolio USA
2 Andrew
           Fuller USA
           Leverling USA
3 Janet
4 Margaret
           Peacock
                    USA
5 Steven
           Buchanan
                    UK
```

Count Number of Employees By Country

```
> employees %>% select(FirstName, LastName, Country) %>%
   group_by(Country)
# A tibble: 9 x 3
# Groups: Country [2]
 FirstName LastName Country
 <chr> <chr> <chr>
1 Nancy Davolio USA
2 Andrew
          Fuller USA
3 Janet
           Leverling USA
```

Count Number of Employees By Country

```
> employees %>% select(FirstName, LastName, Country) %>%
   group by(Country) %>%
    summarise(count = n())
# A tibble: 2 x 2
  Country count
 <chr> <int>
1 UK
2 USA
```

Count Number of Employees By Country

```
> employees %>% select(FirstName, LastName, Country) %>%
   group by(Country) %>%
    summarise(count = n()) %>%
   arrange(desc(count))
# A tibble: 2 x 2
 Country count
  <chr> <int>
1 USA
2 UK
```

Relation between Datasets/Tables

Relation between Datasets/Tables – Zoom In

Relation between Datasets/Tables – Zoom In

Primary key

Relation between datasets/tables - Zoom In

- Primary key
- Foreign key

Relation between datasets/tables – Zoom In

- Primary key
- Foreign key
- 1-to-Many Relationship

Relation between Tables – Another Example

Join – Inner Join

Table

pk	t1c1
1	а
2	b

Table2

fk	t2c1
1	С
1	d
3	е

pk	t1c1	t2c1
1	а	С
1	a	d

inner_join(Table1, Table2, by = c("pk" = "fk"))

Join – Left (Outer) Join

Т	ā	h	le	1
	v	\sim	\sim	_

pk	t1c1
1	а
2	b

Table2

fk	t2c1
1	С
1	d
3	е

pk	t1c1	t2c1
1	а	С
1	а	d
2	b	NA

left_join(Table1, Table2, by = c("pk" = "fk"))

Join - Left (Outer) Join With Exclusion

┰╮	ᇈ	1 ~ 1
17	ını	1 A

pk	t1c1
1	а
2	b

Table2

fk	t2c1
1	С
1	d
3	е

pk	t1c1	t2c1
2	b	NA

```
Table1 %>%
  left_join(Table2, by = c("pk" = "fk")) %>%
  filter(is.na(t2c1))
```

Join - Right (Outer) Join*

Table1		
pk	t1c1	
1	а	
2	h	

fk	t2c1	
1	С	
1	d	
3	е	

Table2

pk	t1c1	t2c1
1	а	С
1	а	d
3	NA	е

Note: can use left_join as well.

Join - Right (Outer) Join With Exclusion*

Tα	hl	∩ 1	
Ta	IJΙ	ет	

pk	t1c1
1	а
2	b

fk	t2c1
1	С
1	d
3	е

pk	t1c1	t2c1
3	NA	е

```
Table1 %>%
  right_join(Table2, by = c("pk" = "fk")) %>%
  filter(is.na(t1c1))
```

Join - Full Outer Join

Т	ล	b	ما	1
	а	U	に	Т

pk	t1c1
1	а
2	b

Table2

fk	t2c1
1	С
1	d
3	е

pk	t1c1	t2c1
1	а	С
1	a	d
2	b	NA
3	NA	е

<pre>full_join(Table1,</pre>	Table2,	by =	c("pk"	= "fk"))
------------------------------	---------	------	--------	----------

Join - Full Outer Join

т.	. _	_ 1
- 12	ומו	ΙДΙ
IC	\mathbf{I}	-

pk	t1c1
1	а
2	b

Table2

fk	t2c1
1	С
1	d
3	е

pk	t1c1	t2c1
2	b	NA
3	NA	е

```
Table1 %>%
  full_join(Table2, by = c("pk" = "fk")) %>%
  filter(is.na(t1c1) | is.na(t2c1))
```