Target – Brazil Market Case Study, Insights & Recommendations

Submitted by: Abhishek Singh Date: March 7,2023

Objective: To gain insights about the shopping trends, sales & revenue generated, profit/loss analysis about the business operation of Target for the market and period provided and provide recommendations from the insights.

Pre-requisites: The data provided in CSV files were imported to a MySQL workbench for analysis and generating insights. CSV file names were used as the SQL table names and the steps to import large datasets efficiently can be referred here.

Initial Analysis & Observations:

1. Figuring out the metadata of the tables

Approach: We generated an ER diagram in MySQL workbench to understand the metadata of all the tables. This ER diagram would also help us understand the kind of data in each table

Observations:

Table Name	Column Name	Column Description	
	customer_id	Id of the consumer who made the purchase.	
	customer_unique_id	Unique Id of the consumer.	
customers	customer_zip_code_prefix	Zip Code of the location of the consumer.	
	customer_city	Name of the City from where order is made.	
	customer_state	State Code from where order is made(Ex- sao paulo-SP).	
	seller_id	Unique Id of the seller registered	
collors	seller_zip_code_prefix	Zip Code of the location of the seller.	
sellers	seller_city	Name of the City of the seller.	
	seller_state	State Code (Ex- sao paulo-SP)	
	order_id	A unique id of order made by the consumers.	
	order_item_id	A Unique id given to each item ordered in the order.	
	product_id	A unique id given to each product available on the site.	
	seller_id	Unique Id of the seller registered in Target.	
order_items	shipping_limit_date	The date before which shipping of the ordered product must be completed.	
	price	Actual price of the products ordered .	
	freight_value	Price rate at which a product is delivered from one point to another.	
	geolocation_zip_code_prefix	first 5 digits of zip code	
	geolocation_lat	latitude	
geolocation	geolocation_lng	longitude	
	geolocation_city	city name	
	geolocation_state	state	
	order_id	A unique id of order made by the consumers.	
	payment_sequential	sequences of the payments made in case of EMI.	
payments	payment_type	mode of payment used.(Ex-Credit Card)	
	payment_installments	number of installments in case of EMI purchase.	
	payment_value	Total amount paid for the purchase order.	
	order_id	A unique id of order made by the consumers.	
	customer_id	Id of the consumer who made the purchase.	
	order_status	status of the order made i.e delivered, shipped etc.	
	order_purchase_timestamp	Timestamp of the purchase.	
	order_delivered_carrier_date	delivery date at which carrier made the delivery.	
	order_delivered_customer_date	date at which customer got the product.	
orders	order_estimated_delivery_date	estimated delivery date of the products.	
	review_id	Id of the review given on the product ordered by the order id.	
order_reviews	order_id	A unique id of order made by the consumers.	

	review_score	review score given by the customer for each order on the scale of 1–5.
	review_comment_title	Title of the review
	review_comment_message	Review comments posted by the consumer for each order.
	review_creation_date	Timestamp of the review when it is created.
	review_answer_timestamp	Timestamp of the review answered.
	product_id	A unique identifier for the proposed project.
	product_category_name	Name of the product category
	product_name_lenght	length of the string which specifies the name given to the products ordered.
	product_description_lenght	length of the description written for each product ordered on the site.
	product_photos_qty	Number of photos of each product ordered available on the shopping portal.
	product_weight_g	Weight of the products ordered in grams.
	product_length_cm	Length of the products ordered in centimeters.
	product_height_cm	Height of the products ordered in centimeters.
products	product_width_cm	width of the product ordered in centimeters.

2. Time Period for which the data is given

Approach:

- From the ER diagram generated, we observe that the 'order_purchase_timestamp' column from 'orders' table stores the timestamp of each order purchased. Using min() and max() on the column we can get the time-period for which we have the data.
- To understand how data is stored in the column we pull 10 records from the column.

• By extracting the date component from timestamp and pulling the max and min timestamp values we can get the time-period of data

Observation: The data has been provided for orders places between September2016 and October 2018

3. Cities and States of customers ordered during the given period

Approach: The 'geolocation_city' and 'geolocation_state' columns in geolocation table will contain the required information

Observations: Maximum customers are from states SP, MG and RJ and the states RR and AP has smallest consumer base, which indicates that efforts need to be made in SP, MG and RJ to ensure customer retention and strategies need to be developed to penetrate deeper in the RR and AP markets.

4. Customer Retention Percent:

```
select
count(distinct customer_id) as cust_count,
count(distinct customer_unique_id) as unique_cust_count,
round((count(distinct customer_id)-count(distinct customer_unique_id))/count(distinct customer_id)*100,2) as cust_retention
from customers;
```


E-Commerce Trends in Brazil:

1. <u>Is there a growing trend on e-commerce in Brazil? How can we describe a complete scenario? Can</u> we see some seasonality with peaks at specific months?

Approach: We can gain insights on this business problem by checking how the MOM and YOY growth in sales and revenue in the region

Observations: We can observe that there has been a YOY growth in the number of orders places in Target across Brazil since 2016. From 2016 to 2017, there was a exponential growth owing to large untapped market in Brazil, however between 2017 to 2017 the decrease in growth was sharper than expected which could indicates an untapped population which can be leveraged for future growth, especially in states with least contribution to total orders placed

A Month-on-Month analysis suggests that Christmas and New-year period (November to January) has the highest orders places each year, and incentives should be rolled out encouraging people to order more frequently during the months of Mar-Jun and Aug-Sep which have consistently seen a decline in orders placed each year.

Period	Shopping trends based on number of orders placed
Feb - Mar	Increase in orders placed
Mar- Jun	Decrease in orders placed
Jun - Aug	Sharp increase in orders placed
Aug - Sep	Decrease in orders placed
Nov, Dec,	
Jan	Highest number of orders placed

2. What time do Brazilian customers tend to buy (Dawn, Morning, Afternoon or Night)?

Approach: We can observe this trend by analyzing the orders placed at various hours of the day.

Observations: Shopping trends suggest that maximum number of orders are placed during Noon and Night, using which we can infer advertisements should be focused during this time to keep the revenue high during this day. Additionally, the least orders are placed during Dawn time, which can be accounted to fewer number of people using their PDAs during this time and consequently pulling off advertisements during this time might be a safe idea.

select case when hour(order_purchase_timestamp) between 21 and 23 OR hour(order_purchase_timestamp) between 00 and 03 then 'Night' when hour(order_purchase_timestamp) between 04 and 05 then 'Dawn' when hour(order_purchase_timestamp) between 06 and 10 then 'Morning' when hour(order_purchase_timestamp) between 11 and 15 then 'Noon' when hour(order_purchase_timestamp) between 16 and 17 then 'Dusk' when hour(order_purchase_timestamp) between 18 and 20 then 'Evening' end as time_of_day, count(order_id) as Count_of_Orders from orders group by time_of_day order by Count_of_Orders desc

Evolution of E-commerce orders in the Brazil region:

1. Get month on month orders by states

Approach: The insights can be determined by observing the total number of orders that have been placed across all the states for each month

Observations: We observe that the highest number of orders have been placed in August, in line with our observation above, and the state SP has highest contribution to the orders, and least being AC, indicating that the AC market has not been penetrated yet, and capital expenditure should be allocated to acquire a larger section of AC market

select c.customer_state as state, monthname(o.order_purchase_timestamp) as Monthname, month(o.order_purchase_timestamp) as Month, count(*) as total_orders from orders o join customers c on c.customer_id=o.customer_id group by state, monthname, month order by state, month;

G	Н
Row Labels	Sum of total_orders
January	8310
February	8781
March	10208
April	9641
May	10951
June	9744
July	10683
August	11225
September	4461
October	5114
November	7791
December	5860
(blank)	
Grand Total	102769

2. <u>Distribution of customers across the states in Brazil:</u>

Approach: We shall be plotting the number of customers across the states and consequently the number of orders placed per state

Observations: State SP has highest number of orders placed and the highest number of customers while state RR is yet to be tapped completely with lesser than 100 registered customers

SQL Script:

select

c.customer_state as state,

count(o.order_id) as total_orders

from orders o

join customers c on c.customer_id=o.customer_id

group by state

order by total_orders desc;

select

customer_state as state,

count(distinct customer_unique_id) as cust_count

from customers

group by state

order by cust_count desc;

	state	cust_count
•	SP	40302
	RJ	12384
	MG	11259
	RS	5277
	PR	4882
	SC	3534
	BA	3277
	DF	2075
	ES	1964
	GO	1952
	PE	1609
	CE	1313
	PA	949
	MT	876

	state	total_orders
•	SP	43208
	RJ	13284
	MG	12007
	RS	5643
	PR	5194
	SC	3756
	BA	3489
	DF	2214
	ES	2107
	GO	2097
	PE	1698
	CE	1378
	PA	1001
	MT	945

Impact on Economy:

1. Get % increase in cost of orders from 2017 to 2018:

Approach: We shall compute the total payments received across the two years

Observations: The total cost of orders in Brazil market from 2017 to 2018 has increased by 136%, indicating an overall good brand establishment and gradual increase in loyalty towards business by the customers, resulting in overall good peer-to-peer advertisement and growth

SQL Script:
select
concat(round(sum(payment_value),2)," Brazil Real") as cost_of_orders,
year(o.order_purchase_timestamp) as year
from orders o
join payments p on o.order_id=p.order_id
where month(o.order_purchase_timestamp) between 1 and 8
and year(o.order_purchase_timestamp) in (2017,2018)
group by year
order by year;

2. Mean & Sum of price and freight value by customer state:

Approach: Compute the prices

Observations: For the 10 states in the output, we observe that the average price of orders is high despite the average freight price being high as well. Establishing better logistic network in these 10 states to bring down the overall freight cost, could have positive impact on the consumer purchasing parity and result in higher sales.

	total_price	avg_price	total_freight	avg_freight	cust_state
١	116225.99	189.6	26303.2	42.91	PB
	82634.51	180.82	16439.85	35.97	AL
	16224.74	170.79	3769.85	39.68	AC
	47014.53	166.72	11578.74	41.06	RO
	13813.2	164.44	2916.34	34.72	AP
	182482.1	164.4	39621.18	35.69	PA
	90981.33	161.89	22002.45	39.15	PI
	52036.23	161.6	11945.74	37.1	TO
	8629.13	156.89	2448.64	44.52	RR
	84710.6	156	19403.95	35.73	RN

```
select
round(sum(oi.price),2) as total_price,
round(avg(oi.price),2) as avg_price,
round(sum(freight_value),2) as total_freight,
round(avg(freight_value),2) as avg_freight,
c.customer_state as cust_state
from orders o
join order_items oi on o.order_id=oi.order_id
join customers c on c.customer_id=o.customer_id
group by c.customer_state
order by avg_price desc, avg_freight desc;
```

Analysis on sales, freight, and delivery time:

1. Calculate days between purchasing, delivering and estimated delivery:

Observations: The average delivery time for state RR is the highest, while the total orders placed is the least among all the states. The very high delivery times could be a reason for customers to turn away from placing orders, which can be remediated by investing in logistics in the state to attract more customers and ensure future growth.

select round(avg(datediff(o.order_delivered_customer_date,date(o.order_purchase_timestamp))),2) as avg_deli_day, round(avg(datediff(o.order_estimated_delivery_date,date(o.order_purchase_timestamp))),2) as avg_est_deli_day, c.customer_state as cust_state, count(o.order_id) as total_orders from orders o join customers c on o.customer_id=c.customer_id group by cust_state order by avg_deli_day desc, avg_est_deli_day desc, total_orders desc;

	avg_deli_day	avg_est_deli_day	cust_state	total_orders
•	29.16	47.40	RR	48
	27.42	46.79	AP	70
	26.42	45.78	AM	154
	24.79	33, 18	AL	425
	23.67	37.72	PA	1001
	21.55	31.05	MA	766
	21.48	31.35	SE	360
	21.22	31.96	CE	1378
	21.00	41.56	AC	84
	20.37	33.69	PB	546
	19.37	30.80	PI	511
	19.31	39.39	RO	257

2. Find time to delivery & diff estimated delivery:

Observations: The orders are delivered on earlier than the estimated delivery date on average.

-		
	avg_deli_day	diff_estimated_delivery
•	12.50	11.88

SQL Script:

select

round(avg(datediff(o.order_delivered_customer_date,date(o.order_purchase_timestamp))),2) as avg_deli_day, round(avg(datediff(o.order_estimated_delivery_date,o.order_delivered_customer_date)),2) as diff_estimated_delivery from orders o;

3. Group data by state, take mean of freight value, time to delivery, diff estimated delivery:

SQL Script:

select

c.customer state as cust state

round(avg(datediff(o.order delivered customer date,date(o.order purchase timestamp))),2) as avg deli day, round(avg(datediff(o.order estimated delivery date,o.order delivered customer date)),2) as diff estimated delivery, round(avg(oi.freight value),2) as avg freight value,

from orders o

join order items oi on o.order id=oi.order id

join customers c on c.customer id=o.customer id

group by c.customer_state

4. Top 5 states with highest/lowest average freight value - sort in desc/asc limit 5

Observation: The highest and lowest average freight value belong to the state with lowest and highest contribution to total orders respectively. Freight charges affect the customer purchasing decision negatively.

SQL Script:

select

c.customer_state as cust_state

round(avg(datediff(o.order_delivered_customer_date,date(o.order_purchase_timestamp))),2) as avg_deli_day, round(avg(datediff(o.order_estimated_delivery_date,o.order_delivered_customer_date)),2) as diff_estimated_delivery, round(avg(oi.freight_value),2) as avg_freight_value,

from orders o

join order items oi on o.order id=oi.order id

join customers c on c.customer_id=o.customer_id

group by c.customer state

order by avg_freight_value desc

limit 5;

	cust_state	avg_deli_day	diff_estimated_delivery	avg_freight_value
•	RR	28.10	18.57	44.52
	PB	20.53	13.16	42.91
	RO	19.67	20.00	41.06
	AC	20.69	20.79	39.68
	PI	19.31	11.57	39.15

SQL Script:

select

c.customer_state as cust_state

round(avg(datediff(o.order_delivered_customer_date,date(o.order_purchase_timestamp))),2) as avg_deli_day, round(avg(datediff(o.order_estimated_delivery_date,o.order_delivered_customer_date)),2) as diff_estimated_delivery, round(avg(oi.freight_value),2) as avg_freight_value,

from orders o

join order items oi on o.order id=oi.order id

join customers c on c.customer_id=o.customer_id

group by c.customer state

order by avg_freight_value asc

limit 5;

	cust_state	avg_deli_day	diff_estimated_delivery	avg_freight_value
•	SP	8.67	11.20	15.15
	PR	11.90	13.48	20.58
	MG	11.91	13.35	20.62
	RJ	15.06	12.02	20.93
	DF	12.86	12.22	21.03

5. Top 5 states with highest/lowest average time to delivery

Observation: Shopping trends suggest that the delivery time impacts the purchasing decision of customer inversely. States with low delivery times witnessed the highest number of orders placed and vice-versa

SQL Script:

select

c.customer state as cust state,

round(avg(datediff(o.order_delivered_customer_date,date(o.order_purchase_timestamp))),2) as avg_deli_day, round(avg(datediff(o.order_estimated_delivery_date,o.order_delivered_customer_date)),2) as diff_estimated_delivery, round(avg(oi.freight_value),2) as avg_freight_value

from orders o

join order_items oi on o.order_id=oi.order_id

join customers c on c.customer_id=o.customer_id

group by c.customer_state

order by avg_deli_day desc

limit 5;

			-
cust_state	avg_deli_day	diff_estimated_delivery	avg_freight_value
AP	28.40	18.29	34.72
RR	28.10	18.57	44.52
AM	26.39	19.88	33.02
AL	24.72	8.40	35.97
PA	23.62	14.28	35.69
	AP RR AM AL	AP 28.40 RR 28.10 AM 26.39 AL 24.72	AP 28.40 18.29 RR 28.10 18.57 AM 26.39 19.88 AL 24.72 8.40

SQL Script:

select

c.customer_state as cust_state,

round(avg(datediff(o.order_delivered_customer_date,date(o.order_purchase_timestamp))),2) as avg_deli_day, round(avg(datediff(o.order_estimated_delivery_date,o.order_delivered_customer_date)),2) as diff_estimated_delivery, round(avg(oi.freight_value),2) as avg_freight_value

from orders o

join order_items oi on o.order_id=oi.order_id

join customers c on c.customer_id=o.customer_id

group by c.customer_state

order by avg_deli_day asc

limit 5;

	cust_state	avg_deli_day	diff_estimated_delivery	avg_freight_value
•	SP	8.67	11.20	15.15
	PR	11.90	13.48	20.58
	MG	11.91	13.35	20.62
	DF	12.86	12.22	21.03
	SC	14.98	11.55	21.4

6. Top 5 states where delivery is really fast/ not so fast compared to estimated date

Observation: As per the data, for the state with highest difference between estimated delivery date and actual delivery date, the customer purchase decision was primarily impacted by the delivery dates, which imply the delivery date estimation should be improved in order to encourage more customer turnup in the affected state.

SQL Script:

<u>select</u>

c.customer state as cust state,

round(avg(datediff(o.order_delivered_customer_date,date(o.order_purchase_timestamp))),2) as avg_deli_day,

round(avg(datediff(o.order_estimated_delivery_date,o.order_delivered_customer_date)),2) as diff_estimated_delivery,

round(avg(oi.freight value),2) as avg freight value

from orders o

join order items oi on o.order id=oi.order id

join customers c on c.customer_id=o.customer_id group by c.customer_state order by diff_estimated_delivery desc limit 5;

	cust_state	avg_deli_day	diff_estimated_delivery	avg_freight_value
•	AP	28.40	18.29	34.72
	RR	28.10	18.57	44.52
	AM	26.39	19.88	33.02
	AL	24.72	8.40	35.97
	PA	23.62	14.28	35.69

SQL Script:

select

c.customer_state as cust_state,

 $round (avg(datediff(o.order_delivered_customer_date, date(o.order_purchase_timestamp))), 2) \ as \ avg_deli_day,$

round(avg(datediff(o.order_estimated_delivery_date,o.order_delivered_customer_date)),2) as diff_estimated_delivery,

round(avg(oi.freight_value),2) as avg_freight_value

from orders o

join order_items oi on o.order_id=oi.order_id

join customers c on c.customer_id=o.customer_id

group by c.customer_state

order by diff_estimated_delivery asc

limit 5;

	cust_state	avg_deli_day	diff_estimated_delivery	avg_freight_value
•	AL	24.72	8.40	35.97
	MA	21.63	9.80	38.25
	SE	21.46	9.94	36.92
	ES	15.63	10.62	22.11
	BA	19.16	11.04	26.31

Payment type analysis:

1. Month over Month count of orders for different payment types

Observation: Majority of customers prefer to pay via UPI, followed by Credit cards. Establishing partnerships with major banking institutions to provide credit card offers upon performing

	total_orders	Month	Monthname	Pay_type
•	6103	1	January	credit_card
	118	1	January	debit_card
	477	1	January	voucher
	1715	1	January	UPI
	82	2	February	debit_card
	1723	2	February	UPI
	6609	2	February	credit_card
	424	2	February	voucher
	7707	3	March	credit_card
	591	3	March	voucher
	1942	3	March	UPI
	109	3	March	debit_card

F	G	
Row Labels 🔻	Sum of # total_orders	
credit_card	76795	
debit_card	1529	
not_defined	3	
UPI	19784	
voucher	5775	
(blank)		
Grand Total	103886	

SQL Script:

select

count(p.order_id) as total_orders,

month(o.order_purchase_timestamp) as Month,

monthname(o.order_purchase_timestamp) as Monthname,

p.payment_type as Pay_type

from orders o

join payments p on o.order id=p.order id

group by Pay_type, Month, Monthname

order by Month;

2. Count of orders based on the no. of payment installments

Observations: Majority of customers prefer purchasing items in a single installment. Reluctance of choosing multiple installments could result in customers shying away from major/bulk purchases. Enabling zero cost EMI options could encourage impact this positively.

select count(p.order_id) as total_orders, p.payment_installments as Installments from payments p group by Installments order by total_orders desc; 52546 1 12413 2 10461 3 7098 4 5239 5 4268 8	SQL Script:		total_orders	Installments
p.payment_installments as Installments from payments p group by Installments order by total_orders desc; 12413 2 10461 3 7098 4 07098 10 5239 5		•	52546	1
from payments p group by Installments order by total_orders desc; 10461 3 7098 4 5328 10 5239 5			12413	2
order by total_orders desc; 5328 10 5239 5	· · · —		10461	3
5239 5	group by Installments		7098	4
	order by total_orders desc;		5328	10
4268 8			5239	5
			4268	8

Actionable Insights:

- ➤ Though boasting a large customer base, by comparing the total number of customer id with the unique customer ids we can conclude that the customer retention stands at 3.36% which suggests that customers do not return for repeat purchases. This can be further concluded by the exponential rise in customer base and subsequently orders placed from 2016 to 2017 and then the drastic decline in total orders placed from 2017 to 2018.
- Markets that are currently not yet tapped completely are due to a combination of high freight charges, high estimated and actual delivery time.
- > Credit card utilization for purchases is low, despite being the strongest financial instrument.
- Majority of customers are saturated in the states SP, RJ and MG and consequently these states have highest contribution to the total orders. Markets in RR, AM and AC are yet to be utilized to the full potential and capital expenditure for market penetration should be considered.
- > Bulk and expensive purchases should be expected and prepared for in the months of July and August, since these two months witness largest shopping spree.

Recommendations:

- Rollout of loyalty/membership program to improve customer retention and encourage multiple orders by customers.
- Establish partnership with local logistics providers to improve freight charges and delivery times in states with worst delivery times.
- Partnership with financial institutions to roll out credit card offers and no cost EMIs plans for customers to improve credit card utilization and encourage larger purchases.
- Capital expenditure to roll out discount offers and free delivery on purchases to state with a non-established/minute customer base.
- ➤ Enhance advertisement during the afternoon and night-time to promote higher profit margin products, as these time periods of the day are the segment leaders and bring in largest volume of orders.