Docket No. 60388-A-PCT-US/JPW/GJG/JBC

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants: Mar

Mary Cismowski et al.

Serial No.:

09/709,103

Filed

November 8, 2000

For

AGS PROTEINS AND NUCLEIC ACID MOLECULES AND USES

THEREFOR

1185 Avenue of the Americas New York, New York 10036 March 18, 2002

MAR 2 2 2002

U.S. Patent and Trademark Office Box Sequence, P.O. Box 2327 Arlington, VA 22202

Sir:

STATEMENT IN ACCORDANCE WITH 37 C.F.R. §1.821(f)

In accordance with 37 C.F.R. §1.821(f), I hereby certify that the computer readable form containing the nucleic acid and/or amino acid sequences required by 37 C.F.R. §1.821(e) attached hereto has the same information as the paper copy of the "Sequence Listing" submitted herewith as **Exhibit D** in connection with the above-identified application.

I hereby declare that all statements made herein are of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under section 1001 of Title 18 of the United States Code and that such wilful false statements may jeopardize the validity of the application or any patent issued thereon.

Respectfully submitted,

Joseph B. Crystal Cooper & Dunham LLP

1185 Avenue of the Americas New York, New York 10036

(212) 278-0400

Apacation No.: 09/709 103

NOTICE TO COMPLY WITH REQUIREMENTS FOR PATENT APPLICATIONS CONTAINING NUCLEOTIDE SEQUENCE AND/OR AMINO ACID SEQUENCE DISCLOSURES

Applicant must file the items indicated below within the time period set the Office action to which the Notice is attached to avoid abandonment under 35 U.S.C. § 133 (extensions of time may be obtained under the provisions of 37 CFR 1.136(a)).

The nucleotide and/or amino acid sequence disclosure contained in this application does not comply with the requirements for such a disclosure as set forth in 37 C.F.R. 1.821 - 1.825 for the following reason(s):

1. This application clearly fails to comply with the requirements of 37 C.F.R. 1.821-1.825. Applicant's attention is directed to the final rulemaking notice published at 55 FR 18230 (May 1, 1990), and 1114 OG 29 (May 15, 1990). If the effective filing date is on or after July 1, 1998, see the final rulemaking notice published at 63 FR 29620 (June 1, 1998) and 1211 OG 82 (June 23, 1998).
2. This application does not contain, as a separate part of the disclosure on paper copy, a "Sequence Listing" as required by 37 C.F.R. 1.821(c).
3. A copy of the "Sequence Listing" in computer readable form has not been submitted as required by 37 C.F.R. 1.821(e).
4. A copy of the "Sequence Listing" in computer readable form has been submitted. However, the content of the computer readable form does not comply with the requirements of 37 C.F.R. 1.822 and/or 1.823, as indicated on the attached copy of the marked -up "Raw Sequence Listing."
5. The computer readable form that has been filed with this application has been found to be damaged and/or unreadable as indicated on the attached CRF Diskette Problem Report. A Substitute computer readable form must be submitted as required by 37 C.F.R. 1.825(d).
6. The paper copy of the "Sequence Listing" is not the same as the computer readable from of the "Sequence Listing" as required by 37 C.F.R. 1.821(e).
7. Other: The Statement in Accordance with 37 C.F.R. 1.821 (f) filed 3/22/02 does not include a statement of "no new matter". (see 37 CFR 1.821 (g).
Applicant Must Provide:
An initial or <u>substitute</u> computer readable form (CRF) copy of the "Sequence Listing".
An initial or <u>substitutė</u> paper copy of the "Sequence Listing", as well as an amendment directing its entry into the specification.
A statement that the content of the paper and computer readable copies are the same and, where applicable, include no new matter, as required by 37 C.F.R. 1.821(e) or 1.821(f) or 1.821(g) or 1.825(b) or 1.825(d).
For questions regarding compliance to these requirements, please contact:
For Rules Interpretation, call (703) 308-4216 For CRF Submission Help, call (703) 308-4212 PatentIn Software Program Support
Technical Assistance703-287-0200 To Purchase PatentIn Software703-306-2600
PLEASE RETURN A COPY OF THIS NOTICE WITH YOUR DEDLY

SEQUENCE LISTING

<110> Cismowski, Mary
Duzic, Emir

<120> AGS Proteins and Nucleic Acid Molecules and Uses Therefor

<130> 60388-A-PCT-US

<140> 09/709,103

<141> 2000-11-08

<160> 73

<170> PatentIn version 3.1

<210> 1

<211> 846

<212> DNA

<213> Homo Sapien

<220>

<221> CDS

<222> (1)..(843)

<223>

<400> 1

atg aaa ctg gcc gcg atg atc aag aag atg tgc ccg agc gac tcg gag Met Lys Leu Ala Ala Met Ile Lys Lys Met Cys Pro Ser Asp Ser Glu $1 \hspace{1.5cm} 5 \hspace{1.5cm} 10 \hspace{1.5cm} 15$

48

ctg agt atc ccg gcc aag aac tgc tat cgc atg gtc atc ctc ggc tcg Leu Ser Ile Pro Ala Lys Asn Cys Tyr Arg Met Val Ile Leu Gly Ser 20 25 30

96

					acg Thr											144
					acg Thr											192
					gag Glu 70											240
			_		ccc Pro	-	_		_							288
_	_			_	gtg Val		_	_	_		_	_				336
		_			agg Arg	_	_			-		_		_		384
_				_	gag Glu			_			_	_		_		432
	_		_	_	gac Asp 150											480
					gac Asp											528
_	_	-	_		agc Ser	-	_	-		_		_				576
_	_	_	_	_	ccc Pro	_		_	_		_	_		_	_	624
					tgc Cys											672
					gcc Ala 230											720
_	_				gtg Val	_				_			-	-		768
_	_		_		atc Ile	_		_	-	-	_		_	_	_	816

846

aag gac aag gag cgc tgc gtc atc agc tag Lys Asp Lys Glu Arg Cys Val Ile Ser 275 280

<210> 2

<211> 281

<212> PRT

<213> Homo Sapien

<400> 2

Met Lys Leu Ala Ala Met Ile Lys Lys Met Cys Pro Ser Asp Ser Glu 1 5 10 15

Leu Ser Ile Pro Ala Lys Asn Cys Tyr Arg Met Val Ile Leu Gly Ser 20 25 30

Ser Lys Val Gly Lys Thr Ala Ile Val Ser Arg Phe Leu Thr Gly Arg 35 40 45

Phe Glu Asp Ala Tyr Thr Pro Thr Ile Glu Asp Phe His Arg Lys Phe 50 55 60

Tyr Ser Ile Arg Gly Glu Val Tyr Gln Leu Asp Ile Leu Asp Thr Ser 70 75 80

Gly Asn His Pro Phe Pro Ala Met Arg Arg Leu Ser Ile Leu Thr Gly 85 90 95

Asp Val Phe Ile Leu Val Phe Ser Leu Asp Asn Arg Asp Ser Phe Glu 100 105 110

Glu Val Gln Arg Leu Arg Gln Gln Ile Leu Asp Thr Lys Ser Cys Leu 115 120 125

Lys Asn Lys Thr Lys Glu Asn Val Asp Val Pro Leu Val Ile Cys Gly 130 135 140

Asn Lys Gly Asp Arg Asp Phe Tyr Arg Glu Val Asp Gln Arg Glu Ile 145 150 155 160

Glu Gln Leu Val Gly Asp Asp Pro Gln Arg Cys Ala Tyr Phe Glu Ile 165 170 175

Ser	Ala	Lys	Lys 180	Asn	Ser	Ser	Leu	Asp 185	Gln	Met	Phe	Arg	Ala 190	Leu	Phe	
Ala	Met	Ala 195	Lys	Leu	Pro	Ser	Glu 200	Met	Ser	Pro	Asp	Leu 205	His	Arg	Lys	
Val	Ser 210	Val	Gln	Tyr	Cys	Asp 215	Val	Leu	His	Lys	Lys 220	Ala	Leu	Arg	Asn	
Lys 225	Lys	Leu	Leu	Arg	Ala 230	Gly	Ser	Gly	Gly	Gly 235	Gly	Gly	Asp	Pro	Gly 240	
Asp	Ala	Phe	Gly	Ile 245	Val	Ala	Pro	Phe	Ala 250	Arg	Arg	Pro	Ser	Val 255	His	
Ser	Asp	Leu	Met 260	Tyr	Ile	Arg	Glu	Lys 265	Ala	Ser	Ala	Gly	Ser 270	Gln	Ala	
Lys	Asp	Lys 275	Glu	Arg	Cys	Val	Ile 280	Ser								
<210	> 3															
<211	> 1	801														
<212	> D	NA														
<213	> H	omo	Sapi	en												
<220	>															
<221	> C	DS														
<222	> (154)	(9	96)												
<223	>															
<400 ggaa		ga g	cgga	gccg	g ag	cccc	aagc	ccg	agcc	gcg (ccca	gccc	ga go	cagaç	gccct	60
ccag	ccgc	tc a	cccc	gcgt	g cc	accc	cagc	gac	cctc	agc (cgct	ctct	gc c	cttc	tctcg	120
gccc	cgcg	cc c	gccc	tege	g gc	ccct	ctgc	cca						atg Met		174
aag a Lys 1	Lys 1	atg Met 10	tgc Cys	ccg (Pro	agc (Ser)	Asp .	tcg (Ser (gag (Glu)	ctg a Leu s	agt a Ser :	Ile 1	ccg q Pro 1	gcc a Ala 1	aag a Lys 1	aac Asn	222

		cgc Arg														270
atc Ile 40	gtg Val	tcg Ser	cgc Arg	ttc Phe	ctc Leu 45	acc Thr	ggc Gly	cgc Arg	ttc Phe	gag Glu 50	gac Asp	gcc Ala	tac Tyr	acg Thr	cct Pro 55	318
		gag Glu														366
		ctc Leu	_			_						_			_	414
		cgc Arg 90														462
-	_	gac Asp		_	_						_				_	510
_		ctc Leu	_		_		_		_				_			558
	_	gtg Val		_	_		_			_		_	_	_		606
	_	gag Glu		-	_	_				_	_			-	-	654
	_	cgc Arg 170	_	-					-	-	_	_		_	_	702
_	_	cag Gln	_		_				-	-	_	-	_		_	750
	_	agc Ser		_	-		_	_	_	_		_		_	_	798
	_	cac His	_	_		_			_	_	_	_		_		846
_		ggc Gly				_	_		_	_					_	894
		gcg Ala 250	-			_	_		_	_		_			_	942

gag aag gcc agc gcc ggc agc cag gcc aag gac aag gag cgc tgc gtc Glu Lys Ala Ser Ala Gly Ser Gln Ala Lys Asp Lys Glu Arg Cys Val 265 270 275	990
atc agc taggagcccc gccgcgctgg cgacacaacc taaggaggac ctttttgtta Ile Ser 280	1046
agtcaaatcc aacggcccgg tgcgccccag gccgggagcg cgcgcggact ggcgtctccc	1106
ctcccggcga tccgccccca gcactgggga ggcgccactg aaccgagaag ggacggtcat	1166
ctgctccgga aggaaagaga acgggccaag actgggacta ttccccaccc ccggtccccc	1226
attgaggccc gccaccccca taactttggg agcgagggcc cagccgaggg tggatttatc	1286
ttctcaaaga cctaagagtg agcgcggggt gggggaggga tgtgaagtta tccagcctct	1346
gctaggcttc aagaaaccgt catgcccgct tgagggtcag gacccacggg gcattatctt	1406
gtotgtgatt cogggttgot gtgacagoog gtagagooto tgoootooog aaactaagog	1466
ggggggggtg ggtcaaatca tagccaagtg acttgtttac atgtgagtga aactgcacaa	1526
aggaacacaa aacaaaactt gcactttaac ggtagttccg gtgtcaacat ggacacgaac	1586
aaaaccttac ccaggtgttt atactgtgtg tgtgtgaggt ctttaaagtt attgctttat	1646
ttggtttttt aatatacaat aaaataattt aaaatggaaa aaaaaaaaaa	1706
aaaaaaaaa aaaaaaaaa aaaaaaaaa aaaaaaaa	1766
atctagaggg ccgcatcatg taattagtta tgaac	1801

<210> 4

<211> 281

<212> PRT

<213> Homo Sapien

<400> 4

Met Lys Leu Ala Ala Met Ile Lys Lys Met Cys Pro Ser Asp Ser Glu 1 5 10 15

Leu Ser Ile Pro Ala Lys Asn Cys Tyr Arg Met Val Ile Leu Gly Ser 20 25 30

Ser Lys Val Gly Lys Thr Ala Ile Val Ser Arg Phe Leu Thr Gly Arg 35 40 45

Phe Glu Asp Ala Tyr Thr Pro Thr Ile Glu Asp Phe His Arg Lys Phe 50 55 60

The second of th

Tyr Ser Ile Arg Gly Glu Val Tyr Gln Leu Asp Ile Leu Asp Thr Ser 65 70 . 75 80

Gly Asn His Pro Phe Pro Ala Met Arg Arg Leu Ser Ile Leu Thr Gly 85 90 95

Asp Val Phe Ile Leu Val Phe Ser Leu Asp Asn Arg Asp Ser Phe Glu
100 105 110

Glu Val Gln Arg Leu Arg Gln Gln Ile Leu Asp Thr Lys Ser Cys Leu 115 120 125

Lys Asn Lys Thr Lys Glu Asn Val Asp Val Pro Leu Val Ile Cys Gly 130 135 140

Glu Gln Leu Val Gly Asp Asp Pro Gln Arg Cys Ala Tyr Phe Glu Ile 165 170 175

Ser Ala Lys Lys Asn Ser Ser Leu Asp Gln Met Phe Arg Ala Leu Phe 180 185 190

Ala Met Ala Lys Leu Pro Ser Glu Met Ser Pro Asp Leu His Arg Lys 195 200 205

Val Ser Val Gln Tyr Cys Asp Val Leu His Lys Lys Ala Leu Arg Asn 210 215 220

Lys Lys Leu Leu Arg Ala Gly Ser Gly Gly Gly Gly Asp Pro Gly 225 230 235 240

Asp Ala Phe Gly Ile Val Ala Pro Phe Ala Arg Arg Pro Ser Val His
245 250 255

Ser Asp Leu Met Tyr Ile Arg Glu Lys Ala Ser Ala Gly Ser Gln Ala 260 265 270

Lys Asp Lys Glu Arg Cys Val Ile Ser 275 280

<210> 5

#

<211> 54

<212> DNA

<213>	Artificial Sequence	
<220>		
<223>	Probe/Primer	
<400> ctgctg	5 gtcg acgcggccgc tcatataata ccaatttttt taaggttttg ctgg	54
<210>	6	
<211>	28	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Probe/Primer	
<400> gtttga	6 Egtg ggtgctcagc ggtctgag	28
, <210>	7	
<211>	29	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Probe/Primer	
<400> ctcagaa	7 accg ctgagcaccc acatcaaac	29
<210>	8	
<211>	35	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Probe/Primer	

cgggat	ccat gaaactggcc gcgatgatca agaag	35
<210>	9	
<211>	28	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Probe/Primer	
<400>	9 ccta gctgatgacg cagcgctc	28
ggaacc	ceta getgatgatg tagegete	
<210>	10	
<211>	25	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Probe/Primer	
<400>	10 atgc aaacgctaaa gtgtg	25
7.5		
<210>	11	
<211>	31	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
	Probe/Primer	
<400> gaattc	11 gact acaaaattgc acatttttta c	31
<210>	12	
<211>	<u>31</u>	

<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Probe/Primer	
<400>	12	
cgcatg	gtca tectegttte gtecaaggtg g	3:
<210>	13	
<211>	31	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Probe/Primer	
<400>		
ccacct	tgga cgaaacgagg atgaccatgc g	31
<210>	14	
<211>	35	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Probe/Primer .	
<400>	14	2.5
getegt	ccaa ggtggttaag acggccatcg tgtcg	35
<210>	15	
<211>	35	
<212>	DNA	
<213>	Artificial Sequence	

<220>

<223>	Probe/Primer	
<400> cgacac	15 gatg gccgtcttaa ccaccttgga cgagc	35
<210>	16	
<211>	32	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Probe/Primer	
<400> cctcga	16 cacg teegetaace accegtteee eg	32
.210.	12	
<210>	·	
<211> <212>		
	Artificial Sequence	
(213)	Altificial Sequence	
<220>		
<223>	Probe/Primer	
<400>		
cgggga	acgg gtggttagcg gacgtgtcga gg	32
<210>	18	
<211>		
<212>	PRT	
<213>	Unknown	
<220>		
<223>	The phosphate/magnesium binding region GXXXXGK(S/T)	
<220>		
<221>	MISC_FEATURE	
<2222 S	(2) (5)	

```
<223> Xaa's at positions 2-5 may be any amino acid.
<220>
<221> MISC_FEATURE
<222> (8)..(8)
<223> Xaa at position 8 may be Serine or Threonine acid.
<400> 18
Gly Xaa Xaa Xaa Gly Lys Xaa
<210> 19
<211> 4
<212> PRT
<213> Unknown
<220>
<223> The phosphate/magnesium binding region DXXG
<220>
<221> MISC_FEATURE
<222> (2)..(3)
<223> Xaa's at positions 2,3 may be any amino acid.
<400> 19
Asp Xaa Xaa Gly
<210> 20
<211> 4
<212> PRT
<213> Unknown
<220>
```

```
<223> The guanine base binding loop NKXD
<220>
<221> MISC_FEATURE
<222> (3)..(3)
<223> Xaa at position 3 may be any amino acid.
<400> 20
Asn Lys Xaa Asp
<210> 21
<211> 5
<212> PRT
<213> Unknown
<220>
<223> The guanine base binding lopp EXSAK
<220>
<221> MISC_FEATURE
<222> (2)..(2)
<223> Xaa at position 2 may be any amino acid
<400> 21
Glu Xaa Ser Ala Lys
<210> 22
<211> 4
<212> PRT
<213> Unknown
<220>
<223> The C-terminal CAAX.
```

```
<221> MISC_FEATURE
<222> (2)..(3)
<223> Xaa at position 2 or 3 may be any aliphatic amino acid residue
<220>
<221> MISC_FEATURE
<222> (4)..(4)
<223> Xaa at position 4 may be any amino acid
<400> 22
Cys Xaa Xaa Xaa
<210> 23
<211> 7
<212> PRT
<213> Homo Sapiens
<400> 23
Gln Ala Lys Asp Lys Glu Arg
<210> 24
<211> 1691
<212> DNA
<213> Homo Sapiens
<220>
<221> CDS
<222> (45)..(587)
<223>
```

<220>

<400> 24 taagaagtto	g tacttaaa	agc ggagg	gageta aç	gccacctg		og tgc aa et Cys Ly	- I	56
ctt gca go Leu Ala Al S	ct ttg ccc la Leu Pro	cac tca His Ser 10	tgc ctc Cys Lei	g gaa ag 1 Glu Ar 15	g gcc aag g Ala Lys	g gag att s Glu Ile	aag 10 Lys 20)4
atc aag tt Ile Lys Le								52
gtc att co Val Ile Pr								0 (
acc tcg ct Thr Ser Le 55	u Asp Glu				_	_		8
ctg cag aa Leu Gln As 70								6
gaa ttc ag Glu Phe Se 85					_			4
aag aag at Lys Lys Il								2
tat gaa ga Tyr Glu Gl		-					_	0
cac ttc ac His Phe Th 13	r Lys Asp							8
agc agc tt Ser Ser Ph 150		Ala Gln	_	Ile His	Ala Leu		_	6
gat tct ctc Asp Ser Le 165			_		Tyr Gln			4
aag tagtaa Lys	ttta gcca	ggctat ga	aaatcatc	c tgtgag	ttat ttc	ctccata	631	7
ataaccctgc	atttccca	tt aatcta	acata to	ttcccaca	gcagctt	tgc tcag	tgatac 697	7
ccacatggga	aaaatccc	ag gggatg	gttgc tt	actctttt	tgcccaca	act gctt	tggata 757	7
cttatctact	gtccgaag	gc cttctt	tccc ca	ctcaattc	ttcctgc	cct gtta	ttaatt 817	7
aagatatctt	cagcttgt	ag tcagad	ccaa tc	agaatcac	agaaaaat	tcc tgcc	taaggc 877	7
aaagaaatat	aagacaag	ac tatgat	atca at	gaatgtgg	gttaagta	aat agat	ttccag 937	7

ctaaattggt	ctaaaaaaga	atattaagtg	tggacagacc	tatttcaaag	gagcttaatt	997
gatctcactt	gttttagttc	tgatccaggg	agatcacccc	tctaattatt	tctgaacttg	1057
gttaataaaa	gtttataaga	tttttatgaa	gcagccactg	tatgatattt	taagcaaata	1117
tgttatttaa	aatattgatc	cttcccttgg	accaccttca	tgttagttgg	gtattataaa	1177
taagagatac	aaccatgaat	atattatgtt	tatacaaaat	caatctgaac	acaattcata	1237
aagatttctc	ttttatacct	tcctcactgg	cccctccac	ctgcccatag	tcaccaaatt	1297
ctgttttaaa	tcaatgacct	aagatcaaca	atgaagtatt	ttataaatgt	atttatgctg	1357
ctagactgtg	ggtcaaatgt	ttccattttc	aaattattta	gaattcttat	gagtttaaaa	1417
tttgtaaatt	tctaaatcca	atcatgtaaa	atgaaactgt	tgctccattg	gagtagtctc	1477
ccacctaaat	atcaagatgg	ctatatgcta	aaaagagaaa	atatggtcaa	gtctaaaatg	1537
gctaattgtc	ctatgatgct	attatcatag	actaatgaca	tttatcttca	aaacaccaaa	1597
ttgtctttag	aaaaattaat	gtgattacag	gtagaggcct	tctaggtgag	acacttttaa	1657
ggtacactgc	attttgcaaa	aaaaaaaaa	aaaa			1691
<210× 25						

<210> 25

<211> 181

<212> PRT

<213> Homo Sapiens

<400> 25

Met Cys Lys Gly Leu Ala Ala Leu Pro His Ser Cys Leu Glu Arg Ala 1 5 10 15

Lys Glu Ile Lys Ile Lys Leu Gly Ile Leu Leu Gln Lys Pro Asp Ser 20 25 30

Val Gly Asp Leu Val Ile Pro Tyr Asn Glu Lys Pro Glu Lys Pro Ala 35 40 45

Lys Thr Gln Lys Thr Ser Leu Asp Glu Ala Leu Gln Trp Arg Asp Ser 50 55 60

Leu Asp Lys Leu Gln Asn Asn Tyr Gly Leu Ala Ser Phe Lys Ser 65 70 75 80

Phe Leu Lys Ser Glu Phe Ser Glu Glu Asn Leu Glu Phe Trp Ile Ala 85 90 95

Cys Glu Asp Tyr Lys Lys Ile Lys Ser Pro Ala Lys Met Ala Glu Lys 100 105 Ala Lys Gln Ile Tyr Glu Glu Phe Ile Gln Thr Glu Ala Pro Lys Glu 120 Val Asn Ile Asp His Phe Thr Lys Asp Ile Thr Met Lys Asn Leu Val 135 Glu Pro Ser Leu Ser Ser Phe Asp Met Ala Gln Lys Arg Ile His Ala 145 150 155 Leu Met Glu Lys Asp Ser Leu Pro Arg Phe Val Arg Ser Glu Phe Tyr Gln Glu Leu Ile Lys 180 <210> 26 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Probe/Primer <400> 26 ccagatctaa agatgccgat ttgggcg 27 <210> 27 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> Probe/Primer

32

ccccatggtt ttatatttgt tgtaaaaagt ag

<210> 28

(211)		
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Probe/Primer	
<400> cgggat	28 ccat gtgcaaaggg cttgcaggtc	30
<210>	29	
<211>	28	
<212>	DNA	
<213>	Artificial Sequence	
	·	
<220>		
<223>	Probe/Primer	
<400> ccgctc	29 gagt taggcacact gagggacc	28
<210>	30	
<211>	41	
<212>	DNA	
<213>	Homo Sapiens	
<400> agtcgg	30 tacc cgcatagatc tgcaggatgc cctttttgac g	41
<210>	31	
<211>	34	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Probe/Primer	

<400> gtacg	31 tcgac tttgattttc agaaacttga tggc	34
<210>	32	
<211>	32	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Probe/Primer	
<400> tggcci	32 tegag atgacaaatt caaaagaaga eg	32
<210>	33	
<211>	32	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Probe/Primer	
<400> atcact	33 gcag ctatgctaca acattccaaa at	32
<210>	34	
<211>	32	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Probe/Primer	
<400> gggtca	34 tgaa actggccgcg atgatcaaga ag	32
<210>	35	
<211>	31	

<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Probe/Primer	
<400> gatagt	35 cgac ctagctgatg acgcagcgct c	31
<210>	36	
<211>	31	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Probe/Primer	
<400> cgcatg	36 gtca teetegttte gteeaaggtg g	31
<210>	37	
<211>	31	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Probe/Primer	
<400> ccacctt	37 cgga cgaaacgagg atgaccatgc g	31
<210>	38	
<211>	32	
<212>	DNA	
<213>	Artificial Sequence	

Page 20 of 42

<220>

<223>	Probe/Primer													
<400> ccaagg	38 acaa ggagcgcagc gtcatcagct ag													
<210>	39													
<211>	32													
<212>	DNA													
<213>	Artificial Sequence													
<220>														
<223>	Probe/Primer													
<400> ctagct	39 gatg acgetgeget eet	tgtcctt gg	3				32							
<210>	40													
<211>	837													
<212>	DNA													
<213>	Homo Sapiens													
<220>														
<221>	CDS													
<222>	(1)(834)													
<223>														
	40 t gct tct ctc gct to Ala Ser Leu Ala Lo 5		_				48							
	c agc ggg aac tgc ac c Ser Gly Asn Cys Tl 20						96							
cgc ato	g gtg gtg ctg ggt go . Val Val Leu Gly Al 35	cc tct cgg la Ser Arg 40	gtg ggc Val Gly	aag agc Lys Ser 45	tcc atc Ser Ile	gtg Val	144							
tct cgc Ser Arg 50	c ttc ctc aat ggc co g Phe Leu Asn Gly An 55	g Phe Glu	gac cag Asp Gln	tac aca Tyr Thr 60	ccc acc Pro Thr	atc Ile	192							

gag Glu 65	gac Asp	ttc Phe	cac His	cgt Arg	aag Lys 70	gta Val	tac Tyr	aac Asn	atc Ile	cgc Arg 75	ggc Gly	gac	atg Met	tac Tyr	cag Gln 80	240
ctc Leu	gac Asp	atc Ile	ctg Leu	gat Asp 85	acc Thr	tct Ser	ggc Gly	aac Asn	cac His 90	ccc Pro	ttc Phe	Pro	gcc Ala	atg Met 95	cgc Arg	288
agg Arg	ctg Leu	tcc Ser	atc Ile 100	ctc Leu	aca Thr	Gly	gat Asp	gtc Val 105	ttc Phe	atc Ile	ctg Leu	gtg Val	Phe 110	agc Ser	ctg Leu	336
						gat Asp							Lys			384
ctg Leu	gag Glu 130	gtc Val	aag Lys	tcc Ser	tgc Cys	ctg Leu 135	aag Lys	aac Asn	aag Lys	acc Thr	aag Lys 140	gag Glu	gcg Ala	gcg Ala	gag Glu	432
ctg Leu 145	ccc Pro	atg Met	gtc Val	atc Ile	tgt Cys 150	ggc Gly	aac Asn	aag Lys	aac Asn	gac Asp 155	cac His	ggc Gly	gag Glu	ctg Leu	tgc Cys 160	480
cgc Arg	cag Gln	gtg Val	ccc Pro	acc Thr 165	acc Thr	gag Glu	gcc Ala	gag Glu	ctg Leu 170	ctg Leu	gtg Val	tcg Ser	ggc Gly	gac Asp 175	gag Glu	528
						gtg Val										576
						ttc Phe										624
						aag Lys 215										672
						atg Met										720
						gcc Ala										768
aag Lys	tac Tyr	atc Ile	aag Lys 260	gcc Ala	aag Lys	gtc Val	ctt Leu	cgg Arg 265	gaa Glu	ggc Gly	cag Gln	gcc Ala	cgt Arg 270	gag Glu	agg Arg	816
_	_	_	acc Thr		_	tga										837

energy transfer and the second section of the second second

<210> 41

<211> 278

<212> PRT

<213> Homo Sapiens

<400> 41

Met Pro Ala Ser Leu Ala Leu Leu Gln Pro Arg Ala Met Met Lys Thr 1 5 10 15

Leu Ser Ser Gly Asn Cys Thr Leu Ser Val Pro Ala Lys Asn Ser Tyr 20 25 30

Arg Met Val Val Leu Gly Ala Ser Arg Val Gly Lys Ser Ser Ilé Val 35 40 45

Ser Arg Phe Leu Asn Gly Arg Phe Glu Asp Gln Tyr Thr Pro Thr Ile 50 55 60

Glu Asp Phe His Arg Lys Val Tyr Asn Ile Arg Gly Asp Met Tyr Gln 65 70 75 80

Leu Asp Ile Leu Asp Thr Ser Gly Asn His Pro Phe Pro Ala Met Arg 85 90 95

Arg Leu Ser Ile Leu Thr Gly Asp Val Phe Ile Leu Val Phe Ser Leu 100 105 110

Asp Asn Arg Glu Ser Phe Asp Glu Val Lys Arg Leu Gln Lys Gln Ile 115 120 125

Leu Glu Val Lys Ser Cys Leu Lys Asn Lys Thr Lys Glu Ala Ala Glu 130 135 140

Leu Pro Met Val Ile Cys Gly Asn Lys Asn Asp His Gly Glu Leu Cys 145 150 155 160

Arg Gln Val Pro Thr Thr Glu Ala Glu Leu Leu Val Ser Gly Asp Glu 165 170 175

Asn Cys Ala Tyr Phe Glu Val Ser Ala Lys Lys Asn Thr Asn Val Asp 180 185 190

Glu Met Phe Tyr Val Leu Phe Ser Met Ala Lys Leu Pro His Glu Met 195 200 205

Ser Pro Ala Leu His Arg Lys Ile Ser Val Gln Tyr Gly Asp Ala Phe His Pro Arg Pro Phe Cys Met Arg Arg Val Lys Glu Met Asp Ala Tyr 230 235 Gly Met Val Ser Pro Phe Ala Arg Arg Pro Ser Val Asn Ser Asp Leu Lys Tyr Ile Lys Ala Lys Val Leu Arg Glu Gly Gln Ala Arg Glu Arg 265 Asp Lys Cys Thr Ile Gln 275 <210> 42 <211> 15 <212> PRT <213> Homo Sapiens <400> 42 Asp Thr Lys Ser Cys Leu Lys Asn Lys Thr Lys Glu Asn Val Asp 10 <210> 43 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Probe/Primer

19

<210> 44

<400> 43

ttctcgcgga tgtacatga

STATE OF THE PROPERTY OF THE P

<211> 20

<212> DNA

<21	3>	Arti	itici	al S	Seque	ence										
<22	0 >															
<22	3>	Probe/Primer														
	<400> 44 tccaccgcaa gttctactcc															2
<21	0 >	45														
<21	1>	1740	•													
<21	2 >	DNA														
<21	3 >	Homo Sapiens														
<220	0 >															
<22	1>	CDS														
<222	2 >	(146) (988)												
<223	3 >															
<400 gago		45 gcc (ggag	cccc	aa go	cccg	agcc	g cg	ccca	gccc	gag	caga	gcc	ctcca	agccgc	60
tcac	cccq	gcg 1	tgcc	accc	ca go	cgac	cctc	a gc	cgct	ctct	gcc	cttc	tct ·	cggc	cccgcg	120
cccg	gecei	tcg (cggc	ccct	ct go	ccca								aag Lys		172
														tgc Cys		220
cgc Arg	atg Met	gtc Val	atc Ile	ctc Leu 30	ggc Gly	tcg Ser	tcc Ser	aag Lys	gtg Val 35	ggc Gly	aag Lys	acg Thr	gcc Ala	atc Ile 40	gtg Val	268
														acc Thr		316
														tac Tyr		364
														atg Met		412

cgc Arg 90	ctc Leu	tcc Ser	atc Ile	ctc Leu	aca Thr 95	gga Gly	gac Asp	gtt Val	ttc Phe	atc Ile 100	ctg Leu	gtg Val	ttc Phe	agt Ser	ctg Leu 105	460
gac Asp	aac Asn	cgc Arg	gac Asp	tcc Ser 110	ttc Phe	gag Glu	gag Glu	gtg Val	cag Gln 115	cgg Arg	ctc Leu	agg Arg	cag Gln	cag Gln 120	atc Ile	508
					tgc Cys											556
					tgc Cys											604
					gag Glu											652
					gag Glu 175											700
_	-		_		ctc Leu		_	_	_	_	_		_		_	748
					cgc Arg											796
	_	_		_	cgg Arg		_	_	_	_		_		-		844
					ccg Pro											892
					gta Val 255											940
					cag Gln											988
tagg	agcc	cc g	ccgc	gcto	la ca	acac	aacc	taa	ggag	gac	cttt	ttgt	ta a	gtca	aatcc	1048
aacg	gccc	gg t	gcgc	ccca	g go	cggg	agcg	cgc	gcgg	act	ggcg	tctc	cc c	tccc	ggcga	1108
tccg	cccc	ca g	cact	9999	ja gg	cgcc	actg	aac	cgag	aag	ggac	ggto	at c	tgct	ccgga	1168
agga	aaga	ga a	cggg	ccaa	ıg ac	tggg	acta	ttc	ccca	ccc	ccgg	tece	cc a	ttga	ggccc	1228
gcca	cccc	ca t	aact	ttgg	g ag	cgag	ggcc	cag	ccga	agg	tgga	ttta	tc t	tctc	aaaga	1288
ccta	agag	tg a	gcgc	gggg	ıt gg	ggga	ggga	tgt	gaag	tta	tcca	gcct	ct g	ctag	gcttc	1348

aagaaaccgt	catgcccgct	tgagggtcag	gacccacggg	gcattatctt	gtctgtgatt	1408
ccgggttgct	gtgacagccg	gtagagcctc	tgccctcccg	aaactaagcg	ggggggcgtg	1468
ggtcaaatca	tagccaagtg	acttgtttac	atgtgagtga	aactgcacaa	aggaacacaa	1528
aacaaaactt	gcactttaac	ggtagttccg	gtgtcaacat	ggacacgaac	aaaaccttac	1588
ccaggtgttt	atactgtgtg	tgtgtgaggt	ctttaaagtt	attgctttat	ttggtttttt	1648
aatatacaat	aaaataattt	aaaatggaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	1708
aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aa			1740

<210> 46

<211> 281

<212> PRT

<213> Homo Sapiens

<400> 46

Met Lys Leu Ala Ala Met Ile Lys Lys Met Cys Pro Ser Asp Ser Glu 1 5 10 15

Leu Ser Ile Pro Ala Lys Asn Cys Tyr Arg Met Val Ile Leu Gly Ser 20 25 30

Ser Lys Val Gly Lys Thr Ala Ile Val Ser Arg Phe Leu Thr Gly Arg 35 40 45

Phe Glu Asp Ala Tyr Thr Pro Thr Ile Glu Asp Phe His Arg Lys Phe 50 55 60

Tyr Ser Ile Arg Gly Glu Val Tyr Gln Leu Asp Ile Leu Asp Thr Ser 65 70 75 80

Gly Asn His Pro Phe Pro Ala Met Arg Arg Leu Ser Ile Leu Thr Gly 85 90 95

Asp Val Phe Ile Leu Val Phe Ser Leu Asp Asn Arg Asp Ser Phe Glu
100 105 110

Glu Val Gln Arg Leu Arg Gln Gln Ile Leu Asp Thr Lys Ser Cys Leu 115 120 125

Lys Asn Lys Thr Lys Glu Asn Val Asp Val Pro Leu Val Ile Cys Gly 130 \$135\$

Ser Ala Lys Lys Asn Ser Ser Leu Asp Gln Met Phe Arg Ala Leu Phe 180 185 190

Ala Met Ala Lys Leu Pro Ser Glu Met Ser Pro Asp Leu His Arg Lys 195 200 205

Val Ser Val Gln Tyr Cys Asp Val Leu His Lys Lys Ala Leu Arg Asn 210 215 220

Lys Lys Leu Leu Arg Ala Gly Ser Gly Gly Gly Gly Asp Pro Gly 225 230 235 240

Asp Ala Phe Gly Ile Val Ala Pro Phe Ala Arg Arg Pro Ser Val His 245 250 255

Ser Asp Leu Met Tyr Ile Arg Glu Lys Ala Ser Ala Gly Ser Gln Ala 260 265 270

Lys Asp Lys Glu Arg Cys Val Ile Ser 275 280

<210> 47

<211> 189

<212> PRT

<213> Homo Sapiens

<400> 47

Met Thr Glu Tyr Lys Leu Val Val Gly Ala Gly Gly Val Gly Lys
1 5 10 15

Ser Ala Leu Thr Ile Gln Leu Ile Gln Asn His Phe Val Asp Glu Tyr 20 25 30

Asp Pro Thr Ile Glu Asp Ser Tyr Arg Lys Gln Val Val Ile Asp Gly 35 40 45

Glu Thr Cys Leu Leu Asp Ile Leu Asp Thr Ala Gly Gln Glu Glu Tyr 50 60

Val Phe Ala Ile Asn Asn Thr Lys Ser Phe Glu Asp Ile His Gln Tyr Arg Glu Gln Ile Lys Arg Val Lys Asp Ser Asp Val Pro Met Val 105 Leu Val Gly Asn Lys Cys Asp Leu Ala Ala Arg Thr Val Glu Ser Arg Gln Ala Gln Asp Leu Ala Arg Ser Tyr Gly Ile Pro Tyr Ile Glu Thr 135 130 Ser Ala Lys Thr Arg Gln Gly Val Glu Asp Ala Phe Tyr Thr Leu Val 145 Arg Glu Ile Arg Gln His Lys Leu Arg Lys Leu Asn Pro Pro Asp Glu 170 Ser Gly Pro Gly Cys Met Ser Cys Lys Cys Val Leu Ser 180 <210> 48 <211> 206 <212> PRT <213> Homo Sapiens <400> 48 Met Ala Ala Asn Lys Pro Lys Gly Gln Asn Ser Leu Ala Leu His Lys Val Ile Met Val Gly Ser Gly Gly Val Gly Lys Ser Ala Leu Thr Leu

Ser Ala Met Arg Asp Gln Tyr Met Arg Thr Gly Glu Gly Phe Leu Cys

Gln Phe Met Tyr Asp Glu Phe Val Glu Asp Tyr Glu Pro Thr Lys Ala

Asp Ser Tyr Arg Lys Lys Val Val Leu Asp Gly Glu Glu Val Gln Ile

Asn Tyr Phe Arg Ser Gly Glu Gly Phe Leu Cys Val Phe Ser Ile Thr Glu Met Glu Ser Phe Ala Ala Thr Ala Asp Phe Arg Glu Gln Ile Leu 105 Arg Val Lys Glu Asp Glu Asn Val Pro Phe Leu Leu Val Gly Asn Lys Ser Asp Leu Glu Asp Lys Arg Gln Val Ser Val Glu Glu Ala Lys Asn 135 Arg Ala Glu Gln Trp Asn Val Asn Tyr Val Glu Thr Ser Ala Lys Thr Arg Ala Asn Val Asp Lys Val Phe Phe Asp Leu Met Arg Glu Ile Arg Ala Arg Lys Met Glu Asp Ser Lys Glu Lys Asn Gly Lys Lys Lys Arg Lys Ser Leu Ala Lys Arg Ile Arg Glu Arg Cys Cys Ile Leu 200 <210> 49 <211> 205 <212> PRT <213> Homo Sapiens <400> 49 Met Ser Ser Met Asn Pro Glu Tyr Asp Tyr Leu Phe Lys Leu Leu Ile Gly Asp Ser Gly Val Gly Lys Ser Cys Leu Leu Leu Arg Phe Ala

Asp Ile Leu Asp Thr Ala Gly Gln Glu Asp Tyr Ala Ala Ile Arg Asp

Asp Asp Thr Tyr Thr Glu Ser Tyr Ile Ser Thr Ile Gly Val Asp Phe

Trp Asp Thr Ala Gly Gln Glu Arg Phe Arg Thr Ile Thr Ser Ser Tyr 75 Tyr Arg Gly Ala His Gly Ile Ile Val Val Tyr Asp Val Thr Asp Gln Glu Ser Phe Asn Asn Val Lys Gln Trp Leu Gln Glu Ile Asp Arg Tyr Ala Ser Glu Asn Val Asn Lys Leu Leu Val Gly Asn Lys Cys Asp Leu 115 120 Thr Thr Lys Lys Val Val Asp Tyr Thr Thr Ala Lys Glu Phe Ala Asp 130 135 Ser Leu Gly Ile Pro Phe Leu Glu Thr Ser Ala. Lys Asn Ala Thr Asn 145 Val Glu Gln Ser Phe Met Thr Met Ala Ala Glu Ile Lys Lys Arg Met 165 170 Gly Pro Gly Ala Thr Ala Gly Gly Ala Glu Lys Ser Asn Val Lys Ile Gln Ser Thr Pro Val Lys Gln Ala Gly Gly Cys Cys 195 200 <210> 50 <211> 210 <212> PRT <213> Homo Sapiens <400> 50

Lys Ile Arg Thr Ile Glu Leu Asp Gly Lys Thr Ile Lys Leu Gln Ile

Met Thr Ala Ala Gln Ala Ala Gly Glu Glu Ala Pro Pro Gly Val Arg

Ser Val Lys Val Val Leu Val Gly Asp Gly Gly Cys Gly Lys Thr Ser

Leu Leu Met Val Phe Ala Asp Gly Ala Phe Pro Glu Ser Tyr Thr Pro 35 40 45

Thr Val Phe Glu Arg Tyr Met Val Asn Leu Gln Val Lys Gly Lys Pro 50 55 60

Val His Leu His Ile Trp Asp Thr Ala Gly Gln Asp Asp Tyr Asp Arg 65 70 75 80

Leu Arg Pro Leu Phe Tyr Pro Asp Ala Ser Val Leu Leu Cys Phe 85 90 95

Asp Val Thr Ser Pro Asn Ser Phe Asp Asn Ile Phe Asn Arg Trp Tyr
100 105 110

Pro Glu Val Asn His Phe Cys Lys Lys Val Pro Ile Ile Val Val Gly
115 120 125

Cys Lys Thr Asp Leu Arg Lys Asp Lys Ser Leu Val Asn Lys Leu Arg 130 135 140

Arg Asn Gly Leu Glu Pro Val Thr Tyr His Arg Gly Gln Glu Met Ala 145 150 155 160

Arg Ser Val Gly Ala Val Ala Tyr Leu Glu Cys Ser Ala Arg Leu His 165 170 175

Asp Asn Val His Ala Val Phe Gln Glu Ala Ala Glu Val Ala Leu Ser 180 185 190

Ser Arg Gly Arg Asn Phe Trp Arg Arg Ile Thr Gln Gly Phe Cys Val

Val Thr 210

<210> 51

<211> 191

<212> PRT

<213> Homo Sapiens

Met Gln Thr Ile Lys Cys Val Val Val Gly Asp Gly Ala Val Gly Lys
1 10 15

Thr Cys Leu Leu Ile Ser Tyr Thr Thr Asn Lys Phe Pro Ser Glu Tyr 20 25 30

Val Pro Thr Val Phe Asp Asn Tyr Ala Val Thr Val Met Ile Gly Gly 35 40

Glu Pro Tyr Thr Leu Gly Leu Phe Asp Thr Ala Gly Gln Glu Asp Tyr 50 55 60

Asp Arg Leu Arg Pro Leu Ser Tyr Pro Gln Thr Asp Val Phe Leu Val 65 70 75 80

Cys Phe Ser Val Val Ser Pro Ser Ser Phe Glu Asn Val Lys Glu Lys 85 90 95

Trp Val Pro Glu Ile Thr His His Cys Pro Lys Thr Pro Phe Leu Leu 100 105 110

Val Gly Thr Gln Ile Asp Leu Arg Asp Asp Pro Ser Thr Ile Glu Lys 115 120 125

Leu Ala Lys Asn Lys Gln Lys Pro Ile Thr Pro Glu Thr Ala Glu Lys 130 140

Thr Gln Arg Gly Leu Lys Asn Val Phe Asp Glu Ala Ile Leu Ala Ala 165 170 175

Leu Glu Pro Pro Glu Thr Gln Pro Lys Arg Lys Cys Cys Ile Phe 180 185 190

<210> 52

<211> 192

<212> PRT

<213> Homo Sapiens

Met Gln Ala Ile Lys Cys Val Val Val Gly Asp Gly Ala Val Gly Lys

1 10 15

Thr Cys Leu Leu Ile Ser Tyr Thr Thr Asn Ala Phe Pro Gly Glu Tyr 20 25 30

Ile Pro Thr Val Phe Asp Asn Tyr Ser Ala Asn Val Met Val Asp Ser 35 40 45

Lys Pro Val Asn Leu Gly Leu Trp Asp Thr Ala Gly Gln Glu Asp Tyr 50 55 60

Asp Arg Leu Arg Pro Leu Ser Tyr Pro Gln Thr Asp Val Phe Leu Ile 65 70 75 80

Cys Phe Ser Leu Val Ser Pro Ala Ser Tyr Glu Asn Val Arg Ala Lys 85 90 95

Trp Phe Pro Glu Val Arg His His Cys Pro Ser Thr Pro Ile Ile Leu 100 105 110

Val Gly Thr Lys Leu Asp Leu Arg Asp Asp Lys Asp Thr Ile Glu Lys 115 120 125

Leu Lys Glu Lys Lys Leu Ala Pro Ile Thr Tyr Pro Gln Gly Leu Ala 130 135 140

Leu Ala Lys Glu Ile Asp Ser Val Lys Tyr Leu Glu Cys Ser Ala Leu 145 150 155 160

Thr Gln Arg Gly Leu Lys Thr Val Phe Asp Glu Ala Ile Arg Ala Val 165 170 175

Leu Cys Pro Gln Pro Thr Arg Gln Gln Lys Arg Ala Cys Ser Leu Leu 180 185 190

<210> 53

<211> 181

<212> PRT

<213> Homo Sapiens

Met Gly Gly Phe Phe Ser Ser Ile Phe Ser Ser Leu Phe Gly Thr Arg 1 5 10 15

Glu Met Arg Ile Leu Ile Leu Gly Leu Asp Gly Ala Gly Lys Thr Thr 20 25 30

Ile Leu Tyr Arg Leu Gln Val Gly Glu Val Val Thr Thr Ile Pro Thr 35 40 45

Ile Gly Phe Asn Val Glu Thr Val Thr Tyr Lys Asn Leu Lys Phe Gln 50 60

Val Trp Asp Leu Gly Gly Gln Thr Ser Ile Arg Pro Tyr Trp Arg Cys 65 70 75 80

Tyr Tyr Ser Asn Thr Asp Ala Val Ile Tyr Val Val Asp Ser Cys Asp 85 90 95

Arg Asp Arg Ile Gly Ile Ser Lys Ser Glu Leu Val Ala Met Leu Glu 100 105 110

Glu Glu Glu Leu Arg Lys Ala Ile Leu Val Val Phe Ala Asn Lys Gln 115 120 125

Asp Met Glu Gln Ala Met Thr Ser Ser Glu Met Ala Asn Ser Leu Gly 130 135 140

Leu Pro Ala Leu Lys Asp Arg Lys Trp Gln Ile Phe Lys Thr Ser Ala 145 150 150 155 160

Thr Lys Gly Thr Gly Leu Asp Glu Ala Met Glu Trp Leu Val Glu Thr 165 170 175

Leu Lys Ser Arg Gln 180

<210> 54

<211> 229

<212> PRT

<213> Homo Sapiens

Met Asp Pro Asn Gln Asn Val Lys Cys Lys Ile Val Val Gly Asp Ser Gln Cys Gly Lys Thr Ala Leu Leu His Val Phe Ala Lys Asp Cys Phe Pro Glu Asn Tyr Val Pro Thr Val Phe Glu Asn Tyr Thr Ala Ser 40 Phe Glu Ile Asp Thr Gln Arg Ile Glu Leu Ser Leu Trp Asp Thr Ser Gly Ser Pro Tyr Tyr Asp Asn Val Arg Pro Leu Ser Tyr Pro Asp Ser 65 Asp Ala Val Leu Ile Cys Phe Asp Ile Ser Arg Pro Glu Thr Leu Asp 85 Ser Val Leu Lys Lys Trp Lys Gly Glu Ile Gln Glu Phe Cys Pro Asn 100 Thr Lys Met Leu Leu Val Gly Cys Lys Ser Asp Leu Arg Thr Asp Val 115 Ser Thr Leu Val Glu Leu Ser Asn His Arg Gln Thr Pro Val Ser Tyr 135 130 Asp Gln Gly Ala Asn Met Ala Lys Gln Ile Gly Ala Ala Thr Tyr Ile 150 Glu Cys Ser Ala Leu Gln Ser Glu Asn Ser Val Arg Asp Ile Phe His 170 Val Ala Thr Leu Ala Cys Val Asn Lys Thr Asn Lys Asn Val Lys Arg 180 Asn Lys Ser Gln Arg Ala Thr Lys Arg Ile Ser His Met Pro Ser Arg 200 Pro Glu Leu Ser Ala Val Ala Thr Asp Leu Arg Lys Asp Lys Ala Lys 215

Ser Cys Thr Val Met

```
<210> 55
<211> 16
<212> PRT
<213> Homo Sapiens
<400> 55
Lys Ile Val Val Gly Asp Ser Gln Cys Gly Lys Thr Ala Leu Leu
                                   10
<210> 56
<211> 16
<212> PRT
<213> Homo Sapiens
<400> 56
Lys Ile Val Val Val Gly Asp Ala Glu Cys Gly Lys Thr Ala Leu Leu
<210> 57
<211> 16
<212> PRT
<213> Homo Sapiens
<400> 57
Lys Leu Val Leu Val Gly Asp Val Gln Cys Gly Lys Thr Ala Met Leu
<210> 58
<211> 16
<212> PRT
<213> Homo Sapiens
<400> 58
```

```
Lys Leu Val Ile Val Gly Asp Gly Ala Cys Gly Lys Thr Cys Leu Leu
<210> 59
<211> 16
<212> PRT
<213> Homo Sapiens
<400> 59
Lys Leu Val Val Val Gly Asp Gly Ala Cys Gly Lys Thr Cys Leu Leu
                                   10
<210> 60
<211> 16
<212> PRT
<213> Homo Sapiens
<400> 60
Lys Cys Val Val Val Gly Asp Gly Ala Val Gly Lys Thr Cys Leu Leu
<210> 61
<211> 16
<212> PRT
<213> Homo Sapiens
<400> 61
Lys Cys Val Val Gly Asp Gly Ala Val Gly Lys Thr Cys Leu Leu
<210> 62
<211> 16
<212> PRT
<213> Homo Sapiens
```

<400> 62 Lys Leu Val Val Gly Ala Gly Gly Val Gly Lys Ser Ala Leu Thr <210> 63 <211> 16 <212> PRT <213> Homo Sapiens <400> 63 Arg Met Val Ile Leu Gly Ser Ser Lys Val Gly Lys Thr Ala Ile Val <210> 64 <211> 13 <212> PRT <213> Homo Sapiens <400> 64 Leu Ser Leu Trp Asp Thr Ser Gly Ser Pro Tyr Tyr Asp <210> 65 <211> 13 <212> PRT <213> Homo Sapiens <400> 65 Leu Asn Met Trp Asp Thr Ser Gly Ser Ser Tyr Tyr Asp <210> 66 <211> 13 <212> PRT

<213> Homo Sapiens <400> 66 Leu Ser Leu Trp Asp Thr Ser Gly Ser Pro Tyr Tyr Asp <210> 67 <211> 13 <212> PRT <213> Homo Sapiens <400> 67 Leu Ala Leu Trp Asp Thr Ala Gly Gln Glu Asp Tyr Asp <210> 68 <211> 13 <212> PRT <213> Homo Sapiens <400> 68 Leu Ala Leu Trp Asp Thr Ala Gly Gln Glu Asp Tyr Asp <210> 69 <211> 13 <212> PRT <213> Homo Sapiens <400> 69 Leu Gly Leu Phe Asp Thr Ala Gly Gln Glu Asp Tyr Asp

<210> 70

```
<211> 13
 <212> PRT
<213> Homo Sapiens
 <400> 70
 Leu Gly Leu Trp Asp Thr Ala Gly Gln Glu Asp Tyr Asp
 <210> 71
 <211> 13
 <212> PRT
 <213> Homo Sapiens
 <400> 71
 Leu Asp Ile Leu Asp Thr Ala Gly Gln Glu Glu Tyr Asp
 <210> 72
 <211> 13
 <212> PRT
 <213> Homo Sapiens
 <400> 72
 Leu Asp Ile Leu Asp Thr Ser Gly Asn His Pro Phe Pro
 <210> 73
 <211> 34
 <212> DNA
 <213> Artificial sequence
 <220>
```

<223> Probe/Primer

MARKET HE WAS ASSESSED ASSESSED.

34