PATENT ABSTRACTS OF JAPAN

(11) Publication number: 2000115030 A

(43) Date of publication of application: 21.04.00

(51) Int. CI

H04B 1/707 H04B 7/26

(21) Application number: 11304796

(22) Date of filing: 30.09.98

(62) Division of application: 10276291

(71) Applicant:

NEC CORP

(72) Inventor:

OSUGE MICHIHIRO

(54) CDMA RECEPTION DEVICE, METHOD FOR MULTIPATH FINGER ALLOCATION THEREOF, AND RECORDING MEDIUM WHERE CONTROL PROGRAM THEREOF IS RECORDED

(57) Abstract:

PROBLEM TO BE SOLVED: To provide a CDMA(code-division multi access) reception device which can improve reception characteristics by preventing path allocation from being changed frequently for a finger, thereby preventing path allocation from fluttering.

SOLUTION: The signal received by an antenna 2 is converted down by a high-frequency receiving circuit part 3 and converted into a digital signal by an A/D conversion part 4. A sliding correlator 7 obtains a delay profile from the digital signal. A delay profile electric power addition part 8 averages path variation by fading, etc., for the delay profile. The delay profile having the path variation averaged is multiplied by the weight function from a state weighting part 13 through a multiplier 12 of a weighting part 11 and the delay time of the high-order N-finger peak of the delay profile is detected by a correlation peak detection part 14 and transmitted from a Rake path allocation part 15

to respective finger parts 5.

US

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2000-115030 (P2000-115030A)

(43)公開日 平成12年4月21日(2000.4.21)

(51) Int.Cl.7

識別記号

FΙ

テーマコート*(参考)

1/707 H04B

7/26

H 0 4 J 13/00

D

H04B 7/26 C

請求項の数23 OL (全 20 頁) 審査請求 有

(21)出顧番号

特願平11-304796

(62)分割の表示

特顧平10-276291の分割

(22)出顧日

平成10年9月30日(1998.9.30)

(71)出顧人 000004237

日本電気株式会社

東京都港区芝五丁目7番1号

(72)発明者 大菅 道広

東京都港区芝五丁目7番1号 日本電気株

式会社内

(74)代理人 100088812

弁理士 ▲柳▼川 信

CDMA受信装置及びそのマルチパスのフィンガ割り当て方法並びにその制御プログラムを記録 (54) 【発明の名称】 した記録媒体

(57)【要約】

フィンガに対してパス割り当てが頻繁に入れ 替わるのを防いでパス割り当てのばたつきを防止し、受 信特性の向上が可能なCDMA受信装置を提供する。

【解決手段】 アンテナ2で受信された信号は高周波受 信回路部3でダウンコンバートされ、A/D変換部4で ディジタル信号に変換される。スライディング相関器7 はディジタル信号に変換された信号から遅延プロファイ ルを得る。遅延プロファイル電力加算部8は遅延プロフ ァイルに対してフェージング等によってパス変動を平均 化する。パス変動が平均化された後の遅延プロファイル は重み付け部11の乗算器12で状態重み付け部13か らの重み付け関数と掛け合わされ、相関ピーク検出部1 4で遅延プロファイルの上位Nfingerピークの遅 延時間が検出されてRakeパス割り当て部15から各 フィンガ部5へ伝達される。

【特許請求の範囲】

【請求項1】 各々1つのパスについて逆拡散を行ってシンボル同期をとる複数のフィンガ部を含むCDMA受信装置であって、前記複数のフィンガ部への現在の割り当て状態より算出される状態重み付け関数を前記パスへの受信信号の遅延時間に対する信号電力分布を示す遅延プロファイルに演算して前記複数のフィンガ部に現在割り当てられているパスのレベルを優位にしてから複数のパスを検索するよう構成したことを特徴とするCDMA受信装置。

【請求項2】 前記複数のフィンガ部に現在割り当でているパスに対応する前記遅延プロファイルに前記状態重み付け関数を演算するよう構成したことを特徴とする請求項1記載のCDMA受信装置。

【請求項3】 前記複数のフィンガ部に現在割り当てていないパスに対応する前記遅延プロファイルに前記状態 重み付け関数を演算するよう構成したことを特徴とする 請求項1記載のCDMA受信装置。

【請求項4】 前記複数のパスの検索において取出された新候補のパスと前記複数のフィンガ部に現在割り当てられているパスとのうちの一方に対応する前記遅延プロファイルに前記状態重み付け関数を演算するよう構成したことを特徴とする請求項1記載のCDMA受信装置。

【請求項5】 各々1つのパスについて逆拡散を行ってシンボル同期をとる複数のフィンガ部を含むCDMA受信装置であって、前記複数のフィンガ部への現在の割り当て状態より前記複数のフィンガ部に現在割り当てられているパスのレベルを優位にするための状態重み付け関数を算出する算出手段で算出された前記状態重み付け関数を前記パスへの受信信号の遅延時間に対する信号電力分布を示す遅延プロファイルに演算する演算手段と、前記演算手段の演算結果から複数のパスを検索する検索手段とを有することを特徴とするCDMA受信装置。

【請求項6】 前記検索手段で検出されたマルチパスを 前記複数のフィンガ部各々に割り当てる割り当て手段を 含むことを特徴とする請求項5記載のCDMA受信装 價。

【請求項7】 前記演算手段は、前記複数のフィンガ部に現在割り当てているパスに対応する前記遅延プロファイルに前記状態重み付け関数を演算するよう構成したことを特徴とする請求項5または請求項6記載のCDMA受信装置。

【請求項8】 前記演算手段は、前記複数のフィンガ部に現在割り当てていないパスに対応する前記遅延プロファイルに前記状態重み付け関数を演算するよう構成したことを特徴とする請求項5または請求項6記載のCDMA受信装置。

【請求項9】 前記演算手段は、前記複数のパスの検索 において取出された新候補のパスと前記複数のフィンガ 部に現在割り当てられているパスとのうちの一方に対応する前記遅延プロファイルに前記状態重み付け関数を演算するよう構成したことを特徴とする請求項5または請求項6記載のCDMA受信装置。

【請求項10】 各々1つのパスについて逆拡散を行ってシンボル同期をとる複数のフィンガ部を含むCDMA 受信装置であって、前記パスへの受信信号の遅延時間に対する信号電力分布を示す遅延プロファイルから複数のパスを検索する検索手段と、前記検索手段で取出された新候補のパスと前記複数のフィンガ部に現在割り当てられているパスとのうちの一方に対応する前記遅延プロファイルに予め設定された重み付け関数を演算して前記複数のフィンガ部に現在割り当てられているパスのレベルを優位にしてから前記新候補のパスと前記複数のフィンガ部に現在割り当てられているパスとのいずれを割り当てるかを判定する判定手段とを有することを特徴とするCDMA受信装置。

【請求項11】 各々1つのパスについて逆拡散を行ってシンボル同期をとる複数のフィンガ部を含むCDMA 受信装置のマルチパスのフィンガ割り当て方法であって、前記複数のフィンガ部への現在の割り当て状態より算出される状態重み付け関数を前記パスへの受信信号の遅延時間に対する信号電力分布を示す遅延プロファイルに演算して前記複数のフィンガ部に現在割り当てられているパスのレベルを優位にしてから複数のパスを検索するようにしたことを特徴とするマルチパスのフィンガ割り当て方法。

【請求項12】 前記複数のフィンガ部に現在割り当て ているパスに対応する前記遅延プロファイルに前記状態 重み付け関数を演算するようにしたことを特徴とする請 求項11記載のマルチパスのフィンガ割り当て方法。

【請求項13】 前記複数のフィンガ部に現在割り当て ていないパスに対応する前記遅延プロファイルに前記状 態重み付け関数を演算するようにしたことを特徴とする 請求項11記載のマルチパスのフィンガ割り当て方法。

【請求項14】 前記複数のパスの検索において取出された新侯補のパスと前記複数のフィンガ部に現在割り当てられているパスとのうちの一方に対応する前記遅延プロファイルに前記状態重み付け関数を演算するようにしたことを特徴とする請求項11記載のマルチパスのフィンガ割り当て方法。

【請求項15】 各々1つのパスについて逆拡散を行ってシンボル同期をとる複数のフィンガ部を含むCDMA 受信装置のマルチパスのフィンガ割り当て方法であって、前記複数のフィンガ部への現在の割り当て状態より前記複数のフィンガ部に現在割り当てられているパスのレベルを優位にするための状態重み付け関数を前記パスへの受信信号の遅延時間に対する信号電力分布を示す遅延プロファイルに演算するステップと、その演算結果

から複数のパスを検索するステップとを有することを特 徴とするマルチパスのフィンガ割り当て方法。

【請求項16】 検出された複数のパスを前記複数のフィンガ部各々に割り当てるステップを含むことを特徴とする請求項15記載のマルチパスのフィンガ割り当て方法。

【請求項17】 前記状態重み付け関数を前記遅延プロファイルに演算するステップは、前記複数のフィンガ部に現在割り当てているパスに対応する前記遅延プロファイルに前記状態重み付け関数を演算するようにしたことを特徴とする請求項15または請求項16記載のマルチパスのフィンガ割り当て方法。

【請求項18】 前記状態重み付け関数を前記遅延プロファイルに演算するステップは、前記複数のフィンガ部に現在割り当てていないパスに対応する前記遅延プロファイルに前記状態重み付け関数を演算するようにしたことを特徴とする請求項15または請求項16記載のマルチパスのフィンガ割り当て方法。

【請求項19】 前記状態重み付け関数を前記遅延プロファイルに演算するステップは、前記複数のパスの検索において取出された新候補のパスと前記複数のフィンガ部に現在割り当てられているパスとのうちの一方に対応する前記遅延プロファイルに前記状態重み付け関数を演算するようにしたことを特徴とする請求項15または請求項16記載のマルチパスのフィンガ割り当て方法。

【請求項20】 各々1つのパスについて逆拡散を行ってシンボル同期をとる複数のフィンガ部を含むCDMA 受信装置のマルチパスのフィンガ割り当て方法であって、前記パスへの受信信号の遅延時間に対する信号電力分布を示す遅延プロファイルから複数のパスを検索するステップと、その検索で取出された新候補のパスと前記複数のフィンガ部に現在割り当てられているパスとのうちの一方に対応する前記遅延プロファイルに予め設定された重み付け関数を演算して前記複数のフィンガ部に現在割り当てられているパスのレベルを優位にしてから前記新候補のパスと前記複数のフィンガ部に現在割り当てられているパスとのいずれを割り当てるかを判定するステップとを有することを特徴とするマルチパスのフィンガ割り当て方法。

【請求項21】 各々1つのパスについて逆拡散を行ってシンボル同期をとる複数のフィンガ部を含むCDMA 受信装置においてコンピュータにマルチパスのフィンガ 割り当てを行わせるためのフィンガ割り当て制御プログラムを記録は体であって、前記フィンガ割り当て制御プログラムは前記コンピュータに、前記複数のフィンガ部への現在の割り当て状態より算出される状態重み付け関数を前記パスへの受信信号の遅延時間に対する信号電力分布を示す遅延プロファイルに演算させて前記複数のフィンガ部に現在割り当てられているパスのレベルを優位にしてから複数のパスを検索させることを特徴

とするフィンガ割り当て制御プログラムを記録した記録 媒体。

【請求項22】 各々1つのパスについて逆拡散を行ってシンボル同期をとる複数のフィンガ部を含むCDMA 受信装置においてコンピュータにマルチパスのフィンガ 割り当てを行わせるためのフィンガ割り当て制御プログラムを記録した記録媒体であって、前記フィンガ割り当て制御プログラムは前記コンピュータに、前記複数のフィンガ部への現在の割り当て状態より前記複数のフィンガ部に現在割り当てられているパスのレベルを優位にするための状態重み付け関数を算出させ、算出された前記状態重み付け関数を前記パスへの受信信号の遅延時間に対する信号電力分布を示す遅延プロファイルに演算させ、その演算結果から複数のパスを検索させることを特徴とするフィンガ割り当て制御プログラムを記録した記録媒体。

【請求項23】 各々1つのパスについて逆拡散を行っ てシンボル同期をとる複数のフィンガ部を含むCDMA 受信装置においてコンピュータにマルチパスのフィンガ 割り当てを行わせるためのフィンガ割り当て制御プログ ラムを記録した記録媒体であって、前記フィンガ割り当 て制御プログラムは前記コンピュータに、前記パスへの 受信信号の遅延時間に対する信号電力分布を示す遅延プ ロファイルから複数のパスを検索させ、その検索で取出 された新候補のパスと前記複数のフィンガ部に現在割り 当てられているパスとのうちの一方に対応する前記遅延 プロファイルに予め設定された重み付け関数を演算して 前記複数のフィンガ部に現在割り当てられているパスの レベルを優位にしてから前記新侯補のパスと前記複数の フィンガ部に現在割り当てられているパスとのいずれを 割り当てるかを判定させることを特徴とするフィンガ割 り当て制御プログラムを記録した記録媒体。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明はCDMA受信装置及びそのマルチパスのフィンガ割り当て方法並びにその制御プログラムを記録した記録媒体に関し、特に遅延プロファイルを測定し、測定範囲内で信号電力が大きいパスをいくつか選択するパス検出に用いられるマルチパスのフィンガ割り当て方法に関する。

[0002]

【従来の技術】DS-CDMA(Direct Sequence - Code Division Multiple Access:直接拡散-符号分割多元接続方式)は複数の通信者が同一の周波数帯を用いて通信を行う方式であり、各通信者の識別は拡散符号を用いて行っている。

【0003】移動通信では多重波伝搬の各受信波の伝搬路長にばらつきがあるため、伝搬遅延時間が異なる多重波が干渉し合っている。DS-CDMA通信においては

情報データを伝搬時間よりも周期が短い高速のレートの 拡散符号で帯域拡散するため、この伝搬遅延時間が異な る夫々の多重波が分離・抽出できるようになる。

【0004】移動局は基地局に対して変動するため、この遅延プロファイル(遅延時間に対する信号電力分布)も時間変動する。また、夫々のパスの信号は、見通しでない所ではレイリー変動する。

【0005】DS-CDMA通信においてはこの時間分離した伝搬遅延時間の異なる複数のレイリー変動するマルチパス信号をかき集め、同相合成(Rake合成)することによって、ダイバーシティ効果がえられて受信特性が向上する。あるいは一定の受信品質(ビット誤り率)に対してはRake合成に伴うダイバーシティ効果によって送信電力を低減することができ、したがって同ーセル内、セル外の他のユーザに対しての干渉電力が低減するため、一定周波数帯域における加入者容量を増大することができる。

【0006】しかしながら、上記のように、移動局は基地局に対して相対変動をするため、遅延プロファイルも変動し、Rake合成すべきパスの遅延時間も変動する。したがって、移動通信環境下では遅延プロファイルの変動に対して追従し、瞬時において最大の信号電力が得られる複数のパスに対してRake合成できるようなマルチパスサーチ、トラッキング機能が受信機に必要になる。

【0007】例えば、上記のCDMA受信装置としては、図13に示すように、通信環境によるマルチパスサーチ部(マルチパス検出手段)24と、複数のパスを同相合成(RAKE合成)するRake合成受信部25とから構成されたものがある。尚、21はアンテナ、22は高周波受信回路部、23はA/D(アナログ/ディジタル)変換部を夫々示している。

【0008】このような構成を有する従来のCDMA受信システムでは、マルチパスサーチ部24によって遅延プロファイル(遅延時間に対する信号電力分布)を測定し、測定範囲内で信号電力が大きいパスをいくつか選択し、Rake合成受信部25にそのパスのタイミングを通知する。Rake合成受信部25ではそのタイミング情報を基に各パス毎に逆拡散を行い、Rake合成することによってパスダイバーシティ効果が得られる。

【0009】また、Rake合成受信部25では別途指定されたパスの動きに対して追従する手段(パストラッキング)を有する場合があるが、その場合にはマルチパスサーチ部24が少なくとも初期、または一定周期毎にパス情報をRake合成受信部25に知らせる必要がある。このCDMA受信装置及びマルチパスサーチ方法については、特開平9-181704号号公報等に開示されている。

【0010】一方、従来のマルチパスのフィンガへの割り当て方法としては、図14に示すような方法もある。

この方法では、まず、マッチドフィルタやスライディング相関器等によって伝播路の遅延プロファイルを測定する(図14ステップS81)。

【0011】続いて、測定された遅延プロファイルから Rake受信装置が持つフィンガ数分、上位の相関ピー クを検出し(図14ステップS82, S83)、検出さ れたパスタイミングを各フィンガの逆拡散タイミングと して割り当てている(図14ステップS84)。

[0012]

【発明が解決しようとする課題】上述した従来のマルチパスのフィンガ割り当て方法では、受信信号に周期的に含まれているパイロットシンボルを用いて、パイロットシンボルの位相をリファレンス位相として各情報シンボルの位相を推定するパイロット内挿補完同期検波を行う場合、フィンガへの割り当てパスが切り替わった時に、パイロットの位相が飛ぶため、パイロット内挿補完によるシンボル同期が一時的にとれなくなる。このため、各フィンガパスの切り替えはできるだけ少なくしなければ、受信特性が劣化する。

【0013】また、上記の方法の場合、例えば、3フィンガを持つRake受信装置において、遅延プロファイルの第3位の相関ピークと第4位の相関ピークとの電力がほぼ等しいような場合、伝播路の変動によって第3位のパスタイミングと第4位のパスタイミングとが頻繁に入れ替わることになる。これによって、フィンガのうちの1つは割り当てられるパスタイミング(逆拡散タイミング)が頻繁に切り替わることになり、受信特性が著しく劣化する。

【0014】さらに、別の例として、説明を簡単化するために1フィンガの受信機を考えると、2パス等レベルの遅延プロファイルが測定された場合、フィンガへの割り振りは微妙な受信レベルの変動によって、パスAを割り当てたり、パスBを割り当てたりし、頻繁にパスの切り替えが生じてしまい、受信特性が劣化する。

【0015】そこで、本発明の目的は上記の問題点を解消し、フィンガに対してパス割り当てが頻繁に入れ替わるのを防いでパス割り当てのばたつきを防止することができ、受信特性を向上させることができるCDMA受信装置及びそのマルチパスのフィンガ割り当て方法並びにその制御プログラムを記録した記録媒体を提供することにある。

[0016]

【課題を解決するための手段】本発明によるCDMA受信装置は、各々1つのパスについて逆拡散を行ってシンボル同期をとる複数のフィンガ部を含むCDMA受信装置であって、前記複数のフィンガ部への現在の割り当て状態より算出される状態重み付け関数を前記パスへの受信信号の遅延時間に対する信号電力分布を示す遅延プロファイルに演算して前記複数のフィンガ部に現在割り当てられているパスのレベルを優位にしてから複数のパス

を検索するよう構成している。

【0017】本発明による他のCDMA受信装置は、各々1つのパスについて逆拡散を行ってシンボル同期をとる複数のフィンガ部を含むCDMA受信装置であって、前記複数のフィンガ部への現在の割り当て状態より前記複数のフィンガ部に現在割り当てられているパスのレベルを優位にするための状態重み付け関数を算出する算出手段と、前記算出手段で算出された前記状態重み付け関数を前記パスへの受信信号の遅延時間に対する信号電力分布を示す遅延プロファイルに演算する演算手段と、前記演算手段の演算結果から複数のパスを検索する検索手段とを備えている。

【0018】本発明による別のCDMA受信装置は、各々1つのパスについて逆拡散を行ってシンボル同期をとる複数のフィンガ部を含むCDMA受信装置であって、前記パスへの受信信号の遅延時間に対する信号電力分布を示す遅延プロファイルから複数のパスを検索する検索手段と、前記検索手段で取出された新候補のパスと前記複数のフィンガ部に現在割り当てられているパスとのうちの一方に対応する前記遅延プロファイルに予め設定された重み付け関数を演算して前記複数のフィンガ部に現在割り当てられているパスとのいずれを割り当てるかを判定する判定手段とを備えている。

【0019】本発明によるCDMA受信装置のマルチパスのフィンガ割り当て方法は、各々1つのパスについて逆拡散を行ってシンボル同期をとる複数のフィンガ部を含むCDMA受信装置のマルチパスのフィンガ割り当て方法であって、前記複数のフィンガ部への現在の割り当て状態より算出される状態重み付け関数を前記パスへの受信信号の遅延時間に対する信号電力分布を示す遅延プロファイルに演算して前記複数のフィンガ部に現在割り当てられているパスのレベルを優位にしてから複数のパスを検索するようにしている。

【0020】本発明による他のCDMA受信装置のマルチパスのフィンガ割り当て方法は、各々1つのパスについて逆拡散を行ってシンボル同期をとる複数のフィンガ部を含むCDMA受信装置のマルチパスのフィンガ割り当て方法であって、前記複数のフィンガ部への現在の割り当て状態より前記複数のフィンガ部に現在割り当てられているパスのレベルを優位にするための状態重み付け関数を算出するステップと、算出された前記状態重み付け関数を前記パスへの受信信号の遅延時間に対する信号電力分布を示す遅延プロファイルに演算するステップと、その演算結果から複数のパスを検索するステップとを備えている。

【0021】本発明による別のCDMA受信装置のマルチパスのフィンガ割り当て方法は、各々1つのパスについて逆拡散を行ってシンボル同期をとる複数のフィンガ

部を含むCDMA受信装置のマルチパスのフィンガ割り当て方法であって、前記パスへの受信信号の遅延時間に対する信号電力分布を示す遅延プロファイルから複数のパスを検索するステップと、その検索で取出された新侯補のパスと前記複数のフィンガ部に現在割り当てられているパスとのうちの一方に対応する前記遅延プロファイルに予め設定された重み付け関数を演算して前記複数のフィンガ部に現在割り当てられているパスのレベルを優位にしてから前記新侯補のパスと前記複数のフィンガ部に現在割り当てられているパスとのいずれを割り当てるかを判定するステップとを備えている。

【0022】本発明によるCDMA受信装置のマルチパスのフィンガ割り当て制御プログラムを記録した記録媒体は、各々1つのパスについて逆拡散を行ってシンボル同期をとる複数のフィンガ部を含むCDMA受信装置においてコンピュータにマルチパスのフィンガ割り当て影響した記録媒体であって、前記フィンガ割り当て制御プログラムを記録した記録媒体であって、前記フィンガ割り当て制御プログラムは前記コンピュータに、前記複数のフィンガ部の現在の割り当て状態より算出される状態重み付け関数を前記パスへの受信信号の遅延時間に対する信号電力分布を示す遅延プロファイルに演算させて前記複数のフィンガ部に現在割り当てられているパスのレベルを優位にしてから複数のパスを検索させている。

【0023】本発明による他のCDMA受信装置のマルチパスのフィンガ割り当て制御プログラムを記録した記録媒体は、各々1つのパスについて逆拡散を行ってシンボル同期をとる複数のフィンガ部を含むCDMA受信装置においてコンピュータにマルチパスのフィンガ割り当てを行わせるためのフィンガ割り当て制御プログラムは前記コンピュータに、前記複数のフィンガ部の現在の割り当て状態より前記複数のフィンガ部に現在割り当でられているパスのレベルを優位にするための状態重み付け関数を算出させ、算出された前記状態重み付け関数を前記パスへの受信信号の遅延時間に対する信号電力分布を示す遅延プロファイルに演算させ、その演算結果から複数のパスを検索させている。

【0024】本発明による別のCDMA受信装置のマルチパスのフィンガ割り当て制御プログラムを記録した記録媒体は、各々1つのパスについて逆拡散を行ってシンボル同期をとる複数のフィンガ部を含むCDMA受信装置においてコンピュータにマルチパスのフィンガ割り当て制御プログラムを記録は体であって、前記フィンガ割り当て制御プログラムは前記コンピュータに、前記パスへの受信信号の遅延時間に対する信号電力分布を示す遅延プロアイルから複数のパスを検索させ、その検索で取出された新候補のパスと前記複数のフィンガ部に現在割り当てられているパスとのうちの一方に対応する前記遅延プロフ

ァイルに予め設定された重み付け関数を演算して前記複数のフィンガ部に現在割り当てられているパスのレベルを優位にしてから前記新候補のパスと前記複数のフィンガ部に現在割り当てられているパスとのいずれを割り当てるかを判定させている。

【0025】すなわち、本発明のCDMA受信装置は、CDMA.(スペクトラム拡散通信)方式のRake受信装置のマルチパス検出部(パスサーチ部)において、測定された遅延プロファイルに対して、現在のRakeフィンガへの割り当て状態より算出される状態重み付けを行うことによって、フィンガのパス入れ替えレベルにヒステリシスを持たせ、特性劣化につながる頻繁なパス切り替えを防止することが可能となる。これによって、受信特性が向上する。

【0026】より具体的には、本発明のCDMA受信装置はCDMA方式におけるマルチパスサーチ部を有し、複数のマルチパスを同相合成して復調することのできる受信機(Rake受信機)を持っている。

【0027】本発明のCDMA受信装置のマルチパスサーチ部はDSP(ディジタルシグナルプロセッサ)に実装され、プログラム制御によって動作する。このCDMA受信装置はアンテナと、高周波受信回路部と、アナログ信号をディジタル信号に変換するA/D変換部と、1つのパスについて逆拡散及びシンボル同期をとる複数のフィンガ部と、複数のフィンガ部の受信信号を同相合成するRake合成受信部と、遅延プロファイル測定エアイルはDSP等のプロセッサで構成される遅延プロファイル電力加算部と、現在のフィンガ割り当て状態より決定される状態重み付け部と、遅延プロファイルよりマルチパスを検索する相関ピーク位置検出部と、検出したマルチパスを各フィンガに割り当てるパス割り当て部とから構成されている。

【0028】上記の構成のように、フィンガに現在割り当てられているパスのレベルを優位にするための重み付け部を有するため、特性劣化につながる頻繁なパス切り替えを防止することが可能となる。

【0029】したがって、マルチパスがほぼ同レベルで 観測されているような通信環境においても、パス切り替 えレベルにヒステリシスを持たせた効果が得られるた め、フィンガに対するパス割り当てが頻繁に入れ替わる ことがなくなるので、パス割り当てのばたつきの防止が 可能となり、受信特性の向上が可能となる。

【0030】また、シャドウイング等によって一時的にパスが消失した場合にもフィンガのパス位置を保護することが可能となる効果もあり、受信特性の向上が可能となる。さらに、パス切り替えの際の条件分岐判断等が簡易化されるため、ハードウェア構成やソフトウェア構成を簡単化することが可能となる。

[0031]

【発明の実施の形態】次に、本発明の実施の形態について図面を参照して説明する。図1は本発明の実施の形態であるマルチパスサーチ部の構成を示すブロック図である。図において、本発明の実施の形態では、マルチパスサーチ部がDSP(ディジタルシグナルプロセッサ)1に実装され、プログラム制御によって動作するようにしている。

【0032】CDMA受信装置はDSP1と、アンテナ2と、高周波受信回路部3と、アナログ信号をディジタル信号に変換するA/D(アナログ/ディジタル)変換部4と、1つのパスについて逆拡散及びシンボル同期をとる複数のフィンガ部5と、複数のフィンガ部5の受信信号を同相合成(Rake合成)するRake合成受信部6と、遅延プロファイル測定手段としてのスライディング相関器7と、ハードウェアまたはDSP等のプロセッサで構成される遅延プロファイル電力加算部8とから構成されている。

【0033】DSP1は演算器12と現在のフィンガ割り当て状態より決定される状態重み付け部13とからなる重み付け部11と、遅延プロファイルよりマルチパスを検索する相関ピーク位置検出部14と、検出したマルチパスを各フィンガに割り当てるRakeパス割り当て部15と、DSP1内の各部によって実行されるプログラムを格納する制御メモリ16とから構成されている。また、DSP1は必ずしもパスサーチ専用のDSPで無くても良く、スピーチコーデック等の他の機能が実装されていても良い。

【0034】演算器12としてはフィンガ部5に割り当てられている位置に重み付けをするための加算器や乗算器、あるいはフィンガ部5に割り当てられていない位置に重み付けをするための減算器や除算器等が考えられる。

【0035】次に、本発明の実施例について図面を参照して説明する。図2は本発明の一実施例によるCDMA受信装置のマルチパスサーチ部の構成を示すブロック図である。図において、本発明の一実施例によるマルチパスサーチ部はDSP1に実装され、プログラム制御によって動作する。

【0036】本発明の一実施例によるCDMA受信装置はDSP1と、アンテナ2と、高周波受信回路部3と、アナログ信号をディジタル信号に変換するA/D(アナログ/ディジタル)変換部4と、1つのパスについて逆拡散及びシンボル同期をとる複数のフィンガ部5と、複数のフィンガ部5の受信信号を同相合成(Rake合成)するRake合成受信部6と、遅延プロファイル測定手段としてのスライディング相関器7と、ハードウェアまたはDSP等のプロセッサで構成される遅延プロファイル電力加算部8とから構成されている。

【0037】DSP1は乗算器12と現在のフィンガ割り当て状態より決定される状態重み付け部13とからな

る重み付け部11と、遅延プロファイルよりマルチパスを検索する相関ピーク位置検出部14と、検出したマルチパスを各フィンガに割り当てるRakeパス割り当て部15と、DSP1内の各部によって実行されるプログラムを格納する制御メモリ16とから構成されている。また、DSP1は必ずしもパスサーチ専用のDSPで無くても良く、スピーチコーデック等の他の機能が実装されていても良い。

【0038】図3は図1の重み付け部11による重み付け動作を示す図である。図3(a)は重み付け関数f

- (t)を示しており、図3(b)は遅延プロファイルD
- (t) を示しており、図3 (c) は図1の乗算器12の出力を示している。

【0039】図4は本発明の一実施例によるマルチパスサーチ部(DSP1)の処理動作を示すフローチャートである。これら図2~図4を参照して本発明の一実施例によるマルチパスサーチ部の詳細な動作について説明する。尚、図4に示す処理動作はDSP1が制御メモリ16のプログラムを実行することで実現され、制御メモリ16としてはROM(リードオンリメモリ)やフロッピディスク等が使用可能である。

【0040】パス割り当て動作開始時に、状態重み付け部13は重み付け関数 f (t)=1とする(図4ステップS1)。その後に、アンテナ2によって受信された信号は高周波受信回路部3でダウンコンバートされ、A/D変換部4でディジタル信号に変換される。スライディング相関器7はA/D変換部4でディジタル信号に変換された信号から遅延プロファイルを得る。

【0041】遅延プロファイル電力加算部8はスライディング相関器7で得られた遅延プロファイルに対し、フェージング等によってパス変動を平均化する。遅延プロファイル電力加算部8でパス変動が平均化された後の遅延プロファイルD(t)は、重み付け部11の乗算器12において、状態重み付け部13からの重み付け関数 f(t)と掛け合わされる(図4ステップS2)。

【0042】相関ピーク検出部14は重み付け部11の乗算器12で重み付け関数f(t)と掛け合わされた遅延プロファイル[f(t)*D(t)]から遅延プロファイルの上位Nフィンガ(finger)ピークの遅延時間を検出する(図4ステップS3)。ここで、Nフィンガはフィンガ部5の数(Rake受信機が持つフィンガ数)である。

【0043】Rakeパス割り当て部15は相関ピーク検出部14で検出されたパスタイミングを各フィンガ部5へ伝達する(図4ステップS4)。状態重み付け部13は割り当てたフィンガ部5のパス位置を基に、状態重み付けの際の重み付け関数f(t)を設定する(図4ステップS5)。つまり、状態重み付け部13は重み付け関数f(t)を現在の割り当て位置でのピーク値が大きくなるように設定する。

【0044】例えば、重み付け関数f(t)としては、フィンガ数(Nfinger)をnとし、各フィンガ部 5に割り当てられている逆拡散タイミング(マルチパス 遅延時間)をTiとし、相関ピーク近傍の幅をτとすると、

【数1】

$$f(t) = 1 + (\alpha - 1) \sum_{i}^{n} G \tau (t - T i)$$

$$|t| \leq \tau / 2 \quad \dots \quad G \tau (t) = 1$$

$$|t| > \tau / 2 \quad \dots \quad G \tau (t) = 0$$

という式で与えられる。ここで、 $\alpha>1$ (例えば $\alpha=1$. 5程度) という係数を設定しても、また相関ピーク 近傍の幅 τ を1チップ程度としても良い。

【0045】上述した処理はパス割り当て動作が終了するまで(図4ステップS6)、繰返し行われる。この結果、次回からの遅延プロファイルは、図3に示すように、現在、フィンガ部5に割り当てられているパスが優位なレベルに設定される。

【0046】図3で(3)のパスに割り当てられているフィンガ部5が(4)のパスに切り替わるためには、パス(4)が(3)より α 倍大きくなる必要がある。このため、パスの入れ替えにヒステリシスを持たせることができ、図3において、(3)と(4)との間での頻繁なパス切り替えを防止することができる。また、シャドウイングによって一時的にパスが消失したような場合にも前回のパス位置を保持することができる。

【0047】図5は図2の状態重み付け部13による重み付け関数の設定処理を示すフローチャートである。これら図2及び図5を参照して状態重み付け部13による重み付け関数の設定処理について説明する。

【0048】パス割り当て動作開始時に、状態重み付け部13は重み付け関数 f(t)=1とする(図5ステップS11)。その後に、Rakeパス割り当て部15から各フィンガ部5に割り当てたパス位置が入力されると(図5ステップS12)、そのパス位置を基に状態重み付けの際の重み付け関数 f(t)を設定する(図5ステップS13)。この重み付け関数の設定処理はパス割り当て動作が終了するまで(図5ステップS14)、繰返したわれる。

【0049】図6は図1の相関ピーク位置検出部14の 処理動作を示すフローチャートである。これら図2及び 図6を参照して相関ピーク位置検出部14の処理動作に ついて説明する。

【0050】相関ピーク位置検出部14は複数のピークを検出するために最大値検索を行い(図6ステップS21)、最大ピーク位置を保存した後(図6ステップS22)、検出したピーク位置のデータをマスクする(検出した最大ピーク部のデータを0でマスクする)(図6ス

テップ S 2 3)。相関ピーク位置検出部14はピーク位置のデータをマスクすることで検出済みのピーク位置のデータを除外し、以降、予め設定されている検出ピーク数分だけ、残りのピーク位置のデータに対して上記と同様の処理動作を繰返し行う(図6ステップ S 2 4)。

【0051】図7は図1の相関ピーク位置検出部14による最大値検索処理を示すフローチャートである。これら図2及び図7を参照して相関ピーク位置検出部14による最大値検索処理について説明する。

【0052】相関ピーク位置検出部14ははじめに最大値の初期値を読込み(例えば、データの先頭の値を設定)、検索開始アドレスを設定する(図7ステップS31)。続いて、相関ピーク位置検出部14は図示せぬメモリからデータを読込み、読込みアドレスを次のデータ位置に進める(図7ステップS32)。

【0053】相関ピーク位置検出部14はメモリから読込んだデータを最大値データと比較し(図7ステップS33)、データが最大値より大きい場合(図7ステップS34)、最大値を入替えて最大値位置を図示せぬ保存部に保存する(図7ステップS35)。相関ピーク位置検出部14は全検索データを最大値と比較し終わるまで、上記と同様の処理動作を繰返し行う(図7ステップS36)。

【0054】上述した本発明の一実施例では、フィンガ 部5に割り当てられている位置の重み付けを乗算器12 を用いて行っているが、加算器等を用いて行うことも可能であり、また減算器や除算器等を用いることでフィン ガ部5に割り当てられていない位置の重み付けを行うことも可能である。

【0055】図8は本発明の他の実施例による状態重み付け部による重み付け関数の設定処理を示すフローチャートである。本発明の他の実施例によるマルチパスサーチ部の構成は図2に示す本発明の一実施例によるマルチパスサーチ部の構成と同様の構成とする。これら図2及び図8を参照して本発明の他の実施例による状態重み付け部による重み付け関数の設定処理について説明する。

【0056】パス割り当て動作開始時に、状態重み付け部13は重み付け関数f(t)=1とする(図8ステップS41)。その後に、状態重み付け部13はパスサーチ部が遅延プロファイル測定範囲を最大受信ピーク電力のパスが中心になるようにトラックしているか否かを判定し(図8ステップS42)、トラックしていると判定すると過去の最大ピーク位置のみ優位にするような係数を状態重み付けの際の重み付け関数f(t)として設定する(図8ステップS46)。

【0057】一方、状態重み付け部13はトラックしていないと判定し、Rakeパス割り当て部15から各フィンガ部5に割り当てたパス位置が入力されると(図8ステップS43)、そのパス位置を基に状態重み付けの際の重み付け関数f(t)を設定する(図8ステップS

44)。この重み付け関数の設定処理はパス割り当て動作が終了するまで(図8ステップS45)、繰返し行われる。

【0058】上記のように、遅延プロファイル測定範囲を最大受信ピーク電力のパスが中心になるように、パスサーチ部がトラックするような場合、過去の最大ピーク位置のみ優位にするような係数を掛け合わせておくことによって、測定位置のばたつきを防止することもできる。尚、これによって受信タイミングのばたつきも防止することができるため、その受信タイミングに合わせて制御される送信タイミングでのばたつきも防止することができる。

【0059】図9は本発明の別の実施例によるCDMA 受信装置のマルチパスサーチ部の構成を示すプロック図 である。図において、本発明の別の実施例によるマルチ パスサーチ部は、本発明の一実施例と同様に、DSP1 に実装され、プログラム制御によって動作する。

【0060】また、本発明の別の実施例によるCDMA 受信装置は、図2の重み付け部11に代えてDSP1の Rakeパス割り当て部17で重み付けを行うようにし た以外は本発明の一実施例と同様の構成となっており、 同一構成要素には同一符号を付してある。同一構成要素 の動作は本発明の一実施例と同様である。

【0061】Rakeパス割り当て部17にはフィンガ部5に割り当てられている位置の重み付けを行うためのパス入れ替え判定部18が設けられており、パス入れ替え判定部18は新候補のパスのレベルをフィンガ部5に割り当てられているパスのレベルとばたつき防止係数

(上記の重み付けの係数に対応) との演算 (乗算や加算等) の結果と比較することで、パスを入れ替えるか否か を判定する。

【0062】図10は図9のパス入れ替え判定部18のパス入れ替え判定処理を示すフローチャートである。これら図9及び図10を参照して本発明の別の実施例によるマルチパスサーチ部の詳細な動作について説明する。尚、図10に示す処理動作はパス入れ替え判定部18が制御メモリ16のプログラムを実行することで実現され、制御メモリ16としてはROMやフロッピディスク等が使用可能である。

【0063】アンテナ2によって受信された信号は高周 波受信回路部3でダウンコンバートされ、A/D変換部 4でディジタル信号に変換される。スライディング相関 器7はA/D変換部4でディジタル信号に変換された信号から遅延プロファイルを得る。

【0064】遅延プロファイル電力加算部8はスライディング相関器7で得られた遅延プロファイルに対し、フェージング等によってパス変動を平均化する。遅延プロファイル電力加算部8でパス変動が平均化された後の遅延プロファイルは相関ピーク検出部14に入力される。

【0065】相関ピーク検出部14は遅延プロファイル

から遅延プロファイルの上位Nfingerピークの遅延時間を検出する。ここで、Nfingerはフィンガ部5の数(Rake受信機が持つフィンガ数)である。

【0066】Rakeパス割り当て部17ではパス入れ替え判定部18が相関ピーク検出部14で検出されたパスタイミング (パス位置) のチェックを行い (図10ステップS51)、新候補のパスがあるかどうかを判定する (図10ステップS52)。パス入れ替え判定部18は新候補のパスがなければ、従来のパス割り当てのままとする (図10ステップS56)。

【0067】一方、パス入れ替え判定部18は新候補のパスがあれば、フィンガ部5に割り当てられているパスのレベルにばたつき防止係数を乗じたもの(例えば、ばたつき防止係数として1.5をパスのレベルに乗じたもの)と、新候補のパスのレベルとを比較する。

【0068】この場合、ばたつき防止係数を乗じたものが新候補のパスのレベルよりも大きければ(図10ステップS53)、パス入れ替え判定部18は従来のパス割り当てのままとする(図10ステップS56)。

【0069】逆に、ばたつき防止係数を乗じたものが新候補のパスのレベルよりも小さければ(図10ステップS53)、従来フィンガ部5に割り当てられているパスを新候補のパスと入替える(図10ステップS54)。

【0070】このパス入れ替え判定部18によるパス入れ替え処理はパス割り当てが終了するまで(図10ステップS55)、繰返し行われる(図10ステップS51~S56)。

【0071】尚、パス入れ替え判定部18によるステップS53の処理ではフィンガ部5に割り当てられているパスのレベルにばたつき防止係数を乗じているが、ばたつき防止係数を加算するようにしてもよい。また、現在フィンガ部5に割り当てられているパスが優位なレベルになるように、新候補のパスのレベルにばたつき防止係数を乗じたり、減算したり、除算したりしてもよい。

【0072】Rakeパス割り当て部17はパス入れ替え判定部18によるパス入れ替え処理で割り当てられたパスを各フィンガ部5へ伝達する。この結果、次回からの遅延プロファイルは現在フィンガ部5に割り当てられているパスが優位なレベルに設定される。

【0073】これによって、パスの入れ替えにヒステリシスを持たせることができ、近傍の同レベルのパス間での頻繁なパス切り替えを防止することができる。また、シャドウイングによって一時的にパスが消失したような場合にも前回のパス位置を保持することができる。

【0074】図11は本発明の別の実施例による前回のパス位置の保護動作を示すフローチャートである。この図11を参照して本発明の別の実施例による前回のパス位置の保護動作について説明する。

【0075】前回のパス位置を保護する場合、パス入れ替え判定部18は割り当てているフィンガの位相のパス

を検出すると(図11ステップS61)、前回のパス位置と同一の位置を割り当て(図11ステップS62)、前回のパス位置を検出できなかった回数を計数するカウンタ(図示せず)をリセットする(図11ステップS63)。

【0076】一方、パス入れ替え判定部18は割り当て ているフィンガの位相のパスを検出しなければ(図11 ステップS61)、上記の前回のパス位置を検出できな かった回数と予め設定された設定値とを比較判定する

(図11ステップS65)。パス入れ替え判定部18は 上記の前回のパス位置を検出できなかった回数が設定値 よりも大きければ、前回のパス位置の代わりに他のパス を割り当てる(図11ステップS66)。

【0077】また、パス入れ替え判定部18は上記の前回のパス位置を検出できなかった回数が設定値よりも小さければ、前回のパス位置と同一の位置を割り当て(図11ステップS67)、前回のパス位置を検出できなかった回数に1を加算する(図11ステップS68)。パス入れ替え判定部18は前回のパス位置の保護処理が終了するまで(図11ステップS64)、上記の処理を繰返し行う(図11ステップS61~S68)。

【0078】図12は本発明の別の実施例による新規割り当てのパス位置の保護動作を示すフローチャートである。この図12を参照して本発明の別の実施例による新規割り当てのパス位置の保護動作について説明する。

【0079】新規割り当てのパス位置を保護する場合、パス入れ替え判定部18は新規割り当ての位相のパスを検出すると(図12ステップS71)、新規割り当てのパス位置と同一の位置を割り当て(図12ステップS72)、新規割り当てのパス位置を検出できなかった回数を計数するカウンタ(図示せず)をリセットする(図12ステップS73)。

【0080】一方、パス入れ替え判定部18は新規割り当ての位相のパスを検出しなければ(図12ステップS71)、上記の新規割り当てのパス位置を検出できなかった回数と予め設定された設定値とを比較判定する(図12ステップS75)。パス入れ替え判定部18は上記の新規割り当てのパス位置を検出できなかった回数が設定値よりも大きければ、新規割り当てのパス位置の代わりに他のパスを割り当てる(図12ステップS76)。

【0081】また、パス入れ替え判定部18は上記の新規割り当てのパス位置を検出できなかった回数が設定値よりも小さければ、新規割り当てのパス位置と同一の位置を割り当て(図12ステップS77)、新規割り当てのパス位置を検出できなかった回数に1を加算する(図12ステップS78)。パス入れ替え判定部18は新規割り当てのパス位置の保護処理が終了するまで(図12ステップS74)、上記の処理を繰返し行う(図12ステップS71~S78)。

【0082】このように、マルチパスがほぼ同レベルで

観測されているような通信環境においても、フィンガ部 5に対するパス割り当てが頻繁に入れ替わることがなく なる。よって、パス割り当てのばたつきを防止すること ができ、受信特性を向上させることができる。

【0083】また、シャドウイング等によって一時的にパスが消失した場合にもフィンガ部5のパス位置を保護することができるという効果もあり、受信特性を向上させることができる。さらに、パス切り替えの際の条件分岐判断等が簡易化されるため、ハードウェア構成やソフトウェア構成を簡単化することができる。

【0084】尚、上記の各実施例の構成及びその説明では動作説明を簡単化するために、1つの基地局からの受信信号に対する処理について述べたが、通常CDMA受信装置では複数の基地局からの受信信号を処理しているので、ソフトハンドオーバ等による各基地局からの受信信号各々に対して上記の処理を行うようにすればよい。その場合、上述した各回路は各基地局毎に設けても、また各基地局で共用してもよい。

【0085】また、上記の方法で検出されたピーク位置のうち、予め設定された所定条件に合致するピーク位置、例えば3フィンガを持つRake受信装置において、遅延プロファイルの第3位の相関ピークとの電力がほぼ等しいような場合に、第3位の相関ピークとの電力がほぼ等しいような場合に、第3位の相関ピークに重み付け関数を演算することも可能である。この場合、伝播路の変動によって第3位のパスタイミングと第4位のパスタイミングとが頻繁に入れ替わることはなくなるので、フィンガのうちの1つは割り当てられるパスタイミング(逆拡散タイミング)が頻繁に切り替わることがなくなり、受信特性を向上させることができる。

[0086]

【発明の効果】以上説明したように本発明によれば、1 つのパスについて逆拡散及びシンボル同期をとる複数の フィンガ部を含むCDMA受信装置において、複数のフィンガ部への現在の割り当て状態より算出される状態重 み付け関数をパスへの受信信号の遅延時間に対する信号 電力分布を示す遅延プロファイルに掛け合わせてからマルチパスを検索することによって、フィンガ部に対して パス割り当てが頻繁に入れ替わるのを防いでパス割り当 てのばたつきを防止することができ、受信特性を向上させることができるという効果がある。

【図面の簡単な説明】

【図1】本発明の実施の形態であるマルチパスサーチ部

の構成を示すプロック図である。

【図2】本発明の一実施例によるCDMA受信装置のマルチパスサーチ部の構成を示すプロック図である。

【図3】(a)は本発明の一実施例で用いられる重み付け関数の一例を示す図、(b)は本発明の一実施例で用いられる遅延プロファイルの一例を示す図、(c)は図1の乗算器の出力を示す図である。

【図4】本発明の一実施例によるマルチパスサーチ部の 処理動作を示すフローチャートである。

【図5】図1の状態重み付け部による重み付け関数の設定処理を示すフローチャートである。

【図6】図1の相関ピーク位置検出部の処理動作を示す フローチャートである。

【図7】図1の相関ピーク位置検出部による最大値検索 処理を示すフローチャートである。

【図8】本発明の他の実施例による状態重み付け部による重み付け関数の設定処理を示すフローチャートである。

【図9】本発明の別の実施例によるCDMA受信装置のマルチパスサーチ部の構成を示すプロック図である。

【図10】図9のパス入れ替え判定部のパス入れ替え判 定処理を示すフローチャートである。

【図11】本発明の別の実施例による前回のパス位置の 保護動作を示すフローチャートである。

【図12】本発明の別の実施例による新規割り当てのパス位置の保護動作を示すフローチャートである。

【図13】従来のCDMA受信装置の構成例を示すプロック図である。

【図14】従来のマルチパスのフィンガへの割り当て方 法を示すフローチャートである。

【符号の説明】

- 1 DSP
- 5 フィンガ部
- 6 Rake合成受信部
- 7 スライディング相関器
- 8 遅延プロファイル電力加算部
- 11 重み付け部
- 12 乗算器
- 13 状態重み付け部
- 14 相関ピーク位置検出部
- 15, 17 Rakeパス割り当て部
- 16 制御メモリ
- 18 パス入れ替え判定部

【図13】

【図10】

【図14】

