

Burrows-Wheeler Compression

Source code:

Transform function: SuffixArray,

Compress, Decompress: minimum heap

Suffix Array and MinHeap Analysis:

While the provided code snippets don't reveal the exact implementation details of SuffixArray and MinHeap classes, we can discuss their functionalities and general approaches relevant to Burrows-Wheeler Transform (BWT) and Huffman Coding.

1. Suffix Array:

• Purpose:

 A Suffix Array is a data structure that stores the indexes of all suffixes of a string in lexicographical order (alphabetical order).

• Functionality in BWT:

- The BWT algorithm utilizes the Suffix Array to efficiently compute the BWT transformation.
- By iterating through the Suffix Array, BWT can directly access the character preceding each suffix in the original string.

• Implementation Approaches:

- There are various algorithms for constructing a Suffix Array, with varying time and space complexities.
 - Some common approaches include:
 - **SAIS (String Algorithm Induced Sorting):** Efficient O(n log n) time complexity with low memory overhead.
 - **Manacher's Algorithm:** Linear time complexity (O(n)) but requires more space compared to SAIS.

2. MinHeap:

• Purpose:

 A MinHeap is a specialized tree-based data structure where the root node always holds the minimum value among all elements.

• Functionality in Huffman Coding:

- Huffman Coding utilizes a MinHeap to efficiently build the Huffman tree.
- The MinHeap is used to prioritize nodes (characters) based on their frequencies during tree construction.
- Nodes with lower frequencies (higher priority) are extracted first, allowing for the creation of an optimal tree for data compression.

• Implementation:

- MinHeaps are typically implemented using a binary tree data structure.
- Specific operations like Insert (add a new element) and ExtractMin (remove the minimum element) involve maintaining the heap property (minimum at the root) through efficient operations like swapping and sifting elements up or down the tree.

Complexity Analysis (General):

- Suffix Array construction algorithms generally have a time complexity of O(n log n) with space complexity ranging from O(n) to O(n log n) depending on the specific algorithm.
- MinHeap operations (Insert and ExtractMin) typically have a logarithmic time complexity (O(log n)) due to efficient heap manipulation techniques.

Analysis of the whole code:

1-Burrows-Wheeler Transform (BWT):

A- Transform function:

Purpose: Performs the Burrows-Wheeler Transform (BWT) on a byte array representing text data.

Functionality:

- Appends a unique End-of-File (EOF) character to the input for proper BWT handling.
- Converts the byte array to a short array (assuming **SuffixArray** works with shorts).
- Utilizes the **assumed** SuffixArray.Construct(shortString) function (not provided) to construct the suffix array for the input data.
- Iterates through the suffix array to compute BWT indices and creates a new byte array containing the transformed data.

Complexity:

- Time complexity depends on the SuffixArray.Construct function (assumed O(n log n) for efficient algorithms like SAIS).
- Space complexity is O(n) for storing the transformed data and potentially O(n) for temporary data structures used by SuffixArray.Construct.

Overall Time Complexity: O(n log(n)),

Overall Space Complexity: O(n).

Detailed Time complexity:

Appending EOF Character and Conversion to Short Array (Loops): O(n),

Suffix Array Construction : O(n log n),

BWT Calculation (Loop): O(n).

Detailed Space complexity:

Input with EOF (Array): O(n),

Short Array: O(n).

Suffix Array: O(n).

BWT Array: O(n).

B- Inverse function:

Purpose: Performs the inverse BWT to recover the original data from the transformed byte array.

Functionality:

- Constructs a dictionary to count the occurrences of each byte in the transformed data.
- Builds the "first column" by iterating through the count dictionary and adding each byte based on its frequency.
- Creates a dictionary (nextIndex) to store queues for each byte, representing the next position where that byte appears in the transformed data.
- Populates the next array based on the order of bytes in the transformed data and the nextIndex dictionary.
- Iteratively uses the next array to reconstruct the original byte sequence, starting from the first byte in the "first column."
- Removes the appended EOF character during reconstruction.

Complexity:

• Time complexity is dominated by loop iterations and potentially O(n) for building data structures.

• Space complexity is O(n) for storing dictionaries, queues, and the next array.

Overall Time Complexity: O(n), Overall Space Complexity: O(n).

Detailed time complexity:

Counting Character Occurrences (Loop): O(n),

Building First Column (Loop): O(n),

Building Next Array (Loops): O(n),

Reconstructing Original Data (Loop): O(n).

Detailed space complexity:

Character Count Dictionary: O(n),

Next Index Dictionary and Queue: O(n),

Next Array and Original Data Array: O(n).

Move-to-front function

- Encode:
 - Purpose: Implements the Move-to-Front (MTF) encoding algorithm for data compression.
 - Functionality:
 - Initializes a table containing all possible byte values (0 to 255).
 - Iterates through the input data, finding the index of each byte in the table.
 - The index becomes the encoded output for that byte.
 - Removes the encoded byte from its original position in the table and inserts it at the beginning, effectively moving it to the front.
 - Complexity:
 - Time complexity is O(n) for iterating through the input data and performing table operations (insertion/removal).
 - Space complexity is O(1) as a constant size table is used.

• Decode:

- **Purpose:** Performs the inverse MTF decoding to recover the original data from the encoded byte array.
- Functionality:
 - Follows the same logic as encoding but utilizes the encoded indices to retrieve the corresponding byte values from the table.
 - After retrieving a byte value, it's moved to the front of the table for subsequent lookups.
- Complexity:
 - Time complexity is O(n) for iterating through the encoded data and performing table operations.
 - Space complexity is O(1) due to the constant size table.

Overall Time Complexity: O(n), Overall Space Complexity: O(n).

Detailed Time complexity:

Encoding/Decoding Loop (Iteration): O(n),

IndexOf and RemoveAt/InsertAt (List Operations): O(n).

Detailed Space complexity:

Symbol Table: O(n).

Huffman function:

Combined Complexity Analysis

Time Complexity

Encoding (Compression):

1.Frequency Calculation: O(n)

2.Building the Huffman Tree: O(m log m)

- 3. Generating Huffman Codes: O(m)
- 4.Encoding Tree Structure and Data: O(n log m)

Overall Encoding Time Complexity: $O(n + m \log m + n \log m) = O(n \log m)$

Decoding (Decompression):

- 1.Reconstructing the Huffman Tree: O(m)
- 2.Decoding the Data: O(n)

Overall Decoding Time Complexity: O(n + m)

Combined Time Complexity:

The total time complexity for both encoding and decoding will be:

O(encoding)+O(decoding)=O(nlogm)+O(n+m)O(encoding)+O(decoding)=O(nlogm)+O(n+m)

Given that m≤nm≤n (the number of unique characters mm cannot exceed the length of the input nn), the combined complexity can be simplified to:

 $O(nlogm)+O(n+m)\approx O(nlogm)+O(n)=O(nlogm)O(nlogm)+O(n+m)\approx O(nlogm)+O(n)=O(nlogm)$

Therefore, the overall time complexity for encoding followed by decoding is:

O(nlogm)O(nlogm)

Space Complexity

Encoding (Compression):

- 1.Frequency Map: O(m)
- 2.Huffman Tree: O(m)
- 3.Encoded Data and Tree Structure: O(n + m)

Overall Encoding Space Complexity: O(n + m)

Decoding (Decompression):

1.Reconstructed Huffman Tree: O(m)

2.Decoded Data: O(n)

Overall Decoding Space Complexity: O(n + m)

Combined Space Complexity:

The total space complexity for both encoding and decoding will be:

O(encoding)+O(decoding)=O(n+m)+O(n+m)=O(n+m)O(encoding)+O(decoding)=O(n+m)+O(n+m)=O(n+m)=O(n+m)

Therefore, the overall space complexity for encoding followed by decoding is:

O(n+m)O(n+m)

Conclusion

Combining the steps of encoding and decoding, the overall computational complexity is as follows:

Time Complexity: O(nlogm)O(nlogm)

Space Complexity: O(n+m)O(n+m)

Overall Time Complexity: O(n log m) :where m is number of unique character,

Overall Space Complexity: trivial.

Compression ratio of "large cases":

Equation: 1 - (size of file after compression / size of original file)

Case 1: chromosome11-human : 0.713 = 71%

Case2: dickens: 0.387 = 38%

Case 3: pi-10million: 0.562 = 56% Case 4: world192: 0.325 = 32%

Execution time of compression and decompression for "large cases":