マイクロコンピュータ基礎(2)

- 実験年月日 2018年4月23日
- 提出年月日 2018年5月7日
- 班番号 6
- 報告者 3年19番6班 末田 貴一
- 共同実験者
 - 7番 川上 求
 - 42番 山崎 敦史
 - 47番 ロンサン

目的

8ビットCPUを搭載した実習用ワンボードマイコンへの機械語プログラミングを通して、マイクロコンピュータの動作原理について理解を深める

今回の実験ではマイクロコンピュータの仕組みとともに機械語命令の中の転送命令と算術命令 について学習する

概要

マイクロコンピュータ

ワンボードマイコン「MT-Z」を使う.

- 8ビットのマイクロプロセッサ「Z-80」搭載
 - ALU
 - 。 命令デコーダ
 - 。 その他レジスタ
 - 汎用レジスタ:8ビット
 - 特殊レジスタ:変更できない
- ・バス
 - o アドレスバス
 - 制御バス
 - 。 データバス
- 主記憶装置
- 入出力装置との接続が可能

実験1

内容

- 1. 次の数値を変換する
- 00111110B = 3EH
- 01000111B = 47H
- 106D = 1101010B
- 3CH = 60D
- 3. 16桁の2進数を16進数に変換すると何桁になるか

4桁

5. Z-80のCPUはメモリの1番地あたりに何倍とのデータを記憶できるか

1バイト

7. Z-80のアドレスバスは何ビットか/CPUが仕様できるメモリのアドレスの最大個数

16ビット 65536個

実験2

内容

12ABREASTHから12AFHまでの内容を読み出して記録する

アドレス	内容
12AB	D3
12AC	10
12AD	2A
12AE	23
12AF	83

内容

実験書にあるプログラムを書き込んで実行する

プログラム

アドレス	内容
8600	3E
8601	0A
8602	47
8603	32
8604	10
8605	86
8606	76

方法

書き込んだあとGキーを叩いて実行

```
LEDが光る
↓
時報でよく聞く謎のメロディが演奏される
↓
LEDが光る
```

内容

100C番地からプログラムを実行してみる

方法

番地を指定→Gキーを叩く

結果

LEDががピカピカ光って5からカウントダウンされる. カウントダウンが0になったらピピピピピピピピピピピピ ! と鳴ってさながら爆弾のようだった.

実験5

内容

```
8400番地からプログラムを入力
↓
間違いがないかチェック
↓
8500番地に00というデータを入力
↓
チェック
↓
Gキーを叩いて実行
↓
8500番地の中身を確認
↓
もう一度実行
↓
もう一度8500番地の中身を確認
```

プログラム

アドレス	内容
8400	3A
8401	00
8402	85
8403	3C
8404	32
8405	00
8406	85
8407	C3
8408	00
8409	00
8500	00

1

アドレス	機械語	ニーモニック	コメント
8400	3A 00 85	LD A,(8500)	8500番地の内容をAレジスタに転送
8403	3C	INC A	Aレジスタ++する
8404	32 00 85	LD (8500),A	Aレジスタの内容を8500番地に転送
8407	C3 00 00	JP 0000	モニタ・プログラムに戻る
8500	00		

方法

プログラムを入力して間違いがないかチェックして2回実行する.

回数	結果
0(初期値)	00
1	01
2	02

ということで実行すると8500が1ずつ増えている. 確認として3回目を実行してみた.

回数	結果
3	03

どうやら間違いなさそうなことが分かった

実験6

内容

実験5のプログラムを参考にして8500番地の内容より1だけ大きいデータを8501番地に書き込むプログラムを作る

プログラム

アドレス	機械語	ニーモニック	コメント
8400	3A 00 85	LD A,(8500)	8500番地の内容をAレジスタに転送
8403	3C	INC A	Aレジスタ++する
8404	32 00 85	LD (8500),A	Aレジスタの内容を8500番地に転送
8407	3C	INC A	Aレジスタ++する
8408	32 00 85	LD (8501),A	Aレジスタの内容を8501番地に転送
840B	C3 00 00	JP 0000	モニタ・プログラムに戻る
8500	00		

回数	8500の内容	8501の内容
0(初期値)	00	00
1	01	02
2	02	03

内容

- 1. 8500番地の内容より5だけ大きな値を8501番地に書き込むプログラムを完成させる
- 2. 8500番地に01と入力して8400番地から実行してみる
- 3.8501番地の内容を確認する

プログラム

アドレス	機械語	ニーモニック	コメント
8400	3A 00 85	LD A,(8500)	8500番地の内容をAレジスタに転送
8403	C6 05	ADD 05	Aレジスタの内容に05加算
8405	32 01 85	LD (8501),A	Aレジスタの内容を8501番地に転送
8408	C3 00 00	JP 0000	モニタ・プログラムに戻る

方法

```
プログラムを考えて入力
↓
間違いがないかチェック
↓
問題なければ初期値をチェック
↓
問題なければ初期値をチェック
↓
```

結果

アドレス	内容
8501	06

06は初期値の01にADD 05した値なので実験は成功している.

内容

- 1.8500番地の内容と8501番地の内容を加算してその結果を8502番地に書き込むプログラムを完成させる
- 2. 8500番地に01というデータを入力, 8501番地には02を入力
- 3.8400番地からプログラムを実行

プログラム

アドレス	機械語	ニーモニック	コメント
8400	3A 00 85	LD A,(8500)	8500番地の内容をAレジスタに転送
8403	47	LD B,A	Aレジスタの内容をBレジスタに転送
8404	3A 01 85	LD A,(8501)	8501番地の内容をAレジスタに転送
8407	80	ADD B	AレジスタにBレジスタの内容を加算
8408	32 02 85	LD (8502),A	Aレジスタの内容を8502に転送
840B	C3 00 00	JP 0000	モニタ・プログラムに戻る
8500	01		
0300	O I		
8501	02		

方法

```
プログラムを入力
↓
間違いがないかチェック
↓
初期値をチェック
↓
問題なければGキーを叩いて実行
```

アドレス	内容
8502	03

考察課題

1.8ビットのアドレスバスを使用し、メモリの1つの番地に1バイトのデータを記憶できるコンピュータで利用可能なメモリの最大容量を答えなさい。同様に、16ビットのアドレスバスを使用し、メモリ1つの番地に2バイトのデータを記憶できるコンピュータで使用可能なメモリの最大容量を答えなさい。

8ビットのアドレスバスでメモリ1つの番地に1バイトのデータを記憶できるコンピュータが利用できるメモリの最大容量は2048ビット 16ビットの場合は1048676ビット

2. 実験で使用した4種類の命令のアドレス指定方式

命令	受信側	送信側
LD A,(9000)	レジスタ	メモリ上のアドレス
LD (9000),A	メモリ上のアドレス	レジスタ
LD A,05	レジスタ	即値データ
LD A,B	レジスタ	レジスタ
LD (hL),A	HL	レジスタ