Foundation of Cryptography (0368-4162-01), Lecture 8 Encryption Schemes

Iftach Haitner, Tel Aviv University

January 3 - 17, 2012

Section 1

Definitions

Correctness

Definition 1 (encryption scheme)

A trippet of PPT's (G, E, D) such that

- **1** $G(1^n)$ outputs a key $(e, d) \in \{0, 1\}^* \times \{0, 1\}^*$
- ② E(e, m) outputs a string in $c \in \{0, 1\}^*$
- **3** D(d, c) outputs $m \in \{0, 1\}^*$

Correctness

Definition 1 (encryption scheme)

A trippet of PPT's (G, E, D) such that

- **1** $G(1^n)$ outputs a key $(e, d) \in \{0, 1\}^* \times \{0, 1\}^*$
- ② E(e, m) outputs a string in $c \in \{0, 1\}^*$
- **3** D(d, c) outputs $m \in \{0, 1\}^*$

Definitions

Correctness

Definition 1 (encryption scheme)

A trippet of PPT's (G, E, D) such that

- **1** $G(1^n)$ outputs a key $(e, d) \in \{0, 1\}^* \times \{0, 1\}^*$
- ② E(e, m) outputs a string in $c \in \{0, 1\}^*$
- **3** D(d, c) outputs $m \in \{0, 1\}^*$

- e − encryption key, d − decryption key
- m plaintext, c = E(e, m) ciphertext
- $E_e(m) \equiv E(e,m)$ and $D_d(c) \equiv D(d,c)$,

Definitions

Definition 1 (encryption scheme)

A trippet of PPT's (G, E, D) such that

- **1** $G(1^n)$ outputs a key $(e, d) \in \{0, 1\}^* \times \{0, 1\}^*$
- ② E(e, m) outputs a string in $c \in \{0, 1\}^*$
- **3** D(d, c) outputs $m \in \{0, 1\}^*$

- e − encryption key, d − decryption key
- m plaintext, c = E(e, m) ciphertext
- $E_e(m) \equiv E(e,m)$ and $D_d(c) \equiv D(d,c)$,
- public/private key

• What would we like to achieve?

- What would we like to achieve?
- Attempt: for any $m \in \{0, 1\}^*$:

$$(m, E_{G(1^n)_1}(m)) \equiv (m, U_{\ell(|m|)})$$

- What would we like to achieve?
- Attempt: for any $m \in \{0, 1\}^*$:

$$(m, E_{G(1^n)_1}(m)) \equiv (m, U_{\ell(|m|)})$$

• Shannon – only for m with $|m| \le |G(1^n)_1|$

- What would we like to achieve?
- Attempt: for any $m \in \{0, 1\}^*$:

$$(m, E_{G(1^n)_1}(m)) \equiv (m, U_{\ell(|m|)})$$

- Shannon only for m with $|m| \le |G(1^n)_1|$
- Other concerns, e.g., multiple encryptions, active adversary

Semantic Security

Semantic Security

O Ciphertext reveal "no information" about the plaintext

Semantic Security

Semantic Security

- Oiphertext reveal "no information" about the plaintext
- Formulate via the simulation paradigm

Semantic Security

- O Ciphertext reveal "no information" about the plaintext
- Formulate via the simulation paradigm
- Cannot hide the message length

Definition 2 (Semantic Security – private-key model)

$$\begin{aligned} \big| \mathsf{Pr}_{m \leftarrow \mathcal{M}_n, e \leftarrow G(1^n)_1} [\mathsf{A}(1^n, 1^{|m|}, h(1^n, m), E_e(m)) &= f(1^n, m)] \\ - \mathsf{Pr}_{m \leftarrow \mathcal{M}_n} [\mathsf{A}'(1^n, 1^{|m|}, h(1^n, m)) &= f(1^n, m)] \big| = \mathsf{neg}(n) \end{aligned}$$

Definition 2 (Semantic Security – private-key model)

An encryption scheme (G, E, D) is semantically secure in the private-key model, if for any PPT A, \exists PPT A' s.t. \forall poly-bounded dist. ensemble $\mathcal{M} = \{\mathcal{M}_n\}_{n \in \mathbb{N}}$ and poly-bounded functions $h, f \colon \{0,1\}^* \mapsto \{0,1\}^*$

$$\begin{aligned} \big| \mathsf{Pr}_{m \leftarrow \mathcal{M}_n, e \leftarrow G(1^n)_1} [\mathsf{A}(1^n, 1^{|m|}, h(1^n, m), E_e(m)) &= f(1^n, m)] \\ - \mathsf{Pr}_{m \leftarrow \mathcal{M}_n} [\mathsf{A}'(1^n, 1^{|m|}, h(1^n, m)) &= f(1^n, m)] \big| = \mathsf{neg}(n) \end{aligned}$$

poly-bounded?

Definition 2 (Semantic Security – private-key model)

An encryption scheme (G, E, D) is semantically secure in the private-key model, if for any PPT A, \exists PPT A' s.t. \forall poly-bounded dist. ensemble $\mathcal{M} = \{\mathcal{M}_n\}_{n \in \mathbb{N}}$ and poly-bounded functions $h, f \colon \{0,1\}^* \mapsto \{0,1\}^*$

$$\begin{aligned} \big| \mathsf{Pr}_{m \leftarrow \mathcal{M}_n, e \leftarrow G(1^n)_1} [\mathsf{A}(1^n, 1^{|m|}, h(1^n, m), E_e(m)) &= f(1^n, m)] \\ - \mathsf{Pr}_{m \leftarrow \mathcal{M}_n} [\mathsf{A}'(1^n, 1^{|m|}, h(1^n, m)) &= f(1^n, m)] \big| = \mathsf{neg}(n) \end{aligned}$$

poly-bounded? for simplicity we assume polynomial length

Definition 2 (Semantic Security – private-key model)

$$\begin{aligned} \big| \mathsf{Pr}_{m \leftarrow \mathcal{M}_n, e \leftarrow G(1^n)_1} [\mathsf{A}(1^n, 1^{|m|}, h(1^n, m), E_e(m)) &= f(1^n, m)] \\ - \mathsf{Pr}_{m \leftarrow \mathcal{M}_n} [\mathsf{A}'(1^n, 1^{|m|}, h(1^n, m)) &= f(1^n, m)] \big| = \mathsf{neg}(n) \end{aligned}$$

- poly-bounded? for simplicity we assume polynomial length
- 1^n and $1^{|m|}$ can be omitted

Definition 2 (Semantic Security – private-key model)

$$\begin{aligned} \big| \mathsf{Pr}_{m \leftarrow \mathcal{M}_n, e \leftarrow G(1^n)_1} [\mathsf{A}(1^n, 1^{|m|}, h(1^n, m), E_e(m)) &= f(1^n, m)] \\ - \mathsf{Pr}_{m \leftarrow \mathcal{M}_n} [\mathsf{A}'(1^n, 1^{|m|}, h(1^n, m)) &= f(1^n, m)] \big| = \mathsf{neg}(n) \end{aligned}$$

- poly-bounded? for simplicity we assume polynomial length
- 1^n and $1^{|m|}$ can be omitted
- Non-uniform definition

Definition 2 (Semantic Security – private-key model)

$$\begin{aligned} \big| \mathsf{Pr}_{m \leftarrow \mathcal{M}_n, e \leftarrow G(1^n)_1} [\mathsf{A}(1^n, 1^{|m|}, h(1^n, m), E_e(m)) &= f(1^n, m)] \\ - \mathsf{Pr}_{m \leftarrow \mathcal{M}_n} [\mathsf{A}'(1^n, 1^{|m|}, h(1^n, m)) &= f(1^n, m)] \big| = \mathsf{neg}(n) \end{aligned}$$

- poly-bounded? for simplicity we assume polynomial length
- 1^n and $1^{|m|}$ can be omitted
- Non-uniform definition
- Reflection to ZK

Definition 2 (Semantic Security – private-key model)

$$\begin{aligned} \big| \mathsf{Pr}_{m \leftarrow \mathcal{M}_n, e \leftarrow G(1^n)_1} [\mathsf{A}(1^n, 1^{|m|}, h(1^n, m), E_e(m)) &= f(1^n, m)] \\ - \mathsf{Pr}_{m \leftarrow \mathcal{M}_n} [\mathsf{A}'(1^n, 1^{|m|}, h(1^n, m)) &= f(1^n, m)] \big| = \mathsf{neg}(n) \end{aligned}$$

- poly-bounded? for simplicity we assume polynomial length
- 1^n and $1^{|m|}$ can be omitted
- Non-uniform definition
- Reflection to ZK
- public-key variant A gets e

Indistinguishablity

Indistinguishablity of encryptions

The encryption of two strings is indistinguishable

Indistinguishablity

Indistinguishablity of encryptions

- The encryption of two strings is indistinguishable
- Less intuitive than semantic security, but easier to work with

Indistinguishablity of encryptions – private-key model

Definition 3 (Indistinguishablity of encryptions – private-key model)

An encryption scheme (G, E, D) has indistinguishable encryptions in the private-key model, if for any $p, \ell \in \text{poly}$, $\{x_n, y_n \in \{0, 1\}^{\ell(n)}\}_{n \in \mathbb{N}}, \, \{z_n \in \{0, 1\}^{p(n)}\}_{n \in \mathbb{N}} \, \text{and poly-time B,}$

$$|\Pr_{e \leftarrow G(1^n)_1}[B(z_n, E_e(x_n)) = 1] - \Pr_{e \leftarrow G(1^n)_1}[B(z_n, E_e(y_n)) = 1]|$$

= $neg(n)$

Indistinguishablity of encryptions - private-key model

Definition 3 (Indistinguishablity of encryptions – private-key model)

An encryption scheme (G, E, D) has indistinguishable encryptions in the private-key model, if for any $p, \ell \in \text{poly}$, $\{x_n, y_n \in \{0, 1\}^{\ell(n)}\}_{n \in \mathbb{N}}$, $\{z_n \in \{0, 1\}^{p(n)}\}_{n \in \mathbb{N}}$ and poly-time B,

$$|\Pr_{e \leftarrow G(1^n)_1}[B(z_n, E_e(x_n)) = 1] - \Pr_{e \leftarrow G(1^n)_1}[B(z_n, E_e(y_n)) = 1]|$$

= $neg(n)$

Non-uniform definition

Indistinguishablity

Definitions

Indistinguishablity of encryptions – private-key model

Definition 3 (Indistinguishablity of encryptions – private-key model)

An encryption scheme (G, E, D) has indistinguishable encryptions in the private-key model, if for any $p, \ell \in \text{poly}$, $\{x_n, y_n \in \{0, 1\}^{\ell(n)}\}_{n \in \mathbb{N}}, \{z_n \in \{0, 1\}^{p(n)}\}_{n \in \mathbb{N}} \text{ and poly-time B},$

$$\left| \Pr_{e \leftarrow G(1^n)_1} [\mathsf{B}(z_n, E_e(x_n)) = 1] - \Pr_{e \leftarrow G(1^n)_1} [\mathsf{B}(z_n, E_e(y_n)) = 1] \right|$$

= $\mathsf{neg}(n)$

- Non-uniform definition
- Public-key variant

Equivalence of definitions

Theorem 4

An encryption scheme (G, E, D) is semantically secure iff is has indistinguishable encryptions.

Equivalence of definitions

Theorem 4

An encryption scheme (G, E, D) is semantically secure iff is has indistinguishable encryptions.

We prove the private key case

Indistinguishablity \implies Semantic Security

Indistinguishablity Semantic Security

Fix \mathcal{M} , A, f and h, be as in Definition 2.

Indistinguishablity Semantic Security

Fix \mathcal{M} , A, f and h, be as in Definition 2. We construct A' as

Algorithm 5 (A')

Input: 1^{n} , $1^{|m|}$ and h(m)

- $\bullet e \leftarrow G(1^n)_1$
- 2 $c = E_e(1^{|m|})$
- **3** Output $A(1^n, 1^{|m|}, h(m), c)$

Indistinguishablity \implies Semantic Security

Fix \mathcal{M} , A, f and h, be as in Definition 2. We construct A' as

Algorithm 5 (A')

Input: 1^{n} , $1^{|m|}$ and h(m)

- $\bullet e \leftarrow G(1^n)_1$
- 2 $c = E_e(1^{|m|})$
- **3** Output $A(1^n, 1^{|m|}, h(m), c)$

Claim 6

A' is a good simulator for A (according to Definition 2)

Proving Claim 6

Assume exists infinite $\mathcal{I} \subseteq \mathbb{N}$ and $p \in \text{poly s.t.}$ for any $n \in \mathcal{I}$:

$$\begin{aligned} \left| \mathsf{Pr}_{m \leftarrow \mathcal{M}_n, e \leftarrow G(1^n)_1} [\mathsf{A}(1^n, 1^{|m|}, h(1^n, m), E_e(m)) = f(1^n, m)] \right| & (1) \\ - \mathsf{Pr}_{m \leftarrow \mathcal{M}_n} [\mathsf{A}'(1^n, 1^{|m|}, h(1^n, m)) = f(1^n, m)] \right| > 1/p(n) \end{aligned}$$

Proving Claim 6

Assume exists infinite $\mathcal{I} \subseteq \mathbb{N}$ and $p \in \text{poly s.t.}$ for any $n \in \mathcal{I}$:

$$\begin{aligned} \left| \mathsf{Pr}_{m \leftarrow \mathcal{M}_n, e \leftarrow G(1^n)_1} [\mathsf{A}(1^n, 1^{|m|}, h(1^n, m), E_e(m)) = f(1^n, m)] \right. \end{aligned} (1) \\ - \mathsf{Pr}_{m \leftarrow \mathcal{M}_n} [\mathsf{A}'(1^n, 1^{|m|}, h(1^n, m)) = f(1^n, m)] \Big| > 1/p(n) \end{aligned}$$

Fix $n \in \mathcal{I}$ and let $x_n \in \text{Supp}(\mathcal{M}_n)$ be a value that maximize Equation (3).

Proving Claim 6

Assume exists infinite $\mathcal{I} \subseteq \mathbb{N}$ and $p \in \text{poly s.t.}$ for any $n \in \mathcal{I}$:

$$\begin{aligned} \left| \mathsf{Pr}_{m \leftarrow \mathcal{M}_n, e \leftarrow G(1^n)_1} [\mathsf{A}(1^n, 1^{|m|}, h(1^n, m), E_e(m)) = f(1^n, m)] \right. \end{aligned} (1) \\ - \mathsf{Pr}_{m \leftarrow \mathcal{M}_n} [\mathsf{A}'(1^n, 1^{|m|}, h(1^n, m)) = f(1^n, m)] \Big| > 1/p(n) \end{aligned}$$

Fix $n \in \mathcal{I}$ and let $x_n \in \text{Supp}(\mathcal{M}_n)$ be a value that maximize Equation (3).

Assume exits algorithm B that contradicts the indistinguishability of the scheme with respect to $\{(x_n, y_n = 1^{|X_n|})\}_{n \in \mathbb{N}}$ and $\{z_n = (1^n, 1^{|X_n|}, h(1^n, x_n), f(1^n, x_n))\}_{n \in \mathbb{N}}$.

Proving Claim 6

Assume exists infinite $\mathcal{I} \subseteq \mathbb{N}$ and $p \in \text{poly s.t.}$ for any $n \in \mathcal{I}$:

$$\begin{aligned} \left| \mathsf{Pr}_{m \leftarrow \mathcal{M}_n, e \leftarrow G(1^n)_1} [\mathsf{A}(1^n, 1^{|m|}, h(1^n, m), E_e(m)) = f(1^n, m)] \right. \\ \left. - \mathsf{Pr}_{m \leftarrow \mathcal{M}_n} [\mathsf{A}'(1^n, 1^{|m|}, h(1^n, m)) = f(1^n, m)] \right| > 1/p(n) \end{aligned}$$

Fix $n \in \mathcal{I}$ and let $x_n \in \text{Supp}(\mathcal{M}_n)$ be a value that maximize Equation (3).

Assume exits algorithm B that contradicts the indistinguishability of the scheme with respect to $\{(x_n, y_n = 1^{|x_n|})\}_{n \in \mathbb{N}}$ and $\{z_n = (1^n, 1^{|x_n|}, h(1^n, x_n), f(1^n, x_n))\}_{n \in \mathbb{N}}$.

Algorithm 7 (B)

Input:
$$z_n = (1^n, 1^{|x_n|}, h(1^n, x_n), f(1^n, x_n)), c$$

Output 1 iff $A(1^n, 1^{|x_n|}, h(x+n), c) = f(1^n, x_n)$

Semantic Security ⇒ Indistinguishablity

Assume \exists B, $\{x_n, y_n \in \{0, 1\}^{\ell(n)}\}_{n \in \mathbb{N}}$ and a $\{z_n\}_{n \in \mathbb{N}}$, such that (wlg.) for infinitely many n's:

Pr. $\{z_n\}_{n \in \mathbb{N}}$ [B($z_n\}_{n \in \mathbb{N}}$) = 1] = Pr. $\{z_n\}_{n \in \mathbb{N}}$ [B($z_n\}_{n \in \mathbb{N}}$) = 1] > $\frac{1}{|z_n|}$

$$\Pr_{e \leftarrow G(1^n)_1}[\mathsf{B}(z_n, E_e(x_n)) = 1] - \Pr_{e \leftarrow G(1^n)_1}[\mathsf{B}(z_n, E_e(y_n)) = 1] \ge \frac{1}{p(n)}$$

Equivalence

Semantic Security ⇒ Indistinguishablity

Assume \exists B, $\{x_n, y_n \in \{0, 1\}^{\ell(n)}\}_{n \in \mathbb{N}}$ and a $\{z_n\}_{n \in \mathbb{N}}$, such that (wlg.) for infinitely many n's:

$$\Pr_{e \leftarrow G(1^n)_1}[\mathsf{B}(z_n, E_e(x_n)) = 1] - \Pr_{e \leftarrow G(1^n)_1}[\mathsf{B}(z_n, E_e(y_n)) = 1] \ge \frac{1}{p(n)}$$

- Let \mathcal{M}_n be x_n wp $\frac{1}{2}$ and y_n otherwise.
- Let $f(1^n, x_n) = 1$, $f(1^n, y_n) = 0$ and $h(1^n, \cdot) = z_n$.
- Define A(1ⁿ, 1^{ℓ (n)}, z_n , c) to return B(z_n , c).

Equivalence

Semantic Security ⇒ Indistinguishablity

Assume \exists B, $\{x_n, y_n \in \{0, 1\}^{\ell(n)}\}_{n \in \mathbb{N}}$ and a $\{z_n\}_{n \in \mathbb{N}}$, such that (wlg.) for infinitely many n's:

$$\Pr_{e \leftarrow G(1^n)_1}[\mathsf{B}(z_n, E_e(x_n)) = 1] - \Pr_{e \leftarrow G(1^n)_1}[\mathsf{B}(z_n, E_e(y_n)) = 1] \ge \frac{1}{p(n)}$$

- Let \mathcal{M}_n be x_n wp $\frac{1}{2}$ and y_n otherwise.
- Let $f(1^n, x_n) = 1$, $f(1^n, y_n) = 0$ and $h(1^n, \cdot) = z_n$.
- Define A(1ⁿ, 1^{ℓ (n)}, z_n , c) to return B(z_n , c).

$$\Pr_{m \leftarrow \mathcal{M}_n, e \leftarrow G(1^n)_1}[A(1^n, 1^{|m|}, h(1^n, m), E_e(m)) = f(1^n, m)] \ge \frac{1}{2} + \frac{1}{p(n)}$$

Equivalence

Semantic Security \implies Indistinguishablity

Assume \exists B, $\{x_n, y_n \in \{0, 1\}^{\ell(n)}\}_{n \in \mathbb{N}}$ and a $\{z_n\}_{n \in \mathbb{N}}$, such that (wlg.) for infinitely many n's:

$$\Pr_{e \leftarrow G(1^n)_1}[\mathsf{B}(z_n, E_e(x_n)) = 1] - \Pr_{e \leftarrow G(1^n)_1}[\mathsf{B}(z_n, E_e(y_n)) = 1] \ge \frac{1}{p(n)}$$

- Let \mathcal{M}_n be x_n wp $\frac{1}{2}$ and y_n otherwise.
- Let $f(1^n, x_n) = 1$, $f(1^n, y_n) = 0$ and $h(1^n, \cdot) = z_n$.
- Define A(1ⁿ, 1^{ℓ (n)}, z_n , c) to return B(z_n , c).

$$\Pr_{m \leftarrow \mathcal{M}_n, e \leftarrow G(1^n)_1}[A(1^n, 1^{|m|}, h(1^n, m), E_e(m)) = f(1^n, m)] \ge \frac{1}{2} + \frac{1}{p(n)}$$

For any A'

$$\Pr_{m \leftarrow \mathcal{M}_n, e \leftarrow G(1^n)_1}[A(1^n, 1^{|m|}, h(1^n, m), E_e(m)) = f(1^n, m)] \le \frac{1}{2}$$

Multiple Encryptions

Security Under Multiple Encryptions

Definition 8 (Indistinguishablity for multiple encryptions – private-key model)

An encryption scheme (G, E, D) has indistinguishable encryptions for multiple messages in the private-key model, if for any $p, \ell, t \in \text{poly}$,

$$\{x_{n,1}, \dots x_{n,t(n)}, y_{n,1}, \dots, y_{n,t(n)} \in \{0,1\}^{\ell(n)}\}_{n \in \mathbb{N}},$$
 $\{z_n \in \{0,1\}^{p(n)}\}_{n \in \mathbb{N}}$ and polynomial-time B,

$$\begin{aligned} & \left| \mathsf{Pr}_{e \leftarrow G(1^n)_1} [\mathsf{B}(z_n, E_e(x_{n,1}), \dots E_e(x_{n,t(n)})) = 1] \right. \\ & \left. - \mathsf{Pr}_{e \leftarrow G(1^n)_1} [\mathsf{B}(z_n, E_e(y_{n,1}), \dots E_e(y_{n,t(n)})) = 1 \right| = \mathsf{neg}(n) \end{aligned}$$

Definition 8 (Indistinguishablity for multiple encryptions – private-key model)

An encryption scheme (G, E, D) has indistinguishable encryptions for multiple messages in the private-key model, if for any $p, \ell, t \in \text{poly}$,

$$\{x_{n,1}, \dots x_{n,t(n)}, y_{n,1}, \dots, y_{n,t(n)} \in \{0,1\}^{\ell(n)}\}_{n \in \mathbb{N}},$$
 $\{z_n \in \{0,1\}^{p(n)}\}_{n \in \mathbb{N}}$ and polynomial-time B,

$$\begin{aligned} & \left| \mathsf{Pr}_{e \leftarrow G(1^n)_1} [\mathsf{B}(z_n, E_e(x_{n,1}), \dots E_e(x_{n,t(n)})) = 1 \right] \\ & - \mathsf{Pr}_{e \leftarrow G(1^n)_1} [\mathsf{B}(z_n, E_e(y_{n,1}), \dots E_e(y_{n,t(n)})) = 1 \Big| = \mathsf{neg}(n) \end{aligned}$$

Extensions:

Different length messages

Definition 8 (Indistinguishablity for multiple encryptions – private-key model)

An encryption scheme (G, E, D) has indistinguishable encryptions for multiple messages in the private-key model, if for any $p, \ell, t \in \text{poly}$,

$$\{x_{n,1}, \dots x_{n,t(n)}, y_{n,1}, \dots, y_{n,t(n)} \in \{0,1\}^{\ell(n)}\}_{n \in \mathbb{N}},$$
 $\{z_n \in \{0,1\}^{p(n)}\}_{n \in \mathbb{N}}$ and polynomial-time B,

$$\begin{aligned} & \left| \mathsf{Pr}_{e \leftarrow G(1^n)_1} [\mathsf{B}(z_n, E_e(x_{n,1}), \dots E_e(x_{n,t(n)})) = 1 \right] \\ & - \mathsf{Pr}_{e \leftarrow G(1^n)_1} [\mathsf{B}(z_n, E_e(y_{n,1}), \dots E_e(y_{n,t(n)})) = 1 \Big| = \mathsf{neg}(n) \end{aligned}$$

Extensions:

- Different length messages
- Semantic security version

Definition 8 (Indistinguishablity for multiple encryptions – private-key model)

An encryption scheme (G, E, D) has indistinguishable encryptions for multiple messages in the private-key model, if for any $p, \ell, t \in \text{poly}$,

$$\{x_{n,1}, \dots x_{n,t(n)}, y_{n,1}, \dots, y_{n,t(n)} \in \{0,1\}^{\ell(n)}\}_{n \in \mathbb{N}},$$
 $\{z_n \in \{0,1\}^{p(n)}\}_{n \in \mathbb{N}}$ and polynomial-time B,

$$\begin{aligned} & \left| \mathsf{Pr}_{e \leftarrow G(1^n)_1} [\mathsf{B}(z_n, E_e(x_{n,1}), \dots E_e(x_{n,t(n)})) = 1 \right] \\ & - \mathsf{Pr}_{e \leftarrow G(1^n)_1} [\mathsf{B}(z_n, E_e(y_{n,1}), \dots E_e(y_{n,t(n)})) = 1 \Big| = \mathsf{neg}(n) \end{aligned}$$

Extensions:

- Different length messages
- Semantic security version
- Public-key definition

Multiple Encryptions

Multiple Encryption in the Public-Key Model

Theorem 9

A public-key encryption scheme has indistinguishable encryptions for multiple messages, iff it has indistinguishable encryptions for a single message.

Multiple Encryption in the Public-Key Model

Theorem 9

A public-key encryption scheme has indistinguishable encryptions for multiple messages, iff it has indistinguishable encryptions for a single message.

Proof: Assume (G, E, D) is public-key secure for a single message and not for multiple messages with respect to B, $\{X_{1,t(n)}, \dots, X_{n,t(n)}, y_{n,1}, \dots, y_{n,t(n)} \in \{0,1\}^{\ell(n)}\}_{n \in \mathbb{N}}, \{z_n \in \{0,1\}^{p(n)}\}_{n \in \mathbb{N}}.$

Multiple Encryption in the Public-Key Model

Theorem 9

A public-key encryption scheme has indistinguishable encryptions for multiple messages, iff it has indistinguishable encryptions for a single message.

Proof: Assume (G, E, D) is public-key secure for a single message and not for multiple messages with respect to B,

$$\{X_{1,t(n)}, \dots X_{n,t(n)}, y_{n,1}, \dots, y_{n,t(n)} \in \{0,1\}^{\ell(n)}\}_{n \in \mathbb{N}},$$

 $\{Z_n \in \{0,1\}^{p(n)}\}_{n \in \mathbb{N}}.$

It follows that for some function $i(n) \in [t(n)]$

$$\begin{aligned} & \left| \mathsf{Pr}[\mathsf{B}(1^n, e, E_e(x_{n,1}), \dots, E_e(x_{n,i-1}), E_e(y_{n,i}), \dots, E_e(y_{n,t(n)})) = 1] \right. \\ & \left. - \mathsf{Pr}[\mathsf{B}(1^n, e, E_e(x_{n,1}), \dots, E_e(x_{n,i}), E_e(y_{n,i+1}), \dots, E_e(y_{n,t(n)})) = 1] \right| \\ & > \mathsf{neg}(n) \end{aligned}$$

where in both cases $e \leftarrow G(1^n)_1$

Multiple Encryptions

Algorithm 10 (B')

Input: 1ⁿ, $z_n = (i(n), x_{1,t(n)}, \dots x_{n,t(n)}, y_{n,1}, \dots, y_{n,t(n)}, e, c$ Return B $(c, E_e(x_{n,1}), \dots, E_e(x_{n,i-1}), c, E_e(y_{n,i+1}), \dots, E_e(y_{n,t(n)}))$ Multiple Encryptions

Algorithm 10 (B')

Input: 1ⁿ,
$$z_n = (i(n), x_{1,t(n)}, \dots x_{n,t(n)}, y_{n,1}, \dots, y_{n,t(n)}, e, c$$

Return B $(c, E_e(x_{n,1}), \dots, E_e(x_{n,i-1}), c, E_e(y_{n,i+1}), \dots, E_e(y_{n,t(n)}))$

B' is critically using the public key

Multiple Encryption in the Private-Key Model

Fact 11

Assuming (non uniform) OWFs exists, there exists an encryption scheme that has private-key indistinguishable encryptions for a single messages, but not for multiple messages

Multiple Encryptions

Multiple Encryption in the Private-Key Model

Fact 11

Assuming (non uniform) OWFs exists, there exists an encryption scheme that has private-key indistinguishable encryptions for a single messages, but not for multiple messages

Proof: Let $g: \{0,1\}^n \mapsto \{0,1\}^{n+1}$ be a (non-uniform) PRG, and for $i \in \mathbb{N}$ let g^i be its "iterated extension" to output of length i (see Lecture 2, Construction 15).

Definitions

Multiple Encryption in the Private-Key Model

Fact 11

Assuming (non uniform) OWFs exists, there exists an encryption scheme that has private-key indistinguishable encryptions for a single messages, but not for multiple messages

Proof: Let $g: \{0,1\}^n \mapsto \{0,1\}^{n+1}$ be a (non-uniform) PRG, and for $i \in \mathbb{N}$ let g^i be its "iterated extension" to output of length i(see Lecture 2, Construction 15).

Construction 12

- $G(1^n)$ outputs $e \leftarrow \{0,1\}^n$,
- $E_e(m)$ outputs $g^{|m|}(e) \oplus m$
- $D_e(c)$ outputs $g^{|c|}(e) \oplus c$

Multiple Encryptions

Claim 13

 $(\emph{G}, \emph{E}, \emph{D})$ has private-key indistinguishable encryptions for a single message

Proof:

Definitions

Claim 13

(G, E, D) has private-key indistinguishable encryptions for a single message

Proof: Assume not, and let B, $\{x_n,y_n\in\{0,1\}^{\ell(n)}\}_{n\in\mathbb{N}}$ and $\{z_n\in\{0,1\}^{p(n)}\}_{n\in\mathbb{N}}$ be the triplet that realizes it.

(G, E, D) has private-key indistinguishable encryptions for a single message

Proof: Assume not, and let B, $\{x_n, y_n \in \{0, 1\}^{\ell(n)}\}_{n \in \mathbb{N}}$ and $\{z_n \in \{0, 1\}^{p(n)}\}_{n \in \mathbb{N}}$ be the triplet that realizes it. Wlog,

$$|\Pr[\mathsf{B}(z_n, g^{|x_n|}(U_n) \oplus x_n) = 1] - \Pr[\mathsf{B}(z_n, U_{|x_n|} \oplus x_n) = 1]| > \mathsf{neg}(n)$$
 (2)

(G, E, D) has private-key indistinguishable encryptions for a single message

Proof: Assume not, and let B, $\{x_n, y_n \in \{0, 1\}^{\ell(n)}\}_{n \in \mathbb{N}}$ and $\{z_n \in \{0, 1\}^{p(n)}\}_{n \in \mathbb{N}}$ be the triplet that realizes it. Wlog,

$$|\Pr[\mathsf{B}(z_n,g^{|x_n|}(U_n)\oplus x_n)=1]-\Pr[\mathsf{B}(z_n,U_{|x_n|}\oplus x_n)=1]|> \mathsf{neg}(n)$$
 (2)

Hence, B implies a (non-uniform) distinguisher for g

(G, E, D) has private-key indistinguishable encryptions for a single message

Proof: Assume not, and let B, $\{x_n, y_n \in \{0, 1\}^{\ell(n)}\}_{n \in \mathbb{N}}$ and $\{z_n \in \{0, 1\}^{p(n)}\}_{n \in \mathbb{N}}$ be the triplet that realizes it. Wlog,

$$|\Pr[\mathsf{B}(z_n,g^{|x_n|}(U_n)\oplus x_n)=1]-\Pr[\mathsf{B}(z_n,U_{|x_n|}\oplus x_n)=1]|> \mathsf{neg}(n)$$
 (2)

Hence, B implies a (non-uniform) distinguisher for g

Claim 14

(G, E, D) does not have a private-key indistinguishable encryptions for multiple messages

(G, E, D) has private-key indistinguishable encryptions for a single message

Proof: Assume not, and let B, $\{x_n, y_n \in \{0, 1\}^{\ell(n)}\}_{n \in \mathbb{N}}$ and $\{z_n \in \{0, 1\}^{p(n)}\}_{n \in \mathbb{N}}$ be the triplet that realizes it. Wlog,

$$|\Pr[\mathsf{B}(z_n, g^{|X_n|}(U_n) \oplus X_n) = 1] - \Pr[\mathsf{B}(z_n, U_{|X_n|} \oplus X_n) = 1]| > \mathsf{neg}(n)$$
 (2)

Hence, B implies a (non-uniform) distinguisher for g

Claim 14

(G, E, D) does not have a private-key indistinguishable encryptions for multiple messages

Proof:

(G, E, D) has private-key indistinguishable encryptions for a single message

Proof: Assume not, and let B, $\{x_n,y_n\in\{0,1\}^{\ell(n)}\}_{n\in\mathbb{N}}$ and $\{z_n\in\{0,1\}^{p(n)}\}_{n\in\mathbb{N}}$ be the triplet that realizes it. Wlog,

$$|\Pr[\mathsf{B}(z_n, g^{|x_n|}(U_n) \oplus x_n) = 1] - \Pr[\mathsf{B}(z_n, U_{|x_n|} \oplus x_n) = 1]| > \mathsf{neg}(n)$$
 (2)

Hence, B implies a (non-uniform) distinguisher for g

Claim 14

(G, E, D) does not have a private-key indistinguishable encryptions for multiple messages

Proof: Take $x_{n,1} = x_{n,2}$, $y_{n,1} \neq y_{n,2}$ and $D(c_1, c_2)$ outputs 1 iff $c_1 = c_2$

Section 2

Constructions

Suffice to encrypt messages of a single length (here the length is n).

Suffice to encrypt messages of a single length (here the length is n).

Let \mathcal{F} be a (non-uniform) length preserving PRF

Suffice to encrypt messages of a single length (here the length is *n*).

Let \mathcal{F} be a (non-uniform) length preserving PRF

Construction 15

- $G(1^n)$: output $e \leftarrow \mathcal{F}_n$,
- $E_e(m)$: choose $r \leftarrow \{0,1\}^n$ and output $(r, e(r) \oplus m)$
- $D_e(r, c)$: output $e(r) \oplus c$

Suffice to encrypt messages of a single length (here the length is *n*).

Let \mathcal{F} be a (non-uniform) length preserving PRF

Construction 15

- $G(1^n)$: output $e \leftarrow \mathcal{F}_n$,
- $E_e(m)$: choose $r \leftarrow \{0,1\}^n$ and output $(r, e(r) \oplus m)$
- $D_e(r, c)$: output $e(r) \oplus c$

Claim 16

(G, E, D) has private-key indistinguishable encryptions for a multiple messages

Suffice to encrypt messages of a single length (here the length is *n*).

Let \mathcal{F} be a (non-uniform) length preserving PRF

Construction 15

- $G(1^n)$: output $e \leftarrow \mathcal{F}_n$,
- $E_e(m)$: choose $r \leftarrow \{0,1\}^n$ and output $(r, e(r) \oplus m)$
- $D_e(r, c)$: output $e(r) \oplus c$

Claim 16

(G, E, D) has private-key indistinguishable encryptions for a multiple messages

Proof:

Let (G, f, Inv) be a (non-uniform) family of trapdoor permutations (see Lecture 6, Def 8) and let b be an hardcore predicate for f.

Definitions

Public key indistinguishable encryptions for multiple messages

Let (G, f, Inv) be a (non-uniform) family of trapdoor permutations (see Lecture 6, Def 8) and let b be an hardcore predicate for f.

Construction 17 (bit encryption)

- $G(1^n)$: output $(e, d) \leftarrow G(1^n)$
- $E_e(m)$: choose $r \leftarrow \{0,1\}^n$ and output $(y = f_e(r), c = b(r) \oplus m)$
- $D_d(y, c)$: output $b(Inv_d(y)) \oplus c$

Let (G, f, Inv) be a (non-uniform) family of trapdoor permutations (see Lecture 6, Def 8) and let b be an hardcore predicate for f.

Construction 17 (bit encryption)

- $G(1^n)$: output $(e, d) \leftarrow G(1^n)$
- $E_e(m)$: choose $r \leftarrow \{0,1\}^n$ and output $(y = f_e(r), c = b(r) \oplus m)$
- $D_d(y, c)$: output $b(Inv_d(y)) \oplus c$

Claim 18

(G, E, D) has public-key indistinguishable encryptions for a multiple messages

Let (G, f, Inv) be a (non-uniform) family of trapdoor permutations (see Lecture 6, Def 8) and let b be an hardcore predicate for f.

Construction 17 (bit encryption)

- $G(1^n)$: output $(e, d) \leftarrow G(1^n)$
- $E_e(m)$: choose $r \leftarrow \{0,1\}^n$ and output $(y = f_e(r), c = b(r) \oplus m)$
- $D_d(y, c)$: output $b(Inv_d(y)) \oplus c$

Claim 18

- (G, E, D) has public-key indistinguishable encryptions for a multiple messages
 - We believe that public-key encryptions are of different complexity than private-key ones

Section 3

Active Adversaries

Active Adversaries

 Chosen plaintext attack (CPA):
 The adversary can ask for encryption and choose the messages to distinguish accordingly

Active Adversaries

- Chosen plaintext attack (CPA):
 The adversary can ask for encryption and choose the messages to distinguish accordingly
- Chosen ciphertext attack (CPA):
 The adversary can also ask for decryptions of certain messages

Active Adversaries

- Chosen plaintext attack (CPA):
 The adversary can ask for encryption and choose the messages to distinguish accordingly
- Chosen ciphertext attack (CPA):
 The adversary can also ask for decryptions of certain messages

Active Adversaries

- Chosen plaintext attack (CPA):
 The adversary can ask for encryption and choose the messages to distinguish accordingly
- Chosen ciphertext attack (CPA):
 The adversary can also ask for decryptions of certain messages
- In the public-key settings, the adversary is also given the public key

Active Adversaries

- Chosen plaintext attack (CPA):
 The adversary can ask for encryption and choose the messages to distinguish accordingly
- Chosen ciphertext attack (CPA):
 The adversary can also ask for decryptions of certain messages
- In the public-key settings, the adversary is also given the public key
- We focus on indistinguishability, but each of the above definitions has an equivalent semantic security variant.

CPA Security

Let (G, E, D) be an encryption scheme. For a pair of algorithms $A = (A_1, A_2), n \in \mathbb{N}, z \in \{0, 1\}^*$ and $b \in \{0, 1\}$, let:

Experiment 19 ($Exp_{A,n,z}^{CPA}(b)$ **)**

- 2 $(m_0, m_1, s) \leftarrow A_1^{E_e(\cdot)}(1^n, z)$
- \circ $c \leftarrow \mathsf{E}_e(m_b)$
- Output $A_2^{E_e(\cdot)}(1^n, s, c)$

CPA Security

Let (G, E, D) be an encryption scheme. For a pair of algorithms $A = (A_1, A_2), n \in \mathbb{N}, z \in \{0, 1\}^*$ and $b \in \{0, 1\}$, let:

Experiment 19 ($Exp_{A,n,z}^{CPA}(b)$ **)**

- ② $(m_0, m_1, s) \leftarrow A_1^{E_e(\cdot)}(1^n, z)$
- $c \leftarrow \mathsf{E}_e(m_b)$
- Output $A_2^{E_{\theta}(\cdot)}(1^n, s, c)$

Definition 20 (private key CPA)

(G, E, D) has indistinguishable encryptions in the private-key model under CPA attack, if \forall PPT A_1, A_2 , and poly-bounded $\{z_n\}_{n\in\mathbb{N}}$:

$$|\Pr[\exp_{A,n,z_n}^{CPA}(0) = 1] - \Pr[\exp_{A,n,z_n}^{CPA}(1) = 1]| = neg(n)$$

public-key variant...

- public-key variant...
- The scheme from Construction 15 has indistinguishable encryptions in the private-key model under CPA attack(for short, private-key CPA secure)

- public-key variant...
- The scheme from Construction 15 has indistinguishable encryptions in the private-key model under CPA attack(for short, private-key CPA secure)
- The scheme from Construction 17 has indistinguishable encryptions in the public-key model (for short, public-key CPA secure)

- public-key variant...
- The scheme from Construction 15 has indistinguishable encryptions in the private-key model under CPA attack(for short, private-key CPA secure)
- The scheme from Construction 17 has indistinguishable encryptions in the public-key model (for short, public-key CPA secure)
- In both cases, definitions are not equivalent

CCA Security

Experiment 21 ($Exp_{A,n,z}^{CCA1}(b)$ **)**

- $(m_0, m_1, s) \leftarrow A_1^{E_e(\cdot), D_d(\cdot)}(1^n, z)$
- $c \leftarrow \mathsf{E}_e(m_b)$
- Output $A_2^{E_e(\cdot)}(1^n, s, c)$

CCA Security

Experiment 21 ($\operatorname{Exp}_{A,n,z}^{\operatorname{CCA1}}(b)$ **)**

- **2** $(m_0, m_1, s) \leftarrow A_1^{E_e(\cdot), D_d(\cdot)}(1^n, z)$
- $c \leftarrow \mathsf{E}_e(m_b)$
- Output $A_2^{E_e(\cdot)}(1^n, s, c)$

Experiment 22 $(Exp_{A,n,z_0}^{CCA2}(b))$

- **2** $(x_0, x_1, s) \leftarrow A_1^{E_e(\cdot), D_d(\cdot)}(1^n, z)$
- $c \leftarrow \mathsf{E}_e(x_b)$
- Output $A_2^{E_\theta(\cdot),D_d^{-c}(\cdot)}(1^n,s,c)$

Definition 23 (private key CCA1/CCA2)

(G, E, D) has indistinguishable encryptions in the private-key model under $x \in \{CCA1, CCA2\}$ attack, if \forall PPT A_1, A_2 , and poly-bounded $\{z_n\}_{n \in \mathbb{N}}$:

$$|\Pr[\exp_{A,n,z_n}^x(0) = 1] - \Pr[\exp_{A,n,z_n}^x(1) = 1]| = neg(n)$$

Definition 23 (private key CCA1/CCA2)

(G, E, D) has indistinguishable encryptions in the private-key model under $x \in \{CCA1, CCA2\}$ attack, if \forall PPT A_1, A_2 , and poly-bounded $\{z_n\}_{n \in \mathbb{N}}$:

$$|\Pr[\exp_{A,n,z_n}^x(0) = 1] - \Pr[\exp_{A,n,z_n}^x(1) = 1]| = neg(n)$$

The public key definition is analogous

Private-key CCA2

 Is the scheme from Construction 15 private-key CCA1 secure?

- Is the scheme from Construction 15 private-key CCA1 secure?
- CCA2 secure?

Let (G, E, D) be a private key CPA scheme, and let $(Gen_M, Mac, Vrfy)$ be an existential unforgeable strong MAC.

Construction 24

- $G'(1^n)$: Output $(e \leftarrow G_E(1^n), k \leftarrow \operatorname{Gen}_M(1^n))$.
- $\mathsf{E}'_{d,k}(m)$: let $c = \mathsf{E}_e(m)$ and output $(c, t = \mathsf{Mac}_k(c))$
- $D_{e,k}(c,t)$: if $Vrfy_k(c,t) = 1$, output $D_e(c)$. Otherwise, output \bot

^aWe assume for simplicity that the encryption and decryption keys are the same.

- Is the scheme from Construction 15 private-key CCA1 secure?
- CCA2 secure?

Let (G, E, D) be a private key CPA scheme, and let $(Gen_M, Mac, Vrfy)$ be an existential unforgeable strong MAC.

Construction 24

- $G'(1^n)$: Output $(e \leftarrow G_E(1^n), k \leftarrow \operatorname{Gen}_M(1^n))$.
- $\mathsf{E}'_{d,k}(m)$: let $c = \mathsf{E}_e(m)$ and output $(c, t = \mathsf{Mac}_k(c))$
- $D_{e,k}(c,t)$: if $Vrfy_k(c,t) = 1$, output $D_e(c)$. Otherwise, output \bot

^aWe assume for simplicity that the encryption and decryption keys are the same.

Theorem 25

Construction 24 is a private-key CCA2-secure encryption scheme.

Theorem 25

Construction 24 is a private-key CCA2-secure encryption scheme.

Proof: ?

Public-key CCA1

Public-key CCA1

Let (G, E, D) be a public-key CPA scheme and let (P, V) be a NIZK for $\mathcal{L} = \{(c_0, c_1, pk_0, pk_1) \colon \exists (m, r_0, r_1) \ s.t. \ c_0 = E_{pk_0}(m, r_0) \land c_1 = E_{pk_1}(m, r_1)\}$

Let (G, E, D) be a public-key CPA scheme and let (P, V) be a NIZK for $\mathcal{L} = \{(c_0, c_1, pk_0, pk_1) \colon \exists (m, r_0, r_1) \ s.t. \ c_0 = E_{pk_0}(m, r_0) \land c_1 = E_{pk_1}(m, r_1)\}$

Construction 26 (The Naor-Yung Paradigm)

- *G*′(1ⁿ):
 - **1** For $i \in \{0, 1\}$: set $(sk_i, pk_i) \leftarrow G(1^n)$.
 - **2** Let $r \leftarrow \{0,1\}^{\ell(n)}$, and output $pk' = (pk_0, pk_1, r)$ and $sk' = (pk', sk_0, sk_1)$
- E'_{pk'}(m):
 - For $i \in \{0, 1\}$: $c_i = \mathsf{E}_{pk_i}(m, r_i)$, where r_i is a uniformly chosen string of the right length
 - 2 $\pi \leftarrow P((c_0, c_1, pk_0, pk_1), (m, r_0, r_1), r)$
 - **3** Output (c_0, c_1, π) .
- $\mathsf{D}'_{sk'}(c_0, c_1, \pi)$: If $\mathsf{V}((c_0, c_1, pk_0, pk_1), \pi, r) = 1$, return $\mathsf{D}_{sk_0}(c_0)$. Otherwise, return \bot

Definitions

Omitted details:

- We assume for simplicity that the encryption key output by G(1ⁿ) is of length at least n.
- ullet is an arbitrary polynomial, and determines the maximum message length to encrypt using "security parameter" n.

Omitted details:

- We assume for simplicity that the encryption key output by G(1ⁿ) is of length at least n.
- \(\ell \) is an arbitrary polynomial, and determines the maximum message length to encrypt using "security parameter" \(n \).

Is the scheme CCA1 secure?

Definitions

Omitted details:

- We assume for simplicity that the encryption key output by G(1ⁿ) is of length at least n.
- \(\ell \) is an arbitrary polynomial, and determines the maximum message length to encrypt using "security parameter" n.

Is the scheme CCA1 secure? We need the NIZK to be "adaptive secure".

Theorem 27

Assuming that (P, V) is adaptive secure, then Construction 26 is a public-key CCA1 secure encryption scheme.

Omitted details:

- We assume for simplicity that the encryption key output by G(1ⁿ) is of length at least n.
- \(\ell \) is an arbitrary polynomial, and determines the maximum message length to encrypt using "security parameter" n.

Is the scheme CCA1 secure? We need the NIZK to be "adaptive secure".

Theorem 27

Assuming that (P, V) is adaptive secure, then Construction 26 is a public-key CCA1 secure encryption scheme.

Proof: Given an attacker A' for the CCA1 security of (G', E', D'), we use it to construct an attacker A on the CPA security of (G, E, D).

Let $S = (S_1, S_2)$ be the (adaptive) simulator for (P, V, \mathcal{L})

Algorithm 28 (A)

- On $(1^n, pk)$:
 - let $j \leftarrow \{0, 1\}$
 - Let $pk_{1-j} = pk$, $(pk_j, sk_j) \leftarrow G(1^n)$ and $r \leftarrow S_1(1^n)$
 - Send $pk' = (pk_0, pk_1, r)$ to A'
- ② On query (c_0, c_1, π) of A' to D': if π is a valid proof for $(c_0, c_1, pk_0, pk_1) \in \mathcal{L}$, return $D_{sk_i}(c_j)$. Otherwise, return \perp .
- 3 Output the same pair (m_0, m_1) as A' does
- **1** On challenge c (= $E_{sk}(m_b)$):
 - Set $c_{1-j} = c$, $a \leftarrow \{0, 1\}$, $c_j = \mathsf{E}_{pk_j}(m_a)$, and $\pi \leftarrow \mathsf{S}_2((c_0, c_1, pk_0, pk_1), r)$
 - Send $c' = (c_0, c_1, \pi)$ to A'
- Output the same value that A' does

Claim 29

Assume that A' breaks the CCA1 security of (G', E', D') with probability $\delta(n)$, then A breaks the CPA security of (G, E, D) with probability $(\delta(n) - \text{neg}(n))/2$.

Assume that A' breaks the CCA1 security of (G', E', D') with probability $\delta(n)$, then A breaks the CPA security of (G, E, D) with probability $(\delta(n) - \text{neg}(n))/2$.

The adaptive soundness and adaptive zero-knowledge of (P,V), yields that

 $Pr[A' \text{ "makes" } A(1^n) \text{ decrypt an invalid cipher}] = neg(n)$ (3)

Definitions

Claim 29

Assume that A' breaks the CCA1 security of (G', E', D') with probability $\delta(n)$, then A breaks the CPA security of (G, E, D) with probability $(\delta(n) - \text{neg}(n))/2$.

The adaptive soundness and adaptive zero-knowledge of (P,V), yields that

$$Pr[A' \text{ "makes" } A(1^n) \text{ decrypt an invalid cipher}] = neg(n)$$
 (3)

Ignoring negligible terms, we assume that A always encrypts using sk_0 .

Assume that A' breaks the CCA1 security of (G', E', D') with probability $\delta(n)$, then A breaks the CPA security of (G, E, D) with probability $(\delta(n) - \text{neg}(n))/2$.

The adaptive soundness and adaptive zero-knowledge of (P,V), yields that

$$Pr[A' \text{ "makes" } A(1^n) \text{ decrypt an invalid cipher}] = neg(n)$$
 (3)

Ignoring negligible terms, we assume that A always encrypts using sk_0 .

Let $A'(1^n, a^*, b^*)$ be the output of $A'(1^n)$ in the emulation induced by A, where $a = a^*$ and $b = b^*$.

Assume that A' breaks the CCA1 security of (G', E', D') with probability $\delta(n)$, then A breaks the CPA security of (G, E, D) with probability $(\delta(n) - \text{neg}(n))/2$.

The adaptive soundness and adaptive zero-knowledge of (P,V), yields that

$$Pr[A' \text{ "makes" } A(1^n) \text{ decrypt an invalid cipher}] = neg(n)$$
 (3)

Ignoring negligible terms, we assume that A always encrypts using sk_0 .

Let $A'(1^n, a^*, b^*)$ be the output of $A'(1^n)$ in the emulation induced by A, where $a = a^*$ and $b = b^*$. It holds that

Assume that A' breaks the CCA1 security of (G', E', D') with probability $\delta(n)$, then A breaks the CPA security of (G, E, D) with probability $(\delta(n) - \text{neg}(n))/2$.

The adaptive soundness and adaptive zero-knowledge of (P,V), yields that

$$Pr[A' \text{ "makes" } A(1^n) \text{ decrypt an invalid cipher}] = neg(n)$$
 (3)

Ignoring negligible terms, we assume that A always encrypts using sk_0 .

Let $A'(1^n, a^*, b^*)$ be the output of $A'(1^n)$ in the emulation induced by A, where $a = a^*$ and $b = b^*$. It holds that

- The adaptive zero-knowledge of (P, V) yields that $|\Pr[A'(1^n, 1, 1) = 1] \Pr[A'(1^n, 0, 0) = 1]| \ge \delta(n) \text{neg}(n)$

$$\begin{split} |\text{Pr}[A(1) = 1] - \text{Pr}[A(0) = 1]| \\ &= \big| \frac{1}{2} (\text{Pr}[A'(0, 1) = 1] + \text{Pr}[A'(1, 1) = 1]) \\ &- \frac{1}{2} (\text{Pr}[A'(0, 0) = 1] + \text{Pr}[A'(1, 0) = 1]) \big| \end{split}$$

$$\begin{split} |\text{Pr}[A(1) = 1] - \text{Pr}[A(0) = 1]| \\ &= \big| \frac{1}{2} (\text{Pr}[A'(0, 1) = 1] + \text{Pr}[A'(1, 1) = 1]) \\ &- \frac{1}{2} (\text{Pr}[A'(0, 0) = 1] + \text{Pr}[A'(1, 0) = 1]) \big| \\ &\geq \frac{1}{2} \big| \text{Pr}[A'(1, 1) = 1] - \text{Pr}[A'(0, 0) = 1] \big| \\ &- \frac{1}{2} \big| \text{Pr}[A'(1, 0) = 1] - \text{Pr}[A'(0, 1) = 1] \big| \end{split}$$

$$\begin{split} |\text{Pr}[A(1) = 1] - \text{Pr}[A(0) = 1]| \\ &= \big| \frac{1}{2} (\text{Pr}[A'(0, 1) = 1] + \text{Pr}[A'(1, 1) = 1]) \\ &- \frac{1}{2} (\text{Pr}[A'(0, 0) = 1] + \text{Pr}[A'(1, 0) = 1]) \big| \\ &\geq \frac{1}{2} \big| \text{Pr}[A'(1, 1) = 1] - \text{Pr}[A'(0, 0) = 1] \big| \\ &- \frac{1}{2} \big| \text{Pr}[A'(1, 0) = 1] - \text{Pr}[A'(0, 1) = 1] \big| \\ &\geq (\delta(n) - \text{neg}(n))/2 \end{split}$$

Active Adversaries ○○○○○○○

Public-key CCA1

Public-key CCA2

Is Construction 26 CCA2 secure?

- Is Construction 26 CCA2 secure?
- Problem: Soundness might not hold with respect to the simulated CRS, after seeing a proof for an invalid statement

- Is Construction 26 CCA2 secure?
- Problem: Soundness might not hold with respect to the simulated CRS, after seeing a proof for an invalid statement
- Solution: use simulation sound NIZK