Wir beweisen, dass $\mathcal{P}(\{0,1\}^*)$ überabzählbar ist.

Wir wissen aus der Vorlesung: Es existiert eine Bijektion $\phi: \{0,1\}^* \to \mathbb{N}$.

Damit müssen wir nur Zeigen, dass $\mathcal{P}(\mathbb{N})$ überabzählbar ist.

Wir demonstrieren eine Bijektion $\psi : \mathcal{P}(\mathbb{N}) \to (\mathbb{N} \to \{0,1\}).$

$$\psi(M) = n \mapsto \begin{cases} 1 & \text{wenn } n \in M \\ 0 & \text{sonst} \end{cases}$$

Und

$$\psi^{-1}(f) = \{ n \in \mathbb{N} \mid f(\mathbb{N}) = 1 \}$$

 ψ ist offensichtlich eine Bijektion.

Nun müssen wir nur noch Zeigen, dass $(\mathbb{N} \to \{0,1\})$ überabzählbar ist.

Angenommen wir haben also eine beliebig Funktion $f: \mathbb{N} \to (\mathbb{N} \to \{0, 1\})$.

Nun definieren wir $g: \mathbb{N} \to \{0,1\}$ durch $g(n) = \overline{f(n)(n)}$.

Wobei $\overline{0} = 1$ und $\overline{1} = 0$.

Nun ist $g(n) \neq (f(n))(n)$ für alle $n \in \mathbb{N}$.

Damit ist $g \notin \mathbf{Image}(f)$. Damit ist f nicht surjektiv. Damit existiert keine Funktion $f: \mathbb{N} \to (\mathbb{N} \to \{0,1\})$, die surjektiv ist.

Und damit auch kein $(\phi^{-1} \circ \psi^{-1} \circ f) : \mathbb{N} \to \mathcal{P}(\{0,1\}^*)$, die surjektiv ist.

Wir definieren die Reduktionsfunktion $f:\{0,1,\#\}^* \to \{0,1,\#\}^*$:

$$f(w) = \begin{cases} \langle x \rangle \# \langle x \rangle \# \langle y \rangle & \text{wenn } w = \langle x \rangle \# \langle y \rangle \\ \epsilon \text{ (leeres Wort)} & \text{sonst} \end{cases}$$

Eli Kogan-Wang

Z.z. (i) f ist berechenbar.

(ii)
$$w \in L_2 \iff f(w) \in L_1$$

Zu (i) f ist trivialerweise berechbar, da hierbei w im Fall w hat die Form $\langle x \rangle \# \langle y \rangle$ für $x, y \in \mathbb{N}$ nur die Eingabe um ein $\langle x \rangle \#$ erweitert wurde.

Dies kann Beispielsweise durch eine Turingmaschine umgesetzt werden, welche sich $\langle x \rangle$ merkt, danach vom Band löscht. Daraufhin eine Kopie des Bandinhalts hinter diesen setzt und anschließend wieder $\langle x \rangle$ auf das Band schreibt.

für w hat nicht die Form $\langle x \rangle \# \langle y \rangle$ wird einfach der Bandinhalt gelöscht.

zu (ii):
$$(w \in L_2 \iff f(w) \in L_1)$$

Fall 1: Z.z.
$$(w \in L_2 \to f(w) \in L_1)$$

Sei $w \in L_2$ beliebig, aber fest.

Nun:

$$\begin{aligned} w &= \langle x \rangle \# \langle y \rangle & \text{und } 2x = y \text{ mit } x, y \in \mathbb{N} \\ \Longrightarrow f(x) &= \langle x \rangle \# \langle x \rangle \# \langle y \rangle \\ \Longrightarrow f(w) \in L_1 & \text{da } x + x = 2x = y \text{ nach Annahme.} \end{aligned}$$

Fall 2:
$$(w \notin L_2 \to f(w) \notin L_1)$$

Sei $w \notin L_2$ beliebig, aber fest.

w ist nicht von der Form $\langle x \rangle \# \langle y \rangle$ oder $w = \langle x \rangle \# \langle y \rangle$, aber $2x \neq y$. (mit $x, y \in \mathbb{N}$) Oder: $w = \langle x \rangle \# \langle y \rangle$, aber $2x \neq y$. (mit $x, y \in \mathbb{N}$)

Falls w nicht von der Form $\langle x \rangle \# \langle y \rangle$ ist, wird dieses auf das leere Wort abgebildet. Das leere Wort ist nicht in L_1 . Daher ist $f(w) \notin L_1$. Der Fall der Unform ist damit abgedeckt.

Nun:

Falls
$$w = \langle x \rangle \# \langle y \rangle$$
, aber $2x \neq y \text{ mit } x, y \in \mathbb{N}$
 $\implies f(w) = \langle x \rangle \# \langle x \rangle \# \langle y \rangle$ und $f(w) \notin L_1$ da $x + x = 2x \neq y$ nach Annahme.

Wir haben gezeigt, dass $w \in L_2 \iff f(w) \in L_1$. Damit ist $L_2 \leq L_1$.

Sei A das Akzeptanzproblem.

 $Z.z A \leq L.$

Sei $\langle M \rangle^{(x)}$ eine DTM mit folgendem Verhalten bei Eingabe $w = \langle M \rangle x$

- 1. Merke x
- 2. Lösche x vom Band
- 3. Schreibe q_{accept} und danach x auf das Band

Sei
$$f: \{0,1\}^* \to \{0,1,\}^*$$

$$f(x) = \begin{cases} \langle M \rangle^{(x)} & \text{wenn } x = \langle M \rangle x \text{ mit } x \in \{0, 1\}^* \\ \langle M_{reject} \rangle x & \text{sonst} \end{cases}$$

Z.z. (i) f ist berechenbar.

(ii)
$$w \in L_2 \iff f(w) \in L_1$$

Zu (i): Die Fallunterscheidung in der Abbildungsforschrift ist berechbar, da die Sprache Gödel entscheidbar ist.

Folglich ist nur noch zu Zeigen, dass $\langle M \rangle^{(x)}$ berechbar ist. 1 und 2 sind trivialerweise berechbar.

3. ist auch berechbar, Aufgrund der Eindeutigen Darstellung der Gödelnummer. Wegen dieser und der Konvention, dass q_{accept} in unserer Vorlesung der vorletzte Zustand ist, kann dieser eindeutig ausgelesen werden.

zu (ii): Z.z.
$$(w \in L_2 \iff f(w) \in L_1)$$

Fall 1:
$$(w \in A \to f(w) \in L)$$

Sei $w \in A$ beliebig, aber fest. d.h. $w = \langle M \rangle x$ mit die DTM M akzeptiert x

 $\implies M$ erreicht den Zustand q_accept , da das Akzeptanz ist.

$$\implies f(w) \in L$$

Fall 2:
$$(w \notin A \to f(w) \notin L)$$

Sei $w \notin A$ beliebig.

Also ist (Fall a) w nicht der Form $w = \langle M \rangle x$ oder (Fall b) $w = \langle M \rangle x$, aber M akzeptiert x nicht

Zu (a) Folglich bildet f(w) auf eine Turingmaschine ab, welche alle Eingaben ablehnt

- \implies der Zustand q_{accept} kann niemals erreicht werden
- $\implies f(w) \notin L$
- Zu (b) Also sei $w = \langle M \rangle x$, aber M akzeptiert x nicht
- $\implies f$ bildet w auf $\langle M \rangle^{(x)}$ ab, aber der Zustand q_{accept} wird nie erreicht, da sonst $w \in A$ sein müsste.
- \implies f(w) \notin L
- $\implies A \leq L$

b) Behauptung L_2 ist nicht rekursiv aufzählbar, da $\overline{H} \leq L_2$ Beweis:

Wir definieren die Reduktionsfunktion $f: \{0, 1, \#\}^* \to \{0, 1, \#\}^*$:

$$f(w) = \begin{cases} \langle M^{(Nice)} \rangle & \text{wenn } w \neq \langle M \rangle x \\ \langle M^{(x)} \rangle & \text{wenn } w = \langle M \rangle x \end{cases}$$

Mit $\langle M^{(x)} \rangle$ sei die Turingmaschine aus Satz 2.10.1. und $\langle M^{(Nice)} \rangle$ sei die Turingmaschiene die nur die Eingabe 1000101 akzeptiert und bei allen anderen Eingaben in eine Endlosschleife geht.

Folglich ist f(w) nach diesem Satz 2.10.1 auch berechbar und es gilt: M hält bei Eingabe x nicht $\iff M^{(x)}$ hält bei jeder Eingabe z $\{0,1\}^*$. (1)

Eli Kogan-Wang Page 4

Page 5

Z.z.
$$(w \in \overline{H} \iff f(w) \in L_2)$$

Richtung \implies : Angenommen $w \in \overline{H}$.

Das heißt, $w = \langle M \rangle x$ mit M hält bei Eingabe x nicht.

Das heißt, dass $\langle M \rangle x$ für alle Schrittweiten n, nicht hält.

Damit akzeptiert $\langle M^{(x)} \rangle$ bei jeder Eingabe.

Damit ist $f(w) = \langle M^{(x)} \rangle \in L_2$.

Richtung \Leftarrow : Angenommen $w \notin \overline{H}$.

Also ist entweder w von falscher Form oder M hält bei Eingabe x.

Ist w von falscher Form, dann ist $f(w) = \langle M^{(Nice)} \rangle \notin L_2$, da $\langle M^{(Nice)} \rangle$ nur die Eingabe 1000101 akzeptiert.

Ist $w = \langle M \rangle x$ und M hält bei Eingabe x, dann:

Es existiert ein n mit M hält bei Eingabe x nach n Schritten.

Und für alle n' > n gilt: M hält bei Eingabe x nach n' Schritten.

Damit wird $\langle M^{(x)} \rangle$ bei jeder Eingabe n' > n in eine Endlosschleife gehen und maximal n Eingaben akzeptieren.

Damit ist $f(w) = \langle M^{(x)} \rangle \notin L_2$.

Eli Kogan-Wang