Tema 3: Criptografia Simètrica

Carlos Borrego

Carlos.Borrego@uab.cat

Departament d'Enginyeria de la Informació i de les Comunicacions Universitat Autònoma de Barcelona

Criptografia i Seguretat

Material adaptat de:

Material de classe de Criptografia i Seguretat

Dr. Guillermo Navarro

Universitat Autònoma de Barcelona

http://www.deic.uab.cat/

Contingut

- 1 Les xifres de flux
- 2 Generadors lineals de seqüència xifrant
- Generadors no lineals de seqüència xifrant
- 4 AES
- Modes

Les xifres de flux

L'algorisme és determinista per tant la seqüència que en resulta no és completament aleatòria i a partir d'un cert moment es repeteix.

CSPRNG

Els generadors pseudoaleatoris criptogràficament segurs (CSPRNG) generen seqüències no predictibles.

En concret, per a que un PRNG sigui considerat un CSPRNG, cal que les seqüències que genera tinguin dues propietats (a partir de k bits de la seqüència generada s_{i+1} , s_{i+2} , ..., s_{i+k}):

- No existeix un algorisme en temps polinomial que pugui predir el següent bit de la seqüència, s_{i+k+1} , amb probabilitat major al 50%.
- No és computacionalment possible predir el bit anterior de la següència, s_i.

Tests d'aleatorietat del NIST (1)

El **test de freqüència de bits individuals** comprova que la proporció d'uns i zeros de la seqüència proporcionada és similar.

Per fer-ho, en primer lloc es transforma la seqüència binària d'entrada a una seqüència de 1 i -1:

Després, es calcula s_{obs}:

$$s_{obs} = \frac{\left|\sum_{i=1}^{n} x_i\right|}{\sqrt{n}}$$

Si la seqüència és aleatòria s_{obs} tendirà cap a 0, mentre que si hi ha massa zeros o massa uns en la seqüència, aleshores s_{obs} tendirà a ser major a zero.

Tests d'aleatorietat del NIST (2)

El **freqüència en un bloc** comprova que el número de 0/1 en un bloc de m bits sigui aproximadament m/2. Per fer-ho, es particiona la seqüència a avaluar en b = n / m blocs de m bits, descartant els bits sobrants.

$$\begin{array}{c} \underbrace{k=1} \\ S_1, S_2, \dots, S_m \\ \hline \\ m \text{ bits} \\ \end{array} \begin{array}{c} \underbrace{S_{m+1}, S_{m+2}, \dots, S_{m+m}} \\ \\ m \text{ bits} \\ \end{array} \begin{array}{c} \underbrace{S_{(b-1)m+1}, \dots, S_{(b-1)m+m}} \\ \\ \end{array}$$

Aleshores, per cada bloc k (amb k = 1, ..., b), es calcula:

$$\pi_k = \frac{\sum_{j=1}^m s_{(k-1)m+j}}{m}$$

és a dir, es calcula la proporció d'uns que hi ha a cada bloc. Finalment, es calcula:

$$\chi_{obs}^2 = 4m \sum_{k=1}^{b} (\pi_k - 1/2)^2$$

Tests d'aleatorietat del NIST (3)

El test de **ràfegues** comprova si el número de ràfegues tant d'uns com de zeros de la seqüència (N>100) s'assembla al que trobaríem en una seqüència aleatòria. Definirem una ràfega com un conjunt de bits consecutius iguals, és a dir una ràfega de longitud k consta dels elements s_t , . . . , s_{t+k-1} , tals que

$$s_t \neq s_t = s_{t+1} = ... = s_{t+k} \neq s_{t+k}$$
.

Per avaluar la prova de ràfegues, es calcula:

$$V_n(obs) = \left(\sum_{i=1}^{n-1} r(i)\right) + 1$$

on r(i) és la funció:

$$r(i) = \begin{cases} 0, & \text{si } s_i = s_{i+1} \\ 1, & \text{altrament} \end{cases}$$

Valors grans de V obs indiquen que les oscil·lacions de valors en la seqüència avaluada succeeixen ràpidament.

Addicionalment, aquest test té com a prerequisit que la seqüència passi el test de freqüència de bits individuals.

Contingut

- 1 Les xifres de flux
- 2 Generadors lineals de seqüència xifrant
- Generadors no lineals de seqüència xifrant
- 4 AES
- Modes

Generadors congruencials

Els generadors congruencials es basen en equacions modulars recurrents del tipus:

$$x_n = (ax_{n-1} + b) \bmod m$$

Exemple: La funció *rand()* del sistema UNIX BSD utilitza el següent generador congruencial afí:

$$x_n = (1103515245x_{n-1} + 12345) \mod 2^{31}$$

Watch:

Magic 'Nothing Up My Sleeve' Numbers - Computerphile https://www.youtube.com/watch?v=oJWwaQm-Exs

Període

$$x_n = (ax_{n-1} + b) \bmod m$$

- Si m és primer i b = 0: període m 1 si a és un element primitiu en m.
- Si m és una potència de 2 i b = 0: té un període com a màxim de m/4 (si a=3 o a=5 (mod 8)).
- Si b != 0: període m si i només si: mcd(m,b)=1, a-1 és divisible per tots els factors primers d'm i a-1 és divisible per 4 i m és divisible per 4.

Activitat

Implementeu un Generador congruencial del tipus:

$$x_n = (ax_{n-1} + b) \bmod m$$

- Per un a un b donat i m = 100 calculeu el seu període.
- Per parelles envieu-vos missatges xifrats fent servir l'operació:

$$C_i = M_i \text{ xor } K_i$$

sent C_i el missatge xifrat, M_i el missatge en clar i K_i els nombres obtinguts pel generador congruencial definit.

Desxifreu els missatges xifrats fent servir:

$$M_i = C_i \text{ xor } K_i$$

LFSR, Linear Feedback Shift Register

Un registre de desplaçament realimentat linealment (LFSR) de longitud n és un dispositiu físic o lògic format per n cel·les de memòria i n portes lògiques:

- Initial state: $\{S1, \ldots, S_n\}$
- Polinomi de conexions (feedback polynomial): $C(x) = 1 + c_1 x^1 + c_2 x^2 + ... + c_n x^n$

Exemple de l'LFSR

L'estat inicial és 1010, que correspon a l'impuls de rellotge t = 0.

El polinomi de connexions corresponent a l'LFSR:

$$C(x) = 1 + 0x^1 + 1x^2 + 0x^3 + 1x^4 = 1 + x^2 + x^4$$

Exemple de l'LFSR

Evolució de l'LFSR en els diferents instants de temps:

Impuls de rellotge (t)	<i>S</i> 4	S3	<i>s</i> ₂	s_1	Sortida
0	1	0	1	0	0
1	0	1	0	1	1
2	0	0	1	0	0
3	0	0	0	1	1
4	1	0	0	0	0
5	0	1	0	0	0
6	1	0	1	0	0
7	0	1	0	1	1
:	:			:	

L'impuls de rellotge t=6 tornem a tenir l'estat inicial i, per tant, a partir d'aquí la seqüència es torna a repetir (període 6).

Polinomi de connexions

• Factoritzable:

- seqüència depèn de l'estat inicial.
- període sempre $< 2^n 1$.

Irreductible (però no primitiu):

- següència depèn de l'estat inicial (període de mida fixa).
- període és un divisor de $2^n 1$.

• Primitiu:

- següència no depèn de l'estat inicial.
- període de $2^n 1$.

Polinomi primitiu

Per un LFSR de mida n

- Sempre grau n
- El nombre de polinomis primitius de grau *n* és:

$$\frac{\phi(2^n-1)}{n}$$

Primitive Polynomial List:

www.partow.net/programming/polynomials/index.html

Contingut

- 1 Les xifres de flux
- 2 Generadors lineals de seqüència xifrant
- 3 Generadors no lineals de seqüència xifrant
- 4 AES
- Modes

A5 - funcionament

- Inicialització
 Generació seqüència de 228 bits
 Xifrar 228 bits

FRAME COUNTER SESSION KEY

A5 Iniciatlització

- NO clocking XOR session key
- · 22 rotacions
 - NO clocking
 - · XOR frame counter
- 100 rotacions
 - · With clocking

· Session key 64 bits (secret)

· Frame counter 22 bits (public)

Contingut

- 1 Les xifres de flux
- 2 Generadors lineals de següència xifrant
- 3 Generadors no lineals de següència xifrant
- 4 AES
- 6 Modes

Data representation

19	a0	9a	е9
3d	f4	с6	f8
е3	e2	8d	48
be	2b	2a	08

- Cleartext block: $m = m_1 m_2 ... m_{128}$
- Grouped in 16 bytes (8 bits per byte) in a matrix representation

AES encryption process

AES decryption process

Sobre notació

- Si p és primer, GF(p) es el cos finit $(\mathbb{Z}_p, +, \cdot)$
- $GF(p^m)$ es un cos amb elements polinomis de grau màxim m-1 i coeficients a GF(2). Notació equivalent: $(\mathbb{Z}_p[x]/m(x),+,\cdot)$ on el grau de m(x) és m.

AES

En general AES opera en el grup $GF(2^8)$ o $(\mathbb{Z}_p[x]/m(x), \oplus, \otimes)$ on $m(x) = x^8 + x^4 + x^3 + x + 1$: polinoms de grau màxim 7 i coeficients binaris (a \mathbb{Z}_2 o GF(2)).

• E.g.
$$a(x) = a_7x^7 + \cdots + a_1x + a_0, a_i \in \mathbb{Z}_2$$

1 byte - > un polinomi de $GF(2^8)$. P.e.

hexadecimal	\rightarrow	binary	\rightarrow	polinomi
63	\rightarrow	0110 0011	\rightarrow	$x^6 + x^5 + x + 1$

Amb les operacions:

- Suma "⊕": suma polinomis a Z₂ (o bitwise XOR)
- Multiplicació "⊗": multiplicació de polinimis mòdul x⁸ + x⁴ + x³ + x + 1

Operacions

Suma ⊕: bitwise XOR. E.g

$$57 \oplus 83 = D4$$
 $01010111 \oplus 10000011 = 11010100$
 $(x^6 + x^4 + x^2 + x + 1) \oplus (x^7 + x + 1) = x^7 + x^6 + x^4 + x^2$

• Producte \otimes : producte polinoms (mod $x^8 + x^4 + x^3 + x + 1$)

$$57 \otimes 83 = C1$$
 $01010111 \otimes 10000011 = 11000001$

$$(x^{6} + x^{4} + x^{2} + x + 1) \otimes (x^{7} + x + 1) \pmod{x^{8} + x^{4} + x^{3} + x + 1}$$

$$= x^{13} + x^{11} + x^{9} + x^{8} + x^{7} + x^{7} + x^{5} + x^{3} + x^{2} + x + x^{6} + x^{4} + x^{2} + x + 1 \pmod{x^{8} + x^{4} + x^{3} + x + 1}$$

$$= x^{13} + x^{11} + x^{9} + x^{8} + x^{6} + x^{5} + x^{4} + x^{3} + 1 \pmod{x^{8} + x^{4} + x^{3} + x + 1}$$

$$= x^{7} + x^{6} + 1$$

Representació de bloc de 128 bits a AES

Binari:

Hexadecimal:
$$\begin{pmatrix} 01 & 02 & 03 & 04 \\ 05 & 06 & 07 & 08 \\ 09 & 0a & 0b & 0c \\ 0d & 0e & 0f & 10 \end{pmatrix}$$

Polinomial:

$$\begin{pmatrix} (1) & (x) & (x+1) & (x^2) \\ (x^2+1) & (x^2+x) & (x^2+x+1) & (x^3) \\ (x^3+1) & (x^3+x) & (x^3+x+1) & (x^3+x^2) \\ (x^3+x^2+1) & (x^3+x^2+x) & (x^3+x^2+x+1) & (x^4) \end{pmatrix}$$

MixColumns

$$C = MixColumns(B)$$

$$\begin{pmatrix} b_{00} & b_{01} & b_{02} & b_{03} \\ b_{10} & b_{11} & b_{12} & b_{13} \\ b_{20} & b_{21} & b_{22} & b_{23} \\ b_{30} & b_{31} & b_{32} & b_{33} \end{pmatrix} \rightarrow \mathsf{MixColumns} \rightarrow \begin{pmatrix} c_{00} & c_{01} & c_{02} & c_{03} \\ c_{10} & c_{11} & c_{12} & c_{13} \\ c_{20} & c_{21} & c_{22} & c_{23} \\ c_{30} & c_{31} & c_{32} & c_{33} \end{pmatrix}$$

 Cada columna de B: vector que es multiplica per una matriu 4 x 4 constant.

Multiplicació

$$\begin{pmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{pmatrix} \cdot \begin{pmatrix} b_{00} \\ b_{10} \\ b_{20} \\ b_{30} \end{pmatrix} = \begin{pmatrix} c_{00} \\ c_{10} \\ c_{20} \\ c_{30} \end{pmatrix}$$

$$\begin{pmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{pmatrix} \cdot \begin{pmatrix} b_{01} \\ b_{11} \\ b_{21} \\ b_{31} \end{pmatrix} = \begin{pmatrix} c_{01} \\ c_{11} \\ c_{21} \\ c_{31} \end{pmatrix}$$

$$\begin{pmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{pmatrix} \cdot \begin{pmatrix} b_{02} \\ b_{12} \\ b_{22} \\ b_{32} \end{pmatrix} = \begin{pmatrix} c_{02} \\ c_{12} \\ c_{22} \\ c_{32} \end{pmatrix}$$

$$\begin{pmatrix} 02 & 03 & 01 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{pmatrix} \cdot \begin{pmatrix} b_{03} \\ b_{13} \\ b_{23} \\ b_{33} \end{pmatrix} = \begin{pmatrix} c_{03} \\ c_{13} \\ c_{23} \\ c_{33} \end{pmatrix}$$

$$\begin{pmatrix} c_{00} & c_{01} & c_{02} & c_{03} \\ c_{10} & c_{11} & c_{12} & c_{13} \\ c_{20} & c_{21} & c_{22} & c_{23} \\ c_{30} & c_{31} & c_{32} & c_{33} \end{pmatrix}$$

Exemple

$$\begin{pmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{pmatrix} \cdot \begin{pmatrix} b_{00} \\ b_{10} \\ b_{20} \\ b_{30} \end{pmatrix} = \begin{pmatrix} c_{00} \\ c_{10} \\ c_{20} \\ c_{30} \end{pmatrix}$$

$$(02 \otimes b_{00}) \oplus (03 \otimes b_{10}) \oplus (01 \otimes b_{20}) \oplus (01 \otimes b_{30}) = c_{00}$$

Recordeu, cada element és un polinomi!

Exemple

$$\begin{pmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{pmatrix} \cdot \begin{pmatrix} b_{00} \\ b_{10} \\ b_{20} \\ b_{30} \end{pmatrix} = \begin{pmatrix} c_{00} \\ c_{10} \\ c_{20} \\ c_{30} \end{pmatrix}$$

$$(02 \otimes b_{00}) \oplus (03 \otimes b_{10}) \oplus (01 \otimes b_{20}) \oplus (01 \otimes b_{30}) = c_{00}$$

Recordeu, cada element és un polinomi!

Exemple

$$\begin{pmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{pmatrix} \cdot \begin{pmatrix} b_{00} \\ b_{10} \\ b_{20} \\ b_{30} \end{pmatrix} = \begin{pmatrix} c_{00} \\ c_{10} \\ c_{20} \\ c_{30} \end{pmatrix}$$

$$(02 \otimes b_{00}) \oplus (03 \otimes b_{10}) \oplus (01 \otimes b_{20}) \oplus (01 \otimes b_{30}) = c_{00}$$

Recordeu, cada element és un polinomi!

- 1 Les xifres de flux
- 2 Generadors lineals de seqüència xifrant
- Generadors no lineals de seqüència xifrant
- 4 AES
- 6 Modes

$MSB_n(x)$	n Most Significant Bits of x
$LSB_n(x)$	n Least Significant Bits of x
$x \mid y$	x concatenated with y
$E_k(x)$	encryption of x with key k
$D_k(x)$	decryption of x with key k
IV	Initialization Vector: generalment no cal que sigui secret, sí impredictible i únic per cada xifrat.

ECB, Electronic Code Book

- Blocs m_i iguals \Rightarrow blocs c_i iguals
 - No amaga patrons de dades
- Blocs es xifren independentment
 - + paral·lelització
 - + accés aleatori
 - + errors en c_i no es propaguen
 - no es detecten reordenacions, insercions, eliminacions

Flux Lin NoLin AES Modes ECB CBC CFB OFB CTR

ECB exemple

Flux Lin NoLin AES Modes ECB CBC CFB OFB C

ECB exemple

CBC, Cipher Block Chaining

$$c_0 = IV, \ c_i = E_k(m_i \oplus c_{i-1})$$

$$c_0 = IV, m_i = D_k(c_i) \oplus c_{i-1}$$

- + oculta patrons de dades (mateix $m_i \Rightarrow$ mateix c_i)
- Xifrat no paral·lelitzable, però desxifrat sí.
- · error en c_i afecta a blocs més endavant (m_i, m_{i+1}) .

CFB, Cipher Feedback

CFB, Cipher Feedback

- Mida de bloc de text en clar *n* < mida de bloc de xifrat *b*.
- Si $n = b \Rightarrow CBC$.
- Es pot fer servir per convertir un criptosistema de bloc a un de flux (CFB-1 o 1-bit CFB).
- Xifrat no paral·lelitzable, però desxifrat sí.
- Error en c; afecta a blocs més endavant.

OFB, Output Feedback

 m_1

 m_3

 m_2

- Permet construir un xifrat en flux a partir d'un en bloc
- El keystream es genera de forma independent al missatge (cleartext o ciphertext).
- Errors en c_i no es propaguen (errors en IV afecten tot el xifrat/desxifrat).
- No paral·lelitzable (però es pot pre-generar el keystream).

CTR, Counter

$$ctr_i = IV \mid i$$

 $c_i = m_i \oplus E_k(ctr_i)$

$$ctr_i = IV \mid i$$

 $m_i = c_i \oplus E_k(ctr_i)$

- ⇒ Xifrat de flux
- Paral·lelitzable (no requereix cap tipus de feedback)
- Errors en *c_i* no es propaguen.

Tema 3: Criptografia Simètrica

Carlos Borrego

Carlos.Borrego@uab.cat

Departament d'Enginyeria de la Informació i de les Comunicacions Universitat Autònoma de Barcelona

Criptografia i Seguretat