Matematica Discreta I

Esame del 10-07-2008

Esercizio 1.

Sia
$$F: \mathbb{R}^5 \to \mathbb{R}^5$$
 l'applicazione lineare
$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} \mapsto \begin{pmatrix} x_2 - x_3 + x_4 + 6x_5 \\ x_1 - x_2 + 4x_3 + x_4 - 2x_5 \\ 2x_1 - x_2 + 7x_3 + 3x_4 + 4x_5 \\ x_1 + x_2 + 2x_3 + 3x_4 + 4x_5 \\ -2x_1 + 2x_2 - 8x_3 - 2x_4 + 4x_5 \end{pmatrix} \text{ e } \vec{v} = \begin{pmatrix} 1 \\ 0 \\ 2 \\ -1 \\ 0 \end{pmatrix}.$$

- a.) Trovare una base di Ker(F). (4 pt)
- b.) Trovare una base di Im(F). (4 pt)
- c.) E' $\vec{v} \in Im(F)$? (1 pt)

Esercizio 2.

Siano $F: \mathbb{R}^3 \to \mathbb{R}^3$ un'applicazione lineare, e la base naturale di \mathbb{R}^3 e $\vec{v}_1, \vec{v}_2, \vec{v}_3 \in \mathbb{R}^3$, dove F

è dato dalla matrice
$$[F]_e^e = \begin{pmatrix} -2 & -3 & 1 \\ 1 & 0 & 1 \\ 0 & -2 & 2 \end{pmatrix}, \ \vec{v}_1 = \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}, \ \vec{v}_2 = \begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix} \in \vec{v}_3 = \begin{pmatrix} 1 \\ -2 \\ -2 \end{pmatrix}.$$

- a.) Dimostrare che $b = (\vec{v}_1, \vec{v}_2, \vec{v}_3)$ è una base di \mathbb{R}^3 (1 pt)
- b.) Trovare le matrici di cambiamento di base $[I]_e^b$ e $[I]_h^e$ (3 pt)
 - (3 pt)
- c.) Scrivere la relazione che lega la matrice $[F]_e^b$ con $[F]_b^b$ e calcolare $[F]_b^b$. d.) Trovare tutti i $\vec{v} \in \mathbb{R}^3$ con $F^{888884444422}(\vec{v}) = -\vec{v}$. (1 pt)

Esercizio 3.

Esercizio 3. Consideriamo in \mathbb{R}^3 le rette l e m, dove l = $\begin{cases}
x = 1 + 2t \\
y = 2 + t \\
z = -t
\end{cases}$, $t \in \mathbb{R}$, e m = $\begin{cases}
x = 1 - 4t \\
y = -6 - 2t \\
z = 4 + 2t
\end{cases}$ e il punto P = (-1, 1, -1).

- a.) Dimostrare che le rette l e m sono paralelli e $l \neq m$. (1 pt)
- b.) Calcolare la distanza tra la retta l e la retta m. (2 pt)
- c.) Trovare l'equazione cartesiano del piano che contiene la retta parallelo ad l passante per il punto P e che interseca il piano contenente l e m in una retta equidistante da l e m. (3 pt)

Siano $T: \mathbb{R}^2 \to \mathbb{R}^2$ l'applicazione lineare dato da $T: \vec{v} \mapsto proj_{\vec{w}}(\vec{v})$, dove $\vec{w} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, e $S: \mathbb{R}^2 \to \mathbb{R}^2$ la rotazione di angolo $\frac{3}{2}\pi$ in senso anti-orario.

- a.) Trovare la matrice di $S^{-1} \circ T \circ S$. (1 pt)
- b.) Esiste un $\vec{n} \in \mathbb{R}^2$ tale che $(S^{-1} \circ T \circ S)(\vec{v}) = proj_{\vec{n}}(\vec{v})$, per ogni $\vec{v} \in \mathbb{R}^2$? (1 pt)

Sia $T: \mathbb{R}^2 \to \mathbb{R}^2$ un'applicazione lineare con $T^2 = T$. Dimostrare che esiste una base b di \mathbb{R}^2 tale che

$$[T]_b^b \in \{ \left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right), \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right) \}.$$

(3 pt)

Esercizio 6. 6.1. Sia
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
 l'applicazione lineare dato da $T(\begin{pmatrix} -1 \\ 0 \end{pmatrix}) = \begin{pmatrix} 0 \\ 2 \end{pmatrix}$ e $T(\begin{pmatrix} 1 \\ -1 \end{pmatrix}) = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$. Allora la matrice di T respetto alla base naturale è a.) $\begin{pmatrix} 0 & 1 \\ 2 & -2 \end{pmatrix}$ b.) $\begin{pmatrix} 0 & -1 \\ 2 & 2 \end{pmatrix}$ c.) $\begin{pmatrix} 0 & 1 \\ -2 & -2 \end{pmatrix}$ d.) $\begin{pmatrix} 0 & -1 \\ -2 & 2 \end{pmatrix}$

6.2. La matrice, rispetto alla base naturale, della riflesione in \mathbb{R}^2 rispetto la retta l è dato da $\frac{1}{13}$ $\begin{pmatrix} -12 \\ 5 \end{pmatrix}$ L'equazione cartesiano della retta l è

a.)
$$x + 5y = 0$$
 b.) $x - 5y = 0$ c.) $5x + y = 0$ d.) $5x - y = 0$

- 6.3. Stabilire se le affermazioni sono vero o falso.
 - A. Il numero di sottospazi di \mathbb{R}^2 è 3.
 - B. Siano $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^3$. Se $\vec{u}, \vec{v}, \vec{w}$ sono linearmente indipendenti, allora $\vec{u} \vec{w}, \vec{u} + \vec{w}, \vec{u} + \vec{v} \vec{w}$ sono linearmente indipendenti.
 - a.) A e B sono entrambi vero.

c.) A è vero e B è falso.

b.) A e B sono entrambi falso.

d.) A è falso e B è vero.

Per gli esercizi 1, 2, 3, 4, e 5 le risposte devono essere giustificate. Per l'esercizio 6, dove ogni parte vale 1 punto, basta solo rispondere. Ogni scorettezza durante la prova comporterà l'immediato annullamento della prova e altre sanzioni in accordo con la presidenza del corso di Laurea.