36-789 - High Dimensional Statistsics II

Fall 2015

Lecture 1: Oct 27

Lecturer: Alessandro Rinaldo Scribes: Kirthevasan Kandasamy

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

1.1 Minimax Theory

Minimax theory is used to show that a statistical procedure has good performance. It characterises the intrinsic difficulty of a statistical problem.

Example 1.1 Sparse Regression: Let $Y = X\beta + \epsilon$ where $\beta \in \mathbb{R}^d$, $\epsilon \sim \mathcal{N}_n(\mathbf{0}, I_n)$ and d > n. (We are interested in $d \gg n$.) Let $\beta \in B_0(k)$ where $B_0(k) = \{\beta \in \mathbb{R}^d; \|\beta\|_0 \le k\}$. Let $\hat{\beta} = \operatorname{argmin}_{\beta \in B_0(k)} \|Y - X\beta\|^2$ be the estimator. It can be shown that for some c > 0,

$$\max_{\beta \in B_0(k)} \mathbb{E}_{\beta}[\|\hat{\beta} - \beta\|^2] \leq \frac{c\sigma^2 k \log(d/k)}{n}$$

Under some assumptions on X, we can show that there exists c' > 0,

$$\inf_{\hat{\beta}} \max_{\beta \in B_0(k)} \mathbb{E}_{\beta}[\|\hat{\beta} - \beta_0\|^2] \ge \frac{c'\sigma^2 k \log(d/k)}{n}$$

Here $\sigma^2 k \log(d/k)/n$ is the minimax rate and the estimator $\hat{\beta}$ is said to be minimax optimal.

1.1.1 General Set Up

1.1.1.1 Step 1

Let \mathcal{P} be a class of prob distributions on $(\mathcal{X}, \mathcal{B})$, $\mathcal{P} = \{p_{\theta}; \theta \in \Theta\}$. Below are some examples.

- 1. $p_{\theta} = \mathcal{N}(\theta, I_d)$ where $\theta \in \Theta \subset \mathbb{R}^d$. For instance, $\Theta = \{\theta; \|\theta\|_0 \leq k\}$ is the set of k-sparse vectors, or $\Theta = B_q(r)$ is the ℓ_q -norm ball of radius r.
- 2. Approximately sparse regression: $Y = X\beta + \epsilon$ where $\beta \in \{\beta \in \mathbb{R}^d : \left(\sum_{i=1}^d |\beta_i|^q\right)^{1/q} \le r\}$ and $q \in [0,1]$.
- 3. Hypothesis testing: $Y = X\beta + \epsilon$ and β is k-sparse. The null is $H_0: \beta = 0$.
- 4. Nonparametric regression: Observe Y_1^n , where $Y_i = f(X_i) + \epsilon_i$, $X_i \sim \text{Unif}(0,1)$ and $\epsilon_i \sim \mathcal{N}(0,\sigma^2)$ for all i and $f \in \mathcal{F}$ where \mathcal{F} is a class of smooth functions. We would like a lower bound of the form,

$$\inf_{\hat{f}} \sup_{f \in \mathcal{F}} \mathbb{E}[\|\hat{f} - f\|_2^2] \ge c\psi_n$$

for some constant c.

1-2 Lecture 1: Oct 27

5. Density Estimation: We observe $X_1^n \sim p \in \mathcal{P}$ where \mathcal{P} is a class of smooth densities. We would like a result of the form,

$$\inf_{\hat{p}} \sup_{p \in \mathcal{P}} \mathbb{E}_p[\|\hat{p} - p\|_q] \ge c\psi_n$$

N.B. 1.2 When $\mathcal{P} = \{p_{\theta}; \theta \in \Theta\}$ it is instructive to think of θ as the map $\theta : \mathcal{P} \to \Theta$.

1.1.1.2 Step 2

Let $d: \Theta \times \Theta \to \mathbb{R}$ be a semi-metric; i.e. it satisfies the following:

- $d(\theta, \theta') = d(\theta', \theta)$ for all $\theta, \theta' \in \Theta$.
- $d(\theta, \theta') \le d(\theta, \theta'') + d(\theta'', \theta')$ for all $\theta, \theta', \theta'' \in \Theta$.
- $d(\theta, \theta) = 0$.

1.1.1.3 Step 3

Define the "loss function" $w:[0,\infty)\to[0,\infty)$, where $w\neq\mathbf{0}$ and w(0)=0. Some examples are $w(x)=x^2$ and $w(x)=\mathbbm{1}(x>\tau)$.

1.1.2 Minimax Risk

Given $X_1^n \sim p \in \mathcal{P}$ we would like to estimate $\theta(p)$ for an estimator $\hat{\theta}: \mathcal{X}^n \to \Theta$. The point-wise risk at p is $\mathbb{E}_p[w(d(\hat{\theta}, \theta))]$. Some examples:

- 1. In estimation, $w(d(\hat{\theta}, \theta)) = ||\hat{\theta} \theta||_2^2$.
- 2. In hypothesis testing, $\mathcal{P} = \{p_0, p_1\}$ and $\phi : \mathcal{X}^n \to \{0, 1\}$ $(\phi(X_1^n) = 1 \text{ means we reject } H_0)$. The risk is $c_0 \mathbb{E}[\phi(X)] + c_1 \mathbb{E}[1 \phi(X)]$. (This doesn't fall into the above framework.)

Definition 1.3 (Maximal Risk) The maximal risk for an estimator $\hat{\theta}$ is

$$\gamma_n(\hat{\theta}) = \sup_{p \in \mathcal{P}} \mathbb{E}_p[w(d(\hat{\theta}, \theta))]$$

Typically, we have an upper bound of the form $\gamma_n(\hat{\theta}) \leq C\psi_n$ where $\psi_n \to 0$ as $n \to 0$.

Definition 1.4 (Minimax Risk) The minimax risk is the infimum of γ_n over all estimators θ ,

$$\mathcal{R}(n,\mathcal{P}) = \inf_{\hat{\theta}} \sup_{p \in \mathcal{P}} \mathbb{E}_p[w(d(\hat{\theta},\theta))]$$

It is a problem dependent quantity and doesn't depend on the statistical procedure.

Suppose we have an estimator satisfying $\gamma_n(\hat{\theta}) \in \mathcal{O}(\psi_n^*)$. Then ψ_n^* is the optimal rate of convergence if $\mathcal{R}(n,\mathcal{P}) \in \Omega(\psi_n^*)$. Then we have $\mathcal{R}(n,\mathcal{P}) \in \Theta(\psi_n^*)$.

Lecture 1: Oct 27

1.2 A General Strategy to Obtain Minimax Rates

We follow a three step procedure:

1. Reduction to a probability bound:

$$\mathbb{E}_p[w(d(\hat{\theta}, \theta))] \ge w(\delta)\mathbb{P}(d(\hat{\theta}, \theta) \ge \delta)$$

2. Reduction to a finite number of hypotheses,

$$\inf_{\hat{\theta}} \sup_{p \in \mathcal{P}} \mathbb{P}_p(d(\hat{\theta}, \theta(p)) > \delta) \ge \inf_{\hat{\theta}} \underbrace{\max_{p \in \mathcal{P}_M} \mathbb{P}_p(d(\hat{\theta}, \theta(p)) > \delta)}_{(\star)}$$

where
$$\mathcal{P}_M = \{p_{\theta_0}, p_{\theta_1}, \dots, p_{\theta_M}\} \subset \mathcal{P}$$
.

3. Recast (\star) as a hypothesis testing problem where $p_{\theta_0}, p_{\theta_1}, \ldots, p_{\theta_M}$ are possible distributions and we need to select (based on our observations X_1^n) which of them has produced X_1^n .

For step 3, we usually use a 2δ packing argument. Suppose that $d(\theta(p_i), \theta(p_j)) \geq 2\delta$ for all $i \neq j$. Denote the minimum distance test by $\phi^*(X) = \operatorname{argmin}_{k \in \{0,1,\ldots,M\}} d(\hat{\theta}, \theta(p_k))$. Then by the triangle inequality, for any $\hat{\theta}$

$$\mathbb{P}_{p_j}(d(\hat{\theta}, \theta(p_i)) > \delta) \ge \mathbb{P}_{p_j}(\phi^*(X) \ne j)$$

Then,

$$\inf_{\hat{\theta}} \sup_{p \in \mathcal{P}_M} \mathbb{P}_{p_j}(d(\hat{\theta}, \theta(p)) > \delta) \geq \inf_{\substack{\psi \ j \in \{0, 1, \dots, M\}}} \mathbb{P}_{p_j}(\phi^*(X) \neq j).$$

Any lower bound for $p_e(m, \delta)$ will give a lower bound for estimation. In particular, if $p_e(m, \delta) \ge c > 0$ then $\mathcal{R}(n, \mathcal{P}) \ge c \cdot w(\delta)$. Usually $\delta = \delta_n$ depends on n and $\delta_n \to 0$. For this to be a mimimax rate we should find $\hat{\theta}$ such that $\gamma_n(\hat{\theta}) \in \mathcal{O}(w(\delta_n))$.

We have two competing objectives in choosing $\mathcal{P}_M = \{p_0, p_1, \dots, p_M\}$:

- Choose p_0, p_1, \ldots, p_M so that they are maximally separated in the d-metric.
- However, probabilistically they should be indistinguishable. That is, a testing problem involving these distributions should be difficult.