Výpočet koeficientov PID regulátora

A. Metódy výpočtu koeficientov spojitých PID regulátorov na základe znalosti matematického modelu

- 1. Naslinova metóda
- 2. Metóda optimálneho modulu

- 3. Metóda štandardných tvarov (Butterworth, Graham-Lathrop)
- 4. Metóda časových konštánt
- 5. Zieglerova-Nicholsova metóda

B. Nastavovanie koeficientov spojitých regulátorov na základe prechodovej charakteristiky procesu

- 1. Zieglerova-Nicholsova metóda (open-loop)
- 2. Metóda inverzie dynamiky

C. Experimentálne metódy nastavovania koeficientov spojitých regulátorov

3. Metódy založené na štandardných tvaroch (charakteristického polynómu)

Postup návrhu pri týchto metódach spočíva v porovnaní charakteristického polynómu URO s referenčnými štandardnými tvarmi napr. podľa Butterwortha, Graham – Lathropa, a pod.). Porovnaním koeficientov polynómu URO a príslušného štandardného polynómu pri rovnakých mocninách "s" sa získajú lineárne rovnice na výpočet neznámych koeficientov regulátora.

A. Štandardné tvary Grahama – Lathropa (1953)

Rád referenčného polynómu

Koeficienty referenčného polynómu

$$q = \frac{s}{\omega_0}$$

$$1+q$$

$$1+1.4q+q^{2}$$

$$1+2.15q+1.75q^{2}+q^{3}$$

$$1 + 2.7q + 3.4q^2 + 2.1q^3 + q^4$$

B. Štandardné tvary podľa Butterwortha

Rád referenčného polynómu

Koeficienty referenčného polynómu

$$q = \frac{s}{\omega_0}$$
 2. 3.

$$1+q$$

$$1+1.41q+q^{2}$$

$$1+2q+2q^{2}+q^{3}$$

$$1+2.61q+3.41q^{2}+2.61q^{3}+q^{4}$$

Dá sa dokázať, že korene Butterworthových polynómov ležia na kružnici s polomerom ω_0 a sú symetricky rozložené voči reálnej osi (v ľavej polrovine).

Príklad 3A (Graham-Lathropove polynómy):

$$G_p(s) = \frac{K}{s(Ts+1)} = \frac{100}{s(0.15s+1)}$$
 $G_R(s) = r_0$

$$G_R(s) = r_0$$

Charakteristický polynóm

$$C(s) = 0.15s^2 + s + 100r_0 = s^2 + 6.667s + 666.667r_0$$

Referenčný polynóm

$$C_{ref} = 1 + 1.41q + q^2 = 0$$
 $q = \frac{s}{\omega_0}$

$$C_{ref} = 1 + 1.41 \frac{s}{\omega_0} + \left(\frac{s}{\omega_0}\right)^2 \Rightarrow s^2 + 1.41 \omega_0 s + {\omega_0}^2$$

$$s^2 + 6.667s + 666.667r_0 = s^2 + 1.41\omega_0 s + \omega_0^2$$

$$1 = 1$$
 $1.41\omega_0 = 6.667$ $\omega_0^2 = 666.667r_0$

$$\omega_0 = 4.7$$
 $r_0 = 0.0335$

Výpočet pólov URO

$$t_{reg} \approx \frac{4 \div 5}{3.3} \approx <1.2 \div 1.5 > s$$

ans =

>> abs(ans)

ans =

4.70004.7000

Vyhodnotenie kvality riadenia v Matlabe (pre Príklad 3A)

clc;clear Gp=tf(100,[0.15 1 0]) %prenos riadeneho procesu

Gr=tf(0.0335,1) %prenos P-regulatora, metoda Standardnych polynomov G-L

G_oro=Gp*Gr; %prenosova funkcia otvoreneho regulacneho obvodu

G_uro=feedback(G_oro,1) %prenosova funkcia uzavreteho regulacneho obvodu

step(G_uro) %vykreslenie prechodovej charakteristiky URO

grid

title('Prechodova charakteristika URO k prikladu 3A (G-L standardne polynomy)') xlabel('t');ylabel('y(t)')

stepinfo(G uro)

%vyhodnotenie kvality prechodovej charakteristiky URO

ans =

RiseTime: 0.4536

SettlingTime: 1.2627

SettlingMin: 0.9061

SettlingMax: 1.0439

Overshoot: 4.3873

Undershoot: 0

Peak: 1.0439

PeakTime: 0.9443

Príklad 3B (G-L)

$$G_p(s) = \frac{2741.4478}{s(0.1s^2 + 15.116s + 416.1202)}$$

$$G_R(s) = \frac{2741.4478(r_0 + r_1 s)}{s(0.1s^2 + 15.116s + 416.1202)}$$

Charakteristický polynóm URO:

$$C(s) = s^3 + 151.16s^2 + s(4161.202 + 27414.478r_1) + 27414.478r_0$$

Referenčný polynóm Graham - Lathropa:

$$C_{ref} = 1 + 2.15q + 1.75q^2 + q^3 = 0 \iff q = s / \omega_0$$

$$C_{ref} = \omega_0^3 + 2.15s\omega_0^2 + 1.75s^2\omega_0 + s^3 =$$

$$= s^3 + 151.16s^2 + s(4161.202 + 27414.478r_1) + 27414.478r_0$$

Riešenie:
$$1.75\omega_0 = 151.16$$
 $\omega_0 = 86.377$ $\omega_0 = 23.5080$ $\omega_0^3 = 27414.478r_0$ $\omega_0^3 = 27414.478r_0$ $\omega_0^3 = 27414.478r_0$

4. Metóda časových konštánt

Riadený proces

$$G_{p}(s) = K \frac{\prod_{j=1}^{m} (1 + \tau_{j} s)}{\prod_{i=1}^{n} (1 + T_{i} s)} e^{-Ds}$$

Sumárna časová konštanta

$$T_{S} = \sum_{i=1}^{n} T_{i} - \sum_{j=1}^{m} \tau_{j} + D$$
 Súčet čas. Súčet čas. dopravné konštánt konštánt oneskorenie čitateľa

Regulátor Typ		P	T_{i}	$\mathbf{T_d}$		
Normálny	P	1/K	-	-		
PID	PD	1/K	-	$0.33~\mathrm{T_s}$		
	PI	0.5/K	$0.5T_{\rm s}$	-		
	PID	1/K				
			$0.66T_{\rm s}$	$0.1667T_{\rm s}$		
	PI	1/K		-		
Rýchly			$0.7T_{\rm s}$			
PID		2/K	$0.8T_{\rm s}$	$0.194T_{\rm s}$		
	PID					

5. Ziegler – Nicholsova metóda (1942)

(frekvenčná metóda, oscillation test based)

Frekvenčná metóda Z-N je založená na analytickom alebo experimentálnom určovaní kritického zosilnenia a periódy kritických kmitov.

Princíp experimentálneho nastavovania:

- Zapojením P-regulátora do regulačného obvodu dôjde k jeho rozkmitaniu, z priebehu kmitov sa určí kritické zosilnenie K_{KR} a kritická perióda kmitov T_{KR}.
- 2. Podľa Z-N tabuľky sa nastavia koeficienty vhodne vybranej štruktúry PID regulátora.

Vyšetrovanie stability URO vo frekvenčnej oblasti - stručné opakovanie:

Stabilitu URO môžeme určiť z frekvenčných charakteristík ORO – podľa priesečníkov FCH ORO so "zápornou časťou reálnej osi"

Ak je otvorený regulačný obvod (ORO) stabilný, prípadne má pól v nule, bude uzavretý obvod (URO) stabilný vtedy, ak frekvenčná charakteristika ORO nepretína polpriamku $(-\infty,-1)$.

Koniec stručného opakovania ...

Výpočet kritických parametrov riadeného systému je možné realizovať priamo v Matlabe pomocou príkazu *margin* (vykreslí logaritmické frekvenčné charakteristiky a nájde kritické zosilnenie K_{KR} a kritickú hodnotu frekvencie), z týchto hodnôt potom určíme koeficienty regulátora podľa tabuľky:

Tab.: Nastavovenie koeficientov PID regulátora metódou Zieglera-Nicholsa

Typ regulátora	Proporcionálna zosilnenie	Integračná konštanta T _i	Derivačná konštanta T _d	
Р	0.5 K _{KR}	-		
PI	0.45 K _{KR}	0.85T _{KR}	-	
PID	0.6 K _{KR}	0.5T _{KR}	0.12T _{KR}	
PD	0.4 K _{KR}	-	0.05T _{KR}	

$$T_{KR} \frac{2\pi}{\omega_{KR}}$$

Príklad 6 (ZN): Vypočítajte koeficienty spojitého PID regulátora podľa Ziegler-Nicholsovej metódy na základe kritických hodnôt zosilnenia a frekvencie, ktoré získame použitím príkazu *margin* (*Matlab*), ak prenosová funkcia regulovaného procesu je v tvare

$$G_p(s) = \frac{K}{s(as^2 + bs + 9)} = \frac{9}{s(s^2 + 6s + 9)}$$

Riešenie môžeme realizovať priamo v Matlabe.

Thosomo mozomo realizavat phamo v matiabo.							
» num = 9	% citatel prenosovej funkcie						
» den = [1 6 9 0]	% menovatel prenosovej funkcie						
» g = tf(num,den) % prenosova funkcia							
Transfer function:	9						
	s^3 + 6 s^2 + 9 s						

Použitím príkazu *margin* (*g*) zobrazíme logaritmické frekvenčné charakteristiky. Ak sa navyše v príkaze použijú ľavostranné argumenty, vypíše sa priamo hodnota kritického zosilnenia a kritickej frekvencie.

>> margin (g)

Bode Diagrams

Frequency (rad/sec)

[Kkr,Fk,wkr,wf] = margin(g) % výpočet rezervy v zosilnení (Kkr), vo % fáze a odpovedajúcich hodnôt frekvencií

Výsledky riešenia:

$$G_R(s) = P(1 + \frac{1}{T_i s} + T_d s = P + I \frac{1}{s} + Ds$$

$$G_R(s) = 3.6(1 + \frac{1}{1.0472s} + 0.2513s) = P + I\frac{1}{s} + Ds$$

Prechodová charakteristika URO s PID regulátorom podľa Z-N metódy

 δ_{DR} < 1:4

Výpočet koeficientov PID regulátora

A. Metódy výpočtu koeficientov spojitých PID regulátorov na základe znalosti matematického modelu

- 1. Naslinova metóda
- 2. Metóda optimálneho modulu
- 3. Metóda štandardných tvarov (Butterworth, Graham-Lathrop)
- 4. Metóda časových konštánt
- 5. Zieglerova-Nicholsova metóda

B. Nastavovanie koeficientov spojitých regulátorov na základe prechodovej charakteristiky procesu

- 1. Zieglerova-Nicholsova metóda (*open-loop !*)
- 2. Metóda inverzie dynamiky

C. Experimentálne metódy nastavovania koeficientov spojitých regulátorov

B. Nastavovanie koeficientov spojitých regulátorov na základe prechodovej charakteristiky procesu

1. Ziegler – Nicholsova metóda (Z-N open-loop)

Modifikácia tak, aby pomer dvoch po sebe idúcich amplitúd regulovanej veličiny bol $\frac{a_2}{a_1} \le 0.25$

Regulátor	Zosilnenie	Integračná konštanta	Derivačná konštanta	
$G_p(s)=P(1+\frac{1}{T_is}+T_ds)$	regulátora P	T _i	T _d	
Тур Р	$\frac{1}{K_{p}}\frac{\tau}{\alpha}$	-	-	
Typ PI	$\frac{0.8}{K_p} \frac{\tau}{\alpha}$	3 α	-	
Typ PD	$\frac{1.2}{K_p} \frac{\tau}{\alpha}$	-	0.25 α	
Typ PID	$\frac{1.2}{K_{p}}\frac{\tau}{\alpha}$	2α	2α	

Metóda Cohena-Coona (Co-Cn)

Pravidlá na výpočet parametrov regulátora sú určitou modifikáciou metód Z-N metódy. Podmienka použitia $0.1 < \alpha/\tau < 1.0$

Regulátor $G_{p}(s) = K(1 + \frac{1}{T_{i}s} + T_{d}s)$	Zosilnenie regulátora K	Integračná konštanta T _i	Derivačná konštanta T _d		
Typ P	$\frac{1}{K_{p}} \frac{\tau}{\alpha} \left[1 + \frac{1}{3} \frac{\alpha}{\tau} \right]$	-	-		
Typ PI	$\frac{1}{K_{p}} \frac{\tau}{\alpha} \left[0.9 + \frac{1}{12} \frac{\alpha}{\tau} \right]$	$\alpha \left[\frac{30 + 3 \frac{\alpha}{\tau}}{9 + 20 \frac{\alpha}{\tau}} \right]$	-		
Typ PD	$\frac{1}{K_{p}} \frac{\tau}{\alpha} \left[\frac{5}{4} + \frac{1}{6} \frac{\alpha}{\tau} \right]$	-	$\alpha \left[\frac{6-2\frac{\alpha}{\tau}}{22+3\frac{\alpha}{\tau}} \right]$		
Typ PID	$\frac{1}{K_{p}} \frac{\tau}{\alpha} \left[\frac{4}{3} + \frac{1}{4} \frac{\alpha}{\tau} \right] \alpha$	$\left[\frac{32 + 6 \frac{\alpha}{\tau}}{13 + 8 \frac{\alpha}{\tau}}\right]$	$2\left[\frac{4}{11+2\frac{\alpha}{\tau}}\right]$		

Nastavovanie koeficientov PID regulátora na základe

minimalizácie ITAE, podm. použitia: $0.1 < \alpha/\tau < 1.0$

Regulátor $G_{p}(s) = P(1 + \frac{1}{T_{i}s} + T_{d}s)$	Zosilnenie regulátora P	Integračná konštanta T _i	Derivačná konštantaT _d
Typ P Komp. poruchy	$\frac{0.49}{K_p} \left(\frac{\tau}{\alpha}\right)^{1.084}$	- 	-
Typ PI Set-point sledovanie	$\frac{0.586}{K_p} \left(\frac{\tau}{\alpha}\right)^{0.916}$	$\left[\frac{\alpha}{1.03 - 0.165\left(\frac{\tau}{\alpha}\right)}\right]$	-
Typ PI Komp. poruchy	$\frac{0.859}{K_p} \left(\frac{\tau}{\alpha}\right)^{0.977}$	$\left[\frac{\alpha}{0.674 \left(\frac{\tau}{\alpha} \right)^{0.680}} \right]$	-
Typ PID Set-point sled.	$\frac{0.965}{K_p} \left(\frac{\tau}{\alpha}\right)^{0.855}$	$\boxed{\frac{\alpha}{0.796 - 0.147\left(\frac{\tau}{\alpha}\right)}}$	$0.308\tau \left(\frac{\tau}{\alpha}\right)^{0.929}$
Typ PID Komp. poruchy	$\frac{1.357}{K_p} \left(\frac{\tau}{\alpha}\right)^{0.947}$	$\frac{1.357}{K_p} \left(\frac{\tau}{\alpha}\right)^{0.734}$	$0.381\tau \left(\frac{\tau}{\alpha}\right)^{0.995}$

2. Metóda inverzie dynamiky (metóda požadovaného modelu)

Na základe vyhodnotenia jeho prechodovej charakteristiky dokážeme ľubovoľný systém opísať (identifikovať) jedným z týchto typov matematických modelov:

$$G_P(s) = \frac{K_p}{T_p s + 1} e^{-Ds}$$
 FOPDT = first-order +

dead time

dead time

$$G_P(s) = \frac{K_p}{(T_p s + 1)^2} e^{-Ds}$$
 SOPDT = second order + dead time

$$G_P(s) = \frac{K_p}{s(1+T_p s)}e^{-Ds}$$
 FOLIPDT = first order lag

$$G_P(s) = \frac{K_p}{s} e^{-Ds}$$
 integral + dead time

$$G_P(s) = \frac{K_p}{(T_p^2 s^2 + 2bT_p s + 1)} e^{-Ds}$$

SOPDT = second order + dead time (kmitavý systém)

dead time

and integrator + dead time

Princíp:

$$G_{y/w}(s) = \frac{Y(s)}{W(s)} = \frac{G_P(s)G_R(s)}{1 + G_P(s)G_R(s)} \implies G_R(s) = \frac{1}{G_P(s)} \frac{G_{Y/W}(s)}{1 - G_{Y/W}(s)}$$

$$G_{Y/W}(s) = \frac{1}{T_W s + 1} e^{-Ds} \qquad G_R(s) = P(1 + \frac{1}{T_i s} + T_d s) = r_0 + \frac{r_{-1}}{s} + r_1 s$$

Pre základné modely dynamických systémov sú pravidlá nastavovania konštánt regulátora uvedené v tabuľke.

Pozn.: T_V je perióda vzorkovania diskrétneho PID regulátora, T_w je (želaná) časová konštanta prechodovej charakteristiky URO (želaná dynamika).

Model procesu	Тур	Koeficienty spojitých a diskrétnych regulátorov					
	regulá- tora	D=0 $D>0$					
		P	P	T_i^*	T_d		
$\frac{K}{s}e^{-Ds}$	P	$\frac{2}{K(2T_w + T_v)}$	$\frac{a}{K}$	-	-		
$\frac{K}{T_1s+1}e^{-Ds}$	PI	$\frac{2T_i^*}{K(2T_w + T_v)}$	$\frac{a}{K}T_i^*$	$T_1 - \frac{T_v}{2}$			
$\frac{K}{s(T_1s+1)}e^{-Ds}$	PD	$\frac{2}{K(2T_w + T_v)}$	$\frac{a}{K}$	-	$T_1 - \frac{T_v}{2}$		
$\frac{K}{(T_1s+1)(T_2s+1)}e^{-Ds}$	PID	$\frac{2T_i^*}{K(2T_w + T_v)}$	$\frac{aT_i^*}{K}$	$T_1 + T_2 - T_v$	$\frac{T_1 T_2}{T_1 + T_2} - \frac{T_v}{4}$		
$\frac{K}{(T^2s^2+2bTs+1)}e^{-Ds}$	PID	$\frac{2T_i^*}{K(2T_w + T_v)}$	$\frac{aT_i^*}{K}$	$2bT - T_v$	$\frac{T}{2b} - \frac{T_v}{4}$		

Postup:

- 1. Vyberie sa požadovaná hodnota preregulovania η a určia sa odpovedajúce hodnoty koeficientov a, b (podľa tab.1)
- 2. Vypočíta sa hodnota koeficientu a (zosilnenie otvoreného regulačného obvodu), a z neho sa vypočítajú hodnoty koeficientov regulátora podľa tab. na predošlom slajde (D je dopr. oneskorenie a T_v je perióda vzorkovania v prípade, že počítame diskrétny regulátor)

Tab. 1 Závislosť preregulovania η URO od parametrov *a, b*

η	0	0.05	0.1	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50
αβ		0.984 1.944							0.618 1.104	0.599 1.045	0.577 0.992

$$a = \frac{1}{\alpha T_{v} + \beta D}$$

Príklad 1B (Metóda inverzie dynamiky)

$$G_p(s) = \frac{K}{s(Ts+1)}e^{-Ds} = \frac{100}{s(0.15s+1)}e^{-0.5s}$$

$$K = 100, T = 0.15, T_v = 0$$

$$K = 100, T = 0.15, T_v = 0$$

V tabuľke vyhľadáme príslušný tvar prenosovej funkcie, pre ktorý je odporúčaný PD regulátor. $G_R(s) = P(1 + T_d s)$

Parametre PD regulátora z tabuľky: $P = \frac{a}{K}, T_d = T$

$$P = \frac{a}{K}, T_d = T$$

regulátora z tabuľky:
$$P = \frac{\alpha}{K}$$
, $T_d = T$
 $P = 0.0074$ $G_R(s) = 0.0074(1 + 0.15s)$
 $A = \frac{1}{\beta D}$ $\eta_{\text{max}} = 0\% \Rightarrow \beta = 2.718$
 $A = 0.15$
 $A = 0.15$

$$G_R(s) = 0.0074$$
 $G_R(s) = 0.0074(1+0.15s)$

$$T_d = 0.15$$

$$P = 0.0103$$

$$T_d = 0.15$$

$$T_d = 0.15$$
 $G_R(s) = 0.0103(1 + 0.15s)$

Ako získame základné prenosové funkcie pre návrh PID metódou požadovaného modelu?

Napr. identifikáciou z nameraných prechodových charakteristík (opakovanie základných postupov je na nasledujúcich slajdoch)

Identifikácia parametrov modelu I. rádu s dopr.oneskorením

$$G_{\rho}(s) = \frac{K_{\rho}e^{-Ds}}{1 + T_{\rho}s}$$

Výpočet časovej konštanty T_p a dopravného oneskorenia z nameranej charakteristiky D sa dá realizovať podľa nasledovných vzťahov $T_p = 1.245(t_{0.7}-t_{0.33}), D=1.498t_{0.33}-0.498t_{0.7}$

Príklad:

$$h_p = 6$$
, $t_{0.7} = 21$, $t_{0.33} = 8.7$

$$T_p = 15.3135$$

$$D = 2.5746$$

Výsledný matematický model:

$$G_{p}(s) = \frac{K_{p}e^{-Ds}}{1+T_{p}s} = \frac{6e^{-2.5725s}}{1+15.3135s}$$

Identifikácia parametrov modelu II. rádu s dopr. oneskorením

$$G_{\rho}(s) = \frac{K_{\rho}}{(1+T_{\rho}s)^{2}}e^{-Ds}$$

$$T_{\rho} = 0.794(t_{0.7} - t_{0.33})$$

$$D = 1.937t_{0.33} - 0.937t_{0.7}$$

$$Kp = h_p$$
 (ustálená hodnota)

$$T_p = 0.794(t_{0.7} - t_{0.33})$$

$$D = 1.937t_{0.33} - 0.937t_{0.7}$$

Identifikácia kmitavého procesu II. rádu s dopr. oneskorením

$$G_{\rho}(s) = \frac{K_{\rho}e^{-Ds}}{T_{\rho}^{2}s^{2} + 2bT_{\rho}s + 1}$$

Identifikované parametre:

$$K_p = h_{ust}$$
, T_p , b , D .

1. z PCH odčítame hodnoty: $_{0}$ hodnotu prvého maxima A_{1} a čas t_{1} hodnotu prvého minima A_{2} a čas t_{2} hodnotu druhého maxima A_{3} a čas t_{3} hodnotu druhého minima A_{4} a čas t_{4}

2. určíme hodnoty premenných a_i , i = 1,2,3, kde

$$a_1 = A_1 - A_2$$

$$\boldsymbol{a}_2 = |\boldsymbol{A}_2 - \boldsymbol{A}_3|$$

$$a_3 = A_3 - A_4$$

3. Vypočítame relatívne tlmenie b:

$$b = -\frac{\ln \frac{a_{i+1}}{a_i}}{\sqrt{\pi^2 + \ln^2 \frac{a_{i+1}}{a_i}}} \quad \text{alebo} \quad b = -\frac{\ln \frac{a_{i+2}}{a_i}}{\sqrt{4\pi^2 + \ln^2 \frac{a_{i+2}}{a_i}}}$$

4. Vypočítame časovú konštantu

$$T_{p} = \frac{1}{\pi n} \sum_{i=1}^{n} (t_{i+1} - t_{i}) \sqrt{1 - b^{2}} = \frac{1}{\pi n} (t_{n+1} - t_{1}) \sqrt{1 - b^{2}}$$

n je počet úsekov vymedzených časovými poradnicami t_i (n je rovný počtu a_i)

5. Vypočítame dopravné oneskorenie D:

$$D = \frac{1}{n} \sum_{i=1}^{n} t_i - \frac{n+1}{2n} (t_{n+1} - t_1)$$

Príklad: Z nameranej kmitavej prechodovej charakteristiky určte parametre T_p, D a tlmenie b.

- t_1 =23 (prvé maximum), t_2 =40 (prvé minimum), t_3 =58 (druhé maximum).
- počet úsekov pre vyhodnotenie prechodovej charakteristiky n=2 (i=1,2) a im odpovedajúce hodnoty $a_1=46$, $a_2=11.5$.

$$b = -\frac{\frac{n \frac{a_{i+1}}{a_i}}{\sqrt{\pi^2 + n^2 \frac{a_{i+1}}{a_i}}} = -\frac{\frac{n \frac{11.5}{46}}{\sqrt{3.14^2 + n^2 \frac{11.5}{46}}} = 0.4039$$

$$T_p = \frac{1}{\pi n} (t_{n+1} - t_1) \sqrt{1 - b^2} = \frac{1}{3,14.2} (t_3 - t_1) \sqrt{1 - 0.4039^2} = \frac{1}{6.28} (58 - 23) \sqrt{0.8372} = 5.09$$

$$D = \frac{1}{n} \sum_{i=1}^{n} t_i - \frac{n+1}{2n} (t_{n+1} - t_1) = \frac{1}{2} \sum_{i=1}^{2} t_i - \frac{2+1}{2 \cdot 2} (t_3 - t_1) =$$

$$= \frac{1}{2}(t_1 + t_2) - \frac{3}{4}(t_3 - t_1) = \frac{1}{2}(23 + 40) - 0.75(58 - 23) = 5.2$$

Zosilnenie: $K_p = h_{ust}$,=150

$$G_{p}(s) = \frac{150}{5.09^{2} s^{2} + 0.8078s + 1} e^{-5.2s}$$

Identifikácia lineárnych systémov typu FOLIPDT

(first-order lag and integrator plus dead time)

$$G_{p}(s) = \frac{K_{p}}{s(1+T_{p}s)}e^{-Ds}$$

Zosilnenie určíme zo smernice lineárne rastúcej časti:

$$K_{p} = \frac{\Delta h}{\Delta t}$$

Výpočet koeficientov PID regulátora

A. Metódy výpočtu koeficientov spojitých PID regulátorov na základe znalosti matematického modelu

- 1. Naslinova metóda
- 2. Metóda optimálneho modulu
- 3. Metóda štandardných tvarov (Butterworth, Graham-Lathrop)
- 4. Metóda časových konštánt
- 5. Zieglerova-Nicholsova metóda

B. Nastavovanie koeficientov spojitých regulátorov na základe prechodovej charakteristiky procesu

- 1. Zieglerova-Nicholsova metóda (open-loop)
- 2. Metóda inverzie dynamiky
- C. Experimentálne metódy nastavovania koeficientov spojitých regulátorov

C. Experimentálne metódy nastavovania koeficientov spojitých regulátorov

Ak nedokážeme určiť matematický model procesu ani jeho charakteristické veličiny z grafického priebehu regulovanej veličiny (doba nábehu, doba prieťahu, doba prechodu a pod.), koeficienty regulátora sa nastavujú ručne.

- Hodnota derivačnej a integračnej konštanty by mala byť na počiatku nulová a zosilnenie nastavíme tak, aby regulačný pochod bol kmitavý.
- Ak tak nie je, hodnotu proporcionálnej zložky zvyšujeme dovtedy, kým regulačný obvod nebude tlmene kmitavý.
- 3. V ďalšom kroku nastavujeme zložku integračnú, pomocou ktorej by sme mali dosiahnuť silno-kmitavý priebeh
- 4. V poslednom kroku pomocou postupného zvyšovania derivačnej zložky je potrebne kmitavý pochod čo najviac utlmiť.

Tabuľka nastavovania P, PI a PID regulátorov

