Suites numériques : Exercices de révision

EXERCICE 1

Exprimer u_n en fonction de n sachant que (u_n) est une suite arithmétique de raison r, vérifiant :

1.
$$u_0 = 2$$
 et $r = \frac{3}{2}$;

2.
$$u_5 = 1$$
 et $u_{11} = 8$;

3.
$$u_0 = 1$$
 et $u_0 + u_1 + \ldots + u_{100} = 2$.

EXERCICE 2

Exprimer u_n en fonction de n sachant que (u_n) est une suite géométrique de raison q, vérifiant :

1.
$$u_1 = 5$$
 et $r = \frac{2}{3}$;

2.
$$u_4 = 1$$
 et $u_9 = 25\sqrt{5}$;

3.
$$q = 2$$
 et $u_0 + u_1 + ... + u_{12} = 24573$.

EXERCICE 3

Montrer que chacune des suites ci-après est géométrique, et préciser sa raison.

1.
$$u_n = 3^{n+2}$$
:

2.
$$u_n = 5^{1-3n}$$
;

3.
$$u_n = (-1)^n \times 6^{2n+3}$$
;

4.
$$u_n = 2 + (2 + 2^2 + ... + 2^n)$$
.

EXERCICE 4 Calculer les sommes :

1.
$$A = 8 + 13 + 18 + ... + 1998 + 2003$$
;

2.
$$B = 2^2 + 2^5 + 2^8 + ... + 2^{20}$$
;

3.
$$C = x + x^2 + ... + x^n$$
 (lorsque $x \ne 1$, puis lorsque $x = 1$).

Dans les exercices suivants, étudier la monotonie des suites à l'aide de la technique indiquée.

EXERCICE 5: avec la différence $u_{n+1} - u_n$

1.
$$u_n = \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}}$$
;

2.
$$u_n = n^2 - 5n$$
.

EXERCICE 6: avec le quotient $\frac{u_{n+1}}{u_n}$

1.
$$u_n = \frac{n}{3^n}$$
;

2.
$$u_n = \frac{1}{2} \times \frac{3}{4} \times ... \times \frac{2n-1}{2n}$$
.

EXERCICE 7: avec la fonction $f(u_n = f(n))$

1.
$$u_n = n + \frac{1}{n+1}$$
;

2.
$$u_n = \frac{n^2 + 1}{n^2 - 1}$$
.

EXERCICE 8 : avec un raisonnement par récurrence

1.
$$u_0 = 5$$
 et, pour tout $n \ge 0$, $u_{n+1} = \sqrt{u_n + 2}$;

2.
$$u_0 = \frac{7\pi}{2}$$
 et, pour tout $n \ge 0$, $u_{n+1} = u_n^2$.