## HX711 시험 검증

## 개발 간 확인한 보정 알고리즘 적용

- 1st order linear Eqn. 형태의 알고리즘 적용
  - 。(기울기 = 0.03011, 편차 = 696.0)

| 형식번<br>호 | 기존 상태         | 적용 행위                    | 센서 예상<br>출력 | 실제 출력   |
|----------|---------------|--------------------------|-------------|---------|
| TC-001   | 아무것도 없음       | 10분 동안 대기                | 0           | 0       |
| TC-002   | 아무것도 없음       | 저중량(물 21) 측정             | 2           | 2.02    |
| TC-003   | 물 21 측정       | 3분 동안 대기 후 센서 안<br>정화 확인 | 2           | 2.03    |
| TC-004   | 물 21 측정       | 물 21 제거                  | 0           | 0.01    |
| TC-005   | 아무것도 없음       | 무게 측정 후 3분 대기,<br>센서 안정화 | 0           | 0.00    |
| TC-006   | 아무것도 없음       | 고중량(사람) 측정               | 54          | 53.7    |
| TC-007   | 고중량(사람)<br>측정 | 3분 동안 대기 후 센서 안<br>정화 확인 | 54          | 50~54.8 |
| TC-008   | 고중량(사람)<br>측정 | 고중량(사람) 제거               | 0           | 0       |
| TC-009   | 아무것도 없음       | 무게 측정 후 3분 대기,<br>센서 안정화 | 0           | 0       |



데이터



## 데이터 분석:

저중량 물체 중량에 대해 오차범위 0% 발생

고중량 물체 중량에 대해 오차범위가 최대 10% 발생

측정 당시 고정되어 있던 저중량 물체의 무게가 일정하게 측정되는 것으로 보아, 사람이 미세하게 움직임에 따라 발생하는 오차 범위로 예상되며, 실질적으로 고정 물체를 측정하는 경우 약 5%의 오차가 발생할 것으로 예상됨.

40 이하의 데이터는 사람이 센서에 올라가있는 동안 무게 중심을 잃어 잠깐 움직인 것으로 인한 오류 데이터.

## 결론:

해당 센서 및 보정 알고리즘을 기반으로 무게를 측정하는 것이 유효할 것으로 판단함.