1 Model sustava za raspoznavanje uzoraka

1.1 Formalni model

Slika 1: Formalni model sustava RU

Okolina O : $o_k \in O; v_j \in VO$

Realizirani prostor uzoraka PU : f_k -uzorci

Prostor razreda uzoraka $\Omega\,:\,\Omega=\{\omega_1,\omega_2,\ldots,\omega_M\}$

mjerenje m
: $m:o_k->f_k$ klasifikacija c: $c:f_k->\omega_i$

Uhrov stožac raspoznavanja - redukcija informacija

Slika 2: Uhrov stožac

1.2 Značajke, vektor značajki i klasifikator

Slika 3: Osnovne faze u postupku oblikovanja sustava RU

značajke - promatramo ih kao slučajne varijable: x_i vektor značajki - slučajni vektori $\vec{X}, \vec{X} = [x_1, x_2, \dots, x_n]^T$

- -značajke koje predstavljaju razlike između razreda uzoraka nazivaju se $\underline{\text{INTERSET}}$ značajke
- -INTRASET značajke su zajedničke SVIM razredima iz PU (područja uporabe) i ne nose diskriminacijsku informaciju- TAKVE ZNAČAJKE MOGU SE ZANEMARITI

Izbro značajki - izlučiti i izabrati INTERSET značajke

- U većini slučajeva određivanje potpunog skupa diskriminacijskih značajki je IZNIMNO TEŠKO ILI ČAK NEMOGUĆE
- Neke diskriminacijske značajke mogu se naći na temelju raspoloživih rezultata mjerenja (senzoriranja)
- Redukcija dimenzionalnosti vektora značajki uporabom transformacija uz minimalni gubitak informacija
- Vektor značajki predočen kao točka u n-dimenzionalnom prostoru značajki
- Obično definiramo i neku vrstu metrike u takvom prostoru značajki
- Klasifikacija (razvrstavanje) uzorka temelji se na decizijskim funkcijama; PROBLEM: određivanje optimalne decizijske procedure
- Problem klasifikacije može se promatrati kao razvrstavanje nepoznatog uzorka u potprostor prostora značajki na temelju decizijskih granica koje definiraju te procedure
- Decizijske granice određene su decizijskim funkcijama: $d_1(\vec{X}), d_2(\vec{X}), \dots, d_M(\vec{X}),$ /VAŽNO: d_i je funkcija koja ima za argument VEKTOR a vraća SKALAR/

• Pravilo razvrstavanja: Ako $d_i(\vec{X})>d_j(\vec{X})$ za i, j=1,2,...,M te je $j\neq i$ tada nepoznati uzorak \vec{X} pripada razredu ω_i

Blok-dijagram klasifikatora

Slika 4: Blok-dijagram klasifikatora

DFG - generator decizijske funkcije (engl. Decision function generator)

Model sustava za raspoznavanje

Slika 5: Model sustava za raspoznavanje

- $\bullet\,$ Vanjski, fizički ("analogni") svijet sadrži praktički $\infty\,$ mnogo značajki
 - senzor ili pretvarač pretvara analogni svijet u zapis koji sadrži r (brojčanih) vrijednosti
- Pretprocesiranje : izlučivanje šuma, poboljšanje mjernog podatka
- Prostor značajki: $n \ll r$, $\vec{X} = (x_1, x_2, \dots, x_n)^T$
- \bullet Prostor odlučivanja jednodimenzionalni prostor R^1

PRIMJER:

 $OB = \{o_k; k = 1, 2, \ldots\}$

 o_i - signal EKG-a pacijenta

PU - automatska dijagnoza signala EKG-a u testu opterećenja

Uzorak:
$$f_k(\vec{X}) - > \vec{X} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Razred objekata:

Normalni EKG

Granični EKG

Nenormalni EKG

Razred uzoraka:

 C_1/ω_1 - Nenormalni EKG

 C_2/ω_2 - Granični EKG

 C_3/ω_3 - Normalni EKG

Skup uzoraka za učenje ili vježbanje $\mathcal{U}_M = (S_N, \Omega)$

Tip uzorka - jednostavan uzorak

Sustav za automatsku dijagnozu EKG-a /Lesterova dijagnostička metoda/

Slika 6: Vanjski svijet

Slika 7: Uzorkovanje (f_u =800Hz)

-Pretprocesiranje:

- Elimnacija elektrosistule
- Detekcija stabilnih točaka (maksimalna i minimalna derivacija)
- Filtriranje usrednjavanjem /
eliminacija šuma za faktor $\sqrt{n};$ gdje je n
 broj analiziranih perioda
- Utvrđivanje broja otkucaja u minuti
- -Izlučivanje značajki u skladu s Lesterovom dijagnostičkom metodom

Problem:

- Koljeno J ima različite oblike
- segment ST se nalazi između kraja (završetka) vala S i početka vala T; duljina segmenta ST zavisi od frekvencije signala EKG-a (broja otkucaja srca u minuti)

Slika 8: Prikaz koljena

Označeni uzorci: u skladu s postulatom 1 $\Omega = \{NenormalanEKG\,\omega_1,\,\text{Granični slučaj}\,\,\omega_2,\,\text{Normalan}\,\,\text{EKG}\,\,\omega_3\\ = \{\omega_1,\,\omega_2,\,\omega_3\,\,M = 3\\ vektorznačajki = \begin{bmatrix} x_1\\x_2 \end{bmatrix};\,x_1$ - nagib segmenta ST, x_2 - depresija koljena J

Slika 9: Primjeri koljena J i segmenata ST

Slika 10: Prostor značajki za primjer

Slika 11: Decizijske funkcije za primjer

Slika 12: Razvrstavanje nepoznatog uzorka

Linearne funkcije odlučivanja

(engl. Linear discriminant functions)

Slika 13: Linearna funkcija odlučivanja

vektor značajki - $\vec{X} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \, \mathbf{M}{=}2$

Funkcija odlučivanja kao linearna kombinacija komponenti vektora \vec{X} :

 $d(\vec{X}) = w_1 x_1 + w_2 x_2 + \ldots + w_n x_n + w_{n+1}$

za: n=2 funkcija odlučivanaja -> jednadžba pravca

n=3 funkcija odlučivanaja -> jednadžba ravnine

n>3 funkcija odlučivanaja -> hiperravnina

 w_i - težinski koeficijenti; i=1,2,...,n

 w_{n+1} - pomaknuće, utežnosni prag (engl.bias, threshold weight)

Slučaj 2 razreda (ω_1 i ω_2 , M=2)

 $d(\vec{X}) = w_1 x_1 + w_2 x_2 + \ldots + w_n x_n + w_{n+1} = 0$

 $M=2, \omega_1, \omega_2$

Decizijsko pravilo:

ako $d(\vec{X}) > 0$ onda $\vec{X} \in \omega_1$

 $d(\vec{X}) < 0$ onda $\vec{X} \in \omega_2$

ako $d(\vec{X}) = 0$ onda nedefinirano

 $d(\vec{X})$ zapišimo u vektorskom obliku: $d(\vec{X}) = \vec{w_0}^T \vec{X} + w_{n+1} = 0$

Slika 14: Geometrijska interpretacija funkcije odlučivanja

Jednadžba hiperravnine:
$$\vec{u}^T \cdot (\vec{X} - \vec{p}) = 0$$

$$\vec{w_0}^T \vec{X} + w_{n+1} = 0 / \|\vec{w_0}\|, \text{ gdje je } \|\vec{w_0}\| = \sqrt{w_1^2 + w_2^2 + \ldots + w_n^2}$$

$$\frac{\vec{w_0}^T \vec{X}}{\|\vec{w_0}\|} = -\frac{w_{n+1}}{\|\vec{w_0}\|}$$

$$\vec{u}^T \vec{X} = \vec{u}^T \cdot \vec{p}$$

 $\vec{u} = \frac{\vec{w_0}}{\|\vec{w_0}\|}$ -> pokazuje orijentaciju hiperravnine; ako je neka komponenta od \vec{u} jednaka 0 onda je hiperravnina paralelna s odgovarajućom koordinatnom osi

Apsolutna vrijednost $\vec{u}^T \cdot \vec{p}$:

 $\vec{u} = \frac{\vec{w_0}}{\|\vec{w_0}\|}$ i $\vec{u}^T \cdot \vec{p} = -\frac{w_{n+1}}{\|\vec{w_0}\|}$

 $|\vec{u}^T \cdot \vec{p}|$ predstavlja udaljenost hiperravnine od ishodišta.

$$D_u = \frac{|w_{n+1}|}{\|\vec{w_0}\|}$$

Posljedice:

- Budući da je $\vec{u}=\frac{\vec{w_0}}{\|\vec{w_0}\|}$ ispitivanjem vektora težinskih koeficijenata $\vec{w_0}$ moguće je utvrditi da li je hiperravnina paralelna s bilo kojom koordinat-
- ullet ako je $w_{n+1}=0$ onda hiperravnina prolazi kroz ishodište koordinatnog
- Udaljenost točke \vec{X} od hiperravnine je $D_x = \left| \vec{u}^T \cdot \vec{p} \vec{u}^T \cdot \vec{X} \right| = \left| \frac{\vec{w_0}^T \cdot \vec{p}}{\|\vec{w_0}\|} \frac{w_{n+1} \vec{X}}{\|\vec{w_0}\|} \right|$

SLUČAJ: VIŠE RAZREDA M>2

- više pristupa rješavanju problema linearnog klasifikatora za M>2 M=c, c>2

Primjer problem se može reducirati na c problema klasifikacije u dva razreda u kojem se i-ti problem rješava linearnom funkcjiom odlučivanja koja odvaja uzorke razreda ω_i od svih ostalih razreda ω_i .

Slika 15: Klasifikacija više razreda

1. slučaj: Granica između $\omega_i; i=1,2,\ldots,c$ i preostalih razreda

$$d_i(\vec{X}) = w_{i1}x_1 + w_{i2}x_2 + \ldots + w_{in}x_n + w_{in+1} = 0$$

$$d_i(\vec{X}) = \vec{w_i}^T \vec{X} + w_{in+1}$$

deaj. Gramca između
$$\omega_i, \ i=1,2,\dots,\ell$$
 i preostami razreda $d_i(\vec{X}) = w_{i1}x_1 + w_{i2}x_2 + \dots + w_{in}x_n + w_{in+1} = 0$ $d_i(\vec{X}) = \vec{w_i}^T \vec{X} + w_{in+1}$ Svaki je razred uzoraka separabilan od ostalih razreda jednom decizijskom ravninom $d_i(\vec{X}) = \vec{w_i}^T \vec{X} = \begin{cases} > 0 \text{ za } \vec{X} \in \omega_i \\ < 0 \text{ za } \vec{X} \notin \omega_i \end{cases}$

Slika 16: 1. slučaj

2. slučaj: Svaki razred uzoraka je separabilan sa svakim pojedinim (drugim razredom) i to jednom decizijskom ravninom /razredi su po parovima separabilni: M(M-1)/2 decizijskih ravnina/

Slika 17: 2. slučaj

Upotrijebi $\frac{c(c-1)}{2}$ linearnih funkcija odlučivanja tako da svakom funkcijom odvojiš par (2) razreda

Granica između ω_i i ω_j je zadana s: $d_i j(\vec{X}) = w_{ij1} x_1 + w_{ij2} x_2 + \ldots + w_{ijn} x_n + w_{ij_{n+1}} = 0$

3. slučaj: Postoji M decizijskih funkcija $d_k(\vec{X}) = \vec{w_k}^T \vec{X}$, k = 1, 2, ..., M sa svojstvom da \vec{X} pripada razredu ω_i ako $d_i(\vec{X}) > d_j(\vec{X})$ za sve $j \neq i$ To je poseban slučaj 2. slučaja zato što možemo definirati $d_{ij}(\vec{X}) = d_i(\vec{X}) - d_j(\vec{X}) = (\vec{w_i} - \vec{w_j})^T \vec{X} = \vec{w_{ij}}^T \vec{X}$; $\vec{w_{ij}} = \vec{w_i} - \vec{w_j}$ ako je $d_i(\vec{X}) > d_j(\vec{X})$ za sve $j \neq i$, tada je $d_{ij}(\vec{X}) > 0$ za sve $j \neq i$, što znači: ako su razredi separabilni za 3. slučaj onda su automatski separabilni i za 2. slučaj.

 $d_{ij}(\vec{X}) = d_i(\vec{X}) - d_j(\vec{X}) = (w_{i1} - w_{j1})x_1 + (w_{i2} - w_{j2})x_2 + \ldots + (w_{in} - w_{jn})x_n + (w_{in+1} - w_{jn+1}) = 0$ $d_i(\vec{X}) = \vec{w_i}^T \cdot \vec{X} + w_{in+1} \text{ ako je } d_i(\vec{X}) > d_j(\vec{X}); i = 1, 2, \ldots; j \neq i \text{ onda}$ $\vec{X} \in \omega_i; \text{ klasifikator } -> \text{ linearni sroj (engl. linear machine)}$ $(\vec{w_i} - \vec{w_j})^T \vec{X} + (w_{in+1} - w_{jn+1}) = 0$

Slika 18: 3. slučaj

ODREĐIVANJE FUNKCIJE ODLUČIVANJA -> UČENJE ILI VJEŽBANJE

Problem oblikovanja lineranog klasifikatora: odrediti koeficijente linearne funkcije odlučivanja:

$$\vec{W} = \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \end{bmatrix} i w_{n+1}$$

"Automatizirati" postupak određivanja koeficijenata linearne funkcije odluči-

iterativni postupak **učenja** koeficijenata linerane funkcije odlučivanja uporabom uzoraka iz skupa za učenje(engl. training set).

N uzoraka: $\vec{X_1}, \vec{X_2}, \dots, \vec{X_N}$ razvrstani u dva razreda ω_i i ω_2 Vektori uzoraka $\vec{X_i}, i = 1, 2, \dots, N$ su <u>"označeni"</u> vektori, tj. oni sa poznatom pripadnosti razredu (ω_i ili ω_2). **UPOTRIJEBIT ĆEMO IH ZA UČENJE** $d(\vec{X})!$

Povećat ćemo dimentionalnost vektora \vec{X} za jedan

$$\vec{X} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \\ 1 \end{bmatrix} \text{ radi elegantnijeg zapisa: } d(\vec{X}) = \vec{W}^T \vec{X}$$

Uspijemo li odrediti takav vektor težinskih koeficijenata \vec{W} tako da pomoću funkcije $d(\vec{X})$ pravilno razvrstamo sve uzorke (iz skupa za učenje), kažemo da su ω_1 i ω_2 LINEARNO RAZDVOJIVI.

M=2

 Uzorak \vec{X} je pravilno razvrstan ako za sve \vec{X} iz ω_1 vrijedi $\vec{W}^T\vec{X}>0$ i ako za sve \vec{X} iz ω_2 vrijedi $\vec{W}^T \vec{X} < 0$

Jedinstven uvjet: $\vec{W}^T \vec{X} > 0$ ako uzorke iz ω_2 pmnožimo s -1!

Redefiniran problem: Tražimo vektor koeficijenata \vec{W} linearne funkcije odlučivanja tako da vrijedi $\vec{W}^T \vec{X} > 0$ za sve uzorke za učenje. /PAZI: uzorci $\vec{X} \in \omega_2$ su pomnoženi s -1/

odnosno $[X]\vec{W}>$ za sve uzorke \vec{X}

$$[X] = \begin{bmatrix} \vec{X}_1^T \\ \vec{X}_2^T \\ \vdots \\ \vec{X}_N^T \end{bmatrix}$$

je matrica svih uzoraka iz skupa za učenje s tim da su uzorci iz ω_2 pomnoženi

 $\vec{W} = (w_1, w_2, \dots, w_n, w_\ell n + 1)^T$ i $\vec{0}$ - nulti vektor

PRIMJER 1:
$$\vec{X}_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}; \vec{X}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \quad \vec{X}_1 \in \omega_1, \vec{X}_2 \in \omega_1$$

$$\vec{X}_3 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}; \vec{X}_4 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad \vec{X}_3 \in \omega_2, \vec{X}_4 \in \omega_2$$

-POVEĆAJMO DIMENZIONALNOST VEKTORA:
$$\vec{X_1} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}; \, \vec{X_2} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}; \, \vec{X_3} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}; \, \vec{X_4} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

POMONOŽIMO SVE UZORKE IZ RAZREDA ω_2 S -1:

$$\vec{X_3} = \begin{bmatrix} -1 \\ -0 \\ -1 \end{bmatrix}; \vec{X_4} = \begin{bmatrix} -1 \\ -1 \\ -1 \end{bmatrix}$$

-Oblikujmo matricu [X]

$$[X] = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \\ -1 & 0 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

 Vektor \vec{W} koji zadovoljava sustav linearnih nejednadžbi $[X|\vec{W}>\vec{0}$ nazivamo razdvojni vektor.

GRADIJENTNI POSTUPCI ODREĐIVANJA RAZDVO-JNOG VEKTORA

 $d(\vec{X})$ - funkcija vektorskog argumenta

Općenito: $f(\vec{Y}), \vec{Y} = (y_1, y_2, \dots, y_n)^T$

Gradijent funkcije vektorskog argumenta:

$$\operatorname{grad} f(\vec{Y}) = \frac{df(\vec{Y})}{d\vec{Y}} = \begin{bmatrix} \frac{df}{dy_1} \\ \frac{df}{dy_2} \\ \vdots \\ \frac{df}{dy_n} \end{bmatrix}$$

-GRADIJENT SKALARNE FUNKCIJE VEKTORSKOG ARUGU-MENTA JE VEKTOR

-svaka komponenta gradijenta predstavlja veličinu promjene funkcije u smjeru komponente vektora

18

VRIJEDI:

- Povećanje argumenta u smjeru pozitivnog gradijenta funkcije f dovodi nas do maksimuma funkcije f
- Povećanje argumenta u smjeru negativnog gradijenta funkcije f dovodi nas do minimuma funkcije f

Slika 19: Primjer gradijente metode