Métricas de Evaluación

Rubén Francisco Manrique rf.manrique@uniandes.edu.co

Métricas de evaluación

- Tenemos un conjunto de consultas con resultados clasificados.
- El objetivo de una métrica de evaluación es *medir la calidad de un ranking* de documentos relevantes/no relevantes conocidos.
- En otras palabras, necesitamos un conjunto de datos de evaluación.
- Conjunto de datos de evaluación: conjunto de consultas para las cuales se conocen los documentos relevantes.

Conjunto Recuperación

• Un conjunto de documentos relevantes (*REL*) y un conjunto de documentos recuperados (*RET*) - Conjunto de datos de evaluación.

 Precision (P): la proporción de documentos recuperados que son relevantes.

$$\mathcal{P} = \frac{|RET \cap REL|}{|RET|}$$

• Recall (P): la proporción de documentos relevantes que son recuperados.

$$\mathcal{R} = \frac{|RET \cap REL|}{|REL|}$$

• El **recall** mide la capacidad del sistema para encontrar todos los documentos relevantes.

 La precision mide la capacidad del sistema para rechazar cualquier documento no relevante en el conjunto recuperado.

- Un sistema puede cometer dos tipos de errores:
 - un error de falso positivo: el sistema recupera un documento que no es relevante (no debería haberse recuperado)
 - un error de falso negativo: el sistema no puede recuperar un documento que es relevante (debería haber sido recuperado)

• ¿Cómo afectan estos tipos de errores a la precisión y el recall?

Combinar Precision y Recall

- A menudo, queremos un sistema que tenga alta precisión y alto recall.
 - Queremos una métrica que mida el equilibrio entre precisión y recuperación.
 - Una posibilidad sería utilizar la media aritmética:

$$arithmetic mean(\mathcal{P},\mathcal{R}) = \frac{\mathcal{P} + \mathcal{R}}{2}$$

Combinar Precision y Recall

- *Malo*: un sistema que obtiene una precisión de 1,0 y un recall cercano a 0,0 obtendría un valor medio de alrededor de 0,50.
 - Un sistema que recupera un único documento relevante obtendría una precisión de 1,0 y una recuperación cercana a 0,0.
- *Malo*: un sistema que obtiene un recall de 1,0 y una precisión cercana a 0,0 obtendría un valor medio de alrededor de 0,50.
 - Un sistema que recupera toda la colección obtendría una recuperación de 1,0 y una precisión cercana a 0,0.
- Mejor: un sistema que obtiene una precisión de 0,50 y un recall cercana a 0,50 obtendría un valor medio de alrededor de 0,50.

Combinar Precision y Recall

• Solución: utilice la media armónica en lugar de la media aritmética.

• F-medida:

$$\mathcal{F} = \frac{1}{\frac{1}{2} \left(\frac{1}{\mathcal{P}} + \frac{1}{\mathcal{R}} \right)} = \frac{2 \times \mathcal{P} \times \mathcal{R}}{\mathcal{P} + \mathcal{R}}$$

F-medida

• La media armónica castiga los valores pequeños.

Recuperación ranqueada

 Recordar: El sistema genera una lista clasificada de documentos en lugar de un conjunto desordenado.

- <u>Suposición de comportamiento del usuario</u>: El usuario examina el ranking de salida de arriba a abajo hasta que está satisfecho o se da por vencido.
- La precisión y el recall también se pueden utilizar para evaluar una clasificación.
 - Precision/Recall @ rank K

- P@K: proporción de documentos top-K recuperados que son relevantes.
- R@K: proporción de documentos relevantes que se recuperan en el top-K.
- Suposición: el usuario solo examinará los resultados top-K.

Asuma que hay 20 documentos relevantes.

K	P@K	R@K
1	(1/1) = 1.0	(1/20) = 0.05
2		
3		
4		
5		
6		
7		
8		
9		
10		

• Asuma que hay 20 documentos relevantes.

K	P@K	R@K
1	(1/1) = 1.0	(1/20) = 0.05
2	(1/2) = 0.5	(1/20) = 0.05
3		
4		
5		
6		
7		
8		
9		
10		

Asuma que hay 20 documentos relevantes.

K	P@K	R@K
1	(1/1) = 1.0	(1/20) = 0.05
2	(1/2) = 0.5	(1/20) = 0.05
3	(2/3) = 0.67	(2/20) = 0.10
4	(3/4) = 0.75	(3/20) = 0.15
5	(4/5) = 0.80	(4/20) = 0.20
6		
7		
8		
9		
10		

Asuma que hay 20 documentos relevantes.

K	P@K	R@K
1	(1/1) = 1.0	(1/20) = 0.05
2	(1/2) = 0.5	(1/20) = 0.05
3	(2/3) = 0.67	(2/20) = 0.10
4	(3/4) = 0.75	(3/20) = 0.15
5	(4/5) = 0.80	(4/20) = 0.20
6	(5/6) = 0.83	(5/20) = 0.25
7	(6/7) = 0.86	(6/20) = 0.30
8	(6/8) = 0.75	(6/20) = 0.30
9	(7/9) = 0.78	(7/20) = 0.35
10	(7/10) = 0.70	(7/20) = 0.35

Problema: ¿qué valor de K debemos usar para evaluar?

 Si no sabemos qué valor de K elegir, podemos calcular y reportar varios: P/R@{1,5,10,20}

• Hay métricas de evaluación que no requieren elegir K (como veremos).

 Tenga en cuenta que este cálculo es solo para una consulta, debe informar el promedio entre todas las consultas disponibles.

- Idealmente, queremos que el sistema logre una alta precisión para valores variables de K.
- La precisión promedio (average-precision) métrica da cuenta de la precisión y recall sin tener que establecer K.
- Pasos de calculo:
 - 1. Baja en el ranking de un rango a la vez.
 - 2. Si el documento en el rango K es relevante, mida P@K.
 - 3. Cuando recall = 1.0, tome el promedio de todos los valores P@K.
 - El número de valores P@K será igual al número de documentos relevantes.

rank (K)	ranking	R@K	P@K
1		0.10	1.00
2		0.10	0.50
3		0.20	0.67
4		0.30	0.75
5		0.40	0.80
6		0.50	0.83
7		0.60	0.86
8		0.60	0.75
9		0.70	0.78
10		0.70	0.70
11		0.80	0.73
12		0.80	0.67
13		0.80	0.62
14		0.90	0.64
15		0.90	0.60
16		0.90	0.56
17		0.90	0.53
18		0.90	0.50
19		0.90	0.47
20		1.00	0.50
total	10.00	average-precision	0.76

	rank (K)	ranking	R@K	P@K	
	1	Ŭ	0.10	1.00	
	2		0.20	1.00	
Intercambiar los	3		0.20	0.67	
ranks 2 y 3.	4		0.30	0.75	
, s = ,	5		0.40	0.80	
	6		0.50	0.83	
	7		0.60	0.86	
	8		0.60	0.75	
	9		0.70	0.78	
	10		0.70	0.70	
	11		0.80	0.73	
	12		0.80	0.67	
	13		0.80	0.62	
	14		0.90	0.64	
	15		0.90	0.60	
	16		0.90	0.56	
	17		0.90	0.53	
	18		0.90	0.50	
	19		0.90	0.47	
	20		1.00	0.50	
	total	10.00	average-precision	0.79	

rank (K)	ranking	R@K	P@K	
1		0.10	1.00	
2		0.10	0.50	
3		0.20	0.67	
4		0.30	0.75	
5		0.40	0.80	
6		0.50	0.83	
7		0.60	0.86	
8		0.60	0.75	
9		0.70	0.78	
10		0.70	0.70	
11		0.80	0.73	
12		0.80	0.67	
13		0.80	0.62	
14		0.90	0.64	
15		0.90	0.60	
16		0.90	0.56	
17		0.90	0.53	
18		0.90	0.50	
19		0.90	0.47	
20		1.00	0.50	
total	10.00	average-precision	0.76	

	rank (K)	ranking	R@K	P@K	
	1		0.10	1.00	
	2		0.10	0.50	
	3		0.20	0.67	
	4		0.30	0.75	
	5		0.40	0.80	
	6		0.50	0.83	
	7		0.60	0.86	
Intercambiar los	8		0.70	0.88	
ranks 8 y 9.	9		0.70	0.78	
ranne o y 7.	10		0.70	0.70	
	11		0.80	0.73	
	12		0.80	0.67	
	13		0.80	0.62	
	14		0.90	0.64	
	15		0.90	0.60	
	16		0.90	0.56	
	17		0.90	0.53	
	18		0.90	0.50	
	19		0.90	0.47	
	20		1.00	0.50	
	total	10.00	average-precision	0.77	

rank (K)	ranking	R@K	P@K	
1		0.10	1.00	
2		0.20	1.00	
3		0.30	1.00	
4		0.40	1.00	
5		0.50	1.00	
6		0.60	1.00	
7		0.70	1.00	
8		0.80	1.00	
9		0.90	1.00	
10		1.00	1.00	
11		1.00	0.91	
12		1.00	0.83	
13		1.00	0.77	
14		1.00	0.71	
15		1.00	0.67	
16		1.00	0.63	
17		1.00	0.59	
18		1.00	0.56	
19		1.00	0.53	
20		1.00	0.50	
total	10.00	average-precision	1.00	

rank (K)	ranking	R@K	P@K
1		0.00	0.00
2		0.00	0.00
3		0.00	0.00
4		0.00	0.00
5		0.00	0.00
6		0.00	0.00
7		0.00	0.00
8		0.00	0.00
9		0.00	0.00
10		0.00	0.00
11		0.10	0.09
12		0.20	0.17
13		0.30	0.23
14		0.40	0.29
15		0.50	0.33
16		0.60	0.38
17		0.70	0.41
18		0.80	0.44
19		0.90	0.47
20		1.00	0.50
total	10.00	average-precision	0.33

Recuperación ranqueada: MAP

- La precisión promedio (average precision) se calcula para una sola consulta.
- Mean Average Precision (MAP): precisión media promediada en un conjunto de consultas.
- Una de las métricas más comunes en la evaluación de IR

Recuperación ranqueada: Niveles de Relevancia

- Qué sucede cuando hay más de dos niveles de relevancia (por ejemplo, perfecto, excelente, bueno, regular, malo; 5-4-3-2-1).
- Opción 1: transformar a una función de puntuación de relevancia binaria y aplicar P@K, R@K.

$$rel_b(d_i) = \begin{cases} 1, & rel(d_i) \ge 3 \\ 0, & rel(d_i) < 3 \end{cases}$$

Opción 2: Ganancia acumulada descontada (DCG).

- Sea REL_i la relevancia asociada con el documento en el rank i ($1 \le i \le K$).
- Supongamos una escala no binaria (cada valor posible $\in \mathbb{N}$):
 - \rightarrow perfect \rightarrow 4
 - ► excellent → 3
 - ▶ good \rightarrow 2
 - ► fair \rightarrow 1
 - ▶ bad \rightarrow 0

• DCG se define como.

$$DCG@K = \sum_{i=1}^{K} \frac{REL_i}{log_2(\max(i,2))}$$

La utilidad de un documento relevante para un usuario disminuye rápidamente con el rango (más rápidamente que linealmente)

$$DCG@K = \sum_{i=1}^{K} \frac{REL_i}{log_2(\max(i,2))}$$

- ► perfect → 4
- ► excellent → 3
- ▶ good \rightarrow 2
- ▶ fair \rightarrow 1
- ▶ bad \rightarrow 0

rank (i)	REL_i
1	4
2	3
3	4
4	4 2
5 6	0
6	0
7	0
8	1
9	1
10	O

$$DCG@K = \sum_{i=1}^{K} \frac{REL_i}{log_2(\max(i,2))}$$

Cada rank se asocial con un factor de descuento:

$$\frac{1}{\log_2(\max(i,2))}$$

rank (i)	REL_i	discount factor
1	4	1.00
2	3	1.00
3	4	0.63
4	2	0.50
5		0.43
6	0	0.39
7		0.36
8	1	0.33
9	1	0.32
10		0.30

$$DCG@K = \sum_{i=1}^{K} \frac{REL_i}{log_2(\max(i,2))}$$

rank (i)	REL_i	discount factor	gain
1	4	1.00	4.00
2	3	1.00	3.00
3	4	0.63	2.52
4	2	0.50	1.00
5	O	0.43	0.00
6	O	0.39	0.00
7	O	0.36	0.00
8	1	0.33	0.33
9	1	0.32	0.32
10	O	0.30	0.00

				<u> </u>
rank (i)	REL_i	discount factor	gain	DCG_i
1	4	1.00	4.00	4.00
2	3	1.00	3.00	7.00
3	4	0.63	2.52	9.52
4	2	0.50	1.00	10.52
5	0	0.43	0.00	10.52
6	0	0.39	0.00	10.52
7	0	0.36	0.00	10.52
8	1	0.33	0.33	10.86
9	1	0.32	0.32	11.17
10	O	0.30	0.00	11.17

 $DCG_{10} = 11.17$

- Problema: DCG no está "limitado", lo que hace que sea problemático promediar entre consultas.
 - Los valores no son comparables en varias consultas.
- NDCG: ganancia acumulada descontada normalizada [0,1]
 - Para una consulta dada, mide DCG_i
 - Luego, divida este valor DCG_i entre el mejor posible DCG_i para esa consulta

El mejor posible DCG_i

- Suponga una consulta con:
 - 2 documentos con una relevancia de 4.
 - 3 documentos con una relevancia de 3.
 - 2 documentos con una relevancia de 2.
 - El resto de documentos son 0s.
- Cual es el mejor posible ranking para i=1:
 - 4,3,3,3,4,2,2,0,0....
 - 4,0,0,0,0,4,0,0,0....
- Cual es el mejor posible ranking para i=4:
 - 4,4,3,3....

El mejor posible DCG_i: Ejemplo

rank (i)	REL_i	discount factor	gain	DCG_i
1	4	1.00	4.00	4.00
2	3	1.00	3.00	7.00
3	4	0.63	2.52	9.52
4	2	0.50	1.00	10.52
5	0	0.43	0.00	10.52
6	0	0.39	0.00	10.52
7	0	0.36	0.00	10.52
8	1	0.33	0.33	10.86
9	1	0.32	0.32	11.17
10	0	0.30	0.00	11.17

discount					
rank(i)	REL_i	factor	gain	DCG_i	
1	4	1	4	4	
2	4	1	4	8	
3	3	0.63	1.89	9.89	
4	2	0.5	1	10.89	
5	1	0.43	0.43	11.32	
6	1	0.39	0.39	11.71	
7	0	0.36	0	11.71	
8	0	0.33	0	11.71	
9	0	0.32	0	11.71	
10	0	0.3	0	11.71	

$$NDCG_2 = \frac{7}{8} = 0.875$$

$$NDCG_2 = \frac{7}{8} = 0.875$$
 $NDCG_{10} = \frac{11.17}{11.71} = 0.9538$

Resumen

- P@K: precisión bajo el supuesto de que los resultados top-K son el 'conjunto' recuperado.
- R@K: recall bajo el supuesto de que los resultados top-K son el 'conjunto' recuperado.
- Average Precision: considera la precisión y recall y se enfoca principalmente en los mejores resultados. MAP es el promedio del average precision.
- DCG: ignora el recuerdo, considera múltiples niveles de relevancia y se enfoca muy necesariamente en los rangos superiores
- NDCG: truco para hacer que DCG oscile entre 0 y 1

Referencias

- Jaime Arguello INLS 509: Information Retrieval
- Introduction to information retrieval https://nlp.stanford.edu/IR-book/
- Jurafsky D. and Martin J. (2021) Speech and Language Processing (3rd ed. draft). Online: https://web.stanford.edu/~jurafsky/slp3/
- Yoav Goldberg (2017). Neural Network Methods in Natural Language Processing.
- In Deng, L., & In Liu, Y. (2018). Deep learning in natural language processing.