Computational Physics – Exercise 8: Time-dependent Schrödinger equation

Kristel Michielsen

Institute for Advanced Simulation
Jülich Supercomputing Centre
Forschungszentrum Jülich
k.michielsen@fz-juelich.de
http://www.fz-juelich.de/ias/jsc/qip

- Task: Solve the time-dependent Schrödinger equation for a particle impinging on a potential barrier

 tunneling
- Kinetic energy K is less than the potential barrier $V \implies$ in classical mechanics, the particle has no chance to appear on the right hand side of the barrier
 - In quantum theory it has!

 $\boldsymbol{\chi}$

Solve the TDSE

$$i\hbar \frac{\partial}{\partial t} \Phi(x,t) = \left(-\frac{\hbar^2}{2M} \frac{\partial^2}{\partial x^2} + V(x)\right) \Phi(x,t)$$

by means of the product formula approach with the initial value of the wave function

$$\Phi(x,t=0) = (2\pi\sigma^2)^{-1/4} e^{iq(x-x_0)} e^{-(x-x_0)^2/4\sigma^2}$$

a Gaussian wave packet centered around x_0 with a width σ and wave vector q

• Use units such that $M = \hbar = 1$

Set

$$0 \leq x \leq 100$$

$$\sigma = 3 \quad , \quad x_0 = 20 \quad , \quad q = 1$$

$$V(x) = \begin{cases} 0 & \text{no barrier} \\ \hline 2 & 50 \leq x \leq 50.5 \\ 0 & \text{otherwise} \end{cases}$$
 barrier
$$\Delta = 0.1 \quad , \quad L = 1001 \quad , \quad \tau = 0.001 \quad , \quad m = 50000 \quad , \quad \text{discretization}$$

• Center of wave packet will move from x = 20 to about x = 70

- Show snapshots of the probability distribution
- Explain why the center of the wave packet that tunnels through the barrier seems to have gained speed

- Important "details":
 - Plot the probability $P(x,t) = \Phi^*(x,t)\Phi(x,t) = |\Phi(x,t)|^2$ not the wave function
 - The part of the wave that "tunnels" through the barrier has very little probability
 - Compute the total probability for x > 50.5 at the times at which snapshots are taken. Normalize the probabilities P(x > 50.5, t) by the maximum of the total probability for x > 50.5

No potential barrier

Potential barrier

The wave packet that tunnels through the barrier moves faster than the wave packet that moves in free space!

Report

Ms. Vrinda Mehta Dr. Madita Willsch v.mehta@fz-juelich.de m.willsch@fz-juelich.de **Dr. Fengping Jin**

f.jin@fz-juelich.de

- Filename: Please follow the instructions of the tutors
- Content of the report:
 - Names + matricle numbers + e-mail addresses + title
 - Introduction: describe briefly the problem you are modeling and simulating (write in complete sentences)
 - Simulation model and method: describe briefly the model and simulation method (write in complete sentences)
 - Simulation results: show figures (use grids, with figure captions) !) depicting the simulation results. Give a brief description of the results (write in complete sentences)
 - Discussion: summarize your findings
 - Appendix: Include the listing of the program

Due date: 10 AM, July 2, 2043