Electric Field

- On a clear day there is an electric field of approximately 100N/C directed vertically down at the earth's surface. Compare the electrical and gravitational field on an electron.5.6
- \checkmark . A point charge Q1 =20 μC is at (-d, 0)while Q2 =-10 μC is at (+d,0). Find the resultant field strength at a point with coordinates (x, y). Take d= 1m and x=y=2m.
- Consider the electric dipole shown in Figure -3. Show that the electric field at a distant point along the x axis is : $E_x\cong 4k_eqa/x^3.$

Fig-3

- What is the electric field strength needed to balanced the weight of the following particles near the Earth's surface: (a) an electron and (b) a proton.
- ✓ What is the magnitude of a point charge that would create an electric filed of 1 N/C at a
 at point 1 m away?
- 7. Two particles are fixed to an x axis: particle 1 of charge $-2x \cdot 10^{-7}$ C at x=6cm and particle 2 of charge $+2 \times 10^{-7}$ C at x = 21cm. Mid way between the particles, what is their net electric field in unit-vector notation?

Gauss Law

1. A circular plate has a radius of 12 cm. The plane of the plate is set at a 30° angle to a uniform fields E= 450N/C, as shown in figure. What is the flux through the plate.

- $\sqrt{2}$. Two charges q1 = 6 μC and q2 = -8 μC are within a spherical surface of radius 5 cm. What is the total flux through the surface?
- An isolated conductor of arbitrary shape carries a net charge +10 μ C. Inside the conductor is a hollow cavity within which is a point charge q = +3 μ C. What is the charge (a) on the cavity wall and (b) on the outer surface of the conductor?
- A point charge of 1.8 μ C is at the center of a cubical Gaussian surface 55cm on edge. What is the net flux through the surface?
- 5. A uniform charged conducting sphere of 1.2 m diameter has a surface charge density of $8.1 \,\mu\text{C}/\text{m}2.(a)$ Find the net charge on the sphere (b) what is the total electric flux leaving the surface of the sphere?
- 6. An infinite line of charge produces a field of 4.52 x 104 N/C at a distance of 1.96m. Calculate the linear charge density.
- 7. A 60 μ C charge is at the center of a cube of side 10 cm .(a) what is the total flux through the cube ?(b) What is the flux through the face ? (c) would your answers to (a) or (b) change if the charge were not at the center?
- 8. A spherical conductor of radius 8cm has a uniform surface charge density 0.1 nC/m2. Find the electric field (a) at the surface (b) at a distance 10 cm from the center.