MATIGO EXAMINATIONS BOARD

P425/1

PURE MATHEMATICS MARKING GUIDE 2023

PAPER 1

Qn	Answer					
	SECTION A					
1	$nC_3 = \frac{n!}{(n-3)! 3!} = \frac{n(n-1)(n-2)(n-3)!}{(n-3)! \times 6}$					
	$(n-3)! 3! \qquad (n-3)! \times 6$ $= \frac{n(n-1)(n-2)}{6}$	B1				
	$= \frac{n(n-1)(n-2)}{6}$ $\frac{n(n-1)(n-2)}{6} = 35$ $n(n-1)(n-2) = 210$					
	$n(n^{2} - 2n - n + 2) = 210$ $n(n^{2} - 3n + 2) = 210$ $n^{3} - 3n^{2} + 2n - 210 = 0$	B1				
	$F_{120} = \{\pm 1, \pm 2, \pm 3, \pm 5, \pm 7, \pm 30, \pm 42, \pm 70, \pm 105, \pm 210\}$ $n = 7, \Rightarrow n - 7$					
	$n^2 + 4n + 30$					
	$n - 7\sqrt{n^3 - 3n^2 + 2n - 210}$					
	$n^3 - 7n^2$					
	$4n^2 + 2n - 210$					
	$\frac{4n^2-28n+0}{30n-310}$					
	30n - 210 $30n - 210$	M 1				
	$\frac{30n-210}{00}$	141 1				

	$n^2 + 4n + 80 = 0$	
	$b^2-4ac<0,$	
	$\therefore n = 7$	A1
2	$\sqrt{3}cosec20^{\circ} - sec20^{\circ} = 4$	
	$\sqrt{3} \times \frac{1}{\sin 20^{\circ}} - \frac{1}{\cos 20^{\circ}}$	B1
	$\sin 20^{\circ} \cos 20^{\circ}$	
	$\sqrt{3}cos20^{\circ} - sin20^{\circ}$	M 1
	$\frac{-\cos 20^{\circ} \sin 20^{\circ}}{\cos 20^{\circ} \sin 20^{\circ}}$	MII
	$let \sqrt{3}cos20^{\circ} - sin20^{\circ} = Rcos(20 + \alpha)$	
	$\sqrt{3}cos20^{\circ} - sin20^{\circ} = Rcos20cos\alpha - Rsin20sin\alpha$	B1
	$Rcoslpha = \sqrt{3}$ $Rsinlpha = 1$	
	$1 \qquad 1 \qquad (1)$	
	$tan\alpha = \frac{1}{\sqrt{3}} \Rightarrow \alpha = tan^{-1} \left(\frac{1}{\sqrt{3}}\right) = 30^{\circ}$	
	$R^2\cos^2\alpha + R^2\sin^2\alpha = \left(\sqrt{3}\right)^2 + (1)^2$	
	$R^2 = 4$	
	R = 1 $R = 2$	
	$\sqrt{3}\cos 20^{\circ} - \sin 20^{\circ} = 2\cos(30^{\circ} + 20^{\circ})$	M 1
	$=2cos50^{\circ}$	
	$\sqrt{3}cos20^{\circ} - sin20^{\circ}$ $2cos50$	
	$\frac{-\cos 20^{\circ} \sin 20^{\circ}}{\cos 20^{\circ} \sin 40} = \frac{1}{2\sin 40}$	
	$sin40^{\circ} = cos50^{\circ}$	A1
	$\frac{4\cos 50}{\cos 2} = 4$	
	cos50	05
	$\int_{0}^{4} x + 2 dx$	0.5
3	$\int_{2}^{\infty} \frac{x+2}{x^2+4x-7} dx$	
	$let t = x^2 + 4x - 7$	B1
	J,	
	$ax = \frac{2x+4}{2}$	7.5
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	M1
	2 5	
	4 25	M 1

	$\int \frac{x+2}{t} \times \frac{dt}{2(x+2)}$			
	$\frac{1}{2} \int_{5}^{25} \frac{1}{t} dt = \frac{1}{2} [lnt]_{5}^{25}$			
	$=\frac{1}{2}[ln25-ln5]$			
	$=\frac{1}{2}\left[\ln\left(\frac{25}{5}\right)\right]$			
	2 1 (5) ³ 1 _{1 1}	A1		
	$=\frac{1}{2}\ln 5$			
	$= 0.80472$ ≈ 0.805			
4	$3ln2 + ln5 - \frac{1}{2}ln10000 = lnP$			
	$ln2^3 + ln5^2 - \ln(10,000)^{\frac{1}{2}} = lnP$	M1		
	ln8 + ln25 - ln100 = lnP			
	$\ln(8 \times 25) - \ln 100 = \ln P$	M1		
	ln200 - ln100 = lnP	M1 M1		
	$ln\left(rac{200}{100} ight) = lnP$	WII		
	ln2 = lnP			
	P=2	0.7		
5	y-1 $y+2$ $z-1$	05		
9	$\frac{x}{3} = \frac{y+2}{2} = \frac{z}{5}$ and $2x - y + 4z = 0$	B1		
	$\frac{x-1}{3} = \frac{y+2}{2} = \frac{z-1}{5} \text{ and } 2x - y + 4z = 0$ $let \lambda = \frac{x-1}{3} = \frac{y+2}{2} = \frac{z-1}{5}$			
	$x = 3\lambda + 1, y = 2\lambda - 2, z = 5\lambda + 1$			
	$2(3\lambda + 1) - (2\lambda - 2) + 4(5\lambda + 1) = 6$			
	$6\lambda + 2 - 2\lambda + 4 + 20\lambda + 4 = 6$	A1		
	$24\lambda = -4$			
	$\lambda = -\frac{1}{6}$	T /T 1		
	$x = 3 \times -\frac{1}{6} + 1 = -\frac{1}{2} + = \frac{1}{2}$	M1		
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	B1		

	$y = 2 \times -\frac{1}{6} - 2 = -\frac{1}{3} - 2 = \frac{-7}{3}$ $z = 5 \times -\frac{1}{6} + 1 = -\frac{5}{6} + 1 = \frac{1}{6}$ $\left(\frac{1}{2}, -\frac{7}{3}, \frac{1}{6}\right)$	A1 05
6	x + 2 = 0	05
U	x + 2 = 0 $x = -2$	
	$(-2)^2 + b(-2) + c = 0$	M1
	4 - 2b + c = 0	
	$-2b+c=-4\ldots\ldots\ldots(i)$	M1
	$(-2)^2 - 2d + c = 0$	M1
	$-2d+e=-4\dots\dots\dots(ii)$	M1
	solving (i)and (ii)simultaneously	
	-2b + 2b + c - e = 0	A1
	2(d-b)=e-c	
		05

7	$\frac{x^2 + 4x + 5}{x + 3} \le 1$ $\frac{x^2 + 4x + 5}{x + 3} - 1 \le 0$ $\frac{x^2 + 4x + 5 - x - 3}{x + 3} \le 0$ $\frac{x^2 + 3x + 2}{x + 3} \le 0$ $\frac{x(x + 1) + 2(x + 1)}{(x + 3)} \le 0$ $\frac{(x + 2)(x + 1)}{x + 3} \le 0$ $x = -1, x = -2, x = -3$					
	x+3					
	$\frac{x+4x+3}{x+3}-1\leq 0$	M1				
	$\frac{x^2 + 4x + 5 - x - 3}{4x + 5 - x - 3} < 0$					
	$\frac{x+3}{x^2+3x+3} \leq 0$					
	$\frac{x + 3x + 2}{x + 3} \le 0$					
	$\frac{x(x+1)+2(x+1)}{2} < 0$					
	$ (x+3) \leq 0 $	M1				
	$\frac{(x+2)(x+1)}{x+3} \le 0$	MII				
	x = -1, x = -2, x = -3	M1				
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
	(x+3) - + +					
	$\frac{(x+2)(x+1)}{(x+3)} - + +$					
	$(x+3)$ $x < -3 \text{ and } -2 \le x \le -1$					
8	$\frac{dv}{dv} = 2$	05 M1				
	$\frac{3e^{-x} - \overline{dx}}{dx} = 2$					
	$3e^{4x} - \frac{dv}{dx} = 2$ $\frac{dv}{dx} = 3e^{4x} - 2$					
	$\int dV = \int (3e^{4x} - 2)dx$					
	$\int dV = \int (3e^{4x} - 2)dx$ $V = \frac{3}{4}e^{4x} - 2x + C$					
	$V = \frac{1}{4}e^{xx} - 2x + C$	M1				
	x = 0, V = -4					
	$-4 = \frac{1}{4} - 0 + C$	M1				
	$x = 0, V = -4$ $-4 = \frac{3}{4} - 0 + C$ $C = -\frac{4}{1} - \frac{3}{4} = -\frac{19}{4}$	1411				
	1 4 4					

	3 . 19	
	$V = \frac{3}{4}e^{4x} - 2x - \frac{19}{4}$	
		A1
	$V = \frac{1}{4}(3e^{4x} - 8x - 19)$	05
	SECTION B	
9(a)	$x^2 + 7x + 2$ $Ax + B$ C	M1
` '	$P(x) = \frac{x^2 + 7x + 2}{(1 + x^2)(2 - x)} \equiv \frac{Ax + B}{1 + x^2} + \frac{C}{2 - x}$	
	$x^{2} + 7x + 2 \equiv (2 - x)(Ax + B) + C(1 + x^{2})$	
	when x = 2	
	20 = 5C	A1
	C = 4	
	when $x = 0$	
	$2 = 2(B) + \mathcal{C}(1)$	
	2 = 2B + 4	
	2B = -2	
	B = -1	A1
	when $x = 1$	
	10 = A + B + 2C	
	10 = A - 1 + 8	A1
	A = 3	
	$\frac{x^2 + 7x + 2}{(1+x^2)(2-x)} = \frac{3x-1}{1+x^2} + \frac{4}{2-x}$	
	$(1+x^2)(2-x)^{-1} + x^{2^{-1}} + 2 - x$	A1
9(b)	$\int \frac{x^2 + 7x + 2}{(1+x^2)(2-x)} dx = \int \left(\frac{3x}{1+x^2} - \frac{1}{1+x^2} + \frac{4}{2-x}\right) dx$	
	$\int (1+x^2)(2-x)^{\alpha x} \int (1+x^2-1+x^2-2-x)^{\alpha x}$	M1
	$let t = 1 + x^2$	704
	dx = 2xdx	B1
	$dx = \frac{dt}{2x}$	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$\begin{array}{c c} 0 & 1 \\ \hline 1 & 2 \\ \end{array}$	

	$\int \frac{3x}{t} \times \frac{dt}{2x}$ $= \frac{3}{2} [lnt]_1^2$ $= \frac{3}{2} [ln2 - ln1]$ $= \frac{3}{2} ln2$	A 1
	$\int_0^1 \frac{1}{1+x^2} dx = \tan^{-1} x$	M1
	$= \tan^{-1}(1) - \tan^{-1}(0)$ $= \frac{\pi}{4} - 0 = \frac{\pi}{4}$	A1
	4 - 4	M1
	$\int_0^1 \frac{4}{2-x} dx = -4[\ln(2-x)]_0^1$	A1
	$= -4[ln2 - ln2]$ $= -4 \times -ln2 = 4ln2$ $\int_{0}^{1} \frac{x^{2} + 7x + 2}{(1 + x^{2})(2 - x)} dx = \frac{3}{2}ln2 - \frac{\pi}{4} + 4ln2$ $= \left(\frac{3}{2} + 4\right)ln2 - \frac{\pi}{4} \Rightarrow \frac{11}{2}ln2 - \frac{\pi}{4}$	A1
		12
10(a)(i)	$let y = \sin^{-1}\left(\tan\frac{x}{2}\right)$ $siny = \tan\left(\frac{x}{2}\right)$	M1
	$cosydy = \frac{1}{2}sec^{2}\left(\frac{x}{2}\right)dx$	
	$\frac{dy}{dx} = \frac{1}{2} \frac{sec^2\left(\frac{x}{2}\right)}{cosy}$	M 1
	$ax = 2 \cos y$ $\cos^2 y + \sin^2 y = 1$	
	$cosy = \sqrt{1 - sin^2 y} = \sqrt{1 - tan^2 \left(\frac{x}{2}\right)}$	
		M1

	$\frac{dy}{dx} = \frac{1}{2} \frac{\sec^2\left(\frac{x}{2}\right)}{\sqrt{1 - \tan^2\left(\frac{x}{2}\right)}}$ $= \frac{\sec^2\left(\frac{x}{2}\right)}{2\sqrt{1 - (1 - \sec^2\left(\frac{x}{2}\right)}}$ $= \frac{\sec^2\left(\frac{x}{2}\right)}{\sqrt{\sec^2\left(\frac{x}{2}\right)}}$ $= \frac{\sec^2\left(\frac{x}{2}\right)}{\sec^2\left(\frac{x}{2}\right)}$ $= \sec\left(\frac{x}{2}\right)$ $= \sec\left(\frac{x}{2}\right)$	A1
10(a)(ii)	$let \ y = x^{lnx}$ $lny = lnx^{lnx}$ $lny = lnxlnx$ $let \ t = lnx$ $lny = t^2$	M1
	$\frac{1}{y}\frac{dy}{dt} = 2t$	
	$\frac{dy}{dt} = 2ty = 2tx^{lnx}$ $dt = 1$	M1
	$\frac{dt}{dx} = \frac{1}{x}$ $\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx}$	M1
	$dx dt dx$ $= 2tx^{lnx} \times \frac{1}{x}$	
	$\frac{dy}{dx} = \frac{2lnx(x^{lnx})}{x}$ $y = e^x sinx$	A1
10(b)	$y = e^x \sin x$	
	$\frac{dy}{dx} = e^x cosx + e^x sinx$	M1

	dy				
	$\frac{dx}{dx} = e^x \cos x + y$				
	$\frac{d}{dx}\left(\frac{dy}{dx}\right) = -e^x \sin x + e^x \cos x + \frac{dy}{dx}$				
	$\frac{dx}{d^2y}$ $\frac{dx}{dy}$ $\frac{dx}{dy}$				
	$\frac{dy}{dx} = e^x \cos x + y$ $\frac{d}{dx} \left(\frac{dy}{dx}\right) = -e^x \sin x + e^x \cos x + \frac{dy}{dx}$ $\frac{d^2y}{dx^2} = -y + \left(\frac{dy}{dx} - y\right) + \frac{dy}{dx}$				
	d^2y dy dy				
	$\frac{d^2y}{dx^2} = -y + \frac{dy}{dx} - y + \frac{dy}{dx}$	M 1			
	$\frac{d^2y}{dx} = 2\frac{dy}{dx} - 2y$				
	$dx^2 - dx$	A =			
	$\frac{d^2y}{dx^2} = 2\frac{dy}{dx} - 2y$ $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 2y = 0$	A 1			
	$\frac{u\lambda}{\mathrm{OR}}$				
	$y = e^x sinx$				
	$\frac{dy}{dx} = e^x cosx + e^x sinx$	M1			
	$\frac{dx}{dx} = c \cos x + c \sin x$				
	$\frac{d}{dx}\left(\frac{dy}{dx}\right) = -e^x \sin x + e^x \cos x + e^x \sin x$				
	$= 2e^x cosx$				
	$\frac{d^2y}{dt} = 2e^x \cos x$				
	$ = 2e^{x}cosx $ $ \frac{d^{2}y}{dx^{2}} = 2e^{x}cosx $ $ \frac{d^{2}y}{dx^{2}} - 2\frac{dy}{dx} + 2y $				
	$d^2v = dv$	M1			
	$\frac{dy}{dx^2} - 2\frac{dy}{dx} + 2y$				
		A1			
	$= 2e^x \cos x - 2(e^x \cos x + e^x \sin x) + 2e^x \sin x$				
	$= 2e^x cos x - 2e^x cos x - 2e^x sins x + 2e^x sin x$ $= 0$				
		12			
11(a)	A(3,-4,2) $B(-5,2,-8)$	M1M1			
	$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$				
	$= \begin{pmatrix} -5\\2\\-8 \end{pmatrix} - \begin{pmatrix} 3\\-4\\2 \end{pmatrix} = \begin{pmatrix} -8\\6\\-10 \end{pmatrix}$	N/I 1			
	$-\begin{pmatrix} 2 \\ -8 \end{pmatrix} \begin{pmatrix} -4 \\ 2 \end{pmatrix} - \begin{pmatrix} 6 \\ -10 \end{pmatrix}$	M1			
	$ \overrightarrow{AB} = \sqrt{(-8^2) + (6^2) + (-10^2)}$	M 1			
	$= \sqrt{64 + 36 + 100}$				

	$=\sqrt{200}$	A1
		AI
	$10\sqrt{2}$	
11(b)		
		N/L1
		M1
	$P(x,y,z) \tilde{d} = 2\tilde{\imath} + \tilde{\jmath} + 3\tilde{k}$	
	$\overrightarrow{AP} = \overrightarrow{OP} - \overrightarrow{OA}$	
	$\langle \cdot \rangle \langle 1 \rangle \langle \cdot \rangle \langle 1 \rangle$	M1
	$ \begin{pmatrix} x \\ y \\ z \end{pmatrix} - \begin{pmatrix} 1 \\ 1 \\ 4 \end{pmatrix} = \begin{pmatrix} x - 1 \\ y - 1 \\ z - 4 \end{pmatrix} $	
	$\binom{z}{4}$ $\binom{z}{z-4}$	
	$\overrightarrow{AP}.\ \widetilde{d}=0$	
	$ \begin{pmatrix} x-1\\y-1\\z-4 \end{pmatrix} \cdot \begin{pmatrix} 2\\1\\3 \end{pmatrix} = 0 $	
	$\binom{y}{z-4}$	Art
	2(x-1) + 1(y-1) + 3(z-4) = 0	A1
	2x - 2 + y - 1 + 3z - 12 = 0 $2x + y + 3z - 15 = 0$	M 1
	2x + y + 3z - 15 = 0	
	Let, $\lambda = \frac{x-1}{2} = \frac{y}{1} = \frac{z+1}{3}$	
		A1
	$x = 2 \lambda + 1, y = \lambda, z = 3 \lambda - 1$ $2(2 \lambda + 1) + \lambda + 3(3 \lambda - 1) - 15 = 0$	AI
	$4\lambda + 2 + \lambda + 9\lambda - 3 - \lambda = 0$	
	$14 \lambda = 16$	
	$\lambda = \frac{16}{14} = \frac{8}{7}$	M1
	$egin{array}{cccccccccccccccccccccccccccccccccccc$	
	$x = 2\frac{8}{7} + 1 = \frac{16}{7} + 1 = \frac{23}{7}$	

	$y = \frac{8}{7}$ $z = 3 \times \frac{8}{7} - 1 = \frac{17}{7}$					
	$ \overrightarrow{AP} = \sqrt{\left(\frac{23}{7} - 1\right)^2 + \left(\frac{8}{7} - 1\right)^2 + \left(\frac{17}{7} - 4\right)^2}$					
		•			12	
12(i)		$y(x^2 - 4)$	$\frac{x-10}{x^2-4}$ $= 4x-10$		M1	
	$yx^{2} - 4y = 4x - 10$ $yx^{2} - 4x + 10 - 4y = 0$ $b^{2} - 4ac < 0$ $(-4)^{2} - 4y(10 - 4y) < 0$ $16 - 40y + 16y^{2} < 0$ $8y^{2} - 20y + 8 < 0$ $2y^{2} - 4y - y + 2 < 0$ $2y(y - 2) - 1(y - 2) < 0$ $(2y - 1)(y - 2) < 0$ $y = \frac{1}{2}, y = 2$				M1	
	$y < \frac{1}{2} \qquad \qquad \frac{1}{2} < y < 2 \qquad \qquad y > 2$					
	2y-1	_	+	+	M1	
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					
	(2y-1)(y-2) + - + +					
	$\frac{1}{2} < y < 2$					
	when $y = 2$ $\frac{4x - 10}{x^2 - 4} = \frac{2}{1}$					
	$\frac{4x-10}{x^2-4}=\frac{2}{1}$					

12(ii)	$x^{2} - 4 = 0$ $x^{2} = 4$ $x = \pm 2$ $x = -2 \text{ and } x = 2$ $y = \frac{\frac{4x}{x^{2}} - \frac{10}{x^{2}}}{1 - \frac{4}{x^{2}}}$	M1 A1 A1
	$As \ x \to \pm \infty, y \to 0$ $y = 0$	
(iii)	intercepts $when x = 0, y = \frac{10}{4} = \frac{5}{2}$ $\left(0, \frac{5}{2}\right)$ $when y = 0, x = \frac{5}{2}$ $\left(\frac{5}{2}, 0\right)$	
		B1
		B1

	$B\left(0, \frac{7}{4}\sin\beta\right)$ $y = 0$ $3x\sin\beta = -7\cos\beta\sin\beta$ $3x = -7\cos\beta$ $x = \frac{7}{3}\cos\beta$ $A\left(\frac{-7}{3}\cos\beta, 0\right)$ $mid point of AB,$ $x = 0 \pm \frac{7}{3}\cos\beta = -\frac{7}{8}\cos\beta$ $y = \frac{\frac{7}{4}\sin\beta}{2} = \frac{7}{8}\sin\beta$ $-\frac{6x}{7} = \cos\beta, \frac{8y}{7} = \sin\beta$ $\frac{36x^2}{49} + \frac{64y^2}{49} = 1$ $\frac{x^2}{49} + \frac{y^2}{64} = 1$ $\frac{36x^2}{49} = \frac{x^2}{49}$ $38a^2 = 49$ $a^2 = \frac{49}{36}$ $b^2 = \frac{49}{64}$ $49 = 49$	M1
	$\frac{49}{64} = \frac{49}{36}(1 - e^2)$ $\frac{36}{64} = 1 - e^2$ $e^2 = 1 - \frac{36}{64}$ $e^2 = \frac{28}{64} = \frac{7}{16}$	A1
		12
14(a)	$Z = -3 + 2i, \overline{Z} = -3 - 2i$ $Z + \overline{Z} = -6$ $Z\overline{Z} = (-3)^2 - (2i)^2$ $= 9 - 4(-1)$	M1

	= 9 + 4	
	= 13	A1
	$Z^2 - (-6)Z + 13 = 0$	
	$Z^2 + 6Z + 13 = 0$	M1
		WII
	OR	
	Z = -3 + 2i	
	Z+3=2i	M1
	$(Z+3)^2 = (2i)^2$	
	$Z^2 + 6Z + 9 = 4i^2$	A1
	$Z^2 + 6Z + 9 = -4$	AI
	$Z^{2} + 6Z + 9 = -4$ $Z^{2} + 6Z + 13 = 0$	
(1.)	$Z^{-} + 0Z + 13 = 0$	3.54
(b)	Z+2i = Z-1	M 1
	Let Z = x + iy	
	x + (2 + y)i = (x - 1) + iy	
	$\sqrt{x^2 + (2+y)^2} = \sqrt{(x-1)^2 + y^2}$	M1
	$\left(\sqrt{x^2 + (2+y)^2}\right)^2 = \left(\sqrt{(x-1)^2 + y^2}\right)^2$	
	$(\sqrt{x^2 + (2 + y)^2}) = (\sqrt{(x - 1)^2 + y^2})$	
	$x^2 + 4 + 4y + y^2 = x^2 - 2x + 1 + y^2$	
	4y = -2x + 1 - 4	
	4y = -2x - 3	A1
(c)	(2+5i)(Z+2i) = -7-32i	M1
(-)	$2Z + 4i + 5Zi + 10i^2 = -7 - 32i$	
	2Z + 5Zi = -7 - 32i + 10 - 4i	
	Z(2+5i) = 3-36i	
	3-36i	
	$Z = \frac{3 - 36i}{2 + 5i}$	M1
	(3-36i)(2-5i)	
	$Z = \frac{(3 - 36i)(2 - 5i)}{(2 + 5i)(2 - 5i)}$	A1
	(2+3i)(2-3i) 6 - 15i - 72i ± 180	
	-	M 1
	$-\frac{(2)^2-(5i)^2}{(27i)^2}$	1/1 1
	$=\frac{-174-87i}{}$	
	4 + 25	M1
	$=\frac{-174-87i}{}$	
	$= \frac{29}{-174} = \frac{-174}{29} - \frac{87}{29}i$	
	$=\frac{-1/4}{-8/i}$	A1
		111

		12
15(a)	Given, 10^{th} term of an $AP = 5$	M1
	a + (10 - 5)d = 5	
	$a + 9d = 5 \dots \dots$	M1
	and $18^{th} term = 77$	M1
	a + 18 - 1)d = 77	WII
	$a + 17d = 77 \dots \dots \dots \dots \dots (ii)$	M1
	(ii) - (i),	WII
	$8d = 72$ $\therefore d = 9$	M1
	$\cdots u = 9$	WII
		A1
15(b)	x + y - 4 = 0	M 1
	$x^2 - 4x - 3y = 0$	
	y = 4 - x	
	$x^2 - 4x - 3(4 - x) = 0$	M 1
	$x^2 - 4x - 12 + 3x = 0$	
	$x^2 - x - 12 = 0$ $x = 4, x = -3$	
	x = 4, x = -3	M1
	4 + y = 4	
	y = 0	
		M1
	-3+y=4	A1
	y = 7	
	x = 4, y = 0, x = -3, x = 7	A1
16(a)	let V be the volume of balool at any time t.	M1
	$\frac{dV}{dt} \propto \frac{1}{c}$	
	$dt = V^2 \ dV = K$	A1
	$\frac{\frac{dV}{dt} \propto \frac{1}{V^2}}{\frac{dV}{dt} = \frac{K}{V^2}}$	
16(b)	$V^2dV = Kdt$	M1
, ,	$\int V^2 dv = \int K dt$	
		7.
	$\frac{V^3}{3} Kt + C$	M1
	t=0, C=0	

	V^3	M1
	$\frac{v}{3} = Kt$	
	when $t = 400, V = 600$	M1
	$(600)^3 = 3K \times 400$	
	$600^3 = 1200K$	
		M1
	K = 180,000	1111
	V^3	
	$\frac{v}{3} = 180,000t$	
	3	A =
	$V^3 = 540,000t$	A1
(c)	$(1250)^3 = 540,000t$	M1
` ′	t = 3,616.8981	
	t = 3617s	
		A1
	1hour = 3600s	
	t = 1.0047 hours	
	12: 00: 00	A1
		A1
	-1:00:47	AI
	<u>10: 59: 13</u> am	
	10.37.13am	

END

(+256780413120)