zd = complex double float

Vector to Scalar

$$\operatorname{sd}$$
 — $\operatorname{\diamond dot}$ $\vec{y} \cdot \vec{x}$

-d -
$$\diamond$$
sdot $\vec{y}\cdot\vec{x}$ single precision to double

s- -
$$\diamond$$
dsdot $\alpha + \vec{x} \cdot \vec{y}$

- cz
$$\diamond$$
dotc_sub $c \leftarrow \bar{\vec{x}} \cdot \vec{y}$

- cz
$$\diamond$$
 dotu_sub $u \leftarrow \vec{x} \cdot \vec{y}$ regardless of strides, lengths of vectors must match

$$\|x\|_2 = \sqrt{\sum |x_i|^2} \quad \|z\|_2 = \sqrt{\sum |z_i|^2} \quad \text{complex}$$

Vector to Vector

— (cs)(zd) ♦scal

sd cz	≎copy	$\vec{y} \leftarrow \vec{x}$	could be used to go from strided to/from unstrided
-------	-------	------------------------------	--

sd cz
$$\diamond$$
swap $\vec{y} \leftrightarrow \vec{x}$ differences in strides cause crazy results beyond stride_{min}

sd cz
$$\underline{\diamond}$$
 set $\vec{x} \leftarrow \alpha_0 \vec{I}$

sd cz
$$\diamond$$
scal $\vec{x} \leftarrow \alpha \vec{x}$ alpha omplex cs = complex float, $-$ (cs)(zd) \diamond scal $\vec{x} \leftarrow \alpha \vec{x}$ alpha real zd = complex double

alpha real

sd cz
$$\Diamond$$
axpy $\vec{y} \leftarrow \alpha \vec{x} + \vec{y}$ alpha array (strides?)

sd cz
$$\underline{\Diamond}$$
 axpby $\vec{y} \leftarrow \alpha \vec{x} + \beta \vec{y}$ alpha + beta arrays

$$\text{sd cz} \qquad \diamond \text{tbmv} \qquad \vec{x} \leftarrow \alpha A \vec{x} \qquad \qquad \text{A triangular band}$$

Vector-Matrices to Vector

sd cz
$$\diamond$$
gbmv $\vec{y} \leftarrow \alpha A \vec{x} + \beta \vec{y}$ band matrix A

sd cz
$$\diamond$$
gemv $y \leftarrow \alpha Ax + \beta y$ any matrix A

- cz
$$\diamond$$
hbmv $ec{y} \leftarrow lpha A ec{x} + eta ec{y}$ Hermitian band matrix A

- cz
$$\diamond$$
hemv $ec{y} \leftarrow lpha A ec{x} + eta ec{y}$ Hermitian matrix A

- cz
$$\phi$$
hpmv $ec{y} \leftarrow lpha A ec{x} + eta ec{y}$ Hermitian matrix A (packed)

sd –
$$\diamond$$
sbmv $\vec{y} \leftarrow \alpha A \vec{x} + \beta \vec{y}$ symmetric band matrix A

sd —
$$\phi$$
spmv $\vec{y} \leftarrow \alpha A \vec{x} + \beta \vec{y}$ symmetric matrix A (packed)

 $\begin{array}{lll} \text{sd} & - & & \\ & \text{symv} & \vec{y} \leftarrow \alpha A \vec{x} + \beta \vec{y} & & \\ \text{sd} & \text{cz} & & \\ & \text{stpmv} & \vec{x} \leftarrow A \vec{x} & & \\ \text{triangular matrix A} & \\ \text{sd} & \text{cz} & & \\ & \text{striangular matrix A} & \\ \end{array}$

Matrix & /or Vectors to Matrix

sd cz	∘gemm	$C \leftarrow \alpha AB + \beta C$	
- cz	⊹hemm	$C \leftarrow \alpha AB + \beta C$	Hermitian matrices
sd cz	≎symm	$C \leftarrow \alpha AB + \beta C$	A symmetric
sd cz	◊trmm	$B \leftarrow \alpha AB$	A triangular
sd —	≎ger	$A \leftarrow \alpha \vec{x} \vec{y}^T + A$	rank-1 update
- cz	∘gerc	$A \leftarrow \alpha \vec{x} \bar{\vec{y}} + A$	ш
— cz	⊹geru	$A \leftarrow \alpha \vec{x} \vec{y}^T + A$	u
— cz	♦ hpr	$A \leftarrow \alpha x x^\dagger + A$	" A is packed
— cz	♦hpr2	$A \leftarrow \alpha \vec{x} \vec{y}^{\dagger} + \alpha^{\dagger} \vec{y} \vec{x}^{\dagger} + A$	" A is packed
sd —	≎spr	$A \leftarrow \alpha \vec{x} \vec{x}^T + A$	rank-1 update, A symmetric (packed)
sd —	≎spr2	$A \leftarrow \alpha \vec{x} \vec{y}^T + \alpha \vec{y} \vec{x}^T + A$	rank-2, A symmetric (packed)
sd —	≎syr	$A \leftarrow \alpha \vec{x} \vec{x}^T + A$	rank-1 update, A symmetric
sd —	≎syr2	$A \leftarrow \alpha \vec{x} \vec{y}^T + \alpha \vec{y} \vec{x}^T + A$	rank-2, A symmetric
sd cz	≎syrk	$C \leftarrow \alpha A A^T + \beta C$	rank-k, A symmetric
sd cz	≎syr2k	$C \leftarrow \alpha A B^T + \alpha B A^T + \beta C$	rank-2k, A symmetric
- cz	⊹her	$A \leftarrow \alpha \vec{x} \vec{x}^{\dagger} + \beta A$	rank-1 update, Hermitian
- cz	⊹her2	$A \leftarrow \alpha \vec{x} \vec{y}^{\dagger} + \alpha^{\dagger} \vec{y} \vec{x}^{\dagger} + A$	rank-2 update, Hermitian
— cz	⊹herk	$C \leftarrow \alpha A A^{\dagger} + \beta C$	rank-k update, Hermitian
— cz	⊹her2k	$C \leftarrow \alpha A B^{\dagger} + \alpha B A^{\dagger} + \beta C$	rank-2k update, Hermitian

Equation Solvers

 $\vec{x} \leftarrow \vec{x'} : A\vec{x'} = \vec{x}$ ≎tpsv x' being solved for, A triangular (packed) sd cz

 $\vec{x} \leftarrow \vec{x'} : A\vec{x'} = \vec{x}$ ⊹trsv x' being solved for, A triangular sd cz

 $B \leftarrow X : AX = \alpha B$ X being solved for, A triangular sd cz ♦trsm

Givens Rotation Operations

 $\left[\begin{array}{c} x \\ y \end{array}\right] \leftarrow \left[\begin{array}{cc} c & s \\ -s & c \end{array}\right] \left[\begin{array}{c} x \\ y \end{array}\right]$ sd (cs)(zd) ◊rot cos and sin as input $\left[\begin{array}{c} x \\ y \end{array}\right] \leftarrow P \left[\begin{array}{c} x \\ y \end{array}\right]$

sd -◇rotm modified Givens, from 5-element vector

sd cz ≎rotg creates Givens rotation

sd creates modified Givens rotation ♦rotmg