Mathématiques : 1ère Année Collège

Séance 18 (Angles formés par deux droites parallèles et une sécante)

Professeur: Mr BENGHANI Youssef

Sommaire

I- Angles opposés par le sommet

- 1-1/ Définition
- 1-2/ Exemple
- 1-3/ Propriété

II- Angles formé par deux parallèles et une sécante

- 2-1/ Angles alterne-internes
- 2-2/ Angles correspondants

III- Exercices

- 3-1/ Exercice 1
- 3-2/ Exercice 2
- 3-3/ Exercice 3
- 3-4/ Exercice 4
- 3-5/ Exercice 5

I- Angles opposés par le sommet

1-1/ Définition

Deux angles opposés par le sommet sont deux angles qui ont le même sommet et leurs côtés sont dans le prolongement l'un de l'autre.

1-2/ Exemple

On considère la figure suivante :

On dit que \widehat{AOB} et \widehat{COD} sont deux angles opposés par le sommet O.

Ainsi que les angles \widehat{AOC} et \widehat{BOD} sont opposés par le sommet O.

1-3/ Propriété

Deux angles opposés par le sommet sont égaux (isométriques).

II- Angles formé par deux parallèles et une sécante

2-1/ Angles alterne-internes

Définition

Deux angles alterne-internes sont deux angles :

- Qui n'ont pas le même sommet.
- Qui sont de part et d'autre de la sécante.
- Qui sont de la bande délimitée par les deux droites.

2-1/ Angles alterne-internes

Exemple

On considère la figure suivante telle que (D) et (D') sont deux droites distinctes coupées par la sécante (Δ) :

Les angles \widehat{EAB} et \widehat{ABH} sont appelés angles alternes internes.

Les angles \widehat{ABC} et \widehat{FAB} sont appelés angles alternes internes.

2-1/ Angles alterne-internes

Propriété directe

Si deux droites sont parallèles, alors elles déterminent avec toute sécante des angles alternes internes isométriques (égaux).

2-1/ Angles alterne-internes

Propriété réciproque

Si deux droites déterminent avec une sécant deux angles alternes internes isométriques (égaux), alors elles sont parallèles.

2-2/ Angles correspondants

Définition

Deux angles sont correspondants lorsqu'ils :

- Ils n'ont pas le même sommet
- Ils sont du même côté de la sécante
- L'un est à l'intérieur de la bande délimitée par les deux droites l'autre pas.

Exemple

On considère la figure suivante telle que (D) et (D') sont deux droites distinctes coupées par la sécante (Δ) :

Les angles \widehat{EAB} et \widehat{GBN} sont appelés angles correspondants.

Les angles \widehat{MAF} et \widehat{ABH} sont appelés angles correspondants.

Ainsi que les angles : \widehat{FAB} et \widehat{HBN} ;; \widehat{MAE} et \widehat{ABG} .

Propriété directe

Si deux droites sont parallèles, alors elles déterminent avec toute sécante des angles correspondants isométriques (égaux).

Propriété réciproque

Si deux droites déterminent avec une sécant deux angles correspondants isométriques (égaux), alors elles sont parallèles.

III- Exercices

3-1/ Exercice 1

Calculer l'angle \widehat{ABC} :

3-2/ Exercice 2

Sur le schéma suivant , les droites (AB) et (CD) sont parallèles :

- 1. Calculer \widehat{EAB} .
- 2. Calculer \widehat{EBA} .
- 3. Calculer \widehat{ADC} .
- 4. Calculer \widehat{BCD} .
- 5. Calculer \widehat{DEC} .

3-3/ Exercice 3

Soit les deux figures suivantes :

1. (A) et (B) sont-elles parallèles ?

3-4/ Exercice 4

On considère la figure suivante dans laquelle les droites (AB) et (DE) sont parallèles :

L'angle \widehat{BAE} mesure 25°.

- 1. Quelle est la mesure de l'angle \widehat{AED} ?
- 2. Que peut-on dire des angles \widehat{AED} et \widehat{AEF} ?
- 3. En déduire la mesure de l'angle \widehat{AEF} .

L'angle \widehat{ABE} mesure 87°.

- 4. Quelle est la mesure de l'angle \widehat{CBE} ?
- 5. En déduire la mesure de l'angle \widehat{FET} .

3-5/ Exercice 5

- 1. Tracer \widehat{xOy} un angle de 120° , puis sa bissectrice [Oz).
- 2. Placer sur [Oz) un point A et sur [Oy) un point B tel que OA = OB.
- 3. Calculer les angles du triangle OAB.
- 4. Prouver que la droite (AB) et la demi-droite [Ox) sont parallèles.