				-
Divide and Conquer	Algorithm for Merge Sort	Binary Search	Strassen's motive multiplication	
Stages	mergesort (int[]a, int left, int right)	escient than linear search	Algorithm STRASSEN-MAT_MUL (Int &A , int &	int*C, intn)
Lo Doivide	t if (right > left)	C - himary search, array must be sorred	1/4 and 6 input matrices	
L of solve	{ middle = left + (right -left)/2;	it is divide a conquer based search	I/C is output matrix	
1, 9 contine Control Abbraction	. (A lelb middle);	technique	of circ nxn	
Divide : recursively divide the pb into	merge sort (a, middle +1, right);	technique in each step also divides list into two helver in each step also divides list into two helver and check if demont to be searched in on upper or lower and check if demont to be searched in on upper or lower	MAIL marries are 4 10	
a to 1 and antiv	merge (a, left, middle, right);}	Maritim for linery Scorch	lif n== l then	
3) Solve: subspace salved incorporation order to doine the eduction of original big pb.	J		4C = ₹ C + (*A) * (*B)	
N to Kane	Time to merge two arrays each 11/2 elements is linear, i.e. N	(Deciription : Perform	STRASJEN_MAT_MUL (A,B,C, n/4)	
Applications 1) Finding exp of the number	3 7 (1) -1	1/ Input · Sorted array A of size n and Key h		n/4)
	17(N) = 2T (H/2) + N	be searched /Failure	MAT - MUL (ATE (11-1), O.), c+3* (h/4), n/4)
2) Multiplying matrix (Strassen's Algo). 3) Multiplying matrix (Strassen's Algo).		be searched // output: Success / Failure	STRASSEN_MAT_MUL(A+2*(n/4), B+2*(n/4) STRASSEN_MAT_MUL(A+3*(n/4), B+2*(n/4) STRASSEN_MAT_MUL(A+3*(n/4), B+3*	(n/4), C+ 2* (n/4), n/4)
3) Hulliplying metrix (Stranger of Marger Sort) 4) Sorting elements (Quickfort & Marger Sort)	Properties of Merge Sort	low el	STRASSEN_MAT_MUL(A+ 3* (n/4), B+2*(STRASSEN_MAT_MUL(A+ 3* (n/4), B+3*	(1)4), (1)
5) Scarching clement from	1) Not adaptive running time of MS doesn't change with i/p sequence.	nign ← n-1 while low < high do	end	
6) Discrete Fourier Transform 7) (Losest Pair Problem	2) Stable / Unstable - both implementation are	mid + (low + high)/2	0 [Q11 412] B: b11 b12]	
8) Min - Max Pb	portible doesn't sort one by one	if A[mid] == Key then	$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \qquad \begin{bmatrix} B = b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}$	
C .	element in each pass so il is	return mid else if Almid] < Key then	1 150 171	
Sorting	incremental 4) Not Online - need all data to be in	low - mid +1	$C = \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{bmatrix} \qquad \boxed{\begin{bmatrix} 11 & 12 \\ 21 & 22 \end{bmatrix}} $	
Process of arranging elements in certain order	memory at the time of sorting, so	alse	0,	
- Numeric data may be sorted in ascordi	no merce sort is not online	high ← mid -1	P = (a11 + a22)(b11 + b22) b1 an a12 b21	
or descending order	S) Not in place - it need Big on of n extra Space of size (n/2).	end	Q = b11 (a 21 + a 20)	
-Alphabet or Strings may be sorted in localization	6	3	R= an (biz - bzz)	
-If no. of dements are small enough to wort	Vuicksort Tony Hoase	Min Max Problem	S= an (bn - bn)	
in main memory norting - internal serting	- Partition exchange Sort	- used to find max and min element from	T = bn (an + an)	
. If no. of elements are large to both in main memory than we need secondary sharage	Best Case Average Come Worst average	given list approach (n-1) comparisons for finding	U= (b1 + b12) (a21 - a11)	
seternal storage	O(nlogn) O(nlogn) O(n2)	max & same no. of comparisons for	V= (b21+ b22) (a11 - a2)	
Properties	sort (A)	finding min		
1) In place - only require constant additional	1. quickSort (A. O. n-1)	-it results in total 2n-1 comparisons	CH= P+S-T+V	
space to work the algorithm		it works in 3 stages: divide, solve, combin	cn= Q + S	
2) Stable - does not after the relative	Quick(ort (A, left, right)	Algorithm for Min-Max	C22 = P+R - Q+U	
3) Online - soit the data as it arrives.	l. if (/cft < right) then Di = packition (A, left, right)	min_max (A, min, max, low, high)		
	3. quick sort (A, left, pi-1)	\ \frac{1}{3}		
4) Adaptive - performance of algo varies with i/p pattern	4. quicksort (A, pi+1, right)	if (low = = high) then		
() Incremental-build hosted exquence one	end	min = max = A [low]		
ne. at a time	partition (A, left, right)	else		
Merge Sort	1. p=celect pixotin Alleft, right] 2. sucop A[p] and Alleft, right]	fif (A[low] < A[high]) then		19
- Sorting maller list is faller than soing	3. Stre=Left	min = A[low]		
larger with - Combine 2 sorted hubbles is faster than that of	4. for i=left to right-1 do	max = A[high]		
2 unsorted list	5. If (Ali] SA(right) then wap Ali] and A(store)	else		
M. S works in 3 stages:	; store++	I		2 101
-> divide, solve, cor	8. swap Alstre] & Alreght]	min= A(high) _max= A(bw)		
.M.S divides list demont of n into 2 sublish	a return state	, , ,		Las
each of size 1/2 -This publishes continuous cutil pb xx=1		3		
		else		
· After letting to plosinze=1, conquer prace atacts no elements		mid = (low thigh)/2		
7		min_max (A, low, mid, min, max) min-max (A, mid+1, migh, min, mox)		
n/2 n/2		3	4	
n/4 n/4 n/4 log21		Complexity: (0927)		
		J2		
				360
		1	1	