Análisis de señales Taller de refuerzo matemático

Escuela de Ciencias exactas e Ingeniería

Código: SA2019IG01_TTQ01

	Profesor: Marco Teran
Name:	Deadline: 30 de enero de 2018

1.	(30 points)	Realizar	cada 1	mo de	los siguientes	eiercicios	de refuerzo	matemático
⊥.	(SOLDOING)	rtcanzai	caua i	uno de	TOS SIGUICITOS	CICICIOS	de renderzo	matematico.

(a)
$$\int t \cos(3t^2) dt$$

(k)
$$\int \frac{\mathrm{d}x}{x^2 - a^2}$$
, para $a \neq 0$

(s)
$$\sum_{k=2}^{6} \cos 0.5k$$

(b)
$$\int \frac{t \sin(4t + 6\pi)}{3\pi} \, dt$$

(l)
$$\int (nx)^{\frac{1-n}{n}} dx$$

(t)
$$\sum_{s=4}^{10} 3s$$

(c)
$$\int e^{\pi t + 3\frac{\pi}{4}} \sin(\pi t) dt$$

(m)
$$\int 3^x e^x \, dx$$

(u)
$$\sum_{x=1}^{6} (2x)^2$$

(d)
$$\int 4t^{2n} dt$$

(n)
$$\sum_{k=0}^{100} (\frac{1}{3})^k$$

(v)
$$\sum_{n=1}^{n} y^2$$

(e)
$$\int t \sin(t) \cos(3t) dt$$

(o)
$$\sum_{n=0}^{8} 1^n$$

(w)
$$\sum_{k=0}^{\infty} 2(0.5)^{2k}$$

(f)
$$\int \frac{1}{3\Omega - 2} d\Omega$$

(g)
$$\int \sin^2 \theta d\theta + \int \cos^2 \theta d\theta$$

(p)
$$\sum_{n=-2}^{4} 0.5^n$$

$$(x) \sum_{k=1}^{\infty} 3(\frac{1}{4})^k$$

(h)
$$\int |x| \, \mathrm{d}x$$

(q)
$$\sum_{k=5}^{10} 9^{0.5k}$$

(y)
$$\sum_{n=1}^{-\infty} \frac{2n}{3} (0.2)^n$$

(i)
$$\int (x^2 - 1)10^{-2x} dx$$

(j) $\int \frac{dx}{x\sqrt{1 - x^2}}$

(r)
$$\sum_{k=0}^{5} 4e^{3k}$$

$$(z) \sum_{n=0}^{\infty} n^2 (\frac{1}{3})^n$$

2. (5 points) Resolver las inecuaciones:

(a)
$$1 - x \ge 2x + 3$$

(d)
$$12 \le -1.4x \le 28$$

(g)
$$\frac{4-x}{3x^2+3x-60} \ge 0$$

(b)
$$5x - 4 < 3x + 4$$

(e)
$$-8 < (x-4)(x+3) < 0$$

(c) $x^2 - 5x + 6$

(h)
$$x^3 + 8 > 0$$

(c)
$$0.2x + 4 > 1.7x - 3$$

(f)
$$\frac{x^2 - 5x + 6}{x + 4} \le 0$$

(a)
$$(\frac{1-x}{1+\sqrt{(x)}}+2\sqrt{x})(1-\sqrt{x})$$

(a)
$$\left(\frac{1-x}{1+\sqrt{(x)}}+2\sqrt{x}\right)(1-\sqrt{x})$$
 (c) $\left(\frac{1}{(\sqrt{(x)}-1)^2}-\frac{\sqrt{x}}{1-x}\right)\frac{1-x}{1+x}$ (e) $\sin^2 x - \sin^4 x + \cos^4 x$

(e)
$$\sin^2 x - \sin^4 x + \cos^4 x$$

(b)
$$(\frac{1}{\sqrt{(x)+3}} + \frac{4}{x-9})\frac{\sqrt{x}+3}{\sqrt{x}+1}$$
 (d) $\frac{\sqrt{x}}{\sqrt{x}-6} - \frac{3}{\sqrt{x}+6} + \frac{x}{36-x}$ (f) $\frac{\sin^2\alpha}{1-\cos\alpha} - \cos\alpha$

(d)
$$\frac{\sqrt{x}}{\sqrt{x}-6} - \frac{3}{\sqrt{x}+6} + \frac{x}{36-x}$$

(f)
$$\frac{\sin^2 \alpha}{1 - \cos \alpha} - \cos \alpha$$

4. (5 points) Demostrar la igualdad implementando propiedades trigonométricas:

(a)
$$\sin^4 \alpha + 2\sin^2 \alpha \cos^2 \alpha = 1 - \cos^4 \alpha$$