PythonSim Example: Processing Network

- Two classes; two servers
- Class 1 jobs have higher value; served with priority at server 2
- Arrivals are stationary
 Poisson processes,
 processing times exponential
 with given means
- Estimate the steady-state queue-length and system time for each class, and utilization of each server

PythonSim Example: Processing Network

Main logic:

- Class 1 arrival:
 - Schedule the next class 1 arrival
 - If server 1 idle; seize; schedule EndofService1
 - Else if server 2 idle; seize; schedule EndofService2
 - Else add customer to queue 1
- Class 2 arrival:
 - Schedule the next class 2 arrival
 - If server 2 idle; seize; schedule EndofService2
 - Else add to queue 2

PythonSim Example: Processing Network

Main logic:

- EndofService1
 - Record system time
 - If queue1 > 0 remove next customer from queue 1 and schedule the next EndofService1
 - Else make server 1 idle
- EndofService2
 - Record system time (could be class 1 or 2)
 - If queue 1 > 0; remove customer from class 1; schedule the next EndofService2 for a class 1 customer
 - Else if queue 2 > 0; remove customer from class 2; schedule the next EndofService2 for a class 2 customer
 - Else make server 2 idle

