1.36

Compute the value of $2^{(p-1)/2}$ (mod p) for every prime $3 \le p < 20$. Make a conjecture as to the possible values of $2^{(p-1)/2}$ (mod p) when p is prime and prove that your conjecture is correct.

$$2^{(p-1)/2} = r \pmod{p}$$

Table 1: $3 \le p < 20$ $\begin{array}{c|cccc}
p & r \\
\hline
3 & 2 \\
5 & 4 \\
7 & 1 \\
11 & 10 \\
13 & 12 \\
17 & 1 \\
19 & 18 \\
\end{array}$

Conjecture: $r \equiv \pm 1 \pmod{p}$ where p is prime.

Proof: Let $r=2^{(p-1)/2}$. Then $r^2=2^{(p-1)}$ by simplification. Since 2 is prime, $p \nmid 2$. Then by Fermat's Little Theorem, $r^2=2^{(p-1)}\equiv 1 \pmod p$. Thus $x^2\equiv 1 \pmod p$. Now $r\equiv \pm 1 \pmod p$ by $1^2=1$ and $-1^2=1$.