

ĐẠI HỌC BÁCH KHOA HÀ NỘI VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG

Học sâu và ứng dụng (IT4653)

Bài 1: Giới thiệu về học sâu

Thế nào là học sâu?

 Là phương pháp học máy sử dụng mạng nơ-ron nhân tạo để trích xuất đặc trưng tự động từ dữ liệu

Tại sao cần học sâu?

- Phương pháp học máy truyền thống đòi hỏi trích xuất đặc trưng một cách thủ công, đòi hỏi kinh nghiệm và phụ thuộc từng bài toán cụ thể
- Học sâu cho phép trích chọn đặc trưng tự động từ dữ liệu

Low Level Features

Mid Level Features

High Level Features

Lines & Edges

Eyes & Nose & Ears

Facial Structure

Tại sao giờ mới bùng nố học sâu?

Neural Networks date back decades, so why the resurgence?

I. Big Data

- Larger Datasets
- Easier Collection
 & Storage

2. Hardware

- Graphics
 Processing Units
 (GPUs)
- Massively Parallelizable

3. Software

- Improved Techniques
- New Models
- Toolboxes

Học máy có giám sát

Functions \mathcal{F}

$$f: \mathcal{X} \to \mathcal{Y}$$

Training data

$$\{(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}\}$$

LEARNING

find $\hat{f} \in \mathcal{F}$ s.t. $y_i \approx \hat{f}(x_i)$

New data

Learning machine

$$\mathbf{y} = \hat{f}(x)$$

 \boldsymbol{x}

Tập huấn luyện và tập kiểm tra

Hiện tượng overfit và underfit

- Underfitting: mô hình quá "đơn giản" để biểu diễn các tính chất của dữ liệu
 - Bias cao và variance thấp
 - Sai số cao trên tập huấn luyện và tập kiểm tra
- Overfitting: mô hình quá "phức tạp" dẫn tới học cả nhiễu trong dữ liệu
 - Bias thấp và variance cao
 - Sai số thấp trên tập huấn luyện và sai số cao trên tập kiểm tra

Minh họa Bias-Variance

Phân lớp tuyến tính

airplane automobile bird cat deer dog frog horse ship truck

50,000 training images each image is 32x32x3

10,000 test images.

Phân lớp tuyến tính

Phân lớp tuyến tính: 3 góc nhìn

Algebraic Viewpoint

$$f(x,W) = Wx$$

Visual Viewpoint

One template per class

Geometric Viewpoint

Hyperplanes cutting up space

Hàm mục tiêu

Suppose: 3 training examples, 3 classes. With some W the scores f(x, W) = Wx are:

cat

3.2

1.3

2.2

car

5.1

4.9

2.5

frog

-1.7

2.0

-3.1

A loss function tells how good our current classifier is

Given a dataset of examples

$$\{(x_i, y_i)\}_{i=1}^N$$

Where x_i s image and y_i s (integer) label

Loss over the dataset is a average of loss over examples:

$$L = \frac{1}{N} \sum_{i} L_i(f(x_i, W), y_i)$$

Hàm mục tiêu

Suppose: 3 training examples, 3 classes. With some W the scores f(x, W) = Wx are:

cat

3.2

1.3

2.2

car

5.1

4.9

2.5

frog

-1.7

2.0

-3.1

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j \neq y_i} \begin{cases} 0 & \text{if } s_{y_i} \geq s_j + 1 \\ s_j - s_{y_i} + 1 & \text{otherwise} \end{cases}$$
$$= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

Hiệu chỉnh

 λ = regularization strength (hyperparameter)

$$L(W) = \underbrace{\frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)}_{i=1}$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing too well on training data

Simple examples

<u>L2 regularization</u>: $R(W) = \sum_{k} \sum_{l} W_{k,l}^2$

L1 regularization: $R(W) = \sum_k \sum_l |W_{k,l}|$

Elastic net (L1 + L2): $R(W) = \sum_{k} \sum_{l} \beta W_{k,l}^{2} + |W_{k,l}|$

More complex:

Dropout

Batch normalization

Stochastic depth, fractional pooling, etc

Bộ phân loại softmax

Hồi quy tuyến tính

 $f(x; w) = w_0 + \sum_{i=1}^d w_i x_i = w^T x'$

Hồi quy tuyến tính

- Nên chọn hàm mục tiêu nào?
 - Mỗi $y^{(i)}$ là một số thực
 - Bình phương tối thiểu là một lựa chọn tốt ©

$$J(w; \mathbf{X}, \mathbf{Y}) = \frac{1}{N} \sum_{i=1}^{N} [f(x^{(i)}; w) - y^{(i)}]^{2}$$

$$= \frac{1}{N} \sum_{i=1}^{N} [w^{T} x^{(i)'} - y^{(i)}]^{2}$$

$$= \frac{1}{N} (w^{T} \mathbf{X}' - \mathbf{Y})^{T} (w^{T} \mathbf{X}' - \mathbf{Y})$$

Tối ưu hàm mục tiêu

Gradient Descent

Gradient Descent

Gradient Descent

- Chọn tốc độ học learning rate η
- Khởi tạo w ngẫu nhiên
 - Khởi tạo w từ các phân bố thường gặp như phân bố đều hoặc phân bố chuẩn (gauss)
- Chừng nào w vẫn chưa hội tụ
 - Cập nhật $w \leftarrow w \eta \nabla J(w; \mathbf{X}, \mathbf{Y})$

Stochastic Gradient Descent (SGD)

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(x_i, y_i, W) + \lambda R(W)$$

$$\nabla_W L(W) = \frac{1}{N} \sum_{i=1}^{N} \nabla_W L_i(x_i, y_i, W) + \lambda \nabla_W R(W)$$

Full sum expensive when N is large!

Approximate sum using a **minibatch** of examples 32 / 64 / 128 common

Vanilla Minibatch Gradient Descent

```
while True:
```

```
data_batch = sample_training_data(data, 256) # sample 256 examples
weights_grad = evaluate_gradient(loss_fun, data_batch, weights)
weights += - step_size * weights_grad # perform parameter update
```


Giới thiệu công cụ và môi trường

- Google Colab: https://colab.research.google.com/
- Miễn phí GPU (Tesla T4/P100)
- Dùng liên tục 10 tiếng mỗi session

Google Colab

Thiết lập GPU: Edit / Notebook settings

Notebook settings

Runtime type	
Python 3	
Hardware accelerator	
GPU	→ ⑦
Omit code cell outpu	it when saving this notebook

CANCEL SAVE

Google Colab

Trick giúp colab chạy liên tục: Ấn F12, chọn Console

```
function ClickConnect() {
  console.log("Working");
  document.querySelector("colab-toolbar-button#connect").click()
}
setInterval(ClickConnect,60000)
```


Google Colab

- Tạo nhiều tài khoản google
- Share dữ liệu cho nhiều tài khoản google cùng dùng
- Mount dữ liệu:

```
from google.colab import drive
drive.mount('/content/drive')
```

 Lưu dữ liệu dưới dạng zip và unzip vào ổ cứng máy ảo Colab để tăng tốc độ xử lý dữ liệu:

!unzip -uq "/content/drive/My Drive/Colab Notebooks/data.zip" -d "/content/"

Jupyter Notebook

 Hướng dẫn sử dụng và cài đặt: https://www.dataquest.io/blog/jupyter-notebook-tutorial/

Tensorflow/Keras/PyTorch

Tensorflow/Keras/PyTorch

488

24.5K

1.6K 5.7K

3.9K

4.1K

52.8K

Tài liệu tham khảo

1. Khóa cs231n của Stanford: http://cs231n.stanford.edu

VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Thank you for your attention!

Bias trick

• Before: $f(x_i, W, b) = Wx_i + b$

• After: $f(x_i, W) = Wx_i$

0.2	-0.5	0.1	2.0			
1.5	1.3	2.1	0.0			
0	0.25	0.2	-0.3			
W						

	V	V		b
0	0.25	0.2	-0.3	-1.2
1.5	1.3	2.1	0.0	3.2
0.2	-0.5	0.1	2.0	1.1

new, single W

56

231

24

2

 x_i

SVM vs. Softmax

