Data Science with Python

Araz Shahkarami

Session 1: Introduction and basic concepts of data science

	Araz Shahkarami	17/ August	Session 1	
	Today's goals (Session duration: 90 minutes)			
\rightarrow	Understand the concept of data science			
Familiarity with the data science project cycle				
→ Identify data types				
\rightarrow	> Introduction to tools and workspace			
> Perform your first data analysis				
\rightarrow	Prepare for the next session			

Data Science Definition:
 Transform data into intelligent decisions

1 2 3

Scientific methods

Systematic processes

Advanced algorithms

Computation al systems

Araz Shahkarami 17/ August Session 1

Project Name

Practical example: Snapp data analysis

Business Questions:

- Which areas are in high demand at what times?
- How to reduce wait times?
- What is optimal pricing?
- Which drivers perform best?

Differences from related disciplines (Data Science vs Other Fields)

Feature	Data Science	Traditional Statistics	Business Analytics
Data Volume	Large & Complex	Small Samples	Medium
Goal	Prediction	Hypothesis Testing	Reporting
Tools	Python/R	SPSS/SAS	Excel/BI
Output	Automated Model	Statistical Result	Dashboard

The intersection of three fields:

Collecting raw data

performance

transforming, and structuring data

Data Analysis Exploratory analysis, feature engineering

Understanding the **Preparation Phase**

Modeling Building

ML/statistical

models

business/question

Evaluation Testing model

Deployment Implementing the model in production

Monitoring Tracking model performance over time

Modeling

Operationalization Phase

Exploratory & Preparation Phase

Step one

Problem Definition

Goal:

Translate a business problem into an answerable question

Example:

General problem:
"Passengers wait too long"

Specific question: "How can we reduce waiting time from 8 to 5 minutes?"

Tools:

- Stakeholder interviews
- Defining KPIs
- SWOT analysis

Step Two

Data Collection

Data Sources:

Internal: System logs, transactional databases

External: APIs, websites,

purchased data

Public: Government,

research, open-source

Key Challenges:

- Data quality
- Access and permissions
- Volume and velocity

Step Three

Data Preparation

Key Challenges:

Key Activities:

Cleaning: Removing duplicates, handling missing values

80% of a project's time is

Transformation: Changing formats, creating new variables

Integration: Combining data from different sources

Validation: Checking accuracy and logical consistency

Clean data = Reliable results

Step Four

Data Analysis

Extract insights and identify patterns to answer business questions

Session 1

Key Activities:

Exploratory Analysis (EDA): Summarize data (mean, median, distributions)

Visualize trends (charts,

graphs)

Detect outliers and anomalies

Good analysis → Better decisions!

Araz Shahkarami 17/ August Session 1

Modeling & Operationalization Phase

Step five

Modeling

Goal:

Develop predictive or prescriptive models to solve the business problem

Key Activities:

Feature Engineering & Selection

Algorithm Selection Model Training & Tuning Model Evaluation Iterative Improvement

Outcome: A deployable model that provides actionable insights or predictions!

Step six

Evaluation

Goal:

Rigorously assess model performance to ensure reliability and business readiness

Step seven

Deployment

Goal: Transition from a prototype to a live system that delivers business value

Step eight

Monitoring

Goal: Ensure sustained accuracy, reliability, and business relevance of deployed models

Araz shahkarami

Extraction Challenges

Schema changes, query performance

Session 1

Data Acquisition Pipeline

•	
Extract Phase	

1	
Extract Phase	
Source	Commo

Databases

Flat Files

Web Scraping

APIs

on Use Cases

Transactional data, user records

Legacy systems, external reports

Format inconsistencies, encoding

Rate limits, authentication

Legal/robots.txt, HTML volatility

17 / August

Transform Phase

Operations Null handling, outlier clipping

Date parts, rolling windows

Tokenization, TF-IDF

SaaS platforms, microservices

Competitive intelligence, leads

Use vectorized operations

Min-max scaling, z-score One-hot, label, embeddings Cache intermediate results

Avoid one-hot for high-cardinality Pre-compute common aggregations

ETL/ELT Category Cleaning Normalization Encoding

Temporal

Text

S

Proces

Pipeline caching

Performance Tip

Data Acquisition Pipeline

Load Phase

Storage Type	Best For	Performance
Data Warehouses	Structured analytics, BI reporting	High
Data Lakes	Raw/unstructured data, ML pipelines	Medium
NoSQL Databases	High-velocity unstructured data	Varies
Streaming Platforms	Real-time processing	Ultra-low latency

Araz Shahkarami 17 / August Session 1

Thanks for participating

Why Python is the Best Choice for Data Projects

1

Simple & Readable

Natural Syntax → Closer to human language than most programming languages 2

Rich Ecosystem

Pandas-Data manipulation NumPv-Numerical

computing

Matplotlib-Visualization Scikit-learn-Machine

Learning

TensorFlow-Deep Learning

3

Massive Community
Support

GitHub: 500K+ Python repositories

Real-World Impact: Used by 90% of

Fortune 500 companies

4

Open Source & Free

Zero Licensing Costs
Cross-Platform

Araz Shahkarami 17 / August Session 1

Perform your first data analysis

```
📁 ساختار مخزن
data-science-python-course/
                                مطالب هر حلسه #
   sessions/
                               حلسه اول #
     — session-01/
        ├─ slides/
                               اسلاندها #
                               # Jupyter Notebooks
        - notebooks/
                              دادههای نمونه #
        ├─ data/
       └─ exercises/
                              تمرين ها #
     — session-02/
   projects/
                               پروژههای دوره #
    ├─ mini-projects/
                              يروژههاي کوچک #
    └─ final-project/
                              يروژه نهايي #
   datasets/
                              مجموعه دادههای دوره #
    — raw/
                              داده های خام #

— processed/
                              داده های پرداز ششده #
    └─ external/
                              داده های خارجی #
                              منابع و مراجع #
    resources/
                              كتابها و مقالات #
    - books/
                             برگه های کمک سریع #
    - cheatsheets/
    └─ links.md
                             لينكهاي مفيد #
   setup/
                              راهاندازی محیط #
    |-- installation.md
                             راهنمای نصب #
   └─ environment.yml
                             # محيط conda
```

7 Reasons to Become a Data Scientist

- I. High Demand & Salary
- 2. Future-Proof Career
- 3. Impactful Work
- 4. Intellectual Stimulation
- 5. Remote Flexibility
- 6. Low Barrier to Entry
- 7. Creativity Meets Logic

Araz Shahkarami 17 / August Session 1

If you have any questions, contact: araz.shah@gmail.com
https://araz.me