

Workshop1

COMP90007 Internet Technology

Prepared by: Chenyang Lu (Luke)

Chenyang Lu (Luke)

- Email: chenyang.lu@unimelb.edu.au

- Workshop Slides: https://github.com/LuChenyang3842/Internet-technology-teaching-material

Day	Time	Location	
Tue	18:15	Bouverie st –B114	
Wed	10:00	Elec Engineering -122	
Wed	17:15	Bouverie-sr 132	

Review

1. What is Ip address?

A numerical label assigned to each device connected to a <u>computer</u> <u>network</u>

3. What is TCP?

TCP is one of the main <u>protocols</u> in <u>TCP/IP</u> networks

Establish Connection between two hots and exchange data between

2. What is HTTP used for?

HTTP is the underlying <u>protocol</u> used by the <u>World Wide Web</u> and this protocol defines how messages are formatted and transmitted

1. How TCP establish a connection

3-way handshake

2. How TCP close a connection

4-way handshake

Workshop Questions

Question 1 (Layers)

• Identify 2 ways in which the OSI reference model and the TCP/IP reference model are the same.

OSI Model

• Identify 2 ways in which these models differ.

TCP/IP Model				
Application				
Transport				
Internet				
Host-to-network				

Application Layer				
Presentation Layer				
Session				
Transport				
Network				
Data Link				
Physical				

Question 1

- Identify 2 ways in which the OSI reference model and the TCP/IP reference model are the same.
- Identify 2 ways in which these models differ.

Similarities:

- stacking of <u>layered protocols</u>
- similar functionality in each of the layers
- layers above transport layer relate to applications

Differences:

- TCP/IP does not distinguish between services, interfaces and protocols
- TCP/IP does not clearly separate physical and data link functions
- <u>At the network layer, OSI</u> supports connectionless and connectionoriented communication while TCP/IP supports only connectionless communication at the Internet layer
- <u>At the transport layer</u>, OSI supports only connection-oriented communication, while TCP/IP supports both connection-oriented and connectionless communication at the transport layer

TCP/IP Model

Application HTTP **SMTP** RTP DNS **TCP UDP** Transport **Protocols** Layers IΡ **ICMP** Internet Link SONET 802.11 Ethernet DSL

OSI Model

Hybrid Reference Model used in this semester

5	Application layer	
4	Transport layer	
3	Network layer	
2	Data link layer	
1	Physical layer	

Delay = Transmission delay + Propagation delay

Time required for the first bit to travel from computer A to computer B.

- Transmission delay: the amount of time required to transmit all of the packet's bits into the link.
 - T-delay = Message in bit/ rate of transmission
- **Propagation delay**: the time taken for a packet to reach from sender(A) to receiver(B).
 - P-delay = length of channel/ speed of signals
- *Round-Trip Delay:
 - Satellite
 - Altitude above the earth, round-trip delay
 - Round-trip distance, light speed

Question2 (Delay and Bandwidth)

Calculate the end-to-end transit time for a packet for

- GEO (Geostationary orbit) (altitude: 35,800 km),
- MEO (Medium Earth orbit) (altitude: 18,000 km) and
- LEO (Low Earth orbit) (altitude: 750 km) satellites.
- Transit Time = $2 \times \text{distance} / \text{spead of light}$, where $c = 3.0 \times 10^8 \,\text{m/s}$
- GEO: 239 ms
- MEO: 120 ms
- LEO: 5 ms

- 1. Bandwidth is treated as rate of transmission with the unit **bits/second**.
- 2. The second definition, commonly used in signal processing, is the range of frequencies an electronic signal uses on a given transmission medium (Hz)

Question3 (Delay and Bandwidth)

An image is 1600 × 1200 pixels with 3 bytes/pixel. Assume the image is uncompressed.

- How long does it take to transmit it over a 56-kbps modem channel, assuming zero propagation delay over the channel?
- Over a 1-Mbps cable modem? Over a 10-Mbps Ethernet?
- Over 100-Mbps Ethernet? Over gigabit Ethernet?
- Image size = $1600 \times 1200 \times 3 \times 8 = 46.08 \times 10^6$ bits
- 56 kbps modem: 823 s
- 1 Mbps modem: 46.1 s
- 10 Mbps Ethernet: 4.61 s
- 100 Mbps Ethernet: 0.46 s
- 1 Gbps Ethernet: 0.046 s

Bonus: Maximum data rate of transmission

Nyquist's theorem (Without noise)

Max. data rate = 2B log₂V bits/sec How fast signal can change Number of signal levels

Shanon theorem (with Noise)

Figure 1. Data bits where logical "0" and "1" are represented by 0 volts and 3 volts respectively

Figure 2. Four signaling levels per clock cycle can represent two data bits.

Question4 (Topology)

• Consider the following 3 network topologies for connecting N nodes. In the general case of an N node network:

(a) How many links are there in each network(given n nodes, how many links in each network)?

Linear: N-1 links Ring: N links

Full mesh: N(N-1)/2 links

□ (b) What is the maximum delay between any pair of nodes, assuming each link has a delay of 10ms, and the shortest path is used between nodes?

Linear: 10(N-1) ms Ring: 10*N/2 ms Full mesh: 10 ms

(c) What is the minimum number of links that need to be cut in order to isolate one or more nodes?

Linear: 1 link

Ring: 2 links

Full mesh: N - 1 links

(d) Which topology would you use to connect military command centres? Full mesh – cost not important, but reliability is essential

Question5 (Topology)

Is an oil pipe a simplex system, a half-duplex system, a full duplex system or none of the above? Under which conditions?

Basis for Comparison	Simplex	Half Duplex	Full Duplex
Direction of Communication	Unidirectional	Two-directional, one at a time	Two-directional, simultaneously
Send / Receive	Sender can only send data.	Sender can send and receive data, but one a time.	Sender can send and receive data simultaneously.
Example	Keyboard and monitor	Walkie-talkie	Telephone

Question5 (Topology)

Is an oil pipe a simplex system, a half-duplex system, a full duplex system or none of the above?

Under which conditions?

- Oil can flow in either direction, but not both ways at once, therefore it **cannot** be *full duplex*.
- Depending on the situation, at an oil refinery, for example, an oil pipe is *simplex*, as the oil only flows in one direction.
- Theoretically oil can flow both ways, therefore it can be consider *half duplex*, similar to a single railroad track.