## ✓ Congratulations! You passed!

TO PASS 80% or higher

Keep Learning

grade 100%

## **Optimization Algorithms**

| LATEST SUBMISSION GRADE |
|-------------------------|
|-------------------------|

## 100%

| (  | Which notation would you use to denote the 3rd layer's activations when the input is the 7th example from the 8th minibatch?                                                                  | 1 / 1 point |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|    | $\bigcirc \ a^{[8]\{3\}(7)}$                                                                                                                                                                  |             |
|    | $\bigcirc \ a^{[3]\{7\}(8)}$                                                                                                                                                                  |             |
|    | $\bigcirc \ a^{[8]\{7\}(3)}$                                                                                                                                                                  |             |
|    |                                                                                                                                                                                               |             |
|    | ✓ Correct                                                                                                                                                                                     |             |
|    |                                                                                                                                                                                               |             |
| 2. | Which of these statements about mini-batch gradient descent do you agree with?                                                                                                                | 1/1 point   |
|    | You should implement mini-batch gradient descent without an explicit for-loop over different mini-batches, so that the algorithm processes all mini-batches at the same time (vectorization). |             |
|    | Training one epoch (one pass through the training set) using mini-batch gradient descent is faster than training one epoch using batch gradient descent.                                      |             |
|    | One iteration of mini-batch gradient descent (computing on a single mini-batch) is faster than one iteration of batch gradient descent.                                                       |             |
|    | ✓ Correct                                                                                                                                                                                     |             |
| ,  | Why is the best mini batch size usually not 1 and not minut instead comothing in between?                                                                                                     | 4/4         |
| ,  | Why is the best mini-batch size usually not 1 and not m, but instead something in-between?                                                                                                    | 1 / 1 point |
|    | If the mini-batch size is 1, you lose the benefits of vectorization across examples in the mini-batch.                                                                                        |             |
|    | ✓ Correct                                                                                                                                                                                     |             |
|    | If the mini-batch size is m, you end up with batch gradient descent, which has to process the whole training set before making progress.                                                      |             |
|    | ✓ Correct                                                                                                                                                                                     |             |
|    | If the mini-batch size is m, you end up with stochastic gradient descent, which is usually slower than mini-batch gradient descent.                                                           |             |
|    | If the mini-batch size is 1, you end up having to process the entire training set before making any progress.                                                                                 |             |
| ļ. | Suppose your learning algorithm's cost $J$ , plotted as a function of the number of iterations, looks like this:                                                                              | 1/1 point   |





✓ Correct

7. You use an exponentially weighted average on the London temperature dataset. You use the following to track the temperature:  $v_t = \beta v_{t-1} + (1-\beta)\theta_t$ . The red line below was computed using  $\beta = 0.9$ . What would happen to your red curve as you vary  $\beta$ ? (Check the two that apply)





| Adam combines the advantages of RMSProp and momentum                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\bigcirc$ We usually use "default" values for the hyperparameters $eta_1,eta_2$ and $arepsilon$ in Adam ( $eta_1=0.9,eta_2=0.999,arepsilon=10^{-8}$ ) |
| Adam should be used with batch gradient computations, not with mini-batches.                                                                           |
| $\bigcirc$ The learning rate hyperparameter $lpha$ in Adam usually needs to be tuned.                                                                  |
|                                                                                                                                                        |
| ✓ Correct                                                                                                                                              |

1 / 1 point

10. Which of the following statements about Adam is False?