REPORT No. 173.

RELIABLE FORMULAE FOR ESTIMATING AIRPLANE PERFORMANCE AND THE EFFECTS OF CHANGES IN WEIGHT, WING AREA, OR POWER.

By WALTER S. DIEHL,
Bureau of Aeronautics, Navy Department.

			,	
	•			
·				
				-
	,			

REPORT No. 173.

RELIABLE FORMULAE FOR ESTIMATING AIRPLANE PERFORMANCE AND THE EFFECTS OF CHANGES IN WEIGHT, WING AREA, OR POWER.

By Walter S. Diehl.

SUMMARY.

This paper, which was prepared for publication by the National Advisory Committee for Aeronautics, contains the derivation and the verification of formulae for predicting the speed range ratio, the initial rate of climb, and the absolute ceiling of an airplane. It is shown that the ratio of the maximum speed $V_{\rm M}$ to the minimum speed $V_{\rm S}$ is given by

$$\frac{V_{\rm M}}{V_{\rm S}} = \frac{K_{\rm 1} \, \eta_{\rm m}^{1/3}}{\left(V_{\rm S} \cdot \frac{W}{HP}\right)^{1/3}}$$

where η_m is the maximum propeller efficiency and K_1 is a constant with an average value of 20.30 when V is in M. P. H. and $\frac{W}{HP}$ is in lb./BHP.

The rate of climb at sea level, C_0 , is given by

$$C_{\rm o} = 33000 \left(\frac{K_2 \, \eta_{\rm m}}{W} - \frac{(2 \, V_{\rm s} + V_{\rm M})}{1125 \binom{L}{D}} \right)$$

where $\binom{L}{D}$ is the overall value for the airplane at the angle for best climb (maximum value of $\frac{L}{D}$ is to be used) and K_2 is a constant found to be

$$K_2 = \left(\frac{V_{\rm M}}{V_{\rm S}}\right)^{-0.27}$$

The absolute ceiling is given indirectly by

$$\frac{HP_{\text{ao}}}{HP_{\text{ro}}} = \frac{K_{\text{t}}\left(\frac{L}{\bar{D}}\right)}{\left(\frac{1}{\eta_{\text{m}}} \cdot V_{\text{s}} \cdot \frac{W}{H\bar{P}}\right)^{0.80}}$$

 K_4 having an average value of 61.7 when V_8 is in M. P. H. and $\frac{W}{H\overline{P}}$ is in lb./BHP. The absolute ceiling is obtained by reference to the usual curves of absolute ceiling against the ratio $\frac{HP_{ao}}{HP_{ro}}$. These curves are given in National Advisory Committee for Aeronautics Report No. 171.

Standard formulae for service ceiling, time of climb, cruising range, and endurance are also given in the conventional forms.

INTRODUCTION.

It is of the greatest importance that the aeronautical engineer be able to predict with considerable accuracy the effect of changes in weight and power on the performance of an airplane. The usual procedure has been in accordance with that outlined in Bairstow's Applied Aerodynamics, Chapter IX; that is, the performance is read from a series of empirical curves based on test data. This method at times gives good results, but it can not be depended on when the variations in either wing loading or power loading are great. Warner, in an article on "Airplane performance formulas," S. A. E. Journal, June, 1922 (vol. 10, No. 6), develops some very interesting formulae which appear in general to give better results than the empirical curves previously mentioned.

The formulae for speed range, rate of climb, and absolute ceiling, which are derived in this paper, were developed in the Bureau of Aeronautics of the Navy Department by the writer in an attempt to place performance prediction on a more sound basis. The formulae have been used in routine work for over a year with gratifying results, particularly in case of the formulae for speed range and rate of climb. The formula for absolute ceiling has just been developed and has not been given a thorough verification, but it appears to fulfill the requirements for accurate work, especially when it is desired to calculate the effect of changes in $\frac{W}{S}$ and $\frac{W}{HP}$.

The formulae for service ceiling, time of climb, cruising radius, and endurance are given in the well-known forms and require no comment. It is considered that their derivation may be of interest at this time.

DERIVATION OF SPEED RANGE FORMULA.

If the lift of the body, tail, and minor parts of an airplane be neglected, the speed in horizontal flight must be given by the fundamental equation

$$W = C_{\rm L} \frac{\rho}{2} S V^2 \tag{1}$$

and at standard density

$$V = \frac{K}{\sqrt{C_L}} \tag{1a}$$

The stalling speed V_s corresponds to the maximum lift coefficient C_{LM} :

$$V_{\rm S} = \frac{K}{\sqrt{C_{\rm T}}} \tag{1b}$$

Dividing (1a) by (1b)

$$\frac{V}{V_{\rm S}} = \sqrt{\frac{C_{\rm LM}}{C_{\rm L}'}} \tag{2}$$

Referring to the plot of $C_{\rm L}$, $C_{\rm D}$, and $\frac{L}{\overline{D}}$ against angle of attack for any standard airfoil, it will be seen that the slope of the lift curve is substantially constant from zero lift to a value approximately 90 per cent of the maximum. It will also be noted that owing to the small change in drag coefficient with angle at low values of $C_{\rm L}$, the slope of the $\frac{L}{\overline{D}}$ curve is likewise substantially constant from $C_{\rm L}=0$ to $C_{\rm L}=.40$ $C_{\rm LM}$. That is, $\frac{L}{\overline{D}}$ may be written proportional to $C_{\rm L}$

$$\frac{L}{D} = M \cdot C_{L} = N \left(\frac{L}{D}\right)_{\text{MAX}} L_{L} \tag{3}$$

substituting this in equation (2)

$$\frac{L}{D} = K \left(\frac{V}{V_{\rm s}}\right)^{-2} = K \left(\frac{L}{D}\right)_{\rm M} \left(\frac{V}{V_{\rm s}}\right)^{-2} \tag{4}$$

The power required for horizontal flight is

$$THP = \eta \cdot BHP = \frac{DV}{375} \tag{5}$$

where D is the drag in lb. and V the velocity in M. P. H. Since W=L in horizontal flight

$$D\!=\!\!\frac{W}{\left(\frac{L}{D}\right)}$$
 and

equation (5) may be written

$$\eta \cdot BHP = \frac{WV}{375\left(\frac{L}{\overline{D}}\right)} \tag{5a}$$

at maximum speed $V = V_{M}$ so that

$$\frac{V_{\rm M}}{\left(\frac{L}{D}\right)} = \frac{375\eta}{\left(\frac{W}{BHP}\right)} \tag{5b}$$

Substituting in equation (5b) the value of $\binom{L}{D}$ from equation (4)

$$\frac{\overline{V}_{M}}{\overline{V}_{c}^{2}} = \frac{\overline{K} \cdot \eta \left(\frac{L}{\overline{D}}\right)_{M}}{\left(\frac{W}{B\overline{H}P}\right)} \tag{6}$$

dividing by V_s

$$\left(\frac{V_{\rm M}}{V_{\rm S}}\right) = \frac{K \cdot \eta}{V_{\rm S} \cdot \left(\frac{W}{BHP}\right)} \left(\frac{L}{BHP}\right)$$

ÓΓ

$$\frac{V_{\rm M}}{V_{\rm S}} = \frac{K}{\sqrt[3]{\eta}} \frac{\sqrt[3]{\eta}}{\left(\frac{\overline{W}}{\overline{BHP}}\right)}^{\frac{1}{3}} \tag{7}$$

This speed range formula holds true for all values of $\left(\frac{V_{\text{N}}}{V_{\text{S}}}\right)$ greater than 1.60, the practical limit to the validity of equation (3). In order to demonstrate this point the values of $C_{\rm LM}$ and the range in $C_{\tt L}$ over which $\left(rac{L}{D}
ight)$ is proportional to $C_{\tt L}$ have been compiled for a series of well-known airfoil sections and are given in Table I.

Equation (7) was derived from a consideration of the characteristics curves of airfoils. It applies with even more exactness to airplanes, since at high speeds the parasite drag coefficient is practically constant and fully as large as the wing drag coefficient in practically all cases and greater in many cases. The effect of variations in wing drag coefficient will therefore be reduced.

It should be noted that at any given density $\frac{V_x}{V_z}$ depends only on the corresponding lift coefficients. At any altitude the correct value of $\frac{V_u}{V_s}$ is obtained from equation (7) by using the proper values of V_s , η , and $\frac{W}{HP}$ corresponding to the stalling speed, propeller efficiency, and engine power at this altitude.

PERFORMANCE CALCULATIONS.

In order to verify the speed range formula and to obtain data for a further study of the effect of changes in wing loading and power loading, routine performance calculations have been made for a hypothetical airplane loaded and powered to the 30 conditions represented by the combinations of five wing loadings with six power loadings. In these calculations the airplane is assumed unchanged except for weight and power, so that the results represent the true effect of variables studied.

The data given in Table II and Fig. 1 are obtained from wind tunnel test data on a complete model of an airplane which had approximately 300 square feet of wing area. These data have been corrected to the proper clevator setting required at each angle of attack for an airplane with 300 square feet of wing area of R. A. F.-15 section. Table III contains the faired values of $\frac{L}{D}$ vs. $\frac{V}{V_s}$ from the curve of Fig. 1. These values are used to calculate the curves of power required, HP_r , for each wing loading. At this point, it is to be noted that no allowance is made for the slipstream effect, chiefly because of the simplification entailed.

The method of calculating both power required, HP_r , and power available, HP_a , is exemplified in Table IV. It is assumed that the normal R. P. M. is 1,800 at high speed, decreasing uniformly to 1,600 at low speed. This decrease in R. P. M. is perhaps slightly more than that usually obtained when the speed range is low, although it is a fair average. For this reason the rate of climb and ceiling values for the low-powered cases will be found slightly low. The propeller diameter is calculated by means of the common nomograms to absorb the required BHP at 1,800 R. P. M. at the normal high speed. Two slight errors enter here; the high speed assumed was not in every case the actual high speed, and the nomogram does not give the true diameter the average error is about 0.10 foot. These errors are quite inconsequential, however.

Propeller efficiencies are obtained from the curves of National Advisory Committee for Aeronautics Report No. 168. The maximum efficiency is determined by the $\frac{V}{ND}$ at high speed, and the efficiency at any other $\frac{V}{ND}$ is given in terms of the maximum efficiency by the "general efficiency curve."

It is assumed that the BHP is directly proportional to N over the range involved in each case. This assumption is justified by the power curves of modern engines, provided that N is not too high.

Tables IV to VIII, inclusive, give HP_r for wing loadings of 4, 6, 8, 10, and 14 lb./sq. ft. and HP_a for power loadings of 6, 8, 11, 16, 20, and 24 lb./HP at each wing loading, as calculated by the method just outlined. These data are plotted on Figs. 2 to 6, inclusive. The essential performance data from these plots is given in Tables IX to XIII, inclusive.

VERIFICATION OF SPEED RANGE FORMULA.

The value of K_1 in the speed range formula, equation (7), is determined for each of the 30 combinations of $\frac{W}{S}$ and $\frac{W}{HP}$ in Tables IX to XIII. It will be noted that so long as $\frac{V_M}{V_S}$ is greater than 1.70, K is substantially constant with an average value of 20.3. The average deviation from this value over the range for which the formula holds true is less than 1 per cent. The accuracy in determining V_M is probably of the order of 1 per cent, so that the formula is verified.

The values of K_1 have also been determined from reliable performance data for a number of well-known airplanes, which are given in Table XIV. It appears that for a normal airplane the value of K_1 varies not more than 5 per cent from the average value of 20.30 previously determined. The extreme variation in K_1 noted for the F-5-L seaplane is probably due more to the low speed range than to any other cause, although the value of $\binom{L}{D}$ max is known to be much below the average.

COMMENT ON SPEED RANGE FORMULA.

If the speed range $\left(\frac{V_{N}}{V_{S}}\right)$ be plotted logarithmically against the power loading $\left(\frac{W}{HP}\right)$, it is found that

$$\left(\frac{V_{\rm M}}{V_{\rm S}}\right) \propto \left(\frac{W}{\overline{HP}}\right)^{-0.38}$$
 (8)

since it may be shown in the same manner that

$$\left(\frac{V_{\rm M}}{V_{\rm S}}\right) \propto \left(\frac{W}{\eta \cdot BHP}\right)^{-0.33_{\rm S}}$$
 (9)

it is to be concluded that

$$\eta_{\rm m} \propto \left(\frac{\overline{W}}{\overline{HP}}\right)^{0.027}$$
 (10)

for the particular case in which N=1,800 R. P. M. This relation simplifies the calculation when $\eta_{\rm m}$ is unknown. The speed range formula may then be written

$$\frac{V_{M}}{V_{S}} = \frac{19.90}{V_{S}^{.33} \left(\frac{W}{HP}\right)^{0.36}}$$
 (11)

to be used when the maximum efficiency is unknown. It will be found more satisfactory, however, to use the complete formula, equation (7), when η_m is known. The value of K is obviously variable with the type of airplane. It is recommended that for the average airplane of clean design K be taken equal to 20.3. The figure will probably vary from 19.5 to 21.0 according to the design, but it requires an unusually clean design and high-speed range to secure values of K in excess of 20.5.

The formula may be used to determine the effect of changes in weight or power of an airplane of known performance with great accuracy. This is, the true value of K may be determined from the known performance and used with the new value of V_s and $\left(\frac{W}{HP}\right)$.

The V_s in this formula is the stalling speed. It is obviously very important to use the correct value, which is given by the well-known equation

$$V = \sqrt{\frac{W}{C_{\text{LM}} \frac{\rho}{2} S}}$$
 (12)

Fig. 2.—Power curves for $\frac{W}{S} = 4 lb \cdot / sq \cdot fl$.

Fig. 3.—Power curves for $\frac{W}{S} = 6 \text{ lb./sq. fi.}$

where C_{LM} is the maximum lift coefficient of the wings for the particular arrangement used. At sea level and for V_s in M. P. H., equation (12) reduces to

$$V_{\rm s} = 19.8 \sqrt{\frac{\overline{W}}{S}}$$
 (12a)

which may be solved by a single setting on a slide rule. DERIVATION OF FORMULA FOR INITIAL RATE OF CLIMB.

The maximum rate of climb at sea level will correspond to the greatest excess horsepower, or difference between power available and power required. The power available is

$$HP_{\mathbf{a}} = K_2 \cdot \eta_{\mathbf{m}} \cdot HP \qquad (13)$$

where K_2 is some constant depending on the engine and propeller combination. The power required is

$$HP_{r} = \frac{DV_{c}}{375}$$

$$= \frac{W \cdot V_{c}}{375 \left(\frac{L}{D}\right)}$$
(14)

where V_c is the airspeed for best climb $\left(\frac{L}{D}\right)$ and the overall value for the airplane. Table XV contains a study of V_c with relation to V_s and V_M as given by the data in Tables IX to XIII, inclusive. It is shown in Table XV that for all practical purposes the best climbing speed, $V_{\rm c}$, at sea level, is greater than the stalling speed, V_s , by one-third of the difference between the maxmum speed, $V_{\rm M}$, and the stalling speed, V_s. That is

$$V_{\rm C} = V_{\rm S} + \frac{1}{3} (V_{\rm M} - V_{\rm S})$$

$$= \frac{(2V_{\rm S} + V_{\rm M})}{3}$$
(15)

Fig. 5.—Power curves for $\frac{W}{S} = 10 \text{ lb./sq. ft.}$

Fig. 6.—Power curves for $\frac{W}{S} = 14 \text{ lb./sq. ft.}$

substituting (15) into equation (14) gives

$$HP_{\rm r} = \frac{W(2V_{\rm s} + V_{\rm M})}{1125\left(\frac{\overline{L}}{\overline{D}}\right)} \tag{14a}$$

The initial rate of climb in feet per minute is, therefore,

$$C_{o} = \frac{33000}{W} (HP_{a} - HP_{r})$$

$$= \frac{33000}{W} \left\{ (K_{2}\eta_{m}HP) - \frac{W(2V_{s} + V_{x})}{1125 \left(\frac{L}{D}\right)} \right\}$$

$$= 33000 \left\{ \frac{K_{2}\eta_{m}}{W} - \frac{(2V_{s} + V_{x})}{1125 \left(\frac{L}{D}\right)} \right\}$$
(16)

Fig. 7.—Variation of speed range $\frac{V_m}{V_s}$ with power loading, $\frac{W}{HP}\left(\frac{V_m}{V_s}\right) \alpha \left(\frac{W}{HP}\right)^{-0.36}$

Fig. 8.—Variation of constant K_2 in formula for initial rate of ellmb. $C_6 = 55000 \left[\begin{array}{c|c} K_2 \eta m & 2 & V_4 + V_M \\ \hline \begin{pmatrix} W \\ \overline{HP} \end{pmatrix} & 1125 \begin{pmatrix} L \\ \overline{D} \end{pmatrix} \right] \quad K_2 = \begin{pmatrix} V_M \\ \overline{V}_4 \end{pmatrix} - 0.27$

The value of the constant K_2 is yet to be determined.

Table XVI contains calculations for K_2 using data from Tables IX to XIII, inclusive. As expected, K_2 decreases with increase in the speed range $\begin{pmatrix} V_M \\ \bar{V}_S \end{pmatrix}$. Plotting K_2 against $\begin{pmatrix} V_M \\ \bar{V}_S \end{pmatrix}$ as in Fig. 8, it is found that the points fall on or near to a smooth curve which has the equation

$$K_{2} = \left(\frac{V_{\rm M}}{V_{\rm S}}\right)^{-0.27} \tag{17}$$

as shown by the logarithmic plotting of the same data on Fig. 9.

In using the formula for initial climb, equation (16), the proper value of K_2 must be used. This value may either be read from Figs. (8) or (9) or calculated from equation (17). It will be found that for very low initial rates of climb the formula is unreliable, since small percentage errors in either member of equation (16) under these conditions may mean large percentage errors in C_0 . The limiting value of C_0 is usually about 400 ft./min.

Obviously there is another unknown in this equation, the overall $\left(\frac{L}{D}\right)$ for the airplane.

Fig. 9.—Variation of constant K_2 in formula for initial rate of climb. $C_0 = 83000 \left[\frac{K_2 \eta_m}{\left(\frac{W}{HP}\right)} - \frac{(2 V_4 + V_M)}{1125 \left(\frac{L}{D}\right)} \right] \quad K_2 = \left(\frac{V_M}{V_4}\right) - 0.27$

Fig. 10.—Variation of constant
$$K_{z}$$
 with $\left(\frac{V_{M}}{V_{z}}\right) = \frac{HP_{a \ o}}{HP_{r \ o}} = \frac{K_{z \ \eta m}\left(\frac{L}{D}\right)}{V_{z}\left(\frac{W}{HP}\right)}$

$$K_{z} = \delta_{r}^{z} \delta \left(\frac{V_{M}}{V_{z}}\right) = 0.60$$

In most cases this is known to the accuracy required in C_0 . When $\left(\frac{L}{D}\right)$ is unknown, the following values will be found fairly representative for the general types:

Unusually clean designs (monoplanes).	8.5-9.5
Clean designs (average 8.0).	7.5-8.5
Mediocre designs (excessive parasite resistance)	

Fortunately the $\frac{L}{D}$ curve for the entire airplane is quite flat near the maximum value, so that little error is introduced by the use of maximum instead of the actual $\left(\frac{L}{D}\right)$. In most cases the value $\frac{L}{D}$ =8.0 gives sufficiently accurate results, as shown by Table XVII, where observed performance data is used to check formula (16).

DERIVATION OF FORMULA FOR ABSOLUTE CEILING.

The absolute ceiling is dependent upon the ratio HP_{ao}/HP_{ro} , which is easily calculated Dividing equation (13) by equation (14) and substituting V_s for V_c gives

$$\frac{HP_{ao}}{HP_{ro}} = \frac{K_{s} \cdot \eta_{m} \cdot HP}{W \cdot V_{s}}$$

$$= \frac{K_{3} \cdot \eta_{m} \left(\frac{L}{D}\right)}{V_{s} \cdot \left(\frac{W}{HP}\right)}$$
(18)

Table XVIII contains calculations for K_s , based on the data in Tables IX to XIII, inclusive. The values of K_s so obtained are then plotted against $\left(\frac{V_x}{V_s}\right)$ in Fig. 10, from which it appears that

$$K_3 = 375 \left(\frac{V_{\text{M}}}{V_{\text{S}}}\right)^{-6.60} \tag{19}$$

From equation (7)

$$\left(\frac{V_{\rm x}}{V_{\rm s}}\right)^{-0.60} = \left\{\frac{20.3\eta_{\rm m}^{1/3}}{\left(V_{\rm s} \cdot \frac{W}{HP}\right)^{1/3}}\right\}^{-0.60} = \frac{1}{6.09} \left(\frac{1}{\eta_{\rm m}} \cdot V_{\rm s} \cdot \frac{W}{HP}\right)^{0.20} \tag{20}$$

From (19) and (20)

$$K_3 = K_4 \left(\frac{1}{\eta_{\rm m}} \cdot V_{\rm S} \cdot \frac{W}{HP}\right)^{0.20} = 61.7 \left(\frac{1}{\eta_{\rm m}} \cdot V_{\rm S} \cdot \frac{W}{HP}\right)^{0.20}$$
 (21)

Substituting (21) into (18) gives

$$\frac{HP_{ao}}{HP_{ro}} = \frac{K_{4}\left(\frac{L}{D}\right)}{\left(\frac{1}{\eta_{m}} \cdot V_{S} \cdot \frac{W}{HP}\right)^{0.80}}$$
(22)

which is the formula for absolute ceiling, to be used in conjunction with a curve of absolute ceiling vs $\frac{HP_{ao}}{HP_{ro}}$.

Table XIX contains calculations for K_4 based on the data in Tables IX to XIII. The extreme variation is from 60.2 to 63.2, with an average value of $K_4 = 61.7$. This is the same value obtained by direct calculation in (21), where $K_4 = 375 \div (20.3)^{-0.60} = 61.7$.

Table XX contains a comparison of actual absolute ceilings for a series of well-known airplanes with the values calculated by equation (22), using the curve of $HP_{\epsilon o}/HP_{ro}$ given in National Advisory Committee for Aeronautics Report No. 171. The agreement, in general, is quite satisfactory, considering that a constant value $\frac{L}{D}$ =8 was used for each case.

SERVICE CEILING.

The service ceiling is defined as the altitude at which the rate of climb is 100 ft./min. From the results of climb tests it is found that the rate of climb decreases uniformly with altitude from a maximum at sea level to zero at the absolute ceiling. That is, at any altitude the rate of climb is given by the equation

$$C = C_{\rm o} - C_{\rm o} \frac{y}{H_{\rm a}} \tag{23}$$

Where H_a is the absolute ceiling, C_o the initial rate of climb, and C the rate of climb at altitude y. At the service ceiling C=100 and

$$\frac{y}{H_{a}} = \frac{C_{o} - 100}{C_{o}}$$

$$y = H_{s} = H_{a} \frac{C_{o} - 100}{C_{o}} \qquad (24)$$

where H_s is the service ceiling.

TIME OF CLIMB.

The time to climb to any altitude, based on the assumption of a uniform decrease in rate of climb with altitude, may be found in any good treatise on airplane performance. The derivation of the equation may be of interest.

Since the rate of climb $C = \frac{dy}{dt}$ equation (23) may be written

$$\frac{dy}{dt} = C_{\rm o} \left(1 - \frac{y}{H} \right)$$

or

$$\frac{dy}{(H-y)} = \frac{C_0}{H} dt \tag{23a}$$

Integrating

$$\log_e (H - y) = -\frac{C_o}{H} t + C$$

when t=0, y=0, and $C=log_e H$

therefore,

$$-\frac{C_{\rm o}}{H}t = \log_{\rm e}\left(1 - \frac{y}{H}\right)$$

or

$$e^{-\frac{C_0}{H}t} = 1 - \frac{y}{H}$$

solving for y

$$y = H \left(1 - e^{-\frac{C_0}{H}t} \right) \tag{25}$$

Equation (25) gives the altitude climbed in any time t. In the form

$$t_{\rm C} = \frac{H}{C_{\rm o}} \log_{\rm e} \left(\frac{H}{H - y} \right) \tag{25a}$$

it gives the time required to climb to any altitude y.

RANGE.

The common formula for range, usually credited to Breguet, is easily derived. The velocity varies as the square root of the weight W

$$V = K_1 \sqrt{W} \tag{26}$$

The thrust horsepower is

$$THP = \frac{WV}{K_2 \begin{pmatrix} L \\ \bar{D} \end{pmatrix}} = \frac{K_1 W^{3/2}}{K_2 \begin{pmatrix} L \\ \bar{D} \end{pmatrix}}$$
(27)

now

$$\frac{dW}{dt} = \frac{THP}{\eta} \cdot c$$

where c is the specific fuel consumption and η the propeller efficiency. Therefore

$$dt = \frac{dW \cdot \eta}{THP \cdot c} = \frac{K_2 \cdot \eta}{c} \frac{L}{D} \cdot \frac{dW}{K_1 W^{3/2}}$$
(28)

The range is given by

$$R = \int V dt = \int_{W_1}^{W_2} \left(K_1 \sqrt{W} \cdot K_2 \cdot \frac{\eta}{c} \frac{L}{D} \frac{dW}{K_1 W^{3/2}} \right) = \frac{\eta}{c} \left(\frac{L}{D} \right) K_2 \int_{W_1}^{W_2} \frac{dW}{W}$$

$$R = K_2 \cdot \left(\frac{L}{D} \right) \frac{\eta}{c} \log_e \frac{W_1}{W_2}$$
(29)

When W is in lb., V in M. P. H., R will be in miles and K_2 will have the value 375, so that

$$R = 375 \left(\frac{L}{D}\right) \left(\frac{\eta}{c}\right) \log_{e} \frac{W_{t}}{W_{t}} \tag{30}$$

or

$$R = 863 \left(\frac{L}{D}\right) \frac{\eta}{c} \log_{10} \frac{\overline{W}_1}{\overline{W}_2} \tag{30a}$$

In this equation W_1 is the weight fully loaded and W_2 the weight W_1 less fuel. It will be noted that this formula does not contain a density term. The range is therefore independent of the air density except as the term $\left(\frac{\eta}{c}\right)$ is affected.

ENDURANCE.

The endurance at any speed and for a given fuel load is obtained by direct integration of equation (28)

$$dt = \frac{K_2}{K_1} \cdot \frac{\eta}{c} \cdot \left(\frac{L}{D}\right) \frac{dW}{W^{3/2}} \tag{28}$$

$$t = \frac{K_2}{K_1} \cdot \frac{\eta}{c} \cdot \frac{L}{D} \int_{W_1}^{W_2} \frac{dW}{W^{3/2}} = \frac{K_2}{K_1} \cdot \frac{\eta}{c} \cdot \frac{L}{D} \cdot 2 \left\{ \frac{1}{\sqrt{W_2}} - \frac{1}{\sqrt{W_1}} \right\}. \tag{31}$$

When W is in lb. and c in lb./BHP/hr.₂ T will be given in hours if K=375 and $K_1=\sqrt{\frac{2}{C_L\rho S}}$. That is, in hours

$$T = \frac{750}{\sqrt{\frac{2}{C_{\text{T}}\rho S}}} \cdot \frac{\eta}{c} \cdot \frac{L}{D} \left(\frac{1}{\sqrt{W_2}} - \frac{1}{\sqrt{W_1}} \right) = 750 \frac{V}{\sqrt{W}} \cdot \frac{\eta}{c} \cdot \frac{L}{D} \left(\frac{1}{\sqrt{W_2}} - \frac{1}{\sqrt{W_1}} \right)$$
(32)

Equation (32) gives the time required at a fixed angle of attack (and corresponding $\frac{L}{D}$ and $C_{\rm L}$) to consume $(W_1 - W_2)$ lb. of fuel. Note that this time depends directly on the square root of the density if the effect of density on the term $\frac{\eta}{c}$ be ignored. However, the variation of η with ρ must be calculated for each case if great accuracy is required. A rough approximation based on test data is

$$\eta = \eta_o \left(1 + \frac{y}{2000} \right) \tag{33}$$

That is, the propeller efficiency increases about 1 per cent for each 2,000 feet of altitude. The variation of the specific fuel consumption with altitude may be obtained from National Advisory Committee for Aeronautics Technical Reports Nos. 46, 102, 103, 134, or 135. The average relative values of c are as follows:

y ft.	$c-{ m relative}$
0	1.00
5000	1.03
10000	1. 11
15000	1.19
20000	1.46
25000	2. 26

COLLECTED FORMULAE.

Stalling speed
$$V_{\rm s} = 19.8 \sqrt{\frac{\overline{W}}{\overline{S}}} M.$$
 P. H.

Climbing speed $V_c = \frac{(2 V_8 + V_M)}{3}$ M. P. H.

$$\text{Speed range ratio } \frac{V_{\text{M}}}{V_{\text{S}}} = \frac{20.3 \ \eta^{il3}}{\sqrt[3]{V_{\text{S}} \cdot \left(\frac{W}{H\bar{P}}\right)}} = \frac{10.2 \ \eta^{1/3} \left(\frac{L}{\bar{D}}\right)_{\text{M}}^{\frac{1}{3}}}{\sqrt[3]{V_{\text{S}} \cdot \frac{W}{H\bar{P}}}}$$

$$\label{eq:continuous_continuous$$

Absolute ceiling $H_a = f\left(\frac{HP_{ao}}{HP_{ro}}\right)$

Service ceiling $H_s = H_a \frac{(C_o - 100)}{C_o}$ ft.

Climb in given time $y = H_a \left(1 - e^{-\frac{C_o}{H_a}t}\right)$ ft.

Time of climb $t_{\rm c} = \frac{H_{\rm a}}{C_{\rm o}} \cdot \log_{\rm e} \left(1 - \frac{y}{H}\right)$ minutes.

Range $R = 863 \left(\frac{L}{D}\right) \left(\frac{\eta}{c}\right) \log_{10} \left(\frac{\overline{W}_1}{\overline{W}_2}\right)$ miles.

 $\mbox{Endurance } T = 750 \frac{V}{\sqrt{W}} \bigg(\frac{\eta}{c} \bigg) \bigg(\frac{L}{D} \bigg) \bigg(\frac{1}{\sqrt{W_2}} - \frac{1}{\sqrt{W_1}} \bigg) \mbox{hrs.}$

In these formulae the following units are to be used with the constants given:

$V_{\rm S},~V_{\rm M},~V_{\rm c}$	· M. P. H.
C_0	ft./min.
$H_{\rm a},H_{\rm s},y$	
Time of climb t_c	minutes.
Range R	
Specific fuel consumption c	
Weight W	
Endurance T_{-}	

TABLE I.

SHOWING RANGE OF LIFT COEFFICIENT FOR STANDARD AIRFOILS FOR WHICH $\left(rac{L}{\widehat{D}}
ight)=(C_{\rm L}) imes{
m CONSTANT}$

Airfoil.	Max. Cl. Clw	$d\frac{\left(\frac{L}{D}\right)}{d\alpha}$ =const. from $C_{L}=0$ to $C_{L_{1}}$	$\sqrt{\frac{C_{1,\mathbf{x}}}{C_{1_1}}}$	Reference.
USA-1 USA-4. USA-16. RAF-6. RAF-15. RAF-15. RAF-19. Albatros. USA-27. Göttingen 256. Göttingen 357.	1.08 1.03 1.69 1.35 1.40 1.21	0. 46 .65 .35 .50 .48 .40 .96 .62 .55 .60	1. 57 1. 49 1. 68 1. 56 1. 56 1. 50 1. 33 1. 43 1. 49 1. 42 1. 73	N. A. C. A. Report No. 93. N. A. C. A. Report No. 93.
Average			1.54	

Note.—This data shows $\frac{L}{D} = C_{\rm L} \times {\rm constant}$ for all lift coefficients less than $\left(\frac{1}{1.54}\right)^2 C_{\rm L_{max}} = 0.42 \ C_$

TABLE II.

WIND TUNNEL TEST DATA ON AIRPLANE MODEL CORRECTED TO 300 SQ. FT. WING AREA.

α	Lift at 40 M. P. H.	Drag at 40 M. P. H.	$rac{L}{\overline{D}}$	$\frac{v}{v_{\rm s}}$
-1 0 1 2 3 4 6 8 10 12 14 16	119, 2 203, 4 288, 3 369, 9 451, 1 530, 4 688, 9 844, 1 997, 8 1, 143, 3 1, 270, 5 1, 325, 0	58.6 58.2 58.7 66.7 64.7 61.7 81.2 97.7 118.0 143.0 177.3 242.7	2. 034 3. 495 4. 910 6. 094 7. 043 7. 721 8. 484 8. 640 8. 456 7. 995 7. 166 5. 395	3.315 2.540 2.133 1.582 1.705 1.571 1.377 1.244 1.144 1.070 1.015

Minimum speed $V_o=40\sqrt{\frac{\overline{W}}{1325.0}}=\sqrt{1.2\ W}$.

TABLE II-A.

Faired values of $\frac{L}{\vec{D}}$ versus $\frac{V}{V_s}$

TAKEN FROM FIG. 1.

$\frac{V}{V_8}$	$\frac{L}{D}$ —
1.00 1.10 1.20 1.30 1.50 1.70 2.00 2.30 2.60 2.90 3.00	5. 40 8. 20 8. 60 8. 62 8. 02 7. 10 5. 60 4. 25 3. 35 2. 70 2. 53

TABLE III.

Power required and power available for $\frac{W}{S}$ =4 LB./FT.*, $\frac{W}{HP}$ =6 LB./BHP, Method of Calculation.

$egin{array}{ c c c c c c c c c c c c c c c c c c c$	<i>у</i> М. Р. Н.	$D = \frac{W}{L}$	HPr D V 375	<i>N</i> R. P. M.	V ND	$\left(\frac{\frac{V}{ND}}{\frac{V}{ND}}\right)_{\bullet}$	$\frac{\eta}{\eta_0}$	η	внр	HP.
1. 00 5. 40 1. 10 8. 20 1. 20 8. 62 1. 30 8. 62 1. 50 7. 70 1. 70 7. 10 2. 00 5. 60 2. 30 4. 25 2. 60 3. 35 2. 90 2. 70 3. 00 2. 53	38. 0 41. 8 45. 6 49. 4 57. 0 64. 6 76. 0 87. 4 98. 8 110. 2 114. 0	221 146 140 139 150 169 214 282 358 444 475	22. 4 16. 3 17. 0 18. 3 22. 7 29. 1 43. 4 65. 7 94. 3 130. 5	1,600 1,610 1,620 1,630 1,650 1,670 1,700 1,730 1,760 1,790 1,800	0. 255 281 304 327 373 418 483 546 606 686	0,371 .407 .442 .475 .541 .607 .700 .790 .880 .966 .992	0,590 .630 .674 .710 .775 .830 .900 .947 .980 .997	0. 460 . 492 . 526 . 554 . 605 . 648 . 702 . 738 . 765 . 778	177. 8 179. 0 180. 0 181. 0 183. 3 185. 6 189. 0 192. 2 195. 6 199. 0 200. 0	82 88 95 100 111 120 132 142 150 155 156

 $[\]frac{\eta}{r_0}$ is from N. A. C. A. Report No. 168.

TABLE IV.

 HP_{r} for $\overset{W}{\overset{\cdot}{S}}=4$ LB/FT. AND HP_{a} for various power loadings.

Ī	$\frac{V}{V_0}$	v	D	HP_{r}	HP_z for $rac{W}{HP}$ as indicated.						
	Vo				6	8 -	11	16	20	24	
	1. 00 1. 10 1. 20 1. 30 1. 50 1. 70 2. 00 2. 30 2. 60 2. 90 3. 00	38. 0 41. 8 45. 6 49. 4 57. 0 64. 6 76. 0 87. 4 98. 8 110. 2 114. 0	221 146 140 139 149 169 214 282 358 444 475	22, 4 16, 3 17, 0 18, 3 22, 7 29, 1 43, 4 65, 7 94, 3 130, 5	82 88 95 100 111 120 132 142 150 155	65. 1 70. 2 75. 3 79. 0 87. 6 94. 6 104. 0 109. 6 114. 3 116. 5	50, 4 54, 0 57, 7 61, 3 66, 5 71, 6 77, 7 81, 5 84, 0	40.6 43.2 45.7 47.9 51.9 55.0 57.5	31. 2 33. 2 35. 2 36. 7 39. 7 41. 9 44. 2	27. 2 29. 8 30. 3 32. 0 34. 0 35. 6 36. 9	

 ${\it TABLE~V.}$ ${\it HP}_{\rm r}$ for ${\it \frac{W}{S}}{=}6$ and ${\it HP}_{\rm a}$ for various power loadings.

V	$\frac{V}{V_0}$ V	D	$\mathit{HP}_{\mathbf{r}}$	$HP_{f z}$ for $rac{W}{HP}$ as indicated.						
, .				6	8 ==	11	16	20	24	
1.00 1.10 1.20 1.30 1.50 1.70 2.00 2.30 2.60 2.90 3.00	46. 5 51. 1 55. 8 60. 4 69. 7 79. 0 93. 0 107. 0 120. 9 134. 9 139. 5	333 219 209 208 224 253 321 423 537 665 711	41. 3 30. 0 31. 1 33. 6 41. 7 53. 4 79. 6 120. 8 173. 3 240. 0 265, 0	128. 6 138. 1 147. 2 156. 6 172. 5 187. 5 205. 0 221. 0 231. 0 237. 0	104.3 112.2 119.5 126.6 138.2 149.0 161.5 171.0 176.0	81. 1 86. 3 92. 3 97. 1 105. 6 112. 4 121. 0 126. 3 127. 5	59. 8 63. 5 67. 5 70. 8 76. 2 81. 0 85. 2 86. 0	49. 6 53. 0 55. 7 58. 2 62. 5 65. 8 68. 6	43. 0 45. 5 47. 8 49. 8 53. 1 55. 5	

TABLE VI. ${\it HP_{\bullet}} \ {\it FOR} \ {\it W\over S} {\it = 8} \ {\it AND} \ {\it HP_{\bullet}} \ {\it FOR} \ {\it VARIOUS} \ {\it POWER} \ {\it LOADINGS}.$

$\frac{V}{V_{\bullet}}$	V	D	7 D	HP _r		H	$P_{\mathbf{a}}$ for $\frac{W}{HP}$	as indicate	d.	
Ye				6	8	11	16	20	24	
1. 00 1. 10 1. 20 1. 30 1. 50 1. 70 2. 60 2. 30 2. 60 2. 90 3. 00	53. 6 59. 0 64. 3 69. 7 80. 4 91. 1 107. 2 123. 3 139. 4 155. 4 160. 8	414 223 279 278 299 338 428 565 717 888 948	63. 5 46. 0 47. 8 51. 8 64. 1 82. 1 122. 7 186. 0 266. 0 369. 0 407. 0	180. 5 194. 5 207. 0 219. 0 241. 0 261. 0 285. 0 303. 0 316. 0 321. 0	144, 2 153, 5 163, 5 173, 5 189, 0 203, 0 220, 0 232, 0 238, 0	112.5 119.7 127.0 13±.0 145.3 154.0 165.5 171.0	83. 2 88. 6 93. 5 97. 5 105. 1 111. 0 116. 3	69. 5 73. 5 77. 2 80. 7 86. 2 91. 1 92. 7	59. 5 62. 8 65. 8 68. 5 72. 8 75. 5	

 ${\rm TABLE~VII}.$ ${\it HP}_{\rm r}$ FOR $\frac{W}{S}{\rm = 10}$ AND ${\it HP}_{\rm a}$ FOR VARIOUS POWER LOADINGS.

$\frac{V}{V_{\bullet}}$	V D	V D HPr	HP_{r}	$HP_{\mathbf{s}}$ for $\frac{W}{HP}$ as indicated.					
:				6.	8	11	16	20	24
1. 00 1. 10 1. 20 1. 30 1. 50 1. 70 2. 00 2. 30 2. 60 2. 90	60. 0 66. 0 72. 0 78. 0 90. 0 102. 0 120. 0 138. 0 156. 0	556 366 349 348 374 422 536 706 896 1,110	89. 0 64. 5 67. 0 72. 3 90. 0 115. 0 171. 5 260. 0 373. 0 515. 0	232 250 267 282 310 335 363 385 400 403	178 193 207 219 245 262 282 295 302	145. 0 154. 0 164. 0 172. 0 186. 5 198. 0 211. 0 216. 0	108.3 113.3 119.8 125.8 134.8 141.5 147.4	89. 0 94. 0 98. 5 102. 7 109. 5 114. 5	76. 5 81. 0 84. 7 87. 8 92. 8 96. 5

TABLE VIII. $\mathit{HP}_{\mathtt{r}} \ \mathtt{FOR} \ \frac{W}{S} \mathtt{=} 14 \ \mathtt{AND} \ \mathit{HP}_{\mathtt{r}} \ \mathtt{FOR} \ \mathtt{VARIOUS} \ \mathtt{POWER} \ \mathtt{LOADINGS}.$

V	V	D	HP _r		H	P_{\bullet} for $\frac{W}{HP}$	as indicate	d.	
₹.				6	8	11	16	20	24
1.00 1.10 1.20 1.30 1.50 1.70 2.00 2.30 2.50 2.90	71. 0 78. 1 85. 2 92. 3 106. 5 120. 7 142. 0 163. 3 184. 6 205. 9	778 512 488 487 523 592 750 988 1, 254 1, 660	147.3 106.5 111.0 120.0 149.0 190.0 284.0 431.0 618.0	342 366 389 411 450 484 522 553 568	272 292 309 326 354 377 404 422	212 226 239 250 271 286 303 305	155. 5 165. 0 173. 5 181. 0 194. 5 203. 0 206. 0	130.6 138.0 144.5 150.0 159.5 164.6	111.5 117.7 123.0 128.0 134.7

TABLE IX.

Performance for $\frac{W}{\tilde{S}}$ =4 and various $\frac{W}{HP}$ with determination of K_1 .

Wing loading $\frac{W}{S}$, lb/ft.2		4	4	4	4	4
Power loading $\frac{W}{HP}$, lb./BHP	6 •	8	11	16	20	24
$egin{array}{ll} ext{Weight.} & ext{BHP} & ext{} \\ ext{Minimum speed } V_{\mathtt{s.}} & ext{} \\ ext{Maximum speed } V_{\mathtt{M}} & ext{} \\ ext{} \end{array}$	200	1,200 150 38	1,200 109 38	1, 200 75 38	1,200 60 38	1, 200 50 38 71
Speed range VM	3. 09	105.8	94. 8 2. 50	82, 9 2, 18	76. 5 2. 01	1.87
	2,510 5,56 32,500 31,200	65. 2 1, 795 4. 44 28, 600 27, 000	44. 0 1, 210 3. 40 24, 300 22, 300	26. 5 730 2. 54 19, 100 16, 500	18. 1 495 2. 07 15, 900 12, 200	13.6 375 1.80 12,500 9,200
$V_8 \times \frac{"}{HP}$		304	418	608	760	912
$\left(V_{\rm B} \times \frac{W}{HP}\right)^{1/3}$	6. 109	6.724	7. 447	8. 472	9. 126	9.698
$K_1 \times \sqrt[4]{\eta}$ $\sqrt[4]{\eta}$ K_1	18.87 0.78 .920 20.50	18.70 0.775 .918 20.35	18. 70 0. 765 . 914 20. 45	18, 50 0, 740 , 905 20, 45	18.33 0.736 .903 20.30	18, 22 0, 730 , 900 20, 25

TABLE X.

Performance for $\frac{W}{S}$ =6 and various $\frac{W}{HP}$ with determination of K_1 .

TUP					1	
Wing loading $\frac{W}{S}$, lb./ft.2		6	_ 6	. 6	6	6
Power loading $\frac{W}{HP}$, lb./BHP		8	п	16	20	24
WeightBHP	1,800 300	1,800 225	1,800 163.6	1,800 112.5	1,800 90	1,800 75
Minimum speed V _s		46.5 121.3	46.5 108.6	46.5 95.6	46.5 88.0	46.5 81.0
Speed range $\frac{V_{\rm M}}{V_{\rm S}}$.	2.88	2.61	2.33	2.06	1,89	1.74
	2,450	96.5 1,770	64 1,175 2.96	37 680	24.5 450	17 310
	4.75 29,700 28,500	3.91 26,500 25,000	2.96 21,800 19,900	2.17 16,200 13,800	1,80 12,500 9,700	1,55 9,500 6,400
$V_{\rm s} imes rac{"}{HP}$	279	372	511.5	744	930	1,116
$\left(V_{s} \times \frac{W}{\overline{HP}}\right)^{1/3} \dots$	6.534	7.192	7.997	9,061	9.761	10.373
$K_1 \times \sqrt[3]{\eta}$ $\sqrt[\eta]{\eta}$ K_1	18.80 0.790	18.75 0.783	18.65 0.775	18.65 0.765	18.44 0.756	18.06 0.742
	.923	. 921	.918	.914	.909	.905

TABLE XI.

PERFORMANCE FOR $\frac{W}{S}$ =8 AND VARIOUS $\frac{W}{HP}$ WITH DETERMINATION OF K_1 .

Wing loading W/S, lb./it.2		. 8	8	8	. 8	8
Power loading $\frac{\dot{W}}{HP}$, lb./BHP	6	8	11	16	20	24
Weight B H P Minimum speed V _s Maximum speed V _M		2,400 300 53.6 134.0	2,400 218 53.6 119.8	2,400 150 53.6 105.0	2,400 120 53.6 96.5	2,400 100 53.6 87.3
Speed range $\frac{V_{\mathbf{k}}}{V_{\mathbf{s}}}$	2.77	2.50	2.235	1.96	1.80	1.63
	178.6 2,450 4.38 28,400 27,200	124 1,705 3.47 24,600 23,200	82.3 1,130 2,70 20,200 18,400	45.7 630 1.97 14,200 12,000	30.5 420 1.65 10,700 8,200	18.6 255 1.39 7,300 4,400
$V_{\mathrm{s}} imes \left(\stackrel{"}{HP} \right) \dots $	321.6	428.8	589.6	857.6	1,072	1,286.4
$V_8 imes \left(\begin{array}{c} " \\ H\overline{P} \end{array} \right) \dots $ $\left(\begin{array}{c} V_8 imes \overline{HP} \end{array} \right)^{1/3} \dots$	6.851	7, 541	8.385	9.501	10.234	10.875
$K_1 \times \sqrt[4]{\eta}$	18.96 0.800	18.85 0.794	18.73 0.784	18.62 0.775	17.42 0.762	17.75 0.747
K_1	.928 20.45	.925 20.40	. 921 20. 35	.918 20.30	.913 20.15	.907 19.56
					<u> </u>	1

TABLE XII.

performance for $\frac{W}{S}$ =10 with various $\frac{W}{HP}$ with determination of K_{L} .

	-				-	1
Wing loading $\frac{W}{S}$, lb./ft.2	10	10	10	10	i0	10
Power loading $\frac{W}{HP}$, lb./BHP	6	8	11	16	20	24
Weight BHP Minimum speed V _s Maximum speed V _s	3,000 500 60 160.1	3,000 375 60 145.8	3,000 273 60 129.3	3,000 187.5 60 113.2	3,000 150 60 102.1	3,000 125 60 92.3
Speed range $\frac{V_{M}}{V_{S}}$	2.67	2.43	2.155	1.886	1.700	1.538
	219.5 2,415 3.96 26,700 25,600	152.5 1,680 3.07 22,500 21,200	98.2 1,080 2,42 18,200 16,500	51.3 565 1.76 12,000 9,900	31.0 340 1.455 8,200 5,800	17.0 187 1.256 5,100 2,370
$V_3 imes \left(\frac{"}{\overline{HP}} \right)$	360	480	660	960	1,200	1,440
$\left(V_{\rm S} \times \frac{H}{\overline{HP}}\right)^{1/3}$	7.114	7.830	8.707	9.865	10.626	11.293
$K_1 \times \sqrt[4]{\eta}$	18.95 0.805	19.00 0.798	18.78 0.790	18,58 0,780	18.08 0.767	17.38 0.754
η ³ √η _{K1}	.930 20.35	. 927 20. 45	.923 20.30	.920 20.20	.915 19.75	.910 19.12
		<u> </u>	1	l	<u> </u>	<u> </u>

TABLE XIII.

Performance for $\frac{W}{S}$ =14 with various $\frac{W}{HP}$ with determination of K_1 .

Wing loading $\frac{W}{S}$, lb/ft.*	14	14	14	14	14	14
Power loading $\frac{W}{HP}$, lb./BHP	6	8	11	16	20	24
Weight BHP Minimum speed V_5 Maximum speed V_M Speed range V_M/V_5 Maximum excess HP	4,200 700 71 179. 1 2, 52 299	4, 200 525 71 162. S 2, 29 205 1, 610	4,200 382 71 145.7 2.05 128 1,005	4,200 262.5 71 124.7 1.76 62 485	4,200 210 71 111.4 1.57 33 260	4,200 175 71 98.5 1.388 14 110
Initial climb, ft./min	3, 54 24,900 23,800	2.81 20,800 19,500	2, 15 16,000 14,400	1, 575 9,800 7,800	1.306 6,000 3,700	1. 155 3, 200 290
$\begin{pmatrix} V_{S} imes \begin{pmatrix} W \\ \overline{HP} \end{pmatrix} \end{pmatrix}$ $\begin{pmatrix} V_{S} imes \frac{W}{HP} \end{pmatrix}^{1,a}$	426	568	781	1,136	1,420	1,704
$\left(V_{\tilde{s}} imes \frac{W}{HP}\right)^{1/3}$	7. 524	8. 282	9. 209	10. 434	11. 241	11.944
$K_1 \times \sqrt[7]{\eta}$	18.95 0.810 .932 20.35	18.95 0.805 .930 20.35	18. 85 0. 796 . 927 20. 30	18, 42 0, 788 , 923 19, 95	17.67 0.772 .917 19.30	16, 58 0, 755 .909 18, 25
K_1	20.00	20.00	200	10.00		

TABLE XIV.

VALUE OF K_{I} FROM OBSERVED PERFORMANCE $\frac{V_{\text{M}}}{V_{\text{S}}} = \frac{K_{\text{I}} \eta^{1/8}}{\left(V_{\text{S}} \cdot \frac{\overline{W}}{HP}\right)^{1/8}}$

Airplane.	$\frac{W}{HP}$	$V_{\mathbf{x}}$	V _s	$\frac{V_{\mathbf{Y}}}{V_{\mathbf{S}}}$	ij <u>ш</u>	7m18	$V_{\rm s} \times \frac{W}{\overline{HP}}$	F1/3	K
MB-3 Le Pere Spad 13 TS-1 TR-1 NW. 1\$-T-1 HA DH4 VE-7 SE-5 JN-H Messenger DT-2 F-5L N-9H	5. 8 9. 0 9. 2 10. 1 8. 96 5. 10 7. 60 10. 30 10. 70 11. 40 14. 30 13. 50 16. 10 18. 32	152 136 132 118 130 200 160 127 124 120 122 93 97 100 87	558 59 50 574 66 59 52 57 44 52 53 42	2. 77 2. 34 2. 24 2. 36 2. 36 2. 70 2. 42 2. 15 2. 07 2. 31 2. 14 2. 11 2. 16 1. 92 1. 64 1. 86	0. 81 .50 .79 .79 .83 .81 .76 .78 .77 .78 .74 .78 .74 .78	0. 933 . 927 . 911 . 924 . 924 . 940 . 933 . 912 . 916 . 920 . 915 . 903 . 903 . 950 . 903 . 850 . 896	319 522 542 505 493 377 502 608 642 642 643 650 630 638 838 959 770	6. \$32 \$.050 8. 154 7. 963 7. 993 7. 224 7. 918 8. 472 8. 627 8. 173 8. 660 8. 573 8. 472 9. 428 9. 860 9. 166	20. 30 20. 30 20. 05 20. 30 20. 10 20. 75 20. 60 20. 50 20. 50 20. 50 20. 55 20. 05 19. 85 20. 10 19. 35 20. 05

TABLE XV. SHOWING THE RELATION BETWEEN CLIMBING SPEED V_6 , STALLING SPEED V_5 , AND MAXIMUM SPEED V_{11} , BASED ON DATA IN TABLES IX-XIII.

V _s	$\frac{W}{HP}$ =	6	8	11	16	20	24
38	$V_{\rm M} \\ V_{\rm c} \\ (V_{\rm M}\!-\!V_{\rm B}) \\ (V_{\rm c}\!-\!V_{\rm s}) \\ (V_{\rm c}\!-\!V_{\rm S}) \div (V_{\rm M}\!-\!V_{\rm S})$	117. 5 67 79 29 0. 367	105.8 63 67.8 25 0.367	94. 8 59 56. 8 21 0. 368	82. 9 52 44. 9 14 0. 312	76. 5 50 38. 5 12 0. 312	71 48 33 10 0. 303
46.5	$ \begin{array}{c} V_{\rm M} & \\ V_{\rm c} & \\ (V_{\rm e} - V_{\rm B}) & \\ (V_{\rm e} - V_{\rm g}) & \\ (V_{\rm e} - V_{\rm S}) + (V_{\rm M} - V_{\rm S}) & \\ \end{array} $	- 33.5	121.3 73 74.8 26.5 0.354	108. 6 67 62. 1 20. 5 0. 330	95. 6 62 49. 1 15. 5 0. 315	\$8 60 41.5 13.5 0.325	\$1 57 34.5 10.5 0.305
53.6	$ \begin{array}{c} V_{\rm M} \\ V_{\rm o} \\ (V_{\rm m}\!-\!V_{\rm S}) \\ (V_{\rm e}\!-\!V_{\rm S}) \\ (V_{\rm e}\!-\!V_{\rm S}) \div (V_{\rm M}\!-\!V_{\rm S}) \\ \end{array} . $	94.6 34.4	134. 0 82. 5 80. 2 28. 9 0. 360	119. 8 74 66. 0 20. 4 0. 319	105 68 51. 4 14. 4 0. 280	96. 5 65 42. 9 11. 4 0. 266	87. 3 63 33. 7 9. 4 0. 280
60	$ \begin{array}{c c} V_{\rm M} & & & \\ V_{\rm c} & & & \\ (V_{\rm c} - V_{\rm S}) & & \\ (V_{\rm c} - V_{\rm S}) & & \\ (V_{\rm c} - V_{\rm S}) \div (V_{\rm M} - V_{\rm S}) & & \\ \end{array} $	160. 1 96 100. 1 36 0. 360	145.8 89 85.8 29 0.338	129. 3 81 69. 3 21 0. 303	113. 2 75 53. 2 15 0. 282	102. 1 73 42. 1 13 0. 309	92.3 70 32.3 10 0.310
71	$ \begin{array}{c} V_{\rm M} \\ V_{\rm c} \\ (V_{\rm M} - V_{\rm S}) \\ (V_{\rm c} - V_{\rm S}) \\ (V_{\rm c} - V_{\rm S}) \\ \vdots \\ (V_{\rm c} - V_{\rm S}) \div (V_{\rm M} - V_{\rm S}) . \end{array} $	179. 1 107 108. 1 36 0. 333	162. 8 99 91. 8 28 0. 305	145. 7 92 74. 7 21 0. 282	124. 7 86 54. 7 15 0. 278	111. 4 83 40. 4 12 0. 297	98. 5 83 27. 5 11 0. 292

TABLE XVI. DETERMINATION OF K_s IN THE EQUATION FOR INITIAL RATE OF CLIMB $C_{o}=33000$ $\begin{bmatrix} K_{s} & \eta_{m} \\ W \\ HP \end{bmatrix} = \frac{(2V_{s}+V_{M})}{1125\begin{pmatrix} L \\ D \end{pmatrix}}$

V_{S}	W/HP=	6	8	11	16	20	24
38	$V_{c}+3,230.$ $C_{c}+33,000.$ $K_{2\eta}+(W/HP).$ $V_{c}+33,000.$	3. 09 67 2, 510 0. 02075 . 07610 . 09685 . 780 . 745	2. 78 63 1,795 0. 01950 . 05440 . 07390 . 775 . 763	2. 50 59 1, 210 0. 01828 . 03670 . 05498 . 756 . 790	2. 18 52 730 0. 01610 . 02210 . 03840 . 750 . 827	2. 01 50 495 0. 01545 . 01500 . 03045 . 736 . 828	1. 87 48 375 0. 01484 . 01137 . 02621 . 730 . 863
46.5	V_{M}/V_{s} Speed for climb, V_{s} Actual initial climb, C_{o} V_{c} -3,230 C_{o} +33,000 $E_{2\eta}$ + (W/HP) F_{s}	80 2,450 0.02470	2. 61 73 1,770 0. 02260 . 05360 . 07620 . 783 . 777	2. 333 67 1, 175 0. 02070 . 03560 . 05630 . 775 . 798	2. 056 62 680 0. 01920 02030 . 03980 . 765 . 834	1. 89 60 450 0. 01855 . 01365 . 03220 . 756 . 853	1. 742 57 810 0. 01765 . 00040 . 02705 . 742 . 876
53.6	V _M /V _s . Speed for climb, V _o . Actual initial climb, C _o .	2. 77 88 2, 450 0. 02720 .07420 .10140 .800 .761	2.50 82.5 1,705 0.02550 .05170 .07720 .794 .779	2. 235 74 1,130 0. 02290 . 03430 . 05720 . 784 . 803	1. 96 68 630 0. 02105 . 01910 . 01015 . 775 . 831	1. 80 65 420 0. 02016 . 01273 . 03283 . 762 . 862	1. 63 63 255 0. 01950 . 00773 . 02723 . 747 . 876
60	$V_{\rm M}/V_{\rm e}.$ Speed for climb, $V_{\rm e}.$ Actual initial climb, $C_{\rm o}.$ $C_{\rm c}+3,230.$ $C_{\rm p}+33,000.$ $K_{\rm 27}+(W/HP).$	2,415 0.02970 .07320 .10290 .805	2. 43 89 1,680 0. 02750 . 05090 . 07840 . 798 . 784	2. 155 81 1,080 0. 02505 .03275 .05780 .790 .805	1. 886 75 565 0. 02320 . 01712 . 04032 . 780 . 829	1.70 73 310 0.02260 .01030 .03290 .767 .858	1. 538 70 187 0. 02165 . 00566 . 02731 . 754 . 870
71	$V_{\it u}/V_{\it s}$. Speed for climb, $V_{\it c}$	2. 52 107 2, 350 0. 03320 .07120 .10440 .810 .775	2. 29 99 1, 610 0. 03050 . 04875 . 07935 . 805 . 788	2. 05 92 1, 005 0. 02845 03050 05895 796 815	1.76 86 485 0.02660 .01470 .04130 .788 .840	1. 57 83 260 0. 02570 . 00788 . 03358 . 772 . 872	1.388 82 110 0.02535 .00333 .02868 .755 .913

TABLE XVII.

COMPARISON OF OBSERVED RATE OF CLIMB WITH THAT CALCULATED BY FORMULA $C_o=33000$ $\left[\frac{K_{1}}{\sqrt{W}}, \frac{\pi_{D}}{1125}, \frac{(2V_{8}+V_{M})}{1125}\right]$

					,							Cli	mb.
Airplane.	₩ ĦP	V _M	. Va	V _c	$\frac{V_{\mathbf{x}}}{\overline{V}_{\mathbf{s}}}$	K ₁	ηm	$\frac{L}{D}$	$\frac{K\eta_{m}}{\overline{W}}$ \overline{HP}	$\frac{V_e}{375 \frac{L}{\overline{D}}}$	F	Calcu- lated 33,000 F	Actual.
USXBIA MB 3 M 80 "D" S 6 Roland D-VI-B II-6 V Spad 13 DH-4 Fokker D-VIII VE-7 SE-5	7.00 8.80	133.0 152.0 143.5 147.0 97.0 114.0 111.2 96.7 94.3 85.3 131.5 115.0 116.5	545 555 555 545 554 562 554 562 572 545 555 554 565 572 572 572 572 572 573 574 575 575 575 575 575 575 575 575 575	89 862 875 72 615 56 843 764 76	2. 46 2. 62 2. 28 2. 67 2. 15 2. 04 2. 14 2. 20 1. 85 2. 03 2. 19 2. 20 2. 22 2. 25	0. 785 . 770 . 800 . 765 . 810 . 825 . 810 . 845 . 825 . 825 . 830 . 830 . 830 . 830 . 830	0. 790 . 760 . 780 . 750 . 750 . 760 . 780 . 780 . 780 . 790 . 790 . 790 . 790	୬ ୬ ୫ ୫ ୫ ୫ ୫ ୫ ୫ ୫ ୫ ୫ ୫ ୫ ୫ ୫ ୫ ୫ ୫	0.0622 -0535 -0708 -0707 -0371 -0648 -0417 -0467 -0385 -0365 -0659 -0644 -0728 -0549 -0559	0. 0267 . 0296 . 0300 . 0287 . 0250 . 0210 . 0217 . 0187 . 0250 . 0277 . 0254 . 0254	0. 0355 . 0531 . 0408 . 0420 . 0164 . 0398 . 0177 . 0263 . 0168 . 0178 . 0409 . 0367 . 0474 . 0302	1,170 1,750 1,350 1,350 1,380 1,310 580 860 590 1,350 1,210 1,560 1,000 1,010	1,300 1,930 1,510 1,460 1,230 580 700 615 700 1,200 1,000 1,500 900 1,010

TABLE XVIII.

DETERMINATION OF K_s IN THE EQUATION $\frac{HP_{so}}{HP_{ro}} = \frac{K_3 \cdot \eta_{me} \cdot \frac{L}{\vec{D}}}{V_s \cdot \frac{W}{HP}}$

V _s	W/HP=	6	8	11	16	20	24
38	$\begin{array}{c} V_{S} \cdot W/HP \\ \eta_{m, \cdot} \\ (U_{Im}) \cdot V_{S} \cdot (W/HP) \\ (U_{ID}) \cdot V_{I} \cdot (U_{Im}) \cdot V_{S} \cdot (W/HP) = A \\ HP_{S} \not HP_{T0} \\ K_{3} = (HP_{S} \not HP_{T0}) + A \end{array}$	228 0.780 292 0.02940 5.56 189	304 0.775 392 0.02190 4.44 203	418 0.765 546 0.01570 3.40 216	608 0.740 822 0.01047 2.54 243	760 0.736 1,033 0.00833 2.07 248	912 0. 730 1, 248 0. 00688 1. 80 262
46. 5	$ \begin{array}{c} V_{\rm S} \cdot W/HP \dots \\ \eta_{\rm m} & V_{\rm S} \cdot (W/HP) \dots \\ (L/D) + (L/\eta_{\rm mb}) \cdot V_{\rm S} \cdot (W/HP) = A \dots \\ HP_{\rm ad} HP_{\rm ro} \\ K_{\rm J} = (HP_{\rm ad} HP_{\rm ro}) + A \end{array} $	279 0.790 353 0.02430 4.75 195	372 0.783 475 0.01812 3.91 215	511. 5 0. 775 660 0. 01302 2. 96 227	744 0.765 972 0.00884 2.17 246	930 0. 756 1, 230 0. 00698 1. 80 258	1, 116 0, 742 1, 506 0, 00573 1, 55 271
53.6	$ \begin{array}{c} V_S \cdot W/HP. \\ \eta_m \cdot (V_{ m }) \cdot V_S \cdot (W/HP). \\ (U/m) \cdot V_S \cdot (W/HP). \\ (U/D) + (U/\eta_m) \cdot V_S \cdot (W/HP) = A \\ HP_a \circ HP_{ro} \\ K_3 = (HP_a \circ HP_{ro}) + A \end{array} $	321. 6 0. 800 402 0. 02135 4. 38 205	428. 8 0. 794 540 0. 01593 3. 47 218	589. 6 0. 784 752 0. 01144 2. 70 235	857. 6 0. 775 1, 106 0.00777 1. 97 253	1,072 0.762 1,408 0.00611 1.65 270	1, 286. 4 0. 747 1, 720 0. 00500 1. 39 278
60	$\begin{array}{c} V_{\rm S} \cdot W/HP. \\ \eta_{\rm m} \cdot V_{\rm S} \cdot (W/HP). \\ (L/D) + (L/D) + (L/D) \cdot V_{\rm S} \cdot (W/HP) = A \\ HP_{\rm a} \sigma/HP_{\rm ro} \\ K_{3} = (HP_{\rm a}\sigma/HP_{\rm ro}) + A \end{array}$	447 0. 01923	450 0.798 608 0.01430 3.07 215	660 0.790 835 0.01028 2.42 235	960 0.780 1,230 0.00698 1.76 252	1, 200 0, 767 1, 564 0, 00550 1, 455 265	1, ±40 0, 754 1, 909 0, 00±51 1, 256 279
71	$V_{S} \cdot W/HP.$ $V_{m} \cdot V_{S} \cdot (W/HP).$ $(L/D) \cdot (1/\eta_{m}) \cdot V_{S} \cdot (W/HP) = A$ HP_{so}/HP_{ro} $K_{s} = (HP_{so}/HP_{ro}) + A$	0.810 526 0.01634	568 0.805 706 0.01218 2.81 231	781 0.796 981 0.00878 2.15 245	1,136 0.788 1,441 0.00597 1.575 264	1, 420 0, 772 1, 838 0, 00468 1, 306 279	1,704 0.755 2,255 0.00380 1.155 304

23-24-19

TABLE XIX.

TABLE A1A. $\frac{HP_{10}}{HP_{m}} = \frac{K_{1}^{L}}{\left(\frac{1}{\eta_{m}} \cdot V_{s} \cdot \frac{W}{HP}\right)^{6}}$ DETERMINATION OF K_{1} IN THE ABSOLUTE CEILING FORMULA $\frac{HP_{10}}{HP_{m}} = \frac{K_{1}^{L}}{\left(\frac{1}{\eta_{m}} \cdot V_{s} \cdot \frac{W}{HP}\right)^{6}}$

V_{s}	W/HP=	6	8	11	16	20	24
38	$(I/\eta_{\rm m}) \cdot V_{\rm s} \cdot (W/HP) = B \dots \\ HP_{\rm ao}/HP_{\rm ro} \dots \\ K_{\rm f} = (HP_{\rm ao}/HP_{\rm ro}) B^{0.80} \div \frac{L}{D} \dots$	292 93.8 5.56 60.6	392 118.6 4.44 61.2	546 154, 7 3, 40 61, 2	822 214, 2 2, 54 63, 2	1,033 258 2,07 62,0	1,248 300 1.80 62.7
46.5	$(!/\eta_{\rm m}) \cdot V_{\rm a} \cdot (W/HP) = B \dots \\ B^{0.30} \cdot HP_{\rm ao}/HP_{\rm ro} \cdot L \\ K_4 = (HP_{\rm ao}/HP_{\rm ro}) \dot{B}^{0.80} + \frac{L}{D} \dots$	109. 2 4. 75	475 138, 6 3, 91 62, 9	660 180. 0 2. 96 61. 9	972 245.0 2.17 61.9	1,230 296.5 1.80 61.9	1,506 349,0 1,55 62,7
53.6	$(I/\eta_{\rm m}) \cdot V_z \cdot (W/HP) = B \dots B^{0.50} \dots HP_{\rm no}/HP_{\rm ro} \dots K_4 = (HP_{\rm no}/HP_{\rm ro}) B^{0.50} + \frac{L}{D} \dots$	121.3 4.33	540 153. 4 3. 47 61. 8	752 200. 3 2. 70 62. 8	1,106 272 1.97	1, 408 330 1, 05 63, 1	1,720 387 1.39 62.5
60	$(I/\eta_{\rm m}) \cdot V_{\rm s} \cdot (W/HP) = B \dots B_0.80.$ $HP_{\rm ao}/HP_{\rm ro}.$ $K_4 = (HP_{\rm ao}/HP_{\rm ro}) B_0.80 \div \frac{L}{D} \dots$	3.96	608 169, 0 3, 07 60, 2	835 217.7 2.42 61.2	1,230 296.5 1.76 60.7	1,564 359 1,455 60,7	1,909 422 1,256 61,5
71	$ \begin{array}{ c c c c c }\hline (I/\eta_{\rm m}) & V_8 & (W/HP) = B \dots \\ B^{0.80} & & & \\ HP_{\rm ac}/HP_{\rm ro} & & & \\ K_4 = (IIP_{\rm ac}/HP_{\rm ro}) B^{0.90} \div \frac{L}{D} \dots \\ \end{array} $	150. 2 3. 54	706 190. 3 2. 81 62. 1	981 247.3 2.15 61.6	1,441 336.5 1.575 61.5	1,838 409 1.306 62.0	2, 255 481 1, 155 64, 4

Average $K_4=61.7$.

TABLE XX.

COMPARISON OF OBSERVED ABSOLUTE CEILING WITH THAT CALCULATED FROM EQUATION

$$\frac{HP_{\text{ao}}}{HP_{\text{ro}}} = \frac{61.7 \frac{L}{D}}{\left(\frac{1}{\gamma_{\text{min}}} + V_{\text{s}} + \frac{W}{HP}\right)^{0.80}}$$

Airplane.	V_s	W HP	<u>1</u> η _m			T		Absolute ceiling.	
				F	F0.80	$rac{L}{\mathcal{D}}$	HP _{ro}	From formula.	Actual.
USXBIA. MB 3. M 80. "D" S 6. Roland D VI-B. MS-AR DH-4. Fokker D VIII. VE-7. SE-5. JN-4H	58 63 55 45 56 51 62 57 52	9, 98 7, 00 8, 80 8, 10 17, 60 9, 94 17, 60 10, 20 9, 00 11, 60 11, 40 14, 30	0. 79 . 76 . 78 . 75 . 805 . 78 . 80 . 79 . 79 . 79 . 79 . 75	682 534 711 593 984 713 1,120 802 657 765 780 802	186 152 192 165 234 193 237 206 180 202 204	000000000000000000000000000000000000000	2,65 3,25 2,57 2,99 2,11 2,08 2,39 2,74 2,44 2,42 2,42	19, 900 23, 500 19, 300 22, 000 15, 700 19, 300 15, 400 18, 000 18, 300 18, 200	22, 400 24, 900 19, 900 23, 600 15, 100 16, 600 17, 600 17, 600 22, 100 19, 900 19, 900