# A Practical Beginner's Guide to Proteomics

This manuscript (<u>permalink</u>) was automatically generated from <u>jessegmeyerlab/proteomics-tutorial@228bbd4</u> on January 14, 2022.

#### **Authors**

• Jesse G. Meyer

© 0000-0003-2753-3926 · ♠ jessegmeyerlab · У j my sci

Department of Biochemistry, Medical College of Wisconsin · Funded by Grant R21 AG074234; Grant R35 GM142502

# **Abstract**

### Introduction

[paragraph about what proteomics means today]

[history of proteomics? how we got here]

[paragraph about what proteomics can do] A wide range of questions are addressable with proteomics experiments, which translates to a wide range of variations of proteomics workflows. Sometimes identifying what proteins are present is desired, and sometimes the quantities of as many proteins as possible are desired.

#### **Protein Extraction**

Discussion of methods for protein extraction and solubilizaition.

- 1. Choice of Lysis buffer
- Urea can cause chemical modifications
- 2. chemicals to avoid
- 3. removal of contaminations, Protein Precipitation
- 4. protein alkylation
- choices of reduction and alkylation reagents, TCEP/DTT/2BME, Chloroacetamide/iodoacetamide, nethyl maleimide

### **Experiment Design**

This section should discuss trade offs and balancing them to design an experiment. 1. constraints: Each experiment will have different constraints, which may include the number of samples needed for analysis, or desire to quantify a specific subset of proteins within a sample. 2. sample size 3. statistics 4. costs

# References