NIS2312-01 Fall 2023-2024

信息安全的数学基础(1)

Assignment 19

2023 年 12 月 15 日

Problem 1

设 α 是 \mathbb{F}_{2^4} 的一个本原元, 且 α 是 $x^4 + x + 1 \in \mathbb{F}_2[x]$ 在 \mathbb{F}_{16} 上的一个根. 计算 $\mathbb{F}_{2^4}^*$ 中全部元素的极小多项式, 并把 $x^{15} - 1$ 分解成 \mathbb{F}_2 上的不可约多项式的乘积.

Hint: 将有限域元素进行划分, 划分的依据为是同一个极小多项式的根; 考虑不同 (同一个) 极小多项式的根的关系, 用于计算极小多项式.

解: 如果 α 是 $x^4 + x + 1 \in \mathbb{F}_2$ 在 \mathbb{F}_{16} 上的一个根, 那么 α^2 也是根:

$$\alpha^4 + \alpha + 1 = 0 \Rightarrow (\alpha^2)^4 + (\alpha^2) + 1 = (\alpha^4 + \alpha + 1)^2 = 0.$$

同理 α^4 , α^8 , 故如果 f 是 α 的极小多项式, 那么 f 也是 α^2 , α^4 , α^8 , ... 的极小多项式. 因此有划分

$$\alpha^0$$

$$\alpha, \alpha^2, \alpha^4, \alpha^8$$

$$\alpha^3, \alpha^6, \alpha^{12}, \alpha^9$$

$$\alpha^5, \alpha^{10}$$

$$\alpha^7, \alpha^{14}, \alpha^{13}, \alpha^{11}.$$

- 1. 显然 $\alpha^0 = 1$ 的极小多项式是 x + 1;
- 2. 注意到 $x^4 + x + 1$ 是 \mathbb{F}_2 上的不可约多项式: (之前的作业有直接指出) 或者: $x^4 + x + 1$ 显然无法被一次不可约多项式 $\{x, x + 1\}$ 整除, 同时也无法被二次不可约多项式 $x^2 + x + 1$ 整除, 故是一个不可约多项式. 注意到 $x^4 + x + 1$ 在 \mathbb{F}_{2^4} 上的一个根是 α , 则 α , α^2 , α^4 , α^8 对应的极小多项式为 $x^4 + x + 1$; 又因为 α^{14} , α^{13} , α^{11} , α^7 是 α , α^2 , α^4 , α^8 的逆, 故其极小多项式是互反的, 即 $x^4 + x^3 + 1$;

互反多项式: 设 $f(x) = a_0 + a_1 x + a_2 x^2 + \cdots + a_n x^n$, 则 f(x) 的互反多项式为

$$f^*(x) = a_n + a_{n-1}x + a_{n-2}x^2 + \dots + a_0x^n = x^n f(x^{-1}),$$

- 3. α^5 , α^{10} 的极小多项式次数为 2, 所以只能是 $x^2 + x + 1$ (因为只有 \mathbb{F}_2 上的 2 次不可约多项式只有这一个);
- 4. α^3 , α^6 , α^{12} , α^9 本身是互反的 ($\alpha^3 * \alpha^{12} = 1$, $\alpha^6 * \alpha^9 = 1$), 故其极小多项式是自反的, \mathbb{F}_2 上 4 次自反多项式只有 $x^4 + x^3 + x^2 + x + 1$ 和 $x^4 + x^2 + 1 = (x^2 + x + 1)^2$, 故极小多项式为 $x^4 + x^3 + x^2 + x + 1$.

上述极小多项式的根的集合恰好是 $\mathbb{F}_{2^4}^*$, 故 $x^{15}-1$ 的分解就是上述极小多项式的乘积

$$x^{15} - 1 = (x+1)(x^2 + x + 1)(x^4 + x + 1)(x^4 + x^3 + 1)(x^4 + x^3 + x^2 + x + 1).$$