Funktionalanalysis - Übung 1

1. UE am 20.03.2020

Richard Weiss

Florian Schager Paul Winkler Christian Sallinger Christian Göth Fabian Zehetgruber

Aufgabe 1. Sei X ein topologischer Vektorraum und $\mathfrak W$ eine Basis des Umgebungsfilters der Null in X. Zeige

$$\forall\, A\subseteq X: \overline{A}=\bigcap_{W\in\mathfrak{W}}(A+W)$$

Lösung. "⊆": Sei $x \in \overline{A}$ beliebig, also $\forall U$ Umgebung von $x : A \cap U \neq \emptyset$. Da \mathfrak{W} eine Umgebungbasis von 0 ist, ist $x + \mathfrak{W}$ eine Umgebungsbasis von x. Sei $W \in \mathfrak{W}$ beliebig und wähle $W_0 \subset W$ kreisförmige Umgebung der 0. W_0 ist somit insbesondere symmetrisch, $x + W_0$ eine Umgebung von x und es gilt

$$\emptyset \neq (x + W_0) \cap A = (x - W_0) \cap A.$$

Damit, $\exists w \in W_0 \subseteq W, \exists a \in A : x - w = a$, also x = a + w und somit $x \in \bigcap_{W \in \mathfrak{M}} (A + W)$.

"⊇": Umgekehrt betrachte $y \in \bigcap_{W \in \mathfrak{W}} (A + W)$, sowie $U \in \mathfrak{U}(0)$. Dann $\exists W \in \mathfrak{W} : W \subseteq U$ und $\exists W_0 \in \mathfrak{U}(0)$ kreisförmig : $W_0 \subseteq W$. Weil $\exists W_1 \in \mathfrak{W} : W_1 \subseteq W_0$, muss $y \in (A+W_1) \subseteq (A+W_0)$. W_0 ist insbesondere symmetrisch, und es gilt

$$\emptyset \neq \{y\} \cap (A + W_0) \stackrel{!}{=} (y - W_0) \cap A = (y + W_0) \cap A \subseteq (y + W) \cap A \subseteq (y + U) \cap A.$$

(Für "!", betrachte die Überlegung am Ende von " \subseteq ".) Also haben wir $y \in \overline{A}$, da A mit jeder Umgebung aus $y + \mathfrak{U}(0) = \mathfrak{U}(y)$ nichtleeren Schnitt hat.

Aufgabe 2. Sei X ein topologischer Vektorraum. Zeige

$$\forall A \subseteq X, \ kreisförmig : (A^{\circ} \ kreisförmig \Leftrightarrow (A^{\circ} = \emptyset \lor 0 \in A^{\circ}))$$

Finde ein Beispiel eines topologischen Vektorraumes X und einer kreisförmigen Menge $A \subseteq X$, deren Inneres nicht kreisförmig ist.

Lösung. (i) Wir nehmen ein kreisörmiges $A \subseteq X$.

"⇒" Sei $A^{\circ} \neq \emptyset$ kreisförmig. Das heißt es gibt ein $x \in A^{\circ}$ und wegen der Kreisförmigkeit ist auch $0x = 0 \in A^{\circ}$.

"⇐" Wir unterscheiden zwei Fälle.

Fall 1: Sei $A^{\circ} = \emptyset$. Dann ist natürlich A° kreisförmig.

Fall 2: Sei $0 \in A^{\circ}$. Wir wählen ein beliebiges $x \in A^{\circ}$ und ein $\lambda \in \mathbb{C}$ mit $|\lambda| \leq 1$.

Fall 2.1: Sei $\lambda = 0$. Dann ist $0x = 0 \in A^{\circ}$.

Fall 2.2: Sei $\lambda \neq 0$. Es gibt ein offenes $U \subseteq A$ mit $x \in U$. Da A kreisförmig ist und $M_{\lambda} : X \to X : x \mapsto \lambda x$ ein Homöomorphismus ist $\lambda U \subseteq A$ und $\lambda x \in \lambda U$ sowie λU offen. Also ist A eine Umgebung von λx und damit $\lambda x \in A^{\circ}$.

Insgesamt ist also A° kreisförmig.

(ii) Wir betrachten den Raum \mathbb{C}^2 mit der einzigen Topologie, welche diesen zu einem topologischen Vektorraum macht.

$$A := \left\{ \begin{pmatrix} v \\ w \end{pmatrix} \in \mathbb{C}^2 : |v| \le |w| \right\}$$

Zuerst gilt es nachzuweisen, dass A kreisförmig ist. Dazu wählen wir $(v, w)^T \in A$ und $\lambda \in \mathbb{C}$ mit $|\lambda| \leq 1$. Es gilt

$$|v| \le |w| \Rightarrow |\lambda||v| \le |\lambda||w| \Rightarrow |\lambda v| \le |\lambda w|$$

und damit $\lambda(v, w)^T \in A$. Also ist A kreisförmig.

Nun behaupten wir, dass A° nicht kreisförmig ist. Das ist äquivalent dazu, dass $A^{\circ} \neq \emptyset \wedge (0,0)^T \notin A^{\circ}$. Es ist $(0,1)^T \in A^{\circ}$ also $A^{\circ} \neq \emptyset$.

Sein nun $U\subseteq\mathbb{C}^2$ eine offene Menge mit $(0,0)^T\in U$. Nun gibt es $\epsilon\in\mathbb{R}^+$ so, dass mit $V:=\{z\in\mathbb{C}:|z|<\epsilon\}$ die Inklusion $V\times V\subseteq U$ gilt. Der Punkt $\left(\frac{\epsilon}{2},\frac{\epsilon}{4}\right)^T\in V\times V$ liegt nicht in A weshalb also A keine Umgebung von $(0,0)^T$ ist und damit ist $(0,0)^T\notin A^\circ$.

Aufgabe 3. Ein TVR ohne stetige Funktionale: Sei $0 , und sei <math>L^p(0,1)$ der Raum aller (Äquivalenzklassen von) Lebesgue-messbaren komplexwertigen Funktionen definiert auf (0,1) mit $\int_{(0,1)} |f(x)|^p dx < \infty$. Weiters sei

$$d_p(f,g) := \int_{(0,1)} |f(x) - g(x)| \, dx, \ f,g \in L^p(0,1).$$

Zeige:

- (a) d_p ist eine Metrik auf $L^p(0,1)$, und $L^p(0,1)$ wird mit der von d_p induzierten Topologie zu einem topologischen Vektorraum.
- (b) Ist $V \subseteq L^p(0,1)$ eine Umgebung von 0 und ist V konvex, so folgt $V = L^p(0,1)$.
- (c) dim $X = \infty$ und $X' = \{0\}$.

Hinweis. Sei V konvexe Nullumgebung, r > 0, sodass $U_r(0) := \{g \in L^p(0,1) : \Delta(g) < r\} \subseteq V$ wobei $\Delta(f) := d_p(f,0)$. Sei $f \in L^p(0,1)$. Wähle $n \in \mathbb{N}$ mit $n^{p-1}\Delta(f) < r$, $0 = x_0 < x_1 < \ldots < x_n = 1$ mit $\int_{x_{i-1}}^{x_i} |f(t)|^p dt = n^{-1}\Delta(f)$ und setze $g_i(t) := nf(t)\mathbb{1}_{[x_{i-1},x_i]}$, sodass $f = n^{-1}(g_1 + \ldots + g_n)$.

Lösung. (a) Damit d_p eine Metrik auf $L^p(0,1)$ ist, müssen 3 Bedingungen gelten:

(i) "Null-Gleichheit": $L^p(0,1)$ besteht aus Äquivalenzklassen f.ü. gleicher Funktionen. $\forall f,g \in L^p(0,1)$:

$$f = g \Leftrightarrow |f - g|^p = 0 \Leftrightarrow d_p(f, g) = \int_{(0,1)} |f - g|^p d\lambda = 0$$

(ii) "Symmetrie": $\forall f, g \in L^p(0,1)$:

$$d_p(f,g) = \int_{(0,1)} |f - g|^p d\lambda = \int_{(0,1)} |g - f|^p d\lambda = d_p(g,f)$$

(iii) "Dreiecksungleichung": Dazu brauchen wir zuerst, dass $\forall a, b \in \mathbb{R}$:

$$|a|^p + |b|^p \ge |a+b|^p.$$

Für a+b=0, stimmt die Aussage. Ansonsten, genügt, aufgrund der Dreiecksungleichung für $|\cdot|$,

$$\left(\frac{|a|}{|a|+|b|}\right)^p + \left(\frac{|b|}{|a|+|b|}\right)^p \ge \frac{|a|}{|a|+|b|} + \frac{|b|}{|a|+|b|} = 1$$
$$|a|^p + |b|^p \ge (|a|+|b|)^p.$$

Wegen der Monotonie des Integrals, folgt somit aber $\forall f, g, h \in L^p(0, 1)$:

$$d_p(f,g) + d_p(g,h) = \int_{(0,1)} |f - g|^p d\lambda + \int_{(0,1)} |g - h|^p d\lambda$$
$$= \int_{(0,1)} |f - g|^p + |g - h|^p d\lambda \ge \int_{(0,1)} |f - h|^p d\lambda = d_p(f,h).$$

Analog zu Beispiel 2.1.2, prüfen wir 3 Bedingungen nach.

• "+ stetig": In der Tat gilt wegen

$$d_p((f_1 + f_2), (g_1 + g_2)) = \int_{(0,1)} |(f_1 + f_2) - (g_1 + g_2)|^p d\lambda$$

$$\leq \int_{(0,1)} |f_1 - g_1|^p d\lambda + \int_{(0,1)} |f_2 - g_2|^p d\lambda = d_p(f_1, g_1) + d_p(f_2, g_2)$$

 $U_{\epsilon}^{L^{p}(0,1)}(f_1) + U_{\epsilon}^{L^{p}(0,1)}(f_2) \subseteq U_{2\epsilon}^{L^{p}(0,1)}(f_1 + f_2)$, womit die Addition stetig ist.

• "· stetig": Aus

$$d_{p}(\alpha f, \beta g) = \int_{(0,1)} |\alpha f - \beta g|^{p} d\lambda \le \int_{(0,1)} |\alpha (f - g)|^{p} d\lambda + \int_{(0,1)} |(\alpha - \beta)g|^{p} d\lambda$$
$$= |\alpha|^{p} \int_{(0,1)} |f - g|^{p} d\lambda + |\alpha - \beta|^{p} \int_{(0,1)} |g|^{p} d\lambda = |\alpha|^{p} d_{p}(f, g) + |\alpha - \beta|^{p} \Delta(g)$$

 $\text{folgt } U_{\epsilon}^{\mathbb{C}}(\alpha) \cdot U_{\epsilon}^{L^{p}(0,1)}(f) \subseteq U_{\epsilon(|\alpha|^{p})+\epsilon^{p}(\Delta(f)+\epsilon)}^{L^{p}(0,1)}(\alpha f) \text{ und damit die Stetigkeit der Skalarmultiplikation.}$

 \bullet " T_2 ": Schließlich bemerke man, dass jeder metrische Raum Hausdorff ist.

(b) Dem Hinweis fügen wir noch Folgendes hinzu. $\forall i = 1, ..., n$:

$$\Delta(g_i) = \int_{(0,1)} |g_i|^p \, d\lambda = n^p \int_{(x_{i-1}, x_i)} |f|^p \, d\lambda = n^{p-1} \Delta(f) < r \Rightarrow g_i \in U_r(0)$$

Nachdem $U_r(0)$ konvex ist und $f = n^{-1}(g_1 + \cdots + g_n)$ eine Konvexkombination, muss $f \in U_r(0) \subseteq V$.

(c) Alle Polynomfunktionen liegen in $L^p(0,1)$ und bilden bereits einen unendlichdimensionalen linearen Teilraum.

Sei $D \subseteq \mathbb{C}$ offen und konvex und $f \in X'$ linear und stetig. Dann ist $f^{-1}(D) \in L^p(0,1)$ offen und konvex, weil $\forall x, y \in f^{-1}(D), \forall \alpha \in (0,1)$:

$$f(x), f(y) \in D \Rightarrow f(\alpha x + (1 - \alpha)y) = \alpha f(x) + (1 - \alpha)f(y) \in D \Rightarrow \alpha x + (1 - \alpha)y \in f^{-1}(D).$$

Wenn nun, für $\epsilon > 0$, $D = U_{\epsilon}(0)$, dann ist wegen der Linearität von f, $f^{-1}(D)$ eine offene konvexe 0-Umgebung und somit ganz $L^p(0,1)$. Damit liegt $f(L^p(0,1))$ in jeder offenen ϵ -Kugel um 0, also in ihrem Schnitt $\{0\} \subseteq \mathbb{C}$, d.h. f = 0.

Aufgabe 4. Sei X ein topologischer Vektorraum mit $\dim X = \infty$ in dem der Umgebungsfilter der Null eine abzählbare Basis besitzt. Zeige, dass $X' \neq X^*$.

Lösung. Nachdem $X^* := L(X, \mathbb{C})$ und $X' := X^* \cap C(X, \mathbb{C})$, zeigen wir, dass $X' \subsetneq X^*$. Wir konstruieren also eine lineare Abbildung $f \in X^*$, die nicht stetig ist.

Seien $(B_n)_{n\in\mathbb{N}}$ die abzählbare Umgebungsbasis der Null, sowie $(b_i)_{i\in I}$ die unendliche Vektorraumbasis von X, mit $\mathbb{N}^2 \subset I$.

Nach Proposition 2.1.14, ist das für $f \neq 0$ äquivalent dazu, dass $\forall U \in \mathfrak{U}(0) : f(U) \subseteq \mathbb{C}$ unbeschränkt. Nachdem aber $\forall U \in \mathfrak{U}(0) : \exists n \in \mathbb{N} : B_n \subseteq U$, also $f(B_n) \subseteq f(U)$, können wir uns aber auf $(B_n)_{n \in \mathbb{N}}$ beschränken.

Sei nun $n \in \mathbb{N}$. Nach Lemma 2.1.8, ist B_n , als Umgebung der Null, absorbierend. Somit muss $\forall k \in \mathbb{N} : \exists t_{n,k} > 0 : \tilde{b}_{n,k} := t_{n,k} b_{n,k} \in B_n$. Nun setzt man einfach $\forall k \in \mathbb{N} : f(\tilde{b}_{n,k}) := k$, und $(\tilde{b}_{n,k})_{n,k \in \mathbb{N}}$ zu einer Basis von X fort.

Aufgabe 5. Sei X ein Vektorraum mit $X \neq \{0\}$. Ist X mit der diskreten Topologie ein topologischer Vektorraum? Finde eine Topologie auf X mit der X ein topologischer Vektorraum wird und sodass $X' = X^*$ ist.

 $L\ddot{o}sung.~X$ ist mit der diskreten Topologie kein topologischer Vektorraum.

Dazu betrachten wir die Stetigkeit der Skalarmultiplikation bei der 0. Sei $x \in X \setminus \{0\}$ beliebig.

Dann ist $\{0\}$ eine Umgebung von $\cdot (0,x)=0$. Sei nun V eine beliebige Umgebung von (0,x) in der Produkttopologie von $\mathbb{C} \times X$. Dann lässt sich $V=\bigcup_{i\in I}O_i^{\mathbb{C}}\times O_i^X$, mit $O_i^{\mathbb{C}}$ offen in \mathbb{C} , versehen mit der euklidischen Topologie und O_i^X offen bezüglich der diskreten Topologie auf X darstellen. Dann gilt:

$$\exists (a,x) \in V : a \neq 0 \implies (a,x) \neq 0 \implies (V) \not\subseteq \{0\}$$

Also ist die Skalarmultiplikation bei 0 nicht stetig und X somit kein topologischer Vektorraum. Für den zweiten Teil der Aufgabe betrachte die Menge aller linearen Funktionale $(f_i)_{i \in I}$ auf X.

$$f_i: X \to \mathbb{C}, i \in I$$

Es gilt klarerweise $\bigcap_{i \in I} \ker f_i = \{0\}$. Ebenso ist \mathbb{C} , versehen mit der euklidischen Topologie ein Vektorraum. Damit sind alle Voraussetzungen für Proposition 2.4.1 erfüllt, die besagt, dass damit X mit der von $(f_i)_{i \in I}$ induzierten Initialtopologie zu einem topologischen Vektorraum wird. Aus der Konstruktion der Topologie folgt sofort, dass $X' = X^*$.

Aufgabe 6. Sei X ein topologischer Vektorraum. Eine Menge $B \subseteq X$ heißt beschränkt, falls es zu jeder Nullumgebung U ein positive Zahl λ_U gibt, sodass $B \subseteq \lambda_U U$. Zeige, dass jede kompakte Teilmenge von X beschränkt ist. Zeige, dass jeder lineare Teilraum $Y \neq \{0\}$ von X unbeschränkt ist.

Lösung. "kompakte Teilmenge beschränkt": Sei $K \subseteq X$ kompakt, $U \in \mathfrak{U}(0)$ beliebig. Wähle $W \subseteq U$ als kreisförmige Nullumgebung. W ist absorbierend, d.h. $\forall \, x \in X : \exists \, t > 0 : x \in tW$. Nach Lemma 2.1.3, ist $M_{\lambda} : x \mapsto \lambda x$ homöomorph, für alle $\lambda \in \mathbb{C} \setminus \{0\}$. $(tW)_{t>0}$ ist damit eine offene Überdeckung von K.

$$\bigcup_{t>0} tW = X \supseteq K$$

Nach der Definition einer kompakten Menge existiert davon eine endliche Teilüberdeckung $(t_i W)_{i=1}^n$. Aufgrund der Kreisförmigkeit von W gilt $\forall i = 1, ..., n$:

$$t_i \geq t_i \Rightarrow t_i W \supseteq t_i W$$
.

Mit $t_{\max} := \max_{i=1}^n t_i$, folgt also $t_{\max} U \supseteq t_{\max} W \supseteq K$. Damit ist K beschränkt.

"Linearer Teilraum unbeschränkt": Weil $Y \neq \{0\}$, muss $\exists y \in Y : y \neq 0$. Weil (X, \mathcal{T}) Hausdorff ist, $\exists V$ Umgebung von $y, \exists U$ Umgebung von $0 : V \cap U = \emptyset$. Damit muss aber $y \notin U \in \mathfrak{U}(0)$. Weil Y ein linearer Teilraum ist, gilt $\forall \lambda > 0 : \lambda y \in Y$, aber $\lambda y \notin \lambda U$. Daher ist Y unbeschränkt, weil $\exists U \in \mathfrak{U}(0) : \forall \lambda > 0 : Y \not\subseteq \lambda U$.

Aufgabe 7. Sei X ein topologischer Vektorraum und $B \subseteq X$. Zeige, dass die folgenden Aussagen äquivalent sind:

- (i) B ist beschränkt.
- (ii) Zu jeder Nullumgebung U gibt es eine Zahl $\mu_U > 0$, sodass $B \subseteq \lambda U$ für alle $\lambda > \mu_U$.
- (iii) Für jede Folge $(x_n)_{n\in\mathbb{N}}$ von Elementen von B und jede Folge $(\alpha_n)_{n\in\mathbb{N}}$ komplexer Zahlen mit $\lim_{n\to\infty} \alpha_n = 0$ gilt $\lim_{n\to\infty} \alpha_n x_n = 0$.

Lösung. "(i) \Rightarrow (ii)": Seien $W, U \in \mathfrak{U}(0)$, mit $W \subseteq U$ kreisförmig. Nachdem B beschränkt ist, $\exists \mu_U > 0$: $\forall \lambda > \mu_U$:

$$B \subset \mu_U W \stackrel{!}{\subset} \lambda W \subset \lambda U.$$

Dabei gilt "!", weil $|\frac{\mu_u}{\lambda}| \leq 1$ und somit $\frac{\mu_u}{\lambda} W \subseteq W$, da W kreisförmig ist.

- $(ii) \Rightarrow (i)$: Trivial!
- "(i) \Rightarrow (iii)": Sei $U \in \mathfrak{U}(0)$ kreisförmig, und $(x_n) \in B$. Weil B beschränkt ist, $\exists \lambda > 0 : (x_n)_{n \in \mathbb{N}} \in B \subseteq \lambda U$. Wenn nun $(\alpha_n)_{n \in \mathbb{N}} \in \mathbb{C}$, mit $\alpha_n \to 0$, dann gilt für fast alle $n \in \mathbb{N}$:

$$|\alpha_n| \le \frac{1}{\lambda} \Rightarrow \frac{x_n}{\lambda} \in U, |\alpha_n \lambda| \le 1 \Rightarrow \alpha_n x_n \in U.$$

"(iii) \Rightarrow (i)": Angenommen, $\exists U \in \mathfrak{U}(0): \forall \lambda > 0: B \not\subseteq \lambda U$, d.h. $\exists x_{\lambda} \in B: x_{\lambda} \notin \lambda U$. Sei nun $(\alpha_n)_{n \in \mathbb{N}} \in \mathbb{R}^+: \alpha_n \to 0$ und definiere $\lambda_n := \frac{1}{\alpha_n}$. Weil B ja nicht beschränkt ist, muss $\forall n \in \mathbb{N}: \exists x_n \in B:$

$$x_n \notin \lambda_n U \Rightarrow \alpha_n x_n \notin U$$
.

 $\text{Somit } \exists \, (x_n)_{n \in \mathbb{N}} \in B, \exists \, (\alpha_n)_{n \in \mathbb{N}} \in \mathbb{C} : \alpha_n \to 0, \alpha_n x_n \not\to 0, \, \text{d.h. } \exists \, U \in \mathfrak{U}(0) : \forall \, N \in \mathbb{N} : \exists \, n \geq N : \alpha_n x_n \notin U.$