Capstone Project - Predicting Depression from plasma measurements

Zsombor Szoke-Kovacs

2022-05-20

Contents

Introduction	2
Project Background	2
Methods and Data Analysis Workflow	2
DATA PREPARATION	2
DATA ANALYSIS	3
Data distribution	3
Two-sample t-test \dots	12
Correlation analysis	14
Linearity between the two arms	17
Creating the train and test datasets	17
MODEL FITTING	17
K-means Clustering	17
Support Vector Machine	23
VALIDATION	30
SVM	30
RESULTS AND CONCLUSION	31
EUTUDE DEDSDECTIVES	27

Introduction

Project Background

Methods and Data Analysis Workflow

DATA PREPARATION

First we load the data sheet downloaded from the Metabolomics website: https://www.metabolomicsworkbench.org/data/DRCCMetadata.php?Mode=Study&StudyID=ST000062&StudyType=MS&ResultType=1 I have edited the data set; some of the measured molecules have been removed from the list due to simplicity and also due to these did not have names, only ID numbers. A simplified data sheet is used to do the analysis.

```
library("readxl")
library("dplyr")
library("ggplot2")
library('ggfortify')
library('corrplot')
library('stats')
library('purrr')
library(caTools)
library(e1071)
# Here, I set the file to a path on my computer, but once this is saved to a
# different computer, the path will need to be updated. The simplified data sheet
# can also be downloaded from my git repository.
file_original <- "~/Desktop/HarvardX, EdX, Data Science/Capstone Project/Capstone Project - Chosen Proj
temp_file <- read_excel(file_original)</pre>
# Converting the temp file into a transposed data frame.
file_df <- as.data.frame(t(temp_file))</pre>
# removing unnecessary rows/columns
data \leftarrow file_df[c(-2,-3,-4),c(-1,-3,-4,-5,-7)]
```

To be able to work with the data set, new column names are introduced:

```
# Adding new column names for the molecules and the arm:
data[1,1] <- 'Samples'
data[1,2] <- 'Arm'
colnames(data) <-data[1,]
# Remove first row from the data frame:
data <- data[-1,]
# By investigating the data, we can see that measurements come from two groups:
# Group 1 (control) and Group 2 (patients diagnosed with depression):
data %>% group_by(Arm) %>% summarise(n = n())
```

To analyse the relationship between the different measurements between the two groups, I first separate the two arms and remove unnecessary columns:

```
# Separate the two arms from the data set:
group_1 <- data %>% group_by(Arm) %>% filter(Arm == "Group 1 - Score 0")
group_1_truncated <- group_1[, c(-1, -2)]
group_2 <- data %>% group_by(Arm) %>% filter(Arm == "Group 2 - Score 50")
group_2_truncated <- group_2[, c(-1, -2)]</pre>
```

DATA ANALYSIS

Data distribution

To be able to compare the differences between the two groups, I next look at the distribution of the data in each measurement and in each arm. I generated and investigated the distribution of each measured parameter within the two groups using the codes below. However, due to these produce many plots (144 plots per arm), I commented these out in the .rmd file.

```
# Group 1:

#for (i in group_1_truncated){
# plot <- group_1_truncated %>% ggplot(aes(x = as.numeric(i))) +
# geom_density()
# print(plot)
#}

# Group 2

#for (i in group_2_truncated){
# plot <- group_2_truncated %>% ggplot(aes(x = as.numeric(i))) +
# geom_density()
# print(plot)
#}
```

Instead, I used Shapiro-Wilk's method (http://www.sthda.com/english/wiki/normality-test-in-r) to get a value of the normality for each measured parameter. The null hypothesis of this tests is that "the sample distribution is normal". So, if the p-value is >0.05, that implies that the distribution of the data is not significantly different from the normal distribution. In other words, if the p-value is >0.05 we can assume normality. First, I loop through the truncated and transposed list and generate Shapiro-Wilk's test for each column in the data set. I use the magicfor library to record p-values in a vector:

```
library(magicfor)
# Group 1:
magic_for(print)
for (c in group_1_truncated){
    # shap test for each col
    shap_test <- shapiro.test(as.numeric(c))
    output <- shap_test$p.value
    print(output)
}</pre>
```

[1] 0.03075705

- ## [1] 0.08522262
- ## [1] 2.431518e-08
- ## [1] 0.4683182
- ## [1] 0.003183624
- ## [1] 0.4751875
- ## [1] 0.237512
- ## [1] 0.00431784
- ## [1] 0.1507297
- ## [1] 0.03231325
- ## [1] 0.2276085
- ## [1] 0.02835112
- ## [1] 0.0203311
- ## [1] 0.9503814
- ## [1] 0.5639228
- ## [1] 0.0001596303
- ## [1] 0.0001859755
- ## [1] 3.838608e-10
- ## [1] 0.5760497
- ## [1] 0.5129488
- ## [1] 0.001635735
- ## [1] 2.859378e-14
- ## [1] 5.950413e-06
- ## [1] 0.7951635
- ## [1] 0.7440938
- ## [1] 0.0001307812
- ## [1] 1.769107e-10
- ## [1] 5.592586e-07
- ## [1] 5.592560e-07
- ## [1] 2.080603e-14
- ## [1] 7.373533e-08
- ## [1] 0.2458592
- ## [1] 0.1436593
- ## [1] 4.844873e-13
- ## [1] 2.119992e-07
- ## [1] 0.0008157663
- ## [1] 0.02371112
- ## [1] 0.006136389
- ## [1] 0.8390248
- ## [1] 6.586207e-12
- ## [1] 0.2145127
- ## [1] 0.001970347
- ## [1] 0.002844868
- ## [1] 0.5173994
- ## [1] 0.04001211
- ## [1] 0.0001117784
- ## [1] 0.1276793
- ## [1] 0.02324038
- ## [1] 0.005191888
- ## [1] 0.008093098
- ## [1] 6.88849e-05
- ## [1] 7.739744e-07
- ## [1] 0.0008360514
- ## [1] 0.8068052
- ## [1] 0.1150337 ## [1] 0.01927027
- ## [1] 0.5908586

- ## [1] 0.005363307
- ## [1] 0.1046918
- ## [1] 0.08097101
- ## [1] 1.582163e-13
- ## [1] 3.709977e-07
- ## [1] 2.203858e-09
- ## [1] 0.04381657
- ## [1] 0.7613584
- ## [1] 0.8516382
- ## [1] 2.83857e-05
- ## [1] 1.156385e-08
- ## [1] 0.1914479
- ## [1] 0.0895071
- ## [1] 3.574687e-06
- ## [1] 4.420659e-07
- ## [1] 5.170312e-10
- ## [1] 7.584198e-06
- ## [1] 0.05041785
- ## [1] 0.00011700
- ## [1] 2.896216e-07
- ## [1] 0.03230108
- ## [1] 0.0001333469
- ## [1] 7.273573e-10
- ## [1] 3.547011e-13
- ## [1] 0.008958414
- ## [1] 0.351065
- ## [1] 0.0004660933
- ## [1] 0.000318582
- ## [1] 4.474704e-08
- ## [1] 6.085384e-09
- ## [1] 0.3867491
- ## [1] 0.06902782
- ## [1] 0.5782418
- ## [1] 8.471097e-07
- ## [1] 0.007310657
- ## [1] 1.555231e-05
- ## [1] 3.457164e-08
- ## [1] 0.183637
- ## [1] 1.163639e-05
- ## [1] 3.332581e-07
- ## [1] 0.0002195566
- ## [1] 0.01156348
- ## [1] 0.08063735
- ## [1] 0.02113055
- ## [1] 1.603749e-08
- ## [1] 2.500726e-14
- ## [1] 6.602879e-05
- ## [1] 0.02840995
- ## [1] 0.5292255
- ## [1] 0.5413767
- ## [1] 0.008912426
- ## [1] 2.88464e-11
- ## [1] 0.02485436
- ## [1] 1.950487e-11
- ## [1] 0.07610434

```
## [1] 0.5720348
## [1] 2.000887e-06
## [1] 9.319506e-05
## [1] 0.6336717
## [1] 1.371973e-13
## [1] 0.001600674
## [1] 0.2434581
## [1] 0.007982874
## [1] 1.671043e-08
## [1] 0.008609122
## [1] 2.115987e-12
## [1] 0.0834015
## [1] 1.176368e-05
## [1] 0.004877992
## [1] 6.80456e-06
## [1] 0.003929345
## [1] 0.2785123
## [1] 2.755291e-07
## [1] 0.006870093
## [1] 6.047253e-12
## [1] 2.886682e-10
## [1] 3.685127e-08
## [1] 0.0002518801
## [1] 0.03174344
## [1] 0.1348054
## [1] 9.868894e-09
## [1] 3.383021e-08
## [1] 0.00286715
## [1] 0.01370772
## [1] 0.467026
## [1] 0.00181973
## [1] 2.310402e-07
## [1] 8.595669e-11
## [1] 0.2939691
# Saving printed p-values as a vector:
pvalues_group_1 <- magic_result_as_vector()</pre>
# Binding vector to the original data, so the last row is the p-value from the
# Shapiro-Wilk's test:
group_1_truncated_with_pvalues <- rbind(group_1_truncated,pvalues_group_1)</pre>
# Group 2:
magic_for(print)
# For loop for collecting all p-values and printing them to the console:
for (c in group_2_truncated){
  # shap test for each col
  shap_test <- shapiro.test(as.numeric(c))</pre>
 output <- shap_test$p.value
 print(output)
}
## [1] 0.01268071
## [1] 0.5320017
## [1] 1.046158e-14
```

- ## [1] 0.9271982
- ## [1] 0.3338198
- ## [1] 0.002995611
- ## [1] 0.6509885
- ## [1] 0.3337033
- ## [1] 0.2176103
- ## [1] 0.2517892
- ## [1] 5.691081e-05
- ## [1] 0.008071441
- ## [1] 0.9496703
- ## [1] 0.003835506
- ## [1] 1.276141e-06
- ## [1] 4.014598e-06
- ## [1] 7.396027e-15
- ## [1] 0.003291311
- ## [1] 2.583564e-05
- ## [1] 1.078828e-09
- ## [1] 6.213368e-12
- ## [1] 9.487599e-10
- ## [1] 0.4116826
- ## [1] 5.813022e-08
- ## [1] 0.004757193
- ## [1] 1.024567e-07
- ## [1] 5.331477e-08
- ## [1] 2.607211e-08
- ## [1] 2.121411e-14
- ## [1] 0.6218422
- ## [1] 0.3725114
- ## [1] 1.326105e-12
- ## [1] 3.895945e-09
- ## [1] 1.232802e-11
- ## [1] 0.09996526
- ## [1] 0.4281124
- ## [1] 0.214296
- ## [1] 2.509511e-10
- ## [1] 2.26814e-08
- ## [1] 8.840691e-12
- ## [1] 3.020783e-07
- ## [1] 0.0003244317
- ## [1] 0.3325172
- ## [1] 2.297722e-06
- ## [1] 0.1971648
- ## [1] 7.522532e-08
- ## [1] 0.1380847
- ## [1] 0.002045618
- ## [1] 2.969678e-10
- ## [1] 2.122113e-09
- ## [1] 0.0001097306
- ## [1] 0.2254222
- ## [1] 1.308554e-05
- ## [1] 0.00055218
- ## [1] 0.1044934
- ## [1] 0.2794276
- ## [1] 0.03188302

- ## [1] 0.1232555
- ## [1] 1.348212e-11
- ## [1] 6.331095e-14
- ## [1] 4.309545e-12
- ## [1] 0.2554861
- ## [1] 5.045201e-08
- ## [1] 0.01483991
- ## [1] 0.03036964
- ## [1] 4.80947e-12
- ## [1] 0.2054814
- ## [1] 0.0001040936
- ## [1] 3.371332e-09
- ## [1] 0.006638151
- ## [1] 1.565909e-08
- ## [1] 0.002225898
- ## [1] 0.2305581
- ## [1] 2.791335e-11
- ## [1] 0.04784196
- ## [1] 1.563023e-09
- ## [1] 8.730435e-06
- ## [1] 8.412952e-11
- ## [1] 0.6350672
- ## [1] 0.2121618
- ## [1] 1.692299e-05
- ## [1] 1.901465e-05
- ## [1] 2.076581e-09
- ## [1] 1.23874e-07
- ## [1] 2.796222e-07
- +# [1] 0 0700010
- ## [1] 0.9728612 ## [1] 0.6713909
- ## [1] 2.197602e-08
- ## [1] 7.510541e-06
- ## [1] 8.175529e-06
- ... [1] 0.1700230 00
- ## [1] 0.000740605
- ## [1] 0.3345837
- ## [1] 0.0009565749 ## [1] 6.451756e-12
- ## [1] 3.312299e-05
- ## [1] 0.7167231
- ## [1] 4.774386e-12
- ## [1] 0.003379862
- ## [1] 6.348476e-09
- ## [1] 5.033355e-14
- ## [1] 0.0001545562
- ## [1] 0.0001110415
- ## [1] 0.02478078
- ## [1] 0.02641833
- ## [1] 0.1739291
- ## [1] 2.784913e-11
- ## [1] 1.167685e-05
- ## [1] 3.381197e-10
- ## [1] 0.01268761
- ## [1] 0.06897864
- ## [1] 4.75765e-07

```
## [1] 4.527211e-05
## [1] 5.633739e-11
## [1] 4.312549e-15
## [1] 1.72198e-06
## [1] 0.1555038
## [1] 0.003044546
## [1] 0.4012447
## [1] 0.0002663313
## [1] 3.665618e-14
## [1] 6.023239e-05
## [1] 1.736724e-06
## [1] 0.05283555
## [1] 8.825776e-07
## [1] 6.194916e-13
## [1] 0.1922048
## [1] 6.154861e-15
## [1] 0.08027211
## [1] 9.050325e-13
## [1] 2.338873e-06
## [1] 2.232031e-08
## [1] 0.05178879
## [1] 1.921007e-05
## [1] 0.0005122628
## [1] 0.0004112289
## [1] 0.0005876738
## [1] 1.251389e-06
## [1] 2.130454e-07
## [1] 0.0724654
## [1] 0.002222042
## [1] 1.046887e-09
## [1] 1.936056e-10
## [1] 6.314063e-05
# Saving printed p-values as a vector:
pvalues_group_2 <- magic_result_as_vector()</pre>
# Binding vector to the original data, so the last row is the p-value from the
# Shapiro-Wilk's test:
group_2_truncated_with_pvalues <- rbind(group_2_truncated,pvalues_group_2)</pre>
# Remove magicalization:
magic free()
# The last row in these two data frames are the Shapiro-Wilk's p-values:
group_1_truncated_with_pvalues %>%
  summarise(Arm = 'Group 2',
            nrow = dim(group_1_truncated_with_pvalues)[1],
            ncol = dim(group_1_truncated_with_pvalues)[2])
## # A tibble: 1 x 3
##
     Arm
              nrow ncol
     <chr>
             <int> <int>
## 1 Group 2
                49
                     143
group_2_truncated_with_pvalues %>%
  summarise(Arm = 'Group 2',
```

```
nrow = dim(group_2_truncated_with_pvalues)[1],
ncol = dim(group_2_truncated_with_pvalues)[2])
```

```
## # A tibble: 1 x 3
## Arm nrow ncol
## <chr> <int> <int> <int> 143
```

Now that I have the p-values for the Shapiro-Wilk's test for the measured parameters from each arm, I transpose the data frames, so the p-values are in a separate column and the data frame in tidy format:

```
## Arm nrow ncol
## 1 Group 1 143 49
```

```
## Arm nrow ncol
## 1 Group 2 143 50
```

Now that I have the data for the two arms, together with the p-values for normal distribution, I filter the data to keep the measured parameters, where the distribution was approximately normal. In other words, I keep all measured parameters, where the p-value was >0.05:

```
group_1_tidy <- group_1_tidy %>% filter(`Shapiro-Wilk's p-values`>0.05)
group_2_tidy <- group_2_tidy %>% filter(`Shapiro-Wilk's p-values`>0.05)
# There are 97 and 112 measured parameters where the p-value is >0.05 in Group 1
# and Group 2, respectively. Group 1 has 48 patients, whereas Group 2 has 49. The extra
# column in each data frame is the Shapiro-Wilk's p-value.
group_1_tidy %>% summarise(Arm = 'Group 1', nrow = dim(group_1_tidy)[1],
                            ncol = dim(group_1_tidy)[2])
##
         Arm nrow ncol
## 1 Group 1
               97
group_2_tidy %>% summarise(Arm = 'Group 2', nrow = dim(group_2_tidy)[1],
                            ncol = dim(group_2_tidy)[2])
         Arm nrow ncol
## 1 Group 2 112
Due to the number of the normally distributed measured parameters are different in the two groups, I will
work with the list from the control group (Group 1 - baseline), where the normally distributed parameters
were 97 (as opposed to Group 2 where it was 112). I use semi join to keep only the records from Group 2,
that have a match in Group 1.
# Adding row names as an extra column, so I can use semi_join:
group_1_tidy <- cbind(group_1_tidy, rownames = rownames(group_1_tidy))</pre>
group_2_tidy <- cbind(group_2_tidy, rownames = rownames(group_2_tidy))</pre>
# we should have one extra column in each data frame:
group_1_tidy %>% summarise(Arm = 'Group 1', nrow = dim(group_1_tidy)[1],
                            ncol = dim(group 1 tidy)[2])
##
         Arm nrow ncol
## 1 Group 1
               97
group_2_tidy %>% summarise(Arm = 'Group 2', nrow = dim(group_2_tidy)[1],
                            ncol = dim(group_2_tidy)[2])
##
         Arm nrow ncol
## 1 Group 2 112
# Keep everything from Group 1 with a match in Group 2:
group_1_tidy <- semi_join(group_1_tidy, group_2_tidy, by = "rownames")</pre>
# Keep everything from Group 2 with a match in Group 1:
group_2_tidy <- semi_join(group_2_tidy, group_1_tidy, by = "rownames")</pre>
# Investigating the dimensions of the two newly generated data frames, we can see, that
# both arms have 78 measured parameters, as well as 48 and 49 sample count (plus the two columns
# with p-values and row names), respectively.
group_1_tidy %>% summarise(Arm = 'Group 1', nrow = dim(group_1_tidy)[1],
                            ncol = dim(group_1_tidy)[2])
         Arm nrow ncol
## 1 Group 1
               78
```

```
## Arm nrow ncol
## 1 Group 2 78 51
```

$Two\text{-}sample\ t\text{-}test$

In this next section, I will calculate two-sample t-tests for the selected parameters, so I can see if there is a significant difference in any parameters between the two groups. First, I transpose the data frame generated above and remove unnecessary rows.

```
# Transpose tidy data, so I can loop through the columns: Group 1
group_1_tidy_t <- as.data.frame(t(group_1_tidy))</pre>
# Removing last two rows with p-values and row names:
group_1_tidy_t <- group_1_tidy_t[c(-49,-50),]
# Transpose tidy data, so I can loop through the columns: Group 2
group_2_tidy_t <- as.data.frame(t(group_2_tidy))</pre>
# Removing last two rows with p-values and row names:
group_2_tidy_t \leftarrow group_2_tidy_t[c(-50,-51),]
# The two data set has 78 measured parameters and 48 and 49 samples, respectively:
group_1_tidy_t %>% summarise(Arm = 'Group 1', nrow = dim(group_1_tidy_t)[1],
                              ncol = dim(group_1_tidy_t)[2])
##
         Arm nrow ncol
## 1 Group 1
               48
group_2_tidy_t %>% summarise(Arm = 'Group 2', nrow = dim(group_2_tidy_t)[1],
                              ncol = dim(group_2_tidy_t)[2])
##
         Arm nrow ncol
## 1 Group 2
               49
                    78
```

Now, that I have the two data frames with the same measured parameters in both, and all of the measurements show approximately normal distribution, I can test the vectors for significant differences:

```
# Two-sample t-test by looping through the columns:
magic_for(print)
for (j in seq(ncol(group_1_tidy_t))){
  testresults <- t.test(as.numeric(group_1_tidy_t[,j]), as.numeric(group_2_tidy_t[,j]))
  print(testresults$p.value)
}</pre>
```

```
## [1] 0.901493
## [1] 0.1944979
## [1] 0.5386687
## [1] 0.3329934
## [1] 0.9450576
## [1] 0.9846481
## [1] 0.5639318
```

- ## [1] 0.1921548
- ## [1] 4.942357e-05
- ## [1] 0.04571605
- ## [1] 0.01102079
- ## [1] 0.781581
- ## [1] 0.1682779
- ## [1] 0.0419918
- ## [1] 0.3691553
- ## [1] 0.3899988
- ## [1] 0.270009
- ## [1] 0.001947676
- ## [1] 0.09498654
- ## [1] 0.1854972
- ## [1] 0.3880945
- ## [1] 0.4855856
- ## [1] 0.4947039
- ## [1] 0.1916466
- ## [1] 0.1236281
- ## [1] 0.0005894853
- ## [1] 0.08959645
- ## [1] 0.2790141
- ## [1] 0.3967777
- ## [1] 0.00106033
- ## [1] 0.02861927
- ## [1] 0.1148812 ## [1] 0.0752034
- ## [1] 0.275934 ## [1] 0.002000258
- ## [1] 0.5798523
- ## [1] 0.8924322
- ## [1] 0.1573088
- ## [1] 0.05893773
- ## [1] 0.3321228
- ## [1] 0.1155188
- ## [1] 0.6678818
- ## [1] 0.1238112
- ## [1] 0.38568
- ## [1] 0.5241215
- ## [1] 0.06437688
- ## [1] 0.0001549329
- ## [1] 0.2873975
- ## [1] 0.6738781
- ## [1] 0.4753776
- ## [1] 0.09426011
- ## [1] 0.04067713
- ## [1] 0.01122825
- ## [1] 0.1402982
- ## [1] 0.5078799
- ## [1] 0.535678
- ## [1] 0.5192594
- ## [1] 0.3900095
- ## [1] 0.02823496
- ## [1] 0.5166175
- ## [1] 0.5375167

```
## [1] 0.000952908
## [1] 0.1326068
## [1] 0.1060869
## [1] 0.5360112
## [1] 0.001629588
## [1] 0.9311662
## [1] 0.2831985
## [1] 0.086737
## [1] 0.1851199
## [1] 0.9373875
## [1] 0.2306857
## [1] 0.3310121
## [1] 0.9455772
## [1] 0.2934011
# Saving p-values from the two-sample t-test into a dataframe, and adding the
twosample_ttest <- magic_result_as_dataframe()</pre>
magic_free()
# Adding the names of the measured parameters to the p-values:
colnames(twosample_ttest)[1] <- 'rownames'</pre>
twosample_ttest$`rownames` <- colnames(group_1_tidy_t)</pre>
# Filtering out measured parameters that showed significant differences between
# the two groups:
twosample_ttest_significant <- twosample_ttest %>% filter(`testresults$p.value` <= 0.05)
# There are 15 measured parameters that show normal distribution, and there is a significant difference
# between the two groups:
twosample_ttest_significant
```

```
rownames testresults$p.value
##
## 1
             stearic acid
                                  4.942357e-05
## 2
                 sorbitol
                                  4.571605e-02
## 3
            shikimic acid
                                  1.102079e-02
## 4
                                  4.199180e-02
                  ribitol
## 5
           pseudo uridine
                                  1.947676e-03
## 6
             {\tt nicotinamide}
                                  5.894853e-04
## 7
             myo-inositol
                                   1.060330e-03
## 8
                                  2.861927e-02
                  mannose
## 9
                                  2.000258e-03
                  lyxitol
## 10
                                  1.549329e-04
       heptadecanoic acid
## 11
            glutaric acid
                                  4.067713e-02
## 12
            glutamic acid
                                  1.122825e-02
## 13
              citric acid
                                  2.823496e-02
## 14
             behenic acid
                                  9.529080e-04
## 15 alpha-ketoglutarate
                                  1.629588e-03
```

Correlation analysis

[1] 0.08410382 ## [1] 0.3515712 ## [1] 0.9093331

From the previous section, I have a set of measured parameters that show significant difference of the mean between the two arms. To see the actual relationship between the two groups, I will use correlation analysis

for the 15 parameters. Initially, I will subset the two dataframes group_1_tidy and group_2_tidy, to only consist of the 15 parameters of interest.

```
group_1_final <- semi_join(group_1_tidy, twosample_ttest_significant, by = 'rownames')</pre>
group_1_final \leftarrow group_1_final[,c(-49,-50)]
group_2_final <- semi_join(group_2_tidy, twosample_ttest_significant, by = 'rownames')</pre>
group_2_final \leftarrow group_2_final[,c(-50,-51)]
# Here I have two dataframes from the two arms, one control and one diagnosed with depression,
# where the parameters of interest are included only. The dataframes consist of 48 and 49
# patients, respectively:
group_1_final %>% summarise(Arm = 'Group 1', nrow = dim(group_1_final)[1],
                             ncol = dim(group_1_final)[2])
##
         Arm nrow ncol
## 1 Group 1
               15
group_2_final %>% summarise(Arm = 'Group 2', nrow = dim(group_2_final)[1],
                             ncol = dim(group_2_final)[2])
         Arm nrow ncol
## 1 Group 2
                    49
               15
```

Now that I have the two dataframes with the 15 measured parameters that showed approximately normal distribution and significant differences between the two groups, I will merge the two arms, and will generate a new dataframe with all of the subjects and the 15 measured parameters. I will use this dataframe for my further work:

```
# first, I create a new column in both dataframes, so I can merge these with
# left_join()
group_1_final <- cbind(group_1_final, rownames = rownames(group_1_final))
group_2_final <- cbind(group_2_final, rownames = rownames(group_2_final))
# Merging the two dataframes by rownames:
df <- left_join(group_1_final, group_2_final, by = "rownames")
# Adding rownames based on the rownames column
rownames(df) <- df$rownames
# Removing rownames column:
df <- subset(df, select = -rownames)</pre>
```

Testing for correlation:

```
# This is my dataset with all 15 parameters and the entire cohort.
# I now transpose it and will do a correlation analysis to see if any of these
# parameters are correlated:
df_t <- as.data.frame(t(df))
# A quick plotting of the data shows that there is a potential correlation between
# stearic acid and heptadecanoic acid: commented out so, otherwise many lots will be printed.
# plot(df_t)
plot(df_t$`stearic acid`, df_t$`heptadecanoic acid`)</pre>
```



```
# A correlation analysis between the two parameters shows a strong positive correlation
# with a value of 0.862:
cor.test(as.numeric(df_t$`stearic acid`), as.numeric(df_t$`heptadecanoic acid`))
##
##
   Pearson's product-moment correlation
## data: as.numeric(df_t$'stearic acid') and as.numeric(df_t$'heptadecanoic acid')
## t = 16.583, df = 95, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
   0.8002618 0.9058056
## sample estimates:
##
         cor
## 0.8621075
# Here, I convert all df_t to numeric, so I can do a correlation analysis:
df_num <-as.data.frame(sapply(df_t, as.numeric))</pre>
# This also shows, that the only correlation is between stearic acid and heptadecanoic acid:
cor_15_param <- as.data.frame(cor(df_num))</pre>
cor_15_param %>% filter(cor_15_param >= 0.7)
##
                      stearic acid sorbitol shikimic acid
## stearic acid
                         1.0000000 0.2083188
                                                  0.2492042 0.15060595
## heptadecanoic acid
                         0.8621075 0.1501909
                                                  0.3128487 0.09976116
```

```
##
                     pseudo uridine nicotinamide myo-inositol
                                        0.3878188
                                                    0.04917488 0.1807085
## stearic acid
                         -0.19706050
## heptadecanoic acid
                         -0.05231672
                                        0.2501691
                                                    0.13140503 0.2167668
##
                         lyxitol heptadecanoic acid glutaric acid glutamic acid
## stearic acid
                     0.02011295
                                          0.8621075 -0.034593242
                                                                     0.05591120
## heptadecanoic acid 0.01543889
                                          1.0000000 -0.005699254
                                                                    -0.04747537
                     citric acid behenic acid alpha-ketoglutarate
## stearic acid
                       0.08475043
                                     0.4184708
                                                        0.02048958
## heptadecanoic acid 0.17991391
                                     0.3845567
                                                       -0.01077332
```

Linearity between the two arms

The below code looks at whether the data is linearly separable between the two arms. Values from each measured parameters are plotted on y and the arm is plotted on x.

```
# for (v in data[,c(-1,-2)]){
# plot(as.numeric(v), col = as.factor(data$Arm))
# }
```

Based on the plots generated by the above code, the values do not show a linear association between the two arms, therefore, when applying SVM, although the model performs well on the training data, on the test data, there is a significant drop in the model performance. See this in the subsequent sections.

Creating the train and test datasets

```
# Creating a training and test set from the dataframe df:
df_num_sp <- cbind(df_num, Arm = data$Arm)
index <- sample.split(df_num_sp$Arm, SplitRatio = .7)
tr_set <- subset(df_num_sp, index == TRUE)
final_val_set <- subset(df_num_sp, index == FALSE)
# Splitting the training set into further training and test sets:
index_train <- sample.split(tr_set$Arm, SplitRatio = .5)
tr_set_train <- subset(tr_set, index_train == TRUE)
tr_set_test <- subset(tr_set, index_train == FALSE)</pre>
```

MODEL FITTING

K-means Clustering

I used K-means clustering to see the structure of the data, however, the number of data points in each groups did not agree with the actual sample numbers in each arms:

```
# I used the df_t data set, that is a transposed format of the 15 significant measurements
# from the two arms. Parameters are in the columns, and samples in rows. Here we can see
# the group sizes and the ratio of the between sum of squares to the total sum of
# squares. For this latter ratio, the high number would suggest a good fit for the clustering
# scheme to the data.
# First, lets find the optimum number of clusters: we use the wssplot() function,
```



```
## [1] 395635828037 185760569486 98013679493 67263552575 57250341995
## [6] 53490348440 36742712995 35905094218 25183107256 22902610178
## [11] 21609713450 19544771548 19333076704 14248401371 13151570164

# From the above plot, we can see that the optimum number of clusters 3 (the smallest # possible number, where the plot shows an elbow shape). So, we will apply the cluster numbers 3 # in our k-means cluster analysis.

KM_3 <- kmeans(df_num, 3)
print(KM_3)
```

 $\mbox{\tt \#\#}$ K-means clustering with 3 clusters of sizes 56, 36, 5 $\mbox{\tt \#\#}$

```
## Cluster means:
## stearic acid sorbitol shikimic acid ribitol pseudo uridine nicotinamide
       158133.1 984.8479 376.7243 342.5996
                                             1425.287
                                                             159.2324
## 2
       226722.3 3758.6777
                            404.5479 566.9193
                                                  1330.800
                                                             428.6950
## 3
       387081.3 4226.8173
                            616.2581 434.8046
                                                 1148.915
                                                             944.4025
## myo-inositol mannose lyxitol heptadecanoic acid glutaric acid glutamic acid
      8138.416 15893.98 1085.131
                                        2557.490
                                                    90.20281
                                                                4888.893
       8756.183 14255.69 1170.427
## 2
                                        3158.250
                                                    85.15203
                                                                9104.517
## 3
       7566.377 19499.29 1016.876
                                        5815.383
                                                    77.25767
                                                                4250.937
## citric acid behenic acid alpha-ketoglutarate
      29348.89
                  592.8050
                                   175.9726
      29345.78
                  758.3372
                                   178.3793
## 2
## 3
      29944.92
                  927.8507
                                   216.9687
##
## Clustering vector:
## [77] 2 2 3 3 2 1 3 1 1 1 1 1 1 1 1 2 1 1 2 2 1
## Within cluster sum of squares by cluster:
## [1] 33485743443 36586389829 27941546221
## (between_SS / total_SS = 75.2 %)
##
## Available components:
##
## [1] "cluster"
                   "centers"
                                "totss"
                                             "withinss"
                                                          "tot.withinss"
                                             "ifault"
## [6] "betweenss"
                   "size"
                                "iter"
# Visualizing the two clusters, to see whether these are distinct enough , or not.
# There are two ways to evaluate cluster analysis: 1.) looking at the cluster plot or
# or 2.) look at the cluster centers.
# Fist we look at the cluster plot by using the autoplot() function:
autoplot(KM_3, df_num, frame = TRUE)
```



```
# From the above plot, we can see that the clusters 1 and 2 overlap and there is no clear # separation between the classes. As the number of observation increases, the cluster plot becomes more # 'busy', therefore, another way to evaluate the k-means cluster analysis and see the distinctiveness # of the clusters is to look at the center of the particular clusters. Centroids # can be derived from the k-means analysis object:

KM_3$centers
```

```
##
     stearic acid sorbitol shikimic acid ribitol pseudo uridine nicotinamide
## 1
         158133.1 984.8479
                                 376.7243 342.5996
                                                          1425.287
                                                                        159.2324
## 2
         226722.3 3758.6777
                                 404.5479 566.9193
                                                          1330.800
                                                                        428.6950
## 3
         387081.3 4226.8173
                                  616.2581 434.8046
                                                          1148.915
                                                                        944.4025
     myo-inositol mannose lyxitol heptadecanoic acid glutaric acid glutamic acid
##
## 1
         8138.416 15893.98 1085.131
                                               2557.490
                                                             90.20281
                                                                            4888.893
## 2
         8756.183 14255.69 1170.427
                                               3158.250
                                                             85.15203
                                                                            9104.517
## 3
         7566.377 19499.29 1016.876
                                               5815.383
                                                             77.25767
                                                                            4250.937
##
     citric acid behenic acid alpha-ketoglutarate
## 1
        29348.89
                     592.8050
                                          175.9726
## 2
        29345.78
                     758.3372
                                          178.3793
## 3
        29944.92
                     927.8507
                                          216.9687
```

```
# # From the above values, we can see that the centers of the selected parameters are # different, suggesting that the clusters are distinct in nature. A good separation for # the clusters in the case of stearic acid, nicotinamide, myo-inositol, mannose, # heptadecanoic acid, and glutamic acid can be seen.
# Now, if I repeat the same analysis with only two clusters (based on the 2 arms and
```

also on a potential elbow on the below plot at cluster 2), I can see a better separation
for the centers in the case of stearic acid, sorbitol, nicotinamide, heptadecanoic acid,
glutamic acid, and behenic acid.
wssplot(df_num)


```
## [6] 53490348440 36742712995 35905094218 25183107256 22902610178
## [11] 21609713450 19544771548 19333076704 14248401371 13151570164

KM_2 <- kmeans(df_num, 2)
print(KM_2)</pre>
```

57250341995

[1] 395635828037 185760569486 98013679493 67263552575

```
## K-means clustering with 2 clusters of sizes 78, 19
##
## Cluster means:
     stearic acid sorbitol shikimic acid ribitol pseudo uridine nicotinamide
## 1
         172353.6 1680.032
                                382.2930 403.4542
                                                         1394.712
                                                                      217.5227
         289962.4 4239.760
                                469.6168 542.0666
                                                         1299.050
## 2
                                                                      637.1195
     myo-inositol mannose lyxitol heptadecanoic acid glutaric acid glutamic acid
         8367.910 15398.69 1105.755
                                               2695.191
                                                             88.42112
## 1
                                                                           5481.488
## 2
         8216.252 15771.91 1144.115
                                               3987.812
                                                             84.54062
                                                                          10275.749
##
     citric acid behenic acid alpha-ketoglutarate
        29588.69
                     630.8289
                                         175.5881
## 1
                                          192.8996
## 2
        28515.39
                     838.5168
```

```
##
## Clustering vector:
## [39] 1 1 2 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1 2 2 2 1 1 2 2 2 2 1 1 1 1 1 1 1 1 2 2 1
##
## Within cluster sum of squares by cluster:
## [1] 82453715161 101353923427
## (between_SS / total_SS = 53.5 %)
##
## Available components:
##
## [1] "cluster"
                "centers"
                           "totss"
                                      "withinss"
                                                 "tot.withinss"
## [6] "betweenss"
                "size"
                           "iter"
                                      "ifault"
```

autoplot(KM_2, df_num, frame = TRUE)

KM_2\$centers

```
stearic acid sorbitol shikimic acid ribitol pseudo uridine nicotinamide
## 1
        172353.6 1680.032
                               382.2930 403.4542
                                                      1394.712
                                                                   217.5227
## 2
        289962.4 4239.760
                               469.6168 542.0666
                                                      1299.050
                                                                   637.1195
   myo-inositol mannose lyxitol heptadecanoic acid glutaric acid glutamic acid
        8367.910 15398.69 1105.755
                                            2695.191
                                                          88.42112
        8216.252 15771.91 1144.115
                                            3987.812
                                                          84.54062
## 2
                                                                       10275.749
```

```
## citric acid behenic acid alpha-ketoglutarate
## 1 29588.69 630.8289 175.5881
## 2 28515.39 838.5168 192.8996
```

However, if we compare the within cluster sum of squares for the first and the second run (3 and 2 clusters, respectively), we can see that the analysis with 2 clusters is a less good fit (53.5%) than that of the 3 clusters (75.2%). Hence, I will be using the parameters selected from the k-means analysis ran with 3 clusters.

Support Vector Machine

Now, that I have the parameters that show the best separation, I will train the SVM on the training set. Here I train the SVM to predict the Arm, based on the variables that showed significant difference between the two arms, and gave the best cluster separation: stearic acid, sorbitol, nicotinamide, mannose, heptadecanoic acid, glutaric acid, glutamic acid and behenic acid.

```
# SVM model with linear kernel
svm model linear <- svm(as.factor(Arm)~</pre>
                           as.numeric(tr set train$`stearic acid`) +
                           as.numeric(tr_set_train$sorbitol) +
                           as.numeric(tr_set_train$nicotinamide) +
                           as.numeric(tr set train$mannose) +
                           as.numeric(tr_set_train$`heptadecanoic acid`) +
                           as.numeric(tr_set_train$`glutaric acid`) +
                           as.numeric(tr_set_train$`glutamic acid`) +
                           as.numeric(tr_set_train$`behenic acid`),
                        data = tr_set_train, method = "C", kernel = "linear",
                         gamma = 1, cost = 1)
# Getting the mean of the correctly predicted arm on the train data set:
predict_tr_linear <- predict(svm_model_linear, tr_set_train)</pre>
mean_linear_train <- mean(predict_tr_linear == as.factor(tr_set_train$Arm))</pre>
mean_linear_train
```

[1] 0.9411765

```
# Getting the mean of the correctly predicted arm on the test data set:
predict_test_linear <- predict(svm_model_linear, tr_set_test)
mean_linear_test <- mean(predict_test_linear == tr_set_test$Arm)
mean_linear_test</pre>
```

[1] 0.9411765

[1] 1

```
# Getting the mean of the correctly predicted arm on the test data set:
predict_test_radial <- predict(svm_model_radial, tr_set_test)
mean_radial_test <- mean(predict_test_radial == tr_set_test$Arm)
mean_radial_test</pre>
```

[1] 1

Next, I will apply SVM on the dataset, but first I standardize the features:

```
# Creating a standardized training and test set from the data frame df_num:
df_num_st <- as_tibble(scale(df_num))
df_num_st <- cbind(df_num_st, Arm = data$Arm)
index_st <- sample.split(df_num_st$Arm, SplitRatio = .7)
tr_set_st <- subset(df_num_st, index == TRUE)
final_val_set_st <- subset(df_num_st, index == FALSE)
# Splitting the standardized training set into further training and test sets:
index_train_st <- sample.split(tr_set_st$Arm, SplitRatio = .5)
tr_set_train_st <- subset(tr_set_st, index_train_st == TRUE)
tr_set_test_st <- subset(tr_set_st, index_train_st == FALSE)
# Getting the wssplot to see the optimum number of clusters:
wssplot(df_num_st[,-16])</pre>
```

```
Mithin groups sum of squares sum of
```

941.2579

624.9956

871.8389

551.0485

844.3656

527.2994

```
KM_3_st <- kmeans(df_num_st[,-16], 4)</pre>
print(KM_3_st)
## K-means clustering with 4 clusters of sizes 25, 12, 38, 22
## Cluster means:
##
     stearic acid
                    sorbitol shikimic acid
                                                ribitol pseudo uridine nicotinamide
## 1
       0.06844681 -0.2669806
                                -0.3202844 -0.15950256
                                                           -0.88662341 -0.03342757
       0.73685272 1.7599490
                                -0.3472287 1.32721395
                                                            0.21080971
                                                                         1.35636144
     -0.60414659 -0.2635478
                                -0.1769679 -0.36062779
## 3
                                                            0.05579638
                                                                        -0.36299136
## 4
       0.56382580 -0.2013661
                                 0.8590289 0.08022058
                                                            0.79616393 -0.07486257
     myo-inositol
                     mannose
                                lyxitol heptadecanoic acid glutaric acid
       -0.5286942 -0.9453649 -0.4658613
## 1
                                                -0.04254934
                                                              -0.06128349
## 2
       0.8935271
                   0.1667029
                              1.0893447
                                                 0.43558753
                                                              -0.75930630
## 3
       -0.3174496 0.2630154 -0.2666614
                                                -0.59320629
                                                               0.20208802
## 4
        0.6617325 0.5290502 0.3957967
                                                 0.83538738
                                                               0.13474628
##
     glutamic acid citric acid behenic acid alpha-ketoglutarate
## 1
       -0.08845997
                    -0.2470422
                                 0.46420620
                                                      0.26735648
## 2
        1.09491648
                   -0.5222179
                                 0.88853374
                                                      0.90100197
## 3
       -0.22897933
                   -0.1666478
                                -0.57758347
                                                     -0.43341732
                     0.8534220 -0.01451763
## 4
       -0.10119473
                                                     -0.04663989
```

[1] 1440.0000 1239.7362 1110.7229 998.0776

[15]

500.6391

803.5112 717.8947 670.4786 617.6841

```
##
## Clustering vector:
  ## [39] 3 3 1 1 2 3 1 1 3 3 2 4 1 1 1 1 4 1 4 1 1 3 3 2 2 2 4 2 1 4 2 4 1 4 4 2 4 4
## [77] 1 2 2 4 3 3 4 4 3 4 4 4 1 3 4 2 4 3 4 2 3
##
## Within cluster sum of squares by cluster:
## [1] 202.0444 328.9588 175.4584 341.5289
   (between_SS / total_SS = 27.2 %)
##
## Available components:
##
## [1] "cluster"
                  "centers"
                               "totss"
                                            "withinss"
                                                         "tot.withinss"
## [6] "betweenss"
                  "size"
                               "iter"
                                            "ifault"
```

autoplot(KM_3_st, df_num_st[,-16], frame = TRUE)

KM_3_st\$centers

```
##
     stearic acid
                   sorbitol shikimic acid
                                              ribitol pseudo uridine nicotinamide
      0.06844681 -0.2669806
## 1
                                -0.3202844 -0.15950256
                                                          -0.88662341 -0.03342757
## 2
      0.73685272 1.7599490
                                -0.3472287 1.32721395
                                                           0.21080971
                                                                        1.35636144
                               -0.1769679 -0.36062779
## 3 -0.60414659 -0.2635478
                                                           0.05579638 -0.36299136
      0.56382580 -0.2013661
                                0.8590289 0.08022058
                                                           0.79616393 -0.07486257
                               lyxitol heptadecanoic acid glutaric acid
    myo-inositol
                    mannose
```

```
-0.5286942 -0.9453649 -0.4658613
                                              -0.04254934
                                                            -0.06128349
                                                           -0.75930630
## 2
       0.8935271 0.1667029 1.0893447
                                              0.43558753
                                              -0.59320629
## 3
      -0.3174496 0.2630154 -0.2666614
                                                             0.20208802
## 4
       0.6617325 0.5290502 0.3957967
                                               0.83538738
                                                             0.13474628
##
    glutamic acid citric acid behenic acid alpha-ketoglutarate
                               0.46420620
                                                   0.26735648
## 1
      -0.08845997 -0.2470422
      1.09491648 -0.5222179
                                0.88853374
                                                   0.90100197
## 3
      -0.22897933 -0.1666478 -0.57758347
                                                   -0.43341732
      -0.10119473
                    0.8534220 -0.01451763
                                                   -0.04663989
```

wssplot(df_num_st[,-16])


```
## [1] 1440.0000 1239.7362 1110.7229 998.0776 941.2579 871.8389 844.3656
## [8] 803.5112 717.8947 670.4786 617.6841 624.9956 551.0485 527.2994
## [15] 500.6391

KM_2_st <- kmeans(df_num_st[,-16], 2)
print(KM_2_st)

## K-means clustering with 2 clusters of sizes 61, 36
##</pre>
```

Cluster means:
stearic acid sorbitol shikimic acid ribitol pseudo uridine nicotinamide
1 -0.3540244 -0.2811833 -0.2291092 -0.2903693 -0.3262451 -0.2668820

```
## 2 0.5998746 0.4764495 0.3882129 0.4920147 0.5528042 0  
## myo-inositol mannose lyxitol heptadecanoic acid glutaric acid
                                                         0.4522167
## 1 -0.4458068 -0.2191191 -0.3514300 -0.3588086
      0.7553948 0.3712852 0.5954786
                                        0.6079813
                                                   -0.3082439
## glutamic acid citric acid behenic acid alpha-ketoglutarate
     -0.2140168 -0.1714674 -0.2752593 -0.1800108
## 2
       0.3626395 0.2905421
                           0.4664116
                                            0.3050184
##
## Clustering vector:
## [77] 1 2 2 2 1 2 2 2 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1
## Within cluster sum of squares by cluster:
## [1] 399.1234 837.9996
## (between_SS / total_SS = 14.1 %)
##
## Available components:
## [1] "cluster"
                  "centers"
                                                      "tot.withinss"
                              "totss"
                                          "withinss"
## [6] "betweenss"
                              "iter"
                  "size"
                                          "ifault"
```



```
KM_2_st$centers
```

```
##
     stearic acid
                    sorbitol shikimic acid
                                              ribitol pseudo uridine nicotinamide
      -0.3540244 -0.2811833
                               -0.2291092 -0.2903693
                                                           -0.3262451
                                                                        -0.2668820
                                                                         0.4522167
       0.5998746 0.4764495
                                 0.3882129 0.4920147
## 2
                                                            0.5528042
    myo-inositol
                                lyxitol heptadecanoic acid glutaric acid
                     mannose
## 1
       -0.4458068 -0.2191191 -0.3514300
                                                -0.3588086
                                                                0.1819144
## 2
        0.7553948 0.3712852 0.5954786
                                                  0.6079813
                                                               -0.3082439
   glutamic acid citric acid behenic acid alpha-ketoglutarate
        -0.2140168 -0.1714674
                                 -0.2752593
## 1
                                                      -0.1800108
## 2
         0.3626395
                    0.2905421
                                  0.4664116
                                                       0.3050184
# SVM model with linear kernel
svm_model_linear_st <- svm(as.factor(Arm)~</pre>
                          as.numeric(tr_set_train_st$`stearic acid`) +
                          as.numeric(tr set train st$sorbitol) +
                          as.numeric(tr_set_train_st$nicotinamide) +
                          as.numeric(tr_set_train_st$mannose) +
                          as.numeric(tr_set_train_st$`heptadecanoic acid`) +
                          as.numeric(tr_set_train_st$`glutaric acid`) +
                          as.numeric(tr set train st$`glutamic acid`) +
                          as.numeric(tr set train st$`behenic acid`),
                        data = tr_set_train_st, method = "C", kernel = "linear",
                        gamma = 1, cost = 1)
# Getting the mean of the correctly predicted arm on the train data set:
predict_tr_linear_st <- predict(svm_model_linear_st, tr_set_train_st)</pre>
mean linear train st <- mean(predict tr linear st == as.factor(tr set train st$Arm))
mean_linear_train_st
## [1] 0.9411765
# Getting the mean of the correctly predicted arm on the test data set:
predict_test_linear_st <- predict(svm_model_linear_st, tr_set_test_st)</pre>
mean_linear_test_st <- mean(predict_test_linear_st == tr_set_test_st$Arm)</pre>
mean linear test st
## [1] 0.9411765
# SVM model with radial kernel:
svm_model_radial_st <- svm(as.factor(Arm)~</pre>
                          as.numeric(tr_set_train_st$`stearic acid`) +
                          as.numeric(tr_set_train_st$sorbitol) +
                          as.numeric(tr_set_train_st$nicotinamide) +
                          as.numeric(tr_set_train_st$mannose) +
                          as.numeric(tr_set_train_st$`heptadecanoic acid`) +
                          as.numeric(tr_set_train_st$`glutaric acid`) +
                          as.numeric(tr_set_train_st$`glutamic acid`) +
                          as.numeric(tr_set_train_st$`behenic acid`),
                        data = tr_set_train_st, method = "C-classification",
                        kernel = "radial", gamma = 1, cost = 1)
# Getting the mean of the correctly predicted arm on the train data set:
```

```
predict_tr_radial_st <- predict(svm_model_radial_st, tr_set_train_st)</pre>
mean_radial_train_st <- mean(predict_tr_radial_st == tr_set_train_st$Arm)</pre>
mean_radial_train_st
## [1] 0.9705882
# Getting the mean of the correctly predicted arm on the test data set:
predict_test_radial_st <- predict(svm_model_radial_st, tr_set_test_st)</pre>
mean_radial_test_st <- mean(predict_test_radial_st == tr_set_test_st$Arm)</pre>
mean_radial_test_st
## [1] 0.9705882
VALIDATION
SVM
Validating the SVM model (linear and radial)
# Non-standardized Values - Linear
predict_valid_linear <- predict(svm_model_linear, final_val_set)</pre>
mean_linear_valid <- mean(predict_valid_linear == final_val_set$Arm)</pre>
## Warning in '==.default'(predict_valid_linear, final_val_set$Arm): longer object
## length is not a multiple of shorter object length
## Warning in is.na(e1) | is.na(e2): longer object length is not a multiple of
## shorter object length
mean_linear_valid
## [1] 0.7647059
# Non-standardized Values - Radial
predict_valid_radial <- predict(svm_model_radial, final_val_set)</pre>
mean_radial_valid <- mean(predict_valid_radial == final_val_set$Arm)</pre>
## Warning in '==.default'(predict_valid_radial, final_val_set$Arm): longer object
## length is not a multiple of shorter object length
## Warning in '==.default'(predict_valid_radial, final_val_set$Arm): longer object
## length is not a multiple of shorter object length
mean_radial_valid
```

[1] 0.7647059

```
# Standardized Values - Linear
predict_valid_linear_st <- predict(svm_model_linear_st, final_val_set_st)</pre>
mean linear valid st <- mean(predict valid linear st == final val set st$Arm)
## Warning in '==.default'(predict_valid_linear_st, final_val_set_st$Arm): longer
## object length is not a multiple of shorter object length
## Warning in '==.default'(predict_valid_linear_st, final_val_set_st$Arm): longer
## object length is not a multiple of shorter object length
mean_linear_valid_st
## [1] 0.8235294
# Standardized Values - Radial
predict_valid_radial_st <- predict(svm_model_radial_st, final_val_set_st)</pre>
mean_radial_valid_st <- mean(predict_valid_radial_st == final_val_set_st$Arm)</pre>
## Warning in '==.default'(predict_valid_radial_st, final_val_set_st$Arm): longer
## object length is not a multiple of shorter object length
## Warning in '==.default'(predict_valid_radial_st, final_val_set_st$Arm): longer
## object length is not a multiple of shorter object length
mean_radial_valid_st
```

[1] 0.7941176

RESULTS AND CONCLUSION

```
model_results_tibble <- tibble(Models = c("SVM Linear", "SVM Radial",</pre>
                                          "SVM Linear Standardized", "SVM Radial Standardized"),
                               TrainFit = c(mean_linear_train, mean_radial_train,
                                            mean_linear_train_st, mean_radial_train_st),
                               TestFit = c(mean_linear_test, mean_radial_test,
                                           mean_linear_test_st, mean_radial_test_st),
                               Validation = c(mean_linear_valid, mean_radial_valid,
                                              mean_linear_valid_st, mean_radial_valid_st)) %>%
  mutate(TestFit = sprintf("%0.4f", TestFit))
model_results_tibble
## # A tibble: 4 x 4
   Models
                             TrainFit TestFit Validation
##
                                <dbl> <chr>
##
     <chr>>
                                                   <dh1>
## 1 SVM Linear
                                0.941 0.9412
                                                   0.765
## 2 SVM Radial
                                     1.0000
                                                  0.765
## 3 SVM Linear Standardized 0.941 0.9412
                                                  0.824
## 4 SVM Radial Standardized 0.971 0.9706
                                                  0.794
```

FUTURE PERSPECTIVES