Introducción a la Estadística y Ciencia de Datos

Guía de Actividades - Clase 4

1. Sea X_1,\dots,X_n una muestra aleatoria de una población con función de probabilidad

X	-1	0	1
$p(x,\theta)$	$(\theta - 1)^2$	$2(\theta-1)(2-\theta)$	$(2-\theta)^2$

para $1 < \theta < 2$. Hallar el estimador de θ basado en el primer momento.

2. Sea X_1, \ldots, X_n una muestra aleatoria de una población con densidad de la forma

$$f(x,\theta) = (1-\theta)\mathbb{I}_{\left(-\frac{1}{2},0\right)}(x) + (1+\theta)\mathbb{I}_{\left(0,\frac{1}{2}\right)}(x), \qquad -1 < \theta < 1$$

Hallar un estimador de

- a) θ basado en el primer momento.
- b) momentos para $q(\theta) = \mathbb{P}_{\theta}(X > 0)$.

3. Sea X_1, \ldots, X_n una muestra aleatoria de una población con distribución Pareto $(2, \theta)$, es decir, con densidad de la forma

$$f(x,\theta) = \frac{\theta 2^\theta}{x^{\theta+1}} \mathbb{I}_{(2,\infty)}(x), \qquad \theta > 2.$$

Hallar un estimador de θ basado en el

- a) primer momento.
- b) segundo momento.

4. Sea X_1, \ldots, X_n una muestra aleatoria de una población con densidad de la forma

$$f(x,\theta) = \frac{2x}{\theta^2} e^{-x^2/\theta^2} \mathbb{I}_{(0,\infty)}(x), \qquad \theta > 0.$$

Hallar un estimador de los momentos para θ .