1 PRNG

1.1 Linear Congruential Generator

The Linear Congruential Generator is given by Eq. 1

$$X_{n+1} = (aX_n + c)modm (1)$$

where X is the sequence of pseudo-random values m, 0 < m gives the PRNG space, a, 0 < a < m is multiplier, c, $0 \le c < m$ is increment and x_0 , $0 \le x_0 < m$ the seed or start value.

1.2 Blum Blum Shub

Blum Blum Shub is given by Eq. 2

$$x_{n+1} = x_n^2 \bmod M \tag{2}$$

where M=pq is the product of two large primes p and q. At each step of the algorithm, some output is derived from x_{n+1} ; the output is commonly either the bit parity of x_{n+1} or one or more of the least significant bits of x_{n+1} . The seed x_0 should be an integer that is co-prime to M (i.e. p and q are not factors of x_0) and not 1 or 0.

The two primes, p and q, should both be congruent to $3 \pmod{4}$ (this guarantees that each quadratic residue has one square root which is also a quadratic residue), and should be safe primes with a small gcd((p-3)/2, (q-3)/2) (this makes the cycle length large).

1.3 Linear-feedback shift register

A linear-feedback shift register (LFSR) is a register of bits that performs discrete step operations that: shifts the bits one position to the left and replaces the vacated bit by the exclusive

one step of an 11-bit LFSR with initial seed 01101000010

Figure 1: LFSR

or(xor) of the bit shifted off and the bit previously at a given tap position in the register. A

LFSR has three parameters that characterize the sequence of bits it produces: the number of bits n, the initial seed (the sequence of bits that initializes the register), and the tap position tap. As in the example in Lecture 0, the Fig. 1 illustrates one step of an 11-bit LFSR with initial seed 01101000010 and tap positions 9.

- 1. Perform the following task for all the above PRNG
 - (a) Write python code (provide correct input and output)
 - (b) You can test the period of an PRNG for a given seed by count the number of iterations of the PRNG need to generate the seed value once more. Write a python code to find the periods of all the above PRNGs.
- 2. What are the requirements for a cryptographically secure PRNG?