TRƯỜNG THPT CHUYÊN QUỐC HOC - HUẾ Tổ Toán

Đề thi gồm có 40 câu TNKQ và 02 câu tự luận

ĐỀ KIẾM TRA HỌC KỲ II Môn: Toán - Lớp: 10

Năm hoc: 2018 - 2019

Thời gian làm bài: 90 phút (không kể thời gian phát đề)

I. PHẦN TRẮC NGHIÊM

Câu 1. Trên đường tròn lượng giác gốc A, biết góc lượng giác (OA, OM)có số đo bằng 4100, điểm Mnằm ở góc phần tư thứ mấy?

A. I.

B. IV.

C. III.

D. II.

Câu 2. Cho tam giác ABC có ba góc A, B, C thỏa mãn đẳng thức $\sin A = \cos B + \cos C$. Khẳng đinh nào sau đây là khẳng đinh đúng?

- \mathbf{A} . Tam giác ABC là tam giác đều.
- ${\bf B}$. Tam giác ABC vuông tại B hoặc tại C.
- \mathbf{C} . Tam giác ABC vuông cân tại A.
- **D**. Tam giác ABC vuông tại B.

Câu 3. Cho bất phương trình $f(x) < g(x) < 0, \forall x \in R$. Phép biến đổi nào sau đây là sai ?

- **A**. $f(x) < q(x) \Leftrightarrow [f(x)]^2 < [q(x)]^2$.
- **B.** $f(x) < g(x) \Leftrightarrow [f(x)]^3 < [g(x)]^3$. **D.** $f(x) < g(x) \Leftrightarrow 2f(x) < f(x) + g(x)$.
- C. $f(x) < g(x) \Leftrightarrow f(x) g(x) > [g(x)]^2$.

Câu 4. Cho góc lượng giác α . Tìm mệnh đề sai. (Giả thiết các vế đều có nghĩa)

A. $\sin(\frac{\pi}{2} - \alpha) = \cos \alpha$.

B. $\tan(\pi + \alpha) = \tan \alpha$.

C. $\sin(-\alpha) = -\sin \alpha$.

D. $\sin(\pi + \alpha) = \sin \alpha$.

Câu 5. Tìm các giá trị của m để hàm số $y=f(x)=\sqrt{\frac{1}{x^2+mx+1}}$ xác định với mọi $x\in R.$

A. $m \in [-2; 2]$.

B. $m \in (-2, 2)$

C. $m \in (-\infty; -2) \cup (2; +\infty)$.

D. $m \in (-\infty; -2] \cup [2; +\infty)$.

Câu 6. Cho $\tan x = -1$ với $\frac{\pi}{2} < x < \pi$. Tính $\cos x$.

A. $\cos x = 1$.

B. $\cos x = \frac{1}{2}$.

C. $\cos x = -\frac{\sqrt{2}}{2}$.

D. $\cos x = \frac{\sqrt{2}}{2}$.

Câu 7. Bất phương trình |1-3x|>5 có tập nghiệm $S=(-\infty;a)\cup(b;+\infty)$. Tính tổng T=3a+b.

- **A**. T = 3.
- **B**. T = 0.
- **C**. T = -2.
- **D**. T = 6.

Câu 8. Sản lượng lúa (đơn vị ha) của 40 thửa ruộng có cùng diện tích được trình bày trong bảng số liệu sau :

Sản lượng	20	21	22	23	24	
Tần số	5	8	11	10	6	N = 60

Bảng (I) (Dùng cho câu 8 và câu 9) Tính phương sai của bảng số liệu (I).

- **A**. 1, 55.
- **B**. 1, 53.
- **C**. 1, 52.
- **D**. 1, 54.

Câu 9. Tính độ lệch chuẩn của bảng số liệu (I). (Tính chính xác đến chữ số hàng phần trăm)

- **A**. 1, 24.
- **B**. 1, 23.
- **C**. 1, 25.
- **D**. 1, 26.

Lớp vận dụng cao thầy Mẫn địa chỉ 18B Lê Hồng Phong.

Câu 10. Cho biết $\sin^4 x = a + b \cos 2x + c \cos 4x$ với a, b, cthuộc tập hợp Q. Tính tổng S = a + b + c.

A.
$$S = 1$$
.

B.
$$S = -1$$
.

C.
$$S = 4$$

D.
$$S = 0$$
.

Câu 11. Cho biết $\tan x = \frac{5}{7}$. Tính giá trị của biểu thức $P = 5\sin 2x + 7\cos 2x$. **A**. P = 13. **B**. P = 7. **C**. P = 2.

A.
$$P = 13$$
.

B.
$$P = 7$$
.

C.
$$P = 2$$
.

D.
$$P = 9$$
.

Câu 12. Biết $\sin a = \frac{5}{13}$, $\cos b = -\frac{3}{5}$ với $0 < a < \frac{\pi}{2}, \frac{\pi}{2} < b < \pi$. Tính $\cos (a+b)$.

A. $\cos (a+b) = -\frac{63}{65}$. B. $\cos (a+b) = \frac{21}{65}$. C. $\cos (a+b) = -\frac{16}{65}$. D. $\cos (a+b) = -\frac{56}{65}$.

A.
$$\cos(a+b) = -\frac{63}{65}$$
.

B.
$$\cos(a+b) = \frac{21}{65}$$
.

C.
$$\cos(a+b) = -\frac{16}{65}$$
.

D.
$$\cos(a+b) = -\frac{56}{65}$$
.

Câu 13. Tìm khẳng định sai.

$$\mathbf{A.} \cos 2a = 1 - 2\sin^2 a.$$

B.
$$\sin^2 3a + \cos^2 3a = 3$$
.

$$\mathbf{C.} \sin 4a = 2\sin 2a\cos 2a.$$

D.
$$\cos(a-b) = \cos a \cos b + \sin a \sin b$$
.

Câu 14. Điều kiện cần và đủ để bất phương trình $ax^2 + bx + c > 0, (a \neq 0)$ vô nghiệm là gì?

A.
$$\begin{cases} a < 0 \\ \Delta > 0 \end{cases}$$
 B.
$$\begin{cases} a < 0 \\ \Delta < 0 \end{cases}$$
 C.
$$\begin{cases} a > 0 \\ \Delta \le 0 \end{cases}$$
 D.
$$\begin{cases} a < 0 \\ \Delta \le 0 \end{cases}$$

$$\mathbf{B.} \begin{cases} a < 0 \\ \Delta < 0 \end{cases}$$

$$\mathbf{C.} \begin{cases} a > 0 \\ \Delta \le 0 \end{cases}.$$

$$\mathbf{D.} \begin{cases} a < 0 \\ \Delta \le 0 \end{cases}$$

Câu 15. Cho nhị thức bậc nhất $y = f(x) = ax + b, a \neq 0$ có bảng xét dấu như sau :

Tìm phát biểu đúng.

A.
$$a > 0$$
.

B.
$$b - a > 0$$
.

C.
$$3a + b > 0$$
.

D.
$$b < 0$$
.

Câu 16. Tìm tập nghiệm của bất phương trình $\sqrt{x+2(x-4)} \ge 0$.

A.
$$S = \{-2\} \cup [4; +\infty)$$
.

B.
$$S = \{-2\} \cup (4; +\infty)$$
.

C.
$$S = (4; +\infty)$$
.

D.
$$S = [4; +\infty)$$
.

Câu 17. Trên đường tròn lượng giác cho hai điểm Mvà N. Khẳng định nào sau đây đúng?

A. Có đúng 2 cung lượng giác có điểm đầu là Mvà điểm cuối là N..

B. Có vô số cung lượng giác có điểm đầu là Mvà điểm cuối là N.

C. Có đúng 4 cung lượng giác có điểm đầu là Mvà điểm cuối là N.

D. Chỉ có một cung lượng giác có điểm đầu là Mvà điểm cuối là N.

Câu 18. Tìm số giá trị m nguyên thuộc đoạn [-2019; 2019] để bất phương trình $\frac{2x-m}{x+2} > 0$ nghiệm đúng với mọi $x \in (1; +\infty)$.

A. 2022.

Câu 19. Tìm số nghiệm nguyên của hệ bất phương trình $\begin{cases} \frac{3x-5}{2} < \frac{7x-12}{6} \\ 5x+2 > -8+3x \end{cases}$

A. 6.

B. 7.

C. Vô số.

Câu 20. Cho cot $\alpha=m$. Tìm m sao cho giá trị của biểu thức $P=\dfrac{2\sin\alpha-3\cos\alpha}{4\sin\alpha+5\cos\alpha}$ bằng -1. A. m=2. B. m=1. C. m=-1. D. m=-3.

Câu 21. Cho bất phương trình $x^2 + bx + c > 0$. Tìm tập nghiệm S của bất phương trình đó biết $rang b^2 - 4c < 0.$

 $\mathbf{A}. \ S = \left\{ -\frac{b}{2} \right\}. \qquad \mathbf{B}. \ S = \mathbb{R} \setminus \left\{ -\frac{b}{2} \right\}. \qquad \mathbf{C}. \ S = \mathbb{R}.$

 $\mathbf{D}.\ S=\varnothing.$

Lớp vận dụng cao thầy Mẫn địa chỉ 18B Lê Hồng Phong.

Câu 22. Một đường tròn có bán kính R = 3cm. Tính độ dài lcủa cung trên đường tròn đó có số đo bằng 60° .

A.
$$l = \pi \text{cm}$$
.

B.
$$l = 2\pi \text{cm}$$
.

C.
$$l = \frac{\pi}{2}$$
cm.

$$\mathbf{D}. \ l = \frac{\pi}{4} \mathrm{cm}.$$

Câu 23. Tập nghiệm bất phương trình $(x-2)(x+4) < \frac{5}{x^2+2x+2} - 6$ là S = (a;b). Tính giá trị của biểu thức $P = a - b^2$.

A.
$$P = -26$$
.

B.
$$P = -8$$
.

C.
$$P = -4$$
.

D.
$$P = -25$$
.

Câu 24. Rút gọn biểu thức $P = \sqrt{\sin^4 \alpha + \sin^2 \alpha \cos^2 \alpha}$ với $-\frac{4\pi}{3} < \alpha < -\pi$.

A.
$$P = \cos \alpha$$
.

$$\mathbf{B.} \ P = -\sin \alpha.$$

C.
$$P = \sin \alpha$$
.

D.
$$P = -\cos \alpha$$

Câu 25. Tìm tập xác định của hàm số $y = \sqrt{\frac{-4x^2 + 12x - 9}{x + 1}}$.

A.
$$D = (-\infty; -1) \cup \left[\frac{3}{2}; +\infty\right)$$
.

B.
$$D = (-\infty; -1)$$
.

C.
$$D = (-\infty; -1) \cup \left\{ \frac{3}{2} \right\}$$
.

D.
$$D = (-\infty; -1] \cup \left\{ \frac{3}{2} \right\}$$
.

Câu 26. Trong mặt phẳng tọa độ Oxy, cho đường thẳng $d: \begin{cases} x=5+t \\ y=3-2t \end{cases}$. Hãy chỉ ra một vectơ chỉ phương \vec{u} của đường thẳng đã cho.

A.
$$\vec{u} = (1; -2)$$
.

B.
$$\vec{u} = (3; -5)$$
.

C.
$$\vec{u} = (2; 1)$$
. D. $\vec{u} = (5; 3)$.

D.
$$\vec{u} = (5; 3)$$

Câu 27. Trong mặt phẳng tọa độ Oxy, cho đường tròn $(C): x^2 + y^2 + 4x - 2y - 7 = 0$. Tìm tọa độ tâm I và bán kính R của đường tròn đó.

A.
$$I(2;-1), R = 2\sqrt{3}$$
.

B.
$$I(-2;1), R = 12$$
.

C.
$$I(2;-1), R = 12.$$

D.
$$I(-2;1), R = 2\sqrt{3}$$
.

Câu 28. Trong mặt phẳng tọa độ Oxy, cho đường tròn $(C): x^2 + y^2 - 6x + 2y + 6 = 0$ và điểm A(1;3). Viết phương trình các tiếp tuyến của đường tròn đó kẻ từ A.

A.
$$y - 3 = 0$$
 và $4x - 3y + 5 = 0$.

B.
$$x - 1 = 0$$
 và $3x + 4y - 15 = 0$.

C.
$$x - 1 = 0$$
 và $3x - 4y + 9 = 0$.

D.
$$y - 3 = 0$$
 và $4x + 3y - 13 = 0$.

Câu 29. Cho $\triangle ABC$ có AB = AC = 2BC = a. Biết $Rr = \frac{1}{2}$ với R, rlần lượt là bán kính đường tròn ngoại tiếp và nội tiếp ΔABC , tính a

A.
$$a = \sqrt{2}$$
.

B.
$$a = \sqrt{5}$$
.

C.
$$a = \sqrt{3}$$
.

D.
$$a = 2$$
.

Câu 30. Cho $\triangle ABC$ có góc $A=30^{\circ}$, góc $B=45^{\circ}$. Tìm $\frac{n_a}{h_b}$.

$$\mathbf{A.} \ \frac{h_a}{h_b} = \frac{\sqrt{2}}{2}.$$

$$\mathbf{B.} \ \frac{h_a}{h_b} = \frac{1}{2}.$$

B.
$$\frac{h_a}{h_b} = \frac{1}{2}$$
. **C.** $\frac{h_a}{h_b} = \frac{1}{2\sqrt{2}}$. **D.** $\frac{h_a}{h_b} = \sqrt{2}$.

$$\mathbf{D}. \ \frac{h_a}{h_b} = \sqrt{2}$$

Câu 31. Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(-2;4), B(5;5), C(6;-2). Tính bán kính đường tròn ngoại tiếp tam giác đó.

A.
$$R = 25$$
.

B.
$$R = 2\sqrt{10}$$
.

C.
$$R = 5$$
.

D.
$$R = \sqrt{15}$$
.

Câu 32. Trong mặt phẳng tọa độ Oxy, cho hai điểm A(6;2) và B(-2;0). Viết phương trình đường tròn đường kính AB.

Lớp vận dụng cao thầy Mẫn địa chỉ 18B Lê Hồng Phong.

A.
$$x^2 + y^2 + 4x + 2y - 12 = 0$$
.

B.
$$x^2 + y^2 - 4x - 2y - 12 = 0$$
.

C.
$$x^2 + y^2 - 4x - 2y + 12 = 0$$
.

D.
$$x^2 + y^2 + 4x + 2y + 12 = 0$$
.

Câu 33. Trong mặt phẳng tọa độ Oxy, tính khoảng cách d giữa hai đường thẳng $\Delta_1: 7x+y-3=0$ và $\Delta_2: 7x + y + 12 = 0.$

A.
$$d = 15$$
.

B.
$$d = \frac{9}{\sqrt{50}}$$
.

C.
$$d = 9$$
.

D.
$$d = \frac{3\sqrt{2}}{2}$$
.

Câu 34. Cho $\triangle ABC$ có AB = 6, AC = 8, BC = 13. Tính m_a . A. $m_a = \frac{\sqrt{430}}{2}$. B. $m_a = \frac{\sqrt{31}}{2}$. C. $m_a = \frac{\sqrt{197}}{2}$. D. $m_a = \frac{\sqrt{346}}{2}$.

A.
$$m_a = \frac{\sqrt{430}}{2}$$
.

B.
$$m_a = \frac{\sqrt{31}}{2}$$
.

C.
$$m_a = \frac{\sqrt{197}}{2}$$

D.
$$m_a = \frac{\sqrt{346}}{2}$$

Câu 35. Trong mặt phẳng tọa độ Oxy, cho $\triangle ABC$ có M(1;3), N(-2;7)lần lượt là trung điểm của AB,AC với $A(a;b),a\in Z$ thuộc đường thẳng $d:\begin{cases} x=1-2t\\ y=2+t \end{cases}$. Biết diện tích ΔABC bằng 4, tính $S = a^2 - b^3.$

A.
$$S = -2$$
.

B.
$$S = -4$$
.

C.
$$S = 8$$
.

D.
$$S = 7$$
.

Câu 36. Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có tọa độ các đỉnh là A(1; 2), B(3; 1)và C(5; 4). Viết phương trình đường cao của tam giác đó vẽ từ A.

A.
$$2x + 3y - 8 = 0$$
.

B.
$$3x - 2y + 1 = 0$$
.

C.
$$2x + 3y + 8 = 0$$
. **D**. $x - 6y + 11 = 0$.

D.
$$x - 6y + 11 = 0$$
.

Câu 37. Trong mặt phẳng tọa độ Oxy, cho đường thẳng d cắt hai trục Ox, Oy lần lượt tại hai điểm $A(a; 0), B(0; b), (a, b \neq 0)$. Viết phương trình đường thẳng d.

A.
$$d: \frac{x}{a} - \frac{y}{b} = 1$$
. **B.** $d: \frac{x}{b} + \frac{y}{a} = 1$. **C.** $d: \frac{x}{a} + \frac{y}{b} = 1$. **D.** $d: \frac{x}{a} + \frac{y}{b} = 0$.

B.
$$d: \frac{x}{b} + \frac{y}{a} = 1$$

C.
$$d: \frac{x}{a} + \frac{y}{b} = 1$$

D.
$$d: \frac{x}{a} + \frac{y}{b} = 0$$

Câu 38. Trong mặt phẳng tọa độ Oxy, phương trình nào dưới đây là phương trình của đường tròn ?

A.
$$x^2 + y^2 - 4x + 2y - 1 = 0$$
.

B.
$$x^2 - y^2 + 4x - 2y - 3 = 0$$
.

C.
$$x^2 + y^2 + x + y + 3 = 0$$
.

$$\mathbf{D}. \ x^2 + 2y^2 - 2x + 4y - 1 = 0.$$

Câu 39. Trong mặt phẳng tọa độ Oxy, cho đường tròn $(C): (x-2)^2 + (y+1)^2 = \frac{64}{75}$ có tâm I và đường thẳngd: 4x + 3y - 1 = 0. Viết phương trình đường thẳng Δ song song với d và cắt (C)tại hai điểm A, B sao cho ΔIAB đều.

A.
$$\Delta : 4x + 3y + 1 = 0$$
.

B.
$$\Delta: 4x + 3y - 1 = 0$$
 hoặc $\Delta: 4x + 3y - 9 = 0$.

C.
$$\Delta : 4x + 3y + 1 = 0$$
 hoặc $\Delta : 4x + 3y - 9 = 0$.

D.
$$\Delta : 4x + 3y - 9 = 0$$
.

Câu 40. Trong mặt phẳng tọa độ Oxy, cho hai đường tròn $(C_1): x^2+y^2-4x+2y-4=0$ và $(C_2): x^2 + y^2 - 10x - 6y + 30 = 0$. Xét vị trí tương đối của hai đường tròn đó.

$$\mathbf{A}$$
. (C_1) , (C_2) cắt nhau tại hai điểm phân biệt. \mathbf{B} . (C_1) , (C_2) ngoài nhau.

B.
$$(C_1)$$
, (C_2) ngoài nhau

$$\mathbf{C}$$
. (C_1) , (C_2) tiếp xúc trong.

D.
$$(C_1)$$
, (C_2) tiếp xúc ngoài.

II. PHẦN TỰ LUẬN

Câu 1. Cho biểu thức $A=\frac{\cos 2a-\cos 4a}{\sin 4a-\sin 2a}+\frac{\cos a-\cos 5a}{\sin 5a-\sin a}, a\neq k\frac{\pi}{2}; a\neq \frac{\pi}{6}+k\frac{\pi}{3}$. Rút gọn biểu thức A, từ đó tìm các giá trị của α để A=2.

Câu 2. Trong mặt phẳng Oxy cho điểm A(1;0) và đường tròn $(C): x^2 + y^2 - 2x + 4y - 5 = 0$.

- a) Xét vị trí của điểm A đối với đường tròn (C).
- b) Gọi d là đường thẳng cắt đường tròn (C) tại hai điểm B, C sao cho tam giác ABC vuông cân tại A, viết phương trình đường thẳng d.

----- HẾT -----