© Laurent Garcin MP Dumont d'Urville

Devoir à la maison n°11

- Le devoir devra être rédigé sur des copies doubles.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Exercice 1 E3A MP 2010

On étudie dans cet exercice des équations de la forme

$$(\mathcal{E}_{p,q})$$
: $M^2 + pM + qI_n = 0$

où l'inconnue M est une matrice carrée de taille n à coefficients $r\acute{e}els$ (M $\in \mathcal{M}_n(\mathbb{R})$), p et q sont deux paramètres réels et I_n désigne la matrice identité de taille n.

1. Pour une matrice $M \in \mathcal{M}_n(\mathbb{R})$, on note

$$E(M) = \{ PMP^{-1}P \in GL_n(\mathbb{R}) \}$$

Démontrer que si M est solution de l'équation $(\mathcal{E}_{p,q})$, alors toute matrice de E(M) est également solution.

Dans la suite, les ensembles de solutions de l'équation $(\mathcal{E}_{p,q})$ pourront être écrits sous la forme d'une réunion d'ensembles E(A), $A \in \mathcal{M}_n(\mathbb{R})$.

2. On considère dans cette question l'équation $(\mathcal{E}_{-(a+b),an})$:

$$M^2 - (a+b)M + abI_n = 0$$

avec a et b deux réels distincts.

- **a.** Démontrer que toute solution M de l'équation est diagonalisable (on énoncera complètement lé théorème utilisé).
- **b.** Déterminer les solutions de l'équation $\mathcal{E}_{-(a+b),ab}$.
- 3. On considère dans cette question l'équation $(\mathcal{E}_{0,0})$ (c'est-à-dire l'équation $M^2 = 0$).
 - a. On considère l'endomorphisme f de \mathbb{R}^n canoniquement associé à la matrice M. Démontrer que $\operatorname{Im} f \subset \operatorname{Ker} f$.
 - b. Enoncer précisément le théorème du rang.
 - c. Démontrer que rg $f \leq \frac{n}{2}$.
 - **d.** On pose $p = \operatorname{rg} f$. Démontrer qu'il existe une base \mathcal{B} de \mathbb{R}^n dans laquelle la matrice de f est de la forme :

1

$$\begin{pmatrix} 0 & 0 \\ \hline I_p & 0 \end{pmatrix}$$

e. En déduire les solutions de l'équation $(\mathcal{E}_{0,0})$.

© Laurent Garcin MP Dumont d'Urville

4. On considère dans cette question l'équation (\mathcal{E}_{-2a,a^2}) :

$$M^2 - 2aM + a^2I_n = 0$$

avec a un réel.

- **a.** Démontrer que M est solution si et seulement si $N = M aI_n$ vérifie $N^2 = 0$.
- **b.** En déduire les solutions de l'équation (\mathcal{E}_{-2a,a^2}) .
- **5.** Démontrer que si n est impair, l'équation $M^2 + I_n = 0$ n'admet pas de solution dans $\mathcal{M}_n(\mathbb{R})$.
- **6.** On considère l'équation $(\mathcal{E}_{0,1})$ (c'est-à-dire l'équation $M^2 + I_n = 0$). On suppose que n est pair et on note n = 2p.
 - a. Démontrer que toute solution M est diagonalisable sur \mathbb{C} .
 - **b.** Démontrer qu'il existe $P \in GL_n(\mathbb{R})$ telle que

$$P^{-1}MP = \begin{pmatrix} 0 & -I_p \\ \hline I_p & 0 \end{pmatrix}$$