ACADEMIC-GRADUATE STUDIES AND RESEARCH DIVISION FIRST SEMESTER 2021-2022

Course Handout Part II

18-08-2021

In addition to part I (general handout for all courses appended to the timetable) this portion gives specific details regarding the course.

Course No. : CHEM G551

Course Title : Advanced Organic Chemistry

Instructor-In-Charge: D Ramaiah

Instructor : Tanmay Chatterjee

1. Course Description:

This course deals with various organic reactions viz., aromatic electrophilic and nucleophilic substitution reactions, nucleophilic addition reactions, oxidation and reduction reactions, enolates in organic synthesis, retrosynthetic analysis and multistep synthesis.

2. Scope and objective of the course:

The aim of this course is to give the students an overall view of the dynamics of organic chemistry, such as reaction mechanisms, retrosynthetic analysis, and chemo-, regio- and stereoselectivity. This course also provides students a firm understanding of basic reactions of various organic compounds and the effect of structure on reactivity.

3. Text Book:

TB1: Michael B. Smith & Jerry March, Advanced Organic Chemistry, John Wiley & Sons, 6th ed., 2012.

TB2: Stuart Warren: Organic Synthesis: The Disconnection Approach: John Wiley & Sons, 2004.

Reference Books:

- (1) Paul Wyatt & Stuart Warren, Organic Synthesis: Strategy and Control, Wiley (2008).
- (2) Morrison and Boyd, Organic Chemistry, Prentice & Hall, 6th ed., 1992.
- (3) J. Clayden, N. Greeves, S. Warren, P. Wothers, Organic Chemistry, Oxford Univ. Press (Second South Asia Edition, 2012).

4. Course Plan:

Lec. No.	Learning Objectives	Topic(s) to be Covered	Chap(s). No(s).
1-3	Mechanisms, orientation,	ns, orientation, Aromatic electrophilic	
	reactivity and reactions	substitution	
4-7	Mechanisms (S _N 1,	Aromatic nucleophilic	TB1: Ch. 13

	Benzyne), reactivity and reactions	substitution	
8-12	Mechanisms, orientation, reactivity and reactions	Nucleophilic addition reactions to carbon-carbon multiple and carbon- heteroatom multiple bonds.	TB1: Ch. 15 & 16
13-21	Application of various types of enolates in organic synthesis and multistep synthesis	Enolates in organic synthesis and multistep synthesis	R1 : Ch. 2
22-27	Mechanism of oxidation and reduction reactions in organic chemistry	Oxidation and reduction reactions	TB1: Ch. 19
28-42	Retrosynthetic analysis by disconnection approach	Retrosynthetic analysis and protecting groups	TB2 : Ch. 1-8, Ch. 9

5. Evaluation scheme:

Component	Duration	Weightage (%)	Date and Time	Remarks
Midsem Test	90 min	30	TBA	Open Book
Seminar	20 min	20		Open Book
Assignment	-	15	Continuous	Open Book
Comprehensiv	120 min	35	TBA	Open Book
e Examination	120 111111			Open book

- **6. Chamber consultancy hour**: To be announced.
- **7. Notices**: Notices concerning the course will be displayed on the Chemistry Group notice board and/or CMS.
- **8. Academic Honesty and Integrity Policy**: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.
- **9. Make-up Policy:** Make up would be considered only for very **genuine reasons** (*hospitalization with appropriate documentary proof*), and any other extreme emergency situations which would be decided by the team of instructors.

Instructor-in-charge CHEM G551

