Homework #1	CS 372	Rhea Mae Edwards		
Revolem Guestians RII) R, = Transmission Rate Between the Sending Host and the Swith				
Ra = Thomsonsson Rate Between the Switch and the Recenting Host - Exactly one Packet Switch - Store and tonward Packet Switching				
Chare = Total end-to-end delay-to-send a packet = ? L = length of packet (6948)				
$dtrans = \frac{1}{6}$ $dtrans = \frac{1}{6}$	R (definition) Ri + L = L(R) Ri F Adday Anst + Human He secon			
· IP Spooteng	gs Trudy Can Do: .: Send packets with fall	Train able to capture what is being sent and she consend whatever she wants be addresses		
Packet "Sniffeng": Broadcast media, Reads Record all packets passing by leaving sent Packets Problems P4) Caraft - Subtched Network (Figure 1.13)				
a) 4 Anks between so 4 Anks for	en each poor of swall and 4 poors of swall and 1 poors of swall and 16 Maximum Simulation	- A simple corcust subtitled network corresting of four subtitles and four links thes, Movement an one-ches direction through the		
The state of the s				

	Honework #1	00 270	Rhea Mae Edwards	
		CS 372		
	6) 4 Connections from A - B - C And another			
	And another From A D D C			
	4 + 4 = 8 Maximum Samultaneous Connections			
18 4 Š	c) Yes, we can route these calls: V			
	-4 connections between A and G			
8	through the four finks to accommodate all eight connections.			
-	For between auftiches A and C:			
	2 connects and 2 connects	cons from A B C cons from B B C cons from A B C		
	For between	subtoles B and D:		
)	2 connect	cons from B-DA Hons From B-DC Rons From B-DC Rons From C-D		
907			whats happening/annexed-	
	2 connection 2 connection 2 connection 2 connection	from A-BB is from A-D is from B-D is from B-A is from D-D is from C-D		
	P8) 3 Mbps Link 150 Kbps Troi	nsmitting tach i	of the time	
13/	a) 3 Mbps -	3000 Kbps - [20 users when croupt -	

6) "Each user trainents only 10 percent of the time" P(Calenuser to transmitting) . 0.1

$$P(x) = \left(\frac{(x!(n-x)!)}{(x!(n-x)!)} p^{x} \cdot (1-p)^{n-x}$$

$$P(x=n) = \left(\frac{120!}{(n!(120-n)!)}(0.1)^n \cdot (1-0.1)^{120-n}\right)$$

$$P(x=n) = \frac{(n!(120-n)!)}{(0.1)^n(0.9)^{n0-n}}$$

$$P(x=21) = \frac{(31!(120-21)!)}{(20!(120-21)!)} (0.1)^{21} (0.9)^{120-21}$$

$$b(x=51) = \left(\frac{(51)!}{(50)!}\right)(0.1)_{51}(0.0)_{50}$$

80.

P(x > 21) less than or equal-to 0.00414

P10) Packet of benefith = L

End System 3 Lanks

Destination ENd Subtem

Connected by a packet suffiches

Length = d; Propagation Speed = s;

Transmission Rate of tenk $9 = R_1$ 9 = 1, 2, 3

Packet Surida Delays Each Pocket = dproc

No Querting Delays

Total End-to-End Delay for the Rocket?

andal = aproc + detere + atrans + aprop

 $d_{trans} = \frac{L}{R}$ $d_{prop} = \frac{d}{R}$

driams, + diprop, + diproe + driams a + dipropa +

dprox + dtrams + dprops = dtotal

L = 1500 bytes = 12000 bytes

3 = 25 × 108 m/s

R = 2Mbps = 2 × 10° bps

dproc = 3 msec = 3 × 10-35

93 = 1 × 100 W 93 = 1 × 100 W 91 = 2 × 100 W

drotal = 2(3×10-3) + (2000)(3)(-2×106)+ (25×106)(5+4+1)(106)

d+0+a1 = 0.0643/

P33) F 6945

Host A > Host B

- 3 Unks - 2 Switches

R= Rbps

40 Segments of S 1945 each

+ 80 bAs

- No aversing Delays (dopere) ~

Archels - L=80+Stats

- Oksegard Ropagathon Delay ~

S= ? bots to manimize the delay of the moving fale

Number of Packets . E L-80 + 5 bits

First calculating the overall delay.

to get the first packet through along with the adea that every packet offer the first reades to Host E every 5+80 seconds:

- So one way, is where the slape = 0, by making the derivate of the equation equal to sero in terms of S.

$$\frac{d(totuldera)}{dS} = \frac{80E}{SR} + \frac{8E}{SR} + \frac{160}{R} + \frac{35}{R}$$

$$= (\frac{80E}{R})(\frac{1}{5}) + \frac{1}{6} + \frac{160}{R} + (\frac{2}{8})(5)$$

$$= (\frac{80E}{R})(5)^{-2} + (\frac{2}{8})(5)$$

$$+ (\frac{2}{8}) = -(\frac{80E}{R})(5)^{-2} + (\frac{2}{8})(5)$$

$$\frac{28}{80FR} = (8)^{-2}$$
 $\Rightarrow \frac{1}{58} = \frac{2}{80F} \Rightarrow \frac{1}{52} = \frac{1}{40F}$

Addahanal Quashons

$$R = R bps$$
 Rocket Angual Rate = A packets/s
 $L = L bets$ Traffic Intensity = $I = L A$

a) deprese average =?) when I > 1 and $I \leq I$