Participación 1 Modelos No Paramétricos y de Regresión Lineal.

Tema: Ejemplo de Regresión Lineal.

X	1	2	2	5	6
Υ	2	5	4	15	15

Calcular los datos que son requeridas para la regresión.

X	Y	XiYi	Xi^2	Yi est	ei	ei^2
1	2	2	1	1.90425532	0.09574468	0.00916704
2	5	10	4	4.76595745	0.23404255	0.05477592
2	4	8	4	4.76595745	-0.7659574	0.58669081
5	15	75	25	13.3510638	1.64893617	2.71899049
6	15	90	36	16.212766	-1.212766	1.47080127

n	5
SumaXiYi	185
Suma Xi	16
Suma Yi	41
SumaXi^2	70
Beta est	2.86170213
Alfa est	-0.9574468

$$\hat{\alpha} = \left(\sum_{i=1}^{n} Y_{i} \sum_{i=1}^{n} X_{i}^{2} - \sum_{i=1}^{n} X_{i} \sum_{i=1}^{n} X_{i} Y_{i}\right) / \left(n \sum_{i=1}^{n} X_{i}^{2} - \left(\sum_{i=1}^{n} X_{i}\right)^{2}\right)$$

$$\hat{\beta} = \left(n \sum_{i=1}^{n} X_i Y_i - \sum_{i=1}^{n} X_i \sum_{i=1}^{n} Y_i \right) / \left(n \sum_{i=1}^{n} X_i^2 - \left(\sum_{i=1}^{n} X_i \right)^2 \right)$$

Siguiendo la fórmula para la representación de la recta de regresión:

$$\hat{Y}_i = \hat{\alpha} + \hat{\beta}X_i$$

Se obtiene que la recta de regresión es:

$$Y = -0.95 + 2.86 X$$

Tema: Ejemplo de Regresión Lineal.

Para no calcular todos los datos anteriores, Excel tiene implementada la función =LINEST().

Х	Υ
1	2
2	5
2	4
5	15
6	15

BETA	ALFA
=LINEST(C24	:C28,B24:B28)

X	Y
1	2
2	5
2	4
5	15
6	15

BETA	ALFA	
2.86170213	-0.9574468	