

Hardwarenahe Softwareentwicklung Computer-Systeme und Recheneinheiten

V5.1, © 2023 roger.weber@bfh.ch

Lernziele

Sie sind in der Lage:

- Architekturen von Computer-Systemen zu erklären.
- Die Funktionalität einer CPU zu verstehen.
- Eine Applikation für eine FPU zu programmieren.
- Einen Microcontroller für ein konkretes Projekt auszuwählen.

Inhaltsverzeichnis

1. Computer-Systeme

Komponenten und Kategorien Klassifizierung nach Flynn von-Neumann und Harvard Architekturen

2. Recheneinheiten

CPU

FPU

Prozessor-Typen und Familien

Bemerkung

Dieses Kapitel ist sehr allgemein gehalten und geht mit wenigen Ausnahmen nicht auf einzelne Hersteller und CPU-Familien ein.

Computer-Systeme

Komponenten eines Computer-Systems

Welches sind die wichtigsten Komponenten eines Computer-Systems?

Die vier Computer-Kategorien nach Flynn

Michael J. Flynn teilt Computer in vier Kategorien ein.

SISD

- Sequenziell
- ➤ **Single Instruction**: Pro Taktzyklus eine Programminstruktion.
- Single Data: Pro Taktzyklus nur ein Datensatz.

MIMD

- Multiple Instruction: Pro CPU eine Programminstruktion pro Taktzyklus. Programme auf mehrere CPUs aufgeteilt (Prozesse, Threads, Tasks).
- ► Multiple Data: Jede CPU bearbeitet einen anderen Datensatz.

load A1	load D	
load B1	E = func(D)	
C1 = A1 + B1	F = D / 2	time
store C1	func2()	
CPII 1	CPIL2	

MIMD: Shared Memory (eng gekoppelte Systeme)

- Mehrere CPU teilen sich einen gemeinsamen Speicher (Shared Memory).
- ► Vorteil: Ändert eine CPU einen Speicherbereich, so ist dies für die anderen CPUs sofort ersichtlich.
- Nachteil: Der Zugriff auf den Speicher muss synchronisiert werden (kein gleichzeitiger Zugriff).

MIMD: Distributed Memory (lose gekoppelte Systeme)

- Mehrere CPU kommunizieren über ein Netzwerk miteinander.
- Jede CPU hat ihren eigenen Speicher. Der Datenaustausch erfolgt über das Netzwerk.
- Dieses System kann aus mehreren SISD-Systemen mit Netzwerkanbindung aufgebaut werden.

Vergleich Shared / Distributed Memory

- Welche Architektur ist besser skalierbar?
- Bei welcher Architektur ist der Speicherzugriff schneller?

Fragen

In Embedded Systems werden häufig 8-Bit oder 32-Bit Microcontroller eingesetzt.

Welcher Kategorie entsprechen diese?

Für die Kommunikation mit anderen Komponenten werden diese häufig über Bussysteme wie CAN verbunden.

Sind dies eng oder lose gekoppelte Systeme?

Fragen

Heute werden im PC-Bereich oft
Multicore-Prozessoren eingesetzt, beispielsweise der
Intel® Core™ i7 Prozessor (4 bis 14 Cores). Link:
https://www.intel.de/content/www/de/de/
products/details/processors/core/i7.html

- ► Welcher Kategorie entsprechen diese?
- Sind diese Cores eng oder lose gekoppelt?

Übersicht Architekturen

Für den Zugriff von der CPU auf den Speicher existieren bei Computern zwei gängige Architekturen:

- von-Neumann
- Harvard

Beide Architekturen gehören nach dem Klassifizierungsverfahren von Michael J. Flynn zur Kategorie der SISD-Systeme.

von-Neumann Architektur

- Sequenzieller Speicherzugriff
- Programmspeicher:
 - Programminstruktionen
 - nicht flüchtig
- Datenspeicher:
 - Variablen und Anwenderdaten
 - ► flüchtig
- Peripherie:
 - Sensoren,Einlesen von Daten
 - Aktoren, Ausgabe von Daten

von-Neumann Architektur

- 1. CPU liest Programminstruktionen
- 2. CPU manipuliert Daten

→ "von-Neumann-Flaschenhals"

Harvard-Architektur

- Getrennte Adressräume für Programmspeicher und Datenspeicher.
- Instruktionsbus und Datenbus, parallel.
- Bei DSPs (Digitale Signal-Prozessoren).
- Bei modernen Microcontrollern on-Chip.

Hybrid von-Neumann / Harvard

Quelle: PXA 270 Data Sheet

Fragen

 Diskutieren Sie Vor- und Nachteile der von-Neumann und der Harvard-Architektur.

Recheneinheiten

CPU (Central Processing Unit)

Klassischer Aufbau einer CPU (je nach Hersteller und Typ sind Abweichungen möglich):

Steuerwerk

Das Steuerwerk ist für den Programmablauf verantwortlich und beinhaltet:

- ► Instruction Unit (Schaltwerk).
 - ► Interpretation der Instruktionen
- Program-Counter (PC).
 - Pointer auf nächste Programminstruktion

Steuerwerk

Aufgaben des Steuerwerks:

- Laden der Programminstruktion aus dem Programmspeicher (fetch).
- Entschlüsseln der Programminstruktion (decode) nach Operation und Operanden.
- ► Befehlsausführung (execute) in folgenden Schritten:
 - ► Steuersignale für ALU oder andere Funktionseinheiten generieren.
 - Operanden adressieren und laden.
 - Ergebnis speichern.
 - Program-Counter anpassen.

Rechenwerk

- Verarbeitung der Daten.
- ► ALU (Arithmetic Logical Unit) führt Rechenoperationen durch (nur Integer-Operationen).
- Register sind schnelle Zwischenspeicher für Operanden und Resultate.

Rechenwerk

- Typische **ALU-Operationen** sind:
 - ► Boolsche Operationen (logisch AND, OR, EXOR, NOT)
 - Arithmetische Operationen (Addition, Subtraktion, Multiplikation)
 - ► Vergleiche und logische Entscheidungen (Vergleiche und Verzweige falls gleich)
 - Schiebe-Operationen (shift left, shift right)
 - Transfer Operationen (laden und speichern)
- Für Floating-Point Instruktionen oder komplexe mathematische Funktionen wird oft auch eine FPU (Floating Point Unit) verwendet.

Interner Bus, Businterface

- Interner Bus: Verbindet Steuerwerk und Rechenwerk.
- Businterface: Kommunikation mit Speicher und Peripherie.

FPU (Floating-Point-Unit)

- ► Vorteile des Floating Point Formats:
 - ► Grosser Wertebereich, keine Überläufe wie bei Integer.
 - Darstellung von sehr kleinen Zahlen.
- Realisierung
 - ► In Software mit Hilfe von Libraries
 - ▶ In Hardware mit Hilfe einer Floating Point Unit (FPU)

Floating Point Darstellung

- ► IEEE-754 Format
- ► Single Precision (32 Bit) oder Double Precision (64 Bit)
- ► Single Precision: Sign (1 Bit), Exponent (8 Bit) und Fraction (23 Bit):

$$\mathsf{Value} = (-1)^{\textit{Sign}} * 2^{(\textit{Exponent}-127)} * (1 + (\tfrac{1}{2} * \textit{Fraction}[22]) + (\tfrac{1}{4} * \textit{Fraction}[21]) + ... + (\tfrac{1}{2^{23}} * \textit{Fraction}[0]))$$

▶ Wie wird der Wert 1.25 dargestellt? Ermitteln Sie die Hex-Zahl für das Single Precision Format.

Floating Point Programmierung in C

Übliche Operationen:

- ightharpoonup Addition, z = a + b
- \triangleright Subtraktion, z = a b
- ► Multiplikation, z = a * b
- ► Division, z = a / b
- Quadratwurzel, z = sqrtf(a)
- ▶ Negation, z = -a
- \triangleright Betrag, z = absf(a)

```
float pi = 3.141592F;

double pi2 = 3.14159265358979323846264338;

// Single Precision, 32 Bit

// Double Precision, 64 Bit

float a, b, c;

c = sinf(a) + cosf(b) + 1.0F;

// Single Precision, 64 Bit

// Single Precision, 64 Bit

// Double Precision
```

Prozessor-Typen

Microprocessor

- ► "Micro" → keine MMU
- CPU mit Rechenwerk und Steuerwerk.
- Extern: Speicher und Peripherie
- Kommunikation über den Adress- / Datenbus.

Microcontroller

- Microprocessor mit integrierter Peripherie / Speicher.
- Platz- und kostenoptimiert.

Digital Signal Processor (DSP)

- Für rechenintensive Aufgaben (Filterberechnung, Fourier-Transformationen, usw.).
- Spezialbefehle und Hardware für numerische Algorithmen, z. B. MAC-Einheit, führt eine Multiplikation / Addition in einem Taktzyklus ausführt.

8 / 16 / 32 und 64 bit Architekturen

8 / 16 / 32 und 64 bit Architektur bezieht sich auf:

- Die Datenbreite, welche durch die Arithmetic Logic Unit (ALU) verarbeitet wird.
- ev. die Breite der CPU-Register.
- ev. die Breite des Datenbusses.

(Micro)-Controller-Familien

- Atmel AVR
- ► 8051-Familie
- ▶ PIC10 bis PIC18

► MSP430

- ► ARM / Cortex-Mx / Cortex-Ax
- MIPS, Power PC
- ► Intel x86

8-Bit

16-Bit

32-Bit

Auswahlkriterien

My current embedded project's main processor is a:

Quelle: Embedded Market Study 2019

Nach welchen Kriterien wählen Sie einen Microcontroller aus?