

Hackathon 2020 Task Description

Tobias Pobandt | CDAM3 | C

Introduction of ZF

ZF Shapes the Future in Four Technology Domains

Task description

Optimize damper control depending on velocity and road surface profile ensuring optimal comfort and safety

Full Vehicle Model

A.E. Geweda et al.: Improvement of vehicle ride comfort using genetic algorithm optimization and a controller, 2017

Three (rotational) chassis degrees of freedom

- Four (translational) degrees of freedom for each wheel in z direction
- => Seven degrees of freedom
- => Seven equations of motion

Quarter Car Model

Quarter Car Suspension Model

Z_b	z-position body [m]
Z_{t}	z-position tire [m]
Z_h	road profie [m]
F_{pull}	active damping force pull towards body
F_{push}	active damping force push towards tire
$D_{\rm a}$	damping constant active suspension
D_{bound}	boundary damping constant active suspension
С	linear constant of active suspension
i	current of active suspension to generate damping force
D_t	damper tire constant
S_b	spring value tire to body
S_t	spring value tire to road
M_b	quarter body mass of vehicle
M_t	mass of tire incl. suspension system
v	driving speed of vehicle over trip distance

Quarter Car Suspension Model

$$M_b \cdot \ddot{Z_b} + S_b (Z_b - Z_t) + F_D = 0$$

$$m_t \cdot \ddot{Z}_t + S_t(Z_t - Z_h) + S_b(Z_b - Z_t) + D_t(\dot{Z}_t - \dot{Z}_h) - F_D = 0$$

$$F_D = \max(F_{\text{push}}, \min(F_{\text{bound}}, F_{\text{pull}}))$$

$$F_{push} = D_a(\dot{Z}_b - \dot{Z}_t) - c \cdot i$$

$$F_{bound} = D_{bound} (\dot{Z}_b - \dot{Z}_t)$$

$$F_{pull} = D_a(\dot{Z}_b - \dot{Z}_t) + c \cdot i$$

Tuning Parameter: i = [0 - 2A]

Active Damping Force F_D

Damping Force Boundary F_{bound}

Optimization Target

minimize T_{Target} within the driving speed range $v = \left[5 - 30 \frac{m}{s}\right]$

$$T_{target} = K \cdot \alpha_2 + \alpha_1$$

where

$$\alpha_1 = var\left(\ddot{Z_{bf}}_{(0.4-3Hz)}\right)$$

 $\alpha_2 = var\left(\ddot{Z_{bf}}_{(10-30Hz)}\right)$

K = road specific weight factor for α_2

Bandpass 0.4 to 3Hz

Bandpass 10 to 30Hz

cf. data sets

bounding condition (tire always on the road)

$$\sigma(m_t \cdot \ddot{Z}_t) \le \frac{F_{stat}}{3}$$

$$F_{stat} = (M_b + M_t) \cdot 9,81 \, m/s^2$$

Constants

D_{α}	10.02	kg
$\boldsymbol{\nu}_{a}$	10.02	S

$$D_{bound}$$
 56.000 $\frac{kg}{s}$

$$c 560 \frac{N}{A}$$

$$D_t 10,02 \frac{kg}{s}$$

$$S_b 35.000 \frac{kg}{s^2}$$

$$S_t$$
 280.000 $\frac{kg}{s^2}$

$$M_b = 500 \, kg$$

$$M_t$$
 50 kg

	Z	Way/Position	
differentiate	\dot{Z}	Velocity	intographo
	\ddot{Z}	Acceleration	integrate

Thank You!

ZF Friedrichshafen AG behält sich sämtliche Rechte an den gezeigten technischen Informationen einschließlich der Rechte zur Hinterlegung von Schutzrechtsanmeldungen und an daraus entstehenden Schutzrechten im In- und Ausland vor.

ZF Friedrichshafen AG reserves all rights regarding the shown technical information including the right to file industrial property right applications and the industrial property rights resulting from these in Germany and abroad.

Internal