

Corrigé Rattrapage Algèbre linéaire 3, Juin 2023

Exercice 1. — 1. L'équation caractéristique étant $2X^2 - X + 1 = 0$, on trouve deux racines $\frac{1 \pm i\sqrt{7}}{4}$ et donc l'ensemble des solutions est

$$S = \left\{ (u_n)_{n \in \mathbb{N}} \ , \ u_n = a \left(\frac{1 + i \sqrt{7}}{4} \right)^n + b \left(\frac{1 - i \sqrt{7}}{4} \right)^n \ \forall n \in \mathbb{N} \ \text{où} \ a, b \in \mathbb{C} \right\}.$$

2. La projection orthogonale p sur Vect(e) est pour tout $x \in E$

$$p(x) = \frac{\langle x, e \rangle}{\|e\|^2} e.$$

3. Si E est un \mathbb{R} espace vectoriel et u un endomorphisme sur E, u est dit nilpotent lorsque qu'il existe un entier naturel n tel que $u^n = 0_{\mathcal{L}(E)}$.

Exercice 2. — 1. Après calculs, on trouve que le polynôme caractéristique de A est $\chi_A(X) = (X+1)^2(X+2)$. Par le cours, on en déduit que le spectre de A est $\{-1, -2\}$.

2. Après calculs on détermine les deux sous-espaces propres :

$$E_{-1}(A) = \text{Vect}\{(1, -1, 1)^T\}$$

$$E_{-2}(A) = \text{Vect}\{(1,0,0)^T\}.$$

- 3. La matrice A n'est pas diagonalisable car la somme des dimensions des sous-espaces propres est 2 < 3 qui est la dimension de l'espace ambiant. Comme χ_A est scindé, par le cours, A est trigonalisable.
- 4. Notons μ_A le polynôme minimal de A. Comme A n'est pas diagonalisable, par le cours μ_A n'est pas scindé. De plus, comme le spectre de A est $\{-1, -2\}$, μ a pour racines -1 et -2. Enfin par le théorème de Cayley Hamilton μ_A divise χ_A . Cela oblige $\mu_A = \chi_A = (X+1)^2(X+2)$.
- 5. Par le cours on sait aussi qu'il existe une matrice inversible Q et une matrice triangulaire T telle que $A = Q^{-1}TQ$ où les éléments diagonaux de T sont -2, -1, -1. Or pour tout $k \in \mathbb{N}$, $A^k = A = Q^{-1}T^kQ$ et les éléments diagonaux de T^k sont $(-2)^k$, $(-1)^k$, $(-1)^k$ de sorte que $\operatorname{tr}(A^k) = (-2)^k + 2(-1)^k$.
- 6. Nous allons montrer que non. Supposons par l'absurde qu'il existe une telle matrice B. Comme $B \in M_3(\mathbb{R})$ et que 3 est impaire, B possède au moins une valeur propre réelle. Notons la λ et soit $X \in \mathbb{R}^3$ un vecteur propre non nul associé. On alors $BX = \lambda X$ et donc $AX = B^2X = \lambda BX = \lambda^2 X$. Donc λ^2 est une valeur propre de A. Par la question 1 cela oblige $\lambda = -1$ ou $\lambda = -2$ ce qui est absurde car λ est réel.

Exercice 3. — 1. L'application b_a est bien linéaire à gauche par $b_a(x+\lambda z,y)=b_a(x,y)+\lambda b_a(z,y)$ pour tout $x,y,z\in\mathbb{R}^3$ et tout $\lambda\in\mathbb{R}$. De plus, pour tout $x,y\in\mathbb{R}^3$, on a

$$b_a(y,x) = ay_1x_1 + 2y_2x_2 + y_3x_3 + \frac{a}{2}y_2x_3 + \frac{a}{2}x_2y_3 = b_a(x,y)$$

donc est symétrique. b_a est donc bien une forme bilinéaire symétrique réelle. On en déduit par définition de q_a que q_a est une forme quadratique.

2. On effectue la réduction de Gauss de q_a , pour $x \in \mathbb{R}^3$

$$q_a(x) = ax_1^2 + 2x_2^2 + x_3^2 + ax_2x_3 = ax_1^2 + 2(x_2 + \frac{a}{4}x_3)^2 + (1 - \frac{a^2}{8})x_3^2.$$

- 3. Par le cours, b_a est un produit scalaire si et seulement si la signature de q_a est (3,0). Grâce à la question précédente, il faut et il suffit que les coefficients devant x_1^2 , x_2 et x_3 soient strictement positifs (a > 0, 2 > 0) et $1 \frac{a^2}{8} > 0$. Ainsi b_a est un produit scalaire si et seulement si $a \in]0, \sqrt{8}[$.
 - 4. On commence par normaliser le vecteurs $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ on obtient le vecteur

$$f_1 = \frac{1}{\sqrt{b_a \left(\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \right)}} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \frac{1}{\sqrt{a}} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}.$$

Pour le deuxième vecteur on définit

$$\tilde{f}_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} - \frac{1}{a} b_a \begin{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

que l'on normalise ensuite pour définir

$$f_2 = \frac{1}{\sqrt{b_a \left(\begin{pmatrix} 0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix}\right)}} \begin{pmatrix} 0\\1\\0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\1\\0 \end{pmatrix}.$$

Enfin pour le troisième vecteur on définit

$$\tilde{f}_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} - \frac{1}{a} b_a \begin{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} - \frac{1}{2} b_a \begin{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ -\frac{a}{4} \\ 1 \end{pmatrix}$$

que l'on normalise

$$f_3 = \frac{1}{\sqrt{b_a \left(\begin{pmatrix} 0 \\ -\frac{a}{4} \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ -\frac{a}{4} \\ 1 \end{pmatrix} \right)}} \begin{pmatrix} 0 \\ -\frac{a}{4} \\ 1 \end{pmatrix} = \frac{1}{\sqrt{1 - \frac{a^2}{8}}} \begin{pmatrix} 0 \\ -\frac{a}{4} \\ 1 \end{pmatrix}.$$

La famille (f_1, f_2, f_3) forme une base de \mathbb{R}^3 orthonormée pour le produit scalaire b_a .

Exercice 4. — 1. Comme P et X sont premiers entre eux, en particulier P et X^2 sont premiers entre eux. Par le théorème de Bézout il existe alors deux polynômes Q et R tels que $PQ + X^2R = 1$.

- 2. Comme P et X^2 sont premiers entre eux, on utilise le lemme de décomposition des noyaux et on obtient que $\ker(u^2) \oplus \ker(P(u)) = \ker(PX^2)$. Or X^2P annule u donc $\ker(PX^2) = E$ et on obtient le résultat souhaité.
- 3(a). On constate que $P(u) \circ Q(u) \circ u^2 \circ R(u) = Q(u) \circ R(u) \circ P(u) \circ u^2 = Q(u) \circ R(u) \circ (PX^2)(u)$. Or PX^2 annule u donc $(PX^2)(u) = 0$ _{$\mathcal{L}(E)$} d'où le résultat souhaité.
- 3(b). On évalue $PQ + X^2R = 1$ en u et on obtient $(PQ)(u) + u^2 \circ R(u) = id_E$. On applique alors l'endomorphisme $P(u) \circ Q(u)$ à cette relation et il vient en utilisant la question précédente que $((PQ)(u))^2 = (PQ)(u)$.
- 3(c). Montrons par double inclusion que $\ker(P(u) \circ Q(u)) = \ker(P(u))$. Déjà $P(u) \circ Q(u) = Q(u) \circ P(u)$ donc $\ker(P(u)) \subset \ker(P(u) \circ Q(u))$. Soit maintenant $x \in \ker(P(u) \circ Q(u))$. En appliquant u puis x à la relation de Bézout

Mathématiques et Informatique

précédente, on obtient que $(PQ)(u)(x) + u^2(R(u)(x)) = x$ et donc que $u^2(R(u)(x)) = x$. On applique alors P(u) et il vient que $P(u)(x) = P(u)(u^2(R(u)(x))) = (PX^2)(u)(R(u))$. Or PX^2 annule u donc P(u)(x) = 0 et $x \in \ker(P(u))$.

- 3(d). Montrons par double inclusion que $\operatorname{Im}(P(u)\circ Q(u))=\ker(u^2)$. Soit $x\in\ker(u^2)$. En appliquant u puis x à la relation de Bézout précédente, on obtient que $(PQ)(u)(x)+u^2(R(u)(x))=x$ et donc que $(PQ)(u)(x)+R(u)(u^2(x))=x$ d'où x=(PQ)(u)(x) et $x\in\operatorname{Im}(P(u)\circ Q(u))$. Soit maintenant $y\in\operatorname{Im}(P(u)\circ Q(u))$. Il existe alors $x\in E$ tel que y=P(u)(Q(u)(x)). En appliquant u^2 à l'égalité précédente, il vient que $u^2(y)=u^2(P(u)(Q(u)(x)))=(X^2P)(u)(Q(u)(x))$. Comme X^2P annule u, on obtient $u^2(y)=0$ et donc $y\in\ker(u^2)$.
- 3(e). Grâce aux questions précédente, on voit que l'endomorphisme (PQ)(u) est une projection (question 3(b)) qui projette sur son image $\ker(u^2)$ (question 3(d)) parallèlement à son noyau $\ker(P(u))$ (question 3(c)). C'est donc bien la projection souhaitée.
- 4. Au vu des définitions de p et q on a $p+q=id_E$. Comme p=(PQ)(u), par la relation de Bézout précédente appliquée à u il vient que $q=R(u)\circ u^2$.
- 5. On va déterminer qui sont Q et R dans la relation de Bézout précédente. On constate que $(X-1)(-X-1)+X^2=1$. Donc Q(X)=-X-1 et R(X)=1. Ainsi $q=(RX^2)(u)=u^2$.
- 6. On va déterminer qui sont Q et R dans la relation de Bézout précédente. Comme P'(0)=0, on a $P(x)=P(0)+X^2\tilde{P}$. Comme P est premier avec X^2 , 0 n'est pas racine de P et donc $P(0)\neq 0$. Ainsi, $\frac{1}{P(0)}P(x)=1+\frac{1}{P(0)}X^2\tilde{P}$ et donc $\frac{1}{P(0)}P(x)-\frac{1}{P(0)}\tilde{P}X^2=1$ d'où $Q=\frac{1}{P(0)}$ et $R=-\frac{1}{P(0)}\tilde{P}$. Par les questions précédentes, il vient que $p=(PQ)(u)=\frac{1}{P(0)}P(u)$.

Exercice 5. — 1(a). Soit x un vecteur propre non nul de w associé à λ . On a par définition de w que

$$\lambda < x, x > = < \lambda x, x > = < w(x), x > = 0.$$

Comme $\langle x, x \rangle \neq 0$ (car x est non nul), on en déduit que $\lambda = 0$.

- 1(b). w est un endomorphisme symétrique donc diagonalisable ayant 0 pour seule valeur propre (question précédente). w est donc l'endomorphisme nul.
- 2(a). En utilisant l'hypothèse on constate que pour tout $x \in E$, on $a < (u_1 + u_2 id_E)(x), x >= 0$. Or $u_1 + u_2 id_E$ est un endomorphisme symétrique (comme somme d'endomorphisme symétrique. Par la question précédente on en déduit que $u_1 + u_2 id_E = 0_{\mathcal{L}(E)}$ d'où le résultat souhaité.
- 2(b). Par la question précédente, pour tout $x \in E$ on a $x = u_1(x) + u_2(x)$. Donc $E = \text{Im}(u_1) + \text{Im}(u_2)$. De plus par hypothèse $\dim(\text{Im}(u_1)) + \dim(\text{Im}(u_2)) = n$ donc par la formule de Grassmann

$$\dim(\operatorname{Im}(u_1)\cap\operatorname{Im}(u_2))=\dim(\operatorname{Im}(u_1)+\operatorname{Im}(u_2))-\dim(\operatorname{Im}(u_1))-\dim(\operatorname{Im}(u_2))\leq n-n=0$$
 d'où $\operatorname{Im}(u_1)\cap\operatorname{Im}(u_2)=\{0\}$. Ainsi on a bien $E=\operatorname{Im}(u_1)\oplus\operatorname{Im}(u_2)$.

- 2(c). Soit $x \in E$. Comme $u_1 + u_2 = id_E$, en évaluant en $u_1(x)$ on obtient que $u_1(u_1(x)) u_1(x) + u_2(u_1(x)) = 0$. Or $u_1(u_1(x)) u_1(x) \in \text{Im}(u_1)$, $u_2(u_1(x)) \in \text{Im}(u_2)$ et $E = \text{Im}(u_1) \oplus \text{Im}(u_2)$. Ainsi par unicité de la décomposition, il vient que $u_1(u_1(x)) u_1(x) = 0$ et $u_2(u_1(x)) = 0$. Ainsi en particulier $u_1^2 = u_1$ donc u_1 est bien une projection (sur son image) qui est en plus orthogonale car u_1 est symétrique. On procède de même pour u_2 .
- 2(d). Comme u_1 et u_2 sont non nuls, $\operatorname{rg}(u_1) > 0$ et $\operatorname{rg}(u_2) > 0$. De plus $\ker(u_1) = \operatorname{Im}(u_2)$. En effet par double inclusion si $x \in \ker(u_1)$, on a $x = u_1(x) + u_2(x)$ d'où $x = u_2(x) \in \operatorname{Im}(u_2)$ alors que si $y \in \operatorname{Im}(u_2)$, il existe $x \in E$ tel que $y = u_2(x)$ et alors $y = u_2(x) = x u_1(x) \in \ker(u_1)$ ($u_1^2 = u_1$). Enfin le spectre d'une projection est toujours inclus dans $\{0,1\}$. Ainsi 1 est valeur propre de u_1 car $\dim(\operatorname{Im}(u_1) = \operatorname{rg}(u_1) > 0$ (comme u_1 est une projection $\operatorname{Im}(u_1) = \{x \in E, u_1(x) = x\}$) et 0 est valeur propre de u_2 car $\dim(\ker(u_1)) = \dim(\operatorname{Im}(u_2)) > 0$. Ainsi le spectre de u_1 est $\{0,1\}$.