MAT 2040

Linear Algebra

Spring 2022, CUHK(SZ)

The Answers for Assignment 8

(Q1-6) lichengmao@link.cuhk.edu.cn,

(Q7-16) xuhongcai@link.cuhk.edu.cn,

(Q17-23) shuyiwang@link.cuhk.edu.cn

Question 1. Find the eigenvalues and the corresponding eigenspaces for each of the following matrices:

(a)
$$\begin{pmatrix} 3 & 2 \\ 4 & 1 \end{pmatrix}$$

(b)
$$\begin{pmatrix} 6 & -4 \\ 3 & -1 \end{pmatrix}$$

(c)
$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

(d)
$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

(e)
$$\begin{pmatrix} 1 & 2 & 1 \\ 0 & 3 & 1 \\ 0 & 5 & -1 \end{pmatrix}$$

Solution

For an $n \times n$ matrix A, its eigenvalues are the solutions to the characteristic equation $\det(A - \lambda I) = 0$, and the corresponding eigenspace for eigenvalue λ is the null space of $A - \lambda I$.

- (a) Eigenvalues are $\lambda_1 = 5$, $\lambda_2 = -1$. Corresponding eigenspaces are Span $\{(1,1)^T\}$ and Span $\{(1,-2)^T\}$.
- (b) Eigenvalues are $\lambda_1 = 2$, $\lambda_2 = 3$. Corresponding eigenspaces are Span $\{(1,1)^T\}$ and Span $\{(4,3)^T\}$.
- (c) Eigenvalue is $\lambda = 0$. Corresponding eigenspace is Span $\{(1,0,0)^T\}$.

(d) Eigenvalues are $\lambda_1 = 2$, $\lambda_2 = 1$.

Corresponding eigenspaces are:

Span $\{(1,1,0)^T\}$ and Span $\{(1,0,0)^T,(0,1,-1)^T\}$.

(e) Eigenvalues are $\lambda_1 = -2, \lambda_2 = 1$ and $\lambda_3 = 4$

Corresponding eigenspaces are Span $\{(1, 1, -5)^T\}$, Span $\{(1, 0, 0)^T\}$ and Span $\{(1, 1, 1)^T\}$.

Question 2. Let A be an $n \times n$ matrix. Prove that A is singular if and only if $\lambda = 0$ is an eigenvalue of A.

Solution

Proof. A is singular if and only if the homogenous equation $A\mathbf{x} = \mathbf{0}$ has a non-zero solution. If such a solution exist, and let it be \mathbf{x}_0 , then we have $A\mathbf{x}_0 = 0\mathbf{x}_0$ and $\lambda = 0$ is an eigenvalue of A. Conversely, an eigenvalue 0 implies the equation $A\mathbf{x} = 0\mathbf{x}$ has a non-zero solution, which indicates A is singular.

Question 3. Let A be a nonsingular matrix and let λ be an eigenvalue of A. Show that $1/\lambda$ is an eigenvalue of A^{-1} .

Solution

Proof. λ is an eigenvalue of A means the equation $A\mathbf{x} = \lambda \mathbf{x}$ has non-zero solution for \mathbf{x} . Let \mathbf{x}_0 be such a solution (an eigenvector of A), let $\mathbf{y}_0 = A\mathbf{x}_0 = \lambda \mathbf{x}_0$. Because A is invertible, we have $\mathbf{y}_0 \neq \mathbf{0}$ and $A^{-1}\mathbf{y}_0 = A^{-1}A\mathbf{x}_0 = \mathbf{x}_0 = \frac{1}{\lambda}\mathbf{y}_0$, therefore, $1/\lambda$ is an eigenvalue of A^{-1} .

Question 4. An $n \times n$ matrix A is said to be *idempotent* if $A^2 = A$. Show that if λ is an eigenvalue of an idempotent matrix, then λ must be either 0 or 1.

Solution

Eigenvalues are solutions to the equation $|A - \lambda I| = 0$. For idempotent matrix A, we can construct the following multiplication and have:

$$(A - \lambda I)(A + (\lambda - 1)I) = A^2 - A - \lambda(\lambda - 1)I = -\lambda(\lambda - 1)I.$$

Then, we have the determinant $|(A - \lambda I)(A + (\lambda - 1)I)| = -\lambda(\lambda - 1)$. Now,

consider if λ is an eigenvalue of A, we must have $|A - \lambda I| = 0$ and because

$$-\lambda(\lambda - 1) = |(A - \lambda I)(A + (\lambda - 1)I)| = |(A - \lambda I)||(A + (\lambda - 1)I)| = 0,$$

 λ must be either 0 or 1.

Question 5. Let A be an $n \times n$ matrix and let B = A + I. Is it possible for A and B to be similar? Explain.

Solution

Because B = A + I, the characteristic equation for A is $\det(A - \lambda I) = 0$ and for B is $\det(B - \lambda I) = \det(A - (\lambda - 1)I) = 0$. We see that if λ_0 is an eigenvalue of A, then $\lambda_0 + 1$ is an eigenvalue of B. Since A and B have different sets of eigenvalues, they cannot be similar.

Question 6. Let Q be an orthogonal matrix.

- (a) Show that if λ is an eigenvalue of Q, then $|\lambda| = 1$.
- (b) Show that $|\det(Q)| = 1$.

Solution

(a) *Proof.* If λ is an eigenvalue of Q, and let \mathbf{x}_0 be a corresponding eigenvector, then we have $Q\mathbf{x}_0 = \lambda\mathbf{x}_0$ and $\mathbf{x}_0 \neq \mathbf{0}$. Because Q is an orthogonal matrix, we have:

$$\lambda^2 \mathbf{x}_0^T \mathbf{x}_0 = (\lambda \mathbf{x}_0)^T (\lambda \mathbf{x}_0) = (Q \mathbf{x}_0)^T (Q \mathbf{x}_0) = \mathbf{x}_0^T (Q^T Q) \mathbf{x}_0 = \mathbf{x}_0^T \mathbf{x}_0$$

Because $\mathbf{x}_0^T \mathbf{x}_0 \neq 0$, the above equation implies $\lambda^2 = 1$, or $|\lambda| = 1$.

(b) *Proof.* For orthogonal matrix Q, we have $Q^T = Q^{-1}$, and,

$$(\det(Q))^2 = \det(Q)\det(Q^T) = \det(Q)\det(Q^{-1}) = \det(QQ^{-1}) = \det(I) = \det(QQ^{-1})$$

Hence,
$$|\det(Q)| = 1$$
.

Question 7. In each of the following, factor the matrix A into a product XDX^{-1} , where D is diagonal:

(a)
$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

(b)
$$A = \begin{bmatrix} 2 & 2 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & -1 \end{bmatrix}$$

(a) The eigenvalues of this matrix is $\lambda_1 = 1$ and $\lambda_2 = -1$. And $x_1 = (1,1)^T$ is an eigenvector belonging to eigenvalue λ_1 , $x_2 = (-1,1)^T$ is an eigenvector belonging to eigenvalue λ_2 , so A can be written as

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

(b) The calculation process is the same with (a), A can be written as

$$A = \begin{bmatrix} 2 & 2 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 1 \\ 0 & -1 & -3 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 2 & \frac{5}{3} \\ 0 & -1 & -1 \\ 0 & 0 & \frac{1}{3} \end{bmatrix}$$

Question 8. For each of the matrices in last Exercise, use the XDX^{-1} factorization to compute A^6 .

Solution (a) $A^6 = XD^6X^{-1}$, so

$$A^{6} = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1^{6} & 0 \\ 0 & (-1)^{6} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

(b)

$$A^{6} = \begin{bmatrix} 1 & 2 & 1 \\ 0 & -1 & -3 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 2^{6} & 0 & 0 \\ 0 & 1^{6} & 0 \\ 0 & 0 & (-1)^{6} \end{bmatrix} \begin{bmatrix} 1 & 2 & \frac{5}{3} \\ 0 & -1 & -1 \\ 0 & 0 & \frac{1}{3} \end{bmatrix} = \begin{bmatrix} 64 & 125 & 105 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Question 9. For each of the following, find a matrix B such that $B^2 = A$.

(a)
$$A = \begin{bmatrix} 2 & 1 \\ -2 & -1 \end{bmatrix}$$

(b)
$$A = \begin{bmatrix} 9 & -5 & 3 \\ 0 & 4 & 3 \\ 0 & 0 & 1 \end{bmatrix}$$

- (a) The eigenvalues of A are 1 and 0. Let X be the matrix whose columns are eigenvectors belonging to eigenvalues of matrix A and $D = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$. Since $D^2 = D$, It follows that $A^2 = (XDX^{-1})^2 = XD^2X^{-1} = A$. So B = A.
- (b) Since

$$A = \begin{bmatrix} 1 & 1 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 9 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

So

$$B = XD^{\frac{1}{2}}X^{-1} = \begin{bmatrix} 1 & 1 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 3 & -1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

Question 10. Let A be a diagonalizable matrix whose eigenvalues are all either 1 or -1. Show that $A^{-1} = A$.

Solution

Assuming
$$A = XDX^{-1}$$
 where $D = diag(d_1, d_2, ..., d_n)$ and $d_i = 1/-1$. We get $D^{-1} = D$, So $A^{-1} = (XDX^{-1})^{-1} = XD^{-1}X^{-1} = XDX^{-1} = A$.

Question 11. Show that any 3×3 matrix of the form $\begin{bmatrix} a & 1 & 0 \\ 0 & a & 1 \\ 0 & 0 & b \end{bmatrix}$ is defective.

Solution

Because the eigenvalues are $\lambda_1 = \lambda_2 = a$, $\lambda_3 = b$. When the eigenvalue is a, (A - aI)X = 0, we can get the eigenvector $X_1 = X_2 = (1, 0, 0)^T$. According to the definition of defective matrix, we know that matrix A is defective.

Question 12. For each of the following, find all possible values of the scalar α that make the matrix defective or show that no such values exist.

(a)

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & \alpha \end{bmatrix}$$

(b)

$$A = \begin{bmatrix} 3\alpha & 1 & 0 \\ 0 & \alpha & 0 \\ 0 & 0 & \alpha \end{bmatrix}$$

Solution

- (a) We firstly calculate the eigenvalues of A are $\lambda_1 = 0, \lambda_2 = 2, \lambda_3 = \alpha$.
 - When $\alpha = 0$, we can get the eigenvectors are $X_1 = (1, -1, 0)^T, X_2 = (1, 1, 0)^T, X_3 = (0, 0, 1)^T$.
 - When $\alpha = 2$, the eigenvectors are $X_1 = (1, -1, 0)^T, X_2 = (1, 1, 0)^T, X_3 = (0, 1, 1)^T$.

So no such α exist.

- (b) The eigenvalues of A are $\lambda_1 = \alpha, \lambda_2 = \alpha, \lambda_3 = 3\alpha$.
 - When $\alpha = 0$, the eigenvectors are $X_1 = (1,0,0)^T$ and $X_2 = (0,0,1)^T$. There are 2 linearly independent eigenvectors corresponding to eigenvalues $\lambda_{1,2,3} = 0$, so matrix A is defective for $\alpha = 0$.
 - When $\alpha \neq = 0$, There are 2 linearly independent eigenvectors $(1, -2\alpha, 0)^T$ and $(0, 0, 1)^T$ corresponding to eigenvalues $\lambda_{1,2} = 0$. There are 3 linearly independent eigenvectors for matrix A. This shows that matrix A is not defective for $\alpha \neq = 0$.

So $\alpha = 0$ makes the matrix defective.

Question 13. Let A be a 4×4 matrix and let λ be an eigenvalue of multiplicity 3. If $A - \lambda I$ has rank 1, is A defective? Explain.

By Rank-Nullity Theorem we have that $rank(A - \lambda I) + nullity(A - \lambda I) = 4$, which implies that $dim(A - \lambda I) = nullity(A - \lambda I) = 4 - \text{rank}(A - \lambda I) = 3$. Therefore, there are 3 linearly independent eigenvectors belongs to eigenvalue λ . Since eigenvectors belonging to distinct eigenvalues are linearly independent, A is not defective.

Question 14. Let A be an $n \times n$ matrix with an eigenvalue λ of multiplicity n. Show that A is diagonalizable if and only if $A = \lambda I$.

Solution

A is diagonalizable if $dim(N(A - \lambda I)) = n$, that is $rank(A - \lambda I) = 0$. So $A = \lambda I$.

Question 15. Let A be a diagonalizable $n \times n$ matrix. Prove that if B is any matrix that is similar to A, then B is diagonalizable.

Solution

A is diagonalizable, then $X^{-1}AX = D$. If B is similar to A then $A = S^{-1}BS$. Substitute A then we get $D = X^{-1}(S^{-1}BS)X = (SX)^{-1}B(SX)$. So, B is diagonalizable by SX.

Question 16. Show that if A and B are two $n \times n$ matrices with the same diagonalizing matrix X, then AB = BA.

Solution

Assuming $A = XDX^{-1}$ and $B = XEX^{-1}$, where D, E are diagonal matrix and DE = ED. $AB = (XDX^{-1})(XEX^{-1}) = XDEX^{-1} = XEDX^{-1} = (XEX^{-1})(XDX^{-1}) = BA$.

Question 17. For each of the following pairs of vectors \mathbf{z} and \mathbf{w} , compute (i) $||\mathbf{z}||$, (ii) $||\mathbf{w}||$, (iii) $\langle \mathbf{z}, \mathbf{w} \rangle$, and (iv) $\langle \mathbf{w}, \mathbf{z} \rangle$:

(a)
$$\mathbf{z} = \begin{bmatrix} 4+2i \\ 4i \end{bmatrix}, \mathbf{w} = \begin{bmatrix} -2 \\ 2+i \end{bmatrix}$$

(b)
$$\mathbf{z} = \begin{bmatrix} 1+i \\ 2i \\ 3-i \end{bmatrix}, \mathbf{w} = \begin{bmatrix} 2-4i \\ 5 \\ 2i \end{bmatrix}$$

(a)
$$||\mathbf{z}|| = \sqrt{\mathbf{z}^H \mathbf{z}} = 6$$
, $||\mathbf{w}|| = 3$, $\langle \mathbf{z}, \mathbf{w} \rangle = \mathbf{w}^H \mathbf{z} = -4 + 4i$, $\langle \mathbf{w}, \mathbf{z} \rangle = -4 - 4i$.
(b) $||\mathbf{z}|| = 4$, $||\mathbf{w}|| = 7$, $\langle \mathbf{z}, \mathbf{w} \rangle = -4 + 10i$, $\langle \mathbf{w}, \mathbf{z} \rangle = -4 - 10i$.

(b)
$$||\mathbf{z}|| = 4$$
, $||\mathbf{w}|| = 7$, $\langle \mathbf{z}, \mathbf{w} \rangle = -4 + 10i$, $\langle \mathbf{w}, \mathbf{z} \rangle = -4 - 10i$.

Question 18. Let

$$\mathbf{z}_1 = egin{bmatrix} rac{1+i}{2} \ rac{1-i}{2} \end{bmatrix}, \mathbf{z}_2 = egin{bmatrix} rac{i}{\sqrt{2}} \ rac{-1}{\sqrt{2}} \end{bmatrix}$$

(a) Show that $\{\mathbf{z}_1, \mathbf{z}_2\}$ is an orthonormal set in \mathbb{C}^2 .

(b) Write the vector $\mathbf{z} = \begin{bmatrix} 2+4i \\ -2i \end{bmatrix}$ as a linear combination of \mathbf{z}_1 and \mathbf{z}_2 .

Solution

(a)
$$||\mathbf{z}_1|| = \sqrt{\mathbf{z}_1^H \mathbf{z}_1} = \sqrt{\left[\frac{1-i}{2}, \frac{1+i}{2}\right] \left[\frac{1+i}{2}\right]} = \sqrt{\frac{1}{2} + \frac{1}{2}} = 1$$
, similarly, $||\mathbf{z}_2|| = 1$.
 $\langle \mathbf{z}_1, \mathbf{z}_2 \rangle = \mathbf{z}_2^H \mathbf{z}_1 = \left[\frac{i}{\sqrt{2}}, \frac{-1}{\sqrt{2}}\right] \cdot \left[\frac{1+i}{2}\right] = 0$. Hence, $\{\mathbf{z}_1, \mathbf{z}_2\}$ is an orthonormal set.
(b) Assume $\mathbf{z} = c_1 \mathbf{z}_1 + c_2 \mathbf{z}_2$.
 $\langle \mathbf{z}, \mathbf{z}_1 \rangle = c_1 \langle \mathbf{z}_1, \mathbf{z}_1 \rangle + c_2 \langle \mathbf{z}_2, \mathbf{z}_1 \rangle = c_1$, similarly, $\langle \mathbf{z}, \mathbf{z}_2 \rangle = c_2$.
Then we can calculate that $c_1 = 4, c_2 = 2\sqrt{2}$, hence $\mathbf{z} = 4\mathbf{z}_1 + 2\sqrt{2}\mathbf{z}_2$.

$$\langle \mathbf{z}, \mathbf{z}_1 \rangle = c_1 \langle \mathbf{z}_1, \mathbf{z}_1 \rangle + c_2 \langle \mathbf{z}_2, \mathbf{z}_1 \rangle = c_1$$
, similarly, $\langle \mathbf{z}, \mathbf{z}_2 \rangle = c_2$.

Question 19. Let $\{\mathbf{u}_1, \mathbf{u}_2\}$ be an orthonormal basis for \mathbb{C}^2 , and let $\mathbf{z} = (4+2i)\mathbf{u}_1 + (6-2i)\mathbf{u}_1 + (6-2i)\mathbf{u}_2 + (6-2i)\mathbf{u}_1 + (6-2i)\mathbf{u}_2 + (6-2i$ $5i){\bf u}_2.$

(a) What are the values of $\mathbf{u}_1^H \mathbf{z}, \mathbf{z}^H \mathbf{u}_1, \mathbf{u}_2^H \mathbf{z}$ and $\mathbf{z}^H \mathbf{u}_2$?

(b) Determine the value of $||\mathbf{z}||$.

Solution

(a)
$$\mathbf{u}_1^H \mathbf{z} = \langle \mathbf{z}, \mathbf{u}_1 \rangle = 4 + 2i$$

 $\mathbf{z}^H \mathbf{u}_1 = \overline{\langle \mathbf{z}, \mathbf{u}_1 \rangle} = 4 - 2i$
 $\mathbf{u}_2^H \mathbf{z} = 6 - 5i$
 $\mathbf{z}^H \mathbf{u}_2 = 6 + 5i$

$$\mathbf{z}^H \mathbf{u}_1 = \overline{\langle \mathbf{z}, \mathbf{u}_1 \rangle} = 4 - 2i$$

$$\mathbf{u}_2^H \mathbf{z} = 6 - 5i$$

$$\mathbf{z}^H \mathbf{u}_2 = 6 + 5i$$

(b)
$$||\mathbf{z}|| = \sqrt{\langle \mathbf{z}, \mathbf{z} \rangle} = 9$$

Question 20. Which of the matrices that follow are Hermitian? Normal?

(a)

$$\begin{bmatrix} 1-i & 2 \\ 2 & 3 \end{bmatrix}$$

(b)

$$\begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$

(c)

$$\begin{bmatrix} \frac{1}{\sqrt{2}}i & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}i \end{bmatrix}$$

Solution

(a)
$$A^{H} = \begin{bmatrix} 1+i & 2 \\ 2 & 3 \end{bmatrix}$$
. Here $A \neq A^{H}$, hence A is not Hermitian.
$$AA^{H} = \begin{bmatrix} 6 & 8-2i \\ 8+2i & 13 \end{bmatrix}, A^{H}A = \begin{bmatrix} 6 & 8+2i \\ 8-2i & 13 \end{bmatrix}.$$
 Here $AA^{H} \neq A^{H}A$, hence A is not normal.

- (b) Not Hermitian but normal.
- (c) Not Hermitian and also not normal.

Question 21. Find an orthogonal or unitary diagonalizing matrix for each of the following:

(a)

$$\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

(b)

$$\begin{bmatrix} 1 & 3+i \\ 3-i & 4 \end{bmatrix}$$

(c)

$$\begin{bmatrix} 2 & i & 0 \\ -i & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

(a)
$$\det(A - \lambda I) = \begin{vmatrix} 2 - \lambda & 1 \\ 1 & 2 - \lambda \end{vmatrix} = (\lambda - 1)(\lambda - 3), \lambda_1 = 1, \lambda_2 = 3, D = \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}$$

The corresponding eigenvector is $\mathbf{x}_1 = (1, -1)^T, \mathbf{x}_2 = (1, 1)^T$.

$$\mathbf{u}_1 = \frac{1}{\sqrt{2}} \times (1, -1)^T, \mathbf{u}_2 = \frac{1}{\sqrt{2}} \times (1, 1)^T, U = [\mathbf{u}_1, \mathbf{u}_2] = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}.$$

(b)
$$D = \begin{bmatrix} -1 & 0 \\ 0 & 6 \end{bmatrix}$$
, $U = \begin{bmatrix} \frac{3+i}{\sqrt{14}} & \frac{3+i}{\sqrt{35}} \\ \frac{-2}{\sqrt{14}} & \frac{5}{\sqrt{35}} \end{bmatrix}$.

(b)
$$D = \begin{bmatrix} -1 & 0 \\ 0 & 6 \end{bmatrix}$$
, $U = \begin{bmatrix} \frac{3+i}{\sqrt{14}} & \frac{3+i}{\sqrt{35}} \\ \frac{-2}{\sqrt{14}} & \frac{5}{\sqrt{35}} \end{bmatrix}$.
(c) $D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$, $U = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ \frac{i}{\sqrt{2}} & 0 & -\frac{i}{\sqrt{2}} \\ 0 & 1 & 0 \end{bmatrix}$.

Question 22. Let U be a unitary matrix. Prove that

- (a) U is normal.
- (b) $||U\mathbf{x}|| = ||\mathbf{x}||$ for all $\mathbf{x} \in \mathbb{C}^n$.
- (c) if λ is an eigenvalue of U, then $|\lambda| = 1$.

Solution

- (a) Since U is a unitary matrix, $U^HU=I$, then $U^{-1}=U^H, U^HU=UU^H=I$, U is normal.
- (b) By $U^HU=I$, we have $||U\mathbf{x}||^2=\langle U\mathbf{x},U\mathbf{x}\rangle=(U\mathbf{x})^HU\mathbf{x}=\mathbf{x}^HU^HU\mathbf{x}=$ $\mathbf{x}^H I \mathbf{x} = \mathbf{x}^H \mathbf{x} = \langle \mathbf{x}, \mathbf{x} \rangle = ||\mathbf{x}||^2.$ Therefore, $||U\mathbf{x}|| = ||\mathbf{x}||.$
- (c) Let λ be an eigenvalue of U and let \mathbf{x} be an eigenvector belonging to λ , then $||U\mathbf{x}|| = ||\lambda\mathbf{x}|| = |\lambda|||\mathbf{x}||$. By (b), $||\mathbf{x}|| = |\lambda|||\mathbf{x}||$. Since $||\mathbf{x}|| \neq 0$, $|\lambda| = 1$.

Question 23. Let **u** be a unit vector in \mathbb{C}^n and define $U = I - 2\mathbf{u}\mathbf{u}^H$. Show that U is both unitary and Hermitian and, consequently, is its own inverse.

Solution

Hermitian: $U^H = (I - 2uu^H)^H = I - 2(u^H)^H u^H = I - 2uu^H = U$.

Unitary: $U^{H}U = UU = (I - 2uu^{H})(I - 2uu^{H}) = I - 4uu^{H} + 4uu^{H} = I$,

hence $U = U^{-1}$.

Question 24. find the singular value decomposition of each of the following matrices:

$$\begin{bmatrix} 2 & -2 \\ 1 & 2 \end{bmatrix}$$

(b)

$$\begin{bmatrix} 1 & 3 \\ 3 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Solution

(a) First, find the transpose of u, v. Then, find the matrix of singular decomposition basis.

$$A = \begin{bmatrix} \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & -\frac{1}{\sqrt{5}} \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{5}} \end{bmatrix}$$

(b)

$$A = \begin{bmatrix} -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 & 0\\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 3\\ 3 & 1\\ 0 & 0\\ 0 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$

Question 25. Find the matrix associated with each of the following quadratic forms:

(a)
$$3x^2 - 5xy + y^2$$

(b)
$$2x^2 + 3y^2 + z^2 + xy - 2xz + 3yz$$

Solution

(a)
$$\begin{bmatrix} 3 & -\frac{5}{2} \\ -\frac{5}{2} & 1 \end{bmatrix}$$

(a)
$$\begin{bmatrix} 3 & -\frac{5}{2} \\ -\frac{5}{2} & 1 \end{bmatrix}$$
(b)
$$\begin{bmatrix} 2 & \frac{1}{2} & -1 \\ \frac{1}{2} & 3 & \frac{3}{2} \\ -1 & \frac{3}{2} & 1 \end{bmatrix}$$

Question 26. Show that if A is a symmetric positive definite matrix, then A is nonsingular and A^{-1} is also positive definite.

Let A be $n \times n$ symmetric positive definite matrix, we have that, det(A) > 0, therefore A is nonsingular. Since $AA^{-1} = I_n$, we have that $(AA^{-1})^T = (A^{-1})^TA^T = (I_n)^T = I_n$. Therefore $(A^{-1})^T = (A^T)^{-1}$. Since A is symmetric we have that $A = A^T$ and $(A^{-1})^T = A^{-1}$ and therefore A^{-1} is symmetric. Since A is a positive definite matrix, all eigenvalues of A are positive and the eigenvalues of A^{-1} are the inverses of the eigenvalues of A. Hence since A^{-1} is symmetric we have that A is nonsingular and positive definite.