Základy složitosti a vyčíslitelnosti NTIN090

Petr Kučera

2021/22 (7. přednáška)

Savičova věta

Savičova věta

Věta (Savičova věta)

Pro každou funkci $f(n) \ge \log_2 n$ platí

$$\mathrm{NSPACE}(f(n)) \subseteq \mathrm{SPACE}(f^2(n))$$

Důsledek

PSPACE = NPSPACE

Savičova věta (začátek důkazu)

- Předpokládejme, že $L \in NSPACE(f(n))$
- Existuje NTS M, který přijímá L v prostoru O(f(n))
- Popíšeme deterministický TS M', který rozhoduje L v prostoru $O(f^2(n))$

Zjednodušující předpoklad: M pracuje v prostoru f(n)

Pokud M pracuje v prostoru g(n) = O(f(n)), pak

$$O(g^2(n)) = O(f^2(n))$$

■ Tedy SPACE($g^2(n)$) \subseteq SPACE($f^2(n)$)

Technické předpoklady

- M nepohne hlavou na pracovní pásce nalevo od počáteční pozice
- M má jednoznačnou přijímající konfiguraci C_{acc}
 - Jediný přijímající stav q₁
 - Hlava na vstupní pásce je nad nejlevějším symbolem vstupu
 - Hlava na pracovní pásce je nad nejlevější buňkou omezeného prostoru
 - Pracovní páska je prázdná
- C_0^x označuje počáteční konfiguraci výpočtů M se vstupem x
- n = |x| označuje délku vstupu x

Prohledáváme graf

Idea: Se vstupem x, hledej cestu z C_0^x do $C_{\rm acc}$ v grafu konfigurací $G_{M,x} = (V,E)$

První návrh řešení: Použij DFS nebo BFS

- Oba algoritmy vyžadují paměť, která je přinejmenším lineární ve velikosti grafu
- $G_{M,x}$ může obsahovat až $2^{c_M f(n)}$ vrcholů pro nějakou konstantu c_M , která závisí na M
- DFS i BFS vyžadují prostor exponenciální v f(n)

Nemůžeme použít DFS ani BFS

Existuje cesta z C_1 do C_2 ?

Existuje cesta z C_1 do C_2 délky nejvýš t?

Existuje, pokud lze najít vrchol uprostřed

Půlení pokračuje dokud nedosáhneme délky nejvýš 1.

Hrany grafu, snadno ověřitelné

Prohledáváme graf s malou pamětí

- Předpokládejme (pro tuto chvíli), že M' může spočítat f(n) pro vstup x
- Délka cesty z C_0^x do C_{acc} je nejvýš $2^{c_M f(n)}$

Rozděl a panuj

Cesta z C_1 do C_2 délky nejvýš 2^k existuje, právě když

- **1** k = 0 a $C_1 = C_2$ nebo $(C_1, C_2) \in E$, nebo
- 2 k > 0 a existuje prostřední vrchol C_m , pro který platí, že
 - existuje cesta z C_1 do C_m délky nejvýš 2^{k-1} a
 - existuje cesta z C_m do C₂ délky nejvýš 2^{k-1}
- Hloubka rekurze je O(f(n))
- Na každé úrovni rekurze je potřeba prostor O(f(n)) pro reprezentaci konfigurací C₁, C₂ a C_m
- Celkový prostor O(f²(n))

Dosažitelnost

```
Funkce Reachable (C_1, C_2, k)
Vstup: Konfigurace C_1 a C_2, přirozené číslo k
Výstup: true pokud G_{M,x} obsahuje cestu z C_1 do C_2 délky nejvýš
        2^k, jinak false
if k = 0 then
   if C_1 = C_2 or (C_1, C_2) \in E then
      return true
   else
    return false
foreach konfiguraci C_m využívající prostor f(n) do
   if Reachable (C_1, C_m, k-1) and Reachable (C_m, C_2, k-1)
    then
    return true
return false
```

Volání Reachable ()

■ Pokud M' zná hodnotu f(n), stačí mu zavolat

Reachable (
$$C_0^x$$
, C_{acc} , $c_M f(n)$)

- Jedna instance Reachable () používá prostor velikosti O(f(n))
 - konfigurace C_1 , C_2 , C_m používají prostor f(n)
 - O(f(n)) bitů stačí k reprezentaci těchto konfigurací
 - O(f(n)) bitů stačí k reprezentaci hodnoty k
- Hloubka rekurze je O(f(n))
- O(f(n)) instancí Reachable () je v každém okamžiku na zásobníku

Celkem je stačí prostor velikosti $O(f^2(n))$

Jsme tedy hotovi?

Jsme hotovi?

Co když M' nemůže spočítat hodnotu f(n) pro vstup x?

- Funkce f(n) nemusí být nutně algoritmicky vyčíslitelná
- f(n) může být vyčíslitelná, ale k jejímu vyčíslení může být potřeba prostor $\omega(f^2(n))$
- I kdyby f(n) byla vyčíslitelná v prostoru $O(f^2(n))$, funkce f(n) může být neznámá, známe-li pouze M
- c_M je konstanta závisející na M
 - její hodnotu můžeme určit ze znalosti M

Je-li f(n) neznámá

Idea

- 1 Zkoušej hodnoty $f(n) = 1, 2, 3, \dots$
- 2 Zastav s hodnotou f(n) = i, pro niž
 - je nalezena cesta z C_0^x do $C_{\rm acc}$ nebo
 - z C_0^x není dosažitelná žádná konfigurace využívající prostor velikosti i+1

Výpočet M'

Výpočet M' se vstupem x

```
1 i \leftarrow 1
// Volání Reachable() předpokládají, že f(n) = i
2 if Reachable(C_0^x, C_{\rm acc}, c_M \cdot i) then přijmi
3 foreach konfiguraci C využívající prostor i+1 do
4 | if Reachable(C_0^x, C, c_M \cdot i) then
5 | i \leftarrow i+1
6 | goto 2
```

7 odmítni

M' rozhoduje L v prostoru $O(f^2(n))$.

Více zdrojů, více síly

Prostor

Deterministická prostorová složitost

Připomenutí

Nechť $f: \mathbb{N} \to \mathbb{N}$ je funkce, která je definovaná pro každý vstup

- Deterministický Turingův stroj M pracuje v prostoru f(n), pokud výpočet M nad libovolným vstupem x délky |x| = n skončí a využije nejvýš f(n) buněk pracovní pásky.
- SPACE(f(n)) je třída jazyků přijímaných Turingovými stroji, které pracují v prostoru O(f(n))

Prostorová konstruovatelnost

Definice

Funkci $f: \mathbb{N} \to \mathbb{N}$, kde $f(n) \ge \log n$, nazveme prostorově konstruovatelnou, je-li funkce, která zobrazuje 1^n na binární reprezentaci f(n) vyčíslitelná v prostoru O(f(n)).

- Funkce obvykle používané pro měření prostorové složitosti jsou prostorově konstruovatelné, například
 - $\lceil \log_2 n \rceil$

 - polynomy
 - $\lceil n \log_2 n \rceil$

Efektivní alokace paměti

Efektivní alokace paměti

Předpokládejme, že f(n) je prostorově konstruovatelná strojem M_f

- 1 Se vstupem x délky n = |x|
- 2 Sestav řetězec $w = 1^n$
 - Každý znak x změň na 1
- 3 Vypočítej k = f(n)
 - Spusť $M_f(w)$
- 4 Vyznač k buněk na pásce

Využívá prostor O(f(n)), ne více, než potřebujeme alokovat.

Věta o deterministické prostorové hierarchii

Věta (o deterministické prostorové hierarchii)

Pro každou prostorově konstruovatelnou funkci $f: \mathbb{N} \to \mathbb{N}$ existuje jazyk A, který je rozhodnutelný v prostoru O(f(n)), nikoli však v prostoru o(f(n)).

ldea důkazu:

- A definujeme popsáním stroje D, který rozhoduje A
- Zajistíme, že
 - D pracuje v prostoru O(f(n))
 - Pro každý stroj M, který pracuje v prostoru o(f(n)) platí, že L(M) ≠ L(D)
 - D toho dosahuje implementací diagonální metody

První nápad

První nápad konstrukce D

- 2 Simuluj $M(\langle M \rangle)$ v prostoru f(n)
 - Pokud simulace potřebuje více prostoru, odmítni
- 3 Pokud M odmítl, přijmi, jinak odmítni
- Nechť M pracuje v prostoru g(n) = o(f(n)), pak

$$(\forall c \in \mathbb{R}^+)(\exists n_0 \in \mathbb{N})(\forall n \ge n_0)[cg(n) \le f(n)]$$

- Prostor f(n) postačuje k simulaci M(x) se vstupy x, které jsou "dost dlouhé"
- Nezáleží na chování se stroji M, které nepracují v prostoru o(f(n))

Problém s asymptotikou

Není-li řetězec $\langle M \rangle$ dost dlouhý, prostor f(n) nemusí stačit k simulaci $M(\langle M \rangle)$.

Řešení

- Uvážíme řetězce tvaru (M)10*
- $x = \langle M \rangle 10^{n_0}$ je dost dlouhý pro nějaké n_0
- Prostor f(n) stačí k simulaci M(x)
- D(x) přijme, právě když M(x) odmítne
- Tedy $L(M) \neq L(D)$

```
⟨M⟩1
⟨M⟩10
⟨M⟩100
⟨M⟩1000
⟨M⟩10000
⟨M⟩100000
```

Problém se zastavením

I je-li prostor f(n) dostatečný pro simulaci $M(\langle M \rangle)$, výpočet se může zacyklit.

Řešení

Zastav, pokud simulace vyžaduje více než $2^{f(n)}$ kroků.

- Nechť M pracuje v prostoru g(n) = o(f(n))
- Uvažme vstup x délky n = |x|
- Je-li $M(x) \downarrow$, pak výpočet skončí do $2^{c_Mg(n)}$ kroků pro nějakou konstantu c_M
- Je-li n dost velké, simulace M(x) skončí do $2^{f(n)}$ kroků

Stroj D

Výpočet D se vstupem x

- 1 $n \leftarrow |x|$
- 2 Vypočti f(n) pomocí prostorové konstruovatelnosti
- f(n) buněk na pracovní pásce
- 4 if v následujících krocích hlava opustí vyznačený prostor then
- 5 odmítni
- 6 if x nemá tvar $\langle M \rangle 10^*$ then odmítni
- 7 Simuluj M(x) s počítáním kroků simulace
- 8 if počet simulovaných kroků překročí $2^{f(n)}$ then odmítni
- 9 if M přijal then odmítni else přijmi

Definujeme A = L(D)

Prostor použitý strojem D

- Výpočet f(n) vystačí s prostorem O(f(n)) díky prostorové konstruovatelnosti
- Poté hlava D zůstane v rámci f(n) vyznačených buněk
- D tedy pracuje v prostoru O(f(n))
- Čítač kroků lze reprezentovat pomocí f(n) bitů
 - Může být na další stopě

A je rozhodnutelný v prostoru O(f(n)).

D simuluje M

Menší prostor nestačí

- Nechť $M = (Q, \Sigma, \delta, q_0, F)$ je stroj, který pracuje v prostoru g(n) = o(f(n))
- Ukážeme, že $A \neq L(M)$

Pro nějakou konstantu c_M platí, že se vstupem x délky n = |x|

- M(x) lze simulovat v prostoru c_Mg(n)
- M(x) skončí výpočet do 2^{c_Mg(n)} kroků
- Připomeňme univerzální TS
- Existuje konstanta c_M taková, že M se vstupem x má nejvýš $2^{c_Mg(n)}$ různých konfigurací
- Prostor $c_M g(n)$ stačí k reprezentaci jedné konfigurace
 - $\lceil \log_2 |\Sigma| \rceil$ bitů pro každé políčko pracovní pásky M
 - $\lceil \log_2 |Q| \rceil$ bitů pro reprezentaci stavu M

Menší prostor nestačí

$$g(n) = o(f(n)) \implies (\exists n_0 \in \mathbb{N})(\forall n \ge n_0)[c_M g(n) \le f(n)]$$

Existují konstanty c_M a n_0 takové, že se vstupem x délky $n \geq n_0$

- M(x) lze simulovat v prostoru $c_M g(n) \le f(n)$
- M(x) skončí výpočet do $2^{c_Mg(n)} \le 2^{f(n)}$ kroků
- Simulace M se vstupem $x = \langle M \rangle 10^{n_0}$ skončí a
- D(x) přijme právě když M(x) odmítne

$$L(D) \neq L(M)$$

Prostorová hierarchie

Věta (o deterministické prostorové hierarchii)

Pro každou prostorově konstruovatelnou funkci $f: \mathbb{N} \to \mathbb{N}$ existuje jazyk A, který je rozhodnutelný v prostoru O(f(n)), nikoli však v prostoru o(f(n)).

Důsledek

Jsou-li f_1 , $f_2: \mathbb{N} \to \mathbb{N}$ funkce, pro které platí, že $f_1(n) \in o(f_2(n))$ a f_2 je prostorově konstruovatelná, potom

$$SPACE(f_1(n)) \subseteq SPACE(f_2(n))$$

Polynomy a související funkce

Důsledek

Pro každá dvě reálná čísla $0 \le \epsilon_1 < \epsilon_2$ platí, že

$$SPACE(n^{\epsilon_1}) \subsetneq SPACE(n^{\epsilon_2})$$

- Je-li ϵ_2 racionální číslo, pak
 - n^{e2} je prostorově konstruovatelná
 - Lze jednoduše ukázat pro přirozená čísla
 - Lze ukázat i pro racionální čísla
 - Ostrá inkluze plyne z prostorové hierarchie
- Je-li ϵ_2 iracionální číslo
 - Racionální čísla jsou hustá v reálných číslech
 - Existuje racionální číslo ϵ splňující $\epsilon_1 < \epsilon < \epsilon_2$
 - Z prostorové hierarchie a prostorové konstruovatelnosti n^{ϵ}

$$SPACE(n^{\epsilon_1}) \subseteq SPACE(n^{\epsilon}) \subseteq SPACE(n^{\epsilon_2})$$

Logaritmický, polynomiální a exponenciální prostor

Důsledek

 $NL \subseteq PSPACE \subseteq EXPSPACE = \bigcup_{k \in \mathbb{N}} SPACE(2^{n^k}).$

