

X3-Class HiPERFET™ **Power MOSFET**

IXFY30N25X3 IXFA30N25X3 IXFP30N25X3

250V 30A I_{D25} $60 \text{m}\Omega$ \leq R_{DS(on)}

TO-252

N-Channel Enhancement Mode

٥	S	Tab)
G = Gate	D	= Drain
S = Source	Tab	= Drain

Symbol	Test Conditions	Maximum Ra	tings
V _{DSS}	$T_{_{\rm J}}$ = 25°C to 150°C	250	V
V _{DGR}	$T_{_{ m J}}$ = 25°C to 150°C, $R_{_{ m GS}}$ = 1M Ω	250	V
V _{GSS}	Continuous	±20	V
V _{GSM}	Transient	±30	V
I _{D25}	T _C = 25°C	30	A
I _{DM}	$T_{\rm C}^{\circ}$ = 25°C, Pulse Width Limited by $T_{\rm JM}$	45	А
I _A	T _c = 25°C	15	A
E _{AS}	$T_{c} = 25^{\circ}C$	300	mJ
dv/dt	$I_{S} \leq I_{DM}, V_{DD} \leq V_{DSS}, T_{J} \leq 150^{\circ}C$	50	V/ns
$\overline{\mathbf{P}_{D}}$	T _C = 25°C	170	W
T _J		-55 +150	°C
T _{JM}		150	°C
T _{stg}		-55 +150	°C
T _L	Maximum Lead Temperature for Soldering	g 300	°C
T _{SOLD}	1.6 mm (0.062in.) from Case for 10s	260	°C
F _c	Mounting Force (TO-263) Mounting Torque (TO-220)	1065 / 2.214.6 1.13 / 10	N/lb Nm/lb.in
Weight	TO-252	0.35	g
	TO-263 TO-220	2.50 3.00	g g

Features

- International Standard Packages
- $^{\bullet}$ Low $\rm R_{\rm DS(ON)}$ and $\rm Q_{\rm G}$
- Avalanche Rated
- Low Package Inductance

Advantages

- High Power Density
- Easy to Mount
- Space Savings

Applications

- Switch-Mode and Resonant-Mode **Power Supplies**
- DC-DC Converters
- PFC Circuits
- AC and DC Motor Drives
- · Robotics and Servo Controls

		teristic Values Typ. Max.		
BV _{DSS}	$V_{GS} = 0V, I_{D} = 250\mu A$	250		V
V _{GS(th)}	$V_{DS} = V_{GS}$, $I_{D} = 500\mu A$	2.5		4.5 V
I _{GSS}	$V_{GS} = \pm 20V, V_{DS} = 0V$			±100 nA
I _{DSS}	$V_{DS} = V_{DSS}$, $V_{GS} = 0V$ $T_{J} = 125^{\circ}C$			5 μA 250 μA
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 0.5 \cdot I_{D25}, Note 1$		48	60 mΩ

Symbol	Test Conditions Characteristic V		Values	
$(T_J = 25^{\circ}C, l)$	Jnless Otherwise Specified)	Min.	Тур.	Max
g _{fs}	$V_{DS} = 10V, I_{D} = 0.5 \cdot I_{D25}, Note 1$	14	23	S
R_{gi}	Gate Input Resistance		1.8	Ω
C _{iss}			1450	pF
C _{oss}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		266	pF
C _{rss}			1	pF
	Effective Output Capacitance			
$C_{o(er)}$	Energy related $\int V_{GS} = 0V$		115	pF
$C_{o(tr)}$	Time related $\int V_{DS}^{GS} = 0.8 \cdot V_{DSS}$		410	pF
t _{d(on)}	Resistive Switching Times		16	ns
t, ($V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		24	ns
t _{d(off)}	$R_{\rm G} = 30\Omega$ (External)		77	ns
t _f	$H_{G} = 3002 (External)$		20	ns
$Q_{g(on)}$			21	nC
Q_{gs}	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		6	nC
\mathbf{Q}_{gd}			6	nC
R _{thJC}				0.73 °C/W
R _{thCS}	TO-220		0.50	°C/W

Source-Drain Diode

Symbol $(T_J = 25^{\circ}C, U)$	Test Conditions Unless Otherwise Specified)	Chara Min.	cteristic Typ.	Values Max	
I _s	$V_{GS} = 0V$			30	Α
I _{SM}	Repetitive, pulse Width Limited by $T_{_{JM}}$			120	Α
V _{SD}	$I_F = I_S$, $V_{GS} = 0V$, Note 1			1.4	V
$\left. egin{array}{c} \mathbf{t}_{rr} & \\ \mathbf{Q}_{RM} & \\ \mathbf{I}_{RM} & \end{array} ight. ight.$	$I_F = 15A$, -di/dt = 100A/ μ s $V_R = 100V$		82 290 7		ns nC A

Note 1. Pulse test, $t \le 300\mu s$, duty cycle, $d \le 2\%$.

Fig. 2. Extended Output Characteristics @ T_J = 25°C 70 $V_{GS} = 10V$ 60 50 40 30 20 10 5V 0 5 10 15 20 25 30 V_{DS} - Volts

 $T_J = 25^{\circ}C$

50

60

70

20

30

I_D - Amperes

40

RDS(on) - Normalized

2.5

2.0

1.0

0.5

0

10

Fig. 7. Maximum Drain Current vs. Case Temperature

Fig. 8. Input Admittance

Fig. 9. Transconductance

Fig. 10. Forward Voltage Drop of Intrinsic Diode

Fig. 11. Gate Charge

Fig. 12. Capacitance

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 15. Maximum Transient Thermal Impedance

IXFY30N25X3

IXFA30N25X3 IXFP30N25X3

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.