REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for falling to comply with a collection of information if it does not display a currently valid OMB control number.

			f information if it does not displa IE ABOVE ADDRESS.	y a currently valid	OMB contr	ol number.
1. REPORT DA	ATE (DD-MM-YY	YY) 2. REPO	ORT TYPE			3. DATES COVERED (From - To)
	-05-2009		Master's Th	esis		DEC2009 - MAY2009
4. TITLE AND	SUBTITLE				5a. C	ONTRACT NUMBER
Relationship of	of Grain Bound	ary Structure a	nd Mechanical Propert	ies of Inconel		N62271-97-G-0026
690					5b. G	RANT NUMBER
					5c. PF	ROGRAM ELEMENT NUMBER
0 41171100(0)					E4 DE	ROJECT NUMBER
6. AUTHOR(S)					50. Pr	ROJECT NOMBER
Joseph J. Mar	ra					
					5e. TA	ASK NUMBER
					5f. W	ORK UNIT NUMBER
7. PERFORMIN	NG ORGANIZATI	ON NAME(S) AI	ND ADDRESS(ES)			8. PERFORMING ORGANIZATION
	Institute of Te					REPORT NUMBER
TVI dissacina setti	, institute of Te	eimology				
9. SPONSORII	NG/MONITORIN	G AGENCY NAM	IE(S) AND ADDRESS(ES)		10. SPONSOR/MONITOR'S ACRONYM(S)
Naval Postgra						NPS
Monterey, CA	. 93943					11. SPONSOR/MONITOR'S REPORT
						NUMBER(S)
12. DISTRIBUT	ION/AVAILABIL	ITY STATEMEN	Т			1
1. DISTRIBU	TION STATEN	MENT A. Appr	oved for public release	; distribution	is unlin	mited.
		11	1			
13. SUPPLEME 	NTARY NOTES					
14. ABSTRAC	Γ					
		'C) failure due	to environmentally as	sisted crack n	ucleatio	on and propagation, is an important
						ponents and nuclear reactors. SCC mechanism
						composition. This thesis investigated the
relationship be	etween the struc	ctural nature an	d the nanoscale mecha	nical properti	es on a	nd near the grain boundaries to identify their
						as chosen as the material of interest for its
						the solution annealed Inconel 690 were found
						boundary type, specifically the 3 and high
_				ation mobility	and ab	sorption at the different grain boundaries of
	hen indented at	. room tempera	ture.			
15. SUBJECT	TERMS					
16. SECURITY	CLASSIFICATIO	N OF:	17. LIMITATION OF	18. NUMBER	19a. N	AME OF RESPONSIBLE PERSON
a. REPORT	b. ABSTRACT		ABSTRACT	OF		ibbitts, Educational Technician
			UU	PAGES		ELEPHONE NUMBER (Include area code)
				139		(831) 656-2319 civins@nps.edu

Relationship of Grain Boundary Structure and Mechanical Properties of Inconel 690

Ву

Joseph J. Marra

Lieutenant, United States Navy

B.S. Electrical Engineering/Computer and Systems Engineering 2002 Rensselaer Polytechnic Institute

SUBMITTED TO THE DEPARTMENT OF NUCLEAR SCIENCE AND ENGINEERING, AND THE DEPARTMENT OF MECHANICAL ENGINEERING IN PARTIAL FULFILLMENT FOR THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN NUCLEAR SCIENCE AND ENGINEERING AND

MASTER OF SCIENCE IN NAVAL ARCHITECTURE/MARINE ENGINEERING AT THE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2009

© 2009 Massachusetts Institute of Technology All rights reserved

Signature of Author: Joseph Marra Department of Mechanical Engineering May 8, 2009 Certified by: Bilge Yildiz, Ph.D. Assistant Professor of Nuclear Science and Engineering May 8, 2009 Weo'vzhied Certified by: Tomasz Wierzbicki, Ph.D. Professor of Applied Mechanics, Department of Mechanical Engineering May 8, 2009 Certified by: Krystyn Van Vliet, Ph.D. Materials Science and Engineering May 8, 2009 Accepted by: David E. Hardt Chairman, Department Committee of Graduate Studies May 8, 2009 Accepted by: Jacquelyn C. Yanch Professor of Nuclear Science and Engineering

Chair, Department Committee on Graduate Students

May 8, 2009

Relationship of Grain Boundary Structure and Mechanical Properties of Inconel 690

By Joseph J. Marra Lieutenant, United States Navy

Submitted to the Department of Nuclear Science and Engineering and the Department of Mechanical Engineering in partial fulfillment for the requirements for the degrees of Master of Science in Nuclear Science and Engineering and Master of Science in Naval Architecture/Marine Engineering

ABSTRACT

Stress corrosion cracking (SCC), failure due to environmentally assisted crack nucleation and propagation, is an important metallurgical problem with impact on current and future designs of ship structural components and nuclear reactors. SCC occurs in the presence of tensile stress, corrosive environment, and a material with susceptibility. The initiation of SCC is difficult to detect and control due to the highly localized nature of chemical and mechanical conditions. As a result, its inhibition has been a particularly challenging problem. SCC mechanism is dependent on the microstructure, particularly the grain boundaries, for a given alloy composition. Therefore, inhibition could be sought from an improved fundamental understanding of the structural and mechanical characteristics at the material's grain boundaries.

This thesis investigated the relationship between the structural nature and the nanoscale mechanical properties on and near the grain boundaries to identify their role in the resistance to stress corrosion cracking. Inconel 690, an austenitic Ni-alloy, was chosen as the material of interest for its relevance in current applications in the nuclear energy technology. An integrated approach to probe the structural, mechanical and chemical information at the nanoscale consistently at select grain boundaries was developed. Grain boundary engineering was accomplished on Inconel 690 through thermomechanical processing (TMP) to produce samples with a desirable distribution of grain boundary structures. Crystallographic structure of the boundaries was identified using electron backscatter diffraction and orientation image mapping. Nanoindentation at ambient conditions was performed to extract mechanical properties with high spatial resolution at and near the selected grain boundaries. Inherent and tip-induced mechanical properties of grain boundaries were characterized on the solution annealed Inconel 690. Mechanical properties governed by the presence of chromium carbide precipitates at the boundaries were characterized on the TMP Inconel 690.

Hardness measured on and near the Σ 3, low angle, and high angle grain boundaries of the TMP Inconel 690 revealed the distribution of chromium carbide precipitates at each respective grain boundary. Chromium carbide precipitates led to continuously high hardness on the Σ 3 grain boundaries and discontinuous with large variations in the hardness on low and high angle grain boundaries. These results are consistent with the higher relative cracking susceptibility for low and high angle grain boundaries relative to Σ 3 grain boundaries.

Inherent hardness of the solution annealed Inconel 690 were found to be the same for both the grain boundary and bulk regions, and did not vary with grain boundary type, specifically the $\Sigma 3$ and high angle boundaries. This finding is attributed to the weak dependence of the dislocation mobility on the diffusion path during high temperature annealing of the sample, which resulted in an approximately uniform distribution of dislocations prior to nanoindentation. On the other hand, greater hardness was induced at the grain boundaries due to the pile-up of dislocations created by the indentations towards the grain boundaries. The relative increase in hardness induced by the indentations, and the spatial extent of this increase were found to be equivalent for different grain boundary types. These results indicate comparable ease of dislocation mobility and absorption at the different grain boundaries of Inconel 690 when indented at room temperature.

Thesis Advisor: Assistant Professor Bilge Yildiz

Thesis title: Relationship of Grain Boundary Structure and Mechanical Properties of Inconel 690

Table of Contents

1.	Introduction	. 11
	1.1. Background	. 11
	1.1.1. Stress	. 12
	1.1.2. Material	. 12
	1.1.3. Corrosive environment	. 12
	1.1.4. Common susceptible material and environment combinations	. 14
	1.1.5. Microstructure	
	1.2. Stress corrosion cracking related component failures in the nuclear industry	. 16
	1.3. Summary	
2.	Background: stress corrosion cracking mechanisms	
	2.1. Overview	
	2.2. Parameters that affect stress corrosion cracking	
	2.3. The relationship between stress corrosion cracking and microstructure	
	2.4. SCC mechanisms and the role of grain boundaries	
	2.4.1. Crack initiation.	
	2.4.2. Crack propagation	
	2.4.2.1. Dissolution models of crack propagation	
	2.4.2.2. Mechanical fracture models of crack propagation	
	2.5. Summary	
3	Problem statement and thesis goal	
٠.	3.1. Problem statement.	
	3.2. Research goals	
	3.2.1. Relationship between grain boundary structure and mechanical properties	
	3.2.2. Correlated microstructural, compositional, and mechanical property measurements	
	grain boundaries	
4	Approach	
٠.	4.1. Overview	
	4.2. Sample preparation	
	4.3. Coordinated measurement of mechanical properties, structure and elemental compositions of the composition of the compositi	
	is: coordinated incustrement of incontained properties, structure and elemental composite	
	4.3.1. Fiduciary marking of the sample surface	
	4.3.2. Orientation image mapping	
	4.3.3. Grain boundary imaging and elemental characterization	
	4.4. Nanoindentation	
	4.4.1. Tip area function	
	4.4.2. Indentation size effect	
	4.4.3. Frame compliance	
5	Experimental procedure	
٥.	5.1. Sample preparation	
	5.1.1. Thermomechanical processing.	
	5.1.2. Mechanical polishing	
	5.1.3. Electrolytic polishing	
	5.1.5. Electrolytic polishing	
	5.3. Electron backscatter diffraction analysis	
	5.3. Electron backscatter diffraction analysis	50 57

5.4.1. Indentation depth	60
5.4.2. Indentation lateral separation	62
5.4.3. Indentation size effect	
5.4.4. Effect of electrolytic polishing	64
6. Results and discussion	
6.1. Nanoindentation results	66
6.1.1. Sample I	
6.1.2. Sample II	84
6.2. Discussion of nanoindentation results	93
6.2.1. Sample I	93
6.2.1.1. Grain boundary orientation	
6.2.1.2. Grain boundary size	93
6.2.1.3. Grain boundary type – Inherent hardness	95
6.2.1.4. Grain boundary type – Induced hardness	
6.2.1.5. Interpretation of induced hardness variation	99
6.2.1.6. Analysis of induced grain boundary hardness	104
6.2.2. Sample II	107
6.3. Coordinated measurement of structure, mechanical properties and elemental	composition
	111
7. Conclusions	112
Appendix A Minimum indentation depth	114
Appendix B Minimum indentation lateral separation	117
Appendix C Indentation size effect	119
Appendix D Effect of electrolytic polishing	120
Appendix E Sample I grain boundaries Inherent mechanical properties	122
Appendix F Sample I grain boundaries - Induced mechanical properties	128
Appendix G Sample II grain boundaries	
References	138

List of Figures
Figure 1.1 – SCC requires the combination of stress, a corrosive environment and material
susceptibility11
Figure 1.2 – Chloride SCC of a type 304 stainless steel tube, showing the development of cracks
into branches [2]
Figure 1.3 – The length scales at which microstructural components can be studied
Figure 1.4 – Face centered cubic (FCC) crystal lattice [3].
Figure 1.5 – Schematic of a nuclear power plant showing the function of the steam generator 17
Figure 2.1 - Three stages of SCC, taken from reference [1]
Figure 2.2 - Transgranular SCC in 316 austenitic stainless steel [12]
Figure 2.3 – Intergranular SCC in Inconel [12].
Figure 2.4 - Tsurekawa et al [14] observed an increased frequency of triple junctions composed
of two low energy boundaries, denoted as $f_{2CSL}/(1-f_{3CSL})$, with increasing frequency of
coincident site lattice boundaries
Figure 2.5 – SEM micrographs taken from a study of the correlation of grain boundary character distribution and grain boundary connectivity in austenitic stainless steel. Specimens underwent ferric-sulfate sulfuric acid tests for 48 hours. Due to the difference in frequency of percolation resistant triple junctions (specimen C – 10%, specimen D – 19%), specimen D exhibited less susceptibility to intergranular cracking than specimen C. [14]
Figure 2.6 - Grain boundary character distribution of as received (AR), 5%, 9% and 13% width-reduction Inconel 617 in the study of Inconel 617 by Tan et al [15]. The open, diagonally crossed, crossed, and horizontal-line-through symbols indicate the number of thermomechanical processing cycles, from 1 to 4, each respective sample has undergone. 28
Figure 2.7 - Depiction of the surface oxide film and slip plane, which is the basis for the film rupture model. The susceptibility of the material is dependent upon the slip mechanism, which is impacted by the stacking fault energy [11]
Figure 2.8 – The corrosion tunnel model of SCC. [1]
Figure 2.9 – Schematic showing the mechanism of SCC proposed in film induced cleavage and rupture model [1]
Figure 4.1 – Schematic representation of approach to grain boundary characterization in this thesis and a collaborating thesis [18]. The focus of this thesis was on nanoindentation 39
Figure 4.2 – Ideal current and voltage relationship for electrolytic polishing [20] 41
Figure 4.3 - SEM image of the surface of a sample with a grid of micro-indents for positioning.
Using the grid to navigate, EBSD is carried out to produce information about boundary type and orientation
Figure 4.4 – Optical image of a cube corner tip [22]
Figure 4.5 - Typical load-displacement curve recorded during indentation experiments [23]. P is the applied load. The total work done by the indenter tip is W_t , which is the sum of the plastic work, W_p , and elastic work, W_e . h_m is the maximum indentation depth and h_f is the
final depth of the indent after elastic recovery
Figure 4.6 – Stress (σ) as a function of non-dimensional strain (ε). Below the yield stress (σ_{Yield}),
the slope is equal to the elastic modulus, E , and the material deforms elastically. Above the
yield stress, deformation is plastic
Figure 5.1 – Current-Voltage relationship for Sample I to determine ideal electrolytic polishing conditions
Figure 5.2 – Microindentation grid of Sample I

Figure 5.3 – Optical image and inverse pole figure of Sample I	57
Figure 5.4 – Optical image and inverse pole figure of Sample II	
Figure 5.5 - Load function used for nanoindentation measurements	
Figure 5.6 – In situ images of nanoindentations showing (left) 50 indents: 10 on the grain	
boundary, 10 located 500 nm on both sides of the boundary, and a grid of 10 centered	5 μm
on both sides of the grain boundary and (right) indents 500 nm away from the boundary	ry 59
Figure 5.7 – Rows of indents completed by approaching the grain boundary from the left a	-
right using automation.	
Figure 5.8 – Hardness as a function of indentation depth, showing the indentation size effective for the figure 5.8 – Hardness as a function of indentation depth, showing the indentation size effective for the figure 5.8 – Hardness as a function of indentation depth, showing the indentation size effective for the figure 5.8 – Hardness as a function of indentation depth, showing the indentation size effective for the figure 5.8 – Hardness as a function of indentation depth, showing the indentation size effective for the figure 5.8 – Hardness as a function of indentation depth, showing the indentation size effective for the figure 5.8 – Hardness as a function of indentation depth, showing the indentation size effective for the figure 5.8 – Hardness as a function of indentation depth, showing the indentation size effective for the figure 5.8 – Hardness as a function of indentation depth, showing the indentation depth for the figure 5.8 – Hardness as a function of indentation depth for the figure 5.8 – Hardness and figure 6.8 – Hardness and figur	ct
encountered in nanoindentation measurements. Measured hardness is shown as black	
squares; theoretical indentation size effect is shown as a burgundy dashed line	63
Figure 6.1 – (A) IPF plot showing orientation of grains that form. Grain boundary (1) is ma	arked
by a black arrow. (B) In situ image of grain boundary (1)	68
Figure 6.2 - Difference in E as a function of position relative to grain boundary (1)	69
Figure 6.3 - Difference in H as a function of position relative to grain boundary (1)	69
Figure 6.4 – (A) IPF plot showing orientation of grains that form. Grain boundary (2) is ma	arked
by a black arrow. (B) In situ image of grain boundary (2)	
Figure 6.5 - Difference in E as a function of position relative to grain boundary (2)	71
Figure 6.6 - Difference in H as a function of position relative to grain boundary (2)	
Figure $6.7 - (A)$ IPF plot showing orientation of grains that form. Grain boundary (3) is magnetic forms of the showing orientation of grains that forms of the showing orientation of grains that forms of the showing orientation of grains that forms or the showing orientation of grains that the showing or the showing orientation of grains or the showing or the showi	
by a black arrow. (B) In situ image of grain boundary (3)	
Figure 6.8 - Ratio of bulk to near grain boundary regions for E and H on grain boundary (3	
Figure 6.9 - Difference in E as a function of position relative to grain boundary (3)	
Figure 6.10 - Difference in H as a function of position relative to grain boundary (3)	
Figure 6.11 – (A) IPF plot showing orientation of grains that form. Grain boundary (4) is n	
by a black arrow. (B) In situ image of grain boundary (4).	
Figure 6.12 - Difference in E as a function of position relative to grain boundary (4)	
Figure 6.13 - Difference in H as a function of position relative to grain boundary (4)	
Figure 6.14 – (A) IPF plot showing orientation of grains that form. Grain boundary (5) is n	
by a black arrow. (B) In situ image of grain boundary (5).	/0
Figure 6.15 – Bar chart showing difference in E as a function of position relative to grain boundary (5)	77
Figure 6.16 - Bar chart showing difference in H as a function of position relative to grain	/ /
boundary (5)	77
Figure 6.17 – (A) IPF plot showing orientation of grains that form. Grain boundary (6) is n	
by a black arrow. (B) In situ image of grain boundary (6)	
Figure 6.18 – Difference in E as a function of position relative to grain boundary (6)	
Figure 6.19 - Difference in H as a function of position relative to grain boundary (6)	
Figure 6.20 – In situ image of induced hardness measurement on grain boundary (4). Arroy	
indicate the direction nanoindentations were done in	80
Figure 6.21 - Measurements of tip-induced hardening effect on grain boundary (4) for	
indentations approaching the grain boundary from left to right. (A) 4 of 5 indentation	rows
showed an increased hardness near the grain boundary relative to the bulk region of ~	
(4.27 GPa to 5.23 GPa) beginning at 2.5 μm from the left of the grain boundary. (B) 1	
indentation rows did not show an increase in hardness approaching the grain boundary	

Figure 6.22 – Measurements of tip-induced hardening effect on grain boundary (4) for
indentations approaching the grain boundary from right to left. (A) 4 of 6 indentation rows
showed an increased hardness near the grain boundary relative to the bulk region of ~13.8%
(4.43 GPa to 5.04 GPa) beginning at 3 μm from the right of the grain boundary. (B) 2 of 6
indentation rows did not show an increase in hardness approaching the grain boundary 81
Figure 6.23 – In situ image of induced hardness measurement on grain boundary (6). Arrows
indicate the direction nanoindentations were done in
Figure 6.24 – Measurements of tip-induced hardening effect on grain boundary (6) for
indentations approaching the grain boundary from left to right. (A) 2 of 3 indentation rows
showed an increased hardness near the grain boundary relative to the bulk region of
~21.6% (4.40 GPa to 5.35 GPa) beginning at 3.3 μm from the left of the grain boundary.
(B) 1 of 3 indentation rows did not show an increase in hardness approaching the grain
boundary 82
Figure 6.25 - Measurements of tip-induced hardening effect on grain boundary (6) for
indentations approaching the grain boundary from right to left. (A) 2 of 3 indentation rows
showed an increased hardness near the grain boundary relative to the bulk region of ~16.2%
(4.56 GPa to 5.30 GPa) beginning at 3.5 μm from the right of the grain boundary. (B) 1 of 3
indentation rows did not show an increase in hardness approaching the grain boundary 83
Figure 6.26 - (A) IPF plot showing orientation of grains that form. Grain boundary (1) is marked
by a black arrow. (B) In situ image of grain boundary (1)
Figure 6.27 – Difference in E as a function of position relative to grain boundary (6)
Figure 6.28 – Difference in E as a function of position relative to grain boundary (6)
Figure 6.29 - (A) IPF plot showing orientation of grains that form. Grain boundary (2) is marked
by a black arrow. (B) In situ image of grain boundary (2)
Figure 6.30 – Difference in E as a function of position relative to grain boundary (2)
Figure 6.31 – Difference in E as a function of position relative to grain boundary (2)
Figure 6.32 - (A) IPF plot showing orientation of grains that form. Grain boundary (3) is marked
by a black arrow. (B) In situ image of grain boundary (3)
Figure 6.33– Difference in E as a function of position relative to grain boundary (6)
Figure 6.34– Difference in E as a function of position relative to grain boundary (3) 90
Figure 6.35 - (A) IPF plot showing orientation of grains that form. Grain boundary (4) is marked
by a black arrow. (B) In situ image of grain boundary (4)
Figure 6.36 – Difference in E as a function of position relative to grain boundary (4)
Figure 6.37 – Difference in E as a function of position relative to grain boundary (4)
Figure 6.38 – Hardness (H) as a function for different crystalline orientations. Two data sets
completed with the NorthStar cube corner tip are not included
Figure 6.39 – Hardness measured in the bulk region of grains as a function of the square root of
grain size $(d^{1/2})$. Two data sets completed with the NorthStar cube corner tip are not
included
Figure 6.40 – Summary of elastic modulus (E) measured on grain boundaries on Sample I. Two
data sets completed with the NorthStar cube corner tip are not included
<u>.</u>
Figure 6.41 - Summary of hardness (H) measured on grain boundaries on Sample I
Figure 6.42 - Dislocation mobility (log D) as a function of reciprocal temperature for various
diffusion paths in metals [27].
Figure 6.43 – Array of indentations performed by Soifer et al on a grain boundary in bi-crystal
copper [28]

Figure 6.44 – Hardness trends in the vicinity of a single crystal copper grain boundary measure	b
by Soifer et al [28]	00
Figure 6.45 – Nanohardness of (a) Fe-Si, (b) a $\Sigma 3$ grain boundary in Mo and (c) a $\Sigma 11$ grain	
boundary in Mo by Soer et al [29]. Increased hardness was observed in regions that exten	ıd
approximately 1 μm from the grain boundary in each direction	03
Figure 6.46 - Summary of elastic modulus (E) measured on grain boundaries on Sample II 1	07
Figure 6.47 - Summary of hardness (H) measured on grain boundaries on Sample II 1	07
Figure 6.48 - Hardness profile along a low angle grain boundary on Sample II, showing	
intermediate coarseness of carbides	09
Figure 6.49 - Hardness profile along a high angle grain boundary on Sample II 1	09
Figure 6.50 – Hardness profile along a $\Sigma 3$ grain boundary on Sample II, showing a mostly	
continuous level of carbides. The spike seen in is likely caused by an outlying	
nanoindentation measurement; the remaining hardness profile shows the approximately	
constant and continuous hardness profile.	10
Figure 6.51 - Hardness profile along a high angle grain boundary on Sample II, showing a coar	se
and discontinuous distribution of carbides.	

List of Tables

Table 1.1 – Examples of commonly occurring combinations of material and corrosive	
environments that exhibit susceptibility to SCC. Table taken from reference [2]	14
Table 1.2 – Properties of Inconel 690	20
Table 1.3 – Inconel 690 chemical composition	20
Table 5.1 – Summary of TMP on Sample I and Sample II	52
Table 5.2 – Summary of mechanical polishing procedure for each sample	
Table 5.3 – Comparison of indentation data gathered at progressively increasing peak loads.	
italicized row shows the optimized indentation conditions for minimum indentation dept	
Table 5.4 – Comparison of elastic modulus (E) and hardness (H) for indentation sets of 30	
indents with different lateral separations between indents	62
Table 5.5 – Comparison of Elastic modulus (E) and hardness (H) of solution annealed sample	;
and TMP sample. The solution annealed sample underwent mechanical and electrolytic	
polished, while the TMP sample only underwent mechanical polishing	64
Table 6.1 - E and H measured at different positions relative to grain boundary (1)	
Table 6.2 – Ratio of bulk to near grain boundary regions for E and H on grain boundary (1)	68
Table 6.3 - E and H measured at different positions relative to grain boundary (2)	70
Table 6.4 - Ratio of bulk to near grain boundary regions for E and H on grain boundary (2)	70
Table 6.5 - E and H measured at different positions relative to grain boundary (3)	
Table 6.6 - E and H measured at different positions relative to grain boundary (4)	74
Table 6.7 - Ratio of bulk to near grain boundary regions for E and H on grain boundary (4)	
Table 6.8 - E and H measured at different positions relative to grain boundary (5)	76
Table 6.9 - Ratio of bulk to near grain boundary regions for E and H on grain boundary (5)	76
Table 6.10 - E and H measured at different positions relative to grain boundary (6)	
Table 6.11 - Ratio of bulk to near grain boundary region for E and H on grain boundary (6)	78
Table 6.12 - E and H measured at different positions relative to grain boundary (1)	85
Table 6.13 - Ratio of bulk to near grain boundary region for E and H on grain boundary (6)	85
Table 6.14 - E and H measured at different positions relative to grain boundary (2)	87
Table 6.15 - Ratio of bulk to near grain boundary region for E and H on grain boundary (2)	87
Table 6.16 - E and H measured at different positions relative to grain boundary (3)	89
Table 6.17- Ratio of bulk to near grain boundary region for E and H on grain boundary (3)	89
Table 6.18 - E and H measured at different positions relative to grain boundary (4)	91
Table 6.19 - Ratio of bulk to near grain boundary region for E and H on grain boundary (4)	91

1. Introduction

1.1. Background

Stress corrosion cracking (SCC), the failure of a material due to environmentally assisted crack nucleation and propagation, is a serious metallurgical problem with impact on current and future nuclear system designs. SCC results from the combination of a material with known susceptibility, the presence of tensile stress and a corrosive environment, shown graphically in Figure 1.1.

Figure 1.1 – SCC requires the combination of stress, a corrosive environment and material susceptibility.

Inhibition of SCC has been a particularly difficult problem. Conditions that cause this phenomenon to occur are highly localized and thus are difficult to detect and control through the life of components in systems with long designed service lives in harsh environments.

Concentrations of ions that pose a specific risk of SCC can be extremely small and difficult to detect. Furthermore, while the applied stresses can obviously result in SCC, residual stress from component fabrication can often provide a sufficient stress intensity to result in failure.

Though the commonly used definition depicted in Figure 1.1 is accurate, it is in fact an oversimplification of this phenomenon. In order to analyze this problem thoroughly, we must

first clearly describe the necessary elements that lead to material failure from SCC. While each element will be discussed individually, the fact that the combined effect from of each element is necessary for SCC can not be understated.

1.1.1. Stress

The presence of stress is the fundamental component of the SCC process. However, an important distinction is that crack propagation does not occur as a result of local stresses that exceed the critical stress intensity required by fracture mechanics. In fact, stress required to induce fracture and crack growth is much less than the material's critical stress intensity. This phenomenon is known as subcritical crack growth. Stress, which can be either residual or applied, must be tensile in order to induce SCC; compressive stress is actually used as a method of SCC inhibition [1]. Sufficient stress to induce SCC can be substantially below the yield strength of the material.

1.1.2. Material

The most common materials studied when discussing SCC susceptibility are metallic alloys. However, other materials, such as pure metals, ceramics and polymers have all been known to be susceptible to SCC [1]. The scope of this thesis will include only polycrystalline metallic alloys. Though discoveries from this thesis can be applied to advance the knowledge of SCC mechanisms, specific results gathered will be relevant to contemporary applications in the nuclear industry.

1.1.3. Corrosive environment

The corrosive environment that contributes to SCC primarily serves to provide a sufficient concentration of a chemical species. Due to the presence of these chemical species,

highly localized general corrosion of the material occurs. The material is "pulled" apart due to the presence of tensile stress, resulting in more material exposure and subsequent localized general corrosion of the newly exposed material. This process continues and, over time, cracks propagate from these sites, form branches, and lead to the material failure, as shown in Figure 1.2.

Figure 1.2 – Chloride SCC of a type 304 stainless steel tube, showing the development of cracks into branches [2].

Beyond contributing to the initial mechanism of general corrosion, SCC susceptibility is greatly sensitive to temperature and the amount of circulation of O_2 (or other gaseous environments) in the vicinity of cracks. The change of any of these factors can result in an environment thought to be free from susceptibility to an environment that will cause local failure.

1.1.4. Common susceptible material and environment combinations

When in the presence of tensile stress, the known combinations of materials and environments that are susceptible to SCC are numerous. New combinations are constantly being discovered as materials in all types of engineering systems progress through their designed service lives. For the purpose of understanding the robust challenge SCC presents, examples of combinations of commonly used materials and accompanying corrosive environments that are known to be susceptible are shown in Table 1.1.

Alloy	Environment		
Carbon steel	Nitrate, caustic, and carbonate solutions		
High strength steels	Aqueous electrolytes containing H ₂ S		
Austenitic stainless steels	High concentrated chloride solutions		
High-nickel alloys	High-purity steam		
a-brass	Ammoniacal solutions		
Aluminum alloys	Aqueous Cl ⁻ , Br ⁻ and I ⁻ solutions		
Titanium alloys	Aqueous Cl ⁻ , Br ⁻ and I ⁻ solutions, organic liquids and N ₂ SO ₄		
Magnesium alloys	Aqueous Cl ⁻		
Zirconium alloys	Aqueous Cl ⁻ , organic liquids, and I ₂		

Table 1.1 – Examples of commonly occurring combinations of material and corrosive environments that exhibit susceptibility to SCC. Table taken from reference [2].

By no means are the examples shown in Table 1.1 inclusive of the materials and environments that can combine to result in component failure through SCC. These examples do, however, show how failure from SCC covers a wide range of materials and environments making inhibition difficult and expensive to incorporate into design.

1.1.5. Microstructure

SCC failure occurs through a process that causes a material to fracture. Fracture phenomenon is closely related to the microstructural components such as the crystalline structure, size and distribution of types of grain boundaries [1]. Therefore, thoroughly

understanding microstructure is an important aspect of understanding and preventing SCC. The microstructural components that are known to be associated with fracture phenomena can be analyzed macroscopically, microscopically and atomistically, shown schematically in Figure 1.3.

Figure 1.3 – The length scales at which microstructural components can be studied.

The most basic aspect of microstructure is the crystalline structure of the material.

Atoms in a crystalline material are uniquely arranged, known as a crystal lattice. Figure 1.4 shows an examples of a face centered cubic crystal lattice, which will be relevant to the discussion of Inconel 690 in this thesis.

Figure 1.4 – Face centered cubic (FCC) crystal lattice [3].

The lattice parameters, or the distances and angles between atoms in the lattice, are determined by the lowest energy configuration for the material. The properties of a crystal lattice also effect how the lattice handles shear stress. When shear stress is applied to the lattice, parts of the lattice glide along each other, resulting in a deformation of the material. The paths that the lattice glides along are known as slip planes and can be distinctly identified for different types of crystal lattices. The face centered cubic crystal lattice that will be discussed in this thesis contains twelve (12) different slip planes.

The interfaces between smaller crystals of differing orientation are known as grain boundaries and are the most important aspect of microstructure. The stress field that exists due to the misorientation of neighboring grains results acts as a barrier to the translation of dislocation. Thus, the networks formed by grain boundaries drastically affect the macroscopic mechanical properties of a material. The effects on the mechanical properties of a material are not homogeneous, however. Grain boundaries do not exhibit the same resistance to fracture; some are strong while some are weak. In addition to exhibiting varying mechanical properties, grain boundaries can vary based on their chemical composition. Chemical constituents can either enrich at or segregate from grain boundaries depending on material type and the environment conditions. As a result of these effects, grain boundaries are known to be sites of preferential crack initiation and propagation.

1.2. Stress corrosion cracking related component failures in the nuclear industry

SCC was identified as a major problem in the nuclear industry by the Nuclear Regulatory Commission as early as the 1970s. Specifically, in 1975, the NRC became aware of the issue of tube "denting," or the degradation of a tube in the form of a diameter reduction, in steam generators, a vital component in nuclear power plants [4]. Steam generators house numerous

As the water from the reactor core flows into through the steam generator tubing, it boils water external to the tubing, forming steam that drives the power plants turbine and generates electricity. This is shown schematically in Figure 1.5.

Figure 1.5 – Schematic of a nuclear power plant showing the function of the steam generator.

There are two materials used in pressurized water nuclear reactor steam generators in the United States: Inconel 600 and Inconel 690, two members of a family of austenitic nickel-chromium-based super alloys. In this capacity, they are exposed to temperatures ranging from 278 °C to 324 °C and pressures ranging from 7 MPa to 15.5 MPa. In addition their functionality, steam generator tubes serve as the primary enclosure of radioactive material inside of the nuclear plant. Steam generator tube failure can result in contamination of steam that could potentially contaminate the atmosphere. Thus, maintaining the structural integrity of these components is vital to avoid this potentially catastrophic result. In order to improve their mechanical properties and corrosion resistance of Inconel 600 and Inconel 690, these alloys are either mill-annealed or thermally treated. Steam generator tubing in the Unites States is mill-annealed Inconel 600, thermally treated Inconel 600, or thermally treated Inconel 690 [5].

Despite being designed to resist corrosive processes, examples of steam generator tube failures due to SCC in the nuclear industry in the United States are well documented. The first of such accidents caused by SCC was the failure of Inconel 600 steam generator tubes at the Robert E. Ginna Nuclear Power Plant near Rochester, New York, on January 25, 1982 [6]. The accident resulted in the release of 90 curies of radiation to the environment. Metallographic analysis was performed following the accident and revealed the presence of an intergranular stress corrosion crack in the steam generator tubing.

A similar accident occurred in the steam generator tubing at Fort Calhoun, near Omaha, Nebraska, in February, 1984. Fort Calhoun's two steam generators, each comprised of 5,005 mill annealed Inconel 600 tubes, were hydrostatically tested following the detecting of approximately 0.2 gallons per day in steam generator B. The failed tube exposed during hydrostatic testing was found to be a 1.25" long axial "fishmouth" opening at a "U" bend of the tube bottom. This section was removed for laboratory analysis and determined to have failed via transgranular SCC from the outside of the tubing. The analysis revealed a degradation of 95% of the tubing wall thickness [7].

Arkansas Nuclear One Unit 2, located on Lake Dardanelle in Russellville, Arkansas, shut down on March 9, 1992 after discovering of a primary-to-secondary leak of 0.25 gallons per minute. Further inspection revealed a circumferentially-oriented intergranular SCC extending 360 degrees around the outer diameter of the tube at the hot leg expansion transition location, located near the top of the tubesheet. Cracks extended as deep as 94 percent into the tube wall, rendering it below standards for normal operating conditions and requiring replacement.

Following these findings, Arkansas Nuclear One management conducted a full inspection of the

remaining tubes and found indications of circumferential cracking on the hot leg side of 488 tubes [8].

McGuire Nuclear Station, near Charlotte, North Carolina, shut down in August, 1993 following the failure of a steam generator tubes containing kinetically welded sleeves made of Inconel 690. The failure resulted in a primary-to-secondary leak of about 200 gallons per day. The tube was removed and analyzed, which revealing 120 degree to 180 degree circumferential cracks located just above the weld that joined the sleeve and the tube. Cracking through the entire tubing wall was also found to exist for 270 degrees around the tube circumference. The remaining 90 degrees of the tubing had experienced cracking through 50% of the wall [9].

On February 15, 2000, Indian Point Nuclear Power Plant in Buchanan, New York, also experienced a steam generator tube rupture and was forced to shut down. The rupture resulted in a primary-to-secondary leak of 19,197 gallons and a discharge of radioactive steam into the surrounding atmosphere. Subsequent analysis of Indian Point's four steam generators, each made up of 3,260 Inconel 600 tubes, revealed that a single tube had failed via a crack approximately 3 inches in length at the inner radius of a U-bend [4].

In addition to expensive repairs, susceptibility to SCC of steam generator components even caused the premature decommissioning of a nuclear generating station. Commonwealth Edison completed the shutdown of Zion Nuclear Power Station, located near Chicago, Illinois, in the spring of 1998 after the announcement of its plan to shut down the site rather than repair failing steam generator tubes [10].

As discussed in Chapter 1.2, the two materials used in steam generators are Inconel 600 and Inconel 690, two austenitic nickel-based super alloys. Inconel 690 has been used extensively to replace degraded steam generator tubing, originally made of Inconel 600, in operating nuclear

reactors and has been proposed as the standard material for use in steam generators of new generation nuclear reactors. Inconel 690 is preferred due to its high strength, metallurgical stability, desirable fabrication properties and strong resistance to corrosion by oxidizing acids and salts in aqueous, high temperature environments.

The mechanical properties and chemical composition of Inconel 690 are summarized in Table 1.2 and Table 1.3.

Inconel 690 properties		
Young's modulus (E)	211 GPa	
Hardness (H)	1.67 GPa	
Poisson's ratio (υ)	0.29	
Shear modulus (µ)	81.8 GPa	

Table 1.2 – Properties of Inconel 690

Inconel 690 Chemical Composition			
Ni	59.47%		
Cr	29.50%		
Fe	10.24%		
Mn	0.15%		
Si	0.04%		
С	0.03%		
Co	0.003%		
S	0.001%		
Cu	< 0.01%		

Table 1.3 – Inconel 690 chemical composition

1.3. Summary

In conclusion, SCC is a phenomenon that can affect all engineering systems. It occurs when specific electrochemical, metallurgical, mechanical and chemical conditions are present locally and simultaneously. Materials can exhibit decreased susceptibility depending on their microstuctural characteristics. Developing an understanding of how the synergy of these factors works can be effective step in inhibiting SCC. Therefore, this study aims to understand the relationship between microstructural characteristics and mechanical properties. First, a detailed

explanation of the proposed mechanisms governing of SCC is discussed in Chapter 2. This review is followed by the thesis problem statement and objective in Chapter 3, and an explanation of the approach to measuring and analyzing mechanical properties and their relationship to individual grain boundaries in Chapter 4. A discussion of the experimental procedure follows in Chapter 5. Finally, in Chapters 6 and 7, the results and corresponding conclusions from the recorded experimental data are discussed.

2. Background: stress corrosion cracking mechanisms

To preface the discussion of results and the conclusions deduced from those results, this section provides an explanation of the proposed mechanisms of crack initiation and propagation. Specifically, this section contains a review of factors that affect crack initiation and propagation, and the relationship of those processes to environmental factors, material composition, stress and microstructure. The discussion of these concepts uses reference [11] throughout this section.

2.1. Overview

SCC has long been thought to occur when the alloy involved was known to be susceptible, in a particular environment and in the presence of tensile stress, as shown in Figure 1.1. More recently, the known environments and susceptible material that can result in stress corrosion cracking have grown to include a wide range of combinations. Therefore, the distinguishing requirement for SCC to occur has been narrowed to include only the presence of tensile stress. SCC serves to reduce the amount of strain that causes failure and, thus, the maximum stress that can be applied prior to failure. SCC susceptibility is generally inversely proportional to the general corrosion rate of the material.

SCC occurs over a long time scale and can best be described as occurring in three distinct stages. Figure 2.1 shows the logarithmic crack propagation rate, V or $\frac{da}{dt}$, shown as a function of stress intensity, which exemplifies the three stages of SCC.

Figure 2.1 - Three stages of SCC, taken from reference [1].

No crack propagation occurs below the threshold stress intensity, K_{ISCC} . The threshold stress intensity is a function of the material as well as the local environmental conditions. The region above the threshold stress intensity is referred to as stage 1. In stage 1, small cracks propagate despite predictions by fracture mechanics that failure should not occur. Crack growth increases approximately quickly with increasing stress intensity. This stage is also referred to as subcritical crack growth and occurs over a large time scale. At higher stress intensities, known as stage 2, crack growth becomes independent of stress intensity and instead depends strictly on the environmental conditions. Crack propagation proceeds at a constant velocity, shown in Figure 2.1 as $V_{plateau}$, which is characteristic of the equilibrium between the environment and the amount of material available for the corrosion reaction to proceed. At even higher stress intensities, known as stage 3, crack growth increases exponentially with increasing stress intensity until fracture occurs at some critical stress intensity, known as the critical fracture intensity (K_{IC}) or the fracture toughness of the material. The total crack propagation time, t_{cp} , is simply the sum of the time of each stage.

2.2. Parameters that affect stress corrosion cracking

The mechanisms that were proposed to explain SCC involve a series of processes and chemical reactions. Crack tip propagation velocities in the aforementioned stages of SCC are affected by a number of rate-determining steps, as follows[11]: mass transport along the crack to the crack tip, reactions in the solution near the crack, surface absorption near the crack, surface diffusion, surface reactions, absorption into the bulk, bulk diffusion to the plastic zone ahead of the crack tip, chemical reactions in the bulk, and rate of interatomic bond rupture.

Therefore, any environmental factors that affect these rate-determining steps will have a result on the velocity of crack propagation. These include[11]: temperature, pressure, solute species, solute concentration and activity, pH, electrochemical potential, solution viscosity, agitation, and flow rate. Changes in these environmental factors affect crack propagation rates, and can also re-initiate crack propagation after it has stopped, or stop crack propagation from proceeding any further. Another important consideration regarding environmental factors is the role of the bulk regions of the material. Crack propagation occurs due to local conditions at the crack, which include interactions between chemical species contributed from the environment and the material. Through diffusion, chemical species are supplied to crack site and provide the means for the continuation of the corrosion process. If bulk regions can not sustain sufficient conditions, crack propagation will not continue.

2.3. The relationship between stress corrosion cracking and microstructure

The microstructure of a material is an important factor in a materials susceptibility to SCC. Cracking can occur in different forms depending on conditions at grain boundaries and grain interiors. Cracks can grow across grain boundaries, known as transgranular SCC (TGSCC), and along grain boundaries, known as intergranular SCC (IGSCC), as shown in

Figure 2.2 and Figure 2.3. Figure 2.2 shows a micrograph of TGSCC in 316 stainless steel used in a chemical processing piping system. Figure 2.3 shows a micrograph that illustrates IGSCC in an Inconel heat exchanger tube. Cracks can clearly been seen occurring along the gain boundaries.

Figure 2.2 - Transgranular SCC in 316 austenitic stainless steel [12].

Figure 2.3 – Intergranular SCC in Inconel [12].

Many studies have been conducted relating the effects of microstructure and SCC susceptibility. Four such studies are important to this research. The first study, performed by Watanabe [13], is a study of the relationship between grain boundary character distribution and fracture. Watanabe observed that fracture occurred in a heterogeneous manner. Specifically, high energy grain boundaries exhibited less resistance to intergranular fracture than low energy

boundaries. Watanabe also observed that grain boundaries formed networks and proposed that, because intergranular fracture is a percolative process, the propagation of cracks depended more heavily upon the connectivity of the grain boundary network rather than only the distribution of grain types. Watanabe proposed that because the frequency of grain boundary types could be identified, grain boundary networks could be described by the types of junctions formed by the grain boundaries, known as triple junctions. The frequency of the types of triple junctions, made up of 0, 1, 2 or 3 low energy boundaries, could then be used to predict the materials resistance to percolation. Grain boundary networks made up of high energy grain boundaries, and thus less resistant triple junctions, would be more susceptible to fracture, while grain boundary networks composed of low energy grain boundaries would be more resistant to fracture.

Following Watanabe's work, Tsurekawa et al [14] analyzed the correlation between grain boundary connectivity and grain boundary character distribution in type 304 austenitic stainless steel. In this study, Tsurekawa et al observed that the frequency of triple junctions that consisted of two low energy grain boundaries increased with the increasing frequency of coincident site lattice boundaries, a specific type of low energy boundary, as shown in Figure 2.4.

Figure 2.4 - Tsurekawa et al [14] observed an increased frequency of triple junctions composed of two low energy boundaries, denoted as $f_{2CSL}/(1-f_{3CSL})$, with increasing frequency of coincident site lattice boundaries.

Additionally, Tsurekawa et al's study displayed these effects by conducting ferric sulfate-sulfuric acid tests on austenitic stainless steel specimens with different amounts of percolation resistant triple junctions. SEM micrographs of the surfaces and cross-sections of these specimens, shown in Figure 2.5, validate the prediction that the frequency of percolation resistant triple junctions, which follows from an increased frequency of low energy boundaries, results in an increased resistance to a percolative process such as intergranular corrosion.

Figure 2.5 – SEM micrographs taken from a study of the correlation of grain boundary character distribution and grain boundary connectivity in austenitic stainless steel. Specimens underwent ferric-sulfate sulfuric acid tests for 48 hours. Due to the difference in frequency of percolation resistant triple junctions (specimen C – 10%, specimen D – 19%), specimen D exhibited less susceptibility to intergranular cracking than specimen C. [14]

Another study, performed by Tan et al [15], analyzed attempts at optimized grain boundary character distribution of Inconel 617, an austenitic solid-solution alloy proposed as a candidate alloy for used in new generator nuclear reactors. The alloy was grain boundary engineered by undergoing thermomechanical processing; specifically, samples were divided into three sets, reduced in thickness by 5%, 9% and 13% respectively, and annealed at 1100 °C for 90 minutes. This resulted in an increase in the fraction of $\Sigma 3^n$ ($\Sigma 3$, $\Sigma 9$ and $\Sigma 27$) grain boundaries, as

shown in Figure 2.6. The importance of this conclusion, that an increased fraction of $\Sigma 3^n$ boundaries is promoted by thermomechanical processing, can be seen when combined with results from Watanabe [13].

Figure 2.6 - Grain boundary character distribution of as received (AR), 5%, 9% and 13% width-reduction Inconel 617 in the study of Inconel 617 by Tan et al [15]. The open, diagonally crossed, crossed, and horizontal-line-through symbols indicate the number of thermomechanical processing cycles, from 1 to 4, each respective sample has undergone.

Finally, another work by Tan et al [16] studied the employment of grain boundary engineering as a method of improving the corrosion resistance of Incoloy 800H and Inconel 617. Following grain boundary engineering treatments by thermomechanical processing, the mechanical properties and microstructure were thoroughly analyzed using a variety of techniques. The results indicated that the grain boundary engineering resulted in decreased oxide exfoliation in Incoloy 800H and the oxidation rate of Inconel 617. Additionally, grain boundary engineering resulted in increased strength of Incoloy 800H at both room and high temperatures without a substantial decrease in ductility.

Given the aforementioned results correlating grain boundary type to SCC resistance, a systematic characterization of how mechanical properties vary in the vicinity of grain boundaries at the nanoscale is a vital aspect in developing a thorough understanding of the initiation of SCC.

2.4. SCC mechanisms and the role of grain boundaries

Models of how intergranular stress corrosion can occur will be discussed in the subsequent sections. Each proposed model describes how the tensile stress, a corrosive environment and the properties that result in susceptibility combine to result in material failure. The importance of microstructural components, specifically grains and grain boundaries, to the mechanism of SCC will be the focus of the discussion.

2.4.1. Crack initiation

SCC can initiate at existing surface features such as grooves, scratches, or preexisting cracks [1]. These features are commonly produced during fabrication or preparation processes such as grinding or welding. Crack initiation can also occur through a process known as slip dissolution. In this case, the slip planes of the crystalline structure allow shear stress to translate the surface of the material. Here, grain boundaries can play an important role in slip dissolution. This results in the rupture of the natively formed protective oxide layers, thus exposing the material.

Sites of pitting corrosion can also be areas where stress corrosion crack initiation occurs

[1]. Pits form as a result of dissolution of the metal due to a local lack of oxygen in a small area.

The area becomes anodic and the adjacent area, which contains a higher relative concentration of oxygen, becomes cathodic, resulting in highly localized galvanic corrosion. Following the

formation of pits, cracks will initiate based on the combined effects of the geometry of the pit, the chemistry of the exposed material, and the stress conditions on the pit interior. Pits can also occur as the result of the differing chemistry between grain boundaries and the bulk region of the materials. Specific constituents that enrich at or deplete from the grain boundaries provide the necessary anodic conditions for localized galvanic corrosion. Crack initiation generally occurs when the ratio of the depth of the pit to the width of the pit is approximately 10, which can typically only result when the pit walls exhibiting a capability of forming a passivating film to cause crack growth in the lateral direction to be relatively slow.

2.4.2. Crack propagation

Crack initiation and crack propagation are different processes, but are related. The occurrence of crack initiation and the velocity of crack propagation depend on the previous mentioned factors: the surrounding environment and the mechanical and metallurgical properties of the material. Several mechanisms have been proposed as a way to explain SCC crack propagation can probably be attributed to a combination of these. These mechanisms are divided into two categories, both of which include microstructure as an important factor: dissolution models and mechanical fracture models.

2.4.2.1. Dissolution models of crack propagation

Dissolution models propose that cracks advance through preferential dissolution of the material at crack tips. There are two models that describe crack propagation this way: the active path dissolution model and the film rupture model.

Active path dissolution describes the corrosion along a path that is more susceptible to corrosion relative to passivity of the bulk material. The active path refers to the grain

boundaries, where elemental segregation makes passivation more difficult. As a result, a form of crevice corrosion occurs where the grain boundaries corrode uniformly throughout the affected region while the surrounding grain walls and surface remain passive. While stress is not required for this type of intergranular corrosion to occur, the presence of stress serves to open the cracks. This leads to diffusion of corrosion products that would serve to form a protective oxide layer, and thus an increase in crack growth.

Active path is not generally accepted as a good explanation for the mechanism that governs SCC. Active path was proposed as an initial explanation of grain boundary attack, and is based on the preferential dissolution of a specific phase in the material and the development of galvanic cells along the slip planes. The main reasoning is that preferential dissolution enables the continuation of the corrosion reaction at the surface by serving as a source of bare metal. However, the active path model does not take into account the possibility of crack tip blunting, hence its lack of acceptance as the governing SCC mechanism.

The film rupture model is generally accepted as the most accurate description of the governing mechanism of SCC. In the film rupture model, susceptibility is attributed to the rupture of the oxide film on the material surface. The oxide layer is ruptured by the translation of shear stress along the crystalline slip planes, as shown in Figure 2.7.

Figure 2.7 - Depiction of the surface oxide film and slip plane, which is the basis for the film rupture model. The susceptibility of the material is dependent upon the slip mechanism, which is impacted by the stacking fault energy [11].

The slip can be predicted by the stacking fault energy of the material. In materials with high stacking fault energy, where the distance between the Shockley partials is low, the material will exhibit wavy slip which results in a longer time to failure of the oxide layer. Conversely, in materials with low stacking fault energy, the distance between the Shockley partial partials is higher, resulting in a lower time to failure of the oxide layer from planar slip in the material. Cracks can be expected to grow transgranularly along the active slip plane, although experimental work to date has shown that cracks can also grow intergranularly [1].

In addition to affecting the nature of the slip that results in the oxide layer rupture, repassivation of the oxide layer will occur and will control the crack propagation rate. An intermediate rate of repassivation is required, as repassivation that occurs too quickly will result subcritical crack growth, while a lower repassivation rate will result in a blunted crack tip. The exposed surface resulting from the oxide rupture will begin to repassivate and the repassivation rate will be affected by alloy composition.

2.4.2.2. Mechanical fracture models of crack propagation

In mechanical fracture models of SCC, crack initiation and propagation occurs as a result localized corrosion combined with ductile deformation and fracture. Initial localized corrosion results in stress concentrations, and the material proceeds to fail by mechanical fracture induced by the presence of tensile stress. These models include the corrosion tunnel model, adsorption-induced cleavage model, adsorption enhanced plasticity and film-induced cleavage and rupture model.

The first of such models, known as the corrosion tunnel model, proposes that active corrosion forms along parallel slip planes that intersect with the surface of the material, as shown in Figure 2.8. The anodic dissolution of the material continues along these slip planes, forming tunnels. After the sufficient amount of material is dissolved, the weakened area between the tunnels succumbs to brittle fracture and fails. The process begins again with the dissolution of material along slip planes and repeats.

Figure 2.8 – The corrosion tunnel model of SCC [1].

Change in the mechanical properties of the material at the surface due to the electrochemical interactions with the environment is another model proposed to explain the mechanism of SCC. In this model, known as the adsorption-enhanced cleavage model, the absorption of ions from the local environment can serve to weaken the bonds of the crystal lattice, and as result, the stress required to initiate cracks is reduced. Cracks then propagate until they reach regions where absorption has not affected the bonds of the crystal lattice [1]. This model builds on the assumption that adsorption occurs at mobile defect sites, and results in bond weakening at crack tips, which occur both along and across grain boundaries. The nature of these mobile defect sites is not yet characterized [1].

Similar to the adsorption-enhanced cleavage model is the adsorption enhanced plasticity model. Ions from the local environment are absorbed and serve to reduce the shear stress requirement for dislocations to translate. Tensile stress then allows dislocations to translate more easily. The difference between this model and the adsorption-enhanced cleavage model is that this model proposes that the critical shear stress is decreased, while the previous model proposes the decrease in the general strength of the absorption region [1].

Another mechanical fracture model of SCC is the film-induced cleavage model, shown schematically in Figure 2.9. In this model, a thin, brittle, layer, such as a protective oxide, forms at the surface of the material. Due to the brittleness of the layer, cracks initiate under applied or residual stress and propagate, usually along grain boundaries. Cracks then cross into the ductile material below the surface layer and continue to propagate until it is eventually blunted. The protective layer then reforms in the blunted region, and the process repeats [1].

Figure 2.9 – Schematic showing the mechanism of SCC proposed in film induced cleavage and rupture model [1].

2.5. Summary

In conclusion, SCC is an ongoing and challenging problem in the nuclear industry. It occurs when certain critical local environmental, mechanical and metallurgical conditions occur simultaneously. Several models for how SCC initiates and proceeds have been proposed. However, because cracking initiation is difficult to detect at an atomistic level, the accuracy of these models is difficult to verify. It is generally agreed upon that there is no universal model for SCC and that it is likely that more than one of the aforementioned mechanisms of crack initiation and propagation occur simultaneously. Despite the lack of a universal model, the importance of microstructure, specifically grain boundaries, is common to many of the proposed models. From this, it is possible that microstructure can be controlled to develop materials that are less

susceptible to SCC, as has been established in literature. Control of the distribution of types of grain boundaries is achieved through processing, known as grain boundary engineering. These processing methods are effective by increasing the density of stored dislocations and causing chemical agglomerations in the vicinity of grain boundaries, both of which may result in grain boundaries that are stronger and more resistant to percolative processes such as intergranular corrosion and cracking.

3. Problem statement and thesis goal

3.1. Problem statement

Despite the uncertainties in the proposed models explained in Chapter 2, it is evident that the microstructural characteristics of a material play an important in all of the proposed SCC models. Therefore, understanding their effect on SCC behavior at a fundamental level is needed. The nanoscale correlations between the microstructural, chemical, and mechanical properties, is, as of yet, unexplored systematically. The proposed models of SCC provide a high level understanding of how microstructural properties contribute to susceptibility. This is exemplified by the finding of Tsurekawa et al [14], who showed that a grain boundary network with an increased frequency of percolation resistant triple junctions is thus less susceptible to intergranular failure. However, this high level description lacks an accurate explanation of the chemical and mechanical nature of grain boundaries on an appropriately small scale. Particularly, the proposed models of SCC crack initiation lack a thorough understanding of the role of interface structure at the nanoscale due to the challenge in observing and measuring such small scale and highly localized deformation and electrochemical phenomenon.

3.2. Research goals

3.2.1. Relationship between grain boundary structure and mechanical properties

This thesis specifically aimed to identify the relationship between the structure of grain boundaries and their mechanical properties in Inconel 690, an important alloy used in the design of nuclear reactor steam generators in the United States. Specifically, the hardness and elastic modulus in the vicinity of grain boundaries, and their relation to grain size, crystalline orientation, slip systems, and presence of precipitates, are important. This relationship serves to

enhance the understanding of the mechanism of intergranular SCC in Inconel 690 and, perhaps, other polycrystalline materials with face centered cubic structure.

3.2.2. Correlated microstructural, compositional, and mechanical property measurements at grain boundaries

A technical objective is to enable correlated measurement of nanoscale mechanical properties of grain boundaries with well-defined structure with the analysis of the chemical nature of those same grain boundaries. As has been stressed in previous sections, many combinations of materials and environments exhibit SCC susceptibility. Thus, the development of this approach serves as a template for identifying mechanical properties of grain boundaries with known chemical composition and structure.

4. Approach

4.1. Overview

The methodology to integrate measurement of crystalline orientation, mechanical properties, and chemical composition of grain boundaries of interest follows in this chapter. Grain boundary engineering was accomplished on Inconel 690 through thermomechanical processing to produce samples with a high fraction of coincident grain boundary structures. Next, crystalline orientation of grain boundaries was identified using electron backscatter diffraction analysis. Nanoindentation was used to extract mechanical properties at and near the selected grain boundaries. For some grain boundaries, chemical analysis using transmission electron microscopy (TEM) was performed by an accompanying research in this group on the same samples [17]. Figure 4.1 shows the integration of these techniques in this approach schematically.

Figure 4.1 – Schematic representation of approach to grain boundary characterization in this thesis and a collaborating thesis [17]. The focus of this thesis was on nanoindentation.

The approach to prepare samples, conduct and coordinate these measurements follows. This thesis focused on the measurement of mechanical properties near grain boundaries using nanoindentation, and thus, the approach to conduct nanoindentation measurements is described in detail.

4.2. Sample preparation

Samples were first thermomechanically processed (TMP) to produce two samples with differing microstructure. Sample surfaces were then polished mechanically and electrolytically to reveal grain boundaries optically and reduce surface roughness, an important parameter that can affect nanoindentation data.

Mechanical polishing is accomplished by placing the sample in contact with a rotating polishing wheel. The polishing wheel is first fitted with sandpaper, and then with polishing mat containing a fine particle polishing suspension. Sample surfaces are affected by mechanical polishing, leaving behind a deformed layer whose depth is on the order of the grit size used in polishing, an effect identified by Langitan and Lawn [18]. This must be removed by electrolytic polishing to ensure that the data collected during nanoindentation experiments does not contain an artifact of mechanically deformed structure.

Subsequent electrolytic polishing was accomplished by constructing an electrolytic cell consisting of the sample to be polished as the anode, a platinum mesh cathode and electrolyte solution. Using an external source, direct current is applied to the system resulting in dissolution of the anode, thus brightening and leveling the sample surface. The mechanism of electrolytic polishing is affected by several factors related to the set up including the surface area of the sample and surface area of the cathode, the spatial orientation of the sample and cathode in the electrolyte solution, the spacing between the sample and the cathode, the depth of the sample and

cathode below the surface of the solution, the composition of the sample, electrolyte solution, and cathode, the degree of agitation and temperature of the electrolyte solution, the mechanical processing applied to the sample before electrolytic polishing, and the current density and voltage. When placed in the electrolytic solution and set up as the anode of the electrolytic polishing set up, a viscous layer, known as the polishing film, forms on the surface of the sample. With a fully formed polishing film, the resistance of the surface and film will vary depending on the height of the surface underneath the film. Using the analogy that surface roughness can be thought of as a series of hills and valleys, the polishing action is controlled by the lower resistance of the polishing film over a "hill" and a higher resistance of the polishing film over a "valley."

Of particular importance is the determination of the ideal current density and voltage used to accomplish the electrolytic polishing, an example of which is shown in Figure 4.2 [19].

Figure 4.2 – Ideal current and voltage relationship for electrolytic polishing [19].

Figure 4.2 shows three very distinguishable regions. In the first region, current density increases approximately linearly with voltage. The polishing film does not yet form and some areas of the sample dissolve in the electrolyte solution resulting in a dull surface with pitting

likely to occur. In the second region, the polishing film forms on the sample surface and results in a "plateau" where current density remains approximately constant with increasing voltage. Finally, in the third region, the relationship between voltage and current density is approximately exponential. Gas bubbles evolve and disrupt the polishing film. Therefore, despite the complexity of the electrolytic polishing mechanism, determination of an appropriate current density and voltage can be used to ensure that the sample surface is polished without unwanted side effects such as pitting or gas streaking.

4.3. Coordinated measurement of mechanical properties, structure and elemental composition

4.3.1. Fiduciary marking of the sample surface

An important aspect of this research centered on the ability to structurally identify specific grain boundaries on chemical and mechanical measurements would be coordinated. To accomplish this, a 10×10 grid of microindentations was performed on the sample surface. These indents were used as fiduciary markers for navigating the sample surface. An extra indent at one corner of the grid was also created to allow for easy orientation of the sample. Microindentations were separated by distances on the order of $100 \, \mu m$ and were easily visible optically. Using these markers, the location of specific grain boundaries could be easily found over the course of this research effort.

4.3.2. Orientation image mapping

Determination of the crystalline orientation of areas of interest on the sample surface was accomplished using electron backscattered diffraction (EBSD). This work was done by a collaborating member of the research group [17]. EBSD is a technique that uses a scanning

electron microscope (SEM) that is equipped with a backscatter diffraction camera. The diffraction camera is fitted with a phosphor screen and CCD camera. Electrons are impinged on the area of interest on the surface of the polished sample, which is tilted toward the diffraction camera. The electrons interact with the lattice planes on the surface of the sample, undergo backscatter diffraction, and collide with the phosphor screen. The collisions of the backscattered electrons with the phosphor screen produce a diffraction pattern, which are detected by the CCD camera. These patterns can then be indexed to recognize the crystallographic orientation of the plane that formed the pattern.

EBSD analysis was conducted on a "square" created by 4 of the 100 indents that make up the microindentation grid. An appropriate "square" was chosen that contained several types of grain boundaries that were of interest to this research: $\Sigma 3$, low angle and high angle grain boundaries. This coordination is shown in Figure 4.3.

Figure 4.3 - SEM image of the surface of a sample with a grid of micro-indents for positioning. Using the grid to navigate, EBSD is carried out to produce information about boundary type and orientation.

4.3.3. Grain boundary imaging and elemental characterization

After the completion of the EBSD analysis, grain boundaries were chosen based on neighboring grain size, location from microindents to eliminate the chance of performing measurements on area in the microindentation impact volume, crystalline orientation, and grain boundary length. These grain boundaries were removed from the sample using a Focused Ion Beam (FIB). FIB focuses a beam of gallium ions, accelerated to between 5 and 50 keV, on the sample surface. The gallium ion beam is destructive to the sample surface and is essentially used as a site specific micro-machining tool. The micro-machining capability is used to mill trenches in the surface of the sample and create a membrane to be analyzed in a transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM). TEM analysis

provides imaging data such as grain boundary structure, dislocation accumulation, and precipitate formation, while STEM uses Electron Dispersive X-ray Spectroscopy (EDS) to provide elemental composition of the samples at the grain boundaries at atomistic resolution.

4.4. Nanoindentation

The measurement of mechanical properties at the nanoscale was accomplished using nanoindentation and is the focus of this thesis. Nanoindentation consists of contacting a material of unknown properties with a material of known properties. The response of the unknown material is then used to characterize its mechanical properties, using a well known procedure established by Oliver and Pharr [20]. Due to high resolution capability, nanoindentation allows for the determination of mechanical properties in the vicinity of grain boundaries. Indentations are made with a diamond indenter tip of known geometry. An optical image of the tip used in this thesis, a cube corner tip, is shown in Figure 4.4.

Figure 4.4 – Optical image of a cube corner tip [21].

Specification of the load applied to the tip over time, known as a load function, is defined for each indentation. The load function contains a loading segment, which forces the indenter tip into the surface of the material, a plateau or holding segment, which minimizes the impact of

creep or thermal drift on the measurement, and an unloading segment, which removes the indenter tip from the surface of the material and corrects for elasticity.

During the indentation, the displacement of the indenter tip into the material and the materials response to the applied force are recorded. The material response follows Kick's law, $P = Ch^2$, where P is the applied force, h is the displacement of the indenter tip into the material, and C is a constant that depends on the elastic and plastic properties of the material. An example of the materials response is shown in Figure 4.5 [22]. From this plot of load as a function of indentation depth, known as the load-displacement curve, mechanical properties such as elastic modulus and hardness can be extracted, using relationships discussed in reference [23].

Figure 4.5 - Typical load-displacement curve recorded during indentation experiments [22]. P is the applied load. The total work done by the indenter tip is W_t , which is the sum of the plastic work, W_p , and elastic work, W_e . h_m is the maximum indentation depth and h_f is the final depth of the indent after elastic recovery.

As shown in Figure 4.6, the elastic modulus, E, is descriptive the elastic behavior of the material, which occurs below the yield stress. Hardness is a measure of resistance against plastic deformation, which occurs above the yield stress and is descriptive of the density of dislocations.

Figure 4.6 – Stress (σ) as a function of non-dimensional strain (ε). Below the yield stress (σ_{Yield}), the slope is equal to the elastic modulus, E, and the material deforms elastically. Above the yield stress, deformation is plastic.

The elastic modulus of the material obtained through nanoindentation is determined from the stiffness of the material. The stiffness is equal to the slope of the unloading segment at the maximum indentation depth of the load-displacement curve. From the measured stiffness, the reduced modulus, E_r , is given by

$$E_r = \frac{\sqrt{\pi}}{2} \frac{S}{\sqrt{A}} \tag{4.1}$$

where the stiffness, S, is equal to $\frac{dP}{dH}\Big|_{h_m}$ which is the slope of the unloading segment of the

load-displacement curve, and A is the area created by the indentation, which is a function of indentation depth, and will be discussed in Chapter 4.4.1 [23]. The elastic modulus is then determined by

$$E_r = \left[\frac{1 - v^2}{E} + \frac{1 - v_i^2}{E_i} \right]^{-1} \tag{4.2}$$

where, E is the elastic modulus, E_r is the reduced elastic modulus, E_i is the elastic modulus of the indenter tip, v is the Poisson's ratio of the material, and v_i is the Poisson's ratio of the indenter tip.

The hardness of the material is given by

$$H = \frac{P}{A} \tag{4.3}$$

where *H* is the measured hardness, *P* is the maximum load, and *A* is the area.

4.4.1. Tip area function

The area created by the indentation is an important parameter in the determination of the mechanical properties of the material, specifically hardness. For the cube corner indenter tip, the relationship between area created by the indentation and indentation depth is given by [21]:

$$A = 2.598h_f^2 (4.4)$$

The description of the indenter geometry, and thus the area it will create as described in equation (4.4), will inevitably be incorrect because of imperfections in fabrication or blunting of the tip over time. Therefore, each indentation measurement is accompanied with a characterization of

the tip geometry, and this more accurate relationship between area (A) and depth (h_c) is used. First, indentations of a comparable depth to the indentations made in the sample to be measured are made in fused silica, a material with known elastic modulus and hardness. The response to the indentation by fused silica can then be used to solve for an accurate area function for the imperfect indenter tip. This characterization accompanied every set of indentation measurements throughout this research to ensure that an accurate description of the tip geometry was always used.

4.4.2. Indentation size effect

In materials that are isotropic, measured values of hardness and elastic modulus should be expected to remain constant independent of indentation depth. However, these measured values may exhibit indentation depth dependence or variations due to an inability to accurately describe the indenter geometry with an area function at lower indentation depths. Even when these effects are accounted for and minimized, hardness and elastic modulus variation with depth can still be observed. This is known as the indentation size effect [23].

The indentation size effect is caused by substantial strain gradients created in the vicinity of the indenter tip during an indentation. Inside these strain gradients, dislocations are nucleated and form circular dislocation loops. These dislocations are known as geometrically necessary dislocations and serve to increase the yield strength and the hardness of the material. The density of geometrically necessary dislocations, ρ_G , is inversely proportional to the depth of indentation. Therefore, the measured hardness increases as indentation depth decreases. The increase in hardness behaves as

$$\frac{H}{H_o} = \sqrt{1 + \frac{h^*}{h}} \tag{4.5}$$

where H is the measured hardness, H_o is the hardness that would be measured at infinite depth (without the presence of the indentation size effect), h is the indentation depth, and h^* is a length that is characteristic of the depth dependence of the hardness [24]. The value of h^* is determined by [24]:

$$h^* = 40.5b\alpha^2 \tan^2 \theta \left(\frac{\mu}{H_o}\right)^2 \tag{4.6}$$

where h^* is determined from the Burger's vector of geometrical necessary dislocations (b), the angle of the interior angle of the indenter tip (θ) , shear modulus (μ) and hardness at infinite depth (H_o) . α is a fitting parameter that describes the relative ease of dislocation movement in the material [24]. Characterization of the Inconel 690 samples to determine the presence of an indentation size effect was completed and is discussed explicitly in Chapter 5.

4.4.3. Frame compliance

In addition to inaccuracies in the measurement resulting from an indenter tip that has imperfections, the measurement of the displacement of the indenter tip into the material will include displacements of the instrument that result from reaction forces during the indentation. This displacement, known as the frame compliance, or C_f , is directly proportional to the load used to create the indentation and must be accounted for in the total measured displacement. The method of determining this displacement begins by considering the load frame and the sample as springs in series. Therefore, the total compliance, C, can be expressed as

$$C = C_s + C_f \tag{4.7}$$

50

where the total measured compliance, C_s , is the sum of the frame compliance, C_f , and sample compliance, C_s [20]. The compliance of the sample, C_s , is equal to the inverse of the stiffness, S_s , which is recorded during the indentation measurement. Substituting equation (4.1) into equation (4.7) yields

$$C = C_f + \frac{\sqrt{\pi}}{2E_r} \frac{1}{\sqrt{A}} \tag{4.8}$$

For a given material, E_r is assumed to remain constant. Therefore, a plot of the C vs \sqrt{A} , is a linear relationship and the intercept of this relationship is the frame compliance, C_f . Because frame compliance can vary over time, characterization of the load frame on fused silica accompanied each nanoindentation measurement.

5. Experimental procedure

This chapter explicitly describes the experimental procedure followed and conditions used to conduct nanoindentation measurements. Samples were received from Special Metals and prepared for analysis. EBSD analysis was conducted on the sample surface. Nanoindentation, and in some cases, TEM and STEM, was then conducted on grain boundaries in those areas [17].

5.1. Sample preparation

5.1.1. Thermomechanical processing

Thermomechanical processing (TMP) was used to create two samples with distinctly different microstructural features: a sample that had undergone solution annealing, and another sample that, after solution annealing, was cold-rolled, thermally treated and furnace cooled.

The as received bar was cut into two 2 cm (length) x 1.2 cm (width) segments, referred to as Sample I and Sample II, using a slow speed saw equipped with a Buehler IsoCut Diamond Wafering Blade. Sample I and Sample II were then solution annealed at 1107 °C for 15 minutes and water quenched. Following annealing, Sample II was cold rolled to achieve a 5% thickness reduction. By cold-rolling, the absorbed energy by Sample II serves to nucleate and translate dislocations. Subsequently, Sample II was annealed at 950 °C and furnace cooled. This thermal treatment and cooling served to drive recrystallization and force development of a new microstructure with differing properties relative to Sample I. Table 5.1 summarize the TMP completed on Samples I and II.

	Thickness reduction	Annealing temperature	Cooling method
Sample I	0%	1107 °C	Water quenched
Sample II	5%	950 °C	Furnace cooled

Table 5.1 – Summary of TMP on Sample I and Sample II

5.1.2. Mechanical polishing

Each sample was mechanically polished to ensure a polished surface capable of revealing grain boundaries when viewed with an optical microscope and to reduce surface roughness.

Each sample was polished using a Buehler Ecomet3/Automet 2 variable speed grinder/polisher.

Samples were polished using CarbiMet waterproof paper of progressively increasing grit sizes to an eventual surface roughness of 9 μm. Samples where then polished using polycrystalline diamond abrasive MetaDi Supreme of progressively decreasing particle size to an eventual surface roughness of 50 nm, as described in Table 5.2.

Surface	Abrasive	Load	Base speed	Time
CarbiMet abrasive discs	60 to 1200 grit SiC water cooled	6 lb	150 rpm	Until planar
Trident cloth	9 µm MetaDi Supreme diamond suspension	6 lb	150 rpm	15 mins
Trident cloth	3 µm MetaDi Supreme diamond suspension	6 lb	150 rpm	15 mins
Trident cloth	1 μm MetaDi Supreme diamond suspension	6 lb	150 rpm	15 mins
MicroCloth	MasterPrep 0.05 um		150 rpm	15 mins

Table 5.2 – Summary of mechanical polishing procedure for each sample

5.1.3. Electrolytic polishing

Electrolytic testing to determine ideal conditions and polishing were conducted using a

ParStat 2273 electrochemical potentiostat. Inconel 690 samples were used as the anode, while a 1 cm² platinum mesh, positioned parallel to the anode at a distance of approximately 1 cm was used as the counter electrode. The anode and cathode were connected to the leads of the potentiostat with nickel wire; the nickel wire was spot welded to the anode and to the cathode by threading it through the platinum mesh. The electrolyte solution consisted of 60 mL H₂SO₄ and 40 mL deionized H₂O. The potential and current density relationship for each sample was determined potentiodynamically by increasing cathodic potential from 0 to 10 V at a rate of 20 mV/s. Following completion of electrolytic polishing, samples were quickly removed from the electrolyte solution and thoroughly rinsed with deionized water.

Though desirable to obtain an electrolytically polished surface for both Samples I and II, this was not feasible due to time constraints and safety concerns. Sample I was successfully electrolytically polished with the conditions described in Chapter 4.2. First, evolution of hydrogen gas was not evident at the platinum cathode when Sample I was placed in the electrolyte solution. The ideal polishing current was determined to be approximately 400 mA using the aforementioned procedure. The current and voltage relationship built during this procedure is shown in Figure 5.1.

Figure 5.1 – Current-Voltage relationship for Sample I to determine ideal electrolytic polishing conditions.

Sample I was electrolytically polished at 400 mA for 180 seconds. Dissolution of the sample into the electrolyte solution was evident. Immediately upon completion, Sample I was removed from the electrolyte solution and rinsed thoroughly with deionized water. Visual inspection of the surface of Sample I revealed no corrosion of the surface.

Electrolytic polishing on Sample II was not successfully accomplished using the same electrolyte solution. TMP resulted in the formation of chromium carbide precipitates throughout the sample. As a result, Sample II experienced severe general corrosion when placed into the H_2SO_4 electrolyte solution. The surface was recovered by repeating the mechanical polishing procedure discussed in Chapter 4.2. The effect of not electrolytically polishing Sample II on the measurements of hardness and elastic modulus was insignificant, and is discussed more thoroughly in Chapter 5.4.4.

5.2. Fiduciary marking using microindentation

To coordinate measurements taken on grain boundaries of interest, the surfaces of Sample I and Sample II were marked with a 10×10 grid of microindentations using a Micro Materials NanoTest 600 Microindenter. Indents were made using a load of 3 N, which achieved depths of approximately 9 μ m, to ensure that indents were easily visible in an optical microscope. Figure 5.2 displays the grids for Sample I as an example.

Figure 5.2 – Microindentation grid of Sample I

5.3. Electron backscatter diffraction analysis

Electron backscatter diffraction was conducted to identify the crystallographic orientation and grain boundary structures of the mapped areas of the surfaces. Optical images and the corresponding inverse pole figure (IPF) images are shown in Figure 5.3 and Figure 5.4 for Sample I and Sample II, respectively.

Optical image

Inverse pole figure image

Figure 5.3 – Optical image and inverse pole figure of Sample I

Optical image

Inverse pole figure image

Figure 5.4 – Optical image and inverse pole figure of Sample II

5.4. Nanoindentation

Nanoindentation experiments were conducted using a Hysitron TI 900 TriboIndenter. Indents were made using a cube corner indenter tip with a radius of curvature of approximately 100 nm. A load function with 10 s loading segment of 17.5 μ N/s to a peak load of 175 μ N, a holding segment of 10 s at peak load, and an unloading segment of 17.5 μ N/s, as shown in Figure 5.5.

Figure 5.5 - Load function used for nanoindentation measurements

Nanoindentations were made on, 500 nm away from and 5 μ m away from grain boundaries. For each grain boundary that was characterized, 50 indents were made, an example of which is shown in Figure 5.6: 10 on the grain boundary itself, 10 indents located 500 nm on both sides of the grain boundary (20 total), and a grid of 10 indents centered 5 μ m from the grain boundary, with 1.55 μ m separation between indents, on both sides of the grain boundary.

Figure 5.6 – In situ images of nanoindentations showing (left) 50 indents: 10 on the grain boundary, 10 located 500 nm on both sides of the boundary, and a grid of 10 centered 5 μ m on both sides of the grain boundary and (right) indents 500 nm away from the boundary.

Two grain boundaries on Sample I were measured using an automated indentation scheme. This was done as way to determine if the measurement technique resulted in hardening of the grain boundary. Rows of 14 indents were conducted approaching the grain boundary from both directions, as shown in Figure 5.8.

Figure 5.7 – Rows of indents completed by approaching the grain boundary from the left and right using automation.

Indenter geometry was characterized after each set of indentation measurements. Area functions were determined with the analysis method described in Chapter 4.4.1, using 40 indentations made on fused silica. Indentation depths on fused silica ranged from 40 nm to 120 nm to ensure similarity to indentation depths achieved on Samples I and II. The selection of the appropriate indentation depth is discussed in Chapter 5.4.1. The in situ imaging feature of the Hystron TriboIndenter was used to capture appropriately scaled images of the indentations after they were completed.

Frame compliance was also characterized after each set of indentation measurements.

Frame compliance was determined with the analysis method described in Chapter 4.4.3, using 50 indentations made on fused silica. Indentation depths on fused silica ranged from 300 nm to 400 nm.

5.4.1. Indentation depth

Indentation depth of nanoindentation measurements can be unreliable if an appropriate indentation depth is not selected. Deep indentations risk being affected by inhomogeneties below the surface. For indentations in the bulk regions, the depth of the grains is unknown so

indentations may interact with different types of grains below the surface. For indentations on and near grain boundaries, the position of the grain boundary below the surface is also unknown. Therefore, deep indentations near the boundary might interact with a grain boundary below the surface, while deep indentations on the boundary might interact with a grain. Conversely, shallow indentations can be unreliable if the indentation depth is on the order of the asperity height of the surface roughness.

Therefore, an indentation depth for nanoindentation measurements was selected that was as shallow as possible. This depth was determined by performing 30 indentations over progressively increasing peak loads. The resulting data was analyzed to determine the minimum peak load where the standard deviation of the data set would be acceptable. This data analysis is summarized in Table 5.3.

Peak	Average	Elastic Modulus (GPa)		Hardness (GPa)	
Load (µN)	indentation depth (nm)	Mean (\overline{X})	Standard Deviation (σ)	Mean (\overline{X})	Standard deviation (σ)
50	25.26	94.42	18.67	3.77	1.00
80	31.51	133.80	25.35	4.20	0.30
105	36.98	146.36	27.37	4.65	0.28
130	43.23	154.17	27.83	4.65	0.28
175	60.12	151.69	20.02	4.31	0.18
210	73.51	164.18	17.77	4.09	0.11
250	86.09	163.72	17.92	3.98	0.19

Table 5.3 – Comparison of indentation data gathered at progressively increasing peak loads. The italicized row shows the optimized indentation conditions for minimum indentation depth.

The italicized row in Table 5.3 identifies the indentation data measured at a peak load of 175 μ N, which yielded an average indentation depth of 60.12 nm. This data yielded a standard deviation of 20.02 GPa for elastic modulus and 0.18 for hardness. These respective values were an improvement over the next lowest peak load of 130 μ N, but not a significant improvement

from the next highest peak load of 210 μ N. 175 μ N was determined as the optimal load for indentation measurements and was used throughout this thesis.

5.4.2. Indentation lateral separation

Individual nanoindentation measurements create a stress field in the material in a three dimensional spherical volume of radius equal to the indentation depth. This stress field, also associated with dislocation hardening, can impact nanoindentation data if the neighboring indents do not have adequate lateral separation to avoid the overlapping of their impact volume. In this thesis, it is desirable to perform indentation measurements in small distances from grain boundaries. To identify the minimum lateral separation between indents, 4 sets of 30 indentations, at lateral separations of factors of 10, 7, 4, and 2 times the indentation depth of 100 nm were done on Sample I. The results of these indentation sets are summarized in Table 5.4.

Lateral	Elastic Mo	dulus (GPa)	Hardness (GPa)		
separation as a function of indentation depth (h _c)	Mean (\overline{X})	Standard Deviation (σ)	Mean (\overline{X})	Standard deviation (σ)	
10h _c	131.42	9.62	2.80	0.18	
7h _c	143.44	13.43	2.80	0.15	
4h _c	153.94	26.93	3.40	1.07	
2h _c	170.18	37.51	4.58	1.94	

Table 5.4 – Comparison of elastic modulus (E) and hardness (H) for indentation sets of 30 indents with different lateral separations between indents.

Table 5.4 shows a significant increase in the standard deviation of the elastic modulus and hardness when the lateral separation between indents is below 7hc to 4hc. This increase is the result of the overlapping impact volume of neighboring indents. Therefore, indentation measurements in this thesis were done maintaining a minimum lateral separation of 7h_c.

5.4.3. Indentation size effect

The presence of an indentation size effect, as discussed in Chapter 4.4.2, was characterized using Sample I. Indentations at varying depths were done to observe the behavior of the measured hardness as a function of depth, as shown in Figure 5.8.

Figure 5.8 – Hardness as a function of indentation depth, showing the indentation size effect encountered in nanoindentation measurements. Measured hardness is shown as black squares; theoretical indentation size effect is shown as a burgundy dashed line.

The measured hardness as a function of indentation depth shown in Figure 5.8 aligns well with the theoretical prediction of the indentation size effect from equation 4.5. The theoretical prediction (dashed curve in Figure 5.8) from equation 4.5 is plotted with the fitting parameter that describes ease of dislocation movement, α , equal to 0.7, which is similar to values used by Nix and Gao [24]. While this behavior is indicative of an indentation size effect in Inconel 690, an explicit determination of whether or not Inconel 690 experiences an actual indentation size effect is not important to the results in this thesis. This is because measured hardness values are compared between sets of indentations done at approximately the same indentation depths (within 5 nm.) This characterization does, however, reconcile the difference between the published hardness of Inconel 690 (1.67 GPa) and the measured values of hardness (between 3 and 6 GPa) in this thesis. Additionally, the data collection and development of a relationship

between the depth dependence on measured hardness in this thesis serves to further characterize Inconel 690 for any future work on this material.

5.4.4. Effect of electrolytic polishing

As mentioned in Chapter 5.1.3, electrolytic polishing was accomplished on Sample I. However, when placed in the electrolytic solution, general corrosion of Sample II occurred and therefore did not allow for electrolytic polishing. Although it is possible to alter the electrolyte solution to allow for electrolytic polishing, omitting electrolytic polishing of the TMP sample was determined to be a more appropriate solution due safety concerns associated with hazardous chemicals needed for electrolytic polishing of chromium-carbide precipitated surfaces.

The hardness and elastic modulus of each sample were compared. 50 indents were done on each sample using the exact specifications of the indents done throughout this thesis: a peak load of 175 μ N which achieved indentation depths of approximately 50-60 nm. This data is summarized in Table 5.5.

	Sample I		Sample II	
	Mean (GPa)	Standard	Mean (GPa)	Standard
		deviation		deviation
		(GPa)		(GPa)
Elastic modulus (E)	166.38	16.93	168.56	20.15
Hardness (H)	4.73	0.24	4.85	0.36

Table 5.5 – Comparison of Elastic modulus (E) and hardness (H) of solution annealed sample and TMP sample. The solution annealed sample underwent mechanical and electrolytic polished, while the TMP sample only underwent mechanical polishing.

As shown in Table 5.5, only small differences in the values of hardness and elastic modulus between the Sample I and Sample II is evident. Additionally, the standard deviations of each respective data set are comparable. The effect of not electrolytically polishing Sample II

was found to be negligible, likely due to the high value of hardness of Inconel 690. Sample II was analyzed using nanoindentation without being electrolytically polished.

6. Results and discussion

6.1. Nanoindentation results

Nanoindentation measurements to determine hardness (H) and elastic modulus (E) at different relative positions of 10 grain boundaries on Sample I and Sample II were conducted. This thesis focuses on the behavior of dislocations and the relationship of that behavior to grain boundaries. Due to this focus, the analysis and discussion of the results that follows concentrates on the measured values of hardness instead of elastic modulus.

On Sample I, two nanoindentation schemes were used. The first scheme, shown in Figure 5.6, was used to characterize differences in the inherent hardness at the bulk regions and regions near the grain boundary as a function of grain boundary structure. Inherent hardness differences reflect differences in the density of stored dislocations that arise during processing of the sample. The distribution of the stored dislocation density is therefore dependent on the annealing temperature and time. The second scheme, shown in Figure 5.7, was used to characterize the induced hardness of two grain boundaries, one $\Sigma 3$ grain boundary and one high angle boundary. Induced hardness occurs when dislocations are created by nanoindentations and accumulate. These dislocations move towards grain boundaries and are absorbed by, glide through or piled up alongside the grain boundary. The resulting density of dislocations alongside the boundary then contributes to the hardness measurement at that location. Grain boundaries that did not show statistically significant differences in inherent hardness between the bulk regions and the grain boundary were chosen to isolate the induced grain boundary hardening effect.

On Sample II, the nanoindentation scheme shown in Figure 5.6 was used to characterize inherent hardness near, alongside and on grain boundaries. TMP resulted in the formation of chromium carbide precipitates at grain boundaries on Sample II. The presence of these

precipitates dominated the blocking of dislocations near the boundary. This nanoindentation scheme was used to characterize inherent hardness differences between bulk regions and regions near the grain boundary due to the presence of chromium carbide precipitates.

6.1.1. Sample I

Six boundaries on Sample I were characterized using procedure described in 5.4: four $\Sigma 3$ grain boundaries and two high angle boundaries. In situ imaging was done at an appropriate scale to capture the indentation scheme for each data set. For each data set, a comparison of the magnitudes of the elastic modulus (E) and hardness (H), and the ratio of the E and H measured at the bulk and at the grain boundary is included. Inherent and induced mechanical properties for grain boundary (4) and grain boundary (6) were characterized.

Grain Boundary (1)

Grain boundary type: $\Sigma 3$	Neighboring grain orientations
Misorientation angle: 59.3°	Left grain: <0 1 2>
Misorientation direction: <1 -1 -1>	Right grain: <-1 0 2>

Figure 6.1 - (A) IPF plot showing orientation of grains that form. Grain boundary (1) is marked by a black arrow. (B) In situ image of grain boundary (1).

	5 μm left of GB	500 nm left of GB	Grain Boundary	500 nm right of GB	5 μm right of GB
E (GPa)	200.1	228.4	211.9	217.2	199.7
H (GPa)	3.27	4.67	4.37	4.61	3.38

Table 6.1 - E and H measured at different positions relative to grain boundary (1).

	$\frac{500 \text{ nm from GB}}{5 \mu\text{m left of GB}}$	$\frac{500 \text{ nm from GB}}{5 \mu\text{m right of GB}}$
E	1.14	1.09
H	1.43	1.36

Table 6.2 – Ratio of bulk to near grain boundary regions for E and H on grain boundary (1).

Figure 6.2 - Difference in E as a function of position relative to grain boundary (1).

Figure 6.3 - Difference in H as a function of position relative to grain boundary (1).

Grain Boundary (2)

Grain boundary type: High angle
Misorientation angle: 43.6°
Misorientation direction: <0 -2 -1>

Neighboring grain orientations

Left grain: <-1 0 3>

Right grain: <1 -1 1>

Figure 6.4 – (A) IPF plot showing orientation of grains that form. Grain boundary (2) is marked by a black arrow. (B) In situ image of grain boundary (2).

	5 μm	500 nm	Grain	500 nm	5 μm
	left of	left of	Boundary	right of	right of
	GB	GB		GB	GB
E (GPa)	186.7	205.1	201.6	208.7	207.8
H (GPa)	3.64	3.77	3.48	3.44	3.51

Table 6.3 - E and H measured at different positions relative to grain boundary (2).

	500 nm from GB	500 nm from GB
	5 μm left of GB	5 μm right of GB
E	1.10	1.00
Н	0.98	0.96

Table 6.4 - Ratio of bulk to near grain boundary regions for E and H on grain boundary (2).

Figure 6.5 - Difference in E as a function of position relative to grain boundary (2).

Figure 6.6 - Difference in H as a function of position relative to grain boundary (2).

Grain Boundary (3)

Grain boundary type: CSL (Σ3)	Neighboring grain orientations
Misorientation angle: 59.3°	Left grain: <0 1 2>
Misorientation direction: <1 -1 -1>	Right grain: <1 0 2>

Figure 6.7 – (A) IPF plot showing orientation of grains that form. Grain boundary (3) is marked by a black arrow. (B) In situ image of grain boundary (3).

	5 μm	500 nm	Grain	500 nm	5 μm
	left of	left of	Boundary	right of	right of
	GB	GB		GB	GB
E (GPa)	193.7	187.1	195.9	177.3	183.2
H (GPa)	4.78	4.62	4.75	4.81	4.93

Table 6.5 - E and H measured at different positions relative to grain boundary (3).

	500 nm from GB	500 nm from GB
	5 μm left of GB	5 μm right of GB
E	0.97	0.97
H	0.97	0.97

Figure 6.8 - Ratio of bulk to near grain boundary regions for E and H on grain boundary (3).

Figure 6.9 - Difference in E as a function of position relative to grain boundary (3).

Figure 6.10 - Difference in H as a function of position relative to grain boundary (3).

Grain Boundary (4)

Grain boundary type: CSL ($\Sigma 3$)
Misorientation angle: 59.9°
Misorientation direction: <-1 1 -1>
Neighboring grain orientations
Left grain: <-3 1 3>
Right grain: <1 2 -1>

Figure 6.11 – (A) IPF plot showing orientation of grains that form. Grain boundary (4) is marked by a black arrow. (B) In situ image of grain boundary (4).

	5 μm	500 nm	Grain	500 nm	5 μm
	left of	left of	Boundary	right of	right of
	GB	GB		GB	GB
E (GPa)	200.1	186.0	202.71	207.24	212.95
H (GPa)	4.61	4.45	4.43	4.33	4.54

Table 6.6 - E and H measured at different positions relative to grain boundary (4).

	$\frac{500 \text{ nm from GB}}{5 \mu\text{m left of GB}}$	$\frac{500 \text{ nm from GB}}{5 \mu\text{m right of GB}}$
E	0.97	0.93
Н	0.95	0.96

Table 6.7 - Ratio of bulk to near grain boundary regions for E and H on grain boundary (4).

Figure 6.12 - Difference in E as a function of position relative to grain boundary (4).

Figure 6.13 - Difference in H as a function of position relative to grain boundary (4).

Grain Boundary (5)

Grain boundary type: CSL (Σ3)	Neighboring grain orientations
Misorientation angle: 59.3°	Left grain: <-1 0 2>
Misorientation direction: <1 -1 -1>	Right grain: <0 1 2>

Figure 6.14 – (A) IPF plot showing orientation of grains that form. Grain boundary (5) is marked by a black arrow. (B) In situ image of grain boundary (5).

	5 μm left of	500 nm left of	Grain Boundary	500 nm right of	5 μm right of
	GB	GB		GB	GB
E (GPa)	190.9	189.0	194.7	182.5	168.5
H (GPa)	4.19	4.32	4.07	4.71	4.40

Table 6.8 - E and H measured at different positions relative to grain boundary (5).

	500 nm from GB	500 nm from GB
	5 µm left of GB	5 μm right of GB
E	1.08	0.99
H	1.07	1.03

Table 6.9 - Ratio of bulk to near grain boundary regions for E and H on grain boundary (5).

Figure 6.15 – Bar chart showing difference in E as a function of position relative to grain boundary (5).

Figure 6.16 - Bar chart showing difference in H as a function of position relative to grain boundary (5).

Grain Boundary (6)

Grain boundary type: High Angle	Neighboring grain orientations
Misorientation angle: 59.6°	Left (top) grain: <-1 4 0>
Misorientation direction: <1 1 1>	Right (bottom) grain: <-1 1 1>

Figure 6.17 – (A) IPF plot showing orientation of grains that form. Grain boundary (6) is marked by a black arrow. (B) In situ image of grain boundary (6).

	5 μm left of	500 nm left of	Grain Boundary	500 nm right of	5 μm right of
	GB	GB		GB	GB
E (GPa)	208.7	212.7	215.1	202.5	202.5
H (GPa)	4.24	4.26	4.60	4.48	4.74

Table 6.10 - E and H measured at different positions relative to grain boundary (6).

	500 nm from GB	500 nm from GB
	5 µm left of GB	5 μm right of GB
E	1.00	1.02
H	0.95	1.00

Table 6.11 - Ratio of bulk to near grain boundary region for E and H on grain boundary (6).

Figure 6.18 – Difference in E as a function of position relative to grain boundary (6).

Figure 6.19 - Difference in H as a function of position relative to grain boundary (6).

Grain Boundary (4) – Induced hardness

Figure 6.20 – In situ image of induced hardness measurement on grain boundary (4). Arrows indicate the direction nanoindentations were done in.

Figure 6.21 - Measurements of tip-induced hardening effect on grain boundary (4) for indentations approaching the grain boundary from left to right. (A) 4 of 5 indentation rows showed an increased hardness near the grain boundary relative to the bulk region of \sim 14.4% (4.57 GPa to 5.23 GPa) beginning at 2.5 μ m from the left of the grain boundary. (B) 1 of 5 indentation rows did not show an increase in hardness approaching the grain boundary.

Figure 6.22 – Measurements of tip-induced hardening effect on grain boundary (4) for indentations approaching the grain boundary from right to left. (A) 4 of 6 indentation rows showed an increased hardness near the grain boundary relative to the bulk region of ~9.6% (4.60 GPa to 5.04 GPa) beginning at 2.5 μ m from the right of the grain boundary. (B) 2 of 6 indentation rows did not show an increase in hardness approaching the grain boundary.

Grain Boundary (6) – Induced hardness

Figure 6.23 – In situ image of induced hardness measurement on grain boundary (6). Arrows indicate the direction nanoindentations were done in.

Figure 6.24 – Measurements of tip-induced hardening effect on grain boundary (6) for indentations approaching the grain boundary from left to right. 3 of 3 indentation rows showed an increased hardness near the grain boundary relative to the bulk region of ~13.5% (4.90 GPa to 5.56 GPa) beginning at 2.5 μm from the left of the grain boundary.

Figure 6.25 - Measurements of tip-induced hardening effect on grain boundary (6) for indentations approaching the grain boundary from right to left. (A) 2 of 3 indentation rows showed an increased hardness near the grain boundary relative to the bulk region of ~9.47% (4.75 GPa to 5.20 GPa) beginning at 2.5 μm from the right of the grain boundary. (B) 1 of 3 indentation rows did not show an increase in hardness approaching the grain boundary.

6.1.2. Sample II

Four boundaries on Sample II were characterized using the aforementioned procedure: one $\Sigma 3$ grain boundary, one low angle boundary and two high angle boundaries. In situ imaging was done at an appropriate scale to capture the indentation scheme for each data set. For each data set, a comparison of the magnitudes of the elastic modulus (E) and hardness (H), and the ratio of the E and H measured at the bulk and at the grain boundary is included.

Grain boundary type: CSL (Σ3)	Neighboring grain orientations
Misorientation angle: 54.2°	Left grain: <-1 0 2>
Misorientation direction: <4 3 0>	Right grain: <0 -1 2>

Figure 6.26 - (A) IPF plot showing orientation of grains that form. Grain boundary (1) is marked by a black arrow. (B) In situ image of grain boundary (1).

	5 μm	500 nm	Grain	500 nm	5 μm
	left of	left of	Boundary	right of	right of
	GB	GB		GB	GB
E (GPa)	204.6	201.6	216.5	220.5	205.0
H (GPa)	4.33	4.68	5.85	5.17	4.18

Table 6.12 - E and H measured at different positions relative to grain boundary (1).

	500 nm from GB	500 nm from GB
	5 µm left of GB	5 μm right of GB
E	0.99	1.08
H	1.08	1.24

Table 6.13 - Ratio of bulk to near grain boundary region for E and H on grain boundary (6).

Figure 6.27 – Difference in E as a function of position relative to grain boundary (6).

Figure 6.28 – Difference in E as a function of position relative to grain boundary (6).

Grain boundary type: High angle	Neighboring grain orientations
Misorientation angle: 12.1°	Left grain: <-2 1 1>
Misorientation direction: <4 3 0>	Right grain: <-3 1 1>

Figure 6.29 - (A) IPF plot showing orientation of grains that form. Grain boundary (2) is marked by a black arrow. (B) In situ image of grain boundary (2).

	5 μm	500 nm	Grain	500 nm	5 μm
	left of	left of	Boundary	right of	right of
	GB	GB		GB	GB
E (GPa)	198.0	192.0	204.5	186.8	209.9
H (GPa)	3.66	3.62	3.43	3.24	3.91

Table 6.14 - E and H measured at different positions relative to grain boundary (2).

	500 nm from GB	500 nm from GB
	5 µm left of GB	5 μm right of GB
E	0.97	0.89
H	0.99	0.83

Table 6.15 - Ratio of bulk to near grain boundary region for E and H on grain boundary (2).

Figure 6.30 – Difference in E as a function of position relative to grain boundary (2).

Figure 6.31 – Difference in E as a function of position relative to grain boundary (2).

Grain boundary type: Low angle	Neighboring grain orientations
Misorientation angle: 58.8°	Left grain: <2 -1 0>
Misorientation direction: <-1 1 -1>	Right grain: <-1 2 2>

Figure 6.32 - (A) IPF plot showing orientation of grains that form. Grain boundary (3) is marked by a black arrow. (B) In situ image of grain boundary (3).

	5 μm	500 nm	Grain	500 nm	5 μm
	left of	left of	Boundary	right of	right of
	GB	GB		GB	GB
E (GPa)	222.0	166.6	220.6	186.7	208.9
H (GPa)	5.10	2.94	5.48	3.06	4.48

Table 6.16 - E and H measured at different positions relative to grain boundary (3).

	$\frac{500 \text{ nm from GB}}{5 \mu\text{m left of GB}}$	500 nm from GB 5 μm right of GB
E (GPa)	0.99	1.08
H (GPa)	1.08	1.24

Table 6.17- Ratio of bulk to near grain boundary region for E and H on grain boundary (3).

Figure 6.33– Difference in E as a function of position relative to grain boundary (6).

Figure 6.34– Difference in E as a function of position relative to grain boundary (3).

Grain boundary type: High angle
Misorientation angle: 51.5°
Misorientation direction: <-3 1 -1>

Neighboring grain orientations
Left grain: <-2 0 1>
Right grain: <2 1 3>

Figure 6.35 - (A) IPF plot showing orientation of grains that form. Grain boundary (4) is marked by a black arrow. (B) In situ image of grain boundary (4).

	5 μm	500 nm	Grain	500 nm	5 μm
	left of	left of	Boundary	right of	right of
	GB	GB		GB	GB
E (GPa)	198.0	211.9	218.4	205.6	218.3
H (GPa)	4.79	5.73	6.27	4.65	4.77

Table 6.18 - E and H measured at different positions relative to grain boundary (4).

	500 nm from GB	500 nm from GB
	5 µm left of GB	5 μm right of GB
E	1.07	0.89
H	1.20	0.97

Table 6.19 - Ratio of bulk to near grain boundary region for E and H on grain boundary (4).

Figure 6.36 – Difference in E as a function of position relative to grain boundary (4).

Figure 6.37 – Difference in E as a function of position relative to grain boundary (4).

6.2. Discussion of nanoindentation results

6.2.1. Sample I

A discussion of the correlation of measured inherent and tip-induced hardness values to grain crystalline orientation, grain boundary size, and grain boundary structure is presented here.

6.2.1.1. Grain boundary orientation

Figure 6.38 shows hardness of the bulk regions of neighboring grains of the grain boundaries on Sample I.

Figure 6.38 – Hardness (H) as a function for different crystalline orientations. Two data sets completed with the NorthStar cube corner tip are not included.

Hardness in the bulk regions does not show a strong dependence on crystalline orientation. This is in agreement with the work of Alexandreanu et al [28] and Vlassak and Nix [25], who both observed negligible differences due to the complicated three dimensional stress field created when using a three-sided pyramidal indenter tip for indentation measurements.

6.2.1.2. Grain boundary size

Figure 6.39 shows the hardness of the bulk regions of neighboring grains of each grain boundary observed from Sample I.

Figure 6.39 – Hardness measured in the bulk region of grains as a function of the square root of grain size $(d^{1/2})$. Two data sets completed with the NorthStar cube corner tip are not included.

Figure 6.39 shows that hardness in the bulk regions does not show a dependence on grain size. Hardness is expected to increase with decreasing grain size according to the Hall-Petch relationship,

$$\sigma_{y} = \sigma_{o} + \frac{K}{\sqrt{d}}$$

where σ_y is the resulting yield stress, σ_o is an initial value of yield stress, K is a material dependent constant, and d is the grain size. Grain size is determined by approximating the grains as rectangles and taking the square root of the area. This does not agree with the observations of Alexandreanu et al [28], who observed the expected decreasing hardness with increasing average grain size.

The Hall-Petch effect is likely not observed on Sample I for several reasons. First, grain size is approximated using a two dimensional image. The third dimension of grain is hidden making grain size approximation difficult. This rationale can also be used when considering that the sample surface is where the larger Inconel 690 bar was cut. Thinking of the image as a two dimensional cross section reveals how grain depth or height would be impossible to consider when approximating grain size. Finally, sizes of grains are of similar orders of magnitude, and

thus, the increased yield strength resulting from the Hall-Petch relationship would likely be negligible. Therefore, for the purposes of the analysis in this thesis, hardness can be considered to be independent of grain size evident on the surface of Sample I.

6.2.1.3. Grain boundary type – Inherent hardness

Figure 6.40 and Figure 6.41 summarize the measurements taken on grain boundaries on Sample I as a function of grain boundary type.

Figure 6.40 – Summary of elastic modulus (E) measured on grain boundaries on Sample I. Two data sets completed with the NorthStar cube corner tip are not included.

Figure 6.41 - Summary of hardness (H) measured on grain boundaries on Sample I.

The first two data sets presented from Sample I show a significantly decreased elastic modulus and hardness in the bulk region of the grain boundary relative to the region in the vicinity of the grain boundary. These data sets were compiled using a specific cube corner tip with a small radius of curvature, known as a NorthStar cube corner tip. During the course of the measurements taken, however, the NorthStar cube corner tip experienced a sudden and severe degradation. Because the exact timing of the degradation could not be localized with a high degree of confidence, the data collected using this tip is potentially affected by the tip degradation.

The remaining data sets were analyzed using a cube corner indenter tip verified to be of sound structural quality. Hardness on the grain boundary, near the grain boundary and in the corresponding bulk region of the show only slight differences for each characterized grain boundary.

The absence of significant differences in inherent hardness between the bulk and grain boundary regions indicates the uniformity in the distribution of stored dislocation density. This could be caused by the high temperature annealing at 1107°C which enables the annihilation and

absorption of strain-induced dislocations in the lattice and at the ground boundaries. Nix and Gao [24] describe the hardness measured by nanoindentation in terms of statistically stored dislocations, ρ_s , and geometrically necessary dislocations, ρ_G , induced by the indenter tip as

$$H = 3\sqrt{3}\alpha\mu b \left(\sqrt{\rho_S + \rho_G}\right) \tag{6.1}$$

where H_o is the hardness at infinite depth, b is the Burger's vector of geometrically necessary dislocations, μ is the shear modulus, and α is a non-dimensional constant that describes the ease of dislocation movement. The absence of statistically significant trends on the inherent hardness measurements indicates that the total dislocation density remained similar near the grain boundary and away from the grain boundary upon the last annealing stage of the sample processing.

Comparable stored dislocation densities between these boundaries are consistent with expectations due to the role of high temperature annealing. As shown in Figure 6.42, dislocation mobility depends exponentially on temperature with an Arrhenius behavior. At high temperatures, dislocation mobility is high and less dependent on diffusion path. Thus, it is expected that at the relatively high temperature used for annealing Sample I (1107 °C), diffusion of dislocations and subsequent absorption of dislocations at the grain boundaries are comparable for CSL and high angle grain boundaries. This leads to comparable dislocation densities and thus hardness, which remain in the lattice upon high temperature annealing.

Figure 6.42 - Dislocation mobility (log D) as a function of reciprocal temperature for various diffusion paths in metals [26].

Furthermore, geometrically necessary dislocations that result from a single indent during nanoindentation at room temperature are substantially less than the density of stored dislocations. Therefore, the density of geometrically necessary dislocations (ρ_G) introduced by a single indent would have a negligible effect on the total dislocation density, and thus the hardness.

6.2.1.4. Grain boundary type – Induced hardness

Figure 6.21 and Figure 6.22 show the results of the induced hardness measurements approaching grain boundary (4), a $\Sigma 3$ grain boundary. The measurements on grain boundary (4) reveal an increased hardness near the grain boundary relative to 2.5 μ m away from the grain boundary of approximately 14.4% when approaching it from left to right, and of approximately 9.6% when approaching it from right to left. For comparison, inherent hardness near the grain

boundary was within 3% of hardness measured away from the grain boundary independent of direction.

Figure 6.24 and Figure 6.25 show the results of the induced hardness measurements completed on grain boundary (6), a high angle boundary. In this case, induced hardness measurements revealed an increased hardening at the boundary relative to 2.5 µm away from the grain boundary of approximately 13.5% when approaching the grain boundary from left to right, and 9.5% when approaching the grain boundary from right to left. When measured manually, hardness near the grain boundary was within 5% of the hardness away from the grain boundary to the right.

Figure 6.21, Figure 6.22, Figure 6.24, and Figure 6.25 show that few indentation rows did not exhibit an increased hardness in the vicinity of grain boundaries (4) and (6). These rows are potentially affected by single indent outliers, which can occur due to inhomogeneities on the sample surface or subsurface. To quantify the dislocation-boundary interaction leading to the hardening, analysis was done using only indentation rows that showed increased hardness in the vicinity of grain boundaries.

6.2.1.5. Interpretation of induced hardness variation

The observed increase in hardness in the vicinity of grain boundaries in this work is consistent with two other studies probing the grain boundary hardness in metals using nanoindentation. The first reviewed here, performed by Soifer et al, used a similar nanoindentation scheme as the induced hardness measurements on Sample I to examine the hardness of bi-crystal copper in the vicinity of grain boundaries [27]. Soifer et al found increased hardness in a region that extends a few microns from the grain boundary in one direction, which is similar to the induced hardness found on Sample I grain boundaries 4 and 6.

The measurement technique, similar to the indentation scheme in this thesis shown in Figure 5.7, and results of their study are shown in Figure 6.43 and Figure 6.44.

Figure 6.43 – Array of indentations performed by Soifer et al on a grain boundary in bi-crystal copper [27].

Figure 6.44 – Hardness trends in the vicinity of a single crystal copper grain boundary measured by Soifer et al [27].

Soifer et al discussed three mechanisms that can potentially explain the results seen on the $\Sigma 3$ and high angle grain boundaries in their work, shown in Figure 6.20 through Figure 6.25. The first explanation considers the absorption of lattice dislocations by the grain boundary during grain boundary migration that occurred during the thermal treatment of the sample. Soifer et al propose that migrating grain boundaries absorb dislocations so the regions behind the

grain boundary that are swept during migration would have a decreased dislocation density. Additionally, migrating grain boundaries repel lattice dislocations in front of the grain boundary, thus resulting in the hardness profile shown in Figure 6.44. As explained by Nix and Gao [24], this increased density of dislocation results in an increased hardness, and thus, the migration of grain boundaries results in the non-uniform distribution of hardness shown in Figure 6.44. This explanation is not valid for the results in this thesis, as the high temperature annealing resulted in a uniform density of dislocations, as described in Chapter 6.2.1.3.

The second mechanism suggests that the results could possibly be governed by the anisotropy in the elastic moduli of the lattice in the surrounding grain boundaries. The elastic field around a grain boundary results in a long range interaction between the grain boundary and dislocations. If the energy of the elastic deformation field in the neighboring grain created by the dislocation is less than if the grain boundary were absent, then the dislocation is attracted by the grain boundary. If the energy from the elastic field would be greater without the grain boundary, dislocations are repelled. Thus, depending on crystalline orientation of neighboring grains, grain boundaries either repulse or attract dislocations. If dislocations are attracted, they glide toward and either are absorbed by the grain boundary, piled-up alongside the grain boundary, or glide through the grain boundary. The resulting depletion or build up of dislocations, leads to a non-uniform distribution of the density of dislocations. This results in differing values of hardness.

The third mechanism suggests that the anisotropy of slip transfer through grain boundaries could cause local hardness variations. Dislocations are induced by the nanoindenter tip during measurements, and the resulting hardness measurement is directly proportional to the ease with which these dislocations are able to propagate away from the tip. Dislocations glide on slip planes. The alignment of these slip planes from one grain to another will govern how easily

dislocations can pass through grain boundaries. Dislocations that can not glide easily through grain boundaries pile up in the regions adjacent to the grain boundary.

The third mechanism explaining Soifer et al's results aligns well with the result from the study conducted by Soer et al [28]. Soer et al examined the mechanical response of iron-silicion and molybdenum body centered cubic (bcc) crystals using nanoindentation. For each of the materials, increased hardness was found in regions that extended to approximately 1 µm from the grain boundary, as shown in Figure 6.45. This increase in hardness was attributed to pile-up of dislocations between the indenter tip and the grain boundary, caused by the grain boundary obstructing motion of dislocations. Soer et al also observed differing yield excursions, which indicates the slip transfer of dislocations induced by the indenter tip. In indentations near the grain boundary, these yield excursions were suppressed, indicating that dislocations were not capable of gliding away from the indenter tip. Yield excursions were more evident in indentations conducted away from the grain boundary. This further supports that regions near the grain boundary resulted in dislocation pile-up and, thus, an increased hardness.

Figure 6.45 – Nanohardness of (a) Fe-Si, (b) a $\Sigma 3$ grain boundary in Mo and (c) a $\Sigma 11$ grain boundary in Mo by Soer et al [28]. Increased hardness was observed in regions that extend approximately 1 μ m from the grain boundary in each direction.

The similarity in technique and results between these two studies and this thesis validate the hypothesis that the alteration of the measurement technique from "measuring hardness with nanoindentations along a grain boundary" to "measuring hardness with nanoindentations stepping toward the grain boundary" leads to an increased hardness in the vicinity of the grain

boundary. The inherent hardness measurement of grain boundary (4) (Σ 3 grain boundary) and grain boundary (6) (high angle grain boundary) showed no significant difference between bulk and near-grain boundary region. Therefore, the induced increase in hardness probed directly the dynamic interaction between dislocations introduced by the indenter tip and the grain boundary.

6.2.1.6. Analysis of induced grain boundary hardness

The increase in the induced hardness for each boundary is used for the following analytical comparison of the ease of dislocation movement through grain boundaries as a function of grain boundary type at the environmental conditions of the measurements in this thesis.

Hardness is related to dislocation density and ease of dislocation movement, given by

$$H = 3\sqrt{3}\alpha\mu b \left(\sqrt{\rho_S + \rho_G}\right) \tag{6.1}$$

Induced hardness measurements give the ratio of hardness near the grain boundary relative to hardness the bulk regions. This ratio, combined with equation 6.1, reduces to

$$\frac{H_{GB}}{H_{Bulk}} = \frac{\alpha_{GB} \left(\sqrt{\rho_S + \rho_G} \right)_{GB}}{\alpha_{Bulk} \left(\sqrt{\rho_S + \rho_G} \right)_{Bulk}}$$
(6.2)

The ratio of the relative grain boundary hardness for a $\Sigma 3$ and a high angle boundary, respectively, is expressed as:

$$\frac{H_{GB}}{H_{Bulk}}\Big|_{\Sigma 3} = \frac{\left(\frac{\alpha_{GB}\left(\sqrt{\rho_S + \rho_G}\right)_{GB}}{\alpha_{Bulk}\left(\sqrt{\rho_S + \rho_G}\right)_{Bulk}}\right)\Big|_{\Sigma 3}}{\left(\frac{\alpha_{GB}\left(\sqrt{\rho_S + \rho_G}\right)_{GB}}{\alpha_{Bulk}\left(\sqrt{\rho_S + \rho_G}\right)_{Bulk}}\right)\Big|_{HA}} \tag{6.3}$$

From induced hardness measurements for a $\Sigma 3$ and high angle boundary, the relative grain boundary hardness for each grain boundary and direction are:

$$\frac{H_{GB}}{H_{Bulk}}\bigg|_{\Sigma 3.Left to right} = 1.144 \tag{6.4}$$

$$\left. \frac{H_{GB}}{H_{Bulk}} \right|_{\Sigma 3, Right \text{ to left}} = 1.096 \tag{6.5}$$

$$\left. \frac{H_{GB}}{H_{Bulk}} \right|_{HA, Left to \ right} = 1.135 \tag{6.6}$$

$$\frac{H_{GB}}{H_{Bulk}}\bigg|_{HA,Right to left} = 1.095 \tag{6.7}$$

Averaging the induced hardness for both grain boundary types yields

$$\frac{H_{GB}}{H_{Bulk}}\Big|_{\Sigma 3} = 1.120$$
 (6.8)

$$\frac{H_{GB}}{H_{Bulk}}\bigg|_{HA} = 1.115 \tag{6.9}$$

From Figure 6.38 and Figure 6.39, hardness in the bulk regions (H_{Bulk}) is found to not depend on grain size and crystalline orientation in this thesis. Therefore, H_{Bulk} is assumed constant in Sample I. Additionally, from inherent hardness measurements on grain boundary (4) and (6), the total density of dislocations ($\rho_S + \rho_G$) is approximately equal for grain boundary and bulk regions. Thus, equation 6.3 reduces to

$$\frac{H_{GB,\Sigma 3}}{H_{GB,HA}} = \frac{\alpha_{\Sigma 3}}{\alpha_{HA}} \tag{6.10}$$

Substituting the values of induced hardness from equations 6.8 and 6.9 gives

$$\left(\frac{1.120}{1.115}\right) = \frac{\alpha_{\Sigma 3}}{\alpha_{HA}} \tag{6.11}$$

Equation 6.11 can be simplified rearranged as

$$\alpha_{\Sigma 3} = 1.004 \; \alpha_{HA} \tag{6.12}$$

which gives the ease of dislocation motion through a $\Sigma 3$ grain boundary in terms of the ease of dislocation motion through a high angle grain boundary, where $\alpha_{\Sigma 3}$ and α_{HA} are the non-dimensional constants in the Nix and Gao expression for hardness for $\Sigma 3$ grain boundaries and high angle grain boundaries, respectively. From equation 6.12, the ease of dislocation motion through a high angle boundary and a $\Sigma 3$ grain boundary is found to be equal, within the error limits of the measurements. We note here that the nanoindentation measurements were conducted at room temperature, where the dislocation mobility and absorption is small for both types of boundaries. The lack of difference in the dislocation mobility at the $\Sigma 3$ and high angle boundary at room temperature could explain the similarity in α for both types of boundaries.

6.2.2. Sample II

Measurements on Sample II show the precipitate induced hardness at different types of grain boundaries that result from thermomechanical processing. Figure 6.46 and Figure 6.47 summarize the measurements taken on grain boundaries on Sample II.

Figure 6.46 - Summary of elastic modulus (E) measured on grain boundaries on Sample II.

Figure 6.47 - Summary of hardness (H) measured on grain boundaries on Sample II.

Grain boundaries measured on Sample II show substantial differences in elastic modulus and hardness measured in the bulk regions of grains, near the grain boundaries, and on the grain boundaries. The two leftmost data sets presented in Figure 6.46 and Figure 6.47, which show a decreased hardness near the grain boundary relative to the bulk of the grain boundary, can be attributed to sensitization which occurred during thermal treatment. Nanoindentations were

performed approximately 500 nm from the grain boundary, so it is likely that these indentations for these two data sets landed in depleted chromium regions. The two rightmost data sets shown in Figure 6.46 and Figure 6.47 indicate the formation of precipitates at the grain boundary. In these data sets, increased hardness at and near the grain boundary relative to the grain interior is expected from the formation of chromium carbide precipitates. These results align with observations made in the collaborative work [17] that characterized the grain boundaries using TEM and STEM. In that work, precipitation of chromium carbides was identified at the grain boundaries. The distribution of carbides present at the grain boundaries was found to depend on grain boundary type. Σ3 grain boundaries were observed to have a thin, continuous distribution of carbides. Low angle grain boundaries were found to have an intermediate concentration of carbides distributed semi-continuously. High angle grain boundaries were found to have a coarse, discontinuous concentration of carbides. The distributions of carbides along these grain boundaries are correlated with the energy of the grain boundary, which affects the diffusion rate and, thus, carbide growth at the grain boundaries. These results align well with the profiles of the hardness values measured on these types of grain boundaries, as shown in Figure 6.48 through Figure 6.51.

Figure 6.48 - Hardness profile along a low angle grain boundary on Sample II, showing intermediate coarseness of carbides.

Figure 6.49 - Hardness profile along a high angle grain boundary on Sample II.

Figure 6.50 – Hardness profile along a $\Sigma 3$ grain boundary on Sample II, showing a mostly continuous level of carbides. The spike seen in is likely caused by an outlying nanoindentation measurement; the remaining hardness profile shows the approximately constant and continuous hardness profile.

Figure 6.51 - Hardness profile along a high angle grain boundary on Sample II, showing a coarse and discontinuous distribution of carbides.

The presence and varying distribution of chromium carbides at $\Sigma 3$, low angle and high angle boundaries dominate the difference in hardness between the bulk regions and the regions near the grain boundary. This variation is most significant in the case of the high angle grain boundary.

6.3. Coordinated measurement of structure, mechanical properties and elemental composition

The procedure to characterize and correlate variations between mechanical and structural properties and elemental composition using EBSD, nanoindentation, TEM and STEM was successfully accomplished as described in Chapter 4. Two aspects of the procedure specific to this thesis that were learned over time are reviewed here.

Accounting for the effects of sample processing was the first aspect that became better understood while developing this procedure. TMP resulted in metallurgical changes in the samples. Though, as discussed in Chapter 5.1.3, it was not necessary to complete an accurate analysis in this thesis, electrolytic polishing requirements should be considered when conducting these types of experiments. In this case, had electrolytic polishing been an absolute necessity, a different and more hazardous electrolyte solution would have been required. The overall procedure would be improved by considering this issue ahead of time and allotting for time to determine ideal polishing conditions for different samples.

The sensitivity of nanoindentation measurements to inhomogeneities on the sample surface was the second aspect of this procedure that must be well understood to ensure success. In order to ensure that nanoindentation measurements were not affected by other contributors of this procedure (FIB, EBSD, microindentation), nanoindentation were appropriately spaced far enough away from sites of FIB work and microindentations such that the impact volume of the sample created by the nanoindentation would not be affected. As a result, space along grain boundaries became very limited. Understanding this prior to choosing grain boundaries to examine enabled a smooth accomplishment of the correlated characterization of each sample.

7. Conclusions

This thesis aimed to identify the relationship between the structure of grain boundaries and their mechanical properties in Inconel 690, an important alloy used in the design of nuclear reactor steam generators in the United States. The hardness and elastic modulus in the vicinity of grain boundaries, and their relation to grain size, crystalline orientation, slip systems, and presence of precipitates was considered. Additionally, the correlated measurement of nanoscale mechanical properties of grain boundaries with the analysis of the chemical nature of those same grain boundaries was conducted. An approach for identifying mechanical properties of grain boundaries with known chemical composition and structure was developed.

The following conclusions are made:

A quantitative assessment of the combined effect of the ease of slip transfer and the attraction or repulsion of dislocations by grain boundaries was conducted. Inherent hardness of the solution annealed Inconel 690 were found to be the same for both the grain boundary and bulk regions, and did not vary with grain boundary type, specifically the $\Sigma 3$ and high angle boundaries. This finding is attributed to the weak dependence of the dislocation mobility on the diffusion path during high temperature annealing of the sample, which resulted in an approximately uniform distribution of dislocations prior to nanoindentation. On the other hand, greater hardness was induced at the grain boundaries due to the pile-up of dislocations created by the indentations towards the grain boundaries. The relative increase in hardness induced by the indentations, and the spatial extent of this increase were found to be equivalent for different grain boundary types. These results indicate comparable ease of dislocation mobility and absorption at the different grain boundaries of Inconel 690 when indented at room temperature.

Properties of grain boundaries on the TMP sample (Sample II) were dominated by the presence of chromium-carbide precipitates. Chromium-carbides were identified along $\Sigma 3$, low angle and high angle boundaries. Their distributions, in term of continuity and coarseness, was found to depend on grain boundary type using TEM and STEM in a collaborative work. Those findings were consistent with hardness profiles along $\Sigma 3$, low angle and high angle grain boundaries identified using nanoindentation. These results are consistent with observations of relative stress corrosion cracking susceptibility for these types of boundaries. The results support why $\Sigma 3$ grain boundaries are least susceptible to cracking, while low angle and high angle boundaries are much more susceptible. The coarseness and distribution of chromium carbide precipitates along grain boundaries act as stress concentrators and sites for crack initiation. Precipitate formation also indicates the occurrence of sensitization, which results regions of depleted chromium in the vicinity of the grain boundaries, and increase cracking probability.

Appendix A Minimum indentation depth

1 PP				1 1114		on ac	Pu								
Data set	Indent hc(nm)	Pmax(µN)	S(µN/nm)	A(nm^2)	hmax(nm)	heff(nm)	Er(GPa)	E(GPa)	H(GPa)	Α	hf(nm)	m	X(mm)	Y(mm)	Drift Correction
hmin10	1 5.87963	54.91852	3.097506	6091.8	20.52137	19.17707	35.16205	33.22375208	9.015155	2.250271	1.43E-05	1.081621	-141.584507	-96.200505	-1.693638
hmin10	2 21.72358	54.42354	8.427562	15367.63	26.83606	26.56693	60.23283	58.2259088	3.54144	0.000824	3.674963	3.544854	-141.574507	-96.200505	-0.317996
hmin10	3 22.54633		13.07573	15879.46			91.93544	91.54359606					-141.564507	-96.200505	0.089584
hmin10	4 24.188		13.86172	16915.88	27.75348	27.15291	94.42883	94.24917685				2.423164	-141.554507	-96.200505	0.205879
hmin10	5 22.05953		13.23756	15576.03	26.08711	25.15495	93.97546	93.75627689				1.588817	-141.544507	-96.200505	0.224706
hmin10	6 21.26661			15085.47	24.81741	24.44427	93.2239	92.94011512				3.145663	-141.584507	-96.190005	0.173941
hmin10	7 22.68232			15964.54		25.70775		94.87812376					-141.574507	-96.191005	0.162097
hmin10	8 24.22017		14.5283	16936.4			98.90974	99.14378855				2.085431	-141.564507	-96.190505	0.183307
hmin10		54.49991		14772.14		23.18998	122.4371	125.5460444		0.009964	11.73608	3.52986	-141.554507	-96.190505	0.145582
hmin10		54.60347			25.15089		103.7976	104.5308841		0.35903		2.314721	-141.544507	-96.190505	0.09006
hmin10		54.70851		14498.38				77.36211194				1	-141.584507	-96.180505	0.050123
hmin10		54.85445			23.82471		100.9226	101.3561415			9.871905	3.381709	-141.574507	-96.180005	0.01801
hmin10	13 21.36029		15.21413		24.70113		109.5401	110.9247992			13.07996	3.034441	-141.564507	-96.180505	0.040034
hmin10			15.84589		26.34913		111.3174	112.9180832				2.97963	-141.554507	-96.180505	0.005841
hmin10			14.59867	14903.72		23.78481	105.95	106.9191283				1.695454	-141.544507	-96.180505	-0.014536
hmin10	16 22.76488		11.39036		27.08601	26.36688	79.74281	78.49548986				1.994125	-141.584507	-96.170505	-0.039825
hmin10			12.82936		26.66189		89.9042	89.3489395					-141.574507	-96.170505	-0.035419
hmin10			12.32641		24.52986			90.54035342					-141.564507	-96.170505	-0.035902
hmin10			13.72139					97.91777492					-141.554507	-96.170505	0.021609
hmin10	20 21.96981					25.01891		96.0072147					-141.544507	-96.170505	-0.002697
hmin10			12.74891					91.51726292			9.165314		-141.584507	-96.160005	-0.026411
hmin10	22 21.49718 23 22.82127		15.03019			24.21833		109.1084131 89.81569275				2.286016 1.96154	-141.574507	-96.160505	-0.035263
hmin10 hmin10	23 22.82127		12.91783 10.57879		26.65716		75.4295	73.95067184				1.039498	-141.564507 -141.554507	-96.160505 -96.160505	-0.039243 -0.044676
hmin10	25 18.82441			13601.83			109.5709	110.9592738				2.641267	-141.534507	-96.160505	-0.038763
hmin10	26 20.72846			14755.07	24.47998		108.9059	110.9392738				1.798644	-141.584507	-96.150505 -96.150505	-0.059432
hmin10	27 20.73554		10.98825	14759.41			80.13619	78.91181848				1.153963	-141.574507	-96.150505 -96.150505	-0.039432
hmin10	28 20.46366			14593.24	23.9667	22.88758	124.0552	127.4065555				4.041295	-141.564007	-96.150505 -96.150505	-0.047377
hmin10	29 20.97098		13,4305	14903.71	24.75459	24.02123	97.47195	97.56869778			12.40523	2.856154	-141.554507	-96.150505	-0.049539
hmin10	30 20.35675			14528.04	24.05253	23.57247	93.47351	93.21104366			16.51872	1.645145	-141.544507	-96.150505	-0.039492
1111111110	00 20.00070	04.0222	12.7 102	14020.04	24.00200	20.01241	30.47001	30.21104300	0.702000	2.101701	10.01072	1.040140	141.044001	30.100000	0.000402
hmin20	1 22 3074	80 35828	5.162344	15730.31	33 69483	33.98208	36.4681	34.49834689	5 108499	0.0365	0.000624	2 183023	-130.845006	-101.366005	-1.464372
hmin20	2 31.37431				35.90781	35.31349	91.52098	91.09510478				3.047609	-130.834506	-101.366005	
hmin20	3 29.37646			20333.25	33.08913	32.83649	107.7188	108.8892615			18.3421	3.141823	-130.824506	-101.366005	0.390893
hmin20	4 31.01216	79.90192	19.03482	21457.8	34.80967	34.16041	115.1307	117.2178791		0.245812		2.472181	-130.814506	-101.366005	0.475591
hmin20	5 28.75728	79.61809		19913.61	33.15679	32.04418	114.0635	116.0113839		3.72643	25.1132	1.581502	-130.804506	-101.366005	0.461487
hmin20	6 28.10235			19473.31		30.63372	150.2599	158.3778329			21.7019	2.64634	-130.844506	-101.356005	0.401353
hmin20	7 28.4939				32.18846	30.99604	150.4709	158.6338555					-130.834506	-101.356005	0.335827
hmin20	8 29.33341			20303.96	32.95767	32.09205	134.7696	139.8760064					-130.824506	-101.356005	0.261535
hmin20	9 28.35241	79,47274		19640.99	31.92666	31.13523	135.4091	140.6286089				2.809321	-130.814506	-101.356005	0.230172
hmin20	10 27.88537	79.30886	19.9091	19328.24	31.34571	30.87303	126.8791	130.667641	4.103263	2.72482	23.93867	1.740751	-130.805006	-101.356005	0.155479
hmin20	11 30.07142	79.43594	22.78556	20808.18	33.28947	32.6861	139.9515	146.0019246	3.817534	0.556125	24.47198	2.356153	-130.844506	-101.346005	0.107353
hmin20	12 28.49674			19738.02	32.39897	31.45386	127.453	131.3325922	4.037107	0.161526	21.02536	2.644935	-130.834506	-101.346005	0.078382
hmin20	13 24.88521	79.62816	20.47592	17362.34	28.81165	27.80186	137.681	143.3101008	4.586258	0.977183	19.64736	2.096881	-130.824506	-101.346005	0.073823
hmin20	14 28.25115						143.4433	150.1656315				2.828558	-130.814506	-101.346005	0.035426
hmin20	15 26.99942		19.0044	18740		30.1504	122.9998	126.1923473				1.700431	-130.804506	-101.346005	0.037488
hmin20	16 28.31824						125.427	128.9884059				2.735677	-130.844006		0.049105
hmin20	17 26.33668			18304.23	30.35777	29.27469	132.8061	137.5711656				2.448798	-130.834506	-101.336005	
hmin20	18 25.12826			17518.88	29.01082		134.0453	139.0247309				1.71445	-130.824506	-101.336005	-0.004
hmin20	19 26.79031			18602.11		29.57804	139.8863	145.9244522				3.424974	-130.814506	-101.336005	-0.011367
hmin20	20 24.67351	79.4017	22.74584	17226.38	28.30166		153.5465	162.3776265			19.5547		-130.805006	-101.336005	-0.045535
hmin20	21 24.43535			17073.83	28.29843		132.9142	137.6978746				2.641947	-130.845006	-101.326005	-0.051074
hmin20	22 27.40474			19008.31	31.19474		156.943	166.5390824				3.434316	-130.834506	-101.326005	0.009793
hmin20	23 27.91079			19345.21	31.78649			130.730351					-130.824506		0.043196
hmin20	24 26.49382			18407.23			129.8394	134.1056238					-130.814506		-0.042558
hmin20	25 27.32331			18954.29		29.79824	155.3094	164.5340113					-130.805006		-0.057178
hmin20		79.40786				29.30311	124.8025	128.2677902			21.84583		-130.844506		-0.047921
hmin20	27 28.05406	. 0.00000				31.07047		128.9384796					-130.834506		-0.009349
hmin20	28 26.1533		20.21561		30.5936		132.823	137.5910147			20.39355		-130.824506		-0.066156
hmin20 hmin20	29 28.58199		18.87341 23.03738			31.75825	118.851 149.5026	121.4437116 157.4599848			21.07578		-130.814506 -130.805006		-0.006365 -0.052938
nminzo	30 20.04/31	79.54081	23.03736	10039.07	30.11455	29.43003	149.5026	157.4599646	4.207207	0.016569	17.59556	3.429562	-130.805006	-101.316005	-0.052936
hmin30	1 26.66194	104 9650	7.628605	10517.05	26 04540	26 07100	40.66040	47.55186253	E 663000	0.006305	0.000205	2 6005 40	-132.069006	-95.112505	-1.470191
hmin30	2 33.10738		16.90835	22932.79	36.84548	36.97168	98.92536	99.16092058				3.072336	-132.058506	-95.112505 -95.112505	-0.069417
hmin30			27.77383				154.6862	163.7708689				4 123249	-132.056506	-95.112505 -95.112505	0.342749
hmin30	4 31.84476		20.93762					128.4470384				1.120249	-132.038006	-95.112505 -95.112505	0.424727
hmin30			22.68367				131.696	136.2720242				1 289632		-95.112505 -95.112505	0.400265
hmin30		104.5034		23688	37.8869		146.2912	153.5829241			29.00002		-132.026506	-95.102505	0.35675
hmin30			24.43671					151.2334319				1.536102	-132.058506	-95.102505	0.304708
hmin30			22.05769		36.05698	35.03644	132.381	137.0733534				1.000102	-132.036506	-95.102505	0.260761
hmin30	9 32.58843		24.31749	22563.8	36.72519	35.80636	143.4324	150.1526191				1.838657	-132.038506	-95.102505	0.222315
hmin30	10 36.17191			25161.75	40.39684	39.47316	132.4905	137.2014853				1.833537	-132.028506	-95.102505	0.159935
hmin30	11 33.26307		27.60053				161.0919	171.6612684				2.761129	-132.068506	-95.092505	
hmin30			21.11357					130.5888202				1.134229	-132.058506	-95.092505	0.088759

D	La de atl	()	D (. N)	0(-11/)	A (AO)	h ()	h - ((()	F-(OD-)	E(OD-)	LI(OD-)		h # /		V()	V()	D-'ft O
Data set hmin30					A(nm^2) 22712.14								m 4 040000	X(mm)		Drift Correction 0.057356
hmin30	14				21221.65				167.6815946				1.242206	-132.048506 -132.038506	-95.092505 -95.092505	0.057336
hmin30	15	33.97365			23554.16				167.3211739			29.43213		-132.038506	-95.092505	0.032109
hmin30	16	32.15936		24.21656		36.1177			150.6006552					-132.028506	-95.082505	-0.001408
hmin30	17	31.21115	104.7713						158.0075524					-132.058506	-95.082505	-0.001408
hmin30	18	29.79814	104.7713	27.71736		33.70338	32.6306	171.0144					2.757204	-132.038506	-95.082505	-0.017503
hmin30	19	31.3364	104.778	21.12837	21683.5	36.08225		127.1265	130.9541817		15.1267	29.47477	1.125572	-132.038506	-95.082505	0.016443
hmin30	20	33.60995	104.7200	23.86372		37.38366	36.8855	138.5368	144.3233411			22.03248	3.400882	-132.038506	-95.082505	-0.018237
hmin30	21	33.72854	104.5306	25.67249	23377.66	37.50300	36.78232	148.7655	156.5678977			27.14362	2.367242	-132.026506	-95.072505	-0.051239
hmin30	22	32.59206	104.5506	25.13406	22566.38	36.67741	35.72251	148.2404	155.9331633				2.234557	-132.058006	-95.072505 -95.072505	-0.031239
hmin30	23	32.3448	104.3432	24.57255	22391.41	36.2362	35.52955	145.4937	152.6240856			28.08625	1.752877	-132.038006	-95.072505 -95.072505	-0.021284
hmin30	24	32.61313	104.8989	24.57255	22581.41	36.65296	35.81759	144.7564	151.738813		2.566237	28.07279	1.812661	-132.048506	-95.072505 -95.072505	0.010719
hmin30	24 25	33.78885	104.5604	22.19206	23421.04	38.31814	37.32256	128,4782	132.5222333	4.464379		32.12005	1.104188	-132.038506	-95.072505 -95.072505	0.010719
hmin30	26	32.33147	104.3604	23.79342	22381.99	36.23691	35.62492	140.9102	147.1422194	4.668184		22.60957	2.963917	-132.028306	-95.062505	-0.053973
hmin30	20 27	33.24148	104.4633	32.81249	23028.54	36.9328	35.63445	191.5759	210.6614577	4.54622			3.611288	-132.058506	-95.062505 -95.062505	0.005143
hmin30	28	32.75343	105.0345		22680.87	36.65568	35.77031	153.6173	162.4640458				1.396978	-132.048506	-95.062505	-0.036902
hmin30	29	31.9144	104.6108	21.39938	22088.16	36.35734	35.58077	127.5723	131.4708227				1.262798	-132.038506	-95.062505	-0.042907
hmin30	30	34.08613	104.0108		23635.34	38.37468	37.4518		140.1577557				1.278034	-132.038506	-95.062505	-0.042907
111111130	30	34.00013	105.1262	23.42039	23033.34	30.37400	37.4310	133.0091	140.1377337	4.447922	11.27002	31.71000	1.270034	-132.020300	-93.002303	-0.049093
hmin40	1	43,20009	129.787	16.48826	30605.68	49.11607	40 1037	83.50427	82.48894456	4 240617	0.006766	24.78042	3 000053	-130.980506	-98.648005	-0.877974
hmin40	2	43.20009	129.4121	22.52432		46.80224	46.00498	116.3875	118.642044					-130.970006	-98.647505	-0.098184
hmin40	3	37.84303	129.4121	24.55386	26413.79	42.80099	41.8024	133.8564	138.8029969		0.230733	27.28381		-130.960506	-98.647505	0.104636
hmin40	4	38.58009	129.0233	24.35356	26974.34	43.3965	42.59915	130.2989	134.6409821	4.798359	17.5649	36.61627	1.116471	-130.951006	-98.647505	0.150825
hmin40	5	32.67007	129.4326	28.32089	20974.34	37.20014	36.10955	166.832	178.8194575			28.51755	1.655483	-130.940506	-98.647505 -98.647505	0.161315
hmin40	5 6	39.55953	129.0700	27.60638	27727.16	43.87149	43.08996	146.8898	154.3037643	4.686733	16.78404	37.49477	1.188635	-130.980506	-98.637505	0.137106
hmin40	7	36.34161	129.4826	30.69183	25287.7	40.36908	39.5057	171.0027	184.0734659	5.120378	0.476717	29.31914	2.414567	-130.970006	-98.637505	0.10242
hmin40	8	37.36252	129.4620	29.26619	26051.11		40.6854	160.6527	171.1169665	4.977298	1.316399	31.5104	2.414367	-130.960506	-98.637505	0.10242
hmin40	9	36.29629	129.0041	23.59765		41.31325	40.40616	131.5643	136.1181164			34.92633	2.07087	-130.950506	-98.637505 -98.637505	0.076328
hmin40	10	36.99246	130.0133	23.49789		42.02233	41.14219	129.6818	133.9220445			34.77853	1.150132	-130.930506	-98.637505	0.076326
hmin40	11	38.51851	129.8334	30.99766	26927.3		41.14219	167.366	179.4897477		0.83361	32.23463		-130.940506	-98.627505	0.009336
hmin40	12	37.22079	129.6534			41.53303	40.64671	155.8966	165.2539821	4.021020		31.71775	1.954725	-130.970006	-98.627505 -98.627505	0.02225
hmin40	13	37.69168	129.4613	25.8609		42.24261	41.44348	141.2883	147.5925737			33.85297	1.517375	-130.960506	-98.627505 -98.627505	0.02225
	14	37.93141											1.621347			
hmin40	15		130.0692	25.54357	26480.74			139.0758						-130.950506	-98.627505	-0.002442
hmin40 hmin40	16	40.31192 38.28406	129.8082 129.4303	27.16565 30.8617	28311.64 26748.59	44.93534 42.5151	43.89572 41.42947	143.0449 167.1877	149.6890741 179.2658489	4.584977		34.18305 33.8128	2.032622 1.816139	-130.940506 -130.981006	-98.627505 -98.617505	-0.015398 -0.036069
hmin40	17	38.47956	129.4303	31.26252				168.8893	181.4055653					-130.970506	-98.617505	-0.01997
hmin40	18	40.79498	129.5591	29.71875	28689.75		44.06491	155.454			1.467326	34.80947		-130.960506	-98.617505 -98.617505	-0.01997
hmin40	19	39.24889	129.5711	28.43199	27487.4			151.9411	164.7112173 160.4205096			36.32226	1.392464	-130.950506	-98.617505 -98.617505	-0.024973
hmin40	20	39.24669	129.5167	28.08851		43.40542	42.73121	150.0815	158.1614718			35.00884	1.66867	-130.950506	-98.617505 -98.617505	-0.015313
hmin40	21	38.24286	130,1338	33.65894	26717.23		41.14255	182,4482	198.7251307		0.51418	31.64022		-130.940006	-98.607505	-0.030887
	21												2.457764			
hmin40	23	37.96798	129.9887	25.84489	26508.46		41.74016	140.6427	146.8239171			36.71059		-130.970006	-98.607505	-0.026772
hmin40	23	38.96188 39.22277	130.0025	27.65237	27266.7			148.3716	156.0917327	4.767814		37.01388	1.164352	-130.960506	-98.607505	-0.01881
hmin40	24 25	39.22334	129.524	23.5652	27467.29	43.98708	43.34508	125.9789	129.6261415 143.4337459		23.5652	37.84867		-130.950506 -130.940506	-98.607505	-0.044022
hmin40	25 26	41.8125	129.4804 129.3509	25.7739	27467.73 29493.52	43.73216 46.42203	42.99112	137.7855 127.5746	131.4735106			36.45835	1.30039	-130.980506	-98.607505 -98.597505	-0.039361 -0.008305
hmin40 hmin40	27	39.42153	129.3509	24.72821 32.27851	27620.53	43.18285	45.73568 42.43718	172.0808	185.4388493	4.385739 4.698961	16.60098 1.759026	39.73968 34.22416	2.042597	-130.980506	-98.597505 -98.597505	0.026664
	28	39.42153														
hmin40	29	39.40566	129.5742 129.3859	25.11273	28035.08	44.48497 44.00481	43.82656	132.8856	137.6642816			35.5188 35.88251	1.610124	-130.960506	-98.597505	-0.007098
hmin40 hmin40	30			27.22785	27608.28 27697.78		42.96964	145.1873 167.5819	152.2560011 179.7609349	4.68649				-130.950506 -130.940006	-98.597505 -98.597505	0.007665 -0.034909
nmin40	30	39.52154	129.4393	31.47000	2/09/./0	43.76734	42.00003	107.5619	179.7609349	4.673273	0.25494	31.02971	2.020569	-130.940006	-98.597505	-0.034909
hmin50	1	E4 00702	150.5987	17 4064	38361.45	61 05705	64 26240	70 14727	#DIV/0!	3.925783	0.00205	33.42823	2 245 400	-134.472006	-3.5665	-1.44293
hmin50	2	59.49325	164.6338	30.73235	42509.01		63.51102		#DIV/0!		1.627754			-134.472006	-3.5665	-0.114586
hmin50	3	57 90182	168,7695	34.05589	42509.01	62.1264	61.61857		#DIV/0!		0.114514			-134.462006	-3.5665	0.234769
hmin50	4	53.78906	170.4849		37379.27		58.2136		#DIV/0!	4.111603				-134.442006	-3.5665	0.326967
hmin50	5	55.82156	169.5427	36.35167		60.11448		162.7311	#DIV/0!	4.328145			1.951976	-134.442006	-3.5665	0.326967
hmin50	6	53.01471	169.8529	30.15032		57.90653	57.23986	139.43	#DIV/0!	4.627345		50.81189		-134.472006	-3.5565	0.267882
hmin50	7	55.27142	169.3187	30.47601	38683.04		59.43827	137.288	#DIV/0!	4.377079			1.001109	-134.462006	-3.5565	0.242894
hmin50	8	55.61974	168.8776	32.33278	38992.37	60.37107	59.53707	145.0735	#DIV/0!	4.331041		52.78902		-134.452506	-3.5565	0.246648
hmin50	9	55.64627	168.3291	32.08868	39015.98		59.58058	143.9346	#DIV/0!	4.314362		53.13675	1.228391	-134.442006	-3.5565	0.182511
hmin50	10	55.50916	167.8417	29.60693	38894.06		59.76092	133.0107	#DIV/0!	4.315357			1.220091	-134.431506	-3.5565	0.115737
hmin50	11		167.0922			59.73349		128.5589	#DIV/0!		28.26955		1 000066	-134.472006	-3.5465	0.070837
hmin50	12	56.24761	167.0922	37.2036		60.79328			#DIV/0!	4.223844		52.90796		-134.462006	-3.5465	0.06889
hmin50		54.53571		36.90427	38033.4	59.3712	57.9165	167.6598	#DIV/0!		9.122746			-134.452506	-3.5465	0.000477
hmin50		53.69633	166.8497		37298.39				#DIV/0!		27.84127			-134.442006	-3.5465	-0.010357
hmin50		53.37002			37296.39				#DIV/0!		14.65254			-134.442006	-3.5465	-0.010357
hmin50		54.71566			38191.84		58.3526	155.2172	#DIV/0! #DIV/0!		6.460432			-134.431506	-3.5365	-0.010318
hmin50	17	55.88744	165.2195	30.03796				134.3666	#DIV/0!		22.72088			-134.472006	-3.5365	-0.046217
hmin50	18	57.54995	165.9192			61.71373		149.5189	#DIV/0!		19.51722		1.207674	-134.452506	-3.5365	0.011861
hmin50	19	52.88531	166.6194					159.7141	#DIV/0!		0.028176	41.148	3.179175	-134.442006	-3.5365	-0.028493
hmin50	20	55.22439	166.8736	35.21202		60.0755	58.77872	158,7083	#DIV/0!	4.318521			2.090633	-134.431506	-3.5365	-0.033516
hmin50	21	54.47823	165.9903	31.14905	37982.86		58.47491	141.6074	#DIV/0!	4.370138		47.66472		-134.472006	-3.5265	-0.033516
hmin50	22	54.48459	166,1087	31.80751	37988.45	59.02827	58.40132	144.5901	#DIV/0!	4.372611		51.50529	1.320495	-134.462006	-3.5265	-0.020337
hmin50	23	55.42347	165.8376	30.23779	38817.94		59.53681	135.978	#DIV/0!	4.272191			1.320493	-134.452506	-3.5265	-0.049421
hmin50	24	52.62726			36371.74			150.3449	#DIV/0!		10.41499			-134.442006	-3.5265	-0.063324
	27	JE.UZ120	. 55.5462	JE.00200	30071.74	350103	300101	.00.0440	2. 4/0:			.0.20007		.5 442000	0.0200	5.5000 <u>2</u> 4

Data set	Indent	hc(nm)	Pmax(uN)	S(µN/nm)	A(nm^2)	hmax(nm)	heff(nm)	Er(GPa)	E(GPa)	H(GPa)	Α	hf(nm)	m	X(mm)	Y(mm)	Drift Correction
hmin50	25		167.2022		39420.94				#DIV/0!			51.68935		-134.432006	-3.5265	
hmin50	26	55.54239	166.0685	34.4623	38923.59				#DIV/0!	4.266526	13.25212		1.350063	-134.472006	-3.5165	
hmin50	27	57.49436	166.3227	36.3601		61.83507	60.9251		#DIV/0!	4.088895		53.33796	1.658639	-134.462006	-3.5165	
hmin50	28	56.9048	165.8935	30.56025			60.97611		#DIV/0!	4.13252			1.000435	-134.452006	-3.5165	
hmin50	29	55.01247	166.177	30.7627	38453.82	59.70435	59.0639	138.9919	#DIV/0!	4.321469	30.76026	53.66184	1.00003	-134.442006	-3.5165	-0.0622
hmin75	1	71.44288	206.439	33.41494	54068.24	77.03061	76.07641	127.3223	#DIV/0!	3.81812	12.77429	67.89673	1.323991	-134.462006	-6.435	-0.22575
hmin75	2	68.44613		38.06456		73.46282			#DIV/0!	4.113793		63.36723	1.670691	-134.452006	-6.435	
hmin75	3			41.0494			72.04906		#DIV/0!	4.162973		65.68516	1.23565	-134.442006	-6.435	
hmin75	4	69.02482	211.5604	37.04288	51620.55	74.47234	73.30824	144.4536	#DIV/0!	4.098376	4.967969	63.79643	1.665457	-134.432006	-6.435	0.262117
hmin75	5	68.12111	211.6374			73.05352		171.572	#DIV/0!	4.172688	2.888384		1.922773	-134.472006	-6.425	
hmin75	6		211.6449		51757.02				#DIV/0!	4.089201			1.471497	-134.462006	-6.425	
hmin75	7		210.2298		51053.65				#DIV/0!	4.117821	0.343998		2.64188	-134.452006	-6.425	
hmin75	8	67.91535	210.0047			73.21909			#DIV/0!	4.157222	35.23824	66.42546	1	-134.442006	-6.425	
hmin75	9	68.12671	209.8482		50725.23	72.5461	71.60392		#DIV/0!	4.136959	6.462386	63.76666	1.690419	-134.432006	-6.425	
hmin75 hmin75	10 11	68.2405 69.85015	209.6488 209.021				72.69722 73.57398		#DIV/0! #DIV/0!	4.123838 3.985156	30.23769 8.151515		1.054912 1.576618	-134.472006 -134.462006	-6.415 -6.415	
hmin75	12	68.81229		43.63388	51408		72.42071		#DIV/0!	4.083658	4.745853			-134.452006	-6.415	
hmin75	13	67.59797					72.13677		#DIV/0!	4.179507		66.08168	1.000554	-134.442006	-6.415	
hmin75	14	67.82814		41.39728			71.61787		#DIV/0!	4.14798	4.57973		1.752284	-134.432006	-6.415	
hmin75	15	69.89976	208.3933	39.95779			73.81126		#DIV/0!	3.9694	6.935719		1.602617	-134.472006	-6.405	
hmin75	16	67.49987	208.834	39.72651			71.44246		#DIV/0!	4.167947		64.03373	1.409363	-134.462006	-6.405	
hmin75	17	69.53829	208.3831	42.7931	52135.78	74.17996	73.19045	166.0507	#DIV/0!	3.996931	4.440164	64.51561	1.781447	-134.452006	-6.405	-0.038934
hmin75	18	65.59311	208.9078	33.02883	48239.71	71.33191	70.33687	133.2372	#DIV/0!	4.330619	23.46224		1.117876	-134.442006	-6.405	
hmin75	19	69.98804							#DIV/0!	3.975339	19.61873		1.210831	-134.432006	-6.405	
hmin75	20	68.52616	208.611		51122.52				#DIV/0!		6.162739		1.657224	-134.472006	-6.395	
hmin75	21		208.4675				74.02063	150.965	#DIV/0!		38.94958		1.00131	-134.462006	-6.395	
hmin75	22	67.24083			49849.42		71.49761		#DIV/0!	4.188719			1.143632	-134.452006	-6.395	
hmin75	23	65.77607	208.5913 208.8075	36.50154 40.7626		70.77019 73.17451		146.9759 160.1671	#DIV/0!	4.308205	24.528	63.53915 65.08296	1.141441 1.367697	-134.442006	-6.395	
hmin75 hmin75	24 25	69.07784	208.7819	40.7626	51673.63			159.2832	#DIV/0! #DIV/0!	4.106759 4.040395	14.56781 4.129436	63.82585	1.778018	-134.432006 -134.472006	-6.395 -6.385	
hmin75	26	71.52308	208.7243	44.26453		75.7236	75.05962	168.535	#DIV/0!	3.854533		67.07183	1.693985	-134.462006	-6.385	
hmin75	27	69.15374			51749.68				#DIV/0!		7.684915		1.576598	-134.452006	-6.385	
hmin75	28	67.62007			50223.47			160.1507	#DIV/0!		5.645907	62.86498	1.67562	-134.442006	-6.385	
hmin75	29	68.87618	208.2029	38.00739	51471.86	74.08346	72.98465		#DIV/0!	4.044985	12.37826	65.3688	1.390271	-134.432006	-6.385	
hmin100	1	84.39924	253.223	38 57504	68071.77	80 07870	80 33344	130.999	#DIV/0!	3.719941	2 22253	76.96042	1 883220	-144.023507	-6.0255	0.25523
hmin100	2			42.27307				142.8178	#DIV/0!	3.753649	10.91674		1.450266	-144.013507	-6.0255	
hmin100	3	86.09828	259.0363		69950.7		90.94901	134.1694	#DIV/0!	3.703127	20.16767		1.230677	-144.003507	-6.0255	
hmin100	4	77.88348	259.6394	40.95422			82.63829	146.766	#DIV/0!	4.247707	4.550482		1.700701	-143.993507	-6.0255	
hmin100	5	78.08353	258.8866	36.52954	61331.81	83.80856	83.39881	130.6881	#DIV/0!	4.221083	36.52954	76.31176	1	-144.033507	-6.015	
hmin100	6	81.96806	257.0665	42.94275	65431.71	87.43275	86.45775	148.7409	#DIV/0!	3.928775	25.29503	79.36997	1.184007	-144.023507	-6.015	0.492705
hmin100	7	80.39776	255.7438	50.71895	63756.83	85.62098	84.17954	177.9679	#DIV/0!	4.011237	0.108624	69.57785	2.8958	-144.013507	-6.015	0.370381
hmin100	8	82.17333				87.33486		161.991	#DIV/0!			75.90995	1.899303	-144.003507	-6.015	
hmin100	9	78.73103	255.4421		62005.1		83.0183		#DIV/0!	4.119695	2.834179		1.89095	-143.993507	-6.015	
hmin100	10	83.02597	253.9176			88.10757			#DIV/0!	3.814094				-144.033507	-6.005	
hmin100	11	82.82545		41.46442			87.38996		#DIV/0!	3.802998		80.22224	1.177738	-144.023507	-6.005	
hmin100 hmin100	12 13	87.07335 84.18938	252.9101 253.248	52.17915 43.50578	67841.63	91.37364 89.60053	90.70856 88.55515		#DIV/0! #DIV/0!	3.560027 3.732928	0.07431 11.57808		3.027613 1.447557	-144.013507 -144.003507	-6.005 -6.005	
hmin100	14	78.32329	253.8505	43.90741	61580.65	83.91232			#DIV/0!	4.122244	14.41729	74.67643	1.380783	-143.993507	-6.005	
hmin100	15	77.2084	253.0377	43.75999	60428.23		81.5452		#DIV/0!	4.187409	7.227368		1.598743	-144.033507	-5.995	
hmin100	16	78.01933		49.15841		83.05637	81.8674		#DIV/0!	4.116855				-144.023507	-5.995	
hmin100	17		252.6246		61871.38			179.368		4.083061		69.41469	2.581482	-144.013507	-5.995	
hmin100	18	80.86563					85.15428		#DIV/0!	3.916204			1.50235	-144.003507	-5.995	
hmin100	19	76.17374	252.1577	41.66146	59369.45	81.71172	80.71315	151.4913	#DIV/0!	4.247264	19.70168	73.10782	1.25655	-143.993507	-5.995	-0.062969
hmin100	20	81.83927	252.2865	44.05663			86.13408		#DIV/0!	3.863888		77.54946	1.499125	-144.033507	-5.985	-0.072375
hmin100	21	79.86602					84.31976		#DIV/0!	3.983134		76.40217		-144.023507	-5.985	
hmin100	22	82.71727	251.8054	47.93416					#DIV/0!	3.801456	4.006128		1.829779	-144.013507	-5.985	
hmin100	23	82.62285	251.6224			88.12956			#DIV/0!	3.804555	22.77288		1.17774	-144.003507	-5.985	
hmin100	24	79.12496	251.9395			83.93905			#DIV/0!	4.036411				-143.993507	-5.985	
hmin100	25 26	83.75225 77.83621	251.6342 251.6926	42.04754 48.05392		88.87596 82.86249			#DIV/0! #DIV/0!	3.735461 4.120994		80.71037 69.21393		-144.033507 -144.023507	-5.975 -5.975	
hmin100 hmin100	26	79.61859	251.6926	48.05392 47.4184		82.86249		172.2778	#DIV/0! #DIV/0!	3.99903	1.24328		2.396192	-144.023507 -144.013507	-5.975 -5.975	
hmin100	28		251.6487	43.41859			84.05423		#DIV/0!	3.992654		76.02073		-144.003507	-5.975	
hmin100	29		252.9379	39.08185			81.17038		#DIV/0!	4.25		74.69837	1.300071	-143.993507	-5.975	
							200			20					2.070	2.22.00

Appendix B Minimum indentation lateral separation

Doto oot	Indont		ho(nm)	Dmov(uN)	C(uN/nm)	A(nmA2)	hmov(nm)	hoff(nm)	Er(CDo)	LI(CDa)	^	hf/nm)	m	V/mm)	V/mm)	Drift Corros
Data set 2h _c	Indent	1	hc(nm) os on168	255.1813	S(µN/nm) 45.73079	,	` ,	. ,	, ,	, ,	A 45.73079	hf(nm) 94.50666	m 1	X(mm)	Y(mm)	Drift Correc -0.143143
		2	95.8124													
2h _c			95.04355	291.8843		93681.8 92717.31	100.7179		145.4611 132.0917	3.14811		93.3559		-140.5475		-0.133766
2h _c		3														
2h _c		4	94.04499	477.7914	43.38709	91469.78 92736.11	101.4359 101.2096		164.8252					-140.5475		-0.037505
2h _c		5	95.05857						126.2324		29.9014					
2h _c		6	94.51819	462.341	60.96391	92060.24	101.0509	100.2061	178.0211					-140.5465		
2h _c		7	96.86239	291.0739			102.0963	101.1428	146.6041	3.06379						-0.139997
2h _c		8	94.77272	412.807	51.4827	92378.37	101.6046	100.7865	150.0759				1.08817			-0.161494
2h _c		9	95.08955		65.53187	92774.91		102.2751			65.53187					-0.065334
2h _c		10	95.93744				101.0281				31.44874			-140.5455		
2h _c		11	95.64067			93466.07	101.7068				37.44196			-140.5455		
2h _c		12	95.30146				100.9193		129.5462				1.034711			-0.044111
2h _c		13	94.9328	607.157			103.6653	102.1658		6.558283				-140.545		
2h _c		14	92.26155				102.4499		230.9674							-0.093948
2h _c		15	96.10444		40.13654		102.2308	100.9956								-0.151125
2h _c		16	94.07866	442.0934	57.74465	91511.75	100.9433	99.82067	169.1251	4.831001	24.61548			-140.5445		-0.097457
2h _c		17	95.0178			92685.05	100.219	99.50766	139.8856				1.162366			-0.128717
2h _c		18	93.66541	413.7437		90997.08	100.6253	99.62501	152.9314	4.54678			1			-0.172938
2h _c		19	95.51022				104.2584	103.4236		8.133361		90.33666	1.24033			-0.131563
2h _c		20	96.49467	252.0208	49.56719	94540.57	100.9706	100.308	142.8302		4.380837			-140.5435		
2h _c		21	93.97219	508.2168			101.2494	100.3022	176.49		60.21553	91.8622		-140.5435		
2h _c		22	95.12953		42.3389	92824.99	101.0701	100.334	123.1238	3.165145	41.18164	93.32932	1.00942	-140.543	-98.34401	-0.168407
2h _c		23	94.14206	439.166		91590.79	101.1684	100.3264	155.9216	4.794871	53.25954	92.08062	1			-0.194953
2h _c		24	93.2577	680.709	72.52483	90490.3	101.538	100.2971	213.6095	7.522453	28.57119		1.27672	-140.543	-98.34401	-0.119668
2h _c		25	95.84406	281.2608	43.75888	93721.59	101.201	100.6647	126.643	3.001025	43.75888	94.23718	1	-140.5425	-98.34401	-0.069398
2h _c		26	95.40803	538.2112	59.79823	93174.1	103.1644	102.1584			54.50071	92.89795	1.028884	-140.5425		
2h _c		27	95.98476	265.1699	49.45094	93898.49	100.8111	100.0065	142.9816	2.824006	18.68603	92.80292	1.343375	-140.542	-98.34401	-0.110116
2h _c		28	95.15183	446.2702	56.22231	92852.93	102.1675	101.105	163.4729	4.806206	30.02542	91.59416	1.198205	-140.542	-98.34401	-0.225874
2h _c		29	94.45099	673.3903	70.4639	91976.31	102.7342	101.6184	205.856	7.321346	28.88261	89.53943	1.263949	-140.542	-98.34401	-0.145276
2h _c		30	95.50063	271.8029	49.17848	93290.28	100.4448	99.64578	142.6566	2.913518	6.662695	90.42094	1.669091	-140.5415	-98.34401	-0.115267
4h _c		1	96.33801	264.5278	49.02933	94343.13	101.4639	100.3845	141.4281	2.80389	49.02933	94.98918	1	-140.5505	-98.24501	-0.128318
4h _c		2	95.96311	273.5307	42.40608	93871.27	101.4832	100.8008	122.63	2.913892	42.40608	94.35055	1	-140.55	-98.24501	-0.070881
4h _c		3	95.04576	290.5269	49.06217	92720.06	100.0024	99.48696	142.7561	3.133377	22.62908	91.986	1.26671	-140.5495	-98.24501	-0.082348
4h _c		4	96.81867	290.9426	48.18189	94949.34	102.1743	101.3475	138.5392	3.064188	48.18189	95.30907	1	-140.549	-98.24551	-0.076133
4h _c		5	95.46259	284.4313	47.77747	93242.55	100.729	99.92753	138.628	3.050446	36.86706	93.42864	1.091654	-140.5485	-98.24551	-0.078167
4h _c		6	99.1303	493.4365	62.17613	97883.47	105.9431	105.0824	176.0775	5.04106	21.14657	94.49041	1.334656	-140.5485	-98.24551	-0.081602
4h _c		7	95.89875	297.2889	52.73306	93790.34	100.8891	100.127	152.5593	3.169718	11.81245	91.62892	1.507382	-140.548	-98.24551	-0.112553
4h _c		8	96.1816	303.3203	42.90389	94146.17	102.4965	101.4839	123.8883	3.221801	22.83951	92.95402	1.206533	-140.5475	-98.24551	-0.081319
4h _c		9	95.6614	261.4741	48.57328	93492.1	100.8038	99.69871	140.7488	2.796751	22.87316	92.87127	1.268315	-140.547	-98.24551	-0.117025
4h _c		10	95.98073	273.8131	48.265	93893.42	100.9741	100.2356	139.5563	2.916211	25.97022	93.32346	1.218397	-140.5465	-98.24551	-0.103993
4h _c		11	95.24526	551.2669	70.88128	92970	102.0918	101.0783	205.9657	5.929514	15.88361	89.72416	1.459896	-140.5465	-98.24551	-0.066018
4h _c		12	97.18398	270.3119	54.17801	95410.94	101.9254	100.926	155.4028	2.833133	2.639891	90.9051	2.008461	-140.546	-98.24551	-0.096605
4h _c		13	95.61041	269.3627	54.2237	93428.08	101.6286	99.33613	157.1757	2.883102	14.83165	92.0726	1.462175	-140.5455	-98.24551	-0.117192
4h _c		14	94.91929	271.2587	41.54407	92561.74	100.471	99.81635	120.984	2.930571	36.59122	93.0009	1.043806	-140.5455	-98.24551	-0.118156
4h _c		15	96.19853	280.773	51.90938	94167.49	100.7281	100.2552	149.8753	2.981634	12.98894	92.25896	1.478349	-140.545	-98.24551	-0.113443
4h _c		16	96.19744	529.4199	64.68021	94166.11	103.6274	102.3363	186.7493	5.622192	33.18205	92.44392	1.208575	-140.545	-98.24551	-0.108593
4h _c		17	96.33505	271.4459	46.91171	94339.4	101.546	100.6748	135.3223	2.877333	30.03255	93.97673	1.157568	-140.544	-98.24551	-0.09368
4h _c		18	95.9626	270.4377	49.24065	93870.62	100.8562	100.0817	142.3947	2.880962	22.97113	93.10848	1.269671	-140.5435	-98.24551	-0.120611
4h _c		19	95.71419	256.4629	39.79845	93558.41	101.6035	100.5472	115.2815	2.741206	39.79845	94.10318	1	-140.543	-98.24551	-0.11059
4h _c		20	97.05464	270.4011	50.43145	95247.41	102.0025	101.076	144.7804	2.838934	18.96858	93.86471	1.344941	-140.5425	-98.24551	-0.121024
4h _c		21	95.74028	543.7545	67.72692	93591.18	103.1015	101.7618	196.1456	5.80989	20.25678	90.75075	1.371468	-140.5425	-98.24551	-0.104699
4h _c		22	95.54288	264.5734	45.95621	93343.3	100.8606	99.86068	133.2716	2.834413	32.87122	93.41655	1.119341	-140.542	-98.24551	-0.096658
4h _c		23	96.2494	287.0398	44.76794	94231.53	101.7664	101.0582	129.2123	3.046112	44.76794	94.64647	1	-140.5415	-98.24551	-0.115856
4h _c		24	96.83018	269.7394	44.55691	94963.86	102.4845	101.3705	128.1064	2.840443	42.642	95.22204	1.015641	-140.541	-98.24551	-0.102534
4h _c		25	95.87055	294.0808	43.5401	93754.88	101.5877	100.9362	125.9875	3.136699	30.17826	93.34823	1.123442	-140.5405	-98.24551	-0.120003
4h _c		26	93.2112	557.0913	57.35675	90432.55	101.2728	100.4958	168.9884	6.160296	40.83405	89.78986	1.102252	-140.5405	-98.24551	-0.149383
4h _c		27	95.39784	270.3371	46.78357	93161.32	100.6277	99.73169	135.8033	2.901817	46.67615	93.94841	1.000835	-140.54	-98.24551	-0.088331
4h _c				274.4076					138.7643						-98.24551	-0.135839
4h _c		29	96.65257	259.1239	52.05908	94739.7	101.4109	100.3857	149.853	2.735114	6.394289	91.81076	1.722741	-140.539	-98.24551	-0.113699
4h _c				277.075						2.9631	20.05928	92.52545	1.324412	-140.5385	-98.24551	-0.140138

```
1 \quad 97.2535 \quad 273.5189 \quad 47.27888 \quad 95498.88 \quad 102.5819 \quad 101.5924 \quad 135.551 \quad 2.864106 \quad 7.411808 \quad 92.25045 \quad 1.614799 \quad -140.5545 \quad -98.14601 \quad -0.146428 \quad -
7h<sub>c</sub>
                          2 95.98144 250.9785 49.51796 93894.32 100.8767 99.78277 143.1785 2.672989 9.619017 91.81663 1.571716 -140.5545 -98.14651 -0.086375
7h
                          3 95 39963 276 1485 46 00947 93163 57 100 6766 99 90113 133 5546 2 964125 32 01154 93 13603 1 127141 -140 553 -98 14651 -0 081919
                           4 96.39269 243.4466 47.57701 94412.03 101.1501 100.2304 137.1887 2.578555 9.503708 92.24347 1.560887 -140.5525 -98.14651 -0.093795
7h
                               96.1749 260.7147 43.71602 94137.74 101.3847 100.6478 126.239 2.769503 43.71602 94.68394
                                                                                                                                                                                               1 -140.552 -98.14651 -0.10135
7h
                          6 95.79153 245.2014 46.9585 93655.57 100.848 99.70777 135.9509 2.618119 43.63618 94.34242 1.027519 -140.551 -98.14651 -0.087832
                                                                                93834 101.3192 100.1779 134.4591 2.803677 34.8115 93.93065 1.103909 -140.5505 -98.14651 -0.088827
7h
                          7 95.93348 263.0803 46.48743
7h
                          8 95.85103 275.3903 45.90729 93730.35 101.2933 100.3502 132.8545 2.938112 35.60316 93.81348 1.089658 -140.55 -98.14651 -0.133648
7h
                          9 95.90952 258.2565 44.04721 93803.87 101.4574 100.3069 127.4215 2.753154 44.01143 94.442 1.000293 -140.549 -98.14651
                                                                                                                                                                                                                                        -0.133
                          10 96.47001 260.8624 47.26818 94509.48 101.729 100.6091 136.2279 2.760172 25.33727 93.86637 1.221778 -140.5485 -98.14651 -0.057992
7h<sub>c</sub>
                         11 95.92094 282.0011 50.07119 93818.23 101.1678 100.1449 144.8369 3.005824 11.69373 91.72937 1.494241 -140.5475 -98.14651 -0.104215
7h
                         12 96.11767 241.7277 44.09106 94065.7 101.9294 100.2295 127.3707 2.569775 44.09106 94.74705 1 -140.547 -98.14651 -0.106609
                                                                              94762.6 101.461 100.5111 140.1995 2.632123 17.75397 93.54172 1.361072 -140.546 -98.14651 -0.104695
                         13 96.67072 249.4268 48.71134
7h
                         14 95.48727 258.3589 45.08375 93273.51 100.6474 99.78525 130.7904 2.769906 45.08375 94.05461
                                                                                                                                                                                         1 -140.5455 -98.14651 -0.083574
7h
                         15 94.63557 277.8337 46.45266 92206.9 100.1667 99.12132 135.5388 3.013155 33.25263 92.43756 1.117498 -140.545 -98.14651 -0.139576
                         16 97.14629 272.862 55.22052 95363.28 101.7608 100.8523 158.4327 2.86129 0.377182 88.08026 2.584739 -140.544 -98.14651 -0.110613
                         17 95.75608 284.9063 48.50228 93611.03 101.4017 100.1616 140.4538 3.043512 15.13042 91.96513 1.39537 -140.5435 -98.14651 -0.151352
7h
7h
                         18 96.28853 231.7151 55.16749 94280.81 100.8718 99.43868 159.1866 2.457712 0.276178 87.8836 2.751072 -140.543 -98.14651 -0.065388
7h
                         19 95.83669 262.633 51.08546 93712.32 100.5091 99.69248 147.8542 2.802545 9.016688 91.46669 1.60002 -140.542 -98.14651 -0.108949
                         20 95.00588 259.5422 43.64957 92670.13 99.82933 99.46541 127.0413 2.80071 26.15915 92.45756 1.178574 -140.5415 -98.14651 -0.109814
7hc
7h<sub>c</sub>
                         21 95.43941 270.1239 43.29438 93213.46 100.6844 100.1188 125.6397 2.897906 39.3302 93.66918 1.033724 -140.5405 -98.14651 -0.107229
                         22 96.81299 274.0206 48.67426 94942.16 101.9672 101.0353 139.9602 2.886184 30.00546 94.43622 1.172186 -140.54 -98.14651 -0.098567
                         23 96.93227 266.3947 52.8885 95092.8 101.9485
                                                                                                           100.71 151.9575 2.801419 16.64259 93.59282 1.412997 -140.5395 -98.14651 -0.125621
7hc
7h<sub>c</sub>
                         24 95.7139 258.4667 48.09862 93558.04 100.9975 99.74416 139.3243 2.762635 12.17545 91.81476 1.4756 -140.5385 -98.14651 -0.121768
                         25 96.34433 272.8867 55.66592 94351.1 101.2708 100.021 160.5649 2.892248 2.391524 89.96152 2.052023 -140.538 -98.14651 -0.129432
7hc
                         26 95 38983 283 4526 43 62035 93151.27 100.7953 100.2635 126 628 3.042928 37 26468 93 4122 1.054336 -140.5375 -98.14651 -0.138874
7hc
                         27 96.60128 260.2446 54.39047 94675 101.0629 100.1898 156.6174 2.74882 3.455442 90.90874 1.939727 -140.5365 -98.14651 -0.090429
7h<sub>c</sub>
                         28 96.1826 271.7086 46.42585 94147.42 101.214 100.572 134.0573 2.88599 16.83963 92.68907 1.346926 -140.536 -98.14651 -0.136478
7h
                         29 95.74124 238.0015 39.61267 93592.39 101.3759 100.2474 114.7225 2.542958 39.61267 94.23919
                                                                                                                                                                                         1 -140.535 -98.14651 -0.097318
7h<sub>c</sub>
                         30 95.70777 256.6423 43.57812 93550.34 100.849 100.1247 126.2353 2.74336 43.57812 94.23546
                                                                                                                                                                                                1 -140.5345 -98.14651 -0.071001
                          1 95.47105 237.7039 40.02354 93253.15 100.7608 99.92537 116.1231 2.549018 23.97317 92.9242 1.178828 -140.559 -98.04451 -1.189738
                          2 96.29537 238.3777 40.49924 94289.43 101.5076 100.7099 116.8558 2.528149 25.33165 93.85504 1.164601 -140.558 -98.04451 -0.185922
10hc
10h
                          3 96.72049 266.0525 40.67515 94825.39 102.256 101.6262 117.0312 2.80571 33.94505 94.6785 1.062187 -140.5575 -98.04451 0.051319
10h
                           4 96.09789 262.8908 39.9317 94040.81 101.6637 101.0355 115.3704 2.795497 39.92784 94.45179 1.000033 -140.5565 -98.04451 0.157133
                          5 95.97664 280.6269 42.95312 93888.27 101.9982 100.8766 124.2007 2.988945 37.81799 94.05632 1.043927 -140.555 -98.04451 0.022194
10h<sub>c</sub>
10h
                          6 97.71511 261.4167 49.70207 96083.48 102.5379 101.6599 142.0643 2.720725 4.218202 92.06225 1.824754 -140.554 -98.04451 0.006633
                          7 96.14637 257.8549 44.69832 94101.83 101.4577 100.473 129.1002 2.740169 14.24999 92.45063 1.390645 -140.553 -98.04451 0.004652
                          8 96.70049 256.8348 41.19329 94800.16 101.9472 101.3766 118.5378 2.709223 33.28772 94.67829 1.074338 -140.552 -98.04451 -0.018131
10h
10h<sub>c</sub>
                          9 95.4625 270.3176 44.22601 93242.43 101.2838 100.0466 128.3234 2.899084 44.22601 93.93445 1 -140.551 -98.04451 -0.067178
                                                                                                                                                                                               1 -140.55 -98.04451 -0.066249
10h<sub>c</sub>
                          10 96.20104 267.6203 43.75813 94170.64 101.6607 100.788 126.3385 2.841866 43.75813 94.67206
                         11 95.69332 252.4701 47.11942 93532.19 100.4093 99.71188 136.5068 2.699286 10.85506 91.63907 1.506659 -140.549 -98.04451 -0.085708
10h
10hc
                         12 95.04775 251.9959 39.14024 92722.55 101.1605 99.87646 113.8848 2.717742 39.14024 93.43818 1 -140.548 -98.04451 -0.094132
10h
                         13 95.85009 279.1537 46.96501 93729.17 101.1841 100.308 135.9164 2.978301 15.26244 92.10118 1.38072 -140.547 -98.04451 -0.136553
10h.
                         14 95.62613 256.3062 40.73788 93447.81 101.3703 100.3448 118.0725 2.742774 40.73788 94.05323 1 -140.546 -98.04451 -0.087142
10h
                         15 \quad 95.79007 \quad 292.9056 \quad 47.36295 \quad 93653.74 \quad 101.1391 \quad 100.4283 \quad 137.1232 \quad 3.127538 \quad 34.02366 \quad 93.53306 \quad 1.114959 \quad -140.545 \quad -98.04451 \quad -0.130355 \quad
10h
                         16 96.40871 258.8049 46.12083 94432.21 101.3053 100.6173 132.9756 2.740643 15.73984 92.91927 1.371842 -140.544 -98.04451 -0.079691
10h
                              94.7054 291.3862 46.13573 92294.19 100.2815 99.44228 134.5504 3.157145 42.89895 92.96556 1.025472 -140.543 -98.04451 -0.156425
10h
                         18 95.61789 301.8018 45.77113 93437.47 101.4018 100.5632 132.6679 3.229987 45.77113 93.96946 1 -140.542 -98.04451 -0.16556
                         19 95.53667 274.4284 49.33526 93335.5 100.487 99.70856 143.0767 2.940236 17.31267 92.12286 1.363717 -140.541 -98.04451 -0.132455
10h
                         20 97.34431 234.0047 42.26759 95613.79 102.9251 101.4965 121.1106 2.447394 25.17084 94.9349 1.185206 -140.54 -98.04451 -0.096374
10h_c
                         21 95.94057 276.3037 45.81367 93842.91 100.9859 100.4638 132.5041 2.944321 14.46465 92.09162 1.388191 -140.539 -98.04451 -0.142171
                              95.7669 248.4903 40.74204 93624.62 101.1817 100.3412 117.973 2.654113 40.73146 94.24156 1.000092 -140.538 -98.04451 -0.081231
10h
                                94.7084 254.8656 43.84383 92297.94 99.96678 99.06818 127.8637 2.761335 40.32958 93.08013 1.030108 -140.537 -98.04451 -0.122541
10h
                         24 95.10682 277.0256 45.92576 92796.54 100.2182 99.63085 133.575 2.9853 45.92576 93.59882
                                                                                                                                                                                               1 -140 536 -98 04451 -0 138472
10h
                         25 95.72724 257.7203 43.16802 93574.8 101.2666 100.2049 125.0309 2.754164 38.93868 94.01523 1.036761 -140.535 -98.04451 -0.126467
10h.
                         26 95.91115 251.1284 44.51154 93805.92 101.3427 100.1426 128.7634 2.677107 23.81838 93.25553 1.220698 -140.534 -98.04451 -0.12269
10h
                         27 96.60824 257.1712 43.76876 94683.77 101.9973 101.015 126.0263 2.716106 43.76876 95.13932
                                                                                                                                                                                        1 -140.533 -98.04451 -0.153229
10h
                         28 96.76641 265.0562 46.62188 94883.36 101.8846 101.0303 134.1003 2.793495 20.70314 93.73573 1.283081 -140.532 -98.04451 -0.110921
                         29 96 24894 264 1763 42 63013 94230 95 101 6412 100 8966 123 0424 2 803498 41 64194 94 64831 1 008293 -140 531 -98 04451 -0 128165
10hc
10h<sub>c</sub>
                         30 95.05865 243.4597 46.44086 92736.21 99.73492 98.99042 135.1171 2.625292 11.43024 91.1863 1.488666 -140.53 -98.04451 -0.12058
```

Appendix C Indentation size effect

PP			iec circ				
$h_{max}(nm)$	H(GPa)	$h_{max}(nm)$	H(GPa)	$h_{max}(nm)$	H(GPa)	$h_{max}(nm)$	H(GPa)
9285.305	1.42029	8538.28	1.679689	685.9684	1.911352	218.8353	3.145272
	1.431124		1.685106		1.917473	219.1637	
	1.436954	8519.43	1.68713		1.966786	218.5591	
	1.449937		1.687465		1.971658		3.150885
	1.454891	8508.845	1.69133		1.972596	219.3429	
9164.158			1.691833		1.972968		3.154033
	1.458651		1.693226		1.975094		3.154169
	1.464545		1.694586		1.981511	218.2128	
	1.467502	8500.136			1.984025	218.1961	
	1.472759		1.698216		1.986561	217.3961	
9117.111		8486.004			1.997714	217.8455	
9080.541			1.702356		1.998503	216.4791	
9077.629		8476.382	1.70431		2.007423		3.196462
	1.501496		1.711489		2.008354	217.6478	
9008.859			1.712488		2.009212		3.201732
8982.447		8448.812			2.011941		3.205515
	1.522792	8402.014			2.012782	216.5931	
	1.530738		1.735063	970.3993	2.01631		3.213053
	1.535667		1.740842		2.021055		3.213198
8929.373	1.535775	8380.015	1.743733	668.783	2.023245	216.4034	3.220733
8928.902	1.535937	1041.777	1.748841	666.205	2.03112	215.8109	3.227945
8911.801	1.541837	1037.053	1.762688	666.2727	2.031374	216.8036	3.230632
8881.405	1.552409	1037.324	1.763409	667.7965	2.035361	215.6196	3.23459
8836.7	1.568156	8329.666	1.764877	664.4443	2.048237	215.1635	3.242215
8835.329	1.568643	8321.992	1.768133	662.3408	2.059612	214.4004	3.259909
8819.013	1.574453	1035.869	1.770899	664.2722	2.063088	214.425	3.268496
	1.577336	8314.803			2.063486		3.354894
8810.826			1.771617		2.065829	209.6665	
	1.578917		1.774134		2.069302		3.482771
	1.581601	1036.243		662.6142		59.4015	
8796.699			1.779537		2.070335		4.371931
	1.583599	1032.464			2.072179		4.444117
8788.131			1.789678		2.072898	58.18427	
	1.586897		1.791994		2.078226		4.460051
	1.587312		1.791994		2.076226	58.29608	
	1.587574		1.794692		2.111594	57.96899	
8782.2							
			1.795554		2.114653		4.504994
	1.590119	1028.089	1.79712	654.2857			4.508219
	1.595531		1.800507		2.119151		4.510912
	1.595705		1.800879		2.120504	57.41502	
	1.601321		1.803576		2.124733		4.538742
	1.603183		1.805036		2.127271	57.43698	
	1.606822	1024.643			2.127987	57.65825	
8727.022			1.807417		2.135292	57.37963	
	1.608154		1.808463		2.148384		4.578672
	1.609599		1.808693		2.157423		4.581826
8721.92	1.609701	1023.959	1.810905		2.163749	56.9488	
8712.816	1.613067	1023.83	1.812795	647.6056	2.168724	56.37972	4.598474
8711.335	1.613616	1023.141	1.813789	644.7349	2.187944	57.11098	4.615845
8710.268	1.614011	1022.137	1.817089	643.3387	2.199961	56.73455	4.623707
8704.585	1.616119	1021.789	1.817253	642.6743	2.201631	56.96581	4.625005
8691.058	1.621154	1021.717	1.817764	620.4958	2.366759	56.56161	4.64616
8681.624	1.624679	1021.894	1.818856	228.1599	2.91104	56.61197	4.65275
8679.822	1.625354	1021.487	1.819424	226.7045	2.937936	56.59793	4.692326
8671.891	1.628328	1020.644	1.819506	226.632	2.955677	55.23247	4.7132
8670.661	1.62879	1021.383	1.821162	225.6874	2.980254	55.65306	4.715328
	1.630355	1020.748			3.008226		4.716072
8654.968			1.823398		3.013476	55.8265	
8653.485			1.824807		3.028281		4.762217
8651.661			1.825301	223.0969		56.17908	4.7722
8644.184			1.827785		3.069805	55.99345	4.7722
	1.640924	1019.433			3.009803		4.808904
	1.648445		1.831964	221.4636	3.0886	55.69859	
	1.651861		1.835939		3.096287	55.0599	4.84207
							4.843584
	1.653122		1.838897		3.098871		
	1.657539	1015.221	1.84148		3.105911		4.861429
	1.658094	1014.997			3.109787	54.99551	
	1.659815		1.846394		3.115642		4.884852
8584.631			1.870152	220.3077			4.893157
	1.671592		1.870756		3.131219		4.965799
	1.671819	1006.402	1.87556	218.6724	3.13431	53.63033	
	1.674659	1001.74	1.88865		3.137596		5.019629
8541.657	1.678361	996.8655	1.90615	218.7905	3.14465	53.02233	5.038013

 hmax(nm)
 H(GPa)

 53.76396
 5.039747

 53.54199
 5.067062

 53.34506
 5.123032

 52.68363
 5.1393

 52.64841
 5.212961

 50.92609
 5.38613

Appendix D Effect of electrolytic polishing

rippenum i		11000	or cre	CUI OI	y cre p	OILDII	8								
Data set	Indent	hc(nm)	Pmax(µN)			hmax(nm)			E(GPa)	H(GPa)		hf(nm)	m		Y(mm)
Electrolytically polished	1			20.46092		56.3476		97.41539				32.7901	3.114901	-133.267006	-98.177505
Electrolytically polished	2	01.01.100		34.09189	35554.88	56.14159	55.31264	160.1903		4.651213	0.026197	39.82248	3.193312	-133.257006	-98.178005
Electrolytically polished	3	56.71721	167.8583	33.45199	39974.44	62.01888	60.48062	148.2401	155.9328009	4.19914	1.384131	50.16413	2.055944	-133.247006	-98.178005
Electrolytically polished	4 5	53.53123 38.89074	169.0868 171.184	33.52228 32.9574	37154.59 25397.43	58.37483 43.99502	57.31424 42.78631	154.0856 183.2284	163.0362507	4.550899 6.740211	16.9094 0.501735	51.0077 30.65014	1.250303	-133.237006 -133.227006	-98.178005 -98.178005
Electrolytically polished	6	38.89074 48.44771	169.126	32.9574	32850.57	43.99502 52.95133	42.78631 51.83038	183.2284	199.7366116 199.8360579	5.148343		43.37777	1.874095	-133.227006 -133.267006	-98.178005 -98.168005
Electrolytically polished Electrolytically polished	7	52.34832		30.75254	36131.71	57.19939	56.44851	143.3414		4.653032		50.96458	1.00311	-133.257006	-98.168005
Electrolytically polished	8			29.7462	35598.59	56.82138	55.95417	139.6851	145.685448	4.711013		50.31468	1.000286	-133.247006	-98.168005
Electrolytically polished	9	53.61145		33.52441	37224.43	58.73908	57.34579	153.9508		4.484203		50.76737	1.321202	-133.237006	-98.168005
Electrolytically polished	10		167.432	33.86094	34886.98	55.61511	54.59667	160.6209		4.799268		44 93208	1 954538	-133.227006	-98.168005
Electrolytically polished	11	51.90382		38.47139	35750.7	56.33351	55.16258	180.2729				44.66134	2.416851	-133.267006	-98.158005
Electrolytically polished	12			28.92356	34363.53	55.41924	54.61243	138.2413				48.72165	1.016742	-133.257006	-98.158005
Electrolytically polished	13			34.81562	32530.98	52.84872		171.0253		5.136455		45.10327	1.365782	-133.247006	-98.158005
Electrolytically polished	14	52.24258	166.8654	34.79761	36040.91	56.75208	55.83907	162.4001	173.2853813	4.62989	2.076678	46.44784	1.958418	-133.237006	-98.158005
Electrolytically polished	15	49.78056	167.0968	34.02767	33955.96	54.4778	53.46352	163.6097	174.7908299	4.920986	11.89412	46.68363	1.38066	-133.227006	-98.158005
Electrolytically polished	16	49.45123	166.7911	30.45596	33681.31	54.50045	53.55858	147.0323	154.4754188	4.952037	30.45596	48.08211	1	-133.267006	-98.148005
Electrolytically polished	17	46.36235		32.48486	31153.78	51.39705	50.21272	163.0649			32.48486	45.07889	1	-133.257006	-98.148005
Electrolytically polished	18	50.07067	167.6009	31.03041	34198.73	54.69781	54.12156	148.668				47.31408		-133.247006	-98.148005
Electrolytically polished	19	52.79916		32.55562	36520.02	57.51237	56.63613	150.9369		4.5606		49.76511	1.343056	-133.237006	-98.148005
Electrolytically polished	20	46.84704		27.77122	31544.61	52.37976		138.5375		5.294922		45.03835	1.050729	-133.227006	-98.148005
Electrolytically polished	21	50.68847		39.4621	34718.29	54.6725	53.85521	187.6445			0.643618	43.72377	2.399495	-133.267006	-98.138005
Electrolytically polished	22			29.77386	33501.13	54.48245	53.43166	144.1253	150.982184	4.973557	25.5761	47.52614	1.055278	-133.257006	-98.138005
Electrolytically polished	23	52.82626		39.58487	36543.43	56.83163	55.98463	183.4676		4.561644	2.386581	47.5831	1.995064	-133.247006	-98.138005
Electrolytically polished	24	51.22205	166.7271	36.29259	35169.88	55.75127	54.66753	171.4618	184.6545121	4.740622	4.599702	46.71352	1.731402	-133.237006	-98.138005
Electrolytically polished	25	52.13455	166.6956	33.33581	35948.25	56.96104	55.88493	155.7783	165.1088624	4.637099	13.1564	49.20097	1.336658	-133.227006	-98.138005
Electrolytically polished	26 27	49.59656 50.11725	166.7694 166.8809	32.20138 29.36814	33802.39 34237.78	54.2414 55.10555	53.48078 54.37904	155.1799 140.6237	164.3753881 146.8012582	4.933659 4.874175	14.68997 29.36814	46.83672 48.69666	1.282895	-133.267006 -133.257006	-98.128005 -98.128005
Electrolytically polished Electrolytically polished	28	51.89919		31.16276	35746.74	56.72484	55.91254	146.0335		4.664931	12.92216	48.89061	1.312231	-133.247006	-98.128005
Electrolytically polished	29	51.08549		32.25846	35054.05	55.96009	54.96066	152.6544		4.75483		45.41135	1.848171	-133.237006	-98.128005
Electrolytically polished	30	49.69799		33.12808	33887	54.69	53.48575	159.4463		4.937246		46.47884	1.38741	-133.227006	-98.128005
Electrolytically polished	31	51.33669		36.08727	35267.23	55.36267	54.80986	170.2563		4.73858		48.33023	1.399216	-133.267006	-98.117505
Electrolytically polished	32	49.72186		35.73044	33906.93	54.36376	53.23801	171.921	185.2363123	4.940327	13.49848	46.86366	1.35966	-133.257006	-98.118005
Electrolytically polished	33	50.1967	166.8991	31.167	34304.43	55.21443	54.21294	149.0921	156.9630317	4.865235	21.21578	48.10764	1.140113	-133.247006	-98.118005
Electrolytically polished	34	52.24427	167.1107	35.52358	36042.36	56.39225	55.77244	165.7849	177.5074431	4.63651	7.057714	48.34722	1.578415	-133.237006	-98.118005
Electrolytically polished	35	46.11349	167.096	32.7314	30953.94	51.1955	49.94229	164.832	176.3158408	5.398214	9.963719	42.68153	1.422265	-133.227006	-98.118005
Electrolytically polished	36	50.35172	166.9577	36.14619	34434.65	54.52947	53.81594	172.5836	186.0766661	4.848538	2.001477	44.61068	1.99293	-133.267006	-98.108005
Electrolytically polished	37	49.64461	166.8825	30.1672	33842.46	54.60663	53.79355	145.2911	152.3806553	4.931157	30.13554	48.25949	1.000387	-133.257006	-98.108005
Electrolytically polished	38	52.51738	166.054	35.98332	36277.1	56.73377	55.97845	167.3862	179.5151001	4.577377	2.983598	47.36501	1.866502	-133.247006	-98.108005
Electrolytically polished	39	52.66043		32.13896	36400.33	57.80542	56.53624	149.2499	157.1539658	4.562771	25.26661	50.9056	1.089572	-133.237006	-98.108005
Electrolytically polished	40	49.40766		38.99747	33645.05	53.28548	52.61126	188.3695				45.21896	1.730625	-133.227006	-98.108005
Electrolytically polished	41	50.01206		33.9794	34149.62	54.50114	53.69138	162.9137	173.9241526	4.881305		43.81509	2.013205	-133.267006	-98.097505
Electrolytically polished	42	00.0000		35.21295	34448.79	55.07874	53.93899	168.0932		4.866204	15.6047	47.74236	1.301649	-133.257006	-98.098005
Electrolytically polished	43		166.1375	32.85	36590.09	57.68057	56.67337	152.1558	160.6818952		11.79394	49.7561	1.367736	-133.247006	-98.098005
Electrolytically polished	44	51.90944		36.42555	35755.51	56.07799	55.34573	170.6748	183.658763	4.667572		47.28962	1.758317	-133.237006	-98.098005
Electrolytically polished	45			30.45676	32001.54	51.9439	51.52839	150.8458		5.225659		46.03768	1	-133.227006	-98.098005
Electrolytically polished	46	49.68405		37.35036	33875.37	54.18393	53.04068	179.7991	195.3031426	4.934611	0.482323	42.10066	2.444422		-98.087505
Electrolytically polished Electrolytically polished	47 48	49.11481 51.74201	166.2664 166.4355	29.87598 35.23333	33401.78 35612.46	54.41156 56.40978	53.28873 55.28486	144.8345 165.4198	151.8326159 177.050684	4.977771 4.673518	29.87598 9.251723	47.72351 48.27486	1 1.483973	-133.257006 -133.247006	-98.088005 -98.088005
Electrolytically polished	49	49.68607		28.26158	33877.05	54.83142	54.10817	136.0437		4.073318		47.99299	1.463973	-133.237006	-98.088005
Electrolytically polished	50	49.64451	167.507	32.36685	33842.37	54.49486	53.52596	155.8852		4.949623		46.13607	1.427925	-133.227006	-98.088005
Solution annealed	1	50.41463		29.18375	34487.56	55.23247	54.59195	139.2338		4.7132		47.11704	1.34205	-134.587006	-1.6745
Solution annealed	2			29.17695	33965.47	55.15923	54.06411	140.2671	146.3771522	4.893157	28.97725	48.35361	1.002506		-1.6745
Solution annealed	3	53 44866		29.73207	37082.77	58.64269	57.66274	136.7961	142.2642755	4 504994	29.73207	52.04397	1	-134.567006	-1.6745
Solution annealed	4	53.03666		33.8631	36725.35	57.65825	56.74375	156.5592	166.067393	4.557561	6.966127	49.04484	1.557606	-134.557006	-1.6745
Solution annealed	5	52.64966	167.3433	41.74751	36391.05	56.37972	55.65601	193.8957	213.7314881	4.598474	1.168619	46.61729	2.25491	-134.547006	-1.6745
Solution annealed	6	47.44012	166.949	31.39407	32025.76	52.64841	51.42851	155.4293	164.6808813	5.212961	12.54503	44.37996	1.325449	-134.587006	-1.6645
Solution annealed	7	52.34598	167.1	33.96189	36129.7	56.96581	56.03614	158.3049	168.2157752	4.625005	20.3635	50.17796	1.190633	-134.577006	-1.6645
Solution annealed	8	51.51217	167.0268	28.04038	35416.51	56.35678	55.97966	132.0128	136.6424313	4.716072	27.98689	50.01892	1.000686	-134.567006	-1.6645
Solution annealed	9	52.32983	166.705	32.24286	36115.82	57.11098	56.20755	150.321	158.4519337	4.615845	13.95961	49.48051	1.301093	-134.557006	-1.6645
Solution annealed	10	48.99167	167.1522	33.20124	33299.72	53.329	52.76756	161.2014	171.7970681	5.019629	10.25476	45.62183	1.419346	-134.547006	-1.6645
Solution annealed	11	50.04601	166.9547	28.80396	34178.06	55.30262	54.39319	138.0426	143.7380344	4.884852	28.80018	48.59667	1.000048	-134.587006	-1.6545
Solution annealed	12	52.05571	166.7074	39.23543	35880.69	56.56161	55.24239	183.5198		4.64616		44.38238	2.555958	-134.577006	-1.6545
Solution annealed	13	51.43931	166.708	34.03254	35354.5	55.65306	55.11317	160.364	170.759489	4.715328		48.59132	1.331401	-134.567006	-1.6545
Solution annealed	14	53.533		36.0193	37156.13	57.96899	56.99608	165.5598		4.476171	9.502082	50.13384	1.486155	-134.557006	-1.6545
Solution annealed	15			30.51232	34872.76	55.99345	54.97072	144.7661	151.7505222	4.7824	30.13668	49.47981	1.004587	-134.547006	-1.6545
Solution annealed	16	53.5497		31.68712	37170.66	58.29608	57.4801	145.6188		4.467431	11.90017	50.41519	1.348129	-134.587006	-1.644
Solution annealed	17	54.57492		30.59719	38067.9	59.0443	58.65446	138.9431	144.8048806	4.371931	30.54207	53.21143	1.000669	-134.577006	-1.6445
Solution annealed	18	52.54806		35.42031	36303.52	56.9488	56.08176	164.7073	176.1601232	4.596968	12.16007	49.52138	1.392391	-134.567006	-1.6445
Solution annealed	19	53.04801	166.3023	35.57647	36735.17	57.41502	56.55388	164.4586	175.8496192	4.52706	7.034193	49.16234	1.581246	-134.557006	-1.6445
Solution annealed Solution annealed	20 21	46.26377 53.15682		32.4708 32.5857	31074.55 36829.43	50.92609 57.43927	50.12967 57.0042	163.202 150.4404	174.2829568 158.5967722	5.38613 4.538742	13.31097 9.800239	43.32478 49.69098	1.320178 1.425624	-134.547006 -134.587006	-1.6445 -1.6345
Solution annealed Solution annealed	21	53.15682		32.5857	37466.34	57.43927	57.16633	150.4404	158.5967722	4.538742	3.868392	49.69098	1.425624	-134.587006 -134.577006	-1.6345 -1.6345
Solution annealed	23			36.35849	38391.66	59.4015	58.37004	164.4077	175.7861198	4.43207	3.038349	49.83836	1.866671	-134.567006	-1.6345
Solution annealed	23	53.67113		33.44701	37276.43	58.15173		153,4882			6.061225	49.4675	1.598715	-134.557006	-1.6345
CC.Stion announce	24	30.07 113	.00.0000	55.77701	51210.40	55.15175	07.00000	.00.7002	. 52.5554552		5.001220	45.4015		104.007000	1.0040

Solution annealed	25	50.82435	166.2302	27.20334	34833.04	56.17908	55.40734	129.1402	133.2917413	4.7722	27.14496	49.29201	1.000765	-134.547006	-1.6345
Solution annealed	26	52.49202	166.1153	35.7435	36255.27	56.85327	55.97759	166.3207	178.1785092	4.581826	3.571527	47.58797	1.805218	-134.587006	-1.6245
Solution annealed	27	50.2539	167.002	37.41185	34352.45	54.34703	53.60181	178.8402	194.0690287	4.861429	4.888007	45.88684	1.728311	-134.577006	-1.6245
Solution annealed	28	51.02541	166.6926	30.89799	35003.15	56.26663	55.07161	146.3226	153.6207932	4.762217	24.933	49.25184	1.078749	-134.567006	-1.6245
Solution annealed	29	52.74931	166.2178	32.78192	36477	57.43698	56.55212	152.0757	160.5843577	4.556785	13.0156	49.79329	1.332994	-134.557006	-1.6245
Solution annealed	30	47.99442	166.3876	29.31049	32478.35	53.34506	52.25196	144.099	150.9507073	5.123032	28.30446	46.50295	1.012734	-134.547006	-1.6245
Solution annealed	31	48.68224	166.5329	31.06093	33043.89	53.76396	52.70336	151.3923	159.7529615	5.039747	18.60103	46.34824	1.185326	-134.587006	-1.6145
Solution annealed	32	49.39073	167.0046	32.75486	33630.96	54.23126	53.21469	158.249	168.1467934	4.965799	3.021925	44.00238	1.806824	-134.577006	-1.6145
Solution annealed	33	53.62434	166.0729	34.1327	37235.66	58.02959	57.27347	156.7206	166.2656815	4.460051	15.72068	51.01763	1.285754	-134.567006	-1.6145
Solution annealed	34	50.48115	166.4625	29.39569	34543.54	55.69859	54.72826	140.1313	146.2156181	4.818917	29.39569	49.06544	1	-134.557006	-1.6145
Solution annealed	35	48.7583	166.792	34.86814	33106.7	53.02233	52.34593	169.7875	182.537975	5.038013	9.889855	45.38223	1.455774	-134.547006	-1.6145
Solution annealed	36	50.49742	166.1825	30.79028	34557.25	55.34733	54.54535	146.7502	154.1356373	4.808904	19.40477	48.24695	1.166968	-134.587006	-1.6045
Solution annealed	37	51.85071	166.1278	33.50827	35705.3	56.61197	55.56907	157.116	166.7518289	4.65275	5.098187	47.36311	1.655156	-134.577006	-1.6045
Solution annealed	38	48.65187	167.3085	31.88248	33018.83	53.54199	52.58762	155.4555	164.7130706	5.067062	8.176285	44.84714	1.475033	-134.567006	-1.6045
Solution annealed	39	51.42077	165.8208	28.93275	35338.73	56.59793	55.71921	136.3638	141.7539367	4.692326	28.91228	49.98648	1.000258	-134.557006	-1.6045
Solution annealed	40	48.04138	167.1137	33.45773	32516.83	52.68363	51.78746	164.3907	175.7648413	5.1393	9.440701	44.5405	1.450909	-134.547006	-1.6045
Solution annealed	41	53.40726	167.015	38.27847	37046.78	57.52222	56.67963	176.2033	190.6880928	4.508219	1.861116	47.72793	2.051656	-134.587006	-1.594
Solution annealed	42	51.33438	166.7505	31.90451	35265.27	55.8265	55.25429	150.5266	158.7014547	4.728463	20.58467	49.18882	1.160511	-134.577006	-1.5945
Solution annealed	43	52.11896	166.1524	34.68986	35934.88	56.73455	55.7112	162.1359	172.9570484	4.623707	11.45764	48.98896	1.403494	-134.567006	-1.5945
Solution annealed	44	49.24597	167.4982	34.38952	33510.64	53.63033	52.89894	166.4446	178.3337158	4.99836	1.663351	43.06952	2.018106	-134.557006	-1.5945
Solution annealed	45	50.40146	166.9897	34.65932	34476.48	54.88837	54.01498	165.384	177.0058586	4.843584	1.988852	44.52778	1.969104	-134.547006	-1.5945
Solution annealed	46	50.31009	166.5656	31.64448	34399.66	55.0599	54.25783	151.1665	159.478595	4.84207	19.26922	48.04337	1.180636	-134.587006	-1.5845
Solution annealed	47	52.65196	166.1966	37.22168	36393.03	57.37963	56.00075	172.8708	186.4413812	4.566715	3.375658	47.75423	1.846904	-134.577006	-1.5845
Solution annealed	48	52.54626	166.2148	36.06016	36301.96	56.91568	56.00329	167.6862	179.891973	4.578672	3.126837	47.46393	1.852606	-134.567006	-1.5845
Solution annealed	49	53.11084	165.9545	34.74144	36789.58	57.37467	56.69347	160.4797	170.9028075	4.510912	1.489336	46.84849	2.06098	-134.557006	-1.5845
Solution annealed	50	50.08906	166.7944	35.25323	34214.14	54.99551	53.63755	168.8616	181.3706501	4.875014	0.996383	43.27605	2.18998	-134.547006	-1.5845

Appendix E Sample I grain boundaries Inherent mechanical properties

Grain boundary (1)

Lukleft, (Old.) ye. 40.09973 172.47 47.23757 522.947 59.0309 49.89740 199.554300 30.00564 91.956740 44.89851 31.9882 132.2746 5.42157 0.749331 0.71053 50.686542 561984 551943 5.25101 52.1045 0.71054 0.7	Indent	hc(nm)	Pmax(uN)	S(µN/nm)	A(nm^2)	hmax(nm)	heff(nm)	Er(GPa)	E(GPa)	H(GPa)	Α	hf(nm)	m	X(mm)	Y(mm)	Drift Correcti
Dubbleff_001.hyg																
Dubbleff (1002-lybs 48.54473 1070-396 56.68542 56.18614 52.58101 52.1454 2118.5776 238.014983 3.032043 0.771053 42.6762 2.61706 132.2715 5.422157 0.237104																
Dubbleff_00.03.hg																
bulkelft_OOL-hys 48,26694 160,7462 44,7529 5387,58 51,2965 51,12942 198,000 41,9763 42,2005 43,1732 45,2157 0,21334 bulkelf_OOR-hys 41,000 68,1198 48,2867 52,000 68,2009 90,9391 4988,00 48,2307 17,000 48,2007 48,2007 48,2007 48,2007 48,2007 48,2007 48,2007 48,2007 68,2008 50,3391 4988,00 48,2307 168,2005 56,626 54,0448,00 51,000 41,1256 42,2222 42,6467 0,00335 50,000 41,1256 60,000 41,1256 42,2227 42,6467 0,000,300 40,000 41,1256 42,2227 42,6467 0,000,300 40,000 41,1256 42,2227 41,1256 13,2271 4,24667 0,000,300 40,000 41,1256 42,2227 41,1256 13,2227 42,4467 0,000,300 40,000 41,1256 42,2227 41,1256 42,2227 42,2230 42,2220 42,2230 42,2220 42,2220 42,2220<																
DubileFig.00.61/ps																
bulkeff_008_hys 46,41095 169,2098 59,3918 68860.9 62,3027 47,9022 202,00778 224,666746 3,39100 1,41256 42,28519 1,6909 132,2745 5,424657 0,09372 bulkeft_008_hys 48,3807 168,3867 56,6248 54,040,35 1,3056 60,0033 1,27479 2,115,20771 23,17479712 23,17175 4,244570 0,09372 bulkingh_001_hys 60,06679 168,108 39,5015 50822.63 48,51841 1,27550 250,2003 22,80373 33,33808 33,2271 55,424657 0,06873 bulkingh_002_hys 45,18501 167,6294 46,8325 238,888 50,20475 38,42273 18,3183 33,9173 33,9173 33,9173 33,9173 33,9173 33,9173 33,9173 33,9173 34,3221 1,7524 4,7428 4,74273 4,7438 0,00189 1,814,242 4,74272 167,6273 4,64451 33,9173 4,81273 18,81733 18,91733 4,912833 1,912833 3,91283 1,912833																
Dulkiefft (0.071/ps 48.4019 188.4398 49.9881 511.439 50.10268 49.5222 40.31655 166.64 48.2125 42.8026 44.8756 166.64 48.2125 42.8026 44.8756 166.64 48.2125 42.8026 44.8756 166.64 48.2125 42.8026 44.8756 44.																
bulkefig.008.hys bulkefig.009.hys bulkef																
bulkeright_000.by 40.14555 166.64 28 12/253 28.088.84 44.8755 120.812003 120.818003 22.868.467 38.92653 22.82073 38.2219 1.07566 132.2745 5-1.47438 0.04678 bulkinght_001.bys 45.19504 167.0895 48.5426 48.9882.24 48.93829 47.7128 18.9869 49.9927 132.2537 5-427438 0.00678 bulkinght_003.hys 45.54852 167.8012 46.9505 50.0076.2 48.024573 18.93839 12.1272613 33.81841 0.17797 43.93152 15.33152 15.25505 5-427438 0.002617 49.82421 18.173738 19.98693 13.93839 12.1272613 33.81841 0.17797 44.98242 12.54505 5.427438 0.002617 44.92421 11.73738 19.98693 13.93839 11.7277613 33.81841 0.17797 44.98242 11.93809 11.73738 19.98693 11.73783 19.98693 19.17278 19.17278 42.24013 13.22.2527 5.427438 0.017279 42.24013 13.22.2527 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																
bukinght_000.hys																
Dukinghin_O01.hys Dukinghin_O02.hys A51.9504 67.9595 48.5426 495.8612 52.386 50.20475 49.84202 181.7738 197.986577 31.95240 67.86757 64.98067 40.98057 54.54652 67.8012 46.65956 50.076.2 48.7034 48.24673 41.8473509 201.7002119 3.350918 11.8469 42.68734 1.54452 132.2552 5.428938 0.0121085 0.01610 40.9873 0.01610 40.987																
bulkinght_002.hys Ar.17128 67.2524 46.96312 52338.89 50.2075 49.84202 181.877738 197.986577 31.95242 06.78375 40.89305 25.13055 132.2522 5.42738 30.026817 50.006817																
Dulkingin (1003.hys bulkingin (1004.hys 45.54852 167.8107 44.64556 500762 48.739570 49.32951																
bulkinght_006.hys bulkinght_006.hys bulkinght_006.hys bulkinght_006.hys bulkinght_006.hys bulkinght_006.hys bulkinght_007.hys 30.86463																
bulkinght_Oos.hys bulkinght_Oos.hys d3.31152 167.8607 47.35577 47017.7 46.59085 45.59008 45.97003 193.49825 213.2044677 3.570159 169.02489 3.01918 2.43043 132.2522 5.429838 -0.012882 5.430148 -0.03828 -0.03828																
bulkinght_Oble_hys bulkinght_Ord_hys bulkinght_O																
bulkright_00R hys defended hys																
Dulkright_OBB.hys 44.15895 167.9176 49.95541 49168.07 47.42624 46.67996 20.1668341 224.1278533 34.86077 14.06055 15.1099 -132.2562 -5.430438 -0.028485 -5.431672 -0.053391 -0.																
Dullright Col9 hys A64-64 R67 1044 42.8145 51.335.02 50.19478 49.3815																
GB 001 hys																
GB 002 hys GB 003 hys 38 13615 168.0762 41.47624 41.46231 41.496.25 42.5828 42.16251 42.3309 169.027982 33.07416 68.5894 38.82478 41.4621 43.02715 42.3309 169.027982 31.5802602 4.070614 30.2939 37.5604 1.09807 132.2651 5-4.311321 -0.093275 68.005.hys 37.12795 68.5268 40.7083 39927.28 40.67071 40.23319 40.20319 39.7035 39.20214 168.5055 51.95221 39134.32 40.20071 39.72035 39.20214 36.5005 51.95221 39134.32 40.20071 39.72035 39.80848 267.3684904 4.29930 6.070667 31.5532 2.55926 4132.2464 5-4.30111 -0.093275 68.008.hys 38.1833 169.0946 4.23832 3416.12 37.06774 38.7970 38.48992 40.2533 34.2020 4.29330 4.29393 3.53076 1.30797 1.32.264 5-4.30711 -0.095287 68.008.hys 34.32796 168.6417 41.20254 35436.53 37.99518 37.3977 39.919297 21.37.62852 4.758709 4.2744 31.6299 4.299300 4.29930 4																
GB 003.hys																
GB 006.hys GB 006.hys 37.2975 68.5268 40.7081 40.67071 40.2319 40.67071 40.2319 40.27075 40.2319 40.27075 40.2319 40.27075 40.2319 40.27075 40.2319 40.27075 40.2319 40.27075 40.2319 40.27075 40.2319 40.27075 40.2319 40.27075 40.2319 40.27075 40.2319 40.27075 40.2319 40.27075 40.2319 40.27075 40.2319 40.27075 40.2319 40.27075 40.2319 40.2319 40.27075 40.2319 40.2319 40.2319 40.2319 40.2319 40.2319 40.2319 40.2319 40.2319 40.2319 40.2319 40.2319 40.2319 40.2319 40.2319 40.2319 40.2319																
GB 005.h/s GB 005.h/s GB 025.h/s GB 025.h/s GB 006.hys GB 006.hys GB 007.hys GB 007.hys GB 007.hys GB 007.hys GB 007.hys GB 008.hys GB 008.hys GB 008.hys GB 008.hys GB 008.hys GB 008.hys GB 009.hys GB 007.hys GB 007.hys GB 007.hys GB 007.hys GB 007.hys GB 007.hys GB 008.hys GB 009.hys GB 008.hys																
GB 006.hys GB 006.hys GB 007.hys GB 06636 169.0231 44.58042 37067.74 38.97317 38.48992 205.5445 228.8464659 4.59842 20.8132 33.53076 13.07997 -132.264 -5.430571 -0.085349 GB 009.hys 33.81833 169.0946 34.23882 34815.17 37.78206 37.52234 162.569081 173.5100193 4.856922 34.23829 32.58363 1.00006 -132.2637 -5.43057 -0.079678 GB 010.hys 40.094 11.0006 1.0																
GB 007.hys																
GB 008.hys GB 009.hys 34.32796 68.6417 41.20254 34.3882 34.5817 37.78206 37.52234 182.58081 173.5100193 48.66922 32.58363 1.00006 132.2637 -5.43005 -0.0767676 GB 010.hys 34.89094 168.3236 44.09989 36030.25 38.39211 37.67176 205.839985 229.7784843 4.671731 10.11591 31.67825 1.570233 -132.2632 -5.43006 -0.097303 -0.0				44.58042				205.15445		4.559842	20.81392	33,53076				
GB 009.h/s																
GB LEFT 001.hys GB LEFT 001.hy		34.32796	168.6417	41.20254	35438.53	37.99518	37.3977	193.919297	213,762852	4.758709	14.2744	31.6299	1,409189	-132,2633		
GB LEFT 001.hys GB LEFT 001.hys GB LEFT 001.hys GB LEFT 002.hys 36.07074 169.4271 46.4095 37.597.28 39.52355 38.80877 205.891556 229.848652 4.747113 17.4656 32.10474 1.366315 132.2632 5-4.29547 -0.091239 4.60913 4.60913 39.52355 38.80877 39.52355 38.80877 39.52355 38.80877 39.52355 38.80877 39.52355 38.80877 39.52355 38.80877 39.52355 38.80877 39.52355 38.80877 39.52355 38.80877 39.52355 38.80877 39.52355																
GB LEFT 002.hys GB LEFT 007.hys GB LEFT 007.hys GB LEFT 006.hys GB LEFT 008.hys JA 199.195 190.0082 JA 199.195		34,48111	169.1233	43.86222	35626.56	38.18228	37.37295	205.891556	229.8486525	4.747113				-132,2632	-5.429547	-0.091239
GB LEFT 004.hys GB LEFT 005.hys GB LEFT 008.hys GB LEFT 007.hys GB LEFT 008.hys GB LEFT 008.hy		36.07074	169.4271	46.4095	37597.28	39.52355	38.80877	212.0623		4.506367	13.07427	33.31758			-5.429313	-0.074071
GB LEFT 005.hys GB LEFT 007.hys GB LEFT 008.hys GB LEFT 008.hy	GB LEFT 003.hys	34.38319	168.9618	42.36082	35506.3	37.85904	37.37467	199.180322	220.7814383	4.758644	23.41819	32.43806	1.237669	-132.2625	-5.429008	-0.064104
GB LEFT 006.hys GB LEFT 007.hys GB LEFT 007.hys GB LEFT 008.hys GB LEFT 008.hys GB LEFT 009.hys GB RIGHT 001.hys GB RIGHT 001.hys GB RIGHT 001.hys GB RIGHT 001.hys GB RIGHT 005.hys GB RIGHT 006.hys GB R	GB LEFT 004.hys	36.1282	169.0929	52.00083	37669.17	39.05478	38.56701	237.384352	274.1847904	4.488893	4.275687	32.13973	1.976568	-132.2621	-5.428805	-0.05035
GB LEFT 007.hys 34.90189 169.3089 45.40974 36144.82 38.37236 37.69825 211.622005 237.6937988 4.684181 7.809097 31.44233 1.677878 -132.2611 -5.427992 -0.034649 GB LEFT 008.hys 37.8903 169.37890 31.695742 38.4173 14379.42 37.58915 37.10885 37.10885 GB LEFT 010.hys 34.38734 169.2368 43.48777 35511.39 37.88154 37.30604 204.464572 227.9099123 47.65705 23.08694 1.141892 -132.2604 -5.42736 -0.058903 GB RIGHT 001.hys 34.32111 169.1081 49.02248 35430.12 37.58015 36.86605 237.52171 368.6605 237.52171 368.6605 237.52171 368.6605 37.52178 36.8605 37.52178 36.8605 37.5218 38.348140 37.2883 36.814 37.2883 36.814 37.2883 36.814 37.2883 36.814 37.2883 36.814 37.2883 36.814 37.2883 36.814 37.2883 36.814 37.2883 36.814 37.2883 36.814 37.2883 36.814 37.2883 36.814 37.2883 36.814 37.2883 36.814 37.2883 36.814 37.2883 36.814 37.2883 37.2883 37.2883 37.8814 37.2883 37.8814 37.2883 37.8814 37.2883 37.8814 37.2883 37.8814 37.2883 37.8814 37.2883 37.8814 37.2883 37.8814 37.2883 37.8814 37.2883 37.8814 37.2883 37.8814 37.2883 37.8814 37.2883 37.8814 37.2883 37.8814 37.2883 37.8814 37.2883 37.8814 37.2883 37.8814 37.2883 37.2883 37.8814 37.2883 37.2883 37.8814 37.2883 37.2883 37.8814 37.2883	GB LEFT 005.hys	34.72263	169.4257	43.73801	35923.73	38.16859	37.62787	204.457568	227.9004109	4.716261	20.08407	32.54637	1.311811	-132.2618	-5.428547	-0.06057
GB LEFT 008.hys 38.80e24 189.5178 46.6773 37266.95 39.09204 38.53001 214.229108 241.2950317 4.548744 10.81217 32.80274 1.577024 -132.22608 -5.427634 -0.035705 GB LEFT 001.hys 34.38734 169.2368 43.48777 35511.39 37.88154 37.30e04 37.30e04 204.464572 227.9099123 4.765705 16.71866 31.94273 1.378178 -132.266 -5.427078 -0.065903 GB RIGHT 001.hys 34.32111 169.1081 49.02248 35430.12 37.50004 36.90831 40.07510 204.464572 227.9099123 4.765705 16.71866 29.98499 2.006991 -132.2592 -5.427258 -0.026298 GB RIGHT 001.hys 33.65143 169.7891 40.675 34611.8 37.22835 36.78214 199.709235 213.4842231 4.905526 40.675 32.60786 1 -132.2585 -5.427203 -0.032701 4.05023 30.98647 170.021 44.05023 36.80404 37.4878 36.83125 GB RIGHT 005.hys 32.4917 169.7578 41.29713 4123.21 36.81484 36.3324 199.77799 219.3041448 4.975316 33.54974 1.00671 -132.2576 -5.426094 -0.01192 GB RIGHT 007.hys 37.82153 186.8695 39.32077 3808.24 41.63784 41.03871 42.77302 GB RIGHT 008.hys 39.35311 168.3823 35.92644 41.63784 42.97814 42.77302 170.041978 42.77302 41.038677 42.9814 42.77302 41.038677 40.01192 42.77302 41.038677 40.01192 42.77302 41.038677 40.01192 42.77302 41.038677 40.01192 41.038677 40.01192 42.77302 41.038677 40.01192 42.77302 41.038677 40.01192 42.77302 41.038677 40.01192 42.77302 41.038677 40.01192 41.038677 40.01192 41.038677 41.03867	GB LEFT 006.hys	35.61719	169.3691	37.76759	37031.44	39.51079	38.98058	173.887662	187.7340685	4.573657	35.98203	34.40954	1.019294	-132.2615	-5.428282	-0.033205
GB LEFT 010.hys GB RIGHT 001.hys GB RIGHT 004.hys GB RIGHT 004.hys GB RIGHT 005.hys GB RIGH	GB LEFT 007.hys	34.90189	169.3089	45.40974	36144.82	38.37236	37.69825	211.622005	237.6937988	4.684181	7.809097	31.44233	1.677878	-132.2611	-5.427992	-0.034649
GB RIGHT 001.hys GB RIGHT 002.hys GB RIGHT 005.hys GB RIGHT 006.hys GB RIG	GB LEFT 008.hys	35.80624	169.5178	46.6773	37266.95	39.09204	38.53001	214.229194	241.2950317	4.548744	10.81217	32.80274	1.577024	-132.2608	-5.427641	-0.037375
GB RIGHT 001 hys GB RIGHT 002 hys GB RIGHT 002 hys GB RIGHT 002 hys GB RIGHT 005 hys GB RIG	GB LEFT 009.hys	33.79803	169.5742	38.41371	34790.42	37.58915	37.10885	182.469899	198.7532618	4.874164	26.75529	32.06894	1.141692	-132.2604	-5.42736	-0.058903
GB RIGHT 002.hys 34.16291 169.4856 47.02469 35236.25 37.52717 36.86605 GB RIGHT 003.hys 36.6143 169.7891 40.675 34611.8 37.22835 36.78214 193.709235 213.4842231 4.905526 40.675 32.60786 1 -132.2585 -5.427203 -0.032701 40.675 32.60786 1 -132.2585 -5.427203 -0.021743 40.675 32.60786 1 -132.2585 -5.427203 -0.021743 40.675 32.60786 1 -132.2585 -5.427203 -0.021743 40.675 32.60786 1 -132.2585 -5.42681 -0.021343 40.675 32.60786 1 -132.2585 -5.42681 -0.021343 40.675 32.60786 1 -132.2585 -5.42681 -0.021343 40.675 32.60786 1 -132.2585 -5.42681 -0.021343 40.675 32.60786 1 -132.2585 -5.42681 -0.021343 40.675 32.60786 1 -132.2585 -5.42681 -0.021343 40.675 32.60786 40.675 32.	GB LEFT 010.hys	34.38734	169.2368	43.48777	35511.39	37.88154	37.30604	204.464572	227.9099123	4.765705	16.71886	31.94273	1.378178	-132.26	-5.427078	-0.066109
GB RIGHT 003.hys 33.65143 169.7891 40.675 34611.8 37.22835 36.78214 193.709235 213.4842231 4.905526 40.675 32.60766 1.132.2585 -5.427203 -0.032701	GB RIGHT 001.hy	s 34.32111	169.1081	49.02248	35430.12	37.50004	36.90831	230.751076	264.5928675	4.773004	3.480648	29.98499	2.006991	-132.2592	-5.427258	-0.028298
GB RIGHT 004.hys 33.98647 170.021 44.05023 35020.44 37.4678 36.88125 208.55576 233.4841007 4.854908 11.13093 30.96321 1.533288 -132.2582 -5.426961 -0.021343 GB RIGHT 005.hys 34.61572 169.5986 38.61395 35792.09 38.64158 37.9984 180.83625 196.6406412 4.73844 38.54976 33.1524 31.85384 1.089414 -132.2579 -5.426904 -0.01150 GB RIGHT 008.hys 37.82153 18.68695 39.32077 37.868.73 38.9963 38.58617 GB RIGHT 008.hys 39.35311 168.3823 36.92694 41.77752 42.99814 42.77302 19.8078799 40.00477 18.84866 37.09494 1.255195 -132.2567 -5.425007 -0.01150 GB RIGHT 009.hys 39.35311 168.3823 36.92694 41.77752 42.99814 42.77302 19.8078799 40.30477 18.84866 37.09494 1.255195 -132.2567 -5.425047 -0.0115172 18.84866 37.09494 1.255195 -132.2567 -5.425047 -0.0115172 18.84866 37.09494 1.255195 -132.2567 -5.425047 -0.0115172 18.84866 37.09494 1.255195 -132.2567 -5.425047 -0.0115172 18.84866 37.09494 1.255195 -132.2567 -5.425047 -0.0115172 18.84866 37.09494 1.255195 -132.2567 -5.425047 -0.0115172 18.84866 37.09494 1.255195 -132.2567 -5.425047 -0.0115172 18.84866 37.09494 1.255195 -132.2567 -5.425047 -0.0115172 18.84866 37.09494 1.255195 -132.2567 -5.425047 -0.0115172 18.84866 37.09494 1.255195 -132.2567 -5.425047 -0.0115172 18.0948679 18.094879 18.09	GB RIGHT 002.hy	s 34.16291		47.02469	35236.25	37.52717	36.86605	221.955521	252.0864441	4.809978	14.16329	31.52594	1.481642	-132.259	-5.427446	-0.05056
GB RIGHT 005.hys 32.4917 169.7738 41.2971 34123.21 34.8148 36.3324 198.077799 219.3041448 4.975316 33.1522 31.85384 1.089414 -132.2579 -5.426617 -0.030368 GB RIGHT 006.hys 34.61572 169.5986 38.61395 3792.09 38.64158 37.9984 180.83625 196.6406412 4.73844 38.54976 33.51474 1.000671 -132.2576 -5.426305 -0.011504 GB RIGHT 008.hys 37.82151 168.6895 39.2077 3980.824 41.63784 41.03871 174.61046 188.6546368 4.23705 39.32077 36.74914 1 -132.257 -5.425704 -0.016172 GB RIGHT 009.hys 39.35311 168.6895 39.2077 3980.824 41.03871 40.3871 160.06937 170.3948579 4.030477 18.84866 37.0494 1.255195 -132.2567 -5.425042 -0.016172 GB RIGHT 009.hys 39.35311 168.823 36.9269 41777.25 42.99814 42.77302 160.06937 170.3948579 4.030477 18.84866 37.0494 1.255195 -132.2567 -5.425042 -0.016172 GB RIGHT 009.hys 39.35311 168.823 36.9269 41777.25 42.99814 42.77302 160.06937 170.3948579 4.030477 18.84866 37.0494 1.255195 -132.2567 -5.425042 -0.016172 GB RIGHT 009.hys 39.35311 168.323 36.9269 41777.25 42.99814 42.77302 160.06937 170.3948579 4.030477 18.84866 37.0494 1.255195 -132.2567 -5.425042 -0.016172 GB RIGHT 009.hys 39.35311 169.322 31.85384 1.089414 -132.2579 -5.426045 -5.426305 -0.016172 GB RIGHT 009.hys 37.82151 168.6958 37.0494 37.0494 38.4976 39.3217 38.74914 1.03275 37.04948 38.4976 33.5142 37.0494 38.4976 33.5142 37.0494 38.4976 33.5142 37.0494 38.4976 33.5142 37.0494 38.4976 33.5142 37.0494 38.4976 33.5142 37.0494 38.4976 33.5142 37.0494 38.4976 33.5142 37.0494 38.4976 33.5142 37.0494 38.4976 33.5142 37.0494 38.4976 33.5142 37.0494 37.0494 38.4976 33.5142 37.0494 38.4976 33.5142 37.0494 38.4976 33.5142 37.0494 38.4976 33.5142 37.0494 38.4976 33.5142 37.0494 37.0494 38.4976 33.5142 37.0494 38.4976 33.5142 37.0494 38.4976 33.5142 37.0494 38.4976 33.5142 37.0494 38.4976 33.5142 37.0494 38.4976 33.5142 37.0494 38.4976 33.5142 37.0494 38.4976 33.5142 37.0494 38.4976 33.5142 37.0494 38.4976 33.5142 37.0494 38.4976 33.5142 37.0494 38.4976 33.5142 37.0494 38.4976 33.5142 37.0494 37.0494 38.4976 33.5142 37.0494 38.4976 33.5142 37.0494 38.4976 3	GB RIGHT 003.hy	s 33.65143	169.7891	40.675	34611.8	37.22835	36.78214	193.709235	213.4842231	4.905526	40.675	32.60786	1	-132.2585	-5.427203	-0.032701
GB RIGHT 006.hys 34.61572 169.5986 38.61395 35792.09 38.64158 37.90984 180.83625 196.6406412 4.73844 38.54976 33.51474 1.000671 132.2576 -5.426305 -0.011504						37.4678	36.88125	208.55576	233.4841007	4.854908	11.13093	30.96321	1.533288	-132.2582		-0.021343
GB RIGHT 007.hys 35.82181 169.4721 45.97963 37286.37 38.99563 38.58617 210.972191 236.7993544 4.545149 11.06906 32.83655 1.559935 -132.2574 -5.425094 -0.016172 GB RIGHT 008.hys 39.35311 168.6865 39.32077 3808.24 41.63784 41.03871 174.610486 188.6546368 4.23705 39.32077 36.74914 1 -132.257 -5.425472 -0.016172 GB RIGHT 009.hys 39.35311 168.3823 36.92694 41777.25 42.99814 42.77302 160.069357 170.3948579 4.030477 18.84866 37.04949 1.255195 -132.2567 -5.425407 -0.013137			169.7738					198.077799								
GB RIGHT 008.hys 37.82153 168.6695 39.32077 39808.24 41.63784 41.03871 174.610486 188.6546368 4.23705 39.32077 36.74914 1 -132.257 -5.425742 -0.016172 160.069357 170.3948579 4.030477 18.84866 37.04949 1.255195 -132.2567 -5.425407 -0.013137	GB RIGHT 006.hy	s 34.61572	169.5986	38.61395	35792.09	38.64158	37.90984	180.83625	196.6406412	4.73844	38.54976	33.51474	1.000671	-132.2576		-0.011504
GB RIGHT 009.hys 39.35311 168.3823 36.92694 41777.25 42.99814 42.77302 160.069357 170.3948579 4.030477 18.84866 37.04949 1.255195 -132.2567 -5.425407 -0.013137	GB RIGHT 007.hy	s 35.82181	169.4721	45.97963	37286.37		38.58617	210.972191	236.7993544	4.545149	11.06906	32.83655	1.559935	-132.2574	-5.426094	-0.0119
	GB RIGHT 008.hy			39.32077	39808.24	41.63784	41.03871	174.610486	188.6546368	4.23705	39.32077	36.74914	1	-132.257	-5.425742	-0.016172
GB RIGHT 010.hys 38.39017 169.4561 41.13411 40535.48 41.86728 41.47987 181.016953 196.8739731 4.180439 26.26445 36.62117 1.17941 -132.2563 -5.425078 -0.021857																
	GB RIGHT 010.hy	s 38.39017	169.4561	41.13411	40535.48	41.86728	41.47987	181.016953	196.8739731	4.180439	26.26445	36.62117	1.17941	-132.2563	-5.425078	-0.021857

Grain boundary (2)

	,	(-/													
Indent			S(µN/nm)		hmax(nm)		Er(GPa)	E(GPa)	H(GPa)	Α	hf(nm)	m	X(mm)		Drift Correction
bulkleft_000.hys	42.71969	168.15			45.76388	45.28345		218.5939959					-135.8344	4.31257	-0.00579
bulkleft_001.hys	42.15251	168.7226						188.6862979	3.53228				-135.8329	4.31257	-0.016787
bulkleft_002.hys	42.37718	168.2083	36.91818	48124.2		45.79437		156.9790458	3.495296	33.58886			-135.8313	4.31257	-0.006151
bulkleft_003.hys	43.59312	168.0613								6.477362			-135.8344	4.31102	-0.00241
bulkleft_004.hys	42.95795	168.7193			46.47687	46.00825		177.7096512					-135.8329	4.31102	0.006003
bulkleft_005.hys	40.16883	168.4694	40.48233		43.8892	43.29		182.4472565					-135.8313	4.31102	-0.002156
bulkleft_006.hys	42.77046	168.7387	37.18017					157.0806184			41.63586		-135.8344	4.30947	-0.00156
bulkleft_007.hys	43.60775	168.3284	49.48342			46.15903		216.3303034		3.04385			-135.8329	4.30947	-0.01393
bulkleft_008.hys	42.52775	168.2229	40.06864	48365.1	45.99556	45.67653		172.0755915					-135.8313	4.30947	-0.010964
bulkleft_009.hys	39.68651	165.1278	39.15089			42.8498		177.1585473					-135.8356	4.309813	-0.292238
bulkright_000.hys	40.50064	169.8509	47.76182		43.8918	43.16779		220.6704043		1.760781			-135.8216	4.317535	0.107735
bulkright_001.hys	41.4791	169.352				43.65531	239.2901	276.9665474	3.62634				-135.82	4.317535	0.118082
bulkright_002.hys	41.67178	169.1902			45.09924	44.50831		199.2026168	3.599481				-135.8185	4.318035	0.099759
bulkright_003.hys	39.60833	170.0475		43807.43	42.9819	42.31072		221.582385	3.881704				-135.8216	4.316485	0.115047
bulkright_004.hys	41.47527	169.3117		46694.5		44.85515		162.9874466	3.625946				-135.82	4.316485	0.082611
bulkright_005.hys	37.96696	169.5423	41.09089	41349.56		41.06149		194.3232295	4.10022				-135.8185	4.316485	0.036255
bulkright_006.hys	39.36408	168.9018		43436.91		42.5997		178.3211597	3.888439				-135.8216	4.314435	0.046362
bulkright_007.hys	42.01213	169.2413				44.48655		233.3286565		3.396357			-135.82	4.314435	0.056349
bulkright_008.hys	40.19121	169.6374		44698.34		42.86431		221.1575288	3.79516				-135.8185	4.314435	0.026874
bulkright_009.hys	39.02664	167.3658	38.90238	42927.78		42.25329		178.2243288	3.898775				-135.8216	4.319031	-0.129432
GB 000.hys	43.74639	170.8806	42.73466			46.74538			3.394642				-135.8269	4.305196	0.243486
GB 001.hys	44.73998	169.3377	48.29819			47.36955		205.5603298		10.9381	41.785			4.305641	0.13867
GB 002.hys	42.75651	169.6805	40.0041	48732.32		45.93769		170.9992046	3.481888	39.97682			-135.8271	4.306117	0.115258
GB 003.hys	42.4703	169.1542		48273.11		44.90628							-135.8272	4.306641	0.079422
GB 004.hys	42.52533	168.9308	56.27554			44.77672		258.8433047	3.493105				-135.8271	4.307078	0.078577
GB 005.hys	42.72861	169.0554	47.09497	48687.46		45.42086				29.71116			-135.8271	4.307578	0.032936
GB 006.hys	42.47743	168.7927	42.49382			45.45655		184.4992451	3.495793				-135.8271	4.308031	0.01957
GB 007.hys	43.22233	168.693				46.30846		174.3851971	3.408997		41.70959		-135.8267	4.308446	-0.000702
GB 008.hys	41.3942	168.3339	48.43738	46567.1		44.00066		220.3693257	3.614867				-135.8271	4.308953	-0.005225
GB 009.hys	40.72642	168.0756	39.86653			43.88839			3.69196				-135.827	4.30943	-0.02912
GB left 000.hys	44.28929	168.3284	47.74473		47.6955	46.93349		204.5101356		14.66703		1.478198		4.310758	-0.008163
GB left 001.hys	43.11216	168.4281	54.54903	49306.17		45.4279				2.66674		2.176205	-135.827	4.31111	-0.012155
GB left 002.hys	42.88197	168.8264	40.86741	48934.35		45.98028		174.8828652			41.05069		-135.827	4.311559	-0.022492
GB left 003.hys	41.42577	168.7221	41.97007	46616.69		44.44081	172.228	185.6255698	3.619349	37.2676				4.311969	-0.025103
GB left 004.hys	43.1794	168.7102				45.8125		210.6035999		3.92204			-135.8269	4.312418	-0.036869
GB left 005.hys	43.38995	167.7433	40.45118			46.50006		171.1406136	3.371261	33.76284			-135.8268	4.312887	-0.044233
GB left 006.hys	43.13996	168.1377	49.3494		46.63033	45.69528		217.6222146					-135.8267	4.313317	-0.019933
GB left 007.hys	42.75599	168.1647		48731.5		45.1558		236.7486786		0.846662	37.06		-135.8267	4.313785	-0.017788
GB left 008.hys	42.8838	168.299	42.23151	48937.3		45.87266		181.7239401	3.439073				-135.8267	4.314215	-0.01034
GB left 009.hys	41.89528	168.7516	49.1294		45.24946	44.47141		221.9142201	3.563359				-135.8267	4.314184	-0.01647
GB right 000.hys	43.90675	168.4426		50601.08	47.04	46.32383		229.8092618			40.56018		-135.8261	4.314711	-0.016711
GB right 001.hys	40.71901	168.7636		45513.25		43.31801		224.9200372						4.31518	-0.004766
GB right 002.hys	40.89556	168.5275	54.59614	45787.58	43.77592	43.21066		257.8922481	3.680638	1.362253	35.7903	2.403898	-135.8259	4.315629	-0.01582
GB right 003.hys	40.45074	169.0691	42.93056	45098.07		43.40439	179.1111	194.4173948		24.20817		1.231164	-135.8259	4.316078	-0.012704
GB right 004.hys	41.64373	168.7226	41.04342	46959.8		44.72685	167.809		3.592915				-135.8258	4.316606	-0.010947
GB right 005.hys	41.53274	168.7968	40.07153			44.69203		175.4536205	3.607931	39.83658			-135.8257	4.317055	-0.011855
GB right 006.hys	40.40891	168.5698	40.06548	45033.51	44.20021	43.56442	167.2774	179.3784598	3.743207	40.06548	39.35707	1	-135.8256	4.317524	-0.011912
GB right 007.hys	41.74467	168.7024	49.6499	47119.16	45.146	44.29305	202.6536	225.4579569	3.580335	10.26099	38.74245	1.633569	-135.8256	4.318012	0.004767
GB right 008.hys	40.59969	168.7205	51.86775	45328.34	43.61765	43.03936	215.8477	243.5407172	3.722185	18.18552	38.3501	1.441566	-135.8254	4.318442	0.008738
GB right 009.hys	41.13528	168.7371	38.15512	46161.46	45.06174	44.45207	157.3431	167.0312203	3.655367	38.01429	40.0231	1.001487	-135.8254	4.318832	-0.017137

Grain boundary (3)

Grain boa	iidai y	(3)													
Indent	hc(nm)	Pmax(µN)	S(µN/nm)	A(nm^2)	hmax(nm)	heff(nm)	Er(GPa)	E(GPa)	H(GPa)	Α	hf(nm)	m	X(mm)	Y(mm)	Drift Correc
bulkleft_000.hys	54.69345	166.8457	37.24459	34060.94	58.6356	58.05325	178.8009	194.0185252	4.898446	8.308748	51.11555	1.548687	-138.5546	8.962222	-0.010872
bulkleft_001.hys	54.40971	166.5814	36.93295	33829.27	58.53804	57.79249	177.9109	192.875394	4.924179	10.26261	51.15248	1.472165	-138.5531	8.962222	-0.006982
bulkleft_002.hys	56.29521	166.1178	33.91406	35382.77	60.47246	59.96886	159.7419	169.9897964	4.694878	11.44327	53.1452	1.393096	-138.5515	8.962222	-0.007497
bulkleft_003.hys	53.21484	166.6526	31.9438	32861.81	57.96153	57.12763	156.1261	165.535644	5.071316	31.9438	51.91058	1	-138.5546	8.960672	-0.000427
bulkleft_004.hys	55.40958	166.5529	40.68629	34648.98	59.28745	58.47976	193.659	213.4176488	4.806862	3.605275	50.78865	1.87882	-138.5531	8.960672	-0.004861
bulkleft_005.hys	53.6834	166.5973	34.29147	33239.62	58.03144	57.3271	166.6453	178.5853114	5.012011	22.57644	51.70413	1.157402	-138.5515	8.960672	-0.006255
bulkleft_006.hys	54.25337	166.3624	35.13596	33701.93	58.25851	57.80448	169.574	182.2686385	4.936286	10.01698	50.9124	1.455618	-138.5546	8.959122	-0.003204
bulkleft_007.hys	52.59054	167.02	35.25109	32361.57	56.82854	56.14405	173.6171	187.3898822	5.16106	18.41028	50.25268	1.243427	-138.5531	8.959122	-0.004318
bulkleft 008.hys	52.78201	166.5942	38.59285	32514.61	56.50344	56.01955	189.628	208.0950426	5.123672	3.161302	47.86468	1.889139	-138.5515	8.959122	0.006028
bulkleft_009.hys	55.48416	162.7412	28.34152	34710.49	60.29749	59.79077	134.7807	139.8890357	4.68853	9.327861	51.86161	1.38087	-138.553	8.964	-0.331256
bulkright_000.hys	54.76735	166.4263	37.47226	34121.41	58.84655	58.09834	179.7344	195.2197775	4.877473	0.125866	45.4996	2.836713	-138.569	8.966593	-0.052254
bulkright 001.hys	56.59765	166.879	34.47536	35635.01	60.83025	60.22804	161.8099	172.5521671	4.683006	23.61899	54.69548	1.142967	-138.5674	8.966593	0.021148
bulkright 002.hys	56.1691	166.2786	34.08572	35277.84	60.29971	59.82779	160.789	171.2858777	4.713402	34.08572	54.94954	1	-138.5659	8.966593	0.001851
bulkright_003.hys	57.58131	166.3536	37.52457	36461.31	61.30563	60.90621	174.1143	188.0225368	4.56247	3.139391	52.5949	1.87479	-138.569	8.965043	-0.009537
bulkright 004.hys	54,47913	166.5367	39.01582	33885.88	58.37097	57.68046	187.7873	205.6795277	4.914634	5.093627	50.2558	1.739432	-138.5674	8.965043	0.002449
bulkright 005.hys	55.48735	165.8697	33.00952	34713.12	60.07045	59.25603	156,9738	166.5769239	4.778299	33.00952	54.23112	1	-138.5659	8.965043	-0.011101
bulkright_006.hys	56.90267	167.2142	38.63016			60.14911	180.6646	196.4190295	4.659039	2.967192	51.88556	1.909062	-138.569	8.963493	-0.005869
bulkright 007.hys	54.9037			34233.09				216.2181731		7.918732			-138.5674	8.963493	-0.008352
bulkright_008.hys	53.91881	166.5294	43.91689	33430.2	57.57042	56.76276	212.8124	239.3355434	4.981406			2.407176	-138.5659	8.963493	-0.020969
bulkright 009.hys	56.08549	165.9191	36.42746	35208.35		59.50158	172.0049				47.7119		-138.5691		-0.071192
GB 000.hys	56.88085	167,428	40.03349	35871.99		60.01749	187.2753		4.667375	0.17264	48.32206		-138.5704	8.958368	
GB 001.hys	59.17946		42.28421	37822.92		62.13671		212.0614267					-138.5705		0.070423
GB 002.hys	56.90928		39.0805			60.10905	182.7566		4.644871	4.701027	52.57155		-138.5707	8.957368	
GB 003.hys	54.23604		32.27914			58.11206	155.8189		4.951911				-138.5707		-0.012196
GB 004.hys	55.80088		36.19592	34972.3		59.26269	171.4875		4.777241				-138.5708		0.002994
GB 005.hys	57.63879					61.55133	148.2449	155.938619		21.76928			-138.5709		-0.000866
GB 006.hys	54.81291	166.7485		34158.71		58.48311		174.4668973		5.574819			-138.5711		-0.006019
GB 007.hys	55.00716	167.049	39.74577	34317.96		58.15937	190.0925		4.867683				-138.5688		0.000013
GB 008.hys	55.12803	166.8588	45.07825	34417.22		57.90418	215.2851			0.363019	48.0054		-138.5683		-0.005038
GB 009.hys	54.50403	166,907	39.93745	33906.2				211.4404488	4.92261	5.168144	50.33478		-138.568	8.958039	-0.01988
gb left 000.hys	55.64418		33.79063					170.7908623		22.04374			-138.5594	8.963461	0.087736
gb left 001.hys	55.67731	166.9448	30.57586	34870.04	60.6372		145.0732		4.787627	30.57586		1.100420	-138.559	8.963711	0.062146
gb left 002.hys	56.16849			35277.33		60.1065	149.8659			27.95478			-138.5586	8.96404	
gb left 003.hys	56.09927	166.7288	39.16621	35219.8		59.29199	184.9068	201.918029	4.733951	4.151311	51.5909		-138.5583	8.964352	
gb left 003.hys	56.02654	166,468	34.59162	35159.4		59.63583	163.45		4.734667				-138.558	8.96468	
gb left 004.hys	54.04204		38.65406	33530.17		57.27962	187.0304	204.6888656	4.976439	6.927015			-138.5577		0.000333
gb left 005.hys	54.78852		34.99188	34138.74		58.3722		180.0283266	4.897647				-138.5574		-0.001895
gb left 000.hys	55.57673		33.28077			59.32485	158.0958		4.781119		53.81934		-138.5571	8.96568	
gb left 007.hys	56.1093				60.038	59.48911	174.0874	187.98825	4.717571	11.63269			-138.5568		-0.002538
gb left 009.hys	54.58308				58.6245			175.2018217		20.81275			-138.5565		-0.002556
gb right 000.hys	57.60826			36484.07	61.7364	61.19465	163.5819		4.622164				-138.5642	8.961051	0.279814
	55.31251	168.6965		34569	59.7645	59.13492		167.510721	4.879994				-138.5638	8.961465	
gb right 001.hys															
gb right 002.hys	57.5014		39.81108 38.05096	36393.84 37570.66		60.68207	184.8949 173.9306		4.639095	3.490101 20.01941	52.74227 56.69225		-138.5635 -138.5632	8.96184 8.962223	
gb right 003.hys	58.88546							187.7887302	4.468177				-138.5632		
gb right 004.hys	57.405								4.61429	10.4193				8.962653	
gb right 005.hys	57.85076		35.31618	36689.22		61.40695	163.3576		4.564136	0.616043			-138.5625	8.962989	
gb right 006.hys	55.74456					59.41522	162.1284			5.175398			-138.5621	8.963286	
gb right 007.hys	56.9124		41.25185	35898.43		59.9495	192.9037	212.416876	4.653361				-138.5618	8.963653	
gb right 008.hys	56.97082						172.2996						-138.5615		
gb right 009.hys	59.29747	165.9179	42.04793	37924.41	62.84839	62.25691	191.3022	210.3002536	4.374962	0.004791	47.0889	3.843971	-138.5611	8.964418	U.014967

Grain boundary (4)

Grain 60	umaan y	(')													
Indent	hc(nm)		S(µN/nm)		hmax(nm)		Er(GPa)	E(GPa)	H(GPa)	Α		m	X(mm)	Y(mm)	Drift Correc
bulkleft_000.hys		170.7752				44.33358					34.16521		-138.7033	8.768644	0.132201
bulkleft_001.hys	52.32127		46.06315				212.2992			10.09558	49.22205		-138.7017		0.178902
bulkleft_002.hys	55.66293		47.74844	40028.99		58.30896					52.2493		-138.7002	8.768644	0.146865
bulkleft_003.hys	55.63923			40006.77			175.0495			21.37399					0.132704
bulkleft_004.hys	52.56215		35.55294	37173.14		56.11611	163.3788				50.89833		-138.7017	8.767094	0.102544
bulkleft_005.hys	53.19741			37749.82		55.90288					46.44628		-138.7002	8.767094	
bulkleft_006.hys	53.61516	167.67	40.94612		57.3691	56.68633		203.0598859					-138.7033	8.765544	0.072368
bulkleft_007.hys	54.26511		39.23325		58.426	57.46123		191.2378194		38.8493	53.18264		-138.7017	8.765544	0.048941
bulkleft_008.hys	53.46229		44.73954	37991.56	56.8705	56.26334			4.398093		46.94682		-138.7002	8.765544	0.045759
bulkleft_009.hys	56.39517	167.308	39.86046	40718.47		59.54318	175.0175			15.65091	53.83437		-138.7029	8.76436	0.098848
bulkright_000.hys	50.57348		38.25566 44.75099	35395.67		53.87449	180.1588			26.6082	48.84646		-138.6956	8.778879	0.039673
bulkright_001.hys	53.33212			37872.67	56.99983	56.14835	203.7392			0.035396	43.58725	3.345188		8.778879	0.052069
bulkright_002.hys	52.54339		35.79285 36.89547	37156.17 36108.95		56.05431 54.79439	164.5188 172.0285			23.39125 29.05746	50.61322 49.81339		-138.6925 -138.6956	8.778879	0.036837 0.011844
bulkright_003.hys	51.3772													8.777329	
bulkright_004.hys	51.33299 52.02485	167.7734 167.722	41.76436 44.65059	36069.53 36688.73		54.84209	194.8365 206.5359			4.949341	46.42093 47.9741		-138.6925	8.777329 8.777329	
bulkright_005.hys bulkright_006.hys	51.61945		34.02366	36325.3		55.32239	158.1653				50.37459	1.020301			0.001075
bulkright 007.hys	50.34876		35.8706			53.84688		182.0513253		35.8706	49.18272	1.002130			-0.000529
bulkright_008.hys	51.82108		49.1099	36505.84		54.38336			4.755502	0.004493	49.16272		-138.6925		-0.000329
bulkright_009.hys	51.25553		32.55127	36000.53		55.0533		160.4942805			49.98687		-138.6958		-0.187086
gb 000.hys	53.9759		45.39678	38462.43		56.74632					48.84151		-138.7021		0.002604
gb 001.hys	52.79424		39.06401	37383.32		56.00846				7.27397	49.06997		-138.7024		-0.005566
gb 002.hys	51.44781		42.51258	36171.95		54.40442		219.2617737					-138.7027		-0.016301
gb 003.hys	52.10694		39.30081	36762.54		55.29482					49.82646		-138.7029		-0.002005
gb 004.hys	53.75193		42.34334	38256.75		56.71516				8.311552			-138.7031		0.000602
gb 005.hys	53.31581		38.4671	37857.78		56.56485	175.1648	189.361461	4.401776	17.66597	50.9375		-138.7032		-0.003794
gb 006.hys	53.37387	166.7267	36.78373	37910.79	57.53376	56.77334	167.3822	179.5100343	4.397869	18.78735	51.08253	1.255524	-138.7034	8.78034	-0.000616
gb 007.hys	53.16655	166.6687	40.83415	37721.71	57.14074	56.22775	186.2785	203.7063588	4.418376	8.716607	49.77056	1.582022	-138.7037	8.780829	-0.002663
gb 008.hys	54.07198	167.2421	35.92883	38550.83	58.23094	57.56309	162.1291	172.9485975	4.338224	35.28238	52.87502	1.007144	-138.7039	8.781219	-0.00133
gb 009.hys	54.06324	167.0654	45.7494	38542.78	57.6973	56.80205	206.4661	230.6308881	4.334545	1.520623	48.63214	2.237258	-138.7041	8.781688	-0.001247
gb left 000.hys	54.89607	167.0508	45.67129	39313.11	58.90251	57.63933	204.0842	227.3941301	4.24924	15.27304	52.3727	1.439884	-138.6974	8.76668	0.017021
gb left 001.hys	54.01089	166.8898	45.33109	38494.62	57.87788	56.77207	204.7062	228.2377627	4.335406	1.55585	48.58541	2.223685	-138.6976	8.767149	0.00602
gb left 002.hys	55.93901	166.4676	37.72571	40288.27		59.24844	166.5263				54.21671		-138.6977		0.008159
gb left 003.hys	53.96842	167.4501	36.982	38455.55		57.36433	167.0882	179.1409255				1.279719			-0.015903
gb left 004.hys	53.95233		43.85505	38440.76		56.81646	198.1794				47.92131		-138.6982		-0.008294
gb left 005.hys	49.67047					53.18403		183.6289487				1.102616			0.001456
gb left 006.hys	56.05401		48.63464	40396.51		58.62408	214.392				51.89618		-138.6986		0.006345
gb left 007.hys	52.82355		32.08246	37409.91	57.14131	56.73391	146.9634				51.5201		-138.6988		-0.012013
gb left 008.hys	54.3816					57.38502	187.2329				48.06768	2.326678			-0.014072
gb left 009.hys	56.10489			40444.45		58.55703	224.1946				49.15048		-138.6993	8.770555	-0.01139
gb right 000.hys	52.88825		40.91926			55.9558	187.2961	205.0364412			48.77366		-138.6993		-0.025075
gb right 001.hys	53.4181			37951.18		56.6801	175.1112				51.42023		-138.6996	8.77327	
gb right 002.hys	54.36412 47.62546		39.13788			57.57458	175.9961	190.4231989			52.49707		-138.6998	8.773661	-0.00192
gb right 003.hys		167.527	32.64372			51.47444	159.6047				46.34246	1 244677	-138.7		0.005583
gb right 004.hys	55.11464	166.7461 166.5398	41.87179 36.52026	39516.5 38749.68		58.10136 57.70787	186.6238 164.3745			17.60381 21.90825	52.7584 52.25465		-138.7002 -138.7003		-0.006624 -0.012822
gb right 005.hys	54.28772		39.55546	38749.68		57.70787	178.0367	175.7446817			52.25465		-138.7003		-0.012822
gb right 006.hys gb right 007.hys	54.28727		39.55546	36865.12		55.64301	168.7947			36.579	52.13124 51.08019		-138.7006	8.775848	-0.013952
gb right 007.hys	53.42635		34,49344	37958.71		57.04617	156.8612				52.21974	1	-138.700		-0.02102
gb right 009.hys	53.42055							184.4555917			51.22701				-0.012231
95 rigin 000.riya	55.15550	100.001	31.00-03	51170.10	50.55505	30.02001	. 7 1.0047	.54.4555517	7.72002	_2.02000	J1.22101		.00.7012	0.770700	5.012201

Grain boundary (5)

		(-/													
Indent	hc(nm)	Pmax(µN)	S(µN/nm)	A(nm^2)	hmax(nm)	heff(nm)	Er(GPa)	E(GPa)	H(GPa)	Α	hf(nm)	m	X(mm)	Y(mm)	Drift Correction
bulkleft_000.hys		175.3515	34.3294			59.9535					44.95754			-2.354356	0.814261
bulkleft_001.hys		174.7153	36.70249	38642.7								3.101263		-2.354356	0.717354
bulkleft_002.hys	57.70181	172.2684	36.00406	40865.1		61.29033		167.5949461	4.215538					-2.354356	0.562794
bulkleft_003.hys	55.14006	170.9941	32.86482		59.64432									-2.355906	0.431204
bulkleft_004.hys	57.13647	170.0522	38.209			60.4744				7.977543				-2.355906	0.349125
bulkleft_005.hys	54.34122	169.6705	38.93601	37862.51	58.51734	57.60948								-2.355906	0.209764
bulkleft_006.hys	56.6607	168.5444		39923.59	60.9946	60.07371		175.5670114		2.704323				-2.357456	0.185206
bulkleft_007.hys	56.321	166.6652		39618.59		59.47658				3.27482				-2.357456	-0.008505
bulkleft_008.hys	52.82469	166.5147						143.4677275		21.05081		1.124121	-140.014035	-2.357456	-0.063102
bulkleft_009.hys	51.37089	164.6178	28.55088	35296.3			134.6448		4.663881			1.053706		-2.360625	-0.253954
bulkright_000.hys												1.264399		-2.367372	1.048944
bulkright_001.hys	55.58276	178.4775	34.86965			59.42157		166.0218775			53.48932		-140.012757	-2.367372	1.137245
bulkright_002.hys	54.74688	177.6674	37.60319		58.9248		170.419					1.289075		-2.367372	1.04611
bulkright_003.hys	60.08815	175.5781	51.8074	43061.6			221.1982							-2.368922	0.913088
bulkright_004.hys		173.9184	44.901	43729.01	64.56408							1.773929		-2.368922	0.743297
bulkright_005.hys	59.41113	173.0967	36.47946	42432.98		62.96991	156.9031				57.16217			-2.368922	0.601433
bulkright_006.hys	59.52223	171.0144	47.16669	42535.84		62.24154		225.41904				2.675711	-140.014307	-2.370472	0.468396
bulkright_007.hys	63.65428	169.2335	36.23563	46444.21							61.7752			-2.370472	0.356365
bulkright_008.hys	61.38229	168.9541	42.36224	44275.23								1.592547	-140.011207	-2.370472	0.276198
bulkright_009.hys	51.29452	169.1222	38.75268	35231.41							48.1343	1.474134		-2.368219	0.101801
GB 000.hys	55.81184	166.6337	34.38968	39163.46		59.44593		162.8890241	4.254826		54.60048	1 444005	-140.021503	-2.373672	-0.029724
GB 001.hys	58.48627	166.3305	36.87574								56.84304			-2.373848	-0.014051
GB 002.hys	57.40537	166.6682		40595.99				162.538574			56.2131	1	-140.02205	-2.374141	-0.020915
GB 003.hys	57.81123	166.7243	43.05059		61.26338	60.7158					54.60802			-2.374434	-0.020444
GB 004.hys	56.84955	166.4895	36.18681	40093.62									-140.022596	-2.374668	-0.019554
GB 005.hys	59.39907	166.4924	44.34727	42421.82						0.71575		2.453993		-2.374942	-0.020556
GB 006.hys	60.00145	166.2865	43.21487	42980.85		62.88738				0.357761	52.70426	2.646408 3.252903		-2.375293	-0.01216
GB 007.hys GB 008.hvs	59.0865 55.87968	166.2858 167.1628	48.4359 42.95088	42133.1 39223.96	62.43961 59.4355	61.66133 58.79864					51.02557			-2.375567	-0.015213 -0.005222
GB 008.nys GB 009.hys	57.58685	166.3981	44.75561	40760.64	60.902			217.0748721				2.685335		-2.375918 -2.37627	-0.005222
GB left 000.hys	50.90156	168.6211	39.41569		54.76336					1.73648	45.1726			-2.360215	0.09826
GB left 000.hys	52.84022	167.8769	37.7232									1.478716		-2.360508	0.066793
GB left 001.hys	50.7817	168.1897	35.87116			54.29824						1.241814		-2.360859	0.03866
GB left 002.hys	52.94477	167.1212				56.86903					51.63386			-2.361172	0.032967
GB left 003.hys	51.30767	167.9568	35.08916			54.8976		177.2826077				1.540555		-2.361543	-0.005869
GB left 005.hys	51.5808	167.2846	33.52386		56.13788	55.32331	157.6986							-2.361836	-0.003869
GB left 005.hys	50.05312	168.043	31.33273		54.77926	54.0755						1.27 1913	-140.010095	-2.362168	-2.60E-05
GB left 000.hys	51.74737	167.1256				55.52868	155,621	164.915951	4.692293			1.127915		-2.362481	-0.013121
GB left 007.hys	52.74091	166.9051	38.55688		57.01848							2.197896		-2.362793	-0.002755
GB left 009.hys	52.35607	166.9472	44.38839	36138.36		55.17686								-2.363125	-0.002733
GB right 000.hys	52.17616	167.612										1.330998		-2.370098	-0.024271
GB right 000.hys	50.87482	166.7439	40.09588	34875.7	54.92288	53.99379					44.92327			-2.370371	-0.028211
GB right 002.hys	52,9869	167.1876	35.09532			56.55976		173.2247103			51.79594	2.101100	-140.017831	-2.370684	-0.024123
GB right 003.hys	56.18837	166.6011	42.37864	39499.8		59.13681	188.9228				48.66928	2.662645		-2.371016	-0.014088
GB right 004.hys	57.23878	166.4567	39.95863	40445.11		60.36307							-140.018358	-2.371348	-0.009138
GB right 005.hys	56.39573	166.4868	39.9437	39685.6		59.52176								-2.371641	-0.005138
GB right 006.hys	57.23126	166.1678	43.61164	40438.31	60.67017			211.4201021	4.109168		51.32568		-140.018905	-2.371895	-0.005918
GB right 007.hys	55.76798	166.556	35.85416		59.79558			171.0541162			54.591	1.003367	-140.019159	-2.372168	-0.005111
GB right 008.hys	56.38802	166.8542				59.82989		172.4389026		23.65657				-2.372461	-0.002265
GB right 009.hvs	57.65215		35.467					164.8082133			56.48068	1	-140.019764	-2.372774	-0.017326

Grain boundary (6)

Oralli boull	iuai y (U)												
Indent	hc(nm)	Pmax(µN)	S(µN/nm)	A(nm^2)	hmax(nm)	heff(nm)	Er(GPa)	E(GPa)	H(GPa)	Α	hf(nm)	m	X(mm)	Y(mm)
bulkbottom_000.hys	48.83794	168.0533	39.66919	33172.51	52.80634	52.01522	192.9741	212.5100828	5.066042	18.7284	46.54501	1.291249	-140.056924	1.503386
bulkbottom 001.hys	51.02843	167,7952	36.95972	35005.7	54.82797	54,43339	175.0226	189.180085	4.793367	36.95972	49.89344	1	-140.055374	1.503386
bulkbottom 002.hys	53.387	166.6131	48.30498	37029.17	56.85352	55.97389	222,4102	252.7271497	4.499509	0.389601	46.62529	2.710376	-140.053824	1.503386
bulkbottom 003.hys	51.18864		46.26047	35141.52				247.4371775					-140.056924	1.501836
bulkbottom 004.hys	49.98241	167.1192	36.53279	34124.79				189.4314279		30.41431			-140.055374	1.501836
bulkbottom 005.hys	50.61396		40.96784	34655.44				215.1729064					-140.053824	1.501836
bulkbottom_006.hys	50.27309	167.954	39.19591	34368.57						29.84516		1.10869	-140.056924	1.500286
bulkbottom_007.hys	51.40737		35.57247	35327.33		54.93119		179.8900191					-140.055374	1.500286
bulkbottom 008.hys	51.82005		33.94877	35679.1						33.94877		1.000007	-140.053824	1.500286
bulkbottom_009.hys	55.71747		34.55134	39079.37		59.3237							-140.056694	1.505563
	57.82485		45.54106	40977.05									-140.050541	1.515128
bulktop_000.hys	58.70016		42.96889	41777.5	62.216	61.654		203.6812277		0.70602			-140.030341	1.515128
bulktop_001.hys														
bulktop_002.hys	57.4828		50.82997		60.47136			254.0184379		0.99445		2.447857	-140.047441	1.515128
bulktop_003.hys	56.67783		47.3756	39939		59.35075					52.77027		-140.050541	1.513578
bulktop_004.hys	56.56263		44.5673	39835.43					4.2177				-140.048991	1.513578
bulktop_005.hys	57.70236		47.56007	40865.6									-140.047441	1.513578
bulktop_006.hys	54.90401	168.4004	39.59106	38357.98									-140.050541	1.512028
bulktop_007.hys	53.03776		36.91266	36726.3			170.656	183.635032				1	-140.048991	1.512028
bulktop_008.hys	57.09507	167.409	37.95643		61.01719					30.71593			-140.047441	1.512028
bulktop_009.hys	53.12773	164.499	33.28359	36804.21				162.5833735				2.038053	-140.051835	1.511781
GB 000.hys	50.06214		40.92389	34191.57	53.83541	53.16445		216.64734	4.95088	11.65656			-140.065979	1.507813
GB 001.hys	53.81997	168.8329	41.4462	37406.24	57.53788	56.87512	189.8661	208.4082942	4.513495	0.570969	46.82977	2.465999	-140.065452	1.507774
GB 002.hys	56.65114	168.4024	39.81041	39915	60.45792	59.82373	176.5482	191.1292716	4.219024	33.83885	55.31578	1.065681	-140.065003	1.507774
GB 003.hys	54.74398	168.4466	40.95584	38216.79	58.31779	57.82864	185.6195	202.8465518	4.407658	14.52129	52.07035	1.400061	-140.064514	1.507774
GB 004.hys	53.00146	168.4756	51.7408	36694.88	56.40509	55.44357	239.3124	276.9991343	4.591254	1.771051	48.03641	2.274825	-140.063987	1.507715
GB 005.hys	53.98937	167.325	48.21015	37554.25	57.37543	56.59243	220.4163	249.922275	4.455553	0.175275	46.35466	2.949737	-140.063343	1.507695
GB 006.hys	51.16586	167.4978	37.39817	35122.19	55.24531	54.52493	176.8049	191.4578205	4.769003	10.62936	47.96138	1.465481	-140.062249	1.507715
GB 007.hys	51.25068	167.3376	37.20194	35194.18	55.36892	54.62425	175.6972	190.0412743	4.754696	37.20194	50.12616	1	-140.062679	1.50752
GB 008.hys	51.5136	167.8665	44.20308	35417.73	55.07912	54.36181	208.1024	232.8639494	4.739617	4.982114	47.45161	1.819615	-140.061721	1.507598
GB 009.hys	52.25989	167.0193	37.70993	36055.76	56.36132	55.58168	175.9556	190.3714419	4.632249	7.180499	48.47478	1.604608	-140.061155	1.507617
gb bottom 000.hys	55.21018	167.6588	40.71838	38628.78	58.98067	58,29833	183,5565	200.1624359	4.340257	2.368077	50.00631	2.013836	-140.058569	1.506578
gb bottom 001.hys	54.75888	167.5246	39.78529	38229.93	59.78175	57.91692	180.2833	195.9272459	4.382027	11.76289	51.76221	1.461676	-140.058042	1.506617
gb bottom 002.hys	51.93608	167.7851	35.37917	35778.29	55.92698	55.49294	165.7192	177.4251841	4.689578	25.96789			-140.057475	1.506734
gb bottom 003.hys	53.50537		46.99596	37132.09				243.8679785				2.361546	-140.056929	1.506871
gb bottom 004.hys	51.65979		38.75495	35542.3			182.1332				50.57268		-140.056245	1.506852
gb bottom 005.hys	53.49043		41.62632	37119.09			191.4274			0.84138			-140.055561	1.5065
gb bottom 006.hys	55.35769		39.89047	38759.55						23.5729		1.208003	-140.055034	1.506578
gb bottom 007.hys	52.81243		40.01981	36531.48						9.571387			-140.054487	1.506715
gb bottom 008.hys	54.17826		47.48249	37719.6									-140.053862	1.506852
gb bottom 009.hys	55.13055		32.94559	38558.27	59.6233					32.94559		2.037403	-140.053257	1.50693
gb top 000.hys	56.03248		43.37103	39360.39			193,689						-140.051499	1.508024
gb top 000.hys	53.52685		36.87081	37150.78									-140.050874	1.508024
	55.84634		53.3851	39194.22		58.19177		276.4183938		0.481251	49.65967		-140.050874	1.508002
gb top 002.hys														
gb top 003.hys	57.15806		46.05094	40372.1				226.012584				2.507546	-140.049702	1.507945
gb top 004.hys	53.29548		37.96766	36949.7									-140.049155	1.507809
gb top 005.hys	57.78451	166.8803	47.95496	40940.33									-140.048081	1.508414
gb top 005x.hys	55.35592	167.051	36.6282	38757.99	59.26363			176.3293104		36.6282		1	-140.048667	1.508492
gb top 006.hys	58.16153		42.72527	41284.08				203.743167					-140.047436	1.508395
gb top 007.hys	56.32268		45.60419	39620.1	60.02403	59.0674		225.9171934		2.986608			-140.046909	1.508629
gb top 008.hys	55.15968		40.39628	38584.05			182.21						-140.046362	1.508766
gb top 009.hys	55.60507	166.5527	41.27399	38979.32	59.34953	58.63154	185.2227	202.3293399	4.272848	7.813757	52.06932	1.626205	-140.045913	1.50859

Appendix F Sample I grain boundaries - Induced mechanical properties

Grain boundary (4)

			ho(nm)	Dmov/uM)	C(uN/nm)	A (nm A2)	hmay/nm)	hoff(nm)	Er(CDo)	H(CDa)	٨	hf/nm)		V/mm)	V/mm\	Drift Corros
Data Set 1	Kow 4			Pmax(µN) 167.9492			53.41446				34.95368	hf(nm)	M 1 012120	X(mm)	Y(mm) 7.712641	Drift Correc
1	4	2	48.15776	167.9432			51.66496		206.3265		10.8853	45.12754		-136.0932	7.712641	
1	4	3	48.64973	167.9757	45.47451	35879.97		51.42011	212.7045	4.681601	3.650463	44.24359		-136.0932	7.712641	-0.013230
	4	4	48.2102		43.92972	35499.27		51.07194		4.721793			2.784178			-0.00266
	4	5	48.66646	168.3009	42.63868	35894.5	52.33675		199.3997		24.23079			-136.0944	7.712641	-0.004505
	4	6	48.43926		45.90933	35697.43	52.05061	51.18535	215.2867	4.708873		44.03684		-136.0948	7.712641	
	4	7	46.17355	168.3543	34.40478	33759.67	50.4469	49.84356	165.9031		7.514531	42.3095		-136.0952	7.712641	-0.02123
	4	8	46.13381	168.0935	39.32041	33726.12	50.28387	49.34004	189.701	4.984075	39.32041	45.06507		-136.0956	7.712641	
	4	9	51.28977	167.2794	38.61274	38206.49	55.17355	54.53894	175.0237	4.378297	34.52922	50.0121				-0.020703
1	4	10	49.47798	167.4777	49.16577	36602.5	53.03766	52.03277		4.575581	1.049234	43.8244		-136.0964		
	4	11	50.61717	167.5289	35.30415		54.80897		161.2964	4.454695	35.30415			-136.0968	7.712641	
	4	12	46.85487	168.5171	34.45778	34337.14		50.52277		4.907722	34.45778	45.63223		-136.0972	7.712641	
	4	13	51.73835	167.4115	32.5807	38608.62	56.33877	55.59213	146.9106		22.42273	49.74343		-136.0976	7.712641	
	4	14	49.29788	167.8148	43.04933	36444.82	53.12836	52.22153	199.7944	4.604628		44.14905		-136.098		-0.028048
'	4	15	51.44044	167.3495	44.29605	38341.34	55.0975	54.27393	200.4316		2.056445	46.27906		-136.0984		-0.020040
1	4	16	49.3807	167.9017	46.226	36517.3		52.10485	214.3245		2.185399			-136.0988	7.712641	
	4	17	50.59077	167.7169	39.89796	37583.84	54.4646			4.462474						
	4	18	48.21909	168.6644	38.27759			51.52385			12.86221			-136.0996		
	4	19	49.9671	167.2873	40.39335	37032.35	53.8572	53.07319	185.9748	4.517328	20.64137		1.26403	-136.1	7.712641	
	4	20	49.54471	167.7547	44.27702	36661.01	52.82898	52.38628	204.8854	4.575835	1.980554			-136.1004		
	5	1	50.314	168.0214	49.58837	37338.63	53.41837	52.85524		4.499936				-136.1004		
1	5	2	46.37165	168.1441	44.19881	33927.11	50.31162			4.956038					7.710641	
	5	3	48.50453	168.3699	44.88553	35753.99	51.98622	51.31785			0.270118			-136.0996		
	5	4	47.99477	168.2522	42.10851	35313.35	51.7084	50.99153	198.5341		4.712284			-136.0992	7.710641	
1	5	5	47.88453	167.9887	45.85563	35218.39	51.69389	50.6321	216.4924		8.021522	44.492		-136.0988	7.710641	
	5	6	49.34338	167.9467	50.51816	36484.63	52.96559	51.83674	234.3297	4.603219	1.033218			-136.0984		-0.001148
	5	7	48.54036	168.0032	39.13716	35785.06	52.3453	51.75987			39.13716		1	-136.098		
	5	8	47.46629	168.5495	44.70835	34859.19	50.98362		212.1606					-136.0976		
1	5	9	47.45998	168.8044	38.3569	34853.79	51.64634	50.76064	182.0343			46.35512		-136.0972	7.710641	
1	5	10	49.75857	167.9788	51.73996				238.8082		0.155129			-136.0968	7.710641	
1	5	11	48.53025	167.5971	37.3192	35776.3	52.43252	51.89844	174.8113	4.684586		47.38288		-136.0964	7.710641	
1	5	12	48.40112	167.7582	44.16797		51.90898	51.24976	207.2167	4.703798		42.75302		-136.096		-0.012832
1	5	13	48.9485	168.3878	45.92886		52.29145	51.69821	214.056		2.911669				7.710641	-0.0086
1	5	14	46.11109	168.8223	39.0824	33706.95	50.26083	49.35083		5.008532				-136.0952		
1	5	15	48.66717	168.3988	45,40008		52.05362	51.44908	212.3116		0.524566				7.710641	
1	5	16	48.69604	167.6885	34.39565	35920.19	53.01789	52.3525	160.7937	4.668363	34.39552	47.47721		-136.0944		-0.015643
1	5	17	48.87654	167.6261	44.54164		52.75011	51.69906	207.7709	4.646321	3.850758	44.50326	1.91207		7.710641	-0.01207
1	5	18	47.36528	167.8561	35.32839		51.72229	50.92876	167.857	4.827239				-136.0936	7.710641	
1	5	19	49.44641	168.5955	43.54567		53.15072		201.7384		4.363191			-136.0932		
1	5	20	47.30964	168.2204	41.71302		51.33738	50.33424	198.3283		8.410798				7.710641	
1	6	1	50.83582	167.7859	52.30484	37801.57	54.07108	53.2417			0.216573				7.708641	
1	6	2	49.38896	167.9654	44.01595	36524.53	53.05436	52.25097		4.598701	11.5439	46.44293		-136.0932	7.708641	
1	6	3	49.94718	168.2847	46.88875	37014.79	53.5445	52.63895	215.9314		7.432078			-136.0936		0.001829
1	6	4	49.27874	167.5809	45.04787	36428.08	52.97166	52.06879			3.031954				7.708641	
1	6	5	49.38842	167.5208	37.67868	36524.05	53.56731		174.6791	4.58659	37.67868	48.27691		-136.0944		
1	6	6	50.47793	167.7736			54.67664			4.475901				-136.0948	7.708641	
1	6	7	49.23807	168.1532	43.88126	36392.53	53.05774	52.11207		4.620543				-136.0952	7.708641	
1	6	8	45.69858	168.0607	42.84402	33359.74	49.25411	48.64054			2.839578	40.84554		-136.0956		-0.001363
1	6	9	51.37784	167.1011	35.83687	38285.29	55.61822	54.87496	162.274		35.36357	50.18775	1.00523	-136.096	7.708641	-0.020973
1	6	10	48.0471	167.9533		35358.47	51.9122	51.19893	188.3107	4.750014	30.79352	46.55583	1.104859	-136.0964	7.708641	-0.021612
1	6	11	48.70648	167.2811	43.27493	35929.26	53.39579	51.60563	202.2772	4.655847	6.004383	44.86527	1.743704	-136.0968	7.708641	-0.032236
1	6	12	45.85215	167.7671	46.05008	33488.81	49.57116	48.58451	222.9541	5.009648	0.092906	37.30824	3.095202	-136.0972	7.708641	-0.02429
1	6	13	47.27416	168.5631	39.14876	34694.75	50.98563	50.50344	186.2177	4.85846	20.30188	45.10087		-136.0976	7.708641	-0.029298
1	6	14	47.53108	167.9776	46.28691	34914.72	51.22631		219.4768		2.68504			-136.098	7.708641	-0.017821
1	6	15	47.68719	168.017	39.11207	35048.7	51.5349	50.90903	185.1014	4.793815	15.54536			-136.0984	7.708641	-0.011437
1	6	16	46.62022	167.943	42.80506	34137.75	50.18186	49.5628	205.2639		10.38622			-136.0988	7.708641	-0.019471
1	6	17	45.60252	168.604	41.29619	33279.12	49.18736	48.66462	200.5668	5.066362	11.41033	42.57724		-136.0992	7.708641	-0.005321
1	6	18	47.9292	168.6185	39.83946	35256.85	51.89223	51.10353	187.9864	4.782573		46.68228	1.04461	-136.0996	7.708641	
1	6	19	45.47703	167.9135	44.23216	33173.93	48.95106	48.32417	215.1664	5.061609	3.317816	40.89559	1.956852	-136.1	7.708641	-0.028087
1	6	20	50.72453	167.4405			55.18829	54.4484	153.8782	4.441084	33.72315	49.48325		-136.1004		
2	2 1	1	53.61183	169.5594	39.67223	40309.62				4.206425				-136.1005		
2		2	50.64704	169.2752						4.497959				-136.1001		
2		3		169.4417						4.446144						
2				168.5949							4.402241					
2				168.3486												
2				168.8653						4.477664						
2				168.3776												
2			52.43588							4.274314				-136.0977		
2				167.8044												
2				167.8555												
2				167.6522												
2				167.4936												
2				168.2551												
2	2 1	14	44.80141	168.2631	38.86935	32610.23	48.78236	48.04811	190.7064	5.159826	4.729134	40.43223	1.759296	-136.0953	7.709266	0.001437

```
15
         47 49456
                    167,7092 35,63766
                                        34883 42 51 86202
                                                             51 02402
                                                                       169.0575 4.807705 26.16481
                                                                                                      45 76007
                                                                                                                 1 118572 -136 0949 7 709266 -0 003536
         45.71447
                                                                                            0.951329
                     168,443
                              41.13975
                                        33373.08
                                                   49.59838
                                                             48.78527
                                                                        199.5255
                                                                                   5.04727
                                                                                                      39.34457
                                                                                                                 2.305756 -136.0945
                                                                                                                                               -0.026897
     16
                                                                                                                                     7.709266
           45.1478
                    167.7646
                              40.49634
                                         32898.69
                                                   48.86349
                                                              48.25484
                                                                         197.816
                                                                                  5.099432
                                                                                            2.920501
                                                                                                       40.20754
                                                                                                                  1.94252 -136.0941
                                                                                                                                      7.709266
                                                                                                                                                -0.015909
         48.99192
                    167.5512
                              46.24814
                                        36177.67
                                                   52.41798
                                                             51 70908
                                                                       215,4313
                                                                                  4 631343
                                                                                            0.068584
                                                                                                      40.15828
                                                                                                                 3 188297 -136 0937
                                                                                                                                     7 709266 -0 019854
     18
     19
         48.92023
                    167.4086
                              40.04103
                                        36115.21
                                                   52,70161
                                                             52.05593
                                                                        186,6788
                                                                                  4.635403
                                                                                             1.70445
                                                                                                      43.24305
                                                                                                                 2.107878 -136.0933
                                                                                                                                      7.709266
                                                                                                                                                -0.031223
          50.38416
                    167.0862
                              37.59806
                                         37400.72
                                                    54.6613
                                                             53.71717
                                                                        172.2504
                                                                                  4.467461
                                                                                             15.56651
                                                                                                       47.79011
                                                                                                                  1.333718 -136.0929
                                                                                                                                      7.709266
                                                                                                                                                -0.022756
          48 78663
                    167 2581
                               38 8821
                                        35998 93
                                                   52 95118
                                                             52 01288
                                                                        181 5682
                                                                                  4.646195
                                                                                            38 41084
                                                                                                        47 6899
                                                                                                                 1 004954 -136 0929
                                                                                                                                      7.707266 -0.019724
                                                                                            3.684485
         48.24049
                    168,0047
                              46.02445
                                        35525.44
                                                   52.02132
                                                             50.97825
                                                                       216.3484
                                                                                  4.729137
                                                                                                       43.86909
                                                                                                                 1.947534 -136.0933
                                                                                                                                      7.707266
                                                                                                                                               -0.015253
          49.10549
                    167.6428
                              38.46557
                                         36276.73
                                                   53.09966
                                                              52.37418
                                                                         178.934
                                                                                  4.621221
                                                                                             18.10129
                                                                                                        46.7546
                                                                                                                  1.28941
                                                                                                                          -136.0937
                                                                                                                                      7.707266
                                                                                                                                                -0.011937
          47.26681
                    168.0901
                              47.39961
                                        34688.48
                                                   50.74343
                                                             49.92649
                                                                        225.4847
                                                                                            0.175632
                                                                                                      39.53065
                                                                                                                 2.931516 -136.0941
                                                                                  4.845704
                                                                                                                                      7.707266
                                                                                                                                               -0.015578
         48.30036
                    168.3588
                              40.93852
                                         35577.2
                                                   52.06742
                                                             51.38471
                                                                        192,3008
                                                                                  4.732211
                                                                                            14.01892
                                                                                                      45.57501
                                                                                                                 1.412701 -136.0945
                                                                                                                                      7.707266
                                                                                                                                                -0.011646
          48.44357
                    167.9307
                                         35701.16
                                                   52.63387
                                                             51.13371
                                                                        219.5382
                                                                                  4.703788
                                                                                            7.133301
                                                                                                       44.92738
                                                                                                                 1.730298 -136.0949
                                                                                                                                                 -0.00889
                               46.8184
                                                                                                                                      7.707266
          47.52704
                    167.6533
                              35.20531
                                         34911.27
                                                   51.86717
                                                             51.09866
                                                                        166.9399
                                                                                  4.802269
                                                                                            27.93739
                                                                                                       45.91361
                                                                                                                 1.088804 -136.0953
                                                                                                                                      7.707266
                                                                                                                                                -0.020632
         47.30345
                    167,6947
                              33.73622
                                         34719.8
                                                   51.66043
                                                             51.03152
                                                                        160,4141
                                                                                  4.829943
                                                                                            33,73622
                                                                                                      46.06076
                                                                                                                        1 -136.0957
                                                                                                                                      7.707266
                                                                                                                                                -0.013315
         50.93499
                    167.5079
                              44.01907
                                                   54.63554
                                                                        200.3615
                                                                                  4.420916
                                                                                            3.900355
                                                                                                       46.55722
                                                                                                                 1.900425 -136.0961
                                                                                                                                      7.707266
                                                                                                                                                -0.006851
                                         37889.86
                                                               53.789
                                                                                                                  1.55213 -136.0965
         49.04966
                    167.3015
                              44.00441
                                         36228.02
                                                   52.50507
                                                             51.90111
                                                                        204.8371
                                                                                                      46.00002
      10
                                                                                  4.618014
                                                                                              10.6393
                                                                                                                                      7.707266
                                                                                                                                                -0.016138
     11
         47.35688
                    167.5516
                              39.44181
                                        34765.51
                                                   51.29219
                                                             50.54293
                                                                        187.4206
                                                                                  4.819477
                                                                                            18.33808
                                                                                                      45.03482
                                                                                                                 1.296615 -136.0969
                                                                                                                                      7.707266
                                                                                                                                                -0.016959
         47.13784
                              38.31861
                                         34578.3
                                                  51,26323
                                                             50.43057
                                                                                  4.865215
                                                                                            20.24547
                                                                                                       44.96019
                                                                                                                 1.246011 -136.0973
                                                                                                                                               -0.036702
     12
                    168,2309
                                                                        182.5756
                                                                                                                                      7.707266
     13
         48.35161
                    167.8888
                              37.15468
                                         35621.55
                                                    52.6552
                                                              51.7406
                                                                        174.4183
                                                                                  4.713125
                                                                                            20.95793
                                                                                                       46.23091
                                                                                                                 1.219323 -136.0977
                                                                                                                                      7.707266
     14
         46.46774
                    168.0873
                              36.31913
                                        34008.47
                                                   50.62708
                                                             49.93879
                                                                        174,4925
                                                                                  4.942514
                                                                                            36.31913
                                                                                                      45.31072
                                                                                                                        1 -136.0981
                                                                                                                                      7.707266
                                                                                                                                                -0.013753
         48.28061
                                         35560.12
                                                   52.78729
                                                             52.02396
                                                                        157.9788
                                                                                                                 1.144885 -136.0985
                                                                                                                                               -0.019484
                    167.8205
                              33.62372
                                                                                  4.719347
                                                                                            22.81451
                                                                                                       46.30968
                                                                                                                                      7.707266
     15
     16
         49.13164
                    167.9203
                              43.52856
                                         36299.56
                                                   52.66744
                                                             52.02492
                                                                        202.4224
                                                                                  4.625959
                                                                                             2.70552
                                                                                                      44.25664
                                                                                                                 2.013706 -136.0989
                                                                                                                                      7.707266
                                                                                                                                                 -0.00791
     17
         48 98151
                    167 5541
                              38 56821
                                         36168 6
                                                   53 19749
                                                             52 23978
                                                                        179 6795
                                                                                  4 632584
                                                                                            7 274883
                                                                                                      45 23762
                                                                                                                 1 611782 -136 0993
                                                                                                                                      7 707266
                                                                                                                                                -0.038361
         51.17464
                    166.8711
                              36.18409
                                          38103.6
                                                  55.38516
                                                             54.63343
                                                                        164.2364
                                                                                  4.379404
                                                                                            36.01299
                                                                                                      50.01306
                                                                                                                 1.001874 -136.0997
                                                                                                                                      7.707266
                                                                                                                                               -0.041108
     18
         56.14206
                    165.8978
                              38.41491
                                         42662.41
                                                   60.29193
                                                               59.381
                                                                        164.7828
                                                                                  3.888617
                                                                                            21.78849
                                                                                                       54.10808
                                                                                                                  1.220985 -136.1001
                                                                                                                                      7.707266
                                                                                                                                                -0.037317
     20
         49 88988
                    167 9782
                              40 57699
                                         36964 32
                                                   53 74729
                                                              52 99468
                                                                        186 9921
                                                                                  4 544333
                                                                                            14 09549
                                                                                                       47 17199
                                                                                                                 1.406535 -136.1005
                                                                                                                                      7.707266
                                                                                                                                                0.002606
          49.51931
                                         36638.73
                                                             52.97856
                    167.0987
                              36.22861
                                                   53.73694
                                                                        167.6935
                                                                                  4.560711
                                                                                            36.22861
                                                                                                                                      7.705266
                                                                                                                                                -0.016873
                                                                                                       48.36622
                                                                                                                          -136.1005
                                                                                            7.540101
                                                                                                                 1.667504 -136.1001
            47.641
                    167.7976
                               43.5325
                                         35009.03
                                                   50.95125
                                                              50.5319
                                                                        206.1381
                                                                                   4.79298
                                                                                                       44.10444
                                                                                                                                      7.705266
                                                                                                                                                -0.015973
                                                                                                                                               -0.014037
          49 01379
                    167 5098
                              43 12861
                                        36196 74
                                                   52 76234
                                                              51 92676
                                                                       200 8471
                                                                                  4 627759
                                                                                             1 71089
                                                                                                       43 55009
                                                                                                                 2.156733 -136.0997
                                                                                                                                      7 705266
       3
         47.65025
                    167.7231
                              39.54988
                                                             50.83085
                                                                                  4.789766
                                                                                            17.03772
                                                                                                      45.21223
                                                                                                                 1.324896 -136.0993
                                                                                                                                                 0.00232
                                        35016.98
                                                   51.78785
                                                                        187.2581
                                                                                                                                      7.705266
          47.26559
                    167.4611
                              36.77812
                                         34687.44
                                                   51.49422
                                                              50.68055
                                                                        174.9598
                                                                                  4.827717
                                                                                            33.03661
                                                                                                        45.9347
                                                                                                                  1.042294
                                                                                                                          -136.0989
                                                                                                                                      7.705266
                                                                                                                                                0.012745
         46.96394
                    167.8123
                              39.17919
                                           34430
                                                   51.43343
                                                             50.17634
                                                                        187.0776
                                                                                  4.874014
                                                                                            23.04189
                                                                                                       45.00226
                                                                                                                  1.207994 -136.0985
                                                                                                                                      7.705266
                                                                                                                                                 -0.00799
                                         35384.32
                                                   51.97133
                                                                                  4.747058
                                                                                                                 1.969385 -136.0981
          48.07707
                    167.9714
                              47.09677
                                                             50.75195
                                                                       221.8301
                                                                                            3.614125
                                                                                                      43,72811
                                                                                                                                      7.705266
                                                                                                                                                -0.006577
          48.46696
                    168.1495
                              43.35629
                                         35721.43
                                                   52.11288
                                                              51.3757
                                                                        203.2462
                                                                                  4.707245
                                                                                            6.047965
                                                                                                       44.62346
                                                                                                                  1.741022 -136.0977
                                                                                                                                      7.705266
         49 25602
                    168 5616
                              47 71007
                                        36408 22
                                                   52 44313
                                                             51 90581
                                                                       221 5364
                                                                                  4 629768
                                                                                            4 051952
                                                                                                       45 05908
                                                                                                                 1 937914 -136 0973
                                                                                                                                      7 705266
                                                                                                                                                -0.000787
3
     10
         48.24891
                     167.959
                              40.49611
                                        35532.72
                                                   51.80466
                                                             51.35956
                                                                        190.3417
                                                                                  4.726884
                                                                                            4.220402
                                                                                                      43.80428
                                                                                                                 1.821632 -136.0969
                                                                                                                                      7.705266
                                                                                                                                                -0.006496
          48.38336
                    168.0779
                              47.35345
                                         35649.03
                                                   52.02414
                                                             51.04544
                                                                        222.2095
                                                                                  4.714795
                                                                                            13.10485
                                                                                                        45.6642
                                                                                                                 1.516084
                                                                                                                          -136.0965
                                                                                                                                      7.705266
                                                                                                                                                0.005155
     11
         47.73761
                    168.2522
                               48.5066
                                        35092.02
                                                   51.11257
                                                              50.3391
                                                                        229.4201
                                                                                            2.419445
                                                                                                       42.97151
                                                                                                                 2.124053 -136.0961
                                                                                                                                      7.705266
                                                                                                                                                -0.015352
      12
                                                                                    4.7946
     13
         47.20552
                    167.8996
                              39.44908
                                         34636.1
                                                   50.79443
                                                             50.39761
                                                                         187.805
                                                                                  4.847532
                                                                                            10.29893
                                                                                                      43.99765
                                                                                                                 1.503711 -136.0957
                                                                                                                                      7.705266
                                                                                                                                               -0.012641
         47.15242
                    167.6509
                              50.10638
                                         34590.75
                                                   50.59328
                                                              49.66185
                                                                        238.6975
                                                                                  4.846698
                                                                                            0.168968
                                                                                                       39.64349
                                                                                                                 2.994218 -136.0953
                                                                                                                                      7.705266
     15
         50.95348
                    167.5084
                              46.59291
                                         37906.33
                                                   54.48461
                                                             53.64984
                                                                       212.0307
                                                                                   4.41901
                                                                                            4.040348
                                                                                                       46.72823
                                                                                                                 1.925262 -136.0949
                                                                                                                                      7.705266
                                                                                                                                                -0.013293
3
     16
         49.38086
                    167.8919
                              42.48289
                                        36517.43
                                                    53.3463
                                                             52.34485
                                                                        196,9694
                                                                                  4.597582
                                                                                             7.37472
                                                                                                      45.78079
                                                                                                                 1.660952 -136.0945
                                                                                                                                      7.705266
                                                                                                                                               -0.021084
     17
                    168.4719
                              38.45467
                                         35491.6
                                                   52.34089
                                                             51.48712
                                                                                  4.746811
                                                                                            18.20911
                                                                                                       45.85055
                                                                                                                 1.286578 -136.0941
                                                                                                                                                -0.015195
          48.20133
                                                                        180.8511
                                                                                                                                      7.705266
                                                                                                       42.94342
         47.23437
                              45.81986
                                         34660.74
                                                   50.77178
                                                             49.98737
                                                                                  4.852455
                                                                                            3.970602
     18
                    168,1897
                                                                        218.0568
                                                                                                                  1.918981
                                                                                                                          -136.0937
                                                                                                                                      7.705266
                                                                                                                                                0.003838
     19
         48.15968
                    168.0317
                              45.62776
                                        35455.63
                                                   51.65201
                                                             50.92168
                                                                       214.6947
                                                                                  4.739212
                                                                                            3.164633
                                                                                                      43.58273
                                                                                                                  1.992837 -136.0933
                                                                                                                                      7.705266
                                                                                                                                                -0.01374
3
     20
         50.00307
                    168.1663
                              39.32035
                                         37064.05
                                                   53.90858
                                                             53.21069
                                                                        180.9572
                                                                                   4.53718
                                                                                            8.267944
                                                                                                       46.46247
                                                                                                                  1.577857 -136.0929
                                                                                                                                      7.705266
                                                                                                                                                 -0.00715
          50.13556
                    167 8432
                              48.18598
                                         37180 94
                                                   53.88954
                                                             52 74799
                                                                         221,409
                                                                                  4.514226
                                                                                            12 78375
                                                                                                       47.39935
                                                                                                                  1 535538 -136 0929
                                                                                                                                      7.703266
                                                                                                                                                0.001318
         48.63958
                    168.1039
                              49.58067
                                        35871.16
                                                   51.63316
                                                             51.18246
                                                                       231.9394
                                                                                  4.686325
                                                                                            0.460643
                                                                                                      42.11123
                                                                                                                 2.675476 -136.0933
                                                                                                                                      7.703266
                                                                                                                                                0.002594
         49.77117
                    167.8476
                              46.15438
                                         36859.88
                                                   53.20097
                                                             52.49866
                                                                        212.9957
                                                                                  4.553667
                                                                                            2.762188
                                                                                                      45.05708
                                                                                                                  2.04627 -136.0937
                                                                                                                                      7.703266
                                                                                                                                                -0.015956
         50.11827
                    167.4523
                              42.08086
                                         37165.67
                                                    53.9115
                                                             53.10274
                                                                        193.3964
                                                                                  4.505563
                                                                                            11.22154
                                                                                                       47.10097
                                                                                                                  1.508249 -136.0941
                                                                                                                                      7.703266
                                                                                                                                                0.002504
         47 78859
                    168 0589
                              42 04467
                                        35135.85
                                                   51 66851
                                                             50 78645
                                                                        198 7332
                                                                                  4 783119
                                                                                            10 03056
                                                                                                      44 60258
                                                                                                                 1 547071 -136 0945
                                                                                                                                      7 703266
                                                                                                                                               -0.017858
                              50.59218
      6
         49.36613
                    167.7273
                                        36504.54
                                                   52.67117
                                                             51.85259
                                                                        234.6091
                                                                                  4.594697
                                                                                            1.082534
                                                                                                      43.82547
                                                                                                                 2.421247 -136.0949
                                                                                                                                      7.703266
                                                                                                                                                0.002057
                                                                                            6.748561
          49.65071
                    167.3531
                              38.52535
                                         36754.03
                                                   53.94104
                                                             52.90869
                                                                        178.0447
                                                                                  4.553326
                                                                                                       45.79827
                                                                                                                 1.636847 -136.0953
                                                                                                                                      7.703266
                                                                                                                                                -0.005011
         48 08251
                    167 9425
                              36 63729
                                        35389 01
                                                   52 31189
                                                             51 52045
                                                                        172 5536
                                                                                   4 74561
                                                                                            36 59102
                                                                                                      46 93423
                                                                                                                 1 000501 -136 0957
                                                                                                                                      7 703266
                                                                                                                                               -0.015892
          46.81281
                    168.0453
                              41.46515
                                                                                            10.56432
                                                                                                                 1.521155 -136.0961
                                        34301.36
                                                   50.67022
                                                             49.85232
                                                                        198.3638
                                                                                  4.899086
                                                                                                       43.68756
                                                                                                                                      7.703266
                                                                                                                                                -0.001667
      10
          51.33724
                    167.7897
                              38.32439
                                         38248.96
                                                   55.19333
                                                             54.62085
                                                                        173.6202
                                                                                  4.386777
                                                                                             16.80594
                                                                                                       48.86499
                                                                                                                 1.314681
                                                                                                                          -136.0965
                                                                                                                                      7.703266
                                                                                                                                                -0.004791
     11
         59 37549
                    166.1079
                              35 35389
                                         45762 71
                                                   63 51382
                                                             62.89932
                                                                        146 4253
                                                                                  3 629765
                                                                                            35 35389
                                                                                                      58 20088
                                                                                                                        1 -136 0969
                                                                                                                                      7 703266 -0 032797
         50.80981
                                                   55.08781
                                                             54.32021
                                                                        163.5975
                                                                                  4.446459
                                                                                                      49.63871
                                                                                                                 1.000208 -136.0973
     12
                    167.9803
                              35.88921
                                        37778.44
                                                                                             35.8702
                                                                                                                                      7.703266
                                                                                                                                                -0.012035
                                                                                            6.079273
          52.12946
                    167.2088
                              37.01521
                                         38960.85
                                                    56.3927
                                                              55.51743
                                                                        166.1502
                                                                                  4.291713
                                                                                                       48.06386
                                                                                                                  1.650007 -136.0977
                                                                                                                                      7.703266
                                                                                                                                                -0.018143
     14
         50.23631
                     167.995
                              37.40932
                                        37269.93
                                                   54.50292
                                                             53.60436
                                                                        171.6862
                                                                                  4.507521
                                                                                            37.40932
                                                                                                      49.11363
                                                                                                                        1 -136.0981
                                                                                                                                      7.703266 -0.011958
          49.5843
                              42.38118
                                                             52.54528
                                                                                            8.983793
                                                                                                                 1.591324 -136.0985
                    167.3198
                                        36695.74
                                                   53.24019
                                                                        196.0199
                                                                                  4.559652
                                                                                                      46.26278
                                                                                                                                               -0.014247
     15
                                                                                                                                      7.703266
     16
          48.34512
                    168.2532
                              44.82652
                                         35615.93
                                                   51.70555
                                                             51.16019
                                                                        210.4494
                                                                                    4.7241
                                                                                            0.248599
                                                                                                       40.72796
                                                                                                                 2.779387 -136.0989
                                                                                                                                      7.703266
                                                                                                                                                -0.020035
     17
         51 76212
                    167 4115 41 84918
                                        38629 98
                                                   55 57913
                                                             54 76238
                                                                        188 6512
                                                                                  4 333721
                                                                                              13 4953
                                                                                                      49 00676
                                                                                                                 1 438777 -136 0993
                                                                                                                                      7 703266 -0 002564
                    167.4789
                                                                                            12.53399
     18
         50.49432
                              38.65078
                                         37498.3
                                                   54.42374
                                                             53.74417
                                                                        176.8428
                                                                                  4.466306
                                                                                                      47.57214
                                                                                                                 1.424381 -136.0997
                                                                                                                                      7.703266
                                                                                                                                               -0.025851
          48.89498
                    167.7569
                              34.90028
                                         36093.22
                                                   53,43259
                                                              52.50004
                                                                        162.7612
                                                                                  4.647878
                                                                                            34.90028
                                                                                                        47.6933
                                                                                                                          -136,1001
                                                                                                                                      7.703266
                                                                                                                                                -0.013174
     19
     20
         54 01366
                    166 5482
                              45 80426
                                           40679
                                                   57 50386
                                                             56 74073
                                                                        201.2128
                                                                                  4 094205
                                                                                            6 612208
                                                                                                      50 39295
                                                                                                                 1 745771 -136 1005
                                                                                                                                     7 703266 -0 012832
         50.33976
                    167.8316
                              47.30033
                                         37361.42
                                                   53.93057
                                                             53.00092
                                                                        216.814
                                                                                   4.49211
                                                                                             0.37906
                                                                                                      43.42962
                                                                                                                 2.697498 -136.1005
                                                                                                                                      7.701266
                                                                                                                                                -0.015757
          47.50694
                    168.2507
                              47.25706
                                         34894.03
                                                   51.10959
                                                              50.17718
                                                                        224.1434
                                                                                  4.821761
                                                                                            0.184927
                                                                                                       39.80633
                                                                                                                 2.912891
                                                                                                                          -136,1001
                                                                                                                                      7.701266
                                                                                                                                                0.003212
                                                             51,94072
         49.00687
                    168.2975
                              43.02307
                                          36190.7
                                                   52.55011
                                                                        200.3723
                                                                                  4.650296
                                                                                            16.48234
                                                                                                      46.54731
                                                                                                                 1.378754 -136.0997
                                                                                                                                      7.701266
                                                                                                                                                 0.00479
         47.87927
                     168.371
                              45.00623
                                        35213.87
                                                   51.29648
                                                             50.68507
                                                                       212,4959
                                                                                  4.781383
                                                                                            7.469039
                                                                                                      44.36415
                                                                                                                 1.689606
                                                                                                                           -136.0993
                                                                                                                                      7.701266
                                                                                                                                                -0.005143
          47.63069
                    167.7816
                              41.98187
                                         35000.19
                                                   51.28676
                                                             50.62809
                                                                        198.8206
                                                                                  4.793734
                                                                                            2.648554
                                                                                                       42.64607
                                                                                                                  1.99724
                                                                                                                           -136.0989
                                                                                                                                      7.701266
                                                                                                                                                -0.015964
         49.29608
                                                             52.05237
                              45.75896
                                         36443 25
                                                   53.00899
                                                                        212.3745
                                                                                                       47.35041
                    168,1663
                                                                                   4.61447
                                                                                            23.20633
                                                                                                                 1.279428 -136.0985
                                                                                                                                      7.701266
                                                                                                                                               -0.007679
5
         48.68963
                    167,7729
                              37.76833
                                        35914.63
                                                  52.78642
                                                             52.02125
                                                                        176,5741
                                                                                  4.671437
                                                                                             20.2895
                                                                                                        46.5183
                                                                                                                 1.238801 -136.0981
                                                                                                                                     7.701266
                                                                                                                                               -0.010409
         50.08789
                    167.9178
                              39.85306
                                        37138.86
                                                    54.1943
                                                             53.24795
                                                                        183.2239
                                                                                   4.52135
                                                                                            27.48168
                                                                                                       48.41035
                                                                                                                 1.148142 -136.0977
                                                                                                                                     7.701266 -0.012388
         49 25544
                    167 4067
                              41.03353
                                        36407.71
                                                  52.97275
                                                             52.31526
                                                                         190.536
                                                                                  4.598111
                                                                                            41.03353
                                                                                                        48.2355
                                                                                                                        1 -136.0973 7.701266 -0.010032
```

```
10 47.17983
                    168 3523
                               42 0488
                                        34614.15 50.85043
                                                             50 18263 200 2449 4 863685 4 241507
                                                                                                      42 80684
                                                                                                                 1.842226 -136.0969 7.701266 -0.010897
                                                   51.21891
         47.08566
                    167.8845
                              38.60278
                                        34533.77
                                                             50.34743
                                                                        184.0481
                                                                                  4.861459
                                                                                            8.749934
                                                                                                      43.61165
                                                                                                                   1.5488 -136.0965
                                                                                                                                     7.701266
                                                                                                                                               -0.008986
     11
          46.08645
                    168.0645
                              36.33037
                                         33686.16
                                                   50.13163
                                                              49.55595
                                                                        175.3795
                                                                                  4.989127
                                                                                            27.14622
                                                                                                       44.40865
                                                                                                                  1.112689
                                                                                                                          -136.0961
                                                                                                                                      7.701266
                                                                                                                                                -0.013671
           47.9243
                    167 9899
                              41.14252
                                        35252 63
                                                   51.71812
                                                             50 98664
                                                                        194,1467
                                                                                  4.765316
                                                                                            10 43551
                                                                                                      44 77477
                                                                                                                 1 521352 -136 0957
                                                                                                                                      7 701266
                                                                                                                                               -0.001743
     13
     14
         51.44038
                    167,4493
                              49.44564
                                        38341.28
                                                   54.80515
                                                             53.98028
                                                                        223,7327
                                                                                  4.367338
                                                                                            2.559158
                                                                                                      46.79854
                                                                                                                 2.120676 -136.0953
                                                                                                                                      7.701266
                                                                                                                                                0.002307
          48.05096
                    168.1663
                              40.94918
                                          35361.8
                                                   51.68365
                                                              51.13099
                                                                        192.9358
                                                                                  4.755592
                                                                                             13.7715
                                                                                                        45.3017
                                                                                                                  1.419456 -136.0949
                                                                                                                                      7.701266
                                                                                                                                                -0.003642
     16
         47 06692
                     168 004
                              34 49398
                                        34517.79
                                                   51 43224
                                                             50.71982
                                                                        164,4965
                                                                                   4 86717
                                                                                            34 49398
                                                                                                      45 84929
                                                                                                                        1 -136 0945
                                                                                                                                      7.701266 -0.009371
                                                                                            3.571395
                                                                                                                 1.938143 -136.0941
     17
         47.32239
                    168.0897
                              44.65626
                                           34736
                                                   51.01042
                                                             50.14545
                                                                       212.2889
                                                                                  4.839062
                                                                                                      42.85013
                                                                                                                                      7.701266
                                                                                                                                                -0.010488
         49.08361
                    167.8623
                               38.0627
                                         36257.63
                                                   52.84769
                                                             52.39122
                                                                        177.1066
                                                                                   4.62971
                                                                                            9.489595
                                                                                                       45.71673
                                                                                                                 1.513438 -136.0937
                                                                                                                                      7.701266
                                                                                                                                                -0.006813
     18
         48.25316
                              45.21988
                                        35536.39
                                                   51.92792
                                                             51.02841
                                                                       212.5336
                                                                                  4.708657
                                                                                            0.597174
                                                                                                        41.6931
                                                                                                                 2.522829 -136.0933
     19
                    167.3287
                                                                                                                                      7.701266
                                                                                                                                               -0.010365
     20
         51.97802
                    167.1626
                              46,48032
                                        38824.28
                                                   55.61986
                                                             54.67533
                                                                       209.0029
                                                                                  4.305619
                                                                                              1.03898
                                                                                                      46.14928
                                                                                                                 2.370708 -136.0929
                                                                                                                                      7.701266
                                                                                                                                                -0.010872
                    167.7569
                              41.63525
                                         37748.39
                                                   54.36069
                                                             53.79793
                                                                                  4.444081
                                                                                            4.804727
                                                                                                       46.56364
                                                                                                                  1.795462 -136.0929
                                                                                                                                      7.699266
                                                                                                                                               -0.010446
          50.77602
                                                                        189.8658
          48.18713
                    168.0466
                              40.83511
                                         35479.34
                                                   52.02017
                                                             51.27357
                                                                        192.0794
                                                                                  4.736464
                                                                                             13.19137
                                                                                                       45.37365
                                                                                                                   433672
                                                                                                                           -136.0933
                                                                                                                                      7.699266
                                                                                                                                                0.004994
         48.58458
                     167.535
                              40.72369
                                        35823.42
                                                   52.76489
                                                             51.67004
                                                                        190.6331
                                                                                  4.676691
                                                                                            14.64699
                                                                                                      45.93182
                                                                                                                  1.39482 -136.0937
                                                                                                                                      7.699266
                                                                                                                                                -0.002119
           51.2033
                    167.3051
                              44.49897
                                         38129.21
                                                   54.67314
                                                             54.02312
                                                                        201.9091
                                                                                             16.47625
                                                                                                       48.76972
                                                                                                                  1.397272 -136.0941
                                                                                                                                      7.699266
                                                                                                                                                0.004898
                                                                                  4.387845
          46.67273
                    167.7961
                               41.1274
                                                   50.54467
                                                             49.73267
                                                                        197.0903
                                                                                                      44.16546
                                        34182.33
                                                                                  4.908855
                                                                                             16.11867
                                                                                                                  1.364541 -136.0945
                                                                                                                                      7.699266
                                                                                                                                                 -0.01911
           49.5625
                    167.8142
                              36,77046
                                        36676.61
                                                   53.67844
                                                             52.98537
                                                                        170.1137
                                                                                  4.575509
                                                                                            36.77046
                                                                                                      48.42154
                                                                                                                        1 -136.0949
                                                                                                                                      7.699266
                                                                                                                                                0.008365
          49.62787
                              35.70583
                                                   53.98631
                                                             53.15029
                                                                        165.0593
                                                                                   4.56511
                                                                                            35.70583
                                                                                                      48.45373
                                                                                                                          -136.0953
                                                                                                                                      7.699266
                                                                                                                                                0.006193
                    167.6947
                                        36733.98
          49.82679
                     167.817
                              37.43559
                                          36908.8
                                                   53.88021
                                                              53.18891
                                                                        172.6452
                                                                                  4.546803
                                                                                            29.39519
                                                                                                       48.28041
                                                                                                                  1.094958 -136.0957
                                                                                                                                      7.699266
                                                                                                                                                0.000705
         49.94131
                    167.7592
                               45.1366
                                         37009.62
                                                   53.60354
                                                             52.72883
                                                                         207.877
                                                                                  4.532853
                                                                                            1.645479
                                                                                                      44.55011
                                                                                                                 2.200533 -136.0961
                                                                                                                                      7.699266
                                                                                                                                                -0.004533
         49.89769
                    167.6077
                              35.46001
                                                                        163.3961
                                                                                            35.46001
                                                                                                                                      7.699266
                                                                                                                                                0.013668
                                         36971.21
                                                   54.14851
                                                             53.44269
                                                                                  4.533467
                                                                                                       48.71602
                                                                                                                          -136.0965
     10
      11
         50.21406
                    167.5554
                              50.20071
                                         37250.27
                                                   53.74508
                                                             52.71734
                                                                        230.4518
                                                                                  4.498098
                                                                                            2.256515
                                                                                                      45.46234
                                                                                                                 2.173646 -136.0969
                                                                                                                                      7.699266
                                                                                                                                                -0.006611
     12
         47 29171
                    168 0027
                              41 82544
                                        34709 76
                                                   50 86029
                                                             50 30428
                                                                        198 9068
                                                                                  4 840217
                                                                                            13 75523
                                                                                                      44 55635
                                                                                                                 1 430985 -136 0973
                                                                                                                                      7 699266
                                                                                                                                                -0.000516
                                                                                                                                               -0.001034
         48.47912
                    168.1365
                               38.0943
                                        35731.97
                                                   52.61276
                                                             51.78939
                                                                        178.5527
                                                                                  4.705493
                                                                                            23.16904
                                                                                                      46.52357
                                                                                                                  1.193063 -136.0977
                                                                                                                                      7.699266
     13
         49.70724
                              41.37758
                                         36803.69
                                                   53.93207
                                                             52.74643
                                                                        191.0972
                                                                                  4.555856
                                                                                            11.59439
                                                                                                       46.71959
                                                                                                                  1.487282 -136.0981
                                                                                                                                      7.699266
     15
         51.20703
                    167 8774
                              45 86404
                                        38132 54
                                                    54 5975
                                                             53 95227
                                                                        208.0939
                                                                                   4.40247
                                                                                            3 357073
                                                                                                       46 71652
                                                                                                                  1 976805 -136 0985
                                                                                                                                      7 699266
                                                                                                                                                -0.008611
                                                   53.23492
                    167.4535
                                                                                                                                               -0.023088
         49.86701
                              50.15726
                                          36944.2
                                                             52.37094
                                                                        231.2041
                                                                                  4.532606
                                                                                            0.150817
                                                                                                       42.25441
                                                                                                                 3.030199 -136.0989
                                                                                                                                      7.699266
     16
                                                                                                                  1.352279 -136.0993
      17
           50.8617
                    166.4834
                              33.21186
                                          37824.6
                                                    55.7753
                                                              54.62128
                                                                        151.3006
                                                                                  4.401458
                                                                                             12.51503
                                                                                                      47.84261
                                                                                                                                      7.699266
                                                                                                                                                -0.122352
     18
          49.21702
                    167 8751
                              44 35842
                                         36374 13
                                                   52 90302
                                                             52 05541
                                                                        206 0699
                                                                                  4 615233
                                                                                            2 660327
                                                                                                       44 36575
                                                                                                                 2 031874 -136 0997
                                                                                                                                      7 699266
                                                                                                                                               -0.004237
                                         36272.34
                                                                                                                                               -0.012397
     19
         49.10046
                     167.363
                              36.07851
                                                   53.13489
                                                             52.57961
                                                                        167.8401
                                                                                  4.614067
                                                                                             26.5612
                                                                                                      47.39253
                                                                                                                  1.11818 -136.1001
                                                                                                                                      7.699266
     20
         49.64018
                    168.0962
                              48.73421
                                         36744.78
                                                   53.31486
                                                             52.22711
                                                                        225.2531
                                                                                  4.574695
                                                                                              0.13423
                                                                                                       41.75305
                                                                                                                 3.036626 -136.1005
                                                                                                                                      7.699266
         52.32686
                     167.363
                              50.40366
                                         39139.2
                                                   55.57655
                                                              54.8172
                                                                        225,7308
                                                                                  4.276097
                                                                                            0.166059
                                                                                                       44.83628
                                                                                                                 3.005891 -136.1005
                                                                                                                                      7.697266
                                                                                                                                                0.005966
                                                  51.53059
                                                              50.88716
         47.83141
                    168,7504
                              41,41797
                                         35172.68
                                                                        195.6685
                                                                                  4.797769
                                                                                             14.30165
                                                                                                      45.13799
                                                                                                                  1.411073 -136.1001
                                                                                                                                      7.697266
                                                                                                                                                0.015113
          47.80244
                    168.1191
                              44.62615
                                         35147.76
                                                    51.4051
                                                              50.6279
                                                                        210.8995
                                                                                  4.783209
                                                                                             10.50637
                                                                                                      44.73753
                                                                                                                  1.563561 -136.0997
                                                                                                                                      7.697266
         49 47191
                    167 5064
                              43 93945
                                        36597 18
                                                   53.10478
                                                              52 33107
                                                                       203 5006
                                                                                  4 577029
                                                                                            5 476865
                                                                                                      45 52951
                                                                                                                 1.784151 -136.0993
                                                                                                                                      7 697266
                                                                                                                                                -0.003263
         47.10569
                              35.86828
                    168,5756
                                        34550.86
                                                   51.34452
                                                             50.63058
                                                                        170.9684
                                                                                  4.879057
                                                                                            35.86828
                                                                                                      45.93073
                                                                                                                        1 -136.0989
                                                                                                                                      7.697266
                                                                                                                                               -0.012681
          47.64113
                    168.6055
                              38.09486
                                         35009.15
                                                   51.71514
                                                              50.96059
                                                                        180.3892
                                                                                  4.816042
                                                                                            35.16413
                                                                                                       46.39311
                                                                                                                  1.031979 -136.0985
                                                                                                                                      7.697266
                                                                                                                                                -0.001791
                                                                                                                                      7.697266
          44.37876
                    168.6993
                              36.16677
                                          32259.8
                                                   48.72058
                                                             47.87712
                                                                        178.4077
                                                                                  5.229396
                                                                                            32.49212
                                                                                                       43.01746
                                                                                                                  1.041843 -136.0981
                                                                                                                                                -0.001917
          48.75466
                    167.5971
                              36.16666
                                        35971.14
                                                   53.11877
                                                             52.23018
                                                                        168.9531
                                                                                  4.659211
                                                                                            36.16666
                                                                                                      47.59616
                                                                                                                        1 -136.0977
                                                                                                                                      7.697266
                                                                                                                                               -0.002634
                                                                                                                  1.515809 -136.0973
          50.03879
                    168.0626
                              41.66547
                                         37095.54
                                                   53.76174
                                                               53.064
                                                                        191.6683
                                                                                  4.530534
                                                                                             10.80265
                                                                                                        46.9498
                                                                                                                                      7.697266
      10
         50.06074
                    167.8056
                              42.63293
                                         37114.9
                                                   53.77607
                                                              53.01278
                                                                        196.0676
                                                                                  4.521246
                                                                                             16.47834
                                                                                                       47.60233
                                                                                                                  1.374587 -136.0969
                                                                                                                                      7.697266
                                                                                                                                                -0.007609
     11
         48.22112
                    168,4438
                              37.67465
                                          35508.7
                                                   52.19153
                                                             51.57438
                                                                          177.14
                                                                                  4.743734
                                                                                            22.30997
                                                                                                      46.19975
                                                                                                                  1.202106 -136.0965
                                                                                                                                      7.697266 -0.014362
          44.30867
                    168.0731
                              34.38926
                                         32201.86
                                                   48.79332
                                                              47.9742
                                                                         169.792
                                                                                  5.219359
                                                                                            20.43408
                                                                                                       42.13687
                                                                                                                  1.19437 -136.0961
                                                                                                                                      7.697266
                                                                                                                                                -0.017966
     12
                     167.839
                                                              50.4196
                                                                                             12.66203
         47.24875
                              39.69899
                                                    50.8865
                                                                        188.8941
                                                                                   4.84062
                                                                                                                  1.434042 -136.0957
     13
                                         34673.04
                                                                                                       44.35677
                                                                                                                                      7.697266
                                                                                                                                                0.000898
     14
           47.1763
                    168,6885
                              36.63188
                                         34611.14
                                                   51.14042
                                                             50.63002
                                                                        174.4561
                                                                                  4.873822
                                                                                            29.93199
                                                                                                      45.66249
                                                                                                                 1.078733 -136.0953
                                                                                                                                      7.697266
                                                                                                                                                0.004977
         47.40853
                    168.1785
                              33.18186
                                                   51.71461
                                                                                  4.831366
      15
                                         34809.72
                                                             51.20982
                                                                        157.5743
                                                                                            33.18186
                                                                                                       46.14143
                                                                                                                          -136.0949
                                                                                                                                      7.697266
                                                                                                                                                -0.001938
     16
         50.17671
                    167 5824
                              48.09031
                                         37217 27
                                                    53.2934
                                                              52.79027
                                                                        220.8616
                                                                                  4.502813
                                                                                            0.357458
                                                                                                       43 27654
                                                                                                                 2 730108 -136 0945
                                                                                                                                      7.697266
                                                                                                                                                -0.011048
     17
         46.60109
                    168.3691
                              41.24248
                                        34121.52
                                                   50.49496
                                                              49.6629
                                                                        197.8178
                                                                                  4.934396
                                                                                            6.393337
                                                                                                       42.75414
                                                                                                                 1.692321 -136.0941
                                                                                                                                      7.697266 -0.010683
                                                                                  4.723405
                                                                                                                  2.19927 -136.0937
         48.34867
                    168,2429
                              43.02242
                                           35619
                                                   51.98687
                                                              51.28161
                                                                        201.9709
                                                                                            1.481405
                                                                                                      42.68117
                                                                                                                                      7.697266
                                                                                                                                                -0.014514
     18
                              39.69439
                                                                                             15.59949
           47.3117
                    168.3691
                                         34726.86
                                                   51.27151
                                                             50.49292
                                                                        188.7258
                                                                                  4.848382
                                                                                                       44.73107
                                                                                                                  1.358405 -136.0933
                                                                                                                                      7.697266
                                                                                                                                                -0.006511
     20
         50 02565
                    167 5534
                              34 54046
                                        37083 96
                                                   54 52712
                                                             53 66385
                                                                        158 9168
                                                                                  4 518219
                                                                                            34 54046
                                                                                                      48 81291
                                                                                                                        1 -136 0929
                                                                                                                                      7 697266 -0 002465
                              51.24449
                                                                                            0.555542
                                                                                                                 2.646821 -136.0929
         50.14863
                    167.2618
                                        37192.48
                                                   53.42613
                                                             52.59663
                                                                         235.426
                                                                                  4.497195
                                                                                                       43.95742
                                                                                                                                      7.695266
                                                                                                                                                -0.004329
                                         39356.02
          52.56627
                     167.334
                              50.43901
                                                   56.24764
                                                             55.05443
                                                                        225.2661
                                                                                  4.251803
                                                                                             1.638963
                                                                                                       47.47662
                                                                                                                 2.284156 -136.0933
                                                                                                                                      7.695266
                                                                                                                                                0.004528
          51 8327
                    167 7402
                              51 60364
                                        38693 45
                                                   55 20011
                                                             54 27061
                                                                       232 4323
                                                                                  4 335107
                                                                                            5 775383
                                                                                                      48 19915
                                                                                                                 1 867827 -136 0937
                                                                                                                                      7 695266
                                                                                                                                                -0.014394
                                                             51.17265
                                                                                  4.711034
                                                                                                      42.87531
                                                                                                                                                0.000155
          48.31558
                    167.6675
                              44.01385
                                         35590.37
                                                   51.92818
                                                                        206.7083
                                                                                            1.670705
                                                                                                                 2.178109 -136.0941
                                                                                                                                      7.695266
                                                   53.79927
          49.83991
                    167.7432
                              36.47854
                                         36920.35
                                                              53.28872
                                                                        168.2052
                                                                                  4.543381
                                                                                            9.677319
                                                                                                       46.46043
                                                                                                                  1.484924 -136.0945
                                                                                                                                      7.695266
                                                                                                                                                0.005969
         49 59012
                    167 7279
                                41 429
                                        36700.85
                                                   53.13012
                                                             52 62654
                                                                        191 6026
                                                                                  4.570138
                                                                                            5.029016
                                                                                                      45 43145
                                                                                                                  1 777197 -136 0949
                                                                                                                                      7 695266
                                                                                                                                                0.006869
      6
         51.10902
                              47.63412
                                                   54,47048
                                                                                                      42,77891
                                                                                                                 3.109329 -136.0953
                    168.1822
                                         38045.02
                                                             53.75705
                                                                        216.3735
                                                                                   4.42061
                                                                                            0.097821
                                                                                                                                      7.695266
                                                                                                                                                0.003944
                              38.59643
          49.61213
                    168.1237
                                         36720.16
                                                   53.34439
                                                              52.87908
                                                                        178.4554
                                                                                  4.578511
                                                                                             7.279976
                                                                                                       45.86062
                                                                                                                  1.61124 -136.0957
                                                                                                                                      7.695266
                                                                                                                                                 -0.00849
          51.2628
                     168.184
                              49.35825
                                        38182.38
                                                   54.36374
                                                             53.81836
                                                                       223.8016
                                                                                  4.404753
                                                                                            4.399122
                                                                                                      47.23195
                                                                                                                  1.932964 -136.0961
                                                                                                                                      7.695266
                                                                                                                                                0.007549
8
      9
         47.50315
                                                   51.25118
                                                                                            9.655448
                                                                                                                  1.59891
                                                                                                                                               -0.007294
                    167.6507
                              44.97083
                                        34890.78
                                                             50.29914
                                                                       213.3096
                                                                                  4.805013
                                                                                                      44.33842
                                                                                                                          -136.0965
                                                                                                                                      7.695266
     10
          48.48098
                    167.5824
                              35.76367
                                         35733.58
                                                   52.60359
                                                             51.99535
                                                                        167.6249
                                                                                  4.689773
                                                                                            35.44926
                                                                                                       47.29327
                                                                                                                  1.003468
                                                                                                                           -136.0969
                                                                                                                                      7.695266
                                                                                                                                                -0.001518
8
     12
         50 70338
                    167 3198
                              47 89125
                                        37683 82
                                                   54.09078
                                                             53 32369
                                                                       218 5816
                                                                                  4 440096
                                                                                            0.226164
                                                                                                      43 30697
                                                                                                                 2 867045 -136 0973
                                                                                                                                      7 695266 -0 007019
     13
         45.68816
                    168.3979
                              39.23768
                                        33350.99
                                                   50.11886
                                                             48.90697
                                                                        190.3635
                                                                                  5.049263
                                                                                            9.549574
                                                                                                      42.35485
                                                                                                                  1.52668 -136.0977
                                                                                                                                      7.695266
                                                                                                                                                -0.012701
         50.97539
                    167.9788
                              43.25958
                                         37925.85
                                                   54.37132
                                                             53.88767
                                                                         196.811
                                                                                  4.429137
                                                                                            4.291917
                                                                                                       46.67889
                                                                                                                  1.856479
                                                                                                                           -136.0981
                                                                                                                                      7.695266
                                                                                                                                                 -0.00118
8
     15
         47 64613
                    168 1804
                              36 35745
                                        35013 44
                                                   51 80213
                                                             51.11544
                                                                        172.1515
                                                                                  4 803311
                                                                                            36 35745
                                                                                                      46 48969
                                                                                                                        1 -136 0985
                                                                                                                                      7 695266
                                                                                                                                               -0.007497
     16
         48.37875
                    167.8266
                               40.1228
                                        35645.03
                                                   52.16445
                                                             51.51587
                                                                        188.2897
                                                                                  4.708273
                                                                                            22.24926
                                                                                                      46.36167
                                                                                                                 1.232229 -136.0989
                                                                                                                                      7.695266
                                                                                                                                               -0.005738
          47.92295
                    168.1357
                              35.77579
                                         35251.47
                                                   52.26723
                                                             51.44773
                                                                        168.8245
                                                                                  4.769609
                                                                                            35.77579
                                                                                                       46.74802
                                                                                                                        1 -136.0993
                                                                                                                                      7.695266
                                                                                                                                                -0.000552
         47.46064
                    167.6551
                              37.71059
                                        34854.35
                                                   51.45411
                                                             50.79501
                                                                        178.9657
                                                                                  4.810162
                                                                                            37.71059
                                                                                                       46.34918
                                                                                                                          -136.0997
                                                                                                                                      7.695266
                                                                                                                                               -0.006717
     18
     19
         48.71493
                     168.353
                              44.61455
                                        35936.61
                                                   52.47105
                                                             51.54506
                                                                        208.5177
                                                                                  4.684723
                                                                                            8.588381
                                                                                                      45.37467
                                                                                                                 1.635189 -136.1001
                                                                                                                                      7.695266
                                                                                                                                                0.009682
         48.71614
                    168.1103
                              40.24729
                                         35937.65
                                                   52.89775
                                                             51.84884
                                                                        188.1034
                                                                                   4.67783
                                                                                            17.58884
                                                                                                       46.32936
                                                                                                                 1.321418 -136.1005
                                                                                                                                      7.695266
                                                                                                                                                -0.005234
     20
                    167.4209
                              49.15578
                                                   54.93524
                                                              54.20222
                                                                                  4 345519
                                                                                            2.506994
                                                                                                                 2.123469 -136.1005
         51.64777
                                         38527.26
                                                                        221.8837
                                                                                                       46.96984
                                                                                                                                      7 693266
                                                                                                                                                0.000585
9
         49.50159
                    167.5967
                              36.02501
                                         36623.2
                                                  53.61279
                                                             52.99077
                                                                        166,7864
                                                                                  4.576244
                                                                                            36.00214
                                                                                                      48.33737
                                                                                                                  1.00025 -136.1001
                                                                                                                                      7.693266
                                                                                                                                                0.005103
           48.2961
                    167.8285
                              47.13568
                                        35573.52
                                                   51.71441
                                                              50.9665
                                                                       221.4222
                                                                                  4.717792
                                                                                            12.32103
                                                                                                      45.49511
                                                                                                                 1.536677 -136.0997
                                                                                                                                      7.693266
                                                                                                                                                0.015169
         49.11443
                    168,4728
                               46.8765
                                        36284.53
                                                   52.90795
                                                              51.8099
                                                                       218.0365
                                                                                  4.643102
                                                                                            5.727065
                                                                                                      45.31459
                                                                                                                 1.807282 -136.0993
                                                                                                                                     7.693266 -0.003832
```

2	9	5	45.63141	168.0727	43.33917	33303.36	49.13219	48.53997	210.4124	5.046721	9.615222	42.41691	1.578891 -136.0	989	7.693266	0.001121
2	9	6	48.27493	167.359	41.58638	35555.21	52.03927	51.29321	195.4044	4.707017	8.874771	44.91458	1.584999 -136.0	985	7.693266	0.005796
2	9	7	47.63057	168.6595	49.35719	35000.08	50.89032	50.19341	233.7495	4.818833	0.724615	41.55595	2.5277 -136.0	981	7.693266	0.009669
2	9	8	46.81779	168.4875	34.95718	34305.6	50.99158	50.43265	167.2202	4.911371	32.36392	45.46925	1.029789 -136.0	977	7.693266	-0.002786
2	9	9	48.44569	167.7686	40.60975	35703.01	52.20124	51.54412	190.4201	4.699006	12.08084	45.5017	1.462618 -136.0	973	7.693266	0.005064
2	9	10	46.22102	168.4103	46.61197	33799.76	49.79992	48.93079	224.634	4.982588	8.140769	42.86103	1.679967 -136.0	969	7.693266	-0.000523
2	9	11	48.56937	168.1074	38.68039	35810.23	52.57321	51.82892	181.1016	4.694395	12.85569	45.6783	1.415217 -136.0	965	7.693266	0.005923
2	9	12	49.71008	167.5677	34.32267	36806.19	54.16084	53.37168	158.5096	4.552706	26.37009	48.00102	1.100066 -136.0	961	7.693266	-0.002902
2	9	13	49.15689	167.8432	34.18596	36321.6	53.48128	52.83917	158.9279	4.621029	34.0508	47.92195	1.001528 -136.0	957	7.693266	-0.00169
2	9	14	48.19631	168.2679	43.55827	35487.26	52.12199	51.0936	204.8657	4.741643	3.1271	43.49952	1.965824 -136.0	953	7.693266	0.001026
2	9	15	49.8175	167.6077	45.232	36900.63	53.4902	52.59663	208.6237	4.542138	1.122757	43.98266	2.324637 -136.0	949	7.693266	-0.001128
2	9	16	48.86359	168.3119	36.30457	36065.89	53.053	52.34067	169.3744	4.666789	24.05004	46.97278	1.157844 -136.0	945	7.693266	0.003773
2	9	17	46.41711	168.1169	46.24574	33965.59	50.29147	49.14358	222.3243	4.949622	4.402487	42.27293	1.889985 -136.0	941	7.693266	-0.002369
2	9	18	47.62982	167.6546	37.52845	34999.44	52.0403	50.98037	177.7317	4.790209	25.77171	45.85884	1.146423 -136.0	937	7.693266	-0.003721
2	9	19	48.56016	167.6947	44.83289	35802.23	51.91697	51.36549	209.931	4.683916	0.916297	42.45602	2.381932 -136.0	933	7.693266	-0.010267
2	a	20	17 52150	168 0035	40 43147	3/10/16 50	51 2120	50 63071	101 73/17	1 815521	12 25036	11 50152	1 /5/768 -136 (1020	7 603266	-0.000363

Grain boundary (6)

		oundar													
Row Ir	ndent				A(nm^2)							m >	K(mm)	Y(mm)	Drift Correc
1	1									33.01016			-135.3774	2.33975	0.08807
1	2		168.5241		35489.14	52.67848	51.79734			2.900802		2.02308 -			0.118834
1	3	48.86034	168.5986	43.78994	35336.91	52.6582	51.74796	206.393	4.771175	0.006274	37.1141	3.800839 -	-135.3765	2.33975	0.091521
1	4	44.3497	169.0043	35.00549	31541.22	48.73751	47.97066	174.6352	5.358204	17.18188	41.86836	1.263954	-135.376	2.33975	0.082018
1	5	45.21803	169.1703	41.06655	32256.39	49.06495	48.30759	202.5887	5.244551	2.81962	40.23281	1.960174 -	-135.3756	2.33975	0.058904
1	6	48.59578	168.6431	44.331				209.6209				2.617042 -			0.046524
1	7	47.45348		43.02489	34131.55							1.598526 -			0.037208
1										20.4749					
1	8	46.11586	167.8977			50.28361		169.87	5.08725			1.199254 -		2.33975	0.01957
1	9	47.47517	168.7378	39.46389	34149.99	51.5939	50.68199	189.208				1.511352 -		2.33975	
1	10	48.18216	168.7417			52.27169		169.1458				1.002119 -			0.025203
1	11	47.4099	168.3544	45.69714	34094.52	51.1138	50.173	219.2712	4.937873	2.775239	42.66874	2.036911 -	-135.3729	2.33975	0.024819
1	12	46.58915	168.3132	42.64871	33400.71	50.31102	49.54903	206.7583	5.03921	9.07562	43.27395	1.590035 -	-135.3724	2.33975	0.024839
1	13	49.59526	168.3901	45.21056	35974.37	53.17085	52.38869	211.1923	4.680835	9.092361	46.34543	1.622536	-135.372	2.33975	0.019151
1	14	48.01078	167.992	44.65461	34606.69	51.60652	50.8323	212.6773	4.854321	1.880973	42.74673	2.149259 -	-135.3715	2.33975	0.009777
2	1	48.06272	167 7403	43.57959						3.785558		1.90362 -			0.005368
2	2	46.81986	168.4169		33595.07					40.62914			-135.372		0.009507
2	3	46.82814		37.11846	33602.05				5.002023		45.6961		-135.3724		
															0.008175
2	4	45.38312		35.77459		49.27088				16.78213		1.28252 -			-0.009533
2	5	45.76989	168.6598		32714.75							1.364175 -			0.003028
2	6	46.58387	167.8008	33.49239		50.94315	50.34145	162.3798	5.02454	33.49239	45.33134	1 -	-135.3738	2.33775	-0.007543
2	7	47.37598	167.8451	44.4393	34065.72	50.87929	50.2087	213.3257	4.927097	4.130741	43.08325	1.88656 -	-135.3742	2.33775	0.000591
2	8	47.4016	168.4434	53.34546	34087.47	50.77504	49.76979	255.997	4.941504	2.630722	42.93607	2.164217 -	-135.3747	2.33775	0.013566
2	9	46.31518	168.0327	47.38808		50.02563						2.601742 -			0.001999
2	10	47.60006	168.1369		34256.22					2.496366		2.154619 -		2.33775	7.04E-05
				38.2721		48.93357		189.0689		29.27863				2.33775	
2	11	45.1085	168.1171										-135.376		0.009607
2	12	50.6076		50.66118				233.7895		0.178045		2.98661 -		2.33775	0.0052
2	13	47.30081	168.0704			51.38423						1.184078 -			-0.009785
2	14	44.98716	168.2969	40.80874	32065.52	48.79741	48.08019	201.9151	5.248532			1.320855 -		2.33775	-0.018458
3	1	50.15566	168.0994	44.39834	36464.06	53.61124	52.99528	206.0009	4.610003	3.83516	45.76181	1.910501 -	-135.3774	2.33575	0.005043
3	2	48.6086	167.2311	39.72439	35119.78	52.71624	51.76593	187.8089	4.761735	13.67842	45.84173	1.407247 -	-135.3769	2.33575	-0.013463
3	3	45.06241	168.4273	37.77636								1.504865 -			-0.008028
3	4	46.89426	167.598	40.03077		50.83143						3.019815			-0.019735
3	5	48.26441	167.7269		34823.94					33.15134			-135.3756		-0.002033
3	6	46.5182	168.8528	40.67315		50.01588						1.714648 -			0.001639
3	7	47.17413	168.4273	36.53195		51.29085			4.96916			1.000897 -			0.013828
3	8	46.43704	168.0356	43.52696	33272.85	50.34744		211.421				1.972379 -	-135.3742	2.33575	0.000454
3	9	47.51816	167.7269	39.04402	34186.53	51.58891	50.74004	187.0948	4.906228	39.04402	46.4442	1 -	-135.3738	2.33575	0.000837
3	10	47.8307	167.4974	40.43804	34452.83	51.51565	50.93726	193.0246	4.861644	10.86272	44.73054	1.498457 -	-135.3733	2.33575	-0.003034
3	11	48.01235	167.6879	37.32427	34608.03	52.23563	51.38189	177.7615	4.845347	37.309	46.88843	1.000164 -	-135.3729	2.33575	0.007452
3	12	47.99214	168.0506	42.85181	34590.74	51.65875	50.93339	204.1381	4.858254	10.23998	44.85401	1.550203 -	-135.3724	2.33575	0.004362
3	13	45.98673	168.8287		32895.67		48.79944	219.9116		0.152481	37.82561		-135.372		-0.000245
3	14	48.01198	168.5679	45.02673		51.56182				3.158267		1.983668 -			-0.000556
-															
4	1	49.35035	167.4407	45.70745	35761.34		52.09784			1.078709		2.345502 -			-0.021804
4	2	48.38965	168.0234	39.39518		52.24325		186.7538		21.11325			-135.372		-0.001865
4	3	47.38747	167.537	45.88932								2.353837 -		2.33375	-0.018964
4	4	49.92715	167.3507	34.94313	36264	54.22296	53.51907	162.5769	4.614789	34.9338	48.72934	1.000104 -	-135.3729	2.33375	-0.008553
4	5	49.67656	168.0796	39.65889	36045.22	53.49272	52.85516	185.0766	4.663021	33.23294	48.3148	1.07131 -	-135.3733	2.33375	0.017487
4	6	48.29195	168.2565	41.13376	34847.57	52.21082	51.35981	195.2302	4.828356	12.45654	45.3964	1.457876 -	-135.3738	2.33375	0.005497
4	7	46.3716	168.3879	37.6936	33217.91		49.72206	183.2383		37.57237		1.00129 -			0.006863
1	8						47.7403		5.300297	1.05979		2.243275 -			0.001753
4	9	49.98052	167.8015	47.5705	36310.68			221.1848		2.932887		2.046997 -			0.001733
4	-														
4	10	47.65592	167.7891	36.96285				176.8191			46.52107		-135.3756		-0.005956
4	11	49.86014	167.5308	38.15949		53.62222		177.6849				1.181287			-0.003941
4	12		167.4978			53.17852		165.5539				1.015803 -			-0.009389
4	13	48.86089	168.0223	43.17204	35337.39	52.62522	51.77984	203.4793	4.754803	7.405452	45.28562	1.66864 -	-135.3769	2.33375	-0.017697
4	14	48.96761	167.6405	42.04357	35429.62	52.91071	51.95809	197.9024	4.731648	3.003377	44.15314	1.957449 -	-135.3774	2.33375	0.005327
5	1											2.214139 -			-0.007972
5	2											2.095542 -			-0.015889
5												1.605578 -			-0.00122
5	4											1.569107			0.024258
5												1.263304 -			0.004719
5		47.29264		37.26734						34.92387		1.025793 -			0.009925
5	7	45.2969	168.1652	39.17791	32321.72	49.27618	48.51616	193.0763	5.202853	15.34612	42.68694	1.35805 -	-135.3747	2.33175	-0.000237
5	8	48.14699	167.4645	42.32769	34723.28	51.78532	51.11427	201.2561	4.822832	12.23207	45.2574	1.480361 -	-135.3742	2.33175	0.01242
5		42.85849								34.62662			-135.3738		0.001779
5												1.481618 -			-0.013635
5												1.268601 -			-0.010568
5		48.17599										1.763728 -			-0.009573
												2.257306			
5															-0.013699
5												1.582892 -			-0.014762
6		50.28892										1.022888 -			-0.009042
6	2											1.179545			0.024838
6	3	48.53818	167.597	39.08536	35059.17	52.4632	51.75416	184.9474	4.780406	39.08536	47.46619	1 -	-135.3724	2.32975	0.027671
6	4											1.183538 -	-135.3729	2.32975	0.016224

6	5	48.21476	167.6948	51.80126	34781.36	51.36015	50.64271	246.0945	4.821398	0.156526	40.77634	3.047741	-135.3733	2.32975 0.00691	
6	6	45.98251	168.6656	45.22439	32892.14	49.60331	48.77966	220.9335	5.127837	0.438111	39.02988	2.614213	-135.3738	2.32975 0.00752	
6	7	48.53359	168.5968	41.01371	35055.22	52.31953	51.61665	194.083	4.809465	32.10708	47.09708	1.099453	-135.3742	2.32975 0.011175	
6	8	49.6758	167.2907	49.79577	36044.56	53.30587	52.19545	232.3846	4.641218	0.104008	41.66143	3.135558	-135.3747	2.32975 0.007037	
6	9	48.31631	167.6146	33.62027	34868.48	52.65242	52.05545	159.5216	4.807051	27.89914	46.71781	1.070628	-135.3751	2.32975 -0.008071	
6	10	50.1136	167.7487	38.60908	36427.2	53.78391	53.3722	179.2303	4.605039	24.64547	48.26321	1.175887	-135.3756	2.32975 -0.013551	
6	11	48.71761	167.8607	43.19942	35213.73	52.46725	51.6319	203.9655	4.766909	1.103223	42.7101	2.29605	-135.376	2.32975 0.00064	
6	12	47.12441	167.7761	38.89934	33852.43	51.16093	50.35922	187.3191	4.956102	38.83013	46.04302	1.000723	-135.3765	2.32975 -0.015882	
6	13	47.47241	168.2316	43.08646	34147.64	51.17378	50.40079	206.5833	4.926596	2.632432	42.53194	2.015322	-135.3769	2.32975 -0.013597	
6	14	48 57142	168 0384	39 30984	35087 78	52 41621	51 77746	185 9337	4 789088	16 59381	46 08621	1 331373	-135 3774	2 32975 -0 002067	

Appendix G Sample II grain boundaries

Grain boundary (1)

Oram cour	• `	- /												
Indent	hc(nm)		S(µN/nm)		hmax(nm)	- (/	Er(GPa)	E(GPa)	H(GPa)	Α	hf(nm)	m	X(mm)	Y(mm)
bulkleft_000.hys	55.41012			38806.08		58.44322				13.27937	52.63358		-139.414896	-98.806486
bulkleft_001.hys	52.34562		37.8841	36129.38		55.64941		191.1803291	4.619008	37.8841			-139.413346	-98.806486
bulkleft_002.hys	51.27111		36.3006	35211.53		54.72721				36.3006			-139.411796	-98.806486
bulkleft_003.hys	55.74528	166.5058	44.24311	39104.14		58.56785				6.020336			-139.414896	-98.808036
bulkleft_004.hys	52.9705	166.9151	39.69168	36668.1	56.71479	56.12447				39.69168			-139.413346	-98.808036
bulkleft_005.hys	52.81956	167.1918		36537.64		56.074				38.23396			-139.411796	-98.808036
bulkleft_006.hys	55.22479	166.549	36.9771		59.13002	58.60288		178.6076685		36.9771			-139.414896	-98.809586
bulkleft_007.hys	50.64764	166.807	48.66461	34683.85		53.21841				3.33782			-139.413346	-98.809586
bulkleft_008.hys	53.23187	166.5597	49.81855	36894.5		55.73936				2.596056			-139.411796	-98.809586
bulkleft_009.hys	78.25853	162.6663	39.4185	61562.27	82.06371	81.35352				9.185628			-139.413694	-98.80388
bulkright_000.hys	52.6803	167.9184		36417.47		55.73154			4.61093	14.31764			-139.401525	-98.808408
bulkright_001.hys	54.6184	169.2759	44.38477	38106.16		57.47877				1.990018			-139.399975	-98.808408
bulkright_002.hys	54.24598	168.9395	49.25198	37778.95		56.81856		255.6925471	4.471789	2.988637			-139.398425	-98.808408
bulkright_003.hys	51.3858	168.8685		35308.98		54.8143				22.54127			-139.401525	-98.809958
bulkright_004.hys	50.87697	169.1021	41.90216	34877.53	54.3255	53.9037				30.69335			-139.399975	-98.809958
bulkright_005.hys	56.41761	167.8478	44.58655	39705.23		59.24102		219.535661	4.227347	38.91351	55.25884		-139.398425	-98.809958
bulkright_006.hys	51.61234	168.3633		35501.85			230.8717			3.038151		2.055782	-139.401525	-98.811508
bulkright_007.hys	50.81979	168.3799	44.06728	34829.19		53.68552		234.3780235		10.27774			-139.399975	-98.811508
bulkright_008.hys	52.85891	167.3871	38.02193	36571.63		56.1607		190.6272217		38.02193		1	-139.398425	-98.811508
bulkright_009.hys	294.3334	127.5855	36.57038	531320.9	297.6565	296.95		42.3550688		7.271939			-139.398991	-98.812739
bulkright_010.hys	80.72979	162.5633	48.29882	64323.31	83.86367	83.25412	168.728	181.2024051	2.527284	0.325883			-139.402116	-98.813395
gb 000.hys	48.5271	168.1681	36.74127	32915.95		51.95992		194.8228496		9.102136			-139.412257	-98.799544
gb 001.hys	31.84299	176.5938	35.65963	20418.12		35.55715				31.74924			-139.412229	-98.800302
gb 002.hys	43.81692		37.0712	29136.33		47.22032		211.7791248		9.431677			-139.411909	-98.800723
gb 003.hys	45.65346	168.2481	41.23543	30586.02		48.7136		233.958935		9.197395			-139.41169	-98.801184
gb 004.hys	45.53178	167.6605		30489.02		48.56811				2.483184			-139.411471	-98.801606
gb 005.hys	42.28637	167.9793	40.76502	27951.43		45.37688		243.7986649		1.565557			-139.411221	-98.802067
gb 006.hys	40.9686	168.3014		26948.1		44.478		214.0389757		11.45886			-139.411026	-98.802442
gb 007.hys	42.26015		37.03217	27931.32		45.66602		216.9581923		9.835483			-139.410792	-98.802817
gb 008.hys	36.47887	169.1299		23645.18		40.79075				20.10945	34.2643		-139.410573	-98.803216
gb 009.hys	40.63612	168.123		26697.4		44.88304				25.16023			-139.4103	-98.803583
gb left 000.hys	100.7786	160.0392		88916.13		103.4825				0.926169	94.8605		-139.407573	-98.806888
gb left 001.hys	49.34736	168.5615		33594.9		52.46442	196.053			20.23477			-139.407866	-98.806516
gb left 002.hys	47.03996	168.9123	36.204	31700.77		50.53914		195.7671846		29.52878			-139.408159	-98.806009
gb left 003.hys	49.89183		39.51673	34048.97		53.08094		208.2451961	4.934984	15.05741			-139.40855	-98.805657
gb left 004.hys	46.75153				50.90738	50.22022		197.399335		21.27604	44.6536		-139.408862	-98.805305
gb left 005.hys	49.7354	168.2068		33918.24		53.42992				33.37895	48.4608		-139.409331	-98.804856
gb left 006.hys	52.33186	167.1876		36117.56		55.26983		220.502359		6.799855	48.6389		-139.409741	-98.804505
gb left 007.hys	48.82785	167.8424		33164.17		51.82479		227.76065		6.722313			-139.410171	-98.804114
gb left 008.hys	48.50614			32898.69		51.41464		235.74133		5.632894		1.76285	-139.410581	-98.803645
gb left 009.hys	49.02552		45.4629		52.50436	51.78354				7.23423			-139.410815	-98.803235
gb right 000.hys	49.09531	167.1389		33385.61	52.751	51.99435				5.119991	45.04461		-139.406167	-98.81177
gb right 001.hys	48.97717	167.2262		33287.72		52.07747				12.4303			-139.405835	-98.812024
gb right 002.hys	47.98665	168.235	46.84341	32471.99	51.72321	50.68022				1.313852	42.4245		-139.405659	-98.812376
gb right 003.hys	47.2539	167.5923	35.00769	31874.33		50.84437		187.5349245		34.57455	46.03386		-139.405464	-98.812747
gb right 004.hys	47.01343	168.1156		31679.27		50.16487				4.370394			-139.40519	-98.813118
gb right 005.hys	48.22584	167.2825	40.67225	32668.15		51.31054	199.375	221.0427116		20.52425	46.08933		-139.405288	-98.813509
gb right 006.hys	46.79775	167.8377	40.0653	31504.76		49.93958		221.8727549		3.224854			-139.405444	-98.813841
gb right 007.hys	47.46457	167.9162		32045.67	51.60799	50.78911		205.2875317		34.36817	46.1844		-139.405053	-98.814212
gb right 008.hys	47.82638	167.3395	34.47648	32340.85		51.46668				34.44124			-139.4048	-98.814544
gb right 009.hys	48.17041	167.0936	34.49904	32622.64	52.3192	51.80298	169.2319	181.8372375	5.122012	31.79565	46.80714	1.031468	-139.404565	-98.814856

Grain boundary (2)

Orain boun	uary (<i>_</i>)												
Indent	hc(nm)	Pmax(µN)	S(µN/nm)	A(nm^2)	hmax(nm)	heff(nm)	Er(GPa)	E(GPa)	H(GPa)	Α	hf(nm)	m	X(mm)	Y(mm)
bulkleft_000.hys	63.9161	165.8578	51.27995	49309.42	67.01367	66.34187	204.6056	228.1012322	3.363612	0.150983	56.45707	3.056186	-139.214853	-98.907498
bulkleft_001.hys	59.93214	166.1167	39.27674	45363.49	63.7414	63.10418	163.3868	174.5131517	3.661903	4.348469	55.50643	1.796417	-139.213803	-98.907498
bulkleft_002.hys	63.38101	165.711	51.95533	48770.28	66.3629	65.77312	208.443	233.3297961	3.397786	0.048681	54.90215	3.408375	-139.211753	-98.907498
bulkleft_003.hys	62.31301	165.5873	49.31105	47702.72	65.28555	64.83152	200.0357	221.9299275	3.471234	0.01978	52.68467	3.617269	-139.215353	-98.909048
bulkleft_004.hys	60.26054	166.8482	38.78616	45682.82	64.34879	63.48685	160.7812	171.2761625	3.652318	38.78616	59.1851	1	-139.213803	-98.909048
bulkleft_005.hys	59.76138	166.3794	46.32856	45197.87	63.19778	62.45485	193.0744	212.6428857	3.681132	9.868308	56.67313	1.609928	-139.211753	-98.909048
bulkleft_006.hys	61.48859	165.397	38.77511	46886.37	65.15537	64.68775	158.6589	168.6523577	3.527613	38.77511	60.42221	1	-139.214853	-98.910598
bulkleft_007.hys	56.37008	166.9905	36.34431	41968.12	60.22677	59.81609	157.1852	166.8368532	3.978985	31.78774	54.98011	1.052518	-139.213803	-98.910598
bulkleft_008.hys	57.24975	166.4207	45.745	42795.03	60.96682	59.97826	195.9213	216.4245658	3.888785	2.283237	52.31586	2.106208	-139.212253	-98.910598
bulkleft_009.hys	56.4537	167.1895	39.91138	42046.4	60.56016	59.59546	172.4516	185.909181	3.976311	10.01704	53.22661	1.520369	-139.214944	-98.910903
bulkright_000.hys	59.45714	166.5761	34.52466	44903.51	63.66608	63.07578	144.3524	151.2544153	3.709647	34.52466	58.25093	1	-139.202869	-98.912048
bulkright_001.hys	55.88993	169.3419	43.16016	41519.97	59.32775	58.83261	187.6676	205.5227641	4.078564	5.103201	51.7922	1.79439	-139.201319	-98.912048
bulkright_002.hys	59.69599	169.5521	39.05015	45134.53	63.33234	62.95242	162.8558	173.8520221	3.756594	10.04384	56.41611	1.505402	-139.199769	-98.912048
bulkright_003.hys	60.55637	168.7619	45.55021	45971.39	64.10089	63.3351	188.2268	206.2554142	3.67102	15.28124	58.01263	1.436576	-139.202869	-98.913598
bulkright_004.hys	58.71556	168.7189	58.41646	44189.81	61.56648	60.88172	246.2119	287.1688708	3.818051	1.551024	53.90809	2.414517	-139.201319	-98.913598
bulkright_005.hys	58.72626	168.8236	50.12364	44200.07	62.03951	61.25237	211.235	237.1609954	3.819532	9.264992	55.6051	1.676673	-139.199769	-98.913598
bulkright_006.hys	55.19694	168.5941	36.20781	40877.14	59.27196	58.68916	158.6708	168.6669167	4.124411	36.20781	54.03287	1	-139.202869	-98.915148
bulkright_007.hys	54.72452	168.2714	46.58708	40441.61	58.41662	57.43351	205.2514	228.9781659	4.160849	11.0169	51.76049	1.570614	-139.201319	-98.915148
bulkright_008.hys	55.19778	168.361	44.70696	40877.92	58.81309	58.02219	195.914	216.4148468	4.118629	0.632597	48.63265	2.49332	-139.199769	-98.915148
bulkright_009.hys	57.89358	166.9558	47.3494	43405.06	61.65822	60.53811	201.3627	223.7158758	3.846459	0.323983	50.84429	2.749208	-139.202913	-98.915708
gb 000.hys	59.38995	177.6544	45.96922	44838.61	63.30502	62.28842	192.3428	211.6747358	3.962085	22.14803	57.28868	1.293717	-139.203909	-98.90522
gb 001.hys	62.62418	174.8999	45.01178	48012.6	66.06381	65.53842	182.0051	198.1513961	3.642791	9.97643	59.4036	1.578842	-139.204104	-98.90563
gb 002.hys	60.87903	173.173	48.45462	46287.11	64.43653	63.55947	199.5446	221.2703167	3.741279	1.970985	55.76804	2.18008	-139.2043	-98.90602
gb 003.hys	63.88248	170.8131	46.59743	49275.46	67.23699	66.63177	185.9865	203.3253292	3.466495	2.814787	59.15217	2.040417	-139.204593	-98.90643
gb 004.hys	65.04141	169.3356	48.82286	50452.51	68.25482	67.64269	192.5824	211.9916934	3.356337	0.231313	57.68782	2.870187	-139.204807	-98.906821
gb 005.hys	72.67067	168.0009	57.77905	58535.95	75.81347	74.8514	211.5894	237.6488965	2.870047	5.888205	69.21616	1.938079	-139.2051	-98.907134
gb 006.hys	66.1017	167.6137	44.67536	51541.1	69.49324	68.91556	174.3517	188.3248447	3.25204	0.447759	59.1574	2.600918	-139.205335	-98.907505
gb 007.hys	62.90997	166.3718	31.31929	48298.04	67.38874	66.89406	126.2647	129.9565472	3.44469	3.100277	57.46504	1.775001	-139.20555	-98.907915
gb 008.hys	65.91013	167.1623	53.68117	51343.58	69.32403	68.24562	209.9006	235.327099	3.255758	1.01074	60.48332	2.492723	-139.205862	-98.908266
gb 009.hys	65.45281	166.1999	48.11834	50873.56	68.76251	68.0433	189.0164	207.2914134	3.266921	1.785415	60.36258	2.223727	-139.206057	-98.908598
gb left 000.hys	64.53578	165.0118	43.70059	49937.33	68.21223	67.36775	173.2644	186.9414431	3.304378	6.377737	60.82696	1.732217	-139.209202	-98.911684
gb left 001.hys	61.06062	165.7357	44.6122	46465.25	64.66985	63.84689	183.3683	199.9181708	3.566875	8.643977	57.76759	1.636406	-139.210034	-98.91186
gb left 002.hys	63.88732	165.0821	44.71804	49280.35	67.28412	66.65604	178.4764	193.6014393	3.349858	1.150005	58.11005	2.314968	-139.209807	-98.912153
gb left 003.hys	62.61401	165.7239	41.524	48002.45	66.4303	65.60729	167.9199	180.185697	3.452406	0.44569	55.42763	2.550628	-139.210081	-98.912446
gb left 004.hys	62.31811	165.4934	46.77933	47707.8	65.45607	64.97142	189.7554	208.2626076	3.468895	0.012523	51.90815	3.692542	-139.210315	-98.912778
gb left 005.hys	62.21018	165.4459	42.39572	47600.53	65.5536	65.137	172.1674	185.5486957	3.475716	0.700493	55.65609		-139.210589	-98.913071
gb left 006.hys	62.88715	165.6555	38.49667	48275.22	66.68787	66.11449	155.2372	164.4455729	3.43148	16.61665	60.42384	1.322449	-139.211382	-98.913423
gb left 007.hys	59.32129	167.5	48.65854	44772.36	62.63183	61.90306	203.7459	226.935721	3.741148	4.393893	55.27601	1.92515	-139.211077	-98.912778
gb left 008.hys	51.88821	167.9797	42.74437	37872.44				214.6720716		0.365052		2.626689	-139.211194	-98.912973
gb left 009.hys	56.22917		34.8127	41836.37	60.18194	59.84193	150.798			32.02603			-139.211468	-98.913247
gb right 000.hys	63.89771	166.0008	46.97044	49290.84	67.71227	66.54832	187.4461	205.2327288	3.367782	3.558168	59.56208	1.976779	-139.205843	-98.90938
gb right 001.hys	65.67828	165.6988	46.06384	51105.04	68.81392	68.37615	180.5357	196.2527404	3.242318	2.728292	60.98923	2.053545	-139.206175	-98.90977
gb right 002.hys	65.74717	165.6706	42.81249	51175.86	68.98852	68.64943	167.6767	179.8799932	3.237279			1.397365	-139.206448	-98.910102
gb right 003.hys	65.57571	165.7407	46.32407	50999.67	68.88879					3.437128			-139.206741	-98.910552
gb right 004.hys	65.87917		42.88066	51311.7				179.9359866	3.22281	11.96935			-139.207112	-98.910884
gb right 005.hys	64.89608		43.02538	50304.18						1.049076			-139.207366	-98.911235
gb right 006.hys	66.30026		48.84101	51746.2		68.8378		208.887838		11.58371	63.4803	1.58347	-139.20762	-98.911587
gb right 007.hys	66.65496		41.13309	52113.57		69.66159		169.8679672				1.218527	-139.207874	-98.911977
gb right 008.hys	66.50603			51959.17				190.689172				2.256122	-139.208089	-98.912309
ab right 009.hvs	64.40885	164.8068	37.5749	49808.41	68.30944	67.69842	149,1699	157.0571968	3.308815	37.5749	63.31233	1	-139.208343	-98.912661

Grain boundary (3)

Grain cour	iddi'y (٥)												
Indent		Pmax(µN)			hmax(nm)			E(GPa)		Α			X(mm)	Y(mm)
bulkleft_000.hys	51.70038	169.6112	46.0624	37705.06	55.44215	54.46204	210.1752		4.498367	3.016013		2.012086	-137.965041	1.287019
bulkleft_001.hys	50.072	169.7886	45.55297	36268.26	53.82677	52.86746	211.9279	238.1152877	4.681465	1.023165		2.353763	-137.963491	1.287019
bulkleft_002.hys	46.4374	170.3564	37.63844	33153.2	50.4199	49.83199	183.1487	199.6331286	5.13846	17.671344		1.286284	-137.961941	1.287019
bulkleft_003.hys	47.62719	169.3977	40.24211	34159	51.6616	50.78429	192.9137		4.959092	40.242114		1	-137.965041	1.285469
bulkleft_004.hys	44.26936	169.7172	40.76776	31355.02	48.24614	47.39163	203.985	227.2596242	5.41276	1.82621	38.67726	2.093278	-137.963491	1.285469
bulkleft_005.hys	45.87447	169.2698	34.79746	32682.02	50.0399	49.52279	170.5407	183.4891896	5.179293		43.96791	1.141939	-137.961941	1.285469
bulkleft_006.hys	47.11852	168.4086	45.84886	33727.34	50.43445	49.87336	221.1935	251.0141147	4.993237	0.608606		2.524717	-137.965041	1.283919
bulkleft_007.hys	43.89691	168.8157	38.4547	31050.57	47.8931	47.1894	193.3524	213.0111319	5.436798	12.841133		1.412069	-137.963491	1.283919
bulkleft_008.hys	42.79511	168.9633	42.85497	30157.6	46.39613	45.75212	218.644	247.4392471	5.602678	0.732011	36.2314	2.414783	-137.961941	1.283919
bulkleft_009.hys	45.59828	168.1626	39.14114	32451.95	49.39563	48.82052	192.5076	211.8927058	5.181895	15.090123		1.363673	-137.966225	1.284141
bulkright_000.hys	53.29858	166.099	46.49524	40299.65	56.82527	55.97788	205.2072		4.121598	0.762971	47.14867	2.471514	-137.951057	1.289769
bulkright_001.hys	52.82415	167.0973	37.90557	39861.93	56.49464	56.13034	168.2127	180.5538474	4.191903	36.722229		1.012738	-137.949507	1.289769
bulkright_002.hys	50.05058	168.2009	45.60395 37.10396	37342.88 39143.55	53.30634 56.058	52.81681 55.43193	209.0901	234.2156922	4.504231 4.285937	5.546051	46.1718 50.9104	1.801645	-137.947957	1.289769
bulkright_003.hys	52.04078	167.7668					166.1594	177.9764498					-137.951057	1.288219
bulkright_004.hys	48.63087	168.1103	44.32697	36079.68	51.95484	51.47525	206.7624	231.034679	4.659416	5.266503		1.801982	-137.949507	1.288219
bulkright_005.hys	47.5596	168.6562	37.786	35138.22	51.56712	50.90719	178.5977	193.7573323	4.799794	32.742017		1.056772	-137.947957	1.288219
bulkright_006.hys	52.71076	167.5976	39.17602	39757.61	56.56395	55.91931	174.0785	187.9769293	4.215484	39.075061	51.63674	1.001052	-137.951057	1.286669
bulkright_007.hys	48.15266	168.085	39.16136	35658.18	51.78029	51.37175	183.7439	200.4058263	4.713785	38.975645		1.001934	-137.949507	1.286669
bulkright_008.hys	46.44653	168.8349	51.87501	34170.63	49.83736	48.88752	248.6374	290.7812356	4.940936	0.184083		2.995485	-137.947957	1.286669
bulkright_009.hys	50.99583	168.3859	33.99371	38193.75	55.19071	54.71092	154.1123	163.0688187	4.40873			1.252247	-137.952194	1.286844
gb 000.hys	35.50799	167.5807	26.56501 44.23752	25226.54 31827.33	40.96654	40.23923	148.189	155.8710881 248.9143342	6.643031 5.229823	26.355551	33.91334	1.002784	-137.950717	1.296188
gb 001.hys	43.69792	166.4513			47.20981	46.51993	219.6977			7.041114		1.702852	-137.950967	1.295734
gb 002.hys	47.87411	165.2763	59.99881	35413.58	50.33314	49.94011	282.4831	343.3031401	4.66703	12.984697		1.668112	-137.95128	1.295211
gb 003.hys	37.81264	160.7187	26.62701	27027.15	43.24415	42.33959	143.5017	150.2355012	5.946565	0.125838		2.598397	-137.951475	1.294727
gb 004.hys	45.49548	164.1414	39.77519	33352.42	49.34195	48.59052	192.9671	212.5008885	4.921423	3.763659		1.85491	-137.951717	1.294227
gb 005.hys	41.39314	166.2206 165.3016	41.87189 36.23861	29912.49 32788.83	45.11961	44.37044	214.5019		5.556895	3.087362 4.129126		1.948445 1.767681	-137.951889 -137.952069	1.293703 1.293273
gb 006.hys gb 007.hys	44.83502 40.47853	166.9385	39.84567	29165.18	48.7416 44.38692	48.25613 43.62075	177.3141 206.7205	192.1100729 230.9776052	5.041399 5.723896	0.206749		2.741951	-137.952069	1.293273
gb 007.hys gb 008.hys	38.49326	167.2024	38.37603	27567.33	42.44741	43.62075	206.7205	228.3443197	6.065237	8.240776		1.567002	-137.952369	1.292769
gb 008.hys	45,48446	166.5037	38.15677	33342.99	49.30736	48.75721	185.1417	202.2238237	4.993663	11.812173		1.439728	-137.952882	1.292367
gb left 000.hys	67.25491	163.9841	35.63757	54080.04	70.90501	70.70599	135.7764	141.061374	3.032247	10.888126		1.436207	-137.956475	1.288758
gb left 000.hys	66.9217	164.6814	47.70506	53730.47	70.90301	69.51076	182.3429	198.5888321	3.064954	0.294309		2.79237	-137.956725	1.288391
gb left 002.hys	68.99227	164.2653	44.89772	55919.15	71.96958	71.73626	168.2205	180.5636315	2.93755	0.299845		2.737012	-137.957014	1.288055
gb left 002.hys	69.24956	163.9713	46.09528	56193.86	72.34416	71.73020	172,2848	185.6975357	2.917958	1.483608		2.258247	-137.957335	1.287688
gb left 003.hys	70.22591	163.882	41.58981	57241.81	73.64721	73.18124	154.0157	162.9508229	2.862977	2.447015		2.024556	-137.9576	1.287336
gb left 005.hys	68.23105	163.8096	46.9833	55109.95	71.45988	70.84596	177.3223	192.1205478	2.972414	0.272638		2.805619	-137.957913	1.287023
gb left 005.hys	68.90432	163.837	36.64047	55825.38	72.6212	72.25792	137.3979	142.97526	2.934811	36.640469		2.003019	-137.958217	1.286719
gb left 007.hys	70.08421	163.795	40.47698	57089.17	74.12473	73.11917	150.095	158.177799	2.869109	13.667664	67.372	1.420239	-137.958507	1.286422
gb left 008.hys	67.95239	164.6429	34.60869	54815.05	71.92404	71.52035	130.9695	135.4232919	3.003607	29.702968		1.05905	-137.958866	1.286172
gb left 009.hys	69.80386	163.6316	42.64478	56787.74	73.39431	72.68168	158.5526	168.5211857	2.88146	2.557963	64.9033	2.027158	-137.959132	1.285859
gb right 000.hys	63.38644	164.1806	46.78456	50083.92	66.77642		185.2202	202.3260933	3.27811	1.280303		2.316407	-137.952733	1.291289
gb right 001.hys	65.15419	163.6044	44.45333	51893.09	68.56116	67.91446	172.8958	186.4730487	3.15272	9.725074		1.59492	-137.952983	1.290836
gb right 002.hys	66.21377	163.4588	39.96659	52991.13	69.79708	69.28118	153.8262	162.7192592	3.084644	19.09222		1.290678	-137.953288	1.290508
gb right 003.hys	67.96521	163.927	53.78862	54828.6	70.66703	70.25092	203.5268	226.6390671	2.989808	0.0582		3.398095	-137.953553	1.290109
gb right 004.hys	67.67746	163.6334	48.67077	54524.79	70.71364	70.19899	184.6741	201.6151112	3.001082	0.831822		2.487098	-137.95378	1.28975
gb right 005.hys	68.24311	163.5614	44.38346	55122.73	71.29284	71.007	167.4907	179.6462618	2.967223	4.232262		1.88529	-137.954092	1.289391
gb right 006.hys	67.7194	163.7493	41.57859	54569.03	71.28304	70.67314	157.6999	167.4703427	3.000773	1.162566		2.262223	-137.954366	1.289039
gb right 007.hys	66.63278	163.911	39.90463	53428.18	70.38839	69.71346	152.9582	161.6597777	3.067875	24.540179		1.194148	-137.954702	1.288742
gb right 008.hys	66.30469	164.0849	48.49804	53085.83	69.34365	68.84219	186.4961	203.9905726	3.090936	0.35374		2.751798	-137.954967	1.288391
gb right 009.hys	68.18901	164.0438	43.19273	55065.41	71.28613	71.03747	163.082	174.1336031	2.979071	0.640164		2.475132	-137.955225	1.288055
gb right 000.hys	63.38644	164.1806	46.78456	50083.92	66.77642	66.01841	185.2202		3.27811	1.280303		2.316407	-137.952733	1.291289
gb right 001.hys	65.15419	163.6044	44.45333	51893.09	68.56116	67.91446	172.8958	186.4730487	3.15272	9.725074		1.59492	-137.952983	1.290836
gb right 002.hys	66.21377	163.4588	39.96659	52991.13	69.79708	69.28118	153.8262	162.7192592	3.084644	19.09222		1.290678	-137.953288	1.290508
gb right 003.hys	67.96521	163.927	53.78862	54828.6	70.66703	70.25092	203.5268	226.6390671	2.989808	0.0582		3.398095	-137.953553	1,290109
gb right 004.hys	67.67746	163.6334	48.67077	54524.79	70.71364	70.19899	184.6741	201.6151112	3.001082	0.831822		2.487098	-137.95378	1.28975
gb right 005.hys	68.24311	163.5614	44.38346	55122.73	71.29284	71.007	167.4907	179.6462618	2.967223	4.232262		1.88529	-137.954092	1.289391
gb right 006.hys	67.7194	163.7493	41.57859	54569.03	71.28304	70.67314	157.6999	167.4703427	3.000773	1.162566		2.262223	-137.954366	1.289039
gb right 007.hys	66.63278	163.911	39.90463	53428.18	70.38839	69.71346	152.9582	161.6597777	3.067875	24.540179		1.194148	-137.954702	1.288742
gb right 008.hys	66.30469	164.0849	48.49804	53085.83	69.34365	68.84219	186.4961	203.9905726	3.090936	0.35374		2.751798	-137.954967	1.288391
gb right 009.hys	68.18901	164.0438	43.19273		71.28613			174.1336031	2.979071	0.640164		2.475132	-137.955225	1.288055
5 5 ,														

Grain boundary (4)

Orani coai	iaai (• /												
Indent	hc(nm)		S(µN/nm)		hmax(nm)			E(GPa)	()	A		m		Y(mm)
bulkleft_000.hys	48.53785		41.48545	35997.54		51.58412		213.5101931		0.80744			-138.154103	1.137144
bulkleft_001.hys	49.18699		43.27799	36572.38			200.505			6.586838			-138.152553	1.137144
bulkleft_002.hys	49.74334		37.53413	37068.01	53.70951			186.2594126		37.53413		1	-138.151003	1.137144
bulkleft_003.hys	45.20894			33107.45				177.3432539					-138.154103	1.135594
bulkleft_004.hys	51.45943	168.1972	47.33534	38613.94	55.03509	54.12441	213.4265	240.1841019	4.355868	10.24668	48.41633	1.606412	-138.152553	1.135594
bulkleft_005.hys	48.29791	168.6832	45.03679	35786	51.86911	51.107	210.9336	236.7462332	4.713665	3.96	43.96129	1.907834	-138.151003	1.135594
bulkleft_006.hys	43.69429	169.3116	33.07141	31824.27	48.29716	47.53397	164.2511	175.5906364	5.320204	30.15153	42.23584	1.034877	-138.154103	1.134044
bulkleft_007.hys	42.84892	168.5446	31.21791	31116.68	47.43273	46.89814	156.7986	166.3615173	5.416536	24.03072	40.9822	1.095754	-138.152553	1.134044
bulkleft_008.hys	48.19479	168.143	38.52823	35695.24	52.10449	51.46791	180.6794	196.4382331	4.710515	10.8806	45.04411	1.471946	-138.151003	1.134044
bulkleft_009.hys	50.39173	164.6312	34.14759	37649.06	54.77101	54.00761	155.9257	165.2896923	4.372785	5.535912	46.09869	1.640457	-138.155366	1.133875
bulkright_000.hys	52.53625	166.8213	45.24111	39597.28	56.01307	55.30178	201.4352	223.813562	4.212949	7.066695	48.97986	1.714474	-138.1511	1.126292
bulkright 001.hys	47.47425	168.188	42.8989	35063.64	51.15384	50.41467	202.9796	225.8986544	4.796648	6.162893	43.63923	1.72818	-138.14955	1.126292
bulkright 002.hys	45.78929	167.8241	37.31676	33604.36	50.12172	49.16226	180.3603	196.0264842	4.994117	37.16579	44.65769	1.001619	-138,148	1.126292
bulkright 003.hys	49.49465	167.8148	40.62547	36846.13	53.08798	52.59274	187.5156	205.3236984		15.51245	46.92355	1.372425	-138.1511	1.124742
bulkright 004.hys	46.88166	167.8382	42.38959	34547.61	50.47339	49.85123	202.0622	224.6592179	4.858172	17.50885	44.50983	1.349036	-138,14955	1.124742
bulkright_005.hys	45.82495	167.953	46.64978	33634.99	49.10338	48.52517	225.3662	256.9077777	4.993401	3.343276	41.36286	1.989368	-138.148	1.124742
bulkright 006.hys	48.90775		41.78829	36324.65		51.92113		214.2182151	4.622173	41.71088		1.000775	-138.1511	1.123192
bulkright_007.hys	45.54763		41.21603	33397.09		48.60439		221.6449073		39.14972		1.021292	-138.14955	1.123192
bulkright_008.hys	47.07868		44.14937	34718.83		49.93831		235.3689052		5.548926		1.781259	-138.148	1.123192
bulkright_009.hys	47.96345		35.52775	35491.96		51.5203		179.1369822		35.06636		1.005108	-138.152163	1.125281
gb 000.hys	25.39461		32.3038	17825.99				241.4884168					-138.158112	1.12825
gb 000.hys	41.04756		41.80082	29629.29		44.07273		242.5838931	5.690522	1.251528	35.072	2.23146	-138.15828	1.128043
gb 002.hys	46.66655		44.26133	34361.04				237.6033941	4.89739	3.192933	42.0307	1.969335	-138.158768	1.127848
gb 002.hys	28.87601			20284.42						0.604056		2.308251	-138.159159	1.127809
gb 003.hys gb 004.hys	53.29366		47.43986	40295.1				234.6242117		2.441168		2.106976	-138.159589	1.127711
gb 005.hys	29.91465		27.8341	21035.55				182.8488411		4.277005			-138.160018	1.127652
gb 005.hys	32.46712		37.18644	22917.12	36.9507	35.89067		246.0373172		4.069777		1.780538	-138.160507	1.127555
gb 000.hys	42.27239		32.16709	30637.63		46.20088		173.8127725				1.700556	-138.160917	1.127353
gb 007.hys gb 008.hys	47.21538		34.80534	34837.84		50.83019		176.797216		20.24433			-138.161425	1.127437
	53.60092			40579.63						2.239246		2.074376		1.12734
gb 009.hys								209.1046236 263.9047687				1.514765	-138.161893	1.12732
gb left 000.hys	31.95589		39.01622			35.23844				9.727992			-138.149428	
gb left 001.hys	34.94614		41.94718	24794.19		37.994 42.42271	202.142	272.2113582 224.76688		2.288082 6.827384		2.038739	-138.14926	1.133328 1.133059
gb left 002.hys	39.09886		38.21182										-138.149675	
gb left 003.hys	43.17123		38.22154	31385.74		46.48199		210.1008839		16.25757		1.32478	-138.150112	1.132801
gb left 004.hys	40.96321		33.00277	29560.32		44.81746		182.8960881	5.737471	17.64753			-138.150487	1.132504
gb left 005.hys	40.92349		36.88791	29527.86		44.35571	190.1967	208.8432421	5.716962	4.072164		1.777108	-138.15076	1.132207
gb left 006.hys	42.02989		35.53081	30436.98		45.60289		196.1326795		14.60781		1.328031	-138.151581	1.131957
gb left 007.hys	42.88085		33.65391	31143.3		46.63024		181.4966634		33.6276		1.0003	-138.15144	1.131652
gb left 008.hys	47.55725		40.12751	35136.17		50.70737		208.1510255		1.896183		2.073355	-138.151831	1.131363
gb left 009.hys	52.34797		35.92809	39424.6		55.83011		170.7039218		21.99698		1.187008	-138.152128	1.131074
gb left 010.hys	44.49989		42.74805	32504.3		47.46459		235.5706884	5.198692	5.675385		1.753072	-138.152487	1.130824
gb right 000.hys	46.25938			34009		49.60619		196.6152593	4.93829	37.44645		1.002019	-138.153026	1.129789
gb right 001.hys	49.28509		39.46266	36659.58	53.7	52.47596		198.9363444	4.57979	15.24841		1.364146	-138.152858	1.129535
gb right 002.hys	49.52492		35.55725	36873.11	53.63626	53.05357		175.3547752		21.34013		1.19342	-138.153729	1.129262
gb right 003.hys	48.25266		46.89121	35746.15	51.745			248.9753931	4.700797	12.51934		1.527569	-138.154042	1.129008
gb right 004.hys	50.37205		35.57486	37631.36				173.3861173		35.57486		1	-138.153932	1.128832
gb right 005.hys	48.72504		43.50586	36162.93				225.5187201		16.02529		1.39581	-138.154303	1.128578
gb right 006.hys	50.96965		40.10933	38170.08		54.09531	181.8941	198.0078646		11.02763		1.489164	-138.154635	1.128344
gb right 007.hys	48.66551			36110.3				186.523071	4.630666	28.11642		1.108283	-138.155448	1.128109
gb right 008.hys	50.6161		43.13796	37850.98				217.1315795	4.43522	6.330372		1.722718	-138.15578	1.127856
gb right 009.hys	51.63192	167.089	38.11141	38770.77	55.47405	54.92009	171.4895	184.689639	4.309663	11.09336	48.51641	1.460617	-138.156112	1.127621

References

- 1. Jones R., Stress-Corrosion Cracking, Corrosion: Fundamentals, Testing, and Protection. ASM Handbook, ASM International (2003) 13A: pp. 346-366.
- Kane R., Corrosion in Petroleum Refining and Petrochemical Operations, Corrosion: Environments and Industries. ASM Handbook, ASM International (2006) 13C: pp. 967-1014.
- 3. http://ece-www.colorado.edu/~bart/book/fcc.gif.
- 4. Pace L., Scenna R & Childs J. NRC's Response to the February 15, 2000, Steam Generator Tube Rupture at Indian Point Unit 2 Power Plant, 2000.
- 5. http://www.nrc.gov/reading-rm/doc-collections/fact-sheets/steam-gen.html.
- 6. Eisenhut D., Transmittial of NUREG-0916 relative to the restart of R. E. Ginna Nuclear Power Plant, 1982.
- 7. Long S., Information Notice No. 84-49: Intergranular stress corrosion cracking leading to steam generator tube failure, 1984.
- 8. Murphy E., NRC Information Notice 92-80: Operation with steam generator tubes seriously degraded, 1992.
- 9. Conrad, H., NRC Information Notice 94-05: Potential failure of steam generator tubes with kinetically welded sleeves, 1994.
- 10. Connor L., United States Nuclear Power Plant Steam Generator Replacement Experience, 1997.
- 11. Was G., Fundamentals of Radiation Materials Science: Metals and Alloys. Springer, 2007.
- 12. http://www.met-tech.com/metallography.htm.
- 13. Watanabe T., The impact of grain boundary character distribution on fracture in polycrystals. Materials Science and Engineering (1994) A176: pp. 39-49.
- 14. Tsurekawa S., Nakamichi S. and Watanabe T., Correlation of grain boundary connectivity with grain boundary character distribution in austenitic stainless steel. Acta Materiala (2006) 54: pp. 3617-3626.
- 15. Tan L., Sridharan K. and Allen T., Effect of thermomechancal processing on grain boundary character distribution of a Ni-based superalloy. Journal of Nuclear Materials (2007) 371: pp. 171-175.

- 16. Tan L., Sridharan K., Allen T., Nanstad R & McClintock D. Microstructure tailoring for property improvements by grain boundary engineering. Journal of Nuclear Materials (2008) 374: pp. 270-280.
- 17. Fricano J., Chemical and Structural Analysis of Grain Boundaries in Inconel 690 for Corrosion Resistance. Massachusetts Institute of Technology. 2009.
- 18. Langitan F, and Lawn B., Hertzian fracture experiments on abraded glass surfaces as definitive evidence for an energy balance experimentation of Auerbach's law. Journal of Applied Physics (1969) 40: pp. 4009-4017.
- 19. Wynick G. and Boehlert C., Use of electropolishing for enhanced metallic specimen preparation for electron backscatter diffraction analysis. Materials Characterization (2005) 55: pp. 190-202.
- 20. Oliver W. and Pharr G., An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Research (1992) 7: pp. 1564-1583.
- 21. Hysitron Probe Tip Selection Guide.
- 22. Gouldstone A., Chollacoop N., Dao M., Li .J, Minor A.M. and Shen Y., Nanoindentation across size scales and disciplines: Recent developments in experimentation and modeling. Acta Materialia (2007) 55: pp. 4015-4039.
- 23. Fischer-Cripps A., Nanoindentation: Second Edition. Springer Science and Business Media, 2004.
- 24. Nix W. and Gao H. Indentation size effect in crystalline materials: a law for strain gradient plasticity. Journal of the Mechanics and Physics of Solids (1998) 46: pp. 411-425.
- 25. Vlassak J. and Nix W., Measuring the elastic properties of anisotropic materials by means of indentation experiments. Journal of the Mechancis of PhysicalSolids (1994) 42: pp. 1223-1245.
- 26. Gjostein N., Diffusion. ASM (1973) 8: pp. 241-274.
- 27. Soifer Y, Verdyan A., Kazakevich M and Rabkin E., Nanohardness of copper in the vicinity of grain boundaries. Scripta Materialia (2002) 47: pp. 799-804.
- 28. Soer W., Aifantis K. and De Hosson J., Incipient plasticity during nanoindentation at grain boundaries in body-centered cubic metals. Acta Materialia (2005) 53: pp. 4665-4676.