Joint Directed Search

Piotr Denderski¹ Leo Kaas² Bastian Schulz³ Nawid Siassi⁴

¹Leicester ²Frankfurt ³Aarhus ⁴Vienna

Introduction

- Labor income risk affects workers' consumption and wealth because of incomplete asset markets.
- Role for optimal UI and tax policy.
- Self-insurance through wealth accumulation and job search (e.g., directed search).
- Households insurance: motive for marriage, joint search, added worker effects.
- Some (but not all) policies condition on marital status (UI system, means testing, joint/individual taxation). Why?
- The literatures on wealth/inequality/policy (macro) and households' joint labor supply decisions (structural labor) are largely disjoint.

How to make progress?

- Our starting point is Chaumont & Shi (JME, 2022)
 - Directed search equilibrium, on-the-job search, risk-averse workers, assets.
 - Search outcomes affect earnings and wealth accumulation.
 - Wealth and earnings affect search by changing the optimal trade-off between wage and matching probability.
 - Endogenous labor demand, firms condition wage offer on applicant's wealth.
 - Self-insurance through the interaction of wealth and directed search.
 - Limited role of unemployment insurance.

How to make progress?

- Idea: bring in the household dimension.
 - Labor market status of the spouse affects the job-search strategy (Guler et al., 2012).
 - Firms cater to this by offering wages conditional on type of spouse (and assets).
 - Workers with employed spouse (married women?) behave as if high asset value.
 - \rightarrow searches for high wage offers if employed so less likely to leave through EE.
 - → Higher present value of the job for the firm.
 - \rightarrow High tightness and high job-finding rate.
 - → Low matching probability for the firm, only enters if wage low.
 - Workers with unemployed spouse (married men?) more likely to leave through EE.
 - \rightarrow Lower present value of the job for the firm.
 - \rightarrow Lower tightness and low job-finding rate, higher matching prob for firm, higher wages.
 - Equilibrium feedback from the firm side seems to reinforce marital wage premia.
 - Endogenous quits? Interaction with wealth? Interaction with joint taxation?

Model: basic assumptions

- Continuous time, discount rate ρ .
- Directed search.
- On-the-job search.
- Singles and couples. Abstract from Marriage and Divorce.
- (Un)employed workers search with intensity (λ_u) λ_e .
- If a worker searches in a sub-market with tightness θ , they meet a firm at rate $p(\theta)$ while a vacancy meets a worker at rate $q(\theta)$.
- The target wages in submarkets towards which workers direct their search is \hat{w} .
- All matches are equally productive and produce flow output z.
- For now there's no ex-ante heterogeneity (e.g., gender).

Model: risk and insurance

- Workers are risk-averse:
 - Singles consuming c have utility flow u(c).
 - A unitary household with two members each consuming c has flow utility 2u(c/2) (Guler et al., 2012).
- UI benefits b. Levels or replacement rate. Means testing.
- Hand-to-Mouth Workers: abstract from consumption-savings choice and asset accumulation for now.
- Proportionate tax rate τ to finance unemployment benefits: $w=(1-\tau)w^*$ where w^* is the gross wage. Wasteful government spending G (introduced to calibrate a sensible τ).

Model: singles

The HJB equations for singles read:

$$\rho v^{u}(b) = \max_{\hat{w}} u(b) + p(\theta(\hat{w})) (v^{e}(\hat{w}) - v^{u}(b)),$$

$$\rho v^{e}(w) = \max_{\hat{w}} u(w) + \lambda_{e} p(\theta(\hat{w})) (v^{e}(\hat{w}) - v^{e}(w)) + \delta (v^{u}(b) - v^{e}(w)).$$

The corresponding firm-value HJB, given worker's optimal search strategy \hat{w} is straightforward in this case:

$$\rho J(w) = z - w/(1 - \tau) - (\delta + \lambda_e p(\theta(\hat{w}))) J(w) \Longrightarrow J(w) = \frac{z - \frac{w}{1 - \tau}}{\rho + \delta + \lambda_e p(\theta(\hat{w}))}.$$

Model: couples uu

In case of both members unemployed, the HJB reads:

$$\rho v^{uu}(b,b) = \max_{\hat{w}_1, \hat{w}_2} 2u(b) + p\left(\theta\left(\hat{w}_1, b\right)\right) \left(v^{eu}\left(\hat{w}_1, b\right) - v^{uu}(b, b)\right) + p\left(\theta\left(b, \hat{w}_2\right)\right) \left(v^{eu}\left(\hat{w}_2, b\right) - v^{uu}(b, b)\right).$$

Model: couples eu

• When only one member is unemployed (without e.g., gender heterogeneity, there is no need to have two separate value functions v^{eu} and v^{ue}), we have:

$$\rho v^{eu}(w,b) = \max_{\hat{w}_1, \hat{w}_2} 2u((w+b)/2) + \lambda_e p\left(\theta\left(\hat{w}_1, b\right)\right) \left(v^{eu}\left(\hat{w}_1, b\right) - v^{eu}(w, b)\right) + p\left(\theta\left(b, \hat{w}_2, b\right)\right) \left(v^{ee}\left(w, \hat{w}_2\right) - v^{eu}(w, b)\right) + \delta\left(v^{uu}(b, b) - v^{eu}(w, b)\right),$$

- With means testing, benefits may adjusts to spousal's earnings. In that case, $v^{eu}(w, b(w))$ and need to keep track of b(w) as w changes.
- Simpler but perhaps unrealistic: b is determined at the time of layoff.

$$\rho v^{eu}(w,b) = \max_{\hat{w}_1, \hat{w}_2} 2u((w+b)/2) + \lambda_e p\left(\theta\left(\hat{w}_1, b\right)\right) \left(v^{eu}\left(\hat{w}_1, b\right) - v^{eu}(w,b)\right) + p\left(\theta\left(b, \hat{w}_2, \right)\right) \left(v^{ee}\left(w, \hat{w}_2\right) - v^{eu}(w,b)\right) + \delta\left(v^{uu}(b(w), b) - v^{eu}(w,b)\right)$$

Model: couples ee

For a household with both members employed:

$$\rho v^{ee}(w_1, w_2) = \max_{\hat{w}_1, \hat{w}_2} 2u((w_1 + w_2)/2) + \lambda_e p(\theta(\hat{w}_1, w_2))(v^{ee}(\hat{w}_1, w_2) - v^{ee}(w_1, w_2)) + \lambda_e p(\theta(w_1, \hat{w}_2,))(v^{ee}(w_1, \hat{w}_2) - v^{ee}(w_1, w_2)) + \delta(v^{eu}(w_1, b) + v^{eu}(w_2, b) - 2v^{ee}(w_1, w_2)).$$

Model: value of filled job with couples

- To write down the value of a filled job with a worker from a 2-member household, we need to keep track of what the other worker is doing.
- Convention: the first member of the household is the employee of the firm.

$$(\rho + \delta + \lambda_e p(\hat{w}_1)) J^u(w_1, b) = z - w_1/(1 - \tau) + p(\theta(\hat{w}_2)) (J^e(w_1, \hat{w}_2) - J^u(w_1, b))$$

$$(\rho + \delta + \lambda_e p(\hat{w}_1)) J^e(w_1, w_2) = z - w_1/(1 - \tau) + \lambda_e p(\theta(\hat{w}_2)) (J^e(w_1, \hat{w}_2) - J^e(w_1, w_2)).$$

Model: government budget

- Share of singles S. There are (1-S)/2 couples (or, equivalently, 1-S workers in two-member households).
- The distribution of singles over (gross) wages is $f^{\mathcal{S}}\left(w^{*}\right)$ and the distribution of workers in two-member households over (gross) wages is $f^{\mathcal{C}}\left(w^{*}\right)$.
- There are u^s unemployed singles and u^c unemployed in 2-member households so the overall unemployment rate is $u=u^s+u^c$. The government budget constraint is:

$$bu + G = \tau \left[S(1 - u^{s}) \int f^{S}(w^{*}) w^{*} dw^{*} + (1 - S) (1 - u^{c}) \int f^{C}(w^{*}) w^{*} dw^{*} \right].$$

• Closing the model: market tightnesses are pinned down by free-entry given flow cost of maintaining an open vacancy k.

Model: means testing

- Share of singles S. There are (1-S)/2 couples (or, equivalently, 1-S workers in two-member households).
- The distribution of singles over (gross) wages is $f^{\mathcal{S}}(w^*)$ and the distribution of workers in two-member households over (gross) wages is $f^{\mathcal{C}}(w^*)$.
- There are u^s unemployed singles and u^c unemployed in 2-member households so the overall unemployment rate is $u=u^s+u^c$. The government budget constraint is:

$$bu + G = \tau \left[S(1 - u^{s}) \int f^{S}(w^{*}) w^{*} dw^{*} + (1 - S) (1 - u^{c}) \int f^{C}(w^{*}) w^{*} dw^{*} \right].$$

 Closing the model: market tightnesses are pinned down by free-entry given flow cost of maintaining an open vacancy k.

Model: wage dispersion

- This class of models struggles to generate wage dispersion (Hornstein et al., 2011).
- One solution is to increase risk aversion (e.g., CRRA utility with relative risk aversion of 5 is not unheard of).
- Adding UI expiry as in Chaumont & Shi and incomplete markets will help as well because of precautionary motive in job search.
- Joint search of couples gives us an additional boost.

Some Data

Table: Labor Market Transition Rates of Singles

	93–97	98–02	03–07	08–12	13–17
T_sie_sie_m	0.131	0.152	0.119	0.131	0.138
T_sie_siu	0.094	0.069	0.074	0.073	0.055
T_siu_sie	0.308	0.302	0.233	0.240	0.243
T_sje_sje_f	0.131	0.141	0.120	0.139	0.151
T_sje_sju	0.086	0.065	0.077	0.060	0.055
T_sju_sje	0.168	0.215	0.178	0.211	0.220

Table: Labor Market Transition Rates of Couples

	93–97	98–02	03–07	08–12	13–17
T_mieje_mieje_f	0.043	0.040	0.031	0.036	0.040
T_mieje_mieje_m	0.035	0.034	0.027	0.030	0.034
T_mieje_mieju	0.106	0.104	0.101	0.089	0.077
T_mieje_miuje	0.036	0.029	0.029	0.025	0.019
T_mieju_mieje	0.107	0.142	0.135	0.147	0.179
T_mieju_mieju_m	0.032	0.030	0.023	0.030	0.033
T₋mieju₋miuju	0.043	0.041	0.032	0.029	0.020
T_miuje_mieje	0.143	0.150	0.159	0.122	0.154
T_miuje_miuje_f	0.021	0.024	0.018	0.031	0.030
T_miuje_miuju	0.118	0.090	0.091	0.078	0.053
T_miuju_mieje	0.026	0.023	0.014	0.026	0.138
T_miuju_mieju	0.093	0.129	0.101	0.121	0.208
T_miuju_miuje	0.052	0.053	0.052	0.057	0.045

Table: Wage Distribution Moments by Marital Status, Men

	93–97	98–02	03–07	08–12	13–17
w_p10_m	7.663	7.845	7.498	6.981	7.319
w_p50_m	15.586	16.747	18.098	16.781	16.826
w_p90_m	26.995	31.273	35.963	33.888	34.752
w_p10_m_se	5.248	4.926	4.285	4.230	4.063
w_p50_m_se	13.382	13.986	13.456	13.047	12.326
w_p90_m_se	23.115	27.047	27.077	27.224	26.696
w_p10_m_mel	8.378	9.196	9.704	8.672	9.094
w_p50_m_mel	16.293	17.740	19.826	18.198	18.332
w_p90_m_mel	28.022	32.519	38.446	36.022	36.766

Table: Wage Distribution Moments by Marital Status, Women

	93–97	98–02	03–07	08–12	13–17
w_p10_f	5.558	5.042	5.358	5.224	5.630
w_p50_f	12.405	13.241	14.168	13.331	13.425
w_p90_f	20.685	23.355	26.122	25.262	25.853
w_p10_f_se	4.917	4.535	4.139	4.552	4.917
w_p50_f_se	12.241	12.596	12.592	12.388	12.495
w_p90_f_se	20.294	22.668	23.941	23.555	24.135
w_p10_f_mle	5.779	5.335	6.088	5.790	6.189
w_p50_f_mle	12.466	13.543	14.799	14.000	14.034
w_p90_f_mle	20.807	23.725	27.065	26.306	26.922

Conclusions

• None so far.

Thank you for your attention.

Bastian Schulz

bastian.schulz@econ.au.dk

Some Literature

- Unemployment, especially male unemployment, is associated with an increase in the divorce rate (e.g. Jensen and Smith, 1990; Hansen, 2005; Amato and Beattie, 2011).
- Marriage/divorce rates negatively correlated with unemployment over the business cycle (e.g. Schaller, 2013; González-Val and Marcén, 2017a/b).
- Does female labor market participation decrease or increase marital stability? (Newman and Olivetti, 2018 vs. Folke and Rickne, 2020).
- Marriage market matching models (with and without frictions, TU/NTU): Becker (1973/74), Burdett & Coles (1997), Shimer & Smith (2000), Jacquemet & Robin (2012), Choo & Siow (2006), Choo (2015), Chiappori et al. (2015).
- Joint search: Guler et al. (2012), Pilossoph & Wee (2021), Fang & Shephard (2019).
- Most related: Goussé et al. (2017), Greenwood et al. (2016), Flabbi & Flinn (2015)

