EXEMPLOS DO MÉTODO DE DEDUÇÃO NATURAL

Vamos acompanhar exemplos de como podemos elaborar estratégias para montar uma sequência de demonstração e provar que um argumento é válido a partir da aplicação do método de dedução natural. (Capítulo 2 do Livro)

Exemplos com regras básicas, derivadas e de equivalência

$$P \to (Q \land R), P \models P \land Q$$

$$(P \land Q) \rightarrow (R \land S), \neg \neg P, Q \models S$$

$$P \lor (Q \land R), (P \lor Q) \to S \models P \lor S$$

Exemplos com regras hipotéticas PC e RAA:

$$P \rightarrow Q, \neg Q \models \neg P$$

$$(P \lor R) \to (D \land \neg C) \models R \to (\neg C \lor E)$$

$$(P \land Q) \rightarrow \neg R, R \lor (S \land T), P \leftrightarrow Q \models P \rightarrow S$$

Exemplos com regras hipotéticas PC e RAA aninhadas:

$$Q \rightarrow R \mid -(P \rightarrow Q) \rightarrow (P \rightarrow R)$$

$$P \to Q, R \to S \models (P \lor R) \to (Q \lor S)$$

$$\neg (P \land Q) \models \neg P \lor \neg Q$$

REGRAS BÁSICAS

Inclusão de Operadores	Exclusão de Operadores
Redução ao absurdo (raa) - ¬I P Q∧¬Q	Dupla negação (dn) - ¬E ¬¬P P
¬P	LC 7 D
Prova condicional (pc) - → I	Modus Ponens (mp) - →E
P	P P→Q
Ÿ	Q
$P \rightarrow Q$	
Conjunção(cj) - ∧I	Simplificação(sp) - ∧E
P Q	P∧Q P∧Q
P∧Q	P Q
Adição(ad) - ∨I	Eliminação da disjunção - VE
P P	$P \lor Q P \rightarrow R Q \rightarrow R$
PvQ QvP	R
Introdução da equivalência - ↔I	Eliminação da equivalência - ↔E
$P \rightarrow Q Q \rightarrow P$	$P \leftrightarrow Q$ $P \leftrightarrow Q$
 P↔Q	$P \rightarrow Q$ $Q \rightarrow P$

REGRAS DE EQUIVALÊNCIA

Expressão	Equivale a	Nome (Abreviação) da Regra
$P \vee Q$	Q v P	Comutatividade (com)
$P \wedge Q$	$Q \wedge P$	
(P∨Q) ∨ R	P v (QvR)	Associatividade (ass)
$(P \land Q) \land R$	$P \wedge (Q \wedge R)$	
¬(P∨Q)	$\neg P \land \neg Q$	De Morgan (dmor)
$\neg (P \land Q)$	$\neg P \lor \neg Q$	
$P \rightarrow Q$	$\neg P \lor Q$	Condicional (cond)
P	¬(¬P)	Dupla negação (dn)
$P \rightarrow Q$	$\neg Q \rightarrow \neg P$	Contraposição (cont)
P	P∧P	Auto-referência (auto)
$P \vee P$	P	Auto-referência (auto)
$P \wedge (Q \vee R)$	$(P \land Q) \lor (P \land R)$	Distributividade (dist)
P ∨ (Q∧R)	(P∨Q) ∧ (P∨R)	Distributividade (dist)

REGRAS DERIVADAS

Silogismo Disjuntivo (sd $ \begin{array}{c} P \lor Q \neg P \\ \hline Q \\ \hline Exportação (exp) \\ (P \land Q) \rightarrow R \end{array} $
P∨Q ¬P Q Exportação (exp)
$(P \land Q) \rightarrow R$
$P \rightarrow (Q \rightarrow R)$
Silogismo Hipotético (shi $P \rightarrow Q Q \rightarrow R$
$P \rightarrow R$
Dilema Construtivo (dc)
$P \lor Q P \rightarrow R Q \rightarrow S$
R∨S
Inconsistência (inc)
P ¬P

$P \rightarrow (Q \land R), P \models P \land Q$

1. P → Q ∧ R	hip.
2. P	hip.
3. Q ∧ R	1,2, mp
4. Q	3, sp
5. P ∧ Q	2,4, cj

$(P \land Q) \rightarrow (R \land S), \neg \neg P, Q \models S$

$1. (P \land Q) \rightarrow (R \land S)$	hip.
2. ¬¬ P	hip
3. Q	hip
4. P	2, dn
5. P ∧ Q	3,4, cj
6. R ∧ S	1,5, mp
7. S	6, sp

$P \lor (Q \land R), (P \lor Q) \rightarrow S \models P \lor S$

1. P ∨ (Q ∧ R)	hip.
2. (P∨Q) → S	hip
3. (P∨Q)∧(P∨S)	1,dist
4. P ∨ Q	3, sp
5. S	2,4, mp
6. P ∨ S	1,5,mp

$A \rightarrow (B \lor C), \neg B, \neg C \models \neg A$

1. $A \rightarrow (B \lor X)$	hip.
2. ¬ B	hip
3. ¬X	hip.
4. ¬ B ∧ ¬ X	2,3, cj
5. ¬(B∨X)	4, demor
6. ¬A	1,5, mt

$B \leftrightarrow A$, $(B \land C) \rightarrow (E \lor Q)$, $(B \land A) \rightarrow C$, $\neg E$, $B \models Q$

1. B ↔ A	hip.
$2. (B \land X) \rightarrow (E \lor Q)$	hip
$3. (B \land A) \rightarrow X$	hip.
4. ¬E	hip.
5. B	hip.
6. B → A	1,E ↔
7. A	5,6,mp
8. B ∧ A	5,7,cj
9. X	3,8,mp
10. B ∧ X	5,9, cj
11. E ∨Q	2,10, mp
12. Q	4,11, sd

$$P \rightarrow Q, \neg Q \models \neg P$$

1.
$$P \rightarrow Q$$

hip-raa

1,3, mp

2,4, cj

3-5, raa

$$(P \lor R) \rightarrow (D \land \neg C) \models R \rightarrow (\neg C \lor E)$$

1.
$$(P \lor R) \rightarrow (D \land \neg C)$$
 hip.

3. **P**
$$\vee$$
 R 2,ad

7.
$$\mathbf{R} \rightarrow (\neg \mathbf{C} \lor \mathbf{E})$$
 2-6, pc

$$(P \land Q) \rightarrow \neg R, R \lor (S \land T), P \leftrightarrow Q | \longrightarrow S$$

1.
$$(\mathbf{P} \wedge \mathbf{Q}) \rightarrow \neg \mathbf{R}$$
 hip.

2.
$$\mathbf{R} \vee (\mathbf{S} \wedge \mathbf{T})$$
 hip

3.
$$\mathbf{P} \leftrightarrow \mathbf{Q}$$
 hip.

5.
$$| \mathbf{P} \rightarrow \mathbf{Q}$$
 3, $\mathsf{E} \leftrightarrow$

7.
$$P \wedge Q$$
 4,6, cj

11.
$$P \rightarrow S$$
 4-10, pc

1.
$$\mathbf{Q} \rightarrow \mathbf{R}$$
 hip.

2.
$$| P \rightarrow Q$$
 hip-pc

6.
$$P \rightarrow R$$
 3-5, pc

7.
$$(P \rightarrow Q) \rightarrow (P \rightarrow R)$$
 2-6, pc

$$P {\rightarrow} \, Q | {\longleftarrow} \neg P \vee Q$$

1.
$$P \rightarrow Q$$
 hip.
2. $\neg (\neg P \lor Q)$ hip-raa
3. $\mid P$ hip-raa
4. $\mid Q$ 1,3, mp
5. $\mid \neg P \lor Q$ 4, ad
6. $\mid (\neg P \lor Q) \land \neg (\neg P \lor Q)$ 2,5, cj
7. $\neg P$ 3-6, raa
8. $\neg P \lor Q$ 7, ad
9. $\mid (\neg P \lor Q) \land \neg (\neg P \lor Q)$ 2,8, cj
10. $\neg \neg (\neg P \lor Q)$ 2-9, raa
11. $\neg P \lor Q$ 3-6, pc

 $P \rightarrow Q, R \rightarrow S \mid (P \lor R) \rightarrow (Q \lor S)$

2.
$$R \rightarrow S$$

3. **P**
$$\vee$$
 R

7.
$$P \rightarrow Q \lor S$$

11.
$$R \rightarrow Q \lor S$$

13.
$$(P \lor R) \to (Q \lor S)$$
 3-12, pc

$$\neg (P \land Q) \models \neg P \lor \neg Q$$