

# Perturbaciones en la onda de tensión: Huecos [sag] y Sobretensiones [swell]

Calidad del servicio eléctrico [Power Quality]

Juan José Mora Flórez

jjmora@silver.udg.es

Girona, Marzo 11 de 2003



# **⇒** Contenido

- Introducción
- Definiciones
- Características de los huecos de tensión
- Causas de los huecos de tensión
- ♣ Relación entre fallas del sistema y los huecos
- Conclusiones



### ntroducción Variaciones de tensión

Perturbaciones según IFFF

Estándares internacionales

efiniciones

aracterísticas de os huecos

ausas de los uecos

Relación entre las allas y los huecos

onclusiones

# ⇒Introducción

# Variaciones de tensión

### **Perturbaciones**

- Transitorios
- Huecos de tensión [sags (América) ó dips (Europa)]
- Elevaciones de tensión [swells]
- Interrupciones

### Estado estable

- Regulación de tensión
- Distorsión Armónica
- Parpadeo [Flicker]
- Desbalance





Variaciones de tensión

Perturbaciones según IEEE

Estándares internacionales

efiniciones

aracterísticas de os huecos

ausas de los uecos

Relación entre las allas y los huecos

onclusiones

# Perturbaciones de tensión según la IEEE 1159

| Tipo de variación              | Duración         | Magnitud       |
|--------------------------------|------------------|----------------|
| Variaciones de corta duración  |                  |                |
| Huecos de tensión [sag o dip]  |                  |                |
| Instantáneos                   | 0,5 – 30 ciclos  | 0,1 – 0,9 p.u. |
| Momentáneos                    | 30 ciclos – 3    | 0,1 – 0,9 p.u. |
| Temporales                     | 3 s – 1 min      | 0,1 – 0,9 p.u. |
| Elevaciones de tensión [swell] |                  |                |
| Instantáneos                   | 0,5 - 30  ciclos | 1,1 – 1,8 p.u. |
| Momentáneos                    | 30 ciclos – 3    | 1,1 – 1,8 p.u. |
| Temporales                     | 3 s – 1 min      | 1,1 – 1,8 p.u. |
| Variaciones de larga duración  |                  |                |
| Subtensión                     | > 1 min          | 0,8 – 1,0 p.u. |
| Sobretensión                   | > 1 min          | 1,0 – 1,2 p.u. |
| Interrupciones                 |                  |                |
| Momentáneos                    | < 3 s            | 0 p.u.         |
| Temporales                     | 3 s – 1 min      | 0 p.u.         |
| Colapso                        | > 1 min          | 0 p.u.         |



# **Estándares Internacionales**

### ntroducción

Variaciones de tensión

Perturbaciones según IEEE

Estándares internacionales

efiniciones

aracterísticas de os huecos

ausas de los uecos

Relación entre las allas y los huecos

conclusiones

| Perturbación                  | Categoría de<br>normalización | Estándares IEEE      | Estándares IEC             |
|-------------------------------|-------------------------------|----------------------|----------------------------|
| Huecos de<br>tensión          | Ambiente/compatibilidad       | IEEE 1250            | IEC 61000-2-4              |
|                               | Emisión/Límites de inmunidad  | IEEE P 1346          | IEC 61000-3-3/5 (555)      |
|                               | Pruebas y Medidas             | Ninguna              | IEC 61000-4-1/11           |
|                               | Instalación/Mitigación        | IEEE 446,1100, 1159  | IEC 61000-5-X              |
|                               | Apertura del fusible          | IEEE 242(Protección) | IEC 364                    |
| Transitorios y sobretensiones | Ambiente/Compatibilidad       | IEEE/ANSI C62.41     | IEC 61000-2-5              |
|                               | Emisión/Límites de inmunidad  | Ninguna              | IEC 61000-3-X              |
|                               | Pruebas y Medidas             | IEEE/ANSI C62.45     | IEC 61000-4-<br>1/2/4/5/12 |
|                               | Instalación/Mitigación        | C62 series, 1100     | IEC 61000-5-X              |
|                               | Ruptura de aislamiento        | Ninguna              | IEC 664                    |



### **Definiciones**

Transitorio impulsivo

Hueco de tensión

Elevación de tensión

Valor eficaz

Desbalance de

tensión

Muescas de tensión

Subtensión de subciclo

Sobretension de

subciclo

aracterísticas de os huecos

ausas de los uecos

delación entre las allas y los huecos

conclusiones

# **⇒** Definiciones

# Transitorio impulsivo



Es un cambio de frecuencia instantáneo a partir del estado estable de la corriente, el voltaje o ambos. Tiene una polaridad unidireccional y se caracteriza principalmente por sus tiempos de subida y bajada y su valor máximo.

Ej: 1.2/50 microseg 12000 A



<u>efiniciones</u>

Transitorio Oscilante

Hueco de tensión

Elevación de tensión

Valor eficaz

Desbalance de tensión

Muescas de tensión

Subtensión de subciclo

Sobretension de

subciclo

aracterísticas de os huecos

ausas de los uecos

delación entre las allas y los huecos

onclusiones

# Transitorio oscilante



Son señales de voltaje o corriente cuyos valores instantáneos cambian de polaridad rápidamente.

Alta frecuencia: f > 500 kHz y duración [microseg].

Media frecuencia: 5 < f < 500 kHz y duración [décadas de microseg]

Baja frecuencia: f < 5 kHz y duración [0.3 a 50 ms]



efiniciones

Hueco de tensión

Elevación de tensión

Valor eficaz

Desbalance de

tensión

Muescas de tensión

Subtensión de

subciclo

Sobretension de subciclo

aracterísticas de os huecos

ausas de los uecos

lelación entre las allas y los huecos

conclusiones

# **⇒** Definiciones

# Hueco de tensión [sag – dip]



Disminución del valor eficaz de la tensión entre el 0,9 y el 0,1 p.u. de la tensión de funcionamiento normal y con una duración desde medio ciclo (8 ms o 10 ms) hasta algunos segundos.



#### efiniciones

Hueco de tensión

#### Elevación de tensión

Valor eficaz

Desbalance de

tensión

Muescas de tensión

Subtensión de subciclo

Sobretension de subciclo

aracterísticas de os huecos

ausas de los uecos

Relación entre las allas y los huecos

onclusiones

# Elevación de tensión [swell]



Incremento del valor eficaz de la tensión entre el 1,1 y el 1,8 p.u. de la tensión de funcionamiento normal, con una duración de entre medio ciclo (8 ms o 10 ms) y algunos segundos.



#### **Definiciones**

Hueco de tensión

Elevación de tensión

#### Valor eficaz

Desbalance de tensión

Muescas de tensión

Subtensión de subciclo

Sobretension de subciclo

aracterísticas de os huecos

ausas de los uecos

Relación entre las allas y los huecos

conclusiones

# Valor eficaz de la tensión

### Valor eficaz:

$$V_{rms} = \sqrt{\frac{1}{N}} \sum_{i=1}^{N} v_i^2$$

Valor eficaz obtenido cada muestra:

$$V_{rms}\left(k\right) = \sqrt{\frac{1}{N}} \sum_{i=k-N+1}^{k} v_i^2$$

### Valor eficaz obtenido cada ciclo:

$$V_{rms}\left(kN\right) = \sqrt{\frac{1}{N} \sum_{i=(k-1)N+1}^{kN} v_i^2}$$

# Componente fundamental de tensión:

$$V_1(t) = \frac{2}{T} \int_{t-T}^{t} v(\tau) e^{j\omega_0 t} d\tau$$

. .



### efiniciones

Hueco de tensión Elevación de tensión Valor eficaz

Desbalance de tensión

Muescas de tensión Subtensión de subciclo

Sobretension de subciclo

aracterísticas de os huecos

ausas de los uecos

Relación entre las allas y los huecos

conclusiones

# Desbalance de tensión:

Condición para la cual las tres tensiones de un sistema trifásico, difieren en magnitud y/o no están desfasadas  $2\pi/3$  radianes entre si.

### Magnitud del desbalance:

La máxima desviación de la magnitud de tensión de cada una de las tres fases con respecto a la magnitud promedio del sistema trifásico, dividida por la magnitud promedio.

# Ángulo de fase del desbalance:

La máxima desviación de la diferencia de ángulos de fases entre las tres tensiones del sistema, dividida entre  $2\pi/3$  radianes.



### <u> Definiciones</u>

Hueco de tensión
Elevación de tensión
Valor eficaz

Desbalance de
tensión
Muescas de tensión
Subtensión de
subciclo

Sobretension de subciclo

aracterísticas de os huecos

ausas de los uecos

Relación entre las allas y los huecos

conclusiones

# Relación de desbalance de secuencia negativa:

Es la relación entre las tensiones de la secuencia negativa y la secuencia positiva, multiplicada por 100%.

# Relación de desbalance de secuencia cero:

Es la relación entre las tensiones de la secuencia cero y la secuencia positiva, multiplicada por 100%.



### **Definiciones**

Hueco de tensión

Elevación de tensión

Valor eficaz

Desbalance de

tensión

Muescas de tensión

Subtensión de subciclo

Sobretension de subciclo

aracterísticas de os huecos

ausas de los uecos

Relación entre las allas y los huecos

conclusiones

## Muescas de tensión:

Conmutación entre las tensiones de un sistema trifásico u otro disturbio en la onda de tensión de duración menor a medio ciclo, e inicialmente de polaridad contraria al de la onda de tensión.





### <u> Pefiniciones</u>

Hueco de tensión

Elevación de tensión

Valor eficaz

Desbalance de tensión

Muescas de tensión

# Sobretensión de subciclo

Subtension de subciclo

aracterísticas de os huecos

ausas de los uecos

Relación entre las allas y los huecos

onclusiones

# Sobretensión subciclo:

Incremento repentino de la tensión de corta duración (menor a medio ciclo) y unidireccional.





### <u> Pefiniciones</u>

Hueco de tensión Elevación de tensión

Valor eficaz

Desbalance de tensión

Muescas de tensión

Sobretensión de subciclo

Subtensión de subciclo

aracterísticas de os huecos

ausas de los uecos

Relación entre las allas y los huecos

conclusiones

# Subtensión subciclo:

Decremento repentino de la tensión de corta duración (menor a medio ciclo) y unidireccional.





efiniciones

características de os huecos

**Magnitud** 

Caída de tensión

**Duración** 

Punto de inicio

Punto de recuperación Hueco no rectangular

Tensión perdida

Salto de ángulo

ausas de los uecos

Relación entre las allas y los huecos

conclusiones

# ⇒ Características de huecos de tensión

Magnitud del hueco de tensión: Es la tensión eficaz existente durante el hueco de tensión en por unidad (p.u.) con respecto a la tensión pre-hueco ( $U_H$ ). (En caso de huecos no rectangulares, esta magnitud es función del tiempo).

Caída de tensión: Es la diferencia entre la tensión eficaz pre-hueco y la tensión eficaz durante el hueco ( $\Delta U$ ). (En caso de huecos no rectangulares, también es función del tiempo).

Duración del hueco de tensión: Tiempo durante el cual la tensión eficaz es inferior al 0,9 p.u. y superior 0,1 p.u. de la tensión nominal ( $\Delta t$ ).

.



**Definiciones** 

aracterísticas de os huecos

**Magnitud** 

Caída de tensión

**Duración** 

Punto de inicio

Punto de recuperación

Hueco no rectangular

Tensión perdida

Salto de ángulo

ausas de los uecos

Relación entre las allas y los huecos

onclusiones

# Sag de Voltaje



**U<sub>H</sub>:** Magnitud de la tensión del hueco

**∆U:** Caída de tensión del hueco

∆t: Duración del hueco

.



efiniciones

aracterísticas de os huecos

Magnitud

Caída de tensión

Duración

Punto de inicio

Punto de

recuperación

Hueco no rectangular Tensión perdida

Salto de ángulo

ausas de los uecos

Relación entre las allas y los huecos

conclusiones

### Punto de inicio del hueco:

Ángulo de fase de la tensión fundamental en el momento en que se inicia el hueco ( $\theta_i$ ). Corresponde al ángulo de fase en el instante que ocurre una falla.

# Punto de recuperación del hueco:

Ángulo de fase de la tensión fundamental en el momento en que se recupera la tensión  $(\theta_r)$ . Corresponde al ángulo de fase en el instante que se elimina la falla.



efiniciones

# aracterísticas de os huecos

Tensión

Magnitud

Caída de tensión

Duración

Punto de inicio

Punto de

recuperación

Hueco no rectangular Tensión perdida Salto de ángulo

ausas de los uecos

Relación entre las allas y los huecos

conclusiones



## Punto de inicio



# Punto de recuperación





efiniciones

# aracterísticas de os huecos

Magnitud

Caída de tensión

Duración

Punto de inicio

Punto de recuperación

Hueco no

rectangular

Tensión perdida

Salto de ángulo

ausas de los uecos

Relación entre las allas y los huecos

onclusiones

# **Hueco no rectangular:**

Un hueco de tensión en el cual la magnitud del hueco no es constante con el tiempo.





efiniciones

# aracterísticas de os huecos

Magnitud

Caída de tensión

Duración

Punto de inicio

Punto de recuperación

Hueco no

rectangular

Tensión perdida

Salto de ángulo

ausas de los ueços

Relación entre las allas y los huecos

onclusiones

# **Hueco Trifásico:**

Definición de hueco, desde el punto de vista del sistema eléctrico. En este evento pueden caer el valor del todas o solo algunas de las tres fases.





efiniciones

aracterísticas de os huecos

Magnitud

Caída de tensión

Duración

Punto de inicio

Punto de recuperación

Hueco no rectangular

Tensión perdida

Salto de ángulo

ausas de los uecos

Relación entre las allas y los huecos

onclusiones

# Tensión pérdida:

Es la resta entre la tensión que habría si no existiera hueco de tensión y la tensión que hay durante el hueco.





**Definiciones** 

características de os huecos

Magnitud

Caída de tensión

Duración

Punto de inicio

Punto de recuperación

Hueco no rectangular

Tensión perdida

Salto de ángulo

ausas de los uecos

Relación entre las allas y los huecos

conclusiones

# Salto o desplazamiento del ángulo de fase:

Es la diferencia entre los ángulos de fase de las tensiones fundamentales existentes antes y durante el hueco de tensión.



Salto del ángulo de fase de  $-\pi/4$ 



efiniciones

aracterísticas de os huecos

ausas de los uecos

<u>Fallas en el sistema</u> de potencia

Arranque de grandes motores

Cambios de carga

Severidad

Relación entre las allas y los huecos

conclusiones

# ⇒Causas de los huecos de tensión

# Fallas en los sistemas de potencia:

Descargas atmosféricas, cortocircuitos, contaminación de aisladores, contacto de animales o árboles, accidentes.

- ✓ Las fallas más comunes son las monofásicas (I-g)
- ✓ Las fallas mas severas las trifásicas (I-I-I)

Arranque de grandes motores de inducción

Cambios de carga



efiniciones

aracterísticas de os huecos

### ausas de los uecos

Fallas en el sistema de potencia Arranque de grandes motores

Cambios de carga

**Severidad** 

Relación entre las allas y los huecos

conclusiones

## Severidad de los huecos de tensión:

# La severidad depende de:

- ✓ La puesta a tierra del sistema
- ✓ La impedancia y localización de la falla
- ✓ Las conexiones de los transformadores
- ✓ La forma de actuación de las protecciones
- ✓ La conexión de la carga



efiniciones

aracterísticas de os huecos

ausas de los uecos

<u>telación entre las</u> allas y los huecos

Magnitud del hueco vs distancia

Respuesta de protecciones

Tiempos de actuación

Característica de huecos

conclusiones

# ⇒Análisis de fallas y huecos de tensión



pcc: Punto de acoplamiento común.

**Z<sub>s</sub>:** Impedancia de la fuente en el **pcc**.

**Z**<sub>f</sub>: Impedancia entre la falla y el **pcc** 



efiniciones

Características de os huecos

ausas de los uecos

Relación entre las allas y los huecos
Magnitud del hueco vs distancia
Respuesta de

Respuesta de protecciones
Tiempos de actuación
Característica de huecos

onclusiones

# Magnitud del hueco de tensión en función de la distancia

Línea aérea de 11 kV y S = 150 mm<sup>2</sup>





efiniciones

aracterísticas de os huecos

ausas de los uecos

telación entre las allas y los huecos

Magnitud del hueco vs distancia

Respuesta de protecciones

Tiempos de actuación Característica de

huecos

onclusiones

# Magnitud del hueco de tensión en función de la distancia

# Línea aérea de 11 kV y diferentes secciones transversales y 200 MVA





efiniciones

Características de os huecos

ausas de los uecos

Relación entre las allas y los huecos

Magnitud del hueco vs distancia

Respuesta de protecciones

Tiempos de actuación

Característica de huecos

conclusiones

Magnitud del hueco de tensión en función de la distancia



Efecto del transformador



.



efiniciones

Características de os huecos

ausas de los uecos

Relación entre las allas y los huecos

Magnitud del hueco vs distancia

Respuesta de protecciones

Tiempos de actuación

Característica de huecos

onclusiones

# Tiempos de respuesta de los dispositivos de protección:

✓ Fusibles limitadores de corriente: < un ciclo

✓ Fusibles de expulsión: 10-100 ms

✓ Relé de distancia rápido: 50-100 ms

✓ Relé de distancia en zona 1: 100-200 ms

✓ Relé de distancia en zona 2: 200-500 ms

✓ Relé diferencial: 100-300 ms

✓ Relé de sobrecorriente: 200-2000 ms



efiniciones

aracterísticas de os huecos

ausas de los uecos

Relación entre las allas y los huecos

Magnitud del hueco vs distancia Respuesta de protecciones

actuación
Característica de huecos

Tiempos de

onclusiones

# Tiempos típicos de respuesta de los dispositivos de protección a diferentes niveles de tensión en USA

| Nivel de<br>tensión (kV) | Mejor caso (ms) | Caso típico (ms) | Peor caso (ms) |
|--------------------------|-----------------|------------------|----------------|
| 525                      | 33              | 50               | 83             |
| 345                      | 50              | 67               | 100            |
| 230                      | 50              | 83               | 133            |
| 115                      | 83              | 83               | 167            |
| 69                       | 50              | 83               | 167            |
| 34,5                     | 100             | 2 000            | 3 000          |
| 12,47                    | 100             | 2 000            | 3 000          |



**Definiciones** 

aracterísticas de os huecos

ausas de los uecos

<u>Relación entre las</u> allas y los huecos

Magnitud del hueco vs distancia

Respuesta de protecciones

Tiempos de actuación

Característica de ubicación huecos

Huecos debidos a fallos

onclusiones

# Característica de ubicación de los huecos



- 1 Fallas en el sistema de transmisión
- Pallas en un sistema de distribución remoto
- Fallas en un sistema de distribución local
- 4 Arranque de motores grandes
- 5 Interrupciones cortas
- 6 Fusibles



efiniciones

aracterísticas de os huecos

ausas de los uecos

Relación entre las allas y los huecos

Magnitud del hueco vs distancia

Respuesta de protecciones

Tiempos de actuación

Característica de ubicación huecos

<u>Huecos debidos a</u> <u>fallos</u>

onclusiones

# Huecos de tensión debidos a fallas

### Falla monofásica

### Tensiones de fase:

$$V_a = V$$

$$V_b = -\frac{1}{2} - j\frac{\sqrt{3}}{2}$$

$$V_c = -\frac{1}{2} + j\frac{\sqrt{3}}{2}$$



## Tensiones de línea:

$$V_{ab} = \begin{bmatrix} V + \frac{1}{2} \end{bmatrix} + j \frac{\sqrt{3}}{2}$$

$$V_{bc} = -j \sqrt{3}$$

$$V_{ca} = -\left[V + \frac{1}{2}\right] + j \frac{\sqrt{3}}{2}$$



.



efiniciones

aracterísticas de os huecos

ausas de los uecos

Relación entre las allas y los huecos

Magnitud del hueco vs distancia

Respuesta de protecciones

Tiempos de actuación

Característica de ubicación huecos

<u>Huecos debidos a</u> <u>fallos</u>

onclusiones

# Falla fase a fase

# Tensiones de fase:

$$V_a = 1$$

$$V_b = -\frac{1}{2} - j\frac{\sqrt{3}}{2}V$$

$$V_c = -\frac{1}{2} + j\frac{\sqrt{3}}{2}V$$



Tipo C

# Tensiones de línea:

$$V_{ab} = \frac{3}{2} + j \frac{\sqrt{3}}{2} V$$

$$V_{bc} = -j \sqrt{3} V$$

$$V_{ca} = -\frac{3}{2} + j \frac{\sqrt{3}}{2} V$$





efiniciones

aracterísticas de os huecos

ausas de los uecos

<u>Relación entre las</u> allas y los huecos

Magnitud del hueco vs distancia

Respuesta de protecciones

Tiempos de actuación

Característica de ubicación huecos

Huecos debidos a fallos

onclusiones

# Falla de dos fases a tierra

# Tensiones de fase:

$$V_a = 1$$

$$V_b = -\frac{1}{2}V - j\frac{\sqrt{3}}{2}V$$

$$V_c = -\frac{1}{2}V + j\frac{\sqrt{3}}{2}V$$



Tipo E

# Tensiones de línea:

$$V_{ab} = 1 + \frac{1}{2}V + j\frac{\sqrt{3}}{2}V$$

$$V_{bc} = -j\sqrt{3}V$$

$$V_{ca} = -\left(1 + \frac{1}{2}V\right) + j\frac{\sqrt{3}}{2}V$$



Tipo F



efiniciones

aracterísticas de os huecos

ausas de los uecos

Relación entre las allas y los huecos

Magnitud del hueco vs distancia

Respuesta de protecciones

Tiempos de actuación

Característica de ubicación huecos

<u>Huecos debidos a</u> <u>fallos</u>

conclusiones

# Falla trifásica

# Tensiones de fase:

$$V_{a} = V$$

$$V_{b} = -\frac{1}{2}V - j\frac{\sqrt{3}}{2}V$$

$$V_{c} = -\frac{1}{2}V + j\frac{\sqrt{3}}{2}V$$



Tipo A

Tensiones de línea:  $\sqrt{3}$ 

$$V_{ab} = \frac{3}{2}V + j\frac{\sqrt{3}}{2}V$$

$$V_{bc} = -j\sqrt{3}$$

$$V_{ca} = -\frac{3}{2}V + j\frac{\sqrt{3}}{2}V$$



Tipo A



efiniciones

Características de os huecos

ausas de los uecos

Relación entre las allas y los huecos

Magnitud del hueco vs distancia

Respuesta de protecciones

Tiempos de actuación

Característica de ubicación huecos

<u>Huecos debidos a</u>

fallos

onclusiones

# Relación de huecos con los tipos de fallas



| Tipo de falla | Carga en estrella | Carga en Delta |
|---------------|-------------------|----------------|
| Trifásica     | Sag A             | Sag A          |
| Fase – fase   | Sag C             | Sag D          |
| Monofásica    | Sag B             | Sag C          |



efiniciones

Características de os huecos

ausas de los uecos

Relación entre las allas y los huecos

Magnitud del hueco vs distancia

Respuesta de protecciones

Tiempos de actuación

Característica de ubicación huecos

Huecos debidos a

<u>fallos</u>

onclusiones

# Relación de huecos con los tipos de fallas



| Tipo de falla      | Carga en estrella | Carga en Delta |
|--------------------|-------------------|----------------|
| Dos fases a tierra | Sag E             | Sag F          |

.



# $\Rightarrow$

# Conclusiones

ntroducción

**Definiciones** 

aracterísticas de os huecos

ausas de los uecos

Relación entre las allas y los huecos

conclusiones

La principal causa de los huecos de tensión son las fallas en los sistemas de potencia (especialmente las monofásicas)



# $\Rightarrow$

# Conclusiones

ntroducción

efiniciones

aracterísticas de os huecos

ausas de los uecos

Relación entre las allas y los huecos

<u>conclusiones</u>

La severidad de un hueco de tensión depende de varios parámetros del sistema eléctrico.



# $\Rightarrow$

# Conclusiones

ntroducción

**Definiciones** 

aracterísticas de os huecos

ausas de los uecos

Relación entre las allas y los huecos

<u>conclusiones</u>

Los huecos de tensión no son tan perjudiciales para la industria como las interrupciones; pero debido a que ocurren con mayor frecuencia, las pérdidas económicas debidas a ellos pueden ser mayores que las causadas por las interrupciones.





# GRUPO DE INVESTIGACIÓN EN SISTEMAS DE ENERGÍA ELÉCTRICA

Escuela de Ingeniería Eléctrica, Electrónica y Telecomunicaciones

### UNIVERSIDAD INDUSTRIAL DE SANTANDER

Carrera 27, Calle 9. Ciudad Universitaria. — A. A. 678

**Conmutador:** +(7) 6344000, Extensiones: 2373 - 2479

Teléfonos: +(7) 6342085 / 6359622 — Fax: +(7) 6451156

BUCARAMANGA — COLOMBIA

<u> Agradecimientos</u>





Preguntas?

