Intro to AI on supercomputers

Huihuo Zheng

Computer Scientist Argonne Leadership Computing Facility October 1, 2024

www.alcf.anl.gov

Outline

- 1. Evolution of computing systems
- 2. Parallel computing
- 3. Al in a nutshell

Key words: supercomputer, parallel computing, Al

Journey of computing

What is the first "computer" in the history? When did it come out?

How my daughter calculates addition at school.

Manul "Calculator"

算籌正數											
	0	1	2	3	4	5	6	7	8	9	
直式	0	1	II	Ш	III		Т	Т	Ш	Ш	
横式	0	_	_	=		■	上	工	ᆂ	≐	

負數											
	-0	-1	-2	-3	-4	-5	-6	-7	-8	-9	
直式	Ø	1	*	111	1111	11111	1	T	Ħ	₩	

Counting rods - 1600 BC

Abacus (算盘)~900 AD

Three, set five remove two (abacus rule)

Slide rule ~ 1600 AD

Mechanical Calculator

Pascal mechanical calculator ~ 1642-1644 AD

Leibnez calculator ~ 1672 AD

Electronic Computers

Vacuum cube (1940-1950s) Transistors generation (1950-1960s) Integrated Circuits (1960-1070s)

First computer ENIAC (1946)

Size: 30×50 ft^2,

Weight: 30T

Components: 17000 vacuum cube

Capability: 5000 OP/s.

PC, Tablet, and smart phones

Capability: TFLOPs

The chip development – scale up

https://github.com/karlrupp/microprocessor-trend-data https://en.wikipedia.org/wiki/Transistor_count **Supercomputers – scale out**

- Multiple CPUs and/or GPUs are combined into a single node.
- All the nodes are connected through high-speed network interconnect that allows it to communicate with other nodes and to a large shared filesystem.

https://www.alcf.anl.gov/aurora

Science on Supercomputer

Cosmology

Climate modeling

Materials science

Engineering

Biology

Computer vision & Al

Why do we need supercomputer for AI?

Scheme	Number of parameters (billion)	Model- parallel size	Batch size	Number of GPUs	Microbatch size	Achieved teraFIOP/s per GPU	Training time for 300B tokens (days)
	174.6	1	1536	384	4	144	90
ZeRO-3				768	2	88	74
without				1536	1	44	74
Model	529.6	1	2560*	640	4	138	169
Parallelism			2240	1120	2	98	137
				2240	1	48	140
	174.6	96	1536	384	1	153	84
				768	1	149	43
PTD				1536	1	141	23
Parallelism	529.6	280	2240	560	1	171	156
				1120	1	167	80
				2240	1	159	42

Figure 1: The Transformer - model architecture.

Time for training LLM models

Parallelization for AI – distributed training

3D parallelism for LLM

- Tensor (TP): Split each layer.
- Pipeline (PP): Distribute different layers.
- Data (DP): sharding dataset.

Outline

- 1. Evolution of computing systems
- 2. Parallel computing
- 3. Al in a nutshell

Key words: supercomputer, parallel computing, Al