

Resonant Circuits

Parallel RLC Resonant Circuit

Resonant Circuits

- © RLC Parallel resonant circuit
 - RLC circuit in parallel
 - Phasor diagram
 - Resonance in RLC circuit
 - Graphical representation of resonance
 - Bandwidth of parallel RLC
 - Q-factor of parallel circuit

Pure RLC parallel circuit

The R, L and C are all assumed to be pure. In practice, R and C can be very close to be pure but not L.

Pure RLC parallel circuit

Admittance
$$Y = 1/R + 1/jX_L + 1/(-jX_C)$$

= $1/R + 1/j\omega L + 1/(1/j\omega C)$
= $1/R + j(\omega C - 1/\omega L)$

Pure RLC parallel circuit - at resonance

```
Admittance Y = 1/R + 1/j\omega L + 1/(1/j\omega C)
= 1/R + j(\omega C - 1/\omega L)
= G + jB (unit - siemen, S)
where G is the conductance and B the susceptance.
```

Resonance occurs when B = 0, i.e. when Y = G only and is a minimum (Z = 1 / Y is at maximum)

Known as High Impedance Resonance

Pure RLC parallel circuit - at resonance

At resonance, V and I_T are in phase and the RLC circuit *behaves* like a pure resistor. With Y now equals to 1 / R, therefore $I_T = V Y = V / R$

Phasor Diagram of a pure RLC parallel circuit at resonance

I_R is the current in the pure resistor and is therefore in phase with the voltage V.

 I_C is the current in the pure capacitor and is therefore leading the voltage by 90°

Phasor Diagram of a pure RLC parallel circuit at resonance

$$\begin{split} &I_T = I_R + I_L + I_C \text{ (By KCL)} \\ &\text{At resonance, } |I_L| = |I_C| \text{, making } I_L + I_C = 0, \\ &\text{leaving only } I_T = I_R \end{split}$$

ET0053: Circuit Theory & Analysis

Phasor Diagram of a pure RLC parallel circuit at resonance

At resonance,
$$|I_C| = |I_L|$$

Therefore $V/X_C = V/X_L$, giving $X_C = X_L$
 $2 \pi f_o L = 1/2 \pi f_o C$
 $4 \pi f_o^2 = 1/LC$
 $f_o = 1/2 \pi \sqrt{LC}$ Hz

Bandwidth of a parallel resonant circuit

Q factor for a pure RLC 3-branch resonant circuit

Q factor =
$$I_L/I_T = (V/X_L)/(V/R) = R/X_L$$

or

Q factor =
$$I_C / I_T = (V / X_C) / (V / R) = R / X_C$$

With $X_L = X_C$ at resonance, these two Q factors actually have the same numerical value.

Q here is also called the *current magnification* factor.

Relationship between Bandwidth, resonant frequency and Q factor

$$BW = f_o / Q (Hz)$$
or
$$BW = 2 \pi f_o / Q (rad/s)$$

Example

A three branch parallel resonant circuit consists of an inductor of 4 mH, a resistor of 10 k Ω and a capacitor of 0.001 μ F. The supply for the tuned circuit is 20 V AC. Determine:

- (a) the resonant frequency, maximum impedance Q factor and bandwidth and
- (b) supply current, capacitor current and inductor current at resonance.

Example

Using
$$f_{\rm O} = \frac{1}{2\pi\sqrt{\rm LC}}$$

 $f_{\rm O} = \frac{1}{2\pi\sqrt{4\times10^{-3}\times0.001\times10^{-6}}} = 79.577~kHz$
 $Z_{\rm max} = R = 10~k\Omega$
 $Q = \frac{R}{X_L} = \frac{10000}{2\pi f_{\rm O}L} = \frac{10000}{2\times\pi\times79.577\times10^3\times4\times10^{-3}} = 5$
 $Bandwidth~{\rm BW} = \frac{f_{\rm O}}{Q} = \frac{79.577\times1000}{5} = 15.91~kHz$

Example

Supply current
$$I_{T} = \frac{V}{R} = \frac{20}{10 \times 1000} = 2 \text{ mA}$$

$$CapacitorcurrentI_{C} = Q \times I_{T} = 5 \times 2m = 10 \, mA$$

Inductor current
$$I_L = Q \times I_T = 5 \times 2m = 10 \text{ mA}$$

SUMMARY

Comparison of Series and Parallel Resonant Circuits

Parameter	Series RLC Circuit	Parallel RLC Circuit
1. Impedance	Z = R (minimum)	Z = R (maximum)
2. Current	I = V/R (maximum)	I = V/R (minimum)
3. Power Factor	Unity	
4. Resonant Frequency	$f_o = \frac{1}{2\pi\sqrt{LC}}$	
5. Type of Magnification, Q Factor	Voltage	Current
6. Q Factor	$Q = X_L / R = X_C / R$ $= V_L / V = V_C / V$	$Q = R / X_L = R / X_C$ $= I_L / I = I_C / I$
7. Bandwidth	$BW = \frac{f_o}{Q_o} = f_2 - f_1$	
8. Half power frequencies	$f_1 = f_o - \frac{BW}{2}$ $f_2 = f_o + \frac{BW}{2}$	
	$f_2 = f_o + \frac{BW}{2}$	

ET0053: Circuit Theory & Analysis