1 Вычисления с помощью NumPy

1.1 Вычислите выражение

Вариант	Арифметическое выражение
0	$y = \frac{\sin\frac{\pi}{6} + \sqrt{(3+x^2)} - \lg^3(x-1)}{\arcsin\frac{x}{2}}; \text{при } x = 1,59$
1	$y = tg(a+b)^2 - \sqrt[3]{a+1.5} + ab^5 - \frac{b}{\ln a^2}$; при $a = 1.21$ и $b = 0.371$
2	$z = arctgx^{2} - \sqrt{(x+1,43^{3})} + \frac{\cos^{3}(\pi/2a)}{\left x - \sqrt[5]{a}\right }; \text{при } x = 0,24 \text{ и}$ $a = 5,8$
3	$y = \frac{\sin(\frac{\pi}{6} - 1)^2 + \sqrt[4]{(3 + x^2)} - \lg^3(x^3 - 1)}{\arcsin\frac{x}{2} - 1,756 \cdot 10^{-2}}; при \ x = 1,6453$
4	$y = \cos^4 \frac{\pi}{4} + \sqrt[5]{a+1,5} + ab^8 - \frac{b}{\lg a ^2}$ при $a = -3,45$ и $b = 349,1$
5	$z = \arccos x^2 - a\sqrt{x} + \frac{\sin^3(\pi/2 + a)}{\lg 2x}$ при $a = 0.94$ и $x = 0.093$
6	$y = \frac{\sin^2(\frac{\pi}{2} + 1) + x\sqrt[4]{(3 + x^2)} - tg^3(x^3 - 1)}{arctg\frac{x}{2} - \ln 17,56}$ при x=1,5

7	$y = \frac{\sin(\frac{\pi}{8} - 1)^2 + \sqrt[4]{(3 + x^2)}}{\arcsin\frac{x}{2} - 5,236 \cdot 10^{-2}} + \ln 3,12 - x $ при $x = 0,75$
8	$y = ctg^4(\frac{\pi}{4} - 1) + \sqrt[3]{a + 1.5} + (a - b)^8 - \frac{b}{\arcsin a ^2}$ при $a = 0.3$ и $b = -21.17$
9	$y = \frac{\sin(\frac{\pi}{8} - f)^2 + \sqrt[4]{(3 + x^2)}}{2}$ при $x = 2,57 \cdot 10^3$ и $f = 0,873$.
10	$z = -\sqrt{xa^3} + \ln\left \frac{(a-1,12x)}{4}\right $ при $a = 23,55$ и $x = 0,9$
11	$y = \frac{\sin^2(x+1) + x\sqrt[4]{(3+x^2)}}{arctg\frac{x}{2}}$ при $x = 0,21 \cdot 10^{-2}$
12	$y = \sqrt[3]{a+1.5} + (a-b)^8 - \frac{b}{\arcsin a ^2}$ при $a = 0.3$ и $b = -21.17$
13	$z = arctgx^2 + \frac{\cos^3(\pi/2 - a)}{ x - \sqrt[5]{a} };$ при $x = 0.24$ и $a = 5.8$
14	$z = \arccos x^2 - a\sqrt{(x/a^3)} + \frac{\sin^3 \pi/2}{\lg 2x}$ при $a = 0.94 \cdot 10^{-3}$ и $x = 0.093$
15	$y = ctg^4(\frac{\pi}{4} - 1) + \sqrt[3]{a + 1.5} - \frac{b}{\arcsin a ^2}$ при $a = 0.3$ и $b = -21.17$
16	$y = \frac{\sin(\frac{\pi}{8} - f)^2 + \sqrt[4]{(3 + x^2)}}{2}$ при $x = 2,57 \cdot 10^3$ и $f = 0,873$.

	· ·
17	$y = tg(a+b)^2 - \sqrt[3]{a+1.5} + ab^5 - \frac{b}{\ln a^2};$ при $a = 1.21$ и $b = 0.371$
18	$y = tg(a+b)^2 - \sqrt[3]{a+1,5} + ab^5 - \frac{b}{\ln a^2};$ при $a = 1,21$ и $b = 0,371$
19	$y = \frac{\sin(\frac{\pi}{8} - f)^2 + \sqrt[4]{(3 + x^2)}}{2} \text{при } x = 2,57 \cdot 10^3 \text{ и } f = 0,873.$
20	$y = \frac{\sin\frac{\pi}{6} + \sqrt{(3+x^2)} - \lg^3(x-1)}{\arcsin\frac{x}{2}};$ при $x = 1,59$
21	$y = tg(a+b)^2 - \sqrt[3]{a+1.5} + ab^5 - \frac{b}{\ln a^2};$ при $a = 1.21$ и $b = 0.371$
22	$z = arctgx^{2} - \sqrt{(x+1,43^{3})} + \frac{\cos^{3}(\pi/2a)}{\left x - \sqrt[5]{a}\right }; \text{при } x = 0,24 \text{ и}$ $a = 5,8$
23	$y = \frac{\sin(\frac{\pi}{6} - 1)^2 + \sqrt[4]{(3 + x^2)} - \lg^3(x^3 - 1)}{\arcsin\frac{x}{2} - 1,756 \cdot 10^{-2}};$ при $x = 1,6453$
24	$y = \sqrt[3]{a+1.5} + (a-b)^8 - \frac{b}{\arcsin a ^2}$ при $a = 0.3$ и $b = -21.17$
25	$z = \cos(x^2 + \frac{\pi}{6})^5 - \sqrt{xa^3} - \ln\left \frac{(a - 1,12x)}{4}\right $ при $a = 756,13$; $x = 0,3$

1.2 Найти оценки уравнения регрессии, используя метод наименьших квадратов и матричную форму записи уравнений:

$$A = (X^T \cdot X) \cdot (X^T \cdot Y)$$

Матрица X имеет 12 строк и 3 столбца. Первый столбец заполнен 1, второй произвольными целыми числами от (N варианта) до (N варианта+12), третий – произвольными целыми числами от 60 до 82. Y – вектор-столбец из 12 значений, заполнен произвольными дробными числами от 13,5 до 18,6. Найти

вектор оценок А (должен получиться вектор-строка из 3 значений). Проверить вектор А по следующей формуле:

$$Y = a_0 + a_1 x_1 + a_2 x_2$$

Полученные значения Y должны быть приблизительно равны значения Y из исходных данных

2 Визуализация данных в Matplotlib

Работа с графиками и обработка массивов. Сформировать массив значений функции f(x) на заданном интервале по формуле из таблицы ниже. Вывести на экран значения аргумента и значения функции. Найти в массиве наибольшее, наименьшее, среднее значение, определить количество элементов массива, а также отсортировать его (чётные варианты — по убыванию, нечётные — по возрастанию). Построить график изменения значений функции, вывести на экран его с обозначением осей, пределов изменения функции и аргумента. На экран также вывести график прямой, значение которой равно среднему значению функции f(x). График прямой и функции оформить различными маркерами.

Вариант	Задание
0	$y = \sin \frac{x}{3} + 1,2a$; при $x = 3,567$ и $-5 \le a \le 12$; $\Delta a = 2,5$
1	$s = \ln 1,3+t - e^t$; при $2 \le t \le 3$; $\Delta t = 0.05$
2	$y = ctgx^3 + 2,24ax$; при $x = 3,567$ и $3,5 \le a \le 25,5$; $\Delta a = 0,75$
3	$f = e^{ax} - 3,45a$; при $x = 3,67$ и $0 \le a \le 2$; $\Delta a = 0,2$
4	$l = \sqrt[5]{ 2x - c ^3} + 0.567$; при $x = 12.1$ и $-10 \le c \le 1$; $\Delta c = 0.5$
5	$y = ctgx^3 + 2,24ax$; при $x = 3,567$ и $-5 \le a \le 12$; $\Delta a = 0,5$
6	$y = \arcsin \frac{x}{3} + 1,2a$; при $3,5 \le a \le 25,5$; $\Delta a = 1,5$ и $x = 1,21$
7	$l = \sqrt[5]{ 2x - c ^3} + 0,567$; при $x = 3,67$ и $-10 \le c \le 1$; $\Delta c = 0,25$
8	$s = \ln 1,3+t - e^t$; при $2 \le t \le 3$ и $\Delta t = 0.03$
9	$f = e^{ax} - 3,45a$; при $x = 12,1$ и $-5 \le a \le 12$; $\Delta a = 1,75$
10	$l = \sqrt[5]{ 2x - c ^3} + 0,567$; при $x = 12,1$ и $-10 \le c \le 1$; $\Delta c = 0,5$
11	$l = \sqrt[5]{ 2x - c ^3} + 0,567$; при $x = 12,1$ и $-10 \le c \le 1$; $\Delta c = 0,5$
12	$s = \ln 1,3+t - e^t$; при $2 \le t \le 3$; $\Delta t = 0.05$
13	$f = e^{ax} - 3,45a$; при $x = 3,67$ и $0 \le a \le 2$; $\Delta a = 0,2$

14	$l = \sqrt[5]{ 2x - c ^3} + 0.567$; при $x = 12.1$ и $-10 \le c \le 1$; $\Delta c = 0.5$
15	$s = \ln 1,3+t - e^t$; при $2 \le t \le 3$ и $\Delta t = 0.03$
16	$f = e^{ax} - 3,45a$; при $x = 12,1$ и $-5 \le a \le 12$; $\Delta a = 1,75$
17	$y = \arcsin \frac{x}{3} + 1,2a$; при $3,5 \le a \le 25,5$; $\Delta a = 1,5$ и $x = 1,21$
18	$y = \sin \frac{x}{3} + 1,2a$; при $x = 3,567$ и $-5 \le a \le 12$; $\Delta a = 2,5$
19	$s = \ln 1,3+t - e^t$; при $2 \le t \le 3$; $\Delta t = 0.05$
20	$y = ctgx^3 + 2,24ax$; при $x = 3,567$ и $3,5 \le a \le 25,5$; $\Delta a = 0,75$
21	$f = e^{ax} - 3,45a$; при $x = 3,67$ и $0 \le a \le 2$; $\Delta a = 0,2$
22	$l = \sqrt[5]{ 2x - c ^3} + 0,567$; при $x = 12,1$ и $-10 \le c \le 1$; $\Delta c = 0,5$
23	$y = ctgx^3 + 2,24ax$; при $x = 3,567$ и $-5 \le a \le 12$; $\Delta a = 0,5$
24	$y = \arcsin \frac{x}{3} + 1,2a$; при $3,5 \le a \le 25,5$; $\Delta a = 1,5$ и $x = 1,21$
25	$l = \sqrt[5]{ 2x - c ^3} + 0.567$; при $x = 3.67$ и $-10 \le c \le 1$; $\Delta c = 0.25$

3.2 Построить графики следующих функций, изменения и диапазон аргумента задать самостоятельно:

$$z = x^{0.25} + y^{0.25}$$

$$z = x^{2} - y^{2}$$

$$z = 2x + 3y$$

$$z = x^{2} + y^{2}$$

$$z = 2 + 2x + 2y - x^{2} - y^{2}$$

3 Работа с Pandas и визуализация данных в Matplotlib

- 1. Импортировать датасет.
- 2. Взять 1000 значений из выбранного датасета (test.csv).
- 3. Проверить данные на пропуски.
- 4. Проверить нормальность распределения и выбросы. Использовать для проверки нормальности распределения ящики с усами (логарифмическую шкалу) и гистограммы.
 - 5. Заполнить пропуски и обработать аномальные значения.
 - 6. Определить сколько в выборке 1, 2, 3 ...комнатных квартир.
- 7. Построить сводную таблицу: подписи строк районы, подписи колонок комнаты, пересечение строк и столбцов количество квартир в этом районе.

8. Итоговый обработанный массив без выбросов и пропусков сохраните в файл surname.csv.

Вышлите итоговый вый файл на проверку преподавателю.