Ficheros y bases de datos

Álvaro González Sotillo

9 de septiembre de 2023

Índice

1.	Introduction	1
2.	Discos de datos	2
3.	Ficheros (archivos)	2
4.	Tipos de archivos	3
5.	Acceso a ficheros	7
6.	Bases de datos	7
7.	${\bf Est\'andar~ANSI/SPARC}$	8
8.	Diseño de bases de datos	9
9.	SGBD	10
10	Referencias	11

1. Introducción

- Se manejan grandes cantidades de datos desde hace mucho tiempo
 - Censos romanos
 - Bancos medievales
 - Información fiscal de cada país
 - Empresas de todo tipo
- \blacksquare Tradicionalmente, se han usado
 - Fichas, informes, expedientes archivadores, carpetas...

1.1. Antes de la informática

- Tradicionalmente
 - Manejados por personas
 - De forma manual
 - $\bullet\,$ Gran componente subjetivo
- Algunos sistemas intentan eliminar el componente subjetivo
 - Sistemas burocráticos

1.2. Informática

- Tratamiento automatizado de la información
- Se elimina el componente subjetivo
- Las operaciones con los datos se vuelven
 - Precisas
 - Rápidas
- Permite un mayor volumen de datos

2. Discos de datos

- Originalmente, los programas de ordenador utilizaban directamente los soportes de memoria (cinta, disco)
 - Ventaja: No se depende de otros sistemas
 - Pero...
- \blacksquare Un programa \Leftrightarrow Un disco de datos
 - Un cambio de datos hacía inútil el programa
 - Un cambio de programa hacía inútiles los datos anteriores
- Cada programa debe aprender a manejar los discos

3. Ficheros (archivos)

- El sistema operativo crea archivos
- Los programas se simplifican
- Los programas pueden compartir los discos
- Más de un programa puede usar los mismos ficheros de datos
 - Es necesaria una coordinación para acceder y modificar ficheros

3.1. ¿Qué es un archivo?

- Un archivo se compone de registros
 - Un registro son los datos agrupados de alguna entidad
- Un registro contiene campos de datos
- Cada campo tiene un nombre y un valor
 - Por simplicidad, supondremos que todos los registros tienen los mismos campos

3.2. Ejemplo de archivo

Identificador	Nombre	Deuda	Dirección
987	juan	87345	10 norte 342
876	pedro	43649	8 oriente 342
123	jorge	03342	av. libertad 23
69	vicente	61560	valencia nº183
18	lorenzo	06490	$sol n^{0}18$
19	lucía	06480	luna nº8

3.3. Nombres de los campos

Identificador	\mathbf{Nombre}	Deuda	Dirección
987	juan	87345	10 norte 342
876	$_{ m pedro}$	43649	8 oriente 342
123	$_{ m jorge}$	03342	av. libertad 23
69	vicente	61560	valencia n $^{\text{Q}}183$
18	lorenzo	06490	$sol n^{0}18$
19	lucía	06480	luna n $^{0}8$

3.4. Un registro

Identificador	Nombre	Deuda	Dirección
987	juan	87345	10 norte 342
876	pedro	43649	8 oriente 342
123	$_{ m jorge}$	03342	av. libertad 23
69	vicente	61560	valencia n $^{\text{o}}183$
18	lorenzo	06490	$sol n^{0}18$
19	lucía	06480	luna n $^{0}8$

3.5. Una columna

Identificador	\mathbf{Nombre}	Deuda	Dirección
987	juan	87345	10 norte 342
876	\mathbf{pedro}	43649	8 oriente 342
123	${f jorge}$	03342	av. libertad 23
69	vicente	61560	valencia nº183
18	lorenzo	06490	$sol n^{0}18$
19	lucía	06480	luna n $^{\mathbf{Q}}8$

4. Tipos de archivos

- Según su uso
- Según formato
- Según su organización

4.1. Tipos según su uso

- Permanentes
 - Datos que deben ser guardados
 - Ejemplo: Empleados contratados, nóminas pagadas, declaraciones de impuestos,...
- De movimiento
 - Cambios que deben ser incluidos en archivos permanentes
 - Ejemplo: un puesto de peaje debe guardar todos los pagos con tarjeta, y enviarlos juntos
- De maniobra
 - Se utilizan como extensión a la RAM de un ordenador, se borran cuando el proceso termina
 - Ejemplo: caché de disco de los navegadores

4.2. Según formato

- De texto (o planos, o ASCII, o UNICODE)
 - Pueden editarse con el bloc de notas
 - Son teóricamente legibles directamente por las personas
- Binarios
 - La información se guarda en un formato numérico (binario), no legible directamente

4.2.1. Ficheros binarios

- exe, dll: Ficheros ejecutables
- png, jpg, gif : Ficheros de imagen
- zip, rar : Ficheros comprimidos
- docx, pptx, xlsx, pdf : Documentos ofimáticos

4.2.2. Ficheros de texto

- txt: Texto
- html, rtf, ps: Texto con formato
- ini, inf, conf, xml: configuración de programas
- sql, java, php, c, bat, sh: instrucciones de programas informáticos

Variantes:

- Encodig: ASCII, UNICODE (utf-8, utf-16, utf-32), ISO-8859,...
- Fin de línea: Unix, Windows

4.2.3. Texto ¿plano?

- \blacksquare No es fácil/posible deducir en qué variante está guardado un fichero con texto plano
- Los programas utilizan
 - Heurísticas: pruebas en las primeras líneas del fichero
 - BOM

4.2.4. Ficheros de texto como binarios

- Al final, todos los ficheros son solo **números** almacenados en disco
 - Los programas o personas interpretan los números
- Un fichero de texto es en el fondo un fichero binario
- La traducción a "humano" es el estándar ASCII (o UNICODE), que asigna a cada byte una letra

Dec	Hex	Name	Char	Ctrl-char	Dec	Hex	Char	Dec	Hex	Char	Dec	Hex	Char
0	0	Null	NUL	CTRL-@	32	20	Space	64	40	0	96	60	
1	1	Start of heading	SOH	CTRL-A	33	21	1	65	41	A	97	61	a
2	2	Start of text	STX	CTRL-B	34	22	***	66	42	В	98	62	ь
3	3	End of text	ETX	CTRL-C	35	23	#	67	43	C	99	63	c
4	4	End of xmit	EOT	CTRL-D	36	24	\$	68	44	D	100	64	d
5	5	Enquiry	ENQ	CTRL-E	37	25	%	69	45	E	101	65	e
6	6	Acknowledge	ACK	CTRL-F	38	26	8.	70	46	F	102	66	f
7	7	Bell	BEL	CTRL-G	39	27		71	47	G	103	67	g
8	8	B ackspace	BS	CTRL-H	40	28	(72	48	н	104	68	h
9	9	Horizontal tab	HT	CTRL-I	41	29)	73	49	I	105	69	i
10	0A	Line feed	LF	CTRL-J	42	2A		74	44	3	106	64	j
11	OB	Vertical tab	VT	CTRL-K	43	2B	+:	75	4B	K	107	6B	k
12	OC.	Form feed	FF	CTRL-L	44	2C	P2	76	4C	L	108	6C	1
13	OD	Carriage feed	CR	CTRL-M	45	2D	2	77	4D	M	109	6D	m
14	0E	Shift out	SO	CTRL-N	46	2E	**	78	4E	N	110	6E	n
15	OF	Shift in	SI	CTRL-O	47	2F	1	79	4F	0	111	6F	0
16	10	Data line escape	DLE	CTRL-P	48	30	0	80	50	P	112	70	p
17	11	Device control 1	DC1	CTRL-Q	49	31	1	81	51	Q	113	71	q
18	12	Device control 2	DC2	CTRL-R	50	32	2	82	52	R	114	72	r
19	13	Device control 3	DC3	CTRL-S	51	33	3	83	53	S	115	73	s
20	14	Device control 4	DC4	CTRL-T	52	34	4	84	54	T	116	74	t
21	15	Neg acknowledge	NAK	CTRL-U	53	35	5	85	55	U	117	75	u
22	16	Synchronous idle	SYN	CTRL-V	54	36	6	86	56	V	118	76	٧
23	17	End of xmit block	ETB	CTRL-W	55	37	7	87	57	W	119	77	W
24	18	Cancel	CAN	CTRL-X	56	38	8	88	58	×	120	78	×
25	19	End of medium	EM	CTRL-Y	57	39	9	89	59	Y	121	79	У
26	1A	Substitute	SUB	CTRL-Z	58	ЗА	:	90	5A	Z	122	7A	z
27	18	Escape	ESC	CTRL-[59	38	;	91	5B	1	123	7B	{
28	1C	File separator	FS	CTRL-\	60	3C	<	92	5C	1	124	7C	1
29	1D	Group separator	GS	CTRL-]	61	3D	-	93	5D	1	125	7D	}
30	1E	Record separator	RS	CTRL-^	62	3E	>	94	5E	^	126	7E	~
31	1F	Unit separator	US	CTRL	63	3F	?	95	5F	_	127	7F	DEL

4.3. Tipos de ficheros según organización

- Organización secuencial
 - Los registros se colocan unos detrás de otros
 - Pueden estar ordenados por algún criterio
 - o Orden de llegada
 - o Alfabético por algún campo
- Organización indexada
 - Cada fichero secuencial puede tener otros ficheros de índice
 - El índice está ordenado por algún criterio
 - En el índice aparece
 - $\circ\,$ Identificador de cada registro
 - o En qué línea (posición) está ese registro

fichero-indexado.gif Crédito: www.dlsweb.rmit.edu.au

4.3.1. Ficheros indexados

- El fichero secuencial con datos es el fichero principal
- Cada fichero principal puede tener otros ficheros de índice
 - Uno por cada criterio que se desee buscar rápidamente
- Cada fichero de índice es a su vez un fichero secuencial
 - Podría indexarse, con un índice de segundo nivel

Créditos: www.tutorialspoint.com

4.3.2. Área de desbordamiento (overflow)

- Los criterios de un índice pueden no ser únicos
 - Por ejemplo, código postal en un fichero de alumnos
- Si hay un conflicto, los datos se almacenan en un área de overflow

Créditos: kpvxy.blogspot.com.es

4.4. Secuencial vs Indexado (escritura)

- Organización secuencial:
 - Si no se ordena, basta con añadir: rápido
 - Si se ordena, se puede necesitar cambiar todo el fichero: muy lento
- Organización indexada:
 - Si no hay colisiones, dos escrituras (índice y fichero principal)
 - Si hay colisiones (la clave ya está usada)
 - $\circ\,$ Usar un fichero de overflow (y reorganizar con el fichero principal en un futuro)
 - $\circ\,$ Reorganizar el fichero principal muylento
- Para lectura, ver acceso vs organización

5. Acceso a ficheros

- Acceso secuencial
 - Para llegar a un registro, es necesario pasar por todos los anteriores
 - Obligatorio en
 - o cintas
 - o ficheros sin indexar con campos de longitud variable (csv, xml,...)
- Acceso directo (aleatorio)
 - Se puede leer directamente un registro sin tener que pasar por los anteriores
 - Se necesita saber su posición (por un índice)

5.1. Acceso vs organización (lectura)

	Acceso secuencial	Acceso directo
Organización secuencial	Fácil y rápido	Deben leerse los registros anteriores, o estar ordenado
Organización indexada	Algo más lento (dos lecturas mínimo)	Más rápido (dos lecturas)

6. Bases de datos

- En una empresa, los datos pueden estar dispersos y duplicados
- Hay que actualizar todas las copias a la vez
 - centralización de los datos
- Puede haber datos confidenciales
 - permisos por fichero
- Se puede necesitar más de un programa accediendo a los mismos registros
- Pero no a los mismos campos
 - permisos por campo,
- Diferentes departamentos pueden tener nombres distintos para los ficheros, o los campos
 - diferentes formas de ver los registros

6.1. Definición (I)

Una colección de datos que están lógicamente relacionados entre sí, que tiene una definición y una descripción comunes y que están estructurados de una forma particular

6.2. Definición (II)

Una base de datos es una colección de datos estructurados según un modelo que refleje las relaciones y restricciones existentes en el mundo real. Los datos, que han de ser compartidos por diferentes usuarios y aplicaciones, deben mantenerse independientes de ésta, y su definición y descripción han de ser únicas estando almacenados junto a los mismos. Por último, los tratamientos que sufran estos datos tendrán que conservar la integridad y seguridad de éstos

6.3. Ventajas de las bases de datos

- Independencia de los datos y los programas y procesos. Esto permite modificar los datos sin modificar el código de las aplicaciones.
- Menor redundancia. Aunque, sólo los buenos diseños de datos tienen poca redundancia.
- Integridad. Mayor dificultad de perder los datos o de realizar incoherencias con ellos.
- Mayor seguridad. Al limitar el acceso a ciertos usuarios.
- Datos más documentados. Gracias a los metadatos que permiten describir la información de la base de datos.
- Acceso a los datos más eficiente. La organización de los datos produce un resultado más óptimo en rendimiento.

6.4. Inconvenientes

- Instalación costosa
 - El control y administración de bases de datos requiere de un software y hardware poderoso
- Requiere personal cualificado
 - Debido a la dificultad de manejo de este tipo de sistemas.
- De todas formas, las ventajas superan ampliamente los inconvenientes

7. Estándar ANSI/SPARC

- Define tres niveles, para ayudar a conseguir los objetivos de un SGBD
 - Interno: es como se almacena la información realmente. Por lo general, en ficheros en disco
 - Conceptual: incluye la estructura de la base de datos total
 - o Entidades
 - o Campos de las entidades
 - o Relaciones entre entidades
 - Externo: Cada tipo de usuario/aplicación puede operar con una parte del nivel conceptual, a veces con una transformación intermedia

ARQUITECTURA ANSI/SPARC DE UN SBD (arq. De Tres esquemas) Usuarios/ aplicaciones Nivel Externo VISTA 1 VISTA 2 VISTA N Nivel Conceptual Nivel Interno Esquema Interno BD

8. Diseño de bases de datos

- No es evidente abstraer, a partir de datos en bruto, la estructura de una base de datos
- Las bases de datos se diseñan en tres pasos
 - Nivel conceptual
 - Nivel lógico
 - Nivel físico

Nota: estos niveles son del diseño, no confundir con los niveles de la implementación Ansi/SPARC

8.1. Nivel conceptual

- Un usuario no informático debe poder entenderlo
- Trata sobre
 - \bullet entidades
 - relaciones entre ellas
 - datos a almacenar por cada entidad y relación

8.2. Nivel lógico

- El modelo conceptual debe ser sistematizado y simplificado, para que un ordenador pueda manejarlo
- No se decide cómo se guardarán los datos, pero sí qué forma tendrán
 - Generalmente, en forma de tabla

8.3. Nivel físico

- Se describe de qué forma el nivel lógico será almacenado en ficheros
 - CSV
 - Excel
 - XML
 - Utilizando un Sistema Gestor de Bases de Datos

9. SGBD

9.1. SGBD: Componentes

- Hardware: Servidores, discos, componentes de red,...
- Software: Incluye un software de base de datos y las aplicaciones que los manejan
- Datos: Tanto los datos originales como los metadatos

9.2. SGBD: Funciones

- Almacenar datos en la base de datos, acceder a ellos y actualizarlos
- Mantener descripciones de los datos accesibles por los usuarios (metadatos)
- Integridad: una transacción debe realizarse en su totalidad o no realizarse
- Integridad: los cambios deben poder ser realizados por varios usuarios a la vez
- Integridad: Se deben poder recuperar los datos si se pierden (backup)
- Integridad y confidencialidad: sólo usuarios autorizados pueden ver/modificar datos
- Integridad: sólo los datos que sigan el diseño lógico pueden ser almacenados
- Comunicación: Datos y operaciones están disponibles para usuarios y aplicaciones

9.3. SGBD: Objetivos

- Independencia física de datos
 - Un programa debería poder seguir funcionando aunque el diseño físico (cómo se almacenan los datos en disco) cambie
 - Basta con que el SGBD ofrezca sólo un nivel conceptual que pueda usar diferentes niveles físicos
- Independencia lógica de datos
 - Un programa debería poder seguir funcionando aunque el diseño lógico (cómo se relacionan los datos) cambie
 - Es más difícil, pero teóricamente son suficientes las vistas (niveles externos)
- Estos objetivos se ven facilitados por los niveles definidos en la arquitectura ANSI-SPARC

10. Referencias

- Formatos:
 - Transparencias
 - PDF
 - EPUB
- Creado con:
 - Emacs
 - org-re-reveal
 - Latex
- Alojado en Github