- generate matrix with condition number(n. cond)
 - Genera dos matrices ortogonales aleatorias U y V.
 - Crea un vector de n valores singulares espaciados logarítmicamente entre 1 y cond.
 Esto asegura que la razón entre el valor singular más grande y el más pequeño sea aproximadamente cond.
 - ullet Construye la matriz A utilizando la descomposición en valores singulares: $A=USV^T$, donde S es una matriz diagonal con los valores singulares.
- 2. exact_line_search_step(A, b, x_k, grad_fk):
 - Implementa la fórmula para el tamaño del paso óptimo α_k en el método de descenso por gradiente para problemas de mínimos cuadrados. La función objetivo es $f(x) = \|Ax b\|^2 = (Ax b)^T (Ax b)$.
 - El gradiente de f(x) es $\nabla f(x) = 2A^T(Ax b)$.
 - La dirección de descenso es $d_k = -\nabla f(x_k) = -2A^T(Ax_k b)$. Sin embargo, la constante 2 no afecta el tamaño del paso óptimo, por lo que usamos $d_k = A^T(b Ax_k)$ o equivalentemente $-\nabla f(x_k)/2$. En el código, se usa el gradiente $\nabla f(x_k) = A^T(Ax_k b)$.
 - El tamaño del paso óptimo α_k se encuentra minimizando $f(x_k \alpha d_k)$ con respecto a α . Esto lleva a la fórmula:

$$lpha_k = rac{d_k^T d_k}{d_k^T A^T A d_k} = rac{(A^T r_k)^T (A^T r_k)}{(A^T r_k)^T A^T A (A^T r_k)} = rac{r_k^T A A^T A r_k}{r_k^T A A^T A A^T A r_k}$$

donde $r_k=b-Ax_k$ es el residuo. **Corrección:** La fórmula correcta para el tamaño del paso con el gradiente $\nabla f(x_k)=A^T(Ax_k-b)$ es:

$$lpha_k = rac{(A^T(Ax_k-b))^T(A^T(Ax_k-b))}{(A^T(Ax_k-b))^TA^TA(A^T(Ax_k-b))} = rac{\|A^Tr_k\|^2}{\|A(A^Tr_k)\|^2}$$

donde $r_k = b - Ax_k$. En el código se utiliza $grad_-fk = A^T(Ax_k - b)$, por lo que la fórmula implementada es correcta para ese gradiente.

- 3. gradient_descent_exact_linesearch(A, b, x_0, max_iter=1000, tol=1e-6):
 - · Implementa el algoritmo de descenso por gradiente.
 - Inicializa el punto de partida $x_k = x_0$.
 - Almacena la historia del error cuadrático (norma del residuo al cuadrado) en cada iteración.
 - En cada iteración:
 - Calcula el residuo $r_k = Ax_k b$.
 - Calcula el gradiente $abla f(x_k) = A^T r_k$.
 - Determina el tamaño del paso óptimo $lpha_k$ usando $[exact_line_search_step]$.
 - Actualiza la solución $x_{k+1} = x_k \alpha_k \nabla f(x_k)$.
 - Verifica la condición de convergencia (si el cambio en x es menor que la telerancia)

- Verifica la condición de convergencia (si el cambio en x es menor que la tolerancia).
- pseudo inverse solution(A, b)
 - Calcula la pseudo-inversa de A usando la pinv(A).
 - Obtiene la solución $x_{pinv} = A^+b$.
 - Calcula el error cuadrático para esta solución.
- study convergence(n=100, condition numbers=[10, 100, 1000, 10000], num runs=5);
 - Esta función experimenta con diferentes números de condición para la matriz A.
 - · Para cada número de condición:
 - Genera múltiples matrices A y vectores b aleatorios.
 - Ejecuta el descenso por gradiente y calcula la solución con la pseudo-inversa.
 - Almacena la historia de la convergencia (norma del residuo al cuadrado).
 - Grafica la norma del residuo al cuadrado promedio en función del número de iteraciones para diferentes números de condición.
 - Imprime los residuales finales promedio obtenidos por el descenso por gradiente y el residual obtenido por la pseudo-inversa para cada número de condición.
- 6. Bloque if __name__ == "__main__"::
 - Define el tamaño del problema (n) y un número de condición de ejemplo.
 - Genera una matriz A y un vector b.
 - Resuelve el problema de mínimos cuadrados utilizando ambos métodos y muestra los resultados
 - Llama a la función study_convergence para analizar el efecto del número de condición

Cómo interpretar los resultados:

 Comparación con la pseudo-inversa: La solución obtenida por el descenso por gradiente debería converger a la misma solución que la obtenida por la pseudo-inversa (en ausencia de errores numéricos y con suficientes iteraciones). El residual final del descenso por gradiente debería acercarse al residual de la pseudo-inversa.

• Convergencia y número de condición:

- Se espera que la convergencia del descenso por gradiente sea más rápida para matrices con un número de condición bajo (cercano a 1).
- A medida que el número de condición de A aumenta, el problema se vuelve más "mal condicionado", y el descenso por gradiente tenderá a converger más lentamente, mostrando una trayectoria en "zig-zag" hacia la solución. Esto se debe a que la función objetivo tendrá contornos elípticos muy alargados.
- La gráfica generada por study_convergence debería ilustrar esta relación, mostrando curvas de convergencia más lentas para números de condición más grandes.
- Los residuales finales obtenidos por el descenso por gradiente también podrían ser ligeramente mayores para matrices mal condicionadas con un número finito de iteraciones.

Ejecuta este código y observa los resultados y la gráfica generada para comprender cómo el número de condición de la matriz A afecta la eficiencia del algoritmo de descenso por gradiente con exact line search al resolver problemas de mínimos cuadrados.