TOPOLOGÍA I

13 de febrero de 2013

1. En $\mathbb R$ se define la siguiente familia de subconjuntos:

$$\mathcal{T} = \{O \subseteq \mathbb{R} \mid \mathbb{R} - O \text{ es compacto en } (\mathbb{R}, \mathcal{T}_u)\} \cup \{\phi\}$$

- (a) Demostrar que $\mathcal T$ es una topología sobre $\mathbb R$.
- (b) Comparar T con la topología usual T_u .
- (c) Calcular interior, adherencia y frontera de $A = [0,1] \cup [2,3]$ y $B =]0,\infty[$ en $(\mathbb{R},T).$
- 2. Sea $f:(X,T)\longrightarrow (Y,T')$ una aplicación biyectiva. Probar que son equivalentes:
 - (a) f es continua y abierta.
 - (b) $f(\overline{A}) = \overline{f(A)}, \ \forall A \subset X.$
- 3. (a) Razonar si puede existir una biyección abierta del plano $(\mathbb{R}^2, \mathcal{T}_u)$ en la esfera $(\mathbb{S}^2, (\mathcal{T}_u)_{\mathbb{S}^2})$.
 - (b) Probar que si \mathcal{B} es una base de $(\mathbb{R}^2, \mathcal{T}_u)$, entonces las componentes conexas de los elementos de \mathcal{B} forman otra base de $(\mathbb{R}^2, \mathcal{T}_u)$.
- Razonar si los siguientes subespacios de (R³, T_u) son homeomorfos:
 - (a) $(\mathbb{S}^1 \times \{0\}) \bigcup (\{0\} \times \mathbb{S}^1)$,
 - (b) S²,
 - (c) $\mathbb{S}^2 \{N, S\},$
 - (d) $\mathbb{S}^1 \times \mathbb{R}$
 - (e) $(\mathbb{R} \times \{(0,0)\}) \cup \mathbb{S}^2$.

Puntuación: todos igual. Tiempo: 3 horas.

