Sequential Recommendation System Using Transformer Architecture

- 트랜스포머를 이용한 시퀀셜 추천시스템 -

202150294 오 형 택 Datascience LAB

Sequential Recommendation System

<실제 사용자가 구매한 아이템>

- ✔ 실제로 사용자가 아이템을 구매할 때 이미지와 텍스트 같은 부가적인 정보가 중요할 것이라고 가정함
- ✔ 사용자의 행동패턴을 학습 시, 아이템의 이미지(pre-trained VGG)와 텍스트(pre-trained BERT) 정보를 함께 반영

Data Design

	# users	# items	# average length	# side information
Luxury Beauty	3,362	1,494	7.1	Image, Description
Sports and Outdoors	153,940	55,697	5.7	Image, Description

- Amazon Dataset : Luxury&Beauty, Sports&Outdoors
- ✔ 사용자 혹은 아이템 구매이력 5건 이하 제거
- ✔ 이미지 및 텍스트 정보 없는 아이템 데이터셋 제거
- ✔ Test: 사용자의 마지막 구매 아이템 (n)
- ✔ Valid: 사용자의 마지막 구매 이전 아이템 (n-1)

From Transformer

- ✓ user_seq, user_pos_seq, user_neg_seq $\in \mathbb{R}^{batch_size \times \max_len}$
- ✓ Image_feature $\in \mathbb{R}^{batch_size \times max_len \times 4096}$
- ✓ text_feature ∈ $\mathbb{R}^{batch_size \times max_len \times 768}$

From Transformer

```
def compute relevance scores(self, item emb , q items):
    q emb = self.ie(q items)
    out = (item emb*q emb).sum(dim=-1)
    return out
def training step(self, batch, batch idx):
    u, seq, pos, neg, image feature, text feature = batch
    item emb = self.forward(seq, image feature, text feature) Transformer Encoder
    pos scores = self.compute relevance scores(item emb, pos)
    neq scores = self.compute relevance scores(item emb, neq)
    pos labels = torch.ones(pos scores.shape, device=self.device)
    neg labels = torch.zeros(neg scores.shape, device=self.device)
    indices = torch.where(pos!=0)
   loss = self.loss(pos_scores[indices], pos_labels[indices]) +\ Binary Cross Entropy
    self.loss(neg scores[indices], neg labels[indices]) \
    + self.hparams.12 pe reg*torch.linalq.matrix norm(next(self.pe.parameters()).data)
    self.log('loss', loss.item(), prog bar=True, logger=True)
    return {'loss': loss}
```


<사용자가 구매한 아이템>

<상위 추천 아이템>

Experiment Result

We hypothesize that with a more affluent corpus, the models are possible to learn good enough item embeddings even from the item context itself, leaving a smaller space for side information to make supplements.

	Luxury	Beauty	Sports and Outdoors			
	Hit@10	NDCG@10	Hit@10	NDCG@10		
SASRec	0.4763	0.3496	0.2569	<u>0.1428</u>		
SASRecNOVA (sum)	0.5261	0.363	0.2578	0.1424		
SASRecNOVA (concat)	0.4982	0.348	0.2498	0.1417		
SASRecNOVA (gating)	0.5264	0.3598	0.2585	0.1498		

			&	A		
			8 / 8			