Series temporelles - TP5

Patrick Waelbroeck, ENST waelbroe@enst.fr

Test d'autocorrélation

Utiliser intdef.raw

1) Estimer le modele i3 | inf, def

i3 | inf, def

$$beta = std = t =$$

1.7333	0.4320	4.0125	
0.6059	0.0821	7.3765	
0.5131	0.1184	4.3338	

Test d'autocorrélation

Avec les résidus du modèle:

- 1) calculer u_{t-1}
- 2) Faire la régression : u_t | u_{t-1} (attention sans intercept!)
- 3) Test de student sur ρ (coefficient de la régression précédente)

Correction par la méthode des MCG

- Transformer les observations à partir du p estimé
- Faire la régression des MCO sur les données transformées.

Correction

Calculer la série des quasi différences:

$$y_t - \rho y_{t-1}$$

Sauf pour la première observation:

$$sqrt(1-\rho^2)*y1.$$

On peut utiliser la matrice P telle que Omega^-1=transpose(P)*P

Délais distribués

- Estimer le modele i3 | inf_1, inf_2, def_1, def_2
 (attention pas d'intercept car modèle dynamique)
- 2) Représenter graphiquement les coefficients

i3 | inf_1, inf_2, def_1, def_2

beta =	std =	t =	
0.5399	0.1534	3.5185	
0.0305	0.2854	0.1068	
0.3587	0.1654	2.1688	
0.5918	0.2486	2.3804	

Pour finir

modèle de trois équations:

i3|inf1, inf2 def1 def 2

inf|i31, i32 def1 def 2

def|inf1, inf2 def1 def 2

Series temporelles - TP6

Patrick Waelbroeck, ENST waelbroe@enst.fr

AR(1)

 Créer des données par simulations puis tracer y,acf et spacf

```
y=zeros(1000,1);
for i=2:1000;
    y(i)=0.6*y(i-1)+randn;
end;
plot(y)
acf=sacf(y,20);
pacf=spacf(y,20);
```


04/05/2016

SPSS - Patrick Waelbroeck

AR(1) Sample partial autocorrelation coefficients 0.7 0.6

 Créer des données par simulations puis tracer y,acf et spacf

```
n=1000;
z=zeros(n,1);
e=randn(n,1);
for i=2:1000;
  z(i)=e(i)+0.8*e(i-1);
end;
plot(z);
acf=sacf(z,20)
pacf=spacf(z,20)
```


04/05/2016

SPSS - Patrick Waelbroeck

AR(2)

1) Créer des données par simulations puis tracer y, acf et spacf

```
n=1000;
y=zeros(n,1);
for i=3:1000;
  y(i)=0.6*y(i-1)+0.2*y(i-2)
+randn;
end;
plot(y)
acf=sacf(y,20);
pacf=spacf(y,20);
```

AR(2) -4 -6 L

04/05/2016

SPSS - Patrick Waelbroeck

AR(2)

04/05/2016

SPSS - Patrick Waelbroeck

AR(2)

1) Créer des données par simulations puis tracer y, acf et spacf

```
for i=3:1000;
y(i)=0.5*y(i-1)-0.8*y(i-2)+randn;
end;
plot(y)
acf=sacf(y,20)
pacf=spacf(y,20)
```


ARMA(2,2)

 Créer des données par simulations puis tracer y,acf et spacf

```
for i=3:1000;
y(i)=0.5*y(i-1)-0.8*y(i-2)+
e(i)+0.6*e(i-1)+0.2*e(i-2);
end;
plot(y)
acf=sacf(y,20)
pacf=spacf(y,20)
```

ARMA(2)

ARMA(2,2)

ARMA(2,2)

04/05/2016

SPSS - Patrick Waelbroeck

Simulation d'autocorrelation

1) Créer la serie

```
For i=2:586

y(i) = 1.19*y(i-1) + u(i) + 0.8*u(i-1)

End;
```

- 2) Faire la régression de y_t sur y_(t-1)
- 3) Le coefficient de la régression est-il biaisé? Si oui, pourquoi?

AR(1)

Utiliser intdef.raw

- Faire la régression Δinf_t | Δinf_(t-1) (avec constante)
- 2) Test de significativité
- 3) Faire la prévision de $\Delta \inf_{T+1|T}$
- 4) Calculer RMSE

```
load intdef.raw
reso=ols(y,X)
reso.beta(1)+reso.beta(2)*y(T)
```

Series temporelles - TP7

Patrick Waelbroeck, ENST waelbroe@enst.fr

Courbe de Phillips

1)Importer données de phillips.rawAttention aux observation manquantes2) Tracer inf

```
load phillips.raw
y=phillips(:,3);
plot(y)
```

Modélisation ARMA

- 1) Représenter l'ACF et le PACF
- 2) Faire le test du portemanteau (box)
- 3) Proposer une modélisation AR(p) en utilisant les critères AIC et BIC

Stationnarité

- 1)Diviser l'échantillon en deux puis en trois parties
- 2) Calculer les moyennes et les variances
- 3) Faire le test de racine unitaire :
- DF, DF augmenté avec 4 délais

Test de racine unitaire

Formuler

$$\Delta y_t = \alpha + \theta y_{t-1} + e_t.$$

$$\theta = \rho - 1$$
:

Pour tester

$$H_0: \rho = 1.$$

$$H_1: \rho < 1.$$

Seuil critique de la statistique de Dickey-Fuller

Significance Level	1%	2.5%	5%	10%
Critical Value	-3.43	-3.12	-2.86	-2.57

Test de changement de structure

Faire le test de chow avec date de changement en 1981

Faire le QLR test avec 15% de trimming