Algorithm 1 Job scheduling

```
1: Sort the jobs in non-increasing order of profits: g_1 \geq g_2 \geq \ldots \geq g_n

2: d \leftarrow \max_i d_i

3: for t: 1..d do

4: S(t) \leftarrow 0

5: end for

6: for i: 1..n do

7: Find the largest t such that S(t) = 0 and t \leq d_i, S(t) \leftarrow i

8: end for
```

Theorem 2.18. The greedy solution to job scheduling is optimal. That is, the profit P(S) of the schedule S computed by algorithm 1 is as large as possible.

Lemma 2.19. "S is promising" is an invariant for the (second) for-loop in algorithm 1.

Problem 2.21. Why does lemma 2.19 imply theorem 2.18? (Hint: this is a simple observation).

Proof. Assume S_{i-1} (i.e. S after i-1 iterations) is promising.

Case 1: If task i is not scheduled on iteration i, then there is no S' that extends S_{i-1} which schedules task i. But S_{i-1} is promising, so there is an optimal S' that extends S_{i-1} ; clearly the S' does not schedule task i, so "losing access" to task i does not change the fact that $S_i = S_{i-1}$ is promising.

Case 2: If, on the other hand, task i is scheduled at time t_i , let S'_{i-1} be the optimal extension of S_{i-1} . If S'_{i-1} schedules task i at t_i , then we're done. If t_i is scheduled at a different time t_0 , then $t_0 < t_i$, as t_i was the latest available time for task i. So let S'_i be S'_{i-1} , but with the tasks at times t_i and t_0 switched; we know task i may be moved to t_i as t_i is before d_i , and we know the task scheduled at t_i may be moved to t_0 because $t_0 < t_i$. We have found an extension of S_i with the same cost as S'_{i-1} , and S'_{i-1} is optimal. Therefore, S_i is promising. \square