Universidade Federal Rural de Pernambuco Departamento de Estatística e Informática (DEINFO) 06297 - Fundamentos de Engenharia de Software Aluno: Jadeilson José Rocha Campos - DATA 20.06.2017

Prova Escrita 2

1.9°) DESCREVA UMA ESTRUTURA DE PROCESSOS COM SUAS PRÓPRIAS PALAVRAS. AO AFIRMAMOS QUE ATIVIDADES DE MODELAGEM SE APLICAM A TODOS OS PROJETOS, INDEPENDENTEMENTE DE SEU TAMANHO E COMPLEXIDADE? JUSTIFIQUE

Resposta: É voltado para uma melhor divisão de todos os processos, por um conjunto de atividades que estabelecem uma metodologia para a prática da engenharia de software. O livro dá exemplo de 5 processos, que são eles: comunicação, planejamento, modelagem, construção e emprego. Comunicação: é a interação entre todas as partes envolvidas na construção do software, desde o estagiário até o gerente de processos. A comunicação com o cliente também é de fundamental importância, fazendo o levantamento da real necessidade. Planejamento: é toda a preparação para o desenvolvimento, onde todas as partes estão envolvidas e seguindo um único cronograma e metas. A criação de um mapa é fundamental para o andamento do projeto, ajudando a guiar a equipe em sua jornada. Modelagem: é toda uma estruturação, como um molde ou esboço do que se vai fazer, este é um dos processos mais importante, pois facilita toda a manutenção e implementação do produto final, facilitando até a detecção de erros. Construção: é a mão na massa, onde todos estarão unicamente focados em desenvolver o software conforme o planejado, partindo dos estagiários passando para os desenvolvedores, testes e gerência. Emprego: é a real utilidade do software, onde será instalado, em algum estabelecimento comercial, aplicativos, empresarial. Antes de ser vendido e comercializado o software tem que ser altamente testado visando diminuir os bugs futuros. O cliente depois de testar o programa lhe dará o feedback de tudo que achou.

2.12°) É POSSÍVEL COMBINAR MODELOS DE PROCESSO? EM CASO POSITIVO, DÊ UM EXEMPLO.

Resposta: Sim, um Processo Unificado (Unified Process (UP)) e os modelos de Processo Especializado "que levam em conta muitas das características de um ou mais

modelos tradicionais. Tais modelos tendem a ser aplicados quando se opta por uma abordagem de engenharia de software especializada ou definida de forma restrita".

Pressman, ROGER. Fundamentos de Engenharia de Software Pag,69.

O Processo Unificado (PU) surgiu como um processo popular para o desenvolvimento de software visando à construção de sistemas orientados a objetos (o RUP – Rational Unified Process é um refinamento do PU). É um processo interativo e adaptativo de desenvolvimento e vem ganhando cada vez mais adeptos devido à maneira organizada e consistente que permite conduzir um projeto.

3.4°) CADA UM DOS PROCESSOS ÁGEIS PODERIA SER DESCRITO USANDO-SE AS ATIVIDADES ESTRUTURAIS GENÉRICAS CITADAS NO CAPÍTULO 2? CONSTRUA UMA TABELA QUE ASSOCIE AS ATIVIDADES GENÉRICAS ÀS ATIVIDADES DEFINIDAS PARA CADA PROCESSO ÁGIL.

Resposta: A metodologia de processo genérica para engenharia de software estabelece cinco atividades metodológicas: comunicação, planejamento, modelagem, construção e entrega. Além disso, um conjunto de atividades de apoio são aplicadas ao longo do processo, como o acompanhamento e controle do projeto, a administração de riscos, a garantia da qualidade, o gerenciamento das configurações, as revisões técnicas e outras.

Metodologia Ágil	Atividades "Estruturais Genéricas"
Scrum	Planejar, Autópsia, Desenvolver, Evolução, Entrega
Modelagem ágil (AM)	Desenvolvimento
Crystal	Adapta-se ao Software "adaptabilidade (maneuverability)"
DSDM	Projeto de alto nível, Prazo apertado
Desenvolvimento de software enxuto (LSD)	Desenvolvimento, Para Projetos de alto nível, Entrega Rápida
Processo unificado ágil (AUP)	Concepção, Elaboração, Construção, Transição.

Extreme programming (XP)	Desenvolvimento
FDD	Planejamento, Revisão de projeto de alto nível

4.9°) DESCREVA O QUE SIGNIFICA "PARTICULARIDADE" NO CONTEXTO DO CRONOGRAMA DE UM PROJETO.

Resposta: Refere-se ao nível de detalhamento introduzido conforme o plano de projeto é desenvolvido. O termo trato dos detalhes por meio dos quais alguns elementos do planejamento são representados ou conduzidos, como de algo que é específico desse projeto ou é diferente da forma como se utilizam. Um plano com alto grau de particularidade fornece considerável detalhamento de tarefas planejadas para incrementos em intervalos relativamente curtos para que o rastreamento e controle ocorram com frequência. Um plano com baixo grau de particularidade resulta em tarefas mais amplas para intervalos maiores. No contexto geral, particularidade varia do alto para o baixo conforme o cronograma de projeto se distancia da data de entrega.

5.10°) O QUE REPRESENTAM AS "EXCEÇÕES" NOS CASOS DE USO?

Resposta:

Tendo como significado de exceção:

- 1. desvio de uma regra ou de um padrão convencionalmente aceito.
- 2. aquele que se desvia ou exclui de regras e padrões.

Representa todos os casos não tratado pelo desenvolvedor do sistema, o engenheiro deve buscar sempre o desenrolar de todos os casos possíveis, como um Plano B caso algo dê errado.

Na engenharia de software o termo exceção é uma situação que gera um comportamento anormal no sistema, gerando certos problemas não previstos como os "BUGS".