

Universidad Nacional de Colombia Facultad de Ciencias

Análisis Funcional

Sandra Natalia Florez Garcia
Edgar Santiago Ochoa Quiroga
María Alaiandra Rodríguez Ríos

María Alejandra Rodríguez Ríos

Ejercicio 9 Sea $(E, \|\cdot\|)$ un espacio vectorial normado. Dado r > 0, considere $C = B(0, r) = \{y \in E : \|y\| < r\}$. Determine el funcional de Minkowski de C.

Solución:

Dado que $(E, \|\cdot\|)$ es un espacio vectorial normado, se deduce que el conjunto C = B(0, r) es abierto, convexo y $0 \in C$.

Por consiguiente, el funcional de Minkowski asociado a C se define como:

$$\rho(x) = \inf \left\{ \alpha > 0 : \alpha^{-1} x \in C \right\}, \qquad x \in E.$$

Ahora, sea $x \in B(0, r)$. Entonces, para todo $\alpha > 0$ tal que $\alpha^{-1}x \in C$, se tiene:

$$\|\alpha^{-1}x\| < r.$$

Esto implica que:

$$\alpha^{-1}\|x\| < r,$$

y despejando α , se obtiene:

$$\frac{\|\mathbf{x}\|}{\mathbf{r}} < \alpha$$
.

En general, si $x \in B(0, r)$, tenemos:

$$\|\alpha^{-1}x\| < r \quad \Rightarrow \quad \alpha^{-1}\|x\| < r \quad \Rightarrow \quad \frac{\|x\|}{r} < \alpha.$$

Supongamos por contradicción que $\rho(x) \neq \frac{\|x\|}{r}$. Entonces debe ocurrir que:

$$\frac{\|\mathbf{x}\|}{\mathbf{r}} < \rho(\mathbf{x}).$$

Tomemos el promedio entre $\frac{\|x\|}{r}$ y $\rho(x)$:

$$\beta = \frac{\frac{\|\mathbf{x}\|}{r} + \rho(\mathbf{x})}{2}.$$

Este valor cumple que:

$$\frac{\|x\|}{r} < \beta < \rho(x).$$

Pero entonces:

$$\|\beta^{-1}x\| = \beta^{-1}\|x\| < \frac{r}{\|x\|} \cdot \|x\| = r,$$

lo cual implica que $\beta^{-1}x \in B(0,r)$, es decir, $\beta^{-1}x \in C$. Por tanto, $\beta \in \{\alpha > 0 : \alpha^{-1}x \in C\}$. Esto contradice el hecho de que $\rho(x)$ es la ínfimo de ese conjunto, ya que $\beta < \rho(x)$. Por lo tanto, concluimos que:

$$\rho(x) = \frac{\|x\|}{r}.$$

Ejercicio 12 Sea E un espacio vectorial normado.

- (i) Sea $W \subset E$ un subespacio propio de E y $x_0 \in E \setminus W$, tal que $d := dist(x_0, W) > 0$. Demuestre que existe $f \in E^*$ tal que f = 0 restricto a W, $f(x_0) = d$ y $||f||_{E^*} = 1$.
- (ii) Sea $W \subset E$ un subespacio propio cerrado de E y $x_0 \in E \setminus W$. Demuestre que existe $f \in E^*$ tal que f = 0 restricto a W y $f(x_0) \neq 0$.

Ejercicio 13 Sean $(E, \|\cdot\|)$ y $(F, \|\cdot\|)$ espacios de Banach.

- (i) Sea $K \subset E$ un subespacio cerrado de E. Definimos la relación sobre E dada por $x \sim_K y$ si y solo si $x y \in K$.
 - (a) Muestre que \sim_K es una relacion de equivalencia sobre E.

Demostración. Dado $x \in E$, como K es subespacio, $x - x = 0 \in K$, esto implica que $x \sim_K x$, mostrando así la reflexividad.

Dados $x, y \in E$, suponga que tenemos que $x \sim_K y$, luego $x - y \in K$, nuevamente como K es subespacio, es cerrado por multiplicacion escalar, así $-(x - y) \in K$, pero -(x - y) = y - x, así por definición de la relación tenemos que $y \sim_K x$, mostrando así la simetría.

Por ultimo sean $x,y,z\in E$, con $x\sim_K y$ y y $\sim_K z$, por definición $x-y\in K$ y $y-z\in K$, y como K es subespacio es cerrado para la suma, así tenemos que $(x-y)+(y-z)\in K$, pero (x-y)+(y-z)=x-z, así tenemos que $x\sim_K z$, así la relación es transitiva. Con esto podemos concluir que la relación es de equivalencia.

 $Q^{*}Q$

(b) Muestre que el espacio cociente E/K es un espacio de Banach con la norma

$$||x + K||_{E/K} = \inf_{k \in K} ||x - k||, \quad x \in E.$$

Es decir, debe verificar que el espacio cociente es un espacio vectorial, normado, cuya norma lo hace completo.

Demostración. Primero notemos que las operaciones definidas sobre el conjunto E/K son las siguientes

$$(x + K) + (y + K) = (x + y) + K,$$

 $\lambda(x + K) = \lambda x + K.$

Las propiedades de espacio vectorial para E/K, se heredan del hecho de que E ya es espacio vectorial, solo bastaría verificar que si están bien definidas estas operaciones. Si $x_1 + K = x_2 + K$ y $y_1 + K = y_2 + K$, tenemos que $x_1 - x_2 \in K$ y $y_1 - y_2 \in K$, pero como es subespacio la suma esta, así $(x_1 + y_1) - (x_2 + y_2) \in K$, así $(x_1 + y_1) + K = (x_2 + y_2) + K$, luego la suma esta bien definida. De manera similar, si $x_1 - x_2 \in K$, tenemos que al multiplicar por un escalar también esta en K, esto es $\lambda x_1 - \lambda x_2 \in K$, así $\lambda x_1 + K = \lambda x_2 + K$.

Ahora veamos que la norma definida en el enunciado, efectivamente es norma del espacio E/K. Primero esta norma esta bien definida ya que si x + K = y + K, eso quiere decir que $x - y \in K$, luego

$$\begin{split} \|x+K\| &= \inf_{k \in K} \|x-k\| \\ &= \inf_{k_1 \in K} \|x-(k_1+x-y)\| \\ &= \inf_{k_1 \in K} \|y-k_1\| \\ &= \|y+K\|. \end{split}$$

Luego como $||x - k|| \ge 0$, para todo $k \in K$, es claro que

$$\|x+K\| = \inf_{k\in K} \|x-k\| \ge 0,$$

ya que estamos tomando el ínfimo de un conjunto que esta acotado inferiormente por 0 y $x \in E$ fue tomado arbitrariamente.

Ahora supongamos que x + K = 0 + W, luego $x \in W$, así tenemos que

$$0 \le \|x + K\| = \inf_{k \in K} \|x - k\| \le \|x - x\| = 0,$$

Mostrando que el neutro tiene norma 0. Ahora si suponemos que $\|x+K\|=0$, como la norma es un ínfimo tenemos que existe una sucesión de puntos $k_n\in K$ tal que $\|x-k_n\|\to 0$, esto quiere decir que la sucesión k_n converge a x, pero K es cerrado por hipótesis, así $x\in K$, esto quiere decir que x+K=0+K. Ahora si $\lambda=0$, es claro que

$$\|\lambda(x+K)\| = \|0+K\| = 0 = 0 \cdot \|x+K\| = |\lambda| \|x+K\|.$$

Ahora si $\lambda \neq 0$., tenemos que

$$\begin{split} \|\lambda(x+K)\| &= \|\lambda x + K\| \\ &= \inf_{k \in K} \|\lambda x - k\| \\ &= \inf_{k \in K} \|\lambda(x - \lambda^{-1}k)\| \\ &= |\lambda| \inf_{k \in K} \|x - \lambda^{-1}k\| \\ &= |\lambda| \inf_{k_1 \in K} \|x - k_1\| \quad (k_1 = \lambda^{-1}k \in K) \\ &= |\lambda| \|x + K\| \end{split}$$

Note que podemos hacer esto ya que K es un subespacio. Por ultimo veamos la

desigualdad triangular,

$$\begin{split} \|(x+K)+(y+K)\| &= \|(x+y)+K\| \\ &= \inf_{k\in K} \|x+y-k\| \\ &= \inf_{k_1,k_2\in K} \|x+y-(k_1+k_2)\| \\ &\leq \inf_{k_1,k_2\in K} \{\|x-k_1\|+\|y-k_2\|\} \\ &= \inf_{k_1\in K} \|x-k_1\| + \inf_{k_2\in K} \|y-k_2\| \\ &= \|x+K\| + \|y+K\|. \end{split}$$

Note que nuevamente usamos el hecho de que K es subespacio, para escribir a $k=k_1+k_2$. Así concluimos que E/K es normado. Faltaría ver que el espacio es Banach.

Consideremos $\{x_n + K\} \subset E/K$, una sucesión de Cauchy, luego observe que nos podemos construir una subsucesión tal que

$$\|(x_{n_k}-x_{n_{k+1}})+K\|.$$

Esto lo podemos hacer ya que si $\varepsilon = \frac{1}{2}$, como la sucesión es Cauchy

$$\|(x_n-x_m)+K\|<\frac{1}{2},$$

para $n, m \ge n_1 \in \mathbb{Z}^+$. De manera similar para $\varepsilon = \frac{1}{4}$, existe $n_2 \in \mathbb{Z}^+$ tal que si $n, m \ge n_2$,

$$\|(x_n-x_m)+K\|<\frac{1}{4},$$

Note que esta cantidad es menos a $\frac{1}{2}$, entonces podemos asumir $n_2 > n_1$, note que por un argumento inductivo, conseguimos unos $n_1 < n_2 < \ldots < n_k$ tal que si $n, m \ge n_k$, tenemos que

$$\|(x_n - x_m) + K\| < \frac{1}{2^k}.$$

En particular note que para n_k , n_{k+1} tenemos que

$$\|(x_{n_k}-x_{n_{k+1}})+K\|<\frac{1}{2^k}.$$

Ahora a partir de esta subsucesión $\{x_{n_k}+K\}$ Podemos construir una sucesión $\{y_k\}$ tal que cada $y_k \in x_{n_k}+K$, de la siguiente manera. Por caracterización del ínfimo para k=1, tenemos que si tomamos $\delta=\frac{1}{2}-\|(x_{n_1}-x_{n_2})+K\|>0$, tenemos que existe $w_2\in K$ tal que

$$\|\mathbf{x}_{n_1} - \mathbf{x}_{n_2} - \mathbf{w}_2\| < \|(\mathbf{x}_{n_1} - \mathbf{x}_{n_2}) + \mathbf{K}\| + \delta = \frac{1}{2}.$$

Así si tomamos $y_1 = x_{n_1}$ y $y_2 = x_{n_2} + w_2$, de momento cumplimos que $y_1 \in x_{n_1} + K$ y $y_2 \in x_{n_2} + K$. Luego para el caso de k = 2 observe que podemos hacer que

$$\begin{split} \frac{1}{2^2} &> \| (x_{n_2} - x_{n_3}) + K \| \\ &= \inf_{w \in K} \| x_{n_2} - x_{n_3} - w \| \\ &= \inf_{w \in K} \| x_{n_2} + w_2 - w_2 - x_{n_3} - w \| \\ &= \inf_{\overline{w} \in K} \| x_{n_2} + w_2 - x_{n_3} - \overline{w} \| \\ &= \inf_{\overline{w} \in K} \| y_2 - x_{n_3} - \overline{w} \|. \end{split}$$

Note que esto lo podemos hacer ya que $w_2 \in K$ y este es un subespacio. Así de manera análoga podemos concluir la existencia de un $w_3 \in K$ tal que

$$\|y_2-x_{n_3}-w_3\|<\frac{1}{2^2}.$$

Así tomando $y_3 = x_{n_3} + w_3 \in x_{n_3} + K$, nos damos cuenta que de manera inductiva podemos tomar la sucesión $\{y_k\}$ deseada.

Como

Ahora como la serie geométrica converge absolutamente sabemos que dado un $\varepsilon > 0$, existe un N para el cual

$$\sum_{i=N}^{\infty} \frac{1}{2^{i}} < \varepsilon.$$

Tomando n, $m \le N$, si asumimos sin perdida de generalidad que n > m note que

$$\|y_n - y_m\| \le \sum_{i=m}^{n-1} \|y_{i+1} - y_i\|$$

$$< \sum_{i=m}^{n-1} \frac{1}{2^i}$$

$$< \sum_{i=N}^{\infty} \frac{1}{2^i} < \varepsilon.$$

Así concluimos que $\{y_k\}$ es de cauchy, y como esta es una sucesión de términos en E que es de Banach, sabemos que $y_k \to y$, luego debido a que la norma es un infimo

$$||x_{n-k} + K - (y + K)|| = ||(x_{n_k} - y) + K|| \le ||y_k - y|| \to 0.$$

Así concluimos que la subsucesión es convergente y por tanto como la secuencia original era de cauchy podemos concluir que $x_n + K \rightarrow y + K$. Mostrando así que E/K es de Banach.

 \Box , \Box

(ii) Sea $T \in L(E, F)$ tal que existe c > 0 para el cual

$$\|\mathsf{T}x\|_{\mathsf{F}} \geq c\|x\|_{\mathsf{E}},$$

para todo $x \in E$. Si K denota el espacio nulo de T y R(T) el rango de T, muestre que $\overline{T}: E/K \to R(T)$ dada por $\overline{T}(x+K) = T(x), x \in E$, esta bien definida y es un isomorfismo. Esto es $\overline{T} \in L(E/K, R(T))$ y $\overline{T}^{-1} \in L(R(T), E/K)$.

Demostración. Como el dominio de \overline{T} son clases de equivalencia tenemos que mostrar que la aplicación esta bien definida. Consideremos x + K = y + K, es decir $x, y \in E$ son dos representantes distintos de la misma clase. Por definición $\overline{T}(x + K) = T(x)$ y $\overline{T}(y + K) = T(y)$, luego como T es lineal

$$\overline{T}(x+K) - \overline{T}(y+K) = T(x) - T(y)$$

$$= T(x-y).$$

Como supusimos que clases son iguales, eso quiere decir que $x - y \in K$, pero K es el espacio nulo de K, así K0, mostrando así que

$$\overline{T}(x+K) = \overline{T}(y+K),$$

por lo tanto esta bien definida. Ahora la aplicación claramente es sobreyectiva ya que dado $y \in R(T)$, existe $x \in E$ tal que $y = T(x) = \overline{T}(x+K)$, así cada y tiene preimagen. Para la inyectividad se sigue un argumento muy parecido a mostrar que esta bien definida. Dados x+K, y+K, si $\overline{T}(x+K) = \overline{T}(y+K)$, esto quiere decir que T(x) = T(y), por linealidad T(x-y) = 0, así $x-y \in K$, concluyendo que x+K = y+K. Para ver que es isomorfismo faltaría mostrar que la aplicación y su inversa son lineales y acotadas. Primero \overline{T} es lineal ya que

$$\begin{split} \overline{T}((x+K) + \lambda(y+K)) &= \overline{T}((x+\lambda y) + K) \\ &= T(x+\lambda y) \\ &= T(x) + \lambda T(y) \\ &= \overline{T}(x+K) + \lambda \overline{T}(y+K). \end{split}$$

Note que se tiene por la linealidad de T. Ademas es acotada ya que

$$\begin{split} \|\overline{T}(x+K)\| &= \|T(x)\| \\ &\leq M\|x\| \\ &= M\|x-k+k\| \\ &\leq M\|x-k\| + M\|k\|. \end{split}$$

Donde M > 0, es una constante que depende de x. Esto se tiene ya que T es acotada, ahora por la monoticidad del ínfimo, podemos tomarlo sobre los $k \in K$, como el lado izquierdo no depende de k tenemos que

$$\begin{split} \|\overline{T}(x+K)\| & \leq \inf_{k \in K} \{M\|x-k\|+M\|k\|\} \\ & = M\inf_{k \in K} \|x-k\|+M\inf_{k \in K} \|k\| \\ & = M\inf_{k \in K} \|x-k\| \\ & = M\|x+K\|. \end{split}$$

Así hemos mostrado que es acotado. Ahora probemos las mismas dos propiedades para la aplicación \overline{T}^{-1} . Para la linealidad tenemos que dados $y_1, y_2 \in R(T)$, existen $x_1, x_2 \in E$, tales que $y_i = T(x_i) = \overline{T}(x_i + K)$, para i = 1, 2. Luego por la linealidad ya probada tenemos que

$$y_1 + \lambda y_2 = \overline{T}((x_1 + K) + \lambda(x_2 + K)),$$

como es biyectiva, aplicando \overline{T}^{-1} a ambos lados obtenemos

$$\overline{T}^{-1}(y_1 + \lambda y_2) = (x_1 + K) + \lambda(x_2 + K).$$

Pero por la manera en que tomamos y_1, y_2, y por la biyectividad sabemos que $\overline{T}^{-1}(y_i) = x_i + K$, para i = 1, 2. Así concluimos que

$$\overline{T}^{-1}(y_1 + \lambda y_2) = \overline{T}^{-1}(y_1) + \lambda \overline{T}^{-1}(y_2).$$

Para mostrar que es acotada usaremos una idea similar, si $y \in R(T)$, existe un $x \in E$ tal que $y = T(x) = \overline{T}(x + K)$, luego $\overline{T}^{-1}(y) = x + K$, así tomando la norma de E/K obtenemos

$$\begin{split} \|\overline{T}^{-1}(y)\| &= \|x + K\| \\ &= \inf_{k \in K} \|x - k\| \\ &\leq \|x\|. \end{split}$$

Por hipotesis existe un c > 0, tal que $c||x|| \le ||T(x)||$, es decir $||x|| \le \frac{1}{c}||T(x)||$ así tenemos que

$$\|\overline{T}^{-1}(y)\| \le \frac{1}{c} \|T(x)\|.$$

Pero y = T(x), luego

$$\|\overline{T}^{-1}(y)\| \leq \frac{1}{c}\|y\|,$$

así hemos mostrado que el operador es acotado y por tanto hemos concluido que \overline{T} es un isomorfismo.

 $\Omega^{\hat{}}\Omega$

Ejercicio 15 Considere los espacios C([0,1]) y $C^1([0,1])$ ambos equipados con la norma del supremo $\|f\|_{L^\infty} = \sup_{x \in [0,1]} |f(x)|$. Definimos el operador derivada $D: C^1([0,1]) \to C([0,1])$ dado por $f \mapsto f'$.

Muestre que D es un operador no acotado, pero su grafico G(D) es cerrado.

Demostración.

Supongamos, por contradicción, que D es un operador acotado. Entonces existe una constante M > 0 tal que,

$$\|f'\|=\|Df\|\leq M\|f\|\quad \text{para todo } f\in C^1([0,1]).$$

Definimos una sucesión de funciones $\{f_n\}_{n\in\mathbb{N}}$ dada por,

$$f_n:[0,1]\to\mathbb{R},\quad f_n(x)=x^n.$$

Claramente $f_n \in C^1([0,1])$ para todo $n \in \mathbb{N}$. Además, se cumple que,

$$\begin{split} \|f_n\| &= \sup_{x \in [0,1]} |x^n| = 1, \\ \|Df_n\| &= \sup_{x \in [0,1]} |nx^{n-1}| = n. \end{split}$$

Entonces:

$$||Df_n|| = n \le M||f_n|| = M.$$

Esto implica que $n \le M$ para todo n, lo cual es una contradicción, ya que siempre existe un $n \in \mathbb{N}$ tal que n > M. Por lo tanto, el operador D no es acotado.

Ahora veamos que, aunque el operador D no es acotado, su gráfico

$$G(D) = \{(f, f') : f \in C^1([0, 1]) \text{ y } f' \in C([0, 1])\}$$

sí es un conjunto cerrado.

Para demostrarlo, tomemos una sucesión $\{(f_n, f'_n)\}_{n \in \mathbb{N}} \subset G(D)$ tal que

$$(f_n, f'_n) \rightarrow (f, g)$$

en la norma del gráfico, es decir, en la norma

$$\|(f_n, f'_n) - (f, g)\|_{G(D)} = \|f_n - f\|_{L^{\infty}} + \|f'_n - g\|_{L^{\infty}}.$$

Esto significa que, para todo $\varepsilon > 0$, existe un $N \in \mathbb{N}$ tal que si n > N, entonces

$$\|f_n - f\|_{L^{\infty}} + \|f'_n - g\|_{L^{\infty}} < \varepsilon.$$

Por lo tanto,

$$f_n \to f$$
 uniformemente, y $f'_n \to g$ uniformemente.

Ahora, dado que cada f_n es de clase $C^1([0,1])$, y que tanto f_n como f'_n convergen uniformemente, se sigue que $f \in C^1([0,1])$ y que f' = g, con $g \in C([0,1])$. Es decir, la función límite f es derivable y su derivada es g, que es continua. Esto implica que $(f,f') \in G(D)$.

Por lo tanto, el gráfico G(D) es un conjunto cerrado.