Lição 1 - Os Números Reais

2025 - 05 - 14

Índice

Os Números Reais				1
Introdução			 AS.	1
Subconjuntos dos Reais				
Representação Geométrica			 	2
Diagrama Conceitual				
Exemplo com Python: Aproximação de $\sqrt{2}$	2	· 0/1.	 	3
Exemplo Resolvido		W.	 	4
Enunciado			 	4
Considerações Didáticas	. R		 	5
Referências				5

Os Números Reais

"A reta real é o palco onde todos os números convivem."

Introdução

O conjunto dos números reais, denotado por \mathbb{R} , inclui todos os números que podem ser representados na reta: inteiros, fracionários, decimais finitos ou infinitos, positivos ou negativos, racionais ou irracionais (Silva & Mendes, 2020).

1

Subconjuntos dos Reais

- Números Naturais (\mathbb{N}): 0, 1, 2, 3, ...
- Números Inteiros (\mathbb{Z}): -2, -1, 0, 1, 2, ...
- Números Racionais (\mathbb{Q}): frações como $\frac{1}{2}$ ou -3
- Números Irracionais (\mathbb{I}): π , $\sqrt{2}$, e• Números Reais (\mathbb{R}): união de \mathbb{Q} e \mathbb{I}

Representação Geométrica

Cada número real pode ser representado por um ponto numa reta contínua e infinita chamada reta real. Os números irracionais "preenchem" os espaços entre os números racionais, tornando \mathbb{R} um conjunto denso e completo.

Diagrama Conceitual

Exemplo com Python: Aproximação de $\sqrt{2}$

```
import numpy as np

# Aproximação racional de sqrt(2)
raiz_exata = np.sqrt(2)
aprox = 99 / 70  # fração racional próxima

erro = abs(raiz_exata - aprox)

print(f"A raiz quadrada de 2 é aproximadamente: {aprox}")
```

ASCUNII

U

UNHO

print(f"Valor exato com numpy: {raiz_exata:.10f}")
print(f"Erro absoluto: {erro:.10e}")

A raiz quadrada de 2 é aproximadamente: 1.4142857142857144

Valor exato com numpy: 1.4142135624 Erro absoluto: 7.2151912619e-05

Exemplo Resolvido

Enunciado

Classifica os seguintes números como racional ou irracional:

- 1. $\sqrt{2}$
- $2. \frac{7}{3}$
- 3. 0, 333 ...
- $4. \pi$
- 5. -5

Questão extra: Todos esses números pertencem a que conjunto numérico maior?

i Ver solução

- 1. $\sqrt{2} \rightarrow \mathbf{irracional}$ (não pode ser expresso como fração exata)
- $2. \frac{7}{3} \rightarrow \mathbf{racional}$ (é uma fração)
 - 3. $0,333... \rightarrow \mathbf{racional} \text{ (equivale a } \frac{1}{3}\text{)}$
 - 4. $\pi \to {\bf irracional}$ (valor decimal infinito não periódico)
 - 5. $-5 \rightarrow$ racional (é um número inteiro, que pode ser escrito como $\frac{-5}{1}$)

Todos pertencem ao conjunto dos Números Reais (\mathbb{R})

Os números irracionais "preenchem" os espaços entre os racionais, formando

4

um conjunto contínuo: $\mathbb{R} = \mathbb{Q} \cup \mathbb{I}$

Considerações Didáticas

- Compreender a hierarquia dos subconjuntos de \mathbb{R} .
- Diferenciar racionalidade e irracionalidade numérica.
- Representar pontos na reta real com precisão crescente.
- Relacionar matemática simbólica com aplicações computacionais.

Referências

Silva, J., & Mendes, A. (2020). $Matemática~A - 10^{o}~Ano.$ Editora Escolar.

5