

Reinforcement Learning

Slides by Ekapol Chuangsuwanich and Nat Dilokthanakul, researcher at VISTEC

Supervised Learning

Reinforcement Learning

Unsupervised Learning

Supervised Learning

Observe:

$$\circ$$
 $(x_1, y_1), (x_2, y_2), ...$

- Objective:
 - Input an unseen x_{new}
 - O What is y_{new}?

Unsupervised Learning

- Observe:
 - \circ $X_1, X_2, X_3, X_4, \dots$
- Objective:
 - \circ What is P(x)?
 - What is a good representation of x?
 - What can we learn from P(x)?

Reinforcement Learning (RL)

- Observe:
 - \circ The states (x_1, x_2, x_3, \dots)
 - \circ The reward (r_1, r_2, r_3, \dots)
- Can also take actions
 - o a₁, a₂, a₃, ...

- What are the best actions?
 - Such that we will receive highest accumulative rewards

Applications

DeepMind Al Reduces Google Data Centre Cooling Bill by 40%

https://deepmind.com/blog/deepmind-ai-reduces-google-data-centre-cooling-bill -40/

- Robotic
- Games
- Cooling system
- Autonomous vehicle
- etc.

https://research.googleblog.com/2016/03/deep-learning-for-robots-learning-fro

http://spectrum.ieee.org/automaton/robotics/drones/drone-uses-ai-and-11500-crashes-to-learn-

how-to-flv

RL framework

Learning through trial and error

RL framework

 $r_{t+1} = R(s_t, a_t)$

SkH = S(st, at)

```
Reward (r<sub>t</sub>)
State (s<sub>t</sub>)
Action (a<sub>t</sub>)
```

The second
$$\frac{a_t}{a_t}$$
 and $\frac{a_{t+1}}{a_{t+1}}$ and $\frac{a_{t+1}}{a_$

Rewards-based learning

- Maximise the rewards
- Can we design any desired behaviour with reward?

 $R_t = \Delta distance$

$$R_{t} = score$$

$$\mathbf{R}_{\mathrm{T}} = \left\{ egin{array}{l} 1 ext{ , win} \ -1, ext{ lose} \end{array}
ight.$$

The Environment

How can we model the environment?

Markov Decision Process (MDP)

- S,A,P,R,γ
- S Set of states
- A Set of actions
- P Transition between states given an action

$$P_{s,s'}^{a} = Prob[s_{t+1} = s' | s_{t} = s, a_{t} = a]$$

- R Rewards associated with actions and states
- y Discount factor

Markov Decision Process (MDP)

• S,A,P,R,γ

- S Set of states
- A Set of actions
- P Transition between states given an action

$$P_{s,s'}^{a} = Prob[s_{t+1} = s' | s_{t} = s, a_{t} = a]$$

- R Rewards associated with actions and states
- y Discount factor

Markov Property

$$p(s_{t+1}|s_t,a_t)$$

- s_{t+1} depends only on s_t
- not s_{t-1}, not anything before
- this simplifies our situation!

Fog of war

But, is it true in every case?

- It depends on your observed state
 - Fully observable state

Partially observable state

Fully observable

Fully Observable State

 Fully observable state: All information from the past is captured in the current state

For Go, a board position For simple video games, stack multiple frames

The Agent

Policy

- Policy = a mapping from a state to an action
- Objective of RL is to find the "optimal" policy!

$$a=\pi(s)$$

Can be either deterministic or stochastic

$$a \sim \pi(s)$$

Policy

Example: tabular policy

Learning

How do we find the best policy?

Rollout (Our data)

Time	0	1	2	3	•••	T-1	Т	
S	S ₀	S ₁	S ₂	S ₃	•••	S _{T-1}	S _T	Don't care
Α	A ₀	A ₁	A ₂	A_3		A _{T-1}	A _T	
R	R_0	R_1	R ₂	R_3	•••	R _{T-1}	R _T	
Done	0	0	0	0	•••	0	1	
END! DON'T CARE So Agent - 20 - 3 3 Env - 3 S_ + 3 Agent - 3 (TT) Terminated (TT)								

Return (Cumulative rewards)

Return = cumulative rewards with discount

$$G_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \dots = \sum_{t'=t}^{\infty} \gamma^{t'-t} r_t$$

$$r_t = 0$$

$$r_{t+10} = 1$$

 $r_{t+34} = -7$

What is learning?

Use data to find/search for the best policy

What is the best policy?

Policy that give us the highest expected return!

$$G=r_0+\gamma r_1+\gamma^2 r_2+\dots \ J(\pi)=E_\pi[G]$$

Return under a policy (G^{π})

Expected Return

How good "on average" is our return?

Statisfical expectation For value
$$G_0$$

For value G_0
 $G_0 = \sum_{t=0}^{T} r_t$

Following policy $G_0 = \sum_{t=0}^{T} r_t$
 $G_0 = \sum_{t=0}^{T} r_t$

A naive learning method

- 1. Initialise a policy randomly
- 2. Evaluate the policy by running that policy multiple times
 - a. which we then collect the returns of all the runs
- 3. Randomly initialise another policy
- 4. Evaluate the new policy
- 5. Keep the policy that have a higher expected return
- 6. Repeat 3-5

Intuitive. But very inefficient!

How to make it more efficient?

Model-free RL

Q-learning algorithm

- Let's define a state value as
 - Expectation of the return after visit s and follow π

$$V^\pi(s) = E_\pi[G_t|s_t=s]$$

- Let's define a state-action value (Q-value) as
 - Expectation of the return after visit a state s, take action a

$$Q^\pi(s,a) = E_\pi[G_t|s_t=s,a_t=a]$$

$$V^\pi(s) = E_{\pi(s)}[Q^\pi(s,\pi(s))]$$

Q-learning algorithm

There exist an optimal value function associate with an optimal policy,

$$V^*(s) = \max_{\pi} V^{\pi}(s) \ \ orall s \in S$$

 The optimal policy is the policy that achieves the highest value for every state

Q-learning algorithm

It follows that

$$V^*(s) = \max_a [Q^*(s,a)]$$

and ..

$$\pi^*(s) = argmax_a Q^*(s,a)$$

Optimal actions can be found indirectly through Q-value

Example, Tabular Q-learning

Monte-Carlo Estimator

• Initialise π

Monte-Carlo Estimator

$$Q^\pi(s,a)pprox r_0+\gamma r_1+\gamma^2 r_2+\ldots+\gamma^n r_n \ \gamma=0.9$$

Policy Improvement

$$\pi'(s) = argmax_a Q(s, a)$$

$$Q(s,a) pprox r_0 + \gamma \max_b Q(s',b)$$

$$Q(s,a) pprox r_0 + \gamma \max_b Q(s',b)$$

$$Q(s,a) pprox r_0 + \gamma \max_b Q(s',b)$$

$$Q(s,a) pprox r_0 + \gamma \max_b Q(s',b)$$

Policy Improvement

Bias and Variance in RL

What is bias of V_{π} estimation?

- Let $\hat{V}_{\pi}(s)$ be an estimate of $V_{\pi}(s)$
- $\hat{V}_{\pi}(s)$ is unbiased if:

$$\mathbb{E}_s\left[\hat{V}_\pi(s)-V_\pi(s)
ight]=0$$

What is variance of $\hat{V}_{\pi}(s)$ estimation?

–
$$\mathbb{V}\mathrm{ar}\left[\hat{V_{\pi}}(s)
ight]=\mathbb{E}_{s}\left[(\hat{V_{\pi}}(s)-\mathbb{E}_{s}\left[\hat{V_{\pi}}(s)
ight])^{2}
ight]$$

- High if $\hat{V_{\pi}}(s)$ fluctuates a lot

Bias and Variance

- Monte-Carlo estimate has high variance and low bias.
- Bootstrap estimate has higher bias but lower variance.

Function Approximator (FA)

- Tabular Q-value is impractical when the state-action space is large!
 - Need large memory
 - Impractical to fill up every cell
- Enter .. a function approximator

Function Approximator (FA)

- Tabular Q-value is impractical when the state-action space is large!
 - Need large memory
 - Impractical to fill up every cell
- Enter .. a function approximator

Function Approximator (FA)

 Instead of a table containing Q-value for every state and action, use a function that output Q-values.

Learning with FA

- With tabular Q-learning,
 - the act of learning = putting Q-value in the table
- With function approximator,
 - the act of learning = searching for the optimal parameters of the FA

Learning with FA

 How to adapt the parameters (weights) of the FA?

Step 1: Define a loss function.

Step 2: Optimise the weights to minimise the loss

Loss function

- What should be the loss function?
- Introducing Bellman's equations

$$V^{\pi}(s_t) = E_{\pi,P}[r_t + \gamma V^{\pi}(s_{t+1})]$$

$$Q^{\pi}(s_t) = E_{\pi,P}[r_t + \gamma Q^{\pi}(s_{t+1}, a_{t+1})]$$

Bellman's optimality equations

$$Q^*(s_t) = E_P[r_t + \gamma \max_b Q^*(s_{t+1}, b)]$$

Loss function

- The Bellman's equation must hold for correct Q-value
- Rewrite the Bellman's optimality with our estimator (FA)

 $\hat{Q}(s_t) = E_P[r_t + \gamma \max_b \hat{Q}(s_{t+1}, b)]$

The estimator is correct if the left hand side = right hand side

$$TD = r_t + \gamma \max_b \hat{Q}_{ heta}(s_{t+1}, b) - \hat{Q}_{ heta}(s_t)$$

"Temporal Difference error"

Temporal Difference Learning

- Use TD-error to guide learning
- Example
 - Deep Q-Neworks (DQN)
 - Deep convolutional neural network as a function approximator
 - Optimise square TD-error

$$L(heta) = (r_t + \gamma \max_b \hat{Q}_{ heta}(s_{t+1}, b) - \hat{Q}_{ heta}(s_t))^2$$

Policy Gradient methods

Policy gradient

Q Learning

- policy is implicit
- if we already have Q, we have policy
- we just look at Q to get π

Policy gradient

- learns π directly explicitly
- use Q, V as a helper for learning π

Policy gradient

Use Function Approximator to represent policy directly

Loss function

Start-state objective

$$J(heta)=E_{\pi(heta)}[G|s_0]=V(s_0)$$

Average-reward objective

$$J(heta) = \sum_s d^\pi(s) \sum_a \pi(s,a) r(s,a)$$

- * **d** is a stationary distribution of a Markov chain.
- One way to optimise these objectives is to use SGD.

Computing the gradient

Let's try to compute the gradient of the start-state objective

$$J(heta) = E_{\pi_{ heta}}[G|s_0]$$

To evaluate this expectation, maybe we could try a one-sample Monte-Carlo estimator:

$$J(heta)pprox r_0+\gamma r_1+\gamma^2 r_3+\dots \
abla J(heta)pprox
abla_ heta[r_0+\gamma r_1+\gamma^2 r_3+\dots]$$

Doesn't quite work? The evaluated value does not depend on $\boldsymbol{\rho}$. Gradient can't be computed.

Computing the gradient

Maybe we can try change heta a little bit and find the difference?

$$egin{aligned} J(heta) &pprox r_0 + \gamma r_1 + \gamma^2 r_3 + \dots \ J(heta + \delta heta) &pprox r_0' + \gamma r_1' + \gamma^2 r_3' + \dots \
abla J &= rac{J(heta) - J(heta + \delta)}{\delta} \end{aligned}$$

Could work? But...

Looks very expensive and noisy to compute! Maybe there is a better way?

Policy gradient

Let's start from the average-reward objective

$$J(heta) = \sum_s d^\pi(s) \sum_a \pi_ heta(s,a) r(s,a)$$

For simplicity let's assume d(s) does not depend on θ

$$J(\theta) = \sum_{s} d(s) \sum_{a} \pi_{\theta}(s, a) r(s, a)$$

$$abla_{ heta} J(heta) = \sum_{s} d(s) \sum_{a}
abla_{ heta} \pi_{ heta}(s,a) r(s,a)$$

Almost there...

Policy gradient

REINFORCE trick!

$$abla_{ heta} J(heta) = \sum_{s} d(s) \sum_{a}
abla_{ heta} \pi_{ heta}(s,a) r(s,a)$$

$$abla_{ heta} J(heta) = \sum_{s} d(s) \sum_{a} \pi_{ heta}
abla_{ heta} \log \pi_{ heta}(s,a) r(s,a)$$

$$abla_{ heta} J(heta) = E_{\pi} [
abla_{ heta} \log \pi_{ heta}(s,a) r(s,a)]$$

$$abla_{ heta} J(heta) pprox
abla_{ heta} \log \pi_{ heta}(s,a) r(s,a)$$

Policy gradient theorem

There is a theorem...called policy gradient theorem say that we can replace $\,r(s,a)\,$ with $\,Q(s,a)\,$

$$abla_{ heta}J(heta)=E_{\pi_{ heta}}[
abla_{ heta}log\pi_{ heta}(s,a)Q^{\pi_{ heta}}(s,a)]$$

Encourage Exploration

- policy $\pi_{ heta}(a|s)$ could be too confident early
- Like, $\pi_{ heta}(a=a|s)=1$
- this could lead to insufficient exploration
- encourage exploration by "entropy term" $H(\pi_{ heta})$
- we want to punish too low entropy
- New gradient rule: $abla_{ heta}J(heta)
 ightarrow
 abla_{ heta}J(heta) +
 abla_{ heta}H(\pi_{ heta})$

Entropy (H)

On policy and off policy algorithms

Q Learning: $Q^*(s_t,a_t)=r_{t+1}+\max_a Q^*(s_{t+1},a)$

- you need a_t, s_t, r_{t+1}, s_{t+1} to satisfy the above equation
- you can get (a, s, r, s') from any policy
- Q learning is *off-policy*

Policy gradient: $abla_{ heta} J(heta) = \mathbb{E}\left[Q_{\pi}(s,a)
abla_{ heta} \log \pi_{ heta}(a|s)
ight]$

- you need s, a and $Q_{\pi}(s,a)$
- Q_{π} needs to be from the current policy
- **s**, **a** needs to come from <u>current</u> policy
- policy gradient is on-policy

Baselines

 $Q_\pi(s,a)$ has high variance (Monte Carlo) $Q_\pi(s,a)
abla_\theta \log \pi_\theta(a|s) =
abla_\theta J(\theta)$ is very noisy Slow down training a lot!

We need to reduce variance to speed up the training

Baselines reduce variance

What is a good b(s)?

 $V_{\pi}(s)$ is a convenient choice

Why baseline use b(s) not b(s, a)

- b(s, a) has potential to reduce more variance, but harder to incorporate to the policy gradient theorem
- b(s) can be added without changing the objective

$$egin{aligned}
abla_{ heta} J(heta) &= \mathbb{E}_{s \sim d^\pi, a \sim \pi} \left[\left(Q_\pi(s, a) - b(s)
ight)
abla_{ heta} \log \pi_{ heta}(a|s)
ight] \ &= \mathbb{E} \left[Q_\pi(s, a)
abla_{ heta} \log \pi_{ heta}(a|s)
ight] - \mathbb{E}_{s \sim d^\pi, a \sim \pi} \left[b(s)
abla_{ heta} \log \pi_{ heta}(a|s)
ight] \end{aligned}$$

$$\begin{array}{ll} \textbf{Consider:} & \mathbb{E}_{s \sim d^\pi, a \sim \pi} \left[b(s) \nabla_\theta \log \pi_\theta(a|s) \right] \\ & = \mathbb{E}_{s \sim d^\pi} \left[\int_a \pi(a|s) b(s) \frac{\nabla_\theta \pi_\theta(a|s)}{\pi(a|s)} \right] \\ & = \mathbb{E}_{s \sim d^\pi} \left[b(s) \nabla_\theta \int_a \pi_\theta(a|s) \right] \\ & = \mathbb{E}_{s \sim d^\pi} \left[b(s) \nabla_\theta 1 \right] = 0 \end{array}$$

b(s) doesn't affect the objective

Advantage Function

When we use V(s) as baseline:

$$A(s,a) = Q(s,a) - V(s)$$

We call this the advantage function.

It tells the relative value of the actions.

Lower variance than using absolute value of the actions.

Model-based RL

Model-based RL

- In model-based RL, we first build the model of the environment
- Then use that model to directly search for the answer.
- The problem is ... inaccurate model can give us bad policies...
- It is believed that if we can treat the uncertainty in the model correctly...model-based RL is the most efficient method!
- However, measuring uncertainty in the model is also very difficult.

Things to consider

When do we need RL?

Your action affects the observation.

•
$$x_1$$
, $a_1 \longrightarrow x_2$

 The target behaviour is difficult to be directly hard-coded.

 Collection of the data of a target behaviour is difficult.

Credit assignment problem

- An action can have consequences further away in time
- Some movements might not have any effect on the outcome

10 time steps later

$$r_t = 0$$

$$r_{t+10} = 1$$

Bias and Variance

- Bias and variance are really important in RL
- We want to reduce both of them as much as possible
 - DQN uses experience replay to reduce bias
 - DQN uses target network to reduce variance
 - Actor-Critic method uses baseline to reduce variance
 - Actor-Critic method uses parallel worker to reduce bias
 - o etc.

https://www.slideshare.net/MuhammedKocaba/huma nlevel-control-through-deep-reinforcement-learning-p resentation

Exploration and Exploitation

- Many RL results assume that the all of the states are visited infinitely often.
- Also, many RL algorithms are reduced into just an optimisation problem.
- Therefore, nicely spread/informative data can help a lot!
- DQN uses epsilon-greedy for exploration
- Policy gradient uses entropy regulariser to encourage exploration

Sparse reward problem

- Another problem is when rewards are sparse.
- Since, model-free RL is just learning the correlations of trajectories and rewards... when there is no reward, RL cannot learn.
- Can we make it better?
 - Curiosity + intrinsic motivation?
 - Curriculum learning?
 - Hierarchical RL?

Optimisation problem

- Initialization problems
- Is SGD the best we can do?
- Natural gradient?
- Adaptive learning rate?
- Catastrophic forgetting?

Designing the reward signal

- Reward design can be quite challenging...
- Naive reward design can lead to unexpected (cheating) behaviours!
- Example:

Current trends & open problems

- Intrinsic motivation, reward-bonus
- Imitation learning
- Multi-agent system and self-play
- Curriculum learning
- Model-based RL
- Robot learning + sim-to-real transfer learning
- etc...

Reinforcement learning

Elements of RL Environment, Agent, State, and MDP Estimating Q Monte-Carlo, Bootstrap Deep learning as a function approximator Policy learning Q-learning TD learning Policy gradient Concepts **Exploration vs Exploitation**