Vektorski prostori

1 Rešitve nalog: Vektorski prostori in linearne preslikave

1.1. Ne.

1.2. Da.

1.3. Da.

2 Vektorski podprostori

2.1. (a) Ne.

(c) Ne.

(e) Da.

(g) Da.

(b) Da.

(d) Da.

(f) Ne.

2.2. (a) Da.

(c) Da.

(e) Da.

(b) Ne.

(d) Da.

(f) Ne.

3 Ogrodje in baza

3.1.
$$a = -6b + 3c + 2d$$

3.2.
$$t^2 + 4t - 3 = -3(t^2 - 2t + 5) + 2(2t^2 - 3t) + 4(t + 3)$$

3.3.

$$3.4. \ 2x - 4y - 3z = 0$$

3.5. (a) Ne. Baza je npr. $\{v_1, v_2\}$.

(b) Da.

3.6.

3.7. Baza je npr.
$$\{(1,0,0,1,0,0),(0,1,1,0,0,0),(0,0,0,0,1,0),(0,0,0,0,0,1)\}$$
 in dim $V=4$.

3.8.
$$\dim U = \dim V = 2$$
, $\dim (U+V) = 3$, $\dim (U\cap V) = 1$. Baza U je npr. $\{(1,2,1),(1,1,-1)\}$, baza V je npr. $\{(2,3,-1),(1,2,2)\}$, baza $U+V$ je npr. $\{(1,2,1),(1,1,-1),(2,3,-1)\}$, baza $U\cap V$ je npr. $\{(3,5,1)\}$.

3.9. $\dim U = \dim V = 2$, $\dim (U + V) = 3$, $\dim (U \cap V) = 1$. Baza U je npr.

$$\{(1,1,1,1,1),(1,0,0,0,-1)\},\$$

baza V je npr.

$$\{(-1,-1,0,0,1),(3,2,2,2,1)\},\$$

baza U + V je npr.

$$\{(1,1,1,1,1),(1,0,0,0,-1),(-1,-1,0,0,1)\},\$$

baza $U \cap V$ je npr.

$$\{(3,2,2,2,1)\}.$$

3.10. $\dim U = \dim V = 3$, $\dim (U + V) = 4$, $\dim (U \cap V) = 2$. Baza *U* je npr.

$$\{x^4 + x^2 + 1, -x^4 + x^3 + x^2 - x, -x^4 + 2x^3\},\$$

baza V je npr.

$${x^4 - 4x + 3, x^3 - 3x + 2, x^2 - 2x + 1}$$
,

baza U + V je npr.

$$\{x^4 + x^2 + 1, -x^4 + x^3 + x^2 - x, -x^4 + 2x^3, x^4 - 4x + 3\}$$

baza $U \cap V$ je npr.

$$\left\{x^4 - \frac{7}{2}x^2 + 3x - \frac{1}{2}, x^3 - \frac{5}{2}x^2 + 2x - \frac{1}{2}\right\}.$$

4 Linearne preslikave

- 4.1. (a) Zrcaljenje čez simetralo lihih kvadrantov.
 - (b) Pravokotna projekcija na x-os.
 - (c) a = 0: Pravokotna projekcija na x-os.
 - a > 0: Razteg v smeri y-osi.
 - a < 0: Kompozicija zrcaljenja čez y-os in raztega v smeri y-osi.
 - (d) Projekcija na simetralo lihih kvadrantov vzdolž $y\text{-}\mathrm{osi}.$
- 4.2.
- 4.3.
- 4.4. Npr. $V = \mathbb{R}^2$, $U = \{(x,0) \mid x \in \mathbb{R}\}$, $V = \{(x,x) \mid x \in \mathbb{R}\}$ in A(x,y) = (x,0) za $(x,y) \in \mathbb{R}^2$.
- 4.5.

- 4.6. Če je $\vec{a} = (1, 0, 1)$, je ker $\mathcal{A} = \operatorname{Lin} \{\vec{a}\}$.
- 4.7. (a)
 - (b) Če $\vec{a} \perp \vec{b}$: $\ker A = \{\vec{x} \in \mathbb{R}^3 \mid \vec{x} \perp \vec{a}\}$ in rang A = 1. Če $\vec{a} \not\perp \vec{b}$: $\ker A = \operatorname{Lin} \{\vec{b}\}$ in rang A = 2.
 - (c) $\vec{a} \cdot \vec{b} \in \{-1, 1\}$
- 4.8. Nasvet: Potrebno je dokazati, da je linearna preslikava $\mathcal{A} \colon \mathbb{R}^3 \to \mathbb{R}^3$ s predpisom $\mathcal{A}\overrightarrow{x} = (\overrightarrow{x} \cdot \overrightarrow{a}) \overrightarrow{a} + \overrightarrow{x} \times \overrightarrow{a}$ je injektivna in posledično bijektivna.
- 4.9. $\ker A = \operatorname{Lin} \{1\}, \ \operatorname{im} A = \operatorname{Lin} \{1, x, \dots, x^{n-1}\} = \mathbb{R}_{n-1}[x]$
- 4.10. Če $\lambda = 0$: $\ker A = \{ p \in \mathbb{R}_2 [x] \mid p(1) = 0 \} = \operatorname{Lin} \{ x^2 1, x 1 \}.$ Če $\lambda = -3$: $\ker A = \operatorname{Lin} \{ x^2 + x + 1 \}.$ Če $\lambda \in \mathbb{R} \setminus \{ 0, -3 \}$: $\ker A = \{ 0 \}.$
- 4.11. Edina, ki je linearna, je B in je bijektivna.