Chapitre 4: Matrices

I Généralités

Voir le cours de MM1.

Proposition: Symbole de Kronecker

Soit $n \in \mathbb{N}^*$. Le symbole de Kronecker est défini par :

$$\delta_{ij} = \begin{cases} 1 & \text{si } i = j \\ 0 & \text{sinon} \end{cases}$$

pour $i, j \in \{1, 2, ..., n\}$.

 $oldsymbol{0}$ Remarque : De là découle immédiatement les matrices élémentaires suivantes : $E_{ij}=(\delta_{ik}\delta_{jl})_{1\leq k,l\leq n}$.

II Structure d'un espace vectoriel

A Ensemble des matrices

Proposition:

Soient $n, m \in \mathbb{N}$.

Comme $M_{n,m}(\mathbb{K}) = \{ \varphi : \{1, \dots, n\} \times \{1, \dots, m\} \to \mathbb{K} \}$, on en déduit que $M_{n,m}(\mathbb{K})$ est un espace vectoriel de dimension nm.

1 Remarque: Une base de $M_{n,m}(\mathbb{K})$ est donnée par les matrices élémentaires $\{E_{ij} \mid 1 \leq i \leq n, 1 \leq j \leq m\}$.

B Structure multiplicative

Proposition:

Soient $n, m, p, q \in \mathbb{N}^*$.

Soient $A=(a_{ij})\in M_{n,p}(\mathbb{K})$ et $B=(b_{jk})\in M_{p,q}(\mathbb{K})$.

Le produit matriciel C = AB est défini par $C = (c_{ik})$ où $c_{ik} = \sum_{j=1}^{p} a_{ij}b_{jk}$.

1 Remarque: Le produit matriciel est associatif.

Proposition: Linéarité

Si on fixe $A \in M_{n,p}(\mathbb{K})$, l'application $M_{p,q}(\mathbb{K}) \to M_{n,q}(\mathbb{K}), B \mapsto AB$ est K-linéaire. Réciproquement $M_{n,p}(\mathbb{K}) \to M_{n,q}(\mathbb{K}), A \mapsto AB$ est K-linéaire si on fixe $B \in M_{p,q}(\mathbb{K})$.

1 Remarque : Si n=p, on a une loi associative interne sur $M_n(\mathbb{K})$. La matrice identité I_n est l'élément neutre.

Définition : Soit $A \in M_n(\mathbb{K})$. On dit que A est inversible s'il existe $B \in M_n(\mathbb{K})$ tel que $AB = BA = I_n$. Dans ce cas, B est unique et on le note A^{-1} .

 \bigcirc Vocabulaire: On note $GL_n(\mathbb{K})$ l'ensemble des matrices inversibles de $M_n(\mathbb{K})$.

Proposition: Groupe

L'ensemble $GL_n(\mathbb{K})$ muni du produit matriciel est un groupe. (non abélien si $n \geq 2$)

1 Remarque:

- 1. $GL_n(\mathbb{K})$ n'est pas un espace vectoriel.
- 2. $GL_1(\mathbb{K}) = \mathbb{K}^*$ qui est abélien.

III Transposition

```
Définition : Soient n, p \in \mathbb{N}^* et A = (a_{ij}) \in M_{n,p}(\mathbb{K}). La transposée de A est la matrice {}^tA = (a_{ji}) \in M_{p,n}(\mathbb{K}).
```

Propriété:

L'application transposée $M_{n,p}(\mathbb{K}) \to M_{p,n}(\mathbb{K}), A \mapsto {}^tA$ est une isomorphisme linéaire. Elle est symétrique si ${}^t({}^tA) = A$ et antisymétrique si ${}^t({}^tA) = -A$.

IV Représentation matricielle

Définition : Soit E un K-espace vectoriel de dimension n. Soit $B=(e_1,\ldots,e_n)$ une base de E. Soit (u_1,\ldots,u_p) une famille de p vecteurs de E. Posons pour $1\leq j\leq p,\,u_j=\sum_{i=1}^n a_{ij}e_i$.

On définit $Mat_B(u_1,\ldots,u_p)=A=(a_{ij})\in M_{n,p}(\mathbb{K})$ la matrice des coordonnées des vecteurs (u_1,\ldots,u_p) dans la base B.

Propriété:

Si
$$p=1$$
, on a $u=u_1$ et $Mat_B(u)=egin{pmatrix} a_1\\a_2\\ \vdots\\a_n \end{pmatrix}$

On a que l'application $E \to K^n, u \mapsto Mat_B(u)$ est un isomorphisme linéaire.

Définition : Soient E, F des K-espaces vectoriels avec dimE = p, dimF = n. Soit $f \in \mathcal{L}(E, F)$. Soient $B = (e_1, \dots, e_p)$ une base de E et $B' = (v_1, \dots, v_n)$ une base de F.

On définit la matrice de f dans les bases B et B' par $Mat_{B,B'}(f) = Mat(f(e_1), \dots, f(e_p)) \in M_{n,p}(\mathbb{K})$.

Proposition:

Soit $u \in E$.

Posons $X=Mat(u,B),\,Y=Mat(f(u),B).$ Posons $\mathbf{A}=Mat_{B,B'}(f).$

On a Y = AX.

Proposition:

L'application $\mathcal{L}(E,F) \to M_{p,n}(\mathbb{K}), f \mapsto Mat_{B,B'}(f)$ est un isomorphisme linéaire.

Proposition: Composition

Soit G un K-espace vectoriel de base finie B''. Soit $g \in \mathcal{L}(F,G)$. Alors $Mat_{B,B''}(g \circ f) = Mat_{B',B''}(g) \cdot Mat_{B,B'}(f)$.

Proposition : Bijection et inversibilité

On a $f \in \mathcal{L}(E,F)$ est un bijective si et seulement si $Mat_{B,B'}(f) \in GL_n(\mathbb{K})$. Alors $Mat_{B',B}(f^{-1}) = (Mat_{B,B'}(f))^{-1}$.

1 Remarque : Soit $A \in M_{p,n}(\mathbb{K})$. Il lui correspond $L(A): K^p \to K^n$ définie par L(A)(X) = AX. On a $L(AB) = L(A) \circ L(B)$.

Définition:

- 1. Noyau de A : $Ker(A) = \{X \in K^m \mid AX = 0\} = Ker(L(A)).$
- 2. Image de A : $Im(A) = \{Y \in K^n \mid \exists X \in K^m, Y = AX\} = Im(L(A)).$
- 3. Rang de A : rg(A) = dim(Im(A)) = rg(L(A)).

V Matrice de changement de base

Définition : Soit E un K-espace vectoriel de dimension n. Soient $B=(e_1,\ldots,e_n)$ et $B'=(v_1,\ldots,v_n)$ des bases de E.

Si on pose $v_j = \sum_{i=1}^n a_{ij} e_j$, alors : $P_{B,B'} = (a_{ij}) \in M_n(\mathbb{K})$ est la matrice de passage de la base B à la base B'.

Proposition:

Les conditions suivantes sont équivalentes :

- 1. A est inversible.
- 2. Pour tout B, AX = B a une unique solution X.
- 3. Pour tout B, AX = B admet au moins une solution X.
- 4. Pour tout B, AX = B admet au plus une solution X.
- 5. AX = 0 a pour solution X = 0.
- \bigcirc Vocabulaire : On appelle système de Cramer un système de la forme AX = B où A est inversible.