Corolario: [G:S]=P=> S&G (G p-grupo finito)

Demostración:

$$S \neq N_6(s) \Rightarrow N_6(s) = 6 \iff 546$$

Proposición: IGI-pn, nEINo. Entonces:

- i) Y osisn, 6 posee subgrupos de orden p'
- ii) Si $0 \le i \le n-1$ y $S \le G$ con $|S| = p^i \Rightarrow \exists$ subgrupo T de orden p^{t+1} tal que $S \triangle T$

Recordar:

1)
$$6 \times \times \longrightarrow \times$$
, $1 \times 1 = 1 \times 61 + \sum_{i \in I} [6.6!]$, $6: 46$

2) H & G, {subgrupos U de G/H} \longleftrightarrow {subgrupos W de G, $H \le W$ }

correspondencia

Demostración

i) Inducción sobre n.

Si N=0 no hay nada que probar

Supongamos n>1 y que el enunciado vale para grupos de orden p^m , $0 \le m < n$. Caso 6 abeliano (6 = Z(G)):

Por Teorema de Cauchy (n>0) P/161 => 3xEG tq 1x1=p

Por HI G/2x7 posee subgrupo S de orden p' Vi=0,..., n-1

Entonces, por el Teorema de Correspondencia (donde f sería la proyección

al cariente),
$$\tilde{S} = \frac{8}{4x7}$$
, $4x7 \leq 5 \leq 6$

$$|\tilde{S}| = \rho^{\tilde{s}} = \frac{|S|}{|x|} \Rightarrow |S| = \rho^{\tilde{s}+1}$$

Si i=1 tomamos Lx>, si i=i+1 tomamos 5 y así dotenemos i) Para este caso de 6 abeliano.

Caso 6 no abeliano $(Z(G) \neq G)$: $|=(G)|=p^m \quad \text{olympor ser } p\text{-gropo}$

Por HI 6/2(6) contiene un subgrupo S de orden pk, para cada oeken-m tal que 151=pk

Por otro lado 2(6) contiene subgrupos de orden p' para cada 0 = i = m Estos son subgrupos de 6

• Si n > i > m+1 sea $\tilde{S} \leq \frac{6}{26}$, $|\tilde{S}| = p^{i-m}$ (n-m > i-m > 1) $\tilde{S} = \frac{8}{26}$ => $|\tilde{S}| = |\tilde{S}| |\tilde{Z}(6)| = p^{i}$

(0\(\left\) \(\left\) \(\

En general esto no vale para walquier grupo 6 que no sea un p-grupo Ejemplos se dan con S_n

TEOREMAS DE SYLOW

6 grupo finito, p primo

> P-Sylow

Definición: un p-subgrupo de Sylow de 6 es un subgrupo H tal que $[H]=p^n$ donde $[G]=p^n \times (p,\kappa)=1$

ie. IHI es la mayor potencia de p que divide a 16.1

Primer Teorema de Sylow: supongamos que 161=p°K, (p,k)=1
Entonces 4 0414n, G posee un subgrupo de orden p'. En particular
G posee un p-sylow

Demostración:

Notemos que un p-sylow es un p-gropo

Por la primera parte de la proposición anterior, basta probar que 6 contiene un p-sylow

• Caso G abeliano (6 = 2(6)): supongamos que p | 161 (n > 0)Sea G[P] = $1 \times (61 p^i \times 0)$, para algún $i \times 0$ } (exementos de 6 cuyo orden 6[P] es subgrupo de $6: p^i \times 0$, $p^i y = 0$ Sea $l = \max(i, i)$ $p^l(x - y) = p^l x - p^l y = 0 - 0 = 0$ esto no vale cuando 6 es no abeliano

6[P] componente p-primaria de 6

Como G[p] es p-grupo => $|G[p]| = p^m$, para algún $O(m \le n)$ Si fuese $m \le n : |G[p]| = p^{n-m} \times |n-m>0$ o sea p = |G[p]|

Por Cauchy => $\exists \bar{a} \in G/G[p]$ tal que $|\bar{a}| = P : pa G[p] = G[p]$ => $p \cdot a \in G[p] => \exists l tal que <math>p^l(pa) = 0 \Rightarrow p^{l+1}a = 0$ => $a \in G[p] \Rightarrow \bar{a} = \bar{0}$

Pero esto contradice la 1=p, luego m=n y 6[p] es p-Sylow de 6

Hacemos inducción en el orden de G

La afirmación es cierta si 161=1 lpues 7 primo que divida a 1) Supongamos 16171 y que el Teorema vale para grupos de orden 4 161 Por la Ecuación de clases (acción por conjugación):

 $|G| = |Z(G)| + \sum_{i=1}^{r} [G:G:], G: \neq G$

Si p/ 126)1

Podemos suponer también que P 161 (si no, es trivial)

=> \exists 1½1½1 tal que \not [G:Gi], de donde \not [Gi] (\exists [Gi] (\exists

176) 1 = pmd, 0/m < n (d,p)=1

Por la vista en el casa abeliano, Z(G) contiene un subgrupo T con $|T|=p^m$ Además $T \triangle G$ (pues $T \angle Z(G)$)

|6/T| = p K Como m>0 => n-m < n y |6/T | < 161

Por HI, 3H de G/T con IHI = pn-m

Por el Teorema de Correspondencia => H= H/T, T = H = 6

IHI = ITIIHI = pm pn-m = pn : Hes un p-Sylow de 6

Segundo Teorema de Sylow: sea 6 grupo finito y p primo

Sean 5 4 6 tal que |5| = pt, i E IN. y H un p-subgrupo de 5y low de 6

Entonces fae6 tal que 5 4 a Ha (5 no neces dentro de H pero si podumos decir

En particular: 5 p-Sylow (=> Sy H son Conjugados

Demostración: sea 5 p-sylow de 6

Consideremos la acción de S en $X = \{Hx \mid x \in G\} = H^G$ dada por: $g \cdot Hx = Hxg^{-1}$ [esercició probar que es una acción)

Por la ecuación de clases:

$$\underbrace{[G:H]:[X:I]:[X:S]}_{i} = \underbrace{[S:S_{i}]}_{i} , S_{i} \neq S$$
Coprimo Con P

En particular, como S es un p-subgrupo $\Rightarrow p \mid [S:S:] \forall i$ $\Rightarrow |X^S| \neq \emptyset \Rightarrow \exists a \in G \text{ tal que Hag-1} = Ha \forall g \in S$ $\forall esto owne \Leftrightarrow a g a^{-1} \in H \forall g \in S$

 $\Leftrightarrow a5a^{-1} \subseteq H$

er wow s f

S ⊆ a-1 Ha

Notar que si tenemos 2 p-subgripos son conjugados del mismo p

Corolario: 5ea H≤6. H es el único p-sylow de 6 <=> H = 6

Tercer Teorema de Sylow: sea 6 grupo finito primo y sea $n_p = |\{p\text{-subgrupos de Sylow de 6}\}|$. Entonces $n_p | \{6\}$ y $n_p = 1(p)$

Demostración:

Pademos suponer que p/161

Sean $S_1,...,S_{np}$ los p-Sylow distintos de G y sea $X = \{S_2,...,S_{np}\}$ S_1 actúa en X por conjugación : $X.S_3 = XS_3X^{-1}$ sacamos S_1

Buena definición:

Si fuese $x S_j x^{-1} = S_i$ (j $y_2, x \in S_i$) => $S_j = x^{-1} S_i x = S_i$ Abs!

Por la ecuación de clases:

$$n_{p}-1 = |x| = |x|^{2} + \sum_{i=1}^{k} [S_{i}: H_{i}], H_{i} \neq S_{i}$$

divisible por p. Vi

Si $S_{i} \in X^{S_{i}}$, $2 \le i \le n_{p} \Rightarrow x S_{i} x^{-1} = S_{i} \quad \forall x \in S_{i} \iff S_{i} \le N_{G}(S_{i})$

Pero también tenemos S; △ N₆ (S;)

=> Si y Si son p-sylow de NG (Si)

Por el 2º Teorema de Sylow => S1 = S1, 17,2 Abs!

: X s1 = \$ >> P | IX | = np-1 y así np = 1 (p)

Notemos que $n_p = [6:N_6(s)]$, $S = S_1$ p-Sylow En general, si H=6 coalquiera, la cantidad de conjugados de l																																		
																									•				iac	id	05	. (de	.H.
)	4						4									3					
																		٠																
	E	0	P	XI	ti(W.	ox	• .	IJ	P.	16	1.6			,			٠	ŧ		e.	9	ě			ě			,					
								*					•	*					*													. L		
. (1-	7	. 1		· m:	· no							de					١.	*			9*						*	9			٠		
. (AL.	Ц	. 1	701	tin	1.10	۲.	la	. 1	JUI.	te	*	NE	. (Ti (1	D'S	J.	*		*	×	i.			*		×		e e				
60				•														•											38			•		
8	3	•			*		8					*		٠		•	•	•	*		•			*	٠		9		3					
				200				8				8		*	12				2		*	18					ie Se	*	18					
20	2	. *			*		20					*		*					*		*2	8.5	*			*		5	æ					
X.	×						¥.					*		×							*	×						¥i						
6							6																											
	ş		*		*		v.					÷		Ý			*	٠	*				6	٠	٠	*	3	*				٠		
												*																						
	g				*		22		,			5		*:	12						20			,				8			,		*	
×	ų.	×					×	×				÷		×							×							×	×					
	1											*						(*)	•									8						
															2			٠																
×	×	*					×					٠		×	×		*		*		*	×			1000		9	83	×				-	
				0.00																	2													
	×						×		,			÷							*		×		,					×	×					
	8	*		100	*							٠	•	*			*		*		*		*			*		*	×		*			
																																		1
																																		9 8
ě	Si				÷		ě	8						÷	ä				*		ě	S.						÷	Si					