Dynamic and Observational Spatial Data

Bridging the Gap

Observational (Meta) Data

Using Observational (Meta)Data

Using Observational (Meta)Data

Using Observational (Meta)Data

OGC & Sensor Measurements

- Sensors, Actuators & Simulations usually have Location
- OGC Sensor Web Enablement (SWE)
 - Enable developers to make all types of sensors, transducers and sensor data repositories discoverable, accessible and useable via the Web
 - Since 1990 by NASA
 - Since 2001 in OGC
 - SensorML
 - Sensor Observation Service (SOS)
 - Web Processing Service (WPS)
 - Sensor Planning Service (SPS)
 - Observations & Measurements (O&M)
 - SensorThings API (STA)
 - Sensor Data & Measurement Metadata
 - Core of INSPIRE

Relevant Domains (on beyond Sensors)

- Environmental:
 - Air quality, Meteorology
 - Water quality and quantity
 - Biodiversity occurrence data
 - Soil and Geological data
- Demography
- BMS
- Industry 4.0
- Smart Cities
- •

OGC SensorThings API

- A standard for exchanging sensor data and measurement metadata
 - Historic data & current data
 - JSON Encoded
 - RESTful
 - Adapting OASIS Odata URL patterns and query options
 - Supporting ISO MQTT messaging
- Easy to use & understandable
 - Discoverable with only a web browser

OGC SensorThings API

Getting to your data

Based on OASIS OData

Base URL: http://server.de/FROST-Server/v1.1

• Read: GET

• v1.1

• v1.1/Collection

v1.1/Collection(id)

Create: POST

• v1.1/Collection

Update: PATCH

• v1.1/Collection(id)

Update: PUT

v1.1/Collection(id)

Delete: DELETE

• v1.1/Collection(id)

→ Get collection index

→ Get all entities in a collection

→ Get one entity from a collection

→ Create a new entity

→ Update an entity

→ Replace an entity

→ Remove an entity

Query Parameters

• \$skip: pagination

• \$top: pagination

• \$count: entity count

\$select: result customization

MQTT

\$expand: result customization

\$filter: data search

STA Query Logic

Query Logic differs from basic spatial feature APIs

- Data is not static in time may change during viewing
- Data is not tile-based
- Multiple dimensions through underlying complex data model
 - Time series data
 - Observed Properties
- Massive not-tile-based data, requires intelligent queries depending on
 - Zoom level
 - Presentation requirements displaying location vs. data time-series
- Complex queries across multiple objects core in STA
- → Additional support required, existing tools for static data don't fulfil requirements

Multi Resolution Data

- European NUTS regions with demography data
 - Regions in 5 scales. Which to choose?
- A STA Thing can have multiple Locations (Geometries)
 - → Add All scales!
 - →Store the scale for each in the Location properties
 - → Build cool queries!

https://api4inspire.k8s.ilt-dmz.iosb.fraunhofer.de/servlet/is/163/

STA Mapper - STAM

- JavaScript library
- Displays Things/Features-of-Interest
- Handles groupings by zoom level
- Integrated call-back for displaying time series
- Integrates with Leaflet/OpenLayers map.

https://github.com/DataCoveEU/STAM

STAM Functionality

- Display Things/Fols on Map
 - Takes zoom level into account
 - For tiles with many entities, only count requested
 - Groupings based on OSM Tiles
 - Custom Icons, influenced by response data
- Identify Things/Fols
 - All associated Datastreams listed
- Show Observations
 - Callback can be configured for custom display
 - Plotly integrated for default display of time series

STAM Configuration Options

- baseUrl: string //The base url of the Sensorthings API
- markerStyle?: Function | string //Specifies the color of the marker. Functions get geoJSON as parameter
- clusterStyle?: Function //Used to specify the style of the circle or polygon
 - circle
 - polygon
- markerMouseOver?: Function //Callback receiving feature on marker hover
- markerClick?: Function //Callback receiving feature on marker click
- clusterMouseOver?: Function //Callback receiving feature on cluster hover
- clusterClick?: Function //Callback receiving feature on cluster click

STAM Configuration Options II

- plot:{} // Temporal range for plot. Offset OR endDate may be specified
- cachingDuration: number //Time in seconds to cache the data. null = forever
- cluster: Boolean //Defaults to true, if false no clustering applied
- clusterMin: number //Minimal count within tile, so that a cluster is displayed
- queryObject:{} //Can be a array of a ranges or directly a queryObject. Queries can be specified for given zoomlevels or ranges.

Conclusions

- SensorThings API is being increasingly deployed
- New domains still discovering power of STA
- Map based visualization still in development
- STAM a first approach to providing simple mapping support

More examples and demos at:

https://datacoveeu.github.io/API4INSPIRE/

Thanks for your Attention!

Kathi Schleidt Kathi@DataCove.eu Hylke van den Schaaf hylke.vanderschaaf@iosb.fraunhofer.de

Thomas Usländer thomas.uslaender@iosb.fraunhofer.de

