Instruction Format:

Big endian memory

SIZE BIT = 0 means 16-bit instruction

SIZE BIT = 1 means 32-bit instruction

1-OPERAND-type (16-bit instruction) + push + pop

SIZE BIT +OP	OPERAND(RS)	RD
15:10	9:6	3:0
31:26	25:22	19:16

2-OPERAND-type

ALU:

SIZE BIT +OP	RS	RT	RD
31 : 26	25 : 22	21 : 18	3:0

IMMEDIATE

SIZE BIT +OP	RS	RD	OFFSET
31 : 26	25 : 22	19:16	15:0

3-BRANCH-type

SIZE BIT +OP	TARGET
15:10	3:0
31:26	25:22

4-STD

SIZE BIT +OP	RS	RT	OFFSET
31 : 26	25 : 22	21 : 18	15: 0

Control signals:

HIt, instruction size,

call flush, return /int /RTI flush (the same signal),

Alu src, branch flag,

output signal, Alu control (its size will be determined by the one who will implement it), wB destination selector, mem read,

mem write, write back,

reg write, call flag,

return flag, int flag,

RTI flag, push flag,

pop flag, mem data write

	hlt	instructi on size	cal I flu sh	ret ur n /int /R TI flu sh	Alu src	bra nch flag	out put sig nal	Alu con trol	wB dest inati on sele ctor	me m rea d	me m write	write back sele ctor	reg file write	call flag	retur n flag	int fla g	RTI flag	push flag	pop flag	mem data write	Fetc h flush
NOP	0	0	0	0	xx	0	0	х	0	0	0	0	0	0	0	0	0	0	0	0(x)	0
HLT	1	0	0	0	xx	0	0	х	0	0	0	0	0	0	0	0	0	0	0	0(x)	0
SETC	0	0	0	0	xx	0	0	х	0	0	0	0	0	0	0	0	0	0	0	0(x)	0
NOT	0	0	0	0	xx	0	0	х	1	0	0	1	1	0	0	0	0	0	0	0(x)	0
INC	0	0	0	0	xx	0	0	х	1	0	0	1	1	0	0	0	0	0	0	0(x)	0
OUT	0	0	0	0	xx	0	1	х	0	0	0	0	0	0	0	0	0	0	0	0(x)	0
IN	0	0	0	0	10	0	0	х	1	0	0	1	1	0	0	0	0	0	0	0(x)	0
MOV	0	1	0	0	xx	0	0	х	0	0	0	1	1	0	0	0	0	0	0	0(x)	0
ADD	0	1	0	0	00	0	0	х	0	0	0	1	1	0	0	0	0	0	0	0(x)	0
SUB	0	1	0	0	00	0	0	х	0	0	0	1	1	0	0	0	0	0	0	0(x)	0
AND	0	1	0	0	00	0	0	х	0	0	0	1	1	0	0	0	0	0	0	0(x)	0
IADD	0	1	0	0	01	0	0	х	1	0	0	1	1	0	0	0	0	0	0	0(x)	0
PUSH	0	0	0	0	xx	0	0	х	х	0	1	х	0	0	0	0	0	1	0	0	0
POP	0	0	0	0	xx	0	0	х	1	1	0	0	1	0	0	0	0	0	1	0	0

	hlt	instructi on size	cal I flu sh	ret ur n /int /R TI flu sh	Alu	bra nch flag	out put sig nal	Alu con trol	wB dest inati on sele ctor	me m rea d	me m write	write back sele ctor	reg file write	call flag	retur n flag	int fla g	RTI flag	push flag	pop flag	mem data write	Fetc h flush
LDM	0	1	0	0	01	0	0	х	1	0	0	1	1	0	0	0	0	0	0	0	0
LDD	0	1	0	0	01	0	0	х	1	1	0	0	1	0	0	0	0	0	0	0	0
STD	0	1	0	0	01	0	0	х	Х	0	1	х	0	0	0	0	0	0	0	1	0
JZ	0	0	0	0	хх	1	0	х	Х	0	0	х	0	0	0	0	0	0	0	0	0
JN	0	0	0	0	xx	1	0	х	Х	0	0	х	0	0	0	0	0	0	0	0	0
JC	0	0	0	0	xx	1	0	Х	X	0	0	х	0	0	0	0	0	0	0	0	0
JMP	0	0	0	0	xx	1	0	Х	X	0	0	х	0	0	0	0	0	0	0	0	0
CALL	0	0	1	0	xx	0	0	Х	X	0	1	х	0	1	0	0	0	0	0	0	1
RET	0	0	0	1	xx	0	0	х	Х	1	0	х	0	0	1	0	0	0	0	0	1
INT	0	0	0	1	11	0	0	х	х	1	1	х	0	0	0	1	0	0	0	0	1
RTI	0	0	0	1	xx	0	0	х	х	1	0	х	0	0	0	0	1	0	0	0	1

SIZE BIT +OP	Instruction Size	OP CODE	Instruction	Control signals
000000	16	0	NOP	
000001	16	1	HLT	
000010	16	2	SETC	
000011	16	3	NOT	
000100	16	4	INC	
000101	16	5	OUT	
000110	16	6	IN	
100111	32	7	MOV	
101000	32	8	ADD	
101001	32	9	SUB	
101010	32	10	AND	
101011	32	11	IADD	
001100	16	12	PUSH	
001101	16	13	POP	
101110	32	14	LDM	
101111	32	15	LDD	
110000	32	16	STD	
010001	16	17	JZ	
010010	16	18	JN	
010011	16	19	JC	
010100	16	20	JMP	
010101	16	21	CALL	
010110	16	22	RET	
010111	16	23	INT	
011000	16	24	RTI	

Questions:

1-

INT index

 $X[SP] \leftarrow PC$; sp-=2; Flags reserved;

(dedicated buffer for flags -

execute on 2-cycles)

 $PC \leftarrow M[index + 6] \& M[index + 7]$

RTI

sp+=2; PC ← X[SP]; Flags restored

2- PC ←R[Rdst]

The registers are 16-bits only while my PC is 32-bits?

3- INT read and write in the same cycle like the regfile??

RST:

- -signal to buffers, control unit, memory
- -flush all stages
- -tell the memory to return M[0],M[1]
- -send a signal back to make the PC take M[0],M[1]
- -Rest signal goes to the controller to make the hlt signal 0;

HLT:

- -is known at decode stage in the control unit
- -insert bubble after me and flush the instruction that was fetched after me
- -freeze the pc (doesn't change as in the document)

LDD, STD:

-what is added to the offset is Rs as we have done

STD.PUSH:

-for them added a new mux before the alu to adjust the write data

RET:

- -HLT signal is true to flush the fetch buffer
- -plus signal (return/RTI/INT-flush) from the control which determines in (execute-memory) stages if it's a RET function and we should flush the fetch.
- -note return-flush signal connected to the fetch/decode buffer is the or of return-flush signals in execute and memory (changed to fetch flush)

Call:

- -HLT(Fetch flush) signal is true to flush the fetch buffer
- -plus signal (call-flush) from the control which determines in (execute) stages if it's a Call function and we should flush the fetch.

INT:

- -HLT signal is true to flush the fetch buffer
- -plus signal (return/RTI/INT-flush) from the control which determines in (execute-memory) stages if it's a INT function and we should flush the fetch.
- -We will use the upper address which is (index+7) to make the operation of the INT and return the same

The ALU will add 7 to the index ...

There will be a signal to the memory to read 32 bits instead of 16 bits...

The alu will store the flags in the upper bound in the flag reg when an int signal comes to it The INT will be one operand the index will be from 16:19 and will enter to the mux as an offset We will write in the First half cycle , and read in the second half

Push firstly then read

RTI:

- -HLT signal is true to flush the fetch buffer
- -plus signal (return/RTI/INT-flush) from the control which determines in (execute-memory) stages if it's a RTI function and we should flush the fetch.

Memory

Memory write and read are enables for the memory and we decided the size of read or write 32 or 16 with the call flag or the int flag

Return, RTI and INt flushes the buffer till the memory stage
Fetch flush from Control unit Will be one in call OR return OR INT OR RTI