PROBLEM SET #1

APC 523/MAE 507/AST 523 : Numerical Algorithms for Scientific Computing Vivek Kumar March 13, 2019

1 Error in (symmetric) rounding vs chopping

Assertion: When mapping a real number x to a nearby machine number in $\mathbb{R}(p,q)$, the upper bound in the relative error for symmetric rounding is:

$$\left| \frac{x - \operatorname{rd}(x)}{x} \right| \le 2^{-p}$$

Proof:

Consider the number x to be represented as:

$$x = \pm \left(\sum_{l=1}^{\infty} b_{-l} 2^{-l}\right) 2^{e}$$

If the number is to be rounded to p terms, two cases arise:

CASE I. The $(p+1)^{\text{th}}$ is 0.

In this scenario the difference between the true value and the rounded value is given by:

$$x - \text{rd}(x) = \pm \left(\sum_{l=p+2}^{\infty} b_{-l} 2^{-l}\right) 2^{e}$$

The maximum relative error can then be computed as:

$$\max \left| \frac{x - \operatorname{rd}(x)}{x} \right| = \frac{\max |x - \operatorname{rd}(x)|}{\min |x|}$$
$$= \frac{2^{-p-1}2^e}{2^{-1}2^e}$$
$$= 2^{-p}$$

which is what we set to prove.

CASE II. The $(p+1)^{\text{th}}$ is 1.

In this scenario the maximum difference between the true and the rounded value is obtained as:

$$\max |x - \operatorname{rd}(x)| = (2^{-p} - 2^{-p-1}) 2^{e}$$

This is the case we all the leading terms from (p+2) are 1. Hence the maximum relative error can be computed as before:

$$\max \left| \frac{x - \operatorname{rd}(x)}{x} \right| = \frac{\max |x - \operatorname{rd}(x)|}{\min |x|}$$
$$= \frac{\left(2^{-p} - 2^{-p-1}\right) 2^e}{2^{-1}2^e}$$
$$= 2^{-p}$$

which is what we set to prove

Both the cases show that the maximum symmetric rounding off error is 2^{-p}

2 An accurate implementation of e^x

(a) Compute the value of $e^{5.5}$ by working out the terms of the infinite series upto n=30 by rounding upto 5-significant figures

The true value of exp(5.5) is 244.691932. Here the data generated is presented here

n	numerator	denominator	$n^{\rm th}$ term	value
0	1.0000	1.0000	1.0000	1.0000
1	$5.50000\mathrm{E}{+00}$	$1.00000\mathrm{E}{+00}$	$5.50000\mathrm{E}{+00}$	$6.50000\mathrm{E}{+00}$
2	$3.02500\mathrm{E}{+01}$	$2.00000\mathrm{E}{+00}$	$1.51250\mathrm{E}{+01}$	2.16250E+01
3	$1.66380\mathrm{E}{+02}$	$6.00000\mathrm{E}{+00}$	$2.77300\mathrm{E}{+01}$	$4.93550E{+}01$
4	$9.15090\mathrm{E}{+02}$	$2.40000\mathrm{E}{+01}$	3.81290E+01	8.74840E+01
5	5.03300E+03	$1.20000\mathrm{E}{+02}$	4.19420E+01	1.29430E+02
6	2.76820E+04	7.20000E+02	3.84470E + 01	1.67880E+02
7	$1.52250\mathrm{E}{+05}$	5.04000E+03	3.02080E+01	1.98090E+02
8	$8.37380\mathrm{E}{+05}$	4.03200E+04	2.07680E + 01	2.18860E+02
9	$4.60560\mathrm{E}{+06}$	$3.62880\mathrm{E}{+05}$	$1.26920E{+}01$	2.31550E+02
10	$2.53310\mathrm{E}{+07}$	3.62880E + 06	$6.98050\mathrm{E}{+00}$	2.38530E+02
11	$1.39320\mathrm{E}{+08}$	3.99170E + 07	3.49020E+00	2.42020E+02
12	7.66260E + 08	4.79000E+08	$1.59970\mathrm{E}{+00}$	2.43620E+02
13	4.21440E+09	$6.22700\mathrm{E}{+09}$	6.76790E-01	2.44300E+02
14	2.31790E+10	8.71780E + 10	2.65880E-01	2.44570E+02
15	$1.27480E{+}11$	$1.30770\mathrm{E}{+12}$	9.74840E-02	2.44670E+02
16	7.01140E+11	2.09230E+13	3.35100E-02	2.44700E+02
17	$3.85630E{+}12$	$3.55690E{+}14$	1.08420E-02	2.44710E+02
18	2.12100E+13	$6.40240\mathrm{E}{+15}$	3.31280E-03	2.44710E+02
19	$1.16660E{+}14$	$1.21650\mathrm{E}{+17}$	9.58980E-04	2.44710E+02
20	6.41630E + 14	$2.43300E{+}18$	2.63720E-04	2.44710E+02
21	$3.52900\mathrm{E}{+15}$	5.10930E + 19	6.90700E-05	2.44710E+02
22	$1.94100\mathrm{E}{+16}$	1.12400E+21	1.72690E-05	2.44710E+02
23	$1.06760\mathrm{E}{+17}$	2.58520E+22	4.12970E-06	2.44710E+02
24	5.87180E + 17	6.20450E + 23	9.46380E-07	2.44710E+02
25	$3.22950E{+}18$	$1.55110\mathrm{E}{+25}$	2.08210E-07	2.44710E+02
26	$1.77620\mathrm{E}{+19}$	4.03290E+26	4.40430E-08	2.44710E+02
27	$9.76910E{+}19$	1.08890E + 28	8.97150E-09	2.44710E+02
28	5.37300E+20	3.04890E+29	1.76230E-09	2.44710E+02
29	$2.95510E{+}21$	8.84180E + 30	3.34220E-10	2.44710E+02
30	$1.62530E{+}22$	$2.65250 \mathrm{E}{+32}$	6.12740E-11	$\mid 2.44710 \mathrm{E}{+02}$

- (b) Compute the $e^{5.5}$ using partial sums
 - The value of $e^{5.5}$ converges to 5-significant digits at k=18
- (c)
- (d)

3 Recurrence in reverse

(a) The reverse recurrence relation is given by:

$$y_{n-1} = \frac{e - y_n}{n}$$

Computing for a few terms down the chain we obtain:

$$y_{n-2} = \frac{e - y_{n-1}}{n-1}$$

$$= \frac{ne - e + y_n}{n(n-1)}$$

$$y_{n-3} = \frac{e - y_{n-2}}{n-2}$$

$$= \frac{n(n-1)e - ne + e - y_n}{n(n-1)(n-2)}$$

One can denote the pattern as:

$$y_{n-p} = (-1)^{p} \frac{y_{n}}{n(n-1)(n-2)\dots(n-p+1)} + e \left[\frac{1}{n-(p-1)} - \frac{1}{(n-(p-1))(n-(p-2))} + \frac{1}{(n-(p-1))(n-(p-2))(n-(p-3))} + \dots \right]$$

To obtain the value of y_k in terms of y_N we replace n-p with k and simplify:

$$y_k = (-1)^{n-k} \frac{y_n}{n(n-1)(n-2)\dots(k+1)} + \text{exponent terms}$$
$$= (-1)^{n-k} \frac{y_n k!}{n!} + \text{exponent terms}$$

The condition number is given as:

$$(\text{cond } g_k) (y_k) = \left| \frac{y_N g'(y_N)}{y_k} \right|$$

$$= \left| \frac{y_N \frac{k!}{N!}}{y_k} \right|$$

Since the k is less than N, y_k is greater than y_N , the upper bound on the condition number, $(\text{cond } g_k)(y_k)$, obtained as:

$$(\text{cond } g_k)(y_k) \le \frac{k!}{N!}$$

as
$$\frac{y_N}{y_k} \le 1$$

(b) We know the condition number represents:

$$\varepsilon_y = (\text{cond } g_k) \, \varepsilon_x$$

$$\frac{\Delta y_k}{y_k} \le \frac{k!}{N!} \le \varepsilon$$

$$N! \ge \frac{k!}{\varepsilon}$$

Here, we have assumed $\varepsilon_x = 1$ and ε is a predefined target error in y_k .

- (c) For python3 the machine epsilon for float is $1.0e^{-15}$ (Obtained using numpy.finfo(float)). Using this machine epsilon the value of N obtained is 31. [Check code]
- (d) The computed value of y_{20} is 0.123803830762570 and the value of y_{20} directly by integration is 0.123803830762570. [Check code]