

第5章 定时器/计数器和8253A

教师: 苏曙光 华中科技大学软件学院

- 教学内容
 - 第1节 定时器和计数器的概念
 - 第2节 8253A的结构和工作原理
 - 第3节 8253A的初始化和基本操作
 - 第4节 8253A的工作方式和应用
 - 第5节 8253A在IBM PC/XT中的应用

第1节 定时器和计数器的概念

- 定时(计时)
 - ■为CPU和外设提供时间标记或一段时间。
 - ■时序,各种周期,时间片、系统时间、时间间隔、运行时间

定时的方法

- 软件方法
 - ■运用循环执行一段指令产生的一定时长的延时。
 - ■缺点:增加CPU开销;延时依赖CPU频率;
 - ■优点:不需增加硬件设备。
 - ■适用:用于短时且精度要求不高的延时
- 硬件方法
 - ■采用专用电路(例如:定时/计数器)产生定时。
 - ■优点:不占用CPU时间;定时准确不受主机频率影响
 - ■适用: 定时时间长, 精度要求较高
 - ■典型的定时专用电路/芯片: INTEL 8253/8254系列芯片

- 计数/ Counter
 - 统计某对象的数量 (典型的计数对象是脉冲)

- 定时/ Timer

 - 当计数对象出现的"时间间隔"固定且已知,则 定时时间 = 计数数量 × 时间间隔

● 典型的计数/定时器(Counter/Timer)芯片

- 8253A (2MHz)
- 8254A (8MHz)
- 8254A-2 (10MHz)
- 8254A-5 (5MHz)
- ■特点:相互兼容,工作频率有差异

第2节 8253A的结构和工作原理

- 8253A的结构和基本特点
 - 有3个16位相互独立的计数器: T0, T1, T2
 - ■每个计数器都可以按照二进制或二—十进制计数
 - ■每个计数器可设置6种不同的工作方式
 - ■每个计数器可以预置计数初值(时间常数)
 - ■计数器的当前计数值可被CPU读出

● 8253A的外部引脚【24脚,+5V】

● 功能引脚(面向CPU的信号线)

■ ① 数据总线D0~D7

◆ 三态输出/输入线: 数据、命令和状态。

■ ②片选线 (**CS**)

◆低电平有效。由地址译码的结果控制。

■ ③ 读信号(RD)

◆低电平有效。对8253A寄存器进行读操作

■ ④写信号(WR)

◆低电平有效。对8253A寄存器进行写操作

■ ⑤地址线A1A0

◆接到系统地址总线的A1A0

◆A1A0用于选择8253A内部寄存器。

- 功能引脚【面向I/O的信号线】
 - 三个计数/定时器,分三组
 - ⑥时钟信号CLK
 - ◆计数的对象:每输入1个脉冲便计数1次。
 - ◆CLK 0、CLK 1、CLK 2
 - ⑦门控信号GATE
 - ◆控制计数的启动、暂停、禁止 □具体功能和工作方式有关
 - **◆**GATE0、GATE1、GATE2
 - ⑧计数器输出OUT
 - ◆输出特定波形标识定时或计数完毕或计数过程
 - **♦**OUT0、OUT1、OUT2

● 8253A的内部结构

- 8253A内部有6个模块
 - ① 3个独立的计数器
 - ◆结构完全相同,完成计数过程
 - ■②数据总线缓冲器。
 - ◆与CPU数据总线D0~D7相选。
 - □写入命令字;
 - □写入计数初值;
 - □读出计数初值或当前值
 - ■③控制命令寄存器。
 - ◆接收控制命令,选择计数器及设定工作方式
 - ■④读/写逻辑。
 - ◆根据CPU读/写信号和地址信号选择数据传输方向和端口

 $D_{7\sim0}\langle ----\rangle$

数据总线缓冲器

读/写逻辑

控制命令寄存器

部

计数器

计数器2

CLK₀

GATE₀

OUT₀

CLK₁

GATE₁

OUT₁

CLK₂

OUT₂

GATE₂

当前计数值锁存器(16位):锁存 减1计数器的内容供CPU读取。

通过控制命令结合GATE,以某种特定方式对CLK脉冲进行计

计数初值C的确定

● 计数初值C决定了计数的次数或定时的长度

- ■1.单纯的计数:直接设定
- ■2.作为定时用,把时间L转成相应的计数C
 - ◆假设时钟周期为T_{CLK}(或频率f_{CLK})

$$C = L / T_{CLK} = L * f_{CLK}$$

例: 定时 5ms,时钟1.19318MHz,

则
$$C = L * f_{CLK} = 5*10^{-3} * 1.19318 * 10^6 = 5965$$

8253A的端口选择和操作

● 端口选择: 4个端口: T0,T1,T2,控制端口

● 地址线: A1A0

● 读写操作: RD,WR

\overline{CS}	\overline{RD}	\overline{WR}	A1	AO	选中的对象和操作
0	1	0	0	0	T0, 写入"计数初值"
0	1	0	0	1	T1, 写入"计数初值"
0	1	0	1	0	T2, 写入"计数初值"
0	1	0	1	1	控制寄存器, 写"工作方式控制字"
0	0	1	0	0	T0, 读"当前计数值"
0	0	1	0	1	T1, 读"当前计数值"
0	0	1	1	0	T2, 读"当前计数值"
0	0	1	1	1	三态
1	×	×	×	×	三态
0	1	1	X	X	三态

第3节 8253A的初始化和基本操作

● **8253A**的初始化

\overline{CS}	\overline{RD}	WR	A1	A0	选中的对象和操作
0	1	0	0	0	T0, 写入"计数初值"
0	1	0	0	1	T1, 写入"计数初值"
0	1	0	1	0	T2, 写入"计数初值"
0	1	0	1	1	控制寄存器, 写"工作方式控制字"

- ■控制端口:工作方式控制字(选择计数器并设定工作方式)
 - ◆ (1) 选择计数器: T0, T1或 T2
 - ◆ (2) 确定读写数据方式(8位或16位,字节位置和顺序)
 - ◆ (3) 确定计数器的工作方式(方式0~方式5)
 - ◆ (4) 确定计数的数制 (二进制码或BCD码)
- T0或T1或T2端口:设定计数初值
 - ◆写入计数初值: 向选定的计数器写入计数初值

- 工作方式控制字: Control Word, CW
 - (1) 选择计数器 (T0, T1, T2)
 - (2) 确定读写数据的方式(8位或16位,字节位置和顺序)
 - (3) 确定计数器的工作方式(方式0~方式5)
 - (4) 确定计数的数制 (二进制码或BCD码)

D ₇	D ₆	D_{5}	D ₄	D_3	D ₂	D_1	D_0
SC1	SC0	RW1	RW0	M2	M1	MO	BCD
/ 计数器		读写数排	居方式 🕇	-	工作方式		码制

00: TO

01: T1

10: T2

11: 不用

00: 不用(锁存)

01: 低8位

10: 高8位

11: 先低后高

000:方式0

001: 方式1

X10:方式2

X11: 方式3

100: 方式4

101: 方式5

0: 二进制

1 : BCD

课堂作业1

OUT

- 工作方式控制字 芯片地址304(即304~307且控制端口307)
 - ■例: T1,方式0,二进制,计数初值BYTEH: BYTEL。

;命令口 MOV MOV AL, ; 工作方式控制字 **OUT DX, AL** ; 写入命令寄存器 MOV ; T1数据口 MOV AL, BYTEL ; 计数初值低字节 **OUT DX, AL** MOV

; 计数初值高字节

D ₇	D ₆	D_{5}	D ₄	D_3	D_2	D ₁	D ₀
SC1	SC0	RW1	RW0	M2	M1	MO	BCD
计数器选择		读写数捷	居方式	-	工作方式		码制

- **8253A**的基本操作
 - 获取当前计数值: 直接读取或锁存命令
 - 获得工作状态: 获得状态字
 - ■通过向控制端口写特定的字完成。

获取当前计数值:直接读取

● 方法一

■使用IN指令读取(两次)

● 端口选择: A1A0

● 端口操作: RD,WR

	\overline{CS}	\overline{RD}	WR	A1	A0	选中的对象和操作
3	0	0	1	0	0	T0, 读"当前计数值"
	0	0	1	0	1	T1, 读"当前计数值"
	0	0	1	1	0	T2, 读"当前计数值"

● 读计数器T0的当前计数值(假定地址: 40-43)

IN AL, 40H ; 读入计数器0的低8位 MOV BL, AL IN AL, 40H ; 读入计数器0的高8位 MOV BH, AL

- 缺陷
 - ■读数不准确
- 改进措施
 - ■硬件配合: 先禁止计数, 再读数

获取当前计数值:锁存命令

- 锁存命令
 - ■将减1计数器的内容锁存到当前计数值锁存器,供CPU读取

D ₇	D ₆	D_{5}	D ₄	D_3	D_2	D ₁	D ₀
SC1	SC0	0	0	X	X	X	X
计数器选择		锁存特	存征位 ↑	不用			

00: TO

10: T2

11: 不用

00: 锁存

01: 不用]

11: 不用]

10: 不用 读写数据方式。

● 锁存命令

芯片地址304(即304~307且控制端口307)

■例:读出T1当前计数值是否全"1"(假定只用低8位)。

MOV DX, 307H ;命令口

MOV AL, 01000000B ; T1的锁存命令

OUT DX, AL ;写入命令寄存器

MOV DX, 305H ; T1数据口

IN AL, DX ;读T1的当前计数值

CMP AL, 0FFH ; 比较

D ₇	D ₆	D ₅	D ₄	D_3	D_2	D ₁	D_0	
SC1	SC0	0	0	X	X	X	X	
计数器选择		锁存特征位		不用				
	4	^	•	^	^	^	^	

0 1 0 0 0 0 0

课堂作业2

●锁存命令

MOV AL, BL

芯片地址304(即304~307且控制端口307)

■例:读出T2当前计数值(16位),并装入AX寄存器。

MOV	;命令口
MOV AL,	; T2的锁存命令
OUT DX, AL	; 写入命令寄存器
MOV	; T2 数据口
IN AL, DX	;读T2的当前计数值的低8位
MOV BL, AL	
IN	;读T2的当前计数值的高8位
MOV	

D_7	D ₆	D_5	D_4	D_3	D_2	D_1	D_0
SC1	SC0	0	0	X	X	X	X
1	0	0	0	0	0	0	0

- ●工作方式
 - ■方式0~方式5
- ●工作方式的主要差异
 - ■OUT信号或波形
 - ■计数的启动方式
 - ◆软件启动
 - ◆硬件启动(GATE)
 - ■初值(/重新)装入的生效方式

方式0:计数结束中断方式

- 基本特点
 - ■典型的事件计数用法

方式0的计数过程和特点

- 1、写入工作方式控制字(CW, Control Word)
 - OUT开始变成高电平
- 2、写计数初值C到初值寄存器
 - ■下一个CLK周期把C装入减1计数器。
 - ■GATE高电平时立即开始计数。
- 3、计数期间OUT维持低电平。
- 4、当减1计数器减到0时OUT变为高电平。
- 5、当重新写入C后,立即开始新一轮计数
 - ■OUT再次变成低电平
 - ■计数期间,如果重写计数值,立即重新开始计数。
- 6、GATE: 高电平: 允许/继续计数; 低电平: 禁止计数
- 7、 OUT可作中断请求信号【特点:被响应后才变低】

方式1

● 基本特点

方式1的计数过程和特点

同方式0很类似

- 1、写入控制字CW后,OUT变高电平。
- 2、写入计数初值C
- 3、GATE上跳时,C装入减1计数器,开始计数,OUT变低。
- 4、整个计数过程中OUT维持低电平,直到计数结束才变高。
 - OUT负脉冲宽度 = 计数初值 * CLK周期。
- 5、如果计数过程中GATE出现上跳,则重新计数。
- 6、计数过程中如果重写初值,则要等当前计数结束且GATE再次出现上升沿后,才能开始新的计数。

方式1的应用场合

● 改变计数初值C可产生不同宽度的低电平,获取可变宽脉冲信号

- ■实现脉宽调制(PWM,Pulse Width Modulate)
 - ◆用数字信号去控制/产生模拟信号的方法。
 - □利用微机的数字输出来对模拟电路进行控制的技术, 广泛应用在测量、通信、功率控制与变换的领域中。
 - ◆对模拟信号电平进行数字编码的方法
 - □对占空比的编码

方式2:周期性负脉冲输出,分频器

- 若计数初值为N,则OUT频率为CLK的1/N。又称N分频器。
- 例子: C=4

方式2的计数过程和特点

- 1、写入控制字CW,OUT变成高电平。
- 2、写入计数初值C。
- 3、若GATE为高电平时,下一个CLK周期把C写入减1计数器, 并开始计数。
- 4、计数过程中OUT保持高电平,直到倒数第2个CLK。
- 5、减一计数到1时,OUT输出1个负脉冲(宽度为1个CLK周期),
- 6、自动装入C, OUT再次变成高电平,开始新一轮计数。
- 注意:
 - ■方式2中启动计数器的方法有两种
 - ◆软件启动过程: 装入计数初值
 - ◆硬件启动过程: GATE上升沿

方式2的应用场合

- OUT正脉冲宽度 = (计数初值 1) x CLK周期
- OUT负脉冲宽度 = 1个CLK周期。
- 典型应用: N分频器(即速率发生器):
 - ■对已知频率的信号(CLK),通过改变计数初值C,即可获 得不同频率的信号(OUT)

$$f_{OUT} = f_{CLK} / N$$

方式3:周期性方波输出

- 与方式2基本相同:自动装入计数初值C,循环计数
- 不同之处: OUT输出占空比为1:1或近似1:1的方波
 - C为偶数时,OUT的高、低电平前后各一半。
 - C为奇数时:
 - ◆前(N+1) / 2个CLK: OUT高电平
 - ◆后(N-1) / 2个CLK: OUT低电平。

方式3的特点和应用场合

- 方式3的特点
 - ■1、减1计数器每次计数减2。
 - ■2、OUT输出方波信号
 - ■3、计数器有软件启动和有硬件启动两种方式。
- 方式3的应用场合
 - ■波特率发生器(或速率发生器)

方式4:单次负脉冲输出

- 方式4: 单次负脉冲输出, 软件触发
 - ■例子: C=4(后面改为3),注意观察:
 - ◆负脉冲位置;
 - ◆重写新的C时, 计数过程的变化;
 - ◆GATE变低然后恢复高时,计数过程的变化

方式4的计数过程和特点

- 由软件启动计数:写入计数初值C触发计数器开始工作:
- 1、设定方式后,OUT为高电平;
- 2、写入C后,在下一个CLK开始计数
- 3、计数期间OUT保持高电平
- 4、计数结束输出1个CLK的负脉冲,然后OUT恢复高电平。
- 5、GATE作用
 - ◆高电平:允许计数;
 - ◆低电平:停止(不是暂停)计数
 - ◆恢复高电平: 重新开始新一轮的计数。
- 6、重写新的计数初值
 - ■不影响当前计数过程,直到下一轮计数时才生效。

方式5:单次负脉冲输出

- 方式5: 同方式4类似,单次负脉冲输出,但是硬件触发
 - ■例子: C=4, 注意观察
 - ◆负脉冲位置;
 - ◆重写新的C时,计数过程的变化;
 - ◆GATE变低然后恢复高时,计数过程的变化

方式5的计数过程和特点

- 同方式4类似,单次负脉冲输出,硬件触发
 - GATE上升沿触发计数开始
- 1、写入C后,不立即计数,而要由GATE上升沿启动计数。
- 2、计数过程中OUT维持高电平
- 3、计数到0后,OUT输出1个CLK的负脉冲后恢复高电平。
- 4、在计数过程中,如GATE出现上升沿,立即开始新一轮计数。

6种工作方式的总结

- 差异
 - 计数过程和计数结束时OUT电平的高低和持续时间(波形)
 - ■单次计数或自动循环计数
 - 计数的启动方式:软件(写计数初值)或硬件(GATE)

- 方式0和方式1
 - 输出波形类似;
 - ■无自动重装C的能力;
 - 启动计数的触发信号不一样:
 - ◆方式0:软件(写初值)
 - ◆方式1:硬件(GATE上沿)
- 方式2 (N分频器)和方式3 (方波发生器)
 - 计数初值自动重装,循环计数;
 - OUT频率:CLK的N分之一;
 - ■方式2: 计数时高电平,结束时1个CLK负脉冲;
 - ■方式3:前一半为高,后一半为低

6种工作方式的比较——

- 方式4 (单次负脉冲)和5方式(单次负脉冲)
 - ■输出波形相同:单次负脉冲;
 - ■无自动重装能力;
 - ■启动计数方式不同:方式4:软件,方式5:硬件
- 方式2 (N分频) 和方式4与5
 - ■方式2:周期性负脉冲
 - ■方式4与5:单次负脉冲

8253A的应用举例:24秒计时

- 已知计算机系统的计时单位(时钟脉冲)
 - CLK = 1.1931816MHz
 - T_{CLK}=0.84微秒
 - ◆若使用最大的计数初值C1 = 65535 则T_{OUT} = 0.84 * 65535 = 54.918 ms
- 新的计时单位
 - ■新建一个周期性的波形(方式3,输出周期54.918ms)
 - ◆计数初值C1 = 65535
 - ◆T_{OUT} = 0.84微秒 * 65535 = 54.918ms
 - 新的时钟信号T_{CLK-new} = 54.918毫秒
- 在新的时钟T_{CLK-new}下,计时24秒
 - ■方式0,计数结束输出高电平。
 - 计数初值C2 = 24秒 / 54.918毫秒 = 437
- 定时器选用: T0,T1
 - T0:方式3, C1 = 65535, CLK0—CLK, OUT0—CLK1
 - ■T1:方式0, C2 = 437, CLK1 —OUT0, OUT2— 定时到信号

● 8253A的应用举例:24秒计时

假定: 8253A地址: 0x128

8253A的应用举例:流水线产品计数控制

● 每200个玩具打包装箱 (加装红外感应器,8253A)

