

Quiz Date: Friday, 25 January, 2019

Textbook Reading: Sections 6.2 (GE with pivoting), 6.3 (review of matrix/vector arithmetic), 6.4 (determinant review), 6.5 (LU factorization)

Reminder: solutions will not be posted, but the TAs are expecting you to bring your questions to the tutorials. You may also bring questions to the Wednesday afternoon office hours.

0) Basic Ideas

Be very familiar with the following:

- scaled partial pivoting & its intended advantage,
- flops & operation counts,
- how to derive an inverse matrix using (exact) row operations,
- the matrices corresponding to the basic row operations.

1) GE with Pivoting

Textbook problems from Section 6.2:

- #9 (a,b) without pivoting & finite-precision arithmetic.
- #13 (a,b) with pivoting & finite-precision arithmetic.
- #13 optional (c) this is an example of a poorly-scaled matrix (some matrix elements are around 100) I would simply divide those equations by 100 before using GE.

2) Operation Counts

- [A] is an $M \times N$ matrix and \vec{x} is a vector of length N. How many floating point operations are required to compute the vector $\vec{y} = [A] \vec{x}$?
- How many floating point operations are required to compute the matrix product $[A]_{M\times P}[B]_{P\times N}$?
- How many floating point operations are required to compute the product $\vec{y} = [C] \vec{x}$ when [C] is an $N \times N$ upper triangular matrix?

3) LU Factorization

Textbook problems from Sections 6.3:

- #12 (a,b) use the properties from Theorems 6.12 and 6.14.
- #14 (a,b) just a matter of watching where the zeros go.
 - find the inverses of the matrices corresponding to the three basic row operations.

DJM