HOVERCRAFT

JASEN RATNAM 40094237

BRIAN NORDIO 40055620

ANDRÉ SAAD 40076579

VICENTIU-CRISTIAN BADEA 40027683

TEAM #21

SPECIFICATIONS

Functional requirements

What does the hovercraft need to be able to accomplish?

Design constraints

What are the limits that our design must stay within?

FUNCTIONAL REQUIREMENTS

- I. Mission Objectives
- Design & technical GoalsCircular shape & width of 30 cm
- 3. Competition Requirements and Operations
 Finish in 2 minutes autonomously
- 4. Target Score Analysis:

$$score = \frac{d_{completed}}{N_c x t_{course}}$$

- x: 235cm
- y: 50-55cm
- z: 15cm
- up to 3mm speed bumps

DESIGN CONSTRAINTS

What	How well
Intelligence of craft	Must operate autonomously
Minimum lifting	3 mm
Complete track without discharging the battery	Battery must last >6 min
Number of components	As few as possible
Acceleration	Fast enough to complete track <2 min
Turning 180 degrees	Radius of ~25 cm
Must take a reasonable amount of time to create	By competition

DESIGNS

All models

Two Rhino 360 mAh 20C series battery

Model 1

Two MEC0251V1-000U-A99 fans thrust

AFB1212SH fan as the lift fan

Model 2

One MEC0251V1-000U-A99 fan thrust

AFB1212SH fan as the lift fan

One Servo

Model 3

One MEC0251V1-000U-A99 fan thrust and lift

One servo

SWOT ANALYSIS

Design	Strength	Weaknesses	Opportunity	Threats
1	 Number of components Airflow under skirt for lift Airflow for propulsion, velocity and acceleration 	Difficulty control algorithmVolume of designWeightPower consumption	 Three opportunities to complete track Knowledge of track and grading scheme Coding framework provided 	Imperfections in floorAirflowCompetition
2	 Difficulty control algorithm Airflow under skirt for lift Airflow for propulsion, velocity and acceleration 	WeightNumber ofcomponentsPower consumption	 Three opportunities to complete track Knowledge of track and grading scheme Coding framework provided 	Imperfections in floorAirflowCompetition
3	Power consumptionWeightNumber ofcomponentsDifficulty controlalgorithm	Airflow under skirt for liftAirflow for propulsion, velocity and acceleration	Three opportunitiesto complete trackKnowledge of trackand grading schemeCoding frameworkprovided	Imperfections in floorAirflowCompetition

AHP ANALYSIS

Normalized AHP Analysis							
	Reduced number of components	Increased lift	Higher propulsion	Reduced weight	Reduced algorithm difficulty	Reduced power consumption	Average
Number of components	0.092	0.126	0.117	0.022	0.182	0.167	0.118
Lift	0.277	0.383	0.467	0.259	0.364	0.278	0.338
Propulsion	0.185	0.192	0.234	0.432	0.273	0.222	0.256
Weight	0.369	0.126	0.047	0.086	0.045	0.167	0.140
Algorithm difficulty	0.046	0.096	0.077	0.173	0.091	0.111	0.099
Power consumption	0.030	0.077	0.058	0.028	0.045	0.056	0.049
Previous SUM	10.830	2.610	4.280	11.580	11	18	N/A
New SUM	1	1	1	1	1	1	1

Ranked priority vector				
1	0.338	Lift		
2	0.2561	Propulsion		
3	0.1402	Weight		
4		Number of		
7	0.1176	components		
5	0.099	Algorithm difficulty		
6	0.04917	Power consumption		

FINAL DECISION

Comparison	Priority						
Criteria	vector	Design 1		Design 2		Design 3	
		Score	Result	Score	Result	Score	Result
Lift	0.338	10	3.38	10	3.38	9	3.042
Propulsion	0.2561	10	2.561	9	2.3049	8	2.0488
Weight	0.1402	8.5	1.1917	9	1.2618	10	1.402
Number of							
components	0.1176	8	0.9408	9	1.0584	10	1.176
Algorithm							
difficulty	0.099	10	0.99	9	0.891	8	0.792
Power							
consumption	0.04917	9	0.44253	8	0.39336	10	0.4917
Total	1.00	55.50	9.51	54.00	9.29	55.00	8.95

SCHEDULE & PROGRESS

- Break whole project into small tasks
 - Don't forget tasks

 Define input/output relationships

 Define critical path
 - Huge/complicated to read Not viewable on phones
- Create Gantt chart from diagram
 - Simplifies by combining tasks
 Assigns tasks to dates
- Create Google calendar from Gantt chart
 - Viewable on phones
 Gives reminders

