CPSC 340: Machine Learning and Data Mining

Linear regression: fit

Bonus slides

• In Smithsonian National Air and Space Museum (Washington, DC):

Vector View of Least Squares

We showed that least squares minimizes:

• The ½ and the squaring don't change solution, so equivalent to:

$$f(w) = \|\chi_w - \gamma\|$$

• From this viewpoint, least square minimizes Euclidean distance between vector of labels 'y' and vector of predictions Xw.

Bonus Slide: Householder(-ish) Notation

Househoulder notation: set of (fairly-logical) conventions for math.

Use greak letters for scalars:
$$\lambda = 1$$
, $\beta = 3.5$, $7 = 11$

Use first/last lowercase letters for vectors: $w = \begin{bmatrix} 0.1 \\ 0.2 \end{bmatrix}$, $\chi = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $\chi = \begin{bmatrix} 0 \\ 1$

Use First/last uppercase letters for matrices: X, Y, W, A, B

Indices use 1, j, k.

Sizes use m, n, d, p, and k is obvious from context

Sets use 5, 7, U, V

Functions use f, q, and h.

When I write x; I
mean "grab row"; of
X and make a column-vector
with its values."

Bonus Slide: Householder(-ish) Notation

Househoulder notation: set of (fairly-logical) conventions for math:

Our ultimate least squares notation:
$$f(w) = \frac{1}{2} ||Xw - y||^2$$
But if we agree on notation we can quickly understand:
$$g(x) = \frac{1}{2} ||Ax - b||^2$$
If we use random notation we get things like:
$$H(\beta) = \frac{1}{2} ||R\beta - P_n||^2$$
Is this the same model?

When does least squares have a unique solution?

- We said that least squares solution is not unique if we have repeated columns.
- But there are other ways it could be non-unique:
 - One column is a scaled version of another column.
 - One column could be the sum of 2 other columns.
 - One column could be three times one column minus four times another.
- Least squares solution is unique if and only if all columns of X are "linearly independent".
 - No column can be written as a "linear combination" of the others.
 - Many equivalent conditions (see Strang's linear algebra book):
 - X has "full column rank", X^TX is invertible, X^TX has non-zero eigenvalues, $det(X^TX) > 0$.
 - Note that we cannot have independent columns if d > n.