Inclusive jet cross section at small R

$$\frac{d\sigma}{dp_T} = \int_0^1 \frac{dz}{z} \frac{d\hat{\sigma}}{dq_T} (\frac{p_T}{z}, \mu) \mathcal{J}(z, \mu, \mu_J), \quad \mu \sim p_T, \quad \mu_J \sim p_T R$$
 (1)

$$\hat{\sigma} = \hat{\sigma}^{(0)} + \hat{\sigma}^{(1)} + \cdots, \quad \mathcal{J} = \mathcal{J}^{(0)} + \mathcal{J}^{(1)} + \cdots$$
 (2)

Aim to achieve NLO accuracy of hard partonic cross-section $\hat{\sigma}$, and Leading-log (LL) accuracy of the evolved jet function \mathcal{J} in vacuum and medium.

$$\sigma = \underbrace{\hat{\sigma}^{(0)} \otimes \mathcal{J}^{(0)}}_{LO+LL} + \underbrace{\left(\hat{\sigma}^{(0)} \otimes \mathcal{J}^{(1)} + \hat{\sigma}^{(1)} \otimes \mathcal{J}^{(0)}\right)}_{NLO+LL} + \cdots$$
(3)

- I have $\mathcal{J}^{(0)}, \mathcal{J}^{(1)}$ in vacuum, and $\sigma^{(0)}$. Missing $\hat{\sigma}^{(1)}$, just get a code, hope it work.
- (N)LO+LL: $\hat{\sigma}^{(0)} \otimes \mathcal{J}^{(0)} + \hat{\sigma}^{(0)} \otimes \mathcal{J}^{(1)}$.
- "NLO"+LL: $\hat{\sigma}^{(0)} \otimes \mathcal{J}^{(0)} + (\hat{\sigma}^{(0)} \otimes \mathcal{J}^{(1)} + \text{"$\hat{\sigma}^{(1)}$"} \otimes \mathcal{J}^{(0)})$, assuming " $\hat{\sigma}^{(1)}$ " = $K_{\rm NLO}\hat{\sigma}^{(0)}$

1

The vacuum jet function

- $\mathcal{J}^{(0)}$ agree with Zhong-Bo Kang, Felix Ringer and Ivan Vitev 1606.06732.
- $\mathcal{J}^{(1)}$ qualitatively similar, but quantiatively different form 1606.06732. I suspect it to be the number of active flavor N_f one assumes.

Numerical check of inclusive jet cross section

All calculations assumes a $K_{\rm NLO}=1$.

ATLAS, 7 TeV,
$$pp \rightarrow j(R = 0.4)$$
 1410.8857

CMS, 2.76 TeV, $pp \rightarrow j(R = 0.2)$ 1609.05383.

Numerical check of inclusive jet cross section

All calculations assumes a $K_{\rm NLO} = 1$.

ALICE, 5 TeV, 1909.09718

$$pp \rightarrow j(R = 0.1)$$

$$pp \rightarrow j(R = 0.2)$$

$$pp \rightarrow j(R = 0.4)$$

Numerical check of inclusive jet cross section

All calculations assumes a $K_{\rm NLO}=1$.

STAR, 0.2 TeV,
$$pp \rightarrow j(R=0.4)$$
 hep-ex/0608030

To do:

- Compute $\hat{\sigma}^{(1)}$ to perform consistent NLO+LL calculaton.
- In medium evolution of jet function. at least at leading order $\mathcal{J}^{(0)} + \Delta \mathcal{J}^{(0)}$.
- Heavy flavor tagging.