

MJIOT-AMB-03 产品规格书

MJIOT-AMB-03 WIFI 模块外观

目录

1. 产品概述	4
1.1 特点	5
1.2 主要参数	6
2. 接口定义	7
3. 型与尺寸	8
4. 性能描述	9
4.1. MCU	9
4.2. 存储描述	9
4.2.1. 内置 SRAM 与 ROM	9
4.3. 工作温度	11
4.4. 建议工作环境	11
5. RF 参数	12
6. 功耗	12
7. 数字管脚 I/O 电气特性	14
8. 模块安装注意事项	15
9. AT 指令 透传模式使用 MJIOT-AMB-03 模块	16
10. MJIOT-AMB-03 模块 JTAG/CMSIS-DAP 调试	17
11. MJIOT-AMB-03 模块下载调试图	18
12. MJIOT-AMB-03 外围硬件参考设计	19
13. 公司介绍	20

1. 产品概述

MJIOT-AMB-03 是一个高度集成的单芯片低功耗 802.11n 无线局域网(WLAN)网络控制器.它集成一个 ARM-CM4 内核,无线局域网 MAC,WLAN 基带和射频 RF 在一颗单芯片。它可以提供了一个可配置的一些 GPIO 用于配置不同的应用和控制。瑞昱 RTL8710BN 内部集成了内存可以完成所有的 wifi 协议栈功能,还提供应用程序开发所需要的的内存和 flash。

图 1 瑞昱 RTL8710BN 结构图

MJIOT-AMB-03 是一个完整且自成体系的 WiFi 网络解决方案,能够独立运行,也可以作为从机搭载于其他主机 MCU 运行。MJIOT-AMB-03 在作为设备中唯一的应用处理器时,使用我们提供的sdk,根据客户的需求定制方案,不仅可以降到整个产品的价格,也可以方便后续的维护升级。

另外一种情况是,MJIOT-AMB-03 负责无线上网接入承担 WiFi 适配器的任务时,可以将其添加到任何基于微控制器的设计中,连接简单易行,只需通过 I2C/UART/SPI/RTC/TIMER/GPIO 硬件接口,使用我们提供的 AT 指令即可实现物联网产品的开发。

MJIOT-AMB-03 强大的片上处理和存储能力,使其可通过 GPIO 口集成传感器及其他应用的特定设备,实现了最低前期的开发和运行中最少地占用系统资源。

1.1 特点

- ❖ 支持 802.11 b/g/n 模式, g 模式最高传输速率 54Mbps, n 模式最高传输速率 150Mbps
- ❖ 内置低功耗 32 位 ARM-CM4 CPU
- ❖ 内置 TCP/IP 协议栈
- ❖ 内置 PLL、稳压器和电源管理组件
- ❖ WiFi @ 2.4 GHz, 支持 FPU,XIP,FPB
- ❖ 支持 freeRtos 嵌入式操作系统, LWIP 网络协议栈
- ❖ 支持 J-Link/JTAG/CMSIS-DAP 调试
- ❖ 支持两路高速串口(最高波特率 6M bps),支持可编程时钟同步和发送接收 FIFO
- ❖ 一个 SPI 接口,支持 SPI 主从模式和 DMA、主/从模式波特率最高 31.25Mbps.
- ❖ 二个 I2C、支持 SPI 主从模式和 DMA,最高访问速度是 400kbps
- ❖ 二组 ADC 支持电压 0-5V
- ❖ 最多支持 6 组 高精度的 PWM
- ❖ 支持最多 17 个 GPIO
- ❖ 支持 4 个时钟是 32.768KHz 的定时器
- ❖ 支持 STA/AP/STA+AP 工作模式
- ❖ 支持 Smart Config 功能(包括 Android 和 iOS 设备)
- ❖ 802.11b 模式下+ 17 dBm 的输出功率
- ❖ 工作电流:正常模式 2.5mA, 低功耗模式 70uA
- ❖ 工作温度范围: -20℃ 85℃

1.2 主要参数

表 1 介绍了该模组的主要参数。

表 1 参数表

类别	参数	说明
无线参数	无线标准	802.11 b/g/n
心线参数	频率范围	2.4GHz-2.5GHz (2400M-2483.5M)
	封装尺寸	18mm x 20mm
	CPU	ARM Cortex M4 (125MHz)
	ROM/RAM/Flash	1MB / 512KB(用户可用 140k) /外置最大 128M
	PWM	最大支持 6 个
	SPI	最大支持 1 个
硬件参数	UART	2 个高速串口(波特率最高 4Mbps)
	I2C	最大支持 1 个
	GPIO	最大支持 17 个
	工作电压	3.0~3.6V (建议 3.3V)
	工作温度	-20°~85°
	存储温度	常温
	封装大小	18mm*20mm*0.6mm
	无线网络模式	station/softAP/SoftAP+station
	数据吞吐量	802.11g 最大为 54Mbps , 802.11g 最大为 150Mbps
	支持云	ALINK/JOYLINK/QQLINK/HILINK/AIRKISS/WEICHAT
	加密类型	WEP/TKIP/AES
46 11 25 Not	升级固件	本地串口烧录 / 云端升级 / 主机下载烧录
软件参数	软件开发	支持客户自定义服务器
	网络协议	TCP/UDP/HTTP/FTP/SNTP/MQTT/SMTP
	用户配置	AT+ 指令集, 云端服务器, Android/iOS APP
	SDK	开源,支持 win 和 linux

2. 接口定义

MJIOT-AMB-03 PINOUT diagram

PIN name	SWD/JTAG	UART Group	I2C Group	SPI Group	PWM	ADC	OTHERS	POWER
PA30		LOG_TXD						
PA29		LOG_RXD						
PA14	SWD_CLK	543			PWMO			
PA15	SWD_DATA				PWM1			
PA0					PWM2			
PA12					PWM3			
PA5					PWM4		WAKEUP_1	
PA18		UART_RXD	I2C1_SCL	SPIO_CLK			WAKEUP_O	
PA19		UARTO_CTS	I2CO_SDA	SPIO_CS				
PA22		UARTO_RTS	I2CO_SCL	SPIO_MISO	PWM5		WAKEUP_2	
PA23		UARTO_TXD	I2C1_SDA	SPIO_MOSI	×		WAKEUP_3	
VBAT						ADC1		
3V3								VCC
GND								GND

图 2 MJIOT-AMB-03 管脚图

文件版本 01 (2017-02-01)

第7页共20页

3. 型与尺寸

MJIOT-AMB-03 贴片式模组的外观尺寸为 20mm * 18mm * 0.6mm (如图 3 所示)。

图 3 MJIOT-AMB-03 模组外观

图 4 MJIOT-AMB-03 模组尺寸平面面图

4. 性能描述

4.1. MCU

瑞昱 RTL8710BN 是一个低功耗单芯片。它集成了一个 ARM Cortex M4 MCU、802.11n 无线网络控制器等于一体。它还提供了一些可配置的 GPIO 等外设。

4.2. 存储描述

4.2.1. 内置 SRAM 与 ROM

MJIOT-AMB-03 自身内置了存储控制器,包含 ROM, FLASH 和 SRAM。基于 SDK, 用户可用剩余 SRAM 空间为: SRAM size > 140kB 。

内部集成的 ROM(512KB)

MJWL-AMB-0 内部集成 **512KB** 只读存取提供高速度、低内存泄漏,最高时钟 125MHz。提供以下功能:

- > 启动代码和单片机的初始化
- > 默认 UART 驱动程序
- ▶ 非 flash 启动的功能和驱动程序
- ▶ 外围 LIBS
- > 安全函数库

内部集成的 SRAM(256Kb)

MJIOT-AMB-03 SRAM 内存布局图

FLASH(2Mb)

图 5 MJIOT-AMB-03 Flash 内存布局图

4.3. 工作温度

表 7 最大大额定值

额定值	条件	值	单位
存储温度		-40 to 125	℃
最大焊接温度		260	℃
供电压	IPC/JEDEC J-STD-	+3.0 to +3.6	V

4.4. 建议工作环境

表 8 建议工作环境

工作环境	名称	最小值	典型值	最大值	单位
工作温度		-20	32	85	℃

文件版本 01 (2017-02-01)

第 11 页 共 20 页

供电电压	VDD	3.0	3.3	3.6	V

注意:如无特殊说明,测试条件为:VDD = 3.3 V,温度为 20 ℃。

5. RF 参数

表 9 RF 参数

参数	典型	型值	单位
输入频率	2412-2	2483.5	MHz
输入电阻	5	Ω	
	802.11b	>17	dBm
输出功率	802.11g	>15	dBm
	802.11n(HT20)	>14	dBm
	11M	≤-76	dBm
接收灵敏度	54M	≤-65	dBm
	65M(HT20)	≤-64	dBm

6. 功耗

表 10 功耗

模式	最小值	典型值	最大值	单位
Deep Sleep Mode①		7.5		uA
Deep Standby Mode②		70		uA
Sleep Mode③		120		uA
正常待机		5		mA

注①: Deep Sleep Mode 深度睡眠模式关闭包括 Cortex-M4 内核的电源域,系统,时钟、SRAM和调节器。外设关闭除了唤醒源服务:一个唤醒引脚和一个低精度定时器唤醒系统。除了用来保持唤醒引脚的没有关闭,其他所有的寄存器都关闭。重新启动系统后唤醒。

注②: Deep Standby Mode 深待机模式关闭包括 Cortex-M4 内核、系统时钟、SRAM 和调节器。除了唤醒源为 4 个 GPIO 和定时器唤醒系统以外其他外设关闭。只有大约 200 个字节的寄存器保持唤醒使用,其他寄存器都关掉。系统重新启动后,唤醒。

注③:Sleep Mode 睡眠模式关闭包括 Cortex-M4 内核的电源域,和系统时钟。系统不需要重新启动后唤醒。

表 12 低功耗模式资源使用比较

Table 1 Power domain comparison

		CM4 core	System clock	Low Power Clock	SRAM	Register	Regulat or	Main digital supply	Periphe rals	RTC
	Deep Sleep	X	X	0	X	X	X	0	Δ	X
<	Deep Standby	X	X	0	X	X	X	0	Δ	0
	Sleep	Δ	Δ	0	0	0	0	0	Δ	0
	Active	0	0	0	0	0	0	0	0	0

表 13 低功耗模式唤醒对比

7. 数字管脚 I/O 电气特性

Table 12. Typical Digital IO DC Parameters (3.3V Case)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
V _{IH}	Input-High Voltage	LVTTL	2.0	9 -		V
V _{IL}	Input-Low Voltage	LVTTL	-	18 -	0.8	V
V _{OH}	Output-High Voltage	LVTTL	2.4	7-	-	V
V _{OL}	Output-Low Voltage	LVTTL	-		0.4	V
V _{T+}	Schmitt-trigger High Level		1.78	1.87	1.97	V
V _{T-}	Schmitt-trigger Low Level		1.36	1.45	1.56	V

表 14 3.3v 电压特性

Table 13. Typical Digital IO DC Parameters (1.8V Case)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
V _{IH}	Input-High Voltage	CMOS	0.65x V _{CC}	1-	-	٧
V _{IL}	Input-Low Voltage	CMOS	[· -	-	0.35x V _{CC}	٧
V _{OH}	Output-High Voltage	CMOS	V _{CC} -0.45	1 -	-	٧
V _{OL}	Output-Low Voltage	CMOS	\ -	1-	0.45	V
V _{T+}	Schmitt-trigger High Level		1.02	1.09	1.14	V
V _{T-}	Schmitt-trigger Low Level		0.67	0.73	0.8	٧
I _{IL}	Input-Leakage Current	V _{IN} =1.8V or 0	-10	±1	10	μΑ

8. 模块安装注意事项

MJIOT-AMB-03 采用板载 PCB 天线,对模块周边环境有要求。建议如下:天线周边 6-9mm 之内不要放置影响天线的元器件;天线下方 3-5mm 之内不要放置影响天线的元器件,若有铺地需做净空处;下方尽量不要放置元件及高频信号走线。

使用注意事项 (Precautions for use)

- 1 , 天线周边 6-9mm 之内不要放置影响天线的元器件。 Do not place antenna elements within the antenna 6-9mm。
- 2 , 天线下方 3-5mm 之内不要放置影响天线的元器件 , 若有铺地需做净空处理。 Within the antenna below the 3-5mm do not place antenna components, if there is a need to do floor clearance processing。
- 3,模块下方尽量不要放置元件及高频信号走线。 Try not to place the components under the module and high frequency signal

line.

图 6 模块安装参考图

9. AT 指令 透传模式使用 MJIOT-AMB-03 模块

图 7 模块透传模式接线图

10.MJIOT-AMB-03 模块 JTAG/CMSIS-DAP 调试

图 8 模块 JTAG/CMSIS-DAP 调试接线图

JTAG/SWD debug diagram

11.MJIOT-AMB-03 模块下载调试图

模块串口下载调试接线图

UART download diagram

模块使用步骤 (Use step)

正常模式:

- 1,连接VCC,GND,TX,RX,A23(TX),A18(RX)
- 线路进入透传模式。 2,短按RST按键,可以重启MJIOT-AMB-03模组
- 3,连接A14(CLK),A15(TMS),GND,可以在线仿真

下载模式:

- 1,开机长按FLASH按键(TX拉低)。
- 2,短按RST按键(EN拉低拉高),进入下载模式。 3,使用imageTool下载分区到MJIOT-AMB-03模
- 4,短按RST按键,进入正常模式。

Enter normal mode:

- 1, connect VCC, GND, TX, RX, A23 (TX), A18 (RX) line into the transmission mode.
- 2, press the RST button, you can restart the MJIOT-AMB-03 module.
- 3, connect A14 (CLK), A15 (TMS), GND, online simulation debugging.
- Download mode: 1. boot press FLASH button.
- 2, press the RST button to enter the

3, use imageTool to download partition to

12.MJIOT-AMB-03 外围硬件参考设计

13.公司介绍

公司总部位于深圳,是一家集研发、生产和销售为一体的,以技术和服务为导向的物联网科技公司。 公司创始人及主要团队成员拥有丰富的物联网行业背景,专注于研发具有核心竞争力的 WIFI 模块以及物联网产品,提供端到端的 IoT 整体解决方案。 在"互联网+"的政策支持与行业发展的背景下,敏俊物联相信下一个互联网时代即将到来,一个物物相联的世界即将在全球实现。敏俊物联将凭借自身扎实的技术能力、拼搏的企业精神、 奉献的公司态度,为推动建立工业 4.0 助力! 万物互联,智慧地球,这是人类的梦想,也是敏俊物联的理想。