ALGEBRA QUALIFYING EXAM SEPTEMBER 1985

- I. Groups
- l. Let A be a finite abelian group of order n. Assume that for each divisor m of n the equation $x^m = 1$ has m solutions, where l is the identity in A. Prove that A is cyclic.
 - 2. Let A be the abelian group with presentation $A = \langle a_1, a_2 | 2a_1 a_2 = 0, -2a_1 + 2a_2 = 0 \rangle.$

Find the structure of A.

- 3. Let G be a finite group and let P be a 2-Sylow subgroup. Let $M \leq P$ be a subgroup of index 2 in P. Assume that $x \in P M$ is not conjugate in G to any element of M. Then show that $x \notin G'$, the commutator subgroup of G. (Hint: Look at the permutation representation of G induced on the cosets of M. What is the cycle structure of x?)
- 4. (You may assume the conclusion of exercise (3).

 Let G be a finite simple group with dihedral 2-Sylow subgroups.

 Prove that G has a single class of involutions.
- 5. Let G be a simple group of order 60. Prove that G has exactly 5 2-Sylow subgroups. (Thus $G \cong A_5$, the alternating group on 5 symbols.)
 - II. Rings and Modules
 - Let R be an integral domain such that every ideal is a free R-module. Prove that R is a principal ideal domain.
 - 2. Let R be a principal ideal domain.
 - (a) Prove that any non-zero prime ideal in R is maximal.
 - (b) Using (a), prove that the polynomial ring $\mathbb{Z}[x]$ is not a principal ideal domain.

- 3. Let R be a ring and let M be a left R-module. Prove that the following are equivalent:
 - (i) $M = \sum_{i=1}^{\infty} M_{i}$, where $\{M_{i}\}_{i \in I}$ is a collection of irreducible R-submodules of M;
 - (ii) $M=\bigoplus_{\alpha\in \mathcal{J}}M$, where $\{M_{\alpha}\}_{\alpha\in \mathcal{J}}$ is a collection of irreducible R-submodules of M.
- 4. Let R be a ring with identity. Define the Jacobson radical J(R) by setting
 - $J(R) = \{r \in R | rM = 0 \text{ for every irreducible left } R-module M\}.$
 - (a) Prove that J(R) is a 2-sided ideal of R.
 - (b) Prove that J(R/J(R)) = 0.

III. Linear Algebra

- l. Let T be a linear transformation on the finite dimensional Q-vector space V. If $T^2+I=0$ prove that $\dim_{\mathbb{C}}V$ is even.
- 2. Let F be any field over which the polynomial $x^2 + x + 1$ is irreducible. Prove that the matrix $\begin{bmatrix} 0 & -1 \\ 1 & -1 \end{bmatrix}$ is not similar to any upper triangular matrix, with entries in the field F.
- 3. Let $T:V\to V$ be a linear transformation on the finite dimensional F-vector space V. Let $W\subseteq V$ be a T invariant subspace of V.
 - (a) Prove that there exists a unique linear transformation $\overline{T}: V/W \to V/W \text{ such that } \overline{T}(v+W) = T(v)+W.$
 - (b) Prove that $m_{\overline{T}}(x) | m_{\overline{T}}(x)$.
- 4. Let $T:V\to V$ be a linear transformation on the finite dimensional F-vector space V. Let $\mathbf{m}_T(\mathbf{x}) = \sum\limits_{i=0}^n \alpha_i \mathbf{x}^i$. Prove that T is invertible if and only if $\alpha_0 \neq 0$.

- IV. Fields
- 1. Let S be the complex number $S = e^{2\pi i/n}$. Prove that [Q[S]:Q]=2 if and only if n=3,4 or 6.
- 2. Let F be a finite field, and let F = F {0}. Prove that with respect to multiplication, F is a cyclic group. (You may use the result of exercise (1) of I.)
- 3. Prove that the Galois group of x^4 5 cannot be abelian. (Bear in mind that every subgroup of an abelian group is normal.)
- 4. Let K be a splitting field over C[x] for the polynomial $Y^3 (x 1)(x 2)(x 3)$. Prove that the genus of K over C is 2. (Just kidding!)
- 5. Let p be a prime and let ξ be the complex number $\xi=e^{2\pi i/p}. \text{ Prove that } \text{Gal}(\mathbb{Q}[\,\xi\,]/\mathbb{Q}) \stackrel{\sim}{=} \mathbb{Z}_{p-1} \text{ , a cyclic group of order } p-1.$