www.ampak.com.tw

TX&RX test with IQ-view

Version information

Version	Date	Author
0.3	2018/06/02	Terence Hsieh
0.1	2013/04/02	Bart Lin

Continuous Modulation/Single-Tone Tx Configuration

The following procedure describes how to analyze the 802.11a/b/g/n Tx Packet using IQview and WL commands.

Set up the IQview for Modulation/Single-Tone Tx

Step1. Execute IQview.exe

and the GUI shows below.

Set up the IQview for Modulation/Single-Tone Tx

For IQMIMO (For analyze 802.11a/g/n mode)

For IQsignal (For analyze 802.11a/b/g mode)

Set up Wi-Fi in your device for RF Test

If Wi-Fi driver is built a kernel module(bcmdhd.ko):

- 1) Pull BT_REG_ON to Low
- 2) insmod /system/lib/modules/bcmdhd.ko iface_name=wlan0 firmware_path=/etc/firmware/fw_bcmdhd_mfg.bin nvram_path=/etc/firmware/nvram.txt
- 3) ifconfig wlan0 up
- 4) wl ver → Check firmware name and should include (WLTEST) string

If Wi-Fi driver is built in kernel

- 1) Pull BT REG ON to Low
- echo /system/etc/firmware/fw_bcmdhd_mfg.bin > /sys/module/bcmdhd/parameters/firmware_path
- 3) ifconfig wlan0 up
- 4) wl ver → Check firmware name and should include (WLTEST) string

Continuous Modulation Tx – 802.11a

wl down

wl band a

wl mpc 0

wl nrate -r 54

wl rateset 54b

wl country ALL

wl up

wl channel 36

wl scansuppress 1

wl txpwr1 -1

wl pkteng_start 00:11:22:33:44:55 tx 100 1000 0

Modulation	nrate	rateset
BPSK	6	6 b
BPSK	9	9b
QPSK	12	12b
QPSK	18	18b
16-QAM	24	24b
16-QAM	36	36b
64-QAM	48	48b
64-QAIVI	54	54b

Band	channel
5GHz Band 1(5150~5250)	36, 40, 44, 48
5GHz Band 2(5250~5350)	52, 56, 60, 64
5GHz Band 3(5475~5725)	100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144
5GHz Band 4(5725~5850)	149, 153, 157, 161, 165

Continuous Modulation Tx – 802.11b

	Modulation	nrate	rateset
	DBPSK	1	1b
wl down	DQPSK	2	2 b
	DQPSK	5.5	5.5b
wl band b	DQPSK	11	11b
wl mpc 0			

wl nrate -r 11 wl rateset 11b wl country ALL

wl up

wl channel 1

wl scansuppress 1

wl txpwr1 -1

Band	channel
2.4GHz (2400~2483)	1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13

wl pkteng_start 00:11:22:33:44:55 tx 100 1000 0

Continuous Modulation Tx – 802.11g

wl down
wl band b
wl mpc 0
wl nrate -r 54 ←
wl rateset 54b ←
wl country ALL
wl up
wl channel 1
wl scansuppress 1
wl txpwr1 -1

Modulation	nrate	rateset
BPSK	6	6b
BPSK	9	9b
QPSK	12	12b
QPSK	18	18b
16-QAM	24	24b
16-QAM	36	36b
64-QAM	48	48b
64-QAW	54	54b

Band	channel
2.4GHz (2400~2483)	1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13

wl pkteng_start 00:11:22:33:44:55 tx 100 1000 0

Continuous Modulation Tx – 802.11n

wl down
wl band b
Set band: a = 5G, b = 2.4G
wl mpc 0
wl nrate -m
wl rateset 54b
wl country ALL
wl up

Modulation	nrate (MCS)
BPSK	0
QPSK	1
QPSK	2
16-QAM	3
16-QAM	4
64-QAM	5
64-QAM	6
64-QAM	7

wl channel 1 wl scansuppress 1

wl txpwr1 -1

wl pkteng_start 00:11:22:33:44:55 tx 100 1000 0

	J00000000
Band	channel
2.4GHz (2400~2483)	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13
5GHz Band 1(5150~5250)	36, 40, 44, 48
5GHz Band 2(5250~5350)	52, 56, 60, 64
5GHz Band 3(5475~5725)	100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144
5GHz Band 4(5725~5850)	149, 153, 157, 161, 165

Continuous Single-Tone Tx

Band	fqacurcy
2.4GHz (2400~2483)	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13
5GHz Band 1(5150~5250)	36, 40, 44, 48
5GHz Band 2(5250~5350)	52, 56, 60, 64
5GHz Band 3(5475~5725)	100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144
5GHz Band 4(5725~5850)	149, 153, 157, 161, 165

Continuous Modulation/Single-Tone Tx Select desired channel RF Input 17.00 - dBm Signal Trigger Single Right RF Port Mirror Freq. Auto Range -25 dB max AGC Master Only Click Start to analyze packets Path loss Measurement [VSA #1] Avg Pow (dBm): Amplitude [dB] -38.0 DC Leakage (dBc): Analyzed VSA Signals: 1 Power VSA 1 (dBm): IQ Imb Ampl (dB): -0.0 -20 IO Imb Phase (deg): -0.2 Sym Clk (ppm): Stream/VSA 1 Stream/VSA 3 Phase (deg, RMS): PSDU CRC: FAILED Spectrum VSA: 1 Num Symbols: Num PSDU Bytes: PSD (dBm/BW) BW: 100 kHz -20 &Q Signals [V] Save Top Left

100

Right

Amplitude Left

Spectrum Mask

-10

Continuous Rx Configuration

The following procedure shows the setup for OFDM 54 Mbps signal sequence with a 1000 packet count and describes how to calculate the RX Packet Error Rate using IQview and WL commands.

Step1. Execute IQview.exe

IQsignal 1.4.0.x

IOSIEDAL and the GUI shows below.

Step2. From the GUI, select Tools and then click Vector Signal Generator.

Step3. The Vector Signal Generator GUI shows below.

Step4. Select File and click Open Generator File to load the wave-form.

Step5. From the Open Signal File, select the desired wave-form file and click Open.

For test 802.11b(11M), please select CCK_11.mod 802.11a/g(54M), please select OFDM_54.mod 802.11n(mcs7), please select mcs7_HT20.mod (IQ MIMO)

wl down

wl band auto

wl mpc 0

wl country ALL

wl scansuppress 1

wl channel 7

wl bi 65535

wl up

wl counters

Band	fqacurcy
2.4GHz (2400~2483)	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13
5GHz Band 1(5150~5250)	36, 40, 44, 48
5GHz Band 2(5250~5350)	52, 56, 60, 64
5GHz Band 3(5475~5725)	100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144
5GHz Band 4(5725~5850)	149, 153, 157, 161, 165

Step2. Enter the ./wl counters command and note the number following the rxdfrmocast (9957).

```
rxfrmtoolong 797 rxfrmtooshrt 125 rxinvmachdr 3605 rxbadfcs 9378
rxbadplcp 16927 rxcrsglitch 274195 rxstrt 107429 rxdfrmucastmbss 0
rxmfrmucastmbss A rxcfrmucaet 124 rxrtsucast 0 rxctsucast 0
rxackucast 12! rxdfrmocast 9957 rxmfrmocast 1015 rxcfrmocast 1862
rxrtsocast 0 rxctsocast 2 rxdfrmmcast 47418 rxmfrmmcast 36875
rxcfrmmcast 0 rxbeaconmbss 0 rxdfrmucastobss 0 rxbeaconobss 34925
rxrsptmout 816 bentxeanel 0 rxf0ovfl 0 rxf1ovfl 0
rxf2ovf1 0 txsfovf1 0 pmgovf1 0
rxcgprqfrm 201 rxcgprsqovfl 0 txcgprsfail 819 txcgprssuc 124
prs_timeout 0 rxnack 0 frmscons 0 txnack 0 txglitch_nack 0
txburst 0 txphyerror 0
txchanre.j 0
rx1mbps 0 rx2mbps 0 rx5mbps5 0
rx6mbps 0 rx9mbps 0 rx11mbps 0
rx12mbps 0 rx18mbps 0 rx24mbps 0
rx36mbps 0 rx48mbps 0 rx54mbps 0
pktengrxducast 0 pktengrxdmcast 0
```

Step3. Click the Start button and then enter the ./wl counters command.

Step4. After enter the ./wl counters command and note the number following the rxdfrmocast (10905).

```
rxfrmtoolong 805 rxfrmtooshrt 125 rxinvmachdr 3622 rxbadfcs 9403
rxbadplcp 16985 rxcrsglitch 279554 rxstrt 108535 rxdfrmucastmbss 0,
rxmfrmucastrbss 🗗 rxcfrmucast 124 rxrtsucast 0 rxctsucast 0
rxackucast 124 rxdfrmocast 10905 rxmfrmocast 1015 rxcfrmocast 1862
rxrtsocast 🖥 🚾 tsocast 🚨 rxii rmmcast 47418 rxmfrmmcast 37000
rxcfrmmcast 0 rxbeaconmbss 0 rxdfrmucastobss 0 rxbeaconobss 35050
rxrsptmout 816 bentxeanel 0 rxf0ovfl 0 rxf1ovfl 0
rxf2ovf1 0 txsfovf1 0 pmqovf1 0
rxcgprqfrm 201 rxcgprsqovfl 0 txcgprsfail 819 txcgprssuc 124
prs_timeout 0 rxnack 0 frmscons 0 txnack 0 txglitch_nack 0
txburst 0 txphyerror 0
txchanre,j Ø
rx1mbps 0 rx2mbps 0 rx5mbps5 0
rx6mbps 0 rx9mbps 0 rx11mbps 0
rx12mbps 0 rx18mbps 0 rx24mbps 0
rx36mbps 0 rx48mbps 0 rx54mbps 0
pktengrxducast 0 pktengrxdmcast 0
```

Step5. The RX PER

= (Total lost packets at receiver / Total sent packets from the VSG)*100%

In this example:

Total packets received = 10905-9957=948.

So, the Total lost packets at receiver = 1000-948 = 52.

Thus, the RX PER = 52/1000 = 5.2% for -70dBm, OFDM 54Mbps