Generalidades de la materia

Dr. Ing. Rodrigo Gonzalez

rodrigo.gonzalez@ingenieria.uncuyo.edu.ar

Control y Sistemas

Facultad de Ingeniería, Universidad Nacional de Cuyo

Resumen

- Horarios
- Temas generales
- Cronograma
- Recursos
- Metodología
- Herramientas de desarrollo
- Regularización
- Parciales
- Anteproyecto
- Anteproyecto
- Proyecto final

Horarios

- Clases: martes de 08:30 h a 12:30 h.
- Consulta: típicamente los miércoles de 19:00 h a 20:00 h.
- Mesa: martes a partir de las 15:00 h.

Temas centrales de la materia

- Representación de numeros reales en una computadora.
- Procesamiento digital de señales.
- Modelado de sistemas mecatrónicos.
- Control avanzado de sistemas mecatrónicos.

Cronograma

CONTROL y SISTEMAS			
Nro	Fecha	Tema	Unidad
1	29/03/2022	Transformada Z. Modelos Discretos.	Unidad 1
2	05/04/2022	Representacion finita de numeros reales en formato punto fijo.	Unidad 1
3	12/04/2022	Representacion finita de numeros reales en formato punto flotante.	Unidad 1
4	19/04/2022	Etapas típicas en procesamiento digital de señales.	Unidad 2
5	26/04/2022	Diseño de filtros FIR.	Unidad 2
6	03/05/2022	Diseño de filtros IIR.	Unidad 2
7	10/05/2022	Modelado de sistemas físicos. Introduccion a Simscape. PARCIAL 1.	Unidad 3
8	17/05/2022	Modelado de sistemas mecánicos, eléctricos y masa-resorte. Modelado de sistemas hidráulicos y neumáticos. RECUPERATORIO 1.	Unidad 3
9	24/05/2022	Controladores PID de 1er y 2do orden (PI-D, I-PD).	Unidad 3
10	31/05/2022	Control en espacio de estados / Control óptimo (LQR) / Minimum energy estimator (MEE).	Unidad 4
11	07/06/2022	Estimación de estados / Observador Proporcional integral / Filtro de Kalman	Unidad 4
12	14/06/2022	Filtro de Kalman, aspectos prácticos.	Unidad 4
13	21/06/2022	Definición de anteproyecto. PARCIAL 2.	Unidad 5
14	28/06/2022	Definición de anteproyecto. RECUPERATORIO 2.	Unidad 5

Recursos

- Programa de la materia (contenidos, metodología, fecha de evaluaciones, etc.)
- Aula Abierta: videos de teoría y evaluaciones.
- Repositorio externo con archivos .pdf, .m, .slx en http://github.com/rodralez/control.
- Canal de Youtube: https://www.youtube.com/user/rodralez/.
- Canal de Slack para comunicarnos: unirse!.
- Documento "Guía para el desarrollo del proyecto final y redaccion del informe".
- Documento "Guía para la creación de presentación" (coming soon!).

Metodología

- Clase de teoría: se brindan a través de videos en Youtube.
- Clase de práctica: se reparten ejercicios entre los alumnos, quienes los exponen en clase.

Herramientas de desarrollo

- Programación en C.
- MATLAB.
- SIMULINK / SIMSCAPE.

Regularización

- Tener 75 % de asistencia.
- Participar en clase del 75 % de las actividades prácticas.
- Aprobar los 2 parciales, o sus recuperatorios.
- Presentar un anteproyecto mecatrónico de carácter individual.

Parciales

Características:

- Se evalúan contenidos teórico prácticos.
- Serán tomados a través de la plataforma Moodle.

Fechas:

- Parcial 1: martes 10 de mayo de 2022.
- Recuperatorio 1: martes 17 de mayo de 2022.
- Parcial 2: martes 21 de junio de 2022.
- Recuperatorio 2: martes 28 de junio de 2022.

Anteproyecto

- Título del proyecto final.
- Objetivos que se pretenden alcanzar.
- Breve descripción del proyecto a desarrollar con al menos la siguiente información:
 - Descripción de la planta a controlar.
 - Identificación de las variables de entrada y salida del sistema.
 - Tipo de control a implementar.
 - Herramientas de simulación que se usarán.
 - Diagrama en bloques.

Proyecto final

- Se debe modelar y controlar un sistema mecatrónico a nivel simulación de mediana complejidad.
- El alumno debe tratar de solucionar un problema real.
- El control del sistema debe ser discreto. Se pueden utilizar controladores PID o en espacio de estados.
- Se debe incluir el modelado de un sensor ruidoso a la salida del sistema. Se debe usar un filtro anti-aliasing y proponer un filtrado adicional con el objetivo de mitigar el ruido.
- Se debe demostrar una correcta respuesta del sistema completo ante la presencia de ruido y perturbaciones.
- El uso de precisión punto fijo para la implementación del controlador discreto y los algoritmos de DSP se considera un plus.
- Se debe redactar un informe del proyecto final desarrollado.