Graph

Graphs

- A data structure that consists of a set of nodes (*vertices*) and a set of edges that relate the nodes to each other
- The set of edges describes relationships among the vertices.
- A graph G is defined as follows:

$$G=(V,E)$$

V(G): a finite, nonempty set of vertices

E(G): a set of edges (pairs of vertices)

Examples of Graphs

- $V = \{0,1,2,3,4\}$
- $E=\{(0,1), (1,2), (0,3), (3,0), (2,2), (4,3)\}$

When (x,y) is an edge, we say that x is *adjacent to* y, and y is *adjacent from* x.

o is adjacent to 1. 1 is not adjacent to o. 2 is adjacent from 1.

Directed vs. Undirected Graphs

- Undirected edge has no orientation (no arrow head)
- Directed edge has an orientation (has an arrow head)
- Undirected graph all edges are undirected
- Directed graph all edges are directed

Directed Graph

Directed graph

- Directed edge (i, j), i is incident to vertex j and j incident from vertex i
- Vertex i is adjacent to vertex j, and vertex j is adjacent from vertex i

Undirected graph

Weighted graph:

-a graph in which each edge carries a value

Graph terminology

 Adjacent nodes: two nodes are adjacent if they are connected by an edge

5 is adjacent to 77 is adjacent from 5

- Path: a sequence of vertices that connect two nodes in a graph
- Complete graph: a graph in which every vertex is directly connected to every other vertex

Continued...

- A cycle is a simple path with the same start and end vertex.
- The degree of vertex i is the no. of edges incident on vertex i.

e.g., degree(2) = 2, degree(5) = 3, degree(3) = 1

Continued...

Undirected graphs are *connected* if there is a path between any two vertices

Directed graphs are *strongly connected* if there is a path from any one vertex to any other

Directed graphs are *weakly connected* if there is a path between any two vertices, *ignoring direction*

A *complete* graph has an edge between every pair of vertices

Continued...

- Loops: edges that connect a vertex to itself
- *Paths*: sequences of vertices po, p1, ... pm such that each adjacent pair of vertices are connected by an edge
- Multiple Edges: two nodes may be connected by >1 edge
- Simple Graphs: have no loops and no multiple edges

Graph Properties

Number of Edges

The no. of possible pairs in an n vertex directed graph is $n^*(n-1)$. This type of graph is called complete graph.

Since edge (u,v) is the same as edge (v,u), the number of edges in an undirected graph is $n^*(n-1)/2$.

- In-degree of vertex *i* is the number of edges incident to *i* (i.e., the number of incoming edges).
 - e.g., indegree(2) = 1, indegree(8) = 0
- Out-degree of vertex *i* is the number of edges incident from *i* (i.e., the number of outgoing edges).
 - e.g., outdegree(2) = 1, outdegree(8) = 2

Graph Representation

- For graphs to be computationally useful, they have to be conveniently represented in programs
- There are two computer representations of graphs:
 - Adjacency matrix representation
 - Adjacency lists representation

Adjacency Matrix

- A square grid of boolean values
- If the graph contains N vertices, then the grid contains N rows and N columns
- For two vertices numbered I and J, the element at row I and column J is true if there is an edge from I to J, otherwise false

Adjacency Matrix

0	1	2	3	4
false	false	true	false	false
false	false	false	true	false
false	true	false	false	true
false	false	false	false	false
false	false	false	true	false

Adjacency Matrix

	1	2	3	4	5
1	0	1	1	1	0
2	1	0	0	1	0
3	1	0	0	1	1
4	1	1	1	0	1
5	0	0	1	1	0

Adjacency Matrix -Directed Multigraphs

A:

$$\begin{pmatrix}
0 & 3 & 0 & 1 \\
0 & 1 & 2 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

Adjacency Lists Representation

- A graph of n nodes is represented by a onedimensional array L of linked lists, where
 - L[i] is the linked list containing all the nodes adjacent from node i.
 - The nodes in the list L[i] are in no particular order

Graphs: Adjacency List

- Adjacency list: for each vertex v ∈ V, store a list of vertices adjacent to v
- Example:
 - $Adj[1] = \{2,3\}$
 - $Adj[2] = \{3\}$
 - $Adj[3] = {}$
 - $Adj[4] = {3}$
- Variation: can also keep a list of edges coming *into* vertex

Implementing Graphs

Implementing Graphs

(a) A weighted undirected graph and(b) its adjacency list