Feature engineering for time series forecasting

PyData London 2022 Kishan Manani

About me

- Data Science Manager
- Online Course Developer
- trainindata.com/p/feature-engineering-forforecasting
- Slides: https://github.com/KishManani/PyDataLondon2022

Kishan Manani, PhD

medium.com/@kish.manani

About this talk

Time	Sales (UK)	Sales (Germany)
2020-02-12	35	21
2020-02-13	30	20
2020-02-14	23	19
2020-02-15	Ś	Ś
2020-02-16	Ś	Ś

Forecasting workflow

- Multi-step forecasting

Cross-validationLook-ahead bias

- etc.

Time series features

- Lags, windows

- Seasonality

- etc.

x 1	x2	х3	У
			35
			35 30
			23
			Ś
			Ś

Contents

Time series forecasting using ML models

Features for time series forecasting

Useful libraries for forecasting with ML models

Why use machine learning for forecasting?

Description

Note: This is one of the two complementary competitions that together comprise the M5 forecasting challenge. Can you estimate, as precisely as possible, the point forecasts of the unit sales of various products sold in the USA by Walmart? If you are interested in estimating the uncertainty distribution of the realized values of the same series, be sure to check out its companion competition

How much camping dear will one store sell each month in a year? To the uninitiated, calculating sales at

Why use machine learning for forecasting?

- Large number of correlated time series (30,490)
- Hierarchical structure
- Varying length for each time series

- High sparsity & intermittency
- Exogenous variables (price, promos, etc.)
- Multiple seasonal patterns

Why use machine learning for forecasting?

"... all of the **top-performing methods** were both **"pure" ML** approaches and **better than all statistical benchmarks** and their combinations. It was shown that **LightGBM** can be used effectively to process **numerous correlated series** and **exogenous**/explanatory variables, and to reduce the forecast errors." – [2]

[1] Makridakis, Spyros, Evangelos Spiliotis, and Vassilios Assimakopoulos. "The M5 competition: Background, organization, and implementation." *International Journal of Forecasting* (2021).

[2] Makridakis, Spyros, Evangelos Spiliotis, and Vassilios Assimakopoulos. "M5 accuracy competition: Results, findings, and conclusions." *International journal of forecasting* (2022).

Don't neglect simple baselines though!

"The fact that about **92.5% of the participating teams failed to beat ES_bu [exponential smoothing]** should not be overlooked."[2]

The top 50 entries improved on exponential smoothing by between ~15-20% [2].

[1] Makridakis, Spyros, Evangelos Spiliotis, and Vassilios Assimakopoulos. "The M5 competition: Background, organization, and implementation." *International Journal of Forecasting* (2021).

[2] Makridakis, Spyros, Evangelos Spiliotis, and Vassilios Assimakopoulos. "M5 accuracy competition: Results, findings, and conclusions." *International journal of forecasting* (2022).

Forecasting with machine learning

Time	Sales	
2020-02-01	35	
2020-02-02	30	
2020-02-03	23	ŧ
2020-02-04	21	T-2
2020-02-05	40	T-1
2020-02-06	31	T
2020-02-07	Ś	T + 1

Time	Sales			x 1	x2	х3	У
2020-02-01	35						
2020-02-02	30		?				
2020-02-03	23	:	•				
2020-02-04	21	T-2					
2020-02-05	40	T-1					
2020-02-06	31	T		 			
2020-02-07	Ś	T+1		 			

Time	Sales			x1	x2	х3
2020-02-01	35					
2020-02-02	30		?			
2020-02-03	23	:	•			
020-02-04	21	T-2				
020-02-05	40	T - 1				
020-02-06	31	T				
2020-02-07	ģ	T+1				

Time	Sales			x1	x2	х3	y_t
2020-02-01	35	1	Only use data				35
2020-02-02	30		known at time of				30
2020-02-03	23	:	target.				23
2020-02-04	21	T - 2	- 1				21
2020-02-05	40	T - 1	This is to avoid look-ahead bias.				40
2020-02-06	31	T	100k-aneda bias.				31
2020-02-07	Ś	T + 1					Ś

Time	Sales			x1	x2	х3	y_t
2020-02-01	35						35
2020-02-02	30						30
2020-02-03	23	:	$f(y_T, y_{T-1}, y_{T-2},)$				23
2020-02-04	21	T-2	$\int (yT, yT-1, yT-2, \dots)$				21
2020-02-05	40	T - 1					40
2020-02-06	31	T					31
2020-02-07	Ś	T + 1					ŝ

Time	Sales
2020-02-01	35
2020-02-02	30
2020-02-03	23
2020-02-04	21
2020-02-05	40
2020-02-06	31
2020-02-07	Ś

y_{t-3}	y_{t-2}	y_{t-1}	${\cal Y}_t$
			35
			30
			23
			21
			40
			31
21	40	31	Ś

Time	Sales		y_{t-3}	y_{t-2}	y_{t-}
2020-02-01	35]			
2020-02-02	30				
2020-02-03	23	: -			
2020-02-04	21	T-2			
2020-02-05	40	T-1			
2020-02-06	31	T	23	21	40
2020-02-07	Ś	T+1	21	40	3

 y_t

35

30

23

31

Ś

Time	Sales		y_{t-3}	y_{t-2}	y_{t-1}	
2020-02-01	35					
2020-02-02	30					
2020-02-03	23	:				
2020-02-04	21	T-2				
2020-02-05	40	T - 1	 30	23	21	
2020-02-06	31	T	23	21	40	
2020-02-07	Ś	T+1	21	40	31	

Time	Sales
2020-02-01	35
2020-02-02	30
2020-02-03	23
2020-02-04	21
2020-02-05	40
2020-02-06	31
2020-02-07	Ś

y_{t-3}	y_{t-2}	y_{t-1}	y_t
NaN	NaN	NaN	35
NaN	NaN	35	30
NaN	35	30	23
35	30	23	21
30	23	21	40
23	21	40	31
21	40	31	Ś

Time	Sales
2020-02-01	35
2020-02-02	30
2020-02-03	23
2020-02-04	21
2020-02-05	40
2020-02-06	31
2020-02-07	Ś

y_{t-3}	y_{t-2}	<i>y</i> _{t−1}	${\bf y_t}$
NaN	NaN	NaN	35
NaN	NaN	35	30
NaN	35	30	23
35	30	23	21
30	23	21	40
23	21	40	31
21	40	31	Ś

Features derived from **past values** of y_t (e.g., lag features).

Time	Sales
2020-02-01	35
2020-02-02	30
2020-02-03	23
2020-02-04	21
2020-02-05	40
2020-02-06	31
2020-02-07	Ś

Ad spend	y_{t-3}	y_{t-2}	y_{t-1}	y_t
100	NaN	NaN	NaN	35
120	NaN	NaN	35	30
116	NaN	35	30	23
120	35	30	23	21
101	30	23	21	40
90	23	21	40	31
190	21	40	31	Ś

Features
with
known
values in
the future.

Features derived from past values of y_t (e.g., lag features).

Time	Sales
2020-02-01	35
2020-02-02	30
2020-02-03	23
2020-02-04	21
2020-02-05	40
2020-02-06	31
2020-02-07	Ś

Rainfall	Ad spend	y_{t-3}	y_{t-2}	y_{t-1}	y_t
12	100	NaN	NaN	NaN	35
15	120	NaN	NaN	35	30
13	116	NaN	35	30	23
14	120	35	30	23	21
23	101	30	23	21	40
25	90	23	21	40	31
ś	190	21	40	31	Ś

Features
with
unknown
values in
the future.

Features
with
known
values in
the future.

Features derived from past values of y_t (e.g., lag features)

Time	Sales
2020-02-01	35
2020-02-02	30
2020-02-03	23
2020-02-04	21
2020-02-05	40
2020-02-06	31
2020-02-07	Ś

Rainfall	Ad spend	y_{t-3}	y_{t-2}	y_{t-1}	y_t
12	100	NaN	NaN	NaN	35
15	120	NaN	NaN	35	30
13	116	NaN	35	30	23
14	120	35	30	23	21
23	101	30	23	21	40
25	90	23	21	40	31
\widehat{x}_{T+1}	190	21	40	31	Ś

Features
with
unknown
values in
the future.

Features
with
known
values in
the future.

Features derived from past values of y_t (e.g., lag features)

Time	Sales
2020-02-01	35
2020-02-02	30
2020-02-03	23
2020-02-04	21
2020-02-05	40
2020-02-06	31
2020-02-07	Ś

Country	Rainfall	Ad spend	y_{t-3}	y_{t-2}	y_{t-1}	y_t
UK	12	100	NaN	NaN	NaN	35
UK	15	120	NaN	NaN	35	30
UK	13	116	NaN	35	30	23
UK	14	120	35	30	23	21
UK	23	101	30	23	21	40
UK	25	90	23	21	40	31
UK	\widehat{x}_{T+1}	190	21	40	31	Ś

Static features. Features with unknown values in the future. the future.

Features with known values in

Features derived from past values of y_t (e.g., lag features)

Time	Sales
2020-02-01	35
2020-02-02	30
2020-02-03	23
2020-02-04	21
2020-02-05	40
2020-02-06	31
2020-02-07	Ś

Country	Rainfall	Ad spend	y_{t-3}	y_{t-2}	y_{t-1}	y_t
UK	12	100	NaN	NaN	NaN	35
UK	15	120	NaN	NaN	35	30
UK	13	116	NaN	35	30	23
UK	14	120	35	30	23	21
UK	23	101	30	23	21	40
UK	25	90	23	21	40	31
UK	\hat{x}_{T+1}	190	21	40	31	Ś

X (features)

y (target)

Multi-step forecasting

Time	Sales	
2020-02-01	35	
2020-02-02	30	
2020-02-03	23	
2020-02-04	21	:
2020-02-05	40	T-2
2020-02-06	31	T-1
2020-02-07	32	T
2020-02-08	Ś	T - T - T - T - T - T - T - T - T - T -
2022-02-09	Ś	T + 2
2022-02-10	Ś	T + 3

- Direct forecasting
- Recursive forecasting

Time	Sales
2020-02-01	35
2020-02-02	30
2020-02-03	23
2020-02-04	21
2020-02-05	40
2020-02-06	31
2020-02-07	32
2020-02-08	Ś
2022-02-09	Ś
2022-02-10	Ś

- Directly predict y_{T+1} , y_{T+2} , ..., y_{T+h}
- Same features but different target variable for each forecast step.
- Multiple models trained with different targets, one for each forecast step.

Time	Sales
2020-02-01	35
2020-02-02	30
2020-02-03	23
2020-02-04	21
2020-02-05	40
2020-02-06	31
2020-02-07	32
2020-02-08	Ś
2022-02-09	Ś
2022-02-10	Ś

Feature vector

Multiple targets

-3	y_{t-2}	y_{t-1}	y_{t+1}
5	30	23	21

Time	Sales
2020-02-01	35
2020-02-02	30
2020-02-03	23
2020-02-04	21
2020-02-05	40
2020-02-06	31
2020-02-07	32
2020-02-08	Ś
2022-02-09	Ś
2022-02-10	Ś

Feature vector

30

Multiple targets y_{t-2} y_{t-1}

23

 y_{t+2} 40

Time	Sales
2020-02-01	35
2020-02-02	30
2020-02-03	23
2020-02-04	21
2020-02-05	40
2020-02-06	31
2020-02-07	32
2020-02-08	Ś
2022-02-09	Ś
2022-02-10	Ś

y_{t-3}	y_{t-2}	y_{t-1}
35	30	23

Multiple targets

y_{t+1}	y_{t+2}	y_{t+3}
21	40	31

y_{t+1}	y_{t+2}	y_{t+3}
21	40	31

Time	Sales
2020-02-01	35
2020-02-02	30
2020-02-03	23
2020-02-04	21
2020-02-05	40
2020-02-06	31
2020-02-07	32
2020-02-08	Ś
2022-02-09	Ś
2022-02-10	Ś

Feat	iture vectors — Multiple targets					
y_{t-3}	y_{t-2}	y_{t-1}		y_{t+1}	y_{t+2}	y_{t+3}
35	30	23		21	40	31
30	23	21		40	31	32
					-	

Time	Sales
2020-02-01	35
2020-02-02	30
2020-02-03	23
2020-02-04	21
2020-02-05	40
2020-02-06	31
2020-02-07	32
2020-02-08	Ś
2022-02-09	Ś
2022-02-10	Ś

Time	Sales
2020-02-01	35
2020-02-02	30
2020-02-03	23
2020-02-04	21
2020-02-05	40
2020-02-06	31
2020-02-07	32
2020-02-08	Ś
2022-02-09	Ś
2022-02-10	Ś

Multi-step forecasting: Direct forecasting

Time	Sales
2020-02-01	35
2020-02-02	30
2020-02-03	23
2020-02-04	21
2020-02-05	40
2020-02-06	31
2020-02-07	32
2020-02-08	ś
2022-02-09	Ś
2022-02-10	Ś

Feature vectors

y_{t-3}	y_{t-2}	y_{t-1}
35	30	23
30	23	21

Multiple targets

y_{t+1}	y_{t+2}	y_{t+3}
21	40	31
40	31	32

y_{t-3}	y_{t-2}	y_{t-1}
40	31	32

Multi-step forecasting: Direct forecasting

Sales	
35	
30	
23	
21	
40	
31	Input
32	
\widehat{y}_{T+1}	
$\widehat{oldsymbol{y}}_{T+2}$	
\widehat{y}_{T+3}	Output
	$ \begin{array}{c} 35 \\ 30 \\ 23 \\ 21 \\ 40 \\ 31 \\ 32 \\ \hline{\hat{y}}_{T+1} \\ \hat{y}_{T+2} \end{array} $

Feature vectors

y_{t-3}	y_{t-2}	y_{t-1}
35	30	23
30	23	21

Multiple targets

y_{t+1}	y_{t+2}	y_{t+3}
21	40	31
40	31	32

y_{t-3}	y_{t-2}	<i>y</i> _{t-1}
40	31	32

Time	Sales	 Recursively apply a 1-step ahead forecast model.
2020-02-01	35	7
2020-02-02	30	 Use forecasted output as new input.
2020-02-03	23	:
2020-02-04	21	T-2
2020-02-05	40	T-1
2020-02-06	31	T
2020-02-07	\hat{y}_{T+1}	T+1 Model
2022-02-08	Ś	T + 2
2022-02-09	Ś	T+3

	mode
2020-02-01 35	
2020-02-02 30	Use fo
2020-02-03 :	
2020-02-04 21 $T-2$	
2020-02-05 40 $T-1$	
2020-02-06 31 T	_
2020-02-07 \hat{y}_{T+1} $T+1$	
2022-02-08 \hat{y}_{T+2} $T+2$	Model
2022-02-09 $?$ $T+3$	

- Recursively apply a 1-step ahead forecast model.
- Use forecasted output as new input.

Time	Sales		 Recurs model
2020-02-01	35		
2020-02-02	30		 Use for
2020-02-03	23	÷	
2020-02-04	21	T-2	
2020-02-05	40	T - 1	
2020-02-06	31	T	
2020-02-07	\hat{y}_{T+1}	T+1	
2022-02-08	\hat{y}_{T+2}	T+2	Model
2022-02-09	Ś	T+3	

- Recursively apply a 1-step ahead forecast model.
- Use forecasted output as new input.

Time	Sales		 Recurs model
2020-02-01	35		
2020-02-02	30		 Use for
2020-02-03	23	:	
2020-02-04	21	T-2	
2020-02-05	40	T - 1	
2020-02-06	31	T	
2020-02-07	\hat{y}_{T+1}	T+1	
2022-02-08	\hat{y}_{T+2}	T + 2	
2022-02-09	\hat{y}_{T+3}	T+3	Model

- Recursively apply a 1-step ahead forecast model.
- Use forecasted output as new input.

	Time	Sales		 Recurse mode
	2020-02-01	35		
	2020-02-02	30		 Use fo
	2020-02-03	23	÷	
	2020-02-04	21	T-2	
	2020-02-05	40	T - 1	
	2020-02-06	31	T	
	2020-02-07	\hat{y}_{T+1}	T+1	
	2022-02-08	\hat{y}_{T+2}	T+2	
	2022-02-09	\hat{y}_{T+3}	T+3	Model
-	2022-02-09	<u> </u>	- $ -$	Model

- Recursively apply a 1-step ahead forecast model.
- Use forecasted output as new input.

Time	Sales	
2020-02-01	35	٦
2020-02-02	30	
2020-02-03	23	:
2020-02-04	21	T-2
2020-02-05	40	T-1
2020-02-06	31	T
2020-02-07	\hat{y}_{T+1}	T + 1
2022-02-08	\hat{y}_{T+2}	T+2
2022-02-09	\hat{y}_{T+3}	T+3
		

- Recursively apply a 1-step ahead forecast model.
- Use forecasted output as new input.

Time	Sales	Country	Rainfall	Ad spend	y_{t-3}	y_{t-2}	y_{t-1}	y_t
2020-02-01	35	UK	12	100	NaN	NaN	NaN	35
2020-02-02	30	UK	15	120	NaN	NaN	35	30
2020-02-03	23	UK	13	116	NaN	35	30	23
2020-02-04	21	UK	14	120	35	30	23	21
2020-02-05	40	UK	23	101	30	23	21	40
2020-02-06	31	UK	25	90	23	21	40	31
2020-02-07	Ś	UK	\hat{x}_{T+1}	190				Ś
2022-02-08	Ś	UK	\hat{x}_{T+2}	201				Ś
2022-02-09	Ś	UK	\hat{x}_{T+3}	110				Ś

Features derived from the target variable need to created iteratively.

Time	Sales	Country	Rainfall	Ad spend	y_{t-3}	y _{t-2}	y_{t-1}	y_t
2020-02-01	35	UK	12	100	NaN	NaN	NaN	35
2020-02-02	30	UK	15	120	NaN	NaN	35	30
2020-02-03	23	UK	13	116	NaN	35	30	23
2020-02-04	21	UK	14	120	35	30	23	21
2020-02-05	40	UK	23	101	30	23	21	40
2020-02-06	31	UK	25	90	23	21	40	31
2020-02-07	Ś	UK	\hat{x}_{T+1}	190				Ś
2022-02-08	Ś	UK	\hat{x}_{T+2}	201				Ś
2022-02-09	Ś	UK	\hat{x}_{T+3}	110				Ś

Features derived from the target variable need to created iteratively.

Time	Sales	Country	Rainfall	Ad spend	y_{t-3}	y_{t-2}	y_{t-1}	y_t
2020-02-01	35	UK	12	100	NaN	NaN	NaN	35
2020-02-02	30	UK	15	120	NaN	NaN	35	30
2020-02-03	23	UK	13	116	NaN	35	30	23
2020-02-04	21	UK	14	120	35	30	23	21
2020-02-05	40	UK	23	101	30	23	21	40
2020-02-06	31	UK	25	90	23	21	40	31
2020-02-07	Ś	UK	\hat{x}_{T+1}	190	21	40	31	Ś
2022-02-08	Ś	UK	\hat{x}_{T+2}	201				Ś
2022-02-09	Ś	UK	\hat{x}_{T+3}	110				Ś

Features derived from the target variable need to created iteratively.

Ad spend Country Rainfall y_{t-3} y_{t-2} y_{t-1} y_t UK 35 100 NaN NaN NaN UK 15 120 NaN 35 30 NaN model.fit UK 13 35 23 116 NaN 30 UK 21 14 120 35 30 23 23 UK 101 30 23 21 40 UK 40 31 25 90 23 21 UK \hat{x}_{T+1} 190 21 \widehat{y}_{T+1} UK 31 201 40 \hat{x}_{T+2} \widehat{y}_{T+1} Ś UK 110 $\hat{\chi}_{T+3}$

Ad spend Country Rainfall y_{t-3} y_{t-2} y_{t-1} y_t UK 35 100 NaN NaN NaN UK 15 120 NaN 35 30 NaN model.fit UK 13 35 23 116 NaN 30 UK 21 14 120 35 30 23 23 UK 101 30 23 21 40 UK 31 25 90 23 21 40 UK $\hat{\chi}_{T+1}$ 190 21 40 \widehat{y}_{T+1} UK 201 40 \hat{x}_{T+2} \widehat{y}_{T+2} \hat{y}_{T+1} UK 31 Ś $\hat{\chi}_{T+3}$ 110 \widehat{y}_{T+1} \widehat{y}_{T+2}

Ad spend Country Rainfall y_{t-3} y_{t-2} y_{t-1} y_t UK 35 100 NaN NaN NaN UK 15 NaN 30 120 NaN 35 model.fit UK 13 23 116 NaN 35 30 UK 21 14 120 35 30 23 40 UK 101 30 23 21 UK 31 25 90 23 21 40 UK 190 40 31 $\hat{\chi}_{T+1}$ \hat{y}_{T+1} 31 UK 201 40 \hat{x}_{T+2} \hat{y}_{T+1} \hat{y}_{T+2} model.predict(UK Ś 31 \widehat{x}_{T+3} 110 \widehat{y}_{T+1}

Ad spend Country Rainfall y_{t-3} y_{t-2} y_{t-1} y_t UK 35 100 NaN NaN NaN UK 15 120 NaN 35 30 NaN model.fit UK 13 35 23 116 NaN 30 UK 21 14 120 35 30 23 23 40 UK 101 30 23 21 UK 31 25 90 23 21 40 UK 190 40 31 \hat{x}_{T+1} \hat{y}_{T+1} UK 31 201 40 \hat{x}_{T+2} \hat{y}_{T+1} \hat{y}_{T+2} model.predict(UK 31 \hat{x}_{T+3} 110 \hat{y}_{T+1} \hat{y}_{T+2} \widehat{y}_{T+3}

Cross-validation: Tabular vs Time series

Time	Sales (UK)
2020-02-12	35
2020-02-13	30
2020-02-14	23
2020-02-15	21
2020-02-16	40
2020-02-17	31

Country	Rainfall	Ad spend	y_{t-3}	y_{t-2}	y_{t-1}	y_t
UK	100	100	NaN	NaN	NaN	35
UK	120	120	NaN	NaN	35	30
UK	116	116	NaN	35	30	23
UK	120	120	35	30	23	21
UK	101	101	30	23	21	40
UK	90	90	23	21	40	31

- Cannot split randomly because the time ordering means each row is not independent.
- Instead need to split by time to replicate the actual forecasting process.

Cross-validation: Tabular vs Time series

	ML on tabular data (regression & classification)	ML on tabular data (forecasting)
Train/test split	Random allocation.	Split by time.
Creating the feature and target	Can pre-compute features and target before predict time.	Features built from target created "on demand" at predict time for test set.
Prediction	Only the trained model required at predict time.	Need trained model & training set at predict time.
Feature engineering		Time series specific feature engineering and data leakage issues.

	ML on tabular data (regression & classification)	ML on tabular data (forecasting)
Train/test split	Random allocation.	Split by time.
Creating the feature and target	Can pre-compute features and target before predict time.	Features built from target created "on demand" at predict time for test set.
Prediction	Only the trained model required at predict time.	Need trained model & training set at predict time.
Feature engineering		Time series specific feature engineering and data leakage issues.

	ML on tabular data (regression & classification)	ML on tabular data (forecasting)
Train/test split	Random allocation.	Split by time.
Creating the feature and target	Can pre-compute features and target before predict time.	Features built from target created "on demand" at predict time for test set.
Prediction	Only the trained model required at predict time.	Need trained model & training set at predict time.
Feature engineering		Time series specific feature engineering and data leakage issues.

	ML on tabular data (regression & classification)	ML on tabular data (forecasting)
Train/test split	Random allocation.	Split by time.
Creating the feature and target	Can pre-compute features and target before predict time.	Features built from target created "on demand" at predict time for test set.
Prediction	Only the trained model required at predict time.	Need trained model & training set at predict time.
Feature engineering		Time series specific feature engineering and data leakage issues.

	ML on tabular data (regression & classification)	ML on tabular data (forecasting)
Train/test split	Random allocation.	Split by time.
Creating the feature and target	Can pre-compute features and target before predict time.	Features built from target created "on demand" at predict time for test set.
Prediction	Only the trained model required at predict time.	Need trained model & training set at predict time.
Feature engineering		Time series specific feature engineering and data leakage issues.

Contents

Time series forecasting using ML models

Features for time series forecasting

Useful libraries for forecasting with ML models

Feature engineering for time series forecasting

Trend and **Outliers Transformation Imputation** Past features Encoding **Temporal** seasonality Calendar Time variable. Forward fill. Lag Log, Box Day, week, Identify One hot changepoint, features backfill month Cox step changes Holidays Fourier series. Seasonal & Target Cyclical Dummy Window seasonal Interpolate trend feature mean, variable dummies, features adjustment integer encoding seasonal lags

Feature engineering for time series forecasting

Trend and **Outliers Transformation Imputation** Past features Encoding **Temporal** seasonality Calendar Time variable. Forward fill. Log, Box Day, week, Lag Identify One hot changepoint, backfill month features Cox step changes Holidays Fourier series. Seasonal & **Target** Cyclical Dummy Window seasonal Interpolate trend feature mean, variable dummies, features adjustment integer encoding seasonal lags

Which data can I use as features?

Any data that is known at the time of prediction.

This includes knowledge about future values of a feature.

We need to be **very careful** not to accidentally use data that is not available at the time of prediction.

An example

Time	Product ID	Ad spend	Sales
	•••	•••	•••
2020-02-13	SKU-1	100	30
2020-02-14	SKU-1	120	32
2020-02-15	SKU-1	110	25
2020-02-16	SKU-1	101	34
	•••	•••	•••
2020-02-14	SKU-2	120	32
2020-02-15	SKU-2	110	21
2020-02-16	SKU-2	101	25

An example

Time	Product ID	Ad spend	Sales
2020-02-13	SKU-1	100	30
2020-02-14	SKU-1	120	32
2020-02-15	SKU-1	110	25
2020-02-16	SKU-1	101	34
2020-02-17	SKU-1	102	?
•••	•••	•••	•••
2020-02-14	SKU-2	120	32
2020-02-15	SKU-2	110	21
2020-02-16	SKU-2	101	15
2020-02-17	SKU-2	102	?

Target variable

Time	Product ID	Ad spend	Sales
		•••	•••
2020-02-13	SKU-1	100	30
2020-02-14	SKU-1	120	32
2020-02-15	SKU-1	110	25
2020-02-16	SKU-1	101	34
2020-02-17	SKU-1	102	Ś
•••	•••	•••	•••
2020-02-14	SKU-2	120	32
2020-02-15	SKU-2	110	21
2020-02-16	SKU-2	101	15
2020-02-17	SKU-2	102	Ś

${y_t}$
•••
30
32
25
34
Ś
•••
32
21
25
Ś

Lag features: Past values of target & features

 Past values of the target are likely to be predictive:

$$\hat{y}_t \leftarrow y_{t-1}, y_{t-2}, \dots y_{t-k}$$

 Seasonal lags good for seasonality (e.g., lag of 7 for weekly seasonality).

Lag features: Past values of target & features

 Past values of the target are likely to be predictive:

$$\hat{y}_t \leftarrow y_{t-1}, y_{t-2}, \dots y_{t-k}$$

- Seasonal lags good for seasonality (e.g., lag of 7 for weekly seasonality).
- Can use lags of other target time series.

 Past values of the target are likely to be predictive:

$$\hat{y}_t \leftarrow y_{t-1}, y_{t-2}, \dots y_{t-k}$$

- Seasonal lags good for seasonality (e.g., lag of 7 for weekly seasonality).
- Can use lags of other target time series.
- Past values of exogenous feature could also be predictive (e.g., distributed lags).

Time	Product ID	Ad spend
•••	•••	•••
2020-02-13	SKU-1	100
2020-02-14	SKU-1	120
2020-02-15	SKU-1	110 —
2020-02-16	SKU-1	101 —
2020-02-17	SKU-1	102
•••	•••	•••
2020-02-14	SKU-2	120
2020-02-15	SKU-2	110 🚤
2020-02-16	SKU-2	101 —
2020-02-17	SKU-2	102

Time	Product ID	Ad spend
•••	•••	•••
2020-02-13	SKU-1	100
2020-02-14	SKU-1	120
2020-02-15	SKU-1	110
2020-02-16	SKU-1	101
2020-02-17	SKU-1	102
•••	•••	•••
2020-02-14	SKU-2	120
2020-02-15	SKU-2	110
2020-02-16	SKU-2	101
2020-02-17	SKU-2	102

Ad spend Lag 1	Ad spend Lag 2	y_{t-3}	<i>y</i> _{t-2}	y_{t-1}	y_t
					•••
					30
					32
					25
110	120	30	32	25	34
101	110	32	25	34	Ś
		•••	•••	• • •	
					32
					21
110	120	•••	32	21	25
101	110	32	21	25	Ś

Time	Product ID	Ad spend
		•••
2020-02-13	SKU-1	100
2020-02-14	SKU-1	120
2020-02-15	SKU-1	110
2020-02-16	SKU-1	101
2020-02-17	SKU-1	102
•••	•••	•••
2020-02-14	SKU-2	120
2020-02-15	SKU-2	110
2020-02-16	SKU-2	101
2020-02-17	SKU-2	102

Ad spend Lag 1	Ad spend Lag 2	y_{t-3}	y_{t-2}	<i>y</i> _{t-1}	${\mathcal Y}_t$
•••		•••	•••	•••	•••
•••		•••	•••	•••	30
100	•••	•••	•••	30	32
120	100	• • •	30	32	25
110	120	30	32	25	34
101	110	32	25	34	Ś
•••	•••	•••	•••	•••	•••
100	•••	•••	•••	•••	32
120	100	•••	•••	32	21
110	120	•••	32	21	25
101	110	32	21	25	Ś

Window features: Function over a past window

 Compute a summary statistic over a window of past data

$$\hat{y}_t \leftarrow f(y_{t-1}, y_{t-2}, \dots y_{t-k})$$

Mean & standard deviation are common.

Window features: Function over a past window

Time	Product ID	Ad spend
•••		•••
2020-02-13	SKU-1	100
2020-02-14	SKU-1	120
2020-02-15	SKU-1	110
2020-02-16	SKU-1	101
2020-02-17	SKU-1	102
***	•••	•••
2020-02-14	SKU-2	120
2020-02-15	SKU-2	110
2020-02-16	SKU-2	101
2020-02-17	SKU-2	102

Rolling std y_{t-1}	Rolling mean y_{t-1}		${\mathcal Y}_t$
•••	***	_	•••
			30
		,	32
		/L	25
2.94	29.0		34
			Ś
•••	***		•••
			32
			21
			25
			Ś

Window features: Function over a past window

Time	Product ID	Ad spend
		•••
2020-02-13	SKU-1	100
2020-02-14	SKU-1	120
2020-02-15	SKU-1	110
2020-02-16	SKU-1	101
2020-02-17	SKU-1	102
•••	•••	•••
2020-02-14	SKU-2	120
2020-02-15	SKU-2	110
2020-02-16	SKU-2	101
2020-02-17	SKU-2	102

Rolling std y_{t-1}	Rolling mean y_{t-1}		${\mathcal Y}_t$
***	•••		•••
			30
			32
		4	25
2.94	29.0	/ L	34
3.85	30.3		ś
			32
			21
			25
			ś

Window features: Nested window features

Time	Product ID	Ad spend
	•••	•••
2020-02-13	SKU-1	100
2020-02-14	SKU-1	120
2020-02-15	SKU-1	110
2020-02-16	SKU-1	101
2020-02-17	SKU-1	102
•••	•••	•••
2020-02-14	SKU-2	120
2020-02-15	SKU-2	110
2020-02-16	SKU-2	101
2020-02-17	SKU-2	102

Window features: Nested window features

Time	Product ID	Ad spend
		•••
2020-02-13	SKU-1	100
2020-02-14	SKU-1	120
2020-02-15	SKU-1	110
2020-02-16	SKU-1	101
2020-02-17	SKU-1	102
•••	•••	•••
2020-02-14	SKU-2	120
2020-02-15	SKU-2	110
2020-02-16	SKU-2	101
2020-02-17	SKU-2	102

Rolling mean (months)	Rolling mean (weeks)	Rolling mean (days)

y_t	
•••	
30	
32	
25	
34	
Ś	
•••	
32	
21	
25	
Ś	

Static features

Time	Product ID
•••	•••
2020-02-13	SKU-1
2020-02-14	SKU-1
2020-02-15	SKU-1
2020-02-16	SKU-1
2020-02-17	SKU-1
•••	•••
2020-02-14	SKU-2
2020-02-15	SKU-2
2020-02-16	SKU-2
2020-02-17	SKU-2

y_t
•••
30
32
25
34
Ś
•••
32
21
25
Ś

Static features

Time	Product ID	Product category
•••		•••
2020-02-13	SKU-1	Shorts
2020-02-14	SKU-1	Shorts
2020-02-15	SKU-1	Shorts
2020-02-16	SKU-1	Shorts
2020-02-17	SKU-1	Shorts
•••	•••	•••
2020-02-14	SKU-2	Watches
2020-02-15	SKU-2	Watches
2020-02-16	SKU-2	Watches
2020-02-17	SKU-2	Watches

y_t
•••
30
32
25
34
Ś
•••
32
21
25
Ś

Static features

Time	Product ID	Product category
•••	•••	•••
2020-02-13	SKU-1	Shorts
2020-02-14	SKU-1	Shorts
2020-02-15	SKU-1	Shorts
2020-02-16	SKU-1	Shorts
2020-02-17	SKU-1	Shorts
•••	•••	•••
2020-02-14	SKU-2	Watches
2020-02-15	SKU-2	Watches
2020-02-16	SKU-2	Watches
2020-02-17	SKU-2	Watches

Time	Product ID
2020-02-13	SKU-1
2020-02-14	SKU-1
2020-02-15	SKU-1
2020-02-16	SKU-1
2020-02-17	SKU-1
•••	•••
2020-02-14	SKU-2
2020-02-15	SKU-2
2020-02-16	SKU-2
2020-02-17	SKU-2

Time	Product ID (encoded)	
•••	***	
2020-02-13	30	
2020-02-14	30	
2020-02-15	30	
2020-02-16	30	
2020-02-17	30	
•••	•••	
2020-02-14	24	
2020-02-15	24	
2020-02-16	24	
2020-02-17	24	

- No leakage between train and test set.
- But, the target is leaked from future values to past values in training set.
- Beware of overfitting.

Time	Product ID (encoded)		
		For recursive forecasting , we need to dynamically compute the encoding at	
2020-02-13	29	predict tir	
2020-02-14	31	·	
2020-02-15	30 28		
2020-02-18	30		
2020-02-18	SKU-1		
•••	•••		
2020-02-14	24		
2020-02-15	26		
2020-02-16	23		
2020-02-17	24		

	Time	Product ID (encoded)
	2020-02-13	29
	2020-02-14	31
	2020-02-15	30
	2020-02-16	28
	2020-02-17	30
	2020-02-18	SKU-1
	•••	•••
	2020-02-14	24
	2020-02-15	26
	2020-02-16	23
	2020-02-17	24
_	2020-02-18	SKU-2

Key takeaways

- Data leakage is a risk when creating features from the target and future-unknown variables.
- Only use data that is known at the time of the target.
- Handling features at predict time can differ for direct vs recursive forecasting.

Time	Product ID	Ad spend	Sales
•••			
2020-02-13	SKU-1	100	30
2020-02-14	SKU-1	120	32
2020-02-15	SKU-1	110	25
2020-02-16	SKU-1	101	34
2020-02-17	SKU-1	x_{T+1}	Ś
2020-02-18	SKU-1	x_{T+2}	Ś
•••	•••	•••	•••
2020-02-14	SKU-2	120	32
2020-02-15	SKU-2	110	21
2020-02-16	SKU-2	101	15
2020-02-17	SKU-2	x_{T+1}	Ś
2020-02-18	SKU-2	x_{T+2}	Ś

Contents

Time series forecasting using ML models

Features for time series forecasting

Useful libraries for forecasting with ML models

Overview of some useful libraries

Feature engineering & pre-processing

Feat

Supports ML forecasting workflows.

series features.

Large number of time

• Multiple time series.

 Create time series features on top of Pandas.

Forecasting workflow using ML on tabular data

- Recursive strategy.
- Direct, recursive,
 DirRec, & multi-output
 strategies.
- Some helper methods to create features.
- Multiple time series.
- Exogenous features.
- Time series cross-val.

- Lots of transformers for feature engineering
- Multiple time series.
- Exogenous features.
- Time series cross-val.

```
from darts import TimeSeries
from darts.models import RegressionModel
from sklearn.linear model import LinearRegression
y = TimeSeries.from_series(df['y'])
y_{train} = y[:-24]
model = RegressionModel(
                        lags=[-1, -2, -12],
                        model=LinearRegression()
model.fit(series=y train)
y pred = model.predict(n=24, series=y train)
```

	У
Period	
1949-01-01	112.0
1949-02-01	118.0
1949-03-01	132.0
1949-04-01	129.0
1949-05-01	121.0
••••	
1960-08-01	606.0
1960-09-01	508.0
1960-10-01	461.0
1960-11-01	390.0
1960-12-01	432.0

Recursive forecast using linear regression, single time series, and only lag features.

```
from darts import TimeSeries
from darts.models import RegressionModel
from sklearn.linear model import LinearRegression
y = TimeSeries.from_series(df['y'])
v train = v[:-24]
model = RegressionModel(
                        lags=[-1, -2, -12],
                        model=LinearRegression()
model.fit(series=y train)
y pred = model.predict(n=24, series=y train)
```


Recursive forecast using linear regression, single time series, and only lag features.

```
# Convert pandas DataFrame to TimeSeries
y = TimeSeries.from_series(df['y'])
features = ['ad_spend', 'month','year']
future_cov = TimeSeries.from_dataframe(df[features])
```

period				
2020-01-01	100	25.51	1	2020
2020-01-02	103	208.82	1	2020
2020-01-03	105	44.47	1	2020
2020-01-04	107	11.96	1	2020
2020-01-05	106	145.02	1	2020
•••	•••	•••	•••	***
2020-04-05	311	16.97	4	2020
2020-04-06	341	62.60	4	2020
2020-04-07	358	16.93	4	2020
2020-04-08	377	19.31	4	2020
2020-04-09	385	110.41	4	2020

y ad_spend month year

Recursive forecast using linear regression, single time series, and with lag & future-known features.

```
model = RegressionModel(
                        lags=[-1, -2, -12],
                        lags_future_covariates=[0],
                        model=LinearRegression()
model.fit(y train, future covariates=future cov)
y_pred = model.predict(
                       n=24,
                       series=y train,
                       future covariates=future cov
```

	У	ad_spend	month	year
period				
2020-01-01	100	25.51	1	2020
2020-01-02	103	208.82	1	2020
2020-01-03	105	44.47	1	2020
2020-01-04	107	11.96	1	2020
2020-01-05	106	145.02	1	2020
•••	•••	***	***	•••
2020-04-05	311	16.97	4	2020
2020-04-06	341	62.60	4	2020
2020-04-07	358	16.93	4	2020
2020-04-08	377	19.31	4	2020
2020-04-09	385	110.41	4	2020

Recursive forecast using linear regression, single time series, and with lag & future-known features.

```
model = RegressionModel(
                         lags=[-1, -2, -12],
                         lags_future_covariates=[0],
                        model=LinearRegression()
model.fit(y train, future covariates=future cov)
y_pred = model.predict(
                       n=24,
                       series=y train,
                       future covariates=future cov
```


Recursive forecast using linear regression, single time series, and with lag & future-known features.

	period	country	product_id	У	ad_spend	month	year
0	2020-01-01	UK	SKU-1	100	53.61	1	2020
1	2020-01-02	UK	SKU-1	103	41.32	1	2020
2	2020-01-03	UK	SKU-1	105	65.91	1	2020
3	2020-01-04	UK	SKU-1	107	46.71	1	2020
4	2020-01-05	UK	SKU-1	106	15.58	1	2020
		•••				•••	
35	2020-04-05	Germany	SKU-2	319	39.85	4	2020
36	2020-04-06	Germany	SKU-2	329	2.60	4	2020
37	2020-04-07	Germany	SKU-2	369	101.07	4	2020
38	2020-04-08	Germany	SKU-2	365	3.29	4	2020
39	2020-04-09	Germany	SKU-2	390	11.68	4	2020

Recursive forecast using linear regression, multiple time series, and with lag & future-known features.

	period	country	product_id	У	ad_spend	month	year
0	2020-01-01	UK	SKU-1	100	53.61	1	2020
1	2020-01-02	UK	SKU-1	103	41.32	1	2020
2	2020-01-03	UK	SKU-1	105	65.91	1	2020
3	2020-01-04	UK	SKU-1	107	46.71	1	2020
4	2020-01-05	UK	SKU-1	106	15.58	1	2020
•••						•••	
35	2020-04-05	Germany	SKU-2	319	39.85	4	2020
36	2020-04-06	Germany	SKU-2	329	2.60	4	2020
37	2020-04-07	Germany	SKU-2	369	101.07	4	2020
38	2020-04-08	Germany	SKU-2	365	3.29	4	2020
39	2020-04-09	Germany	SKU-2	390	11.68	4	2020

Recursive forecast using linear regression, multiple time series, and with lag & future-known features.

Recursive forecast using linear regression, multiple time series, and with lag & future-known features.

1. Forecasting can be treated as a tabular ML task and compete with statistical models.

Time	Sales (UK)
2020-02-12	35
2020-02-13	30
2020-02-14	23
2020-02-15	Ś
2020-02-16	Ś
2020-02-17	Ś

- 1. Forecasting can be treated as a tabular ML task and compete with statistical models.
- 2. The feature engineering and ML workflow is different for time series forecasting.

- 1. Forecasting can be treated as a tabular ML task and compete with statistical models.
- 2. The feature engineering and ML workflow is different for time series forecasting.
- Forecasting comes with its own set of feature engineering methods and concerns.

- 1. Forecasting can be treated as a tabular ML task and compete with statistical models.
- 2. The feature engineering and ML workflow is different for time series forecasting.
- Forecasting comes with its own set of feature engineering methods and concerns.
- More support is increasingly becoming available for time series tasks in Python.

If you'd like to learn more ...

Feature engineering for time series forecasting online course

trainindata.com/p/feature-engineering-for-forecasting

@KishManani

In/kishanmanani

@Soledad_Galli

in In/soledad-galli

References

- [1] Makridakis, Spyros, Evangelos Spiliotis, and Vassilios Assimakopoulos. "The M5 competition: Background, organization, and implementation." *International Journal of Forecasting* (2021).
- [2] Makridakis, Spyros, Evangelos Spiliotis, and Vassilios Assimakopoulos. "M5 accuracy competition: Results, findings, and conclusions." *International journal of forecasting* (2022).
- [3] Sorjamaa, Antti, and Amaury Lendasse. "Time series prediction using DirRec strategy." In Esann, vol. 6, pp. 143-148. 2006.
- [4] Bontempi, Gianluca, Souhaib Ben Taieb, and Yann-Aël Le Borgne. "Machine learning strategies for time series forecasting." In *European business intelligence summer school*, pp. 62-77. Springer, Berlin, Heidelberg, 2012.
- [5] Taieb, Souhaib Ben, and Rob J. Hyndman. Recursive and direct multi-step forecasting: the best of both worlds. Vol. 19. Department of Econometrics and Business Statistics, Monash Univ., 2012.
- [6] Petropoulos, Fotios, Daniele Apiletti, Vassilios Assimakopoulos, Mohamed Zied Babai, Devon K. Barrow, Souhaib Ben Taieb, Christoph Bergmeir et al. "Forecasting: theory and practice." *International Journal of Forecasting* (2022).

Any questions?

Appendix

Direct vs recursive multistep forecasting

Static features: Integer encoding

Time	Product ID
2020-02-13	SKU-1
2020-02-14	SKU-1
2020-02-15	SKU-1
2020-02-16	SKU-1
2020-02-17	SKU-1
•••	•••
2020-02-14	SKU-2
2020-02-15	SKU-2
2020-02-16	SKU-2
2020-02-17	SKU-2

Уt	
•••	
30	
32	
25	
34	
Ś	
32	
21	
25	
Ś	

Static features: Integer encoding

Time	Product ID (encoded)
•••	•••
2020-02-13	1
2020-02-14	1
2020-02-15	1
2020-02-16	1
2020-02-17	1
•••	•••
2020-02-14	2
2020-02-15	2
2020-02-16	2
2020-02-17	2

Map each category to an integer:

 $SKU-1 \leftrightarrow 1$ $SKU-2 \leftrightarrow 2$

• • •

y_t
•••
30
32
25
34
Ś
•••
32
21
25
Ś

Other multi-step forecasting strategies exist

Combine direct and recursive strategies

- DirRec [3, 4]
- Rectify [5]

Directly predict the whole output sequence

Multi-output [4]

DirRec

Model 1:
$$\hat{y}_{T+1} = f_1(y_T, y_{T-1}, ...)$$

Model 2: $\hat{y}_{T+2} = f_2(\hat{y}_{T+1}, y_T, y_{T-1}, ...)$

Model h: $\hat{y}_{T+h} = f_h(\hat{y}_{T+h-1}, \hat{y}_{T+h-2}, ..., y_T, y_{T-1} ...)$

[3] Sorjamaa, Antti, and Amaury Lendasse. "Time series prediction using DirRec strategy." In Esann, vol. 6, pp. 143-148. 2006.

[4] Bontempi, Gianluca, Souhaib Ben Taieb, and Yann-Aël Le Borgne. "Machine learning strategies for time series forecasting." In *European business intelligence summer school*, pp. 62-77. Springer, Berlin, Heidelberg, 2012.

[5] Taieb, Souhaib Ben, and Rob J. Hyndman. Recursive and direct multi-step forecasting: the best of both worlds. Vol. 19. Department of Econometrics and Business Statistics, Monash Univ., 2012.