ČASOPIS PRO RADIOTECHNIKU A AMATÉRSKÉ VYSÍLÁNÍ ROČNÍK XXIII/1974 ČÍSLO 10

V TOMTO SEŠITĚ

Náš interview
Hlavní úkoly z 3. zasedání ÚV-
Svazarmu 362
AR vědeckotechnickému rozvoji . 363
Radiotechnické středisko v Braní- ku 363
ku
dioklubu Svazarmu
Služba radioamatérům 364
R 15, rubrika pro nejmladší čte-
náře AR
Jak na to?
Elektronické zariadenie (Leslie
efekt)
Elektronický isnizátor vzduchu . 371
Indikátor k magnetofonu Blues . 373
Iontová implantace v planární technologii monolitických ob-
vodů
Tranzistorový blesk s nastavitel-
ným směrným číslem 374
Řízení rychlosti otáčení motorku
SMZ375 pro gramofon 383
Akustický hlídač plynu 385
Stavebnice číslicové techniky 386
Zajímavá zapojení ze zahraničí . 388
Vstupní část přijímače pro hon na
lišku
Kmitočtový syntetizér (dokončení) 391
Soutěže a závody
Hon na lišku 395
DX 397
Amatérská televize 397
Přečteme, si 397
Naše předpověď
Četli jsme 398
Nezapomeňte, že 399
Inzerce 399

Na str. 379 až 382 jako vyjímatelná příloha "Malý katalog tranzistorů"

AMATÉRSKÉ RADIO

Vydává ÚV Svazarmu ve vydavatelství MAGNET,
Vladislavova 26, PSČ 113 66 Praha 1, telefon
260651-7. Šéfredaktor ing. František Smolik, zástupce Luboš Kalousek. Redakční rada: K. Bartoš,
V. Brzák, K. Donát, I. Harmine, L. Hlinský, ing.
L. Hloušek, A. Hofhans, Z. Hradiský, ing. J. T.
Hyan, ing. J. Jaroš, ing. F. Králik, K. Novák, ing.
O. Petráček, L. Tichy, ing. J. Vackář, CSc., laurcát
st. ceny KG, ing. J. Zíma, J. Zenišek, laureát st. ceny
KG. Redakce Lublaňská 57, PSČ 120 00 Praha 2;
tel. 296930. Ročně vyjde 12 čisel. Cena výtísku 5 Kčs,
pololetní předplatné 30 Kčs. Rozšířuje PNS, v jednotkách ozbrojených sil vydavatelství MAGNET, administrace Vladislavova 26, Praha 1. Objednávky přijimá každá pošta i doručovatel. Dohledaci pošta Praha
O. Objednávky do zahraničí vyřízuje PNS, vývoz tisku, Jindřišská 14, Praha 1. Tiskne Polygrafia 1, n. p.,
Praha. Inzerci přijímá vydavatelství MAGNET,
Vladislavova 26, PSČ 113 66 Praha 1, tel. 260651-7,
linka 294. Za původnost a správnost přispěvku ručí
autor. Návštěvy v redakci a telefonické dotazy
pouze po 14. hod.
Toto číslo vyšlo 10. října 1974
© Vydavatelství MAGNET, Praha AMATÉRSKÉ RADIO

s ředitelem n. p. TESLA Lanškroun, s. Jindřichem Kettnerem, o výrobě pasívních součástek pro elektroniku.

Váš podnik je hlavním naším výrob-cem pasívních součástek pro elektro-niku. Které závody do vašeho podniku patří a co vyrábějí?

N. p. TESLA Lanškroun se svými čtyřmi pobočnými závody v Jablonném, Jihlavě, Blatné a Ostravě zahrnuje ve svém výrobním programu výrobu pasívních součástek a konstrukčních prvků. Sortiment, který je vyráběn v n. p. TESLA Lanškroun, je velmi široký, a zahrnuje kromě keramických kondenzátorů výrobu veškerých pasívních prvků a značnou část prvků konstrukč-

S ohledem na široký sortiment je výroba v jednotlivých závodech specializována, a to tak, že závod Jablonné je perspektivně určen pro výrobu prvků na bázi tenkých vrstev – tj. ploché přesné odpory, přesné odpory MLT, útlumové články apod., závod Jihlava je perspektivně určen pro výrobu konstrukčních prvků, závod Blatná je orientován na výrobu uhlíkových odporů, fotoodporů a části odrušovacích prostředků a závod Ostrava je orientován na výrobu kondenzátorů a potenciometrů. Základní závod v Lanškrouně vyrábí

miniaturní elektrolytické kondenzátory, speciální, potenciometry, hybridní integrované obvody, tantalové kondentegrované obvody, tantalové konden-zátory, skleněné izolační průchodky a další speciální výrobky.

Co zajišťuje Váš podnik v rámci RVHP a jak se bude vzhledem k této spolupráci měnit váš výrobní pro-gram?

S ohledem na velmi široký sortiment, který neumožňuje racionalizaci výrobních pochodů a jejich automatizaci, zaměřuje se podnik na specializaci výzanieruje se podnik na specializaci vyrobního programu v rámci RVHP.
Jednání o specializaci je však ztíženo
odlišným konstrukčním provedením
a potížemi při odsouhlasování náhrad
našich výrobků u našich odběratelů, jejichž konstrukce jsou navrženy s použi-tím výrobků TESLA. Přes tyto potíže však musí dojít ke specializáci, neboť tak široký sortiment by nebylo možno udržet na patřičné technické úrovni. Také s ohledem na malé série by nebylo možné využívat automatizačních prostředků a tím zajistit vysokou efektivnost výroby.

Snahou podniku je rozvíjet dále výrobu těch součástek, u nichž se dosáhlo technických parametrů světové úrovně, a současně zajistit značný stupéň automatizace jejich výroby. Jsou to přede-vším miniaturní elektrolytické kondenzátory, přesné vrstvové odpory, minia-turní vrstvové odpory, kondenzátory pro střídavý proud a ďalší.

Jaká část vašich výrobků slouží finál-ním výrobcům, kolik tvoří maloob-chodní spotřeba a jaká je relace mezi požadavky trhu a jejich uspokojová-ním z vaší strany?

Z celkové produkce našeho národního podniku slouží převážná část výrobků

Jindřich Kettner

finálním výrobcům, pouze asi 1 % je dodáváno přímo do obchodní sítě a část výrobků (asi 2 %) do obchodní sítě OP TESLA.

Od r. 1972, kdy po předchozí částečné stagnaci na trhu elektronických zařízení došlo k prudkému oživení, nestačil náš národní podnik pokrývat požadavky našich odběratelů přesto, že část výrobků byla dovážena, především ze socialistických zemí. Tento stav pokračuje i v r. 1974, kdy požadavky odběrateľů převyšují možnosti výroby našeho národního podniku; a tak přesto, že je dováženo za téměř 30 mil. Kčs součástek, nejsou požadavky odběratelů uspokojeny. Rovněž na rok 1975 se podle prováděného průzkumu poža-davky zvyšují ve srovnání s očekávaným objemem výroby v r. 1974 o 27 %, což není náš n. p. schopen s ohledem na technické kapacity a zdroje pracovních sil zabezpečit. Zmírnění očekávaného rozporu v možnostech výroby a poža-davcích se snažíme opět zajistit dovozem a již proběhla celá řada jednání partnery ze socialistických zemí. ohledem na obdobnou situaci v socialistických státech, kde prudce narůstá potřeba pasívních součástek, však není možné námi uplatňované požadavky na dovoz realizovat v plném rozsahu.

Neuvažujete o zřízení specializované prodejny vašeho podniku, která by měla celý vámi vyráběný sortiment součástek?

Setkáváme se mnohdy se stížnostmi různých radioamatérů, že na trhu není dostatek součástek, a s dotazy, proč náš n. p. nezřídí vzorovou prodejnu svých výrobků, která by byla trvale zásobována celým výrobním sortimentem. Náš národní podnik ve svých záměrech nepočítá se zřízením této prodejny, neboť pasívní součástky nelze srovnávat s ostatním spotřebním zbožím a navíc distribuci součástek provádí do svých prodejen OP TESLA, který má dokonale vybudovanou síť prodejen. Že v těchto prodejnách není dostatek součástek, je způsobeno prudkým nárůstem výroby u finalistů, což neumožČást linky na výrobu metalizovaných odporů

ňuje dostatečně zásobit Obchodní podnik TESLA a Domácí potřeby z důvodů již uvedených.

> Jaké nové výrobky chystáte pro maloobchodní trh?

V dohledné době neuvažujeme pro maloodběratele z řad amatérů dodávat nové výrobky, protože se většinou jedná o speciální výrobky, které jsou určeny na důležité a vládou sledované výrobní úkoly. Tyto výrobky bude možno uvolnit pro maloobchodní trh až po vybudování dalších výrobních kapacit, nebo

až poklesne jejich potřeba pro národní hospodářství.

Jsme si vědomi, že současná situace způsobuje vážné potíže a leckdy i nespokojenost spotřebitelů, avšak za daných možností není v silách našeho národního podniku plně potřeby uspokojit. Náš národní podnik předložil nadřízenému orgánu návrhy na řešení této neuspokojivé situace a jsme přesvědčeni, že jejich realizace umožní podstatné zlepšení v krytí požadavků naším národní podnik.

Rozmlouval ing. Alek Myslík

HLAVNÍ ÚKOLY z 3. zasedání ÚV SVAZARMU

- Zvyšit kvalitu a účinnost branné výchovy
- Podpořit závěry květnového pléna ÚV KSČ

V Praze se dne 2. srpna 1974 sešel ústřední výbor Svazarmu, aby obšírně zhodnotil dosavadní realizaci závěrů V. sjezdu Svazarmu a stanovil další postup při plnění sjezdové rezoluce v roce 1974 a rámcově i v roce 1975. V průběhu jednání se toto plěnum – v pořadí již třetí – jednomyslně přihlásilo k odkazu Slovenského národního povstání a schválilo Provolání ÚV Svazarmu na počest 30. výročí SNP. Referát na zasedání přednesl předseda ÚV Svazarmu armádní generál Otakar Rytíř (obr. 1). Z jeho vystoupení, z diskuše i usnesení pléna komentujeme alespoň hlavní myšlenky a závěry.

Obr. 1. Předseda ÚV Svazarmu, arm. gen. Otakar Rytíř, při projevu

• Členové ústředního výboru se plně ztotožnili se závěry předsedy soudruha Rytíře, že výsledky našeho V. sjezdu byly v celé organizaci přijaty s plným souhlasem a že jejich projednávání přispělo k plnění konkrétních úkolů v místě, v okresech i krajích. V seznamování funkcionářského aktivu s výsledky sjezdu je třeba pokračovat a zintenzivnět a zkvalitnit ho natolik, aby nám pomáhalo formovat tvořivý vztah funkcionářů k práci, všestranně pochopit a správně realizovat úkoly sjezdu. V referátě i v diskusi byla uvedena řada příkladů, jak všestranně se po našem sjezdu v obou národních organizacích Švazarmu rozvinula veškerá činnost. Předseda, armádní generál Otakar Rytíř, v této souvislosti poukázal na to, že nás celkový pozitivní vývoj v naší organizaci nesmí ukolébat v uspokojení. Mnohem

větší pozornost musíme věnovat odhalování příčin nedostatků, jichž je ve vnitř-ním životě organizace stále nemálo – v péči o růst členské základny, o cvičitele a vychovatele, v politickovýchovné práci, ve vytváření materiálně technické základny pro činnost, v hospodaření i v málo účinném působení navenek..! Například naprosto nemůžeme být spokojeni s ročním průměrným přírůstkem 44 000 nových členů, protože souběžně dochází k úbytkům. Dva roky pracujeme s branci a přitom jich do organizace získáme minimum, rovněž tak dorostenců máme velmi málo, na jednu ZO či klub připadají v průměru pouze 4! Proto je třeba všude pozvednout úroveň politickoorganizátorské práce, z okresních výborů pomáhat účinně ZO i klubům a rozvinout zde plnokrevný vnitrosvazový život. To chce vnést do celého hnutí vysokou náročnost na hodnocení výsledků práce orgánů a organizací a důsledně uplatňovat kritéria otevřenosti a pravdivosti.

Nástupem k dosažení těchto cílů, k odhalení přičin stagnace a pozvednutí úrovně práce ZO a klubů se musí stát výroční členské schůze, které se budou konat od 15. 10. 1974 do 28. 2. 1975. S výročními schůzemi až do konce května 1975 bude spojena kampaň výměny členských průkazů. Bude to příležitost vnést nejen pořádek do členské evidence a statistiky, ale také přispět k hlubšímu chápání členství ve Svazarmu, k důslednému uplatňování práv a povinností členů, k zpevnění jednoty všech kolektivů a rozvinutí jejich iniciativa a aktivity

tivy a aktivity.

• Předseda ÚV Svazarmu armádní generál Otakar Rytíř věnoval ve svém vystoupení na plénu mimořádnou pozornost otázce výji-mečně blízké všem zájmově technickým odbornostem Svazarmu a především svazar-movským radiamatérům. Upozornil, že všechny odbornosti Svazarmu čeká ještě tento rok projednat výsledky květnového pléna ÚV KSČ o vědeckotechnickém rozvoji a promítnout jeho závěry do podminek té či oné našti odbornosti. Objasnil, že není pravdou, že se tyto nosti. Cofisant, ze nent pravava, ze se vyto otázky Svazarmu přímo netýkají, protože není organizací výrobního charakteru. ÚV KSC se v květnu 1974 obrátil nejen k vědekým a technickým pracovníkům, ale ke všem společenským organizacím, ke všem pracujícím. Naše branná společenská orga-nizace, nerozlučně spjatá s nejrůznějšími obory techniky, má právě v tomto směru neohraničené možnosti podpořit stranu v oblasti ekonomické i vojenské. Náš vztah k otázkám vědeckotechnického pokroku spočívá v podstatě v charakteru naší branné organizace. Z toho pro nás vyplývá plně rozvinout odborně technickou funkci Svazarmu, ještě účinněji rozvíjet technickou propagandu a pomáhat šířit technické znalosti, zavádět nové poznatky vědy do praxe, 1 ozvíjet polytechnickou výchovu mládeže a vést ji k tomu, aby dychtila po poznatcích vědy a učila se technicky myslet. Bude proto správné - řekl generál Rytíř - uložit radám jednotlivých odborností, komisím a sekcím ústředního výboru a oddělením jeho sekretariátu, aby promyslely a navrhly, jak kon-krétně přispět naší prací k realizaci květno-vého pléna a potřebná opatření zakotvit v plánu činnosti na rok 1975. Doporučujené, aby na některém ze zasedání Ústředního výboru v příštím roce bylo zhodnoceno, co bylo v této oblasti celkově vykonáno a byla přijata další obatření. • Třetí zasedání ÚV Svazarmu dále

ukázalo, jak je třeba nyní, po oslavách 30. výročí SNP, podpořit další nadcházející oslavy národně osvobozovacích bojů, které vyvrcholí 30. výročím našeho osvobození Sovětskou armádou v květnu 1975 a posléze Československou spartakiádou. Na ní se budeme podílet nejen společnou skladbou Svazarmu a škol II. cyklu, tedy hromadným vystoupením, ale také širokou účastí všech našich zájmově sportovních úseků činnosti v její sportovní a namnoze i turistické části. Nadchází čas udělat tedy vše pro to, aby se krásné a slavné revoluční tradice národně osvobozovacího boje našeho lidu staly nedílnou součástí cítění a jednání členů naší organizace, zvláště mládeže. Aby se staly opravdo-vou školou socialistického vlastenectví a proletářského internacionalismu. K nadcházejícím oslavám proto přispějeme především vysokou ideovostí a političností veškeré práce, úsilím o další rozvoj všech branně technických činností a pozvednutí společenské funkce Svazarmu. Rok 1975 by se měl stát ve všech orgánech, základních organizacích a zařízeních Svazarmu rokem zápasu za vyšší kvalitu a vyšší úroveň naší práce.

362 amatérske 1 1 10 74

Snad není hasa

Snad není předčasné, dotkneme-li se již nyní závěrů květnového pléna ÚV KSČ o vědecko-technickém rozvoji, dříve, než jsou zpracovány a rozpracovány v jednotlivých orgánech Svazarmu a jeho klubů. Je to proto, že jim přikládáme velký význam; plně se za ně stavime a snažíme se v redakci podle nich řídit a je naplňovat. Samozřejmě se budeme k závěrům květnového pléna ÚV KSČ vracet a podle našich výrobních možností vás co nejoperativněji informovat o jejich rozpracování do konkrétních úkolů na úrovni jednotlivých orgánů Svazarmu a Ústředního radicklubu. radioklubu.

Půjde o konkrétní postižení velmi složité a náročné problematiky, jejíž správné řešení výrazně ovlivní naši učebně výcvikovou a zájmovou činnost. Smyslem vědeckotechnického rozvoje je maximální přínos efektivnosti našeho národního hospodářství, růst produktivity a kvality práce, intenzivnější roz-voj pokrokových metod a výzkumů, výroby ap.

Květnové plénum se obrací nejen k výzkumným a vědeckým pracovníkům - mezi kterými máme také dost čtenářů - ale k celé společnosti, tudíž

i ke všem radioamatérům.

Úměrně s tím, jak vědeckotechnický rozvoj zasahuje do oblasti armády, vyvstává konkrétní požadavek zvlád-nout v armádě technicky náročné systémy, což znamená připravovat mládež, brance.

Jak bylo zdůrazněno na 3. zasedání ÚV Svazarov de 0 ÚV Svazarmu dne 2. srpna 1974, staví před nás květnové plénum ÚV KSČ zejména tyto úkoly:

Plně rozvinout odborně technickou funkci Svazarmu s využitím nejrozmanitějších aktivit. Zde je právě náš obor - elektronika a radiotechnika – jedním z nejdůležitěj-ších a nejperspektivnějších směrů, proto na nás leží také velký díl zodpovědnosti. O neustálé rozvíjení technické činnosti ve Svazarmu se náš časopis snaží prakticky již od svého vzniku. Závěry květnového pléna jsou nám oporou v další činnosti na tomto poli, která bude spočívat nejen v uveřejňování kvalitních návodů na stavbu elektronických zařízení, ale i ve zjišťování odezvy, návštěvách radioklubů a kroužků, v přímé propagaci technické činnosti.

Pomáhat šířit technické znalosti a přispívat ke zrychlení zavádění poznatků vědy a techniky do praxe. Je prakticky naším posláním šířit technické znalosti a budeme se nadále snažit to dělat tak, aby naši čtenáři byli trvale a operativně seznamováni s nejnovějšími výsledky a úspěchy elektroniky, s novými principy a technikami, i když zatím třeba

v našich podmínkách neaplikovatelnými. Protože tím můžeme dávat impulsy k zavádění těchto novinek do praxe a urychlit tak celý proces od zrodu myšlenky k její realizaci v našem hospo-

Podněcovat tvořivou práci a napomáhat přípravě lidí na změny charakteru práce v souvislosti s vědeckotechnickým rozvojem. votéto sféře máme mnoho možností a hodláme jich využívat. Budeme opatřovat zajímavé a atraktivní náměty našich konstrukčních návodů, budeme spolupracovat s ÚRK a jeho komisemi na pořádání technických soutěží a jejich popularizaci. Nadále budeme každoročně vypisovat spolu s n. p. TESLA konkurs o nejlepší amatérské konstrukce.

Rozvíjet polytechnickou výchovu mládeže, vést ji k tomu, aby dychtila po poznatcích vědy a učila se technicky myslet. Již po loňském červencovém plénu ÚV KSČ o práci s mládeží považujeme tuto oblast za jedňu z nejdůležitějších. Založili jsme rubriku pro nejmladší čtenáře AR, snažíme se přinášet dostatek materiálů pro začínající mladé radioamatéry, zakládáme při redakci vzorový kroužek mladých radioamatérů, na kterém chceme prakticky ověřovat jak metodiku, tak i konkrétní konstrukční návody. Zúčastňujeme se všech důležitých akcí pro mládež a s mládeží v našem oboru a přinášíme z nich reportáže, chceme dále rozvíjet úspěšně navázanou spolupráci s Českou ústřední radou Pionýrské organizace i s Ústředním domem pionýrů a mládeže JF.

Od květnového pléna uplynula zatím příliš krátká doba, aby jeho obsahem i dosahem-rozsáhlé závěry mohly být včleněny do konkrétních plánů a úkolů. Jednotlivé orgány Svazarmu mají za úkol zpracovať ve smyslu těchto závěrů své plány pro rok 1975. Samozřejmě i v našich redakčních plánech a záměrech pro příští rok se výsledky květnového pléna výrazně uplatní.

RADIOTECHNICKÉ STŘEDISKO V BRANÍKU

V tomto roce se ve středisku zaměřili převážně na výrobu přijímačů a vysílačů pro hon na lišku v pásmu 3,5 MHz. Jde již o osvědčený a zdokonalený při-jímač Junior C. Přijímač byl ověřen v minulém roce v sérii pět set kusů. V tomto roce je vyrobeno dalších 1 000 kúsů. Přijímač je určen pro klasifikační a náborové soutěže pro mládež v honu

Zároveň je již vyrobeno 300 kusů vy sílačů pro hon na líšku v pásmu 3,5 MHz pod označením Minifox. Jsou vyrobeny ve dvou variantách: s vyvedeným klíčováním a bez možnosti přímého ručního klíčování. Bez vyvedeného klíčování stačí k provozování tohoto vysílače povolení, které vydává český a slovenský radioklub Svazarmu. Vysílače s mož-ností ručního klíčování jsou určeny pouze pro kolektivní stanice.

Všechny tyto vysílače jsou zabezpečeny proti náhodnému vytažení antény za provozu, je možnost kontroly zdrojů i doladění koncového stupně vysílače. (Fotografie vysílače jsou na 3. straně

jsou již připraveny k expedici v Radio-

Vysílače i přijímače pro hon na lišku

technickém vývojovém a výrobním středisku (RVVS) Praha 4-Braník, Vlnitá č. 33, PSČ 14700. Cena přijímače je Kčs 788,—, předběžná cena vysílače je asi 1000,— Kčs.

Zde je tedy příležitost pro okresní výbory, základní organizace a radio-kluby Svazarmu získat technické vybavení pro hon na lišku v pásmu krátkých vln z vlastních nebo jiných místních finančních zdrojů. RVVS může tato zařízení dodávat okamžitě. Využijte této příležitosti k rozvoji mládežnického hnutí na úseku technické činnosti, jak to ukládá XIV. sjezd KSČ i usnesení nejvyšších orgánů Svazarmu v Jednotném systému branné přípravy obyvatelstva.

Tato zařízení se mohou využívat i k nácviku telegrafních značek s mož-

ností provozu přímo na pásmu. Dalším novým výrobkem RVVS, který se bude v letošním roce ověřovat, je transceiver pro moderní víceboj telegrafistů, případně i pro běžný radioamatérský provoz v pásmu 3,5 MHz (QRP) s názvem Meteor. Jde o souběžně laděný vysílač-přijímač, osazený křemíkovými tranzistory, s výkonem 0,6 W. V první ověřovací fázi bude dodán v množství asi 40 kusů pouze organiza-

cím Svazarmu. Jeho cena není dosud stanovena – předpoklad je asi 1 900 Kčs. RVVS dále rekonstruuje ve velmi omezené kapacitě staré přijímače tzv. "stříbrné a zlaté" série. Tyto rekonstrukce však nejsou rentabilní. Z ekonomických důvodů by bylo vhodné výrobky starých sérií vyřazovat a nahrazovat přijímači Junior C.

Teslův transformátor Laděné pásmové propusti Tranzistorový monitor pro SSTV Špičkový přijímač pro KV

amatérské! 1 1 1 363

SETKÁNÍ RADIÓAMATÉRŮ ČESKÉHO RADIOKLUBU SVAZARMU

Pod patronátem podnikového ředitele n. p. TESLA Pardubice ing. F. Utíkala se uskutečnilo ve dnech 2. až 4. srpna v Pardubicích letošní setkání radioamatérů. V pěkném letním počasí přilákalo téměř 600 radioamatérů a jejich rodinných příslušníků, nejen z Čech a Moravy, ale i ze Slovenska. Strávili v Pardubicích pěkné tři dny a setkali se tam s mnoha známými z pásem.

Pardubické setkání mělo základní znak dobře zorganizovaného podniku, totiž že organizaci a organizátory nebylo nikde moc vidět. Všechno klapalo tak nějak samo a dobře. Všichni byli ubytování pohromadě v kolejích, stravování bylo zajištěno v hotelu Polabiny a veškerá činnost se odbývala v prostorách Unichemu (obr. 1). Tato tři místa

Obr. 1. Program setkání probíhal v prostorách Unichemu

byla navzájem vzdálena asi po 10 minutách chůze a nebylo proto nutné používat žádné dopravní prostředky. Při prezentaci obdržel každý Informační zpravodaj s upřesněným programem, pěkný odznak, plánek města Pardubic, stravenky, vstupenky na společenský večer – všechno, co ke svému pobytu v Pardubicích potřeboval. Kromě toho si bylo možno zakoupit sborník přednášek, na setkání přednesených; a to je vzhledem k obvyklým potížím s tiskem zvláště obdivuhodné. Všechny přednášky byly velmi zajímavé a sborník se stal patrně užitečným přírůstkem knihovny většiny přítomných.

Setkání bylo slavnostně zahájeno

Setkání bylo slavnostně zahájeno v sobotu dopoledne ve velkém sálu Unichemu. V čestném předsednictvu zasedli ing. F. Utíkal, podnikový ředitel

Obr. 2. Setkání zahájil ing. F. Utíkal, podnikový ředitel n. p. TESLA Pardubice

n. p. TESLA (obr. 2), E. Môcik, OK3UE, místopředseda ústřední rady Ustředního radioklubu ČSSR, pplk. V. Málek, předseda OV Svazarmu v Pardubicích, pplk. J. Paukert, předsedá KV Svazarmu, ing. J. Klimeš, předseda MěNV Pardubice, zástupci

364 (Amatérské! (A. I.) (1) 10 74

ONV, OV KSČ a OV NF. Sál byl přeplněn a přesto se tam mohla vejít nejvýše polovina přítomných radioamatérů. Po krátkých pozdravných projevech zúčastněných funkcionářů předal místopředseda ústřední rady URK E. Môcik, OK3UE, jmenování mistry sportu Ivanu Harmincovi, OK3CHK, J. Oravcovi, OK3QQ a S. Korenovi, OK1WDR (obr. 3).

Poslavnostním zahájení zůstala většina na svých místech, protože následovala velmi zajímavá přednáška J. Borovičky, OK1BI, na téma moderní řešení KV přijímačů. S některými částmi této přednášky, zejména s moderním řešením přijímače typu "up-konvertor", se budeme snažit naše čtenáře co nejdříve seznámit na stránkách AR.

Po obědě pokračoval program dalšími dvěma přednáškami – A. Glanc, OK1GW, přednášel na téma "Snímače a monitory SSTV" a ing. V. Srdínko, OK1SV, na téma DX provoz a podmínky na pásmech KV". Obé přednášky měly velký úspěch a protáhly se až do večeře. Zároveň probíhaly v "kuloárech" různé drobné debaty a diskuse, výměna radiomateriálu ap. Své prodejní stánky otevřely na setkání prodejna ÚRK i n. p. TESLA Rožnov, byla instalována výstavka n. p. TESLA Pardubice a ÚRD Hradec Králové.

Po večeří se zaplnily prostory restaurace hotelu Labe v Polabinách, které byly celé rezervovány výhradně pro účastníky setkání, do posledního místečka. Hrálo se k tanci i poslechu, prodávaly se losy do tomboly, pokračovaly

Obr. 3. Diplomy ke jmenování mistry sportu převzali z rukou OK3UE Ivan Harminc, OK3CHK a J. Oravec, OK3QQ

diskuse, zahájené odpoledne v prostorách Unichemu. Úspěšný společenský večer skončil dlouho po půlnoci.

večer skončil dlouho po půlnoci.
Pro rodinné příslušníky, kterým radiotechnika není příliš blízká, uspořádali pořadatelé zájezd na safari ve Dvoře Králové.

ře Králové.

V neděli pokračovalo setkání dalšími dvěma přednáškami – ing. M. Prostecký hovořil o technice a provozu RTTY a ing. K. Vařecha o moderních polovodičových prvcích pro velmi vysoké kmitočty. Setkání bylo zakončeno besedou s představiteli ústředních orgánu radioamatérů Svazarmu a po obědě se všichni rozjeli domů.

Po celé tři dny byla v provozu uprostřed největšího ruchu setkání stanice OK5KCI s vysílačem SOKA. Výstavka profesionálních exponátů byla doplněna i několika dovezenými amatérskými výrobky.

Poděkování za pěkně zorganizovanou akci patří všem pardubickým radioamatérům, zejména potom členům organizačního výboru, kterými byli: E. Juřena, OK1EJ, F. Doleček, OK1DQ, V. Dušánek, OK1AVD, J. Kyscla, OK1AHH, F. Loos, OK1QI, Z. Pištora, OK1AIA a L. Ryska, OK1APB.

-amy

SLUŽBA RADIOAMATÉRŮM

Jak jsme uvedli již v předcházejících AR, je velmi výhodné používat při nákupu radiotechnických součástek a náhradních dílů zásilkovou službu TESLA: objednávky jsou vyřizovány pečlivě v přijatelných dodacích lhůtách.

Proto pokračujeme v seznamu náhradních dílů a součástí, které lze objednat na dobírku na adrese: TESLA OP, zásilková prodejna, Moravská 92, 688 19 Uherský Brod.

Iŕis						
4163	0040	1PA	128	21	ozd, plech M	IC Kčs
					-	4,70
	0060	1PA	202	07	lad, kotouč	0,64
	0080	1PA	257	29	skříňka	4,90
	0090	1PA	257	30	zad. díly	3,70
	0130	1PA			nosnik	3,50
	0150	IPA-	892	13	fer, tvč	10,50
	0200	1PK			I. a II. mf cívka	
	0210	iPK			III. mf civka	24,
	0220	1PK	589	89	cívka vstup.	2,70
	0230	1PK			oscilátor	20,
	0240	1PN			iny, transformá-	,
			*		tor	37,
	0250	1PN	676	53	výst, transfor-	,
					mátor	31,
Twis	t					,
4164	0010	1PF	129	65	skříňka	97,
	0090	1PF	800		držsest.	6,
	0130	1PA			ozdob, rám	22,50
	0310	1PN			výst, transfor-	
			• • •		mátor	19,50
	0380	1PF	739	11	ozd. mřížka	16,
	0390	1PF	739		ozd. mřížka	10,50
	0460	1PA			knoflík	0,50
Big-	beat. (Chans	on			

knofiik

ozd. rámeček

4165 0080

1PA 242 12 1PA 242 13 1PF 127 09

0130	1PF	128		skříň	150,
0140	1PF	153	03	stupnice	13,
0170	1PF	178	00	držadlo	4,20
0260	1PK	403	02	anténa	66,—
0360	1PN	051	01.	dil VKV	255,
0370	1PN	705	35	otoč. konden-	,
			-	zátor	73,
Bonny					
4173 0020	1PF	251	64	pouzdro	23,—
0030	1PA	332	66	deska	0,55
0120	IPF-	128	19	skříňka	190,—
0130	1PF	153	18	stupnice	17,—
0150	1PF	242	22	knoflík	6,—
0160	1PF	242	23	knoflík	7,
0170	1PK	404	16	fer. anténa	15,—
Intervovo	a a a bur	~ đ			

0170	IPK	404	16	fer.	antén	a	15,—
Integrova	né oby	ody					*
MH7400			٠.				MCK
MH7410							46,
MH7450							46,
MH7453							46,-
MH7472					•		46,-
MH7486							74,— 160,—
MH5410							92,—
MH5420				_			92,-
MH5430							92,—
MH5440				: .			92,—
MH5450							92,-
MH5460							92,-
MH8410							66,—
MH8420							66,-
MH8430							66,
MH8440							66,-
MH8450							66,—
MH8472							98,—
MAA115		-					31,
MA3005	•					_	170,—
MA3000	•						230,
MAA661							91,
MAA525							35,—
MAA125							31,—
MBA145							62,—
MBA245							68,
MA0403				•			98,—
MAA145							34,

Blíží se nový rok a s ním i další ročník soutěže INTEGRA, kterou čtenáři rubriky R15 dobře znají. Po přečtení reportáže a prostudování návodu na komparátor v osmém čísle Amatérského radia jste již poznali, mem ctste Ammerskeno radia jste již počlati, že se požadavky organizátorů soutěže zpřís-nily. TFSLA Rožnov má zájem získat takové spolupracovníky, kteří toho znají opravdu hodně a chtěji se ještě ve svém oboru zdokonalit. Nové testové otázky, kteřé dnes zveřejňujeme, jsou proto zaměřeny především na polovodiče nejmodernější – integrované obvody. Otázky jsou dosti obtížné a tak budete možná před jejich zodpovězením můset pro-studovat dost odborné literatury, požádat o konzultace vedoucího kroužku, navštívit radioklub Svazarmu. V žádném případě si však nenechte odpovědi nadiktovat: na setkání Všatkilka Interna Požádněm Podlaktíní vsuk nenecnie oupovoch nadahovien účastníků Integry v Rožnově pod Radhoštěm by z toho byla velká ostuda, protože tam musí každý osobně prokázat, že něco umí a otázkám rozumí.

Své odpovědí zašlete opět na korespondenčním lístku tak, že označíte jen číslo otázky a písmeno správné odpovědi, např. 1b, 25c, 33a apod. Za každou správně zodpovězenou otázku získáváte dva body. Korespondenční lístek můžete odeslat nejpozději 31. prosince 1974 na adresu: Ústřední dům pionýrů a mládeže Julia Fučíka, Havlíčkovy sady 58, 120 28 Praha 2; do levého rohu lístku napište heslo INTEGRA 1975. Kromě odpovědí na otázky uvedte svoji přesnou adresu, PSČ a celé datum narození (napíšete-li jen rok narození, nezařadíme vaši odpověď do bodování).

Setkání v Rožnově p. R. se mohou zúčastnit vybraní chlapci a děvčata ve věku od 9 do 15 let (tzn. rok narození 1960 až 1966). Vybráno bude 35 nejlepších, při čemž si organizátoři vyhrazují právo zaslat těmto nejlepším začátkem příštího roku doplňující otázky či úkoly. Do rekreačního střediska Elektron n. p. TESLA Rožnov budou pozváni na čtyři dny závěrečné soutěže od 20. března 1975.

Otázky ze soutěže "INTEGRA 1974"

- Závěrné napětí tranzitoru U_{CE} lze zvětši $_{\mathrm{t}}$

 - a) zvýšením atmosférického tlaku,
 b) připojením vnějšího odporu mezi bázi a emitor tranzistoru,
 c) velikostí připojeného napájecího napětí.
- 2. Tyto charakteristiky tranzistoru jsou:
- a) vstupní,b) výstupní,c) závěrné pro oba přechody

- 3. Tranzistor v daném zapojení pracuje jako:
 - a) nf zesilovač,

 - c) je v zablekovaném stavu.

RUBRIKA PRO NEJMLADŠÍ ČTENÁŘE AR

Sestavuje Z. Hradiský s kolektivem ÚDPM JF

- 4. Saturační napětí křemikového tranzistoru UCESAT při plném vybuzení je:

 - a) větší než 2 V,
 b) menší než 2 V,
 c) v rozmezí 2 až 5 V.
- Stejnosměrný zesilovací činitel h21E patří mezi nejdůležitější parametry tranzisto-rů a je definován výrazem:
 - a) $h_{21E} = \frac{U_{CE}}{I_{B}}$
 - $I_{\mathbf{C}}$ b) $h_{21E} = -$ /B
 - IB c) $h_{21E} =$ Ic
- Monolitické integrované obvody se vyrá-bějí na monokrystalu křemíku technologii:

 - a) slitinovou, b) difúzni a slitinovou,
 - c) planárně epitaxní.
- Monokrystal křemíku pro výrobu inte-grovaných obvodů má krystalickou struk-turu:
 - a) šesterečnou,
 - h) kubickou,
 - amorfni.
- 8. V r. 1974 slaví n. p. TESLA Rožnov p. R.

 - a) 20. výročí založení, b) 25. výročí založení, c) 15. výročí založení, c) 15. výročí zahájení výroby integrovaných obvodů.
- Hustota polovodičových součástek u mo-nolitických integrovaných obvodů (tran-zistorů, diod, odporů a kondenzátorů) může být na 1 mm²:
 - a) nejvýše 3 tranzistory a 3 odpory,
 b) nejvýše 8 různých součástek,

 - c) i více jak 10 různých součástek.
- Hybridní integrované obvody mohou mít na nosné izolační podložce (substrátu):
 - a) výhradně odpory a kondenzátory včetně
 - spojovací sítě, b) výhradně diody a tranzistory včetně spojo-

 - různé druhy elektrických součástek, včetně monolitických integrovaných obvodů a spo-jovací sitě.
- Spojovací síť u integrovaných obvodů v pevné fázi se dělá napařením: 11. Spojovací síť u
 - a) zlata, b) stříbra

 - c) hliniku.
- Orientační klíče na pouzdrech (patkách) polovodičů slouží:

 - a) k orientaci patky při její výrobě,
 b) k orientaci polovodičové součástky při montáží na desku plošných spojů,
 c) k orientaci označení vývodů.
- 13. Všechny elektrické parametry polovodi-čových součástek jsou více či méně závislé na teplotě. Proudový zesilovací činitel h_{21E} s růstem teploty:
 - a) roste,b) klesá,

 - c) roste nebo klesá podle typu tranzistoru.
- 14. Touto značkou se označuje:
 - a) tranzistor s pomocnou bází,
 - b) diak
 - c) tyristor.

15. Digitron je:

- a) obrazovka s číslicovým rastrem,
 b) počítač neutronů,
 c) elektronka pracující s doutnavým výbojem
 pro indikaci čísel.
- 16. Uvedte alespoň 5 typů monolitických integrovaných obvodů, které vyrábí TESLA Rožnov, n. p. (typy téže funkční řady budou počítány jako jeden typ!).

- 17. Hybridní integrované obvody mají společnou podložku:

 - a) z polykrystalu křemiku nebo germania, b) ze speciálně upravené destičky keramiky nebo skla, c) z lestěného texgumoidu nebo textitu.
- 18. Integrované obvody v pevné fázi musí mít minimální počet vývodů:
 - a) 4 nebo více,
 - b) alespoň 3,c) alespoň 2.
- Integrované jobvody v pevné fázi mají obvykle zaručenou funkci v rozmezí provozních teplot:
 - a) +10 až +60 °C, 100 až +100 °C,
 - b) --100 až +100 °C c) --55 až +125 °C.
- Napětové zesílení lineárních integrova-ných obvodů je definováno vztahem:
 - a) $A_{\rm u} = \frac{U_{\rm vyst}}{1}$ $\overline{U_{
 m vst}}$
 - b) $A_{u} = \frac{U_{vst}}{U_{v ext{yst}}}$
 - c) $A_{u} = \frac{U_{vyst}}{I_{vst}}$
- 21. Lineární integrované obvody jsou:

 - a) tranzistory umístěně v jedné řadě,
 b) elektronické obvody v integrovaném provedení, jejichž výstupní signál je spojitou funkci vstupního signálu,
 c) zesilovače s rovnoměrným zesilením různých kmitočtů.
- 22. Operační zesilovač je:

 - a) zesilujíci zařízení pro operatéra,
 b) elektronický obvod určitých vlastností,
 c) chirurgický nástroj.
- Monolitické integrované obvody se v n. p. TESLA Rožnov vyrábějí od roku:

 - a) 1960,b) 1967,

 - c) 1970.
- 24. Operační zesilovače se vyznačují:
 - a) velkým vstupním a malým výstupním od-
 - porem, b) velkým vstupním a velkým výstupním od-
 - c) stejným vstupním i výstupním odporem.
- 25. Napětové zesilení Au operačních zesilovačů s otevřenou zpětnovazební smyčkou je obvykle:
 - a) větší než 10 000
 - b) menši než 10 000
 - v rozmezí 100 až 1 000.
- 26. Touto značkou se ve schématu označuje:

 - a) elektronický obvod pro logické funkce,
 b) integrovaný zesilovač,
 c) operační zesilovač se symetrickými vstupy.

- 27. Integrovaný operační zesilovač může sloužit:
 - a) výhradně ve funkci rozdílového (diferenčního) zesilovače, b) jako komparátor i jako rozdílový zesilovač
 - čí jiný zesilovač, c) jako komparátor, integrátor, derivátor, gyrátor, rozdilový zesilovač, nf zesilovač aktivní filtr a v dalších jiných funkcích.

- 28. Logické integrované obvody jsou elektronické systémy:
 - a) pracující se dvěma stavovými úrovněmi vštupních a výstupních signálů,
 b) samostaně logicky uvažující funkční celky,
 c) s vnictními zdroji informací lineárních
- 29. Logické integrované obvody se používají: a) výhradně v samočinných počítacích stro
 - b) výhr
 - pich, wyhradně v elektronických regulačních a Hdicich obvodech, v počitacích strojich, v regulačních a Hdicich systémech a v jiných zařízeních, která pracují na principu logických funkcí.

30. Elektronické hradlo je:

- a) polovodičová součástka s negativním od-
- b) elektronický obvod pro zpracování logic-
- kých funkcí, c) dvojice diod zapojených proti sobě.
- 31. Touto značkou se v elektronických obvodech označuje:
 - a) operační zesilovač s nesymetrickými vstupy, b) elektronický obvod pro logickou funkci
 - NAND, Y = AB, c) konektor pro připojení napájecího napětí.

Logické integrované obvody pracují s na-pělovými úrovněmi log. 1 a log. 0. Úroveň pro log. 1 je:

- a) přesně 1 V, b) v toleranci 1 ±0,5 V, c) v rozmezi 2,4 až 5 V.

Při vyhlášení 5. ročníku soutěže o nejlepší zadaný radiotechnický výrobek jsme otiskli soutěžní kupóny pro sloso-vání zvláštních prémií naší rubriky. A tak zatímco porota soutěže hodnotila vzhled, pájení, funkci a konstrukční provedení výrobků, nasypali jsme lístečky se jmény majitelů odevzdaných kupónů do klobouku a naše spolupracovnice Dagmar vylosovala následující šťastlivce:

Hlavní výhra (stavebnice tranzistorového přijí-

v 1. kategorii: Pavol Janus, Prešov,

Pavlovičovo nám. 37, ve 2. kategorii: Jiří Poupa, Praha 4 – Spořilov II, č. 2558. Další výhry (balíčky radiotechnického

materiálu):

v 1. kategorii: Pavel Panuš, Praha 4, lastimil Vilímek, Praha 10, Petr 10, Petr aba, Tren-Vlastimil Vilimek, 11au. Fišer, Rudná II, Peter Talaba, Tren-čín, Pavel Mikšík, Kroměříž, Pavel Rudišov n. B., Zenon Vlastimil Kadrnožka, Budišov n. B., Zenon Starčuk, Brno, Lumír Dujíček, Brno, Vladimír Till, Zábřeh, Milan Kusý, Oheb;

ve 2. kategorii: Robert Vachule, Praha 4, ve 2. kategorii: Robert Vachule, Praha 4, Jiří Šroubek, Chodov, Vladimír Kabelka, Praha 2, Jozef Časnocha, Skalité, Zdeněk Žižka, Praha 4, Jiří Vondráček, Cheb, Svatopluk Novák, Prostějov, Jiří Nevtipa, Zábřeh, Jan Voběrek, Č. Budějovice, Josef Beneš, Habartov, Ladislav Vyčichlo, Cheb.

Setkání mladých radiotechniků ČSR

Již tradiční letní setkání nejúspěšnějších účastníků soutěže o nejlepší zadaný radiotechnický výrobek uspořádal letos Krajský dům pionýrů a mládeže v Českých Budějovicích. Zúčastnilo se ho 33 chlapců ve věku od 9 do 18 let.

1. V dílnách Krajského domu pionýrů a mládeže vyráběli kluci zkoušečku tranzistorů

Obr. 2. Pracovali pečlivě-a soustředěně, protože jejich práce byla bodována

Obr. 3. Na exkurzi v budově Československého rozhlasu si prohlédli i studio s minimálním dozvukem

Jako předchozí léta i letos byl program setkání pestrý a zajímavý. Byly zajištěny tři exkurze – na televizní a rozhlasový vysílač na Kleti, do n. p. TESLA České Budějovice a do budovy Československého rozhlasu v Českých Budějovicích. Ta poslední byla ze všech nejzajímavější – málokdo měl asi do té doby možnost navštívit rozhlasovou "kuchyň", místa, kde se tvoří rozhlasovou vysílání. Nová budova Československého rozhlasu v Českých Budějovicích byla uvedena do provozu v roce 1972 a její vybavení i technické zařízení je proto velmi pěkné a moderní. S výkladem ing. Randáka, zástupce vedoucího technického provozu, si kluci prohlédli všechna studia, režijní pracoviště, seznámili se s obsluhou a funkcí mixážních stolů, poslechli si dokonalé stereofonní nahrávky, zjistili co je to elektronický dozvuk atd. atd. Tříhodi-nová exkurze byla natolik zajímavá, že na jejím konci se několik chlapců zajímalo o to, za jakých podmínek by mohli

jako technici v rozhlase pracovat.

Jako vždy i tentokrát mělo setkání i svoji soutěžní náplň. Jedno odpoledne vyráběli všichni v dílnách Krajského domu pionýrů a mládeže zkoušečku tranzistorů, která bude námětem dal-šího ročníku soutěže o nejlepší zadaný radiotechnický výrobek. Jiné odpoled-ne navštívili mezinárodní pionýrský tábor v Nových Hradech, kde pro ně byl uspořádán - bohužel v dešti závod v honu na lišku. Dalším soutěž-

Obr. 4. Nejúspěšnějším účastníkem setkání byl Jirka Nepožitek z Prostějova

ním programem byla technická olympiáda, již tradiční soutěž, při které dvoučlenné hlídky postupují terénem podle schematických značek a na jed-notlivých kontrolních bodech plní roz-ličné technické i netechnické úkoly. Nechyběl ani technický kvíz, doplněný o otázky související s absolvovanými exkurzemi. V odpočinkovém dni byl na programu výlet autobusem na zá-mek Hluboká a do Českého Krumlova.

Pod názvem Setkání mladých radiotechniků ČSR se tato akce konala letos naposledy. Od příštího roku bude každoročně pořádáno Mistrovství ČSR mladých radiotechniků. Podrobnosti a podmínky účasti se určitě včas dozvíte v naší rubrice R15.

-amy

Detektor laserových paprsků

Pracovníci laboratoře IBM vyvinuli detektor velké citlivosti, pracující na principu opticko-elektrického jevu. Na napařené vrstvě wolframu a molybdénu vyvolá laserový paprsek napětí, které směřuje kolmo ke směru dopadu světla a je přímo úměrné jeho intenzitě. Magnetické pole je neovlivňuje. Při impulsu l kW z laseru v trvání 5 ms vzniklo napětí až 150 mV.

Radio, Fernsehen, Elektronik č. 6/74

Snímací obrazovka Pyricon

Nová snímací televizní obrazovka, kterou vyvinula firma Thompson - CSF, slučuje strukturu vidikonu s vrstvou citlivou na infračervené záření (teplo). Přesto pracuje Pyricon při pokojové teplotě bez chlazení. Zvláštnost této snímací elektronky spočívá dále v tom, že může snímat jen pohyblivé předměty a živé osoby, kdežto nežádoucí pozadí na obraze se potlačí zvláštními shášecími impulsy.

Radio, Fernsehen, Elektronik č. 1/74

Barevný sovětský laser

Laser Raduga ("duha") může vydávat barevné záření, které se dá plynule měnit od infračervené do fialové. Zařízení vysílá 50 až 100 impulsů/s. Podobný, ale výkonový laser je typ Infra-2, jehož barva světla se dá rovněž měnit. Intenzita jeho velmi koncentrovaného paprsku je tak veliká, že postačí i pro měření v meziplanetárním prosto-

Radio, Fernsehen, Elektronik č. 6/74

Tranzistorový blikač

Vyhláška č. 32 předepisuje pro osobní automobily jako součást jejich povinného vybavení výstražný trojúhelník nebo ekvivalentní zařízení, jako např. zdroj přerušovaného oranžového světla. Obě zařízení jsou sice na trhu, jejich cena se mi však zdá poněkud neúměrná, a proto jsem se rozhodl postavit tranzistorový blikač.

Schéma zapojení je na obr. la. Jde v podstatě o multivibrátor kmitající nízkým kmitočtem, v jehož rytmu bliká žárovka v kolektoru T_2 . Po elektrické stránce je celé zapojení velmi jednoduché a při správném zapojení a dobrých součástkách funguje spolehlivě na první zapnutí od napětí 3 V do 4,5 V.

Obr. 1. Tranzistorový blikač; a) zapojení, b) mechanická konstrukce

Celé zařízení je postaveno na malé jednoduché destičce s plošnými spoji, zasunuté do krytu ze staršího malého elektrolytického kondenzátoru a zalito Epoxy 1200. Přívod napájecího napětí je vyřešen pomocí patice se závitem ze staré žárovky. Ze žárovky odstraníme skleněnou baňku a původní průchodku a na její místo zapájíme skleněnou průchodku s vpájeným drátem o Ø l mm. Ten připojíme na kladný pól zařízení. Horní část závitu zapájíme do kruhové destičky s plošnými spoji, která tvoří dno krytu (záporný pól napájení).

Na horní stranu krytu přišroubujeme objímku na žárovku, kterou překryjeme krytem vhodné oranžové barvy. Po smontování celé zařízení zalijeme Epo-

xy 1200.

Z kapesní svítilny, kterou má jistě každý motorista ve voze, sejmeme reflektor a vyšroubujeme žárovku, kterou našroubujeme do objímky našeho blikače a celý komplet našroubujeme do žárovkové objímky svítilny. Zařízení

uvedeme do chodu spínačem svítilny. Po použití blikač opět sejmeme a svítilnu uvedeme do původního stavu.

Michal Slavíček

Akustická kontrola brzdových svetiel

Pri dosiał uverejnených článkoch na túto tému sa pre kontrolu správnej činnosti brzdových svetiel využívala optická indikácia. Veľmi jednoduchou úpravou je možné doplniť spomínanú indikáciu i akustickou, a tým podstatne zdokonaliť kontrolu činnosti brzdových svetiel. Zariadenie je znázornené na obr. I.

Obr. 1. Akustická kontrola brzdových svetiel

Pozostáva z jazýčkového relé Re, ktorého vinutie je zapojené do okruhu brzdových svetiel a jeho kontakt re je v sérii s kontrolnou žiarovkou K. Je to v podstate známe zapojenie opísané v AR 6/72. Zdokonalenie spočíva v pripojení bzučiaka Bz v bode A.

Zariadenie pracuje tak, že pri stlačení brzdového pedálu sa zopne tlakový spínač S. V prípade, že obe brzdové žiarovky sú v poriadku, prúd tečúci vinutím jazýčkového relé je dostatočný na to, aby relé zoplo svoj kontakt re. Obvod kontrolnej žiarovky sa uzavrie a žiarovka svojim svitom signalizuje správnu činnosť brzdových svetiel.

V prípade, že je brzdový okruh prerušený (stačí, aby bola vadná len jedna žiarovka), prúd tečúci jazýčkovým relé ho nestačí vybudiť. Kontakt re nezopne a na bzučiak sa dostane takmer plné-napätie. Porucha sa teda indikuje počas stlačenia brzdového pedálu neprerušovaným zvukom bzučiaka a súčasne zhasnutím, príp. podstatným zmenšením jasu kontrolnej žiarovky. Prúd bzučiakom (asi 20 mA) nestačí na rozsvietenie žiarovky.

Kondenzátor C neovplyvňuje podstatne funkciu zapojenia. Jeho kapacita kompenzuje dobu príťahu relé a zamedzuje "nabehnutiu" bzučiaka v čase medzi zopnutím spínača S a zopnutím kontaktu re. Ak kondenzátor vynecháme, ozve sa bzučiak slabo vždy v okamihu stlačenia brzdy.

Počet závitov vinutia Re je treba voliť s ohľadom na magnetomotorickú silu, potrebnú k pritahnutiu jeho kontaktu a s ohľadom na napájacie napätie U a celkový príkon brzdových svetiel P.

počet závitov = $\frac{I_0 \mathcal{N}_0 U}{P}$ [-; A, V, W],

Obr. 2. Bzučiak

Obr. 3. Kontrolný obvod pre brzdové i smerové žiarovky

kde I_0 je meraním zistený prúd potrebný k príťahu pri ľubovoľnom počte závitov \mathcal{N}_0 . Skutočný počet závitov volíme z hľadiska spolahlivosti o málo väčší než vypočítaný.

V mojom prípade pri U=12 V a magnetomotorickej sile asi 60 Az som navinul 19 závitov medeného vodiča o priemeru 1 mm. Pri 6 V bude nutné použiť vodič s väčším priemerom, minimálne 1,5 mm.

Bzučiak možno použiť ľubovoľný, vyhovuje i "pípátko" na kontrolu smerových svetiel predávané v Mototechne. Ja som použil podobný bzučiak, ako bol popísaný v AR 5/70, zhotovený z telefonnej sluchátkovej vložky s impedanciou 2 × 27 Ω. Pre úplnosť je jeho zapojenie na obr. 2. Odpor R volíme tak, aby odoberaný prúd nebol väčší ako 20 mA.

Popísaný princíp akustickej kontroly je možné samozrejme použiť i na ukazovatele smeru, príp. iné žiarovky a spotrebiče v automobile. Pre zaujímavosť: zapojenie kontrolného obvodu pre brzdové i smerové žiarovky je na obr 3

Ing. Kamil Záchej

Naslouchadlo k televiznímu přijímači

V současné době není u televizorů bez síťového transformátoru vyřešena možnost, připojit sluchátka, i když vyráběná stereofonní sluchátka svými parametry umožňují kvalitní poslech.

rametry umožňují kvalitní poslech.
Hlavním problémem je zabezpečit ochranu před úrazem elektrickým proudem, neboť šasi televizoru může být v jedné z poloh sítové vidlice v zásuvce spojeno s fázovým vodičem. U všech moderních televizorů je však upraven ve zvukové části výstup pro magnetofon, oddělený od ostatních obvodů transformátorem.

Popisovaný adaptor pro individuální poslech zvukového doprovodu televizního programu byl již prakticky vyzkoušen a vyhověl všem požadavkům. Umožňuje dobrý poslech i nedoslýchavým osobám a přitom není rušeno okolí. Ostatní přítomní poslouchají obvyklým způsobem reprodukci z reproduktoru. Další výhodou je, že není nutno zasahovat do obvodů televizoru. Též sluchátka zůstanou nedotčena a mohou dále sloužit běžnému účelu. Nevýhodou je napájení adaptoru z baterie, ovšem spotřeba zařízení není velká a baterie má dlouhou dobu života.

Obr. 2. Zapojení sluchátek.

Schéma zapojení zesilovače adaptoru je na obr. 1, na obr. 2 je zapojení stereofonních sluchátek typu ARF201. Prototyp je postaven ze součástí, které byly právě k dispozici, s ohledem na co nejnižší cenu. Jako náhrady použitých sovětských tranzistoru MP37 a MP41, jejichž h218 byl přibližně 40, je možno použít i typy 102NU71 a GC508, nebo podobné. Tranzistor T je typu 107NU70 a má h218 asi 90. Odpory jsou typu TR112a, kondenzátory TC942, potenciometr TP181328 a odporový trimr TP040. Vzhledem k požadované delší době života napájecího zdroje byla zvolena plochá baterie typu 314. Je však možno použít i články NiCd a celý adaptor přizpůsobit k přímému dobljení ze sítové zásuvky, jako je tomu u kapesních svítilen. Zesilovač zalitý Lukoprenem a baterie jsou ve společném pouzdru, zhotoveném z cuprextítu.

Naslouchadlo bylo vyzkoušeno ve spojení s televizním přijímačem TESLA Dajana. Cena součástek (včetně stereofonních sluchátek s náušníky) je asi 300 Kčs.

Ing. Václav Fiala

Úprava magnetofonu TESLA B42 na tři rychlosti

Popsaná úprava řeší možnost změny rychlostí bez podstatného zásahu do mechanické části přístroje. Nejdříve si zhotovíme podle obr. 1 potřebné detaily, třmen (1), páku (2), táhlo (3) a ovládací kostku (4).

Odmontujeme panel magnetofonu a postupujeme tak, že nejdříve vyjmeme celý řadicí mechanismus včetně pryžového mezikola. Vyjmeme i tlačnou pružinu, která vysouvá mechanismus z pevného hřídele.

Na ramenu mechanismu ohneme směrem dolů tu část, která tvoří zobáček – po ohnutí bude sloužit k přichycení tažné pružiny. Nyní celý mechanismus postupně složíme zpět na pevný hřídel. Z původní tlačné pružiny zhotovíme zkrácením a zakončením oky tažnou pružinu asi o pěti závitech.

Pružinu zachytíme jedním koncem do ohnutého zobáčku na ramenu mechanismu, druhým koncem ji navlékneme do volného otvoru raménka, zasouvajícího pryžové mezikolo do záběru.

Když jsme takto mechanismus složili, měla by tažná pružina působit směrem nahoru a přitahovat celý mechanismus s pryžovým mezikolem na doraz. V této poloze je zařazena rychlost 9. Nyní budeme postupně montovat detaily 1, 2, 3, 4, které jsme si již zhotovili.

Třmen I připevníme šroubem M3 s podložkou a maticí do otvoru na šasi přístroje. Do třmenu I připevníme šroubem M3 páku 2, pojistíme maticí M3. Páka musí být zasunuta na pevném hřídeli tak, aby stlačovala řadicí mechanismus směrem dolů. Do páky 2 připevníme dvěma maticemi M3 táhlo 3. Pod spodní matici vložíme pružinku nebo podložku z pěnové pryže či molitanu. Při vlastním přehazování rychlostí bude podložka působit jako tlumič mezi pákou a táhlem.

Podle umístění táhla 3 odměříme, odvrtáme a jehlovým pilníkem vypilujeme otvor v panelu magnetofonu.

mosaz.pl.tl.1

21

21

23

24

47

připájeno

a)

organsklo

a)

organsklo

intervit podložka

(pěnová pryž, molitan)

organsklo

intervit podložka

intervi

Obr. I. Mechanické díly k úpravě magnetofonu B42. I – třmen, 2 – páka, 3 – táhlo, 4 – ovládací kostka

Nyní zbývá nasadit a šrouby přichytit panel, na táhlo 3 nasunout a šroubem M2,6 (zapuštěná hlava) připevnit ovládací kostku 4. Otáčením kostky vyzkoušíme jednotlivé rychlosti (přehazovat jen při vypnutém magnetofonu) a jsme hotovi.

Jaroslav Klouda

Další evropští výrobci kazetových magnetofonů – BASF, Bang and Olufsen, Dual, ITT-Schaub-Lorenz, Lenco, Revox, Tandberg a Uher zavádějí do svých nových typů kazetových magnetofonů záznamový systém Dolby B, který potlačuje šum záznamu. Oznámil to zástupce firmy Dolby Laboratories Inc., kde tento systém vyvinuli. V krátké době přibude ke jmenovaným výrobcům též Nordmende a Garrard.

Známý výrobce pásků a magnetofonových kazet BASF dodává nyní celý program nahraných kazet pouze v systému Dolby B. Stejně tak bude dodávat kazety Aríola. Touto metodou nahrané kazety dodává již delší dobu americký výrobce Ampex a CBS, anglická Decca a RCA. K nim se přidává anglická EMIs celou výrobou dvoustopých a osmistopých kazet.

Miniaturní relé

Firma ITT – součástková skupina – rozšířila výrobní program o nová relé. Typ Mat 4 má tři přepínací kontakty, zatižitelné proudem 3 A při napětí 115 V. Budicí napětí je 6 až 100 V ss nebo 6 až 220 V st. Relé Teck TT má dva kontakty pro max. 0,5 A/100 V a jmenovité budicí napětí 3 až 24 V. Stejnosměrné relé ST 1 pro plošné spoje s jedním kontaktem má spínací výkon 1,5 A/200 V. Relé jsou miniaturní: Typ Teck TT má rozměry 20,2 × × 17,2 × 22,5 mm, ST 1 podobně 21,6 × 15,6 × 22 mm.

Funktechnik č. 1/74

K regulaci rychlosti otáčení stejnosměrných motorků gramofonů a magnetofonů vyvinula italská firma ATES integrované obvody TCA900 a TCA910. První z nich je určen pro přístroje na-pájené z baterií, zatímco druhý pro přístroje napájené ze sítě nebo automobilové baterie. Ve srovnání se stejnými obvody s diskrétními součástkami umožňují nové obvody úsporu místa a montážní doby, větší elektrickou a mechanic-kou spolehlivost, jednodušší určení stabilizačního obvodu pro každý typ motorku, jakož i velmi dobrou tepelnou stabilitu. K usnadnění rozběhu motorku při nízkých teplotách okolí dodává mimoto obvod větší náběhový proud a rychlost motorku zůstává i při změně ztrátového výkonu konstantní. Sž

Podle podkladů ATES

Nehořlavý izolant

vhodný na výlisky a kryty tranzistorů a elektronických součástek, vystavených značné teplotě, je SYLGARD 170 belgické firmy Dow Corning Int., Brusel. Je to dvousložkový "silikone-lastomer". Při zkouškách hořlavosti byly vzorky umístěny svisle v plameni po 10 s. Po vzdálení ohně zcela zhasly za 1 s.

Elektronické Zariadenie LESLIE EFEKT

Peter Ottis

Popisovaná jednotka vznikla na základe potreby napodobnil a nahradil elektronickým zariadením tzv. Leslie efekt, používaný na organoch typu Hammond.

dením tzv. Leslie efekt, používaný na organoch typu Hammond.

Princíp Leslie spočíva v Dopplerovom jave: frekvencia pohyblivého zvukového zdroja voči stojacemu pozorovateľovi rastie, keď sa zdroj približuje, klesá, ak sa vzďaluje. Pohyb zdroja a rýchlosť šírenia zvukových vln v danom prostredí spôsobujú, že vyslaný zvuk počuje pozorovateľ jemne frekvenčne modulovaný (napr. klaksón idúceho automobilu, zvuk prechádzajúcich závodných motocyklov ap.). Skutočnosť, že napodobenie pohyblivého zdroja zvuku zvyšuje jeho priestorovú mohutnosť, viedla konštruktérov k zhotoveniu špeciálnych reproduktorových boxov s otáčavo umiestnenými žiaričmi – reproduktormi, alebo penými reproduktormi a rotujúcou mackeu s atvorom žin sa dosiahue v bozu charakteru bohybuúceho sa zdroja zvuku maskou s otvorom, čím sa dosiahne u boxu charakteru pohybujúceho sa zdroja zvuku.

Počas realizácie tejto jednotky sa ukázalo, že takéto, či podobné elektronické efektové zariadenie začali vo veľkej miere používať mnohé svetové hudobně skupiny, zrejme v súvislosti s rozšírením hudobných syntetizérov (najmä syntetizéra zn. MOOG), ktorých jednou časťou pravdepodobne je aj táto jednot-ka. Treba zdôrazniť, že táto jednotka vznikla výlučne experimentovaním s obvodom označovaným v literatúre ako "band-pass-filter" (pásmová prie-pusť) a nie na podklade nejakej dokumentácie k spomenutým syntetizérom, ktorá je z konkurenčných dôvodov neprístupná.

Popis činnosti

Bloková schéma je na obr. 1. Jadrom celého zariadeniá je preladiteľný selektívny zosilňovač, ktorého selektivitu určuje preladiteľný dvojitý článok T v spätnej väzbe (súčiastky R_1 , R_2 , R_3 , C_1 , $\hat{C_2}$, C_3). Zosilňovač je jednostupňový a využíva veľkého zosilnenia kremíkového tran-zistora. Odpory R₁, R₂ a kondenzátor C₁ predstavujú pre priamy signál II prechádzajúci cez zosilňovač hornú priepusť, kondenzátory C2, C3 a odpor R₃ dolnú priepusť. Vhodným prekrytím ich frekvenčných charakteristík možno dostať selektívny zosilňovač, aký sa používa napr. v kvákadlách (obr. 2a). Ak budeme nezávisle na sebe pomaly meniť hodnoty odporov R₂, R₃, budú sa tieto frekvenčné charakteristiky od seba "vzdalovať a približovať", takže šírka prenášaného pásma a stredná frekvencia vybraného zdôrazňovaného pásma bude v každom okamihu iná, obr. 2b, c. Takto je upravovaná len časť vstupujúceho signálu. Presný pomer medzi priamym signálom I a upra-

Obr. 1. Bloková schéma jednotky

vovaným II je nastaviteľný odporom R tak, aby výstupný signál bol čo najmenej ovplyvnený kolísaním zosilnenia v dôsledku prelaďovania. Signál II vychádza zo zosilňovača fázovo otočený o 180° vôči priamemu signálu I, takže na výstupe prichádza k vytvoreniu rozdielu oboch signálov. Vo frekvenčnom spektre na výstupe budú chýbať tie časti, ktoré práve zdôrazňuje selektívny zosilňovač. Takto získaný efekt je ťažko slovne popísať, pretože s prechádzajúcim signálom sa "deje stále čosi nové". Ak na vstup privedieme signál z elektrofonickej gitary alebo organu, dostaneme na výstupe vernú napodobeninu tzv. Leslie-guitar, popr. registra Leslie. Pravoúhlý priebeh tvaruje obvod na tzv. "stíhač-kový efekt". Ak na vstup pripojíme kvalitnú nahrávku z magnetofónu, po úprave je podobná vplyvu fadingu na zafarbenie hudobných skladieb (nie však čo do zmien hlasitosti!). Ak necháme "plávať" zdôrazňované pásmo v hornej polovici frekvenčného spektra, dostaneme esekt použitý v pôvodnej verzii piesne "Mexico" (obr. 2d).

Schéma zapojenia, popis

Schéma zapojenia je na obr. 3. Potrebnú pomalú zmenu odporov R2 a R3 v blokovej schéme dosiahneme tak, že miesto nich použijeme fotoodpory, ktoré budú osvetlované dvomi žiarovkami napájanými sínusovým napätím. Na jeho generovanie slúžia dva oscilátory osadené priamoviazanými komplementárnymi tranzistormi T_4 , T_5 a T_6 , T_7 . Zenerove diódy stabilizujú amplitúdu výstupného napätia (na rozdiel od oscilátorov pre vyššie frekvencie, u ktorých sa amplitúda stabilizuje termistorom, alebo žiarovkou). Frekvenciu oscilátorov je možné meniť plynule potenciometrami P_4 a P_5 , skokom prepnutím prepínačov P_{T_1} a P_{T_2} , ktoré umožňujú zmenu kmitočtu v pomere asi 1:6,5. Zmenou hodnôt oboch týchto prvkov (P a Pr) možno meniť výstupný kmitočet v rozmedzí asi 3 Hz až 0,01 Hz. Sínusové napätie o ampli-túde 4 až 6 V sa privádza na výkonový zosilňovač T_8 , T_9 (T_{10} , T_{11}) cez potenciometer P_6 (P_7), ktorý slúži ako regulátor hľbky modulácie. Volba typu tranzistorov T_0 a T_{11} závisí od použitých žiarovek. Z finančnej aj energetic kej stránky je výhodnejšie použiť žiarovky s najmenším prúdom pri meno-vitom napätí 6 V. Najvhodnejšie sú

Obr. 2. Kmitočtové charakteristiky prenosu priamej cesty II tvarovacieho zosilňovača

žiarovky 6 V/0,05 A. V tomto prípade použijeme na mieste T₉ a T₁₁ tranzistory GC500, alebo podobné. Pretože autor nemal tieto žiarovky k dispozícii, použil vo vzorku po dve žiarovky 3,2 V/0,1 A zapojené v sérii tak, že vždy jedna z oboch je umiestnená na paneli, slúžiac ako kontrolka. V tomto prípade bolo nutné použiť koncové tranzistory stredného výkonu (použité 2NU73). Každý z fotoodporov R_{t1} a R_{t2} je sério-paralelne spojený s dvomi odporovými trimrami R_8 , R_9 (R_{10} , R_{11}) pre nastavenie okrajových hodnôt odporu medzi bodmi I a 2 (3 a 4). Najnižšie dolné ohraničenie vo frekvenčnej cha-rakteristike (obr. 2) nastavíme trimrami R₉ a R₁₁ pri neosvetlenom fotoodpore. (Pri nastavovaní treba zabezpečiť, aby na fotoódpory nedopadalo denné svetlo!). Podobne najvyššie frekvenčné ohraničenie nastavíme trimrami R_{θ} , R_{10} pri najväčšom osvetlení fotoodporov žiarovkami.

Zmenšením hodnoty P₈ možno zdôrazňované pásmo posunúť do vyšších polôh (obr. 2d). Zosilnenie selektívného zosilňovača sa nastavuje poten-ciometrom P3, ktorým sa mení veľkosť prúdovej spätnej väzby v emitore tranzistora T_1 . Tento potenciometer je tiež vyvedený na panel, pretože zosil-nenie tohto stupňa sa mení v závislosti od výstupného odporu predchádzajúceho obvodu. Pomočnú stupnicu pod potenciometrom ociachujeme sluchom. Pre ten-ktorý obvod, či zdroj signálu na vstupe (zmiešavací pult, elektrický gitara) je potenciometer P3 správne nastavený vtedy, ak na výstupe je neskreslený a rovnako zdôraznený signál pre celý rozsah prelaďovania fotoodpormi R₁₁ a R₁₂. Toto platí pre konštantný odpor potenciometra P_8 ; pre každú inú polohu bežca P_8 treba

Pretože zosilnenie tvarovacieho obvodu je menšie než jedna, je za neho zaradený dvojstupňový zosilňovač so vstupným odporom 0,5 MΩ a zosilnením así 40 dB. Zosilňovač neobsahuje žiadne záludnosti, takže jeho popisu sa nebudeme bližšie venovať. Treba zdôrazniť nutnosť tľmiť vysokú medznú frekvenciu použitých kremíkových tranzistorov kondenzátormi C3 a C13.

znovu nastavovať potenciometer P3.

Napájanie

Napájanie je riešené dvojitým sieťo-vým zdrojom. Veľký odber žiaroviek si vyžiadal oddeliť napájanie výkonových zosilňovačov a žiaroviek od napájania oscilátorov, tvarovacieho obvodu a zo-

74 (Amatérské! VAIIII) 369

Obr. 3. Schéma zapojenia jednotky (fotoodpory majú odpor 1,5 k Ω pri osvetlení) \sim

silňovača. Vo vzorke sú použité dva zvončekové transformátory 220 V/8 V. Napätie pre napájanie žiaroviek je usmernené Graetzovým môstíkom, napájacie napätie ostatných obvodov sa získava zdvojovačom napätia, filtráciou kondenzátormi C_{25} a C_{26} a stabilizáciou Zenerovou diódou:

Konštrukcia

Celá jednotka mimo usmerňovací blok je na doštičke s plošnými spojmi s rozmermi 150 × 80 mm. Obrazec plošných spojov neuvádzam, pretože veľmi závisí od rozmerov použitých súčiastok.

Umiestnenie ovládacích prvkov na prednom paneli vidieť na obr. 4. Skrinka pre jednotku bola zhotovená z hliníkového plechu o hrúbke 2 mm. Vovnútri skrinky je usmerňovací blok oddelený od ostatných blokov plechovými prepážkami proti prenikaniu rušivých indukovaných napätí. Fotoodpory a im prislúchajúce žiarovky sú zasadené do krytov z PVC, ktoré získame stiahnutím z nastavovacích konektorových medzičlánkov. Kruhové fotoodpory ma-

Obr. 4. Rozmery predného panela a rozmiestnenie ovládaciacich prvkov

Obr. 5. Uchytenie žiarovky a fotoodpora v kryte (PVC); a – kryt PVC konektorového medzičlánku, b – fotoodpor, c – žiarovka s objímkou, d – molitanová výplň

jú priemer o čosi väčší, takže v kryte po vtlačení dobre držia. Objímku žiarovky omotáme úzkym pruhom molitanu a do krytu vtesnáme. Takéto uchytenie objímky so žiarovkou je celkom postačujúce. Prierez krytom z PVC je na obr. 5.

Použité súčiastky

Všetky súčiastky sú čs. výroby. Odpory (mimo R_{13} , ktorý je dimenzovaný na zaťaženie 2 W), sú miniatúrne, 0,125 W. Kondenzátory C_{14} , C_{15} , C_{18} , C_{19} sú typy MP, kondenzátory C_{16} , C_{17} , C_{20} , C_{21} sú krabicové na najnižšie napätie. Použiť elektrolytické kondenzátory tuná nie je možné pre ich veľký zvodový prúd. Potenciometre P_4 a P_5 môžu byť tandemové, alebo dvojité s axiálnymi hrideľmi, ktoré mechanicky spriahneme. Tranzistory T_1 až T_3 sú vybrané, s najmenším šumom a najväčším prúdovým zosilňovacím činiteľom.

Nastavenie, použitie

Nastavovanie jednotlivých ovládacích prvkov bolo popísané vyššie. Na prvý pohľad sa zdá, že nastavenie a práca s jednotkou je veľmi pracná a neprehľadná. V skutočnosti tomu tak nie je. Ovládanie jednotky si osvojíme za niekoľko málo chvíľ práce s ňou.

Použitie je veľmi všestranné a nabáda k ďalšiemu experimentovaniu v oblasti zvukových efektov a vedie k *objavovaniu nových, dosiaľ nepoznaných možností hry so zvukom.

Predovšetkým (čo bolo aj pohnútkou k realizácii) možno jednotku použiť s elektrickým organom (aj jednoduchším, než typu Hammond) a dosiahnuť tak elektronickou cestou Leslie efekt. Podobne, ak použijeme jednotku s elektrickou gitarou, dostaneme taktiež veľmi zaujímavé zafarbenie zvuku, hudobníkmi označované ako Leslie-guitar. V oboch týchto případoch je frekvencia oscilátora, ktorý pôsobí cez výkonový zosilňovač a žiarovku na fotoodpor R₁₁, v rozmedzi 3 až 0,3 Hz, frekvencia druhého oscilátora, ktorý pôsobí na fotoodpor R₁₂, v rozmedzí 0,2 až 0,1 Hz.

V nahrávacom štúdiu sa dá jednotka použiť na úpravu niektorej časti už kompletne nahratej skladby. Takto vznikli niektoré skladby z LP "Electric Lady Land" dnes už legendárneho černošského speváka a gitaristu Jimmy Hendrixa, ďalej vyššie spomenutá pieseň "Mexico" a mnohé kompozície z dielne tria Emerson, Lake & Palmer.

Bloková schéma prepojenia pre toto použitie je na obr. 6.

Obr. 6. Bloková schéma použitia jednotky pri úprave nahratej skladby v nahrávacom štúdiu. MGF I – magnetofón, z ktorého snímame upravovanú nahrávku, ZP – zmiešavací pult, z ktorého riadime upravovanie nahrávky potenciometrom P, J – popisovaná jednotka, MGF II – magnetofón, na ktorý zaznamenávame upravenú skladby

Elektronický— ioužzátor vzduchu

Ladislav Klaboch, radioklub Ústředního domu pionýrů a mládeže J. F., Praha

Článek popisuje činnost a elektrickou i mechanickou konstrukci ionizačního přístroje k obohacování vzduchu v místnostech zápornými ionty. V závěru článku jsou uvedeny náměty k pokusům s vysokonapěťovým zdrojem.

Účel přístroje

V posledních několika letech je vlivem neustále se zhoršujícího životního prostředí kladen značný důraz na rozvoj fyziologie člověka v závislosti na civilizačních změnách životního prostředí. Dnes nejvíce patrným a také asi největším nebezpečím pro životní prostředí je znečištění vzduchu. Ve velkoměstském ovzduší, prosyceném zplodinami továren a výfukovými plyny automobilů nejsou ovšem pouze škodlivé látky, je v něm též změněna rovnováha kladných a záporných iontů. Zatímco ve fyziologicky příznivém prostředí (např. horské klima) obsahuje vzduch celkem asi 1 000 iontů na 1 cm³ se znatelným přebytkem záporných iontů, v městském prostředí (v němž počet iontů vlivem kouřového příkrovu není doplňován přirozenou ionizací ultrafialovou částí spektra slunečního záření) se počet iontů zmenšuje až asi na 300 iontů na 1 cm³ a to ještě se znatelným přebytkem iontů kladných.

Takto změněné prostředí vyvolává u zdravých lidí pocit podrážděnosti. a únavy, u citlivých osob časté bolesti hlavy a malátnost, u astmatiků a lidí trpících dýchacími potížemi i stavy dušnosti. A naopak – prostředí s pře-bytkem záporných iontů do značné míry odstraňuje u většiny lidí pocity únavy, zlepšuje citelně náladu a celkové uvolnění člověka. Proto se nyní pracoviště se stálým provozem, na nichž závisí dobrá práce na dlouhodobém soustředění a psychické výkonnosti (např. kontrolní letecká a radarová stanoviště, velíny závodů, elektráren apod.) vybavují ionizátory vzduchu, které zlepšují nepříznivé složení iontů ve vzduchu, tj.

obohacují vzduch zápornými ionty. Vlastní ionizace lze dosáhnout buď ozařováním ultrafialovými paprsky, ne-bo působením silného elektrického pole o velikosti několika kV/cm. Protože ionizace ultrafialovým zářením přináší jako vedlejší produkty vznik jedovatého ozónu, ohrožení zraku a nesnadno se reguluje, využívá popisovaný přístroj k ionizaci vzduchu elektrického

Elektrická konstrukce přístroje '

Vlastní přístroj se skládá ze tří částí: zdroje vn, usměrňovače a ionizačních mřížek, kterými je proháněn vzduch ventilátorem (obr. 1).

Základní schéma zdroje vysokého napětí je na obr. 2. Je-li v jistém časovém okamžiku v bodě a záporná půlvlna napětí, potom vede dioda D1 a konden-

Obr. 1. Blokové schéma přístroje

Obr. 2. Základní schéma zdroje vn

zátor C1 se přes ni nabije až na špičkovou hodnotu sekundárního napětí napájecího transformátoru. Při opačné půlvlně je otevřena dioda D2 a kondenzátor C2 se nabije na dvojnásobek napětí na C_1 (zapojení pracuje jako zdvojovač napětí). Při další půlvlně je opět D_2 uzavřena a kondenzátor C_1 se nabíjí přes odpor R_1 a diodu D_1 . Tím ovšem vznikne na odporu úbytek napětí, který, přiveden na tyristor, způsobí jeho otevření. Kondenzátor C2 se začne rychle vybíjet přes tyristor a primární vinutí vysokonapěťového transformátoru. Protože náběhová hrana proudového impulsu má velmi strmé čelo, indukuje se v sekundárním vinutí vysokonapěťový impuls o amplitudě jednotek až desítek kV, jehož velikost je pro součástky v obr. 3 závislá v podstatě na napájecím napětí zdroje. Vysokonapětové impulsy jsou jednocestně usměrněny elektron-kou DY86 a napětí vyfiltrováno filtrem RC.

Vysoké napětí je regulováno podle 3 změnou napájecího střídavého napětí, tj. přepínáním odboček na sekun-

Objímka usměrňovací elektronky E_1 je z výprodejního vn dílu televizoru. Protože je na katodě elektronky celé výstupní napětí, je třeba ji žhavit přes oddělovací transformátor Tr_3 . Jeho feritové jádro je též z vn dílu televizoru (původní vn transformátor). Jako izolace sekundár-ního vinutí slouží kostřička, vysoustružená nejlépe z tyče organického skla, nebo slepená z organického skla Dentacrylem (obr. 4).

Transformátor Tr₃ má převodový poměr 1:1 a je napájen ze žhavicího vinutí na Tr₁. Počty závitů snadno vy-

počteme podle použitého jádra.
Usměrněné vysoké napětí je vyhlazeno filtrem C₃, R₃, C₄ a přivedeno na ionizační mřížky. Přes mřížky o kladné polaritě (řídká) a záporné polaritě (hustá) je ventilátorem proháněn vzduch s přebytkem záporných iontů ven do okolí.

Mechanická konstrukce

Protože přístroj pracuje se značně vysokým napětím, je třeba věnovat péči mechanické konstrukci a izolaci vysokonapěťového usměrňovače. Usměrňovací elektronka E_1 , oddělovací žhavicí transformátor Tr_3 a oba vyhlazovací kondenzátory C_3 a C_4 spolu s odporem R₃ jsou umístěny na desce z organického skla (obr. 5) a přišroubovány zdola.

Na celou desku je zdola přitmelena Dentacrylem další deska organického skla. Takto získaný blok je dokonale izolován a lze jej tedy použít bez ohledu na izolační vlastnosti skříně celého přístroje. Z obr. 5 je též zřejmé, že sekundární vinutí transformátoru Tra je natřeno silikonovým kaučukem. Zamezí se tím vzniku korony, popř. doutnavého výboje při větší vlhkosti vzduchu.

Velmi pečlivě je třeba zhotovit ioni-zační mřížky (obr. 6). Z organického skla tloušťky 10 mm je

vyříznut rámeček o vnějších rozměrech použitého ventilátoru, široký 15 mm. Po jedné straně je naříznut pilou asi

Obr. 3. Celkové schéma přístroje

dárním vinutí transformátoru Tr1. Pro větší regulační rozsah nevyhoví konstantní odpor R_1 ; při malém napájecím napětí je malý i nabíjecí proud kondenzátoru C_1 a napětí na odporu R_1 nestačí k otevření tyristoru. Je proto třeba současně s odbočkami Tr1 přepínat i odpory. Pro použitý rozsah regulace vystačíme se dvěma odpory $R_1 = 10 \Omega$ (pro větší napětí) a $R_2 =$ = 27 Ω (pro menší napětí). Jako vysokonapěťový transformátor Tr_2 je použita automobilová zapalovací cívka pro 12 V, která vyhoví jak převodovým poměrem, tak i robustním provedením a velmi dobrou izolací.

Obr. 4. Oddělovací transformátor T3

Obr. 5. Konstrukční uspořádání zdroje vysokého napětí

Obr. 7. Přístroj bez skříně shora

3 mm od vnitřního okraje tak, aby vznikla drážka hluboká asi 3 mm kolem dokola vnitřního otvoru rámečku. Takto oddělený okraj rámečku je nařezán napříč zářezy vzdálenými asi 12 mm. Potom je celý rámeček vypleten odizolovaným drátem o : asi 0,4 mm tak, aby vznikla řídká síťka (viditelná též na obr. 5). Jiný rámeček stejné velikosti z organického skla tlustého 3 mm je přitmelen Dentracrylem na základní rámeček přes okraje vytvořené síťky a přes vyřezané drážky. Oba rámečky tím zcela splynou a získáme robustní, dobře izolovanou mřížku, která bude připojena na kladný pól zdroje. Mřížka připojená na záporný pól zdroje je mnohem hustší, protože "vychytává" nežádoucí kladné ionty. Je vytvořena podobně, pouze mezi oba rámečky je zatmelena hustá mosazná nebo měděná síťka. Síťku si lze opatřit např. v Hutním odbytu v Růžové ulici v Praze.

Celkové vnitřní uspořádání přístroje je zřejmé z obr. 7 – může však být sa-

mozřejmě i jiné.

Skříň přístroje má půdorys devatenáctipalcové zásuvky a výšku danou použitým ventilátorem Mezaxial (cena 255 Kčs). Na obr. 8 je celkový vzhled přístroje. Z ovládacích prvků je na čelní stěně umístěn pouze síťový spínač a kontrolní doutnavka, vpravo je mřížka ventilátoru, za níž jsou ionizační síťky, usměrňovač a ventilátor. Na zadní stěně (obr. 9) je zprava síťová zástrčka, volič napětí, pojistka, přepínač intenzity ionizace a ventilátor.

Celá skříň je zhotovena ze dřeva tloušťky 10 mm a pečlivě potažena "dřevěnou" samolepicí tapetou.

Obr. 6. Ionizační mřížka (čárkovaně jsou naznačeny naříznuté drážky)

372 (Amatérské! ADI 11) 74

Obr. 8. Celkový vzhled přístroje

Obr. 9. Přístroj zezadu

Poznámky ke stavbě a uvádění do chodu

Doporučuji především dobře upevnit ventilátor, jehož drnčení je velmi nepříjemné a rušilo by při chodu zařízení. Víko skříně je na původním přístroji uchyceno vruty do dřeva, jejichž hlavy

jsou přelepeny po montáži malými kousky použité tapety. Uvedená konstrukce ionizačních desek umožňuje zaměnit polaritu jejich napájení a experimentálně ověřovat účinky prostředí s přebytkem kladných iontů, dělat porovnávací pokusy s kladnými a zápornými ionty, popř. porovnávat psychologické účinky přístroje v chodu, který při odpojení vysokého na-pětí žádné ionty nevyrábí (k tomu stačí odpojit žhavení usměrňovací elektronky ještě před oddělovacím transformátorem

 Tr_3). Údaje transformátoru Tr_1 jsou v tabulce.

Máme-li zájem experimentovat s vvsokonapěťovým zdrojem, lze zaměnit kondenzátor C2 za kondenzátor s kapacitou $2 \mu F$ a při výměně diod a kondenzátorů C_1 a C_2 za kondenzátory s větším pracovním napětím zdroj napájet přímo ze sítě 220 V. Potom je ovšem nutné zalít použitý vysokonapěťový kabel do nástrčky cívky, silikonovým kaučukem, jinak dojde k povrchovému

výboji po izolátoru cívky. Pozor! Jako zemnicí bod opět uvažujeme (jako na obr. 3) studený konec

Při zapojení většího napětí (poslední odbočka transformátoru Tr_1) se již vytváří i ozón, který radikální oxidací ničí složitější molekuly a můžeme ho proto použít k odstraňování zápachů a zatuchlin v domácnosti.

Sám zdroj bez usměrňovače můžeme též použít například k napájení Teslova transformátoru, zkoušení izolací apod., s usměrňovačem pak pro napájení de Graafova generátoru a jinapajeni de Graatova generatoru a ji-ných zařízení vysokého napětí. Ioni-zátor je provozně spolehlivý (u mne již pracuje čtyři roky), při provozu bez-pečný a jakmile se přesvědčíme o jeho dobrých vlastnostech, stane se velmi příjemným doplňkem domácnosti.

Seznam součástek

Odbors

R_1 .	10 Ω/6 W
R_{\bullet}	27 Ω/6 W
R_{\bullet}	10 MΩ/1 W
R_{\bullet}	$2,2 \text{ M}\Omega/2 \text{ W}$
R.	100 kO/2 W

Kondenzátory

 C_1 50 μF/250 V 1 μF/600 V 500 pF/10 kV C_1, C_4

Polovodičové prvky a elektronka

 $D_{\mathbf{t}},D_{\mathbf{t}}$ KY704 KT713 Ty E₁ DY86 0,5 A pro 220 V 0,8 A pro 120 V

Ostatní součásti

vn transformátor z TVP, zapalovací cívka z auta (12 V), oddělovací transformátor, ventilátor atd.

Tab. 1. Údajet ransformátoru Tr. (pro jádro 8 cm²)

Vinutí	Počet závitů	Použitý drát / Ø [mm]
I	525	0,25
II ,	630	0,3
III	55	0,3
IV	60	0,3
v	65	0,3
VI	65	0,3
VII	190	0,3
VIII	. 5	0,8
IX	7	0,8

Indikátor z magnetofonu BLUES

Opatřil jsem si magnetofon Blues a zjistil jsem, že bych potřeboval indi-kátor úrovně. Zvlášť mi chyběl, když jsem nahrával pořady z jiného magnetofonu, na němž byl každý snímek nahrán jinak. Výsledky byly neuspokojivé. Zhotovil jsem si proto doplněk, použil jsem měřidlo s rozsahem 800 mV a zapojil jsem je na vývody budicího transformátoru (obr. 1). Odporovým trimrem 1 kΩ jsem nastavil výchylku ručky

tak, aby se při nezkresleném záznamu pohybovala mezi dvěma ryskami (obr. 2). Toto zapojení mělo nevýhodu – při přehrávání se nevypínalo a reprodukce i dobrých snímků byla zkreslená. Potom jsem zjistil, že přepínač funkcí se pohne pouze při záznamu. Využil jsem toho a přišrouboval jsem další dva kontakty, které spínaly při záznamu (obr. 3). Měřidlo jsem vestavěl do levé strany mřížky pro reproduktor. Zařízení mi slouží již půl roku bez problémů.

Jiří Richtr

IONTOVÁ IMPLANTACE V PLANÁRNÍ TECHNOLOGII MONOLITICKÝCH OBVODŮ

lng. Jiří Hanzlík

Klasické technologie pro výrobu monolitických obvodů se opírají převážně o využití difúze příměsí do vybraných míst v objemu křemíkové základní destičky. Difúzní technologie má však určitá omezení. Při vytváření vertikálně uspořádaných funkčních struktur planárních tranzistorů, diod, odporů apod. se horní funkční oblasti umisťují postupně do níže položených funkčních oblastí.

Při teplotách 1 000 až 1 300° dochází k pronikání atomů příměsí do křemíku. Podle druhu příměsi se tak postupně vytvářejí difúzní vrstvy s vodivostí typu p nebo n. Přitom se současně využívá poznatku, že kysličník křemičitý působí jako ochranná maska proti difúzi příměsí do objemu křemíku, kde nemá dojít k vytvoření difúzní vrstvy. Povrchová vrstva kysličníku křemičitého slouží pak tedy jako maska, kterou lze fotochemicky upravit tak, aby se obnažila pouze ta místa křemíkové základní destičky, do nichž mají proniknout atomy příměsí. Hloubka umístění a koncentrace příměsí atomů závisí především na druhu chemické sloučeniny, jež je použita pro difúzi a na době a teplotě difúzního pochodu.

Z principu difúzního pochodu vy-plývá, že při každé následující difúzi dochází k dalšímu obohacení křemíku o atomy příměsí – proto horní vrstva má vždy větší koncentraci příměsí, než jakou má spodní vrstva. Difúzí nelze rovněž reprodukovatelně vytvořit vrstvy s povrchovou koncentrací příměsí menší než 1015 atomů/cm². Tyto zákonitosti difúzního pochodu musí kon-struktér monolitického obvodu respektovat a je jasné, že ohraničují aplikační možnosti-planární-technologie

Proto se hned po objevu planární technologie na křemíku v roce 1960 zaměřil výzkum na hledání dalších technologií, které by mohly vhodně doplnit difúzní techniku.

Jedním ze směrů badatelského úsilí byl výzkum mechanismu implantace, iontu do krystalové mřížky křemíku. Mezi pionýry iontové implantace patří např. fa Westinghouse, u níž se již v roce 1964 zabývali rozsáhlými pokusy aplikovat iontovou implantaci při řízení vzniku funkčních oblastí v křemíku.

Při iontové implantaci dochází k bombardování křemíkové destičky ionty příměsného prvku. Ionty jsou urychleny

silným elektrickým polem na tak velkou rychlost, že proniknou povrchem kře-míkové destičky. Iontová implantace jako tzv. "studená technologie" je zásadní odchylkou od tradiční difúzní techniky, při níž je vždy křemíková destička tepelně značně zatížena.

Základními výhodami implantační techniky jsou výborná ovladatelnost technologického pochodu, velmi dokonalé rozložení příměsí na povrchu nebo v požadované hloubce v objemu křemíkové destičky a především možnost široké automatizace výrobního pochodu.

Iontové implantace se využívá v současné době především v technologii obvodů MOS, u nichž se přechází na stále menší úroveň dotace křemíku.

Iontová implantace v praxi nenahrazuje difúzi, je však zásadně novou-"studenou" technikou, která vhodně doplňuje klasické techniky výroby polovodičových prvků.

Mezi hlavní aplikace iontové implantace patří tyto moderní směry rozvoje monolitických obvodů:

komplementární obvody MOS, uváděné v literatuře zkratkou COS-MOS; složité paměťové monolitické soustavy

se strukturami MOS s kanálem typu n. Jedná se o paměti s možností zázna-mu a čtení (RAM) a s možností pouhé-ho čtení (ROM);

složité číslicové soustavy pro speciální aplikace. Jde o tzv. mikroprocesory. (např. fy RCA), nebo o systémy číslicových hodin, popř. o číslicové dopravní systémy pro řízení křižovatek apod.

Hlavní výhodou iontové implantace je možnost nezávisle řídit hloubku uložení implantovaných iontů a objemové koncentrace příměsí v určité hloubce křemíkové destičky.

Při iontové implantaci lze nezávisle

ovládat

rychlost svazku iontů, která určuje hloubku průniku; tato rychlost se na-stavuje změnou urychlovacího napětí;

- podle zaostření svazku množství iontů, dopadajících na 1 cm² povrchu a tím i koncentraci iontů v požadované hloubce křemíkové destičky.

Koncentraci iontů lze směrem k povrchu ovládat v širokých mezích a nečiní potíže uložit do větší hloubky vrstvu s větší koncentrací iontů, než má vrstva, ležící nad touto vrstvou. Proto je také možno vytvořit těsně u povrchu oblasti s velmi malou koncentrací příměsí. Vzhledem k tomu, že iontová implantace probíhá při běžné teplotě okolí, odpadá při této technologii také vzájemné ovlivňování funkčních oblastí při technologickém pochodů.

Při iontové implantaci je možno dotovat křemík ionty příměsí přes pasivační vrstvu kysličníku křemičitého, takže povrch křemíku je i během technologického pochodu stále chráněn proti vlivu nečistot, vlhkosti a podobných nepříznivých vlivů okolí.

Přestože se iontová implantace používá v současnosti především k výrobě obvodů COS-MOS, popř. dalších, dříve vyjmenovaných obvodů, lze již dnes předpokládat, že se tato technologie uplatní v budoucnu i v řadě dalších technologických postupů i pro bipolární monolitické obvody.

U obvodů MOS se pomocí iontové implantace nastavuje poměrně velmi přesně prahové napětí u tranzistorů s ochuzenou oblastí a velmi dobře lze ovládat i úroveň pastí v oxidové vrstvě u součástek, které mají být odolné proti záření.

V některých přístrojích, v nichž se používají obvody COS-MOS s extrémně velmi malou spotřebou, je k dispozici velmi malé napájecí napětí. Např. pro obvody v číslicových náramkových hodinkách se používá napájecí napětí 1,3 V (rtutový článek). I to je umožněno použitím iontové implantace, neboť ta se používá jednak ve standardní technologii COS-MOS s elektrodou z hliníku, i jednak v modernější technologii s elektrodou z polykrystalického křemí-ku. Při výrobě obvodů prvně uvedenou technologii maji tranzistory MOS poměrně velkou vstupní kapacitu, takže se pracuje s větší výkonovou spotřebou a nelze dosáhnout vyššího pracovního kmitočtu než asi 1 až 2 MHz. Při druhé technologii je vstupní kapacita podstatně menší, takže se zmenšuje i výkonová spotřeba a zvětšuje dosažitelná pracovní rychlost. Druhá technologie umožňuje i snadněji propojovat obvody ve dvou vrstvách a realizovat tak složitější zapojení.

U tranzistorů s kanálem typu n je možno dosáhnout prahového napětí 0,6 V. Zajišťuje se to tím, že se iontovou implantací iontů arzenu nebo fosforu vytváří malá povrchová koncentrace 10¹¹ at/cm². Při difúzi nelze dosáhnout povrchové koncentrace menší než asi 1015 at/cm2. Obdobně i u tranzistorů skanálem typu p se iontovou implantací iontů bóru vytváří povrchová koncentrace 2.10¹¹ at/cm² a tím se zajišťuje prahové napětí také 0,6 V.

Důsledkem je, že obvody COS-MOS mají při napájení napětím 1,3 V na kmitočtu 1 MHz výkonovou spotřebu men-

ší než 50 μW.

ší než 50 µW.

Zmíněné náramkové hodinky vyrábí např. fa Motorola (sobvody COS-MOS).

Při napájení ze stříbrozinkového článku s napětím 1,58 V nepřesahuje celková spotřeba hodinek 15 µA. Typicky se spotřeba pohybuje kolem 12 µA. Hodinky nah pracují např s haterií dinky pak pracují např. s baterií EPX77 fy Eveready (o kapacitě 165 mAh) nejméně 15 měsíců a typicky 18 měsíců.

Pomoci iontové implantace vyrábí rozsáhlý sortiment obvodů COS-MOS již větší počet výrobců. Jsou to např. RCA (řada CD4000), National Semiconductor (řada MM74C), Solid State Scientific (řada SCL4000), Solitron (řada CM4000), Motorola (řada MC140000), SGS-Ates, Harris Semiconductor, Analog Devices a další.

Za poznámku stojí, že fa National Semiconductor vyrábí řadu obvodů COS-MOS, které jsou jak orientací vý-vodů, tak i funkčně přímými ekviva-lenty obvodů řady SN74; např. obvod MC74C00 je ekvivalentem obvodu SN7400 (tj. MH7400) apod. Proto lze tyto obvody vzájemně zaměnit bez dalsích opatření a výkonová spotřeba i proudový odběr se velmi prudce zmenší (až o dva, tři řády). Pracovní rychlost obvodů COS-MOS přesahuje přitom 10 MHz a dále se zvětšuje.

Obvody COS-MOS lze aplikovat ve velmi širokém rozsahu - u náramkových hodinek, v elektronickém vybave-ní motorových vozidel, v měřící tech-nice (Motorola a RCA vyrábějí číslicové voltmetry s těmito obvody), v elektronických systémech k řízení dopravních situací v silniční a železniční dopravě a v automatizační technice. Revolučním krokem budou mikroprocesory se strukturami COS-MOS. Vývoj především mikroprocesorů probíhá především u firem RCA a Intersil. Firma RCA vyvíjí osmibitový mikroprocesor s vybavo-vací dobou asi 2 μs a firma Intersil dvanáctibitový s vybavovací dobou asi 600 ns. Při použití struktur COS-MOS není složitost soustavy příliš omezena výslednou výkonovou ztrátou a vnitřním oteplováním. Doplněním mikroprocesoru o monolitické paměti s mikroprogramy a obvody interface na vstupu a výstupu a některými dalšími periferními zařízeními vznikne minipočítač nebo samočinný regulátor pro určitý okruh aplikací. Se stejným mikroprocesorem lze pouze změnou periferních zařízení a mikroprogramových pamětí velmi jednoduše sestavit automatické regulační soustavy pro nejrůznější okruhy aplikací. Zavedení mikroprocesorů v praxi velmi podstatně cenově zpřístupní použití elektronických regulačních soustav nejen v průmyslu, dopravě apod., ale i v běžných přístrojích spotřebního charakteru.

TTAMZÍGYOTOVÝ blesk s nastavitelným směrným číslem

Ing. Miroslav Ott

Protože jsem nedostal koupit blesk, který by splňoval mé požadavky, rozhodl jsem se postavit si jej amatérsky. Protože jsem dosáhl (alespoň se domnívám) parametrů srovnatelných v té době (1971) s obdobnými přístroji zahraniční výroby, nabídl jsem vyvinutý blesk tuzemským výrobcům. A protože ani družstvo Mechanika v Praze, ani Kovodělný podnik hl. m. Prahy neměl o výrobu zájem, dávám podklady ke zhotovení blesku touto cestou k dispozici případným zájemcům z řad čtenářů.

Parametry blesku (podle DIN 19011 viz [6])

Vyzářená energie: nastavitelná v rozsahu 25 až 100 Ws.

Směrné číslo: nastavitelné v rozsahu 17 až 35 pro 18 DIN, tj. 25 až 50 pro 21 DIN

(Směrné číslo je závislé mimo jiné i na kvalitě reflektoru.)

Doba nabíjení: pro energii 25 Ws 3 s < < 5 s, 100 Ws 6 s < 10 s.

Počet záblesků: s energii 100 Ws 100.

Rozměry: včetně baterie, bez reflektoru $150 \times 220 \times 40$ mm, nebo $120 \times$ \times 280 \times 40 mm.

Váha: včetně baterie, bez reflektoru 1,3 kg.

V blesku jsou použity s výjimkou výpouze tuzemské perspektivní boiky součástky.

Všeobecný popis

Vyrábějí se počítací blesky, které automaticky z odraženého světla vypočítají a nastaví dobu záblesku pro správnou expozici. Tyto přístroje mají však i nevýhody. Automatika pracuje správně (jako ostatně všechny automatiky ve fotografii) jen při průměrném pozadí. Velká část energie zdrojů se ztrácí ve zkratovacím obvodu. Novější přístroje sice již nepohlcují nadbytečnou energii ve zkratovacím obvodu, použí-

vají však polovodičové spínací prvky u nás prakticky nedostupné.

Popisovaný blesk je úsporný, všechna energie nashromážděná ve sběracím kondenzátoru je využita pro osvětlení. Při malých vzdálenostech není nutné zbytečné clonit, nastaví se pouze menší směrné číslo. Kotouč pro nastavení směrného čísla může být opatřen i stupnicí vzdálenosti při odpovídající cloně. Nastavení je pak velmi jednoduché, vzdálenost zjištěná na fotografickém přístroji (je-li reflektor umístěn na fotopřístroji) se nastaví bez jakéhokoli přepočítávání na kotouči pro nastavení směrného čísla. Pokud by se dokonce potenciometr pro nastavení směrného čísla umístil do objektivu, nebo byl s objektivem vhodně spřažen, bude se směrné číslo nastavovat zcela automaticky, bez ohledu na pozadí fotografované scény.

Návrh blesku

Nejdříve uvedu několik základních vztahů, z nichž vychází návrh blesku. Velikost energie nashromážděná ve

sběracím kondenzátoru je $P = 0.5 CU^2$

(1), kde C je kapacita sběracího kondenzá-

napětí na sběracím kondenzátoru.

Směrné číslo je dáno vztahem

$$\mathcal{Z} = k \sqrt{\overline{P}} \tag{2},$$

kde k je konstanta, vyjadřující především kvalitu reflektoru a

energie nashromážděná ve sběracím kondenzátoru.

Spojením (1) a (2) dostaneme

$$\mathcal{Z} = KU_{\gamma} \tag{3},$$

 $K = k \sqrt{0.5 C}$.

Každý, kdo pracuje s bleskem ví, že clonové číslo je dáno vztahem

$$F = \frac{\mathcal{Z}}{I} \tag{4},$$

kde l je vzdálenost fotografovaného objektu od reflektoru blesku. A konečně spojením (3) a (4) dostaneme

$$U = \frac{F}{K} l \tag{5};$$

slovy: napětí na sběracím kondenzátoru je přímo úměrné vzdálenosti fotografovaného objektu od reflektoru blesku.

Dosažené parametry blesku závisí především na správné volbě napájecího zdroje. Rozhodl jsem se použít suché akumulátory NiCd, protože mají velmi rovnou vybíjecí charakteristiku po celou dobu vybíjení, takže zajistí téměř stálou nabíjecí dobu pro všechny záblesky. Monočlánky nebo ploché baterie mají naopak silně klesající vybíjecí charakteristiku, což má za následek, že nabíjecí

doba se zvětšuje až na několikanásobek doby při čerstvých bateriích.

Jednoduchým výpočtem zjistíme, že s použitím tuzemských tranzistorů potřebujeme napájecí zdroj o napětí alespoň 16 V, má-li se uvedená energie 100 Ws nashromáždit za 10 s. S ohledem na zkratové proudy článků NiCd 450 a s nutnou rezervou jsem zvolil 24 V, tj. 20 kusů článků NiCd 450. Je to sice neobvykle velké napětí, je však nejvýhodnější z hlediska účinnosti a využití tranzistorů. Takto zvolený zdroj zároveň zajistí, že nedojde k proudovému přetížení výkonových spínacích tranzistorů, případně k jejich zničení. A pro obsluhu je koneckonců jedno, má-li nabíjet baterii 24 V, 0,5 Ah nebo 6 V, 2 Ah. Dosažené parametry potvrzují ostatně správnost volby zdroje.

Měnič jsem zvolil dvojčinný, se společným kolektorem, s kombinovanou napěťovou a proudovou zpětnou vazbou podle [3], bez přesycování magnetického jádra. Toto zapojení, ve srovnání s jinými, umožňuje dosáhnout největší účinnosti. Zapojení se společným kolektorem dovolí upevnit výkonové spínací tranzistory na společný nosník sběrací kondenzátor, je veden usměrňovacími diodami na bázi toho výkonového spínacího tranzistoru, který je právě otevřen a spolupůsobí tak jako jeho budicí proud. Schéma měniče s automatikou je na obr. 1. Součástí měniče jsou tranzistory T_1 a T_2 , diody D_1 až D_4 , transformátor Tr_1 a odporové trimry P_1 a P_2 .

Startovací část klíčovacího obvodu automatiky tvoří pomocný tranzistor T_7 , vinutí 1-2 transformátoru Tr_1 , odpory R_1 , R_2 a R_4 a kondenzátor C_2 .

Zastavovací část klíčovacího obvodu tvoří tyristor T_y , dioda D_5 a odpor R_3 . Zbývající část na obr. 1 je regulátor.

Činnost automatiky

Předpokládejme, že blesk je odpojen od napájecího zdroje a sběrací kondenzátor je vybitý. Připojíme-li napájecí zdroj, otevřou se tranzistory T_3 a T_5 . Přes odpor R_9 se začne nabijet kondenzátor G_2 na napětí stejné polarity jako je napětí napájecího zdroje tak dlouho, až se začne otevírat tranzistor T_7 (napětí na kondenzátoru G_2 je přivedeno vinutím I-2 a odporem R_2 na bázi tranzistoru T_7) a jeho prostřednictvím i vý-

Obr. 1. Schéma zapojení měniče s automatikou

bez elektrické izolace. Měnič pracuje v nadzvukové oblasti, takže neruší svým pískáním.

Pro automatiku je použit klíčovací obvod podle [4]. Jako zdroj referenčního napětí slouží doutnavka. Je v blesku pouze jediná a slouží zároveň jako indikátor připravenosti k odpálení. V reflektorové hlavici je proti běžným zapojením použit pomocný tyristor, který zmenší opalování kontaktu ve fotografickém přistroji.

Popis činnosti

Dvojčinné měniče jsou podrobně popsány např. v [1] a [7]. V blesku je však použit u nás méně známý měnič bez přesycování magnetického jádra. Podrobný popis je nad rozsah tohoto článku a případný zájemce jej najde např. v [2]. Zde jen uvedu, že k reverzaci nedochází u tohoto měniče saturací magnetického jádra, ale desaturací spínacích tranzistorů. Měnič má též odlišné vlastnosti. Jeho kmitočet je nezávislý na napájecím napětí, závisí však na zátěži. Protože nedochází ke ztrátě energie přesycováním jádra, má větší účinnost. Použitá proudová zpětná vazba (která je popsána v [3]) zmenšuje navíc závislost kmitočtu měniče na zátěži. Její princip spočívá v tom, že výstupní proud měniče, jímž se nabíjí

konový spínací tranzistor T1. Tím se ve vinutí $\hat{I} - 2$ začne indukovat napětí, které vybudí proud v obvodu vývod 2, odpor R_2 , přechod báze-emitor T_7 , kondenzátor C_2 , vývod I, a tím se dále otevírají tranzistory T_7 a T_1 . Tento pochod probíhá lavinovitě až po úplné otevření výkonového spínacího tranzistoru T₁ a tím i do "rozběhnutí" měniče. Kondenzátor C_2 se přitom nabije na napětí opačné polarity, než je napětí napájecího zdroje a tranzistor T_7 se zavře, takže neovlivní další chod měniče. Protože tranzistor T_3 je stále otevřen, zkratuje řídicí elektrodu tyristoru s jeho katodou a nedovolí tak, aby se tyristor otevřel. Jakmile napětí na běžci potenciometru P_4 (na obr. 2) dosáhne zápalného napětí doutnavky, otevře se tranzistor T_6 a jeho prostřednictvím i T_4 . Ten zavře tranzistory T_3 a T_5 . Zavřený tranzistor T_3 dovolí, aby se v okamžiku, kdy se začne otevírat tranzistor T_2 , otevřel též tyristor a zastavil tak chod měniče. Protože tranzistor T5 je stále uzavřen, měnič znovu nenastartuje. Zmenší-li se napětí na sběracím kondenzátoru, zhasne doutnavka, zavřou se tranzistory T_6 a T_4 , otevřou se tranzistory T_3 a T_5 a celý cyklus se opakuje.

Dosáhne-li napětí na sběracím kondenzátoru nastavené velikosti, uplyne

Obr. 2. Schéma zapojení reflektorové hlavice (viz poznámku 2)

jistá doba do okamžiku, kdy se zastaví měnič. Tato doba stačí k tomu, aby během ní výkonný měnič zvětšil napětí na sběracím kondenzátoru o jistý přírůstek, který je nepřímo úměrný absolutní hodnotě napětí na sběracím konden-zátoru. Proto byl regulátor doplněn o korekční obvod, tvořený odporem R_7 , trimrem P_3 , kondenzátorem C_3 a diodou D₆. Během nabíjení sběracího kondenzátoru se nabíjí kondenzátor C₈ na napětí dané děličem R_7 , P_3 . Toto napětí je úměrné absolutní hodnotě napětí na sběracím kondenzátoru a v každém případě zápornější než —24 V. Když nyní zapálí doutnavka, otevře se tranzistor T₆, avšak tranzistor T₄ zůstane uzavřen. Teprve až se napětí na kondenzátoru C3 změní na napětí kladnější než —24 V, otevře se i tranzistor T_4 a výše popsaným způsobem zastaví měnič. Trimrem P_8 tak lze nastavit optimální překmit napětí na sběracím kondenzátoru.

Zapojení reflektorové hlavice je na obr. 2. Obvyklý dělič obsahuje proměnný prvek, potenciometr P_4 , jímž se nastavuje napětí, na něž se nabíjí sběrací kondenzátor a tím tedy podle (3) i směrné číslo. Během nabíjení sběracího kondenzátoru se nabíjejí na zápalné napětí doutnavky Dt těž kondenzátory C_5 a C_6 . Jakmile dojde ke spojení synchronizačního kontaktu S na fotopřístroji, vybije se kondenzátor C_5 do řídicí elektrody tyristoru Ty_1 a otevře jej. Tím se vybije kondenzátor C_6 do primárního vinutí vysokonapětového transformátoru Tr_2 a zapálí oblouk ve výbojce. Kapacitu kondenzátoru C_6 je nutno pro spolehlivý chod automatiky

dodržet.

Konstrukce

Předpokládám, že případný zájemce o stavbu tohoto blesku přizpůsobí vnější vzhled svým možnostem a vkusu. Nebudu se zde proto touto otázkou zabývat. Sám jsem použil skříňku a reflek-

Obr. 3. Dvě možnosti uspořádání zdrojové skříňky

Obr. 4. Obrazec desky s plošnými spoji (H212) měniče s automatikou

tor blesku TR-50 (výrobek družstva Mechanika), který jsem měl k dispozici. Rozměry měniče s automatikou jsou navrženy s ohledem na rozměry kondenzátorů TC 509 a akumulátorků NiCd 450 tak, aby umožnily dvojí uspořádání (obr. 3). Obrazec plošného spoje je na obr. 4, rozložení součástí na obr. 5, Na obr. 6 je sestavený měnič s automatikou. Výkonové spínací tranzistory jsou upevněny na sloupcích z duralu o Ø 8 až 10 mm a délce asi 20 mm.

Transformátor měniče je na feritovém hrníčkovém jádru J 26/16 z hmoty H22, s mezerou, s konstantou indukčnosti $A_L = 400 \, \mathrm{nH/z^2}$. Aby se na kostřičku vešlo všech šest vinutí, je užitečné dodržet následující postup. Nejdříve navineme sekundární vinutí 3-4, které má 250 závitů, drátem o Ø 0,125 mm CuLH, přičemž oba vývody zhotovíme z opředeného lanka. Na toto vinutí vineme dvě vrstvy prokladového papíru. Pak vineme primární vinutí 6-7 a 7-8. Vineme je dvěma dráty o Ø 0,6 mm CuL současně (10 závitů), přičemž vývody ponecháme z drátu. Nakonec na-

vineme bázová vinutí 5-6 a 8-9 a pomocné startovací vinutí 1-2. Tato tři vinutí vineme opředeným lankem, které jsme použili na vývody sekundárního vinutí. Vinutí 5-6 a 8-9 vineme opět současně. Nakonec zajistíme vinutí nití. Tak se na kostřičku vejdou i s malou rezervou všechna vinutí. Začátky všech vinutí si poznamenáme, např. uzlíky, a budou odpovídat vývodům označe-ným tečkou na obr. 1. Takto navinutou kostřičku uložíme do jádra a to lehce stáhneme šroubkem (pozor, jádro je s mezerou a při silnějším stažení by prasklo!), abychom je mohli pověšené za vývody ponořit do roztaveného vosku. V něm je ponecháme několik minut, aby se celé jádro i vinutí dobře prohřálo a vosk zatekl do všech mezer. Pak je vytáhneme a necháme okapat. Po zchladnutí vyjmeme šroubek, který držel jádro pohromadě, uložíme je do kovového držáčku a smontujeme. Jednotlivé části transformátoru jsou na obr. 7.

Akumulátorky jsou spojeny do baterie. Těleso baterie je ze dvou stejných

Obr. 7. Jednotlivé

části transformátoru

Obr. 8. Jedna část tělesa baterie

částí (z nichž jedna je na obr. 8), zhotovených z textgumoidu nebo podobného materiálu. V každé části je zasunuto 10 akumulátorků ve dvou řadách po pěti a jejich páskové vývody jsou spojeny pájením. Krajní články jsou opatřeny vývody z měděného izolovaného lanka (autokabel). Po propojení jednotlivých článků vložíme mezi obě části baterie izolační vložku (z pěnové pryže, molitanu, popřípadě zalejeme Lukaprenem) a obě části spojíme (slepením, sešroubováním, opásáním apod.) Získáme tak úhlednou baterii o rozměrech 80 × 110 × 35 mm a váze asi 600 g.

Reflektor propojíme se zdrojovou skříňkou síťovou trojlinkou. Střední vodič bude na společné nule (+24 V). Jeden krajní vodič pak slouží pro —500 V a druhý pro přívod k doutnavce. V reflektorové hlavici je použita německá výbojka Pressler XB 81-00. Výrobce u ní totiž zaručuje provozní napětí 250 až 500 V. S jinou výbojkou by nemuselo být možné nastavit směrné číslo v celém rozsahu. Uvedená výbojka má dovolenou maximální energii výboje 150 Ws, což s rezervou odpovídá kapacitě sběracího kondenzátoru 1 000 µF při napětí 500 V.

Jak vyplývá z popisu činnosti, sepnc po připojení napájecího zdroje nejdříve startovací obvod. Proto stačí, bude-li spínač blesku dimenzován na 7 A v sepnutém stavu, nikoli na spínání proudu 7 A.

Oživení a nastavení

Nejdříve dvě upozornění.

Při každé manipulaci se zapnutým bleskem, který má sejmutý kryt, mějme na paměti, že manipulujeme s poměrně tvrdým zdrojem napětí 500 V!

Výkonové spínací tranzistory snesou maximální kolektorový proud 10 A.

Obr. 5. Rozložení součástek měniče s automatikou

Obr. 6. Měnič s automatikou v sestavě blesku

Obr. 9. Schéma zapojení pro nastavení měniče

Akumulátorky NiCd 450 mají maximální zkratový proud asi 7 A, takže je zajištěno, že se tranzistory nepřetíží. Je však pravděpodobné, že budete blesk oživovat s jiným zdrojem napětí. Proto, nebudete-li postupovat podle níže uvedeného návodu, je nutné zajistit, aby vnitřní odpor zdroje byl tak velký, že zkratový proud bude přibližně 7 A, v každém případě však menší než 10 A.

Je-li osazena deska měniče s automatikou, připojíme k ní podle obr. 9 zátěž, měřící přístroje a napájecí zdroj 12 V. Běžce všech tří odporových trimrů nastavíme přibližně na střed. Pokud jsme neudělali v zapojení chybu, měnič se rozběhne. Na osciloskopu uvidíme průběh podle obr. 10. Napětí U_1 bude asi 11 až 12 V, proud I_1 přibližně 2 A a napětí U_2 v rozsahu 250 až 300 V. Nyní nastavíme pomocí trimrů P_1 a P_2 průběh napětí na emitoru T_1 podle obr. 10a. Otáčením trimrů se bude měnit kmitočet měniče a měl by být v rozsahu 20

Obr. 10. Oscilogram průběhu napětí na emitoru tranzistoru T_1 nebo T_2 a) při správném nastavení měniče, v=5 V/cm, h=10 μ s/cm, b) při nesprávném nastavení měniče, v=5 V/cm, h=20 μ s/cm

Obr. 11. Oscilogram průběhu napětí na bázi tranzistoru T_1 nebo T_2 , v=5 V/cm, h=10 $\mu s/cm$

Obr. 12. Průběh napětí na sběracím kondenzátoru při nabíjení na 250 V. Šipkou je označen překmit; a) nabíjení zcela vybitého sběracího kondenzátoru, b) nabíjení po odpálení záblesku

Obr. 13. Průběh napětí na sběracím kondenzátoru při nabíjení na 500 V po odpálení záblesku. Šipkou je označen doběh

až 40 kHz. Pokud lze signál obdélníkovitého průběhu podle obr. 10a nastavit v různých polohách trimrů P_1 a P_2 , pak je správné nastavení takové, při němž jsou odpory P_1 a P_2 největší. Nelze-li nastavit obdélníkovitý průběh signálu vůbec, tranzistory se hřejí a nemění-li ani kmitočet měniče otáčením trimrů P_1 a P_2 , pak je zesilovací činitel spínacích tranzistorů T_1 , T_2 přiliš velký. Na měřicích přístrojích přečteme U_1 , I_1 a U_2 a z výrazu

$$\eta = \frac{U_2^2}{39 \ U_1 I_1} \tag{6}$$

vypočítáme účinnost. Měla by se pohybovat podle zesilovacího činitele spínacích tranzistorů v rozsahu 80 až 90 %. Mírou správného nastavení měniče je maximální účinnost, které zpravidla dosáhneme při napětí obdělníkovitého průběhu na emitorech spínacích tranzistorů T_1 a T_2 . Je-li měnič dobře seřízen, nebudou se výkonové spínací tranzistory zahřívat ani při dlouhodobém chodu měniče v zapojení podle obr. 9. Pro kontrolu je na obr. 11 oscilogram napětí na bázi T_1 nebo T_2 .

Po tomto nastavení spojíme desku měniče s reflektorovou hlavicí podle obr. 1 a 2. Nepoužijeme-li jako napájecí zdroj akumulátory NiCd 450, připojíme zdroj 24 V přes ochranný odpor 3,3 Ω , 10 W. Potenciometr P_4 nastavíme na minimum odporu, napětí na sběracím kondenzátoru budeme měřit voltmetrem. Po připojení napájecího zdroje se bude napětí na sběracím kondenzátoru zvětšovat, až po dosažení asi 250 V se rozsvítí doutnavka a měnič se zastaví. Odpálíme záblesk a na voltmetru sledujeme překmit napětí na sběracím kondenzátoru (obr. 12). Trim-rem P₃ jej nastavíme na 5 až 10 V. Pak otáčíme potenciometrem P₄ k maximu, až napětí na sběracím kondenzátoru dosáhne 500 V. Je-li napětí na sběracím kondenzátoru při vytočení potenciometru P4 na maximum větší než 520 V, je nutné zmenšit odpor R_{12} . Při prvním otáčení potenciometrem P_4 dáváme pozor, aby napětí na sběracím kondenzátoru nepřesáhlo 540 V – hrozí zničení TC 509. Žnovu odpálíme záblesk a sledujeme rychlost doběhu napětí na sběracím kondenzátoru (obr. 13). Je-li doběh dlouhý, zrychlíme jej trimřem P_3 , čímž však zvětšíme překmit při 250 V. Správné nastavení je kompromisem mezi dostatečně malým pře-kmitem při 250 V a dostatečně rychlým doběhem při 500 V. Na obr. 12 a 13 jsou průběhy napětí na sběracím kon-

10 Amatérske: AD 1 377

denzátoru při správném nastavení. Činnost korekčního obvodu je znázorněna na obr. 14.

Zbývá ještě opatřit potenciometr P4 stupnicí v hodnotách směrného čísla nebo vzdálenosti. To učiníme následovně. Potenciometrem P4 nastavíme na sběracím kondenzátoru napětí 400 V a uděláme několik takových snímků, abychom na nich mohli snadno určit vzďálenost předmětů od reflektoru (postavíme např. za sebou několik židlí s odstupem l m). Po vyvolání určíme na snímcích vzdálenost, na které je osvět-lení nejlepší. Směrné číslo pak je součin vzdálenosti a clony nastavené při foto-grafování. Z těchto údajů vypočítáme konstantu K ve vztahu (3) a pomocí téhož vztahu vypočítáme napětí, odpovídající požadovaným směrným číslům. Pak potenciometrem P₄ nastavíme postupně vypočítaná napětí na sběracím kondenzátoru a u kotouče potenciometru P4 uděláme patřičné značky. Obdobným způsobem získáme použitím vztahu (5) stupnici vzdálenosti.

Nakonec několik poznámek

1. Pokud nám ve zdrojové skříňče zůstane trochu místa, můžeme blesk doplnit o síťový nabíječ akumulátorků. Jeĥo schéma je na obr. 15. Obvod může být trvale připojen k akumulátorkům. Připojením k síti se budou akumulátorky nabíjet. Běžná nabíjecí doba je 16 hodin. Z obr. 15 je patrno, že nabíjecí obvod

Obr. 15. Schéma sítového nabíječe akumulátorků (viz poznámku 1)

je bez transformátoru. Je proto nutné konstruovat celý blesk tak, aby nemohlo dojít k úrazu elektrickým proudem. 2. Popisovaný blesk má jednu nedo-

konalost. Chceme-li nastavit na nabitém blesku větší směrné číslo, otočíme prostě ovládacím kotoučem potenciometru P4. Naopak to však není tak jednoduché. Napřed musíme nastavit menší směrné číslo potenciometrem P₄, pak odpálíme jeden záblesk naslepo a teprve potom se nám sběrací kondenzátor nabije na napětí, odpovídající nastavenému směrnému číslu. I tuto nedokonalost lze od-

Obr. 16. Náčrtek relé (viz poznámku 2)

stranit. Je však nutné si pro tento účel zhotovit speciální relé podle obr. 16. Jeho zapojení je patrné z obr. 2. Vinutí tvoří jeden závit vodiče, spojujícího vý-bojku se sběracím kondenzátorem. Předpokládejme, že spínací kontakt tvořený kotvičkou a jhem relé je roze-pnutý. V okamžiku odpálení proteče proud výbojky též vinutím relé a způ-sobí přitažení kotvičky. Zmenší-li se proud výbojky, přidrží kotvičku trvalý magnet. Blesk se tedy nabije na nej-menší směrné číslo, ať je potenciometr P₄ v jakékoli poloze. Po nastavení požadovaného směrného čísla zmáčkneme tlačítko, čímž odtrhneme kotvičku od jha. Blesk se dobije na stanovené směr-né číslo. Tlačítko může mít aretaci stlačené polohy. Bude-li tlačítko zaaretováno ve stlačené poloze, bude se blesk nabíjet přímo na nastavené směrné číslo, stejně jako blesk bez relé.

3. Jako napájecí zdroj je možno použít též např. čtyři až pět plochých haterií, spojených do série. Nabíjecí doba se však bude rychle prodlužovat.

4. Sběrací kondenzátor může mít kapacitu 500 až 1 000 μF , aniž by bylo nutné nějak upravovat měnič nebo automatiku. To odpovídá 2,3 nebo 4 ks kondenzátorů typu TC 509. Pochopitelně, že směrné číslo i nabíjecí doba bude úměrná kapacitě sběracího kondenzátoru. Na obr. 17 je uspořádání blesku se třemi kondenzátory

5. V reflektorové hlavici je možno-použít i jinou doutnavku, než je uvedeno v rozpisce. Pak je však nutné upravit dělič R_{12} , P_4 , R_{13} podle zápalného napětí použité doutnavky.

Na obr. 18 je vnější uspořádání reflektorové hlavice.

Rozpiska součástek

Polovodičové	oruku .

T_1	KU606, $\beta = 25$ až 60
T_1	$KU606, \beta = 25 \text{ až } 60$
T_{2}, T_{4}	KC509
Tr.	TZ (7000

Odpory	
R_1	TR 112a, 100 Ω
R_{\bullet}	TR 112a, 22 Ω
R.	TR 112a, 2,2 kΩ
R_{\bullet}	TR 112a, 27 kΩ
R_{\bullet}	TR 112a, 4,7 kΩ
R., R.	TR 112a, 1 kΩ
R_{τ}	TR 152, 2,2 MΩ
R_{\bullet}	TR 112a, 15 kΩ
R_{\bullet}	TR 121a, 18 kΩ
R10	TR 112a, 3,3 kΩ
R_{11}	TR 112a, 33 kΩ
R_{12}	TR 112a, 0,47 MΩ
R_{11}, R_{14}	TR 112a, 1,2 MΩ

TP 015, 220 Ω TP 015, 0,1 M Ω TP 180, 1 M Ω

ACOM	461144	ury
C_1		TE 986, 500 µF
$C_{\mathbf{s}}$		TC 180, 0.15 μF
$C_{\mathbf{s}}$		TC 180, 2 μF
C_{\bullet}	3 ×	TC 509, 250 μF
C_{ϵ}		TC 181, 39 nF
Ç.		TC 181, 0,47 μF
C_{7}	4 X	TC 184, 0,15 μF

Transformátory

Tr ₁	viz text jádro J 26/16, H22, $A_L = 400$
	1-2 2 z
	3-4 250 z drátu o Ø 0,125 mm CuLH
	5-6, 8-9 2 z
	6-7, 7-8 10 z drátu o Ø 0,6 mm CuL
Tr_1	původní z blesku TR-50 - výrobek družstva Mechanika
Dt	
Dt	TESLA RN 500 - původní z blesku
	TR-50
Výboika	Pressler XB 81-00
Re	vlastní výroba - viz poznámka 2 a obr. 16

Literatura

- Kuzměnko, M. I.; Sivakov, A. R.: Tranzistorové měniče. SNTL: Praha 1965.
- Millman, J.; Taub, H.: Pulse, Digital and Switching Waveforms. McGraw Hill: New York 1965, Millman, str..597 až 601.
- [3] Ott, M.: Nový způsob zavedení proudové zpětné vazby u dvojčinných tranzistorových měničů a střídačů. Sdělovací technika 5/1973, str. 167 až 168.
- [4] Ott, M.: Klíčovací obvod pro tranzistorové měniče. Sdělovací technika 12/1973, str. 453.

 Hyan, J. T.: Elektronický blesk.
 Radiový konstruktér 6/1966, str. 37
- až 64.
- Rafaj, V.: Měření a zkoušení ve fotografické praxi (IV); Zkoušení zábleskových přístrojů. Československá fotografie 4/1972, str. 174 a 175.
- Rovňák, V.: Tranzistorové napäťové meniče. SVTL: Bratislava 1967.

Obr. 17. Uspořádání blesku se třemi kondenzátory TC 509

Obr. 18. Vnější uspořádání reflektorové hlavice

			UCE	Ic	h ₁₁ E	f _T	T _a	Ptot PC*	UCB	o*25	Ic	ြင့				Náhrada			Roz	dily	7 - *	_
Тур	Drun	Použití	[V]	[mA]	h ₂₁₀ *	fα* fβ• [MHz]	(°C)	max [mW]	max [V]	UCEO UCER* max [V]	max [mA]	T _j max [Pouzdro	Výrobce	Patice	TESLA	$P_{\mathbf{C}}$	UC	fT	h 31	Spin. vl.	
ST01	SPEn	Sp, VF	1	10	>35	.>250	25	300	35	14		175	TO-18	Ple	2	KSY63	>	>	>	-	4	Ť
ST02	SPEn	Spr	1	10	>20	>300	25	360	40	20		175	TO-18	Ple	2	KSY63	=	=	=	≥	⋖	
ST03	SPEn	Spr	1	10	>20	>300	25	360	40	20	ĺ	175	TO-18	Ple	2	KSY63	ļ.=	=	=	≥	<	1
ST04	SPEn	Spr	1	10	>40	>300	25	360	40	20		175	TO-18	Ple	2	KSY63	=	-	=	=	<	ļ
ST05	SPEn	Spr	1	10	>100	>300	25	360	40	20		175	TO-18	Ple	2	KSY63	-	-	=	≤	<	l
ST06	SPEn	Sp, VF	5	10	>80	>100	25	360	50	35		175	TO-18	Ple	2	KSY63	_	<	>	=	-	ı
ST3	GM	VF	_			200*	25	200	100-]		85		Sesco	-							Į
ST9	Sdfn	NF, VF	6	1	60*	>34	25	150	15	15		150	TO-5	Tr	2	KF507	>	>	>	_		١
	1	Unij	"	*	50	200*	25		l		7	130	TO-72	Rost					•			
ST10	Sp	Cini,				-	25	100	U _{B2E} : -20	_20	-10	.	10-72	Rosi	104		ĺ					
ST10	Sdfn	NF, VF	6	1	17*	>30	25	200	15	15	ļ	175	TO-5	Tr	2	KF507	>	>	>	>		
ST11	Sdfn	NF,VF	6	1	35*	>30	25	200	15	15		175	TO-5	Tr	2	KF507	>	>	>	≥.	1	ļ
ST12	Sdfn	NF, VF	6	1	>40*	>11	25	200	15	1		175	TO-5	Tr	2	KF507	>	>	>	=		Ì
ST13	Sdfn	NF	6	1 .	>45*		25 .	200	15		1	175	TO-5	Tr .	2	KF507	>	>	>	=	1	1
ST14	Sdfn	NF, VF	6	1	130*	>39	25	200	15	15		175	TO-5	Tr	2	KF507	>	>	>	=		l
6m			,	١.	50.		l									KC508	i		l	1	l.	1
ST15	Sjn	NF,I	6	1	50*	11*	25	200	15			175		Tr		KF507	>	>	>	= !		l
ST20	Sp	Unij]		20*	25	200	UB2E:	UBB- _20	Iv= -20]]	TO-72	Rost	104	-] .					Į
ST25A	Sin	NF, I	9	1	15*	25*	25	150	45		15	150		NEC		KF507	>	_ ≤	>	>	İ	l
ST25B	1	-	9	1			1				1			,	ŀ	_	>	1	>			
	Sin	NF, I		1	32*	25*	25	150	45		15	150		NEC		KF507	1	≤		=	ĺ	ı
ST25C	Sin	NF, I	9	1	68*	25*	25	150	45		15	150	mic =	NEC		KF507	>	≤	>	=		
ST29	Sdfn	NF, VF	6	1	60*	>34	25	150	30	30		150		Tr	2	KF507	>	>	>	-	l	
ST30	SPEn	Spr	5	50	>20	>250	25	360	50	35		175	TO-18	Ple	2	KSY63	=	<	>.	≥	<	
ST30	Sdfn	NF, VF	6	1	17*	>30	25	200	30	30		175	TO-5	Tr	2	KF507	>	>	>	>		į
ST31	SPEn	Spr	5	50	>20	>250	25	360	50	35		175	TO-18	Ple	2	KSY63	=	<	>	≥	<	
ST31	Sdfn	NF, VF	6	1	35*	>30	25	200	30	30		175	TO-5	Tr	2	KF507	>	>	>	>		
ST32	SPEn	Spr	5	50	>40	>250	25	360	50	35		175	TO-18	Ple	2	K\$Y63	=	<	>	=	<	1
ST32	Sdfn	NF, VF	6	1	60*	>39	25	200	30	30		175	TO-5	Tr	2	KF507	>	>	>	-		1
ST33	SPEn	Spr	5	50	>100	>250	25	360	50	35		175	TO-18	Ple	2	KSY63	_	<	>	≤	<	ł
ST33	Sdfn	NF	6	1	45*		25	200	30			175	TO-5	Tr	2	KF507	>	>	>	_		١
ST34	Sdfn	NF, VF	6	1	130*	->39	25	200	30	30		175	TO-5	Tr	2	KF507	>	>	>	_		I
	J			*	-50	""		200	100	"	Ċ	•••	.0-5	•		KC507	>	,	>	>		ł
ST35	Sjn	NF,I	6	1	50*	11*	25	200	30			175		Tr		KF507	>	>	>.	=		ı
ST40	SPEn	Spr	5	10	>20	>250	25	360	75	50		175	TO-18	Ple	2							1
ST40	Sdfn	NF, VF	6	-1	17*	>30	25	200	45	45		175	TO-5	Tr	2	KF507	>	_	>.	>		ı
ST41	SPEn	Spr	5	10	>20	>250	25	360	75	50		175	TO-18	Ple	2							1
ST41	Sdfn	NF, VF	6	1	30*	>11	25	200	45			175	TO-5	Tr	2	KF507	;	=		≥	ı-	ł
ST42	SPEn	Spr	5	10	>40	>250	25	360	75	50		175	TO-18	Ple		201	1	ļ [—] ,		_]	, ,	ļ
ST42	Sdfn	NF, VF	6	1	60*			200	45	!	٠.	175	TO-18	Tr	2	KF507	>,				, ,	l
	1	-				>39	25			45					2	KF307	/	1	>	.=		1
ST43	SPEn	Spr	5	10	>100	>250	25	360	75	50	1	175	TO-18	Ple	2	_				1		l
ST43	Sdfn	NF, VF	6.	1	45*		- 25 .	200	45			175	TO-5	Tr	2	KF507	>:	=	>	=	!	l
ST44	Sdfn	NF, VF	6	1	130*	>39	_25	200	45	45		175	TO-5	Tr	2	KF507 KC507	> >	=	>	-		Į
ST45	ein	NF, I	6	1	50*	11*	25	200	45			175		Tr			l i	1 1		_	. 1	١
	Sjn								1 1			1	TO 10			KF507	>:	≤	\ 	1		I
ST50	SPEn	Spvr	1	10	>30	>300	25	300	25	12		175	TO-18	Pie	2	KSY21 KSY62B	>	>	=	=	× /	l
ST50	SPp	Unij				0,2*	25	500	UB2E:	$U_{ m BB-}$	Iv_		TO-72	Rost	104							ļ
									- 30	_20	<u>-50</u>		ĺ		' [ĺ		ĺ
ST51	SPEn	Spr	0,35	10 .	>40	>200	25	300	25	15	100	175	TO-18	Ple	2	KSY62B	>	=	>,	=	<	ļ
ST53	SPEn	Spvr	1	10	>40	>300	25	300	25	12	{	175	TO-18	Ple	2	KSY21	>	>	=	-	<	l
OTE 4		C	١ . ١		> 00			200	_			.	mc :-	-		KSY62B	>	= ,	. < ,	-		١
ST54	SPEn	Spr	0,4	1	>30	>50	25	300	20	20	100	175	TO-18	Ple	2	KSY62B	>'	>	>	-	<	1
ST55	SPEn	Spvr	1	10	>40	>300	25	300	40	15	.	175	TO-18	Ple	2	KSY63	>	=	= 1	-	>	ĺ
ST56 ·	SPEn	Spvr	1	10	>40	>300	25	300	25	20		175	TO-18	Ple .	2	KSY62B	>	-	<	=	>	ĺ
ST57	SPEn	Spvr	0,5	10	>40	>300	25	300	15	10	· /	175	TO-18	Ple	2	KSY62B	>	>	<	=	>	I
ST58	SPEn	Spvr	·1	10	>30	>300	25	360	40	15		175	TO-18	Ple	2	KSY63	-	=-	-	=	- [ĺ
ST59	SPEn	Spvr	1	10	>30	>300	25	360	40	15	ł	175	TO-18	Ple	2	KSY21	-	-	=	=	≥	ı
ST60	SPEn	Spvr	1	10	>30	>400	25	-360	40	15	.	175	TO-18	Ple	2	KSY71	-	=	<	=	<.	ı
nme -											-	J	_]			KSY21	=:	=	<:	-,	>	ļ
ST61	SPEn	Spvr	1	10	>20	>400	25	360	40	15	ŀ	175	TO-18	Ple	2	KSY71	=	₽,	<	≥	=	Ì
ST62	SPEn	Spvr	1	10	>40	>400	25	360	40	. 15	İ	175	TO-18	Ple	2	KSY71	-	-	<	=	=	ĺ
ST63	SPEn	Spvr	0,35	5 .	>40	>300	25	125	15	12	50	150	TO-18	Ple	2	KSY62B	>,	>	<	=	-	ĺ
ST64	SPEn	Spvr	1	1	>30 -	>350	25	360 -	40	20	0	175	TO-18	Ple	2	KSY71	=	=	<	=		ļ
ST66	Sdfn	NFv	4	1,5 A	10—80	0,025.	25c	80 W	60	40	6 A	150	ТО-3	Sa	31	KD606	=	_	`>!	_	٠,	ĺ
ST70	SPEn	Spvr	1	3	>20	>600-	25	360	30	15		175	TO-18	Ple	2	_				1	[l
ST71	SPEn	Spvr	1	3	>20	>600	25	300	25	15		175	TO-18	Ple	2	_					- [l
ST72	SPEn	Spvr	1	3	>50	>600	25	300	25	15		175	TO-18		2	<u> </u>		1	- [- 1	1	ı
ST80	SPEn		1	10	>25			7			200			Ple		Vev.				_ `	ار	
	OFER	Spvr'	4	1V].	- 40	>400	25	360	40	15	200	175	TO-18	Pie	2	KSY71 KSY63	=	=	2	=	४	i

		$\overline{}$	U_{CE}	1 _C	h:1E	f _T fα*	Ta	Ptot	U_{CB}	.*.5	Ιc	Ç		}					Roze	díly		_
Тур	Druh	Použití	[V]	[mA]	h:1e*	fα* fβ• [MHz]	<i>T</i> c [°C]	P _C * max [mW]	max [V]	UCEO UCER* max [V]	max [mA]		Pouzdro	Výrobce	Patice	Náhrada TESLA	PC	$U_{\mathbf{C}}$	$f_{\mathbf{T}}$	h 21	Spfn. v1.	F
ST82	SPEn	Spvr	1	10	>50	>500	25	360	40	15	500	175	TO-18	Ple	2	KSY71	=	_] _	=	=	≤	
ST106	Gjp	NFv	2	10A	922	>0,006.			60	50	15A	85	TO-36	Soi	36	4NU74		-	=	.>'	ļ	ĺ
ST107	Gjp	NFv	,2	10A	922	>0,006.			80	50~	15A	85	TO-36	Soi	36	6NU74	l	=	=	>		ĺ
ST108	Gjp	NFv	2	10A	19-42	>0,005.	1		60	50	15A	85	TO-36	Soi	36	4NU74	1	=	=	=		ĺ
ST109	Gjp	NFv	2	10A	. 19 4 2	>0,005,			80	50	15A	85	TO-36	Soi	36	6NU74	•	= ,	=	=		
ST110 .	Gip	NFv	2	10A	3884	>0,003.			60	45	15A	85	TO-36	Soi	36	5NU74	} }	=	=	2		l
ST111	Gjp	NFv	2	10A	3884	>0,003,			80	. 45	15A	85	TO-36	Soi	36	7NU74		-	=	≥		ĺ
ST112	Gjp	NFv	2	10A	>25	>0,003,			60	35	15A	85	TO-36	Soi	36	4NU74	1 4	=	=	=		ĺ
ST150	SPEn	Spr, VF	10	150	>20	>60	25	600	60	40*		175	TO-5	Ple.	2	KFY34	>	>	a .	=	>	ĺ
ST151	SPEn	VF, NF	10	150	>20	>60	25	600	60	25		175	TO-5	Ple .	2	KFY34	>	>	=	==		i
ST152	SPEn	VF, NF	10	150	>20	>60	25	600	60	25		175	TO-5	Ple	2	KFY34	>	>	=	=		l
ST153 -	SPEn	VF, NF	10	- 150	>20	>60	25	600	60	15	ļ	175	TO-5	Ple	2	KFY34	>	>	=	=		į
ST154	SPEn	VF, NF	10	150	>20	>60	25	600	40	30		175	TO-5	Ple	2	KF507	>	=	.=	=		
ST155	SPEn	VF, NF	10	150	>20	>60	25	600	40	25	ļ	175	TO-5	Ple	2	KF507	>	=	=	=	-	l
ST156	SPEn	VF, NF	10	150	>20	>60	25	600	40	20		175	TO-5	Ple	2	KF507	>	=	=	=		
ST157	SPEn	VF, NF	10	150	>20	>60	25	600	40	15		175	TO-5	Ple	2	KF507	>	=	=	=		l
ST160	SPEn	Spvr	10	150	>30	>50	25	600	40	20		175	TO-5	Ple	2	_			.			
ST161	SPEn	Spvr	10	150	>20	>50	25	600	40	20		175	TO-5	Ple	2	-				ĺ		
ST162	SPEn	Spvr	10	150	>40	>50	25 \	600	40 -	20		175	TO-5	Ple	2 -	_						
ST163	SPEn	Spvr	10	150	>20	>50	25	600	40	20		175	TO-5	Ple	2	_						
ST175	SPFn	VF, NF	10	50	>20	>200	25	600	75	75	Ì	175	TO-5	Ple	2	KF506	>	= .	<	≥		
ST176	SPEn	VF, NF	10	50	>40	>200	25	600	75	75		175	TO-5	Ple	2	KF506	>	=	<	=	•	
ST177	SPEn	VF, NF	10	50	>100	>200	25	600	75	75	Ì	175	TO-5	Ple	2	KF508	>	=	<	=		
ST178	SPEn	VF, NF	10	50	>75	>50	25	600	75	75	l	175	TO-5	Ple	2	KF508	. >	=	=	1718		
	 		١	}	_		l				1	1			١. ا	KF506	>	=	=			
ST180	SPn	VF, NF	10	50	>20	>200	25	600	90	75	ĺ	175	TO-5	Ple	2	KF503	>	>	<	=		
ST181 /	SPn .	VF, NF	10	50,	>40	>200	25	600	90 .	75	ļ]	175	TO-5	Ple	2	KF503	>	>	<	=		
ST182	SPn	VF, NF	10	50	>100	>200	25	600	90 -	75		175	TO-5	Ple	2	KF503	>	>	<	<		
ST185	SPn	VF, NF	10	50	>20	>200	.25	600	100	100	1	175	TO-5	Ple	2	KF503	>	=	<	=		
ST186	SPn	VF, NF	10	50	>40	>200	25	600	100	100		175	TO-5	Ple	2	KF503	>	=	<	=	١.	
ST187	SPn	VF, NF	10	50	>100	>200	25	600	100	100		175	TO-5	Ple	2	KF503	>	=	<	<	'	-
ST250	SPEn	VF, NF	10	150	>40	>40	25	360	60	40*	1	175	TO-18	Ple	2	KF506	>	>	>	-		
ST251	SPEn	VF, NF	10	150	>100	>60	25	360	60	40*	}	175	TO-18	Ple	2	KF508	>	>	>	=	١.	
ST400	Sdfn	NFv	12	2A	>15		25c	45W	60	60		175	MS2	Tr :	137	KD602	1	>		>		
ST401	Sdfn	NFv	12	2A	45 > 20	ļ	25c	45₩	45	45		175	MS2	Tr	137	KD602 KD605	<	>	-	=		l
ST402	Sdfn	NFv	12	2A	دا<40		25c	25W	60	60		175	MS2	Tr	137		>	>	1	_		
ST403	Sdfn	NFv	12	2A	40 > 15		25c	25W	45	45		175		Tr	137		>	>		=		
				-				-						_		KD605	>	=		=	1	
ST410	Sdfn	NFv	12	2A	40 > 15	12	25c	45W	60	60	5A	175	TO-61	Tr	31	KD602 KD606	< >	>	< <	=	1	
ST411	Sdfn	NFv	12	2A	40 > 20	12	25c	45W	45	45	5A	175	TO-61	Tr	31	KD602	<	>	<	_		1
J	Jun		~~									***		**	-	KD605	>	=	<	=		
ST414	Sdfn	NFv	15	1A	1260	10	25c	45₩	60	60	3A	175	TO-61	Tr	31	KD602	< >	>	<	=		
ST415	0.46	NIG	1.5	1.	12 60		25c	45W	80			1,75	NET 10	T-		KD606 KD607	>	t	<	=		
91415	Sdfn	NFv	15	1A	1260	>8	250	45 W	. 80	80		175	MT-10	Tr	2	KD607	<	>	\ <	- =		
ST440	Sdfn	NFv	15	1A	25 > 10	4	25c	60W	60	60	2A	150	MS2	Tr	137	KD606	>	-	=	-	-	
ST450	Sdfn	NFv	15	1A	25 > 10	4	25c	60W	60	60	2A	150	MT-10	Tr	2	KD606	>	=	-	=		
ST501	SPEn	Sp,VF	1	10	>22	>270	25	300	25	15		175	TO-18	Ple .	2	KSY62	>	==	=	=	=	
ST502	SPEn	Sp,VF	1	10	>50	>270	25	300	35	15		175	TO-18	Pie	ż	KSY63	>	>	=	-	7	
ST503	SPEn	Sp,VF	1	10	>20	,	25	300	25	12		175	TO-18	Pic	2	KSY62	>	-		=	=	
	1]			1]	1	KS500	=	=		=	n	
ST504	SPEn	Sp,VF	1,	10	>20	ŀ	25	300	30	12		175	_	Ple	2	KSY63	>	>		=	=	
ST610	Sdfn	NFv	4	1,5A	1080	0,025.	25c	80W	100	55	6A	150	ì	Sa	31	KD606	<	1	>	=	1	
ST615	Sdfn	NFv	4	1,5A	10—80	0,025.	25c	80W	150	70	6A	150	1	Sa	31	KD607	<	<	1	=	1	1
ST721	Sdfn	NF, VF	6	1	>15*	20*	25	250	45		25	175		GEC	2	KF507	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	=	>	>		1
ST722	Sdfn	NF, VF	6	1	>30*	23*	25	250	45	.	25	175	i	GEC	2	KF507	>	=	>	=	1	
ST723	Sdfn	NF, VF	6	1	>50*	28*	25	250	45		25	175		GEC	2	KF507	>	=	>	-	1	
ST903	Sdfn	Sp, VF	1	20	25	125	25	150	20		100	150	1	Tr	2	KS500	>	>	>	-	.	
ST904	Sdfn	VF, NF	5	1	24*	13*	25	150	45		25	175	1	Tr	1	KF507	>	1	>	>		
ST904A	Sdfn	VF, NF	5	1	39*	14*	25	150	45	'	25	175		Tr .	1	KF507	>	=	>	-		
ST905	Sdfn	VF, NF	ł	1	49*	15*	25	150	45		25	175	1	Tr	1	KF507	>	=	>	=	1	1.
ST910	Sdfn	VF, NF	5	1	99*	16*	25	150	45		25	175	OV9	Tr	1	KF507 KC507	>	=	>	=		
ST1026	Sdfn	VF, NF	3	5	>15	5*	25	30	6	6		175	TO-5	Tr	2	KS500	>	>	>	>	1	1
3 4 1020	Julii	,,,,,,,,		1			["	1		1		1/3		1	1	KF525	>	>	>			1
ST1050	Sdfn	VF, NF	3	0,02	>15	5*	25	30	6	6	•	175	TO-5	Tr	2	KS500	>	>	>	=	1	-
				1.	204			150	4.	1				-	1_	KF525		>	>	>	1	
ST1242	Sin	VF, NF	5	1 -	30*	8*	25	150	40	25	1	175	TO-5	Tr	2	KF507	. >	≈	>	>	1	1

Tun	Denk	Poušisi	UCE	$I_{\mathbf{C}}$	h,iE	$f_{\mathbf{T}}$ $f_{\alpha}*$	T _a T _c	P _{tot} P _C *	U_{CB}	ς <u>*</u> ξ	IC	ភ្ជ	Pou	Vdrak	ا ۾	Náhrada		 i	Roz	dily	
Typ	Druh	Použití	` [V]	[mA]	h _{11e} *	<i>fβ</i> , [MHz]	[°C]	. max [mW]	max [V]	UCEO UCER* max [V]	max [mA]		Pouzdro	v yrooce	Patice		$P_{\mathbf{C}}$	Uc	f_{T}	h 21	Spin. v
T1243	Sdfn	VF, NF	5	1	>30	20*	25	150	40		25	200	TO-5	Tr	2	KF507	>	æ	>	=	
T1244	Sdfn	VF, NF	5	10	>80	20*	25 `	150	40		25	200	TO-5	Tr	2	′KF508	>	>	>	=	il
T1290	Sdfn	VF, NF	5	10	180	20*	25	150	20	1	25	175	TO-5	Tr	2	KF508 KC508	^ ^	> =	>	=	
T1504	SMn	VF, I	10	1	40*	45* ·	25	300	60	60*	50	175	TO-18	Tr	2	KF506	>	_	>	_	۱. ۱
T1505	SMn	VF, I	10	1	40*	45*	25	300	100	80*	50	175	TO-18	Tr	2	KF503		>	>	>	ı
T1506	SMEn	VF	10	1	40*	45*	25	300	60	30	50	150	TO-18	Tr	2	KF506	>	>	>	==	
T1523	SMn	VF	5	1	35*	30*	25	300	45	45*	50	150	TO-18	Tr	2	KF507	>	_	>	_	.
T1524	SMn	VF	5	1	70*	30* .	25	300	45	45*	50	150	TO-18	Tr	2	KF507	>	-	>		1
T1525	SMn	VF	5	1	140*	40*	25	300	45	45*	50	150	TO-18	Tr	2	KF508	>	>	>	_	
															.	.KC507	=	-	>	≥	
T1527	SMn	VF	5	1	>20*	30*	25	300	45	45*	50	150	TO-18	Tr	2	KF507	>	=	>	>.	
T1528	SMn	VF	5	10	>40*	40*	25	300	45	45*	50	150	TO-18	Tr	2	K.F507	>	=	>	=	١. ١
T1543	Sdfn	NF, VF	3.	0,005	25		25	30	6		5	150	TO-18	Tr	2	_					
T1607	Sdfn	NF, VF	`5	10	>120		25	300	40	20		175	TO-18	Tr	2	KF508	>	>		=	
T1633	SPn	NF, VF	10	5	80		25	300	70	70	50	175	TO-18	Tr	2	KF508 KF506	>	>	>	>	
T1694	Sdfn	NF, VF	5	10	>40	20*	25	125	40	20	20	125	TO-5	Tr	2	KF507	>	\	>	_	1
T1700	SPn	NF, VF	5	0,01	>20 :		25	300	l	30	20	200	TO-18	Tr				- -	>		
T1700	SPn	NF-nš	5	0,01	>20 :	60 > 30 60 > 30	25	300	60	30		200	LID	Tr	2	KF508				≥	
LID	21.11	141119		U,U1	- 20	UC / 3U	د ا		00	"			L117	**		-					
T2110	SPEn	VFv, u	5	8	>20	>950	25	200	25	12		200	TO-18	Tr	2	-		- 12		'	
T2110	SPEn	VFv, u	5	8	>20	>950	25] .	25	12			LID	Tr	_	_	'		Ì		
LID							1.					y.		_							
T2120	SPEn	VFv,.u	1	3	>50	>1000	25	200	30	15		200	TO-72	·Tr-	6	<u> </u>					
T2120 LID	SPEn	VFv, u	1	3	>50	>1000	25	1	30	15			LID	Tr 🛷	-	-				{	
ST2130	SPEn	VFv, u	1	3	>20	>550	25	200	25	12		200	TO-72	Tr	6					ŀ	
T2130	SPEn	VFV, u	1	3	>20	>550	25	290	25	12		200	LID	Tr	_	_					
LID	0.2	71 7, 4	•		. 20	- 330	[23	ł	23	1. 4	9			**		. –					
T3030	Sdfn	NF	6	1	>40*	70*	25	100	15			175	TO-5	Tr	2	KF507	>	>	=	=	
T3031	Sdfn	NF	6	1	>40*	70*	25	20	20			175	TO-5	Tr	2	KF507	>	>	-	=	
T3042	Sdfn	NF	ļ			1*	25	50	1			175		Tr		– .	1		1		
ST3043	Sdfn	NF		1		1*	25	50	1			175		Tr		_		ì			
ST4044	Sjn	NF	20	100	6*	>4	25	600	60	60		200	TO-5	Tr	2	KF506	>	>	>	>	
ST4045	Sjn	NF	6	200	>40	>4	25	600	60	60		200	TO-5	Tr	2	KF506	>	>	>	=	
ST4080	Sjn	NF, VF	10	5	35	20 .	25c	.3 ₩	60	60		175	TO-5	Tr	2	KF506	=	>	>	≥	
	l		i		-	٠,		1		ļ				_		KU611	>	=	***	=	
ST4081	Sjn	NF, VF	10	5	35	20 '	25c	3 W	125	125		175	TO-5	Tr	2	KU612	>	=	=	=	
ST4150	SMn	NF	6	200	>35	>4	25	600	180	180	,	175	TO-5	Tr	2	KF504- KF258	>	< .	>	>	
ST4201	Sjn	NF	/ 6	200	>12	>2	25	600	45	45		175	TO-5	Tr	2	KF507	>	_	>	>	. 1
ST4202	Sjn	NF	6	200	>12	>2	25	600	75	75		175	TO-5	Tr	2	KF506	>	_	>	>	
ST4203	Sin	NF	6	200	>30	>2	25	600	45	45		175	TO-5	Tr	2	KF507	>	_	>	_	
ST4204	Sjn	NF	6	200	>30	>2	25	600	75	75		175	TO-5	Tr	2	KF506	>	-	>	_	
ST4341	Sdfn	NFv .	5	3	>15		.25c	1 W	80		150	175	TO-5	Tr	2	KF506	>	-		≥	
ST4402	Sdfn	NFv	10	600	>40	ļ.	25c	5 W	150	150	150	175	MD28	Tr	2	KF504	<	_		=	1
ST5060	Sdfn	NFv	10	5	9—36		25c	4 ₩	50	40		100	TO-11	Tr	2	KF506	<	>		>	
313000	Juni	***	**	1	3—30		250	. "	30	10		1.00	10-11	1		KF507	<	=]	>	•
ST5061	Sdfn	NFv	10	5	9—36		25c	4 W	80	70		100	TO-11	Tr	2	KF506	<	==		>	
ST5610	SPEn	Stř		I _{B=} 0,75	$R_{ m d}=50\Omega$		25		25	UEE-			TO-72	Tr	85	_				-	
ST5611	SPEn	Stř					25			=18			TO-72	Tr	85	_					
`				IB-0,75	Va = 100 11		ĺ		25	UEE-		1				_					
ST5612	SPEn	Stř		I _B _0,75	$R_{\rm d}=50\Omega$		25		25	UEE- -12			TO-72	Tr	85.						*
ST5613	SPEn	Stř		I _{B=} 0,75	$R_{\rm d} = 100 \Omega$		25		25	UEE-			TO-72	Tr	85	-					
ST5614	SPEn	Stř		IB=0,75	$R_{\rm d} = 150 \Omega$		25	4	15	UEE-			TO-72	Tr	85	_					
	ļ						ļ	-	١.	8											
ST5641	SPEn	Stř	5	1	>50		25		30	25			TO-18	Tr.	2	-				1.	-
ST6008	SMn	VF, Sp	6	10	40	150	25	150	15	15		175		Tr	2	KSY62A	ł	>	>	=	=
T6010	SMn	VF, Sp	6	10	40	150	25	150	30	30		175	TO-18	Tr	2	KSY62A KSY63	>	<	>	=	=
ST6110	SPEn	Spvr	0,5	10	>20	>500	25	300	10	5	i	200	TO-18	Tr	2	KSY71	>	>		_	-
ST6120	SPEn	Spvr	0,5	10	>20	>1000	25	300	10	5		200	TO-18	Tr	2	KSY71	>	>	<		_
ST6110/	SPEn	Spvr	0,5	10	>20	>500	25		10	5	j.		LID	Tr	_				1	_	
LID	J. SFER	J SPYL	0,5	10	- 40	- 500	125	1	10		}		ענט	••	1	\	1		1	1	1.
T6120/	SPEn	Spvr	0,5	10	>20	>1000	25		10	5			LID	Tr	-	— ``					
LID												1			_		1.				
ST6125	SPEn	Spvr	0,5	10	>20	>800	25	300	10	5		200		Tr	2	KSY71	>	>	<	=	
T6125/ LID	SPEn	Spyr	0,5	10	20—200	>800	25		10	5			LID	Tr	2	-	-				
			1	1		1	1	1 .	1	1	i	1	1	1	1	1	1	1	1	1	1

								,		-				i				·	_		
Тур	Druh	Použití	UÇE [V]	I _C	h₃iE h₃ie*	fπ fa* fβ· [MHz]	T _a T _c [°C]	Ptot PC* max [mW]	TCB max [V]	UCEO UCER* max [V]	Ic max [mA]	<i>T</i> j max [°C]	Pouzdro	Výrobce	Patice	Náhrada TESLA	P _C	υc	Roz f _T	h ₂₁	Spia. vl.
ST6130	SPEn	Sp, VF	1	10	>30	>400	25	360	25	10		175	TO-18	Tr	2	KSY71	>	>	<	=	ī
ST6130/	SPÉn	Spvr	1	10	30—150	>400	25		25	10	1		LID	Tr	_	_					
/LID													· =	_						1. 1	
ST6510	Sdfn ·	NFv	10	150	>20		25		20	20*	1	175		Tr	2	KF507	1	>	l	>	
ST6511	Sdfn	NFv	10	150	2060		25		40	20*		175		Tr	2	KF507		-		≥	. 1
ST6512 ST6573	Sdfn SPEn	NFv VF, NF	10 10	150 150	40—120 >20	100	25 25	800	40	20* 30		175		Tr	2	KF507 KF506	=	>		=	
ST6574	SPEn	VF; NF	10	150	>150	100	25	800	60	30	١.	175	TO-5	Tr	2	KF508	=	>	=	=	
ST6593	SPEn	VF, NF	10	150	>20	>100	25	400	60	30		175	ļ	Tr	2	KF506	>	>	≤	=	
ST6593	SPEn	Sp, VF	10-	150	20-120	>100	25		60	30			LID	Tr	_	_			-		
/LID ST6594	SPEn	VF, NF	10	150	>100	>100	25	400	60	30		175	TO-18	Tr	2	KF508	· >	>	_ ≤	_	
ST6594/	SPEn	Sp, VF	10	150	100-300	>100	25		60	30			LID	Tr	_	_			-		
/LID						1			"		ĺ			[Ι.	1	ĺ		-
ST6600	SPEn	.VF, NF	10	150	>40	>150	25	400	50	30		175	i	Tr	2	KF506	>	>	<	=	
ST6600/ /LID	SPEn	Sp, VF	10	150	40-250	>150	25		50	30			LID	Tr	_	_ ,					
ST6601	SPEn	VF, NF	10	150	>40	>150	25	800	50	30		175	TO-5	Tr	2	KF506	=	>	<	=	
ST6623/ /LID	SPEn	Sp, VF	10	150	100300	>200	25		-60	30			LID	Tr	-	—					.
ST7100	SPn	NF-nš	5	0,01	400800	>60	25	360	60	30		175	TO-18	Tr	2	KC507	-=	<	>	=	
ST7120	Sdfn	NFv	12	2A	20—80		25		45	35	3 A	175		Tr	137	KD601		<			
077120	Sac.	NIF-	12	24	20 80		25		1	,=	2.	125	Meno	т-	2	KD605		=		=	
ST7130	Sdfn	NFv	12	2A	20—80		25		45	35	3 A	175	MT10	Tr	2	KD601 KD605		=		=	
ST7200	SMn	NFv	15	1A	>12	8*	25c	45 W	80	80	5 A	175	TO-61	Tr	2	KU606	>	>	=	=	
ST7400	SPn	NFv,Sp	6	IOA	20100	>10	25c	100 W	120	100	20A	175	TO-63	Tr	2	KU605 KD503	< >	= <	= <	=	
ST7530	Sdfn	NFv, Sp	10	500	20—80		25		40	40	3 A	175	MT-11	Tr	146	KD605		_	1	=	
ST8014	SMp	NF	5	0,15	85*		25	600	40	30*		150	TO-5	Tr	2	KF517	>	_		=	
ST8033	. SPp	NF, VF	5	1	30*	>30 -	25	600	40	40*		150	TO-5	Tr	2	KF517	>	\ <u>\{</u>	>	<u>≥</u>	
ST8034	SPp	NF, VF	5	1	60*	>40	25	600	40	40*		150	TO-5	Tr	2	KFY16 KF517	/> >		>	2	
310431	J. P	1,1,1,1		•		1 - 10		000	1	10		1.50	10.3	** •	-	KFY16	>	<u>></u>	>	=	
ST8035	SPp	NF, VF	5	1	>30*	>30	25	.400	40	40*		175		Tr	2	KF517	>	=	>	=	
ST8036	SPp	NF, VF	5	1	>60*	>40	25	400	40	40*		175	TO-18	· Tr	2	KF517	>	=	>	=	
ST8065	SPp	VF, Sp	10	500	>40	>25	25	600	60	50		175	TO-5	Tr	2	KFY16	>	=	>	=	
ST8181 ST8181/	SPEp SPEp	VF, Sp Spvr	10 10	` 150 150	>20 20—120	>100 >100	25 25	400	50 50	35 35	1 A	175	TO-18 LID	Tr Tr	2	KFY16	>	>	<	-	
LID ST8182							25	400				175	* .		2	•	-			-	
ST8182/	SPEp SPEp	VF, Sp Spvr	10 10	150 150	>100 100—300	>100 >100	25	400	50 50	35 35	1 A	1/3	TO-18 LID	Tr Tr	2	KFY18	-	>	<	=	:
LID									"] "		,	~						ĺ	_	.
ST8183	SPEp	VF, Sp	10	150	>20	>100	25	600	50	35	1 A	175		Tr	2	KFY16	>	>	<	=	
ST8184 ST8190	SPEp	VF, Sp	10	150	>100	>100	25	600	50	35	1 A	175 175		Tr	2	KFY18	>	>	<	=	
ST8190 ST8191	SPEp SPEp	VF, Sp VF, Sp	10 10	500 500	>25 >25	>25 >25	25 25	600	40 60	30 50		175		Tr	2	KF517 KFY16	>	1 1	>	=	1
ST8229	SPEp	VF, Sp	10	150	>40	>150	25	400	50	30	1 A	175		Tr	2	KFY16	>	>	<	_	
ST8229/	SPEp	Spvr	10	150	40—240	>150	25		50	30			LID	Tr	'	_			ŀ		1
LID ST8230	ene.	ve c	10	150	>40	>150	25	600		20	1.	175	TO-5	- _{Tr}	2	VEUIC	>		<	11	
ST8500	SPEp SPp	VF, Sp NFv, Sp	10 10	150 500	>40 >15	>150	25	600	50 40	30 40	1 A 500	175		Tr	2	KFY16 KF517	>	> =	1		
ST8509	`SPp	VF,Sp	10	500	>20	>25	25	600	80	60	500	175	-	Tr	2	KFY16	>	-	>	_	
ST8700	SPEp	VF,Sp	5	0,1	>40	>30	25 `	300	50	30		175		Tr	2	KFY16	.>	>	>	_	
ST8700/ /LID	SPEp	NF,VF	5	0,01	>20	>30	25		50	30			LID ·	Tr		_					
ST8704	SPEp	VF, Sp	5	0,5	>60	>100	25	300	45	30		175	TO-18	Tr	2	KFY16	>	>	<	_	
ST8705	SPEp	VF, Sp	5	0,5	>150	>100	25	300	45	30	} .	175		Tr	2	KFY18	>	>	.<	=	
ST8709	SPEp	VF, Sp	.5	10 ,	>80		25	300	50	30		175		Tr	2	KFY16 KFY18	>	>		VIV.	
ST9001	SMp	VFv,Sp	10	500	20—80	25	25c	20 W ·	60	50 ⁻	2 A	150	MT-11	Tr	146	_				-	
ST14010	SPEn	Sp,NFv	5	80A	>10	>10	25c.	200W	150	100	80A	200	TO-63	Tr	2	-					
ST10007	SPp	Sp,NFv	10	10A	30—120	>20	25c	150W	80 .	80	30A	200	TO-63	Tr	2	_					
ST10008	SPp	Sp,NFv	10.	10A	30120	>20	25c	150W	100	100	30A	200		Tr	2	-				(.	
ST10009	SPp	Sp,NFv	10	10A	30—120	>20	25c	150W	120	120	30A	200		Tr	2	_					ιl
ST14011.	SPEn	Sp,NFv	5	20A	40—200	>10	25c	200₩	100	60	80A	200		Tr	2	_				'	
ST14012	SPEn	Sp, NFv	5	20A	40—200	>10	25c	200\\	125	80	80A	200		Tr	2	_					
ST14013 ST14026	SPEn SPEn	Sp,NFv Sp,NFv	5 10	20A 30A	40—200 30—120	>10 >10	25c 25c	200W	150 . 125	100 80	80A 80A	200		Tr Tr	2	_					
ST14026 ST14027	SPEn	Sp, NFv	10	30A	30—120 30—120	>10	25c	200W	145	100	80A 80A	200		Tr	2						
ST14028	SPEn	Sp,NFv	10	30A	30—120	>10	25c	200₩	170	120	80A		TO-63	Tr	2			1	1		

Rízení rychlosti otáčení motorku <u>SMZ375</u> pro gramofon

Ing. Miroslav Novák

Největším problémem při amatérské stavbě gramofonu je zhotovení potřebných mechanických dílů měniče rychlostí. Pro radioamatéra je mnohem lákavější použít elektronické řízení rychlosti otáčení. Popsané zařízení je určeno pro gramofony se synchronním motorkem SMZ 375 (typu SG 40, SG 80 Junior apod.) pro rychlosti otáčení 33 a 45 otlmin. Lze ho však použít i k jiným účelům, kdy je zapotřebí stabilizovat nebo řídit rychlost otáčení motorku. Proti jiným (dříve popsaným) zapojením je dále popsané zapojení jednodušší a nevyžaduje převíjet motorek na menší napájecí napětí. V zapojení není použit žádný transformátor, všechny součástky jsou běžně v prodeji. Pro použití v gramofonu je popsáno konkrétní zapojení s rozpiskou součástek a s nákresem desky s plošnými spoji.

kmitočtu v intervalu 40 až 75 Hz, čemuž odpovídá změna odporu připojeného k bodům 9 a 10 v rozmezí 0 až 6,8 k Ω . Volba tohoto kmitočtu umožňuje použít původní řemeničku, určenou pro síťové napájení. Rychlosti $33^1/_3$ ot/min.

Technické údaje

Napájecí napětí: 220 V/50 Hz. Příkon: asi 30 VA/8 W. Výstupní napětí: 190 až 240 V.

Výstupní kmitočet: 45 až 70 Hz (rychlost

otáčení 33 až 45 ot.

za min.).

Praktická stabilitá kmitočtu: ±0,2 %.

Princip řízení

Základem je tyristorový střídač s jedním tyristorem, komutujícím rezonancí obvodu LC, k němuž je připojena zátěž (motorek). Základní schéma zapojení je na obr. 1. Proudový zdroj $\mathbb{Z}P$ se prakticky realizuje napěťovým napájením přes tlumivku s velkou indukčností. Aby tyristor komutoval, musí mít rezonanční obvod dostatečnou jakost (R_z) $\overline{C/L}$.

Obr. 1. Základní schéma střídače

Ta je dána vhodnou volbou kapacity kondenzátoru C a indukčnosti L. Kmitočet výstupního napětí střídače je dán kmitočtem zapalovacích impulsů, přiváděných na řídicí elektrodu tyristoru. Při vhodné volbě součástek střídače a zdroje je výstupní napětí na zátěži v určitém rozsahu kmitočtu téměř konstantní.

Vzhledem k tomu, že motorek SMZ 375 neumožňuje regulovat rychlost otáčení ve velkém rozsahu (při malých rychlostech otáčení má malý moment, při větších se špatně rozbíhá), musíme se spokojit s řízením v rozsahu rychlosti otáčení gramofonu 33 až 45 ot/min., což většinou stačí.

Rychlost otáčení se tedy řídí změnou kmitočtu generátoru "zapalovacích" impulsů. Protože řemínkový převod z hřídele motorku na talíř gramofonu má určitý "skluz" podle zatížení, můžeme klidně použít ve funkci zdroje zapalovacích impulsů multivibrátor v obvyklém zapojení s běžnými součástkami. Kmitočet lze pak měnit změnou jednoho odporu.

Popis zapojení

Skutečné zapojení celého obvodu určeného k řízení pohonu gramofonu, je na obr. 2a. Vzhledem k relativně vel-

kému potřebnému stejnosměrnému napětí pro střídač (asi 60 V), byl pro jednoduchost zdroj zapojen bez sítového transformátoru. Proud ze sítě je dán reaktancí (kapacitou) kondenzátoru C_1 . Ke stabilizaci a lepšímu vyhlazení stejnosměrného napětí zdroje jsou v Graetzově můstku použity dvě Ženerovy diody D_1 a D_2 . Můžeme je zapojit do plošných spojů bez chladiče. Odpor R_1 omezuje nabíjecí proud kondenzátoru C_1 při zapnutí, odpor R_2 je vyhíjecí.

Cívka (tłumivka) L_1 představuje proudový zdroj pro střídavý proud a odděluje tedy střídavé napětí střídače od zdroje stejnosměrného napětí. Dobře vyhoví např. tlumivka o indukčnosti 4 H, jaká se používá ve filtru napájecího napětí u elektronkových zařízení. Komutační obvod tyristoru T_2 tvoří cívka L_2 (body 5, 6) a kondenzátor s kapacitou 2 μ F, který je z rozměrových důvodů složen ze dvou kondenzátorů 4 μ F/160 V. Indukčnost tlumivky L_2 je asi 0,6 H, max. proud je 0,5 A (vyhoví např. zářivková tlumivka typu 4131). Kondenzátor C_7 odděluje stejnosměrnou složku výstupního napětí.

výstupního napětí.
Špičkové napětí na tyristoru je asi 350 V. Vzhledem k tomu, že se tyristor prakticky neohřívá (střední proud je asi 0,1 A), můžeme v nouzi místo KT504 použít i tyristor s menším jmenovitým napětím, tj. např. KT503.

Řídicí elektroda tyristoru je přímo vázána s multivibrátorem. Protože zapalovací impuls nesmí být delší než asi 3 ms (z důvodů komutace napětí na tyristoru), byl zvolen poměr časových konstant multivibrátoru asi 1:10. Kmitočet se pak mění změnou delší časové konstanty. Hodnoty součástek multivibrátoru jsou navrženy pro změnu

odpovídá pak kmitočet 50 Hz a rychlosti 45 ot/min. kmitočet 67,5 Hz. Při střední poloze běžce potenciometru P_1 nastavujeme nižší kmitočet trimrem R_0 a vyšší kmitočet trimrem R_{10} . Máme-li k dispozici pouze spínač, můžeme přepínat rychlost podle zapojení na obr. 2b. Pak musíme opět nastavovat nejprve menší rychlost otáčení. Potenciometr pro jemnou regulaci můžeme samozřejmě vynechat nebo můžeme potenciometrem řídit rychlost plynule v celém rozsahu (nejvhodnější je robustní drátový potenciometr s odporem dráhy $6,8~\mathrm{k}\Omega$).

Napájecí napětí multivibrátoru je dáno Zenerovou diodou D_6 ; nesmí být větší než 8 V. Při větším napětí dochází k napěťovému přetěžování přechodů báze – emitor tranzistorů T_1 a T_2 . Nejvhodnější je napětí asi 7 V, pak kmitočet multivibrátoru téměř nezávisí na (malých) změnách napájecího napětí. Kondenzátor C_{10} filtruje napájecí napětí multivibrátoru a tím spolu s diodou D_5 zabraňuje případnému "strhávání" kmitočtem. Kromě toho se příznivě uplatňuje při zapnutí a "rozběhu" střídače.

Mechanické provedení

Téměř všechny součástky střídače jsou umístěny na desce s plošnými spoji (obr. 3). Pouzdro s pojistkou Po_1 umístime na zadní stěnu skříňky gramofonu nebo pod snímatelný talíř. Kondenzátor C_1 a civku (tlumivku) L_1 přišroubujeme za příchytné patky např. ke stěnám

10 Amatérské! ADIO 383

Obr. 3. Deska s plošnými spoji (H26) obvodu (body 4, 5 a 7 isou tvořeny jedním vývodem kondenzátoru C5)

skříňky. Potřebná hloubka skříňky je tak nejmenší – asi 55 mm. Odpor R_1 připájíme přímo k vývodům kondenzátoru C_1 . Na desce nejsou dále umístěny potenciometry k nastavení kmitočtů multivibrátoru, neboť každý zvolí pravděpodobně jiný způsob ovládání rychlosti otáčení. Odporové trimry můžeme například připájet samonosně k vývodům přepínače Pr. Desku s plošnými spoji osazenou součástkami přichytíme dvěma šrouby M4 pomocí distančních podložek k vrchní desce šasi, nejlépe pod talíř. Současně tím upevníme cívku (tlumivku) L_2 k desce s plošnými spoji. Komu by toto řešení nevyhovovalo (např. rozměrově), může část desky pro tlumivku odstřihnout a tlumivku umístit samonosně.

Samozřejmě dbáme, aby všechny součástky elektrického obvodu byly co nejdále od raménka (přenosky) a od výstupního konektoru pro spojení se zesilovačem. Kostra motorku, talíř a kostra raménka musí být vodivě spojeny se zemí signálu.

Ovládací knoftíky přepínače a potenciometru musí být v každém případě z bezpečnostních důvodů z izolačního materiálu.

Příklad réalizovaného rozmístění součástek ve skříňce gramofonu je na obr. 4.

Poznámky

Uvádění do chodu spočívá především v ověření rozsahu kmitočtů multivibrátoru, potřebných pro použitou řemeničku, která nemusí mít průměr odpovídající přesně 50 Hz (pro $33^{1}/_{3}$ ot/min.). Případné změny kmitočtu dosáhneme nejsnáze změnou odporu R_{6} , popř. trimrů R_{9} a R_{10} . Napětí na kondenzátoru C_{4} by nemělo být v celém rozsahu rychlosti otáčení menší než 50 V. Je-li tomu tak, musíme zvětšit kapacitu kon-

Obr. 4. Uspořádání v gramofonu

denzátoru C₁ (výběrem kondenzátoru nebo paralelním připojením kondenzátoru 0,5 μF/630 V).

Při uvádění do chodu nesmíme zapomenout, že všechny součástky obvodu jsou pod plným síťovým napětím!

K napájení střídače můžeme použít také transformátor. Na desce s plošnými spoji nemusíme dělat žádné úpravy, pouze místo diod KZ751 použijeme KY130 a vynecháme odpor R_1 (nahradíme ho drátem). Transformátor musí mít výstupní napětí asi 48 V a musí být navržen pro výkon asi 8 W. Sítová pojistka pak stačí pro proud 0,1 A (viz obr. 5).

Rychlost otáčení talíře nastavujeme při přehrávání desky zhruba podle stroboskopického kotouče a pak jemně po-

Obr. 5. Zapojení zdroje se sítovým transformátorem

mocí stopek. Vzhledem k určitému skluzu řemínku nemůžeme nastavit rychlost otáčení přímo volbou kmitočtu podle průměru řemeničky. Skluz pohonu můžeme značně zmenšit použitím dvojité řemeničky a dvou řemínků. S tímto provedením byl naměřen skluz při zatižení přenoskou se svislou silou 3. p na obvodu desky při obou rychlostech menší než 0,2 %, což je skluz podstatně menší než s použitím jednoduché řemeničky (viz [1]).

Růšení rozhlasu zařízením vyhovuje i nejpřísnější normě. Úroveň rušivého napětí na umělé síti leží v celém pásmu kmitočtů pod tzv. malou mezí rušení.

Pro signály zvukových kmitočtů je rušení při dobrém stínění spojů mezi přenoskou a výstupním konektorem gramofonu spolehlivě pod úrovní šumudřážky gramofonových desek. Je vhodné zakrýt výstupní konektor uzemněným vodivým plechem.

Rozpiska součástek

•	tozpiska soucastek
Odpory	
R_1	0,47 MΩ/0,25 W
R,	56 Ω/2 W
R_{\star}	2,2 kΩ/2 W
R_{\bullet} , R_{\bullet}	330 Ω/0,05 ₩
R_{\bullet}	8,2 kΩ/0,05 W
R_{τ}	12 kΩ/0,05 W
R_*	390 Ω/0,1 W
R,	trimr 6,8 kΩ (nejlépe keramický -
	TP 110)
R_{10}	trimr 2,2 kΩ (nejlépe keramický -
••	TP 110)
P_1	potenciometr 100 až 120 Ω (nejlépe
-	drátový)
Kondenzátory	•
C_1	TC 485, 2 μF/630 V
$\bar{C}_{\mathbf{t}}, C_{\mathbf{t}}$	33 nF/100 V (styroflex, MP)

C₁ TC 485, 2 μF/630 V
C₄, C₈ 33 nF/100 V (styroflex, MP)
C₄ TE 988, 200 μF/70 V
C₅, C₄ TC 455, 4 μF/160 V
C₇ TC 180, 0,22 μF/100 V
C₈ TC 180, 2 μF/100 V
C₉ TC 180, 0,22 μF/100 V
C₁₀ TE 984, 200 μF/15 V
Polovodičové prwky

D₁, D₂ KZ751 D₃, D₄ KY130/80 D₅ KZ721 (KZZ71) T₁, T₂ KF517 Ty KT504 (KT505 KT503) Ostatní součástky

4 H/150 mA (9 WN 651 14.1) Z 40 W, typ 413 1 synchronni motorek SMZ 375/220 V

L₁ L₂ M Po₁ S₂ trubičková pojistka 0,2 A dvojitý spinač 250 V/2 A přepinač (spinač) 12 V

Literatura

[1] Gramofonový přístroj SG 40 s přenoskovým raménkem PR 50 (test). Hudba a zvuk 10/1970, str. 365 až

Akustický hlídač Jan Roháč

Jednu z možností, jak zmenšit nebezpečí vzniku neštěstí, zaviněného ucházením plynu z plynového spotřebiče v případě, že zhasne plamen, ukazuje tento návod. Než přistoupíme k popisu zapojení, všimněme si nejprve stručně elektrických vlastností plynového plamene.

Vyjděme z jednoduchého experimentu, znázorněného na obr. 1. Ž baterie zapojené záporným pólem na kostru plynového spotřebiče protéká do elektrody umístěné v plameni proud asi 0,1 až 5 μA. Velikost proudu závisí na druhu materiálu elektrody, na jejích geometrických rozměrech a na poloze elektrody v plameni. Je-li baterie pó-lována opačně (kladným pólem na kostře), protéká plamenem proud pod-statně menší.

V plameni se uplatňuje vedení elektrického proudu přenášením náboje hořícími částečkami. Jako elektrodu uloženou v plameni je vhodné použít wolframový či odporový drát o ø asi

Obr. 1. Pokus s vedením proudu plamenem

0,5 mm, neboť pevnost a trvanlivost těchto materiálů při vysokých teplotách je větší než např. mědi či oceli. Do hlídaného plamene umístíme tedy zmíněný drát tak, aby se ho plamen dotýkal i při nejvíce ztlumeném přívodu plynu. K upevnění drátu lze s výhodou použít porcelánovou lustrovou svorku.

Použitou elektroniku lze funkčně rozdělit na dva bloky: elektronické relé a obvod akustické signalizace. Schéma zapojení je na obr. 2, zapojení je navrženo s ohledem na dosažení malého klidového proudu, neboť zařízení nelze

napájet ze sítě pro možnost výpadku napětí v síti. K napájení je použita jedna plochá baterie 4,5 V.

Funkci elektronického relé zastávají tranzistory T_1 až T_3 , pracující ve spinacím režimu. V klidu (plamen hoří) je otevřen pouze tranzistor T_1 proudem z plamene. Odpor R_1 chrání emitorový přechod tranzistoru T_1 před proudovým přetížením náhodným zkratem vodiče umístěného v plameni na kostru plynového spotřebiče. V kolektoru T1 je velký odpor R_2 , aby tranzistor T_1 pracoval v nasyceném stavu (h_{21E} je při velmi malých proudech také malý asi 10), a aby tedy tranzistor T_2 byl zavřen. Odpor R_3 je pracovním odporem tranzistoru T_2 . Odpor R_4 zabraňuje pootevírání tranzistoru T₃ vlivem zbytkového proudu ICEO tranzistoru T2. Tranzistor T_3 je typu p-n-p, neboť musí být v klidovém stavu elektronického relé zavřen, aby odběr z baterie byl co nejmenší. Kolektor tranzistoru T_3 je výstupní svorkou elektronického relé, na níž možno připojit jakoukoli zátěž, jejíž proud nepřesahuje 1 mA. Přestane-li do báze T₁ téci proud (zhasne-li plamen), tranzistor se uzavře a tim se tranzistory T2 a T3 dostanou do otevřeného nasyceného stavu. Na výstupní svorce relé se tedy objeví téměř plné napětí zdroje.

Signalizaci Îze řešit mnoha způsoby. Často se používá telefonní sluchátko, jehož dvě cívky tvoří indukčnost pro oscilátor s indukční zpětnou vazbou, jak je tomu i na obr. 2. Oscilátor je řešen co nejjednodušeji bez stejnosměrné stabilizace pracovního bodu tranzistoru T4. Nutným, avšak pro naši aplikaci neškodným následkem je změna kmitočtu oscilátoru v závislosti na teplotě a na změně napájecího napětí, zvláš-

tě je-li rezonanční okruh v bázi T4 tvořen indukčností cívky sluchátka a Millerovou kapacitou tranzistoru T_4 . Odporem R5 je nastaven proud báze T₄, R₆ opět zabraňuje pootevírání tranzistoru T_4 vlivem zbytkového proudu I_{CE0} tranzistoru T_3 . Vhodným nastavením vzdálenosti membrány sluchátka od pólových nástavců magnetu dosáhneme největší hlasitosti.

Odběr proudu z ploché baterie je při signalizaci asi 30 mA, v klidu kolem 2 μA. Baterie se tedy nevybije elektricky, ale vnitřními chemickými pochody.

Zbývá zmínit se o spínači S – ten se musí sepnout současně s otevřením plynového ventilu hlídaného hořáku. Nejlépe je využít skutečnosti, že většina plynových ventilů se před otevřením pootočením musí stisknout. Bez zásahu do ventilu (!) lze do jeho blízkosti umístit pár kontaktů tak, aby stisknutím knoflíku ventilu se kontakty spínače

spojily. Zařízení je vhodné k zabránění úniku plýnu z těch spotřebičů, které nejsou výrobcem vybaveny bimetalovou či termoelektrickou pojistkou (většina starších plynových kamen s otevřeným okruhem) a u plynových sporáků, kde musíme jistit každý hořák zvlášť, nemá-li sporák centrální zapalování.

Přenosná chladnička

Iževský závod Elektropribor začal vyrábět přenosné chladničky do motorových vozidel. Dříve výráběná zařízení vyžadovala uložit chladničku přesně ve svislé poloze, proto jejich umístění v autě bylo problematické. Nyní byl vyvinut přístroj s polovodiči, který je odolný vůči otřesům a pádům. Agregát chladničky nemá pohyblivé součásti. Chladnička váží 6 kg, obsah chladicího prostoru je 12 litrů.

V tomto roce bude vyrobeno celkem 30 000 chladniček tohoto typu. Tiskové zpravodajství čs.-sovětské komory

Výkonové tranzistory pro 1 GHz

Pod označením 41027 a 028, 41025 a 026 nabízí firma RCA tranzistory 3 a 10 W pro kmitočty UKV. Jsou typu n-p-n se strukturou overlay a s integrovanými odpory v jednotlivých emito-rech. Mají pouzdro kov-keramika s páskovými vývody (stripline) a minimálními parazitními kapacitami. Napájecí napětí je 22 až 28 V. Pracují stabilně i v zapojení se společným emitorem. Funktechnik č. 1/74

Kvadrofonní přenoska

Firma Orthofon uvedla na trh dynamickou gramofonní přenosku SL15Q pro kvadrofonní desky. Elipticky za-oblený trvalý hrot snímá čtyři informace z drážky. Kmitočtový rozsah přenosky je 20 až 50 000 Hz, vztaženo na 1 kHz je to 38 až 48 000 Hz ±4 dB. Stejnost kanálů je ±1 dB. Impedance cívky je jen 2 Ω, hmotnost systému 7 g, doporučený tlak na hrot 1,5 až 2 p. Používá se s převodním transformátorem. Výstupní napětí na cívce je 0,13 mV při 8 cm na 1 kHz, s transformátorem 12 mV. Funktechnik č. 6/74

KC149 KC149 KF 517 KF 507 (KC509) (KC509) -|||||| +11-: 5M/6 V R₂ 3M9 2×27 Q M3 obvod signalizace

Obr. 2. Zapojení akustického hlídače plynového plamenu

Starebnice. Eiglicoré techniky

KF504 '+160 V (24) C_{11} 56 k 33k A1....

Ing. Tomáš Smutný

(Pokračování)

Tranzistorové desky

T1 - spínače, převodníky úrovní

Deska obsahuje šest stejných obvodů, které jsou pro jednotnost logické zátěže přímo na desce opatřeny budicími hradly. Odpor R21 na obr. 66 slouží ke zvětšení budicího proudu při výstupu hradla log. l, může to však být i vnější kolektorový odpor u obvodu MH7403. Odpor R_{11} (1,5 k Ω) vyhoví pro většinu běžných aplikací, při spínání větších proudů je nutnozvolit R_{11} podle parametrů tranzistoru a odporu zátěže.

Zátěž tranzistoru může být tvořena přímo vhodným odporem R_{31} , nebo může být připojena pomocí výstupů K. Deska s plošnými spoji je na obr. 67. V tabulce jsou uvedeny ostatní vstupy a výstupy ďalších pěti obvodů desky Ťĺ. tranzistory byly suvedeny v tab. 6.

T2 - anodové obvody displeje

Chceme-li ušetřit dekodéry a spínače číslicových výbojek při realizaci displeje, můžeme použít zvláštní druh provozu,

tzv. časové sdílení výbojek. Základním problémem tohoto režimu je, jak ovládat jednotlivé číslicové výbojky v jejich anodovém obvodu. Tranzistory p-n-p pro toto použití nejsou k dispozici a tak je nutno hledat řešení v různé kombinaci tranzistorů n-p-n, transformátorů a jiných prvků.

Jako nejjednodušší a nejspolehlivější se ukázalo použití obvodů na obr. 68. Jedná se v podstatě o převodník úrovní z logiky TTL na úrovně 0 a 160 V. Budíme-li vstup hradla impulsním generátorem, jsou na kolektoru tranzistoru impulsy s'uvedenou amplitudou. Tyto impulsý se pak přivádějí přes konden-

Zap	ojení k	onektor	u
H1	2	K1	21
H2	3	K2	19
НЗ	4	`КЗ	17
H4	5	K4	15
Н5	8	K5	13
Н6	7	K6	12

Obr. 66. Schéma zapojení desky T1, na níž je celkem šest těchto obvodů

zátor C11 na anodu výbojky, která je připojena na výstup A. Výbojka svítí pouze po určitý časový okamžik, určený šířkou vstupních impulsů, a to tehdy, je-li vstupní signál nulový. Deska s ploš-

nými spoji je na obr. 69.

Další podrobnosti a princip časového sdílení číslicových výbojek budou uvedeny v kapitole o aplikacích stavebnice.

T3 – dekodér pro číslicové výbojky

Tato deska obsahuje dekodér binárně dekadického kódu na kód desítkový a deset katodových spínačů pro číslicové výbojky podle obr. 70. Vstup dekodéru vyžaduje proměnné A, B, C a D v inverzním tvaru a to je také jediný rozdíl proti jinak ekvivalentnímu zapojení v podobě integrovaného obvodu (MH7441). Tato zvláštnost vyplývá Tato zvláštnost vyplývá z určení dekodéru pro použití v systému časového sdílení výbojek, při němž

Zapo	jení kö	nektoru	
H1	2	A1	23
H2	3	A2	22
НЗ	12	ДЗ	21
H4	4	A4	20
H5	9	A5	19
H6	4	46	18

Obr. 68. Schéma zapojení desky T2, na níž je celkem šest těchto obvodů

jsou inverzní vstupy výhodnější. Deska s plošnými spoji je na obr. 71.

Zdroje

Z1 - zdroj + 5 V a + 12 V

· Tato deska umožňuje realizovat zdroj +5 V pro napájení logických obvodů nebo zdroj +12 V pro napájení tranzistorových obvodů. První varianta je na obr. 72, součástky pro zdroj +12 V

Obr. 67. Deska s plošnými spoji T1

Obr. 71. Deska s plošnými spoji T3

Obr. 70. Schéma Zapojení desky T3

(%) 11/270 Rn 2K2 2k2 22 0, KF508 æ, ≴ ____ 20 8 Obr. 72. Schéma zapojení desky ZI 70 40 ೮⋕₹ KU602 R₆ 2x KF508 R5 120 KF517 <u>ال</u> ج R2 2/2 R, 2/2 £33 X 4x X 5 (O) (O) 10 V 50 Hz (9) (T) (2)

 $(Zdroj + 12 V : R_2 = 6,8 k\Omega, R_6 = 680 \Omega, R_9 = 560 \Omega = R_{10}, C_4 = 50 \mu F, T_3 = KU605, D_7 = KZ721; D_8 az D_{11} vypustáry)$

73. Deska s plošnými spoji Z

jsou uvedeny pod obrázkem. Deska s plošnými spoji je na obr. 73.

Zdroj je vybaven proudovou pojistkou. Proti zvětšení napětí +5 V je výstup chráněn Zenerovou diodou D_{11} .

Referenční napětí je získáno sériovým spojením diod D_7 až D_{10} a porovnává se s napětím na běžci potenciometru R_{12} . Potenciometrem lze nastavit přesné výstupní napětí zdroje v určitém intervalu.

Referenční a výstupní napětí se porovnává na tranzistoru T_6 , výsledný signál k řízení regulačního prvku je dále zesílen tranzistorem T_4 . Jako kolektorová zátěž tranzistoru T_4 je použit zdroj konstantního proudu, který je zároveň rovnávátí proudvá pojitky součástí proudové pojistky.

Proudová pojistka pracuje při zvět-

plech Al, fl. 2 mm

Obr. 74. Chladič výkonového tranzistoru

šení proudu nad 0,7 A tak, že úbytek napětí na odporech R_1 a R_2 uzavře tranzistor T_1 , tím se zmenší proud báze tranzistoru T_2 a výkonový prvek zdroje,

tranzistor T_3 se uzavře. Vstupy Cl jsou určeny pro připojení elektrolytického kondenzátoru, který je umístěn mimo desku. Chladič výkonového tranzistoru tvoří destička z hliníkového plechu tloušíky 2 mm podle obr. 74. Tento chladič je připevněn čtyřmi šrouby M3 a distančními tru-bičkami délky 15 mm k desce Z1, přičemž jeden ze šroubů je zároveň využit pro připojení kolektoru tranzistoru. Báze a emitor výkonového tranzistoru jsou s deskou spojeny izolovaným lankem o ø asi 1,5 mm.

(Pokračování)

Kajímavá Kapoje Ke Kahraničí

Ochrana motorků proti přetížení

Jen velmi malé množství motorků u spotřebičů jako jsou vrtačky, elektric-ké pily, kuchyňské roboty apod. je chráněno proti spálení vinutí vlivem přetížení. K ochraně se přitom využívá obvykle tepelných pojistek, buď tavných, nebo s bimetalem (dvojkovem). Účinnost těchto ochran je vlivem znač-

ného zpoždění nespolehlivá.

Daleko příznivějších účinků dosáhneme, kontrolujeme-li proud, který motor-kem protéká, neboť velikost tohoto proudu je úměrná zatížení. Musíme samozřejmě činnost takové pojistky upravit tak, aby v okamžiku záběru po určitou krátkou dobu nepůsobila, neboť v tomto okamžiku teče vinutím proud značně větší, než je proud jmenovitý.

Zapojení je na obr. ľ. Proud do motorku teče přes diody D₁ až D₄, tyristor $T_{\mathcal{F}_1}$ a odpor R_4 . Tyristor je otevřen proudem, tekoucím přes odpory R_1 , R_2 , R_3 a diodu D_5 do řídicí elektrody. Na odporu R4 vzniká úbytek napětí, který je úměrný proudu tekou-

Obr. 1. Ochrana proti přetížení

címu motorkem. Potenciometrem P nastavíme proud, při kterém pojistka sepne. Je-li proud větší než jmenovitý, začne přes odpor R5 téci do báze tranzistoru T₁ proud a tento tranzistor otevře tyristor Ty_2 , který přeruší činnost tyristoru Ty_1 . Tím se motor elektricky odpojí od sítě a nerozeběhne se, dokud nestiskneme tlačítko Tl po odstranění příčiny přetížení.

Odpor R₅ s kondenzátorem C₁ tvoří článek RC, který zamezí odpojení motorku při zapnutí, nebo při krátkém "záběrovém přetížení" při běžné činnosti přístroje. Pro údaje uvedené ve schématu je rozsah výkonů nastavitelných potenciometrem 80 až 200 W. Pro jiné poměry je nutno upravit odpor R_4 , volit jiné diody D_1 až D_4 , tyristor Ty_1 a popř. i R_2 , R_3 , D_5 .

Náhrada polovodičových prvků výrobky TESLA: D_1 až D_4 – KY705; D_5 – KA502; Ty_1 – KT505; Ty_2 – KT501; T_1 – KF506. Elektronik 11/1970, str. 390 – Ru-

Fotoblesk spouštěný fototyristorem

Oba příklady použití fototyristoru na obr. la i lb jsou téměř rovnocenná zapojení. Je zde nakreslen sekundární fotoblesk, který lze spouštět i synchronně světlem blesku primárního, řízeného ze závěrky fotográfického aparátu.

388 (Amatérské! ADI 11) 74

Obr. 1. Bezkontaktní spouštění fotoblesku světlem dopadajícím na fototyristor; a - sériové, b - paralelní zapojení

Elektrolytický kondenzátor se nabije přes R_1 a diodu D_1 na špičkovou hodnotu síťového napětí. Kondenzátor C2 má napětí dané dělicím poměrem odporů R₂ a R₃. Po přivedení synchronizačního světelného impulsu od primárního fotoblesku se fototyristor otevře, zkratuje C2 přes primární vinutí transformátoru Tr₁, jímž proteče určitý proudový impuls. Ten vytvoří na sekundárním vinutí napětí potřebné k zapálení výbojky. Při zapálení výbojky se vybije kondenzátor C₁, část jehož energie promění vý-bojka na světlo. Citlivost fotoblesku lze v určitých mezích regulovat potenciometrem R₄ v řídicí elektrodě tyristoru.

Při fotografování je mnody vhodné použít více blesků najednou, např. ve větší místnosti, kde chceme, aby vy-niklo i pozadí při fotografování předmětu, který je dlouhý, při potřebě osvítit fotografovaný předmět z více míst, aby nevznikaly stíny, či prostě při fotogra-fování s extrémním osvitem. Fototyristor jde přidat jako druhý možný spouš-těcí prvek ke každému blesku tak, že jej zapojíme paralelně k vývodu, určenému pro spojení se závěrkou fotoaparátu.

Fototyristor nesmí spustit při dopadu běžného světla, musí sepnout pouze při světle primárního blesku. Průměrné osvětlení potřebné k sepnutí se pohybuje od 500 do 3 000 lx. Někdy je třeba umístit před fototyristor jednoduchý polo-propustný světelný filtr. U fotoaparátu Praktica LLC výrobce uvádí extrémně krátký expoziční čas při práci s foto-bleskem (1/125 s). Zpoždění sekundárního fotoblesku je i v krajních nepříznivých případech mnohem menší než řádu ms, což je vyhovující rezerva pro všechna použití. Nedostaneme-li koupit fototyristor, je možné jej snadno zhotovit z běžného tyristoru odříznutím horní části čepičky pouzdra. Pouzdro pak zacelíme kouském organického skla

Soubor přednášek z Konference o aktivních stavebních prvcích pro elektroniku – Rožnov 1967 a tentýž soubor 1968 -Ar-

Kompresor dynamiky

Komprimuje-li se signál před záznamem na magnetofonový pásek, je ho třeba pro přehrávání pásku expandovat, čímž se získá původní obraz signálu.

Příklad jednoduchého kompresoru je na obr. 1. U tohoto zapojení se usměrněným výstupním napětím řídí ynitřní odpor kanálu tranzistoru FET. Řízený tranzistor je zapojen v dolní větvi zpět-né vazby. Při větších vstupních signálech, kdy působí mezi kolektorem a emitorem větší napětí, by vlivem nelineárního odporu kanálu vznikalo zkreslení (především druhou harmonickou), proto je vhodné k získání co nejmenšího zkreslení pracovat s malým napětím mezi řídicí elektrodou a emitorem tranzistoru. Tranzistor FET je typu 2N5163, má kanál typu n s přechodém p-n.

Ke zmenšení harmonického zkreslení i při větších signálech je třeba připojit paralelně k odporu kanálu odpor 5,6 kΩ.

Funkce kompresoru se může zlepšit, přidáním dalšího operačního zesilovače do zpětné vazby podle obr. 2. Tento zesilovač slouží k napájení jednocestného usměrňovače.

Kompresní charakteristiky pro obě varianty kompresního zesilovače jsou na obr. 3. Operační zesilovač μΑ741 je

Obr. 1. Základní zapojení kompresoru dynamiky

Obr. 2. Zlepšené zapojení kompresoru dynamiky

Obr. 3. Kompresní charakteristiky pro obě zapojení

možno s úpravou nahradit typem MAA501 až MAA504. Tranzistor FET může být i typu BF244. 7. Z.

Stroboskop pro seřizování motorů

Pro kontrolu a seřizování spalovacích motorů se používá stroboskopická me-

Obr. 1. Stroboskop (paralelně k 39 kΩ chybí 0,1 μF)

toda. Tato metoda spočívá v tom, že se po každém rozepnutí přerušovače na krátký čas rozsvítí lampa, osvětlující rysku na setrvačníku nebo jiné rotující části motoru. Ryska se pohybuje kolem stupnice, na níž je vyznačena odpovídající poloha válce pro okolí jeho horní úvrati v úhlové míře. Při osvětlování stroboskopickou lampou se ryska vedle stupnice "zastaví" v místě, které odpovídá nastavenému předstihu. Osvětlené místo musí být samozřejmě chráněno před rušivým vlivem okolního světla a záblesky lampy musí být krátké. Např. při průměru setrvačníku 30 cm a 6 000 otáčkách za minutu musí být délka záblesku kratší než 5 μs, aby se kontura rysky příliš "nerozmazala"

Jako zdroje světla je nutno použít xenonovou výbojku a k spínání proudu do primárního vinutí ionizačního transformátoru je vhodné použít tyristor. Zapojení stroboskopu je na obr. 1. Stroboskop je napájen ze zdroje 600 V. Toto napětí získáme buď při použití sítového transformátoru usměrněním, nebo při přenosném přístroji použije-me měnič. Získáváme-li napětí ze svě-telné sítě, musíme dbát bezpečnosti obsluhy tak, že použijeme oddělovací transformátor a bod napájení označený 0 zemníme ochranným vodičem.

Nulový a vstupní vodič připojujeme paralelně k přerušovači tak, aby na vstupní elektrodě byly kladné impulsy. Odpor R_1 omezuje proud do řídicí elektrody tyristoru a dioda D_1 chrání přechod této elektrody proti průrazu zápornými zákmity na zapalovací cívce.

Transformátor Tr musí být navinut tak, aby jeho vinutí mělo vlastní rezonanční kmitočet vyšší, než odpovídá náběžné hraně záblesků. To znamená, že musí mít malou kapacitu. Náhrada součástek: Ty - KT505; $D_1 - KA501$. -Ru-

Dvojitou křemíkovou kapacitní diodu BB204 (vyrobenou epitaxně planární technikou), která je určena pro ladění v přijímačích VKV, uvedla na trh firma AEG-Telefunken. Dodává se s kapacitou 34 až 39 pF (zeleně označená), 37 až 42 pF (modře označená) při napětí 3 V a kmitočtu 1 MHz. Diody mají velký poměr kapacit 2,5 až 2,8 při napětích 3 a 30 V a velmi malý sériový odpor 0,4 Ω při kapacitě 38 pF. Systém s oběma diodami je v plastickém pouzdru TO-92 se společným vývodem katody uprostřed. Elektrické vlastnosti diod odpovídají rozšířené diodě BB104.

74 Amatérske ADD 19 389

Vatumi cast wijimace. vio hon na lisku.

Miloslav Rajchl, OK1DRM

V AR 7/73, 8/73, 10/73 a 11/73 jsem popsal svůj "liškový" přijímač. Protože na našem trhu není vhodný FET pro vstupní část přijímače, rozhodl jsem se stručně popsat celou novou vstupní část i s novým anténním systémem, osazenou jenom křemíkovými tranzistory. Ostatní části, tj. mezifrekvenční zesilovač, produkt-detektor a záznějový oscilátor jsou stejné jako v AR 7/73 a 8/73. Výsledná cillivost, měřená s měřicím rámem podle normy ČSN, se pohybuje okolo 15 µV/m při poměru s/š 10 dB. Tuto cillivost má naprostá většina přijímačů našich špičkových závodníků.

Obr. 2. Původní zapojení feritové antény

Celkové zapojení je na obr. 1. Oscilátor je zapojen stejně jako v AR 10/73, kde jsou pokyny k jeho oživení a nastavení. Směšovací je zapojen klasicky. Báze směšovacího tranzistoru je připojena na vazební vinutí laděného obvodu vysokofrekvenčního zesilovače. Vysokofrekvenční zesilovač je osazen tranzistorem s pokud možno malým šumem. V jeho kolektoru je zapojen laděný ob-

Obr. 6. Deska s plošnými spoji vstupní části

přijímače (H 206)

Obr. 4. Mechanické rozmístění a způsob vinutí feritové antény

vod, který značně přispívá ke zvětšení citlivosti a selektivity. Skokovou změnou napěťového děliče v bázi se mění zesílení tranzistoru. První odpor zvolíme tak, aby tranzistoru. Frvní odpor zvolime tak, aby tranzistorem protékal proud $I_0 = 1,2$ mA. Další odpory je třeba individuálně vyzkoušet. V poslední poloze přepínače, kdy je báze na potenciálu země, by měl útlum dosahovat alespoň 90 dB. Prutová anténa je připojena na emitorový sledovač. Z emitoru jde sig-nál na přepínač. V klidové poloze je signál zkratován na zem. Při přepnutí se signál přivádí na bázi tranzistoru vy-sokofrekvenčního zesilovače. O nasta-vení délky prutové antény platí totéž jako v článku v AR 11/73. Báze vysoko-frekvenčního zesilovače je připojena na vazební vinutí feritové antény. Pro dobré zaměření je vhodné udělat feritovou anténu symetrickou. Proto většina závodníků ladí anténu odděleným kondenzátorem, který je ve společném krytu s feritovou anténou. Se sháněním vhodného kondenzátoru však vznikají potíže. Nejlépe by vyhovoval tzv. split-stator. Závodníci většinou používají ploché dolaďovací trimry z předválečných dob, které pro náročný provoz přijímače ne-vyhovují. Také neustálé doladování vstupu zbytečně zdržuje. Přesto se mi úplně náhodně podařilo, že symetrickou anténu ladím asymetrickým kondenzátorem. Pak lze použít v přijímači vícenásobný kondenzátor a ladit vstup v souběhu s oscilátorem. Při svých po-

Obr. 3. Zapojení feritové antény v přijímači (L₁ vinuta v opačném smyslu než L₁')

Obr. 5. Uspořádání krytu feritové antény

390 Amatérske 1 1 10 74

kusech zvětšit nakmitané napětí z feritové antény jsem navinul vstupní cívku dvěma dráty současně (obr. 2). Abych zvětšil Q obvodu, navinul jsem každou cívku zvlášť na kraje feritové tyčky. Zapojení bylo stále asymetrické. Potom mě napadlo, že navinu-li jednu cívku v opačném smyslu než druhou, dostanu symetrické vinutí a přitom je mohu ladit asymetrickým 'kondenzátorem (obr. 3). Obě cívky musí být rozměrově, závity a indukčností stejné. Jakost obvodu paralelně spojených cívek je větší, než u antény s jednou cívkou. Na tuto anténu lze předělat každý přijímač. Samo-zřejmě, že indukčnost cívek bude závislá na použitém kondenzátoru.

Ćelkové nastavení přijímače se řídí všeobecnými zásadami pro sladování superhetu. Oscilátor kmitá o mezi-frekvenci níže. Na vyšším kmitočtu dolaďujeme kondenzátory, na nižším kmitočtu jádry cívek. U feritové antény navíjíme nebo odvíjíme závity. Nesmíme zapomenout měnit závity na obou cívkách shodně.

Použité součástky

R ₁	0.68 MΩ
R	2,7 kΩ
R.	6,8 kΩ
R.	4,7 kΩ
R_1, R_1	1 kΩ
R.	12 kΩ
R.	470 Ω
\hat{R}_{s}	39 kΩ
R_{1}, R_{13}, R_{14}	10 kΩ
R ₁₀	220 Ω
R ₁₁	820 Ω
T_1, T_2, T_4	KF124
T_{\bullet}^{13}	KF167
C_1, C_1	68 pF, keramika, stabilit
C.	1 nF/100 V, styroflex
	10 nF/100 V, svitek MP
C_{\bullet}, C_{\bullet}	22 pF/40 V, keramika
C_{\bullet} , C_{\bullet}	47 nF/40 V, keramika
C_{\bullet}	330 pP, keramika, stabilit
C_{1}	56 pF, keramika – stabilit
C_{i}	68 nF/40 V, keramika
	os my40 v, keramika
$C_{L_1} + C_{D_1}$	2 v 25 aV (increased said) anadain
$C_{\mathbf{L}_1} + C_{\mathbf{D}_1}$	3 x 25 pF (japonský triál, prodeja Svazarmu)
CL,	Svazarmu)

Tab. 1

Tran- zistor	Kolektorový proud	Uosc	Poznámka
T ₁	50až150μA	_	nastavit R ₁
T,	1,2 mA	_	viz text
T:	300 μΑ΄	90 mV	mezi bází a emitorem T _a
T.	1,5 mA	160 mV	na emitoru T4

Tabulka civek

- L₁ 24 závitů drátu o Ø 0,85 mm CuL, pravotočivě, L = 29 μH bez krytu
- 24 závitů drátu o Ø 0,85 mm CuL, levotočivě, L = 29 µH bez krytu
- L2 4 závity drátu o Ø 0,85 mm CuL L_1 paralelně s L'_1 maji indukčnost $L = 19 \mu \text{H v krytu}$

Mechanické uspořádání L1, L1, L2 - viz

obr. 4.
Feritová tyčka 100 mm, zelená tečka, typ
501 001 N2

Cívky jsou navinuty na papírové trubce o tloustce stěny 0,3 mm

- L; 30 závitů drátem o Ø 0,15 mm CulъH; odbočka na 5. závitu, $L = 19 \mu H$
- 3 závity drátu o Ø 0,15 mm CuLH, navinuto na jádro z mezifrekvence Zuzana apod.
- 60 závitů křižově drátu o \varnothing 0,15 mm CuLH, $L=28~\mu{\rm H}$ bez krytu navinuto na kostru o \varnothing 5 mm s jádrem M4 z N05.

Kmitoctor

Jiří Borovička, OK1BI

(Dokončení)

výprodeji se objevilo omezené množství krystalů 1 MHz, navíc je možné získat krystaly 1 MHz i z likvidovaných RM31. Jednotka PLL, která by pracovala s odstupem 1 MHz, by nenašla takové uplatnění, jako s krystalem o nižším kmitočtu. Synchronizované kroky po l MHz vyžadují doplnění oscilátorem, rozladiteľným mezi 0 až 1 MHz (např. 5 až 6 MHz) a stupnice takového oscilátoru by byla již dosti hrubá. Konstrukce lineárního oscilátoru s takovým rozladěním je amatérsky těžko realizovatelná. Běžnější je používání VFO s rozladěním 500 kHz (např. 5,0 až 5,5 MHz).

Na obr. 7 je schéma jednotky PLL, kde kmitočet krystaly 1 MHz je dělen

kde kmitočet krystalu 1 MHz je dělen na 500 kHz a pak dále zpracován pro fázovou synchronizaci VCO. V zapojení jsou použity integrované obvody TES-LA. Ve funkci oscilátoru 1 MHz jsou dvě hradla TTL MH7400. Obdobné zapojení je i v původním pramenu, kde

však používají rychlospínacích hradel SN74H00. Tato hradla mají na vstupu Schotkyho diody, které zkracují spínací čas. Autor článku uvádí, že použití běžných hradel SN7400 umožňuje řídit VCO pouze do 15 až 20 MHz. Autor měl zřejmě k dispozici hradla horší kvality než jsou naše, protože moje zkušenosti jsou rozdílné.

Přibližně obdélníkové napětí oscilátoru je přivedeno do jednoduchého klopného obvodu. Jako tvarovač pulsů pracují dvě zbývající hradla MH7400. Zapojení fázového diskriminátoru a stejnosměrného zesilovače je shodné s předchozím zapojením. Stejně tak i díl VCO s oddělovacími zesilovači. Vzhledem k tomu, že používáme všude napájecí napětí 12 V, které je pro hradla příliš velké, musíme napětí upravit na doporučenou velikost 5 až 5,5 V. Použijeme jednoduchý stabilizátor napětí s tranzistorem KF507 a Zenerovou diodou KZ721. Vybereme takovou, která

Obr. 7. Zapojení dílu PLL s IO TESLA

má napětí okolo 6 V; pak na výstupu získáme požadované napětí. V napájecí větvi pro MH7400 je zařazen odpor R_{15} s kondenzátorem C_{10} . Jejich úkolem je zpozdit narůstání napájecího napětí oscilátoru, což je podmínkou nasazení oscilací. Hradla mají totiž tak krátký spínací čas, že dojde k saturaci dříve, než by nasadily oscilace.

Obrazec plošných spojů je na obr. 8.

Uvedení do chodu

Nejprve uvedeme do chodu vlastní jednotku PLL s krystalovým oscilátorem, která je vlastně srdcem celého zařízení. K tomu však potřebujeme, aby již pracoval VCO. Uvedeme proto VCO do chodu prozatím jen na jedi-

1 MHz

+12 V

Obr. 8. Rozmístění součástek desce s plošnými spoji H 100 ke schématu na obr. 7

ném rozsahu, nejlépe na nejvyšších možných kmitočtech. Jakmile bude jednotka pracovat na vysokých kmitočtech, nebudou již na rozsazích niž-

ších žádné potíže.

K VCO připojíme ladicí kondenzátor a oscilátorovou cívku. Výstupní obvod zatím nemusí být zapojen. Emitorová odbočka je ve třetině závitů od studeného konce vinutí. Pomocí GDO nastavíme rozsah ladění zhruba kolem 30 až 35 MHz. Kapacitu prozatímního ladicího kondenzátoru zvolíme takovou, aby překryl laděním zhruba rozsah 500 až 1 000 kHz. Výstupní napětí VCO změříme na výstupu 1 (obr. 3) a má být asi 100 až 200 mV. Při ladění kondenzátorem se nemá měnit.

Pro měření a nastavení jednotky PLL potřebujeme osciloskop, miliampérmetr (nebo stejnosměrný voltmetr) a nf zesilovač. Další popis se vztahuje k obr. 2. Po pečlivé kontrole zapojení připojíme napájecí napětí (nejlépe stabilizované) 12 V. Přes oddělovací odpor 3,3 kΩ připojíme osciloskop na kolektor tranzistoru T_2 , kde musíme naměřit napětí přibližně obdélníkovitého průběhu. Tím máme zaručeno, že oscilátor kmitá. Pomocí tónového generátoru, připojeného na horizontální zesilovač osciloskopu, si ověříme, že kmitočet je shodný s kmitočtem krystalu. Je to nutné z toho důvodu, že některé krystaly mohou kmitat na parazitním kmitočtu. Když je vše v pořádku, nastavíme tvarovač impulsů. Připojíme osciloskop na kolektor T₃ a snažíme se získat průběh jehlových pulsů, jak je ve schématu nakreslen. Dosáhneme toho změnou vazební kapacity mezi krystalovým oscilátorem a tvarovačem. Tato kapacita spolu s odporem 1 kΩ tvoří derivační člen. Stejným způsobem nastavíme i druhý stupeň tvarovače. Měřime na kolektoru T4 a požadovaný průběh dosáhneme změnou vazebního odporu a k němu paralelně připojeného kondenzátoru.

Do vstupu I připojíme vf napětí z VCO. Do kolektorového přívodu T₆ zařadíme miliampérmetr s rozsahem 1 mA nebo připojíme voltmetr s větším Voltmetr nastavime na rozsah 10 V. Protáčením potenciem Protáčením potenciometru P1 se bude velikost proudu (nebo v druhém případě napětí) měnit zhruba od dílků 1 do dílku 9. Přesné nastavení není kritické, je však třeba zajistit možnost změny pracovního bodu kolem střední hodnoty (dílek 5). Jelikož se však nastavení mění s velikostí přiváděného ví napětí z VČO, je výhodnější regulace v širším rozsahu. Nebude však nutná, když zajistíme konstantní úroveň vf napětí při přepínání rozsahů VCO. Je to jen otázkou peč-livějšího nastavení. K výstupu 3 připojíme nf zesilovač se vstupní citlivostí asi 100 mV. Pomocí P₁ nastavíme pracovní bod na dílek 5. Výstup 2 jednotky PLL je spojen přes spínač se vstupem 2 VCO. Spínač rozepneme. Pro kontrolu připojíme k výstupu 3 (vstup nf zesilovače) osciloskop přes oddělovací odpor. Při prolaďování kondenzátoru VCO uslyšíme v reproduktoru kontrolního nf zesilovače zázněje každých 100 kHz. Nebude-li zázněj "v nule" a bude roz-laděn asi do 2 kHz od nuly (mezní kmitočet filtru), uvidíme na obrazovce osciloskopu sinusový průběh záznějového kmitočtu. Nastavená výchylka měřidla

se může odchýlit od střední hodnoty. Naladíme nulový zázněj, potenciometrem P1 nastavíme pracovní bod na dílek 5 (na voltmetru odpovídá napětí 6 V!) a sepneme spínač na výstupu 2. Tím okamžikem dojde k sychronizaci VCO. Přesvědčíme se o tom tím, že opatrně pohneme ladicím kondenzátorem na jednu i druhou stranu. Nesmime slyšet žádný zázněj a na obrazovce se nic neobjeví. Zvětšíme citlivost osciloskopu z původních 10 V na 100 mV a uvidíme pouze kladné a záporné špičky s amplitudou asi 20 mV. Při proladování kondenzátoru bude výchylka měřidla kolísat okolo původně nastavené střední výchylky. Změna může být až od dílku I do dílku 9; při dalším ladění kondenzátoru se synchronizace "utrhne" a naskočí na dalším kroku 100 kHz. Při pečlivém nastavení vf úrovní z VCO není třeba celou operaci opakovat na každém kroku a brzy se prakticky naučíme určit, zda je VCO v synchronizaci. Nové nastavení bude nutné pouze při změně rozsahu VCO (ale i to se dá odstranit). Při rozepnutém spínači (umístěném na pa-nelu), pracuje VCO jako plynule laditelný oscilátor.

Nastavení jednotky podle obr. 7 je obdobné. V tomto případě byl použit krystal ! MHz a kmitočet je dělen dvěma na 500 kHz. Zapojení bylo ověřeno i s krystalem o kmitočtu 100 kHz, děleným na kroky po 50 kHz. Na 35 MHz byla však již šíře synchronizace velmi malá (od dílu 4 do dílku 6). Přesto však po tříhodinové zkoušce synchroni-

zace ,,nevypadla".

Změříme opět nejprve krystalový oscilátor, zdali kmitá na základním kmitočtu, a pak ověříme funkci děliče. K tomu použijeme osciloskop a generátor, připojený ke vstupu horizontálního zesilovače. Kontrolu je možné také provést poslechem vyšších harmonických kmitočtů na krátkovlnném přijímači. Kdo má k dispozici krystal 500 kHz, vypustí dělič MO2 a propojí vstupní bod s výstupním svorkou. Je pochopitelné, že můžeme použít i jiné krystaly, pokud budou vyhovovat našemu záměru.

Jakmile jednotka spolehlivě pracuje nastavíme přesně kmitočet krystalu. Je to nutné, protože využíváme vysokého řádu vyšších harmonických a násobením se chyba zvětšuje. Při konečném kmitočtu 30 MHz a krystalu 100 kHz využíváme k synchronizaci 300. harmonickou. Základní odchylka krystalu 100 Hz má již za následek chybu 30 kHz. Nejvýhodnější je nastavení pomocí čítače BM445E nebo podobného. Ten však nemá každý k dispozicí. Po-užijeme-li však krátkovlnný přijímač (může být i Lambda), můžeme doladit krystal pomocí harmonických na ně-který normálový vysílač na 5, 10, 15 nebo 20 MHz. Čím vyšší kmitočet, tím bude nastavení přesnější. Jednou z mož-ností je i naše OMA na 2,5 MHz. Kmitočet nastavíme změnou vazební kapacity, zapojené v sérii s krystalem. S výhodou použijeme trimr.

Poslední fází bude nastavení rozsahů VCO. V návodu nejsou uváděny údaje cívek, jak již bylo zdůvodněno. Zmíním se jen o několika zásadách. Oscilátorový obvod musí být v souběhu s výstupním obvodem. Nastavení nebude kritické, protože výstupní obvod má při-pojené paralelní odpory, které rezonanční obvod zatlumí. Emitorové odbočky oscilátorových cívek jsou ve třetině závitů od studeného konce cívek. Změna v dosti širokém rozsahu nemá vliv na funkci oscilátoru díky velmi účinné automatice. Ladění jednotlivých rozsahů nedoporučuji příliš široké, vyžadujeme-li kroky po 100 kHz. Snadno některý krok přeskočíme. Maximální vhodný krok ladění je l MHz. U kroků po 200 až 500 kHz můžeme ladit i v širším rozsahu. Cejchování hrubé stupnice v jednotlivých krocích je pak snadné a přehledné. Stabilita nastavených kmitočtů VCO ve funkci laděného oscilátoru je vynikající. Byla měřena čítačem BM445E po několik dní na kmitočtu 25 MHz. Zařízení bylo střídavě zapínáno a vypínáno v několikahodinových intervalech a nedošlo k větší změně kmitočtu než 1,5 kHz. V zasynchronizovaném stavu se za dobu 16 hodin nastavená úroveň pracovního bodu vůbec ńezměnila (měřeno na kmitočtu 36 MHz). Během měření se teplota měnila asi o8°C.

Praktické využití

Hlavním motivem, proč jsem se zabýval vývojem jednotky PLL, byl nedostatek vhodných krystalů. Do přijímače se mi sice obtížně podařilo krystaly žádaných kmitočtů opatřit, nesehnal jsem však již stejnou sadu do vysílače a tak jsem musel k vysílání využívat signálu z premixeru přijímače. V podobné situaci budou jistě mnozí z vás. Dalším motivem byla snaha o využití moderní obvodové techniky u nás dosud neobvyklé.

S výhodou využijeme popisovanou jednotku v přijímači nebo i jen v konvertoru. Vhodné je zařadit PLL jako součást premixeru. Jednoduché zapo-jení umožní dosáhnout čtení kmitočtu

s přesností lepší než 1 kHz.

Navrhované zapojení premixeru je blokově naznačeno v obr. 9. Výstupní signál z VCO je přiveden do směšovače, kde je smíchán se signálem VFO. Roz-

Obr. 9. Blokové schéma zapojení jednotky v přijímači

sah ladění VFO je pouze 100 kHz (např. po 100 kHz. VFO pak ladí použití kroků po 100 kHz. VFO pak ladí pouze mezi jednotlivými kroky jednotky PLL. Bude-li mít kruhová stupnice VFO průměr 80 mm, bude odstup dílků po 1 kHz téměř 2,5 mm (stupnice s převodem 1:2, aby byl využit celý obvod). Vidíme, že to je cejchování, jaké má málokterý přijímač. Stupnice pak platí pro všechny rozsahy. Na obr. 9 je dále nakresleno blokově, jak využijeme dílů přijímače ke kontrole nastavení PLL. Na přepínač, umístěný na panelu, vyvedeme vstup nf zesilovače a měřidlo S-metru. Toto využití je výhodné, neboť nepotřebujeme další kontrolní zařízení. Přepínač má dvě polohy: kontrolní, sloužící k nastavení pracovního bodu PLL, a provozní, kdy přijímač pracuje ve své vlastní funkci. V praxi však získáte časem takovou rutinu při přelaďování PLL, že využívání kontrolních obvodů bude jen občasné.

Podobně jako v přijímači můžeme využít jednotky PLL i k řízení vysílače. Zde bude možná výhodnější nebo dostačující volit kroky o větším rozestupu (200 až 500 kHz), pokud nebudeme vyžadovat stejně přesné nastavení kmi-

točtu jako v přijímači.

Škoda, že se dosud spolehlivě a hlavně opakovatelně s dostupnou měřicí technikou nepodařilo vyvínout lineární oscilátor (VFO), který by měl rozladění 500 až 1 000 kHz. Pak by využití jednotky PLL umožnilo snadnou konstrukci komunikačního přijímače pro celý rozsah krátkých vln v krocích po 500 nebo 1 000 kHz. Lineární VFO, které jsem popisoval jako součást přijímače, nebylo dobře dořešeno mechanicky (vzhledem k mým možnostem) a vydrželo prakticky necelé dva roky. Přesto je jedním z mých cílů takový VFO, jehož výroba by byla amatérsky realizovatelná, vyvinout.

Další z možností vhodného uplatnění popisované jednotky je využití v měřicí technice. Konstrukce ví generátoru, technice. Konstrukce vf generátoru, který kromě plynulého ladění by měl i synchronizaci na násobcích vhodných kmitočtů (základní krystaly by se dále mohly ještě přepínat) by jistě bylo dalším zkvalitněním měřicího zařízení.

Při použití jednotky PLL ve vysílači nebo měřicím zařízení by bylo užitečné doplnění kontrolním obvodem (nf zesilovač, měřidlo). To by však zařízení komplikovalo a proto použijeme jiný způsob. Schéma takového obvodu je na obr. 10. Jde o jednoduchou žárovkovou zkoušečku, která indikuje, zda na jejím vstupu je napětí menší nebo větší než úroveň, nastavená potenciometrem 4,7 k Ω . Vstup připojíme na kolektor stejnosměrného zesilovače v jednotce PLL. Víme, že při správném nastavení pracovního bodu musí na kolektoru být přesně polovina z napájecího napětí, tj. 6 V. Při napětí 6 V na vstupu indikátoru nastavíme potenciometr $4,7~\mathrm{k}\Omega$ tak, aby svit obou žárovek byl shodný. To jde určit okem dosti snadno. Svit žárovek je asi poloviční, než když svítí naplno.

Obr. 10. Žárovková indikace vyladění

Zvětší-li se na vstupu napětí, zhasne žárovka \mathcal{Z}_2 a žárovka \mathcal{Z}_1 se rozsvítí plným jasem. Poklesne-li napětí na vstupu pod 6 V, zhasne žárovka \mathcal{Z}_1 a rozsvítí se naplno žárovka \mathcal{Z}_2 . Společný střed, kdy svítí obě žárovky slaběji, je poměrně úzký a tak můžeme snadno případě, že se rozsvítí některá ze žárovek naplno, poznáme, na kterou stranu musíme doladit. Tato indikace je sice jednoduchá, ale levnější než drahé měřidlo a pracuje velmi dobře.

Závěr

V článku byla popsána jednotka, umožňující získat vysoce stabilní kmitočty v krátkovlnném rozsahu při použití jediného krystalu. Úkolem článku bylo seznámit čtenáře s principem fázově uzavřené smyčky a poskytnout praktický návod na stavbu základní jednotky. V článku jsou naznačeny cesty k praktickému využití této jednotky. Jednotka PLL, využívající krystalu 100 kHz byla prověřena do kmitočtu 38 MHz, avšak vzhledem k velmi širokému synchronizačnímu rozsahu na tomto kmitočtu je předpoklad využití na kmitočtech ještě vyšších. Jednotka s integrovanými hradly, vycházející z kmitočtu 1 MHz děleného na 500 kHz, pracuje na kmitočtu 38 MHz také s velmi širokým synchronizačním rozsahem. Použití krystalu 100 kHz děleného na 50 kHz umožnilo synchronizaci do kmitočtu 35 MHz, avšak již s velmi úzkou synchronizací. Důležitá je volba součástí, hlavně tranzistorů. Přísný požadavek je na tranzistory nebo hradla v tvarovači pulsů, kde záleží na velmi krátkém spínacím čase. Rychlost spínání určuje maximálně použitelný kmitočet. Tranzistory ve stejnosměrném zesilovači (Darlington) mají mít co největší zesilovací činitel. Diody ve fázovém diskriminátoru mají být spínací - výběr v našich typech je již dostatečný. Obtížné nebude ani sehnání vhodného varikapu. Byly zkoušeny zahraniční BA102, BA110, BA111 a z našich KA213. Nebyly ověřeny KA204. Překvapující však bylo zjištění, že ve funkci varikapu je možné použít běžnou usměrňovací diodu KY130/80. Jelikož pracuje v závěrném směru, ne-prochází jí prakticky žádný proud a tak i teplotní stabilita může být dobrá. Ve srovnání s BA111 na kmitočtu 35 MHz nebyly zjištěny naprosto žádné rozdíly.

Často se v AR setkáváme s tvrzením, že popisované zařízení chodí s mimotolerantními tranzistory a na první zapojení. Jaká bývá praxe, dobře víme, a pokládám takováto tvrzení za neodpovědná. Nebudu to proto tvrdit ani o tomto zařízení. Musíme si uvědomit, že tranzistor je tranzistor a pro opti-mální režim vyžaduje individuální nastavení pracovních bodů i v případech jednoduchých zapojení. Kde je podobného nastavení třeba v tomto zařízení, bylo uvedeno. První prototyp zapojení (obr. 2) mi dal hodně práce, než "chodil" tak, jak jsem si představoval. Při ověřování opakovatelnosti však již nebylo třeba dělat další zásahy. Podařilo sé mi opatřit integrované obvody; použité v původním pramenu. Měření potvrdilo, že není rozdílu v kvalitě funkce mezi původním návrhem a adaptací na diskrétní součástky. Zapojení s našimi 10 (obr. 7) bylo ověřeno na zkušební desce a v definitivním provedení na plošném spoji byly použity jiné kusy IO. Nebyly zjištěny žádné změny mezi vzorkem a konečným provedením. Upozorňuji však, že použité IO byly běžné, ze sériové výroby, ale ne mimotolerantní.

Ještě bych rád upozornil na mecha-nické provedení. VCO bude asi součástí premixeru. Jednotka PLL však může být umístěna nezávisle. Bude vhodné ji uzavřít do stíněné krabičky (s úspěchem již dlouhou dobu vyrábím podobné krabičky ze zbytků cuprextitu, které po nastříkání lákem vypadají vzhledně). Přívody, včetně napájení, vedeme stí-něným kablikem. Používám běžný nf mikrofonní kablík i pro přívod ví mezi VCO a jednotku PLL. Užitečné je i blokování přívodů v krabičce (průchodkovými kondenzátory). Zamezíme tím tak pronikání nežádoucích kmitočtů do zbývající části zařízení. Nebezpečí spektra kmitočtů nehrozí, je využíváno k synchronizaci a nemůže vytvářet zázněje. Měření prováděná spektrometrem a publikovaná v zahraniční literatuře uvádějí potlačení nežádoucích kmitočtů více než o 70 dB.

Závěrem přeji všem hodně úspěchů ve stavbě. Případné dotazy zodpovím písemně nebo na pásmu.

Rubriku vede ing. M. Prostecký, OK1MP, U průhonu 44, 170 00 Praha 7

Změny v soutěžích od 15. července do 15. srpna 1974

"S6S"

Za telegrafní spojení získaly diplomy číslo 5 071 až 5 091 (v závorce je uvedeno pásmo doplňovací známky) stanice:
UW9DA (14), UA0NH (14), UA3TAB (14),
UA4QM (7), UK4MAZ (14), UB5ECA (14),
UA3TAE (14), UK0SAL (14), UA3VAD (14),
UK5QBE (14), UB5MCI (14), UA4WAR (14),
UK2FAM (14), UA3ET (14, 21), UA9CAX

(14, 28), DK4AZ, DL1YK (7, 14, 28), OK1FA (21), OK3KFF (3,5 - 7 - 14 - 21), OK1MJL, SP2KFQ, SP8FNA (14), G3JFC (14), JE1UHD*

SP2KFQ, SP8FNÅ (14), G3JFC (14), JE1UHD (14), WA2ZWH (21), DK8NM, DK2UB (14). Za spojeni SSB byly udčleny diplomy čislo 1 292 až 1 299:
UL7NW (14, 21), UW3EQ (14), JR1EDM (14), OK3YCE (3,5), HA5KFA (21), PY7NS (14), CN8CC (21), WA2ZWH, VP9HE.
Doplňovač známky za spojeni SSB byly vydány stanicím OK1OAT (21) a OK1MGW (28) a za telegrafni spojeni OK1XN (7).

"OK-SSB Award"

Diplomy za spojení s československými stanicemi na SSB získali:

na SSB ziskali:

ĉ. 349 UW3RR, Tambov, č. 395 UA4QM, Kazaň,

č. 396 UB5UAK, Kiev, č. 397 UT5ZM, Záporoži,

č. 398 UA3ERD, Orel, č. 399 DJ5AVA, Kirchweg,

č. 400 G3YSK, WEEKE, č. 401 SP6PAZ, Opole,

č. 402 OK2KW1, Ostrava, č. 403 LZIMH, Haskovo,

č. 404 OK1MJL, Trutnov, č. 405 OK3TRP,

Nitra, č. 406 OK2BPF, Brno, č. 407 OK1KUR,

Praha, č. 408 OE1SKB, Videň, č. 409 SP1KIZ,

Postino, č. 410 SP1II, Postino, č. 411 DK3TC,

Calw.

10 Amatérské VAII 10 393

"100-OK"

Dalších devatenáct stanic získalo základní diplomy č. 3 224 až 3 242. Jsou to:
UT5WW, UA3DBZ, UA4LM, DL3IX, SP4AVG, SP9EML, SP3EQE, OKIKWN (771. OK), OK3TCP (772. OK), OK3ZIR (773. OK), OK2BHE (774. OK), OK2SSJ. (775. OK), SP9GMI, OEISKB, SP9DLR, G3ZRH, SP7XX, SP6PAZ, DK2UB.

"200-OK"

Doplňovací známky získaly stanice: č. 403 SP6PAZ k základnímu diplomu číslo 3 241 a č. 404 SP2IW k č. 371.

,,300-OK"

Byly vydány tři doplňovací známky: č. 195 UK4WAC k diplomu č. 3 029, č. 196 SP6PAZ k č. 3 241 a č. 197 OK2BLH k č. 1 991.

"P75P"

Za uplynulé období bylo vydáno devět diplomů (počet zón doplňovací známky je uveden v závorce). Jsou to č. 537 až 545 v pořádí: UWIVY (50, 60), UK4TAB (50), UK4WAB (50, 60, 70), UV9DO (50), LA7FJ (50), SP6TQ (50), SP6DMJ (50), OK2BOL (50), ZLIBDW (50).

(50).
Současně byly vydány posluchačské diplomy č. 41 až 46:
UA9-154-27 (50), UQ2-037-43 (50), UB5-073-619 (50), UB5-059-105 (50, 60); DE-L20-15581 (50), BRS 17567 (50).
UQ2-037-1 získal doplňovací známku za poslech 60 zón k základnímu diplomu č. 32.

"ZMT"

Byly vydány diplomy č. 3 232 až č. 3 253 sta-

Byly vydany diplomy c. 3 232 az c. 3 253 stanicim:

UA10AI, UJ8BQ, UB5ZA, UK6JBV,
UA4YAW, UB5RAF, UA9LAQ, UW4AK,
UW3EQ, UA9YAR, UA4HBR, UK2FAM,
UY5SB, UA9XS, G5ZRH, SP6TQ, SP6FER,
SP2KFQ, OK2BFI, OK3KFF, OK2PFA,
JA1QXY.

KV_ORA 150"

"KV-QRA 150"

Były vydány tři diplomy: č. 315 OK3TCP, O. Batochová, Nové Zámky, č. 316 OK3ZIR, S. Novák, Košice a č. 317 OK1MAW, V. Havlík, Polička.

"KV-QRA 250"

Potřebné QSL předložil a doplňovací známku č. 59 získal OKIATJ, K. Šrol, Jamné nad Orlicí.

"P-100 OK"

Diplomy č. 623 až 625 získali posluchači: UA3-122-385, UB5-077-7, SP9-1088.

"P-ZMT"

Bylo uděleno devět diplomů č. 1 604 až 1 612

v tomto poradi: UA3-122-479, UA4-094-110, UA3-142-279, UA9-161-58, UA2-125-58, UA9-154-522, UA0-110-29, SP2-7581, SP6-9603.

"P-ZMT 24"

Diplomy č. 9 a 10 získali UA2-125-57 a UB5-059--105.

"RP OK DX"

Byly vydáný tři diplomy. Číslo 603 až 605 v po-OK1-415, OK3-26327, OK3-26419.

Rubriku vede L. Didecký, OK 11Q, 53807 Seč 197

Stav k 10. 8. 1974

CW/FONE

I. OK1FF OK3MM OK1ADM OK1SV OK1ADP OK1MP OK1MP	340 (341) 337 (337) 330 (330) 326 (332) 315 (320) 307 (309) 300 (300)	OK2NN OK1AAW OK2QX OK1LY OK1US OK1AW OK1AW OK1AKQ OK2OP OK3CDP	251 (261) 250 (262) 248 (253) 247 (275) 243 (250) 242 (251) 241 (287) 241 (245) 240 (259)
OKIJKM OKIGT OKITA OKITA OKIAHZ OKIZL OKIFV OKIKUL OKIMG OK2DB OK3HM OKIPR	297 (298) 290 (293) 287 (292) 284 (287) 283 (290) 279 (280) 278 (289) 271 (291) 267 (267) 260 (261) 256 (258) 252 (257)	OKIAII OKIMPP OKINR OKICG OKIBY OK3QQ OKIVK OKIAHV OKIAHV OK3EE OK3YCE OK1NH OKIKTL OK2AOP	240 (240) 238 (265) 235 (249) 230 (250) 230 (250) 230 (249) 229 (235) 224 (224) 221 (223) 220 (220) 217 (229) 216 (220) 215 (248)

208 (215) 206 (249) 206 (206) 198 (198) 197 (205) 196 (201) 195 (230) 193 (206) 190 (224) 189 (205) 189 (201) 183 (183) 182 (194) 181 (198) 179 (200)	OK3ALE OK2BNZ OK1AHI OK1PG OK2BMF OK2ABU OK3CAU OK1MSP OK1AKU OK2BBI OK1DVK OK1STU OK1EAM OK2BEN OK1KZ	177 (199) 175 (186) 173 (225) 171 (194) 171 (187) 169 (177) 166 (181) 164 (164) 158 (196) 158 (184) 158 (184) 154 (169) 145 (163)
FO	NE .	
324 (324) 310 (314)	OK2BEN OK1AWQ OK1XN OK3ALE	142 (148) 139 (139) 136 (178) 127 (155)
	206 (249) 206 (206) 198 (198) 197 (205) 196 (201) 195 (230) 193 (206) 190 (224) 189 (201) 183 (183) 182 (194) 181 (198) 179 (200)	206 (249) OK2BNZ 206 (206) OK1AHI 198 (198) OK1PG 197 (205) OK2BMF 196 (201) OK2ABU 195 (230) OK3CAU 193 (206) OK1AKU 189 (205) OK2BBI 189 (201) OK1DVK 189 (201) OK1DVK 183 (183) OK1STU 182 (194) OK1CABU 179 (200) OK1KZ FONE OK2BEN OK2BEN OK1AWQ OK1XN

I. OKIADM	324 (324)	OK2BEN OK1AWQ OK1XN	142 (148) 139 (139) 136 (178)
OKIADP	310 (314)	OK3ALE	127 (155)
п.		OKICEJ	119 (172)
		OKIKCD	119 (157)
OK1MP	290 (292)	OKIAAW	118 (148)
OKIAWZ	265 (271)	OK1ZL	_ 117 (117)
OKIJKM	258 (259)	OK1LM	116 (141)
OK1AHZ	250 (266)	OK1MG	116 (130)
OK1MPP	234 (264)	OK1FBV	116 (130)
OKITA	227 (252)	OKIDVK	111 (137)
OKIAHV	223 (223)	OK1BEG	111 (125)
OK2DB	216 (224)	OKIUS	105 (128)
OK3YCE	212 (212)	OK2OX	102 (116)
OK3EA	211 (220)	OKIAKU	101 (101)
OK1VK	210 (215)	OKIDWZ	99 (124)
OKIBY	205 (207)	OKIACE	98 (108)
OKISV	204 (223)	OK2BBI	97 (167)
OKINH	199 (216)	OK1AKL	85 (100)
OKIAGO	194 (196)	OKIVO	78 (114)
OKIFV	185 (197)		
OK3EE	169 (181)	OK2BIQ	78 (102)
OKIKCP	154 (203)	OK1AHM	75 (95)

OKIAVU	151 (193)	OK1KZ OK2BJT	64 58
II OKIIQ	II. 145 (145)	OK2BRR OK2KNP OK2BMS	56 51 50
		w	
OK1FF	I. ` 339 (339)	OKIIAG OKIAWQ	147 (147 (

OKISV	322 (239)	OKIAKU	146 (150)
OK3MM ·	314 (314)	OKIACO	145 (174)
OKIADM	300 (302)	OK100	140 (180)
OKIMDM	300 (302)	OKIDIM	140 (163)
11		OK2BOL	139 (157)
	• .	OK3BDE	133 (160)
OKIKUL	267 (287)	OK2BBI	132 (150)
OK3EA	266 (270)	OK2KNP	132 (143)
OK1TA	259 (266)	OK1WX	132 (134)
OK3UI	253 (256)	OKIDVK	131 (156)
OKIPR	252 (257)	OK3ALE	130 (164)
OK3IR	246 (253)	OK3YAI	129 (141)
OK2QX	245 (250)	OK3UN	127 (150)
OKIAHZ	241 (247)	OK2BSA	127 (145)
OKIAII	240 (240)	OK3KWK	126 (141)
OK1AKQ	239 (285)	OK1FON	121 (138)
OKICG -	232 (252)	OK1KZD	120 (140)
OK3QQ	229 (248)	OKINH	118 (125)
OK2BBJ	229 (236)	OK1VO	115 (133)
OK1AMI	221 (223)	OK3ZMT	114 (143)
OK2BRR	220 (267)	OK1DBM	112 (132)
OK2DB	212 (217)	OK3CIS	111 (137)
OKIDH	208 (214)	OK3KYR	109 (115)
OK2BMH	205 (227)	OK1KPR	109 (109)
OK2BKV	201 (220)	OKIMAW	105 (168)

	OK2BRR	220 (267)	OK1DBM	112 (132)
	OK2DB	212 (217)	OK3CIS	111 (137)
	OKIDH	208 (214)	OK3KYR	109 (115)
	OK2BMH	205 (227)	OK1KPR	109 (109)
	OK2BKV	201 (220)	OK1MAW	105 (168)
	OK2BIX	199 (222)	OKIDAV	105 (132)
	OK1WV	199 (214)	OK3LW	- 104 (126)
	OK2BIP	199 (205)	OKIIAR	102 (141)
	OK1BP	198 (232)	OK1APS	102 (123)
	OK2OQ	196 (201)	OK1KCF	97 (104)
	OK2BCJ	195 (210)	OK2ALC	94 (123)
	OK1EG	194 (217)	OK1AJN	94 (112)
	OK3BH	191 (206)	OK1AOZ	93 (127)
	OK2KMB	191 (203)	OKIXK	91 (100)
	OK1ACF	190 (196)	OK2BEF	90 (105)
	OK3DT	188 (195)	OK2BEU	89 (113)
	OKIIQ	183 (183)	OK3YBZ	89 (105)
	OKIAOR	181 (198)	OK2PCN	85 (106)
	OK1FAK	180 (1 95)	OK2PBG	84 (101)
	OK3EE	180 (190)	OK1PCL	84 (96)
	OK2BNZ	173 (183)	OK2KVI	83 (99)
	OK1KYS	169 (192)	OKIKHG	81 (87)
	OK2BMF	169 (185)	OKIDWA	80 (122)
	OK3CAU	169 (184)	OKIFAV	80 (95)
	OK1BMW	169 (181)	OKIDLM	77 (106)
	OK1PG	165 (194)	OK1AFX	77 (91)
	OK1MSP	162 (176)	OK2SSD	76 (108)
	OK1CIJ	159 (179)	OKIADT	75 (92)
	OK3JV	159 (174)	OKIKIR	69 (78) 71 (78)
	окзвт	158 (170)	OKIASG	71 (78)
	OKIDN	156 (171)	OK2PDI	60 (67)
	OK1ATZ	155 (185)	OK3KTY	57 (60)
	OK1CAM	154 (189)	OK2KYD	56 (62)
m.			OK2SBV	54 (74)
	-		OKIZK	54 (65)
	OK1KZ	149 (158)	OKIAIJ	54 (60)
	OK3RC	147 (161)	OKIXC	52 (56)

OK3BT	158 (170)	OKIASG
OKIDN	156 (171)	OK2PDI
OK1ATZ	155 (185)	OK3KTY
OK1CAM	154 (189)	OK2KYD
	,	OK2SBV
II	I.	OK1ZK
OK1KZ	149 (158)	OKIAIJ
OK3RC	147 (161)	OKIXC
	(,	0

SSTV

	RT	ΓY	•
(30)	OK1MP	69	(78)
(29)	OK3KFF	20	(39)
	OK2BJT	11	(18)

I. OK2-4857 U. OK1-7417 OK1-6701 OK1-15835 OK1-10896 OK2-5385 OK1-11779 OK1-18550 OK2-21118 OK2-18583 OK1-20240	286 (313) 277 (302) 260 (282) 250 (291) 195 (266) 205 (241) 160 (236) 157 (223) 155 (252) 151 (151)	OK1-18556 OK1-17323 OK1-18549 OK1-25322 OK1-5324! OK1-17358 OK2-9329 OK1-17738 OK2-18764 OK1-18438 OK2-17863 OK2-6910 OK1-17786 OK2-16350 OK1-15779	140 (142) 128 (182) 122 (201) 121 (201) 121 (172) 119 (196) 92 (161) 87 (171) 85 (137) 75 (92) 74 (116) 65 (117)
		OK3-18190 OK1-15687 OK1-15689	60 (113) 53 (137) 53 (98) OK1IQ

RP

Vyhodnocení mistrovství ČSSR v práci na KV za rok 1974

Závodů, které jsou započítávány pro MR, se v roce 1973 zúčastnilo celkem 186 různých stanic jednotlivců OK/OL, 56 stanic kolektivních a 17 posluchačů. Protože se výak některé stanice nezúčastnily alespoň 3 závodů, bylo v MR 1973 hodnoceno celkem 33 stanic jednotlivců, 10 stanic kolektivních a 5 posluchačů.

Kategorie jednotlivců

SSB CQM ZM OK-DX FONE

•				C	elkem	bodů	
OK1MPP OK2QX OK1TA OK3ALE OK1IAR OK2BBI OK2LN OK2BKL OK3SIH OK2PEQ	53 -48 49 -50 -31 35	72 73 71 65 48 61 59	34 30 —	194 193 192 190 183 174 170 163 176 185	47 49 	319 313 311 288 282 272 261 253 247 246	
Kategorie kolektivních stanic							
OK3KAG OK3KII OK1KYS OK3KAP OK3KKGI OK3KKF OK3RKA OK1OAT OK3KTY OK2KTE	16 8 13 — 1	18 16 17 — 10 — 2	16 14 — 11 12 — 5	50 48 43 42 32 44 35 38 26 22	15 13 2 8 7 12	84 79 73 67 58 57 57 47 38 36	
	_ Katego	rie po	slucha	čů			
OK2-4857 OK1-6701 OK3-26180 OK1-17825 OK1-18550	5 - 2	 5 6 3	4 2 3 1	7 4 8 6	7 8 —	18 17 15 15 6	
	OK2QX OK1TA OK3ALE OK1IAR OK2BBI OK2LN OK2BKL OK3SIH OK2PEQ Ka OK3KAG OK3KII OK1KYS OK3KAP OK3KAP OK3KKF OK3KKT OK3KTY OK2KTE	OK2QX — OK1TA 48 OK1TA 48 OK1TA 49 OK1TA 49 OK11AR — OK2BBI 50 OK2LN 35 OK2PEQ — Kategorie 6 OK3KAG — OK3KII 16 OK1KYS — OK3KGI 13 OK3KGI 13 OK3KGI 13 OK3KGI 13 OK3KKF — OK3KGI 13 OK3KKF — OK1OAT 1 OK3KTY — OK2KTE — Katego OK2-4857 — OK1-6701 5 OK3-26180 — OK1-17825 —	OK2QX — 73 OK1TA 48 71 OK3ALE 49 — OK1IAR — 65 OK2BBI 50 48 OK2LN — 61 OK2BKL 31 59 OK3SIH 35 — OK2PEQ — 11 Kategorie kolekti OK3KAG — 18 OK3KII 16 — OK3KAG — 18 OK3KII 16 — OK3KKI 13 — OK3KKI 1 — OK3KKI 1 — OK3KKI 1 — OK3KI 1 — OK3KI 1 — OK3KI 1 — OK3KI 1 — OK3ALE — 2	OK2QX 73 — OK1TA 48 71 — OK1TA 48 71 — OK1IAR — 65 34 OK2BH 50 48 — OK2LN — 61 30 OK2BKL 31 59 — OK2PEQ — 11 — Kategorie kolektivnich OK3KAG — 18 16 OK3KII 16 — — OK1KYS — 16 14 OK3KAF = 17 — OK3KGI 13 — — OK3KGI 13 — — OK3KKF — 11 OK3KG — 11 OK3KG — 11 OK3KG — 12 OK10AT 1 — — OK3KKT — 5 OK2-4857 — 4 OK1-6701 5 — 4 OK1-6701 5 — — OK3-26180 — 5 2 OK1-17825 — 6 3	OK1MPP 53 72 — 194 OK2QX — 73 — 193 OK1TA 48 71 — 192 OK3ALE 49 — 190 OK11AR — 65 34 183 OK2BBI 50 48 — 174 OK2LN — 61 30 170 OK2BKL 31 59 — 163 OK3SIH 35 — 176 OK2PEQ — 11 — 185 Kategorie kolektiwnich stanic OK3KAG — 18 16 50 OK3KII 16 — 48 OK1KYS — 16 14 43 OK3KGI 13 — 32 OK3KGI 13 — 32 OK3KGI 13 — 32 OK3KKF — 11 44 OK3RKA — 10 12 35 OK1OAT 1 — 38 OK3KTY — 5 26 OK2KTE — 2 — 22 Kategorie posluchačů OK2-4857 — 4 7 OK1-6701 5 — 4 OK3-26180 — 5 2 8 OK1-17825 — 6 3	OK2QX — 73 — 193 47 OK1TA 48 71 — 192 — OK3ALE 49 — 190 49 OK11AR — 65 34 183 — OK2BBI 50 48 — 174 — OK2BKI 31 59 — 163 — OK3SIH 35 — 176 36 OK2PEQ — 11 — 185 50 Kategorie kolektievnich stanic OK3KAG — 18 16 50 — OK3KII 16 — 48 15 OK1KYS — 16 14 43 — OK3KGI 13 — 32 13 OK3KKF — 11 14 2 OK3RG — 11 14 2 OK3RG — 11 12 35 — OK1OAT 1 — 38 8 OK3KTY — 5 26 7 OK2-4857 — 4 7 7 OK1-6701 5 — 4 8 OK3-26180 — 5 2 8 — OK1-17825 — 6 3 6 —	

Nicolaus Copernicus SP-DX Contest 1973

Výsledky OK stanic

Jeden	operatėr,	všechna	pásma	(celkem	9	oĸ	stn.)
	OK	2QX		106 08	0		
	OK	3EE		91 14	0		
	ok	2PBM		70 70	0.		
	OK	2PAW		47 77	5		
	OK	3TRG		27.06	n	•	

Jeden operater,	pásmo	3,5	MHz	(celkem	44	ОK	sin.

eratér, pásmo 3,	5 MHz (celkem 44 OK sin.
OK5WDC	76 869
OK2BIQ	69 460
OK1DWA	48 411
OK1AXA	46 269
OK5BEH	45 000
Jeden operaté	r, pásmo 7 MHz
OK1FNK	16 758
OKIARF .	. 11 715
OK1MBZ	1 584
ratérů, všechna	pásma (celkem 9 OK stn.
OK3KWK	124 848
OK3RKA	77 292
OK3KAP	61 500
OK1KIR	45 315
OK3KWO	27 720
	•

Posluchači

Vice oper

108 966
35 346
26 361
15 960
11 658

XXVI. POLNÍ DEN 1974

Diskvalifikované stanice – 145 MHz: OK2KJU, OK2KYK, OK2KYZ, OK2KZT, OK1KLX, OK1KSD, OK3KAH, OK3KMW, OK1OFA, OK1KAD – pozdě zaslaly deniky.
Pásma 433 a 1296 MHz: OK1KJB, OK1KPB, OK2EH – neuvádí GMT. OK1KSD, OK2KJU – pozdě zaslaly deniky.

Deniky nezaslaly stanice: OK1KFW,OK1KKS(2x), OK1KPX, OK1KYF, OK2KGE, OK2KVT, OK3KEG. 8 stanic zaslalo deniky pro kontrolu. Polniho dne 1974 se zúčastnilo celkem 271 čs. stanic.

Kategorie I, 145 MHz/1 W

bodů		
1. OK1OA 33 790	54. OK5LVT	9 091
2. OK2KSU 33 388	55. OK1KKI	8 934
3. OK2KEZ 31 092	56. OK3KDY	. 8 806
4. OK1KHK 27 916 5. OK3KII 27 003	57. OK1KJB 58. OK2KTE	8 744 8 526
	59. OK2KPS	
6. OK3KJF 26 685 7. OK1KPU 22 087	60. OK1KZN	8 353 8 346
8. OK3KMY 21 823	61. OKIKUI	8 179
9. OK1KKH 20 875	62. OK3KRN	8 111
10. OK3ZM 20 823	63. OK2KRT	8 092
11. OK1KNH 20 359	64. OK3RIS	8 036
12. OK2KBE 20 343	65. OK1ONA	8 035
13. OK3KCM 20 121	66. OKIKPJ	7 902
14. OK1KKT 18 843	67. OK2KHF	7 801
15. OK1KIA 18 370	68. OK2BLK	7 716
16. OK1KKL 18 243	69. OKIKAM	7 562
17. OK1AIK 18 160	70. OK1KMM	7 395
18. OK2KAU 17 776	71. OK2KEA	7 082
19. OKIAME 17 364	72. OK2KGV	7 071
20. OK2KVS 17 355	73. OK1KGR	6 842
21. OK2KLK 17 310	74. OKIKNF	6 778
22. OK3KBM 17 293	75. OK1WAB	6 279
23. OK2KVI 17 167	76. OK3KED	6 057
24. OK1KCR 17 140	77. OK2KGP	6 040
25. OK2KEY 16 657	78. OK2KVD	6 020
26. OK1KDO 15 868	79. OK3RLA	5 777
27. OK3KAP 15 843	80. OK2KWI	5 583
28. OK3KHO 15 729	81. OK2KNN	5 317
29. OK3KME 15 294	82. OK1KSF	5 261
30. OK1KUO 15 229	83OK1DVC	5 252
31. OK2KJT 15 005	 84. OK1KJO 	5 212
32. OK2KHD 14 984	85. OK1MJB	5 195
33. OK1IM 14 979	86. OKIKWJ	5 150
34. OK2KFM 14 744	87. OK1KPB	4 890
35. OK1KVR 14 555	88. OKIKVA	4 662
36. OK2KYD 14 457	89. OK3KGQ	4 011
37. OK1KCS 14 290	90. OK3KDX	3 450
38. OK2KUB 14 273	91. OKIDBK	3 399
39. OK2KNP 14 111	92. OK3KKF	3 329
40. OK1KPX 13 786	93. OK3YCI	3 062
41. OK1KIX 13 600	94. OKIKSH	3 015
42. OK3IW 13 141	95. OK3RXA	2 765
43. OK1KWP 12 350	96. OK1KGO	2 655
44. OK2RGA 12 121	97. OK3KPN	2 223
45. OK1AEX 12 050	98. OKIKAI	2 009
46. OK2DB 11 851	99. OK1KIV	2 002
47. OK3KTY 11.444	100. OK3KEF	1 810 1 770
48. OK2VP 11 291	101. OK1VMK	
49. OK2KOS 11 117	102. OK3OM	1 575
50. OK3CGX 10 882	103. OKICB	968. 557
51. OK2KDJ 10 676 52. OK3KDD 10 342	104. OK2BCI 105. OK1ZW	433
52. OK3KDD 10 342 53. OK3KGW 10 079	105. OK1ZW 106. OK3RYB	412
33. OKSKGW 10 079	TOO. OKSKIB	412

Kateg	orie II,	145 MHz/5 W	
	bodů	•	
I. OKIAGE	38 508	40. OK2KHS	11 483
2. OK3KTR	35 282	41. OK2KOG	11 409
3. OK2BDS	29 138	42. OK1KBC	11 407
4. OKIKOK	28 625	43. OKIKKP	10 711
5. OKIKKD	26 294	44. OK3KL1	10 533
6. OK3KPV	25 144	45. OKIKUY	10 440
7. OK3KFV	25 104	46. OK1FAW	10 129
8. OK1KPL	24 888	47. OKIHAK	9 879
9. OK3KWM	24 847	48. OK1KLU	9 801
10. OKIKTL	24 354	49. OK1KIT	9 617
11. OK1XN	24 083	50. OK1KTA	9 535
12. OK3KOM	23 619	51. OK2KDU	9 404
13. OK1KZE	22 272	52. OK1KWN	9 239
14. OK1KPR >	20 735	53. OK2KUI	9 212
15. OK2KUM	19,635	54. OK2KTK	8 810
16. OKIKCU	19 232	55. OK2KWS-	8 726
17. OKIKIR	18 765	56. OK1KTC	8 702
18. OK3KGX		57. OK1KPZ	8 668
19. OKIKVK	18 168	58. OKIKDC	8 344
20. OK1KZD	17 956	59. OK1KJD	8 038
21. OK2KLF	17 633	60. OK2KYI	7 109
22. OK1KIM		61. OK1KWV	7 068
23. OKIMUK	16 738	62. OK2KZO	6 745
24. OK2KPD	16 466	63. OK2KPT	6 717
25. OKIKRY	10 331	64. OK1HL	6 582
26. OK2KMB	15 790	65. OK1OFG	6 578
27. OK2KAT	15 475	66. OK2KNZ	6 326
	15 329	67. OKIKEL	6 320
29. OK5VSŽ	14 651	68. OK10FD	6 288
30. OKIKTW	14 613	69. OK2KCN	6 272
31. OKIKPW	14 232	70. OK2KOH	6 257
32. OKIKLV 33. OK5KCI	13 180	71. OK1KNA 72. OK1KSL	6 094
34. OK3KUL	13 166 12 991	72. OKIKSL 73. OKIOAE	5 820
35. OK1KHL	12 826	74. OKIOAE 74. OK3KLM	5 653 5 416
36. OKIVTF	12 455	75. OK2KGD	5/383
37. OK2KLD	12 409	76. OK2KGD	5 240
38. OK1FAN	12 136	77. OK2KOD	5 112
39. OK1KHG	11 712	77. OK2ROD 78. OK1ORA	5 05 (
Ja. OKIKHG	11 /12	io. OKTORA	2 030

5 056

79. OK1KRZ	4 930	85. OKIAIZ	2 815
80. OK2BGE	4 653	86. OK1KNR	2 221
81. OK2VGD	4 487	87. OK2KWX	1 850
82. OK2BLH	3 706	88. OK3VFH	1 375
83. OKIICI	3 595	89. OK3FH	294
84. OK1KPP	3 106	90. OK3VAH	149

Kategorie V, 433 MHz/5 W

		•	
	bođů		
 OK1AIB 	8 784	14. OK1KCR	2 533
OK1KPR	6 807	15. OKIKEL	2 052
3. OK1KRY	6 403	16. OK2KFM	2 032
4. OK1AIY	6 128	17. OK1AZ	2 031
OK2KEZ	6 113	18. OK10FE	1 972
6. OK2KSU	5 787	19. OK1QI	1 883
7. OKIKZE	5 619	20. OK2RGA	1 755
8. OKIKKH	4 852	21. OK2KVS	1 339
9. OK1AAZ	4 411	22. OK2KHD	1 233
10. OK1KNH	3 831	23. OK1FDG	1 152
 OK1KWH 	2 882	24. OK3KME	1 116
12. OK1KKD	2 795	25. OKIAEX	542
OKIKPL	2 593	26. OK1KHK	125

Kategorie VI, 433 MHz/25 W

-	bodů	5. OK2BDS	2 602
 OKIKIR 	11 546	6. OKIKCO	2 597
2. OKIKKL	5 244	7. OKIKTL	1 966
3. OKIOFG	4 001	8. OK3HO	145
4. OKIKBC	3 202	OK2KOD	72

Kategorie VIII, 1 296 MHz/5 W

Kategorie	IX, 1	296	MHz/nad	5 W
1. OK1AIB	922	2.	OKIAIY	821

	bodů	3. OKIKKL	682
 OK1KIR 	1 933	4. OKIOFG	627
2. OK1KCO	806	OK1KTL	0

Kategorie X, posluchači

bodů 1. OK1-15835 20 472 2. OK1-15689 1828

I. čs. Polní den mládeže 1974

			•
	body		
 OK1KIR 	11 572	25. OK1KJA	2 650
2. OKIKKD	8 173	26. OK2KMB	2 558
3. OKIKCS	6 630	27. OK1KPL	2 507
. 4. OK3KII	6 480	28. OK2KTK	2 409
5. OK2KFM	6 327	29. OK1KPW	2 272
6. OKIKRY	6 171	30. OKIKEL	2 180
7. OK2KBE	5 662	31. OK2KHS	2 171
8. OK3KAP	5 330	32. OK1KTA	2 156
9. OK2RGA	4 968	33. OK2KLF	2 128
10. OK2KLK	4818	34. OK5LVT	2 126
11. OKIKKL	4 444	35. OK2KYJ	2 125
12. OK2KVI	4 314	36. OK3KRN	2 054
13. OK3KBM	4 310	37. OK2KGP	1 764
14. OK3KFV	3 927	38. OK3KKF	1 636
15. OK1KZD	3 872	39. OLOCDJ	1 635
16. OK1OFG	3 780	40. OK3KVL	1 499
17. OL8CCH	3 596	41. OK3KOM	1 463
18. OKIKCU	3 284	42. OK3KLJ	1 372
19. OK1KWP	3 231	43. OK2KNN	1 364
20. OK2KTE	3 114	44. OK1KPZ	1 269
21. OK5VSZ	3 010	45. OLOCDO	1 196
22. OK3KGX	2 978	46. OK3KGQ	980
23. OK2KAU	2 950	47. OL3ARP	907
24. OK3RJS	2 802	48. OKIKPP	832

Diskvalifikované stanice: OKIKRQ, OKIOFA OK2KYI a OKI-19611.
Deniky nezaslaly stanice: OKIKNH, OKIKRZ, OKIKSF, OK2KSU a OK3KPV.

Prvního čs. Polního dne mládeže se zúčastnilo celkem 57 stanic, obsluhovaných operátory mladšími než 18 let. Napoprvé je možno tento počet stanic považovat za dostatečný mimo jiné již také proto, že v den konání závodu bylo na převážné části našeho státu velmi špatré počasí a mnohé stanice měly potíže s dopravou na kozy a s uvedením zářízení do provozu. Zaráží však ta skutečnost, že PD mládeže se v Čechách a na Moravě zúčastnilo málo těch stanic, které by se stanicemi soutěžícími navazovaly spojení a tak jim dopomohly k lepším výšledkům. Slovenské stanice, které byly v sobotu dopoledne již na kótách, vytvořily svým soutěžícím stanicím velmi dobré "zázemí", takže ty měly celé tři hodiny "co dělat". Toto by mělo být samozřejmostí i v jiných závodech na VKV, zejména v pásmu 433 MHz, kde mnohdy svou pohodlností připravujeme naše stanice pracující z výhodných QTH o jejich výrazně lepší i místění. Mnohdy by skutečně stačilo, aby do závodu vyjelo jen o několik naších stanic více a čs. stanice by obsadila některé z prvních mír t v evropském pořadí, pokud se jedná o závod mezinárodní.

Polní den mládeže měl u zúčastněných stanic velmi kladný ohlas a prakticky všíchní účastníci by si přáli, aby se tento závod konal každý rok, protože je to skutečně vyníkající připrava mladých operatérů na soutěže a závody. VKV odbor ÚRK ČSSR bude jistě toto přání v plné míře podporovat. F Prvního čs. Polního dne mládeže se zúčastnilo

Rubriku vede Emil Kubel, OK1AUH, Sumberova 322, 160 00 Praha

Mistrovská soutěž ČSR

Z pověření ÚRK ČSR uspořádal okresní výbor Svazarmu Olomouc ve dnech 14. až 15. června 1974 mistrovskou soutěž ČSR. Soutěž se konala v Dolním Žlebu u Šternberka v autokempinku Svazarnu. Provedením soutěže. byl pověřen radioklub OK2KOV při lékařské fakultě university Palackého v Olomouci. Pořadatel věnoval soutěži patříčnou přípravu, nepočítal však s tak velkým počtem startujících; celkem startovalo v pásmu 80 m 57 závodníků, z toho 8 žen. V pásmu 2 m startovalo 55 závodníků. Co však pořadatel nezajistil – bylo počasí. Pršelo při obou soutěžích.
Soutěže se zúčastnílo také družstvo NDR. Ředitelem soutěže byl Oldřich Spilka, OK2WE, hlavním rozhodčím Karel Souček, OK2VH.
Po vyhlášení výsledků, které se konalo ve 22 hodin, následovala beseda s výměnou zkušenosti závodníků NDR a ČSSR.

Mistr ČSR pro	rok 1974			
Kategorie A – pás	mo 80 m			
Rajchl Miloslav Litoměřice				
Kategorie B				
Javorka Karel	Nový Jičín			
Kategorie 1	D -*			
Trávníčková Alena	Prostějov			
- Pásmo 2 m Kategorie A				
Kryška Ladislav	Praha			
Kategorie .	В			
Javorka Karel	Nový Jičín			
Kategorie .	D ·			
Silná Alena	Kroměříž			

Pásmo 80 m

Kateporie A

Počet lišek 4 + 1, limit 120 min., vzdálenost 6,3 km Pořadí: Iméno: Okres: Celkový čas: 1. Rajchl Miloslav Litoměřice 79,55 82,44 1. Rajchl Miloslav
2. ing. Vasilko Mikuláš
3. ing. Hermann Lubomír
4. Jeřábek Zdeněk
5. ing. Magnusek Boris
6. Koudelka Karel
7. Bruchanov Jiří
8. Makovička Milan
8. Risenek Manfad Košice Karviná Brno-venkov 86,15 89,33 Ostrava Pardubice Ždár n. Sáz. 90,33 94,33 94,35 Teplice NDR 9. Platzek Manfred 10. Harmine Ivan Bratislava

Kategorie B

Po	čet lišek 3 + 1, limit	120 min. vzdálenost	4,5 km
1.	Javorka Karel	Nový Jičín	74,25
2.	Zábojník Karel	Karviná	77,50
3.	Kiša Branislav	Žilina	80,10
4.	Tirásek Stanislav-	Ostrava	82,55
5.	Koziol Otakar	Nový Jičín	83,19

Kategorie D

	Travničkova Alena	Prostejov 95,10
2.	Suchá Soňa	Teplice 115,40
3.	Silná Alena	Kroměříž 99,25 (2+1)
ŧ.	Trudičová Ludmila	Nový Jičín
		104,48 (2+1)
	Prokešová Lenka	Nový Jičín 105,15 (2+1)

Pásmo 2 m

Kategorie A

Počet lišek 4 + 1, limit 120 min., vzdálenost 5,2 km			
1.	Platzek Manfred	NDR	55,31
2.	ing. Vasilko Mikuláš	Košice	64,22
3.	Kryška Ladislav	Praha	74,55
4.	ing. Hermann Lubomir	Karviná	78,51
5.	Hindoš Gabriel	Michalovce	80,24
6.	Jeřábek Zdeněk	Brno-venkov	84,22
7.	ing. Staněk Oldřich	Brno-venkov	85,00
8.	Meissner Stefan	NDR .	88,35
9.	ing. Bloman Antonin	Praha	88,35
10.	Rajchl Miloslav	Litoměřice	94,55

Kategorie B Počet lišek 3 + 1, limit 120 min., vzdálenost 4,2 km

1.	Derzsy Viktor	Bratislava	71,10
2.	Javorka Karel	Nový Jičín	76,16
3.	Koziol Otakar	Nový Jičin	79,30
4.	Kiša Branislav	Žilina	82,24
5.	Stanečka Oskar	Nový Jičín	89,52
	Kategorie	D	
1.	Silná Alena	Kroměříž	64,35
2.	Szontaghová Eva	Bratislava	84,55
. 3.	Trávničková Alena	Prostějov	91,03
4.	Trudičová Ludmila	Nový Jičin	94,30
5.	Hejcmanová Pavla	Nový Jičín	114,30

Nástup závodníků a vedoucí tratě OK2BBS. Břeťa Slavíček

Vedoucího družstva NDR postihla při tréninku nehoda a proto řídí své družstvo z poněkud neobvyklé pozice

Přijímač může před startem "trucovat" i ta-iemníkovi ZRS

Mezinárodní závody v NDR

Ve dnech 7. až 14. 7. proběhly v NDR mezinárodní závody v rámci oslav Baltského moře. Pořadatel také tentokrát organizačně a technicky zvládl tuto náročnou soutěž spojenou se zaměřováním. V letošním roce se zúčastní rekordní počet účastníků bylo to vlastně malé "mistrovství Evropy". Zúčastnila se družstva: Bulharska, Dánska, Polska, NDR, Maďarska, Rumunska, Svčáska, SSSR a ČSSR. Vedoucím československé delegace byl Karel Souček, OK2VH, trenérem Emil Kubeš, OKAUH. Družstvo se zúčastnílo ve složení: ing. Magnusek. Družstvo se zúčastnilo ve složeni: ing. Magnusek, ing. Hermann, Rajchl, Trávničková, Trudičová a Szontaghová

Pásmo 80 m - jednotlivci

Kategorie A				
Pořadi:	Imėno:	Stát	Celkový čas:	
 Čistja 		SSSR	36,82	
Mierl		- RSR	41,37	
3. Čikin		SSSR	42,42	
Vodja	cha	SSSR	43,23	
5. ing. N	Aagnusek .	ČSSR .	50,02	
6. Platze	k	NDR	52,70	
7. ing. F	Hermann	ČSSR	53,12	

396	Amatérske AD 10	10
570	Umaterske 11	74

			i i		
8. Raichl 9. Klauck	ČSSR NDR	53,83 61,67	 Lazar Maria Trávničková Alena 	RSR ČSSR	66,15 69,15
Tanev	BLR	62,10	7. Silná Alena	ČSSR	69,30
K	Kategorie D		Družstvi	a 80 m	
1. Adamenková	SSSR	42 67			
2. Trávničková	ČSSR	43,67 54,78	1. SSSR 2. ČSSR	5. RSR I	
3. Borisová	BLR	55,83		6. RSR II	
4. Zochová	NDR	58,92	4. NDR	7. MLR	
5. Lehmanová	NDR	60,23	4. NDK		
6. Glušaněnková	SSSR	61,97	Pásmo 2 m -	jednotlivci	
7. Branesko	NDR (Rostock)		Katego	•	
8. Lazar	RSR	64,03	_		42.00
9. Popova	BLR	66,75	1. Mierlut Ion	RSR	42,00
Schönfeldová	NDR (Rostock)	66,83	 ing. Vasilko Mikuláš Kirov Kircio 	ČSSR	51,25
Trudičová	ČSSR `	85,00	4. Olah Štefan	BLR RSR	55,30
		•	5. Culpi William	RSR .	61,45
	Družstva		8. ing. Hermann Lubomir		63,30
80 m - mu	ıži 80 m – ženy	•	o. mg. Hermann Edoonin	COOK	67,45
1. SSSR	1. SSSR	•	Katego	rie B	
2. ČSSR	2. NDR		1. Dracea Ion =	RSR	22,45
3. RSR	3. BLR		2. Toni Cornet	RSR	32,15
4. NDR	NDR (Rostocl	k)	3. Nae Gheorghe	RSR	35,00
NDR (Rostock)	5. ČSSR		4. Zábojník Karel	ČSSR	35,15
6. Švédsko	6. RSR .		Bejan Olivin	RSR	35,31
7. BLR	7. MLR		Javorka Karel	ČSSR	65,30
8. MLR			ت معمد ا	aria n	
Dánsko			Katego		
Pásmo 2	m – jednotlivci		1. Raduta Ruxandra	RSR	28,45
	•		2. Neaga Gabriela	RSR	31,15
	ategorie A		3. Bičikova Valentina	SSSR	49,00
Pořadi: Iméno:	Stát: Celkov	rý čas:	4. Farkas Doina	RSR	50,30
1. Čikin'	SSSR	30,30	5. Zimmermanová Andrea		52,30
2. Tanev	BLR	35,07	 Silná Alena Trávničková Alena 	CSSR CSSR	54,50
Platzek	NDR	36,83	7. Travinckova Alena	CSSK	63,00
Čistjakov	SSSR	39,03	Družstv	a 2 m	
5. Olah	RSR	42,42	1. RSR I	5. BLR	
Rajchl	ČSSR	44,02	2. SSSR	6. MLR	
ing. Magnusek	ČSSR	44,20	3. ČSSR	7 RSR II	
8. Klauck	NDR	45,23	4. NDR	. 11011 11	
9. Stankov	BLR	53,65			
Kreuscher	NDR	55,47			

Rubriku vede ing. V. Srdinko, OKISV, Havličkova 5, 539 01 Hlinsko v Čechách

Z ostrova Fernando de Noronha pracovala od 10. do 16. srpna expedice PQ0ARM a PQ0NS na všech pásmech. Byli to PY7ARM a PY7NS, QSL požadovali na adresu PY7ARM. Bylo oznámeno, že za spojení se dvěma stanicemi na tomto ostrově lze žádat speciální diplom (zašlete-li 10 IRC).
Z Quataru lze nyni pracovat se stanici A7XA na kmitočtu 14 230 kHz kolem 16.00 až 17.00 GMT. Manažérem e DJ9ZB.
CR8AB z. Timoru se objevuje občas SSB na kmito tu 14 265 kHz po 18.00 GMT. QSL žádá direct na P.O.Box 177, Dilí, Timor. S Franz Josef Land lze t. č. uskutečnit spojení telegraficky ráno na pásmu 7 MHz. Pracuje tam klubovní stanice UA1KBD, její signály jsou však poměrně slabé.
Na Crozet Isl. pracuje v současné době stanice FB8WB, op. René. Bývá občas kolem 08.00 GMT na kmitočtu 14 133 kHz a žádá QSL via FBUS.
Koncem července pracovala opět expedice Ogsawary. tentokráte pod značkou ID1VAA.

Koncem července pracovala opėt expedice z Ogasawary, tentokráte pod značkou JDIYAA. Spojeni se navazovala velice snadno. QSL se maji zasilat přes bureau

z Ogasawary, tentokráte pod značkou JD1YAA. Spojeni se navazovala velice snadno. QSL se maji zasilat přes bureau.

Z Gabonu pracuje stanice TR8BA, obyčejně kolem kmitočtu 14 107 kHz. SSB. QSL žádá direct na P.O.Box 3853, Libreville.

Zajimavou zprávu máme od Martii, který spolu s OH3MM plánuje letos na podzim expedici na ostrov Peter I. v Antarktidě. Tento ostrov (dříve Země Alexandřa I.) leži na 91° záp. délky a 64° sev. šířky. Martii je přesvědčen, že se mu podaři, aby tento ostrov platil za novou zemi DXCC. Povolení k vysilání již má. Značka expedice však dosud není známál VK9YV je značka expedice z ostrova Cocos Keeling. QSL via VK6SW.

Na Východní Karoliny uspořádali expedici Japonci, ktří tam pracovali pod značkami JA1EZL//KC6, JA11ST/KC6, JH1ECG/KC6 a JH1JGX/KC6. Manažérem všech těchto značek je JH1JGX. Expedici na ostrov Nauru podnikl JA1OCA od 13. 8. 1974. Pracoval pod značkou C21ZO výhradrě telegraficky. QSL na VK2ZO.

Andorra zažila invazi expedic. V období od 5. srpna do konce měsice se tam obievily značky C31BL, CA, CG, CH, DM, DS, GW a HD. Expedice C31HD pracovala na všech pásmech všemí druhy provozu včetně RTTY a SSTV.

ZK2BD pracuje opět velmi aktivně z ostrova Niue. Bývá obvykle na kmitočtu 14 201 kHz v době od 05.00 až 08.00 GMT, popřípadě i od 21.00 do 23.30 GMT. Pracuje přes clearmana JA1UQP, který sestavuje čekací listiny. QSL žádá direct na adresu: B. J. Donaldson, P. O. Box 37, Niue Island, via New Zealand. OZ6QK/MM je stanice na džunce, která se vypravila na cestu z Hong-Kongu do USA. Posádku tvoří jeden OE a jeden OZ amatér. Jméno džunky

10. Kreuscher 13. ing. Hermann

2.

6. 7.

9. Zimm 10. Lazar

2. NDR 3. ČSSR 4. BLR 5. RSR

Glušaněnková

Borisová Trávničková

Adamenková Popová Byčkova

2 m - muži SSSR

Lehmanová Schönfeldová Zimmermanová

Ve dnech 8. až 12. srpna proběhly mezinárodní závody v Cimpině za účasti družstev Bulharska, Jugoslávie, Maďarska, SSSR, Rumunska a ČSSR. Československou delegaci vzdl Ladislav Satmári, OK3CIR, tvořili ji ing. Vasi ko M., ing. Hermann L., Zábojník K., Javorka K., Trávničková Al. a Silná Al. L., Zábojn a Silná Al.

Družstva

NDR ČSSR

SSSR

BLR ČSSR

SSSR BLR SSSR

2 m - ženv

1: SSSR

2. BLR 3. NDR 4. CSSR

rie D

a Silná Al.

Gesta z Prahy do Cimpiny trvala čtyři hodiny.

Inned po přijezdu jsme absolvovali trénink pro
dvoumetrové pásmo. Následující den dopoledne
se konal závod v pásmu 2 m. Třetí den se zúčastnili
všichni účastníci prohlidky Ploesti, kde jsme navštívili museum naftového průmyslu. Pak následovala
prohlidka rekreační oblasti Sinaie. Po návratu byl
trénink pro pásmo 80 m. Předposlední den našeho
zájezdu byla soutěž v pásmu 80 m. Tentýž den
bylo vyhlášení výsledků, načež následovala volná
zábava spojená s tancem. Poslední den jsme si
prohlédli Bukurešť a Ústřední radioklub.

OKIAUH, trenér

Výsledková listina

Pásmo 80m - jednotlivci

Kategorie A Stat .

F	raa:: jmeno:	Star:	Geirovy cas:			
1.	Kirov Kirco	BLR	65,50			
2.	Matein Nikolai	RSR	66,30			
	ing. Hermann Lubomir		70,30			
	Mierlut Ion	RSR	71,30			
	ing. Vasilko Mikuláš	ČSSR	72,45			
٦.	mg. Vasitko Mikulas	COOK	12,40			
Kategorie B						
1.	Triebler Thomas	NDR	43,15			
2.	Kataev Alexei	SSSR	43,45			
3.	Grigorjev Alexei	SSSR	44,30			
	Tvetovski Marián	SFRI	55,10			
	Zábojník Karel	ČSSR-	59,15			
	Javanka Karel	CSSR				
٥.	Javanka Kalei	COOK	63,30			
Kategorie D						
1.	Burlakova Maria	SSSR	54,00			
	Raduta Ruxandra	RSR	56,45			
	Raffaise Šarlota					
		MLR	61,30			
4.	Borisova Dobrinka	BLR	64,15			

je Tai Ti, a je to jakási obdoba plavby Kon Tiki. FPOYY pracuje ze St. Pierre Isl. denné kolem 21.00 GMT na kmitočtu 14 180 až 14 200 kHz SSB.

Stanice 4 J5OR pracovala telegraficky při horolezecké expedici na Mt. Pamir, tj. v UJ8.

V poslední době pracuje opět značka ZA1AN, telegraficky na 14 MHz. QSL žádá via Box 15, Radio Tirana. Jde zřejmě zase o piráta.

CR9AK se opět objevuje na pásmech! Byl již yšen na kmitočtu 14 210 kHz SSB a QSL žádá slyšen na ki via CT1BH.

Prázdninovou expedici podnikli DAIQC, DAIQQ a DA2QC do Lichtensteinu. QSL pro značku HB0AYT vyřizuje HB9AYT, pro HB0XJJ DL7HZ.

Stabilni stanici na Haiti je HH2JT, obvykle SSB na kmitočtu 14 262 kHz. Přechodnou stanicí je VEONEB/HH, což je také vzácný prefix, pracuje kolem kmitočtu 14 183 kHz. QSL via VE1AYE.

IBOJN byla značka expedice v srpnu t. r. na ostrov Ventotone, platný též do diplomu IOTA pod č. Eu 45. QSL direct na P. O. Box 336, Naples, Italy.

336, Naples, Italy.
Pod značkou ID9DMK (popřípadě I2DMK//ID9) pracovala expedice na ostrově Eolte (Eu 17).
QSL na P. O. Box 4073, Milano. Další italské prefixy z okolních ostrovů během letošních prázdnín byly IF0XRR, op. I5XRR, a II4FGM, žadající QSL na P. O. Box 3113, Bologna.
Pro lovce prefixů ještě několik dalších za-

jimavostí současné doby: KS9EAA pracovala z Wisconsinu a žádala QSL via WA9GJU (plus SASE), WF6OCF pracovala z Orange County Fair, WW3FAF z festivalu amerického folkloru (QSL via W3DOS).

Změna prefixu nastává u Panamy. Misto dosavadního HP obdržela od ITU prefix H3A až H3Z.
Z Taiwanu pracuje telegraficky známá stanice BV2A na kmitočtu 14 023 kHz kolem 14.00 až 15.00 GMT.

Dne 4. 8. 1974 pracovalo 50 stanic v Sovětském svazu pod prefixy R1 až R0, vždy po pěti z každého distriktu. Byla to akce na oslavu padesátého výročí amatérského radia v SSSR. Za 50 různých R stanic lze žádat pěkný diplom zdarmal VK0MX pracuje z Casey Base v Antarktidě. Objevuje se zejména SSB na kmitočtech 14 116 nebo 14 174 kHz. QSL žádá via VKSTY.

6W8 lze nyní snadno dosáhnout, neboť tam pramií skabedejá strátev WMADNS VOVCA.

6W8 lze nyní snadno dosáhnout, neboť tam pra-ni přechodně stanice WA4RXS-K9KGAows Ize njw snauno dosannou, neoot tan pra-cují přechodně stanice WA4RXS-K9KGA--WB9EGZ-WB9FRG, všechny lomeny /6W8. Pracuji denně od 17.00 do 19.00 GMT, a od 21.30 do 01.00 GMT, vždy v úscku dolních 30 kHz pá-sem CW nebo SSB. Na pásmech 40 a 80 m jsou od 06.30 do 08.00 GMT. QSL na jejich domovské

znacky.

XV5AB se objevuje opět na 14 220 kHz SSB v podvečerní dobu (kolem 18.00 GMT).

K světovému úspěchu Jindry, OK1CG, s diplomem WACC, se připojuje další úspěch, neboť posluchačský WACC ziskal náš OK2-4857, Josef Čech! Casopis CQ uveřejňuje jeho fotografii s tím, že se jedná o vůbec první posluchačský

WACC mimo W/VE, a zatim jediny! Congrats! Několik QSL informací z poslední doby: FG0AZY via K5QHS, KL2ARW via WA2UWA, TA2SC via WA3HUP, UAIKED via UA4ACP, DK6NN/VP7 via DK6NN, Horst Henning, Box 40, D-8621 Frohnhlach, WG, VP5KG via VESRA, WF60CP via K6VDP, WM2OON via WB8EUN, 3A0GV via DJ2SX, JA8IEV/JD1 via JA8JL, KZ5BC via W4YWX, KZ5OM via WB8CNZ, VR1AM na J. McKenzie, P. O. Box 419, Betio, Tarawa, Gilbert Isl., ZD3G na P. O. Box 165, Banjul, F2JD/5U7 via F2MO, 5X5NK via DL1YW, 9V1RF via W9GHK, 9V1RW via SM5CAK, EA9EY – Box Ceuta, Spanish North Africa, EL1B via K8LUH, JH3TKM/JD1 via JA3GZN, KB6CRT na Box F-153, APO S. F. 96401, KX6LA via Box APO, S. F. 96555, MLC na Fausto Minardi, Box 94, Faenza Italy, TJ1BF na Box 1185, Yacunde, TUZEN via F6CEF, TUZDO via WA2DHF, TUZEE via Box 1127 Abidjan, 91.1JM na Box 16, Freetown, Siera Leone, 3B6CF via JA0CUV, 3D2FM via W7YBX, 4M1A via YV1LA, 4W1AF via DJ9ZB, 4W1GM via W3HNK, 5TSLO via K9KXA, 5U7BC na Box 855, Niamey, Niger, 6F8J via ZE1J, 7Q7DW via G3AWY, 7P8AM via G3SGK, 8Q8AF na SM7AFV.

Do dnešní rubriky přispěli zejména: OK1ADM, OK3MM, OK2BRR, OE1FF, OK2-14760, OK1HA a další. Tčším se, že příště zašle svoje DX zprávy opět větší počet dopisovatelů. Zprávy zasílejte do 8. v měsíci.

8. v měsíci.

Obr. 1. ⊳ Ď, Λ +12 14 2k2 648 47k M1 ⊌ Ø H^{M22} 10 k 2k7 11-1M +12 V GC521K 470 10M \prod 6k8 D, M.33 3j3 +12 M5 Ø]2k2 H+V 110 Ŋ D; 104 3;3 D, -11 -11 10 k M47 10k M47 GC511K M47 10k 10k Obr. 2. △ 1M 11_{10 k} 12k +12 \ +12 V ⅌ 20k 20k 1M 220 220 1k5 | † 2k 1k5 2k T, až T, KC508 MAA504 D, až D, KA501 MAA504

Rubriku vede A. Glanc, OK1GW, Purkyňova 13, 411 17 Libochovice

Osobní kontakt lidí, které spojuje společný Osobní kontakt lidí, které spojuje společný zájem, pomůže vyřeští řadu problémů, které mnohdy, pro jejich obtížnost, odkládáme ad acta. Tato skutečnost se opět potvrdila v Pardubicich, při srpnovém setkání radioamatérů. Že řady příznivců SSTV mohutní, ukázal zcela naplněný přednáškový sál. Dobrá organizace dokázala překonat i tropické teploty, které setkání provázely.

V bohatém programu přednášek měly své místo i otázky SSTV a o své zkušenosti se s posluchačí rozdělili OKIRM, OK2PBC, OK5LF a OKIGW.

Üčastníci setkání byli míle překvapení

OKSLF a OKIGW.

Učastnici setkání byli mile překvapení připraveným sborníkem přednášek a Jsme rádi, že oba redaktoři sborníku, s. ing. Rondzík, OKIRM, i s. Kysela, OKIAHH, jsou nadšenými příznivci SSTV. Jim i všem ostatním, kteří se na přípravě setkání podíleli, patří náš srdečný dík.

V minulé rubrice SSTV jsme se seznámili s jednou částí snímače FSS, který používám, a to obvodem SCFM a jeho funkcí. Aby popis tohoto snímacho zařízení SSTV byl úplný, přináším dnes zapojení synchronizačních obvodů, generátorů napětí pilovitého průběhu a jejich zesilovačů. První část obvodu je na obr. 1. Tranzistory T_1

a T_2 tvoří s ostatními součástkami tvarovací obvod, který ze sinusového průběhu napěti 6,3 V vytvoří průběh obdélníkovitý (viz kolektor T_2). Takto průběh obdělníkovitý (viz kolektor T_a). Takto tvarovaným napětím jsou synchronizovány multivibrátory T_a , T_4 a T_5 , T_4 . První z nich generuje impulsy 5 ms (řádkový) a druhý 45 ms (snímkový). Z kolektorů T_4 a T_5 je toto impulsní napětí přiváděno přes diody D_4 a D_4 do dvou samostatných obvodů, tvořených operačním zesilovačem OZ a jedním tranzistorem.

Operační zesilovače OZ v obou obvodech pracují jako generátory nilovitého napětí Rychlost zvětšo-

Operační zesilovače OZ v obou obvodech pracují jako generátory pilovitého napětí. Rychlost zvětšování pilovitého napětí le určena kondenzátory 10 nF nebo 1 µF. Paralelně k těmto kondenzátorům jsou připojeny tranzistory T, a T_s.

Tyto obvody pracují tak, že se kondenzátory nabijeji přes odpory ve vstupech operačních zesilovačů. Dosáhne-li napětí na výstupu OZ požadované velikosti, kondenzátory se vybijí pomocí paralelních tranzistorů, otevřených synchronizačními impulsy, které přicházejí z multivibrátorů přes diody D_s a D_s. Po vybití kondenzátorů se celý děj opakuje. V bodě H a V jsou připojeny zesilovače (řádkový, horizontální a snímkový, vertikální) s komplementárními dvojicemi tranzistorů. Jedna taková dvojice je na obr. 2.

tárními dvojicemi tranzistorů. Jedna taková dvojice je na obr. 2. Vychylovací cívky flying spot jsou napájeny z emitorů přes malé odpory a proměnným odporem 5 k Ω se nastavuje potřebná výška (šiřka) obrazu. Zbývá dodat, že synchronizační impulsy k blokování obvodu SCFM (viz minulou rubriku SSTV) jsou odebírány z katod diod D_b a D_7 v bodu P v zapojení podle obr. 1. Uvedené obvody se vyznačují vynikající stabilitou všech požadovaných parametrů.

Český, M.: ANTÉNY PRO PŘÍJEM ROZ-HLASU A TELEVIZE. SNTL: Praha 1974. 244 stran, 239 obr., 32 tabulek. Druhé, doplněné a upravené vydání. Čena váz. Kčs 20,—. V tiráži knihy je sice uvedeno, že jde o druhé vydání, kniha však obsahem těsně navazuje na předchozí vydání knižky o anténách, jichž bylo několik. O jeji jakosti svědči jednak počet vydání a jednak to, že vždy bývá ihned po vydání rozebrána i přes relativně velký náklad. Kniha v podstatě obsahuje vysvětlení základních pojmů a požadavků na rozhlasové a televizní antény pro přijímače, popisuje návody na stavbu i relativně složitých antén, přičemž vychází většinou z průmyslově dodávaných součástí, popřuvádí návody na zhotovení součástí podomácku. Celý obsah je rozdělen do čtyř základních částí: Základy techníky přijímacích antén; Praktické pro-

10 Amatérske VAD 11 397

na listopad 1974

Rubriku vede Dr. J. Mrázek, CSc. OK1GM

Tentokrát budeme poněkud pesimističtí, protože podmínky se začnou během měsíce zhoršovat. Zima se bliží a spolu s ni i doba značných změn v DX podmínkách: jejich charakteristickou vlastnosti bude rychlý přechod od "denní" situace do situace "noční". Tento přechod je dán rychlými změnami vl poloměru pásma ticha a prakticky se bude projevovat při odpoledním stmívání tím, že mnoho spolení vůbec nedokončíme; během jedné až dvou minut se totiž dostaneme do zvětšujícího se pásma ticha protistanice a přerušené spolení ničím na světě nezachráníme, protože zde nemá vliv ani sebevětší výkon vysílače. vysílače

Toto rychlé odpolední a podvečerní zakon-

čování podminek zjistíme především v pásmu 21 MHz a později i 14 MHz; o desetimetrovém pásmu již raději nebudeme psát, protože signály na něm budou velice vzácné a brzy odpoledne zcela zaniknou. Zlepší se sice podminky ve směru na Severní Ameriku (později odpoledne ve dvacetimetrovém pásmu), ale dlouho nevydrží. Čtyřicetimetrové pásmo zástane během noci téměř na úrovní předcházejícího měsíce, avšak ke slovu se budou pravidelně dostávat i pásma 3,5 a 1,8 MHz.

Zvětšené pásmo ticha se bude vyskytovat na osmdesátí metrech v některých dnech večer (kolem 18.—19. hodiny) a téměř vždy ve druhé polovině noci s maximem kolem šesté hodiny ranní. V této době to bude dos

konce výhodou, protože alespoň vyniknou slabé zámořské signály. Za zmínku stojí, že na osmdesátimetrovém pásmu budou již po 15. hodině nastávat DX podmínky ve směru na jižní až jihovýchodní Asii a částečně i na většinu asijské oblasti SSSR, nebudou však tamějšími amatéry – zejména z jižních krajů, kde v té době je mnoho atmosférických výbojů (QRN) – využívány.
Na stošedesátí metrech bude noční situace podstatně lepší než byla v říjnu a DX možnosti od 22 do 6 hodin nejsou vyloučeny, třebaže budou dosti vzácné. Určitě se však vyplatí, jestliže začneme svou pozornost obracet ke krátkovlnným pásmům nižších kmitočtů.

kmitočtů.

vedení antén; Anténn předzesilovače a zesilovače;

vedení antén; Anténn předzesilovače a zesilovače; Tabulky, diagramy.
Prvni, základní část kníhy má tyto kapítoly:
Účel a základní pojmy, Význam antény pro přijimač, Kmitočty – délky vln – rozdělení používaných kmitočtů, Základní poznatky o šíření elektromagnetického vlnění, Jak zacházet s čisly v anténní technice, Ví vedení jako napáječ, Přijímací antény, Přizpůsobení televizní nebo VKV antény k napáječi a napáječe k přijímačí; druhá část má tyto hlavní kapitoly: Zásady pro konstrukci a domácí zhotovení antény, Rozměry a technické údaje doporučených antén pro přijem televize a rozhlasu VKV, Využití jedné antény pro napájení vice přijímačů, Anténní stožár a jeho upevnění, Způsob vedení a uchycení napáječe, Dálkové natáčení antény. V této částí knihy jsou podrobně popsány rozměry a stavba všech různých typů antén, venkovních, náhražkových, pro první, třetí i čtvrté a páté pásmo, pro rozhlas VKV atd.

V třetí částí knihy je podrobně uvedeno to podstatné, co musí konstruktér vědět o stavbě anténních předzesilovačů a zesilovačů a tomě toho je popsáno i zapojení továrních předzesilovačů a některých předzesilovačů az zahraniční literatury a zahraniční produkce. Třetí část knihy končí bezpečnostnímí předpisy a předpisy pro stavbu antén. Ve čtvrtě částí, v niž jsou uvedeny nejrůznější tabulky a diagramy, najde čtenář např. rozdělení rozhlasových a televizních pásem a jejich kmitočty, převod poměrů napětí, proudů a výkonů na decibely, výpočet odpotových útlumových článků, slučovače a vyhybky, diagram pro stanovení impedance fázovacího vedení, diagram průběhu jalové a reálné složky vstupní impedance ve středu napájecího dipôlu v závislostí na elektrické dělce vlny atd.

Vzhledem k množství shromážděných informací je nesporné, že další vydání této populární knihy bude mít zasloužený úspěch – chcete-li jí mit v knihovničce, neváhejte, kniha stojí za 20 Kčs!

Vachala, V., Křišťan, L.: OSCILÁTORY A GENERATORY. SNTL: Praha 1974. Knižnice polovodičová technika, sv. 16. 244 stran, 239 obr., 5 tabulek. Cena váz. Kčs 26,—
Oscilátory a generátory představují zdroje periodických elektrických průbčhů a patří k základním elektronickým obvodům. Publikace si klade za cíl ukázat hlavní myšlenky řešení těchto obvodů s polovodičovými součástkami způsobem, který by inspiroval techniky při konstrukci nových přistrojů. Scznamuje čtenáře v nejnutnější míře s teorií, ukazuje postupy při řešení a návrhu zapojení, používaných v technické praxi.

Kniha má šest kapitol. V první, obecné částí, se čtenář seznamuje s jednovlnnými a mnohovlnnými průběhy, s principem generátoru kmitů, s generátory harmonických kmitů a s generátory harmonických kmitů.

Druhá kapitola, Návrh generátory RC se stálým kmitočtem, Přeladitelné nf generátory. Kenenáncy prometrové a dm vlny, Generátory řízené křemennými výbrusy, Multivibrátory, Blokovaci oscilátory.

Ze zajímavých článků třetí, čtvrté a páté kapitoly ze uvést např. články Kmitotová stabilita generátorů, Teplotní stabilizace, Pomocné obvody generátorů, Konstrukce generátory, Násobiče kmitočtu, Deliče kmitočtu, Směšovače, Pázová synchronizace oscilátorů, Ní generátory, Ví signální generátorů, Konstrukce generátory, Násobiče kmitočtu, Deliče kmitočtu, Směšovače, Pázová synchronizace oscilátorů, Ní generátory, Ví signální generátorů, Konstrukce generátorů, násobiče kmitočtu, Přiklady generátorů.

Poslední, šestá kapitola má název Konstrukce generátorů, Čtvrtá. Generátorvé systémy, pátá Příklady generátorů.

Poslední, šestá kapitola je věnována měření na generátorech. Pojednává především o měření kmitočtů a jejich změn, a dále i o měření obsahu harmonických kmitočtů a cizích kmitočtů v základniti signálu.

Kniha dobře zapadá do knižnice SNTL, věnované polovodičové technice. Je určena především

Kniha dobře zapadá do knižnice SNTL, vané polovodičové technice. Je určena především jako praktická pomůcka středním technikům i inženýrům; jako všeobecná informace však poslouží i všem ostatním zájemcům o techniků oscilátorů a generátorů vůbec:

Radio (\$S\$R), č. 6/1974

Radio (SSSR), č. 6/1974

Volna, klub mladých radioamatérů – Mikroelektronika, nové cesty a nové možnosti – Tabulový examinátor – Elektronický teploměr – Nf zesilovač pro přijímač lovce lišek – Hybridni transceiver – Stereofonni zesilovač – Kaskódni zesilovače mf signálu – Jednoduchý anténní zesilovač – Rubin 707 – Vf zesilovač pro přijem signálu AM – Kazetový stereofonni magnetofon – Přátelům magnetického záznamu – Přepinače s polarizovanými relé – Stabilizátory s malým výstupním odporem – Opravy barevných televizních přijímačů Rubín 401 a Elektron 701 – Přistroj k nastavování televizních přijímačů – Elektronický měřič kmitočtu – Interkom – Hrající automat – Měření napětí v obvodech stejnosměrného proudu – Od fonografu k záznamu obrazu – Křemíkové tranzistory KT342 a KT345 – Ze zahraničí – Naše rady.

Radio (SSSR), č. 7/1974

Radio (SSSR), č. 7/1974

Třipásmová krychlová anténa – Cvičná "radiostanice" – Kalibrátor – Tranzistorový konvertor pro 145 MHz – Dálková radiová spojení – Anténa s měnitelnou vyzařovací charakteristikou – Číslicový indikátor pro zkoušecí stroj – Elektrodynamická zpětná vazba v nf zařízeních – Vstupni díl přijímače KV s tranzistory. FET – Adaptace klaviru – Stereofonní magnetofon NOTA-M – Návrh a výpočet gramofonového raminka – Přehled a vlastností magnetofonových pásku – Zlepšení citlivosti osciloskopu LO-70 – Konvertor KV k přijímači do Žiguli – Závady ultrazvukových zpožďovacích linek v BTV – Dálkové ovládání fotografické kamery – Miniaturní přijímač s malým napájecím napětím – Praktická zapojení (Elektronická chůva, Měřič doby

398 Amatérské! V. III HI

V LISTOPADU 1974

se konají tyto závody a soutěže (čas v GMT):

Datum	Závod	
1. až 4. 11. 23.00—06.00	CHC – HTH pa	rty_
2. a 3. 11. 18.00—18.00	RSGB 7 MHz C	ontest, část fone
2. a 3. 11. 21.00—09.00	IV. subregionální Contest	závod, Al
4. 11. 19.00—20.00	TEST 160	
9. a 10. 11. 18.00—04.00	OE 160 m	
10. 11. 00.00—24.00	OK DX Contest	
15. 11. 19.00—20.00	TEST 160	•
23. a 24. 11. 00.00-24.00	CQ WW DX Co	ntest, část CW

Radio (SSSR), č. 8/1974

Radio (SSSR), č. 8/1974

Magnetofon k záznamu obrazu – Sensor k volbě
čtyř televizních kanálů – Transceiver UP2NV –
Přijímač pro všechna pásma – Radiostanice
R-105M, R-108M a R-109M – Přijímač s přímým
zesílením – Nř zesilovač s mikroobvodem K2US245
– Jednoduchý generátor signálů – Kapesní diktafon – Magnetofon-hračka – Proporcionální dálkové
ovládání – Jednoduchý osciloskop – Radioamatérský sport budoucnosti.

Funkamateur (NDR), č. 7/1974
Nové výrobky vakuové techniky a nové stavební
prvky RFT – Směšovaci zesilovač amatérského
studiového zařízení – Zařízení pro světelné efekty
Sound-Light 2000 – Vlastnosti zapojení tranzistoru
se společným kolektorem – Lineární zesilovač 15 W
s tranzistory pro pásmo 3,5 až 30 MHz – Samočinné
rozsvěcení parkovacich světel – Fotoelektrický spinač s obvody TTL – Kondenzátor a jeho rezonance – Napájení přenosných radiostanic z primárnich článků – Několik poznámek ke Collinsovým
filtrům – Lineární zesilovač 1 kW pro všechna
pásma – Výkonný generátor pro výuku telegrafní
abecedy. abecedy.

Radio, Fernschen, Elektronik (NDR), č. 11/1974
Konstrukce aktivních obvodů RC s integrovanými operačními zesilovačí – Systém pro přenos nebo hromadční analogově změřených dat – Aplikace lineárních IO MAA3005/MAA3006 – Krátké informace o integrovaných obvodech – Pro servis – Zkušenosti s přijímačem Stern-Trophy 1800 – Stavebnicová jednotka mf zesilovače s piezokeramickým filtrem – Integrovaný astabilní multivibrátor D901C – Příklady použíti holografie – Integrované obvody pro hodinářský průmysl – Integrovaný obvod pro vysílače Lithic LP2000.

Radio, Fernsehen, Elektronik (NDR), č. 12/1974
Návrh integrovaných obvodů LSI-MSI – Filtrace kmitočtů pomocí integrovaných obvodů –
Mnohostranný oddělovač synchronizačního signálu barvy – Zdroje konstantního proudu – Krátké informace o integrovaných obvodech A220D a A281D – Pro servis – Mechanická zkouška spolehlivosti pájených míst na deskách s plošnými spoji – Systém pro přenos nebo hromadění analogově změřených dat – Přenos informací mezi díly rychle pracujících zařízení pro zpracování dat.

Radioamator i krótkofalowiec (PLR), č. 7/1974 Tranzistorovy milivoltmetr – Stereofonní zesi-lovač pro sluchátka – Nové mikrofony – Tranzisto-rové modulátory – Detektory aplitudy – Rozmítač pro radioamatéry.

Radioamator i krótkofalowiec (PLR), č. 8/1974 Elektronika na poznańském veletrhu – Anténni zesilovače pro televizi – Akusticko-světelné zaří-zení s kompresorem dynamiky – Nf autotransfor-

mátor - Osciloskop s obrazovkou B6S1 - Dynamická kontrola předstihu u spalovacích motorů - Nf zesilovače jednoduchých tranzistorových přijí-

Rádiótechnika (MLR), č. 8/1974
Zajimavá zapojeni s tranzistory a integrovanými obvody – Integrovaná elektronika: obvody CA3078, μΑ740, BB3420, BB3341/15C, RM116A, MC1539 – Měřeni parametrů tyristorů – Měřeni na amatérských vysilacích zařízeních – Konvertor pro pásmo 2 m – Zajimavá zapojeni ze zahraničních radioamatérských časopisů – Transceiver DSB/SSB – Oscar 7 – Technika stavby TV antén – TV servis · TV DX – Radioaktivní izotopy v měřicí technice Systém DOLBY – Univerzální měřicí přistroj – Měření teplotních odporů tranzistorů – Nf předzesilovač s integrovanými obvody typu 709.

Radioamater (Jug.), č. 7—8/1974
Programovaný elektronický "klič" – Univerzální
zdroj malých stejnosměrných napěti – Univerzální
anténní zesilovač do 200 MHz – Nf generátor RC –
Přistroj k nácviku telegrafní abecedy – Univerzální Pristroj k nacviku telegrafin abecedy – Univerzalni pedál pro elektronickou kytaru – Beam pro 14 MHz – Generátor krátkých impulsů – Vf civky (3) – Soudobá krátkovlnná amatérská zařízení – Kvadrofonie – Soudobé galvanické články a baterie – Stopy meteoritů – Kostříčky pro transformátory – Anténní rotátor s indikací diodami LED – Mf zesilovač s detektory FM, SSB, CW – Korekční předzesilovač nazmetofonovu hlavu. – Rubriku vač pro magnetofonovou hlavu - Rubriky

Radio, televízija, elektronika (BLR), č. 6/1974
Tři zapojení na univerzálních deskách s plošnými spoji – Opravy televizních přijímačů – Změny v zapojení přijímačů Selga 402 a Orbita 2 – Závady elektrolytických kondenzátorů – DOLBY – Pseudokvadrofonie – Lineární integrované obvody MAA115, TAA310, MAO403, MBA245, TBA810S, LM377 – Etalonový krystalový generátor 100 kHz – Stabilizátory bez Zenerových diod – Souměrné tyristory – Kazetový magnetofon s přijímačem, TESLA B 200 – Rady pro praxi i teorii. tyristory - Kazetový magnetofon s p TESLA B 200 - Rady pro praxi i teorii.

Funktechnik (NSR), č. 11/1974

20 AX, nový systém konstrukce barevných televizních obrazovek – Spektra-Colorvision CCS, nový přístroj pro 8mm film – Zajímavé nové gramofony – Nové reproduktory vy ši jakostí – Problémy a tendence při výrobě gramofonú – Ryze elektronické hodiny s rozhlasovým přijímačem firmy Saba – Vn díly pro barevné televizní přijímače – Počítače při vývojí elektronických zařízení – Činnost a zapojení říditelných zdrojů stejnosměrného napřtí – Stereofonní zesilovač pro sluchátka. pětí - Stereofonní zesilovač pro sluchátka.

Funktechnik (NSR), č. 12/1974

Funktechnik (NSR), č. 12/1974
Moxie, nový stavební prvek s přechodem NTC –
Novinky spotřební elektroniky – Polovodičové
prvky pro spotřební elektroniku – Počítače při
vývoji elektronických zařízení – Spektra-Colorvision, nový přistroj pro 8mm film – Nové magnetofonové pásky (pro amatéry) s profesionálními
vlastnostmi, PEM368 a PEM268 – Stmívač pro
umístění pod omítku.

INZERCE

První tučný řádek 20,40 Kčs, další 10,20 Kčs. Příslušnou částku poukažte na účet č. 300/036 SBCS Praha, správa 611 pro Vydavatelství MAG-NET, inzerce AR, 113 66 Praha 1, Vladislavova 26. Uzávěrka 6 týdnú před uveřejněním, tj. 13. v měsici. Neopomente uvest prodejní cenu, jinak inzerát neuveřejníme.

Upozorňujeme všechny zájemce o inzerci, aby nezapomněli v objednávkách inzerce uvést své poštovní směrovací číslo.

PRODEI

PRODEJ

AR roč. 1943 až 1973 à 30; Sděl. tech. roč. 1953 až 1966 à 30. Empfanger Schaltungen 11 svazků à 30 - hromadně. J. Juřica, 756 11 Val. Polanka 169. Hi-fi stereo zosilovač BRAUN CSV 300, 2 × × 30 W, 4—8 Ω, zkresienie 0,1 % (6 000). Gramo DUAL 1 219 s vložkou Shure M 91 MG-D (5 500) a slúchadlá AKG K-60 (1 200). G. Kövér, 040 01 Košice, Sverdlovova 40. 1L34, 6K4P, 2P1P, 6P1P, 606M1, 6P3S, 6E5S, 6G2, AB1, 6Z31 (à 5), 6N2P, 6N6P, 6Ž1P, 6P9, 6Ž2P, 6Ž3P, 6Ž7, 6Ž8, CF3, CF7 (à 10), cívk. s. Rondo (50). V. Oplatek, Havířská 641, 665 01 Rosice u Brna. SN74141 (145). Nastav. čítač 50 MHz SN74196 vym. za 7490 (1 za 2 ks) či prod. (260). V. Janda, Trenčinská 16, 140 00 Praha 4, tel. 431 736. Komplementární páry 90 W TIP3055/530 à 300, a 3,2 W BC141/161 à 110. A. Knapek, Jugoslávská 75, 602 00 Brno.
2 ks rep. ART581 (à 800) a různé elektronky. Levně. M. Coufal, 798 01 Čechovice 119 u Prostějova. Miniat. otočné kond. jap. výroby 2 × 200 pF se zabudovanými trim. kondenz. 4 × 12 pF, kus 40 Kčs. T. Němeth ml., 925 02 Dolné Saliby 156, okr. Galanta.

okr. Galanta.

okr. Galánta. 2 reproskříně – třípásmové, 120 l, mahagon., osazení – ARO711, ARO689, ARV081 (d 700 Kčs). Ing. J. Cihlář, Pražská 140, 642 00 Brno 42. Stereodekodér IO MC1305P s dokum. a soklem

(195) viz RK 5/73. J. Michl, Šumavská 19, 120 00

El. voltmetr BM 289 s vf. sondou (1 600), RLC

EL voltmetr BM 289 s vf. sondou (1 600), RLC můstek Icomet (700). Svázané AR 1969 až 1973 (à 80), RK 1969 až 1973 (à 40). Vše kompletní, původní, jsem první majitel. Anděl Karel, Poděbradova 16, 701 00 Ostrava 1. Môstik OMEGA II (600) a BIOS1 (150). A Píšová, Rudlová 79, 974 01 B. Bystrica. AF2, DL21, GU-50 (10), 11TA31 (30), 6CC31, relé (5), BF244B (50), BF245B, BFR38 (80) aj. Seznam zašlu. J. Hájek, Černá 7, 110 00 Praha 1. AF106 VKV, 126, 239, 239S (68, 48, 85, 140); TBA120S (130), stereodek. TBA450 (390), jjk.F517, 20, 21, (24, 28, 45), KFY16, 18, 34, 46 (25 až 45), tahové pot. (95), 2N3055 à 140; kompl. páry KF nebo KFY (39—69), SN7400, 08, 10, 20, 40 (35); 7402, 04 (50); 74121 à 110, předzesilovač TW 40B (550). Tva Velebová, Na Mičankách 13, 100 00 Praha 10. Praha 10.

KOUPĔ

Avomet I i vadný. F Cvrček, Teplého 1899,

Avomet I i vadný. F Cvrček, Teplého 1899, 530 02 Pardubice.

RC soupravu 4 kanál, udejte cenu a bližší údaje.

K. Matějíček, Gottwaldova 88, 362 64 Stará Role.

AF239S – 2 ks; AF239 – 1 ks; AR r. 70, 71; RK 1, 2/70; 6/71. K. Zatloukal, Vojanova 13, 615 00 Brno.

Tlak. reproduktory ART582 (ART581) – 2 ks.

I. Tupa, Dimitrovova 30, 360 00 Karl. Vary II.

Třípásmové reproduktorové soustavy KE 150, osazení ART481, ARO667, ARO835. Ing. Vlastimil Kocman, Tábor 2, 616 00 Brno.

Cívkové soupravy pro jednookruh. přijímače

mii Kocman, Tabor 2, 616 00 Brno. Civkové soupravy pro jednookruh, přijímače PN 05000 nepoužité. Bazary nabidnětel Bohumil Bláha, 538 51 Chrást u Chrudimě 165. Magnet. PHILIPS N 4510, TANDBERG 3 300 X, Sony 366—377, Hi-Fi boxy Grundig 210a, nebo Audioroma 4 000 Hi-Fi. Nabidněte výrobky jen ve velmi dobřém stavu, pokud možno úplně nové. Podmínkou není okamžitý prodej. M. Kobeda Tř. S A 907. 751 31 Lipník n Bežvou okr beda, Tř. S. A. 997, 751 31 Lipník n. Bečvou, okr.

Přerov.
Mezifrekvenční zesil. GÖRLER 322—0050 nebo jiný stejné kvality. J. Svoboda, 679 21 Černá Hora 8. Kúpim, predám, vymením AR 1953 až 1974. Jaromír Loub, Horná 34, 974 00 Banská Bystrica. Koupím FuH (nebo FuHE) w, d, c, 1, V apod. a R105 i vraky. Čena nerozhoduje. M. Kornfeld, Petrohrad 195, 439 85 okr. Louny.

VÝMĚNA

MH7490 za μΑ709Α, MAA502 - 1:2 kusům; μΑ709, MAA501 - 1:3; - μΑ725, MAA725 - 1:1; nabídněte. V. Bláha, Nár. muč. 263,500 08 Hradec Králové VIII.

RŮZNÉ

Správa radiokomunikací Praha, Přijímací stanice Velvary přijme do směnného provozu muže, požadované vzdělání ÚSO – obor elektro, kval. zařazení T8 nebo vyučeného v oboru elektro, kval. zařazení D 5 až D 7 podle TKK. Byt ihned k dispozici.

v laboratorním, dílenském a servisním provedení

- * MĚŘIČE NAPĚTÍ A ODVOZENÝCH VELIČIN
- * MĚŘIČE HODNOT ELEKTRICKÝCH OBVODŮ
- * MĚŘIČE KMITOČTU, FÁZE, ČASU A ČÍTAČE
- * GENERÁTORY
- * PŘÍSTROJE PRO ZOBRAZENÍ ELEKTRICKÝCH VELIČIN
- * OSTATNÍ MĚŘICÍ PŘÍSTROJE A ZAŘÍZENÍ

INFORMACE a předvedení přístrojů, které můžete ihned odebrat, žádejte přímo ve značkových prodejnách TESLA nebo u jejich nadřízených OBLASTNÍCH STŘEDISEK SLUŽEB TESLA:

Pro Středočeský, Jihočeský, Západočeský a Východočeský kraj – OBS TESLA Praha 1, Václavské náměstí 35, PSČ 110 00, tel. 26 40 98; pro Severočeský kraj – OBS TESLA Ústí n. L., Pařížská 19, PSČ 400 00, tel. 274 31; pro Jihomoravský kraj – OBS TESLA Brno, Rokytova ul. – areál č. 6, PSČ 600 00, tel. 37 74 49; pro Severomoravský kraj – OBS TESLA Ostrava, Gottwaldova 10, PSČ 700 00, tel. 240 09; pro Západoslovenský kraj-OBS TESLA Bratislava, Borodáčova96, PSČ 800 00, tel. 20065; pro Středoslovenský kraj-OBS TESLA Banská Bystrica, Malinovského 2, PSČ 974 00, tel. 255 50; pro Východoslovenský kraj – OBS Košice, Luník I, PSČ 040 00, tel. 36232;

Přímý kontakt s výrobními podniky TESLA Brno a TESLA Liberec zařizuje

TESLA obchodní podnik

Adresa pro písemný styk: 113 40 Praha 1, Dlouhá 35, pošt. schr. č. 764.

Adresa pro osobní styk: Praha 8, Karlín, Sokolovská 95, 2. patro, obchodní úsek – odbor přistrojů, telefony: 275 156—8, 637 05—6, linka 86 a 69.

KNIHY, KTERÉ VÁM POMOHOU A USNADNÍ PRÁCI

J. Bém a kol: ČESKOSLOVENSKÉ POLOVODIČOVÉ SOUČÁSTKY

Obsahuje údaje o polovodičových diodách a usměrňovačích, tyristorech, tranzistorech, fotonkách, tunelových diodách, varikapech, termistorech atd.

Kři 55.—

j. Bozděch a kol.: MAGNETOFONY I.

Obsahuje popisy a schémata tuzemských a dovezených magnetofonů, návody na seřizování elektrických i mechanických částí a na opravy.

Kěs 40,—

J. Budínský: POLOVODIČOVÉ OBVO-DY PRO ČÍSLICOVOU TECHNIKU

Obsahem publikace je systematické pojednání o podstatě činnosti, o charakteristikách, vlastnostech a návrhu v praxi používaných číslicových obvodů a o jejich použití v číslicové technice.

Křs 53,—

M. Český – J. Vodrážka: RÁDCE TELEVIZNÍHO OPRAVÁŘE

Probírá příčiny, zjišíování a odstraňování závad v televizních přijímačích elektronkových, tranzistorových i hybridních, pro černobílý i barevný příjem.

Kěs 47,—

E. Kottek: ČESKOSLOVENSKÉ ROZ-HLASOVÉ A TELEVIZNÍ PŘIJÍMAČE III/1964—1970 A ZESILOVAČE

Popisy, schémata a návody pro slaďování čs. rozhlasových a televizních přijímačů z výroby let 1964—70. Je doplněna popisy a schématy čs. nízkofrekvenčních zesilovačů z výroby z let 1950—70.

Kěs 69,—

H. Meluzín: RÁDIOTECHNIKA

Elektrónkové a tranzistorové prijímače, zosilňovače a magnetofóny.

Kčs 31,-

PRÍRUČKA POLOVODIČOVEJ TECH-NIKY

Príručka obsahuje 1 133 hesiel z odboru polovodičovej techniky. Hesla sú zoskupené podľa abecedy. Kčs 27.—

RADIOELEKTRONICKÁ PŘÍRUČKA I/II. díl

Kniha probírá stručně celou oblast radioelektroniky tak, aby seznámila s nejmodernějšími výzkumy celou technickou veřejnost. I. a.II. díl

Kčs 155,-

M. Syrovátko: ZAPOJENÍ S POLO-VODIČOVÝMI SOUČÁSTKAMI

Publikace představuje soubor zapojení z různých oborů elektrotechniky a obvody, použitelné v oborech mimo elektroniku.

Kěs 27,—

V. Vít – J. Kočí: TELEVIZNÍ PŘÍJEM VE IV. A V. PÁSMU

Příručka se zabývá problematikou televizního příjmu ve IV. a V. pásmu (pro druhý televizní program): Kěs 25,—

分 岑 长

Uvedené publikace Vám zašle ihned po obdržení Vaší objednávky

TECHNICKÉ KNIHKUPECTVÍ (Pod globusem)

656 14 Brno, Česká 32, pošt. schr. 1