ASSIGNMENT 2 (INDIVIDUAL) BACKPROPAGATION NEURAL NETWORK ASSIGNED DATE: 13 APRIL 2021 DUE DATE: 28 APRIL 2021

Given the following network architecture for a NAND ("Not AND") logical operation. Assume that the learning rate $\alpha = 0.4$, with inputs and weights as given in Table 1, while threshold θ and biases as shown in Figure 1 [30 marks]:

ſ	Epoch	Inputs		Desired Output	Initial Weights						Actual Output	Error	SSE	Updated Weights					
İ	1	x_1	<i>x</i> ₂	Y_d	W13	W14	W23	W24	<i>W</i> 35	W 45	Y	е	$\sum (e)^2$	W 13	W14	W 23	W24	W 35	W 45
		0	1	1	1.1	0.8	0.5	0.8	0.9	-1.3	?	?	?	?	?	?	?	?	?

Table 1

Figure 1

- a. Calculate the output $y_j(\mathbf{p})$ at neuron 3, 4 and 5. Subsequently, calculate the error \mathbf{e} . (8 marks)
- b. Calculate the error gradients $\delta_5(p)$ at the output layer (neuron 5) and the error gradients $\delta_3(p)$ and $\delta_4(p)$ at the hidden layer (neuron 3 and neuron 4). (8 marks)
- c. Determine the weight corrections $\Delta w_{ij}(p)$ and $\Delta \theta_j(p)$. (7 marks)
- d. Update all weights and threshold accordingly. (7 marks)