			_			
Reg. No.						

B.Tech. DEGREE EXAMINATION, MAY 2024 Sixth Semester

18ECE351T - HIGH PERFORMANCE COMPUTING FOR CYBER PHYSICAL SYSTEM (For the candidates admitted from the academic year 2018-2019 to 2021-2022) Note:

(i)

Page 1 of 4

Part - A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed

(ii)	over to hall invigilator at the end of 40 th Part - B & Part - C should be answere	th minued in a	nswer booklet.	et shou	iiu o	e nar	iae
Time:	3 hours			Max.	Mar	ks: 1	.00
	$PART - A (20 \times 1)$	= 20	Marks)	Marks	BL	со	P
	Answer ALL	Quest	ions				
	Which package is responsible for un(A) Steam(C) RPC	(B)	remote procedure calls? File Job	1	2	1	=1
2	2. Utilization rate of resources in an ex	xecution (on model is known to be its	1	1	1	1
	(A) Adaptation	(B)	Efficiency				
	(C) Dependability	(D)	Flexibility				
3	. Data centers and centralized comput	tina a		1			
	(A) Micro computers	(R)	Mini computers	1	2	1	1
	(C) Main frame computers	(D)					
	(a) and a sum of the parties	(D)	Super computers				
4	. Even under failure condition, provid	ling O	oS assurance is responsibility of	1	1	1	1
	(A) Dependability		Adaptation				
	(C) Flexibility		_				
5	The similarity measure of the memb	oer jol	description must be higher than	1	2	2	1
	(A) Threshold	(B)	Speed				
	(C) Access ratio	(D)	Area				
6	What are the norformer as matrice C		11.1				
0.	What are the performance metrics fo (A) Execution time			1	1	2	1
	(C) Speed up	(B)	1				
	(e) Speed up	(D)	Run time				
7.	The prefix sum operation can be imp	lemen	ated using the	1	1	2	2
	(A) All-to-all broadcast kernel		All-to-one broadcast kernel				
	(C) One-to-all broadcast kernel		Scatter kernel				
8.	Simplifies applications of three tier a	rchite	cture is	1	2	2	2
	(A) Maintenance		Initiation	1	_	4	3
	(C) Implementation		Deployment				
		(-)	~ opiojilivili				

20MF6/18ECE351T

		1	3	3 2	2
9. EFT = T^{EPT} +time.	·				
(A) Session	(B) Down				
(C) Fall	(D) Current				
		1	2	3	3
10. Expand FIM	(D) I 1 (111- management				
(A) Field ideal management	(B) Federated idea management				
(C) Field identity management	(D) Federated identity management				
	1 1	1	1	3	2
11window help us to find	he total number of dispatched task.				
(A) Monitor	(B) Tasks				
(C) Dispatch	(D) Job				
_		1	3	3	3
12. T^{EPT} + current time =					
(A) Estimated failure time	(B) Estimated finish time				
(C) Easy failure time	(D) Easy finish time				
		. 1	2	4	2
13is an application accel	erator of computing systems.				
(A) FPGA	(B) FPAA				
(C) FGPA	(D) ASIC				
		1	1	4	2
14. Applications perform nearest neigh	abor computations is called				
(A) Stencils	(B) VLIN				
(C) Hardware architecture	(D) DSP				
	1:	, 1	1	4	3
15transformation a	dimension to a new size in order too	,			
reduce cache-set conflicts.	(D) CIMD				
(A) FISH	(B) SIMD				
(C) Array packing	(D) Loop fitting				
	to making any stem instruction processes	1	1	4	3
	tomatic custom instruction processes.				
(A) VLIN	(B) FISH				
(C) ASIC	(D) ASP				
· 1 ·	programming model that hides hardwar	e 1	2	5	3
	i programming moder that mees have we				
design and scheduling.	(B) SOLAR				
(A) SONAR	(D) SONAC				
(C) SOLAC	(D) SONAC				
11 the headyro	re modulus to access system memor	v 1	2	5	3
	le modulus to access system mene-	,			20
independently of the CPU.	(B) DAM				
(A) SMID	(D) DMA				
(C) SIMD	(D) DIMA				
10 D 1VDVE		1	1	5	2
19. Expand KBMF	triv (R) Kernel based matrix function				
(A) Kernelized Bayesian ma	trix (B) Kernel based matrix function				
factorization	tion (D) Kernel bay multiples factor				
(C) Kernelized bay matrix runc	HOII (D) Koiner on's marchine record				

20	 Support vector mechanism and regularized classification methods used for prediction. 	1	1	5	2
	(A) SVM (B) DTI				
	(C) RLS (D) QPCRS				
	PART - B (5 × 4 = 20 Marks) Answer ANY FIVE Questions	Marks	BL	со	PO
21	. Explain data topology.	4	1	1	1
22	. What are all the key components of public-private grid partnership?	4	2	1	1
23.	Define site number and submission time.	4	2	2	1
24.	What is the use of the dispatch window?	4	2	3	2
25.	Define static and stream.	4	. 3	4	3
26.	Write an overview of GPU accelerators of neural networks.	4	3	5	3
27.	Explain in detail about neighbourhood smoothing.	4	2	5	2
	PART – C ($5 \times 12 = 60$ Marks) Answer ALL Questions	Marks	BL	CO	РО
28. a.	Explain in detail about the role of super computers in grids.	12	2	1	1
h	OR) Discuss the following				
υ.	(i) Leverage of market power	4 4	2	1	1
	(ii) Sharing of operational cost	4			
	(iii) Optimize system usage				
29. a.	Explain in detail about moldable job allocation in parallel computers.	12	3	2	1
	(OR)				
ь.	Analyze the flowchart of moladable job allocation in a heterogeneous grid and explain the same in detail.	12	3	2	1
30. a.	With a neat sketch describe how data usage is controlled on the service provider side.	12	3	3	2
	(OR)				
b.	Draw and explain the architecture of privacy management for the grid services.	12	2	3	3

31. a. Explain in detail about controllable dataflow execution model with three different scenarios.	12	3	4	3
(OR)				
 b. Discuss the following in detail (i) Application specific micro architecture (ii) Stencil computation 	6 6	3	4 4	3
32. a. Explain in detail about logistic matrix factorization.	12	2	5	2
(OR) b. Explain in detail about NRLMF.	12	2	5	2

* * * *

Page 4 of 4