Dimensionality Reduction with SVD

Mining of Massive Datasets Leskovec, Rajaraman, and Ullman Stanford University

- SVD gives 'best' axis to project on:
 - 'best' = min sum of squares of projection errors
- In other words,
 minimum
 reconstruction
 error

• $A = U \Sigma V^T$ - example:

- V: "movie-to-concept" matrix
- U: "user-to-concept" matrix

variance ('spread') on the v₁ axis

1	1	1	0	0	
3	3	3	0	0	
4	4	4	0	0	
5	5	5	0	0	ŀ
0	2	0	4	4	
0	0	0	5	5	
0	1	0	2	2	

$A = U \Sigma V^{T}$ - example:

 U Σ: Gives the coordinates of the points in the projection axis

Projection of users on the "Sci-Fi" axis $((U \Sigma)^T)$:

		_
1.61	0.19	-0.01
5.08	0.66	-0.03
6.82	0.85	-0.05
8.43	1.04	-0.06
1.86	-5.60	0.84
0.86	-6.93	-0.87
0.86	-2.75	0.41

More details

Q: How exactly is dim. reduction done?

$$\begin{bmatrix} 12.4 & 0 & 0 \\ 0 & 9.5 & 0 \\ 0 & 0 & 1.3 \end{bmatrix}$$

- Q: How exactly is dim. reduction done?
- A: Set smallest singular values to zero

- Q: How exactly is dim. reduction done?
- A: Set smallest singular values to zero

$$\begin{bmatrix} 12.4 & 0 & 0 \\ 0 & 9.5 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

- Q: How exactly is dim. reduction done?
- A: Set smallest singular values to zero

$$\begin{bmatrix} 12.4 & 0 & 0 \\ 0 & 9.5 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

- Q: How exactly is dim. reduction done?
- A: Set smallest singular values to zero

1 3					0.13 0.41			.		_	
0	2	0	4	4	0.15	0.09 0.11 -0.59 -0.73	X	12.4 0	0 9.5		X
0						-0.29		0.56 0.12			0.09 -0.69

More details

- Q: How exactly is dim. reduction done?
- A: Set smallest singular values to zero

Frobenius norm:

$$\|\mathbf{M}\|_{\mathrm{F}} = \sqrt{\sum_{ij} M_{ij}}^2$$

$$\|\mathbf{A} - \mathbf{B}\|_{F} = \sqrt{\Sigma_{ij} (\mathbf{A}_{ij} - \mathbf{B}_{ij})^{2}}$$
 is "small"