

FIG. 1

F I G. 2

FIG. 3

F I G . 4 A

F I G . 4 B

NO_x CONCENTRATION
NH₃ CONCENTRATION

F I G. 5 A

F I G. 5 B

F I G. 6

$$V_{NOX_hat}(k) = A \cdot Kbt(k-d)^2 + B \cdot Kbt(k-d) + C \quad \dots \dots (3)$$

$$\theta(k) = \theta(k-1) + KP(k) \cdot ide(k) \quad \dots \dots (4)$$

$$\theta(k)^T = [A, B, C] \quad \dots \dots (5)$$

$$ide(k) = V_{NOX}(k) - V_{NOX_hat}(k) \quad \dots \dots (6)$$

$$V_{NOX_hat}(k) = \theta(k-1)^T \cdot \zeta(k) \quad \dots \dots (7)$$

$$\zeta(k)^T = [Kbt(k-d)^2, Kbt(k-d), 1] \quad \dots \dots (8)$$

$$KP(k) = \frac{P(k) \cdot \zeta(k)}{1 + \zeta(k)^T \cdot P(k) \cdot \zeta(k)} \quad \dots \dots (9)$$

$$P(k+1) = \frac{1}{\lambda_1} \cdot \left(I - \frac{\lambda_2 \cdot P(k) \cdot \zeta(k) \cdot \zeta(k)^T}{\lambda_1 + \lambda_2 \cdot \zeta(k)^T \cdot P(k) \cdot \zeta(k)} \right) \cdot P(k) \quad \dots \dots (10)$$

I : UNIT MATRIX
 λ_1, λ_2 : WEIGHT PARAMETERS

F I G. 7

F I G. 8

F I G. 9

F - G. 10

FIG. 11

F I G. 1 2

