

Instituto Superior Técnico

MESTRADO INTEGRADO EM ENGENHARIA ELECTROTÉCNICA E DE COMPUTADORES

Sistemas Integrados Analógicos

Design de um Amplificador

João Bernardo Sequeira de Sá n.º 68254 Maria Margarida Dias dos Reis n.º 73099 Nuno Miguel Rodrigues Machado n.º 74236

Índice

1 Introdução						
2	Adenda ao Middle Target					
	2.1	Detecção dos erros	2			
	2.2	Correcção do dimensionamento	3			
	2.3	Demonstração de resultados	4			
		2.3.1 Resultados do dimensionamento inicial	5			
		2.3.2 Resultados do dimensionamento corrigido	5			
3	\mathbf{Pro}	ojecção do $Layout$	6			
	3.1	Multiplicidade e Fingers	6			
	3.2	Disposição dos transístores	7			
	3.3	Ligações internas dos blocos	9			
	3.4	Ligações externas entre os blocos	9			
4	Cor	nclusões	10			

1 Introdução

Pretende-se projectar um amplificador folded cascode CMOS OTA de dois andares de acordo com as especificações da seguinte tabela.

Especificação	Símbolo	Valor
Tensão de Alimentação	Vdd	3.3 V
Ganho para Sinais de Baixa Amplitude	Av	70 dB
Largura de Banda	Bw	60 kHz
Margem de Fase	PM	60°
Capacidade da Carga	CL	0.25 pF
Slew-Rate	SR	200 V/μs
Budget da Corrente	IDD	400 μΑ
Área de <i>Die</i>	/	0.02 mm^2

Tabela 1: Características do amplificador a projectar.

O circuito de ponto de partida para a realização do projecto é apresentado de seguida.

Figura 1: Circuito do amplificador a projectar.

${\bf 2} \quad {\bf Adenda\ ao}\ {\it Middle\ Target}$

Esta secção foi acrescentada ao relatório final no intuito de corrigir os resultados obtidos e apresentados no relatório anterior, o do *middle target*. Como referenciado, pretende-se projectar um amplificador *folded cascode* CMOS OTA de dois andares de acordo com as especificações da Tabela 1.

2.1 Detecção dos erros

Foram identificados vários erros no relatório intermédio que comprometem os resultados apresentados anteriormente. A primeira correcção foi referente ao *schematic* do *testbench* que permite simular o circuito em testes de resposta AC. Foi colocado um *switch* que simula a bobine - provoca um circuito aberto para um regime AC e curto-circuito para um regime DC. Foi também alterada a amplitude do sinal de entrada de 3.3 V para 1.6 V, sendo que esta alteração garante que os transístores não saem da saturação. De seguida pode-se comparar o novo *testbench* com o anterior.

Figura 2: Schematic do testbench anterior que permite simular o circuito em testes de resposta AC.

Figura 3: Schematic do novo testbench que permite simular o circuito em testes da slew-rate e de resposta transiente, DC e AC.

Outro erro identificado é referente ao cálculo da *slew-rate*. No relatório intermédio, o resultado da *slew-rate* era relativo só ao flanco de descida, sendo necessário demonstrar para os dois flancos - subida (equação 2.1) e descida (equação 1.2).

$$slewRate(VT("/OUT") 1 nil 2 nil 10 90 nil "time")$$
(2.1)

$$slewRate(VT("/OUT") 2 nil 1 nil 10 90 nil "time")$$
(2.2)

A equação slewRate é obtida da calculadora do *CADENCE*, escolhendo o sinal pretendido. Neste caso o sinal é a saída do *CascodeOTA*, VT("/OUT"). De seguida escolhe-se a posição inicial e final para

o calculo da *slew-rate*, foi definido que para o flanco de descida começa-se a calcular desde 2 V até 1 V e no flanco de subida o calculo é o inverso, de 1 V até 2 V. O intervalo anteriormente referido foi escolhido de forma a calcular a *slew-rate* na zona onde os transístores se encontram na saturação.

2.2 Correcção do dimensionamento

Com os erros anteriormente referidos corrigidos, o circuito apresentado na entrega intermédia falhava em algumas especificações, ganho para sinais de baixa amplitude, margem de fase e largura de banda, na secção inicial está demonstrado os resultados das simulações de Monte Carlo e *corners*.

Com o intuito de corrigir as dimensões, partiu-se de um critério inicial, obter transístores de dimensões mais reduzidas e manter o rácico W/L obtido no relatório anterior. Em primeiro lugar, verificou-se com a nova expressão do calculo da slew-rate obtém-se resultados mais elevados, assim sendo podesse reduzir as dimensões dos transístores M_9 e M_{10} . De seguida pretendeu-se melhorar a margem de fase, analisando o resultado das especificações pretendidas verificou-se que era necessário aumentar a largura de banda de forma a obter uma margem de fase sem alterar significativamente os resultados das outras especificações. Começou-se por analisas as dimensões das capacidades do circuito e verificou-se que a capacidade referente aos transístores M_7 e M_8 é a capacidade que mais influencia a margem de fase. Mas como já foi referido no relatório anterior os transístores M_7 e M_8 também afectam o ganho e a largura de banda, como se pode ver pelas expressões seguintes. Assim sendo, e analisando as expressões decidiu-se inicialmente por diminuir os transístores M_7 e M_8 o que fez aumentar a largura de banda como também a margem de fase. Com o intuito de melhorar as especificações obtidas diminui-se as dimensões dos transístores M_3 e M_4 até atingir uma dimensão de L miníma de 0.85μ este critério foi também aplicado aos transístores M_5 e M_6 sendo necessário um aumento das dimensões.

$$A_v = g_{m_1} R_o = g_{m_1} \left[\left(g_{m_4} r_{o_4} \left(r_{o_2} / / r_{o_{10}} \right) \right) / \left(g_{m_6} r_{o_6} r_{o_8} \right) \right]; \tag{2.3}$$

$$f_p = \frac{1}{2\pi C_L R_o} = \frac{1}{2\pi C_L \left[\left(g_{m_4} r_{o_4} \left(r_{o_2} / / r_{o_{10}} \right) \right) / \left(g_{m_6} r_{o_6} r_{o_8} \right) \right]}; \tag{2.4}$$

Com estas alterações consegui-se obter todas a especificações menos para o ganho de sinais de baixa amplitude. Analisando a expressão anterior do ganho e verifica-se que para aumentar o ganho sem alterar as restantes especificações, seria aumentar o g_{m_1} . Como g_m é directamente proporcional a I_D , com aumento de W há o aumento de I_D e aumento de g_m . A expressão seguinte mostra como W influencia I_D :

$$g_m \propto I_D = k_P \times \left(\frac{W}{L}\right) \times V_{OD}^2 \times (1 + \lambda V_{DS}).$$
 (2.5)

explicar isto

Assim, o circuito final relativamente à entrega intermédia é:

nao esquecer que o racio de m1 e m2 mudou face ao da entrega intermedia, explcias porque

Figura 4: Circuito final da entrega intermédia.

Tabela 2: Dimensões dos transístores que constituem o amplificador.

Transístores	W [μm]	L [μm]	Rácio W/L
M1 e M2	100	1	100
M3 e M4	11.9	0.85	14
M5 e M6	36.55	0.85	43
M7 e M8	107.5	2.5	43
M9 e M10	40.6	1.4	29
M11_1	8.6	1	8.6
M11_2	8.6	1	8.6
M12	7.1	1	7.1
M13	1.8	1	1.8
M14	7.2	1	7.2

2.3 Demonstração de resultados

Nesta secção apresenta-se os resultados do dimensionamento do relatório intermédio e do novo dimensionamento anteriormente referido, para simulações de Monte Carlo e de *corners*.

2.3.1 Resultados do dimensionamento inicial

Figura 5: Simulação de Monte Carlo para 50 pontos.

Figura 6: Resultados obtidos para as 3 primeiras simulações de Monte Carlo.

Figura 7: Simulação por corners.

2.3.2 Resultados do dimensionamento corrigido

Figura 8: Simulação de Monte Carlo para 50 pontos.

Figura 9: Resultados obtidos para as 3 primeiras simulações de Monte Carlo.

Test	Output	Nominal	Pass/Fail	Min	Max	cornerí	WP	WS	W0	WZ
SIA2015_Sim:CascodeOTA:1	ganho	70.97	pass	70.06	73.82	disab	72.16	71.89	70.06	73.82
SIA2015_Sim:CascodeOTA:1	largura de banda	96.3k	pass	76.45k	97.18k	disab	96.77k	76.45k	97.18k	77.62k
SIA2015_Sim:CascodeOTA:1	margem de fase	63.89		59.9	65.11	disab	64.16	61.58	65.11	59.9
SIA2015_Sim:CascodeOTA:1	Slew Rate Subida	292.4M	pass	277.3M	303.8M	disab	298.5M	284.9M	277.3M	303.8M
SIA2015_Sim:CascodeOTA:1	Slew Rate Descida	-291.5M	pass	-301.5M	-283.4M	disab	-287.3M	-288.4M	-283.4M	-301.5M
SIA2015_Sim:CascodeOTA:1	gainBwProd(VF("/OUT"))	341.4M		301.2M	393.3M	disab	393.3M	301.2M	310.1M	382.1M

Figura 10: Simulação por corners.

comentar diferenças obtidas

3 Projecção do Layout

3.1 Multiplicidade e Fingers

Para projectar o layout do circuito da Figura 4 optou-se por dividir os transístores de grandes dimensões com recurso a duas técnicas - multiplicidade e fingers. A técnica de fingers corresponde a um arranjo específico do transístor com n gate fingers em que as difusões da source e do drain são partilhadas. Se se tiver n fingers haverá então n+1 difusões. A multiplicidade é quando se faz uma ligação em paralelo de múltiplos dispositivos MOS, sendo que o agregado deles corresponde a um só transístor.

Do ponto de vista da definição correspondem ao mesmo, mas são de facto duas maneiras diferentes de pensar na paralelização de transístores. Com o recurso a *fingers* tem-se uma única célula com o transístor completo com todos os *fingers*, útil para quando se quer uma célula mais compacta, enquanto na multiplicidade tem-se tantos transístores quanto a multiplicidade indicar. De facto, é possível conjugar as duas técnicas, ou seja, cada dispositivo MOS da multiplicidade pode ser feito com vários *fingers*.

Para o trabalho em causa optou-se por usar as duas técnicas teoricamente idênticas para adquirir mais experiência e para verificar as diferenças que têm ao nível de implementação prática no Cadence.

Estas práticas são aplicadas também de forma a evitar os efeitos nocivos de *mismatches*, ou seja da vulnerabilidade aos gradientes de parâmetro. Ao minimizar a área efectiva dos circuitos protege-se assim o dispositivo destes efeitos.

Sendo assim deu-se especial atenção aos pares de transistores em que se considerou que existe uma maior sensibilidade a mismatches. São este os pares M1/M2, M7/M8, M9/M10 e M11-1/M11-2. Começou-se em primeira instância por aplicar multiplicidade, tentando aproximar-se ao máximo os tamanhos dos pares que estão ligados. Em adição a multiplicidade optou-se por usar também a técnica fingers nos pares M7/M8 e M5/M6

Assim, na tabela seguinte encontra-se uma descrição de como são constituídos os vários transístores do circuito.

explicar porque de fingers nos pares do M7 e

Tabela 3: Dimensões e características dos transístores do amplificador.

Transístores	Multiplicidade	Número de gates	Wtotal [μm]	Wsingle gate [μm]	L [μm]	Descrição
M1 e M2	8	1	100	12.5	1	8 transístores, cada um com 1 <i>gate</i>
M3 e M4	2	1	11.9	5.95	0.85	2 transístores, cada um com 1 gate
M5 e M6	1	4	36.6	9.15	0.85	1 transístor com 4 <i>gates</i>
M7 e M8	2	4	107.5	13.45	2.5	2 transístores, cada um com 4 gates
M9 e M10	4	1	40.6	10.15	1.4	4 transístores, cada um com 1 gate
M11_1	1	1	8.6	8.6	1	1 transístor com 1 <i>gate</i>
M11_2	10	1	8.6	0.86	1	10 transístores, cada um com 1 gate
M12	1	1	7.1	7.1	1	1 transístor com 1 <i>gate</i>
M13	1	1	1.8	1.8	1	1 transístor com 1 <i>gate</i>
M14	1	1	7.2	7.2	1	1 transístor com 1 <i>gate</i>

3.2 Disposição dos transístores

Depois de se definir como estão estruturados os vários transístores é importante definir como se encontram dispostos no layout. A topologia básica que foi utilizada é a de common centroid. Através desta técnica consegue-se garantir um melhor matching entre dois transístores iguais e em que se pretende um comportamento semelhante. De facto, o common centroid é utilizado para se garantir que, e.g., um amplificador diferencial tenha um sinal de modo comum próximo de 0 e, como tal, um CMRR maior.

Para o circuito em causa foram definidos 4 blocos principais sobre os quais se definiu uma estrutura common centroid:

- espelho de corrente básico que é polarizado em corrente com I_{BIAS} (equivalente ao Bloco 1 da Figura 1) estrutura common centroid #1;
- transístores do par diferencial (Bloco 2 da Figura 1) estrutura common centroid #2;
- espelho de corrente cascode básico do tipo PMOS (Bloco 3 da Figura 1) estrutura common centroid #3;
- transístores do tipo NMOS estrutura common centroid #4;.

A escolha destes blocos foi feita com base no *mismatch*. É essencial que entre os transístores do par diferencial não haja diferenças de comportamento, pois se houver o circuito fica desequilibrado. Os dois espelhos de corrente existentes também não devem ter *mismatch*, pois pretende-se um espelhamento correcto.

e os transisto res NMOS?

De seguida apresenta-se as várias estruturas common centroid definidas:

Figura 11: Estrutura common centroid #1 (a), #2 (b), #3 (c) e #4 (d).

Nas figuras anteriores verifica-se a existências de transístores representados pela letra D - transístores dummies. Este tipo de transístores serve para se garantir que os restantes transístores têm a mesma vizinhança, ou seja, que à sua volta vêem o mesmo. Veja-se o seguinte exemplo em que se consideram dois transístores - 1 e 2. O transístor 1 está definido com uma multiplicidade de 1 e o transístor 2 com uma multiplicidade de 8. Na figura seguinte encontra-se um exemplo de estrutura common centroid para esse caso.

2	2	2
2	1	2
2	2	2

Figura 12: Exemplo de estrutura common centroid com dois transístores.

O transístor 1 tem como vizinhança 4 transístores - para cima, para baixo, para a esquerda e para a direita. No entanto, qualquer transístor 2 tem uma "falha" naquilo que vê, pois não tem "vizinhos" nalgumas direcções. Assim, para se resolver este problema colocam-se transístores dummies nos sítios onde há "falhas".

	D	D	D	
D	2	2	2	D
D	2	1	2	D
D	2	2	2	D
	D	D	D	

Figura 13: Exemplo de estrutura common centroid com dois transístores e também transístores dummies.

De facto, os transístores *dummies* não necessitam de ter as mesmas dimensões que os restantes e o circuito da figura anterior pode ser definido sa seguinte maneira.

	D		D	
D	2	2	2	D
D	2	1	2	D
D	2	2	2	D
	D	D	D	

Figura 14: Exemplo de estrutura common centroid com dois transístores e também transístores dummies de dimensões menores.

Relembrando as estruturas da Figura 11, verifica-se que a estruturas #1 e #3 têm dummies.

3.3 Ligações internas dos blocos

Uma vez definidos como estão estruturados os transístores e como estão dispostos efecutam-se as ligações internas dos 4 blocos da Figura 11.

Existem várias regras para construir um *layout*, sendo que uma delas impõe um espaço mínimo para separar as diferentes máscaras. Para evitar isto, recorre-se a uma opção existente no Cadence que notifica o utilizador quando este não cumpre as margens mínimas.

As ligações entre gates de transístores que estejam próximos são feitas a partir da camada condutora poly. Porém, se os transístores estiverem afastados é preferível efectuar a ligação com recurso a Metal 1 e a contactos do tipo P1_C, que efectuam a ligação entre poly e Metal 1. Esta solução é preferível para esses casos pois a poly tem uma resistividade elevada e colocar demasiado dessa camada faz aumentar a resistividade geral do circuito. De facto, na tabela seguinte apresenta-se a resistividade das diversas máscaras existentes no fabrico e verifica-se que a poly (poly 1) tem uma resistividade bem superior face a camadas como Metal 1 e Metal 2. Verifica-se também que a resistividade de um contacto do tipo P1_C é elevada, mas que compensa, uma vez que para efectuar uma ligação correcta entre duas gates bastaria colocar no máximo 2 contactos.

Tabela 4: Resistividade das diversas máscaras de fabrico (a) e resistividade dos diversos tipos de contactos (b).

(4)								
Sheet resi	Sheet resistance							
Layer		Ω/\Box						
metal4	R_{sm4}	0.05						
metal3	R_{sm3}	0.05						
metal2	R_{sm2}	0.08						
metal1	R_{sm1}	0.08						
poly1	R_{sp}	6						
poly2	R_{sp2}	50						
n^+ diff.	R_{sdn}	80						
p^+ diff.	R_{sdn}	150						

(a)

(')	
Contact resistance	
Layer-layer	Ω/cnt
metal4-metal3	R_{via3} 3
metal3-metal2	R_{via2} 1.5
metal2-metal1	R_{via} 1.5
metal1-poly1	$R_{cp} = 5$
metal1-n ⁺ diff.	R_{cdn} 40
metal1-p ⁺ diff.	R_{cdp} 90

(b)

Tomou-se a decisão de, sempre que possível, efectuar as ligações com Metal 1 na horizontal e com Metal 2 na vertical. Procura-se aplicar esta *rule of thumb* sempre que possível, sendo que apenas não é cumprida quando se verifica que acaba por tornar mais difícil o *design* do *layout* ou que conduz a uma área maior porque é necessário ajustar o espaçamento entre transístores para acomodar uma ligação em Metal 1 ou Metal 2 consoante o caso.

Para ligar Metal 1 a Metal 2 é usada uma via. De referir que, optou-se também, sempre que possível, por colocar vias e contactos duplos, para que houvesse um de backup. À semelhança do que se referiu anteriormente, isto é feito quando não dificulta o design do layout.

3.4 Ligações externas entre os blocos

4 Conclusões