Student ID:	52303 1910521	Name:	刘浩许	
_				and the same of th

Lab 1 Superposition principle & Thevenin's theorem

1.1 Pre-Lab Assignment:

Reading "Fundamentals of Electric Circuits", Page 122-127,131-137

Author: Charles K. Alexander Matthew N.O. Sadiku

1.2 Theory

The superposition principle states that voltage across (or current through) an element in a linear circuit is the <u>algebraic sum</u> of the voltages across (or currents through) that element due to each independent source acting alone.

Thevenin's theorem states that a linear two-terminal circuit can be replaced by an equivalent circuit consisting of a voltage source V_{Th} in series with a resistor R_{Th} , where V_{Th} is the open-circuit voltage at the terminals and R_{Th} is the input or equivalent resistance at terminals when the independent sources are turned off.

1.3 Experiment

1.3.1 Part 1.

Steps:

- 1. Turn off all independent sources except one source. Find the output (voltage or current) due to that active source.
 - 2. Repeat step 1 for each of the other independent sources.
- 3. Find the total contribution by adding algebraically all the contributions due to the independent source.

Fig. 1.1 Both voltage sources exist

Fig. 1.2 only U_{s1} exists

Fig. 1.3 only U_{s2} exists

Table 1 Superposition principle ($U_{s1} = 16V, U_{s2} = 10V$)

		$U_{AB}(V)$	$U_{AC}(V)$	$U_{BC}(V)$	$I_{BC}(mA)$
	Only U_{s1} exists	+8.606 -9.8606 V	+1.821 V	-6.786V	-44
	Only U_{s2} exists	-2.241V	-6.742 V	-4.494V	-29
	U_{s1}, U_{s2} both exist	+ 6.367V	-4.922V	-11.290 V	- 501 74
1	Error (%)-	0.002	0.001V¥	0.010V	1 mA
	桐对误差(%)	0.031%	0.020%	0.088%	1. 351%

色对

(相对 both exist)

1.3.2 Part 2

Fig. 1.4 Equivalent Thevenin circuit for a linear two-terminal circuit

(1) Measure $U_{OC} = 49.74$ that is U_{CB} when open circuit.

Fig. 1.5 Measure short-circuit current of a two-terminal circuit

(2) Measure $I_{SC} = 171 \text{ m}$ hat is I_{CB} when short circuit.

(3)
$$R_i = \frac{u_{oc}}{l_{sc}} = 15.44 \, \text{N}$$
, $R_{eq} = (R_1//R_3 + R_2//R_4) = 15.63 \, \text{N}$. (4) The relation between U and I is $\frac{1}{1000} = \frac{1}{1000} = \frac{$

Fig. 1.6 Equivalent Thevenin's circuit

Table 2 Comparison I_{CB} of origin circuit vs. Thevenin's circuit

<i>I_{CB}</i> in Fig. 1.1	<i>I_{CB}</i> in Fig. 1.6	Error(mA)	Error(%)
~74mA	74mA	0	0

Fig. 1.7 Characteristics of a two-terminal network

Table 3 Output of Fig. 1.

$R_L(\Omega)$	50	70	90	100	R_i	130	150	180	200	250
$U_{\rm CB}(V)$	6.015	7,505	8.713	9.220	9.922	10.532	11.239	12.120	12.616	13.616
$I_{CB}(mA)$	120	107	96	92	86	13	74	67	63	54
$P_{R_L}(W)$,			,	100

(4) Draw a curve of U_{CB} vs. I_{CB} according to Table 3. On the same figure, draw a curve of U vs. I according to Fig. 1.4.

Student ID: 52303191052 Name: 刘浩字

Lab 2 Tellegen Theorem & Reciprocity Theorem

1.Theory

2.1.1 Passive sign convention:

By the Passive sign convention, current enters through the positive polarity of the voltage.

2.1.2 Tellegen Theorem:

1. If there are b branches in a lumped circuit, and the voltage u_k , current i_k of each branch apply passive sign convention, then

$$\sum_{k=1}^{b} u_k i_k = 0$$

2. If two lumped circuits have the same topological graph, and the voltage, current of each branch apply passive sign convention, then

$$\sum_{k=1}^{b} u_k \widehat{\iota_k} = 0$$

$$\sum_{k=1}^{b} \widehat{u_k} \ i_k = 0$$

2.1.3 Reciprocity Theorem

only applicable to reciprocity networks

Case
$$1:\frac{i_2}{u_1} = \frac{\widehat{\iota_1}}{\widehat{u_2}}$$

Case 2: $\frac{u_2}{i_1} = \frac{\widehat{u_1}}{\widehat{\iota_2}}$

Case 3: $\frac{i_2}{i_1} = \frac{\widehat{u_1}}{\widehat{u_2}}$

2.2 Experiment

2.2.1 Part 1

Table 1 Tellegen Theorem

		-8.302	R ₂ 1-66	$R_{3}(D)$	9.981V	U _{s2}
Network 1	u_k (V)	-673b	0.857	3.246	# **	30 O
	i_k (mA)	-44-55	# 33	44 22	=4.55	±32
	$u_k i_k$	0.51	2-000085	0.037	-0.547 -0.437	2.00316
Network 2	$\widehat{u_k}$ (V)	-4.237	-4, 233	0-748	499	5.00
	$\widehat{\iota_k}$ (mA)	-27	-8z	28:110	-27	-82
	$\widehat{u_k}i_k$	0.235 0.186	0,135	0.016 0.0322	-0.214 -0.210	0.16
	$u_k \hat{l_k}$	0 -182	0.00693	0.0194	-0.269	p-259
		0 27/	0.139	0.185	-0.269	n

Calculate the sum of b branches: 0.224 0.138 0.185 -0.269 0
$$\Sigma_{k=1}^{b} u_{k} i_{k} = 0.300245$$
 $\Sigma_{k=1}^{b} u_{k} i_{k} = 0.270$ $\Sigma_{k=1}^{b} u_{k} i_{k} = 0.205$ $\Sigma_{k=1}^{b} u_{k} i_{k} = 0.205$

$$\sum_{k=1}^{b} u_k \widehat{\iota}_k = \underbrace{0.275}_{0.5}$$

$$\sum_{k=1}^{b} \widehat{u_k} i_k = \frac{9.198}{0.278}$$

2.2.2 Part 2

Case 1:

Measure the short currents $i_2 = \frac{22mA}{\hat{i}_1} = \frac{22mA}{22mA}$

Case 2: use the same reciprocity network N, $i_s = 25mA$

Case 3: use the same reciprocity network N, , $i_{s}=25mA$, $u_{s}=25V$

