Calculus 2021 Final Exam ALL MATERIAL

— Do not turn this page before the official start of the exam! —

First Name, Surname:	
Student ID:	
Student 1D.	
Program: Bachelor's DKE)	
Course code: KEN1440	
Examiner: Alexia Briassouli and Otti D'Huys	
Date/time: Monday, March 29 th , 2021, 8.30-10.30h	
Format: Closed book exam	
Allowed aides: Pens. Calculators are not allowed, and are not needed.	

Instructions to students:

- The exam consists of 8 questions on 15 pages (excluding the 1 cover page(s)).
- Fill in your name and student ID number on each page, including the cover page.
- Answer every question at the reserved space below the questions. If you run out of space, continue on the back side, and if needed, use the extra blank page.
- Ensure that you properly motivate your answers.
- Do not use red pens, and write in a readable way. Answers that cannot be read easily cannot be graded and may therefore lower your grade.
- You are not allowed to have a communication device within your reach, nor to wear or use a watch.
- You have to return all pages of the exam. You are not allowed to take any sheets, even blank, home.
- If you think a question is ambiguous, or even erroneous, and you cannot ask during the exam to clarify this, explain this in detail in the space reserved for the answer to the question.
- If you have not registered for the exam, your answers will not be graded, and thus handled as invalid.
- For all the questions below, the lecture notes and your own critical judgement are sufficient. Good luck!

The following table will be filled by the examiner:

Question:	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Total
Points:	11	11	20	12	12	13	11	10	100
Score:									

Question 1 (Q1)	(11 points)
Limits	

(a)	(5)	points) Evaluate	the	following	limit c	or	explain	why	it	does	not	exist:
----	---	-----	--------	------------	-----	-----------	---------	----	---------	-----	----	------	-----	--------

$\lim_{x \to 0^+} \frac{\ln(x)}{x}$
(6 points) Evaluate the following limit or explain why it does not exist:
1

(b)

$$\lim_{x \to -\infty} \frac{1}{\sqrt{x^2 + 2x} - x}$$

(b)

Question 2 (Q2) (11 points) Derivatives

(a) (5 points) Find the derivative of f(x):

$$f(x) = \frac{\sin(x)}{\sqrt{x}}$$

			, , , , , , , , , , , , , , , , , , , ,
			· • • • • • • • • •
(6 points) Let:			
	f(\ -x 1:f\ -> 0		(1)
	$f(x) = e^x - 1 \text{ if } x \ge 0$		(1)
	= ax + b if x < 0)	(2)
Can you give values to the real p differentiable at $x = 0$. Explain a		that $f(x)$ is continuous,	but NOT
	, o		

Question 3 (Q3) (20 points) Sketching the graph of a function
(a) (20 points) Let:
$f(x) = \tan x = \frac{\sin(x)}{\cos(x)}$
1. Determine the domain of f . Is f continuous on its domain? Why?
2. Compute the first derivative of f . Determine from this derivative for what values of the function f is increasing or decreasing. Does it have local minimum(s), maximum(s) If yes, at which values of x ?
3. Compute the second derivative of f . Determine from this derivative for what values of the function f is convex (concave up) or concave (concave down). Does it have inflection points? If yes, at which values of x ?
4. Find if f has vertical, horizontal or oblique asymptotes.
5. Is f even? Is f odd? Why?
6. Sketch the graph of f based on your previous answers, and show the properties found in your previous answers in the graph.

............

......

15	Final Exam Calc	ulus 2021 - all material

Inte	on 4 (Q4) (12 points) egrals
(a)	(5 points) Evaluate the following integral:
	$\int \frac{x}{x^2 - 1} dx$

dent	ID:	Page 6 of 15	Final Exam Calculus 2021 - all material
(b)	(7 points) Evaluate the integral	of the following p	iecewise defined function:
		$\int_{1}^{4} x^2 - 5x dx$	- $6 dx$
		• • • • • • • • • • • • • • • • • • • •	
	7 (07) (10 1 1)		
estic	on 5 (Q5) (12 points)		

Que Sequences, Series

(a) (5 points) Find the sum of the following series or show it diverges to infinity:

$$\sum_{k=0}^{\infty} \frac{2^{k+3}}{e^{k-3}}$$

(b)	(7 points) Determine if the given series converges or diverges using an appropriate test.
` ,	
	$\sum_{i=1}^{\infty} \left \sin \frac{1}{2i} \right $
	$\sum_{n=1}^{\infty} \left \sin \frac{1}{n^2} \right $ You can use the p-series or geometric series for comparison.
	~ -
	You can use the p-series or geometric series for comparison.
	You can use the p-series or geometric series for comparison.
	You can use the p-series or geometric series for comparison.
	You can use the p-series or geometric series for comparison.
	You can use the p-series or geometric series for comparison.
	You can use the p-series or geometric series for comparison.
	You can use the p-series or geometric series for comparison.
	You can use the p-series or geometric series for comparison.
	You can use the p-series or geometric series for comparison.
	You can use the p-series or geometric series for comparison.

Question 6 (Q6) (13 points)

Differential Equations

(a)	(a) (6 points) Find the solution $y = y(x)$ to the given init the solution valid?	
	$\begin{cases} y' = x^{-2} - x^{-3} \\ y(-1) = 0 \end{cases}$	
(b)	(b) (7 points) Find the solution $y = y(x)$ to the given ini	tial value problem. On what interval is
	the solution valid? $\int y'' = \cos x$	
	$\begin{cases} y = \cos x \\ y(0) = 0 \end{cases}$	
	$\begin{cases} y(0) = 0\\ y'(0) = 1 \end{cases}$	

(b)	(6 points) If $z = f(x, y)$ where $x = 2s + 3t$, $y = 3s - 2t$, find
	$\partial^2 z$
	$\overline{\partial s\partial t}$

Double Integrals

(a) (5 points) Evaluate the double integral by iteration:

	$\int_{R} (x^2 -$	$+y^2)dA,$	where R is	the rectang	gle $0 \le x \le$	$\leq a, 0 \leq y \leq$	$\leq b$
--	-------------------	------------	------------	-------------	-------------------	-------------------------	----------

(b) (5 points) Evaluate the double integral by iteration:

$$\int_0^2 \int_0^y y^2 e^{xy} dx dy$$

Student r	name:																						
Student I	D:						Pag	e 12	2 of	15	\mathbf{F}^{i}	nal	Ex	am	Ca	lcu	lus	202	21 -	all	ma	ater	ial
			 		 																. 		
		• • • •	 	• • • •	 	• • •			• • • •	• • • •	• • •		• • •		• • •		• • •	• • •	• • •	• • • •		• • •	• •
			 		 																. 		
			 		 																. 		

Student name: Student ID:

Student name: Student ID:

Student name: Student ID: