An Introduction to Applied Linear Algebra

Lecture 1: Matrices and Linear Systems

by Associate Prof. Pham Huu Anh Ngoc

September, 2013

Textbook:

E. Kreyszig, Advanced Engineering Mathematics, 9th edition, John Wiley & Sons, 2006 (Chapters: 7, 8)

I. Matrix and operations

Definition:

An **m** x **n** matrix is a rectangular array of numbers arranged in m rows (horizontal lines) and n columns (vertical lines).

I. Matrix and operations

Definition:

An **m** x **n** matrix is a rectangular array of numbers arranged in m rows (horizontal lines) and n columns (vertical lines).

Example: A matrix with 3 rows and 2 columns : a 3 x 2 matrix (read "a 3 by 2 matrix")

$$\left(\begin{array}{cc}
0 & 1 \\
3 & -1 \\
0 & 0
\end{array}\right)$$

A matrix with 3 rows and 3 columns : a 3 x 3 matrix

$$\left(\begin{array}{ccc}
1 & 2 & 3 \\
5 & 100 & -2 \\
2 & 2 & 1
\end{array}\right)$$

In general an $m \times n$ matrix A has the form

Another denotation for matrix **A** is $A = [a_{ij}]$ for $1 \le i \le m$ and $1 \le j \le n$. We denote matrices by capital boldface letter **A**, **B**, **C**,...

The **order** of a matrix having m rows and n columns is mn. Then a_{ij} $(1 \le i \le m; 1 \le j \le n)$ are called **entries** of the matrix **A**.

If m = n, we call **A** an $n \times n$ square matrix and its main diagonal entries are: $a_{11}, a_{22}, ..., a_{nn}$.

Example

Let

$$\left(\begin{array}{ccc} 0 & 1 & 1 \\ 2 & 0 & 1 \\ 23 & 0 & 1 \end{array}\right).$$

It is an 3×3 square matrix and its main diagonal entries are: 0, 0, 1. The **order** of this matrix is 9.

The following

$$\left(\begin{array}{ccccc}
0 & 1 & 1 & 0 \\
2 & 0 & 1 & 5 \\
23 & 0 & 1 & 6
\end{array}\right)$$

is not a square matrix.

Remarks

Let $\mathbf{A} = [a_{ij}]$ and $\mathbf{B} = [b_{ij}]$ be $m \times n$ matrices. Then $\mathbf{A} = \mathbf{B}$ if and only if $a_{ij} = b_{ij}$ for all i, j.

A **vector** is a matrix with only one row or one column. We denote vectors by lowercase boldface letter \mathbf{a} , \mathbf{b} , \mathbf{c}

A row vector is of the form

A column vector is of the form

$$\mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$$

Addition of two matrices

Only matrices of the same number of rows and same number of columns may be added by adding corresponding elements.

By definition:

Example:

Let

$$\mathbf{A} = \left(\begin{array}{cc} 0 & 1 \\ 1 & -1 \end{array} \right) \qquad \mathbf{B} = \left(\begin{array}{cc} 1 & 1 \\ 2 & 1 \end{array} \right).$$

Then

$$\mathbf{A} + \mathbf{B} = \left(\begin{array}{cc} 1 & 2 \\ 3 & 0 \end{array} \right).$$

Example:

Let

$$\mathbf{A} = \left(\begin{array}{cc} 0 & 1 \\ 1 & -1 \end{array} \right) \qquad \mathbf{B} = \left(\begin{array}{cc} 1 & 1 \\ 2 & 1 \end{array} \right).$$

Then

$$\mathbf{A} + \mathbf{B} = \left(\begin{array}{cc} 1 & 2 \\ 3 & 0 \end{array} \right).$$

Let

$$\mathbf{C} = \left(\begin{array}{ccc} 1 & 0 & -1 \\ 0 & 5 & 100 \end{array}\right)$$

Note that A + C or B + C is **NOT defined**.

Scalar Multiplication of a Matrix

To multiply matrix \mathbf{A} of order $m \times n$ by a scalar k, we multiply each entry of \mathbf{A} by k to obtain another matrix of the same order. That is,

Example

Let

$$\mathbf{A} = \left(\begin{array}{ccc} 1 & 1 & 0 \\ -1 & -2 & 1 \end{array} \right).$$

Then

$$2\mathbf{A} = \left(\begin{array}{ccc} 2 & 2 & 0 \\ -2 & -4 & 2 \end{array}\right).$$

$$5\mathbf{A} = \begin{pmatrix} 5 & 5 & 0 \\ -5 & -10 & 5 \end{pmatrix}$$
 $\frac{1}{2}\mathbf{A} = \begin{pmatrix} 1/2 & 1/2 & 0 \\ -1/2 & -1 & 1/2 \end{pmatrix}$.

Multiplication of two Matrices

If $\mathbf{A} = [a_{ij}]$ is an $\mathbf{m} \times \mathbf{n}$ -matrix and $\mathbf{B} = [b_{ij}]$ an $\mathbf{n} \times \mathbf{p}$ -matrix, then the product $\mathbf{C} = \mathbf{A}\mathbf{B}$ of the two matrices is an $\mathbf{m} \times \mathbf{p}$ -matrix defined by $\mathbf{C} = [c_{ij}]$ where c_{ij} is given by

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + ... + a_{in}b_{nj},$$

(the **inner product** of $(a_{i1}, a_{i2}, ..., a_{in})$ and $(b_{1j}, b_{2j}, ..., b_{nj})$).

Note: (m x n-matrix) (n x p-matrix)=(m x p-matrix)

Example:

Let

$$\boldsymbol{A} = \left(\begin{array}{cc} 1 & 2 \\ 0 & 1 \end{array} \right) \qquad \boldsymbol{B} = \left(\begin{array}{cc} 2 & 0 \\ 1 & 1 \end{array} \right) \quad \boldsymbol{C} = \left(\begin{array}{cc} 1 & 1 & 0 \\ 1 & -1 & 1 \end{array} \right).$$

Then

$$\mathbf{AB} = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 4 & 2 \\ 1 & 1 \end{pmatrix}$$

$$\mathbf{BA} = \begin{pmatrix} 2 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 4 \\ 1 & 3 \end{pmatrix}$$

NOTE: $AB \neq BA$.

$$\mathbf{AC} = \begin{pmatrix} 2 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ 1 & -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 2 & 0 \\ 2 & 0 & 1 \end{pmatrix}$$

NOTE: We can not do: CA.

Properties

$$A + B = B + A$$
 $(A + B) + C = A + (B + C)$
 $A + 0 = A$
 $A + (-A) = 0$
 $(AB)C = A(BC)$
 $(A + B)C = AC + BC$
 $C(A + B) = CA + CB$
 $k(AB) = (kA)B = k(AB)$.

Applications:

An ice-cream shop makes two types of ice-cream, known as light and rich. Matrix A shows the quantities of fresh eggs (in dozen), cream (in gallons) and milk (in gallons) needed to make one batch of each type of ice-cream. Matrix B shows the prices (in dollars) of a dozen of eggs, a gallon of milk and a gallon of cream if purchased from supplier X and the prices if purchased from supplier Y:

- a) Calculate the product BA and explain what it represents.
- b) Every day the shop makes 6 batches of light and 10 batches of rich ice-cream. Find a matrix showing the total quantities of eggs, cream and milk used each day. Which supplier gives a lower total daily cost?

Solution: a)

The matrix BA is given by

total cost per batch of "light" total cost per batch of "rich"

$$X = \begin{pmatrix} 1.25x1.5 + 3.00x2.5 + 2.75x5.5 \\ 1.15x1.5 + 3.25x2.5 + 2.60x5.5 \end{pmatrix}$$
 $1.25x2 + 3.00x5 + 2.75x3$
 $1.15x2 + 3.25x5 + 2.60x3$

total cost per batch of "light" total cost per batch of "rich"
$$= \frac{X}{Y} \begin{pmatrix} 24.5 & 25.75 \\ 24.15 & 26.75 \end{pmatrix}$$

The matrix *BA* represents the total cost per batch of each type of ice-creams.

total cost per batch of "light" total cost per batch of "rich"

$$BA = {X \atop Y} \left({ \begin{array}{*{20}{c}} {24.5} & {25.75} \\ {24.15} & {26.75} \\ \end{array}} \right)$$

More precisely,

- The first row represents the total cost per batch of the light and rich ice-cream, respectively, when eggs, cream, milk are purchased from the supplier X.

The second row represents the total cost per batch of the light and rich ice-cream, respectively, when eggs, cream, milk are purchased from the supplier Y.

$$D:=\left(\begin{array}{c}6\\10\end{array}\right).$$

The required matrix is

$$AD = \begin{pmatrix} 1.5 & 2 \\ 2.5 & 5 \\ 5.5 & 3 \end{pmatrix} \begin{pmatrix} 6 \\ 10 \end{pmatrix} = \frac{\text{eggs}}{\text{cream}} \begin{pmatrix} 29 \\ 65 \\ 63 \end{pmatrix}$$

c) Home work!

Applications:

Computer production:

The Apple company produces two computer models $PC\ 1$ and $PC\ 2$. Matrix A

Raw components
$$\begin{pmatrix} 1.1 & 1.6 \\ 0.4 & 0.5 \\ 0.4 & 0.6 \end{pmatrix} := A;$$
 Miscellaneous

shows the cost per computer (in thousands of dollars) and the matrix B

$$\begin{array}{cccc} \textit{Quarter1} & \textit{Quarter2} & \textit{Quarter3} \\ \textit{PC1} & 4 & 5 & 7 \\ \textit{PC2} & 5 & 6 & 8 \\ \end{array}) := \textit{B}$$

gives the production figures for the year 2012 (in multiplies of 10.000 units).

Find a matrix *C* that shows the shareholders the cost per quarter (in million of dollars) for raw material, labor and miscellaneous.

Identity matrix

The **identity matrix** or **unit matrix** of size n is the n-by-n square matrix with ones on the main diagonal and zeros elsewhere. It is denoted by \mathbf{I}_n . For example

$$\mathbf{I}_1 = [1]$$
 $\mathbf{I}_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ $\mathbf{I}_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ $\mathbf{I}_4 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$, ...

 I_n is called the $n \times n$ identity matrix.

Then, it is easy to see that

$$\mathbf{AI}_n = \mathbf{A}$$
, for any $m \times n$ matrix \mathbf{A} , $\mathbf{I}_n \mathbf{B} = \mathbf{B}$ for any $n \times p$ matrix \mathbf{B} .

II. Systems of Linear Equations

DEFINITION: (i) A linear system of m equations in n unknowns $x_1, x_2, ..., x_n$ is a set of equations of the form

$$a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1n}x_{n} = b_{1}$$

$$a_{21}x_{1} + a_{22}x_{2} + \dots + a_{2n}x_{n} = b_{2}$$

$$\dots = \dots$$

$$a_{m1}x_{1} + a_{m2}x_{2} + \dots + a_{mn}x_{n} = b_{m}.$$
(1)

II. Systems of Linear Equations

DEFINITION: (i) A linear system of m equations in n unknowns $x_1, x_2, ..., x_n$ is a set of equations of the form

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\dots = \dots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m.$$
(1)

(ii) A solution of the system (1) is a set of numbers $x_1, x_2, ..., x_n$ that satisfies all m equations.

Example

$$\begin{cases} x + 2y = 0 \\ 2x + y = 1 \end{cases} \quad and \quad \begin{cases} x + 2y + z = 2 \\ 2x + y + z = 1 \end{cases}$$

are linear systems.

The following is not a linear system

$$\begin{cases} x + 2xy = 0 \\ 2x + y = 1 \end{cases}$$

2. Systems of Linear Equations

DEFINITION:

The matrix form of the system (1) is

$$Ax = b$$
,

where

The matrix **A** is called the coefficient matrix of the system (1).

The matrix

is called the augmented matrix of the system (1).

Example

The matrix form of the system

$$\begin{cases} x + 2y = 0 \\ 2x + y = 1 \end{cases}$$

is

$$\left(\begin{array}{cc} 1 & 2 \\ 2 & 1 \end{array}\right) \left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{c} 0 \\ 1 \end{array}\right).$$

Furthermore, $x = \frac{2}{3}$; $y = -\frac{1}{3}$ is a solution of the given system.

DEFINITION:

We say that a matrix is in row echelon form if

- All nonzero rows (rows with at least one nonzero element) are above any rows of all zeros, and
- The leading coefficient (the first nonzero number from the left, also called the pivot) of a nonzero row is always strictly to the right of the leading coefficient of the row above it.

Example

The following matrices are in the row echelon form

$$\left(\begin{array}{ccccc}
1 & -3 & 1 & 4 \\
0 & -1 & 3 & -5 \\
0 & 0 & -18 & 36 \\
0 & 0 & 0 & 0
\end{array}\right) \qquad \left(\begin{array}{ccccc}
1 & -3 & 1 & 4 \\
0 & -1 & 3 & -5 \\
0 & 0 & 0 & 36
\end{array}\right)$$

Example

The following matrices are in the row echelon form

$$\left(\begin{array}{ccccc}
1 & -3 & 1 & 4 \\
0 & -1 & 3 & -5 \\
0 & 0 & -18 & 36 \\
0 & 0 & 0 & 0
\end{array}\right) \qquad \left(\begin{array}{ccccc}
1 & -3 & 1 & 4 \\
0 & -1 & 3 & -5 \\
0 & 0 & 0 & 36
\end{array}\right)$$

However the matrix below is not in the row echelon form.

$$\left(\begin{array}{ccccc}
1 & -3 & 1 & 4 \\
0 & -1 & 3 & -5 \\
0 & 6 & 0 & 36
\end{array}\right)$$

as the leading coefficient of row 3 (that is 6) is not strictly to the right of the leading coefficient of row 2 (that is -1).

DEFINITION

A system of linear equations is said to be in row echelon form if its augmented matrix is in the row echelon form.

Ex: The system

$$x_1 - 3x_2 + x_3 = 4$$

 $-x_2 + 3x_3 = -5$
 $2x_3 = 2$

is in the row echelon form because its augmented matrix is

$$\left(\begin{array}{ccccc}
1 & -3 & 1 & 4 \\
0 & -1 & 3 & -5 \\
0 & 0 & 2 & 2
\end{array}\right)$$

Remark: It is very easy to solve a linear system whose augmented matrix is in the row echelon form.

Solving linear systems: Gaussian Elimination

Elementary Operations on a linear system

- (a) Add a multiple of one equation to another
- (b) Interchange two equations
- (c) Multiply an equation by a nonzero constant.

Elementary operations on a linear system correspond to the following

Elementary row operations on a matrix

- (a) Add a multiple of one row to another
- (b) Interchange two rows
- (c) Multiply a row by a nonzero constant.

Example

Linear system

$$\begin{cases} x - 3y = 4 \\ 2x - 8y = -2 \end{cases}$$

Associated augmented matrix

$$\left(\begin{array}{ccc}
1 & -3 & 4 \\
2 & -8 & -2
\end{array}\right)$$

Example

Linear system

Associated augmented matrix

$$\begin{cases} x - 3y &= 4 \\ 2x - 8y &= -2 \end{cases} \qquad \left(\begin{array}{ccc} 1 & -3 & 4 \\ 2 & -8 & -2 \end{array} \right)$$

Adding -2 times the first equation \rightleftarrows Adding -2 times the first row to the to the second equation second row

$$\begin{cases} x - 3y = 4 \\ 0x - 2y = -10 \end{cases} \qquad \begin{pmatrix} 1 & -3 & 4 \\ 0 & -2 & -10 \end{pmatrix}$$

The second equation gives y = 5 and replacing y with 5 into the first equation, we get x = 19.

Gaussian Elimination

Gaussian elimination is an algorithm for solving systems of linear equations.

Algorithm overview:

The process of Gaussian elimination has two parts:

1. Reduce a given system to the **row echelon form** (using of elementary row operations).

(Or equivalently, we reduce an augmented matrix to the row echelon form using elementary row operations)

2. Use back substitution to find solutions of the given system.

Solving linear systems

Linear system

Associated augmented matrix

$$\begin{cases} x - 3y = 4 \\ 2x - 8y = -2 \end{cases}$$

$$\left(\begin{array}{ccc}
1 & -3 & 4 \\
2 & -8 & -2
\end{array}\right)$$

Solving linear systems

Linear system

Associated augmented matrix

$$\begin{cases} x - 3y &= 4 \\ 2x - 8y &= -2 \end{cases} \qquad \left(\begin{array}{ccc} 1 & -3 & 4 \\ 2 & -8 & -2 \end{array} \right)$$

Adding -2 times the first equation \rightleftarrows Adding -2 times the first row to the to the second equation second row

$$\begin{cases} x - 3y = 4 \\ 0x - 2y = -10 \end{cases} \begin{pmatrix} 1 & -3 & 4 \\ 0 & -2 & -10 \end{pmatrix}$$

Solving linear systems

Linear system

Associated augmented matrix

$$\begin{cases} x - 3y = 4 \\ 2x - 8y = -2 \end{cases} \qquad \begin{pmatrix} 1 & -3 & 4 \\ 2 & -8 & -2 \end{pmatrix}$$

Adding -2 times the first equation \rightleftarrows Adding -2 times the first row to the to the second equation second row

$$\begin{cases} x - 3y = 4 \\ 0x - 2y = -10 \end{cases} \qquad \begin{pmatrix} 1 & -3 & 4 \\ 0 & -2 & -10 \end{pmatrix}$$

The second equation gives y = 5 and replacing y with 5 into the first equation, we get x = 19.

Linear system

$$\begin{cases} x - 3y + z = 4 \\ 2x - 8y + 8z = -2 \\ -6x + 3y - 15z = 9 \end{cases}$$

Associated augmented matrix

$$\left(\begin{array}{ccccc}
1 & -3 & 1 & 4 \\
2 & -8 & 8 & -2 \\
-6 & 3 & -15 & 9
\end{array}\right)$$

$$\begin{cases} x - 3y + z = 4 \\ 2x - 8y + 8z = -2 \\ -6x + 3y - 15z = 9 \end{cases}$$

$$\left(\begin{array}{cccc} 1 & -3 & 1 & 4 \\ 2 & -8 & 8 & -2 \\ -6 & 3 & -15 & 9 \end{array}\right)$$

Adding -2 times the first equation \rightleftarrows Adding -2 times the first row to the to the second equation second row

$$\begin{cases} x - 3y + z = 4 \\ 0x - 2y + 6z = -10 \\ -6x + 3y - 15z = 9 \end{cases}$$

$$\left(\begin{array}{ccccc}
1 & -3 & 1 & 4 \\
0 & -2 & 6 & -10 \\
-6 & 3 & -15 & 9
\end{array}\right)$$

$$\begin{cases} x - 3y + z = 4 \\ 2x - 8y + 8z = -2 \\ -6x + 3y - 15z = 9 \end{cases}$$

$$\left(\begin{array}{cccc} 1 & -3 & 1 & 4 \\ 2 & -8 & 8 & -2 \\ -6 & 3 & -15 & 9 \end{array}\right)$$

Adding -2 times the first equation \rightleftarrows Adding -2 times the first row to the to the second equation second row

$$\begin{cases} x - 3y + z = 4 \\ 0x - 2y + 6z = -10 \\ -6x + 3y - 15z = 9 \end{cases}$$

$$\left(\begin{array}{ccccc}
1 & -3 & 1 & 4 \\
0 & -2 & 6 & -10 \\
-6 & 3 & -15 & 9
\end{array}\right)$$

Adding 6 times the first equation to the third equation

$$\begin{cases} x - 3y + z = 4 \\ 0x - 2y + 6z = -10 \\ -0x - 15y - 9z = 33 \end{cases}$$

$$\left(\begin{array}{cccc}
1 & -3 & 1 & 4 \\
0 & -2 & 6 & -10 \\
0 & -15 & -9 & 33
\end{array}\right)$$

Multiplying the second equation by $\frac{1}{2}\rightleftarrows$ Multiplying the second row by $\frac{1}{2}$

$$\begin{cases} x - 3y + z = 4 \\ 0x - y + 3z = -5 \\ -0x - 15y - 9z = 33 \end{cases} \qquad \begin{pmatrix} 1 & -3 & 1 & 4 \\ 0 & -1 & 3 & -5 \\ 0 & -15 & -9 & 33 \end{pmatrix}$$

Multiplying the second equation by $\frac{1}{2}\rightleftarrows$ Multiplying the second row by $\frac{1}{2}$

$$\begin{cases} x - 3y + z = 4 \\ 0x - y + 3z = -5 \\ -0x - 15y - 9z = 33 \end{cases} \qquad \begin{pmatrix} 1 & -3 & 1 & 4 \\ 0 & -1 & 3 & -5 \\ 0 & -15 & -9 & 33 \end{pmatrix}$$

Multiplying the second equation by $\frac{1}{3} \rightleftarrows$ Multiplying the second row by $\frac{1}{3}$

$$\begin{cases} x - 3y + z = 4 \\ 0x - y + 3z = -5 \\ -0x - 5y - 3z = 11 \end{cases} \qquad \begin{pmatrix} 1 & -3 & 1 & 4 \\ 0 & -1 & 3 & -5 \\ 0 & -5 & -3 & 11 \end{pmatrix}$$

Adding -5 times the second equation \rightleftarrows Adding -5 times the second row to the third equation to the third row

$$\begin{cases} x - 3y + z = 4 \\ 0x - y + 3z = -5 \\ -0x - 0y - 18z = 36 \end{cases} \qquad \begin{pmatrix} 1 & -3 & 1 & 4 \\ 0 & -1 & 3 & -5 \\ 0 & 0 & -18 & 36 \end{pmatrix}$$

Adding -5 times the second equation \rightleftarrows Adding -5 times the second row to the third equation to the third row

$$\begin{cases} x - 3y + z = 4 \\ 0x - y + 3z = -5 \\ -0x - 0y - 18z = 36 \end{cases} \qquad \begin{pmatrix} 1 & -3 & 1 & 4 \\ 0 & -1 & 3 & -5 \\ 0 & 0 & -18 & 36 \end{pmatrix}$$

From the third equation, we now get z=-2. Substitute z=-2 into the second equation, we get y=-1. Substitute z=-2, y=-1 into the first equation we get x=5.