Kaggle Project

Tianyi Chen

Chinese Academy of Sciences

2024-3-7

Overview

data preprocessing
data preprocessing
data preprocessing
data preprocessing
data preprocessing
Modeling
Result

data preprocessing
data preprocessing
data preprocessing
data preprocessing
data preprocessing
Modeling
Result

data preprocessing

data preprocessing data preprocessing data preprocessing data preprocessing Modeling Result Import data, select data for modeling, and exclude meaningless mark data such as CustomerId and Surname

Figure 1: Import data

data preprocessing

data preprocessing

data preprocessing data preprocessing data preprocessing Modeling Result There are "Geography" and "Gender" which are text, we need to convert them into numbers

```
# 将属性转为数字标识
from sklearn import preprocessing
Xdf = pd.DataFrame(X)
le = preprocessing.LabelEncoder()
for col in Xdf.columns[1:3]:
    f = le.fit_transform(Xdf[col])
    Xdf[col] = f
print(Xdf)
```

Figure 2: Convert text data

data preprocessing data preprocessing

data preprocessing

data preprocessing data preprocessing Modeling Result May need to convert the "number" into one-hot-code, or the machine may misunderstand that the numbers have size meaning. (But I have trouble converting them because the computer is out of memory?)

```
# 对编码后的数字进行独热编码
#enc = preprocessing.OneHotEncoder()
#Xdf_enc = enc.fit_transform(Xdf)
#print(Xdf_enc)
```

Figure 3: Trouble

data preprocessing data preprocessing

data preprocessing

data preprocessing

data preprocessing
Modeling
Result

Divide the data set and standardize the data

```
# 设置训练数据集和测试数据集
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.35, random_state = 0)

# 数据标准化
from sklearn.preprocessing import StandardScaler
stdsc = StandardScaler()
# 将训练数据标准化
X_train_std = stdsc.fit_transform(X_train)
# 将测试数据标准化
X_test_std = stdsc.transform(X_test)
print(X_train_std)
```

Figure 4: Some code

data preprocessing
data preprocessing
data preprocessing

data preprocessing

data preprocessing

Modeling Result

	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary
0	586	0	0	23.0	2	0.00	2	0.0	1.0	160976.75
1	683	0	0	46.0	2	0.00	1	1.0	0.0	72549.27
2	656	0	0	34.0	7	0.00	2	1.0	0.0	138882.09
3	681	0	1	36.0	8	0.00	1	1.0	0.0	113931.57
4	752	1	1	38.0	10	121263.62	1	1.0	0.0	139431.00
110018	570	2	1	29.0	7	116099.82	1	1.0	1.0	148087.62
110019	575	0	0	36.0	4	178032.53	1	1.0	1.0	42181.68
110020	712	0	1	31.0	2	0.00	2	1.0	0.0	16287.38
110021	709	0	0	32.0	3	0.00	1	1.0	1.0	158816.58

Figure 5: Processed Data

Modeling

data preprocessing data preprocessing data preprocessing data preprocessing data preprocessing

Modeling

Result

Use Logistic method

```
# 逻辑回归方法
from sklearn.linear_model import LogisticRegression
lr = LogisticRegression(C=10)
# lr在原始测试集上的表现
lr.fit(X_train_std, y_train)
# 打印训练集精确度
print('Training accuracy:', lr.score(X_train_std, y_train))
# 打印测试集精确度
print('Test accuracy:', lr.score(X_test_std, y_test))
```

Figure 6: Some code

data preprocessing
data preprocessing
data preprocessing
data preprocessing
data preprocessing
Modeling

Result

Training accuracy: 0.8268606905809531 Test accuracy: 0.8247983103078148

Figure 7: Training result

Figure 8: Testing result

Contact Information

Tianyi Chen
Institute of Information Engineering
Chinese Academy of Sciences

CHENTIANYI@IIE.AC.CN

TEAM FOR UNIVERSAL LEARNING AND INTELLIGENT PROCESSING

Kaggle 10/10