

INFS1200/7900 Tutorial 4.1: FDs and Normal Forms – Solutions

Introduction

Purpose: The purpose of this tutorial is to provide you with experience in finding both the candidate key(s) and highest normal form of a relation. To do this we will first examine the importance of identifying functional dependencies by considering various update anomalies.

Learning Outcomes: By the end of this tutorial you will be able to:

- Correctly identify update anomalies in a relational schema and their implications
- Identify candidate keys in a relation from a set of functional dependencies
- Justify the highest normal form of a relation

Section A: Anomalies and Functional Dependencies

A.1 Based on the following data, provide an example and an explanation of an insertion, deletion and modification anomaly.

<u>A</u>	<u>B</u>	С	D	E
2	2	1	5	6
2	3	1	5	4
3	4	5	3	2
3	5	5	1	3

Functional Dependencies:

 $\{A\} \rightarrow \{C\}$

 $\{B\} \rightarrow \{D, E\}$

Insertion Anomaly:

Insert anything into B, D and E without also inserting a value into A. Where B, D and E are values that don't already exist in the data.

Deletion Anomaly:

Deleting the tuple with B = 4 as we lose information for the functional dependency (B \rightarrow {D, E}), specifically (4 \rightarrow {3, 2})

Modification Anomaly:

Updating $\{2, 2, 1, 5, 6\}$ to $\{2, 4, 1, 5, 6\}$ creates the inconsistency of $(B \rightarrow \{D, E\})$, creates the inconsistency $(4 \rightarrow \{3, 2\})$ and $(4 \rightarrow \{5, 6\})$

A.2 Based on the following functional dependencies, fill in the table.

$$\mathsf{A} \to \mathsf{B}$$

$$B \rightarrow C$$

$$\{C,\,D\}\to E$$

Α	В	С	D	E
1	2	1	6	2
1	2	1	4	3
2	4	2	7	4
3	2	1	4	3

A.3 Based on the following data, identify which of the options are *potential* functional dependencies.

Α	В	С	D	E	
1	X	1	M	1	
2	Υ	1	M	1	
3	Υ	4	N	3	
4	W	2	L	5	
5	W	2	M	1	
6	Т	5	0	2	

$$\checkmark$$
 A \rightarrow B

$$\Box$$
 B \rightarrow A

$$\checkmark$$
 A \rightarrow C

$$\square \quad B \to C$$

$$\Box \quad C \to D$$

$$\Box$$
 $C \rightarrow E$

$$\checkmark$$
 D \rightarrow E

$$\checkmark \{A, B\} \rightarrow C$$

$$\Box$$
 {B, C} \rightarrow E

$$\checkmark \ \{B,\,C,\,D\} \to E$$

SEE NEXT PAGE FOR SECTION B

Section B: Candidate Keysurens Land

CREATE CHANGE

Based on the relational schema and functional dependencies provided for the following questions, find all candidate keys.

B.1 R [A, B, C, D, E, F]

- $\{A, E\} \rightarrow \{D\}$
- $\{B, C\} \rightarrow \{A\}$
- $\{B\} \rightarrow \{F\}$
- $\{F\} \rightarrow \{E\}$

Candidate Key(s):

{B, C}

B.2 R [A, B, C, D, E, F]

- $\{A\} \rightarrow \{B, C\}$
- $\{C, D\} \rightarrow \{E\}$
- $\{A,\ C\} \to \{E\}$
- $\{B\} \rightarrow \{D\}$
- $\{E\} \rightarrow \{A, B\}$

Candidate Key(s):

 $\{B, C, F\}, \{C, D, F\}, \{A, F\}, \{E, F\}$

B.3 R [A, B, C, D]

- $\{A,\ B\} \to \{C,\ D\}$
- $\{C\} \to \{A,\,B,\,D\}$
- $\{D\} \to \{C\}$

Candidate Key(s):

 $\{C\}, \{A, B\}, \{D\}$

B.4 R [A, B, C, D, E, F, G, H, I, J]

- $\{A,\ B\} \to \{C\}$
- $\{A\} \rightarrow \{D, E\}$
- $\{B\} \rightarrow \{F\}$
- $\{F\} \to \{G,\ H\}$
- $\{D\} \to \{I,\ J\}$

Candidate Key(s):

{A, B}

Section C: Highest Normal Form

Based on the relational schema and functional dependencies identify the highest normal form for the following question and provide a brief justification why this holds.

C.1 R [A, B, C, D, E, F]

- $\{A, E\} \rightarrow \{D\}$
- $\{B, C\} \rightarrow \{A\}$
- $\{B\} \rightarrow \{F\}$
- $\{F\} \xrightarrow{} \{E\}$

Highest Normal Form:

Key is {B, C}. Hence highest normal form is 1NF because of partial dependency $\{B\} \rightarrow \{F\}$

C.2 R [A, B, C, D, E]

- $\{A\} \rightarrow \{B, C, D, E\}$
- $\{B\} \rightarrow \{A, C, D, E\}$

Highest Normal Form:

Keys are {A} and {B}. Highest normal form is BCNF because the LHS of all FD's are super keys.

C.3 R [A, B, C, D, E, F, G]

- $\{A\} \rightarrow \{B, C, D\}$
- $\{D\} \rightarrow \{A\}$
- $\{C\} \rightarrow \{F, G\}$

Highest Normal Form:

Keys are {A, E} and {D, E}. Highest normal form is 1NF. {A} \rightarrow {B, C, D} decomposes into {A} \rightarrow {B}, {A} \rightarrow {C}, and {A} \rightarrow {D}. There is a partial dependency in {A} \rightarrow {B} and {A} \rightarrow {C} because A is a subset of the candidate key {A, E} and C and B are both non-prime attributes. Note: {D} \rightarrow {A} is not a partial dependency because A is a prime attribute.

C.4 R [A, B, C, D, E]

 $\{A, B\} \rightarrow \{C, E\}$

 $\{D\} \rightarrow \{A\}$

 $\{A\} \rightarrow \{D\}$

CREATE CHANGE

Highest Normal Form:

Keys are {A, B} and {D, B}. Highest normal form is 3NF because there are no partial or transitive dependencies. Because the LHS of the FD {A} \rightarrow {D} is not a super key, the relation violates BCNF. Note: {A} \rightarrow {D} is not a partial dependency because D is a prime attribute. Same reasoning applies to {D} \rightarrow {A}