

SU(3) Interpolating operators

@ SU(3) flavor degenerate point

October 30, 2018 | Thomas Luu, IAS-4

Stating the problem

What are the energies of the [6] and $[\bar{3}]$ systems at the SU(3) point?

$$(c [\bar{3}]) \otimes [8] = c([15] \oplus [6] \oplus [\bar{3}])$$

Tensor framework

Here I use tensor formalism given in Georgi's book (Lie Algebra in Particle Physics, chapter 10)¹. Lower tensors ([3]), for example, are defined as

$$\begin{array}{l} \left|1/2,\sqrt{3}/6\right\rangle \equiv \right|_{1}\rangle \\ \left|-1/2,\sqrt{3}/6\right\rangle \equiv \left|_{2}\right\rangle \\ \left|0,-1/\sqrt{3}\right\rangle \equiv \left|_{3}\right\rangle \end{array}$$

General lower tensor transforms as

$$T_a|_i\rangle = |_j\rangle [T_a]_i^j$$

One has similar definitions for upper tensors ([3])

¹Thanks Christoph for pointing this out to me!

General tensor

A general tensor is defined as

$$|j_1^{i_1\cdots i_m}\rangle = |j_1\rangle\cdots|j_n\rangle\otimes |i_1\rangle\cdots|i_m\rangle$$

and transforms as

$$\begin{split} [\mathcal{T}_{a}] \mid_{j_{1}\cdots j_{n}}^{i_{1}\cdots i_{m}}\rangle &= \\ &\sum_{\ell=1}^{\infty} \mid_{j_{1}\cdots j_{\ell-1},k,j_{\ell+1}\cdots j_{n}}^{i_{1}\cdots i_{m}}\rangle \left[\mathcal{T}_{a}\right]_{j_{\ell}}^{k} \\ &-\sum_{\ell=1}^{\infty} \mid_{j_{1}\cdots j_{n}}^{i_{1}\cdots i_{\ell-1},k,i_{\ell+1}\cdots i_{m}}\rangle \left[\mathcal{T}_{a}\right]_{k}^{i_{\ell}} \end{split}$$

General vectors in this tensor space

A general vector in this space is

$$|\mathbf{v}\rangle = |_{j_1\cdots j_n}^{i_1\cdots i_m}\rangle \mathbf{v}_{i_1\cdots i_m}^{j_1\cdots j_n}$$

This defines the tensor component. Tensor products of components are

$$[u\otimes v]_{j_1\cdots j_mj_1'\cdots j_q'}^{i_1\cdot i_n\ i_1'\cdots i_p'}=u_{j_1\cdots j_m}^{i_1\cdots i_n}v_{j_1'\cdots j_q'}^{i_1'\cdots i_p'}$$

We can build up our SU(3) basis states from such tensor component products, and their transformation properties are dictated by T_a . To get the states to fall into definite (n, m) irreps, must *project*!

Projection operators

Will only show relevant projection operators².

$$\begin{split} P[\bar{3}]_{k}^{ij} &= \frac{1}{8} \left(3\delta_{k}^{i} u^{\ell} v_{\ell}^{j} - \delta_{k}^{j} u^{\ell} v_{\ell}^{i} \right) \\ P[6]_{k}^{ij} &= -\frac{1}{4} \epsilon^{ij\ell} \left(\epsilon_{\ell mn} u^{m} v_{k}^{n} + \epsilon_{k mn} u^{m} v_{\ell}^{n} \right) \end{split}$$

²Have tested *P*[1], *P*[3], *P*[8], and *P*[15].

Show me the money!

[3]

state	components	T _a	I_Z	Y
1	$ 1\rangle \bar{1}\bar{3}\rangle\sqrt{\frac{3}{8}}- 1\rangle \bar{3}\bar{1}\rangle\frac{1}{2\sqrt{6}}+ 2\rangle \bar{2}\bar{3}\rangle\sqrt{\frac{3}{8}}- 2\rangle \bar{3}\bar{2}\rangle\frac{1}{2\sqrt{6}}+ 3\rangle \bar{3}\bar{3}\rangle\sqrt{\frac{1}{6}}$	4 3	0	$+\frac{2}{3}$
2	$ 1\rangle \bar{1}\bar{2}\rangle\sqrt{\frac{3}{8}}- 1\rangle \bar{2}\bar{1}\rangle\frac{1}{2\sqrt{6}}+ 2\rangle \bar{2}\bar{2}\rangle\sqrt{\frac{1}{6}}+ 3\rangle \bar{3}\bar{2}\rangle\sqrt{\frac{3}{8}}- 3\rangle \bar{2}\bar{3}\rangle\frac{1}{2\sqrt{6}}$	4/3	$+\frac{1}{2}$	$-\frac{1}{3}$
3	$ 1\rangle \bar{1}\bar{1}\rangle\sqrt{\frac{1}{6}}+ 2\rangle \bar{2}\bar{1}\rangle\sqrt{\frac{3}{8}}- 2\rangle \bar{1}\bar{2}\rangle\frac{1}{2\sqrt{6}}+ 3\rangle \bar{3}\bar{1}\rangle\sqrt{\frac{3}{8}}- 3\rangle \bar{1}\bar{3}\rangle\frac{1}{2\sqrt{6}}$	$\frac{4}{3}$	$-\frac{1}{2}$	$-\frac{1}{3}$

These states have disconnected diagrams!!

Show me more money!

	[0]			
state	components	T_a^2	I_Z	Y
1	$- 1\rangle \overline{12}\rangle\frac{1}{2}+ 1\rangle \overline{21}\rangle\frac{1}{2}- 3\rangle \overline{23}\rangle\frac{1}{2}+ 3\rangle \overline{32}\rangle\frac{1}{2}$	10 3	$+\frac{1}{2}$	$-\frac{1}{3}$
2	$ 2\rangle \overline{12}\rangle\frac{1}{2} - 2\rangle \overline{21}\rangle\frac{1}{2} - 3\rangle \overline{13}\rangle\frac{1}{2} + 3\rangle \overline{31}\rangle\frac{1}{2}$	10 3	$-\frac{1}{2}$	$-\frac{1}{3}$
3	$ 1\rangle \overline{13}\rangle\overline{\frac{1}{2}}- 1\rangle \overline{3}\overline{1}\rangle\overline{\frac{1}{2}}- 2\rangle \overline{2}\overline{3}\rangle\overline{\frac{1}{2}}+ 2\rangle \overline{3}\overline{2}\rangle\overline{\frac{1}{2}}$	1 <u>0</u>	0	$+\frac{2}{3}$
4	$ 2\rangle \overline{3}\overline{1}\rangle \frac{1}{\sqrt{2}} - 2\rangle \overline{1}\overline{3}\rangle \frac{1}{\sqrt{2}}$	10	-1	$+\frac{2}{3}$
5	$ 1\rangle \bar{3}\bar{2}\rangle\frac{\sqrt{1}}{\sqrt{2}}- 1\rangle \bar{2}\bar{3}\rangle\frac{\sqrt{1}}{\sqrt{2}}$	10 3	+1	$+\frac{2}{3}$
6	$ 3\rangle \bar{2}\bar{1}\rangle\frac{1}{\sqrt{2}}- 3\rangle \bar{1}\bar{2}\rangle\frac{1}{\sqrt{2}}$	1 <u>0</u> 3	0	$-\frac{4}{3}$

These states have NO disconnected diagrams (I believe)!!

Show me all the money!

[15]

	[10]			
state	components	T_a^2	I_Z	Y
1	$ 3\rangle \overline{3}\overline{3}\rangle\frac{1}{\sqrt{3}}- 1\rangle \overline{1}\overline{3}\rangle\frac{1}{\sqrt{3}}- 1\rangle \overline{3}\overline{1}\rangle\frac{1}{\sqrt{3}}$	1 <u>6</u>	0	$+\frac{2}{3}$
2	$- 2\rangle \bar{1}\bar{2}\rangle\frac{1}{2}- 2\rangle \bar{2}\bar{1}\rangle\frac{1}{2}+ 3\rangle \bar{2}\bar{3}\rangle\frac{1}{2}+ 3\rangle \bar{3}\bar{2}\rangle\frac{1}{2}$	16 3	$+\frac{1}{2}$	$-\frac{1}{3}$
3	$- 1\rangle \overline{1}\overline{1}\rangle\frac{1}{\sqrt{3}}+ 3\rangle \overline{1}\overline{3}\rangle\frac{1}{\sqrt{3}}+ 3\rangle \overline{3}\overline{1}\rangle\frac{1}{\sqrt{3}}$	16 3 16 3	$-\frac{1}{2}$	$-\frac{1}{3}$
4	$ 2\rangle \bar{3}\bar{3}\rangle$	16 3	$-\frac{1}{2}$	$+\frac{5}{3}$
5	1⟩ 33⟩	16 3	$+\frac{1}{2}$	$+\frac{5}{3}$
6	$ 2\rangle \bar{1}\bar{3}\rangle\frac{1}{\sqrt{2}}+ 2\rangle \bar{3}\bar{1}\rangle\frac{1}{\sqrt{2}}$	16 316 376 376 376 37	-1	$+\frac{5}{3} + \frac{2}{3}$
7	$ 2\rangle \bar{2}\bar{3}\rangle \frac{1}{2} + 2\rangle \bar{3}\bar{2}\rangle \frac{1}{2} - 1\rangle \bar{1}\bar{3}\rangle \frac{1}{2} - 1\rangle \bar{3}\bar{1}\rangle \frac{1}{2}$	16 3	0	$+\frac{2}{3}$
8	$ 1\rangle \bar{2}\bar{3}\rangle\frac{1}{\sqrt{2}}+ 1\rangle \bar{3}\bar{2}\rangle\frac{1}{\sqrt{2}}$		-1	+ 2/3 + 2/3
9	$ 3\rangle \overline{1}\overline{1}\rangle$	16 3	-1	$-\frac{4}{3}$
10	$ 3\rangle \bar{1}\bar{2}\rangle\frac{1}{\sqrt{2}}+ 3\rangle \bar{2}\bar{1}\rangle\frac{1}{\sqrt{2}}$	1 <u>6</u>	0	$-\frac{4}{3}$
12	$ 3\rangle \bar{2}\bar{2}\rangle$	16 3	+1	$-\frac{4}{3}$
12	$ 2\rangle \bar{1}\bar{1}\rangle$	16 3	$-\frac{3}{2}$	$-\frac{1}{3}$
13	$- 1\rangle \overline{1}\overline{1}\rangle\frac{1}{\sqrt{3}}+ 2\rangle \overline{1}\overline{2}\rangle\frac{1}{\sqrt{3}}+ 2\rangle \overline{2}\overline{1}\rangle\frac{1}{\sqrt{3}}$	16 3	$-\frac{1}{2}$	$-\frac{1}{3}$
14	$- 1\rangle \bar{1}\bar{2}\rangle\frac{1}{\sqrt{3}}- 1\rangle \bar{2}\bar{1}\rangle\frac{1}{\sqrt{3}}+ 2\rangle \bar{2}\bar{2}\rangle\frac{1}{\sqrt{3}}$	16 36 36 36 36 36 36 36 3	$+\frac{1}{2}$	$-\frac{1}{3}$
15	1> \bar{22}	16 3	$+\frac{3}{2}$	$-\frac{1}{3}$

These states have NO disconnected diagrams (I believe)!!

Inserting spinors

First make following replacements

$$1 \rightarrow u$$

$$2 \rightarrow d$$

$$3 \rightarrow s$$

Now pair one anti-quark with the charm quark, sandwiching them between a Γ matrix, and the remaining $q\bar{q}$ pair also sandwiches a Γ matrix. For example, the 5th state in the [6] representation is³,

$$O_{[6]}^5 = rac{1}{\sqrt{2}} \left(\left(c \Gamma ar{s}
ight) \left(u \Gamma ar{d}
ight) - \left(c \Gamma ar{d}
ight) \left(u \Gamma ar{s}
ight)
ight) \; .$$

With some states, I now contract

$$\langle O\bar{O} \rangle$$
 .

³Here I ignore an overall minus sign.

Contractions⁴ for the [15] and [6]

$$\begin{split} [15]: & \text{ Tr } \left[\Gamma \gamma_5 \mathcal{S}_{y,x}^\dagger \gamma_5 \Gamma \mathcal{S}_{y,x} \right] \text{ Tr } \left[\Gamma \gamma_5 \mathcal{S}_{y,x}^\dagger \gamma_5 \Gamma \mathcal{C}_{y,x} \right] \\ & - \text{ Tr } \left[\Gamma \gamma_5 \mathcal{S}_{y,x}^\dagger \gamma_5 \Gamma \mathcal{S}_{y,x} \Gamma \gamma_5 \mathcal{S}_{y,x}^\dagger \gamma_5 \Gamma \mathcal{C}_{y,x} \right] \end{split}$$

$$\begin{split} [6]: \quad &\text{Tr}\left[\Gamma\gamma_{5}\mathcal{S}_{y;x}^{\dagger}\gamma_{5}\Gamma\mathcal{S}_{y;x}\right] \\ &+ &\text{Tr}\left[\Gamma\gamma_{5}\mathcal{S}_{y;x}^{\dagger}\gamma_{5}\Gamma\mathcal{S}_{y;x}\gamma_{5}\Gamma\mathcal{C}_{y;x}\right] \\ &+ &\text{Tr}\left[\Gamma\gamma_{5}\mathcal{S}_{y;x}^{\dagger}\gamma_{5}\Gamma\mathcal{S}_{y;x}\Gamma\gamma_{5}\mathcal{S}_{y;x}^{\dagger}\gamma_{5}\Gamma\mathcal{C}_{y;x}\right] \end{split}$$

 $\mathcal{C}_{y;x}$ = charm quark propagator $\mathcal{S}_{y;x}$ = light quark propagator (SU(3) point) $\Gamma = \gamma_5 \implies \text{pseudoscalar}$ $\Gamma = \gamma_i \implies \text{vector}$

⁴Performed using Jan-Lukas' form script.

Contractions⁵ for the [3]

$$\begin{split} [\bar{3}]: \quad & \text{Tr}\left[\Gamma\gamma_{5}\mathcal{S}_{y;x}^{\dagger}\gamma_{5}\Gamma\mathcal{S}_{y;x}\right] \, \text{Tr}\left[\Gamma\gamma_{5}\mathcal{S}_{y;x}^{\dagger}\gamma_{5}\Gamma\mathcal{C}_{y;x}\right] \\ &\quad + \frac{1}{3}\text{Tr}\left[\Gamma\gamma_{5}\mathcal{S}_{y;x}^{\dagger}\gamma_{5}\Gamma\gamma_{5}\mathcal{S}_{y;x}^{\dagger}\gamma_{5}\Gamma\mathcal{S}_{y;x}\Gamma\mathcal{C}_{y;x}\right] \\ &\quad - \frac{8}{3}\text{Tr}\left[\Gamma\mathcal{S}_{x;x}\Gamma\gamma_{5}\mathcal{S}_{y;x}^{\dagger}\gamma_{5}\Gamma\mathcal{S}_{y;y}\Gamma\mathcal{C}_{y;x}\right] \end{split}$$

October 30, 2018 Thomas Luu, IAS-4 Page 12

⁵Performed using Jan-Lukas' form script.