Relative Singularity Categories *†

Huanhuan Li[‡] and Zhaoyong Huang[§]

Department of Mathematics, Nanjing University, Nanjing 210093, Jiangsu Province, P.R. China

Abstract

We study the properties of the relative derived category $D^b_{\mathscr{C}}(\mathscr{A})$ of an abelian category \mathscr{A} relative to a full and additive subcategory \mathscr{C} . In particular, when $\mathscr{A}=A$ - mod for a finite-dimensional algebra A over a field and \mathscr{C} is a contravariantly finite subcategory of A-mod which is admissible and closed under direct summands, the \mathscr{C} -singularity category $D_{\mathscr{C}-sg}(\mathscr{A})=D^b_{\mathscr{C}}(\mathscr{A})/K^b(\mathscr{C})$ is studied. We give a sufficient condition when this category is triangulated equivalent to the stable category of the Gorenstein category $\mathscr{G}(\mathscr{C})$ of \mathscr{C} .

1. Introduction

Let A be a finite-dimensional algebra over a field. We denote by A-mod the category of finitely generated left A-modules, and A-proj (resp. A-inj) the full subcategory of A-mod consisting of projective (resp. injective) modules. We use $K^b(A)$ and $D^b(A)$ to denote the bounded homotopy and derived categories of A-mod respectively, and $K^b(A$ -proj) (resp. $K^b(A$ -inj)) to denote the bounded homotopy category of A-proj (resp. A-inj).

The composition functor $K^b(A\text{-proj}) \to K^b(A) \to D^b(A)$ with the former functor the inclusion functor and the latter one the quotient functor is naturally a fully faithful triangle functor, and then one can view $K^b(A\text{-proj})$ as a triangulated subcategory of $D^b(A)$. In fact it is a thick one by [Bu, Lemma 1.2.1]. Consider the quotient triangulated category $D_{sg}(A) := D^b(A)/K^b(A\text{-proj})$, which is the so-called "singularity category". This category was first introduced and studied by Buchweitz in [Bu] where A is assumed to be a left and right noetherian ring. Later on Rickard proved in [R] that for a self-injective algebra A, this category is triangle-equivalent to the stable category of A-mod. This result was generalized to Gorenstein algebra by Happel in [H2]. Since A has finite global dimension if and only if $D_{sg}(A) = 0$, from this viewpoint $D_{sg}(A)$ measures the homological singularity of the algebra A, we call it the singularity category after [O].

Besides, other quotient triangulated categories have been studied by many authors. Beligiannis considered the quotient triangulated categories $D^b(R\operatorname{-Mod})/K^b(R\operatorname{-Proj})$ and $D^b(R\operatorname{-Mod})/K^b(R\operatorname{-Inj})$ for arbitrary ring R, where $R\operatorname{-Mod}$ is the category of left $R\operatorname{-modules}$ and $R\operatorname{-Proj}$ (resp. $R\operatorname{-Inj}$) is the full subcategory of $R\operatorname{-Mod}$ consisting of projective (resp. injective) modules (see [Be]). Let $\mathscr A$ be an abelian category. A full and additive subcategory ω of $\mathscr A$ is called self-orthogonal if $\operatorname{Ext}^i_\mathscr A(M,N)=0$

^{*2010} Mathematics Subject Classification: 18E30, 16E35, 18G25.

 $^{^{\}dagger}$ Keywords: \mathscr{C} -derived categories, \mathscr{C} -proper \mathscr{D} -resolutions, \mathscr{C} -proper \mathscr{D} -dimension, \mathscr{C} -singularity categories, Gorenstein categories.

[‡] E-mail address: lihuanhuan0416@163.com

 $^{^\}S{E\text{-}mail\ address:}$ huangzy@nju.edu.cn

for any $M, N \in \omega$ and $i \geq 1$; in particular, an object T in \mathscr{A} is called *self-orthogonal* if $\operatorname{Ext}_{\mathscr{A}}^i(T,T) = 0$ for any $i \geq 1$. Chen and Zhang studied in [CZ] the quotient triangulated category $D^b(A)/K^b(\operatorname{add}_A T)$ for a finite-dimensional algebra A and a self-orthogonal module T in A-mod, where $\operatorname{add}_A T$ is the full subcategory of A-mod consisting of direct summands of finite direct sums of T. Recently Chen studied in [C2] the relative singularity category $D_{\omega}(\mathscr{A}) := D^b(\mathscr{A})/K^b(\omega)$ for an arbitrary abelian category \mathscr{A} and an arbitrary self-orthogonal, full and additive subcategory ω of \mathscr{A} .

For an abelian category $\mathscr A$ with enough projective objects, the Gorenstein derived category $D_{gp}^*(\mathscr A)$ of $\mathscr A$ was introduced by Gao and Zhang in [GZ], where $*\in\{$ blank, $-,b\}$. It can be viewed as a generalization of the usual derived category $D^*(\mathscr A)$ by using Gorenstein projective objects instead of projective objects and $\mathscr G\mathscr P$ -quasi-isomorphisms instead of quasi-isomorphisms, where $\mathscr G\mathscr P$ means "Gorenstein projective". For Gorenstein projective modules and Gorenstein projective objects, we refer to [AuB], [EJ1], [EJ2], [Ho] and [SSW]. Asadollahi, Hafezi and Vahed studied in [AHV] the relative derived category $D_{\mathscr C}^*(\mathscr A)$ for an arbitrary abelian category $\mathscr A$ with respect to a contravariantly finite subcategory $\mathscr C$, where $*\in\{$ blank, $-,b\}$, and they pointed out that $K^b(\mathscr C)$ can be viewed as a triangulated subcategory of $D_{\mathscr C}^b(\mathscr A)$.

Given a finite-dimensional algebra A over a field and a full and additive subcategory \mathscr{C} of $\mathscr{A}(=A-\text{mod})$ closed under direct summands, it follows from [BD] that $K^b(\mathscr{C})$ is a Krull-Schmidt category and hence can be viewed as a thick triangulated subcategory of $D^b_{\mathscr{C}}(\mathscr{A})$. If the quotient triangulated category $D_{\mathscr{C}-sg}(\mathscr{A}) := D^b_{\mathscr{C}}(\mathscr{A})/K^b(\mathscr{C})$ is considered, then it is natural to ask whether $D_{\mathscr{C}-sg}(\mathscr{A})$ shares some nice properties of $D_{sg}(A)$. The aim of this paper is to study this question.

In Section 2, we give some terminology and some preliminary results.

In Section 3, for an abelian category $\mathscr A$ and a full and additive subcategory $\mathscr C$ of $\mathscr A$, we prove that if $\mathscr C$ is admissible, then the composition functor $\mathscr A \to K^b(\mathscr A) \to D^b_\mathscr C(\mathscr A)$ is fully faithful, where the former functor is the inclusion functor and the latter one is the quotient functor. Let $\mathscr C$ be a contravariantly finite subcategory of $\mathscr A$ and $\mathscr D \subseteq \mathscr A$ a subclass of $\mathscr A$. We introduce a dimension denoted by $\mathscr C\mathscr D$ -dim M which is called the $\mathscr C$ -proper $\mathscr D$ -dimension of an object M in $\mathscr A$. By choosing a left $\mathscr C$ -resolution C_M^{\bullet} of M, we get a functor $\operatorname{Ext}^n_\mathscr C(M,-):=H^n\operatorname{Hom}_\mathscr A(C_M^{\bullet},-)$ for any $n\in \mathbb Z$. Then by using the properties of this functor we obtain some equivalent characterizations for $\mathscr C\mathscr C$ -dim M being finite.

In Section 4, we introduce the \mathscr{C} -singularity category $D_{\mathscr{C}\text{-}sg}(\mathscr{A}) := D_{\mathscr{C}}^b(\mathscr{A}) \ / K^b(\mathscr{C})$, where $\mathscr{A} = A$ -mod and \mathscr{C} is a contravariantly finite, full and additive subcategory of \mathscr{A} which is admissible and closed under direct summands. We prove that if $\mathscr{C}\mathcal{C}$ -dim $\mathscr{A} < \infty$, then $D_{\mathscr{C}\text{-}sg}(\mathscr{A}) = 0$. As a consequence, we get that if A is of finite representation type, then $\mathscr{C}\mathcal{C}$ -dim $\mathscr{A} < \infty$ if and only if $D_{\mathscr{C}\text{-}sg}(\mathscr{A}) = 0$. Let $\mathscr{G}(\mathscr{C})$ be the Gorenstein category of \mathscr{C} and ε the collection of all $\mathrm{Hom}_{\mathscr{A}}(\mathscr{C}, -)$ -exact complexes of the form: $0 \to L \to M \to N \to 0$ with $L, M, N \in \mathscr{G}(\mathscr{C})$. By [Bü] (or [Q]) $(\mathscr{G}(\mathscr{C}), \varepsilon)$ is an exact category; moreover, it is a Frobenius category with \mathscr{C} the subcategory of projective-injective objects, see [H1]. We prove that if $\mathscr{C}\mathscr{G}(\mathscr{C})$ -dim $\mathscr{A} < \infty$, then the natural functor $\theta : \mathscr{G}(\mathscr{C}) \to D_{\mathscr{C}\text{-}sg}(\mathscr{A})$ induces a triangle-equivalence $\theta' : \underline{\mathscr{G}(\mathscr{C})} \to D_{\mathscr{C}\text{-}sg}(\mathscr{A})$, where $\underline{\mathscr{G}(\mathscr{C})}$ is the stable category of $\mathscr{G}(\mathscr{C})$.

2. Preliminaries

Throughout this paper, \mathscr{A} is an abelian category, $C(\mathscr{A})$ is the category of complexes of objects in \mathscr{A} , $K^*(\mathscr{A})$ is the homotopy category of \mathscr{A} and $D^*(\mathscr{A})$ is the usual derived category by inverting the quasi-isomorphisms in $K^*(\mathscr{A})$, where $*\in\{\text{blank},-,b\}$. We will use the formula $\text{Hom}_{K(\mathscr{A})}(X^{\bullet},Y^{\bullet}[n])=H^n \text{Hom}_{\mathscr{A}}(X^{\bullet},Y^{\bullet})$ for any $X^{\bullet},Y^{\bullet}\in C(\mathscr{A})$ and $n\in\mathbb{Z}$ (the ring of integers). Let

$$X^{\bullet} := \cdots \longrightarrow X^{n-1} \xrightarrow{d_X^{n-1}} X^n \xrightarrow{d_X^n} X^{n+1} \longrightarrow \cdots$$

be a complex and $f: X^{\bullet} \to Y^{\bullet}$ a cochain map in $C(\mathscr{A})$. Recall that X^{\bullet} is called *acyclic* (or *exact*) if $H^{i}(X^{\bullet}) = 0$ for any $i \in \mathbb{Z}$, and f is called a *quasi-isomorphism* if $H^{i}(f)$ is an isomorphism for any $i \in \mathbb{Z}$.

From now on, we fix a full and additive subcategory $\mathscr C$ of $\mathscr A$.

Definition 2.1. Let X^{\bullet}, Y^{\bullet} and f be as above.

- (1) ([EJ2]) X^{\bullet} in $C(\mathscr{A})$ is called \mathscr{C} -acyclic or $\operatorname{Hom}_{\mathscr{A}}(\mathscr{C}, -)$ -exact if the complex $\operatorname{Hom}_{\mathscr{A}}(C, X^{\bullet})$ is acyclic for any $C \in \mathscr{C}$. Dually, a $\operatorname{Hom}_{\mathscr{A}}(-, \mathscr{C})$ -exact complex is defined.
- (2) f is called a \mathscr{C} -quasi-isomorphism if the cochain map $\operatorname{Hom}_{\mathscr{A}}(C, f)$ is a quasi-isomorphism for any $C \in \mathscr{C}$.
- **Remark 2.2.** (1) We use Con(f) to denote the mapping cone of $f: X^{\bullet} \to Y^{\bullet}$. It is well known that f is a quasi-isomorphism if and only if Con(f) is acyclic; analogously, f is a \mathscr{C} -quasi-isomorphism if and only if Con(f) is \mathscr{C} -acyclic.
- (2) We use $\mathscr{P}(\mathscr{A})$ to denote the full subcategory of \mathscr{A} consisting of projective objects. If \mathscr{A} has enough projective objects, then every quasi-isomorphism is a $\mathscr{P}(\mathscr{A})$ -quasi-isomorphism; and if $\mathscr{P}(\mathscr{A}) \subseteq \mathscr{C}$, then every \mathscr{C} -quasi-isomorphism is a quasi-isomorphism.

We use $K_{ac}^*(\mathscr{A})$ (resp. $K_{\mathscr{C}-ac}^*(\mathscr{A})$) to denote the full subcategory of $K^*(\mathscr{A})$ consists of acyclic complexes (resp. \mathscr{C} -acyclic complexes).

Lemma 2.3. Let X^{\bullet} be a complex in $C(\mathscr{A})$. Then X^{\bullet} is \mathscr{C} -acyclic if and only if the complex $\operatorname{Hom}_{\mathscr{A}}(C^{\bullet}, X^{\bullet})$ is acyclic for any $C^{\bullet} \in K^{-}(\mathscr{C})$.

Proof. See [CFH, Lemma 2.4].
$$\Box$$

- **Lemma 2.4.** (1) Let C^{\bullet} be a complex in $K^{-}(\mathscr{C})$ and $f: X^{\bullet} \to C^{\bullet}$ a \mathscr{C} -quasi-isomorphism in $C(\mathscr{A})$. Then there exists a cochain map $g: C^{\bullet} \to X^{\bullet}$ such that fg is homotopic to $\mathrm{id}_{C^{\bullet}}$.
 - (2) Any \mathscr{C} -quasi-isomorphism between two complexes in $K^-(\mathscr{C})$ is a homotopy equivalence.

Proof. (1) Consider the distinguished triangle:

$$X^{\bullet} \xrightarrow{f} C^{\bullet} \to \operatorname{Con}(f) \to X^{\bullet}[1]$$

in $K(\mathscr{A})$ with $\operatorname{Con}(f)$ \mathscr{C} -acyclic. By applying the functor $\operatorname{Hom}_{K(\mathscr{A})}(C^{\bullet},-)$ to it, we get an exact sequence:

$$\operatorname{Hom}_{K(\mathscr{A})}(C^{\bullet}, X^{\bullet}) \overset{\operatorname{Hom}_{K(\mathscr{A})}(C^{\bullet}, f)}{\to} \operatorname{Hom}_{K(\mathscr{A})}(C^{\bullet}, C^{\bullet}) \to \operatorname{Hom}_{K(\mathscr{A})}(C^{\bullet}, \operatorname{Con}(f)).$$

It follows from Lemma 2.3 that $\operatorname{Hom}_{K(\mathscr{A})}(C^{\bullet},\operatorname{Con}(f)) \cong H^0 \operatorname{Hom}_{\mathscr{A}}(C^{\bullet},\operatorname{Con}(f)) = 0$. So there exists a cochain map $g: C^{\bullet} \to X^{\bullet}$ such that fg is homotopic to $\operatorname{id}_{C^{\bullet}}$.

(2) Let $f: X^{\bullet} \to Y^{\bullet}$ be a \mathscr{C} -quasi-isomorphism with X^{\bullet}, Y^{\bullet} in $K^{-}(\mathscr{C})$. By (1), there exists a cochain map $g: Y^{\bullet} \to X^{\bullet}$, such that fg is homotopic to $\mathrm{id}_{Y^{\bullet}}$. By (1) again, there exists a cochain map $g': X^{\bullet} \to Y^{\bullet}$, such that gg' is homotopic to $\mathrm{id}_{X^{\bullet}}$. Thus f = g' in $K(\mathscr{A})$ is a homotopy equivalence.

Definition 2.5. (1) ([AuR]) Let $\mathscr{C} \subseteq \mathscr{D}$ be subcategories of \mathscr{A} . The morphism $f: C \to D$ in \mathscr{A} with $C \in \mathscr{C}$ and $D \in \mathscr{D}$ is called a *right* \mathscr{C} -approximation of D if for any morphism $g: C' \to D$ in \mathscr{A} with $C' \in \mathscr{C}$, there exists a morphism $h: C' \to C$ such that the following diagram commutes:

$$C \xrightarrow{h} D$$

If each object in \mathscr{D} has a right \mathscr{C} -approximation, then \mathscr{C} is called *contravariantly finite* in \mathscr{D} .

(2) ([C1]) A contravariantly finite subcategory \mathscr{C} of \mathscr{A} is called *admissible* if any right \mathscr{C} -approximation is epic. In this case, every \mathscr{C} -acyclic complex is acyclic.

The following definition is cited from [Bü], see also [Q] and [K].

Definition 2.6. Let \mathscr{B} be an additive category. A kernel-cokernel pair (i,p) in \mathscr{B} is a pair of composable morphisms $L \xrightarrow{i} M \xrightarrow{p} N$ such that i is a kernel of p and p is a cokernel of i. If a class ε of kernel-cokernel pairs on \mathscr{B} is fixed, an admissible monic (sometimes called inflation) is a morphism i for which there exists a morphism p such that $(i,p) \in \varepsilon$. Admissible epics (sometimes called deflations) are defined dually.

An exact category is a pair $(\mathcal{B}, \varepsilon)$ consisting of an additive category \mathcal{B} and a class of kernel-cokernel pairs ε on \mathcal{B} with ε closed under isomorphisms satisfying the following axioms:

- [E0] For any object B in \mathcal{B} , the identity morphism id_B is both an admissible monic and an admissible epic.
 - [E1] The class of admissible monics is closed under compositions.
 - [E1^{op}] The class of admissible epics is closed under compositions.
- [E2] The push-out of an admissible monic along an arbitrary morphism exists and yields an admissible monic.

 $[E2^{op}]$ The pull-back of an admissible epic along an arbitrary morphism exists and yields an admissible epic.

Elements of ε are called *short exact sequences* (or *conflations*).

Let \mathscr{B} be a triangulated subcategory of a triangulated category \mathscr{K} and S the compatible multiplicative system determined by \mathscr{B} . In the Verdier quotient category \mathscr{K}/\mathscr{B} , each morphism $f: X \to Y$ is given by an equivalence class of right fractions f/s or left fractions $s \setminus f$ as presented by $X \stackrel{s}{\rightleftharpoons} Z \stackrel{f}{\longrightarrow} Y$ or $X \stackrel{f}{\longrightarrow} Z \stackrel{s}{\rightleftharpoons} Y$, where the doubled arrow means $s \in S$.

3. \mathscr{C} -derived categories

For a subclass $\mathscr C$ of objects in a triangulated category $\mathscr K$, it is known that the full subcategory $\mathscr C^\perp=\{X\in\mathscr K\mid \operatorname{Hom}_{\mathscr K}(C[n],X)=0 \text{ for any } C\in\mathscr C \text{ and } n\in\mathbb Z\}$ is a triangulated subcategory of $\mathscr K$ and is closed under direct summands, and hence is thick ([R]). It follows that $K_{\mathscr C\text{-}ac}^*(\mathscr A)$ is a thick subcategory of $K^*(\mathscr A)$.

Definition 3.1. ([V]) The Verdier quotient category $D^*_{\mathscr{C}}(\mathscr{A}) := K^*(\mathscr{A})/K^*_{\mathscr{C}-ac}(\mathscr{A})$ is called the \mathscr{C} -derived category of \mathscr{A} , where $* \in \{\text{blank}, -, b\}$.

Example 3.2. (1) If \mathscr{A} has enough projective objects and $\mathscr{C} = \mathscr{P}(\mathscr{A})$, then $D_{\mathscr{C}}^*(\mathscr{A})$ is the usual derived category $D^*(\mathscr{A})$.

- (2) If \mathscr{A} has enough projective objects and $\mathscr{C} = \mathscr{G}(\mathscr{A})$ (the full subcategory of \mathscr{A} consisting of Gorenstein projective objects), then $D_{\mathscr{C}}^*(\mathscr{A})$ is the Gorenstein derived category $D_{gp}^*(\mathscr{A})$ defined in [GZ].
- (3) Let R be a ring and $\mathscr{A} = R$ -Mod. If $\mathscr{C} = \mathscr{PP}(R)$ (the full subcategory of R-Mod consisting of pure projective modules), then $D_{\mathscr{C}}^*(\mathscr{A})$ is the pure derived category $D_{pur}^*(\mathscr{A})$ in [ZH].

Proposition 3.3. ([AHV]) (1) $D_{\mathscr{C}}^{-}(\mathscr{A})$ is a triangulated subcategory of $D_{\mathscr{C}}(\mathscr{A})$, and $D_{\mathscr{C}}^{b}(\mathscr{A})$ is a triangulated subcategory of $D_{\mathscr{C}}^{-}(\mathscr{A})$.

(2) For any $C^{\bullet} \in K^{-}(\mathscr{C})$ and $X^{\bullet} \in C(\mathscr{A})$, there exists an isomorphism of abelian groups:

$$\operatorname{Hom}_{K(\mathscr{A})}(C^{\bullet},X^{\bullet}) \cong \operatorname{Hom}_{D_{\mathscr{C}}(\mathscr{A})}(C^{\bullet},X^{\bullet}).$$

(3) Let $\mathscr{C} \subseteq \mathscr{A}$ be admissible. Then the composition functor $\mathscr{A} \to K^b(\mathscr{A}) \to D^b_{\mathscr{C}}(\mathscr{A})$ is fully faithful, where the former functor is the inclusion functor and the latter one is the quotient functor.

Proof. In the following, each morphism in $D^*_{\mathscr{C}}(\mathscr{A})$ will be denoted by the equivalence class of right fractions, where $* \in \{\text{blank}, -, b\}$.

(1) We only prove the first assertion, the second one can be proved similarly.

Note that $D^-_{\mathscr{C}}(\mathscr{A}) = K^-(\mathscr{A})/K^-(\mathscr{A}) \cap K_{\mathscr{C}\text{-}ac}(\mathscr{A})$ and $D_{\mathscr{C}}(\mathscr{A}) = K(\mathscr{A})/K_{\mathscr{C}\text{-}ac}(\mathscr{A})$. By [GM, Proposition 3.2.10], it suffices to show that for any \mathscr{C} -quasi-isomorphism $s: Y^{\bullet} \to X^{\bullet}$ with $X^{\bullet} \in K^-(\mathscr{A})$, there exists a morphism $f: Z^{\bullet} \to Y^{\bullet}$ with $Z^{\bullet} \in K^-(\mathscr{A})$ such that sf is a \mathscr{C} -quasi-isomorphism.

Suppose $X^n \neq 0$ with $X^i = 0$ for any i > n. Then there exists a commutative diagram:

where $\operatorname{Ker} d_Y^{n+1} \to Y^{n+1}$ is the canonical map. Since both f and s are \mathscr{C} -quasi-isomorphisms, so is sf.

- (2) Consider the canonical map $G: \operatorname{Hom}_{K(\mathscr A)}(C^{\bullet}, X^{\bullet}) \to \operatorname{Hom}_{D_{\mathscr C}(\mathscr A)}(C^{\bullet}, X^{\bullet})$ defined by $G(f) = f/\operatorname{id}_{C^{\bullet}}$. If G(f) = 0, then there exists a $\mathscr C$ -quasi-isomorphism $s: Z^{\bullet} \to C^{\bullet}$ such that $fs \sim 0$. By Lemma 2.4(1) there exists a cochain map $g: C^{\bullet} \to Z^{\bullet}$ such that $sg \sim \operatorname{id}_{C^{\bullet}}$, and then $f \sim 0$. On the other hand, let $f/s \in \operatorname{Hom}_{D_{\mathscr C}(\mathscr A)}(C^{\bullet}, X^{\bullet})$, that is, it has a diagram of the form $C^{\bullet} \stackrel{s}{\rightleftharpoons} Z^{\bullet} \stackrel{f}{\to} X^{\bullet}$, where s is a $\mathscr C$ -quasi-isomorphism. It follows from Lemma 2.4(1) there exists a cochain map $g: C^{\bullet} \to Z^{\bullet}$ such that $sg \sim \operatorname{id}_{C^{\bullet}}$, which implies that $f/s = (fg)/\operatorname{id}_{C^{\bullet}} = G(fg)$. Thus G is an isomorphism, as desired.
- (3) Let $F: \mathscr{A} \to D^b_{\mathscr{C}}(\mathscr{A})$ denote the composition functor, it suffices to show that for any $M, N \in \mathscr{A}$, the map $F: \operatorname{Hom}_{\mathscr{A}}(M, N) \to \operatorname{Hom}_{D^b_{\mathscr{A}}(\mathscr{A})}(M, N)$ is an isomorphism.

Let $f \in \operatorname{Hom}_{\mathscr{A}}(M,N)$. If F(f)=0, then there exists a \mathscr{C} -quasi-isomorphism $s:Z^{\bullet} \to M$ such that $fs \sim 0$, and then $H^0(f)H^0(s)=0$. Since $H^0(s)$ is an isomorphism, $f=H^0(f)=0$. On the other hand, let $f/s \in \operatorname{Hom}_{D^b_{\mathscr{C}}(\mathscr{A})}(M,N)$, that is, it has a diagram of the form $M \stackrel{s}{\longleftarrow} Z^{\bullet} \stackrel{f}{\longrightarrow} N$, where s is a \mathscr{C} -quasi-isomorphism. Then $H^0(s):H^0(Z^{\bullet}) \to M$ is an isomorphism. Put $g:=H^0(f)H^0(s)^{-1} \in \operatorname{Hom}_{\mathscr{A}}(M,N)$. Consider the truncation:

$$U^{\bullet} := \cdots \to Z^{-2} \xrightarrow{d_Z^{-2}} Z^{-1} \xrightarrow{d_Z^{-1}} \operatorname{Ker} d^0 \to 0$$

of Z^{\bullet} and the canonical map $i: U^{\bullet} \to Z^{\bullet}$. Since s is a \mathscr{C} -quasi-isomorphism, so is si. We have the following commutative diagram:

$$U^{\bullet} \xrightarrow{i} Z^{\bullet}$$

$$\downarrow s$$

$$H^{0}(Z^{\bullet}) \xrightarrow{H^{0}(s)} M,$$

where $U^{\bullet} \to H^0(Z^{\bullet})$ is the canonical map, so $gsi = H^0(f)H^0(s)^{-1}si = fi$. Then we get the following commutative diagram of complexes:

which implies $F(g) = g/\operatorname{id}_M = f/s$.

Set $K^{-,\mathscr{C}b}(\mathscr{C}) := \{X^{\bullet} \in K^{-}(\mathscr{C}) \mid \text{there exists } n \in \mathbb{Z} \text{ such that } H^{i}(\operatorname{Hom}_{\mathscr{A}}(C, X^{\bullet})) = 0 \text{ for any } C \in \mathscr{C} \text{ and } i \leq n\}.$

Proposition 3.4. ([AHV, Theorem 3.3]) If $\mathscr C$ is a contravariantly finite subcategory of $\mathscr A$, then we have a triangle-equivalence $K^{-,\mathscr Cb}(\mathscr C)\cong D^b_\mathscr C(\mathscr A)$.

In the rest of this section, we always suppose that $\mathscr C$ is a contravariantly finite subcategory of $\mathscr A$ unless otherwise specified.

Definition 3.5. Let \mathscr{D} be a subclass of objects in \mathscr{A} and $M \in \mathscr{A}$.

- (1) A \mathscr{C} -proper \mathscr{D} -resolution of M is a \mathscr{C} -quasi-isomorphism $f: D^{\bullet} \to M$, where D^{\bullet} is a complex of objects in \mathscr{D} with $D^n = 0$ for any n > 0, that is, it has an associated $\operatorname{Hom}_{\mathscr{A}}(\mathscr{C}, -)$ -exact complex $\cdots \to D^{-n} \to D^{-n+1} \to \cdots \to D^0 \xrightarrow{f} M \to 0$.
- (2) The \mathscr{C} -proper \mathscr{D} -dimension of M, written $\mathscr{C}\mathscr{D}$ -dim M, is defined as $\inf\{n \mid \text{there exists a } \operatorname{Hom}_{\mathscr{A}}(\mathscr{C},-)\text{-exact complex } 0 \to D^{-n} \to D^{-n+1} \to \cdots \to D^0 \xrightarrow{f} M \to 0\}$. If no such an integer exists, then set $\mathscr{C}\mathscr{D}$ -dim $M=\infty$.
- (3) For a class \mathscr{E} of objects of \mathscr{A} , the \mathscr{C} -proper \mathscr{D} -dimension of \mathscr{E} , written $\mathscr{C}\mathscr{D}$ -dim \mathscr{E} , is defined as $\sup\{\mathscr{C}\mathscr{D}$ -dim $M\mid M\in\mathscr{E}\}$.
- **Remark 3.6.** (1) If \mathscr{A} has enough projective objects and $\mathscr{C} = \mathscr{P}(\mathscr{A})$, then a \mathscr{C} -proper \mathscr{D} -resolution is just a \mathscr{D} -resolution and the \mathscr{C} -proper \mathscr{D} -dimension of an object $M \in \mathscr{A}$ is just the usual \mathscr{D} -dimension \mathscr{D} -dim M of M.
- (2) If $\mathscr{D} = \mathscr{C}$, then a \mathscr{C} -proper \mathscr{D} -resolution is just a \mathscr{C} -proper resolution. In this case, it is also called a *left* \mathscr{C} -resolution and the \mathscr{C} -proper \mathscr{D} -dimension is the left \mathscr{C} -dimension (see [EJ2]).
- Let $M \in \mathscr{A}$. Since \mathscr{C} is a contravariantly finite subcategory of \mathscr{A} , we may choose a left \mathscr{C} resolution $C_M^{\bullet} \to M$ of M. Put $\operatorname{Ext}^n_{\mathscr{C}}(M,N) := H^n \operatorname{Hom}_{\mathscr{A}}(C_M^{\bullet},N)$ for any $N \in \mathscr{A}$ and $n \in \mathbb{Z}$.

 Note that C_M^{\bullet} is isomorphic to M in $D_{\mathscr{C}}(\mathscr{A})$. By Proposition 3.3(1)(2), we have $\operatorname{Ext}^n_{\mathscr{C}}(M,N) = H^n \operatorname{Hom}_{\mathscr{A}}(C_M^{\bullet},N) = \operatorname{Hom}_{K(\mathscr{A})}(C_M^{\bullet},N[n]) \cong \operatorname{Hom}_{D_{\mathscr{C}}(\mathscr{A})}(M,N[n])$.

The following is cited from [EJ2, Chapter 8].

- **Lemma 3.7.** (1) For any $M \in \mathcal{A}$, the functor $\operatorname{Ext}^n_{\mathscr{C}}(M,-)$ does not depend on the choices of left \mathscr{C} -resolutions of M.
- (2) For any $M \in \mathscr{A}$ and n < 0, $\operatorname{Ext}^n_{\mathscr{C}}(M,-) = 0$ and there exists a natural equivalence $\operatorname{Hom}_{\mathscr{A}}(M,-) \cong \operatorname{Ext}^0_{\mathscr{C}}(M,-)$ whenever \mathscr{C} is admissible.
- (3) If \mathscr{C} is admissible, then every $\operatorname{Hom}_{\mathscr{A}}(\mathscr{C},-)$ -exact complex $0 \to L \to M \to N \to 0$ induces a long exact sequence $0 \to \operatorname{Hom}_{\mathscr{A}}(N,-) \to \operatorname{Hom}_{\mathscr{A}}(M,-) \to \operatorname{Hom}_{\mathscr{A}}(L,-) \to \cdots \to \operatorname{Ext}^n_{\mathscr{C}}(N,-) \to \operatorname{Ext}^n_{\mathscr{C}}(N,-) \to \operatorname{Ext}^n_{\mathscr{C}}(N,-) \to \operatorname{Ext}^n_{\mathscr{C}}(N,-) \to \cdots$.

Theorem 3.8. Let \mathscr{C} be admissible and closed under direct summands, then the following statements are equivalent for any $M \in \mathscr{A}$ and $n \geq 0$.

- (1) \mathscr{CC} -dim $M \leq n$.
- (2) $\operatorname{Ext}_{\mathscr{C}}^{i}(M,N) = 0$ for any $N \in \mathscr{A}$ and $i \geq n+1$.
- (3) $\operatorname{Ext}_{\mathscr{C}}^{n+1}(M,N) = 0$ for any $N \in \mathscr{A}$.
- (4) For any left \mathscr{C} -resolution $C_M^{\bullet} \to M$ of M, $\operatorname{Ker} d_{C_M}^{-n+1} \in \mathscr{C}$, where $d_{C_M}^{-n+1}$ is the (-n+1)st differential of C_M^{\bullet} .
- *Proof.* (1) \Rightarrow (2) Let $0 \to C^{-n} \to C^{-n+1} \to \cdots \to C^0 \to M \to 0$ be a left \mathscr{C} -resolution of M. Then $\operatorname{Hom}_{\mathscr{A}}(C^{-i}, N) = 0$ for any $N \in \mathscr{A}$ and $i \geq n+1$ and the assertion follows.
 - $(2) \Rightarrow (3)$ and $(4) \Rightarrow (1)$ are trivial.

 $(3) \Rightarrow (4) \text{ Let } \cdots \rightarrow C_M^{-n} \xrightarrow{d_{C_M}^{-n}} C_M^{-n+1} \rightarrow \cdots \rightarrow C_M^0 \rightarrow M \rightarrow 0 \text{ be a left \mathcal{C}-resolution of M}.$ Then we get a $\operatorname{Hom}_{\mathscr{A}}(\mathscr{C},-)$ -exact exact sequence $0 \rightarrow \operatorname{Ker} d_{C_M}^{-n} \rightarrow C_M^{-n} \rightarrow \operatorname{Ker} d_{C_M}^{-n+1} \rightarrow 0$. Since $\operatorname{Ext}_{\mathscr{C}}^{n+1}(M,\operatorname{Ker} d_{C_M}^{-n}) = 0$, $\operatorname{Ext}_{\mathscr{C}}^{1}(\operatorname{Ker} d_{C_M}^{-n+1},\operatorname{Ker} d_{C_M}^{-n}) \cong \operatorname{Ext}_{\mathscr{C}}^{n+1}(M,\operatorname{Ker} d_{C_M}^{-n}) = 0$ by the dimension shifting. Applying $\operatorname{Hom}_{\mathscr{A}}(-,\operatorname{Ker} d_{C_M}^{-n})$ to the exact sequence $0 \rightarrow \operatorname{Ker} d_{C_M}^{-n} \rightarrow C_M^{-n} \rightarrow \operatorname{Ker} d_{C_M}^{-n+1} \rightarrow 0$, it follows from Lemma 3.7(3) that the sequence splits. So $\operatorname{Ker} d_{C_M}^{-n+1}$ is a direct summand of C_M^{-n} and $\operatorname{Ker} d_{C_M}^{-n+1} \in \mathscr{C}$.

4. C-singularity categories

In this section, unless otherwise specified, we always suppose that A is a finite-dimensional algebra over a field, $\mathscr{A} = A$ - mod and \mathscr{C} is a full and additive subcategory of \mathscr{A} which is contravariantly finite in \mathscr{A} and is admissible and closed under direct summands.

Recall that an additive category is called a *Krull-Schmidt category* if each of its object X has a decomposition $X \cong X_1 \bigoplus X_2 \bigoplus \cdots \bigoplus X_n$ such that each X_i is indecomposable with a local endomorphism ring. By [BD, Proposition A.2] $K^b(\mathscr{C})$ is a Krull-Schmidt category, so it is closed under direct summands and $K^b(\mathscr{C})$ viewed as a full triangulated subcategory of $D^b_{\mathscr{C}}(\mathscr{A})$ is thick. It is of interest to consider the quotient triangulated category $D^b_{\mathscr{C}}(\mathscr{A})$ / $K^b(\mathscr{C})$.

Definition 4.1. We call $D_{\mathscr{C}\text{-}sq}(\mathscr{A}) := D^b_{\mathscr{C}}(\mathscr{A}) / K^b(\mathscr{C})$ the $\mathscr{C}\text{-}singularity$ category.

Example 4.2. (1) If $\mathscr{C} = A$ -proj, then $D^b_{\mathscr{C}}(\mathscr{A})$ is the usual bounded derived category $D^b(\mathscr{A})$ and the \mathscr{C} -singularity category $D_{\mathscr{C}-sg}(\mathscr{A})$ is the singularity category $D_{sg}(A)$ which is called the "stabilized derived category" in [Bu].

(2) Let $\mathscr{C} = \mathscr{G}(A)$ (the subcategory of A-mod consisting of Gorenstein projective modules). If $\mathscr{G}(A)$ is contravariantly finite in A-mod, for example, if A is Gorenstein (that is, the left and right self-injective dimensions of A are finite) or $\mathscr{G}(A)$ contains only finitely many non-isomorphic indecomposable modules, then the bounded \mathscr{C} -derived category of \mathscr{A} , denoted by $D^b_{\mathscr{G}(A)}(\mathscr{A})$, is the bounded Gorenstein derived category introduced in [GZ]. The \mathscr{C} -singularity category $D_{\mathscr{G}(A)\text{-sg}}(\mathscr{A})$ is the quotient triangulated category $D^b_{\mathscr{G}(A)}(\mathscr{A})$ / $K^b(\mathscr{G}(A))$, we call it the Gorenstein singularity category.

Given a complex X^{\bullet} and an integer $i \in \mathbb{Z}$, we denote by $\sigma^{\geq i}X^{\bullet}$ the complex with X^{j} in the jth degree whenever $j \geq i$ and 0 elsewhere, and set $\sigma^{>i}X^{\bullet} := \sigma^{\geq i+1}X^{\bullet}$. Dually, for the notations $\sigma^{\leq i}X^{\bullet}$ and $\sigma^{<i}X^{\bullet}$. Recall that the cardinal of the set $\{X^{i} \neq 0 \mid i \in \mathbb{Z}\}$ is called the *width* of X^{\bullet} , and denoted by $\omega(X^{\bullet})$.

It is well known that A has finite global dimension if and only if $D_{sg}(A) = 0$. For the \mathscr{C} -singularity category $D^b_{\mathscr{C}-sg}(\mathscr{A})$ we have the following property.

Proposition 4.3. If \mathscr{CC} -dim $\mathscr{A} < \infty$, then $D_{\mathscr{C}\text{-sq}}(\mathscr{A}) = 0$.

Proof. We claim that for every $X^{\bullet} \in K^b(\mathscr{A})$ there exists a \mathscr{C} -quasi-isomorphism $C_X^{\bullet} \to X^{\bullet}$ such that $C_X^{\bullet} \in K^b(\mathscr{C})$. We proceed by induction on the width $\omega(X^{\bullet})$ of X^{\bullet} .

Let $\omega(X^{\bullet})=1$. Because $\mathscr C$ is contravariantly finite and $\mathscr C\mathscr C$ -dim $\mathscr A<\infty$, there exists a $\mathscr C$ -quasi-isomorphism $C_X^{\bullet}\to X^{\bullet}$ with $C_X^{\bullet}\in K^b(\mathscr C)$.

Let $\omega(X^{\bullet}) \geq 2$ with $X^{j} \neq 0$ and $X^{i} = 0$ for any i < j. Put $X_{1}^{\bullet} := X^{j}[-j-1]$, $X_{2}^{\bullet} := \sigma^{>j}X^{\bullet}$ and $g = d_{X}^{j}[-j-1]$. We have a distinguished triangle $X_{1}^{\bullet} \xrightarrow{g} X_{2}^{\bullet} \to X^{\bullet} \to X_{1}^{\bullet}[1]$ in $K^{b}(\mathscr{A})$. By the induction hypothesis, there exist \mathscr{C} -quasi-isomorphisms $f_{X_{1}} : C_{X_{1}}^{\bullet} \to X_{1}^{\bullet}$ and $f_{X_{2}} : C_{X_{2}}^{\bullet} \to X_{2}^{\bullet}$ with $C_{X_{1}}^{\bullet}, C_{X_{2}}^{\bullet} \in K^{b}(\mathscr{C})$. Then by Remark 2.2(1) and Lemma 2.3, $f_{X_{2}}$ induces an isomorphism:

$$\operatorname{Hom}_{K^b(\mathscr{A})}(C_{X_1}^{\bullet}, C_{X_2}^{\bullet}) \cong \operatorname{Hom}_{K^b(\mathscr{A})}(C_{X_1}^{\bullet}, X_2^{\bullet}).$$

So there exists a morphism $f^{\bullet}: C_{X_1}^{\bullet} \to C_{X_2}^{\bullet}$, which is unique up to homotopy, such that $f_{X_2}f^{\bullet} = gf_{X_1}$. Put $C_X^{\bullet} = \text{Con}(f^{\bullet})$. We have the following distinguished triangle in $K^b(\mathscr{C})$:

$$C_{X_1}^{\bullet} \xrightarrow{f^{\bullet}} C_{X_2}^{\bullet} \to C_X^{\bullet} \to C_{X_1}^{\bullet}[1].$$

Then there exists a morphism $f_X: C_X^{\bullet} \to X^{\bullet}$ such that the following diagram commutes:

$$C_{X_{1}}^{\bullet} \xrightarrow{f^{\bullet}} C_{X_{2}}^{\bullet} \longrightarrow C_{X}^{\bullet} \longrightarrow C_{X_{1}}^{\bullet}[1]$$

$$\downarrow^{f_{X_{1}}} \qquad \downarrow^{f_{X_{2}}} \qquad \downarrow^{f_{X_{1}}}[1]$$

$$X_{1}^{\bullet} \xrightarrow{g} X_{2}^{\bullet} \longrightarrow X^{\bullet} \longrightarrow X_{1}^{\bullet}[1].$$

For any $C \in \mathscr{C}$ and any $n \in \mathbb{Z}$, we have the following commutative diagram with exact rows:

$$\begin{split} (C, C_{X_1}^{\bullet}[n]) &\longrightarrow (C, C_{X_2}^{\bullet}[n]) &\longrightarrow (C, C_{X}^{\bullet}[n]) &\longrightarrow (C, C_{X_1}^{\bullet}[n+1]) &\longrightarrow (C, C_{X_2}^{\bullet}[n+1]) \\ & \downarrow^{(C, f_{X_1}[n])} & \downarrow^{(C, f_{X_2}[n])} & \downarrow^{(C, f_{X_1}[n])} & \downarrow^{(C, f_{X_1}[n+1])} \\ (C, X_1^{\bullet}[n]) &\longrightarrow (C, X_2^{\bullet}[n]) &\longrightarrow (C, X_1^{\bullet}[n+1]) &\longrightarrow (C, X_2^{\bullet}[n+1]), \end{split}$$

where (C, -) denotes the functor $\operatorname{Hom}_{K(\mathscr{A})}(C, -)$. Since f_{X_1} and f_{X_2} are \mathscr{C} -quasi-isomorphisms, $(C, f_{X_1}[n])$ and $(C, f_{X_2}[n])$ are isomorphisms, and hence so is $(C, f_X[n])$ for each n, that is, f_X is a \mathscr{C} -quasi-isomorphism. The claim is proved.

It follows from the claim that every object X^{\bullet} in $D^b_{\mathscr{C}}(\mathscr{A})$ is isomorphic to some C^{\bullet}_X of $K^b(\mathscr{C})$ in $D^b_{\mathscr{C}}(\mathscr{A})$. Thus $D_{\mathscr{C}-sg}(\mathscr{A})=0$.

As an application of Proposition 4.3, we have the following

Corollary 4.4. (1) \mathscr{CC} -dim $M < \infty$ for any $M \in \mathscr{A}$ if and only if $D_{\mathscr{C}\text{-}sg}(\mathscr{A}) = 0$. (2) If A is of finite representation type, then \mathscr{CC} -dim $\mathscr{A} < \infty$ if and only if $D_{\mathscr{C}\text{-}sg}(\mathscr{A}) = 0$.

Proof. In both assertions, the necessity follows from Proposition 4.3. In the following, we only need to prove the sufficiency.

(1) Let $D_{\mathscr{C}-sg}(\mathscr{A}) = 0$ and $M \in \mathscr{A}$. Then M = 0 in $D_{\mathscr{C}-sg}(\mathscr{A})$ and M is isomorphic to C^{\bullet} in $D_{\mathscr{C}}^{b}(\mathscr{A})$ for some $C^{\bullet} \in K^{b}(\mathscr{C})$. We use the equivalent class of right fractions to denote a morphism in $D_{\mathscr{C}}^{b}(\mathscr{A})$. Let $f/s: C^{\bullet} \stackrel{s}{\rightleftharpoons} Z^{\bullet} \stackrel{f}{\longrightarrow} M$ be an isomorphism in $D_{\mathscr{C}}^{b}(\mathscr{A})$, where s is a \mathscr{C} -quasi-isomorphism. Then f is a \mathscr{C} -quasi-isomorphism. By Lemma 2.4(1), there exists a \mathscr{C} -quasi-isomorphism $s': C^{\bullet} \to Z^{\bullet}$. So $fs': C^{\bullet} \to M$ is also a \mathscr{C} -quasi-isomorphism and hence

 $H^i \operatorname{Hom}_{\mathscr{A}}(C, C^{\bullet}) = 0$ whenever $C \in \mathscr{C}$ and $i \neq 0$. Consider the truncation:

$$C^{\prime \bullet} := \cdots \to C^{-2} \to C^{-1} \to \operatorname{Ker} d_C^0 \to 0$$

- of C^{\bullet} . Then the composition $C^{'\bullet} \hookrightarrow C^{\bullet} \xrightarrow{fs'} M$ is a \mathscr{C} -quasi-isomorphism. Notice that $C^{\bullet} \in K^b(\mathscr{C})$, we may suppose $C^n \neq 0$ and $C^i = 0$ whenever i > n. Then we have a \mathscr{C} -acyclic complex $0 \to \operatorname{Ker} d_C^0 \to C^0 \xrightarrow{d_C^0} C^1 \to \cdots \to C^n \to 0$ with all C^i in \mathscr{C} . Because \mathscr{C} is closed under direct summands, $\operatorname{Ker} d_C^0 \in \mathscr{C}$ and \mathscr{CC} -dim $M < \infty$.
- (2) Let A be of finite representation type, and let $\{M_i \mid 1 \leq i \leq n\}$ be the set of all non-isomorphic indecomposable modules in \mathscr{A} . By (1) \mathscr{CC} -dim $M_i < \infty$ for any $1 \leq i \leq n$. Now set $m = \sup\{\mathscr{CC}$ -dim $M_i \mid 1 \leq i \leq n\}$. Since \mathscr{A} is Krull-Schmidt, every module $M \in \mathscr{A}$ can be decomposed into a finite direct sum of modules in $\{M_i \mid 1 \leq i \leq n\}$. Then it is easy to see that \mathscr{CC} -dim $M \leq m$ and \mathscr{CC} -dim $\mathscr{A} \leq m < \infty$.

As a consequence of Corollary 4.4(1), we have the following

Corollary 4.5. If A is Gorenstein, then $D_{\mathscr{G}(A)\text{-}sq}(\mathscr{A}) = 0$.

Proof. Let A be Gorenstein. Because A-proj $\subseteq \mathscr{G}(A)$, we have that $\mathscr{G}(A)$ is admissible in A-mod by [EJ2, Remark 11.5.2]. By [Hos, Theorem], we have $\mathscr{G}(A)$ -dim $M < \infty$ for any $M \in \mathscr{A}$. So $D_{\mathscr{G}(A)-sg}(\mathscr{A}) = 0$ by [AvM, Proposition 4.8] and Corollary 4.4(1).

Put $\mathscr{G}(\mathscr{C}) = \{M \cong \operatorname{Im}(C^{-1} \to C^0) \mid \text{there exists an acyclic complex} \cdots \to C^{-1} \to C^0 \to C^1 \to \cdots$ in \mathscr{C} , which is both $\operatorname{Hom}_{\mathscr{A}}(\mathscr{C}, -)$ -exact and $\operatorname{Hom}_{\mathscr{A}}(-,\mathscr{C})$ -exact}, see [SSW], where it is called the Gorenstein category of \mathscr{C} . This notion unifies the following ones: modules of Gorenstein dimension zero ([AuB]), Gorenstein projective modules, Gorenstein injective modules ([EJ1]), V-Gorenstein projective modules, V-Gorenstein injective modules ([EJL]), and so on. Set $\mathscr{G}^1(\mathscr{C}) = \mathscr{G}(\mathscr{C})$ and inductively set $\mathscr{G}^n(\mathscr{C}) = \mathscr{G}(\mathscr{G}^{n-1}(\mathscr{C}))$ for any $n \geq 2$. It was shown in [SSW] that $\mathscr{G}(\mathscr{C})$ possesses many nice properties when \mathscr{C} is self-orthogonal. For example, in this case, $\mathscr{G}(\mathscr{C})$ is closed under extensions and \mathscr{C} is a projective generator and an injective cogenerator for $\mathscr{G}(\mathscr{C})$, which induce that $\mathscr{G}^n(\mathscr{C}) = \mathscr{G}(\mathscr{C})$ for any $n \geq 1$, see [SSW] for more details. Later on, Huang generalized this result to an arbitrary full and additive subcategory \mathscr{C} of \mathscr{A} , see [Hu].

Denote by ε the class of all $\operatorname{Hom}_{\mathscr{A}}(\mathscr{C}, -)$ -exact complexes of the form: $0 \to L \xrightarrow{i} M \xrightarrow{p} N \to 0$ with $L, M, N \in \mathscr{G}(\mathscr{C})$. We have the following fact.

Proposition 4.6. $(\mathscr{G}(\mathscr{C}), \varepsilon)$ is an exact category.

Proof. We will prove that all the axioms in Definition 2.6 are satisfied. It is trivial that the axiom [E0] is satisfied. In the following, we prove that the other axioms are satisfied.

For $[E1^{op}]$, let $f: G_1 \to G_2$ and $g: G_2 \to G_3$ be admissible epics in $\mathscr{G}(\mathscr{C})$. Then it is easy to see that gf is also an admissible epic. By Lemma 3.7(3), the following $Hom_{\mathscr{A}}(\mathscr{C}, -)$ -exact sequence:

$$0 \to \operatorname{Ker} qf \to G_1 \xrightarrow{gf} G_3 \to 0$$

is also $\operatorname{Hom}_{\mathscr{A}}(-,\mathscr{C})$ -exact. It follows from [Hu, Proposition 4.7] that $\operatorname{Ker} gf \in \mathscr{G}(\mathscr{C})$.

For $[E2^{op}]$, let $f: G_2 \to G_3$ be an admissible epic in $\mathscr{G}(\mathscr{C})$ and $g: G_2' \to G_3$ an arbitrary morphism in $\mathscr{G}(\mathscr{C})$. We have the following pull-back diagram with the second row in ε :

$$0 \longrightarrow G_1 \xrightarrow{h'} X \xrightarrow{f'} G_2' \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

For any $C \in \mathscr{C}$ and any morphism $\varphi: C \to G_2'$, there exists a morphism $\phi: C \to G_2$ such that $g\varphi = f\phi$. Notice that the right square is a pull-back diagram, so there exists a morphism $\phi': C \to X$ such that $\varphi = f'\phi'$ and hence the exact sequence $0 \to G_1 \xrightarrow{h'} X \xrightarrow{f'} G_2' \to 0$ is $\operatorname{Hom}_{\mathscr{A}}(\mathscr{C}, -)$ -exact. It follows from Lemma 3.7(3) that this sequence is also $\operatorname{Hom}_{\mathscr{A}}(-,\mathscr{C})$ -exact. By [Hu, Proposition 4.7], $X \in \mathscr{G}(\mathscr{C})$, which implies that $0 \to G_1 \xrightarrow{h'} X \xrightarrow{f'} G_2' \to 0$ lies in ε .

For [E2], let $f: G_1 \to G_2$ be an admissible monic in $\mathscr{G}(\mathscr{C})$ and $g: G_1 \to G_2'$ an arbitrary morphism in $\mathscr{G}(\mathscr{C})$. We have the following push-out diagram with the first row in ε :

$$0 \longrightarrow G_1 \xrightarrow{f} G_2 \xrightarrow{h} G_3 \longrightarrow 0$$

$$\downarrow^g \qquad \qquad \downarrow^{g'} \qquad \qquad \parallel$$

$$0 \longrightarrow G'_2 \xrightarrow{f'} D \xrightarrow{h'} G_3 \longrightarrow 0.$$

For any $C \in \mathscr{C}$ and any morphism $\varphi: C \to G_3$, there exists a morphism $\phi: C \to G_2$ such that $\varphi = h\phi = h'g'\phi$. So the exact sequence $0 \to G_2' \xrightarrow{f'} D \xrightarrow{h'} G_3 \to 0$ is $\operatorname{Hom}_{\mathscr{A}}(\mathscr{C}, -)$ -exact. It follows from Lemma 3.7(3) that this sequence is also $\operatorname{Hom}_{\mathscr{A}}(-,\mathscr{C})$ -exact. By [Hu, Proposition 4.7], $D \in \mathscr{G}(\mathscr{C})$, which implies that $0 \to G_2' \xrightarrow{f'} D \xrightarrow{h'} G_3 \to 0$ lies in ε .

Now let $0 \to G_0 \xrightarrow{i} G_1 \to G_2 \to 0$ and $0 \to G_1 \xrightarrow{j} G_1' \to G_1'' \to 0$ lie in ε . We have the following push-out diagram:

By [E2], the rightmost column lies in ε . For any $C \in \mathscr{C}$, applying the functor $(C, -) := \operatorname{Hom}_{\mathscr{A}}(C, -)$

to the commutative diagram we get the following commutative diagram:

By the snake lemma, the morphism $(C, G_1') \to (C, G_2')$ is epic. Then $0 \to G_0 \xrightarrow{ji} G_1' \to G_2' \to 0$ lies in ε , and [E1] follows.

By Proposition 4.6, we have the following

Corollary 4.7. $(\mathscr{G}(\mathscr{C}), \varepsilon)$ is a Frobenius category, that is, $(\mathscr{G}(\mathscr{C}), \varepsilon)$ has enough projective objects and enough injective objects such that the projective objects coincide with the injective objects.

Proof. Because \mathscr{C} is the class of (relative) projective-injective objects in $\mathscr{G}(\mathscr{C})$, the assertion follows from Proposition 4.6.

For $M, N \in \mathcal{A}$, let $\mathscr{C}(M, N)$ denote the subspace of A-maps from M to N factoring through \mathscr{C} . Put $^{\perp_{\mathscr{C}}}\mathscr{C} = \{M \in \mathcal{A} \mid \operatorname{Ext}^i_{\mathscr{C}}(M, C) = 0 \text{ for any } C \in \mathscr{C} \text{ and } i \geq 1\}$. By definition, it is clear that $\mathscr{C} \subseteq \mathscr{G}(\mathscr{C}) \subseteq {}^{\perp_{\mathscr{C}}}\mathscr{C}$.

Lemma 4.8. For any $M \in {}^{\perp_{\mathscr{C}}}\mathscr{C}$ and $N \in \mathscr{A}$, we have a canonical isomorphism of abelian groups:

$$\operatorname{Hom}_{\mathscr{A}}(M,N)/\mathscr{C}(M,N) \cong \operatorname{Hom}_{D_{\mathscr{C}\operatorname{-sq}}(\mathscr{A})}(M,N).$$

Proof. In the following, a morphism from M to N in $D_{\mathscr{C}-sg}(\mathscr{A})$ is denoted by the equivalent class of left fractions $s \setminus a : M \xrightarrow{a} Z^{\bullet} \stackrel{s}{\longleftarrow} N$, where $Z^{\bullet} \in D^{b}_{\mathscr{C}}(\mathscr{A})$ and $Con(s) \in K^{b}(\mathscr{C})$. We have a distinguished triangle in $D^{b}_{\mathscr{C}}(\mathscr{A})$:

$$N \stackrel{s}{\Longrightarrow} Z^{\bullet} \to \operatorname{Con}(s) \to N[1].$$
 (1)

Consider the canonical map $G: \operatorname{Hom}_{\mathscr{A}}(M,N) \to \operatorname{Hom}_{D_{\mathscr{C}-sg}(\mathscr{A})}(M,N)$ defined by $G(f) = \operatorname{id}_N \setminus f$. We first prove that G is surjective. For any $N \in \mathscr{A}$, we have the following left \mathscr{C} -resolution of N:

$$\cdots \to C^{-n} \xrightarrow{d_C^{-n}} C^{-n+1} \to \cdots \xrightarrow{d_C^{-1}} C^0 \xrightarrow{d_C^0} N \to 0.$$

Then in $D_{\mathscr{C}}(\mathscr{A})$, N is isomorphic to the complex $C^{\bullet} := \cdots \to C^{-n} \xrightarrow{d_{C}^{-n}} C^{-n+1} \to \cdots \xrightarrow{d_{C}^{-1}} C^{0} \to 0$, and so is isomorphic to the complex $0 \to \operatorname{Ker} d_{C}^{-l} \to C^{-l} \xrightarrow{d_{C}^{-l}} C^{-l+1} \to \cdots \xrightarrow{d_{C}^{-1}} C^{0} \to 0$ for any $l \ge 0$. Hence we have a distinguished triangle in $D_{\mathscr{C}}^{b}(\mathscr{A})$:

$$\operatorname{Ker} d_C^{-l}[l] \to \sigma^{\geq -l} C^{\bullet} \xrightarrow{d_C^0} N \stackrel{s'}{\Longrightarrow} \operatorname{Ker} d_C^{-l}[l+1], \tag{2}$$

where $Con(s') \in K^b(\mathscr{C})$. Since $Con(s) \in K^b(\mathscr{C})$, it follows from Proposition 3.3 that there exists $l_0 \gg 0$ such that for any $l \geq l_0$, we have

$$\operatorname{Hom}_{D^b_{\mathscr{Q}}(\mathscr{A})}(\operatorname{Con}(s),\operatorname{Ker} d_C^{-l}[l+1])=0.$$

Take $l = l_0$ in (2). On one hand, applying the functor $\operatorname{Hom}_{D^b_{\mathscr{C}}(\mathscr{A})}(-, \operatorname{Ker} d^{-l_0}_C[l_0+1])$ to (1) we get $h: Z^{\bullet} \to \operatorname{Ker} d^{-l_0}_C[l_0+1]$ such that s' = hs. So we have $s \setminus a = s' \setminus (ha)$. On the other hand, applying $\operatorname{Hom}_{D^b_{\mathscr{C}}(\mathscr{A})}(M, -) := (M, -)$ to (2) we get an exact sequence

$$(M,N) \xrightarrow{(M,s')} (M,\operatorname{Ker} d_C^{-l_0}[l_0+1]) \to (M,(\sigma^{\geq -l_0}C^{\bullet})[1]).$$

Since $M \in {}^{\perp_{\mathscr{C}}}\mathscr{C}$, by using induction on $\omega(\sigma^{\geq -l_0}C^{\bullet})$ we have $(M, (\sigma^{\geq -l_0}C^{\bullet})[1])=0$, and hence there exists $f: M \to N$ such that ha=s'f. Therefore we have $s \setminus a=s' \setminus (ha)=s' \setminus (s'f)=\mathrm{id}_N \setminus f$, that is, G is surjective.

Next, if $f: M \to N$ satisfies $G(f) = \mathrm{id}_N \setminus f = 0$ in $D_{\mathscr{C}-sg}(\mathscr{A})$, then there exists $s: N \to Z^{\bullet}$ with $\mathrm{Con}(s) \in K^b(\mathscr{C})$ such that sf = 0 in $D^b_{\mathscr{C}}(\mathscr{A})$. Use the same notations as in (1) and (2), by the above argument we have s' = hs, so s'f = 0. Applying $\mathrm{Hom}_{D^b_{\mathscr{C}}(\mathscr{A})}(M, -)$ to (2) we get that there exists $f': M \to \sigma^{\geq -l_0}C^{\bullet}$ such that $f = d^0_C f'$.

Put $\sigma^{<0}(\sigma^{\geq -l_0})C^{\bullet} := 0 \to C^{-l_0} \to C^{-l_0+1} \to \cdots \to C^{-1} \to 0$. We have the following distinguished triangle:

$$(\sigma^{<0}(\sigma^{\geq -l_0})C^{\bullet})[-1] \longrightarrow C^0 \xrightarrow{\pi} \sigma^{\geq -l_0}C^{\bullet} \to \sigma^{<0}(\sigma^{\geq -l_0})C^{\bullet}$$

in $D^b_{\mathscr{C}}(\mathscr{A})$, where π is the canonical map. By applying the functor $\operatorname{Hom}_{D^b_{\mathscr{C}}(\mathscr{A})}(M,-)$ to this triangle, it follows from $M\in {}^{\perp_{\mathscr{C}}}\mathscr{C}$ that $\operatorname{Hom}_{D^b_{\mathscr{C}}(\mathscr{A})}(M,\sigma^{<0}(\sigma^{\geq -l_0})C^{\bullet})=0$, and hence there exists $g:M\to C^0$ such that $f'=\pi g$. So $f=d^0_C\pi g$ in $D^b_{\mathscr{C}}(\mathscr{A})$. By Proposition 3.3(3), \mathscr{A} is a full subcategory of $D^b_{\mathscr{C}}(\mathscr{A})$. So f factors through C^0 in \mathscr{A} , and hence $\operatorname{Ker} G\subseteq \mathscr{C}(M,N)$. Since $\mathscr{C}(M,N)\subseteq \operatorname{Ker} G$ trivially, $\operatorname{Ker} G=\mathscr{C}(M,N)$, which means that $\operatorname{Hom}_{\mathscr{A}}(M,N)/\mathscr{C}(M,N)\cong \operatorname{Hom}_{D_{\mathscr{C}-sq}(\mathscr{A})}(M,N)$. \square

Let $\theta: \mathscr{G}(\mathscr{C}) \to D_{\mathscr{C}\text{-}sg}(\mathscr{A})$ be the composition of the following three functors: the embedding functors $\mathscr{G}(\mathscr{C}) \hookrightarrow \mathscr{A}$, $\mathscr{A} \hookrightarrow D^b_{\mathscr{C}}(\mathscr{A})$ and the localization functor $D^b_{\mathscr{C}}(\mathscr{A}) \to D_{\mathscr{C}\text{-}sg}(\mathscr{A})$, and let $\underline{\mathscr{G}(\mathscr{C})}$ denote the stable category of $\mathscr{G}(\mathscr{C})$.

Proposition 4.9. θ induces a fully faithful functor $\theta': \mathscr{G}(\mathscr{C}) \to D_{\mathscr{C}\text{-}sg}(\mathscr{A})$.

Proof. Since
$$\mathscr{G}(\mathscr{C}) \subseteq {}^{\perp_{\mathscr{C}}}\mathscr{C}$$
, the assertion follows from Lemma 4.8.

Recall from [C2] that a ∂ -functor is an additive functor F from an exact category $(\mathcal{B}, \varepsilon)$ to a triangulated category \mathcal{C} satisfying that for any short exact sequence $L \xrightarrow{i} M \xrightarrow{p} N$ in ε , there exists

a morphism $\omega_{(i,p)}: F(N) \to F(L)[1]$ such that the triangle

$$F(L) \xrightarrow{F(i)} F(M) \xrightarrow{F(p)} F(N) \xrightarrow{\omega_{(i,p)}} F(L)[1]$$

in C is distinguished; moreover, the morphism $\omega_{(i,p)}$ are "functorial" in the sense that any morphism between two short exact sequences in ε :

$$L \xrightarrow{i} M \xrightarrow{p} N$$

$$\downarrow f \qquad \downarrow g \qquad \downarrow h$$

$$L' \xrightarrow{i'} M' \xrightarrow{p'} N',$$

the following is a morphism of triangles:

$$F(L) \xrightarrow{F(i)} F(M) \xrightarrow{F(p)} F(N) \xrightarrow{\omega_{(i,p)}} F(L)[1]$$

$$\downarrow^{F(f)} \qquad \downarrow^{F(g)} \qquad \downarrow^{F(h)} \qquad \downarrow^{F(f)[1]}$$

$$F(L') \xrightarrow{F(i')} F(M') \xrightarrow{F(p')} F(N') \xrightarrow{\omega_{(i',p')}} F(L')[1].$$

By [H1, Chapter I, Theorem 2.6] and Corollary 4.7, $\underline{\mathscr{G}(\mathscr{C})}$ and $D_{\mathscr{C}\text{-}sg}(\mathscr{A})$ are triangulated categories. Moreover, we have

Proposition 4.10. The functor θ' in Proposition 4.9 is a triangle functor.

Proof. We first claim that θ is a ∂ -functor. In fact, let $0 \to L \xrightarrow{f} M \xrightarrow{g} N \to 0$ be a $\operatorname{Hom}_{\mathscr{A}}(\mathscr{C},-)$ -exact complex with all terms in $\mathscr{G}(\mathscr{C})$. Then it induces a distinguished triangle in $D_{\mathscr{C}\text{-}sg}(\mathscr{A})$, saying $\theta(L) \xrightarrow{\theta(f)} \theta(M) \xrightarrow{\theta(g)} \theta(N) \xrightarrow{\omega_{(f,g)}} \theta(L)$ [1]. It is clear that $\omega_{(f,g)}$ is "functorial". This shows that θ is a ∂ -functor.

Note that every object in \mathscr{C} is zero in $D_{\mathscr{C}-sg}(\mathscr{A})$. So θ vanishes on the projective-injective objects in $\mathscr{G}(\mathscr{C})$. It follows from [C2, Lemma 2.5] that the induced functor θ' is a triangle functor.

By Propositions 4.9 and 4.10 the natural triangle functor $\underline{\mathscr{G}(\mathscr{C})} \to D_{\mathscr{C}\text{-}sg}(\mathscr{A})$ is fully faithful. It is of interest to make sense when it is essentially surjective (or dense). We have the following

Theorem 4.11. If $\mathscr{CG}(\mathscr{C})$ -dim $\mathscr{A} < \infty$, then the natural functor $\theta : \mathscr{G}(\mathscr{C}) \to D_{\mathscr{C}\text{-}sg}(\mathscr{A})$ is essentially surjective (or dense).

Proof. Let $X^{\bullet} \in D^b_{\mathscr{C}}(\mathscr{A})$. By Proposition 3.4, there exists $C^{\bullet}_0 = (C^i_0, d^i_{C_0}) \in K^{-,\mathscr{C}b}(\mathscr{C})$ such that $X^{\bullet} \cong C^{\bullet}_0$ in $D^b_{\mathscr{C}}(\mathscr{A})$. So there exists $n_0 \in \mathbb{Z}$ such that $H^i(\operatorname{Hom}_{\mathscr{A}}(\mathscr{C}, C^{\bullet}_0)) = 0$ for any $i \leq n_0$. Let $K^i = \operatorname{Ker} d^i_{C_0}$. Then C^{\bullet}_0 is isomorphic to the complex:

$$0 \to K^i \to C_0^i \xrightarrow{d^i_{C_0}} C_0^{i+1} \xrightarrow{d^{i+1}_{C_0}} C_0^{i+2} \to \cdots$$

in $D^b_{\mathscr{C}}(\mathscr{A})$ for any $i \leq n_0$. It induces a distinguished triangle in $D^b_{\mathscr{C}}(\mathscr{A})$, hence a distinguished triangle in $D_{\mathscr{C}\text{-}sg}(\mathscr{A})$ of the following form:

$$K^{i}[-i] \to \sigma^{\geq i} C_0^{\bullet} \to C_0^{\bullet} \to K^{i}[-i+1].$$

Since $\sigma^{\geq i}C_0^{\bullet} \in K^b(\mathscr{C})$, $C_0^{\bullet} \cong K^i[-i+1]$ in $D_{\mathscr{C}-sg}(\mathscr{A})$. Take $l_0 = i$ and $Y = K^i$. Then $C_0^{\bullet} \cong Y[-l_0+1]$ in $D_{\mathscr{C}-sg}(\mathscr{A})$. By assumption we may assume that $\mathscr{CG}(\mathscr{C})$ -dim $Y = m_0 < \infty$. Let $C_1^{\bullet} \to Y$ be the left \mathscr{C} -resolution of Y. We claim that for any $n \leq -m_0 + 1$, $\operatorname{Ker} d_{C_1}^n \in \mathscr{G}(\mathscr{C})$, where $d_{C_1}^n$ is the nth differential of C_1^{\bullet} .

We have a \mathscr{C} -acyclic complex:

$$0 \to G^{-m_0} \to G^{-m_0+1} \to \cdots \to G^{-1} \to G^0 \to Y \to 0$$

with $G^j \in \mathscr{G}(\mathscr{C})$ for any $-m_0 \leq j \leq 0$. Let G^{\bullet} be the complex $0 \to G^{-m_0} \to G^{-m_0+1} \to \cdots \to G^{-1} \to G^0 \to 0$. By Lemma 2.3, there exists a \mathscr{C} -quasi-isomorphism $C_1^{\bullet} \to G^{\bullet}$ lying over id_Y , and hence its mapping cone is \mathscr{C} -acyclic. So for any $n \leq -m_0+1$, we get the following \mathscr{C} -acyclic complex:

$$0 \to \operatorname{Ker} d_{C_1}^n \to C_1^n \to \cdots \to C_1^{-m_0} \to C_1^{-m_0+1} \oplus G^{-m_0} \to \cdots \to C_1^0 \oplus G^{-1} \to G^0 \to 0.$$

Note that this complex is acyclic because $\mathscr C$ is admissible. Put $K = \mathrm{Ker}(C_1^0 \oplus G^{-1} \to G^0)$, we get a $\mathrm{Hom}_{\mathscr A}(\mathscr C,-)$ -exact exact sequence $0 \to K \to C_1^0 \oplus G^{-1} \to G^0 \to 0$. By Lemma 3.7(3), we get an exact sequence:

$$0 \to \operatorname{Hom}_{\mathscr{A}}(G^0, C) \to \operatorname{Hom}_{\mathscr{A}}(C_1^0 \oplus G^{-1}, C) \to \operatorname{Hom}_{\mathscr{A}}(K, C) \to \operatorname{Ext}^1_{\mathscr{C}}(G^0, C)$$

for any $C \in \mathscr{C}$. Since $G^0 \in \mathscr{G}(\mathscr{C})$, $\operatorname{Ext}^1_{\mathscr{C}}(G^0,C) = 0$ and so the exact sequence $0 \to K \to C_1^0 \oplus G^{-1} \to G^0 \to 0$ is $\operatorname{Hom}_{\mathscr{A}}(-,\mathscr{C})$ -exact. Because both $C_1^0 \oplus G^{-1}$ and G^0 are in $\mathscr{G}(\mathscr{C})$, $K \in \mathscr{G}(\mathscr{C})$ by [Hu, Proposition 4.7]. Iterating this process, we get that $\operatorname{Ker} d^n_{C_1} \in \mathscr{G}(\mathscr{C})$ for any $n \leq -m_0 + 1$. The claim is proved.

Choose a left \mathscr{C} -resolution C_1^{\bullet} of Y and put $X = \operatorname{Ker} d_{C_1}^{-m_0+1}$. By the above claim we have a \mathscr{C} -acyclic complex:

$$0 \to X \to C_1^{-m_0+1} \to C_1^{-m_0+2} \to \cdots \to C_1^0 \to Y \to 0$$

with $X \in \mathscr{G}(\mathscr{C})$. Then $Y \cong X[m_0]$ in $D_{\mathscr{C}\text{-}sg}(\mathscr{A})$ and $X^{\bullet} \cong C_0^{\bullet} \cong Y[-l_0+1] \cong X[m_0-l_0+1]$ in $D_{\mathscr{C}\text{-}sg}(\mathscr{A})$. We may assume that $X^{\bullet} \cong C_0^{\bullet} \cong X[r_0]$ in $D_{\mathscr{C}\text{-}sg}(\mathscr{A})$ for $r_0 > 0$. Because $X \in \mathscr{G}(\mathscr{C})$, we get a $\text{Hom}_{\mathscr{A}}(\mathscr{C}, -)$ -exact exact sequence $0 \to X \to C^0 \to C^1 \to \cdots \to C^{r_0-1} \to X' \to 0$ with $X' \in \mathscr{G}(\mathscr{C})$ and $C^i \in \mathscr{C}$ for any $0 \le i \le r_0 - 1$. It follows that $X \cong X'[-r_0]$ and $X^{\bullet} \cong C_0^{\bullet} \cong X[r_0] \cong X'$ in $D_{\mathscr{C}\text{-}sg}(\mathscr{A})$. This completes the proof.

The following is the main result of this paper.

Theorem 4.12. If $\mathscr{CG}(\mathscr{C})$ -dim $\mathscr{A} < \infty$, then the natural functor $\theta : \mathscr{G}(\mathscr{C}) \to D_{\mathscr{C}\text{-}sg}(\mathscr{A})$ induces a triangle-equivalence $\theta' : \mathscr{G}(\mathscr{C}) \to D_{\mathscr{C}\text{-}sg}(\mathscr{A})$.

Proof. It follows directly from Propositions 4.9, 4.10 and Theorem 4.11. \Box

The following result is the dual version of Happel's result, see [H2, Theorem 4.6].

Corollary 4.13. If A is Gorenstein, then the canonical functor $\mathscr{G}(A) \to D_{sg}(A)$ induces a triangle-equivalence $\mathscr{G}(A) \to D_{sg}(A)$.

Proof. Let A be Gorenstein and $\mathscr{C} = A$ - proj. Then $\mathscr{CG}(\mathscr{C})$ -dim $\mathscr{A} < \infty$ by [Hos, Theorem]. Now the assertion is an immediate consequence of Theorem 4.12.

Acknowledgements. This research was partially supported by NSFC (Grant No. 11171142) and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions. The authors thank the referee for the helpful suggestions.

References

- [AHV] J. Asadollahi, R. Hafezi and R. Vahed, Gorenstein derived equivalences and their invariants, J. Pure Appl. Algebra 218 (2014), 888-903.
- [AuB] M. Auslander and M. Bridger, Stable module theory, Memoirs Amer. Math. Soc. 94, Amer. Math. Soc., Providence, RI, 1969.
- [AuR] M. Auslander and I. Reiten, Applications of contravariantly finite subcategories, Adv. Math. 86 (1991), 111–152.
- [AvM] L.L. Avramov and A. Martsinkovsky, Absolute, relative, and Tate cohomology of modules of finite Gorenstein dimension, Proc. Lond. Math. Soc. 85 (2002), 393–440.
- [Be] A. Beligiannis, The homological theory of contravariantly finite subcategories: Gorenstein categories, Auslander-Buchweitz contexts and (co-)stabilization, Comm. Algebra 28 (2000), 4547–4596.
- [BD] I. Burban and Y.A. Drozd, Derived categories of nodal algebras, J. Algebra 272 (2004), 46–94.
- [Bu] R.O. Buchweitz, Maximal Cohen-Macaulay Modules and Tate Cohomology over Gorenstein Rings, Unpublished manuscript, 1986.
- [Bü] T. Bühler, Exact Categories, Expo. Math. 28 (2010), 1–69.
- [C1] X.W. Chen, Homotopy equivalences induced by balanced pairs, J. Algebra 324 (2010), 2718–2731.
- [C2] X.W. Chen, Relative singularity categories and Gorenstein-projective modules, Math. Nachr. 284 (2011), 199–212.
- [CZ] X.W.Chen and P.Zhang, Quotient triangulated categories, Manuscripta Math. 123 (2007), 167– 183.
- [CFH] L.W. Christensen, A. Frankild and H. Holm, On Gorenstein projective, injective and flat dimensions-a functorial description with applications, J. Algebra 302 (2006), 231–279.
- [EJ1] E.E. Enochs and O.M.G. Jenda, Gorenstein injective and projective modules, Math. Z. 220 (1995), 611–633.

- [EJ2] E.E. Enochs and O.M.G. Jenda, Relative Homological Algebra, de Gruyter Exp. Math. 30, Walter de Gruyter, Berlin, New York, 2000.
- [EJL] E.E. Enochs, O.M.G. Jenda and J.A. López-Ramos, Covers and envelopes by V-Gorenstein modules, Comm. Algebra 33 (2005), 4705–4717.
- [GZ] N. Gao and P. Zhang, Gorenstein derived categories, J. Algebra 323 (2010), 2041–2057.
- [GM] S.I. Gelfand and Y.I. Manin, *Methods of Homological Algebra*, Second edition. Springer Monographs in Math., Springer-Verlag, Berlin, 2003.
- [H1] D. Happel, Triangulated categories in representation theory of finite dimensional algebras. Lond. Math. Soc. Lect. Notes Ser. 119, Cambridge University Press, Cambridge, 1988.
- [H2] D. Happel, On Gorenstein Algebras, in: Representation theory of finite groups and finitedimensional algebras (Proc. Conf. at Bielefeld, 1991), Progress in Math. 95, Birkhäuser, Basel, 1991, pp.389–404.
- [Ho] H. Holm, Gorenstein homological dimensions, J. Pure Appl. Algebra 189 (2004), 167–193.
- [Hos] M. Hoshino, Algebras of finite self-injective dimension, Proc. Amer. Math. Soc. 112 (1991), 619–622.
- [Hu] Z.Y. Huang, Proper Resolutions and Gorenstein Categories, J. Algebra 393 (2013), 142–169.
- [K] B. Keller, Chain complexes and stable categories, Manuscripta Math. 67 (1990), 379–417.
- [O] D. Orlov, Triangulated categories of singularities and D-branes in Landau-Ginzburg models, Proc. Steklov Inst. Math. 246 (2004), 227–248.
- [Q] D. Quillen, Higher algebraic K-theory I, in: Lecture Notes in Math. 341, Springer-Verlag, Berlin, 1973, pp. 85–147.
- [R] J. Rickard, Derived categories and stable equivalence, J. Pure Appl. Algebra 61 (1989), 303–317.
- [SSW] S. Sather-Wagstaff, T. Sharif and D. White, Stability of Gorenstein categories, J. Lond. Math. Soc. 77 (2008), 481–502.
- [V] J.L. Verdier, Catégories dérivées, Etat 0, Lecture Notes in Math. 569, Springer-Verlag, Berlin, 1977, pp. 262–311.
- [ZH] Y.F. Zheng and Z.Y. Huang, On pure derived categories, Preprint, available at http://math.nju.edu.cn/ huangzy/.