我们已经给出了
$$\int_a^{+\infty} f(x) \, \mathrm{d}x \, n \int_{-\infty}^a f(x) \, \mathrm{d}x$$
 的定义。
类似地可以定义 $\int_{-\infty}^{+\infty} = \int_{-\infty}^a + \int_a^{+\infty}$. 若两个反常积分均收敛则称 $\int_{-\infty}^{+\infty}$ 收敛。

对于有原函数的 f(x), 反常积分还有其他的表达方式。设 f 在 $[a,+\infty)$ 上有原函数 F, 则有

$$\int_{a}^{x} f(x) dx = F(x) - F(a).$$

因而

$$\int_a^{+\infty} f(x) \, \mathrm{d}x = \lim_{x \to \infty} \int_a^x f(t) \, \mathrm{d}t = F(+\infty) - F(a).$$

例 求
$$\int_1^\infty \frac{1}{x^p} \, \mathrm{d}x$$
.

解

•
$$p = 1$$
 时 $\int_{1}^{+\infty} \frac{1}{x} dx = \ln(+\infty) - \ln(1)$ 发散。

•
$$p \neq 1 \text{ If } \int_{1}^{+\infty} \frac{1}{x^{p}} dx = \frac{1}{1-p} x^{1-p} \Big|_{1}^{+\infty} \Longrightarrow \begin{cases} \frac{1}{1-p} \text{ if } p > 1\\ +\infty \text{ otherwise.} \end{cases}$$

在反常积分中还原法和分部积分同样可用。

• 换元法:

$$\int_{a}^{+\infty} f(x) \, \mathrm{d}x = \int_{a}^{\beta} f(\varphi(t)) \varphi'(t) \, \mathrm{d}t \quad \left(\varphi \in C^{1}[\alpha, \beta), \varphi' \geq 0 \right)$$

其中 $\varphi(\alpha)=a, \varphi(\beta-0)=+\infty$. 注意等式右边可能是正常积分,也可能是瑕积分。

• 分部积分: 对于 $u, v \in C^1$, $\lim_{x \to +\infty} u(x)v(x)$ 存在,则

$$\int_{a}^{+\infty} u(x)v'(x) \, \mathrm{d}x = u(x)v(x)\Big|_{a}^{+\infty} - \int_{a}^{+\infty} u'(x)v(x) \, \mathrm{d}x.$$

例
$$\int_{1}^{+\infty} \frac{\cos x}{x} dx = \frac{\sin x}{x} \Big|_{1}^{+\infty} - \int_{1}^{+\infty} -\frac{\sin x}{x^2} dx.$$
 由上一例知该反常积分收敛。

例 计算
$$I = \int_0^{+\infty} e^{-ax} \sin bx \, dx$$
, $J = \int_0^{+\infty} e^{-ax} \cos bx \, dx$ $(a > 0)$. 假定 I, J 确实收敛。

解

$$\begin{split} I &= -\frac{e^{-ax}}{a}\sin bx\bigg|_0^{+\infty} - \frac{1}{a}\int_0^{+\infty}be^{-ax}\cos bx\,\mathrm{d}x = \frac{b}{a}J,\\ J &= -\frac{e^{-ax}}{a}\cos bx\bigg|_0^{+\infty} + \frac{1}{a}\int_0^{+\infty}be^{-ax}\sin bx\,\mathrm{d}x = \frac{1}{a} + \frac{b}{a}I. \end{split}$$

联立即可解出 I,J.

82 无穷积分敛散性的判别法

$$f:[a,+\infty) \to \mathbb{R}$$
. $\forall x \geq a, f$ 在 $[a,x]$ 上可积,且有原函数 $F(x) = \int_a^x f(t) \, \mathrm{d}t,$
$$\int_a^{+\infty} f(x) \, \mathrm{d}x = F(+\infty) - F(a).$$

定理 反常积分收敛
$$\Longleftrightarrow \forall \varepsilon > 0, \exists M > a, \forall x_1, x_2 > M, \left| \int_{x_1}^{x_2} f(x) \, \mathrm{d}x \right| < \varepsilon.$$
 (Cauchy 准则)

定理
$$\int_{a}^{+\infty} |f| \, \mathrm{d}x \, \, \mathrm{k} \, \mathrm{d}x \implies \int_{a}^{+\infty} f(x) \, \mathrm{d}x \, \, \mathrm{k} \, \mathrm{d}x \, \, \mathrm{k} \, \mathrm{d}x \, \, \mathrm{e}$$
 由上一定理即证。

定义 若
$$f$$
 满足 $\int_{-\infty}^{+\infty} |f(x)| \, \mathrm{d}x$ 收敛,则称 f 绝对收敛。

定义 若
$$f$$
 满足 $\int_a^{+\infty} |f(x)| \, \mathrm{d}x$ 收敛,则称 f 绝对收敛。 若 $\int_a^{+\infty} |f(x)| \, \mathrm{d}x$ 发散但 $\int_a^{+\infty} f(x) \, \mathrm{d}x$ 收敛,则称 f 条件收敛。

下面先讨论 $f(x) \ge 0$ 的情形,此时 F(x) 关于 x 单调增。

定理 设
$$f \ge 0$$
, 则 $\int_a^{+\infty} f(x) dx$ 收敛 $\iff F(x)$ 在 $[a, +\infty)$ 有界。证明显然。

定理 (比较判别法) 设 $\exists c \geq 0 \text{ s.t. } 0 \leq f(x) \leq c \cdot g(x), \forall x \geq a.$ 则

• 若
$$\int_a^{+\infty} g(x) dx$$
 收敛,则 $\int_a^{+\infty} f(x) dx$ 也收敛。

•若
$$\int_{a}^{+\infty} f(x) dx$$
发散,则 $\int_{a}^{+\infty} g(x) dx$ 也发散。

证明

•
$$\int_{a}^{+\infty} g(x) dx$$
 收敛 $\Longrightarrow \exists M, \int_{a}^{+\infty} g(x) dx < M.$ 则 $\int_{a}^{+\infty} f(x) dx < cM.$

• 发散的情形同理。

定理 (比较判别法的极限形式) 设 $f \ge 0, g > 0, \lim_{x \to +\infty} \frac{f(x)}{g(x)} = c \in [0, +\infty].$

• $0 < c < +\infty$ 时 f, g 的反常积分同时敛散。

•
$$0 \le c < +\infty$$
 时若 $\int_a^{+\infty} g(x) \, \mathrm{d}x$ 收敛,则 $\int_a^{+\infty} f(x) \, \mathrm{d}x$ 也收敛。

•
$$0 < c \le +\infty$$
 时若 $\int_a^{+\infty} f(x) \, \mathrm{d}x$ 收敛,则 $\int_a^{+\infty} g(x) \, \mathrm{d}x$ 也收敛。

利用比较判别法我们可以判定 f 是否绝对收敛。若 f 不绝对收敛, 我们可以采取以下的判别法 来判断 f 是否为条件收敛。

定理 (Dirichlet) 设 $f,g:[a,+\infty)\to\mathbb{R}$ 有定义。若

•
$$\exists M > 0 \text{ s.t. } \forall x, \left| \int_a^x g(t) \, \mathrm{d}t \right| < M,$$

• f(x) 单调趋于 0,

则
$$\int_a^{+\infty} f(x)g(x) \, \mathrm{d}x$$
 收敛。注意这里不要求 g 的正负性。

证明

$$\begin{split} \left| \int_{x_1}^{x_2} f(x) g(x) \, \mathrm{d}x \right| & \leq \left| f(x_1) \int_{x_1}^{\xi} g(x) \, \mathrm{d}x \right| + \left| f(x_2) \int_{\xi}^{x_2} g(x) \, \mathrm{d}x \right| \\ & \leq 2 M(|f(x_1)| + |f(x_2)|) \to 0. \end{split}$$

定理 (Abel) 设 f, g 满足

f(x) 单调有界,

则
$$\int_a^{+\infty} f(x)g(x) \,\mathrm{d}x$$
 收敛。

$$\int f g \, \mathrm{d} x = \int (f - c) g \, \mathrm{d} x + c \cdot \int g \, \mathrm{d} x.$$

前一项由 Dirichlet 定理收敛.