Note: We will start at 12:53 pm ET

Course Summary:

Date	Details	
Mon Feb 1, 2021	18-441/741 Lecture 1	12:50pm to 2:50pm
Wed Feb 3, 2021	18-441/741 Lecture 2	12:50pm to 2:50pm
Mon Feb 8, 2021	ignment Project Exam Hel	12:50pm to 2:50pm
Wed Feb 10, 2021	18 18-441/741 Lecture 4	P 12:50pm to 2:50pm
Fri Feb 12, 2021	https://powe-oder.com	12:50pm to 1:40pm
Sun Feb 14, 2021		due by 11:59pm
Mon Feb 15, 2021	Add-4WeChat powcoder	12:50pm to 2:50pm
Wed Feb 17, 2021	18-441/741 Lecture 6	12:50pm to 2:50pm
Mon Feb 22, 2021	■ 18-441/741 Lecture 7	12:50pm to 2:50pm
Wed Feb 24, 2021	18-441/741 Lecture 8	12:50pm to 2:50pm
Fri Feb 26, 2021	18-441/741 Recitation 2 (Hybrid) Project 2 Intro Zoom / In-person (M-Z)	12:50pm to 1:40pm
Sun Feb 28, 2021		due by 11:59pm
Juil 1780 20, 2021	Project 1	due by 11:59pm

18-441/741: Computer Networks Lecture 6: Physical Layer IV https://powcoder.com

AddSWaClnaKpumaroder

Physical Layer: Outline

- Digital networks
- CharAssignment Project Exam Help annels
- Fundamental Limits in Digital Transmission
 Line Coding Powcoder.com
- Modems Add WeChat powcoder
 Error Detection and Correction (cotd.)
- Wired PHY 101
- Wireless PHY 101

Recap: CRC = Polynomial Codes

- Do "Long Division" on (mod 2) Assignment Project Exam Help polynomials
- Let i(x) dethote information bits in polynomial form Chat powcoder
- Then:

$$g(x) \xrightarrow{q(x)} \xrightarrow{x^{n-k}i(x)} \xrightarrow{\text{Add}} \xrightarrow{x^{n-k}i(x) + r(x)}$$

$$\xrightarrow{r(x)} \xrightarrow{\text{Add}} \xrightarrow{x^{n-k}i(x) + r(x)}$$

The Pattern in Polynomial Coding

All codewords satisfy the following pattern:

$$b(x) = x^{n-k} Axsign(x) ent Axsign(x) ent$$

- All codewords take approve present and the second state of the s
- Receiver should divide received n-tuple by g(x) and check if remainder is zero
- If remainder is non-zero, then received n-tuple is not a codeword

Undetectable error patterns

- e(x) has 1's in error locations & 0's elsewhere
- Receiver divides the received polynomial R(x) by g(x)
- Undetectable error: If e(x) is a multiple of g(x), that is, e(x) is a non-zero codework, then wooder

$$R(x) = b(x) + e(x) = q(x)g(x) + q'(x)g(x)$$

- The set of undetectable error polynomials is the set of nonzero code polynomials
- Choose the generator polynomial so that selected error patterns can be detected.

Designing good polynomial codes

- Select generator polynomial so that likely error patterns are not multiples of g(x)
- Detecting Signature Project Exam Help
 - $-e(x) = x^i$ for error in location i+1
 - If g(x) has more than / pterm it can be ptermitted as
- Detecting Double Errors
 - e(x) = xi + xi Adidxi-We Chat > powcoder
 - If g(x) has more than 1 term, it cannot divide x^i
 - If g(x) is a primitive polynomial, it cannot divide x^m+1 for all m<2^{n-k}-1 (Need to keep codeword length less than 2^{n-k}-1)
 - Primitive polynomials can be found by consulting coding theory books

Standard Generator Polynomials

CRC = cyclic redundancy check

$$= x^8 + x^2 + x + 1$$

ATM

IEEE 802, DoD, V.42

Assignment Project Exam Help

$$\frac{1}{h} \frac{x^{16} + x^{15}}{h} + \frac{x^{2} + 1}{h} \frac{x^{2} + 1$$

Add WeChat powcoder

$$= x^{16} + x^{12} + x^5 + 1$$

HDLC, XMODEM, V.41

$$= x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^{8} + x^{7} + x^{5} + x^{4} + x^{2} + x + 1$$

Hamming Codes

- · Class of erremoving eaches an Help
- Capable of correcting all single-error patterns
 https://powcoder.com

 Provably optimal for 1-bit errors
- Very less redddddane@ha.gpd.tbitceteor proof adds O(log n) bits of redundancy for n bit sequences

m=3 Hamming Code

- Information bits are b₁, b₂, b₃, b₄
- Equations for parity checks b_5 , b_6 b_7 Assignment Project Exam'Help $b_5 = b_1 + b_3 + b_4$ https://powcoder.com

Add Welchar powcoder

- There are 2⁴=16 codewords
- (0,0,0,0,0,0,0) is a codeword

My "simple" proof of optimality

Assume you got the				b ₇ match
following 7 bit sequences and make the following tips://checks:	/ POWCO b ₁ flipped	der.cor	n	
Add V	Velipped b ₃ flipped	powco	der	
$b_5 = b_1 + b_3 + b_4$	b ₃ flipped			
$b_6 = b_1 + b_2 + b_4$	b ₄ flipped			
0 1 2 1	b ₅ flipped			
$b_7 = +b_2 + b_3 + b_4$	b ₆ flipped			
	b ₇ flipped			

My "simple" proof of optimality

Assignment Assume you got the following 7 bit sequences and make the following types checks:	

Add Y
$$b_5 = b_1 + b_3 + b_4$$

$$b_6 = b_1 + b_2 + b_4$$

$$b_7 = +b_2 + b_3 + b_4$$

entaseroje	ot natch t	D ₆ macp	b ₇ match
-/Ne error	oder cor	n 🗸	V
b ₁ flipped	oder.cor	X	V
What phad	t powco	der ^x	X
b ₃ flipped	POX	V	X
b ₄ flipped	X	X	X
b ₅ flipped	X	V	√
b ₆ flipped	√	X	√
b ₇ flipped	V	V	X

Why is Hamming a "good code"?

- Two valid bit sequences have Chihatup Qisa6@de bit flips
- Spheres of distance 1 around each codeword do not overlap
- If a single error occurs, the resulting n-tuple will be in a unique sphere around the original codeword
- Thus, receiver can correct erroneous reception back to original codeword

Physical Layer: Outline

- Digital networks
- CharAssignment Project Exam Help annels
- Fundamental Limits in Digital Transmission
 Line Coding
- Modems and Digital Modulation Add WeChat powcoder Error Detection and Correction
- Wired PHY 101
- Wireless PHY 101

Twisted Pair

- Two insulated copper wires arranged in a regular spiral pattern to minimize
- Various thicknesses, e.g. 0.016 inch (24 gauge)
- Low cost
- Telephone subscriber loop from customer to Cadd
- Old trunk plant connecting telephone COs
- Intra-building telephone from wiring closet to desktop

Ethernet LANs

Evolved from 10 -> 100 → 1000
 Mbps to now 10Gbps

All use twisted pair in some form!

All use twisted pair in some form!

- 10BASE-T Ethernet
- https://powconder.eastland, Twisted pair
 - Two Cat3 pairs

VeChManchester coding, 100 meters

- 100BASE-T4 Fast Ethernet
 - 100 Mbps, Baseband, Twisted pair
 - Four Cat3 pairs
 - Three pairs for one direction at-a-time
 - 100/3 Mbps per pair;
 - 3B6T line code, 100 meters
 - 1000BASE-T
 - 8b10b encoding, Four pairs

Optical Fiber

- Light sources (lasers, LEDs) generate pulses of light that are transmitted on optical fiber
 - Very long distances (>1000 km)
 hat powcoder
 - Very high speeds (>40 Gbps/wavelength)
 - Nearly error-free (BER of 10⁻¹⁵)
- Profound influence on network architecture
 - Dominates long distance transmission
 - Distance less of a cost factor in communications
 - Plentiful bandwidth for new services

Transmission in Optical Fiber

- Very fine glass cylindrical core surrounded by concentric layer of glass (cladding)
- Core has higher index of refraction than cladding
- Light rays incident at less than critical angle θ_c is completely reflected back into the core

Multimode & Single-mode Fiber

Multimode fiber: multiple rays follow different paths

- Multi Mode: Thicker core, shorter reach
 - Rays on different paths interfere causing dispersion & limiting bit rate
- Single Mode: Very thin core supports only one mode (path)
 - More expensive lasers, but achieves very high speeds

Huge Available Bandwidth

Quiz Question

How much optical fiber bandwidth is available between: Assignment Project Exam Help

 λ_1 = 1450 nm and $\lambda_1 + \Delta \lambda$ =1650 nm: https://powcoder.com = wo nm

Answer:

Add 1 W p (1450 nm) 2 (1450 nm) 2

Wavelength-Division Multiplexing

- Different wavelengths carry separate signals
- Multiplex into shared optical fiber-
- · Each wayslengthelike presente signithelp

How Do We Extend Range

- Use combinations of optical amplifiers and regenerators
- · More ansignment Regiseraters any Help

Physical Layer: Outline

- Digital networks
- CharAssignment Project Exam Help annels
- Fundamental Limits in Digital Transmission
 Line Coding Powcoder.com
- Modems and Digital Modulation Add WeChat powcoder Error Detection and Correction
- Wired PHY 101
- Wireless PHY 101

Wireless vs. Wired

- Wireless is "flaky"
 - Environment, people, mobility affects signals
 Assignment Project Exam Help
- Wireless is the broadcast medium
 - Collisions!
 - Interfere And We Chat powcoder
 - Noise

- Wireless is half-duplex
 - Only transmit or receive.. Not both

Outline - Wireless

- WiFi PHY
 - Wireless channel
 - OF Assignment Project Exam Help
 - Multiple antennas (MIMO), https://powcoder.com

Add WeChat powcoder

Cellular Whirlwind (2G → 5G)

But hey, we already know Wi-Fi

Wireless signals: Basic Equation

• In narrowband: Assignment Project Exam Help

"x" TX --https://powcoder.com RX "y"

Add WeChat powcoder

$$y(t) = hx(t) + n(t).$$

But in the real world...

Assignment Project Exam Help

TX https://powcoder.com RX

Add WeChat powcoder "Multipath"

Wireless signals

More generally: Assignment Project Exam Help Mttps://powcoder.com 2.5Add WeChat powcoder 2 1.5 1 0.5

20

30

Tap Index

40

10

50

60

70

Wireless signals

• But time is continuous! Assignment Project Exam Help

https://powcoder.com

$$y(t) = \int h(A)ddt We Chat po web des $s(t) + n(t)$$$

Challenges: How do I estimate h?

Assignment Project Exam Help
$$y(t) = hx(t) + n(t)$$
. https://powcoder.com

Add WeChat powcoder

Send known $x(t)$ as "preamble"

$$\rightarrow$$
 h \approx y(t)/x(t)

But... what is the channel?

"Attenuation" & "Phase shift"

Assignment Project Exam Help

Add WeChat powcoder

$$h = \frac{1}{d} * e^{j2\pi d/\lambda}$$

Consistent with 1/d² power fading

But... what is the channel?

 "Attenuation" & "Phase shift" Assignment Project Exam Help

Add WeChat powcoder
$$h = 1/d * e^{j2\pi d/\lambda}$$

• $d/\lambda = d^*f/c = f^*t$, where "t" is signal time

But... what is the channel?

 "Attenuation" & "Phase shift" Assignment Project Exam Help

Add WeChat powcoder

$$h = 1/d * e^{j2\pi d/\lambda} = 1/d * e^{j2\pi ft}$$

• $d/\lambda = d^*f/c = f^*t$, where "t" is signal time

How do channels capture multipath?

Assignment Project Exam Help
d
https://powcoder.com

Add WeChat powcoder

 $h = 1/d * e^{j2\pi d/\lambda} + 1/d' * e^{j2\pi d'/\lambda}$

Channels can combine differently on different frequencies

→ Channels are frequency-selective

TX

Challenge: Frequency Selective Fading

$$y(t) = h(t) * s(t) + n(t) \Leftrightarrow Y(f) = H(f)S(f) + N$$

Assignment Project Exam Help

FDM

Frequency Division Multiplexing

• Divide baisawidth Projest Faren Links: "subcarriers", powcoder.com

OFDM

Orthogonal Frequency Division Multiplexing

• Get rid of guard bands by some definition of the state of the state

OFDM

Orthogonal Frequency Division Multiplexing

Assignment Project Exam Help

Carrier Frequency (Hz)

WiFi, LTE uses OFDM!

multiple imput

Why so many antennas?
 Assignment Project Exam Help

simple in sigle out

Recap: SISO PHY

- Our discussion so far had single antenna transmitters and receivers am Help
- "Single Input Single Output"
 Add WeChat powcoder

SISO: Channel Model

(Assuming narrowband)

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Multiple Input Multiple Output Assignment Project Exam Help

 2 x More antennas → 2 x More data https://powcoder.com

$$y_1 = h_{11}x_1 + h_{21}x_2$$
 Assignment Project Exam Help
$$y_2 = h_{12}x_1 + h_{22}x_2$$
 https://powcoder.com

$$\left[\begin{array}{c} y_1 \\ \mathbf{Assign} \\ y_2 \end{array} \right] \mathbf{ment} \underbrace{ \begin{array}{c} h_{11} & h_{21} \\ \mathbf{Project} \\ h_{12} \end{array} }_{\mathbf{h}_{22}} \mathbf{Exam} \left[\begin{array}{c} x_1 \\ \mathbf{Help} \\ x_2 \end{array} \right]$$

https://powcoder.com

How do you solve?

Estimating Channels

Preamblesign meanth Project Exam Dettp...

```
h_{11} https://powcoder.com
h_{21} Measure on Antenna 1
Add WeChat powcoder
```

 $h_{12} \hspace{1cm} \hspace{1cm} \hspace{1cm} h_{22} \hspace{1cm} \hspace{1cm}$

Gains of MIMO

• 2 antennas \rightarrow 2× data: $\begin{bmatrix} y_1 & y_2 \end{bmatrix}$ Assignment Project Exam Help

https://powcoder.com

n antennadd > WeChamporecodata

<u>Assumption</u>: H is invertible

Quiz Question

Which of these has a gain (in Shannon Capacity) that is identical to that of doubling the number of antennas available on your wireless transmitter & receiver:

[A] Doubling Bandwidth Powcoder.com

[B] Doubling Signal Power

[C] Doubling Noise Power

[D] Halving Noise Power

New Shannon Formula: C = n B log(1+SNR)

Outline - Wireless

- WiFi PHY
 - Wireless channel
 - OF Assignment Project Exam Help
 - Multiple antennas (MIMO) https://powcoder.com

Add WeChat powcoder

Cellular Whirlwind (2G → 5G)

The Advent of Cellular Networks

- Mobile radio telephone system was based on:
 - Highesignmente Precies Exam Help
 - Could support about 25 channels
 - in a radiushttps:k/powcoder.com
- To increase network capacity:
 - Multiple low place Vranschitters (90000 90 64s)
 - Small transmission radius -> area split in cells
 - Each cell with its own frequencies and base station
 - Adjacent cells use different frequencies
 - The same frequency can be reused at sufficient distance

Cellular Network Design Options

Simplest layout

- Adjacent antennas not equidistant – how do you handle users at the edge der composition of the cell?

Add WeChat powcoder

Ideal layout

 But we know signals travel whatever way they feel like

The Hexagonal Pattern

- A hexagon pattern can provide equidistant access to neighboring the project Example of the provide equidistant access to neighboring the project of the provided example of t
 - Used as the basis for planning https://powcoder.com
 - $d = \sqrt{3R}$
- In practice, variations contact powcoder ideal due to topological reasons
 - Signal propagation
 - Tower placement

Cell sectoring

- Cell divided into wedge shaped sectors
- 3-6 sectors per cell, each with own channels
 Use of directional artennas
- Even matepries with the median big cells!

Cellular Standards

- 1G systems: analog voice
 Not unlike a wired voice line (without the wire)
- 2G systems: digital weighter.com
 - Many standards
 - Example Ads M E Chat T DOWN Condet widely deployed, 200 countries, a billion people
- 2.5G systems: voice and data channels
 - Example: GPRS evolved from GSM, packetswitched, 170 kbps (30-70 in practice)

Cellular Standards

- 3G: voice (circuit-switched) and data (packetswitched).

 Assignment Project Exam Help

 Several standards

 - Uses Codet Division Multiple Access (CDMA) -**UMTS**
- 4G: 10 Mbpscahowacketamiessordebility between different cellular technologies
 - LTE the dominating technology
 - Packet switched (took them so long!)
- 5G: mm-wave, more bandwidth, massive MIMO

LTE in a Nutshell: Essentially OFDM

LTE in a Nutshell: Or rather, OFDM-A!

- Call a chunk of subcarrier-time "resource blocks"
- Assign each user a chunk of resource blocks coordinated by the cell tower Assignment Project Exam Help

5G in one slide(!)

- LTE bandwidths (in US) ~ 10-20 MHz
- 5G plays the ment of the second of the sec
 - Increase https://pmwcoder.com
 - Increase B (option 1): mm-wave frequencies
 - Increase B (option 2) Ebuy into p Spectrum (cbsts \$\$)
 - Reduce I: smaller cells (femto cells)
- Only major change to PHY: allow subcarrier width to change (fixed in LTE), otherwise mostly same as LTE (still uses OFDMA, etc.)

