EE5609 Assignment 9

Abhishek Thakur

Abstract-This document solves problem based on solution of vector space.

Download all solutions from

https://github.com/abhishekt711/EE5609/tree/ master/Assignment 9

1 Problem

let $\alpha = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ and $\beta = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$ be vectors in \mathbb{R}^2 such

that

$$x_1y_1 + x_2y_2 = 0;$$
 $x_1^2 + x_2^2 = y_1^2 + y_2^2 = 1.$

 $x_1y_1 + x_2y_2 = 0;$ $x_1^2 + x_2^2 = y_1^2 + y_2^2 = 1.$ Proove that $\beta = \{\alpha, \beta\}$ is a basis of \mathbb{R}^2 . Find the coordinates of the vector (a, b) in the ordered basis $\beta = \{\alpha, \beta\}$. (The conditions on α and β say, geometrically, that α and β are perpendicular and each has length 1).

2 Solution

we need to show that α and β are linearly independent in order to proove that $\beta = \{\alpha, \beta\}$ is a basis of \mathbb{R}^2 .

Given in the question are:

$$\alpha^T \beta = 0 \tag{2.0.1}$$

$$\|\alpha\|^2 = \|\beta\|^2 = 1$$
 (2.0.2)

Let,

$$\mathbf{A} = \begin{pmatrix} \alpha & \beta \end{pmatrix} = \begin{pmatrix} x_1 & y_1 \\ x_2 & y_2 \end{pmatrix} \tag{2.0.3}$$

then,

$$\mathbf{A}^{T}\mathbf{A} = \begin{pmatrix} ||\alpha||^{2} & \alpha^{T}\beta \\ \alpha^{T}\beta & ||\beta||^{2} \end{pmatrix}$$
 (2.0.4)

$$= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \tag{2.0.5}$$

$$\therefore \mathbf{A}^T \mathbf{A} = \mathbf{I} \tag{2.0.6}$$

Inverse of A exist. A^T is the inverse of A. Thus, the columns of A are linearly independent i.e, α and β are linearly independent.

Hence, $\beta = \{\alpha, \beta\}$ is a basis of \mathbb{R}^2 .

To, find the coordinates of the vector (a, b) in the ordered basis $\beta = \{\alpha, \beta\}$. We can row-reduce the augmented matrix,

$$\left(\alpha\right) + \left(\beta\right) = \begin{pmatrix} a\\b \end{pmatrix} \tag{2.0.7}$$

The aumented matrix can be given as:

$$\begin{pmatrix} x_1 & y_1 & a \\ x_2 & y_2 & b \end{pmatrix} \qquad (2.0.8)$$

$$\stackrel{R_1 = \frac{R_1}{x_1}}{\longleftrightarrow} \begin{pmatrix} 1 & \frac{y_1}{x_1} & \frac{a}{x_1} \\ x_2 & y_2 & b \end{pmatrix} \tag{2.0.9}$$

$$\stackrel{R_2 = R_2 - x_2 R_1}{\longleftrightarrow} \begin{pmatrix} 1 & \frac{y_1}{x_1} \\ 0 & y_2 - \frac{x_2 y_1}{x_1} \end{pmatrix} \quad \frac{a}{b - \frac{x_2 a}{x_1}}$$
 (2.0.10)

$$= \begin{pmatrix} 1 & \frac{y_1}{x_1} \\ 0 & \frac{x_1 y_2 - x_2 y_1}{x_1} \end{pmatrix} \begin{pmatrix} \frac{a}{x_1} \\ \frac{x_1 b - x_2 a}{x_1} \end{pmatrix}$$
(2.0.11)

$$\stackrel{R_2 = \left(\frac{x_1}{x_1 y_2 - x_2 y_1}\right) R_2}{\longleftrightarrow} \begin{pmatrix} 1 & \frac{y_1}{x_1} & \frac{a}{x_1} \\ 0 & 1 & \frac{x_1 b - x_2 a}{x_1 y_2 - x_2 y_1} \end{pmatrix}$$
(2.0.12)

$$\stackrel{R_1=R_1-\left(\frac{y_1}{x_1}\right)R_2}{\longleftrightarrow} \begin{pmatrix} 1 & 0 & \frac{ay_2-by_1}{x_1y_2-x_2y_1} \\ 0 & 1 & \frac{x_1b-x_2a}{x_1y_2-x_2y_1} \end{pmatrix}$$
(2.0.13)

Using 2.0.1 and 2.0.2 and simplifying in 2.0.13,

$$= \begin{pmatrix} 1 & 0 & ax_1 + bx_2 \\ 0 & 1 & ay_1 + by_2 \end{pmatrix}$$
 (2.0.14)

Hence,

$$\implies \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} \alpha & \beta \end{pmatrix} \begin{pmatrix} ax_1 + bx_2 \\ ay_1 + by_2 \end{pmatrix} \tag{2.0.15}$$

$$\therefore \begin{pmatrix} a \\ b \end{pmatrix} = (ax_1 + bx_2) (\alpha) + (ay_1 + by_2) (\beta)$$
(2.0.16)