Multi-Agent Systems

Working Together

Summary

- \Diamond Working together [Wooldridge Chap 8]
- \Diamond Task assignment [Ferber Chap 7]

Working together

Cooperative Distributed Problem Solving

- No agent can solve the problem by itself
- Different capabilities, resources and knowledge

Two different scenarios:

- Benevolent agents
 - Agents help by design
 - Network of agents with common goal
- Self-interested Agents
 - agents act (and possibly cooperate) in their own interest
 - potential for conflict

Working together approaches

- ♦ Cooperation in perception and action
- result sharing (Cooperative Perception)
- task sharing (Cooperative Action)
- \Diamond Coordination (i.e. avoiding interferences)
- \Diamond Multi agent planning

Cooperation in perception and action

Cooperation: Result Sharing

Exchange of information relevant to the task

Attitude of agents:

- Passive
- Proactive

Communication model:

- Common model (i.e. Blackboard)
- Message passing (i.e. publish Subscribe)

Result integration (Distributed World Modeling):

- Information fusion
- Cooperative perception

Cooperation: Task Sharing

Division of labour for task sharing requires:

- task decomposition
- task allocation

Task **assignment** is the key process:

- statically defined tasks (roles)
- dynamically discovered tasks

More later

Coordination

- ♦ Systems that dynamically adapt their behaviour to other agents (special case lack of conflicts)
 - Coordination in accessing common resources
 - Coordination by norms and social laws
 - Coordination by mutual modeling
 - Coordination through joint intentions, the agents commit to a common goal until:
 - goal is achieved
 - goal becomes impossible
 - goal becomes irrelevant

Multiagent Planning

- Centralized planning for distributed plans
- Distributed planning
- Distributed planning for distributed plans
 - Coordination through partial global planning
- Plan merging: (using STRIPS plan representation)

Task sharing

Task decomposition:

- ♦ hierarchical
- granularity of subproblems difficult to define
- \Diamond decomposition levels \rightarrow abstraction levels

Typically tasks are defined a priori

Allocation modes

Once the need for help on a task is recognized allocation can be:

- ♦ Predefined
- Centralized
 - Imposed
 - Via Trader
- Distributed
 - Acquaintance Network
 - Contract Net Protocol
- ♦ Emergent

Centralized Allocation

- ♦ Imposed
- subordination / hierarchical structure
- rigid allocation (a priori)
- procedure call in imperative languages
- ♦ Via Trader
- Trader is a special agent managing allocation
- Centralized techniques for changing settings

Centralized Allocation via trader

Trader, Clients and Suppliers

Protocol for centralized allocation

Message exchange between client and trader

- \Diamond Request(T,X)
- \Diamond Accept(T,Y)
- \Diamond Impossible(T)

Message exchange between trader and supplier

- \Diamond Request(T,X)
- \Diamond Accept(T,Y,X)
- \Diamond Refuse(T,Y,X)

Centralized Allocation: features

- ♦ coherence can be enforced
- \diamondsuit number of messages exchanged = $\alpha kN(2+2\beta N)\Rightarrow O(N^2)$
- $\bullet \alpha = Potential Clients/total Clients$
- β = Potential Suppliers /total Suppliers
- $\bullet k = \text{requests per time unity}$
- very sensitive to failures

Allocation via Acquaintance Network

	Ag_1	Ag_3	Ag_j
Cap_1	0	1	1
Cap_2	0	0	0
Cap_i	1	0	0

 \Diamond Simplifying assumptions:

Tables are correct, complete and static.

Direct Allocation

- Every agent allocates tasks only to its direct contacts (sequentially)
- \Diamond If none accepts:
 - Force allocation
 - Central Agent
- \diamondsuit If the request is broadcasted among the direct contacts $\to \mathsf{CNP}$
- ♦ Agents are unaware of other agents not in direct contact

Allocation by delegation (tables are incomplete)

- ♦ search the whole network
- depth
- breadth
- ♦ Parallel breadth search (Diffusion algorithms)
 - Visit all agents: Acknowledge (searched all the subtree)
 - Visit them only once: Marking

Allocation by delegation: example

Allocation by delegation: challenges

- \Diamond Optimized search (send messages to everybody)
- Useless computation after at least one agent has accepted
- ♦ Proposal selection

Rearrange an acquaintance network

- ♦ Change Capabilities
- Communicate when a capability changes
 - Broadcast the change: who knows my capabilities? (bidirectionality needed and increased complexity)
 - Syncronization between change and new requests
- Adaptive network
 - Agent changes its network after a denial
 - Frequency of changes becomes critical
- ♦ Agent insertion and elimination

Contract Net Protocol

- ♦ Smith (1979)
- ♦ Simple and easy to implement
- Manager and Suppliers communicate via offers

CNP alg. single Manager

- 1. **Announcement**: Manager sends a task description to all possible suppliers (RequestForBid(T,M))
- 2. **Bidding**: Suppliers evalute the offer and send a proposal to the Manager (Propose(T,Off,Ag) or NotInterested(T,Ag))
- 3. **Awarding**: Manager evaluates the proposals and allocates the contract to the best supplier (Award(T,Ag,M))
- 4. **Expediting**: The chosen supplier replies positively or negatively to the Manager (Accept(T,Ag) Refuse(T,Ag))

CNP in FIPA ACL

Request

CNP messages

- ♦ Smith defined a contract specification language
- requirements
- format
- deadline for presentation

Contract language

```
Message: RequestForBids
  To: *
  From: A21
  DescriptionOfTask:
    TypeOfTask: check-feature
  QualitiesRequired:
    MustHave: Camera
  FormOfProposal:
    Position: (X,Y)
  DateExpiry: 12:00
EndRequestForBids
```

CNP Features

- Contacting all the agents is problematic
- Token-Ring solution is possible (tradeoff with speed)
- Caching (acquaintance) to minimize communication (tradeoff with performance)
- ♦ Limit date for the contract:
- avoids useless communications with non interested agents
- avoid blockages due to agent malfunctioning
- ullet fixed waiting time o inefficiency

CNP with many managers

- \Diamond many manager \to interference
- ♦ incomplete knowledge about suppliers:
- time relative (no prediction of future tasks), but also for the single manager
- space relative (other proposals)

	T_a	T_b
X	90	80
Y	80	20

relative to the working load (also for single manager)

CNP synchronization problems

- \diamondsuit Timing of proposal submission and award arrival
- Cautions Agents
 - propose only doable
 - with few agents is a good strategy
- Brave Agents
 - Propose also when not capable
 - may cause task resubmissions
 - good with many agents
- Moderate Agents
 - decision theoretic approach to make proposals
 - weight resources by evaluating the chances of acceptance of the proposal

CNP with subcontracting

- ♦ Suppliers can sub-contract
- Like previous situation but with shared resources
- ♦ several strategies
- Early commitment
 - Suppliers send proposal before having necessary resources
 - Several riorganizations needed
 - quicker
- Late commitment
 - Suppliers send proposal after having acquired necessary resources
 - Possible deadlocks
- Fixed agencies
 - less adaptive, more stability

CNP features

- \Diamond Pros
- simple and easy to implement
- dynamic and easily adaptable
- ullet bilateral contract o several parameters in the allocation
- \Diamond Cons
- ullet many messages O(nm)
- synchronization problems
- challenging with sub-contracting

CNP Variations

- ♦ CNP: proposal driven
- \Diamond Acquaintance network + CNP
- task differentiation (complexity/priority): allocation in acquaintance network (quick, inaccurate), CNP (expensive, more accurate)
- use CNP only when acquaintance network fails
- \diamondsuit Acquaintance network \to cache memory for CNP

Emergent allocation

- ♦ Task Allocation for reactive agents
- ♦ Signals in place of messages (stigmergic comm.)
- ♦ Agents' behaviors depend on signal strength...
- ...and internal tendency of the agents (simple state)
- Used in MRSs (no cost for direct comm.)
- \Diamond Not focussed on efficiency, but on scalability
- \Diamond Artificial Life, Swarm (Brooks, Mataric, Parker)