The photographs show a wooden pop gun before and after the cork is popped.	
The diagram shows a cross-section through the pop gun.	
cylindrical cork piston	
handle air wooden cylinder	
Initially the piston is at the right-hand end of the cylinder, as shown. Then the cork is pushed into the other end of the cylinder.	
When the handle is pushed in, the pressure of the air in the cylinder increases. This exert an additional force on the cork.	S
Once the additional force is sufficient to overcome the frictional force between the cork and the cylinder, the cork is pushed out.	
(a) Show that the pressure of the air in the cylinder must be about 2×10^5 Pa in order to push the cork out.	
maximum frictional force = $8.8 \mathrm{N}$ cross-sectional area of cork = $9.2 \times 10^{-5} \mathrm{m}^2$	
atmospheric pressure = $1.0 \times 10^5 \text{Pa}$	(3)
(b) Calculate the temperature of the gas in the cylinder at the instant the cork is expelled.	
volume of air in the cylinder with the handle pulled out = $1.1 \times 10^{-5} \mathrm{m}^3$ volume of air in the cylinder at the moment the cork is pushed out = $6.7 \times 10^{-6} \mathrm{m}^3$	
atmospheric pressure = $1.0 \times 10^5 \text{Pa}$ initial temperature of air = $19 ^{\circ}\text{C}$	
	(2)
Temperature =	
(c) The formulae sheet for this paper includes the equation	
(c) The formulae sheet for this paper includes the equation $pV = \frac{1}{3}Nm\langle c^2\rangle$	
$pV = \frac{1}{3} Nm \langle c^2 \rangle$	
	(2)
$pV = \frac{1}{3} Nm \langle c^2 \rangle$	(2)
 $pV = \frac{1}{3} Nm \langle c^2 \rangle$	(2)
 $pV = \frac{1}{3} Nm \langle c^2 \rangle$	(2)
 $pV = \frac{1}{3} Nm \langle c^2 \rangle$	(2)
 $pV=\frac{1}{3}Nm\langle c^2\rangle$ Derive the equation $\frac{1}{2}m\langle c^2\rangle=\frac{3}{2}kT$ (d) Calculate the root mean square speed of the molecules of air in the cylinder before	(2)
 $pV = \frac{1}{3}Nm\langle c^2\rangle$ Derive the equation $\frac{1}{2}m\langle c^2\rangle = \frac{3}{2}kT$ (d) Calculate the root mean square speed of the molecules of air in the cylinder before the handle is pushed in.	(2)
 $pV=\frac{1}{3}Nm\langle c^2\rangle$ Derive the equation $\frac{1}{2}m\langle c^2\rangle=\frac{3}{2}kT$ (d) Calculate the root mean square speed of the molecules of air in the cylinder before	(2)
 $pV = \frac{1}{3}Nm\langle c^2\rangle$ Derive the equation $\frac{1}{2}m\langle c^2\rangle = \frac{3}{2}kT$ (d) Calculate the root mean square speed of the molecules of air in the cylinder before the handle is pushed in. average mass of molecule of air = $4.8 \times 10^{-26} \rm kg$	(2)
 $pV = \frac{1}{3}Nm\langle c^2\rangle$ Derive the equation $\frac{1}{2}m\langle c^2\rangle = \frac{3}{2}kT$ (d) Calculate the root mean square speed of the molecules of air in the cylinder before the handle is pushed in. average mass of molecule of air = $4.8 \times 10^{-26} \rm kg$	(2)
 $pV = \frac{1}{3}Nm\langle c^2\rangle$ Derive the equation $\frac{1}{2}m\langle c^2\rangle = \frac{3}{2}kT$ (d) Calculate the root mean square speed of the molecules of air in the cylinder before the handle is pushed in. average mass of molecule of air = $4.8 \times 10^{-26} \rm kg$	(2)

(Total for Question 18 = 9 marks)