Skript Funktionalanalysis

Jakob Kropf und Jonas Harder

Version vom 23. Mai 2024

Inhaltsverzeichnis

1	Metrische Räume			
		Definitionen		
	1.2	Konvergenz und Stetigkeit	2	
	1.3	Offene und abgeschlossene Mengen	3	
	1.4	Vollständigkeit	3	
	1.5	Kompaktheit	6	
2	Maß- und Integrationstheorie			
	2.1	Grundlegende Konstruktionen	9	
	2.2	Integration	10	
3	Normierte Räume			
	3.1	Definitionen	12	
	3.2	Vervollständigung	12	
	3.3	L^p -Räume	13	

Metrische Räume

1.1 Definitionen

Definition 1.1.1. Eine Menge T, versehen mit einer Abbildung $d: T \times T \to \mathbb{R}$ mit den Eigenschaften $(s, t, u \in T \text{ beliebig})$

- 1. $d(s,t) \geq 0$,
- 2. d(s,t) = d(t,s)
- 3. $d(s,u) \le d(s,t) + d(t,u)$
- 4. $d(s,t) = 0 \iff s = t$

ist metrischer Raum mit Metrik d. Falls nur (\Leftarrow) in 4. gilt, handelt es sich um eine Halbmetrik.

Beispiel 1.1.1. $(\mathbb{R}, |\cdot|)$ ist ein metrischer Raum.

Beispiel 1.1.2. $(\mathbb{C}, |\cdot|)$ ist ein metrischer Raum.

Beispiel 1.1.3. (\mathbb{R}^n, d_i) mit $i \in \{1, 2, \infty\}$ sind metrische Räume, wobei für $x, y \in \mathbb{R}$

$$d_1 := \sqrt{\sum_{i=1}^n (x_i - y_i)}, \quad d_2 := \sqrt{\sum_{i=1}^n (x_i - y_i)^2}, \quad d_\infty := \max\{|x_i - y_i| | i : 1, \dots, n\}$$

Definition 1.1.2. Sei X, d ein metrischer Raum. Dann definieren wir die offene bzw. abschlossene Kugel um $x \in X$ wie folgt.

$$K_{\nu}(x):=\{y\in X|d(x,y)\leq\nu\}\quad \overline{K_{\nu}(x)}:=\{y\in X|d(x,y)\leq\nu\}$$

Weiterhin ist U eine Umgebung von $x \iff \exists \nu > 0 : K_{\nu}(x) \subseteq U$.

1.2 Konvergenz und Stetigkeit

Definition 1.2.1. Eine Folge $(x_n)_{n\in\mathbb{N}}$ in einem metrischen Raum X heißt konvergent gegen $x\in X$ (bez. $\lim_{n\to\infty}t_n=t$), falls

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \forall n \ge N : d(x_n, x) \le \varepsilon$$
.

Satz 1.2.1. Der Limes einer konvergenten Folge ist eindeutig bestimmt.

Satz 1.2.2. Jede Teilfolge einer konvergenten Folge ist konvergent und hat den gleichen Grenzwert.

Definition 1.2.2. Sei $f:(X_1,d_1)\to (X_2,d_2)$ eine Abbildung zwischen metrischen Räumen. Dann heißt f stetig an der Stelle $x_0\in X_1$, falls

$$\forall \varepsilon > 0 \; \exists \delta > 0 : d_1(x, x_0) < \delta \implies d_2(f(x), f(x_0)) < \varepsilon$$

Satz 1.2.3. Sei $f:(X_1,d_1)\to (X_2,d_2)$ eine Abbildung zwischen metrischen Räumen. Dann sind folgende Bedingungen äquivalent:

- 1. f ist stetig an x_0
- 2. $\forall (x_n)_{n \in \mathbb{N}} \text{ mit } x_n \in X_1 \forall n \in \mathbb{N} : \lim_{n \to \infty} x_n = x_0 \in X_1 \implies \lim_{n \to \infty} f(x_n) = f(x_0)$

Satz 1.2.4. Seien $f:X_1\to X_2,\ g:X_2\to X_3$ stetige Abbildungen zwischen metrischen Räumen. Dann ist die Verknüpfung $g\circ f:X_1\to X_3$ stetig.

1.3 Offene und abgeschlossene Mengen

Definition 1.3.1. Sei (X, d) ein metrischer Raum, dann heißt

- 1. $G \subseteq X$ offen : $\iff \forall x \in G \ \exists \nu > 0 : K_{\nu}(x) \subseteq G$
- 2. $F \subseteq X$ abgeschlossen : $\iff \forall (x_n)_{n \in \mathbb{N}} \text{ mit } x_n \in F \ \forall n \in \mathbb{N} : \lim_{n \to \infty} x_n = x \implies x \in F$
- 3. $S \subseteq X$ liegt dicht in $X : \iff \forall x \in X \exists (s_n)_{n \in \mathbb{N}}, s_n \in S : \lim_{n \to \infty} s_n = x$

Definition 1.3.2. Ein metrischer Raum (X, d) heißt *separabel*, wenn es eine höchstens abzählbare Teilmenge $S \subseteq X$ gibt, die in diesem Raum dicht liegt.

Beispiel 1.3.1. Der Banachraum

$$l^{\infty}(\mathbb{N}) := \{(a_n)_{n \in \mathbb{N}} | a_n \in \mathbb{R}, (a_n)_{n \in \mathbb{N}} \text{ beschränkt} \} \text{ mit } d_{\infty}((a_n)_{n \in \mathbb{N}}, (b_n)_{n \in \mathbb{N}}) = \sup_{n \in \mathbb{N}} |a_n - b_n|$$

ist nicht separabel.

Satz 1.3.1. Sei $f:(X_1,d_1)\to (X_2,d_2)$ eine Abbildung zwischen metrischen Räumen. Dann sind äquivalent:

- 1. f ist stetig.
- 2. $\forall G \subseteq X_2 : G \text{ offen } \Longrightarrow f^{-1}(G) \text{ offen.}$
- 3. $\forall F \subseteq X_2 : F \text{ abgeschlossen} \implies f^{-1}(F) \text{ abgeschlossen}.$

Bemerkung 1.3.1. Aus Satz 1.3.1 folgt: $K_{\varepsilon}(x)$ offen, da $K_{\varepsilon}(x) = d(x,\cdot)^{-1}((-\infty,\varepsilon))$.

1.4 Vollständigkeit

Definition 1.4.1. Sei (X, d) ein metrischer Raum, dann heißt $(x_n)_{n \in \mathbb{N}}$ mit $\forall n \in \mathbb{N} : x_n \in X$ Cauchyfolge, falls:

$$\forall \varepsilon > 0 \; \exists N \in \mathbb{N} \; \forall n, m \ge N : d(x_n, x_m) < \varepsilon$$

Satz 1.4.1. Jede konvergente Folge $(x_n)_{n\in\mathbb{N}}$ in einem metrischen Raum (X,d) ist eine Cauchy-Folge.

Definition 1.4.2. Ein metrischer Raum (X, d) heißt vollständig, falls jede Cauchyfolge konvergiert.

Beispiel 1.4.1. $(\mathbb{R}, |\cdot|)$ und $\mathbb{C}, |\cdot|$ sind vollständige metrische Räume.

Beispiel 1.4.2. Die metrischen Räume (\mathbb{R}^n, f_p) mit $p \in [1, \infty]$ sind vollständig.

Satz 1.4.2. Sei (X, d) ein vollständiger metrischer Raum. Dann gilt:

$$Y \subseteq X$$
 vollständig $\iff Y$ abgeschlossen.

Satz 1.4.3. Sei (X_1, d_1) ein metrischer Raum (X_2, d_2) ein vollständiger metrischer Raum sowie $\varphi: X_1 \to X_2$ isometrisch. Dann gibt es genau eine isometrisches $\hat{\varphi}: X_1 \to X_2$ mit $\hat{\varphi}|_S = \varphi$.

Beweis. Sei $x \in X_1$, dann gibt es eine Folge $(x_n)_{n \in \mathbb{N}}$ mit $\forall n \in \mathbb{N} : x_n \in S$ und $\lim_{n \to \infty} x_n = x$. Somit ist $(x_n)_{n \in \mathbb{N}}$ insbesondere eine Cauchyfolge. Folglich ist auch $(\varphi(x_n))_{n \in \mathbb{N}}$ eine Cauchyfolge und mit der Vollständigkeit von X_2 gilt

$$\exists y \in X_2 : \lim_{n \to \infty} \varphi(x_n) = y := \hat{\varphi}(x) .$$

Wir setzen also für solche Folgen

$$\hat{\varphi}\left(\lim_{n\to\infty}x_n\right) := \lim_{n\to\infty}\varphi(x_n) .$$

Zeige nun $\hat{\varphi}$ ist wohldefiniert. Sei eine weitere Folge $(y_n)_{n\in\mathbb{N}}$ gegeben mit $\forall n\in\mathbb{N}:y_n\in S$ und $\lim_{n\to\infty}y_n=x$. Es folgt:

$$d_2(\varphi(x_n), \varphi(y_n)) = d_1(x_n, y_n) \xrightarrow{n \to \infty} d_1(x, x) = 0 \implies \lim_{n \to \infty} \varphi(y_n) = y$$
.

Somit ist $\hat{\varphi}$ in der Tat wohldefiniert. Weiterhin gilt $\hat{\varphi}|_S = \varphi$, denn wir wählen für $x \in S$ die Folge $(x)_{n \in \mathbb{N}}$, somit gilt

$$\hat{\varphi}\left(\lim_{n\to\infty}x_n\right) = \hat{\varphi}(x) = \lim_{n\to\infty}\varphi(x_n) = \lim_{n\to\infty}\varphi(x) = \varphi(x)$$
.

Zeige nun $\hat{\varphi}$ ist eine Isometrie. Seien dazu $x,y\in X$ mit $(x_n)_{n\in\mathbb{N}},\ (y_n)_{n\in\mathbb{N}}$ Folgen in S, wobei $\lim_{n\to\infty}x_n=x,\ \lim_{n\to\infty}y_n=y.$ Somit

$$d_2(\hat{\varphi}(x), \hat{\varphi}(y)) = \lim_{n \to \infty} d_2(\varphi(x_n), \varphi(y_n)) = \lim_{n \to \infty} d_1(x_n, y_n) = d(x, y) .$$

Satz 1.4.4. Sei (X,d) ein metrischer Raum. Dann gibt es einen vollständigen metrischen Raum (\hat{X},\hat{d}) (bez. Vervollständigung von X) und eine Isometrie $\varphi:X\to\hat{X}$ (d. h. $\forall x,y\in X:d(x,y)=\hat{d}(\varphi(x),\varphi(y))$), sodass das Bild $\varphi(X)$ dicht in \hat{X} ist. Haben (\tilde{X},\tilde{d}) und $\tilde{\varphi}$ die gleiche Eigenschaft, so gibt es eine Bijektion $\psi:\hat{X}\to\tilde{X}$ mit $\tilde{\varphi}=\psi\circ\varphi$.

Beweis. Definiere die Menge aller Cauchyfolgen in X durch

$$\hat{X}_0 := \{(x_n)_{n \in \mathbb{N}} | \forall n \in \mathbb{N} : x_n \in X, (x_n)_{n \in \mathbb{N}} \text{ Cauchyfolge} \}.$$

Definiere weiterhin eine Äquivalenzrelation \sim auf \hat{X}_0 mit

$$(x_n)_{n\in\mathbb{N}} \sim (y_n)_{n\in\mathbb{N}} : \iff \lim_{n\to\infty} d(x_n, y_n) = 0.$$

Wir setzen \hat{X} als die Menge aller Äquivalenzklassen an, d. h.

$$\hat{X} = \hat{X}_0 / \sim = \{ [(x_n)_{n \in \mathbb{N}}] \mid (x_n)_{n \in \mathbb{N}} \in \hat{X}_0 \} \text{ wobei } [(x_n)_{n \in \mathbb{N}}] = \{ (y_n)_{n \in \mathbb{N}} \mid (x_n)_{n \in \mathbb{N}} \sim (y_n)_{n \in \mathbb{N}} \}.$$

Nun konstruieren wir die Metrik $\hat{d}: \hat{X} \times \hat{X} \to [0, \infty)$, wobei für $[(x_n)_{n \in \mathbb{N}}], [(y_n)_{n \in \mathbb{N}}] \in \hat{X}$ gilt

$$\hat{d}(\left[(x_n)_{n\in\mathbb{N}}\right],\left[(y_n)_{n\in\mathbb{N}}\right]) = \lim_{n,m\to\infty} d(x_n,y_m) \iff \forall \varepsilon > 0 \; \exists N,M \in \mathbb{N} \; \forall n \geq N \; \forall m \geq M : d(x_n,y_m) < \varepsilon \; .$$

Zeigen nun, dass \hat{d} wohldefiniert. Seien $(x_n')_{n\in\mathbb{N}}$, $(y_n')_{n\in\mathbb{N}}\in\hat{X}_0$ mit $(x_n)_{n\in\mathbb{N}}\sim(x_n')_{n\in\mathbb{N}}$, $(y_n)_{n\in\mathbb{N}}\sim(y_n')_{n\in\mathbb{N}}$, dann nach Definition

$$\lim_{n\to\infty} d(x_n, x_n') = \lim_{n\to\infty} d(y_n, y_n') = 0.$$

Anwenden der Dreiecksungleichung ergibt

$$d(x_n, y_n) \le d(x_n, x'_n) + d(x'_n, y'_n) + d(y'_n, y_n)$$

$$d(x'_n, y'_n) \le d(x'_n, x_n) + d(x_n, y_n) + d(y_n, y'_n).$$

Somit

$$|d(x_n, y_n) - d(x'_n, y'_n)| \le d(x_n, x'_n) + d(y_n, y'_n) \to 0.$$

Da $(d(x_n, y_n))$ und $(d(x'_n, y'_n))$ konvergent, folgt

$$\lim_{n,m\to\infty} d(x_n,y_m) = \lim_{n',m'\to\infty} d(x'_{n'},y'_{m'})$$

und somit ist \hat{d} wohldefiniert. Nun gilt nach Def. 1.1.1 zu zeigen, dass \hat{d} eine Metrik auf \hat{X} ist. Wir zeigen hier nur die Dreiecksungleichung:

$$\lim_{n,m\to\infty} d(x_n,y_m) \leq \lim_{k\to\infty} \lim_{n,m\to\infty} d(x_n,z_k) + d(z_k,y_m) \iff \hat{d}(\left[(x_n)_{n\in\mathbb{N}}\right],\left[(y_n)_{n\in\mathbb{N}}\right]) \leq \hat{d}(\left[(x_n)_{n\in\mathbb{N}}\right],\left[(z_k)_{k\in\mathbb{N}}\right]) + \hat{d}(\left[(z_k)_{k\in\mathbb{N}}\right],\left[(y_n)_{n\in\mathbb{N}}\right]).$$

Setze nun $\varphi: X \to \hat{X}$, $x \mapsto [(x)_{n \in \mathbb{N}}]$, dies ist offensichtlich eine Isometrie. Zeigen nun, dass $\varphi(X)$ dicht in \hat{X} . Sei $[(x_n)_{n \in \mathbb{N}}] \in \hat{X}$. Nach Voraussetzung ist $(x_n)_{n \in \mathbb{N}}$ eine Cauchyfolge, d. h. $\exists N_0 \in \mathbb{N}$ sodass $\forall m, n \geq N_0 : d(x_m, x_n) < \varepsilon$. Somit $\hat{x}_{N_0} := [(x_{N_0})_{n \in \mathbb{N}}] = \varphi(x_{N_0}) \in \varphi(X)$ und

$$\hat{d}\left(\left[(x_n)_{n\in\mathbb{N}}\right],\hat{x}_{N_0}\right) = \lim_{n\to\infty} d(x_n,x_{N_0}) < \varepsilon$$
.

Somit $\hat{x}_{N_0} \in K_{\varepsilon}([(x_n)_{n \in \mathbb{N}}]) \cap \varphi(X)$ und folglich ist $\varphi(X)$ dicht in \hat{X} . Nun gilt zu zeigen, dass (\hat{X}, \hat{d}) vollständig ist. Zeige dafür zunächst folgendes Lemma.

Lemma 1.4.1. Sei X, d metrischer Raum, $S \subseteq X$ dicht in X, sodass jede Cauchyfolge in S in X konvergiert. Dann ist X vollständig.

Beweis. Sei $(x_n)_{n\in\mathbb{N}}$ eine Cauchyfolge in X. Da S dicht in X gilt

$$\forall n \in \mathbb{N} \ \exists y_n \in S : d(x_n, y_n) < 1/n$$
.

Somit ist $(y_n)_{n\in\mathbb{N}}$ auch eine Cauchyfolge in S, da

$$d(y_m, y_n) \le d(y_m, x_m) + d(x_m, x_n) + d(x_n, y_n) < 1/m + d(x_m, x_n) + 1/n$$
.

Nach Annahme existiert $\lim_{n\to\infty} y_n =: x \in X$. Da

$$d(x_n, x) \le d(x_n, y_n) + d(y_n, x) < 1/n + d(y_n, x)$$

folgt in der Tat $\lim_{n\to\infty} x_n = x$.

Nach Lemma 1.4.1 g. z. z., dass jede Cauchyfolge in $\varphi(X)$ in \hat{X} konvergiert. Sei $(\hat{x}_k)_{k\in\mathbb{N}}$ Cauchyfolge in $\varphi(X)$, d. h. $\hat{x}_k := (x_k, x_k, \ldots)$. Da φ eine Isometrie, ist $(x_k)_{k\in\mathbb{N}}$ eine Cauchyfolge in X durch

$$\forall m, n \in \mathbb{N} : d(x_n, x_m) = \hat{d}(\hat{x}_n, \hat{x}_m) .$$

Somit $(x_k)_{k\in\mathbb{N}}\in \hat{X}_0$, $\left[(x_k)_{k\in\mathbb{N}}\right]\in \hat{X}$. Sei $\varepsilon>0$, dann $\exists N\in\mathbb{N}$ mit $\forall k,n\geq N:d(z_k,z_n)<\varepsilon$. Somit gilt $\forall k\geq N$:

$$\hat{d}(\hat{x}_k, \hat{x}) = \lim_{n \to \infty} d(z_k, z_n) < \varepsilon$$
.

Folglich konvergiert $(\hat{x}_k)_{k\in\mathbb{N}}$ gegen $\hat{x}\in\hat{X}$ und \hat{X} ist vollständig. Betrachte nun (\tilde{X},\tilde{d}) sowie $\tilde{\varphi}$ mit den gleichen Eigenschaften. Wir definieren

$$\psi_0: \varphi(X) \to \tilde{X}, \ \psi_0(\varphi(x)) = \tilde{\varphi}(x)$$
.

Dies ist eine Isometrie, da für $x, y \in X$ gilt

$$\tilde{d}(\psi_0(\varphi(x)), \psi_0(\varphi(y))) = \tilde{d}(\tilde{\varphi}(x), \tilde{\varphi}(y)) = d(x, y) = \hat{d}(\varphi(x), \varphi(y)).$$

Nach Satz 1.4.3 existiert eine eindeutige Erweiterung $\psi: \hat{X} \to \tilde{X}$ Isometrie mit $\psi|_{\varphi(X)} = \psi_0$. Da ψ_0 als Isometrie injektiv ist, g. z. z. ψ_0 ist surjektiv. Sei also $z \in \tilde{X}$, dann wegen der Dichtheit von $\tilde{\varphi}(X)$

$$\exists (x_n)_{n \in \mathbb{N}}, \ \forall n \in \mathbb{N} \ x_n \in X : \lim_{n \to \infty} \tilde{\varphi}(x_n) = z.$$

Somit $(x_n)_{n\in\mathbb{N}}$ Cauchyfolge $\implies (\varphi(x_n))_{n\in\mathbb{N}}$ Cauchyfolge. Da \hat{X} vollständig

$$\exists w \in \hat{X} : \lim_{n \to \infty} \varphi(x_n) = w .$$

Da ψ eine Isometrie ist folgt schließlich $\lim_{n\to\infty} \psi(\varphi(x_n)) = \psi(w) = z$ und somit ist ψ bijektiv. \square

1.5 Kompaktheit

Definition 1.5.1. Ein metrischer Raum (X,d) heißt kompakt, wenn jede offene Überdeckung eine endliche Teilüberdeckung besitzt. D. h., wenn $(G_i)_{i\in I}$ eine Famile offener Mengen, mit $X = \bigcup_{i\in I} G_i$, dann existieren endlich viele G_{i_1},\ldots,G_{i_n} mit $X = \bigcup_{k=1}^n G_{i_k}$.

Satz 1.5.1. Sei X, d metrischer Raum, $K \subseteq X$ kompakt. Dann ist K beschränkt und abgeschlossen (Umkehrung gilt i. A.nicht).

Satz 1.5.2. Sei X, d metrischer Raum. Dann gilt

$$X$$
 kompakt $\iff \forall (x_n)_{n \in \mathbb{N}} \exists (x_{n_k})_{k \in \mathbb{N}}$ Teilfolge $\exists y \in X : \lim_{k \to \infty} x_{n_k} = y$

Satz 1.5.3 (Heine-Borel). Betrachte die metrischen Räume (\mathbb{R}^n, d_p) mit $p \in [1, \infty]$. Dann ist $X \subseteq \mathbb{R}^n$ kompakt $\iff X$ beschränkt und abgeschlossen.

Definition 1.5.2. Sei (X, d) metrischer Raum. Dann heißt $Y \subseteq X$ totalbeschränkt falls

$$\forall \varepsilon > 0 \; \exists M \in \mathbb{N} \; \exists x_1, \dots, x_M \in Y : Y \subseteq \bigcup_{i=1}^M K_{\varepsilon}(x_i)$$

Satz 1.5.4. Sei X, d ein vollständiger metrischer Raum, $Y \subseteq X$. Dann ist Y kompakt $\iff Y$ abgeschlossen und total beschränkt.

Beweis. (\Longrightarrow)

Sei Y kompakt. Y abgeschlossen folgt aus Satz 1.5.1. Zeige nun die totale Beschränktheit, sei $\varepsilon>0$ dafür fixiert. Dann gilt offensichtlich

$$Y \subseteq \bigcup_{y \in Y} K_{\varepsilon}(y) \stackrel{Y \text{ kompakt}}{\Longrightarrow} \exists y_1, \dots, y_M : Y \subseteq \bigcup_{i=1}^M K_{\varepsilon}(y_i)$$

Somit ist Y total beschränkt.

(==)

Sei $Y \subseteq X$ abgeschlossen und total beschränkt und sei $(x_n)_{n \in \mathbb{N}}$ eine Folge aus Y. Es g. z. z., dass $(x_n)_{n \in \mathbb{N}}$ eine in Y konvergente Teilfolge besitzt. Wir nutzen die totale Beschränktheit zur Konstruktion der Teilfolge (TF).

$$\varepsilon = 1 : \exists \left\{ y_{i}^{1} \right\}_{i=1,...,M_{1}}, \ Y \subseteq \bigcup_{i=1}^{M_{1}} K_{1} \left(y_{i}^{1} \right) \implies \exists \ \mathrm{TF} \ \left(x_{n_{k}^{1}} \right)_{k \in \mathbb{N}} \exists i_{1} \in \left\{ 1, \ldots, M_{1} \right\} \forall k \in \mathbb{N} : x_{n_{k}^{1}} \in K_{1} \left(y_{i_{1}}^{1} \right)$$

$$\varepsilon = \frac{1}{2} : \exists \left\{ y_{i}^{2} \right\}_{i=1,...,M_{2}}, \ Y \subseteq \bigcup_{i=1}^{M_{2}} K_{1/2} \left(y_{i}^{2} \right) \implies \exists \ \mathrm{TTF} \ \left(x_{n_{k}^{2}} \right)_{k \in \mathbb{N}} \exists i_{2} \in \left\{ 1, \ldots, M_{2} \right\}$$

$$\forall k \in \mathbb{N} : x_{n_{k}^{2}} \in K_{1} \left(y_{i_{1}}^{1} \right) \cap K_{1/2} \left(y_{i_{2}}^{2} \right)$$

Diese Konstruktion lässt sich nun auf l Schritte erweitern.

$$\varepsilon = 2^{-l} : \exists \left\{ y_i^l \right\}_{i=1,\dots,M_l}, \ Y \subseteq \bigcup_{i=1}^{M_l} K_{2^{-l}} \left(y_i^l \right) \implies \exists \ \text{TT...TF} \ \left(x_{n_k^l} \right)_{k \in \mathbb{N}} \exists i_l \in \{1,\dots,M_l\}$$

$$\forall k \in \mathbb{N} : x_{n_k^l} \in K_1 \left(y_{i_1}^1 \right) \cap K_{1/2} \left(y_{i_2}^2 \right) \cap \dots \cap K_{2^{-(l-1)}} \left(y_{i_{l-1}}^{l-1} \right) \cap K_{2^{-l}} \left(y_{i_l}^l \right)$$

Nach Konstruktion ist $(x_{n_k}^k)_{k\in\mathbb{N}}$ Teilfolge von $(x_n)_{n\in\mathbb{N}}$ und für $k,k'\geq l$ gilt

$$x_{n_k}^k, \ x_{n_{k'}}^{k'} \in K_{2^{-l}}\left(y_{i_l}^l\right) \implies d\left(x_{n_k}^k, x_{n_{k'}}^{k'}\right) < 2^{-(l-1)}$$
.

Folglich ist $(x_{n_k}^k)_{k\in\mathbb{N}}$ eine Cauchyfolge und da X nach Voraussetzung vollständig, gilt

$$\exists z \in X : \lim_{k \to \infty} x_{n_k}^k = z .$$

Da Y abgeschlossen, gilt insbesondere $z \in Y$ und folglich Y kompakt.

Beispiel 1.5.1 (Noch NICHT verifiziert). Betrachte

$$C[0,1] := \{f: [0,1] \to \mathbb{R} \mid f \text{ stetig}\}\,, \quad \|\cdot\|_{\infty}\,, \text{ für } f,g \in C[0,1]: d(f,g) = \max\left\{|f(t) - g(t)| \mid t \in [0,1]\right\}$$

Dann gilt $Y \subseteq C[0,1]$ ist kompakt \iff Ypunktweise beschränkt, d. h.

$$\exists c > 0 \ \forall f \in Y \ \forall t \in [0,1] : |f(t)| \le c$$

und Y gleichgradig stetig, d. h.

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall f \in Y \ \forall s, t \in [0,1] : |t-s| < \delta \implies |f(t) - f(s)| < \varepsilon$$
.

Satz 1.5.5. Sei (X_1, d_1) ein kompakter metrischer Raum, (X_2, d_2) ein metrischer Raum, sowie $f: X_1 \to X_2$ stetig. Dann ist $f(X_1)$ kompakt.

Bemerkung 1.5.1 (Noch NICHT verifiziert). Falls $X_2 = \mathbb{R}$, dann existieren nach dem Satz von Weierstraß $x_+, x_- \in X_1$ mit $f(x_+) = \sup f(X_1)$ und $f(x_-) = \inf f(X_1)$.

Satz 1.5.6. Sei (X_1, d_1) ein kompakter metrischer Raum, (X_2, d_2) ein metrischer Raum, sowie $f: X_1 \to X_2$ stetig. Dann ist f gleichmäßig stetig, d. h.

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x, y \in X_1 : d_1(x, y) < \delta \implies d_2(f(x), f(y)) < \varepsilon \ .$$

Maß- und Integrationstheorie

2.1Grundlegende Konstruktionen

Definition 2.1.1. Sei $\Omega \neq \emptyset$. Dann heißt $\mathcal{F} \subseteq \mathcal{P}(\Omega)$ σ -Algebra, falls

- 1. $\Omega \in \mathcal{F}$
- 2. $\forall A \subseteq \mathcal{P}(\Omega) : A \in \mathcal{F} \Longrightarrow A^C \in \mathcal{F}$ 3. $\forall (A_n)_{n \in \mathbb{N}}, \ \forall n \in \mathbb{N} \ A_n \in \mathcal{F} : \bigcup_{n \in \mathbb{N}} \in \mathcal{F}$

Bezeichne Ω, \mathcal{F} als messbaren Raum.

Bemerkung 2.1.1. Sei (X,d) ein metrischer Raum, dann ist die σ -Algebra $\mathcal{B}(X)$ der Borelmengen die kleinste σ -Algebra, die alle offenen Mengen von X enthält. Bez. $\mathcal{B}(\mathbb{R}) =: \mathcal{B}$ und $\mathcal{B}(\mathbb{R}^n) = \mathcal{B}^n$.

Definition 2.1.2. Sei Ω, \mathcal{F} ein messbarer Raum. Dann ist $\mu : \mathcal{F} \to [0, \infty]$ ein Maß, falls

- 1. $\mu(\emptyset) = 0$
- 2. $\forall (A_n)_{n \in \mathbb{N}}, \forall n \in \mathbb{N} : A_n \in \mathcal{F}, \forall i, j \in \mathbb{N}, i \neq j : A_i \cap A_j = \emptyset : \mu(\cup_{n \in \mathbb{N}} A_n) = \sum_{n \in \mathbb{N}} \mu(A_n)$

Wir bezeichnen $(\Omega, \mathcal{F}, \mu)$ als Maßraum.

Beispiel 2.1.1. Sei Ω beliebig und $\mathcal{F} = \mathcal{P}(\Omega)$. Dann können wir das Zählmaß μ definieren mit $A \in \mathcal{P}(\Omega)$

$$\mu(A) = \begin{cases} |A| & \text{A endlich} \\ \infty & \text{sonst} \end{cases}$$

Dabei ist Ω meist abzählbar, z. B. $\Omega = \mathbb{N}$ oder $\Omega = \mathbb{Z}$

Beispiel 2.1.2. Sei $\Omega = \mathbb{R}^n$ und $\mathcal{F} = \mathcal{B}^n$. Dann definieren wir das Lebesgue-Maß l^n mit

$$l^n\left(\underset{i=1}{\overset{n}{\times}} [a_i, b_i) \right) = \prod_{i=1}^n (b_i - a_i) .$$

Für l = 1 gilt damit insbesondere $l^1([a, b)) =: l([a, b)) = b - a$.

2.2 Integration

Definition 2.2.1. Sei (Ω, \mathcal{F}) ein messbarer Raum, $f : \Omega \to \mathbb{C}$ heißt messbar (bez. $f \in \mathcal{M}(\Omega, \mathcal{F}, \mathbb{C})$), falls

$$\forall r > 0, z \in \mathbb{C} : f^{-1}(K_r(z)) \in \mathcal{F} \ [\iff \forall U \in \mathcal{B}(\mathbb{C}) : f^{-1}(U) \in \mathcal{F}].$$

Analog ist $f: \Omega \to \mathbb{R}$ messbar (bez. $f \in \mathcal{M}(\Omega, \mathcal{F}, \mathbb{R})$), falls

$$\forall U \in \mathcal{B}(\mathbb{R}) : f^{-1}(U) \in \mathcal{F}$$

Bemerkung 2.2.1. Wir bezeichnen weiterhin $\mathcal{M}(\Omega, \mathcal{F}, [0, \infty)) := \mathcal{M}_{+}(\Omega)$.

Bemerkung 2.2.2. Sei Ω, \mathcal{F} ein messbarer Raum, $f: \Omega \to \mathbb{R}$. Dann ist f messbar

$$\iff \forall c \in \mathbb{R} : \{f > c\} := \{x \in \Omega | f(x) > c\} \in \mathcal{F} .$$

Definition 2.2.2. Sei A eine Menge. Eine Funktion der Form

$$1_A(\omega) \begin{cases} 1 & \omega \in A \\ 0 & \omega \notin A \end{cases}$$

heißt Indikatorfunktion der Menge A.

Satz 2.2.1 (Integral für nichtnegative, messbare Funktionen). Sei $(\Omega, \mathcal{F}, \mu)$ ein Maßraum. Dann gibt es genau eine Abbildung $\varphi : \mathcal{M}_+(\Omega) \to [0, \infty]$ mit:

- 1. $\forall A \in \mathcal{F} : \varphi(1_A) = \mu(A)$
- 2. $\forall f, g \in \mathcal{M}_+(\Omega), \lambda \in [0, \infty] : \varphi(\lambda f + g) = \lambda \varphi(f) + \varphi(g)$
- 3. $\forall (f_n)_{n \in \mathbb{N}}, \ \forall n \in \mathbb{N} f_{n+1} \ge f_n \ge 0 : \varphi(\lim_{n \to \infty} f_n) = \lim_{n \to \infty} \varphi(f_n)$

Wir schreiben $\varphi(f) =: \int f d\mu =: \int f(\omega) d(\omega) =: \int f(\omega) \mu(d\omega).$

Bemerkung 2.2.3. 3. ist auch als Satz von Beppo Levi über monotone Konvergenz bekannt.

Bemerkung 2.2.4. Wir können in 2. $\lambda \in [0, \infty]$ wählen unter Beachtung, dass auf den erweiterten reellen Zahlen $\mathbb{R} := \mathbb{R} \cup \{-\infty, \infty\}$ gilt:

$$0 \cdot (\pm \infty) = (\pm \infty) \cdot 0 := 0 \text{ und } (+\infty) + (-\infty) = (-\infty) + (+\infty) = 0.$$

Definition 2.2.3 (Integral für messbare Funktionen). Sei $(\Omega, \mathcal{F}, \mu)$ ein Maßraum, $f \in \mathcal{M}(\Omega, \mathcal{F}, \mathbb{R})$. Dann definieren wir

$$f^+ := \max\{f, 0\}, f^- := \max\{-f, 0\} \implies f = f^+ - f^- \text{ und } |f| = f^+ + f^-.$$

Somit erhalten wir als Definition für das Integral (für integrierbare Funktionen, siehe Def. 2.2.4):

$$\int f d\mu := \int f^+ d\mu - \int f^- d\mu .$$

Sei nun $f \in \mathcal{M}(\Omega, \mathcal{F}, \mathbb{C})$, dann folgt $\Re(f), \Im(f) \in \mathcal{M}(\Omega, \mathcal{F}, \mathbb{R})$. Somit können wir definieren:

$$\int f d\mu := \int \Re(f) d\mu + i \cdot \int \Im(f) d\mu .$$

Definition 2.2.4. Sei $(\Omega, \mathcal{F}, \mu)$ ein Maßraum. Dann bezeichnen wir $f : \Omega \to \mathbb{C}$ als $(\mu$ -)integrierbar, falls $f \in \mathcal{L}^1$, wobei gilt

$$\mathcal{L}^1(\Omega,\mathcal{F},\mu,\mathbb{C}) := \left\{ f \in \mathcal{M}(\Omega,\mathcal{F},\mathbb{C}) \Big| \int |f| \, d\mu < \infty \right\} \; .$$

Wir schreiben kurz auch $\mathcal{L}^1(\Omega, \mathcal{F}, \mu)$.

Bemerkung 2.2.5. Analog definiert man $\mathcal{L}^1(\Omega, \mathcal{F}, \mu, \mathbb{R})$. Somit:

$$\int \cdot d\mu : \mathcal{L}^1(\Omega, \mathcal{F}, \mu, \mathbb{R} \ [\mathbb{C}]) \to \mathbb{R} \ [\mathbb{C}]$$

Bemerkung 2.2.6. Für $f:\Omega\to\mathbb{C}$ gilt insbesondere $|f|\geq\Re(f),\,|f|\geq\Im(f),$ d. h. das Integral ist wohldefiniert.

Satz 2.2.2. Seien $f, g \in \mathcal{L}^1(\Omega, \mathcal{F}, \mu)$ sowie eine Folge $(f_n)_{n \in \mathbb{N}}$, $\forall n \in \mathbb{N} : f_n \in \mathcal{L}^1(\Omega, \mathcal{F}, \mu)$ sowie $\lambda \in \mathbb{C}$. Dann gilt:

- 1. $\left| \int f d\mu \right| \le \int |f| d\mu$
- 2. $\int \lambda f + g d\mu = \lambda \int f d\mu + \int g d\mu$
- 3. $\mu(\{\omega \in \Omega | f(\omega) \neq g(\omega)\}) = 0 \implies \int f d\mu = \int g d\mu \implies \int |f g| d\mu = 0$
- 4. $\mu(\{\omega \in \Omega | |f(\omega)| = \infty\}) = 0$
- 5. $\exists h: \Omega \to [0,\infty], h \in \mathcal{L}^1(\Omega,\mathcal{F},\mu) \ \forall n \in \mathbb{N}: |f_n| \leq h \text{ und } \lim_{n \to \infty} f_n = f \implies \int f d\mu = \int \lim_{n \to \infty} f_n d\mu = \lim_{n \to \infty} \int f_n d\mu$

Bemerkung 2.2.7. 5. ist auch als Satz von Lebesgue über die majorisierte Konvergenz bekannt.

Normierte Räume

3.1Definitionen

Bemerkung 3.1.1. Wir betrachten hier Vektorräume über den Körpern $\mathbb{K} = \mathbb{R}$ oder $\mathbb{K} = \mathbb{C}$.

Definition 3.1.1. Eine *Norm* über einem \mathbb{K} -Vektorraum V ist eine Abbildung $\|\cdot\|: V \to \mathbb{R}_{\geq 0}$ mit:

- 1. $\forall x \in V, \lambda \in \mathbb{K} : ||\lambda x|| = |\lambda| ||x||$
- 2. $\forall x, y \in V : ||x + y|| \le ||x|| + ||y||$ 3. $||x|| = 0 \iff x = 0$

Dann heißt $V, \|\cdot\|$ normierter Raum.

Bemerkung 3.1.2. Falls 3. nicht gilt, bezeichnen wir die Abbildung als Halbnorm.

Satz 3.1.1. Ein normierter Raum $(V, \|\cdot\|)$ ist ein metrischer Raum mit der Metrik d, definiert durch

$$\forall x, y \in V : d(x, y) = ||x - y||.$$

Beispiel 3.1.1. In diesem Fall gilt für die Operationen $+: V \times V \to V$ und $\cdot: \mathbb{K} \times V \to V$ (mit $\lambda \in \mathbb{K}, \ x, y, x, y' \in V$):

$$d(x' + y', x + y) = ||x' + y' - (x + y)|| \le ||x' + y'|| + ||x + y||$$

$$d(\lambda x, \lambda x') = ||\lambda(x - x')|| = |\lambda| ||x - x'|| = |\lambda| d(x, x')$$

Definition 3.1.2. Ein *Banachraum* ist ein vollständiger normierter Raum.

3.2Vervollständigung

Satz 3.2.1. Sei $(V, \|\cdot\|)$ ein normierter Raum, dann existiert eine Vervollständigung $(\hat{V}, \|\cdot\|)$, d. h. Vkann in einen Banachraum eingebettet werden.

Beweis. Definiere Analog zu Satz 1.4.4:

$$\hat{V}_0 := \{(x_n)_{n \in \mathbb{N}} \mid \forall n \in \mathbb{N} : x_n \in V, \ (x_n)_{n \in \mathbb{N}} \text{ Cauchyfolge} \}.$$

Äquivalenzrelation $\sim \text{ auf } \hat{V}_0 : \ (x_n)_{n \in \mathbb{N}} \sim (y_n)_{n \in \mathbb{N}} : \iff \lim_{n \to \infty} \|x_n, y_n\| = 0$

Menge aller Äquivalenzklassen:
$$\hat{V} = \hat{V}_0 / \sim = \{ [(x_n)_{n \in \mathbb{N}}] \mid (x_n)_{n \in \mathbb{N}} \in \hat{X}_0 \}$$

Dabei ist \hat{V} ein Vektorraum mit $\forall \lambda \in \mathbb{K}, (x_n)_{n \in \mathbb{N}}, (y_n)_{n \in \mathbb{N}} \in \hat{V}_0$:

$$\lambda \left[(x_n)_{n \in \mathbb{N}} \right] := \left[(\lambda x_n)_{n \in \mathbb{N}} \right] \text{ und } \left[(x_n)_{n \in \mathbb{N}} \right] + \left[(y_n)_{n \in \mathbb{N}} \right] = \left[(x_n + y_n)_{n \in \mathbb{N}} \right].$$

Als Norm auf \hat{V} definieren wir

$$\hat{\parallel} \left[(x_n)_{n \in \mathbb{N}} \right] \hat{\parallel} = \lim_{n \to \infty} \|x_n\| .$$

Zeige zunächst die Wohldefiniertheit. Der obige Grenzwert existiert, da für $(x_n)_{n\in\mathbb{N}}\in\hat{V}_0$ die Folge $(\|x_n\|)_{n\in\mathbb{N}}$ eine Cauchyfolge ist, mit

$$\lim_{n,m\to\infty} |||x_n|| - ||x||_m| \le \lim_{n,m\to\infty} ||x_n - x_m|| = 0.$$

Betrachte nun $(x_n)_{n\in\mathbb{N}}$, $(y_n)_{n\in\mathbb{N}}\in \hat{V}_0$, $(x_n)_{n\in\mathbb{N}}\sim (y_n)_{n\in\mathbb{N}}$, dann

$$\lim_{n \to \infty} |||x_n|| - ||y_n||| \le \lim_{n \to \infty} ||x_n - y_n|| = 0$$

und somit ist $\|\cdot\|$ unabhängig vom Repräsentanten. Für die Normeigenschaften zeige hier nur die Dreiecksungleichung und Definitheit (1. Eigenschaft trivial):

$$\hat{\|} \left[(x_n)_{n \in \mathbb{N}} \right] + \left[(y_n)_{n \in \mathbb{N}} \right] \hat{\|} = \lim_{n \to \infty} \|x_n + y_n\| \le \lim_{n \to \infty} \|x_n\| + \|y_n\|$$

$$= \lim_{n \to \infty} \|x_n\| + \lim_{n \to \infty} \|y_n\| = \hat{\|} \left[(x_n)_{n \in \mathbb{N}} \right] \hat{\|} + \hat{\|} \left[(y_n)_{n \in \mathbb{N}} \right] \hat{\|}$$

Weiterhin:

$$\hat{\parallel} \left[(x_n)_{n \in \mathbb{N}} \right] \hat{\parallel} = 0 \iff \lim_{n \to \infty} \|x_n\| = 0 \iff (x_n)_{n \in \mathbb{N}} \sim (0)_{n \in \mathbb{N}} \iff \left[(x_n)_{n \in \mathbb{N}} \right] = \left[(0)_{n \in \mathbb{N}} \right] = 0$$

3.3 L^p -Räume

Definition 3.3.1. Sei $(\Omega, \mathcal{F}, \mu)$ ein Maßraum, $p \in [1, \infty)$, dann definieren wir

$$\mathcal{L}^p(\Omega, \mathcal{F}, \mu) := \left\{ f : \Omega \to \mathbb{K} | f \in \mathcal{M}(\Omega, \mathcal{F}), \int |f|^p < \infty \right\}.$$

Wir schreiben kurz auch $\mathcal{L}^p(\mu)$.

Bemerkung 3.3.1. $\mathcal{L}^p(\Omega, \mathcal{F}, \mu)$ definiert einen K-Vektorraum.

Satz 3.3.1. $\|\cdot\|_p : \mathcal{L}^p(\mu) \to \mathbb{K}, \ \|f\|_p := \left(\int |f|^p d\mu\right)^{1/p}$ ist eine Halbnorm.

Beweis. Siehe nach Satz 3.3.2.

Lemma 3.3.1 (Youngsche Ungleichung). Seien $u,v\in\mathbb{R}_{\geq 0},\ p,q\in\mathbb{R}_{>1},\ \frac{1}{p}+\frac{1}{q}=1.$ Dann gilt

$$u \cdot v \le \frac{u^p}{p} + \frac{v^q}{q} \ .$$

Satz 3.3.2 (Hölder Ungleichung). Sei $(\Omega, \mathcal{F}, \mu)$ ein Maßraum, $p, q \in (1, \infty), \frac{1}{p} + \frac{1}{q} = 1$ und $f \in \mathcal{L}^p(\mu), g \in \mathcal{L}^q(\mu)$. Dann gilt $fg \in \mathcal{L}^1(\mu)$ und $\|fg\|_1 \leq \|f\|_p \|g\|_q$.

Beweis. Nehmen o B. d. A. an $f,g\geq 0,\ \|f\|_p=\|g\|_q=1.$ Mit Lemma 3.3.1 gilt

$$\begin{split} \|fg\|_1 &= \int f(x)g(x)\mu(dx) \leq \int \frac{f(x)^p}{p} + \frac{g(x)^q}{q}\mu(dx) = \frac{1}{p}\int f(x)^p\mu(dx) + \frac{1}{q}\int g(x)^q\mu(dx) \\ &= \frac{1}{p} + \frac{1}{q} = 1 = \|f\|_p \cdot \|g\|_q \end{split}$$

Zu Satz 3.3.1. 1. Eigenschaft ist trivial. Zeige nun noch die Dreiecksungleichung. Seien dafür $f,g\in\mathcal{L}^p(\mu)$.

Hilberträume

Lineare Operatoren