Sriram R – PES1UG20CS435

Week #1

Task 1: Linux Interface Configuration (ifconfig / IP command)

Step 1: To display status of all active network interfaces.

ifconfig (or) ip addr show

Analyze and fill the following table:

ip address table:

Interface name	IP address (IPv4 / IPv6)	MAC address
lo	125.0.0.1	<loopback></loopback>
enp0s3	10.0.2.15	08:00:27:a3:3c:e3

Step 2: To assign an IP address to an interface, use the following command. **sudo ifconfig interface_name 10.0.your_section.your_sno netmask 255.255.255.0** (or) **sudo ip addr add 10.0.your_section.your_sno /24 dev interface_name**

Step 3: To activate / deactivate a network interface, type.

sudo ifconfig interface_name down sudo ifconfig interface_name up

Step 4: To show the current neighbor table in kernel, type

ip neigh

Task 2: Ping PDU (Packet Data Units or Packets) Capture

Step 1: Assign an IP address to the system (Host).

Note: IP address of your system should be 10.0.your_section.your_sno.

Step 2: Launch Wireshark and select 'any' interface

Step 3: In terminal, type ping 10.0.your_section.your_sno

Observations to be made

Step 4: Analyze the following in Terminal

- TTL
- Protocol used by ping
- Time

Step 5: Analyze the following in Wireshark

On Packet List Pane, select the first echo packet on the list. On Packet Details Pane, click on each of the four "+" to expand the information. Analyze the frames with the first echo request and echo reply and complete the table below.

Details	First Echo Request	First Echo Reply
Frame Number	1	2
Source IP address	10.0.1.1	10.0.1.1
Destination IP address	10.0.1.1	10.0.1.1
ICMP Type Value	8	0
ICMP Code Value	0	0
Source Ethernet Address	00:00:00:00:00:00	00:00:00:00:00
Destination Ethernet Address	00:00:00:00:00:00	00:00:00:00:00
Internet Protocol Version	4	4
Time To Live (TTL) Value	64	64

Task 3: HTTP PDU Capture

Using Wireshark's Filter feature

Step 1: Launch Wireshark and select 'any' interface. On the Filter toolbar, type-in 'http' and press enter

Step 2: Open Firefox browser, and browse <u>info.cern.ch</u>

Observations to be made

Step 3: Analyze the first (interaction of host to the web server) and second frame (response of server to the client). By analyzing the filtered frames, complete the table below:

Details	First Echo Request	First Echo Reply
Frame Number	1	2
Source Port	33799	80
Destination Port	80	33799
Source IP address	10.0.2.15	163.53.76.86
Destination IP address	163.53.76.86	10.0.2.15
Source Ethernet Address	08:00:27:a3:3c:e3	08:00:27:a3:3c:e3
Destination Ethernet Address	52:54:00:12:35:02	52:54:00:12:35:02

Step 4: Analyze the HTTP request and response and complete the table below.

HTTP Request		HTTP Response	
Get	GET /	Server	HTTP/1.1 200
	$HTTP/1.1\r\n$		$OK\r\n$

Host	info.cern.ch\r\n	Content-Type	text/html
User-Agent	Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:96.0) Gecko/20100101 Firefox/96.0	Date	Sat, 22 Jan 2022 21:32:17 GMT
Accept-Language	en-US,en;q=0.5	Location	n/a
Accept-Encoding	gzip, deflate	Content-Length	646
Connection	keep-alive	Connection	close

Using Wireshark's Follow TCP Stream

Step 1: Make sure the filter is blank. Right-click any packet inside the Packet List Pane, then select 'Follow TCP Stream'. For demo purpose, a packet containing the HTTP GET request "GET / HTTP / 1.1" can be selected.

Step 2: Upon following a TCP stream, screenshot the whole window.

Task 4: Capturing packets with tcpdump

Step 1: Use the command **tcpdump -D** to see which interfaces are available for capture.

sudo tcpdump -D

Step 2: Capture all packets in any interface by running this command:

sudo tcpdump -i any

Note: Perform some pinging operation while giving above command. Also type www.google.com in browser.

Observation

- **Step 3:** Understand the output format.
- **Step 4:** To filter packets based on protocol, specifying the protocol in the command line. For example, capture ICMP packets only by using this command:

sudo tcpdump -i any -c5 icmp

Step 5: Check the packet content. For example, inspect the HTTP content of a web request like this:

sudo tcpdump -i any -c10 -nn -A port 80

Task 5: Perform Traceroute checks

Step 1: Run the traceroute using the following command.

sudo traceroute www.google.com

Step 2: Analyze destination address of google.com and no. of hops

Step 3: To speed up the process, you can disable the mapping of IP addresses with hostnames by using the -n option

sudo traceroute -n info.cern.ch

Step 4: The -I option is necessary so that the traceroute uses ICMP.

sudo traceroute -I www.google.com

Step 5: By default, traceroute uses icmp (ping) packets. If you'd rather test a TCP connection to gather data more relevant to web server, you can use the -T flag.

$sudo\ traceroute\ \textbf{-T}\ \underline{www.google.com}$

Task 6: Explore an entire network for information (Nmap)

Step 1: You can scan a host using its host name or IP address, for instance.

nmap www.pes.edu

Step 2: Alternatively, use an IP address to scan.

nmap 163.53.78.128

Step 3: Scan multiple IP address or subnet (IPv4)

nmap 192.168.1.1 192.168.1.2 192.168.1.3

Questions on above observations:

- 1) Is your browser running HTTP version 1.0 or 1.1? What version of HTTP is the server?
 - Ans. : Both the browser & the server run HTTP 1.1
- 2) When was the HTML file that you are retrieving last modified at the server?

 Ans.: Sat, 22 Jan 2022 21:32:17 GMT
- 3) How to tell ping to exit after a specified number of ECHO_REQUEST packets? Ans.: ping -c <insert number of packets here>
- 4) How will you identify remote host apps and OS?
 - Ans.: nmap –O −v <server IP address>