Interfacing with Memory

Reminders

- Interfacing with Memory
- No Quiz this week
- No demo this week
- Lab 4 due Friday

- Full Address Decoding
 - Using all the address bits to decode a memory device
 - Uses more hardware to decode all address
 - No aliasing of memory
 - Every memory location is accessible from only one address
- Partial Address Decoding
 - Not all address bits are used to decode memory device
 - Unused bits are "don't cares" in address decoding
 - Typically simpler decoding logic
 - Unused bits causes memory fold back or aliasing
 - Memory locations are accessible from multiple addresses
 - Waste memory space

- Full Address Decoding
 - Ex: 64Kx8 Memory device and 16-bit address bus
 - All bits used so only 1 device can exist
 - Ex: 4Kx8 Memory device and 16-bit address bus
 - All bits used (4 used to drive chip select) so only 1 instance of device exist

Address bits used by the memory device

Address bits used by the memory decoder

- Partial Address Decoding
 - Ex: 4Kx8 Memory device and 16-bit address bus
 - 4 instances of device exist because bits 13 & 12 are not used
 - Total memory space used is 16KB

- Byte Ordering
 - How are bytes stored in multi-byte data element?
 - Big Endian
 - High Order byte stored in lowest address
 - Little Endian
 - Low Order byte stored in lowest address
 - Why different ordering?
 - Developed independently with different reasoning
 - Generally only issue when data shared in memory
 - · Both sides need to agree on ordering
 - May cause a problem when reading memory window
 - HEX vs Intel HEX
 - If also displaying in bytes then no problem

- Byte Ordering
 - Consider 32-bit integer value 0x90ABCDEF
 - Requires 4 byte locations to store in memory
 - Two methods of byte ordering

- Memory Alignment
 - Most processors require variables to reside at specific offsets in memory
 - Ex: 32-bit processors require address evenly divisible by 4
 - Use of misaligned data is supported but at a substantial performance penalty
 - · Some compilers automatically align data variables based on type
 - Makes size of structures occupy more memory than sum of parts

- Byte Accessible Memory
 - Smallest accessible unit is 1-byte (8-bits)
 - Each unit is addressable by address bit0
 - · Every address is byte aligned

- Byte Accessible Memory
 - Connect processor address bit0 to device bit0

- 16-bit Accessible Memory
 - Smallest accessible unit is 2-byte (16-bit)
 - Each unit is addressable by address bit1
 - Bit(0) of address is always 0
 - Could be used to decode byte within the 2-byte word
 - Properly aligned addresses have address bit0 = 0

Address = 0x0006

Address = 0x0004

- 16-bit Accessible Memory
 - Connect processor address bit1 to device bit0
 - Device only provide 16-bit accesses
 - Processor address bit0 is always 0
 - Address bit (0) is not used in memory addressing

- 16-bit Accessible Memory w/ Byte Enable
 - Connect processor address bit1 to device bit0
 - Processor address bit0 is always 0
 - Address bit (0) is not used in memory addressing
 - Byte Enable signals used to control access to each byte in Dout
 - Each byte lane has its own Byte Enable

- 32-bit Accessible Memory
 - Smallest accessible unit is 4-bytes (32-bit)
 - Each unit is addressable by address bit2
 - Bit(1:0) of address are always 0
 - Two bits could be used to select byte within 4 bytes in Word (but we are not)

Address = 0x0004 Address = 0x0008

- 32-bit Accessible Memory
 - Connect processor address bit2 to device bit0
 - Device only provide 32-bit accesses
 - Processor address bit (1:0) are always 0
 - Address bits (1:0) are not used in memory addressing

Device mapped into processor memory map

- 32-bit Accessible Memory w/ Byte Enable
 - Connect processor address bit2 to device bit0
 - Processor address bit (1:0) are always 0
 - Address bits (1:0) are not used in memory addressing
 - Byte Enable signals used to control access to each byte in Dout
 - Each byte lane has its own Byte Enable

- Timing Diagrams
 - Representation of a set of signals in the time domain
 - Shows a trace through the operation of a system
- Timing Diagram Notations
 - Constant value

1

0

- Stable Bus

VALID

- Changing Value
- Unknown

- Asynchronous SRAM
 - 256Kx16 Block Diagram

Mode	WE	CE	ŌĒ	LB	ŪB
Not Selected	X	Н	Х	Х	X
Output Disabled	Н	L	Н	Χ	X
500 500 C C C C C C C C C C C C C C C C	X	L	X	Н	Н
Read	Н	L	L	L	Н
	Н	L	L	Н	L
	Н	L	L	L	L
Write	L	L	X	L	Н
	L	L	X	H	L
	L	L	X	L	L

Interfacing with Memory

 Asynchronous SRAM - Write Timing Diagram

Symbol	Parameter	Min. M	ax.
twc	Write Cycle Time	10 -	_
tsce	CE to Write End	8 -	-
taw	Address Setup Time to Write End	8 -	
tha Address Hold from Write End		0 -	-

tsa	Address Setup Time	0	1	
tрwв	LB, UB Valid to End of Write	8	() 	
tpwe1	WE Pulse Width	8	(-)	
tpwe2	WE Pulse Width (OE = LOW)	10		
tsp	Data Setup to Write End	6	_	
tho	Data Hold from Write End	0	-	TITUTE OF TECHNOLOGY