Linear Regression on Truncated Path Signatures

Niklas Weber

LMU Munich

February 7, 2022

Outline

- Path Signature
- 2 Motivation
- 3 Estimating the truncation order
- Performance bound
- Proof Idea
- 6 Experiments

The Path Signature

- ...is a sequence of iterated integrals.
- ullet $\mathbb D$ is a time interval $[a,b]\in\mathbb R$
- ullet Let $X:\mathbb{D}
 ightarrow \mathbb{R}^d$ a $d\in\mathbb{N}$ dimensional continuous path
- Let X be of bounded variation
- Signature term of the multi-index $(i_1,...,i_k)$ of length $k \in \mathbb{N}$, $(i_1,...i_k) \subseteq \{1,...,d\}^k$ is defined as the iterated (Riemann-Stieltjes) integral:

$$S(X)^{(i_1,...,i_k)} := \int \cdots \int dX_{t_1}^{i_1} ... dX_{t_k}^{i_k}.$$

Subsequently the complete signature of such a path is defined as the sequence of all the signature terms of multi-indices with increasing length:

$$\begin{split} S(X) &= (1, S(X)^1, ..., S(X)^d, S(X)^{(1,1)}, \\ &S(X)^{(1,2)}, ..., S(X)^{(d,d)}, S(X)^{(1,1,1)}, ...) \end{split}$$

Truncated Signature

Signature of X truncated at level m:

$$S^m(X) := (1, S(X)^1, ..., S(X)^{(d, ..., d)})$$

• Number of m-th order terms for d-dimensional path: d^m Therefore for $d \ge 2$, $S^m(X)$ would have

$$s_d(m) := \sum_{k=0}^m d^k = \frac{d^{m+1} - 1}{d - 1}$$
 terms.

Truncated Signature II

	d = 2	d = 3	d = 6
m = 1	2	3	6
m = 2	6	12	42
m = 5	62	363	9330
m = 7	254	3279	335922

Figure: Number of terms for typical values of m and d, [9].

• Decaying norm of terms (Lyons, 2014 [4], Fermanian, 2020 [9]): Let $X:[0,1]\to\mathbb{R}^d$ be a bounded variation path. Then for any $m\geq 0$,

$$||S^m(X)|| \le \sum_{k=0}^m \frac{||X||_{TV}^k}{k!} \le e^{||X||_{TV}}.$$

Path Signature Example 1, Chevyrev [5]

$$X: [a,b] \mapsto \mathbb{R}, X_t = t. (dX_t = \underbrace{\dot{X}_t}_{=1} dt)$$

$$S(X)^{0} = 1,$$

$$S(X)^{1} = \int_{a}^{b} dX_{t}^{1} = X_{b}^{1} - X_{a}^{1} = \frac{b - a}{1!},$$

$$S(X)_{a,b}^{(1,1)} = \iint_{a \le t_{1} \le t_{2} \le b} dX_{t_{1}}^{1} dX_{t_{2}}^{1} = \int_{a \le t_{2} \le b} \underbrace{\int_{a \le t_{1} \le t_{2}} dX_{t_{1}}^{1} dX_{t_{2}}^{1}}_{=S(X)_{a,t_{2}}^{1}} dX_{t_{2}}^{1}$$

$$= \int_{a \le t_{2} \le b} S(X)_{a,t_{2}}^{1} dX_{t_{2}}^{1} = \int_{a \le t_{2} \le b} (t_{2} - a) dX_{t_{2}}^{1}$$

$$= \int_{a \le t_{2} \le b} (t_{2} - a) \underbrace{\dot{X}_{t_{2}}}_{=1} dt_{2} = \frac{(b - a)^{2}}{2!},$$

$$S(X)_{a,b}^{(1,1,1)} = \frac{(b - a)^{3}}{2!}$$

Path Signature Example 2, Chevyrev [5]

$$X_t = (X_t^1, X_t^2) = (3 + t, (3 + t)^2)$$
 $t \in [0, 5], (a = 0, b = 5)$
 $dX_t = (dX_t^1, dX_t^2) = (dt, 2(3 + t)dt).$

$$S(X)_{0,5}^{(1)} = \int_0^5 dX_t^1 = X_5^1 - X_0^1 = 8 - 3 = 5$$

$$S(X)_{0,5}^{(2)} = \int_0^5 dX_t^2 = X_5^2 - X_0^2 = 64 - 9 = 55$$

$$S(X)_{0,5}^{(1,1)} = \iint_{0 \le t_1 \le t_2 \le 5} dX_{t_1}^1 dX_{t_2}^1 = \int_0^5 \int_0^{t_2} dt_1 dt_2 = \int_0^5 t_2 dt_2 = \frac{25}{2}$$

$$S(X)_{0,5}^{(1,2)} = \iint_{0 \le t_1 \le t_2 \le 5} dX_{t_1}^1 dX_{t_2}^2 = \int_0^5 \int_0^{t_2} dt_1 2(3 + t_2) dt_2$$

$$= \int_0^5 6t_2 + 2t_2^2 dt_2 = \frac{475}{3}$$

Properties I

•
$$\tilde{X} = X + a \implies S(\tilde{X}) = S(X)$$

• Invariance under time-reparametrization

Figure: Time-reparametrizations have the same signature

 Add monotone time dimension. Augmented paths are better distinguishable

Properties II

Which information about the path is captured by the signature?

- 1st order terms: Increments
- 2nd order terms: Areas outlined by path

Figure: Interpretation of 2nd order signature terms, Fermanian [9].

- $\implies S(X)^{(i)}S(X)^{(j)} = S(X)^{(i,j)} + S(X)^{(j,i)}$
- Higher order terms: Info about joint evolution of tuples of coordinates

Properties III

- Chevyrev, Kormilitzin [5]: "A natural question one may ask is the following: is a path completely determined by its signature? [...] the answer, in general, is no."
- "For example, one can never recover from the signature the exact speed at which the path is traversed, nor can one tell apart the signature of a trivial constant path and that of a path concatenated with its time-reversal."
- "However, [...] this is essentially the only information one loses from the signature. For example, for a path X which never crosses itself, the signature is able to completely describe the image and direction of traversal of the path (that is, all the points that X visits and the order in which it visits them)."

Theorem (Hambly, Lyons [3], Fermanian [9])

Assuming $X \in BV(\mathbb{R}^d)$ contains one monotone coordinate, then S(X) characterizes X up to translations and reparametrizations.

Computational considerations I, [8]

• Linear path: $X_t=(X_t^1,X_t^2)=(a_1+b_1t,a_2+b_2t)$ $[s,t]\subset\mathbb{R}$

$$S(X)_{s,t}^{(i)} = \int_{s}^{t} dX_{u}^{i} = b_{i}(t-s)$$

$$S(X)_{s,t}^{(1,1)} = \iint_{s \le u_{1} \le u_{2} \le t} dX_{u_{1}}^{1} dX_{u_{2}}^{1} = \int_{s}^{t} \int_{s}^{u_{2}} b_{1}^{2} du_{1} du_{2}$$

$$= b_{1}^{2} \int_{s}^{t} (u_{2} - s) du_{2} = \frac{b_{1}^{2}(t-s)^{2}}{2}$$

$$S(X)_{s,t}^{(i_1,...,i_k)} = \frac{b_{i_1}...b_{i_k}(t-s)^k}{k!}$$

Computational considerations II

Theorem (Chen's Theorem [1], Lyons et al. [2], Fermanian [8])

Let $X:[s,t]\to\mathbb{R}^d$ and $Y:[t,u]\to\mathbb{R}^d$ be two paths with bounded variation. Then for any multi-index $(i_1,...,i_k)\subset\{1,...,d\}^k$,

$$S(X * Y)^{(i_1,...,i_k)} = \sum_{l=0}^k S(X)^{(i_1,...,i_l)} \cdot S(Y)^{(i_{l+1},...,i_k)}$$

- Paths on the computer are always points.
- Interpolate linearly
- Calculate signature terms piecewise. (No integration necessary)
- Concatenate with Chen's Formula.
- Python iisignature, Reizenstein and Graham [6].

Motivation: Linear Regression on Path Signature

The next theorem by Király, Oberhauser (2019)...

Theorem (Király, Oberhauser [7], Fermanian [9])

Let f be a continuous function $f \in C(K, \mathbb{R})$ on a compact set of bounded variation paths $K \subset BV(\mathbb{R}^d)$ with at least one monotone coordinate and $X_0 = 0$. For any $\epsilon > 0$ there exists $m^* \in \mathbb{N}$ and $\beta^* \in \mathbb{R}^{s_d(m^*)}$ such that

$$\sup_{X\in\mathcal{K}}\|f(X)-\langle\beta^*,S^{m^*}(X)\rangle\|<\epsilon.$$

...motivates the following idea. We want to predict the real random variable $Y \in \mathbb{R}$ using functional covariate $X \in \mathbb{R}^d$.

Signature linear model, Fermanian [9]

$$\mathbb{E}\left[\left.Y\right|X\right] = f(X) = \langle \beta_{m^*}^*, S^{m^*}(X) \rangle.$$

Truncation level $m^* \Rightarrow We$ need to choose a truncation level.

Estimating the truncation order

- Data: $D_n = \{(X_1, Y_1), ..., (X_n, Y_n)\}$
- Approach: Penalized empirical risk minimization.
- \hat{m} is chosen by

$$\hat{m} = \min \left(\operatorname*{argmin}_{m \in \mathbb{N}} (\hat{L}_n(m) + pen_n(m)) \right).$$

- pen is a penalization function.
- Empirical risk and empirical minimal risk:

$$\hat{R}_{m,n}(\beta) = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \langle \beta, S^m(X_i) \rangle)^2$$

$$\hat{L}_n(m) = \min_{\beta \in B_{m,\alpha}} \hat{R}_{m,n}(\beta) = \hat{R}_{m,n}(\hat{\beta}).$$

Performance bound

Under some assumptions it holds that

Theorem, Fermanian [9]

For any $n \ge n_0$

$$\mathbb{P}(\hat{m} \neq m^*) \leq C_1 \exp(-C_2 n^{1-2\rho}),$$

where $0 < \rho < \frac{1}{2}$, and the constants C_1 and C_2 are defined by...

Assumptions

- $\operatorname{pen}_n(m) = K_{\operatorname{pen}} n^{-\rho} \sqrt{s_d(m)}$
- $\beta_{m^*}^*$ lies inside α -Ball
- there exist two real numbers $K_Y > 0$ and $K_X > 0$ such that almost surely $|Y| \le K_Y$ and $||X||_{TV} \le K_X$.
- ...

Proof Idea I

Goal: bound probability of choosing wrong truncation order:

$$\mathbb{P}(\hat{m} \neq m^*) \leq \dots$$

We split the probability in two sums.

$$\mathbb{P}(\hat{m} \neq m^*) = \sum_{m > m^*} \mathbb{P}(\hat{m} = m) + \sum_{m < m^*} \mathbb{P}(\hat{m} = m).$$

• We find upper bounds of the form

$$\mathbb{P}(\hat{m}=m)\leq ...$$

They will be derived by establishing a relation between

$$\mathbb{P}(\hat{m}=m)$$
 and $\mathbb{P}(\sup_{\beta\in B_{m,\alpha}}|\hat{R}_{m,n}(\beta)-R_m(\beta)|\geq \dots)$

Proof Idea II

Showing that

$$Z_{m,n}(\beta) := \hat{R}_{m,n}(\beta) - R_m(\beta)$$

is a separable, subgaussian process...

...enables us to use an inequality of the form

$$\mathbb{P}\left(\sup_{\beta\in B_{m,\alpha}}(Z_{m,n}(\beta)-Z_{m,n}(\beta_0))\geq\dots\right)\leq\dots\quad\text{for any }\beta_0.$$

See Van Handel, Probability in high dimension [11].

Question?

- We know Signature Regression is an interesting alternative to functional regression (Fermanian [9])
 - ightarrow less assumptions, relatively good in high dimensions (despite computational cost)
- Is it an alternative for Linear Regression (on the path itself)
- Does this depend on how fine/long the path is?
- Is Signature Regression suitable for Credit Cycle Forecasting?

Algorithm

```
Algorithm 1 Signature Regression
 1: Get or generate Data \{(X_1, Y_1), ..., (X_n, Y_n)\}
 Add time dimension (and interpolate Data if necessary)
 Split Data into Train and Test set
 4: procedure Select \hat{m} via CV(Train)
        Calculate m_{max}
                                                                 \triangleright Such that s_d(m) < 10.000
        for 0 \le m \le m_{max} do
            Split Train in five subsets Train;
 7:
                                                                         ▷ for cross-validation
            Fit Ridge Regression to \{S^m(X_i), Y_i\} in Train,
                                                                             \triangleright Ridge-\alpha by CV
 9:
            Measure average performance on Train;
        end for
10:
11:
        Choose best performing m as \hat{m}
12: end procedure
13: procedure Compare Regression Types(Train, Test, \hat{m})
                                                                        \triangleright Here we get get \hat{\beta}^{\hat{m}}
        Fit Ridge Regression to \{S^{\hat{m}}(X_i), Y_i\} in Train
14:
        With \hat{m} and \hat{\beta}^{\hat{m}} predict \{\hat{Y}_i\} from \{S^{\hat{m}}(X_i)\} in Test
15:
        Measure prediction performance of Signature Regression (e.g. MSE, R,...)
16:
        Reshape X_i into one long vector \tilde{X}_i
17:
        Fit Ridge Regression to \{X_i, Y_i\} in Train
18:
        Predict \{\hat{Y}_i\} from \{\tilde{X}_i\} in Test
19:
20:
        Measure prediction performance of Linear Regression (e.g. MSE, R,...)
21: end procedure
```

Figure: Algorithm

• Path: For $1 \leq i \leq n$, let $X_i: [0,1] \to \mathbb{R}^d$, $X_{i,t} = (X_{i,t}^1,...,X_{i,t}^d)$ be defined by

$$X_{i,t}^k = \alpha_{i,1}^k + 10\alpha_{i,2}^k \sin\left(\frac{2\pi t}{\alpha_{i,3}^k}\right) + 10(t - \alpha_{i,4}^k)^3, \quad 1 \le k \le d,$$
 (1)

where $\alpha_{i,I}^k$, $1 \le I \le 4$ are sampled uniformly on [0,1].

• Response: For some *m**

$$Y_i = \langle \beta, S^{m^*}(X_i) \rangle + \epsilon_i, \tag{2}$$

where ϵ_i uniformly on [-100,100], and β is given by

$$\beta_j = \frac{1}{1000} u_j, \quad 1 \le j \le s_d(m^*),$$
 (3)

with u_i sampled uniformly on [0,1].

Figure: Example paths

- Choose $m^*=5$, d=3
- Consider $num \in [3, 5, 10, 20, 50, 100]$ and $nPaths \in [33, 50, 100, 200, 500, 1000]$
- Run every configuration 20 times
- ullet We analyse \hat{m} and $R^2=1-rac{u^2}{\sigma^2}$
- $R^2 = 1$: perfect prediction
- $R^2 > 0$: our mean square error is lower than the variance of the responses. We are better than always guessing the average response.
- R^2 < 0: our predictions are worse than guessing the average. Our model might not add valuable information.

• m̂

1.2	1.45	2.5	2.15	2.7	2.3
2.25					
2.35					
3.05					
3.25					4.8
3.15			4.95	5.05	4.85

Figure: \hat{m} average of signature regression

1.36382	1.98683	1.93649	1.98179	2.30434	2.07605
					2.05183
		1.98683	2.00998		
0.864581	0.888819		1.93649		
			0.384057	0.384057	

Figure: \hat{m} std of signature regression

• R²

-0.621198	-4.97949	-0.626383	-0.883898	-1.04474	-1.17464
-0.0747186	-0.841111		-0.802904		
0.0207454	-0.226368	-0.581713	-0.690532		-3.19478
0.0872331	0.0350942	-0.118908	-0.886698		-1.08825
0.210323	0.168361	0.0376061	-0.23387	-0.704523	-0.732267
0.232846	0.185209	0.0879272	-0.00666589	-0.285289	

Figure: R^2 average of linear regression

-0.160823	-0.145855	-0.0414059	-0.400529	-0.28341	-0.182562
-0.183304		-0.0371353			
0.0447583		-0.056792			-0.475177
0.159418	0.0903768	0.0899578		-0.049195	0.0844227
0.334665	0.271292				
0.418354			0.411091	0.479729	0.332093

Figure: R^2 average of signature regression

- Path: Same as before $X_{i,t}$, $t \in [0,1]$.
- Response: $Y_i = \max(X_{i,T+\Delta t}^1,...,X_{i,T+\Delta t}^d)$.
- R²

				-0.408113	
-0.0646064					
0.0828974	-0.0169786	-0.0619481		0.0608	-0.0293006
0.0912928	0.0803163	0.0735291	0.0880184		
			0.233046		

Figure: R^2 average of linear regression

		-0.0409393	
-0.0982401	0.00358971		0.657058
0.00640355	0.0985228		

Figure: R^2 average of signature regression

• Path: For $1 \leq i \leq n$, let $X_i: [0,1] \to \mathbb{R}^d$, $X_{i,t} = (X_{i,t}^1,...,X_{i,t}^d)$ be defined by

$$X_{i,t}^k = \alpha_i^k t + \epsilon_{i,t}^k \tag{4}$$

where α_i^k , is sampled uniformly on [-3,3] and ϵ_i^k is a Gaussian process with exponential covariance matrix.

Response:

$$Y_i = \|a_i\| \tag{5}$$

Figure: Example paths

R²

-0.683899	-0.548641	-0.479082	-0.88424	-1.32343	-1.13049
-0.181698	-0.240872				-0.519244
-0.136998	-0.118233	-0.128771	-0.124004	-0.26843	-0.249006
-0.0683324	-0.0447143	-0.0868118	-0.0930514	-0.140258	-0.112033
-0.0168486	-0.0343449	-0.0443118	-0.0438327	-0.0781499	-0.0826172
-0.0198128	-0.0212953	-0.0173746	-0.0287907	-0.0380603	-0.0553162

Figure: R^2 average of linear regression

-14.6591					
				-0.985052	
-3.6532			-3.06354	-0.0907635	-0.148253
-0.374808	-0.416515	-0.550551	-0.746418	0.1278	0.155087
0.0527765	0.040163	0.0172433	0.0288435	0.234067	0.207195
0.16739	0.165341	0.181229	0.173795	0.254372	0.248059

Figure: R^2 average of signature regression

Credit Cycle Forecasting

- Financial institutions want to forecast how the credit cycle is going to develop. (Favourable or adverse environment)
- A proxy of such an indicator can be the probability of default for a region/sector.
- Response: Probability of default for North american firms from 1990 until 2021 published by the Credit Research Initiative of the National University of Singapore [10].
- For forecasting use US GDP growth, US unemployment, S&P 500 growth and US interest-rate-spread (i.e. long-term-interest-rate minus short-term-interest-rate).
- Try to predict next year PD with 3-year path of the predictors.
- Results not promising
- ToDo: Try again with new data (quarterly)

References I

- [1]Kuo-Tsai Chen. "Integration of paths — a faithfull representation of paths by noncommutative formal power series". In: Transactions of the American Mathematical Society 89 (1958), pp. 395-407.
- [2] Terry J Lyons, Michael Caruana, and Thierry Lévy. Differential equations driven by rough paths. Springer, 2007.
- [3] Ben Hambly and Terry Lyons. "Uniqueness for the signature of a path of bounded variation and the reduced path group". In: Annals of Mathematics 171.1 (Mar. 2010), pp. 109–167. ISSN: 0003-486X. DOI: 10.4007/annals.2010.171.109. URL: http://dx.doi.org/10.4007/annals.2010.171.109.
- [4] Terry Lyons. "Rough paths, signatures and the modelling of functions on streams". In: arXiv preprint arXiv:1405.4537 (2014).
- [5] Ilya Chevyrev and Andrey Kormilitzin. "A primer on the signature method in machine learning". In: arXiv preprint arXiv:1603.03788 (2016).

References II

- [6] Jeremy Reizenstein and Benjamin Graham. The iisignature library: efficient calculation of iterated-integral signatures and log signatures. 2018. arXiv: 1802.08252 [cs.DS].
- [7] Franz J Király and Harald Oberhauser. "Kernels for sequentially ordered data". In: *Journal of Machine Learning Research* 20.31 (2019), pp. 1–45.
- [8] Adeline Fermanian. *Embedding and learning with signatures*. 2020. arXiv: 1911.13211 [stat.ML].
- [9] Adeline Fermanian. "Linear functional regression with truncated signatures". In: arXiv preprint arXiv:2006.08442 (2020).
- [10] The Credit Research Initiative NUS Asian Institute of Digital Finance. Aggregate PD & AS. 2022. URL: https://nuscri.org/en/data/cdsaggregatedata/e501s0/0/ (visited on 02/02/2022).

References III

[11] Ramon van Handel. "Probability in high dimension, December 2016". In: APC.