1. Odhad parametru rovnoměrného rozdělení

Náhodná veličina x má rozdělení U(0, A).

Jaký je nejlepší odhad meze A na základě souboru n měření veličiny x?

2. Odhad parametrů z malého vzorku

V excelu vygenerujte podobnou tabulku rozšíření intervalu nejistoty podle studentova t-rozdělení:

- distribuční funkce normovaného normálního rozdělení F(x, μ=0, σ=1): NORM.S.DIST(x,TRUE)
- inverzní funkce k F:
 F-1(p): NORM.S.INV(p)
- studentovo t-rozdělení s n stupni volnosti v bodě x:
 T.DIST(x, n, FALSE)
- ... a jeho distribuční funkce:
 T.DIST(x, n, TRUE)
 (oboustranně)
 T.DIST.2T(x, n)
- ... a její inverzní funkce:
 (levý doběh) T.INV(p, n)
 (oboustranně) T.INV.2T(p, n)

Stupeň volnosti (n-1)	Pravděpodobnost (P)					
	0.6827	0.9	0.95	0.9545	0.99	0.9973
	σ			2σ		3σ
1	1.84	6.31	12.71	13.97	63.66	235.80
2	1.32	2.92	4.30	4.53	9.92	19.21
3	1.20	2.35	3.18	3.31	5.84	9.22
4	1.14	2.13	2.78	2.87	4.60	6.62
5	1.11	2.02	2.57	2.65	4.03	5.51
6	1.09	1.94	2.45	2.52	3.71	4.90
7	1.08	1.89	2.36	2.43	3.50	4.53
8	1.07	1.63	2.31	2.37	3.36	4.28
9	1.06	1.83	2.26	2.32	3.25	4.09
10	1.05	1.81	2.23	2.28	3.17	3.96
11	1.05	1.80	2.20	2.25	3.11	3.85
12	1.04	1.78	2.18	2.23	3.05	3.76
13	1.04	1.77	2.16	2.21	3.01	3.69
14	1.04	1.76	2.14	2.20	2.98	3.64
15	1.03	1.75	2.13	2.18	2.95	3.59
16	1.03	1.75	2.12	2.17	2.92	3.54
17	1.03	1.74	2.11	2.16	2.90	3.51
18	1.03	1.73	2.10	2.15	2.88	3.48
19	1.03	1.73	2.09	2.14	2.86	3.45
20	1.03	1.72	2.09	2.13	2.85	3.42
25	1.02	1.71	2.06	2.11	2.79	3.33
30	1.02	1.70	2.04	2.09	2.75	3.27
35	1.01	1.70	2.03	2.07	2.72	3.23
40	1.01	1.68	2.02	2.06	2.70	3.20
45	1.01	1.68	2.01	2.06	2.69	3.18
50	1.01	1.68	2.01	2.05	2.68	3.16
100	1.005	1.660	1.984	2.025	2.626	3.077
∞	1.000	1.645	1.960	2.000	2.576	3.000