

Sampling time

Sampling time

Lab 12: Symbol Synchronization

主讲人: 吴光 博士

Email: wug@sustech.edu.cn

Demo: Symbol synchronization

$$z(t) = \alpha e^{j\varphi} x(t - \tau_d) + v(t)$$

z(t)

External synchronization method

Self-synchronization method

- Understand the symbol Synchronization
- Design and implement the Maximum Energy Algorithm
- Design and implement the Early-Late gate Algorithm

Maximum Energy Algorithm

The optimal sampling times are kT_s

The optimal sampling times are $kT_s + \tau_d$

Maximum Energy Method

$$\hat{\tau}_d \approx arg \max_k \sum_{k} r^2 (kT + \tau_d)$$

Attempt to find the sample point that maximizes the average received energy.

The optimal sampling times are $kT_s + \tau_d$

Algorithm Analysis

$$\hat{\tau}_d \approx arg \max_i \sum_i r^2 (\tau_d + kT)$$

- 1. Find offset which maximizes energy of receiver input;
- 2. Align waveform according to offset;

Hints: Use the shift register to save the array $P[\tau_d]$

Programming for Maximum Energy Algorithm

Analysis for Maximum Energy Algorithm

$$z(t) = \alpha e^{j\phi} \sqrt{E_x} \sum_{m} s[m] g_{tx}(t - mT - \tau_d) + v(t)$$

$$y[n] = h \sum_{m} s[m]g((n-m)T - \tau_d) + v[n]$$

$$z(t) = \alpha e^{j\phi} \sqrt{E_x} \sum_{m} s[m] g_{tx}(t - mT - \tau_d) + v(t)$$

$$y[n] = h \sum_{m} s[m]g((n-m)T - \tau_d) + v[n]$$

$$y[n] = \underbrace{hs[n]g(\tau_d)}_{\text{理想值}} + \underbrace{h\sum_{m \neq n} s[m]g((n-m)T - \tau_d)}_{\text{ISI}} + \underbrace{v[n]}_{\text{噪声}}$$

$$y[n] = h \sum_{m} s[m]g((n-m)T - \tau_d) + v[n]$$

$$y(t) = h \sum_{m=-\infty}^{+\infty} s[m]g(t - mT - \tau_d) + v(t)$$

$$J(\tau) = E[|y(nT + \tau)|^2] = |h|^2 \sum_{m = -\infty}^{\infty} |g(mT + \tau - \tau_d)|^2 + N_o$$

$$y(t) = h \sum_{m=-\infty}^{+\infty} s[m]g(t - mT - \tau_d) + v(t)$$

$$J(\tau) = E[|y(nT + \tau)|^2] = |h|^2 \sum_{m = -\infty}^{\infty} |g(mT + \tau - \tau_d)|^2 + N_o$$

$$E[|y(nT+\tau)|^{2}] = |h|^{2} \sum_{m=-\infty}^{+\infty} |g(mT+\tau_{frac} - \hat{\tau}_{frac})|^{2} + N_{o}$$

$$dT + \tau_{frac}$$
 $\hat{d}T + \hat{\tau}_{frac}$

$$J(\tau) = E[|y(nT + \tau)|^2] = |h|^2 \sum_{m = -\infty}^{+\infty} |g(mT + \tau - \tau_d)|^2 + N_o$$

$$E[|y(nT+\tau)|^{2}] = |h|^{2} \sum_{m=-\infty}^{+\infty} |g(mT+\tau_{frac}-\hat{\tau}_{frac})|^{2} + N_{o}$$

$$\hat{\tau}_d = \arg\max_{\tau \in [0,T)} J(\tau)$$

$$E[|y(nT+\tau)|^2] \le |h|^2 |g(0)|^2 + N_o$$

Early-Late Gate Algorithm

$$\frac{\delta}{\delta k} J_{\delta}[k] \cong \frac{1}{P} \sum_{n=1}^{P-1} 2Re\{\tilde{y}[nP+k][\tilde{y}^*[nP+k+\delta] - \tilde{y}^*[nP+k-\delta]]\}$$

$$\frac{\delta}{\delta k} J_{\delta}[k] = 0$$

Programming for Early-Late Gate Algorithm

System Testing

TRANSMITTER

Accuracy Analysis

Set the propagation delay

TRANSMITTER

TX oversample factor TX sample rate

TX channel model $T_{\rm S} = \frac{4}{4 \rm M} = \frac{10}{10 \rm M} = 1 \mu \rm S$

noise power (dB)

channel response

(A) (O

0+0i

∯0 +0

+0 i

(A) 0 +0 i

frequency offset delay (sec)

(†) (†) 0

$$\epsilon[M] = \mathbf{E} \left\{ \left\| \frac{\hat{\tau}(M) - \tau_d}{T_S} \right\|^2 \right\}$$

参数名	参数值
信道延迟 $ au_d$	$0.17 \mu s$
符号速率 f_s	1MHz
发射端过采样因子M _{tx}	100
接收端过采样因子 $M(M_{rx})$	2,4,10,20,50
传输信道	AWGN
信道信噪比(dB)	-8
符号定时同步方法	Max Energy

TRANSMITTER TX oversample factor TX sample rate **100** 100M TX channel model parameters channel model noise power (dB) ी -Inf AWGN channel response frequency offset ⊕ 0 1.7E-7 delay (sec) 2.5E-7 5E-7 7.5E-7

RECEIVER RX oversample factor RX Sample Rate channel estimation 4M equalizer parameters synchronization options Equalization Method Synchronization Method fixed offset Direct Timing channel estimate length Symbol Timing Recovery Method A 4 Max Energy equalizer length Frame Detection Method Sliding equalizer delay <u>දි</u>) -1 Correct Frequency Offset (set delay to -1 for equalizer to choose optimal delay) Symbol SYN

How to calculate the delay here?

Question ?

