This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

SOUTHERN RESEARCH'S PATENTED MICROENCAPSULATION PROCESS

Advantages

- US Patent issued 1995
- Fast encapsulation time milliseconds
- Minimal exposure to polymer solvent
- · High encapsulation efficiency
- Good Yields
- · Makes small microparticles
 - <100 micron <10 micron

Drugs Microencapsulated

- Proteins
- Pentides
- · Small molecules
- · Water-soluble drugs
- · Hydrophobic drugs
- · Drugs encapsulated in factide/glycolide polymars

FIGURE 2

Conditions: Ambient

PX510 + 14% Paclitaxel			1	Y		Buffer	ine Buffer
DX175 P	-	4B			Conditions: 5 minutes in 37°C pH 7.4 Saline Buffer		DX125 P
	PA/49	38			nimites in 37°		DV740
	PX261	a	a		anditions: 5 n	Oligicación o di	ואנאט
	PX510	ŗ	1		`	5	
	Material:	TATOTAL TATO	Hardness:				

PX125

PX749

PX261

PX510

Material:

Hardness:

<9B

9B

2H-H-F-HB-B-2B-3B-4B-5B-6B-7B-8B-9B rder * Softer

Harder

Hardness Rating:

Conditions: Ambient

DV510 + 14% Paclitaxel	LOICVI OLCVI		<3mm	
	PX125		7	\ Jiliii
	PX749		•	< 3mm
	PX261			< 3 mm
	PX510			< 3 mm
,	Martinio.	Material.	Resistance	To Cracking

Conditions: 5 minutes in 37°C pH 7.4 Saline Buffer

Material:	PX510	PX261	PX749	PX125	PX510 + 14% raciliaxe
Resistance To Cracking	< 3.mm	< 3 mm	< 3mm	< 3mm	< 3mm
TO CI MATERIA					

Conditions: Ambient

PX510 + 14% Paclitaxel 5B
PX125 4B
PX749 5B
PX261 5B
PX510 5B
Material: Class:

Class Rating: 5B = 0% of coating removed from substrate
4B = Less than 5% of coating removed from substrate

FIGURE 8A

FIGURE 8B

FIGURE 9B

Formulation

Property	PX510	PX721	PX261	PX749
T _g (C)	44	38	59	16
Tensile modulus (MPa)	2.0 (25 C) 5.1 (37 C)			3.0 (25 C)
Yield Strength (MPa)	Not observed			6.0 (25 C)
Ultimate Elongation (%)	1.5 (25 C) 350 (37 C)			500 (25 C)

	E Be	Beam (3 MRad)	Rad)	γ (2	γ (25-35 KGys)	3ys)	•
Property	PX510	PX721	PX261	PX510	PX721	PX261	1
MW	-28%	-39%	-26%	-14%	N/C	N/C	
Hardness	-2 units	N/S	-1 unit	N/C	-3 units	-2 units	•
Flexibility	N/C	N/C	N/C	N N	N/C	N/C	
Adhesion	N/C	N/C	-1 unit	N/C	N/C	N/C	
			N/C: nc	N/C: no change			

FIGURE 12

FIGURE 13A

FIGURE 13B

Frosion of PolyAspirin I & II

Generation of NSAID into 37 °C pH 7.4 PBS from ~5 µm-thick Coatings on 316L SS Plates

CONFIDENTIAL

Frosion Profile for PolyAspirin

CONFIDENTIAL

HPLC Retention Time

Erosion Profile for PolyAspirin I 2 days 5 days 8 days 214 days 20 days .32 days 2 9 HPLC Retention Time (min) Linker-substituted Diflunisal Diflunisal elutes @ 7.1 min elutes @ 9.0 min Bis(diflunisal)-linker elutes @ 12 min

CONFIDENTIAL

FIG. 18

CORPORATION

Effect of WW on Erosion

37 °C Serum from Coatings on 316L SS Plates Generation of Diflunisal from PolyAspirin II into

CONFIDENTIAL

uning Mechanical Properties

Thermoanalysis of PolyAspirin TM

_	
\mathbf{u}	
-	
$\mathbf{\Lambda}$	

PolyAspirin II

			,
Dronerty	PX261	ď	X657
	M. ~ 20K	M 33K	1 - MM

T ₉ (°C)	59	36	44
Uitimate Stress (kPa)	1700 (25°C) >2000 (37°C)	>2800 (25°C)	>2600 (25°C)
Ultimate Elongation (%)	>500 (25°C) >500 (37°C)	>4 (25°C)	>500 (25°C)

	>3900 (25°C)	>560 (25°C)	>4000 (25°C)
ighness (kPa)	>4400 (37°C)	())	

CONFIDENTIAL

Properties of PolyAspirin TM Coatings

PolyAspirin I

PolyAspirin II

	PX261		PX657
Test	M, ~ 20K	M"~33K	M _m – 100K
Hardness Ambient min in PBS, 37 °C 1 hr in PBS, 37 °C	.	7 28 88	3H 8
Flexibility Ambient min in PBS, 37°C	<3 mm <3 mm •	<3 mm <3 mm <3 mm	<3 mm <3 mm <3 mm
<u>Adhesion</u> Ambient	5B	9B	5B CONFIDENTIAL

PolyAspirin Coatings with Admixtures

PolyAspirin II (PX657)

Tesk

No Admixture

20% Paciliaxel Admixed

Hardness Ambient

5 min in PBS, 37 °C 1 hr in PBS, 37 °C

28 88

<3 mm <3 mm <3 mm <3 mm

5 min in PBS, 37 °C

Flexibility Ambient

1 hr in PBS, 37 °C

<3 mm <3 mm

<3 mm

58

Adhesion Ambien**t**

28

CONFIDENTIAL

Erosion of PolyAspirin | & |

Diffunisal Generation & Paclitaxel Release into 37 °C Serum from ~5 µm-thick Coatings on 316L SS Plates

CONFIDENTIAL

Frosion of Sterilized PolyAspirin

Generation of Diflunisal into 37 °C Serum from ~5 µm-thick Coatings on 316L SS Plates

CONFIDENTIAL

γ Irradiation (25–35 Kgys)

PolyAspirin I

PolyAspirin II

Property

PX261 M_v ~ 20K

PX657 M_w ~ 100K

MM

N/C

%05-

-2 units

Hardness

-3 units

Flexibility

N/C

Adhesion

N/C

N/C: no change

CONFIDENTIAL

FIG

E Beam (3-4.5 MRad)

PolyAspirin

Poly/Aspirin II

Property

Mr - 20 K PX261

M, -33K

M" - 80K

PX657

%08-

%5+

-26%

MM

N/C

+2 units

-1 unit

Hardness

NC

N/C

Flexibility

N/C: no change

-1 unit

Adhesion

CONFIDENTIAL

Kinetics of NSAID Generation

FIG. 30

FIG. 33

FIG. 41

FIG. 43

FIG. 44a

FIG. 44b

uncrimped/unexpanded AMRAY 30.0x 15.0 kV 15.8 kV 103µm AMRAY 83**.5**x #3000

FIG. 45a

FIG. 45b

FIG. 46a

FIG. 46b

Fig. 47

Fig. 48

Fig. 49

Fig. 50

Fig. 51

Fig. 52

Fig. 53

Frg. 54

Fig. 55

Fig. 56

Fig. 57

Fig. 58

Fig. 59

Fig. 60

Fig. 61

Fig 62

Fig. 63

Fig. 64

Fig. 65

Fig. 66

Fig. 67

Fig. 68

Fig. 69

Fig. 70