

PROJETO – FASE I FASHION MNIST

Departamento De Engenharia Informática E Sistemas

Licenciatura Em Engenharia Informática

Ramo De Sistemas De Informação

Inteligência Computacional

Isabel Castro 2018013160

Maria Marcos 2018018386

ÍNDICE

Descrição do caso de estudo e objetivos do problema	2
Descrição da Implementação dos algoritmos	2
Redes MLP	2
Análise de Resultados	2
Conclusões	7

DESCRIÇÃO DO CASO DE ESTUDO E OBJETIVOS DO PROBLEMA

Fashion-MNIST é um conjunto de dados de imagens de artigos da Zalando. Esta consiste num conjunto de treino de 60.000 exemplos e um conjunto de teste com 10.000 exemplos. Cada exemplo é uma imagem em tons de cinza de 28x28, associada a um rótulo de 10 classes. A Zalando pretende que o Fashion-MNIST sirva como um substituto direto para o conjunto de dados MNIST original para benchmarking de algoritmos de machine learning. Compartilha o mesmo tamanho de imagem e estrutura de divisões de treino e teste.

DESCRIÇÃO DA IMPLEMENTAÇÃO DOS ALGORITMOS

Para a implementação deste dataset utilizámos a seguinte rede no MATLAB:

Redes MLP

Redes de múltipla camada - Redes MLP com Backpropagation

Em modelos MLP todos os neurônios são ligados aos neurônios da camada subsequente. Não há nem ligação com os neurônios laterais de mesma camada nem acontece a realimentação da rede. A aprendizagem de rede MLP é conhecida como aprendizagem por experiência e dá-se por inúmeras iterações.

Os exemplos de treinamento são apresentados à camada de entrada e com base nos erros obtidos, é realizado ajustes nos pesos sinápticos com o objetivo de diminuir o erro nas próximas iterações.

DEFINIÇÃO DAS ENTRADAS E SAÍDAS DA REDE

Os dados para o treino e de teste usámos o dataset Fashion-MNIST. Cada imagem tem um único item de roupa de tamanho 28x28, para o treino temos dois conjuntos em que o primeiro é uma matriz 784x60000 com todas as imagens (em grayscale) e outra matriz 10x60000 que corresponde às 10 classes, onde cada classe é representada por um valor de 0 a 9 que corresponde a um certo item de roupa.

Para a saída temos valores de 1 a 10 que corresponde a cada peça de roupa.

0-T-shirt/top 1 calças 2 Pullover 3 vestido 4 Casaco 5 sandálias 6-Camisa 7-sapatilhas 8-mala 9-bota tornozelo

ANÁLISE DE RESULTADOS

Teste Padrão ~= 1. 20 min

Número de iterações: 1000

Coeficiente de aprendizagem: 0.07

Número de neurónios: 10

Função de treino: traingd

Tipo de rede: patternet

Resultados
78.5
77.5
78.2
78.0
78.5

						Confu	usion	Matrix	(
	1	745 7.4%	5 0.1%	31 0.3%	63 0.6%	1 0.0%	3 0.0%	151 1.5%	0 0.0%	12 0.1%	2 0.0%	73.5% 26.5%
	2	6 0.1%	920 9.2%	1 0.0%	10 0.1%	8 0.1%	0 0.0%	5 0.1%	0 0.0%	1 0.0%	0 0.0%	96.7% 3.3%
	3	15 0.1%	13 0.1%	662 6.6%	4 0.0%	125 1.3%	0 0.0%	136 1.4%	0 0.0%	17 0.2%	0 0.0%	68.1% 31.9%
	4	85 0.9%	47 0.5%	8 0.1%	833 8.3%	44 0.4%	2 0.0%	63 0.6%	0 0.0%	5 0.1%	0 0.0%	76.6% 23.4%
ass	5	5 0.1%	7 0.1%	165 1.7%	27 0.3%	700 7.0%	0 0.0%	116 1.2%	0 0.0%	5 0.1%	1 0.0%	68.2% 31.8%
Output Class	6	10 0.1%	0 0.0%	6 0.1%	5 0.1%	4 0.0%	845 8.5%	10 0.1%	60 0.6%	22 0.2%	27 0.3%	85.4% 14.6%
Out	7	113 1.1%	6 0.1%	103 1.0%	47 0.5%	104 1.0%	0 0.0%	482 4.8%	0 0.0%	31 0.3%	1 0.0%	54.3% 45.7%
	8	0 0.0%	0 0.0%	0 0.0%	1 0.0%	0 0.0%	74 0.7%	1 0.0%	837 8.4%	7 0.1%	37 0.4%	87.5% 12.5%
	9	21 0.2%	2 0.0%	24 0.2%	10 0.1%	13 0.1%	11 0.1%	36 0.4%	2 0.0%	898 9.0%	1 0.0%	88.2% 11.8%
	10	0 0.0%	0 0.0%	0 0.0%	0 0.0%	1 0.0%	65 0.7%	0 0.0%	101 1.0%	2 0.0%	931 9.3%	84.6% 15.4%
		74.5% 25.5%	92.0% 8.0%	66.2% 33.8%	83.3% 16.7%					89.8% 10.2%		78.5% 21.5%
		^	っ	ტ	>	6	6	1	%	9	0	
						Tar	get CI	ass				

Parâmetros\ Classe	0	1	2	3	4	5	6	7	8	9
TP	745	920	662	833	700	845	482	837	898	931
FP	268	31	310	254	326	144	405	120	120	169
FN	255	80	338	167	300	155	518	163	102	69
TN	8732	8969	8690	8746	8474	8856	8595	8880	8880	8831
Acuracy	0.95	0.99	0.94	0.96	0.94	0.97	0.91	0.97	0.98	0.98
Precisão	0.74	0.97	0.68	0.77	0.68	0.85	0.54	0.87	0.88	0.85
Sensibilidade	0.74	0.92	0.66	0.83	0.70	0.84	0.48	0.84	0.90	0.93
Especificidade	0.97	1.00	0.97	0.97	0.96	0.98	0.95	0.99	0.99	0.98

Teste 1 - Alteração do Coeficiente de aprendizagem

~=1.40 min

Número de iterações: 1000

Coeficiente de aprendizagem: 0.01

Número de neurónios: 10

função de treino: traingd

tipo de rede: patternet

Resultados %
61.0
56.8
60.6
63.7
64.8

						Confu	ısion	Matrix	(
	1	209 2.1%	18 0.2%	22 0.2%	122 1.2%	70 0.7%	1 0.0%	82 0.8%	0 0.0%	1 0.0%	1 0.0%	39.7% 60.3%
	2	29 0.3%	918 9.2%	20 0.2%	26 0.3%	42 0.4%	12 0.1%	15 0.1%	0 0.0%	16 0.2%	3 0.0%	84.9% 15.1%
	3	32 0.3%	5 0.1%	733 7.3%	12 0.1%	416 4.2%	4 0.0%	346 3.5%	0 0.0%	27 0.3%	2 0.0%	46.5% 53.5%
	4	652 6.5%	40 0.4%	28 0.3%	775 7.8%	33 0.3%	3 0.0%	232 2.3%	0 0.0%	17 0.2%	1 0.0%	43.5% 56.5%
ass	5	7 0.1%	14 0.1%	98 1.0%	19 0.2%	237 2.4%	0 0.0%	42 0.4%	0 0.0%	4 0.0%	2 0.0%	56.0% 44.0%
Output Class	6	39 0.4%	2 0.0%	30 0.3%	24 0.2%	17 0.2%	541 5.4%	55 0.5%	58 0.6%	57 0.6%	8 0.1%	65.1% 34.9%
O IT	7	16 0.2%	0 0.0%	27 0.3%	12 0.1%	101 1.0%	0 0.0%	139 1.4%	0 0.0%	20 0.2%	1 0.0%	44.0% 56.0%
	8	1 0.0%	0 0.0%	1 0.0%	2 0.0%	0 0.0%	271 2.7%	1 0.0%	869 8.7%	7 0.1%	126 1.3%	68.0% 32.0%
	9	15 0.1%	3 0.0%	40 0.4%	8 0.1%	84 0.8%	104 1.0%	87 0.9%	12 0.1%	840 8.4%	17 0.2%	69.4% 30.6%
	10	0 0.0%	0 0.0%	1 0.0%	0 0.0%	0 0.0%	64 0.6%	1 0.0%	61 0.6%	11 0.1%	839 8.4%	85.9% 14.1%
		20.9% 79.1%	91.8% 8.2%			23.7% 76.3%		13.9% 86.1%	86.9% 13.1%	84.0% 16.0%		61.0% 39.0%
		^	2	ზ	>	6	6	1	8	9	10	
						Tar	get Cl	ass				

Parâmetros\ Classe	0	1	2	3	4	5	6	7	8	9
TP	209	918	733	775	237	541	139	869	840	839
FP	317	163	844	1006	186	290	177	409	370	138
FN	791	82	267	225	763	459	861	131	160	161
TN	8683	8837	8156	7994	8814	8710	8823	8591	8630	8862
Acuracy	0.89	0.98	0.89	0.88	0.91	0.93	0.90	0.95	0.95	0.97
Precisão	0.40	0.85	0.46	0.44	0.56	0.65	0.44	0.68	0.69	0.86
Sensibilidade	0.21	0.92	0.73	0.78	0.24	0.54	0.14	0.87	0.84	0.84
Especificidade	0.96	0.98	0.91	0.89	0.98	0.97	0.98	0.95	0.96	0.98

Teste 2 - Alteração do Número de neurónios ~=2min

Número de iterações: 1000

Coeficiente de aprendizagem: 0.07

Número de neurónios: 20

Função de treino: traingd

Tipo de rede: patternet

Resultados %
80.6
81.0
80.9
80.1
81.0

						Confi	usion	Matrix	(
	1	796 8.0%	3 0.0%	29 0.3%	33 0.3%	4 0.0%	2 0.0%	170 1.7%	0 0.0%	4 0.0%	0 0.0%	76.5% 23.5%
	2	3 0.0%	931 9.3%	0 0.0%	11 0.1%	1 0.0%	0 0.0%	0 0.0%	0 0.0%	1 0.0%	0 0.0%	98.3% 1.7%
	3	12 0.1%	7 0.1%	676 6.8%	9 0.1%	112 1.1%	1 0.0%	115 1.1%	0 0.0%	11 0.1%	1 0.0%	71.6% 28.4%
	4	65 0.7%	41 0.4%	8 0.1%	840 8.4%	30 0.3%	1 0.0%	46 0.5%	0 0.0%	10 0.1%	0 0.0%	80.7% 19.3%
lass	5	7 0.1%	6 0.1%	153 1.5%	42 0.4%	741 7.4%	0 0.0%	112 1.1%	0 0.0%	3 0.0%	0 0.0%	69.6% 30.4%
Output Class	6	12 0.1%	0 0.0%	3 0.0%	2 0.0%	1 0.0%	858 8.6%	5 0.1%	58 0.6%	23 0.2%	26 0.3%	86.8% 13.2%
Out	7	91 0.9%	9 0.1%	124 1.2%	58 0.6%	104 1.0%	2 0.0%	520 5.2%	0 0.0%	25 0.3%	0 0.0%	55.7% 44.3%
	8	0 0.0%	0 0.0%	0 0.0%	0 0.0%	0 0.0%	90 0.9%	0 0.0%	864 8.6%	8 0.1%	51 0.5%	85.3% 14.7%
	9	13 0.1%	3 0.0%	7 0.1%	5 0.1%	7 0.1%	6 0.1%	32 0.3%	1 0.0%	911 9.1%	1 0.0%	92.4% 7.6%
	10	1 0.0%	0 0.0%	0 0.0%	0 0.0%	0 0.0%	40 0.4%	0 0.0%	77 0.8%	4 0.0%	921 9.2%	88.3% 11.7%
		79.6% 20.4%			84.0% 16.0%			52.0% 48.0%			92.1% 7.9%	80.6% 19.4%
		^	2	ზ	Þ	6	6	1	8	9	10	
						Tar	get C	ass				

Parâmetros\ Classe	0	1	2	3	4	5	6	7	8	9
TP	796	931	676	840	741	858	520	864	911	921
FP	245	16	268	201	323	130	413	149	75	122
FN	204	69	324	160	259	142	480	136	89	79
TN	8755	8984	8732	8799	8677	8870	8587	8851	8925	8878
Acuracy	0.96	0.99	0.94	0.96	0.94	0.97	0.91	0.97	0.98	0.98
Precisão	0.76	0.98	0.72	0.81	0.70	0.87	0.56	0.85	0.92	0.88
Sensibilidade	0.80	0.93	0.68	0.84	0.74	0.86	0.52	0.86	0.91	0.92
Especificidade	0.97	1.00	0.97	0.98	0.96	0.99	0.95	0.98	0.99	0.99

Teste 3 - Alteração do Número de neurónios ~= 2min

Número de iterações: 1000

Coeficiente de aprendizagem: 0.07

Número de neurónios: 30

Função de treino: traingd

Tipo de rede: patternet

Resultados %
81.7
80.8
81.3
81.8
81.7

						Confu	usion	Matrix	<			
	1	780 7.8%	6 0.1%	14 0.1%	35 0.4%	0 0.0%	1 0.0%	159 1.6%	0 0.0%	2 0.0%	0 0.0%	78.2% 21.8%
	2	5 0.1%	938 9.4%	2 0.0%	14 0.1%	3 0.0%	0 0.0%	2 0.0%	0 0.0%	1 0.0%	0 0.0%	97.29 2.8%
	3	19 0.2%	10 0.1%	724 7.2%	16 0.2%	109 1.1%	0 0.0%	127 1.3%	0 0.0%	10 0.1%	0 0.0%	71.39 28.79
	4	68 0.7%	33 0.3%	10 0.1%	848 8.5%	43 0.4%	1 0.0%	37 0.4%	0 0.0%	7 0.1%	1 0.0%	80.9% 19.1%
ass	5	2 0.0%	8 0.1%	139 1.4%	42 0.4%	735 7.3%	0 0.0%	108 1.1%	0 0.0%	7 0.1%	0 0.0%	70.69 29.49
Output Class	6	5 0.1%	0 0.0%	3 0.0%	1 0.0%	0 0.0%	876 8.8%	2 0.0%	43 0.4%	20 0.2%	20 0.2%	90.3% 9.7%
Out	7	104 1.0%	4 0.0%	97 1.0%	40 0.4%	100 1.0%	0 0.0%	534 5.3%	0 0.0%	27 0.3%	0 0.0%	58.9% 41.1%
	8	0 0.0%	0 0.0%	0 0.0%	0 0.0%	0 0.0%	65 0.7%	0 0.0%	884 8.8%	10 0.1%	42 0.4%	88.39 11.79
	9	17 0.2%	1 0.0%	11 0.1%	4 0.0%	10 0.1%	10 0.1%	31 0.3%	1 0.0%	916 9.2%	1 0.0%	91.49 8.6%
1	0	0 0.0%	0 0.0%	0 0.0%	0 0.0%	0 0.0%	47 0.5%	0	72 0.7%	0 0.0%	936 9.4%	88.79 11.39
		78.0% 22.0%	93.8% 6.2%		84.8% 15.2%			53.4% 46.6%		91.6% 8.4%	93.6% 6.4%	81.79 18.39
		_	っ	ტ	D.	6	0	1	%	9	10	

Parâmetros\ Classe	0	1	2	3	4	5	6	7	8	9
TP	780	938	724	848	735	876	534	884	916	936
FP	217	27	291	200	306	94	372	117	86	119
FN	220	62	276	152	265	124	466	116	84	64
TN	8783	8973	8709	8800	8694	8906	8628	8883	8914	8881
Acuracy	0.96	0.99	0.94	0.96	0.94	0.98	0.92	0.98	0.98	0.98
Precisão	0.78	0.97	0.71	0.81	0.71	0.90	0.59	0.88	0.91	0.89
Sensibilidade	0.78	0.94	0.72	0.85	0.73	0.88	0.53	0.88	0.92	0.94
Especificidade	0.98	1.00	0.97	0.98	0.97	0.99	0.96	0.99	0.99	0.99

Teste 4 - Alteração do tipo de rede ~= 1min

Número de iterações: 1000

Coeficiente de aprendizagem: 0.07

Número de neurónios: 10

Função de treino: traingd

Tipo de rede: feedforwardnet

Resultados %
67.5
71.7
62.1
71.9
64.8

Confusion Matrix														
	1	672 6.7%	13 0.1%	35 0.4%	23 0.2%	7 0.1%	1 0.0%	156 1.6%	0 0.0%	1 0.0%	0 0.0%	74.0% 26.0%		
	2	21 0.2%	890 8.9%	12 0.1%	22 0.2%	8 0.1%	13 0.1%	20 0.2%	0 0.0%	18 0.2%	1 0.0%	88.6% 11.4%		
	3 4 5	11 0.1%	2 0.0%	193 1.9%	0 0.0%	34 0.3%	5 0.1%	39 0.4%	0 0.0%	11 0.1%	1 0.0%	65.2% 34.8%		
		137 1.4%	77 0.8%	50 0.5%	836 8.4%	64 0.6%	5 0.1%	139 1.4%	1 0.0%	81 0.8%	4 0.0%	60.0% 40.0%		
ass		39 0.4%	5 0.1%	581 5.8%	69 0.7%	825 8.3%	8 0.1%	426 4.3%	0 0.0%	93 0.9%	1 0.0%	40.3% 59.7%		
Output Class		19 0.2%	7 0.1%	49 0.5%	7 0.1%	14 0.1%	714 7.1%	35 0.4%	52 0.5%	46 0.5%	20 0.2%	74.1% 25.9%		
Out	7	80 0.8%	2 0.0%	68 0.7%	30 0.3%	26 0.3%	4 0.0%	168 1.7%	0 0.0%	7 0.1%	1 0.0%	43.5% 56.5%		
	8	3 0.0%	0 0.0%	0 0.0%	1 0.0%	2 0.0%	111 1.1%	6 0.1%	820 8.2%	31 0.3%	39 0.4%	80.9% 19.1%		
	9	12 0.1%	2 0.0%	10 0.1%	4 0.0%	20 0.2%	30 0.3%	8 0.1%	4 0.0%	700 7.0%	4 0.0%	88.2% 11.8%		
	10	6 0.1%	2 0.0%	2 0.0%	8 0.1%	0 0.0%	109 1.1%	3 0.0%	123 1.2%	12 0.1%	929 9.3%	77.8% 22.2%		
		67.2% 32.8%							82.0% 18.0%			67.5% 32.5%		
		_	2	ზ	Þ	6	6	1	ъ	9	10			
						Tar	get Cl	ass						

Parâmetros\ Classe	0	1	2	3	4	5	6	7	8	9
TP	672	890	193	836	825	714	168	820	700	929
FP	236	115	103	558	1222	249	218	193	94	265
FN	328	110	807	164	175	286	832	180	300	71
TN	8764	8885	8897	8442	7778	8751	8782	8807	8906	8735
Acuracy	0.94	0.98	0.91	0.93	0.86	0.95	0.90	0.96	0.96	0.97
Precisão	0.74	0.89	0.65	0.60	0.40	0.74	0.44	0.81	0.88	0.78
Sensibilidade	0.67	0.89	0.19	0.84	0.82	0.71	0.17	0.82	0.70	0.93
Especificidade	0.97	0.99	0.99	0.94	0.86	0.97	0.98	0.98	0.99	0.97

Teste 5- Alteração do número de iterações ~=14 min

Número de iterações: 10000

Coeficiente de aprendizagem: 0.07

Número de neurónios: 10

Função de treino: traingd

Tipo de rede: patternet

Resultados %
83.3
83.0

Confusion Matrix														
1	819 8.2%	1 0.0%	23 0.2%	48 0.5%	0 0.0%	1 0.0%	176 1.8%	0 0.0%	1 0.0%		76.6% 23.4%			
2	1 0.0%	955 9.6%	2 0.0%	11 0.1%	1 0.0%	0 0.0%	0 0.0%	0 0.0%	1 0.0%	0 0.0%	98.4% 1.6%			
3	13 0.1%	5 0.1%	731 7.3%	8 0.1%	103 1.0%	0 0.0%	137 1.4%	0 0.0%	7 0.1%	0 0.0%	72.8% 27.2%			
4	49 0.5%	28 0.3%	15 0.1%	856 8.6%	44 0.4%	1 0.0%	43 0.4%	0 0.0%	10 0.1%	0 0.0%	81.8% 18.2%			
888 5	4 0.0%	6 0.1%	131 1.3%	33 0.3%	761 7.6%	0 0.0%	103 1.0%	0 0.0%	5 0.1%		73.0% 27.0%			
Output Class	4 0.0%	0 0.0%	4 0.0%	1 0.0%	0 0.0%	890 8.9%	1 0.0%	37 0.4%	6 0.1%	17 0.2%	92.7% 7.3%			
0 7	93 0.9%	4 0.0%	84 0.8%	38 0.4%	84 0.8%	1 0.0%	515 5.1%	0 0.0%	19 0.2%	0 0.0%	61.5% 38.5%			
8	1 0.0%	0 0.0%	0 0.0%	0 0.0%	0 0.0%	61 0.6%	0 0.0%	918 9.2%	7 0.1%	45 0.4%	89.0% 11.0%			
9	16 0.2%	1 0.0%	10 0.1%	4 0.0%	7 0.1%	11 0.1%	25 0.3%	0 0.0%	944 9.4%	2 0.0%	92.5% 7.5%			
10	0 0.0%	0 0.0%	0 0.0%	1 0.0%	0 0.0%	35 0.4%	0 0.0%	45 0.4%	0 0.0%	936 9.4%	92.0% 8.0%			
	81.9% 18.1%	95.5% 4.5%	73.1% 26.9%		76.1% 23.9%			91.8% 8.2%	94.4% 5.6%		83.3% 16.8%			
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \														

Parâmetros\ Classe	0	1	2	3	4	5	6	7	8	9
TP	819	955	731	856	761	890	515	918	944	936
FP	250	16	273	190	282	70	323	114	76	81
FN	181	45	269	144	239	110	485	82	56	64
TN	8750	8984	8727	8810	8718	8930	8677	8886	8924	8919
Acuracy	0.96	0.99	0.95	0.97	0.95	0.98	0.92	0.98	0.99	0.99
Precisão	0.77	0.98	0.73	0.82	0.73	0.93	0.61	0.89	0.93	0.92
Sensibilidade	0.82	0.95	0.73	0.86	0.76	0.89	0.52	0.92	0.94	0.94
Especificidade	0.97	1.00	0.97	0.98	0.97	0.99	0.96	0.99	0.99	0.99

Teste 6- Alteração do número de iterações ~=8 min

Número de iterações: 5000

Coeficiente de aprendizagem: 0.07

Número de neurónios: 10

função de treino: traingd

tipo de rede: patternet

Confusion Matrix														
	1	809 8.1%	3 0.0%	15 0.1%	31 0.3%	4 0.0%	0 0.0%	170 1.7%	0 0.0%	1 0.0%	0 0.0%	78.3% 21.7%		
	2	5 0.1%	941 9.4%	3 0.0%	16 0.2%	3 0.0%	0 0.0%	2 0.0%	0 0.0%	1 0.0%	0 0.0%	96.9% 3.1%		
	3	9 0.1%	12 0.1%	716 7.2%	8 0.1%	100 1.0%	1 0.0%	118 1.2%	0 0.0%	9 0.1%	0 0.0%	73.6% 26.4%		
		54 0.5%	33 0.3%	9 0.1%	850 8.5%	43 0.4%	1 0.0%	41 0.4%	0 0.0%	10 0.1%	0 0.0%	81.7% 18.3%		
ass	5	6 0.1%	6 0.1%	122 1.2%	37 0.4%	752 7.5%	0 0.0%	109 1.1%	0 0.0%	2 0.0%	0 0.0%	72.7% 27.3%		
Output Class	6	2 0.0%	0 0.0%	1 0.0%	3 0.0%	1 0.0%	870 8.7%	0 0.0%	36 0.4%	3 0.0%	17 0.2%	93.2% 6.8%		
Out	7	101 1.0%	2 0.0%	122 1.2%	49 0.5%	88 0.9%	0 0.0%	528 5.3%	0 0.0%	18 0.2%	0	58.1% 41.9%		
		1 0.0%	0 0.0%	0 0.0%	0 0.0%	0 0.0%	67 0.7%	0 0.0%	911 9.1%	7 0.1%	43 0.4%	88.5% 11.5%		
	9	13 0.1%	3 0.0%	11 0.1%	6 0.1%	9 0.1%	11 0.1%	32 0.3%	0 0.0%	948 9.5%	1 0.0%	91.7% 8.3%		
	10	0 0.0%	0 0.0%	1 0.0%	0 0.0%	0 0.0%	50 0.5%	0 0.0%	53 0.5%	1 0.0%	939 9.4%	89.9% 10.1%		
		80.9% 19.1%	94.1% 5.9%		85.0% 15.0%			52.8% 47.2%	91.1% 8.9%	94.8% 5.2%		82.6% 17.4%		
			v	უ	Þ	6	6	1	8	9	10			
						Tar	get C	ass						

Parâmetros\ Classe	0	1	2	3	4	5	6	7	8	9
TP	809	941	719	850	752	870	528	911	948	939
FP	224	30	257	191	282	63	380	118	86	105
FN	191	59	284	150	248	130	472	89	52	61
TN	8776	8970	8743	8809	8718	8937	8620	8882	8914	8895
Acuracy	0.96	0.99	0.95	0.97	0.95	0.98	0.91	0.98	0.99	0.98
Precisão	0.78	0.97	0.74	0.82	0.73	0.93	0.58	0.89	0.92	0.90
Sensibilidade	0.81	0.94	0.72	0.85	0.75	0.87	0.53	0.91	0.95	0.94
Especificidade	0.98	1.00	0.97	0.98	0.97	0.99	0.96	0.99	0.99	0.99

Teste 7- Alteração do tipo de rede

Número de iterações: 1000

Coeficiente de aprendizagem: 0.01

Número de neurónios: 10

função de treino: traingd

tipo de rede: newff

Parâmetros\ Classe	0	1	2	3	4	5	6	7	8	9
TP	614	866	228	242	4FQ	г6 7	10.4	255	654	701
	014	800	328	242	458	567	134	255	654	701
FP	465	588	358	429	947	798	469	77	849	231
FN	386	134	672	758	542	433	866	775	346	299

TN	8535	8412	8642	8571	8053	8202	8531	8923	8151	8769
Acuracy	0.91	0.93	0.90	0.88	0.85	0.88	0.87	0.91	0.88	0.95
Precisão	0.57	0.60	0.82	0.36	0.33	0.42	0.22	0.75	0.44	0.75
Sensibilidade	0.61	0.87	0.85	0.24	0.46	0.57	0.13	0.23	0.65	0.70
Especificidade	0.95	0.93	0.96	0.95	0.89	0.91	0.95	0.99	0.91	0.97

Devido a um lapso só reparamos que faltava o parâmetro AUC no treinoMLP depois de ter os testes feitos, no entanto este está a funcionar corretamente.

CONCLUSÕES

Em relação ao primeiro teste, podemos concluir que a alteração do coeficiente de aprendizagem de 0.07 para 0.01, piora a performance da rede, que passou de apresentar resultados de ~=78% para ~=61%. O coeficiente de aprendizagem é o parâmetro que controla o ajuste dos pesos, um coeficiente de aprendizagem demasiado baixo demora demasiado tempo a treinar, daí explicando os piores resultados neste teste, pois as iterações permaneceram iguais.

Em relação ao teste 2 e 3, em que foram alterados os números de neurónios, de 10, para 20 e para 30, respetivamente, a performance da rede melhorou, que passou de apresentar resultados de ~=78% para ~=80.5% e ~=81.5. Olhando para os resultados da accuracy, que foi uma média de 0.96% para a rede com 10 neurónios, 0.96% para a rede com 20 neurónios, e 0.963% para a rede com 30 neurónios, podemos dizer que praticamente já não se encontra a aprender, provavelmente a rede encontra-se em overfitting. (a accuracy é sobre o conjunto de teste e não do conjunto de validação, daí não termos a certeza)

No teste 4 foi alterado o tipo de rede para uma feedfowardnet, a performance da rede diminuiu de uma média de 78% para 67%, e o treino da rede foi significativamente mais rápido.

Nos testes 5 e 6 foi alterado o número de iterações, no teste padrão, foram utilizados 1000, no teste 5, 10 000, e no teste 6, 5 000. Como é de esperar o teste 5 obteve os melhores resultados (~=83%), seguido do teste 6.