Projet Crowdsourcing

CÔME, SENE

Présentation de projet de Master 2

3 Janvier 2023

Introduction

Contexte

- Utilisation de l'Algorithme EM pour connaître le vrai label d'une image donnée ou déterminer la véritable pathologie d'un patient.
- Type de données : 60000 images 32×32 séparées en 10 classes
- Problématique : La labélisation d'une image donnée ou le diagnostic d'un patient.
- Approche classique : affichage de la matrice de confusion à l'aide de l'algorithme EM.

- 1 Notations
- 2 Estimation de la vraisemblance
- 3 Estimation du maximum de vraisemblance
- 4 Le jeu de données
- 5 Fonctions utiles pour réaliser les expériences numériques
- 6 Expériences numériques
- 7 Conclusion

Notations

Notations

On note $\forall i \in \{1, 2, ..., I\}$, $\forall j, I \in \{1, 2, ..., J\}$, $\forall k \in \{1, 2, ..., K\}$:

- π_{lj}^k : la probabilité que le médecin k donne la réponse j sachant que la vraie réponse est l.
- T_{ij} : une variable de réponse associée au patient i définie par $T_{ig} = 1$ si q est la vraie réponse et $T_{ig} = 0$ si $j \neq q$.
- p_i : la prévalence de la classe j ou la fréquence empirique.

- 1 Notations
- 2 Estimation de la vraisemblance
- 3 Estimation du maximum de vraisemblance
- 4 Le jeu de données
- 5 Fonctions utiles pour réaliser les expériences numériques
- 6 Expériences numériques
- 7 Conclusion

3 Janvier 2023

1 medecin 1 patient

Soit X à valeur dans $\{1, 2, ..., M\}$, une variable aléatoire indiquant la maladie du patient.

Soit Y à valeur dans $\{1, 2, \dots, J\}$, une variable aléatoire correspondant à la maladie du patient indiquée par le médecin.

$$Y|X = x \sim \textit{Multinomiale}\left[\left(\pi_{\textit{xl}}^{Y}\right)_{\textit{l}}, n\right], \textit{avec} \ \textit{l} \in \{1, 2, \dots, J\}.$$

1 médecin 1 patient

Sa fonction de masse est donnée par :

$$\mathbb{P}\left(n_{i1}^k,\ldots,n_{iJ}^k\right) = \frac{\left[\sum_{j=1}^J n_{ij}^k\right]!}{\prod_{j=1}^J n_{ij}^k!} \prod_{j=1}^J \left(\pi_{ij}^k\right)^{n_{ij}^k} \propto \prod_{j=1}^J \left(\pi_{ij}^k\right)^{n_{ij}^k}.$$

Ainsi la vraisemblance est :

$$\propto \prod_{i=1}^{J} \left(\pi_{lj}^{k}\right)^{n_{ij}^{k}}$$

K medecins et I patients

Soit $X = (X_1, \dots, X_l)$ le vecteur aléatoire indiquant la maladie des I patients.

Soit $Y = (Y_1, \dots, Y_K)$ le vecteur aléatoire indiquant la maladie des K patients.

Si le médecin répond une fois à la question du patient, on a :

$$Y_i^k | X_i = x_i \sim \textit{Multinomiale} \left[(\pi_{x_i j}^k), 1 \right],$$

avec $j \in \{1, 2, ..., J\}$ et $i \in \{1, 2, ..., I\}$

K medecins et I patients

Étant donné que les (Y_i^k) sont indépendants $\forall k \in \{1, 2, ..., K\}$ et $i \in \{1, 2, ..., I\}$, Donc :

$$\mathbb{P}\left(n_{i1}^k,\ldots,n_{iJ}^k\right) = \frac{\left[\sum_{j=1}^J n_{ij}^k\right]!}{\prod_{j=1}^J n_{ij}^k!} \prod_{j=1}^J \left(\pi_{x_ij}^k\right)^{n_{ij}^k} \propto \prod_{k=1}^K \prod_{j=1}^J \left(\pi_{x_ij}^k\right)^{n_{ij}^k}.$$

Par conséquent la vraisemblance est :

$$\propto \prod_{k=1}^{K} \prod_{j=1}^{J} \left(\pi_{x_i j}^k\right)^{n_{ij}^k}$$

3 Janvier 2023

Toutes les données

Si on se base sur toutes les données c'est-à-dire les réponses de tous les médecins et les questions de tous les patients, on a :

$$\mathbb{P}\left((\cap\cap Y_i^k)|\cap (X_i=x_i)\right)\mathbb{P}\left(\cap (X_i=x_i)\right)$$

=

$$\mathbb{P}\left(\left(\cap\cap Y_i^k\right)\cap\left(\cap(X_i=x_i)\right)\right).$$

Par indépendance des (Y_i^k) et (X_i) ,

Toutes les données

$$\mathbb{P}\left(\left(\cap\cap Y_{i}^{k}\right)\cap\left(\cap(X_{i}=x_{i})\right)\right) = \prod_{i=1}^{l}\mathbb{P}\left(\cap Y_{i}^{k}|\cap(X_{i}=x_{i})\right)\mathbb{P}(X_{i}=x_{i})$$

$$= \prod_{i=1}^{l}\left(\mathbb{P}(X_{i}=x_{i})\prod_{k=1}^{K}\mathbb{P}\left(Y_{i}^{k}|\cap(X_{i}=x_{i})\right)\right)$$

$$= \prod_{i=1}^{l}\left(\rho_{X_{i}}\prod_{k=1}^{K}\mathbb{P}\left(Y_{i}^{k}|(X_{i}=x_{i})\right)\right)$$

Toutes les données

D'où

$$\mathbb{P}\left(\left(\cap\cap Y_{i}^{k}\right)\cap\left(\cap(X_{i}=x_{i})\right)\right)\propto\prod_{i=1}^{I}\prod_{l=1}^{J}\left[p_{x_{i}}\prod_{k=1}^{K}\prod_{j=1}^{J}\left(\pi_{ij}^{k}\right)^{n_{ij}^{k}}\right]^{T_{ij}}.$$

Par conséquent la vraisemblance de toutes les données est :

$$\propto \prod_{i=1}^{J} \prod_{l=1}^{J} \left[
ho_{\mathsf{x}_i} \prod_{k=1}^{K} \prod_{j=1}^{J} \left(\pi_{ij}^k
ight)^{n_{ij}^k}
ight]^{T_{ij}^k}$$

- 1 Notations
- 2 Estimation de la vraisemblance
- 3 Estimation du maximum de vraisemblance
- 4 Le jeu de données
- 5 Fonctions utiles pour réaliser les expériences numériques
- 6 Expériences numériques
- 7 Conclusion

3 Janvier 2023

Les estimateurs

Expressions

Si on suppose que les T_{ij} sont connus et que en pratique nous avons les $n_{ij}{}^k$, on a les estimateurs du maximum de vraisemblance suivants :

$$\hat{\pi}_{jl}^{k} = \frac{\sum_{i=1}^{l} T_{ij} n_{il}^{k}}{\sum_{l=1}^{J} \sum_{i=1}^{l} T_{ij} n_{il}^{k}}.$$

$$\hat{p}_j = \frac{\sum_{i=1}^I T_{ij}}{I}.$$

- 4 Le jeu de données

cifar10h

Base de données composée de 10 classes d'images :

- classe 0 : airplane
- classe 1 : automobile
- classe 2 : bird
- classe 3 : cat
- classe 4 deer
- classe 5 : dog
- classe 6 : frog
- classe 7 : horse
- classe 8 : ship
- classe 9 : truck

cifar10h

Figure – Un extrait de la base de données

IMAG

- 1 Notations
- 2 Estimation de la vraisemblance
- 3 Estimation du maximum de vraisemblance
- 4 Le jeu de données
- 5 Fonctions utiles pour réaliser les expériences numériques
- 6 Expériences numériques
- 7 Conclusion

La fonction CreateSubDf

Son objectif

Créer un sous dataframe dans lequel seront stockées uniquement les données utiles :

Ses arguments

- df: le dataframe des données (Il s'agit du dataframe d'origine)
- an_id : entier (compris entre 0 et 2570) désignant l'identifiant de l'annotateur

Ce qu'elle retourne

Un sous dataframe composé de deux colonnes :

- La colonne 1 : contient les labels choisis par un annotateur spécifique
- La colonne 2 : contient les vrais labels associés aux images

La fonction custom_confusion_matrix

Son objectif

Améliorer l'esthétique de la représentation graphique de la matrice de confusion

Ses arguments

- cm : un 2D numpy array jouant le rôle de la matrice de confusion
- classes : la liste stockant les noms de chaque classe
- *normalize* : (Booléen) : si True la matrice sera normalisée, et si False elle ne le sera pas
- title : le titre du graphique
- cmap : la palette de couleur du graphique

La fonction plot_confusion_matrix

Son objectif

Calculer la matrice de confusion et afficher sa représentation graphique

Ses arguments

- y_true : un numpy array dans lequel sont stockés les vrais labels
- y_predict: un numpy array dans lequel sont stockés les labels choisis par l'annotateur
- normalize(Booléen): si True la matrice sera normalisée, et si False elle ne le sera pas
- class names : la liste stockant les noms de chaque classe

Ce qu'elle retourne

retourne le graphique de la matrice de confusion

La fonction DawidSkeneIID

Son objectif

Permet d'initialiser le modèle de David Skene

Ses arguments

- ydims: un couple sous la forme (nombre de classes, nombre d'annotateurs)
- max_iter : Le nombre d'iterations souhaité de l'algorithme
 FM
- predict_tol : un seuil de tolérance pour la prédiction

Ce qu'elle retourne

retourne le graphique de la matrice de confusion

La fonction fit

Son objectif

Permet d'alimenter le modèle

Ses arguments

- \boldsymbol{U} : les données de dim = (N,K) avec N lignes et K annotateurs (dans notre cas k=1)
- **priors**: les probabilités du prior pour π_z et $\psi_{\mu,z}^k = p(u_k = u|Z = z)$
- starts: tuple contenant les matrices $(\pi \ {\rm et} \ \psi)$ des paramètres initiaux de l'algorithme EM

La fonction plot_cm_d

Son objectif

afficher la représentation graphique de la matrice de confusion

Ses arguments

- ullet U : les données de dim = (N,K) avec N lignes et K annotateur (dans notre cas k=1)
- *priors*: les probabilités du prior pour π_z et $\psi_{u,z}^k = p(u_k = u|Z = z)$
- $\textit{starts}: \text{tuple contenant les matrices } (\pi \text{ et } \psi) \text{ des paramètres initiaux de l'algorithme EM}$

Ce qu'elle retourne

le graphique de la matrice de confusion estimée à l'aide de l'algorithme EM

- 1 Notations
- 2 Estimation de la vraisemblance
- 3 Estimation du maximum de vraisemblance
- 4 Le jeu de données
- 5 Fonctions utiles pour réaliser les expériences numériques
- 6 Expériences numériques
- 7 Conclusion

Expériences numériques

(a) Matrice de confusion associée aux labels prédits par un annotateur

(b) Matrice de confusion estimée à partir de l'algorithme EM

- 1 Notations
- 2 Estimation de la vraisemblance
- 3 Estimation du maximum de vraisemblance
- 4 Le jeu de données
- 5 Fonctions utiles pour réaliser les expériences numériques
- 6 Expériences numériques
- 7 Conclusion

Conclusion

Conclusion

D'après nos expériences numériques, nous constatons que :

- l'algorithme EM prédit bien nos images c'est-à-dire qu'il fait une bonne labélisation. En revanche, sa matrice de confusion n'est pas forcément meilleure que celle des annotateurs.
- Cependant, malgré que la matrice de confusion des annotateurs ne montre pas beaucoup d'erreurs (presque diagonale), elle reste tout de même proche à celle de l'algorithme EM en terme de prédiction.

