A Report of Type Theory and Formal Proof

Juan Pablo Royo Sales

Universitat Politècnica de Catalunya

February 9, 2021

Contents

1	Introduction	1
2	Untyped lambda calculus 2.1 Definition	1
Re	eferences	2

1 Introduction

This report is going to provide a summary over the book [NG14]. Alongside the different chapters of the book I am going to describe briefly the most important parts of each chapter and, at the same time, I am going to solve 1 or 2 of the exercises proposed by the authors.

The organization of the report is going to be the same as the chapters of the book.

2 Untyped lambda calculus

In this first chapter the authors define and describe Lambda Calculus (λ -calculus) system which encapsulates the formalization of basic aspects of mathematical functions, in particular construction and use. In λ -calculus formalization system there are typed and untyped formalization of the same system. In this first case authors introduced the first basic and simple formalization which is untyped.

SIRI - Guided Work UPC MIRI

2.1 Definition

There are two constructions principles and one evaluation rule

Construction principles:

- Abstraction: Given an expression M and a variable x we can construct the expression: $\lambda x.M$. This is abstraction of x over M Example: $\lambda y.(\lambda x.x-y)$ Abstraction of y over $\lambda x.x-y$
- Application: Given 2 expressions M and N we can construct the expression: M N. This is the application of M to N. Example: $(\lambda x.x^2+1)(3)$ Application of 3 over $\lambda x.x^2+1$

Evaluation Rule: Formalization of this process is called Beta Reduction (β -reduction). Makes use of substitution, expressed by []. β -reduction: An expression ($\lambda x.M$)N can be rewritten to M[x:=N], which means every x should be replaced by N in M. This process is called β -reduction of ($\lambda x.M$)N to M[x:=N].

Example: $(\lambda x.x^2 + 1)(3)$ reduces to $(x^2 + 1)[x := 3]$, which is $3^2 + 1$.

References

[NG14] Rob Nederpelt and Herman Geuvers. Type Theory and Formal Proof. Cambridge University Press, Cambridge CB2 8BS, United Kindom, 2014.