

Cours Analyse III

Pr. Abla CHAOUNI BENABDELLAH
Benabdellahchaouni.abla@gmail.com

IV-Intégration

Définition : On appelle description hiérarchisée du domaine Δ une partie fermée bornée de \mathbb{R}^2 : l'existence de 2 réels a et b et de 2 applications continues sur [a,b], notées u et v tels que a < b et $\forall x \in [a,b], u(x) \leq v(x)$, avec

$$(x, y) \in \Delta \Leftrightarrow \begin{cases} x \in [a, b] \\ y \in [u(x), v(x)] \end{cases}$$

Exemple: On va prendre le domaine du plan défini par : $y \ge 0$, $x \ge y$, $x \le 1$. Il est élémentaire de faire une figure de ce domaine, qui est un triangle.

En travaillant sur cette figure, on obtient facilement une description hiérarchisée : $\begin{cases} x \in [0, 1] \\ y \in [0, x] \end{cases}$

Définition: f continue sur Δ , un fermé borné de \mathbb{R}^2 , si on dispose d'une description hiérarchisée de Δ , on appelle intégrale double de f sur Δ :

$$I = \iint_{\Delta} f(x, y) dx dy = \int_{a}^{b} \left(\int_{u(x)}^{v(x)} f(x, y) dy \right) dx$$

En un mot, on transforme cette intégrale double en 2 intégrales simples emboîtées

Exemple: On va intégrer la fonction
$$(x, y) \to f(x, y) = xy$$
 sur D:
$$\begin{cases} x \ge 0 \\ y \ge 0 \\ x + y \le 1 \end{cases}$$

Théorème de Fubini : inversion des bornes

Théorème:

Si on a par ailleurs: $(x, y) \in \Delta \Leftrightarrow \begin{cases} y \in [c, d] \\ x \in [\alpha(y), \beta(y)] \end{cases}$ avec c < d et $\forall y \in [c, d], \alpha(y) \leqslant \beta(y)$, alors:

$$I = \iint_{\Delta} f(x, y) \, dx \, dy = \int_{a}^{b} \left(\int_{u(x)}^{v(x)} f(x, y) \, dy \right) dx = \int_{c}^{d} \left(\int_{\alpha(y)}^{\beta(y)} f(x, y) \, dx \right) dy$$

1.4. Un cas particulier

On va se placer dans un cas très particulier puisque : $(x, y) \in \Delta \Leftrightarrow \begin{cases} x \in [a, b] \\ y \in [c, d] \end{cases}$

Le domaine est un rectangle. Et d'autre part : $\forall (x, y) \in \Delta$, $f(x, y) = \varphi(x) \psi(y)$

Ainsi, dans ce cas :
$$\iint_{\Delta} \varphi(x) \psi(y) dx dy = \int_{a}^{b} \varphi(x) dx \times \int_{c}^{d} \psi(y) dy$$

Exemple 1.–

Exemple 1.–
$$\iint_{[0,1]\times[0,\pi/2]} x \cos y \, dxdy$$

$$D = \{(x,y) \in \mathbb{R}^2 \mid x \in [-1,1], \ y \in [x^2,1]\}.$$

• Exemple 2.–

$$\iint_{[-1,1]\times[0,1]} (x^2y - 1) \, dxdy$$

$$D = \{(x, y) \in \mathbb{R}^2 \mid x \in [-1, 1], y \in [x^2, 1]\}$$

$$\iint_D x^2 y \ dx \ dy$$

Exemples.

• Calculer $I = \iint_C xy \, dx dy$ sur sur le carré plein $C = [0,1] \times [0,1]$.

• Calculer $J = \iint_C (x+y)^2 dx dy \text{ sur } C = [0,1] \times [0,1].$

1.6. Changement de variables

Théorème : $\varphi: \mathcal{U} \to \mathcal{V}$ de classe \mathscr{C}^1 , \mathscr{U} et \mathscr{V} deux ouverts de \mathbb{R}^2 .

D et Δ deux fermés bornés de \mathbb{R}^2 , $D \subset \mathcal{U}$, et, $\Delta \subset \mathcal{V}$.

De plus : $\varphi(D) = \Delta$.

On suppose que les points de Δ qui ont plusieurs antécédents sont de surface nulle.

On note : $(x, y) = \varphi(u, v)$, $\frac{D(x, y)}{D(u, v)}$ le jacobien de φ en (u, v), et, $\left|\frac{D(x, y)}{D(u, v)}\right|$ la valeur absolue du jacobien.

Alors:
$$\iint_{\Delta} f(x, y) dx dy = \iint_{D} g(u, v) \left| \frac{D(x, y)}{D(u, v)} \right| du dv$$

On rappelle que :
$$\frac{D(x,y)}{D(u,v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix}$$

Théorème : On pose
$$\begin{cases} x = \rho \cos \theta \\ y = \rho \sin \theta \end{cases} \quad (x,y) \in \mathbb{D} \Leftrightarrow (\rho,\theta) \in \Delta, \text{ et } f(x,y) = f\left(\rho \cos \theta, \rho \sin \theta\right) = g(\rho,\theta) \end{cases}$$

$$\iint_{\mathbb{D}} f(x,y) \, \mathrm{d}x \, \mathrm{d}y = \iint_{\Delta} g(\rho,\theta) \rho \, \mathrm{d}\rho \, \mathrm{d}\theta = \iint_{\Delta} f\left(\rho \cos \theta, \rho \sin \theta\right) \rho \, \mathrm{d}\rho \, \mathrm{d}\theta$$

$$: \frac{D(x,y)}{D(\rho,\theta)} = \begin{vmatrix} \frac{\partial x}{\partial \rho} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial \rho} & \frac{\partial y}{\partial \theta} \end{vmatrix} = \begin{vmatrix} \cos \theta & -\rho \sin \theta \\ \sin \theta & \rho \cos \theta \end{vmatrix} = \rho \geqslant 0$$

Exemple: On va intégrer la fonction $(x, y) \to f(x, y) = xy$ sur D: $\begin{cases} x \ge 0 \\ y \ge 0 \\ x^2 + y^2 \le 1 \end{cases}$

On cherche d'abord une description hiérarchisée du domaine en polaires : $\left\{ \begin{array}{l} \theta \in [0,\pi/2] \\ \rho \in [0,1] \end{array} \right. \text{, ce qui}$

donne, compte tenu que $xy = \rho^2 \cos \theta \sin \theta$:

$$I = \iint_{D} xy \, dx \, dy = \int_{0}^{\pi/2} \int_{0}^{1} \rho^{3} \cos \theta \sin \theta \, d\rho \, d\theta$$

$$I = \int_{0}^{\pi/2} \cos \theta \sin \theta \, d\theta \int_{0}^{1} \rho^{3} \, d\rho = \left[\frac{\sin^{2} \theta}{2}\right]_{0}^{\pi/2} \left[\frac{\rho^{4}}{4}\right]_{0}^{1} = \frac{1}{8}$$

Intégrales triples

 Δ un fermé borné de \mathbb{R}^3 , une description hiérarchisée de Δ est de la forme :

$$(x, y, z) \in \Delta \Leftrightarrow \begin{cases} x \in [a, b] \\ y \in [u(x), v(x)] \\ z \in [\alpha(x, y), \beta(x, y)] \end{cases}$$

On peut avoir les variables dans un autre ordre, l'important est que les bornes de chacune ne soient définies qu'en fonction des précédentes.

On définit alors l'intégrale triple de f continue sur Δ par :

$$\iiint_{\Delta} f(x, y, z) \, dx \, dy \, dz = \int_{a}^{b} \left(\int_{u(x)}^{v(x)} \left(\int_{\alpha(x, y)}^{\beta(x, y)} f(x, y, z) \, dz \right) dy \right) dx$$

2.2. Changement de variables

Sous des hypothèses équivalentes à la dimension 2,

$$(x, y, z) = \varphi(u, v, w), (x, y, z) \in D \Leftrightarrow (u, v, w) \in \Delta, \text{ et } f(x, y, z) = g(u, v, w), \text{ on a alors :}$$

$$\iiint_{\mathcal{D}} f(x,y,z) \; \mathrm{d}x \; \mathrm{d}y \; \mathrm{d}z = \iiint_{\Delta} g(u,v,w) \left| \frac{\mathrm{D}(x,y,z)}{\mathrm{D}(u,v,w)} \right| \mathrm{d}u \; \mathrm{d}v \; \mathrm{d}w$$

On notera la valeur absolue du jacobien et la pseudo-simplification.

2.3. Coordonnées cylindriques

$$\begin{cases} x = \rho \cos \theta \\ y = \rho \sin \theta \quad (x, y, z) \in D \Leftrightarrow (\rho, \theta, z) \in \Delta, \text{ et } f(x, y, z) = f(\rho \cos \theta, \rho \sin \theta) = g(\rho, \theta, z) \\ z = z \end{cases}$$

On regardera la figure 6, page 8.

$$\iiint_{\mathbb{D}} f(x,y,z) \; \mathrm{d}x \; \mathrm{d}y \; \mathrm{d}z = \iiint_{\Delta} g(\rho,\theta,z) \rho \; \mathrm{d}\rho \; \mathrm{d}\theta \; \mathrm{d}z$$

Le calcul du jacobien est facile $\frac{D(x, y, z)}{D(\rho, \theta, z)} = \rho$ et on a encore $\rho \ge 0$.

2.4. Coordonnées sphériques

$$\begin{cases} x = \rho \cos \theta \cos \varphi \\ y = \rho \sin \theta \cos \varphi \quad (x, y, z) \in D \Leftrightarrow (\rho, \theta, \varphi) \in \Delta, \text{ et } f(x, y, z) = g(\rho, \theta, \varphi) \\ z = \rho \sin \varphi \end{cases}$$

On regardera la figure 8, page 10.

$$\iiint_{D} f(x, y, z) dx dy dz = \iiint_{\Delta} g(\rho, \theta, \varphi) \rho^{2} \cos \varphi d\rho d\theta d\varphi$$

Le calcul du jacobien est facile : $\frac{D(x, y, z)}{D(\rho, \theta, \varphi)} = \rho^2 \cos \varphi$, et on a bien : $\cos \varphi \ge 0$.

La figure 9, page 11, indique le mode de calcul.

Les coordonnées sphériques du physicien sont illustrées sur la figure 10, page 12.

Dans ce cas, le calcul du jacobien donne : $\frac{D(x, y, z)}{D(\rho, \theta, \varphi)} = \rho^2 \sin \theta$, et on a bien : $\sin \theta \ge 0$.

Soit à calculer

$$J = \iiint_{[0,1]\times[1,2]\times[2,3]} (x^2 - 2yz) \ dx \ dy \ dz.$$

Soit à calculer

$$J = \iiint_{[0,1]\times[1,2]\times[2,3]} (x^2 - 2yz) \ dx \ dy \ dz.$$

En appliquant le théorème de Fubini on obtient

$$J = \int_{2}^{3} dz \int_{1}^{2} dy \int_{0}^{1} dx (x^{2} - 2yz)$$

$$= \int_{2}^{3} dz \int_{1}^{2} dy \left[\frac{1}{3}x^{3} - 2xyz \right]_{x=0}^{x=1}$$

$$= \int_{2}^{3} dz \int_{1}^{2} dy \left(\frac{1}{3} - 2yz \right)$$

$$= \int_{2}^{3} \left[\frac{1}{3}y - y^{2}z \right]_{y=1}^{y=2} dz$$

$$= \int_{2}^{3} \left(\frac{2}{3} - 4z - \frac{1}{3} + z \right) dz$$

$$= \int_{2}^{3} \left(\frac{1}{3} - 3z \right) dz = \left[\frac{1}{3}z - \frac{3}{2}z^{2} \right]_{2}^{3}$$

$$= \frac{3}{3} - \frac{27}{2} - \frac{2}{3} + \frac{12}{2} = \frac{1}{3} - \frac{15}{2} = -\frac{43}{6}$$

Considérons à nouveau l'intégrale J de la fonction

$$f(x,y,z)=1-2yz$$

sur le cylindre plein Ω de hauteur 3 et de base le disque

$$D = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 \le 1, \ z = 0\}$$

En coordonnées cylindriques, on a

$$\Omega = \{ (x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 \le 1, \ 0 \le z \le 3 \}$$
$$= \{ (\rho, \varphi, z) \mid \rho \in [0, 1], \ \varphi \in [0, 2\pi[, \ z \in [0, 3] \} \}$$

Puisque $dx dy dz = \rho d\rho d\varphi dz$, on a

$$J = \iiint_{\Omega} (1 - 2yz) \, dx \, dy \, dz$$

$$= \iint_{0}^{3} dz \iint_{D} (1 - 2yz) \, dx \, dy$$

$$= \iint_{0}^{3} dz \iint_{0}^{1} \rho \, d\rho \, \int_{0}^{2\pi} (1 - 2\rho \sin \varphi z) \, d\varphi$$

$$= \iint_{0}^{3} dz \int_{0}^{1} \rho \, d\rho \, \left[\varphi + 2\rho \cos \varphi z \right]_{\varphi=0}^{\varphi=2\pi}$$

$$= \iint_{0}^{3} dz \int_{0}^{1} \left(2\pi + 2\rho z - 2\rho z \right) \rho \, d\rho$$

$$= \iint_{0}^{3} dz \int_{0}^{1} 2\pi \, \rho \, d\rho$$

$$= 3\pi \left[\rho^{2} \right]_{0}^{1}$$

$$= 3\pi$$

