$0.1 \quad 23.09.2019$

$$F(u;x,y) = 0$$
 \exists неявная ф-ия $u(x,y)$
$$u(x_0,y_0) = u_0$$
 $F(u_0;x_0,y_0) = 0$ \Rightarrow
$$F(u(x,y),x,y) = 0$$

$$u'_x = -\frac{F'_x}{F'_y}$$

$$u'_y = -\frac{F'_y}{F'_y}$$

Ф-ла Тейлора для функцийи от неск. перем.

$$u: E \subset \mathbb{R}^n \to \mathbb{R}, \quad x \in E \to u(x)$$

$$T_R(x,x^0) = \sum_{|\alpha| \leqslant k} \frac{\partial^\alpha u(x^0)}{\partial x^\alpha} \frac{(x-x^0)^\alpha}{\alpha!} = \sum_{j=0}^k \frac{d^j u(x^0)[x-x^0]}{j!}$$

$$\alpha \text{ - мультииндекс}, \quad \alpha = (\alpha_1,...,\alpha_k), \quad \alpha_j \in \mathbb{N} \cup \{0\}$$

$$|\alpha| = \alpha_1 + ... + \alpha_n, \quad \alpha! = \alpha_1!...\alpha_n!$$

$$\frac{\partial^\alpha u}{\partial x^\alpha} = \frac{\partial^{|\alpha|}}{\partial x_1^{\alpha_1}...x_n^{\alpha_n}}, \quad (x-x_0)^\alpha = (x_1-x_1^0)^{\alpha_1}...(x_n-x_n^0)^{\alpha_n}$$

Теорема

$$u \in C^k \overset{\text{B okp. } x^0}{\Rightarrow}$$

Пример

$$u: \mathbb{R}^2 \to \mathbb{R}$$

$$u(x,y) = u(x_0, y_0) + \frac{1}{x} (x_0, y_0)(x - x_0) + u\frac{1}{y} (x_0, y_0)(y - y_0) + u\frac{1}{x} \frac{(x - x_0)^2}{2!} + u\frac{1}{xy} \frac{(x - x_0)(y - y_0)}{1!} + u\frac{1}{yy} \frac{(y - y_0)^2}{2!} + \frac{\frac{\partial^3 u}{\partial x^3} (x - x^0)^3}{3!} + \frac{\frac{\partial^3 u}{\partial x^2 \partial y} (x - x^0)^2 (y - y^0)}{2! 1!} + \dots + \overline{o}(\sqrt{(x - x_0)^2 + (y - y_0)^2})^3$$

0.1.1 Дифференциалы высших порядков

Пример

$$u: \mathbb{R}^2 \to \mathbb{R}^2 \quad (x,y) \to u(x,y)$$

$$du = \frac{\partial u}{\partial x}\Big|_{(x_0,y_0)} dx + \frac{\partial u}{\partial y}\Big|_{(x_0,y_0)} dy = du[dx,dy]$$

$$du: \mathbb{R}^2 \to \mathbb{R} \quad (dx,dy) \to du[dx,dy] \text{ - дифференциал первого порядка}$$

$$d^2u = d(du) = d(\frac{\partial u}{\partial x})dx + d(\frac{\partial u}{\partial y})dy = \frac{\partial^2 u}{\partial x^2}dx^2 + 2\frac{\partial^2 u}{\partial x \partial y}dxdy + \frac{\partial^2 u}{\partial y^2}dy^2$$

$$d^k_d(d^{k-1}u) = \sum_{j=0}^k C^k_j \frac{\partial^k u}{\partial x^j \partial y^{k-j} dx^j dy^{k-j}} = d^ku[dx,dy], \quad u \in C^k$$

$$= dx \frac{\partial}{\partial x} + dy \frac{\partial}{\partial y}$$

Понятно, что можно дальше обобщать, но делать мы это, конечно, не будем

Пример

$$f = x^y = e^{y \ln x}, \quad d^2 f \text{ в точке } (2,1)$$

$$\frac{\partial f}{\partial x} = e^{y \ln x} \frac{y}{x} \quad \frac{\partial f}{\partial y} = e^{y \ln x} \ln x$$

$$f''_{xx} = \frac{\partial^2 f}{\partial x^2} = e^{y \ln x} \left(\frac{x}{y}\right)^2 - e^{y \ln x} \frac{y}{x^2} \stackrel{(2,1)}{=} 0$$

$$f''_{yy} = e^{y \ln x} \ln^2 \stackrel{(2,1)}{=} \ln^2 2$$

$$f''_{xy} = e^{y \ln x} \frac{y}{x} \ln x + e^{y \ln x} \frac{1}{x} \stackrel{(2,1)}{=} \ln 2 + 1$$

Тогда наш ответ:

$$d^2u|_{(2,1)} = 2(\ln 2 + 1)dxdy + 2\ln^2 2dy^2$$

Пример

Найти
$$d^3f$$
 для $f = x^4 + xy^2 + yz^2 + zx^2$

Как понять, что такое d^3f от отрех переменных?

$$d^{3}u = \left(dx\frac{\partial}{\partial x} + dy\frac{\partial}{\partial y} + dz\frac{\partial}{\partial z}\right)^{3}u$$
$$d^{3} \stackrel{(0,1,2)}{=} 3 * 2dx^{2}dz + 3 * 2dydz^{2} + 3 * 2dx^{2}dy$$