Equivalence between NFA and DFA

- For many languages, it is easier to construct an NFA than a DFA.
- Surprisingly, however, for any NFA N there is a DFA D, such that L(D) = L(N), and vice versa.
- Finding such equivalent DFA involves an algorithm for subset construction, an important example on how an automaton B can be generically constructed from another automaton A.
- Given an NFA $N=(Q_N,\Sigma,\delta_N,q_0,F_N)$, we will construct a DFA $D=(Q_D,\Sigma,\delta_D,\{q_0\},F_D)$ such that L(D)=L(N)

The subset construction method

- $Q_D = \{S : S \subseteq Q_N\}$. Note:
 - Q_D consists of all possible subsets of Q_N
 - $|Q_D| = 2^{|Q_N|}$, although most states in Q_D are likely to be garbage.

Subset construction: transition function

$$\delta_D$$
: For every $S\subseteq Q_N$ and $a\in \Sigma$, $\delta_D(S,a)=\bigcup_{p\in S}\delta_N(p,a)$

	0	1		0	1
Ø	Ø	Ø	A	\boldsymbol{A}	\overline{A}
$\rightarrow \{q_0\}$	$\{q_0,q_1\}$	$\{q_0\}$	$\rightarrow B$	\boldsymbol{E}	B
$\{q_1\}$	Ø	$\{q_2\}$	C	\boldsymbol{A}	D
$\star \{q_2\}$	Ø	Ø	$\star D$	\boldsymbol{A}	\boldsymbol{A}
$\{q_0,q_1\}$	$\{q_0,q_1\}$	$\{q_0,q_2\}$	E	\boldsymbol{E}	F
$\star \{q_0, q_2\}$	$\{q_0,q_1\}$	$\{q_0\}$	$\star F$	E	B
$\star \{q_1, q_2\}$	Ø	$\{q_2\}$	$\star G$	\boldsymbol{A}	D
$\star \{q_0,q_1,q_2\}$	$\{q_0,q_1\}$	$\{q_0, q_2\}$	$\star H$	\boldsymbol{E}	F

A more direct subset construction

- We can avoid generating all possible subsets of states by performing "lazy evaluation" on the subsets.
- To convert a NFA N into a DFA D the idea is to construct the transition table for D only for accessible states S in N, as follows:

Basis: $S = \{q_0\}$ is accessible

Induction: If state S is accessible, then for each input symbol a we compute the states

$$\delta_D(S, a) = \bigcup_{p \in S} \delta_N(p, a)$$
 $\delta_D(S, a) = acc$

Induction, in pseudo code:

$$acc := \{ \};$$
for each $p \in S$
 $acc := acc \cup \delta_N(p, a);$
 $\delta_D(S, a) = acc$

Subset construction by "lazy evaluation": example

Obtaining the DFA for the NFA above using "lazy evaluation" of states sets. (on the board)

A DFA obtained from a NFA recognizes the same language

If $D=(Q_D,\Sigma,\delta_D,\{q_0\},F_D)$ is the DFA constructed from NFA $N=(Q_n,\Sigma,\delta_N,q_0,F_N)$ by subset construction, then L(D)=L(N).

Proof: First we show on an induction on |w| that

$$\widehat{\delta}_D(\{q_0\}, w) = \widehat{\delta}_N(q_0, w)$$

Basis: $w = \epsilon$. The claim follows from def.

Proof (cont.)

Induction:

$$\widehat{\delta}_D(\{q_0\},xa) \stackrel{\mathsf{def}}{=} \delta_D(\widehat{\delta}_D(\{q_0\},x),a)$$
 $\stackrel{\mathsf{i.h.}}{=} \delta_D(\widehat{\delta}_N(q_0,x),a)$
 $\stackrel{\mathsf{cst}}{=} \bigcup_{p \in \widehat{\delta}_N(q_0,x)} \delta_N(p,a)$
 $\stackrel{\mathsf{def}}{=} \widehat{\delta}_N(q_0,xa)$

Since both D and N accept w if and only if $\hat{\delta}_D(\{q_0\},w)$ or $\hat{\delta}_N(q_0,w)$ contain a state in F_N , it follows that L(D)=L(N).

Automata with spontaneous moves

- ullet Such moves are depicted in the state-transition diagram as an arc labelled ϵ
- Such arcs are quite handy for assembling automata recognizing a regular composition of finite-state languages.
- Moreover, ε-NFA are useful in proving the equivalence between the language accepted by a FA (a machine-like description of a language) and by a regular expression (an algebraic description of a language)

Example of ϵ -NFA

An ϵ -NFA that recognizes an optional + or - sign, a string of digits, a decimal point, and another string of digits.

ϵ -NFA formally

- An ϵ -NFA is a quintuple $(Q, \Sigma, \delta, q_0, F)$, where δ is a function from $Q \times \Sigma \cup \{\epsilon\}$ to the powerset of Q.
- **●** Like other automata, an ϵ -NFA can also be represented by the transition table.

	ϵ	+,-	•	0,,9	0.1 9 0.1 9
$\rightarrow q_0$	$\{q_1\}$	$\{q_1\}$	Ø	Ø	Start
$q_{\mathtt{1}}$	Ø	Ø	$\{q_2\}$	$\{q_1,q_4\}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
q_2	Ø	Ø	Ø	$\{q_3\}$. 0,1,,9
q_{3}	$\{q_{5}\}$	Ø	Ø	$\{q_3\}$	
q_{4}	Ø	Ø	$\{q_{3}\}$	Ø	0,1,,9
⋆ q_5	Ø	Ø	Ø	Ø	(q_4)

ECLOSE

- ECLOSE(q) yields all states from state q along any path whose arcs are labled with ϵ .
- If A is a set of states of an FA, then $ECLOSE(A) = \bigcup_{p \in A} ECLOSE(p)$
- Inductive definition of ECLOSE(q), where q is a state:

Basis: $q \in ECLOSE(q)$

Induction:

if $(p \in ECLOSE(q) \text{ and } r \in \delta(p, \epsilon))$ then $r \in ECLOSE(q)$

ECLOSE: example

For instance,

$$ECLOSE(1) = \{1, 2, 3, 4, 6\}$$

Extended transition function for ϵ -NFA

Basis: $\hat{\delta}(q,\epsilon) = ECLOSE(q)$

Induction:

$$\hat{\delta}(q, xa) = ECLOSE(\bigcup_{p \in \hat{\delta}(q, x)} \delta(p, a))$$

Induction, in pseudo code: Let $\hat{\delta}(q,x) = \{p_1, p_2, \dots, p_k\}$

$$r := \{ \};$$
for each $p_i \in \{p_1, p_2, \cdots, p_k\}$
 $r := r \cup \delta(p_i, a)$
 $\hat{\delta}(p, xa) = ECLOSE(r);$

Example

Let's compute $\hat{\delta}(q_0,.5)$ for the DFA below

Equivalent DFA for an ϵ -NFA

- To convert an ϵ -NFA $E=(Q_E,\Sigma,\delta_E,q_0,F_E)$ into a DFA $D=(Q_D,\Sigma,\delta_D,q_D,F)$ the construction we use is similar to the subset construction.
- **●** The difference is that we must incorporate the ϵ -transitions via the ϵ -closure.
- We construct the transition table for D as follows:

Basis: $q_D = ECLOSE(q_0)$ is accessible in D

Induction: If state S is accessible, then for each input symbol a we compute the states

$$\delta_D(S, a) = ECLOSE(\bigcup_{p \in S} \delta_E(p, a))$$

• $F_D = \{S : S \in Q_D \text{ and } S \cap F_E \neq \emptyset\}$

Equivalent DFA for an ϵ -NFA

DFA ${\it D}$ corresponding to ${\it E}$

Regular Expressions

- A FA (DFA, NFA, or ε-NFA) provides a "procedural" description for a machine that recognizes a regular language.
- A regular expression provides a "declarative" description for a regular language.
- E.g.: The set of all binary strings that end with a 0.

Now, instead of focusing on how regular languages are computed, we focus on the problem of describing finite or repeating patterns.

Where can we find applications for this?

Since REs provide a declarative way to express strings we want to accept, it can serve as input to systems that process strings. For example:

- The first step of compiling a program.
- Filtering email for spam.
- Sorting email into appropriate mailbox based on keywords
- Searching a complex directory structure by specifying patterns (e.g., UNIX-like grep command).

Operations on regular languages

Before describing the notation for RE, let's learn the operations on languages that the operators of RE represent.

Let L and M be languages, e.g., $L = \{01, 11\}$, $M = \{00, 10, 11\}$.

- Union: $L \cup M = \{w : w \in L \text{ or } w \in M\}$
- Concatenation: L.M or just $LM = \{w : w = xy, x \in L, y \in M\}$
- Power: $L^0 = \{\epsilon\}, L^1 = L, L^{k+1} = L.L^k$
- Kleene Closure: $L^* = \bigcup_{i=0}^{\infty} L^i$

Note: $\emptyset^* = \{\epsilon\}$. Rationale: $\emptyset^0 = \{\epsilon\}$ and \emptyset^i for $i \geq 1$ is empty.

REs and the languages they define

Inductive definition of REs and the languages they define.

Basis:

- ϵ and \emptyset are REs. $L(\epsilon) = {\epsilon}, L(\emptyset) = \emptyset$
- If $a \in \Sigma$, then a is a RE. $L(a) = \{a\}$

Induction:

- If E is a RE, then (E) is a RE. L((E)) = L(E)
- If E and F are REs, then E+F is a RE. $L(E+F)=L(E)\cup L(F)$.
- If E and F are REs, then E.F is a RE. L(E.F) = L(E).L(F).
- If E is a RE, then E^* is a RE. $L(E^*) = (L(E))^*$.

RE: examples

- $L(01) = \{01\}$
- $L(01+0) = \{01,0\}$
- $L(0(1+0)) = \{01, 00\}$. Note order of precedence of operators:
- $L(0^*) = \{\epsilon, 0, 00, 000, \cdots\}.$
- $L((0+10)^*)$ = all binary strings without consecutive 1s that end in 0.
- $L((0+10)^*(\epsilon+1)) = \text{all binary strings without two consecutive 1s.}$
- Order of precedence of operators: * > . > +
- Example: $01^* + 1$ is grouped $(0(1)^*) + 1$

Exercise

Provide a regular expression that defines the language of the DFA below:

