Discrete 3D surfaces of revolution Final presentation

Zied BEN OTHMANE Thomas BENOIST Adrien BISUTTI Lydie RICHAUME

University of Poitiers

March 2nd, 2016

Outline

- Introduction
- Work achieved
- Gestion de projet
- Conclusion

Outline

- Introduction
 - Collaborators and clients
 - Roles
 - Context
 - Objectifs
- Work achieved
- Gestion de projet
- 4 Conclusion

Collaborators and clients

- Clients:
 - Éric ANDRES (Professor and former director of XLIM-SIC department)
 - Gaëlle LARGETEAU-SKAPIN (University lecturer, Discrete geometry)
- Exemple of final user :
 - Aurélie MOURIER (Artist)
- Pedagogic Supervisor :
 - Philippe MESEURE (Professor, Computer Graphics)

Roles

- Team composition :
 - Thomas BENOIST Project manager
 - Zied BEN OTHMANE Quality manager
 - Adrien BISUTTI Risks manager
 - Lydie RICHAUME Tasks manager

Context

- Éric Andres and Gaëlle Largeteau-Skapin developped a new algorithm to model discrete surfaces of revolution.
- Display the result with Mathematica

Need of a tool useable by everyone and everywhere

Objectifs

- Outil de visualisation de surfaces
 - Visualiser en 3D, en coupe
 - Choisir les méridianes et les courbes de révolution
 - Exporter des objets obtenus
- Algorithme de construction des surfaces de révolution
 - Fourni par les clients
 - Possibilité d'évolution de l'algorithme

Outline

- Introduction
- Work achieved
 - Maquette
 - Demonstration
- Gestion de projet
- 4 Conclusion

Maquette

- Listes des fonctionnalitées
- Étude et transcription de l'algorithme
- Documentation technique
- Maquette

Demonstration

Outline

- Introduction
- Work achieved
- Gestion de projet
 - Gantt diagram
 - Progress
 - Risk evolution
 - Quality insurance plan
 - Costs
- 4 Conclusion

Gantt diagram

Diagramme prévisionnel

Diagramme réalisé

Zoom

Diagramme prévisionnel

Diagramme réalisé

Progress

Diagramme d'avancement des tâches

Server linked problems

Gravity	0	1	2	3
Delay	•			
Costs	•			
Receipts	•			
Performance	•			
Other				
Global	•			

Level	Gravity	Gravity Probability		
0	Aucune	< 1%	No critical	
1	Faible (marges)	de 1% à 5%	INO CITUCAL	
2	Significative	de 5% à 20 %	Critical	
3	Danger	> 20%	Critical	

New clients

Gravity	0	1	2	3
Delay	•	-		
Costs	•			
Receipts	•			
Performance	•	-		
Other				
Global	•	-		

Level	Gravity	Gravity Probability		
0	Aucune	< 1%	No critical	
1	Faible (marges)	de 1% à 5%	INO Critical	
2	Significative	de 5% à 20 %	Critical	
3	Danger	> 20%	Critical	

• Generation algorithm evolution

Gravity	0	1	2	3
Delay	•			
Costs	•			
Receipts	•			
Performance			•	
Other				
Global			•	

Level	Gravity	ravity Probability		
0	Aucune	< 1%	No critical	
1	Faible (marges)	de 1% à 5%	TWO CHILICAL	
2	Significative	de 5% à 20 %	Critical	
3	Danger	> 20%	Critical	

• Risque de rendu

Gravity	0	1	2	3
Delay			•	
Costs	•			
Receipts	•			
Performance			•	
Other				
Global			•	

Level	Gravity	Gravity Probability		
0	Aucune	< 1%	No critical	
1	Faible (marges)	de 1% à 5%	INO CITUCAL	
2	Significative	de 5% à 20 %	Critical	
3	Danger	> 20%	Critical	

Quality insurance plan

Validation par les clients à chaque jalon.

ISO 9126

Why ISO-9126?

- International standard for the evaluation of software quality
- Given a quality note according to different criteria
- Validation of the application by the clients and the quality manager
- Externals and internals tests

Software quality measurment

	Question	Version 1	Version 2	Version 3	Version 4	Version 5
1	overall vision	1	1	0.5	1	1
2	The ease to find the information	0.5	0.5	0.5	0.5	1
3	Response speed	0.5	0.5	0.5	1	1
4	utility of the information	0	0.5	0.5	1	1
5	The choice of title and heading and their meanings	0.5	1	1	1	1
6	The completeness of the information found against the need	1	0.5	1	1	1
7	Rapidité d'exécution	0	0.5	1	1	1
8	Errors rate	0.5	0.5	0.5	1	1
9	Handling the use	1	1	1	0.5	0.5
10	The reliability of the application	0	1	1	1	1
	Total	50%	70%	75%	90%	95%

	functionality	Lev	el1	Le	Level 2		Level 3		Level 4		Level 5	
	Tunctionality	INT	EXT	INT	EXT	INT	Ext	INT	Ext	INT	Ext	
	interoperability											
Goal	ability to interact with one or more systems											
Question	Is the application uses norms and technical standards?											
	Evaluation	90%		75%		85%		100%		95.83%		
1	Adequacy											
Goal	Checking the adequacy of spots against the needs											
Question	Does each function is adequate to the customer need?											
	Evaluation		100%		80%		25%		85%		90%	
0.5	operability											
Goal	the ability to properly use the software system											
Question	At what level the software is usable?											
	Evaluation	25 %	25 %		32.14%	35.71%	35.71%		100%		100%	
	Note I/E	76.66 %	83.33%	75%	74.76%	60.35%	30.35%	100%	92.5%	95.83%	95%	
	Fonctionnalité	79.9	9 %	74	.88 %	45.3	35 %	96.	25%		196	

Standard divisions

- quality model
- external metrics
- internal metrics
- quality in use metrics.

Software quality evaluation

Q I P Reviews

- The use of such techniques for explicitly and analyzing such quality during the requirements phases
- Well-differentiated characteristics of software quality has been developed
- A large number of software quality-evaluation metrics have been defined
- Quality can lead to significant savings in software life-cycle costs

Costs

Outline

- Introduction
- 2 Work achieved
- Gestion de projet
- 4 Conclusion

Conclusion

- Apport technique javascript (classe, worker, blob, webgl, etc.)
- Livraison en deux étapes
- Perspectives

Discrete 3D surfaces of revolution

Final presentation

Thanks for your attention.

Are there any questions?

