Second year option 2604 Lecture 8: atmospheric radars

A. Battaglia
EOS-SRC, Dept. of Physics and Astronomy, University
of Leicester, UK

Purpose of lecture

Atmospheric Radars

The purpose of lecture is the following:

- > Describe some atmospheric space-borne radars and applications
- Cloud vs precipitation radars
- > Effect of attenuation

Radar equation and radar reflectivity factor

Radar constant [W/m]

Target properties

$$P_{r} = \frac{c}{1024 \ln(2)} \frac{\pi^{3} |K|^{2}}{\lambda^{2}} \left[P_{t} \tau G^{2} \Phi_{3dB} \Theta_{3dB} \right] \frac{Z}{r^{2}}$$

Reflected power

 $|K|^2$ =0.93 is always assumed

The quantity

$$Z = \frac{\sum_{j} D_{j}^{6}}{V_{c}} = \int N(D)D^{6}dD$$

is of utmost importance in radar meteorology and is called the <u>radar</u> reflectivity factor

Z can be derived from measurements of P_r

Space-borne cloud&precipitation radars: current state

Cloud and precipitation radars in space

CloudSat carrying a high frequency (94 GHz) space-borne radar has now been in orbit since April 2006.

mainly intended for Precipitation STUDIES

TRMM Precipitation Radar Characteristics (Ku-GPM)

Observation Concept of the PR

<u>Home thinking</u>: figure out the relationship between pulse width and range resolution, antenna size and horizontal resolution

TRMM vs GPM sensitivity

TRMM Ku-radar has a sensitivity of 17 dBZ GPM Ku-radar has a sensitivity of 12 dBZ Compute the minimum detectable rain-rate.

$$P_r = C_{radar} \frac{Z}{r^2}$$

For stratiform rain at Ku we can use
$$Z = 292R^{1.53}$$

For convective rain at Ku we can use
$$Z = 146R^{1.52}$$

$$R_{strat} = \left(\frac{Z}{292}\right)^{1/1.53} = \begin{cases} 0.3mm/h & Z = 17dBZ\\ 0.15 & mm/h & Z = 12dBZ \end{cases}$$

$$R_{conv} = \left(\frac{Z}{146}\right)^{1/1.52} = \begin{cases} 0.5 \ mm/h & Z = 17dBZ \\ 0.23 \ mm/h & Z = 12dBZ \end{cases}$$

Looking inside Hurricanes

https://pmm.nasa.gov/articles/gpm-captures-hurricane-harveys-rainfall

Hurricane Harvey movie

How much does it rain? The present

Rainfall climatology

Generated by NASA's Giovanni (giovanni.gsfc.nasa.gov)

Ku-band radar observations for the Naples event

https://www.youtube.com/watch?v=242rbAzUsgs

Where are the strongest storms?

PROXY: the higher the height attained by the 40-dBZ level in a Precipitation Feature, the more intense the storm

Naples: 15 km

- 1. Preference for extreme events to be located over land or adjacent to land;
- 2. the strongest convective storms often found in semiarid regions, while the heavy rains of the oceanic ITCZ, western Amazonia, and much of SE Asia and Indonesia have relatively few intense storms;
- the equatorial land areas of Amazonia and Indonesia have many moderately intense but fewer extreme storms than those of equatorial Africa

CloudSAT Profiling Radar

The CPR (in orbit since 4/2006) provides the first mm-radar designed to regularly see precipitation on the planet at latitudes higher than the subtropics

Goal: vertical structure of cloud systems, distribution rain, interrelationship between cloud and precip.

Table 1. Cloud Profiling Radar Instrument and Performance Parameters

Parameter	Proposed Performance
Frequency	94.05 GHz
Altitude	705 – 730 km
Range resolution (6 dB)	485 m
Cross-track resolution	1.4 km
Along-track resolution	1.8 km
Pulse width	$3.3~\mu s$
Peak power (measured)	32.6 dBW
PRF	3700-4300 Hz
Antenna diameter	1.85 m
Antenna gain	63.1 dBi
Antenna sidelobes	$-50 \text{ dB } @ \theta > 7^{\circ}$
Integration time (single-beam)	0.16 s
Data window	30 km
Minimum detected reflectivity (measured)	-30 dBZ

Example I: Radar reflectivity factor of a continental cloud

Diameter (µm)	Number/cm ³	$N D^{6} (mm^{6}/m^{3})$
$5 = 5 \times 10^{-3} \text{ mm}$	$100 = 10^8 \text{ m}^{-3}$	1.56 - 10 - 6
10	100	1.00 -10-4
15	50	5.69 - 10 - 4
20	25	1.60 - 10 - 3
25	10	2.44 - 10 - 3
30	5	9.19 - 10 - 3
35	1	4.01 - 10 - 3
		Total = 1.80 - 10 ⁻² => -17.4 dBZ

This can be detected by a cloud radar (CloudSat) but not by a rain radar (TRMM). We need log scale because of the D⁶ dependence!!!

Example II: radar equation for CloudSat

$$P_{r} = \frac{c}{1024 \ln(2)} \frac{\pi^{3} |K|^{2}}{\lambda^{2}} \left[P_{t} \tau G^{2} \Phi_{3dB} \Theta_{3dB} \right] \frac{Z}{r^{2}} = C_{radar} \frac{Z}{r^{2}}$$

Radar constant [W/m]

 $P_{t} = 32.6 \, dBW = 1.8 \, kW$

$$\lambda = 3 \text{ mm}$$

$$\Phi_{3dB} = \Theta_{3dB} = 1.22 \frac{\lambda}{D} = 0.02 \quad rad = 0.11^{\circ}$$

$$|K|^2 = 0.93$$

$$G \approx \frac{16}{(\Theta_{3dR})^2} = 4.1x10^6 = 66dB$$

$$C_{CloudSat} = 5.4 \times 10^{19} \frac{W}{m}$$

$$Z = -17.4 \ dBZ = 1.8 \times 10^{-2} \ \frac{mm^6}{m^3} = 1.8 \times 10^{-20} \ m^3$$

$$P_r = C_{radar} \frac{Z}{r^2} = 2 \times 10^{-12} W$$

$$r = 710 \text{ km}$$

still detectable by the radar receiver!

Note the advantage of employing short wavelength (also for achieving large G) improving the sensitivity.

Tropical cyclone

Vertical structure is not resolved by optical/IR/MW-spectrum passive instruments. Radars, on the other hand, can penetrate deep into the dense cloud/precipitation structure before being totally attenuated providing a better understood vertical slice of TC structure

- upward sloping of cloud tops toward the TC eye or storm center;
- 2) a rain-free region associated with both the eye and a moat-like region to the south located between the inner eyewall and an outer rain band;
- 3) ready identification of intense rain areas along the radar's nadir-only ground track;
- 4) cloud-base measurements to the south as the cirrus cloud bases get progressively higher away from the convective source region;
- 5) mapping of the upward sloping bright band.

Fig. 2. The A-Train (Aqua-VIS and CloudSat) view of Hurricane Ileana at 2100 UTC 23 Aug 2006. See text for explanations

Radar-lidar: synergies and complementarities

Lidar: backscattering~D², more sensitive to thin cirrus and liquid clouds but attenuated

Radar: backscattering~D, detects whole profile, surface echo provides integral constraint

MODIS 11 micron channel

Mid-level liquid clouds

Radar-lidar model evaluation

-60

-40

-20

0

latitude (degrees)

20

40

60

80

-80

Helene Garcon, MSc dissertation (2011)

- ECMWF model underestimates mid- and low-level cloud
- Notice polar stratospheric clouds in observations

0.1

0

Multi-frequency observation of a precipitating system

Note increasing levels of attenuation when increasing frequency

Attenuation from Beer-Lambert law

Homogenous scattering and absorbing medium

both dimensionally L-1

and, by integrating:

$$I_{t}(\lambda) = I_{0}(\lambda) e^{-\int_{0}^{r} [k_{a}(r) + k_{s}(r)]dr} = I_{0}(\lambda) e^{-\int_{0}^{r} k_{e}(r)dr} = I_{0}(\lambda) e^{-\tau}$$

with extinction coefficient:

$$k_e = k_s + k_a$$

No attenuation

$$P_r = C_{radar} \; \frac{Z_e}{r^2}$$

With attenuation

$$P_r = C_{radar} e^{-\frac{1}{0} \int_0^r k_e(r) dr} \frac{Z_e}{r^2}$$

The factor 2 accounts for the 2-way attenuation

Effective and measured reflectivities

$$P_r = \frac{C_{radar}}{r^2} \underbrace{e^{-2\int\limits_0^r k_e(r)dr}}_{Z_m} Z_e$$
what is measured by the radar is the combined effectivity of the target at range r, Z_e
the total attenuation from the radar to the target and the radar to the radar to the target and the radar to the radar

What is measured by the radar is the combined effect

- the intrinsic reflectivity of
- the total attenuation from the radar to the target and backwards.

$$Z_{m} \left[\frac{mm^{6}}{m^{3}} \right] = Z_{e} \left[\frac{mm^{6}}{m^{3}} \right] e^{-2\int_{0}^{\infty} k_{e}(r)dr}$$

in linear units

$$Z_{m}[dBZ] = Z_{e}[dBZ] - 2\int_{0}^{r} k_{e}(r)dr \times \underbrace{10\log_{10}(e)}_{4.343} = Z_{e}[dBZ] - 2A_{one-way}[dB] \qquad \underline{\text{in dB units}}$$

N.B. A layer with $\tau=1$ reduces the measured reflectivity by 8.7 dB

Attenuation coefficient

$$A_{one-way}[dB] = 4.343 \times \int_{0}^{r} k_{e}(r)dr$$

Extinction coefficient is affected by different sources:

- Atmospheric gases
- Hydrometeors (cloud droplets, raindrops, ice crystals, graupel/hailstones, melting hydrometeors)

$$k_e = k_e [gases] + k_e [hydro]$$

All of these bulk properties are:

- strongly dependent on the radar frequency
- intrinsically <u>related to the atmospheric composition or the hydrometeor microphysics</u>

$$k_e[hydro] = \int_{PSD} \sigma_e(D) N(D) dD$$

The bulk effect is obtained by summing up the extinction of all particles present in the backscattering volume

Gas attenuation in the microwave region

Transmit $\tan ce = e^{-\tau}$

Separation of different contributions

Oxygen and water vapour are the key absorbers in the MW region

Example: attenuation by cumulus clouds at 94 GHz

A 0.5 km thick Sc with a mean LWC=0.8g/m³ is lingering over Leicester. Compute the two-way attenuation produced by the layer for the CloudSat radar (94 GHz).

Solution

1. LWP= $0.5 \times 0.8 = 0.4 \text{ kg/m}^2$

2. From the previous table T [0.2 kg/m²]=0.85 \rightarrow T [0.4 kg/m²]=0.85²=0.72

Then the two way transmissivity

$$T_{2way}$$
 [0.4 kg/m²]=0.72² =0.52 \rightarrow 3 dB attenuation
$$10log_{10}(1/2)$$
=-10log10(2)=-3dB

Attenuation-rainfall rate relationship

Best fitting
A-RR curves

RR almost linearly related to attenuation at Ka-band (but also in other bands), much better than Z → rainfall attenuation algorithms

Temperature	S	С	X
0°C	5.37 10 ⁻⁴ R ^{0.96}	2.90 10 ⁻³ R ^{1.06}	1.14 10 ⁻² R ^{1.13} .
10°C	4.07 10 ⁻⁴ R ^{0.96}	2.25 10 ⁻³ R ^{1.08}	1.00 10 ⁻² R ^{1.17}
20°C	3.11 10 ⁻⁴ R ^{0.96}	1.75 10 ⁻³ R ^{1.09}	8.51 10 ⁻³ R ^{1.21}
30°C	2.46 10 ⁻⁴ R ^{0.96}	1.38 10 ⁻³ R ^{1.09}	7.16 10 ⁻³ R ^{1.25}

Example: rain attenuation at 35 GHz

A layer of 3 km of rain is producing an attenuation of 24 dB in a Ka-band radar. Estimate the rain rate. What would be the attenuation at C-band?

6 km of two way path → 24/6= 4 dB/km attenuation

$$k_e[rain @ Ka in dB / km] \approx 0.28 RR[mm / h]$$

$$RR[mm/h] \approx 3.6 k_{\rho}[dB/km] = 14.4mm/h$$

From the previous Table with such rain rate at C-band

$$k_e[rain @ C in dB / km] \approx 0.02dB / km$$

$$A_{2-way}[rain @ C] \approx 6 \times 0.02 = 0.12dB$$
 Negligible!

What do you need to know?

•	Space-borne radars for the characterization of the vertical structure of cloud
	and precipitation.

• Be able to use the radar equation to compute received power

Cloud vs rain radars: advantages and disadvantages. Role played by attenuation.

Missions: TRMM, GPM, CloudSat (topics for essay)