NMAM INSTITUTE OF TECHNOLOGY, NITTE Off-Campus Centre of Nitte (Deemed to be University) I Sem B.Tech. (CBCS) Mid Semester Examinations - I, September 2022

PH1001-1 - ENGINEERING PHYSICS

Max. Marks: 20

Duration: 1 Hour

В			4.			ω			2			-		List
· Bl	c	5	a)	0		a	0	5	a)	0	5	a)		9
oom's Taxon	Draw a cubic to (1 4 1) and (3 2 1)	What is a factor for number of	Explain the	The lattice Calculate th	What is inter-plana indices for	With neat	An electro 1.5 Å, but ground sta	Solve the dimensional	What are th	Calculate the de-Bro an energy of 1.5 keV	Obtain the Schrodinge	Explain the		List of constants:
BT* Bloom's Taxonomy, L* Level; CO* Course Outcome; PO* Program Outcome	Draw a cubic unit cell and plot the following planes: (1 4 1) and (3 2 1)	What is atomic packing factor? Determine the atomic packing factor for a face centered cubic (FCC) lattice by calculating number of atoms/unit cell and the relation between atomic radius and the relation between atomic radius	Explain the origin of characteristic X rays.	The lattice constant for a unit cell of aluminum is 4.031 Å. Calculate the interplanar spacing of (2 1 1) planes.	What is inter-planar spacing? Obtain an expression for inter-planar spacing in terms of lattice parameter and Miller indices for a cubic crystal.	Unit - II With neat diagram, explain any three crystal systems.	An electron is bound in a one-dimensional potential of width 1.5 Å, but of infinite wall height. Find its energy values in the ground state, and in the first excited states.	Solve the Schrodinger's wave equation for a particle in one dimensional potential well of infinite height.	What are the characteristics of wave function?	Calculate the de-Broglie wavelength of an electron moving with an energy of 1.5 keV.	Obtain the expression for one-dimensional time independent Schrodinger's wave equation	Explain the terms (i) Mater waves (ii) Probability density		Note: Answer any One full question from each Unit . Velocity of light, c=3x10 ⁶ ms ⁻¹ , Planck's constant, h=6.63x10 ⁻³⁴ Js, Electron mass, m=9.11x10 ⁻³¹ kg, Electron charge, e=1.6x10 ⁻¹⁹ C, Boltzmann constant, k=1.38x10 ⁻²³ J/K, Neutron mass=1.68 x10 ⁻²⁷ kg. Avogadro number, N _A = 6.023 x 10 ⁻²⁶ / kg mole.
ome	ω 4		ω	ω	. 4	ىد	ω	4	ω	ω	4	ω	Marks	nit. 3×10-34 J 3×10-19C .68 ×10-3
	2 2		=	ت ا ت	5 !		L3	L3	<u>_</u>	L3	2	=	BT*	s, 27 kg.
	2 2		s	N 1	o 1	s	_	_				_	CO*	
	1,2	-		1,2	<u>.</u>		1,2	1,2	1,2	1,2	1,2	1,2	PO*	

USN NNM22AM058

MAM INSTITUTE OF TECHNOLOGY, NITTE

Off-Campus Centre of Nitte (Deemed to be University) I Sem B. Tech. (CBCS) Mid Semester Examinations - II, November 2022

PH1001-1 - ENGINEERING PHYSICS Duration: 1 Hour

Max. Marks: 20

Note: Answer any One full question from each Unit.

Velocity of light, $c = 3x10^8 \text{ms}^{-1}$, Planck's constant, $h=6.63x10^{-34} \text{ Js}$, List of constants:

Electron mass, m=9.11x10⁻³¹kg, Electron charge, e=1.6x10⁻¹⁹C,

Boltzmann constant, k=1.38x10⁻²³J/K, Mass of neutron=1.68 x10⁻²⁷ Kg.

Avogadro number, $N_A = 6.023 \times 10^{26}$ / kg mole.

		Unit – I	Marks	BT*	CO*	PO*
1.	a)	Distinguish between intrinsic and extrinsic semiconductor.	3	L*2	3	1,2
	b)	Obtain an expression for the conductivity of an extrinsic semiconductor	4	L3	3	1,2
	c)	Calculate the resistivity of intrinsic germanium if the intrinsic carrier density is 2.5x10 ¹⁹ m ⁻³ assuming electron and hole mobilities of 0.38 m ² v ⁻¹ s ⁻¹ and 0.18 m ² v ⁻¹ s ⁻¹ respectively.	3	L3	3	1,2
2.	a)	Explain the effect of temperature on the Fermi level in a n-type semiconductor	3	L2	3	1,2
	b)	What is Fermi factor? Discuss the variation of Fermi factor for different energy levels with temperature	4	L2	3	1,2
	c)	Calculate the probability of an electron occupying an energy level 0.02 eV above the Fermi level at 200 K	3	L3	3	1,2
		Unit – II				
3.	a) b)	Distinguish between direct and indirect band-gap semiconductors What is Hall effect? Obtain an expression for the Hall coefficient	3	L2	4	1,2
		and Hall voltage of an n-type semiconductor	4	L2	4	1,2
	c)	A semiconductor sample of thickness 1.2x10 ⁻⁴ m is placed in a magnetic field of 0.2T acting perpendicular to its thickness. Find the Hall voltage generated when a current of 100 mA passes				
		through it. Assume the carrier concentration to be 10 ²³ m ⁻³	3	L3	4	1,2
4.	a) b)	Explain Type-II superconductors with suitable diagrams. What are superconductors? Explain Critical magnetic field and	3	L2	4	1,2
		Meissner effect in superconductors. The critical temperature and critical magnetic field for	4	L2	4	1,2
	c)	superconducting lead are 7.2 K and 800 gauss respectively. What will be the temperature up to which lead will be in				
		superconducting state in a magnetic field of 400 gauss?	3	L3	4	1,2

BT* Bloom's Taxonomy, L* Level; CO* Course Outcome; PO* Program Outcome