Module-2

Finite Automata

Language Recognizers : An example of Finite Automata

An automaton is an abstract model of a digital computer.

Finite Automata(FA) is the simplest machine to recognize patterns.

Finite Automaton

Representation of Finite Automata

Finite Automata is represented by -

- 1. Transition Graph
- 2. Transition Table
- 3. Regular Expression

Transition Graph

Initial Configuration

Input String

a b b a

Reading the Input

a b b a

Input finished

accept

Rejection

a b a

Input finished

Another Rejection

λ

Another Example

Input finished

Rejection Example

b a b

Input finished

Languages Accepted by FAs

Definition:

The language L(M) contains all input strings accepted by M

$$L(M)$$
 = { strings that bring M to an accepting state}

Example

$$L(M) = \{abba\}$$

M

Example

$$L(M) = \{\lambda, ab, abba\}$$

Example

$$L(M) = \{a^n b : n \ge 0\}$$

Formal Definition

Finite Automaton (FA)

$$M = (Q, \Sigma, \delta, q_0, F)$$

Q: set of states

 Σ : input alphabet

 δ : transition function

 q_0 : initial state

Input Alphabet Σ

•
$$\Sigma = \{a,b\}$$

Set of States Q $Q = \{q_0, q_1, q_2, q_3, q_4, q_5\}$

Initial State q_0

•

Set of Accepting States F

•
$$F = \{q_4\}$$

Transition Function δ

$$\delta: Q \times \Sigma \to Q$$

$$\delta(q_0, a) = q_1$$

$$\delta(q_0,b)=q_5$$

$$\delta(q_2,b)=q_3$$

Transition Table

δ	а	Ь
$\rightarrow q_0^{\bullet}$	q_1	q ₅
q_1	q ₅	92
92	q_5	<i>q</i> ₃
<i>q</i> ₃	<i>q</i> ₄	q_5
q_4	q ₅	<i>q</i> ₅
q_5^*	q ₅	<i>q</i> ₅

Extended Transition Function δ^*

$$\delta^*: Q \times \Sigma^* \to Q$$

$$\delta * (q_0, ab) = q_2$$

$$\delta * (q_0, abba) = q_4$$

$$\delta * (q_0, abbbaa) = q_5$$

Observation: if there is a walk from q to q' with label $\mathcal W$ then

$$\delta * (q, w) = q'$$

$$w = \sigma_1 \sigma_2 \cdots \sigma_k$$

Example: There is a walk from q_0 to q_5 with label abbbaa

$$\delta * (q_0, abbbaa) = q_5$$

Recursive Definition

$$\delta * (q, \lambda) = q$$

$$\delta * (q, w\sigma) = \delta(\delta * (q, w), \sigma)$$

$$\delta * (q, w\sigma) = q'$$

$$\delta * (q, w\sigma) = \delta(q_1, \sigma)$$

$$\delta * (q, w\sigma) = \delta(q_1, \sigma)$$

$$\delta * (q, w\sigma) = \delta(\delta * (q, w), \sigma)$$

$$\delta * (q, w) = q_1$$

$$\delta * (q, w) = q_1$$

$$\delta * (q_0, ab) =$$

$$\delta(\delta * (q_0, a), b) =$$

$$\delta(\delta(\delta * (q_0, \lambda), a), b) =$$

$$\delta(\delta(q_0, a), b) =$$

$$\delta(q_1, b) =$$

$$q_2$$

$$q_1 \qquad b \qquad q_3 \qquad a \qquad b$$

$$q_4 \qquad b \qquad q_4$$

$$q_4 \qquad b \qquad q_4$$

$$q_4 \qquad b \qquad q_4$$

Check the string acceptance of abba

```
• \delta^*(qo,abba) = \delta(\delta^*(q0,abb), a)
                  =\delta(\delta(\delta^*(q0,ab),b),a)
                  = \delta(\delta(\delta(\delta(\delta^*(q0,a),b),b),a)
                  = \delta(\delta(\delta(\delta(\delta(\delta^*(q0,\lambda),a),b),b),a)
                  = \delta(\delta(\delta(\delta(q0,a),b),b),a)
                  =\delta(\delta(\delta(q1,b),b),a)
                  =\delta(\delta(q2,b),a)
                  =\delta(q3, a)
                  =q4 € F
```

• String abba is accepted as q4 is a final state RESIDENCY

Language Accepted by FAs

• For a FA $M = (Q, \Sigma, \delta, q_0, F)$

• Language accepted by M

•
$$L(M) = \{ w \in \Sigma^* : \delta^*(q_0, w) \in F \}$$

Example

L(M)= { all strings with prefix ab }

L=strings with substring '101' over {0, 1}

Example

```
L(M) = \{ all strings without substring 001 \}
```


Example

$$L(M) = \{awa : w \in \{a,b\}^*\}$$

Regular Languages

- Definition:
- ullet A language $oldsymbol{L}$ is regular if there is
- FA M such that L = L(M)
- Observation:
- All languages accepted by FAs
- form the family of regular languages

Examples of regular languages:

```
\{abba\} \{\lambda, ab, abba\}
\{awa: w \in \{a,b\}^*\} \ \{a^nb: n \ge 0\}
{ all strings with prefix ab }
{ all strings without substring 001 }
There exist automata that accept these
Languages
```


There exist languages which are not Regular:

Example:
$$L=\{a^nb^n:n\geq 0\}$$

There is no FA that accepts such a language

(we will prove this later in the class)

Deterministic Finite Automata

- Every State should have transition over every input symbol
- There should be only One next state for each transition
- DFA is defined as

$$M = (Q, \Sigma, \delta, q_0, F)$$

Design DFA that accepts language L= $\{ w : |w| \mod 3 = 0 \}$ over $\sum = \{a, b\}$

Solution

- \gt Strings accepted= { ϵ , aaa, bbb, aba, aab, bab, aaabbb, ababab, ...}
- >Strings rejected= {a, b, ab, ba, abab, baba, bbaa, aaabb, ...}
- >Transition Diagram

Consider Sample String : a a b ↑

Consider Sample String: a a b ↑

Consider Sample String: a a b ↑

- **≻**Consider Sample String : a a b
- > String is accepted

Acceptance State

Consider Another Sample String: baba

> Consider Another Sample String : b a b a ↑

Consider Another Sample String: baba

Consider Another Sample String: baba

- **≻**Consider Another Sample String: **b a b a**
- > String is rejected

Rejection State

- >DFA Tuples $M=(Q, \Sigma, \delta, q0, F)$
- $ightharpoonup Q = \{q0, q1, q4\}$
- $\triangleright \Sigma = \{a, b\}$
- $\succ \delta$ = Transition function represented by Transition table
- ➤ q0= Initial State
- F= {q0} → Acceptance State

>Transition Table

Σ Q	а	b
_*q0	q1	q1
q1	q4	q4
q4	q0*	q0*

DFA - Starts with a, $\Sigma = \{a,b\}$

• L= { a,aa,ab,aaa,aab,aba,....}

DFA - Starts with ab , $\Sigma = \{a,b\}$

• L= { ab,aba,abb,....}

DFA - Starts with aa , $\Sigma = \{a,b\}$

• L = { aa,aab,aaba,....}

DFA - Starts with aba, $\Sigma = \{a,b\}$

• L={ aba,abaa,abab,abaaa,...}

DFA - Starts with 101, $\Sigma = \{0,1\}$

• L={ 101,1010,1011,101101,...}

Ends with a

• L={a,aa,ba,aaa,aba,...}

Ends with 1, $\Sigma = \{0,1\}$

• L={ 1,01,11,...}

Ends with ab
• L={ab,aab,bab,aaab,bbbbab,abab,...}

Ending with bab

$- L = \{101,0101,1101,000101,111101,\dots\} = \{0,1\}$

DFA – Ends with 111, $\Sigma = \{0,1\}$

DfA – Substring 101
• L={ 101,0101,1101,1010,1011,00010111,...}

DFA- Contains 111

• L={ 111,0111,11111,000111000,111111000,...}

DFA – Contains 1011

• L= { 1011,01011,11011,00010111,...}

DFA- Even no of 0s, $\Sigma = \{0,1\}$ or n0(w)mod2=0

• L={ λ , 1,1111,00,0000,11100,1110000,0000111,...}

Transitio n	0	1
*->q0	q1	q0
q1	qo	q1

DFA – Odd no of 0's, $\Sigma = \{0,1\}$ or n0(w)mod2=1

• L={ 0,01,1110,000,000001111,...}

DFA- nb(w)mod4=1, Σ ={ a,b}

DfA - n1(w)mod3=2, Σ ={ 0,1}

Dfa -lwlmod2=0,

DfA - lwlmod2=1

L={a,b,aaa,aba,aab,baa,bbb,baba,bba,....

DFA –lwlmod3=0, Σ ={ 0,1}

No of a's is even and no of b's oddeo

No of a's is odd and no of b's even=oe

No of a's is odd and no of b's odd-oo

No of a's is even and no of b's evenee

NFA Definition

NFA is defined as $M=(Q, \sum, \partial, q0, F)$

Where, Q= set of states

 Σ = input alphabet

 $\delta = \text{transition function} \quad \delta: Q X (\Sigma \cup \{\epsilon\}) \rightarrow 2^Q$

q0→ Start / Initial State

 $F \rightarrow$ set of acceptance state

NFA Example

Design NFA that accepts language of strings ending with ab/ba over $\Sigma = \{a, b\}$

Solution

- >Strings accepted= {ab, ba, abab, baba, bbab, aaaba, ...}
- \gt Strings rejected= { ϵ , a, b, aa, bb, aaa, abb, aaabbb, ...}
- >Transition Diagram

Convert NFA to DFA that accepts language of strings ending with ab/ba over $\Sigma = \{a, b\}$

Solution

- **▶Draw NFA for given language**
- **➤** Convert that NFA into DFA using subset construction method

- Using Subset Construction Method
- Consider {q0} as Start State
- $\succ \delta(q0, a) = \{q0 \ q1\}$ newly formed state
- > $\delta(\{q0 \ q1\}, a) = \delta(q0, a) \cup \delta(\{q1, a\})$ = $\{q0, q1\} \cup \{\emptyset\}$ = $\{q0 \ q1\}$
- > $\delta(\{q0 \ q1\}, b) = \delta(q0, b) \cup \delta(\{q1, b\})$ = $\{q0, q3\} \cup \{q2\}$ = $\{q0 \ q2 \ q3\}$

NFA	а	b
q0	{q0, q1}	{q0, q3}
q1	-	{q2}
q2	-	-
q3	{q4}	-
q4	-	-

DFA	a	b
q0	{q0 q1}	{q0 q3}
{q0 q1}	{q0 q1}	{q0 q2 q3}

{q0 q1}

```
Using Subset Construction Method
                                                                                     NFA
                                                                                                   a
Consider {q0} as Start State
                                                                                              {q0, q1}
                                                                                      q0
\succ \delta(q0, a) = \{q0 q1\} newly formed state
\succ \delta(\{q0 q1\}, a) = \delta(q0, a) \cup \delta(\{q1, a\})
                                                                                      q1
                    = \{q0, q1\} \cup \{\emptyset\}
                                                                                      q2
                    = \{q0 q1\}
                                                                                                \{q4\}
                                                                                      q3
\succ \delta(\{q0 q1\}, b) = \delta(q0, b) \cup \delta(\{q1, b\})
                                                                                      q4
                    = \{q0, q3\} \cup \{q2\}
                    = \{q0 q2 q3\}
                                                                             DFA
                                                                                                a
{q0 q2 q3} is newly formed state
\succ \delta(\{q0 \ q2 \ q3\}, a) = \delta(q0, a) \cup \delta(\{q2, a\}) \cup \delta(\{q3, a\})
                                                                                            {q0 q1}
                                                                              q0
                    = \{q0, q1\} \cup \{\emptyset\} \cup \{q4\}
```

 $\delta(\{q0\ q2\ q3\},\ b) = \delta(q0,\ b) \cup \delta(\{q2,\ b\}) \cup \delta(\{q3,\ b\})$ $\{q0\ q2\ q3\}$ $\{q0\ q1\ q4\}$

 $= \{q0, q3\} \cup \{\emptyset\} \cup \{\emptyset\} = \{q0 q3\}$

 $= \{q0 q1 q4\}$

b

 ${q0, q3}$

{q2}

b

{q0 q3}

{q0 q2 q3}

{q0 q3}

{q0 q1}

```
> {q0 q3} is newly formed state
```

```
> \delta(\{q0 \ q3\}, a) = \delta(q0, a) \cup \delta(\{q3, a\})
= \{q0, q1\} \cup \{q4\}
= \{q0 \ q1 \ q4\}
```

$\delta(\{q0 \ q3\}, \ b) = \delta(q0, \ b) \cup \delta(\{q3, \ b\})$
$= \{q0, q3\} \cup \{\emptyset\}$
={q0 q3}

NFA	а	b
q0	{q0, q1}	{q0, q3}
q1	-	{q2}
q2	-	-
q3	{q4}	-
q4	-	-

DFA	a	b
q0	{q0 q1}	{q0 q3}
{q0 q1}	{q0 q1}	{q0 q2 q3}
{q0 q2 q3)	{q0 q1 q4}	{q0 q3}
{q0 q3}	{q0 q1 q4}	{q0 q3}


```
    {q0 q3} is newly formed state
    δ({q0 q3}, a)= δ(q0, a)υ δ({q3, a})
        ={q0, q1} υ {q4}
        ={q0 q1 q4}
    δ({q0 q3}, b)= δ(q0, b)υ δ({q3, b})
        ={q0, q3} υ {Ø}
        ={q0 q3}
    {q0 q1 q4} is newly formed state
```

NFA	a	b
q0	{q0, q1}	{q0, q3}
q1	-	{q2}
q2	-	-
q3	{q4}	-
q4	-	-

$\delta(\{q0\ q1\ q4\},\ a) = \delta(q0,\ a) \cup \delta(\{q1,\ a\}) \cup \delta(\{q4,\ a\})$
$= \{q0, q1\} \cup \{\emptyset\} \cup \{\emptyset\}$
={q0 q1}

$\succ \delta(\{q0 \ q1 \ q4\}, \ b) = \delta(q0, \ b) \cup \delta(\{q1, \ b\}) \cup \delta(\{q4, \ b\})$	}
={q0, q3} u {q2} u {Ø}	
={q0 q2 q3}	

a })		
DFA	a	b
q0	{q0 q1}	{q0 q3}
^{})} {q0 q1}	{q0 q1}	{q0 q2 q3}
{q0 q2 q3)	{q0 q1 q4}	{q0 q3}
{q0 q3}	{q0 q1 q4}	{q0 q3}
{q0 q1 q4}	{q0 q1}	{q0 q2 q3}

DFA	а	b
q0	{q0 q1}	{q0 q3}
{q0 q1}	{q0 q1}	{q0 q2 q3}
{q0 q2 q3)	{q0 q1 q4}	{q0 q3}
{q0 q3}	{q0 q1 q4}	{q0 q3}
{q0 q1 q4}	{q0 q1}	{q0 q2 q3}
		a_{-}
	<i>√a</i>	
	79	0
		b

Minimization of DFA Example

Minimize the following DFA using state equivalence method

DFA	0	1
→ A	В	С
В	В	D
С	В	С
D	В	E
E *	В	С

Minimization of DFA Example

Minimize the following DFA

≻Write 3'Equivalence

 ${A, C} {B} {D} {E}$

Minimization of DFA Example

Minimize the following DFA

- **►** Use State Equivalence Method
- ➤ Write 0'Equivalence as

$$\{A, B, C, D\} \{E\}$$

- ➤ Write 1'Equivalence {A, B, C} {D} {E}
- ➤ Write 2'Equivalence {A, C} {B} {D} {E}
- ➤ Write 3'Equivalence {A, C} {B} {D} {E}

DFA	0	1
→A,C	В	С
В	В	D
D	В	E
E*	В	С

E-NFA (Finite Automaton with Epsilon Transitions)

- A transition with an empty string is called an E-transition
- The formal definition of \in -NFA is represented through 5-tuple (Q, \sum , δ , q_0 , F) where,
- **Q** is a finite set of all states $(q_{0_{j}}, q_{1_{j}}, q_{2_{j}}, ..., q_{n})$ where n is finite number
- ∑ is a finite set of symbols called the alphabet. i.e. {0, 1},
- $\delta: Q \times (\Sigma \cup E) \rightarrow 2^Q$ is a total function called as transition function
- q_0 is the initial state from where any input is processed $(q_0 \in Q)$.
- F is a set of final state/states where F will be subset (⊆) of Q.

Examples of Epsilon-NFA

Draw a Epsilon NFA which accept the string "ab".

Example 2

Draw an Epsilon Finite Automata which can accept the string "a or b or c"

Conversion of ϵ -NFA to DFA

• The method for converting the NFA with ϵ to DFA is explained below –

Step 1 – Consider M={Q, Σ , δ ,q0,F) is NFA with ϵ . We have to convert this NFA with ϵ to equivalent DFA denoted by

 $M0=(Q0,\Sigma, \delta0,q0,F0)$

Then obtain,

 ϵ -closure(q0) ={p1,p2,p3,.....pn}

then [p1,p2,p2,....pn] becomes a start state of DFA

• Step 2 – We will obtain δ transition on [p1,p2,p3,...pn] for each input.

 δ 0([p1,p2,p3,..pn],a) = ε-closure(δ (p1,a) U δ (p2,a)U...... δ (pn,a))= U (i=1 to n) ε-closure d(pi,a)

Where a is input $\in \Sigma$

- Step 3 The state obtained [p1,p2,p3,...pn] ∈ Q0.
- The states containing final state in pi is a final state in DFA.

Example of Conversion

 Convert the following NFA with epsilon to equivalent DFA

 To convert this NFA with epsilon, we will first find the ε-closures, as given below –

```
ε-closure(q0)={q0,q1,q2}
ε-closure(q1)={q1,q2}
ε-closure(q2)={q2}
```

- Let us start from ε-closure of start state, as mentioned below –
- When, ε-closure(q0)={q0,q1,q2}, we will call this state as A.
- Now, let us find transition on A with every input symbol, as shown below –

- $\delta'(A, a) = \epsilon$ -closure($\delta(A, a)$)
 - = ε -closure($\delta(q0,q1,q2)$, a))
 - = ε -closure($\delta(q0, a) \cup \delta(q1,a) \cup \delta(q2,a)$)
 - = ϵ -closure($\Phi \cup q1 \cup q1$)
 - = ε -closure(q1)
 - = {q1, q2} let us call it as state B

- $\delta'(A, b) = \epsilon$ -closure($\delta(A,b)$)
 - = ε -closure($\delta(q0,q1,q2)$, b))
 - = ε -closure($\delta(q0, b) \cup \delta(q1, b) \cup \delta(q2, b)$)
 - = ε -closure(q0 U Φ Uq0)
 - = ε -closure(q0)
 - = {q0,q1, q2} its nothing but state A

- $\delta'(B, a) = \epsilon$ -closure($\delta(B, a)$)
 - = ε -closure($\delta(q1,q2)$, a))
 - = ε -closure($\delta(q1,a) \cup \delta(q2,a)$)
 - = ε -closure(q1 Uq1)
 - = ε -closure(q1)
 - = {q1, q2} its nothing but state B

- $\delta'(B, b) = \epsilon$ -closure($\delta(B, b)$)
 - = ε -closure($\delta(q1,q2)$, b))
 - = ε -closure($\delta(q1,b) \cup \delta(q2,b)$)
 - = ε -closure(Φ Uq0)
 - = ε -closure(q0)
- = {q0,q1, q2} its nothing but state A

 Hence, the transition table for the generated DFA is as follows –

States\inputs	а	b
Α	В	Α
В	В	А

$$F' = \{A,B\}$$

- As, A={q0,q1,q2} in which the final state q2 lies. Hence, A is the final state.
- In B ={q1,q2} the state q2 lies. Hence, B is also the final state.

END of MODULE 2

Exercises

