ALGEBRAIC GEOMETRY NOTES

VAIBHAV KARVE

These notes were last updated July 3, 2018. They are notes taken from my reading of A royal road to Algebraic Geometry by Audun Holme.

1. Affine and projective space

- (1) Let k be an algebraically closed field.
- (2) Let A_k^n denote affine n-space. Define $A_k^n = k^n$.
- (3) Let $M = k^{n+1} \{(0, \dots, 0)\}$. Define the equivalence relation \sim to be $(a_0,\ldots,a_n) \sim (b_0,\ldots,b_n)$ if $\exists r \neq 0$ such that $a_i = rb_i \forall i \in \{0,\ldots,n\}$. Then projective *n*-space is M/\sim and is denoted by \mathbb{P}_k^n .
- (4) $\mathbb{P}_k^n = \mathbb{A}_k^n \cup \mathbb{A}_k^{n-1} \cup \cdots \cup \mathbb{A}_k^1 \cup \mathbb{P}_k^0 ,$ where $\mathbb{P}_k^0 = \{\text{point}\}.$
- (5) Let $P(X_1, \ldots, X_n)$ be a polynomial with coefficients in k. Let V(P) and D(P) be subsets of \mathbb{A}^n_k where

$$V(P) = \{ (a_1, \dots, a_n) \in \mathbb{A}_k^n : P(a_1, \dots, a_n) = 0 \}$$

and

$$D(P) = \{ (a_1, \dots, a_n) \in \mathbb{A}_k^n : P(a_1, \dots, a_n) \neq 0 \}.$$

- (6) More generally, let $V(P_1, \ldots, P_m) = \bigcap_{i=1}^m V(P_i)$. These are affine subsets of \mathbb{A}^n_k .
- (7) If m = 1 then $V(P_1)$ is an affine hypersurface.
- (8) If m=1 and $\deg(P_1)=1$ then $V(P_1)$ is an affine hyperplane.
- (9) Let $Q(X_0, \ldots, X_n)$ be a homogeneous polynomial with coefficients in k. Let $V_{+}(P)$ and $D_{+}(P)$ be subsets of \mathbb{P}_{k}^{n} where

$$V_{+}(P) = \{ (a_0 : \ldots : a_n) \in \mathbb{P}_k^n : Q(a_0, \ldots, a_n) = 0 \}$$

and

$$D_{+}(P) = \{ (a_0 : \ldots : a_n) \in \mathbb{P}_k^n : Q(a_0, \ldots, a_n) \neq 0 \}.$$

- (10) More generally, let $V_+(Q_1, \ldots, Q_m) = \bigcap_{i=1}^m V_+(Q_i)$. These are projective subsets of \mathbb{P}_k^n .
- (11) If m=1 then $V_+(Q_1)$ is a projective hypersurface.
- (12) If m = 1 and $deg(Q_1) = 1$ then $V_+(Q_1)$ is a projective hyperplane.
- (13) Projective and affine subsets together are algebraic subsets.
- (14) Let V be a finite-dimensional k-vector space. $\mathbb{P}(V)$ is the set of all 1-dimensional k-subspaces U of V. This is a coordinate-free definition for projective space.
- (15) Let V be an (n+1)-dimensional k-vector space. One can identify $\mathbb{P}(V)$ with \mathbb{P}_k^n :

```
(a_o: \dots : a_n) \longleftrightarrow subspace spanned by a_0v_0 + \dots + a_nv_n, where \{v_0, \dots, v_n\} is a basis for V.
```

- (16) Coordinate change in \mathbb{A}^n_k can be encoded by an $n \times n$ matrix with entries in k.
- (17) Coordinate change in \mathbb{P}_k^n can be encoded by an $(n+1) \times (n+1)$ matrix with entries in k.
- (18) The projective hyperplane at infinity is $X_0 = 0$ and is thus identified with \mathbb{P}^{n-1}_k . The complement of this can be identified with the affine space \mathbb{A}^n_k .
- (19) Affine properties are properties that are invariant under affine transformations that is, under maps of the form $\mathbb{A}^n_k \to \mathbb{A}^n_k$. Projective properties are analogously defined.
- (20) Affine properties include:
 - incidence: that a point lies on a line or a line passes through on a point.
 - collinearity.
 - concurrency: that several lines pass through a common point.
 - being an ellipse.
 - a line in $\mathbb{A}^2_{\mathbb{R}}$ bisecting a given angle.
 - tangency.
- (21) Non-examples of affine properties include:
 - being a circle.
 - two lines in $\mathbb{A}^2_{\mathbb{R}}$ forming a right angle.
- (22) Points at infinity are not preserved under a general projective transformation.
- (23) **Proposition:** Consider n+2 points $\{P_1, \ldots, P_{n+2}\} \subset \mathbb{P}^n_k$ no three of which are collinear, as well as another set of points $\{P'_1, \ldots, P'_{n+2}\} \subset \mathbb{P}^n_k$ such that no three points of it are collinear. Then, \exists a projective transformation G of \mathbb{P}^n_k onto itself, mapping P_i to P'_i , $\forall i \in \{1, \ldots, n+2\}$.

- (24) **Corollary:** Given n+2 points $\{P_1,\ldots,P_{n+2}\}\subset \mathbb{P}^n_k$ no three of which are collinear, one can always find a projective transformation mapping P_i to $(0:\cdots:0:1:0:\cdots0)$ for $i\in\{1,\ldots,n+1\}$ and P_{n+2} to $(1:\cdots:1)$.
- (25) A geometry theorem that has no reasons for being true but still is: aka. Theorem of Desargues for projective space over any field. Let two triangles ABC and A'B'C' be given in \mathbb{P}^3_k , such that $A \neq A'$, $B \neq B'$ and $C \neq C'$. If the lines AA', BB' and CC' pass through the same point O, that is, if O is the center of perspective and the two triangles are perspective from O, then:
 - Lines AB and A'B' intersect in a common point D.
 - Lines BC and B'C' intersect in a common point E.
 - Lines CA and C'A' intersect in a common point F.
 - ullet Points D, E and F are collinear. They pass through the line of perspective.