Some stuff about orbital graphs

Johannes Hahn

February 21, 2019

0.1 Definition:

Let $G \curvearrowright \Omega$ be any group action on a set Ω . An orbit of the induced action of G on $\Omega^2 = \Omega \times \Omega$ is called an orbital of the action $G \curvearrowright \Omega$.

If Γ is any orbital, then the directed graph with vertex set Ω and edge set Γ is called an orbital graph of the action.

0.2 Definition:

Let $G \curvearrowright \Omega$ be a transitive action and $\omega \in \Omega$. A G_{ω} -orbit of this action is called a suborbit. The sizes of the suborbits are called the subdegrees of the action. By transitivity, the subdegrees are independent of $\omega \in \Omega$.

Convention:

For everything that follows, fix a non-empty, finite set Ω and a permutation group $G \leq Sym(\Omega)$. In other words, from now on we consider only faithful permutation actions of G.

1 Orbital graphs vs. suborbits and double cosets

1.1 Theorem:

Let $G \cap \Omega$ be transitive, $\omega \in \Omega$ a fixed element and $H := G_{\omega}$ its stabiliser. There are inclusion-preserving bijections between the following sets

- a.) G-invariant subsets $\Gamma \subseteq \Omega \times \Omega$.
- b.) *H*-invariant subsets $\Delta \subseteq \Omega$
- c.) Subsets $D \subseteq G$ invariant under left- and right-multiplication by H.

given in the following dictionary

$$\begin{array}{c|ccc} \Gamma \subseteq \Omega \times \Omega & \Delta \subseteq \Omega & D \subseteq G \\ \hline \Gamma & \Gamma(\omega) := \left\{ \left. \alpha \mid (\alpha, \omega) \in \Gamma \right. \right\} & \left\{ \left. y \in G \mid (\omega, {}^y\omega) \in \Gamma \right. \right\} \\ \left\{ \left. \left({}^g\alpha, {}^g\omega \right) \mid \alpha \in \Delta, g \in G \right. \right\} & \Delta & \left\{ \left. y \in G \mid {}^y\omega \in \Delta \right. \right\} \\ \left\{ \left. \left({}^{g_0}\omega, {}^{g_1}\omega \right) \mid H g_0^{-1} g_1 H \subseteq D \right. \right\} & D & D \end{array}$$

In particular the minimal non-empty elements of these posets, namely the orbitals, the suborbitals and the H-H-double cosets respectively, are mapped bijectively onto each other.

Moreover, these bijections translate the following properties:

$$\begin{array}{c|ccc} \Gamma \subseteq \Omega \times \Omega & \Delta \subseteq \Omega & D \subseteq G \\ \hline \{ (\alpha, \alpha) \mid \alpha \in \Omega \} & \{\omega\} & H \\ \Gamma^{op} & \Delta^* & D^{-1} \\ |\Gamma|/|\Omega| & |\Delta| & |D|/|H| \\ \Gamma \circ \Gamma' & \Delta \circ_{\omega} \Delta' & DD' \\ \end{array}$$

where

$$\Delta^* := \{ g^{-1}\omega \mid {}^g\omega \in \Delta \}$$

$$\Delta \circ_\omega \Delta' := \{ \alpha \in \Omega \mid \exists g \in G, \beta \in \Delta' : {}^g\alpha \in \Delta \wedge {}^g\beta = \omega \}$$

1.2 Corollary:

Let $G \curvearrowright \Omega$ be transitive, let $\Gamma \subseteq \Omega^2$ be any orbital, and let HyH be its associated double coset.

- a.) Connected components of (Ω, Γ) are automatically strongly connected.
- b.) The connected components of (Ω, Γ) are exactly the *U*-orbits on Ω , where $U := \langle H, y \rangle$.
- c.) (Ω, Γ) is connected iff $\langle H, y \rangle = G$.
- d.) G acts primitively iff all non-diagonal orbital graphs are connected.

Proof. a. If that were not the case, there would be a connected component $\emptyset \neq C \subseteq \Omega$ which decomposes further $C = X_0 \sqcup \ldots \sqcup X_n$ into strongly connected components such that only edges from X_i into X_j exist where i < j but not the other way around. Pick any $x_0 \in X_0$, $x_k \in X_k$. Since G is transitive, there would be a $g \in G$ such that $g_{X_0} = g_{X_0}$. In particular $g_{X_0} = g_{X_0}$ is connected component. Hence $\langle g \rangle$ acts as graph automorphisms on G and must permute the strongly connected components. But that means it must map G0 to G1 which is impossible because the former only only has in-coming edges, while the latter only has out-going edges.

Now identify Ω with G/H and Γ with $\Gamma_y = \{ (g_0H, g_1H) \mid Hg_0^{-1}g_1H = HyH \}$ as above. Set $U := \langle H, y \rangle$. Note that $U = H \cup HyH \cup HyHyH \cup \ldots$ because the order of y is finite.

b. Now xH and x'H are connected by a directed path iff there exists a sequence $x=x_0,x_1,\ldots,x_k=x'$ such that $(x_{i-1}H,x_iH)\in\Gamma_y$, i.e. $x_{i-1}^{-1}x_i\in HyH$.

In particular: If xH and x'H are connected by a directed path, then $x_{i-1}U = x_iU$ for all $i \in \{1, ..., k\}$. Therefore $xU = x_0U = x_kU = x'U$.

Conversely: If xU = x'U, then there exists an element $h_0yh_1 \cdots yh_k \in U$ with $h_i \in H$ such that $x' = x(h_0yh_1 \cdots yh_k)$. Now we can define $x_i := x \cdot (h_0yh_1 \cdots yh_i)$ for $i \in \{0, \ldots, k\}$ and have found a sequence connecting $xH = x_0H$ and $x'H = x_kH$ in the orbital graph.

- c. follows directly from b.
- d. follows directly from c. and the fact that G acts primitively on Ω iff H is a maximal subgroup.
- **1.3 Remark:** This lemma allows for easy identification of at least one block system for the action of G on Ω , namely the connected components of (Ω, Γ) . They coincide with the sets ${}^{U}\omega$.

Moreover: $U\omega$ is the smallest possible block containing both ω and $u\omega$.

2 Orbital graphs vs. representation theory

2.1 Definition:

Now let V := V be the K-vector space with basis Ω . This vector space is naturally a KG-module by extending the action of G on the basis elements linearly to the whole space.

We will identify $\operatorname{End}_{\mathbb{K}}(V)$ with the space $\mathbb{K}^{\Omega \times \Omega}$ of matrices indexed by $\Omega \times \Omega$. We will also identify $Sym(\Omega)$ with the group of permutation matrices.

2.2 Theorem:

 $\operatorname{End}_{\mathbb{K} G}(V)$ has a natural \mathbb{K} -basis $\{X_{\Gamma} \mid \Gamma \subseteq \Omega^2 \text{ orbital }\}$ defined as

$$(X_{\Gamma})_{\alpha\beta} := \begin{cases} 1 & \text{if } (\alpha, \beta) \in \Gamma \\ 0 & \text{otherwise} \end{cases}$$

The structure constants w.r.t. this basis, i.e. the numbers d_{ij}^k such that

$$X_{\Gamma_i} \cdot X_{\Gamma_j} = \sum_k d_{ij}^k X_{\Gamma_k},$$

are given by $d_{ij}^k := |\{ \beta \in \Omega \mid (\alpha, \beta) \in \Gamma_i \land (\beta, \gamma) \in \Gamma_j \}|$ where (α, γ) is any element of Γ_k .

2.3 Remark: In other words: X_{Γ} is the adjacency matrix of the orbital graph (Ω, Γ) . Note that the right hand side in the definition of d_{ij}^k really is independent of the choice of the element $(\alpha, \gamma) \in \Gamma_k$, because G acts transitively on Γ_k . Also note that multiplication is connected to composition via

$$X_{\Gamma_i} \cdot X_{\Gamma_i} \in \operatorname{span}_{\mathbb{K}} \{ X_{\Gamma} \mid \Gamma \subseteq \Gamma_i \circ \Gamma_j \}$$

Proof. Writing out the defining condition

$$X \in \operatorname{End}_{\mathbb{K}G}(V) \iff \forall g \in G : gXg^{-1} = X$$

in components shows that every $\mathbb{K}G$ -linear endomorphism is indeed a linear combination of the X_{Γ} . The X_{Γ} are obviously linearly independent and therefore a basis.

The structure constants similarly follow by writing out the definition of matrix multiplication in this case.

2.4 Definition:

The 2-closure of G is defined as the largest subgroup $\widehat{G} \subseteq Sym(\Omega)$ that has the same orbits as G on Ω^2 , i.e.

$$\widehat{G} := \left\{ \; \pi \in Sym(\Omega) \; \middle| \; \forall \Gamma \in \Omega^2/G : \pi(\Gamma) = \Gamma \; \right\}$$

G is called 2-closed iff $G = \widehat{G}$ holds.

- **2.5 Remark:** One can rephrase this definition by saying that the 2-closure of G is the largest subgroup $H \leq Sym(\Omega)$ that still satisfies $End_{\mathbb{K}G}(V) = End_{\mathbb{K}H}(V)$
- **2.6 Lemma** (2-closure in terms of endomorphism algebras): $\widehat{G} = Sym(\Omega) \cap C(\operatorname{End}_{\mathbb{K}G}(V)).$

Proof. Let \widehat{G} be the 2-closure of G. By definition $\pi \in \widehat{G}$ if and only if $\pi X_{\Gamma} \pi^{-1} = X_{\Gamma}$ for all $\Gamma \in \Omega^2/G$. In other words π is in the 2-closure iff it is a permutation matrix and an element of the centraliser of the endomorphism ring of the $\mathbb{K}G$ -module V. This proves the first equation.

2.7 Lemma (2-closure in terms of linear algebra):

$$\hat{G} = Sym(\Omega) \cap \operatorname{span}_{\mathbb{K}}(G).$$

In particular, G is 2-closed if no permutation matrix outside of G is a linear combination of elements of G.

Proof. Observe that $\operatorname{End}_{\mathbb{K}G}(V)$ is by definition the centraliser algebra of the subalgebra $\operatorname{span}_{\mathbb{K}}(G) \subseteq \mathbb{K}^{\Omega \times \Omega}$.

V is a faithful $\mathbb{K}G$ -module and $\mathbb{K}G$ is a symmetric algebra. Therefore V has the double centraliser property so that $C(\operatorname{End}_{\mathbb{K}G}(V)) = C(C(\operatorname{span}_{\mathbb{K}}(G))) = \operatorname{span}_{\mathbb{K}}(G)$.

2.8 Theorem (2-closure in terms of invariant subspaces):

Let $G \leq Sym(\Omega)$ be a permutation group and assume $\mathbb{K} = \mathbb{C}$. Then

$$\widehat{G} = \left\{ \ \pi \in Sym(\Omega) \ \middle| \ \forall U \leq \mathbb{C}^{\Omega} : U \text{ G-invariant } \Longrightarrow U \text{ π-invariant } \right\}.$$

Proof. We consider the standard scalar product on V defined by declaring Ω to be an orthonormal basis so that V becomes a finite-dimensional Hilbert space.

Then all permutation matrices are unitary. In particular, $\operatorname{span}_{\mathbb{C}}(G) \subseteq \mathbb{C}^{\Omega \times \Omega}$ is closed under taking adjoints and its centraliser $\operatorname{End}_{\mathbb{C}G}(V)$ is also closed under taking adjoints. Both are therefore C^* -algebras. In particular, both are isomorphic to a direct product of matrix rings. It is a consequence of the spectral theorem that $\prod_i \mathbb{C}^{n_i \times n_i}$ is spanned by all the self-adjoint idempotents it contains.

Self-adjoint idempotent matrices correspond bijectively to subspaces by identifying U with the orthogonal projection p_U onto U. A subspace U is g-invariant if g centralises p_U .

Therefore

$$\operatorname{End}_{\mathbb{C}G}(V) = \operatorname{span}_{\mathbb{C}} \{ p_U \mid U \leq \mathbb{C}^G \text{ G-invariant } \}$$

and

$$\widehat{G} = Sym(\Omega) \cap C(\operatorname{End}_{\mathbb{C}G}(V)) = Sym(\Omega) \cap \bigcap_{\substack{U \leq V \\ G \text{-invariant}}} C(p_U)$$

which proves the claim.

2.9 Definition:

A permutation group $G \leq Sym(\Omega)$ is reconstructible from $\mathcal{X} \subseteq \operatorname{End}_{\mathbb{K}G}(V)$ if

$$G=Sym(\Omega)\cap \bigcap_{X\in \mathcal{X}}C(X).$$

Similarly, we define that G is ...

- ... orbital-graph-reconstructible if G is reconstructible from $\{X_{\Gamma} \mid \Gamma \in \Omega^2/G\}$,
- ... strongly orbital-graph-reconstructible from $\Gamma \in \Omega^2/G$ iff it is reconstructible from X_{Γ} alone,
- ... absolutely orbital-graph-reconstructible iff it is strongly orbital-graph-reconstructible from any non-diagonal orbital $\Gamma \in \Omega^2/G$.

- ... subspace-reconstructible from \mathcal{U} , a set of G-invariant subspaces of V, if G is reconstructible from $\{p_U \mid U \in \mathcal{U}\}$.
- ... subspace-reconstructible over \mathbb{K} if G is reconstructible from the set of all G-invariant subspaces of \mathbb{K}^{Ω} .

- ... strongly subspace-reconstructible from $U \leq V$ if G is reconstructible from U alone.
- ... absolutely subspace-reconstructible over \mathbb{K} if G is strongly subspace-reconstructible from any minimal, non-zero, G-invariant $U \leq \mathbb{K}^{\Omega}$ which is not span \mathbb{K} { (1, 1, ..., 1) }.

2.10 Corollary:

 $G \leq Sym(\Omega)$ is 2-closed iff it is orbital-graph reconstructible iff it is subspace-reconstructible over \mathbb{C} .

Proof. The first equivalence follows from the fact that X_{Γ} is a basis of $\operatorname{End}_{\mathbb{C}G}(V)$. The second follows from theorem 2.8.

2.11 Example:

A regular permutation group is always 2-closed.

This is because a regular G-set is isomorphic to G itself endowed with left multiplication. The orbitals of this action are given by $\Gamma_h := \{(x,y) \in G^2 \mid x^{-1}y = h\}$ for $h \in G$ and one can readily verify that the only permutations fixing all the orbitals are the left multiplication maps themselves.

2.12 Lemma (Subspace reconstructibility is sufficient):

Let $\mathbb{K} = \mathbb{C}$ and $X \in \operatorname{End}_{\mathbb{C}G}(V)$ be arbitrary.

Then G is reconstructible from X iff it is subspace-reconstructible from

$$\{ \operatorname{Eig}_{\lambda}(\mathfrak{Re}(X)), \operatorname{Eig}_{\lambda}(\mathfrak{Im}(X)) \mid \lambda \in \mathbb{R} \}.$$

Proof. Permutation matrices are unitary. Therefore $g \in Sym(\Omega)$ centralises X iff it centralises X^* .

 $\mathfrak{Re}(X) = \frac{1}{2}(X + X^*)$ and $\mathfrak{Im}(X) = \frac{1}{2i}(X - X^*)$ are self-adjoint matrices with $X = \mathfrak{Re}(X) + i\,\mathfrak{Im}(X)$ and for a self-adjoint matrices Y the spectral theorem shows

$$Y = \sum_{\lambda \in \mathbb{R}} \lambda e_{\lambda}$$

where $e_{\lambda} = p_{\text{Eig}_{\lambda}(Y)}$ is the orthogonal projection onto the λ -eigenspace. Moreover e_{λ} is a polynomial of Y by Lagrange-interpolation.

Therefore if $g \in GL(V)$ commutes with Y it must commute with all e_{λ} and vice versa. Thus

$$C(X) = C(X, X^*) = C(\mathfrak{Re}(X), \mathfrak{Im}(X)) = \bigcap_{\lambda \in \mathbb{R}} C(p_{\mathrm{Eig}_{\lambda}(\mathfrak{Re}(X))}) \cap C(p_{\mathrm{Eig}_{\lambda}(\mathfrak{Im}(X))})$$

which proves the lemma.

2.13 Remark: The concept of subspace reconstructibility also makes sense if we replace Sym(n) by some other finite subgroup of $U_n(\mathbb{C})$, for example the subgroup of monomial matrices with m-th roots of unity as entries. This is the complex reflection group called G(n, 1, m).