Análisis Numérico I / Análisis Numérico — **Práctico N°4 - 2023**Aproximación de funciones por cuadrados mínimos

- 1. Obtener el polinomio que mejor aproxima en el sentido de cuadrados mínimos del grado indicado en cada caso:
 - a) polinomio de grado 1, para la siguiente tabla de datos

	X	0	1	2	3	4	5	6	7	8	9
İ	у	0 -0.1	1.1	1.9	3.2	3.8	5.0	6.0	7.3	8.1	8.9

b) polinomio de grado 2, para la siguiente tabla de datos

X	-1	0	1	3	6
у	6.1	2.8	2.2	6	26.9

- 2. Probar que si se tienen n+1 puntos distintos, la mejor aproximación polinomial (en el sentido de cuadrados mínimos) de grado n coincide con el polinomio interpolante.
- 3. Hallar el polinomio de grado cero que mejor aproxime en el sentido de cuadrados mínimos a una función $f:[a,b] \to \mathbb{R}$ en n puntos x_1, \ldots, x_n del intervalo [a,b].
- 4. Aproximar los datos de la siguiente tabla con un modelo de la forma $f(x) \sim ae^{bx}$ en el sentido de cuadrados mínimos.

5. Aproximar los datos de la siguiente tabla con un modelo de la forma $f(x) \sim -e^{ax^2+bx+c}$ en el sentido de cuadrados mínimos.

- 6. Suponer que se realizó un experimento para encontrar la constante de elasticidad k de la Ley de Hooke: F = k(l 5.3). La función F es la fuerza requerida para estirar el resorte l unidades.
 - a) Se midieron las fuerzas F(l) para distintas longitudes l y se obtuvo la siguiente tabla:

$$\begin{array}{|c|c|c|c|c|c|} \hline & l & 7 & 9.4 & 12.3 \\ \hline & F & 2 & 4 & 5 \\ \hline \end{array}$$

Encontrar la mejor aproximación en el sentido de cuadrados mínimos para k

b) Realizando más mediciones se obtuvieron nuevos datos

l	8.3	11.3	14.4	15.9
$F \mid$	3	5	8	10

Calcular la nueva apoximación para k sólo con el segundo grupo de valores.

c) ¿Cuál valor de k aproxima mejor utilizando los datos de todas las mediciones?

- 7. Obtener la aproximación lineal en el sentido de cuadrados mínimos de la función f en el intervalo indicado si:
 - a) $f(x) = x^2 + 3x + 2$ en el intervalo [0, 1].
 - b) $f(x) = x^2 + 3x + 2$ en el intervalo [-1, 1].
 - c) $f(x) = e^x$ en el intervalo [0, 2].
- 8. Aproximar los datos de la siguiente tabla en el sentido de cuadrados mínimos con un modelo de la forma $f(x) \sim a \cos(x) + b \sin(x)$.

	X	0	1	2	3	4	5	6	7	8	9	10
İ	у	1.8	3.5	2.1	-1.0	-3.3	-2.7	0.9	3.3	2.8	-0.1	-3.0

- 9. Considerar el conjunto de polinomios ortogonales de Legendre $\{P_0, P_1, P_2\}$ en el intervalo [-1, 1], dados por $P_0(x) = 1$, $P_1(x) = x$ y $P_2(x) = x^2 1/3$. Verificar que $\{P_0, P_1, P_2\}$ es un conjunto ortogonal de funciones.
- 10. Determinar las aproximaciones lineal y cuadrática de la función $f(x) = e^x$ en el sentido de cuadrados mínimos usando los polinomios ortogonales de Legendre, en el intervalo [-1, 1].
- 11. Hallar una base ortogonal $\{\Phi_0, \Phi_1, \Phi_2\}$ del conjunto de polinomios de grado menor o igual a 2 en el intervalo [-1, 1] respecto a la función de peso $\omega(x) = x^2$.

Ayuda: elegirlos de modo que $gr(\Phi_k) = k$, k = 0, 1, 2.