Определения и формулировки по алгебре Линейная алгебра II семестр

Тамарин Вячеслав

9 июня 2020 г.

Оглавление

1 Линейная алгебра		
Вопрос 1	Аксиоматизация объема параллелепипеда. Полилинейное отображение, кососимметричность.	
	Свойства	
Вопрос 2	Определитель как форма объема. Формы объема, связанные с выбором базиса и их свойства.	
Вопрос 3	Свойства определителя. Примеры вычисления. Ориентация и объем	
Вопрос 4	Ориентация. Невозможность смены ориентации при непрерывном изменении базиса. Опреде-	
	литель оператора. Сохранение ориентации.	
Вопрос 5	Разложение определителя по столбцу. Формула Крамера	
Вопрос 6	Формула для обратной матрицы. Присоединенная матрица. Соотношение для присоединенной матрицы.	
Вопрос 7	Понятие алгебры над полем. Примеры. Групповая алгебра. Теорема Кэли	
Вопрос 8	Многочлен от элемента. Минимальный многочлен. Нетривиальность минимального многочле-	
-	на для элемента конечномерной алгебры. Дихотомия для элементов конечномерной алгебры.	
Вопрос 9	Матрица линейного оператора. Инвариантные подпространства и как заметить по матрице линейного оператора. Примеры	
Вопрос 10	Собственные числа и собственные вектора. Характеристический многочлен и его связь с соб-	
Bompoo 10	ственными числами. Вычисление характеристического многочлена сопровождающей матрицы.	
Вопрос 11	След и определитель оператора. Диагонализация. Алгебраическая и геометрическая кратно-	
	сти. Неравенство между ними. Линейная независимость собственных векторов	
Вопрос 12	Критерий диагонализируемости. Случай отсутствия кратный собственных чисел. Последова-	
Dempes 12	тельности, удовлетворяющие линейному рекурентному соотношению	
Вопрос 13	Многочлен от оператора. Разложение пространства в прямую сумму ядер многочленов от ис-	
Dompos 19	ходного оператора. Блочная структура матрицы оператора, связанная с подобным расположе-	
	нием.	
Вопрос 14	Факторизация по подпространству. Оператор на факторпространстве. Блочная структура ис-	
	ходного оператора. Теорема Гамильтона-Кэли.	
Вопрос 15	Жорданова клетка. Теорема о жордановой форме: единственность	
Вопрос 16	Теорема о жордановой форме: существование. Лемма про нильпотентный оператор	
Вопрос 17	Возведение жордановой клетки в степень. Поведение коэффициентов матрицы A^n в зависимо-	
	сти от п. Линейное рекурентное соотношение с постоянными коэффициентами общего вида 1	
Вопрос 18	Многочлен от жордановой клетки. Понятие функции, аналитической на диске. Вычисление	
r	аналитической функции от матрицы	
Вопрос 19	Предельное поведение степеней матрицы при ограничениях на СЧ. Теорема о положительных	
r	матрицах (Перрон)	
Вопрос 20	Теорема Перрона. Критерий максимальности для собственного числа. Стохастические матри-	
Dempes 2s	цы. Деформация для матрицы случайного блуждания и новый подход нахождения весов для	
	поисковой системы.	
Вопрос 21	Граф матрицы. Неприводимые и эрогодические (примитивные) матрицы. Связь этих понятий.	
Donpos 21	Теорема Фробениуса. Следствие для неприводимых матриц.	
_		
2 Полилинейная алгебра 13		
Вопрос 22	Билинейные формы. Матрица билинейной формы. Ранг и нувырожденность билинейной формулы. Ортогональное дополнение. Размерность ортогонльного дополнения. Разложение в ор-	
	тогональную сумму	
Вопрос 23	Симметричные билинейные формы. Матрица для симметричной формы. Примеры. Квадратичные формы. Матрица квадратичной формы. Соответствие между симметричными били-	
	нейными и квадратичными	

Вопрос 24	Понятие ортогонального базиса. Существование ортогонального базиса. Алгоритм приведения	
	квадратичной формы к сумме квадратов.	15
Вопрос 25	Главные миноры. Теорема Якоби. Канонический вид квадратичной формы над $\mathbb C$ и $\mathbb R$	15
Вопрос 26	Положительная определенность. Единственность канонического вида над \mathbb{R} . Критерий Силь-	
	вестра	15
Вопрос 27	Описание положительно определенных квадратичных форм. Оценка на число множеств с оди-	
	наковым пересечением	16
Вопрос 28	Евклидовы пространства. Неравенство Коши-Буняковского. Неравенство треугольника. Орто-	
	гональное дополнение. Примеры евклидовых пространств.	16
Вопрос 29	Полуторалинейные формы на комплексном векторном пространстве. Примеры. Матрица полу-	
	торалинейной формы. Эрмитовость. Положительная определенность. Понятие унарного про-	
	странства	17
Вопрос 30	Примеры унитраных пространств. Неравенство Коши-Буняковского и неравенство треуголь-	
	ника. Разложение в ортогональную прямую сумму. Понятие угла между векторами	17
Вопрос 31	Ортогонализация Грама-Шмидта. Дополнения ортонормированного набора векторов до бази-	
	са. Нахождение координат и длины вектора в ортогональном базисе	18
Вопрос 32	Вычисление длины проекции. Версия теоремы Пифагора. Расстояние между вектором и под-	
	пространством и между аффинными подпространствами	18
Вопрос 33	Матрица Грама и невырожденность. Метод наименьших квадратов. Пример с приближением	4.0
D 04	многочленом фиксированной степени. Псевдообратная матрица	19
Вопрос 34	Ортогональные и унитарные операторы. Эквивалентные Переформулировки матрицы. QR-	4.0
D 25	разложение. Его использование для нахождения псевдообратной матрицы.	19
Вопрос 35	Сорпяженное линейное отображение: существование и единственность. Свойства. Примеры	20

Глава 1

Линейная алгебра

Вопрос 1 Аксиоматизация объема параллелепипеда. Полилинейное отображение, кососимметричность. Свойства.

Определение 1: Параллелепипед

Пусть V — векторное пространство размерности n над полем \mathbb{R} . Тогда для набора $v_1, \ldots v_n \in V$ определим параллелепипед

 $D(v_1, \dots v_n) = \left\{ \sum_{i=1}^n \lambda_i v_i \mid \lambda_i \in [0, 1] \right\}.$

Свойства (Аксиоматизация в \mathbb{R}^n). *Будем записывать векторы в матрицу.*

- θ . Vol $(E_n) = 1$
- 1. $\operatorname{Vol}(\ldots, \lambda v, \ldots) = |\lambda| \operatorname{Vol}(\ldots, v, \ldots)$
- 2. $\operatorname{Vol}(\ldots, v, \ldots, u, \ldots) = \operatorname{Vol}(\ldots, v, \ldots, u + \lambda v, \ldots)$ (исходя из принципа Кавальери)
- 3. Vol(..., v, ..., v, ...) = 0

Свойства (Аксиоматизация в поле K).

- 1. $w(\ldots, \lambda v, \ldots) = \lambda w(\ldots, v, \ldots)$
- 2. w(..., u + v, ...) = w(..., u, ...) + w(..., v, ...)
- 3. w(..., v, ..., v, ...) = 0

Определение 2: Полилинейное отображение

Пусть $U_1, \dots U_l, V$ — векторные пространства над полем K. Отображение $w\colon U_1 \times \dots \times U_l \to V$ называется полилинейным, если

$$w(v_1, \ldots v_i + \lambda u_i, \ldots v_l) = w(v_1, \ldots, v_i, \ldots v_l) + \lambda w(v_1, \ldots, u_i, \ldots v_l).$$

Обозначение. $\text{Ноm}_K(U_1, \dots U_l; V)$ — множество всех полилинейный отображений.

Определение 3: Форма

Полилинейное отображение $w\colon V^l o K$ называется полилинейной формой степени l на V .

Определение 4

Полилинейная форма $w\colon V^l\to K$ на пространстве V над полем K называется

- антисимметричной или кососимметричной, если $w(v_1, \dots v, \dots, v_l) = 0;$
- симметричной, если $w(v_1, \ldots, v_i, \ldots, v_i, \ldots, v_l) = w(v_1, \ldots, v_i, \ldots, v_l)$.

Лемма 1

Пусть V — векторное пространство размерности n. Для полилинейного отображения $w:V^l \to K$ и любого

 $e_1, \ldots e_n$ базиса V выполнено

$$w(v_1,\ldots v_l)=\sum_{1\leqslant i_1,\ldots i_l\leqslant n}w(e_{i_1},\ldots,e_{i_l})\prod_{j=1}^la_{i_j,j},$$
 где $a_{ij}-i$ -ая координата вектора v_j в базисе e .

Лемма 2

Пусть V — векторное пространство размерности n. Для полилинейного отображения $w\colon V^l o K$ выполнено:

- 1. если w кососимметрично, то w(..., u, ..., v, ...) = -w(..., v, ..., u, ...);
- 2. если $\operatorname{char} K \neq 2$, из результата первого свойства следует кососимметричность;
- 3. если w кососимметрично, то для любой перестановки $\sigma \in S_l$ верно $w(v_{\sigma(1)}, \dots v_{\sigma(l)}) = \operatorname{sgn}(\sigma)w(v_1, \dots v_l);$
- 4. если w кососимметрично, $w(...v,...,u,...) = w(...,v,...,u + \lambda v,...);$
- 5. если w кососимметрично и l=n, для набора векторов $v_1, \ldots v_n$ и базиса $e_1, \ldots e_n$ выполнено

$$w(v_1, \dots v_n) = w(e_1, \dots e_n) \sum_{\sigma \in S_n} \operatorname{sgn}(sigma) \prod_{j=1}^n a_{\sigma(j),j} = w(e_1, \dots e_n) \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{i=1}^n a_{i,\sigma(i)}.$$

Вопрос 2 Определитель как форма объема. Формы объема, связанные с выбором базиса и их свойства.

Определение 5: Форма объема

Пусть $n = \dim V$. Антисимметричная полилинейная форма $w \colon V^n \to K$ называется формой объема на V. Если такая форма не равна 0, то будем говорить, что она невырожденная.

Определение 6: Определитель

Определителем det называется отображение det: $M_n(K) \to K$ такое, что

$$\det(A) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{1 \le i \le n} a_{i\sigma(i)}.$$

Определение 7

Пусть $e_1, \ldots e_n$ — базис пространства V. Определим отображение $\operatorname{Vol}_e \colon V^n \to K$ такое, что

$$Vol_e(v_1, \dots, v_n) = \det(e(v_1), \dots, e(v_n)),$$

где $e: V \to K^n$ — отображение сопоставления координат.

Теорема 1: Свойства форм

- 1. Определитель является формой объема на K^n , при этом $\det E = 1$.
- 2. Если V пространство размерности n, то любая форма объема на V имеет вид

$$w = w(e_1, \dots e_n) \operatorname{Vol}_e$$
.

В частности, если e, f — базисы, то $\operatorname{Vol}_f = \det(C_{f \to e}) \operatorname{Vol}_e$.

- 3. Пространство форм объема одномерно.
- 4. Для любой невырожденной формы объема w верно утверждение:

$$w(v_1, \dots v_n) = 0 \Longleftrightarrow v_1, \dots v_n$$
 линейно зависимы.

Вопрос 3 Свойства определителя. Примеры вычисления. Ориентация и объем

Лемма 3: Свойства определителей квадратных матриц

1. $\det A = \det A^{\top}$

- 2. (а) При элементарных преобразованиях первого типа для строк и столбцов определитель не меняется.
 - (b) При смене строк местами меняется знак.
 - (c) При домножении строки на λ определитель домножается на λ .
- 3. det(AB) = det(A) det(B).

4.
$$\det \begin{pmatrix} A & B \\ 0 & C \end{pmatrix} = \det(A) \det(C)$$

5.

$$\det \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ 0 & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & a_{nn} \end{pmatrix} = \det \begin{pmatrix} a_{11} & 0 & \dots & 0 \\ a_{21} & a_{22} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} = \prod_{i=1}^{n} a_{ii}.$$

- 6. $\det(A^{-1}) = (\det A)^{-1}$.
- 7. $\det\colon \mathrm{GL}(V) \to K^*$ гомоморфизм групп.

Пример 1

- 1. $\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad bc$.
- 2. Определитель Вандермонда

$$\det\begin{pmatrix} 1 & \dots & 1 \\ \lambda_1 & \dots & \lambda_n \\ \vdots & & \vdots \\ \lambda_1^{n-1} & \dots & \lambda_n^{n-1} \end{pmatrix} = \prod_{i>j} (\lambda_i - \lambda_j).$$

Утверждение. Пусть отображение Volume: $M_n(\mathbb{R}) \to \mathbb{R}$, обладает следующими свойствами:

- 1. Volume $(E_n) = 1$
- 2. Volume $(\ldots, u + \lambda v, \ldots, v, \ldots) = \text{Volume}(\ldots, u, \ldots, v, \ldots)$
- 3. Volume $(\ldots, \lambda v, \ldots) = |\lambda| \text{ Volume}(\ldots, v, \ldots)$

Torдa Volume(A) = |det A|

Вопрос 4 Ориентация. Невозможность смены ориентации при непрерывном изменении базиса. Определитель оператора. Сохранение ориентации.

Определение 8

Будем говорить, что два базиса пространства V над $\mathbb R$ одинаково ориентированы, если матрица перехода между ними имеет положительный определитель.

Определение 9

Выбор одного из классов эквивалентности базисов векторного пространства V называется заданием ориентации.

Утверждение. Пусть есть два базиса $e_1, \dots e_n$ и $f_1, \dots f_n$ в пространстве V над \mathbb{R} . Если они имеют разную ориентацию, то их нельзя продеформировать один в другой (внутри пространства базисов).

Определение 10: Линейный оператор

Пусть V — пространство. Тогда линейное отображение $L\colon V\to V$ называется (линейным) оператором на пространстве V. Пусть $e_1,\ldots e_n$ — базис V, тогда матрицей оператора L в базисе e называется матрица $[L]_e^e$.

Определение 11

Пусть $L\colon V\to V$ — линейный оператор. Тогда определим $\det L=\det A$, где A — матрица перехода в каком-то базисе.

Замечание. Определитель корректно определен.

Определение 12

Пусть V — векторное пространство над \mathbb{R} . Будем говорить, что линейный оператор $L\colon V\to V$ сохраняет ориентацию, если $\det L>0$, и не сохраняет, если $\det L<0$.

Лемма 4

Сохраняющее ориентацию отображение переводит одинаково ориентированные базисы в одинаково ориентированные.

Определение 13

Определим группу операторов $SL(V) := \{L \colon V \to V \mid \det L = 1\}$. Если V — вещественное векторное пространство, то это операторы, которые сохраняют понятие объема и выбор ориентации пространства. $SL_n(K)$ называется группой матриц с определителем 1.

Вопрос 5 Разложение определителя по столбцу. Формула Крамера.

Определение 14: Минор

Пусть $A \in M_{m \times n}(K)$, $I \subseteq \{1, \dots m\}$, $J \in \{1, \dots n\}$.

Подматрица $A_{I,J}$ — матрица, составленная из элементов A, стоящих в строках из I и столбцах из J. Минор порядка k матрицы A — определитель квадратной подматрицы $M_{I,J} = \det A_{I,J}$, где |I| = |J| = k. Если $A \in M_n(K)$, то алгебраическим дополнением элемента a_{ij} называется $A^{ij} = (-1)^{i+j} M_{\bar{i},\bar{j}}$.

Лемма 5

При разложении по j-ому столбцу имеет место формула

$$\det(A) = \sum_{i=1}^{n} a_{ij} A^{ij}.$$

Теорема 2: Формула Крамера

Пусть дана система линейных уравнений Ax = b с квадратной матрицей A над полем K. Если A обратима, то единственное решение этой системы имеет вид

$$x_i = \frac{\Delta_i}{\Delta}, \qquad \Delta = \det A, \; \Delta_i = \det \left(\text{матрица } A, \, \text{где вместо } i \text{-го столбца стоит столбец } b \right).$$

Вопрос 6 Формула для обратной матрицы. Присоединенная матрица. Соотношение для присоединенной матрицы.

Определение 15: Присоединенная матрица

Присоединенная матрица к матрице A — матрица $(\mathrm{Adj}\,A)_{ij} = A^{ij}$, где A^{ij} — алгебраическое дополнение элемента a_{ij} .

Теорема 3

Пусть $A \in M_n(K)$. Тогда $\operatorname{Adj} A \cdot A = A \cdot \operatorname{Adj} A = \det(A) \cdot E$.

Вопрос 7 Понятие алгебры над полем. Примеры. Групповая алгебра. Теорема Кэли.

Определение 16: Алгебра над полем

Пусть K — поле. Кольцо S вместе с отображением $K \times S \to S$ называется алгеброй, если

- 1. $\forall k \in K, \ \forall u, v \in S : (ru)v = u(rv)$
- $2. \ S$ является векторным пространством над K относительно указанных операций.

Пример 2

- 1. Поле K есть алгебра над собой.
- 2. Если L расширение поля K, то L алгебра над K.
- 3. \mathbb{C} алгебра над \mathbb{R}
- 4. Кольцо эндоморфизмов $\operatorname{End}_K(V)$ векторного пространства V над полем K является алгеброй над K.
- 5. Кольцо многочленов $K[x_1, ... x_n]$ алгебра над K.
- 6. Любой фактор кольца многочленов $K[x_1, \dots x_n]/I$ алгебра над K.
- 7. Пусть V векторное пространство с базисом $e_1, \dots e_n$. Перемножение двух произвольных элементов

$$\left(\sum_{i=1}^{n} \lambda_i e_i\right) \cdot \left(\sum_{j=1}^{n} \mu_j e_j\right) = \sum_{i,j} \lambda_i \mu_j (e_i \cdot e_j).$$

Поэтому произведение достаточно определить только на элементах базиса, что дает структуру кольца. Для ассоциативности кольца достаточно ассоциативности умножения на базисных элементах $(e_i \cdot e_j) \cdot e_k = e_i \cdot (e_j \cdot e_k)$:

$$\left(\left(\sum_{i=1}^{n} \lambda_{i} e_{i}\right) \cdot \left(\sum_{j=1}^{n} \mu_{j} e_{j}\right)\right) \cdot \sum_{k=1}^{n} \nu_{k} e_{k} = \sum_{i,j,k} \lambda_{i} \mu_{j} \nu_{k} (e_{i} \cdot e_{j}) \cdot e_{k} =$$

$$= \sum_{i,j,k} \lambda_{i} \mu_{j} \nu_{k} e_{i} \cdot (e_{j} \cdot e_{k}) = \sum_{i=1}^{n} \lambda_{i} e_{i} \cdot \left(\left(\sum_{j=1}^{n} \mu_{j} e_{j}\right) \cdot \left(\sum_{k=1}^{n} \nu_{k} e_{k}\right)\right)$$

Теперь приведем конкретный пример. Пусть G — группа, |G| = 3.

Определение 17: Групповая алгебра

Групповой алгеброй K[G] над полем K назовем следующую алгебру: возьмем пространство столбцов размера n, занумеруем элементы стандартного базиса элементами группы G; соответствующий $g \in G$ базисный вектор обозначим e_g ; умножение $e_g \cdot e_h = e_{gh}$.

3амечание. K[G] некоммутативна тогда и только тогда, когда G некоммутативна.

Определение 18: Гомоморфизм К-алгебр

Отображение $f: S_1 \to S_2$, где $S_1, S_2 - K$ -алгебры, называется гомоморфизмом K-алгебр, если f — гомоморфизм колец и линейное отображение.

Теорема 4: типа Кэли

Любая конечномерная алгебра A над полем K вкладывается в $\operatorname{End}_k(A)$.

Вопрос 8 Многочлен от элемента. Минимальный многочлен. Нетривиальность минимального многочлена для элемента конечномерной алгебры. Дихотомия для элементов конечномерной алгебры.

Замечание. Пусть K — поле, A — алгебра над K. Заметим, что для $y \in A$ и многочлена $p(x) = a_0 + \ldots + a_n x^n \in K[x]$ можно определить элемент $p(y) = a_0 + \ldots + a_n y^n \in A$. Соответствие $p(x) \to p(y) \in A$ определяет единственный гомоморфизм K-алгебр $\varphi \colon K[x] \to A$, $\varphi(x) = y$.

Замечание. Пусть a, b — два элемента алгебры A, которые не коммутируют между собой. Тогда не существует гомоморфизма $K[t_1, t_2]$, переводящего $t_1 \to a, t_2 \to b$.

Утверждение. Для любого элемента y конечномерной алгебры A существует $p(x) \in K[x], \ p(x) \neq 0$ такой, что p(y) = 0.

Определение 19: Аннуляторы

Ядро гомоморфизма $K[x] \to A$, переводящего $x \to y$, является идеалом $Ann_y \leqslant K[x]$. Его элементы называют аннуляторами для элемента $y \in A$. Если этот идеал не 0 (есть нетривиальные многочлен, аннулирующий y), то образующую этого идеала (со старшим коэффициентом 1) называют минимальным многочленом для

элемента $y \in A$ и обозначают $\mu_y(x)$.

По другому, это многочлен минимальной степени со старшим коэффициентом, аннулирующий у.

Теорема 5

Любой элемент конечной алгебры A над полем K либо обратим, либо делитель нуля (с любой стороны).

Вопрос 9 Матрица линейного оператора. Инвариантные подпространства и как заметить по матрице линейного оператора. Примеры.

Определение 20

Две матрицы $A, B \in M_n(K)$ подобны, если существует матрица $C \in GL_n(K)$, что $A = CBC^{-1}$.

Замечание. Матрицы одного оператора в разных базисах подобны.

Определение 21: Инвариантное подпространство

Пусть V — пространство с опрератором L. Пусть $U \leqslant V$. Тогда U называется инвариантным подпространством, если $L(U) \leqslant V$.

Замечание. Это условие позволяет сузить оператор L с V на U. Наличие инвариантных подпространств не зависит от выбора системы координат.

Лемма 6

Пусть $U\leqslant V$ — подпространство, $L\colon V\to V$ — линейный оператор. Тогда U инвариантно относительно L тогда и только тогда, когда в базисе $e_1,\ldots e_k,e_{k+1},\ldots,e_n$, где $e_1,\ldots e_k$ — базис U, матрица оператора имеет блочно диагональный вид

 $\begin{pmatrix} A & B \\ 0 & C \end{pmatrix}$.

Вопрос 10 Собственные числа и собственные вектора. Характеристический многочлен и его связь с собственными числами. Вычисление характеристического многочлена сопровождающей матрицы.

Определение 22: Собсвенные число и вектор

Пусть V — пространство с оператором L. Тогда вектор $0 \neq v \in V$ называется собственным вектором с собственным числом λ относительно оператора L, если $Lv = \lambda v$.

Определение 23: Характеристический многочлен

Характеристический многочлен оператора $L-\chi_L(t)=\det(A-tE_n),$ где A- матрица L некотором базисе.

Замечание. Характеристический многочлен корректно определен.

Утверждение. Элемент $\lambda \in K$ является собственным числом оператора L тогда и только тогда, когда λ — корень $\chi_L(t)$.

Определение 24: Сопровождающая матрица

Пусть $f(x) \in K[x]$ — многочлен степени больше 1. Тогда сопровождающей матрицей к $f(x) = x^n + a_{n-1}x^{n-1} + \dots + a_0$ называется

$$\begin{pmatrix} 0 & 0 & \dots & 0 & -a_0 \\ 1 & 0 & \dots & 0 & -a_1 \\ 0 & 1 & \dots & 0 & -a_2 \\ \vdots & & \ddots & & \vdots \\ 0 & 0 & \dots & 1 & -a_{n-1} \end{pmatrix}.$$

Утверждение. Характеристический многочлен сопровождающей матрицы равен $(-1)^n f(t)$

Вопрос 11 След и определитель оператора. Диагонализация. Алгебраическая и геометрическая кратности. Неравенство между ними. Линейная независимость собственных векторов.

Определение 25: След

Пусть A — матрица размера n, тогда след матрицы равен $\operatorname{Tr} A = \sum_{i=1}^{n} a_{ii}$.

След оператора L — след его матрицы.

Замечание. Это определение не зависит от выбора базиса.

Замечание. Tr $A = (-1)^{n-1} a_{n-1}$, где $\chi_A(t) = \sum a_i t^i$.

Лемма 7: Свойства следа

- 1. Пусть A квадратная матрица. Тогда $\operatorname{Tr} CAC^{-1} = \operatorname{Tr} A$ для обратимой C.
- 2. Tr AB = Tr BA для $A \in M_{n \times m}(K), B \in M_{m \times n}(A)$.
- 3. След равен сумме собственных чисел с учетом их кратностей, как корней характеристического многочлена.
- 4. Tr $A = \operatorname{Tr} A^{\top}$.
- 5. $\operatorname{Tr}(A + \lambda B) = \operatorname{Tr}(A) + \lambda \operatorname{Tr}(B)$

Определение 26: Диагонализируемость

Оператор называется диагонализируемым, если в некотором базисе его матрица диагональна.

Матрица $A \in M_n(K)$ называется диагонализируемой, если соответствующий оператор $x \to Ax$ диагонализируем. То есть должна существовать обратимая матрица $C \colon CAC^{-1}$ — диагональна.

Лемма 8

Матрица оператора L в базисе $v_1, \ldots v_n$ диагональна тогда и только тогда, когда все v_i — собственные вектора L. В этом случае на диагонали стоят собственные числа оператора L.

Лемма 9

Пусть $v_1, \ldots v_n$ — собственные вектора L с собственными числами $\lambda_1, \ldots \lambda_n$. Пусть λ_i попарно различны. Тогда v_i линейно независимы.

Определение 27: Алгебраическая и геометрическая кратности

Пусть L — оператор на пространстве V.

Алгебраическая кратность собственного числа λ — его кратность как корня $\chi_L(t)$.

Геометрическая кратность λ — размерность $\ker L - \lambda \mathrm{id}$.

Лемма 10: Неравенство

Пусть L — линейный оператор на пространстве V, λ — его собственное число. Тогда алгебраическая кратность λ не менее его геометрической кратности.

Вопрос 12 Критерий диагонализируемости. Случай отсутствия кратный собственных чисел. Последовательности, удовлетворяющие линейному рекурентному соотношению.

Теорема 6: Критерий диагонализируемости

Пусть K — поле и все корни $\chi_L(t)$ лежат в K. Тогда оператор L диагонализуем тогда и только тогда, когда для любого собственного числа алгебраическая и геометрическая кратности равны.

Следствие 1: Случай без кратных корней

Пусть K — алгебраически замкнутое поле. Если $\chi_L(t)$ не имеет кратных корней, то оператор L диагонализируем.

Следствие 2

Пусть дана последовательность $x_n \in \mathbb{C}$, удовлетворяющая линейному рекурентному соотношению

$$x_{n+k} + a_{k-1}x_{n+k-1} + \ldots + a_0x_n = 0,$$

где $a_i \in \mathbb{C}$. Рассмотрим многочлен $f(t) = t^k + a_{k-1}t^{k-1} + \ldots + a_0$. Пусть у f(t) нет кратных корней. Тогда $x_n = c_1\lambda_1^n + \ldots + c_k\lambda_k^n$, где λ_i — корни f(t).

Вопрос 13 Многочлен от оператора. Разложение пространства в прямую сумму ядер многочленов от исходного оператора. Блочная структура матрицы оператора, связанная с подобным расположением.

Лемма 11

Пусть L — оператор на пространстве V, многочлен g(t) = p(t)q(t) аннулирует L (g(L) = 0). Причем (p(t), q(t)) = 1. Тогда пространство V раскладывается в прямую сумму инвариантных подпространств

$$V = \ker p(L) \oplus \ker q(L).$$

Утверждение. Пусть L — оператор на V, пространство $V = U_1 \oplus U_2$, где U_1, U_2 инвариантны. Если $e_1, \dots e_k$ и $f_1, \dots f_l$ — базисы U_1, U_2 , то матрица L в базисе $e_1, \dots e_l, f_1, \dots f_l$ имеет вид $\begin{pmatrix} A_1 & 0 \\ 0 & A_2 \end{pmatrix}$.

Вопрос 14 Факторизация по подпространству. Оператор на факторпространстве. Блочная структура исходного оператора. Теорема Гамильтона-Кэли.

Определение 28

Пусть U — подпространство V. Определим на факторе V/U структуру векторного пространства так $\lambda \overline{v} = \overline{\lambda v}$.

Определение 29

Пусть V — пространство с оператором L, U — инвариантное подпространство. Тогда определим оператор \overline{L} на V/U так $\overline{L}(\overline{v}) = \overline{L(v)}$.

Замечание. Если p(x) — многочлен, $v \in V$, то $p(\overline{L})\overline{v} = \overline{p(L)v}$.

Замечание. Так как подпространство инвариантно, в подходящем базисе матрица линейного оператора становится блочно-верхнетреугольной и верхний блок — это матрица сужения оператора.

Пусть $e_1, \ldots e_n$ — базис V и $\langle e_1, \ldots e_k \rangle$ — инвариантное подпространство относительно L. Если матрица L в этом базисе имеет вид

$$\begin{pmatrix} A & B \\ 0 & C \end{pmatrix}$$
,

то C — матрица \overline{L} в базисе $\overline{e_{k+1}i}, \ldots \overline{e_n}$. Следовательно,

$$\chi_L(t) = \chi_{L|_{V'}}(t) \cdot \chi_{\overline{L}}(t).$$

Теорема 7: Гамильтон-Кэли

Пусть L — оператор на V. Пусть многочлен $\chi_L(L)$ раскладывается на линейные множители. Тогда $\chi_L(L)=0$.

Вопрос 15 Жорданова клетка. Теорема о жордановой форме: единственность.

Определение 30: Жорданова клетка

Жорданова клетка размера k с собственным числом λ — матрица вида

$$\begin{pmatrix} \lambda & 1 & & & \\ & \lambda & 1 & & & \\ & & \ddots & \ddots & & \\ & & & \lambda & 1 \\ & & & & \lambda \end{pmatrix}.$$

Теорема 8: О жордановой форме

Пусть $L\colon V\to V$ — оператор на конечномерном пространстве над алгебраическим замкнутым полем K. Тогда существует базис $e_1,\dots e_n$, в котором матрица L имеет вид

$$A = \begin{pmatrix} J_{k_1(\lambda_1)} & & & \\ & \ddots & & \\ & & J_{k_s(\lambda_s)} \end{pmatrix}$$

Более того такая матрица единственна с точностью до перестановки блоков.

Эта матрица называется матрицей оператора в форме Жордана. Базис, в котором матрица оператора имеет такой вид называется жордановым базисом.

Вопрос 16 Теорема о жордановой форме: существование. Лемма про нильпотентный оператор.

Теорема 9: про нильпотентный оператор

Для любого нильпотентного оператора N на пространстве V существует базис $e_1, \ldots e_n$ в котором матрица N имеет вид

$$A = \begin{pmatrix} J_{k_1(0)} & & \\ & \ddots & \\ & & J_{k_s(0)} \end{pmatrix}.$$

Вопрос 17 Возведение жордановой клетки в степень. Поведение коэффициентов матрицы A^n в зависимости от n. Линейное рекурентное соотношение с постоянными коэффициентами общего вида.

Лемма 12

$$J_k(\lambda)^n = \begin{pmatrix} \lambda^n & n\lambda^{n-1} & \dots & C_n^{k-1}\lambda^{n-k+1} \\ & \lambda^n & & \vdots \\ & & \ddots & n\lambda^{n-1} \\ & & & \lambda^n \end{pmatrix}.$$

Следствие 3

Пусть $A \in M_n(K)$. Тогда существует такая обратимая матрица C, что $A^n = CJ^nC^{-1}$, где J — жорданова форма A. Причем J^n составлена из блоков из прошлой леммы.

Следствие 4

Для любой матрицы A коэффициент ее степени A^n — сумма последовательностей вида $C_n^s \lambda^{n-s}$ с независящими от n коэффициентами. λ — произвольное СЧ, s менее максимального размера ЖК с этим СЧ.

Следствие 5

Пусть дана последовательность $x_n \in \mathbb{C}$, удовлетворяющая линейному рекурентному соотношению

$$x_{n+k} + a_{k-1}x_{n+k-1} + \ldots + a_0x_n = 0,$$

где $a_i \in \mathbb{C}$. Рассмотрим многочлен $f(t) = t^k + a_{k-1}t^{k-1} + \ldots + a_0$. Тогда x_n равно сумме последовательностей $n^s \lambda$, где λ — корень f(t) и s строго меньше кратности λ как корня f(t).

Вопрос 18 Многочлен от жордановой клетки. Понятие функции, аналитической на диске. Вычисление аналитической функции от матрицы.

Теорема 10

Пусть L — оператор на векторном пространстве V над полем характеристики 0. Тогда матрица оператора p(L) в жордановом базисе L составлена из блоков вида

$$\begin{pmatrix} p(\lambda) & p'(\lambda) & \dots & \frac{p^{(k-1)}(\lambda)}{(k-1)!} \\ & p(\lambda) & & & \\ & & \ddots & \\ & & & p(\lambda) \end{pmatrix},$$

где $\lambda = \lambda_i$ — собственные числа, а число и размер блоков с λ_i равны числу и размеру блоков в жордановой форме.

Следствие 6

Пусть A — матрица, тогда $p(A) = Cp(J)C^{-1}$, где p(J) составлена из блоков, как в прошлой теореме, а C из жорданова базиса для A.

Определение 31: Аналитичная функция

Пусть $D \subseteq K$ — открытый диск с центром в точке z_0 и радиусом r > 0 в $K \in \{\mathbb{C}, \mathbb{R}\}$. Функция $f \colon D \to K$ аналитична, если существует последовательность $a_n \in K$, что $f(z) = a_0 + a_1(z - z_0) + \dots + a_n(z - z_0)^n + \dots$ для любого $z \in D$.

Определение 32

Пусть A — квадратная матрица над полем $K \in \{\mathbb{C}, \mathbb{R}\}$. Пусть f(z) — аналитическая функция в диске D, а все собственные числа A так же лежат в D. Тогда определим

$$f(A) = a_0 + a_1(A - z_0E) + \ldots + a_n(A - z_0E)^n + \ldots,$$

относительно покоэффициентной сходимости на $M_n(K)$.

Замечание. Матрица f(A) корректно определена и ее можно посчитать: $Cf(J)C^{-1}$.

Вопрос 19 Предельное поведение степеней матрицы при ограничениях на СЧ. Теорема о положительных матрицах (Перрон).

Лемма 13

Пусть A — вещественная или комплексная матрица с собственным числом $\lambda_1=1$ кратности 1, а все остальные строго меньше 1 по модулю. Если вектор $v=\sum c_i e_i$, где e_i — жорданов базис, то

$$\lim_{n \to \infty} A^n v = c_1 e_1.$$

Пример 3

- 1. Запись графа в виде матрицы. A(G) матрица смежности. Tr(A(G)) количество циклов длины $n.\ P(G)$ матрица случайного блуждания. $P_G^n v$ распределение после n шагов блуждания, если начальное распределение равно v.
- 2. Модель Лесли для распределения пл возрастам в популяции.

Определение 33: Положительная матрица

Назовем матрицу A положительной, если все ее элементы $A_{ij} > 0$.

Определение 34: Неотрицательная матрица

Назовем матрицу A неотрицательной, если $A_{ij} \geqslant 0$.

Обозначение. Если $A \in M_n(\mathbb{C})$, то |A| — матрица из $|a_{ij}|$. Если $A, B \in M_n(\mathbb{R})$, то A > B, если A - B > 0 (аналогично $c \geqslant$).

Теорема 11: Перрон, 1907

Если матрица A>0, то наибольшее по модулю собственное число единственное и является вещественным и положительным. Еще оно не является кратным корнем характеристического многочлена. Собственный вектор для него положителен.

Вопрос 20 Теорема Перрона. Критерий максимальности для собственного числа. Стохастические матрицы. Деформация для матрицы случайного блуждания и новый подход нахождения весов для поисковой системы.

Утверждение (Критерий максимальности). Пусть $A \geqslant 0$, и у A^{\top} есть положительный собственный вектор для собственного числа λ . Тогда λ — наибольшее по модулю собственное число A. Если у матрицы A есть собственный вектор $y \geqslant 0$, то y собственный вектор для числа λ .

Определение 35: Стохастическая матрица

Неотрицательная матрица $A \in M_n(\mathbb{R})$ называется стохастической, если сумма всех коэффициентов в каждом ее столбце равна 1.

Следствие 7

Y стохастической матрицы A единица является максимальным по модулю собственным числом.

Вопрос 21 Граф матрицы. Неприводимые и эрогодические (примитивные) матрицы. Связь этих понятий. Теорема Фробениуса. Следствие для неприводимых матриц.

Определение 36: Граф матрицы

Пусть A — неотрицательная вещественная матрица размера n. Вершинами графа этой матрицы будут числа от 1 до n, а ребро между $j \to i$ есть, если коэффициент $A_{ij} \neq 0$.

Определение 37: Неприводимая матрица

Неотрицательная матрица A называется **неприводимой**, если связанный с ней граф сильно связен.

3амечание. Это равносильно тому, что нельзя так перенумеровать координаты, чтобы в новых координатах матрица имела блочно-верхнетреугольный вид $\begin{pmatrix} B & C \\ 0 & D \end{pmatrix}$.

Лемма 14

Пусть A — неотрицательная неприводимая матрица размера n. Тогда $\forall \varepsilon > 0$ матрица $A + \varepsilon E$ эрогодическая.

Теорема 12: Фробениус, 1912

Пусть A — эрогодическая матрица. Тогда у A есть единственное максимальное по модулю собственное число λ и оно вещественно и положительно. Кроме того, λ не является кратным для A, этому числу соответствует положительный собственный вектор.

Следствие 8

Пусть A — неприводимая матрица. Тогда у A есть вещественное собственное число $\lambda>0$, которое не меньше всех остальных собственных чисел по модулю. Оно не кратно и соответствующий собственный вектор можно выбрать положительным.

Глава 2

Полилинейная алгебра

Вопрос 22 Билинейные формы. Матрица билинейной формы. Ранг и нувырожденность билинейной формулы. Ортогональное дополнение. Размерность ортогонльного дополнения. Разложение в ортогональную сумму.

Определение 38: Билинейная форма

Пусть V — векторное пространство над K. Отображение $h\colon V\times V\to K$ называется билинейной формой, если

- 1. $\forall \lambda \in K \ \forall u, v, w \in V$: $h(u + \lambda v, w) = h(u, w) + \lambda h(v, w)$,
- 2. $h(w, u + \lambda v) = h(w, u) = \lambda h(w, v)$

Определение 39: Матрица билинейной формы

Пусть $e_1, \ldots e_n$ — базис V, h — билинейная форма на V. Тогда матрица A, составленная из элементов $h(e_i, e_j)$ называется матрицей билинейной формы.

Лемма 15

Пусть V — пространство с базисом $e_1, \dots e_n$. Тогда имеет место взаимооднозначное соответствие между билинейными формами h на V и матрицами $A \in M_n(K)$.

В частности, если вектор v имеет столбец координат x, а вектор u — столбец y, то $h(u,v) = y^{\top}Ax$.

Лемма 16

Пусть V — пространство с билинейной формой h и базисом $e_1, \dots e_n$. Пусть матрица h в этом базисе — это A. Если выбрать другой базис f с матрицей перехода C, то в новом базисе матрица A будет иметь вид $A' = C^\top A C$.

Определение 40: Ранг

Ранг билинейной формы — это ранг ее матрицы.

Определение 41

Будем говорить, что элемент u ортогонален (слева) элементу v, если h(u,v)=0, и записывать так $u\perp v$.

Определение 42: Невырожденность

Билинейная форма h называется невырожденной, если $\forall v \neq 0$ существует $u \in V : h(u,v) \neq 0$.

Утверждение. Билинейная форма невырождена тогда и только тогда, когда ее матрица в некотором базисе невырождена.

Определение 43: Ортогональное дополнение сверху

Пусть h — билинейная форма на V. Если U — подпространство V, то правым ортогональным дополнением к U (внутри v относительно h) будет множество

$$U^{\perp} = \{ v \in V \mid \forall u \in U \ u \perp v \}.$$

3амечание. Аналогично есть левое дополнение $^{\perp}U$

Замечание. Если $e_1, \ldots e_k$ базис U, то условие $v \in U^{\perp}$ равносильно $\forall i \ e_i \perp v$.

Утверждение. Пусть U — подпространство V, h — билинейная форма на V. Тогда $\dim U^{\perp} \geqslant \dim V - \dim U$. Если форма невырождена, то $\dim U^{\perp} = \dim V - \dim U$ и верно, что $\perp (U^{\perp}) = U$

Утверждение. Пусть $U \leqslant V$ и h — билинейная форма на V. Тогда $V = U \oplus U^{\perp}$ тогда и только тогда, когда $h \mid_U$ невырождена.

Определение 44: Разложение в ортогональную прямую сумму

Если пространство разложилось в виде прямой суммы подпространств $V = U \oplus U'$, таких, что $U' \leqslant U^{\perp}$, то будем говорить, что имеет место разложение в ортогональную прямую сумму подпространств $V = U \oplus^{\perp} U'$.

Замечание. Если h невырождена, то для данного подпространства U может найтись не более одного пространства U', что $V = U \oplus^{\perp} U'$. А именно $U' = U^{\perp}$

Вопрос 23 Симметричные билинейные формы. Матрица для симметричной формы. Примеры. Квадратичные формы. Матрица квадратичной формы. Соответствие между симметричными билинейными и квадратичными.

Определение 45: Симметричная билинейная форма

Билинейная форма h называется симметричной, если h(u,v) = h(v,u). Форма h называется кососимметричной, если h(u,v) = -h(v,u).

Замечание. Любая билинейная форма h над полем, характеристика которого отлична от 2, может быть единственным образом представлена в виде суммы h^+ и h^- , где h^+ — симметричная форма, а h^- — кососимметричная.

 $h^+(u,v) = \frac{h(u,v) + h(v,u)}{2}, \ h^-(u,v) = \frac{h(u,v) - h(v,u)}{2}.$

Лемма 17

Билинейная форма h симметрична тогда и только тогда, когда ее матрица в некотором базисе симметрична, то есть $A^{\top} = A$, и кососимметрична, если $A^{\top} = -A$.

Определение 46: Квадратичная форма

Квадратичная форма — отображение $q\colon V\to K$ такое, что в некоторой линейной системе координат это отображение есть однородный многочлен степени 2, то есть $q(v)=\sum_{i\leqslant j}^{b_{ij}x_{i}x_{j}}$.

Матрица квадратичной формы в указанной системе координат — матрица

$$A_{ij} = \begin{cases} b_{ii}, & i = j \\ \frac{b_{ij}}{2}, & i \neq j \end{cases}.$$

Если вектор v имеет столбец координат x, то $q(v) - x^{\top}Ax$

Утверждение (соответстие между формами). Пусть h — билинейная симметричная форма на V. Тогда q(v) = h(v,v) — квадратичная форма. При этом, в любой системе координат матрицы q и h совпадают.

Замечание (обратная конструкция). Пусть q — квадратичная форма. Тогда форма $h(u,v) = \frac{q(u+v)-q(u)-q(v)}{2}$ — симметричная билинейная форма.

В таком случае h называется поляризацией квадратичной формы q.

Определение 47: Невырожденность

Квадратичная форма невырождена, если соответствующая ей симметричная билинейная форма невырождена.

Вопрос 24 Понятие ортогонального базиса. Существование ортогонального базиса. Алгоритм приведения квадратичной формы к сумме квадратов.

Определение 48: Ортогональная система векторов

Пусть h — симметричная билинейная форма на V. Система векторов называется ортогональной, если $\forall i \neq j : h(e_i, e_i) = 0$. Если $\{e_i\}$ — базис, то его тоже называют ортогональным.

Замечание. Матрица симметричной билинейной формы в ортогональном базисе имеет диагональный вид, а выражение для квадратичной формы — сумма квадратов координат вектора с коэффициентами.

Определение 49: Эквивалентность

Будем говорить, что симметрические билинейные (или квадратичные) формы эквивалентны, если в некоторых базисах они миеют одинаковые матрицы.

Теорема 13: о существовании ортогонального базиса

Пусть V — пространство с симметричной билинейной формой h. Тогда в V существует ортогональный относительно h базис.

Вопрос 25 Главные миноры. Теорема Якоби. Канонический вид квадратичной формы над $\mathbb C$ и $\mathbb R$

Определение 50: Главные миноры

Пусть A — матрица. Числа $d_i = \det A_i$, где A_i — подматрица A, составленная из первых i строк и столбцов, называются главными минорами.

Замечание. $d_0 = 1$

Теорема 14: Якоби

Пусть V — векторное пространство, q — квадратичная форма, A — ее матрица в некотором базисе $e_1, \ldots e_n$. Пусть главные миноры $d_i \neq 0$. Тогда матрица A — невырождена и может быть приведена к диагональному виду с числами $\frac{d_i}{d_{i-1}}$ на диагонали.

Утверждение. Канонический вид, к которому можно привести квадратичную форму над С:

$$q(x) = x_1^2 + \ldots + x_r^2.$$

Утверждение. Пусть q — квадратичная форма на вещественном пространстве V. Тогда существует линейная система координат, в которой форма имеет вид

$$q(x) = x_1^2 + \ldots + x_k^2 - x_{k+1}^2 - \ldots - x_{k+l}^2.$$

Вопрос 26 Положительная определенность. Единственность канонического вида над \mathbb{R} . Критерий Сильвестра.

Определение 51: Сигнатура формы

Сигнатура формы над \mathbb{R} — пара чисел (k,l) — число плюсов и минусов в каноническом виде.

3амечание. $k+l=\operatorname{rk} q$

Определение 52: Положительная определенность

Квадратичная форма называется положительно определенной, если $\forall v \neq 0 \colon q(v) > 0$.

Симметричная билинейная форма называется положительно определенной, если форма q(v) = h(v, v) положительно определена.

Симметричная матрица называется положительно определенной, если соответствующая форма положительно определена.

Теорема 15

Сигнатура формы q не зависит от способа приведения формы к каноническому виду. Точнее — число k равно размерности наибольшего подпространства, ограничение формы на которое положительно определено.

Следствие 9

Пусть q — форма на вещественном пространстве V размерности n. Тогда канонический вид q однозначно определяется числом n и ее сигнатурой.

Теорема 16: Критерий Сильвестра

Пусть V — векторное пространство над \mathbb{R} , q — квадратичная форма, A — ее матрица в некоторым базисе $e_1, \ldots e_n$. Пусть главные миноры d_i матрицы A не все равны 0. Тогда число перемен знака в последовательности $1 = d_0, d_1, \ldots d_n$ равно числу отрицательных квадратов в каноническом виде.

Вопрос 27 Описание положительно определенных квадратичных форм. Оценка на число множеств с одинаковым пересечением.

Лемма 18

Положительно определенная билинейная (квадратичная) форма всегда невырождена.

Теорема 17

Пусть дана форма q на вещественном пространстве V и ее матрица A в некотором базисе. Следующие условия эквивалентны:

- 1. Форма q положительно определена.
- 2. Главные миноры матрицы A положительны.
- 3. Матрица A представима в виде $A = C^{\top}C$ для некоторой невырожденной верхнетреугольной C.
- 4. Матрица A представим в виде $C^{\top}C$ для некоторой невырожденной матрицы.

Утверждение. Рассмотрим множество $\{1, \dots n\}$. Пусть $C_1, \dots C_m$ — множества, для которых верно $\forall i, j : |C_i \cap C_j| = t$. Тогда $m \leq n$.

Вопрос 28 Евклидовы пространства. Неравенство Коши-Буняковского. Неравенство треугольника. Ортогональное дополнение. Примеры евклидовых пространств.

Определение 53: Евклидово пространство

Векторное пространство V над $\mathbb R$ вместе с заданной на волнительно определенной симметричной билинейной формой $\langle \cdot, \cdot \rangle$ называется евклидовым пространством. Форма называется скалаярным произведением.

Определение 54: Норма

Определим норму на евклидовом пространстве как $||v|| = \sqrt{\langle v, v \rangle}$. Норма задает расстояние по правилу $\rho(u, v) = ||u - v||$.

Замечание. Это действительно норма: $||u+v|| \le ||u|| + ||v||$.

Лемма 19: Неравенство Коши-Буняковского

В евклидовом пространстве выполнено неравенство $\langle u, v \rangle \leqslant ||u|| \cdot ||v||$

Лемма 20

Пусть V — евклидово пространство. Тогда для всякого подпространства U имеет место ортогональное разложение $V = U \oplus U^{\top}$. Если есть такое разложение, то оператор проекции на U называется ортогональной проекцией.

Вопрос 29 Полуторалинейные формы на комплексном векторном пространстве. Примеры. Матрица полуторалинейной формы. Эрмитовость. Положительная определенность. Понятие унарного пространства.

Определение 55: Плуторалинейное отображение

Пусть V — комплексное пространство. Отображение $h\colon V\times V\to\mathbb{C}$ называется $\{$ полуторалинейным $\}$, если

- 1. $h(x, y + \lambda z) = h(x, y) + \lambda h(x, z)$,
- 2. $h(x + \lambda y, z) = h(x, z) + \overline{\lambda}h(y, z)$.

Пример 4

- 1. Полуторалинейные форма на \mathbb{C}^n : $h(x,y) = \sum \overline{x_i} y_i$.
- 2. $A \in M_n(\mathbb{C}), \ h(x,y) = \overline{x}^\top Ay$.
- 3. Пространство комплекснозначных непрерывных функций на C([a,b]). Определим полуторалинейную форму по правилу:

$$h(f,g) = \int_{a}^{b} \overline{f(x)}g(x)w(x)dx.$$

Определение 56: Матрица полуторалинейной формы

Матрица полуторалинейной формы h в базисе e — матрица $a_{ij} = h(e_i, e_j)$.

Лемма 21

Если x, y — координаты векторов u, v, то $h(u, v) = \overline{x}^{\top} A y$. Если $h(u, v) = \overline{x}^{\top} A y$, то A — матрица h.

Определение 57: Эрмитовость

Полуторалинейная форма h называется эрмитовой, если $h(v,u) = \overline{h(v,u)}$ и косоэрмитовой, если $h(u,v) = -\overline{h(v,u)}$.

Лемма 22

Полуторалинейная форма эрмитова тогда и только тогда, когда $A = \overline{A^\top}$ и кососэрмитова тогда и только тогда, когда $-A = \overline{A^\top}$.

Определение 58

Эрмитова форма назовется положительно определенной, если $\forall v \in V \setminus \{0\} \colon h(v,v) > 0$.

Лемма 23

Матрица положительно определенной эрмитовой формы невырождена.

Определение 59: Унитарное пространство

Пространство V над $\mathbb C$ вместе с положительно определенной эрмитовой формой называется унитарным пространством. Форма $\langle \cdot, \cdot \rangle$ — скалярное произведение.

Вопрос 30 Примеры унитраных пространств. Неравенство Коши-Буняковского и неравенство треугольника. Разложение в ортогональную прямую сумму. Понятие угла между векторами.

Лемма 24

Пусть $u, v \in V$ — два вектора в унитарном пространстве. Тогда $|\langle u, v \rangle| \leq ||u|| ||v||$

Следствие 10

Отображение $\|\cdot\|: V \to \mathbb{R}$, заданное по правилу $v \to \sqrt{\langle v, v \rangle}$ задает норму на V.

Определение 60: Угол между векторами

Пусть $x,y \neq 0$ — два вектора в V. Если V — евклидово, то углом между x и y называется такое число $0 \leqslant \varphi \leqslant \pi$, что

$$\cos \varphi = \frac{\langle x, y \rangle}{\|x\| \|y\|}.$$

В случае унитарного пространства V угол $\varphi \in [0, \frac{\pi}{2}]$ и

$$\cos \varphi = \frac{|\langle x, y \rangle|}{\|x\| \|y\|}.$$

Вопрос 31 Ортогонализация Грама-Шмидта. Дополнения ортонормированного набора векторов до базиса. Нахождение координат и длины вектора в ортогональном базисе.

Определение 61: Ортогонализация набора векторов

Пусть $e_1, \dots e_m$ — набор векторов евклидова или унитарного пространства V. Ортогонализация набора $\{e_i\}$ — набор $f_1, \dots f_n$ такой, что

- 1. $\forall i \neq j : f_i \perp f_i$
- 2. $\forall 1 \leq k \leq n : \langle e_1, \dots e_k \rangle = \langle f_1, \dots f_k \rangle$
- $||f_i|| = 1$

Набор векторов со свойством 3 называется нормированным, со свойствами 1, 3 — ортонормированным.

Теорема 18

 Π усть V — евклидово или унитарное пространство. Задача ортогонализации разрешима для независимого набора векторов из V.

Следствие 11

В евклидовом и унитарном пространстве любой ортонормированный набор можно дополнить до ортонормированного базиса.

Утверждение (Нахождение координат в ортогональном базисе). Пусть $e_1, \dots e_n$ — ортогональный базис V. Если c_i — координаты вектора x в этом базисе, то

$$c_i = \frac{\langle e_i, x \rangle}{\langle e_i, e_i \rangle}.$$

Вопрос 32 Вычисление длины проекции. Версия теоремы Пифагора. Расстояние между вектором и подпространством и между аффинными подпространствами.

3амечание. Для любого подпространства в унитарном пространстве $U \leqslant V$ определено его ортогональное дополнение $U^{\top} = \{v \in V \mid \forall u \in U : \langle u, v \rangle = 0\}$. V раскладывается в прямую сумму $V = U \oplus U^{\top}$.

Следствие 12

Пусть $e_1, \ldots e_n$ — ортогональный базис V, подпространство U порождено $e_1, \ldots e_k$. Тогда

- 1. $pr_U x = \sum \frac{\langle x, e_i \rangle}{\langle e_i, e_i \rangle} e_i$ 2. $||pr_{U^{\top}} x||^2 + ||pr_{U} x||^2 = ||x||^2$

Определение 62: Расстояние

Пусть A и B — подмножества метрического пространства. Тогда расстоянием $\rho(A,B)=\inf_{x\in A,\ y\in B}\rho(x,y)$.

Теорема 19

Пусть $U \leqslant V$, $x \in V$. Тогда $\rho(x, U)$ достигается на проекции $pr_U(x)$ и равно $||x - pr_U(x)|| = ||pr_{U^{\top}}(x)||$

Лемма 25

Пусть $A_1 = L_1 + x$, $A_2 = L_2 + y$ — аффинные подпространства. Тогда $\rho(A_1, A_2) = \rho(y - x, L_1 + L_2)$

Вопрос 33 Матрица Грама и невырожденность. Метод наименьших квадратов. Пример с приближением многочленом фиксированной степени. Псевдообратная матрица.

Определение 63: Матрица Грама

Пусть $e_1, \dots e_k$ — набор векторов V. Тогда матрица Грамма — матрица

$$G_{ij}(e_1,\ldots,e_k)_{ij}=\langle e_i,e_j\rangle.$$

Лемма 26

Пусть $v_1, \ldots v_n$ — набор векторов в \mathbb{R}^n . Тогда

$$\det G(v_1, \dots v_n) = (\operatorname{Vol}(v_1, \dots v_n))^2.$$

Теорема 20: Метод наименьших квадратов

 $A \in M_{m \times n}(\mathbb{R}), b \in \mathbb{R}^m$. Ищем x : ||Ax - b|| — минимально.

$$A^{\top} A x = A^{\top} b.$$
$$x = (A^{\top} A)^{-1} A^{\top}.$$

Определение 64: Псевдообратная матрица

Если $\ker A = 0$, матрица $(A^{\top}A)^{-1}A^{\top}$ называется псевдообратной.

Вопрос 34 Ортогональные и унитарные операторы. Эквивалентные Переформулировки. . . . матрицы. QR-разложение. Его использование для нахождения псевдообратной матрицы.

Определение 65

Пусть V — евклидово (унитарное) пространство. Ортогональным (унитарным) оператором на V называется такой линейный оператор $L\colon V\to V$, что $\|Lx\|=\|x\|$.

Теорема 21

Пусть $L\colon V\to V$ — линейный оператор на евклидовом или унитарном пространстве V. Тогда следующие условия эквивалентны:

- 1. L ортогональный (унитарный) оператор.
- 2. $\forall x, y \in V : \langle Lx, Ly \rangle = \langle x, y \rangle$.
- 3. L переводит любой ортонормированный базис в ортонормированный.
- 4. В любом ортонормированном базисе A (матрица L) удовлетворяет условию $\overline{A}^{\top}A=E_n$.
- 5. L переводит некоторый ортонормированный в ортонормированный.
- 6. В некотором ортонормированном базисе $\overline{A}^{\top}A = E_n$.

Следствие 13

Ортогональный оператор сохраняет углы между векторами.

Определение 66: Ортогональная матрица

Матрица $A \in M_n(\mathbb{R})$ называется ортогональной, если $A^\top A = E_n$.

Обозначение. Множество всех ортогональных матриц размера n обозначается $O_n(\mathbb{R})$.

Замечание. Такие матрицы описывают все линейные изометрии \mathbb{R}^n , поэтому образуют подгруппу в $\mathrm{GL}_n(\mathbb{R})$.

Определение 67: Унитарные матрицы

Унитарная матрица — матрица, удовлетворяющая равенству $\overline{A}^{\top}A = E_n$ и принадлежащая $\mathrm{GL}_n(\mathbb{C})$.

Обозначение. Множество таких матриц обозначается $U_n(\mathbb{C})$.

3 амечание. Определитель ортогональной матрицы равен ± 1 .

Определение 68

Определим специальную группу сохраняющую ориентацию:

$${A \in \mathcal{O}_n(\mathbb{R}) \mid \det A = 1} = SO_n(\mathbb{R}) \leqslant O_n(\mathbb{R}).$$

Замечание. Это подгруппа индекса 2. Ее называют группой вращений \mathbb{R}^n .

Вопрос 35 Сорпяженное линейное отображение: существование и единственность. Свойства. Примеры.

Определение 69: Спряженное отображение

Пусть L — линейное отображение $L\colon U\to V$ между евклидовым и унитарным пространствами. Тогда сопряженным отображением к L называется такое линейное отображение L^* , то $\langle L^*x,y\rangle=\langle x,Ly\rangle$ для всех $x\in V,\ y\in U.$

Теорема 22

Сопряженное линейное отображение единственно. Более того, если в U и V выбрать ортонормированные базисы u и v, матрица L в этих базисах есть A, то матрица сопряженного отображения будет равна \overline{A}^{\top} .

Следствие 14

Сопряженный оператор к оператору L существует и единственен. Более того, если задан ортонормированный базис $e_1, \ldots e_n$ и матрица A (матрица L), то матрица $L^* = \overline{A}^\top$.

Лемма 27: Общие свойства

- 1. $(L+T)^* = L^* + T^*$
- 2. $(LT)^* = T^*L^*$
- 3. $(\lambda L)^* = \overline{\lambda} L^*$
- 4. $(L^{-1})^* = (L^*)^{-1}$
- 5. $L^{**} = L$

Определение 70: Самомопряженность

L- оператор на евклидовом или унитарном пространстве V называется самосопряженным, если $L=L^st.$