CS112: Data Structures

Intro to Course
Asymptotic complexity and big-O
Linked Lists

CS112: Data Structures

- Instructor: Prof. Louis Steinberg
 - office: Hill 401
 - email: lou@cs.rutgers.edu
 - Office hours: To be Announced
- TA: Binh Pham
 - Office: Core 336
 - Email: binhpham@cs.rutgers.edu
 - Office hours: 4-5pm Mondays

Class Web Site

- http://sakai.rutgers.edu
 - Log in using Rutgers NetID & password, click on "CS112, Summer 2011" tab
- You are assumed to know anything posted.

Prerequisite

- CS 111 or equivalent
 - Comfortable writing and debugging programs 1 to 2 pages long
 - Basic Java (types, control flow, etc.)
 - **Arrays** (1D)
 - Sequential search
 - Insertion sort
 - Recursion
 - Using objects (not defining classes)
 - Big-O worst case analysis

Prerequisite

 Determination to work hard and keep upto-date on coursework

Requirements

- Problem sets not to turn in
- Homework Projects
- Written exams
 - Midterms and Final

Textbook

 Data Structures Outside In with Java, 1st Edition.

by Sesh Venugopal

Prentice-Hall, 2006.

ISBN 978-0131986190.

What is a data structure

- A representation scheme that stores
 - Multiple pieces of data
 - Relationships between pieces of data
- E.g,
 - Object
 - Array
 - Linked List

What to know about a DS

- What operations can we do?
- What do they cost?
 - Time
 - Memory space

How long does it take

- Problem: actual time depends on
 - What computer
 - What language
 - What compiler
 - What programmer
 - What input
- We want a measure of time that does not depend on these

Solutions

- Count operations, not time
- Op count = f(input size)
- Among inputs of the same size, use worst or average op count
- Abstract away details of f: O(f)
 - focus on large inputs
 - Ignore constant multiples

Example

```
Input: double array A, int n, double target
Output: boolean: are any of first n
elements of A equal to target
for (i = 0; i<n; i++){
   if (A(i) == target){
      break;}}
return i < n;</pre>
```

Count Operations, Not Time

- So processor speed doesn't matter
- But which operation to count?
 Count should model time of algorithm
 - Most frequent / inner loop
 - Most time consuming
 - Inherent in algorithm, not language

Size of input

- Problem: number of operations depends on size of input
- Solution: number of ops = f(input size)
 - E.g., ops = size, ops = size * (size-1) / 2
- How do we define size of input?
 - Usually obvious measure
 - Sometimes several equally good
 - eg, n x n matrix: #rows or # elements
 - choose any but be clear which you chose

Same Size But Not Same Ops

- Sometimes inputs of same size take different numbers of operations
 - In example, ops varies from 1 to size
- Solution: use
 - Worst case
 - Average case
 - Weighted by probability

- Worst case:
 - Not found or found at end
 - Ops = size

Average Case

- To compute average cost:
 - What determines cost?
 EG for array search: where in the array will the target be found?
 - For each such case, figure out the cost of that case (# operations)| and the probablility of that case
 - Sum over all cases of the cost times the probablility

- Assume:
 - Always found
 - Target equally likely to be found in each place
- Sum over all positions p of

ops if found at p * probability of found at p

Let n = size of input.

Average cost =
$$\sum_{p=1}^{n} (p * 1/n) = \frac{1}{n} \sum_{p=1}^{n} p$$

$$1 + 2 + ... + n$$

$$= n * (n + 1) / 2$$

Average cost

$$\sum_{p=1}^{n} (p*1/n) = \frac{1}{n} \sum_{p=1}^{n} p = \frac{1}{n} \underbrace{\binom{n*(n+1)}{2}}_{=} = \frac{n+1}{2}$$

- Assume 50% chance of not found
 - If found, equal chance in each position

Prob(found) * cost if found

+ Prob(not found) * cost if not found

$$= 1/2 *(n+1)/2$$

$$+1/2 * n$$

$$= 3/4 n + 1/4$$

Worst vs Average Case

Worst case:

- Often easier to find
- No assumptions about probability of inputs
- Sometimes what we really care about
- But sometimes misleading
 - E.g., quicksort

Average case

- Often harder to find
- Requires assumptions about probability of inputs
- Sometimes what we really care about

Another Example

Input: double array A, int n
Output: largest number in first n
elements of A
double big = A(0);
for (int i = 1; i<n; i++){
 if (big < A(i))}
big = A(i)}}</pre>

More Examples

```
for (int i = 0; i < m; i++){
   for (int j = 0; j < n; j++){
      sum += A(i, j)}}

for (int i = 0; i < m; i++){
   for (int j = 0; j < i; j++){
      sum += A(i, j)}}

for (int i = 0; i < m; i++){
      sum += A(i, j)}}</pre>
```

Recursive example

```
int foo(int i){
   if (i == 1){
      system.out.println("foo");
   } else {
      foo(i-1);
      foo(i-1);
   }
}
```

Asymptotic Complexity

- Assume a problem, input size n
 - Algorithm F takes worst case n+100 ops
 - Algorithm G takes worst case 2 * n ops
- Which takes longer?

• Which function is bigger?

$$f(n) = n + 100$$

$$g(n) = 2 * n$$

CS112: Slides for Prof. Steinberg's lecture

Asymptotically faster

• Function g(n) grows asymptotically faster than f(n) if

there is an n_0 such that for all n'> n_0 ,

g(n') > f(n')

Asymptotically faster

Yes

Which function is bigger?

$$f(n) = 4 * n$$
$$g(n) = 2 * n$$

• What if one algorithm is run on a machine that is twice as fast as the other?

- f(n) is O(g(n)) if there is some constant c such that c*g(n) grows asymptotically faster than f(n)
- $3 * n^2 + 7$ is $O(n^2)$ because $4 * n^2$ grows asymptotically faster than $3 * n^2 + 7$

- Informally when we say f(n) is O(g(n)) we mean g(n) is the simplest function for which this is true
 - technically, n+4 is $O(3*n^2 9*n + 5)$ but we prefer to say n+4 is O(n)

Rules for Big O

- k is O(1)
 341 is O(1)
- f+g = max (O(f), O(g))n + 1 is max(O(n), O(1)) = O(n)
- k * f = O(f) $O(4*n^4) = O(n^4)$
- $O(n^A) < O(n^B)$ if A < B $O(n^3) < O(n^4)$
- O(polynomial) is O(highest exponent term) $5 n^4 + 44 n^2 + 55 n + 12 is O(n^4)$

Names for Big O

- O(1) is constant
- O(n) is linear
- O(n²) is quadratic
- O(kⁿ) is exponential
 - O(kⁿ) is bigger than any polynomial

Try These

- What is big-O of these?
- 1. $x^2 + 100 x + 10$
- 2. (n-1)*n/2
- $3. \quad 10 + sqrt(n)$
- 4. $(10 + sqrt(n))^2$
- 5. n + sqrt(n)
- 6. 2^{n-1}
- 7. 2^{4n}

Objects, methods, and variables

- In Java, data is stored in
 - Parameters and local variables of methods
 - Instance variables of objects
- Variables can hold references to another object
- See Rectangle1.java, Rectangle2.java, Rectangle3.java, and Rectangle4.java

Linked Lists

· When you have data in order in an array

0 1 2 3

Bob Ed Sue

- You are storing who is 1st, 2nd, etc
 - Which largely changes when you insert

0 1 2 3

Bob Ben Ed Sue

What if all you care about is who is after who?

Linked Lists

Suppose you store "who comes next"

$$Bob \longrightarrow Ed \longrightarrow Sue \longrightarrow$$

When you insert, there is less to change

Storing "who is next"

- Class Node: instance variables for
 - A name
 - The next node in order

The Node Class

```
public class Node{
  private String name;
  private Node next;
  public Node(String nm, Node nxt){
  name = nm;
  next = nxt;
```

Storing "who is next"

Can also draw this way

Example Initial State

Node people; ...

Insert at Head

Insert "Al" at head of list

Node newNode = new Node("Al", people);

Insert at Head

Insert "Al" at head of list

Node newNode = new Node("Al", people);
people = newNode;

Cost of Insert At Head

- For linked lists: O(1)
- For arrays: O(size)

Remove at Head

people = people.next;

Cost of Remove At Head

- For linked lists: O(1)
- For arrays: O(size)

Insert after given node

Insert "Betty" after before
Node newNode =
 new Node(newName, before.next);

Insert after given node

Insert "Betty" after before
Node newNode =

new Node(newName, before.next);
before.next = newNode;

Cost of insert after given node

- For linked lists: O(1)
- For arrays: O(size)

Remove after given node

Remove the node after beforebefore.next = before.next.next

Cost of remove after given node

- For linked lists: O(1)
- For arrays: O(size)

Find last

```
Node last;
if (people == null){
   last = null;
} else {
     for (last = people;
          last.next != null;
          last = last.next){ }
people
            Anne
                        Bob
last
                                   null
```

Cost of find last

- For linked lists: O(size)
- For arrays: O(1)

Insert at End

Insert Don after Bob

... find last ...

last.next = new Node("Don", null);

Cost of insert at end

Including find last

- For linked lists: O(size)
- For arrays: O(1)

Remove last

```
if(people == null){
 } else {
   if (people.next == null){
       people = null;
   } else {
       Node place;
         for(place = people;
            place.next.next != null;
            place = place.next;){ }
       place.next = null;
 } }
people
                                    Bob
                  Anne
                                                   null
CS112: Slides for Prof. Steinberg's lecture
                                                         Lecture 1
```

60

Cost of remove last

- For linked lists:O(size)
- For arrays: O(1)

Find element i

```
Node place = people;
for (k = 0;
    place != null && k < i;
    k++){
    place = place.next;
}</pre>
```


Find by data

```
Node place;
for (place = people;
      place != null &&
        ! place.name.equals(target);
      place = place.next)
      { }
people
            Anne
                        Bob
                                  ▶ null
place
```

Generic Lists

- The code for, eg, insert at head is very much the same for lists of ints and lists of doubles. Why write it twice if you need both?
- Solution: generic types: see Node.java, LinkedList.java
- See also

http://java.sun.com/j2se/1.5/pdf/generics-tutorial.pdf