

Latest results on invisibly decaying Higgs bosons

Patrick Dunne - Imperial College London on behalf of the ATLAS and CMS Collaborations DM@LHC 2016 - 31/03/2016

Outline

- ► How to search for invisibly decaying Higgs bosons:
- direct and indirect searches
- Run 1 results from ATLAS and CMS
- ▶ Run 2 results from CMS
- Projections of future sensitivity
- ▶ nb all limits at 95% CL unless stated otherwise

Why look for invisibly decaying Higgs bosons?

Theoretical Motivations

- All SM massive particles get their mass through Higgs boson couplings
- ► Why not dark matter?

Experimental motivation

- ► Measurements of the Higgs boson made so far are impressive:
 - Mass measured with 0.2% error
- ► A lot of parameters are still relatively unconstrained:
- Limit on width is $\sim 4\Gamma_{SM}$
- Plenty of room for Higgs boson couplings to dark matter

CMS-PAS-HIG-15-002 ATLAS-CONF-2015-044

How to search for invisibly decaying Higgs bosons

Indirect searches

- ► Compare visible width to total width:
- $BR_{BSM} = \frac{\Gamma_H \Gamma_{vis}}{\Gamma_H}$
- No measurement of Γ_H , need to make an assumption
- Usually assume SM width
- ► ATLAS+CMS combination gives an observed (expected) limit on BR_{BSM} of 0.34 (0.35)

ATLAS-CONF-2015-044

How to search for invisibly decaying Higgs bosons

▶ Look for associated Higgs boson products plus E_T^{miss}

Production channels

- ► VBF mode is most sensitive
 - Second highest rate and distinctive topology
- Gluon fusion has no visible products, needs ISR
- High rate, difficult final state
- VH has clean final states but low rate

Run 1 ATLAS direct searches - $Z(\ell\ell)H$

- ► Selects two leptons opposite large E_T^{miss}
- ► *E_T^{miss}* Shape analysis with data driven backgrounds
- ▶ Observed (expected) limit on $\mathcal{B}(H \to inv.)$ for $m_H = 125.5$ GeV is 75 (62)%

Run 1 ATLAS direct searches - V(had)H

- ▶ Targets $W/Z \rightarrow qq$ final state
- E_T^{miss} and dijet p_T shape analysis with data driven backgrounds
- ▶ Observed (expected) limit on $\mathcal{B}(H \to inv.)$ for $m_H = 125$ GeV is 78 (86)%

Eur. Phys. J. C (2015) 75:337

Run 1 ATLAS direct searches - VBF

- Select two jets with large $\Delta \eta$ opposite large E_{τ}^{miss}
- Counting experiment with data driven background estimation
- W
 ightarrow e
 u, $W
 ightarrow \mu
 u$ and $W \rightarrow \tau \nu$ and $Z \rightarrow \nu \nu$ normalisation tied together
- Observed (expected) limit on $\mathcal{B}(H \to inv.)$ for $m_H = 125$ GeV is 28 (31)%

Signal region	SR1	SR2a	SR2b
Process			
ggF signal	20±15	58± 22	19± 8
VBF signal	286±57	182± 19	105±15
$Z(\rightarrow \nu\nu)$ +jets	339±37	1580±90	335±23
$W(\rightarrow \ell \nu)$ +jets	235±42	1010± 50	225±16
Multijet	2± 2	20± 20	4± 4
Other backgrounds	1±0.4	64± 9	19± 6
Total background	577±62	2680±130	583±34
Data	539	2654	636

JHEP 01 (2016) 172

Run 1 ATLAS direct searches - Combination

- Combining searches significantly improves limits
- Direct searches provide most sensitivity
 - Observed (expected) limit on $\mathcal{B}(H \to inv.)$ for $m_H = 125$ GeV is 25 (27)%
- Adding indirect results adds assumption on Higgs total width
- Observed (expected) limit on $\mathcal{B}(H \to inv.)$ for $m_H = 125$ GeV is 23 (24)%

JHEP11(2015)206

Run 1 CMS direct searches - 7H

- ▶ Searches in $Z \rightarrow \ell \ell$ and $Z \rightarrow b\bar{b}$ channels
- $ightharpoonup Z(\ell\ell)H$ search is a 2D shape analysis with data driven backgrounds
- \triangleright $Z(b\bar{b})H$ search is a BDT shape analysis with data driven backgrounds
- Combined 7H searches observed (expected) limit on $\mathcal{B}(H \to inv.)$ for $m_H = 125$ GeV is 81 (83)%

Eur. Phys. J. C 74 (2014) 2980

Run 1 CMS direct searches - Monojet+V(had)H

- Search has categories targeting V(had)H and ggH production modes
- ► E_T^{miss} shape analysis with data driven background estimation
- Observed (expected) limit on $\mathcal{B}(H \to inv.)$ for $m_H = 125$ GeV is 53 (62)%

CMS-PAS-EXO-12-055

Run 1 CMS direct searches - VBF

- ▶ Select two jets with large $\Delta \eta$ separated from large E_T^{miss}
- Dedicated "parked data" trigger
- Counting experiment with data driven backgrounds
- V+jets backgrounds separately normalised
- If all normalisations had same uncertainty as $W o \mu \nu$ expected limit would be 33%
- Observed (expected) limit on $\mathcal{B}(H \to inv.)$ for $m_H = 125$ GeV is 57 (40)%

Run 1 CMS direct searches - Combination

- ► Combine by production mode as well as full combination
- ggH-tagged is monojet, VH-tagged is Z($\ell\ell$)H+Z(bb)H+V(had)H, VBF-tagged is VBF
- ▶ Obs. (exp.) limit on $\mathcal{B}(H \to inv.)$ at $m_H = 125$ GeV is 36 (30)%

CMS-PAS-HIG-15-012

Run 2 CMS direct searches - 7H

- ▶ Targets $Z \rightarrow \ell \ell$ final state
- ► 2D shape analysis with leading backgrounds estimated using MC.
- Observed (expected) limit on $\mathcal{B}(H \to inv.)$ for $m_H = 125$ GeV is 124 (124)%

CMS-PAS-HIG-16-008

Run 2 CMS direct searches - VBF

- Dedicated trigger used again
- ► Counting experiment with data driven background estimation
- ► V+jets backgrounds all taken to have same normalisation
- Observed (expected) limit on $\mathcal{B}(H \to inv.)$ for $m_H = 125$ GeV is 69 (62)%

Run 2 CMS direct searches - Combination

- ► First CMS analysis combining 8 and 13 TeV results
- Limit calculated both by production mode and overall
- ▶ Combined observed (expected) limit on $\mathcal{B}(H \to inv.)$ for $m_H = 125$ GeV is 32 (26)%

CMS-PAS-HIG-16-009

Projections

- ► CMS VBF analysis projected to increased luminosity at 13 TeV
- ▶ If systematics scale as $\sqrt{\mathcal{L}}$ can exclude \mathcal{B} ($H \rightarrow inv.$) = 5% with full LHC dataset

Dark matter interpretations - Run 1 results

- Several models for interpreting invisible Higgs limits
- "Higgs portal" has been quite commonly used
- Assume 125 GeV Higgs acts as mediator between visible and dark matter sectors
- Assume scalar, fermion or vector dark matter
- Scalar dark matter would mix with Higgs boson
- mixing angle must be small
- Vector dark matter width goes to infinity as mass decreases

JHEP11(2015)206

Dark matter interpretations - Projections

- ► Models with electroweak couplings studied: favours VBF channel
- ▶ VBF topology allows looser E_T^{miss} selection making EFTs valid
- ▶ Also investigate simplified models with scalar/pseudoscalar mediator
- ▶ Projections of CMS VBF channel sensitivity at several luminosities

Summary

- ▶ Both collaborations are sensitive to $\mathcal{B}(H \to inv.) \sim 25\%$ with current datasets
- Current 95% CL upper observed (expected) limits from direct searches are CMS: 32 (26)%, ATLAS: 25 (27) %
- Combinations of channels allow sensitivity to be greatly improved
- ▶ Projected limit on $\mathcal{B}(H \to inv.) \sim 10\text{-}20\%$ from VBF alone by the end of LHC Run 2 and 5% by end of LHC running