

Development of Coated Additively Manufactured (AM) Materials for Tribological and Radiation Resistance Improvement at Lunar and Martian Surfaces (MERCRI)

(Mercury- Roman God of Travelers): Metallic Environmentally Resistant Coating Initiative

Sara Rengifo MSFC EM22
Malik Thompson MSFC EM41
Annette Gray MSFC EM22
Brandon Phillips MSFC EM31
02/09/2022

MSFC EM22

Challenge/gap that the project addresses

Light Weight Alloys

Poor Wear Resistance

Substrates: Light weight alloys High Friction & Poor wear

Type of coatings

Low friction, high wear resistance, high radiation resistance (for BN-based)

BN-based

Possible Solutions

Cold Spray Vs Plasma Spray

High Pressure Cold Spray Unit. Plasma Processes, LLC

High Temperature

Environmental Exposure

- Particle radiation
- · Neutron radiation
- Thermal cycle (moon temperature cycles)

Evaluation

(1) Radiation shielding cross-section

$$u_m = \frac{1}{d \cdot t} \ln \left(\frac{A}{A_0} \right)$$

$$\begin{split} \mu_m &= \text{Mass absorption cross-section for thermal neutrons} \\ t &= \text{Sample thickness, } d = \text{Sample density} \\ A_0 &= \text{Average initial activity of unshielded foil} \\ A &= \text{Average initial activity of shielded foil} \end{split}$$

(2) Radiation shielding effectivenes

Wear Test

Three body abrasion

 Surface erosion by high velocity regolith impact

AM
(additively
manufactured)
&
CM

(Conventionally manufactured)

JSC-1A

NASA MSFC EM41 Radiation Environment Test

Environment Definition Source: SLS-SPEC-159, Revision H, August 12, 2020, Cross-Program Design Specification for Natural Environments (DSNE), Table 3.3.1.10.2-6. Integral Electron and Proton Fluence for 15 Year Exposure to Solar Wind and Earth's Magnetotail in a Near Rectilinear Halo Orbit, 95th percentile.

For Phase I Down Select, we worked with NASA MSFC EM41 SEE Team to develop a flat dose of radiation for 1 Mrad, that would scale accordingly for the four coating variations (where the calculated difference in dose to hBN 2% and 10% were negligible). As such, we plan to expose the Radiation Only and Combined sample subsets in the same Pelletron Electron run. Per discussions with Dr. Cheol Park (LARC) it was recommended to increase the dose to 6 Mrad, with the understanding that the flux be adjusted to operator preference.

For Phase II Materials Testing & Phase II Simple/Complex Mechanisms Testing, we will further develop and compare our test profile to better match the dose described in the DSNE documentation. We will likely be using a similar test spec for the Phase III Flight Mechanism Testing.

<u>Pelletron Electron Test Assumptions</u>

- Electron Energy is 400 keV
- Electron Flux is 1 nA/cm²
- 6 Mrad dose in each coating
- Coatings are 200 µm thick
- Durations Estimates
 - Coating #1: NiTi+W2
 - Density: 7.148 g/cm³
 - Duration: 7.5 hrs
 - Coating #2: Ti-2%vol hBN
 - Density: 2.433 g/cm³
 - Duration: 4.8 hrs
 - Coating #3: Ti-10%vol hBN
 - Density: 2.406 g/cm³
 - Duration: 4.8 hrs
 - Coating #4: Al2O3
 - Density: 3.987 g/cm³
 - Duration: 4.2 hrs

NASA MSFC ET20 Vacuum Thermal Cycle Test

For Phase I down-select testing, we decided to target a thermal profile ranging from 120 ± 10 °C with a DNE threshold of 130 °C down to -175 ± 10 °C on the cold side. To reduce cycles to the shortest possible cycle duration, we would only hold soaks until the trailing TC is within the tolerance window (no artificial soak durations). We were initially targeting 288 cycles, if able to be completed with the project allowable schedule.

The Phase I TVAC was important particularly for providing a pathfinder experience that would feedback to the team members working the mechanism designs in parallel, optimizing the Phase II & Phase III TVAC testing to come later in the project life.

Tribological Tests

Lunar Regolith Simulant: JSC-1a

 Comparable to soil brought back from Apollo 15.

Pin on disk test with JSC-1A simulant

60NiTi-Hf 9N

9N

Tribology

Coating Provider	Powder Formula	Application Process	Substrate	Vendor Provided	Radiation Env	Combined Env	Thermal Env	Virgin Quantity
Plasma Processes / Applied Tungstenite	Ni (60%), Ti (40%), WS2*	Vacuum Plasma Spray Coated, post spray WS2 film added	Conventionally Manufactured Aluminum Puck	1B, 2B, 3B, 1S, 2S	1B	2В	3B	15
Plasma Processes / Applied Tungstenite	Ni (60%), Ti (40%), WS2*	Vacuum Plasma Spray Coated, post spray WS2 film added	Conventionally Manufactured Titanium Puck	262, 263, 264, 265, 266	262	263	264	265
Plasma Processes	Aluminum Oxide	Vacuum Plasma Spray Coated	Conventionally Manufactured Aluminum Puck	41, 42, 43, 44, 45	41	42	43	44
Plasma Processes	Aluminum Oxide	Vacuum Plasma Spray Coated	Conventionally Manufactured Titanium Puck	236, 237, 238, 239, 240	236	237	238	240
Plasma Processes	Ti64 (98%), hBN (2%)	Vacuum Plasma Spray Coated	Conventionally Manufactured	36, 37, 38, 39, 40	36	37	38	39
Plasma Processes	Ti64 (98%), hBN (2%)	Vacuum Plasma Spray Coated	Conventionally Manufactured Titanium Puck	226, 227, 228, 229, 230	226	227	228	230
Plasma Processes	Ti64 (98%), hBN (2%)	High Pressure Cold Spray Coated	Conventionally Manufactured Aluminum Puck	26, 27, 28, 29, 30	26	27	28	29
Plasma Processes	Ti64 (98%), hBN (2%)	High Pressure Cold Spray Coated	Conventionally Manufactured Titanium Puck	221, 222, 223, 224, 225	221	222	223	224
Plasma Processes	Ti64 (90%), hBN (10%)	Vacuum Plasma Spray Coated	Conventionally Manufactured Aluminum Puck 1.50 in Ø x 0.25 in thick	31, 32, 33, 34, 35	31	32	33	34
Plasma Processes	Ti64 (90%), hBN (10%)	Vacuum Plasma Spray Coated	Conventionally Manufactured Titanium Puck 1.50 in $\emptyset \times 0.25$ in thick	231, 232, 233, 234, 235	231	232	233	234
FIU	Ti64 (98%), hBN (2%)	Plasma Spray Coated	Conventionally Manufactured Aluminum Puck 1.50 in $\emptyset \times 0.25$ in thick	003-007	3	4	5	6
FIU	Ti64 (98%), hBN (2%)	Plasma Spray Coated	Conventionally Manufactured Titanium Puck 1.50 in Ø x 0.25 in thick	201-205	201	202	203	204
FIU	Ti64 (90%), hBN (10%)	Plasma Spray Coated	Conventionally Manufactured Aluminum Puck 1.50 in Ø x 0.25 in thick	008-012	8	9	10	11
FIU	Ti64 (90%), hBN (10%)	Plasma Spray Coated	Conventionally Manufactured Titanium Puck 1.50 in $\emptyset \times 0.25$ in thick	207-211	207	208	209	210
Aluminum Substrate Contol	NA	Uncoated Substrate	Conventionally Manufactured Aluminum Puck 1.50 in $\emptyset \times 0.25$ in thick		Spare	Spare	Spare	
Titanium Substrate Control	NA	Uncoated Substrate	Conventionally Manufactured Titanium Puck 1.50 in Ø x 0.25 in thick		Spare	Spare	Spare	

NASA MSFC EM41 Mechanism Design

Intent

- To fully confirm the coating performance, flight-like testing is critical
- A series of mechanisms will be designed to demonstrate modes of wear and analogs to in-mission applications
 - Subscale simple and complex mechanisms
 - Beginning ambient conditions and moving toward relevant environments
- Provides opportunity for process mastery of coating application in more complex geometries

Small simple machines

Small complex mechanism

Large flight-like mechanism

Mechanism Attributes

Small Simple Mechanisms	Small Complex Mechanisms	Large Scale Mechanisms
 Intended to demonstrate onset wear mechanisms through simple designs coated by spray process Proving ground for spray process and coating wear-resistance in ambient environment Joint Examples: Simple hinge Pin joint Ball and socket joint Replicated motion Rolling torsion Findings used to develop evaluation criteria 	 Taking onset wear motion, and increasing complexity of mechanisms to further augment coating application process mastery Performed in lunar environment Added geometric complexity 2 options carried for from previous array of testing 	 Full scale mechanism based on lunar architecture Taking lessons learned from previous array of testing Parts destructively evaluated for wear properties

Lander Joints

- Using lander concepts provided by LaRC combined with Apollo Lunar Module to derive types of mechanisms and ranges of motion
- Primarily looking at joints with more actuation in use and complex geometries.

Pin joint

Proposed Simple Mechanism Joints

- Simple joints replicating types of motions found in lunar structures (pasted and proposed for future)
 - Easily assembled, optimized for thermal cycling and coating application
- Provides multiple surfaces to collect data from
- Each demonstrates a different type of wear-inducing motion

Forward Work

- Mechanism fabrication and thermal cycling
- Designing Test Environments and test parameters
 - Vacuum, regolith simulant delivery, temperature requirements based on known lunar environments
 - Determination of contact loads

Questions?