Medical Image Processing for Interventional Applications

Online Course – Unit 15 Andreas Maier, Jakob Wasza, Frank Schebesch Pattern Recognition Lab (CS 5)

Image Enhancement

Topics

Image Enhancement

Motivation

Normalized Convolution

Bilateral Filtering

Summary

Take Home Messages

Further Readings

Range Imaging (RI)

Metric surface measurement:

- Marker-less, non-intrusive
- Real-time capable

Specification	PMD CamCube 3.0	Microsoft Kinect
Principle	ToF	SL
Resolution [px]	200 x 200	640 x 480
Frame rate [Hz]	40	30
Measurement range [m]	0.3 – 7.0	1.0 – 3.0
Field of view [°]	40 x 40	57 x 43
Noise level σ [mm] (at a working distance of 1 m)	± 5.98	± 0.92

Figure 1: RI data

RI in Abdominal Surgery: Open Surgery

- Fuse pre-operative 3-D planning data and intrainterventional surface measurements:
 - Augmented reality
 - Navigation

- Challenges:
 - Accuracy in a medical environment
 - Real-time requirements in interventional imaging
 - Usability for surgeons and medical staff

Figure 2: Image courtesy of NJLiverCare.Org

RI in Abdominal Surgery: Endoscopy

- Fuse conventional 2-D RGB endoscopy data with 3-D depth information
 - Measurement of regions of interest
 - Segmentation and tracking of tools
 - Navigation, collision avoidance
- Challenges:
 - Accuracy in a medical environment
 - Real-time requirements in interventional imaging
 - Usability for surgeons and medical staff

Figure 3: Image courtesy of KIT, Karlsruhe

RI in Abdominal Surgery

Figure 4: Preprocessing pipeline for interventional range imaging

RI in Abdominal Surgery: Example Video

Video 1: Hover over the static image and click play to watch

Nomenclature

- We consider discrete 2-D images using the following notation:
 - number of pixels N,
 - discrete pixel index x = (x, y),
 - local neighborhood ω_x , $|\omega_x| = (2r+1)^2$, r = 1,2,...

- Filter input \rightarrow corrupted/noisy image g(x)
- Filter output \rightarrow restored/denoised image f(x)

Refresher: Convolution

Discrete convolution:

$$f(\mathbf{x}) = \{g * \mathcal{K}\}(\mathbf{x}) = \frac{\sum_{\mathbf{x}' \in \omega_{\mathbf{x}}} g(\mathbf{x}') \mathcal{K}(\mathbf{x}, \mathbf{x}')}{\sum_{\mathbf{x}' \in \omega_{\mathbf{x}}} \mathcal{K}(\mathbf{x}, \mathbf{x}')}$$

Gaussian kernel:

$$\mathcal{K}(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{\|\mathbf{x} - \mathbf{x}'\|_2^2}{\sigma^2}\right)$$

• Convolution theorem for linear, shift-invariant kernels:

$$g * \mathcal{K} = \mathcal{F}^{-1} \big\{ \mathcal{F} \{ g * \mathcal{K} \} \big\} = \mathcal{F}^{-1} \big\{ \mathcal{F} \{ g \} \cdot \mathcal{F} \{ \mathcal{K} \} \big\}$$

Figure 5: Example of a Gaussian kernel function

Normalized Convolution

Discrete convolution:

$$f(\mathbf{x}) = \frac{\sum_{\mathbf{x}' \in \omega_{\mathbf{x}}} g(\mathbf{x}') \mathcal{K}(\mathbf{x}, \mathbf{x}')}{\sum_{\mathbf{x}' \in \omega_{\mathbf{x}}} \mathcal{K}(\mathbf{x}, \mathbf{x}')}$$

Normalized convolution (<u>Knutsson and Westin, 1993</u>):

$$f_{\text{NC}}(\mathbf{x}) = \frac{\sum_{\mathbf{x}' \in \omega_{\mathbf{x}}} g(\mathbf{x}') \mathcal{A}(\mathbf{x}, \mathbf{x}') \mathcal{C}(\mathbf{x}')}{\sum_{\mathbf{x}' \in \omega_{\mathbf{x}}} \mathcal{A}(\mathbf{x}, \mathbf{x}') \mathcal{C}(\mathbf{x}')}$$

Examples for certainty and applicability:

$$C(\mathbf{x}) = \begin{cases} 1, & \text{if } g(\mathbf{x}) \text{ is valid} \\ 0, & \text{else} \end{cases}$$

$$\mathcal{A}(x,x')=\mathcal{K}(x,x')$$

Bilateral Filtering

Problem: Conventional filters smooth across edges.

Idea: Incorporate edge-stopping functionality based on pixel similarity.

Bilateral filter (<u>Tomasi and Manduchi, 1998</u>):

$$f_{\mathrm{BF}}(\mathbf{x}) = \frac{\sum_{\mathbf{x}' \in \omega_{\mathbf{x}}} g(\mathbf{x}') c(\mathbf{x}, \mathbf{x}') s(g(\mathbf{x}), g(\mathbf{x}'))}{\sum_{\mathbf{x}' \in \omega_{\mathbf{x}}} c(\mathbf{x}, \mathbf{x}') s(g(\mathbf{x}), g(\mathbf{x}'))}$$

Spatial closeness c and range similarity s:

$$c(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{\|\mathbf{x} - \mathbf{x}'\|_2^2}{\sigma_c^2}\right)$$
$$s(g(\mathbf{x}), g(\mathbf{x}')) = \exp\left(-\frac{|g(\mathbf{x}) - g(\mathbf{x}')|^2}{\sigma_s^2}\right)$$

Figure 6: Working principle of the bilateral filter (images from Tomasi and Manduchi, 1998)

Bilateral Filtering

- Properties:
 - Edge-preserving denoising
 - Related to normalized convolution
 - Range similarity term **not** shift-invariant
- Complexity: $\mathcal{O}(Nr^2)$
- Closeness and similarity not restricted to the Gaussian case

Topics

Image Enhancement

Motivation

Normalized Convolution

Bilateral Filtering

Summary

Take Home Messages

Further Readings

Take Home Messages

- By range imaging several imaging applications for surgical treatments are motivated.
- In preparation for the guided filter in the next unit we have learned about normalized convolution and the important bilateral filter.
- The bilateral filter is one example for an edge-preserving filtering method for denoising.

Further Readings

- Hans Knutsson and Carl-Fredrik Westin. "Normalized and Differential Convolution: Methods for Interpolation and Filtering of Incomplete and Uncertain Data". In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. IEEE, June 1993, pp. 515–523. DOI: 10.1109/CVPR.1993.341081
- Carlo Tomasi and Roberto Manduchi. "Bilateral Filtering for Gray and Color Images". In: Sixth International Conference on Computer Vision, 1998. Sponsored by the IEEE Computer Society, January 4-7, 1998, Bombay, India. IEEE, Jan. 1998, pp. 839–846. DOI: 10.1109/ICCV.1998.710815