Creating final data for crop and ferti recommendation system

```
#pandas is used for analyzing and cleaning the data
In [ ]:
         #matplotlib and seaborn are used for visualizing the data
         import pandas as pd
         import matplotlib.pyplot as plt
         import seaborn as sns
         #Reading the updated fertilizer dataset
In [ ]:
         fertilizer_data_path = '../Data-raw/FertilizerData.csv'
         merge_fert = pd.read_csv(fertilizer_data_path)
        merge_fert.head()
In [ ]:
            Unnamed: 0
                             Crop
                                           K pH
Out[ ]:
         0
                              rice
                                   80
                                       40
                                          40
                     3
                             maize 80
                                      40
                                          20
                                             5.5
         2
                     5
                          chickpea 40
                                       60
                                          80
                                              5.5
         3
                                          20
                                             5.5
                       kidneybeans 20
                                      60
                        pigeonpeas 20 60
                                          20
         del merge_fert['Unnamed: 0']
In [ ]:
         #Describing the fertilizer data
In [ ]:
         #count-total no. of rows, mean ,std,min,max for Nitrogen,Phosphorou, Pottasium, pH
         merge_fert.describe()
Out[]:
                                                     рΗ
                22.000000
                           22.000000
                                      22.000000 22.000000
         count
         mean
                50.454545
                           45.681818
                                      48.181818
                                                 5.409091
           std
                36.315715
                           32.634172
                                      51.698426
                                                 0.590326
          min
                20.000000
                           10.000000
                                      10.000000
                                                 4.000000
          25%
                20.000000
                           20.000000
                                      20.000000
                                                 5.500000
          50%
                30.000000
                           40.000000
                                      30.000000
                                                 5.500000
          75%
                80.000000
                           60.000000
                                      50.000000
                                                 5.500000
          max 120.000000
                          125.000000
                                     200.000000
                                                 6.500000
         #There are 22 unique values in crop dataset
         merge_fert['Crop'].unique()
         array(['rice', 'maize', 'chickpea', 'kidneybeans', 'pigeonpeas',
                'mothbeans', 'mungbean', 'blackgram', 'lentil', 'pomegranate',
                'banana', 'mango', 'grapes', 'watermelon', 'muskmelon', 'apple',
                'orange', 'papaya', 'coconut', 'cotton', 'jute', 'coffee'],
               dtype=object)
```

```
In [ ]: #plotted the graph for nitrogen data-we can see min is 20 and max is 120
plt.plot(merge_fert["N"])
```

Out[]: [<matplotlib.lines.Line2D at 0x25ad149efb0>]

In []: #plotted the graph for Phosphorous data-we can see min is 10 and max is 125
plt.plot(merge_fert["P"])

Out[]: [<matplotlib.lines.Line2D at 0x25ad25b9120>]

In []: ##plotted the graph for pottasium data-we can see min is 10 and max is 200
plt.plot(merge_fert["K"])

Out[]: [<matplotlib.lines.Line2D at 0x25ad263b010>]


```
In [ ]: #we can see positive and negative correlation between each feature
sns.heatmap(merge_fert.corr(),annot=True)
```

Out[]: <AxesSubplot:>


```
In [ ]: #reading the updated crop file
  merge_crop = pd.read_csv('.../Data-raw/MergeFileCrop.csv')
  reco_fert = merge_fert
```

```
In []: #Stored the column names in temp variable
    #We have assigned the fertilizer NPKpH values to temp by adding some random values
    import random
    temp = pd.DataFrame(columns = ['N','P','K'])
    for i in range(0,merge_crop.shape[0]):
        crop = merge_crop.label.iloc[i]
        # print(crop)
        N = reco_fert[reco_fert['Crop'] == crop]["N"].iloc[0] + random.randint(-20,20)
        P = reco_fert[reco_fert['Crop'] == crop]["P"].iloc[0] + random.randint(-5,20)
        K = reco_fert[reco_fert['Crop'] == crop]["K"].iloc[0] + random.randint(-5,5)
        d = {"N":N,"P":P,"K":K}
        #print(d)
        temp = temp.append(d,ignore_index = True)
```

In []: temp

```
Out[]:
              N P K
             77 49 35
             60 56 41
             62 51 35
             88 47 38
             65 45 38
             ... ... ...
        2195
              95 18 35
        2196
             80 40 34
        2197
             88 22 31
        2198
             93 20 28
        2199 100 32 29
```

2200 rows × 3 columns

```
In [ ]: #N,P,K colums are merged to crop dataset
    merge_crop['N'] = temp['N']
    merge_crop['P'] = temp['P']
    merge_crop['K'] = temp['K']
```

```
In [ ]: merge_crop
```

Out[]:	Unnamed: 0		temperature humidity		ph rainfall		label	N	P	K
	0	0	20.879744	82.002744	6.502985	202.935536	rice	77	49	35
	1	1	21.770462	80.319644	7.038096	226.655537	rice	60	56	41
	2	2	23.004459	82.320763	7.840207	263.964248	rice	62	51	35
	3	3	26.491096	80.158363	6.980401	242.864034	rice	88	47	38
	4	4	20.130175	81.604873	7.628473	262.717340	rice	65	45	38
	•••									
	2195	895	26.774637	66.413269	6.780064	177.774507	coffee	95	18	35
	2196	896	27.417112	56.636362	6.086922	127.924610	coffee	80	40	34
	2197	897	24.131797	67.225123	6.362608	173.322839	coffee	88	22	31
	2198	898	26.272418	52.127394	6.758793	127.175293	coffee	93	20	28
	2199	899	23.603016	60.396475	6.779833	140.937041	coffee	100	32	29

2200 rows × 9 columns

```
In [ ]: del merge_crop['Unnamed: 0']
In [ ]: #The columns are increased 5 to 8 IN THIS CROP DATASEET
merge_crop
```

Out[]:		temperature	humidity	ph	rainfall	label	N	P	K
	0	20.879744	82.002744	6.502985	202.935536	rice	77	49	35
	1	21.770462	80.319644	7.038096	226.655537	rice	60	56	41
	2	23.004459	82.320763	7.840207	263.964248	rice	62	51	35
	3	26.491096	80.158363	6.980401	242.864034	rice	88	47	38
	4	20.130175	81.604873	7.628473	262.717340	rice	65	45	38
	•••								
	2195	26.774637	66.413269	6.780064	177.774507	coffee	95	18	35
	2196	27.417112	56.636362	6.086922	127.924610	coffee	80	40	34
	2197	24.131797	67.225123	6.362608	173.322839	coffee	88	22	31
	2198	26.272418	52.127394	6.758793	127.175293	coffee	93	20	28
	2199	23.603016	60.396475	6.779833	140.937041	coffee	100	32	29

2200 rows × 8 columns

```
#The column are kept in ordered
         merge_crop = merge_crop[[ 'N', 'P', 'K', 'temperature', 'humidity', 'ph', 'rainfall
In [ ]: #The final mergecrop is saved as csv file
         merge_crop.to_csv("../Data-processed/crop_recommendation.csv",index=False)
In [ ]: df = pd.read_csv('../Data-processed/crop_recommendation.csv')
        df.head()
In [ ]:
Out[]:
                   K temperature humidity
                                                 ph
                                                        rainfall label
         0 77 49 35
                         20.879744 82.002744 6.502985 202.935536
                                                                 rice
                         21.770462 80.319644 7.038096 226.655537
         1 60 56 41
                                                                 rice
         2 62 51 35
                         23.004459 82.320763 7.840207 263.964248
                                                                 rice
         3 88 47 38
                         26.491096 80.158363 6.980401
                                                    242.864034
                                                                 rice
         4 65 45 38
                         20.130175 81.604873 7.628473 262.717340
                                                                 rice
        df.shape
        (2200, 8)
Out[]:
```