IRLML2402PbF

- Generation V Technology
- Ultra Low On-Resistance
- N-Channel MOSFET
- SOT-23 Footprint
- Low Profile (<1.1mm)
- Available in Tape and Reel
- Fast Switching
- Lead-Free
- RoHS Compliant, Halogen-Free

Description

Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.

A customized leadframe has been incorporated into the standard SOT-23 package to produce a HEXFET Power MOSFET with the industry's smallest footprint. This package, dubbed the Micro3, is ideal for applications where printed circuit board space is at a premium. The low profile (<1.1mm) of the Micro3 allows it to fit easily into extremely thin application environments such as portable electronics and PCMCIA cards.

Page Part Number	Dookege Type	Standard Pa	ck	Oude vehic Peut Nomber	
Base Part Number	Package Type	Form Quantity		Orderable Part Number	
IRLML2402TRPbF	Micro3™ (SOT-23)	Tape and Reel	3000	IRLML2402TRPbF	

Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 4.5V	1.2	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 4.5V	0.95	Α
I _{DM}	Pulsed Drain Current ①	7.4	
P _D @T _A = 25°C	Power Dissipation	540	mW
	Linear Derating Factor	4.3	mW/°C
V _{GS}	Gate-to-Source Voltage	± 12	V
dv/dt	Peak Diode Recovery dv/dt ②	5.0	V/ns
$T_{J,}T_{STG}$	Junction and Storage Temperature Range	-55 to + 150	°C

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JA}$	Maximum Junction-to-Ambient ④		230	°C/W

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	20			V	V _{GS} = 0V, I _D = 250μA
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.024		V/°C	Reference to 25°C, I _D = 1mA
Б				0.25		V _{GS} = 4.5V, I _D = 0.93A ③
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.35	Ω	V _{GS} = 2.7V, I _D = 0.47A ③
V _{GS(th)}	Gate Threshold Voltage	0.70			V	$V_{DS} = V_{GS}$, $I_D = 250\mu A$
g fs	Forward Transconductance	1.3			S	V _{DS} = 10V, I _D = 0.47A
I _{DSS}	Drain-to-Source Leakage Current			1.0		V _{DS} = 16V, V _{GS} = 0V
טיטוי	Brain-to-obtroe Leakage Garrent			25	μA	V _{DS} = 16V, V _{GS} = 0V, T _J = 125°C
lana	Gate-to-Source Forward Leakage			-100	nA	V _{GS} = -12V
I _{GSS}	Gate-to-Source Reverse Leakage			100	''^	V _{GS} = 12V
Qg	Total Gate Charge		2.6	3.9		I _D = 0.93A
Q _{gs}	Gate-to-Source Charge		0.41	0.62	nC	V _{DS} = 16V
Q _{gd}	Gate-to-Drain ("Miller") Charge		1.1	1.7		V _{GS} = 4.5V, See Fig. 6 and 9 ③
t _{d(on)}	Turn-On Delay Time		2.5			V _{DD} = 10V
t _r	Rise Time		9.5			$I_D = 0.93A$
t _{d(off)}	Turn-Off Delay Time		9.7		ns ·	$R_G = 6.2\Omega$
t _f	Fall Time		4.8			R_D = 11 Ω , See Fig. 10 ③
C _{iss}	Input Capacitance		110			V _{GS} = 0V
C _{oss}	Output Capacitance		51		pF	V _{DS} = 15V
C _{rss}	Reverse Transfer Capacitance		25			f = 1.0MHz, See Fig. 5

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			0.54		MOSFET symbol
	(Body Diode)			0.54	$\begin{bmatrix} A \end{bmatrix}$	showing the
I _{SM}	Pulsed Source Current			7.4	「	integral reverse
	(Body Diode) ①			7.4		p-n junction diode.
V _{SD}	Diode Forward Voltage			1.2	V	$T_J = 25$ °C, $I_S = 0.93$ A, $V_{GS} = 0$ V ③
t _{rr}	Reverse Recovery Time		25	38	ns	$T_J = 25$ °C, $I_F = 0.93A$
Q _{rr}	Reverse RecoveryCharge		16	24	nC	di/dt = 100A/µs ③

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- $\begin{tabular}{ll} @ I_{SD} \le 0.93A, & di/dt \le 90A/\mu s, & V_{DD} \le V_{(BR)DSS}, \\ & T_J \le 150 ^{\circ}C \end{tabular}$
- 4 Surface mounted on FR-4 board, $t \leq 5sec.$

Fig 1. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 2. Typical Output Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 8. Maximum Safe Operating Area

Fig 9a. Basic Gate Charge Waveform

Fig 9b. Gate Charge Test Circuit

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

Peak Diode Recovery dv/dt Test Circuit

Fig 12. For N-Channel HEXFETS

Micro3 (SOT-23) (Lead-Free) Package Outline

Dimensions are shown in millimeters (inches)

Micro3 (SOT-23 / TO-236AB) Part Marking Information

Notes: This part marking information applies to devices produced after 02/26/2001

Note: For the most current drawing please refer to IR website at http://www.irf.com/package

Micro3™ Tape & Reel Information

Dimensions are shown in millimeters (inches)

NOTES:

- CONTROLLING DIMENSION : MILLIMETER.
 OUTLINE CONFORMS TO EIA-481 & EIA-541.

Note: For the most current drawing please refer to IR website at http://www.irf.com/package

RoHS compliant

Qualification information						
	Consumer					
Qualification level	(per JEDEC JESD47F ^{††} guidelines)					
Moisture Sensitivity Level	Micro3 [™] (SOT-23)	MSL1				

- † Qualification standards can be found at International Rectifier's web site: http://www.irf.com/product-info/reliability
- †† Applicable version of JEDEC standard at the time of product release

Revision History

Date	Comment			
	Updated data sheet with new IR corporate template.			
4/24/2014	Updated package outline & part marking on page 7.			
4/24/2014	Added Qualification table -Qual level "Consumer" on page 9.			
	Added bullet point in the Benefits "RoHS Compliant, Halogen -Free" on page 1.			

IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA To contact International Rectifier, please visit http://www.irf.com/whoto-call/

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.