The Hamiltonian of a particle with mass m in a one-dimensional harmonic oscillator potential having a characteristic frequency ω is

$$\hat{H} = \frac{1}{2m}\hat{P}^2 + \frac{1}{2}m\omega^2\hat{X}^2.$$

The expressions for the lowering and raising operators, \hat{a} and \hat{a}^{\dagger} , are

$$\hat{a} = \frac{1}{\sqrt{2\hbar m\omega}} (m\omega \hat{X} + i\hat{P}), \quad \hat{a}^{\dagger} = \frac{1}{\sqrt{2\hbar m\omega}} (m\omega \hat{X} - i\hat{P})$$

Problem 4.1

- a) Compute the matrix elements $X_{nm} = \langle n|\hat{X}|m\rangle$, where $\{|n\rangle\}, n = 0, 1, 2, ...$ is the energy eigenbasis $\hat{H}|n\rangle = \hbar\omega(n+1/2)|n\rangle$, using the lowering and raising operators $\hat{a}, \hat{a}^{\dagger}$.
- b) Let $|\psi(0)\rangle = \sum_{n=0}^{\infty} c_n |n\rangle$. Find the condition on the c_n 's such that $|\psi(0)\rangle$ has unit norm. Find an expression for the time-dependent state $|\psi(t)\rangle$.
- c) Compute the expectation values $\langle \psi(t)|\hat{H}|\psi(t)\rangle$ and $\langle \psi(t)|\hat{X}|\psi(t)\rangle$.
- d) Set $c_0 = e^{-\alpha^2/2}$ and $c_n = c_0 \alpha^n / \sqrt{n!}$ for $n \ge 1$. α is a positive real number. Compute $\langle \psi(t) | \hat{X} | \psi(t) \rangle$ in this case, and compare the answer to that of the position of a classical harmonic oscillator with amplitude A. Use $\langle \psi(t) | \hat{H} | \psi(t) \rangle = kA^2/2$ to define the classical amplitude A.

Problem 4.2

Griffiths Chapter 4, problem 38.

Problem 4.3 (optional)

- a) Use the equation $\hat{a}|0\rangle = 0$ to find the expression for the ground state wavefunction $\psi_0(p) \equiv \langle p|0\rangle$ in the momentum representation where $\hat{P} \simeq p$ and $\hat{X} \simeq i\hbar \frac{\partial}{dp}$ (\simeq means represented by). $|p\rangle$ is an eigenket of the momentum operator having the eigenvalue p.
- b) Use a^{\dagger} and your answer in a) to find the explicit expression for the first excited wave function of the harmonic oscillator in the momentum representation.