MATH 23500 Lecture 21

May 12, 2025

Brownian motion. This is a continuous time, continuous space process $\{B_t\}_{t\geq 0}$. We should think of it as a random function $B:[0,\infty)\to\mathbb{R}$. We define B in terms of its properties. Assume $B_0=0$.

- (i) Stationary increments. For every $t > s \ge 0$, $B_t B_s$ has the same distribution as B_{t-s} .
- (ii) Independent increments. For every $s_1 \leq t_1 \leq s_2 \leq t_2 \leq \cdots \leq s_k \leq t_k$, the increments $B_{t_j} B_{s_j}$ for $j = 1, \ldots, k$ are independent.
- (iii) Continuity. $t \mapsto B_t$ is a continuous function.

Theorem 0.1. Let $B:[0,\infty)\to\mathbb{R}$ be a random continuous function with independent, stationary increments. Assume $B_0=0$. Then there exists $\mu\in\mathbb{R}$, $\sigma^2>0$ such that $B_t\sim \mathcal{N}(\mu t,\sigma^2 t)$. Furthermore, μ and σ^2 characterize B uniquely.

Construction.

(i) Take a simple random walk $S_n = \sum_{k=1}^n X_i$. Then by the central limit theorem,

$$\lim_{n \to \infty} \mathbb{P}\left(\frac{S_n}{\sqrt{n}} \le x\right) \to \Phi(x),$$

i.e., the rescaled random walk converges to a $\mathcal{N}(0,1)$ random variable. Then

$$B_n^{(t)} := \frac{S_{\lfloor tn \rfloor}}{\sqrt{tn}} \to B_t,$$

i.e., these processes are $\mathcal{N}(0,t)$.

(ii) (Lévy construction) Consider a family of normal random variables indexed by a countable dense subset of [0,1]. Recursively define B_k using this set. Linearly interpolate and take limits.

Definition 0.2. Standard Brownian motion is the process $\{B_t\}_{t\geq 0}$ with $B_0=0$ satisfying the following

- (i) B is continuous
- (ii) For each s < t, $B_t B_s \sim \mathcal{N}(0, t s)$.
- (iii) For each $s_1 \leq t_1 \leq \cdots \leq s_k \leq t_k$, the increments $B_{t_i} B_{s_i}$ are independent.

Note. $X \sim \mathcal{N}(\mu, \sigma^2)$. The density of X is

$$\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\left(\frac{(x-\mu)^2}{2\sigma^2}\right)}.$$

1

Example 0.3. Suppose B is a standard Brownian motion. Compute $\mathbb{P}(B_1 \geq 1, B_3 \geq B_1 + 1)$.

$$\mathbb{P}(B_1 \ge 1) = \frac{1}{\sqrt{2\pi}} \int_1^{\infty} e^{-\frac{x^2}{2}} dx$$

and

$$\mathbb{P}(B_3 \ge B_1 + 1) = \mathbb{P}(B_3 - B_1 \ge 1) = \frac{1}{\sqrt{4\pi}} \int_1^\infty e^{-\frac{x^4}{4}} dx.$$

By independence, we multiply to get the result.

Proposition 0.4. Let B be a standard Brownian motion, and c > 0. Then $t \mapsto c^{-1/2}B_{ct}$ is a standard Brownian motion.

Proof. Clearly the rescaled process is continuous and has independent increments. Note that for s < t, $B_{ct} - B_{cs} \sim \mathcal{N}(0, c(t-s))$. Thus,

$$c^{-1/2}(B_{ct} - B_{cs}) \sim \mathcal{N}(0, t - s).$$

Proposition 0.5. For each fixed $t \ge 0$, it holds with probability 1 that B is not differentiable at t.

Proof. For $\varepsilon > 0$, $\varepsilon^{-1/2}(B_{t+\varepsilon} - B_t) \sim \mathcal{N}(0,1)$. Thus, $\frac{B_{t+\varepsilon} - B_t}{\varepsilon}$ is a $\mathcal{N}(0,1)$ random variable Z, but rescaled by $1/\sqrt{\varepsilon}$. Hence,

$$\mathbb{P}\left(\frac{|B_{t+\varepsilon} - B_t|}{\varepsilon} \ge c\right) = \mathbb{P}\left(\frac{1}{\sqrt{\varepsilon}}|Z| \ge c\right) = \mathbb{P}(|Z| \ge \sqrt{\varepsilon}c) \to 1,$$

as $\varepsilon \to 0$. Thus, with probability 1, $\limsup_{\varepsilon \to 0} \frac{B_{t+\varepsilon} - B_t}{\varepsilon} = \infty$.