

計算論A 第2回

- 1. 有限オートマトン
 - 決定性有限オートマトン
- 非決定性有限オートマトン

テキスト 2.3~2.5節

- *ϵ*-動作を含むオートマトン
- 2. 正規表現と正規言語
- 3. 正則言語の性質
- 4. 文脈自由文法と言語
- 5. プッシュダウン・オートマトン
- 6. 文脈自由言語の性質
- 7. チューリングマシン

4

2.3 非決定性有限オートマトン

- 非決定性有限オートマトン(NFA) $A = (Q, \Sigma, \delta, q_0, F)$
 - Q: 状態の有限集合 $(Q \neq \emptyset)$

 Σ : 入力記号の有限集合 ($\Sigma \neq \emptyset$)

(入力テープ上の記号)

次状態が一意に定まらない

・複数の可能性

・ない場合(空集合)もある

 δ : 状態遷移関数 $Q \times \Sigma \to 2^{Q}$

 $(2^Q:0$ のべき集合(部分集合の集合))

 q_0 :開始状態 $q_0 \in Q$

開始状態 *q*₀ から列 *w* を読んで到達する状態の集合に 受理状態が含まれていると *w* を受理

2

例2.6 非決定性有限オートマトンの例

- 末尾が 01 の列を受理する NFA
 - **•** 01, 001, 101, 0001, 0101, 1001, 1101, ...

NFA $A = (\{q_0, q_1, q_2\}, \{0, 1\}, \delta, q_0, \{q_2\})$

$$\delta(q_0, 0) = \{q_0, q_1\}$$

$$\delta(q_0, 1) = \{q_0\}$$

$$\delta(q_1, 0) = \emptyset$$

$$\delta(q_1, 1) = \{q_2\}$$

$$\delta(q_2, 0) = \emptyset$$

 $\delta(q_2,1) = \emptyset$

, 1), 0, 40, (42))			
	0	1	
$\rightarrow q_0$	$\{q_0,q_1\}$	$\{q_{0}\}$	
q_1	Ø	{q ₂ }	
* q ₂	Ø	Ø	

実行例

列	状態
0	q_0, q_1
01	$q_0, \frac{q_2}{q_2}$
011	q_0
0110	q_0, q_1
01100	q_0, q_1
011001	$q_0, \frac{q_2}{q_2}$

3

2.3.3 遷移関数の拡張

- NFA $A = (Q, \Sigma, \delta, q_0, F)$
 - δ:状態遷移関数 δ の拡張
 - ■長さ 0 以上の記号列を読んだときの状態遷移
 - $\hat{\delta}: Q \times \Sigma^* \to 2^Q$
 - 基礎:各 $q \in Q$ に対して、 $\hat{\delta}(q, \epsilon) = \{q\}$
 - 再帰:各 $q \in Q, w = xa \in \Sigma^+ (x \in \Sigma^*, a \in \Sigma)$ に対して、 $\hat{\delta}(q, w) = \{r_1, r_2, ..., r_m\}$

$$\mathbf{ZZC}, \ \hat{\delta}(q, x) = \{p_1, p_2, ..., p_k\}$$

$$\mathbf{U}_{i=1}^k \delta(p_i, a) = \{r_1, r_2, ..., r_m\}$$

- $\mathbf{w} \in \Sigma^*$ に対し、 $\hat{\delta}(q_0, w) \cap F \neq \emptyset$ なら w を受理
 - q₀ から w を読んで到達する状態の集合に受理状態が含まれていると w を受理

例2.8 遷移関数の拡張

- 末尾が 01 の列を受理する NFA
 - **•** 01, 001, 101, 0001, 0101, 1001, 1101, ...

$\hat{\delta}(q_0, \epsilon) = \{q_0\}$
$\hat{\delta}(q_0, 0) = \{q_0, q_1\}$
$\hat{\delta}(q_0, 01) = \{q_0, q_2\}$
$\hat{\delta}(q_0, 011) = \{q_0\}$
$\hat{\delta}(q_0, 0110) = \{q_0, q_1\}$
$\hat{\delta}(q_0, 01100) = \{q_0, q_1\}$
$\hat{\delta}(q_0, 011001) = \{q_0, q_2\}$

実行例

状態
q_0, q_1
$q_0, \frac{q_2}{q_2}$
q_0
q_0, q_1
q_{0}, q_{1}
$q_0, \frac{q_2}{q_2}$

2.3.4 NFAの言語

- NFA A = $(Q, \Sigma, \delta, q_0, F)$ の言語 L(A)
 - $L(A) = \{ w \mid \hat{\delta}(q_0, w) \cap F \neq \emptyset \}$
 - ullet q_0 から w を読んで到達する状態の集合に受理状態が含まれていると w を受理

6

2.3.5 DFAとNFAの等価性

- の: DFA のクラス (DFA すべての集合)
- NFA のクラス (NFA すべての集合)
 - - 同じ言語を認識するオートマトン
 - NFA は DFA より簡潔になる可能性がある
- L(𝔻):DFA の言語のクラス (DFA の言語すべての集合)
- L(𝒩):NFA の言語のクラス (NFA の言語すべての集合)
 - $L(\mathcal{D}) = L(\mathcal{N})$
 - 非決定性は有限オートマトンの受理能力には影響を 与えない

サブセット構成(1)

- $L(\mathcal{D}) = L(\mathcal{N})$
 - **■** $L(\mathfrak{O}) \subseteq L(\mathfrak{N})$ 定義から明らか
 - $L(\mathcal{D}) \supseteq L(\mathcal{N})$ を示せばよい
- ゙■ サブセット構成
 - NFA $N = (Q_N, \Sigma, \delta_N, q_0, F_N)$ が与えられたとき
 - L(N) = L(D) を満たす DFA $D = (Q_D, \Sigma, \delta_D, \{q_0\}, F_D)$ を構成する方法
 - $L(\mathcal{D}) \supseteq L(\mathcal{N})$ を示せる
 - DFA D の状態を NFA N の状態の集合で表す
 - **■** *O_D* ⊆ 2^{*QN*} が成り立つ

サブセット構成(2)

- NFA $N = (Q_N, \Sigma, \delta_N, q_0, F_N)$ が与えられたとき
 - L(N) = L(D) を満たす DFA $D = (Q_D, \Sigma, \delta_D, \{q_0\}, F_D)$ を構成する方法
 - 1. $Q_D = 2^{Q_N}$ とする
 - 2. $F_D = \{S \subseteq Q_N \mid S \cap F_N \neq \emptyset\}$ とする
 - 3. 各 $S \subseteq Q_N$, 各 $a \in \Sigma$ に対し、 $\delta_D(S,a) = \bigcup_{p \in S} \delta_N(p,a)$ とする

-

例2.10 サブセット構成(1)

末尾が 01 の列を受理する NFA

- 末尾が 01 の列を受理する DFA $D=(Q_D,\Sigma,\delta_D,\{q_0\},F_D)$ を構成する
 - 1. $Q_D = 2^{Q_N} \ \$ $\ge \ \$
 - $Q_D = \{\emptyset, \{q_0\}, \{q_1\}, \{q_2\}, \{q_0, q_1\}, \{q_0, q_2\}, \{q_1, q_2\}, \{q_0, q_1, q_2\}\}$

開始状態から到達できない状態も含まれる

- 2. $F_D = \{S \subseteq Q_N \mid S \cap F_N \neq \emptyset\} \$ $E \neq \delta$
 - $F_D = \{ \{q_2\}, \{q_0, q_2\}, \{q_1, q_2\}, \{q_0, q_1, q_2\} \}$
- 3. 各 $S \subseteq Q_N$, 各 $a \in \Sigma$ に対し, $\delta_D(S,a) = \bigcup_{p \in S} \delta_N(p,a)$ とする

11

12

例2.10 サブセット構成(2)

■ 末尾が 01 の列を受理する NFA

- 末尾が 01 の列を受理する DFA $D=(Q_D,\Sigma,\delta_D,\{q_0\},F_D)$ を構成する
 - 3. 各 $S \subseteq Q_N$, 各 $a \in \Sigma$ に対し, $\delta_D(S,a) = \bigcup_{p \in S} \delta_{-N}(p,a)$ とする

アイデア 非決定性の動作を すべて同時に シミュレートしている

	0	1
Ø	Ø	Ø
$\rightarrow \{q_0\}$	$\{q_0,q_1\}$	$\{q_{0}\}$
$\{q_{1}\}$	Ø	$\{q_{2}\}$
* {q2}	Ø	Ø
$\{q_0, q_1\}$	$\{q_0,q_1\}$	$\{q_0,q_2\}$
$*\{q_0,q_2\}$	$\{q_0,q_1\}$	$\{q_{0}\}$
$*\{q_1, q_2\}$	Ø	{q ₂ }
$*\{q_0, q_1, q_2\}$	$\{q_0,q_1\}$	$\{q_0,q_2\}$

•

例2.10 サブセット構成(3)

■ 末尾が 01 の列を受理する NFA

■ 末尾が 01 の列を受理する DFA

		0	1
A	Ø	Ø	Ø
В	$\rightarrow \{q_0\}$	$\{q_0,q_1\}$	$\{q_{0}\}$
C	$\{q_{1}\}$	Ø	$\{q_2\}$
D	* {q2}	Ø	Ø
F	$\{q_0, q_1\}$	$\{q_0,q_1\}$	$\{q_0,q_2\}$
F	$*\{q_0, q_2\}$	$\{q_0,q_1\}$	$\{q_0\}$
G	$*\{q_1, q_2\}$	Ø	{q ₂ }
Н	$*\{q_0, q_1, q_2\}$	$\{q_0,q_1\}$	$\{q_0,q_2\}$

例2.10 サブセット構成(4)

■ 末尾が 01 の列を受理する NFA

- 末尾が 01 の列を受理する DFA
 - 開始状態から到達可能な状態のみを順次作る
 - DFA 構成の手間を省けることがある

		0	1
A	$\rightarrow \{q_0\}$	$\{q_0,q_1\}$	$\{q_{0}\}$
В	$\{q_0,q_1\}$	$\{q_0,q_1\}$	$\{q_0,q_2\}$
C	$*\{q_0,q_2\}$	$\{q_0,q_1\}$	$\{q_{0}\}$

15

定理2.11, 定理2.12

テキストの証明は読んでおくこと

【定理2.11】

NFA $N=(Q_N,\Sigma,\delta_N,q_0,F_N)$ からサブセット構成によって DFA $D=(Q_D,\Sigma,\delta_D,\{q_0\},F_D)$ が作られたとき, L(D)=L(N)

が成り立つ

【定理2.12】

言語 L がある DFA で受理されるための必要十分条件は L がある NFA で受理されることである

*DFA と NFA の受理能力は等価である

16

2.3.6 サブセット構成で状態数が増える場合

- NFA $N=(Q_N,\Sigma,\delta_N,q_0,F_N)$ に対し、 L(D)=L(N) を満たす状態数最小の DFA $D=(Q_D,\Sigma,\delta_D,\{q_0\},F_D)$ でも、DFAの状態数が NFA の状態数に比べ指数的に増えることがある
- 例2.13:最後から n 番目の記号が 1 である語すべて

2.4 応用:テキスト検索

- テキストから特定のキーワードを検索する
 - 「データ構造とアルゴリズム」で学習した文字列照合問題
 - 1つのキーワードの検索
 - 力まかせ法、ラビン-カープ法、クヌース-モリス-プラッツ法、 ボイヤー-ムーア法
- 複数のキーワードの検索に有限オートマトンを利用
 - **■** *O(m)* 時間で検索(*m*:テキスト長)
 - 検索キーワードに応じた前処理(DFAの構成)が必要

テキスト検索:NFA による方法

- 複数のキーワードの検索に NFA を利用
 - キーワードを発見すれば受理状態
- 例:web, ebay の検索

19

テキスト検索:DFA による方法

- 複数のキーワードの検索に DFA を利用
 - キーワードを発見すれば受理状態
 - NFA をサブセット構成で DFA に変換
 - (開始状態から到達可能な)状態数は増加しない

状態の対応関係 NFA DFA

 $q_2 \leftrightarrow \{q_2, q_4\}$ $q_3 \leftrightarrow \{q_3, q_5\}$

DFA の状態部分集合は共通接尾辞を持つ NFA の最長の接尾辞を持つ状態に対応

構成される DFA は図2.17

20

2.5 *ϵ*-動作を含む有限オートマトン

- ←動作
 - **■** *ϵ* を読んで (何も読まずに) 状態遷移する
 - 非決定性動作が発生
 - ←動作を許すと、NFA を簡潔に表現できることがある
 - €-動作は NFA の受理能力には影響を与えない
- 例:言語 $L=L_1\cup L_2$ を受理する NFA N
 - N_1 (L_1 を受理する NFA), N_2 (L_2 を受理する NFA) から N を合成

2.5.2 *←*−NFA の定義

• ϵ -動作を含む NFA(ϵ -NFA) $A=(Q,\Sigma,\delta,q_0,F)$

Q: 状態の有限集合 $(Q \neq \emptyset)$

 Σ :入力記号の有限集合 ($\Sigma \neq \emptyset$)

(入力テープ上の記号)

 ϵ -動作(ϵ -遷移)を許す

 δ : 状態遷移関数 $Q \times (\Sigma \cup \{\epsilon\}) \to 2^Q$

 $(2^Q:Q$ のべき集合(部分集合の集合))

 q_0 :開始状態 $q_0 \in Q$

2.5.3 ←-閉包

- ← 動作は NFA の受理能力には影響を与えないことを示す ための準備
- 状態 *q* の *ϵ*-閉包 ECLOSE (*q*)
 - $m{q}$ から ϵ -動作のみで到達可能な状態の集合 (qを含む)

ECLOSE $(s) = \{s, t, q\}$, ECLOSE $(t) = \{t, q\}$, ECLOSE $(u) = \{u, v\}$ その他の状態 x については、ECLOSE $(x) = \{x\}$

23

4

2.5.5 ←-遷移の除去(1)

- ullet ϵ -NFA $N=(Q,\Sigma,\delta_1,q_0,F_1)$ から、L(N)=L(N') を満たす、 ϵ -動作を含まない NFA $N'=(Q,\Sigma,\delta_2,q_0,F_2)$ を構成する
- 1. 各状態 $x \in Q$, 各入力記号 $a \in \Sigma$ に対し

 $\delta_2(x, a) = \{ y \mid z \in \mathsf{ECLOSE}(x) \land y \in \delta_1(z, a) \}$

y は, x から a で遷移可能, または, x から ϵ 遷移の後に a で遷移可能

2.5.5 ←-遷移の除去(2)

- ϵ -NFA $N=(Q,\Sigma,\delta_1,q_0,F_1)$ から、L(N)=L(N') を満たす、 ϵ -動作を含まない NFA $N'=(Q,\Sigma,\delta_2,q_0,F_2)$ を構成する
- 2. **受理状態集合** $F_2 = \{ y \in Q \mid F_1 \cap \mathsf{ECLOSE}(y) \neq \emptyset \}$

y から ϵ 遷移で受理状態に到達可能

本日の講義のまとめ

- 1. 有限オートマトン
 - 決定性有限オートマトン(DFA)
 - 非決定性有限オートマトン(NFA)
 - DFA と NFA の等価性, サブセット構成
 - 応用:テキスト検索
 - ϵ -NFA, NFA との等価性
- 2. 正則言語の性質
- 3. 文脈自由文法と言語
- 4. プッシュダウン・オートマトン
- 5. 文脈自由言語の性質
- 6. チューリングマシン

テキスト 2.3~2.5節