NANOPHYSIQUE INTRODUCTION PHYSIQUE AUX NANOSCIENCES

Ch 5. Carbon Structres

James Lutsko

Lecture 6, 2022-2023

Carbon Structures

- Introduction
 - Histoire
 - Carbone
 - Hybridization
- Tight-binding calculations
 - Principe
 - Example: trans
 - Graphene π-liens
 - Graphene σ-liens
- Structure de carbone nanotubes
- Structure Electronique
- Synthesis
- Transport
- Multi-walled nanotubes

Carbon Structures

- Introduction
 - Histoire
 - Carbone
 - Hybridization
- Tight-binding calculations
 - Principe
 - Example: trans
 - Graphene π -liens
 - Graphene σ-liens
- Structure de carbone nanotubes
- Structure Electronique
- Synthesis
- Transport
- Multi-walled nanotubes

Une petite histoire

- La première fibre de carbone: Edison, 1879
- Recherche lente jusqu'à ce que les années 1950
- Aéronautique -> recherche de matériaux légers et résistants → "carbon whisker"
- Découverte de fullerenes (Kroto, Smalley 1985)
- Recherche invité à l'échelle du nanomètre fibres
- Spéculation théorique sur la forme et symétrie de carbone nanotubes (Smalley, Dresselhaus, ...)
- Observation de carbone nanotubes (Iijima, 1992 utilisant TEM).

Propriétés du carbone

graphite

Discovery of Carbon Nanotubes

Iijima, Nature 354, 56 (1992)

Electron microscope image

Interpretation of the images

DESIGN COSTS, WHEN THE STREETS THEIR GRANDS GOVERN

Current-voltage characteristics of CNT

S.J. Tans et al. Nature 386 474 (1997)

Electron microscope image of the system

• thin filament: Single-wall CNT

hills: electrodes

a.Nonlinear conductance(Coulomb staircase)b.Controlling the number of electrons

Carbone

Carbone: Z = 6¹²C, ¹³C--> stable ¹⁴C--> half-life = 5,730 an

(carbon dating)

Configuration Electronique:

*Lanthanide	58	59	60	61	62	63	64		66	67	68	69	70	71
Series	Ce	Pr	Nd	Pm	Sm	Eu	Gd		Dy	Ho	Er	Tm	Yb	Lu
+ Actinide	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Series	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

1s 2p

Covalent bonds: sharing electrons

T (kinetic energy) : lower energy by delocalizing electrons

V (potential energy): lower energy by localizing electrons near ions

Types of molecular bonds

Sigma bond

T (kinetic energy): lower energy by delocalizing electrons
V (potential energy): lower energy by localizing electrons near ions

Hybridization

$$C \quad \frac{\uparrow\downarrow}{1s} \, \frac{\uparrow\downarrow}{2s} \, \frac{\uparrow}{2p_x} \, \frac{\uparrow}{2p_y} \, \frac{1}{2p_z}$$

$$C^* \quad \frac{\uparrow\downarrow}{1s} \, \frac{\uparrow}{2s} \, \frac{\uparrow}{2p_x} \frac{\uparrow}{2p_y} \frac{\uparrow}{2p_z}$$

$$C^* \quad \frac{\uparrow\downarrow}{1s} \; \frac{\uparrow}{sp} \; \frac{\uparrow}{sp} \frac{\uparrow}{p} \frac{\uparrow}{p}$$

$$C^*$$
 $\frac{\uparrow\downarrow}{1s} \frac{\uparrow}{sp^2} \frac{\uparrow}{sp^2} \frac{\uparrow}{sp^2} \frac{\uparrow}{2p}$

$$C^*$$
 $\frac{\uparrow\downarrow}{1s} \frac{\uparrow}{sp^2} \frac{\uparrow}{sp^2} \frac{\uparrow}{sp^2} \frac{\uparrow}{2p}$ C^* $\frac{\uparrow\downarrow}{1s} \frac{\uparrow}{sp^3} \frac{\uparrow}{sp^3} \frac{\uparrow}{sp^3} \frac{\uparrow}{sp^3}$

SP Hybridization

$$|sp_a\rangle = C_1|s\rangle + C_2|p_x\rangle$$

$$|sp_b\rangle = C_3|s\rangle + C_4|p_x\rangle$$

Orthonormality:

$$\langle sp_{i} | sp_{j} \rangle = \delta_{ij}$$

$$C_{1}^{2} + C_{2}^{2} = 1$$

$$C_{3}^{2} + C_{4}^{2} = 1$$

$$C_{1}C_{3} + C_{2}C_{4} = 0$$

$$C_{4} = \pm C_{1}$$

$$C_{2} = \mp C_{2} = \mp \sqrt{1 - C_{1}^{2}}$$

R. Saito, G. Dresselhaus & M. S. Dresselhaus, *Physical Properties of Carbon Nanotubes* (Imperial College Press, London, 1998)

$$\begin{split} E_{a} &= C_{1}^{2} E_{s} + C_{2}^{2} E_{p} \\ &= C_{1}^{2} \underbrace{\left(E_{s} - E_{p}\right)}_{<0} + E_{p} \\ E_{b} &= C_{3}^{2} E_{s} + C_{4}^{2} E_{p} \\ &= E_{s} + C_{1}^{2} \left(E_{p} - E_{s}\right) \\ &= E_{a} + \left(1 - 2C_{1}^{2}\right) \left(E_{s} - E_{p}\right) \end{split}$$

Orbitals and hybridizations for C

Structure électronique d'un atome de carbone = $1s^2 2s^2 2p^2$ coeur = $1s^2$ 4 électrons de valence = $2s^2 2p^2$

Hybridation sp: $2s+2p_x$, $2p_y$, $2p_z$

Example : acétylène: HCCH liaison triple: 2 lien σ + 2 liens π

$$|sp_{a,b}\rangle = \frac{1}{\sqrt{2}}(|2s\rangle \pm |2p_x\rangle)$$

Hybridation sp²: $2s + 2p_x + 2p_y$, $2p_z$

Example : polyacétylène: $(HCCH)_n$ liaison double: 3 liens $\sigma + 1$ lien π

$$|sp_a^2\rangle = \frac{1}{\sqrt{3}} |2s\rangle - \sqrt{\frac{2}{3}} |2p_x\rangle$$

$$|sp_{b,c}^2\rangle = \pm \frac{1}{\sqrt{3}} |2s\rangle \pm \frac{1}{\sqrt{2}} |2p_x\rangle + \frac{1}{\sqrt{6}} |2p_z\rangle$$

Hybridation sp³: $2s + 2p_x + 2p_y + 2p_z$

Example : méthane: CH₄ liaison simple: 4 liens σ

$$|sp_a^3\rangle = \frac{1}{2}(|2s\rangle \pm |2p_x\rangle \pm |2p_y\rangle \pm |2p_z\rangle)$$

Carbon Structures

- Introduction
 - Histoire
 - Carbone
 - Hybridization
- Tight-binding calculations
 - Principe
 - Example: trans
 - Graphene π-liens
 - Graphene σ-liens
- Structure de carbone nanotubes
- Structure Electronique
- Synthesis
- Transport
- Multi-walled nanotubes

1. **Théorème de Bloch:** Donné d'un potentiel qui est périodique sur un réseau de Bravais, U(\mathbf{r} + \mathbf{R})=U(\mathbf{r}), la solution de l'équation Schrodinger d'un électron est $\psi(\mathbf{r})$ avec $\psi(\mathbf{r}+\mathbf{R})=e^{i\mathbf{k}\cdot\mathbf{R}}\psi(\mathbf{r})$ \forall \mathbf{R} dans le reseaux.

Preuve: Soit T_R etre l'opérateur de translation. Puis,

$$T_R H \psi(r) = H(r+R) \psi(r+R) = H(r) \psi(r+R) = H(r) T_R \psi(r) \rightarrow [H, T_R] = 0$$

Alors, il ya vecteurs propres simultanés: $H \psi = E \psi$ $T_R \psi = c(R) \psi$

C'est evident que $T_{R_1}T_{R_2} = T_{R_2}T_{R_1} = T_{R_1+R_2}$

donc $c(\mathbf{R}_1)c(\mathbf{R}_2)=c(\mathbf{R}_1+\mathbf{R}_2)$

$$c(\mathbf{R}_{n}) = c(n_{1}\mathbf{a}_{1} + n_{2}\mathbf{a}_{2} + n_{3}\mathbf{a}_{3}) = c(\mathbf{a}_{1})^{n_{1}}c(\mathbf{a}_{2})^{n_{2}}c(\mathbf{a}_{3})^{n_{3}} = e^{2\pi i(n_{1}x_{1} + n_{2}x_{2} + n_{3}x_{3})}, \quad x_{j} = \frac{\ln c(\mathbf{a}_{j})}{2\pi i}$$

$$= e^{i(x_{1}\mathbf{b}_{1} + x_{2}\mathbf{b}_{2} + x_{3}\mathbf{b}_{3}) \cdot \mathbf{R}_{n}}, \quad \mathbf{a}_{i} \cdot \mathbf{b}_{j} = 2\pi \delta_{ij}$$

Conditions à la limite periodique

$$\psi(\mathbf{r}+N_i\mathbf{a}_i)=\psi(\mathbf{r}), \quad i=1,2,3$$

 $\Rightarrow x_i = \frac{m_i}{N_i}, \quad m_i \text{ nombre entier } \leq N_i$

2. Tight-binding fonctions de base

 $\Phi_{jk}(\mathbf{r}) = \frac{1}{\sqrt{N}} \sum_{\mathbf{R}_n \in B}^{N} e^{i\mathbf{k} \cdot \mathbf{R}_n} \phi_j(\mathbf{r} - \mathbf{R}_n), \text{ o } \dot{\mathbf{u}} \phi_j \text{ sont les fonctions atomique est } \mathbf{k} \in \tilde{B}$

Vérification:
$$\Phi_{jk}(\mathbf{r}+\mathbf{R}_{m}) = \frac{1}{\sqrt{N}} \sum_{\mathbf{R}_{n} \in B}^{N} e^{i\mathbf{k}\cdot\mathbf{R}_{n}} \Phi_{j}(\mathbf{r}+\mathbf{R}_{m}-\mathbf{R}_{n})$$

$$= \frac{1}{\sqrt{N}} \sum_{\mathbf{R}_{l} \in B}^{N} e^{i\mathbf{k}\cdot(\mathbf{R}_{l}+\mathbf{R}_{m})} \Phi_{j}(\mathbf{r}-\mathbf{R}_{l})$$

$$= \Phi_{jk}(\mathbf{r}) e^{i\mathbf{k}\cdot\mathbf{R}_{m}}$$

3. Tight-binding fonction d'onde

$$\psi(\mathbf{r};\mathbf{k}) = \sum_{j=1}^{n} C_{j}(\mathbf{k}) \Phi_{j\mathbf{k}}(\mathbf{r})$$

4. <u>Tight-binding éléments de matrice</u>

$$H_{jj'}(\mathbf{k}) = \langle \Phi_{j\mathbf{k}} | H | \Phi_{j'\mathbf{k}} \rangle$$
 transfer integral matrix $S_{jj'}(\mathbf{k}) = \langle \Phi_{j\mathbf{k}} | \Phi_{j'\mathbf{k}} \rangle$ overlap integral matrix

Principe de variation pour l'équation de Schrodinger.

Theorem: La fonctionelle
$$E[\psi] \equiv \frac{\int d\mathbf{r} \frac{h^2}{2m} (\nabla \psi(\mathbf{r}))^2 + V(\mathbf{r}) |\psi(\mathbf{r})|^2}{\int d\mathbf{r} |\psi(\mathbf{r})|^2}$$

est minimisé pour <u>tous</u> function d'onde qui satisfie l'équation de Schrodinger.

D'après Ashcroft et Mermin, "Solid State Physics", HRW, 1976

Preuve:

Définir
$$F[\psi, \phi] = \int d\mathbf{r} \left(\frac{h^2}{2m} (\nabla \psi(\mathbf{r})) \cdot (\nabla \phi^*(\mathbf{r})) + V(\mathbf{r}) \psi(\mathbf{r}) \phi^*(\mathbf{r}) \right)$$

 $(\psi, \phi) = \int d\mathbf{r} (\psi(\mathbf{r}) \phi^*(\mathbf{r}))$

Soit $H \psi = E \psi$ il s'ensuite que

$$F[\psi+\delta\psi,\psi+\delta\psi] = E[(\psi,\psi)+(\psi,\delta\psi)+(\delta\psi,\psi)]+O(\delta\psi)^{2}$$
$$(\psi+\delta\psi,\psi+\delta\psi) = (\psi,\psi)+(\psi,\delta\psi)+(\delta\psi,\psi)+O(\delta\psi)^{2}$$

$$E[\psi + \delta \psi] = \frac{F[\psi + \delta \psi, \psi + \delta \psi]}{(\psi + \delta \psi, \psi + \delta \psi)} = E + O(\delta \psi)^{2}$$

5. <u>Tight-binding energies</u>

Parce-que le calcul "tight-binding" est faite avec un ensemble restreint de fonctions de base, il s'agit d'un ansatz et non un calcul complet. Alors, on emploi le principe de variation:

$$E_{0}(\mathbf{k}) \leq E_{TB}(\mathbf{k}) = \frac{\langle \Psi_{\mathbf{k}} | H | \Psi_{\mathbf{k}} \rangle}{\langle \Psi_{\mathbf{k}} | \Psi_{\mathbf{k}} \rangle} = \frac{\sum_{j,j'} \overline{C}_{j} H_{jj'}(\mathbf{k}) C_{j'}}{\sum_{j,j'} \overline{C}_{j} S_{jj'}(\mathbf{k}) C_{j'}}$$

Minimizer:

$$\frac{\partial E_{TB}(\mathbf{k})}{\partial \bar{C}_{j}} = 0 = \frac{\sum_{j} H_{jj'}(\mathbf{k}) C_{j'}}{\sum_{j,j'} \bar{C}_{j} S_{jj'}(\mathbf{k}) C_{j'}} - \frac{\sum_{j,j'} \bar{C}_{j} H_{jj'}(\mathbf{k}) C_{j'}}{\sum_{j,j'} \bar{C}_{j} S_{jj'}(\mathbf{k}) C_{j'}} \frac{\sum_{j} S_{jj'}(\mathbf{k}) C_{j'}}{\sum_{j,j'} \bar{C}_{j} S_{jj'}(\mathbf{k}) C_{j'}}$$

$$\rightarrow \sum_{j} H_{jj'}(\mathbf{k}) C_{j'} = \lambda(\mathbf{k}) \sum_{j} S_{jj'}(\mathbf{k}) C_{j'}$$

$$C_{j} \neq 0 \rightarrow \det(H(\mathbf{k}) - \lambda(\mathbf{k}) S(\mathbf{k})) = 0$$

Example: trans-polyacétylène

Vecteur de reseau: $\mathbf{a} = a \hat{\mathbf{x}}$

Vecteur de reseau reciproque: $\mathbf{b} = \frac{2\pi}{a} \hat{\mathbf{x}}$

Example: trans-polyacétylène

Vecteur de reseau: $\mathbf{a} = a \hat{\mathbf{x}}$

Vecteur de reseau reciproque: $\mathbf{b} = \frac{2\pi}{a} \hat{\mathbf{x}}$

sp² hybridization \rightarrow σ -liens dans le plan, π -lien (p-p) dehors le plan

On cherche les niveau pour les π -electrons:

$$\begin{split} \Phi_{A}(\boldsymbol{r}\,;\boldsymbol{k}) &= \frac{1}{\sqrt{N}} \sum\nolimits_{\boldsymbol{R}_{n} \in B}^{N} e^{i\,\boldsymbol{k}\cdot\boldsymbol{R}_{n}} \varphi_{2\,p_{z}}(\boldsymbol{r}-\boldsymbol{R}_{n}) = \frac{1}{\sqrt{N}} \sum\nolimits_{n=0}^{N} e^{ikna} \, \varphi_{2\,p_{z}}(\boldsymbol{r}-na\,\boldsymbol{\hat{x}}\,) \\ \Phi_{B}(\boldsymbol{r}\,;\boldsymbol{k}) &= \frac{1}{\sqrt{N}} \sum\nolimits_{\boldsymbol{R}_{n} \in B}^{N} e^{i\,\boldsymbol{k}\cdot(\boldsymbol{R}_{n}+\boldsymbol{r}_{AB})} \varphi_{2\,p_{z}}(\boldsymbol{r}-\boldsymbol{R}_{n}+\boldsymbol{r}_{AB}) = \frac{1}{\sqrt{N}} \sum\nolimits_{n=0}^{N} e^{ikna+ik\boldsymbol{R}_{x}} \varphi_{2\,p_{z}}(\boldsymbol{r}-\boldsymbol{r}_{AB}-na\,\boldsymbol{\hat{x}}\,) \end{split}$$

$$\mathbf{k} = \frac{2\pi}{a} \frac{p_i}{N} \hat{\mathbf{x}}, \quad 0 \le p_i < N$$
 $0 \le k \le 2\pi/a$

Example: trans-polyacétylène

Vecteur de reseau: $a=a \hat{x}$

Vecteur de reseau reciproque:

$$\boldsymbol{b} = \frac{2\pi}{a} \,\hat{\boldsymbol{x}}$$

etylène
$$\mathbf{b} = \frac{2\pi}{a} \hat{\mathbf{x}}$$
Unité cellulaire

$$\begin{split} \Phi_{A}(\boldsymbol{r}\,;\boldsymbol{k}) &= \frac{1}{\sqrt{N}} \sum\nolimits_{\boldsymbol{R}_{n} \in B}^{N} e^{i\,\boldsymbol{k}\cdot\boldsymbol{R}_{n}} \varphi_{2\,p_{z}}(\boldsymbol{r}-\boldsymbol{R}_{n}) = \frac{1}{\sqrt{N}} \sum\nolimits_{n=0}^{N} e^{ikna} \varphi_{2\,p_{z}}(\boldsymbol{r}-na\,\boldsymbol{\hat{x}}) \\ \Phi_{B}(\boldsymbol{r}\,;\boldsymbol{k}) &= \frac{1}{\sqrt{N}} \sum\nolimits_{\boldsymbol{R}_{n} \in B}^{N} e^{i\,\boldsymbol{k}\cdot(\boldsymbol{R}_{n}+\boldsymbol{r}_{AB})} \varphi_{2\,p_{z}}(\boldsymbol{r}-\boldsymbol{R}_{n}+\boldsymbol{r}_{AB}) = \frac{1}{\sqrt{N}} \sum\nolimits_{n=0}^{N} e^{ikna+ikR_{x}} \varphi_{2\,p_{z}}(\boldsymbol{r}-\boldsymbol{r}_{AB}-na\,\boldsymbol{\hat{x}}) \end{split}$$

$$H_{AA}(\mathbf{k}) = \langle \Phi_{A\mathbf{k}} | H | \Phi_{A\mathbf{k}} \rangle = \frac{1}{N} \sum_{n,m=0}^{N} e^{ik(n-m)a} \langle \Phi_{2p_z}(\mathbf{r} - ma\,\mathbf{\hat{x}}) | H | \Phi_{2p_z}(\mathbf{r} - na\,\mathbf{\hat{x}}) \rangle$$

$$= \langle \Phi_{p_z}(\mathbf{r}) | H | \Phi_{p_z}(\mathbf{r}) \rangle + \underbrace{\frac{1}{N} \sum_{n \neq m}^{N} e^{ik(n-m)a} \langle \Phi_{2p_z}(\mathbf{r} - ma\,\mathbf{\hat{x}}) | H | \Phi_{2p_z}(\mathbf{r} - na\,\mathbf{\hat{x}}) \rangle}_{\text{faible}}$$

 $\approx \epsilon_{2p}$

Example: trans-polyacétylène

Vecteur de reseau: $a=a \hat{x}$

Vecteur de reseau reciproque: $\mathbf{b} = \frac{2\pi}{a} \hat{\mathbf{x}}$

$$H_{AB}(k\,\mathbf{\hat{x}}) = \langle \Phi_{Ak} | H | \Phi_{Bk} \rangle = \frac{1}{N} \sum_{n,m=0}^{N} e^{ik(n-m)+ikr_{AB,x}} \langle \Phi_{2\,p_{z}}(\mathbf{r}-\mathbf{m}a\,\mathbf{\hat{x}}) | H | \Phi_{2\,p_{z}}(\mathbf{r}-\mathbf{r}_{AB}-\mathbf{n}a\,\mathbf{\hat{x}}) \rangle$$

$$= e^{ik\,R_{x}} \langle \Phi_{2\,p_{z}}(\mathbf{r}) | H | \Phi_{2\,p_{z}}(\mathbf{r}-\mathbf{r}_{AB}) \rangle + e^{ik(r_{AB,x}-a)} \langle \Phi_{2\,p_{z}}(\mathbf{r}) | H | \Phi_{2\,p_{z}}(\mathbf{r}-\mathbf{r}_{AB}+\mathbf{a}) \rangle$$

$$+ \frac{1}{N} \sum_{m=0;\,n\neq0,-1}^{N} e^{ik\,r_{AB,x}+ik(n-m)} \langle \Phi_{2\,p_{z}}(\mathbf{r}-\mathbf{m}a\,\mathbf{\hat{x}}) | H | \Phi_{2\,p_{z}}(\mathbf{r}-\mathbf{r}_{AB}-\mathbf{n}a\,\mathbf{\hat{x}}) \rangle$$
faible

if
$$r_{ABx} = a/2$$

 $\approx 2t \cos(ka/2)$, $t = \langle \phi_{2p}(\mathbf{r}) | H | \phi_{2p}(\mathbf{r} - \mathbf{a}/2) \rangle$

Example: trans-polyacétylène

Vecteur de reseau:

$$a=a \hat{x}$$

Vecteur de reseau reciproque:

$$b = \frac{2\pi}{a} \hat{x}$$
Unité cellulaire

$$H_{ij} = \begin{pmatrix} \epsilon_{2p} & 2t\cos(ka/2) \\ 2t\cos(ka/2) & \epsilon_{2p} \end{pmatrix} \qquad S_{ij} = \begin{pmatrix} 1 & 2s\cos(ka/2) \\ 2s\cos(ka/2) & 1 \end{pmatrix}$$

$$0 = det \begin{pmatrix} \epsilon_{2p} - E & 2(t - sE)\cos(ka/2) \\ 2(t - sE)\cos(ka/2) & \epsilon_{2p} - E \end{pmatrix}$$

$$= (\epsilon_{2p} - E)^2 - 4(t - sE)^2 \cos^2(ka/2)$$

$$E_{\pm}(k) = \frac{\epsilon_{2p} \pm 2t \cos(ka/2)}{1 \pm 2s \cos(ka/2)}, -\frac{\pi}{a} < k < \frac{\pi}{a}$$

Graphene 1

graphène = un seul feuillet de graphite

Structure électronique d'un atome de carbone = $1s^2 2s^2 2p^2$ coeur = $1s^2$ 4 électrons de valence = $2s^2 2p^2$

Chaque atome de carbone offre 3 orbitales atomiques sp^2 et une orbitale $2p_z$ Les orbitales atomiques sp^2 forment les liens σ Les orbitales atomiques $2p_z$ forment les liens π

Graphene 2

$$x = \sqrt{\frac{9 a_{CC}^2}{4} + \frac{3 a_{CC}^2}{4}} = \sqrt{3} a_{CC}$$

$$a = ||\boldsymbol{a}_1|| = ||\boldsymbol{a}_2|| = 0.246 \,\mathrm{nm}$$

R. Saito, G. Dresselhaus & M. S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998)

Graphene Tight-binding: π-bands

 $H_{AA} = H_{BB} = \epsilon_{2p}$

$$H_{AB} = t(e^{i \mathbf{k} \cdot \mathbf{R}_1} + e^{i \mathbf{k} \cdot \mathbf{R}_2} + e^{i \mathbf{k} \cdot \mathbf{R}_3})$$

$$\equiv tf(\mathbf{k})$$

$$f(\mathbf{k}) = e^{-ik_x a/\sqrt{3}} + 2e^{ik_x a/2\sqrt{3}}\cos\left(\frac{k_y a}{2}\right)$$

$$S_{AB} = sf(\mathbf{k})$$

$$E_{\pi\pi} = \frac{\epsilon_{2p} \pm tw(\mathbf{k})}{1 \pm sw(\mathbf{k})}$$

réseau

zone de Brillouin

$$a_{1,2} = \left(\frac{\sqrt{3}}{2}a, \pm \frac{a}{2}\right)$$

$$\boldsymbol{a}_{1,2} = \left(\frac{\sqrt{3}}{2}a, \pm \frac{a}{2}\right)$$
 $\boldsymbol{b}_{1,2} = \left(\frac{2\pi}{\sqrt{3}a}, \pm \frac{2\pi}{a}\right)$

$$w(\mathbf{k}) = \sqrt{\left[f(\mathbf{k})\right]^2} = \sqrt{1 + 4\cos\left(\frac{\sqrt{3}k_x a}{2}\right)\cos\left(\frac{k_y a}{2}\right) + 4\cos^2\left(\frac{k_y a}{2}\right)}$$

 $s = 0 \Leftrightarrow$ "Slater-Koster approximation"

R. Saito, G. Dresselhaus & M. S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998)

Graphene Tight-binding: σ-bands

Basis:
$$(2s^{A}, 2p_{x}^{A}, 2p_{y}^{A}, 2s^{B}, 2p_{x}^{B}, 2p_{y}^{B})$$

$$H_{AA} = \begin{pmatrix} \epsilon_{2s} & 0 & 0 \\ 0 & \epsilon_{2p} & 0 \\ 0 & 0 & \epsilon_{2p} \end{pmatrix}, \quad S_{AA} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Alors,
$$|2p_x\rangle = \cos\left(\frac{\pi}{3}\right)|2p_\sigma\rangle + \cos\left(\frac{2\pi}{3}\right)|2p_\pi\rangle = \frac{1}{2}|2p_\sigma\rangle + \frac{\sqrt{3}}{2}|2p_\pi\rangle$$

Car l'état de l = 1 se transforme comme un vecteur sous rotations.

R. Saito, G. Dresselhaus & M. S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998)

Graphene Tight-binding: o-bands

Basis:
$$(2s^{A}, 2p_{x}^{A}, 2p_{y}^{A}, 2s^{B}, 2p_{x}^{B}, 2p_{y}^{B})$$

$$|2p_{x}\rangle = \frac{1}{2}|2p_{\sigma}\rangle + \frac{\sqrt{3}}{2}|2p_{\pi}\rangle$$

$$= \left(\frac{1}{2}\right)^{2} + \left(\frac{\sqrt{3}}{2}\right)^{2}$$

$$+ \left(\frac{1}{2}\right)\left(\frac{\sqrt{3}}{2}\right) + \left(\frac{1}{2}\right)\left(\frac{\sqrt{3}}{2}\right)$$

$$(2p_{\pi}^{B}|H|2p_{\sigma}^{A})$$

$$(2p_{\pi}^{B}|H|2p_{\sigma}^{A})$$

$$(2p_{\sigma}^{B}|H|2p_{\sigma}^{A})$$

$$(2p_{\sigma}^{B}|H|2p_{\pi}^{A})$$

$$= \left(\frac{1}{4}H_{\sigma\sigma} + \frac{3}{4}H_{\pi\pi}\right)e^{i(k_{x}R_{x}+k_{y}R_{y})} = \left(\frac{1}{4}H_{\sigma\sigma} + \frac{3}{4}H_{\pi\pi}\right)e^{i\left(\frac{k_{x}a}{2\sqrt{3}} + \frac{k_{y}a}{2}\right)}, \quad H_{\sigma\pi} = 0$$

Graphene Tight-binding: σ-bands

Basis: $(2s^{A}, 2p_{x}^{A}, 2p_{y}^{A}, 2s^{B}, 2p_{x}^{B}, 2p_{y}^{B})$

R. Saito, G. Dresselhaus & M. S. Dresselhaus, *Physical Properties of Carbon Nanotubes* (Imperial College Press, London, 1998)

$$\langle 2 p_x^B | H | 2 p_x^A \rangle = \frac{1}{4} (H_{\sigma\sigma} + 3 H_{\pi\pi}) e^{i \left(\frac{k_x a}{2\sqrt{3}} + \frac{k_y a}{2}\right) i}$$

$$\langle 2 p_x^B | H | 2 p_y^A \rangle = \frac{i\sqrt{3}}{2} (H_{\sigma\sigma} + H_{\pi\pi}) e^{-ik_x a/2\sqrt{3}} \sin \frac{k_y a}{2}$$

$$\langle 2s^{B}|H|2p_{x}^{A}\rangle = H_{sp}\left(-e^{ik_{x}a/\sqrt{3}} + e^{ik_{x}a/(2\sqrt{3})}\right)$$

Graphene

component	H (eV)	S
SS	-6.7969	0.212
sp	-5.580	0.102
σσ	-5.037	0.146
ππ	-3.033	0.129
ϵ_s - ϵ_p	-8.868	

R. Saito, G. Dresselhaus & M. S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998)