EE24BTECH11006 - Arnay Mahishi

1) The minimum number of terms required in the series expansion of e^x to evaluate at

2) The iteration scheme $x_{n+1} = \frac{1}{1+x_n^2}$ converges to a real number x in the interval (0,1) with $x_o = 0.5$. The value of x correct up to 2 places of decimal is equal to

c) 6

d) 5

x = 1 correct up to 3 places of decimals is

a) 8

b) 7

a) 0.65	b) 0.68	c) 0.73	d) 0.80			
3) If the diagonal elements of a lower triangular square matrix A are all different from zero, then the matrix A will always be						
a) symmetric	b) non-symmetric	c) singular	d) non-singular			
4) If the two eigen of <i>p</i> is	values of the matrix M	$T = \begin{pmatrix} 2 & 6 & 0 \\ 1 & p & 0 \\ 0 & 0 & 3 \end{pmatrix} \text{ ar}$	re -1 and 4, then the value			
a) 4	b) 2	c) 1	d) -1			
5) Consider the system of linear simultaneous equations						
x + 10y = 5,						
y + 5z = 1,						
10x - y + z = 0						
On applying Gauss-Seidel method the value of x correct up to 4 decimal places is						
a) 0.0385	b) 0.0395	c) 0.0405	d) 0.0410			
6) The graph of a function $y = f(x)$ passes through the points $(0, -3), (1, -1)$, and $(2, 3)$. Using Lagrange interpolation, the value of x at which the curve crosses the x -axis is obtained as						
a) 1.375	b) 1.475	c) 1.575	d) 1.675			
7) The equation of the straight line of best fit using the following data by the principle of least square is						

х	1	2	3	4	5
у	14	13	9	5	2

a)	$\nu =$	18 -	– 3 r

b)
$$y = 18.1 - 3.1x$$
 c) $18.2 - 3.2x$

$$(2)$$
 18.2 – 3.2 x

d)
$$18.3 - 3.3x$$

8) On solving the initial value problem $\frac{dy}{dx} = xy^2$, y(1) = 1 by Euler's method, the value of y at x = 1.2 with h = 0.1 is

- a) 1.1000
- b) 1.1232
- c) 1.2210
- d) 1.2331

9) The local error of the following schme $y_{n+1} = y_n + \frac{h}{12} \left(5y'_{n+1} + 8y'_n - y'_{n-1} \right)$ by comparing with the Taylor series $y_{n+1} = y_n + hy'_n + \frac{h^2}{2!}y''_n + \cdots$ is

- a) $O(h^4)$
- b) $O(h^5)$
- c) $O(h^2)$ d) $O(h^3)$

10) The area bounded by the curve $y = 1 - x^2$ and the x-axis from x = -1 to x = 1 using the Trapezoidal rule with step length h = 0.5 is

- a) 1.20
- b) 1.23
- c) 1.25
- d) 1.33

11) The iteration scheme $x_{n+1} = \sqrt{a} \left(1 + \frac{3a^2}{x_n^2}\right) - \frac{3a^2}{x_n}$, a > 0 converges to the real number

- a) \sqrt{a}
- b) a

- c) $a\sqrt{a}$
- d) a^2

12) If the binary representation of two numbers m and n are 01001101 and 00101011, respectively, then the binary representation of m-n is

- a) 00010010
- b) 00100010
- c) 00111101
- d) 00100001

13) Which the follwing statements C are true in a program? P: A local variable is used only within the block where it is defined, and its sub-blocks Q: Global variables are declared outside the scope of all blocks

R: Extern variables are used by linkers for sharing between other compilation units

S: By default, all global variables are extern variables

- a) P and Q
- b) P,Q and R
- c) P,Q and S
- d) P,Q,R and S

14) Consider the following recursive function g()

Recursive integer function g(m, n) result (r)

integer :: m, n

if
$$(n == 0)$$
 then

$$r = m$$

else if $(m \le 0)$ then

$$r = n + 1$$

```
else if ((n - n/2 * 2) == 1) then
    r = g(m-1, n+1)
    else
    r = g(m - 2, n/2)
    end if
    end
    Which value will be returned if the function g is called with 6,6?
   a) 2
   b) 4
   c) 6
   d) 8
15) If the following function is called with x = 1
    real function print value(x)
    real :: x, sum, term
    integer :: i
    i = 0
    sum = 2.0
    term = 1.0
    do while (term > 0.00001)
    term = x * term / (i + 1)
    sum = sum + term
    i = i + 1
    end do
    print value = sum
    end
    The value returned will be close to
                         b) log_e 3
                                              c) 1 + e
   a) log_e 2
                                                                    d) e
16) Consider the following C program
    include <stdio.h>
    include <string.h>
    void main()
    char s [80], *p;
    int sum = 0;
    p = s;
    gets(s);
    while (*p)
    if (*p == '1')
    sum = 2 * sum + 1;
    else if (*p == '0')
    sum = sum * 2;
    else
```

```
printf("invalid string");
p++;
printf("%d", sum);
```

Which number will be printed if the input string is 10110

a) 31

b) 28

c) 25

d) 22

17) Consider the following C program segment

```
#include <stdio.h>
void print_mat(int mat [1] [3])

void main(){
int i,j,sum=0;
int m [3] [3]={{1, 3, 5}, {7, 9, 11}, {13, 15, 17}};
for(i = 0; i < 3; i + +){
for(j = 2; j > 1; j - -){
sum+=m [i] [j] * m [i] [j - 1];
printf("%d", sum)
print_mat(m);//FUNCTION CALL}

void print_mat(int mat [] [3]){
int * p [3]= mat [l];
printf("%d and %d", *p [1], *p [2]);
}

The value of sum that will be writted by the shape.
```

The value of sum that will be printed by the above program is

- a) 369
- b) 361
- c) 303
- d) 261