

XCDM

THE EXCHANGE-CORRELATION-HOLE DIPOLE MOMENT MODEL

Kyle R. Bryenton Dalhousie Department of Physics & Atmospheric Science CSTCC 2024 – July 22, 2024

What is Dispersion?

XDM: The Exchange-hole Dipole Moment Model

Motivation

Implementation

Results

Conclusions

WHAT IS DISPERSION?

London dispersion is a weak, attractive, intermolecular force.

It is caused by instantaneous dipole moments between neighbouring atoms.

Properties Determined by Dispersion:

- Adhesion
- Friction
- Surface adsorption
- Phase-change conditions
- Packing in molecular crystals
- Shapes of biomolecules
- Stability of supramolecular complexes

Scamper the Gecko

THE XDM MODEL

The exchange-hole dipole moment (XDM) model calculates the dispersion energy via a pairwise sum over all atoms,

$$E_{\text{XDM}} = -\sum_{j < i} \sum_{n=6,8,10} f_n^{\text{BJ}}(R_{ij}) \frac{C_{n,ij}}{R_{ij}^n} .$$

Here, $f_n^{\rm BJ}(R_{ij})$ is the Becke-Johnson damping function to prevent convergence at small interatomic separations, R_{ij} . The XDM model calculates the dispersion coefficients, C_n , using exchange-hole dipole moments,

$$d_{\mathsf{X}\sigma}(\boldsymbol{r}) = \left[\int h_{\mathsf{X}\sigma}(\boldsymbol{r}, \boldsymbol{s}) \, s \, d\boldsymbol{s} \right] - \boldsymbol{r} \,,$$

which are obtained by integrating the exchange hole, $h_{X\sigma}$, over its reference point, s.

These exchange-hole dipole moments are used along with Hirshfeld weights, w_i , and the electron density, ρ_{σ} , to compute the multipole moment integrals,

$$\left\langle M_\ell^2 \right\rangle = \sum_{\sigma} \int w_i(\boldsymbol{r})
ho_{\sigma}(\boldsymbol{r}) \left[r^\ell - (r - d_{\mathsf{X}\sigma})^\ell \right]^2 d\boldsymbol{r} \,.$$

These are then combined with atom-in-molecule polarizabilities, α_i , to solve for the heteroatomic dispersion coefficients,

$$\begin{split} C_{6,ij}^{\text{XDM}} &= \frac{\alpha_i \, \alpha_j \, \left\langle M_1^2 \right\rangle_i \, \left\langle M_1^2 \right\rangle_j}{\alpha_i \, \left\langle M_1^2 \right\rangle_j + \alpha_j \, \left\langle M_1^2 \right\rangle_i} \\ C_{8,ij}^{\text{XDM}} &= \frac{3}{2} \frac{\alpha_i \, \alpha_j \, \left(\left\langle M_1^2 \right\rangle_i \, \left\langle M_2^2 \right\rangle_j + \left\langle M_2^2 \right\rangle_i \, \left\langle M_1^2 \right\rangle_j \right)}{\alpha_i \, \left\langle M_1^2 \right\rangle_j + \alpha_j \, \left\langle M_1^2 \right\rangle_i} \\ C_{10,ij}^{\text{XDM}} &= 2 \frac{\alpha_i \, \alpha_j \, \left(\left\langle M_1^2 \right\rangle_i \, \left\langle M_3^2 \right\rangle_j + \left\langle M_3^2 \right\rangle_i \, \left\langle M_1^2 \right\rangle_j \right)}{\alpha_i \, \left\langle M_1^2 \right\rangle_j + \alpha_j \, \left\langle M_1^2 \right\rangle_i} + \frac{21}{5} \frac{\alpha_i \, \alpha_j \, \left\langle M_2^2 \right\rangle_i \, \left\langle M_2^2 \right\rangle_j}{\alpha_i \, \left\langle M_1^2 \right\rangle_j + \alpha_j \, \left\langle M_1^2 \right\rangle_i} \,. \end{split}$$

MOTIVATION

"Why does XDM only use the exchange hole and not the exchange-correlation hole?"

Reasons:

- 1. The contribution from exchange dominates over correlation
- 2. XDM uses the BR-hole, which partially models non-dynamical correlation
- 3. The contribution from dynamical correlation has been shown to be small

... Though, it'd be nice to properly include dynamical correlation.

THE PLAN:

- 1. Derive same- and opposite-spin correlation hole models
- 2. Integrate them into XDM in the FHI-aims code
- 3. Benchmark the results

MOTIVATION

"Why does XDM only use the exchange hole and not the exchange-correlation hole?"

REASONS:

- 1. The contribution from exchange dominates over correlation
- 2. XDM uses the BR-hole, which partially models non-dynamical correlation
- 3. The contribution from dynamical correlation has been shown to be small

... Though, it'd be nice to properly include dynamical correlation.

THE PLAN:

- 1. Derive same- and opposite-spin correlation hole models
- 2. Integrate them into XDM in the FHI-aims code
- 3. Benchmark the results

Implementation

Short-Range Dynamical Correlation Models Plots of the Exchange-Correlation Hole

Results

Conclusions

SHORT-RANGE DYNAMICAL CORRELATION MODELS

We can simply expand the hole term from the previous slide to include terms for the same- and opposite-spin dynamical correlation holes

$$d_{\mathsf{XC}\sigma}(\boldsymbol{r}) = \left[\int h_{\mathsf{XC}}(\boldsymbol{r},\boldsymbol{s}) \, s \, \mathrm{d}\boldsymbol{s} \right] - \boldsymbol{r} = \left[\int \left(h_{\mathsf{X}\sigma}(\boldsymbol{r},\boldsymbol{s}) + h_{\mathsf{C}\sigma}^{\sigma\sigma}(\boldsymbol{r},\boldsymbol{s}) + h_{\mathsf{C}\sigma}^{\alpha\beta}(\boldsymbol{r},\boldsymbol{s}) \right) \, s \, \mathrm{d}\boldsymbol{s} \right] - \boldsymbol{r} \, .$$

 $h_{X\sigma}$ is currently captured via the framework of the BR hole, which we can leverage to capture $d_{XC\sigma}$. Becke proposed analogous models for the same- and opposite-spin dynamical correlation holes of the form

$$h_{\mathsf{C}\sigma}^{\sigma\sigma}(\boldsymbol{r},\boldsymbol{s}) = \frac{s^2 \left(s - z_{\sigma\sigma}\right) D_{\sigma}(\boldsymbol{r})}{3 \left(2 + z_{\sigma\sigma}\right)} f(\gamma_{\sigma\sigma}s) \qquad \qquad h_{\mathsf{C}\sigma}^{\alpha\beta}(\boldsymbol{r},\boldsymbol{s}) = \frac{\left(s - z_{\alpha\beta}\right) \rho_{\sigma}(\boldsymbol{r})}{1 + z_{\alpha\beta}} f(\gamma_{\alpha\beta}s) ,$$

where z is the spin-dependent correlation length, $D_{\sigma} = \tau_{\sigma} - \tau_{\sigma}^{W}$ is the difference between the exact kinetic-energy density and the von Weizsäker approximation, and $f(\gamma s)$ is a function that serves to normalize these correlation holes to 0 electrons.

Becke proposed three forms for the normalization function

$$f(\gamma s) = \begin{cases} \operatorname{sech}(\gamma s) \\ (1 + \gamma s) e^{-\gamma s} \\ e^{-(\gamma s)^2} \end{cases}.$$

Spherical integration of these correlation hole models lead to the following expressions for the sameand opposite-spin correlation hole dipole moments,

$$d_{\mathsf{C}\sigma}^{\sigma\sigma}(\boldsymbol{r}) = \left[\int h_{\mathsf{C}}^{\sigma\sigma}(\boldsymbol{r}, \boldsymbol{s}) s \, \mathrm{d}\boldsymbol{s} \right] - \boldsymbol{r} = \frac{c_{\sigma\sigma} z_{\sigma\sigma}^7}{2 + z_{\sigma\sigma}} D_{\sigma}(\boldsymbol{r}) - \boldsymbol{r} \,,$$
$$d_{\mathsf{C}\sigma}^{\alpha\beta}(\boldsymbol{r}) = \left[\int h_{\mathsf{C}}^{\alpha\beta}(\boldsymbol{r}, \boldsymbol{s}) s \, \mathrm{d}\boldsymbol{s} \right] - \boldsymbol{r} = \frac{c_{\alpha\beta} z_{\alpha\beta}^5}{1 + z_{\alpha\beta}} \rho_{\sigma}(\boldsymbol{r}) - \boldsymbol{r} \,.$$

Here, $c_{\sigma\sigma} \approx 0.02$ and $c_{\alpha\beta} \approx 0.6$; the exact value depends on the chosen form of $f(\gamma s)$. Now, our description of the exchange-correlation-hole dipole moment is complete:

$$d_{\mathsf{XC}\sigma}(\boldsymbol{r}) = \left[\int h_{\mathsf{X}\sigma}(\boldsymbol{r}, \boldsymbol{s}) \, s \, \mathrm{d}\boldsymbol{s} + \frac{c_{\sigma\sigma} \, z_{\sigma\sigma}^7}{2 + z_{\sigma\sigma}} D_{\sigma}(\boldsymbol{r}) + \frac{c_{\alpha\beta} \, z_{\alpha\beta}^5}{1 + z_{\alpha\beta}} \rho_{\sigma}(\boldsymbol{r}) \right] - \boldsymbol{r} \, .$$

PLOTS OF THE EXCHANGE-CORRELATION HOLE

Implementation

Results

Benchmark Sets

Qualitative Results and Observations

Conclusion

Benchmarking

Basis Sets:

- Light
- LightDense
- Intermediate
- Tight

Functionals:

- B86bPBE
- B86bPBE-25
- B86bPBE-50
- PBE
- PBE0
- PBE-50
- HSE06

XCDM is currently implemented into a private version of the FHI-aims code.

Benchmarks:

- KB49 Intermolecular Complexes
- MolC6 Molecular C₆ Coefficients
- S22×5 Small Molecular Dimers & Non-Eq. Geoms
 S66×8 Small Molecular Dimers & Non-Eq. Geoms
- 3B-69 Small Molecular Trimers
- Heavy28 Complexes with Heavy Atom Hydrides
- L7 Large Molecular Complexes
- S6L Large Molecular Complexes
- X23 Molecular Crystals
- Ice13 Ice Crystal Phases
- HalCrys4 Halogen Crystals
- LM26 Layered Materials

QUALITATIVE RESULTS AND OBSERVATIONS

XCDM compared to XDM: Mean Absolute Error % Change

Benchmark	MAE Chg.	Description
KB49	↓ 1%	Intermolecular Complexes
MoIC6	↓ 15%	Molecular C_6 Coefficients
S22×5	\sim	Small Molecular Dimers & Non-Eq. Geoms
S66×8	\sim	Small Molecular Dimers & Non-Eq. Geoms
3B-69	↓ 2%	Small Molecular Trimers
Heavy28	↓ 3%	Complexes with Heavy Atom Hydrides
L7	↓ 2%	Large Molecular Complexes
S6L	↓ 10%	Large Molecular Complexes
X23	↓ 5%	Molecular Crystals
lce13	\sim	Ice Crystal Phases
HalCrys4	† 1%	Halogen Crystals
LM26	† 5%	Layered Materials

Observations:

- Our previous conjecture that dynamical correlation doesn't matter much was generally correct
- MolC6's improvement shows we're accurately modelling the physics
- XCDM typically captures an additional 0.02-0.10 kcal/mol binding energy
- If XDM overbinds, XCDM often overbinds and compounds the error

Implementation

Results

Dispersion and XDM

Conclusions

KEY TAKEAWAYS

- 1. For small molecular systems, XDM and XCDM perform equivalently
- 2. For large molecular systems or crystal structure prediction, use XCDM for the increased accuracy
- 3. For layered materials or systems with large delocalization error, XDM tends to overbind rather than underbind, so XCDM will likely worsen the error

ACKNOWLEDGEMENTS

The Johnson Group:

- Prof. Erin Johnson
- Adrian Rumson
- Cameron Nickerson
- Grace Sparrow

Funding and Resources:

- Mary M. Werner Foundation
- Killam Trusts
- Walter C. Sumner Foundation
- Government of Nova Scotia
- Dalhousie University
- Digital Research Alliance of Canada
- ACENET
- FHI-aims

QUESTIONS?

WANT MY SLIDES?

Kyle.Bryenton@dal.ca