FUNGICIDAL PYRIMIDINE DERIVATIVES

Background of the Invention

1. Field of the invention.

The present invention relates to novel pyrimidine derivatives, which have fungicidal activity. The preparation and use, in agriculture and horticulture, of agrochemical compositions containing these novel fungicidal pyrimidines are also disclosed.

2. Description of the related art.

It is known in the art that certain pyrimidine derivatives such as those disclosed in PCT application WO 2003-000659 have fungicidal and insecticidal properties, WO 2002-067684 have pesticidal properties, EP 337943 have herbicidal and plant growth regulatory properties, US 4474599 have herbicidal properties and in the art that PCT application WO 94-08975 have herbicidal and fungicidal properties. In the arts that WO 2002-047690, WO 99-02503, WO 96-33972 and US 3149109 also have description about heteroaromatic substituted pyrimidine derivatives.

Summary of the Invention

In accordance with the present invention, pyrimidine derivatives are provided having the formula (1):

Wherein

R¹ is H, C₁-C₆alkyl (being optionally substituted by one or more of halogen), C₂-C₆alkenyl (being optionally substituted by one or more of halogen), C₂-C₆alkynyl (being optionally substituted by one or more of halogen or trialkylsilyl), C₁-C₆alkoxy (being optionally substituted by one or more of halogen), C₂-C₆alkenyloxy (being optionally

substituted by one or more of halogen), C₂-C₆alkynyloxy (being optionally substituted by one or more of halogen), C₁-C₆alkylthio (being optionally substituted by one or more of halogen), C₁-C₆alkylsulfinyl (being optionally substituted by one or more of halogen), C₁-C₆alkylsulfonyl (being optionally substituted by one or more of halogen), phenyl (being optionally substituted by one or more of halogen, alkyl, haloalkyl or alkoxy), pyridin-2-yl (being optionally substituted by one or more of halogen, alkyl, haloalkyl or phenyl), pyridin-3-yl (being optionally substituted by one or more of halogen, alkyl, haloalkyl or phenyl), pyridin-4-yl (being optionally substituted by one or more of halogen, alkyl, haloalkyl or phenyl), imidazol-1-yl (being optionally substituted by one or more of halogen, alkyl or alkoxy), pyrazol-1-yl (being optionally substituted by one or more of halogen, alkyl or alkoxy) or N(R⁴)C(O)R⁵,

 R^2 is halo C_1 - C_6 alkyl,

R³ is halogen, C₂-C₆alkenyl or C₂-C₆alkynyl groups, (being optionally substituted by one or more of halogen),

R⁴ and R⁵ are, independently, H, C₁-C₆alkyl (being optionally substituted by one or more of halogen or cyano); or R⁴ and R⁵ can join together to form a 5 or 6-membered ring,

Q is a heteroaromatic ring selected from the following ring system; imidazol-1-yl, pyrazol-1-yl, 1,2,3-triazol-2-yl, 1,2,4-triazol-1-yl, 1,2,4-triazol-4-yl, benzimidazol-1-yl or tetrazol-5-yl groups (being optionally substituted by one or more of halogen, cyano, hydroxy, mercapto, alkyl, haloalkyl, alkoxy, alkoxycarbonyl, amino, alkylamino, haloalkoxy, alkylthio or aralkylthio).

The present invention is directed to agrochemical compositions comprising as an active ingredient at least one of the novel pyrimidine derivatives of the present invention, as well as to the use of these active ingredients or compositions for plant disease control, and in particular as fungicides useful in agriculture and horticulture.

For a better understanding of the present invention, reference is made to the following description and its scope will be pointed out in the appended claims.

Detailed description of the invention

For purposes of the present invention the general terms used hereinabove and hereinbelow have the following meanings, unless otherwise defined:

Alkyl groups are, in accordance with the number of carbon atoms, straightchain or branched and will typically be methyl, ethyl, n-propyl, isopropyl, n-butyl, secbutyl, isobutyl, tert-butyl, n-amyl, tert-amyl, 1-hexyl or 3-hexyl.

Halogen and halo substituents will be understood generally as meaning fluoro, chloro, bromo, iodo.

Haloalkyl can contain identical or different halogenatoms, typically fluoromethyl, difluoromethyl, trifluoromethyl, chloromethyl, trichloromethyl.

Alkoxy is typically methoxy, ethoxy, propyloxy, isopropyloxy, n-butyloxy, isobutyloxy, sec-butyloxy and tert-butyloxy.

Alkenyl and alkynyl groups preferably contain from 2 to 6, more preferably from 2 to 4, carbon atoms. They can be in the form of straight or branched chains, and, where appropriate, the alkenyl groups can be of either (E)- or (Z)- configuration. Examples are vinyl, ethynyl, propynyl.

The present invention provides the use as fungicides of pyrimidine derivatives having the following formula (1):

$$\begin{array}{cccc}
Q & & & & & & & & \\
R^3 & & & & & & & & \\
R^2 & & & & & & & \\
\end{array}$$
(1)

Wherein R¹ is H, C₁-C₆alkyl (being optionally substituted by one or more of halogen), C₂-C₆alkenyl (being optionally substituted by one or more of halogen), C₂-C₆alkynyl (being optionally substituted by one or more of halogen or trialkylsilyl), C₁-C₆alkoxy (being optionally substituted by one or more of halogen), C₂-C₆alkenyloxy (being optionally substituted by one or more of halogen), C₂-C₆alkynyloxy (being optionally substituted by one or more of halogen), C₁-C₆alkylsulfinyl (being optionally substituted by one or more of halogen), C₁-C₆alkylsulfinyl (being optionally substituted by one or more of halogen), phenyl (being optionally substituted by one or more of halogen, phenyl (being optionally substituted by one or more of halogen, alkyl, haloalkyl or phenyl), pyridin-3-yl (being optionally substituted by one or

more of halogen, alkyl, haloalkyl or phenyl), pyridin-4-yl (being optionally substituted by one or more of halogen, alkyl, haloalkyl or phenyl), imidazol-1-yl (being optionally substituted by one or more of halogen, alkyl or alkoxy), pyrazol-1-yl (being optionally substituted by one or more of halogen, alkyl or alkoxy) or N(R⁴)C(O)R⁵,

 R^2 is haloC₁-C₆alkyl, R^3 is halogen, C₂-C₆alkenyl or C₂-C₆alkynyl groups, (being optionally substituted by one or more of halogen), R^4 and R^5 are, independently, H, C₁-C₆alkyl (being optionally substituted by one or more of halogen or cyano); or R^4 and R^5 can join together to form a 5 or 6-membered ring,

Q is a heteroaromatic ring selected from the following ring system; imidazol-1-yl, pyrazol-1-yl, 1,2,3-triazol-2-yl, 1,2,4-triazol-1-yl, 1,2,4-triazol-4-yl, benzimidazol-1-yl or tetrazol-5-yl groups (being optionally substituted by one or more of halogen, cyano, hydroxy, mercapto, alkyl, haloalkyl, alkoxy, alkoxycarbonyl, amino, alkylamino, haloalkoxy, alkylthio or aralkylthio).

Examples of specific compounds of formula (1) which are of use as fungicides include the compounds listed in Table 1.

The pyrimidine derivative represented by the formula (1) in the invention can be prepared by the following process.

SCHEME 1 R^{1} R^{2} R^{1} R^{2} R^{1} R^{2} R^{2} R^{2} R^{3} R^{2} R^{3} R^{2} R^{3} R^{2} R^{3} R^{3} R^{3} R^{3} R^{3} R^{4} R^{4} R^{4} R^{4} R^{5} R^{5} R^{5} R^{6} R^{7} R^{1} R^{1} R^{2} R^{2} R^{2} R^{2} R^{2} R^{3} R^{4} R^{4} R^{4} R^{5} R^{4} R^{4} R^{5} R^{5} R^{5} R^{6}

The preparation of 5-halogenated 4-chloropyrimidines (wherein R¹=H, alkyl, phenyl, pyridine-2-yl, pyridine-3-yl or pyridine-4-yl) such as 1-4 as intermediates that can be used for the synthesis of compounds within the scope of the present invention is detailed in Scheme 1. Pyrimidinones of structure 1-2 can be synthesized by condensation of a \beta-keto-ester with amidine (or amidine salt) in a suitable solvent such as methanol, ethanol, isopropanol or the like in the presence of a base such as sodium or potassium alkoxide. The pyrimidinones 1-2 thus obtained can be halogenated by treatment with a suitable halogenating agent such as bromine, chlorine, iodine monochloride, N-bromosuccinimide, N-chlorosuccinimide or N-iodosuccinimide in a suitable solvent such as dichloromethane, chloroform, carbon tetrachloride, acetonitrile or N,N-dimethylformamide to give a halogenated pyrimidinone at 5-position of structure 1-3 (wherein R³=Cl, Br, I). The pyrimidinone can be chlorinated by treatment with phosphoryl chloride, phosphorous pentachloride, phosphorous trichloride or mixtures thereof, or with chloromethylenedimethylammonium chloride added separately of prepared in situ by treatment of N,N-dimethylformamide with thionyl chloride, phosgene or the like in dichloromethane, chloroform, tetrahydrofuran, dioxane, ether or other suitable solvent to give a 4-chloropyrimidine of structure 1-4.

SCHEME 2

$$R^{2} \xrightarrow{OR} + H_{2}N \xrightarrow{NH}_{2} \xrightarrow{NaOMe}_{MeOH} + H_{2}N \xrightarrow{NH}_{2} \xrightarrow{NaOMe}_{R^{2}} + H_{2}N \xrightarrow{NH}_{2} +$$

The 4-chloropyrimidines (wherein R=alkyl) such as 2-5 as intermediates, that can be used for the synthesis of compounds within the scope of the present invention, can be prepared according to *Journal of Heterocyclic Chemistry*, Vol. 20, 219 (1983). The method for the preparation is detailed in Scheme 2.

SCHEME 3

$$R^3$$
 R^2
 SR
 $Oxidizing agent$
 R^3
 R^3
 R^2
 $S(O)_2R$
 R^3
 R^3
 R^2
 R^3
 R^2
 R^3
 R^3

The preparation of 2-alkylsulfonyl-4-chloropyrimidines such as 3-2 as intermediates that can be used for the synthesis of compounds within the scope of the present invention is detailed in Scheme 3. A 2-alkylthio-4-chloropyrimidine 3-1 is treated with oxidizing agent such as hydrogen peroxide or m-chloroperbenzoic acid in a suitable solvent such as dichloromethane, chloroform, acetic acid or the like to give a 2-alkylsulfonyl-4-chloropyrimidine of structure 3-2.

SCHEME 4

$$CI \longrightarrow N \longrightarrow S(O)_2 R^a$$
 + R^b -OH base $R^3 \longrightarrow N \longrightarrow R^2$ 4-2

The preparation of 2-alkoxy-4-chloropyrimidines such as 4-2 as intermediates that can be used for the synthesis of compounds within the scope of the present invention is detailed in Scheme 4. A 2-alkylsulfonyl-4-chloropyrimidine 4-1 is treated with an alcohol in the presence of a base such as sodium hydride, sodium bis(trimethylsilyl)amide, potassium tert-butoxide or the like to give a 2-alkoxy-4-chloropyrimidine of structure 4-2.

SCHEME 5

$$CI \longrightarrow N \longrightarrow S(O)_2 R^a \longrightarrow R^4 \bigcirc O \longrightarrow Dase \longrightarrow R^3 \longrightarrow N \bigcirc R^5$$
 $S(O)_2 R^a \longrightarrow N \bigcirc R^5 \longrightarrow R^5$
 $S(O)_2 R^a \longrightarrow N \bigcirc R^5$

The preparation of 2-alkylcarbonylamino-4-chloropyrimidines such as 5-3 as

intermediates that can be used for the synthesis of compounds within the scope of the present invention is detailed in Scheme 5. A 2-alkylsulfonyl-4-chloropyrimidine 5-1 is treated with a carboxylic amide 5-2 in the presence of a base such as sodium hydride, sodium bis(trimethylsilyl)amide, potassium tert-butoxide or the like to give a 2-alkoxy-4-chloropyrimidine of structure 5-3.

SCHEME 6

The preparation of 5-halogeno-4-methoxypyrimidines such as 6-2 as intermediates that can be used for the synthesis of compounds within the scope of the present invention is detailed in Scheme 6. A 4-chloropyrimidine of structure 6-1 is treated with sodium methoxide in a suitable solvent such as methanol, tetrahydrofuran or the like to give a 4-methoxypyrimidine of structure 6-2.

MeO
$$R^1$$
 R^2 R^3 R^4 R^5 R^6 R^6

The preparation of 5-alkenylpyrimidinones such as 7-4 as intermediates that can be used for the synthesis of compounds within the scope of the present invention is detailed in Scheme 7. A 5-halogeno-4-methoxypyrimidine 7-1 (halogen=Br or I) is treated with alkenyltributyltin 7-2 in the presence of a catalyst such as tetrakis(triphenylphosphine)palladium(0),

dichlorobis(triphenylphosphine)palladium(II), triphenylarsinepalladium(0) or the like in a suitable solvent such as N,N-dimethylformamide, acetonitrlile, dioxane, tetrahydrofuran, toluene or other suitable solvent to give a 5-alkenyl-4-methoxypyrimidine of structure 7-3. The 5-alkenyl-4-methoxypyrimidine thus obtained is treated with 6N-HCl under reflux to give a 5-alkenylpyrimidinone of structure 7-4.

SCHEME 8

The preparation of 5-alkynyl-4-methoxypyrimidines such as 8-3 as intermediates that can be used for the synthesis of compounds within the scope of the present invention is detailed in Scheme 8. A 5-halogeno-4-methoxypyrimidine 8-1 (halogen=Br or I) is treated with alkyne 8-2 in the presence of amine such as triethylamine, n-propylamine, N,N-diisopropylethylamine or the like, copper(I) iodide and catalyst such as tetrakis(triphenylphosphine)palladium(0), dichlorobis(triphenylphosphine)palladium(II) or the like in a suitable solvent such as N,N-dimethylformamide, acetonitrlile, dioxane, tetrahydrofuran, toluene or other suitable solvent to give a 5-alkynyl-4-methoxypyrimidine of structure 8-3.

SCHEME 9

The preparation of 5-fluoro-4-methoxypyrimidines such as 9-2 as intermediates that can be used for the synthesis of compounds within the scope of the present invention is detailed in Scheme 9. A 5-halogeno-4-methoxypyrimidine 9-1 (halogen=Br or I) is treated with n-butyl lithium under dry ice cooling, then with fluorinating agent such as N-fluorobenzenesulfonimide, 1-fluoropyridinium tetrafluoroborate or the like in a suitable solvent such as tetrahydrofuran, ether or other suitable solvent to give a 5-fluoro-4-methoxypyrimidine of structure 9-2.

SCHEME 10

$$X^{\frac{3}{2}}X^{4}$$
 + $X^{\frac{3}{2}}X^{1}$ NH + $X^{\frac{3}{2}}X^{\frac{4}{2}}$ + X

The preparation of some 4-azolylpyrimidines such as 10-3 within the scope of the present invention is detailed in Scheme 10. An azole 10-1 is condensed with a 4-chloropyrimidine 10-2 in a suitable solvent such as dimethysulfoxide, acetonitrile, tetrahydrofuran, toluene, isopropanol or the like in the presence or absence of a base such as sodium hydride, sodium hydroxide, potassium carbonate, 1,8-diazabicyclo-[5,4,0]-undec-7-ene, N,N-diisopropylethylamine or the like at or above room temperature to give a 4-azolylpyrimidine of structure 10-3.

SCHEME 11

The preparation of some 4-tetrazolyl pyrimidines such as 11-3, 11-4 and 11-5 within the scope of the present invention is detailed in Scheme 11. A 4chloropyrimidine 11-1 is treated with cyanating agent such as sodium or potassium cyanide in a suitable solvent such as water, isopropanol, acetonitrile, propionitrile, tetrahydrofuran, N,N-dimethylformamide, dimethylsulfoxide or mixture thereof, or other suitable solvent to give a 4-cyanopyrimidine of structure 11-2. The 4chloropyrimidine 11-1 can first be activated by addition of 4-(dimethylamino)-pyridine prior to be added cyanating agent. The 4-cyanopyrimidine thus obtained is treated with sodium azide in a suitable solvent such as water, isopropanol, acetonitrile, propionitrile, tetrahydrofuran, N,N-dimethylformamide, dimethylsulfoxide or mixture thereof, or other suitable solvent to give 4-tetrazolylpyrimidine of structure 11-3. This reaction can be accelerated by adding zinc bromide or other zinc halides. The 4-tetrazolylpyrimidine thus obtained can be methylated by treatment with trimethylsilyldiazomethane or alkylated by treatment with a suitable alkylating agent such as dimethyl sulfate, diethyl sulfate, methyl iodide, isopropyl iodide or the like in the presence or absence of an inorganic base such as sodium hydroxide, potassium hydroxide, sodium hydride and potassium carbonate or organic base such as triethylamine and pyridine to give a alkylated tetrazolylpyrimidine of structure 11-4 or 11-5.

The compounds of the present invention can show excellent fungicidal activity against wide varieties of fungi, and therefore, the compounds can be useful for plant disease control in the farming of agricultural and horticultural crops including ornamental flowers, turf and forage crops.

The examples for the plant diseases might to be controlled with the compounds of the present invention are given in the following.

Paddy rice

Blast (<u>Pyricularia oryzae</u>)
Sheath blight (<u>Rhizoctonia solani</u>)
Bakanae disease (<u>Gibberella fujikuroi</u>)

Helminthosporium leaf spot

(<u>Cochliobolus</u> <u>miyabeanus</u>)

Barley

Loose smut (<u>Ustilago nuda</u>)

Wheat

Scab (<u>Gibberella zeae</u>)
Leaf rust (<u>Puccinia recondita</u>)

Eye spot (<u>Pseudocercosporella herpotrichoides</u>)

Glume blotch (<u>Leptosphaeria nodorum</u>)
Powdery mildew (<u>Erysiphe graminis f sp. tritici</u>)
Fusarium snow blight (<u>Micronectriella nivalis</u>)

Potato

Late blight (Phytophthora infestans)

Gray mold (<u>Botrytis cinerea</u>)

Ground nut

Leaf spot (<u>Mycosphaerella aradiu</u>s)

Sugar beat

Cercospora leaf spot (Cercospora beticola)

Soybean

Gray mold (<u>Botrytis cinerea</u>)

Kidney beans

Gray mold (<u>Botrytis cinerea</u>)

Cucumber

Powdery mildew (Sphaerotheca fuliginea)
Sclerotinia rot (Sclerotinia sclerotiorum)

Gray mold (<u>Botrytis</u> <u>cinerea</u>)

Downy mildew (<u>Pseudoperonospora cubensis</u>)

Tomato

Leaf mold (<u>Cladosporium fulvum</u>)
Late blight (<u>Phytophthora infestans</u>)

Gray mold (<u>Botrytis cinerea</u>)

Egg plant

Black rot (<u>Corynespora melongenae</u>)

Onion

Gray mold neck rot (<u>Botrytis allii</u>)

Strawberry

Powdery mildew (<u>Sphaerotheca humuli</u>)
Gray mold (<u>Botrytis cinerea</u>)

Apple

Powdery mildew (<u>Podosphaera leucotricha</u>)

Scab (<u>Venturia inaequalis</u>)
Blossow blight (<u>Monilinia mali</u>)

Persimmon

Anthracnose (Gloeosporium kaki)

Peach

Brown rot (<u>Monilinia fructicola</u>)

Grape

Powdery mildew
(<u>Uncinula necator</u>)

Downy mildew
(<u>Plasmopara viticola</u>)

Gray mold
(<u>Botrytis cinerea</u>)

Pear

Rust (<u>Gymnosporangium asiaticum</u>)

Black spot (Alternaria kikuchiana)

Tea-plant

Leaf spot (<u>Pestalotia theae</u>)

Anthracnose (<u>Colletotrichum theae-sinensis</u>)

Orange

Scab (Elsinoe fawcetti)
Blue mlold (Penicillium italicum)

Turf

Sclerotinia snow blight (Sclerotinia borealis)

In recent years, it is known that various pathogenic fungi have developed their resistance to benzimidazole fungicides and ergosterol biosynthesis inhibitors and that such fungicides have been insufficient in their fungicidal effectiveness. Therefore, it is required to provide new compounds useful as a fungicide which are effective to the resistant-strain of such pathogenic fungi as well. The compounds of the present invention are the ones which can be a fungicide having excellent fungicidal effectiveness not only to the susceptible-strains of pathogenic fungi but also to the resistant-strains of pathogenic fungi to benzimidazole fungicides and ergosterol biosynthesis inhibitors.

The compounds of the present invention can be utilized as an antifouling agent for preventing the adhesion of aqueous organisms to structures, such as the bottom of a ship and fishing nets, in water and sea.

Also, the compounds of the present invention can be contained in paints and fibers and thereby used as an antimicrobial agent for walls, bathtubs, shoes and clothes.

Furthermore, some of the compounds of the present invention can show insecticidal, acaricidal and herbicidal activities.

In the practical application of the compounds of the present invention obtained as described above, the compounds can be used in the state as it is without formulation, or, for the use as agricultural plant protection chemicals, the compounds can be applied in forms of general formulations for agricultural plant protection chemicals, such as wettable powders, granules, powders, emulsifiable concentrates, aqueous solutions, suspensions and flowables. For the additives and carriers to be used in the formulations described above, vegetable powders, such as soybean powder and wheat powder, mineral fine powders, such as diatomaceous earth, apatite, gypsum, talc, bentonite, pyrophyllite and clay, and organic and inorganic compounds, such as sodium benzoate, urea and Glauber's salt, can be used, when the compounds are formulated into solid formulations. Whereas, when the compounds are formulated into liquid formulations, petroleum fractions, such as kerosine, xylene and solvent naphtha, cyclohexane, cyclohexanone, dimethylformamide, dimethyl sulfoxide, alcohols, acetone, trichloro ethylene, methylisobutyl ketone, mineral oils, vegetable oils and water, can be used as the solvent. In these formulations, surface active agents may be added to the formulations in order to make the formulations homogeneous and stable, if appropriate.

The content of the compound of the present invention as the active principle in the formulations is preferably in a range of from 5 to 70%.

The wettable powders, the emulsifiable concentrates and the flowable

formulation comprising the compound of the present invention prepared as described above can be applied in a form prepared by diluting the formulations with water to the suspension or the emulsion at a desired concentrations, while the powders and the granules of the said compound can be directly applied to plants without dilution.

The compounds of the present invention can demonstrate sufficient effectiveness on plant diseases independently; however, it is also possible to use the said compound in admixing with 1 or more of other fungicides, insecticides, acaricides or synergists.

The followings are the examples for the fungicides, insecticides, acaricides, nematocides and plant growth regulators, those which are usable in admixing with the compounds of the present invention.

Fungicides

Copper-Based Fungicides

Basic copper chloride, basic copper sulfate, etc.

Sulphur-based Fungicides

Thiram, maneb, mancozeb, polycarbamate, propineb, ziram, zineb, etc.

Polyhaloalkylthio Fungicides

Captan, dichlofluanid, folpet, etc.

Organochlorine Fungicides

Chlorothalonil, sthalide, etc.

Organophosphorous Fungicides

IBP, EDDP, tolclofos-methyl, pyrazophos, fosetyl-Al, etc.

Benzimidazole Fungicides

Thiophanate-methyl, benomyl, carbendazim, thiabendazole, etc.

Dicarboxyimide Fungicides

Oxycarboxine, mepronyl, flutolanil, techlofthalam, trichlamide, pencycuron, etc.

Acyl Alanine Fungicides

Metalaxyl, oxadixyl, furalaxyl etc.

EBI Fungicides

Triadimefon, triadomenol, bitertanol, microbutanil, hexaconazol, propiconazole, triflumizole, procloraz, peflazoate, fenarimol, pyrifenox, trifolin, flusilazole, etaconazole,

diclobutrazol, fluotrimazole, flutriafen, penconazole, diniconazole, cyproconazole, imazalil, tridemorph, fenpropimorph, buthiobate, etc.

Antibiotics

Polyoxin, blasticidin-S, kasugamycin, validamycin, streptomycin sulfate, etc. Others

Propamocarb hydrochloride salt, quintozene, hydroxyisoxazole, metasulfocarb, anilazine, isoprothiolane, probenazole, quinomethionate, dithianone, dinocap, dichlomezine, mepaniprim, ferimzone, fluazinam, pyroquilon, tricyclazole, oxolinic acid, dithianone, iminoctazine acetate salt, cymoxanil, pyrrolenitrine, metasulfocarb, diethofencarb, binapacryl, lecithin, sodium hydrogencarbonate, fenaminosulf, dodine, dimethomorph, fenazine oxide, etc.

Insecticides and Acaricides

Organophosphorous and Carbamate Insecticides

Fenthion, fenitrothion, diazinon, chlorpyrifos, ESP, vamidothion, fenthoate, dimethoate, formothion, malathon, trichlorfon, thiometon, phosmet, dichlorvos, acephate, EPBP, methyl parathion, oxydimeton methyl, ethion, salithion, cyanophos, isoxathion, pyridafenthion, phosalon, methydathion, sulprofos, chlorfenvinphos, tetrachlorvinphos, dimethylvinphos, propaphos, isofenphos, ethylthiometon, profenofos, pyraclophos, monocrotophos, azinphos methyl, aldicarb, methomyl, thiodicarb, carbofuran, carbosulfan, benfuracarb, furathiocarb, propoxur, BPMC, MTMC, MIPC, carbaryl, pirimicarb, ethiofencarb, fenoxycarb, cartap, thiocyclam, bensultap, etc.

Pyrethroid Insecticides

Permethrin, cypermethrin, deltamethrin, fenvalerate, fenpropathrin, pyrethrin, allethrin, tetramethrin, resmethrin, dimethrin, propathrin, fenothrin, prothrin, fluvalinate, cyfluthrin, cyhalothrin, flucythrinate, ethofenprox, cycloprothrin,

tralomethrin, silafluophen, brofenprox, acrinathrin, etc.

Benzoyl Urea-Based Insecticides and Others:

Diflubenzuron, chlorfluazuron, hexaflumuron, triflumuron, tetrabenzuron, flufenoxuron, flucycloxuron, buprofezin, pyriproxyfen, methoprene, benzoepin, diaphenthiuron, imidacloprid, fipronil, nicotine sulfate, rotenone, meta-aldehyde, machine oil, Bacillus thuringiensis, microbial insecticides such as insect-pathogenic viruses, etc.

Nematocides

Fenamiphos, phosthiazate, etc.

Acaricides

Chlorbenzilate, phenisobromolate, dicofol, amitraz, BPPS, benzomate, hexythiazox, fenbutatin oxide, polynactin, quinomethionate, CPCBS, tetradifon, avermectin, milbemectin,

chlofentezin, cyhexatin, pyridaben, fenpyroxymate, tebufenpyrad, pyrimidifen, fenothiocarb, dienochlor, etc.

Plant Growth Regulators

Gibberellines (Gibberelline A₃, Gibberelline A₄, Gibberelline A₇, etc.), IAA, and NAA.

Examples

The following examples serve to provide further appreciation of the invention but are not meant in any way to restrict the effective scope of the invention. The structures of isolated novel compounds were confirmed by NMR, Mass, and/or other appropriate analysis.

Example 1: 5-Bromo-2-methylthio-6-trifluoromethyl-3H-pyrimidin-4-one: 2-Methylthio-6-trifluoromethyl-3H-pyrimidin-4-one (20.0g) was dissolved in acetonitrile (100ml) and N-bromosuccinimide (18.7g) was added at room temperature with stirring. The mixture was refluxed for 5 hr and the solvent was removed under reduced pressure. The precipitates were mixed with water, filtered off and dried. The solid thus obtained was mixed with hot hexane and filtered off to give 5-bromo-2-

methylthio-6-trifluoromethyl-3H-pyrimidin-4-one (25.3g) as colorless needles, mp 215-216°C.

Example 2: 5-Iodo-2-isopropylthio-6-trifluoromethyl-3H-pyrimidin-4-one: 2-Isopropylthio-6-trifluoromethyl-3H-pyrimidin-4-one (23.3g) was dissolved in acetonitrile (230ml) and N-iodosuccinimide (24.2g) was added at room temperature with stirring. The mixture was refluxed for 2.5 hr and the solvent was removed under reduced pressure. The precipitates were dissolved in ethyl acetate, and then washed with aqueous sodium thiosulfate, water and brine, respectively. The ethyl acetate layer was dried over magnesium sulfate and the solvent was removed under reduced pressure to give 5-iodo-2-isopropylthio-6-trifluoromethyl-3H-pyrimidin-4-one (34.8g) as pale yellow needles, mp 212-215°C.

Example 3: 5-Iodo-2-(pyridin-2-yl)-6-trifluoromethyl-3H-pyrimidin-4-one: 2-(Pyridin-2-yl)-6-trifluoromethyl-3H-pyrimidin-4-one (15.0g) was dissolved in DMF (150ml) and N-iodosuccinimide (33.6g) was added at room temperature with stirring. The mixture was stirred under heating (130-135°C) for 6 hr, and then cooled to room temperature. The reaction mixture was added ethyl acetate (150ml), and then washed with aqueous sodium thiosulfate, water and brine, respectively. The ethyl acetate layer was dried over magnesium sulfate and the solvent was removed under reduced pressure to give crude 5-iodo-2-(pyridine-2-yl)-6-trifluoromethyl-3H-pyrimidin-4-one. It was recrystallized from toluene as pale brown needles (10.2g), mp 186-187°C.

Example 4: 4-Chloro-5-iodo-2-methylthio-6-trifluoromethylpyrimidine: 5-Iodo-2-methylthio-6-trifluoromethyl-3H-pyrimidin-4-one (11.8g) was dissolved in phosphoryl chloride (40ml) and phosphorous pentachloride (7.9g) was added at room temperature with stirring. The mixture was refluxed for 3 hr and the phosphoryl chloride was removed under reduced pressure. The residue was poured onto icy water and extracted with chloroform. The chloroform layer was washed with water and brine, respectively and dried over magnesium sulfate. The solvent was removed under reduced pressure to give 4-chloro-5-iodo-2-methylthio-6-trifluoromethylpyrimidine (12.2g) as pale brown crystalline solid, mp 55-56°C

Example 5: 4-Chloro-5-iodo-2-isopropylsulfonyl-6-trifluoromethypyrimidine: 4-Chloro-5-iodo-2-isopropylthio-6-trifluoromethypyrimidine (15.0g) was dissolved in dichloromethane (150ml) and m-chloroperbenzoic acid (75%, 27.1g) was added

portionwise under ice cooling with stirring. After stirring over night at room temperature, precipitated solid (m-chlorobenzoic acid) was removed by filtration. The reaction mixture was added aqueous sodium thiosulfate dropwise under ice cooling, then precipitated solid (m-chlorobenzoic acid) was removed by filtration again. The water layer was separated, and the dichloromethane layer was washed with aqueous sodium bicarbonate and brine, respectively and dried over magnesium sulfate. The solvent was removed under reduced pressure to give 4-chloro-5-iodo-2-isopropylsulfonyl-6-trifluoromethypyrimidine (14.3g) as pale yellow crystalline solid, mp 67-69°C.

Example 6: 5-Iodo-4-methoxy-2-methyl-6-trifluoromethylpyrimidine: 4-Chloro-5-iodo-2-methyl-6-trifluoromethylpyrimidine (23.0g) was dissolved in methanol (150ml) and sodium methoxide (30% methanol solution, 12.8g) was added under ice cooling with stirring. After stirring over night at room temperature, the solvent was removed under reduced pressure. The residue was mixed with water and extracted with benzene, and then benzene layer was washed with water and brine, respectively and dried over magnesium sulfate. The solvent was removed under reduced pressure, and the residue was purified by silica gel column chromatography (hexane-ethyl acetate). The crude fraction was concentrated, and then washed with cold hexane to give 5-iodo-4-methoxy-2-methyl-6-trifluoromethylpyrimidine (13.0g) as colorless crystalline solid, mp 44-45°C.

Example 7: 5-Ethynyl-4-methoxy-2-methyl-6-trifluoromethylpyrimidine: 5-Iodo-4-methoxy-2-methyl-6-trifluoromethylpyrimidine (5.0g) was dissolved in DMF (50ml) and N,N-diisopropylethylamine (6.5g),copper(I) iodide (0.3g),dichlorobis(triphenylphosphine)palladium(II) (1.12g)and trimethylsilylacetylene (15.4g) was added at room temperature with stirring. The mixture was heated (50°C) in nitrogen atmosphere for 7 hr and cool to room temperature. The reaction mixture was added methyl tert-butyl ether (MTBE) (200ml). The insoluble matter was removed by filtration through Celite and the filtrate was washed with water and brine, respectively. The MTBE solution was dried over magnesium sulfate and the solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography (hexane-ethyl acetate) to give crude 4-methoxy-2-methyl-6-trifluoromethyl-5trimethylsilylethynylpyrimidine (5.3g) as pale yellow oil. This crude 4-methoxy-2methyl-6-trifluoromethyl-5-trimethylsilylethynylpyrimidine (5.2g) was dissolved in THF (100ml) and tetrabutylammonium fluoride (1M THF solution, 18ml) was added under ice cooling with stirring. After stirring 30 min at this temperature, the reaction mixture was added water in one portion under ice cooling and extracted with ethyl acetate. The ethyl acetate layer was washed with water and brine, respectively and dried over magnesium sulfate. The solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography (hexane-ethyl acetate) to give 5-ethynyl-4-methoxy-2-methyl-6-trifluoromethylpyrimidine (1.92g) as colorless crystalline solid, mp 77°C.

Example 8: 5-(1-Chlorovinyl)-2-methyl-6-trifluoromethyl-3H-pyrimidin-4-one: 5-ethynyl-4-methoxy-2-methyl-6-trifluoromethylpyrimidine (1.92g) was added 6N-HCl (20ml) with stirring and refluxed for 2 hr. After cooling to room temperature, the reaction mixture was extracted with ethyl acetate. The ethyl acetate layer was washed with brine and dried over magnesium sulfate. The solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography (hexane-ethyl acetate). The crude fraction was concentrated, and then washed with hexane to give 5-(1-chlorovinyl)-2-methyl-6-trifluoromethyl-3H-pyrimidin-4-one (1.62g) as colorless crystalline solid, mp 164-166°C.

Example 9: 5-Fluoro-2,4-dimethoxy-6-trifluoromethypyrimidine:

5-Bromo-2,4-dimethoxy-6-trifluoromethypyrimidine (0.50g) was dissolved in dry THF (5ml) at room temperature under nitrogen atmosphere. The mixture was cooled to -70°C, and then added n-butyllithium (1.6M in hexane, 1.2ml) dropwise below -50°C, and then added N-fluoro-bisphenylsulfonimide (0.61g) THF (5ml) solution at once and the temperature was raised up to room temperature and then added water. The reaction mixture was extracted with benzene. The benzene layer was washed with water and brine, respectively and dried over magnesium sulfate. The solvent was removed under reduced pressure to give 5-fluoro-2,4-dimethoxy-6-trifluoromethypyrimidine (0.30g) as pale yellow oil, ESI-MS 227 [M+H]⁺.

Example 10: 4-Cyano-5-iodo-2-methylthio-6-trifluoromethylpyrimidine: 4-Chloro-5-iodo-2-methylthio-6-trifluoromethylpyrimidine (5.00g) was dissolved in propionitrile (125ml) and 4-(dimethylamino)-pyridine (1.81g) was added at room temperature with stirring. After several minutes, precipitates appeared, however, it was

stirred over night at room temperature. The slurry was cooled to ice bath temperature, and then added sodium cyanide (1.04g) water (10ml) solution. The mixture was warmed to room temperature and stirred 3 hr. The reaction mixture was added water and extracted with ethyl acetate. The ethyl acetate layer was washed with water and brine, respectively and dried over magnesium sulfate. The solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography (hexane-ethyl acetate) to give 4-cyano-5-iodo-2-methylthio-6-trifluoromethylpyrimidine (2.56g) as yellow solid, mp 68-69°C.

Example 11: 4-Imidazol-1-yl-5-iodo-2-isopropylthio-6-trifluoromethyl-pyrimidine:

4-Chloro-5-iodo-2-isopropylthio-6-trifluoromethylpyrimidine (3.0g) was dissolved in acetonitrile (30ml) and imidazole (1.6g) was added at room temperature with stirring. The mixture was refluxed for 3 hr and then the solvent was removed under reduced pressure. The residue was added water and precipitates was filtered off to give crude 4-imidazol-1-yl-5-iodo-2-isopropylthio-6-trifluoromethyl-pyrimidine. It was recrystallized from methanol-water mixture as colorless needles (2.61g), mp 118-120°C.

Example 12: Ethyl 1-(5-iodo-2-isopropylthio-6-trifluoromethylpyrimidin-4-yl)-3-trifluoromethyl-1H-pyrazole-4-carboxylate:

4-Chloro-5-iodo-2-isopropylthio-6-trifluoromethylpyrimidine (0.30g) was dissolved in dimethylsulfoxide (3.0ml) and ethyl 3-trifluoromethyl-1H-pyrazole-4-carboxylate (0.16g) and 1,8-diazabicyclo-[5,4,0]-undec-7-ene (0.12g) was added at room temperature with stirring. The mixture was heated to 80°C and stirred for 2hr. After cooling to room temperature, the mixture was added water and extracted with benzene. The benzene layer was washed with water and brine, respectively and dried over magnesium sulfate. The solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography (hexane-ethyl acetate) to give ethyl 1-(5-iodo-2-isopropylthio- 6-trifluoromethylpyrimidin-4-yl)-3-trifluoromethyl-1H-pyrazole-4-carboxylate (0.30g) as colorless crystalline solid, mp 107-108°C.

Example 13: 4-Imidazol-1-yl-5-iodo-2-prop-2-ynyloxy-6-trifluoromethyl-pyrimidine:

4-Chloro-5-iodo-2-isopropylsulfonyl-6-trifluoromethypyrimidine (0.79g) was dissolved in tetrahydrofuran (5.0ml) and added propargyl alcohol (0.11g). The mixture was cooled

to ice bath temperature and added sodium hydride (oily 80%, 57mg). The mixture was stirred at that temperature for 10 minutes, and then added imidazole (0.39g) at the same temperature. The mixture was stirred at that temperature for 30 minutes, and then it warmed to room temperature. After stirring over night, the mixture was added water and extracted with ethyl acetate. The ethyl acetate layer was washed with water and brine, respectively and dried over magnesium sulfate. The solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography (chloroform-THF). The fraction was triturated by hexane to give 4-imidazol-1-yl-5-iodo-2-prop-2-ynyloxy-6-trifluoromethyl- pyrimidine (0.20g) as colorless crystalline solid, mp 128-129°C.

Example 14: 1-(4-Imidazol-1-yl-5-iodo-6-trifluoromethylpyrimidin-2-yl)-pyrrolidin-2-one:

4-Chloro-5-iodo-2-isopropylsulfonyl-6-trifluoromethypyrimidine (0.50g) was dissolved in tetrahydrofuran (5.0ml) and added 2-pyrrolidinone (0.10g). The mixture was cooled to ice bath temperature and added sodium hydride (oily 80%, 36mg). The mixture was stirred at that temperature for 10 minutes, and then added imidazole (0.25g) at the same temperature. The mixture was stirred at that temperature for 30 minutes, and then it warmed to room temperature. After stirring over night, the mixture was added water and extracted with ethyl acetate. The ethyl acetate layer was washed with water and brine, respectively and dried over magnesium sulfate. The solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography (chloroform-THF) to give 1-(4-imidazol-1-yl-5-iodo-6-trifluoromethylpyrimidin-2-yl)-pyrrolidin-2-one (0.20g) as colorless crystalline solid, mp 195-197°C.

Example 15: 5-Iodo-2-methylthio-4-(2H-tetrazol-5-yl)-6-trifluoromethyl-pyrimidine

4-Cyano-5-iodo-2-methylthio-6-trifluoromethylpyrimidine (0.50g) was dissolved in isopropanol (5ml) and added water (10ml), sodium azide (0.19g) and zinc bromide (0.16g) with stirring in room temperature. The mixture was refluxed for 3 hr and then cooled to room temperature and then added 3N-HCl to acidify. The mixture was extracted with ethyl acetate. The ethyl acetate layer was washed with water and brine, respectively and dried over magnesium sulfate. The solvent was removed under reduced pressure to give 5-iodo-2-methylthio-4-(2H-tetrazol-5-yl)-6-trifluoromethyl- pyrimidine

(0.5g) as colorless crystalline solid, mp 196-200°C.

Example 16: 5-Iodo-2-methylthio-4-(2-methyl-2H-tetrazol-5-yl)- 6-trifluoromethyl-pyrimidine

5-Iodo-2-methylthio-4-(2H-tetrazol-5-yl)-6-trifluoromethyl- pyrimidine (0.25g) was added benzene (4ml) and methanol (1ml). The mixture was added trimethylsilyldiazomethane (2M in hexane, 1ml) at room temperature dropwise and stirred over night. The solvent was removed under reduced pressure to give crude 5-iodo-2-methylthio-4-(2-methyl-2H-tetrazol-5-yl)-6-trifluoromethyl-pyrimidine. It was recrystallized from hexane-benzene as colorless crystalline solid, mp 113-118°C.

Example 17: 5-(1-Chlorovinyl)-4-imidazol-1-yl-2-methyl-6-trifluoromethyl-pyrimidine:

4-Chloro-5-(1-chlorovinyl)-2-methyl-6-trifluoromethylpyrimidine (1.83g) was dissolved in acetonitrile (20ml) under stirring in room temperature. The mixture was added imidazole (1.45g) and refluxed 3 hr and then cooled to room temperature and added water. The mixture was extracted with chloroform. The chloroform layer was washed with water and brine, respectively and dried over magnesium sulfate. The solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography (chloroform-THF) to give 5-(1-chlorovinyl)-4-imidazol-1-yl-2-methyl-6-trifluoromethyl-pyrimidine (1.34g) as pale brown oil. ¹H-NMR (δ,ppm); 2.82 (s, 3H), 5.78 (d, 1H), 6.03 (d, 1H), 7.21 (br, 1H), 7.87 (br, 1H), 8.55 (br, 1H).

Example 18: 5-Ethynyl-4-imidazol-1-yl-2-methyl-6-trifluoromethylpyrimidine: 5-(1-Chlorovinyl)-4-imidazol-1-yl-2-methyl-6-trifluoromethyl-pyrimidine (0.20g) was dissolved in dimethylsulfoxide (2ml) and 1,8-diazabicyclo-[5,4,0]-undec-7-ene (0.11g) was added at room temperature with stirring. The mixture was stirred for 2 hr in room temperature and then added water. The mixture was extracted with ethyl acetate. The ethyl acetate layer was washed water and brine, respectively and dried over magnesium sulfate. The solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography (chloroform-THF) to give 5-Ethynyl-4-imidazol-1-yl-2-methyl-6-trifluoromethylpyrimidine (0.11g) as colorless crystalline solid, mp 121-122°C.

Example 19: 5-Fluoro-2,4-diimidazol-1-yl-6-trifluoromethylpyrimidine: 2,4-Dichloro-5-fluoro-6-trifluoromethylpyrimidine (2.74g) was dissolved in acetonitrile

(30ml) and imidazole (3.97g) was added at room temperature with stirring. The mixture was stirred over night and then the solvent was removed under reduced pressure. The residue was added water and extracted with ethyl acetate. The ethyl acetate layer was washed with water and brine, respectively and dried over magnesium sulfate. The solvent was removed under reduced pressure. The residue was triturated with carbon tetrachloride to give crude 5-fluoro-2,4-diimidazol-1-yl-6-trifluoromethylpyrimidine. It was recrystallized from isopropanol as colorless crystalline solid, mp 142-150°C (decomposed).

Test Example 1: Test on Apple Scab Control (Preventive Application)

The emulsifiable concentrate prepared for the compound according to the present invention was diluted so as to prepared the solution at a concentration of 100 ppm, and the diluted solution was the sprayed to apple young trees (variety; Kokko, at 3-4 leaf stage) grown in an unglazed pot. The spayed solution was naturally dried, then conidia of apple scab fungus (*Venturia inaequalis*) were inoculated onto the test apples. The inoculated apple trees were placed in a room being maintained at 20°C and high humidity with repeated lighting of 12 hours intervals, and the apple trees are allowed to stand in the room for two weeks. After that period, assessment was made to determine the control efficacy by checking the infestation degree by the fungus on the leaves in comparison with the control apple trees. As a result, the compounds having the following compound numbers showed to have excellent control performance value higher than 75% on the disease. Note that the compound numbers in the following correspond to the same compound numbers in the Table 1.

Compound Nos.; 47, 48, 54, 68, 78, 86, 90, 128, 145, 238, 256, 274, 292, 328, 346, 401, 474, 531, 568,586

Test Example 2: Test on Kidney Bean Gray Mold Control

Flowers of Kidney bean (variety; Nagauzura) grown in a flat vessel for culturing seedlings were cut, and the cut flowers were dipped into a solution prepared by diluting the emulsifiable concentrate prepared for the compound of the present invention at a concentration of 100 ppm based on the active ingredient. After the dipping, the flowers

were dried at a room temperature. Then, spore solution of snap bean gray mold fungus (*Botrytis cinerea*) was sprayed to the flowers. The flowers sprayed with spores of the gray mold fungus were placed on the leaves which were detached from healthy Kidney bean plants, and those leaves were placed in a room being maintained at 20°C and high humidity with repeated lighting of 12 hours intervals, and the Kidney bean leaves were incubated in the room for 7 days. Then, the infestation degree by the fungus on the leaves was checked in comparison to the control healthy leaves to determine the control efficacy. As a result, the compounds of the following compound numbers showed to have excellent control performance. Note that the compound numbers in the following correspond to the same compound numbers in the Table 1.

Compound Nos.; 47, 48, 54, 68, 90, 184, 238, 256, 274, 292, 531, 568

Test Example 3: Test on *Pythium aphanidermatum* "in vitro" control of growth.

The compound was prepared according to the present invention was diluted to achieve a final concentration of 100 ppm, and the diluted solution was used to saturate ½ inch-diameter, cellulose discs (Schleicher & Schuell catalog # 740-E). The treated cellulose discs were then air dried for 90 minutes in a class II biosafety cabinet to eliminate external free moisture. Replicated treated discs and untreated discs were placed onto Difco Corn meal agar in 80 mm plastic petri plates. The discs (2 treated and one untreated in each of two petri plates) were each inoculated with a 4 mm square block of agar containing an actively growing culture of *Pythium aphanidermatum*. The inoculated plates were incubated at 23° C with diurnal lighting with 12 hour intervals. Radial growth of *Pythium aphanidermatum* on the treated and untreated discs was measured at 24 and 48 hours after inoculation. Percent of growth inhibition was determined by comparing radial growth on the untreated check discs to the growth on the treated discs. As a result, the compounds listed below had an excellent suppression performance value compared to the untreated check. Note that the compound numbers listed below correspond to the same compound numbers in Table 1.

Compound Nos.; 1, 47, 256, 346, 401, 474, 531, 586

Test Example 4: Test on <u>Sclerotinia sclerotiorum</u> "in vitro" control of growth.

The compound prepared according to the present invention was diluted to achieve a final concentration of 100 ppm, and the diluted solution was used to saturate ½ inch-diameter, cellulose discs (Schleicher & Schuell catalog # 740-E). The treated cellulose discs were then air dried for 90 minutes in a class II biosafety cabinet to eliminate external free moisture. Replicated treated discs and untreated discs were placed onto acidified Difco Potato Dextrose agar in 80 mm plastic petri plates. The discs (2 treated and one untreated in each of two petri plates) were each inoculated with a 4 mm square block of agar containing an actively growing culture of <u>Sclerotinia sclerotiorum</u>. The inoculated plates were incubated at 23° C with diurnal lighting with 12 hour intervals. Radial growth of <u>Sclerotinia sclerotiorum</u> on the treated and untreated discs was measured at 48 and 96 hours after inoculation. Percent of growth inhibition was determined by comparing radial growth on the untreated check discs to the growth on the treated discs. As a result, the compounds listed below had an excellent suppression performance value compared to the untreated check. Note that the compound numbers listed below correspond to the same compound numbers in Table 1.

Compound Nos. 1, 47, 48, 128, 145, 256, 401, 474, 531, 568, 586

a	n		
а			

No.	R1	R2	R3	Q	mp (°C)
1	SCH3	CF3	I	1,2,4-triazol-1-yl	93-94
2	SCH3	CF2CF3	I	1,2,4-triazol-1-yl	
3	SCH3	CF3	I	2H-tetrazol-5-yl	196-200 dec
4	SCH3	CF2CF3	I	2H-tetrazol-5-yl	
5	SCH3	CF3	I	2-methyl-2H-tetrazol-5-yl	113-118
6	SCH3	CF2CF3	I	2-methyl-2H-tetrazol-5-yl	
7	SCH3	CF3	I	3-(p-acetoxybenzylthio)-1,2,4-triazol-1-yl	
8	SCH3	CF3	I	3-amino-1,2,4-triazol-1-yl	
9	SCH3	CF3	I	3-bromo-1,2,4-triazol-1-yl	
10	SCH3	CF3	I	3-chloro-1,2,4-triazol-1-yl	
11	SCH3	CF3	I	3-cyano-1,2,4-triazol-1-yl	
12	SCH3	CF3	I	3-fluoro-1,2,4-triazol-1-yl	
13	SCH3	CF3	I	3-hydroxy-1,2,4-triazol-1-yl	
14	SCH3	CF3	I	3-mercapto-1,2,4-triazol-1-yl	
15	SCH3	CF3	I	3-methoxy-1,2,4-triazol-1-yl	
16	SCH3	CF3	I	3-methylamino-1,2,4-triazol-1-yl	
17	SCH3	CF3	I	3-methylthio-1,2,4-triazol-1-yl	
18	SCH3	CF3	I	3-trifluoromethyl-1,2,4-triazol-1-yl	
19	SCH3	CF3	I	5-(p-acetoxybenzylthio)imidazol-1-yl	
20	SCH3	CF3	I	5-(p-acetoxybenzylthio)-1,2,4-triazol-1-yl	141-143
21	SCH3	CF3	I	4-aminoimidazol-1-yl	
22	SCH3	CF3	I	5-amino-1,2,4-triazol-1-yl	
23	SCH3	CF3	I	4-bromoimidazol-1-yl	
24	SCH3	CF3	I	5-bromo-1,2,4-triazol-1-yl	
25	SCH3	CF3	I	4-chloroimidazol-1-yl	
26	SCH3	CF3	I	5-chloro-1,2,4-triazol-1-yl	
27	SCH3	CF3	I	4-cyanoimidazol-1-yl	
28	SCH3	CF3	I	5-cyano-1,2,4-triazol-1-yl	
29	SCH3	CF3	1	4-fluoroimidazol-1-yl	
30	SCH3	CF3	I	5-fluoro-1,2,4-triazol-1-yl	
31	SCH3	CF3	I	4-hydroxyimidazol-1-yl	
32	SCH3	CF3	I	5-hydroxy-1,2,4-triazol-1-yl	

				,	
33	SCH3	CF3	I	4-mercaptoimidazol-1-yl	
34	SCH3	CF3	I	5-mercapto-1,2,4-triazol-1-yl	
35	SCH3	CF3	I	4-methoxyimidazol-1-yl	
36	SCH3	CF3	I	5-methoxy-1,2,4-triazol-1-yl	
37	SCH3	CF3	I	4-methylaminoimidazol-1-yl	
38	SCH3	CF3	I	5-methylamino-1,2,4-triazol-1-yl	
39	SCH3	CF3	I	4-methylimidazol-1-yl	147-148
40	SCH3	CF2CF3	I	4-methylimidazol-1-yl	
41	SCH3	CF3	I	4-methylthioimidazol-1-yl	
42	SCH3	CF3	I	5-methylthio-1,2,4-triazol-1-yl	
43	SCH3	CF3	I	4-trifluoromethylimidazol-1-yl	
44	SCH3	CF3	I	5-trifluoromethyl-1,2,4-triazol-1-yl	
45	SCH3	CF3	I	benzimidazol-1-yl	128
46	SCH3	CF2CF3	I	benzimidazol-1-yl	
47	SCH3	CF3	I	imidazol-1-yl	137-139
48	SCH3	CF2CF3	I	imidazol-1-yl	112-114
49	SCH3	CF3	I	pyrazol-1-yl	115-116
50	SCH3	CF3	F	2H-tetrazol-5-yl	
51	SCH3	CF3	F	2-methyl-2H-tetrazol-5-yl	
52	SCH3	CF3	C1	2H-tetrazol-5-yl	177-178
53	SCH3	CF3	C1	2-methyl-2H-tetrazol-5-yl	128-130
54	SCH3	CF3	Br	1,2,4-triazol-1-yl	85-87
55	SCH3	CF3	Br	2H-tetrazol-5-yl	192-193
56	SCH3	CF3	Br	2-methyl-2H-tetrazol-5-yl	102-105
57	SCH3	СГЗ	Br	imidazol-1-yl	89-90
58	SCH2CH3	CF3	I	1,2,4-triazol-1-yl	
59	SCH2CH3	CF2CF3	I	1,2,4-triazol-1-yl	
60	SCH2CH3	CF3	I	2H-tetrazol-5-yl	
61	SCH2CH3	CF2CF3	I	2H-tetrazol-5-yl	
62	SCH2CH3	CF3	I	2-methyl-2H-tetrazol-5-yl	
63	SCH2CH3	CF2CF3	I	2-methyl-2H-tetrazol-5-yl	
64	SCH2CH3	CF3	I	4-methylimidazol-1-yl	
65	SCH2CH3	CF2CF3	I	4-methylimidazol-1-yl	
66	SCH2CH3	CF3	I	benzimidazol-1-yl	
67	SCH2CH3	CF2CF3	I	benzimidazol-1-yl	
68	SCH2CH3	CF3	I	imidazol-1-yl	106-109
69	SCH2CH3	CF2CF3	I	imidazol-1-yl	
70	SCH2CH3	CF3	F	2H-tetrazol-5-yl	
71	SCH2CH3	CF3	F	2-methyl-2H-tetrazol-5-yl	
72	SCH2CH3	CF3	Cl	2H-tetrazol-5-yl	
73	SCH2CH3	CF3	Cl	2-methyl-2H-tetrazol-5-yl	
74	SCH2CH3	CF3	Br	2H-tetrazol-5-yl	
75	SCH2CH3	CF3	Br	2-methyl-2H-tetrazol-5-yl	

76	SCH(CH3)2	CF3	I	1,2,3-triazol-1-yl	157-159
77	SCH(CH3)2	CF3	I	1,2,3-triazol-2-yl	167-169
78	SCH(CH3)2	CF3	I	1,2,4-triazol-1-yl	70-71
79	SCH(CH3)2	CF2CF3	I	1,2,4-triazol-1-yl	
80	SCH(CH3)2	CF3	I	2H-tetrazol-5-yl	
81	SCH(CH3)2	CF2CF3	I	2H-tetrazol-5-yl	
82	SCH(CH3)2	CF3	I	2-methyl-2H-tetrazol-5-yl	
83	SCH(CH3)2	CF2CF3	I	2-methyl-2H-tetrazol-5-yl	
84	SCH(CH3)2	CF3	I	2-methylimidazol-1-yl	133-135
85	SCH(CH3)2	CF3	I	4-ethoxycarbonyl-3- trifluoromethylpyrazol-1-yl	107-108
86	SCH(CH3)2	CF3	I	4-methylimidazol-1-yl	138-140
87	SCH(CH3)2	CF2CF3	I	4-methylimidazol-1-yl	•
88	SCH(CH3)2	CF3	1	benzimidazol-1-yl	
89	SCH(CH3)2	CF2CF3	I	benzimidazol-1-yl	
90	SCH(CH3)2	CF3	I	imidazol-1-yl	118-120
91	SCH(CH3)2	CF2CF3	I	imidazol-1-yl	
92	SCH(CH3)2	CF3	F	2H-tetrazol-5-yl	
93	SCH(CH3)2	CF3	F	2-methyl-2H-tetrazol-5-yl	
94	SCH(CH3)2	CF3	C1	2H-tetrazol-5-yl	
95	SCH(CH3)2	CF3	C1	2-methyl-2H-tetrazol-5-yl	
96	SCH(CH3)2	CF3	Br	2H-tetrazol-5-yl	
97	SCH(CH3)2	CF3	Br	2-methyl-2H-tetrazol-5-yl	
98	S(O)2CH3	CF3	I	1,2,4-triazol-1-yl	
99	S(O)2CH3	CF2CF3	I	1,2,4-triazol-1-yl	
100	S(O)2CH3	CF3	I	2H-tetrazol-5-yl	
101	S(O)2CH3	CF2CF3	I	2H-tetrazol-5-yl	
102	S(O)2CH3	CF3	I	2-methyl-2H-tetrazol-5-yl	
103	S(O)2CH3	CF2CF3	I	2-methyl-2H-tetrazol-5-yl	
104	S(O)2CH3	CF3	I	4-methylimidazol-1-yl	
105	S(O)2CH3	CF2CF3	I	4-methylimidazol-1-yl	•
106	S(O)2CH3	CF3	I	benzimidazol-1-yl	
107	S(O)2CH3	CF2CF3	I	benzimidazol-1-yl	
108	S(O)2CH3	CF3	I	imidazol-1-yl	
109	S(O)2CH3	CF2CF3	I	imidazol-1-yl	
110	S(O)2CH3	CF3	F	2H-tetrazol-5-yl	
111	S(O)2CH3	CF3	F	2-methyl-2H-tetrazol-5-yl	
112	S(O)2CH3	CF3	Cl	2H-tetrazol-5-yl	
113	S(O)2CH3	CF3	C1	2-methyl-2H-tetrazol-5-yl	
114	S(O)2CH3	CF3	Br	1,2,4-triazol-1-yl	158-159
115	S(O)2CH3	CF3	Br	2H-tetrazol-5-yl	
116	S(O)2CH3	CF3	Br	2-methyl-2H-tetrazol-5-yl	
117	pyridin-4-yl	CF3	1	1,2,4-triazol-1-yl	
118	pyridin-4-yl	CF2CF3	I	1,2,4-triazol-1-yl	

110		CF3	I	2H-tetrazol-5-yl	
119	pyridin-4-yl	CF2CF3	I	2H-tetrazol-5-yl	
120	pyridin-4-yl	CF2CF3	I	2-methyl-2H-tetrazol-5-yl	
121	pyridin-4-yl	CF2CF3	I	2-methyl-2H-tetrazol-5-yl	
122	pyridin-4-yl	CF2CF3 CF3	I	4-methylimidazol-1-yl	
123	pyridin-4-yl		I	4-methylimidazol-1-yl	
124	pyridin-4-yl	CF2CF3		benzimidazol-1-yl	
125	pyridin-4-yl	CF3	I	benzimidazol-1-yl	
126	pyridin-4-yl	CF2CF3	I	imidazol-1-yl	
127	pyridin-4-yl	CF2CF3	I	-	230 dec
128	pyridin-4-yl	CF3	I	imidazol-1-yl	230 dec
129	pyridin-4-yl	CF3	F -	2H-tetrazol-5-yl	
130	pyridin-4-yl	CF3	F	2-methyl-2H-tetrazol-5-yl	
131	pyridin-4-yl	CF3	C1	2H-tetrazol-5-yl	
132	pyridin-4-yl	CF3	Cl	2-methyl-2H-tetrazol-5-yl	
133	pyridin-4-yl	CF3	Br	2H-tetrazol-5-yl	
134	pyridin-4-yl	CF3	Br	2-methyl-2H-tetrazol-5-yl	
135	pyridin-2-yl	CF3	I	1,2,4-triazol-1-yl	169-171
136	pyridin-2-yl	CF2CF3	I	1,2,4-triazol-1-yl	
137	pyridin-2-yl	CF3	I	2H-tetrazol-5-yl	·
138	pyridin-2-yl	CF2CF3	I	2H-tetrazol-5-yl	
139	pyridin-2-yl	CF3	I	2-methyl-2H-tetrazol-5-yl	
140	pyridin-2-yl	CF2CF3	I	2-methyl-2H-tetrazol-5-yl	
141	pyridin-2-yl	CF3	I	4-methylimidazol-1-yl	
142	pyridin-2-yl	CF2CF3	I	4-methylimidazol-1-yl	
143	pyridin-2-yl	CF3	I	benzimidazol-1-yl	
144	pyridin-2-yl	CF2CF3	I	benzimidazol-1-yl	
145	pyridin-2-yl	CF3	I	imidazol-1-yl	243-245
146	pyridin-2-yl	CF2CF3	I	imidazol-1-yl	
147	pyridin-2-yl	CF3	I	pyrazol-1-yl	145-146
148	pyridin-2-yl	CF3	F	2H-tetrazol-5-yl	
149	pyridin-2-yl	CF3	F	2-methyl-2H-tetrazol-5-yl	
150	pyridin-2-yl	CF3	C1	2H-tetrazol-5-yl	
151	pyridin-2-yl	CF3	C1	2-methyl-2H-tetrazol-5-yl	
152	pyridin-2-yl	CF3	Cl	imidazol-1-yl	129-130
153	pyridin-2-yl	CF3	Br	2H-tetrazol-5-yl	
154	pyridin-2-yl	CF3	Br	2-methyl-2H-tetrazol-5-yl	
155	pyridin-2-yl	CF3	Br	imidazol-1-yl	140
156	pyrazol-1-yl	CF3	I	1,2,4-triazol-1-yl	
157	pyrazol-1-yl	CF2CF3	I	1,2,4-triazol-1-yl	
158	pyrazol-1-yl	CF3	I	2H-tetrazol-5-yl	
159	pyrazol-1-yl	CF2CF3	I	2H-tetrazol-5-yl	
160	pyrazol-1-yl	CF3	I	2-methyl-2H-tetrazol-5-yl	
161	pyrazol-1-yl	CF2CF3	Ī	2-methyl-2H-tetrazol-5-yl	
101	P3.0201-1-31	 -	-	,	

162	pyrazol-1-yl	CF3	I	4-methylimidazol-1-yl	
163	pyrazol-1-yl	CF2CF3	1	4-methylimidazol-1-yl	
164	pyrazol-1-yl	CF3	I	benzimidazol-1-yl	
165	pyrazol-1-yl	CF2CF3	I	benzimidazol-1-yl	
166	pyrazol-1-yl	CF3	I	imidazol-1-yl	175-180 dec
167	pyrazol-1-yl	CF2CF3	1	imidazol-1-yl	
168	pyrazol-1-yl	CF3	F	2H-tetrazol-5-yl	
169	pyrazol-1-yl	CF3	F	2-methyl-2H-tetrazol-5-yl	
170	pyrazol-1-yl	CF3	C1	2H-tetrazol-5-yl	
171	pyrazol-1-yl	CF3	CI	2-methyl-2H-tetrazol-5-yl	
172	pyrazol-1-yl	CF3	Br	2H-tetrazol-5-yl	
173	pyrazol-1-yl	CF3	Br	2-methyl-2H-tetrazol-5-yl	
174	phenyl	CF3	I	1,2,4-triazol-1-yl	
175	phenyl	CF2CF3	I	1,2,4-triazol-1-yl	
176	phenyl	CF3	I	2H-tetrazol-5-yl	
177	phenyl	CF2CF3	I	2H-tetrazol-5-yl	
178	phenyl	CF3	I	2-methyl-2H-tetrazol-5-yl	
179	phenyl	CF2CF3	I	2-methyl-2H-tetrazol-5-yl	
180	phenyl	CF3	I	4-methylimidazol-1-yl	
181	phenyl	CF2CF3	I	4-methylimidazol-1-yl	
182	phenyl	CF3	I	benzimidazol-1-yl	
183	phenyl	CF2CF3	I	benzimidazol-1-yl	
184	phenyl	CF3	I	imidazol-1-yl	179-180
185	phenyl	CF2CF3	I	imidazol-1-yl	
186	phenyl	CF3	F	2H-tetrazol-5-yl	
187	phenyl	CF3	F	2-methyl-2H-tetrazol-5-yl	
188	phenyl	CF3	C1	2H-tetrazol-5-yl	
189	phenyl	CF3	C1	2-methyl-2H-tetrazol-5-yl	
190	phenyl	CF3	Br	2H-tetrazol-5-yl	
191	phenyl	CF3	Br	2-methyl-2H-tetrazol-5-yl	
192	осн3	CF3	I	1,2,4-triazol-1-yl	
193	оснз	CF2CF3	I	1,2,4-triazol-1-yl	
194	оснз	CF3	I	2H-tetrazol-5-yl	
195	осн3	CF2CF3	I	2H-tetrazol-5-yl	
196	оснз	CF3	I	2-methyl-2H-tetrazol-5-yl	
197	осн3	CF2CF3	I	2-methyl-2H-tetrazol-5-yl	
198	оснз	CF3	I	3-(p-acetoxybenzylthio)-1,2,4-triazol-1-yl	
199	осн3	CF3	I	3-amino-1,2,4-triazol-1-yl	
200	оснз	CF3	I	3-bromo-1,2,4-triazol-1-yl	
201	оснз	CF3	I	3-chloro-1,2,4-triazol-1-yl	
202	оснз	CF3	I	3-cyano-1,2,4-triazol-1-yl	
203	оснз	CF3	I	3-fluoro-1,2,4-triazol-1-yl	
204	осн3	CF3	I	3-hydroxy-1,2,4-triazol-1-yl	

205	оснз	CF3	I	3-mercapto-1,2,4-triazol-1-yl	
206	осн3	CF3	I	3-methoxy-1,2,4-triazol-1-yl	
207	оснз	CF3	I	3-methylamino-1,2,4-triazol-1-yl	
208	оснз	CF3	I	3-methylthio-1,2,4-triazol-1-yl	
209	осн3	CF3	I	3-trifluoromethyl-1,2,4-triazol-1-yl	
210	оснз	CF3	I	5-(p-acetoxybenzylthio)imidazol-1-yl	
211	ОСНЗ	CF3	I	5-(p-acetoxybenzylthio)-1,2,4-triazol-1-yl	l
212	осн3	CF3	I	4-aminoimidazol-1-yl	
213	осн3	CF3	I	5-amino-1,2,4-triazol-1-yl	
214	осн3	CF3	I	4-bromoimidazol-1-yl	
215	оснз	CF3	I	5-bromo-1,2,4-triazol-1-yl	
216	осн3	CF3	I	4-chloroimidazol-1-yl	
217	оснз	CF3	I	5-chloro-1,2,4-triazol-1-yl	
218	осн3	CF3	1	4-cyanoimidazol-1-yl	
219	осн3	CF3	I	5-cyano-1,2,4-triazol-1-yl	•
220	осн3	CF3	I	4-fluoroimidazol-1-yl	
221	оснз	CF3	I	5-fluoro-1,2,4-triazol-1-yl	
222	осн3	CF3	I	4-hydroxyimidazol-1-yl	
223	осн3	CF3	I	5-hydroxy-1,2,4-triazol-1-yl	
224	OCH3	CF3	I	4-mercaptoimidazol-1-yl	
225	осн3	CF3	I	5-mercapto-1,2,4-triazol-1-yl	
226	осн3	CF3	I	4-methoxyimidazol-1-yl	
227	оснз	CF3	I	5-methoxy-1,2,4-triazol-1-yl	
228	осн3	CF3	I	4-methylaminoimidazol-1-yl	
229	осн3	CF3	I	5-methylamino-1,2,4-triazol-1-yl	
230	осн3	CF3	I	4-methylimidazol-1-yl	
231	оснз	CF2CF3	I	4-methylimidazol-1-yl	
232	осн3	CF3	I	4-methylthioimidazol-1-yl	
233	осн3	CF3	I	5-methylthio-1,2,4-triazol-1-yl	
234	осн3	CF3	I	4-trifluoromethylimidazol-1-yl	
235	осн3	CF3	I	5-trifluoromethyl-1,2,4-triazol-1-yl	
236	осн3	CF3	I	benzimidazol-1-yl	
237	осн3	CF2CF3	I	benzimidazol-1-yl	
238	осн3	CF3	I	imidazol-1-yl	111-113
239	осн3	CF2CF3	I	imidazol-1-yl	
240	оснз	CF3	F	2H-tetrazol-5-yl	
241	оснз	СГЗ	F	2-methyl-2H-tetrazol-5-yl	
242	осн3	CF3	Cl	2H-tetrazol-5-yl	
243	оснз	CF3	Cl	2-methyl-2H-tetrazol-5-yl	
244	оснз	CF3	Br	2H-tetrazol-5-yl	
245	оснз	CF3	Br	2-methyl-2H-tetrazol-5-yl	
246	OCH2C°CH	CF3	I	1,2,4-triazol-1-yl	
247	осн2с°сн	CF2CF3	I	1,2,4-triazol-1-yl	

248	OCH2C°CH	CF3	I	2H-tetrazol-5-yl	
249	OCH2C°CH	CF2CF3	I	2H-tetrazol-5-yl	
250	OCH2C°CH	CF3	I	2-methyl-2H-tetrazol-5-yl	
251	OCH2C°CH	CF2CF3	I	2-methyl-2H-tetrazol-5-yl	•
252	OCH2C°CH	CF3	I	4-methylimidazol-1-yl	
253	OCH2C°CH	CF2CF3	I	4-methylimidazol-1-yl	
254	OCH2C°CH	CF3	I	benzimidazol-1-yl	
255	OCH2C°CH	CF2CF3	I	benzimidazol-1-yl	
256	OCH2C°CH	CF3	I	imidazol-1-yl	128-129
257	OCH2C°CH	CF2CF3	I	imidazol-1-yl	
258	OCH2C°CH	CF3	F	2H-tetrazol-5-yl	
259	OCH2C°CH	CF3	F	2-methyl-2H-tetrazol-5-yl	
260	OCH2C°CH	CF3	Cl	2H-tetrazol-5-yl	
261	OCH2C°CH	CF3	C1	2-methyl-2H-tetrazol-5-yl	
262	OCH2C°CH	CF3	Br	2H-tetrazol-5-yl	
263	OCH2C°CH	CF3	Br	2-methyl-2H-tetrazol-5-yl	
264	осн2сн3	CF3	I	1,2,4-triazol-1-yl	
265	осн2сн3	CF2CF3	I	1,2,4-triazol-1-yl	
266	OCH2CH3	CF3	I	2H-tetrazol-5-yl	
267	OCH2CH3	CF2CF3	I	2H-tetrazol-5-yl	
268	осн2сн3	CF3	I	2-methyl-2H-tetrazol-5-yl	
269	осн2сн3	CF2CF3	I	2-methyl-2H-tetrazol-5-yl	•
270	осн2сн3	CF3	I	4-methylimidazol-1-yl	
271	OCH2CH3	CF2CF3	I	4-methylimidazol-1-yl	
272	OCH2CH3	CF3	I	benzimidazol-1-yl	
273	OCH2CH3	CF2CF3	I	benzimidazol-1-yl	
274	OCH2CH3	CF3	I	imidazol-1-yl	103-105
275	OCH2CH3	CF2CF3	I	imidazol-1-yl	
276	OCH2CH3	CF3	F	2H-tetrazol-5-yl	
277	OCH2CH3	CF3	F	2-methyl-2H-tetrazol-5-yl	
278	OCH2CH3	CF3	Cl	2H-tetrazol-5-yl	
279	OCH2CH3	CF3	C1	2-methyl-2H-tetrazol-5-yl	
280	OCH2CH3	CF3	Br	2H-tetrazol-5-yl	
281	OCH2CH3	CF3	Br	2-methyl-2H-tetrazol-5-yl	
282	OCH2CH2CH3	CF3	I	1,2,4-triazol-1-yl	
283	OCH2CH2CH3	CF2CF3	I	1,2,4-triazol-1-yl	
284	OCH2CH2CH3	CF3	I	2H-tetrazol-5-yl	
285	OCH2CH2CH3	CF2CF3	I	2H-tetrazol-5-yl	
286	OCH2CH2CH3	CF3	1	2-methyl-2H-tetrazol-5-yl	
287	OCH2CH2CH3	CF2CF3	I	2-methyl-2H-tetrazol-5-yl	•
288	осн2сн2сн3	CF3	I	4-methylimidazol-1-yl	
289	осн2сн2сн3	CF2CF3	I	4-methylimidazol-1-yl	
290	осн2сн2сн3	CF3	I	benzimidazol-1-yl	

291	OCH2CH2CH3	CF2CF3	I	benzimidazol-1-yl	
292	OCH2CH2CH3	CF3	I	imidazol-1-yl	84-86
293	осн2сн2сн3	CF2CF3	I	imidazol-1-yl	
294	осн2сн2сн3	CF3	F	2H-tetrazol-5-yl	
295	OCH2CH2CH3	CF3	F	2-methyl-2H-tetrazol-5-yl	
296	OCH2CH2CH3	CF3	C1	2H-tetrazol-5-yl	
297	осн2сн2сн3	CF3	Cl	2-methyl-2H-tetrazol-5-yl	
298	осн2сн2сн3	CF3	Br	2H-tetrazol-5-yl	
299	осн2сн2сн3	CF3	Br	2-methyl-2H-tetrazol-5-yl	
300	OCH2CF2H	CF3	I	1,2,4-triazol-1-yl	
301	OCH2CF2H	CF2CF3	I	1,2,4-triazol-1-yl	
302	OCH2CF2H	CF3	I	2H-tetrazol-5-yl	
303	OCH2CF2H	CF2CF3	I	2H-tetrazol-5-yl	
304	OCH2CF2H	CF3	I	2-methyl-2H-tetrazol-5-yl	
305	OCH2CF2H	CF2CF3	I	2-methyl-2H-tetrazol-5-yl	
306	OCH2CF2H	CF3	I	4-methylimidazol-1-yl	
307	OCH2CF2H	CF2CF3	I	4-methylimidazol-1-yl	
308	OCH2CF2H	CF3	I	benzimidazol-1-yl	
309	OCH2CF2H	CF2CF3	I	benzimidazol-1-yl	
310	OCH2CF2H	CF3	I	imidazol-1-yl	97-98
311	OCH2CF2H	CF2CF3	I	imidazol-1-yl	
312	OCH2CF2H	CF3	F	2H-tetrazol-5-yl	
313	OCH2CF2H	CF3	F	2-methyl-2H-tetrazol-5-yl	
314	OCH2CF2H	CF3	Cl	2H-tetrazol-5-yl	
315	OCH2CF2H	CF3	C1	2-methyl-2H-tetrazol-5-yl	
316	OCH2CF2H	CF3	Br	2H-tetrazol-5-yl	
317	OCH2CF2H	CF3	Br	2-methyl-2H-tetrazol-5-yl	
318	OCH(CH3)2	CF3	I	1,2,4-triazol-1-yl	
319	OCH(CH3)2	CF2CF3	I	1,2,4-triazol-1-yl	
320	OCH(CH3)2	CF3	I	2H-tetrazol-5-yl	
321	OCH(CH3)2	CF2CF3	I	2H-tetrazol-5-yl	
322	OCH(CH3)2	CF3	I	2-methyl-2H-tetrazol-5-yl	
323	OCH(CH3)2	CF2CF3	I	2-methyl-2H-tetrazol-5-yl	
324	OCH(CH3)2	CF3	I	4-methylimidazol-1-yl	
325	OCH(CH3)2	CF2CF3	I	4-methylimidazol-1-yl	
326	OCH(CH3)2	CF3	I	benzimidazol-1-yl	
327	OCH(CH3)2	CF2CF3	I	benzimidazol-1-yl	
328	осн(снз)2	CF3	I	imidazol-1-yl	97-98
329	OCH(CH3)2	CF2CF3	I	imidazol-1-yl	
330	осн(снз)2	CF3	F	2H-tetrazol-5-yl	
331	осн(снз)2	CF3	F	2-methyl-2H-tetrazol-5-yl	
332	осн(снз)2	CF3	Cl	2H-tetrazol-5-yl	
333	OCH(CH3)2	CF3	C1	2-methyl-2H-tetrazol-5-yl	

334	OCH(CH3)2	CF3	Br	2H-tetrazol-5-yl	
335	осн(снз)2	CF3	Br	2-methyl-2H-tetrazol-5-yl	
336	imidazol-1-yl	CF3	I	1,2,4-triazol-1-yl	
337	imidazol-1-yl	CF2CF3	I	1,2,4-triazol-1-yl	
338	imidazol-1-yl	CF3	I	2H-tetrazol-5-yl	
339	imidazol-1-yl	CF2CF3	I	2H-tetrazol-5-yl	
340	imidazol-1-yl	CF3	I	2-methyl-2H-tetrazol-5-yl	
341	imidazol-1-yl	CF2CF3	I	2-methyl-2H-tetrazol-5-yl	
342	imidazol-1-yl	CF3	I	4-methylimidazol-1-yl	
343	imidazol-1-yl	CF2CF3	I	4-methylimidazol-1-yl	
344	imidazol-1-yl	CF3	I	benzimidazol-1-yl	
345	imidazol-1-yl	CF2CF3	I	benzimidazol-1-yl	
346	imidazol-1-yl	CF3	I	imidazol-1-yl > 160 dec	
347	imidazol-1-yl	CF2CF3	I	imidazol-1-yl	
348	imidazol-1-yl	CF3	F	2H-tetrazol-5-yl	
349	imidazol-1-yl	CF3	F	2-methyl-2H-tetrazol-5-yl	
350	imidazol-1-yl	CF3	F	imidazol-1-yl 142-150 d	lec
351	imidazol-1-yl	CF3	C1	2H-tetrazol-5-yl	
352	imidazol-1-yl	CF3	C1	2-methyl-2H-tetrazol-5-yl	
353	imidazol-1-yl	CF3	Br	2H-tetrazol-5-yl	
354	imidazol-1-yl	CF3	Br	2-methyl-2H-tetrazol-5-yl	
355	Н	CF3	I	1,2,4-triazol-1-yl 115-116	
356	Н	CF2CF3	I	1,2,4-triazol-1-yl	
357	Н	CF3	I	2H-tetrazol-5-yl	
358	Н	CF2CF3	I	2H-tetrazol-5-yl	
359	Н	CF3	I	2-methyl-2H-tetrazol-5-yl	
360	Н	CF2CF3	I	2-methyl-2H-tetrazol-5-yl	
361	Н	CF3	I	3-(p-acetoxybenzylthio)-1,2,4-triazol-1-yl	
362	Н	CF3	I	3-amino-1,2,4-triazol-1-yl	
363	Н	CF3	I	3-bromo-1,2,4-triazol-1-yl	
364	Н	CF3	I	3-chloro-1,2,4-triazol-1-yl	
365	Н	CF3	I	3-cyano-1,2,4-triazol-1-yl	
366	Н	CF3	I	3-fluoro-1,2,4-triazol-1-yl	
367	Н	CF3	I	3-hydroxy-1,2,4-triazol-1-yl	
368	Н	CF3	I	3-mercapto-1,2,4-triazol-1-yl	
369	Н	CF3	I	3-methoxy-1,2,4-triazol-1-yl	
370	Н	CF3	I	3-methylamino-1,2,4-triazol-1-yl	
371	Н	CF3	I	3-methylthio-1,2,4-triazol-1-yl	
372	Н	CF3	I	3-trifluoromethyl-1,2,4-triazol-1-yl	
373	Н	CF3	I	5-(p-acetoxybenzylthio)imidazol-1-yl	
374	Н	CF3	I	5-(p-acetoxybenzylthio)-1,2,4-triazol-1-yl	
375	Н	CF3	I	4-aminoimidazol-1-yl	
376	Н	CF3	I	5-amino-1,2,4-triazol-1-yl	

377	Н	CF3	I	4-bromoimidazol-1-yl	
378	Н	CF3	I	5-bromo-1,2,4-triazol-1-yl	
379	Н	CF3	I	4-chloroimidazol-1-yl	
380	Н	CF3	I	5-chloro-1,2,4-triazol-1-yl	
381	Н	CF3	I	4-cyanoimidazol-1-yl	
382	Н	CF3	I	5-cyano-1,2,4-triazol-1-yl	
383	Н	CF3	I	4-fluoroimidazol-1-yl	
384	Н	CF3	I	5-fluoro-1,2,4-triazol-1-yl	
385	Н	CF3	I	4-hydroxyimidazol-1-yl	
386	Н	CF3	I	5-hydroxy-1,2,4-triazol-1-yl	
387	Н	CF3	I	4-mercaptoimidazol-1-yl	•
388	Н	CF3	I	5-mercapto-1,2,4-triazol-1-yl	
389	Н	CF3	I	4-methoxyimidazol-1-yl	
390	Н	CF3	I	5-methoxy-1,2,4-triazol-1-yl	
391	Н	CF3	I	4-methylaminoimidazol-1-yl	
392	Н	CF3	I	5-methylamino-1,2,4-triazol-1-yl	
393	Н	CF3	I	4-methylimidazol-1-yl	173-175
394	Н	CF2CF3	I	4-methylimidazol-1-yl	
395	Н	CF3	I	4-methylthioimidazol-1-yl	
396	Н	CF3	I	5-methylthio-1,2,4-triazol-1-yl	
397	Н	CF3	I	4-trifluoromethylimidazol-1-yl	
398	Н	CF3	I	5-trifluoromethyl-1,2,4-triazol-1-yl	
399	Н	CF3	I	benzimidazol-1-yl	119-120
400	H	CF2CF3	I	benzimidazol-1-yl	
401	Н	CF3	I	imidazol-1-yl	108-109
402	Н	CF2CF3	I	imidazol-1-yl	
403	Н	CF3	F	2H-tetrazol-5-yl	
404	Н	CF3	F	2-methyl-2H-tetrazol-5-yl	
405	Н	CF3	C1	2H-tetrazol-5-yl	
406	Н	CF3	Cl	2-methyl-2H-tetrazol-5-yl	
407	Н	CF3	Br	2H-tetrazol-5-yl	
408	Н	CF3	Br	2-methyl-2H-tetrazol-5-yl	
409	C°CSi(CH3)3	CF3	I	1,2,4-triazol-1-yl	
410	C°CSi(CH3)3	CF2CF3	I	1,2,4-triazol-1-yl	
411	C°CSi(CH3)3	CF3	I	2H-tetrazol-5-yl	
412	C°CSi(CH3)3	CF2CF3	I	2H-tetrazol-5-yl	
413	C°CSi(CH3)3	CF3	I	2-methyl-2H-tetrazol-5-yl	
414	C°CSi(CH3)3	CF2CF3	I	2-methyl-2H-tetrazol-5-yl	
415	C°CSi(CH3)3	CF3	I	4-methylimidazol-1-yl	
416	C°CSi(CH3)3	CF2CF3	I	4-methylimidazol-1-yl	
417	C°CSi(CH3)3	CF3	I	benzimidazol-1-yl	
418	C°CSi(CH3)3	CF2CF3	1	benzimidazol-1-yl	
419	C°CSi(CH3)3	СГЗ	I	imidazol-1-yl	oil

420	C°CSi(CH3)3	CF2CF3	I	imidazol-1-yl	
421	C°CSi(CH3)3	CF3	F	2H-tetrazol-5-yl	
422	C°CSi(CH3)3	CF3	F	2-methyl-2H-tetrazol-5-yl	
423	C°CSi(CH3)3	CF3	C1	2H-tetrazol-5-yl	
424	C°CSi(CH3)3	CF3	Cl	2-methyl-2H-tetrazol-5-yl	
425	C°CSi(CH3)3	CF3	Br	2H-tetrazol-5-yl	
426	C°CSi(CH3)3	CF3	Br	2-methyl-2H-tetrazol-5-yl	
427	СНЗ	CF3	vinyl	imidazol-1-yl	oil
428	СНЗ	CF3	I	1,2,4-triazol-1-yl	119-121
429	СНЗ	CF2CF3	I	1,2,4-triazol-1-yl	
430	СНЗ	CF3	I	2H-tetrazol-5-yl	180-182
431	СНЗ	CF2CF3	I	2H-tetrazol-5-yl	
432	СНЗ	CF3	I	2-methyl-2H-tetrazol-5-yl	131-133
433	СНЗ	CF2CF3	1	2-methyl-2H-tetrazol-5-yl	
434	СНЗ	CF3	1	3-(p-acetoxybenzylthio)-1,2,4-triazol-1-yl	
435	СНЗ	CF3	I	3-amino-1,2,4-triazol-1-yl	
436	СНЗ	CF3	I	3-bromo-1,2,4-triazol-1-yl	
437	СНЗ	CF3	I	3-chloro-1,2,4-triazol-1-yl	
438	СНЗ	CF3	I	3-cyano-1,2,4-triazol-1-yl	•
439	СНЗ	CF3	I	3-fluoro-1,2,4-triazol-1-yl	
440	СНЗ	CF3	I	3-hydroxy-1,2,4-triazol-1-yl	
441	СНЗ	CF3	I	3-mercapto-1,2,4-triazol-1-yl	
442	СНЗ	CF3	I	3-methoxy-1,2,4-triazol-1-yl	
443	СНЗ	CF3	I	3-methylamino-1,2,4-triazol-1-yl	
444	СНЗ	CF3	I	3-methylthio-1,2,4-triazol-1-yl	
445	СНЗ	CF3	I	3-trifluoromethyl-1,2,4-triazol-1-yl	
446	СНЗ	CF3	I	5-(p-acetoxybenzylthio)imidazol-1-yl	
447	СНЗ	CF3	I	5-(p-acetoxybenzylthio)-1,2,4-triazol-1-yl	
448	СНЗ	CF3	I	4-aminoimidazol-1-yl	
449	СНЗ	CF3	I	5-amino-1,2,4-triazol-1-yl	
450	СНЗ	CF3	I	4-bromoimidazol-1-yl	
451	СНЗ	CF3	I	5-bromo-1,2,4-triazol-1-yl	
452	СНЗ	CF3	I	4-chloroimidazol-1-yl	
453	СНЗ	CF3	I	5-chloro-1,2,4-triazol-1-yl	
454	СНЗ	CF3	I	4-cyanoimidazol-1-yl	
455	СНЗ	CF3	I	5-cyano-1,2,4-triazol-1-yl	
456	СНЗ	CF3	I	4-fluoroimidazol-1-yl	•
457	СНЗ	CF3	I	5-fluoro-1,2,4-triazol-1-yl	
458	СНЗ	CF3	I	4-hydroxyimidazol-1-yl	
459	СНЗ	CF3	I	5-hydroxy-1,2,4-triazol-1-yl	
460	СНЗ	CF3	I	4-mercaptoimidazol-1-yl	
461	СНЗ	CF3	I	5-mercapto-1,2,4-triazol-1-yl	
462	СНЗ	CF3	I	4-methoxyimidazol-1-yl	
· - -	· 		-	· · · · · · · · · · · · · · · · · · ·	

463	СНЗ	CF3	I	5-methoxy-1,2,4-triazol-1-yl	
464	СНЗ	CF3	I	4-methylaminoimidazol-1-yl	
465	СНЗ	CF3	I	5-methylamino-1,2,4-triazol-1-yl	
466	СНЗ	CF3	I	4-methylimidazol-1-yl	155-156
467	СНЗ	CF2CF3	I	4-methylimidazol-1-yl	
468	СНЗ	CF3	I	4-methylthioimidazol-1-yl	
469	СНЗ	CF3	I	5-methylthio-1,2,4-triazol-1-yl	
470	СНЗ	CF3	I	4-trifluoromethylimidazol-1-yl	
471	СНЗ	CF3	I	5-trifluoromethyl-1,2,4-triazol-1-yl	
472	СНЗ	CF3	I	benzimidazol-1-yl	
473	СНЗ	CF2CF3	I	benzimidazol-1-yl	
474	СНЗ	CF3	I	imidazol-1-yl	145-148
475	СНЗ	CF2CF3	I	imidazol-1-yl	
476	СНЗ	CF3	F	2H-tetrazol-5-yl	
477	СНЗ	CF3	F	2-methyl-2H-tetrazol-5-yl	
478	СНЗ	CF3	ethynyl	imidazol-1-yl	121-122
479	СН3	CF3	C1	2H-tetrazol-5-yl	
480	СНЗ	CF3	Cl	2-methyl-2H-tetrazol-5-yl	
481	СН3	CF3	Br	2H-tetrazol-5-yl	
482	СНЗ	CF3	Br	2-methyl-2H-tetrazol-5-yl	
483	СНЗ	CF3	Br	imidazol-1-yl	72-73
484	СНЗ	CF3	1-	imidazol-1-yl	oil
	a		chlorovinyl	1,2,4-triazol-1-yl	50-51
485	CH2CH3	CF3	I I	1,2,4-triazol-1-yl	00 01
486	CH2CH3	CF2CF3	_	2H-tetrazol-5-yl	
487	CH2CH3	CF3	I	2H-tetrazol-5-yl	
488	CH2CH3	CF2CF3	I	2-methyl-2H-tetrazol-5-yl	
489	CH2CH3	CF3	I	2-methyl-2H-tetrazol-5-yl	
490	CH2CH3	CF2CF3	I	3-(p-acetoxybenzylthio)-1,2,4-triazol-1-yl	
491	CH2CH3	CF3	I	3-amino-1,2,4-triazol-1-yl	
492	CH2CH3	CF3	I	3-bromo-1,2,4-triazol-1-yl	
493	CH2CH3	CF3	I	3-chloro-1,2,4-triazol-1-yl	
494	СН2СН3	CF3	I	* *	
495	CH2CH3	CF3	I	3-cyano-1,2,4-triazol-1-yl 3-fluoro-1,2,4-triazol-1-yl	
496	СН2СН3	CF3	I	• •	
497	СН2СН3	CF3	I	3-hydroxy-1,2,4-triazol-1-yl	
498	СН2СН3	CF3	I	3-mercapto-1,2,4-triazol-1-yl	
499	CH2CH3	CF3	I	3-methoxy-1,2,4-triazol-1-yl	
500	СН2СН3	CF3	I	3-methylamino-1,2,4-triazol-1-yl	
501	CH2CH3	CF3	I	3-methylthio-1,2,4-triazol-1-yl	
502	CH2CH3	CF3	I	3-trifluoromethyl-1,2,4-triazol-1-yl	
503	СН2СН3	CF3	I	5-(p-acetoxybenzylthio)imidazol-1-yl	
504	CH2CH3	CF3	I	5-(p-acetoxybenzylthio)-1,2,4-triazol-1-yl	
505	СН2СН3	CF3	I	4-aminoimidazol-1-yl	

506	СН2СН3	CF3	I	5-amino-1,2,4-triazol-1-yl	
507	СН2СН3	CF3	I	4-bromoimidazol-1-yl	
508	СН2СН3	CF3	I	5-bromo-1,2,4-triazol-1-yl	
509	СН2СН3	CF3	I	4-chloroimidazol-1-yl	
510	СН2СН3	CF3	I	5-chloro-1,2,4-triazol-1-yl	
511	СН2СН3	CF3	I	4-cyanoimidazol-1-yl	
512	СН2СН3	CF3	I	5-cyano-1,2,4-triazol-1-yl	
513	СН2СН3	CF3	I	4-fluoroimidazol-1-yl	
514	СН2СН3	CF3	I	5-fluoro-1,2,4-triazol-1-yl	
515	СН2СН3	CF3	I	4-hydroxyimidazol-1-yl	
516	СН2СН3	CF3	I	5-hydroxy-1,2,4-triazol-1-yl	
517	СН2СН3	CF3	I	4-mercaptoimidazol-1-yl	
518	СН2СН3	CF3	I	5-mercapto-1,2,4-triazol-1-yl	
519	СН2СН3	CF3	I	4-methoxyimidazol-1-yl	
520	СН2СН3	CF3	I	5-methoxy-1,2,4-triazol-1-yl	
521	СН2СН3	CF3	I	4-methylaminoimidazol-1-yl	
522	CH2CH3	CF3	I	5-methylamino-1,2,4-triazol-1-yl	
523	CH2CH3	CF3	I	4-methylimidazol-1-yl	110-111
524	СН2СН3	CF2CF3	I	4-methylimidazol-1-yl	
525	СН2СН3	CF3	I	4-methylthioimidazol-1-yl	
526	CH2CH3	CF3	I	5-methylthio-1,2,4-triazol-1-yl	
527	CH2CH3	CF3	I	4-trifluoromethylimidazol-1-yl	
528	CH2CH3	CF3	Ι	5-trifluoromethyl-1,2,4-triazol-1-yl	
529	CH2CH3	CF3	I	benzimidazol-1-yl	
530	CH2CH3	CF2CF3	I	benzimidazol-1-yl	
531	CH2CH3	CF3	I	imidazol-1-yl	124
532	CH2CH3	CF2CF3	I	imidazol-1-yl	
533	CH2CH3	CF3	F	2H-tetrazol-5-yl	
534	CH2CH3	CF3	F	2-methyl-2H-tetrazol-5-yl	
535	CH2CH3	CF3	C1	2H-tetrazol-5-yl	
536	CH2CH3	CF3	C1	2-methyl-2H-tetrazol-5-yl	
537	CH2CH3	CF3	Br	2H-tetrazol-5-yl	
538	CH2CH3	CF3	Br	2-methyl-2H-tetrazol-5-yl	
539	6-phenylpyridin-2-yl	CF3	I	1,2,4-triazol-1-yl	
540	6-phenylpyridin-2-yl	CF2CF3	I	1,2,4-triazol-1-yl	
541	6-phenylpyridin-2-yl	CF3	I	2H-tetrazol-5-yl	
542	6-phenylpyridin-2-yl	CF2CF3	I	2H-tetrazol-5-yl	
543	6-phenylpyridin-2-yl	CF3	I	2-methyl-2H-tetrazol-5-yl	
544	6-phenylpyridin-2-yl	CF2CF3	I	2-methyl-2H-tetrazol-5-yl	
545	6-phenylpyridin-2-yl	CF3	I	4-methylimidazol-1-yl	
546	6-phenylpyridin-2-yl	CF2CF3	I	4-methylimidazol-1-yl	
547	6-phenylpyridin-2-yl	CF3	I	benzimidazol-1-yl	
548	6-phenylpyridin-2-yl	CF2CF3	I	benzimidazol-1-yl	

549	6-phenylpyridin-2-yl	CF3	I	imidazol-1-yl	
550	6-phenylpyridin-2-yl	CF2CF3	I	imidazol-1-yl	
551	6-phenylpyridin-2-yl	CF3	F	2H-tetrazol-5-yl	
552	6-phenylpyridin-2-yl	CF3	F	2-methyl-2H-tetrazol-5-yl	
553	6-phenylpyridin-2-yl	CF3	C1	2H-tetrazol-5-yl	
554	6-phenylpyridin-2-yl	CF3	C1	2-methyl-2H-tetrazol-5-yl	
555	6-phenylpyridin-2-yl	CF3	Br	2H-tetrazol-5-yl	
556	6-phenylpyridin-2-yl	CF3	Br	2-methyl-2H-tetrazol-5-yl	
557	6-phenylpyridin-2-yl	CF3	Br	imidazol-1-yl	136-138
558	6-methylpyridin-2-yl	CF3	I	1,2,4-triazol-1-yl	
559	6-methylpyridin-2-yl	CF2CF3	I	1,2,4-triazol-1-yl	
560	6-methylpyridin-2-yl	CF3	I	2H-tetrazol-5-yl	
561	6-methylpyridin-2-yl	CF2CF3	I	2H-tetrazol-5-yl	
562	6-methylpyridin-2-yl	CF3	I	2-methyl-2H-tetrazol-5-yl	
563	6-methylpyridin-2-yl	CF2CF3	I	2-methyl-2H-tetrazol-5-yl	
564	6-methylpyridin-2-yl	CF3	I	4-methylimidazol-1-yl	
565	6-methylpyridin-2-yl	CF2CF3	I	4-methylimidazol-1-yl	
566	6-methylpyridin-2-yl	CF3	I	benzimidazol-1-yl	•
567	6-methylpyridin-2-yl	CF2CF3	I	benzimidazol-1-yl	
568	6-methylpyridin-2-yl	CF3	I	imidazol-1-yl	141-143
569	6-methylpyridin-2-yl	CF2CF3	I	imidazol-1-yl	
570	6-methylpyridin-2-yl	CF3	F	2H-tetrazol-5-yl	
571	6-methylpyridin-2-yl	CF3	F	2-methyl-2H-tetrazol-5-yl	
572	6-methylpyridin-2-yl	CF3	Cl	2H-tetrazol-5-yl	
573	6-methylpyridin-2-yl	CF3	C1	2-methyl-2H-tetrazol-5-yl	
574	6-methylpyridin-2-yl	CF3	Br	2H-tetrazol-5-yl	
575	6-methylpyridin-2-yl	CF3	Br	2-methyl-2H-tetrazol-5-yl	
576	2-oxopyrrolidin-1-yl	CF3	I	1,2,4-triazol-1-yl	
577	2-oxopyrrolidin-1-yl	CF2CF3	I	1,2,4-triazol-1-yl	
578	2-oxopyrrolidin-1-yl	CF3	I	2H-tetrazol-5-yl	
579	2-oxopyrrolidin-1-yl	CF2CF3	I	2H-tetrazol-5-yl	
580	2-oxopyrrolidin-1-yl	CF3	I	2-methyl-2H-tetrazol-5-yl	
581	2-oxopyrrolidin-1-yl	CF2CF3	I	2-methyl-2H-tetrazol-5-yl	
582	2-oxopyrrolidin-1-yl	CF3	I	4-methylimidazol-1-yl	
583	2-oxopyrrolidin-1-yl	CF2CF3	I	4-methylimidazol-1-yl	
584	2-oxopyrrolidin-1-yl	CF3	I	benzimidazol-1-yl	•
585	2-oxopyrrolidin-1-yl	CF2CF3	I	benzimidazol-1-yl	
586	2-oxopyrrolidin-1-yl	CF3	I	imidazol-1-yl	195-197
587	2-oxopyrrolidin-1-yl	CF2CF3	I	imidazol-1-yl	
588	2-oxopyrrolidin-1-yl	CF3	F	2H-tetrazol-5-yl	
589	2-oxopyrrolidin-1-yl	CF3	F	2-methyl-2H-tetrazol-5-yl	
590	2-oxopyrrolidin-1-yl	CF3	Cl	2H-tetrazol-5-yl	
591	2-oxopyrrolidin-1-yl	CF3	C1	2-methyl-2H-tetrazol-5-yl	
	- - J			· · · · · · · · · · · · · · · · · · ·	

592	2-oxopyrrolidin-1-yl	CF3	Br	2H-tetrazol-5-yl	
593	2-oxopyrrolidin-1-yl	CF3	Br	2-methyl-2H-tetrazol-5-yl	
594	СНЗ	CF3	I	1-methyl-1H-tetrazol-5-yl	110-112
595	SCH3	CF3	I	1-methyl-1H-tetrazol-5-yl	
596	SCH2CH3	CF3	I	1-methyl-1H-tetrazol-5-yl	
597	осн3	CF3	I	1-methyl-1H-tetrazol-5-yl	
598	OCH2CH3	CF3	I	1-methyl-1H-tetrazol-5-yl	
599	Н	CF3	I	1-methyl-1H-tetrazol-5-yl	
600	СН2СН3	CF3	I	1-methyl-1H-tetrazol-5-yl	
601	phenyl	CF3	I	1-methyl-1H-tetrazol-5-yl	
602	imidazol-1-yl	CF3	I	1-methyl-1H-tetrazol-5-yl	
603	pyridin-2-yl	CF3	I	1-methyl-1H-tetrazol-5-yl	
604	pyridin-3-yl	CF3	I	1-methyl-1H-tetrazol-5-yl	
605	pyridin-4-yl	CF3	I	1-methyl-1H-tetrazol-5-yl	
606	СНЗ	CF3	Br	1-methyl-1H-tetrazol-5-yl	
607	SCH3	CF3	Br	1-methyl-1H-tetrazol-5-yl	
608	SCH2CH3	CF3	Br	1-methyl-1H-tetrazol-5-yl	
609	осн3	CF3	Br	1-methyl-1H-tetrazol-5-yl	
610	OCH2CH3	CF3	Br	1-methyl-1H-tetrazol-5-yl	
611	Н	CF3	Br	1-methyl-1H-tetrazol-5-yl	
612	СН2СН3	CF3	Br	1-methyl-1H-tetrazol-5-yl	
613	phenyl	CF3	Br	1-methyl-1H-tetrazol-5-yl	
614	imidazol-1-yl	CF3	Br	1-methyl-1H-tetrazol-5-yl	
615	pyridin-2-yl	CF3	Br	1-methyl-1H-tetrazol-5-yl	
616	pyridin-3-yl	CF3	Br	1-methyl-1H-tetrazol-5-yl	
617	pyridin-4-yl	CF3	Br	1-methyl-1H-tetrazol-5-yl	
618	СНЗ	CF3	C1	1-methyl-1H-tetrazol-5-yl	
619	SCH3	CF3	C1	1-methyl-1H-tetrazol-5-yl	
620	SCH2CH3	CF3	C1	1-methyl-1H-tetrazol-5-yl	
621	осн3	CF3	Cl	1-methyl-1H-tetrazol-5-yl	
622	OCH2CH3	CF3	Cl	1-methyl-1H-tetrazol-5-yl	
623	Н	CF3	C1	1-methyl-1H-tetrazol-5-yl	
624	CH2CH3	CF3	C1	1-methyl-1H-tetrazol-5-yl	
625	phenyl	CF3	C1	1-methyl-1H-tetrazol-5-yl	
626	imidazol-1-yl	CF3	C1	1-methyl-1H-tetrazol-5-yl	
627	pyridin-2-yl	CF3	C1	1-methyl-1H-tetrazol-5-yl	
628	pyridin-3-yl	CF3	C1	1-methyl-1H-tetrazol-5-yl	
629	pyridin-4-yl	CF3	C1	1-methyl-1H-tetrazol-5-yl	
630	СНЗ	CF3	F	1-methyl-1H-tetrazol-5-yl	
631	SCH3	CF3	F	1-methyl-1H-tetrazol-5-yl	
632	SCH2CH3	CF3	F	1-methyl-1H-tetrazol-5-yl	
633	осн3	CF3	F	1-methyl-1H-tetrazol-5-yl	
634	OCH2CH3	CF3	F	1-methyl-1H-tetrazol-5-yl	

635	Н	CF3	F	1-methyl-1H-tetrazol-5-yl
636	СН2СН3	CF3	F	1-methyl-1H-tetrazol-5-yl
637	phenyl	CF3	F	1-methyl-1H-tetrazol-5-yl
638	imidazol-1-yl	CF3	F	1-methyl-1H-tetrazol-5-yl
639	pyridin-2-yl	CF3	F	1-methyl-1H-tetrazol-5-yl
640	pyridin-3-yl	CF3	F	1-methyl-1H-tetrazol-5-yl
641	pyridin-4-yl	CF3	F	1-methyl-1H-tetrazol-5-yl
642	SCH2F	CF3	I	imidazol-1-yl
643	SCH2C1	CF3	I	imidazol-1-yl
644	SCF3	CF3	I	imidazol-1-yl
645	S(O)CH3	CF3	I	imidazol-1-yl
646	S(O)CF3	CF3	I	imidazol-1-yl
647	S(O)2CF3	CF3	I	imidazol-1-yl
648	6-phenylpyridin-4-yl	CF3	I	imidazol-1-yl
649	6-methylpyridin-4-yl	CF3	I	imidazol-1-yl
650	6-chloropyridin-4-yl	CF3	I	imidazol-1-yl
651	6-	CF3	I	imidazol-1-yl
	trifluoromethylpyridin- 4-yl			
652	6-phenylpyridin-3-yl	CF3	I	imidazol-1-yl
653	6-methylpyridin-3-yl	CF3	I	imidazol-1-yl
654	6-chloropyridin-3-yl	CF3	I	imidazol-1-yl
655	6-	CF3	I	imidazol-1-yl
	trifluoromethylpyridin- 3-yl			
656	pyridin-3-yl	CF3	I	imidazol-1-yl
657	6-chloropyridin-2-yl	CF3	I	imidazol-1-yl
658	6-	CF3	I	imidazol-1-yl
	trifluoromethylpyridin- 2-yl			
659	3-methylpyrazol-1-yl	CF3	I	imidazol-1-yl
660	3-methoxypyrazol-1-yl	CF3	I	imidazol-1-yl
661	3-chloropyrazol-1-yl	CF3	I	imidazol-1-yl
662	2-tolyl	CF3	I	imidazol-1-yl
663	3-tolyl	CF3	I	imidazol-1-yl
664	4-tolyl	CF3	I	imidazol-1-yl
665	2-chlorophenyl	CF3	I	imidazol-1-yl
666	3-chlorophenyl	CF3	I	imidazol-1-yl
667	4-chlorophenyl	CF3	I	imidazol-1-yl
668	2-methoxyphenyl	CF3	I	imidazol-1-yl
669	3-methoxyphenyl	CF3	I	imidazol-1-yl
670	4-methoxyphenyl	CF3	I	imidazol-1-yl
671	2-	CF3	I	imidazol-1-yl
672	(trifluoromethyl)phenyl 3-	CF3	I	imidazol-1-yl
0/2	(trifluoromethyl)phenyl			_
673	4- (trifluoromethyl)phenyl	CF3	I	imidazol-1-yl
	(n muoromemy)phenyi			

674	OCH2CF3	CF3	I	imidazol-1-yl	
675	OCH2C°CCH2CI	CF3	1	imidazol-1-yl	
676	OCH=CHCF3	CF3	1	imidazol-1-yl	
677	4-methylimidazol-1-yl	CF3	I	imidazol-1-yl	
678	4-methoxyimidazol-1- yl	CF3	1	imidazol-1-yl	
679	4-chloroimidazol-1-yl	CF3	I	imidazol-1-yl	
680	C°CCH2C1	CF3	Ι	imidazol-1-yl	
681	CF3	CF3	I	1,2,4-triazol-1-yl	137-138
682	CF3	CF2CF3	Ι	1,2,4-triazol-1-yl	
683	CF3	CF3	I	2H-tetrazol-5-yl	
684	CF3	CF2CF3	I	2H-tetrazol-5-yl	
685	CF3	CF3	I	2-methyl-2H-tetrazol-5-yl	
686	CF3	CF2CF3	I	2-methyl-2H-tetrazol-5-yl	
687	CF3	CF3	I	4-methylimidazol-1-yl	
688	CF3	CF2CF3	I	4-methylimidazol-1-yl	
689	CF3	CF3	I	benzimidazol-1-yl	
690	CF3	CF2CF3	I	benzimidazol-1-yl	
691	CF3	CF2CF3	I	imidazol-1-yl	
692	CF3	CF3	I	imidazol-1-yl	105-106
693	CF3	CF3	F	2H-tetrazol-5-yl	
694	CF3	CF3	F	2-methyl-2H-tetrazol-5-yl	
695	CF3	CF3	Cl	2H-tetrazol-5-yl	
696	CF3	CF3	Cl	2-methyl-2H-tetrazol-5-yl	
697	CF3	CF3	Br	2H-tetrazol-5-yl	
698	CF3	CF3	Br	2-methyl-2H-tetrazol-5-yl	
699	CH=CHCH2Cl	CF3	I	imidazol-1-yl	