(a0b) 0 C = | lable = | a | bel = (a.b.c/ 1-a-x/ =-a Příklady na procvičení z Lineární algebry 1 (ZS 2022/2023): $|\alpha.7| = |\alpha| = 0$ (5-6) Grupy a tělesa (a) (Q,·), N∈ - relishere instrum proced for 1, sell Cv. 1. Zjistěte, zda je grupou: (b) (Q, -), NE - new asseins (b) $(\mathbb{Q},-)$, NE - win assume $a,b\in\mathbb{Q}$, NEN1 new fur. for super. at $b\in\mathbb{Q}$ (d) (\mathbb{Q},\circ) , kde $a\circ b=|ab|$ pro všechna $a,b\in\mathbb{Q}$, NEN1 ASOCIATIVNI a(e) (\mathbb{Q},\circ) , kde $a\circ b=a+b+3$ pro všechna $a,b\in\mathbb{Q}$, with =-3, into =-3 $\mathcal{E}_{\mathbf{F}}(\mathbf{f})$ (f) (\mathcal{F} , +), tj. množina \mathcal{F} všech reálný funkcí jedné proměnné s operace sčítání funkci, went your f(x)=0 = 1x E/R: O(x)=0 (g) množina rotací v \mathbb{R}^2 kolem počátku s operací skládání zobrazení, (h) množina posunutí v \mathbb{R}^2 s operací skládání zobrazení. Cv. 2. Vyplňte tabulku pro binární operaci \circ na \mathbb{G} tak aby (\mathbb{G}, \circ) byla grupou s neutrálním prvkem 0. Zdůvodněte. N loto musi lest o, aly mela toto grupa $b \qquad (202)03 = 3 \qquad \begin{pmatrix} 000 \\ 000 \\ 000 \end{pmatrix} \begin{pmatrix} 100 \\ 010 \\ 001 \end{pmatrix}$ 0 7070 JE GF(4) (aob)oc = ao(boc)10(203) = 0 (a0b) 0c = Alt (102) 03 = 0 \longrightarrow Cv. 3. Nechť (\mathbb{G}, \circ) je grupa a $x \in \mathbb{G}$. Rozhodněte, zda ($\mathbb{G}, *$) je grupou s operací definovanou $a*b=a\circ x\circ b$ pro všechna $a,b\in\mathbb{G}.$ (a) mnozma (b) množina $\{\begin{pmatrix} a & a \\ a & a \end{pmatrix} \mid a \in \mathbb{R} \setminus \{1, \dots, n\}$ (b) množina $\{\begin{pmatrix} a & a \\ a & a \end{pmatrix} \mid a \in \mathbb{R} \setminus \{1, \dots, n\}$ (cv. 5. Vyjádřete jako prvky daného tělesa výrazy:

(a) $((2^{-1}+1)4)^{-1}, 4/3$ v \mathbb{Z}_5 , \mathbb{Z}_5 7 $6 \cdot 7, 7^{-1}, 6/7$ v \mathbb{Z}_{11} . \mathbb{Z}_{11} Cv. 4. Rozhodněte a zdůvodněte, zda je Abelovou (komutativní) grupou: (a) množina $\{\begin{pmatrix} 1 & z \\ 0 & 1 \end{pmatrix} \mid z \in \mathbb{Z}\}$ s maticovým součinem, (b) množina $\{\begin{pmatrix} a & a \\ a & a \end{pmatrix} \mid a \in \mathbb{R} \setminus \{0\} \}$ s maticovým součinem. (a) $((2^{-1}+1)4)^{-1}$, 4/3 v \mathbb{Z}_5 , $\sqrt{4 \cdot 3} = 4 \cdot 2 = 3$