Ondas Electromagnéticas

Abel Doñate Muñoz

Contents

1	Ondas en el vacío (densidades de carga y corriente nulas)	2
	.1 Ecuaciones de Maxwell	2

1 Ondas en el vacío (densidades de carga y corriente nulas)

1.1 Ecuaciones de Maxwell

Ley de Gauss	$\nabla \cdot \mathcal{E} = 0$	$\iint \mathcal{E} \cdot dS = 0$
Ley de Gauss	$\nabla \cdot \mathcal{H} = 0$	$\iint \mathcal{H} \cdot dS = 0$
Ley de Maxwell-Faraday	$\nabla \times \mathcal{E} = -\mu_0 \frac{\partial \mathcal{H}}{\partial t}$	$\oint \mathcal{E} \cdot dl = -\mu_0 \frac{d}{dt} \iint \mathcal{H} \cdot dS$
Ley de Ampere	$\nabla \times \mathcal{H} = \varepsilon_0 \frac{\partial \mathcal{E}}{\partial t}$	$\oint \mathcal{H} \cdot dl = \varepsilon_0 \frac{d}{dt} \iint \mathcal{E} \cdot dS$

De las ecuaciones de maxwell se pueden derivar las ecuaciones de onda donde $c=\frac{1}{\sqrt{\mu_0\varepsilon_0}}$

$$\nabla^2 \mathcal{E} - \frac{1}{c^2} \frac{\partial \mathcal{E}}{\partial^2 t} = 0, \qquad \nabla^2 \mathcal{H} - \frac{1}{c^2} \frac{\partial \mathcal{H}}{\partial^2 t} = 0$$

Si hacemos la asunción $\mathcal{E}(r,t)=\mathcal{E}_x(z,t)$ tenemos la ecuación de d'Alembert