Credit Card Fraud Project

Michael Ramsey

Dataset Description

- The dataset contains transactions made by credit cards in September 2013
 by European cardholders over the course of two days
- 492 transactions out of 284,807 have been identified as fraudulent
- There are 30 predictive features including 'Amount' (i.e., Euro amount of transaction), 'Time' (i.e., time since first transaction in dataset in seconds) and 28 others which are the result of a PCA transformation to maintain privacy
- The label is a binary feature where 1 corresponds to a fraud label

EDA: Key Takeaways (1)

- Fraud rate at time t (i.e., number of instances of fraud per transaction up to time t) generally decreased over the period in question after a spike at the beginning of the period; this suggests that the 'Time' feature should have some bearing on our fraud predictions as we expect less fraud at certain times than others (slide 5)
- Transaction amount distributions look very different for the fraudulent and non-fraudulent transaction populations; because approximately 40% of fraudulent transactions are under ~\$1 as opposed to ~10% of non-fraudulent transactions, the 'Amount' feature can be used to separate the classes (slide 6); a Kolmogorov–Smirnov analysis validates this claim

EDA: Key Takeaways (2)

 All PCA features seem to be able to at least partially separate the fraud and no-fraud classes based on differences in descriptive statistics for each class (slides 7, where rows correspond to features sorted by feature importance as determined by MRMR)

EDA: Key Takeaways

EDA: Key Takeaways

EDA: Key Takeaways

	fraud_mean	no_fraud_mean	fraud_median	no_fraud_median	fraud_min	no_fraud_min	fraud_max	no_fraud_max
0	-7.848295	0.013581	-6.243643	-0.076334	-29.626452	-20.131553	7.934890	10.895018
1	-7.272864	0.012586	-7.020407	0.054191	-20.044280	-19.186530	3.591116	10.981465
2	-6.264407	0.010840	-5.506937	0.141792	-18.698680	-15.157119	1.377043	7.854679
3	-5.213660	0.009022	-4.205202	-0.084376	-22.581908	-13.538252	3.702478	21.807579
4	-4.724610	0.008176	-4.051115	0.076892	-16.125344	-11.544131	3.583054	19.760439

Model

- Using all features with a training set of the first ~200k observations:
 - Train a logistic regression model with class weights proportional to the class imbalance
 - 2. Train a multi-layer perceptron model with three hidden layers each comprised of 30 neurons using dropout=.2 and a loss function with class weights proportional to the class imbalance for 1000 epochs
 - 3. If 1) and 2) both predict fraud, then predict fraud
 - 4. If 1) or 2) predict fraud (but not both), then predict no fraud, but put in some queue for review
 - 5. Else predict no fraud

Results (on Test Set)

Model	Accuracy (%)	Precision (%)	Recall (%)
logistic regression	99.93	69.17	76.85
MLP	99.93	69.81	71.15
logistic regression + MLP	99.96	94.05	73.15

Takeaways

- Ensembling models of similar performance can lead to better than expected results due to the fact that models are learning different things
- In spite of the massive class imbalance, all models still get better accuracy than picking the majority class; this shows how doing something as simple as manipulating the loss function can pay huge dividends
- A simple model (logistic regression) can significantly outperform the standard model for anomaly detection (isolation forests) if the data is right
- More can be done to improve the ensemble/model (e.g., passing the data that
 the model is unsure about to another model that looks at different things,
 using data augmentation techniques such as adding random noise and/or
 oversampling the minority class, etc.)