

PRACOWNIA FIZYCZNA 1

Instytut Fizyki - Centrum Naukowo Dydaktyczne Politechnika Śląska

P1-M1. Wyznaczanie przyspieszenia ziemskiego metodą spadku swobodnego*

Zagadnienia

Siła grawitacji. Przyspieszenie ziemskie, jednostka, zależność wartości od szerokości geograficznej i wysokości nad poziomem morza. Równanie ruchu jednostajnie przyspieszonego, prostoliniowego. Wyprowadzenie zależności czasu spadania ciała od wysokości.

1 Układ pomiarowy

Do wyznaczenia przyspieszenia ziemskiego metodą spadku swobodnego służy układ pomiarowy (rys. 1), którego głównym elementem jest stojak ze skalą. Stojak wyposażony jest w elektromagnes, który trzyma metalową kulkę, a zwalnia ją po naciśnięciu przycisku GO na panelu sterującym. W momencie zwolnienia kulki rozpoczyna się pomiar czasu. Koniec pomiaru czasu następuje w momencie przecięcia przez kulkę wiązki światła w fotokomórce F. Zatem pomiarowi podlega czas, w jakim metalowa kulka spada na drodze H, pod działaniem siły ciażenia.

2 Pomiary

- 1. Ustawić na panelu sterującym
 - TIME RESOL .001
 - FUNCT MODE dwa prostokatne piki
 - START MODE EL.M.+TIMER

Fig. 1: Schemat układu pomiarowego

- 2. Dla dziesięciu różnych wysokości, pięciokrotnie wykonać pomiary czasu spadku wybranej kulki.
- 3. Wyniki umieścić w tabeli.

Lp.	H, m	$\mathrm{t,s}$					t_{sr} , s
		1	2	3	4	5	
1.							
2.							

3 Opracowanie wyników pomiarów

1. Obliczyć wartości \sqrt{H} .

^{*}Opracowanie: dr inż. Alina Domanowska

- 2. Obliczyć średnie wartości czasów spadania t_{sr} .
- 3. Obliczyć niepewności typu a (statystyczne) średnich czasów spadania $u_a(t_{sr})$.
- 4. Zakładając jednakową dokładność każdego z pomiarów na poziomie 3 cyfr znaczących, obliczyć niepewność typu b pomiaru czasu $u_b(t)$.
- 5. Obliczyć niepewności całkowite średnich czasów spadania $u(t_{sr}) = \sqrt{u_a^2(t_{sr}) + u_b^2(t)}$.
- 6. Wszystkie wyniki umieścić w tabeli.

Lp.	H, m	\sqrt{H}, \sqrt{m}	t_{sr} , s	$u(t_{sr})$, s
1.				

- 7. Sporządzić wykres zależności $t_{sr}(H)$. Nanieść słupki niepewności.
- 8. Sporządzić wykres zależności $t_{sr}(\sqrt{H})$. Nanieść słupki niepewności.
- 9. Metodą regresji liniowej wyznaczyć współczynniki prostej $t_{sr}(\sqrt{H})$ i ich niepewności standardowe. Zaznaczyć prostą na wykresie. Czy prosta wychodzi poza słupki niepewności?
- 10. Na podstawie współczynnika nachylenia prostej, wyznaczonego w punkcie 9, i w oparciu o równanie ruchu, wyznaczyć przyśpieszenie ziemskie g.
- 11. W oparciu o prawo przenoszenia niepewności, obliczyć niepewność wyznaczonej wartości g.
- 12. Obliczyć niepewność rozszerzoną.
- 13. Przeprowadzić test zgodności otrzymanej wartości z wartością przyspieszenia ziemskiego obliczoną dla szerokości geograficznej i wysokości nad poziomem morza dla Gliwic.