

Facultad de Ingeniería y Ciencias Hídricas

Departamento de Informática Mecánica del Continuo

Examen 11 de febrero de 2016

1) Mostrar que el campo de velocidad:

$$v_1 = 1.5x_3 - 3x_2$$
$$v_2 = 3x_1 - x_3$$

$$v_3 = x_2 - 1.5x_1$$

corresponde a una rotación de cuerpo rígido. Determinar además el eje de rotación.

2) El potencial de campo eléctrico λ para una región por la cual fluye un fluido está dada por

$$\lambda = \frac{5A t^2}{r} + 8t$$

donde A es una constante arbitraria y $r^2={x_1}^2+{x_2}^2$. El campo de velocidad del fluido está dado por:

$$v_1 = x_1^2 x_2$$
; $v_2 = -x_1^4 - x_1 x_2^2$; $v_3 = 0$

a. Calcular la derivada de λ en un punto P de coordenadas (x_1, x_2, x_3) .

b. Calcular la derivada material de λ en un punto P de coordenadas (x_1, x_2, x_3) .

c. Explique la significación física de cada una de las cantidades anteriores.

3) Determine la tensión normal media $\sigma_{ii}/3$ para un fluido incompresible para el cual la ecuación constitutiva es $\tau_{ij}=\alpha D_{ij}+\beta D_{ik}D_{kj}$, donde α y β son constantes y D_{ij} es el tensor velocidad de deformación.

4) Sea V el volumen encerrado por la superficie S de normal saliente n_i unitaria. Sean x_i el vector posición en un punto de V y a_i un vector arbitrario constante, (i=1,2,3). Usando el teorema de Gauss y notación indicial mostrar que:

$$\int_{S} n \times (a \times x) \ dS = 2aV$$

5) Sea un medio continuo sometido a un campo de tensiones:

$$\sigma_{ij} = \begin{pmatrix} 0 & cx_3 & 0 \\ cx_3 & dx_2 & -cx_1 \\ 0 & -cx_1 & 0 \end{pmatrix}$$

donde c y d son constantes. Determine:

 La distribución de fuerzas de volumen actuando sobre el cuerpo, para que las ecuaciones de equilibrio sean satisfechas por el campo de tensiones propuesto.

b. Para la posición x = (4, 7, -4), calcular el vector de tensión que actúa sobre la superficie esférica $x_1^2 + x_2^2 + x_3^2 = 81$.

c. Las tensiones de corte y normal en dicho punto.