SUPPLEMENTAL MATERIAL: GLOBAL CONVERGENCE OF ALTERNATING DIRECTION METHOD OF MULTIPLIERS FOR INVEX OBJECTIVE LOSSES

Samuel Pinilla, Yeung Siu-Lun, and Jeyan Thiyagalingam

Scientific Computing Department, Science and Technology Facilities Council, Harwell, UK {samuel.pinilla, siu-lun.yeung, t.jeyan}@stfc.ac.uk

1. PROOF OF THEOREM 1

In order to establish a versatile framework for invex functions, we provide proof of invexity for a specific class of summation functions. The key result is encapsulated in the following lemma, which reveals a fundamental connection: the invexity of the summation function, obtained by applying a unidimensional real function to distinct entries of a vector, hinges upon the invexity of this underlying function.

Lemma 1 (Invexity of Function Sum). Let $g: \mathbb{R}^n \to \mathbb{R}$ be a function defined as

$$g(\boldsymbol{x}) = \sum_{i=1}^{n} r(\boldsymbol{x}[i]), \tag{1}$$

where $r: \mathbb{R} \to \mathbb{R}$. If r(w) is an invex function then g(x) is also invex.

Proof. Let $g: \mathbb{R}^n \to \mathbb{R}$ be a function defined as $g(x) = \sum_{i=1}^n r(x[i])$. Assume $r: \mathbb{R} \to \mathbb{R}$ is invex. Then, from the invexity of r(w) we have that there exists $\eta_r: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ such that

$$r(w_1) - r(w_2) \ge \zeta_{w_2} \cdot \eta_r(w_1, w_2),$$
 (2)

for all $w_1, w_2 \in \mathbb{R}$, and any $\zeta_{w_2} \in \partial r(w_2)$. Take $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n$. Then, we have

$$r(\boldsymbol{x}[i]) - r(\boldsymbol{y}[i]) \ge \zeta_{\boldsymbol{y}[i]} \cdot \eta_r(\boldsymbol{x}[i], \boldsymbol{y}[i]), \tag{3}$$

for any $i=1,\ldots,n$, and $\forall \zeta_{\boldsymbol{y}[i]} \in \partial r(\boldsymbol{y}[i])$. From the above inequality we conclude that for any $\boldsymbol{\zeta} \in \partial g(\boldsymbol{y})$

$$\sum_{i=1}^{n} r(\boldsymbol{x}[i]) - r(\boldsymbol{y}[i]) \ge \sum_{i=1}^{n} \zeta_{\boldsymbol{y}[i]} \cdot \eta_{r}(\boldsymbol{x}[i], \boldsymbol{y}[i])$$

$$g(\boldsymbol{x}) - g(\boldsymbol{y}) \ge \sum_{i=1}^{n} \zeta_{\boldsymbol{y}[i]} \cdot \eta_{r}(\boldsymbol{x}[i], \boldsymbol{y}[i])$$

$$g(\boldsymbol{x}) - g(\boldsymbol{y}) \ge \zeta^{T} \eta(\boldsymbol{x}, \boldsymbol{y}),$$
(4)

such that $\eta(\boldsymbol{x}, \boldsymbol{y}) = [\eta_r(\boldsymbol{x}[1], \boldsymbol{y}[1]), \dots, \eta_r(\boldsymbol{x}[n], \boldsymbol{y}[n])]^T$, and $\boldsymbol{\zeta} = [\zeta_{\boldsymbol{y}[1]}, \dots, \zeta_{\boldsymbol{y}[n]}]^T$. Thus, from Eq. (4) the results holds.

Now we prove Theorem 1 using the result in Lemma 1

Proof. We proceed by cases.

1. Let f be an admissible function. Then according to Definition 4 we know that $f(\boldsymbol{x}) = \sum_{i=1}^n s(|\boldsymbol{x}[i]|)$, for some $s:[0,\infty) \to [0,\infty)$ with s'(w)>0 where $w\in(0,\infty)$. Since the structure of f fits assumption in Lemma 1 then if s(w) is invex then $f(\boldsymbol{x})$ is invex. Take $w_1,w_2\in(0,\infty)$, and define $\eta:(0,\infty)^2\to\mathbb{R}$ as

$$\eta(w_1, w_2) = \begin{cases}
0 & \text{if } s(w_1) > s(w_2) \\
\frac{s(w_1) - s(w_2)}{(\zeta_*)^2} \zeta_* & \text{otherwise},
\end{cases}$$
(5)

where ζ_* is an element in $\partial s(w_2)$ of minimal absolute value which satisfies $\frac{\zeta_* \cdot \zeta}{(\zeta_*)^2} \ge 1$ for all $\zeta \in \partial s(w_2)$. The existence of ζ_* is guaranteed because s'(w) > 0 and therefore $0 \notin \partial s(w_2)$ [1, Page 64]. From the above equation it is clear that for all w_1, w_2 we have

$$s(w_1) - s(w_2) \ge \eta(w_1, w_2) \cdot \zeta_{w_2}, \quad \forall \zeta_{w_2} \in \partial s(w_2)$$

$$\tag{6}$$

which means s is invex. Therefore f(x) is invex.

- 2. Let f, g be an admissible functions. Considering the result in previous statement, it is enough to show that $h = \beta f + \alpha g$ is an admissible function for any $\beta, \alpha \geq 0$. By definition we have that h(0) = 0, and h'(w) > 0. In addition, since both f, g are positive functions it implies that $h(w)/w^2$ is non-increasing. Thus the result holds.
- 3. Let $f,g:\mathbb{R}^n\to\mathbb{R}$ be two admissible functions as in Definition 4, such that $f(\boldsymbol{x})=\sum_{i=1}^n s_f(|\boldsymbol{x}[i]|)$, and $g(\boldsymbol{x})=\sum_{i=1}^n s_g(|\boldsymbol{x}[i]|)$. Define $h_c(\boldsymbol{x})=\sum_{i=1}^n (s_f\circ s_g)(|\boldsymbol{x}[i]|)$. Then, observe that $(s_f\circ s_g)(0)=s_f(s_g(0))=s_f(0)=0$. Additionally, since $s_f'(w),s_g'(w)>0$, then $(s_f\circ s_g)'(w)>0$ (by the chain rule) for all $w\in(0,\infty)$. Finally, we know that $s_f'(w),s_g'(w)>0$ implies $s_f(w),s_g(w)>0$ to be strictly increasing. Therefore, for any $w_1< w_2$ we know $(s_f\circ s_g)(w_1)<(s_f\circ s_g)(w_2)$, which implies $\frac{(s_f\circ s_g)(w_1)}{(w_1)^2}>\frac{(s_f\circ s_g)(w_2)}{(w_2)^2}$. Thus the result holds.
- 4. This holds trivially from definition of admissible function.
- 5. This holds trivially from definition of admissible function.

Thus we proved the first part of this theorem.

2. PROOF OF THEOREM 2

In this proof we seek to guarantee that the list of functions in Theorem 2 are admissible functions, and we proceed by cases.

Fig. 1: Plot of r(w)/w for r(w) being (a) Eq. (7) for c=0.1, and (c) Eq. (8) and w>0 to check that $r(w)/w^2$ is non-increasing on $(0,\infty)$

Eq. (5)

Proof. Take $r(w)=\log(1+\frac{w^2}{\delta^2})$ for any $w\neq 0$, and fixed $\delta\in\mathbb{R}$. It is trivial to see that r(0)=0, that r(w) it is not identically zero, and non-decreasing on $(0,\infty)$. Then, we just need to show that $r(w)/w^2$ is non-increasing on $(0,\infty)$. Observe that the first derivative of $h(w)=r(w)/w^2$ is given by $h'(w)=\frac{2\left(\frac{w^2}{\delta^2+w^2}-\log(1+\frac{w^2}{\delta^2})\right)}{w^3}$. Since $\frac{w^2}{\delta^2+w^2}-\log(1+\frac{w^2}{\delta^2})<0$, then we have that h'(w)<0, which leads to conclude that $r(w)/w^2$ is non-increasing on $(0,\infty)$.

Eq. (6)

Proof. Take $r(w) = \frac{2w^2}{w^2 + 4\delta^2}$ for any $w \neq 0$, and fixed $\delta \in \mathbb{R}$. It is trivial to see that r(0) = 0, that r(w) it is not identically zero, and non-decreasing on $(0, \infty)$. Then, we just need to show that $r(w)/w^2$ is non-increasing on $(0, \infty)$. Observe that $h(w) = r(w)/w^2$ is given by $h(w) = \frac{2}{w^2 + 4\delta^2}$, which leads to conclude that $r(w)/w^2$ is non-increasing on $(0, \infty)$. Then it is clear that $r(w)/w^2$ is non-increasing on $(0, \infty)$.

Eq. (7)

Take $r(w) = \frac{|\alpha-2|}{\alpha} \left(\left(\frac{(w/c)^2}{|\alpha-2|} + 1 \right)^{\alpha/2} - 1 \right)$ for any $w \neq 0$, and fixed $\alpha \in \mathbb{R}, c > 0$. It is trivial to see that r(0) = 0, that r(w) it is not identically zero, and non-decreasing on $(0, \infty)$. Then, we just need to show that $r(w)/w^2$ is non-increasing on $(0, \infty)$. For easy of exposition we present in Figure 1(b) the plot of $r(w)/w^2$. Then it is clear that $r(w)/w^2$ is non-increasing on $(0, \infty)$.

Eq. (8)

Take $r(w) = \log\left(1 + w^2\right) - \frac{w^2}{2w^2 + 2}$ for any $w \neq 0$. It is trivial to see that r(0) = 0, that r(w) it is not identically zero, and non-decreasing on $(0, \infty)$. Then, we just need to show that $r(w)/w^2$ is non-increasing on $(0, \infty)$. For easy of exposition we present in Figure 1(c) the plot of $r(w)/w^2$. Then it is clear that $r(w)/w^2$ is non-increasing on $(0, \infty)$.

3. PROOF OF THEOREM 3

Before proving this theorem, we present an auxiliary theoretical result needed to ensure the update steps of $\boldsymbol{x}^{(t+1)}$ and $\boldsymbol{z}^{(t+1)}$ are unique when assuming f, and g are admissible functions.

Lemma 2. Let $f: \mathbb{R}^n \to \mathbb{R}$ be an admissible function. Take $\boldsymbol{x} \in \mathbb{R}^n$ such that $\|\boldsymbol{x}\|_{\infty} < \infty$. If $f(\boldsymbol{x}) < \infty$, then $\|\boldsymbol{x}\|_2^2 < \frac{1}{c(\boldsymbol{x})} f(\boldsymbol{x})$ for a constant $c(\boldsymbol{x}) > 0$.

Proof. Since f is an admissible function, then $f(x) = \sum_{i=1}^{n} s(x[i])$ and $s(w)/w^2$ is nonincreasing. Therefore, we have for all $i = 1, \ldots, n$

$$\frac{s(\boldsymbol{x}[i])}{\boldsymbol{x}^2[i]} \ge \frac{s(\|\boldsymbol{x}\|_{\infty})}{\|\boldsymbol{x}\|_{\infty}^2} = c(\boldsymbol{x}) > 0. \tag{7}$$

Thus, we obtain

$$\|\boldsymbol{x}\|_{2}^{2} \leq \frac{1}{c(\boldsymbol{x})} f(\boldsymbol{x}). \tag{8}$$

Thus the result holds.

Now, we proceed to prove Theorem 3 following a similar strategy as presented in [2].

Proof. Since $(\boldsymbol{x}^*, \boldsymbol{z}^*, \boldsymbol{v}^*)$ is a saddle point for \mathcal{L}_0 , we have

$$\mathcal{L}_0(\boldsymbol{x}^*, \boldsymbol{z}^*, \boldsymbol{v}^*) \le \mathcal{L}_0(\boldsymbol{x}^{(t+1)}, \boldsymbol{z}^{(t+1)}, \boldsymbol{v}^*).$$
 (9)

Using $\boldsymbol{A}\boldsymbol{x}^* + \boldsymbol{B}\boldsymbol{z}^* = \boldsymbol{y}$ the left hand side is $h^* = \inf\{f(\boldsymbol{x}) + g(\boldsymbol{z}) \mid \boldsymbol{A}\boldsymbol{x} + \boldsymbol{B}\boldsymbol{z} = \boldsymbol{y}\}$. With $h^{(t+1)} = f(\boldsymbol{x}^{(t+1)}) + g(\boldsymbol{z}^{(t+1)})$, this can be written as

$$h^* \le h^{(t+1)} + (v^*)^T q^{(t+1)}, \tag{10}$$

for $\boldsymbol{q}^{(t+1)} = \boldsymbol{A}\boldsymbol{x}^{(t+1)} + \boldsymbol{B}\boldsymbol{z}^{(t+1)} - \boldsymbol{y}$. Now, by definition, $\boldsymbol{x}^{(t+1)}$ minimizes $\mathcal{L}_{\rho}(\boldsymbol{x}, \boldsymbol{z}^{(t)}, \boldsymbol{v}^{(t)})$. From Lemma 2 and the fact that $\rho \sigma_n(\boldsymbol{A}) \geq 1$, $\rho \sigma_p(\boldsymbol{B}) \geq 1$ we can appeal to [3, Proposition 5.2.13] that ensures the necessary and sufficient optimality condition for $\mathcal{L}_{\rho}(\boldsymbol{x}, \boldsymbol{z}^{(t)}, \boldsymbol{v}^{(t)})$ is given by

$$\mathbf{0} \in \partial \mathcal{L}_{\rho}(\mathbf{x}^{(t+1)}, \mathbf{z}^{(t)}, \mathbf{z}^{(t)}) = \partial f(\mathbf{x}^{(t+1)}) + \mathbf{A}^{T} \mathbf{v}^{(t)} + \rho \mathbf{A}^{T} (\mathbf{A} \mathbf{x}^{(t+1)} + \mathbf{B} \mathbf{z}^{(t)} - \mathbf{y}). \tag{11}$$

Since $v^{(t+1)} = v^{(t)} + \rho q^{(t+1)}$, we can plug in $v^{(t)} = v^{(t+1)} - \rho q^{(t+1)}$ and rearrange to obtain

$$\mathbf{0} \in \partial f(\mathbf{x}^{(t+1)}) + \mathbf{A}^{T}(\mathbf{v}^{(t+1)} - \rho \mathbf{B}(\mathbf{z}^{(t+1)} - \mathbf{z}^{(t)})). \tag{12}$$

This implies that $x^{(t+1)}$ minimizes

$$f(x) + (v^{(t+1)} - \rho B(z^{(t+1)} - z^{(t)}))^T Ax.$$
 (13)

A similar argument shows that $z^{(t+1)}$ minimizes $g(z) + (v^{(t+1)})^T Bz$. It follows that

$$f(\boldsymbol{x}^{(t+1)}) + (\boldsymbol{v}^{(t+1)} - \rho \boldsymbol{B}(\boldsymbol{z}^{(t+1)} - \boldsymbol{z}^{(t)}))^T \boldsymbol{A} \boldsymbol{x}^{(t+1)}$$

$$\leq f(\boldsymbol{x}^*) + (\boldsymbol{v}^{(t+1)} - \rho \boldsymbol{B}(\boldsymbol{z}^{(t+1)} - \boldsymbol{z}^{(t)}))^T \boldsymbol{A} \boldsymbol{x}^*,$$
(14)

and that

$$g(z^{(t+1)}) + (v^{(t+1)})^T B z^{(t+1)} \le g(z^*) + (v^{(t+1)})^T B z^*.$$
 (15)

Adding the two inequalities above, using $Ax^* + Bz^* = y$, and rearranging, we obtain

$$h^{(t+1)} - h^* \le -(\boldsymbol{v}^{(t+1)})^T \boldsymbol{q}^{(t+1)} - \rho (\boldsymbol{B}(\boldsymbol{z}^{(t+1)} - \boldsymbol{z}^{(t)}))^T (-\boldsymbol{q}^{(t+1)} + \boldsymbol{B}(\boldsymbol{z}^{(t+1)} - \boldsymbol{z}^*)). \tag{16}$$

On the other hand, adding Eqs. (10), and (16), regrouping terms, and multiplying through by 2 gives

$$2(\boldsymbol{v}^{(t+1)} - \boldsymbol{v}^*)^T \boldsymbol{q}^{(t+1)} - 2\rho(\boldsymbol{B}(\boldsymbol{z}^{(t+1)} - \boldsymbol{z}^{(t)}))^T \boldsymbol{q}^{(t+1)} + 2\rho(\boldsymbol{B}(\boldsymbol{z}^{(t+1)} - \boldsymbol{z}^{(t)}))^T (\boldsymbol{B}(\boldsymbol{z}^{(t+1)} - \boldsymbol{z}^*)) \le 0.$$
(17)

Now by rewriting the first term in Eq. (17), and substituting $v^{(t+1)} = v^{(t)} + \rho q^{(t+1)}$ it gives

$$2(\boldsymbol{v}^{(t+1)} - \boldsymbol{v}^*)^T \boldsymbol{q}^{(t+1)} + \rho \|\boldsymbol{q}^{(t+1)}\|_2^2 + \rho \|\boldsymbol{q}^{(t+1)}\|_2^2, \tag{18}$$

and substituting $m{q}^{(t+1)} = (1/
ho)(m{v}^{(t+1)} - m{v}^{(t)})$ in the first two terms gives

$$(2/\rho)(\boldsymbol{v}^{(t)} - \boldsymbol{v}^*)^T (\boldsymbol{v}^{(t+1)} - \boldsymbol{v}^{(t)}) + (1/\rho) \|\boldsymbol{v}^{(t+1)} - \boldsymbol{v}^{(t)}\|_2^2 + \rho \|\boldsymbol{q}^{(t+1)}\|_2^2.$$
(19)

Since $q^{(t+1)} - q^{(t)} = (q^{(t+1)} - q^*) - (q^{(t)} - q^*)$, this can be written as

$$(1/\rho)(\|\boldsymbol{v}^{(t+1)} - \boldsymbol{v}^*\|_2^2 - \|\boldsymbol{v}^{(t)} - \boldsymbol{v}^*\|_2^2) + \rho\|\boldsymbol{q}^{(t+1)}\|_2^2. \tag{20}$$

We now rewrite the remaining terms

$$\rho \|\boldsymbol{q}^{(t+1)}\|_{2}^{2} - 2\rho (\boldsymbol{B}(\boldsymbol{z}^{(t+1)} - \boldsymbol{z}^{(t)}))^{T} \boldsymbol{q}^{(t+1)} + 2\rho (\boldsymbol{B}(\boldsymbol{z}^{(t+1)} - \boldsymbol{z}^{(t)}))^{T} (\boldsymbol{B}(\boldsymbol{z}^{(t+1)} - \boldsymbol{z}^{*})), \tag{21}$$

where $\rho \| \boldsymbol{q}^{(t+1)} \|_2^2$ is taken from Eq. (20). Substituting

$$z^{(t+1)} - z^* = (z^{(t+1)} - z^{(t)}) + (z^{(t)} - z^*),$$
(22)

in the last term gives

$$\rho \| \boldsymbol{q}^{(t+1)} - \boldsymbol{B}(\boldsymbol{z}^{(t+1)} - \boldsymbol{z}^{(t)}) \|_{2}^{2} + \rho \| \boldsymbol{B}(\boldsymbol{z}^{(t+1)} - \boldsymbol{z}^{(t)}) \|_{2}^{2} + 2\rho (\boldsymbol{B}(\boldsymbol{z}^{(t+1)} - \boldsymbol{z}^{(t)}))^{T} (\boldsymbol{B}(\boldsymbol{z}^{(t+1)} - \boldsymbol{z}^{*})),$$
(23)

and substituting

$$z^{(t+1)} - z^{(t)} = (z^{(t+1)} - z^*) - (z^{(t)} - z^*),$$
(24)

in the last two terms, we get

$$\rho \|\boldsymbol{q}^{(t+1)} - \boldsymbol{B}(\boldsymbol{z}^{(t+1)} - \boldsymbol{z}^{(t)})\|_{2}^{2} + \rho \left(\|\boldsymbol{B}(\boldsymbol{z}^{(t+1)} - \boldsymbol{z}^{*})\|_{2}^{2} - \|\boldsymbol{B}(\boldsymbol{z}^{(t)} - \boldsymbol{z}^{*})\|_{2}^{2}\right). \tag{25}$$

With the previous step, this implies that Eq. (17) can be written as

$$V^{(t)} - V^{(t+1)} \ge \rho \| \boldsymbol{q}^{(t+1)} - \boldsymbol{B}(\boldsymbol{z}^{(t+1)} - \boldsymbol{z}^{(t)}) \|_{2}^{2}, \tag{26}$$

where $V^{(t)} = (1/\rho) \| \boldsymbol{v}^{(t)} - \boldsymbol{v}^* \|_2^2 + \rho \| \boldsymbol{B}(\boldsymbol{z}^{(t)} - \boldsymbol{z}^*) \|_2^2$. Now, we show that the middle term $-2\rho(\boldsymbol{q}^{(t+1)})^T(\boldsymbol{B}(\boldsymbol{z}^{(t+1)} - \boldsymbol{z}^{(t)}))$ of the expanded right hand side of Eq. (26) is positive. To see this, recall that $z^{(t+1)}$ minimizes $g(z) + (v^{(t+1)})^T B z$, and $z^{(t)}$ minimizes $g(z) + (v^{(t)})^T B z$, so we can add

$$g(z^{(t+1)}) + (v^{(t+1)})^T B z^{(t+1)} \le g(z^{(t)}) + (v^{(t+1)})^T B z^{(t)},$$
 (27)

and

$$g(z^{(t)}) + (v^{(t)})^T B z^{(t)} \le g(z^{(t+1)}) + (v^{(t)})^T B z^{(t+1)},$$
 (28)

to get that

$$(\boldsymbol{v}^{(t+1)} - \boldsymbol{v}^{(t)})^T \boldsymbol{B} (\boldsymbol{z}^{(t+1)} - \boldsymbol{z}^{(t)}) \le 0.$$
 (29)

Substituting $v^{(t+1)} - v^{(t)} = \rho q^{(t+1)}$ gives the result, since $\rho > 0$. Thus, from Eqs. (26), and (29) we obtain

$$V^{(t+1)} < V^{(t)} - \rho \|\boldsymbol{q}^{(t+1)}\|_{2}^{2} - \rho \|\boldsymbol{B}(\boldsymbol{z}^{(t+1)} - \boldsymbol{z}^{(t)})\|_{2}^{2}, \tag{30}$$

which states that $V^{(t)}$ decreases in each iteration by an amount that depends on the norm of the residual $q^{(t)}$ and on the change in $z^{(t)}$ over one iteration. Then, because $V^{(t)} \leq V^{(0)}$, it follows that $v^{(t)}$ and $Bz^{(t)}$ are bounded. Iterating the inequality above gives that

$$\rho \sum_{t=0}^{\infty} \left(\|\boldsymbol{q}^{(t+1)}\|_{2}^{2} + \|\boldsymbol{B}(\boldsymbol{z}^{(t+1)} - \boldsymbol{z}^{(t)})\|_{2}^{2} \right) \le V^{(0)}, \tag{31}$$

which implies that $q^{(t)} = Ax^{(t)} + Bz^{(t)} - y \rightarrow 0$, and $B(z^{(t+1)} - z^{(t)}) \rightarrow 0$ as $t \rightarrow \infty$. Additionally, applying [4, Lemma 1.2] on Eq. (31) we obtain a convergence rate for $q^{(t)}$, $B(z^{(t+1)}-z^{(t)})$ to zero of O(1/t). Eq. (31) also implies that the right hand side in Eq. (16) goes to zero as $t \to \infty$, because $B(z^{(t+1)} - z^*)$ is bounded and both $q^{(t+1)}$ and $B(z^{(t+1)} - z^{(t)})$ go to zero. The right hand side in Eq. Theorem 3 holds.

3.1. Remarks on Stability of ADMM

In this section we wish to emphasize that the stability and reliability (of the ADMM) can be established from the following: 1) ADMM decomposes the overall optimization problem into a number of simpler subproblems that have a unique solution (as rigorously demonstrated in previous section), aiding convergence and stability. 2) As shown in previous section, the sequences $\boldsymbol{x}^{(t+1)}$, $\boldsymbol{z}^{(t+1)}$, and $\boldsymbol{v}^{(t+1)}$, constructed by ADMM algorithm, always converge to global optima irrespective of the initial states $\boldsymbol{x}^{(0)}$, $\boldsymbol{z}^{(0)}$, and $\boldsymbol{v}^{(0)}$, conferring a steadfast assurance of reliable attainment of optimal solutions, and finally, 3) The effectiveness of the ADMM is well demonstrated in the literature using a range of real-world applications [5–11], which we believe can reaffirm the reliability (and potentially the stability) of ADMM.

3.2. Proof of Lemma 1

In this section we prove a prox-regular function is quasi-invex. To that end, we introduce the following definition first.

Definition 1. Let $f: \mathbb{R}^n \to \mathbb{R}$ be a lower semi-continuous function, and $u \in \mathbb{R}^n$. Then f is said to be *prox-regular* if $f(x) + \frac{1}{2\lambda} ||x - u||_2^2$ is convex for some $\lambda > 0$.

Now we proceed with the proof.

Proof. Let $f: \mathbb{R}^n \to \mathbb{R}$ be a prox-regular function for some $\lambda > 0$. Then we know that for any $x, y \in \mathbb{R}^n$

$$f(x) - f(y) \ge \zeta^{T}(x - y) - \frac{1}{2\lambda} ||x - y||_{2}^{2}$$
 (32)

for all $\zeta \in \partial f(y)$. Define function $\eta(x, y)$ as

$$\eta(\boldsymbol{x}, \boldsymbol{y}) = \begin{cases}
0 & \text{if } \mathbf{0} \in \partial f(\boldsymbol{y}) \\
\boldsymbol{x} - \boldsymbol{y} - \frac{\|\boldsymbol{x} - \boldsymbol{y}\|_2^2}{2\lambda \|\boldsymbol{\zeta}^*\|_2^2} \boldsymbol{\zeta}^* & \text{otherwise}
\end{cases},$$
(33)

where ζ^* is an element in $\partial f(y)$ of minimum norm. Take $x, y \in \mathbb{R}^n$ and assume

$$f(\boldsymbol{x}) - f(\boldsymbol{y}) \le 0. \tag{34}$$

Observe that if $\mathbf{0} \in \partial f(\mathbf{y})$ then we get $\boldsymbol{\zeta}^T \eta(\mathbf{x}, \mathbf{y}) = 0$, for all $\boldsymbol{\zeta} \in \partial f(\mathbf{y})$. Additionally, if $\mathbf{0} \not\in \partial f(\mathbf{y})$, then from Eq. (32) we obtain

$$0 \ge \boldsymbol{\zeta}^{T}(\boldsymbol{x} - \boldsymbol{y}) - \frac{1}{2\lambda} \|\boldsymbol{x} - \boldsymbol{y}\|_{2}^{2}$$

$$\ge \boldsymbol{\zeta}^{T} \left(\boldsymbol{x} - \boldsymbol{y} - \frac{\|\boldsymbol{x} - \boldsymbol{y}\|_{2}^{2}}{2\lambda \|\boldsymbol{\zeta}^{*}\|_{2}^{2}} \boldsymbol{\zeta}^{*}\right) = \boldsymbol{\zeta}^{T} \eta(\boldsymbol{x}, \boldsymbol{y}),$$
(35)

where the second inequality comes from the fact that ζ^* is an element in $\partial f(y)$ of minimum norm i.e. $\frac{\zeta^T \zeta^*}{\|\zeta^*\|_2^2} \geq 1$ for all $\zeta \in \partial f(y)$ [12, Theorem 2.4.4]. From the above inequality the result holds.

4. REFERENCES

- [1] Shashi K Mishra and Giorgio Giorgi, Invexity and optimization, vol. 88, Springer Science & Business Media, 2008.
- [2] Neal Parikh and Stephen Boyd, "Proximal algorithms," Foundations and Trends in optimization, vol. 1, no. 3, pp. 127–239, 2014.
- [3] Diethard Ernst Pallaschke and Stefan Rolewicz, Foundations of mathematical optimization: convex analysis without linearity, vol. 388, Springer Science & Business Media, 2013.
- [4] Wei Deng, Ming-Jun Lai, Zhimin Peng, and Wotao Yin, "Parallel multi-block admm with O(1/k) convergence," *Journal of Scientific Computing*, vol. 71, pp. 712–736, 2017.
- [5] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, Jonathan Eckstein, et al., "Distributed optimization and statistical learning via the alternating direction method of multipliers," *Foundations and Trends*® *in Machine learning*, vol. 3, no. 1, pp. 1–122, 2011.
- [6] Yu Wang, Wotao Yin, and Jinshan Zeng, "Global convergence of ADMM in nonconvex nonsmooth optimization," *Journal of Scientific Computing*, vol. 78, pp. 29–63, 2019.
- [7] Roland Glowinski, "On alternating direction methods of multipliers: a historical perspective," *Modeling, simulation and optimization for science and technology*, pp. 59–82, 2014.
- [8] Ji Li, "Solving blind ptychography effectively via linearized alternating direction method of multipliers," *Journal of Scientific Computing*, vol. 94, no. 1, pp. 19, 2023.
- [9] Junli Liang, Petre Stoica, Yang Jing, and Jian Li, "Phase retrieval via the alternating direction method of multipliers," *IEEE Signal Processing Letters*, vol. 25, no. 1, pp. 5–9, 2017.
- [10] Xingyu Xie, Jianlong Wu, Guangcan Liu, Zhisheng Zhong, and Zhouchen Lin, "Differentiable linearized ADMM," in *International Conference on Machine Learning*. PMLR, 2019, pp. 6902–6911.
- [11] Jian Sun, Huibin Li, Zongben Xu, et al., "Deep ADMM-Net for compressive sensing MRI," *Advances in neural information processing systems*, vol. 29, 2016.
- [12] Mokhtar S Bazaraa and Chitharanjan M Shetty, Foundations of optimization, vol. 122, Springer Science & Business Media, 2012.