5 Эквивалентность конечных автоматов. Минимизация конечных автоматов

5.1 Эквивалентность конечных автоматов

Для сравнения поведений конечных автоматов как преобразователей входных последовательностей изучим ряд отношений эквивалентности на множестве автоматов и их состояний.

5.1.1 Отличимость и неотличимость состояний автоматов

Пусть $V=(A,Q,B,\varphi,\psi)$ и $V'=(A,Q',B,\varphi',\psi')$ — конечные автоматы. Если для любого слова $\alpha\in A^*$ выполняется

$$\bar{\psi}(q,\alpha) = \bar{\psi}'(q',\alpha),$$

где $q \in Q, q' \in Q'$, то состояние q автомата V называется неотличимым от состояния q'автомата V'. Иначе (то есть если $\bar{\psi}(q,\alpha) \neq \bar{\psi}'(q',\alpha)$ при некотором слове α) состояние q автомата V называется отличимым от состояния q' автомата V'. В последнем случае говорят, что состояния q и q' отличимы словом α или что это слово отличает эти состояния.

5.1.2 Отношение эквивалентности на множестве состояний автомата. Автоматы приведённого вида

При V=V' имеем отношения отличимости и неотличимости на множестве состояний автомата V. Неотличимость состояний q и q' обозначают

$$q \sim q'$$
.

Отношение неотличимости \sim является отношением эквивалентности и разбивает множество Q состояний автомата на классы эквивалентности

$$[q]_{\sim} = \{q' \setminus q \sim q'\}$$

попарно неотличимых состояний.

Таким образом,

$$Q = Q_1 \cup Q_2 \cup \ldots \cup Q_i \ldots \cup Q_s,$$

где

$$Q_i = [q_i]_\sim, i \neq j \to Q_i \cap Q_j = \emptyset$$
 или $Q_i = Q_j$.

Если любые два состояния автомата отличимы, то автомат называется *автоматом приведенного вида*. В этом случае классы эквивалентности одноэлементные:

$$[q]_{\sim} = \{q\}.$$

5.1.3 Отношение эквивалентности на множестве автоматов

Пусть для любого состояния q автомата V существует неотличимое от q состояние q' автомата V' и для любого состояния q' автомата V' существует состояние q автомата V неотличимое от состояния q'. Тогда автоматы V и V' называются n неотличимыми, поскольку их нельзя различить по внешним реакциям на одно и то же входное слово. Неотличимость автоматов V и V' обозначается

$$V \approx V'$$

и является отношением эквивалентности, которое разбивает класс K(A,B) всех конечных автоматов вида (A,Q,B,φ,ψ) , где Q — конечное подмножество некоторого фиксированного счетного множества U, на классы неотличимых автоматов. Класс эквивалентности, содержащий данный автомат V, обозначается $K_V(A,B):K_V(A,B)=\{V',V\approx V'\}$.

5.1.4 Изоморфизм конечных автоматов

Конечные автоматы $V=(A,Q,B,\varphi,\psi)$ и $V'=(A,Q',B,\varphi'\psi')$ называются изоморфными, если существует биекция $\xi:Q\to Q'$, при которой выполняются следующие соотношения:

$$\xi(\varphi(q, a)) = \varphi'(\xi(q), a), \psi(q, a) = \psi'(\xi(q), a).$$

Очевидно, что изоморфные автоматы неотличимы, нетрудно привести примеры неизоморфных неотличимых автоматов.

5.1.5 Теорема Мура

Теорема 5.1 (Мур, 1956.) Пусть A и B — конечные множества и $V \in K(A,B)$. Тогда класс $K_V(A,B)$ содержит с точностью до изоморфизма единственный автомат приведенного вида.

Доказательство. Сначала покажем, что в указанном классе имеется автомат V' приведенного вида, а затем, что любой другой автомат V'' приведенного вида из этого класса изоморфен автомату V'.

Пусть $V = (A, Q, B, \varphi, \psi)$ и множество Q разбито на классы

$$Q_1,\ldots,Q_{n'}$$

попарно неотличимых состояний. Рассмотрим два состояния q и q' из некоторого класса $Q_i, i \in \{1, \ldots, n'\}$ и элемент $a \in A$. Если $\varphi(q, a) \in Q_j$ и $\varphi(q', a) \in Q_{j'}$, то j = j', поскольку в противном случае найдется слово $\alpha, \alpha \in A^*$, для которого

$$\bar{\psi}(\varphi(q,a),\alpha) \neq \bar{\psi}(\varphi(q',a)\alpha).$$

(Слово, отличающее состояния $\varphi(q,a) \in Q_j$ и $\varphi(q',a) \in Q_{j'}$). Но в этом случае $(j \neq j')$ слово $a\alpha$ будет отличать состояния q,q' из одного и того же класса неотличимости.

Теперь можно определить функцию

$$\varphi': \{Q_1, \dots, Q_{n'}\} \times A \to \{Q_1, \dots, Q_{n'}\}$$

следующим образом:

$$\varphi'(Q_i, a) = [\varphi(q, a)]_{\approx}, q \in Q_i.$$

В силу неотличимости состояний в классах Q_i

$$\forall q, q' \in Q_i \forall a \in A\psi(q, a) = \psi(q', a).$$

Поэтому однозначно определяется и функция

$$\psi': \{Q_1, \dots, Q_{n'}\} \times A \to B,$$

а именно

$$\psi'(Q_i, a) = \psi(q, a), q \in Q_i.$$

Рассмотрим теперь автомат

$$V' = (A, \{Q_1, \dots, Q_{n'}\}, B, \varphi', \psi').$$

Не ограничивая общности, полагаем, что $\{Q_i, i=1,\dots n'\}$ – элементы множества U. Из определения функций φ', ψ' следует, при $q \in Q_i, \alpha \in A^*$ выполняется равенство

$$\bar{\psi}(q,\alpha) = \bar{\psi}'(Q_i,\alpha).$$

Поэтому автоматы V и V' неотличимы:

$$V \approx V'$$

И

$$V' \in K_V(A, B)$$
.

Построенный автомат является автоматом приведённого вида. Действительно, если $[q]_{\sim} \neq [q']_{\sim}$, то состояния q и q' отличимы, то есть, найдётся слово α , такое, что

$$\bar{\psi}(q,\alpha) \neq \bar{\psi}(q',\alpha)$$

и, следовательно,

$$\bar{\psi}'([q]_{\sim}, \alpha) \neq \bar{\psi}'([q']_{\sim}, \alpha).$$

Таким образом, состояния $[q]_\sim$ и $[q']_\sim$ отличимы словом α и автомат V' является автоматом приведённого вида.

Пусть

$$V'' = (A, Q'', B, \varphi'', \psi''), Q'' = \{Q''_1, \dots Q'''_{n''}\}$$

– другой автомат приведенного вида из класса $K_V(A, B)$. Покажем, что он изоморфен автомату V'.

Каждому состоянию Q_i автомата V' соответствует единственное (в силу того, что автомат V'' является автоматом приведённого вида) неотличимое состояние Q_j автомата V'' и наоборот, каждому состоянию Q_j автомата V'' соответствует единственное неотличимое состояние Q_i автомата V'. Указанное соответствие ξ влечет равенство чисел состояний (n'=n'') и является биекцией ξ :

$$Q_j = \xi(Q_i), \quad Q_i = \xi^{-1}(Q_j).$$

Так как Q_i и $\xi(Q_i)$ неотличимы, то для любого $a \in A$ неотличимы также состояния $\varphi'(Q_i, a)$ и $\varphi''(\xi(Q_i), a)$ автоматов V' и V''. Это означает, что

$$\xi(\varphi'(Q_i, a)) = \varphi''(\xi(Q_i), a).$$

Равенство

$$\psi'(Q_i, a) = \psi''(\xi(Q_i), a)$$

вытекает из неотличимости состояний $Q_i, \xi(Q_i)$. Таким образом, автоматы V' и изоморфны. Теорема доказана.

5.2 Минимизация конечных автоматов

5.2.1 Разбиения, согласованные по выходу

Пусть $\pi = \{Q_i, \dots Q_s\}$ — некоторое разбиение множества состояний автомата $V = (A, Q, B, \varphi, \psi)$.

Это разбиение называется согласованным по выходу, если для любого элемента разбиения $X \in \pi$, для любых состояний $q_i, q_j \in X$ и любого символа $a \in A$ выполняется тождественно $\psi(q_i, a) = \psi(q_j, a)$ (то есть столбцы таблицы выходов, соответствующие состояниям q_i, q_j и, следовательно, любым состояниям множества X совпадают).

5.2.2 Разбиения, согласованные по перходам

Разбиение π называется допустимым (согласованным по переходам), если для любых $X \in \pi, a \in A$ найдется такое подмножество $Y_a \in \pi$, что $\varphi(X, a) \subseteq Y_a$. Здесь $\varphi(X, a) = \{q' \setminus q = \varphi(q, a), q \in X\}$.

5.2.3 Теоремы о разбиениях на классы неотличимых состояний

Теорема 5.2. Разбиение множества Q состояний конечного автомата на классы неотличимых состояний является разбиением, согласованным по выходам и переходам, содержащим наименьшее число подмножеств, и наоборот, разбиение обладающее указанными свойствами и состоящее из наименьшего числа подмножеств, является разбиением на классы неотличимых состояний.

Теорема 5.3. Разбиение множества Q на классы неотличимых состояний является подразбиением разбиения, согласованного по выходу, содержащего наименьшее число классов

5.2.4 Алгоритм разбиения на классы эквивалентных состояний

Алгоритм разбиения множества Q состояний автомата на классы неотличимых состояний можно описать следующим образом.

- 1)Построить разбиение на наименьшее число множеств, согласованное по выходу (элементы разбиения включают состояния, которым в таблице выходов соответствуют одинаковые столбцы.)
- 2) Пусть $\pi = \{X_1, \dots, X_s\}$ разбиение, полученное на предыдущем шаге. Построить таблицу переходов для классов разбиения. Строки такой таблицы соответствуют элементам $a \in A$, столбцы элементам множества состояний Q автомата. Элемент X_{ij} таблицы есть то подмножество разбиения, которому принадлежит $\varphi(q_j, a_i)$. Подмножества нового разбиения соответствуют одинаковым столбцам этой таблицы, соответствующих элементам некоторого подмножества предыдущего разбиения.
- 3) Если полученное в п.2 разбиение не совпало с предыдущим, то перейти к п.2.
 - 4) Конец.

5.2.5 Алгоритм построения автомата приведённого вида

Рассматривая классы эквивалентности, полученные по рассмотренному алгоритму, как состояния приведённого автомата, можно построить для него таблицы перходов и выходов.

5.3 Пример

Пусть функции φ, ψ автомата

$$V = (\{a_1, a_2\}, \{q_1, q_2, q_3, q_4, q_5, q_6\}, \{b_1, b_2\}, \varphi, \psi)$$

заданы следующими таблицами переходов и выходов:

T_{φ}	q_1	q_2	q_3	q_4	q_5	q_6
a_1	q_2	q_1	q_4	q_3	q_1	q_1
a_2	q_3	q_3	q_5	q_2	q_6	q_5

T_{ψ}	q_1	q_2	q_3	q_4	q_5	q_6
a_1	b_1	b_1	b_2	b_1	b_2	b_2
a_2	b_2	b_2	b_1	b_2	b_1	b_1

5.3.1 Разбиение на классы эквивалентных состояний

По таблице выходов получаем разбиение, согласованное по выходам:

$$\pi_0 = \{\{q_1, q_2, q_4\}, \{q_3, q_5, q_6\}\} = \{X_1^0, X_2^0\}.$$

Составим таблицу T_{π_0} переходов для классов разбиения π_0 .

T_{π_0}	q_1	q_2	q_4	q_3	q_5	q_6
a_1	X_1^0	X_1^0	X_2^0	X_1^0	X_1^0	X_1^0
a_2	X_2^0	X_2^0	X_1^0	X_2^0	X_2^0	X_2^0

По этой таблице найдем подразбиение

$$\pi_1 = \{\{q_1, q_2\}, \{q_4\}, \{q_3, q_5, q_6\}\} = \{X_1^1, X_2^1, X_3^1\}$$

Таблица T_{π_1} переходов для классов разбиения π_1 имеет вид

T_{π_1}	q_1	q_2	q_4	q_3	q_5	q_6
a_1	X_1^1	X_1^1	X_3^1	X_2^1	X_1^1	X_1^1
a_2	X_3^1	X_3^1	X_1^1	X_3^1	X_3^1	X_3^1

Разбиение π_2 , соответствующее этой таблице следующее:

$$\pi_2 = \{\{q_1, q_2\}, \{q_3\}, \{q_4\}, \{q_5, q_6\}\} = \{X_1^2, X_2^2, X_3^2, X_4^2\}.$$

Ему соответствует таблица T_{π_2}

T_{π_3}	q_1	q_2	q_3	q_4	q_5	q_6
a_1	X_1^2	X_1^2	X_3^2	X_2^2	X_1^2	X_1^2
a_2	X_2^2	X_2^2	X_4^2	X_1^2	X_4^2	X_4^2

Разбиение π_3 , соответствующее таблице T_{π_3} совпадает с разбиением π_2 .

5.3.2Построение приведённого автомата

Рассматривая подмножества полученного разбиения как состояния

$$q'_1, q'_2, q'_3, q'_4$$

приведенного автомата $V'=(A,\{q_1',q_2',q_3',q_4'\},\varphi',\psi')$, построим его таблицы переходов и выходов.

$T_{\varphi'}$	q_1'	q_2'	q_3'	q_4'
a_1	q_1'	q_3'	q_2'	q_1'
a_2	q_2'	q_4'	q_1'	q_4'

$$\begin{array}{c|ccccc} T_{\psi'} & q'_1 & q'_2 & q'_3 & q'_4 \\ \hline a_1 & b_1 & b_2 & b_1 & b_2 \\ a_2 & b_2 & b_1 & b_2 & b_1 \\ \end{array}$$

Замечание. Элементы таблиц определяются следующим образом:

$$T_{\varphi'}(i,j)=[arphi(q_s,a_i)]_pprox=[T_{arphi}(i,s)]_pprox$$
 для любого $q_s\in q_j'.$ $T_{\psi'}(i,j)=\psi(q_s,a_i)=T_{\psi}(i,s)$ для любого $q_s\in q_j'.$

$$T_{\psi'}(i,j) = \psi(q_s,a_i) = T_{\psi}(i,s)$$
 для любого $q_s \in q_i'$

5.4 Упражнения

- 5.1. Убедитесь, что конечные автоматы, построенные в упражнениях 1.1 и 1.2, являются автоматами приведенного вида.
 - 5.2. Минимизируйте автомат, построенный в упражнении 1.3.
- 5.3. Определите для каждой пары состояний автомата приведённого вида, построенного в п. 5.2.2, отличающие эти состояния слова минимальной длины.