Tutorial 1: Basics

Tutorial 1 will take place in week 2. You should prepare solutions, but you don't have to hand them in and they won't get marked.

Exercise 1 Induction Proofs

Recall the principle of doing proofs by mathematical induction.

- 1. Prove by mathematical induction that $n! \ge \operatorname{fib}(n)$ for all $n \ge 0$. Note that fib(n) denotes the nth Fibonnaci number.
- 2. Let a and $r \neq 1$ be real numbers. Prove by mathematical induction the geometric series, i. e. that

$$\sum_{i=0}^{n} a \cdot r^{i} = \frac{a(1 - r^{(n+1)})}{1 - r}$$

holds for all natural numbers n.

Exercise 2 Complexity Notation

Solve Exercise 2.1 in the book of Mehlhorn/Sanders (page 22).

Exercise 3 Complexity Notation

Solve Exercise 2.2 in the book of Mehlhorn/Sanders (page 23).

Exercise 4 Complexity Notation

Solve Exercise 2.3 and 2.4 in the book of Mehlhorn/Sanders (page 23).

Exercise 5 Complexity Notation

Is it true that if $f(n) = \Theta(g(n))$ and $g(n) = \Theta(h(n))$, then $h(n) = \Theta(f(n))$?

Exercise 6 Complexity Notation

Is it true that if f(n) = O(g(n)) and g(n) = O(h(n)), then $h(n) = \Omega(f(n))$?

Exercise 7 Complexity Notation

Is it true that a $\Theta(n^2)$ algorithm always takes longer to run than a $\Theta(\log n)$ algorithm?

${\bf Exercise} \,\, 8 \,\, {\it Complexity Notation}$

For each pair of functions given below, point out the asymptotic relationships that apply: $f = O(g), f = \Theta(g), f = \Omega(g).$

- $f(n) = \sqrt{n}$ and g(n) = log(n)
- f(n) = 1 and g(n) = 2
- $f(n) = 1000 \cdot 2^n$ and $g(n) = 3^n$
- $f(n) = 4^{n+4}$ and $g(n) = 2^{2n+2}$
- f(n) = 5nlog(n) and g(n) = nlog(5n)
- f(n) = n! and g(n) = (n+1)!

Exercise 9 Complexity Notation

Prove that $n^k = o(c^n)$ for any integer k and any c > 1.