Machine Learning using Matlab

Lecture 11 PCA and anomaly detection

Outline

- Dimensionality reduction
- Principal Component Analysis (PCA)
- Anomaly detection
 - Univariate Gaussian distribution
 - Multivariate Gaussian distribution
 - Gaussian mixture model (GMM)
 - One-class Support Vector Machine

Curse of dimensionality

- Data become sparse with increase of dimensionality
- Redundant features, more noise
- Hard to interpret and visualize
- Hard to store and process data (computationally challenging)

Dimensionality reduction

Given a set of $\{x^{(1)}, x^{(2)}, ..., x^{(m)}\}$ with n features (m << n), dimensionality reduction aims to find a set of $\{y^{(1)}, y^{(2)}, ..., y^{(m)}\}$ with k features, where k << n, and preserve some properties of the original data set, such as variance, distance, etc

Figure 1: A frame from a short video clip of Charlie Chaplin in a skit where his hat lifts from his head three times, and he fixes it once. This paper considers the problem of creating "video trajectories" — a representation of changes in a video sequence, based upon the non-linear dimensionality reduction technique called Isomap.

Dimensionality reduction

- Dimensionality reduction can be applied:
 - Compression
 - Visulization
 - Face detection
 - 0 ...
- Dimensionality reduction algorithms can be divided into:
 - Linear: PCA, Locality Preserving Projections (LPP), ...
 - o Non-linear: Isometric feature mapping (Isomap), Laplacian Eigenmaps (LE), ...

PCA - intuition

- Consider a dataset from a survey of pilots for radio-controlled helicopters, where x₁ is the pilot skill, and x₂ captures how much he/she enjoys flying
- The two attributes are strongly correlated,
 i.e., truly enjoy flying become good pilots
- We try to find some diagonal axis capturing the intrinsic piloting "karma" of a person, with only a small amount of noise lying off this axis

PCA

- Objective: to reduce from n-dimension to k-dimension, PCA aims to find k unit vectors $u^{(1)}, u^{(2)}, \dots, u^{(k)}$ onto which to project the data, so as to minimize the projection error
- Minimize the projection error is equivalent to maximize the variance of the projected data
- Note the difference between PCA and linear regression

Data preprocessing

- Normalize mean and variance
 - 1. Let

$$\mu = \frac{1}{m} \sum_{i=1}^{m} x^{(i)}$$

- 2. Replace each $x^{(i)}$ with $x^{(i)}$ - μ
- 3. Let

$$\sigma_j^2 = \frac{1}{m} \sum_i (x_j^{(i)})^2$$

- 4. Replace each $x_i^{(i)}$ with $x_i^{(i)}/\sigma_i$
- Step 3 and 4 may be omitted if we have apriori knowledge that the different attributes are all on the same scale

Q: which projection is better?

Large variance, small projection error

Small variance, large projection error

PCA

Optimization objective:

$$\max_{u} \frac{1}{m} \sum_{i=1}^{m} ((x^{(i)})^{T} u)^{2}$$
s.t. $||u|| = 1$

$$\max_{u} u^{T} \left(\frac{1}{m} \sum_{i=1}^{m} x^{(i)} (x^{(i)})^{T} \right) u$$
s.t. $||u|| = 1$

Using Lagrange multiplier λ, one may solve the following eigenvalue problem:

$$\Sigma u = \lambda u$$

Extend the first principal component to k principal components:

$$\Sigma U = \lambda U$$

PCA

Algorithm:

- Preprocess data, i.e., zero mean and scale variance if need
- Compute the covariance matrix of normalized data
- Compute the eigenvectors and eigenvalues of the covariance matrix
- \circ The first top k eigenvectors correspond to the first k principal components
- Project the data into the *k*-dimensional subspace

Matlab implementation:

- o m = size(x,2); mu = mean(x,2); x = x repmat(mu,1,m);
- Sigma = x * x' / size(x, 2);
- \circ [U,S,V] = svd(Sigma);
- Oureduce = U(:,1:k); y = Ureduce'*x;

Reconstruction from compressed representation

- $x_{approx}^{(i)} = UU^T x^{(i)}$
- xHat = u(:,1:k)*u(:,1:k)' * x;

Number of components k to retain

- If *k* is too large, we won't be compressing the data much
- if *k* is too small, we may lose too much information
- To decide how to set k, we will look at the "'percentage of variance retained" for different values of k.
- Let $\lambda_1, \lambda_2, ..., \lambda_n$ be the eigenvalues of covariance matrix (sorted in descending order), if we retain k principal components, the percentage of variance retained is given by:

$$\frac{\sum_{j=1}^{k} \lambda_j}{\sum_{i=1}^{n} \lambda_i} \ge \delta$$

Number of components k to retain

PCA summary

- Visualization (k = 2 or 3)
- Compression (k is obtained by computing the percentage of variance retained)
 - Reduce memory/disk needed to store data
 - Reduce correlation between features
 - Speed up learning algorithm
- Noise reduction eigenface [Turk 1991]
- Suggestion: before implementing PCA, first try running whatever you want to do with the original/raw data. Only if that doesn't do what you want, then implement PCA and consider using the projected data

Anomaly detection

- Anomalies and outliers are essentially the same thing: objects that are different from most other objects
- Anomaly detection refers to the problem of finding patterns in data that do not conform to expected behavior. [Chandola 2009]
- Historically, the field of statistics tried to find and remove outliers as a way to improve analyses.
- There are now many fields where the outliers/anomalies are the objects of greatest interest.

Causes of anomalies

- Data from different class of object or underlying mechanism
 - o disease vs. non-disease
 - o fraud vs. non-fraud
- Natural variation
 - tails on a Gaussian distribution
- Data measurement and collection errors

Structure of anomalies

- Point anomalies
- Contextual anomalies
- Collective anomalies

Points anomalies

An individual data instance is anomalous with respect to the data

Contextual anomalies

- An individual data instance is anomalous within a context
- Requires a notion of context
- Also called "conditional anomalies"

Collective anomalies

- A collection of related data instances is anomalous
- Requires a relationship among data instances
 - Sequential data
 - Spatial data
 - Graph data

The individual instances within a collective anomaly are not anomalous by

themselves

Applications of anomaly detection

- Network intrusion
- Insurance/credit card fraud
- Healthcare informatics/medical diagnostics
- Image processing/video surveillance
- ...

Fraud detection

- Detection of criminal activities occurring in commercial organizations.
- Malicious users might be:
 - Employees
 - Actual customers
 - Someone posing as a customer (identity theft)

Types of fraud

- Credit card fraud
- Insurance claim fraud
- Mobile/cell phone fraud

Challenges

- Fast and accurate real-time detection.
- Misclassification cost is very high

Healthcare informatics

- Detect anomalous patient records
 - Indicate disease outbreaks, instrumentation errors, etc.
- Key challenges
 - Only normal labels available
 - Misclassification cost is very high
 - Data can be complex: spatio-temporal

Image processing

- Detecting outliers in a image monitored over time
- Detecting anomalous regions within an image
- Used in
 - video surveillance
 - satellite image analysis
- Key Challenges
 - Detecting collective anomalies
 - Data sets are very large
 - Adaptive to concept drift and real-time detection

Use of data labels in anomaly detection

- Supervised anomaly detection
 - Labels available for both normal data and anomalies
 - Similar to classification with high class imbalance
- Semi-supervised anomaly detection
 - Labels available only for normal data
- Unsupervised anomaly detection (Common in application)
 - No labels assumed
 - o Based on the assumption that anomalies are very rare compared to normal data

Unsupervised anomaly detection

- No labels available
- Based on assumption that anomalies are very rare compared to "normal" data
- General steps
 - Build a profile of "normal" behavior
 - summary statistics for overall population
 - model of multivariate data distribution
 - Use the "normal" profile to detect anomalies
 - anomalies are observations whose characteristics differ significantly from the normal profile

Univariate Gaussian distribution

Anomalies are defined by z-score > threshold

Multivariate Gaussian distribution

- If the distribution is well defined by multivariate Gaussian distribution
- Outliers are defined by probability < threshold or Mahalanobis distance > threshold

GMM

- Select number of Gaussian models k, run the GMM algorithm to obtain the optimal parameters
- For a new data, if its probability for each Gaussian model is less than a threshold, it is detected as an anomaly

Statistical anomaly detection

Pros

- Statistical tests are well-understood and well-validated.
- Quantitative measure of degree to which object is an outlier.

Cons

- Data may be hard to model parametrically.
 - multiple modes
 - variable density
- o In high dimensions, data may be insufficient to estimate true distribution.

One-Class Support Vector Machine (OCSVM)

- Given a set of unlabelled train data $x^{(1)}, x^{(2)}, ..., x^{(m)}$, OCSVM [Scholkopf 2001] aims to find an optimal separating function $f(x)=w\cdot\Phi(x)-\rho$ to contain most of the training data in a compact region.
- To obtain the optimal parameter w and ρ , one can solve the following quadratic programming problem:

$$\min_{w,\rho} \frac{1}{2} ||w||^2 + C \sum_{i=1}^{m} \xi_i - \rho$$
s.t. $w \cdot \Phi(x^{(i)}) \ge \rho - \xi_i, \quad \xi_i \ge 0$

 OCSVM is similar to SVM, so most SVM optimization can be applied to it straightforwardly.

OCSVM example

OCSVM anomaly detection

- Pros:
 - Non-linear by kernel method
 - Quantitative measure of degree to which object is an outlier
- Cons:
 - Time consuming when training set is quite large
 - Must choose parameters, C and sigma

Evaluating an anomaly detection system

- Aircraft engines motivating example: 10,000 good (normal) engines, 20 flawed engines (anomalous)
 - Training set: 6,000 good engines (y=0)
 - Validation set: 2000 good engines (y=0), 10 anomalous (y=1)
 - Test set: 2000 good engines (y=0), 10 anomalous (y=1)
- Possible evaluation metrics to choose threshold:
 - True positive, false positive, false negative, true negative
 - Precision/Recall
 - F1-measure

Anomaly detection vs. supervised learning

- Very small number of positive examples (y=1)
- Large number of negative examples
- Many different "types" of anomalies. Hard for any examples what the anomalies look like
- Future anomalies may look nothing like any of the anomalous

 Large number of positive and negative examples

 Enough positive examples for algorithm to get a sense of what positive examples are like, future positive examples are likely to be similar to ones in training set