世界知的所有権機関 国際事務局

促᠋──特許協力条約に基づいて公開された国際出願

(51) 国際特許分類6 G09G 3/30, H05B 33/08, 33/26, H01L 33/00 A1 (11) 国際公開番号

WO98/36407

(43) 国際公開日

1998年8月20日(20.08.98)

(21) 国際出願番号

PCT/JP98/00656

(22) 国際出願日

1998年2月17日(17.02.98)

(30) 優先権データ

特願平9/32474 特願平9/236351 1997年2月17日(17.02.97) JP 1997年9月1日(01.09.97) JP

特願平9/236353

1997年9月1日(01.09.97)

(7) JP (7) JP

(71) 出願人(米国を除くすべての指定国について)

セイコーエプソン株式会社

(SEIKO EPSON CORPORATION)[JP/JP]

〒163-0811 東京都新宿区西新宿二丁目4番1号 Tokyo, (JP)

(72) 発明者;および

(75) 発明者/出願人(米国についてのみ)

小澤徳郎(OZAWA, Tokuroh)[JP/JP]

木村 睦(KIMURA, Mutsumi)[JP/JP]

〒392-8502 長野県諏訪市大和三丁目3番5号

セイコーエプソン株式会社内 Nagano, (JP)

(74) 代理人

弁理士 鈴木喜三郎,外(SUZUKI, Kisaburo et al.)

〒163-0811 東京都新宿区西新宿二丁目4番1号

セイコーエプソン株式会社内 Tokyo, (JP)

(81) 指定国 CN, JP, KR, US, 欧州特許 (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

添付公開書類

国際調査報告符

(54) Title: DISPLAY DEVICE

(54)発明の名称 表示装置

(57) Abstract

A driving taking system consideration the conductivity of a TFT which controls the light emitting operations of a current-driven light emitting element. When an N-channel type TFT is used as the second TFT (30) which switches supply of a driving current to a light emitting element (40), a high gate voltage (Vgcur) is obtained by lowering the potential at a common feeder line (com) against the potential at the counter electrode (op) of the element (40). A p-channel TFT is used as a first TFT (20) and the polarity of the low potential of a scanning signal (Sgate), and the potential at the common feeder line (com) is made equal to that of the potential at a potential holding electrode (st) at turning-on time. The driving voltage of the light emitting element is dropped and the display quality of the element is improved by shifting the potential of picture signals (data) for turning on in the direction in which the turning-on resistances of the TFTs (20 and 30) become smaller within the range of the driving voltage of the display device (1).

(57) 要約

電流駆動型の発光素子を用いた表示装置において、発光素子の発光動作を制御するTFTの導電型を考慮した駆動方式を採用して、駆動電圧の低電圧化と表示品位の向上とを併せて図ることを目的に、発光素子(40)への駆動電流の給断を行う第2のTFT(30)がNチャネル型である場合には、発光素子(40)の対向電極(op)の電位に対して共通給電線(com)の電位を低くし、高いゲート電圧(Vgcur)が得られるようにする。この場合に、第2のTFT(30)のゲートに接続する第1のTFT(20)をPチャネル型とし、点灯時の電位保持電極(st)の電位を基準にしたときには、この電位保持電極(st)の電位に対して、走査信号(Sgate)の低電位と共通給電線(com)の電位とを同じ極性にする。従って、表示装置(1)の駆動電圧レンジの範囲内で、点灯のための画像信号(data)の電位を、第1のTFT(20)および第2のTFT(30)のオン時の抵抗が小さくなる方向にシフトさせて駆動電圧の低電圧化と表示品位の向上とを図ることができる。

∢)

明細書

表 示 装 置

技術分野

本発明は、有機半導体膜等の発光薄膜に駆動電流が流れることによって発光するEL (エレクトロルミネッセンス)素子またはLED (発光ダイオード)素子などの発光素子と、この発光素子の発光動作を制御する薄膜トランジスタ (以下、TFTという。)とを用いたアクティブマトリクス型の表示装置に関するものである。さらに詳しくは、このタイプの表示装置に構成された各素子の駆動技術に関するものである。

背景技術

E L 素子または L E D 素子などの電流制御型発光素子を用いたアクティブマトリクス型の表示装置が提案されている。このタイプの表示装置に用いられる発光案子はいずれも自己発光するため、液晶表示装置と違ってバックライトを必要とせず、また視野角依存性が少ないなどの利点がある。

図31は、このような表示装置の一例として、電荷注入型の有機薄膜 E L 素子を用いたアクティブマトリクス型表示装置のブロック図である。この図に示す表示装置1Aでは、透明基板上に、複数の走査線 g a t e と、これらの走査線 g a t e の延設方向に対して交差する方向に延設された複数のデータ線 s i g と、これらのデータ線 s i g に並列する複数の共通給電線 c o m と、データ線 s i g と走査線 g a t e との交差点に対応する画素 7 とが構成されている。

T20を介してデータ線 sigから供給される画像信号を保持する保持容量 capと、この保持容量 capによって保持された画像信号がゲート電極 (第2のゲート電極) に供給される第2のTFT30と、第2のTFT30を介して共通給電線 comに電気的に接続したときに共通給電線 comから駆動電流が流れ込む発光素子40 (抵抗として表してある。)とが構成されている。

このように構成された表示装置1Aにおいて、第1のTFT20およ び第2のTFT30は、従来、Nチャネル型を例にとると、製造プロセ スを簡略化するという観点から、図32にその等価回路を示すように、 いずれもNチャネル型あるいはPチャネル型のTFTとして構成されて いる。従って、Nチャネル型を例にとると、図33(A)、(B)に示 すように、走査線gateから供給される走査信号Sgateが高電位にな って第1のTFT20がオン状態になったときにデータ線sigから保 持容量capに高電位の画像信号dataが書き込まれると、第2のT FT30がオン状態に保持される。その結果、発光素子40では、画素 電極41から対向電極opに向けて矢印Eで示す方向の駆動電流が流れ 続け、発光素子40が発光し続ける(点灯状態)。これに対して、走査 線gateが高電位になって第1のTF T20がオン状態になったときに、データ線sigから保持容量cap に共通給電線comの電位と対向電極opの電位の間のある電位よりも 低い電位の画像信号dataが書き込まれると、第2のTFT30がタ ーンオフし、発光素子40が消灯する(消灯状態)。

このような表示装置 1 A において、各素子を構成する半導体膜、絶縁膜、電極などは基板上に堆積した薄膜から構成され、かつ、この薄膜は基板の耐熱性などを考慮して低温プロセスで形成されることが多い。従って、薄膜とバルクとの物性の差異などに起因して欠陥が多いなど膜品

質が劣る

ため、TFTなどでは絶縁破壊や経時劣化などの問題が表面化しやすい。 液晶を光変調素子として用いた液晶表示装置でも薄膜を用いるという 点で共通するが、この場合には光変調素子を交流駆動するので、液晶だけでなく、TFTの経時劣化も抑えることができる。これに対して、電流制御型発光素子を用いた表示装置1Aでは直流駆動せざるを得ないという点では、液晶表示装置よりもTFTに経時劣化が起きやすい。このような問題点を解消するため、電流制御型発光素子を用いた表示装置1AでもTFTの構造やプロセス技術に改良が加えられているものの、未だ、十分に改良されたとはいえない。

また、液晶を光変調素子として用いた場合には、この光変調素子を電圧により制御するので、個々の素子には電流が瞬間的に流れるだけであるので、消費電力が小さい。これに対して、電流制御型発光素子を用いた表示装置1Aでは、発光素子を点灯させ続けるには駆動電流を定常的に流す必要があるので、消費電力が高くなり、絶縁破壊や経時劣化が起きやすい。

さらに、液晶表示装置では1画素当たり1つのTFTで液晶を交流駆動することができるが、電流制御型発光素子を用いた表示装置1Aでは、1画素当たり2つのTFT20、30で発光素子40を直流駆動するので、駆動電圧が高くなり、前記の絶縁破壊や消費電力が大きいという問題が顕著である。たとえば、図33(A)に示すように、画素を選択する際の第1のTFT20のゲート電圧Vgswは、走査信号Sgateの高電位に相当する電位と電位保持電極stの電位(保持容量capの電位、または第2のTFT30のゲート電極の電位)との電位差に相当するため、発光素子40を高い輝度で点灯させようと電位保持電極stの電位を高めて第2のTFT30のゲート電圧Vgcurを高めたときには、

その分、第1のTFT20のゲート電圧Vgswが低くなってしまうので、走査信号Sgateの振幅を大きくする必要が生じ、表示装置1Aの駆動電圧が高くなってしまう。また、前記の表示装置1Aでは、発光素子40を消灯させる際に画像信号dataの電位を共通給電線comの電位と対向電極opの電位の間のある電位よりも低くして第2のTFT30をターンオフさせるため、画像信号dataの振幅が大きいという問題点もある。従って、この種の表示装置1Aでは、液晶表示装置と比較して、消費電力やTFTの耐電圧などに格段の配慮が必要であるが、従来の表示装置1Aではかかる配慮が十分になされていない。

そこで、本発明の課題は、電流駆動型の発光素子の発光動作を制御するTFTの導電型を考慮した駆動方式を採用して、駆動電圧の低電圧化による消費電力、絶縁破壊、経時劣化の低減と表示品位の向上とを併せて図ることができる表示装置を提供することにある。

発明の開示

上記課題を解決するため、請求項1に係る発明では、基板上に、複数の走査線と、該走査線に交差する複数のデータ線と、複数の共通給電線と、前記データ線と前記走査線とによりマトリクス状に形成された画素とを有し、該画素の各々には、前記走査線を介して走査信号が第1のゲート電極に供給される第1のTFTと、該第1のTFTを介して前記データ線から供給される画像信号を保持する保持容量と、該保持容量によって保持された前記画像信号が第2のゲート電極に供給される第2のTFTと、前記画素毎に形成された画素電極が前記第2のTFTを介して前記共通給電線に電気的に接続したときに前記画素電極と発光薄膜を介して対向する対向電極との間に流れる駆動電流によって前記発光薄膜が発光する表示装置において、前記第2のTFTがNチャネル型の場合に

は、前記共通給電線は前記対向電極よりも低電位に設定されていることを特徴とする。

本発明に係る表示装置では、第2のTFTのオン時のゲート電圧は、 共通給電線の電位および画素電極の電位のうちの一方の電位と、ゲート 電極の電位(画像信号の電位)との差に相当するので、第2のTFTの 導電型に応じて、共通給電線の電位と発光素子の対向電極の電位との相 対的な高低を最適化し、第2のTFTのゲート電圧は、共通給電線の電 位と電位保持電極の電位との差に相当するように構成してある。たとえ ば、第2のTFTがNチャネル型であれば、発光素子の対向電極の電位 に対して共通給電線の電位を低くしてある。この共通給電線の電位につ いては、画素電極の電位と相違して、十分に低い値に設定することがで きるため、第2のTFTで大きなオン電流が得られ、高い輝度で表示を 行うことができる。また、画素を点灯状態とする際に、第2のTFTに おいて高いゲート電圧が得られるのであれば、画像信号の電位を下げる ことができるので、画像信号の振幅を小さくし、表示装置における駆動 電圧を下げることができる。それ故、消費電力を低減できるともに、薄 膜で構成された各素子で懸念されていた耐電圧の問題が顕在化しないと いう利点がある。

本発明において、上記第2のTFTがNチャネル型の場合には点灯状態とすべき画素に対して前記データ線から供給される画像信号の電位は、前記対向電極の電位と比較して低電位、あるいは等電位であることが好ましい。このように構成した場合も、第2のTFTをオン状態に保ったまま、画像信号の振幅を小さくすることができ、表示装置における駆動電圧を下げることができる。

本発明において、第2のTFTがNチャネル型の場合には、消灯状態とすべき画素に対して前記データ線から供給される画像信号の電位は、

前記共通給電線の電位と比較して高電位、あるいは等電位であることが 好ましい(請求項5)。すなわち、画素を消灯状態にするときには、第 2のTFTを完全にターンオフさせるほどのゲート電圧(画像信号)を 印加しない。発光素子の非線型電気特性とあいまって、消灯状態は実現 できる。それ故、画像信号の振幅を小さくすることができ、表示装置に おける駆動電圧を下げ、また画像信号の高周波化を図ることができる。

本発明において、上記の各構成とは逆に、前記第2のTFTがPチャネル型の場合には、各電位の相対的な関係を逆転させる。すなわち、前記第2のTFTがPチャネル型の場合には、前記共通給電線は前記対向電極よりも高電位に設定されていることを特徴とする(請求項2)。この場合には、点灯状態とすべき画素に対して前記データ線から供給される画像信号の電位は、前記対向電極の電位と比較して高電位、あるいは等電位であることが好ましい(請求項4)。また、消灯状態とすべき画素に対して前記データ線から供給される画像信号の電位は、前記共通給電線の電位と比較して低電位、あるいは等電位であることが好ましい(請求項6)。

本発明において、前記第1のTFTと前記第2のTFTとは、逆導電型のTFTで構成されていることが好ましい(請求項7)。すなわち、第1のTFTがNチャネル型であれば、第2のTFTはPチャネル型であり、第1のTFTがPチャネル型であれば、第2のTFTはNチャネル型であることが好ましい。詳しくは請求項8に関連して後述するが、このように構成すると、表示装置の駆動電圧レンジの範囲内で、点灯のための画像信号の電位を、第1のTFTのオン時の抵抗が小さくなる方向に変更するだけで、表示動作の高速化を図ることができる。また、この時には画素を点灯させるための画像信号の電位が第2のTFTのオン時の抵抗が小さくなる方向に変更したことになるので、輝度の向上を図

ることができる。よって、駆動電圧の低電圧化と表示品位の向上とを併せて達成することができる。

本発明の別の形態(請求項8)では、基板上に、複数の走査線と、該 走査線に交差する複数のデータ線と、複数の共通給電線と、前記データ 線と前記走査線とによりマトリクス状に形成された画素とを有し、該画 素の各々には、前記走査線を介して走査信号が第1のゲート電極に供給 される第1のTFTと、該第1のTFTを介して前記データ線から供給 される画像信号を保持する保持容量と、該保持容量によって保持された 前記画像信号が第2のゲート電極に供給される第2のTFTと、前記画 素毎に形成された画素電極と該画素電極に対向する対向電極との層間に おいて前記画素電極が前記第2のTFTを介して前記共通給電線に電気 的に接続したときに前記画素電極と前記対向電極との間に流れる駆動電 流によって発光する発光薄膜を具備する発光素子とを備える表示装置に おいて、前記第1のTFTと前記第2のTFTとは、逆導電型のTFT で構成されていることを特徴とする。

本発明では、例えば第1のTFTがN型であれば、第2のTFTがP型であるように、第1のTFTと第2のTFTとが逆導電型であるため、第1のTFTの書き込み能力を上げるためには、走査信号の選択パルス高を高くし、第2のTFTのオン抵抗を下げて発光輝度を上げるためには、画像信号の電位を低くすることになる。このような走査信号および画像信号の最適化は、第1のTFTのゲート電圧に対して、画素の選択期間中、発光素子を点灯させるレベルの画像信号が保持容量に書き込まれていくにつれて、当該TFTのオン電流が増大する方にシフトさせるのに効く。それ故、データ線から第1のTFTを介して保持容量に画像信号がスムーズに書き込まれる。ここで、画素を選択する際の第1のTFTのゲート電圧は、走査信号の高電位に相当する電位と点灯時の電

位保持電極の電位(点灯のための画像信号の電位、保持容量の電位、または第2のTFTのゲート電極の電位)との差に相当し、第2のTFTのゲート電圧は、点灯時の電位保持電極の電位と共通給電線の電位との差に相当し、このときの電位保持電極の電位を基準にしたときには、走査信号の高電位に相当する電位と共通給電線の電位は同じ極性である。従って、点灯時の電位保持電極の電位(点灯のための画像信号の電位)を変更すれば、その分、第1のTFTのゲート電圧および第2のTFTのゲート電圧の双方が同じ方向に同じ分だけシフトする。それ故、表示装置の駆動電圧レンジの範囲内で、点灯のための画像信号の電位を、第1のTFTのオン時の抵抗が小さくなる方向にシフトさせれば、表示作の高速化を図ることができる。また、この時には点灯のための画像信号の電位が第2のTFTのオン時の抵抗が小さくなる方向にシフトしたことになるので、輝度の向上を図ることができる。よって、駆動電圧の低電圧化と表示品位の向上とを併せて達成することができる。

本発明において、消灯状態にある画素における前記第2のTFTに印加されるゲート電圧は、該第2のTFTがオン状態となるときの極性と同じで、かつ、該第2のTFTのしきい値電圧を越えない値であることが好ましい(請求項9)。すなわち、画素を消灯状態にするときには、第2のTFTを完全にターンオフさせるほどのゲート電圧(画像信号)を印加しない。それ故、画像信号の振幅を小さくすることができ、画像信号の高周波化を実現できる。

このように構成した場合において、前記第1のTFTがNチャネル型、前記第2のTFTがPチャネル型であれば、前記第1のTFTをオン状態にするときの走査信号の電位と前記共通給電線の電位とが等しく、かつ、消灯状態にある画素の前記第2のTFTに印加されるゲート電極の電位は、前記第1のTFTをオン状態にするときの走査信号の電位か

5当該第1のTFTのしきい値電圧を差し引いた電位よりも低電位であることが好ましい(請求項10)。それとは逆に、前記第1のTFTがPチャネル型、前記第2のTFTがNチャネル型であれば、前記第1のTFTをオン状態にするときの走査信号の電位と前記共通給電線の電位とが等しく、かつ、消灯状態にある画素の前記第2のTFTに印加されるゲート電極の電位は、前記第1のTFTをオン状態にするときの走査信号の電位に当該第1のTFTのしきい値電圧を加えた電位よりも高電位であることが好ましい(請求項11)。このように第1のTFTをオン状態にするときの走査信号の電位と共通給電線の電位とを等しくすると、各駆動信号のレベルの数が減るため、表示装置への信号入力端子の数を減らすことができるとともに、電源数を減らすことができるので、低消費電力となる。

本発明では、前記保持容量の両電極のうち、前記第2のTFTの第2のゲート電極に電気的に接続する電極とは反対側の電極には、前記走査信号の選択パルスより遅延して該選択パルスとは電位が逆方向に振れるパルスが供給されることが好ましい(請求項12)。このように構成すると、保持容量への画像信号の書き込みを補うことができるので、画像信号の振幅を大きくせずに、第2のTFTのゲート電極に印加される画像信号の電位を高輝度化の方向にシフトさせることができる。

本発明のさらに別の形態においては、基板上に、複数の走査線と、該 走査線に交差する複数のデータ線と、複数の共通給電線と、前記データ 線と前記走査線とによりマトリクス状に形成された画素とを有し、該画 素の各々には、前記走査線を介して走査信号が第1のゲート電極に供給 される第1のTFTと、該第1のTFTを介して前記データ線から供給 される画像信号を保持する保持容量と、該保持容量によって保持された 前記画像信号が第2のゲート電極に供給される第2のTFTと、前記画 素毎に形成された画素電極と該画素電極に対向する対向電極との層間において前記画素電極が前記第2のTFTを介して前記共通給電線に電気的に接続したときに前記画素電極と前記対向電極との間に流れる駆動電流によって発光する発光薄膜を具備する発光素子とを備える表示装置において、前記保持容量の両電極のうち、前記第2のTFTの第2のゲート電極に電気的に接続する電極とは反対側の電極には、前記走査信号の選択パルスより遅延して該選択パルスとは電位が逆方向に振れるパルスが供給されることを特徴とする(請求項13)。

このように構成すると、保持容量への画像信号の書き込みを補うことができるので、画像信号の振幅を大きくせずに、第2のTFTのゲート電極に印加される画像信号の電位を高輝度化の方向にシフトさせることができる。

上記のいずれの発明においても、前記発光薄膜としては、たとえば、 有機半導体膜を用いることができる(請求項14)。

本発明では、上記のいずれの発明においても、第2のTFTについては、その飽和領域で動作させることにより、発光素子に異常電流が流れ、電圧降下等により他画素にクロストーク等が発生するのを防止することができる(請求項15)。

また、その線形領域で動作させることによりそのしきい値電圧のばら つきが表示動作に影響を及ぼすことを防止することができる(請求項1 6)。

図面の簡単な説明

図1は、本発明を適用した表示装置を模式的に示す平面図である。

図2は、本発明を適用した表示装置の基本的な構成を示すブロック図である。

図3は、図2に示す表示装置の画素を拡大して示す平面図である。

図4は、図3のA-A'線における断面図である。

図5は、図3のB-B'線における断面図である。

図6 (A) は、図3のC-C'線における断面図であり、図6 (B) は、図6 (A) に示すように構成したときの効果を説明するための説明図である。

図7 (A)、(B) はそれぞれ、図2に示す表示装置に用いる発光素子の断面図である。

図8 (A)、(B) はそれぞれ、図7に示す発光素子と別の構造を有する発光素子の断面図である。

図9は、図7 (A)、図8 (B) に示す発光素子の電流ー電圧特性を示すグラフである。

図10は、図7(B)、図8(A)に示す発光素子の電流-電圧特性を示すグラフである。

図11は、Nチャネル型TFTの電流-電圧特性を示すグラフである。

図12は、Pチャネル型TFTの電流-電圧特性を示すグラフである。

図13は、本発明を適用した表示装置の製造方法を示す工程断面図である。

図14(A)、(B)はそれぞれ、図3から図6に示す表示装置の画素とは異なる構成の画素の平面図、および断面図である。

図15は、本発明の実施の形態1に係る表示装置の画案構成を示す等 価回路図である。

図16(A)、(B)はそれぞれ、図15に示す画素に構成された各素子の電気的な接続状態を示す説明図、および駆動信号などの電位変化を示す波形図である。

図17は、本発明の実施の形態1の変形例に係る表示装置の画素構成

を示す等価回路図である。

図18(A)、(B)はそれぞれ、図17に示す画素に構成された各素子の電気的な接続状態を示す説明図、および駆動信号などの電位変化を示す波形図である。

図19は、本発明の実施の形態2に係る表示装置の画素構成を示す等 価回路図である。

図20(A)、(B)はそれぞれ、図19に示す画素に構成された各 素子の電気的な接続状態を示す説明図、および駆動信号などの電位変化 を示す波形図である。

図21は、本発明の実施の形態2の変形例に係る表示装置の画素構成 を示す等価回路図である。

図22(A)、(B)はそれぞれ、図21に示す画素に構成された各素子の電気的な接続状態を示す説明図、および駆動信号などの電位変化を示す波形図である。

図23は、本発明の実施の形態3に係る表示装置の画素構成を示す等 価回路図である。

図24(A)、(B)はそれぞれ、図23に示す画素を駆動するための信号の波形図、これらの信号と等価回路との対応を示す説明図である

図25は、本発明の実施の形態2に係る表示装置の画素を駆動するための信号の波形図である。

図26は、本発明の実施の形態3の変形例に係る表示装置の画素構成 を示す等価回路図である。

図27(A)、(B)はそれぞれ、図26に示す画素を駆動するための信号の波形図、これらの信号と等価回路との対応を示す説明図である

図28(A)、(B)はそれぞれ、本発明の実施の形態4に係る表示 装置の画素の等価回路図、それを駆動するための信号の波形図である。

図29は、図28に示す信号を発生させるための走査側駆動回路のブロック図である。

図30は、図29に示す走査側駆動回路から出力される各信号の波形図である。

図31は、表示装置のブロック図である。

図32は、図31に示す表示装置における従来の画素構成を示す等価回路図である。

図33(A)、(B)はそれぞれ、図32に示す画素を駆動するための信号の波形図、これらの信号と等価回路との対応を示す説明図である

図34 (A)、(B) はそれぞれ、隣接するゲート線を用いて容量を 形成する構成のブロック図と、そのゲート電圧の信号波形である。

[符号の説明]

- 1 表示装置
- 2 表示部
- 3 データ側駆動回路
- 4 走査側駆動回路
- 5 検査回路
- 6 実装用パッド
- 7 画案
- 10 透明基板
- 20 第1のTFT
- 21 第1のTFTのゲート電極
- 30 . 第2のTFT

3	1	第2のTFTのゲート電極
4	0	発光素子
4	1	画素電極
4	2	正孔注入層
4	3	有機半導体膜
5	0	ゲート絶縁膜・
b	a n k	バンク層
С	ар	保持容量
С	l i n e	容量線
С	o m	共通給電線
g	a t e	走査線
0	p	対向電極
s	i g	データ線
s	t	電位保持電極

発明を実施するための最良の形態

図面を参照して、本発明の実施の形態を説明する。なお、本発明の各 実施の形態を説明する前に、各形態で共通の構成について説明しておく 。ここで、各形態で共通の機能を有する部分については、同一の符合を 付して説明の重複を避けることとする。

(アクティブマトリクス基板の全体構成)

図1は、表示装置の全体のレイアウトを模式的に示すブロック図、図 2は、それに構成されたアクティブマトリクスの等価回路図である。

図1に示すように、本形態の表示装置1では、その基体たる透明基板 10の中央部分が表示部2とされている。透明基板10の外周部分のう ち、図面に向かって上下の側には、データ線 sigに対して画像信号を 出力するデータ側駆動回路3、および検査回路5がそれぞれ構成され、図面に向かって左右の側には、走査線gateに対して走査信号を出力する走査側駆動回路4が構成されている。これらの駆動回路3、4では、N型のTFTとP型のTFTとによって相補型TFTが構成され、この相補型TFTは、シフトレジスタ回路、レベルシフタ回路、アナログスイッチ回路などを構成している。透明基板10上において、データ側駆動回路3よりも外周領域には、画像信号や各種の電位、パルス信号を入力するための端子群とされる実装用パッド6が形成されている。

表示装置1では、液晶表示装置のアクティブマトリクス基板と同様、透明基板10上に、複数の走査線gateと、該走査線gateの延設方向に対して交差する方向に延設された複数のデータ線sigとが構成され、図2に示すように、これらのデータ線sigと走査線gateとの交差によりマトリクス状に画素7が多数、構成されている。

これらの画素 7 のいずれにも、走査線 g a t e を介して走査信号がゲート電極 2 1 (第1のゲート電極) に供給される第1のTFT 2 0 が構成されている。このTFT 2 0 のソース・ドレイン領域の一方は、データ線 s i g に電気的に接続し、他方のソース・ドレイン領域は電位保持電極 s t に電気的に接続している。すなわち、走査線 g a t e に対しては容量線 c l i n e が並列配置され、この容量線 c l i n e と電位保持電極 s t との間には保持容量 c a p が形成されている。従って、走査信号によって選択されて第1のTFT 2 0 がオン状態になると、データ線s i g から画像信号が第1のTFT 2 0 を介して保持容量 c a p に書き込まれる。

電位保持電極 s t には第2のTFT30のゲート電極31 (第2のゲート電極) が電気的に接続し、第2のTFT30のソース・ドレイン領域の一方は、共通給電線 c o m に電気的に接続する一方、他方のソース

・ドレイン領域は発光素子40の一方の電極(後述する画素電極)に電気的に接続している。共通給電線comは定電位に保持されている。第2のTFT30を介して共通給電線comの電流が発光素子40を流れ、発光素子40を発光させる。

このように構成した表示装置1において、駆動電流は、発光素子40、第2のTFT30、および共通給電線comから構成される電流経路を流れるため、第2のTFT30がオフ状態になると、流れなくなる。但し、本形態の表示装置1では、走査信号によって選択されて第1のTFT20がオン状態になると、データ線sigから画像信号が第1のTFT20を介して保持容量capに書き込まれる。従って、第2のTFT30のゲート電極は、第1のTFT20がオフ状態になっても、保持容量capによって画像信号に相当する電位に保持されるので、第2のTFT30はオン状態のままである。それ故、発光素子40には駆動電流が流れ続け、この画素は点灯状態のままである。この状態は、新たな画像データが保持容量capに書き込まれて、第2のTFT30がオフ状態になるまで維持される。

表示装置1において共通給電線 com、画素 7、およびデータ線 sigについては各種の配列が可能であるが、本形態では、共通給電線 comの両側に、該共通給電線 comとの間で駆動電流の供給が行われる発光素子40を有する複数の画素 7 が配置され、これらの画素 7 に対して共通給電線 comとは反対側を2本のデータ線 sigが通っている。すなわち、データ線 sig、それに接続する画素群、1本の共通給電線 com、それに接続する画素群、および該画素群に画素信号を供給するデータ線 sigを1つの単位としてそれを走査線 gateの延設方向に繰り返してあり、共通給電線 comは、1本で2列分の画素 7 に対して駆

動電流を供給する。そこで、本形態では、共通給電線comを挟むように配置された2つの画素7の間では、第1のTFT20、第2のTFT30、および発光素子40が当該共通給電線comを中心に線対称に配置され、これらの素子と各配線層との電気的な接続を容易なものにしてある。

このように、本形態では、1本の共通給電線comで2列分の画素を駆動するので、1列の画素群ごとに共通給電線comを形成する場合と比較して、共通給電線comの数が1/2で済むとともに、同一の層間に形成される共通給電線comとデータ線sigとの間に確保していた隙間が不要である。それ故、透明基板10上において配線のための領域を狭くすることができるので、輝度、コントラスト比などの表示性能を向上させることができる。なお、このように1本の共通給電線comに2列分の画素が接続される構成としたため、データ線sigは2本ずつ並列する状態にあって、それぞれの列の画素群に対して画像信号を供給することになる。

(画案の構成)

このように構成した表示装置1の各画素7の構造を、図3ないし図6を参照して詳述する。

図3は、本形態の表示装置1に形成されている複数の画素7のうちの3つの画素7を拡大して示す平面図、図4、図5、および図6はそれぞれは、そのA-A'線における断面図、B-B'線における断面図、およびC-C'線における断面図である。

まず、図3におけるA-A'線に相当する位置では、図4に示すように、透明基板10上には各画素7の各々に、第1のTFT20を形成するための島状のシリコン膜200が形成され、その表面にはゲート絶縁膜50が形成されている。ゲート絶縁膜50の表面にはゲート電極21

(走査線gateの一部)が形成され、該ゲート電極21に対して自己整合的にソース・ドレイン領域22、23が形成されている。ゲート絶縁膜50の表面側には第1の層間絶縁膜51が形成され、この層間絶縁膜に形成されたコンタクトホール61、62を介して、ソース・ドレイン領域22、23にはデータ線sig、および電位保持電極stがそれぞれ電気的に接続している。

各画素 7 には走査線 g a t e と並列するように、走査線 g a t e やゲート電極 2 1 と同一の層間(ゲート絶縁膜 5 0 と第 1 の層間絶縁膜 5 1 との間)には容量線 c 1 i n e が形成されており、この容量線 c 1 i n e に対しては、第 1 の層間絶縁膜 5 1 を介して電位保持電極 s t の延設部分 s t 1 が重なっている。このため、容量線 c 1 i n e と電位保持電極 s t の延設部分 s t 1 とは、第 1 の層間絶縁膜 5 1 を誘電体膜とする保持容量 c a p を構成している。なお、電位保持電極 s t およびデータ線 s i g の表面側には第 2 の層間絶縁膜 5 2 が形成されている。

図3におけるB-B'線に相当する位置では、図5に示すように、透明基板10上に形成された第1の層間絶縁膜51および第2の層間絶縁膜52の表面に各画素7に対応するデータ線sigが2本、並列している状態にある。

図3におけるC-C′線に相当する位置では、図6 (A)に示すように、透明基板10上には共通給電線comを挟む2つの画素7に跨がるように、第2のTFT30を形成するための島状のシリコン膜300が形成され、その表面にはゲート絶縁膜50が形成されている。ゲート絶縁膜50の表面には、共通給電線comを挟むように、各画素7の各々にゲート電極31がそれぞれ形成され、このゲート電極31に対して自己整合的にソース・ドレイン領域32、33が形成されている。ゲート絶縁膜50の表面側には第1の層間絶縁膜51が形成され、この層間絶

縁膜に形成されたコンタクトホール63を介して、ソース・ドレイン領域62に中継電極35が電気的に接続している。一方、シリコン膜300の中央の2つの画素7において共通のソース・ドレイン領域33となる部分に対しては、第1の層間絶縁膜51のコンタクトホール64を介して、共通給電線comが電気的に接続している。これらの共通給電線com、および中継電極35の表面には第2の層間絶縁膜52が形成されている。第2の層間絶縁膜52の表面にはITO膜からなる画素電極41が形成されている。この画素電極41は、第2の層間絶縁膜52に形成されたコンタクトホール65を介して中継電極35に電気的に接続し、この中継電極35を介して第2のTFT30のソース・ドレイン領域32に電気的に接続されている。

(発光素子の特性)

発光素子40としては、いずれの構造のものを用いた場合でも本発明 を適用できるので、その代表的なものを以下に説明する。

まず、前記のITO膜からなる画素電極41は、図7(A)に示すように、発光素子40の一方の電極(正極)を構成している。この画素電極41の表面には正孔注入層42および発光薄膜として有機半導体膜43が積層され、さらに有機半導体膜43の表面には、リチウム含有アルミニウムまたはカルシウムなどの金属膜からなる対向電極op(負極)が形成されている。この対向電極opは、透明基板10の全面、あるいはストライプ状に形成された共通電極となるべきもので、一定の電位に保持されている。これに対して、図7(A)に示す発光素子40とは逆の方向に駆動電流を流す場合には、図7(B)に示すように、下層側から上層側に向かって、ITO膜からなる画素電極41(負極)、透光性をもつほど薄いリチウム含有アルミニウム電極45、有機半導体層43、正孔注入層42、ITO膜層46、リチウム含有アルミニウムまたは

カルシウムなどの金属膜からなる対向電極 o p (正極)をこの順に積層して、発光素子40を構成する場合もある。このように構成すると、図7(A)、(B)に示す各発光素子40においてそれぞれ逆極性の駆動電流が流れる場合でも、正孔注入層42および有機半導体層43が直接、接する電極層の構成が同一であるため、発光特性が同等である。これらの図7(A)、(B)に示した発光素子40は、いずれも下層側(基板の側)にITO膜からなる画素電極41を有し、光は、矢印hνで示すように、画素電極41および透明基板10を透過して透明基板10の裏面側から射出される。

これに対して、図8(A)、(B)に示すように発光素子40を構成すると、光は、矢印hャで示すように、対向電極opを透過して透明基板10の表面側に射出される。すなわち、図8(A)に示すように、リチウム含有アルミニウムなどの金属膜からなる画素電極41(負極)の表面には有機半導体膜43および正孔注入層42が積層され、さらに正孔注入層42の表面にはITO膜からなる対向電極op(正極)が形成されている。この対向電極opも、全面に一枚板で、あるいはストライプ状に形成された共通電極で、一定の電位に保持されている。これに対して、図8(A)に示す発光素子とは逆の方向に駆動電流を流すには、図8(B)に示すように、下層側から上層側に向かって、リチウム含有アルミニウムなどの金属膜からなる画素電極41(正極)、ITO膜層46、正孔注入層42、有機半導体層43、透光性をもつほど薄いリチウム含有アルミニウム電極45、ITO膜からなる対向電極op(負極)をこの順に積層して、発光素子40を構成する場合もある。

いずれの構造を有する発光素子40を形成するにあたっても、正孔注 入層42および有機半導体膜43は、後述するように、インクジェット 法によりバンク層bankの内側に形成すれば、上下位置が反対でも製 造工程が複雑になることはない。また、透光性をもつほど薄いリチウム含有アルミニウム電極45、およびITO膜層46を追加する場合でも、リチウム含有アルミニウム電極45は画素電極41と同じ領域で積層している構造になっていても表示に支障がなく、ITO膜層46も対向電極opと同じ領域で積層している構造になっていても表示に支障がない。それ故、リチウム含有アルミニウム電極45と画素電極41とはそれぞれ別々にパターニングしてもよいが、同じレジストマスクで一括してパターニングしてもよいが、同じレジストマスクで一括してパターニングしてもよいが、同じレジストマスクで一括してパターニングしてもよいが、同じレジストマスクで一括してパターニングしてもよい。リチウム含有アルミニウム電極45およびITO膜層46はバンク層bankの内側領域のみに形成してもよいことは勿論である。

さらに、対向電極 o p の方を I T O 膜で形成し、画素電極 4 1 の方を 金属膜で構成してもよい。いずれも場合でも透明な I T O 膜の方から光 が射出されることになる。

このように構成された発光素子40は、対向電極opおよび画素電極41をそれぞれ正極および負極として電圧が印加され、図9(図7(A)、図8(B)に示す発光素子40の電流-電圧特性)、図10(図7(B)、図8(A)に示す発光素子40の電流-電圧特性)にそれぞれ示すように、印加電圧(横軸/画素電極41に対する対向電極opの電位)がしきい値電圧を越えた領域でオン状態、すなわち、低抵抗状態になって有機半導体膜43に流れる電流(駆動電流)が急激に増大する。その結果、発光素子40は、エレクトロルミネッセンス素子あるいはしED素子として発光し、発光素子40の射出光は、対向電極opに反射され、透明な画素電極41および透明基板10を通して射出される。それとは反対に、印加電圧(横軸/画素電極41に対する対向電極opの

電位)がしきい値電圧を下回る領域ではオフ状態、すなわち、高抵抗状態になって有機半導体膜43に電流(駆動電流)が流れず、発光素子40は消灯する。なお、図9、図10に示す例ではそれぞれ+2V付近、-2V付近がしきい値電圧である。

ここで、発光効率はやや低下する傾向にあるものの、正孔注入層 4 2 を省略することもある。また、正孔注入層 4 2 を用いずに、有機半導体層 4 3 に対して正孔注入層 4 2 が形成されている位置とは反対側の位置に電子注入層を設ける場合もある。また、正孔注入層 4 2 および電子注入層の両方を設ける場合もある。

(TFTの特性)

このように構成した発光素子40での発光を制御するためのTFT(図2における第1のTFT20および第2のTFT30)として、Nチャネル型、およびPチャネル型のTFTの電流電圧特性を図11および図12(いずれの図においても、ドレイン電圧が4V、8Vの例を示してある。)に示す。これらの図からわかるように、TFTは、ゲート電極に印加するゲート電圧によってオン、オフ動作を行う。すなわち、ゲート電圧がしきい値電圧を越えると、TFTはオン状態(低抵抗状態)になってドレイン電流が増大する。これに対して、ゲート電圧がしきい値電圧を下回ると、TFTはオフ状態(高抵抗状態)になってドレイン電流が低減する。

(表示装置の製造方法)

このように構成した表示装置1の製造方法において、透明基板10上に第1のTFT20および第2のTFT30を製造するまでの工程は、 液晶表示装置1のアクティブマトリクス基板を製造する工程と略同様で あるため、簡単に図13を参照してその概要を説明する。

図13は、表示装置1の各構成部分を600℃以下の温度条件下で形

成していく過程を模式的に示す工程断面図である。

すなわち、図13(A)に示すように、透明基板10に対して、必要に応じて、TEOS(テトラエトキシシラン)や酸素ガスなどを原料ガスとしてプラズマCVD法により厚さが約2000~5000オングストロームのシリコン酸化膜からなる下地保護膜(図示せず。)を形成する。次に基板の温度を約350℃に設定して、下地保護膜の表面にプラズマCVD法により厚さが約300~700オングストロームのアモルファスのシリコン膜からなる半導体膜100を形成する。次にアモルファスのシリコン膜からなる半導体膜100を形成する。次にアモルファスのシリコン膜からなる半導体膜100に対して、レーザアニールまたは固相成長法などの結晶化工程を行い、半導体膜100をポリシリコン膜に結晶化する。レーザアニール法では、たとえば、エキシマレーザでビーム形状の長寸が400mmのラインビームを用い、その出力強度はたとえば200mJ/cm²である。ラインビームについてはその短寸方向におけるレーザ強度のピーク値の90%に相当する部分が各領域毎に重なるようにラインビームを走査していく。

次に、図13(B)に示すように、半導体膜100をパターニングして島状の半導体膜200、300とし、その表面に対して、TEOS(テトラエトキシシラン)や酸素ガスなどを原料ガスとしてプラズマCV D法により厚さが約600~1500オングストロームのシリコン酸化膜または窒化膜からなるゲート絶縁膜50を形成する。

次に、図13(C)に示すように、アルミニウム、タンタル、モリブデン、チタン、タングステンなどの金属膜からなる導電膜をスパッタ法により形成した後、パターニングし、走査線gateの一部としてのゲート電極21、31を形成する。この工程では容量線clineも形成する。なお、図中、310はゲート電極31の延設部分である。

この状態で高濃度のリンイオンあるいはボロンイオンなどの不純物を

打ち込んで、シリコン薄膜200、300にはゲート電極21、31に対して自己整合的にソース・ドレイン領域22、23、32、33を形成する。なお、不純物が導入されなかった部分がチャネル領域27、37となる。本形態では、後述するように、同一の基板上に導電型の異なるTFTを製造する場合があるので、その場合には、不純物導入工程において逆導電型のTFT形成領域をマスクで覆いながら不純物の導入をすすめていく。

次に、図13(D)に示すように、第1の層間絶縁膜51を形成した後、コンタクトホール61、62、63、64、69を形成し、データ線sig、容量線clineおよびゲート電極31の延設部分310に重なる延設部分stlを備える電位保持電極st、共通給電線com、および中継電極35を形成する。その結果、電位保持電極stはコンタクトホール69および延設部分310を介してゲート電極31に電気的に接続する。このようにして第1のTFT20および第2のTFT30を形成する。また、容量線clineと電位保持電極stの延設部分stlとによって保持容量capが形成される。

次に、図13(E)に示すように、第2の層間絶縁膜52を形成し、この層間絶縁膜には、中継電極35に相当する部分にコンタクトホール65を形成する。次に、第2の層間絶縁膜52の表面全体に導電膜を形成した後、パターニングし、コンタクトホール65を介して第2のTFT30のソース・ドレイン領域32に電気的に接続する画素電極41を形成する。

次に、図13(F)に示すように、第2の層間絶縁膜52の表面側に 黒色のレジスト層を形成した後、このレジストを発光素子40の有機半 導体膜43、および正孔注入層42を形成すべき領域を囲むように残し 、バンク層bankを形成する。ここで、有機半導体膜43は、各画素 毎に独立して箱状に形成される場合、データ線 sigに沿ってストライプ状に形成される場合のいずれであっても、それに対応する形状にバンク層 bankを形成するだけで、本形態に係る製造方法を適用できる。

次に、バンク層 b a n k の内側領域に対してインクジェットへッド I Jから、有機半導体膜 4 3 を構成するための液状の材料(前駆体)を吐出し、バンク層 b a n k の内側領域に有機半導体膜 4 3 を形成する。同様に、バンク層 b a n k の内側領域に対してインクジェットへッド I Jから、正孔注入層 4 2 を構成するための液状の材料(前駆体)を吐出し、バンク層 b a n k の内側領域に正孔注入層 4 2 を形成する。なお、図7 (A)、(B) および図8(A)、(B) を参照して発光素子 4 0 の構造を説明したように、その構造によっては、有機半導体膜 4 3 および正孔注入層 4 2 を形成していく順序が入れ替わることもある。

ここで、バンク層 b a n k はレジストから構成されているため、 撥水性である。これに対して、有機半導体膜 4 3 や正孔注入層 4 2 の前駆体は親水性の溶媒を用いているため、有機半導体膜 4 3 の塗布領域はバンク層 b a n k によって確実に規定され、隣接する画素にはみ出ることがない。また、バンク層 b a n k を十分高く形成しておくと、インクジェット法を用いなくてもスピンコート法などといった塗布法を用いた場合でも、所定領域に有機半導体膜 4 3 や正孔注入層 4 2 を形成できる。

本形態では、有機半導体膜43や正孔注入層42をインクジェット法により形成する際の作業効率を高めるために、図3に示すように、走査線gateの延設方向に沿って隣接するいずれの画素7間でも、前記有機半導体膜43の形成領域の中心のピッチPを等しくしてある。従って、矢印Qで示すように、走査線gateの延設方向に沿って等間隔の位置にインクジェットヘッドIJから有機半導体膜43の材料などを吐出すればよいという利点がある。また、等ピッチの移動でよいため、イン

クジェットヘッドIJの移動機構が簡易になり、かつ、インクジェット ヘッドIJの打ち込み精度を上げることも容易となる。

しかる後には、図13 (G) に示すように、透明基板10の表面側に対向電極 o p を形成する。ここで、対向電極 o p は全面またはストライプ状に形成されるが、対向電極 o p をストライプ状に形成する場合には、透明基板10の表面全体に導電膜を形成した後、それをストライプ状にパターニングする。

なお、図1に示すデータ側駆動回路3や走査側駆動回路4にもTFTが形成されるが、これらのTFTは前記の画素7にTFTを形成していく工程の全部あるいは一部を援用して行われる。それ故、駆動回路を構成するTFTも、画素7のTFTと同一の層間に形成されることになる

本形態において、バンク層 b a n k は黒色で絶縁性のレジストから構成されているので、そのまま残し、ブラックマトリクス B M、および寄生容量を低減するための絶縁層として利用する。

すなわち、図1に示すように、透明基板10の周辺領域に対しても前記のバンク層bank(形成領域に斜線を付してある。)を形成する。 従って、データ側駆動回路3および走査側駆動回路4はいずれも、バンク層bankによって覆われているため、これらの駆動回路の形成領域に対して対向電極opが重なる状態にあっても、駆動回路の配線層と対向電極opとの間にバンク層bankが介在することになる。それ故、駆動回路3、4に容量が寄生することを防止できるので、データ側駆動回路3の負荷を低減でき、低消費電力化あるいは表示動作の高速化を図ることができる。

また、本形態では、図3ないし図5に示すように、データ線sigに 重なるようにパンク層bankを形成してある。従って、データ線si gと対向電極opとの間にバンク層bankが介在することになるので、データ線sigに容量が寄生することを防止できる。その結果、駆動回路の負荷を低減できるので、低消費電力化あるいは表示動作の高速化を図ることができる。

さらに、本形態では、図3、図4、および図6 (A)に示すように、 画素電極41と中継電極35とが重なる領域にもバンク層bankを形成するとよい。すなわち、図6 (B)に示すように、画素電極51と中 継電極35とが重なる領域にバンク層bankが形成されていない場合 、たとえ画素電極と対向電極opとの間に駆動電流が流れて有機半導体 膜43が発光しても、この光は中継電極35と対向電極opとに挟まれ ているため出射されず、表示に寄与しない。かかる表示に寄与しない部 分で流れる駆動電流は、表示という面からみて無効電流といえる。しか るに本形態では、このような無効電流が流れるはずの部分にバンク層 b ankを形成し、そこに駆動電流が流れることを防止するので、共通給 電線comの幅はその分狭くてよい。

また、前記のように黒色のレジストで構成したバンク層 b a n k を残しておくと、バンク層 b a n k はブラックマトリクスとして機能し、輝度、コントラスト比等の表示の品位が向上する。すなわち、本形態に係る表示装置1では、対向電極 o p が透明基板10の表面側の全面、あるいは広い領域にわたってストライプ状に形成されるため、対向電極 o p での反射光がコントラスト比を低下させる。しかるに本形態では、有機半導体膜43の形成領域を規定しながら寄生容量を抑える機能を有するバンク層 b a n k を黒色のレジストで構成したため、バンク層 b a n k はブラックマトリクスとしても機能し、対向電極 o p からの無駄な反射光を遮るので、コントラスト比が高いという利点がある。また、バンク

層 b a n k を利用して自己整合的に発光領域を規定することができるので、バンク層 b a n k をブラックマトリクスとして用いずに別の金属層などをブラックマトリクスとして用いたときに問題となる発光領域とのアライメント余裕が不要である。

(アクティブマトリクス基板の別の構成)

なお、本発明は上記の構成に限らず、各種のアクティブマトリクス基板に適用できる。たとえば、図31を参照して説明したように、透明基板1の上において、1本のデータ線sig、1本の共通給電線com、1列の画素7を1つの単位として走査線gateの延設方向に繰り返した構成の表示装置1Aについても本発明を適用できる。

また、保持容量 c a p については、容量線を用いずに、共通給電線 c o m と電位保持電極 s t との間に構成してもよい。この場合には、図14(A)、(B)に示すように、電位保持電極 s t とゲート電極 3 1 とを電気的に接続させるためのゲート電極 3 1 の延設部分 3 1 0 を共通給電線 c o m の下層側にまで拡張し、この延設部分 3 1 0 と共通給電線 c o m との間の位置する第 1 の層間絶縁膜 5 1 を誘電体膜とする保持容量 c a p を構成する。

さらに、保持容量 capについては、図示を省略するが、TFTを構成するためのポリシリコン膜を利用して構成してもよく、また、容量線や共通給電線に限らず、前段の走査線との間に構成することも可能である。

[実施の形態1]

図15は、本形態の表示装置1の画素構成を示す等価回路図である。 図16(A)、(B)はそれぞれ、各画素に構成された各素子の電気的な接続状態を示す説明図、および駆動信号などの電位変化を示す波形図である。 図15、図16(A)、(B)に示すように、本形態では、第1のTFT20はNチャネル型である。従って、走査線gateから供給される走査信号Sgateが高電位になったときに、第1のTFT20がオン状態になって、データ線sigから第1のTFT20を介して保持容量capに画像信号dataが書き込まれ、走査線gateから供給される走査信号Sgateが低電位になっている間は、保持容量capに保持された画像信号dataによって第2のTFT30が駆動制御される。

本形態では、第2のTFT30もNチャネル型である。従って、データ線sigからは、点灯状態とすべき画素の保持容量capには高電位側の画像信号dateが書き込まれ、消灯状態とすべき画素の保持容量capには低電位側の画像信号dateが書き込まれ、それに応じて、電位保持電極stの電位が変化する。

ここで、第2のTFT30のゲート電圧Vgcur は、共通給電線comの電位、および画素電極30の電位のうちの低い方の電位と、電位保持電極stの電位との差に相当する。しかるに本形態では、発光素子40の対向電極opの電位に対して共通給電線comの電位を低くして、第2のTFT30がオン状態になったときには、矢印Fで示すように、発光素子40の方から共通給電線comの方に電流が流れるように構成してある。このため、第2のTFT30のゲート電圧Vgcur は、共通給電線comの電位と電位保持電極stの電位との差に相当する。この共通給電線comの電位とついては、共通給電線comの電位と対向電極opの電位との間の電位に相当する画素電極30の電位と対向電極opの電位との間の電位に相当する画素電極30の電位と相違して、十分に低い値に設定することができる。従って、本形態では、第2のTFT30のゲート電圧Vgcurを十分、高い値とすることができるため、第2のTFT30のオン電流が大きいので、高い輝度で表示を行うことができる。また、画案を点灯状態とする際に、第2のTFT30のゲ

ート電圧Vgcur として高い値が得られるのであれば、その分、そのときの電位保持電極stの電位、すなわち、画像信号dataの高電位側の電位を下げることができるので、画像信号dataの振幅を小さくし、表示装置1における駆動電圧を下げることができる。

なお、第2のTFT30のオン電流は、ゲート電圧Vgcur に限らず、ドレイン電圧にも依存するが、上記の結論が変わることはない。

さらに、本形態では、消灯状態とすべき画素に対してデータ線sigから供給される画像信号dataの電位を、共通給電線comの電位と比較してやや高電位側にしてある。第2のTFT30はNチャネル型であるため、それを完全にターンオフさせるには、第2のTFT30のゲート電圧Vgcurを負(共通給電線comより低い電位)とすることになる。または、第2のTFT30のゲート電圧Vgcurの絶対値が第2のTFT30のしきい値電圧の絶対値に相当するレベルよりやや低い電位となるなるように、画像信号dataの低電位側の電位を高めに設定する。このときは、消灯状態にある画素7において第2のTFT30のゲート電圧を、第2のTFT30がオン状態となるときの極性と同じで、かつ、第2のTFT30のしきい値電圧を下回る値に設定する。この時、画像信号dataの低電位側の電位を上記の通りに高めに設定した

場合でも、第2のTFT30は高抵抗状態にあって、オン電流が極めて小さいので、発光素子40は消灯にある。なお、消灯状態とすべき画素に対してデータ線sigから供給される画像信号dataの電位を、共通給電線comと等電位にして画像信号dataの振幅を小さくしてもよい。

このように画像信号dataの低電位側の電位を第2のTFT30のしきい値を越えない程度に高めに設定すると、画像信号dataの振幅を小さくできるので、画像信号dataの駆動電圧を下げることができる。しかも、前記のとおり、画素を点灯状態とするための画像信号dataの高電位側の電位を、対向電極opの電位より低い電位にまで下げてあるので、画像信号dataの電位は、対向電極opと共通給電線comとで規定されるレンジ内におさまる。それ故、表示装置1における駆動電圧を下げることができ、表示装置1の消費電力を下げることができる。また、このように構成しても、画質の低下、動作の異常、動作可能な周波数の低下を招くものではなく、表示装置1の駆動電圧が低い分、薄膜から構成した各素子で懸念されていた耐電圧(絶縁耐圧)の問題が顕在化しないという利点もある。

[実施の形態1の変形例]

図17は、本形態の表示装置1の画案構成を示す等価回路図である。 図18(A)、(B)はそれぞれ、各画案に構成された各案子の電気的な接続状態を示す説明図、および駆動信号などの電位変化を示す波形図である。なお、本形態では、実施の形態1とは反対に、第1のTFT20および第2のTFT30のいずれをもPチャネル型のTFTで構成してある。但し、本形態は、実施の形態1と同一の技術的思想のもとで各素子を駆動制御することとし、実施の形態1で説明した駆動信号の極性を反転させてあるだけであり、その他の点については同様な構成を有す るものであるため、構成については簡単に説明するだけとする。

図17、図18(A)、(B)に示すように、本形態では、第1のTFT20はPチャネル型であるため、走査線gateから供給される走査信号Sgateが低電位になったときに、第1のTFT20がオン状態になる。

本形態では、第2のTFT30もPチャネル型である。従って、データ線sigからは、点灯状態とすべき画素の保持容量capに低電位側の画像信号dateが書き込まれ、消灯状態とすべき画素の保持容量capには高電位側の画像信号dateが書き込まれる。

ここで、第2のTFT30のゲート電圧Vg cur は、共通給電線 c o mの電位、および画素電極30の電位のうちの高い方の電位と、電位保 持電極 s t の電位との差に相当する。しかるに本形態では、発光素子 4 0の対向電極 opの電位に対して共通給電線 comの電位を高くして、 第2のTFT30がオン状態になったときには、矢印Eで示すように、 共通給電線comの方から発光素子40の方に電流が流れるように構成 してある。このため、第2のTFT30のゲート電圧Vgcur は、共通 給電線 comの電位と電位保持電極 stの電位との差に相当する。この 共通給電線comの電位については、共通給電線comの電位と対向電 極opの電位との間の電位に相当する画素電極30の電位と相違して、 十分に高い値に設定することができる。従って、本形態では、第2のT FT30のゲート電圧Vgcur を十分、高い値とすることができるため 、第2のTFT30のオン電流が大きいので、高い輝度で表示を行うこ とができる。また、画素を点灯状態とする際に、第2のTFT30のゲ ート電圧Vgcur として高い値が得られるのであれば、その分、そのと きの電位保持電極stの電位、すなわち、画像信号dataの低電位側 の電位を上げることができるので、画像信号dataの振幅を小さくで きる。

また、本形態では、第2のTFT30のオン電流が対向電極opの電位から直接的には影響を受けないので、画素を点灯状態とするための画像信号dataの低電位側の電位を、対向電極opの電位よりやや高い電位まで上げ、画像信号dataの振幅を小さくしてある。なお、画素を点灯状態とするための画像信号dataの低電位側の電位を、対向電極opと等電位にまで上げ、画像信号dataの振幅を小さくしてもよい。

さらに、本形態では、消灯状態とすべき画素に対してデータ線sigから供給される画像信号dataの電位を、共通給電線comの電位と比較してやや低電位にまで下げてある。すなわち、第2のTFT30のゲート電圧Vgcurの絶対値がこのTFTのしきい値電圧の絶対値に相当するレベルよりやや低い電位となるなるように、画像信号dataの高電位側の電位を低めに設定してある。これにより、第2のTFT30ではオン電流が極めて小さくなり、発光素子40は消灯にある。なお、消灯状態とすべき画素に対してデータ線sigから供給される画像信号dataの振幅を小さくしてもよい。

このように画像信号 dataの低電位側の電位を高めに設定し、かつ、画素を点灯状態とするための画像信号 dataの高電位側の電位を低めに設定してあるので、画像信号 dataの電位は、対向電極opと共通給電線comとで規定されるレンジ内におさまる。それ故、表示装置1における駆動電圧を下げることができ、表示装置1の消費電力を下げることができるなど、実施の形態1と同様な効果を奏する。

[実施の形態2]

図19は、本形態の表示装置1の画案構成を示す等価回路図である。

図20 (A)、(B) はそれぞれ、各画素に構成された各素子の電気的な接

続状態を示す説明図、および駆動信号などの電位変化を示す波形図である。

図19、図20(A)、(B)に示すように、本形態では、第1のTFT20をNチャネル型のTFTで、第2のTFT30をPチャネル型のTFTで、第2のTFT30をPチャネル型のTFTで構成してある。第2のTFT30はPチャネル型であるため、データ線sigからは、点灯状態とすべき画素の保持容量capには低電位側の画像信号dateが書き込まれ、消灯状態とすべき画素の保持容量capには高電位側の画像信号dateが書き込まれる。第2のTFT30のゲート電圧Vgcurは、共通給電線comの電位、および画素電極30の電位のうちの高い方の電位と、電位保持電極stの電位との差に相当する。

本形態では、発光素子40の対向電極opの電位に対して共通給電線 comの電位を高くして、第2のTFT30のゲート電圧Vgcur は、共通給電線 comの電位と電位保持電極 s t の電位との差に相当するように構成してある。この共通給電線 comの電位については、画素電極41と比較して十分に高い値に設定することができるので、第2のTFT30のオン電流が大きく、高い輝度で表示を行うことができる。また、その分、そのときの電位保持電極 s t の電位、すなわち、画像信号 d a t a の低電位側の電位を上げることができるので、画像信号 d a t a の低電位側の電位を上げることができるので、画像信号 d a t a の低電位側の電位を上げることができるので、画像信号 d a t a の 版幅を小さくできる。また、第2のTFT30のオン電流が対してまるの p の電位から直接的には影響を受けないので、画素を点灯状態とする ための画像信号 d a t a の 仮電位にまで上げ、画像信号 d a t a の 振幅を小さくしてある。さらに、本形態では、消灯状態とすべき画素に対してデータ線 s i g か 5 供給される画像信号 d a t a の電位を、共通給電線 c o

mの電位と比較してやや低電位、あるいは等電位にして画像信号dataの振幅を小さくしてある。それ故、画像信号dataの電位を、対向電極opと共通給電線comとで規定されるレンジ内におさめ、ひいては表示装置1における駆動電圧を下げてあるので、表示装置1の消費電力を下げることができるなど、実施の形態1、あるいはその変形例と同様な効果を奏する。

本形態では、第1のTFT20はNチャネル型で、第2のTFT30と逆導電型であるため、画素を選択するときの走査線gateの電位(走査信号Sgate)は高電位である。このときの第1のTFT20のゲート電圧Vgswは、走査信号Sgateの高電位にある電位と電位保持電極st(保持容量stの電位、第2のTFT30のゲート電極の電位)との電位差に相当する。ここで、第2のTFT30はPチャネル型であるため、画素7を点灯させるための画像信号dataは低電位側であり、画素7の選択期間中、電位保持電極stの電位は低下していく。従って、第1のTFT20のゲート電圧Vgswは、オン電流が増大する方にシフトしていく。

一方、第2のTFT30のゲート電圧Vgcur は、共通給電線comと電位保持電極stとの電位差に相当し、選択した画素7が点灯状態にあるときには、選択期間中、電位保持電極stの電位は低下する傾向にあるため、第2のTFT30のゲート電圧Vgcur は、オン電流が増大する方にシフトしていく。

このように、本形態では、第1のTFT20と第2のTFT30とが 逆導電型であるため、第1のTFT20の書き込み能力を上げるために は走査信号Sgateの選択パルス高を高くし、発光素子40の輝度を上げ るために第2のTFT30のオン抵抗を下げるべく画像信号dataを 低くすることになる。このような走査信号Sgateの選択パルス高と画像 信号dataとに対する最適化は、画素7の選択期間中、発光素子40 を点灯させるレベルの画像信号dataが保持容量capに書き込まれ ていくにつれて、第1のTFT20のゲート電圧に対して、当該TFT のオン電流が増大する方にシフトさせるのに効く。それ故、データ線 s igから第1のTFT20を介して保持容量capに画像信号data がスムーズに書き込まれる。ここで、画素7を選択する際の第1のTF T20のゲート電圧Vgswは、走査信号Sgateの高電位に相当する電位 と電位保持電極stの電位(保持容量capの電位、または第2のTF T30のゲート電極の電位)との差に相当し、第2のTFT30のゲー ト電圧Vgcur は、共通給電線comの電位と電位保持電極stの電位 との差に相当し、電位保持電極stの電位を基準にしたときには、走査 信号Sgateの高電位に相当する電位と共通給電線comの電位は同じ極 性である。従って、電位保持電極 s t の電位を変更すれば、その分、第 1のTFT20のゲート電圧Vgswおよび第2のTFT30のゲート電 圧Vg cur の双方が同じ方向に同じ分だけシフトする。それ故、表示装 置1の駆動電圧レンジの範囲内で、点灯のための画像信号 d a t a の電 位を、第1のTFT20のオン時の抵抗が小さくなる方向に変更すれば 、表示動作の高速化を図ることができるとともに、このときには第2の TFT30のオン時の抵抗が小さくなる方向に点灯のための画像信号d ataの電位が変更したことになるので、輝度の向上を図ることができ る。よって、駆動電圧の低電圧化と表示品位の向上とを併せて達成する ことができる。

[実施の形態2の変形例]

図21は、本形態の表示装置1の画素構成を示す等価回路図である。 図22(A)、(B)はそれぞれ、各画素に構成された各素子の電気的な接続状態を示す説明図、および駆動信号などの電位変化を示す波形図 である。なお、本形態では、実施の形態2とは反対に、第1のTFT20をPチャネル型とし、第2のTFT30をNチャネル型のTFTで構成してある。但し、本形態は、実施の形態2と同一の技術的思想のもとで各素子を駆動制御することとし、実施の形態2で説明した駆動信号の極性を反転させ

てあるだけであるため、その構成を簡単に説明するに止める。

図21、図22 (A)、(B)に示すように、本形態では、実施の形 態1と同様、第2のTFT30はNチャネル型であるため、データ線s igからは、点灯状態とすべき画素の保持容量capには高電位側の画 像信号dateが書き込まれ、消灯状態とすべき画素の保持容量 cap には低電位側の画像信号dateが書き込まれる。ここで、第2のTF T30のゲート電圧Vgcurは、共通給電線comの電位、および画素 電極30の電位のうちの低い方の電位と、電位保持電極stの電位との 差に相当する。しかるに本形態では、発光素子40の対向電極opの電 位に対して共通給電線comの電位を低くしてあるため、第2のTFT 30のゲート電圧Vgcurは、共通給電線comの電位と電位保持電極 s t の電位との差に相当する。この共通給電線 c o m の電位については 十分に低く電位とすることができるので、第2のTFT30のオン電流 が大きく、高い輝度で表示を行うことができる。または、輝度が高い分 、そのときの電位保持電極stの電位、すなわち、画像信号dataの 髙電位側の電位を上げて、画像信号dataの振幅を小さくできる。ま た、第2のTFT30のオン電流が対向電極opの電位から直接的には 影響を受けないので、画素を点灯状態とするための画像信号dataの 高電位側の電位を、対向電極opの電位より低い電位、あるいは等電位 にまで下げ、画像信号dataの振幅を小さくしてある。さらに、本形 態では、消灯状態とすべき画素に対してデータ線sigから供給される。 画像信号dataの電位を、共通給電線comの電位と比較してやや高電位、あるいは等電位にして画像信号dataの振幅を小さくしてある。それ故、画像信号dataの電位を、対向電極opと共通給電線comとで規定されるレンジ内におさめ、表示装置1における駆動電圧を下げてあるので、表示装置1の消費電力を下げることが

できるなど、実施の形態 1、あるいはその変形例と同様な効果を奏する。本形態では第1のTFT20はPチャネル型で、第2のTFT30と逆導電型であるため、画素を選択するときの走査線 gateの電位(走査信号Sgate)は低電位である。これに対して、第2のTFT30はNチャネル型であるため、画素7を点灯させるための画像信号dataは高電位側である。

このように、本形態では、第1のTFT20と第2のTFT30とが 逆導電型であるため、第1のTFT20の書き込み能力を上げるために は走査信号Sgateの選択パルスの電位を低くし、発光素子40の輝度を 上げるために第2のTFT30のオン抵抗を下げるべく画像信号dat aの電位を低くすることになる。このような走査信号Sgateの選択パルス高と画像信号dataとに対する最適化は、画素7の選択期間中、発 光素子40を点灯させるレベルの画像信号dataが保持容量capに 書き込まれていくにつれて、第1のTFT20のゲート電圧に対して、 当該TFTのオン電流が増大する方にシフトさせるのに効く。従って、 電位保持電極stの電位を基準にしたときには、走査信号Sgateの低電 位に相当する電位と共通給電線comの電位は同じ極性であるため、電 位保持電極stの電位を変更すれば、その分、第1のTFT20のゲート電圧Vgswおよび第2のTFT30のゲート電圧Vgcur の双方が同 じ方向に同じ分だけシフトする。それ故、表示装置1の駆動電圧レンジ の範囲内で、点灯のための画像信号dataの電位を、第1のTFT2 0のオン時の抵抗が小さくなる方向に変更すれば、表示動作の高速化を 図ることができる。このときには第2のTFT30のオン時の抵抗が小 さくなる方向に点灯のための画像信号dataの電位を変更したことに なるので、輝度の向上を図ることもできる。よって、実施の形態2と同 様、駆動電圧の低電圧化と表示品位の向上とを併せて達成することがで きる。

尚、上述の実施の形態2及び実施の形態2の変形例において、最適な駆動方法について図25を用いて説明する。

実施の形態2においては、第1のTFTはNチャネル型であり、第2 のTFTはPチャネル型である。図25に示されるように、発光素子4 Oを消灯させる際には、画像信号dataの電位を共通給電線comの 電位よりも高くしてPチャネル型の第2のTFT30をターンオフさせ ているが、本形態では、図25に示すように、発光素子40を消灯させ る場合でも、第2のTFT30を完全にターンオフさせない。すなわち 、本形熊では、第2のTFT30がPチャネル型であるため、それを完 全にターンオフさせるには、ゲート電圧Vgcur をOV(共通給電線c omと同電位)、あるいは正の電位(共通給電線comより高い電位) とすることになるが、本形態では、第2のTFT30のゲート電圧Vg cur がこのTFTのしきい値電圧 V thp(cur)に相当するレベルよりやや 高い電位となるなるように、画像信号dataの消灯時の電位を低めに 設定してある。従って、消灯状態にある画素 7 において第 2 のTFT 3 Oに印加されるゲート電圧は、第2のTFT3Oがオン状態となるとき の極性と同じであるが、第2のTFT30のしきい値電圧(Vthp(cur)) を上回るような値である。例えば、第2のTFT30のしきい値電圧 (Vthp(cur)) を-4 Vとしたとき、消灯状態で第2のTFT30に印 加されるゲート電圧は一3Vとする。

このように第1のTFTがN型、第2のTFTがP型の場合、画像信号dataの消灯側の電位を従来より低めに設定すると、画像信号dataの振幅を小さくできるので、画像信号dataの低電圧化および高周波化を図ることができる。また、このように画像信号dataの消灯側の電位を低めに設定した場合でも、Pチャネル型の第2のTFT30では、しきい値電圧Vthp(cur)に相当するレベルよりやや高めの電位であるので、消灯時に流れる電流は極めて小さい。また、発光素子40にかかる電圧が低ければ、極めて小さい駆動電流しか流れ込まない。それ故、発光素子40を消灯させるのに実質上、問題点がない。

また、本形態では、画像信号 dataの消灯時の電位が共通給電線 comの電位を越える必要がなければ、共通給電線 comの電位を比較的高めに設定できる。そこで、本形態では、共通給電線 comの電位を、第1のTFT20をオン状態にするときの走査信号 Sgateの電位と等しくしてある。それ故、走査側駆動回路において、走査信号 Sgateの高電位として用いた信号レベルをそのまま共通給電線 comに供給すればよいので、本形態の表示装置1では、使用する駆動信号のレベルの数が少なくて済み、表示装置1に駆動信号を入力するための端子数を減らすことができる。また、電源数を減らすことができるため、電源回路の低消費電力化、省スペース化を図ることができる。

この場合には、第1のTFT20がNチャネル型で、第2のTFT30がPチャネル型なので、消灯状態にある画素7の第2のTFT30に印加されるゲート電極の電位は、第1のTFT20をオン状態にするときの走査信号gateの電位から当該第1のTFT20のしきい値電圧Vthn(sw)を差し引いた電位よりも低電位にする。すなわち、画素7を消灯状態にするときの画像信号data(電位保持電極stの電位)と共通給電線comとの電位差Voff の絶対値を下式

$V \tanh(sw) < |V \text{ off } |$

に示すように、第1のTFT20のしきい値電圧Vthn(sw) よりも大きく設定し、画素7を選択する際の第1のTFT20の書き込み動作に支障が発生することを防止すればよい。

なお、実施の形態2の変形例の第1のTFT20がPチャネル型で、第2のTFT30がNチャネル型の場合には、図26および図27(A)、(B)を参照して後述するように、本形態で説明した各信号の相対的な高低を入れ換えて、第1のTFT20や第2のTFT30に印加される電圧の極性を反転させることになる。この場合でも、本形態のように、発光素子40を消灯させる際に第2のTFT30を完全にターンオフさせなければ、画像信号dataの低電圧化および高周波化を図ることができる。また、共通給電線comの電位を、第1のTFT20をオン状態にするときの走査信号Sgateの電位と等しくすることにより、電のTFT20の書き込み動作に支障がないように、消灯状態にある画案7の第2のTFT30に印加されるゲート電極の電位は、第1のTFT20をオン状態にするときの走査信号gateの電位に当該第1のTFT20のしきい値電圧Vthn(sw)を加えた電位よりも高電位にする。

[実施の形態3]

本形態は、図23にその等価回路を示すように、実施の形態2と同様、いずれの画素7においても第1のTFT20をNチャネル型とし、第2のTFT30をPチャネル型とした構成の一例である。また、本形態に係る表示装置1でも、第2のTFT30がPチャネル型なので、発光素子40の対向電極opの電位に対して共通給電線comの電位を高くしてある。従って、第2のTFT30がオン状態になったときには、矢印Eで示すように、共通給電線comの方から発光素子40の方に電流

が流れる。尚、実施の形態2と同様であるため、共通する点については説明を省略し、異なる点についてのみ記載する。実施の形態2では保持容量が設けられていたが、本実施の形態では、保持容量 c a p が無い点で異なる。このような構成とすることにより、出に保持電極 s t の電位の変化を大きくすることができる。

なお、第1のTFT20がPチャネル型で、第2のTFT30がNチャネル型の場合には、図26および図27(A)、(B)を参照して後述するように、本形態で説明した各信号の相対的な高低を入れ換えて、第1のTFT20や第2のTFT30に印加される電圧の極性を反転させることになる。この場合でも、第1のTFT20の書き込み能力を上げるために走査信号の選択パルスの電位を低くし、第2のTFT30のオン抵抗を下げて発光輝度を上げるためには画像信号の電位を高くすることになる。

[実施の形態3の変形例]

なお、上記実施の形態3では、いずれの画素7においても、第1のTFT20がNチャネル型で、第2のTFT30がPチャネル型の場合を説明したが、図26に等価回路を示すように、第1のTFT20がPチャネル型で、第2のTFT30がNチャネル型として構成してもよい。この図に示す例では、発光素子40の対向電極opの電位に対して共通給電線comの電位を低くして、第2のTFT30がオン状態になったときには、矢印Fで示すように、発光素子40の対向電極opの方から共通給電線comの方に電流が流れるように構成してある。

このように画素 7 を構成した場合には、図 2 7 (A)、(B)に示すように、図 2 4 (A)に示した波形の各駆動信号の極性を反転させることになる。

なお、実施の形態3においては、第1のTFT20がNチャネル型で

、第2のTFT30がPチャネル型のときには、発光素子40の対向電極。pの電位に対して共通給電線comの電位を低くして、第2のTFT30がオン状態になったときは、発光素子40の対向電極。pの方から共通給電線comの方に電流が流れるように構成する場合もあり、このように構成した場合でも、第1のTFT20および第2のTFT30を逆導電型にしたことの効果については得ることができる。それとは逆に、第1のTFT20がPチャネル型で、第2のTFT30がNチャネル型のときには、発光素子40の対向電極。pの電位に対して共通給電線comの電位を高くして、第2のTFT30がオン状態になったときは、共通給電線comの方から発光素子40の方に電流が流れるように構成した場合も、第1のTFT20および第2のTFT30を逆導電型にしたことの効果については得ることができる。

[実施の形態4]

上記のいずれの形態1、2、3においても、図28(A)、(B)を 参照して説明するように、保持容量capの両電極のうち、第2のTF T30のゲート電極に電気的に接続する電極とは反対側の電極には、走 査信号gateの選択パルスより遅延して該選択パルスとは電位が逆方 向に振れるパルスが供給されるように構成してもよい。

ここに示す例では、図28(A)に示すように、保持容量capの両電極のうち、第2のTFT30のゲート電極に電位保持電極stを介して電気的に接続する電極とは反対側の電極が、走査線gateと並列するように延設された容量線clineで構成されている。

この容量線 clineには、図28(B)に示すように、走査信号 Sgateの選択パルス Pgateより遅延して該選択パルス Pgateとは電位が逆方向に振れるパルス信号 Pstg を含む電位 stgが供給されるように構成されている。

パルス信号Pstg は、該選択パルスPgateが非選択状態になった後、保持容量capの容量結合を利用して画像信号dataの電位をシフトさせる。このため、画素 7 が消灯状態の保持容量capには画像信号dataの電位にパルス信号Pstg の電位を加算した分の信号が保持される。画像信号dataの高電位側の信号は第1のTFT20のオン抵抗が大きいため、書き込みを限られた時間で十分に行うは難しい。この例では、書き込みが十分でない場合、点灯できないことになる。しかし、本形態の実施例を用いることにより、保持容量capへの画像信号dataの書き込みを補うことができる。それでいて、駆動信号の電位の最大レンジが拡がることがない。

このようにして、容量線 c l i n e にパルス信号 P stg をのせるにあたっては、図 2 9 に示すように、容量線 c l i n e を走査側駆動回路 4 から引き出すとともに、走査側駆動回路 4 においては、いずれのゲート段にもシフトレジスタ 4 0 1 からの出力信号をNANDゲート回路およびインバータを介して走査線 g a t e に走査信号 S gateとして出力する一方、シフトレジスタ 4 0 1 からの出力信号をNANDゲート回路および 2 段のインバータを介して遅延させながら、図 3 0 に示すように、高電位側の電源レベルを V d d から電位 V c c y にレベルシフトして容量線 c l i n e に出力すればよい。

上述の実施の形態及びそれらの変形例においては、保持容量を付加する場合は、容量線 c 1 i n e を設けたタイプの発光素子について説明した。しかしながら、本実施の形態はこのような容量線 c 1 i n e を設ける構成に限るものではなく、保持容量の一方の電極を隣接するゲート線により構成にしてもよい。かかる構成の一例を図34(A)に回路ブロック図を、ゲート線の走査方向に対するゲート電極の電圧波形を図34(B)にそれぞれ示す。このように、当該画素に対して、隣接するゲー

ト線を保持容量の一方の電極として構成することにより、容量線 c l i n をわざわざ設ける必要がないという効果を有するものである。

上記のいずれの形態についても、第2のTFT30の電流-電圧特性のいずれの領域で動作させるかについて記載しなかったが、第2のTFT30をその飽和領域で動作させれば、TFTの弱い定電流特性を利用して発光素子40に異常電流が流れることを防止することができる。例えば、発光素子40を構成する有機半導体膜等にピンホール欠陥が生じていることがあるが、その場合でも、欠陥のある発光素子に流れる電流は制限され、発光素子40の電極間で完全ショートになることがない。

これに対して、第2のTFT30をその線形領域で動作させれば、そのしきい値電圧のばらつきが表示動作に影響を及ぼすことを防止することができる。

なお、TFTの構造についても、トップゲート型に限らず、ボトムゲート型でもよく、その製造方法に関しても低温プロセスに限定されるものではない。

発明の利用可能性

[その他の実施の形態]

以上説明したように、本発明の請求項第1項から第7項に係る表示装置では、第2のTFTのオン時のゲート電圧は、共通給電線の電位および画素電極の電位のうちの一方の電位と、ゲート電極の電位(画像信号の電位)との差に相当するので、第2のTFTの導電型に応じて、共通給電線の電位と発光素子の対向電極の電位との相対的な高低を設定し、第2のTFTのゲート電圧は、共通給電線の電位と電位保持電極の電位との差に相当するように構成してある。たとえば、第2のTFTがNチャネル型であれば、発光素子の対向電極の電位に対して共通給電線の電

位を低くしてある。この共通給電線の電位については、画素電極の電位と相違して、十分に低い値に設定することができるため、第2のTFTで大きなオン電流が得られ、高い輝度で表示を行うことができる。また、画素を点灯状態とする際に、第2のTFTのとして高いゲート電圧が得られるのであれば、その分、そのときの画像信号の電位を下げることができるので、画像信号の振幅を小さくし、表示装置における駆動電圧を下げることができる。それ故、消費電力を低減できるともに、薄膜で構成された各素子で懸念されていた耐電圧の問題が顕在化しないという利点がある。

また、本発明の請求項第7項から第11項に係る表示装置では、第1のTFTと第2のTFTとが逆導電型であるため、画素を選択するための走査信号のパルスと、発光素子を点灯させるための画像信号の電位とは逆にふれる関係にある。従って、点灯時の電位保持電極の電位(点灯のための画像信号の電位)を基準にしたときには、走査信号の高電位に相当する電位と共通給電線の電位は同じ極性であるため、点灯時の電位保持電極の電位(点灯のための画像信号の電位)を変更すれば、その分、第1のTFTのゲート電圧および第2のTFTのゲート電圧の双方が同じ方向に同じ分だけシフトする。それ故、表示装置の駆動電圧レンの範囲内で、点灯のための画像信号の電位を、第1のTFTのオン時の抵抗が小さくなる方向にシフトさせれば、表示動作の高速化を図ることができるとともに、このときには第2のTFTのオン時の抵抗が小さくなる方向に点灯のための画像信号の電位がシフトしたことになるので、なる方向に点灯のための画像信号の電位がシフトしたことになるので、なる方向に点灯のための画像信号の電位がシフトしたことになるので、輝度の向上を図ることができる。よって、駆動電圧の低電圧化と表示品位の向上とを併せて達成することができる。

さらに、本発明の請求項第11項または第12項に係る表示装置では 、保持容量の両電極のうち、第2のTFTの第2のゲート電極に電気的 に接続する電極とは反対側の電極には、走査信号の選択パルスより遅延 して該選択パルスとは電位が逆方向に振れるパルスが供給されるので、 保持容量への画像信号の書き込みを補うことができる。それ故、画像信 号の振幅を大きくせずに、第2のTFTのゲート電極に印加される画像 信号の電位を高輝度化の方向にシフトさせることができる。

請求の範囲

1. 基板上に、複数の走査線と、該複数の走査線に交差する複数のデータ線と、複数の共通給電線と、前記データ線と前記走査線とによりマトリクス状に形成された画素とを有し、該画素の各々には、前記走査線を介して走査信号が第1のゲート電極に供給される第1の薄膜トランジスタと、該第1の薄膜トランジスタを介して前記データ線から供給される画像信号を保持する保持容量と、該保持容量によって保持された前記画像信号が第2のゲート電極に供給される第2の薄膜トランジスタと、前記画素毎に形成された画素電極と該画素電極に対向する対向電極との間において前記画素電極が第2の薄膜トランジスタを介して前記共通給電線に電気的に接続した時に前記画素電極と前記対向電極との間に流れる駆動電流によって発光する発光素子とを備える表示装置において、

前記第2の薄膜トランジスタはNチャネル型であり、前記共通給電線は前記対向電極よりも低電位に設定されていることを特徴とする表示装置。

2. 基板上に、複数の走査線と、該走査線に交差する複数のデータ線と、複数の共通給電線と、前記データ線と前記走査線とによりマトリクス状に形成された画素とを有し、該画素の各々には、前記走査線を介して走査信号が第1のゲート電極に供給される第1の薄膜トランジスタと、該第1の薄膜トランジスタを介して前記データ線から供給される画像信号を保持する保持容量と、該保持容量によって保持された前記画像信号が第2のゲート電極に供給される第2の薄膜トランジスタと、前記画素毎に形成された画素電極と該画素電極に対向する対向電極との間において前記画素電極が前記第2の薄膜トランジスタを介して前記共通給電

線に電気的に接続したときに前記画素電極と前記対向電極との間に流れる駆動電流によって発光する発光薄膜を具備する発光素子とを備える表示装置において、

前記第2の薄膜トランジスタはPチャネル型であり、前記共通給電線 は前記対向電極よりも高電位に設定されていることを特徴とする表示装 置。

- 3. 請求の範囲第1項において、点灯状態とすべき画素に対して前記データ線から供給される画像信号の電位は、前記対向電極の電位と比較して低電位、あるいは等電位であることを特徴とする表示装置。
- 4. 請求の範囲第2項において、点灯状態とすべき画素に対して前記データ線から供給される画像信号の電位は、前記対向電極の電位と比較して高電位、あるいは等電位であることを特徴とする表示装置。
- 5. 請求の範囲第1項または第3項において、消灯状態とすべき画素に対して前記データ線から供給される画像信号の電位は、前記共通給電線の電位と比較して高電位、あるいは等電位であることを特徴とする表示装置。
- 6. 請求の範囲第2項または第4項において、消灯状態とすべき画素に対して前記データ線から供給される画像信号の電位は、前記共通給電線の電位と比較して低電位、あるいは等電位であることを特徴とする表示装置。
- 7. 請求の範囲第1項ないし第6項のいずれかにおいて、前記第1の 薄膜トランジスタと前記第2の薄膜トランジスタとは、逆導電型の薄膜 トランジスタで構成されていることを特徴とする表示装置。
- 8. 基板上に、複数の走査線と、該走査線に交差する複数のデータ線と、複数の共通給電線と、前記データ線と前記走査線とによりマトリクス状に形成された画素とを有し、該画素の各々には、前記走査線を介し、

て走査信号が第1のゲート電極に供給される第1の薄膜トランジスタと、該第1の薄膜トランジスタを介して前記データ線から供給される画像信号を保持する保持容量と、該保持容量によって保持された前記画像信号が第2のゲート電極に供給される第2の薄膜トランジスタと、前記画素毎に形成された画素電極と該画素電極に対向する対向電極との層間において前記画素電極が前記第2の薄膜トランジスタを介して前記共通給電線に電気的に接続したときに前記画素電極と前記対向電極との間に流れる駆動電流によって発光する発光薄膜を具備する発光素子とを備える表示装置において、

前記第1の薄膜トランジスタと前記第2の薄膜トランジスタとは、互いに逆導電型の薄膜トランジスタで構成されていることを特徴とする表示装置。

- 9. 請求の範囲第8項において、消灯状態にある画素における前記第 2の薄膜トランジスタに印加されるゲート電圧は、該第2の薄膜トラン ジスタがオン状態となるときの極性と同じで、かつ、該第2の薄膜トラ ンジスタのしきい値電圧を越えない値であることを特徴とする表示装置
- 10.請求の範囲第9項において、前記第1の薄膜トランジスタはNチャネル型、前記第2の薄膜トランジスタはPチャネル型であって、

前記第1の薄膜トランジスタをオン状態の走査信号の電位と前記共通 給電線の電位とが等しく、かつ、

消灯状態にある画素の前記第2の薄膜トランジスタに印加されるゲート電極の電位は、前記第1の薄膜トランジスタをオン状態にするときの走査信号の電位から当該第1の薄膜トランジスタのしきい値電圧を差し引いた電位よりも低電位であることを特徴とする表示装置。

11. 請求の範囲第9項において、前記第1の薄膜トランジスタはPチャネル型、前記第2の薄膜トランジスタはNチャネル型であって、

前記第1の薄膜トランジスタをオン状態にするときの走査信号の電位 と前記共通給電線の電位とが等しく、かつ、

消灯状態にある画素の前記第2の薄膜トランジスタに印加されるゲート電極の電位は、前記第1の薄膜トランジスタをオン状態にするときの 走査信号の電位に当該第1の薄膜トランジスタのしきい値電圧を加えた 電位よりも高電位であることを特徴とする表示装置。

12.請求の範囲第1項ないし第11項のいずれかにおいて、前記保持容量の両電極のうち、前記第2の薄膜トランジスタの前記第2のゲート電極に電気的に接続する電極とは反対側の電極には、前記走査信号の選択パルスより遅延して該選択パルスとは電位が逆方向に振れるパルスが供給されるように構成されていることを特徴とする表示装置。

13. 基板上に、複数の走査線と、該走査線に交差する複数のデータ線と、複数の共通給電線と、前記データ線と前記走査線とによりマトリクス状に形成された画素とを有し、該画素の各々には、前記走査線を介して走査信号が第1のゲート電極に供給される第1の薄膜トランジスタと、該第1の薄膜トランジスタを介して前記データ線から供給される画像信号を保持する保持容量と、該保持容量によって保持された前記画像信号が第2のゲート電極に供給される第2の薄膜トランジスタと、前記画素毎に形成された画素電極と該画素電極に対向する対向電極との層間において前記画素電極が前記第2の薄膜トランジスタを介して前記共通給電線に電気的に接続したときに前記画素電極と前記対向電極との間に流れる駆動電流によって発光する発光薄膜を具備する発光素子とを備える表示装置において、

前記保持容量の両電極のうち、前記第2の薄膜トランジスタのゲート

電極に電気的に接続する電極とは反対側の電極には、前記走査信号の選択パルスより遅延して該選択パルスとは電位が逆方向に振れるパルスを供給することを特徴とする表示装置。

- 14. 請求の範囲第1項ないし第13項のいずれかにおいて、前記発光 薄膜が有機半導体膜であることを特徴とする表示装置。
- 15. 請求の範囲第1項ないし第14項のいずれかにおいて、前記第2の薄膜トランジスタは飽和領域で動作するように構成されていることを特徴とする表示装置。
- 16. 請求の範囲第1項ないし第14項のいずれかにおいて、前記第2の薄膜トランジスタは線形領域で動作するように構成されていることを特徴とする表示装置。

図 2

図 4

(A)

(A)

(B)

(A)

(B)

N4ャネル型薄膜トランジスタの 電流電圧特性

図12

P4ャネル型薄膜トランジスタの 電流電圧特性

図 1 5

(A)

図17

(A)

(B)

図19

(A)

(B)

図21

図22 (A)

(B)

図23

図24

図 2 5

図26

図28 (A)

(B)

区29

図30

図31

図32

30/31

図34(B)

ケー・単圧の波形 (走査方向か Sgate1→ Sgate2)

ゲート電圧の 汲 形 (走査方向 か Sgate 2→ Sgate l)

· .

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP98/00656

A. CLASSIFICATION OF SUBJECT MATTER Int.C16 G09G3/30, H05B33/08, H05B33/26, H01L33/00			
According to International Patent Classification (IPC) or to both national classification and IPC			
B. FIELDS SEARCHED			
Minimum documentation searched (classification system followed by classification symbols) Int.Cl ⁶ G09G3/20-38, H05B33/00-28, H01L33/00			
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Jitsuyo Shinan Koho 1926-1998 Toroku Jitsuyo Shinan Koho 1994-1998 Kokai Jitsuyo Shinan Koho 1971-1995			
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)			
C. DOCUMENTS CONSIDERED TO BE RELEVANT			
	y* Citation of document, with indication, where appropriate, of the relevant passages		
	JP, 8-227276, A (Pioneer Electronic Corp.), September 3, 1996 (03. 09. 96)		
X JP, 8-129358, A (TDK Corp. May 21, 1996 (21. 05. 96)	JP, 8-129358, A (TDK Corp. and others), May 21, 1996 (21. 05. 96)		
	JP, 8-227276, A (Pioneer Electronic Corp.), September 3, 1996 (03. 09. 96)		
У JP, 8-129358, A (TDK Corp. May 21, 1996 (21. 05. 96)	JP, 8-129358, A (TDK Corp. and others), May 21, 1996 (21. 05. 96)		
Further documents are listed in the continuation of Box C. See patent family annex.			
"A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date "X" document of particular recited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other considered to involve an		ance; the claimed invention cannot be the considered to involve an inventive step alone ance; the claimed invention cannot be entive step when the document is other such documents, such combination illed in the art me patent family	
May 12, 1998 (12. 05. 98) May 26, 1998 (26. 05. 98)			
me and mailing address of the ISA/ Japanese Patent Office Authorized officer			
Facsimile No.	Telephone No.		

Form PCT/ISA/210 (second sheet) (July 1992)

	国际嗣宜和口		
A. 発明の属す - Int.Cl	-る分野の分類(国際特許分類(IPC)) - G09G3/30 H05B33/08 H0	5B33/26 H01L33/00	
B. 調査を行っ 調査を行った最/ Int. Cl	った分野 小限資料(国際特許分類(IPC)) 。 G09G3/20-38 H05B33/0	0-28 H01L33/00	
日本国実用第 日本国公開第 日本国登録第	ミ用新案公報 1971-1993 ミ用新案公報 1994-1998		
国際調査で使用	した電子データベース(データベースの名称、調	査に使用した用語)	
	1		関連する
	と認められる文献	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	請求の範囲の番号
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するとき JP、8-227276、A (パイオ:	ニア株式会社), 03.9月	1, 14
X	JP, 8-227270, A() 1996 (03. 09. 96) JP, 8-129358, A(ティー:	ディーケイ株式会社、他)、	2, 7, 8, 14
X	JP, 8-129336, 21.05. 21.5月.1996(21.05. JP, 8-227276, A(パイオ)	96) ニア株式会社), 03.9月	15-16
Y	JP, 8-22, 29, 96) 1996 (03, 09, 96) JP, 8-129358, A (ティー 21, 5月, 1996 (21, 05.	ディーケイ株式会社,他),	15-16
			auléss た奈昭
口に概の続	きにも文献が列挙されている。	□ パテントファミリーに関する	列級在包括。
* 引用文献 「A」特にの 「E」先行の 「L」優先若し て大が	のカテゴリー はのある文献ではなく、一般的技術水準を示す に献ではあるが、国際出願日以後に公表されたも 重主張に疑義を提起する文献又は他の文献の発行 くは他の特別な理由を確立するために引用する (理由を付す) こよる開示、使用、展示等に言及する文献 出願日前で、かつ優先権の主張の基礎となる出願	論の理解のために引用するもの 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの 「&」同一パテントファミリー文献	
国際調査を知		国際調査報告の発送日 26.05.98	
日	関の名称及びあて先 本国特許庁(I S A / J P) 郵便番号100-8915 京都千代田区霞が関三丁目4番3号	特許庁審査官(権限のある職員) 奥 村 元 宏 電話番号 03-3581-110	1 内線 3530