

Bilangan Kuantum

A. PENDAHULUAN

- Bilangan kuantum adalah suatu harga yang menyatakan keadaan orbital suatu atom.
- Name Bilangan kuantum terdiri dari:
 - 1) **Bilangan kuantum utama** (n), menyatakan tingkat energi/kulit atom.
 - 2) **Bilangan kuantum azimuth** (l), menyatakan sub-kulit atom dan bentuk geometri orbital.
 - 3) Bilangan kuantum magnetik (m), yaitu menyatakan banyak dan posisi/orientasi orbital.
 - 4) **Bilangan kuantum spin** (s), menyatakan kedudukan elektron dalam suatu orbital.

B. BILANGAN KUANTUM UTAMA

- Bilangan kuantum utama/prinsipal (n) adalah suatu harga yang menyatakan tingkat energi atau kulit dalam atom.
- Bilangan kuantum utama merupakan dasar penentu harga bilangan kuantum lainnya.
- 🔦 Bilangan kuantum utama antara lain:

Kulit	K	L	М	N
Harga	1	2	3	4

C. BILANGAN KUANTUM AZIMUTH

- Bilangan kuantum azimuth/orbital (l) adalah suatu harga yang menyatakan sub-kulit atom dan bentuk geometri orbital.
- Narga l yang dijinkan di setiap kulitnya adalah:

$0 \le l \le (n-1)$

Sub- kulit	Nama	Harga	Bentuk orbital
S	sharp	0	1 balon
р	principal	1	1 balon terpilin
d	diffuse	2	2 balon terpilin
f	fundamental	3	4 balon terpilin

■ Kulit-kulit atom dalam keadaan penuh terisi elektron beserta harga b.k. azimuth:

Kulit	K	L
Harga	0	0, 1
Sub-kulit	1s	2s 2p
Elektron maks	2	8
Kulit	M	N
Harga	0, 1, 2	0, 1, 2, 3
Sub-kulit	3s 3p 3d	4s 4p 4d 4f
Elektron maks	18	32

D. BILANGAN KUANTUM MAGNETIK

- Bilangan kuantum magnetik (m_l atau m) adalah suatu harga yang menyatakan banyak dan posisi/orientasi orbital.
- Narga m yang diijinkan di setiap sub-kulitnya:

$-l \le m \le +l$

- Posisi/orientasi atau orbital adalah tempat dimana elektron bergerak di dalam atom, dan masing-masing orbital maksimal menampung sepasang elektron.
- Sub-kulit atom dalam keadaan terisi penuh elektron beserta harga b.k. magnetik:

Sub-kulit	s	р
Harga	0	-1 s.d. 1
Diagram	0	-1 0 1
Total orbital	1	3
Elektron maks	2	6
Sub-kulit	d	
Harga	-2 s.	d. 2
Diagram	-2 -1 0	1 2
Total orbital	5	
Elektron maks	10)
Sub-kulit	f	
Harga	-3 s.	d. 3
Diagram	-3 -2 -1 0	1 2 3
Total orbital	7	,
Elektron maks	14	4

E. BILANGAN KUANTUM SPIN

- Bilangan kuantum spin (m_s atau s) adalah suatu harga yang menyatakan kedudukan dan arah rotasi elektron pada suatu orbital.
- Bilangan kuantum spin tidak digunakan dalam menentukan keadaan orbital, hanya untuk menentukan perbedaan elektron pada orbital.
- Karena terdapat dua elektron dalam satu orbital, sedangkan keduanya memiliki kutub padanya, maka nilai elektron yang berpasangan dalam orbital tersebut harus berbeda nilai.

Narga bilangan kuantum spin terdiri dari:

Harga	$s = +\frac{1}{2}$	$s = -\frac{1}{2}$
Elektron	S	SUSSI
Arah	berlawanan jarum jam	searah jarum jam
Kutub	terbalik	tidak terbalik
Posisi pada orbital	\uparrow	\downarrow

F. BENTUK ORBITAL

Bentuk orbital bergantung pada harga bilangan kuantum azimuth (l), dan setiap nilai l memiliki bentuk orbital berbeda.

- Orbital atom adalah sebuah fungsi matematika yang menggambarkan perilaku elektron pada suatu atom sebagai partikel gelombang. Orbital atom mempunyai tiga buah sumbu, yaitu sumbu x, y dan z, dan kemungkinan terbesar ditemukannya elektron terdapat pada titik pertemuannya yang disebut daerah orbital.
- ◆ Orbital s berbentuk satu buah balon atau satu bola.

Norbital p berbentuk satu buah balon yang dipilin atau dua bola.

🔌 **Orbital d** berbentuk dua buah balon yang dipilin atau empat bola.

	a baan baton yang atpitin ataa	•	
Fungsi orbital	d_{xy}	d_{xz}	d_{yz}
Gambar	\mathbf{z} \mathbf{d}_{xy}	x d_{xz}	\mathbf{z} \mathbf{d}_{yz}
Fungsi orbital	$d_{x^2-y^2}$	d_{z^2}	
Gambar	z $d_{x^2-y^2}$	d_{z^2}	

Norbital f berbentuk empat buah balon yang dipilih atau delapan bola.

Hibridisasi adalah gabungan orbital-orbital atom dalam suatu senyawa membentuk orbital hibrid molekul. (lihat di bagian Bentuk dan Interaksi Molekul)

G. DIAGRAM ORBITAL

- **Note:** Note: N
- Nonfigurasi elektron yang ditulis menggunakan bilangan kuantum harus memenuhi kaidah berikut:

1) Azas Aufbau

Pengisian elektron pada sub-kulit diisi dari tingkat energi yang lebih rendah ke tingkat energi yang lebih besar.

Aturan pengisian sub-kulit:

Contoh:

 $_8O$: $1s^2 2s^2 2p^4$

₁₉K : 1s² 2s² 2p⁶ 3s² 3p⁶ 4s¹ ₂₆Fe : 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d⁸

2) Aturan Hund

Pengisian elektron pada orbital yang satu sub-kulit, mula-mula elektron mengisi satu di tiap orbital, baru kemudian berpasangan.

Contoh:

2p ³	1	1	1	3	p ⁶	1↓	1↓	1↓
$4d^7$	↑ ↓	1↓	1	1	1			

							١.
5f12	11	1.L	1.L	1.L	↑	↑	↑
<i>3</i> 1	' 🕶	' *	١.	' *	' '	' '	'

Penyimpangan pengisian sub-kulit terjadi pada sub-kulit d, karena menginginkan kestabilan.

Sub-kulit d stabil apabila terisi 5 atau 10 elektron, sehingga apabila terdapat 4 atau 9 elektron pada sub-kulit d, maka sub-kulit d akan 'meminjam' elektron dari sub-kulit s.

Contoh:

4s² 3d⁴ menjadi 4s¹ 3d⁵

Sub-kulit d juga mengalami penyimpangan pada unsur-unsur lantanida dan aktinida, dimana sebelum mengisi sub-kulit f, terdapat satu elektron yang mengisi sub-kulit d terlebih dahulu.

Contoh:

 $6s^2 4f^8$ menjadi $6s^2 5d^1 4f^7$

3) Larangan Pauli

Tidak ada elektron dengan keempat bilangan kuantum yang sama dalam satu atom.

Contoh:

Buktikan dari konfigurasi elektron unsur B bahwa tidak ada elektron dengan keempat bilangan kuantum sama!

$$_6$$
C : $1s^2 2s^2 2p^2$

$\uparrow\downarrow$ $\uparrow\downarrow$	1	1	
---	---	---	--

Elektron ke	n	ι	m	s
1	1	0	0	+ ¹ / ₂
2	1	0	0	- ¹ / ₂
3	2	0	0	+1/2
4	2	0	0	- ¹ / ₂
5	2	1	-1	+1/2
6	2	1	0	+1/2

Penulisan konfigurasi elektron dapat dipersingkat dengan menggunakan notasi gas mulia.

Contoh:

Unsur halogen dapat dipersingkat konfigurasi elektronnya dengan:

9F: [He] 2s² 2p⁵ 17Cl: [Ne] 3s² 3p⁵ 35Br: [Ar] 4s² 4p⁵ 53I: [Kr] 5s² 5p⁵ 85At: [Xe] 6s² 6p⁵

H. GOLONGAN DAN PERIODE PADA TABEL PERIODIK

- Konfigurasi elektron dengan diagram orbital dapat digunakan untuk menentukan blok, golongan, dan periode unsur dalam sistem periodik modern.
- Blok unsur merupakan pembagian unsur berdasarkan sub-kulit terakhir yang diisi oleh suatu atom.
- Penentuan golongan dan periode unsur pada tabel periodik utama adalah sebagai berikut.

Konfigurasi akhir	Golongan	Blok
ns ¹	IA	S
ns ²	IIA	3
ns² np¹	IIIA	
ns² np²	IVA	
ns² np³	VA	_
ns² np⁴	VIA	р
ns² np⁵	VIIA	
ns² np ⁶	VIIIA	
ns ² (n-1)d ¹	IIIB	
ns ² (n-1)d ²	IVB	
ns² (n-1)d³	VB	
ns ¹ (n-1)d ⁵	VIB	d
ns ² (n-1)d ⁵	VIIB	u
ns ² (n-1)d ^{6 s.d. 8}	VIIIB	
ns ¹ (n-1)d ¹⁰	IB	
ns ² (n-1)d ¹⁰	IIB	

- Penentuan golongan dan periode unsur pada tabel periodik unsur lantanida dan aktinida:
 - 1) **Unsur-unsur lantanida** merupakan blok f dengan konfigurasi 6s² 5d¹ 4f¹ s.d. ¹⁴.
 - 2) **Unsur-unsur aktinida** merupakan blok f dengan konfigurasi 7s² 6d¹ 5f¹ s.d. ¹⁴.