Matemáticas Discretas ICI-427

Sergio Hernández shernandez@ucm.cl

Facultad de Ciencias de la Ingeniería

Introducción

 Los árboles son estructuras de datos que sirven para representar relaciones jerárquicas, lo cual es equivalente a decir que existen relaciones lógicas entre los vértices de un grafo.

Definición

Un grafo acíclico es un grafo que no contiene ciclos. Un **árbol** es un grafo acíclico conexo. En un árbol, dos vértices cualquiera están conectados por una única ruta.

Introducción

- Es posible demostrar que cualquier grafo G = (V, E) es un árbol si se cumple una de las siguientes afirmaciones:
 - G es conexo y acíclico.
 - G tiene n = |V| vértices, es conexo y tiene n 1 aristas.
 - G es acíclico y tiene n-1 aristas.

Introducción

- Es posible demostrar que cualquier grafo G = (V, E) es un árbol si se cumple una de las siguientes afirmaciones:
 - G es conexo y acíclico.
 - G tiene n = |V| vértices, es conexo y tiene n 1 aristas.
 - G es acíclico y tiene n-1 aristas.

Definición

Sea T un árbol, entonces |E| = |V| - 1

Arboles de Expansión

 Es posible construir árboles eliminando vértices de un grafo, si y solo si G es conexo

Arboles de Expansión

 Es posible construir árboles eliminando vértices de un grafo, si y solo si G es conexo

Definición

El **árbol de expansión** T de un gráfo G es un sub-grafo de G que contiene todos los vértices de G.

Figure: Grafo conexo con ciclos

Figure : Se elimina $\{a, e\}$

Figure : Se elimina $\{e, f\}$

Figure : Se elimina $\{c,g\}$

Arboles de Expansión Mínimos

• Existen muchos arboles de expansión para un grafo.

Arboles de Expansión Mínimos

- Existen muchos arboles de expansión para un grafo.
- Al mismo tiempo, es posible construir árboles de expansión para grafos ponderados.

Arboles de Expansión Mínimos

- Existen muchos arboles de expansión para un grafo.
- Al mismo tiempo, es posible construir árboles de expansión para grafos ponderados.

Definición

Dado un grafo ponderado (G, w) donde G = (V, E) y $w : E \mapsto \mathbb{R}$, un **arbol de expansión mínima** es un arbol de expansión en el que la suma de los pesos w de las aristas es mínima.

Algoritmo de Prim

 El algoritmo de Prim construye un arbol visitando vértices de manera iterativa hasta que se obtiene un árbol de expansión mínima.

Algoritmo de Prim

- El algoritmo de Prim construye un arbol visitando vértices de manera iterativa hasta que se obtiene un árbol de expansión mínima.
- Se comienza desde un vértice cualquiera y en cada iteración se agrega la arista que tenga el mínimo peso y no complete un ciclo.

Algoritmo de Prim

- El algoritmo de Prim construye un arbol visitando vértices de manera iterativa hasta que se obtiene un árbol de expansión mínima.
- Se comienza desde un vértice cualquiera y en cada iteración se agrega la arista que tenga el mínimo peso y no complete un ciclo.
- La complejidad computacional del algoritmo de Prim es O(V log V).

Figure : Ejecución del algoritmo Prim en un grafo ponderado

Figure : Ejecución del algoritmo Prim en un grafo ponderado

Figure : Ejecución del algoritmo Prim en un grafo ponderado

Figure : Ejecución del algoritmo Prim en un grafo ponderado

Figure : Ejecución del algoritmo Prim en un grafo ponderado

Figure : Ejecución del algoritmo Prim en un grafo ponderado

Figure : Ejecución del algoritmo Prim en un grafo ponderado

Figure : Ejecución del algoritmo Prim en un grafo ponderado

Figure : Ejecución del algoritmo Prim en un grafo ponderado

Algoritmo de Kuskal

• El algoritmo de Kruskal construye un arbol visitando aristas de manera iterativa hasta que se obtiene un árbol de expansión mínima.

Algoritmo de Kuskal

- El algoritmo de Kruskal construye un arbol visitando aristas de manera iterativa hasta que se obtiene un árbol de expansión mínima.
- Se comienza desde un vértice cualquiera y en cada iteración se agrega la arista que tenga el mínimo peso y no complete un ciclo.

Algoritmo de Kuskal

- El algoritmo de Kruskal construye un arbol visitando aristas de manera iterativa hasta que se obtiene un árbol de expansión mínima.
- Se comienza desde un vértice cualquiera y en cada iteración se agrega la arista que tenga el mínimo peso y no complete un ciclo.
- La complejidad computacional del algoritmo de Kruskal es O(E log E).

Figure : Ejecución del algoritmo Kruskal en un grafo ponderado

Figure : Ejecución del algoritmo Kruskal en un grafo ponderado

Figure : Ejecución del algoritmo Kruskal en un grafo ponderado

Figure : Ejecución del algoritmo Kruskal en un grafo ponderado

Figure : Ejecución del algoritmo Kruskal en un grafo ponderado

Figure : Ejecución del algoritmo Kruskal en un grafo ponderado

Figure : Ejecución del algoritmo Kruskal en un grafo ponderado

Figure : Ejecución del algoritmo Kruskal en un grafo ponderado

Figure : Ejecución del algoritmo Kruskal en un grafo ponderado

Figure : Ejecución del algoritmo Kruskal en un grafo ponderado

Figure : Ejecución del algoritmo Kruskal en un grafo ponderado

Figure : Ejecución del algoritmo Kruskal en un grafo ponderado

