CSCI 2200 — Foundations of Computer Science (FoCS) Problem Set 2 (document version 1.1)

Overview

- This problem set is due at your Wednesday, September 21 recitation
- You may work on this problem set in a group of no more than four students; each of your teammates must be in your recitation section
- Please start this problem set early and ask questions during office hours and at your recitation section; also ask (and answer) questions on the Discussion Forum
- You can type or hand-write (or both) your solutions to the required graded problems

Problems

These problems are generally good practice problems to work on. Those marked with an asterisk (*) are required and will be reviewed/graded in recitation.

• Problem 3.28.

• Problem 4.12(a)-(g),(i)-(n).

• Problem 3.30.

• *Problem 4.12(h).

• Problem 4.6.

• *Problem 4.15(a).

• Problem 4.8.

• *Problem 4.16(k).

• *Problem 4.9.

• Problem 4.17.

(v1.1) Some of the above problems are transcribed below.

- *Problem 4.9. You may assume n is an integer. Give direct and contraposition proofs of:
 - (a) $(n^3 + 5 \text{ is odd}) \rightarrow (n \text{ is even}).$
 - (b) (3 does not divide n) \rightarrow (3 divides $n^2 + 2$).
- *Problem 4.12(h). Prove by contradiction:
 - (h) $(x,y) \in \mathbb{Z}^2 \to x^2 4y 3 \neq 0$.
- *Problem 4.15(a). Prove these if and only if claims. You must prove two implications. (Break the proof into cases.)
 - (a) Prove: 4 divides $n \in \mathbb{Z}$ IF AND ONLY IF $n = 1 + (-1)^k (2k 1)$ for $k \in \mathbb{N}$. (Try n < 0, n = 0, n > 0; k = 0, k = 0) even/odd.)
- *Problem 4.16(k). Determine the type of proof and prove. Tinker, tinker, tinker.
 - (k) If n is odd, then $n^2 1$ is divisible by 8.