Le modèle relationnel ER+

Quelques compléments sur les modèles relationnels D'autres formes de dépendances

Christine Verdier

- Soit : S={RI(AI,FI), R2(A2,F2), ..Rn(An, Fn} un schéma de relations.
- L'hypothèse de la relation universelle (RU) postule :
 - Les colonnes de la relation universelle notée
 U sont constituées à partir de l'ensemble T
 T=AI ∪ A2 ∪ A3...∪An
 - 2. Chaque relation de l'ensemble S est une projection de la relation U

- Conséquences de l'hypothèse de la relation universelle (RU) :
 - I. Une relation ne peut avoir deux noms d'attributs identiques. Il est donc nécessaire que dans S, lorsque 2 attributs portent le même nom dans deux relations différentes, ces deux attributs véhiculent la même sémantique.
 - 2. Les jointures entre deux relations S s'effectueront sur des attributs ayant le même nom (jointure naturelle).

• Autre conséquence : Dans le modèle relationnel, le nom de la relation représente une valeur sémantique qui permet de différencier des relations qui possèdent des attributs identiques.

• Ex :

- Inscription (n°étudiant, n°UV)
- Diplôme (n°étudiant, n°UV)
- Dans le cas où l'on utilise la RU, il est nécessaire de renommer les colonnes
 - RI(n°étudiant inscrit, n°UV préparée)
 - R2 (n°étudiant diplômé, N°UV obtenue)

En effet, dans le premier cas, les colonnes Inscription.n°étudiant et diplôme.n°étudiant ne sont pas identiques et donc, ne peuvent pas être projection d'une colonne « n°étudiant » de la RU.

Dépendances d'inclusion

- Les dépendances d'inclusion concernent non plus les attributs comme les autres dépendances mais les domaines des attributs
- Ai a une dépendance d'inclusion vis-à-vis de Aj si :
- Dans le modèle relationnel, on peut considérer les dépendances d'inclusion comme des dépendances entre les relations.

- Nous dirons que deux attributs sont en dépendance d'association si ces deux attributs sont contenus dans une clé de relation.
- Exemple : dans la relation
 R(n°commande, n°article, qté cdée)
- N°commande et n°article sont en dépendance d'association.

Dépendances d'association

 Nous traduirons une dépendance d'association par un signe + N°commande+n°article

 Ceci représente une opération qui donne naissance à un nouvel attribut représentant la concaténation des deux premiers.

Dépendances d'association

- Propriétés de l'opération « association » sur les attributs
- I. Commutativité AI+A2=A2+AI
- 2. Idempotence AI+AI=AI
- Associativité
 (AI+A2)+A3=AI+(A2+A3)

Représentation graphique

épendance N°commande + N°article 'association N°commande Qté cdée **N°article N**°client Libellé date Prix unitaire Dépendance fonctionnelle Nom client Adr client

Les dépendances d'association et les dépendances fonctionnelles sont représentées sur un même schéma

Graphe des dépendances fonctionnelles

- Couverture minimale = seules les DF directes sont représentées
- Fermeture transitive = toutes les DF directes et non directes sont représentées

Graphe des dépendances fonctionnelles

Couverture minimale

Fermeture transitive

Modèle ER+

- C'est un modèle plus particulièrement orienté pour la conception des bases de données actuelles (relationnel +, objet)
- Il intègre à la fois des concepts du modèle ER, du modèle relationnel et des modèles de type réseaux sémantiques.
- On le matérialise à l'aide d'un Schéma de Relations Entités (SRE)

Modèle ER+: Forme normale ER

- Une relation est en forme normale ER si :
 - 1. Lorsqu'elle possède des attributs non clés :
 - Elle est en FNBC
 - Elle est composée, outre sa clé, de tous les attributs figurant dans la couverture minimale du graphe des DF de l'organisation qui sont directement dépendants de la clé.
 - 2. Lorsqu'elle ne possède pas d'attributs non clés, elle est en 5^{ème} forme normale (5FN)
- Une relation en forme normale ER est appelée une RELATION-ENTITE (RE)

Modèle ER+: exemple

- Ce modèle est donc dérivé :
 - Du modèle entité-relation (notion d'entité, d'association, de propriété)
 - Du modèle relationnel dont il possède toutes les propriétés
 - De l'hypothèse de la relation universelle.

Schéma de relations-entités (SRE)

- Un ensemble de relations-entités forme un SRE si tout attribut commun à plusieurs relations-entités est clé (ou partie de clé) de l'une de ces relations.
- Conséquence :
 - Tout attribut non clé appartient à une seule relation
 - Les attributs communs à plusieurs relations véhiculent une même sémantique
 - C'est donc une application de la relation universelle.

- Un SRE se présente donc sous la forme d'un couple : SRE={A,F} où
- A est l'ensemble des attributs du système
- F est la couverture minimale de l'ensemble des DF existant entre les attributs de A

Méthodologie de conception

- Exemple d'application
 - Dans un magasin de location de films vidéo, on met en place un système d'information pour :
 - Etablir chaque moi une facture qui inclut :
 - Le type de film (A, B, C) qui correspond à une tarification et une durée de prêt
 - Les dates d'emprunt et de retour pour un calcul de pénalités
 - Les noms, adresses et n°client (en clair)
 - Les titres des films loués
 - Vérifier qu'un même film n'est pas loué deux fois par un même client dans le mois.

Méthodologie de conception

- D'autre part, on sait :
 - Le taux est propre à chaque type de film. La pénalité s'applique pour tous.
 - Un adhérent peut appartenir à un groupe d'adhérents qui permet d'obtenir des conditions financières
 - Le montant de la location journalière dépend du type de film et du groupe.
 - Les adhérents qui n'appartiennent pas à un groupe son mis dans le groupe « individuel » (tarif maximal).

Société Mondialec 5 av. P. Mendès France 69500 Bron

Facture n° 03 247

N°adhérent 354 Nom adhérent Gong Li Adresse adhérent Rue de Jade, Lyon

N°groupe G31 Nom groupe Etu

Relevé de vos locations du mois de février 2007

N°film	Titre	Туре	Date emprunt	Date retour	Nb jrs retard	Pénalités	Mt location	Total
F23	Bambi	3	10/02	13/02	I	3	3	6
F450	Etre et avoir	2	11/02	13/02			4	4
F65	Titanic	2	02/02	04/02			3	3

Montant à payer : 13 €

Type I : récent Type 2 : exploitation Type 3 : dessin animé

Construction du descripteur de document

- Pour chaque rubrique figurant dans le document, nous fournirons :
 - Son nom
 - Le domaine (ou type) des données
 - Son type (calculé ou non)
 - Sa règle de calcul lorsqu'elle est calculée
 - On met une croix dans le colonne Doc pour indiquer que la rubrique figure dans le doc.

... suite

 Quand la rubrique n'est pas calculée, on met une croix dans la colonne SRE, ce qui signifie que cette rubrique est nécessaire au SRE.

Descripteur

Matrice brute des DFs

Construction :

- Si il existe une DF entre r_i et r_j $(r_i \rightarrow r_j)$, on mettra un I à l'intersection de la ième colonne et la jème ligne.
- Par ex., le I en colonne I et en ligne 3 signifie que la rubrique I (n°adhérent) est source d'une DF dont le but est la rubrique 3 (adresse adhérent)

Matrice brute des DF

	Nom attribut	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1	N°adhérent	1															
2	Nom adhéren	1	1														
3	Adresse adh	1		1													
	N°groupe	1			1												
5	Nom groupe	1			1	1											
6	N°film						1										
7	Titre						1	1									
8	Type						1		1								
9	date retour									1							
10	date emprunt										1						
11	Mt location											1					
12	Taux						1		1				1				
13	A(n°facture)													1			
14	mois														1		
15	nom type						1		1							1	
16	délai						1		1								1

Matrice des DFs

- Cas des lignes et colonnes vierges
 - Les paramètres
 - Les paramètres doivent apparaître comme des rubriques dont les colonnes et les lignes sont vierges (hormis la diagonale principale)
 - Dans notre exemple : Taux, A(n°facture), mois

Matrice des DFs avec associations

- Les attributs d'association
 - Certains attributs se trouvent également dans cette situation mais ne sont pas des paramètres.
 - Ex I: Date emprunt et date retour: ces 2 attributs dépendent du n°adhérent et du n°film. Donc ils sont but d'une DF dont la source est n°adhérent + n°film (n°adhérent, n°film → date emprunt, date retour)
 - On ajoute l'attribut n°adhérent+n°film en ligne 17

Matrice des DFs avec associations

- Ex 2 : Montant location : cet attribut dépend du n°groupe et du type de film (n°groupe, type →montant location).
- On ajoute à la ligne 18 l'attribut n°groupe+type.

Matrice des DF-avec associations

						_		_	_										
	Nom attribut	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	N°adhérent	1																1	
2	Nom adhérent	1	1															1	
	Adresse adh	1		1														1	
4	N°groupe	1			1													1	1
5	Nom groupe	1			1	1												1	
6	N°film						1											1	
7	Titre						1	1										1	
8	Туре						1		1										1
9	date retour									1								1	
10	date emprunt										1							1	
11	Mt location											1							1
	Taux						1		1				1					1	1
	A(n°facture)													1					
	mois														1				
15	nom type						1		1							1		1	
16	délai						1		1								1		1
	n°adh+n°film																	1	
18	N°groupe+type																		1

Couverture minimale

 Lorsque la matrice est totalement remplie, il s'agit de réaliser la matrice de couverture minimale qui enlève toutes les DFs transitives afin d'obtenir une matrice correcte.

Matrice des DF-Couverture Minimale

	Nom attribut	1	2	3	4	5	6	7	Q	a	10	11	12	13	1/	15	16	17	18
\vdash			_	٦	+	٦	0	′	0	9	10	11	12	13	14	13	10	17	10
	N°adhérent	1																1	
2	Nom adhérent	1	1																
	Adresse adh	1		1															
4	N°groupe	1			1														1
5	Nom groupe				1	1													
6	N°film						1											1	
7	Titre						1	1											
8	Туре						1		1										1
9	date retour									1								1	
10	date emprunt										1							1	
11	Mt location											1							1
12	Taux								1				1						
13	A(n°facture)													1					
14	mois														1				
15	nom type								1							1			
16	délai								1								1		
17	n°adh+n°film																	1	
18	N°groupe+type																		1

Conception du modèle EA

- La couverture minimale nous permet de réaliser le modèle EA.
 - Chaque clé composée (lignes 17 et 18) étant source d'une DF dont le but est un attribut du descripteur correspond à une association de cardinalités 1,n ou 0,n sur les 2 pattes de l'association
 - Chaque clé non composée étant source d'une DF vers une autre clé du descripteur se traduit par une association de cardinalité 0,1 ou 1,1 sur une des pattes (ex : n°adhérent →n°groupe)

MCD

Traduction du modèle EA en modèle relationnel

- Principes
 - Chaque entité se traduit par une relation
 - Les associations de cardinalités 0,n ou 1,n sur les n pattes de l'association se traduisent par une relation.
 - Les associations de cardinalités 0,1 ou 1,1 ne se traduisent pas par une relation. On rapatrie dans la relation source de la DF, la clé but de la DF.

Le modèle relationnel

- Transformation des entités
 - Adhérent (n°adhérent, nom adhérent, adresse adhérent, n°groupe)
 - Film (n°film, titre, type)
 - Type (type, nom_type, délais, taux)
 - Groupe (n°groupe, nom groupe)
- Transformation des associations
 - Emprunt (<u>n°adhérent</u>, <u>n°film</u>, date emprunt, date retour)
 - Facturation (n°groupe, type, montant location)

Les algorithmes

Notation

- La matrice M' représente la matrice de fermeture transitive
- Le vecteur V est un vecteur de travail qui permet de s'assurer que tous les éléments de la colonne sur laquelle on travaille ont bien été pris en compte
- Ci : la ième colonne de M
- Lj : la j^{ème} ligne
- Mij : terme situé à l'intersection de la ième ligne et de la jème colonne
- L'j et C'i $\in a$ M'
- ∘ Mij=I ⇒rj>ri
- on représente l'ordre de la matrice

Les algorithmes

 Algorithme de détection des circuits dans le graphe des DFs

```
Lire Matrice M
Tant qu'il existe i tel que Ci=0
Faire Li=0
FinTant
Si M=0 alors : pas de circuit sinon repérage des circuits
FIN
```

Algorithme de recherche de fermeture transitive

DEBUT

```
Lire M
TANT QUE M<>0 faire:
        V← 0
        Chercher le premier indice i non encore traité
        (modulo n) tel que Li=0
                 TANT QUEV<>Ci faire:
                          POUR TOUT j tel que Mji=I et V(j)=0
                                   FAIREV(j)=I
                                            POUR TOUT k tel que Mkj=1
                                                     FAIRE Mki=I
                                            FIN POUR
                          FIN POUR
                                   FAIRE C'i← Ci
                 FIN TANT QUE
                          FAIRE Ci \leftarrow 0
FIN TANT QUE
        Ecrire M'
```

FIN

Algorithme de recherche de la couverture minimale

```
DEBUT
        LIRE M'
        POUR TOUT i faire:
                 Mii=0
        FIN POUR
         TANT QUE M'<>0 faire:
                 POUR i tel que Li=0 faire :
                          POUR TOUT k tel que M'ki=I faire:
                                   POUR TOUT j tel que M'jk=M'ji=I faire :
                                            M'ji=0
                                   FIN POUR
                          FIN POUR
                                   Ecrire C(1)
                                   C(1)=0
                 FIN POUR
        FIN TANT QUE
FIN
```

SRE final

Intégration de schémas

- Considérons une application donnée : le SRE du 1^{er} document analysé est dit SRE principal.
- Après analyse du 2^{ème} document, il convient de fusionner les 2 SRE dans une nouvelle structure qui deviendra SRE principal.
- Principe : un SRE est formé d'un ensemble de rubriques et d'un ensemble de DFs existant entre les rubriques (couverture minimale)

Intégration de schémas

- Intégrer 2 SRE, c'est :
 - Faire l'union de leurs ensembles de rubriques
 - Prendre les DFs du le et 2 ème schéma
 - On n'obtient pas une couverture minimale
- Exemple :

Intégration de schémas

 Pour obtenir un SRE par intégration, il faut d'abord découvrir les éventuelles

DFs complémentaires. R→M est une dépendance complémentaire entre SREI et SRE2 Н D+R R

- On montre que la fusion de SRE est :
 - Commutative
 - Associative
- On peut commencer l'analyse dans n'importe quel ordre
- Fusionner des SRE, c'est intégrer des schémas dans une vue unique.

Cas particuliers de rôles d'attributs

- Les paramètres
 - Ce sont des attributs isolés dans le graphe : ces attributs ne prennent qu'une seule valeur à un instant t. (date du jour, plafond SS, taux TVA)
- Les spacio-temporels
 - Ces attributs permettent d'exprimer des pseudoassociations
 - Ex I: n°salarié, mois montant salaire
 - Ex 2 : n°salarié, n°ordre → prénom enfant
 - Ils permettent de prendre en compte des relations non normalisées.

Cas particuliers de rôles d'attributs

- RE d'ordre I
 - Lorsque l'identifiant est formé d'un seul attribut
 - Ex : client, film, type film
- RE d'ordre n (n>=2)
 - Lorsque l'identifiant est formé de plusieurs attributs
 - Ex : client+film

- Les documents classiquement utilisés peuvent être schématisés à l'aide de ER+
- Un document sera dit bien formé si le schéma ER+ qui lui est associé ne contient qu'une seule racine

Exemple de document bien formé

Document mal formé

- Un document mal formé est constitué de plusieurs racines
- Exemple

Conclusion

- Le modèle ER+ complète avantageusement le modèle ER dans le cadre d'un SGBD relationnel.
- Sa construction algorithmique est un peu longue mais conduit à des résultats très fiables.
- Cependant, tout comme le modèle ER, il ne permet pas de modéliser les applications récentes multimédia.