Information Extraction

Лекция № *какой-то номер*

Elena Tutubalina Kazan Federal University

Text classification at Different Granularities

- Text Categorization:
 - Classify an entire document
- Information Extraction (IE):
 - Identify and classify small units within documents
- Named Entity Extraction (NE):
 - A subset of IE
 - Identify and classify proper names
 - People, locations, organizations

As a task:

Filling slots in a database from sub-segments of text.

October 14, 2002, 4:00 a.m. PT

For years, Microsoft Corporation CEO Bill Gates railed against the economic philosophy of open-source software with Orwellian fervor, denouncing its communal licensing as a "cancer" that stifled technological innovation.

Today, Microsoft claims to "love" the opensource concept, by which software code is made public to encourage improvement and development by outside programmers. Gates himself says Microsoft will gladly disclose its crown jewels--the coveted code behind the Windows operating system--to select customers.

"We can be open source. We love the concept of shared source," said Bill Veghte, a Microsoft VP. "That's a super-important shift for us in terms of code access."

Richard Stallman, founder of the Free Software Foundation, countered saying...

As a task:

Filling slots in a database from sub-segments of text.

October 14, 2002, 4:00 a.m. PT

For years, Microsoft Corporation CEO Bill Gates railed against the economic philosophy of open-source software with Orwellian fervor, denouncing its communal licensing as a "cancer" that stifled technological innovation.

Today, Microsoft claims to "love" the opensource concept, by which software code is made public to encourage improvement and development by outside programmers. Gates himself says Microsoft will gladly disclose its crown jewels--the coveted code behind the Windows operating system--to select customers.

"We can be open source. We love the concept of shared source," said <u>Bill Veghte</u>, a <u>Microsoft VP</u>. "That's a super-important shift for us in terms of code access."

Richard Stallman, founder of the Free Software Foundation, countered saying...

NAME	TITLE	ORGANIZATION	
Bill Gates	CEO	Microsoft	
Bill Veghte	VP	Microsoft	
Richard Stallman	founder	Free Soft	

As a family of techniques:

Information Extraction = segmentation + classification + association

October 14, 2002, 4:00 a.m. PT

For years, Microsoft Corporation CEO Bill Gates railed against the economic philosophy of open-source software with Orwellian fervor, denouncing its communal licensing as a "cancer" that stifled technological innovation.

Today, Microsoft claims to "love" the opensource concept, by which software code is made public to encourage improvement and development by outside programmers. **Gates** himself says Microsoft will gladly disclose its crown jewels--the coveted code behind the Windows operating system--to select customers.

"We can be open source. We love the concept of shared source," said Bill Veghte, a Microsoft VP. "That's a super-important shift for us in terms of code access."

Richard Stallman, founder of the Free Software Foundation, countered saying... **Microsoft Corporation**

CEO

Bill Gates

Microsoft

aka "named entity Gates extraction"

Microsoft

Bill Veghte

Microsoft

VP

Richard Stallman

founder

Free Software Foundation

A family of techniques:

Information Extraction = segmentation + classification + association

October 14, 2002, 4:00 a.m. PT

For years, Microsoft Corporation CEO Bill Gates railed against the economic philosophy of open-source software with Orwellian fervor, denouncing its communal licensing as a "cancer" that stifled technological innovation.

Today, Microsoft claims to "love" the open-source concept, by which software code is made public to encourage improvement and development by outside programmers. Gates himself says Microsoft will gladly disclose its crown jewels--the coveted code behind the Windows operating system--to select customers.

"We can be open source. We love the concept of shared source," said <u>Bill Veghte</u>, a <u>Microsoft VP</u>. "That's a super-important shift for us in terms of code access."

Richard Stallman, founder of the Free Software Foundation, countered saying...

Microsoft Corporation
CEO
Bill Gates
Microsoft
Gates
Microsoft
Bill Veghte
Microsoft
VP
Richard Stallman
founder

Free Software Foundation

A family of techniques:

Information Extraction = segmentation + classification + association

October 14, 2002, 4:00 a.m. PT

For years, Microsoft Corporation CEO Bill Gates railed against the economic philosophy of open-source software with Orwellian fervor, denouncing its communal licensing as a "cancer" that stifled technological innovation.

Today, Microsoft claims to "love" the open-source concept, by which software code is made public to encourage improvement and development by outside programmers. Gates himself says Microsoft will gladly disclose its crown jewels--the coveted code behind the Windows operating system--to select customers.

"We can be open source. We love the concept of shared source," said <u>Bill Veghte</u>, a <u>Microsoft VP</u>. "That's a super-important shift for us in terms of code access."

<u>Richard Stallman</u>, <u>founder</u> of the <u>Free</u> <u>Software Foundation</u>, countered saying... **Microsoft Corporation**

CEO

Bill Gates

Microsoft

Gates

Microsoft

Bill Veghte

Microsoft

VP

Richard Stallman

founder

Free Software Foundation

INFORMATION EXTRACTION

- More general definition: extraction of structured information from unstructured documents
- IE Tasks:
 - Named entity extraction
 - Named entity recognition
 - Coreference resolution
 - Relationship extraction
- Semi-structured IE
 - Table extraction
- Terminology extraction

Landscape of IE Tasks: Degree of Formatting

Text paragraphs without formatting

Astro Teller is the CEO and co-founder of BodyMedia. Astro holds a Ph.D. in Artificial Intelligence from Carnegie Mellon University, where he was inducted as a national Hertz fellow. His M.S. in symbolic and heuristic computation and B.S. in computer science are from Stanford University. His work in science, literature and business has appeared in international media from the New York Times to CNN to NPR.

Non-grammatical snippets, rich formatting & links

Barto, Andrew G.	(413) 545-2109	barto@cs.umass.edu	CS276
Professor. Computational neuroscien- motor control, artificial ne control, motor developmen	ural networks, adap		a
Berger, Emery D.	(413) 577-4211	emery@cs.umass.edu	CS344
Assistant Professor.			₫
Brock, Oliver	(413) 577-033	CS246	
Assistant Professor.			₫
Clarke, Lori A.	(413) 545-1328	clarke@cs.umass.edu	CS304
Professor. Software verification, testi and design.	ng, and analysis; so	ftware architecture	a
Cohen, Paul R.	(413) 545-3638	cohen@cs.umass.edu	CS278
Professor. Planning, simulation, natural language, agent-based systems, intelligent data analysis, intelligent user interfaces.			

Grammatical sentences and some formatting & links

Dr. Steven Minton - Founder/CTO Press Dr. Minton is a fellow of the American Contact Association of Artificial Intelligence and was General the founder of the Journal of Artificial information Intelligence Research. Prior to founding Fetch, Directions Minton was a faculty member at USC and a maps project leader at USC's Information Sciences Institute. A graduate of Yale University and Carnegie Mellon University, Minton has been a Principal Investigator at NASA Ames and taught at Stanford, UC Berkeley and USC. Frank Huybrechts - COO Mr. Huybrechts has over 20 years of

Tables

8:30 - 9:30 AM		lausibility Measures em, Cornell University		roach for Represe	nting Uncerta
9:30 - 10:00 AM					
10:00 - 11:30 AM					
Cognitive Robotics	Logic Programming	Natural Language Generation	Complexity Analysis	Neural Networks	Games
739: A Logical Account of Causal and Topological Maps Emilio Remolina and Benjamin Kuipers	116: A-System: Problem Solving through Abduction Marc Denecker, Antonis Kakas, and Bert Van Nuffelen	Generation for Machine-Translated Documents Rong Jin and Alexander G. Hauptmann	417: Let's go Nats: Complexity of Nested Circumscription and A bnormality Theories Marco Cadoli, Thomas Eiter, and Georg Gottlob	179: Knowledge Extraction and Comparison from Local Function Networks Kenneth McGarry, Stefan Wermter, and John MacIntyre	71: Iterative Widening Tristan Cazenave
549: Online-Execution of ccGolog Plans Henrik Grosskreutz and Gerhard Lakemeyer	131: A Comparative Study of Logic Programs with Preference Torsten Schaub and Kewen	246: Dealing with Dependencies between Content Planning and Surface Realisation in a Pipeline Generation	470: A Perspective on Knowledge Compilation Adnan Darwiche and Pierre Marquis	258: Violation-Guided Learning for Constrained Formulations in Neural-Network Time-Series	353: Temporal Difference Learning Applied to a High Performance Game-Playing

Landscape of IE Tasks: Intended Breadth of Coverage

Web site specific

Formatting

Amazon.com Book Pages

Genre specific

Layout

Resumes

Wide, non-specific

Language

University Names

Landscape of IE Tasks"

Complexity

Closed set

U.S. states

He was born in Alabama...

The big Wyoming sky...

Complex pattern

U.S. postal addresses

University of Arkansas P.O. Box 140
Hope, AR 71802

Headquarters: 1128 Main Street, 4th Floor Cincinnati, Ohio 45210

Regular set

U.S. phone numbers

Phone: (413) 545-1323

The CALD main office can be reached at 412-268-1299

Ambiguous patterns, needing context and many sources of evidence

Person names

...was among the six houses sold by <u>Hope Feldman</u> that year.

<u>Pawel Opalinski</u>, Software Engineer at WhizBang Labs.

Landscape of IE Tasks:

Single Field/Record

Jack Welch will retire as CEO of General Electric tomorrow. The top role at the Connecticut company will be filled by Jeffrey Immelt.

Single entity

Person: Jack Welch

Person: Jeffrey Immelt

Location: Connecticut

Binary relationship

Relation: Person-Title Person: Jack Welch

Title: CEO

Relation: Company-Location Company: General Electric

Location: Connecticut

N-ary record

Relation: Succession

Company: General Electric

Title: CEO

Out: Jack Welsh

In: Jeffrey Immelt

"Named entity" extraction

State of the Art Performance: a sample

- Named entity recognition from newswire text
 - Person, Location, Organization, ...
 - F1 in high 80's or low- to mid-90's
- Binary relation extraction
 - Contained-in (Location1, Location2)
 Member-of (Person1, Organization1)
 - F1 in 60's or 70's or 80's
- Web site structure recognition
 - Extremely accurate performance obtainable
 - Human effort (~10min?) required on each site

Three generations of IE systems

- Hand-Built Systems Knowledge Engineering [1980s–]
 - Rules written by hand
 - Require experts who understand both the systems and the domain
 - Iterative guess-test-tweak-repeat cycle
- Automatic, Trainable Rule-Extraction Systems [1990s—]
 - Rules discovered automatically using predefined templates, using automated rule learners
 - Require huge, labeled corpora (effort is just moved!)
- Statistical Models [1997]
 - Use machine learning to learn which features indicate boundaries and types of entities.
 - Learning usually supervised; may be partially unsupervised

Named Entity Recognition (NER)

A named entity is a word or a word collocation that means a specific object or an event and distinguishes it from other similar objects.

- 1.Президент [Владимир Путин] PER 17 декабря провел традиционную пресс-конференцию перед Новым Годом.
- 2.Студенты и Татьяны получат эксклюзивный пропуск на Главный каток страны.

Input:

Apple Inc., formerly Apple Computer, Inc., is an American multinational corporation headquartered in Cupertino, California that designs, develops, and sells consumer electronics, computer software and personal computers. It was established on April 1, 1976, by Steve Jobs, Steve Wozniak and Ronald Wayne.

Output:

Apple Inc., formerly Apple Computer, Inc., is an American multinational corporation headquartered in Cupertino, California that designs, develops, and sells consumer electronics, computer software and personal computers. It was established on April 1, 1976, by Steve Jobs, Steve Wozniak and Ronald Wayne.

Named Entity Recognition (NER)

- Locate and classify atomic elements in text into predefined categories (persons, organizations, locations, temporal expressions, quantities, percentages, monetary values, ...)
- Input: a block of text
 - Jim bought 300 shares of Acme Corp. in 2006.
- Output: annotated block of text
 - <ENAMEX TYPE="PERSON">Jim</ENAMEX> bought <NUMEX TYPE="QUANTITY">300</NUMEX> shares of <ENAMEX TYPE="ORGANIZATION">Acme Corp.</ ENAMEX> in <TIMEX TYPE="DATE">2006</TIMEX>
 - ENAMEX tags (MUC in the 1990s)

HOW

- Two tasks:
 - Identifying the part of text that mentions a text (RECOGNITION)
 - Classifying it (CLASSIFICATION)
- The two tasks are reduced to a standard classification task by having the system classify WORDS

Basic Problems in NER

- Variation of NEs e.g. John Smith, Mr Smith, John.
- Ambiguity of NE types
 - John Smith (company vs. person)
 - May (person vs. month)
 - Washington (person vs. location)
 - 1945 (date vs. time)
- Ambiguity with common words, e.g. "may"

Problems in NER

- Category definitions are intuitively quite clear, but there are many grey areas.
- Many of these grey area are caused by metonymy.

Organisation vs. Location: "England won the World Cup" vs. "The World Cup took place in England".

Company vs. Artefact: "shares in MTV" vs. "watching MTV"

Location vs. Organisation: "she met him at Heathrow" vs. "the Heathrow authorities"

More complex problems in NER

- Issues of style, structure, domain, genre etc.
 - Punctuation, spelling, spacing, formatting,all have an impact

Dept. of Computing and Maths
Manchester Metropolitan University
Manchester
United Kingdom

- > Tell me more about Leonardo
- > Da Vinci

Approaches to NER: List Lookup

- System that recognises only entities stored in its lists (GAZETTEERS).
- Advantages Simple, fast, language independent, easy to retarget
- Disadvantages collection and maintenance of lists, cannot deal with name variants, cannot resolve ambiguity

GAZETTEERS

Vocabulary	Size, objects	Clarification	Examples
Famous persons	31482	Famous people	Владимир Путин
First names	2773	First names	Василий, Анна, Том
Surnames	66108	Surnames	Кузнецов, Грибоедов
Verbs of informing	1729	Verbs that usually occur with persons	высказать, признаться
Companies	33380	Organization names	Сбербанк
Company types	6774	Organization types	организация, авиафирма
Geography	8969	Geographical objects	Балтийское море
Equipment	44094	Devices, equipment, tools	устройство, телефон

Approaches to NER: Shallow Parsing

 Names often have internal structure. These components can be either stored or guessed.

location:

```
CapWord + {City, Forest, Center}
    e.g. Sherwood Forest
Cap Word + {Street, Boulevard, Avenue, Crescent, Road}
    e.g. Portobello Street
```

Shallow Parsing Approach

(E.g., Mikheev et al 1998)

External evidence - names are often used in very predictive local contexts

Location:

```
"to the" COMPASS "of" CapWord
e.g. to the south of Loitokitok
"based in" CapWord
e.g. based in Loitokitok
CapWord "is a" (ADJ)? GeoWord
e.g. Loitokitok is a friendly city
```

Difficulties in Shallow Parsing Approach

Ambiguously capitalised words (first word in sentence)

[All American Bank] vs. All [State Police]

Semantic ambiguity

```
"John F. Kennedy" = airport (location)

"Philip Morris" = organisation
```

Structural ambiguity

[Cable and Wireless] vs. [Microsoft] and [Dell]

[Center for Computational Linguistics] vs. message from [City Hospital] for

[John Smith].

Machine learning approaches to NER

- NER as classification: the IOB representation
- Supervised methods
 - Support Vector Machines
 - Logistic regression (aka Maximum Entropy)
 - Sequence pattern learning
 - Hidden Markov Models
 - Conditional Random Fields
- Distant learning
- Semi-supervised methods

Scheme of text processing

Labeling representation

IO-scheme (Inside-Outside)

- I belongs to named entity
- O does not belong to named entity

|C| + 1 classes

BIO-scheme (Begin-Inside-Outside)

- B named entity beginning
- I named entity continuation
- O not named entity

Token	IO-Labels	BIO-labels	
Владимир	I-PER	B-PER	
Путин	I-PER	I-PER	
посетил	OUTSIDE	OUTSIDE	
Англию	I-GEOPOLIT	B-GEOPOLIT	

FEATURES

Most traditional features

- 1. Token initial form (lemma)
- 2. Number of symbols in a token
- 3. Letter case: BigBig, BigSmall, SmallSmall, Fence
- 4. Token type
 - part of speech
 - type of punctuation
- 5. The presence of a vowel (a binary feature)
- 6. If a token contains a known letter n-gram from a predefined set:
 - Кузнецов, Матвиенко, Джугашвили
 - Госдепартамент, Газпром

FEATURES

For each running word:

- WORD: the word itself (both unchanged and lower-cased)
 e.g. Casa casa
- POS: the part of speech of the word (as produced by TagPro)
 e.g. Oggi SS (singular noun)
- AFFIX: prefixes/suffixes (1, 2, 3 or 4 chars. at the start/end of the word)
 e.g. Oggi {o,og,ogg,oggi, i,gi,ggi,oggi}
- ORTHOgraphic information (e.g. capitalization, hyphenation)
 - e.g. Oggi C (capitalized) oggi L (lowercased)

FEATURES

- COLLOCation bigrams
 - 36.000, Italian newspapers ranked by MI values
- Gazzetters
 - PERSONS: Person proper names or titles (154.000, Italian phone-book, Wikipedia,)
 - TOWNS: World (main), Italian (comuni) and Trentino's (frazioni) towns (12.000, from various internet sites)
 - STOCK-MARKET: Italian and American stock market organizations (5.000, from stock market sites)
 - WIKI-GEO: Wikipedia geographical locations (3.200,)

Context features and example

Token	Lemma	Register	Token Type	Second Name	Geo	Label
В	В	Small	Auxiliary	False	False	NO
России	РОССИЯ	BigSmall	Noun	False	Geo1	GEOPOLIT
Алиев	АЛИЕВ	BigSmall	Noun	Sname1	False	PER
третий	ТРЕТИЙ	Small	Numeral	False	False	NO
раз	PA3	Small	Auxiliary	False	False	NO

Supervised ML for NER

- Methods already seen
 - Decision trees
 - Support Vector Machines
- Sequence learning
 - Hidden Markov Models
 - Maximum Entropy Models
 - Conditional Random Fields

NER as a SEQUENCE CLASSIFICATION TASK

Sequence Labeling as Classification: POS Tagging

 Classify each token independently but use as input features, information about the surrounding tokens (sliding window).

John saw the saw and decided to take it to the table

Sequence Labeling as Classification

 Classify each token independently but use as input features, information about the surrounding tokens (sliding window).

John saw the saw and decided to take it to the tab

 Classify each token independently but use as input features, information about the surrounding tokens (sliding window).

 Classify each token independently but use as input features, information about the surrounding tokens (sliding window).

 Classify each token independently but use as input features, information about the surrounding tokens (sliding window).

 Classify each token independently but use as input features, information about the surrounding tokens (sliding window).

John saw the saw and decided to take it to the table classifier

, _ _

VBD

 Classify each token independently but use as input features, information about the surrounding tokens (sliding window).

 Classify each token independently but use as input features, information about the surrounding tokens (sliding window).

John saw the saw and decided to take it to the table classifier

VB

 Classify each token independently but use as input features, information about the surrounding tokens (sliding window).

 Classify each token independently but use as input features, information about the surrounding tokens (sliding window).

 Classify each token independently but use as input features, information about the surrounding tokens (sliding window).

 Classify each token independently but use as input features, information about the surrounding tokens (sliding window).

NER as Sequence Labeling

Hidden Markov Models (HMMs)

- Generative
 - Find parameters to maximize P(X,Y)
- Assumes features are independent
- When labeling X_i future observations are taken into account (forward-backward)

Conditional Random Fields (CRFs)

- Discriminative
 - Find parameters to maximize P(Y|X)
- Doesn't assume that features are independent
- When labeling Y_i future observations are taken into account
- → The best of both worlds!

Discriminative Vs. Generative

- **Generative Model:** A model that generate observed data randomly
- Naïve Bayes: once the class label is known, all the features are independent

$$p(y, \mathbf{x}) = p(y) \prod_{k=1} p(x_k|y)$$

MaxEnt classifier: linear combination of feature function in the exponent,

$$p(y|\mathbf{x}) = rac{1}{Z(\mathbf{x})} \exp \left\{ \sum_{k=1}^K heta_k f_k(y,\mathbf{x})
ight\}$$
 Logistic Reg

Naive Bayes

Both generative models and discriminative models describe distributions over (y, x), but they work in different directions.

Discriminative Vs. Generative

Target metric

$$Precision = \frac{intersectionCount}{classifierCount}$$

$$Recall = \frac{intersectionCount}{expertCount}$$

$$Fscore = 2 \cdot \frac{Precision \cdot Recall}{Precision + Recall}$$

intersectionCount is the number of named entities labeled by both: the classier and the expert;

classifierCount is the number of named entities labeled by only the classier;

expertCount is the number of named entities labeled by only the expert.

Text collections

- "Persons-1000" (1000 news documents)
 - Russian names: Александр Игнатенко, Алексей Волков
- "Persons-1111F" (1111 news documents)
 - Eastern names: Абдалла Халаф, Иттё Ито

We additionally labeled:

- Organizations (ORG)
- Media organizations having a specific function of information providing (MEDIA)
- Locations (LOC)
- States and capitals in the role of a state (GEOPOLIT)

Experiments on Collection "Persons-1000".

NE	F-score, %		
Type	10	IO + rules	BIO
		ruies	
PER	94.95	95.09	96.08
ORG	80.03	80.23	83.84
LOC	92.60	92.60	94.57
Average	89.54	89.67	91.71

NE	F-score, %		
Туре	Ю	IO + rules	BIO
PER	94.95	95.01	95.63
ORG	75.90	76.16	80.06
MEDIA	87.95	87.95	87.99
LOC	84.53	84.53	86.91
GEOPOLIT	94.65	94.65	94.50
Average	88.21	88.37	89.93

Cross-validation 3:1

Experiments on collection with Eastern names (Persons-1111F)

Person name extraction

Collection	F-score, %		
	Rule-based (Trofimov, 2014)	Our system	
Pesons-1000	96.62	96.08	
Persons-1111F	64.43	81.68	

[&]quot;Persons-1000": cross-validation 3:1

[&]quot;Persons-1111F": training on "Persons-1000"

NEW DOMAINS

- BIOMEDICAL
- CHEMISTRY
- HUMANITIES: MORE FINE GRAINED TYPES

Bioinformatics Named Entities

- Protein
- DNA
- RNA
- Cell line
- Cell type
- Drug
- Chemical

Semi-supervised learning

- Modest amounts of supervision
 - Small size of training data
 - Supervisor input sought when necessary
- Aims to match supervised learning performance, but with muchless human effort
- Bootstrapping
 - Seeds used to identify contextual clues
 - Contextual clues used to find more NEs

Semi-supervised learning

• **Examples:** (Brin 1998); (Collins and Singer 1999); (Riloff and Jones 1999); (Cucchiarelli and Velardi 2001); (Pasca *et al.* 2006); (Heng and Grishman 2006); (Nadeau *et al.* 2006), and (Liao and Veeramachaneni, 2009)

ASemiNER - Methodology

Input

- —A seed list of a few examples of a given NE type
 - 'Muhammad' & 'Obama' can be used as seed examples for entity of type person.

Parameters

- -Number of iterations!
- -Number of initial seeds!
- -The ranking measure (Reliability measure)!