Собственно, теорвер...

Зміст

1.	Абс	олютно неперервні розподіли.	3
	1.1.	Рівномірний розподіл	9
	1.2.	Експоненціальний розподіл	4
	1.3.	Гаусівський (нормальний) розподіл	6
2.	Вип	адкові вектори	8
	2.1.	Властивості функції розподілу	Ć
	2.2.	Дискретні та неперервні випадкові вектори	11
		2.2.1. Дискретні випадкові вектори	11
		2.2.2. Неперервні випадкові вектори	11
		2.2.3. Властивості щільності розподілу:	12
	2.3.	Рівномірний розподіл на площині	12
	2.4.	Маргінальна щільність	13
	2.5.	Числові характеристики випадкових векторів.	14
	2.6.	Коваріація та її властивості.	14
	2.7.	Коваріаційна матриця вектора та її властивості	15
	2.8.	Незалежність випадкових величин	17
	2.9.	Умовні розподіли та умовні математичні сподівання	19
		2.9.1. Дискретний вектор	19
		2.9.2. Абсолютно неперервний вектор	20
3.	Xap	актеристичні функції.	21
	-	Властивості характеристичних функцій	21
	3.2.	Основні "проблеми" характеристичних функцій	23
	3.3.	Характеристичні функції головних ймовірнісних розподілів	23
		3.3.1. Дискретні розподіли	23
		3.3.2. Абсолютно неперервні розподіли	24
	3.4.	Ймовірнісні розподіли, стійкі відносно додавання	25
	3.5.	Характеристичні функції випадкових векторів	26
		3.5.1. Означення	26
		3.5.2. Властивості характеристичної функції випадкового векто-	
		pa	26
	3.6.	Гаусівські випадкові вектори	27
		3.6.1. Характеристики стандартного гаусівського розподілу	27
		3.6.2. Характеристика загального гаусівського розподілу	27
		3.6.3. Властивості гаусівських векторів	29
		3.6.4. Гаусівський вектор на площині	30

4.	Фун	нкції від випадкових величин (векторів)						
	4.1.	. Функції від випадкових векторів						
	4.2.	Загальний алгоритм знаходження щільності функції від випад-						
		кових векторів						
	4.3.	Щільності розподілу максимума, мінімума та інших порядкових						
		статистик						
		4.3.1. Максимум						
		4.3.2. Мінімум						
		4.3.3. Порядкові статистики						
	4.4.	Знаходження числових характеристик функцій від випадкових						
		величин						
5.	Льс	ікі ймовірнісні розподіли, що зустрічаються у математи-						
		деякі имовірнісні розподіли, що зустрічаються у математи- чній статистиці.						
		Гамма-розподіл						
		5.1.1. PDF						
		5.1.2. Числові характеристики						
		5.1.3. Стійкість відносно додавання						
	5.2.	Chi-square distribution with n degrees of freedom						
		5.2.1. PDF						
		5.2.2. Числові характеристики						
	5.3.	t-розподіл Стьюдента з n степенями вільності						
	5.4.	Розподіл Фішера(-Снедекора)						
6.	Гра	ничні теореми теорії ймовірностей						
•	-	Нерівність Чебишова						
		Закон великих чисел (ЗВЧ).						
	6.3.	ЗВЧ для різнорозподілених випадкових величин						
		6.3.1. Означення						
		6.3.2. ЗВЧ для схеми Бернуллі						
		6.3.3. Методи Монте-Карло						

1. Абсолютно неперервні розподіли.

1.1. Рівномірний розподіл.

Рівномірний розподіл на [a, b]. Графік функції щільності розподілу:

Позначення: $\xi \sim U(a,b)$. Функція щільності має наступній вигляд:

$$f_{\xi}(x) = \begin{cases} c, x \in [a, b] \\ 0, x \notin [a, b] \end{cases}$$
, де $c = \frac{1}{b - a}$

Визначимо функцію розподілу:

$$F_{\xi}(x) = \begin{cases} \int_{a}^{t} f_{\xi}(t)dt = \frac{1}{b-a}x - \frac{a}{a-b} = \frac{x-a}{b-a}, x \in (a, b] \\ 1, x \in (b; +\infty) \end{cases}$$

Числові характеристики:

$$\mathbb{E}\xi = \int_{a}^{b} x f_{\xi}(x) dx = \frac{b^{2} - a^{2}}{2b - a} = \frac{a + b}{2}$$

$$\mathbb{E}\xi^{2} = \int_{a}^{b} x^{2} f_{\xi}(x) dx = \frac{1}{b - a} \frac{x^{3}}{3} \Big|_{a}^{b} = \frac{b^{3} - a^{3}}{3(b - a)} = \frac{a^{2} + ab + b^{2}}{3}$$

$$\mathbb{D}\xi = \frac{a^{2} + ab + b^{2}}{3} - \frac{a^{2} + 2ab + b^{2}}{4} = \frac{(a - b)^{2}}{12}$$

Величини залежать лише від довжини проміжку.

Нехай $[c,b] \subset [a,b]$, тоді знайдемо:

$$\mathbb{P}\{\xi \in [c,d]\} = F_{\xi}(d) - F_{\xi}(c) = \frac{d-c}{b-a}$$

1.2. Експоненціальний розподіл.

Розглядаємо $\xi \sim Exp(\lambda), \lambda > 0.$ Щільність розподілу:

$$f_{\xi}(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0\\ 0, & x < 0 \end{cases}$$

Запишемо функію розподілу:

$$F_{\xi}(x) = \begin{cases} \int_{-\infty}^{x} 0 dt = 0, & x < 0 \\ F(0) + \int_{0}^{x} \lambda e^{-\lambda t} dt = 1 - e^{-\lambda x}, x \ge 0 \end{cases}$$

Знайдемо: $\mathbb{P}\left\{\xi\in[x,d]\right\}=(1-e^{-\lambda x})\Big|_c^d=e^{-\lambda c}-e^{-\lambda d}.$

Виведемо числові характеристики. Спочатку виведемо формулу $\forall k \in \mathbb{N} : \mathbb{E} \xi^k :$

$$\int_{-\infty}^{+\infty} x^k * f_{\xi}(x) dx = \lambda \int_{-\infty}^{+\infty} x^k e^{-\lambda x} dx = \frac{1}{\lambda^k} * \Gamma(k+1) = \frac{k!}{\lambda^k}$$

Користуючись цією формулою, отримаємо числові характеристики розподілу:

$$\mathbb{E}\xi = (k=1) = \frac{1}{\lambda}$$

$$\mathbb{E}\xi^2 = (k=2) = \frac{2}{\lambda^2}$$

$$\mathbb{D}\xi = \frac{2}{\lambda^2} - \frac{1}{\lambda^2} = \frac{1}{\lambda^2}$$

$$\mathbb{D}(\alpha) = \int_0^\infty x^{\alpha-1}e^{-x}dx$$

$$2.\Gamma(n) = (n-1)!$$

$$3.\Gamma(\alpha+1) = \alpha*\Gamma(\alpha)$$

$$4.\Gamma(1/2) = \sqrt{\pi}$$

Експоненціальна величина описує час безвідмовної роботи приладу до моменту першої відмови. Це твердження не є повністю вірним. Чому?

Властивості експоненціального розподілу.

1. Відсутність післядії.

$$\xi \sim Exp(\lambda) \Rightarrow \begin{cases} \forall t, h > 0 \\ \mathbb{P}\{\xi > t + h | \xi > t\} = \mathbb{P}\{\xi > h\} \end{cases}$$

Доведення.

$$\mathbb{P}\{\xi > t + h | \xi > t\} = \frac{\mathbb{P}\{\xi > t + h, \xi > t\}}{\mathbb{P}\{\xi > t\}} = \frac{\mathbb{P}\{\xi > t + h\}}{\mathbb{P}\{\xi > t\}} = \frac{e^{-\lambda(t+h) - e^{-\lambda \infty}}}{e^{-\lambda t} - e^{-\lambda \infty}} = e^{-\lambda h} - e^{-\lambda \infty} = \mathbb{P}\{\xi > h\}$$

2. Стійкість відносно min.

$$\xi_1, \xi_2..., \xi_n$$
 - незалежні.
$$\begin{pmatrix} \xi_1 \sim Exp(\lambda_1) \\ \xi_2 \sim Exp(\lambda_2) \\ ... \\ \xi_n \sim Exp(\lambda_n) \end{pmatrix} \Rightarrow \min \{\xi_1, \xi_2, ..., \xi_n\} \sim Exp(\sum_{i=1}^n \lambda_i)$$

Доведення.

$$F_{\min(\xi_{1},...,\xi_{n})}(x) = \mathbb{P}\left\{\min\left(\xi_{1},...,\xi_{n}\right) < x\right\} = 1 - \mathbb{P}\left\{\min\left(\xi_{1},...,\xi_{n}\right) \ge x\right\} = 1 - \mathbb{P}\left\{\xi_{1} \ge x,...,\xi_{n} \ge x\right\} = 1 - \mathbb{P}\left\{\xi_{1} \ge x\right\} \cdot ... \cdot \mathbb{P}\left\{\xi_{n} \ge 1\right\} = 1 - e^{-\lambda_{1}x} \cdot e^{-\lambda_{2}x} \cdot ... \cdot e^{-\lambda_{n}x} = F_{Exp(\lambda_{1}+\lambda_{2}+...+\lambda_{n})}(x), x \ge 0$$

Використання: нехай є прилад, що складається з n блоків. Для коректної роботи приладу необхідно коректна робота всіх блоків.

Позначимо: ξ_i - час роботи блоку i, i = 1, ..., n.

Час роботи всього приладу: $\xi = \min \{\xi_1, \xi_2, ..., \xi_n\}$.

Приклад. Прилад - 10 блоків. Кожний з них з ймовірністю 0.99 може пропрацювати 1000 годин. Знайти середній час роботи всього приладу та ймовірність того, що він пропрацює 500 год.

Розглянемо блок і-тий:

$$\xi_i = Exp(\lambda_i).$$
 $\mathbb{P}\left\{\xi_i \geq 1000\right\} = 0.99 = e^{-1000\lambda} \Longrightarrow \lambda = \frac{\ln 0.99}{-1000} \approx 10^{-5}$
 $\mathbb{E}\xi_i = \frac{1}{\lambda} = 10^5$
Для всього приладу:

$$\xi = \min\{\xi_1, ..., \xi_n\} \sim Exp(\sum_{i=1}^{10} \lambda_i) = Exp(10^{-4})$$

$$\mathbb{E}\xi = 10^4 \qquad \mathbb{P}\{\xi \ge 500\} = e^{-500*10^{-4}} = e^{-0.005} \approx 0.95$$

3. Inter-arrival times dependency.

Теорема 1.1. Розглянемо потік Пуассона з інтенсивністю

$$\lambda \Rightarrow N(s,t) \sim Pois(\lambda(t-s))$$

 τ_i — inter-arrival times. $\Rightarrow (\tau_i, i \in \mathbb{Z})$ — незалежні, та $Exp(\lambda)$.

1.3. Гаусівський (нормальний) розподіл.

Стандартний Гаусівський розподіл. Позначення:

$$\xi \sim N(0, 1^2)$$

Щільність розподілу: $f_{\xi}(x) = C \cdot e^{-\frac{x^2}{2}}$. З умови нормування та властивостей Гамма-функції:

$$1 = \int_{-\infty}^{+\infty} f_{\xi}(x) dx = 2C \int_{0}^{\infty} e^{-\frac{x^{2}}{2}} dx = \begin{vmatrix} \frac{x^{2}}{2} = t \\ x = \sqrt{2t} \\ dx = \frac{dt}{\sqrt{2t}} \end{vmatrix} = 2C \int_{0}^{+\infty} e^{-t} \frac{dt}{\sqrt{2} \cdot \sqrt{t}} =$$

$$= \sqrt{2}C\int_{0}^{\infty} t^{-1/2}e^{-t}dt = \sqrt{2}C\Gamma(1/2) = \sqrt{2\pi}C \Longrightarrow C = \frac{1}{\sqrt{2\pi}}$$

Остаточно, щільність розподілу:

$$f_{\xi}(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}, \quad x \in \mathbb{R}$$

Знайдемо числові характеристики розподілу:

$$\mathbb{E}\xi = \int_{-\infty}^{+\infty} x * \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx = 0$$
 (Функція щільності парна)

$$\mathbb{D}\xi = \mathbb{E}\xi^2 = \int_{-\infty}^{+\infty} x^2 \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} x^2 e^{-x^2/2} dx = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} 2t e^{-t} \frac{dt}{\sqrt{2t}} = \frac{2}{\sqrt{\pi}} \int_{0}^{\infty} t^{1/2} e^{-t} dt = \frac{2}{\sqrt{\pi}} \int_{0}^{\infty} t^{1/2} e^{-t} dt$$

$$= \frac{2}{\sqrt{\pi}}\Gamma(3/2) = \frac{2}{\sqrt{\pi}} \cdot \frac{1}{2} \cdot \Gamma(\frac{1}{2}) = 1$$

Для гаусівського розподілу: $N(a, \sigma^2)$, де $a = \mathbb{E}\xi$ $\sigma = \sqrt{\mathbb{D}\xi}$

$$F_{\xi}(x) = \int_{-\infty}^{x} f_{\xi}(t)dt = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^{2}}{2}} dt = \int_{-\infty}^{0} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^{2}}{2}} dt + \int_{0}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^{2}}{2}} dt = \frac{1}{2} + \Phi(x)$$

 $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{0}^{x} e^{-\frac{t^2}{2}} dt$ - функція Лапласа aka **CDF** (cumulative distr. function).

 $\xi \sim N(0,1)$. Знайдемо $\mathbb{P}\left\{\xi \in [b,c]\right\}, \mathbb{E}\xi^k, k \in \mathbb{N}$:

$$\mathbb{P}\{\xi \in [b, c]\} = F_{\xi}(c) - F_{\xi}(b) = \Phi(c) - \Phi(b)$$

$$k = 2n, n \in \mathbb{N} \qquad \mathbb{E}\xi^{k} = \int_{0}^{+\infty} x^{k} e^{-x^{2}/2} dx = \frac{2^{k/2}}{\sqrt{\pi}} \int_{0}^{+\infty} t^{\frac{k-1}{2}} e^{-t} dt = \frac{2^{\frac{k}{2}}}{\sqrt{(\pi)}} \Gamma(\frac{k+1}{2}) = \frac{2^{k/2}}{\sqrt{\pi}} \cdot \frac{k-1}{2} \cdot \frac{k-3}{2} \cdot \dots \cdot \frac{3}{2} \cdot \frac{1}{2} \cdot \Gamma(\frac{1}{2}) = \frac{2^{\frac{k}{2}}}{\sqrt{\pi}} \cdot \frac{(k-1)!!}{2^{\frac{k}{2}}} \cdot \sqrt{\pi} = (k-1)!!$$

$$\mathbb{E}\xi^{k} = \int_{-\infty}^{+\infty} x^{k} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^{2}}{2}} dx = \begin{cases} (k-1)!!, & k = 2n, n \in \mathbb{N} \\ 0, & k = 2n+1, n \in \mathbb{N} \end{cases}$$

Перейдемо до загального гаусівського розподілу.

Загальний гаусівський розподіл.

Означення. Візьмемо, що $\xi_0 \sim N(0,1)$ - стандартна гаусівська величина. ξ називається гаусівською величиною: $\xi \sim N(a,\sigma^2)$, якщо $\xi = a + \sigma \xi_0$ - існує та справедливе перетворення стандартної гаусівської величини.

Числові характеристики гаусівського розподілу:

$$\mathbb{E}\xi = \mathbb{E}(a + \sigma\xi_0) = a$$

$$\mathbb{D}\xi = \mathbb{D}(a + \sigma\xi) = \sigma^2 \mathbb{D}\xi = \sigma^2$$

$$F_{\xi}(x) = \mathbb{P}\left\{\xi < x\right\} = \mathbb{P}\left\{a + \sigma\xi < x\right\} = \mathbb{P}\left\{\xi_0 < \frac{x - a}{\sigma}\right\} = F_{\xi_0}(\frac{x - a}{\sigma}) = \frac{1}{2} + \Phi(\frac{x - a}{\sigma})$$

$$\mathbb{P}\left\{\xi \in [b, c]\right\} = F_{\xi}(c) - F_{\xi}(b) = \Phi(\frac{c - a}{\sigma}) - \Phi(\frac{b - a}{\sigma})$$

Знаючи $F_{\xi}(x)$ знайдемо вираз для щільності розподілу:

$$f_{\xi}(x) = F'\xi(x) = \frac{1}{\sqrt{\pi}} e^{-(\frac{x-a}{\sigma})^2/2} \cdot \frac{1}{\sigma} = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-a)^2}{2\sigma^2}}$$

$$E_{N(a,\sigma^2)} = \frac{\mathbb{E}\left(\xi - \mathbb{E}\xi\right)^4}{\left(\mathbb{D}\xi\right)^2} - 3 = \begin{vmatrix} \xi = a\sigma\xi_0 \\ \mathbb{E}\xi = a \end{vmatrix} = \frac{\sigma^4 \mathbb{R}\xi_0^4}{\sigma^4} - 3 = \mathbb{E}\xi_0^4 - 3 = 0$$

Правило " 3σ ". $\xi \sim (a,\sigma^2)$ Знайдемо: $\mathbb{P}\left\{|\xi-a|<3\sigma\right\}=$ = $\mathbb{P}\left\{\xi\in(a-3\sigma;a+3\sigma)\right\}=\Phi(\frac{a+3\sigma-a}{\sigma}-\Phi(\frac{a-3\sigma-a}{\sigma}))=2\Phi(3)\approx0.9974$ Тобто, у багатьох практичних випадках, гаусівська величина відповідає нерів-

Тобто, у багатьох практичних випадках, гаусівська величина відповідає нерівності $|\xi - a| < 3\sigma$ з великою вірогідністю.

Теорема 1.2 (Центральна гранична теорема). Розглянемо $\xi_1, \xi_2, ..., \xi_n$ - незалежні, мають однаковий розподіл. Якщо $\mathbb{E}\xi_i=0$ та $\mathbb{D}\xi_1=1$:

$$\frac{\xi_1 + \xi_2 + \dots + \xi_n}{\sqrt{n}} \xrightarrow[n \to \infty]{} N(0,1)$$

Гаусівська випадкова величина добре описує результат дії великої кількості випадкових факторів, дія кожного з яких окремо є досить малою.

2. Випадкові вектори

Розглядаємо:

$$\vec{\xi} = \begin{bmatrix} \xi_1 \\ \xi_2 \\ \dots \\ \xi_n \end{bmatrix}$$

Означення. Випадковий вектор - система випадкових величин $\xi_1...\xi_n$, що задані на спільному ймовірністному просторі (Ω, F, \mathbb{P}) .

Функція розподілу: $F_{\vec{\xi}}(x_1,...,x_n) = \mathbb{P}\left\{\xi_1 < x_1,...,\xi_n < x_n\right\}$.

$$\overline{\xi} = \begin{bmatrix} \xi_1 \\ \xi_2 \end{bmatrix}$$

$$F_{\overline{\xi}}(x,y) = \mathbb{P} \{ \xi_1 < x, \xi_2 < y \}$$

2.1. Властивості функції розподілу.

1. $F_{\overline{\xi}}(x,y) \in [0,1] \quad \forall x,y \in \mathbb{R}$

2. $F_{\overline{\xi}}$ - неспадна для кожного аргументу. Тобто:

$$F_{\overline{\xi}}(x_1,y) \leq F_{\overline{\xi}}(x_2,y)$$
 при $x_1 \leq x_2;$ $F_{\overline{\xi}}(x,y_1) \leq F_{\overline{\xi}}(x,y_2)$ при $y_1 \leq y_2.$ $\mathbb{P}\left\{\xi_1 < x_1, \xi_2 < y\right\} \leq \mathbb{P}\left\{\xi_1 < x_2, \xi_2 < y\right\}$

 $3,\,F_{\overline{\xi}}$ - неперервна зліва за кожним аргументом. $4\mathrm{a}.$

В одновимірному: В багатовимірному:

$$\lim_{x \to -\infty} F_{\xi} = 0 \qquad \Rightarrow \quad \lim_{x \to -\infty} F_{\overline{\xi}}(x, y) = 0$$

$$\lim_{x \to +\infty} F_{\xi} = 1 \qquad \qquad \lim_{y \to -\infty} F_{\overline{\xi}}(x, y) = 0$$

Доведення. $\lim_{n\to\infty} F_{\overline{\xi}}(x_n,y_n)=0$, якщо $x_n\to\infty$ або $y_n\to\infty$.

$$\lim_{n \to \infty} F_{\overline{\xi}}(x_n, y_n) = \lim_{n \to \infty} \mathbb{P} \left\{ \xi_1 < x_n, \xi_2 < y_n \right\} = \mathbb{P} \left\{ \bigcap_{n \ge 1} (\xi_1 < x_n, \xi_2 < y_n) \right\} = \mathbb{P} \left\{ \emptyset \right\} = 0$$

4b.

$$\lim_{x \to +\infty \atop y \to +\infty} F_{\overline{\xi}}(x,y) = 1$$

Доведення.

$$\lim_{n \to \infty} F_{\overline{\xi}}(x_n, y_n) = \lim_{n \to \infty} \mathbb{P} \left\{ \xi_1 < x_n, \xi_2 < y_n \right\} = \mathbb{P} \left\{ \bigcup_{n \ge 1} (\xi_1 < x_n, \xi_2 < y_n) \right\} = \mathbb{P} \left\{ \Omega \right\} = 1$$

4c.

$$\lim_{x \to +\infty} F_{\overline{\xi}}(x, y) = \mathbb{P} \{ \xi_2 < y \} = F_{\xi_2}(y)$$

$$y \in \mathbb{R}$$

$$\lim_{y \to +\infty} F_{\overline{\xi}}(x, y) = \mathbb{P} \{ \xi_1 < x \} = F_{\xi_1}(x)$$

$$x \in \mathbb{R}$$

Означення. $\overline{\xi} = \begin{bmatrix} \xi_1 \\ \xi_2 \end{bmatrix} \quad F_{\overline{\xi}}(x,y) -$ сумісна функція розподілу.

 ξ_1 - випадкова величина. F_{ξ_1} -маргінальна функція розподілу ξ_1 . Щоб отримати маргінальну функцію розподілу, потрібно відправили "зайві" аргументи до $+\infty$.

5. В одновимірному випадку:

$$\mathbb{P}\left\{\xi\in[a,b)\right\}=F_{\xi}(b)-F_{\xi}(a)$$

У багатовимірному випадку нас цікавить вірогідність $\mathbb{P}\left\{\xi_1 \in [a_1, b_1), \xi_2 \in [a_2, b_2)\right\}$ (користуємося правилом знаходження приросту функції 2-ох змінних):

$$\mathbb{P}\left\{\xi_{1} \in [a_{1}, b_{1}), \xi_{2} \in [a_{2}, b_{2})\right\} = \mathbb{P}\left\{\overline{\xi} \in \Pi\right\} =$$

$$= F_{\overline{\xi}}(b_{1}, b_{2}) - F_{\overline{\xi}}(b_{1}, a_{2}) - F_{\overline{\xi}}(b_{1}, a_{2}) + F_{\overline{\xi}}(a_{1}, a_{2})$$

Приклад.

$$F(x,y) = \begin{cases} 0, x + y \le 0 \\ 1, x + y > 0 \end{cases}$$

Задана функція не є функцією розподілу. Розглянемо прямокутник П.

2.2. Дискретні та неперервні випадкові вектори.

2.2.1. Дискретні випадкові вектори.

Означення. $\overline{\xi} = \begin{bmatrix} \xi_1 \\ \dots \\ \xi_n \end{bmatrix}$ називають дискретним(неперервним), якщо усі його координати - дискретні(неперервні) випадкові величини.

$$\overline{\xi}=egin{bmatrix} \xi_1 \ ... \ \xi_n \end{bmatrix}$$
 - дискретний вектор. $p_{ij}=\mathbb{P}\left\{\xi_1=x_i,\xi_2=y_j\right\}$

ξ_1	$ y_1 $		$\mid y_j \mid$	 $ y_n $
x_1	p_{11}	:	p_{1j}	 p_{1n}
	•••	•		 •••
x_i	p_{i1}		p_{ij}	 p_{in}
$\overline{x_m}$	p_{m1}	•••	p_{mj}	 p_{mn}

2.2.2. Неперервні випадкові вектори.

 ξ - неперервна $\Leftrightarrow F_{\xi}$ - неп. функція $\Leftrightarrow \mathbb{P}\left\{\xi=x\right\}=0 \quad \forall x \in \mathbb{R}.$

Означення. $\overline{\xi}$ - неперервний вектор, якщо $\mathbb{P}\left\{\xi=\overline{x}\right\}=0 \quad \forall \overline{x}$

Означення. $\overline{\xi}$ - абсолютно неперервний вектор, якщо

$$\exists f : F_{\xi} = \int_{-\infty}^{x} \dots \int_{-\infty}^{x_n} f_{\overline{\xi}}(x_1, \dots, x_n) dx_1 \dots dx_n = \mathbb{P} \{ \xi_1 < x_1, \dots, \xi_n < x_n \}$$

$$F_{\xi_1,\xi_2}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{\xi_1,\xi_2}(s,t) ds dt$$

2.2.3. Властивості щільності розподілу:

1. $f_{\xi_1,\xi_2}(x,y) = \frac{\partial^2 F_{\xi_1,\xi_2}(x,y)}{\partial x \partial y}$ - в точках, де похідна існує. 2. $\int\limits_{-\infty}^{+\infty} \int\limits_{-\infty}^{+\infty} f_{\xi_1,\xi_2}(x,y) dx dy = 1$

2.
$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f_{\xi_1,\xi_2}(x,y) dx dy = 1$$

Доведення.

$$\lim_{\substack{x \to \infty \\ y \to \infty - \infty}} \int_{-\infty}^{x} \int_{-\infty}^{y} f_{\xi_1, \xi_2}(x, y) dx dy = 1$$

$$F_{\xi_1,\xi_2}(x,y) \longrightarrow 1$$

 $x,y \to \infty$

3. $\mathbb{P}\left\{\overline{\xi}\in B\right\}=\iint\limits_{B}f_{\overline{\xi}}dxdy,$ якщо B - квадрована множина.

Доведення. Доведемо спочатку для прямокутників $B = [a_1, b_1] \times [a_2, b_2].$

$$\mathbb{P}\left\{\overline{\xi} \in B\right\} = F(b_1, b_2) - F(b_1, a_2) - F(a_1, b_2) + F(a_2, b_2) = \iint_B f_{\overline{\xi}} dx dy$$

2.3. Рівномірний розподіл на площині.

$$\overline{\xi} \sim U(A) \Leftrightarrow f_{\overline{\xi}} = \begin{cases} c, (x, y) \in A \\ 0, (x, y) \notin A \end{cases}$$

$$1 = \iint_{\mathbb{R}^2} f_{\xi}(x, y) dx dy = c \cdot S(A) \Rightarrow c = \frac{1}{S(A)}$$

$$f_{\overline{\xi}} = \begin{cases} \frac{1}{S(A)}, (x, y) \in A \\ 0, (x, y) \notin A \end{cases}$$

$$\mathbb{P}\left\{\overline{\xi} \in B\right\} = \iint_{B} f_{\overline{\xi}(x,y)} dx dy = \iint_{B} \frac{1}{S(A)} dx dy = \frac{S(B)}{S(A)}$$

2.4. Маргінальна щільність

$$\overline{\xi} = \begin{bmatrix} \xi_1 \\ \xi_2 \end{bmatrix}$$
 $f_{\overline{\xi}}$ - щільність $f_{\overline{\xi}}(x) = \int_{-\infty}^{+\infty} f_{\overline{\xi}}(x,y) dy$

Доведення.

$$\int_{C} f_{\xi_{1}} dx = \mathbb{P} \left\{ \xi_{1} \in C \right\} = \mathbb{P} \left\{ (\xi_{1}, \xi_{2}) \in C \times \mathbb{R} \right\} = \int_{C} \int_{-\infty}^{+\infty} f_{\overline{\xi}}(x, y) dx dy$$

Приклад.

$$f_{\overline{xi}}(x,y) = \begin{cases} 3, (x,y) \in D\\ 0, (x,y) \notin D \end{cases}$$

За умовою нормування:

$$S(D) = \int_{0}^{1} (\sqrt{x} - x^{2}) dx = \left(\frac{2}{3}x^{\frac{3}{2}} - \frac{x^{3}}{3}\right) \Big|_{0}^{1} = \frac{1}{3}$$
$$f_{\xi}(x) = \int_{-\infty}^{+\infty} f_{\overline{\xi}} dy$$

1.
$$x \in (-\infty; 0)$$
 $f_{\xi_1}(x) = \int_{-\infty}^{+\infty} 0 dy = 0$

2.
$$x \in [0,1]$$
 $f_{\xi_1}(x) = \int_{x^2}^{\sqrt{x}} 3dy = 3(\sqrt{x} - x^2)$

$$f_{\xi_1}(x) = \begin{cases} 0, x \in (-\infty, 0) \cup (1, +\infty) \\ 3(\sqrt{x} - x^2), x \in [0, 1] \end{cases}$$

Перевірка: $\int\limits_{-\infty}^{+\infty} f_{\xi_1} dx = 3 \int\limits_{0}^{1} (\sqrt{x} - x^2) dx = 1$. Аналогічно для $f_{\xi_2}(y)$.

2.5. Числові характеристики випадкових векторів.

$$\mathbb{E}\xi_{1} = \int_{-\infty}^{+\infty} x f_{\xi}(x) dx = \int_{-\infty}^{+\infty} \left(x \int_{-\infty}^{+\infty} f_{\overline{\xi}}(x, y) dy \right) dx = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x f_{\overline{\xi}}(x, y) dx dy$$

$$\mathbb{E}\xi_{2} = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} y^{2} f_{\overline{\xi}}(x, y) dx dy = \int_{-\infty}^{+\infty} dy \int_{-\infty}^{+\infty} y^{2} f_{\overline{\xi}}(x, y) dx = \int_{-\infty}^{+\infty} dx \int_{-\infty}^{+\infty} y^{2} f_{\overline{\xi}}(x, y) dy$$

Таким чином, за подвійним інтегралом рахувати числові характеристики зручніше, адже ми можемо вибрати найпростіший вигляд.

Приклад. Точка розподілена в одиничному крузі, для якого $f_{\overline{\xi}}(x,y)$ пропорційеа відстані до границі круга. Знайти $\mathbb{D}\xi_1, \mathbb{D}\xi_2.$

$$f_{\overline{\xi}}(x,y) = \begin{cases} (1-\sqrt{x^2+y^2})k, (x,y) \in \bigcirc \\ 0, (x,y) \notin \bigcirc \end{cases}$$

$$1 = k \iint_{\mathcal{O}} (1 - \sqrt{x^2 + y^2}) dx dy = k \int_{0}^{2\pi} d\varphi \int_{0}^{1} (1 - \rho) \rho d\rho = \frac{\pi k}{3} \Longrightarrow k = \frac{3}{\pi}$$

$$\mathbb{D}\xi_1 = \mathbb{E}(\xi^2) - (\mathbb{E}\xi)^2 = \iint_{\mathcal{O}} x^2 \frac{3}{\pi} (1 - \sqrt{x^2 + y^2}) dx dy$$

2.6. Коваріація та її властивості.

$$\overline{\xi} = \begin{bmatrix} \xi_1 \\ \xi_2 \end{bmatrix}$$
 $\mathbb{E}\xi_1, \mathbb{E}\xi_2.\mathbb{D}\xi_1, \mathbb{D}\xi_2$

Маэстро, что с Вами?

Означення. Коваріація (кореляційний момент) - $cov(\xi_1, \xi_2)$.

$$cov(\xi_1, \xi_2) = \mathbb{E}(\xi_1 - \mathbb{E}\xi_2)(\xi_2 - \mathbb{E}\xi_2) = \mathbb{E}(\xi_1 \xi_2) - \mathbb{E}\xi_1 \xi_2$$

Коваріяція дискретного випадкового вектора.

$$cov(\xi_1, \xi_2) = \sum_{i=1}^m \sum_{j=1}^n x_i \cdot y_j \cdot p_{ij} - \left\{ \sum_{i=1}^m \sum_{j=1}^n x_i p_{ij} \right\} \cdot \left\{ \sum_{i=1}^m \sum_{j=1}^n y_j p_{ij} \right\}$$

Коваріяція неперервного випадкового вектора.

$$cov(\xi_1, \xi_2) = \iint_{\mathbb{R}^2} xy \cdot f_{\overline{\xi}} dx dy - \iint_{\mathbb{R}^2} x \cdot f_{\overline{\xi}} dx dy \cdot \iint_{\mathbb{R}^2} y \cdot f_{\overline{\xi}} dx dy$$

Властивості коваріації.

- 1. $cov(\xi, \xi) = \mathbb{D}\xi$.
- 2. Якщо ξ_1, ξ_2 незалежні , то $cov(\xi_1, \xi_2) = \mathbb{E}(\xi_1 \mathbb{E}\xi_1)(\xi_2 \mathbb{E}\xi_2) = 0$

Означення. ξ_1 та ξ_2 наз. некорельованими, якщо $cov(\xi_1, \xi_2) = 0$.

- 3. $cov(\xi_1, \xi_2) = cov(\xi_2, \xi_1)$ (симетричність).
- 4. $cov(\xi, c) = 0$
- 5. $cov(\alpha \xi_1' + \beta \xi_1'', \xi_2) = \mathbb{E}(\alpha \xi_1' + \beta \xi_1'' \mathbb{E}(\alpha \xi_1' + \beta \xi_1''))(\xi_2 \mathbb{E}\xi_2) = \alpha cov(\xi_1', \xi_2) +$ $\beta cov(\xi_1'', \xi_2)$

Отримали: Коваріація є білінійним симетричним функціоналом.

6. Якщо ξ_1, ξ_2 - незалежні, то $\mathbb{D}(\xi_1 \pm \xi_2) = \mathbb{D}\xi_1 \pm \mathbb{D}\xi_2$.

Якщо існує залежність: $\mathbb{D}(\xi_1 \pm \xi_2) = \mathbb{E}((\xi_1 \pm \xi_2) - \mathbb{E}(\xi_1 \pm \xi_2))^2 = \mathbb{E}((\xi_1 - \mathbb{E}\xi_1) \pm (\xi_2 - \mathbb{E}\xi_1))^2$ $\mathbb{E}\xi_2)) = \mathbb{E}((\xi_1 - \mathbb{E}\xi_1)^2 + (\xi_2 - \mathbb{E}\xi_2)^2 \pm 2(\xi_1 - \mathbb{E}\xi_1)(\xi_2 - \mathbb{E}\xi_2)) = \mathbb{D}\xi_1 + \mathbb{D}\xi_2 \pm 2cov(\xi_1, \xi_2)$

- 7. $cov(\mathbb{I}_A, \mathbb{I}_B) = \mathbb{E}(\mathbb{I}_A \mathbb{I}_B) (\mathbb{E} \mathbb{I}_A) (\mathbb{E} \mathbb{I}_B) = \mathbb{P} \{A \cap B\} \mathbb{P} \{A\} \mathbb{P} \{B\}$
- 8. Нерівність Коші-Буняковського.

$$|cov(\xi_1, \xi_2)| \le \sqrt{\mathbb{D}\xi_1 \cdot \mathbb{D}\xi_2}$$

2.7. Коваріаційна матриця вектора та її властивості

 $\frac{\xi}{\xi}$: дисперсія $\mathbb{D}\xi=\mathbb{R}\mathbb{E}(\xi-\mathbb{E}\xi)^2$: коваріаційна матриця $C_{\overline{\xi}}=\mathbb{E}(\overline{\xi}-\mathbb{E}\overline{\xi})(\overline{\xi}-\mathbb{E}\overline{\xi})^T$

$$C_{\overline{\xi}} = \begin{bmatrix} \mathbb{D}\xi_1 & cov(\xi_1, \xi_2) & \cdots & cov(\xi_1, \xi_n) \\ cov(\xi_2, \xi_1) & \mathbb{D}\xi_2 & \cdots & cov(\xi_2, \xi_n) \\ \vdots & \vdots & \ddots & \vdots \\ cov(\xi_n, \xi_1) & cov(\xi_n, \xi_1) & \cdots & \mathbb{D}\xi_n \end{bmatrix}$$

- 1. $C_{\overline{\xi}}$ симетрична матриця.
- 2. A квадратна матриця $n \times n$, симетрична.

A - невід'ємно визначена $\Leftrightarrow (A\overline{x}, \overline{x}) \geq \forall \overline{x} \in \mathbb{R}^n$ $C_{\overline{\xi}}$ - невід'ємно визначена. $(C_{\overline{\xi}}, \overline{\xi}) = (\mathbb{E}(\overline{\xi} - \mathbb{E}\overline{\xi})(\mathbb{E}(\overline{\xi} - \mathbb{E}\overline{\xi})^T \overline{x}, \overline{x}) = \mathbb{E}\left|\left|(\overline{\xi} - \mathbb{E}\overline{\xi})^T \overline{x}\right|\right|^2 \geq 0.$

Застосування невід'ємної визначеності.

$$\overline{\xi} = \begin{bmatrix} \xi_1 \\ \xi_2 \end{bmatrix}$$
 $C_{\overline{\xi}} = \begin{bmatrix} \mathbb{D}\xi_1 & cov(\xi_1, \xi_2) \\ cov(\xi_1, \xi_2) & \mathbb{D}\xi_2 \end{bmatrix}$ — невід'ємно визначена

Застосуємо критерій Сільвестра:

$$\mathbb{D}\xi_1 \cdot \mathbb{D}\xi_2 - cov^2(\xi_1, \xi(2)) \ge 0 \Longrightarrow |cov(\xi_1, \xi_2)| \le \sqrt{\mathbb{D}\xi_1 \cdot \mathbb{D}\xi_2}$$

Що означає виродженість коваріаційної матриці? $\Leftrightarrow \det C_{\overline{\xi}} = 0$:

 $\det C_{\overline{\xi}} = 0 \Leftrightarrow \exists \overline{x} \in \mathbb{R}^n : \left(C_{\overline{\xi}}, \overline{\xi}\right) = 0 \Leftrightarrow C_{\overline{\xi}}$ – не додатня, невід'ємно визначена Доведення.

$$\det C_{\overline{\xi}} = 0 \Rightarrow KerC_{\overline{\xi}} \neq \left\{ \vec{0} \right\} \Rightarrow \exists \overline{x} \neq 0 : C_{\overline{\xi}} \overline{x} = 0 \Rightarrow \left(C_{\overline{\xi}} \overline{x}, \overline{x} \right) = 0$$
$$\exists \overline{x} \neq 0 : \left(C_{\overline{\xi}} \overline{x}, \overline{x} \right) = 0 \Rightarrow \exists \overline{y} \neq 0 : \lambda_1 y_1^2 + \dots + \lambda_n y_n^2$$
$$\left(C_{\overline{\xi}} \overline{x}, \overline{x} \right) = 0 = (\Omega \overline{y}, \overline{y}) = \lambda_1 y_1^2 + \dots + \lambda_n y_n^2 \Leftrightarrow \exists \lambda_i = 0 \Rightarrow \det C_{\overline{\xi}} = 0$$

Теорема 2.1. $C_{\overline{\xi}}$ є виродженою т.т.т.к між $\xi_1, ..., \xi_n$ є афінна залежність. Тобто:

$$\lambda_1 \xi_1 + \lambda_2 \xi_2 + \dots + \lambda_n \xi_n = c$$

Доведення.

$$\exists \overline{x} \neq 0 : \left(C_{\overline{\xi}} \overline{x}, \overline{x} \right) = 0 \Leftrightarrow \exists \overline{\xi} \neq \vec{0} \in \mathbb{R}^n : \left(\mathbb{E} (\overline{\xi} - \mathbb{E} \overline{\xi}) (\overline{\xi} - \mathbb{E} \overline{\xi})^T \cdot \overline{x}, \overline{x} \right) = 0 \Leftrightarrow \\ \Leftrightarrow \left(\mathbb{E} (\overline{\xi} - \mathbb{E} \overline{\xi}) \cdot \overline{x}, (\overline{\xi} - \mathbb{E} \overline{\xi}) \cdot \overline{x} \right) = 0 \Leftrightarrow \\ \Leftrightarrow \left. \mathbb{E} \left| \left| (\overline{\xi} - \mathbb{E} \overline{\xi})^T \overline{x} \right| \right|^2 = 0 \Leftrightarrow \left| \left| (\overline{\xi} - \mathbb{E} \overline{\xi})^T \overline{x} \right| \right|^2 = 0 \quad \text{м.н.} \Leftrightarrow \\ \Leftrightarrow \left(\overline{\xi} - \mathbb{E} \overline{\xi} \right)^T \overline{x} = 0 \Leftrightarrow (\xi_1 - \mathbb{E} \xi_1) x_1 + \dots + (\xi_n - \mathbb{E} \xi_n) x_n = 0 \Leftrightarrow$$

 $\exists x_1, ..., x_n$ не всі з яких дорівнюють нулю:

$$\Leftrightarrow x_1\xi_1 + x_2\xi_2 + \dots + x_n\xi_n = x_1\mathbb{E}\xi_1 + \dots + x_n\mathbb{E}\xi_n = c \Leftrightarrow$$

Візьмемо $x_i = \lambda_i$: $\lambda_1 \xi_1 + ... + \lambda_n \xi_n = c \Leftrightarrow$ афінна залежність.

Розглянемо $cov(\xi,\eta)=\mathbb{E}(\xi-\mathbb{E}\xi)(\eta-\mathbb{E}\eta).$ Застосуємо нерівність Коші-Буняковського: $|cov(\xi,\eta)|\leq\sqrt{\mathbb{D}\xi\cdot\mathbb{D}\eta}$

$$r_{\xi,\eta} = rac{cov(\xi,\eta)}{\sqrt{\mathbb{D}\xi\cdot\mathbb{D}\eta}}$$
 - коефіцієнт кореляції між ξ та η .

$$-1 \le r_{\xi,\eta} \le 1$$

Коефіцієнт показує "силу" лінійної залежності між ξ та η .

$$r_{\xi,\eta}=0\Leftrightarrow cov(\xi,\eta)\Leftrightarrow \xi$$
 та η - некорельовані.

$$r_{\xi,\eta} = \pm 1 \Leftrightarrow \det \begin{bmatrix} \mathbb{D}\xi & cov(\xi,\eta) \\ cov(\xi,\eta) & \mathbb{D}\eta \end{bmatrix} = 0 \Leftrightarrow \det C_{\xi,\eta} = 0 \Leftrightarrow \\ \Leftrightarrow \mathbb{D}\xi \cdot \mathbb{D}\eta - cov(\xi,\eta) = 0 \Leftrightarrow |r_{\xi,\eta}| = 1$$

Теорема 2.2.
$$r_{\xi,\eta}=\pm 1$$
 т.т.т.к. $\eta=k\xi+b$, де $k,b\in R$ При цьому $r_{\xi,\eta}+1\Rightarrow k>0$ $r_{\xi,\eta}-1\Rightarrow k<0$

Доведення.

$$r_{\xi,\eta} = \frac{cov(\xi, k\xi + b)}{\mathbb{D}\xi \cdot \mathbb{D}(k\xi + b)} = \frac{k\mathbb{D}\xi}{\sqrt{k^2 \cdot \mathbb{D}^2 \xi}} = \frac{k}{|k|} = \begin{cases} 1, k > 0 \\ -1, k < 0 \end{cases}$$

2.8. Незалежність випадкових величин

Означення. Випадкові величини ξ, η називають незалежними, якщо події $\{\xi \in [a,b]\}$, $\{\eta \in [a,b]\}$ є незалежними $\forall a \leq b, c \leq d$ Зокрема, якщо ξ, η - дискретні:

$$\xi \in \{x_1, ..., x_n\}$$

$$\eta \in \{y_1, ..., y_n\}$$

$$\{\xi = x_i\} \perp \{\eta = y_j\}$$

$$\forall i = \overline{1, m}$$

$$\forall j = \overline{1, n}$$

Теорема 2.3. ξ, η - незалежні $\Leftrightarrow F_{\xi,\eta} = F_{\xi}(x) \cdot F_{\eta}(y)$

Доведення. Нехай ξ, η - незалежні $\Leftrightarrow \forall a \leq b, c \leq d : \mathbb{P} \{ \xi \in [a, b], \eta \in [c, d] \} = \mathbb{P} \{ \xi \in [a, b] \} \cdot \mathbb{P} \{ \eta \in [c, d] \} \Rightarrow \mathbb{P} \{ \xi \in [a, b), \eta \in [c, d) \} = \mathbb{P} \{ \xi \in [a, b) \} \cdot \mathbb{P} \{ \eta \in [c, d) \} = \mathbb{P} \{ \xi < b, \eta < d \} = \mathbb{P} \{ \xi < b \} \cdot \mathbb{P} \{ \eta < d \} \Leftrightarrow F_{\xi, \eta}(b, d) = F_{\xi}(b) \cdot F(\eta)(d)$ Нехай навпаки: $F_{\xi, \eta}(x, y) = F_{\xi}(x) - F_{\eta}(y) \quad \forall x, y \in \mathbb{R}$

$$\mathbb{P}\left\{\xi \in [a,b), \eta \in [c,d)\right\} = F_{\xi,\eta}(d,b) - F_{\xi,\eta}(b,c) - F_{\xi,\eta}(a,d) + F_{\xi,\eta}(a,c) =$$

$$= F_{\xi}(b)F_{\eta}(d) - F_{\xi}(b)F_{\eta}(c) - F_{\xi}(a)F_{\eta}(d) + F_{\xi}(a)F_{\eta}(c) =$$

$$= (F_{\xi}(b) - F_{\xi}(a)) (F_{\eta}(d) - F_{\eta}(c)) = \mathbb{P}\left\{\xi \in [a,b)\right\} \cdot \mathbb{P}\left\{\eta \in [c,b)\right\}$$

Теорема 2.4. Для абсолюно неперервного вектора $\begin{bmatrix} \xi & \eta \end{bmatrix}^T$

$$\xi \perp \eta \Leftrightarrow f_{\xi,\eta}(x,y) = f_{\xi}(x)f_{\eta}(y) \quad \forall x,y \in \mathbb{R}$$

Доведення.

1.
$$F_{\xi,\eta}(x,y) = F_{\xi}(x) \cdot F_{\eta}(y) \Longrightarrow f_{\xi,\eta}(x,y) = f_{\xi}(x) \cdot f_{\eta}(y)$$

2. $f_{\xi,\eta}(x,y) = f_{\xi}(x) \cdot f_{\eta}(y) \Longrightarrow F_{\xi,\eta}(x,y) = F_{\xi}(x) \cdot F_{\eta}(y)$ $\forall x, y \in \mathbb{R}$

2.

$$F_{\xi,\eta}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{\xi,\eta}(s,t) ds dt = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{\xi}(s) \cdot f_{\eta}(t) ds dt =$$

$$= \int_{-\infty}^{x} f_{\xi}(s) ds \cdot \int_{-\infty}^{+\infty} f_{\eta}(t) dt = F_{\xi}(s) \cdot F_{\eta}(t)$$

1.

$$f_{\xi,\eta}(x,y) = \frac{\partial^2 f}{\partial x \partial y}(x,y) = \frac{\partial^2}{\partial x \partial y}(F_{\xi}(x) \cdot F_{\eta}(y)) = \frac{\partial}{\partial x}(F_{\xi}(x) \cdot f_{\eta}(y)) = f_{\xi}(x) \cdot f_{\eta}(y)$$

2.9. Умовні розподіли та умовні математичні сподівання.

2.9.1. Дискретний вектор.

ξ_1	y_1	 y_j	 y_n
x_1	p_{11}	 p_{1j}	 p_{1n}
•••		 	
x_i	p_{i1}	 p_{ij}	 p_{in}
$\overline{x_m}$	p_{m1}	 p_{mj}	 p_{mn}

Розподіли
$$\xi_2$$
 за ξ_1
$$\mathbb{P}\left\{\xi_2 = y_j \middle| \xi_2 = x_i\right\} = \frac{\mathbb{P}\left\{\xi_1 = x_i, \xi_2 = y_j\right\}}{\mathbb{P}\left\{\xi_1 = x_i\right\}} = \frac{p_{ij}}{\sum\limits_{i=1}^n p_i j}$$

$$\mathbb{E}(\xi_2|\xi_1 = x_i) = \sum_{j=1}^n y_j \mathbb{P}\left\{\xi_2 = y_j | \xi_1 = x_i\right\} = \sum_{j=1}^n y_j \cdot \frac{p_{ij}}{\sum_{k=1}^n p_{ik}} = \frac{\sum_{j=1}^n y_j p_{ij}}{\sum_{j=1}^n p_{ij}}$$

$$\mathbb{E}[\mathbb{E}(\xi_{2}|\xi_{1})] = \frac{\sum_{j=1}^{n} y_{j} \cdot p_{1j}}{\sum_{j=1}^{n} p_{1j}} \cdot \sum_{j=1}^{n} p_{1j} + \dots + \frac{\sum_{j=1}^{n} y_{j} \cdot p_{mj}}{\sum_{j=1}^{n} p_{mj}} \cdot \sum_{j=1}^{n} p_{mj} = \sum_{i=1}^{m} \sum_{j=1}^{n} y_{j} p_{ij} = \mathbb{E}\xi_{2}$$

$$\mathbb{E}[\mathbb{E}(\xi_{2}|\xi_{1})] = \mathbb{E}\xi_{2} \qquad \mathbb{E}[\mathbb{E}(\xi_{1}|\xi_{2})] = \mathbb{E}\xi_{1}$$

2.9.2. Абсолютно неперервний вектор.

$$\overline{\xi} \begin{bmatrix} \xi_1 \\ \xi_2 \end{bmatrix}$$
 $f_{\overline{\xi}}(x,y)$ — сумісна щільність розподілу.

 $f_{\xi_2|\xi_1}(y|x) = f_{\xi_2|\xi_1=x}(y)$ - умовна щільність другої координати за першою.

 $F_{\xi_2|\xi_1=x}(y)$ - умовна функція розподілу ξ_2 за умови $\xi_1=x.$

$$F_{\xi_2|\xi_1=x}(y) = \mathbb{P}\left\{\xi_2 < y | \xi_1 = x\right\} = \frac{\mathbb{P}\left\{\xi_1 = x, \xi_2 < y\right\}}{\mathbb{P}\left\{\xi_1 = x\right\}} = \frac{0}{0}$$

$$F_{\xi_2|\xi_1=x}(y) = \lim_{\varepsilon \to \infty} \mathbb{P}\left\{\xi_2|\xi_1 \in [x, x+\varepsilon)\right\} = \frac{\mathbb{P}\left\{\xi_1 \in [x, x+\varepsilon), \xi_2 \in (-\infty, y)\right\}}{\mathbb{P}\left\{\xi_1 \in [x, x+\varepsilon)\right\}} = \frac{\mathbb{P}\left\{\xi_1 \in [x, x+\varepsilon), \xi_2 \in (-\infty, y)\right\}}{\mathbb{P}\left\{\xi_1 \in [x, x+\varepsilon)\right\}} = \frac{\mathbb{P}\left\{\xi_1 \in [x, x+\varepsilon), \xi_2 \in (-\infty, y)\right\}}{\mathbb{P}\left\{\xi_1 \in [x, x+\varepsilon)\right\}} = \frac{\mathbb{P}\left\{\xi_1 \in [x, x+\varepsilon), \xi_2 \in (-\infty, y)\right\}}{\mathbb{P}\left\{\xi_1 \in [x, x+\varepsilon), \xi_2 \in (-\infty, y)\right\}} = \frac{\mathbb{P}\left\{\xi_1 \in [x, x+\varepsilon), \xi_2 \in (-\infty, y)\right\}}{\mathbb{P}\left\{\xi_1 \in [x, x+\varepsilon), \xi_2 \in (-\infty, y)\right\}} = \frac{\mathbb{P}\left\{\xi_1 \in [x, x+\varepsilon), \xi_2 \in (-\infty, y)\right\}}{\mathbb{P}\left\{\xi_1 \in [x, x+\varepsilon), \xi_2 \in (-\infty, y)\right\}} = \frac{\mathbb{P}\left\{\xi_1 \in [x, x+\varepsilon), \xi_2 \in (-\infty, y)\right\}}{\mathbb{P}\left\{\xi_1 \in [x, x+\varepsilon), \xi_2 \in (-\infty, y)\right\}} = \frac{\mathbb{P}\left\{\xi_1 \in [x, x+\varepsilon), \xi_2 \in (-\infty, y)\right\}}{\mathbb{P}\left\{\xi_1 \in [x, x+\varepsilon), \xi_2 \in (-\infty, y)\right\}} = \frac{\mathbb{P}\left\{\xi_1 \in [x, x+\varepsilon), \xi_2 \in (-\infty, y)\right\}}{\mathbb{P}\left\{\xi_1 \in [x, x+\varepsilon), \xi_2 \in (-\infty, y)\right\}} = \frac{\mathbb{P}\left\{\xi_1 \in [x, x+\varepsilon), \xi_2 \in (-\infty, y)\right\}}{\mathbb{P}\left\{\xi_1 \in [x, x+\varepsilon), \xi_2 \in (-\infty, y)\right\}} = \frac{\mathbb{P}\left\{\xi_1 \in [x, x+\varepsilon), \xi_2 \in (-\infty, y)\right\}}{\mathbb{P}\left\{\xi_1 \in [x, x+\varepsilon), \xi_2 \in (-\infty, y)\right\}} = \frac{\mathbb{P}\left\{\xi_1 \in [x, x+\varepsilon), \xi_2 \in (-\infty, y)\right\}}{\mathbb{P}\left\{\xi_1 \in [x, x+\varepsilon), \xi_2 \in (-\infty, y)\right\}} = \frac{\mathbb{P}\left\{\xi_1 \in [x, x+\varepsilon), \xi_2 \in (-\infty, y)\right\}}{\mathbb{P}\left\{\xi_1 \in [x, x+\varepsilon), \xi_2 \in (-\infty, y)\right\}} = \frac{\mathbb{P}\left\{\xi_1 \in [x, x+\varepsilon), \xi_2 \in (-\infty, y)\right\}}{\mathbb{P}\left\{\xi_1 \in [x, x+\varepsilon), \xi_2 \in (-\infty, y)\right\}} = \frac{\mathbb{P}\left\{\xi_1 \in [x, x+\varepsilon), \xi_2 \in (-\infty, y)\right\}}{\mathbb{P}\left\{\xi_1 \in [x, x+\varepsilon), \xi_2 \in (-\infty, y)\right\}} = \frac{\mathbb{P}\left\{\xi_1 \in [x, x+\varepsilon), \xi_2 \in (-\infty, y)\right\}}{\mathbb{P}\left\{\xi_1 \in [x, x+\varepsilon), \xi_2 \in (-\infty, y)\right\}} = \frac{\mathbb{P}\left\{\xi_1 \in [x, x+\varepsilon), \xi_2 \in (-\infty, y)\right\}}{\mathbb{P}\left\{\xi_1 \in [x, x+\varepsilon), \xi_2 \in (-\infty, y)\right\}} = \mathbb{P}\left\{\xi_1 \in [x, x+\varepsilon), \xi_2 \in (-\infty, y)\right\}$$

$$= \lim_{\varepsilon \to 0} \frac{\int\limits_{x}^{x+\varepsilon} ds \int\limits_{-\infty}^{y} f_{\overline{\xi}}(s,t) dt}{\int\limits_{x+\varepsilon}^{x+\varepsilon} \int\limits_{f_{\xi_{1}}(s) ds}^{y}} = \lim_{\varepsilon \to 0} \frac{\varepsilon \cdot \int\limits_{x}^{x+\varepsilon} ds \int\limits_{-\infty}^{y} f_{\overline{\xi}}(s,t) dt}{\varepsilon \cdot \int\limits_{x}^{x+\varepsilon} f_{\xi_{1}}(s) ds} = \boxed{\frac{\int\limits_{-\infty}^{y} f_{\overline{\xi}}(x,t) dt}{f_{\xi_{1}}(x)}} = F_{\xi_{2}|\xi_{1}=x}(y)$$

Знаючи умовну функцію розподілу, можемо знайти умовну щільність:

$$f_{\xi_2|\xi_1=x} = F'_{\xi_2|\xi_1=x}(y) = \frac{f_{\overline{\xi}}(x,y)}{f_{\xi_1}(x)}$$

Знайдемо умовне математичне сподівання ξ_2 за ξ_1

$$\mathbb{E}(\xi_{2}|\xi_{1}=x) = \int_{-\infty}^{+\infty} y \cdot f_{\xi_{2}|\xi_{1}=x} dy = \int_{-\infty}^{+\infty} y \cdot \frac{f_{\overline{\xi}}(x,y)}{f_{\xi_{1}}(x)} dy = \frac{\int_{-\infty}^{+\infty} y \cdot f_{\overline{\xi}}(x,y) dy}{f_{\xi_{1}}(x)}$$

 $\mathbb{E}(\xi_2|\xi_1)$ - випадкова величина, яка спочатку визначає, куди попала умова (чому дорівнює $x \longleftarrow \xi_1$), а далі визначає $\mathbb{E}(\xi_2|\xi_1 = x)$.

 $\mathbb{E}(\xi_2|\xi_1)$ - набуває значення $\mathbb{E}(\xi_2|\xi_1=x)$, коли ξ_1 набула значення x.

$$\xi_1 \longrightarrow x \Rightarrow \mathbb{E}(\xi_2|\xi_1) \longrightarrow \mathbb{E}(\xi_2|\xi_1 = x)$$

 $\mathbb{E}(\xi_2|\xi_1)$ є функцією від ξ_1 . Якою? $\mathbb{E}(\xi_2|\xi_1=x)$

$$\mathbb{E}(\xi_2|\xi_1) = \Psi(\xi_1)$$
, де $\Psi(x) = \mathbb{E}(\xi_2|\xi_1 = x)$

Формула повного математичного сподівання $(?\mathbb{E}[\mathbb{E}(\xi_2|\xi_1)] = \mathbb{E}\xi_2?)$

$$\mathbb{E}[\mathbb{E}(\xi_2|\xi_1)] = \mathbb{E}\Psi(\xi_2) = \int_{-\infty}^{+\infty} \Psi(x) \cdot f_{\xi_1}(x) dx = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \frac{1}{f_{\xi_1}(x)} \cdot f_{\xi_1}(x) dx = \mathbb{E}\xi_2$$

3. Характеристичні функції.

 ξ - випадкова величина. Загальна характеристика такої величини - функція розподілу. Існує для кожної величинию. Також є характеристики, такі як ряд розподілу та щільність розподілу - існують не завжди. Введемо ще одну характеристику, яка буде існувати для будь-якої випадкової величини.

Означення. Характеристична функція випадкової величини.

$$\chi_{\xi}(t) = \mathbb{E}(\cos(t\xi) + i\sin(t\xi)) = \mathbb{E}(e^{it\xi})$$
$$X_{\xi} : \mathbb{R} \to \mathbb{C}$$

Як шукати? Дискретний випадок: $\sum_{i=1}^{n(\infty)} e^{itx_i} p_i$

Для абсолютно неперервної величини: $\int_{-\infty}^{+\infty} e^{itx} f_{\xi}(x) dx$

3.1. Властивості характеристичних функцій.

$$\xi$$
 - випадкова величина. $\chi_{\xi}(t)=\mathbb{E}e^{et\xi}=\int\limits_{-\infty}^{+\infty}e^{i}txf_{\xi}(x)dx$

1. Характеристична функція є унікальною характеристикою ймовірнісного розподілу.

2.
$$\chi_{\xi}(0) = 1$$
 $\chi_{\xi}(0) = \mathbb{E}e^{0} = 1$.
3. $|\chi_{\xi}(t)| \le 1$ $\forall t \in \mathbb{R}$

$$\left| \mathbb{E}e^{it\xi} \right| = \left| \mathbb{E}\cos\left(t\xi\right) + i\mathbb{E}\sin\left(t\xi\right) \right| = \sqrt{\mathbb{E}\cos\left(t\xi\right)^2 + \mathbb{E}\sin\left(t\xi\right)^2} = 1$$

4. χ_{ξ} - неперервна за t для ξ - абсолютно неперервна випадкова величина.

$$\chi_{\xi}(t) = \int_{-\infty}^{+\infty} e^{itx} f_{\xi}(x) dx \quad \longleftarrow \quad \chi_{\xi}(t+h) = \int_{-\infty}^{+\infty} e^{i(t+h)x} f_{\xi}(x) dx$$

$$(\chi_{\xi} - \text{ непервна в т. } t) \Longleftrightarrow \lim_{h \to 0} \chi_{\xi}(t+h) = \chi_{\xi}(t)$$

Для $\lim_{h\to 0}\int\limits_{-\infty}^{+\infty}e^{i(t+h)x}f_{\xi}(x)dx=\int\limits_{-\infty}^{+\infty}e^{itx}f_{\xi}(x)dx$, треба щоб $\int\limits_{-\infty}^{+\infty}e^{itx}f_{\xi}(x)dx$ збігався рівномірно на $t \in \mathbb{R}$. $\left| e^{itx} \cdot f_{\xi}(x) \right| = |f_{\xi}(x)| = f_{\xi}(x) = M(x)$ - мажорантний ряд.

$$\int_{-\infty}^{+\infty} M(x)dx = \int_{-\infty}^{+\infty} f_{\xi}(x)dx = 1 < \infty$$

 $\int\limits_{-\infty}^{+\infty}e^{itx}f_{\xi}(x)dx$ - збігається рівномірно за озн. Вейерштрасса.

$$5. \xi_1 \perp \!\!\!\perp \xi_2 \Longrightarrow \chi_{\xi_1 + \xi_2}(t) = \chi_{\xi_1}(t) \cdot \chi_{\xi_2}(t)$$

6. Якщо
$$\exists \mathbb{E} \xi^n$$
, то $\mathbb{E} \xi^n = \frac{1}{i^n} \cdot \chi_{\xi}^{(n)}(0)$.

Доведення. В неперервному випадку.

$$\mathbb{E}\xi^n = \int_{-\infty}^{+\infty} x^n \cdot f_{\xi}(x) dx$$

$$\chi(t) = \mathbb{E}e^{it\xi} = \int_{-\infty}^{+\infty} e^{itx} f_{\xi}(x) dx$$

$$\chi^{(n)}(t) = \int_{-\infty}^{+\infty} (ix)^n e^{itx} f_{\xi}(x) dx$$

Але потрібна рівномірна збіжність. Скористаємося озн. Вейерштрасса:

$$\left|(ix)^n e^{itx} f_{\xi}(x)\right| = \left|x\right|^n \cdot f_{\xi}(x) = M(x) :$$

$$\int_{-\infty}^{+\infty} M(x)dx = \int_{-\infty}^{+\infty} |x|^n \cdot f_{\xi}(x)dx < \infty$$

$$\chi^{(n)}(0) = i^n \int_{-\infty}^{+\infty} x^n \cdot f_{\xi}(x) dx = i^n \cdot \mathbb{E}(\xi^n)$$

6*. Якщо існує $\exists \chi(t)^{(n)}$, то виконується попередня властивість. (n- парне.)

7.
$$\chi_{a\xi+b}(t) = \mathbb{E}e^{i(a\xi+b)t} = \mathbb{E}(e^{ia\xi t} \cdot e^{ibt}) = e^{ibt} \cdot \mathbb{E}e^{ai\xi t} = e^{ibt}\chi_{\xi}(at)$$

8. $\chi_{-\xi}(t) = \chi_{\xi}(-t) = \mathbb{E}e^{i(-\xi)t} = \overline{\mathbb{E}}e^{i\xi t} = \overline{\chi_{\xi}(t)}$

8.
$$\chi_{-\xi}(t) = \chi_{\xi}(-t) = \mathbb{E}e^{i(-\xi)t} = \mathbb{E}e^{i\xi t} = \chi_{\xi}(t)$$

9. Нехай випадкова величина ξ має симетричний розподіл.

 $\mathbb{P}\left\{\xi\in B\right\} = \mathbb{P}\left\{\xi\in -B\right\} \Leftrightarrow \begin{cases} \xi-\text{ДВВ: Ряд розподілу симетричний відносно 0.} \\ \xi-\text{АНВВ: } f_{\xi}(x)=f_{\xi}(-x) \end{cases}$

Тоді:
$$-\xi \equiv \xi \Longrightarrow \overline{\chi_{\xi}(t)} = \chi_{\xi}(t) = \chi_{\xi}(-t)$$
.

Це означає, що $\chi_{\xi}(t)$ - парна, дійсного значення.

10. Нехай ξ не ε обов'язково симетричною. Тоді $\overline{\chi_{\xi}(t)}=\chi_{-\xi}(t)=\chi_{\xi}(-t)$. Інакше, парність $\chi_{\xi}(t)$ означає її дійснозначність.

3.2. Основні "проблеми" характеристичних функцій.

- 1. За функцією χ досить важко визначити, чи є вона характеристичною функцією деякої випадкової величини.
- 2. Якщо χ дійсно характеристична функція деякої випадкової величини, то важко зрозуміти, чи буде ξ ДВВ або АНВВ.

Задача: Чи є функція характеристичною? Якщо є, то для якого розподілу? Основні критерії, яким має відповідати характеристична функція - це 4 властивості наведені нижче. Якщо одна з властивостей не виконується, то функція не є характеристичною. Інакше, потрібно навести конкретний розподіл, який описує задана функція.

- 1. $\chi(0) = 1$
- 2. $|\chi(t)| \le 1$
- 3. Неперервна і визначена $\forall t \in \mathbb{R}$.
- 4. $\chi(t) \in \mathbb{R} \quad \forall t \in \mathbb{R} \iff \chi(-t) = \chi(t)$

3.3. Характеристичні функції головних ймовірнісних розподілів.

3.3.1. Дискретні розподіли.

З дискретними розподілами працювати легше. В загальному випадку, величина приймає невід'ємні цілі значення. Раніше вводили поняття генератрисси:

$$G_{\xi}(z) = \sum_{k=0}^{\infty} p_k \cdot z^k$$

В данному розділі розглядаємо пов'язану функцію функцію:

$$\chi_{\xi}(t) = \sum_{k=0}^{\infty} p_k \cdot e^{itk} = \sum_{k=0}^{\infty} p_k \cdot (e^{it})^k = G_{\xi}(e^{it})$$

$$\xi \sim Bin(n, p) \implies G_{\xi}(z) = (pz + q)^n \implies \chi_{\xi}(t) = (pe^{it} + q)^n$$

$$\xi \sim Geom_0(p) \implies G_{\xi}(z) = \frac{p}{1 - qz} \implies \chi_{\xi}(t) = \frac{p}{1 - qe^{it}}$$

$$\xi \sim Geom_1(p) \implies G_{\xi}(z) = \frac{pz}{1 - qz} \implies \chi_{\xi}(t) = \frac{pe^{it}}{1 - qe^{it}}$$

$$\xi \sim Pois(\lambda) \implies G_{\xi}(z) = e^{\lambda(z-1)} \implies \chi_{\xi}(t) = e^{\lambda(e^{it}-1)}$$

Таким чином, ми бачимо, що характеристичні функції напряму пов'язані з генератриссами. При роботі з ДВВ зручніше працювати з генератриссами, але на відміну від генератрисс, хактеристична функція визначена для всіх видів випадкових величин. Перейдемо до абсолютно неперервного випадку.

3.3.2. Абсолютно неперервні розподіли.

Згадаємо:
$$\chi_{\xi}(t) = \int_{-\infty}^{+\infty} e^{itx} f_{\xi}(x) dx$$

$$\xi \sim \mathbf{U}(\mathbf{a}, \mathbf{b}). \qquad \chi_{\xi}(t) = \int_{-\infty}^{+\infty} e^{itx} \begin{cases} \frac{1}{b-a}, & x \in [a, b]; \\ 0, & x \notin [a, b]; \end{cases} = \frac{1}{a-b} \int_{a}^{b} e^{itx} dx = \frac{e^{itb} - e^{ita}}{it(b-a)}$$

$$\chi_{U(-a,a)}(t) = \begin{cases} \frac{e^{ita} - e^{-ita}}{2iat}, & t \neq 0; \\ 1, & t = 0; \end{cases} = \begin{cases} \frac{\sin(at)}{at}, & t \neq 0; \\ 1, & t = 0; \end{cases}$$

$$\xi \sim \mathbf{Exp}(\lambda). \qquad \chi_{\xi}(t) = \int_{0}^{+\infty} \lambda \cdot e^{-\lambda x} e^{itx} dx = \frac{\lambda}{it-\lambda} e^{x(it-\lambda)} \Big|_{x=0}^{+\infty} = \frac{\lambda}{\lambda - it}$$

Для гаусівського розподілу: спочатку розглянемо $\xi_0 \sim N(0,1)$. Потім скористаємося властивістю $\xi = a + \sigma \xi_0$, де $\xi \sim N(a,\sigma^2)$.

$$\xi \sim \mathbf{N}(\mathbf{0}, \mathbf{1}). \qquad \chi_{\xi_{0}}(t) = \mathbb{E}e^{it\xi} = \int_{-\infty}^{+\infty} e^{itx} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{itx} \cdot e^{-\frac{x^{2}}{2}} dx =$$

$$= \begin{vmatrix} u = e^{-\frac{x^{2}}{2}} & du = -x \cdot e^{-\frac{x^{2}}{2}} \\ dv = e^{itx} dx & v = \frac{1}{it} e^{itx} \end{vmatrix} = \frac{1}{\sqrt{2\pi}} \left(\frac{1}{it} \cdot e^{itx} e^{-\frac{x^{2}}{2}} \right)_{-\infty}^{+\infty} + \frac{1}{it} \int_{-\infty}^{+\infty} e^{itx} x e^{-\frac{x^{2}}{2}} dx \right) =$$

$$= \frac{1}{\sqrt{2\pi}} \frac{1}{it} \int_{-\infty}^{+\infty} e^{itx} x e^{-\frac{x^{2}}{2}} dx = \chi_{\xi_{0}}(t)$$

$$\chi'_{\xi_{0}}(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} ix e^{itx} e^{-\frac{x^{2}}{2}} dx \implies \chi'_{\xi_{0}}(t) = -t\chi_{\xi_{0}}(t)$$

$$\frac{d\chi}{dt} = -t\chi \qquad \int \frac{d\chi}{\chi} = -\int t dt \qquad \ln|\chi| = -\frac{t^{2}}{2} + C \qquad \chi(t) = K \cdot e^{-\frac{t^{2}}{2}}$$

$$\chi(0) = 1 = K \implies \chi_{\xi_{0}}(t) = \chi_{N(0,1)}(t) = e^{-\frac{t^{2}}{2}}$$

$$\chi_{N(a,\sigma^{2})}(t) = e^{iat - \frac{\sigma^{2}t^{2}}{2}}$$

3.4. Ймовірнісні розподіли, стійкі відносно додавання.

Означення. Розподіл називають стійким відносно додавання, якщо сума двох незалежних випадкових величин, що мають цей розподіл (можливо, з різними параметрами), також має цей розподіл.

 $Pois(\lambda)$ - стійкий розподіл. Це означає, що:

$$\mathbb{L} \begin{cases} \xi_1 \sim Pois(\lambda_1) \\ \xi_2 \sim Pois(\lambda_2) \end{cases} \implies \xi_1 + \xi_2 \sim Pois(\lambda_1 + \lambda_2)$$

Доведемо задопомогою характеристичної функції розподілу:

$$\begin{cases} \chi_{\xi_1}(t) = e^{\lambda_1(e^{it} - 1)} \\ \chi_{\xi_2}(t) = e^{\lambda_2(e^{it} - 1)} \end{cases} \implies \chi_{\xi_1 + \xi_2}(t) = \chi_{\xi_1}(t) \cdot \chi_{\xi_2}(t) = e^{(\lambda_1 + \lambda_2)(e^{it} - 1)}$$

Остаточно: $\xi_1 + \xi_2 \sim Pois(\lambda_1 + \lambda_2)$

 $N(a,\sigma^2)$ - стійкий розподіл.

$$\mathbb{1} \begin{cases} \xi_1 \sim N(a_1, \sigma_1^2) \\ \xi_2 \sim N(a_2, \sigma_2^2) \end{cases} \begin{cases} \chi_{\xi_1} = e^{ia_1t - \frac{\sigma_1^2t^2}{2}} \\ \chi_{\xi_2} = e^{ia_2t - \frac{\sigma_2^2t^2}{2}} \end{cases}$$

$$\chi_{\xi_1 + \xi_2}(t) = \chi_{\xi_1} \cdot \chi_{\xi_2}(t) = e^{i(a_1 + a_2)t - \frac{(\sigma_1 + \sigma_2)^2t^2}{2}} = \chi_{N(a_1 + a_2, \sigma_1^2 + \sigma_2^2)}(t)$$
 Остаточно:
$$[\xi_1 + \xi_2 \sim N(a_1 + a_2, \sigma_1^2 + \sigma_2^2)]$$

Розглянемо біноміальний розподіл: Bin(n,p)

$$\mathbb{I} \begin{cases} \xi_1 \sim Bin(n_1, p) \\ \xi_2 \sim Bin(n_2, p) \end{cases} \begin{cases} \chi_{\xi_1}(t) = \left(pe^{it} + q\right)^{n_1} \\ \chi_{\xi_2}(t) = \left(pe^{it} + q\right)^{n_2} \end{cases}$$

$$\chi_{\xi_1 + \xi_2}(t) = \left(pe^{it} + q\right)^{n_1} \cdot \left(pe^{it} + q\right)^{n_2} = \left(pe^{it} + q\right)^{n_1 + n_2}$$
Остаточно:
$$\xi_1 + \xi_2 \sim Bin(n_1 + n_2, p)$$

Задача: знайти щільність розподілу $f_{\xi}(x)$ за харатеристичною функцією.

$$\chi_{\xi}(t) = \int_{-\infty}^{+\infty} e^{itx} f_{\xi}(x) dx - \text{перетворення Фур'є} \qquad f \xrightarrow{F} \chi$$

$$f_{\xi}(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{itx} \chi_{\xi}(x) dx - \text{обернене перетворення} \qquad \chi \xrightarrow{F^{-1}} f$$

3.5. Характеристичні функції випадкових векторів.

3.5.1. Означення.

Розглядаємо випадковий вектор $\overline{\xi} = \begin{bmatrix} \xi_1 \\ \vdots \\ \xi_n \end{bmatrix}$. Характеристична функція:

$$\chi_{\overline{\xi}}(\overline{t}) = \chi_{\overline{\xi}}(t_1, t_2, ..., t_n) = \mathbb{E}e^{i\langle \overline{\xi}, \overline{t} \rangle} = \mathbb{E}e^{i(t_1\xi_1 + ... + t_n\xi_n)}$$

Для дискретного випадкового вектора $\overline{\xi}$:

$$\chi_{\overline{\xi}}(\overline{t}) = \sum_{i_1=1}^{m_1} \cdots \sum_{i_n=1}^{m_n} e^{i\left(t_1 x_1^{(i_1)} + \dots + t_n x_n^{(i_n)}\right)} \cdot \mathbb{P}\left\{\xi_1 = x^{(i_1)}, \dots, \xi_n = x_n^{(i_n)}\right\}$$

Для абсолютно неперервного випадкового вектора $\overline{\xi}$:

$$\chi_{\overline{\xi}}(\overline{t}) = \int \cdots \int e^{i(t_1 x_1 + \dots + t_n x_n)} f_{\overline{\xi}}(x_1, \dots, x_n) dx_1 \dots dx_n$$

3.5.2. Властивості характеристичної функції випадкового вектора.

1. $\chi_{\overline{\xi}}$ - унікальна характеристика випадкового вектора. Проте, за однакової характеристичної функції неможна вважати, що вектори однакові. Можна вважати, що вони мають однакові розподіли. Наведемо приклад:

$$\xi \sim U(-1,1)$$
 $-\xi \sim U(-1,1)$ $\xi \neq -\xi$ $\xi \stackrel{\circ}{=} -\xi$

2.
$$\chi_{\bar{\xi}}(\vec{0}) = 1$$

3.
$$\left|\chi_{\overline{\xi}}(\overline{t})\right| \leq 1$$

4.
$$\chi_{\overline{\xi}} \in C(\mathbb{R}^n)$$

5. Якщо
$$\overline{\xi_1} \perp \overline{\xi_2} \Longrightarrow \chi_{\overline{\xi_1} + \overline{\xi_2}}(t) = \chi_{\overline{\xi_1}}(t) \cdot \chi_{\overline{\xi_2}}(t)$$

6.
$$\exists \mathbb{E}\left(\xi_1^{k_1} \cdot \dots \cdot \xi_n^{k_n}\right) \Longrightarrow \mathbb{E}\left(\xi_1^{k_1} \cdot \dots \cdot \xi_n^{k_n}\right) = \frac{1}{i^{k_1 + \dots + k_n}} \cdot \frac{\partial^{k_1 + \dots + k_n}}{\partial t_1^{k_1} \cdot \dots \cdot \partial t_n^{k_n}} \chi_{\overline{\xi}}(\vec{0})$$

$$7. \chi_{A\overline{\xi}+\overline{b}}(\overline{t}) = \mathbb{E}e^{i\langle A\overline{\xi}+\overline{b},\overline{t}\rangle} = \mathbb{E}\left(e^{i\langle A\overline{\xi},\overline{t}\rangle} \cdot e^{i\langle \overline{b},\overline{t}\rangle}\right) = e^{i\langle \overline{b},\overline{t}\rangle} \mathbb{E}e^{i\langle \overline{\xi},A^T\overline{t}\rangle} = e^{i\langle \overline{b},\overline{t}\rangle} \chi_{\overline{\xi}}\left(A^T\overline{t}\right)$$

8. Якщо координати вектора $\overline{\xi}$ - незалежні, Тоді: $\chi_{\overline{\xi}}(\overline{t}) = \mathbb{E}e^{i(t_1\xi_1+...+t_n\xi_n)} =$

$$= \mathbb{E}\left(e^{it_1\xi_1} \cdot \dots \cdot e^{it_n\xi_n}\right) = \left(\mathbb{E}e^{it_1\xi_1}\right) \cdot \dots \cdot \left(\mathbb{E}e^{it_n\xi_n}\right) = \chi_{\xi_1}(t_1) \cdot \dots \cdot \chi_{\xi_n}(t_n)$$

Якщо координати незалежні, то характеристична функція розпадається на добуток маргінальних характеристичних функція. До речі, справедливе і оберненне твердження. Звідси, отримали критерій незалежності координат.

3.6. Гаусівські випадкові вектори.

$$n = 1 \qquad \xi \sim N(a, \sigma^2) \qquad f_{\xi}(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-a)^2}{2\sigma^2}} \qquad F_{\xi}(x) = \frac{1}{2} + \Phi\left(\frac{x-a}{\sigma}\right)$$
$$\sigma^2 = \mathbb{D}\xi \qquad a = \mathbb{E}\xi \qquad \chi_{\xi}(t) = e^{iat - \frac{\sigma^2 t^2}{2}}$$

3.6.1. Характеристики стандартного гаусівського розподілу.

Нехай маємо стандартний гаусівський п-вимірний випадковий вектор:

$$\overline{\xi} = \begin{bmatrix} \xi_1 \\ \vdots \\ \xi_n \end{bmatrix}$$
, де $\xi_1,...,\xi_n$ - незалежні $N(0,1) \Longrightarrow \overline{\xi} \sim N(\vec{0},I)$.

$$\mathbb{E}\overline{\xi} = \begin{bmatrix} \mathbb{E}\xi_1 \\ \vdots \\ \mathbb{E}\xi_n \end{bmatrix} = \vec{0} \qquad C_{\overline{\xi}} = \begin{bmatrix} \mathbb{D}\xi_1 & cov(\xi_1, \xi_2) & \cdots & cov(\xi_1, \xi_n) \\ cov(\xi_2, \xi_1) & \mathbb{D}\xi_2 & \cdots & cov(\xi_2, \xi_n) \\ \vdots & \vdots & \ddots & \vdots \\ cov(\xi_n, \xi_1) & cov(\xi_n, \xi_1) & \cdots & \mathbb{D}\xi_n \end{bmatrix} = I^{n \times n}$$

Для одновимірної стандартної величини $\xi \sim N(0,1)$:

$$f_{\xi}(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$$
 $F_{\xi}(x) = \frac{1}{2} + \Phi(x)$ $\chi_{\xi}(t) = e^{-\frac{t^2}{2}}$

Для стандартного вектора $\overline{\xi} \sim N(\vec{0},I)$ $\overline{\xi} = \begin{bmatrix} \xi_1 \\ \vdots \\ \xi_n \end{bmatrix}$.

$$f_{\overline{\xi}}(x_1, ..., x_n) = f_{\xi_1}(x_1) \cdot ... \cdot f_{\xi_n}(x_n) = \prod_{j=1}^n \frac{1}{\sqrt{2\pi}} e^{-\frac{x_j^2}{2}} = \frac{1}{(2\pi)^{\frac{n}{2}}} e^{-\frac{x_1^2 + ... + x_m^2}{2}} = \frac{1}{(2\pi)^{\frac{n}{2}}} e^{-\frac{\langle \overline{x}, \overline{x} \rangle}{2}}$$

$$F_{\overline{\xi}}(x_1, ..., x_n) = F_{\xi_1}(x_1) \cdot ... \cdot F_{\xi_n}(x_n) = \prod_{j=1}^n \left(\frac{1}{2} + \Phi(x_j)\right)$$

$$\chi_{t_1,\dots,t_n} = \chi_{\xi_1}(t_1) \cdot \dots \cdot \chi_{\xi_n}(t_n) = e^{-\frac{t_1^2}{2} \cdot \dots \cdot \frac{t_n^2}{2}} = e^{-\frac{t_1^2 + \dots t_n^2}{2}} = e^{-\frac{\langle \bar{t}, \bar{t} \rangle}{2}}$$

3.6.2. Характеристика загального гаусівського розподілу.

Якщо C - симетрична невід'ємно визначена матриця, то в неї існує квадратний корінь: така матриця $A: \quad A^2 = C.$

Розглянемо загальний гаусівський вектор: $\overline{\xi} \sim N(\vec{0}, I)$.

 $\overline{\eta}=\overline{a}+A\overline{\xi}$ - за означенням будемо називати гаусівським, тобто $\overline{\eta}\sim N(\overline{a},C)$.

$$\mathbb{E}\overline{\eta} = \mathbb{E}\left(\overline{a} + A\overline{\xi}\right) = \mathbb{E}\overline{a} + \mathbb{E}\left(A\overline{\xi}\right) = \overline{a} + A \cdot \mathbb{E}\overline{\xi} = \overline{a}$$

$$C_{\overline{\eta}} = \mathbb{E}(\overline{\eta} - \mathbb{E}\overline{\eta})(\overline{\eta} - \mathbb{E}\overline{\eta})^T = \mathbb{E}(\overline{a} + A\overline{\xi} - \overline{a})(\overline{a} + A\overline{\xi} - \overline{a})^T =$$

$$= \mathbb{E}(A\overline{\xi}\overline{\xi}^T A^T) = A \cdot \mathbb{E}\left(\overline{\xi}\overline{\xi}^T\right) \cdot A^T = A \cdot C_{\overline{\xi}} \cdot A^T = A \cdot I \cdot A^T = A^2 = C$$

Характеристична функція загального гаусівського вектора:

$$\overline{\eta} = \overline{a} + A\overline{\xi} \text{ ,де } A^2 = AA^T = C, \overline{\xi} - N(\vec{0}, I)$$

$$\chi_{\overline{\eta}}(\overline{t}) = \chi_{A\overline{\xi} + \overline{a}}(\overline{t}) = e^{i < \overline{a}, \overline{t} > \cdot} \chi_{\overline{\xi}} \left(A^T \overline{t} \right) = e^{i < \overline{a}, \overline{t} > \cdot} e^{-\frac{\langle A^T \overline{t}, A^T \overline{t} \rangle}{2}} = e^{i < \overline{a}, \overline{t} > -\frac{\langle C\overline{t}, \overline{t} \rangle}{2}}$$

Щільність розподілу вектора $\overline{\eta} \sim N(\overline{a}, C)$:

Лема. Щільність розподілу афінного перетворення.

Нехай маємо $\overline{\xi}$ - абсолютно неперервний випадковий вектор зі щільністю $f_{\overline{\xi}}(\overline{x})$. Маємо його афінне перетворення: $\overline{\eta} = A\overline{\xi} + \overline{a}(A$ - невироджена матриця). Тоді, $\overline{\eta}$ - абсолютно неперервний випадковий вектор зі щільністью $f_{\overline{\eta}}(\overline{y})$:

$$f_{\overline{\eta}}(\overline{y}) = \frac{1}{|\det(A)|} f_{\overline{\xi}}(A^{-1}(\overline{y} - \overline{a}))$$

Доведення. Нехай $B \subset \mathbb{R}^n$. (Позначимо n-кратний інтеграл за множ. $B - \iint_B$):

$$\iint\limits_B f_{\overline{\eta}}(\overline{y})d\overline{y} = \mathbb{P}\left\{\overline{\eta} \in B\right\} = \mathbb{P}\left\{A\overline{\xi} + \overline{a} \in B\right\} = \mathbb{P}\left\{A\overline{\xi} \in B - \overline{a}\right\} =$$

$$= \mathbb{P}\left\{\overline{\xi} \in A^{-1}\left(B - \overline{a}\right)\right\} = \iint_{A^{-1}(B - \overline{a})} f_{\overline{\xi}}(\overline{\xi}) d\overline{\xi} = \begin{vmatrix} \overline{y} = A\overline{x} + \overline{a} \\ \overline{x} = A^{-1}(\overline{y} - \overline{a}) \end{vmatrix} = \int_{A^{-1}(B - \overline{a})} \left|\det(A^{-1})\right| d\overline{y} = \int_{A^{-1}(B - \overline{a})} \frac{1}{|\det(A)|} f_{\overline{\xi}}(A^{-1}(\overline{y} - \overline{a})) d\overline{y}$$

Інакше кажучи, інтеграли за будь-якою множиною збігаються т.т.т.к. збігаються підінтегральні функції. Приходимо до:

$$\iint\limits_B f_{\overline{\eta}}(\overline{y}) d\overline{y} = \int\limits_B \frac{1}{|\det(A)|} f_{\overline{\xi}}(A^{-1}(\overline{y} - \overline{a})) d\overline{y} \Longleftrightarrow \boxed{f_{\overline{\eta}}(\overline{y}) = \frac{1}{|\det(A)|} f_{\overline{\xi}}(A^{-1}(\overline{y} - \overline{a}))}$$

Повернемося до щільності розподілу загального вектора:

$$f_{\overline{\eta}}(\overline{x}) = \frac{1}{|\det A|} f_{\overline{\xi}}(A^{-1}(\overline{x} - \overline{a})) = \frac{1}{|\det A|} \cdot \frac{1}{(2\pi)^{\frac{n}{2}}} e^{-\frac{\langle A^{-1}(\overline{x} - \overline{a}), A^{-1}(\overline{x} - \overline{a}) \rangle}{2}} = \frac{1}{(2\pi)^{\frac{n}{2}} \sqrt{\det C}} \cdot e^{-\frac{\langle C^{-1}(\overline{x} - \overline{a}), (\overline{x} - \overline{a}) \rangle}{2}}$$

Якщо C - вироджена матриця ($\det C = 0 \Leftrightarrow \nexists C^{-1}$), то щільності немає.

3.6.3. Властивості гаусівських векторів.

1. Класс гаусівських векторів замкнений відносно афінних перетворень.

$$\overline{\eta} \sim N(\overline{a}, C)$$
 $\overline{a} = \mathbb{E}\overline{\eta}$ $C = C_{\overline{\eta}}$

$$\overline{\theta} = D \cdot \overline{\eta} + \overline{b} \Longrightarrow \overline{\theta} \sim N(D\overline{a} + \overline{b}; DC_{\overline{\eta}}D^T)$$

 ${\it Доведення.}\ \overline{\eta}=\overline{a}+A\overline{\xi},$ де $\overline{\xi}$ - загальний гаусівський вектор, $AA^T=C.$

$$\overline{\theta} = D\overline{\eta} + \overline{b} = D(\overline{a} + A\overline{\xi}) + \overline{b} = DA\overline{\xi} + (D\overline{a} + \overline{b})$$

$$\mathbb{E}\overline{\theta} = D\overline{a} + \overline{b} \qquad C_{\overline{\theta}} = (DA)(DA)^T = D(AA^T)D^T = DC_{\overline{\eta}}D^T$$

2. Нехай $\overline{\xi}$ - стандарний гаусівський вектор.

 $\overline{\eta}=U\overline{\xi}$, де U - ортогональна матриця $\left(U\cdot U^T=I\right)$. Тоді $\overline{\eta}\sim N(\vec{0},I)$.

$$\mathbb{E}\overline{\eta} = U \cdot \mathbb{E}\overline{\xi} = \vec{0} \qquad C_{\overline{\eta}} = U \cdot C_{\overline{\xi}} \cdot U^T = UU^T = I$$

3. Розглянемо довільний гаусівський вектор $\overline{\xi} = \begin{bmatrix} \xi_1 & \cdots & \xi_n \end{bmatrix}$:

$$\xi_1,...,\xi_n$$
 - незалежні $\Longleftrightarrow \xi_1,...,\xi_n$ - некорельовані

Тобто, для координат ГВВ незалежність еквівалентна некорельованості.

Доведення. Нехай величини $\xi_1,...,\xi_n$ є некорельованими.

$$C_{\overline{\xi}} = \begin{bmatrix} \mathbb{D}\xi_1 & cov(\xi_1, \xi_2) & \cdots & cov(\xi_1, \xi_n) \\ cov(\xi_2, \xi_1) & \mathbb{D}\xi_2 & \cdots & cov(\xi_2, \xi_n) \\ \vdots & \vdots & \ddots & \vdots \\ cov(\xi_n, \xi_1) & cov(\xi_n, \xi_1) & \cdots & \mathbb{D}\xi_n \end{bmatrix} = \begin{bmatrix} \sigma_1^2 & 0 & \cdots & 0 \\ 0 & \sigma_2^2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_n^2 \end{bmatrix}$$

$$\chi_{\overline{\xi}}(\overline{t}) = e^{i < \overline{a}, \overline{t} > -\frac{\langle C_{\overline{\xi}} \overline{t}, \overline{t} \rangle}{2}} = e^{i(a_1 t_1 + \dots a_n t_n) - \frac{1}{2} \left(\sigma_1^2 t_1^2 + \dots + \sigma_n^2 t_n^2 \right)} =$$

$$= e^{\left(i a_1 t_1 - \frac{\sigma_1^2 t_1^2}{2}\right) + \left(i a_n t_n - \frac{\sigma_n^2 t_n^2}{2}\right)} = \chi_{N(a_1, \sigma_1^2)}(t_1) \cdot \dots \cdot \chi_{N(a_n, \sigma_n^2)}(t_n)$$

$$\left(\chi_{\overline{\xi}}(\overline{t}) = \chi_{N(a_1, \sigma_1^2)}(t_1) \cdot \dots \cdot \chi_{N(a_n, \sigma_n^2)}(t_n)\right) \Leftrightarrow (\xi_1, \dots, \xi_2 - \text{ незалежні.})$$

Наслідок 1. Якщо $\overline{\xi} = \begin{bmatrix} \xi_1 & \cdots & \xi_n \end{bmatrix}$ - гаусівський вектор, то $\xi_1, ..., \xi_n$ - гаусівські величини. Візьмемо таку матрицю перетворення, що:

$$\xi_i = \begin{bmatrix} 0 & 0 & \cdot & 1 & \cdots & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} \xi_1 \\ \vdots \\ \xi_i \\ \vdots \\ \xi_n \end{bmatrix}$$
 — афінне перетворення.

У гаусівському векторі всі координати - гаусівські величини, але обернений факт може бути хибним. Тобто, гаусівські величини можуть об'єднуватися в негаусівський вектор. Якщо координати гаусівськи та незалежні, то вектор, складений із них, точно буде гаусівським.

3.6.4. Гаусівський вектор на площині.

Нехай, маємо вектор
$$\overline{\xi} = \begin{bmatrix} \xi_1 \\ \xi_2 \end{bmatrix}$$

$$\begin{aligned} \xi_1 \sim N(a_1,\sigma_1^2) \\ \xi_2 \sim N(a_2,\sigma_2^2) \end{aligned} \quad r_{\xi_1,\xi_2} = r = \frac{cov(\xi_1,\xi_2)}{\sqrt{\sigma_1^2 \cdot \sigma_2^2}}$$

$$\chi_{\overline{\xi}}(t_1, t_2) = e^{i(\langle \overline{a}, \overline{t} \rangle) - \frac{1}{2} \langle C\overline{t}, \overline{t} \rangle} = e^{i(a_1t_1 + a_2t_2) - \frac{1}{2} \left(\sigma_1^2 t_1^2 + \sigma_2^2 t_2^2 + 2r\sigma_1\sigma_2 t_1 t_2\right)}$$

Щільність розподілу:
$$f_{\overline{\xi}}(x_1,x_2) = \frac{1}{(2\pi)^{\frac{2}{2}}\sqrt{\det C}}e^{-\frac{1}{2} < C^{-1}(\overline{x}-\overline{a}),\overline{x}-\overline{a}>}$$

$$\det C = \sigma_1^2 \sigma_2^2 - (r\sigma_1 \sigma_2)^2 = \sigma_1^2 \sigma_2^2 (1 - r^2)$$

$$C^{-1} = \frac{1}{\sigma_1^2 \sigma_2^2 (1 - r^2)} \begin{bmatrix} \sigma_2^2 & -r \sigma_1 \sigma_2 \\ -r \sigma_1 \sigma_2 & \sigma_1^2 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sigma_1^2} & -\frac{r}{\sigma_1 \sigma_2} \\ -\frac{r}{\sigma_1 \sigma_2} & \frac{1}{\sigma_2^2} \end{bmatrix}$$

$$< C^{-1} (\overline{x} - \overline{a}), \overline{x} - \overline{a} > = \frac{1}{1 - r^2} \left(\frac{(x_1 - a_1)^2}{\sigma_1^2} + \frac{(x_1 - a_1)^2}{\sigma_1^2} - \frac{2r}{\sigma_1 \sigma_2} (x_1 - a_1)(x_2 - a_2) \right)$$

$$f_{\xi_1, \xi_2} (x_1, x_2) = \frac{1}{2\pi \sigma_1 \sigma_2 \sqrt{(1 - r^2)}} e^{-\frac{1}{2(1 - r^2)} \left(\frac{(x_1 - a_1)^2}{\sigma_1^2} + \frac{(x_2 - a_2)^2}{\sigma_2^2} - \frac{2r}{\sigma_1 \sigma_2} (x_1 - a_1)(x_2 - a_2) \right)}$$

Маємо такі обмеження: $(\sigma_1, \sigma_2 \neq 0, |r| \neq 1)$.

Зокрема, якщо
$$r=0 \Leftrightarrow \xi_1, \xi_2$$
 - некорельовані:

$$f_{\xi_1,\xi_2}(x_1,x_2) = \frac{1}{2\pi\sigma_1\sigma_2}e^{-\frac{1}{2}\left(\frac{(x_2-a_2)^2}{\sigma_2^2} + \frac{(x_1-a_1)^2}{\sigma_1^2}\right)} = \frac{1}{2\pi\sigma_1}e^{-\frac{(x_1-a_1)^2}{2\sigma_1^2}} + \frac{1}{2\pi\sigma_2}e^{-\frac{(x_2-a_2)^2}{2\sigma_2^2}}$$

— Happy End —

Собственно, теорвер 2...

4. Функції від випадкових величин (векторів)

Для дискретної випадкової величини ξ : $\eta = \phi(\xi) \Rightarrow \eta$ - ДВВ. Припустимо, що φ - неперервно диференційована. ξ - асолютно неперервна зі щільністю $f_{\xi}(x)$. Розглядаємо $\eta = \varphi(\xi)$:

Теорема 4.1. Нехай φ - взаємно-однозначна (бієкція на області значень), та її обернена ψ є неперервно диференційована. (Дифеоморфізм). Тоді:

$$f_{\eta}(y) = \begin{cases} |\psi'(y)| \cdot f_{\xi}(\psi(y)), & y \in E_{\varphi} \\ 0 & y \notin E_{\varphi} \end{cases} = f_{\xi}(\psi(y)) \cdot |\psi'(y)| \cdot \mathbb{I}_{E_{\varphi}}(y)$$

Доведення. Розглядаемо множину В.

$$\int\limits_B f_{\eta}(y)dy = \mathbb{P}\left\{\eta \in B\right\} = \mathbb{P}\left\{\varphi(\xi) \in B\right\} = \mathbb{P}\left\{\xi \in \phi^{-1}(B)\right\} = \int\limits_{\phi^{-1}(B)} f_{\xi}(x)dx = \mathbb{P}\left\{\varphi(\xi) \in B\right\} = \mathbb{P}\left\{\varphi(\xi) \in B\right\} = \mathbb{P}\left\{\xi \in \phi^{-1}(B)\right\} = \int\limits_{\phi^{-1}(B)} f_{\xi}(x)dx = \mathbb{P}\left\{\varphi(\xi) \in B\right\} = \mathbb{P}\left\{\varphi(\xi) \in B\right\} = \mathbb{P}\left\{\xi \in \phi^{-1}(B)\right\} = \int\limits_{\phi^{-1}(B)} f_{\xi}(x)dx = \mathbb{P}\left\{\varphi(\xi) \in B\right\} = \mathbb{P}\left\{\varphi(\xi)$$

$$= \begin{vmatrix} \varphi(x) = y \\ x = \psi(y) \\ J = \psi'(y) = J_{\psi} \end{vmatrix} = \int_{B \cap E_{\varphi}} f_{\xi}(\psi(y)) \cdot |J_{\psi}(y)| \, dy = \int_{B} f_{\xi}(\psi(y)) \cdot |\psi'(y)| \cdot \mathbb{I}_{E_{\varphi}}(y) \, dy$$

Теорема 4.2. Нехай ϕ не ε ін'єкцією, але "розпадається" на декілька таких.

$$\varphi_1(x) = x^2, x \in (-\infty, 0)$$

$$\varphi_2(x) = x^2, x \in [0, +\infty]$$

$$E_{\varphi_1} = (0, +\infty) \quad E_{\varphi_2} = (0, +\infty)$$

$$\psi(x) = y \quad x^2 = y \quad x = \pm \sqrt{y}$$

$$\psi_1(y) = -\sqrt{y} \quad \psi_2(y) = \sqrt{y}$$

Тоді: $f_{\eta}(y) = \sum_{i=1}^{n} f_{\xi}(\psi_{i}(y)) \cdot |\psi'_{i}(y)| \cdot \mathbb{I}_{E_{\varphi_{i}}}(y)$.

Доведення. Розглядаемо множину В.

$$\int_{B} f_{\eta}(y)dy = \mathbb{P}\left\{\eta \in B\right\} = \mathbb{P}\left\{\xi \in \phi_{1}^{-1}(B) \cup \dots \cup \xi \in \phi_{n}^{-1}(B)\right\} =$$

 $=\sum_{i=1}^{n}\mathbb{P}\left\{ \xi\in\phi_{i}^{-1}(B)
ight\} -$ надалі доведення зводиться до попередньої теореми.

4.1. Функції від випадкових векторів.

Розглядаємо $\overline{\xi} = \begin{bmatrix} \xi_1 \\ \xi_2 \end{bmatrix} \quad \eta = \varphi(\xi_1, \xi_2).$

- 1. Для дискретного випадку обчислення тривіальні.
- $2.\ \overline{\xi}$ абсолютно неперервний випадковий вектор.

$$f_{\overline{\xi}}(\overline{x}) \Rightarrow \eta = \varphi(\overline{\xi}) \quad f_{\eta}(y) = ? \quad \varphi : \mathbb{R}^n \to \mathbb{R}$$

Теорема 4.3. $\varphi: \mathbb{R}^n \to \mathbb{R}^n$. φ - взаємно-однозначна $\Rightarrow \psi = \varphi^{-1}$. φ, ψ - дифеоморфізми $\Rightarrow \exists J_{\psi}(\overline{y})$ - якобіан. Тоді:

$$f_{\overline{\eta}}(\overline{y}) = f_{\overline{\xi}}(\psi(\overline{y})) \cdot |J_{\psi}(\overline{y})| \cdot \mathbb{I}_{E_{\varphi}}(\overline{y})$$

Теорема 4.4. φ розпадаэться на суму ін'єктивних функцій $\varphi_1, ..., \varphi_k$. $\varphi_i^{-1} = \psi_i$. E_i - область значень φ_i . J_{ψ_i} - якобіан ψ_i . Тоді:

$$f_{\eta}(\overline{y}) = \sum_{i=1}^{k} f_{\overline{\xi}}(\psi_{i}(\overline{y})) \cdot |J_{\varphi_{i}}(\overline{y})| \cdot \mathbb{I}_{E_{\varphi_{i}}}(\overline{y})$$

Часто будемо використовувати: $f_{\xi_1+\xi_2}(y) = \int\limits_{-\infty}^{+\infty} f_{\overline{\xi}}(x,y-x) dx.$

Якщо
$$\xi_1 \perp \xi_2 : f_{\xi_1 + \xi_2}(y) = \int_{-\infty}^{+\infty} f_{\xi_1}(x) \cdot f_{\xi_2}(y - x) dx$$
.

Також: $f_{\xi_1+\xi_2}(y) = (f_{\xi_1} \circledast f_{\xi_2}(y))$ - згортка.

4.2. Загальний алгоритм знаходження щільності функції від випадкових векторів.

Розглядаємо $\eta = \varphi(\overline{\xi}) \quad f_{\eta}(z) = ?.$

$$F_{\eta} = \mathbb{P} \left\{ \eta < z \right\} = \mathbb{P} \left\{ \varphi(\xi_1, \xi_2) < z \right\} = \left| \left\{ (x, y) \in \mathbb{R} \middle| \varphi(x, y) < z \right\} = D_z \right| =$$

$$= \iint_{D_z} f_{\overline{\xi}}(x, y) dx dy \Longrightarrow f_{\eta}(z) = F'_{\eta}(z)$$

Знайдемо щільності розподілу суми, добутку та частки випадкових величин.

$$\xi_1, \xi_2, f_{\overline{\xi}}(x, y) \Longrightarrow f_{\xi_1 + \xi_2}(z), f_{\xi_1 \cdot \xi_2}(x, y), f_{\xi_1 / \xi_2}(x, y) - ?$$

Сума:
$$F_{\xi_1+\xi_2}(z) = \mathbb{P}\left\{\xi_1+\xi_2 < z\right\} = \mathbb{P}\left\{\overline{\xi} \in D_z\right\} = \iint\limits_{D_z} f_{\overline{\xi}}(x,y) dx dy = 0$$

$$= \int_{-\infty}^{+\infty} dx \int_{-\infty}^{z-x} f_{\overline{\xi}}(x,y) dy$$
$$f_{\xi_1 + \xi_2}(z) = \int_{-\infty}^{+\infty} f_{\overline{\xi}}(x,z-x) dx$$

$$f_{\xi_1+\xi_2}(z) = \int_{-\infty}^{+\infty} f_{\overline{\xi}}(x, z - x) dx = |\xi_1 \perp \xi_2| = \int_{-\infty}^{+\infty} f_{\xi_1}(x) \cdot f_{\xi_2}(z - x) dx$$

Добуток: Шукаємо $f_{\xi_1 \cdot \xi_2} - F_{\xi_1 \cdot \xi_2} = \mathbb{P} \{ \xi_1 \cdot \xi_2 < z \}.$

$$x * y < z \Leftrightarrow \begin{bmatrix} \begin{cases} y < \frac{z}{x} \\ x > 0 \\ \\ y > \frac{z}{x} \\ x < 0 \end{cases} \end{bmatrix}$$

$$F_{\xi_1 \cdot \xi_2}(z) = \iint_{D_z} f_{\overline{\xi}}(x, y) dx dy = \int_{-\infty}^0 dx \int_{\frac{z}{x}}^{+\infty} f_{\overline{\xi}}(x, y) dy + \int_0^{+\infty} dx \int_{-\infty}^{\frac{z}{x}} f_{\overline{\xi}}(x, y) dy$$
$$f_{\xi_1 \cdot \xi_2}(z) = -\int_{-\infty}^0 f_{\overline{\xi}}(x, \frac{z}{x}) \cdot \frac{1}{x} dx + \int_0^{+\infty} f_{\overline{\xi}}(x, \frac{z}{x}) \cdot \frac{1}{x} dx$$

Відношення. Розглядаємо: $\overline{\xi} = \begin{bmatrix} \xi_1 \\ \xi_2 \end{bmatrix}$ $f_{\overline{\xi}}(x,y)$ $\eta = \frac{\xi_2}{\xi_1}$. За алгоритмом:

$$F_{\eta}(z) = \mathbb{P}\left\{\frac{\xi_2}{\xi_1} < z\right\} = \mathbb{P}\left\{\overline{\xi} \in D_z\right\} = \iint_{D_z} f_{\overline{\xi}}(x, y) dx dy$$

де, $D_z = \{(x,y) \in \mathbb{R}^2 | \frac{y}{x} < z \}$ Якщо z > 0:

$$\frac{y}{x} < z \Leftrightarrow \begin{bmatrix} \begin{cases} y < xz \\ x > 0 \\ \\ x < 0 \end{cases} & \Rightarrow \\ \begin{cases} x < 0 \end{cases} & \Rightarrow \\ x < 0 \end{cases} & \Rightarrow \\ \begin{cases} x < 0 \end{cases} & \Rightarrow \\ x < 0 \end{cases} & \Rightarrow \\$$

Повертаємося до інтегралу, що записано вище:

$$F_{\eta}(z) = \int_{-\infty}^{0} dx \int_{zx}^{+\infty} f_{\overline{\xi}}(x, y) dy + \int_{0}^{+\infty} dx \int_{-\infty}^{zx} f_{\overline{\xi}}(x, y) dy$$
$$f_{\eta}(z) = F'_{\eta}(z) = \int_{-\infty}^{0} f_{\overline{\xi}}(x, zx) x dx + \int_{0}^{+\infty} f_{\overline{\xi}}(x, zx) x dx$$

Приклад. $\xi_1, \xi_2 \sim N(0,1)$ $\xi_1 \perp \!\!\! \perp \xi_2$ $\eta = \frac{\xi_2}{\xi_1}$

Величини ξ_1, ξ_2 розподілені нормально: $f_{\xi_1}(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}} = f_{\xi_2}(x)$. Скористаємося знайденою формулою:

$$f_{\eta}(z) = -\int_{-\infty}^{0} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^{2}}{2}} \cdot \frac{1}{\sqrt{2\pi}} e^{-\frac{z^{2}x^{2}}{2}} x dx + \int_{0}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^{2}}{2}} \cdot \frac{1}{\sqrt{2\pi}} e^{-\frac{z^{2}x^{2}}{2}} x dx =$$

$$= -\frac{1}{2\pi} \int_{-\infty}^{0} e^{-\frac{x^{2}}{2}(1+z^{2})} \underbrace{xdx}_{=d(\frac{x^{2}}{2})} + \frac{1}{2\pi} \int_{0}^{+\infty} e^{-\frac{x^{2}}{2}(1+z^{2})} \underbrace{xdx}_{=d(\frac{x^{2}}{2})} =$$

$$= -\frac{1}{2\pi(1+z^{2})} \int_{-\infty}^{0} e^{-\frac{x^{2}}{2}(1+z^{2})} d\left(\frac{x^{2}}{2}(1+z^{2})\right) + \frac{1}{2\pi(1+z^{2})} \int_{0}^{+\infty} e^{-\frac{x^{2}}{2}(1+z^{2})} d\left(\frac{x^{2}}{2}(1+z^{2})\right) =$$

$$= \frac{1}{2\pi(1+z^{2})} e^{-\frac{x^{2}}{2}(s+z^{2})} \Big|_{x=-\infty}^{0} - \frac{1}{2\pi(1+z^{2})} e^{-\frac{x^{2}}{2}(1+z^{2})} \Big|_{x=0}^{+\infty} =$$

$$= \frac{1}{2\pi(1+z^{2})} + \frac{1}{2\pi(1+z^{2})} = \frac{1}{\pi(1+z^{2})}, z \in \mathbb{R}$$

Отримали, що: $\frac{N(0,1)}{N(0,1)} \sim \textbf{Cauchy Distribution}$

4.3. Щільності розподілу максимума, мінімума та інших порядкових статистик.

4.3.1. Максимум.

Розглянемо максимум з деяких незалежних випадкових величин: $\xi_1, \xi_2, ..., \xi_n$.

$$M = \max \{\xi_1, ..., \xi_n\}$$

$$F_M(x) = \mathbb{P} \{M < x\} = \mathbb{P} \{\max \{\xi_1, ..., \xi_n\} < x\} = \mathbb{P} \{\xi_1 < x, ..., \xi_n < x\} =$$

$$= \mathbb{P} \{\xi_1 M x\} \cdot ... \cdot \mathbb{P} \{\xi_n < x\} = F_{\xi_1}(x) \cdot ... \cdot F_{\xi_n}(x)$$

$$F_M(x) = \prod_{i=1}^n F_{\xi_i}(x)$$

Якщо $\xi_1,...,\xi_n$ однаково розподілені, то $F_M(x)=F^n_\xi(x)$. В такому випадку, можемо знайти і функцію розподілу: $f_M(x)=n\cdot F^{n-1}_\xi(x)\cdot f_\xi(x)$.

4.3.2. Мінімум.

Розглянемо мінімум з деяких незалежних випадкових величин: $\xi_1, \xi_2, ..., \xi_n$.

$$m = \min \{\xi_1, ..., \xi_n\}$$

$$F_m(x) = \mathbb{P}\{\min \xi_1, ..., \xi_n < x\} = 1 - \mathbb{P}\{\min \xi_1, ..., \xi_n \ge x\} = 1 - \mathbb{P}\{\xi_1 \ge x, ..., \xi_n \ge x\} = 1 - (1 - F_{\xi_1}(x)) \cdot ... \cdot (1 - F_{\xi_n}(x))$$

$$F_m(x) = 1 - \prod_{i=1}^{n} (1 - F_{\xi_i}(x))$$

Якщо $\xi_1, ..., \xi_n$ однаково розподілені, то $F_m(x) = 1 - (1 - F_{\xi}(x))^n$. В такому випадку, можемо знайти і функцію розподілу: $f_m(x) = n \cdot (1 - F_{\xi}(x))^{n-1} \cdot f_{\xi}(x)$.

4.3.3. Порядкові статистики.

 $\xi_1, \xi_2..., \xi_n$ - незалежні однаково розподілені абсолютно неперерні випадкові величини зі щільністью f. Знайдемо: $\mathbb{P}\{\xi_i - \xi_j = 0\} = 0 \Leftrightarrow \mathbb{P}\{\xi_i \neq \xi_j\} = 1$. Це означає, що з імовірністю 1 всі величини різні. Тому, можемо впорядкувати величини за зростанням:

$$\underbrace{\xi_{(1)}}_{\min\{\xi_1,\ldots,\xi_n\}} < \underbrace{\xi_{(2)}}_{\max\{\xi_1,\ldots,\xi_n\}} < \underbrace{\xi_{(n)}}_{\max\{\xi_1,\ldots,\xi_n\}}$$

 $\xi_{(k)}, k \in [1, n]$ - k-та порядкова статистика (order statistics). Щільність розподілу $\xi_{(k)}, k \in [1, n]$:

$$F_{\xi_{(k)}}(x) = \mathbb{P}\left\{\xi_{(k)} < x\right\} = \mathbb{P}\left\{\forall i \le k : \xi_i \in (-\infty, x)\right\} = \sum_{i=1}^{n} \mathbb{P}\left\{\xi_{(k)} < x\right\} = \mathbb{P}\left\{\forall i \le k : \xi_i \in (-\infty, x)\right\} = \mathbb{P}\left\{\xi_{(k)} < x\right\} = \mathbb{P}\left\{\xi_{(k$$

$$=\sum_{l=k}^{n} \underbrace{\mathbb{P}\left\{n(\xi_{i} \in (-\infty, x)) = l\right\}}_{\text{схема Бернуллі}} = \sum_{l=k}^{n} C_{n}^{l} \cdot F^{l}(x) \cdot \overline{F}^{n-l}(x)$$

$$f_{\xi_{(k)}}(x) = F'_{\xi_{(k)}}(x) = \sum_{l=k}^{n} C_n^l \left(lF^{l-1}(x)f(x)\overline{F}^{n-l}(x) - F^l(x)(n-l)\overline{F}^{n-l-1}(x)f(x) \right) = \sum_{l=k}^{n} C_n^l \left(lF^{l-1}(x)f(x) - F^l(x) - F^l(x) \right) = \sum_{l=k}^{n} C_n^l \left(lF^{l-1}(x)f(x) - F^l(x) - F^l(x) \right) = \sum_{l=k}^{n} C_n^l \left(lF^{l-1}(x)f(x) - F^l(x) - F^l(x) \right) = \sum_{l=k}^{n} C_n^l \left(lF^{l-1}(x)f(x) - F^l(x) - F^l(x) \right) = \sum_{l=k}^{n} C_n^l \left(lF^{l-1}(x)f(x) - F^l(x) - F^l(x) \right) = \sum_{l=k}^{n} C_n^l \left(lF^{l-1}(x) - F^l(x) - F^l(x) \right) = \sum_{l=k}^{n} C_n^l \left(lF^{l-1}(x) - F^l(x) - F^l(x) \right) = \sum_{l=k}^{n} C_n^l \left(lF^{l-1}(x) - F^l(x) - F^l(x) \right) = \sum_{l=k}^{n} C_n^l \left(lF^{l-1}(x) - F^l(x) - F^l(x) \right) = \sum_{l=k}^{n} C_n^l \left(lF^{l-1}(x) - F^l(x) - F^l(x) \right) = \sum_{l=k}^{n} C_n^l \left(lF^{l-1}(x) - F^l(x) - F^l(x) \right) = \sum_{l=k}^{n} C_n^l \left(lF^{l-1}(x) - F^l(x) - F^l(x) \right) = \sum_{l=k}^{n} C_n^l \left(lF^{l-1}(x) - F^l(x) - F^l(x) \right) = \sum_{l=k}^{n} C_n^l \left(lF^{l-1}(x) - F^l(x) - F^l(x) \right) = \sum_{l=k}^{n} C_n^l \left(lF^{l-1}(x) - F^l(x) - F^l(x) \right) = \sum_{l=k}^{n} C_n^l \left(lF^{l-1}(x) - F^l(x) - F^l(x) \right) = \sum_{l=k}^{n} C_n^l \left(lF^{l-1}(x) - F^l(x) - F^l(x) \right) = \sum_{l=k}^{n} C_n^l \left(lF^{l-1}(x) - F^l(x) - F^l(x) \right) = \sum_{l=k}^{n} C_n^l \left(lF^{l-1}(x) - F^l(x) - F^l(x) \right) = \sum_{l=k}^{n} C_n^l \left(lF^{l-1}(x) - F^l(x) - F^l(x) \right) = \sum_{l=k}^{n} C_n^l \left(lF^{l-1}(x) - F^l(x) - F^l(x) \right) = \sum_{l=k}^{n} C_n^l \left(lF^{l-1}(x) - F^l(x) - F^l(x) \right) = \sum_{l=k}^{n} C_n^l \left(lF^{l-1}(x) - F^l(x) \right) = \sum_{l=k$$

$$= \left| \frac{\text{Телескопічна сума.}}{\text{Доданки скорочуються.}} \right| = \frac{n!}{(k-1)!(n-k)!} F^{k-1}(x) \cdot \overline{F}^{n-k}(x) \cdot f(x), k \in [1,n]$$

4.4. Знаходження числових характеристик функцій від випадкових величин.

Теорема 4.5. Нехай є випадковий вектор
$$\overline{\xi} = \begin{bmatrix} \xi_1 \\ \vdots \\ \xi_n \end{bmatrix}$$
. Та фукнція $\varphi: \mathbb{R}^n \to$

 \mathbb{R} . В такому вигляді, ми не можемо застосувати теорему до характеристичної функції, адже характеристична функція є комплекснозначною. Але, слід зауважити, що умови теореми будуть виконуватися і в комплексному випадку.

$$\mathbb{E}\varphi(\overline{\xi}) = \int \cdots \int \varphi(x_1, ..., x_n) \cdot f_{\overline{\xi}}(x_1, ..., x_n) dx_1 \cdots dx_n$$

Доведення. Для 2-вимірного випадку. Дано:

$$n=2$$
 $\overline{\xi}=egin{bmatrix} \xi_1 \ \xi_2 \end{bmatrix}$ $\eta=\varphi(\xi_1,\xi_2)$

Доведемо, що:
$$\mathbb{E}\varphi(\xi_1,\xi_2)=\int\limits_{-\infty}^{+\infty}\int\limits_{-\infty}^{+\infty}\varphi(x,y)f_{\overline{\xi}}(x,y)dxdy$$

Спочатку доведемо одну допоміжну лему.

Лема.
$$\mathbb{P}\left\{\eta \geq 0\right\} = 1 \Longleftrightarrow \eta \geq 0$$
 м.н (a.s.). Тоді $\mathbb{E}\eta = \int\limits_0^{+\infty} \underbrace{\overline{F_{\eta}}(x)dx}_{1-F_{\eta}(x)=\mathbb{P}\left\{\eta \geq x\right\}}$.

Доведення. (леми)

Раніше, за означенням:

Більш загально:

Раніше, за означенням: Більш загально:
$$\mathbb{E}\eta = \int\limits_0^{+\infty} x \cdot f_\eta(x) dx \qquad \Longleftrightarrow \qquad \mathbb{E}\eta = \int\limits_0^{+\infty} \overline{F_\eta}(x) dx$$

$$\eta = \int_{0}^{\eta} 1 dx = \int_{0}^{+\infty} \mathbb{I} \{ \eta \ge x \} dx \quad \Longrightarrow \quad \mathbb{E} \eta = \mathbb{E} \int_{0}^{+\infty} \mathbb{I} \{ \eta \ge x \} dx =$$

Можемо внести математичне сподівання під знак інтегралу.

$$=\int\limits_0^{+\infty}\underbrace{\mathbb{E}\mathbb{I}\left\{\eta\geq x\right\}}_{\mathbb{P}\left\{\eta\geq x\right\}}dx=\int\limits_0^{+\infty}\mathbb{P}\left\{\eta\geq x\right\}dx=\int\limits_0^{+\infty}\overline{F_{\eta}}(x)dx$$

Повернемося до доведення основної теореми. Нехай $\varphi(x,y) \geq 0 \quad \forall (x,y) \in \mathbb{R}^2$.

$$\mathbb{E}\eta = \underbrace{\mathbb{E}\varphi(\xi_1,\xi_2)}_{\geq 0} = \int\limits_0^{+\infty} \mathbb{P}\left\{\varphi(\xi_1,\xi_2) \geq z\right\} dz = D_z : \left\{(x,y) \in \mathbb{R}^2 \middle| \varphi(x,y) \geq z\right\} =$$

$$= \int\limits_0^{+\infty} \mathbb{P}\left\{\overline{\xi} \in D_z\right\} = \int\limits_0^{+\infty} \left(\iint\limits_{D_z} f_{\overline{\xi}}(x,y) dx dy\right) dz = \iint\limits_{R^2} f_{\overline{\xi}}(x,y) \left(\int\limits_0^{\varphi(x,y)} dz\right) dx dy =$$

$$= \iint\limits_{\mathbb{R}^2} \varphi(x,y) \cdot f_{\overline{\xi}}(x,y) dx dy \quad \text{Шо і треба було показати.}$$

Нехай $\varphi(x,y)$ - довільна. Скористаємося фактом, що будь-яку функцію можна зобразити як різницю двох невід'ємних функцій:

$$\varphi(x,y) = \varphi_+(x,y) - \varphi_-(x,y) \qquad \begin{aligned} \varphi_+(x,y) &= \max \{ \varphi(x,y), 0 \} \ge 0 \\ \varphi_-(x,y) &= -\min \{ \varphi(x,y), 0 \} \ge 0 \end{aligned}$$

$$\mathbb{E}\eta = \mathbb{E}\varphi(\xi_1, \xi_2) = \mathbb{E}\left(\varphi_+(\xi_1, \xi_2) - \varphi_-(\xi_1, \xi_2)\right) = \mathbb{E}\varphi_+(\xi_1, \xi_2) - \mathbb{E}\varphi_-(\xi_1, \xi_2) = \mathbb{E}\varphi_+(\xi_1, \xi_2)$$

Застосовуємо висновок про математичне сподівання невід'ємної функції:

5. Деякі ймовірнісні розподіли, що зустрічаються у математичній статистиці.

5.1. Гамма-розподіл.

5.1.1. PDF.

Будемо називати гамма розподіленою величиною $\xi \sim \Gamma(\alpha, \beta) \quad \alpha, \beta > 0$:

$$f_{\xi}(x) = \begin{cases} \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x}, & x > 0; \\ 0, & x \le 0; \end{cases}$$

За умовою нормування:

$$1 = c \int_{9}^{+\infty} x^{\alpha - 1} e^{-\beta x} dx = \frac{c}{\beta^{\alpha}} \underbrace{\int_{0}^{+\infty} (\beta x)^{\alpha - 1} e^{\beta x} d(\beta x)}_{\Gamma(\alpha)} = \frac{c \cdot \Gamma(\alpha)}{\beta^{\alpha}} \Longrightarrow c = \frac{\beta^{\alpha}}{\Gamma(\alpha)}$$

Розглянемо випадок $\alpha = 1$: $f_{\Gamma(1,\beta)}(x) = \begin{cases} \beta e^{-\beta x}, & x > 0; \\ 0, & x \leq 0; \end{cases} = f_{Exp(\beta)}$

Тобто, экспоненціальний розподіл є окремим випадком гамма-розподілу.

5.1.2. Числові характеристики.

Знайдемо одразу n-тий момент величини $\xi \sim \Gamma(\alpha, \beta)$.

$$\mathbb{E}\xi^{n} = \int_{0}^{+\infty} x^{n} \cdot f_{\xi}(x) dx = \int_{0}^{+\infty} x^{n} \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x} dx = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \cdot \int_{0}^{+\infty} x^{\alpha+n-1} e^{-\beta x} dx =$$

$$= \frac{\beta^{\alpha}}{\Gamma(\alpha) \cdot \beta^{n+\alpha}} \cdot \int_{0}^{+\infty} (\beta x)^{\alpha+n-1} e^{-\beta x} d(\beta x) = \boxed{\frac{\Gamma(\alpha+n)}{\beta^{n} \cdot \Gamma(\alpha)}}$$

$$\mathbb{E}\xi = (n=1) = \frac{1}{\beta \cdot \Gamma(\alpha)} \cdot \Gamma(\alpha+1) = \frac{\alpha}{\beta}$$

$$\mathbb{E}\xi^{2} = (n=2) = \frac{1}{\beta^{2} \cdot \Gamma(\alpha)} \cdot \Gamma(\alpha+2) = \frac{\alpha(\alpha+1)}{\beta^{2}}$$

$$\mathbb{D}\xi = \mathbb{E}(\xi^{2}) - (\mathbb{E}\xi)^{2} = \frac{\alpha(\alpha+1)}{\beta^{2}} - \frac{\alpha^{2}}{\beta^{2}} = \frac{\alpha}{\beta^{2}}$$

5.1.3. Стійкість відносно додавання.

Експоненціальний розподіл не є стійким відносно додавання, але більш широкий класс - гамма розподілів буде мати таку властивість.

Теорема 5.1 (Про напівстійкість Гамма-розподілу.).

$$\mathbb{L} \begin{cases} \xi_1 \sim \Gamma(\alpha_1, \beta) \\ \xi_2 \sim \Gamma(\alpha_2, \beta) \end{cases} \implies \left[\xi_1 + \xi_2 \sim \Gamma(\alpha_1 + \alpha_2, \beta) \right]$$

Доведення. За умовою, маємо:

$$f_{\xi_1} = \begin{cases} \frac{\beta^{\alpha_1}}{\Gamma(\alpha_1)} x^{\alpha_1 - 1} e^{-\beta x}, & x > 0; \\ 0, & x \le 0; \end{cases} \qquad f_{\xi_2} = \begin{cases} \frac{\beta^{\alpha_2}}{\Gamma(\alpha_2)} x^{\alpha_2 - 1} e^{-\beta x}, & x > 0; \\ 0, & x \le 0; \end{cases}$$

Скористаємося правилом згортки: $f_{\xi_1+\xi_2}(y) = \int_{-\infty}^{+\infty} f_{\xi_1}(x) f_{\xi_2}(y-x) dx =$

$$= \frac{\beta^{\alpha_1}\beta^{\alpha_2}}{\Gamma(\alpha_1)\Gamma(\alpha_2)} \int_{0}^{y} x^{\alpha_1 - 1} e^{-\beta x} (y - x)^{\alpha_2 - 1} e^{-\beta(y - x)} dx = \left| \underbrace{\begin{cases} x > 0 \\ y - x > 0 \end{cases}}_{x \in (0, y)} \left\{ \begin{cases} x > 0 \\ x < y \end{cases} \right\} \right| = \frac{\left| \begin{cases} x > 0 \\ y - x > 0 \end{cases} }{\left| \begin{cases} x > 0 \\ x < y \end{cases} \right|} = \frac{\left| \begin{cases} x > 0 \\ y - x > 0 \end{cases} }{\left| \begin{cases} x > 0 \\ x < y \end{cases} } \right| = \frac{\left| \begin{cases} x > 0 \\ y - x > 0 \end{cases} }{\left| \begin{cases} x > 0 \\ x < y \end{cases} } \right| = \frac{\left| \begin{cases} x > 0 \\ y - x > 0 \end{cases} }{\left| \begin{cases} x > 0 \\ y - x > 0 \end{cases} } \right| = \frac{\left| \begin{cases} x > 0 \\ y - x > 0 \end{cases} }{\left| \begin{cases} x > 0 \\ y - x > 0 \end{cases} } = \frac{\left| \begin{cases} x > 0 \\ y - x > 0 \end{cases} }{\left| \begin{cases} x > 0 \\ y - x > 0 \end{cases} } = \frac{\left| \begin{cases} x > 0 \\ y - x > 0 \end{cases} }{\left| \begin{cases} x > 0 \\ y - x > 0 \end{cases} } = \frac{\left| \begin{cases} x > 0 \\ y - x > 0 \end{cases} }{\left| \begin{cases} x > 0 \\ y - x > 0 \end{cases} } = \frac{\left| \begin{cases} x > 0 \\ y - x > 0 \end{cases} }{\left| \begin{cases} x > 0 \\ y - x > 0 \end{cases} } = \frac{\left| \begin{cases} x > 0 \\ y - x > 0 \end{cases} }{\left| \begin{cases} x > 0 \\ y - x > 0 \end{cases} } = \frac{\left| \begin{cases} x > 0 \\ y - x > 0 \end{cases} }{\left| \begin{cases} x > 0 \\ y - x > 0 \end{cases} } = \frac{\left| \begin{cases} x > 0 \\ y - x > 0 \end{cases} }{\left| \begin{cases} x > 0 \\ y - x > 0 \end{cases} } = \frac{\left| \begin{cases} x > 0 \\ y - x > 0 \end{cases} }{\left| \begin{cases} x > 0 \\ y - x > 0 \end{cases} } = \frac{\left| \begin{cases} x > 0 \\ y - x > 0 \end{cases} }{\left| \begin{cases} x > 0 \\ y - x > 0 \end{cases} } = \frac{\left| \begin{cases} x > 0 \\ y - x > 0 \end{cases} }{\left| \begin{cases} x > 0 \\ y - x > 0 \end{cases} } = \frac{\left| \begin{cases} x > 0 \\ y - x > 0 \end{cases} }{\left| \begin{cases} x > 0 \\ y - x > 0 \end{cases} } = \frac{\left| \begin{cases} x > 0 \\ y - x > 0 \end{cases} }{\left| \begin{cases} x > 0 \\ y - x > 0 \end{cases} } = \frac{\left| \begin{cases} x > 0 \\ y - x > 0 \end{cases} }{\left| \begin{cases} x > 0 \\ y - x > 0 \end{cases} } = \frac{\left| \begin{cases} x > 0 \\ y - x > 0 \end{cases} }{\left| \begin{cases} x > 0 \\ y - x > 0 \end{cases} } = \frac{\left| \begin{cases} x > 0 \\ y - x > 0 \end{cases} }{\left| \begin{cases} x > 0 \\ y - x > 0 \end{cases} } = \frac{\left| \begin{cases} x > 0 \\ y - x > 0 \end{cases} }{\left| \begin{cases} x > 0 \\ y - x > 0 \end{cases} } = \frac{\left| \begin{cases} x > 0 \\ y - x > 0 \end{cases} }{\left| \begin{cases} x > 0 \\ y - x > 0 \end{cases} } = \frac{\left| \begin{cases} x > 0 \\ y - x > 0 \end{cases} }{\left| \begin{cases} x > 0 \\ y - x > 0 \end{cases} } = \frac{\left| \begin{cases} x > 0 \\ y - x > 0 \end{cases} }{\left| \begin{cases} x > 0 \\ y - x > 0 \end{cases} } = \frac{\left| \begin{cases} x > 0 \\ y - x > 0 \end{cases} }{\left| \begin{cases} x > 0 \\ y - x > 0 \end{cases} } = \frac{\left| \begin{cases} x > 0 \\ y - x > 0 \end{cases} }{\left| \begin{cases} x > 0 \\ y - x > 0 \end{cases} } = \frac{\left| \begin{cases} x > 0 \\ y - x > 0 \end{cases} }{\left| \begin{cases} x > 0 \\ y - x > 0 \end{cases} } = \frac{\left| \begin{cases} x > 0 \\ y - x > 0 \end{cases} }{\left| \begin{cases} x > 0 \\ y - x > 0 \end{cases} } = \frac{\left| \begin{cases} x > 0 \\ y - x > 0 \end{cases} }{\left| \begin{cases} x > 0 \\ y - x > 0 \end{cases} } = \frac{\left| \begin{cases} x > 0 \\ y - x > 0 \end{cases} }{\left| \begin{cases} x > 0 \\ y - x > 0 \end{cases} } = \frac{\left| \begin{cases} x > 0 \\ y - x > 0 \end{cases} }{\left| \begin{cases} x > 0 \\ y - x > 0 \end{cases} } = \frac{\left| \begin{cases} x > 0 \\ y - x > 0 \end{cases} }{\left| \begin{cases} x > 0 \\ y - x > 0 \end{cases} } = \frac{\left| \begin{cases} x > 0 \\ y$$

Зауваження. Надалі будемо вважати, що при $y \leq 0$ $f_{\xi_1 + \xi_2}(y) = 0$.

$$\bigotimes \frac{\beta^{\alpha_1 + \alpha_2} e^{-\beta y}}{\Gamma(\alpha_1) \Gamma(\alpha_2)} \int_0^y x^{\alpha_1 - 1} (y - x)^{\alpha^2 - 1} dx = \begin{vmatrix} x = yt & dx = ydt \\ x : 0 \to y \\ t : 0 \to 1 \end{vmatrix} =$$

$$= \frac{\beta^{\alpha_1 + \alpha_2} e^{-\beta y}}{\Gamma(\alpha_1) \Gamma(\alpha_2)} \int_0^1 y^{\alpha_1 - 1} t^{\alpha_1 - 1} y^{\alpha_2 - 1} (1 - t)^{\alpha_2 - 1} y dt =$$

$$= \frac{\beta^{\alpha_1 + \alpha_2} e^{-\beta y}}{\Gamma(\alpha_1) \Gamma(\alpha_2)} \cdot y^{\alpha_1 + \alpha_2 - 1} \cdot \int_0^1 t^{\alpha_1 - 1} (1 - t)^{\alpha_2 - 1} dt = \frac{\beta^{\alpha_1 + \alpha_2} e^{-\beta y}}{\Gamma(\alpha_1 + \alpha_2)} \cdot y^{\alpha_1 + \alpha_2 - 1} =$$

$$= \begin{cases} \frac{\beta^{\alpha_1 + \alpha_2}}{\Gamma(\alpha_1 + \alpha_2)} \cdot y^{\alpha_1 + \alpha_2 - 1} e^{-\beta y}, & y > 0; \\ 0 & y \le 0; \end{cases} = f_{\Gamma(\alpha_1 + \alpha_2, \beta)}(y)$$

5.2. Chi-square distribution with n degrees of freedom.

5.2.1. PDF.

Розглядаємо $\xi_1,...,\xi_n$ - незалежні гаусівські N(0,1). Інакше: $\overline{\xi}=\begin{bmatrix}\xi_1\\\vdots\\\xi_n\end{bmatrix}\sim N(\vec{0},I)$.

Розподіл χ_n^2 - це закон розподілу $\left|\left|\overline{\xi}\right|\right|^2 = \sum_{i=1}^n \xi_i^2$.

n=1. Шукаємо: $\xi^2, \xi \sim N(0,1).$

$$\varphi(x) = x^2$$
 $x^2 = y \Longrightarrow x = \pm \sqrt{y} \Longrightarrow \psi_1(y) = -\sqrt{y}$ $\psi_2(y) = \sqrt{y}$ $E_{\varphi_1} = \mathbb{E}_{\varphi_2} = [0, +\infty]$

$$f_{\varphi(\xi)}(y) = \sum_{i=1}^{2} f_{\xi}(\psi_{i}(y)) \cdot |\psi'_{i}(y)| \cdot \mathbb{I} \{ y \in E_{\varphi_{i}} \} =$$

$$= \frac{1}{\sqrt{2\pi}} e^{-\frac{x^{2}}{2}} \Big|_{x=-\sqrt{y}} \cdot \left| (-\sqrt{y})' \right| \cdot \mathbb{I} R_{+}(y) + \frac{1}{\sqrt{2\pi}} e^{-\frac{x^{2}}{2}} \Big|_{x=\sqrt{y}} \cdot \left| (\sqrt{y})' \right| \cdot \mathbb{I} R_{+}(y) =$$

$$= \frac{2}{\sqrt{2\pi}} e^{-\frac{y}{2}} \cdot \frac{1}{2\sqrt{y}} \cdot \mathbb{I} R_{+}(y) = \begin{cases} \frac{1}{\sqrt{2\pi}} y^{-\frac{1}{2}} \cdot e^{-\frac{1}{2}y}, & y > 0; \\ 0, & y < 0 \end{cases} = f_{\chi_{1}^{2}}(y)$$

 $n \in \mathbb{N}$. Шукаємо: $\sum_{i=1}^{n} \xi_i^2 \quad \forall \xi_i : \xi_i \sim N(0,1)$.

Розглянемо щільність $f_{\chi_1^2}(y)$:

$$\begin{cases} \frac{1}{\sqrt{2\pi}} y^{-\frac{1}{2}} \cdot e^{-\frac{1}{2}y}, & y > 0; \\ 0, & y \leq 0 \end{cases} = \begin{cases} \frac{\left(\frac{1}{2}\right)^{1/2}}{\Gamma\left(\frac{1}{2}\right)} y^{\frac{1}{2}-1} e^{-\frac{1}{2}y}, & y > 0; \\ 0, & y \leq 0 \end{cases}$$
 Впізнаємо гамма-розподіл:
$$\chi_1^2 \sim \Gamma\left(\frac{1}{2}; \frac{1}{2}\right)$$

Тоді, χ_n^2 це сумма n-незалежних χ_1^2 : $\chi_n^2 = \underbrace{\chi_1^2 + \ldots + \chi_1^2}_n = \Gamma\left(\frac{n}{2}, \frac{1}{2}\right)$

$$f_{\chi_n^2}(x) = \begin{cases} \frac{\frac{1}{2}^{\frac{n}{2}}}{\Gamma\left(\frac{n}{2}\right)} x^{\frac{n}{2} - 1} e^{-\frac{1}{2}x}, & x > 0; \\ 0, & x \le 0; \end{cases} = \begin{cases} \frac{1}{2^{\frac{n}{2}} \Gamma\left(\frac{n}{2}\right)} x^{\frac{n}{2} - 1} e^{-\frac{x}{2}}, & x > 0; \\ 0, & x \le 0; \end{cases}$$

n=2. Зокрема, в такому випадку, отримаємо: $\chi_2^2=\Gamma\left(1,\frac{1}{2}\right)=Exp\left(\frac{1}{2}\right)$.

5.2.2. Числові характеристики.

$$\mathbb{E}\chi_n^2 = \mathbb{E}\Gamma\left(\frac{1}{2}, \frac{1}{2}\right) = n \quad \left[\mathbb{E}\left(\xi_1^2 + ... \xi_n^2\right) = \mathbb{E}\xi_1^2 + ... + \mathbb{E}\xi_n^2 = n\right]$$

$$\mathbb{D}\chi_n^2 = \mathbb{D}\Gamma\left(\frac{1}{2}, \frac{1}{2}\right) = 2n$$

5.3. t-розподіл Стьюдента з n степенями вільності.

Позначається t_n або St_n . Розглядаємо розподіл такої величини η :

$$\eta = \frac{\xi_0}{\sqrt{\frac{\xi_1^2 + \dots + \xi_n^2}{n}}} = \xi_0 \frac{n}{\sqrt{\chi_n^2}},$$

де $\xi_0, \xi_1, ..., \xi_n$ — незалежні стандартні гаусівські величини.

$$f_{St_n}(x) = \frac{\Gamma(\frac{n+1}{2})}{\sqrt{n\pi} \Gamma(\frac{n}{2})} \left(1 + \frac{x^2}{n}\right)^{-\frac{n+1}{2}}$$

The PDF of the Student distribution.

Слід зауважити, що у випадку $n=1:St_1$ отримаємо розподіл Коші:

$$f_{St_1}(x) = \frac{1}{\pi(1+x^2)}$$

Якщо спрямуємо $n \to \infty$, отримаємо стандартний гаусівський розподіл:

$$f_{St_{\infty}} = \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}}$$

5.4. Розподіл Фішера (-Снедекора)

Позначається $F_{m,n}$. Розглядаємо розподіл такої величини ω :

$$\omega = \frac{\left(\xi_1^2 + \dots + \xi_m^2\right)/m}{\left(\eta_1^2 + \dots + \eta_n^2\right)/n}$$

де $\xi_0, \xi_1, ..., \xi_m, \eta_1, ..., \eta_n$ — незалежні стандартні гаусівські величини.

$$f(x; d_1, d_2) = \frac{\sqrt{\frac{(d_1 x)^{d_1} d_2^{d_2}}{(d_1 x + d_2)^{d_1 + d_2}}}}{x\beta\left(\frac{d_1}{2}, \frac{d_2}{2}\right)}$$

The PDF of the F-distribution

6. Граничні теореми теорії ймовірностей

6.1. Нерівність Чебишова.

 ξ - випадкова величина, для якої $\exists \mathbb{E} \xi \ \exists \mathbb{D} \xi$.

Знаємо, що $\mathbb{D}\xi = \mathbb{E}(\xi - \mathbb{E}\xi)^2$. Але дисперсія є більше теоретичною величиною. Наприклад, розглянемо прилад, який перестає працювати якщо напруга в мережі $\xi = U_{\rm M}$ відхиляється $\xi < 180$ або $\xi > 260$.

Інакше кажучи, якщо $|\xi - \mathbb{E}\xi| > 40$ - прилад не працює. Нас цікавить ймовірність $\mathbb{P}\{|\xi - \mathbb{E}\xi| > a\} = ?$. Але, знаючи дисперсію, не зрозуміло, як пов'язати цю характеристику з ймовірністю зазначеної критичної події.

Саме таку оцінку дає нерівність Чебишова.

Теорема 6.1 (нерівність Чебишова). Якщо $\exists \mathbb{D}\xi$, то:

$$\forall a > 0 \quad \mathbb{P}\left\{ |\xi - \mathbb{E}\xi| \ge a \right\} \le \frac{\mathbb{D}\xi}{a^2}$$

Перевага: Обчислюється лише через дисперсію. Не залежить від розподілу. Недолік: нерівнісь дає дуже грубу оцінку ймовірності.

Наслідок.

$$\mathbb{P}\left\{\left|\xi - \mathbb{E}\xi\right| < a\right\} = \mathbb{P}\left\{\xi \in (\mathbb{E}\xi - a, \mathbb{E}\xi + a)\right\} \ge 1 - \frac{\mathbb{D}\xi}{a^2}$$

Лема. (нерівність Маркова) η - невід'ємна випадкова величина $\mathbb{P}\left\{\eta \geq 0\right\} = 1$.

Тоді:
$$\mathbb{P}\left\{\eta \geq a\right\} \leq \frac{\mathbb{E}\eta}{a}$$

Доведення.

$$\mathbb{E}\eta = \mathbb{E}\left(\eta \cdot \mathbb{I}\left\{0 \le \eta < a\right\} + \eta \cdot \mathbb{I}\left\{\eta \ge a\right\}\right) = \mathbb{E}\eta \cdot \mathbb{I}\left\{\eta < a\right\} + \mathbb{E}\eta \cdot \mathbb{I}\left\{\eta \ge a\right\} \ge$$
$$\ge \mathbb{E}\eta \cdot \mathbb{I}\left\{\eta \ge a\right\} \ge \mathbb{E}a \cdot \mathbb{I}\left\{\eta \ge a\right\} = a \cdot \mathbb{E}\mathbb{I}\left\{\eta \ge a\right\} = a \cdot \mathbb{P}\left\{\eta \ge a\right\}$$

Доведення. (До нерівності Чебишова.) Очевидно, що:

$$\eta = (\xi - \mathbb{E}\xi)^2 \ge 0$$

За нерівністю Маркова:

$$\mathbb{P}\left\{|\xi - \mathbb{E}\xi| \ge a\right\} = \mathbb{P}\left\{(\xi - \mathbb{E}\xi)^2 \ge a^2\right\} \le \frac{\mathbb{E}\left(\xi - \mathbb{E}\xi\right)^2}{a^2} = \frac{\mathbb{D}\xi}{a^2}$$

6.2. Закон великих чисел (ЗВЧ).

Маємо $\xi_1, \xi_2, ...,$ тоді:

$$\underbrace{\frac{\xi_1 + \xi_2 + \ldots + \xi_n}{n}}_{\text{вибіркове середнє}} \xrightarrow[n \to \infty]{} \mathbb{E}\xi$$

Теорема 6.2. (ЗВЧ для незалежних, однаково розподілених величин) $\xi_1, \xi_2, ..., \xi_n$ - незалежні, однаково розподілені випадкові величини. Нехай $\exists \mathbb{E} \xi_i = a$. **Тоді**:

$$\frac{\xi_1 + \dots + \xi_n}{n} \xrightarrow[n \to \infty]{\mathbb{P}} a \qquad \left(\mathbb{P} \left\{ \frac{\xi_1 + \dots + \xi_n}{n} > \varepsilon \right\} \xrightarrow[n \to \infty]{} 0 \right)$$

Доведення. (за додаткової умови існування дисперсії $\exists \mathbb{D} \xi_i$, що , але з послабленим припущенням про некорельованість замість незалежності.)

$$\overline{\xi} = \frac{\xi_1 + \ldots + \xi_n}{n} : \frac{\mathbb{E}\overline{\xi}_n = \mathbb{E}\frac{\xi_1 + \ldots + \xi_n}{n} = \frac{\mathbb{E}\xi_1 + \ldots + \mathbb{E}\xi_n}{n} = \frac{na}{a} = a}{\mathbb{E}\xi_1 + \ldots + \mathbb{E}\xi_n} : \mathbb{D}\overline{\xi}_n = \mathbb{D}\frac{\xi_1 + \ldots + \xi_n}{n} = \frac{\mathbb{D}\xi_1 + \ldots + \mathbb{D}\xi_n}{n^2} = \frac{n\mathbb{D}\xi}{n^2} = \frac{\mathbb{D}\xi}{n}$$

$$\begin{cases} \mathbb{E}\overline{\xi}_n = a \xrightarrow[n \to \infty]{n \to \infty} a \\ \mathbb{D}\overline{\xi}_n = \frac{\mathbb{D}\xi}{n} \xrightarrow[n \to \infty]{n \to \infty} 0 \end{cases} \Longrightarrow \overline{\xi}_n \xrightarrow[n \to \infty]{\mathbb{E}\xi_1 + \ldots + \mathbb{E}\xi_n} = \frac{na}{a} = a$$

Доведення. (без припущення про існування $\mathbb{D}\xi$) Введемо характеристичну функцію $\chi_{\xi}(t) = \mathbb{E}e^{it\xi}$. Тоді:

$$\chi_{\frac{\xi_1 + \dots + \xi_n}{n}}(t) = \mathbb{E}e^{\frac{it}{n}(\xi_1 + \dots + \xi_n)} = \chi_{\xi_1 + \dots + \xi_n}\left(\frac{t}{n}\right) = \underbrace{\chi_{\xi}\left(\frac{t}{n}\right) \cdot \dots \cdot \chi_{\xi}\left(\frac{t}{n}\right)}_{n} = \chi_{\xi}^n\left(\frac{t}{n}\right)$$

Розпишемо в ряд Тейлора:

$$\chi_{\xi}(h) = \chi_{\xi}(0) + \frac{\chi'_{\xi}(0)}{1!}h + o(h) \quad h \to 0$$

$$\chi_{\xi}(h) = \left|\frac{\chi'_{\xi}(0)}{i}\right| = \mathbb{E}\xi = 1 + ia \cdot h + o(h) \quad h \to 0$$

$$\chi_{\xi}\left(\frac{t}{n}\right) = 1 + \frac{iat}{n} + o(\frac{1}{n}) \quad n \to \infty$$

Отримали:

$$\chi_{\overline{\xi}_n}(t) = \chi_{\xi}^n \left(\frac{t}{n}\right) = \left[1 + \frac{iat}{n} + o\left(\frac{1}{n}\right)\right]^n \quad n \to \infty$$

$$\ln \chi_{\overline{\xi}_n}(t) = n \ln \left[1 + \frac{iat}{n} + o\left(\frac{1}{n}\right)\right] \sim n \left[\frac{iat}{n} + o\left(\frac{1}{n}\right)\right] = iat + o(1) \xrightarrow[n \to \infty]{} a$$

$$\chi_{\overline{\xi}_n}(t) \xrightarrow[n \to \infty]{} e^{iat} = \mathbb{E}e^{iat} = \chi_{\xi}(t) \xrightarrow{\boxed{\frac{\text{T. Jiebi}}{m}}}$$

$$\Longrightarrow \overline{\xi}_n = \frac{\xi_1 + \dots + \xi_n}{n} \xrightarrow[n \to \infty]{} \frac{d}{n \to \infty} \quad a \Rightarrow \boxed{\frac{\xi_1 + \dots + \xi_n}{n} \xrightarrow[n \to \infty]{} a}$$

Теорема 6.3. (посилений ЗВЧ А.М.Колмогорова.) $\xi_1, \xi_2, ..., \xi_n$ - незалежні, однаково розподілені випадкові величини.

Нехай
$$\exists \mathbb{E} \xi_i = a$$
. Тоді: $\frac{\xi_1 + \ldots + \xi_n}{n} \xrightarrow[n \to \infty]{\mathbf{M.H.}} a$

6.3. ЗВЧ для різнорозподілених випадкових величин.

6.3.1. Означення.

Теорема 6.4. $\xi_1, \xi_2, ..., \xi_n$ - незалежні випадкові величини. Нехай $\exists \mathbb{E} \xi_i = a_i$ $\exists \mathbb{D} \xi_i = \sigma_i^2$. Додатково накладемо умову рівномірної обмеженості: $\exists C > 0 : \sigma_i^2 < C$.

Тоді:
$$\frac{\xi_1 + \ldots + \xi_n}{n} - \frac{a_1 + \ldots + a_n}{n} = \frac{(\xi_1 - a_1) + \ldots + (\xi_n - a_n)}{n} \xrightarrow[n \to \infty]{\mathbb{P}, \mathbb{L}_2} 0$$

Доведення.

$$\begin{cases} \mathbb{E}\left(\frac{(\xi_{1}-a_{1})+\ldots+(\xi_{n}-a_{n})}{n}\right) = \overbrace{\frac{\mathbb{E}(\xi_{1}-a_{1})+\ldots+\mathbb{E}(\xi_{n}-a_{n})}{n}}^{=0} = 0 & \xrightarrow[n\to\infty]{} 0 \\ \mathbb{D}\left(\frac{(\xi_{1}-a_{1})+\ldots+(\xi_{n}-a_{n})}{n}\right) = \frac{\mathbb{D}(\xi_{1}-a_{1})+\ldots+\mathbb{D}(\xi_{n}-a_{n})}{n^{2}} = \\ = \frac{\mathbb{D}\xi_{1}+\ldots+\mathbb{D}\xi_{n}}{n} - \frac{a_{1}+\ldots+a_{n}}{n^{2}} = \frac{\sigma_{1}^{2}+\ldots+\sigma_{n}^{2}}{n^{2}} \leq \frac{C\cdot n}{n^{2}} = \frac{C}{n} & \xrightarrow[n\to\infty]{} 0 \end{cases}$$

3 цього слідує:
$$\frac{(\xi_1-a_1)+...+(\xi_n-a_n)}{n} \xrightarrow[n \to \infty]{\mathbb{L}_2,\mathbb{P}} 0$$

6.3.2. ЗВЧ для схеми Бернуллі.

Успіх: p. Невдача: q = 1 - p.

Введемо величину $\xi_i = \mathbb{I} \left\{ \text{на i-тому випробуваннi відбувся успіх} \right\}$

$$\begin{array}{ccc} \xi_i & 0 & 1 \\ \mathbb{P} & q & p \end{array} \quad \mathbb{E}\xi_i = p$$

За ЗВЧ Колмогорова:

$$\frac{\xi_1 + \ldots + \xi_n}{n} \xrightarrow[n \to \infty]{\mathbb{L}_{2}, \mathbb{P}, \text{M.H}} \mathbb{E}\xi_i = p$$

$$\frac{\xi_1+\ldots+\xi_n}{n}$$
 - відносна частота успіхів = $\nu_n \Longrightarrow \boxed{\nu_n \xrightarrow[n \to \infty]{\mathbb{L}_{2,\mathrm{M.H}}} p}$

6.3.3. Методи Монте-Карло.

Приклад. Методи Монте-Карло дозволяють чисельно розв'язувати нестохастичні (детерміновані) задачі задопомогою стохастичних методів.

Шукаємо приблизне значення $\int\limits_b^a f(x)dx$ при $M\geq f(x)\geq 0$ - обмежена на [a,b]

Вибираємо незалежні: $\xi_n \sim U(a,b)$.

 $f(\xi_1),...f(\xi_n)$ - незалежні, однаково розподілені з математичним сподіванням:

$$\mathbb{E}f(\xi_i) = \int_{b}^{a} f(x) \cdot \frac{1}{b-a} dx = \frac{1}{b-a} \int_{b}^{a} f(x) dx$$

Застосуємо закон великих чисел:

$$\frac{f(\xi_1) + \dots + f(\xi_n)}{n} \xrightarrow[n \to \infty]{\text{M.H.}} \mathbb{E}f(\xi)$$

Якщо взяти n >> 1:

$$\frac{f(\xi_1) + \dots + f(\xi_n)}{n} \approx \frac{1}{b-a} \int_{b}^{a} f(x) dx$$

Інакше:

$$\int_{b}^{a} f(x)dx \approx (b-a) \cdot \frac{f(\xi_1) + \dots + f(\xi_n)}{n}$$

Приклад. (Другий спосіб) Розглядаємо прямокутник $\Pi=(a,b)\times M$. Випадкові вектори $\begin{bmatrix} \xi_1\\\eta_1 \end{bmatrix},\cdots,\begin{bmatrix} \xi_n\\\eta_n \end{bmatrix}$ - точки всередині прямокутника Π . Схема Бернуллі: n випробувань. Успіх: потрапляння точки під графік f(x).

$$p = \mathbb{P}\left\{\text{успіx}\right\} = rac{S_{\text{під графіком}}}{S_{\Pi}} = rac{\int\limits_{b}^{a}f(x)dx}{M(b-a)}$$

Частота влучання під графік: $\nu_n \xrightarrow[n \to \infty]{\text{м.н}} p = \int\limits_{b}^{a} f(x) dx$

Якщо
$$n >> 1$$
, то $\int_{b}^{a} f(x) dx \approx M(b-a)\nu_n = M(b-a) \cdot \frac{\text{к-сть точок під графіком}}{n}$.