Прикладная теория типов

Домашнее задание 1 (нетипизированное λ -исчисление)

8 сентября 2024 г.

Домашняя работа принимается до 23:59 6 октября 2023, кроме задач, помеченных звёздочкой, которые принимаются до конца семестра. Решения можно набрать в TeX или написать разборчивым текстом на бумаге и отсканировать. Домашняя работа принимается в виде **одного** pdf файла на почту m.voronov@gse.cs.msu.ru. Вопросы по домашнему заданию можно задавать или по почте, или в TГ-группе курса.

- 1. (2 балла) Запишите приведённые термы в соответствии с (обще)принятыми правилами опускания скобок:
 - $(\lambda x.(((xz)y)(xx)))$
 - $((\lambda x.(\lambda y.(\lambda z.(z((xy)z)))))(\lambda u.u))$
- 2. (3 балла) Для каждого из приведённых ниже термов определите, является ли он α -эквивалентным терму $\lambda x.x(\lambda x.x)$, если не является, то почему?
 - $\lambda y.y(\lambda x.x)$
 - $\lambda y.y(\lambda x.y)$
 - $\lambda y.y(\lambda y.x)$
- 3. (5 баллов) Выделите свободные и связанные переменные в термах и выполните указанные подстановки:
 - $\bullet \ (\lambda yp.xyw(px))[x:=\lambda w.yw]$
 - ((xyz)[x := y])[y := z]
 - $((\lambda x.xyz)[x := y])[y := z]$
 - $(\lambda y.yyx)[x := yz]$
 - $(xy(\lambda xz, xyz)y)[y := xz]$
- 4. (10 баллов) Покажите, расписывая все шаги преобразований с их названиями, что $\forall P,Q,R\in\Lambda$:
 - $SKK \rightarrow_{\beta} I$
 - $KPQ \rightarrow_{\beta} P$
 - $SPQR \rightarrow_{\beta} PR(QR)$
 - $(S(KS)K)PQR \rightarrow_{\beta} P(QR)$
 - * $SSSKK =_{\beta} SKKK$
- 5. (2 балла) Приведите пример замкнутого λ -терма, находящегося в
 - в слабой головной нормальной форме, но не в головной нормальной форме;
 - в головной нормальной форме, но не в нормальной форме.
- 6. (4 баллов) Пусть задан список натуральных чисел с помощью списка пар pair, где конец списка определяется с помощью терма nil:
 - $pair = \lambda xyf.fxy$
 - $nil = \lambda f.true$

Постройте терм fold, который бы суммировал числа в списке, например:

- fold nil = 0
- fold(pair 1 nil) = 1

- fold(pair 1 (pair 2 (pair 3 nil))) = 6
- 7. (4 балла) Постройте терм isPrime, принимающий число в кодировке Чёрча и возвращающий true, если число простое, и false в противном случае.
- 8. (2 балла) Покажите, что данное утверждение не всегда верно:

$$M[x := N, y := L] = M[x := N][y := L];$$

Здесь запись M[x:=N,y:=L] означает, что подстановка x и y в терм M происходит одновременно, т.е. все свободные x и y заменяются вместе за один шаг.

- 9. (2 баллов) Докажите, что если MN сильно нормализуемо, то M и N сильно нормализуемо.
- 10. (2 балл) Покажите, что хотя для комибнатора неподвижной точки Карри Y выполняется $YF =_{\beta} F(YF)$, но при этом неверно ни $YF \twoheadrightarrow_{\beta} F(YF)$, ни $F(YF) \twoheadrightarrow_{\beta} YF$
- 11. (6 баллов) Постройте термы M такие, что
 - $M =_{\beta} \lambda xy.xMx$
 - $Mxyz =_{\beta} xyzM$
- 12. (6 баллов) Постройте функции (можно считать, что задан терм pred):
 - **minus**, вычитающую числа в кодировке Чёрча (можно считать, что в выражении "*minus a b*" всегда $a \ge b$);
 - equals, сравнивающую числа в кодировке Чёрча;
 - lt, реализующую операцию < для чисел в кодировке Чёрча;
 - ullet gt, реализующую операцию > для чисел в кодировке Чёрча;
 - leq, реализующую операцию \leq для чисел в кодировке Чёрча;
 - **geq**, реализующую операцию \geq для чисел в кодировке Чёрча;
- 13. (2 балла) Пусть $U:=\lambda zx.x(zzx)$ и Z:=UU, докажите, что Z это комбинатор неподвижной точки, т.е. ZM является неподвижной точкой для любого λ -терма $M\colon M(ZM)=ZM$. Более того, покажите, что выполняется $ZM \twoheadrightarrow_{\beta} M(ZM)$
- 14. (5 баллов)* Задайте терм *pred*:

$$pred n = \begin{cases} n-1, & n>0\\ 0, & n=0 \end{cases}$$

и приведите объяснение, почему именно он имеет такой вид.

15. (4 балла)* Реализуйте функцию возведения в степень для чисел в кодировке Чёрча. Проверьте её работоспособность со всеми преобразованиями для 0^2 , 1^2 , 2^2 .