Topologie et Calcul différentiel

Semaine 2 : Propriétés de la fonction différentielle

Mardi 21 Février 2023

NB : Il y aura un QCM en ligne jeudi soir

Message subliminal du mardi soir

Rappels utiles pour cette séance

Comment calcule-t-on la différentielle d'une application ?

• On écrit $f(x_0 + h)$ sous cette forme :

$$f(x_0+h) = \underbrace{\text{terme constant}}_{f(x_0)} + \underbrace{\text{terme lin\'eaire en } h}_{df_{x_0}(h)} + \underbrace{\text{terme n\'egligeable}}_{\substack{o \\ h \to 0_{\mathbb{R}^n}}}(|h|)$$

Propriétés de la différentielle

Propriété

- ① Si $f: O \to \mathbb{R}^p$ est différentiable en x_0 , alors f est continue en x_0 .
- ③ Si $f : \mathbb{R}^n \to \mathbb{R}^p$ est linéaire, alors f est différentiable sur \mathbb{R}^n et $df_{x_0} = ...$ pour tout $x_0 \in \mathbb{R}^n$.
- Si $f: O \to \mathbb{R}^p$ et $g: O \to \mathbb{R}^p$ sont différentiables en x_0 et si $\lambda, \mu \in \mathbb{R}$, alors $\lambda f + \mu g$ est différentiable en x_0 et $d(\lambda f + \mu g)_{x_0} = \dots$

Propriétés de la différentielle

Preuve

- La fonction $df_{x_0} \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^p)$. Nous verrons au chapitre "Topologie" que les applications linéaires définies sur un espace vectoriel normé de dimension finie sont continues.
- Si f est constante sur O, pour tout $x_0 \in O$ et tout $h \in \mathbb{R}^n$ tel que $x_0 + h \in O$, $f(x_0 + h) = \dots f(x_0) = f(x_0) + \dots = 0$.

 Donc $df_{x_0}(h) = 0$. dow. $df_{x_0}(h) = 0$.
- Si f est linéaire sur O, pour tout $x_0 \in O$ et tout $h \in \mathbb{R}^n$ tel que $x_0 + h \in O$, $f(x_0 + h) = \frac{1}{2} (x_0 \cdot h) + \frac{1}{2} (h \cdot h) + \frac{1}{2} (h$
- Exercice

Le cas des fonctions composées

Propriété (Différentielle d'une fonction composée)

Soit O un ouvert non vide de \mathbb{R}^n , soit $x_0 \in O$ et soit $f: O \to \mathbb{R}^p$. Soit également O' un ouvert non vide de \mathbb{R}^p contenant f(O) et soit $g: O' \to \mathbb{R}^q$. On peut alors considérer

$$g \circ f : O \subset \mathbb{R}^n \xrightarrow{f} f(O) \subset O' \subset \mathbb{R}^p \xrightarrow{g} \mathbb{R}^q$$

Si f est différentiable en x_0 et si g est différentiable en f alors $g \circ f$ est différentiable en x_0 et

$$d(g \circ f)_{x_0} = ..dg_{f(x_0)}..o..df_{x_0}$$
(1)

Le cas des fonctions composées

Matrice jacobienne

Définition

Soit O un ouvert non vide de \mathbb{R}^n , soit $x_0 \in O$ et soit $f: O \to \mathbb{R}^p$ différentiable en x_0 . La matrice de la différentielle $\mathrm{d} f_{x_0} \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^p)$ de f en x_0 dans les bases canoniques de \mathbb{R}^n et de \mathbb{R}^p est appelée la matrice jacobienne de f en x_0 , notée $\mathrm{J} f_{x_0}$. On a donc

$$Jf_{x_0} = \begin{bmatrix} \partial_1 f_1(x_0) & \partial_2 f_1(x_0) & \cdots & \partial_n f_1(x_0) \\ \partial_1 f_2(x_0) & \partial_2 f_2(x_0) & \cdots & \partial_n f_2(x_0) \end{bmatrix} \in M_{p,n}(\mathbb{R})$$

$$\vdots & \vdots & \ddots & \vdots \\ \partial_1 f_p(x_0) & \partial_2 f_p(x_0) & \cdots & \partial_n f_p(x_0) \end{bmatrix}$$

Bien comprendre pour ne pas confondre *n* et *p*

- C'est la matrice de l'application donc elle mange des vecteurs dans \mathbb{R}^n et recrache des vecteurs dans \mathbb{R}^n donc elle appartient à $M_{\mathbb{R}^n}(\mathbb{R})$
- La fonction f a plignes.. et n.ev.lonnes.

Composition = produit matriciel

La formule de la différentielle composée, qui est une égalité d'applications linéaires, se traduit de deux façons:

• en une égalité matricielle (la composition devient un produit matriciel):

$$J(g \circ f)_{x_0} = \left(J_{f(x_0)}g\right)Jf_{x_0}$$

 $oldsymbol{2}$ en une égalité vectorielle (scalaire si p=1): pour tout $k\in \dots,$

$$\partial_k(g \circ f)(x_0) = la$$
 k -iene colonne de

$$= \sum_{l=1}^{p} \partial_{l} g(f(n_{0})), \partial_{n} f_{l}(n_{0})$$

$$= \sum_{l=1}^{p} \partial_{l} g(f(n_{0})), \partial_{n} f_{l}(n_{0})$$

Coordonnées polaires et différentielle le long d'une courbe

Exemple 1.5 – Coordonnées polaires

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ différentiable et soit

$$P: \left\{ \begin{array}{ccc} \mathbb{R}^2 & \longrightarrow & \mathbb{R}^2 \\ (r,\theta) & \longmapsto & (r\cos\theta, r\sin\theta) \end{array} \right.$$

Comme les deux composantes de P sont différentiables, alors $f \circ P$ aussi. Pour tout $(r, \theta) \in \mathbb{R}^2$,

$$\begin{split} \partial_{1}(f \circ P)(r,\theta) &= \partial_{1}f \left(P(r,\theta)\right) \partial_{1}P_{1}(r,\theta) + \partial_{2}f \left(P(r,\theta)\right) \partial_{1}P_{2}(r,\theta) \\ &= \partial_{1}f (r\cos\theta,r\sin\theta)\cos\theta + \partial_{2}f (r\cos\theta,r\sin\theta)\sin\theta \\ \partial_{2}(f \circ P)(r,\theta) &= \partial_{1}f \left(P(r,\theta)\right) \partial_{2}P_{1}(r,\theta) + \partial_{2}f \left(P(r,\theta)\right) \partial_{2}P_{2}(r,\theta) \\ &= -\partial_{1}f (r\cos\theta,r\sin\theta)r\sin\theta + \partial_{2}f (r\cos\theta,r\sin\theta)r\cos\theta \end{split}$$

On retrouve les formules bien connues des physiciens. En effet, en notant (abusivement) toujours f pour la fonction $f \circ P$, $e_r = (\cos \theta, \sin \theta)$ et $e_\theta = (-\sin \theta, \cos \theta)$, les formules ci-dessus peuvent s'écrire

grad
$$f(r,\theta) = \frac{\partial f}{\partial r}(r,\theta) e_r + \frac{1}{r} \frac{\partial f}{\partial \theta}(r,\theta) e_\theta$$

Exemple 1.6 – Différentielle le long d'une courbe

Soit I un intervalle ouvert non vide de \mathbb{R} , soit $\gamma: I \to \mathbb{R}^n$ dérivable et soit $f: O \to \mathbb{R}^p$ différentiable, où O est un ouvert de \mathbb{R}^n contenant $\gamma(I)$. Alors $f \circ \gamma$ est dérivable et, pour tout $t \in I$,

$$(f \circ \gamma)'(t) = d(f \circ \gamma)_t(1) = df_{\gamma(t)}(d\gamma_t(1)) = df_{\gamma(t)}(\gamma'(t))$$

Différentielle d'une application bilinéaire

Proposition

Soit $B: \mathbb{R}^{p_1} \times \mathbb{R}^{p_2} \to \mathbb{R}^q$ une application bilinéaire^a, soit O un ouvert non vide de \mathbb{R}^n , soit $x_0 \in O$ et soient $f: O \to \mathbb{R}^{p_1}$, $g: O \to \mathbb{R}^{p_2}$ deux fonctions différentiables en x_0 . Alors $B(f,g): O \to \mathbb{R}^q$ est différentiable en x_0 et

$$d(B(f,g))_{x_0}: h \longmapsto B(df_{x_0}(h),g(x_0)) + B(f(x_0),dg_{x_0}(h))$$
 (2)

^aC'est-à-dire que $B(\cdot, y_0)$: $x \mapsto B(x_0, y_0)$ (avec $y_0 \in \mathbb{R}^{p_2}$ fixé) et $B(x_0, \cdot)$: $y \mapsto B(x_0, y)$ (avec $x_0 \in \mathbb{R}^{p_1}$ fixé) sont linéaires.

Preuve : admise (outils de Topologie pas encore introduits)

Différentielle d'une application bilinéaire

- Trouver la différentielle de l'application $B(f,g) = f \times g$.
- Trouver la différentielle de l'application $B(f,g) = \langle f,g \rangle$.

Différentielle de la norme

Exercice

Calculer la différentielle de la norme euclidienne.

Si
$$x \in \mathbb{R}^n$$
, alors $|x| = \sqrt{\langle x, x \rangle} = f \circ B \circ F$ où

f : *B* : *F* : *F* :

Fonctions de classe \mathcal{C}^1

Proposition

Soit O un ouvert non vide de \mathbb{R}^n et soit $f:O\to\mathbb{R}^p$. Les deux assertions suivantes sont équivalentes:

- f admet des dérivées partielles sur O et ces dérivées partielles sont continues sur O;
- \bigcirc f est différentiable sur O et $\mathrm{d}f$ est continue sur O.

Preuve: admise

Définition

On dit que f est de classe C^1 sur O si elle vérifie les conditions précédentes. On note $C^1(O, \mathbb{R}^p)$ l'ensemble des fonctions de classe C^1 de O à valeurs dans \mathbb{R}^p .

Fonctions de classe C^1

Exemple 1.8 – Caractère \mathscr{C}^1 des fonctions polynomiales

Les fonctions polynomiales sur O (voir l'exemple 1.1) sont de classe \mathscr{C}^1 sur O.

En utilisant la proposition 1.2, il est immédiat que $\mathscr{C}^1(O,\mathbb{R}^p)$ est un \mathbb{R} -espace vectoriel (de dimension infinie d'après l'exemple 1.8). En particulier, il est stable par combinaison linéaire. Si p=1, il est aussi stable par produit et par quotient (si le dénominateur ne s'annule pas). De plus, $\mathscr{C}^1(O,\mathbb{R}^p) \subset \mathscr{C}^0(O,\mathbb{R}^p)$ d'après le point 1 de la proposition 1.2. Enfin, la composition de fonctions de classe \mathscr{C}^1 est encore de classe \mathscr{C}^1 .

Remarque 1.10 – Et aux ordres supérieurs?

Il est bien sûr possible de définir les espaces $\mathscr{C}^k(O,\mathbb{R}^p)$ pour $k \ge 1$ et $k = +\infty$.

— Du point de vue des dérivées partielles, c'est assez clair. L'espace $\mathscr{C}^k(0,\mathbb{R}^p)$ est simplement l'espace des fonctions qui admettent des dérivées partielles jusqu'à l'ordre k et telles que toutes les dérivées partielles d'ordre k

$$\partial_{i_1,\dots,i_k}^k f = \frac{\partial^k f}{\partial x_{i_1} \cdots \partial x_{i_k}} = \partial_{i_1} \partial_{i_2} \cdots \partial_{i_k} f$$

soient continues sur O. L'espace $\mathscr{C}^{\infty}(0,\mathbb{R}^p)$ est l'intersection des $\mathscr{C}^k(0,\mathbb{R}^p)$ pour $k \geq 1$.

- Du point de vue des différentielles, la situation est plus compliquée. On a envie de « différentier la différentielle », qui est une application $O \to \mathcal{L}(\mathbb{R}^n, \mathbb{R}^p)$. La différentielle seconde serait alors une application $O \to \mathcal{L}(\mathbb{R}^n, \mathcal{L}(\mathbb{R}^n, \mathbb{R}^p))$ qu'on peut heureusement identifier comme une application de O dans les applications bilinéaires de \mathbb{R}^n dans \mathbb{R}^p . Le cours de calcul différentiel de troisième année reviendra en détails sur cette notion et ses applications, notamment la recherche d'extremums.
- Rappelons le théorème de Schwarz qui nous dit que si f est de classe \mathscr{C}^2 alors

$$\partial_{i,j}^2 f = \partial_{j,i}^2 f$$

pour tout $i \in \{1, ..., n\}$ et tout $j \in \{1, ..., n\}$. L'ordre de dérivation n'a donc pas d'importance.

Différentielle seconde

Comment calcule-t-on la différentielle seconde d'une application ?

• Un fonction admet une différentielle seconde au point x si si différentielle est différentiable. Donc on écrit df_{x_0+h} sous cette forme :

$$d_{x_0+h}f = \underbrace{\text{terme constant}} + \underbrace{\text{terme lin\'eaire en } h} + \underbrace{\text{terme n\'egligeable}}_{d_{x_0}^2 f(h)} + \underbrace{d_{x_0}^2 f(h)}_{h \to 0_{\mathbb{R}^n}} (|h|)$$

Ceci est une égalité dans L. R. Elle peut donc s'écrire également ainsi :

• Pour tout $k \in \mathbb{R}^n$, linequire en k

+ Lerne lineaire en h- terne régligable.

lineaire en A

Exercice

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ définie pour tout $(x, y) \in \mathbb{R}^2$ par

$$f(x, y) = \begin{cases} (x^2 + y^2) \sin\left(\frac{1}{x^2 + y^2}\right) & \text{si } (x, y) \neq (0, 0) \\ 0 & \text{si } (x, y) = (0, 0) \end{cases}$$

Montrer que f est différentiable mais n'est pas de classe C^1 .