Design-Efficiency in Security

Ender Yüksel Hanne Riis Nielson Flemming Nielson

Technical University of Denmark

Technical University of Denmark

IMM-TECHNICAL REPORT-2013-03

February, 2013

Table of Contents

Table of Contents	2
List of Tables	3
List of Figures	4
Foreword	5
1. Running Example: Hotel Security Management	6
1.1. Scenario	6
1.2. Quantitative Security Analyses	6
2. Design-Efficiency Approach	7
2.1. Risk of Key Compromise	
2.2. Cost of Key Updates	
2.3. Design-Efficiency Curves	
2.3.1. Until Stabilisation	
2.3.2 After Stabilisation	
2.3.3. Combined Curves: Before and After Stabilisation	
2.3.4. Combined Curves: All Strategies	
3. Conclusion	21
References	22
APPENDIX	23
A. PRISM Model for LB Key Update	23
B. PRISM Model for JB Key Update	23
C. PRISM Model for JLB Key Update	
D. PRISM Model for TB Key Update	
E. PRISM Model for MB Key Update	25
F. PRISM Model for Hy/MB Key Update	26
G. CSL Formulae	27
H. Input Parameters	27
I. State Space	28
I.1 State Space for LB	28
I.2 State Space for JB	29
I.3 State Space for JLB	30
I.4 State Space for TB	31
I.5 State Space for MB	32
I.6 State Space for Hy	33

List of Tables

Table 1: Risk of Key Compromise	8
Table 2: Cost of Key Updates	9
Table 3: Stabilisation Months	10
Table 4: Input Values	27
Table 5: Number of states in LB strategy	28
Table 6: Number of transitions in LB strategy	28
Table 7: Number of states in JB strategy	29
Table 8: Number of transitions in JB strategy	29
Table 9: Number of states in JLB strategy	30
Table 10: Number of transitions in JLB strategy	30
Table 11: Number of states in TB strategy	31
Table 12: Number of transitions in TB strategy	31
Table 13: Number of states in MB strategy.	32
Table 14: Number of transitions in MB strategy	32
Table 15: Number of states in Hy strategy	33
Table 16: Number of transitions in Hy strategy	33

List of Figures

Figure 1: Previous Quantitative Results. Left: Key compromise probability in th	ne
long run, Right: Number of key updates in one year of time	7
Figure 2: Design-Efficiency Curve of LB Key Update until stabilisation	. 11
Figure 3: Design-Efficiency Curve of JB Key Update until stabilisation	. 12
Figure 4: Design-Efficiency Curve of JLB Key Update until stabilisation	. 12
Figure 5: Design-Efficiency Curve of TB Key Update until stabilisation	. 13
Figure 6: Design-Efficiency Curve of MB Key Update until stabilisation	. 13
Figure 7: Design-Efficiency Curve of Hy Key Update until stabilisation	. 14
Figure 8: Design-Efficiency Curve of LB Key Update after stabilisation	
Figure 9: Design-Efficiency Curve of JB Key Update after stabilisation	. 15
Figure 10: Design-Efficiency Curve of JLB Key Update after stabilisation	. 15
Figure 11: Design-Efficiency Curve of TB Key Update after stabilisation	
Figure 12: Design-Efficiency Curve of MB Key Update after stabilisation	. 16
Figure 13: Design-Efficiency Curve of Hy Key Update after stabilisation	. 17
Figure 14: Combined Design-Efficiency Curve for LB	
Figure 15: Combined Design-Efficiency Curve for JB	
Figure 16: Combined Design-Efficiency Curve for JLB	
Figure 17: Combined Design-Efficiency Curve for TB	
Figure 18: Combined Design-Efficiency Curve for MB	. 19
Figure 19: Combined Design-Efficiency Curve for Hy	
Figure 20: Combined Design-Efficiency Curves until stabilisation	
Figure 21: Combined Design-Efficiency Curves after stabilisation	. 21
Figure 22: Influence of the network size and the key update threshold on the	
state space, in LB	. 28
Figure 23: Influence of the network size and the key update threshold on the	
state space, in JB	. 29
Figure 24: Influence of the network size and the key update threshold on the	
state space, in JLB	. 30
Figure 25: Influence of the network size and the key update threshold on the	
state space, in TB	. 31
Figure 26: Influence of the network size and the key update threshold on the	
state space, in MB	. 32
Figure 27: Influence of the network size and the key update threshold on the	
state space, in Hy	. 33

Foreword

In this document, we present our applied results on balancing security and performance using a running example, which is based on sensor networks. These results are forming a basis for a new approach to balance security and performance, and therefore provide *design-efficiency* of key updates.

We employ probabilistic model checking approach and present our modelling and analysis study using PRISM model checker.

Technical University of Denmark
Department of Applied Mathematics and Computer Science
Building 303B, DK-2800 Lyngby, Denmark
Phone +45 45253031
compute@compute.dtu.dk
www.compute.dtu.dk

IMM-TECHNICAL REPORT: ISSN 1601-2321

1. Running Example: Hotel Security Management

In this section, we describe the running example that we will use for showing how the design-efficiency approach works. This example is taken from [11YNN+].

1.1. Scenario

In this scenario, we focus on a commercial building automation application, specifically *hotel security management*. We consider a system where we use wireless sensors embedded in door locking cards which allow remote cancellation of cards, remote report of door lock status and door ajar alarms, etc.

The technical details of such a system in this example includes a maximum number of 50 devices in the network, with the aim of keeping the network at its maximum size as much as possible. Besides, there exists certain goals such that:

- stolen or broken cards will be replaced in two days on average,
- each device is expected to have non-stop operation for a year on average,
- each device sending one message a day on average, and
- the probability of a key compromise by either leaving devices or sent messages is one in ten thousand.

We use six different key update methods that were defined in [11YNN+]:

- Leave-based Key Update (LB)
- Join-based Key Update (JB)
- Join-Leave-based Key Update (JLB)
- Time-based key update (TB).
- Message-based Key Update (MB)
- Hybrid Key Update excluding MB (Hy/MB)

We will only use the abbreviations of these strategies, written in parenthesis above, in the rest of this report.

There are two criteria that need to be optimized. We can define these in terms of requirements such that:

R1: The key compromise probability should be less than a specific percentage in the long run.

R2: Maximum allowed number of key updates is should be less than a specific number per year.

In the following sections, we will detail the two requirements above.

1.2. Quantitative Security Analyses

Previous quantitative security analyses described in [11YNN+] were defining the details of the security analyses using probabilistic models and paving the way for the design-efficiency curves that we will use in this report. Below in Figure 1, we present sample graphical results of [11YNN+] in order to give a clue on the types of data that we can make use of. An automated tool that assists the decision of

key update strategy using the type of graphics (and surely the data) in Figure 1 is available on [12YNNa].

Figure 1: Previous Quantitative Results. Left: Key compromise probability in the long run, Right: Number of key updates in one year of time.

2. Design-Efficiency Approach

In this section, we describe our method for generating design-efficiency curves on our running example.

From [12YNN], we already know that the risk of key compromise tends to stabilise by time, and this stabilisation period depends on the chosen key update strategies, the chosen parameter value (i.e. threshold), and the network dynamics. We also know that, until stabilisation, there could be fluctuations in the risk, such that the maximum risk is often reached within this period. Therefore, we subdivide our two criteria – Risk and Cost – depending on the stabilisation.

The formal models and input values of the analysis are available in the Appendix.

2.1. Risk of Key Compromise

Key compromise in the long run. We start by computing the steady-state probabilities for a (moderate) set of thresholds. The aim of this step is to find the set of thresholds for each key update method that satisfies R1. In the last column of Table 1, we have presented numerical results of probabilistic model checking, which has the meaning: *the risk of the key being compromised in the long run*.

Key compromise at a specific time. We continue with computing the transient probabilities for the same set of thresholds. The aim of this step is to see if the peak points of risk exceed the requirement R1 significantly or not. In Table 1, we have presented the results for our running example, which has the meaning: *the maximum risk of the key being compromised*. In the cases where the maximum and the average risk are the same in the table, the difference (or deviation from average) is relatively small.

A mathematical way of computing the maximum risk of key compromise is described in [12YNNN] for LB key updates, and a tool implemented in MATLAB that automates this procedure is provided. In this running example, we have

found the maximum risk manually from the probabilistic model checking results of PRISM [06HKM+].

Table 1: Risk of Key Compromise

	Threshold	RISK (max)	RISK (average)
	1	0.035	0.035
	2	0.052	0.052
LB	3	0.069	0.069
	4	0.085	0.085
	5	0.101	0.101
	1	0.035	0.035
	2	0.052	0.052
JB	3	0.069	0.069
	4	0.087	0.085
	5	0.104	0.101
	1	0.029	0.029
	2	0.034	0.034
JLB	3	0.044	0.044
	4	0.052	0.052
	5	0.062	0.061
	1	0.074	0.072
	2	0.139	0.137
ТВ	3	0.259	0.196
	4	0.36	0.249
	5	0.443	0.298
	1 (500)	0.029	0.025
	2 (1000)	0.064	0.048
MB	3 (1500)	0.098	0.072
	4 (2000)	0.139	0.094
	5 (2500)	0.18	0.115
	1	0.027	0.027
	2	0.044	0.044
Ну/МВ	3	0.062	0.060
	4	0.081	0.076
	5	0.099	0.092

2.2. Cost of Key Updates

Number of key updates before stabilisation: In this criterion, we compute the expected number of key updates *before* the risk of key compromise gets stabilised. Obviously, we need to be able to figure out the time point that the risk

stabilises. Then, we normalize the costs to get the monthly numbers, such that we can see the expected number of key updates per month no matter how long or short the stabilisation period is.

As in the case of maximum risk above, a mathematical way of computing the stabilisation point is described in [12YNNN] for LB key updates, and a tool was implemented in MATLAB that automates this procedure. In this running example, we have found the stabilisation points manually.

The results for our running example are presented in Table 2, in the same fashion with the results on the risk of key compromise.

Number of key updates after stabilisation: In this criterion, we compute the expected number of key updates *after* the risk of key compromise gets stabilised. We do this similar to the process we use for pre-stabilisation results. However, we need to define an observation period, and we defined this period as 12 months. In practice, we compute the expected number of key updates until the month S+12, where S is the month of stabilisation. Then, we subtract the expected number of key updates in the stabilisation period, which we know from the previous step. In the end, we provide monthly average results by simply dividing to number of observation months, that is 12.

The results for our running example are presented in the last column of Table 2, in the same fashion with the results on the risk of key compromise.

Table 2: Cost of Key Updates

	Threshold	COST per month (before stabilisation)	COST per month (after stabilisation)
	1	4.089	4.088
	2	1.919	2.044
LB	3	1.196	1.363
	4	0.835	1.022
	5	0.618	0.817
	1	3.817	4.088
	2	1.658	2.044
JB	3	0.938	1.363
	4	0.801	1.022
	5	0.591	0.817
	1	8.041	8.175
	2	3.847	4.088
JLB	3	2.301	2.725
	4	1.859	2.044
	5	1.408	1.635
ТВ	1	0.755	1.000

	2	0.438	0.500
	3	0.327	0.333
	4	0.246	0.250
	5	0.196	0.200
	1 (500)	2.960	2.985
	2 (1000)	1.482	1.495
MB	3 (1500)	0.931	0.993
	4 (2000)	0.742	0.749
	5 (2500)	0.592	0.591
	1	7.920	8.232
	2	2.562	2.959
Hy/MB	3	1.515	1.736
	4	1.066	1.221
	5	0.782	0.940

A note on the stabilisation: Even though all key update strategies used in this report are expected to be stabilised in terms of risk of key compromise, for some of the cases this period is fairly long. Therefore, we have assumed the stabilisation point of such cases to be 10 years. Precise data is given in Table 3, such that the month where the deviation of the risk drops below 0.001 is assumed to be the month of stabilisation.

Table 3: Stabilisation Months

Strategy	Threshold	Stabilisation (month)	Strategy	Threshold	Stabilisation (month)
	1	1		1	2
	2	2		2	8
LB	3	2	ТВ	3	77
	4	2		4	120
	5	2		5	120
	1	1	MB	1	22
	2	1		2	54
JB	3	1		3	11
	4	2		4	120
	5	2		5	120
	1	2		1	1
	2	1	Ну/МВ	2	1
JLB	3	1		3	2
	4	2		4	3
	5	2		5	3

2.3. Design-Efficiency Curves

In this section, we introduce the *design-efficiency curves* on the running example. We present the same style of graphics, i.e. **Risk** of key compromise on the vertical axis, and **Cost** of key update on the horizontal axis. The risk is given as a percentage, whereas the cost is given as monthly number of updates. In the first two subsections, the emphasis is on the stabilisation of the network. In the last two subsections, the emphasis is on the combination of curves.

2.3.1. Until Stabilisation

In the period until the stabilisation of the network - in fact the risk of key compromise in the network - fluctuations are expected in the risk and therefore there will be points where the risk is maximum, and points where the risk is significantly deviating from the average. Therefore this period is important for the designers, who cannot tolerate temporary peaks that exceed a certain level of risk, or significantly deviate from the risk in the long run. Similarly, this period is important for the designers who cannot tolerate excessive key updates that could take place in this period.

Below we present the design-efficiency curves that we produced for the running example for the period before stabilisation. The risk value in the vertical axis should be interpreted as the (percentage of) maximum risk of key compromise during the period until stabilisation.

Figure 2: Design-Efficiency Curve of LB Key Update until stabilisation

Figure 3: Design-Efficiency Curve of JB Key Update until stabilisation

Figure 4: Design-Efficiency Curve of JLB Key Update until stabilisation

Figure 5: Design-Efficiency Curve of TB Key Update until stabilisation

Figure 6: Design-Efficiency Curve of MB Key Update until stabilisation

Figure 7: Design-Efficiency Curve of Hy Key Update until stabilisation

2.3.2 After Stabilisation

In the period after the stabilisation of the network, fluctuations are not expected in the risk and therefore the notions of maximum risk and minimum risk are not relevant anymore.

Below we present the design-efficiency curves that we produced for the running example for the period after stabilisation.

Figure 8: Design-Efficiency Curve of LB Key Update after stabilisation

Figure 9: Design-Efficiency Curve of JB Key Update after stabilisation

Figure 10: Design-Efficiency Curve of JLB Key Update after stabilisation

Figure 11: Design-Efficiency Curve of TB Key Update after stabilisation

Figure 12: Design-Efficiency Curve of MB Key Update after stabilisation

Figure 13: Design-Efficiency Curve of Hy Key Update after stabilisation

2.3.3. Combined Curves: Before and After Stabilisation

Figure 14: Combined Design-Efficiency Curve for LB

Figure 15: Combined Design-Efficiency Curve for JB

Figure 16: Combined Design-Efficiency Curve for JLB

Figure 17: Combined Design-Efficiency Curve for TB

Figure 18: Combined Design-Efficiency Curve for MB

Figure 19: Combined Design-Efficiency Curve for Hy

2.3.4. Combined Curves: All Strategies

Figure 20: Combined Design-Efficiency Curves until stabilisation

Figure 21: Combined Design-Efficiency Curves after stabilisation

3. Conclusion

In this technical report, we have introduced the design-efficiency curves approach by providing graphical results covering several key update strategies in a running example. We have provided all the necessary information for replicating the experiments including models, property specifications, and input parameters.

References

[06HKM+] - A. Hinton, M. Kwiatkowska. G. Norman, D. Parker. **PRISM: A Tool for Automatic Verification of Probabilistic Systems.** In *Proceedings of the International Conference on Tools and Algorithms for the Construction and Analysis of Systems* (TACAS 2006), 2006.

[11YNN+] - E. Yüksel, H.R. Nielson, F. Nielson, M. Fruth, M. Kwiatkowska. **Optimizing Key Updates in Sensor Networks.** In *Proceedings of the IEEE Sensors Applications Symposium* (SAS 2011), pages 82-87, IEEE, San Antonio, TX, USA, 2011.

[12YNN] - E. Yüksel, H.R. Nielson, F. Nielson. **Key Update Strategies for Wireless Sensor Networks.** *International Journal of Information and Electronics Engineering*, vol. 2, no. 2, pages 141-145, 2012.

[12YNNa] - E. Yüksel, .R. Nielson, F. Nielson. **Key Update Assistant for Resource-Constrained Networks.** Accepted for publication in *Proceedings of the The 17th IEEE Symposium on Computers and Communications (ISCC 2012)*, 2012.

[12YNNN] - E. Yüksel, H.R. Nielson, F. Nielson, B.F. Nielsen. **LBTool: A Stochastic Toolkit for Leave-Based Key Updates.** Accepted for publication in *Proceedings of the 4th IEEE International Workshop on Performance Evaluation of Communications in Distributed Systems and Web based Service Architectures (PEDISWESA'12)*, 2012.

APPENDIX

We present the PRISM models, property specification, and the input parameters that we used in producing the results in this report. Therefore, all the experiments can be easily replicated using the PRISM model checker.

A. PRISM Model for LB Key Update

```
// time unit: 1 day
const int N; // threshold for number of leaves
const int Max:
                // Maximum number of devices
const double R_join; // Rate of join per device
const double R_leave; // Rate of leave per device
const double R_message; // Rate of message per device
const double P_comp; // Risk of key leakage per device
module DEVICES
Size: [0..Max] init Max;
[join] Size < Max - > R_join*(Max-Size): (Size'=Size+1);
[leave] Size>0 -> R_leave*(1-P_comp)*Size: (Size'=Size-1);
[leaveC] Size>0 -> R_leave*P_comp*Size: (Size'=Size-1);
[leaveR] Size>0 -> R_leave*Size:
                                          (Size'=Size-1);
[message] Size>0 -> R_message*(1-P_comp)*Size:
                                                                true:
[messageC] Size>0 -> R_message*P_comp*Size:
endmodule
module COORDINATOR
Comp: bool init false;
C_leave: [0..N] init 0;
[join] true -> true;
[leave] C_leave<N-1 -> (C_leave'=C_leave+1);
 [leaveC] C_leave<N-1 -> (C_leave'=C_leave+1) & (Comp'=true);
[leaveR] C_leave=N-1-> (C_leave'=0) & (Comp'=false);
[message] true ->
                          true;
                           (Comp'=true);
[messageC] true ->
endmodule
rewards "Replacements"
 [leaveR] true: 1;
endrewards
```

B. PRISM Model for JB Key Update

```
ctmc
// time unit: 1 day

const int J; // threshold for number of joins

const int Max; // Maximum number of devices
const double R_join; // Rate of join per device
const double R_leave; // Rate of leave per device
const double R_message; // Rate of message per device
const double P_comp; // Risk of key leakage per device
module DEVICES
```

```
Size: [0..Max] init Max;
[join] Size<Max -> R_join*(Max-Size):
                                           (Size'=Size+1);
[joinR] Size<Max -> R_join*(Max-Size):
                                           (Size'=Size+1);
[leave] Size>0 -> R_leave*(1-P_comp)*Size: (Size'=Size-1);
 [leaveC] Size>0 -> R_leave*P_comp*Size: (Size'=Size-1);
[message] Size>0 -> R_message*(1-P_comp)*Size:
                                                                  true;
[messageC] Size>0 -> R_message*P_comp*Size:
endmodule
module COORDINATOR
Comp: bool init false;
C_join: [0..J] init 0;
[join] C_{join} < J-1 \rightarrow (C_{join} = C_{join} + 1);
[joinR] C_join=J-1-> (C_join'=0) & (Comp'=false);
[leave] true -> true;
[leaveC] true -> (Comp'=true);
[message] true ->
                           (Comp'=true);
[messageC] true ->
endmodule
rewards "Replacements"
 [joinR] true: 1;
endrewards
```

C. PRISM Model for JLB Key Update

```
ctmc
// time unit: 1 day
const int JL; // threshold for number of leave and joins
const int Max; // Maximum number of devices
const double R_join; // Rate of join per device
const double R_leave; // Rate of leave per device
const double R_message; // Rate of message per device
const double P_comp; // Risk of key leakage per device
module DEVICES
Size: [0..Max] init Max;
[join] Size<Max -> R_join*(Max-Size):
                                           (Size'=Size+1);
[joinR] Size < Max -> R_join*(Max-Size):
                                           (Size'=Size+1);
[leave] Size>0 -> R_leave*(1-P_comp)*Size: (Size'=Size-1);
[leaveC] Size>0 -> R_leave*P_comp*Size: (Size'=Size-1);
 [leaveR] Size>0 -> R_leave*Size:
                                            (Size'=Size-1);
[message] Size>0 -> R_message*(1-P_comp)*Size:
                                                                   true;
[messageC] Size>0 -> R_message*P_comp*Size:
                                                       true;
endmodule
module COORDINATOR
Comp: bool init false;
C_joinleave: [0..JL] init 0;
[join] C_joinleave<JL-1 -> (C_joinleave'=C_joinleave+1);
[joinR] C_joinleave=JL-1 -> (C_joinleave'=0) & (Comp'=false);
 [leave] C_joinleave<JL-1 -> (C_joinleave'=C_joinleave+1);
 [leaveC] \ C\_joinleave < JL-1 \ -> \ (C\_joinleave' = C\_joinleave + 1) \ \& \ (Comp' = true);
 [leaveR] C_joinleave=JL-1 -> (C_joinleave'=0) & (Comp'=false);
 [message] true ->
                           true;
[messageC] true ->
                            (Comp'=true);
endmodule
rewards "Replacements"
```

```
[leaveR] true: 1;
[joinR] true: 1;
endrewards
```

D. PRISM Model for TB Key Update

```
ctmc
// time unit: 1 day
const int M; // number of months between resets
const int k;
const double mean = 30*M;
                // Maximum number of devices
const int Max;
const double R_join; // Rate of join per device
const double R_leave; // Rate of leave per device
const double R_message; // Rate of message per device
const double P_comp; // Risk of key leakage per device
module DEVICES
Size: [0..Max] init Max;
[leave] Size>0 -> R_leave*(1-P_comp)*Size: (Size'=Size-1);
[leaveC] Size>0 -> R_leave*P_comp*Size: (Size'=Size-1);
[join] Size<Max -> R_join*(Max-Size): (Size'=Size+1);
[message] Size>0 -> R_message*(1-P_comp)*Size:
                                                                true:
[messageC] Size>0 -> R_message*P_comp*Size:
[reset] true
             -> 1:
endmodule
module COORDINATOR
Comp: bool init false;
i:[1..k+1];
[join] true ->
                       true;
[leave] true ->
                       true;
[leaveC] true ->
                        (Comp'=true);
         i < k -> k/mean : (i'=i+1);
[message] true ->
                      true;
[messageC] true ->
                          (Comp'=true);
[reset] i = k \rightarrow k/mean : (i'=1) & (Comp'=false);
endmodule
rewards "Replacements"
 [reset] true: 1;
endrewards
```

E. PRISM Model for MB Key Update

```
ctmc
// time unit: 1 day

const int MSG; // threshold for number of messages

const int Max; // Maximum number of devices
const double R_join; // Rate of join per device
const double R_leave; // Rate of leave per device
const double R_message; // Rate of message per device
const double P_comp; // Risk of key leakage per device
```

module DEVICES

```
[join] Size<Max -> R_join*(Max-Size):
                                         (Size'=Size+1);
[leave] Size>0 -> R_leave*(1-P_comp)*Size: (Size'=Size-1);
 [leaveC] Size>0 -> R_leave*P_comp*Size: (Size'=Size-1);
 [message] Size>0 -> R_message*(1-P_comp)*Size:
                                                                true;
[messageC] Size>0 -> R_message*P_comp*Size:
                                                     true;
[messageR] Size>0 -> R_message*Size:
                                                     true:
endmodule
module COORDINATOR
Comp: bool init false;
C_msg: [0..MSG] init 0;
[join] true -> true;
[leave] true -> true;
 [leaveC] true -> (Comp'=true);
 [message] C_msg<MSG-1 -> (C_msg'=C_msg+1);
 [messageC] C_msg < MSG-1 \rightarrow (C_msg'=C_msg+1) \& (Comp'=true);
[messageR] C_msg=MSG-1 -> (C_msg'=0) & (Comp'=false);
endmodule
rewards "Replacements"
 [messageR] true: 1;
endrewards
F. PRISM Model for Hy/MB Key Update
ctmc
// time unit: 1 day
const int J; // threshold for number of joins
const int N=J; // threshold for number of leaves
const int M=J; // number of months between resets
const int k:
const double mean = 30*M;
const int Max;
                // Maximum number of devices
const double R_join; // Rate of join per device
const double R_leave; // Rate of leave per device
const double R_message; // Rate of message per device
const double P_comp; // Risk of key leakage per device
module DEVICES
Size: [0..Max] init Max;
[join] Size<Max -> R_join*(Max-Size):
                                         (Size'=Size+1);
[joinR] Size<Max -> R_join*(Max-Size):
                                          (Size'=Size+1);
[leave] Size>0 -> R_leave*(1-P_comp)*Size: (Size'=Size-1);
[leaveC] Size>0 -> R_leave*P_comp*Size: (Size'=Size-1);
 [leaveR] Size>0 -> R_leave*Size:
                                          (Size'=Size-1);
 [message] Size>0 -> R_message*(1-P_comp)*Size:
                                                                true:
 [messageC] Size>0 -> R_message*P_comp*Size:
[reset] true -> 1:
endmodule
module COORDINATOR
Comp: bool init false;
C join: [0...] init 0;
C_leave: [0..N] init 0;
i:[1..k+1];
[join] C_join<J-1 -> (C_join'=C_join+1);
[joinR] C_join=J-1-> (C_join'=0) & (C_leave'=0) & (i'=1) & (Comp'=false);
```

Size: [0..Max] init Max;

```
[leave] C_leave<N-1 -> (C_leave'=C_leave+1); [leaveC] C_leave<N-1 -> (C_leave'=C_leave+1) & (Comp'=true); [leaveR] C_leave=N-1 -> (C_join'=0) & (C_leave'=0) & (i'=1) & (Comp'=false); [message] true -> true; [messageC] true -> (Comp'=true); [] i < k -> k/mean : (i'=i+1); [reset] i = k -> k/mean : (C_join'=0) & (C_leave'=0) & (i'=1) & (Comp'=false); endmodule rewards "Replacements" [joinR] true: 1; [leaveR] true: 1; [reset] true: 1; endrewards
```

G. CSL Formulae

```
const double T;

// Question 1: Key compromise in the long run
S=? [ Comp ]

// Question 2: Number of key updates
R{"Replacements"}=? [ C<=30*T ]

// Question 3: Key compromise at monthly time instants
P=? [ F[30*T,30*T] Comp ]
```

H. Input Parameters

We have presented all the input values for our analyses in Table 4. Further details on the parameters can be found in [11YNN+]. In addition, Gauss-Seidel method is used as the linear equation method, when necessary.

Table 4: Input Values

	LB	JB	JLB	TB	MB	Hy/MB			
MAX	50	50							
Rjoin	0.5								
Rleave	0.00274								
Rmessage	1								
Pcomp	0.0001								
k	N/A	N/A	N/A	100	N/A	100			
Threshold	1,	1,	1,	1,	500,	1,			
Values	2,	2,	2,	2,	1000,	2,			
	3,	3,	3,	3,	1500,	3,			
	4,	4,	4,	4,	2000,	4,			
	5	5	5	5	2500	5			
Threshold	Device	Device	Device	Month	Message	Device			
Unit						and			
						Month			
Time Unit	Day								

I. State Space

In this appendix, we present the state space information for the running example.

I.1 State Space for LB

In Figure 22, we present the influence of the two main parameters: Network size (max), and Threshold on the state space. Further details on the exact numerical values for states as well as transitions can be found in Table 5 and Table 6.

Figure 22: Influence of the network size and the key update threshold on the state space, in LB.

Table 5: Number of states in LB strategy.

		Max		
		50	100	500
	1	101	201	1001
ds	2	203	403	2003
hol	3	305	605	3005
[hresholds	4	407	807	4007
Th1	5	509	1009	5009

Table 6: Number of transitions in LB strategy.

		Max		
		50	100	500
	1	349	699	3499
ds	2	749	1499	7499
hol	3	1149	2299	11499
Thresholds	4	1549	3099	15499
Th	5	1949	3899	19499

I.2 State Space for JB

In Figure 23, we present the influence of the two main parameters: Network size (max), and Threshold on the state space. Further details on the exact numerical values for states as well as transitions can be found in Table 7 and Table 8.

Figure 23: Influence of the network size and the key update threshold on the state space, in JB.

Table 7: Number of states in JB strategy.

		Max		
		50	100	500
	1	102	202	1002
qs	2	204	404	2004
hol	3	306	606	3006
Thresholds	4	408	808	4008
Thi	5	510	1010	5010

Table 8: Number of transitions in JB strategy.

		Max		
		50	100	500
	1	400	800	4000
ds	2	800	1600	8000
hol	3	1200	2400	12000
Thresholds	4	1600	3200	16000
Thi	5	2000	4000	20000

I.3 State Space for JLB

In Figure 24, we present the influence of the two main parameters: Network size (max), and Threshold on the state space. Further details on the exact numerical values for states as well as transitions can be found in Table 9 and Table 10.

Figure 24: Influence of the network size and the key update threshold on the state space, in JLB.

Table 9: Number of states in JLB strategy.

		Max		
		50	100	500
[hresholds	1	101	201	1001
	2	101	201	1001
	3	305	605	3005
	4	203	403	2003
Thi	5	509	1009	5009

Table 10: Number of transitions in JLB strategy.

		Max		
		50	100	500
Thresholds	1	349	699	3499
	2	374	749	3749
	3	1149	2299	11499
	4	774	1549	7749
	5	1949	3899	19499

I.4 State Space for TB

In Figure 25, we present the influence of the two main parameters: Network size (max), and Threshold on the state space. Further details on the exact numerical values for states as well as transitions can be found in Table 11 and Table 12.

Figure 25: Influence of the network size and the key update threshold on the state space, in TB.

Table 11: Number of states in TB strategy.

		Max	Max		
		50	100	500	
Thresholds	1	10200	20200	100200	
	2	10200	20200	100200	
	3	10200	20200	100200	
	4	10200	20200	100200	
Thr	5	10200	20200	100200	

Table 12: Number of transitions in TB strategy.

		Max		
		50	100	500
	1	50200	100200	500200
Thresholds	2	50200	100200	500200
	3	50200	100200	500200
	4	50200	100200	500200
	5	50200	100200	500200

I.5 State Space for MB

In Figure 26, we present the influence of the two main parameters: Network size (max), and Threshold on the state space. Further details on the exact numerical values for states as well as transitions can be found in Table 13 and Table 14.

Figure 26: Influence of the network size and the key update threshold on the state space, in MB.

Table 13: Number of states in MB strategy.

		Max		
		50	100	500
	500	51000	101000	501000
ds	1000	102000	202000	1002000
[hresholds	1500	153000	303000	1503000
[səz]	2000	204000	404000	2004000
Thı	2500	255000	505000	2505000

Table 14: Number of transitions in MB strategy.

		Max		
		50	100	500
	500	199950	399900	1999500
qs	1000	399950	799900	3999500
hol	1500	599950	1199900	5999500
[hresholds	2000	799950	1599900	7999500
Thı	2500	999950	1999900	9999500

I.6 State Space for Hy

In Figure 27, we present the influence of the two main parameters: Network size (max), and Threshold on the state space. Further details on the exact numerical values for states as well as transitions can be found in Table 15 and Table 16.

Figure 27: Influence of the network size and the key update threshold on the state space, in Hy.

Table 15: Number of states in Hy strategy.

		Max		
		50	100	500
	1	10100	20100	100100
Thresholds	2	40300	80300	400300
	3	90100	180100	900100
	4	159100	319100	1599100
	5	246900	496900	2496900

In

Table 16: Number of transitions in Hy strategy.

		Max		
		50	100	500
[hresholds]	1	45000	90000	450000
	2	189500	379500	1899500
	3	431300	866300	4346300
	4	768400	1548400	7788400
Th	5	1198800	2423800	12223800