

• A surface-only scene

- Area light
- Walls and ceiling
- A glass ball

- A surface-only scene filled with gas
 - Area light
 - Walls and ceiling
 - A glass ball

• Sampling Challenge

• Surface: O(N^2)

Volume: O(N^3)

Sampling Challenge

• Surface: O(N^2)

Volume: O(N^3)

Strong Correlation

- Important light path
- Estimation
- Gradient

$$L(x,\omega) = \int_x^x T_r\left(x_t \leftrightarrow x
ight) \sigma_s(x_t) L_s(x_t,\omega) dx_t + T_r(x_d \leftrightarrow x) L_d(x_d,\omega)$$

$$L(x,\omega) = \int_x^x T_r(x_t \leftrightarrow x) \sigma_s(x_t) L_s(x_t,\omega) dx_t + T_r(x_d \leftrightarrow x) L_d(x_d,\omega)$$

$$L(x,\omega) = \int_{x_t}^x T_r(x_t \leftrightarrow x) \sigma_s(x_t) L_s(x_t,\omega) dx_t + T_r(x_d \leftrightarrow x) L_d(x_d,\omega)$$

$$L(x,\omega) = \int_{x_d}^x T_r(x_t \leftrightarrow x) \sigma_s(x_t) rac{m{L}_s(x_t,\omega)}{m{L}_s(x_t,\omega)} dx_t + T_r(x_d \leftrightarrow x) L_d(x_d,\omega)$$

 $L(x,\omega) = \int_{x}^{x} T_r(x_t \leftrightarrow x) \sigma_s(x_t) rac{L_s(x_t,\omega)}{L_s(x_t,\omega)} dx_t + T_r(x_d \leftrightarrow x) L_d(x_d,\omega)$

$$L(x,\omega) = \int_{x}^{x} T_r(x_t \leftrightarrow x) \sigma_s(x_t) rac{L_s(x_t,\omega)}{L_s(x_t,\omega)} dx_t + T_r(x_d \leftrightarrow x) L_d(x_d,\omega)$$

$$L(x,\omega) = \int_{x}^{x} T_r(x_t \leftrightarrow x) \sigma_s(x_t) rac{L_s(x_t,\omega)}{L_s(x_t,\omega)} dx_t + T_r(x_d \leftrightarrow x) L_d(x_d,\omega)$$

$$L(x,\omega) = \int_{x_t}^x T_r(x_t \leftrightarrow x) \sigma_s(x_t) rac{L_s(x_t,\omega)}{L_s(x_t,\omega)} dx_t + T_r(x_d \leftrightarrow x) L_d(x_d,\omega)$$

Previous work

- Rendering Equation
- Monte Carlo
 - Path Tracing
 - BDPT
- Markov Chain Monte Carlo
 - MLT
 - MLT for participating media

Goals

- Gradient Algorithm
- Gradient mutation

Related Work

• Radiance cache for participating media

Transmittance

Transmittance gives the fraction of radiance that is transmitted between two points

Ratio Tracking

Ratio Tracking

$$T_r(x_i \leftrightarrow x_{i+1}) = \prod_{j=0}^k \left(1 - rac{\sigma_t(oldsymbol{x_j})}{\overline{\sigma}}
ight)$$

Ratio Tracking

$$T_r(x_i \leftrightarrow x_{i+1}) = \prod_{j=0}^k \left(1 - rac{\sigma_t(oldsymbol{x_j})}{\overline{\sigma}}
ight)$$

Gradient of Transmittance

$$T_r(\blacksquare) = \sum (\bullet)$$

Gradient of Transmittance

$$\nabla T_r(\blacksquare) = \sum (\bullet)$$

Gradient of Transmittance

$$egin{split}
abla ig(T_r(x_i \leftrightarrow x_{i+1})ig) = &-T_r(x_i \leftrightarrow x_{i+1}) \left(\sum_{j=0}^n rac{rac{c_j}{c_n}
abla \sigma_t(oldsymbol{x}_j)}{\overline{\sigma} - \sigma_t(x_j)} + \sigma_{avg} rac{\overrightarrow{x}_i x_{i+1}}{\left\| \overrightarrow{x}_i x_{i+1}
ight\|}
ight) \end{split}$$

Gradient of Transmittance

$$T_r(\longrightarrow) \approx T_r(\longrightarrow) + \langle \nabla T_r(\longrightarrow), V(\lnot \searrow) \rangle$$

Phase function

Phase function

A Phase function describes this angular distribution of scattered radiance at a given point.

Phase function

A Phase function describes this angular distribution of scattered radiance at a given point.

Henyey-Greenstein phase function:

$$rac{f_p}{4\pi} = rac{1-g^2}{(1+g^2-2g(\cos heta))^{3/2}}$$

$$abla\!\cos\! heta(\omega_i) = rac{\hat{\omega}_o}{|\omega_i|} - \cos\! hetarac{\omega_i}{|\omega_i|^2}$$

$$abla\!\cos\! heta(\omega_i) = rac{\hat{\omega}_o}{|\omega_i|} - \cos\! hetarac{\omega_i}{|\omega_i|^2}$$

$$abla \cos heta(\omega_i,\omega_o) = \hat{\omega}_i$$

$$abla \cos heta(\omega_i, \omega_o) =
onumber \ rac{\hat{\omega}_o}{|\omega_i|} - \cos heta rac{\omega_i}{|\omega_o|^2} + rac{\hat{\omega}_i}{|\omega_o|} - \cos heta rac{\omega_o}{|\omega_o|^2}$$

Geometry factor

The geometry factor is the derivative of projected solid angle with respect to the area

Gradient of Geometry factor

$$G(\longrightarrow) = \frac{1}{\| \longrightarrow \|^2}$$

$$\nabla G(\longrightarrow) = \frac{2}{\| \longrightarrow \|^4} (\longrightarrow)$$

Gradient of light path

$$\nabla T_{r}() \qquad \nabla f_{p}() \qquad \nabla G()$$

$$\nabla L = L^{*}\left(\frac{\nabla T_{r}(x_{1} \leftrightarrow x_{2})}{T_{r}(x_{1} \leftrightarrow x_{2})} + \frac{\nabla T_{r}(x_{2} \leftrightarrow x_{3})}{T_{r}(x_{2} \leftrightarrow x_{3})} + \frac{\nabla f_{p}(x_{1})}{f_{p}(x_{1})} + \frac{\nabla f_{p}(x_{2})}{f_{p}(x_{2})} + \frac{\nabla f_{p}(x_{3})}{f_{p}(x_{3})} + \frac{\nabla G(x_{1} \leftrightarrow x_{2})}{G(x_{1} \leftrightarrow x_{2})} + \frac{\nabla G(x_{2} \leftrightarrow x_{3})}{G(x_{2} \leftrightarrow x_{3})}\right)$$

 $L(\longrightarrow) \approx L(\longrightarrow) + \langle \nabla L(\longrightarrow), V(\stackrel{\bullet}{:}) \rangle$

Gradient of light path

Gradient of light path

Implementation

- MLT
 - BDPT
 - M-H algorithm

Sampling in the medium

Sampling in the medium

 $pdf_{medium} = pdf_{distance} \cdot pdf_{direction}$

BDPT Connection

Vertex Type

Primary Sample Space

Primary Sample Space

Result

- All result rendered:
 - With up to 128 samples per pixel
 - an Intel Core i7-8550U at 1.8GHz using 8 cores
 - Pbrt-v3
 - 4 scenes

Contributions

- Gradient Algorithm
 - Computation
 - Availability
- Gradient Strategy
 - Path Space Strategy

Limitation

- Gradient algorithm is biased
- Edge Detection

Future Work

- Availability
 - GPU
 - Complicated BSDF function
- Accuracy
 - Precision Loss analysis
 - A well-designed radius-reduction scheme

THANK YOU