Решение:

- Составим интервальное распределение выборки

Выстроим в порядке возрастания, имеющиеся у нас значения

[7.2 11.2 16.5 19. 19.6 22.2 22.7 23.2 23.6 24.2]

[25. 27.9 28.2 28.2 29.6 29.6 30.5 31.2 31.2 31.2]

[31.3 32.4 33.2 34.7 35.7 36.8 38.3 38.8 40. 40.5]

[40.9 42.2 42.2 43.2 43.2 43.5 43.6 43.7 44.2 45.]

[45. 45.2 45.2 46.2 47.2 47.3 47.5 47.7 48.6 49.]

[49. 49.9 50. 50. 50.2 50.6 50.7 50.9 51.1 51.2]

[51.2 51.4 52. 52.5 52.9 53.2 54.2 55.2 55.2 55.6]

[56.2 56.2 56.6 57.8 58.4 58.7 58.7 59.4 59.5 59.8]

[60.5 63.9 64. 64.2 64.2 66. 66. 68.2 69.8 70.3]

[70.4 71.6 72.4 76.2 77.7 77.9 79.5 79.7 86. 91.2]

Шаг 1. Найти размах вариации

$$R = x_{max} - x_{min}$$

Опрделим максимальное и минимальное значение имеющихся значений: $x_{min} = 7.2; \ x_{max} = 91.2$

Шаг 2. Найти оптимальное количество интервалов

Скобка [] означает целую часть (округление вниз до целого числа).

$$k = 1 + [3,222 * lg(N)]$$

$$k = 1 + |3,222 * lg(100)| = 1 + |6.444| = 1 + 6 = 7$$

Шаг 3. Найти шаг интервального ряда

Скобка [] означает округление вверх, в данном случае не обязательно до целого числа

$$h = \left[\frac{R}{k}\right] = \left[\frac{84.0}{7}\right] = [12.0] = 12$$

Шаг 4. Найти узлы ряда:

$$a_0 = x_{\min} = 7.2$$

 $a_i = a_0 + i * h = 7.2 + i * 12, i = 1, ..., 7$

Заметим, что поскольку шаг h находится с округлением вверх, последний узел $a_k >= x_{max}$

$$[a_{i-1}; a_i)$$
: [7.2; 19.2); [19.2; 31.2); [31.2; 43.2); [43.2; 55.2); [55.2; 67.2); [67.2; 79.2); [79.2; 91.2)

- построим гистограмму относительных частот;

Найти частоты f_i — число попаданий значений признака в каждый из интервалов $[a_{i-1},a_i)$

$$f_i = n_i$$
, n_i — количество точек на интервале $[a_{i-1}; \ a_i)$

Относительная частота интервала $[a_{i-1};a_i)$ - это отношение частоты f_i к общему количеству исходов:

$$w_i = \frac{f_i}{100}, i = 1, ..., 7$$

$[a_{i-1};a_i)$	[7.2, 19.2)	[19.2, 31.2)	[31.2, 43.2)	[43.2, 55.2)	[55.2, 67.2)	[67.2, 79.2)	[79.2, 91.2)
n_i	4	13	16	34	20	9	3
n	100	100	100	100	100	100	100
w_i	0.04	0.13	0.16	0.34	0.2	0.09	0.03

- Перейдем от составленного интервального распределения к точечному выборочному распределению, взяв за значение признака середины частичных интервалов.

x_i	13.20	25.20	37.20	49.20	61.20	73.20	85.20
n_t	4.00	13.00	16.00	34.00	20.00	9.00	3.00
n	100.00	100.00	100.00	100.00	100.00	100.00	100.00
w_t	0.04	0.13	0.16	0.34	0.20	0.09	0.03

- Построим полигон относительных частот и найдем эмпирическую функцию распределения, построим ее график:

Полигон относительных частот интервального ряда — это ломаная, соединяющая точки (x_i, w_i) , где x_i - середины интервалов:

$$x_i = \frac{a_{i-1} + a_i}{2}, i = 1, ..., 7$$

- найдем эмпирическую функцию распределения и построим ее график;

$$n = 100$$

$$n_x = [4, 13, 16, 34, 20, 9, 3]$$

$$x_i = [13.2, 25.2, 37.2, 49.2, 61.2, 73.2, 85.2]$$

0.0, x <= 13.2, 0.0, x <- 15.2, 0.04, 13.2 <= x <= 25.2, 0.17, 25.2 <= x <= 37.2, 0.33, 37.2 <= x <= 49.2, 0.67, 49.2 <= x <= 61.2, 0.87, 61.2 <= x <= 73.2, 0.96, 73.2 <= x <= 85.2, 0.99, x > 85.2;

- вычислим все точечные статистические оценки числовых характеристик признака: среднее \overline{X} ; выборочную дисперсию и исправленную выборочную дисперсию; выборочное с.к.о. и исправленное выборочное с.к.о. s;

$$\bar{X} = \sum_{i=1}^{7} (w_i * x_i)$$

$$= 0.04 * 13.2 + 0.13 * 25.2 + 0.16 * 37.2 + 0.34 * 49.2 + 0.2 * 61.2 + 0.09 * 73.2 + 0.03 * 85.2 =$$

$$= 0.528 + 3.276 + 5.952 + 16.728 + 12.24 + 6.588 + 2.556 =$$

$$= 47.868$$

Выборочная средняя:

$$X_{\rm cp} = \sum_{i=1}^{7} (x_i * w_i) = 47.868$$

Выборочная дисперсия:

$$D = \sum_{i=1}^{7} (x_i - X_{cp})^2 * w_i =$$

$$= (13.2 - 47.868)^{2} * 0.04 + (25.2 - 47.868)^{2} * 0.13 + (37.2 - 47.868)^{2} * 0.16 + (49.2 - 47.868)^{2} * 0.34 + (61.2 - 47.868)^{2} * 0.2 + (73.2 - 47.868)^{2} * 0.09 + (85.2 - 47.868)^{2} * 0.03 = = 268.7987$$

Исправленная выборочная дисперсия

$$S^2 = \frac{N}{N-1} * D = \frac{100}{99} * 268.7987 = 271.5138$$

Выборочное среднее квадратичное отклонение:

$$\sigma = \sqrt{D} = \sqrt{268.7987} \approx 16.3950$$

исправленное выборочное с.к.о s

$$s = \sqrt{S^2} = \sqrt{271.5138} \approx 16.4776$$

считая первый столбец таблицы выборкой значений признака X, а второй выборкой значений Y, оценить тесноту линейной корреляционной
зависимости между признаками и составить выборочное уравнение прямой
регрессии Y на X

X = [51.455.242.243.259.460.586.43.277.759.5]

 $Y = [11.2 \ 22.2 \ 46.2 \ 47.2 \ 45.2 \ 43.7 \ 56.2 \ 50.2 \ 49.9 \ 22.7]$

Xi	Ji	X:•96	χ_{i}^{2}	yi
51.40	11.20	575.68	2641.96	125.44
55.20	22.20	1225.44	3047.04	492.84
42.20	46.20	1949.64	1780.84	2134.44
43.20	47.20	2039.04	1866.24	2227.84
59.40	45.20	2684.88	3528.36	2043.04
60.50	43.70	2643.85	3660.25	1909.69
86.00	56.20	4833.20	7396.00	3158.44
43.20	50.20	2168.64	1866.24	2520.04
77.70	49.90	3877.23	6037.29	2490.01
59.50	22.70	1350.65	3540.25	515.29
578.30	394.70	23348.25	35364.47	17617.07

1) Оценить тесноту линейной корреляционной зависимости между признаками

Коэффициент корреляции Пирсона вычисляется по формуле:

$$r_{xy} = \frac{\overline{x \cdot y} - \overline{x} \cdot \overline{y}}{\sigma(x) \cdot \sigma(y)},$$

где x_i — значения, принимаемые в выборке X, y_i — значения, принимаемые в выборке Y; \overline{x} — среднее значение по X, \overline{y} — среднее значение по Y.

$$r_{xy} = \frac{\overline{x \cdot y} - \overline{x} \cdot \overline{y}}{\sigma(x) \cdot \sigma(y)} = \frac{\overline{x \cdot y} - \overline{x} \cdot \overline{y}}{\sqrt{\overline{x^2} - (\overline{x})^2} \cdot \sqrt{\overline{y^2} - (\overline{y})^2}} =$$

$$\frac{\frac{23348.25}{10} - \frac{578.3}{10} * \frac{394.7}{10}}{\sqrt{\frac{35364.47}{10} - \left(\frac{578.3}{10}\right)^2} * \sqrt{\frac{17617.07}{10} - \left(\frac{394.7}{10}\right)^2}} = 0.26415$$

2) Составим выборочное уравнение прямой регрессии Y на X

2) линейное уравнение регрессии Уна Х

$$y_{x} - y = r_{xy} \cdot \frac{\sigma_{by}}{\sigma_{bx}} (x - x)$$
 => $y_{x} = r_{xy} \cdot \frac{\sigma_{by}}{\sigma_{bx}} \cdot x + (y - x) \cdot \frac{\sigma_{by}}{\sigma_{bx}})$ $x = \frac{1}{n} \sum_{i=1}^{n} x_{i} = 57,83$ $y = \frac{1}{n} \sum_{i=1}^{n} y_{i} = 39,44$

$$\sigma_{ex}^{2} = \frac{1}{n} \sum_{i=1}^{n} x_{i}^{2} - \overline{x}^{2} = \ell \Im \lambda_{i} \ell \Im \delta_{i} = \sigma_{ex} \approx \ell \Im \delta_{i} \ell \Im \delta_{i}$$

$$\sigma_{ey}^{2} = \frac{1}{n} \sum_{i=1}^{n} y_{i}^{2} - \overline{y}^{2} = 2 \Im \lambda_{i} \Im \delta_{i} = \sigma_{ey} \Im \delta_{i} \Im \delta_{i}$$

$$\overline{\mu}_{xy} = \frac{1}{n} \sum_{i=1}^{n} x_{i} y_{i} - \overline{xy} = 2 \Im \delta_{i} \Im \delta_{i} \Im \delta_{i}$$

$$\pi_{xy} = \frac{1}{n} \sum_{i=1}^{n} x_{i} y_{i} - \overline{xy} = 2 \Im \delta_{i} \Im \delta_{i} \Im \delta_{i}$$

$$y_x = 0.2721 * x + 23.7362$$
$$r_{xy} = 0.2642$$