Introduction'); DROP TABLE Syllabus; --

Secure Systems Engineering Fall 2024

August 28, 2024 Tushar Jois

\$ whoami

Tushar Jois (he/him)

Assistant professor
Electrical engineering
Computer security & privacy

Likes: computers, road trips, board games

Dislikes: mass surveillance, beets, computers

- \$ whoami
- tushar
- \$ who

Survey time!

By show of hands, how many of you...

- Have configured a personal firewall
- Have used a virtual machine
- Have used Wireshark
- Know how to read tcpdump output manually
- Understand how a buffer overflow works
- Have written shellcode for a buffer overflow
- Have written Rust code
- Know what IKE stands for
- Understand how certificate chains work
- Have browsed the Internet using Tor
- Have written a virus or worm
- Have hacked into someone else's system

\$ whoami
tushar
\$ who
successful survey

\$ why

Course goals

- Know core security concepts, both in theory and practice
- Apply the proper defenses to common attacks on systems
- Understand the societal, cultural, and political implications of the field
- Be prepared for research, if you so choose

- Come to class on-time and ready to contribute
- Be prepared to collaborate with your peers on labs and projects
- Complete coursework honestly and with effort
- Respect your classmates, as well as the course staff

Course expectations

Course information

- Required text: None!
 - But, there will be posted readings
- Please do the readings
 - To make sure you do them, there will be reading quizzes!
- Course page: https://tjo.is/teaching/sse-fa24/
 - Has the course schedule, which has due dates and links to materials
 - Familiarize yourself with the content of the syllabus (below the schedule)
- Content submission: Blackboard
- Discussion board for assignment questions: Blackboard
- Late work <u>not permitted!</u>
 - If you have an excuse, please inform the staff in advance for consideration

In-class activity

- Second half of class each week
 - After lecture and a short break
 - Come prepared to contribute to discussion topics and work through hands-on lab problems
- Bring your laptop to follow along, or you can use the lab's (Linux) PCs
 - We have a course virtual machine for some labs (see course page for link)
 - Let the course staff know ASAP if this is not possible for you
- Some assignments can be completed in-class, others will require take-home effort
- Topics covered will be on the exam
 - Lectures are not the only source of content!
- Generative Al use is <u>not allowed</u> for this class

Course project: capture-the-flag

- Your team will
 develop a voting
 machine that is
 intentionally
 vulnerable to attack
- You'll use the vulnerabilities that you learn from the labs and hide it into the voting machine

The case study:

An electronic voting machine

- Another group takes
 your code and
 attempts to figure out
 what the
 vulnerabilities are
- Then, you'll try to exploit them!
- More details to come

Course schedule

(as of 2024-08-28; subject to change; see latest version here)

Date	Lecture topic	In-class activity	Reading	Deliverables
Aug 28	Course intro & Unix security basics	Lab 1: Introduction	Security Engineering book chapter	Labs are due 10p Tue after they are out
Sep 4	Rust programming (guest lecture)	Lab 2: Hands-on with Rust	Rust Book, chapters 1, 3-6	
Sep 11	Buffer overflows	Lab 3: Buffer overflows	Book chapter (see Blackboard)	
Sep 18	Practical cryptography	Lab 4: Cryptography in Rust	Rust Book, chapters 7-11	
Sep 25	Transport Layer Security (TLS)	Lab 5: Wireshark & TLS	The Illustrated TLS 1.2 Connection	
Oct 2	Fall break (no class)			
Oct 9	Exam 1	Project introduction & group assignment		Project description out (note due dates

Course schedule

(as of 2024-08-28; subject to change; see latest version here)

Date	Lecture topic	In-class activity	Reading	Deliverables
Oct 16	Backdoors in secure systems (online lecture)	Lab 6: Trusting Trust	Reflections on Trusting Trust	
Oct 23	Case study: electronic voting	Project check-in 1 & in-class work	Blaze law review paper	Project check-ins are due 10p the same day they are out
Oct 30	Privacy & anonymity	Lab 7: Privacy	Double Ratchet specification, sections 1, 2; optional: Tor paper	
Nov 6	Advanced topics	Project check-in 2 & in-class work	DOVE research paper	
Nov 13	Exam 2	Project check-in 3 & in-class work		Submit Project code by 10p Nov 19

Course schedule

(as of 2024-08-28; subject to change; see latest version here)

Date	Lecture topic	In-class activity	Reading	Deliverables
Nov 20	Demo practice & red team analysis (self-guided)	Project check-in 4 & in-class work		
Nov 27	Thanksgiving (no class)			
Dec 4	Project code demos			Submit Project presentation slides by 10p Dec 10
Dec 11	Project presentations			

40% Midterm exams (2 total)

Security engineering

Ross Anderson

Professor, University of Cambridge

Threat modeling

Airport security

Activity

Unix isolation

Looking ahead

- Review the course page for the class
 - QR code, on Blackboard, and at https://tjo.is
 - Read through the whole syllabus!
- Next class will be an **online guest lecture** by David Inyangson
 - Being on camera will be required
 - Details will be available on Blackboard, so keep an eye out
- Do the reading for next time
 - There will be a reading quiz!
- If you can, bring your laptop to work on the in-class activity
- Read stuff! Hacker News, Lobste.rs, Ars Technica
- Today's assignment: fun with GDB!

