ARITHMETIC CAPITULO XXIII

5th
Análisis Combinatorio

MOTIVATING STRATEGY

permutaciones

¿Cuántas maneras diferentes se podrá efectuar la compra de una lavadora, una batidora y un TV, si hay 8 modelos de lavadoras, 5 modelos diferentes de batidoras y 7 modelos de TV?

Existen algunas técnicas de conteo para diferentes problemas.

principio aditivo aditivo principio aditivo aditivo principio aditivo aditivo aditivo aditivo

Ejm

Principios fundamentales del análisis

combinatorio

Principio de adición

Evento

Evento

Mutuamente

excluyentes

maneras maneras

Se podrá ejecutar de

n + m maneras

A y B no se dan uno a continuación del otro sino cada uno por separado

¿De cuántas maneras se puede elegir una película entre 3 de acción y 5 de comedia?

 N° de maneras = 3 + 5 = 8

2 Principio de multiplicación

Evento

A

y

B

No

mutuamente

"n"

excluyentes

maneras maneras

Se podrán realizar de

(n x m) maneras

A y B se dan simultáneamente, es decir, uno a continuación del otro

Ejm

Si se lanza un dado y una moneda simultáneamente, ¿cuántos resultados diferentes se obtienen?

3 Permutaciones

$$P_n = n!$$

Ejm

Un torneo de 5 equipos de futbol, <u>¿</u>de cuántas maneras podrá quedar la tabla final?

$$P_5 = 5! = 120$$

$$P_{C}(n) = (n-1)!$$

Ejm

¿De cuántas maneras se podrán sentar alrededor de una mesa una familia compuesta por un padre, una madre y 3 hijos?

$$P_{C}(5) = (5-1)! = 4! = 24$$

3 Permutación con repetición

$$p_{(n_1;n_2;...;n_k)}^n = \frac{n!}{n_1! \times n_2! \times x \times n_k!}$$

4 Combinaciones

$$C_r^n = \frac{n!}{(n-r)!x \ n!}$$

$$0 \le r \le n$$

Ejm

De un grupo de 7 alumnos, se desea formar comisiones de tres personas. ¿De cuántas maneras se podrá lograr este objetivo?

$$C_3^7 = \frac{7!}{4! \times 3!} = \frac{7 \times 6 \times 5}{1 \times 2 \times 3} = 35$$

Combinaciones con repetición

$$CR_n^m = C_n^{(n+m-1)}$$

Ejm

¿Cuántas son las soluciones enteras no negativas de a + b + c + d = 6?

$$CR_6^4 = C_6^{(6+4-1)} = \frac{9!}{6! \times 3!} = 84$$

1.

¿Cuántas palabras con sentido o no, se pueden formar con todas las letras de la palabra AMARRADA?

Resolución

Permutación con repetición

$$P_{4;2}^{8} = \frac{8!}{4! \times 2!}$$

$$= \frac{4! \times 5 \times 6 \times 7 \times 8}{4! \times 2}$$

RPTA: 840

2.

¿Cuántos comités de 6 personas se pueden formar con un grupo de 9 personas?

$$c_6^9 = \frac{9!}{6! \times 3!}$$

$$=\frac{6! \times 7 \times 8 \times 9}{6! \times 6}$$

<u>Resolución</u>

como no
interesa el
orden
aplicamos
combinaciones

$$C_k^n = \frac{n!}{(n-k)! \cdot k!}$$

= 84

La cantidad de comités es:

RPTA: 84

3.

Por el cumpleaños del profesor Carlos, este y su esposa van a cenar con 4 de sus colegas y sus respectivas esposas. ¿De cuántas maneras pueden sentarse а una mesa circular si los esposos no se separan?

<u>Resolución</u>

PERMUTACIÓN CIRCULAR

5 parejas de esposos (se sientan juntos):

$$P_{C}(5) = 4! = 24$$

cada pareja:

$$(2!)^5 = 32$$

4. En una reunión hay 12 hombres y 7 mujeres, se desea formar grupos de 3 personas. ¿De cuántas maneras podrán hacerlo si deben de haber, por lo menos, 2 mujeres en el grupo?

Resolución

como no interesa el orden aplicamos combinaciones

Del dato tenemos:
Al menos dos mujeres

*
$$C_2^7 \times C_1^{12}$$
7! 12!
 $(7-2)!.2! \times (12-1)!.1!$

$$\frac{7.8.8!}{2.5!} \times \frac{12.14!}{1.14!} = 252$$
** además: $C_3^7 \times C_0^{12}$

7!
$$\frac{7!}{(7-3)!3!} \times \frac{12!}{(12-0)!0!} \therefore piden: número de maneras 252+35$$
** RPTA: 287

5. 4 hombres y 3 mujeres deben sentarse en una fila de 7 asientos de modo que ningún hombre ocupe sitio par. ¿De cuántas maneras diferentes podrán sentarse?

Donde:

 $# maneras = 24 \times 6$

Piden: # maneras diferentes

∴ Total = 144 maneras

RРТА: 144

6. Se tiene un estante con capacidad para 9 libros. Si en él se quiere ordenar 4 libros de Física, 3 libros de Química y 2 de Aritmética, ¿de cuántas maneras se podrá utilizar esto si los de

Aritmética siempre se ubican a los extremos?

Donde: Total = 4 física + 3 química

Total = 7 libros

aplicando permutación lineal 7! = 5040 Piden: # maneras

Piden: # maneras diferentes

Total = $5040 \times 2!$

∴ 10080 maneras

RPTA: 10080

7. Carlota tiene 8 amigas de confianza y desea hacer una reunión. ¿De cuántas maneras diferentes puede invitar a 5 de ellas si dos de ellas no se llevan bien y no asisten juntas?

Resolución

Del dato tenemos:

De 8 Personas debe invitar a 5; pero las amigas A y B no pueden asistir juntas

aplicando combinación

$$C_k^n = \frac{n!}{(n-k)! \cdot k!}$$

Donde:

Casos no deseados

X = Total de casos -

(A y B asisten juntos)

$$X = \frac{C_5^8}{5} - \frac{C_3^6}{3}$$

$$X = \frac{8!}{(8-5)!5!} - \frac{6!}{(6-3)!3!}$$

$$X = \frac{8.7.\%.5!}{3!.5!} - \frac{6.5.4.3!}{3!.3!}$$

$$X = \frac{8.7.\%.5!}{3!.5!} - \frac{6.5.4.3!}{3!.3!}$$
Piden: $X = 56 - 20$

$$X = 36$$