情報工学科	科	コンピュータ工学 A		1単位	担	仲野 巧
平成29年度3学年	目	コード: 33126	履修単位	前学期	当	11 23

本校教育目標: ① JABEE 学習・教育到達目標: プログラム学習・教育到達目標:

科目概要: 情報化社会では、その中枢を担うコンピュータを理解することが必要である。そこで、パソコンを例に、コンピュータの動作原理とハードウェア全般について、最新の技術を学習する。また、簡単なマイクロプロセッサの動作をエミュレータで確認しながら内部を理解する。さらに、ユーザが論理回路を書き込むことができる素子(FPGA)の開発ソフト(QuartusII)を利用して回路図で基本的なコンピュータの回路を設計しながら動作を確認する。

教科書: FPGA ボードで学ぶ組込みシステム開発入門[Altera 編]小林優著(技術評論社)ISBN:978-4-7741-4839-7、「CASLⅡ」福嶋宏訓著(新星出版社)ISBN:978-4-405-04644-3

その他:ディジタル回路の教科書、および教材用プリント(電子資料)

評価方法: 定期試験(40%) / 課題(30%) 小テスト(30%)

授業内容	授業 時間
(1) シラバスの説明(評価基準)、5大装置、ノートパソコンの仕様調査、学習レポートの提出	2
(2) パソコンの基礎:汎用 CPU と PC のハードウェア、フリーソフトウェア、開発ツールのインストール	2
(3) コンピュータの基礎:コンピュータの構成と動作、ゲート回路とフリップ・フロップ	2
(4) 論理回路の基礎:回路図による半加算器の設計とシミュレーション	2
(5) FPGA 実装:論理合成とコンフィグレーション	2
(6) 小テスト、まとめ	2
(7) 演算回路:モジュール化による全加算器の設計	2
(8) 記憶回路:レジスタ(カウンタ)の設計	2
(9) 記憶回路:メモリの設計	2
(10) 制御回路:状態遷移図による制御回路とマイクロプログラム制御の設計	2
(11) 命令メモリとマイクロプログラム制御の設計	2
(12) 小テスト、まとめ	2
(13) 4 ビットコンピュータの設計	2
(14) 4 ビットコンピュータの実装	2
(15) コンピュータのハードウェア(プロセッサ、メモリ、入出力)のまとめ	2

達成度目標

- (ア) パソコンのハードウェアが理解でき、説明できる。
- (イ) パソコンのソフトウェアが理解でき、リカバリーやバックアップについて説明できる。
- (ウ) コンピュータの構成と動作が理解でき、説明できる。
- (エ) コンピュータの内部回路が理解でき、動作について説明できる。
- (オ) 演算回路、記憶回路、制御回路が理解でき、設計について説明できる。
- (カ) 組合せ論理回路の機能が説明でき、設計できる。
- (キ) 順序論理回路の機能が説明でき、設計できる。

特記事項: ディジタル回路 AB、プログラミング Ⅱ AB の単位を修得していることが望ましい。なお、ノートパソコンを利用した演習、学習レポート・課題の提出、および小テストなどを行う。