Formal Proof of Type Preservation of the Dictionary Passing Transform for System F

Marius Weidner

Chair of Programming Languages, University of Freiburg

February 10, 2023

Type Classes in Haskell

Overloading Equality in Haskell

```
class Eq \alpha where
  eq :: \alpha \rightarrow \alpha \rightarrow Bool
instance Eq Nat where
  eq x y = x \stackrel{.}{=} y
instance Eq \alpha \Rightarrow Eq [\alpha] where
  eq [] = True
  eq (x : xs) (y : ys) = eq x y && eq xs ys
.. eq 42 0 .. eq [42, 0] [42, 0] ..
```

Desugaring Type Classes

Overloading Equality in System Fo

```
decl eq in  \begin{split} & \text{inst eq : Nat} \, \to \, \text{Nat} \, \to \, \text{Bool} \\ & = \, \lambda x. \, \, \lambda y. \, \dots \, \text{in} \\ & \text{inst eq : } \, \forall \alpha. \, \left[ \text{eq : } \alpha \, \to \, \alpha \, \to \, \text{Bool} \right] \, \Rightarrow \, \left[ \alpha \right] \, \to \, \left[ \alpha \right] \, \to \, \text{Bool} \\ & = \, \Lambda \alpha. \, \, \lambda (\, \text{eq : } \alpha \, \to \, \alpha \, \to \, \text{Bool}) \, . \, \, \lambda xs. \, \, \lambda ys. \, \dots \, \text{in} \\ & \dots \, \text{eq } 42 \, \, 0 \, \dots \, \text{eq Nat } \left[ 42, \, \, 0 \right] \, \left[ 42, \, \, 0 \right] \, \dots \end{aligned}
```

Dictionary Passing Transform

Overloading Equality in System F_O decl eq in inst eq : Nat \rightarrow Nat \rightarrow Bool = λx . λy . .. in inst eq : $\forall \alpha$. [eq : $\alpha \rightarrow \alpha \rightarrow$ Bool] \Rightarrow [α] \rightarrow [α] \rightarrow Bool = $\Lambda \alpha$. λ (eq : $\alpha \rightarrow \alpha \rightarrow$ Bool). λxs . λys . .. in .. eq 42 0 ... eq Nat [42, 0] [42, 0] ..

System F_O Transformed to System F

```
let eq<sub>1</sub>: Nat \rightarrow Nat \rightarrow Bool

= \lambda x. \lambda y. .. in

let eq<sub>2</sub>: \forall \alpha. (\alpha \rightarrow \alpha \rightarrow Bool) \rightarrow [\alpha] \rightarrow [\alpha] \rightarrow Bool

= \Lambda \alpha. \lambda eq_1. \lambda xs. \lambda ys. .. in
```

.. $eq_1 42 0 .. eq_2$ Nat $eq_1 [42, 0] [42, 0] ..$

Agda Formalization of System F_O

Syntax Representation in Agda

```
data Term : Sorts \rightarrow Sort r \rightarrow Set where
                                : Var S s \rightarrow \mathsf{Term} S s
   tt
                                : Term S e<sub>s</sub>
   \lambda'x\rightarrow_
                               : Term (S \triangleright e_s) e_s \rightarrow \text{Term } S e_s
   \Lambda '\alpha\rightarrow
                               : Term (S \triangleright \tau_s) e_s \rightarrow \text{Term } S e_s
   \lambda \Rightarrow
                               : Term S c_s \rightarrow \mathsf{Term} \ S e_s \rightarrow \mathsf{Term} \ S e_s
                                : Term S e_s \rightarrow \mathsf{Term} \ S e_s \rightarrow \mathsf{Term} \ S e_s
                                : Term S e_s \rightarrow \mathsf{Term} \ S \tau_s \rightarrow \mathsf{Term} \ S e_s
   let 'x= 'in
                                : Term S e_s \rightarrow \mathsf{Term} (S \triangleright e_s) e_s \rightarrow \mathsf{Term} S e_s
   decl'o'in
                                : Term (S \triangleright o_s) e_s \rightarrow \text{Term } S e_s
   \mathsf{inst} '= '\mathsf{in} : \mathsf{Term}\ S\ \mathsf{o_s} \to \mathsf{Term}\ S\ \mathsf{e_s} \to \mathsf{Term}\ S\ \mathsf{e_s}
                                : Term S \circ_s \to \mathsf{Term} \ S \tau_s \to \mathsf{Term} \ S \circ_s
                                : Term S \tau_c
                                : Term S \tau_s \to \mathsf{Term} \ S \tau_s \to \mathsf{Term} \ S \tau_s
                                : Term (S \triangleright \tau_s) \tau_s \rightarrow \text{Term } S \tau_s
                                : Term S c_s \to \mathsf{Term} \ S \tau_s \to \mathsf{Term} \ S \tau_s
```

Agda Formalization of System F₀

Context

```
data Ctx : Sorts → Set where
\emptyset : Ctx []

_ ▶ _ : Ctx S → Stores S s → Ctx (S \triangleright s)

_ ▶ _ : Ctx S → Cstr S → Ctx S
```

Constraint Solving

```
\begin{array}{l} \mathsf{data} \ [\_] \in \_ : \mathsf{Cstr} \ S \to \mathsf{Ctx} \ S \to \mathsf{Set} \ \mathsf{where} \\ \mathsf{here} : \ [\ (`o:\tau)\ ] \in (\varGamma \blacktriangleright (`o:\tau)) \\ \mathsf{under-bind} : \ \{ST: \mathsf{Stores} \ S\ s'\} \to \\ \ [\ (`o:\tau)\ ] \in \varGamma \to [\ (`\mathsf{there} \ o: \mathsf{wk} \ \tau)\ ] \in (\varGamma \blacktriangleright ST) \\ \mathsf{under-inst} : \ [\ c\ ] \in \varGamma \to [\ c\ ] \in (\varGamma \blacktriangleright c') \end{array}
```

The Dectionary Passing Transform

Fun Lemmas on Our Way to Type Preservation

