Waste Classification CNN and AlexNet

TEAM 2

ATHAVAN THERU, NAFIO MIAH , SHADMAN KAIF , ABDURRAFAY KHAN

Problem

- Global Temperature has increased in the past century at a drastic rate
- Landfills produce greenhouse gases such as Carbon Dioxide and Methane
- Proper waste disposal would help in reducing the size of landfills

Gap

- Many people often dispose their waste incorrectly and applications exist to help them classify their waste
- Countless products with varying material composition make it hard for applications such as TOwaste to accurately classify all waste users can have

Gap

Goal

Use Machine Learning to classify waste with its proper method of disposal for any given picture of waste

Data

- Waste Segregation Image Dataset (Kaggle)
 - o Biodegradable: Food, Leaf, Paper, Wood
 - o Non-Biodegradable: Electronic, Metal Cans, Plastic Bags, Plastic Bottles
- Two images caused failure in processing and required removal
- Food classification is densely populated compared to other classifications
- GPU Limitation on Google Colab
- Other Datasets (such as Trashnet) are primarily used for Testing

Data

Data Processing

Preprocessed input image in training set

224 x 224 x 3 (height x width x colour channels)

- Datasets contained images of various resolutions
- Preprocessed all images to be 224x224x3 to ensure an adequate amount of details present while preventing time inefficient processing

Additional Data Processing

- Removed images that were in compatible with the model
- Limited the number of cartoon images as we wanted to have more realistic representations of waste items
- Had a secondary dataset with duplicated images to deal with class imbalance

Sample Cartoon Image found in Dataset

High Level Overview of Our Model

Output Classification Categories:

Compost, Containers, Fibres, Garbage, Yard, Unknown

Models we Explored in this Project

During the duration of the project, we looked into 2 models.

- Our own implementation of a Convolutional Neural Network model where we got decent performance, but thought that we could do better.
- A standard AlexNet Architecture

Model - A Diagram of our CNN

- 5 convolution layers
- 5 max pooling layers (stride = 2 and padding = 2)
- 4 Fully Connected Layers with ReLu activation
- Kernel Size of 3
 (stride = 1 and padding = 1)

Model - A diagram of the AlexNet Architecture

Demonstration: The Dilemma

Dilemma: Which bin does my waste belong to?

Demonstration: The Model's Prediction

```
model_save_name = 'Waste_Classification_CNN_15epoch_run.pt'
path = F"/content/drive/MyDrive/Colab Notebooks/APS360/Project/{model_save_name}"
first_model.load_state_dict(torch.load(path))
```


Showcasing Other Unit Tests

Showcasing Other Unit Tests Continued

Showcasing Other Unit Tests Continued

100

150

200

This is an example of: Biodegradable Leaf Waste. It belongs in Yard Waste. Thank you.

Leaf Waste -> Yard Waste

Showcasing Other Unit Tests Continued

25 Epoch CNN Model

- 25 epoch Model
- Overfitting after 15 epochs, so lowered number of epochs

Training Accuracy = 97.8% Validation Accuracy = 86%

15 Epoch CNN Model

Original Training Dataset

Training Accuracy: 95.7% Validation Accuracy: 90.7%

Normalized Dataset(Unbiased)

Training Accuracy: 97.4% Validation Accuracy: 74.4%

Accuracy by Class

Class	Original Dataset Accuracy(%)	Normalized Dataset Accuracy(%)
Food	98.03	89.13
Leaf	86.98	85.71
Paper	51.62	74.88
Wood	98.47	98.47
Electronic	31.91	6.38
Metal Cans	45.27	55.4
Plastic Bags	1.96	23.5
Plastic Bottles	13.56	3.38

Accuracy < 50% and difference between models > 10% highlighted in red

Ratio Between Number of Times Class was Predicted and Number of Times Class is in Dataset

Class	Original Dataset Accuracy	Normalized Dataset Accuracy
Food	1.06	0.93
Leaf	0.98	1.01
Paper	0.97	1.75
Wood	1.28	1.56
Electronic	0.68	0.17
Metal Cans	0.84	1.41
Plastic Bags	0.04	0.37
Plastic Bottles	0.42	0.28

Ratios less than 0.5 or greater than 1.5 highlighted in red

Quantitative Results for AlexNet

Without Data Augmentation:

Training Accuracy = 72.8% as the 0th epoch accuracy is 30.1% Validation Accuracy = 79.0%

With Data Augmentation:

Training Accuracy = 96.8% Validation Accuracy = 76.1%

Qualitative Results for AlexNet

- Found how many correct predictions were made for each class

Total Num. of Correct Predictions = 2903

Total Num. of Test Images = 3084

Test Accuracy = 94.1%

Takeaways/Future Steps

AlexNet vs. CNN

- AlexNet performed better than the CNN (94.1% test accuracy vs 85.5% test accuracy)
- Transfer Learning took less time to train (30 min vs. 3 hours)

Data Augmentation

- Normalized dataset by duplicating images from classes with less data
- Created a overfitted model

Future Steps:

Augment images from classes with less data to reduce overfitting

Use: transforms.Compose