Análisis factorial

Daniel Czarnievicz

Análisis Factorial

Se parte de una matriz de datos de la forma:

$$\mathbf{X}_{I \times J} = \begin{bmatrix} x_{11} & x_{12} & \dots & x_{1J} \\ x_{21} & x_{22} & \dots & x_{2J} \\ \vdots & \vdots & \ddots & \vdots \\ x_{I1} & x_{I2} & \dots & x_{IJ} \end{bmatrix}$$

A partir de ella se definen dos espacios:

- 1. El espacio definido por la nube de las N_I filas, el cual está incluido en \mathbb{R}^J (dado que cada fila constituye un vector con J componentes).
- 2. El espacio definido por la nube de las N_J columnas, el cual está incluido en \mathbb{R}^I (dado que cada columna constituye un vector con I componentes).

Análisis de Componentes Principales

Análisis de Correspondencias Simples

Análisis de Correspondencias Múltiple

Referencias

Beygelzimer, Alina, Sham Kakadet, John Langford, Sunil Arya, David Mount, and Shengqiao Li. 2018. FNN: Fast Nearest Neighbor Search Algorithms and Applications. https://CRAN.R-project.org/package=FNN.

James, Gareth, Daniela Witten, Trevor Hastie, and Robert Tibshirani. 2013. An Introduction to Statistical Learning. Vol. 112. Springer.

Análisis Factorial Daniel Czarnievicz

R Core Team. 2018. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.

Rencher, Alvin C. 1998. *Multivariate Statistical Inference and Applications*. Wiley New York.

Wasserman, Larry. 2007. All of Nonparametric Statistics. Springer, New York.

Wickham, Hadley. 2017. *Tidyverse: Easily Install and Load the 'Tidyverse'*. https://CRAN.R-project.org/package=tidyverse.