Regression 1

Supervised learning

Unsupervised learning

Reinforcement learning

Generative Al

Supervised learning

$$feature(X) \longrightarrow model(f) \stackrel{predict}{\longrightarrow} label(y)$$

Supervised learning - examples

application	feature(x)	label(y)	
spam detection	email content	spam or not spam	
house price prediction	size, location, age	price	
online shopping	user behavior	purchase or not purchase	
cancer detection	medical images	cancer or not cancer	

Regression

predict a number. Many possible outputs.

Classification

predict categories. Small number of possible outputs.

Regression

Car fuel efficiency

	mpg	weight	
0	18.0	3504	
1	15.0	3693	
2	18.0	3436	
3	16.0	3433	
4	17.0	3449	

A prediction based on weight

weight=3500, mpg=?

weight=1000, mpg=?

Notation

```
y: label (mpg)
```

x: feature (weight)

w: weight (slope)

b: bias (intercept)

 $\hat{y}, f(x)$: model (predicted label given feature)

Prediction lines

$$\hat{y} = f(x) = wx + b$$

parameters

- w: weight (slope)
- *b*: bias (intercept)

How to determine the best model?

Loss & cost functions

Loss (error):

- how far is the prediction (line) from the actual value?
- how wrong a model's prdictions are.

Cost:

average of losses over all data points

Loss

Types of loss (error) functions

L1 loss: $|y - \hat{y}|$

L2 loss: $(y - \hat{y})^2$

Mean absolute error (MAE): $rac{1}{m}\sum |y-\hat{y}|$

Mean squared error (MSE): $rac{1}{m}\sum (y-\hat{y})^2$

Cost functions

Average of losses over all data points

$$J(w,b) = rac{1}{m} \sum_{i=1}^m L(y_i,f(x_i)).$$

e.g., mean squared error (MSE)

$$J(w,b) = rac{1}{m} \sum_{i=1}^m (y_i - f(x_i))^2.$$

Calculating cost function (MSE)

$$f(x) = 2x + 1 \ J(w,b) = rac{1}{m} \sum_{i=1}^m (y_i - f(x_i))^2 = rac{1}{m} \sum_{i=1}^m (y_i - 2x - 1)^2$$

X	У	f(x)	y - f(x)	(y - f(x))^2
1	2	3	-1	1
2	3	5	-2	4
3	4	7	-3	9
sum				14
avg (MSE)				4.67

"Linear" regression

model

$$f(x) = wx + b$$

parameters

w, b

cost function

$$J(w,b)=rac{1}{m}\sum_{i=1}^m(y_i-f(x_i))^2$$

goal

find w and b that minimize J(w,b)

Cost function (w=1, b=0)

Cost function (w=2, b=0)

Cost function

Visualizing cost function

https://developers-dot-devsite-v2-prod.appspot.com/machine-learning/crash-course/linear-regression/parameters-exercise_3203fed55106e7533d661b3b25a12752a390a085ee793c54c516a1e855787905.frame

Cost function for two parameters (w,b)

Contour lines

Cost function (w=-1, b=1)

Cost function (w=2, b=2)

Cost function (w=1, b=0)

How to find the best model?

Gradient descent

Want to minimize the cost function J(w,b)

- 1. Start with some \overline{w}, b .
- 2. Keep chaining w, b to reduce J(w, b).
- $\overline{ ext{3. Until we can't reduce}}\, \overline{J(w,b)}$ any further.

Walking down the hill as quickly as possible

Gradient descent algorithm

$$w=w-lpharac{\partial J(w,b)}{\partial w}$$
 $b=b-lpharac{\partial J(w,b)}{\partial b}$

α : learning rate

 $rac{\partial J(w,b)}{\partial w}$: partial derivative (gradient) of the cost function with respect to w

 $rac{\partial J(w,b)}{\partial b}$: partial derivative (gradient) of the cost function with respect to b

Gradient "descent" (positive slope)

$$egin{aligned} &lpha>0, rac{\partial J(w,b)}{\partial w}>0\ &w=w-lpharac{\partial J(w,b)}{\partial w}=w-positive\,number \end{aligned}$$

Gradient "descent" (negative slope)

$$lpha>0, rac{\partial J(w,b)}{\partial w}<0 \ w=w-lpharac{\partial J(w,b)}{\partial w}=w-negative\,number$$

Learning rate (α)

Convergence: reaching the minimum

$$w=w-lpharac{\partial J(w,b)}{\partial w}$$

Near a minimum

- gradient is close to zero
- learning rate is small
- no significant change in w (convergence)

Gradient for linear regression

$$f(x) = wx + b$$
 $J(w,b) = rac{1}{m} \sum_{i=1}^m (y_i - f(x_i))^2$

Partial derivative of the cost function with respect to $oldsymbol{w}$

$$rac{\partial J(w,b)}{\partial w} = rac{1}{m} \sum_{i=1}^m 2(y_i - f(x_i)) rac{\partial f(x_i)}{\partial w} = rac{1}{m} \sum_{i=1}^m 2(y_i - f(x_i))(-x_i)$$

Partial derivative of the cost function with respect to $oldsymbol{b}$

$$rac{\partial J(w,b)}{\partial b} = rac{1}{m} \sum_{i=1}^m 2(y_i - f(x_i)) rac{\partial f(x_i)}{\partial b} = rac{1}{m} \sum_{i=1}^m 2(y_i - f(x_i))(-1)$$

B Calculate gradient

$$X=[1,2],\;y=[2,2.5]$$

$$f(x) = wx + b$$

$$w = 0, b = 0, \alpha = 0.01$$

Solution Calculate gradient

(0,0) o (0.07,0.045)

$$\frac{\partial J(w,b)}{\partial w} = \frac{1}{m} \sum_{i=1}^{m} 2(y_i - f(x_i))(-x_i) = -\frac{2}{2}((2-0)*1 + (2.5-0)*2) = -7$$

$$\frac{\partial J(w,b)}{\partial b} = \frac{1}{m} \sum_{i=1}^{m} 2(y_i - f(x_i))(-1) = -\frac{2}{2}((2-0) + (2.5-0)) = -4.5$$

$$w = w - \alpha \frac{\partial J(w,b)}{\partial w} = 0 - 0.01*(-7) = 0.07$$

$$b = b - \alpha \frac{\partial J(w,b)}{\partial b} = 0 - 0.01*(-4.5) = 0.045$$

Visualizing gradient descent

https://www.benfrederickson.com/numerical-optimization/index.html#gd

Learning curve: cost function over iterations

For a small learning rate

- the cost function should decrease on every iteration
- but slow

For a large learning rate

- it might not converge
- but if it does, it takes fewer iterations

flat, noisy, or increasing learning curve may indicate a problem

Learning rate demo

https://developers-dot-devsite-v2-prod.appspot.com/machine-learning/crash-course/linear-regression/gradient-descent-exercise_d1f3f99d99ebad2d51be1d20911fcf707d8537cd2723b99e9dd7e5c78fce85ac.fr ame

Batch vs. Stochastic vs. Mini-batch gradient descent

- Batch: calculate the gradient of the cost function with respect to the parameters for the entire training dataset
- **Stochastic**: calculate the gradient of the cost function with respect to the parameters for *a single data point*.
- Mini-batch: calculate the gradient of the cost function with respect to the parameters for a small subset of the training dataset.