Women Who Exercise

Torrey Capobianco
Bellevue University
Exploratory Data Analysis
Fall 2019

Hypothesis

Women who have children under the age of 18 exercise less than women who do not have children under the age of 18.

The Data

American Time Use Survey
2003-2015
US Bureau of Labor Statistics

Exercise Data

Who?

This analysis looks at exercise durations of females recorded in a single day.

What is considered exercise?

Durations recorded were taken from category "Participating in Sports, Exercise, and Recreation." Due to this analysis looking at higher pace exercise activities, recreation activities such as playing billiards, fishing, hunting, vehicle touring/racing were removed from the data.

Variable Selection

Classification Variables

tucaseid:

case ID for respondent

tesex:

sex of respondent

trtier1p:

activity category 1st hierarchy

trtier2p:

activity category 2nd hierarchy

trcodep:

6 digit activity code

Analysis Variables

trchildnum:

number of children for respondent

tehruslt:

usual hours worked per week for respondent

tespuhrs:

usual hours worked per week for respondent's spouse

teage:

age of respondent

tuactdur24:

duration of activity in minutes

Histograms

Histograms and descriptive characteristics

Time spent exercising

tuactdur24

Mean: 77.38 minutes

Mode: 60 minutes

Variance: 4676.86

Standard Deviation: 68.37

The histogram is left skewed with most of the time spent exercising in the left tail with the right tail extending far to the right.

Outliers: There are cases of recorded exercise up to 15 hours in a day. This seems unreasonable. For this analysis all records greater than 240 minutes or 4 hours is removed.

Time spent exercising

<u>tuactdur24 – removed outliers</u>

Mean: 68.51 minutes

Mode: 60 minutes

Variance: 2198.39

Standard Deviation: 46.89

The histogram is left skewed with most of the time spent exercising in the left tail with the right tail extending far to the right.

Age

<u>teage</u>

Mean: 46.96 years

Mode: 80 years

Variance: 326.58

Standard Deviation: 18.07

The histogram is multimodal, with a range with females less than their 20's, mid 40's, and the right tail their 80's.

Number of children

trchildnum

Mean: 0.87 children

Mode: 0 children

Variance: 1.28

Standard Deviation: 1.13

The histogram is left negative skewed with a tail extending far to the right.

Usual hours work per week

tehruslt

Mean: 19.05 hours

Mode: -1 (does not work)

Variance: 443.08

Standard Deviation: 21.05

The histogram is binominal, with two peaks at -1 (does not work) and 40 hours.

Respondent answer of -4 indicates hours vary.

Respondent answer of -1 indicates does not work.

Usual hours work per week for spouse

tespuhrs

Mean: 17.33 hours

Mode: -1 (does not work)

Variance: 563.63

Standard Deviation: 23.74

The histogram is binominal, with two peaks at -1 (does not work) and 40 hours.

Respondent answer of -4 indicates hours vary.

Respondent answer of -1 indicates does not work.

Probability Mass Function

Comparing two scenarios with PMF

PMF of female exercise duration

Females with and without children

Exercise Duration	With Child	No Child
Mean	73.34	64.36
Variance	2401.37	1987.65
Standard Deviation	49.00	44.58

The probability that females with children exercising for shorter durations is smaller than those without children. Compared to longer durations, they have a higher probability than those without children.

Cumulative Distribution Function

Comparing two scenarios with CDF

CDF of female exercise duration

Females with and without children

Exercise Duration	With Child	No Child
≤ 100 minutes	78 %	82 %
≤ 60 minutes	60 %	60 %
≤ 50 minutes	39 %	45 %
≤ 30 minutes	25 %	25 %

The CDF of exercise duration for females with children and no children are common in some durations. Once past 60 minutes, females without children have a higher cumulative probability of exercising more.

Analytical Distribution

Lognormal Distribution

Exercise duration for all females

Lognormal distribution is the best fit for modeling the exercise duration of females.

Variable Relationships

Scatter plots, covariance, and correlation.

Number of children vs Exercise duration

Scatter Plot

	Result	Interpretation
Covariance	4.54	Positive, variables move in the same direction
Pearson's Correlation	0.08	Close to zero, no relationship between variables
Spearman's Rank Correlation	0.08	Close to zero, no relationship between variables

Number of hours work vs Exercise duration

Scatter Plot

	Result	Interpretation
Covariance	-8.33	Negative, variables move inversely
Pearson's Correlation	-0.008	Close to zero, no relationship between variables
Spearman's Rank Correlation	0.003	Close to zero, no relationship between variables

Age vs Exercise duration

Scatter Plot

	Result	Interpretation
Covariance	-160.5	Negative, variables move inversely
Pearson's Correlation	-0.19	Close to zero, no relationship between variables
Spearman's Rank Correlation	-0.19	Close to zero, no relationship between variables

Hypothesis Test

Permutation difference of the means.

Women with children exercise less than those without

Null Hypothesis:

There is no difference in exercise habits between women with children under the age of 18 and women without children.

Permutation Difference of the Means:

P-Value: 0.0

Conclusion:

P-value is less than 1%. The effect is likely not due to chance.

- > Reject the null hypothesis
- > Accept the alternative hypothesis

Regression

Simple and multiple regression.

Simple Regression

Linear Least Squares:

Exercise duration as a function of age:

r-squared: 0.036

p-value: 0.00

Age accounts for 3.6% of exercise duration in females.

Simple Regression

Exercise duration as a function of having a child:

r-squared: 0.009

Having a child accounts for 0.9% of exercise duration in females.

p-value: 0.00

This effect is likely to not occur by chance.

Dep. Variable	:	tuactdur2	4	R-squa	red:	0.009
Model	:	OL	S Adj.	R-squa	red:	0.009
Method	: Lea	st Square	S	F-stati	stic:	126.0
Date	: Sun, 23	3 Feb 202	0 Prob	(F-statis	stic):	4.04e-29
Time	:	12:19:1	3 Log	-Likelih	ood:	-72090.
No. Observations	:	1370	0		AIC:	1.442e+05
Df Residuals	:	1369	8		BIC:	1.442e+05
Df Model	:		1			
Covariance Type	:	nonrobus	st			
	coef	std err	t	P> t	[0.0	25 0.975]
Intercept	64.3629	0.543	118.456	0.000	63.2	98 65.428
haschild[T.True]	8.9805	0.800	11.227	0.000	7.4	13 10.548
Omnibus:	3193.379	Durb	in-Watso	n:	1.997	
Prob(Omnibus):	0.000	Jarque	-Bera (JE	3): 646	9.184	
Skew:	1.396		Prob(JE	3):	0.00	
Kurtosis:	4.880		Cond. N	0.	2.54	

Multiple Regression

Exercise duration as a function of having a child and age:

r-squared: 0.036

r-squared increased to 3.6% accountability with adding age.

p-value has child: 0.146 p-value age: 0.00

The effect of age is likely to not occur by chance. Having a child > .05 results not being statistically significant. This does not have an affect in determining exercise when age is involved.

Dep. Variable): 1	tuactdur24		R-squa	ared:	0.036	
Mode	l:	OLS	Adj.	R-squ	ared:	0.036	
Method	l: Leas	st Squares	;	F-stati	istic:	255.7	
Date	e: Sun, 23	Feb 2020	Prob	(F-stati:	stic):	9.04e-110	
Time):	12:19:13	Log	-Likelih	ood:	-71902.	
No. Observations	: :	13700)		AIC:	1.438e+05	
Df Residuals	: :	13697	,		BIC:	1.438e+05	
Df Mode	l:	2	2				
Covariance Type):	nonrobus	t				
	coef	std err	t	P> t	[0.02	5 0.975]	
Intercept	93.2104	1.570	59.356	0.000	90.13	2 96.289	
haschild[T.True]	-1.3818	0.951	-1.454	0.146	-3.24	5 0.482	
teage	-0.5125	0.026	-19.543	0.000	-0.56	4 -0.461	
Omnibus:	3183.238	Durbi	n-Watso	n:	1.999		
Prob(Omnibus):	0.000	Jarque-	Bera (JE	3): 653	32.242		
Skew:	1.382		Prob(JE	3):	0.00		
Kurtosis:	4.951		Cond. N	о.	222.		

Multiple Regression

Exercise duration as a function of having children, age, hours work per week for self and for spouse:

r-squared: 0.041

r-squared increased to 4.1% accountability with adding hours work per week for self and spouse.

p-value has child: 0.479 p-value all others: 0.00

The effect of all others but having a child are likely to not occur by chance. Having a child has no affect on exercise duration with a p-value greater than 0.05.

Dep. Variable	: 1	tuactdur2	4	R-squa	ared:	0.041	
Model	l:	OLS	S Adj	. R-squ	ared:	0.040	
Method	l: Leas	st Square	S	F-stat	istic:	145.2	
Date	: Sun, 23	Feb 202	0 Prob	(F-stati:	stic):	8.94e-122	
Time	:	12:19:1	3 Log	-Likelih	ood:	-71869.	
No. Observations	:	1370	0		AIC:	1.437e+05	
Df Residuals	:	1369	5		BIC:	1.438e+05	
Df Mode	:		4				
Covariance Type	:	nonrobus	t				
	coef	std err	t	P> t	[0.02	25 0.975]	
Intercept	98.6877	1.737	56.819	0.000	95.28	3 102.092	
haschild[T.True]	-0.7099	1.002	-0.708	0.479	-2.6	74 1.255	
teage	-0.5578	0.027	-20.605	0.000	-0.6	11 -0.505	
tehrusIt	-0.1176	0.020	-6.028	0.000	-0.1	56 -0.079	
tespuhrs	-0.0820	0.018	-4.586	0.000	-0.1	17 -0.047	
Omnibus:	3163.839	Durb	in-Watso	n:	1.997		
Prob(Omnibus):	0.000	Jarque	-Bera (JE	3): 650	3.445		
Skew:	1.372		Prob(JE	3):	0.00		
Kurtosis:	4.967		Cond. N	lo.	268.		

Conclusion

Through comparison of CDF, hypothesis testing, and simple regression, women's exercise habits are different with those that have children under the age of 18 and those that do not. Those with children exercise less than those that do not have children. However, when looking at multiple regression, other variables account for female exercise habits that do not involve having children.

Resources

- DeJesus, John. (2019). What, Why, and How to Read Empirical CDF. *Towards Data Science*. Retrieved from https://towardsdatascience.com/what-why-and-how-to-read-empirical-cdf-123e2b922480
- Downey, A. B. (2015). Think Stats: Exploratory Data Analysis (2nd ed.). Sebastopol, CA: O'Reilly Media Inc.
- Minitab Blog Editor. (2013). How to Interpret Regression Analysis Results: P-values and Coefficients. Retrieved from https://blog.minitab.com/blog/adventures-in-statistics-2/how-to-interpret-regression-analysis-results-p-values-and-coefficients
- Pathak, Manish. (2018). Joining DataFrames in Pandas. *DataCamp*. Retrieved from https://www.datacamp.com/community/tutorials/joining-dataframes-pandas
- U.S. Bureau of Labor Statistics. (2017). American Time Use Survey: Multi-Year Survey Microdata Files from 2003-2015. Retrieved from https://www.kaggle.com/bls/american-time-use-survey/data
- VanderPlas, J. (2016). Python Data Science Handbook: Essential tools for Working with Data (1st ed.). O'Reilly Media Inc.