Trees

Lecture 9
Discrete Mathematical
Structures

Trees

- Part I: Rooted Trees
 - Basic properties of rooted tree
 - □ Labeled tree and its representation
 - Tree searching
- Part II: Undirected Trees
 - Undirected graph: as a symmetric closure
 - Basic properties of undirected tree
 - Minimal spanning tree and its algorithm

Rooted Tree

Let A be a set, and let T be a relation on A. T is a rooted tree if there is a vertex v_0 in A with the property that there exists a unique path in T from v_0 to every other vertex in A, but no path from v_0 to v_0 .

Properties of Rooted Tree

- Let (T, v_0) be a rooted tree. Then
 - \square (a) There are no cycles in T.
 - \Box (b) v_0 is the only root of T.
 - □ (c) Each vertex other than the root has in-degree one, and the root has in-degree 0

Drawing a Rooted Tree by Levels

All edges downward

Rooted Tree and Family Relations

It is easy to describe the family relations, and on the other hand, terms about family relations are used in rooted trees.

Some Terms about Rooted Tree

- Ordered tree: the ordering is assumed on vertices in each level;
- n-tree: every vertex has at most n offspring;
- Complete n-tree: every vertex, other than leaves, has exactly n offspring
- Binary tree: 2-tree

Subtree of a Rooted Tree

■ If (T, v_0) is a rooted tree and $v \in T$. Let T(v) be the set of v and all its descendants, then T(v) and all edges with their two ends in T(v) is a tree, with v as its root.

(It is called a subtree of (T, v_0))

- Proof:
 - □ There is a path from v to any other vertex in T(v) since they are all the descendants of v;
 - □ There cannot be more than one path from v to any other vertex w in T(v), otherwise, in (T, v_0) , there are more than one path from v_0 to w, both through v
 - □ There cannot be any cycle in T(v), since any cycle in T(v) is also in (T, v_0)

Subtrees of Binary Tree

■ In a ordered binary tree, a subtree is a left subtree or a right subtree.

Even if a vertex has only one offspring, its subtree can be identified as left or right by its location in the digraph.

Ordered Binary Tree

 Any ordered tree can be converted into a ordered binary tree.

Labeled Tree: an Example

- Using rooted tree to represent a arithmetic expressions:
 - branching vertices corresponding operators
 - leaves corresponding operands

Example:
 (a*(b+c)+d*(e*f))/(g+(h-i)*j)

Positional Trees

Computer Representation

.

Tree Searching

- Tree recursive algorithm to search all vertices:
 - □ Inorder: left, root, right
 - h, d, i, b, e, a, f, c, g
 - □ Preorder: root, left, right
 - **a**, b, d, h, i, e, c, f, g
 - □ Post order: left, right, root
 - h, i, d, e, b, f, g, c, a

Reverse Polish Notation

Example: (a*(b+c)+d*(e*f))/(g+(h-i)*j)

Searching in postorder:

abc+*def**+ghi-j*+/

It is called reverse Polish notation

No parenthesis are needed!

М

Huffman Code Tree

R: 1110

C: 1111 0101100: EASE

Undirected Tree

- An undirected tree is the symmetric closure of a tree.
- An undirected tree is represented by its graph, which has a single line without arrows connecting vertices a and b.
- The set {a,b}, where (a,b) and (b,a) are in T, is called an undirected edge, and a and b are called adjacent vertices.

Undirected Tree: Examples

Different undirected trees with six vertices:

Path and Cycle in a Tree

- Let $p: v_1, v_2, ..., v_n$ be path in a symmetric relation R, then p is simple if no two edges of p correspond to the same undirected edge.
- In above, if v_1 is equal to v_n , then p is a simple cycle.
- A symmetric relation R is acyclic if it contains no simple cycles.
- A symmetric relation R is connected if there is a path in R from any vertex to any other vertex.

Properties of an Undirected Tree

- Let R be a symmetric relation on a set A. R is an undirected tree if and only if R is connected and acyclic.
 - □ Proof:
 - $\square \Rightarrow \text{Let } R \text{ is the symmetric closure of some tree } T.$
 - Suppose that R has a simple cycle p: $v_1, v_2, ..., v_n, v_1$. Then there is a figure of edges as the following in T. However, all possible orientation of the edges

results a cycle in T.

Note: the following orientation is impossible in a tree:

Properties of an Undirected Tree (cont.)

- □ Proof:
- $\square \Rightarrow (cont.)$
 - Let v is the root of T. For any vertices u and w, there must be vu-path and vw-path in T, so, there are uv-path and vw-path in R. So, there is a uv-path in R.
- $\square \leftarrow$ Suppose that R is a symmetric relation on a set A, and it is connected and acyclic
 - Let v is any vertex in A. Since R is connected, there is a path from v to any other vertices, but not to v itself.
 - Suppose that there are two paths from v to some w. There must be two vertices v', w', on both paths such that there are no common vertices on two different v'w'-path, since R is symmetric, one v'w'-path and the reverse of another v'w'-path form a cycle in R, contradiction.

Unique Path

- If T is an undirected tree, then for any vertices u, v, there is a unique uv-path in T.
 - □ Proof:

We know that T is connected, so, there is at least one uv-path in T.

Suppose that there are two different uv-paths P,Q in T. Without loss of generality, there exists an edge e=(x,y) satisfying $e \in P$, and x is nearer to u on P than y, but $e \notin Q$. Let $T^* = T - \{e\}$, then T^* contains Q. Note that xu-segment on P + Q + vy-segment on P is an xy-path in T^* . However, this path plus e is a cycle in T. Contradiction.

No Edge Can Be Removed

- Let *T* is an undirected tree, *e* is any edge in *T*, then *T*-{e} is no longer connected.
 - □ Proof:
 - ■We have know that for any vertices v, w, there is a unique vw-path. Let e=(x,y), then e is the unique path between x and y. So, there is no xy-path in T-{e}, which means that T-{e} is no longer connected.

Adding One Edge Means Cycle

- Let T is an undirected tree, u,v are two vertices not adjecent to each other, then T+(u,v) must contain a cycle.
 - □ Proof:
 - □ Since T is a undirected tree, there must be a uv-path in T. Let it be P, then P+(u,v) is a cycle in T+(u,v).
 - \square In fact, we can prove that there is only one cycle in T+(u,v).

Number of Vertices and Edges

- A tree with *n* vertices has *n*-1 edges
- Proof:
 - There are at least *n*-1 edges to connect *n* vertices.
 - Suppose that there are more than *n*-1 edges. So, the sum of in-degree of all vertices must be more than *n*-1. However, the in-degree of the root is zero, and in-degree of any of the other *n*-1 vertices is 1, which mean the sum is *n*-1. Contradiction.

Spanning Tree

- If R is a symmetric, connected relation on A, a tree T on A is a spanning tree of R if T is a tree with exactly the same vertices as R.
- An undirected spanning tree is the symmetric closure of a spanning tree.
- Note that an undirected spanning tree can always obtained by remove some edges from a symmetric, connected relation R.

Spanning Tree: Examples

Different spanning tree are obtained from a symmetric,

Generic Algorithm for MST Problem

Input: *G*: a connected, undirected graph

w: a function from V_G to the set of real number

```
Generic-MST(G, w)
```

- $1 A \leftarrow 0$
- 2 while A does not form a spanning tree
- do find an edge (u,v) that is safe for A
- $4 \qquad A \leftarrow A \cup \{(u,v)\}$
- 5 return A

Output: a minimal spanning tree of G

Step 1: $V = \{A\}, E = \{\}$

Step 2: Select the nearest neighbor of *V*, *u*, add the edge connecting *u* and some vertex in *V* into *E*Step 3: Repeat step 2 until *E* contains *n*-1 edges

End of Algorithm

Correctness of F

Let T be the output of Prim's algoedges $t_1, t_2, ..., t_{n-1}$, as the order the for $1 \le i \le n-1$, and $T_0 = \phi$.

It can be proved that each T_i is co

Assume that T_k is contained in a MST T', then $\{t_1, t_2, ..., t_k\} \subseteq T'$. If $t_{k+1} \notin T'$, then $T' \cup \{t_{k+1}\}$ contains a cycle, which cannot wholly be in T_k .

Let s_l be the edge with smallest index l that is not in T_k . Exactly one of the vertices of s_l must be in T_k , which means that when t_{k+1} was chosen, s_l available as well. So, t_{k+1} has no larger weight than s_l . So, $(T'-\{s_l\}) \cup \{t_{k+1}\}$ is a MST containing T_{k+1} .

Step 1: *E*={}

Step 2: Select the edge with the least weight, and not making a cycle with members of E

Step 3: Repeat step 2 until *E* contains *n*-1 edges

End of Algorithm

Proof of Kruskal Algorithm

- Obviously, T is an undirected tree.
- Suppose that T is not minimal. According to the ordering of adding edges in T, T contains edges $e_1, e_2, \dots e_k$ $_{1},e_{k},...e_{n-1}$. Let T is a minimal spanning tree which has most consecutive common edges from the beginning with T. And let e_k is the first edge not in T. So, $T'+e_k$ contains a cycle, let e_k is on the cycle, but not in T, then $T^*=T'-\{e_{k'}\}\cup\{e_k\}$ is also a spanning tree, and we have $w(T^*)=w(T')-w(e_{\iota'})+w(e_{\iota})$. According to the criteria to select the edges, $w(e_{k'}) \ge w(e_{k})$, $\therefore w(T^*) \le w(T')$, which means that T* is also a minimal spanning tree, and with more common consecutive edges with T. Contradiction.

Kruskal Algorithm - Implementation

```
KRUSKAL(V,E,n)
                                                         O(m\log m)
  <sort E by nondecreasing weight>; —
  for each v \in V do MAKESET(\{v\}) end for;
                                                         \Theta(n)
  T=\{\};
  while |T| < n-1 do
                                                         \Theta(n)
    <check the next edge (x,y) in E>;
    if FIND(x) \neq FIND(y) then
                                                    \rightarrow O(m \log^* n)
       T=T\cup\{(x,y)\};
                                              n-1 UNION's and 2m FIND's at most
       UNION(x,y);
    end if
                              The algorithm finishs in O(m\log m) time.
  end while
                              Or, O(n^2 \log n); O(n \log n) for planar graph.
  return T;
```

M

Home Assignments

- To be checked
 - □ Ex.7.1: 18-22, 24,29, 32-34
 - □ Ex.7.2: 7, 13,18, 25-27
 - □ Ex.7.3: 10, 15, 19-22, 25, 33, 37-38
 - □ Ex.7.4: 16-17, 19, 21, 26
 - □ Ex.7.5: 6, 9, 11, 14, 18, 23