Robotics: Assignment II

Forward Kinematics and Inverse Kinematics

Biomechatronics Engineering, Li-Wei Yang, B07611001

Consider the ER-7 robot arm shown in the following figures:

Top View

Part A (25%)

(1) According to ER-7 arm, draw the link coordinate diagram using D-H convention in Craig version from lecture slides page 34. (10%)

(2) Find the kinematics parameters of ER-7 and fill the table below: (15%)

ER-7				
Joint	$\alpha i-1$	°) ai-1 (mm)	di (mm)	θί
1	0	0	358.5	0 1
2	-90	50	0	0 2
3	0	300	35.3	0 3
4	0	350	0	0 4
5	-90	0	251	0 5

PART B (30%)

(1) Derive transformation matrices for each consecutive link, and also the transformation matrices T_5^0 (from frame 5 to frame 0).

Note: This should be revised to list all the transformation matrix, i.e. T_1^{base} , T_2^1 , T_3^2 , T_4^3 , T_5^4 , T_5^{base} .

Part C (45%)

(1) Derive the inverse kinematics for ER-7. Given the target pose of the gripper tip $(x, y, z, \varphi, \theta, \psi)$ with respect to the base coordinate, calculate $(\theta 1, \theta 2, \theta 3, \theta 4, \theta 5)$. For the transformation from the base to the gripper tip, please refer to Inverse Kinematic slides. Let's assume the target is reachable in elbow-up configuration, and that the gripper tip pose is always vertically downward. (30%)

Because the tip pose is always vertically downward, the x y z is determined only by th1, th2, th3, and the z axis of frame 5 is always negative to the frame 0. So the x4 y4 z4 in T04 = x y z+251, with this correlation we can calculate th1 th2 th3. For elbow up configuration, we choose the [th1 th2 th3] set when th2 < 0 for afterward calculation.

$$\begin{aligned} 50\cos(th_1) - \frac{353\sin(th_1)}{10} + 300\cos(th_1)\cos(th_2) - 350\cos(th_1)\sin(th_2)\sin(th_3) + 350\cos(th_1)\cos(th_2)\cos(th_3) = \chi \\ \frac{353\cos(th_1)}{10} + 50\sin(th_1) + 300\cos(th_2)\sin(th_1) - 350\sin(th_1)\sin(th_2)\sin(th_3) + 350\cos(th_2)\cos(th_3)\sin(th_1) = \chi \\ \frac{717}{2} - 350\cos(th_2)\sin(th_3) - 350\cos(th_3)\sin(th_2) - 300\sin(th_2) = \chi + 251 \end{aligned}$$

For th4, if we take some of the elements of T15 and do atan2, we can know $\theta 2 + \theta 3 + \theta 4$, as $\theta 2 \theta 3$ is already known, $\theta 4$ can be found by subtracting.

$$th4_n = atan2(T15_subs(1,3), -T15_subs(3,3)) - S.th2(2,1) - S.th3(2,1);$$

For th5, because the tip is always vertically downward, the desired roll is done only by $\theta 1$ and $\theta 5$; so we can subtract $\theta 1$ from the roll and get $\theta 5$. As in my code written.

$$th5 = -phi + S.th1(2,1);$$

Because the constraint of the question, the θ , ψ remain the same (0, pi).

(2) Based on the previous question, please calculate (θ 1 , θ 2 , θ 3 , θ 4 , θ 5) with the following target poses. The translation parameters (x, y, z) are in millimeter, and the rotation parameters (ϕ , θ , ψ) are in radian. (15%)

For more information please refer my MATLAB code. (Please install Peter Corke's robotics toolbox add-in to get a better experience).

(1) $(x, y, z, \phi, \theta, \psi) = (600,100,0, \pi/4, 0, \pi)$

(2) $(x, y, z, \phi, \theta, \psi) = (600,100,100, \pi/4, 0, \pi)$

1	2	3	4	5
0.1071	-0.5753	1.0848	-0.5095	-0.6783

(3) $(x, y, z, \phi, \theta, \psi) = (600, -100, 100, -\pi/4, 0, \pi)$

1	2	3	4	5
-0.2232	-0.5753	1.0848	-0.5095	0.5622

PART D (10%) bonus

Consider the following robot arm which is consist of a revolute joint and prismatic joint:

(1) Find the DH representation the same as Part A (1) (6%)

SCARA				
Joint	αi-1 (°)	ai-1 (mm)	di (mm)	θi
1	0	a1	0	0 1
2	180	a2	d2	0

(2) For all DH parameters (α_{i-1} , α_{i-1} , d_i , θ_i), which two parameters are actuator joint (varying parameters)? (4%)

 θ_1 and d_2 are varying parameters, since joint 1 is a revolute joint, and joint 2 is a prismatic joint.