ECE 2372 - Homework 4

<< -- VC BOUND -->>

Please upload your solutions to Canvas by February 25, 2024

Jiyang Liu 4731134

Problem 1:

The VC dimension, rather implicitly, depends both on the input space \mathcal{X} and \mathcal{H} – since \mathcal{H} is defined as the mapping of \mathcal{X} to a binary set of $\{-1, +1\}$.

For a fixed \mathcal{H} , consider two input spaces $\mathcal{X}_1 \subseteq \mathcal{X}_2$. Let $d_{VC}(\mathcal{X}_1)$ and $d_{VC}(\mathcal{X}_2)$ denote the VC dimension of \mathcal{H} with respect to these input spaces. Show that $d_{VC}(\mathcal{X}_1) \leq d_{VC}(\mathcal{X}_2)$.

Sol.

For x_1 , the VC dimension is $d_{VC}(x_1)$, which means in x_1 there are $d_{VC}(x_1)$ points can be shattered. $x_1 \subseteq x_2, x_2$ has all the points of x_1 . Therefore, x_2 has at least $d_{VC}(x_1)$ points can be shattered. Which means $d_{VC}(x_1) \le d_{VC}(x_2)$

Problem 2:

Suppose \mathcal{H} is obtained by evaluating some polynomial of degree d and comparing the result to a threshold, i.e.,

$$\mathcal{H} = \left\{ h : h(x) = sign\left(\sum_{i=0}^{d} c_i x_i\right) \right\}$$

for some $c_0, ... c_d \in \mathbb{R}$, and $\mathcal{X} \in \mathbb{R}$ as well. Prove that d_{VC} of this \mathcal{H} is exactly d+1 by showing that

- (a) There are d+1 points which are shattered by \mathcal{H} .
- (b) There are no d+2 points which are shattered by \mathcal{H} . [Hint: Try relating this to a linear classifier in d dimensions and use the result from first problem]

a)

Assume that

$$c = (c_0, c_1, ..., c_d)^T$$

 $x = (x_0, x_1, ..., x_d)^T$

And we rewrite H:

$$H = \{h: h(x) = sign(c^T x)\}\$$

Suppose there are d + 1 points in x,

$$x = \begin{pmatrix} - & (x^{(1)})^T & - \\ - & (x^{(2)})^T & - \\ \dots & \dots & \dots \\ - & (x^{(d+1)})^T & - \end{pmatrix} y = \begin{pmatrix} y_1 \\ y_2 \\ \dots \\ y_{d+1} \end{pmatrix}$$

Let x be:

$$x = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ 1 & 1 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 1 & 0 & 0 & \dots & 1 \end{pmatrix}$$

x is non – sigular. Therefore for $\forall y$, we can always find

$$c = x^{-1}y$$

that saitisfied:

$$sign(xc) = y$$

And we proved that there are d + 1 points shattered by H.

b)

 $x_2 = x_1 \cup \{new\ points\}$

From problem 1,

$$x_1 \subseteq x_2$$

$$d_{VC}(x_1) \le d_{VC}(x_2)$$

Suppose

$$x = \begin{pmatrix} - & (x^{(1)})^T & - \\ - & (x^{(2)})^T & - \\ \dots & \dots & \dots \\ - & (x^{(d+1)})^T & - \\ - & (x^{(d+2)})^T & - \end{pmatrix}$$

Since $x^{(j)} \in \mathbb{R}^{d+1}$, for d+2 points, there are at least one point $x^{(j)}$ can be represented as

$$x^{(j)} = \sum_{i \neq i} \alpha_i x^i$$

And

$$y^{(j)} = sign(c^T x^{(j)}) = \sum_{i \neq j} \alpha_i sign(c^T x^{(i)})$$

For a given $x^{(i)}$, $x^{(j)}$ (or $y^{(j)}$) is determined by $x^{(i)}$ and not free.

Problem 3: Suppose the VC dimension of our \mathcal{H} is $d_{VC} = 3$ (e.g., linear classifiers in \mathbb{R}^2). And suppose that we have an algorithm for selecting some $h^* \in \mathcal{H}$ based on a training sample size n.

- (a) Using the VC generalization bound, give an upper bound on $R(h^*)$ that holds with probability at least 0.95 when n = 100. Repeat this for n = 1,000 and 10,000.
- (b) How large does n need to be to obtain a bound of the form:

$$R(h^*) \le \hat{R}(h^*) + 0.01$$

that holds with probability at least 0.95? How does this compare to the "rule of thumb" that we stated in the class?

a)

$$d_{VC} = 3, \delta = 1 - 0.95 = 0.05$$

$$8d_{VC} = 8n$$

$$R(h^*) \le \hat{R}(h^*) + \sqrt{\frac{8d_{VC}}{n} \log \frac{8n}{\delta}}$$

n = 100:

Upper Bound =
$$\sqrt{\frac{8*3}{100}log\frac{8*100}{0.05}}$$
 = 1.524

n = 1000:

Upper Bound =
$$\sqrt{\frac{8*3}{1000}log\frac{8*1000}{0.05}} = 0.536$$

n = 10000:

Upper Bound =
$$\sqrt{\frac{8*3}{10000}log\frac{8*10000}{0.05}} = 0.185$$

b)

$$\sqrt{\frac{8*3}{n}\log\frac{8*n}{0.05}} = 0.01$$

If $n = 10^6$, Bound ≈ 0.021 , if $n = 10^7$, Bound ≈ 0.007 , therefore, $n \in (10^6, 10^7)$

Compare to the 'rule of thumb', we see that for every n,

$$n \ge 10d_{vc} = 30$$