- Relación Tema 5 y 6:

Para comprobar si hay o no deferencia entre las variantas utilizamos una test de hipotesis:

$$H_1 \Rightarrow \sigma_1^2 \neq \sigma_2^2$$
 $\Rightarrow S_{n-1}^2 \sigma_2^2 \Rightarrow F(n-1, m-1)$

Lo Para Ho si cogemos este caso:

Para un intervalo del 95%:

$$\frac{1}{F(13,9)} = \frac{1}{3.83} = 0.567$$

0'975 b Aceptamos Ho;

2. Como hemos vista que podrian ser iguales: varianzas.

Ho =>
$$\mu_1 = \mu_2$$
 $\sqrt{\frac{(n-1)s_1^{n-1} + (m-1)s_2^{m-2}}{n + m}}$ $\rightarrow f(n+m-2)$

- 2'074 < 7'5817 < 2'074 => Rechezemos Ho al no ester dontro del intervalo

* Sucidus medios diferentes.

Ho =>
$$\mu_1 = \mu_2$$
 $\rightarrow N(0:1)$

Hy => $\mu_1 \neq \mu_2$ $\rightarrow N(0:1)$

Lis Para Ho:

* Sueldas medias dutintos

5.	χi	ทเ	ρi	l npi	1	×i	ni	pi	(n:-npi)2	(vi-ubr),
	1 2	27 23	0'55 0'40	33 24	#	1 2·3	33	0'55	36 36	1,0404
	3	10 h=60	0'05	3			<u> </u>			Xexp = 2'4242

Para saber calcular 10 => 3-1-1=1 son les grades de libertal. Rara > 3 (1) = 0'95 => 3'84;

6.	Xi 21 22 27 28 44 63 65 67	441 484 729 784 1936 3969 4225 4489	Ni 1 2 3 4 5 6 7 8 0	fix (xi) 0'1111 0'222 0'333 0'444 0'556 0'6667 0'7778	Fo (xi) 0'1251 0'1335 0'1922 0'2061 0'4801 0'8078 0'8315 0'8554 0'8665	1 Fo (xi) - Fn (xi)) 0'0 140 0'0 887 0'1411 [0'23 83] 0'0755 0'1411 0'0 537 0'0 335 0'1 335	
		4489	8		\		1
	405	2188	-	/	, r.c. _f . 100	Dexp = 0,5383	.05 Q

$$\overline{X} = \frac{2}{1}$$

$$S_{n-1} = \frac{2}{1} \times (-1)^{2} = 432$$

$$\overline{X} = \frac{1}{1}$$

 $\bar{X} = 45$ $\bar{S}_{n-1} = \frac{2}{8} \times 1 - n \bar{X}^2 = 432$ $\bar{X} = 432$ Como Dexp 2 Déab => $\bar{X} = 2383$ $\bar{X} = 2383$ $\bar{X} = 432$ $\bar{X} = 432$ $\bar{X} = 432$ Como Dexp 2 Déab => $\bar{X} = 2383$ $\bar{X} = 432$ $\bar{X} = 432$ $\bar{X} = 432$ $\bar{X} = 432$ Como Dexp 2 Déab => $\bar{X} = 2383$ $\bar{X} = 432$ $\bar{X} = 432$ Como Dexp 2 Déab => $\bar{X} = 432$ $\bar{X} = 432$ $\bar{X} = 432$ $\bar{X} = 432$ $\bar{X} = 432$ Como Dexp 2 Déab => $\bar{X} = 432$ $\bar{X} = 432$ Como Dexp 2 Déab => $\bar{X} = 432$ $\bar{X} = 432$ Como Dexp 2 Déab => $\bar{X} = 432$ $\bar{X} =$

7. Para lus que SI presentan defectos:

$$\begin{cases} \hat{p} = \frac{230 - 193}{230} = 0'1608 \\ \hat{q} = 1 - p \Rightarrow 0'8391 \end{cases} \Rightarrow \frac{\hat{p} - p}{\sqrt{\frac{pq}{n}}} \rightarrow N(0;1)$$

- Test de Hipotesis:

$$H_1 \Rightarrow p > 0.0525$$
 $\Rightarrow 0.1608 - 0.0525$ $\Rightarrow 13,1614$

- Cota interior:

Como 2'33 2 13'1914

	-					- 1 1 1	(ni-npi)2	
8.	×i \	nil	pi	n pi	ni-npi		npi.	
	0 2 3 4 25	16 22 23 19 12 10	0'1353 0'2706 0'2706 0'1804 0'0902 0'0529	13'53 27'06 27'06 18'09 9'02 5'29	2'47 -5'06 -6'06 0'91 2'48 4'71	6'10 25'603 36'7236 0'8281 8'88 22'18	0'4508 0'9461 1'3571 0'045 0'9844 4'1928 Xexp = 7'976	2

Si miramos para k-1 = 5 y una probabilidad del 95%:

Por tanto al ser
$$\chi^2_{exp} \sim \chi^2_{o} \sim 7'9762 \sim 11'07$$
[Se acepta Ho]

$$H_0 \rightarrow p_1 \neq p_2$$

$$H_1 \rightarrow p_2 \leq p_1$$

$$\frac{(\hat{p_1} - \hat{p_2}) - (p_1 - p_2)}{\sqrt{\frac{\hat{p_1} \hat{q_1}}{h} + \frac{\hat{p_2} \hat{q_2}}{m}}} \rightarrow N(0;1)$$

			•	15 Em(x)
16	x: \	Fn (x)	Fm(x)	Fncx>-Fm(x)
(6.	Xi 80 97 100 110 111 112 112 112 113 114 116 116 116 116 116 116 116	6 (x) 0'125 0'25 0'25 0'25 0'375 0'375 0'625 0'625 0'625 0'75 0'875	Fm(x)	0'126 0'25 0'15 0'275 0'176 0'3 0'425 0'325 0'326 0'325 0'375 0'276 0'276 0'4 0'3
THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TW	, 50	1	1	

Dexp = max | Fn(x) - Fm(x) | = 0'425

* Buscamos en la table para tamaño distintos de 8 y 10.

No rechazamos la hipotesu nula

77.	1'6 1'7 1'8 1'9 2'0 2'1	ni 2 1. 2 3 1 L n=us	2 3. 66 8	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	6 (x) 0'3085 0'5 0'6915 0'8413 0'9332 0'9372	0'1085 0'2 0'1915 0'0413 0'0332 0'0228
		1 112 00	1	1	1	, Dork

- Sacernos de la tabla de Kolmogorov - Smirrouv, con tameño de 20:

Do ~ 0'409;

Como Dexp L Do => [0'2 C 0'404]

No rechazamos la hipotesus nula.

10.00

distribution and the same