Improve COVID-19
Outbreak Forecasting
using Machine
Learning Algorithms

Prepared by: Meaad Alrehaili

Outline:

DESIGN

DATA DESCRIPTION

ALGORITHMS

RESULTS

CONCLUSION

Introduction

- Forecasting a pandemic's movements is extremely important for governmental or organizational actions such as those that need to be taken by the governments and organizations.
- <u>Problem</u>: Forecasting a new confirmed cases, recovered cases, and deaths cases of the upcoming 10 days using the Covid-19 dataset.

Design

Data Description

- The COVID-19 dataset is obtinaed from Johns Hopkins University (JHU).
- The data sourced from governments, national agencies across the world.
- The data features include the state, region, date for, number of confirmed, deaths, and number of recovered cases. Total features are 49 and the total samples around 7000+.

Ensemble Algorthims

• Ensemble of gradient boosting and random forest were used in this project to minimize the burden of data collection and to improve its efficiency.

GB-RF	R ² -score	Adjusted R ²	MAE	MSE	RMSE
Confirmed cases	0.99	0.99	69138158.83	4092.88	8314.94
Recovered cases	0.99	0.99	1682739.6	711.0	1297.2
Death cases	0.99	0.99	200297.36	215.2	447.55

• New infected cases for the upcoming 10 days using Gradient Boosting and Random Forest

• New recovered cases for the upcoming 10 days using Gradient Boosting and Random Forest

• New death cases for the upcoming 10 days using Gradient Boosting and Random Forest

Conclusion

- ML-based prediction models have been proposed to predict the risks of COVID-19 outbreak.
- The results showed that the best accuracy was obtained by the ensemble of Gradient Boosting and Random Forest (GBRF) in forecasting newly infected cases, recovery cases, and death cases.