$$+ \frac{\omega_i^2 - \omega_i^2}{\Delta t} + q_i = 0$$

			1			7	
	7	3	u	5		1	
\ \ \	•	•	\ •		•	•	
(= 1						1	
		1	1			ل ۔ ۔ ل	
					Rese	2010	

Well

Newton - Raphson

$$\vec{R} = \vec{R}^n + \left(\frac{\partial \vec{R}}{\partial \vec{w}}\right)_n \left(\vec{w}^{n+1} - \vec{w}^n\right) + \frac{1}{2!} \left(\frac{\partial^2 \vec{R}}{\partial \vec{w}}\right)_n \left(\vec{w}^{n+1} - \vec{w}^n\right)^2 + \dots$$

$$\Rightarrow$$
 $= \frac{\partial \vec{R}}{\partial \vec{\omega}}$ evaluated at $W = W^{n}$