

# Bis[1-phenyl-3-(1*H*-1,2,4-triazol-1-yl- $\kappa$ N<sup>4</sup>)propan-1-one]bis(thiocyanato- $\kappa$ N)-copper(II)

Hua Cai,\* Ying Guo and Jian-Gang Li

College of Science, Civil Aviation University of China, Tianjin 300300, People's Republic of China  
Correspondence e-mail: caihua-1109@163.com

Received 27 June 2012; accepted 8 July 2012

Key indicators: single-crystal X-ray study;  $T = 293\text{ K}$ ; mean  $\sigma(\text{C}-\text{C}) = 0.004\text{ \AA}$ ;  $R$  factor = 0.031;  $wR$  factor = 0.091; data-to-parameter ratio = 13.5.

The title compound,  $[\text{Cu}(\text{NCS})_2(\text{C}_{11}\text{H}_{11}\text{N}_3\text{O})_2]$ , contains two independent Cu<sup>II</sup> atoms. Each Cu<sup>II</sup> atom, lying on an inversion center, is coordinated by two N atoms from two NCS<sup>-</sup> anions and two N atoms from two monodentate 1-phenyl-3-(1*H*-1,2,4-triazol-1-yl)propan-1-one ligands in a distorted square-planar geometry. Two S atoms from adjacent molecules occupy the axial positions with long Cu···S distances [3.0495 (10) and 3.1045 (9) Å] and complete the overall distorted octahedral coordination sphere. Weak intermolecular C—H···O hydrogen bonds are present.

## Related literature

For related structures, see: Guo & Cai (2007); Yue *et al.* (2008).



## Experimental

### Crystal data

$[\text{Cu}(\text{NCS})_2(\text{C}_{11}\text{H}_{11}\text{N}_3\text{O})_2]$   
 $M_r = 582.16$

Triclinic,  $P\bar{1}$   
 $a = 9.8643 (8)\text{ \AA}$

$b = 10.1267 (9)\text{ \AA}$   
 $c = 14.3538 (12)\text{ \AA}$   
 $\alpha = 91.149 (1)^\circ$   
 $\beta = 101.270 (1)^\circ$   
 $\gamma = 110.857 (1)^\circ$   
 $V = 1307.75 (19)\text{ \AA}^3$

$Z = 2$   
Mo  $K\alpha$  radiation  
 $\mu = 1.03\text{ mm}^{-1}$   
 $T = 293\text{ K}$   
 $0.28 \times 0.24 \times 0.16\text{ mm}$

### Data collection

Bruker APEXII CCD diffractometer  
Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996)  
 $T_{\min} = 0.749$ ,  $T_{\max} = 0.848$

7171 measured reflections  
4559 independent reflections  
3860 reflections with  $I > 2\sigma(I)$   
 $R_{\text{int}} = 0.013$

### Refinement

$R[F^2 > 2\sigma(F^2)] = 0.031$   
 $wR(F^2) = 0.091$   
 $S = 1.08$   
4559 reflections

337 parameters  
H-atom parameters constrained  
 $\Delta\rho_{\text{max}} = 0.52\text{ e \AA}^{-3}$   
 $\Delta\rho_{\text{min}} = -0.41\text{ e \AA}^{-3}$

**Table 1**  
Hydrogen-bond geometry (Å, °).

| $D-\text{H}\cdots A$ | $D-\text{H}$ | $\text{H}\cdots A$ | $D\cdots A$ | $D-\text{H}\cdots A$ |
|----------------------|--------------|--------------------|-------------|----------------------|
| C13—H13···O1         | 0.93         | 2.58               | 3.330 (3)   | 138                  |

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *XP* in *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors acknowledge financial support from the Special Fund for Central Universities (grant No. ZXH2009D011), the Natural Science Foundation of Tianjin (grant No. 09JCYBJC04200), the National Natural Science Foundation of China Civil Aviation Administration of China (grant No. 61079010) and the Scientific Research Foundation of Civil Aviation University of China (grant No. 2011KYS05).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2568).

## References

- Bruker (2007). *APEX2* and *SAINT*. Bruker AXS Inc., Madison, Wisconsin, USA.
- Guo, J.-H. & Cai, H. (2007). *Acta Cryst. E63*, m1322–m1324.
- Sheldrick, G. M. (1996). *SADABS*. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). *Acta Cryst. A64*, 112–122.
- Yue, Y.-F., Gao, E.-Q., Fang, C.-J., Zheng, T., Liang, J. & Yan, C.-H. (2008). *Cryst. Growth Des.* **9**, 3295–3301.

# supplementary materials

*Acta Cryst.* (2012). E68, m1115 [doi:10.1107/S160053681203108X]

## **Bis[1-phenyl-3-(1*H*-1,2,4-triazol-1-yl- $\kappa$ N<sup>4</sup>)propan-1-one]bis(thiocyanato- $\kappa$ N)copper(II)**

**Hua Cai, Ying Guo and Jian-Gang Li**

### **Comment**

Pseudohalide anions N3<sup>-</sup>, NCS<sup>-</sup> and NCO<sup>-</sup> are known as extremely versatile ligands in coordination chemistry because of their multiple bridging modes (Yue *et al.*, 2008). Recently, we have initiated a research program of synthesizing supermolecules based on pseudohalide and flexible ligands that consist of a propanone unit substituted with an imidazole and a phenyl group (Guo & Cai, 2007). To further explore this series, we synthesized the title compound, a new Cu<sup>II</sup> complex based on the mixed ligands, thiocyanato and 3-(1*H*-1,2,4-triazol-1-yl)-1-phenylpropan-1-one (*L*) which consists of a propanone unit substituted with a triazole and a phenyl group. In the mononuclear title complex (Fig. 1), each Cu<sup>II</sup> atom is four-coordinated by two monodentate *L* ligands and two NCS<sup>-</sup> anions, forming a square-planar geometry. Weak intermolecular C—H···O hydrogen bonds are present (Table 1).

### **Experimental**

NH<sub>4</sub>SCN (15.2 mg, 0.2 mmol) was added into an acetonitrile solution of *L* (25.6 mg, 0.1 mmol) with stirring. The acetonitrile solution was added into a solution of CuCl<sub>2</sub>·2H<sub>2</sub>O (17.0 mg, 0.1 mmol) in acetonitrile/H<sub>2</sub>O (10 ml, v/v 1:1) with vigorous stirring for *ca* 30 min. The reaction solution was filtered and left to stand at room temperature. Blue block crystals of the title compound suitable for X-ray analysis were obtained in 65% yield by slow evaporation of the solvent over a period of 1 week. Analysis, calculated for Cu<sub>2</sub>C<sub>48</sub>H<sub>44</sub>N<sub>16</sub>O<sub>4</sub>S<sub>4</sub>: C 49.52, H 3.81, N 19.25%; found: C 49.45, H 3.89, N 19.36%.

### **Refinement**

Although all H atoms were visible in difference maps, they were finally placed in geometrically calculated positions, with C—H = 0.93 (aromatic) and 0.97 (CH<sub>2</sub>) Å, and refined as riding atoms, with  $U_{\text{iso}}(\text{H}) = 1.2U_{\text{eq}}(\text{C})$ .

### **Computing details**

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT* (Bruker, 2007); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *XP* in *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

**Figure 1**

The molecular structure of the title compound, showing the 50% probability ellipsoids. [Symmetry codes: (i) -x, 1-y, -z; (ii) 1-x, -y, -z.]

### Bis[1-phenyl-3-(1*H*-1,2,4-triazol-1-yl-*κN*<sup>4</sup>)propan-1-one]bis(thiocyanato-*κN*)copper(II)

#### Crystal data



$M_r = 582.16$

Triclinic,  $P\bar{1}$

Hall symbol: -P 1

$a = 9.8643 (8) \text{ \AA}$

$b = 10.1267 (9) \text{ \AA}$

$c = 14.3538 (12) \text{ \AA}$

$\alpha = 91.149 (1)^\circ$

$\beta = 101.270 (1)^\circ$

$\gamma = 110.857 (1)^\circ$

$V = 1307.75 (19) \text{ \AA}^3$

$Z = 2$

$F(000) = 598$

$D_x = 1.479 \text{ Mg m}^{-3}$

Mo  $K\alpha$  radiation,  $\lambda = 0.71073 \text{ \AA}$

Cell parameters from 3208 reflections

$\theta = 2.5\text{--}27.7^\circ$

$\mu = 1.03 \text{ mm}^{-1}$

$T = 293 \text{ K}$

Block, blue

$0.28 \times 0.24 \times 0.16 \text{ mm}$

#### Data collection

Bruker APEXII CCD

diffractometer

Radiation source: fine-focus sealed tube

Graphite monochromator

$\varphi$  and  $\omega$  scans

Absorption correction: multi-scan

(SADABS; Sheldrick, 1996)

$T_{\min} = 0.749$ ,  $T_{\max} = 0.848$

7171 measured reflections

4559 independent reflections

3860 reflections with  $I > 2\sigma(I)$

$R_{\text{int}} = 0.013$

$\theta_{\max} = 25.0^\circ$ ,  $\theta_{\min} = 2.2^\circ$

$h = -10 \rightarrow 11$

$k = -10 \rightarrow 12$

$l = -15 \rightarrow 17$

#### Refinement

Refinement on  $F^2$

Least-squares matrix: full

$R[F^2 > 2\sigma(F^2)] = 0.031$

$wR(F^2) = 0.091$

$S = 1.08$

4559 reflections

337 parameters

0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained  
 $w = 1/[\sigma^2(F_o^2) + (0.0456P)^2 + 0.6431P]$   
 where  $P = (F_o^2 + 2F_c^2)/3$

$(\Delta/\sigma)_{\max} < 0.001$   
 $\Delta\rho_{\max} = 0.52 \text{ e } \text{\AA}^{-3}$   
 $\Delta\rho_{\min} = -0.41 \text{ e } \text{\AA}^{-3}$

### Special details

**Geometry.** All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement.** Refinement of  $F^2$  against ALL reflections. The weighted  $R$ -factor  $wR$  and goodness of fit  $S$  are based on  $F^2$ , conventional  $R$ -factors  $R$  are based on  $F$ , with  $F$  set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating  $R$ -factors(gt) etc. and is not relevant to the choice of reflections for refinement.  $R$ -factors based on  $F^2$  are statistically about twice as large as those based on  $F$ , and  $R$ -factors based on ALL data will be even larger.

### Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ( $\text{\AA}^2$ )

|     | $x$          | $y$          | $z$          | $U_{\text{iso}}^*/U_{\text{eq}}$ |
|-----|--------------|--------------|--------------|----------------------------------|
| Cu1 | 0.0000       | 0.5000       | 0.0000       | 0.03694 (13)                     |
| Cu2 | 0.5000       | 0.0000       | 0.0000       | 0.04017 (13)                     |
| S1  | -0.48000 (8) | 0.29758 (9)  | 0.06142 (7)  | 0.0654 (2)                       |
| S2  | 0.06035 (8)  | -0.21058 (9) | 0.10990 (6)  | 0.0600 (2)                       |
| O1  | 0.4874 (2)   | 0.1466 (2)   | 0.35980 (13) | 0.0532 (5)                       |
| O2  | 0.87681 (19) | 0.03667 (17) | 0.56084 (12) | 0.0431 (4)                       |
| N1  | 0.0706 (2)   | 0.4157 (2)   | 0.11707 (14) | 0.0378 (5)                       |
| N2  | 0.0832 (3)   | 0.3365 (3)   | 0.26177 (17) | 0.0553 (6)                       |
| N3  | 0.1774 (2)   | 0.3051 (2)   | 0.21618 (14) | 0.0397 (5)                       |
| N4  | 0.6443 (2)   | 0.0025 (2)   | 0.11758 (14) | 0.0389 (5)                       |
| N5  | 0.7402 (2)   | -0.0004 (2)  | 0.26570 (13) | 0.0349 (4)                       |
| N6  | 0.8416 (2)   | -0.0119 (3)  | 0.21731 (15) | 0.0511 (6)                       |
| N7  | -0.1992 (2)  | 0.4382 (2)   | 0.02640 (15) | 0.0429 (5)                       |
| N8  | 0.3355 (2)   | -0.0705 (2)  | 0.06659 (15) | 0.0470 (5)                       |
| C1  | 0.1693 (3)   | 0.3532 (3)   | 0.13169 (17) | 0.0419 (6)                       |
| H1  | 0.2249       | 0.3445       | 0.0882       | 0.050*                           |
| C2  | 0.0219 (3)   | 0.4019 (3)   | 0.19914 (19) | 0.0530 (7)                       |
| H2  | -0.0498      | 0.4363       | 0.2103       | 0.064*                           |
| C3  | 0.2643 (3)   | 0.2222 (3)   | 0.25970 (19) | 0.0491 (6)                       |
| H3A | 0.3470       | 0.2360       | 0.2291       | 0.059*                           |
| H3B | 0.2023       | 0.1221       | 0.2499       | 0.059*                           |
| C4  | 0.3223 (3)   | 0.2669 (3)   | 0.36542 (17) | 0.0398 (6)                       |
| H4A | 0.3629       | 0.3698       | 0.3756       | 0.048*                           |
| H4B | 0.2403       | 0.2330       | 0.3976       | 0.048*                           |
| C5  | 0.4406 (3)   | 0.2112 (2)   | 0.40930 (18) | 0.0366 (5)                       |
| C6  | 0.5010 (2)   | 0.2403 (2)   | 0.51463 (17) | 0.0346 (5)                       |
| C7  | 0.4606 (3)   | 0.3234 (3)   | 0.57345 (19) | 0.0425 (6)                       |
| H7  | 0.3920       | 0.3636       | 0.5475       | 0.051*                           |
| C8  | 0.5217 (3)   | 0.3471 (3)   | 0.6704 (2)   | 0.0482 (6)                       |
| H8  | 0.4929       | 0.4020       | 0.7094       | 0.058*                           |
| C9  | 0.6246 (3)   | 0.2897 (3)   | 0.7096 (2)   | 0.0499 (7)                       |
| H9  | 0.6665       | 0.3070       | 0.7747       | 0.060*                           |
| C10 | 0.6655 (3)   | 0.2065 (3)   | 0.6520 (2)   | 0.0495 (7)                       |

|      |             |             |              |            |
|------|-------------|-------------|--------------|------------|
| H10  | 0.7351      | 0.1677      | 0.6782       | 0.059*     |
| C11  | 0.6040 (3)  | 0.1811 (3)  | 0.55633 (18) | 0.0421 (6) |
| H11  | 0.6310      | 0.1234      | 0.5183       | 0.050*     |
| C12  | 0.7786 (3)  | -0.0106 (3) | 0.12931 (18) | 0.0486 (7) |
| H12  | 0.8219      | -0.0181     | 0.0784       | 0.058*     |
| C13  | 0.6252 (3)  | 0.0090 (3)  | 0.20563 (16) | 0.0372 (5) |
| H13  | 0.5429      | 0.0188      | 0.2228       | 0.045*     |
| C14  | 0.7671 (3)  | 0.0026 (3)  | 0.36889 (16) | 0.0360 (5) |
| H14A | 0.7983      | -0.0751     | 0.3887       | 0.043*     |
| H14B | 0.6758      | -0.0100     | 0.3897       | 0.043*     |
| C15  | 0.8855 (3)  | 0.1414 (2)  | 0.41492 (16) | 0.0364 (5) |
| H15A | 0.9720      | 0.1595      | 0.3874       | 0.044*     |
| H15B | 0.8488      | 0.2175      | 0.4011       | 0.044*     |
| C16  | 0.9308 (2)  | 0.1423 (2)  | 0.52113 (16) | 0.0314 (5) |
| C17  | 1.0427 (2)  | 0.2750 (2)  | 0.57691 (16) | 0.0316 (5) |
| C18  | 1.0867 (3)  | 0.2771 (3)  | 0.67518 (17) | 0.0398 (6) |
| H18  | 1.0451      | 0.1966      | 0.7053       | 0.048*     |
| C19  | 1.1913 (3)  | 0.3976 (3)  | 0.72822 (19) | 0.0496 (7) |
| H19  | 1.2211      | 0.3979      | 0.7938       | 0.060*     |
| C20  | 1.2523 (3)  | 0.5184 (3)  | 0.6840 (2)   | 0.0528 (7) |
| H20  | 1.3223      | 0.6000      | 0.7201       | 0.063*     |
| C21  | 1.2093 (3)  | 0.5178 (3)  | 0.5862 (2)   | 0.0490 (7) |
| H21  | 1.2502      | 0.5992      | 0.5568       | 0.059*     |
| C22  | 1.1058 (3)  | 0.3970 (3)  | 0.53216 (19) | 0.0399 (6) |
| H22  | 1.0781      | 0.3964      | 0.4664       | 0.048*     |
| C23  | -0.3161 (3) | 0.3805 (3)  | 0.03986 (17) | 0.0383 (5) |
| C24  | 0.2211 (3)  | -0.1283 (3) | 0.08425 (16) | 0.0389 (6) |

Atomic displacement parameters ( $\text{\AA}^2$ )

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| Cu1 | 0.0272 (2)  | 0.0509 (3)  | 0.0339 (2)  | 0.01463 (18) | 0.00743 (16) | 0.01850 (18) |
| Cu2 | 0.0257 (2)  | 0.0606 (3)  | 0.0262 (2)  | 0.00673 (19) | 0.00434 (16) | 0.01022 (18) |
| S1  | 0.0396 (4)  | 0.0621 (5)  | 0.0905 (6)  | 0.0055 (3)   | 0.0312 (4)   | -0.0025 (4)  |
| S2  | 0.0370 (4)  | 0.0830 (5)  | 0.0544 (4)  | 0.0093 (4)   | 0.0220 (3)   | 0.0063 (4)   |
| O1  | 0.0587 (12) | 0.0689 (13) | 0.0468 (11) | 0.0412 (10)  | 0.0110 (9)   | 0.0079 (9)   |
| O2  | 0.0478 (10) | 0.0405 (9)  | 0.0342 (9)  | 0.0092 (8)   | 0.0059 (8)   | 0.0096 (7)   |
| N1  | 0.0362 (11) | 0.0484 (12) | 0.0335 (11) | 0.0195 (9)   | 0.0093 (9)   | 0.0135 (9)   |
| N2  | 0.0566 (15) | 0.0827 (17) | 0.0481 (13) | 0.0430 (13)  | 0.0246 (11)  | 0.0305 (12)  |
| N3  | 0.0417 (12) | 0.0471 (12) | 0.0368 (11) | 0.0239 (10)  | 0.0080 (9)   | 0.0110 (9)   |
| N4  | 0.0322 (10) | 0.0539 (13) | 0.0287 (10) | 0.0148 (9)   | 0.0040 (8)   | 0.0041 (9)   |
| N5  | 0.0339 (10) | 0.0441 (11) | 0.0282 (10) | 0.0166 (9)   | 0.0058 (8)   | 0.0038 (8)   |
| N6  | 0.0455 (13) | 0.0842 (17) | 0.0347 (12) | 0.0363 (12)  | 0.0103 (10)  | 0.0066 (11)  |
| N7  | 0.0316 (11) | 0.0507 (12) | 0.0449 (12) | 0.0125 (10)  | 0.0092 (9)   | 0.0139 (10)  |
| N8  | 0.0356 (12) | 0.0636 (14) | 0.0350 (11) | 0.0089 (10)  | 0.0086 (9)   | 0.0146 (10)  |
| C1  | 0.0421 (14) | 0.0592 (16) | 0.0326 (13) | 0.0273 (13)  | 0.0097 (11)  | 0.0109 (11)  |
| C2  | 0.0566 (17) | 0.083 (2)   | 0.0437 (15) | 0.0475 (16)  | 0.0212 (13)  | 0.0292 (14)  |
| C3  | 0.0595 (17) | 0.0524 (16) | 0.0441 (15) | 0.0351 (14)  | 0.0031 (13)  | 0.0099 (12)  |
| C4  | 0.0398 (13) | 0.0432 (14) | 0.0411 (14) | 0.0208 (11)  | 0.0077 (11)  | 0.0132 (11)  |
| C5  | 0.0314 (12) | 0.0349 (12) | 0.0463 (14) | 0.0131 (10)  | 0.0116 (11)  | 0.0139 (10)  |

|     |             |             |             |             |             |              |
|-----|-------------|-------------|-------------|-------------|-------------|--------------|
| C6  | 0.0292 (12) | 0.0348 (12) | 0.0418 (13) | 0.0126 (10) | 0.0098 (10) | 0.0140 (10)  |
| C7  | 0.0386 (13) | 0.0413 (14) | 0.0508 (15) | 0.0190 (11) | 0.0076 (11) | 0.0102 (11)  |
| C8  | 0.0498 (16) | 0.0441 (15) | 0.0499 (16) | 0.0176 (12) | 0.0085 (13) | 0.0001 (12)  |
| C9  | 0.0457 (15) | 0.0522 (16) | 0.0431 (15) | 0.0118 (13) | 0.0013 (12) | 0.0059 (12)  |
| C10 | 0.0400 (14) | 0.0588 (17) | 0.0522 (16) | 0.0237 (13) | 0.0039 (12) | 0.0136 (13)  |
| C11 | 0.0383 (14) | 0.0491 (15) | 0.0455 (15) | 0.0222 (12) | 0.0116 (11) | 0.0126 (11)  |
| C12 | 0.0466 (15) | 0.0775 (19) | 0.0302 (13) | 0.0323 (14) | 0.0097 (11) | 0.0047 (12)  |
| C13 | 0.0321 (12) | 0.0490 (14) | 0.0308 (12) | 0.0154 (11) | 0.0059 (10) | 0.0064 (10)  |
| C14 | 0.0366 (13) | 0.0448 (13) | 0.0275 (12) | 0.0157 (11) | 0.0070 (10) | 0.0069 (10)  |
| C15 | 0.0399 (13) | 0.0397 (13) | 0.0296 (12) | 0.0143 (11) | 0.0077 (10) | 0.0082 (10)  |
| C16 | 0.0306 (12) | 0.0372 (12) | 0.0319 (12) | 0.0178 (10) | 0.0087 (9)  | 0.0078 (10)  |
| C17 | 0.0303 (12) | 0.0354 (12) | 0.0339 (12) | 0.0170 (10) | 0.0087 (9)  | 0.0036 (9)   |
| C18 | 0.0411 (14) | 0.0434 (14) | 0.0386 (14) | 0.0188 (11) | 0.0109 (11) | 0.0018 (11)  |
| C19 | 0.0485 (16) | 0.0588 (17) | 0.0396 (14) | 0.0210 (13) | 0.0045 (12) | -0.0120 (12) |
| C20 | 0.0409 (15) | 0.0437 (15) | 0.068 (2)   | 0.0114 (12) | 0.0084 (13) | -0.0138 (13) |
| C21 | 0.0400 (14) | 0.0375 (14) | 0.071 (2)   | 0.0130 (12) | 0.0187 (13) | 0.0059 (13)  |
| C22 | 0.0359 (13) | 0.0403 (13) | 0.0466 (14) | 0.0163 (11) | 0.0111 (11) | 0.0085 (11)  |
| C23 | 0.0367 (14) | 0.0402 (13) | 0.0372 (13) | 0.0137 (11) | 0.0066 (10) | 0.0031 (10)  |
| C24 | 0.0365 (14) | 0.0503 (14) | 0.0264 (12) | 0.0132 (12) | 0.0040 (10) | 0.0059 (10)  |

Geometric parameters ( $\text{\AA}$ ,  $^\circ$ )

|                      |             |          |           |
|----------------------|-------------|----------|-----------|
| Cu1—N7 <sup>i</sup>  | 1.955 (2)   | C4—H4B   | 0.9700    |
| Cu1—N7               | 1.955 (2)   | C5—C6    | 1.494 (3) |
| Cu1—N1 <sup>i</sup>  | 2.0150 (18) | C6—C7    | 1.387 (3) |
| Cu1—N1               | 2.0150 (18) | C6—C11   | 1.400 (3) |
| Cu2—N8 <sup>ii</sup> | 1.966 (2)   | C7—C8    | 1.383 (4) |
| Cu2—N8               | 1.966 (2)   | C7—H7    | 0.9300    |
| Cu2—N4               | 1.9771 (19) | C8—C9    | 1.377 (4) |
| Cu2—N4 <sup>ii</sup> | 1.9771 (19) | C8—H8    | 0.9300    |
| S1—C23               | 1.629 (3)   | C9—C10   | 1.379 (4) |
| S2—C24               | 1.626 (3)   | C9—H9    | 0.9300    |
| O1—C5                | 1.213 (3)   | C10—C11  | 1.367 (4) |
| O2—C16               | 1.221 (3)   | C10—H10  | 0.9300    |
| N1—C1                | 1.325 (3)   | C11—H11  | 0.9300    |
| N1—C2                | 1.348 (3)   | C12—H12  | 0.9300    |
| N2—C2                | 1.307 (3)   | C13—H13  | 0.9300    |
| N2—N3                | 1.355 (3)   | C14—C15  | 1.506 (3) |
| N3—C1                | 1.315 (3)   | C14—H14A | 0.9700    |
| N3—C3                | 1.466 (3)   | C14—H14B | 0.9700    |
| N4—C13               | 1.318 (3)   | C15—C16  | 1.501 (3) |
| N4—C12               | 1.356 (3)   | C15—H15A | 0.9700    |
| N5—C13               | 1.318 (3)   | C15—H15B | 0.9700    |
| N5—N6                | 1.359 (3)   | C16—C17  | 1.490 (3) |
| N5—C14               | 1.451 (3)   | C17—C18  | 1.390 (3) |
| N6—C12               | 1.297 (3)   | C17—C22  | 1.402 (3) |
| N7—C23               | 1.149 (3)   | C18—C19  | 1.375 (4) |
| N8—C24               | 1.152 (3)   | C18—H18  | 0.9300    |
| C1—H1                | 0.9300      | C19—C20  | 1.385 (4) |
| C2—H2                | 0.9300      | C19—H19  | 0.9300    |

|                                        |             |               |             |
|----------------------------------------|-------------|---------------|-------------|
| C3—C4                                  | 1.511 (4)   | C20—C21       | 1.384 (4)   |
| C3—H3A                                 | 0.9700      | C20—H20       | 0.9300      |
| C3—H3B                                 | 0.9700      | C21—C22       | 1.380 (4)   |
| C4—C5                                  | 1.507 (3)   | C21—H21       | 0.9300      |
| C4—H4A                                 | 0.9700      | C22—H22       | 0.9300      |
| <br>                                   |             |               |             |
| N7 <sup>i</sup> —Cu1—N7                | 180.00 (18) | C6—C7—H7      | 119.8       |
| N7 <sup>i</sup> —Cu1—N1 <sup>i</sup>   | 90.26 (8)   | C9—C8—C7      | 120.4 (3)   |
| N7—Cu1—N1 <sup>i</sup>                 | 89.74 (8)   | C9—C8—H8      | 119.8       |
| N7 <sup>i</sup> —Cu1—N1                | 89.74 (8)   | C7—C8—H8      | 119.8       |
| N7—Cu1—N1                              | 90.26 (8)   | C8—C9—C10     | 119.7 (3)   |
| N1 <sup>i</sup> —Cu1—N1                | 180.00 (11) | C8—C9—H9      | 120.1       |
| N8 <sup>ii</sup> —Cu2—N8               | 180.00 (19) | C10—C9—H9     | 120.1       |
| N8 <sup>ii</sup> —Cu2—N4               | 89.33 (8)   | C11—C10—C9    | 120.1 (2)   |
| N8—Cu2—N4                              | 90.67 (8)   | C11—C10—H10   | 119.9       |
| N8 <sup>ii</sup> —Cu2—N4 <sup>ii</sup> | 90.67 (8)   | C9—C10—H10    | 119.9       |
| N8—Cu2—N4 <sup>ii</sup>                | 89.33 (8)   | C10—C11—C6    | 121.2 (2)   |
| N4—Cu2—N4 <sup>ii</sup>                | 180.00 (16) | C10—C11—H11   | 119.4       |
| C1—N1—C2                               | 102.3 (2)   | C6—C11—H11    | 119.4       |
| C1—N1—Cu1                              | 129.55 (16) | N6—C12—N4     | 114.5 (2)   |
| C2—N1—Cu1                              | 128.06 (16) | N6—C12—H12    | 122.8       |
| C2—N2—N3                               | 102.5 (2)   | N4—C12—H12    | 122.8       |
| C1—N3—N2                               | 109.74 (19) | N4—C13—N5     | 109.8 (2)   |
| C1—N3—C3                               | 129.3 (2)   | N4—C13—H13    | 125.1       |
| N2—N3—C3                               | 120.9 (2)   | N5—C13—H13    | 125.1       |
| C13—N4—C12                             | 103.1 (2)   | N5—C14—C15    | 110.65 (18) |
| C13—N4—Cu2                             | 126.30 (16) | N5—C14—H14A   | 109.5       |
| C12—N4—Cu2                             | 130.52 (16) | C15—C14—H14A  | 109.5       |
| C13—N5—N6                              | 110.04 (19) | N5—C14—H14B   | 109.5       |
| C13—N5—C14                             | 128.9 (2)   | C15—C14—H14B  | 109.5       |
| N6—N5—C14                              | 121.02 (19) | H14A—C14—H14B | 108.1       |
| C12—N6—N5                              | 102.6 (2)   | C16—C15—C14   | 112.52 (18) |
| C23—N7—Cu1                             | 169.1 (2)   | C16—C15—H15A  | 109.1       |
| C24—N8—Cu2                             | 163.5 (2)   | C14—C15—H15A  | 109.1       |
| N3—C1—N1                               | 110.6 (2)   | C16—C15—H15B  | 109.1       |
| N3—C1—H1                               | 124.7       | C14—C15—H15B  | 109.1       |
| N1—C1—H1                               | 124.7       | H15A—C15—H15B | 107.8       |
| N2—C2—N1                               | 114.9 (2)   | O2—C16—C17    | 120.8 (2)   |
| N2—C2—H2                               | 122.6       | O2—C16—C15    | 120.6 (2)   |
| N1—C2—H2                               | 122.6       | C17—C16—C15   | 118.55 (19) |
| N3—C3—C4                               | 110.8 (2)   | C18—C17—C22   | 119.4 (2)   |
| N3—C3—H3A                              | 109.5       | C18—C17—C16   | 119.2 (2)   |
| C4—C3—H3A                              | 109.5       | C22—C17—C16   | 121.4 (2)   |
| N3—C3—H3B                              | 109.5       | C19—C18—C17   | 120.4 (2)   |
| C4—C3—H3B                              | 109.5       | C19—C18—H18   | 119.8       |
| H3A—C3—H3B                             | 108.1       | C17—C18—H18   | 119.8       |
| C5—C4—C3                               | 113.0 (2)   | C18—C19—C20   | 120.1 (3)   |
| C5—C4—H4A                              | 109.0       | C18—C19—H19   | 120.0       |
| C3—C4—H4A                              | 109.0       | C20—C19—H19   | 120.0       |

|                              |              |                 |              |
|------------------------------|--------------|-----------------|--------------|
| C5—C4—H4B                    | 109.0        | C21—C20—C19     | 120.1 (2)    |
| C3—C4—H4B                    | 109.0        | C21—C20—H20     | 120.0        |
| H4A—C4—H4B                   | 107.8        | C19—C20—H20     | 120.0        |
| O1—C5—C6                     | 120.9 (2)    | C22—C21—C20     | 120.3 (3)    |
| O1—C5—C4                     | 120.6 (2)    | C22—C21—H21     | 119.8        |
| C6—C5—C4                     | 118.5 (2)    | C20—C21—H21     | 119.8        |
| C7—C6—C11                    | 118.1 (2)    | C21—C22—C17     | 119.7 (2)    |
| C7—C6—C5                     | 123.3 (2)    | C21—C22—H22     | 120.2        |
| C11—C6—C5                    | 118.6 (2)    | C17—C22—H22     | 120.2        |
| C8—C7—C6                     | 120.4 (2)    | N7—C23—S1       | 178.5 (2)    |
| C8—C7—H7                     | 119.8        | N8—C24—S2       | 179.5 (3)    |
| <br>                         |              |                 |              |
| N7 <sup>i</sup> —Cu1—N1—C1   | -34.9 (2)    | C11—C6—C7—C8    | 0.3 (4)      |
| N7—Cu1—N1—C1                 | 145.1 (2)    | C5—C6—C7—C8     | -179.5 (2)   |
| N7 <sup>i</sup> —Cu1—N1—C2   | 149.3 (2)    | C6—C7—C8—C9     | 0.8 (4)      |
| N7—Cu1—N1—C2                 | -30.7 (2)    | C7—C8—C9—C10    | -0.9 (4)     |
| C2—N2—N3—C1                  | 0.7 (3)      | C8—C9—C10—C11   | -0.1 (4)     |
| C2—N2—N3—C3                  | -176.3 (3)   | C9—C10—C11—C6   | 1.2 (4)      |
| N8 <sup>ii</sup> —Cu2—N4—C13 | 157.5 (2)    | C7—C6—C11—C10   | -1.3 (4)     |
| N8—Cu2—N4—C13                | -22.5 (2)    | C5—C6—C11—C10   | 178.5 (2)    |
| N8 <sup>ii</sup> —Cu2—N4—C12 | -27.2 (2)    | N5—N6—C12—N4    | 0.7 (3)      |
| N8—Cu2—N4—C12                | 152.8 (2)    | C13—N4—C12—N6   | -0.3 (3)     |
| C13—N5—N6—C12                | -0.9 (3)     | Cu2—N4—C12—N6   | -176.39 (19) |
| C14—N5—N6—C12                | -179.9 (2)   | C12—N4—C13—N5   | -0.3 (3)     |
| N1 <sup>i</sup> —Cu1—N7—C23  | 117.2 (11)   | Cu2—N4—C13—N5   | 176.02 (16)  |
| N1—Cu1—N7—C23                | -62.8 (11)   | N6—N5—C13—N4    | 0.8 (3)      |
| N4—Cu2—N8—C24                | -146.7 (8)   | C14—N5—C13—N4   | 179.7 (2)    |
| N4 <sup>ii</sup> —Cu2—N8—C24 | 33.3 (8)     | C13—N5—C14—C15  | -107.1 (3)   |
| N2—N3—C1—N1                  | -0.7 (3)     | N6—N5—C14—C15   | 71.7 (3)     |
| C3—N3—C1—N1                  | 176.0 (2)    | N5—C14—C15—C16  | -172.76 (19) |
| C2—N1—C1—N3                  | 0.4 (3)      | C14—C15—C16—O2  | 2.3 (3)      |
| Cu1—N1—C1—N3                 | -176.23 (17) | C14—C15—C16—C17 | -177.49 (19) |
| N3—N2—C2—N1                  | -0.5 (4)     | O2—C16—C17—C18  | 0.7 (3)      |
| C1—N1—C2—N2                  | 0.1 (3)      | C15—C16—C17—C18 | -179.5 (2)   |
| Cu1—N1—C2—N2                 | 176.8 (2)    | O2—C16—C17—C22  | 179.9 (2)    |
| C1—N3—C3—C4                  | 143.1 (3)    | C15—C16—C17—C22 | -0.3 (3)     |
| N2—N3—C3—C4                  | -40.5 (3)    | C22—C17—C18—C19 | -0.1 (3)     |
| N3—C3—C4—C5                  | -166.5 (2)   | C16—C17—C18—C19 | 179.1 (2)    |
| C3—C4—C5—O1                  | 5.0 (3)      | C17—C18—C19—C20 | 0.8 (4)      |
| C3—C4—C5—C6                  | -176.4 (2)   | C18—C19—C20—C21 | -0.6 (4)     |
| O1—C5—C6—C7                  | 174.5 (2)    | C19—C20—C21—C22 | -0.2 (4)     |
| C4—C5—C6—C7                  | -4.1 (3)     | C20—C21—C22—C17 | 0.9 (4)      |
| O1—C5—C6—C11                 | -5.3 (3)     | C18—C17—C22—C21 | -0.8 (3)     |
| C4—C5—C6—C11                 | 176.0 (2)    | C16—C17—C22—C21 | -179.9 (2)   |

Symmetry codes: (i)  $-x, -y+1, -z$ ; (ii)  $-x+1, -y, -z$ .

## supplementary materials

---

*Hydrogen-bond geometry ( $\text{\AA}$ ,  $^\circ$ )*

| $D\text{---H}\cdots A$ | $D\text{---H}$ | $H\cdots A$ | $D\cdots A$ | $D\text{---H}\cdots A$ |
|------------------------|----------------|-------------|-------------|------------------------|
| C13—H13···O1           | 0.93           | 2.58        | 3.330 (3)   | 138                    |