Universidade de Évora

Curso de Engenharia Informática

Base de Dados

Relatório do 1ºTrabalho 2019/2020

Leonardo Catarro, nº43025

Diogo Solipa, nº43071

<u>Introdução</u>

Com este trabalho vimos desenvolver uma base de dados de uma Companhia de Táxis utilizando Álgebra Relacional e PostgreSQL.

Exercícios Propostos e Resoluções

1)Indicar as chaves primárias, candidatas e estrangeiras de cada relação.

```
→ Relação motorista
     Chaves candidatas: {Nbi}, {NCartaCond}
     Chaves primárias: {NCartaCond}
     Chaves estrangeiras: {}
→ Relação telefone
     Chaves candidatas: {Nbi, Telefone}
     Chaves primárias: {Nbi, Telefone}
     Chave estrangeiras: {}
→ Relação modelo
     Chaves candidatas: {Modelo}
     Chaves primárias: {Modelo}
     Chaves estrangeiras: {}
→ Relação taxi
     Chaves candidatas: {Matricula}
     Chaves primárias: {Matricula}
     Chaves estrangeiras: {Modelo} da relação modelo
→ Relação servico
     Chaves candidatas: {Matricula, DataInicioS},
                        {DataFimS, Matricula}
```

Chaves primárias: {Matricula, DataInicioS}

Chaves estrangeiras: {Matricula} da relação taxi

```
→ Relação turno
Chaves candidatas: {Matricula,DataInicioT},
{Matricula,DataFimT}, {Nbi,DataInicioT}, {Nbi,DataFimT}
Chaves primárias: {Nbi,DataInicioT}
Chaves estrangeiras: {Matricula} da relação taxi
→ Relação cliente1
Chaves candidatas: {Nif}
Chaves primárias: {Nif}
Chaves estrangeiras: {}
→ Relação pedido
Chaves candidatas: {Nif, DataInicio},{Nif, DataFim}
Chaves primárias: {Nif, DataInicio}
Chaves estrangeiras: {Nif, DataInicio}
Chaves estrangeiras: {Nif} da relação cliente1
```

2)Indicar os comandos SQL para a criação das tabelas que constituem esta base de dados e construir esta base de dados no PostGreSQL.

Tabela motorista:

```
Create table motorista (

NomeMotorista varchar(50),

NCartaCond char(5) primary key,

DataNasc char(7),

Nbi char(4)
);
```

Tabela telefone:

```
Create table telefone (

Nbi char(4) ,

Telefone char(9),

primary key (Nbi,Telefone)
);
```

Tabela modelo:

```
Create table modelo (

Marca varchar(20),

Modelo varchar(30) primary key,

Nlugares char(2),

Consumo varchar(12)
);
```

Tabela taxi:

```
Create table taxi (

Modelo varchar(30),

Ano char(4),

Kms char(8),

Matricula char(8) primary key,

foreign key (Modelo) references modelo on delete restrict
);
```

Tabela servico:

```
Create table servico (
DataInicioS text,

DataFimS text,

Kms char(8),

Valor Float,

Matricula char(8),

CoordGPSInic varchar(50),

CordGPSfim varchar(50),

primary key (Matricula, DataInicioS),

foreign key (Matricula) references taxi on delete restrict
);
```

Tabela turno:

```
Create table turno (
DataInicioT text,

DataFimT text,

KmInicio varchar(8),

KmFim varchar(8),

Matricula char(8),

Nbi char(4),

primary key (Nbi,DataInicioT),

foreign key (Matricula) references taxi on delete restrict
);
```

Tabela cliente1:

```
Create table cliente1 (

NomeCliente varchar(50),

Morada varchar(100),

CodigoPostal varchar(20),

Nif char(12) primary key
);
```

Tabela pedido:

```
Create table pedido (
    Nif char(12) ,
    Moradalnicio varchar(100),
    CodigoPostallnicio varchar(20),
    DataPedido varchar(20),
    Matricula char(8),
    Datalnicio varchar(20),
    primary key (Nif, Datalnicio),
    foreign key (Nif) references cliente1 on delete restrict
);
```

- 3)Indicar as expressões em SQL para inserir a seguinte informação na sua base de dados e inseri-la:
 - a)Expressões em SQL para inserir a informação na tabela taxi

```
i) insert into taxi values('Espace' , '2015' , '123098' , '22-AA-22');
```

- ii) into taxi values('CLK', '2014', '234554', '21-AA-22');
- iii) into taxi values('Civic', '2012', '89764', '20-AA-22');

- iv) into taxi values('classe S', '2015', '79744', '19-AA-22');
- b) Expressões em SQL para inserir a informação na tabela motorista
 - i) insert into motorista values('Manuel Duarte', 'L-123', '14/1/76', '1234');
 - ii) insert into motorista values('Fernando Nobre', 'L-124', '14/1/77', '1235');
 - iii) insert into motorista values('Anibal Silva', 'L-125', '14/1/78', '1236');
 - iv) insert into motorista values('Francisco Lopes', 'L-126', '14/1/79', '1237');
- c) Expressões em SQL para inserir a informação na tabela cliente1
- i) insert into cliente1 values('José Silva', 'Rua António Silva 23', '7100-434 Évora', '600700800900');
- ii) insert into cliente1 values('Francisco Passos', 'Rua Manuel Passos 12', '7000-131 Évora', '600700800901');
- iii) insert into cliente1 values('Pedro Sousa', 'Rua Joaquim Sousa 21', '7500-313 Évora', '600700800902');
 - d) Expressões em SQL para inserir a informação na tabela pedido
- i) insert into pedido values('600700800900' , 'Rua Silva Pais 33' , '7120-212 Évora' , '2/1/2016 às 9:00' , '19-AA-22' , '2/1/2016 às 8:43');
 - e) Expressões em SQL para inserir a informação na tabela turno
- i) insert into turno values('2/1/2016 às 8:00', '2/1/2016 às 17:00' , '79744' , '79944' , '19-AA-22' , '1234');
- ii) insert into turno values('2/1/2016 às 8:00', '2/1/2016 às 17:00', '89764', '89964', '20-AA-22', '1235');
- iii) insert into turno values('3/1/2016 às 8:00', '3/1/2016 às 17:00', '234554', '234954', '21-AA-22', '1236');
- **iv)** insert into turno values('3/1/2016 às 8:00', '3/1/2016 às 17:00', '123098', '123498', '22-AA-22', '1237');

Informação adicionada para ajudar na resposta à 5.g)

insert into turno values('2016/01/04 08:00:00', '2016/01/04 14:00:00', '79740', '79945', '20-AA-22', '1234');

insert into turno values('2016/01/05 08:00:00', '2016/01/05 15:00:00', '79741', '79946', '21-AA-22', '1234');

insert into turno values('2016/01/06 08:00:00', '2016/01/06 16:00:00', '79742', '79947', '22-AA-22', '1234');

insert into turno values ('2016/01/02 10:00:00', '2016/01/02 17:00:00' , '79743' , '79948' , '12-AA-12' , '1234');

insert into turno values('2016/01/03 09:00:00', '2016/01/03 17:00:00', '79744', '79949', '13-AA-13', '1234');

f) Expressões em SQL para inserir a informação na tabela servico

- i) insert into servico values('2/1/2016 às 8:12' , '2/1/2016 às 8:32' , '12' , '5.25€' , '19-AA-22' , '0,75' , '0,76');
- ii) insert into servico values('2/1/2016 às 8:43', '2/1/2016 às 8:52', '7', '3.25€', '19-AA-22', '0.80', '0.81');
- iii) insert into servico values('2/1/2016 às 8:53' , '2/1/2016 às 9:59' , '98' ,
 '53.25€' , '19-AA-22' , '0.85' , '0.86');
- iV) insert into servico values('2/1/2016 às 10:13' , '2/1/2016 às 10:29' , '18' , '19.25€' , '19-AA-22' , '0.90' , '0.91');
- V) insert into servico values('2/1/2016 às 11:10' , '2/1/2016 às 11:29' , '23' , '22.25€' , '19-AA-22' , '0.95' , '0.96');
- Vi) insert into servico values('2/1/2016 às 12:00' , '2/1/2016 às 13:29' , '21' , '42.25€' , '19-AA-22' , '1.0' , '1.1');
- Vii) insert into servico values('2/1/2016 às 15:20' , '2/1/2016 às 15:29' , '9' , '12.25€' , '19-AA-22' , '1.05' , '1.06');

4)Substituir os ?? por coordenadas que achemos adequadas e colocar mais informação na base de dados

→Informação adicionada na tabela motorista:

```
insert into motorista values('João Frade' , 'L-127' , '1980/01/14' , '1238'); insert into motorista values('Josefina Manela' , 'L-128' , '1975/01/14' , '1239');
```

→Informação adicionada na tabela telefone:

```
insert into telefone values('1238', '266262630', null); insert into telefone values('1239', '266262631', null);
```

→Informação adicionada na tabela modelo:

```
insert into modelo values('Audi', 'R8', '2', '16 aos 100'); insert into modelo values('Seat', 'Ibiza', '5', '20 aos 100');
```

→Informação adicionada na tabela taxi:

```
insert into taxi values('R8', '2019', '1234566', '13-AA-13'); insert into taxi values('Ibiza', '2004', '1000000', '12-AA-12');
```

→Informação adicionada na tabela turno:

'262444', '13-AA-13', '1238');

```
insert into turno values('2016/01/05 08:00:00', '2016/01/05 17:00:00' , '1000000' , '1001000' , '12-AA-12' , '1239');
insert into turno values('2016/01/06 08:00:00', '2016/01/06 17:00:00' , '252444' ,
```

→Informação adicionada na tabela cliente1:

insert into cliente1 values('Gonçalo Cardoso' , 'Rua do Giraldo' , '7500-512 Evora' , '600700800903');

insert into cliente1 values('Filipe Sousa' , 'Rua Joaquim Sousa 21' , '7500-131 Evora' , '600700800904');

insert into cliente1 values('Mandela carvalho' , 'Rua Serpa Pinto 2' , '7500-400 Evora' , '600700800905');

insert into cliente1 values('André Postiga', 'Rua da Piedade', '7500-001 Evora', '600700800906');

insert into cliente1 values('Teddy Fast', 'Rua Internacional', '7500-747 Evora', '600700800907');

→Informação adicionada na tabela serviço:

into servico values('2016/01/04 15:30:00' , '2016/01/04 15:39:00' , '10' , '32.25' , '20-AA-22' , '1.1' , '1.11');

insert into servico values('2016/01/04 12:00:00' , '2016/01/04 13:29:00' , '50' , '2.25' , '20-AA-22' , '1.15' , '1.16');

insert into servico values('2016/01/03 15:30:00' , '2016/01/03 15:39:00' , '10' , '32.25' , '21-AA-22' , '1.3' , '1.31');

insert into servico values('2016/01/03 15:40:00' , '2016/01/03 15:49:00' , '1' , '1.25' , '21-AA-22' , '1.35' , '1.36');

insert into servico values('2016/01/06 16:20:00' , '2016/01/06 16:29:00' , '25' , '55.25' , '13-AA-13' , '1.4' , '1.41');

insert into servico values('2016/01/05 16:50:00' , '2016/01/05 16:59:00' , '53' , '100.25' , '12-AA-12' , '1.45' , '1.46');

→Informação adicionada na tabela pedido:

insert into pedido values('600700800901' , 'Rua Pais Silva 12' , '7120-213 Evora' , '2016/01/02 10:00:00' , '20-AA-22' , '2016/01/02 10:43:00');

insert into pedido values('600700800902' , 'Rua Castro Oliveira 5' , '7120-214 Evora' , '2016/01/02 11:00:00' , '21-AA-22' , '2016/01/02 11:43:00');

insert into pedido values('600700800903' , 'Rua Ideias Zero 3' , '7120-215 Evora' , '2016/01/03 12:00:00' , '22-AA-22' , '2016/01/03 12:43:00');

insert into pedido values('600700800904' , 'Rua do Bolso 2' , '7120-216 Evora' , '2016/01/06 13:00:00' , '13-AA-23' , '2016/01/06 13:43:00');

insert into pedido values('600700800905', 'Rua da Telepizza 5', '7120-217 Evora', '2016/01/05 14:00:00', '12-AA-12', '2016/01/05 14:43:00');

insert into pedido values('600700800906' , 'Rua do McDonaldo 6' , '7120-218 Evora' , '2016/01/02 15:00:00' , '19-AA-22' , '2016/01/02 15:43:00');

insert into pedido values('600700800907' , 'Rua do Desespero 1111' , '7120-000 Evora' , '2016/01/03 16:00:00' , '22-AA-22' , '2016/01/03 16:43:00');

5)Indicar as expressões em SQL e em Álgebra Relacional para responder às seguintes perguntas:

a) Álgebra Relacional:

 $\Pi_{Matricula}\sigma_{Marca='Mercedes'}(taxi \bowtie modelo)$

SQL:

Select Matricula

From taxi NATURAL INNER JOIN modelo

Where Marca = 'Mercedes';

b) Álgebra Relacional:

 $\Pi_{NomeMotorista}\sigma_{Marca='Mercedes'}(taxi\bowtie modelo\bowtie turno\bowtie motorista)$

SQL:

select NomeMotorista

from motorista NATURAL INNER JOIN turno NATURAL INNER JOIN taxi NATURAL INNER JOIN modelo

where Marca = 'Mercedes';

C) Álgebra Relacional

 $\Pi_{Telefone}\sigma_{Nif='600700800900'}(telefone \bowtie pedido \bowtie turno)$

SQL:

select Telefone

from telefone NATURAL INNER JOIN turno NATURAL INNER JOIN pedido where Nif = '600700800900';

d) Álgebra Relacional:

 $\Pi_{Modelo,Marca}\sigma_{NomeMotorista='Anibal\,Silva'}(motorista \bowtie modelo \bowtie turno \bowtie taxi)$

SQL:

select Modelo, Marca

from taxi NATURAL INNER JOIN turno NATURAL INNER JOIN motorista NATURAL INNER JOIN modelo

where NomeMotorista = 'Anibal Silva';

e) Álgebra Relacional:

 $\Pi_{NomeMotorista}\sigma(motorista\bowtie cliente1\bowtie turno\bowtie pedido)-\Pi_{NomeMotorista}\sigma_{NomeCliente='JoseSilva'}(motorista\bowtie cliente1\bowtie turno\bowtie pedido)$

SQL:

select NomeMotorista

from motorista NATURAL INNER JOIN cliente1 NATURAL INNER JOIN turno NATURAL INNER JOIN pedido

EXCEPT

select NomeMotorista

from motorista NATURAL INNER JOIN cliente1 NATURAL INNER JOIN turno NATURAL INNER JOIN pedido

where NomeCliente = 'Jose Silva';

f) Álgebra Relacional:

 $\Pi_{NomeMotorista}\sigma(motorista\bowtie modelo\bowtie turno\bowtie taxi)-\Pi_{NomeMotorista}\sigma_{Marca=',Mercedes'}(motorista\bowtie modelo\bowtie turno\bowtie taxi)$

SQL:

select NomeMotorista

from motorista NATURAL INNER JOIN turno NATURAL INNER JOIN taxi NATURAL INNER JOIN modelo

EXCEPT

select NomeMotorista

from motorista NATURAL INNER JOIN turno NATURAL INNER JOIN taxi NATURAL INNER JOIN modelo

where Marca = 'Mercedes';

g) Álgebra Relacional:

 $\pi_{\textit{NomeMotorista}}\sigma(\textit{motorista}) \% (\pi_{\textit{Matricula}}\sigma(\textit{taxi}) - \pi_{\textit{Matricula}}\sigma_{\textit{motori}}(\textit{turno})$

SQL:

select NomeMotorista

from motorista

where not exists((select matricula from taxi)

except

(select matricula from turno where motorista.Nbi=turno.Nbi));

h) Álgebra Relacional:

 $\big(\textit{NCartaCond} \big) g_{\textit{count}(\textit{servico.DataInicioS})}(\textit{motorista} \bowtie \textit{servico} \bowtie \textit{turno})$

SQL:

select NCartaCond, count(servico.DataInicioS) as total from motorista NATURAL INNER JOIN servico NATURAL INNER JOIN turno group by NCartaCond;

i) Álgebra Relacional:

 $(NomeMotorista)g_{sum(Valor)}(servico \bowtie motorista)$

SQL:

select NomeMotorista, sum(Valor) as total from servico NATURAL INNER JOIN turno NATURAL INNER JOIN motorista

group by NomeMotorista

j)

k)

I)

m)

o)

p)