National University of Computer and Emerging Sciences, Lahore Campus

Course: **Computer Organization and Assembly Language** Program:

BS (Computer Science)

20 minutes

06-12-2022

Quiz 07

Semester: **Total Marks:**

Course Code: EE-213 Fall 2022 20

Weight

Page(s): 1 Roll No.

Instruction/Notes:

Question 01: Let us consider the following decomposition of the instruction processing

Fetch Instruction (FI): Read the next expected instruction into a buffer.

Duration:

Section:

Exam:

Paper Date:

Decode Instruction (DI): Determine the opcode and the operand specifiers.

Fetch Operands (FO): Calculate the effective address of each source operand and fetch each operand from the memory. Operand in registers need not to be fetched.

Execute Instruction (EI): Perform the indicated operation and store the result if any, in the specified destination operand location.

Write Operand (WO): Store the result in memory.

Given below is a set of instructions. There implementation through pipelining has some data hazards. You have to solve those hazards by using any technique.

I1: mov word [sum], ax **I2:** sub word [sum], dx **I3:** mov word [sum], 01

I4: add bx, [sum]

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
I1	FI	DI	FO	EI	<mark>WO</mark>										
12		FI	DI	<mark>stall</mark>	<mark>stall</mark>	FO	EI	<mark>WO</mark>							
13			FI	DI	<mark>stall</mark>	<mark>stall</mark>	<mark>stall</mark>	<mark>stall</mark>	FO	EI	WO				
14				FI	DI	<mark>stall</mark>	<mark>stall</mark>	<mark>stall</mark>	<mark>stall</mark>	<mark>stall</mark>	<mark>stall</mark>	FO	EI	<mark>WO</mark>	

Question 02: There are 128 blocks in a cache memory, which can store one word each. To which block number does main memory word address 900 would map in the case of a direct mapped cache?

900%128=4