# Abelian groups- the (un)building blocks

Summer Seminar Series
Summer 2025
Theoretical Nexus

Purnima Tiwari

Department of Mathematics

June 2, 2025

purnima162.21@gmail.com

## Outline

The life

- 2 The beginning
- 3 The Fundamental Theorem
- 4 Necessities
- The intuition.

"I can see the sun, but even if I cannot see the sun, I know that it exists.

And to know that the sun is there - that is living."

— Fyodor Dostoevsky, The Brothers Karamazov

# Fundamental Theorem of Finitely Generated Abelian Groups- *a breakdown*

# Fundamental Theorem of Finitely Generated Abelian Groups- a breakdown

#### **Theorem**

Let G be a finitely generated abelian group. Then G is isomorphic to a direct sum of cyclic groups:

$$G \cong \mathbb{Z}^n \oplus \mathbb{Z}_{q_1^{k_1}} \oplus \mathbb{Z}_{q_2^{k_2}} \oplus \cdots \oplus \mathbb{Z}_{q_t^{k_t}},$$

#### where:

- $\mathbb{Z}^n$  is the **free abelian group** of rank  $n \ge 0$  (the number of infinite components),
- $\mathbb{Z}_{q_i^{k_i}}$  are **finite cyclic groups** of prime-power order  $q_i^{k_i}$ .

#### **Uniqueness:**

- The rank *n* is uniquely determined.
- The prime powers  $q_i^{k_i}$  (called **elementary divisors**) are uniquely determined up to ordering.

A free abelian group is an abelian group that has a basis.

A free abelian group is an abelian group that has a basis.

That is, there exists a subset (called a **basis**) such that every element of the group can be uniquely expressed as a finite linear combination of the basis elements with integer coefficients.

A free abelian group is an abelian group that has a basis.

That is, there exists a subset (called a **basis**) such that every element of the group can be uniquely expressed as a finite linear combination of the basis elements with integer coefficients.

The rank of a free abelian group is the cardinality of a basis.

A free abelian group is an abelian group that has a basis.

That is, there exists a subset (called a **basis**) such that every element of the group can be uniquely expressed as a finite linear combination of the basis elements with integer coefficients.

The rank of a free abelian group is the cardinality of a basis.

The intuitive idea to grasp the concept of rank can be developed from considering it as the number of independent directions that a particle (or an elemnt of a group) is allowed to move in,

A free abelian group is an abelian group that has a basis.

That is, there exists a subset (called a **basis**) such that every element of the group can be uniquely expressed as a finite linear combination of the basis elements with integer coefficients.

The rank of a free abelian group is the cardinality of a basis.

The intuitive idea to grasp the concept of rank can be developed from considering it as the number of independent directions that a particle (or an elemnt of a group) is allowed to move in, which in the case of a free group are infinite, since a free group is, essentially **free**.

# Free Group

## Free Group

Let S be a set. The **free group** F(S) on S consists of all *reduced words* in  $S \cup S^{-1}$  (formal symbols and their inverses), where a word is reduced if no element is adjacent to its inverse.

## Free Group

Let S be a set. The **free group** F(S) on S consists of all *reduced words* in  $S \cup S^{-1}$  (formal symbols and their inverses), where a word is reduced if no element is adjacent to its inverse.

Multiplication is concatenation followed by reduction. It satisfies the universal property:

Any function

$$f: S \to G$$

G being a group, extends uniquely to a homomorphism

$$\tilde{f}:F(S)\to G$$

# Universal Property in Action

## Key Insight

The free group F(S) is the **most general** group generated by S such that any map

$$f: S \rightarrow G$$

extends uniquely to a homomorphism

$$\phi: F(S) \to G$$

Freedom to map, without relations getting in the way.

**Example:** Define  $\phi : F(a,b) \rightarrow S_3$  by:

$$f(a) = (1\ 2), \quad f(b) = (1\ 2\ 3) \quad \text{(arbitrary choices)}$$
  
 $\phi(ab) = f(a)f(b) = (1\ 2)(1\ 2\ 3) = (2\ 3),$   
 $\phi(ba) = f(b)f(a) = (1\ 2\ 3)(1\ 2) = (1\ 3),$   
 $\phi(a^2) = e, \quad \phi(b^{-1}ab) = (1\ 3), \quad \text{and so on} \dots$ 

## Step-by-Step Computation

#### Why this works:

- **9 Generators**: F(a, b) has no relations; words like ab and ba are distinct.
- **2** Extension:  $\phi$  substitutes generators and simplifies in  $S_3$ :

$$\phi(aba^{-1}b^{-1}) = (1\ 2)(1\ 2\ 3)(1\ 2)(1\ 3\ 2) = (1\ 3\ 2).$$

**3** Verification: Check  $\phi(w_1w_2) = \phi(w_1)\phi(w_2)$ :

$$\phi(b^{-1}ab) = \phi(b^{-1})\phi(ab) = (1\ 3\ 2)(2\ 3) = (1\ 3).$$

**Definition:** Abelian group with basis  $B \subset G$ 

- 1. B generates G
- 2. Linear independence:

$$\sum n_i b_i = 0 \Rightarrow n_i = 0$$

- Isomorphic to  $\mathbb{Z}^n$  for finite rank n.
- 3. and uniqueness!

**Example:**  $\mathbb{Z}^2$  with basis  $\{(1,0),(0,1)\}$ 

**Non-example:**  $\mathbb{Z}/n\mathbb{Z}$  (torsion)

| The word <i>torsion</i> comes from the Latin <i>torquere</i> ( <u>to twist</u> ), like twisting a |
|---------------------------------------------------------------------------------------------------|
| rope until it loops back.                                                                         |
|                                                                                                   |
|                                                                                                   |
|                                                                                                   |
|                                                                                                   |
|                                                                                                   |
|                                                                                                   |

## Direct vs. Internal Sums/Products

#### **Key Definitions**

Let G be a group and H, K be subgroups.

1. Direct Product (External):

$$G = H \times K := \{(h, k) \mid h \in H, k \in K\},$$
 with component-wise operation.

- **2. Direct Sum (External)**: For abelian groups,  $H \oplus K$  is the same as  $H \times K$ .
- **3.** Internal Direct Product: G is the *internal* direct product of H and K if:
  - G = HK (every  $g \in G$  is g = hk),
  - $H \cap K = \{e\},\$
  - H, K are normal in G.
- **4. Internal Direct Sum**: For abelian groups, replace "normal" with "subgroups" and write  $G = H \oplus K$ .

## Key Insight

External constructs new groups from old.

Internal decomposes existing groups into simpler pieces.

## The Fundamental Theorem

#### The Fundamental Theorem

#### Theorem

Every finitely generated abelian group G decomposes as:

$$G \cong \mathbb{Z}^r \times \mathbb{Z}/d_1\mathbb{Z} \times \cdots \times \mathbb{Z}/d_k\mathbb{Z}$$

where:

- $r \ge 0$  (free rank)
- $d_i > 1$  with  $d_{k-1} \mid d_k$

# Example

$$G = \mathbb{Z}/6\mathbb{Z} \times \mathbb{Z}/30\mathbb{Z}$$

## Example

$$G = \mathbb{Z}/6\mathbb{Z} \times \mathbb{Z}/30\mathbb{Z}$$

Primary decomposition:

$$\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z}$$

## Example

$$G = \mathbb{Z}/6\mathbb{Z} \times \mathbb{Z}/30\mathbb{Z}$$

#### Primary decomposition:

$$\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z}$$

#### Invariant factors:

$$d_1 = 2^1 \cdot 3^1 \cdot 5^0 = 6$$
  
$$d_2 = 2^1 \cdot 3^1 \cdot 5^1 = 30$$

Since 6 | 30, 
$$G \cong \mathbb{Z}/6\mathbb{Z} \times \mathbb{Z}/30\mathbb{Z}$$

## **Key Definitions**

### Torsion Subgroup

For an abelian group G:

$$T(G) = \{ g \in G \mid \exists \ 0 < n < \infty : g^n = e \}$$

**Example:**  $G = \mathbb{Z} \times \mathbb{Z}/6\mathbb{Z}$  then  $T(G) = \{e\} \times \mathbb{Z}/6\mathbb{Z} = \mathbb{Z}/6\mathbb{Z}$ 

## **Key Definitions**

### Torsion Subgroup

For an abelian group G:

$$T(G) = \{ g \in G \mid \exists \ 0 < n < \infty : g^n = e \}$$

**Example:**  $G = \mathbb{Z} \times \mathbb{Z}/6\mathbb{Z}$  then  $T(G) = \{e\} \times \mathbb{Z}/6\mathbb{Z} = \mathbb{Z}/6\mathbb{Z}$ 

A torsion subgroup, in the simplest terms, consists of all the elements of the group which have a finite order.

## Torsion-Free Group

 ${\it G}$  is torsion-free if  ${\it T}({\it G})=\{e\}$ 

Example:  $\mathbb{Z}^n$ ,  $\mathbb{Q}$ 

Non-example:  $\mathbb{Z}/n\mathbb{Z}$ 

# The Proof.

We elaborate the steps henceforth and will develop an intuition for the proof, whilst also determining the special case.

#### Theorem

If G is finitely generated abelian, then:

- $\bullet$  T(G) is a finite subgroup
- $\bigcirc$  G/T(G) is torsion-free and finitely generated
- **3** G/T(G) is free abelian  $\cong \mathbb{Z}^r$

**Example:**  $G = \mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$   $T(G) = \{0\} \times \mathbb{Z}/2\mathbb{Z}, \ G/T(G) \cong \mathbb{Z}$ 

#### *p*-primary Component

For prime *p*:

$$T_p(G) = \{g \in T(G) \mid g^{p^k} = 0 \text{ for some } k\}$$

## Theorem (Primary Decomposition)

$$T(G) \cong \bigoplus_{p \ prime} T_p(G)$$

**Example:**  $T(G) = \mathbb{Z}/6\mathbb{Z} \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$   $T_2(G) \cong \mathbb{Z}/2\mathbb{Z}$ ,  $T_3(G) \cong \mathbb{Z}/3\mathbb{Z}$ 



# The Fundamental Theorem for Finite Abelain Groups

#### Theorem

A finite abelian p-group decomposes as:

$$H \cong \mathbb{Z}/p^{e_1}\mathbb{Z} \times \cdots \times \mathbb{Z}/p^{e_k}\mathbb{Z}, \quad e_1 \leq e_2 \leq \cdots \leq e_k$$

## Example

$$T(G) = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/9\mathbb{Z}$$

Primary decomposition:

$$T_2(G) \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z} \cong \mathbb{Z}/2^1\mathbb{Z} \times \mathbb{Z}/2^2\mathbb{Z}$$
  
 $T_3(G) \cong \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/9\mathbb{Z} \cong \mathbb{Z}/3^1\mathbb{Z} \times \mathbb{Z}/3^2\mathbb{Z}$ 

Exponents by prime:

|     | Component 1 | Component 2 |
|-----|-------------|-------------|
| p=2 | 1           | 2           |
| p=3 | 1           | 2           |

Form invariant factors:

$$d_1 = 2^{\min(1,2)} \times 3^{\min(1,2)} = 2^1 \times 3^1 = 6$$
  
$$d_2 = 2^{\max(1,2)} \times 3^{\max(1,2)} = 2^2 \times 3^2 = 36$$

**9** 6|36 so  $T(G) \cong \mathbb{Z}/6\mathbb{Z} \times \mathbb{Z}/36\mathbb{Z}$ 

dissecting the theorem:

dissecting the theorem:

$$G\cong \underbrace{\mathbb{Z}^r}_{\mathsf{free \; part}} imes \underbrace{\mathbb{Z}/d_1\mathbb{Z} imes \cdots imes \mathbb{Z}/d_k\mathbb{Z}}_{\mathsf{torsion \; part}}$$

with  $d_1 \mid d_2 \mid \cdots \mid d_k > 1$ 

dissecting the theorem:

$$G\cong \underbrace{\mathbb{Z}^r}_{\mathsf{free \; part}} imes \underbrace{\mathbb{Z}/d_1\mathbb{Z} imes \cdots imes \mathbb{Z}/d_k\mathbb{Z}}_{\mathsf{torsion \; part}}$$

with  $d_1 \mid d_2 \mid \cdots \mid d_k > 1$ 

### **Uniqueness:**

- $r = \dim_{\mathbb{Q}}(G \otimes \mathbb{Q})$  (free rank)
- $d_k = \exp(T(G))$  (exponent of torsion subgroup)
- $d_{k-1}d_k = \exp(T(G)/\langle \text{elem of order } d_k \rangle)$  etc.

**Example:**  $G = \mathbb{Z}^2 \times \mathbb{Z}/4\mathbb{Z}$ 

r=2,  $T(G)=\mathbb{Z}/4\mathbb{Z}\Rightarrow d_1=4$ 

Decomposition:  $\mathbb{Z}^2 \times \mathbb{Z}/4\mathbb{Z}$ 

What if the free part has rank zero?



The theorem then is referred to as the Fundamental Theorem of Finite abelian Groups!

# Fundamental Theorem of Finite Abelian Groups (FTFAG)

#### Theorem Statement

Every finite abelian group G is isomorphic to a direct sum of cyclic groups of prime-power order:

$$G \cong \mathbb{Z}_{p_1^{k_1}} \oplus \mathbb{Z}_{p_2^{k_2}} \oplus \cdots \oplus \mathbb{Z}_{p_m^{k_m}},$$

#### where:

- p<sub>i</sub> are primes (not necessarily distinct),
- $k_i$  are positive integers.

## Uniqueness

The decomposition is unique up to:

- The order of the factors.
- Rearrangement of the prime powers  $p_i^{k_i}$ .

# Example

The group  $\mathbb{Z}/6\mathbb{Z}$  decomposes as:

$$\mathbb{Z}_6\cong\mathbb{Z}_2\oplus\mathbb{Z}_3.$$

Thank you.