pieczątka szkoły (dotyczy etapu szkolnego)

Skrót przedmiotowy konkursu gFI -- 2018/2019 (numer porządkowy z kodowania)

Nr identyfikacyjny - wyjaśnienie

g – gimnazjum, symbol przedmiotu (np. FI – fizyka), numer porządkowy wynika z numeru stolika wylosowanego przez ucznia

WOJEWÓDZKI KONKURS PRZEDMIOTOWY z Fizyki dla uczniów dotychczasowych gimnazjów i klas dotychczasowych gimnazjów 2018/2019

TEST ELIMINACJE WOJEWÓDZKIE

	Arkusz liczy 11 stron i zawiera 10 zadań oraz brudnopis.	Czas
•	Przed rozpoczęciem pracy sprawdź, czy Twój arkusz jest kompletny. Jeżeli zauważysz usterki,	
	zgłoś je Komisji Konkursowej.	pracy:
•	Zadania czytaj uważnie i ze zrozumieniem.	
•	Odpowiedzi wpisuj długopisem bądź piórem, kolorem czarnym lub niebieskim.	
•	Dbaj o czytelność pisma i precyzję odpowiedzi.	90 min.
	W zadaniach zamkniętych prawidłową odpowiedź zaznacz stawiając znak X na odpowiedniej	
	literze.	
•	Jeżeli się pomylisz, błędne zaznaczenie otocz kółkiem i zaznacz znakiem X inną odpowiedź.	
•	Oceniane będą tylko te odpowiedzi, które umieścisz w miejscu do tego przeznaczonym.	
	Obok każdego numeru zadania podana jest maksymalna liczba punktów możliwa do uzyskania za prawidłową odpowiedź.	
•	Pracuj samodzielnie. Postaraj się udzielić odpowiedzi na wszystkie pytania.	
•	Nie używaj korektora. Jeśli się pomylisz, przekreśl błędną odpowiedź i wpisz poprawną.	
	Nie używaj pomocy (np. kalkulator), jeżeli nie pozwala na to regulamin konkursu.	
	Powodzenia!	

Wypełnia Komisja Konkursowa po zakończeniu sprawdzenia prac

Zadanie	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Razem
Punkty możliwe do uzyskania	1	1	1	2	1	1	1	1	1	5	3	8	5	9	4	6	50 pkt.
Punkty uzyskane																	pkt

Podpis	y członków	komis	sji spr	awdz	zajacy	ch pr	ace:									
•	-		<i>J</i> 1		3 ()	1				I	mię i	nazv	visko	uczn	ia	
1.	(imię i naz	wisko)				• • • • • •	 .(pod	pis)		••••••	••••••	•••••	••••••	•••••	
2.	(imię i naz	wisko)					 .(pod	pis)							

UWAGA.

We wszystkich zadaniach przyjmij wartość przyspieszenia grawitacyjnego równa 10 m/s²

Zadanie 1. (0-1)

Areometr to urządzenie służące do mierzenia gęstości cieczy, które wykorzystuje siłę wyporu z jaką ciecz działa na zanurzone w niej ciało stałe. Przyrząd ten zbudowany jest z pustej rurki szklanej, która w górnej wydłużonej części zaopatrzona jest w skalę, część dolna ma postać bańki wypełnionej materiałem o dużej gęstości, dzięki czemu może on utrzymać pozycję pionową.

Uczniowie wykonując doświadczenie zanurzali aerometr kolejno w kilku różnych cieczach: w 20% roztworze soli, wodzie i benzynie.

ciecz	Gęstość $\frac{g}{cm^3}$
20 % roztwór soli	1,15
woda	1,00
benzyna	0,67 - 0,80

Dokończ zdanie. Wybierz właściwa odpowiedź spośród podanych.

Największe zanurzenie aerometru uczniowie zaobserwowali w:

- a) 20% roztworze soli,
- b) wodzie,
- c) benzynie,
- d) benzynie i wodzie.

Zadanie 2. (0-1)

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Na skutek oddziaływania trzech sił $F_1=6$ N, $F_2=5$ N, $F_3=4$ N ciało porusza się ruchem jednostajnym. Zatem:

- a) kierunki sił nie pokrywają się,
- b) tylko kierunki sił F₂ i F₃ pokrywają się,
- c) tylko kierunki sił F₁ i F₃ pokrywają się,
- d) kierunki sił F₁, F₂ i F₃ pokrywaja się.

Zadanie 3. (0-1)

Rowerzysta poruszał się ruchem jednostajnym prostoliniowym. Gdy mijał stojący na poboczu samochód, kierowca samochodu ruszył ruchem jednostajnie przyspieszonym w kierunku rowerzysty.

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Do chwili dogonienia rowerzysty przez samochód odległość między nimi:

Rys.1. Aerometr zanurzony w wodzie.

- a) początkowo rosła, a później malała,
- b) początkowo malała, a później rosła,
- c) zwiększała się,
- d) zmniejszała się.

Zadanie 4. (0-2)

Oceń prawdziwość podanych zdań. Wybierz P, jeśli zdanie jest prawdziwe, albo F – jeśli jest falszywe.

Obraz wytworzony przez lupę jest pozorny, powiększony i odwrócony	P	F
Ogniskowa soczewki o zdolności skupiającej 4 dioptrie wynosi 40 cm.	P	F

Zadanie 5. (0-1)

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Gdy zegar wahadłowy późni się, to trzeba:

- a) nadać mu większą amplitudę wahnięć,
- b) nadać mu mniejszą amplitudę wahnięć,
- c) skrócić długość wahadła,
- d) wydłużyć długość wahadła.

Zadanie 6. (0-1)

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Siła elektrodynamiczna działającą na przewodnik z prądem umieszczony w jednorodnym polu magnetycznym magnesu podkowiastego (Rys.2.) ma zwrot:

- a) w lewo,
- b) w prawo,
- c) w stronę bieguna N,
- d) w stronę bieguna S.

Rys.2. Przewodnik z prądem umieszczony w jednorodnym polu magnetycznym.

Zadanie 7. (0-1)

Gdy włączymy żarówkę do obwodu prądu stałego to przez bardzo krótki okres czasu przez obwód płynie prąd o większym natężeniu niż później.

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Przyczyna tego jest:

- a) konieczność jak najszybszego ogrzania włókna żarówki,
- b) wzrost temperatury włókna żarówki,

- c) wydłużenie się włókna żarówki w wyniku rozszerzalności cieplnej,
- d) spadek napięcia na jej zaciskach.

Zadanie 8. (0-1)

Szyna kolejowa latem ma długość o 8 mm większą niż zimą.

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Wynika z tego, że odstępy występujące między szynami (tzw. odstępy dylatacyjne) latem są mniejsze niż odstępy w okresie zimy o:

- a) 4 mm,
- b) 8 mm,
- c) 12 mm,
- d) 16 mm.

Zad. 9. (0-1)

Dokończ zdanie. Wybierz właściwa odpowiedź spośród podanych.

Jeżeli wiązkę światła skierujemy z powietrza na powierzchnię wody, to:

- a) w całości ulegnie ona załamaniu
- b) w całości się od niej odbije
- c) częściowo się odbije, a częściowo załamie przechodząc do wody
- d) zostanie pochłonięta przez wodę.

Zadanie 10. (0-5)

Blok lodu o masie 1 kg i temperaturze 0°C został zrzucony z pewnej wysokości. W skutek zderzenia z podłożem uległ on całkowitemu stopienia. Oblicz z jakiej wysokości należy zrzucić blok o masie 16 kg, by również on uległ całkowitemu stopieniu? Zakładamy, że energia mechaniczna bloku lodu zamieniła się całkowicie w jego energię wewnętrzną.

ı											
- 1											1
											i
L											L
- 1											í
- 1											í
											i
											1

Zadanie 11. (0-3)

Oblicz częstotliwość fali stojącej rozchodzącego się dźwięku w powietrzu, jeżeli odległość między dwoma sąsiednimi węzłami wynosi 17 cm. Prędkość dźwięku w powietrzu to 340 m/s.

Zadanie 12. (0-8)

Światło widzialne – część promieniowania elektromagnetycznego, na którą reaguje siatkówka oka człowieka w procesie widzenia. Dla człowieka promieniowanie to zawiera się w przybliżeniu w zakresie długości fal 380–750 nm, dla zwierząt zakres ten bywa nieco odmienny (lecz o zbliżonych wartościach).

Zadanie 12.1 (0-4)

Dopasuj odpowiednie przyrządy optyczne (1,2,3,4,5) do rysunków przedstawiających poprawną zmianę biegu promieni świetlnych przy przechodzeniu przez nie (A, B, C, D). Uwaga: jeden z przyrządów pozostanie nieprzyporządkowany.

- 1. soczewka dwuwklęsła
- 2. zwierciadło wklęsłe
- 3. pryzmat
- 4. soczewka dwuwypukła
- 5. zwierciadło wypukłe

Wpisz w miejsce kropek liczbę oznaczającą dopasowany do rysunku przyrząd.

A ...

В ...

C

D ...

Zadanie 12.2 (0-1)

Oświetlona światłem białym kartka książki jest widoczna jako biała, a litery – czarne.

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Ta sama zapisana kartka oświetlona światłem zielonym będzie widoczna jako:

- a) biała, a litery czarne
- b) zielona i litery też zielone
- c) zielona, a litery czarne
- d) czarna i litery też czarne

Zadanie 12.3 (0-1)

Promień świetlny pada na powierzchnię odbijająco i tworzy z nią kąt 130° (patrz rys.3)

Rys. 3.

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Kat odbicia promienia wynosi:

- a) 40°
- b) 50°
- c) 90°
- d) 130°

Zadanie 12.4 (0-2)

Oceń prawdziwość podanych zdań. Wybierz P, jeśli zdanie jest prawdziwe, albo F – jeśli jest falszywe.

Soczewka rozpraszająca koryguje wadę krótkowzroczności.	P	F
Między okiem a aparatem istnieje analogia. Odpowiednikiem siatkówki w	P	F
aparacie jest obiektyw.		

Zadanie 13. (0-5)

Napisz jak zmieni się (wzrośnie/zmaleje) i oblicz ile razy opór zastępczy dwóch oporników, które mają jednakowe opory, gdy zamiast połączenia równoległego zostaną połączone szeregowo .Uzasadnij swoją odpowiedź.

Zadanie 14. (0-9)

Maszynka elektryczna zbudowana jest ze spirali grzejnej o długości 2 m i mocy 600W.

- a) Napisz czy moc maszynki zmieni się (jeśli tak, to oblicz o ile), jeżeli spirala zostanie skrócona o ¼ swojej długości.
- b) Oblicz jaką pracę wykonała grzałka zagotowując 1 litr wody o temperaturze początkowej 40°C, jeżeli sprawność grzałki to 40%. Ciepło właściwe wody wynosi 4200J/kg°C

Zadanie 15. (0-4)

Kołowrót przy studni ma średnicę walca 10 cm. Odległość od osi do końca rączki kołowrotu wynosi 50cm. Oblicz jaką siłą trzeba działać, aby wyciągnąć ze studni 10 litrów wody w wiadrze o masie 2 kg? Gęstość wody wynosi 1000 kg/m³.

Zadanie 16. (0-6)

Kamień upuszczony z wysokiego budynku pokonał w ciągu dwóch ostatnich sekund ruchu drogę 40 m. Opory ruchu zaniedbujemy.

- a) Oblicz wysokość tego budynku.
- b) Oblicz wartość prędkości kamienia z jaką uderzył o ziemię.

BRUDNOPIS (nie podlega ocenie)

BRUDNOPIS (nie podlega ocenie)