Lineære ligningssystemer, Afsnit 1.1–1.2

10. februar 2025

Lineær Algebra

Forår 2025

Del I

Praktiske informationer

Litteratur

Online resourcer

På Moodle-siden finder I links til videoer, træningsopgaver o.lign.

Der ligger også genopfriskningsopgaver – ting, I burde kende fra gymnasiet, og som er vigtige for en given forelæsning

Med bogen får I også adgang til Pearson MyLab. Her ligger

- selvstudier
- ► opgaver med interaktiv hjælp
- ► e-bog

Kursets struktur

12+4 kursusgange fordelt på fire blokke

De første to blokke

- 4 sædvanlige kursusgange
- ► 1 workshop

De to sidste blokke

- 2 streamede kursusgange
- ► 1 workshop

Derudover er der til hver blok et ikke-skemalagt selvstudium Selvstudierne består primært af opgaver på Pearsons platform

Kursusholdere

Blok 1,2 (alle) Blok 4 (ComTek)

René B. Christensen rene@math.aau.dk

Blok 5 (KMB)

Christian D. Jørgensen cdjo@math.aau.dk

Blok 7 (KMB)

Oliver Matte oliver@math.aau.dk

Blok 5 (ComTek)

Oliver Gnilke owg@math.aau.dk

Eksamensansvarlige

KMB

Oliver Matte oliver@math.aau.dk

ComTek

Oliver Gnilke owg@math.aau.dk

Disse undervisere står for de fire workshops og den mundtlige eksamen

Opgaveregning

Foregår i grupperummene

Hjælpelærer kan tilkaldes med 'skraldespand'

De foreslåede opgaver findes på Moodle-siden Regn først opgaver markeret med **fed**

Lektiecafé

Online 'lektiecafé' hver mandag

Hjælpelærerne skal kontaktes mindst 48 timer i forvejen

Information findes på:

https://first.math.aau.dk/dan/2020e/linalg/#tab_cafe (Linket ligger også på Moodle)

Eksamen

Mundtlig eksamen med udgangspunkt i én af de fire workshops

I alt 15 min. (inklusiv votering)

To ligninger med to ubekendte

Velkendt fra gymnasiet

$$2x - 5y = -1$$
$$6x + 10y = 22$$

Løses eksempelvis ved lige store koefficienters metode:

To ligninger med to ubekendte

Vi bemærker, at løsningsmængden er uændret ved

- ► Ombytning af ligningers rækkefølge
- ► Skalering af en ligning med en konstant forskellig fra 0
- ► Addition af to ligninger

Dette gælder også generelt for n ligninger med m ubekendte

Geometrisk fortolkning

Ligningerne 2x - 5y = -1 og 6x + 10y = 22 beskriver linjer i planet:

Geometrisk fortolkning

Vi kan ikke altid finde en skæring; altså ingen løsning til systemet

En anden repræsentation

Betragt ligningssystemet

Vi kunne også repræsentere dette ved...

Hver rothe overer

th'a lighty.

Hver soile (borbot fre
de sidde) overer to)
er variobel

Matricer

Definition

En matrix A er et rektangulært skema af tal:

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

Her betegner a_{ij} elementet (eller indgangen) i i'te række og j'te søjle. Når A har m rækker og n søjler, kaldes den en $m \times n$ -matrix

Flertalsformen af matrix er matricer

Matricer Eksempler

Eksempel

$$A = \begin{bmatrix} 2 & 8 & -4 & 13 & \frac{1}{2} \\ 0 & 6 & \pi & 0 & 1 \\ 4 & 2 & 1 & 0 & -1 \end{bmatrix} \quad \alpha_{25}$$

A er en
$$3 \times 5$$
 -matrix
Ander sigle $\sim \begin{bmatrix} 8 \\ 5 \end{bmatrix}$
Tredje rahle er $[4 \ 2 \ 1 \ 0 \ -1]$
Element $a_{15} = 1$

this indukanue or stoom and 9 brys ofte

Tilbage til ligningssystemet

Systemet fra før har totalmatrix (ndvidet koefficietnetrix)

$$\begin{bmatrix} 2 & -1 & 5 & -1 & 6 \\ 1 & 0 & -1 & 0 & 4 \\ 0 & 3 & 2 & 0 & 1 \\ -7 & 0 & 0 & 2 & -1 \end{bmatrix}$$
Koefficial matrix

(Vi vil nogle gange notere denne med $[A|\mathbf{b}]$)

Elementære rækkeoperationer

De operationer, vi havde på slide 10, kan vi også oversætte til matricer Vi kalder dem *elementære rækkeoperationer*, og de er

- ► Ombyt to rækker
- Skalér en række med en konstant forskellig fra 0
- Læg et multiplum af én række til en anden

Bemærk, at hver af de tre rækkeoperationer er reversible (altså, at de kan "fortrydes")

Rækkeækvivalente matricer

Definition

To matricer A og B kaldes rækkeækvivalente, hvis man kan gå fra A til B ved at bruge elementære rækkeoperationer. Vi skriver da $A \sim B$.

Eksempel

Matricerne $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ og $B = \begin{bmatrix} 2 & 4 \\ 2 & 2 \end{bmatrix}$ er rækkeækvivalente, da...

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 $\begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix}$ $\begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix}$ $\begin{bmatrix} 2 & 4 \\ 2 & 2 \end{bmatrix} = B$

Løsning af ligningssystemer

I begyndelsen så vi ligningssystemet

$$2x - 5y = -1$$

 $6x + 10y = 22$

som har totalmatrix...
$$\begin{bmatrix}
2 & -5 & | -1 \\
6 & 10 & 22
\end{bmatrix}$$

$$\begin{bmatrix}
2 & -5 & | -1 \\
0 & 25 & 25
\end{bmatrix}$$

$$\begin{bmatrix}
2 & -5 & | -1 \\
0 & 1 & |
\end{bmatrix}$$

$$\frac{v_1 \cdot v_1 + 5v_2}{6} \begin{bmatrix} 2 & 0 & | 4 | & v_1 \cdot \frac{1}{2}v_1 \\ 6 & 1 & | 1 \end{bmatrix} \xrightarrow{v_1 \cdot \frac{1}{2}v_1} \begin{bmatrix} 1 & 0 & | 2 \\ 0 & 1 & | 1 \end{bmatrix}$$
 Symmetry $3 \times = 2$

Trappeform

Første ikke-nul indgang i en række kaldes den ledende koefficient

Definition

En matrix siges at være på *trappeform* (el. række-echelonform), hvis *alle* følgende punkter er opfyldt

- ► Alle nulrækker står til sidst
- Den ledende koefficient i en række står til højre for den ledende koefficient i rækken ovenover
- ► Alle indgange under en ledende koefficient er 0

Alle ■ er ikke-nul Disse kaldes *pivot*-indgange

* kan være hvad som helst

Reduceret trappeform

Definition

En matrix siges at være på *reduceret trappeform* (el. reduceret række-echelonform), hvis *alle* følgende punkter er opfyldt

- ► Den er på trappeform
- ► Alle ledende koefficienter er 1
- ► Alle indgang over en ledende koefficient er 0

* kan være hvad som helst

Trappeformer

Sætning

Enhver matrix *A* er rækkeækvivalent til én og kun én reduceret trappematrix *R*.

Bemærk, at udsagnet kun holder, fordi *R* er *reduceret*. Har *A* reelle indgange, er den rækkeækvivalent til uendeligt mange matricer på (ikke-reduceret) trappeform.

Lette systemer

Fra den reducerede trappeform er det let at løse systemet

$$\begin{bmatrix} 1 & 0 & 0 & | & 3 \\ 0 & 1 & 0 & | & -2 \\ 0 & 0 & 1 & | & 1 \end{bmatrix} \qquad \begin{cases} x_1 = 3 \\ x_2 = -2 \\ x_3 = 1 \end{cases}$$

$$\begin{bmatrix} x_1 & x_2 & x_3 & x_4 \\ 0 & 0 & 1 & | & 1 \end{bmatrix} \qquad \begin{cases} x_1 + 2x_2 - x_4 = 0 \\ x_3 - 3x_4 = 0 \end{cases} \qquad \begin{cases} x_1 + 2x_2 - x_4 = 0 \\ x_3 - 3x_4 = 0 \end{cases}$$

$$\begin{cases} x_1 & x_2 & x_3 & x_4 \\ 0 & 0 & 1 & | & 1 \\ 0 & 0 & 1 & | & 1 \\ 0 & 0 & 1 & | & 1 \end{cases} \qquad \begin{cases} x_1 + 2x_2 - x_4 = 0 \\ x_3 - 3x_4 = 0 \end{cases} \qquad \begin{cases} x_1 & x_2 & x_3 & 3x_4 \\ x_1 & x_2 & x_3 & | & 1 \\ x_2 & x_3 & | & 1 \\ x_3 - 3x_4 = 0 \end{cases} \qquad \begin{cases} x_1 & x_2 & x_3 & | & 1 \\ x_2 & x_3 & | & 1 \\ x_3 - 3x_4 = 0 \end{cases} \qquad \begin{cases} x_1 & x_2 & x_3 & | & 1 \\ x_1 & x_2 & x_3 & | & 1 \\ x_2 & x_3 & | & 1 \\ x_3 - 3x_4 & | & 1 \\ x_4 & x_1 & x_2$$

Antal løsninger

Fra trappeformen kan vi også afgøre, om ligningssystemet har nogen løsninger

Sætning

Lad $[R|\mathbf{c}]$ være trappeformen af totalmatricen $[A|\mathbf{b}]$ for et ligningssystem. Da gælder

► Hvis [R|c] har pivot i sidste søjle, er systemet inkonsistent.

► Hvis [R|c] ikke har pivot i sidste søjle, er systemet konsistent. Systemet har da uendeligt mange løsninger, hvis der er mindst én fri variabel. Ellers har det en entydig løsning.

Trappeform er smart...

... men hvordan finder vi den?

Gauss-elimination

C.F. Gauß
C. A. Jensen/G. Biermann

© Public domain

Gauss-elimination

For at få trappeform

- Find første ikke-nul søjle, og vælg en indgang (forskellig fra 0) i søjlen som pivot
- Ombyt rækker (hvis nødvendigt), så pivot-indgangen står i første række
- 3. Brug rækkeoperationer til at få 0'er under pivot-indgangen
- Ignorer nu pivot-rækken og alle rækker over denne. Udfør trin1–4 på delmatricen, der står tilbage

For at få reduceret trappeform udføres desuden

- Brug rækkeoperationer til at få 0'er over hver pivot-indgang. Gå fra pivotindgangen længst til højre mod den længst til venstre
- 6. Sørg desuden for, at alle pivotindgange er 1

Eksempel

Find den reducerede trappeform af matricen

$$\begin{bmatrix} 1 & 4 & 2 & 6 & 1 \\ 2 & 10 & 4 & 6 & 0 \\ 1 & 5 & 2 & 3 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 4 & 2 & 6 & 1 \\ 0 & 2 & 0 & -6 & -2 \\ 0 & 1 & 0 & -3 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & 4 & 2 & 6 & 1 \\ 0 & 1 & 0 & -3 & -1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Er un pa trappelorm

Eksempel

Find den reducerede trappeform af matricen

$$\begin{bmatrix} -3 & 0 & 2 & 0 \\ 0 & 4 & 2 & 0 \\ 2 & 1 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 4 & 2 & 0 \\ 0 & 12 & 8 & 0 \\ 0 & -7 & -3 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 4 & 2 & 0 \\ 0 & 1 & \frac{1}{3} & 0 \\ 0 & 0 & \frac{5}{3} & 1 \end{bmatrix}$$

$$\frac{-6}{5}$$
 $\frac{8}{5}$ $\frac{2}{5}$

Pivotsøjler

Lad A være en matrix, og lad R være dens reducerede trappeform.

De søjler i A, hvor R har pivotindgange, kaldes pivotsøjler

Eksempel

