MATH 562-01 MATHEMATICAL STATISTICS

Exam 1 (09/30/16, Friday)

Name:

1. (20 points) Let Z_1, Z_2, Z_3, Z_4 be a random sample from N(0,1), and X_1, X_2, X_3, X_4 a random sample from N(2,1). Determine the sampling distributions of the following statistics. **Explain why.**

(1).
$$\frac{(X_1 + X_2 - 4)^2}{(Z_1 - Z_2)^2}$$

(2).
$$\frac{(X_1 - X_2)^2 + (Z_1 + Z_2)^2 + (X_3 - X_4)^2}{2}$$

(3).
$$\frac{\sqrt{2}(Z_1 - Z_2)}{\sqrt{(X_1 - X_2)^2 + (Z_3 + Z_4)^2}}$$

(4).
$$\frac{\sum_{k=1}^{4} (X_k - \overline{X})^2}{\sum_{k=1}^{4} (Z_k - \overline{Z})^2}$$

2. (10 points) Let X_1, X_2, \dots, X_m and Y_1, Y_2, \dots, Y_n be independent random samples from $N(\mu, \sigma^2)$, and let $\overline{X} = \frac{1}{m} \sum_{i=1}^m X_i$, $\overline{Y} = \frac{1}{n} \sum_{j=1}^n y_j$, and $S^2 = \frac{1}{m-1} \sum_{i=1}^m \left(X_i - \overline{X} \right)^2$. Find the constant c such that the statistic $T = c \frac{\overline{Y} - \overline{X}}{S}$ has t(m-1) distribution. Justify your solution.

3. (10 points) Let X_1, X_2, \dots, X_6 and Y_1, Y_2, \dots, Y_8 be independent random samples from a standard normal population N(0,1), and $W = \frac{4}{3} \sum_{i=1}^{6} X_i^2$. Find the 99th percentile of W.

4. (10 points) Let X_1, X_2, \dots, X_n be a random sample from $N(\mu, 10)$.

If $P\left[\sum_{i=1}^{n} (X_i - \overline{X})^2 \le 52.3\right] = 0.05$, find the sample size n.

5. (10 points) Let X_1, X_2, X_3 be a random sample from a normal population $N(\mu, \frac{1}{24})$, with $\mu \neq 0$. Find a, b such that the statistic $L = aX_1 + 4X_2 + bX_3$ has standard normal distribution N(0,1).

6. (10 points) Let X_1, X_2, \dots, X_{50} be 50 integers randomly selected from $\{1, 2, \dots, n\}$ with replacement. Find the MME \hat{n} and MLE \tilde{n} for n.

- 7. (15 points) Let X_1, X_2, \dots, X_n be a random sample from a population with probability density function $f(x;\theta) = \theta e^{-\theta x}$, if x > 0, and $f(x;\theta) = 0$ otherwise, where $\theta \in (0,\infty)$. Find the MME $\hat{\theta}$ and MLE $\tilde{\theta}$. If the observed values are 17, 10, 32, and 5, with n=4, find the method of moment estimate and the maximum likelihood estimate of θ .
- 8. (15 points) Let X_1, X_2, \dots, X_n be a random sample from the discrete distribution

$$P[X = x] = \begin{cases} \frac{\theta^{2x} e^{-\theta^2}}{x!} & x = 0, 1, 2, \dots \\ 0 & otherwise \end{cases}$$

where $\theta > 0$. Find the MME $\hat{\theta}$ and MLE $\widetilde{\theta}$. If X_1 , X_2 , X_3 and X_4 resulted in a data set 17, 10, 32, and 5, find the method of moment estimate and the maximum likelihood estimate of θ .