Math. - ES 1 - CORRECTION

EXERCICE 1

Pour $z \in D = \mathbb{C} \setminus \{-i\}$, on pose

$$f(z) = \frac{1}{\overline{z} - \mathbf{i}}$$

Le plan est muni d'un repère orthonormé direct.

1a. Déterminer la forme algébrique de f(z) pour $z \in D$, à l'aide de Re(z) et Im(z).

Si on note z = x + iy, avec $(x, y) \in \mathbb{R}^2 \setminus \{(0; -1)\}$, on a : $f(z) = \frac{x}{x^2 + (1 + u)^2} + i \frac{1 + y}{x^2 + (1 + u)^2}$

Déterminer l'ensemble des nombres complexes $z \in D$ tels que $f(z) \in \mathbb{R}$

Avec les notations précédentes : $f(z) \in \mathbb{R} \Leftrightarrow 1 + y = 0 \Leftrightarrow \operatorname{Im}(z) = -1$.

En donner une interprétation géométrique simple.

Ce sont les affixes des points de la droite d'équation y = -1, privée du point d'affixe -i.

c. Déterminer l'ensemble des nombres complexes $z \in D$ tels que $f(z) \in \mathbb{U}$, c'est-à-dire |f(z)| = 1.

$$|f(z)| = 1 \Leftrightarrow \frac{1}{\sqrt{x^2 + (1+y)^2}} = 1 \Leftrightarrow x^2 + (y+1)^2 = 1$$

En donner une interprétation géométrique simple.

Ce sont les affixes des points du cercle de centre le point d'affixe —i et de rayon 1.

- **2.** Soit $\theta \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$.

a. Montrer que
$$f(\tan(\theta)) = \frac{\mathrm{i}}{2} \left(1 + \mathrm{e}^{-2\mathrm{i}\theta} \right)$$
.
$$f(\tan(\theta)) = \frac{\cos(\theta)}{\sin(\theta) - \mathrm{i}\cos(\theta)} = \frac{\cos(\theta)\mathrm{i}}{\cos(\theta) + \mathrm{i}\sin(\theta)} = \frac{\cos(\theta)\mathrm{i}}{\mathrm{e}^{\mathrm{i}\theta}} = \frac{\mathrm{e}^{\mathrm{i}\theta} + \mathrm{e}^{-\mathrm{i}\theta}}{2} \mathrm{e}^{-\mathrm{i}\theta}\mathrm{i} = \frac{\mathrm{i}}{2} \left(1 + \mathrm{e}^{-2\mathrm{i}\theta} \right).$$

b. Montrer que le point d'affixe $f(\tan(\theta))$ est sur le cercle de centre C d'affixe $\frac{1}{2}$ et de rayon $\frac{1}{2}$.

$$\left| f(\tan(\theta)) - \frac{\mathrm{i}}{2} \right| = \frac{1}{2} \left| \mathrm{e}^{-2\mathrm{i}\theta} \right| = \frac{1}{2}.$$

Donc le point d'affixe $f(\tan(\theta))$ est sur le cercle de centre C et de rayon $\frac{1}{2}$.

3. Déterminer les points fixes de f, c'est-à-dire les nombres complexes $z \in D$ tels que f(z) = z.

$$f(z) = z \Leftrightarrow z\overline{z} - iz = 1. \text{ En notant } z = x + iy, \text{ avec } (x,y) \in \mathbb{R}^2 \setminus \{(0;-1)\}, \text{ on a} :$$

$$x^2 + y^2 + y - xi = 1 \Leftrightarrow \left\{ \begin{array}{l} x = 0 \\ x^2 + y^2 + y = 1 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x = 0 \\ y = \frac{-1 \pm \sqrt{5}}{2} \end{array} \right.$$

4. Résoudre dans D l'équation

$$(E): f(z) = -\overline{z} + \sqrt{3}$$

z est solution de (E) si, et seulement si $1=-\left(\overline{z}\right)^2+\mathrm{i}\overline{z}+\sqrt{3}\overline{z}-\sqrt{3}\mathrm{i}z$

Ainsi \overline{z} est racine du polynôme $P(z) = z^2 - (i + \sqrt{3})z + (1 + \sqrt{3}i)$.

On a :
$$\Delta = -2 - 2\sqrt{3}i = 4e^{-\frac{2i\pi}{3}} = \left(2e^{-\frac{i\pi}{3}}\right)^2$$
.

On obtient donc : $\overline{z} = \frac{i + \sqrt{3} \pm 2e^{-\frac{i\pi}{3}}}{2} = \frac{i + \sqrt{3} \pm (1 - \sqrt{3}i)}{2}$.

Finalement, les solutions de (E) sont : $\frac{1}{2}\left(1+\sqrt{3}+\left(\sqrt{3}-1\right)i\right)$ et $\frac{1}{2}\left(\sqrt{3}-1-\left(1+\sqrt{3}\right)i\right)$.

EXERCICE 2

Dans cet exercice, n désigne un entier naturel supérieur ou égal à 2, a désigne un nombre complexe qui n'est pas une racine $n^{\text{ème}}$ de l'unité, et on note pour tout complexe z:

$$P_n(z) = (az - 1)^n - z^n$$

1. Déterminer les racines de P_n , c'est-à-dire les nombres complexes z qui vérifient $P_n(z) = 0$.

$$P_n(z) = 0 \Leftrightarrow (az - 1)^n = z^n$$

$$z=0$$
 n'est clairement pas solution, on a donc :
$$P_n(z)=0 \Leftrightarrow \left(\frac{az-1}{z}\right)^n=1 \Leftrightarrow \exists k \in [0,n-1[], \frac{az-1}{z}=\mathrm{e}^{\frac{2\mathrm{i}k\pi}{n}} \Leftrightarrow \exists k \in [0,n-1[], \left(a-\mathrm{e}^{\frac{2\mathrm{i}k\pi}{n}}\right)z=1$$
 a n'est pas une racine $n^{\mathrm{ème}}$ de l'unité, on en déduit donc l'ensemble des racines de P_n :

$$\left\{\frac{1}{a - e^{\frac{2ik\pi}{n}}}, k \in \llbracket 0, n - 1 \rrbracket \right\}$$

2. Développer $P_n(z)$ à l'aide de la formule du binôme de Newton.

$$\forall z \in D, \quad P_n(z) = \sum_{k=0}^n \binom{n}{k} (-1)^{n-k} a^k z^k - z^n.$$

Pour $k \in [0, n]$, on note a_k le coefficient de z^k dans l'expression développée de $P_n(z)$. $a_n = a_n^n - 1$

$$\begin{cases} a_n = a^n - 1 \\ a_k = \binom{n}{k} (-1)^{n-k} a^k & \text{pour } k \in [0, n-1] \end{cases}$$

- 3. On admet que le produit des racines de P_n est égal à $(-1)^n \frac{a_0}{a}$
 - **a.** Montrer que

$$\prod_{k=0}^{n-1} \left(a - e^{\frac{2ik\pi}{n}} \right) = a^n - 1$$

D'après les questions précédentes, on a : $\prod_{k=0}^{n-1} \frac{1}{a-\mathrm{e}^{\frac{2\mathrm{i}k\pi}{n}}} = (-1)^n \frac{(-1)^n}{a^n-1} = \frac{1}{a^n-1}$

d'où le résultat en inversant, les dénominateurs étant non nuls.

b. Démontrer que cette formule reste vraie pour tout complexe $a \in \mathbb{C}$.

Le résultat précédent a été établi pour les nombres complexes autres que les racines $n^{\text{ème}}$ de l'unité.

Si
$$a = e^{\frac{2ik\pi}{n}}$$
 où $k \in [0, n-1]$ alors $\prod_{k=0}^{n-1} \left(a - e^{\frac{2ik\pi}{n}}\right) = 0$ car l'un des facteurs est nul, et $a^n - 1 = 0$

car a est une racine $n^{\text{ème}}$ de l'unité.

Ainsi l'égalité précédente reste vraie, les deux membres étant nuls.

En considérant $a = e^{2i\theta}$ avec $\theta \in \mathbb{R}$, simplifier :

$$\prod_{k=0}^{n-1} \sin\left(\frac{k\pi}{n} - \theta\right)$$

D'après la formule de l'angle moitié, on a :

$$\prod_{k=0}^{n-1} \left(e^{2i\theta} - e^{\frac{2ik\pi}{n}} \right) = \prod_{k=0}^{n-1} \left(2ie^{i\left(\theta + \frac{k\pi}{n}\right)} \sin\left(\theta - \frac{k\pi}{n}\right) \right) = (2i)^n e^{in\theta} \prod_{k=0}^{n-1} e^{\frac{ik\pi}{n}} \prod_{k=0}^{n-1} \sin\left(\theta - \frac{k\pi}{n}\right)$$

Par ailleurs, on a : $\prod_{n=1}^{n-1} e^{\frac{ik\pi}{n}} = e^{\frac{i\pi}{n} \sum_{k=0}^{n-1} k} = e^{\frac{i\pi(n-1)n}{2n}} = e^{\frac{i\pi(n-1)}{2}} = i^{n-1}$.

Les résultats précédents donnent :

$$\prod_{k=0}^{n-1} \sin\left(\frac{k\pi}{n} - \theta\right) = \prod_{k=0}^{n-1} -\sin\left(\theta - \frac{k\pi}{n}\right) = (-1)^n \frac{e^{2in\theta} - 1}{2^n e^{in\theta} (-1)^{n-1} i} = -\frac{2ie^{in\theta} \sin(n\theta)}{2^n e^{in\theta} i} = -\frac{\sin(n\theta)}{2^{n-1}}$$

EXERCICE 3

On rappelle que pour $n, p \in \mathbb{N}$ tels que $n \geq p$, on a : $\binom{n}{n} = \frac{n!}{n!(n-n)!}$

Partie I: somme des coefficients successifs d'une colonne du triangle de Pascal

1. En remarquant que pour k et n entiers tels que $0 \le k < n$ on a :

$$\binom{n}{k} = \binom{n+1}{k+1} - \binom{n}{k+1}$$

déterminer pour $k \in \mathbb{N}$ et pour $i \geq k$ une expression de $\sum_{j=k}^{i} {j \choose k}$ à l'aide d'un seul coefficient binomial.

La formule donnée vient de la formule de Pascal : pour k et n entiers naturels tels que k < n : $\binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1}$

$$\binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1}$$

On a donc pour i = k, $\sum_{i=k}^{r} {j \choose k} = {k+1 \choose k+1} = 1$, et pour i > k:

$$\sum_{j=k}^{i} \binom{j}{k} = \binom{k}{k} + \sum_{j=k+1}^{i} \left(\binom{j+1}{k+1} - \binom{j}{k+1} \right) = 1 + \sum_{j=k+1}^{i} \binom{j+1}{k+1} - \sum_{j=k+1}^{i} \binom{j}{k+1} = 1 + \sum_{j=k+1}^{i}$$

$$=1+\sum_{j=k+2}^{i+1}\binom{j}{k+1}-\sum_{j=k+1}^{i}\binom{j}{k+1}=1+\binom{i+1}{k+1}-1=\binom{i+1}{k+1}\;,\;\text{par t\'elescopage}.$$

2. Déterminer trois entiers a, b et c tels que pour tout $j \in \mathbb{N}$ et $j \geq 3$

$$j^{3} = a \begin{pmatrix} j \\ 3 \end{pmatrix} + b \begin{pmatrix} j \\ 2 \end{pmatrix} + c \begin{pmatrix} j \\ 1 \end{pmatrix}$$

$$a\binom{j}{3} + b\binom{j}{2} + c\binom{j}{1} = a\frac{j(j-1)(j-2)}{6} + b\frac{j(j-1)}{2} + cj = \frac{aj^3 + 3(b-a)j^2 + (2a-3b+6c)j}{6}$$

Pour que cette égalité soit égale à j^3 pour tout entier $j \ge 3$, il faut et il suffit d'avoir :

$$\begin{cases} a=6\\ 3(b-a)=0\\ 2a-3b+6c=0 \end{cases} \Leftrightarrow \begin{cases} a=6\\ b=6\\ c=1 \end{cases}$$

3. En déduire que pour tout $n \in \mathbb{N}^*$:

$$\sum_{j=1}^{n} j^3 = \left(\frac{n(n+1)}{2}\right)^2$$

$$\begin{split} \sum_{j=1}^{n} j^3 &= 1 + 2^3 + \sum_{j=3}^{n} j^3 = 9 + 6 \sum_{j=3}^{n} \binom{j}{3} + 6 \sum_{j=3}^{n} \binom{j}{2} + \sum_{j=3}^{n} \binom{j}{1} = \\ &= 9 + 6 \binom{n+1}{4} + 6 \binom{n+1}{3} - \binom{2}{2} + \binom{n+1}{2} - \binom{2}{1} - \binom{1}{1} \\ &= \frac{(n+1)n(n-1)(n-2)}{4} + (n+1)n(n-1) + \frac{(n+1)n}{2} = (n+1)n\frac{(n-1)(n-2) + 4(n-1) + 2}{4} = \\ &= (n+1)n\frac{n^2 + n}{4} = \left(\frac{n(n+1)}{2}\right)^2 \end{split}$$

Partie II: Formule d'inversion de Pascal

On considère dans cette partie une suite $(u_n)_{n\in\mathbb{N}}$ fixée et pour tout $n\in\mathbb{N}$, on pose :

$$a_n = \sum_{k=0}^{n} \binom{n}{k} u_k$$

Le but de cette partie est de donner une expression de u_n en fonction des a_k .

1. Vérifier que pour k, n et p dans \mathbb{N} tels que $k \leq p \leq n$ on a :

$$\binom{n+1}{p}\binom{p}{k} = \binom{n+1}{k}\binom{n+1-k}{p-k}$$

Soient
$$k, n, p$$
 trois entiers tels que $k \le p \le n$. Alors :
$$\binom{n+1}{p} \binom{p}{k} = \frac{(n+1)!}{p!(n+1-p)!} \frac{p!}{k!(p-k)!} = \frac{(n+1)!}{(n+1-p)!(p-k)!k!};$$

$$\binom{n+1}{k} \binom{n+1-k}{p-k} = \frac{(n+1)!}{k!(n+1-k)!} \frac{(n+1-k)!}{(p-k)!(n+1-k-(p-k))!} = \frac{(n+1)!}{(n+1-p)!(p-k)!k!}$$
 d'où l'égalité

2. Montrer que si k et n sont deux entiers naturels tels que $k \leq n$ alors

$$\sum_{j=0}^{n-k} (-1)^j \binom{n+1-k}{j} = (-1)^{n-k}$$

D'après la formule du binôme de Newton, on a :

$$\sum_{j=0}^{n-k} (-1)^j \binom{n+1-k}{j} = \sum_{j=0}^{n+1-k} (-1)^j \binom{n+1-k}{j} - (-1)^{n-k+1} \binom{n+1-k}{n+1-k}$$
$$= (1+(-1))^{n+1-k} - (-1)^{n+1-k} = (-1)^{n-k}$$

3. Soit $n \in \mathbb{N}$.

a. Donner l'expression de
$$u_{n+1}$$
 en fonction de a_{n+1} et des u_k pour $0 \le k \le n$.
$$a_{n+1} = \sum_{k=0}^{n} \binom{n+1}{k} u_k + \binom{n+1}{n+1} u_{n+1} \quad \text{d'où} \quad u_{n+1} = a_{n+1} - \sum_{k=0}^{n} \binom{n+1}{k} u_k$$

b. Prouver par récurrence sur $n \in \mathbb{N}$ que

$$\forall n \in \mathbb{N}, \quad u_n = \sum_{k=0}^n (-1)^{n-k} \binom{n}{k} a_k$$

Prouvons par récurrence forte sur $n \in \mathbb{N}$ la propriété $\mathscr{P}(n) : u_n = \sum_{k=0}^{n} (-1)^{n-k} \binom{n}{k} a_k$.

Initialisation : pour n=0, on a : $a_0=\sum_{k=0}^0 \binom{0}{k}u_k=\binom{0}{0}u_0=u_0$ donc $\mathscr{P}(0)$ est vraie.

 $H\acute{e}r\acute{e}dit\acute{e}: Soit \ n \in \mathbb{N}.$ Supposons que pour $k \in [0, n], \mathscr{P}(k)$ soit vraie. Alors on a :

$$u_{n+1} = a_{n+1} - \sum_{k=0}^{n} \binom{n+1}{k} u_k = a_{n+1} - \sum_{k=0}^{n} \binom{n+1}{k} \sum_{j=0}^{k} (-1)^{k-j} \binom{k}{j} a_j$$

$$= a_{n+1} - \sum_{k=0}^{n} \sum_{j=0}^{k} \binom{n+1}{k} \binom{k}{j} (-1)^{k-j} a_j = a_{n+1} - \sum_{j=0}^{n} \sum_{k=j}^{n} \binom{n+1}{k} \binom{k}{j} (-1)^{k-j} a_j$$

$$= a_{n+1} - \sum_{j=0}^{n} \sum_{k=j}^{n} \binom{n+1}{j} \binom{n+1-j}{k-j} (-1)^{k-j} a_j = a_{n+1} - \sum_{j=0}^{n} \binom{n+1}{j} a_j \sum_{i=0}^{n-j} \binom{n+1-j}{i} (-1)^i$$

$$= a_{n+1} - \sum_{j=0}^{n} \binom{n+1}{j} a_j (-1)^{n-j} = (-1)^{n+1-(n+1)} \binom{n+1}{n+1} a_{n+1} + \sum_{j=0}^{n} \binom{n+1}{j} a_j$$

$$= \sum_{j=0}^{n+1} (-1)^{n+1-j} \binom{n+1}{j} a_j$$

donc $\mathcal{P}(n+1)$ est vraie.

Par principe de récurrence, on en déduit que $\mathscr{P}(n)$ est vraie pour tout $n \in \mathbb{N}$.

- **4. Une application :** on considère la suite $(d_n)_{n\in\mathbb{N}}$ définie par $\begin{cases} d_0 = 1 \\ d_{n+1} = (n+1)d_n + (-1)^{n+1}, & \forall n \in \mathbb{N} \end{cases}$
 - a. Montrer par récurrence que

$$\forall n \in \mathbb{N}, \qquad n! = \sum_{k=0}^{n} \binom{n}{k} d_k$$

Prouvons par récurrence sur $n \in \mathbb{N}$ la propriété $\mathscr{H}(n) : n! = \sum_{k=0}^{n} \binom{n}{k} d_k$.

Initialisation: pour n = 0, on a: 0! = 1 et $\sum_{k=0}^{0} {0 \choose k} d_k = d_0 = 1$ donc $\mathcal{H}(0)$ est vraie.

 $\mathit{H\acute{e}r\acute{e}dit\acute{e}}:$ Soit $n\in\mathbb{N}$; on suppose $\mathscr{H}(n)$ vraie. Alors :

$$(n+1)! = (n+1)n! = (n+1)\sum_{k=0}^{n} \binom{n}{k} d_k = \sum_{k=0}^{n} (n+1)\binom{n}{k} d_k = \sum_{k=0}^{n} \binom{n+1}{k+1} (k+1)d_k$$

$$= \sum_{k=0}^{n} \binom{n+1}{k+1} \left(d_{k+1} + (-1)^k \right) = \sum_{k=0}^{n} \binom{n+1}{k+1} d_{k+1} + \sum_{k=0}^{n} \binom{n+1}{k+1} (-1)^k$$

$$= \sum_{i=1}^{n+1} \binom{n+1}{i} d_i + \sum_{i=1}^{n+1} \binom{n+1}{i} (-1)^{i-1} = \sum_{i=0}^{n+1} \binom{n+1}{i} d_i - d_0 - \sum_{i=0}^{n+1} \binom{n+1}{i} (-1)^i + 1$$

$$= \sum_{i=0}^{n+1} \binom{n+1}{i} d_i - (1+(-1))^{n+1} = \sum_{i=0}^{n+1} \binom{n+1}{i} d_i$$

donc $\mathcal{H}(n+1)$ est vraie.

Par principe de récurrence, on en déduit que $\mathcal{H}(n)$ est vraie pour tout $n \in \mathbb{N}$.

b. En déduire que

$$\forall n \in \mathbb{N}, \qquad \frac{d_n}{n!} = \sum_{k=0}^n \frac{(-1)^k}{k!}$$

En appliquant les résultats démontrés précédemment, en prenant $u_k = d_k$ et $a_n = n!$, on obtient :

pour tout
$$n \in \mathbb{N}$$
, $d_n = \sum_{k=0}^n \binom{n}{k} (-1)^{n-k} k! = \sum_{k=0}^n \frac{n!}{(n-k)!} (-1)^{n-k} \underbrace{\sum_{i=n-k}^n n!}_{i=n-k} \sum_{i=0}^n \frac{(-1)^i}{i!}$,

d'où le résultat.

PROBLÈME

Dans tout le problème on pourra utiliser sans justification la limite suivante :

$$\forall q \in \mathbb{R}, \quad \lim_{n \to +\infty} \frac{q^n}{n!} = 0$$

On pose, pour $t \in \mathbb{R}$ et $n \in \mathbb{N}$:

$$R_n(t) = e^t - \sum_{k=0}^n \frac{t^k}{k!}$$

PARTIE I

1a. Montrer que R_n est solution sur $\mathbb R$ de l'équation différentielle :

$$y'(t) - y(t) = \frac{t^n}{n!} \qquad (E)$$

 R_n est dérivable sur \mathbb{R} et $R'_n(t) = e^t - \sum_{k=1}^n \frac{t^{k-1}}{(k-1)!} = e^t - \sum_{k=0}^{n-1} \frac{t^k}{k!}$

On a donc $R'_n(t) - R(t) = e^t - \sum_{k=0}^{n-1} \frac{t^k}{k!} - e^t + \sum_{k=0}^n \frac{t^k}{k!} = \frac{t^n}{n!}$ donc R_n est solution de (E).

- **b.** Donner la solution générale de l'équation homogène (E_0) associée à (E). $S_{E_0} = \{ \varphi : \mathbb{R} \to \mathbb{R}, \varphi(t) = \lambda e^t, \lambda \in \mathbb{R} \}.$
- Résoudre (E) en utilisant une méthode de variation de la constante (on exprimera les solutions à l'aide d'une intégrale que l'on ne cherchera pas à calculer.)

Soit λ une fonction dérivable sur \mathbb{R} .

$$y_p: t \mapsto \lambda(t) e^t \text{ est solution de } (E) \Leftrightarrow \forall t \in \mathbb{R}, \lambda'(t) e^t = \frac{t^n}{n!} \Leftrightarrow \forall t \in \mathbb{R}, \lambda'(t) = e^{-t} \frac{t^n}{n!}.$$

On a donc $y_p: t \mapsto e^t \int_0^t \frac{x^n}{n!} e^{-x} dx$ une solution de E.

On en déduit :
$$S_E = \left\{ \varphi : \mathbb{R} \to \mathbb{R}, \varphi(t) = \lambda e^t + e^t \int_0^t \frac{x^n}{n!} e^{-x} dx, \lambda \in \mathbb{R} \right\}$$

En déduire que :

$$\forall t \in \mathbb{R}, \quad R_n(t) = e^t \int_0^t \frac{x^n}{n!} e^{-x} dx$$

 $R_n \in S_E$ donc il existe $\lambda \in \mathbb{R}$ tel que : $\forall t \in \mathbb{R}, R_n(t) = \lambda e^t + e^t \int_0^t \frac{x^n}{n!} e^{-x} dx$.

Comme
$$R(0) = 0$$
, on a : $0 = \lambda + 0$ d'où $\lambda = 0$ et $\forall t \in \mathbb{R}, R_n(t) = e^t \int_0^t \frac{x^n}{n!} e^{-x} dx$

Montrer que :

$$\forall t \in \mathbb{R}^+, \quad 0 \le R_n(t) \le \frac{t^{n+1}}{(n+1)!} e^t$$

 $\forall t \in \mathbb{R}^+, \forall x \in [0, t], \quad 0 \le \frac{x^n}{n!} e^{-x} \le \frac{x^n}{n!} \text{ donc } \quad \forall t \in \mathbb{R}^+, \quad 0 \le \int_0^t \frac{x^n}{n!} e^{-x} dx \le \int_0^t \frac{x^n}{n!} dx$

Ainsi,
$$\forall t \in \mathbb{R}^+$$
, $0 \le R_n(t) \le e^t \frac{t^{n+1}}{(n+1)!}$

f. En déduire que :

$$\forall t \in \mathbb{R}^+, \quad \lim_{n \to +\infty} \sum_{k=0}^n \frac{t^k}{k!} = e^t$$

 $\forall t \in \mathbb{R}^+, \lim_{n \to +\infty} \frac{t^{n+1}}{(n+1)!} e^t = 0 \text{ donc par encadrement}, \forall t \in \mathbb{R}^+, \lim_{n \to +\infty} R_n(t) = 0.$

Enfin,
$$\forall t \in \mathbb{R}^+$$
, $\sum_{k=0}^n \frac{t^k}{k!} = e^t - R_n(t) \xrightarrow[n \to +\infty]{} e^t$, donc $\forall t \in \mathbb{R}^+$, $\lim_{n \to +\infty} \sum_{k=0}^n \frac{t^k}{k!} = e^t$.

2. On considère les suites $(u_n)_{n\geq 1}$ et $(v_n)_{n\geq 1}$ définies par :

$$\forall n \in \mathbb{N}^*, \quad u_n = \sum_{k=0}^n \frac{1}{k!} \quad \text{et} \quad v_n = u_n + \frac{1}{n} \cdot \frac{1}{n!}$$

a. Montrer que les suites
$$(u_n)_{n\geq 1}$$
 et $(v_n)_{n\geq 1}$ sont adjacentes.
$$\forall n\geq 1,\quad u_{n+1}-u_n=\frac{1}{(n+1)!}>0\quad \text{et}\quad v_{n+1}-v_n=\frac{-1}{n(n+1)(n+1)!}<0$$

donc (u_n) est strictement croissante et (v_n) est strictement décroiss

$$\forall n \geq 1, \quad v_n - u_n = \frac{1}{n \cdot n!} \text{ donc } \lim_{n \to +\infty} (v_n - u_n) = 0.$$

Ainsi, (u_n) et (v_n) sont des suites adjacentes.

b. En déduire que

$$\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} v_n = e$$

Le théorème des suites adjacentes donne la convergence vers la même limite des suites (u_n) et (v_n) .

D'après le **1.f**, pour
$$t = 1$$
 on a $\lim_{n \to +\infty} \sum_{k=0}^{n} \frac{1}{k!} = \lim_{n \to +\infty} u_n = e^1 = e$, donc $\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} v_n = e$.

PARTIE II

On considère la fonction g définie sur [0;1] par :

$$g(0) = 0$$
 et $\forall x \in]0,1], \quad g(x) = x \ln(x)$

On remarquera que g continue sur [0; 1].

1. Dresser le tableau de variations complet de g et en déduire celui de -g. Par produit, g est dérivable sur]0;1] et $\forall x \in]0,1], g'(x) = \ln(x) + 1$. Ainsi $g'(x) \geq 0 \Leftrightarrow x \geq e^{-1}$.

On obtient les tableaux de variations suivants :

x	$0 e^{-1}$	1
g'(x)	- 0 +	
g	$-e^{-1}$	0
x	$0 e^{-1}$	1
-g	e ⁻¹	0

- 2. Justifier que l'intervalle $[0; e^{-1}]$ est stable par -g. Le tableau de variations ci-dessus donne immédiatement la stabilité de l'intervalle $[0; e^{-1}]$ par -g.
- **3.** Déterminer le signe de -g(x) x sur $[0; e^{-1}]$.

Pour $x \in [0, 1]$, on pose h(x) = -q(x) - x.

h est continue sur [0;1] et dérivable sur [0;1] et $\forall x \in]0;1]$, $h'(x)=-g'(x)-1=-\ln(x)$.

Ainsi h est croissante sur]0;1] et comme elle est continue sur $[0;1], \forall x \in [0;e^{-1}], h(x) \ge h(0) = 0$. On en déduit que $\forall x \in [0;e^{-1}], -g(x) - x \ge 0$.

4. On définit la suite $(t_n)_{n\in\mathbb{N}}$ par :

$$t_0 \in \left[\frac{1}{3e}; \frac{1}{e} \right]$$
 et $\forall n \in \mathbb{N}, t_{n+1} = -g(t_n)$

a. Montrer par récurrence que :

$$\forall n \in \mathbb{N}, \quad 0 \le t_n \le e^{-1}$$

Prouvons par récurrence sur $n \in \mathbb{N}$ la propriété $\mathscr{P}(n) : 0 \le t_n \le \mathrm{e}^{-1}$.

Initialisation : $0 < \frac{1}{3e} < t_0 < e^{-1}$ donc $\mathscr{P}(0)$ est vraie.

Hérédité : Soit $n \in \mathbb{N}$. On suppose $\mathscr{P}(n)$ vraie, c'est-à-dire $t_n \in [0; e^{-1}]$. D'après la question **2**, on a $-g(t_n) \in [0; e^{-1}]$ donc $t_{n+1} \in [0; e^{-1}]$ et $\mathscr{P}(n+1)$ est vraie.

Par principe de récurrence, $\mathscr{P}(n)$ est vraie pour tout $n \in \mathbb{N}$.

b. Montrer par récurrence que :

$$\forall n \in \mathbb{N}, \quad t_n \le t_{n+1}$$

Prouvons par récurrence sur $n \in \mathbb{N}$ la propriété $\mathcal{H}(n) : t_n \leq t_{n+1}$.

Initialisation: D'après la question 3, $-g(t_0) - t_0 \ge 0$ c'est-à-dire $t_1 \ge t_0$ donc $\mathcal{H}(0)$ est vraie.

 $H\acute{e}r\acute{e}dit\acute{e}: Soit \ n \in \mathbb{N}$. On suppose $\mathscr{H}(n)$ vraie, c'est-à-dire $t_n \leq t_{n+1}$. D'après la question 1, -g est croissante sur $[0, e^{-1}]$ donc $-g(t_n) \leq -g(t_{n+1})$ c'est-à-dire $t_{n+1} \leq t_{n+2}$ et $\mathscr{H}(n+1)$ est vraie. Par principe de récurrence, $\mathscr{H}(n)$ est vraie pour tout $n \in \mathbb{N}$.

5. En déduire que $(t_n)_{n\in\mathbb{N}}$ converge, et déterminer sa limite. D'après la question précédente, (t_n) est croissante majorée donc elle converge. Comme -g est continue sur $[0, e^{-1}]$, (t_n) converge vers un point fixe de -g dans $[0, e^{-1}]$.

 $-g(x) = x \Leftrightarrow x = 0 \lor x(1 + \ln x) = 0 \Leftrightarrow x = 0 \lor x = e^{-1}.$

Comme (t_n) est croissante avec $t_0 > 0$, on en déduit que (t_n) converge vers e^{-1} .

PARTIE III

On pose:

$$\forall x \in [0; 1], x^{-x} = e^{-g(x)}$$
 et $I = \int_0^1 x^{-x} dx$

On rappelle que g est continue sur [0;1], et ainsi l'intégrale I est bien définie.

1. Montrer que :

$$\forall n \in \mathbb{N}, \quad I = \sum_{k=0}^{n} \frac{(-1)^k}{k!} \int_0^1 (g(x))^k dx + \int_0^1 R_n((-g(x)) dx$$

D'après la **Partie I**, $\forall t \in \mathbb{R}, e^t = \sum_{i=1}^n \frac{t^k}{k!} + R_n(t)$ donc $\forall t \in \mathbb{R}, e^{-g(t)} = \sum_{i=1}^n \frac{(-1)^k}{k!} (g(t))^k + R_n(-g(t))$

puis, par linéarité de l'intégrale : $I = \sum_{k=0}^{n} \frac{(-1)^k}{k!} \int_0^1 (g(x))^k dx + \int_0^1 R_n(-g(x)) dx$.

2. Montrer que :

$$0 \le \int_0^1 R_n(-g(x)) dx \le \frac{e^{\frac{1}{e}}}{e^{n+1}}$$

 $\forall x \in [0; 1], -g(x) \ge 0 \text{ donc d'après } \mathbf{I.1e} : \forall x \in [0; 1], 0 \le R_n(-g(x)) \le \frac{(-g(x))^{n+1}}{(n+1)!} e^{-g(x)}$

et d'après II.1 : $\forall x \in [0; 1], 0 \le -g(x) \le e^{-1}$ donc $\forall x \in [0; 1], 0 \le R_n(-g(x)) \le \frac{e^{e^{-1}}}{e^{n+1}(n+1)!}$

Enfin, puisque $(n+1)! \ge 1$ on obtient $0 \le \int_0^1 R_n(-g(x)) dx \le \frac{e^{e^{-1}}}{e^{n+1}}$

3. Pour $p, q \in \mathbb{N}$, on pose :

$$I_{p,q} = \lim_{\varepsilon \to 0} \int_{\varepsilon}^{1} x^{p} \ln^{q}(x) dx$$

et on admet que $I_{p,q}$ est bien définie.

a. Montrer à l'aide d'une intégration par parties que :

$$\forall p \in \mathbb{N}, \forall q \in \mathbb{N}^*, I_{p,q} = -\frac{q}{p+1}I_{p,q-1}$$

Soient $p \in \mathbb{N}$ et $q \in \mathbb{N}^*$. On note $\int_{\varepsilon}^1 x^p \ln^q(x) dx = I_{p,q}(\varepsilon)$.

On pose
$$\begin{vmatrix} u': x \mapsto x^p & \Leftarrow & u: x \mapsto \frac{x^{p+1}}{p+1} \\ v: x \mapsto \ln^q(x) & \Rightarrow & v': x \mapsto q\frac{1}{x} \ln^{q-1}(x) \end{vmatrix}$$

u et v sont des fonctions de classe C^1 sur $[\varepsilon;1]$ donc le théorème d'intégration par parties donne :

$$I_{p,q}(\varepsilon) = \left[\frac{1}{p+1}x^{p+1}\ln^q(x)\right]_{\varepsilon}^1 - \frac{q}{p+1}I_{p,q-1}(\varepsilon).$$

Le passage à la limite lorsque $\varepsilon \to 0$ donne avec le théorème des croissances comparées : $I_{p,q} = -\frac{q}{p+1}I_{p,q-1}$.

$$I_{p,q} = -rac{q}{p+1}I_{p,q-1}.$$

b. Exprimer $I_{p,q}$ en fonction de p et q.

 $\int_{\varepsilon}^{1} x^{p} \ln^{q}(x) dx$ est l'intégrale d'une fonction négative sur l'intervalle d'intégration.

Pour
$$0 < \varepsilon \le \frac{1}{2}$$
 on a $I_{p,q}(\varepsilon) \le \int_{\frac{1}{2}}^{1} x^{p} \ln^{q}(x) dx < 0$.

Par passage à la limite quand ε tend vers 0, on a $I_{p,q} < 0$ en particulier, $I_{p,q} \neq 0$. On déduit de ce qui précède que :

$$\prod_{k=1}^{q} \frac{I_{p,k}}{I_{p,k-1}} = \prod_{k=1}^{q} \frac{-k}{p+1} \text{ ce qui donne par télescopage} : I_{p,q} = (-1)^q \frac{q!}{(p+1)^q} I_{p,0}.$$

De plus,
$$I_{p,0}(\varepsilon) = \int_{\varepsilon}^{1} x^{p} dx = \frac{1}{p+1} (1-\varepsilon^{p+1}) \text{ donc } I_{p,0} = \frac{1}{p+1} \text{ puis finalement :}$$

$$\forall p, q \in \mathbb{N}, \quad I_{p,q} = \frac{J^{\varepsilon}(-1)^q q!}{(p+1)^{q+1}}$$

4. Montrer enfin que :

$$I = \lim_{n \to +\infty} \sum_{k=1}^{n} \frac{1}{k^k}$$

On a : $\lim_{n\to+\infty} (e^{-1})^n = 0$, donc d'après **2.**, par encadrement, $\lim_{n\to+\infty} \int_0^1 R_n(-g(x)) dx = 0$.

D'après **3.b**,
$$\int_0^1 (g(x))^k dx = \int_0^1 (x \ln(x))^k dx = I_{k,k} = \frac{(-1)^k k!}{(k+1)^{k+1}}$$

Ainsi, d'après **1.**,
$$I = \sum_{k=1}^{n} \frac{(-1)^k}{k!} \frac{(-1)^k k!}{(1+k)^{1+k}} + \int_0^1 R_n(-g(x)) dx$$
 c'est-à-dire

$$\sum_{k=1}^{n+1} \frac{1}{k^k} = I - \int_0^1 R_n(-g(x)) dx.$$

Par opérations sur le limites, on obtient finalement, $I = \lim_{n \to +\infty} \sum_{k=1}^{n} \frac{1}{k^k}$