

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ	«Информатика и системы управления»
КАФЕДРА «	Программное обеспечение ЭВМ и информационные технологии»

ОТЧЕТ

по Лабораторной работе №13 по курсу «Функциональное и логическое программирование» на тему: «Структура программы на Prolog»

Студент _	ИУ7-63Б (Группа)	(Подпись, дата)	<u>Миронов Г. А.</u> (И. О. Фамилия)
Преподава	атель	(Подпись, дата)	Толпинская Н. Б. (И. О. Фамилия)

1 Практическая часть

Задание 13: составить программу, то есть модель предметной области – базу знаний, объединив в ней информацию – знания:

- «Телефонный справочник»: Фамилия, №тел, Адрес структура (Город, Улица, №дома, №кв)
- «Автомобили»: Фамилия_владельца, Марка, Цвет, Стоимость и др.
- «Вкладчики банков»: Фамилия, Банк, счет, сумма, др.

Владелец может иметь несколько телефонов, автомобилей, вкладов (Факты). Используя правила, обеспечить возможность поиска:

- 1. А. По № телефона найти: Фамилию, Марку автомобиля, Стоимость автомобиля (может быть несколько)
 - В. Используя сформированное в предыдущем пункте правило, по №телефона найти только Марку автомобиля (автомобилей может быть несколько)
- 2. Используя простой, не составной вопрос: по Фамилии (уникальна в городе, но в разных городах есть однофамильцы) и Городу проживания найти: Улицу, проживания, Банки, в которых есть вклады и №телефона.

Для задания 1 и 2 для одного из вариантов ответов, и для А. и для В., описать словесно порядок поиска ответа на вопрос, указав, как выбираются знания, и, при этом, для каждого этапа унификации, выписать подстановку – наибольший общий унификатор, и соответствующие примеры термов.

Листинг 1.1 – Реализация базы знаний, Часть 1

```
domains
1
2
     surname, phone, city, street = symbol.
3
     home, flat, id, amount = integer.
4
     model, color, bank = symbol.
5
     address = address(city, street, home, flat).
6
7
     price, size = integer.
8
     property =
9
       building(price, size);
       sector(price, size);
10
       ship(price, color);
11
12
       car(model, color, price).
13
14
   predicates
15
     person(surname, phone, address).
16
     bank_depositor(surname, bank, id, amount).
17
     own(surname, property).
     own_type(surname, symbol, price).
18
19
     own_price(surname, symbol, price).
20
     total_price(surname, price).
21
22
   clauses
     person("Andreev", "+7999999999", address("Moscow", "Lesnaya",
23
        12, 2)).
24
     person("Borisov", "+71111111111", address("Moscow", "Lesnaya",
        13, 87)).
     person("Dmitriev", "+73333333333", address("Ekaterinburg", "
25
        Kamennaya", 13, 87)).
     person("Fedorov", "+6666666666", address("Moscow", "Hospital'
26
        naya", 123, 87)).
27
     own("Andreev", car("bmw", "green", 1000)).
28
29
     own("Borisov", sector(300000, 3000)).
30
     own("Dmitriev", car("lada", "black", 20000)).
     own("Dmitriev", ship(20000, "black")).
31
     own("Fedorov", car("lada", "black", 20000)).
32
33
     own("Fedorov", building(200000, 120)).
34
     bank_depositor("Andreev", "Sber", 22, 1000).
35
     bank_depositor("Borisov", "Sber", 33, 10000).
36
     bank_depositor("Dmitriev", "Alfa", 44, 20000).
37
     bank_depositor("Fedorov", "Sber", 238, 10).
38
     bank_depositor("Borisov", "Maze", 1, 10000).
39
40
     own_type(L, building, Price) :- own(L, building(Price, _)).
41
     own_type(L, sector, Price) :- own(L, sector(Price, _)).
42
     own_type(L, ship, Price) :- own(L, ship(Price, _)).
43
44
     own_type(L, car, Price) :- own(L, car(_, _, Price)).
```

Листинг 1.2 – Реализация базы знаний, Часть 1

```
own_price(L, sector, Price) :- own(L, sector(Price, _)), !.
47
     own_price(L, ship, Price) :- own(L, ship(Price, _)), !.
48
     own_price(L, car, Price) :- own(L, car(_, _, Price)), !.
49
     own_price(_, _, 0).
50
51
     total_price(L, Total) :-
52
       own_price(L, building, Price1),
53
54
       own_price(L, sector, Price2),
       own_price(L, ship, Price3),
55
       own_price(L, car, Price4),
56
57
       Total = Price1 + Price2 + Price3 + Price4.
58
59
   goal
60
     % 1. Type of property by lastname
61
     %own_type("Fedorov", PropType, _).
62
63
     % 2. Type of property and price by lastname
     own_type("Fedorov", PropType, Price).
64
65
     %own_type("Dmitriev", PropType, Price).
66
67
     %3. Total price of property
68
     %total_price("Fedorov", TotalPrice).
```

В Таблице 1.1 представлен порядок поиска ответа на вопрос 2.

Таблица 1.1 – Порядок формирования результата для 1-го вопроса

Шаг	Сравниваемые термы;	Дальнейшие	Резольвента	Подстановка
	результаты	действия		
	own_price("Fedorov", PropType,	Прямой ход	own_price("Fedorov",	
	Price) и person("Andreev",	Переход к	PropType, Price)	
\vdash	"+79999999999",	след. предл.		
	addr("Moscow", "Lesnaya", 12, 2)).			
	Главные функторы не равны			
:	÷	:	:	:
	own_price("Fedorov", PropType,	Прямой ход	own("Fedorov",	L = "Fedorov"
20	Price) II own_price(L,		building(Price, _))	PropType = building
	building, PropType)			
:	÷	:	:	:
	own("Fedorov", building(Price, _))	Нашли ответ		L = "Fedorov"
36	и own("Fedorov",	Откат		PropType = building
	building $(200000, 120)$			$\rm Price{=}200000$
:	÷	:	:	:
	own_price("Fedorov", PropType,	Прямой ход	own("Fedorov",	L = "Fedorov"
51	Price) n own_price(L,		$sector(Price, _))$	PropType = sector
	sector, PropType)			
:	÷	:	:	:
			Продолжение на	Продолжение на следующей странице

Таблица 1.1 – продолжение

Шаг	Сравниваемые термы;	Дальнейшие	Резольвента	Подстановка
	результаты	действия		
	own_price("Fedorov", PropType,	Прямой ход	own("Fedorov",	L = "Fedorov"
22	Price) n own_price(L,		ship(Price, _))	PropType = ship
	ship, PropType)			
:	÷	:	:	÷
	own_price("Fedorov", PropType,	Прямой ход	own("Fedorov",	L = "Fedorov"
103	Price) и own_price(L,		$\operatorname{car}(_,_,\operatorname{Price}))$	${ m PropType}={ m car}$
	$\operatorname{car}, \operatorname{PropType})$			
:	:	:	:	:
	$\operatorname{own}("Fedorov", \operatorname{car}(_, _,$	Нашли ответ		L = "Fedorov"
112	Price)) и own("Fedorov",	Откат		${ m Prop Type} = { m car}$
	car("lada", "black", 20000))			$\mathrm{Price} = 20000$
:	:	:		:
	own_price("Fedorov", PropType,	Завершение	own_price("Fedorov",	
130	Price) u total_price(L,	работы	PropType, Price)	
	Total))	2 подст.		
	Главные функторы не равны	в рез-те		
				Конец таблицы

2 Контрольный вопросы

2.1 В каком фрагменте программы сформулировано знание? Это знание о чем на формальном уровне?

Знания сформулированы в clauses (факты и правила). Это знания о предметной области.

2.2 Что содержит тело правила?

В заголовке правила находится знание о предметной области, а в теле содержится условия истинности этого знания.

2.3 Что дает использование переменных при формулировании знаний? В чем отличие формулировки знания с помощью термов с одинаковой арностью при использовании одной переменной и при использовании нескольких переменных?

Связанная с каким-то значением переменная, в рамках одного предложения, может быть использована в других местах. Чем больше переменных содержит формулировка правила, тем более общим будет являться терм.

2.4 С каким квантором переменные входят в правило, в каких пределах переменная уникальна?

Переменные входят в правило с квантором всеобщности. Именованная переменная уникальна в рамках предложения, в котором она используется.

2.5 Какова семантика (смысл) предложений раздела DOMAINS? Когда, где и с какой целью используется это описание?

DOMAINS – раздел описания доменов. Этот раздел используется для описания используемых структур данных.

2.6 Какова семантика (смысл) предложений раздела PREDICATES? Когда, и где используется это описание?

PREDICATES – раздел описания предикатов. Это описание используется для проверки корректности «типов» знаний.

2.7 Унификация каких термов запускается на самом первом шаге работы системы?

Вопроса и первого терма в clauses.

2.8 Каковы назначение и результат использования алгоритма унификации?

Унификация — попытка сопоставить два терма. Результат: успех/неудача.

2.9 В каком случае запускается механизм отката?

Механизм отката запустится в случае неудачи алгоритма унификации.