Finite Automata and Regular Expression

Lin Chen

Email: Lin.Chen@ttu.edu

Grader: zulfi.khan@ttu.edu

- We have learned
 - Deterministic Finite Automata
 - Nondeterministic Finite Automata
 - Regular expression

- We have learned
 - Deterministic Finite Automata
 - Nondeterministic Finite Automata
 - Regular expression
- We define a language regular if a DFA or NFA recognizes it
- We will show a language is regular if and only if a regular expression describes it.

Equivalent definition

 Q: Show a language is regular if and only if a regular expression describes it.

The language defined by regular expression, L_{REG} , equals the language defined by NFA, L_{NFA}

- Target: $L_{REG} = L_{NFA}$
 - $L_{REG} \subseteq L_{NFA}$, i.e., any regular expression is recognized by some NFA
- $L_{NFA} \subseteq L_{REG}$, i.e., any language recognized by some NFA can be described by some regular expression

$L_{REG} \subseteq L_{NFA}$

- How do we show $L_{REG} \subseteq L_{NFA}$?
- For any regular expression r, construct an NFA that accepts exactly the language L(r)
- Regular languages are defined inductively, we prove $L_{REG} \subseteq L_{NFA}$ by induction

Regular expression

- The regular expressions of Σ^* are all strings over $\Sigma \cup \{(,),\emptyset,+,\star\}$ that can be obtained through the following operations:
 - \emptyset and every member of Σ is a regular expression
 - If α and β are regular expressions, then so is $(\alpha\beta)$
 - if α and β are regular expressions, then so is $(\alpha + \beta)$
 - if α is a regular expression, then so is α^*
 - Nothing else is a regular expression

$$L_{REG} \subseteq L_{NFA}$$

- Base case
 - $L(r) = \{a\}, a \in \Sigma$

$$L_{REG} \subseteq L_{NFA}$$

- Base case
 - $L(r) = \{e\}$

$$L_{REG} \subseteq L_{NFA}$$

- Base case
 - $L(r) = \emptyset$

$$L_{REG} \subseteq L_{NFA}$$

- Recursive definition of Regular Language
 - $L(r) = L(r_1 r_2)$

NFA for $L(r_1)$

NFA for $L(r_1)$

$$L_{REG} \subseteq L_{NFA}$$

- Recursive definition of Regular Language
 - $L(r) = L(r_1 r_2)$

NFA for $L(r_1r_2)$

$$L_{REG} \subseteq L_{NFA}$$

Recursive definition of Regular Language

$$- L(r) = L(r_1 + r_2)$$

NFA for $L(r_1)$

NFA for $L(r_1)$

$$L_{REG} \subseteq L_{NFA}$$

Recursive definition of Regular Language

$$- L(r) = L(r_1 + r_2)$$

NFA for $L(r_1 + r_2)$

$$L_{REG} \subseteq L_{NFA}$$

- Recursive definition of Regular Language
 - $-L(r) = L(r_1^*)$

NFA for $L(r_1)$

$$L_{REG} \subseteq L_{NFA}$$

Recursive definition of Regular Language

$$-L(r) = L(r_1^*)$$

NFA for $L(r_1^*)$

$$L_{REG} \subseteq L_{NFA}$$

- Example
 - *a*, *b*

$$L_{REG} \subseteq L_{NFA}$$

- Example
 - ab, aab

$$L_{REG} \subseteq L_{NFA}$$

- Example
 - $-ab \cup aab$

$$L_{REG} \subseteq L_{NFA}$$

- Example
 - $-(ab \cup aab)^*$

$$L_{NFA} \subseteq L_{REG}$$

- Start with a specialized NFA
 - No transition into the start state

$$L_{NFA} \subseteq L_{REG}$$

- Start with a specialized NFA
 - No transition into the start state
 - -Single final state

$$L_{NFA} \subseteq L_{REG}$$

- Start with a specialized NFA
 - No transition into the start state
 - -Single final state

- Transitions will be labeled with regular expressions
- If there is a transition from state q_1 to state q_2 labeled with regular expression r, then any string generated by r can move the machine from q_1 to q_2
- Remove states, relabeling transitions so that the language defined by the machine does not change

$$L_{NFA} \subseteq L_{REG}$$

- Proof by induction on the "length" of the path
- Use example to illustrate the basic idea (example≠proof!)

$$L_{NFA} \subseteq L_{REG}$$

$$L_{NFA} \subseteq L_{REG}$$

- Example:
 - Remove state q_1

$$L_{NFA} \subseteq L_{REG}$$

$$L_{NFA} \subseteq L_{REG}$$

- Example:
 - Remove state q_1

$$- - q_0 - ab \cup b - q_2$$

$$L_{NFA} \subseteq L_{REG}$$

$$L_{NFA} \subseteq L_{REG}$$

- Example:
 - Remove state q_1

$$L_{NFA} \subseteq L_{REG}$$

$$L_{NFA} \subseteq L_{REG}$$

- Example:
 - Remove state q_1

$$L_{NFA} \subseteq L_{REG}$$

$$L_{NFA} \subseteq L_{REG}$$

$$L_{NFA} \subseteq L_{REG}$$

- Proof by induction on the "length" of the path
 - Let $K = \{q_1, q_2, \dots, q_n\}$ and $s = q_1$
- Define R(i,j,k) as the set of strings that can drive M from q_i to q_i without passing any state numbered k+1 or higher

$$L_{NFA} \subseteq L_{REG}$$

- Proof by induction on the "length" of the path
 - Let $K = \{q_1, q_2, \dots, q_n\}$ and $s = q_1$
- Define R(i,j,k) as the set of strings that can drive M from q_i to q_j without passing any state numbered k+1 or higher
- What is the language accepted by M

$$L(M) = \bigcup \{R(1,j,n) : q_j \in F\}$$

- Proof by induction on the "length" of the path
 - Let $K = \{q_1, q_2, \dots, q_n\}$ and $s = q_1$
- Define R(i,j,k) as the set of strings that can drive M from q_i to q_j without passing any state numbered k+1 or higher
- What is the language accepted by M

```
• Proof by induction on the "length" of the path - Let K=\{q_1,q_2,\cdots,q_n\} and s=q_1 - Define R(t,j,k) as the set of strings that can drive M from q_i to q_j without passing any state numbered k+1 or higher • What is the language accepted by M
```

• We prove R(i,j,k) is regular for any i,j,k

• We prove R(i,j,k) is regular for any i,j,k

$$L_{NFA} \subseteq L_{REG}$$

- Proof by induction on the "length" of the path
 - Let $K = \{q_1, q_2, \dots, q_n\}$ and $s = q_1$
- Define R(i,j,k) as the set of strings that can drive M from q_i to q_j without passing any state numbered k+1 or higher
- What is the language accepted by M

$$L(M) = \bigcup \{R(1,j,n) : q_j \in F\}$$

• We prove R(i,j,k) is regular for any i,j,k

$$L_{NFA} \subseteq L_{REG}$$

- Proof by induction on the "length" of the path
 - Let $K = \{q_1, q_2, \cdots, q_n\}$ and $s = q_1$
- Define R(i,j,k) as the set of strings that can drive M from q_i to q_j without passing any state numbered k+1 or higher
- What is the language accepted by M

$$L(M) = \bigcup \{R(1,j,n) : q_j \in F\}$$

• We prove R(i, j, k) is regular for any i, j, k

$$R(i,j,k) = R(i,j,k-1) \cup R(i,k,k-1)R(k,k,k-1)^*R(k,j,k-1)$$