ACH2033 – Matrizes, Vetores e Geometria Analítica (2016.2)

Segunda Prova (Parte I - segunda versão) – Novembro/2016

Nome:	Nº USP:		
Turma/Horário:	Curso:		
Nota 1: Duração da prova: 75 minutos. Nota 2: Perguntas durante a prova são proibidas. Nota 3: É proibido o uso de calculadoras/computadores.	Nota 4: A prova pode ser feita inteiramente a lápis/lapiseira. Nota 5: Os versos das folhas podem ser utilizados para a resolução. Nota 6: Havendo indicação adequada, pode-se continuar a resolução de uma questão em uma página de outra questão.		

Formulário

Diagonalização	Produto vetorial	Produto escalar	Retas	Planos
$Mv = \lambda v$	"Regra da mão direita"	$\vec{u} \cdot \vec{v} = \langle \vec{u}, \vec{v} \rangle = \vec{u} \vec{v} \cos \theta$	$X = A + \lambda \vec{u}$	$X = A + \lambda \vec{u} + \mu \vec{v}$
$\det\left(M - \lambda I\right) = 0$	$\vec{u} \wedge \vec{v} = \det \begin{pmatrix} \hat{i} & \hat{j} & \hat{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{pmatrix}$	$\vec{u}\cdot\vec{v}=\langle\vec{u},\vec{v}\rangle=\sum_{i=1}^3u_iv_i$	$\begin{cases} x = x_0 + \lambda u_1 \\ y = y_0 + \lambda u_2 \\ z = z_0 + \lambda u_3 \end{cases}$	$\begin{cases} x = x_0 + \lambda u_1 + \mu v_1 \\ y = y_0 + \lambda u_2 + \mu v_2 \\ z = z_0 + \lambda u_3 + \mu v_3 \end{cases}$
$S^{-1}MS = \Lambda$	$\ \vec{u} \wedge \vec{v}\ = \ \vec{u}\ \ \vec{v}\ \sin \theta$			ax + by + cz + d = 0

1) [3,5 pontos] Determinar r, onde r é uma reta que dista $\sqrt{14}$ da reta $s: X = (1, -4, 9) + \lambda(1, 5, -4), \lambda \in \mathbb{R}$. Ambas retas pertencem ao plano $\pi: x - y - z + 4 = 0$.

1) Como a reta r é paralela à reta s, sua equação pode ser escrita como

$$r: X = A + \lambda(1, 5, -4), \quad \lambda \in \mathbb{R}$$

e A um ponto qualquer de r. Considere, agora, um vetor $\vec{u} := (u_1, u_2, u_3)$ que seja paralelo ao plano π e ortogonal à reta s (e, portanto, ortogonal também à reta r). De $\vec{u} \cdot (1, 5, -4) = 0$, tem-se $u_1 + 5u_2 - 4u_3 = 0$, donde $u_1 = -5u_2 + 4u_3$ e, portanto,

$$\vec{u} = (-5u_2 + 4u_3, u_2, u_3), \quad u_2, u_3 \in \mathbb{R}.$$

Por outro lado, da representação paramétrica do plano π ,

$$\begin{cases} x = -4 + \lambda + \mu \\ y = \lambda \\ z = \mu \end{cases},$$

tem-se $\pi: X = (-4,0,0) + \lambda(1,1,0) + \mu(1,0,1), \ \lambda, \mu \in \mathbb{R}$. Como $\vec{u} \parallel \pi$, devem existir $\alpha, \beta \in \mathbb{R}$ tais que $\alpha(1,1,0) + \beta(1,0,1) = \vec{u}$, ou

$$\begin{cases} \alpha + \beta &= -5u_2 + 4u_3 \\ \alpha &= u_2 \\ \beta &= u_3 \end{cases},$$

donde é imediato que $\vec{u} = \alpha(3, 1, 2), \alpha \in \mathbb{R}$.

Considere um ponto de s, P(1,-4,9) (que pode ser obtido tomando-se $\lambda=0$ na equação apresentada para s no enunciado). Existe um $\gamma\in\mathbb{R}$ tal que o ponto $Q=P+\gamma(3,1,2)$ pertence à reta r; ademais, a distância $\|\overrightarrow{QP}\|=|\gamma|\sqrt{3^2+1^2+2^2}$ deve ser $\sqrt{14}$, donde $\gamma=+1$ ou $\gamma=-1$ e, por conseguinte, Q(4,-3,11) ou Q(-2,-5,7). Em suma,

$$r: X = (4, -3, 11) + \lambda(1, 5, -4)$$
 ou $r: X = (-2, -5, 7) + \lambda(1, 5, -4), \lambda \in \mathbb{R}$.

2) [2,0 pontos] Determinar a fórmula geral para $a_n=-a_{n-1}+4a_{n-2}+4a_{n-3}$, sendo que $a_2=1$ e $a_1=a_0=0$.

1

4) A relação de recorrência acima para a_n, a_{n-1} e a_{n-2} pode ser representada por

$$u_n := \begin{pmatrix} a_n \\ a_{n-1} \\ a_{n-2} \end{pmatrix} = \overbrace{\begin{pmatrix} -1 & 4 & 4 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}}^{M} \begin{pmatrix} a_{n-1} \\ a_{n-2} \\ a_{n-3} \end{pmatrix} = Mu_{n-1}, \quad n \subset \mathbb{Z}, \text{ com } u_2 = \begin{pmatrix} a_2 \\ a_1 \\ a_0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}.$$

Como $u_n = Mu_{n-1} = M^2u_{n-2} = \cdots = M^{n-2}u_2$, deve-se obter M^{n-2} , sendo conveniente encontrar a forma diagonal de M. Os autovalores de M são determinados pela imposição de soluções não-triviais (autovetores) da equação $Mv = \lambda v$, onde v é um autovetor. Tal condição conduz a

$$0 = \det(M - \lambda I) = \det\begin{pmatrix} -1 - \lambda & 4 & 4 \\ 1 & 0 - \lambda & 0 \\ 0 & 1 & 0 - \lambda \end{pmatrix} = (1 + \lambda)(2 + \lambda)(2 - \lambda),$$

donde se tem os autovalores $\lambda_1 = 2$, $\lambda_2 = -1$ e $\lambda_3 = -2$. O autovetor $v_1 = \begin{pmatrix} \xi_1 & \eta_1 & \mu_1 \end{pmatrix}^T$ associado ao autovalor $\lambda_1 = 2$ satisfaz

$$0 = (M - \lambda_1 I) v_1 = \begin{pmatrix} -1 - (2) & 4 & 4 \\ 1 & 0 - (2) & 0 \\ 0 & 1 & 0 - (2) \end{pmatrix} \begin{pmatrix} \xi_1 \\ \eta_1 \\ \mu_1 \end{pmatrix} \Rightarrow \begin{cases} \xi_1 = 2\eta_1 \\ \eta_1 = 2\mu_1 \end{cases},$$

donde se tem $v_1 = \begin{pmatrix} 4 \\ 2 \\ 1 \end{pmatrix}$ com a escolha $\mu_1 = 1$.

O autovetor $v_2 = \begin{pmatrix} \xi_2 & \eta_2 & \mu_2 \end{pmatrix}^T$ associado ao autovalor $\lambda_2 = -1$ satisfaz

$$0 = (M - \lambda_2 I) v_2 = \begin{pmatrix} -1 - (-1) & 4 & 4 \\ 1 & 0 - (-1) & 0 \\ 0 & 1 & 0 - (-1) \end{pmatrix} \begin{pmatrix} \xi_2 \\ \eta_2 \\ \mu_2 \end{pmatrix} \Rightarrow \begin{cases} \xi_2 = -\eta_2 \\ \eta_2 = -\mu_2 \end{cases},$$

donde se tem $v_2 = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$ com a escolha $\mu_2 = 1$.

O autovetor $v_3 = \begin{pmatrix} \xi_3 & \eta_3 & \mu_3 \end{pmatrix}^T$ associado ao autovalor $\lambda_3 = -2$ satisfaz

$$0 = (M - \lambda_3 I) v_3 = \begin{pmatrix} -1 - (-2) & 4 & 4 \\ 1 & 0 - (-2) & 0 \\ 0 & 1 & 0 - (-2) \end{pmatrix} \begin{pmatrix} \xi_3 \\ \eta_3 \\ \mu_3 \end{pmatrix} \Rightarrow \begin{cases} \xi_3 = -2\eta_3 \\ \eta_2 = -2\mu_3 \end{cases},$$

donde se tem $v_3 = \begin{pmatrix} 4 \\ -2 \end{pmatrix}$ com a escolha $\mu_3 = 1$.

Os autovetores permitem identificar a matriz de diagonalização

$$S = \begin{pmatrix} 4 & 1 & 4 \\ 2 & -1 & -2 \\ 1 & 1 & 1 \end{pmatrix} \text{ e sua inversa } S^{-1} = \frac{1}{12} \begin{pmatrix} 1 & 3 & 2 \\ -4 & 0 & 16 \\ 3 & -3 & -6 \end{pmatrix},$$

$$\begin{pmatrix}
4 & 1 & 4 & 1 & 0 & 0 \\
2 & -1 & -2 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 0 & 1
\end{pmatrix}
\rightarrow
\begin{pmatrix}
4 & 1 & 4 & 1 & 0 & 0 \\
0 & -3/2 & -4 & -1/2 & 1 & 0 \\
0 & 3/4 & 0 & -1/4 & 0 & 1
\end{pmatrix}
\rightarrow
\begin{pmatrix}
4 & 0 & 4/3 & 2/3 & 2/3 & 0 \\
0 & -3/2 & -4 & -1/2 & 1 & 0 \\
0 & 0 & -2 & -1/2 & 1/2 & 1
\end{pmatrix}
\rightarrow
\begin{pmatrix}
4 & 0 & 0 & 1/3 & 1 & 2/3 \\
0 & -3/2 & 0 & 1/2 & 0 & -2 \\
0 & 0 & -2 & -1/2 & 1/2 & 1
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 0 & 0 & 1/12 & 1/4 & 1/6 \\
0 & 1 & 0 & -1/3 & 0 & 4/3 \\
0 & 0 & 1 & 1/4 & -1/4 & -1/2
\end{pmatrix}.$$

Seja $\Lambda=\begin{pmatrix}2&0&0\\0&-1&0\\0&0&-2\end{pmatrix}$ a matriz diagonal dos autovalores. Como $\Lambda=S^{-1}MS$, tem-se $M=S\Lambda S^{-1}$,

donde

$$M^{n-2} = (S\Lambda S^{-1})(S\Lambda S^{-1})\cdots(S\Lambda S^{-1}) = S\Lambda^{n-2}S^{-1},$$

que leva a

$$u_{n} = \begin{pmatrix} a_{n} \\ a_{n-1} \\ a_{n-2} \end{pmatrix} = S\Lambda^{n-2}S^{-1}u_{2} = \begin{pmatrix} 4 & 1 & 4 \\ 2 & -1 & -2 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -2 \end{pmatrix}^{n-2} \begin{bmatrix} \frac{1}{12} \begin{pmatrix} 1 & 3 & 2 \\ -4 & 0 & 16 \\ 3 & -3 & -6 \end{pmatrix} \end{bmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
$$= \frac{1}{12} \begin{pmatrix} 2^{n} - 4(-1)^{n} + 3(-2)^{n} \\ 2^{n-1} - 4(-1)^{n-1} + 3(-2)^{n-1} \\ 2^{n-2} - 4(-1)^{n-2} + 3(-2)^{n-2} \end{pmatrix}.$$

Logo,

$$a_n = \frac{1}{12} [2^n - 4(-1)^n + 3(-2)^n], \quad n \in \{0, 1, 2, \dots\} \subset \mathbb{Z}.$$