約数は12個で、小さい方から7番目は12

hiragn

2024年12月11日

「算数にチャレンジ!!」第 1319 回の問題を解いた*1。

次の条件をみたす正の整数をすべて求めよ。

- 12 個の約数をもつ
- 約数の1つは12で、それは小さい方から7番目

http://www.sansu.org/used-html/index1319.html

mathematica で解いたあと、手計算で解く方法を考えた。

1. mathematica で解く

整数 n の約数を小さい方から順に $d_1,\,d_2,\,\cdots,\,d_{12}$ とおく。 $d_7=12$ から n の上限がわかる。

$$n = d_6 d_7 \le 11 \times 12 = 132$$

あとは適当に抽出条件を書くと解ける。条件をみたす整数は4個あった。

```
In[]:= Clear["Global'*"];
RepeatedTiming[
cond[n_] := Module[{divs = Divisors@n},
Length@divs == 12 && divs[[7]] == 12];
ans = Select[Range[11*12], cond]]

Out[]= {0.000312586, {84, 96, 108, 132}}
```

^{*1} この問題文は原題を適当に書き換えたもの。

2. 手計算で解く

「12 個」の条件からn の形を限定できる。

 $12=2\times 6=3\times 4=2\times 2\times 3$ より $p,\,q,\,r$ を相異なる素数として n は次のいずれかの形をしている。

$$n = p^{11}, pq^5, p^2q^3, pqr^2$$
(1)

n が 12 の倍数であることと 11×12 以下であることを考えると次の手順で解ける。

- 1. n = 12m $(1 \le m \le 11)$ を素因数分解して①の形のものを抽出する(条件 1)
- 2. 抽出された n の約数を求めて小さい方から 7 番目が 12 かどうか調べる(条件 2)

条件1をみたす数は6個。これらの約数を求めるのは現実的な計算量でしょう。

\overline{m}	素因数分解	条件 1	n = 12m	条件 2
1	$2^2 \times 3$			
2	$2^3 \times 3$			
3	$2^2 \times 3^2$			
4	$2^4 \times 3$			
5	$2^2\times 3\times 5$	\checkmark	60	
6	$2^3 \times 3^2$	\checkmark	72	
7	$2^2\times 3\times 7$	\checkmark	84	\checkmark
8	$2^5 \times 3$	\checkmark	96	\checkmark
9	$2^2 \times 3^3$	\checkmark	108	\checkmark
10	$2^3\times 3\times 5$			
11	$2^2 \times 3 \times 11$	✓	132	✓