Tutorial Solution - 5

Solution 1: Here, we can see that C, D and E have the terms which are there in U. Therefore, C, D and E are the subsets of U.

Solution 2: Answer: d

Explanation: Set = $\{0\}$ non-empty and finite set.

Solution 3: Answer: c

Explanation: Empty set is a subset of every set.

Solution 4: The power set has 2^n elements. For n = 11, size of power set is 2048.

Solution 5: A powerset of a set is the set of all subsets of that set. For example, the power set of $\{w, x, y\}$ is $\{w\}$, $\{x\}$, $\{y\}$, $\{w, x\}$, $\{w, y\}$, $\{x, y\}$, $\{w, x, y\}$, and $\{\}$ as given by the question stem. The cardinality of a powerset (the number of subsets of the powerset) is calculated by 2^N , where N is the number of elements in the set. Since $\{w, x, y\}$ contains 3 elements, the cardinality of the powerset of that set contains 2^3 subsets.

The powerset of the set $\{w, x, y, z\}$ contains 2^4 subsets. The powerset of the set $\{x, y, z\}$ contains 2^3 subsets; these 8 subsets don't have w. So the number of subsets of the set $\{w, x, y, z\}$ that contain w is the total number of subsets minus number of subsets that don't contain w, 16 - 8 = 8.

Therefore, the answer is 8.

Solution 6: Let us assume set $S = \{1, 2\}$. Therefore $P(S) = \{ \varphi, \{1\}, \{2\}, \{1, 2\} \}$ Option (a) is false as P(S) has $2^2 = 4$ elements and P(P(S)) has $2^4 = 16$ elements and they are not equivalent.

Option (b) is true as intersection of S and P(S) is empty set.

Option (c) is false as intersection of S and P(S) is empty set.

Option (d) is false as S is an element of P(S).

Solution 7: (a) Subset: $\forall x (x \in A \rightarrow x \in B)$

- (b) Equal set: $\forall x (x \in A \leftrightarrow x \in B)$
- (c) Proper subset: $\exists x (x \notin A \land x \in B)$

Solution 8: (a) $\{1, -1\}$

- **(b)** {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}
- (c) {0, 1, 4, 9, 16, 25, 36, 49, 64, 81}
- (d) \emptyset ($\sqrt{2}$ is not an integer)

Solution 9: (a) $\{x \mid x \text{ is a multiple of 3 and } 0 \le x \le 12\}$

- (b) $\{x \mid x \in Z \text{ and } -3 \le x \le 3\}$
- (c) $\{x \mid x \text{ is an english alphabet and lies between } m \text{ and } p, \text{ including } m \text{ and } p\}$

Solution 10: (a) Since 2 is an integer greater than 1, 2 is an element of this set.

- (b) Since 2 is not a perfect square ($1^2 < 2$, but $n^2 > 2$ or n > 1), 2 is not an element of this set.
- (c) This set has two elements, and as we can clearly see, one of those elements is 2.
- (d) This set has two elements, and as we can clearly see, neither of those elements is 2. Both of the elements of this set are sets; 2 is a number, not a set.
- (e) This set has two elements, and as we can clearly see, neither of those elements is 2. Both of the elements of this set are sets; 2 is a number, not a set.
- (f) This set has just one element, namely the set $\{\{2\}\}$. So, 2 is not an element of this set. Note that $\{2\}$ is not an element either, since $\{2\} \neq \{\{2\}\}$.

Solution 11: Let A = set of persons who got medals in dance. B = set of persons who got medals in dramatics. C = set of persons who got medals in music.

Given.

$$n(A) = 36$$

$$n(B) = 12$$

$$n(C) = 18$$

$$n(A \cup B \cup C) = 45$$

$$n(A \cap B \cap C) = 4$$

We know that number of elements belonging to exactly two of the three sets A, B, C

$$= n(A \cap B) + n(B \cap C) + n(A \cap C) - 3n(A \cap B \cap C)$$

$$= n(A \cap B) + n(B \cap C) + n(A \cap C) - 3 \times 4(i)$$

$$n(A \cup B \cup C) = n(A) + n(B) + n(C) - n(A \cap B) - n(B \cap C) - n(A \cap C) + n(A \cap B \cap C)$$

Therefore, $n(A \cap B) + n(B \cap C) + n(A \cap C) = n(A) + n(B) + n(C) + n(A \cap B \cap C) - n(A \cup B \cup C)$ From (i) required number

$$= n(A) + n(B) + n(C) + n(A \cap B \cap C) - n(A \cup B \cup C) - 12$$

$$= 36 + 12 + 18 + 4 - 45 - 12$$

$$= 70 - 57$$

= 13

Solution 12: Let A be the set of students who play chess B be the set of students who play scrabble

C be the set of students who play carrom Therefore, We are given $n(A \cup B \cup C) = 40$, n(A) = 18, n(B) = 20 n(C) = 27,

$$n(A \cap B) = 7, n(C \cap B) = 12$$

$$n(A \cap B \cap C) = 4$$

We have,

$$n(A \cup B \cup C) = n(A) + n(B) + n(C) - n(A \cap B) - n(B \cap C) - n(C \cap A) + n(A \cap B \cap C)$$

Therefore,
$$40 = 18 + 20 + 27 - 7 - 12 - n(C \cap A) + 4$$

$$40 = 69 - 19 - n(C \cap A)$$

$$40 = 50 - n(C \cap A) n(C \cap A) = 50 - 40 n(C \cap A) = 10$$

Therefore, Number of students who play chess and carrom are 10. Also, number of students who play chess, carrom and not scrabble.

$$= n(C \cap A) - n(A \cap B \cap C)$$

$$= 10 - 4$$

Solution 13

Let A be the set of odd integers between 1 and 100.

$$A=\{1,3,5...\}$$

$$n(A) = 50$$

Let B be the set of integers between 1 and 100 that are squares of an integer.

$$B = \{1,4,9,16,25,36,49,64,81,100\}.$$

$$n(B)=10$$

$$n(A \cup B)=n(A)+n(B)-n(A\cap B)$$

$$=50+10-5$$