Amendments to the Claims:

This listing of claims will replace all prior versions, and listings of claims in the application:

Listing of Claims:

1	l.	(Previously presented) A method for reverse transcribing an RNA, that
2	comprises:	
3	(a)	providing a reverse transcription reaction mixture comprising said RNA, a
4	primer, a divalent ca	tion, and a mutant thermoactive DNA polymerase, wherein said mutant
5	DNA polymerase is	characterized in that
6		i) in its native form said DNA polymerase comprises an amino acid
7	sequence that is SEC	Q ID NO:1;
8		ii) the amino acid at position 2 of said amino acid sequence is S or A and
9	the amino acid at po	sition 5 of said amino acid sequence is L or I; and
10		iii) the amino acid at position 4 of said amino acid sequence is mutated in
11	comparison to said i	native sequence to an amino acid other than E, A, G, or P; and
12	(b)	treating said reaction mixture at a temperature sufficient for said mutant
13	DNA polymerase to	initiate synthesis of an extension product of said primer to provide a cDNA
14	molecule compleme	entary to said RNA.
1	2.	(Previously presented) The method of Claim 1, wherein said amino acid
2	sequence is SEQ ID	NO:2, the amino acid at position 3 of said amino acid sequence is Q or G,
3	and the amino acid	at position 6 of said amino acid sequence is S or A.
1	3.	(Original) The method of Claim 1, wherein said amino acid sequence is
2	SEQ ID NO:3.	

1	4.	(Previously presented) The method of Claim 1, wherein said amino acid
2	sequence is SEQ II	NO:4, and the amino acid at position 3 is Q or G.
1	5-7	(Cancelled)
1	8.	(Original) The method of Claim 1, wherein said mutant DNA polymerase
2	is thermostable.	
1	9.	(Original) The method of Claim 1, wherein said DNA polymerase is a
2	mutant form of a T	hermus species DNA polymerase.
1	10.	(Original) The method of Claim 1, wherein said DNA polymerase is a
2	mutant form of The	ermus thermophilus DNA polymerase or Thermus aquaticus DNA
3	polymerase.	
1	11.	(Original) The method of Claim 1, wherein said temperature of said
2	reaction mixture in	step (b) is between 40°C and 80°C.
1	12.	(Original) The method of Claim 1, wherein said amino acid at position 4
2	of said amino acid	sequence is mutated in comparison to said native sequence to an amino acid
3	other than E, A, G,	P, Q, or D.
1	13.	(Previously presented) A method for reverse transcribing an RNA, that
2	comprises:	
3	(a)	providing a reverse transcription reaction mixture comprising said RNA, a
4	primer, Mg ⁺² , and	a mutant thermoactive DNA polymerase, wherein said mutant DNA
5	polymerase is char	acterized in that
6	i) i	n its native form said DNA polymerase comprises an amino acid sequence that
7	is SEQ ID NO:1;	

1

2

3

polymerase.

22.

ii) the amino acid at position 2 of said amino acid sequence is S or A and the 8 9 amino acid at position 5 of said amino acid sequence is L or I; and 10 iii) the amino acid at position 4 of said amino acid sequence is mutated in 11 comparison to said native sequence to an amino acid other than E, A, G, or P; and treating said reaction mixture at a temperature sufficient for said mutant 12 (b) 13 DNA polymerase to initiate synthesis of an extension product of said primer to provide a cDNA 14 molecule complementary to said RNA. 1 14. (Previously presented) The method of Claim 13, wherein said amino acid 2 sequence is SEO ID NO:2, the amino acid at position 3 of said amino acid sequence is Q or G, 3 and the amino acid at position 6 of said amino acid sequence is S or A. (Original) The method of Claim 13, wherein said amino acid sequence is 1 15. 2 SEQ ID NO:3. 1 16. (Previously presented) The method of Claim 13, wherein said amino acid 2 sequence is SEQ ID NO:4, and the amino acid at position 3 is Q or G. 1 17-19. (Cancelled) 1 20. (Original) The method of Claim 13, wherein said mutant DNA 2 polymerase is thermostable. 1 21. (Original) The method of Claim 13, wherein said DNA polymerase is a 2 mutant form of a Thermus species DNA polymerase.

Page 5 of 24

mutant form of Thermus thermophilus DNA polymerase or Thermus aquaticus DNA

(Original) The method of Claim 13, wherein said DNA polymerase is a

1	23.	(Original) The method of Claim 13, wherein said temperature of said
2	reaction mixture in s	tep (b) is between 40°C and 80°C.
1	24.	(Original) The method of Claim 13, wherein said amino acid at position 4
2	of said amino acid se	equence is mutated in comparison to said native sequence to an amino acid
3	other than E, A, G, P	P, Q, or D.
1	25.	(Original) A method for amplifying an RNA, that comprise:
2	(a)	reverse transcribing said RNA according to a method of Claim 1 to
3	provide a cDNA;	
4	(b)	amplifying said cDNA.
1	26.	(Original) A method of Claim 25, wherein in step (b) said amplifying is
2	carried out using a polymerase chain reaction.	
1	27.	(Original) A method for amplifying an RNA, that comprise:
2	(a)	reverse transcribing said RNA according to a method of Claim 13 to
3	provide a cDNA;	
4	(b)	amplifying said cDNA.
1	28.	(Original) A method of Claim 27, wherein in step (b) said amplifying is
2	carried out using a p	polymerase chain reaction.
1	29.	(Previously presented) A method for amplifying an RNA using a single-
2	enzyme reverse tran	scription/amplification reaction, that comprises:
3	(a)	providing an amplification reaction mixture comprising said RNA, a pair
4	of primers, a divale	nt cation, and a mutant thermostable DNA polymerase, wherein said mutant
5,	DNA polymerase is	s characterized in that

6	i) in its native form said DNA polymerase comprises an amino acid sequence that	
7	is SEQ ID NO:1;	
8	ii) the amino acid at position 2 of said amino acid sequence is S or A and the	
9	amino acid at position 5 of said amino acid sequence is L or I; and	
10	iii) the amino acid at position 4 of said amino acid sequence is mutated in	
11	comparison to said native sequence to an amino acid other than E, A, G, or P; and	
12	(b) treating said reaction mixture at a temperature sufficient for said mutant	
13	DNA polymerase to initiate synthesis of an extension product of said primer to provide a cDNA	
14	molecule complementary to said RNA;	
15	(c) treating said reaction mixture at an appropriate temperature for said	
16	mutant DNA polymerase to initiate synthesis of an extension product of said second primer to	
17	provide a double-stranded cDNA molecule; and	
18	(d) amplifying said double-stranded cDNA molecule of step (c) by a	
19	polymerase chain reaction.	
1	30. (Previously presented) The method of Claim 29, wherein said amino acid	
2	sequence is SEQ ID NO:2, the amino acid at position 3 of said amino acid sequence is Q or G,	
3	and the amino acid at position 6 of said amino acid sequence is S or A.	
1	31. (Original) The method of Claim 29, wherein said amino acid sequence is	
2	SEQ ID NO:3.	
1	32. (Previously presented) The method of Claim 29, wherein said amino acid	
2	sequence is SEQ ID NO:4, and the amino acid at position 3 is Q or G.	
1	33-35. (Cancelled)	

Appl. No. 09/823,649 Amdt. dated [insert date] Reply to Office Action of October 22, 2003

I	30. (Original) The method of Claim 29, wherein said mutant DNA	
2	polymerase is thermostable.	
1	37. (Original) The method of Claim 29, wherein said DNA polymerase is a	
2	mutant form of a <i>Thermus</i> species DNA polymerase.	
1	38. (Original) The method of Claim 29, wherein said DNA polymerase is a	
2	mutant form of Thermus thermophilus DNA polymerase or Thermus aquaticus DNA	
3	polymerase.	
1	39. (Original) The method of Claim 29, wherein said temperature of said	
2	reaction mixture in step(b) is between 40°C and 80°C.	
1	40. (Original) The method of Claim 29, wherein said amino acid at position 4	
2	of said amino acid sequence is mutated in comparison to said native sequence to an amino acid	
3	other than E, A, G, P, Q, or D.	
1	41. (Previously presented) A method for amplifying an RNA using a single-	
2	enzyme reverse transcription/amplification reaction, that comprises:	
3	(a) providing an amplification reaction mixture comprising said RNA, a pair	
4	of primers, Mg ⁺² , and a mutant thermostable DNA polymerase, wherein said mutant DNA	
5	polymerase is characterized in that	
6	i) in its native form said DNA polymerase comprises an amino acid	
7	sequence that is SEQ ID NO: 1;	
8	ii) the amino acid at position 2 of said amino acid sequence is S or A and	
9	the amino acid at position 5 of said amino acid sequence is L or I; and	
10	iii) the amino acid at position 4 of said amino acid sequence is mutated in	
11	comparison to said native sequence to an amino acid other than E, A, G, or P; and	

3

polymerase.

12 (b) treating said reaction mixture at a temperature sufficient for said mutant 13 DNA polymerase to initiate synthesis of an extension product of said primer to provide a cDNA 14 molecule complementary to said RNA; treating said reaction mixture at an appropriate temperature for said 15 (c) mutant DNA polymerase to initiate synthesis of an extension product of said second primer to 16 17 provide a double-stranded cDNA molecule; and 18 amplifying said double-stranded cDNA molecule of step (c) by a (d) 19 polymerase chain reaction. 42. (Previously presented) The method of Claim 41, wherein said amino acid 1 sequence is SEQ ID NO:2, the amino acid at position 3 of said amino acid sequence is Q or G, 2 3 and the amino acid at position 6 of said amino acid sequence is S or A. 43. (Original) The method of Claim 41, wherein said amino acid sequence is 1 2 SEQ ID NO:3. 1 44. (Previously presented) The method of Claim 41, wherein said amino acid sequence is SEQ ID NO:4, and the amino acid at position 3 is Q or G. 2 - 1 45-47. (Cancelled) 1 48. (Original) The method of Claim 41, wherein said mutant DNA 2 polymerase is thermostable. (Original) The method of Claim 41, wherein said DNA polymerase is a 1 49. 2 mutant form of a Thermus species DNA polymerase. 1 50. (Original) The method of Claim 41, wherein said DNA polymerase is a mutant form of Thermus thermophilus DNA polymerase or Thermus aquaticus DNA 2

Appl. No. 09/823,649 Amdt. dated [insert date] Reply to Office Action of October 22, 2003

1	51.	(Original) The method of Claim 41, wherein said temperature of said	
2	reaction mixture in st	ep (b) is between 40°C and 80°C.	
1	52.	(Original) The method of Claim 41, wherein said amino acid at position 4	
2	of said amino acid se	quence is mutated in comparison to said native sequence to an amino acid	
3	other than E, A, G, P	, Q or D.	
1	53.	(Previously presented) A method for reverse transcribing an RNA, that	
2	comprises:		
3	(a)	providing a reverse transcription reaction mixture comprising said RNA, a	
4	primer, a divalent cation, and a thermoactive DNA polymerase, wherein said DNA polymerase i		
5	characterized in that		
6		i) in is native form said DNA polymerase comprises an amino acid	
7	sequence that is SEQ ID NO:1;		
8		ii) the amino acid at position 2 of said amino acid sequence is S or A and	
9	the amino acid at pos	sition 5 of said amino acid sequence is L or I; and	
10		iii) the amino acid at position 4 of said amino acid sequence is other than	
11	E, A, G, or P; and		
12	(b)	treating said reaction mixture at a temperature sufficient for said DNA	
13	polymerase to initiat	e synthesis of an extension product of said primer to provide a cDNA	
14	molecule compleme	ntary to said RNA.	
1	54.	(Previously presented) The method of Claim 53, wherein said amino acid	
2	sequence is SEQ ID	NO:5 and the amino acid at position 7 of said amino acid sequence is V or I	
1	55.	(Previously presented) The method of Claim 53, wherein said amino acid	
2	sequence is SEQ ID	NO:6.	

1	56.	(Previously presented) The method of Claim 53, wherein said amino acid	
2	sequence is SEQ ID	NO:7 and the amino acid at position 8 of said amino acid sequence is S or T.	
1	57.	(Previously presented) A method for reverse transcribing an RNA, that	
2	comprises:		
3	(a)	providing a reverse transcription reaction mixture comprising said RNA, a	
4	primer, Mg ⁺² , and a	thermoactive DNA polymerase, wherein said DNA polymerase is	
5	characterized in that		
6		i) in its native form said DNA polymerase comprises an amino acid	
7	sequence that is SEQ ID NO:1;		
8		ii) the amino acid at position 2 of said amino acid sequence is S or A and	
9	the amino acid at po	sition 5 of said amino acid sequence is L or I; and	
10		iii) the amino acid at position 4 of said amino acid sequence is other than	
11	E, A, G, or P; and		
12	(b)	treating said reaction mixture at a temperature sufficient for said DNA	
13	polymerase to initia	te synthesis of an extension product of said primer to provide a cDNA	
14	molecule complementary to said RNA.		
1	58.	(Previously presented) The method of Claim 57, wherein said amino acid	
2	sequence is SEQ ID	NO:5 and the amino acid at position 7 of said amino acid sequence is V or I	
1	59.	(Previously presented) The method of Claim 57, wherein said amino acid	
2	sequence is SEQ ID	NO:6.	
1	60.	(Previously presented) The method of Claim 57, wherein said amino acid	
2	sequence is SEO ID	NO:7 and the amino acid at position 8 of said amino acid sequence is S or T	

Appl. No. 09/823,649 Amdt. dated [insert date] Reply to Office Action of October 22, 2003

1	61.	(Previously presented) A method for amplifying an RNA using a single-
2	enzyme reverse trans	scription/amplification reaction, that comprises:
3	(a)	providing an amplification reaction mixture comprising said RNA, a pair
4	of primers, a divalen	t cation, and a thermostable DNA polymerase, wherein said DNA
5	polymerase is charac	eterized in that
6		i) in its native form said DNA polymerase comprises an amino acid
7	sequence that is SEC) ID NO:1;
8		ii) the amino acid at position 2 of said amino acid sequence is S or A and
9	the amino acid at position 5 of said amino acid sequence is L or I; and	
10		iii) the amino acid at position 4 of said amino acid sequence is other than
11	E, A, G, or P; and	
12	(b)	treating said reaction mixture at a temperature sufficient for said DNA
13	polymerase to initiat	te synthesis of an extension product of said primer to provide a cDNA
14	molecule complementary to said RNA;	
15	(c)	treating said reaction mixture at an appropriate temperature for said DNA
16	polymerase to initiat	te synthesis of an extension product of said second primer to provide a
17	double-stranded cDl	NA molecule; and
18	(d)	amplifying said double-stranded cDNA molecule of step (c) by a
19	polymerase chain re	action.
1	62.	(Previously presented) The method of Claim 61, wherein said amino acid
2	sequence is SEQ ID	NO:5 and the amino acid at position 7 of said amino acid sequence is V or

1	63.	(Previously presented) The method of Claim 61, wherein said amino acid
2	sequence is SEQ ID 1	NO:6.
1	64.	(Previously presented) The method of Claim 61, wherein said amino acid
2	sequence is SEQ ID 1	NO:7 and the amino acid at position 8 of said amino acid sequence is S or T
1	65.	(Previously presented) A method for amplifying an RNA using a single-
2	enzyme reverse trans	cription/amplification reaction, that comprises:
3	(a)	providing an amplification reaction mixture comprising said RNA, a pair
4	of primers, Mg+2, and a thermostable DNA polymerase, wherein said DNA polymerase is	
5	characterized in that	
6		i) in its native form said DNA polymerase comprises an amino acid
7	sequence that is SEQ	ID NO:1;
8		ii) the amino acid at position 2 of said amino acid sequence is S or A and
9	the amino acid at pos	sition 5 of said amino acid sequence is L or I; and
10		iii) the amino acid at position 4 of said amino acid sequence is other than
11	E, A, G, or P; and	
12	(b)	treating said reaction mixture at a temperature sufficient for said DNA
13	polymerase to initiat	e synthesis of an extension product of said primer to provide a cDNA
14	molecule complemen	ntary to said RNA;
15	(c)	treating said reaction mixture at an appropriate temperature for said DNA
16	polymerase to initiat	e synthesis of an extension product of said second primer to provide a
17	double-stranded cDN	NA molecule; and
18	(d)	amplifying said double-stranded cDNA molecule of step (c) by a
19	polymerase chain re	action.

- 1 66. (Previously presented) The method of Claim 65, wherein said amino acid sequence is SEQ ID NO:5 and the amino acid at position 7 of said amino acid sequence is V or I.
- 1 67. (Previously presented) The method of Claim 65, wherein said amino acid sequence is SEQ ID NO:6.
- 1 68. (Previously presented) The method of Claim 65, wherein said amino acid 2 sequence is SEQ ID NO:7 and the amino acid at position 8 of said amino acid sequence is S or T.