# Formale Sprachen und Automaten Prof. Dr. Uwe Nestmann - 08. Oktober 2021

# Schriftlicher Test

#### Studierendenidentifikation:

| NACHNAME       |                          |
|----------------|--------------------------|
| VORNAME        |                          |
| Matrikelnummer |                          |
| STUDIENGANG    | □ Informatik Bachelor, □ |

#### Aufgabenübersicht:

| AUFGABE | SEITE | Punkte | THEMENBEREICH                     |
|---------|-------|--------|-----------------------------------|
| 1       | 3     | 14     | MODELLE REGULÄRER SPRACHEN        |
| 2       | 4     | 15     | Untermengen-Konstruktion          |
| 3       | 5     | 22     | MINIMIERUNG EINES DFA             |
| 4       | 6     | 13     | CYK-ALGORITHMUS                   |
| 5       | 7     | 11     | Modelle Kontextfreier Sprachen I  |
| 6       | 8     | 5      | Modelle Kontextfreier Sprachen II |

Zwei Punkte in diesem Test entsprechen einem Portfoliopunkt.

#### **Korrektur:**

| AUFGABE   | 1  | 2  | 3  | 4  | 5  | 6 | $\sum$ |
|-----------|----|----|----|----|----|---|--------|
| PUNKTE    | 14 | 15 | 22 | 13 | 11 | 5 | 80     |
| ERREICHT  |    |    |    |    |    |   |        |
| Korrektor |    |    |    |    |    |   |        |
| EINSICHT  |    |    |    |    |    |   |        |

#### Aufgabe 1: Modelle Regulärer Sprachen

(14 Punkte)

Gegeben seien das Alphabet  $\Sigma \triangleq \{a, b\}$ , die reguläre Sprache  $A_1 \triangleq \{ xa^{m+2} \mid x \in \{ ab, b \}^* \land m \in \mathbb{N} \}$ , die reguläre Grammatik  $G_2 \triangleq (\{ S, T, U \}, \Sigma, P_2, S) \text{ und der NFA } M_3 \triangleq (\{ q_0, q_1, q_2 \}, \Sigma, \Delta_3, \{ q_0 \}, \{ q_2 \}) \text{ mit: }$ 



a. (5 Punkte) Gib einen DFA  $M_1$  mit  $L(M_1) = A_1$  an.

b. (4 Punkte) Gib eine Typ-3 Grammatik  $G_1$  mit  $\mathcal{L}(G_1) = A_1$  an.

- c. (3 Punkte)  $Gib L(G_2)$  an, ohne auf Automaten oder Grammatiken zu verweisen.
- d. (2 Punkte) Gib  $L(M_3)$  an, ohne auf Automaten oder Grammatiken zu verweisen.

#### Aufgabe 2: Untermengen-Konstruktion

(15 Punkte)

Gegeben sei der NFA  $M \triangleq (\{\ q_0,\ q_1,\ q_2,\ q_3,\ q_4,\ q_5\ \},\ \Sigma,\ \Delta,\ \{\ q_3,\ q_5\ \},\ \{\ q_1\ \})$  mit  $\Sigma \stackrel{\triangle}{=} \{ a, b \} \text{ und } \Delta$ :



a. (\*\*, 13 Punkte) Konstruiere nur mit Hilfe der Untermengen-Konstruktion den DFA  $M^\prime$ zum NFA M. Gib die bei der Untermengen-Konstruktion entstehende Tabelle sowie das Tupel des entstehenden Automaten M' an.

Hinweis: Es ist nicht nötig die Übergangsfunktion  $\delta'$  von M' (graphisch) anzugeben.

b. (\*\*\*, 2 Punkte) Gib L(M) an, ohne auf Automaten oder Grammatiken zu verweisen.

#### Aufgabe 3: Minimierung eines DFA

(22 Punkte)

Gegeben sei der DFA  $M \triangleq (Q, \Sigma, \delta, q_0, \{q_3\})$  mit  $Q \triangleq \{q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_7\}$ ,  $\Sigma \triangleq \{a, b\}$  und  $\delta$ :



- a. (\*\*, 1 Punkt) Gib an: Welche Zustände sind nicht erreichbar?
- b. (\*\*, 9 Punkte) *Gib an:* Fülle die folgende Tabelle entsprechend des Table-Filling-Algorithmus zum Minimieren von DFAs mit Kreuzen (x) und Kreisen (o) aus. *Hinweis: Bitte streiche zunächst alle Zeilen und Spalten für nicht erreichbare Zustände, falls es solche Zustände in M gibt. Die zweite Tabelle ist ein Ersatz für Verschreiber.*





c. **(\*\*, 4 Punkte)** Die Minimierung unterteilt *Q* in Äquivalenzklassen. *Gib* alle Äquivalenzklassen *an,* die sich aus der Tabelle ergeben.

Hinweis: Die Namen der Klassen in der Form  $[q_0]$  genügen hier nicht. Es müssen auch die zugehörigen Mengen, also so etwas wie  $[q_0] = \{\ldots\}$ , angegeben werden.

d. (\*\*, 5 Punkte) Gib den minimierten DFA M' an.

e. (\*\*\*, 3 Punkte)  $\mathit{Gib}\ \mathrm{L}(M)$  an, ohne auf Automaten oder Grammatiken zu verweisen.

## Aufgabe 4: CYK-Algorithmus

(13 Punkte)

Gegeben sei eine Menge Nicht-Terminale  $V \triangleq \{S, T, D, E, F, G\}$ , ein Alphabet  $\Sigma \triangleq \{a, b, c\}$  sowie zwei Grammatiken  $G_1 \triangleq (V, \Sigma, P_1, S)$  und  $G_2 \triangleq (V, \Sigma, P_2, S)$  mit:

a. (5 Punkte) Gib eine Grammatik  $G_3$  in CNF mit  $L(G_1) = L(G_3)$  an.

b. (8 Punkte) Berechne: Gegeben sei das Wort  $w \triangleq abcba$ . Löse mit dem CYK-Algorithmus das Wortproblem: $w \in L(G_2)$  oder  $w \notin L(G_2)$ .

| $CYK_w(i,j)$ | 1 | 2 | 3 | 4 | 5 |
|--------------|---|---|---|---|---|
| 1: a         |   |   |   |   |   |
| 2: b         |   |   |   |   |   |
| 3: c         |   |   |   |   |   |
| 4: b         |   |   |   |   |   |
| 5: a         |   |   |   |   |   |

## Aufgabe 5: Modelle Kontextfreier Sprachen I

(11 Punkte)

Gegeben seien das Alphabet  $\Sigma\triangleq\{\ a,\ b,\ c\ \}$  und die kontextfreie Sprache

$$A \triangleq \{ bxc^ncbb^m \mid n, m \in \mathbb{N} \land x \in \{ a, b \}^* \land (2 \cdot |bx|_a) = m - |bx|_b \}$$

a. ( 5,5 Punkte) Gib eine Typ-2 Grammatik G mit  $\mathcal{L}(G)=A$  an.

b. (5,5 Punkte) Gib einen PDA M mit  $L_{End}(M) = L_{Kel}(M) = A$  an.

#### Aufgabe 6: Modelle Kontextfreier Sprachen II

(5 Punkte)

Gegeben seien das Alphabet  $\Sigma \triangleq \{\ a,\ b,\ c\ \}$  und der PDA  $M \triangleq (\{\ q_0,\ q_1,\ q_2,\ q_3\ \},\ \Sigma,\ \{\ \square,\ ullet\ \},\ \square,\ \Delta,\ q_0,\ \{\ q_3\ \})$  mit  $\Delta$ :



a. (2 Punkte)  $\mathit{Gib}\ \mathrm{L}_{\mathrm{End}}(M)$  an, ohne auf Automaten oder Grammatiken zu verweisen.

b. (3 Punkte)  $Gib \ L_{Kel}(M)$  an, ohne auf Automaten oder Grammatiken zu verweisen.

| <i>Matrikelnummer:</i> <b>—</b> | Name:                       |
|---------------------------------|-----------------------------|
|                                 |                             |
|                                 |                             |
| Auf dieser Seite löse           | ich einen Teil der Aufgabe: |
| Teilaufgabe:                    | 8                           |

| Matrikelnummer: _    | Name:                             |  |
|----------------------|-----------------------------------|--|
|                      |                                   |  |
|                      |                                   |  |
| Auf dieser Seite lös | se ich einen Teil der Aufgabe — : |  |
|                      | se ich enten der Aufgabe          |  |
| Teilaufgabe:         |                                   |  |