Neuron Network Basis

Chun-Hsiang Chan

Undergraduate Program in Intelligent Computing and Big Data, Chung Yuan Christian University Master Program in Intelligent Computing and Big Data, Chung Yuan Christian University

Outline

- Model Formulation
- Single Neuron
- Hidden Layer
- Activation Function
- Linearity and Non-linearity
- Model Parameters
- Loss Function

 Imagine that you have a problem, such as a digit recognition, object detection, or numerical prediction.

 In machine learning and deep learning, we usually divide our input data into training and validation datasets for the training model.

- Prediction Tasks
 - Handwritten Recognition

Abnormal Chip Testing

Stock Prediction

• Handwritten Recognition: alphabet and number

- 1 indicates the element contains ink
- 0 indicates the element contains nothing

$$\begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \Rightarrow 7 \times 6 = 42 \text{ elements}$$

10+26 dimension for label recognition

$$\begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \begin{array}{c} a \\ b \\ c \\ 1 \\ 0 \\ \vdots \\ 0 \end{array} \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

Detect

Ground Truth

Abnormal Chip Testing

y: label
2 dimensions
Normal chip or Defect chip

1 indicates a defect chip 0 indicates a normal chip

$$\begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \Rightarrow dimensions = size(chips)$$

Detect Ground Truth

Single Neuron

Single Neuron

Single Neuron

 $y = \sigma(w_1x_1 + w_2x_2 + b)$ is a linear formula...

Minsky & Papert (1969) pricked the neural network balloon

Combine two opposite-facing threshold functions to make a ridge

Combine two perpendicular ridges to make a bump

Fully Connected Feedforward Network

Deep Neural Network (DNN)

DNN: multiple hidden layers

Hidden Layer – Layer

Layer l-1

$$a_1^{l-1}$$

$$a_2^{l-1}$$

$$a_3^{l-1}$$

•

 N_{l-1} nodes

Layer *l*

$$a_2^l$$

$$a_3^l$$

$$a_i^l$$

N_I nodes

A Neuron Output

$$a^l = \begin{bmatrix} \vdots \\ a_i^l \\ \vdots \end{bmatrix}$$

One layer → One Vector

18

Hidden Layer - Weights

Hidden Layer – Bias

Bias

Layer l-1

 N_{l-1} nodes

Layer *l*

$$N_l$$
 nodes

$$b_i^l$$
 Bias for neuron i at layer l

$$b^l = \begin{bmatrix} \vdots \\ b_i^l \\ \vdots \end{bmatrix}$$

Bias of each layer → One Vector

Hidden Layer – Activation Function

Layer l-1

Layer *l*

$$N_{l-1}$$
 nodes $1 N_l$ nodes

Bias

$$z_{i}^{l} = w_{i1}^{l} a_{1}^{l-1} + w_{i2}^{l} a_{2}^{l-1} + \dots + b_{i}^{l}$$

$$z_{i}^{l} = \sum_{j=1}^{N_{l-1}} w_{ij}^{l} a_{j}^{l-1} + b_{i}^{l}$$

$$z^{l} = \begin{bmatrix} \vdots \\ z_{i}^{l} \\ \vdots \end{bmatrix}$$

Activation function at each layer → One Vector

Hidden Layer - Overall

 $z_{1}^{l} = w_{11}^{l} a_{1}^{l-1} + w_{12}^{l} a_{2}^{l-1} + \dots + b_{1}^{l}$ \vdots $z_{i}^{l} = w_{i1}^{l} a_{1}^{l-1} + w_{i2}^{l} a_{2}^{l-1} + \dots + b_{i}^{l}$ $\begin{bmatrix} \vdots \\ z_{i}^{l} \\ \vdots \end{bmatrix} = \begin{bmatrix} w_{11}^{l} & w_{12}^{l} & \cdots \\ w_{21}^{l} & w_{22}^{l} & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix} \begin{bmatrix} \vdots \\ a_{i}^{l-1} \\ \vdots \end{bmatrix} + \begin{bmatrix} \vdots \\ b_{i}^{l} \\ \vdots \end{bmatrix}$ $z^{l} = W^{l} a^{l-1} + b^{l}$

Hidden Layer - Overall

Hidden Layer – Overall

Hidden Layer - Overall

Activation Function $\sigma(\cdot)$

Bounded function

	Activation Function	Equation	Example	1D Graph
d	Unit step (Heatviside)	$\phi(z) = \begin{cases} 0 & z < 0 \\ 0.5 & z = 0 \\ 1 & z > 0 \end{cases}$	Perceptron variant	
	Sign (Signum)	$\phi(z) = \begin{cases} -1 & z < 0 \\ 0 & z = 0 \\ 1 & z > 0 \end{cases}$	Perceptron variant	
	Linear	$\phi(z)=z$	Adaline, linear regression	
d	Piece-wise Linear	$\phi(z) = \begin{cases} 1 & z \ge \frac{1}{2} \\ z + \frac{1}{2} & -\frac{1}{2} < z < \frac{1}{2} \\ 0 & z \le -\frac{1}{2} \end{cases}$	Support vector machine	
	Logistic (sigmoid)	$\phi(z) = \frac{1}{1 + e^{-z}}$	Logistic regression, multi-layer NN	
	Hyperbolic Tangent	$\phi(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$	Multi-layer NN	

Bounded function

Activation Function $\sigma(\cdot)$

	Activation Function	Equation	Example	1D Graph
Boolean	Unit step (Heatviside)	$\phi(z) = \begin{cases} 0 & z < 0 \\ 0.5 & z = 0 \\ 1 & z > 0 \end{cases}$	Perceptron variant	
	Sign (Signum)	$\phi(z) = \begin{cases} -1 & z < 0 \\ 0 & z = 0 \\ 1 & z > 0 \end{cases}$	Perceptron variant	
	Linear	$\phi(z)=z$	Adaline, linear regression	
Linear	Piece-wise Linear	$\phi(z) = \begin{cases} 1 & z \ge \frac{1}{2} \\ z + \frac{1}{2} & -\frac{1}{2} < z < \frac{1}{2} \\ 0 & z \le -\frac{1}{2} \end{cases}$	Support vector machine	
Non-linear	Logistic (sigmoid)	$\phi(z) = \frac{1}{1 + e^{-z}}$	Logistic regression, multi-layer NN	
	Hyperbolic Tangent	$\phi(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$	Multi-layer NN	

Activation Function (non-linearity)

Sigmoid

$$sigmoid(x) = \frac{1}{1 + e^{-x}}$$

Tanh

$$\tanh(x) = \frac{\sinh(x)}{\cosh(x)} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

Rectified Linear Unit (ReLU)

$$ReLU(x) = \max(x, 0)$$

Linearity and Non-linearity

https://vitalflux.com/how-know-data-linear-non-linear/

Linearity and Non-linearity

 With linearity, the deep neural network is the same as linear transform.

$$W_1(W_2 \cdot x) = (W_1W_2)x = Wx$$

 With non-linearity, the deep neural network with multiple layers could have a more complex function.

Model Parameters

$$y = f(x) = \sigma(W^L \dots \sigma(W^2 \sigma(W^1 x + b^1) + b^2) \dots + b^L)$$

Function set

Different parameters W and $b \rightarrow$ different functions

Formal definition

$$f(x;\theta) \Rightarrow model \ parameter \ set$$

 $\theta = \{W^1, b^1, W^2, b^2, ..., W^L, b^L\}$

Loss Function & Reward Function

- Define a function to measure the quality of parameters set θ
 - Evaluating by a loss/cost/error function $C(\theta)$ \rightarrow how bad

$$\theta^* = \arg\min_{\theta} C(\theta)$$

• Evaluating by an objective/reward function $O(\theta) \rightarrow$ how good

$$\theta^* = \arg\max_{\theta} O(\theta)$$

Loss Function

Best function: $f(x;\theta) \sim \hat{y} \implies \|\hat{y} - f(x;\theta)\| \approx 0$ Define a loss function: $C(\theta) = \sum_{k} \|\hat{y}_{k} - f(x_{k};\theta)\|$

Loss Function

Table 1 List of losses analyzed in this paper. y is true label as one-hot encoding, \hat{y} is true label as +1/-1 encoding, o is the output of the last layer of the network, \cdot (j) denotes j - th dimension of a given vector, and $\sigma(\cdot)$ denotes probability estimate.

Symbol	Name	Equation
\mathcal{L}_1	L ₁ loss	$\ y-o\ _1$
\mathcal{L}_2	L ₂ loss	$ y - o _2^2$
$\mathcal{L}_1 \circ \sigma$	Expectation loss	$\ y - \sigma(o)\ _1$
$\mathcal{L}_2 \circ \sigma$	Regularized expectation loss	$\ y-\sigma(o)\ _2^2$
$\mathcal{L}_{\infty}\circ\sigma$	Chebyshev loss	$max_j \sigma(o)^j - y^j $
Hinge	Hinge (margin) los	$\sum_{j} \max \left(0, \frac{1}{2} - \hat{y}^{j} o^{j} \right)$
Hinge ²	Squared hinge (margin) loss	$\sum_{j} \max \left(0, \frac{1}{2} - \hat{y}^{j} o^{j} \right)^{2}$
Hinge ³	Cubed hinge (margin) loss	$\sum_{j} \max \left(0, \frac{1}{2} - \hat{y}^{j} o^{j} \right)^{3}$

33

Loss Function

Table 1 List of losses analyzed in this paper. y is true label as one-hot encoding, \hat{y} is true label as +1/-1 encoding, o is the output of the last layer of the network, \cdot (j) denotes j - th dimension of a given vector, and $\sigma(\cdot)$ denotes probability estimate.

Symbol	Name	Equation
log	Log (cross entropy) loss	$-\sum_{j}y^{j}log\sigma(o)^{j}$
\log^2	Squared log loss	$-\sum_{j} \left[y^{j} log \sigma(o)^{j} \right]^{2}$
tan	Tanimoto loss	$\frac{-\sum_{j} \sigma(o)^{j} y^{j}}{\ \sigma(o)\ _{2}^{2} + \ y\ _{2}^{2} - \sum_{j} \sigma(o)^{j} y^{j}}$

References

- 臺大電機系李宏毅教授講義
- 臺大資工系陳縕儂教授講義
- NVIDIA Deep Learning Tutorial
- https://aima.cs.berkeley.edu/slides-pdf/chapter20b.pdf
- Janocha and Czarnecki (2017) On Loss Functions for Deep Neural Networks in Classification. Computer Science ArXiv. abs/1702.05659.

