Aix-Marseille Université

2015-2016

Algèbre Linéaire

Partiel 1 - 26 février 2016 Durée : 2 heures. Sans documents ni calculatrices

Exercice 1.

- 1. Soit E un espace vectoriel sur \mathbb{R} . Donner les conditions nécessaires et suffisantes pour qu'un sous-ensemble F de E soit un sous-espace vectoriel de E.
- 2. Dans chacun des cas suivants, justifier si oui ou non l'ensemble F est un sous-espace vectoriel de l'espace vectoriel E, muni de ses lois usuelles :

(a)
$$E = \mathbb{R}^3$$
 et $F = \{(x, y, z) \in \mathbb{R}^3 : x + 3y - 2z = 0 \text{ et } z = 1\}.$

(b)
$$E = \mathbb{R}[X]$$
 et $F = \{P \in \mathbb{R}[X] : P(1) = 0\}.$

(c)
$$E = \mathbb{R}^3$$
 et $F = \{(x, y, z) \in \mathbb{R}^3 : xyz \ge 0\}.$

Exercice 2.

1. Rappeler les définitions de famille libre et génératrice d'un R-espace vectoriel.

Considérons trois vecteurs de $\mathbb{R}_2[X]$ suivants :

$$v_1 = 1 - X$$
, $v_2 = 1 + X^2$, $v_3 = 1 + 2X - 3X^2$.

- 2. Montrer que la famille $\mathcal{B} = (v_1, v_2, v_3)$ est une base de $\mathbb{R}_2[X]$.
- 3. Soit $u = 1 + X + X^2 \in \mathbb{R}_2[X]$. Déterminer les coordonnées du vecteur u dans la base \mathcal{B} .
- 4. Déterminer les valeurs de $a \in \mathbb{R}$ pour lesquelles la famille $\mathcal{B}' = (v_1, v_1 + v_2, v_1 + v_2 + a \cdot v_3)$ est aussi une base de $\mathbb{R}_2[X]$.

Exercice 3.

Soit $F = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 0\}$ et $G = \text{Vect}\{(0, 1, 0), (-1, 1, 1), (-2, 3, 2)\}$ deux sous-espaces vectoriels de \mathbb{R}^3 .

- 1. Trouver la dimension et déterminer une base de chacun des sous-espaces F et G.
- 2. A-t-on $F \oplus G = \mathbb{R}^3$?
- 3. Déterminer une base de $F \cap G$.
- 4. Compléter la base de $F \cap G$ donnée à la question précédente en une base de \mathbb{R}^3 . En déduire un sous-espace vectoriel H de \mathbb{R}^3 tel que $(F \cap G) \oplus H = \mathbb{R}^3$.

Exercice 4.

Soit E un espace vectoriel sur \mathbb{R} .

- 1. Soient $v_1, \ldots, v_n, w_1, \ldots, w_m \in E$. Montrer que Vect $\{v_1, \ldots, v_n\} \subseteq \text{Vect } \{w_1, \ldots, w_m\}$ si et seulement si $v_i \in \text{Vect } \{w_1, \ldots, w_m\}$, $\forall 1 \leq i \leq n$.
- 2. Montrer que pour tout $u, v \in E$, Vect $\{u, v\} = \text{Vect }\{u + v, u v\}$.
- 3. Soient $u, v \in E$ deux vecteurs non nuls. Montrer que la famille (u, v) est libre si et seulement si Vect $\{u, v\} = \text{Vect } \{u\} \oplus \text{Vect } \{v\}$.