(5) 20 H 15 2.

东南大学测验试卷

题号		四四
得分		

- 一、填空题(本题共6小题,每小题3分,共18分)
- 1. 函数 $f(x) = 3 \arctan x \ln \sqrt{1 + x^2}$ 的单调减少区间是_____
- 2. 曲线 $y = \frac{1 + e^{-x^2}}{1 e^{-x^2}}$ 有______条渐近线.

- 5. $\int_{-1}^{1} \left(\sin x \cdot \ln(1+x^2) + \sqrt{1-x^2} \right) dx = \underline{\qquad}.$
- 6. 设 $\int f(x)dx = x^2 + C$, 则 $\int xf(1-x^2)dx =$ ______.
- 二、计算题(本题共4小题,每小题5分,共20分)
- 1. 计算 $\int e^{e^x+x} dx.$

2. 计算 $\int (x^2 + 1)e^{2x} dx$.

3. 利用定积分计算
$$\lim_{n\to\infty} \frac{\sqrt[n]{(n+1)(n+2)\cdots(n+n)}}{n}$$

三、 (本题7分) 设
$$f(x)$$
 在 $[0,1]$ 可导,且 $f(1)-2\int_0^{\frac{1}{2}}x^2f(x)\mathrm{d}x=0$,证明 $\exists \xi \in (0,1)$,使得 $f'(\xi)=-\frac{2f(\xi)}{\xi}$.

四、 (本题5分) 若函数 f(x),g(x),h(x) 在 [a,b] 上均可积,证明 $F(x)=\max\{f(x),g(x),h(x)\}$ 在 [a,b] 上也可积.