

LENGUAJES Y AUTÓMATAS I

TAREA 3.1

INGENIERÍA EN SISTEMAS COMPUTACIONALES SEXTO SEMESTRE GRUPO B

ÁNGEL DANIEL SAMPERIO GARDINI 20200940

3.1 Construya el diagrama de transición del AFD a partir de la tabla 3.8:

δ	0	1
$\to^{\star} q_0$	q_2	q ₁
\mathbf{q}_1	q ₁	q ₂
q_2	q ₁	q ₃
q_3	q_3	q ₁

Tabla 3.8

Diagrama:

a) El lenguaje donde toda cadena tiene exactamente dos **b**s.

Expresión regular: ((a+b)*b(a+b)*b(a+b)*) o $(a+b)*b^2(a+b)*$

b) El lenguaje de las cadenas no vacías, donde toda a está entre dos **b**s.

Expresión regular: (b (a+b)* b)

c) El lenguaje donde toda cadena contiene el sufijo **aba**.

Expresión regular: ((a+b)* aba)

d) El lenguaje donde ninguna cadena contiene las subcadenas aa ni bb.

Expresión regular: ((a+b)* (ba+b) (a+b)*)

e) El lenguaje donde toda cadena contiene la subcadena baba.

Expresión regular: ((a+b)* baba (a+b)*)

f) El lenguaje donde toda cadena contiene por separado a las cadenas ab y ba.

Expresión regular: ((a+b)* (ab+ba) (a+b)*)

g) Toda cadena es de longitud impar y contiene una cantidad par de as.

Expresión regular: ((ba+ab) (ba+ab)* (a+ba+ab))

