Random Forest Algorithm

- Random forests is a supervised learning algorithm.
- It can be used both for classification and regression.
- It is also the most flexible and easy to use algorithm.
- A forest is comprised of trees. It is said that the more trees it has, the more robust a forest is. Random forests creates decision trees on randomly selected data samples, gets prediction from each tree and selects the best solution by means of voting. It also provides a pretty good indicator of the feature importance.
- Random forests has a variety of applications, such as recommendation engines, image
 classification and feature selection. It can be used to classify loyal loan applicants,
 identify fraudulent activity and predict diseases.

How does the Algorithm Work?

It works in four steps:

- 1. Select random samples from a given dataset.
- 2. Construct a decision tree for each sample and get a prediction result from each decision tree.
- 3. Perform a vote for each predicted result.
- 4. Select the prediction result with the most votes as the final prediction.


```
import pandas as pd # Creating a DataFrame of given iris dataset.
         from sklearn import datasets #Import scikit-learn dataset library
         iris = datasets.load iris() #Load dataset
\{x\}
         print(iris.target_names) # print the label species
         print(iris.feature_names) # print the names of the four features
          print(iris.data[0:5]) # print the iris data
   [4] print(iris.target) # print the iris labels (0:setosa, 1:versicolor, 2:virginica)
2 21
       data=pd.DataFrame({
          'sepal length':iris.data[:,0],
          'sepal width':iris.data[:,1],
          'petal length':iris.data[:,2],
          'petal width':iris.data[:,3],
          'species':iris.target
       })
```

data.head()

```
from sklearn, model_selection import train_test_split # Import train_test_split function

X=data[['sepal length', 'sepal width', 'petal length', 'petal width']] # Features

y=data['species'] # Labels

# Split dataset into training set and test set and 76% training and 36% test

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)

from sklearn.ensemble import RandomForestClassifier #Import Random Forest Model

clf=RandomForestClassifier(n_estimators=100) #Create a Gaussian Classifier

clf.fit(X_train,y_train) #Train the model using the training sets y_pred=clf.predict(X_test)

y_pred=clf.predict(X_test)

from sklearn import metrics #Import scikit-learn metrics module for accuracy calculation

print("Accuracy: ",metrics.accuracy_score(y_test, y_pred)) # Model Accuracy, checking how it is correct ?

clf.predict([[3, 5, 4, 2]]) # predict which type of flower it is.
```

```
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
# Creating a bar plot
sns.barplot(x=feature_imp, y=feature_imp.index)
# Add labels to your graph
plt.xlabel('Feature Importance Score')
plt.ylabel('Features')
plt.title("Visualizing Important Features")
plt.legend()
plt.show()
```