

DATA UNDERSTANDING AND PREPARATION

Mulia Sulistiyono, M.Kom

muliasulistiyono@amikom.ac.id

Bahan Bacaan

- Modul Pembelajaran Data Understanding
- Joel Grus, "Data Science from Scratch: First Principles with Python", 2nd Edition, O'Reilly 2019.
- Charu C. Aggarwal, "Data Mining: The Textbook", Springer, 2015.
- Matt Taddy, "Business Data Science", McGraw-Hill, 2019.

Outline

- Apa itu telaah data (data understanding)?
- Sumber, susunan, tipe, dan model data
- Pengambilan data
- Telaah data dasar

Apa itu Telaah Data (Data Understanding)?

Apa itu telaah data (data understanding)?

- Dilakukan setelah problem bisnis terdefinisikan sebagai hasil tahapan business understanding.
- Tujuan: mendapatkan gambaran utuh atas data.
- Dilanjutkan ke persiapan data (data preparation), jika pemahaman awal data cukup atau kembali ke business understanding jika definisi permasalahan bisnis harus direvisi.

Mengapa perlu data understanding?

- Data = bahan mentah solusi Al
- Data dari masing-masing sumber belum tentu dapat langsung dipakai karena:
 - maksud dan tujuan data berbeda-beda
 - keadaan asal terpisah-pisah atau justru terintegrasi secara ketat.
 - tingkat kekayaan (richness) berbeda-beda
 - tingkat keandalan (reliability) berbeda-beda
- Data understanding memberikan gambaran awal tentang:
 - kekuatan data
 - kekurangan dan batasan penggunaan data
 - tingkat kesesuaian data dengan masalah bisnis yang akan dipecahkan
 - ketersediaan data (terbuka/tertutup, biaya akses, dsb.)

Bagian-bagian proses telaah data

Identifikasi "titik sentuh" data dengan proses bisnis

Penentuan sumber utama data dan cara aksesnya

Asesmen nilai tambah bisnis dari data

Identifikasi sumber data tambahan untuk perbaikan

Sumber, Susunan, Tipe dan Model Data

Sumber data

Internal Spreadsheets (Excel, CSV, JSON, etc.) sources Databases: can be queried via SQL, etc. Text documents Multimedia documents (audio, video) External Open data repositories sources Public domain web pages

Sumber data daring

- Portal Satu Data Indonesia (https://data.go.id)
- Portal Data Jakarta (https://data.jakarta.go.id)
- Portal Data Bandung (http://data.bandung.go.id)
- Badan Pusat Statistik (https://www.bps.go.id)
- Badan Informasi Geospasial (https://tanahair.indonesia.go.id/)
- UCI Machine Learning repository (https://archive.ics.uci.edu/ml/index.php)
- Kaggle (<u>https://www.kaggle.com/datasets</u>)
- World Bank Open Data (https://data.worldbank.org)
- UNICEF Data (https://data.unicef.org)
- WHO Open Data (https://www.who.int/data)
- IBM Data Asset eXchange (https://developer.ibm.com/exchanges/data/)
- DBPedia (https://www.dbpedia.org/resources/)
- Wikidata (<u>https://www.wikidata.org/</u>) .

Sumber data daring

Cari via Google Dataset Search:

https://datasetsearch.research.google.com

Butir data (datum): satuan terkecil data; satu nilai untuk satu variable tertentu

Data: kumpulan butir data yang membawa satu kesatuan makna (mendeskripsikan satu objek) tertentu.

Himpunan data (dataset): kumpulan data.

Metadata: data yang menjelaskan data yang lain.

"make":

tipe: string,

symboling

3 ?

3 ?

deskripsi: nama pabrikan merek kendaraan

normalized-losses make

alfa-romero

alfa-romero

alfa-romero

164 audi

164 audi

fuel-type

gas

gas

gas

gas

gas

Tipe data berdasarkan susunannya

	Data terstruktur (structured data)	Data takterstruktur (unstructured data)
Sifat	 Model data terdefinisikan sebelumnya Format butir data (biasanya) teks. Antar butir data terbedakan dengan jelas. Ekstraksi/kueri langsung cukup mudah. 	 Model data tidak terdefinisikan sebelumnya Format butir data (biasanya) teks, citra, suara, video, dan format lainnya. Antar butir data tidak cukup jelas terbedakan karena ketidakteraturan dan ambiguitas. Ekstraksi/kueri langsung cukup sulit.
Contoh	Data tabular, data berorientasi objek, time series	Data teks dalam dokumen teks bebas, data audio, data video.

Data semi-terstruktur (semi-structured data): Data terstruktur yang tidak mengikuti model struktur tabular yang seperti pada basis data relasional, namun tetap mengandung tags atau penanda lainnya yang dapat memisahkan elemen-elemen semantik pada data serta mengatur hierarki antara butir-butir datanya.

Tipe butir data (1)

	Nominal/kategorikal	Ordinal	Interval	Rasio
Sifat himpunan asal	Diskret, tidak terurut	Diskret, terurut	Kontinu/numerik, terurut, perbedaan menunjukkan selisih	Kontinu/numerik, terurut, nilai menunjukkan rasio terhadap kuantitas satuan/unit di jenis yang sama
Contoh	Warna (merah, hijau, biru)	Nilai huruf mahasiswa (A, B, C, D, E)	Suhu dalam Celcius, tanggal dalam kalender tertentu	Panjang jalan, suhu dalam Kelvin
Ukuran data menyatakan	Membership	Membership, comparison	Membership, comparison, difference	Membership, comparison, difference, magnitude
Operasi matematika	=, ≠	=, ≠, <, >	=, ≠, <, >, +, -	=, ≠, <, >, +, -, ×, ÷

Tipe butir data (2)

	Nominal/kategorikal	Ordinal	Interval	Rasio
Representasi nilai tipikal	Modus	Modus, median	Modus, median, rerata aritmetis	Modus, median, rerata aritmetik, rerata geometrik, rerata harmonik
Representasi sebaran	Grouping	Grouping, rentang (range), rentang antarkuartil	Grouping, rentang (range), rentang antarkuartil, varians, simpangan baku	Grouping, rentang (range), rentang antarkuartil, varians, simpangan baku, koefisien variasi
Memiliki nol sejati yang menyatakan nilai mutlak terbawah.	Tidak	Tidak	Tidak	Ya

Contoh model data: Tabular

- Terdiri dari N buah rekord (record)
- Masing-masing rekord mengandung D buah atribut
- Rekord = baris, data point, instans, example, transaksi, tupel, entitas, objek, vector fitur.
- Atribut = kolom, field, dimensi, fitur.
- Atribut yang sama untuk setiap rekord biasanya diasumsikan memiliki tipe butir data yang sama.
- Struktur dapat bersifat ketat/strict (contoh: basis data relasional) atau longgar/loose (contoh: Excel spreadsheet).
- Tergantung keketatan strukturnya, bisa ada bahasa kueri formal untuk mengakses butir-butir data di dalamnya (contoh: SQL).

symboling	normalized-losses	make
3	?	alfa-romero
3	?	alfa-romero
1	?	alfa-romero
2	164	audi
2	164	audi

Contoh model data: Graf/Jejaring

- Tersusun dari simpul-simpul (nodes) dan sisi/koneksi antar simpul (edges)
- Satu node (biasanya) mewakili satu rekord
- Dapat mengekspresikan relasi antar rekord secara eksplisit.
- Termasuk model data graf adalah model data hierarkis/pohon, model data berorientasi objek (objectoriented data model).
- Model data graf modern:
 - Property graph
 - Resource description framework (RDF)

Contoh model data: Sekuens

- Tersusun dari rekord-rekord yang terhubung secara sekuensial.
- Contoh: data dari sensor suhu selama suatu rentang waktu.
- Struktur tersirat dari urutan kemunculan rekord
- Rekaman audio dan video dapat dipandang sebagai data sekuens, namun setiap rekordnya sendiri bersifat tidak terstruktur.
- Atribut kontekstual mendefinisikan basis dependensi tersirat. (Contoh: time stamp pada sensor suhu)
- Atribut behavioral: butir-butir data yang nilainya diperoleh dalam suatu konteks tertentu (Contoh: besarnya suhu).
- Jika atribut kontekstualnya adalah waktu/time stamp, maka data sekuens disebut time series.

Pengambilan Data

Pengambilan Data

- Pengambilan data secara manual.
- Pengambilan data melalui API
 - Contoh melalui API Kaggle
 - Contoh melalui API Portal Data Bandung
- Pengambilan data melalui web scraping
- Pengambilan data melalui akses langsung ke basis data relasional yang ada.

Pengambilan data secara manual

Cari data di sumber data

Unduh/salin data ke local machine

Muat (*load*) data ke pengolah data

Jupyter Notebook

Mengambil data (secara manual) dari Kaggle

- Kita akan mengakses data dari "Goal Dataset – Top 5 European Leagues" dari Kaggle.
- Kunjungi Kaggle.com dan login (buat akun jika perlu)
- Lakukan pencarian "goal dataset top 5 European leagues"
- Klik "Goal Dataset Top 5 European Leagues"

Data Explorer 383.68 KB Bundesliga-goalScorer(20-... LaLiga-goalScorer(20-21).csv Ligue_1-goalScorer(20-21).c... Serie_A-goalScorer(20-21).... epl-goalScorer(20-21).csv

- Di halaman data explorer, pilih "epl-goalScorer (20-21).csv"
- Unduh data dengan mengklik tombol unduh di bagian kanan dan simpan di folder kerja Anda.

Pengambilan data melalui API

- Data dapat diambil melalui application programming interface (API).
 - API disediakan oleh beberapa layanan data seperti Kaggle.
 - API token/key (mungkin) diperlukan untuk mengakses data via API.
 - Proses pembuatan API token/key (jika perlu) diperinci di dokumentasi masing-masing layanan.

Mengambil data dengan API dari Kaggle (1)

 Nyalakan Jupyter Notebook di folder kerja Anda, lalu buka atau buat satu skrip baru (Python 3).

Instal kaggle library (mis: dengan pip)

```
In [1]: !pip install kaggle
```


Mengambil data dengan API dari Kaggle (2)

- Login ke Kaggle, klik foto profil Anda (di kanan atas), kemudian klik 'Your Profile' untuk membuka halaman profil Anda.
- Pada halaman profil Anda, klik tab 'Account'. Geser ke bawah sedikit, dan Anda akan menemukan tombol 'Create New API Token'

Home Com	npetitions	Datasets	Code	Discussion	Followers	Notifications	Account	Edit Public Profile
Phone Verified								
Email Prefere		can now be	controlle	ed on the Noti	ification setti	ings page.		
API Using Kaggle command lin Create New	e. Read the	docs	teract wi		ins and Data:	sets to downloa	ıd data, make s	submissions, and more via the
Quota Private Data GPU	0 B / 100 00:00 / 3							9
TPU	00:00 / 3	0 hrs						•

Mengambil data dengan API dari Kaggle (3)

- Klik 'Create New API Token'. Jika tombol tidak berfungsi, klik 'Expire API Token' lebih dahulu.
 - o Browser akan mengunduh file kaggle.json ke folder unduhan (Downloads) Anda.
- Kaggle API secara default mengasumsikan bahwa file kaggle.json tersebut berada di dalam folder:
 - ~/.kaggle/(Linux/Mac)atau
 - C:\Users\<Windows-username>\.kaggle\(Windows)
 - Jika folder tersebut belum ada, buat dulu dengan perintah mkdir di shell/command line.
 - o Pindahkan file kaggle.json ke folder tersebut (menggunakan File/Windows Explorer atau melalui perintah mv atau move di shell)

Mengambil data dengan API dari Kaggle (4)

- Kaggle API memiliki empat perintah
 - o kaggle competitions {list, files, download, submit, submissions, leaderboard}
 - o kaggle datasets {list, files, download, create, version, init}
 - kaggle kernels {list, init, push, pull, output, status}
 - o kaggle config {view, set, unset}
- Dokumentasi Kaggle API dapat dilihat di https://github.com/Kaggle/kaggle-api
- Untuk keperluan modul ini, kita hanya menggunakan perintah kaggle datasets

Mengambil data dengan API dari Kaggle (5)

- Untuk melakukan pencarian dataset: kaggle datasets list -s <keyword>
 - o Jika terjadi masalah gagal akses, dsb., bisa dicoba dengan membuat ulang API Token.
- Nama dataset berada di kolom ref pada tabel output pencarian. Misalnya kita ingin mengunduh "Goal Dataset Top 5 European Leagues, maka nama dataset adalah shreyanshkhandelwal/goal-dataset-top-5-european-leagues.

In [2]:	!kaggle datasets list -s "goal leagues"										
	ref ated de	ownloadCount vot	teCount	usabilityRating	title	size	last∪pd				
	slehkyi/extende	d-football-stats		ropean-leagues-xg	Football Data: Expected Goals and Other Metrics	1MB	2020-08				
	secareanualin/fo			2.0	Football Events	21MB	2017-01				
	-25 01:19:19	19416		0.7647059							
	•			-european-leagues	Goal Dataset - Top 5 European Leagues	174KB	2021-05				
	-23 21:20:09	25	_	0.5294118							
	chaibapat/fanta	sy-premier-league	2		Fantasy Premier League - 2016/2017	476MB	2017-05				
	-16 18:56:26	1466	31	0.85294116							
	yamaerenay/most	-popular-soccer-l	leagues		Most Popular Soccer Leagues	30KB	2020-08				
	-01 16:59:30	78	5	1.0	•						

Mengambil data dengan API dari Kaggle (6)

Unduh dataset yang diinginkan dengan perintah kaggle datasets download

```
In [3]: !kaggle datasets download shreyanshkhandelwal/goal-dataset-top-5-european-leagues
```

- Dataset akan terunduh di folder aktif dalam bentuk file terkompresi zip.
- Selanjutnya, kita ekstraksi dataset tersebut dengan perintah unzip, dan dataset berupa berkas-berkas csv siap digunakan.
- Berkas csv dapat langsung dimuat ke Pandas DataFrame

```
Name
       .ipynb_checkpoints
       goal-dataset-top-5-european-leagues.zip
     kaggle-api-example.ipynb
!unzip goal-dataset-top-5-european-leagues.zip
Archive: goal-dataset-top-5-european-leagues.zip
  inflating: Bundesliga-goalScorer(20-21).csv
  inflating: LaLiga-goalScorer(20-21).csv
  inflating: Ligue 1-goalScorer(20-21).csv
  inflating: Serie_A-goalScorer(20-21).csv
  inflating: epl-goalScorer(20-21).csv
```


Memuat Data ke Pandas

Memuat data ke Pandas (1)

- Nyalakan Jupyter Notebook di folder kerja Anda.
- Buka atau buat baru satu skrip ipynb (Python 3)
- Import pandas dan numpy. (Pastikan sudah terinstal sebelumnya).
- Load file CSV yang sudah diunduh sebelumnya (pada contoh "Mengambil Data secara Manual") ke dalam sebuah DataFrame
 - Gunakan perintah read_csv(...)

```
In [1]: import pandas as pd
import numpy as np

In [2]: path = "epl-goalScorer(20-21).csv"
    df = pd.read_csv(path)
```


Memuat data ke Pandas (2)

 Method head() dan tail() pada DataFrame membantu kita menampilkan beberapa baris pertama/terakhir dari data yang kita muat.

	Unnamed: 0	id	player_name	games	time	goals	хG	assists	
0	0	647	Harry Kane	35	3097	23	22.174859	14	
1	1	1250	Mohamed Salah	37	3085	22	20.250847	5	
2	2	1228	Bruno Fernandes	37	3117	18	16.019454	12	

df.head()

	Unnamed: 0	id	player_name	games	time	goals	хG	assists
0	0	647	Harry Kane	35	3097	23	22.174859	14
1	1	1250	Mohamed Salah	37	3085	22	20.250847	5
2	2	1228	Bruno Fernandes	37	3117	18	16.019454	12
3	3	453	Son Heung- Min	37	3139	17	11.023287	10
4	4	822	Patrick Bamford	38	3085	17	18.401863	7
<								

Telaah Data

Mengungkap tipe-tipe data dari setiap kolom

- Atribut dtypes pada DataFrame berisi tipe data dari setiap kolom.
- Lihat Pandas User Guide untuk detil setiap tipe.
- dtype:object di akhir output dtypes mewakili Series yang merupakan objek Python yang dikembalikan oleh dtypes itu sendiri (bukan bagian dari tipe kolom manapun).

Unnamed: 0	int64
id	int64
player_name	object
games	int64
time	int64
goals	int64
xG	float64
assists	int64
xA	float64
shots	int64
key_passes	int64
yellow_cards	int64
red_cards	int64
position	object
team_title	object
npg	int64
npxG	float64
xGChain	float64
xGBuildup	float64

Mengungkap tipe-tipe data dari setiap kolom

- Dua kolom pertama hanyalah ID numerik yang biasanya tidak memiliki makna riil
- Jadi, dari DataFrame df, cukup diambil mulai dari kolom "player_name" (untuk zero-based index, kita pakai kolom ke-2 dst).

	player_name	games	time	goals	хG	assists	хA
0	Harry Kane	35	3097	23	22.174859	14	7.577094
1	Mohamed Salah	37	3085	22	20.250847	5	6.528526
2	Bruno Fernandes	37	3117	18	16.019454	12	11.474996
3	Son Heung- Min	37	3139	17	11.023287	10	9.512992
4	Patrick Bamford	38	3085	17	18.401863	7	3.782247
517	Jaden Philogene- Bidace	1	1	0	0.000000	0	0.000000
518	Gaetano Berardi	2	113	0	0.074761	0	0.000000
519	Anthony Elanga	1	67	0	0.000000	0	0.000000
520	Femi Seriki	1	1	0	0.000000	0	0.000000

Deskripsi statistik data

DataFrame method describe() menampilkan statistik dasar setiap kolom data yang bertipe numerik, mencakup banyaknya data (count), rerata aritmetik (mean), simpangan baku (std), nilai terkecil (min), kuartil pertama (25%), kuartil kedua/median (50%), kuartil ketiga (75%), dan nilai terbesar (max).

df_noid.describe()

	games	time	goals	хG	assists	хA	shots	key_passes	yellow_cards	red_cards	npg	
count	522.000000	522.000000	522.000000	522.000000	522.000000	522.000000	522.000000	522.000000	522.000000	522.000000	522.000000	522.
mean	19.643678	1420.068966	1.862069	2.000806	1.289272	1.376029	17.379310	12.963602	2.061303	0.091954	1.668582	1.
std	11.619836	1031.604819	3.338851	3.317946	2.083350	1.886510	21.572664	16.164361	2.203661	0.295800	2.909929	2
min	1.000000	1.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.
25%	10.000000	470.250000	0.000000	0.074668	0.000000	0.049245	2.000000	1.000000	0.000000	0.000000	0.000000	0.
50%	21.000000	1342.000000	1.000000	0.737295	0.000000	0.691122	10.000000	7.000000	2.000000	0.000000	0.500000	0.
75%	30.000000	2319.000000	2.000000	2.053378	2.000000	2.050509	23.750000	19.000000	3.000000	0.000000	2.000000	1.
max	38.000000	3420.000000	23.000000	22.174859	14.000000	11.474996	138.000000	95.000000	12.000000	2.000000	19.000000	19.

Konsep: Rerata Aritmetik

- Nilai rerata yang lazim dipahami kebanyakan orang.
- Rerata aritmetik dari sekumpulan bilangan = jumlah semua bilangan tersebut dibagi dengan banyaknya bilangan dalam kumpulan.
- Diberikan sekumpulan N buah bilangan $S = \{x_1, ..., x_N\}$, rerata aritmetik μ_S atau \bar{x} dari S didefinisikan sebagai:

$$\mu_S = \bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i = \frac{x_1 + \dots + x_N}{N}$$

- Merupakan salah satu ukuran pusat data (tendensi sentral) yang dapat dipakai untuk data bertipe interval dan rasio.
- **Sifat**: total jarak setiap bilangan x_i terhadap rerata aritmetik \bar{x} adalah 0.
- Dapat dipakai sebagai bilangan yang mewakili keseluruhan kumpulan, sepanjang distribusi datanya tidak bersifat skew (asimetris).

Konsep: Simpangan Baku

- Simpangan baku (standard deviation) adalah salah satu ukuran sebaran data.
- Dipakai untuk data bertipe interval dan rasio.
- Untuk kumpulan bilangan $S = \{x_1, ..., x_N\}$ dengan rerata aritmetik μ_S , simpangan baku σ_S dari S adalah

$$\sigma_S = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \mu_S)^2} = \sqrt{\frac{(x_1 - \mu_S)^2 + \dots + (x_N - \mu_S)^2}{N-1}}$$

- Kuadrat dari σ_S , yakni σ_S^2 disebut sebagai **varian**
- Nilai simpangan baku
 - besar = data secara umum tersebar jauh dari nilai rerata aritmetik
 - kecil = data secara umum terkumpul dekat dengan nilai rerata aritmetik
- Simpangan baku dapat pula dipandang sebagai derajat ketidakpastian pengukuran data
 - Contoh: pada pengukuran berulang dengan suatu instrument yang sama, jika simpangan baku data hasil pengukuran bernilai besar, berarti presisi pengukuran rendah.

Konsep: Median dan Kuartil

- Kuartil pertama (Q1): nilai data sehingga 25% dari keseluruhan data bernilai lebih kecil darinya.
- Kuartil kedua (Q₂) atau median: nilai data sehingga separuh dari data yang ada bernilai lebih kecil darinya.
 - Dapat dipakai sebagai ukuran pusat data (tendensi sentral) sebagai alternatif dari rerata (khususnya jika distribusi data bersifat skewed).
- Kuartil ketiga (Q₃): nilai data sehingga 75% dari keseluruhan data bernilai lebih kecil darinya.
- Kuartil dapat dipakai untuk data bertipe ordinal, interval, dan rasio.

Deskripsi statistik data

Gunakan describe (include='all') jika ingin menampilkan juga statistik kolom yang bertipe non-numerik, mencakup juga berapa banyak nilai unik dalam kolom (unique), nilai modus (top), serta frekuensi modus (freq).

df_noid	.describe(i	nclude='al	1')						ards	position	team_title	npg	npxG	xGChain	xGBuildup
	·								0000	522	522	522.000000	522.000000	522.000000	522.000000
	player_name	games	time	goals	хG	assists	хA	sł	NaN	14	28	NaN	NaN	NaN	NaN
count	522	522.000000	522.000000	522.000000	522.000000	522.000000	522.000000	522.000	NaN	MS	Everton	NaN	NaN	NaN	NaN
unique	522	NaN	NaN	NaN	NaN	NaN	NaN	- 1							
top	Joel Ward	NaN	NaN	NaN	NaN	NaN	NaN	1	NaN	106	28	NaN	NaN	NaN	NaN
freq	1	NaN	NaN	NaN	NaN	NaN	NaN	1	954	NaN	NaN	1.668582	1.821450	5.663368	3.455060
mean	NaN	19.643678	1420.068966	1.862069	2.000806	1.289272	1.376029	17.379	5800	NaN	NaN	2.909929	2.931176	5.600249	3.376584
std	NaN	11.619836	1031.604819	3.338851	3.317946	2.083350	1.886510	21.572	0000	NaN	NaN	0.000000	0.000000	0.000000	0.000000
min	NaN	1.000000	1.000000	0.000000	0.000000	0.000000	0.000000	0.000	0000	NaN	NaN	0.000000	0.074668	1.191391	0.720353
25%	NaN	10.000000	470.250000	0.000000	0.074668	0.000000	0.049245	2.000	0000	NaN	NaN	0.500000	0.715585	4.252738	2.656397
50%	NaN	21.000000	1342.000000	1.000000	0.737295	0.000000	0.691122	10.000							
75%	NaN	30.000000	2319.000000	2.000000	2.053378	2.000000	2.050509	23.750)000	NaN	NaN	2.000000	1.945799	8.308002	5.254647
max	NaN	38.000000	3420.000000	23.000000	22.174859	14.000000	11.474996	138.000	0000	NaN	NaN	19.000000	19.130183	28.968234	18.323006
															>

Konsep: Modus

- Modus (mode): nilai yang paling sering muncul pada sekumpulan data.
- Dipakai sebagai ukuran pusat data (tendensi sentral) untuk data bertipe nominal/kategoris.
 - Tidak dijamin unik dalam suatu distribusi data (bisa ada lebih dari satu modus dalam suatu distribusi).
 - Merupakan nilai yang berpeluang paling tinggi didapatkan ketika data di-sample.
- Contoh:
 - Himpunan data {1,2,2,3,4,4,7,8} memiliki dua modus: 2 dan 4.
- Jika data mengikuti distribusi kontinu, misal

```
{0.935, ..., 1.134,..., 2.643, ..., 3.459, ..., 3.995, ....}
```

maka secara statistik, tidak boleh diasumsikan akan ada dua data yang bernilai persis sama.

- Definisi modus standar menjadi tidak bermakna.
- Pendekatan 1: lakukan diskretisasi (dibahas di modul Data Preparation), sehingga didapat data bertipe nominal, lalu dicari modusnya.
- Pendekatan 2: gunakan teknik kernel density estimation (tidak dibahas di sini).

Fungsi statistik dalam Pandas

count	Number of non-NA observations
sum	Sum of values
mean	Mean of values
mad	Mean absolute deviation
median	Arithmetic median of values
min	Minimum
max	Maximum
mode	Mode
abs	Absolute Value
prod	Product of values
quantile	Sample quantile (value at %), 1st quartile = quantile(0.25)

std	Bessel-corrected sample standard deviation
var	Unbiased variance
sem	Standard error of the mean
skew	Sample skewness (3rd moment)
kurt	Sample kurtosis (4th moment)
cumsum	Cumulative sum
cumprod	Cumulative product
cummax	Cumulative maximum
cummin	Cumulative minimum

Contoh fungsi statistik setiap kolom (yang applicable)

<pre>df_noid.mean()</pre>	
games	19.643678
time	1420.068966
goals	1.862069
xG	2.000806
assists	1.289272
xA	1.376029
shots	17.379310
key_passes	12.963602
yellow_cards	2.061303
red_cards	0.091954
npg	1.668582
npxG	1.821450
xGChain	5.663368
xGBuildup	3.455060
dtype: float64	

<pre>df_noid.sum()</pre>	
player_name	Harry KaneMohamed SalahBruno FernandesSon Heun
games	10254
time	741276
goals	972
xG	1044.420572
assists	673
xA	718.287269
shots	9072
key_passes	6767
yellow_cards	1076
red cards	48
position	FF M SM SF M SF SF SF SFM SF M SF SF SF SF SF
team title	TottenhamLiverpoolManchester UnitedTottenhamLe
npg	871
npxG	950.7971
xGChain	2956.278233
xGBuildup dtype: object	1803.541131

Contoh fungsi statistik setiap kolom (yang applicable)

df_noid.median	()	<pre>df_noid.std()</pre>		df_noid.quantile(0.75) # 3rd quart			
games time goals xG assists xA shots key_passes yellow_cards red_cards npg npxG xGChain xGBuildup dtype: float64	21.000000 1342.000000 1.000000 0.737295 0.000000 0.691122 10.000000 7.000000 2.000000 0.500000 0.715585 4.252738 2.656397	games time goals xG assists xA shots key_passes yellow_cards red_cards npg npxG xGChain xGBuildup dtype: float64	11.619836 1031.604819 3.338851 3.317946 2.083350 1.886510 21.572664 16.164361 2.203661 0.295800 2.909929 2.931176 5.600249 3.376584	games time goals xG assists xA shots key_passes yellow_cards red_cards npg npxG xGChain xGBuildup Name: 0.75, dt	30.000000 2319.000000 2.000000 2.053378 2.000000 2.050509 23.750000 19.000000 3.000000 0.000000 2.000000 1.945799 8.308002 5.254647 ype: float64		

Value_counts

- value_counts() menghasilkan frekuensi setiap nilai unik di dalam kolom.
- Yang tertinggi count-nya adalah merupakan modus pada kolom tersebut.
- Ada data dengan dua/tiga nama tim karena ada pemain yang bermain di dua/tiga klub dalam musim yang sama (ada transfer pemain).

[n [18]:	<pre>df['team_title'].value_counts()</pre>	
Out[18]:	West Bromwich Albion	28
	Everton	28
	Fulham	27
	Wolverhampton Wanderers	27
	Southampton	27
	Sheffield United	27
	Manchester United	27
	Liverpool	27
	Leicester	27
	Brighton	26
	Arsenal	26
	Newcastle United	26
	Chelsea	25
	Burnley	25
	Tottenham	24
	Manchester City	24
	Crystal Palace	24
	West Ham	23
	Leeds	23
	Aston Villa	23
	West Bromwich Albion,West Ham	1
	Everton, Southampton	1
	Arsenal, West Bromwich Albion	1
	Chelsea, Fulham	1
	Aston Villa,Chelsea	1
	Arsenal, Newcastle United	1
	Liverpool, Southampton	1
	Arsenal, Brighton	1
	Name: team_title, dtype: int64	

Analisa dengan groupby

 Method groupby memungkinkan analisa dilakukan secara per kelompok nilai atribut tertentu. Misal: rerata dan simpangan baku gol per tim.

In [30]:	df.groupby('team_title')['goals	s'].std()	In [29]:	df.groupby('team_title')['goals	'].mean()
Out[30]:	team_title		Out[29]:	team title	
	Arsenal	3.352381		Arsenal	1.961538
	Arsenal,Brighton	NaN		Arsenal,Brighton	0.000000
	Arsenal,Newcastle United	NaN		Arsenal, Newcastle United	8.000000
	Arsenal,West Bromwich Albion	NaN		Arsenal,West Bromwich Albion	0.000000
	Aston Villa	3.696489		Aston Villa	2.130435
	Aston Villa,Chelsea	NaN		Aston Villa,Chelsea	3.000000
	Brighton	2.158703		Brighton	1.500000
	Burnley	2.475210		Burnley	1.280000
	Chelsea	2.350177		Chelsea	2.240000
	Chelsea,Fulham	NaN		Chelsea,Fulham	1.000000
	Crystal Palace	2.901461		Crystal Palace	1.625000
	Everton	3.467727		Everton	1.607143
	Everton, Southampton	NaN		Everton, Southampton	3.000000
	Fulham	1.439175		Fulham	0.925926
	Leeds	4.153193		Leeds	2.608696
	Leicester	4.020602		Leicester	2.370370
	Liverpool	4.931439		Liverpool	2.370370
	Liverpool,Southampton	NaN		Liverpool,Southampton	3.000000
	Manchester City	3.867132		Manchester City	3.208333
	Manchester United	4.317855		Manchester United	2.518519
	Newcastle United	2.483174		Newcastle United	1.384615
	Sheffield United	1.467599		Sheffield United	0.666667
	Southampton	3.141941		Southampton	1.555556
	Tottenham	5.855135		Tottenham	2.750000
	West Bromwich Albion	2.310260		West Bromwich Albion	1.178571
	West Bromwich Albion,West Ham	NaN		West Bromwich Albion,West Ham	0.000000
	West Ham	3.369240		West Ham	2.478261
~	Wolverhampton Wanderers	1.648620		Wolverhampton Wanderers	1.222222
U	Name: goals, dtvpe: float64			Name: goals, dtype: float64	

Korelasi Pearson antara kolom-kolom numerik

- Method corr() menghasilkan tabel korelasi Pearson antar kolom-kolom numerik.
- Rentang nilai: antara -1 dan 1.
- -1 = korelasi negatif, 0 = tidak ada korelasi linear, +1 = korelasi positif.

[23]:	df.loc[:,ˈga	ames':].d	corr()												
ut[23]:		games	time	goals	хG	assists	хA	shots	key_passes	yellow_cards	red_cards	npg	npxG	xGChain	хGВı
	games	1.000000	0.944591	0.439730	0.463869	0.504168	0.562806	0.599164	0.617867	0.565963	0.160326	0.437110	0.465546	0.726598	0.69
	time	0.944591	1.000000	0.398930	0.411203	0.473555	0.516638	0.529534	0.575065	0.592223	0.186333	0.392631	0.408231	0.703801	0.73
	goals	0.439730	0.398930	1.000000	0.932798	0.617490	0.607330	0.873363	0.567752	0.097151	0.053679	0.971591	0.905710	0.727953	0.29
	xG	0.463869	0.411203	0.932798	1.000000	0.636205	0.627495	0.910214	0.570488	0.093761	0.048815	0.894286	0.979218	0.763909	0.28
	assists	0.504168	0.473555	0.617490	0.636205	1.000000	0.885850	0.721220	0.835299	0.209349	-0.021444	0.587316	0.615503	0.752587	0.4
	xA	0.562806	0.516638	0.607330	0.627495	0.885850	1.000000	0.759568	0.946506	0.243912	0.006284	0.585152	0.611100	0.814487	0.54
	shots	0.599164	0.529534	0.873363	0.910214	0.721220	0.759568	1.000000	0.743370	0.249957	0.073932	0.852989	0.901386	0.843152	0.4
	key_passes	0.617867	0.575065	0.567752	0.570488	0.835299	0.946506	0.743370	1.000000	0.343357	0.022780	0.539726	0.545537	0.807958	0.6
	yellow_cards	0.565963	0.592223	0.097151	0.093761	0.209349	0.243912	0.249957	0.343357	1.000000	0.165064	0.093270	0.089065	0.401884	0.56
	red_cards	0.160326	0.186333	0.053679	0.048815	-0.021444	0.006284	0.073932	0.022780	0.165064	1.000000	0.055542	0.047354	0.104005	0.16
	npg	0.437110	0.392631	0.971591	0.894286	0.587316	0.585152	0.852989	0.539726	0.093270	0.055542	1.000000	0.913496	0.720978	0.28
	npxG	0.465546	0.408231	0.905710	0.979218	0.615503	0.611100	0.901386	0.545537	0.089065	0.047354	0.913496	1.000000	0.763481	0.2
	xGChain	0.726598	0.703801	0.727953	0.763909	0.752587	0.814487	0.843152	0.807958	0.401884	0.104005	0.720978	0.763481	1.000000	0.80
	xGBuildup	0.697196	0.731377	0.290990	0.282746	0.473254	0.547983	0.448197	0.618754	0.562467	0.167660	0.284135	0.273090	0.802073	1.00

Terima Kasih