Praktische Informatik 3: Funktionale Programmierung Vorlesung 5 vom 30.11.2020: Funktionen Höherer Ordnung I

Christoph Lüth

Wintersemester 2020/21

Fahrplan

- ► Teil I: Funktionale Programmierung im Kleinen
 - Einführung
 - Funktionen
 - Algebraische Datentypen
 - ► Typvariablen und Polymorphie
 - Funktionen höherer Ordnung I
 - Rekursive und zyklische Datenstrukturen
 - ► Funktionen höherer Ordnung II
- ► Teil II: Funktionale Programmierung im Großen
- ► Teil III: Funktionale Programmierung im richtigen Leben

Inhalt

- ► Funktionen höherer Ordnung:
 - ► Funktionen als gleichberechtigte Objekte
 - ► Funktionen als Argumente
- Spezielle Funktionen: map, filter, fold und Freunde

Lernziel

Wir verstehen, wie wir mit map, filter und fold wiederkehrende Funktionsmuster kürzer und verständlicher aufschreiben können, und wir verstehen, warum der Funktionstyp in $\alpha \to \beta$ ein Typ wie jeder andere ist.

I. Funktionen als Werte

Funktionen Höherer Ordnung

Slogan

"Functions are first-class citizens."

- ► Funktionen sind gleichberechtigt: Ausdrücke wie alle anderen
- ► Grundprinzip der funktionalen Programmierung
- Modellierung allgemeiner Berechungsmuster
- Kontrollabstraktion

Ähnliche Datentypen der letzten Vorlesung

```
data Lager = LeeresLager

| Lager Artikel Menge Lager

data Einkaufskorb = LeererKorb

| Einkauf Artikel Menge Einkaufskorb

data MyString = Empty

| Char :+ MyString
```

- ▶ ein konstanter Konstruktor
- ein linear rekursiver Konstruktor

Ähnliche Datentypen der letzten Vorlesung

- ▶ ein konstanter Konstruktor
- ein linear rekursiver Konstruktor

Gelöst durch Polymorphie

Ähnliche Funktionen der letzten Vorlesung

```
kasse :: Einkaufskorb→ Int
kasse LeererKorb = 0
kasse (Einkauf a m e) = cent a m+ kasse e
```

```
inventur :: Lager \rightarrow Int inventur LeeresLager = 0 inventur (Lager a m 1) = cent a m+ inventur 1
```

```
\begin{array}{lll} \text{length} & :: & \text{MyString} \rightarrow & \text{Int} \\ \text{length} & \text{Empty} & = 0 \\ \text{length} & (\texttt{c} :+ \texttt{s}) = 1 + \text{length} & \texttt{s} \end{array}
```

Gemeinsamkeiten:

- ▶ ein Fall pro Konstruktor
- ► linearer rekursiver Aufruf

Ähnliche Funktionen der letzten Vorlesung

inventur (Lager a m 1) = cent a m+ inventur 1

```
kasse :: Einkaufskorb→ Int
kasse LeererKorb = 0
kasse (Einkauf a m e) = cent a m+ kasse e

inventur :: Lager→ Int
inventur LeeresLager = 0
```

```
length :: MyString\rightarrow Int
length Empty = 0
length (c :+ s) = 1+ length s
```

Gemeinsamkeiten:

- ▶ ein Fall pro Konstruktor
- ► linearer rekursiver Aufruf

Nicht durch Polymorphie gelöst

Ein einheitlicher Rahmen

Zwei ähnliche Funktionen:

```
toL :: String\rightarrow String toU :: String\rightarrow String toU [] = [] toL (c:cs) = toLower c : toL cs toU (c:cs) = toUpper c : toU cs
```

► Warum nicht eine Funktion . . .

Ein einheitlicher Rahmen

Zwei ähnliche Funktionen:

```
toL :: String\rightarrow String toU :: String\rightarrow String toU [] = [] toL (c:cs) = toLower c : toL cs toU (c:cs) = toUpper c : toU cs
```

Warum nicht eine Funktion . . .

```
map f [] = []
map f (c:cs) = f c : map f cs
```

Ein einheitlicher Rahmen

Zwei ähnliche Funktionen:

```
toL :: String\rightarrow String toU :: String\rightarrow String toU [] = [] toL (c:cs) = toLower c : toL cs toU (c:cs) = toUpper c : toU cs
```

▶ Warum nicht eine Funktion und zwei Instanzen?

```
map f [] = []
map f (c:cs) = f c : map f cs

toL cs = map toLower cs
toU cs = map toUpper cs
```

- ► Funktion f als Argument
- ► Was hätte map für einen Typ?

▶ Was hätte map für einen Typ?

```
map f [] = []
map f (c:cs) = f c : map f cs
```

► Was ist der Typ des ersten Arguments?

```
map f [] = []
map f (c:cs) = f c : map f cs
```

- ► Was ist der Typ des ersten Arguments?
 - \blacktriangleright Eine Funktion mit beliebigen Definitions- und Wertebereich: $\alpha \rightarrow \beta$
- ► Was ist der Typ des zweiten Arguments?

```
map f [] = []
map f (c:cs) = f c : map f cs
```

- ► Was ist der Typ des ersten Arguments?
 - **Eine Funktion mit beliebigen Definitions- und Wertebereich**: $\alpha \rightarrow \beta$
- ► Was ist der Typ des zweiten Arguments?
 - \triangleright Eine Liste, auf deren Elemente die Funktion f angewant wird: $[\alpha]$
- ► Was ist der Ergebnistyp?

```
map f [] = []
map f (c:cs) = f c : map f cs
```

- ► Was ist der Typ des ersten Arguments?
 - \blacktriangleright Eine Funktion mit beliebigen Definitions- und Wertebereich: $\alpha \rightarrow \beta$
- ► Was ist der Typ des zweiten Arguments?
 - \triangleright Eine Liste, auf deren Elemente die Funktion f angewant wird: $[\alpha]$
- ► Was ist der Ergebnistyp?
 - \blacktriangleright Eine Liste von Elementen aus dem Wertebereich von f: [β]
- ► Alles zusammengesetzt:

```
map f [] = []
map f (c:cs) = f c : map f cs
```

- ► Was ist der Typ des ersten Arguments?
 - \blacktriangleright Eine Funktion mit beliebigen Definitions- und Wertebereich: $\alpha \rightarrow \beta$
- ► Was ist der Typ des zweiten Arguments?
 - \triangleright Eine Liste, auf deren Elemente die Funktion f angewant wird: $[\alpha]$
- ► Was ist der Ergebnistyp?
 - \triangleright Eine Liste von Elementen aus dem Wertebereich von f: [β]
- ► Alles zusammengesetzt:

```
map :: (\alpha \rightarrow \beta) \rightarrow [\alpha] \rightarrow [\beta]
```

Was zum Selberdenken.

Die konstante Funktion ist

```
const :: \alpha \rightarrow \beta \rightarrow \alpha const c _ = c
```

Übung 5.1: Was macht diese Funktion?

```
mystery xs = sum (map (const 1) xs)
```

Was zum Selberdenken.

Die konstante Funktion ist

```
Übung 5.1: Was macht diese Funktion?
```

```
mystery xs = sum (map (const 1) xs)
```

Lösung: Betrachten wir eine Beispiel-Auswertung:

```
sum (map (const 1) []) \rightsquigarrow sum [] \rightsquigarrow 0
sum (map (const 1) [True, False, True]) \rightsquigarrow sum [1,1,1] \rightsquigarrow 3
sum (map (const 1) "foobaz") \rightsquigarrow sum ([1,1,1,1,1,1]) \rightsquigarrow 6
```

Was zum Selberdenken.

Die konstante Funktion ist

```
\begin{array}{lll} \operatorname{const} & :: & \alpha \rightarrow & \beta \rightarrow & \alpha \\ \operatorname{const} & \operatorname{c} & \_ & = & \operatorname{c} \end{array}
```

```
Übung 5.1: Was macht diese Funktion?
```

```
mystery xs = sum (map (const 1) xs)
```

Lösung: Betrachten wir eine Beispiel-Auswertung:

```
sum (map (const 1) []) \rightsquigarrow sum [] \rightsquigarrow 0
sum (map (const 1) [True, False, True]) \rightsquigarrow sum [1,1,1] \rightsquigarrow 3
sum (map (const 1) "foobaz") \rightsquigarrow sum ([1,1,1,1,1,1]) \rightsquigarrow 6
```

Die mysteriöse Funktion berechnet die Länge der Liste xs!

II. Map und Filter

- ▶ map wendet Funktion auf alle Elemente an
- ► Signatur:

```
map :: (\alpha \rightarrow \beta) \rightarrow [\alpha] \rightarrow [\beta]

map f [] = []

map f (c:cs) = f c : map f cs
```

Auswertung:

toL "AB"

- ▶ map wendet Funktion auf alle Elemente an
- Signatur:

```
map :: (\alpha \rightarrow \beta) \rightarrow [\alpha] \rightarrow [\beta]

map f [] = []

map f (c:cs) = f c : map f cs
```

```
toL "AB" → map toLower ('A':'B':[])
```


- ▶ map wendet Funktion auf alle Elemente an
- ► Signatur:

```
map :: (\alpha \rightarrow \beta) \rightarrow [\alpha] \rightarrow [\beta]
map f [] = []
map f (c:cs) = f c : map f cs
```

Auswertung:

```
toL "AB" → map toLower ('A':'B':[])

→ toLower 'A': map toLower ('B':[])
```

 $\begin{bmatrix} x_1 \\ f \\ \end{bmatrix} \begin{bmatrix} x_2 \\ f \\ \end{bmatrix} \begin{bmatrix} x_3 \\ f \\ \end{bmatrix} \begin{bmatrix} x_4 \\ f \\ \end{bmatrix}$ $\begin{bmatrix} y_1 \\ y_2 \\ \end{bmatrix} \begin{bmatrix} y_2 \\ y_3 \\ \end{bmatrix} \begin{bmatrix} y_4 \\ \end{bmatrix}$

- ▶ map wendet Funktion auf alle Elemente an
- ► Signatur:

```
map :: (\alpha \rightarrow \beta) \rightarrow [\alpha] \rightarrow [\beta]
map f [] = []
map f (c:cs) = f c : map f cs
```

```
toL "AB" → map toLower ('A':'B':[])

→ toLower 'A': map toLower ('B':[])

→ 'a':map toLower ('B':[])
```


- ▶ map wendet Funktion auf alle Elemente an
- ► Signatur:

```
map :: (\alpha \rightarrow \beta) \rightarrow [\alpha] \rightarrow [\beta]
map f [] = []
map f (c:cs) = f c : map f cs
```

Auswertung:

```
toL "AB" → map toLower ('A':'B':[])

→ toLower 'A': map toLower ('B':[])

→ 'a':map toLower ('B':[])

→ 'a':toLower 'B':map toLower []
```

 $\begin{bmatrix} x_1 \\ f \downarrow \end{bmatrix} \begin{bmatrix} x_2 \\ f \downarrow \end{bmatrix} \begin{bmatrix} x_3 \\ f \downarrow \end{bmatrix} \begin{bmatrix} x_4 \\ f \downarrow \end{bmatrix}$ $\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} \begin{bmatrix} y_3 \\ y_4 \end{bmatrix}$

- ▶ map wendet Funktion auf alle Elemente an
- ► Signatur:

```
\begin{array}{lll} \text{map} & :: & (\alpha \rightarrow \ \beta) \rightarrow & [\alpha] \rightarrow & [\beta] \\ \text{map f []} & & = \text{[]} \\ \text{map f (c:cs)} & = \text{f c : map f cs} \end{array}
```

```
toL "AB" → map toLower ('A':'B':[])

→ toLower 'A': map toLower ('B':[])

→ 'a':map toLower ('B':[])

→ 'a':toLower 'B':map toLower []

→ 'a':'b':map toLower []
```


- ▶ map wendet Funktion auf alle Elemente an
- ► Signatur:

```
map :: (\alpha \rightarrow \beta) \rightarrow [\alpha] \rightarrow [\beta]
map f [] = []
map f (c:cs) = f c : map f cs
```

```
toL "AB" → map toLower ('A':'B':[])

→ toLower 'A': map toLower ('B':[])

→ 'a':map toLower ('B':[])

→ 'a':toLower 'B':map toLower []

→ 'a':'b':map toLower []

→ 'a':'b':[]
```

- ▶ map wendet Funktion auf alle Elemente an
- Signatur:

```
map :: (\alpha \rightarrow \beta) \rightarrow [\alpha] \rightarrow [\beta]

map f [] = []

map f (c:cs) = f c : map f cs
```

```
toL "AB" → map toLower ('A':'B':[])

→ toLower 'A': map toLower ('B':[])

→ 'a':map toLower ('B':[])

→ 'a':toLower 'B':map toLower []

→ 'a':'b':map toLower []

→ 'a':'b':[] ≡ "ab"
```

- ► Funktionsausdrücke werden symbolisch reduziert
 - ► Keine Änderung

Funktionen als Argumente: filter

► Elemente filtern: filter

filter p[] = []

Signatur:

```
\texttt{filter} \ :: \ (\alpha \rightarrow \ \texttt{Bool}) \rightarrow \ [\alpha] \rightarrow \ [\alpha]
```

Definition

► Beispiel:

```
digits :: String→ String digits = filter isDigit
```

```
\begin{array}{c|cccc}
x_1 & x_2 & x_3 & x_4 \\
p \downarrow & p \downarrow & p \downarrow & p \downarrow \\
\hline
x_1 & x_2 & x_4 \\
\end{array}
```

Beispiel filter: Sieb des Erathostenes

Für jede gefundene Primzahl *p* alle Vielfachen heraussieben:

ightharpoonup "Sieb": es werden alle q gefiltert mit mod q p \neq 0

Beispiel filter: Sieb des Erathostenes

- ightharpoonup Es werden alle q gefiltert mit mod q p \neq 0
- ▶ Namenlose (anonyme) Funktion $\lambda q \rightarrow \text{mod } q p \neq 0$

```
sieve :: [Integer] 	o [Integer] sieve (p:ps) = p: sieve (filter (\lambda q 	o q 'mod' p \neq 0) ps)
```

▶ Damit (NB: kleinste Primzahl ist 2):

```
primes :: [Integer]
primes = sieve [2..]
```

Beispiel filter: Sieb des Erathostenes

- ► Es werden alle q gefiltert mit mod q p \neq 0
- ▶ Namenlose (anonyme) Funktion $\lambda q \rightarrow \mod q \ p \neq 0$

```
sieve :: [Integer] \rightarrow [Integer] sieve (p:ps) = p: sieve (filter (\lambda q \rightarrow q 'mod' p \neq 0) ps)
```

▶ Damit (NB: kleinste Primzahl ist 2):

```
primes :: [Integer]
primes = sieve [2..]
```

Primzahlzählfunktion $\pi(n)$:

```
pcf :: Integer\rightarrow Int
pcf n = length (takeWhile (\lambdam\rightarrow m< n) primes)
```

Primzahltheorem:

$$\lim_{n\to\infty}\frac{\pi(n)}{n/\log n}=1$$

Jetzt seit ihr dran...

Für das Palindrom hatten wir eine Funktion clean definiert:

```
clean :: String→ String
clean[] = []
clean (s:xs) | isAlphaNum s = toLower s : clean xs
              otherwise = clean xs
```

Übung 5.2: Clean refactored

Wie sieht clean mit map und filter (und ohne Rekursion) aus?

Jetzt seit ihr dran...

Für das Palindrom hatten wir eine Funktion clean definiert:

Übung 5.2: Clean refactored

Wie sieht clean mit map und filter (und ohne Rekursion) aus?

Lösung:

```
clean' :: String→ String
clean' xs = map toLower (filter isAlphaNum xs)
```

III. Strukturelle Rekursion

- ► Strukturelle Rekursion: gegeben durch
 - ▶ eine Gleichung für die leere Liste
 - eine Gleichung für die nicht-leere Liste (mit einem rekursiven Aufruf)
- ▶ Beispiel: kasse, inventur, sum, concat, length, (++), ...

sum
$$[4,7,3]$$
 \rightarrow concat $[A, B, C]$ \rightarrow length $[4, 5, 6]$ \rightarrow

- ► Strukturelle Rekursion: gegeben durch
 - ▶ eine Gleichung für die leere Liste
 - eine Gleichung für die nicht-leere Liste (mit einem rekursiven Aufruf)
- ▶ Beispiel: kasse, inventur, sum, concat, length, (++), ...

sum [4,7,3]
$$\rightarrow$$
 4 + 7 + 3 + 0 concat [A, B, C] \rightarrow length [4, 5, 6] \rightarrow

- ► Strukturelle Rekursion: gegeben durch
 - eine Gleichung für die leere Liste
 - eine Gleichung für die nicht-leere Liste (mit einem rekursiven Aufruf)
- ▶ Beispiel: kasse, inventur, sum, concat, length, (++), ...

sum [4,7,3]
$$\rightarrow$$
 4 + 7 + 3 + 0 concat [A, B, C] \rightarrow A $+$ B $+$ C $+$ [] length [4, 5, 6] \rightarrow

- ► Strukturelle Rekursion: gegeben durch
 - eine Gleichung für die leere Liste
 - eine Gleichung für die nicht-leere Liste (mit einem rekursiven Aufruf)
- ▶ Beispiel: kasse, inventur, sum, concat, length, (++), ...

sum [4,7,3]
$$\rightarrow$$
 4 + 7 + 3 + 0 concat [A, B, C] \rightarrow A + B + C+ [] length [4, 5, 6] \rightarrow 1+ 1+ 1+ 0

► Allgemeines Muster:

```
f[] = e
f(x:xs) = x \otimes f xs
```

- ► Parameter der Definition:
 - Startwert (für die leere Liste) e :: β
 - ▶ Rekursionsfunktion $\otimes :: \alpha \rightarrow \beta \rightarrow \beta$
- ► Auswertung:

f
$$[x1,..., xn] = x1 \otimes x2 \otimes ... \otimes xn \otimes e$$

▶ **Terminiert** immer (wenn Liste endlich und \otimes , *e* terminieren)

Strukturelle Rekursion durch foldr

- ► Stukturelle Rekursion
 - Basisfall: leere Liste
 - ▶ Rekursionsfall: Kombination aus Listenkopf und Rekursionswert
- Signatur

foldr ::
$$(\alpha \rightarrow \beta \rightarrow \beta) \rightarrow \beta \rightarrow [\alpha] \rightarrow \beta$$

Definition

Beispiele: foldr

Summieren von Listenelementen.

```
 \begin{array}{lll} \mathtt{sum} & :: & [\mathtt{Int}] \rightarrow & \mathtt{Int} \\ \mathtt{sum} & \mathtt{xs} = \mathtt{foldr} & (\texttt{+}) & \mathtt{0} & \mathtt{xs} \end{array}
```

► Flachklopfen von Listen.

```
concat :: [[a]] \rightarrow [a]
concat xs = foldr (\#)[] xs
```

▶ Länge einer Liste

```
length :: [a]\rightarrow Int length xs = foldr (\lambdax n\rightarrow n+ 1) 0 xs
```

Beispiele: foldr

► Konjunktion einer Liste

```
and :: [Bool] \rightarrow Bool
and xs = foldr (&&) True xs
```

► Konjunktion von Prädikaten

```
all :: (\alpha \rightarrow Bool) \rightarrow [\alpha] \rightarrow Bool all p xs = and (map p xs)
```

Kasse alt:

```
kasse :: Einkaufskorb→ Int
kasse (Ekwg ps) = kasse' ps where
  kasse' [] = 0
  kasse' (p: ps) = cent p+ kasse' ps
```

Kasse neu:

```
kasse' :: Einkaufskorb
ightarrow Int kasse' (Ek ps) = foldr (\lambdap ps
ightarrow cent p+ ps) 0 ps
```

Besser:

```
kasse :: Einkaufskorb\rightarrow Int kasse (Ek ps) = sum (map cent ps)
```

► Inventur alt:

```
inventur :: Lager → Int
inventur (Lager ps) = inventur' ps where
inventur' [] = 0
inventur' (p: ps) = cent p+ inventur' ps
```

► Suche nach einem Artikel neu:

```
inventur :: Lager \rightarrow Int inventur (Lager 1) = sum (map cent 1)
```

Suche nach einem Artikel alt:

Suche nach einem Artikel neu:

```
suche :: Artikel\to Lager\to Maybe Menge

suche a (Lager ps) =

listToMaybe (map (\lambda(Posten _ m)\to m)

(filter (\lambda(Posten la ) \to la == a) ps))
```

Kassenbon formatieren neu:

```
kassenbon :: Einkaufskorb→ String

kassenbon ek@(Ek ps) =

"Bob's⊔Aulde⊔Grocery⊔Shoppe\n\n"+

"Artikel⊔⊔⊔⊔⊔⊔⊔⊔⊔⊔⊔⊔Henge⊔⊔⊔⊔⊔Preis\n"+

"-----\n"+

concatMap artikel ps ++

"-----\n"+

"Summe:"+ formatR 31 (showEuro (kasse ek))
```

artikel ∷ Posten→ String

Noch ein Beispiel: rev

Listen umdrehen:

```
rev1 :: [\alpha] \rightarrow [\alpha]

rev1 [] = []

rev1 (x:xs) = rev1 xs + [x]
```

► Mit foldr:

```
rev2 :: [\alpha] \rightarrow [\alpha]
rev2 = foldr (\lambda x xs \rightarrow xs + [x]) []
```

▶ Unbefriedigend: doppelte Rekursion $O(n^2)$!

Iteration mit foldl

▶ foldr faltet von rechts:

```
foldr \otimes [x1,.., xn] e = x1 \otimes x2 (x2 \otimes (...(xn \otimes e)))
```

Iteration mit foldl

▶ foldr faltet von rechts:

foldr
$$\otimes$$
 [x1,.., xn] e = x1 \otimes x2 (x2 \otimes (...(xn \otimes e)))

Warum nicht andersherum?

$$\texttt{foldl} \, \otimes \, \texttt{[x1,.., xn]} \, \ \texttt{e} = \texttt{(((e \otimes \texttt{x1}) \otimes \texttt{x2).)} \otimes \texttt{xn}}$$

Iteration mit foldl

foldr faltet von rechts:

foldr
$$\otimes$$
 [x1,..., xn] $e = x1 \otimes x2 (x2 \otimes (...(xn \otimes e)))$

► Warum nicht andersherum?

foldl
$$\otimes$$
 [x1,..., xn] e = (((e \otimes x1) \otimes x2).) \otimes xn

▶ Definition von foldl:

fold1 ::
$$(\alpha \to \beta \to \alpha) \to \alpha \to [\beta] \to \alpha$$

fold1 f a [] = a
fold1 f a (x:xs) = fold1 f (f a x) xs

- ▶ foldl ist ein Iterator mit Anfangszustand e. Iterationsfunktion ⊗
- ► Entspricht einfacher Iteration (for-Schleife)

Beispiel: rev revisited

Listenumkehr endrekursiv:

```
rev3 :: [\alpha] \rightarrow [\alpha]

rev3 xs = rev0 xs [] where

rev0 [] ys = ys

rev0 (x:xs) ys = rev0 xs (x:ys)
```

Listenumkehr durch falten von links:

```
rev4 :: [\alpha] \rightarrow [\alpha]

rev4 = foldl (\lambdaxs x \rightarrow x: xs) []

rev5 :: [\alpha] \rightarrow [\alpha]

rev5 = foldl (flip (:)) []
```

Nur noch eine Rekursion O(n)!

foldr vs. foldl

ightharpoonup f = foldr \otimes e entspricht

$$f[] = e$$
 $f(x:xs) = x \otimes f xs$

- Nicht-strikt in xs, z.B. and, or
- Konsumiert nicht immer die ganze Liste
- Auch für unendliche Listen anwendbar
- ightharpoonup f = foldl \otimes e entspricht

```
f xs = g e xs where

g a [] = a

g a (x:xs) = g (a \otimes x) xs
```

- ► Effizient (endrekursiv) und strikt in xs
- ► Konsumiert immer die ganze Liste
- Divergiert immer für unendliche Listen

Wann ist foldl = foldr?

Definition (Monoid)

 (\otimes, e) ist ein **Monoid** wenn

$$e \otimes x = x$$

 $x \otimes e = x$

$$(x \otimes y) \otimes z = x \otimes (y \otimes z)$$

(Neutrales Element links)
(Neutrales Element rechts)
(Assoziativät)

Theorem

Wenn (\otimes, e) Monoid und \otimes strikt, dann gilt für alle e, xs

$$foldl \otimes e \ xs = foldr \otimes e \ xs$$

- ▶ Beispiele: concat, sum, product, length, reverse
- ► Gegenbeispiel: all, any (nicht-strikt)

Übersicht: vordefinierte Funktionen auf Listen II

```
map :: (\alpha \rightarrow \beta) \rightarrow [\alpha] \rightarrow [\beta]
                                                                         — Auf alle Flemente anwenden
filter :: (\alpha \rightarrow Bool) \rightarrow [\alpha] \rightarrow [\alpha]
                                                                         — Flemente filtern
foldr :: (\alpha \rightarrow \beta \rightarrow \beta) \rightarrow \beta \rightarrow [\alpha] \rightarrow \beta
                                                                         — Falten von rechts
foldl :: (\beta \rightarrow \alpha \rightarrow \beta) \rightarrow \beta \rightarrow [\alpha] \rightarrow \beta
                                                                         — Falten von links
mapConcat :: (\alpha \rightarrow [\beta]) \rightarrow [\alpha] \rightarrow [\beta]
                                                                         — map und concat
takeWhile :: (\alpha \rightarrow Bool) \rightarrow [\alpha] \rightarrow [\alpha]
                                                                         — längster Prefix mit p
dropWhile :: (\alpha \rightarrow Bool) \rightarrow [\alpha] \rightarrow [\alpha]
                                                                         — Rest von takeWhile
span :: (\alpha \rightarrow Bool) \rightarrow [\alpha] \rightarrow ([\alpha], [\alpha])
                                                                         — takeWhile und dropWhile
                                                                         — Argument gilt für alle
all :: (\alpha \to Bool) \to [\alpha] \to Bool
any :: (\alpha \rightarrow Bool) \rightarrow [\alpha] \rightarrow Bool
                                                                         — Argument gilt mind. einmal
elem :: (Eq \alpha) \Rightarrow \alpha \rightarrow [\alpha] \rightarrow Bool — Ist Element enthalten?
zipWith :: (\alpha \to \beta \to \gamma) \to [\alpha] \to [\beta] \to [\gamma] — verallgemeinertes zip
```

► Mehr: siehe Data.List

PI3 WS 20/21 32 [39]

Jetzt seit ihr dran!

Übung 5.3: elem selbstgemacht

Wie könnte die vordefinierte Funktion

elem :: (Eq α) \Rightarrow α \rightarrow [α] \rightarrow Bool

definiert sein?

Jetzt seit ihr dran!

Übung 5.3: elem selbstgemacht

Wie könnte die vordefinierte Funktion

elem :: (Eq
$$\alpha$$
) \Rightarrow α \rightarrow [α] \rightarrow Bool

definiert sein?

Lösung: Eine Möglichkeit:

```
elem x xs = not (null (filter (\lambda y \rightarrow x = y) xs))
```

Jetzt seit ihr dran!

Übung 5.3: elem selbstgemacht

Wie könnte die vordefinierte Funktion

elem :: (Eq
$$\alpha$$
) \Rightarrow α \rightarrow [α] \rightarrow Bool

definiert sein?

Lösung: Eine Möglichkeit:

elem x xs = not (null (filter (
$$\lambda y \rightarrow$$
 x == y) xs))

oder auch

elem
$$x = not \circ null \circ filter (x ==)$$

IV. Funktionen Höherer Ordnung

Funktionen als Argumente: Funktionskomposition

► Funktionskomposition (mathematisch)

(o) ::
$$(\beta \rightarrow \gamma) \rightarrow (\alpha \rightarrow \beta) \rightarrow \alpha \rightarrow \gamma$$

(f o g) x = f (g x)

- Vordefiniert
- Lies: f nach g
- ► Funktionskomposition vorwärts:

(>.>) ::
$$(\alpha \rightarrow \beta) \rightarrow (\beta \rightarrow \gamma) \rightarrow \alpha \rightarrow \gamma$$

(f >.> g) $x = g$ (f x)

► Nicht vordefiniert

η -Kontraktion

- ">.> ist dasselbe wie o nur mit vertauschten Argumenten"
- ► Vertauschen der **Argumente** (vordefiniert):

flip ::
$$(\alpha \rightarrow \beta \rightarrow \gamma) \rightarrow \beta \rightarrow \alpha \rightarrow \gamma$$

flip f b a = f a b

η -Kontraktion

- ">.> ist dasselbe wie o nur mit vertauschten Argumenten"
- ► Vertauschen der **Argumente** (vordefiniert):

flip ::
$$(\alpha \rightarrow \beta \rightarrow \gamma) \rightarrow \beta \rightarrow \alpha \rightarrow \gamma$$

flip f b a = f a b

▶ Damit Funktionskomposition vorwärts:

(>.>) ::
$$(\alpha \rightarrow \beta) \rightarrow (\beta \rightarrow \gamma) \rightarrow \alpha \rightarrow \gamma$$

(>.>) = flip (o)

▶ Da fehlt doch was?!

η -Kontraktion

- ">.> ist dasselbe wie o nur mit vertauschten Argumenten"
- Vertauschen der Argumente (vordefiniert):

flip ::
$$(\alpha \rightarrow \beta \rightarrow \gamma) \rightarrow \beta \rightarrow \alpha \rightarrow \gamma$$

flip f b a = f a b

► Damit Funktionskomposition vorwärts:

(>.>) ::
$$(\alpha \rightarrow \beta) \rightarrow (\beta \rightarrow \gamma) \rightarrow \alpha \rightarrow \gamma$$

(>.>) = flip (0)

► Da fehlt doch was?! Nein:

$$(>.>)$$
 f g a = flip (\circ) f g a \equiv $(>.>)$ = flip (\circ)

► Warum?

η -Äquivalenz

Sei f eine Funktion $f: A \rightarrow B$, dann gilt $f = \lambda x$. $f \times A$

- ► In Haskell:η-Kontraktion
 - **b** Bedingung: Ausdruck E :: $\alpha \rightarrow \beta$, Variable x :: α , E darf x nicht enthalten

$$\lambda x \rightarrow E x \equiv E$$

Spezialfall Funktionsdefinition (punktfreie Notation)

$$f x = E x \equiv f = E$$

- ► Hier:
 - (>.>) f g a = flip (\circ) f g a \equiv (>.>) f g a = flip (\circ) f g a

η -Äquivalenz

Sei f eine Funktion $f: A \rightarrow B$, dann gilt $f = \lambda x. f x$

- ► In Haskell:η-Kontraktion
 - **Bedingung:** Ausdruck E :: $\alpha \rightarrow \beta$, Variable x :: α , E darf x nicht enthalten

$$\lambda x \rightarrow E x \equiv E$$

Spezialfall Funktionsdefinition (punktfreie Notation)

$$f x = E x \equiv f = E$$

► Hier:

(>.>) f g a = flip (
$$\circ$$
) f g a \equiv (>.>) f g = flip (\circ) f g

η -Äquivalenz

Sei f eine Funktion $f: A \rightarrow B$, dann gilt $f = \lambda x. f x$

- ▶ In Haskell: η -Kontraktion
 - **b** Bedingung: Ausdruck E :: $\alpha \rightarrow \beta$, Variable x :: α , E darf x nicht enthalten

$$\lambda x \rightarrow E x \equiv E$$

Spezialfall Funktionsdefinition (punktfreie Notation)

$$f x = E x \equiv f = E$$

- ► Hier:
 - (>.>) f g a = flip (\circ) f g a \equiv (>.>) f = flip (\circ) f

η -Äquivalenz

Sei f eine Funktion $f: A \rightarrow B$, dann gilt $f = \lambda x. f x$

- ▶ In Haskell: η -Kontraktion
 - **Bedingung:** Ausdruck E :: $\alpha \rightarrow \beta$, Variable x :: α , E darf x nicht enthalten

$$\lambda x \rightarrow E x \equiv E$$

Spezialfall Funktionsdefinition (punktfreie Notation)

$$f x = E x \equiv f = E$$

► Hier:

$$(>.>)$$
 f g a = flip (\circ) f g a \equiv $(>.>)$ = flip (\circ)

Partielle Applikation

► Funktionskonstruktor rechtsassoziativ:

$$\alpha \rightarrow \beta \rightarrow \gamma \equiv \alpha \rightarrow (\beta \rightarrow \gamma)$$

- ▶ Inbesondere: $(\alpha \rightarrow \beta) \rightarrow \gamma \neq \alpha \rightarrow (\beta \rightarrow \gamma)$
- ► Funktionsanwendung ist linksassoziativ:

$$f a b \equiv (f a) b$$

▶ Inbesondere: f (a b) \neq (f a) b

Partielle Applikation

► Funktionskonstruktor rechtsassoziativ:

$$\alpha \rightarrow \beta \rightarrow \gamma \equiv \alpha \rightarrow (\beta \rightarrow \gamma)$$

- ▶ Inbesondere: $(\alpha \rightarrow \beta) \rightarrow \gamma \neq \alpha \rightarrow (\beta \rightarrow \gamma)$
- ► Funktionsanwendung ist linksassoziativ:

$$f a b \equiv (f a) b$$

- ▶ Inbesondere: f (a b) \neq (f a) b
- Partielle Anwendung von Funktionen:
 - ightharpoonup Für f :: $\alpha
 ightharpoonup \beta
 ightharpoonup \gamma$, x :: α ist f x :: $\beta
 ightharpoonup \gamma$
- Beispiele:
 - ▶ map toLower:: String→ String
 - ▶ (3 ==) :: Int→ Bool
 - ▶ concat \circ map (replicate 2) :: String \rightarrow String

Zusammenfassung

- ► Funktionen höherer Ordnung
 - ► Funktionen als gleichberechtigte Objekte und Argumente
 - ► Spezielle Funktionen höherer Ordnung: map, filter, fold und Freunde
- Formen der Rekursion:
 - ► Strukturelle Rekursion entspricht foldr
 - ► Iteration entspricht foldl
- Partielle Applikation, η -Äquivalenz, namenlose Funktionen
- ▶ Nächste Woche: Rekursive und zyklische Datenstrukturen