1. (000061) 填空题:

- 数 $y=a^x(a>0$ 且 $a\neq 1$) 的图像上,则该指数函数的表达式为_______; 若点 $(\sqrt{2},2)$ 在对数函数 $y = \log_a x (a > 0$ 且 $a \neq 1)$ 的图像上,则该对数函数的表达式为_____.
- (2) 若幂函数 $y = x^k$ 在区间 $(0, +\infty)$ 上是严格减函数, 则实数 k 的取值范围为_____.
- (3) 已知常数 a>0 且 $a\neq 1$, 假设无论 a 为何值, 函数 $y=a^{x-2}+1$ 的图像恒经过一个定点. 则这个点的坐 标为_____.

2. (000062) 选择题:

(1) 若指数函数 $y = a^x(a > 0$ 且 $a \neq 1$) 在 R 上是严格减函数, 则下列不等式中, 一定能成立的是 ().

B. a < 0

C. a(a-1) < 0

D. a(a-1) > 0

(2) 在同一平面直角坐标系中, 一次函数 y = x + a 与对数函数 $y = \log_a x (a > 0$ 且 $a \neq 1)$ 的图像关系可能

3. (000063) 求下列函数的的定义域:

- (1) $y = (x-1)^{\frac{5}{2}}$;
- (2) $y = 3^{\sqrt{x-1}}$;
- (3) $y = \lg \frac{1+x}{1-x}$
- 4. (000065) 设点 $(\sqrt{2},2)$ 在幂函数 $y_1=x^a$ 的图像上,点 $(-2,\frac{1}{4})$ 在幂函数 $y_2=x^b$ 的图像上. 当 x 取何值时, $y_1 = y_2$?

5. (000069) 填空题:

- (1) 已知 $m \in \mathbf{Z}$, 设幂函数 $y = x^{m^2 4m}$ 的图像关于原点成中心对称, 且与 x 轴及 y 轴均无交点, 则 m 的值
- (2) 设 a、b 为常数, 若 0 < a < 1, b < -1, 则函数 $y = a^x + b$ 的图像必定不经过第 象限.

6. (000070) 选择题:

(1) 若 m > n > 1, 而 0 < x < 1, 则下列不等式正确的是 (

A. $m^x < n^x$

B. $x^{m} < x^{n}$

C. $\log_x m > \log_x n$ D. $\log_m x < \log_n x$

(2) 在同一平面直角坐标系中, 二次函数 $y = ax^2 + bx$ 与指数函数 $y = (\frac{b}{a})^x$ 的图像关系可能为 ().

7. (000072) 在同一平面直角坐标系中,作出函数 $y=(\frac{1}{2})^x$ 及 $y=x^{\frac{1}{2}}$ 的大致图像,并求方程 $(\frac{1}{2})^x=x^{\frac{1}{2}}$ 的解的个数.

- 8. (000076) 求函数 $y = \frac{1}{2-x} + \sqrt{x^2-1}$ 的定义域.
- 9. (000080) 分别作出下列函数的大致图像, 并指出它们的单调区间:
 - (1) $y = |x^2 4x|$;
 - (2) y = 2|x| 3.
- 10. (000083) 邮局规定: 当邮件质量不超过 100g 时,每 20g 邮费 0.8 元,且不足 20g 时按 20g 计算;超过 100g 时,超过 100g 的部分按每 100g 邮费 2 元计算,且不足 100g 按 100g 计算;同时规定邮件总质量不得超过 2000g.请写出邮费关于邮件质量的函数表达式,并计算 50g 和 500g 的邮件分别收多少邮费.
- 11. (000084) 若函数 $y = (a^2 + 4a 5)x^2 4(a 1)x + 3$ 的图像都在 x 轴上方 (不含 x 轴), 求实数 a 的取值范围.
- 12. (000085) 已知 y = f(x) 是奇函数, 其定义域为 \mathbf{R} ; 而 y = g(x) 是偶函数, 其定义域为 D. 判断函数 y = f(x)g(x) 的奇偶性, 并说明理由.
- 13. (000092) 作出函数 $y = (x^2 1)^2 1$ 的大致图像, 写出它的单调区间, 并证明你的结论.
- 14. (000094) 设函数 $y = f(x), x \in \mathbf{R}$ 的反函数是 $y = f^{-1}(x)$.
 - (1) 如果 y = f(x) 是奇函数, 那么 $y = f^{-1}(x)$ 的奇偶性如何?
 - (2) 如果 y=f(x) 在定义域上是严格增函数, 那么 $y=f^{-1}(x)$ 的单调性如何?
- 15. (000330) 若函数 $f(x) = \log_2 \frac{x-a}{x+1}$ 的反函数的图像过点 (-2,3), 则 a =______.
- $16. \ {}_{\tiny{(000342)}}$ 若函数 $f(x) = \begin{cases} 2^x, & x \leq 0, \\ -x^2 + m, & x > 0 \end{cases}$ 的值域为 $(-\infty,1]$, 则实数 m 的取值范围是______.
- 17. (000349) 若函数 $f(x) = \log_2(x+1) + a$ 的反函数的图像经过点 (4,1), 则实数 a =_____.
- 18. (000355) 有以下命题:
 - ① 若函数 f(x) 既是奇函数又是偶函数,则 f(x) 的值域为 $\{0\}$;
 - ② 若函数 f(x) 是偶函数, 则 f(|x|) = f(x);
 - ③ 若函数 f(x) 在其定义域内不是单调函数,则 f(x) 不存在反函数;
 - ④ 若函数 f(x) 存在反函数 $f^{-1}(x)$, 且 $f^{-1}(x)$ 与 f(x) 不完全相同, 则 f(x) 与 $f^{-1}(x)$ 图像的公共点必在直线 y=x 上;

其中真命题的序号是____(写出所有真命题的序号).

- 19. (000381) 若点 (8,4) 在函数 $f(x) = 1 + \log_a x$ 图像上,则 f(x) 的反函数为______.
- 20. (000388) 已知函数 $f(x) = a^x 1$ 的图像经过 (1,1) 点,则 $f^{-1}(3) =$ _____.
- 21. (000450) 函数 $f(x) = 2^x + m$ 的反函数为 $y = f^{-1}(x)$, 且 $y = f^{-1}(x)$ 的图像过点 Q(5,2), 那么 m =______
- 22. (000472) 若函数 $f(x)=x^a$ 的反函数的图像经过点 $(\frac{1}{2},\frac{1}{4}),$ 则 a=______.
- 23. (000486) 函数 $f(x) = \lg(2-x)$ 的定义域是______.
- 24. (000498) 已知幂函数的图像过点 $(2,\frac{1}{4})$, 则该幂函数的单调递增区间是______.
- 25. (000520) 已知函数 $f(x) = a \cdot 2^x + 3 a \ (a \in \mathbf{R})$ 的反函数为 $y = f^{-1}(x)$, 则函数 $y = f^{-1}(x)$ 的图像经过的定点的坐标为______.
- 26. (000567) 函数 $f(x) = \sqrt{1 \lg x}$ 的定义域为_____
- 27. (000582) 数列 $\{a_n\}$ 的前 n 项和为 S_n , 若点 (n,S_n) $(n\in \mathbb{N}^*)$ 在函数 $y=\log_2(x+1)$ 的反函数的图像上,则 $a_n=$ ______.
- 28. (000590) 已知函数 $f(x) = 1 + \log_a x$, $y = f^{-1}(x)$ 是函数 y = f(x) 的反函数, 若 $y = f^{-1}(x)$ 的图像过点 (2,4), 则 a 的值为______.
- 29. (000607) 函数 $y = \log_2(1 \frac{1}{x})$ 的定义域为_____.
- 30. (000634) 若函数 $f(x) = 4^x + 2^{x+1}$ 的图像与函数 y = g(x) 的图像关于直线 y = x 对称, 则 g(3) =______
- 31. (000646) 函数 $y = \sqrt{2x x^2}$ 的定义域是 .
- 32. (000655) 若将函数 $f(x)=|\sin(\omega x-\frac{\pi}{8})|$ $(\omega>0)$ 的图像向左平移 $\frac{\pi}{12}$ 个单位后,所得图像对应的函数为偶函数,则 ω 的最小值是______.
- 33. $_{(000675)}$ 已知定义在 R 上的函数 f(x) 满足: ① f(x)+f(2-x)=0; ② f(x)-f(-2-x)=0; ③ 在 [-1,1] 上的表达式为 $f(x)=\begin{cases} \sqrt{1-x^2}, & x\in[-1,0],\\ 1-x, & x\in(0,1] \end{cases}$,则函数 f(x) 与函数 $g(x)=\begin{cases} 2^x, & x\leq0,\\ \log_{\frac{1}{2}}x, & x>0 \end{cases}$ 的图像在区间 [-3,3] 上的交点的个数为______.
- 34. (000715) 设奇函数 f(x) 的定义域为 \mathbf{R} , 当 x>0 时, $f(x)=x+\frac{m^2}{x}-1$ (这里 m 为正常数). 若 $f(x)\leq m-2$ 对一切 $x\leq 0$ 成立, 则 m 的取值范围为______.
- 35. (000738) 函数 $f(x) = \lg(3^x 2^x)$ 的定义域为______
- 36. (000758) 若函数 $f(x) = \sqrt{8 ax 2x^2}$ 是偶函数, 则该函数的定义域是_____.
- 37. (000778) 函数 $y = \sqrt{\lg(x+2)}$ 的定义域为_____.
- 38. (000845) 已知函数 $f(x) = \lg(\sqrt{x^2 + 1} + ax)$ 的定义域为 R, 则实数 a 的取值范围是______.

- $39._{(000851)}$ 已知函数 $f(x) = \frac{3x+1}{x+a} \; (a
 eq \frac{1}{3})$ 的图像与它的反函数的图像重合,则实数 a 的值为______.
- 40. (000859) 设 a>0 且 $a\neq 1$, 若函数 $f(x)=a^{x-1}+2$ 的反函数的图像经过定点 P, 则点 P 的坐标是_____
- 41. (000868) 函数 $f(x) = \frac{\sqrt{x+2}}{x-1}$ 的定义域为_____.
- 42. (000931) 函数 $y = \log_3(x-1)$ 的定义域是
- 43. (000949) 已知函数 $f(x) = x^3 + \lg(\sqrt{x^2 + 1} + x)$, 若 f(x) 的定义域中的 a、b 满足 f(-a) + f(-b) 3 =f(a) + f(b) + 3, $\mathbf{M} f(a) + f(b) = ____.$
- 44. (000954) 函数 $y = \sqrt{2^x 1}$ 的定义域是_____(用区间表示).
- 45. (000961) 已知函数 $f(x) = 2^x a \cdot 2^{-x}$ 的反函数是 $f^{-1}(x)$, $f^{-1}(x)$ 在定义域上是奇函数, 则正实数 a =_____.
- 46. (001160) 已知函数 f(x) = 3x + 5, $x \in \mathbb{R}$, 求 f(-1), f(10), f(a), $f(a^2 + 1)$. 并写出函数 y = f(f(x)) 的定义域, 对应法则以及值域.
- 47. (001161) 下列两个函数是同一个函数的有_____.

(1)
$$y = \frac{x^2 - 1}{x - 1} = y = x + 1;$$

(2)
$$y = \frac{x^3}{x} + y = x^2;$$

(3)
$$y = \sqrt{x^2 - 1} = y = \sqrt[3]{x^3 - 1}$$
;

(4)
$$f(x) = x^2 - 2x - 1 + g(t) = t^2 - 2t - 1;$$

48. (001164) 写出下列函数的定义域 (写在对应关系的右边):

$$(1) \ f(x) = \frac{3}{x^2 - 3x + 2}$$

(1)
$$f(x) = \frac{6}{x^2 - 3x + 2}$$
;
(2) $f(x) = \frac{3x - 1}{2x^3 + 4x^2 + x - 7}$;
(3) $f(x) = \frac{\sqrt[3]{4x + 8}}{\sqrt{3x - 2}}$;
(4) $f(x) = \sqrt{2x - 1} + \sqrt{1 - 2x} + 4$;

(3)
$$f(x) = \frac{\sqrt[3]{4x+8}}{\sqrt{3x-2}};$$

(4)
$$f(x) = \sqrt{2x - 1} + \sqrt{1 - 2x} + 4$$

(5)
$$f(x) = \sqrt{x^2 - 4}$$
;

(6)
$$f(x) = \frac{\sqrt{2x+1}}{x-3}$$
.

(2) 函数
$$f(x) = -x, x \in [-1,0)$$
 的值域为______;

(3) 函数
$$f(x) = \begin{cases} x^2, & 0 \le x \le 1, \\ -x, & -1 \le x < 0. \end{cases}$$
 的值域为______.

- 50. (001166) 函数 $f(x) = \sqrt{kx^2 + 4kx + 3}$ 的定义域为 R, 求实数 k 的取值范围.
- 51. (001167) 求函数 $y = x^3 + 1$ 的值域 (要详细过程).

52. (001173) 在以下坐标系中分别作出下列函数的图像 (用铅笔, 要求清晰, 交代关键信息):

$$(1) y = \sqrt{|x|};$$

(2) y = |x - 1| - |x + 1|;

(3)
$$y = x - [x];$$

(4)
$$y = x + \frac{1}{x}$$
;

(5)
$$y = x - \frac{1}{x}$$
;

(6) $y = \frac{6x}{1+x^2}$.

53. (001174) 某种茶杯每个 0.5 元, 买 x 个茶杯的钱数为 y 元. 画出 y 关于 x 的函数的图像.

- 54. (001175) 证明: 函数 $y=\frac{1}{x}$ 的图像关于原点对称(一个图形关于原点对称是指任取该图形上的一点,它关于原点对称所得的点也在该图形上).
- 55. (001176) 求证: 函数 $y=x^3$ 的图像不是一条直线 (本题不能使用斜率的概念).
- 56. (001177) 试求出函数 $y = x^2$ 的图像分别进行如下变换后, 所得的各个图像对应的函数.
 - (1) 向右平移 2 个单位;
 - (2) 向上平移 1 个单位;
 - (3) 先向右平移 2 个单位, 再向上平移 1 个单位;
 - (4) 先向上平移 1 个单位, 再向右平移 2 个单位

- 57. (001178) 试求出函数 $y=\sqrt{x}$ 的图像分别进行如下变换后所得的各个图像对应的函数.
 - (1) 图像上的每一点的横坐标变为原来的 2 倍;
 - (2) 图像上的每一点的纵坐标变为原来的 $\frac{1}{2}$;
 - (3) 图像上的每一点的横坐标变为原来的 2 倍, 然后向上平移 3 个单位, 所得图像上每一点的纵坐标变为原来 的 3 倍, 再向左平移 2 个单位;
 - (4) 向左平移 3 个单位,然后将所得图像上的每一点的横坐标变为原来的 $\frac{1}{2}$,最后向下平移 2 个单位
- 58. (001179) 欲将函数 y = 3x 的图像通过一次平移变为函数 y = 3x 5 的图像, 可向_______ 平移 个单位; 也可向______ 平移_____ 个单位.
- 59. (001180) 欲将函数 $y=x^2$ 的图像通过平移和放缩变为函数 $y=2x^2-4x-1$ 的图像, 所需的步骤依次为: (同时 写出每步变换后所得图像对应的函数)
- 60. (loot1st) 证明: 在平面直角坐标系中, 将函数 $y=f(x), x\in \mathbf{R}$ 的图像绕原点旋转 180° , 得到的是函数 y=f(x) $-f(-x), x \in \mathbf{R}$ 的图像.
- 61. (001182) 在平面直角坐标系中, 将函数 $y = f(x), x \in \mathbf{R}$ 的图像沿直线 x = 1 翻折, 将会得到哪个函数的图像? 试写出这个函数, 并证明.
- 62. (001185) 已知 $f(x) = x^2$, $g(x) = \frac{1}{x}$.
 - (1) $\Re f(x) + g(x), f(x)g(x)$ $\Re \frac{f(x)}{g(x)}$;
 - (2) 求 $f \circ g$ 和 $g \circ f$;
 - (3) 求 $f \circ g g \circ f$,判断它是否在其定义域上恒等于零.
- 63. (001186) 已知 $f(x) = x^2$, $g(x) = \frac{1}{x+1}$.
 - (1) $\Re f(x) + g(x), f(x)g(x)$ $\Re \frac{f(x)}{g(x)};$
 - (2) 求 $f \circ g$ 和 $g \circ f$;
 - (3) 求 $f \circ g g \circ f$, 判断它是否在其定义域上恒等于零.
- 64. (001190) 下列各映射中, 是单射的有_______, 是满射的有______, 存在逆映射的有______
 - ① $f: \{1,2,3\} \to \{1,4,9\}; x \mapsto x^2;$
 - (2) $f: \mathbf{R}^+ \to \mathbf{R}^+; x \mapsto x^2;$
 - (3) $f: \mathbf{R} \to [0, +\infty); x \mapsto x^2;$
 - $\textcircled{4} f: \mathbf{R}^+ \to \mathbf{R}^+; x \mapsto \frac{1}{x};$
 - $5 f: \mathbf{R}^+ \cup \mathbf{R}^- \to \mathbf{R}^+ \cup \mathbf{R}^-; \ x \mapsto \frac{1}{x};$

 - (8) $f: \mathbf{R} \to \mathbf{Z}; x \mapsto [x];$
 - $\mathfrak{G} f: \{(x,y)|x,y \in \mathbf{R}\} \to \{(x,y)|x,y \in \mathbf{R}\}; (x,y) \mapsto (x+y,x-y);$
 - $\mathbb{O} f: \{(x,y)|x,y \in \mathbf{R}\} \to \{(x,y)|x,y \in \mathbf{R}\}; (x,y) \mapsto (x+y,2x+2y).$

- 65. (001192) 写出下列函数的反函数 (注意定义域).
 - (1) $y = -\frac{1}{x} + 3;$
 - (2) $y = \sqrt{2x 1}$;

 - (3) $y = \frac{2x+1}{x+2}$; (4) $y = x^2 + 2$, $x \in [2, +\infty)$;
 - (5) $y = 2^x$, $x \in \{1, 2, 3, 4\}$ (本小题不能使用对数);
 - (6) $y = \sqrt{9 x^2}, \ x \in [-3, 0];$
 - (7) $y = x^2 4x, x \in [3, 7].$
- 66. (001193) 已知函数 y = f(x) 的图像经过 (1,2), 它有反函数 $y = f^{-1}(x)$. 那么函数 $y = f^{-1}(x+3)$ 的图像一定
- 67. (001194) 已知函数 y = f(x) 有反函数, 且 $y = f^{-1}(3x+1)$ 的图像经过点 (0,-1). 试确定函数 y = 5f(x+2)+3的图像一定经过的点,并说明理由.
- 68. (001196) 已知函数 y = f(x) 的图像经过第一, 第二象限, 且它有反函数 $y = f^{-1}(x)$. 那么 $y = f^{-1}(x)$ 的图像一 定经过 象限.
- 69. (001198) 在同一坐标系中通过平移和放缩作出以下函数的图像,并写出变换的方法. $y = |x|; \ y = |x-1|;$ $y = \frac{|x-1|}{2}$; $y = \frac{|x-1|}{2} - 3$; $y = \frac{|2x-1|}{2} - 3$.

- 70. ${}_{(001199)}(1)$ 欲将函数 $y=x^2$ 的图像通过先平移后放缩的方式变为函数 $y=rac{1}{2}x^2+x$ 的图像,所需的步骤依次 为: (同时写出每步变换后所得图像对应的函数)
 - (2) 欲将函数 $y=x^2$ 的图像通过先放缩后平移的方式变为函数 $y=rac{1}{2}x^2+x$ 的图像,所需的步骤依次为: (同 时写出每步变换后所得图像对应的函数)

71. (001200)(1) 欲将函数 $y=\sqrt{x}$ 的图像通过先平移后放缩的方式变为函数 $y=\sqrt{2x-4}$ 的图像, 所需的步骤依次 为: (同时写出每步变换后所得图像对应的函数) (2) 欲将函数 $y = \sqrt{x}$ 的图像通过先放缩后平移的方式变为函数 $y = \sqrt{2x-4}$ 的图像, 所需的步骤依次为: (同时写出每步变换后所得图像对应的函数) 72. (001201) 将函数 $y=\sqrt{x}$ 的图像上的每一点的横坐标变为原来的 3 倍, 然后向右平移 3 个单位, 再沿直线 y=x翻折,则所得图像对应的函数为 73. (001202)[选做] 欲将函数 y = |x-1| + |x+1| 的图像通过平移和放缩变为函数 y = |x-2| + |x-6| 的图像, 所 需的步骤依次为:(同时写出每步变换后所得图像对应的函数,提示: 先把两个函数的图像画在一张草稿纸上 找一下感觉) 74. (001203)[选做] 欲将函数 $y=x+rac{1}{x}$ 的图像通过放缩变为函数 $y=x+rac{4}{x}$ 的图像, 所需的步骤依次为: (同时写 出每步变换后所得图像对应的函数,提示: 先把两个函数的图像画在一张草稿纸上找一下感觉) 75. (001204) 奇函数的图像是否都过原点? 偶函数的图像是否一定和 y 轴相交? 为什么? 76. (001207) 已知 y = f(x), y = g(x) 的定义域均关于原点对称且交集非空, 且 f 与 g 一奇一偶, 证明: y = f(x)g(x)是奇函数. 77. (001213) 已知函数 y = f(x) 与 y = g(x) 的定义域均为 R. ___(1) 如果 y = f(x) 是奇函数, 那么 y = |f(x)| 是偶函数; ____(2) 如果 y = f(x) 是奇函数, 那么 $y = \sqrt[3]{f(x)}$ 是奇函数; ____(3) 如果 y = f(x) 是奇函数, 那么 y = f(|x|) 是奇函数; (4) 如果 y = f(x) 是奇函数, 那么 y = f(|x|) 是偶函数; _(5) 如果 y = f(x) 是奇函数, y = g(x) 是偶函数, 那么 y = f(x)g(x) 是奇函数; (6) 如果 y = f(x) 是奇函数, y = g(x) 不是偶函数, 那么 y = f(x) + 2g(x) 既非奇函数又非偶函数; ____(7) 如果 y = f(x) 不是奇函数, y = g(x) 也不是奇函数, 那么 y = f(x) - g(x) 也不是奇函数; __(8) 如果 y = f(x) 是奇函数, y = g(x) 不是偶函数, 那么 y = f(x) + g(x) 不是偶函数; __(9) 如果 y = f(x) - g(x) 是奇函数, y = g(x) 是奇函数, 那么 y = f(x) 也是奇函数; ____(10) 如果 $y = (f(x))^2$ 是偶函数, 那么 y = f(x) 是偶函数或者是奇函数; (11) 如果 $y = (f(x))^2$ 是奇函数, 那么 y = f(x) 恒等于零, 因此是奇函数也是偶函数; __(12) 如果 $y = (f(x))^3$ 是奇函数, 那么 y = f(x) 是奇函数. 78. (001214) 已知函数 $y = f(x), x \in D_f$ 与 $y = g(x), x \in D_g$ 的定义域交集非空. (1) 如果 y = f(x) 是奇函数, y = g(x) 是奇函数, 那么 $y = f(x) + x^2 g(x)$ 是奇函数; (2) 如果 y = f(x) 是奇函数, y = g(x) 是偶函数, 而且它们都不恒等于零, 那么 y = f(x) + g(x) 既不是 奇函数又不是偶函数;

f(x) + g(x) 既不是奇函数又不是偶函数;

____(3) 如果 y=f(x) 是奇函数, y=g(x) 是偶函数, 而且它们在 $D_f\cap D_g$ 上都不恒等于零, 那么 y=

____(4) 如果 y = f(x) 不是奇函数, y = g(x) 也不是奇函数, 那么 y = f(x) - g(x) 也不是奇函数; (5) 如果 y = |f(x)| 是奇函数, 那么 f(x) 恒等于零; ____(6) 如果 y = f(x) 不是奇函数, 那么 y = |f(x)| 不是偶函数; _____(7) 如果 y = f(x) 是偶函数, 且 y = f(x) + g(x) 也是偶函数, 那么 y = g(x) 也是偶函数. 79. (001215) 已知 $y = f(x), x \in D$ 是偶函数. ____(1) $y = (f(x))^3 + f(x)$ 是偶函数; (2) y = f(2x) 是偶函数; ____(3) y = f(x-1) 的图像关于直线 x = -1 对称; ____(4) y = f(x-1) 的图像关于直线 x = 1 对称; ____(5) y = f(3x+1) 的图像关于直线 $x = -\frac{1}{2}$ 对称; ____(6) y = f(3x + 1) 的图像关于直线 x = -1 对称; (7) $y = f(x^3 + 1)$ 是偶函数; ____(8) $y = f(x^3 + x)$ 是偶函数. 80. (001216) 已知 y = f(x) 是奇函数. (1) y = f(3x) 是奇函数; ____(2) y = f(x-1) + 2 的图像关于点 (1,2) 对称; ____(3) y = 3f(2x - 1) + 6 的图像关于点 (1,6) 对称; ____(4) y = 3f(2x - 1) + 6 的图像关于点 $(\frac{1}{2}, 6)$ 对称; ____(5) y = 3f(2x - 1) + 6 的图像关于点 $(\frac{1}{2}, 2)$ 对称; (6) $y = f(x^2)$ 是偶函数; (7) $y = f^{-1}(x)$ 一定存在; ____(8) $y = f^{-1}(x)$ 如果存在, 则必定是奇函数. 81. (001231) 已知函数 $y=\frac{1}{2}x^2-x+\frac{3}{2}$ 的定义域为 [1,b], 最大值为 b, 最小值为 1. 求 b. 82. (001232) 已知函数 $f(x) = \frac{x^2 + 2x + a}{x}, \ x \in [1, +\infty).$ (1) 当 a=4 时, 求函数的最小值; (2) 如果对一切定义域中的 x, f(x) 均为正数, 求实数 a 的取值范围. 83. (001237) 证明: 函数 $y = x^3 + x, x \in [1, 2]$ 的值域为 [2, 10]84. (001238) 函数 $y = x^2 - 3x + 1$, $x \in [1,4]$ 的值域为_____. 85. (001239) 函数 $y = \frac{2x+3}{x-1}$ 的值域为_____. 86. (001240) 函数 $y = \frac{6x}{x^2 + 1}$ 的值域为_____. 87. (001241) 函数 $y = x^5 + 3x + 1$, $x \in [1,3]$ 的值域为______

88. (001242) 函数 $y = \sqrt{1+x} + 2x$ 的值域为_____.

- 89. (001243) 函数 y = |x-3| |x-10| 的值域为______.
- 90. (001244) 函数 y = |x-3| + |x-10| + |x+1| + |x+2| 的值域为_____.
- 91. (001245) 函数 y = ||x 3| + x| 的值域为_____.
- 92. (001246) 求函数 $y = \frac{x^2 4x + 5}{x^2 x 1}$ 的值域.
- 93. (001247) 已知函数 $y = \sqrt{x} + \sqrt{x+a}$ 的值域为 $[\frac{\sqrt{3}}{2}, +\infty)$, 求实数 a.
- 94. (001248) 求函数 $y = |x-1| + |x-2| + |x-3| + \cdots + |x-20|$ 的值域
- 95. (001249) 求函数 $y = |x-1| + |x-2| + |x-3| + \cdots + |x-50| + |100x 400|$ 的值域 (提示, 某种程度上来说这题目反而比上一题简单).
- 96. (001250) 函数 $y = \sqrt{1 + \sqrt{1 + \sqrt{1 + \sqrt{x^2 + 64}}}}$ 的值域为_____.
- 97. (001251) 函数 $y = \frac{1}{1 + \frac{1}{x}}$ 的值域为_____.
- 98. (001252) 函数 $y = \frac{1}{x^2 + x + 1}$ 的值域为_____.
- 99. (001253) 函数 $y = \frac{x^2}{x^2 + x + 1}$ 的值域为______.
- 100. (001254) 函数 $y = 4 \sqrt{4 x^2}$ 的值域为______
- 101. (001255) 函数 $y = \frac{\sqrt{x}}{1+x}$ 的值域为______.
- 102. (001256) 函数 $y = \sqrt{6-x} + \sqrt{x-3}$ 的值域为______
- 103. (001257) 函数 $y = \frac{6x}{x^2 + 1}, x \in [-\frac{1}{2}, 5]$ 的值域为______.
- 104. (001258) 求函数 $y = \frac{2x^2 + 3x + 1}{x 1} (x \in (1, +\infty))$ 的值域.
- 105. (001259) 求函数 $y = \frac{2x^2 + 2x + 3}{x^2 + x + 1} (x \in (-1, +\infty))$ 的值域.
- 106. (001260) 求函数 $y = \frac{2x^2 + 3x + 3}{x^2 + x + 1} (x \in (-1, +\infty))$ 的值域.
- 107. (001261) 设 a 为实常数, 求函数 y = |x |x + |x + 1| + 2| + a| + |10x 10| 的值域. (提示: 不觉得 10x 的系数有点突兀吗?)
- 108. (001262) 已知函数 y = f(2x-1) 的定义域为 [0,3], 则函数 y = f(3x+1) 的定义域为_____.
- 109. (001264) 已知函数 $f(x) = \frac{a-x}{x-a-1}$ 的反函数 $f^{-1}(x)$ 的图像关于点 (-1,3) 对称, 则 a =_____.
- 110. (001266) 写出下列函数的值域.
 - (1) $y = 3x + 1, x \in [-2, 5];$
 - (2) $y = |2x + 1|, x \in [-1, 3];$

(4)
$$y = \frac{|x|+1}{|x|-1}$$
;

(5)
$$y = \frac{|x+3|}{x-4}, x \in [-4,0];$$

(6) $y = \frac{2x+1}{|x+1|-|x|};$

(6)
$$y = \frac{2x+1}{|x+1|-|x|}$$
;

111. $_{\scriptscriptstyle{(001267)}}(1)$ 求函数 $f(x)=rac{2x-1}{x+1}$ 的值域;

(2) 已知
$$a$$
 是实数, 求函数 $f(x) = \frac{2x - a}{x + 1}$ 的值域.

112. (001271) 写出下列函数的值域:

(1)
$$y = x^2 + 2x + 2$$
; _____

(2)
$$y = -x^2 + 3x + 4$$
;

(3)
$$y = 4x^2 + x + 1, x \in [-3, 0];$$

(4) 已知
$$a > 0$$
, $y = ax^2 + ax + 2a$, $x \in [-1, 1)$; _____

(5)
$$y = \frac{1}{x^2 + 2x + 2}$$
; _____

(6)
$$y = 4 - \sqrt{4x - 4x^2}$$
;

(7)
$$y = \frac{x^2 - x - 2}{x^2 + 3x + 2}$$
;

- 113. (001274) 已知 k 是实数, 函数 $y = \sqrt{kx^2 + 2(k+2)x + 3(4k-1)}$ 的定义域为 \mathbf{R} , 则 k 的取值范围为______.
- 114. (001275) 已知 k 是实数, 函数 $y = \sqrt{kx^2 + 2(k+2)x + 3(4k-1)}$ 的值域为 $[0, +\infty)$, 则 k 的取值范围为_______.
- 115. (001281) 已知 a 是实数, 就关于 x 的方程 $x^2 + (a-5)x + (a-2) = 0$ 的两个根 (重根算两个根) 的不同分布情 况,利用函数 $y = \frac{-x^2 + 5x + 2}{x + 1}$ 的图像与性质确定 a 的范围.
 - (1) 两个根分别在 $(-\infty, 2)$ 和 $(2, +\infty)$ 中;
- (4) 有两个不同的根, 有且仅有一根在 $[0, +\infty)$ 中.

- (3) 有根在 [0,2) 内;
- (2) 两个根都在 $(-\infty, -2)$ 中;
- 116. (001283) 求函数 $y = 2x + \sqrt{1-x^2}$ 的值域.
- 117. (001318) 函数 $y = \sqrt{3^{2x-1} 27}$ 的定义域为______.
- 118. (001320) 已知 $f_1(x) = 3^x 1$, $f_2(x) = 3^{x-1}$, $f_3(x) = -3^x$, $f_4(x) = -3^{-x}$, $f_5(x) = (1/3)^x$, $f_6(x) = (1/3)^{-x}$. 则将函数 $y = 3^x$ 的图像右移 1 单位得______ 的图像,下移 1 单位得_____ 的图像. $y = 3^x$ 的图像与______ 的图像关于 x 轴对称, 与______ 的图像关于 y 轴对称, 与

- 119. (001322) 写出下列函数的单调区间和值域 (不用证明).
 - $(1) \ y = \left(\frac{1}{2}\right)^{x^2 + 2x + 3};$
 - (2) $y = \frac{1}{3^x 1}$
 - (3) $y = 4^x 2^{x+1}$
- 120. (001324) 函数 $y = \log_{x^2+x-1} 2$ 的定义域是______.
- 122. (001327) 函数 $y = \sqrt{\log_{\frac{1}{2}} \left(\left(\frac{1}{3} \right)^x 27 \right)}$ 的定义域为______.
- 123. (001329) 已知函数 $f(x) = \lg(kx^2 6x + k + 3)$ 的定义域为 \mathbf{R} , 则 k 的取值范围为______.
- 124. (001330) 已知函数 $f(x) = \lg(kx^2 6x + k + 3)$ 的值域为 R, 则 k 的取值范围为_____.
- 125. (001333) 一个函数和它的反函数的图像的公共点是否一定在直线 y = x 上? 为什么?
- 126. (001334) 求证: 若递增函数与其反函数的图像有公共点, 则公共点一定在直线 y = x 上.
- 127. (001335) 已知幂函数的图像过点 $(9, \frac{\sqrt{3}}{3})$, 则该幂函数为 $y = \underline{\hspace{1cm}}$.
- 128. (001336)(1) 写出函数 $y=x^{-\frac{4}{3}}$ 的定义域, 奇偶性, 单调区间;
 - (2) 写出函数 $y = x^{-\frac{3}{4}}$ 的定义域, 奇偶性, 单调区间.
- 129. (001337) 作出下列函数的大致图像 (只要能够表明定义域和单调性, 凹凸性方面的信息):
 - (1) $y = x^{\frac{2}{3}}$;
 - (2) $y = x^{-\frac{3}{2}}$;
 - (3) $y = \frac{|x|+1}{|x+1|}$; (4) $y = \frac{1}{(x-2)^2} 1$.
- 130. (001340) 在下列幂函数 (1) $y=x^{-\frac{3}{2}},$ (2) $y=x^{\frac{5}{4}},$ (3) $y=x^{-\frac{4}{3}},$ (4) $y=x^{4},$ (5) $y=x^{\frac{3}{7}},$ (6) $y=x^{-6}$ 中,定义域关于原点对称的有______,值域为 R 的有______,奇函数有 _____,在定义域上单调递增的有_____,图像有一部分在第二象限的有______.
- 131. (001513) 已知 2 是函数 $y = f(x), x \in \mathbf{R}$ 的周期, 且当 $x \in (-1, 1]$ 时, $f(x) = 1 x^2$.
 - (1) 写出该函数的值域以及所有单调增区间;
 - (2) 写出方程 $f(x) = \frac{1}{2}$ 的解集;
 - (3) 当 $x \in (99, 101]$ 时, 求 f(x) 的解析式.
- 132. (002821) 函数 $y = \frac{\sqrt{2x+1}}{x-3} + (x-1)^0$ 的定义域为_____.
- 133. (002822) 若函数 y = f(x) 的定义域是 [-2, 4], 则函数 g(x) = f(x) + f(-x) 的定义域是_____.

- 134. (002823) 下列各组中, 两个函数是同一个函数的组的序号是_____

 - (3) $f(x) = x^2 2x 1$, $g(t) = t^2 2t 1$; (4) $y = \sqrt{x^2 1}$, $y = \sqrt[3]{x^3 1}$.
- 135. (002827) 已知 y = f(x) 为偶函数, 且 y = f(x) 的图像在 $x \in [0,1]$ 时的部分是半径为 1 的圆弧, 在 $x \in [1,+\infty)$ 时的部分是过点 (2,1) 的射线, 如图.

- (2) 写出 f(f(-2)) 的值:______;
- (3) 写出方程 $f(x) = \frac{\sqrt{3}}{2}$ 的解集:______.
- 136. (002829) 设常数 a、b 满足 1 < a < b, 函数 $f(x) = \lg(a^x b^x)$, 求函数 y = f(x) 的定义域.
- 137. (002831) 已知函数 $f(x) = \sqrt{ax^2 + x + 1}$.
 - (1) 若函数 y = f(x) 的定义域为 $(-\infty, +\infty)$, 求实数 a 的取值范围;
 - (2) 若函数 y = f(x) 的值域为 $[0, +\infty)$, 求实数 a 的取值范围.
- 138. (002832) 已知函数 $f(x) = \sqrt{x}$, 函数 $g(x) = \sqrt{1-x} \sqrt{x}$, 则函数 y = f(x) + g(x) 的定义域为______.
- 139. (002833) 已知函数 y = f(x) 的定义域为 [1,4], 则函数 $y = \frac{f(2x)}{x-2}$ 的定义域是______.
- 140. (002837) 已知函数 $f(x) = \begin{cases} \sqrt{x}, & x > 1, \\ &$ 函数 $g(x) = 1 \sqrt{x}.$ 求函数 y = f(x) + g(x) 的解析式及定义域. $x \leq 1,$
- 141. $_{(002838)}^*$ 设 D 是含数 1 的有限实数集, f(x) 是定义在 D 上的函数, 若 f(x) 的图像绕原点逆时针旋转 $\frac{\pi}{6}$ 后与原图像重合,则在以下各项中, f(1) 的可能取值只能是 ()

A.
$$\sqrt{3}$$

B.
$$\frac{\sqrt{3}}{2}$$

C.
$$\frac{\sqrt{3}}{3}$$

- 142. (002839) 设常数 $p \in \mathbf{R}$, 设函数 $f(x) = \log_2 \frac{x+1}{x-1} + \log_2 (x-1) + \log_2 (p-x)$.
 - (1) 求 p 的取值范围以及函数 y = f(x) 的定义域;
 - (2) 若 y = f(x) 存在最大值, 求 p 的取值范围, 并求出最大值.

- 143. (002841) 已知常数 $a \in \mathbf{R}$, 函数 $g(x) = \frac{x}{x+2}$, 函数 $h(x) = \frac{1}{x+a}$. 设函数 $F(x) = g(x) \cdot h(x)$, D_F 是其定义域; f(x) = g(x) - h(x), D_f 是其定义域.
 - (1) 设 a = 2, 求函数 F(x) 的值域;
 - (2) 对于给定的常数 a, 是否存在实数 t, 使得 f(t) = 0 成立? 若存在, 求出这样的所有 t 的值; 若不存在, 说 明理由:
 - (3) * 是否存在常数 a 的值, 使得对于任意 $x \in D_f \cap \mathbf{R}^+$, 有 $f(x) \ge 0$ 恒成立? 若存在, 求出所有这样的 a 的 值; 若不存在, 说明理由.
- 144. (002848) 设奇函数 y = f(x) 的定义域为 [-5,5]. 若当 $x \in [0,5]$ 时, y = f(x) 的图像如图, 则不等式 xf(x) < 0的解是

145. (002863) 函数 $y = \frac{1}{x^2 - 4x + 5}$ 的图像关于 (

A. y 轴对称

- B. 原点对称
- C. 直线 x=2 对称
- D. 点 (2,1) 对称

146. (002864) 函数 $y = x + \frac{1}{x-1}$ 的图像关于 (

- A. 点 (1,1) 对称 B. 点 (-1,1) 对称 C. 点 (1,-1) 对称
- D. 点 (-1,-1) 对称
- 147. (002865) 若函数 y = f(x) 的定义域为 R, 且 f(x-1) = -f(3-x), 则 y = f(x) 的图像关于 ().

A. 原点中心对称

- B. 点 (1,0) 中心对称 C. 点 (2,0) 中心对称
- D. 点 (4,0) 中心对称
- 148. (002866) 设常数 $a,b \in \mathbb{R}$. 若函数 $y = x^2 + ax$ 在区间 [a,b] 上的图像关于直线 x = 1 对称, 则 b =_____.
- 149. (002868) 已知函数 y = f(x) 图像关于 (1,0) 对称. 若 $x \le 1$ 时, $f(x) = x^2 1$, 则 f(x) =_____.
- 150. (002870) 设常数 $a \in \mathbf{R}$. 已知函数 y = f(x) 满足: 对于任意 $x \in \mathbf{R}$, 都有 f(x-1) = f(1-x). 若函数 y = f(x)图像总是关于直线 x = a 对称,则 $a = ____.$
- 151. (002871) 设常数 $a \in \mathbf{R}$. 若直线 x = 2 是函数 $f(x) = \log_3 |2x + a|$ 的图像的一条对称轴, 则 a =______
- 152. (002873) 常数 a、 $b \in \mathbf{R}$. 函数 $f(x) = \frac{x}{\sqrt{3}} + \frac{1}{x+a} + b$ 的图像关于点 (1,2) 对称.
 - (1) 求 y = f(x) 的解析式;
 - (2) * 若 y = f(x) 的图像关于某一条直线对称, 写出这样的一条对称轴直线的方程 (无需证明).

153.	(002874) 函数 $y = \log_2 \frac{z - x}{2 + x}$ 的	的图像关于 ().			
	A. 原点对称	B. y 轴对称	C. 直线 $y = x$ 对称	D. 直线 $y = -x$ 对称	
154.	(002875) 函数 $y = \log_2(2-2^x)$	的图像关于 ().			
	A. 原点对称	B. y 轴对称	C. 直线 $y = x$ 对称	D. 直线 $y = -x$ 对称	
155.	(002877) 设定义在 R 上的函数	y = f(x) 的图像关于直线	$x=1$ 对称. 若 $x \ge 1$ 时, $f(x)$	$x(x) = 1 - 3^{x-1}, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	
	时, $f(x) = $				
156.	(002878) 设函数 $y = \log_2(x+3)$ 若 $f(a)$ 有意义,则 $f(a) = $			$\bigcirc f(1) = \underline{\qquad}; \ \textcircled{2}$	
157.	$_{(002879)}$ 已知定义域为 R 的函数 $y=f(x)$ 是偶函数, 并且其图像关于直线 $x=1$ 对称.				
	(1) $ f(0) = 1, f(1) = 2, (2) $				
	(2) 设 $x \in [0,1]$ 时, $f(x) = x$ ① $1 < x \le 2$ 时, 求 $y = f(x)$				
	② $-2 \le x < 0$ 时,求 $y = f(x)$				
	③ 求函数 $y = f(x) - \frac{1}{8}$ 在 [
	$\textcircled{4}$ \overrightarrow{x} $y = f(x)$ $\overleftarrow{\mathbf{R}}$ $\overrightarrow{\mathbf{L}}$ $\overleftarrow{\mathbf{N}}$				
158.	$f(3) + \cdots + f(50) = ($).	$(-\infty, +\infty)$ 的奇函数, 满足	f(1-x) = f(1+x). 若 $f(1-x)$)=2, 则 f(1)+f(2)+	
	A50	B. 0	C. 2	D. 50	
159.	$(002883)^*$ 设定义在 R 上的函数 $-f(x-1)$. 则下面命题中, Π			$f(x+1) \perp f(-x-1) =$	
	① 函数 $y = f(x)$ 是偶函数 $y = f(x)$ 图像关于 $(3,0)$ 对和		f ③ 函数 $y = f(x)$ 图像关	于 (1,0) 对称; ④ 函数	
160.	(002884) 下列函数中, 在其定义 ① $y = \frac{2-x}{x}$; ② $y = x - \frac{1}{x}$;				
161.	$(002902)^*$ 设 $f(x)$ 、 $g(x)$ 、 $h(x)$ 是定义域为 R 的三个函数, 对于下列命题:				
	① 若 $f(x) + g(x)$ 、 $f(x) + h$	(x)、 $g(x) + h(x)$ 均为增函	数,则 $f(x)$ 、 $g(x)$ 、 $h(x)$ 中至	至少有一个是增函数;	
	② $ \ \ \ \ f(x) + g(x) \ \ f(x) + h $	(x)、 $g(x) + h(x)$ 均是以 T	为周期的函数, 则 $f(x)$ 、 $g(x)$	h(x) 均是以 T 为周	
	期的函数,下列判断正确的是	£ ().			
	A. ①和②均为真命题		3. ①和②均为假命题		
	C. ①为真命题, ②为假命题		D. ①为假命题, ②为真命题		
162.	(002907) 函数 $y = x^{-\frac{3}{2}}$ 的定义	域为			

- 163. (002908) 下列命题中, 正确的命题的序号是_____
 - ① 当 $\alpha = 0$ 时, 函数 $y = x^{\alpha}$ 的图像是一条直线;
 - ② 幂函数的图像都经过 (0,0) 和 (1,1) 点;
 - ③ 当 $\alpha < 0$ 且 $y = x^{\alpha}$ 是奇函数时, 它也是减函数;
 - ④ 第四象限不可能有幂函数的图像.
- 164. (002909) 图中曲线是幂函数 $y=x^n$ 在第一象限的图像,已知 n 取 ± 2 , $\pm \frac{1}{2}$ 四个值,则相应于曲线 c_1,c_2,c_3,c_4 的 n 依次为(

- A. $-2, -\frac{1}{2}, \frac{1}{2}, 2$ B. $2, \frac{1}{2}, -\frac{1}{2}, -2$ C. $-\frac{1}{2}, -2, 2, \frac{1}{2}$ D. $2, \frac{1}{2}, -2, -\frac{1}{2}$
- 165. (002910) 下列函数的图像为 (A)、(B)、(C)、(D) 之一, 试将正确的字母标号填在相应函数后面的横线上.

- (1) $y = x^{\frac{3}{2}}$; (2) $y = x^{\frac{4}{3}}$; (3) $y = x^{\frac{5}{3}}$; (4) $y = x^{-\frac{2}{3}}$.
- 166. (002915) 设常数 $n \in \mathbf{Z}$. 若函数 $y = x^{n^2 2n 3}$ 的图像与两条坐标轴都无公共点, 且图像关于 y 轴对称, 则 n 的
- 167. (002916) 函数 $y=1-(x+2)^{-2}$ 可以先将幂函数 $y=x^{-2}$ 的图像向_____ 平移 2 个单位, 再以_____ 轴为对称轴作对称变换,最后向______ 平移 1 个单位.
- 168. (002917) 在 $f(x) = (2m^2 7m 9)x^{m^2 9m + 19}$ 中, 当实数 m 为何值时,
 - (1) y = f(x) 是正比例函数, 且它的图像的倾斜角为钝角?
 - (2) y = f(x) 是反比例函数, 且它的图像在第一, 三象限?
- 169. $_{(002918)}$ 设常数 $t\in {f Z}.$ 已知幂函数 $y=(t^3-t+1)x^{\frac{1}{3}(1+2t-t^2)}$ 是偶函数, 且在区间 $(0,+\infty)$ 上是增函数, 求整 数 t 的值, 并作出相应的幂函数的大致图像.
- 170. (002920) 已知函数: ① $y=\frac{1}{x}$; ② $y=x^{\frac{1}{2}}$; ③ $y=x^{-\frac{1}{2}}$; ④ $y=x^{\frac{2}{3}}$; ⑤ $y=x^{-\frac{2}{3}}$, 填写分别具有下列性质的函 数序号:

- (1) 图像与 x 轴有公共点的:_____;
- (2) 图像关于原点对称的: ;
- (3) 定义域内递减的:_____;
- (4) 在定义域内有反函数的:_____.
- $171._{(002921)}$ 函数 $y=-(x+1)^{-3}$ 的图像可以先将幂函数 $y=x^{-3}$ 的图像向______ 平移 1 个单位,再以______ 轴为对称轴作对称变换。
- 172. (002923) 下列关于幂函数图像及性质的叙述中, 正确的叙述的序号是______.
 - ① 对于一个确定的幂函数, 第二、三象限不可能同时有该幂函数的图像上的点;
 - ② 若某个幂函数图像过 (-1,-1), 则该幂函数是奇函数;
 - ③ 若某个幂函数在定义域上递增,则该幂函数图像必经过原点;
 - ④ 幂函数图像不会经过点 $(-\frac{1}{2},8)$ 以及 (-8,-4).
- 173. (002925) 已知幂函数 $y = x^{\frac{q}{p}}(p \in \mathbf{N}^*, q \in \mathbf{N}^*, p, q 互质)$ 的图像如图所示, 则 ().

- A. p,q 均为奇数
- C. p 是偶数, q 是奇数

- B. p 是奇数, q 是偶数, 且 $0 < \frac{q}{p} < 1$ D. p 是奇数, q 是偶数, 且 $\frac{q}{p} > 1$
- 174. (002927) 设常数 a, b 满足 a > b > 0. 已知函数 $f(x) = \frac{x+a}{x+b}$. (1) 写出函数 y = f(x) 的单调性;
 - (2) 写出函数 y = f(x) 图像的一个对称中心的坐标.
- $175.~_{(002929)}^*$ 设常数 a,b 满足 a>b>0.~已知函数 $f(x)=\dfrac{x+a}{x+b}.~$ 证明: 该函数图像的对称中心是唯一的.
- 176. (002936) 若函数 $f(x) = 1 \sqrt{1 x^2}$ $(-1 \le x \le 0)$, 请画出函数 $y = f^{-1}(x)$ 的大致图像.

- 177. (002937) 已知定义在 R 上的函数 y = f(x) 是奇函数, 且有反函数 $y = f^{-1}(x)$. 若 a, b 是两个实数, 则下列点 中, 必在 $y = f^{-1}(x)$ 的图像上的点的序号是
 - ① (-f(a), a); ② (-f(a), -a);③ (-b, -f(b)); ④ $(b, -f^{-1}(-b))$.
- 178. (002938) 已知定义在 R 上的函数 y=f(x) 的反函数为 $y=f^{-1}(x)$. 若 y=f(x+1) 的图像过点 $(-\frac{1}{2},1)$, 则 $y = f^{-1}(x+1)$ 的图像必过 (
 - A. $(1, -\frac{1}{2})$
- B. $(1,\frac{1}{2})$
- C. $(0, -\frac{1}{2})$ D. $(0, \frac{1}{2})$
- 179. (002939) 设常数 $a \neq 0$. 若函数 $f(x) = \frac{1-ax}{1+ax}$ 的图像关于直线 y=x 对称, 求实数 a 的值以及 y=f(x) 的反 函数 $y = f^{-1}(x)$.
- 180. (002940) 记 $y = f^{-1}(x)$ 是 y = f(x) 的反函数.
 - (1) 若函数 $f(x+1) = \frac{x}{x+1}$, 求函数 $y = f^{-1}(x+1)$ 的解析式;
 - (2) 设函数 $f(x) = \frac{1-2x}{1+x}$. 若 y = g(x) 的图像与 $y = f^{-1}(x+1)$ 的图像关于直线 y = x 对称, 求 y = g(x)的解析式.
- 181. (002946) 已知函数 y = f(x) 的图像经过点 (0,-1). 若函数 y = f(x+4) 存在反函数 y = g(x), 则 y = g(x) 的 图像总经过的定点的坐标为_
- 182. (002947) 设 $y = f^{-1}(x)$, $y = g^{-1}(x)$ 分别是定义在 R 上的函数 y = f(x), y = g(x) 的反函数. 若函数 y = f(x-1) 和 $y = g^{-1}(x-3)$ 的图像关于直线 y = x 对称, 且 g(5) = 2018, 则 f(4) 的值为______
- 183. (002953) 函数 $f(x) = \frac{\sqrt{4-x^2}}{\lg|x-1|}$ 的定义域为_____.
- 184. (002954) 为了得到函数 $y = \lg \frac{x+3}{10}$ 的图像, 只需把函数 $y = \lg x$ 的图像上所有的点 (
 - A. 向左平移 3 个单位长度, 再向上平移 1 个单位长度
 - B. 向右平移 3 个单位长度, 再向上平移 1 个单位长度
 - C. 向左平移 3 个单位长度, 再向下平移 1 个单位长度
 - D. 向右平移 3 个单位长度, 再向下平移 1 个单位长度
- 185. (002958) 已知函数 $f(x) = \frac{3^x 3^{-x}}{3^x + 3^{-x}}$.
 - (1) 证明 f(x) 在 $(-\infty, +\infty)$ 上是增函数;
 - (2) 求 f(x) 的值域.
- 186. (002964) 对于函数 y = f(x) 的定义域中的任意的 $x_1, x_2(x_1 \neq x_2)$, 有如下结论:
 - ① $f(x_1 + x_2) = f(x_1) \cdot f(x_2)$; ② $f(x_1 \cdot x_2) = f(x_1) + f(x_2)$;

 - 当 $y = \ln x$ 时, 上述结论中, 正确结论的序号是
- 187. ${}_{(002966)}^*$ 已知常数 a>1,函数 $y=|\log_a x|$ 的定义域为区间 [m,n],值域为区间 [0,1].若 n-m 的最小值为 $\frac{5}{6}$,则 a=_____.

- 188. $(002968)^*$ 已知函数 $f(x) = 2 + \log_3 x$ $(3 \le x \le 27)$.
 - (1) 求函数 $y = f(x^2)$ 的定义域;
 - (2) 求函数 $q(x) = [f(x)]^2 + f(x^2)$ 的值域.
- 189. (002969) 已知定义域为 R 的函数 y = f(x) 为奇函数, 且满足 f(x+2) = -f(x). 当 $x \in [0,1]$ 时, $f(x) = 2^x 1$.
 - (1) 求 y = f(x) 在区间 [-1,0) 上的解析式;
 - (2) 求 $f(\log_{\frac{1}{2}} 24)$ 的值.
- 190. (002970)* 已知函数 $f(x) = 1 + a \cdot (\frac{1}{2})^x + (\frac{1}{4})^x$.
 - (1) 当 a = 1 时, 求函数 y = f(x) 在 $(-\infty, 0)$ 上的值域;
 - (2) 对于定义在集合 D 上的函数 y = f(x), 如果存在常数 M > 0, 满足: 对任意 $x \in D$, 都有 $|f(x)| \le M$ 成 立, 则称 f(x) 是 D 上的有界函数, 其中 M 称为函数 f(x) 的一个上界. 若函数 y = f(x) 在 $[0, +\infty)$ 上是以 3 为一个上界的有界函数, 求实数 a 的取值范围.
- 191. (002971) 二次函数图像的顶点是 (-1,2), 且图像经过点 (1,6), 则此二次函数的解析式为_
- 192. (002972) 二次函数 y = f(x) 满足 f(2-x) = f(2+x), 且 y = f(x) 的图像在 y 轴的截距为 3, 被 x 轴截得的 线段长为 2, 则 y = f(x) 的解析式为_
- 193. (002985) 函数 $f(x) = \frac{1}{2}x^2 x + \frac{3}{2}$ 的定义域、值域都是区间 [1,b],则实数 b=______.
- 194. (002986) 设常数 $m \in \mathbb{R}$. 若函数 $f(x) = x^2 (m-2)x + m 4$ 的图像与 x 轴交于 A, B 两点, 且 |AB| = 2, 则 函数 y = f(x) 的最小值为
- 195. (002987) 函数 $f(x) = ax^2 + bx + c$ 与函数 $g(x) = cx^2 + bx + a(ac \neq 0, a \neq c)$ 的值域分别为 M、N, 则下列结 论正确的是

A.
$$M = N$$

B.
$$M \subseteq N$$

C.
$$M \supset N$$

- D. $M \cap N \neq \emptyset$
- 196. (002988) 函数 $f(x) = x^2 2a|x-a| 2ax + 1$ 的图像与 x 轴有且只有三个不同的公共点,则 a =______.
- 197. (002990) 设常数 $a, m \in \mathbf{R}$. 已知函数 $f(x) = \frac{x^2 + 2x + a}{x}$ $(x \ge m)$.
 - (1) 设 $a = \frac{1}{2}$, 求函数 y = f(x) 的值域;
 - (2) 设 m = 1, 求函数 y = f(x) 的值域。
- 198. (002993) 函数 $y = \frac{3^x 1}{3^x 2}$ 的值域是______.
- 199. (002994) 函数 $y = \log_{\frac{1}{2}}(-x^2 + 2x + 3)$ 的值域是_____.
- 200. (002995) 函数 y = |x-1| + |x-3| 的值域是_
- - (2) 函数 $y = \frac{3x}{x^2 + 4}$ 的值域是______; (3) 函数 $y = x + \frac{m}{x + 3}$, $x \in [0, +\infty)$ 的最小值为_______;
 - (4) 设常数 $m \in \mathbf{R}$. 若函数 $y = \frac{mx}{x^2 + 1}$ 的最大值为 1, 则 m 的值为______.

- 202. (002997)(1) 函数 $y = x \sqrt{1 2x}$ 的最大值为______, 此时 x =_______;
 - (2) 函数 $y = 2x + \sqrt{1 2x}$ 的值域是 . .
- 203. (002998) 函数 $y = \frac{2x-3}{x^2-2x+3}$ 的值域是______.
- 204. (003000) 已知函数 $f(x) = \log_a(x + \sqrt{x^2 + 1}), \ a > 1.$
 - (1) 求 f(x) 的定义域和值域;
 - (2) 求 $f^{-1}(x)$;
 - (3) 判断 $f^{-1}(x)$ 的奇偶性、单调性;
 - (4) 若实数 m 满足 $f^{-1}(1-m) + f^{-1}(1-m^2) < 0$, 求 m 的范围.
- $205.~_{(003001)}^*$ 设常数 $m,n \in \mathbf{R}.~$ 若函数 $y = \frac{mx^2 + 4x + n}{x^2 + 1}$ 的值域为 [1,6],求 m,n 的值.
- 206. (003002) 设常数 $a \in \mathbf{R}$, 区间 $E \subseteq (0, +\infty)$. 已知函数 $f(x) = \frac{1}{a} \frac{1}{x}, x \in E$.
 - (1) 求证: y = f(x) 在区间 E 上递增;
 - (2) 是否存在 a, 使得对于这样的 a, 总是存在 E = [m, n](m < n), 使得 y = f(x) 在区间 E 上的值域也是 E? 若存在, 求出 a 的取值范围; 若不存在, 说明理由.
- 207. (003003) 函数 $y = 2x + \frac{4}{x}(\frac{1}{2} < x \le 2)$ 的值域是_____
- 208. (003004) 函数 y = |x-3| |x+2| 的值域是_____.
- 209. (003005) 函数 $y = (\frac{1}{2})^{x^2 x}$ 的值域是_____.
- 210. (003006) 函数 $y = \frac{\sqrt{x}}{x+1}$ 的值域是______.
- 211. (003009) 求函数 $y = \frac{2x^2 4x 1}{x^2 2x 1}$ 的值域.
- 212. (003010) 求函数 $y = \frac{x^2 + 4x 1}{x^2 2x + 1} (2 \le x \le 3)$ 的值域.
- 213. (003011) 记 $\max\{a_1, a_2, \dots, a_n\}$ 为 a_1, \dots, a_n 中的最大值. 已知 $f(x) = \max\{x, x^2\} (-1 \le x \le 3)$.
 - (1) 求函数 y = f(x) 的值域;
 - (2) 设 PAB 三点的坐标分别为 (x, f(x)), (0, -1), (2, 0), 且 PAB 三点可以构成三角形, 求 $\triangle PAB$ 的面积的取值范围.
- 214. (003012) 是否存在实数 m, n(m < n), 使得函数 $f(x) = -x^2 + 2$ 的定义域、值域分别是区间 [m, n]、[2m, 2n]. 若存在, 求出 m, n 的值; 若不存在, 说明理由.
- 215. (003620) 已知 $a \in \mathbf{R}$, 若存在定义域为 \mathbf{R} 的函数 f(x) 同时满足下列两个条件, ① 对任意 $x_0 \in \mathbf{R}$, $f(x_0)$ 的值为 x_0 或 x_0^2 ; ② 关于 x 的方程 f(x) = a 无实数解; 则 a 的取值范围为______.
- 216. (003642) 已知 $f(x) = \left| \frac{2}{x-1} a \right| \ (x > 1, \ a > 0), \ f(x)$ 的图像与 x 轴的交点为 A, 若对于 f(x) 的图像上任意一点 P, 在其图像上总存在另一点 $Q(P \setminus Q)$ 异于 A, 满足 $AP \perp AQ$, 且 |AP| = |AQ|, 则 a =______.

- 217. (003655) 设常数 $a \in \mathbb{R}$, 函数 $f(x) = \log_2(x+a)$. 若 f(x) 的反函数的图像经过点 (3,1), 则 a =_____.
- 218. (003662) 已知常数 a>0,函数 $f(x)=\frac{2^x}{2^x+ax}$ 的图像经过点 $P\left(p,\frac{6}{5}\right),\ Q\left(q,-\frac{1}{5}\right)$. 若 $2^{p+q}=36pq$,则
- 219. (003667) 设 D 是含数 1 的有限实数集, f(x) 是定义在 D 上的函数. 若 f(x) 的图像绕原点逆时针旋转 $\frac{\pi}{6}$ 后与 原图像重合,则在以下各项中,f(1) 的可能取值只能是(

B. $\frac{\sqrt{3}}{2}$

C. $\frac{\sqrt{3}}{3}$

- 220. (003681) 已知四个函数: ① y=-x, ② $y=-\frac{1}{x}$, ③ $y=x^3$, ④ $y=x^{\frac{1}{2}}$. 从中任选 2 个,则事件"所选 2 个函数 的图像有且仅有一个公共点"的概率为__
- 221. (003709) 若函数 $y=a^x+b(a>0$ 且 $a\neq 1$) 的图像经过点 (1,7), 其反函数的图像经过点 (4,0), 则 a $b = \underline{\hspace{1cm}}$.
- 222. (003720) 函数 $y = \sqrt{2016^{1-x}}$ 的定义域是
- 223. (003726) 若函数 $f(x) = \frac{k-2^x}{1+k\cdot 2^x}$, $(k \neq 1, k \in \mathbf{R})$ 在定义域内为奇函数, 则 $k = \underline{\hspace{1cm}}$.
- 224. (003730) 下列函数中, 与函数 $y=x^{2n+1}$ $(n \in \mathbf{N}^*)$ 的值域相同的函数为_

A. $y = \left(\frac{1}{2}\right)^{x+1}$ B. $y = \ln(x+1)$ C. $y = \frac{x+1}{x}$

D. $y = x + \frac{1}{x}$

- 225. (003732) 函数 $f(x) = \sqrt{27 3^{2x+1}}$ 的定义域是_____.(用区间表示)
- 226. (003746) 幂函数 f(x) 的图像经过点 $(2,\sqrt{2})$, 且 $f^{-1}(x)$ 为 f(x) 的反函数, 则 $f^{-1}(4) =$ _____
- 227. (003783)(理科) 已知 f(x) 是 R 上的奇函数, g(x) 是 R 上的偶函数, 若函数 f(x) + g(x) 的值域为 [1,3), 则 f(x) - g(x) 的值域为_

(文科) 已知 f(x) 是 R 上的奇函数, g(x) 是 R 上的偶函数, 若函数 f(x)+g(x) 的值域为 [1,3), 则 f(-x)+g(x)的值域为

- 228. (003789) 设函数 $f(x) = \log_{\frac{1}{2}} x$, $g(x) = f^{-1}(|x|)$.
 - (1) 求函数 g(x) 的解析式, 并画出大致图像;
 - (2) 若不等式 $g(x) + g(2x) \le k$ 对任意 $x \in \mathbb{R}$ 恒成立, 求实数 k 的取值范围
- 229. (003815) 在同一坐标系中画出函数 $y = \log_a x, \ y = a^x, y = x + a$ 的图像, 可能正确的是

230. (003862) 如图, 直角梯形 OABC 中, $AB \parallel OC$, AB=1, OC=BC=2, 直线 l:x=t 截此梯形所得位于 l 左 方图形面积为 S,

则函数 S = f(t) 的图像大致为

- 231. (003869) 函数 $f(x) = a^x + b \ (a > 1, \ b < -1), 则 \ y = f^{-1}(x)$ 的图像一定不经过第_____ 象限
- 232. (003884) 已知函数 y = f(x) 的定义域为 $\{x|-3 \le x \le 8, \ x \ne 5\}$, 值域为 $\{y|-1 \le y \le 2, \ y \ne 0\}$. 下列关于函数 y = f(x) 的说法: ① 当 x = -3 时, y = -1; ② 将 y = f(x) 的图像补上 (5,0), 得到的图像必定是一条连续的曲线; ③ y = f(x) 是 [-3,5) 上的单调函数; ④ y = f(x) 的图像与坐标轴只有一个交点. 其中正确的命题是
- 233. (003889) 已知函数 $f(x) = \begin{cases} ax^2 2x 1, & x \geq 0, \\ & \text{ 是偶函数, 直线 } y = t \text{ 与函数 } y = f(x) \text{ 的图像自左向右依} \\ x^2 + bx + c, & x < 0 \end{cases}$ 次交子四个不同点 A B C D 若 AB = BC 刚实数 t 的值为
- 234. (003894) 对于函数 $f(x) = ax^2 + (b+1)x + b 2$ $(a \neq 0)$, 若存在实数 x_0 , 使 $f(x_0) = x_0$ 成立, 则称 x_0 为 f(x) 的不动点.
 - (1) 若对于任何实数 b, 函数 f(x) 恒有两个相异的不动点, 求实数 a 的取值范围;
 - (2) 在 (1) 的条件下,若函数 y=f(x) 的图像上 A,B 两点的横坐标是函数 f(x) 的不动点,且直线 $y=kx+\frac{1}{2a^2+1}$ 是线段 AB 的垂直平分线,求实数 b 的取值范围.
- 235. (003936) 函数 $y = \ln(\cos x) \left(-\frac{\pi}{2} < x < \frac{\pi}{2} \right)$ 的大致图像是_____.

236. (004000) 请根据图中的函数图像, 将下列数值按从小到大的顺序排列:

- ① 曲线在点 A 处切线的斜率;
- ② 曲线在点 B 处切线的斜率;
- ③ 曲线在点 C 处切线的斜率;
- ④ 割线 AB 的斜率;
- ⑤ 数值 0;
- ⑥ 数值 1.
- 237. (004007) 已知 y = f'(x) 的图像如图所示, 求函数 y = f(x) 在 (-2, 2) 上的单调区间和极值点.

- 238. (004009) 设函数 $y = x^3 + ax^2 + bx + c$ 的图像与 y = 0 在原点相切, 若函数的极小值为 -4, 求函数的表达式与单调减区间.
- 239. $_{(004067)}$ 已知定义在 R 上的函数 f(x) 满足: ① f(x)+f(2-x)=0; ② f(x)-f(-2-x)=0; ③ 在 [-1,1] 上表达式为 $f(x)=\begin{cases} \sqrt{1-x^2}, & x\in[-1,0],\\ 1-x, & x\in(0,1], \end{cases}$ 则函数 f(x) 与 $g(x)=\begin{cases} 2^x, & x\leq0\\ \log_{\frac{1}{2}}x, & x>0 \end{cases}$ 的图像在区间 [-3,3] 上的交占的个数为
- 240. (004070) 已知 $f(x) = 2x^2 + 2x + b$ 是定义在 [-1,0] 上的函数, 若 $f[f(x)] \le 0$ 在定义域上恒成立, 而且存在实数 x_0 满足: $f[f(x_0)] = x_0$ 且 $f(x_0) \ne x_0$, 则实数 b 的取值范围是______.
- 241. (004089)[x] 是不超过 x 的最大整数,则方程 $(2^x)^2 \frac{7}{4} \cdot [2^x] \frac{1}{4} = 0$ 满足 x < 1 的所有实数解是______.
- 242. $_{\scriptscriptstyle{(004097)}}$ 已知函数 $f(x)=1-rac{6}{a^{x+1}+a}(a>0,\,a\neq1)$ 是定义在 R 上的奇函数.
 - (1) 求实数 a 的值及函数 f(x) 的值域;
 - (2) 若不等式 $t \cdot f(x) \ge 3^x 3$ 在 $x \in [1, 2]$ 上恒成立, 求实数 t 的取值范围.
- 243. (004151) 设不等式组 $\begin{cases} x+y-6\geq 0, \\ x-y+2\geq 0, \end{cases}$ 表示的可行域为 Ω ,若指数函数 $y=a^x$ 的图像与 Ω 有公共点,则 a 的取值范围是_______.

- 244. (004184) 设 m 为给定的实常数, 若函数 y = f(x) 在其定义域内存在实数 x_0 , 使得 $f(x_0 + m) = f(x_0) + f(m)$ 成立, 则称函数 f(x) 为 "G(m) 函数".
 - (1) 若函数 $f(x) = 2^x$ 为 "G(2) 函数", 求实数 x_0 的值;
 - (2) 若函数 $f(x) = \lg \frac{a}{x^2 + 1}$ 为 "G(1) 函数", 求实数 a 的取值范围;
 - (3) 已知 $f(x) = x + b(b \in \mathbf{R})$ 为 "G(0) 函数", 设 g(x) = x|x-4|. 若对任意的 $x_1, x_2 \in [0, t]$, 当 $x_1 \neq x_2$ 时, 都有 $\frac{g(x_1) g(x_2)}{f(x_1) f(x_2)} > 2$ 成立, 求实数 t 的最大值.
- 245. (004214) 设定义域为 R 的函数 f(x)、g(x) 都有反函数, 且函数 f(x-1) 和 $g^{-1}(x-3)$ 图像关于直线 y=x 对称, 若 g(5)=2015, 则 f(4)=______.
- 246. (004220) 已知函数① $f(x) = 3 \ln x$; ② $f(x) = 3 \mathrm{e}^{\cos x}$; ③ $f(x) = 3 \mathrm{e}^{x}$; ④ $f(x) = 3 \cos x$; 其中对于 f(x) 定义域内的任意一个自变量 x_1 都存在唯一一个自变量 x_2 , 使 $\sqrt{f(x_1)f(x_2)} = 3$ 成立的函数是 ().
 - A. ③ C. ①②④ D. ④
- 247. (004224) 对于两个定义域相同的函数 f(x)、g(x), 若存在实数 m、n, 使 h(x) = mf(x) + ng(x), 则称函数 h(x) 是由 "基函数 f(x)、g(x)" 生成的.
 - (1) $f(x) = x^2 + 3x$ 和 g(x) = 3x + 4 生成一个偶函数 h(x), 求 h(2) 的值;
 - (2) 若 $h(x) = 2x^2 + 3x 1$ 由 $f(x) = x^2 + ax$, $g(x) = x + b(a, b \in \mathbf{R} \ \mathbf{L} \ ab \neq 0)$ 生成, 求 a + 2b 的取值范围.
- 248. (004228) 函数 $f(x) = \sqrt{1 \frac{2}{x}}$ 的定义域是______.
- 249. (004270) 函数 $f(x) = \sqrt{\frac{1-x}{3+x}}$ 的定义域为_____.
- 250. (004272) 已知函数 g(x) 的图像与函数 $f(x) = \log_2(3^x 1)$ 的图像关于直线 y = x 对称,则 g(3) =______.
- 251. (004289) 已知函数 f(x) 的定义域为 D, 若存在实常数 λ 及 $a(a \neq 0)$, 对任意 $x \in D$, 当 $x + a \in D$ 且 $x a \in D$ 时, 都有 $f(x + a) + f(x a) = \lambda f(x)$ 成立, 则称函数 f(x) 具有性质 $M(\lambda, a)$.
 - (1) 判断函数 $f(x) = x^2$ 是否具有性质 $M(\lambda, a)$, 并说明理由;
 - (2) 若函数 $g(x) = \sin 2x + \sin x$ 具有性质 $M(\lambda, a)$, 求 λ 及 a 应满足的条件;
 - (3) 已知定义域为 R 的函数 y = h(x) 不存在零点,且具有性质 $M(t + \frac{1}{t}, t)$ (其中 $t > 0, t \neq 1$),记 $a_n = h(n)(n \in \mathbf{N}^*)$,求证:数列 $\{a_n\}$ 为等比数列的充要条件是 $\frac{a_2}{a_1} = t$ 或 $\frac{a_2}{a_1} = \frac{1}{t}$.
- 252. (004305) 定义 $F(a,b) = \begin{cases} a, & a \leq b, \\ & ,$ 已知函数 f(x)、g(x) 定义域都是 \mathbf{R} , 给出下列命题: $b, & a > b, \end{cases}$
 - (1) 若 f(x)、g(x) 都是奇函数, 则函数 F(f(x),g(x)) 为奇函数;
 - (2) 若 f(x)、g(x) 都是减函数, 则函数 F(f(x),g(x)) 为减函数;
 - (3) 若 $f_{\min}(x) = m$, $g_{\min}(x) = n$, 则 $F_{\min}(f(x), g(x)) = F(m, n)$;
 - (4) 若 f(x)、g(x) 都是周期函数, 则函数 F(f(x),g(x)) 是周期函数.

其中正确命题的个数为().

A. 1 个 B. 2 个 C. 3 个 D. 4 个

253.	(004313) 设 $a \in \mathbf{R}$. 若 a 使得函数 $f(x) = \sqrt{8 - ax - 2x^2}$ 是偶函数, 则函数 $y = f(x)$ 的定义域是				
254.	(004332) 函数 $y = \log_2(x-2)$ 的定义域为				
255.	(004335) 幂函数 $y=x^k$ 的图像经过点 $(4,rac{1}{2})$,则它的单调减区间为				
256.	(004339) 已知偶函数 $y=f(x)$ 的定义域为 \mathbf{R} , 且当 $x\geq 0$ 时, $f(x)=x-4$, 则不等式 $xf(x)\leq 5$ 的解				
	为·				
257.	(004347) 已知 $y=f(x)$ 与 $y=g(x)$ 皆是定义域、值域均为 R 的函数. 若对任意 $x \in \mathbf{R}, f(x)>g(x)$ 恒成立, 且 $y=f(x)$ 与 $y=g(x)$ 的反函数 $y=f^{-1}(x)$ 、 $y=g^{-1}(x)$ 均存在. 命题 P : "对任意 $x \in \mathbf{R}, f^{-1}(x) < g^{-1}(x)$				
	恒成立"; 命题 Q : "函数 $y = f(x) + g(x)$ 的反函数-	一定存在". 以下关于这两个命题	的真假判断, 正确的是		
	().	D			
	A. 命题 <i>P</i> 真, 命题 <i>Q</i> 真 C. 命题 <i>P</i> 假, 命题 <i>Q</i> 真	B. 命题 <i>P</i> 真, 命题 <i>Q</i> 假 D. 命题 <i>P</i> 假, 命题 <i>Q</i> 假			
258.	5. (004368) 已知函数 $y=f(x)$ 的定义域为 $(0,+\infty)$,满足对任意 $x\in(0,+\infty)$,恒有 $f[f(x)-\frac{1}{x}]=4$. 若函数 $y=f(x)-4$ 的零点个数为有限的 $n(n\in\mathbf{N}^*)$ 个,则 n 的最大值为 $($				
	A. 1 B. 2	C. 3	D. 4		
259.	(004377) 函数 $f(x) = \sqrt{\frac{1-x}{x}}$ 的定义域为				
260.	$f_{(004380)}$ 已知函数 $f(x)$ 的定义域为 R, 满足对任意 $x \in \mathbf{R}$, 恒有 $f(x) + f(x+2) = 4$. 若 $f(1) + f(2) = 1$, 则 $f(2021) - f(2020) =$				
261.	(004385) 设函数 $f(x)$ 的定义域为 \mathbf{R} , $f(x)$ 满足对任意 $x_1, x_2 \in \mathbf{R}$, 当 $x_1 \neq x_2$ 时,恒有 $ f(x_1) - f(x_2) > 2 x_1 - x_2 $. 对于命题: ① $f(x)$ 的解析式可以是 $f(x) = x^3 + 2021x$; ② $f(x)$ 的解析式可以是 $f(x) = 2021^{-x}$. 下列判断正确的是 ().				
	A. ①、②均为真命题	B. ①、②均为假命题			
	C. ①为真命题、②为假命题	D. ①为假命题、②为真命题			
262.	(004387) 设函数 $f(x)$ 的定义域为 $(0, +\infty)$, 若对任意 $x \in (0, +\infty)$, 恒有 $f(2x) = 2f(x)$, 则称 $f(x)$ 为 "2 阶级函数".				
	(1) 已知函数 $f(x)$ 为 "2 阶缩放函数", 当 $x \in (1,2]$ 时, $f(x) = 1 - \log_2 x$, 求 $f(2\sqrt{2})$ 的值;				
	(2) 已知函数 $f(x)$ 为 "2 阶缩放函数", 当 $x \in (1,2]$ 时, $f(x) = \sqrt{2x - x^2}$, 求证: 函数 $y = f(x) - x$ 在 $(1, +\infty)$				
	上无零点.				
263.	(004389) 函数 $f(x) = x^{-\frac{1}{2}}$ 的定义域为				
264.	$_{(004401)}$ 下列函数中, 值域为 $(0,+\infty)$ 的是 $($).				
	A. $y = x^2$ B. $y = \frac{2}{x}$	C. $y = 2^x$	$D. y = \log_2 x $		

- 265. (004403) 设集合 $A = \{y|y = a^x, x > 0\}$ (其中常数 $a > 0, a \neq 1$), $B = \{y|y = x^k, x \in A\}$ (其中常数 $k \in \mathbf{Q}$), 则 "k < 0" 是 " $A \cap B = \emptyset$ " 的 (). A. 充分非必要条件 B. 必要非充分条件 C. 充分必要条件 D. 既非充分又非必要条件 266. (004408) 记函数 f(x) 的定义域为 D. 如果存在实数 a、b 使得 f(a-x)+f(a+x)=b 对任意满足 $a-x\in D$ 且 $a+x \in D$ 的 x 恒成立, 则称 f(x) 为 Ψ 函数. (3) 若 h(x) 是定义在 R 上的 Ψ 函数, 且函数 h(x) 的图像关于直线 x = m(m) 为常数) 对称, 试判断 h(x) 是 否为周期函数?并证明你的结论. 267. (004411) 若函数 $y = \log_2(x - m) + 1$ 的反函数的图像经过点 (1,3), 则实数 m =_____. 268. (004412) 函数 $f(x) = x + \frac{1}{x-2}$ 的值域是 269. (004417) 函数 $f(x) = \frac{x}{x+1} + \frac{x+1}{x+2} + \frac{x+2}{x+3}$ 图像的对称中心的坐标是______. 270. (004424) 设 $\mu(x)$ 表示不小于 x 的最小整数, 例如 $\mu(0.3) = 1$, $\mu(-2.5) = 2$. (1) **解方程** $\mu(x-1) = 3$; (2) 设 $f(x) = \mu(x \cdot \mu(x)), n \in \mathbb{N}^*$, 试分别求出 f(x) 在区间 (0,1]、(1,2] 以及 (2,3] 上的值域; 若 f(x) 在区 间 (0,n] 上的值域为 M_n , 求集合 M_n 中的元素的个数 (3) 设实数 $a>0, g(x)=x+a\cdot\frac{\mu(x)}{x}-2, h(x)=\frac{\sin(\pi x)+2}{x^2-5x+7},$ 若对于任意 $x_1,x_2\in(2,4]$ 都有 $g(x_1)>h(x_2),$ 求实数 a 的取值范围. 271. (004425) 函数 $y = \log_2(4 - x^2)$ 的定义域是 272. (004429) 已知函数 $f(x) = a \cdot 2^x + 3 - a(a \in \mathbf{R} \perp a \neq 0)$ 的反函数为 $y = f^{-1}(x)$, 则函数 $y = f^{-1}(x)$ 的图像经 过的定点的坐标为 273. (004435) 集合 $A = \{y|y = \log_{\frac{1}{2}} x - x, 1 \le x \le 2\}, B = \{x|x^2 - 5tx + 1 \le 0\},$ 若 $A \cap B = A$, 则实数 t 的取值范 274. (004436) 若定义在实数集 R 上的奇函数 y = f(x) 的图像关于直线 x = 1 对称, 且当 $0 \le x \le 1$ 时, $f(x) = x^{\frac{1}{3}}$, 则方程 $f(x) = \frac{1}{3}$ 在区间 (-4,10) 内的所有实根之和为______.
- 275. $_{(004440)}$ 已知函数 $f(x)=egin{cases} \log_{\frac{1}{2}}(1-x), & -1\leq x\leq n, \\ 2^{2-|x-1|}-3, & n< x\leq m, \end{cases}$ 时,m 的取值范围为 (0,2]; ② 当 $n=\frac{1}{2}$ 时,m 的取值范围为 $(\frac{1}{2},2];$ ③ 当 $n\in[0,\frac{1}{2})$ 时,m 的取值范围为 [1,2]; ④ 当 $n\in[0,\frac{1}{2})$ 时,m 的取值范围为 (n,2]; 其中结论正确的所有的序号是 (
 - A. (1)(2)

B. 34

C. 23

D. 24

- 276. (004444) 定义区间 (m,n)、[m,n]、(m,n]、[m,n) 的长度均为 n-m, 已知不等式 $\frac{7}{6-r} \geq 1$ 的解集为 A. (1) 求 A 的长度; (2) 函数 $f(x) = \frac{(a^2 + a)x - 1}{a^2x} (a \in \mathbf{R}, a \neq 0)$ 的定义域与值域都是 [m, n](n > m), 求区间 [m, n] 的最大长 度; (3) 关于 x 的不等式 $\log_2 x + \log_2 (tx + 3t) < 2$ 的解集为 B, 若 $A \cap B$ 的长度为 B, 求实数 B 的取值范围. 277. (004445) 对于函数 $y = f(x)(x \in D)$, 如果存在实数 $a \cdot b(a \neq 0)$, 且 a = 1, b = 0 不同时成立), 使得 f(x) =f(ax+b) 对 $x \in D$ 恒成立, 则称函数 f(x) 为 "(a,b) 映像函数". (1) 判断函数 $f(x) = x^2 - 2$ 是否是 "(a,b) 映像函数", 如果是, 请求出相应的 a、b 的值, 若不是, 请说明理由; (2) 已知函数 y = f(x) 是定义在 $[0, +\infty)$ 上的 "(2,1) 映像函数", 且当 $x \in [0,1)$ 时, $f(x) = 2^x$, 求函数 $y = f(x)(x \in [3,7))$ 的反函数; (3) 在 (2) 的条件下, 试构造一个数列 $\{a_n\}$, 使得当 $x \in [a_n, a_{n+1})(n \in \mathbb{N}^*)$ 时, 2x + 1 的取值范围为 $[a_{n+1}, a_{n+2})$, 并求 $x \in [a_n, a_{n+1})(n \in \mathbf{N}^*)$ 时, 函数 y = f(x) 的解析式, 及 $y = f(x)(x \in [0, +\infty))$ 的值域. 278. (004446) 函数 $y = \sqrt{2+x}$ 的定义域为_____. 279. (004452) 已知幂函数 y = f(x) 的图像经过点 P(4,2), 则它的反函数为 $f^{-1}(x) =$ _____. 280. (004496) 已知函数 y = f(x) 存在反函数 $y = f^{-1}(x)$, 若函数 $y = f(x) + 2^x$ 的图像经过点 (1,4), 则函数 $y = f^{-1}(x) + \log_2 x$ 的图像必过点_ 281. (004500) 对于定义域为 D 的函数 f(x), 若存在 $x_1, x_2 \in D$ 且 $x_1 \neq x_2$, 使得 $f(x_1^2) = f(x_2^2) = 2f(x_1 + x_2)$, 则称 函数 f(x) 具有性质 M. 若函数 $g(x) = |\log_2 x - 1|, x \in (0, a]$ 具有性质 M, 则实数 a 的最小值为______. 282. (004509) 若存在常数 k(k>0), 使得对定义域 D 内的任意 x_1 、 $x_2(x_1 \neq x_2)$, 都有 $|f(x_1) - f(x_2)| \leq k|x_1 - x_2|$ 成立, 则称函数 f(x) 在其定义域 D 是 "k- 利普希兹条件函数". (1) 若函数 $f(x) = \sqrt{x}(1 \le x \le 4)$ 是 "k- 利普希兹条件函数", 求常数 k 的取值范围; (2) 判断函数 $f(x) = \log_2 x$ 是否是 "2- 利普希兹条件函数", 若是, 请证明, 若不是, 请说明理由; (3) 若 $y = f(x)(x \in \mathbf{R})$ 是周期为 2 的 "1— 利普希兹条件函数", 证明: 对任意的实数 $x_1 \times x_2$, 都有 $|f(x_1)|$ $|f(x_2)| \le 1.$ 283. (004516) 函数 $f(x) = 1 + \log_2 x (x \ge 4)$ 的反函数的定义域为______. 284. (004523) 已知函数 $f^{-1}(x)$ 为函数 f(x) 的反函数, 且函数 f(x-1) 的图像经过点 (1,1), 则函数 $f^{-1}(x)$ 的图像 一定经过点() A. (0,1)B. (1,0)C. (1,2)D. (2,1)
 - 函数; ③ f(x) 的值域为 \mathbf{R} ; ④ 对于任意的正有理数 a, g(x) = f(x) a 存在奇数个零点. 其中正确命题的个数为 ().

A. 0

B. 1

C. 2

D. 3

- 286. (004530) 已知函数 f(x) 的定义域是 D, 若对于任意的 $x_1, x_2 \in D$, 当 $x_1 < x_2$ 时, 都有 $f(x_1) \le f(x_2)$, 则称函数 f(x) 在 D 上为 "非减函数".
 - (1) 判断 $f_1(x) = x^2 4x$, $x \in [1,4]$ 与 $f_2(x) = |x-1| + |x-2|$, $x \in [1,4]$ 是否是"非减函数"?
 - (2) 已知函数 $g(x) = 2^x + \frac{a}{2x-1}$ 在 [2,4] 上为 "非减函数", 求实数 a 的取值范围;
 - (3) 已知函数 h(x) 在 [0,1] 上为"非减函数",且满足条件: ① h(0)=0; ② $h(\frac{x}{3})=\frac{1}{2}h(x)$; ③ h(1-x)=1-h(x),求 $h(\frac{1}{2020})$ 的值.
- 287. (004540) 已知 y = f(x) 是定义在 R 上的奇函数,且当 $x \ge 0$ 时, $f(x) = -\frac{1}{4^x} + \frac{1}{2^x}$,则此函数的值域为
- 288. (004563) 下列函数中, 值域为 $[0, +\infty)$ 的是 ().

A. $y = 2^x$

B. $y = x^{\frac{1}{2}}$

C. $y = \tan x$

D. $y = \cos x$

- 289. (004661) 函数 $f(x) = x^{-\frac{1}{2}}$ 的定义域是_____.
- 290. (004760) 已知以下三个陈述句:

p: 存在 $a \in \mathbb{R}$ 且 $a \neq 0$, 对任意的 $x \in \mathbb{R}$, 均有 $f(2^{x+a}) < f(2^x) + f(a)$ 恒成立;

 g_1 : 函数 y = f(x) 是定义域为 R 的减函数, 且对任意的 $x \in \mathbf{R}$, 都有 f(x) > 0;

 q_2 : 函数 y = f(x) 是定义域为 R 的增函数, 存在 $x_0 < 0$, 使得 $f(x_0) = 0$;

用这三个陈述句组成两个命题, 命题 S: "若 q_1 , 则 p"; 命题 T: "若 q_2 , 则 p". 关于 S, T 以下说法正确的是 ().

A. 只有命题 S 是真命题

B. 只有命题 T 是真命题

C. 两个命题 S,T 都是真命题

- D. 两个命题 S,T 都不是真命题
- 291. (005136) 在 $\triangle ABC$ 中, 已知 BC=a, CA=b, AB=c, $\angle ACB=\theta$. 现将 $\triangle ABC$ 分别以 BC, CA, AB 所在 直线为轴旋转一周, 设所得三个旋转体的体积依次为 V_1,V_2,V_3 .
 - (1) 设 $T = \frac{V_3}{V_1 + V_2}$, 试用 a, b, c 表示 T;
 - (2) 若 θ 为定值,并令 $\frac{a+b}{c}=x$,将 $T=\frac{V_3}{V_1+V_2}$ 表示为 x 的函数,写出这个函数的定义域,并求这个函数的最大值 M;
 - (3) 若 $\theta \in [\frac{\pi}{3},\pi),$ 求 (2) 中 M 的最大值.
- 292. (005272) 求函数 $y = \frac{3x-1}{x+1}$ 的值域.
- 293. (005273) 求函数 $y = \frac{4x+3}{2x-1}$ 的值域.
- 294. (005274) 求函数 $y = \frac{x^2 1}{x^2 + 2}$ 的值域.
- 295. (005275) 求函数 $y = \frac{x^2 x + 1}{2x^2 2x + 3}$ 的值域.

- 296. (005276) 求函数 $y = \frac{x^2 + 4x + 3}{x^2 + x 6}$ 的值域.
- 297. (005277) 若实数 x, y 满足 $x^2 + 4y^2 = 4x$, 求 $S = x^2 + y^2$ 的值域.
- 298. (005279) 求函数 $y = 3x^2 12x + 18\sqrt{4x x^2} 23$ 的值域.
- 299. (005280) 求函数 y = |x-2| |x+1| 的值域.
- 300. (005282) 已知定义域为 R 的函数 f(x) 满足: ① $f(x+y) = f(x) \cdot f(y)$ 对任何实数 x, y 都成立; ② 存在实数 $x_1, x_2,$ 使 $f(x_1) \neq f(x_2)$. 求证:
 - (1) f(0) = 1;
 - (2) f(x) > 0.
- 301. (005298) 函数 $f(x) = \frac{\sqrt{x^2 5x + 6}}{x 2}$ 的定义域是(

 - A. $\{x | 2 < x < 3\}$ B. $\{x | x < 2x > 3\}$
- C. $\{x | x \le 2x \ge 3\}$
- D. $\{x | x < 2$ 或 $x \ge 3\}$
- 302. (005299) 若函数 f(x) 的定义域是 [-1,1], 则函数 f(x+1) 的定义域是 ().
 - A. [-1, 1]
- B. [0, 2]

- C. [-2, 0]
- D. [0,1]
- 303. (005300) 在① y = x 与 $y = \sqrt{x^2}$; ② $y = \sqrt{x^2}$ 与 $y = (\sqrt{x})^2$; ③ y = |x| 与 $y = \frac{x^2}{x}$; ④ y = |x| 与 $y = \sqrt{x^2}$; ⑤ $y = x^0$ 与 y = 1 这五组函数中, 表示同一函数的组数是 (
 - A. 0

B. 1

C. 2

D. 3

- 304. (005301) 函数 $y = -x^2 2x + 3(-5 \le x \le 0)$ 的值域是 (
 - A. $(-\infty, 4]$
- C. [-12, 4]
- D. [4, 12]

305. (005303) 函数 $y = x + \frac{|x|}{x}$ 的图像是 (

В.

D.

- 306. (005304) 函数 $y = \sqrt{1-x^2} + \sqrt{x+1}$ 的定义域为_
- 307. (005305) 函数 $y = \frac{1}{\sqrt{2x^2 + 3}}$ 的定义域为_
- 308. (005306) 函数 $y = \frac{x+5}{3x^2-2x-1}$ 的定义域为_____.
- 309. (005307) 函数 $y = \sqrt{6x x^2 9}$ 的定义域为_____.
- 310. (005308) 函数 $y = \sqrt{4-x^2} + \frac{1}{|x|-1}$ 的定义域为_____

- 311. (005309) 函数 $y = \frac{x^3 1}{x + |x|}$ 的定义域为______.
- 312. (005310) 函数 $y = \frac{1}{|x| x^2}$ 的定义域为_____.
- 313. (005311) 函数 $y = \sqrt{1 (\frac{x-1}{x+1})^2}$ 的定义域为_____.
- 314. (005312) 函数 $y = \frac{\sqrt{x^2 2x 15}}{|x + 3| 8}$ 的定义域为______.
- 315. (005313) 函数 $y = 1 \frac{1}{x+2}$ 的值域为_____.
- 316. (005314) 函数 $y = \frac{3}{2x}$ 的值域为_____.
- 317. (005315) 函数 $y = \frac{x+3}{x-3}$ 的值域为_____.
- 318. (005316) 函数 $y = \frac{5x+3}{x-3}$ 的值域为______.
- 319. (005317) 函数 $y = 4 + \sqrt{2x+1}$ 的值域为______
- 320. (005318) 函数 $y = \sqrt{x \frac{1}{2}x^2}$ 的值域为______.
- 321. (005319) 函数 $y = \sqrt{-x^2 + x + 2}$ 的值域为______.
- 322. (005320) 函数 $y = \frac{2x^2 + 2x + 3}{x^2 + x + 1}$ 的值域为_____.
- 323. (005329) 若 -b < a < 0, 且函数 d(x) 的定义域是 [a,b], 则函数 F(x) = f(x) + f(-x) 的定义域是 ().
 - A. [a,b]

- B. [-b, -a]
- C. [-b, b]
- D. [a, -a]
- 324. (005330) 若 f(x) 的定义域是 [0,1], 且 f(x+m)+f(x-m) 的定义域是 \varnothing , 则正数 m 的取值范围是 ().
 - A. 0 < m < 1
- B. $0 < m \le \frac{1}{2}$
- C. $0 < m < \frac{1}{2}$
- D. $m > \frac{1}{2}$

- 325. (005331) 函数 $y = \frac{x^2 1}{r^2 + 1}$ 的值域是 ().
 - A. (-1,1)
- B. [-1,1]
- C. [-1, 1)
- D. (-1,1]

- 326. (005333) 函数 $f(x) = |1 x| |x 3|(x \in \mathbf{R})$ 的值域是 ().
 - A. [-2, 2]
- B. [-1, 3]
- C. [-3, 1]
- D. [0, 4]
- 327. (005334) 若函数 f(x) 的定义域是 [0,1], 分别求函数 f(1-2x) 和 f(x+a)(a>0) 的定义域.
- 328. (005335) 若函数 f(x+1) 的定义域是 [-2,3), 求函数 $f(\frac{1}{x}+2)$ 的定义域
- 329. (005336) 求函数 $y = \frac{2x}{x^2 + x + 1}$ 的值域.
- 330. (005337) 求函数 $y = \frac{x^2 + x 1}{x^2 + x + 1}$ 的值域.
- 331. (005338) 求函数 $y = \frac{x^2 1}{x^2 5x + 4}$ 的值域.

- 332. (005341) 求函数 $y = 3x 2 + \sqrt{3 2x}$ 的值域.
- 333. (005342) 求函数 $y = 2x + \sqrt{2x 1}$ 的值域.
- 334. (005343) 求函数 y = (x-1)(x-2)(x-3)(x-4) + 15 的值域.
- 335. (005349) 已知函数 f(x) 的定义域是一切非零实数, 且满足 $3f(x) + 2f(\frac{1}{x}) = 4x$, 求, f(x) 的表达式.
- 336. (005350) 作出函数 $y = 1 + \frac{|x|}{x}$ 的图像.
- 337. (005351) 作出函数 y = x |1 x| 的图像.
- 338. (005352) 作出函数 $y = |x^2 4x + 3|$ 的图像.
- 339. (005353) 作出函数 $y = \frac{x^3 + x}{|x|}$ 的图像.
- 340. $_{(005354)}$ 作出函数 $y=rac{(x+rac{1}{2})}{|x|-x}^0$ 的图像.
- 341. (005355) 已知 $f(x) = -x^2 + 2x + 3$, 画出函数 $y = \frac{1}{2}[f(x) + |f(x)|]$ 的图像
- 342. (005356) 已知 $f(x) = |x|, x \in [-1, 1]$, 作出函数 y = f(x+1) + 1 的图像.
- 343. (005363) 画出函数 $y = x^2 2|x| 1$ 的图像.
- 344. (005364) 求函数 $y = \frac{x-2}{2x+1}$ 的值域.
- 345. (005365) 已知函数 $f(x)=(x-1)^2(x\leq 1),$ 又 f(x) 和 $\varphi(x)$ 的图像关于直线 y=x 对称, 求 $\varphi(x)$ 的表达式.
- 346. (005445) 已知幂函数 f(x) 的图像经过点 $(2, \frac{\sqrt{2}}{2})$, 则 f(4) 的值等于 (

B. $\frac{1}{16}$

C. $\frac{1}{2}$

D. 2

- $347.~_{(005446)}$ 下列幂函数中, 定义域为 $\{x|x>0\}$ 的是 (
 - A. $y = x^{\frac{2}{3}}$
- B. $y = x^{\frac{3}{2}}$ C. $y = x^{-\frac{2}{3}}$
- D. $y = x^{-\frac{3}{2}}$

- $348.~_{(005447)}$ 幂函数 $y = x^n (n \in \mathbf{Z})$ 的图像一定不经过 (
 - A. 第一象限
- B. 第二象限
- C. 第三象限
- D. 第四象限

 $349._{(005448)}$ 函数 $f(x) = x^{\frac{2}{3}}$ 的图像是 (

350. (005449) 幂函数 $y=x^m$ 和 $y=x^n$ 在第一象限内的图像 C_1 和 C_2 图像所示, 则 m,n 之间的关系是 (

A. n < m < 0

B. m < n < 0

C. n > m > 0

D. m > n > 0

351. (005450) 图中, C_1, C_2, C_3 为幂函数 $y = x^a$ 在第一象限的图像, 则解析式中的指数 α 依次可以取 (

A.
$$\frac{4}{3}$$
, -2 , $\frac{3}{4}$ B. -2 , $\frac{3}{4}$, $\frac{4}{3}$

B.
$$-2, \frac{3}{4}, \frac{4}{3}$$

C.
$$-2, \frac{4}{3}, \frac{3}{4}$$

D.
$$\frac{3}{4}, \frac{4}{3}, -2$$

 $352._{(005451)}$ 函数 $y=x^{\frac{5}{6}}$ 的定义域为________,值域为_

353. (005452) 函数 $y=x^{\frac{3}{5}}$ 的定义域为______, 值域为_____.

354. (005453) 函数 $y=x^{\frac{8}{5}}$ 的定义域为_______, 值域为______.

355. (005454) 函数 $y = x^{-\frac{5}{4}}$ 的定义域为 , 值域为 .

356. (005455) 函数 $y=x^{-\frac{5}{3}}$ 的定义域为________,值域为________.

357. (005456) 函数 $y = x^{-\frac{2}{3}}$ 的定义域为________,值域为_______.

359. (005458) 函数 $y = 5(2x-1)^{\frac{3}{4}}$ 的定义域为 , 值域为 .

360. (005459) 将下列函数图像的标号, 填在相应函数后面的横线上:

(1) $y = x^{\frac{2}{3}}$:_____; (2) $y = x^{-2}$:_____; (3) $y = x^{\frac{1}{2}}$:_____;

(4) $y = x^{-1}$:_____; (5) $y = x^{\frac{1}{3}}$:_____; (6) $y = x^{\frac{3}{2}}$:_____;

 $(7)y = x^{\frac{4}{3}}$; $(8)y = x^{-\frac{1}{2}}$; $(9)y = x^{\frac{5}{3}}$.

361. (005460) 若幂函数 $y = x^n$ 的图像在 0 < x < 1 时位于直线 y = x 的下方, 则 n 的取值范围是______

362. (005461) 若幂函数 $y = x^n$ 的图像在 0 < x < 1 时位于直线 y = x 的上方, 则 n 的取值范围是______

363. (005462) 函数 $f(x) = x^{k^2 - 2k - 3} (k \in \mathbf{Z})$ 的图像如图所示, 则 k = 1

365. (005471) 已知函数 $y = x^{n^2-2n-3} (n \in \mathbf{Z})$ 的图像与两坐标轴都无公共点,且其图像关于 y 轴对称,求 n 的值,并 画出相应的函数图像.

366. (005477) 若函数 f(x) 在定义域 R 上为增函数, 且 f(x) < 0, 则下列函数在 R 上为增函数的是 ().

A.
$$y = |f(x)|$$

$$B. y = \frac{1}{f(x)}$$

C.
$$y = [f(x)]^2$$

D.
$$y = [f(x)]^3$$

367.	(005484) 已知 $f(x) = -x^3 - x + 1(x \in \mathbf{R})$, 求证 $y = f(x)$ 在定义域上为减函数.					
368.	(005486) 求证: $f(x) = \sqrt{x} - \frac{1}{x}$ 在定义域上是增函数.					
369.	(005493) 下列函数中既是奇函数, 又在定义域上为增函数的是 ().					
	A. $f(x) = 3x + 1$	$B. f(x) = \frac{1}{x}$	C. $f(x) = 1 - \frac{1}{x}$	D. $f(x) = x^3$		
370.	(005496) 已知 $f(x)$ 是奇函数,	则下列各点中在函数 $y=$	f(x) 的图像上的点的是 $($			
	A. $(a, f(-a))$	B. $(-a, -f(a))$	$C. \left(\frac{1}{a}, -f(\frac{1}{a})\right)$	$D. (-\sin a, -f(-\sin a))$		
371.	$_{\scriptscriptstyle{(005498)}}$ 若奇函数 $f(x)$ 的定义	ス域是 \mathbf{R} , 则 $f(0) =$	·			
372.	(005505) 若函数 $y = f(x)$ 是偶	函数, 其图像与 x 轴有四	个交点,则方程 $f(x) = 0$ 的所有	有实数根之和为().		
	A. 4	B. 2	C. 1	D. 0		
373.	(005508)f(x) + f(2-x) + 2 =	0 对任何实数 x 都成立, !	则 f(x) 的图像 ().			
	A. 关于直线 $x=1$ 成轴对称图形 B. 关于直线 $x=2$ 成轴对称图形					
	C. 关于点 (1, -1) 成中心对	计称图形	D. 关于点 (-1,1) 成中心对积			
374.	(005519) 已知奇函数 $f(x)$ 在定义域 $(-l,l)$ 上是减函数, 求满足 $f(1-m)+f(1-m^2)<0$ 的实数 m 的取值范					
	围.		, , , , , , , ,			
375.	(005522) 求证: 定义域为 (-l, l) 的任何函数都能表示成-	一个奇函数与一个偶函数之和.			
376.	$y = \sqrt{x^2 - 2x + 3}$ ($x \le 1$) 的反函数的定义域是 ().					
	A. $[0, +\infty)$	B. $(2, +\infty)$	C. $(-\infty, 1]$	D. $[\sqrt{2}, +\infty)$		
377.	(005527) 若函数 $y = g(x)$ 的图	 像与函数 $f(x) = (x - 1)$	$2(x \le 1)$ 的图像关于直线 $y =$	x 对称. 则 $g(x)$ 的表达		
	式是 ().					
	A. $g(x) = 1 - \sqrt{x} (x \ge 0)$		B. $g(x) = 1 + \sqrt{x} (x \ge 0)$			
	C. $g(x) = \sqrt{1 - x} (x \le 1)$		D. $g(x) = \sqrt{1+x}(x \ge -1)$			
378.	f(x) 的图像经过点 $f(x)$ 的图像经过点 $f(x+4)$ 的反函数的图像必经过点 $f(x+4)$ 的					
	A. (—1, 4)	B. $(-4, -1)$	C. $(-1, -4)$	D. $(1, -4)$		
379.	(005531) 已知函数 $y = -\sqrt{1-y}$	$\overline{x^2}$ 的反函数是 $y = -\sqrt{1}$	$\overline{-x^2}$, 则原函数的定义域 "最大	"可以是		
380.	$_{(005533)}$ 若点 $(1,2)$ 既在函数 $y=\sqrt{ax+b}$ 的图像上. 又在其反函数的图像上, 则 $a=$					
381.	(005542) 若函数 $y = \sqrt{x - m}$ -	与其反函数的图像有公共。	点,则 m 的取值范围是 ().			
	A. $m \ge \frac{1}{4}$	B. $m \leq \frac{1}{4}$	C. $m \ge 0$	D. $m \leq 0$		

382. (005543) 已知 y = g(x) 是函数 y = f(x) 的反函数, 又 y = h(x) 与 y = g(x) 的图像关于原点 O(0,0) 对称, 则 h(x) 的表达式是 ().

A.
$$y = f^{-1}(x)$$

B.
$$y = -f^{-1}(x)$$

C.
$$y = f^{-1}(-x)$$

A.
$$y = f^{-1}(x)$$
 B. $y = -f^{-1}(x)$ C. $y = f^{-1}(-x)$

- 383. (005547) 已知定义域为 $(-\infty,0]$ 的函数 f(x) 满足 $f(x-1)=x^2-2x,$ 则 $f^{-1}(-\frac{1}{2})=$ ______.
- $384._{(005548)}$ 求函数 $f(x) = egin{cases} x+1, & x>0, \\ x-1, & x<0 \end{cases}$ 的反函数,并作出其反函数的图像.
- 385. (005549) 已知函数 $f(x) = x^2 + 2x + 1$.
 - (1) 若函数的定义域是 $(-\infty, +\infty)$, 这个函数有没有反函数?
 - (2) 若函数的定义域是 $[0,+\infty)$, 求其反函数;
 - (3) 若函数的定义域是 $(-\infty, -1]$, 求其反函数.
- 386. (005562) 已知函数 f(x) = 2x + 1, $g(x) = 1.5^x$, $h(x) = x^{1.5}$, 试用数值计算比较三个函数在 $[0, +\infty)$ 上的函数值 的大小、图像递增的快慢. 并说明在函数图像上的表现. 解列表并计算得:

x	f(x) = 2x + 1	f(x) - f(x-1)	$g(x) = 1.5^x$	g(x) - g(x-1)	$h(x) = x^{1.5}$	h(x) - h(x-1)
0	1		1		0	
1	3	2	1.5	0.5	1	1
2	5	2	2.25	0.75	2.82842712	1.82842712
3	7	2	3.375	1.125	5.19615242	2.3677253
4	9	2	5.0625	1.6875	8	2.80384758
5	11	2	7.59375	2.53125	11.1803399	3.18033989
6	13	2	11.390625	3.796875	14.6969385	3.51659857
7	15	2	17.085938	5.6953125	18.5202592	3.82332072
8	17	2	25.628906	8.5429688	22.627417	4.10715782
9	19	2	38.443359	12.814453	27	4.372583
10	21	2	57.665039	19.22168	31.6227766	4.6227766
11	23	2	86.497559	28.83252	36.4828727	4.86009609
12	25	2	129.74634	43.248779	41.5692194	5.08634669
13	27	2	194.61951	64.873169	46.8721666	5.3029472
14	29	2	291.92926	97.309753	52.3832034	5.51103683
15	31	2	437.89389	145.96463	58.0947502	5.71154678
16	33	2	656.84084	218.94695	64	5.90524981
17	35	2	985.26125	328.42042	70.0927956	6.09279564
18	37	2	1477.8919	492.63063	76.3675324	6.27473673

x	f(x) = 2x + 1	f(x) - f(x-1)	$g(x) = 1.5^x$	g(x) - g(x-1)	$h(x) = x^{1.5}$	h(x) - h(x-1)
19	39	2	2216.8378	738.94594	82.8190799	6.45154756
20	41	2	3325.2567	1108.4189	89.4427191	6.62363917
21	43	2	4987.8851	1662.6284	96.2340896	6.79137049
22	45	2	7481.8276	2493.9425	103.189147	6.95505712
23	47	2	11222.741	3740.9138	110.304125	7.11497832
24	49	2	16834.112	5611.3707	117.575508	7.27138262
25	51	2	25251.168	8417.0561	125	7.42449235
26	53	2	37876.752	12625.584	132.574507	7.57450735
27	55	2	56815.129	18938.376	140.296115	7.72160806
28	57	2	85222.693	28407.564	148.162073	7.86595801
29	59	2	127834.04	42611.346	156.169779	8.00770599
30	61	2	191751.06	63917.02	164.316767	8.14698784

得点 A, B, C, D 的横坐标分别约为 1.5, 4.8, 6.5, 7.4, 记作 x_A, x_B, x_C, x_D .

(1) 三个函数的函数值的大小情况如下:

① 当 $0 < x < x_A$ 时, f(x) > g(x) > h(x); ② 当 $x_A < x < x_B$ 时, f(x) > h(x) > g(x); ③ 由 $x_B < x < x_C$ 时, h(x) > f(x) > g(x); ④ 当 $x_C < x < x_D$ 时, h(x) > g(x) > f(x); ⑤ 当 $x_D < x$ 时, g(x) > h(x) > f(x); ⑥ 当 $x = x_A$ 时, f(x) > g(x) = h(x); ⑦ 当 $x = x_B$ 时, f(x) = h(x) > g(x); ⑧ 当 $x = x_C$ 时, f(x) = g(x) < h(x); ⑨ 当 $x = x_D$ 时, f(x) < g(x) = g(x).

(2) 它们在同一个平面直角坐标系下的图像如图 14 所示.

由表格及图像可看出, 三个函数的函数值变化及相应增量规律为: 随着 x 的增大, 直线型均匀上升, 增量恒定; 指数型急剧上升, 在区间 $[0,+\infty)$ 上递增增量快速增大; 幂函数型虽上升较快, 但随着 x 的不断增大上升趋势 远不如指数型, 几乎微不足道, 其增量缓慢递增.

387. (005563) 已知函数 $f(x) = 4 + a^{x-1}$ 的图像恒过记点 P, 则点 P 的坐标是 (

- A. (1,5)
- B. (1,4)
- C. (0,4)
- D. (4,0)

388. (005564) 下列函数中, 值域为 $(0,+\infty)$ 的函数是 ().

A.
$$y = (\frac{1}{8})^{2-x}$$

A.
$$y = (\frac{1}{9})^{2-x}$$
 B. $y = \sqrt{1-3^x}$

C.
$$y = \sqrt{(\frac{1}{3})^x - 1}$$

D.
$$y = 2^{\frac{1}{3-3}}$$

389. (005569) 在同一平面直角坐标系中,函数 f(x)=ax 与 $g(x)=a^x$ 的图像可能是 (

390. (005574) 若函数 $f(x) = a^x - (b+1)(a > 0$ 且 $a \neq 1$) 的图像在第一、三、四象限, 则必有 (

- A. $0 < a < 1 \perp b > 0$ B. $0 < a < 1 \perp b < 0$ C. $a > 1 \perp b < 1$
- D. $a > 1 \perp b > 0$

 $391._{(005578)}$ 函数 $f(x) = \sqrt{1 - 6^{x^2 + x - 2}}$ 的定义域是

392. (005579) 若函数 f(x) 的定义域是 (0,1), 则函数 $f(2^{-x})$ 的定义域是_______, $f(3 \times 9^x + 2 \times 3^x)$ 的定义域

393. (005588) 函数 $f(x) = \frac{1}{3^x - 1}$ 的值域是_____.

394. (005589) 函数 $f(x) = \frac{3^x}{3^x + 1}$ 的值域是______.

395. (005596) 已知函数 $f(x) = (\frac{1}{2x-1} + \frac{1}{2})x^3$.

- (1) 求函数的定义域;
- (2) 讨论 f(x) 的奇偶性;
- (3) 求证: f(x) > 0.

396. (005597) 已知 $f(x) = \frac{a^x - 1}{a^x + 1} (a > 1).$

- (1) 判断函数 f(x) 的奇偶性;
- (2) 求函数 f(x) 的值域;
- (3) 求证: f(x) 在区间 $(-\infty, +\infty)$ 上是增函数.

397. (005605) 在同一个平面直角坐标系中,作出 t(x) = 0.5x 与 $g(x) = 0.2 \times 2^x$ 的图像, 并比较它们的增长情况.

398. (005680) 求函数 $y = \frac{\sqrt{\log_{0.8} x - 1}}{2x - 1}$ 的定义域.

399. (005685) 求函数 $f(x) = \log_{\frac{1}{2}}(x^2 - 6x + 17)$ 的值域.

- 400. (005687) 与函数 y = x 为同一个函数的是 (
 - A. $y = \sqrt{x^2}$

B. $y = \frac{x^2}{x}$

C. $y = a^{\log_a x} (a > 0 \text{ II. } a \neq 1)$

- D. $y = \log_a a^x (a > 0$ Д. $a \neq 1)$
- 401. (005689) 若函数 $f(x) = \log_2 x + 3(x \ge 1)$, 则其反函数 $f^{-1}(x)$ 的定义域是 ().
 - A. **R**

- B. $\{x | x \ge 1\}$
- C. $\{x|0 < x < 1\}$ D. $\{x|x \ge 3\}$

402. (005690) 图中图像所对应的函数可能是().

- A. $y = 2^x$
- B. $y = 2^x$ 的反函数
- D. $y = 2^{-x}$ 的反函数

403. (005692) 下列函数图像中, 不正确的是 (

- A. $y = \log_{\frac{1}{3}} x^2$
- B. $y = \log_{\frac{1}{3}}(-x)$
- $C. y = |\log_3 x|$
- D. $y = |x^{-\frac{1}{3}}|$
- 404. (005693) 在同一平面直角坐标系中画出函数 y=x+a 与 $y=\log_a x$ 的图像, 可能是 (

405. (005694) 函数 y=f(x) 的图像如图所示, 则 $y=\log_{0.7}f(x)$ 的示意图是 (

A.

407. (005697) 函数 $y = \log_{\frac{1}{3}}(x^2 - 3x + 4)$ 的定义域为

408. (005698) 函数
$$y = \frac{\sqrt{x^2 - 4}}{\lg(x^2 + 2x - 3)}$$
 的定义域为_____.

409. (005699) 函数
$$y = \log_{(2x-1)}(32-4^x)$$
 的定义域为______

410. (005700) 函数
$$y = \log_{\frac{1}{3}}(x^2 - 4x + 7)$$
 的值域为_____.

411. (005701) 函数
$$y = \log_{\frac{1}{2}} \frac{1}{x^2 - 2x + 5}$$
 的值域为_____.

412. (005702) 函数
$$y = \log_{\frac{1}{2}} \sqrt{3 - 2x - x^2}$$
 的值域为_____

413. (005712) 若函数 $f(x)=a^x-k$ 的图像过点 (1,3),其反函数 $f^{-1}(x)$ 的图像过点 (2,0),则 f(x) 的表达式

414. (005716) 已知 $f(x) = \frac{a^x - 1}{a^x + 1}(a > 1)$.

- (1) 求 f(x) 的值域;
- (2) 求证: f(x) 在 R 上是增函数;
- (3) 求 f(x) 的反函数.

415. (005732) 求函数
$$y = (\log_{\frac{1}{4}} x)^2 - \log_{\frac{1}{4}} x^2 + 5(2 \le x \le 4)$$
 的值域.

416. (005737) 已知函数 $f(x) = (\log_a b) x^2 + 2(\log_b a) x + 8$ 的图像在 x 轴的上方, 求 a, b 的取值范围.

417. (005743) 已知函数
$$f(x) = \sqrt{\log_a x - 1} (a > 0$$
 且 $a \neq 1$).

- (1) 求 f(x) 的定义域;
- (2) 当 a>1 时, 求证: f(x) 在 $[a,+\infty)$ 上是增函数.

418. (005750) 已知函数
$$f(x) = \log_a \frac{x+b}{x-b} (a>0, b>0$$
 且 $a \neq 1$).

(1) 求 f(x) 的定义域;

- (2) 讨论 f(x) 的奇偶性;
- (3) 讨论 f(x) 的单调性;
- (4) 求 f(x) 的反函数 $f^{-1}(x)$.
- 419. (005751) 已知函数 $f(x) = \lg \frac{x+1}{x-1} + \lg(x-1) + \lg(a-x)(a>1)$.
 - (1) 是否存在一个实数 a 使得函数 y = f(x) 的图像关于某一条垂直于 x 轴的直线对称? 若存在, 求出这个实 数 a; 若不存在, 说明理由;
 - (2) 当 f(x) 的最大值为 2 时, 求实数 a 的值.
- 420. $_{\scriptscriptstyle{(005763)}}$ 若对于任意实数 p, 函数 $y=(p-1)2^x-\frac{p}{2}$ 的图像恒过一定点,则这个点的坐标是 ().

A.
$$(1, -\frac{1}{2})$$

B.
$$(0, -1)$$

C.
$$(-1, -\frac{1}{2})$$

C.
$$(-1, -\frac{1}{2})$$
 D. $(-2, -\frac{1}{4})$

- 421. (005776) 解方程: $\sqrt[x]{9} \sqrt[x]{6} = \sqrt[x]{4}$.
- 422. (005828) 若函数 f(x) 的定义域为 \mathbb{R}^+ , 且满足 f(xy) = f(x) + f(y), f(8) = 3, 求 $f(\sqrt{2})$ 的值.
- 423. (005829) 若函数 f(x) 的定义域为 R, 且满足 $f(x) + 2f(-x) = -x^3 + 6x^2 3x + 3$, 求 f(0) 的值, 并求 f(x) 的 表达式.
- 424. (005834)(1) 求函数 $y = 2x + \sqrt{1-2x}$ 的最大值. (2) 求函数 $y = 2x + \sqrt{1-x^2}$ 的值域. (3) 求函数 $y = \frac{\sqrt{x+1}}{x+2}$ 的值域.
- 425. (005835) 求函数 g(t) = (t+3)(1+|t-1|) 的值域, 其中实数 t 的取值范围是使函数 $f(x) = x^2 4tx + 2t + 30$ 对任一 $x \in \mathbf{R}$ 都取非负值.
- 426. (005836) 已知函数 f(x) 的定义域是 [0, 1], 求函数 f(x+m) + f(x-m) 的定义域 (其中 m > 0).
- 427. (005841) 已知 y = f(x) 在其定义域上是增函数, 求证: y = f(x) 的反函数 $y = f^{-1}(x)$ 在其定义域上也是增函
- 428. (005843) 已知函数 $f(x) = \frac{x}{1+x^2} (x \in \mathbf{R}).$
 - (1) 求 f(x) 的值域;
 - (2) 讨论 f(x) 的单调性.
- 429. (005844) 若二次函数 $f(x)=ax^2+bx+c$ 满足 $f(x_1)=f(x_2),\,(x_1\neq x_2)$ 求证: 直线 $x=\frac{x_1+x_2}{2}$ 是该二次函 数图像的对称轴.
- 430. (005845) 若对于任何实数 x, 函数 y = f(x) 始终满足 f(a + x) = f(a x), 求证: 函数 y = f(x) 的图像关于直 线 x = a 对称.
- 431. (005846) 已知函数 f(x) 满足 $f(x+2) = f(2-x)(x \in \mathbf{R})$, 且 f(x) 的图像与 x 轴有 15 个不同的交点, 求方程 f(x) = 0 的所有解的和.
- 432. (005847) 已知函数 f(2x+1) 是偶函数, 求函数 f(2x) 的图像的对称轴.

- 433. (005848) 求函数 $y = \frac{3x-1}{x+2}(x \neq -2)$ 的图像的对称点.
- 434. (005849) 已知函数 f(x) 满足 $f(x) + f(2-x) + 2 = 0 (x \in \mathbf{R})$, 求 f(x) 的图像的对称中心.
- 435. (005850) 已知函数 $f(x) = \log_3(x^2 4mx + 4m^2 + m + \frac{1}{m-1})$, 集合 $M = \{m|m > 1, m \in \mathbf{R}\}$.
 - (1) 求证: 当 $m \in M$ 时, f(x) 的定义域为 $x \in \mathbb{R}$; 反之, 若 f(x) 对一切实数 x 都有意义, 则 $m \in M$;
 - (2) 当 $m \in M$ 时, 求 f(x) 的最小值;
 - (3) 求证: 对每一个 $m \in M$, f(x) 的最小值都不小于 1.
- 436. (005856) 已知函数 f(x) 在定义域 $x \in \mathbf{R}^+$ 上是增函数, 且满足 $f(x \cdot y) = f(x) + f(y)(x, y \in \mathbf{R}^+)$.
 - (1) 求 f(x) 在 $(1, +\infty)$ 上的值域;
 - (2) 若 f(2) = 1, f(x) 图像上三点 A, B, C 的横坐标分别为 a, a + 2, a + 4(a > 0), 且 $\triangle ABC$ 的面积小于 1, 求实数 a 的取值范围.
- 437. (007860) 下列各图像中, 哪些是函数的图像, 哪些不是函数的图像? 为什么?

438. (007861) 选择题: 下列各组函数 f(x) 与 g(x) 表示同一个函数的是 (

A.
$$f(x) = \frac{x^2 - 1}{x + 1}$$
, $g(x) = x - 1$

(007861) **近洋翘:** 下列各租图数
$$f(x)$$
 与 $g(x)$ A. $f(x) = \frac{x^2 - 1}{x + 1}$, $g(x) = x - 1$
B. $f(x) = |x|$, $g(x) = \begin{cases} x, & x \ge 0, \\ -x, & x < 0 \end{cases}$

C.
$$f(x) = x^0$$
, $g(x) = 1$

D.
$$f(x) = (\sqrt{x})^2$$
, $g(x) = \sqrt{x^2}$

- 439. (007862) 求函数 $y = \frac{1}{r^2 + 2r 3}$ 的定义域.
- 440. (007863) 求函数 $y = \sqrt{4 3x x^2}$ 的定义域.
- 441. (007864) 求函数 $y = \sqrt{x-2} + \sqrt{x+3}$ 的定义域.
- 442. (007865) 求函数 $y = \frac{1}{x+2} + \frac{1}{\sqrt{5-x}}$ 的定义域.
- 443. (007867) 观察下列各函数, 并写出他们的值域:

444. (007868) 某企业去年四个季度生产某种型号机器的数量 y(万台) 与季度的函数关系是:

x(季度)	1	2	3	4
y(万台)	10	12	14	16

试写出函数的定义域,并作出函数的图像.

445. (007869) 求函数 $y = \frac{1}{|x+3|-1}$ 的定义域.

446. (007870) 求函数 $y = \sqrt{(a-x)(x-1)}(x$ 为自变量) 的定义域.

447. (007872) 试举出一个定义域为 [-2,2] 的函数例子.

448. (007873) 为分流短途乘客, 减缓轨道交通高峰压力, 上海地铁实行新的计费标准. 新标准的分段计程制度如下: 0-6 千米 (含 6 千米)3 元; 6-16 千米 (含 16 千米)4 元; 16 千米以上每 6 千米递增 1 元, 但总票价不超过 8 元.

- (1) 试作出票价 y(元) 关于路程 x(千米) 的函数图像;
- (2) 某人买了 5 元的车票, 他途经路程不能超过多少千米?

449. (007886) 已知函数 $f(x) = 2x - \frac{1}{x^2 - 1}$, 函数 $g(x) = \frac{1}{x^2 - 1} - 1$.

- (1) 求函数 y = f(x) + g(x);
- (2) 画出函数 y = f(x) + g(x) 的图像.

450. (007887) 已知函数 $f(x) = x\sqrt{x-1}$, 函数 $g(x) = \sqrt{x-1}$, 设 $F(x) = f(x) \cdot g(x)$.

- (1) 写出 F(x) 的解析式;
- (2) 画出 F(x) 的图像.

451. (007890) 已知函数 $f(x) = \frac{x^2}{\sqrt{4-x^2}}$, 函数 $g(x) = \sqrt{4-x^2}$.

(1) 求函数 $y = f(x) \cdot g(x)$; $(2) 作出函数 F(x) = \begin{cases} f(x) \cdot g(x), & x \leq 0, \\ x, & 0 < x \leq 2 \end{cases}$ 的图像.

452. (007891) 已知函数 $f(x) = x^2, x \in (0,2)$, 函数 y = f(x) + g(x) 的图像如图所示, 写出函数 y = g(x) 的一个解 析式.

453. (007892) 若函数 y = f(x) 的定义域为 \mathbf{R} , 则 y = f(x) 为奇函数的充要条件为 (

A. f(0) = 0

B. **对任意** $x \in \mathbf{R}, f(x) = 0$

C. 存在某个 $x_0 \in \mathbf{R}$, 使得 $f(x_0) + f(-x_0) = 0$ D. 对任意的 $x \in \mathbf{R}$, f(x) + f(-x) = 0 都成立

- 454. (007899) 已知函数 y = f(x) 的定义域为 $[0, +\infty)$. 如果对任意的 x > 0, 都有 f(x) < f(0), 那么函数 y = f(x)有 $[0,+\infty)$ 上是否一定是减函数?
- 455. (007911) 画出函数 $y = x^2 2|x|$ 的图像, 并写出它的定义域、奇偶性、单调区间、最小值.
- 456. (007912) 研究函数 $f(x) = \frac{1}{1+x^2}$ 的定义域、奇偶性、单调性、最大值.
- 457. (007923) 研究函数 $f(x) = x + \frac{a}{r}(a > 0)$ 的定义域、奇偶性、单调性.
- 458. (007924) 求函数 $y = \frac{1}{2-x} + \sqrt{x^2-1}$ 的定义域.
- 459. (007928) 已知 y = f(x) 是奇函数, 定义域为 \mathbf{R} , y = g(x) 是偶函数, 定义域为 D. 设 $F(x) = f(x) \cdot g(x)$, 判断 y = F(x) 奇偶性.
- $460.~_{(007931)}$ 作出函数 $y = |x^2 4x|$ 的图像, 并指出其单调区间.
- 461. (007932) 作出函数 y = 2|x| 3 的图像, 并指出其单调区间.
- 462. (007933) 设函数 $f(x) = (a^2 + 4a 5)x^2 4(a 1)x + 3$ 的图像都在 x 轴的上方, 求实数 a 的取值范围.
- 463. (007942) 打开水龙头, 让水匀速地注入一个杯子内, 随着时间的增加, 杯中水面的高度不断增加, 直至水满溢出. 在这个过程中, 杯中水面的高度 h 关于注水时间 t 的函数为 h = f(t).

(1) 如果甲杯、乙杯的形状分别如图所示, 那么下列草图中, 甲杯相应函数 h=f(t) 的图像是______, 乙 杯相应函数 h = f(t) 的图像是______.(只有杯子的圆柱和圆锥形部分可以盛水)

(2) 下列是两个杯子相应函数 h = f(t) 的图像, 试说明这两个杯子形状有何差别.

 $464._{(007943)}$ 已知幂函数 f(x) 的图像经过 $(2, \frac{\sqrt{2}}{2})$,试求出这个函数的解析式.

 $466._{(007945)}$ 研究幂函数 $f(x) = x^{\frac{2}{5}}$ 的定义域、奇偶性、单调性、值域。

467. (007946) 作函数 $y = \frac{|x|+1}{|x+1|}$ 的大致图像.

468. $_{(007949)}$ 已知幂函数 f(x) 的定义域是 $(+\infty,0)\cup(0,+\infty)$,且它的图像关于 y 轴对称,写出一个满足要求的幂函数 f(x).

 $469._{(007959)}$ 若函数 $y=2^x-m$ 的图像不经过第二象限, 则 m 的取值范围是 ().

A.
$$m \ge 1$$

B.
$$m < 1$$

C.
$$m > -1$$

D.
$$m \le -1$$

470. (007962) 作函数 $y = 2^{|x|}$ 的大致图像.

471. (007963) 作函数 $y = 2^{-|x|}$ 的大致图像.

472. (007966) 函数 $y = 4^x - 2^{x+1} + 1(x < 0)$ 的值域是 ().

A.
$$[0, +\infty)$$

B.
$$(1, +\infty)$$

D.
$$(0,1]$$

473. (007982) 若函数 f(x)=3x+1 的定义域为 $\{1,3,k\}$. 值域为 $\{4,a^4,a^2+3a\}$, 且 a、k 为自然数, 则 a+k=_____.

474. (007984) 下列图形中, 能作为某个函数的图像的只能是 ().

- 475. (007987) 点 $(\sqrt{2},2)$ 在幂函数 y=f(x) 的图像上,点 $(-2,\frac{1}{4})$ 在幂函数 y=g(x) 的图像上.当 x 为何值时, f(x)=g(x)?
- 476. (007998) 甲乙两地的高速公路全长 166 千米, 在高速公路上最高行驶时速不得高于 120 千米/时, 假设汽车从甲地进入该高速公路以不低于 70 千米/时的速度匀速行驶到乙地, 已知汽车每小时的运输成本 (以元为单位)由可变部分和固定部分组成: 可变部分与速度 v(千米/时) 的平方成正比, 比例系数为 0.02; 固定部分为 220元.
 - (1) 把全程运输成本 y(元) 表示为速度 v(千米/时) 的函数, 并指出这个函数的定义域;
 - (2) 汽车应以多大速度行驶才能使全程运输成本最小? 最小运输成本约为多少元?
- 477. (008032) 已知函数 $y = \frac{a}{x+1}$ 的反函数的图像经过点 $(\frac{1}{2},1)$, 求实数 a 的值.
- 478. (008033) 已知函数 y = f(x) 的图像与函数 $y = \frac{x-1}{x+1}$ 的图像关于直线 y = x 对称, 求函数 y = f(x) 的解析式.
- 479. (008035) 一次函数 y = -x 的图像与它的反函数的图像重合. 试写出一个非一次函数的函数, 使它的图像与其反函数的图像重合.
- 480. (008036) 如果函数 y = f(x) 的图像过点 (0,1), 那么函数 $y = f^{-1}(x) + 2$ 的反函数的图像过点 ().
 - A (3 0)

- B. (0,3)
- C. (1, 2)
- D. (2,1)
- 481. (008037) 如果 $y = -\sqrt{1-x^2}$ 的反函数是 $y = -\sqrt{1-x^2}$, 那么原来的函数的定义域可以是 ().
 - A. $(0, +\infty)$
- B. [-1,1]
- C. [-1, 0]
- D. [0, 1]

- 482. (008039) 求函数 $y = \lg(x^2 3x + 2)$ 的定义域.
- 483. (008040) 求函数 $y = \frac{\sqrt{2x-1}}{\lg x}$ 的定义域.
- 484. (008041) 求函数 $y = \sqrt{\lg x} + \lg(5 2x)$ 的定义域.
- 485. (008045) 已知函数 $f(x) = a^x + b$ 的图像经过点 (1,7), 反函数 $f^{-1}(x)$ 的图像经过点 (4,0), 求函数 f(x) 的表达式.
- 486. (008053) 求证: $y = \lg(1-x)$ 在定义域上单调递减.
- 487. (008080) 若点 (1,7) 既在函数 $y = \sqrt{ax+b}$ 的图像上, 又在其反函数的图像上, 则数对 (a,b) 为______
- 488. (008081) 若 $f(x) = 3^x + 5$, 则 $f^{-1}(x)$ 的定义域是 ().
 - A. $(0,+\infty)$
- B. $(5, +\infty)$
- C. $(8, +\infty)$
- D. $(-\infty, +\infty)$

- 489. (008084) 作出函数 $y = \log_2(x-1)$ 的图像.
- 490. (008085) 作出函数 $y = |\log_2(x-1)|$ 的图像.
- 491. (008089) 已知函数 $f(x) = \log_a \frac{1+x}{1-x} (a>0, \, a \neq 1)$. (1) 求 f(x) 的定义域;
 - (2) 判断 f(x) 的奇偶性, 并加以证明;
 - (3) 当 a > 1 时, 求使 f(x) > 0 的 x 的取值范围.
- 492. (008091) 如果函数 $f(x) = \log_a(-x^2 + ax)$ 的定义域为 $(0, \frac{1}{2})$, 那么实数 $a = \underline{\hspace{1cm}}$.
- 493. (008093) 若函数 y = f(x) 的图像与函数 $y = 2^x 1$ 的图像关于直线 y = x 成轴对称图形, 则函数 y = f(x) 的解析式为______.
- 494. (008094) 当 a>1 时, 在同一坐标系中, 函数 $y=a^{-x}$ 与 $y=\log_a x$ 的图像是 ().

- 495. (008095) 函数 $f(x) = 4 + \log_a(x-1)(a > 0a \neq 1)$ 的图像恒经过定点 P, 则点 P 的坐标是 ().
 - A. (1.4)

- B. (4,1)
- C.(2,4)
- D. (4,2)
- 496. (1008098) 判断命题 "若函数 y = f(x) 与 $y = f^{-1}(x)$ 的图像有公共点,则公共点必在直线 y = x 上"的真假,并说明理由.
- 497. (008364) 如果函数 y = f(x) 的图像经过第三、四象限, 那么函数 $y = f^{-1}(x)$ 的图像经过第______ 象限
- 498. (008366) 函数 $y = \frac{1}{\sqrt{\log_{\frac{1}{2}}(2-x)}}$ 的定义域是_____
- 499. (008371) 在同一坐标系内作出的两个函数图像如图所示, 这两个函数为 ().

- A. $y = a^x \neq y = \log_a(-x)$
- C. $y = a^{-x} \neq y = \log_a x^{-1}$

- B. $y = a^x \, \pi \, y = \log_a x^{-1}$
- D. $y = a^{-x} \Re y = \log_a(-x)$

- 500. (008378) 已知函数 $f(x) = \log_2(2^x 1)$.
 - (1) 求 f(x) 的定义域;
 - (2) 判断 f(x) 的增减性, 说明理由;
 - (3) 求 $f^{-1}(x)$.
- 501. (008387) 已知函数 y = f(x) 的图像过点 A(1,2), 函数 y = g(x) 的图像与 y = f(x) 的图像关于直线 y = x 对称, 则 y = g(x) 的图像必过点 ().

A. (2,1)

B. (1,2)

C. (-2,1)

D. (-1,2)

502. (008394) 已知函数 $f(x) = \log_a \frac{x+b}{x-b} (a > 0, b > 0, a \neq 1).$

- (1) 求 f(x) 的定义域;
- (2) 判断 f(x) 的奇偶性;
- (3) 求函数 $y = f^{-1}(x)$ 的解析式.
- 503. (009485) 若幂函数 $y = x^a$ 的图像经过点 $(3, \sqrt{3})$, 求此幂函数的表达式.
- 504. (009486) 求下列函数的定义域, 并作出它们的大致图像:
 - (1) $y = x^{\frac{1}{3}}$;
 - (2) $y = x^{-\frac{1}{2}}$;
 - (3) $y = x^{\frac{4}{3}}$.
- 505. (009487) 若幂函数 $y = x^{-m^2+2m+3} (m$ 为整数) 的定义域为 \mathbf{R} , 求 m 的值.
- 506. (009488)(1) 已知函数 $y=x^{\frac{2}{3}}$ 和 $y=(x-1)^{\frac{2}{3}}$, 说明这两个函数图像之间的关系, 并在同一平面直角坐标系中作出它们的大致图像;
 - (2) 已知函数 $y = x^{\frac{2}{3}}$ 和 $y = x^{\frac{2}{3}} + 1$, 说明这两个函数图像之间的关系, 并在同一平面直角坐标系中作出它们的大致图像.
- 507. (009490) 作出函数 $y = \frac{-x-1}{x+2}$ 的大致图像.
- 508. (009492) 求下列函数的定义域:
 - (1) $y = 3^x$;
 - (2) $y = 3^{\frac{1}{x-2}}$.
- 509. (009493) 在同一平面直角坐标系中分别作出下列函数的大致图像:
 - (1) $y = 4^x$;
 - (2) $y = (\frac{1}{4})^x$.
- 510. (009499) 若对数函数 $y = \log a_x (a > 0$ 且 $a \neq 1$) 的图像经过点 (4,2), 求此对数函数的表达式.
- 511. (009500) 求下列函数的定义域:
 - (1) $y = \log_2 \frac{2+x}{1-x}$;
 - (2) $y = \log_a(4 x^2)$ (常数 a > 0 且 $a \neq 1$).

- 512. (009501) 在同一平面直角坐标系中作出 $y = \lg x$ 及 $y = \log_{0.1} x$ 的大致图像.
- 513. (009502) 已知常数 a>0 且 $a\neq 1$,假设无论 a 取何值,函数 $y=\log_a(x-1)$ 的图像恒经过一个定点,求此点的 坐标.
- 514. (009507) 求下列函数的定义域:

(1)
$$y = \sqrt{(x-2)(x+3)}$$
;

(2)
$$y = \frac{1}{1 - \sqrt{x - 1}}$$
.

515. (009509) 求下列函数的值域:

(1)
$$y = (\lg x)^2 + 1, x \in (0, +\infty);$$

(2)
$$y = 3x^2 - 4x + 1$$
, $x \in [0, 1]$.

516. (009510) 作下列函数的大致图像:

(1)
$$y = -|x|$$
;

(2)
$$y = \sqrt{x+2}$$
;

(3)
$$y = \frac{1}{r^2 + 1}$$

(3)
$$y = \frac{1}{x^2 + 1}$$
;
(4) $y = \frac{2x - 1}{x - 1}$.

517. (009511) 根据下图的函数图像, 用解析法表示 y 关于 x 的函数.

- 518. (009512) 奇函数的图像是不是一定通过原点? 偶函数的图像是不是一定与 y 轴相交? 请说明理由.
- 519. (009513) 如图, 已知偶函数 y = f(x) 在 y 轴及 y 轴一侧的部分图像, 作出 y = f(x) 的大致图像.

520. (009520) 根据下列函数 y=f(x) 的图像 (包括端点), 分别指出这两个函数的单调区间, 以及在每一个单调区间上函数的单调性.

521. (009531) 对于在区间 [a,b] 上的图像是一段连续曲线的函数 y=f(x), 如果 $f(a)\cdot f(b)>0$, 那么是否该函数在区间 (a,b) 上一定无零点? 说明理由.

522. (009533) 求函数 $y = x^2 + 2x, x \in [0, +\infty)$ 的反函数的定义域.

523. (009537) 下列各图中, 存在反函数的函数 y = f(x) 的图像只可能是 ().

- 524. (009908) 借助函数图像, 判断下列导数的正负 (可利用信息技术工具):
 - (1) $f'(\frac{\pi}{4})$, $\sharp + f(x) = \sin x$;
 - (2) f'(0), $\sharp \varphi f(x) = (\frac{1}{2})^x$.
- 525. (009923) 求函数 $y = x^2 6x + 5$, $x \in [1, 4]$ 的值域.
- 526. (009995) 设定义在 $[0, +\infty)$ 上的函数 f(x) 的值域为 A_f . 若对任意满足 $f(x) = f(\frac{1}{x+1})$ 的函数 f(x), 集合 $\{y|y=f(x),\ x\in [0,a]\}$ 总可以取得 A_f 中的所有值, 则实数 a 的取值范围为______.
- 527. (010001) 已知 $f(x) = \log_3(x+a) + \log_3(6-x)$.
 - (1) 若将函数 y = f(x) 的图像向下平移 m(m > 0) 个单位后, 所得的图像经过点 (3,0) 与点 (5,0), 求 a 与 m 的值:
 - (2) 若 a > -3 且 $a \neq 0$, 解关于 x 的不等式 $f(x) \leq f(6-x)$.
- 528. (010129) 若幂函数 $y = x^a$ 的图像经过点 ($\sqrt[4]{3}$, 3), 求此幂函数的表达式.
- 529. (010130) 求下列函数的定义域, 并作出它们的大致图像:
 - (1) $y = x^{\frac{1}{5}}$;
 - (2) $y = x^{-2}$;
 - (3) $y = x^{-\frac{3}{4}}$.
- 530. (010133) 下列幂函数在区间 (0,+∞) 上是严格增函数, 且图像关于原点成中心对称的是_____(请填入全部正确的序号).
 - ① $y = x^{\frac{1}{2}}$; ② $y = x^{\frac{1}{3}}$; ③ $y = x^{\frac{2}{3}}$; ④ $y = x^{-\frac{1}{3}}$.
- 531. (010134) 作出函数 $y = \frac{x-1}{x+2}$ 的大致图像.
- 532. (010135) 幂函数 $y = x^{n(n+1)}(n)$ 为正整数) 的图像一定经过______ 象限.
- 533. (010136) 若幂函数 $y = x^s$ 在 0 < x < 1 时的图像位于直线 y = x 的上方, 则 s 的取值范围是______.
- 534. (010137) 下列命题中, 正确的是 ().
 - A. 当 n=0 时, 函数 $y=x^n$ 的图像是一条直线
 - B. 幂函数 $y = x^n$ 的图像都经过 (0,0) 和 (1,1) 两个点
 - C. 若幂函数 $y = x^n$ 的图像关于原点成中心对称, 则 $y = x^n$ 在区间 $(-\infty, 0)$ 上是严格增函数
 - D. 幂函数的图像不可能在第四象限
- 535. (010138) 写出一个图像经过第一、第二象限但不经过原点的幂函数的表达式.
- 536. (010141) 求下列函数的定义域:
 - (1) $y = 2^{\sqrt{3-x}}$;
 - (2) $y = 0.1^{\frac{1}{x}}$.

- 537. (010142) 在同一直角坐标系中作出下列函数的大致图像, 并指出这些函数图像间的关系:
 - (1) $y = (\frac{3}{2})^x$;
 - (2) $y = (\frac{2}{3})^x$
 - (3) $y = (\frac{2}{3})^x 1$
- 538. (010144) 已知常数 a>0 且 $a\neq 1$. 假设无论 a 取何值, 函数 $y=a^{2-x}$ 的图像恒经过一个定点, 求此定点的坐标.
- 539. (010149) 在同一平面直角坐标系中,指数函数 $y=a^x(a>0$ 且 $a\neq 1)$ 和一次函数 y=a(x+1) 的图像关系可能是 ().

- 540. (010154) 若函数 $y = 5^{x+1} + m$ 的图像不经过第二象限, 求实数 m 的取值范围.
- 541. (010155) 求下列函数的定义域:
 - (1) $y = \log_a(x+12)$ (常数 a > 0 且 $a \neq 1$);
 - (2) $y = \log_2 \frac{1}{x^2 2x + 5}$.
- 542. (010156) 已知对数函数 $y = \log_a x (a > 0$ 且 $a \neq 1)$ 的图像经过点 (3,2). 若点 P(b,4) 为此函数图像上的点, 求实数 b 的值.
- 543. (010157) 在同一平面直角坐标系中画出下列函数的图像, 并指出这些函数图像之间的关系.
 - (1) $y = \log_3 x$;
 - (2) $y = \log_{\frac{1}{3}} x$;
 - (3) $y = (\frac{1}{3})^x$.
- 544. $_{(010158)}$ 已知常数 a>0 且 $a\neq 1$,假设无论 a 取何值,函数 $y=\log_a x-1$ 的图像恒经过一个定点. 求此点的 坐标.
- 545. (010163) 设常数 a > 0 且 $a \neq 1$, 求函数 $y = \log_a(a a^x)$ 的定义域.
- 546. (010168) 求下列函数的定义域:
 - $(1) \ y = \frac{1}{x^2 + 2x 3};$
 - (2) $y = \sqrt{4 3x x^2}$;
 - (3) $y = \sqrt{x-2} + \sqrt{x+3}$;
 - (4) $y = \frac{1}{\lg(x+2)} + \frac{1}{\sqrt{5-x}}$.
- 547. (010170) 观察下列函数的图像, 并写出它们的值域:

548. (010171) 设 a 是常数, 求下列函数的定义域

(1)
$$y = \frac{1}{|x| - a}$$
;
(2) $y = \sqrt{x(x - a)}$.

(2)
$$y = \sqrt{x(x-a)}$$

549. (010173) 若函数 y = f(x) 的定义域为 R, 则 y = f(x) 为奇函数的一个充要条件为 (

A.
$$f(0) = 0$$

B. 对任意
$$x \in \mathbf{R}$$
, $f(x) = 0$ 都成立

C. 存在某个
$$x_0 \in \mathbf{R}$$
, 使得 $f(x_0) + f(-x_0) = 0$

D. 对任意给定的
$$x \in \mathbf{R}$$
, $f(x) + f(-x) = 0$ 都成立

- 550. (010178) 证明: 函数 $y = \lg(1-x)$ 在其定义域上是严格减函数.
- 551. (010185) 作出函数 $y = x^2 2|x|$ 的大致图像, 并分别写出它的定义域、奇偶性、单调区间及最小值.
- 552. (010186) 研究函数 $y = \frac{1}{1+x^2}$ 的定义域、奇偶性、单调性及最大值.
- 553. (010189) 某企业去年四个季度生产某种型号机器的数量 y(单位: 万台) 与季度 x 的函数关系如下表所示:

x/季度	1	2	3	4
y/万台	10	12	14	16

试写出该函数的定义域,并作出其大致图像.

- 554. (010194) 为分流短途乘客, 减缓轨道交通高峰压力, 某地地铁实行新的计费标准, 其分段计费规则如下: 0 至 6km(含 6km) 票价 3 元; 6 至 16km(含 16km) 票价 4 元; 16km 以上每 6km(不足 6km 时按 6km 计) 票价递 增 1 元, 但总票价不超过 8 元.
 - (1) 试作出票价 y(单位: 元) 关于路程 x(单位: km) 的函数的大致图像;
 - (2) 某人买了 5 元的车票, 他乘车的路程不能超过多少?
- 555. (010202) 已知函数 $y = \frac{a}{x+1}$ 的反函数的图像经过点 $(\frac{1}{2},1)$, 求实数 a 的值.
- 556. (010793) 函数 y = f(x) 的图像如图所示.

- (1) 求割线 PQ 的斜率;
- (2) 当点 Q 沿曲线向点 P 运动时, 割线 PQ 的斜率会变大还是变小?
- 557. (010795) 借助函数图像, 判断下列导数的正负:
 - (1) $f'(-\frac{\pi}{4})$, 其中 $f(x) = \cos x$;
 - (2) f'(3), 其中 $f(x) = \ln x$.
- 558. (010821) 某函数图像如图所示,它在 [a,b] 上哪一点处取得最大值?它是极大值点吗?在哪一点处取得最小值?它是极小值点吗?

559. (010826) 求函数 $y = -x^3 + 12x - 1, x \in [0,3]$ 的值域.