

Linear Regression

Instructors

Sourish Das, PhD Associate Professor Chennai Mathematical Institute

Regression

- What is the mileage of a prototype car?
- Why am I identifying this problem as possible regression problem?
- What is the target variable?
- Is it continuous variable?

Regression

mtcars DataSet Available in R

	mpg	cyl	drat	hp
Mazda RX4	21.0	6	3.90	110
Mazda RX4 Wag	21.0	6	3.90	110
Datsun 710	22.8	4	3.85	93
Hornet 4 Drive	21.4	6	3.08	110
• • • •				
Prototype	?	4	3.90	120

Scatter Plot

Fit A line

Fit A line

Fit Another Line

Minimize The Error Sum Of Square

Consider the model as:

$$y = a + b x + e$$

• Residual/Error sum of square :

$$RSS(a,b) = \sum_{i=1}^{n} (y - a - bx)^{2}$$

Minimize The Residual Sum of Square

Differentiate RSS(a, b) with respect to a and b

$$\frac{\partial}{\partial a}RSS(a,b) = 0$$

$$\frac{\partial}{\partial b}RSS(a,b) = 0$$

Solution is known as Ordinary Least Square (OLS) estimates

Model fitting with R and Python

- One can fit linear regression to data very easily using R and/or Python
 - R has a built-in function called "Im" you can use it
 - Python has "Im.fit" in the linear_model of SKLearn module

Best Fit With Minimum RSS

$$mpg = -7.525 + 7.678 drat$$

Regression With Multiple Features

Regression model with two feature

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + e$$

$$mpg = \beta_0 + \beta_1 drat + \beta_2 hp + e$$

Coefficients:

```
Pr(>|t|)
            Estimate Std.Error t value
               10.79 5.08 2.125
                                       0.042238 *
(Intercept)
             4.70 1.19 3.943
drat
                                       0.000467 ***
               -0.05 0.01 -5.573 5.17e-06 ***
hp
---Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.'
0.1 ' ' 1
Residual standard error: 3.17 on 29 degrees of freedom
Multiple R-squared: 0.7412, Adjusted R-squared:
0.7233
F-statistic: 41.52 on 2 and 29 DF, p-value: 3.081e-09
                                     Sample size = 32
```


$$mpg = \beta_0 + \beta_1 drat + \beta_2 hp + e$$

Coefficients:

10.79 is the estimated value of β_0 from data

```
Pr(>|t|)
            Estimate Std.Error t value
                         5.08 2.125
               10.79
                                       0.042238 *
(Intercept)
             4.70 1.19 3.943
drat
                                       0.000467 ***
               -0.05 0.01 -5.573 5.17e-06 ***
hp
---Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.'
0.1 ' ' 1
Residual standard error: 3.17 on 29 degrees of freedom
Multiple R-squared: 0.7412, Adjusted R-squared:
0.7233
F-statistic: 41.52 on 2 and 29 DF, p-value: 3.081e-09
                                     Sample size = 32
```


$$mpg = \beta_0 + \beta_1 drat + \beta_2 hp + e$$

Coefficients:

4.70 is the estimated value of β_1 from data

```
Pr(>|t|)
            Estimate Std.Error t value
                         5.08 2.125
               10.79
                                       0.042238 *
(Intercept)
              4.70 1.19 3.943 0.000467 ***
drat
               -0.05 0.01 -5.573 5.17e-06 ***
hp
---Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.'
0.1 ' ' 1
Residual standard error: 3.17 on 29 degrees of freedom
Multiple R-squared: 0.7412, Adjusted R-squared:
0.7233
F-statistic: 41.52 on 2 and 29 DF, p-value: 3.081e-09
                                     Sample size = 32
```


$$mpg = \beta_0 + \beta_1 drat + \beta_2 hp + e$$

Coefficients:

-0.05 is the estimated value of β_2 from data

```
Pr(>|t|)
            Estimate Std.Error t value
                         5.08 2.125
               10.79
                                       0.042238 *
(Intercept)
              4.70 1.19 3.943
drat
                                       0.000467 ***
               -0.05 0.01 -5.573 5.17e-06 ***
hp
---Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.'
0.1 ' ' 1
Residual standard error: 3.17 on 29 degrees of freedom
Multiple R-squared: 0.7412, Adjusted R-squared:
0.7233
F-statistic: 41.52 on 2 and 29 DF, p-value: 3.081e-09
                                     Sample size = 32
```


$$mpg = \beta_0 + \beta_1 drat + \beta_2 hp + e$$

Coefficients:

	Estimate	Std.Error t	value	Pr(> t)	
(Intercept)	10.79	5.08	2.125	0.042238	*
drat	4.70	1.19	3.943	0.000467	***
hp	-0.05	0.01	-5.573	5.17e-06	***

So effectively our model is

$$Mpg = 10.79 + 4.70 drat - 0.05 hp$$

Now if we know drat = 3.90 and hp = 120 for a prototype car then the expected mpg is: Mpg = 10.79 + 4.70 * 3.90 - 0.05 * 120 = 23.12 (approx)

$$mpg = \beta_0 + \beta_1 drat + \beta_2 hp + e$$

Coefficients:

	Estimate	Std.Error	t value	Pr(> t)	
(Intercept)	10.79	5.08	2.125	0.042238	*
drat	4.70	1.19	3.943	0.000467	* * *
hp	-0.05	0.01	-5.573	5.17e-06	***

We assume that data has some inherent randomness – which is beyond our control.

Because of this randomness the estimates of β_0 , β_1 , β_2 are prone to error. The standard error (Std.Error) provides an estimate of error associated with the estimates of β_0 , β_1 , β_2 .

Of course smaller the estimates -- better it is --

Finding t-value

$$mpg = \beta_0 + \beta_1 drat + \beta_2 hp + e$$

Coefficients:

	Estimate	Std.Error	t value	Pr(> t)	
(Intercept)	10.79	5.08	2.125	0.042238	*
drat	4.70	1.19	3.943	0.000467	***
hp	-0.05	0.01	-5.573	5.17e-06	***

The t-value is the ratio of Estimate/Std.Error

t-value for β_0 : 10.79/5.08 = 2.12 t-value for β_1 : 4.70/1.19 = 3.94 t-value for β_2 : 4.70/1.19 = -5.57 If the absolute value of tvalue is large then it indicates the predictor has significant effect on the dependent variable.

Finding p-value

$$mpg = \beta_0 + \beta_1 drat + \beta_2 hp + e$$

Coefficients:

```
Estimate Std.Error t value Pr(>|t|)

(Intercept) 10.79 5.08 2.125 0.042238 *

drat 4.70 1.19 3.943 0.000467 ***

hp -0.05 0.01 -5.573 5.17e-06 ***

---Signif. codes: 0 '***' 0.001 '**' 0.05 '.'

0.1 ' ' 1
```

Pr(>|t|) is the known as the p-value. The p-value is a probability value. The p-value will be always between 0 and 1.

Lower p-value indicates statistically significant effect of predictor on dependent variable.

The '***' indicates the p-value is in between 0 and 0.001

Multiple R-square

$$mpg = \beta_0 + \beta_1 drat + \beta_2 hp + e$$

Coefficients:

What is Multiple R-square?

```
Pr(>|t|)
            Estimate Std.Error t value
                         5.08 2.125
               10.79
                                       0.042238 *
(Intercept)
              4.70 1.19 3.943
drat
                                       0.000467 ***
               -0.05 0.01 -5.573 5.17e-06 ***
hp
---Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.'
0.1 ' ' 1
Residual standard error: 3.17 on 29 degrees of freedom
Multiple R-squared: 0.7412, Adjusted R-squared:
0.7233
F-statistic: 41.52 on 2 and 29 DF, p-value: 3.081e-09
                                     Sample size = 32
```


Multiple R-square

$$mpg = \beta_0 + \beta_1 drat + \beta_2 hp + e$$

Coefficients:

'.' 0.1 ' '1

```
Estimate Std.Error t value Pr(>|t|)

(Intercept) 10.79 5.08 2.125 0.042238 *

drat 4.70 1.19 3.943 0.000467 ***

hp -0.05 0.01 -5.573 5.17e-06 ***

---Signif. codes: 0 '***' 0.001 '**' 0.05
```

In popular term, "Multiple R-Square" indicates what percentage of variation of the target variable is being explained by the model

$$R^2 = cor(y, \hat{y})^2$$
, where $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2$

Residual Standard Error

$$mpg = \beta_0 + \beta_1 drat + \beta_2 hp + e$$

Coefficients:

What is Residual Standard error?

```
Pr(>|t|)
            Estimate Std.Error t value
                        5.08 2.125
              10.79
                                      0.042238 *
(Intercept)
             4.70 1.19 3.943
drat
                                      0.000467 ***
              -0.05 0.01 -5.573 5.17e-06 ***
hp
---Signif. codes: 0 '***' 0.001 '**' 0.05
'.' 0.1 ' ' 1
Residual standard error: 3.17 on 29 degrees of freedom
Multiple R-squared: 0.7412, Adjusted R-squared:
0.7233
F-statistic: 41.52 on 2 and 29 DF, p-value: 3.081e-09
                                    Sample size = 32
```


What Is Residual Standard Error?

- The Residual standard error helps us to estimate the confidence interval for the predicted value from the model
- Suppose we know drat = 3.90 and hp = 120 for a prototype car then the expected mpg is:
- mpg = 10.79 + 4.70 * 3.90 0.05 * 120 = 23.12 (approx)
- Not necessarily our final value of mpg will be exactly 23.12 it will be some what plus or minus.
- So we can give an upper-bound and lower-bound for our mpg prediction

What Is Residual Standard Error?

- The residual standard error is 3.17
- Our prediction for mpg is 23.12
- So lower bound for our prediction is 23.12 2*3.17 = 16.78
- And upper bound for our prediction is 23.12 + 2*3.17 = 29.46
- So we can say that with 95% confidence that the final realized value of the mpg of the prototype car will be between 16.78 and 29.46 i.e. (16.78, 29.46)

Please watch the session video on Linear Regression to have better clarity on the topic.

