Permit Numbers 170854, PSDTX1614, and HAP81

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities, sources, and related activities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

Air Contaminants Data

Emission Point No. (1)	Source Name (2)	Air Contaminant	Emission	Rates
Linission Foint No. (1)	Source Name (2)	Name (3)	lbs/hour	TPY (4)
H-1001	Pyrolysis Furnace 1	NOx	7.35	-
		NO _x (MSS)	14.69	-
		СО	36.75	-
		РМ	3.68	-
		PM ₁₀	3.68	-
		PM _{2.5}	3.68	-
		VOC	2.65	-
		SO ₂	2.88	-
		NH ₃	2.24	-
H-1002	Pyrolysis Furnace 2	NO _X	7.35	-
		NO _x (MSS)	14.69	-
		со	36.75	-
		PM	3.68	-
		PM ₁₀	3.68	-
		PM _{2.5}	3.68	-
		VOC	2.65	-
		SO ₂	2.88	-
		NH ₃	2.24	-
H-1003	Pyrolysis Furnace 3	NO _X	7.35	-
		NO _x (MSS)	14.69	-
		СО	36.75	-
		PM	3.68	-
		PM ₁₀	3.68	-
		PM _{2.5}	3.68	-

VOC 2.65 -	
H-1004 Pyrolysis Furnace 4 NO _X 7.35 - NO _X (MSS) 14.69 - CO 36.75 - PM 3.68 - PM ₁₀ 3.68 - PM _{2.5} 3.68 - VOC 2.65 - SO ₂ 2.88 - NH ₃ 2.24 - H-1005 Pyrolysis Furnace 5 NO _X (MSS) 14.69 - CO 36.75 - PM 3.68 -	
H-1004 Pyrolysis Furnace 4 NO _X (MSS) 14.69 . CO 36.75 . PM 3.68 . PM ₁₀ 3.68 . PM _{2.5} 3.68 . VOC 2.65 . SO ₂ 2.88 . NH ₃ 2.24 . H-1005 Pyrolysis Furnace 5 NO _X (MSS) 14.69 . CO 36.75 . PM 3.68 .	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
CO 36.75 . PM 3.68 . PM ₁₀ 3.68 . PM ₂₅ 3.68 . VOC 2.65 . SO ₂ 2.88 . NH ₃ 2.24 . H-1005 Pyrolysis Furnace 5 NO _x 7.35 . NO _x (MSS) 14.69 . CO 36.75 . PM 3.68 .	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
PM ₁₀ 3.68 PM _{2.5} 3.68 VOC 2.65 SO ₂ 2.88 NH ₃ 2.24 H-1005 Pyrolysis Furnace 5 NO _x 7.35 NO _x (MSS) 14.69 CO 36.75 PM 3.68	
PM _{2.5} 3.68 VOC 2.65 SO ₂ 2.88 NH ₃ 2.24 H-1005 Pyrolysis Furnace 5 NO _x 7.35 NO _x (MSS) 14.69 CO 36.75 PM 3.68	
VOC 2.65 - SO2 2.88 - NH ₃ 2.24 - H-1005 Pyrolysis Furnace 5 NO _X 7.35 - NO _X (MSS) 14.69 - CO 36.75 - PM 3.68 -	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
H-1005 Pyrolysis Furnace 5 NO _x 7.35	
NO _x (MSS) 14.69 - CO 36.75 - PM 3.68 -	
CO 36.75 - PM 3.68 -	
PM 3.68 -	
PM ₁₀ 3.68	
PM _{2.5} 3.68 -	
VOC 2.65 _	
SO ₂ 2.88 _	
NH ₃ 2.24 _	
H-1006 Pyrolysis Furnace 6 NO _x 7.35	
NO _x (MSS) 14.69 _	
CO 36.75 _	
PM 3.68 _	
PM ₁₀ 3.68 _	
PM _{2.5} 3.68 _	
VOC 2.65 _	
SO ₂ 2.88 _	

1	1			
		NH ₃	2.24	-
FURN_CAP	Pyrolysis Furnaces	NO _X	-	128.67
		СО	-	482.90
		PM	-	96.51
		PM ₁₀	-	96.51
		PM _{2.5}	-	96.51
		VOC	-	69.49
		SO ₂	-	75.69
		NH ₃	-	58.73
B-801	Steam Boiler 1	NO _x	11.59	-
		NO _x (MSS)	23.18	
		СО	57.99	-
		РМ	5.80	-
		PM ₁₀	5.80	-
		PM _{2.5}	5.80	-
		VOC	4.18	-
		SO ₂	4.55	-
		NH ₃	3.53	-
B-802	Steam Boiler 2	NO _X	11.59	-
		NO _x (MSS)	23.18	
		СО	57.99	-
		РМ	5.80	-
		PM ₁₀	5.80	-
		PM _{2.5}	5.80	-
		VOC	4.18	-
		SO ₂	4.55	-
		NH ₃	3.53	-
B-803	Steam Boiler 3	NO _x	11.59	-
		NO _x (MSS)	23.18	

		СО	57.99	-
		РМ	5.80	-
		PM ₁₀	5.80	-
		PM _{2.5}	5.80	-
		VOC	4.18	-
		SO ₂	4.55	-
		NH ₃	3.53	-
B-804	Steam Boiler 4	NOx	11.59	-
		NO _x (MSS)	23.18	
		СО	57.99	-
		РМ	5.80	-
		PM ₁₀	5.80	-
		PM _{2.5}	5.80	-
		VOC	4.18	-
		SO ₂	4.55	-
		NH ₃	3.53	-
BLR_CAP	Steam Boilers	NOx	-	135.35
		СО	-	507.95
		РМ	-	101.51
		PM ₁₀	-	101.51
		PM _{2.5}	-	101.51
		VOC	-	73.09
		SO ₂	-	79.62
		NH ₃	-	61.77
PK-201	KCOT Regenerator	NOx	37.89	165.93
		СО	576.63	2,525.64
		SO ₂	131.86	288.76
		РМ	23.80	104.24
		PM ₁₀	23.80	104.24

		PM _{2.5}	23.80	104.24
		H ₂ SO ₄	20.95	91.73
		VOC	6.61	28.94
		HCN	27.29	119.52
		NH ₃	7.02	30.72
H-501	OCT Charge Heater	NOx	2.24	6.52
		СО	11.17	24.47
		SO ₂	0.88	3.84
		NH ₃	0.68	2.98
		PM	1.12	4.89
		PM ₁₀	1.12	4.89
		PM _{2.5}	1.12	4.89
		VOC	0.81	3.52
H-502	Regeneration Gas Heater	NO _X	0.74	3.24
		СО	1.85	4.05
		SO ₂	0.15	0.64
		PM	0.19	0.81
		PM ₁₀	0.19	0.81
		PM _{2.5}	0.19	0.81
		VOC	0.14	0.59
H-201	KCOT Process Heater	NO _X	5.53	16.14
		NO _x (MSS)	11.06	
		СО	27.66	60.56
		SO ₂	2.17	9.50
		NH ₃	1.69	7.37
		PM	2.77	12.11
		PM ₁₀	2.77	12.11
		PM _{2.5}	2.77	12.11
		VOC	1.99	8.72

		1		1
H-371	GRU Charge Heater	NOx	0.21	0.89
		СО	0.51	1.11
		SO ₂	0.04	0.18
	,	PM	0.06	0.23
		PM ₁₀	0.06	0.23
		PM _{2.5}	0.06	0.23
		VOC	0.04	0.16
GFL-1	Ground Flare	NOx	223.45	-
		NO _x (MSS)	5,217.46	-
		СО	446.09	-
		CO (MSS)	10,416.01	-
		VOC	372.66	-
		VOC (MSS)	6,857.47	-
		H ₂ S	8.50	-
		SO ₂	9.53	-
		SO ₂ (MSS)	797.95	-
FL-1	Elevated Flare	NO _X	26.09	-
		NO _x (MSS)	260.88	-
		СО	52.09	-
		CO (MSS)	520.81	-
		VOC	84.36	-
		VOC (MSS)	843.58	-
		H ₂ S	0.05	-
		H ₂ S (MSS)	0.43	
		SO ₂	3.99	-
		SO ₂ (MSS)	39.90	-
FLRCAP	Flares Cap	NO _X	-	669.19
		СО	-	1,335.94
		VOC	-	1,133.43

		H ₂ S	-	0.93
		SO ₂	-	44.95
ТО	Thermal Oxidizer	NO _x	1.29	1.13
		СО	1.61	1.41
	\	SO ₂	0.13	0.12
		PM	0.17	0.15
		PM ₁₀	0.17	0.15
		PM _{2.5}	0.17	0.15
		voc	0.23	0.06
CT-801	Cooling Tower	VOC	201.60	88.31
		PM	7.21	31.57
		PM ₁₀	1.85	8.07
		PM _{2.5}	0.02	0.05
		H ₂ S	0.19	0.08
EE-801	Firewater Pump Engine 1	NOx	3.46	0.18
		СО	3.03	0.16
		VOC	3.46	0.18
		SO ₂	0.01	0.01
		PM	0.18	0.01
		PM ₁₀	0.18	0.01
		PM _{2.5}	0.18	0.01
EE-802	Firewater Pump Engine 2	NOx	3.46	0.18
		СО	3.03	0.16
		VOC	3.46	0.18
		SO ₂	0.01	0.01
		PM	0.18	0.01
		PM ₁₀	0.18	0.01
		PM _{2.5}	0.18	0.01
EE-803	Emergency Generator 1	NO _x	28.22	1.42

CO					
SO ₂ 0.03 0.01 PM			СО	15.44	0.78
PM			VOC	28.22	1.42
PM ₁₀			SO ₂	0.03	0.01
EE-804 Emergency Generator 2 NO _X 28.22 1.42			PM	0.89	0.05
EE-804 Emergency Generator 2 OO 15.44 0.78 VOC 28.22 1.42 SO2 0.03 0.01 PM 0.89 0.05 PM ₁₀ 0.89 0.05 PM ₂₅ 0.89 0.05 EE-805 Emergency Generator 3 NO _X 28.22 1.42 CO 15.44 0.78 VOC 28.22 1.42 CO 15.44 0.78 VOC 28.22 1.42 SO2 0.03 0.01 PM 0.89 0.05 PM 100 0.89 0.0			PM ₁₀	0.89	0.05
CO			PM _{2.5}	0.89	0.05
VOC 28.22 1.42	EE-804	Emergency Generator 2	NO _X	28.22	1.42
SO2			co	15.44	0.78
PM			voc	28.22	1.42
PM10 0.89 0.05 PM25 0.89 0.78 PM 0.89 0.05 PM 0.89 0.05 PM25 0.89 0.05 PM26 0.89 0.05 PM27 0.89 0.05 PM28 0.89 0.05 PM29 0.89 0.05 P			SO ₂	0.03	0.01
PM2.5 0.89 0.05			РМ	0.89	0.05
EE-805 Emergency Generator 3 NO _X 28.22 1.42 CO 15.44 0.78 VOC 28.22 1.42 SO ₂ 0.03 0.01 PM 0.89 0.05 PM ₁₀ 0.89 0.05 PM _{2.5} 0.89 0.05 FUG Equipment Leak Fugitives VOC 48.96 214.44 CO 0.03 0.11 H ₂ S 0.02 0.09 NH3FUG SCR Fugitives NH ₃ 1.55 6.76 V-702 Olefins Regeneration Vent VOC 0.14 0.09 CO 7.32 4.92 TK-908			PM ₁₀	0.89	0.05
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			PM _{2.5}	0.89	0.05
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	EE-805	Emergency Generator 3	NO _x	28.22	1.42
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			СО	15.44	0.78
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			VOC	28.22	1.42
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			SO ₂	0.03	0.01
FUG Equipment Leak Fugitives VOC 48.96 214.44 CO 0.03 0.11 H ₂ S 0.02 0.09 NH3FUG SCR Fugitives NH ₃ 1.55 6.76 V-702 Olefins Regeneration Vent VOC 0.14 0.09 CO 7.32 4.92 TK-908 Tank 908 VOC 3.01 0.69			РМ	0.89	0.05
FUG Equipment Leak Fugitives VOC 48.96 214.44 CO 0.03 0.11 H ₂ S 0.02 0.09 NH3FUG SCR Fugitives NH ₃ 1.55 6.76 V-702 Olefins Regeneration Vent VOC 0.14 0.09 CO 7.32 4.92 TK-908 Tank 908 VOC 3.01 0.69			PM ₁₀	0.89	0.05
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			PM _{2.5}	0.89	0.05
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	FUG	Equipment Leak Fugitives	voc	48.96	214.44
NH3FUG SCR Fugitives NH ₃ 1.55 6.76 V-702 Olefins Regeneration Vent VOC 0.14 0.09 CO 7.32 4.92 TK-908 Tank 908 VOC 3.01 0.69			СО	0.03	0.11
V-702 Olefins Regeneration Vent VOC 0.14 0.09 CO 7.32 4.92 TK-908 Tank 908 VOC 3.01 0.69			H ₂ S	0.02	0.09
CO 7.32 4.92 TK-908 Tank 908 VOC 3.01 0.69	NH3FUG	SCR Fugitives	NH ₃	1.55	6.76
TK-908 Tank 908 VOC 3.01 0.69	V-702	Olefins Regeneration Vent	VOC	0.14	0.09
			со	7.32	4.92
TK-909 Tank 909 VOC 1.02 0.73	TK-908	Tank 908	VOC	3.01	0.69
	TK-909	Tank 909	VOC	1.02	0.73
TK-910 Tank 910 VOC 3.82 7.79	TK-910	Tank 910	VOC	3.82	7.79

WWTP	Wastewater Treatment Plant	voc	1.92	8.37
MSS_ATM	Uncontrolled MSS Activities	voc	64.35	30.26
		РМ	0.07	0.01
		PM ₁₀	0.04	0.01
		PM _{2.5}	0.01	0.01
MSS_TKLAND	Tank MSS Activities	voc	389.24	2.87
MSS_TMPCTL	MSS Temporary Control Device	NO _X	2.73	0.18
		CO	1.66	0.11
		SO ₂	0.65	0.05
		РМ	0.17	0.02
		PM ₁₀	0.17	0.02
		PM _{2.5}	0.17	0.02
		voc	7.09	0.08

(1) Emission point identification - either specific equipment designation or emission point number from plot plan.

/O\	Chaoifia	naint	course name	For fugitive courses	LICO OFOO DOMO	e or fugitive source name.
(\angle)	SUECIIIC	UUUIII	Source name.	FOLIUGILIVE SOURCES.	. use area name	: OF IUGIIIVE SOUICE HAIHE.

(3) VOC - volatile organic compounds as defined in Title 30 Texas Administrative Code § 101.1

NO_x - total oxides of nitrogen

SO₂ - sulfur dioxide

PM - total particulate matter, suspended in the atmosphere, including PM₁₀ and PM_{2.5}, as represented

PM₁₀ - total particulate matter equal to or less than 10 microns in diameter, including PM_{2.5}, as

total particulate matter equal to or less than 15 morons in diameter, including 1 m_{2.5}, as

represented

PM_{2.5} - particulate matter equal to or less than 2.5 microns in diameter

CO - carbon monoxide

(4) Compliance with annual emission limits (tons per year) is based on a 12 month rolling period.

(5) Emission rate is an estimate and is enforceable through compliance with the applicable special condition(s) and permit application representations.

Date:	TBD	

Permit Number GHGPSDTX227

This table lists the maximum allowable emission rates of greenhouse gas (GHG) emissions, as defined in Title 30 Texas Administrative Code § 101.1, for all sources of GHG air contaminants on the applicant's property that are authorized by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities, sources, and related activities. Any proposed increase in emission rates may require an application for a modification of the facilities authorized by this permit.

Air Contaminants Data

Emission Point No. (1)	Source Name (2)	Air Contaminant	Emission Rates
Emission Point No. (1)	Source Name (2)	Name (3)	TPY (4)
FURN_CAP	Pyrolysis Furnaces	CO ₂ (5)	1,672,669.44
		CH ₄ (5)	85.05
		N ₂ O (5)	16.99
		CO₂e	1,679,856.91
BLR_CAP	Steam Boilers	CO ₂ (5)	1,759,446.00
		CH ₄ (5)	89.47
	Y	N ₂ O (5)	17.87
		CO₂e	1,767,006.34
PK-201	KCOT Regenerator	CO ₂ (5)	703,985.22
		CH ₄ (5)	20.63
		N ₂ O (5)	4.13
		CO₂e	705,729.89
H-501	OCT Charge Heater	CO ₂ (5)	84,726.72
		CH ₄ (5)	4.31
		N ₂ O (5)	0.87
		CO₂e	85,090.80
H-502	Regeneration Gas Heater	CO ₂ (5)	14,007.24
		CH ₄ (5)	0.72
		N ₂ O (5)	0.15
		CO ₂ e	14,067.43
H-201	KCOT Process Heater	CO ₂ (5)	209,766.96
		CH ₄ (5)	10.67
		N ₂ O (5)	2.13
		CO ₂ e	210,668.33
H-371	GRU Charge Heater	CO ₂ (5)	3,826.37
		CH ₄ (5)	0.20
		N ₂ O (5)	0.04

		CO ₂ e	3,842.81
FLRCAP	Flares Cap	CO ₂ (5)	630,388.13
		CH ₄ (5)	32.06
		N ₂ O (5)	6.41
		CO ₂ e	633,096.9
ТО	Thermal Oxidizer	CO ₂ (5)	2,434.99
		CH ₄ (5)	0.13
		N ₂ O (5)	0.03
		CO ₂ e	2,445.45
EE-801	Firewater Pump Engine 1	CO ₂ (5)	10.46
		CH ₄ (5)	0.01
		N ₂ O (5)	0.01
		CO ₂ e	10.59
EE-802	Firewater Pump Engine 2	CO ₂ (5)	10.46
		CH ₄ (5)	0.01
		N ₂ O (5)	0.01
		CO ₂ e	10.59
EE-803	Emergency Generator 1	CO ₂ (5)	53.42
		CH ₄ (5)	0.01
		N ₂ O (5)	0.01
		CO₂e	54.10
EE-804	Emergency Generator 2	CO ₂ (5)	53.42
		CH ₄ (5)	0.01
		N ₂ O (5)	0.01
		CO₂e	54.10
EE-805	Emergency Generator 3	CO ₂ (5)	53.42
		CH ₄ (5)	0.01
		N ₂ O (5)	0.01
		CO₂e	54.10
FUG	Equipment Leak Fugitives	CO ₂ (5)	0.11
		CH ₄ (5)	0.09
		N ₂ O (5)	13.84
		CO ₂ e	345.98

MSS_TMPCTL	MSS Temporary Control Device	CO ₂ (5)	226.74
		CH ₄ (5)	0.02
		N ₂ O (5)	0.01
		CO₂e	227.71

- (1) Emission point identification either specific equipment designation or emission point number from plot plan.
- (2) Specific point source name. For fugitive sources, use area name or fugitive source name.
- $\begin{array}{cccc} \text{(3)} & \text{CO}_2 & & & \text{carbon dioxide} \\ & \text{N}_2\text{O} & & & \text{nitrous oxide} \\ & \text{CH}_4 & & & \text{methane} \\ \end{array}$

HFCs - hydrofluorocarbons
PFCs - perfluorocarbons
SF₆ - sulfur hexafluoride

CO₂e - carbon dioxide equivalents based on the following Global Warming Potentials (1/2015):

CO₂ (1), N₂O (298), CH₄(25), SF₆ (22,800), HFC (various), PFC (various)

- (4) Compliance with annual emission limits (tons per year) is based on a 12-month rolling period. These rates include emissions from maintenance, startup, and shutdown.
- (5) Emission rate is given for informational purposes only and does not constitute enforceable limit.