TechDhaba Embedded Systems Division

Module 1 – Zephyr RTOS Architecture & Modern Embedded Evolution

Part 1 – Introduction, Evolution & Comparisons

Prepared by TechDhaba Embedded Systems Team

Date: October 12, 2025

1. What is Zephyr RTOS?

Zephyr RTOS is an open source real time operating system that delivers deterministic performance on resource constrained devices. Developed under the Linux Foundation, Zephyr borrows Linux's governance model and build discipline but keeps a tiny memory footprint suitable for microcontrollers. It supports ARM, RISC V, ARC, x86, Tensilica and more, offering a unified ecosystem for IoT and industrial embedded development.

Unlike traditional vendor RTOSes, Zephyr is completely vendor neutral and modular — you compile only the components you need. Its core strength lies in its modern build system (CMake + Kconfig + West), device tree based hardware abstraction, and integrated security framework.

Key Design Goals:

• Predictable real

time behavior • Cross

architecture portability • Scalable modularity • Integrated security

TechDhaba Insight: Zephyr is not just another RTOS — it represents a shift toward Linux**■**grade software discipline in the embedded world.

2. Why Zephyr Was Created

Earlier RTOS options like FreeRTOS, µC/OS and ThreadX solved basic task scheduling but failed to address security, portability and scalability. They were hardware■specific and lacked standardized abstraction layers. Zephyr was created to solve these limitations by introducing a Linux■inspired kernel and device framework that could scale from 8■bit controllers to 64■bit SoCs.

Zephyr brings a modern developer experience with Kconfig based configuration, CMake build automation and West workspace management. Its security framework includes MPU isolation, user space threads and MCUBoot based secure boot — features rarely found in MCU RTOSes.

Why It Matters: Zephyr aligns firmware development with DevOps practices and industry security standards like PSA Certified.

3. Evolution of Embedded Operating Systems

Embedded software has evolved from bare metal loops to multimathreaded microkernels. Each generation improved portability, determinism and abstraction — culminating in Zephyr, which combines the predictability of RTOS with the discipline of Linux.

Generation	Example	Characteristics Limitations	
1st	Bare∎metal∎firmware	Loop■and■interrupt■driven	No■scalability■or■abstraction
2nd	μC/OS, ■ FreeRTOS	Simple■task■scheduler No	Imemory ■ protection ■ or ■ sec
3rd	ThreadX, ■ QNX	Commercial■microkernels	Closed ■ source, ■ expensive
4th	Zephyr■RTOS	Open, ≣ secure, ≣ multi ≣ archRa	pid∎evolution∎requires∎learn

TechDhaba Perspective: Zephyr marks the transition to a community**■**driven firmware ecosystem — just as Linux did for servers.

4. Zephyr vs FreeRTOS vs Linux vs Bare metal

Feature	Zephyr■RTOS	FreeRTOS	Linux■Kernel	Bare∎metal
Architecture	Microkernel, ■ modular	Monolithic	Monolithic	None
Scheduling F	riority ■+■ Round ■ Robi	n Priority	CFS	Cooperative
SMP■Support	Yes	No	Yes	No
Device■Tree	Yes	No	Yes	No
Security	MPU ■ +■TEE	Minimal	SELinux	None
Networking	TCP/IP, ■ BLE	Add ≡ on	Full ■ stack	None
File ■ System	LittleFS, ■ FATFS	None	ext4	None
Build ■ SystemCN	/lake ■+■ Kconfig ■+■ W	est Makefile	KBuild	N/A

Zephyr sits between FreeRTOS and Linux — light enough for MCUs but structured enough for industrial products. It inherits Linux's device tree concept and build philosophy while maintaining deterministic timing essential for real time applications.

TechDhaba Summary: Zephyr offers the best of both worlds — real**■**time determinism and software engineering discipline.