Analisi Matematica Insiemi e cenni di calcolo combinatorio

Andrea Malvezzi

19 settembre 2024

Contents

1		inizione di sottoinsieme proprio Esempi di sottoinsiemi propri e non propri	3
2	Biu	nivocità e invertibilità di una funzione	3
3	Def	inizione di insieme numerabile	3
4	Elei	menti di calcolo combinatorio	4
	4.1	Fattoriale di un numero	4
		4.1.1 Esempio del fattoriale di un numero:	4
	4.2	Coefficiente binomiale	
		4.2.1 Esempio di coefficiente binomiale:	4
	4.3	Prima proprietà del coefficiente binomiale	5
		4.3.1 Prova algebrica	5
	4.4	Seconda proprietà del coefficiente binomiale	

1 Definizione di sottoinsieme proprio

Un insieme A si dice sottoinsieme proprio di B quando vale quanto segue:

Se
$$\emptyset! = A \subsetneq B$$
 (1)

Dove il simbolo \subsetneq sta per "inclusione stretta", ovvero:

- $A \neq B$;
- $A \subseteq B$;

1.1 Esempi di sottoinsiemi propri e non propri

- $A = \{1, 4\};$
- $B = \{1, 2, 3, 4\};$
- $C = \{1, 2, 3, 4\};$

Qui, A è un sottoinsieme proprio di B e di C. Tuttavia, B non è sottoinsieme proprio di C, e viceversa.

2 Biunivocità e invertibilità di una funzione

Una funzione si dice biunivoca quando è sia 1-1 che sv. Una funzione biunivoca è inoltre **invertibile**.

3 Definizione di insieme numerabile

Un insieme $\mathbb X$ si dice numerabile quando esiste una funzione della seguente specie:

$$g: \mathbb{N} \to \mathbb{X}, g \ \hat{e} \ sv$$
 (2)

4 Elementi di calcolo combinatorio

4.1 Fattoriale di un numero

Avendo $\mathbb{N} = \{0, 1, 2, 3, 4, ...\}$, e un $n \in \mathbb{N}$, allora si dice **fattoriale di** n il valore n!, ovvero:

$$n! := \begin{cases} 1 \cdot 2 \cdot 3 \cdot \dots \cdot (n-1) \cdot n & \text{se } n \ge 1, \\ 1 & \text{se } n = 0 \end{cases}$$
 (3)

4.1.1 Esempio del fattoriale di un numero:

Prendiamo come esempio il 4! (anche detto 4-fattoriale).

$$4! = 1 \cdot 2 \cdot 3 \cdot 4 = 24$$

Prendiamo ora invece lo 0!. Ricordando quanto affermato in (3):

$$0! = 1$$

4.2 Coefficiente binomiale

Avendo due numeri tali che $n, m \in \mathbb{N} : m \leq n$, allora si dice Coefficiente binomiale:

$$\binom{n}{m} := \frac{n!}{(n-m)!m!} \tag{4}$$

Dove $\frac{n!}{(n-m)m!}$ corrisponde a una **combinazione semplice**.

4.2.1 Esempio di coefficiente binomiale:

Avendo n = 3e m = 2, allora:

$$\binom{3}{2} = \frac{3!}{2!(3-2)!} = \frac{6}{2} = 3$$

4.3 Prima proprietà del coefficiente binomiale

$$\binom{n}{k} = \binom{n}{n-k} \tag{5}$$

Ovvero: ad ogni sottoinsieme di k elementi corrisponde un sottoinsieme di n-k elementi, per cui il loro numero è uguale.

4.3.1 Prova algebrica

$$\binom{n}{n-k} = \frac{n!}{[n-(n-k)]!(n-k)!} = \frac{n!}{k!(n-k)!} = \binom{n}{k}$$

Per fornire un esempio concreto:

$$\binom{7}{2} = \frac{7!}{[7 - (7 - 2)]!(7 - 2)!} = \frac{7!}{5!2!} = \binom{7}{5} = \binom{7}{7 - 2}$$

4.4 Seconda proprietà del coefficiente binomiale

$$\binom{n}{k-1} + \binom{n}{k} = \binom{n+1}{k} \tag{6}$$