F-128 – Física Geral I

Aula exploratória 13 UNICAMP – IFGW

Em um jogo de bilhar, uma tacada horizontal, na altura do centro de massa, comunica a uma bola de bilhar de raio \mathbf{R} e massa \mathbf{m} uma velocidade inicial \mathbf{v}_0 (velocidade de translação do CM). Suponha que o coeficiente de atrito cinético entre a bola e a mesa é μ . Determine:

- a) o tempo decorrido entre a tacada e o instante em que a fase inicial de deslizamento cessa, e a bola passa a rolar sem deslizar;
- b) a velocidade angular da bola neste instante.

A bola de bilhar inicia o seu movimento com deslizamento puro (ou seja, sem nenhuma rotação). O atrito cinético, por sua vez, imprime um torque contante gerando uma aceleração angular também constante:

$$\tau_{ext} = (\mu mg)R = I_{CM}\alpha$$
$$\alpha = \frac{5}{2} \frac{\mu g}{R}$$

 $\alpha = \frac{5}{2} \frac{\mu g}{R}$ Onde foi usado o momento de inércia de uma esfera maciça: $I_{CM} = \frac{2}{5} mR^2$

Esta força fornece velocidade angular à bola e desacelera o centro de massa, e consequentemente acelera a velocidade angular da bola até que a condição de rolamento seja satisfeita: $\omega R = v_{CM}$

Aplicando as equações da cinemática de aceleração constante ao movimento do centro de massa da bola e de rotação:

e massa da bola e de rotação:
$$v=\omega R=v_0-\mu gt$$
 $\omega=\alpha t\Rightarrow \omega=\frac{5}{2}\frac{\mu g}{R}t$ ndo as duas equações para t obtemos: $t=\frac{2}{7}\frac{v_0}{\mu g}$

Resolvendo as duas equações para t obtemos:

$$t = \frac{2}{7} \frac{v_0}{\mu g}$$

Resolvendo as duas equações para ω obtemos:

$$\omega = \frac{5}{2} \frac{\mu g}{R} t = \frac{5}{2} \frac{\mu g}{R} \left(\frac{2v_0}{7\mu g} \right)$$

$$\omega = \frac{5}{7} \frac{v_0}{R}$$

Uma esfera de massa M e raio R desce rolando ao longo de um plano inclinado de um ângulo θ em relação à horizontal. Determine a velocidade da esfera ao atingir a base do plano utilizando:

- a) a 2.ª lei de Newton (para o CM e para o eixo instantâneo);
- b) considerações sobre energia (idem);
- c) calcule a força de atrito que age sobre o cilindro.

a) O movimento de rolamento é composto pela rotação do objeto e translação do CM. Deste modo, para determinar a velocidade final temos que aplicar a 2ª lei às duas componentes do movimento:

$$au_{ext} = I_{CM} lpha = F_{at} R$$
 $F_{res} = mgsin heta - F_{at} = ma_{CM}$ Condição de rolamento: $v_{CM} = \omega R$ $a_{CM} = \alpha R$

Substituindo a condição da aceleração para o rolamento na 2ª lei para a rotação obtemos: $F_{at} = \frac{I_{CM}}{R^2} a_{CM}$

Substituindo esta última expressão na 2ª lei para a translação temos:

$$F_{res} = mgsin\theta - \frac{I_{CM}}{R^2}a_{CM} = ma_{CM} \implies a_{CM} = \frac{gsin\theta}{1 + \frac{I_{CM}}{mR^2}}$$

Usando:

$$v^2 = v_0^2 + 2a_{CM}x$$

Podemos substitui o que sabemos da aceleração do CM e que o mov. parte do repouso e obter:

$$v^2 = 2 \left[\frac{gsin\theta}{1 + \frac{I_{CM}}{mR^2}} \right] x$$

Lembrando que:

$$I_{CM} = \frac{2}{5}mR^2 \qquad h = x\sin\theta$$

A velocidade final é:

$$v = \sqrt{\frac{10}{7}gh}$$

b) Usando conservação de energia (a força de atrito não realiza trabalho neste caso!):

 $U_i = K_f \Rightarrow \frac{1}{2}mv^2 + \frac{1}{2}I_{CM}\omega^2 = mgh$

Usando novamente a condição de rolamento para a velocidade do CM e o momento de inércia para uma esfera sólida chegamos à mesma expressão obtida no item anterior.

$$v = \sqrt{\frac{10}{7}gh}$$

c)
$$F_{at} = \frac{I_{CM}}{R^2} a_{CM} \qquad F_{at} = \frac{(2/5)mR^2}{R^2} \frac{gsin\theta}{1 + 2/5}$$

$$F_{at} = \frac{2}{7} mgsin\theta$$

Exercício extra

Uma pessoa em uma bicicleta, de massa total m, sobe uma rampa de inclinação θ com velocidade constante. A bicicleta possui as seguintes características (ver figura): rodas de raio R, catraca na roda traseira de raio r_t , coroa ligada ao pedal de raio r_c , e braço do pedal de tamanho l.

- a) Faça um diagrama das forças atuando no problema. Calcule a força de atrito.
- b) Relacione a força aplicada no pedal com a tensão na corrente;
- c) Relacione a tensão na corrente com a força de atrito na roda traseira;
- d) Considerando uma bicicleta de marcha (r_t e r_c variáveis), discuta as modificações na marcha que devem ser feitas para subir uma ladeira mais índrime

Exercício extra

Uma fita leve está enrolada em volta de um disco circular de massa m e raio r, que rola sem deslizar sobre um plano inclinado áspero de inclinação q. A fita passa por uma roldana fixa de massa desprezível e está presa a um bloco suspenso de massa m, como mostra a figura. Calcule:

- a) a aceleração a da massa m';
- b) a tração T na fita.
- c) Discuta o movimento do disco em função de m, m' e q.

