Heuristics

CS 3600 Intro to Artificial Intelligence

Romania - A* with straight line distance heuristic

Romania - A* with straight line distance heuristic

traight–line distanc Bucharest	e
Bucharest	
rad	366
ucharest	0
Craiova	160
obreta	242
forie	161
agaras	176
iurgiu	77
Iirsova	151
asi	226
ugoj	244
Iehadia	241
leamt	234
radea	380
itesti	100
limnicu Vilcea	193
ibiu	253
'imisoara	329
rziceni	80
aslui	199
erind	374

Pitesti (417)
[**B**(418),T(447),Z(449),B(450),C(526),**C**(625),O(671)]
[A,S,R,F,P]

Solution: [A->S, S->R, R->P, P->B]

Cost: 418

Why do we need consistency?

- Necessary in the proof to ensure that f(n_i) never decreased
- Why might f(n_i) decrease? Shortcuts!

Shortcuts - example (1)

Heuristic: h(A)=15, h(B)=3, h(C)=10, h(D)=0, h(G)=0

Admissible? <

 $h(n) \le c(n,a,n') + h(n')$ $h(A) \le c(A,->,B) + h(B)$ 15 <= 10+3

Consistent?

Shortcuts - example (2)

A(15) [B(13), C(15)] [A]

B(13) [D(14), C(15)] [A,B]

D(14) [C(15), G(24)] [A,B,D]

C(15) [G(24)] [A,B,**D**,C]

G(24) [] [A,B,D,C,G]

State	А	В	С	D	G
h(State)	15	3	10	0	0

Solution returned: [A->B,B->D,D->G], cost 24 Optimal solution: [A->C,C->D,D->G], cost 18

Fixing Generic Search to handle shortcuts (1)

What was the problem?

- When a shorter path to D was encountered, D was already in the "closed" list
- If we find a shorter path for a node in the closed list, we need to update it's g(n)...
- And then all the g(n) of the children of of that node...
- Which may re-order the open priority queue...

Yuck

Fixing Generic Search to handle shortcuts (2)

Computationally

- update parent of s isn't so bad if we use backpointers
- recompute g and resort open has to trace back the new path!

One implementation

- Do DFS from start state, recompute g as you go
- Don't expand a node if it's already in open

Note for project 1: shouldn't be necessary as all the heuristics will be consistent or inadmissible anyway

```
Initialize 'current' node to start state
Initialize 'closed' as an empty list
Initialize 'open' as one of (stack, queue, priority queue)
while not( current['state'] is goal state):
     Add current['state'] to closed
     successors = successors of current['state']
     for s in successors:
          if not(s.state is in closed):
               Add new node for state to open
          elif s.cost+current['g'] < old cost to s:</pre>
               update parent of s
               recompute g and resort open
     current = next node in open that's not in closed
path = list()
while current has a parent:
     Add current['action'] to the front of path
     current = current['parent']
return path
```

Heuristic effectiveness

The **effective branching factor** (b*) for a heuristic is a way of characterizing how **helpful** that heuristic is.

If A* finds a solution at depth *d* expanding *N* nodes, then b* is the branching factor that a uniform tree of depth *d* would need to contain *N*+1 nodes

$$N+1 = 1 + b^* + (b^*)^2 + ... + (b^*)^d$$

Lower effective branching factor indicates the heuristic will be effective in solving larger problems with reasonable computation time

d=3 N=7 b*=2

d=4 N=7 b*=1.23...

Simple problem domain: 8-puzzle

Initial state: scrambled board

Goal state: tiles in numerical order

Actions: slide one tile into the blank spot (move

the blank spot one tile)

Cost: 1 per move

Two heuristics (for comparison):

 h_1 = # of misplaced tiles

 h_2 = distance of all tiles to final position

Start State

$$h_1 = 8$$

 $h_2 = 26$

Goal State

$$h_1 = h_2 = 0$$

Experiment - nodes expanded for 8-puzzle

Depth	2	4	6	8	10	12	14	16	18	20	22	24
IDS	10	112	680	6384	47127	3644035						
A*(h ₁)	6	13	20	39	93	227	539	1301	3056	7276	18094	39135
A*(h ₂)	6	12	18	25	39	73	113	211	363	676	1219	1641

- 100 random puzzles for each depth
- IDS didn't finish in time for d>12
- Both h₁ and h₂ outperform IDS
- h₂ seems better than h₁ for d>6
- Effective branching factor is relatively stable across problem sizes

Effective branching factor

IDS: 2.45 to 2.87

h₁: 1.33 to 1.79

h₂: 1.22 to 1.79

Is h₂ always better than h₁?

Yes!

For any node, $h_1(n) \le h_2(n)$ (each out of place tile must move at least one space)

When comparing heuristics, if $h_a(n) \le h_b(n)$ for all n, we say h_b dominates h_a

Since A^* with consistent heuristics will always expand every node with $f(n)=g(n)+h(n)< C^*$, we should try to make h(n) as large as possible (still admissible and consistent, efficient to compute)

Admissible heuristics: $0 \le h(n) \le h^*(n)$

Heuristic design - problem relaxation

One way of generating heuristics is to use solutions to a version of the problem with **fewer constraints**

h₁: path cost if tiles can "teleport" to the correct spot

h₂: path cost if tiles can slide over one another

The relaxed problem has the same state space with additional edges: so the cost of a **solution** in the relaxed problem is **guaranteed** to be an **admissible** heuristic for the original problem

Heuristic design - composite heuristics

If we have a set of (admissible, consistent) heuristics that are non-dominated, we can combine them!

$$h(n) = max\{ h_1(n), h_2(n), ..., h_k(n) \}$$

Note that this new heuristic dominates all of the component heuristics

Heuristic design - Pattern databases

Idea: pre-compute the solution to a simpler sub-problem, and **store** the solution length. When searching the larger problem, match states against subproblem patterns and use the solution length as the estimate

8-puzzle example: solve the puzzle for a subset of the tiles. Different subsets yield different heuristics.

Since $sum(h_1,h_2,...) >= max(h_1,h_2,...)$, why don't we just add heuristics together?

Heuristic design - disjoint pattern databases

If you can split the problem into **disjoint** subproblems, where solving one does not **reduce** the cost of solving another, you can actually **add** the subproblem solution costs (instead of taking the max), but this can be trickier than you expect!

Summary and preview

Wrapping up

- We need consistency to ensure generic search expands in order of increasing f(n). We can fix generic search to work even for inconsistent heuristics, but it can get messy.
- Effective branching factor is a useful way of quantifying and comparing heuristic "helpfulness"
- Several ways of designing heuristics: problem relaxation, composite heuristics, and pattern databases.

Next time

Adversarial Search