HOS 6236 Molecular Marker Assisted Plant Breeding

Last Class:

Introduction, Syllabus, and Expectations

Todays Class:

Important breeding concepts

Survey plant breeding methods

Discontinuous Variation – categorical traits, small number of easily distinguished, discrete classes.

Monogenic Traits – Qualitative Inheritance

Character	Contrasting traits	
Seed shape	round/wrinkled	a
Seed color	yellow/green	
Pod shape	full/constricted	*
Pod color	green/yellow	→
Stem height	tall/dwarf	

Fig. 3-1

Most traits in breeding are more complex

Continuous Variation – classes can not be easily defined. Examples:

Most traits in breeding are more complex

Continuous Variation – classes can not be easily defined.

Examples:

Seed Yield

Fruit Yield

Plant Biomass

Tree height

Polygenic (many genes): result of the input of multiple genes, each one with small effect in the phenotype.

The effect of a single gene on the phenotype is usually too small to be recognized.

Implications???

Most traits in breeding are more complex

Continuous Variation – classes can not be easily defined.

Example: A cross of two plants of sorghum (tall and short) create continue variation

Continuous variation is measured and described in quantitative terms: Quantitative inheritance - Polygenic Traits

Question:

If we can not distinguish classes in a quantitative trait, then are these genes following Mendelian inheritance?

Fisher Infinitesimal Model (1918)

The character is determined by an infinite number of unlinked and non-epistatic loci, each with an infinitesimal effect on the trait.

Statistics and Complex Traits

Several statistics parameters are used to describe a populations that has a continuous variation

Example:

Mean, Median, Mode Variance, Standard Deviation, Coeff. Of Variation Range, Minimum and Maximum

Statistics and Complex Traits

The most important for plant breeders are probably the Mean and Variance:

The Mean (\overline{x})

Provides information about where the central point lies in along the range of measurements of a quantitative trait

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

The Variance (s^2)

Measures the dispersion or spread of the set of measurements of a quantitative trait

The standard deviation
$$s = \sqrt{s^2}$$

$$s^2 = \frac{\sum_{i=1}^{n} (x_i - \overline{x})}{n-1}$$

The Statistics of Sorghum

density.default(x = example1)

Histogram of example1

Phenotypic data Sorghum height (in) n=1000

Min.: 60.34

1st Qu.: 64.94

Median: 69.54

Mean: 69.54

3rd Qu.: 74.14

Max.: 78.74

Environmental Effect

Quantitative or Complex traits: polygenic in nature usually also influenced by environment.

Plant Yield Example

The challenge of quantitative geneticist or breeder is to determine how much of the variation is due to genetic differences and how much is due to environment.

If Phenotype = Genotype

If Phenotype = Genotype + Environment

but...

There could be also an interaction between the genotype (G) and the environment (E):

Root Efficiency Example

No GxE interaction

GxE interaction

then

$$P = G + E + GxE$$

The Challenge

The challenge of quantitative geneticist or breeder is to determine how much of the variation is due to genetic differences and how much is due to environment.

If **P**henotype = **G**enotype

If
$$P = G + E + GxE$$

Heritability

$$P = G + E + GxE$$

 $V_P = V_G + V_E + V_{GxE}$

Broad-sense heritability = the proportion of phenotypic variation that can be attributed to genetic variation within a certain population in a particular environment

$$H2 = V_G / V_P$$

Range from 0 to 1

- Values close to 1 indicate that environment have little impact on phenotypic variance, which is then largely due to genetic differences
- Values close to 0 indicate that environment factors, not genotypic differences, are largely responsible for the phenotypic variation

Narrow-sense Heritability

A= additive effect of genes

D= dominance effect, results from the **interaction among alleles** within a locus

I= epistatic effect, results from the **interaction among genes** thus

$$P = A + D + I + E + GxE$$

$$V_{P} = V_{A} + V_{D} + V_{I} + V_{E} + V_{GxE}$$

Narrow-sense heritability = is the portion of phenotypic variance due to additive genetic variation.

$$h^2 = V_A/V_P$$

The Goal!!

Breeder's Equation

Genetic_Gain =
$$\Delta G = \frac{h^2 * \sigma_p^2 * i}{L}$$

 h^2 = Narrow-sense heritability = is the portion of phenotypic variance due to additive genetic variation.

 σ_p = phenotypic standard deviation = phenotypic variability in the population

i = intensity of selection

L = length of breeding cycle interval

Why this is important???