Composite Materials - I

(Introduction)

Contents

- ✓ Composite definition and history
- ✓ Composite Classification

What is Composite?

- Natural or artificial mixtures of two or more distinct phase/constituents.
- Mixtures may consist of metals, polymers or ceramics.
- Primary engineering goal is to achieve a better balance of properties from the combination of materials.

Domain of Composites

History of Composites

- Indus Civilization (~ 3000 B.C.) Straw reinforced bricks.
- Hittites and the Samurai (~ 100 B.C.) Steel composites (formed by the repeated folding of a steel bar back on itself).
- Industrial revolution (~ 1800 A.D.) concrete and cast iron.
- Modern composites (~1950-present) fiber-reinforced composites.

Straw + Mud brick

Samurai Sword

Concrete

Natural Composites

- Exist throughout nature almost all natural materials
- Some examples:
- wood = lignin matrix + hemi-cellulose wound in a spiral form
- bone = organic fibers + inorganic crystals, water and fats
- 35% of bone consists of organic collagen protein fibers with small rod-like hydroxyapatite crystals

Cast Iron as Composite Graphite Flakes and Graphite Nodules

Particle –Reinforced Composites

LARGE-PARTICLE COMPOSITES

Example: Concrete, which is composed of cement (the matrix), and sand & gravel (the particulates)

- The particulate phase is harder and stiffer than the matrix.
- Reinforcing particles tend to restrain movement of the matrix phase in the vicinity of each particle.
- Matrix transfers fraction of applied load to particles.
- Improvement of mechanical behavior depends on strong bonding at the matrix–particle interface.

DISPERSION-STRENGTHENED COMPOSITES

- Particles are normally much smaller, with diameters between 10 100 nm.
- Strengthening occur on the atomic or molecular level.
- Matrix bears the major portion of an applied load, while the small dispersed particles hinder the motion of dislocations.
- Thus, plastic deformation is restricted such that yield and tensile strengths, as well as hardness improves.

Example: Sintered aluminum powder - flakes of Al coated with Al₂O₃, which are dispersed within an aluminum metal matrix.

Fiber – Reinforced Composites

The Fiber Phase

Role of fibers in composites includes:

- To enhance stiffness
- To enhance strength
- To provide crack-bridging
- To enhance thermal resistance

On the basis of diameter and character, fiber phase can be grouped into

- Whiskers: They are very thin single crystals that have extremely large I/d ratio but has the form of fiber.
 - ✓ Flaw free and thus extremely high strength but expensive.
 - ✓ Include graphite, silicon carbide, silicon nitride, and aluminum oxide, etc.
- Fibers : A material that has at least I/d ratio equal to 10:1
 - ✓ Either polycrystalline or amorphous.
 - ✓ Generally polymer and ceramics
- Wires : Relatively large diameters
 - ✓ Typical materials include steel, molybdenum, and tungsten

The Matrix Phase

Role of matrix in composites includes

- Binding fibers together
- Protect the individual fibers from damage by external environment.
- Act as a medium to transmit and distribute externally applied stress to fibers.
- Serves as a barrier to crack propagation.

It should be noted that:

- ✓ The **matrix** material should be **ductile**.
- ✓ Elastic modulus of the fiber should be much higher than that of the matrix.
- ✓ There should be adequate bonding between matrix and fibers.

Stress-Strain Curves

Volume Fractions

If V_f , V_m , V_v and V_c are the volumes of fiber, matrix, void and composite, then

$$\vartheta_f = \frac{V_f}{V_c} = fiber\ volume\ fraction$$

$$\vartheta_m = \frac{V_m}{V_c} = matrix \ volume \ fraction$$

$$\vartheta_v = \frac{V_v}{V_c} = void\ volume\ fraction$$

Where,

$$\vartheta_f + \vartheta_m + \vartheta_v = 1$$

$$V_c = V_f + V_m + V_v = Composite Volume$$

Weight Fractions

$$w_f = \frac{W_f}{W_c} = fiber\ weight\ fraction$$

$$w_m = \frac{W_m}{W_c} = matrix \ weight \ fraction$$

Where,

$$w_f + w_m = 1$$

$$W_c = W_f + W_m = Composite$$
 Weight

Note: Weight of voids neglected

Densities

Density,
$$\rho = \frac{W}{V}$$

Composite weight, $W_c = W_f + W_m$

Therefore,
$$\rho_c V_c = \rho_f V_f + \rho_m V_m$$

Hence, Composite density, $ho_c =
ho_f artheta_f +
ho_m artheta_m$

"Rule of Mixtures" for density

Longitudinal Modulus

The tensile load is acting along fiber direction.

Assuming perfect bonding between fibers and matrix,

$$\epsilon_f = \epsilon_m = \epsilon_c \tag{1}$$

where \in_f , \in_m , \in_c are the longitudinal strains in fibers, matrix and composite respectively.

Since both fibres and matrix are elastic, the longitudinal stresses are

$$\sigma_f = E_f \in_f = E_f \in_c \tag{2}$$

$$\sigma_m = E_m \in {}_m = E_m \in {}_c \tag{3}$$

Since $E_f > E_m$ Hence $\sigma_f > \sigma_m$.

The tensile load P_C applied on the composite lamina is shared by fiber and matrix. So,

$$P_C = P_f + P_m$$

Since load = stress x area

Therefore,
$$\sigma_C A_C = \sigma_f A_f + \sigma_m A_m$$

Now,
$$\sigma_C A_C = \sigma_f A_f + \sigma_m A_m$$

Or

$$\sigma_C = \sigma_f \frac{A_f}{A_c} + \sigma_m \frac{A_m}{A_c}$$

where

 σ_{C} = average tensile stress in the composite A_{f} = net cross-sectional area for the fibres A_{m} = net cross-sectional area for the matrix

$$A_c = A_f + A_m$$

Since,
$$\vartheta_f = \frac{A_f}{A_c}$$
 and $\vartheta_m = \frac{A_m}{A_c}$

Thus,
$$\sigma_C = \sigma_f \vartheta_f + \sigma_m \vartheta_m$$

Dividing both sides by \in_c , and using (2), (3) we get

$$(E_C)_{\text{longitudinal}} = E_f \vartheta_f + E_m \vartheta_m$$
, "Rule of Mixtures"

(4)

Transverse Modulus

The tensile load is acting normal to the fibre direction.

 The total deformation (strain) in the transverse direction is the sum total fibre and matrix deformation.

$$\delta_C = \delta_f + \delta_m \tag{1}$$

Tensile stress in fibre, matrix and composite are equal.

$$\sigma_f = \sigma_m = \sigma_C \tag{2}$$

From definition of normal strain

$$\delta_f = \in_f \mathsf{L}_\mathsf{f}$$

$$\delta_m = \in_m \mathsf{L}_\mathsf{m}$$

$$\delta_C = \in_c \mathsf{L}_\mathsf{C}$$

Transverse direction

Substituting in Equation (1) and dividing by L_C both sides, we get

$$\epsilon_C = \epsilon_f \frac{L_f}{L_c} + \epsilon_m \frac{L_m}{L_c}$$
 (3) Since $\vartheta_f = \frac{L_f}{L_c}$ and $\vartheta_m = \frac{L_m}{L_c}$

Hence equation (3) becomes,

$$\in_c = \in_f \vartheta_f + \in_m \vartheta_m$$

This can be re-written using Hooke's law as

$$\frac{\sigma_C}{E_C} = \frac{\sigma_f}{E_f} \vartheta_f + \frac{\sigma_m}{E_m} \vartheta_m \tag{4}$$

Since $\sigma_f = \sigma_m = \sigma_C$, equation (4) becomes

$$\frac{1}{E_C} = \frac{\vartheta_f}{E_f} + \frac{\vartheta_m}{E_m}$$

Or

$$(E_C)_{Transverse} = \frac{E_f E_m}{E_f \vartheta_m + E_m \vartheta_f}$$

In the **next lecture**, we will learn about

- ✓ Applications of fibre reinforced composites
- ✓ Polymer matrix composites
- ✓ Metal-matrix composites
- ✓ Ceramic-matrix composites

