nvidia/parakeet-tdt_ctc-0.6b

- Currently #1 on HuggingFace Open ASR Leaderboard with 6.05% Word Error Rate
- Beats OpenAl Whisper-large-v3 and other state-of-the-art models
- **600M parameters** (smaller but more efficient than many competitors)
- FastConformer encoder + TDT (Token-and-Duration Transducer) decoder
- Can process up to 24 minutes of audio in a single pass
- Full support for punctuation, capitalization, and word-level timestamps

Training & Dataset:

- Trained on Granary dataset: ~120,000 hours of English speech
- 10,000 hours of human-transcribed data + 110,000 hours of pseudo-labeled speech

Compared to Canary:

- Parakeet-TDT: Specialized for English, extremely fast, top accuracy
- Canary: Multilingual (EN/DE/ES/FR), translation capabilities, good for diverse tasks

Time Taken:

30min - 11sec. 1hr- 21 sec

OpenAl Whisper Large v3

Key Highlights

- 10-20% error reduction compared to Whisper Large v2
- State-of-the-art multilingual ASR with 100 language support
- 1550M parameters (larger but more capable than most competitors)
- Transformer encoder-decoder architecture with enhanced 128 Mel bins
- Handles long-form audio with built-in chunking algorithms
- Full support for timestamps, translation, and language detection

Aspect	Whisper Large v3	NVIDIA Parakeet-TDT English-only specialist	
Focus	Multilingual (100 langs)		
Parameters	1550M (larger)	600M (more efficient)	
Error Rate	∾10-20% improvement	6.05% WER (#1 leaderboard)	
Max Audio Length	30s windows (chunked)	24 minutes single pass	
Languages	100 languages + translation	English only	
Memory Usage	2.87 GB	More efficient	
Architecture	Transformer seq2seq	FastConformer + TDT	
Training Data	5M hours (multi-lang)	120K hours (English)	
Best Use Case	Global/multilingual apps	High-speed English transcription	

Timetaken: 3 min - 8sec

30min-1min 40sec

Previous FastApi Implementation

In the /upload_audio route, there are two audio upload options. When I run a 3-minute audio file, it takes about 23 seconds to process. However, when I try a 30-minute audio file, it throws an error as shown below.

DATASET

Dataset Name	Languages	Туре	Size	Description	
IndicCorp v2	23 Indic languages	T4	20.00	14.4B Indic tokens, 6.5B Indian	
	+ Indian English	Text	20.9B tokens	English tokens	
Sangraha	22 Indic languages	Text	251B tokens	High-quality pretraining data with verified, unverified, and synthetic components	
Kathmandu		Parallel	1.8M sentence	Low-resource language pair parallel	
University-English– Nepali	Nepali	Corpus	pairs	corpus	
Al4Bharat IndicNLP News Articles	10 Indian languages	Text	Part of IndicCorpus	Word embeddings focused on healthcare	
IndicNER	11 Indic languages	Text	N/A	Named entity recognition datasets with medical entities	
ВРСС	Multiple Indic	Parallel Corpus	230M pairs	Human-labeled and mined data with medical terminology	
Samanantar	English + 11 Indic languages	Parallel Corpus	46.9M sentence pairs	Includes medical and healthcare content	
NExT-Clinic	Multiple Indic languages	Medical Dialogue	N/A	Doctor-patient conversations with medical terms	
MedWeb-In	Hindi, Tamil, Telugu	Medical Web Text	700+ sites	Crawled medical websites in Indian languages	
AIIMS-NLP	Hindi, Bengali,	Clinical	50,000+	De-identified clinical notes from	
	Tamil	Notes	records	Indian hospitals	
PGIMER-Bio	5 Indic languages	Biomedical Text	120,000+ abstracts	Translated biomedical abstracts	

Nemo demo for japanese dataset:

https://github.com/NVIDIA/NeMo/blob/main/tutorials/asr/ASR_CTC_Language_Finetuning.ipynb

nvidia/parakeet-tdt_ctc-0.6b-ja-QuartzNet/Citrinet: Older, smaller models (~100M parameters)

Complete Vocabulary Replacement

"They took the English model and basically said 'forget everything about English vocabulary, you're Japanese now':

Before: Model vocabulary = [a, b, c, d, e, ..., space, apostrophe] (26 English characters + punctuation)

After: Model vocabulary = [あ, い, う, え, お, か, が, ..., 漢字characters] (1000+ Japanese characters)

The change_vocabulary() function completely overwrites the English vocabulary - there's no mixing."

What Gets Preserved vs Replaced

"Here's what stays and what goes:

KEPT (Frozen):

- All the acoustic feature extraction (encoder layers)
- Knowledge of how to process audio, detect phonemes, handle spectrograms
- The "hearing" part of the model

COMPLETELY REPLACED:

- The entire output vocabulary
- The final decoder layer (goes from English vocab size to Japanese vocab size)
- All English text understanding

After training, this model can ONLY transcribe Japanese - it has zero English capability."

Training Data

"They only used Japanese data for training:

- Japanese audio + Japanese transcripts
- No English data mixed in anywhere
- The model never sees English during fine-tuning

So the final result is a Japanese-only ASR model."