

planetmath.org

Math for the people, by the people.

equivalent formulations for continuity

Canonical name EquivalentFormulationsForContinuity

Date of creation 2013-03-22 15:18:23 Last modified on 2013-03-22 15:18:23

Owner matte (1858) Last modified by matte (1858)

Numerical id 14

Author matte (1858)
Entry type Theorem
Classification msc 26A15
Classification msc 54C05

Related topic Characterization

Suppose $f: X \to Y$ is a function between topological spaces X, Y. Then the following are equivalent:

- 1. f is continuous.
- 2. If B is open in Y, then $f^{-1}(B)$ is open in X.
- 3. If B is closed in Y, then $f^{-1}(B)$ is closed in X.
- 4. $f(\overline{A}) \subseteq \overline{f(A)}$ for all $A \subseteq X$.
- 5. If (x_i) is a net in X converging to x, then $(f(x_i))$ is a net in Y converging to f(x). The concept of net can be replaced by the more familiar one of sequence if the spaces X and Y are first countable.
- 6. Whenever two nets S and T in X converge to the same point, then $f \circ S$ and $f \circ T$ converge to the same point in Y.
- 7. If \mathbb{F} is a filter on X that converges to x, then $f(\mathbb{F})$ is a filter on Y that converges to f(x). Here, $f(\mathbb{F})$ is the filter generated by the filter base $\{f(F) \mid F \in \mathbb{F}\}.$
- 8. If B is any element of a http://planetmath.org/Subbasissubbase S for the topology of Y, then $f^{-1}(B)$ is open in X.
- 9. If B is any element of a basis \mathcal{B} for the topology of Y, then $f^{-1}(B)$ is open in X.
- 10. If $x \in X$, and N is any neighborhood of f(x), then $f^{-1}(N)$ is a neighborhood of x.
- 11. f is continuous at every point in X.