

	Mama Na
Mo Tu We Th Fr Sa Su	Memo No.
	Date / /
Exi x2 x3	$G = (V_1E), V = \{x_1, x_2, x_3\}, E = \emptyset$
Def: Two mode	3 Xi X Xj are adjacent if {xi,Xj}
EE	
Def: An edge	e={x; x; } is incident to x; & x;
Def: the number	er of edges incident to a node is
the degree of	
	simple if it has no loops or
multiple edges	
	lwp muleip-edge
men Vm	wmen Vw

men Vm		wmen	Vw
	ت		1V1\$300 M
			Vm = 147.6m
•		7	1VW 5 152.4 m
			E =??
;		•	
•			

A	Z	7	R			
Мо	Tu	We	Th	Fr	Sa	Su

Memo No.			_
Date	1	1	

Def Am = avorage # of oppsite gender partner
for man men

Aw = - - For woman

What is Am/Aw?

U Chiago = 1.74 ABC New = 3.33

 $Am = \frac{\sum_{i=1}^{\infty} deg(x_i)}{|V_m|} = \frac{|E|}{|V_m|}$

 $Aw = \frac{\sum_{w} deg(x)}{|V_w|} = \frac{|E|}{|V_w|}$

 $A_{m}/Aw = \frac{|E|/|V_{m}|}{|E|/|V_{m}|} = \frac{|V_{w}|}{|V_{m}|} = 1.0325$

Graph Cobring Problem! Given a graph G
and R Glors, assign a color to each node,
so adjacent nodes get different colors.

Of the minimum value of R for which such a
coloring exists is the chromatic number of
the graph X(G)

四 图 图 Memo No. Mo Tu We Th Fr Sa Su 1) ordering E_X V3 6- 62 C26,002 6.04/ sots 5-7 pm 7-9 pm Cr Basic Coloring Alg for G(VIE) 1, order the nodes V, Vs, --, Vn 2 order the alors G, G, --3. For i=1,2...n, assign the lowest legal color to Vi is know as a greedy Algorithm (2) ordering V3 C1 So => fluid a good ordering from the highest degree node 6 is a good feeler idea (hm: If every node in G how degree &d, then Busisc Alguses at most d+2 wood for G. in this case: most alors is 3+1=4

 图 图	
Mo Tu We Th Fr Sa Su	Memo No.
	Date / /
Pf: By induction	
I.H. P(n)	n-nodes graph.G
Base Case: $n=2 \Rightarrow c$	odges \rightarrow degree = 0 (d+1) 1 color = 0+2
	1 color = 0+2
Inductive Step: assume Par	n) is true for induction
let G=(VIE) be any	ntl nodes graph
let & d be the max	
Order the nodes Vi, V	$\sum_{n} \cdots V_n, V_{n+1}$
5)	
Remove Vn+1 from G, t	to create $G' = CV, E'$
, G! has max degree &	d & n modes, so fun)
Says basis Algorithm u	se Edtl Whos for Vi Who
l ou,	* *
Vnu Sd n	eighbors
Vmi Sd n	
Vati has sid neglights	$rs = 3$ so 3 color $m \{ G, G, \cdots \}$
, Cn+1 } not used by	arry neighbor Guiven Vn+1 that
Co/56	
=) Racic Ala was (St)	and on (0 =) P(n+1) shecky

位	Y	5	R			
Мо	Tu	We	Th	Fr	Sa	Su

Memo No. _____/

ex wose situation

degree = n-1 4 (9) =2

but Basic coloring Ally is good in this case

a nesty graph:

CIVI VATE CZ misshr

find a bed ordering: czvz vycz

C3 V5 V6 C3

Cy Vs Vx Cy

Important to remember:

<u>Gipaitite</u>

Def : A graph G= (V, E) is so bipaitite if V

can be split into VL, VR so that all the

edges connect a node in V2 to a node in VR