Volatile Organic Compound Detection Using Insect Odorant-Receptor Functionalised Field-Effect Transistors

by

Eddyn Oswald Perkins Treacher

A thesis submitted in fulfilment of the requirements of the degree of Doctor of Philosophy in Physics School of Physical and Chemical Sciences
Te Herenga Waka - Victoria University of Wellington

Apr 2023

Acknowledgements

Thanks for all the fish.

Abstract

This is a thesis skeleton written with quarto. Make a copy of this thesis repo and start to write!

Make a new paragraph by leaving a blank line.

Table of contents

A	cknowledgements	1
\mathbf{A}	bstract	3
1	Introduction	7
2	Carbon Nanotube and Graphene Field-Effect Transistors	9
	2.1 Device Functionalisation	9
3	Carbon Nanotube and Graphene Field-Effect Transistors as Biosensor	
	Platforms	11
4	Fabrication	13
5	Functionalisation of Carbon Nanotubes and Graphene with Odorant	
	Receptors	15
	5.1 Linker molecules	15 15
6	Results	19
7	Results	21
8	Summary	23
Re	eferences	25

1 Introduction

This is a book created from markdown and executable code. See for additional discussion of literate programming.

[1] 2

2 Carbon Nanotube and Graphene Field-Effect Transistors

- 2.1 Device Functionalisation
- 2.2 Insect Odorant Receptors

3 Carbon Nanotube and Graphene Field-Effect Transistors as Biosensor Platforms

4 Fabrication

Stuff I did to get the results.

5 Functionalisation of Carbon Nanotubes and Graphene with Odorant Receptors

5.1 Linker molecules

5.1.1 1-Pyrenebutanoic acid N-hydroxysuccinimide ester (PBASE)

(b) Hartree-Fock energy: -3427729.66 kJ/mol (9 s.f.)

Figure 5.1: Two conformations of PBASE molecule with geometry optimised via *ab initio* calculation (computed using Gaussian 16 [1]). The difference between computed Hartree-Fock energies is 1.0 kJ/mol, small enough that the existence of both molecular conformations is physically possible.

1-Pyrenebutanoic acid N-hydroxysuccinimide ester (variously known commercially and in the literature as 1-Pyrenebutyric acid N-hydroxysuccinimide ester, PBASE, PBSE, PASE, Pyr-NHS, PyBASE, PANHS) is a aromatic, bifunctional molecule commonly used for tethering biomolecules to the carbon rings of graphene and carbon nanotubes. The optimised molecular structure of PBASE is shown in Figure 5.1.

The non-covalent functionalisation of proteins onto a single-walled carbon nanotube using PBASE was first reported by Chen *et al.* in 2001 [2]. Two methods for protein functionalisation and immobilisation were successfully used, with the only differences being the solvent used to dissolve the PBASE powder (DMF, methanol) and the final

concentration of the resulting solutions (6 mM, 1 mM respectively). The lower concentration may have been used for PBASE in methanol as PBASE powder appears to dissolve poorly in methanol at higher concentrations. Cella et al., Campos et al., Zheng et al. and Ohno et al. all directly cite Chen et al. when discussing functionalisation with PBASE [3]–[6]. Other groups using PBASE for graphene or carbon nanotube functionalisation do not explicitly reference Chen et al. in their methodology, but it is apparent they often draw on one of these two original methods. This common ancestry becomes apparent from the high frequency of methods detailing the use of 6 mM PBASE in DMF and 1 mM PBASE in methanol, as seen in Table 5.1.

However, despite this shared heritage, it is also apparent from Table 5.1 that there is a large degree of variation in the methods used for PBASE functionalisation. Various electrical characterisation, microscopy and spectroscopy techniques have been used to demonstrate successful functionalisation. However, there has historically been little justification provided for the exact parameters used in the procedure. As noted by Zhen et al. and Hinnemo et al., there is more generally a lack of systematic research into formation of pyrene-derivative monolayers on graphene and other carbon nanomaterials, despite the wide use of this chemistry in the literature [7], [8].

We purchased PBASE from two suppliers, Sigma-Aldrich and Setareh Biotech. Sigma recommends DMF and methanol as suitable solvents for dissolving PBASE alongside chloroform and DMSO. Setareh Biotech indicates methanol can be used for dissolving PBASE. The two suppliers have conflicting information for suitable storage of PBASE, with Sigma recommending room temperature storage while Setareh Biotech recommends storage of -5 to -30° C and protection from light and moisture. Figure 5.2 compares the shapes of NMR spectra of PBASE from each supplier dissolved in DMSO, alongside a blank DMSO spectrum.

Figure 5.2: Comparison of NMR spectrum profiles

Table 5.1: Comparison of PBASE functionalisation processes used for immobilisation of proteins and aptamers onto liquid-gated CNTFET and graphene FET sensors

Solvent	Channel	Conc. (mM)	Incubation type	Time (hr)	Rinse steps	References
DMF	CNTs	5	Immersed	1	PBS	Maehashi <i>et al.</i> [9]
		6	Immersed	1	DMF, PBS	García-Aljaro et al. [10]
		6	Immersed	1	DMF	Chen et al. [2]
		6	Immersed	1	$_{\mathrm{DMF}}$	Cella et al. [3]
		6	Immersed	1	DMF	Das <i>et al.</i> [11]
	Graphene	-	-	2	DMF	Kwong Hong Tsang et al. [12]
		-	-	20	-	Wiedman et al. [13]
		0.2	Immersed	20	DMF, IPA, DI water	Gao <i>et al.</i> [14]
		1	100 μL droplet	6	DMF, IPA, DI water	Nekrasov et al. [15]
		5	Immersed	1	DMF, DI water	Hwang $et \ al. \ [16]$
		6	$6 \mu L droplet$	2	DMF, DI water	Nur Nasufiya et al. [17]
		10	$10~\mu L$ droplet	2	DMF, DI water	Campos $et al. [4]$
		10	Immersed	2	DMF, PBS	Kuscu et al. [18]
		10	Immersed	1	DMF	Xu et al. [19]
		10	Immersed	12	DMF, ethanol, DI water	Khan $et \ al. \ [20]$
2-Methoxyethanol	Graphene	1	Immersed	1	DI water	Ono <i>et al.</i> [21]
Methanol	CNTs	1	Immersed	1	Methanol, DI water	Zheng et al. [5]
		1	Immersed	2	Methanol	Kim $et \ al. \ [22]$
	Graphene	5	Immersed	2	-	Sethi et al. [23]
		5	Immersed	1	Methanol, PBS	Ohno et al. [6]
DMSO	CNTs	10	-	1	DI water	Lopez et al. [24]
		10	Immersed	1	PBS	Strack et al. [25]

6 Results

What I found out.

See for more detailed results

7 Results

What I found out.

See for more detailed results

8 Summary

In summary, this book has no content whatsoever.

[1] 2

References

Bibliography

- [1] J. A. M. J. Frisch and G. W. Trucks and H. B. Schlegel and G. E. Scuseria and M. A. Robb and J. R. Cheeseman and G. Scalmani and V. Barone and G. A. Petersson and H. Nakatsuji and X. Li and M. Caricato and A. V. Marenich and J. Bloino and B. G. Janesko and R. G, J. E. Peralta, F. Ogliaro, et al. *Gaussian* 16 Revision C.01. 2016.
- [2] R. J. Chen, Y. Zhang, D. Wang, et al. "Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization [11]". In: *Journal of the American Chemical Society* 123.16 (2001), pp. 3838–3839. ISSN: 00027863. DOI: 10.1021/ja010172b. URL: http://pubs.acs.org..
- [3] Lakshmi N. Cella, Pablo Sanchez, Wenwan Zhong, et al. "Nano aptasensor for Protective Antigen Toxin of Anthrax". In: Analytical Chemistry 82.5 (Mar. 2010), pp. 2042–2047. ISSN: 00032700. DOI: 10.1021/ac902791q. URL: https://pubs.acs.org/doi/full/10.1021/ac902791q.
- [4] Rui Campos, Jérôme Borme, Joana Rafaela Guerreiro, et al. "Attomolar label-free detection of dna hybridization with electrolyte-gated graphene field-effect transistors". In: ACS Sensors 4.2 (Feb. 2019), pp. 286–293. ISSN: 23793694. DOI: 10.10 21/acssensors.8b00344. URL: https://pubs.acs.org/doi/full/10.1021/acssensors.8 b00344.
- [5] Han Yue Zheng, Omar A. Alsager, Bicheng Zhu, et al. "Electrostatic gating in carbon nanotube aptasensors". In: Nanoscale 8.28 (July 2016), pp. 13659–13668. ISSN: 20403372. DOI: 10.1039/c5nr08117c. URL: https://pubs.rsc.org/en/content/articlehtml/2016/nr/c5nr08117c%20https://pubs.rsc.org/en/content/articlelanding/2016/nr/c5nr08117c.
- [6] Yasuhide Ohno, Kenzo Maehashi, and Kazuhiko Matsumoto. "Label-free biosensors based on aptamer-modified graphene field-effect transistors". In: Journal of the American Chemical Society 132.51 (Dec. 2010), pp. 18012–18013. ISSN: 00027863. DOI: 10.1021/ja108127r. URL: https://pubs.acs.org/doi/full/10.1021/ja108127r.
- [7] Xue V. Zhen, Emily G. Swanson, Justin T. Nelson, et al. "Noncovalent monolayer modification of graphene using pyrene and cyclodextrin receptors for chemical sensing". In: ACS Applied Nano Materials 1.6 (June 2018), pp. 2718–2726. ISSN: 25740970. DOI: 10.1021/ACSANM.8B00420/ASSET/IMAGES/LARGE/AN-201 8-00420J_0004.JPEG. URL: https://pubs.acs.org/doi/full/10.1021/acsanm.8b00 420.

- [8] Malkolm Hinnemo, Jie Zhao, Patrik Ahlberg, et al. "On Monolayer Formation of Pyrenebutyric Acid on Graphene". In: Langmuir 33.15 (Apr. 2017), pp. 3588–3593. ISSN: 15205827. DOI: 10.1021/ACS.LANGMUIR.6B04237/ASSET/IMAGES/L ARGE/LA-2016-04237V_0003.JPEG. URL: https://pubs.acs.org/doi/full/10.10 21/acs.langmuir.6b04237.
- [9] Kenzo Maehashi, Taiji Katsura, Kagan Kerman, et al. "Label-free protein biosensor based on aptamer-modified carbon nanotube field-effect transistors". In: Analytical Chemistry 79.2 (Jan. 2007), pp. 782–787. ISSN: 00032700. DOI: 10.1021/ac060830g. URL: https://pubs.acs.org/doi/full/10.1021/ac060830g.
- [10] Cristina García-Aljaro, Lakshmi N. Cella, Dhamanand J. Shirale, et al. "Carbon nanotubes-based chemiresistive biosensors for detection of microorganisms". In: Biosensors and Bioelectronics 26.4 (Dec. 2010), pp. 1437–1441. ISSN: 09565663. DOI: 10.1016/j.bios.2010.07.077.
- [11] Basanta K. Das, Chaker Tlili, Sushmee Badhulika, et al. "Single-walled carbon nanotubes chemiresistor aptasensors for small molecules: Picomolar level detection of adenosine triphosphate". In: Chemical Communications 47.13 (Mar. 2011), pp. 3793–3795. ISSN: 1364548X. DOI: 10.1039/c0cc04733c. URL: https://pubs.rsc.org/en/content/articlehtml/2011/cc/c0cc04733c%20https://pubs.rsc.org/en/content/articlelanding/2011/cc/c0cc04733c.
- [12] Deana Kwong Hong Tsang, Tyler J. Lieberthal, Clare Watts, et al. "Chemically Functionalised Graphene FET Biosensor for the Label-free Sensing of Exosomes". In: *Scientific Reports* 9.1 (Sept. 2019), pp. 1–10. ISSN: 20452322. DOI: 10.1038/s 41598-019-50412-9. URL: https://www.nature.com/articles/s41598-019-50412-9.
- [13] Gregory R. Wiedman, Yanan Zhao, Arkady Mustaev, et al. "An Aptamer-Based Biosensor for the Azole Class of Antifungal Drugs". In: mSphere 2.4 (Aug. 2017). ISSN: 23795042. DOI: 10.1128/msphere.00274-17. URL: /pmc/articles/PMC5566 834/%20/pmc/articles/PMC5566834/?report=abstract%20https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5566834/.
- [14] Zhaoli Gao, Han Xia, Jonathan Zauberman, et al. "Detection of Sub-fM DNA with Target Recycling and Self-Assembly Amplification on Graphene Field-Effect Biosensors". In: Nano Letters 18.6 (June 2018), pp. 3509–3515. ISSN: 15306992. DOI: 10.1021/acs.nanolett.8b00572. URL: https://pubs.acs.org/doi/full/10.1021/acs.nanolett.8b00572.
- [15] Nikita Nekrasov, Natalya Yakunina, Averyan V. Pushkarev, et al. "Spectral-phase interferometry detection of ochratoxin a via aptamer-functionalized graphene coated glass". In: Nanomaterials 11.1 (Jan. 2021), pp. 1–10. ISSN: 20794991. DOI: 10.3390/nano11010226. URL: https://www.mdpi.com/2079-4991/11/1/226/htm %20https://www.mdpi.com/2079-4991/11/1/226.

- [16] Michael T. Hwang, B. Landon Preston, Lee Joon, et al. "Highly specific SNP detection using 2D graphene electronics and DNA strand displacement". In: Proceedings of the National Academy of Sciences of the United States of America 113.26 (June 2016), pp. 7088–7093. ISSN: 10916490. DOI: 10.1073/pnas.1603753113. URL: https://www.pnas.org/doi/abs/10.1073/pnas.1603753113.
- [17] Mohd Maidin Nur Nasyifa, A. Rahim Ruslinda, Nur Hamidah Abdul Halim, et al. "Immuno-probed graphene nanoplatelets on electrolyte-gated field-effect transistor for stable cortisol quantification in serum". In: *Journal of the Taiwan Institute of Chemical Engineers* 117 (Dec. 2020), pp. 10–18. ISSN: 18761070. DOI: 10.1016/j.j tice.2020.12.008.
- [18] Murat Kuscu, Hamideh Ramezani, Ergin Dinc, et al. "Graphene-based Nanoscale Molecular Communication Receiver: Fabrication and Microfluidic Analysis". In: (June 2020). arXiv: 2006.15470. URL: https://arxiv.org/abs/2006.15470v2.
- [19] Shicai Xu, Jian Zhan, Baoyuan Man, et al. "Real-time reliable determination of binding kinetics of DNA hybridization using a multi-channel graphene biosensor". In: *Nature Communications* 8.1 (Mar. 2017), pp. 1–10. ISSN: 20411723. DOI: 10.1038/ncomms14902. URL: https://www.nature.com/articles/ncomms14902.
- [20] Niazul I. Khan, Mohammad Mousazadehkasin, Sujoy Ghosh, et al. "An integrated microfluidic platform for selective and real-time detection of thrombin biomarkers using a graphene FET". In: Analyst 145.13 (June 2020), pp. 4494–4503. ISSN: 13645528. DOI: 10.1039/d0an00251h. URL: https://pubs.rsc.org/en/content/articlehtml/2020/an/d0an00251h%20https://pubs.rsc.org/en/content/articlelanding/2020/an/d0an00251h.
- [21] T Ono, K Kamada, R Hayashi, et al. "Lab-on-a-graphene-FET detection of key molecular events underpinning influenza 2 virus infection and effect of antiviral drugs 3 Running title: Graphene-FET detects reactions in an influenza infection MAIN TEXT". In: bioRxiv (Mar. 2020), p. 2020.03.18.996884. DOI: 10.1101/2020.03.18.996884. URL: https://doi.org/10.1101/2020.03.18.996884.
- [22] Jun Pyo Kim, Byung Yang Lee, Joohyung Lee, et al. "Enhancement of sensitivity and specificity by surface modification of carbon nanotubes in diagnosis of prostate cancer based on carbon nanotube field effect transistors". In: *Biosensors and Bioelectronics* 24.11 (July 2009), pp. 3372–3378. ISSN: 09565663. DOI: 10.1016/j.bio s.2009.04.048. URL: https://pubmed.ncbi.nlm.nih.gov/19481922/.
- [23] Jagriti Sethi, Michiel Van Bulck, Ahmed Suhail, et al. "A label-free biosensor based on graphene and reduced graphene oxide dual-layer for electrochemical determination of beta-amyloid biomarkers". In: *Microchimica Acta* 187.5 (May 2020), pp. 1–10. ISSN: 14365073. DOI: 10.1007/s00604-020-04267-x. URL: https://link.springer.com/article/10.1007/s00604-020-04267-x.

- [24] Ryan J. Lopez, Sofia Babanova, Kateryna Artyushkova, et al. "Surface modifications for enhanced enzyme immobilization and improved electron transfer of PQQ-dependent glucose dehydrogenase anodes". In: *Bioelectrochemistry* 105 (Oct. 2015), pp. 78–87. ISSN: 1878562X. DOI: 10.1016/j.bioelechem.2015.05.010. URL: https://pubmed.ncbi.nlm.nih.gov/26011132/.
- [25] Guinevere Strack, Robert Nichols, Plamen Atanassov, et al. "Modification of carbon nanotube electrodes with 1-pyrenebutanoic acid, succinimidyl ester for enhanced bioelectrocatalysis". In: Methods in Molecular Biology 1051 (2013), pp. 217–228. ISSN: 10643745. DOI: 10.1007/978-1-62703-550-7_14. URL: https://pubmed.ncbi.nlm.nih.gov/23934807/.