Foundation of Data Science and Analytics:

Association Mining (Frequent Pattern Analysis) - Basic Concepts

Dr. Arun K. Timalsina

Materials Adaptation:

Mining Frequent Patterns, **Association and Correlations**

Basic Concepts

- Frequent Itemset Mining Methods
- Which Patterns Are Interesting?—Pattern

Evaluation Methods

Summary

What Is Frequent Pattern Analysis?

- Frequent pattern: a pattern (a set of items, subsequences, substructures, etc.) that occurs frequently in a data set
- First proposed by Agrawal, Imielinski, and Swami [AIS93] in the context of frequent itemsets and association rule mining
- Motivation: Finding inherent regularities in data
 - What products were often purchased together?— Beer and diapers?!
 - What are the subsequent purchases after buying a PC?
 - What kinds of DNA are sensitive to this new drug?
 - Can we automatically classify web documents?
- Applications
 - Basket data analysis, cross-marketing, catalog design, sale campaign analysis, Web log (click stream) analysis, and DNA sequence analysis.

Why Is Freq. Pattern Mining Important?

- Freq. pattern: An intrinsic and important property of datasets
- Foundation for many essential data mining tasks
 - Association, correlation, and causality analysis
 - Sequential, structural (e.g., sub-graph) patterns
 - Pattern analysis in spatiotemporal, multimedia, timeseries, and stream data
 - Classification: discriminative, frequent pattern analysis
 - Cluster analysis: frequent pattern-based clustering
 - Data warehousing: iceberg cube and cube-gradient
 - Semantic data compression: fascicles
 - Broad applications

Market Basket Example

Basic Concepts: Frequent Patterns

Tid	Items bought
10	Beer, Nuts, Diaper
20	Beer, Coffee, Diaper
30	Beer, Diaper, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Milk

- itemset: A set of one or more items
- k-itemset $X = \{x_1, ..., x_k\}$
- (absolute) support, or, support count of X: Frequency or occurrence of an itemset X
- (relative) support, s, is the fraction of transactions that contains X (i.e., the probability that a transaction contains X)
- An itemset X is frequent if X's support is no less than a minsup threshold

$$Support = \frac{frq(X,Y)}{N}$$

Rule:
$$X \Rightarrow Y \longrightarrow Confidence = \frac{frq(X,Y)}{frq(X)}$$

$$Lift = \frac{Support}{Supp(X) \times Supp(Y)}$$

$$Support = \frac{frq(X,Y)}{N}$$

$$Rule: X \Rightarrow Y \longrightarrow Confidence = \frac{frq(X,Y)}{frq(X)}$$

$$Lift = \frac{Support}{Supp(X) \times Supp(Y)}$$

Transactions

Transactions →

Calculated values of different measures

Rule	Support	Confidence	Lift
$A \Rightarrow D$	2/5	2/3	10/9
$C \Rightarrow A$			
$A \Rightarrow C$			
$B \& C \Rightarrow D$			
	•		

$$Support = \frac{frq(X,Y)}{N}$$

$$Rule: X \Rightarrow Y \longrightarrow Confidence = \frac{frq(X,Y)}{frq(X)}$$

$$Lift = \frac{Support}{Supp(X) \times Supp(Y)}$$

Transactions →

Calculated values of different measures

Rule	Support	Confidence	Lift
$A \Rightarrow D$	2/5	2/3	10/9
$C \Rightarrow A$	2/5	2/4	5/6
$A \Rightarrow C$	2/5	2/3	5/6
$B \& C \Rightarrow D$	1/5	1/3	5/9

Basic Concepts: Association Rules

Tid	Items bought
10	Beer, Nuts, Diaper
20	Beer, Coffee, Diaper
30	Beer, Diaper, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Milk

- Find all the rules $X \rightarrow Y$ with minimum support and confidence
 - support, s, probability that a transaction contains X ∪ Y
 - confidence, c, conditional probability that a transaction having X also contains Y

Let minsup = 50%, minconf = 50%

Freq. Pat.: Beer:3, Nuts:3, Diaper:4, Eggs:3,

{Beer, Diaper}:3

- Association rules: X → Y (s, c)
 - Beer \rightarrow Diaper (60%, 100%)
 - Diaper → Beer (60%, 75%)

Closed Patterns and Max-Patterns

- A long pattern contains a combinatorial number of subpatterns, e.g., $\{a_1, ..., a_{100}\}$ contains $\binom{1}{100} + \binom{1}{100} + \binom{1}{100} + ... + \binom{1}{100} \binom{1}{100} = 2^{100} 1 = 1.27*10^{30}$ sub-patterns!
- Solution: Mine closed patterns and max-patterns instead
- An itemset X is closed if X is frequent and there exists no super-pattern Y > X, with the same support as X (proposed by Pasquier, et al. @ ICDT'99)
- An itemset X is a max-pattern if X is frequent and there exists no frequent super-pattern Y > X (proposed by Bayardo @ SIGMOD'98)
- Closed pattern is a lossless compression of freq. patterns
 - Reducing the # of patterns and rules

Closed Patterns and Max-Patterns

- Exercise. DB = $\{\langle a_1, ..., a_{100} \rangle, \langle a_1, ..., a_{50} \rangle\}$
 - Min_sup = 1.
- What is the set of closed itemset?
 - <a>, ..., a₁₀₀>: 1
 - \bullet < a_1 , ..., a_{50} >: 2
- What is the set of max-pattern?
 - <a>, ..., a₁₀₀>: 1
- What is the set of all patterns?
 - !!

Computational Complexity of Frequent Itemset Mining

- How many itemsets are potentially to be generated in the worst case?
 - The number of frequent itemsets to be generated is sensitive to the *minsup* threshold
 - When *minsup* is low, there exist potentially an exponential number of frequent itemsets
 - The worst case: If all rules exist then 2^N from powerset formula otherwise sum of combinatorial formula C(N, R); approximation: N^R where N: # distinct items, and R: max length of transactions, M,N both large

Computational Complexity of Frequent Itemset Mining

- How many itemsets are potentially to be generated in the worst case?
 - The number of frequent itemsets to be generated is sensitive to the minsup threshold
 - When *minsup* is low, there exist potentially an exponential number of frequent itemsets
 - The worst case: M^N where M: # distinct items, and N: max length of transactions
- The worst case complexity vs. the expected probability
 - Ex. Suppose BhatBhateni has 10⁴ kinds of products
 - The chance to pick up one product 10⁻⁴
 - The chance to pick up a particular set of 10 products: $\sim 10^{-40}$
 - What is the chance this particular set of 10 products to be frequent 10³ times in 10⁹ transactions?

Mining Frequent Patterns, Association and Correlations: Basic Concepts and Methods

Basic Concepts

- Frequent Itemset Mining Methods
- Which Patterns Are Interesting?—Pattern
 - **Evaluation Methods**
- Summary

Scalable Frequent Itemset Mining Methods

Apriori: A Candidate Generation-and-TestApproach

- Improving the Efficiency of Apriori
- FPGrowth: A Frequent Pattern-Growth Approach

The Downward Closure Property and Scalable Mining Methods

- The downward closure property of frequent patterns
 - Any subset of a frequent itemset must be frequent
 - If {beer, diaper, nuts} is frequent, so is {beer, diaper}
 - : i.e., every transaction having {beer, diaper, nuts} also contains {beer, diaper}
- Scalable mining methods: Three major approaches
 - Apriori (Agrawal & Srikant@VLDB'94)
 - Frequent pattern growth(FPgrowth—Han,Pei&Yin @SIGMOD′00)
 - Vertical data format approach (Charm—Zaki & Hsiao @SDM'02)

Apriori: A Candidate Generation & Test Approach

- Apriori pruning principle: If there is any itemset
 which is infrequent, its superset should not be
 generated/tested! (Agrawal & Srikant @VLDB'94, Mannila, et al. @ KDD' 94)
- Method:
 - Initially, scan DB once to get frequent 1-itemset
 - Generate length (k+1) candidate itemsets from length k frequent itemsets
 - Test the candidates against DB
 - Terminate when no frequent or candidate set can be generated

Database TDB

Tid	Items
10	A, C, D
20	В, С, Е
30	A, B, C, E
40	B, E

Itemset	sup
{A}	2
{B}	3
{C}	3
{D}	1
{E}	3

Threshold : $Sup_{min} = 2$

Database TDB

Tid	Items
10	A, C, D
20	В, С, Е
30	A, B, C, E
40	B, E

Itemset	sup
{A}	2
{B}	3
{C}	3
{D}	1
{E}	3

Database TDB

Tid	Items
10	A, C, D
20	В, С, Е
30	A, B, C, E
40	B, E

 $1^{\text{st}} \operatorname{scan}$

 Itemset
 sup

 {A}
 2

 {B}
 3

 {C}
 3

 {D}
 1

 {E}
 3

Threshold : $Sup_{min} = 2$

Itemset	sup
{A}	2
{B}	3
{C}	3
{E}	3

Database TDB

Tid	Items
10	A, C, D
20	B, C, E
30	A, B, C, E
40	B, E

 $1^{\text{st}} \operatorname{scan}$

 Itemset
 sup

 {A}
 2

 {B}
 3

 {C}
 3

 {D}
 1

 {E}
 3

Threshold : $Sup_{min} = 2$

Itemset	sup
{A}	2
{B}	3
{C}	3
{E}	3

Database TDB

Items
A, C, D
В, С, Е
A, B, C, E
B, E

 $Sup_{min} = 2$ C_{I} $1^{st} scan$

Itemset	sup
{A}	2
{B}	3
{C}	3
{D}	1
{E}	3

	Itemset	sup
L_{1}	{A}	2
	{B}	3
	{C}	3
	{E}	3

C₂

{A, B}

{A, C}

{A, E}

{B, C}

{B, E}

{C, E}

Tid	Items
10	A, C, D
20	В, С, Е
30	A, B, C, E
40	B, E

	Itemset	sup
L_{1}	{A}	2
	{B}	3
	{C}	3
	{E}	3

Itemset	sup
{A, B}	1
{A, C}	2
{A, E}	1
{B, C}	2
{B, E}	3
{C, E}	2

Database TDB

Tid	Items
10	A, C, D
20	В, С, Е
30	A, B, C, E
40	B, E

 Supmin
 Itemset
 sup

 {A}
 2

 {B}
 3

 {C}
 3

 {C}
 3

 {D}
 1

 {E}
 3

	Itemset	sup
L_{1}	{A}	2
	{B}	3
	{C}	3
	{E}	3

 C2
 Itemset
 sup

 {A, B}
 1

 {A, C}
 2

 {A, E}
 1

 {B, C}
 2

 {B, E}
 3

 {C, E}
 2

 $2^{\text{nd}} \operatorname{scan}$

Tid	Items
10	A, C, D
20	В, С, Е
30	A, B, C, E
40	B, E

 $Sup_{min} = 2$

Itemset	sup
{A}	2
{B}	3
{C}	3
{D}	1
{E}	3

	Itemset	sup
L_{1}	{A}	2
	{B}	3
	{C}	3
	{E}	3

			_
L_2	Itemset	sup	
	{A, C}	2	
	{B, C}	2	
	{B, E}	3	
	{C, E}	2	

sup	
2	
2	•
3	
2	

. [Itemset	sup
	{A, B}	1
I	{A, C}	2
	{A, E}	1
I	{B, C}	2
	{B, E}	3
	{C, E}	2
	·	•

Itemset
{A, B}
{A, C}
{A, E}
{B, C}
{B, E}
{C, E}

Tid	Items
10	A, C, D
20	B, C, E
30	A, B, C, E
40	B, E

 $Sup_{min} = 2$

1st scan

Itemset	sup
{A}	2
{B}	3
{C}	3
{D}	1
{E}	3

sup

2

	Itemset	sup
L_1	{A}	2
	{B}	3
	{C}	3
	{E}	3

L_2	Itemset	sup
_	{A, C}	2
	{B, C}	2
	{B, E}	3
	{C, E}	2

 $\frac{C_2}{2^{\text{nd}} \text{ scan}}$

Itemset
{A, B}
{A, C}
{A, E}
{B, C}
{B, E}
{C, E}

 3^{rd} scan L_3

Itemset	sup
{B, C, E}	2

The Apriori Algorithm (Pseudo-Code)

```
C<sub>k</sub>: Candidate itemset of size k
L_k: frequent itemset of size k
L_1 = \{ frequent items \};
for (k = 1; L_k! = \emptyset; k++) do begin
   C_{k+1} = candidates generated from L_{k};
   for each transaction t in database do
     increment the count of all candidates in C_{k+1} that
      are contained in t
   L_{k+1} = candidates in C_{k+1} with min_support
   end
return \bigcup_k L_k;
```

Implementation of Apriori

- How to generate candidates?
 - Step 1: self-joining L_k
 - Step 2: pruning
- Example of Candidate-generation
 - $L_3=\{abc, abd, acd, ace, bcd\}$
 - Self-joining: L₃*L₃
 - abcd from abc and abd
 - acde from acd and ace
 - Pruning:
 - acde is removed because ade is not in L₃
 - $C_4 = \{abcd\}$

How to Count Supports of Candidates?

- Why counting supports of candidates a problem?
 - The total number of candidates can be very huge
 - One transaction may contain many candidates
- Method:
 - Candidate itemsets are stored in a hash-tree
 - Leaf node of hash-tree contains a list of itemsets and counts
 - Interior node contains a hash table
 - Subset function: finds all the candidates contained in a transaction

Counting Supports of Candidates Using Hash Tree

Candidate Generation: An SQL Implementation

- SQL Implementation of candidate generation
 - Suppose the items in L_{k-1} are listed in an order
 - Step 1: self-joining L_{k-1} insert into C_k select p.item₁, p.item₂, ..., p.item_{k-1}, q.item_{k-1} from L_{k-1} p, L_{k-1} q where p.item₁=q.item₁, ..., p.item_{k-2}=q.item_{k-2}, p.item_{k-1} < q.item_{k-1}
 - Step 2: pruning forall *itemsets c in C_k* do forall *(k-1)-subsets s of c* do if (s is not in L_{k-1}) then delete c from C_k
- Use object-relational extensions like UDFs, BLOBs, and Table functions for efficient implementation [See: S. Sarawagi, S. Thomas, and R. Agrawal. Integrating association rule mining with relational database systems: Alternatives and implications. SIGMOD'98]

Tid	Items
10	A, C, D
20	В, С, Е
30	A, B, C, E
40	B, E

 $Sup_{min} = 2$ C_{I} $1^{st} scan$

Itemset	sup
{A}	2
{B}	3
{C}	3
{D}	1
{E}	3

	Itemset	sup
L_1	{A}	2
	{B}	3
	{C}	3
	{E}	3

			_
L_2	Itemset	sup	
_	{A, C}	2	
	{B, C}	2	•
	{B, E}	3	
	{C, E}	2	

 C2
 Itemset
 sup

 {A, B}
 1

 {A, C}
 2

 {A, E}
 1

 {B, C}
 2

 {B, E}
 3

 {C, E}
 2

 $\frac{C_2}{2^{\text{nd}} \text{ scan}}$

Itemset
{A, B}
{A, C}
{A, E}
{B, C}
{B, E}
{C, E}

 3^{rd} scan L_3

Itemset	sup
{B, C, E}	2

2019 - Exam Question

Here is the sample transaction data records of famous grocery store, TTP (<u>Taja Tarkari Pasal</u> on a particular morning of a day. Considering minimum support 40% and minimum confidence of 50%, answer the followings:

Aaloo	
Bandaa	
Chamsur	
Dhaniya	
Ghiraunla	
Kaauli	
Mula	
Paalungo	
RaayoSaag	
Tamaatar	

T1	K, A, T, D
T2	A,B,D
T3	C, P, M
T4	A,G,K,T
T5	R,M,A,B
T6	A,B,C,D,P
T7	K,M,A,D,T
T8	R,C,P,D
T9	B,R.D.K,T
T10	T,K,M,A

- (a) Using Apriori algorithm, identify the list of frequent items. (You need to show all the steps of calculations.)
- (b) Find out all strong association rules of TTP transaction (i.e. $X \land Y \rightarrow Z$).

L_1

 C_2

L_2

L 3

C_1					
Α	7	K	5		
В	4	M	4		
С	3	Р	3		
D	6	R	3		
G	1	Т	5		

Here is the sample transaction data records of famous grocery store, TTP (<u>Taja Tarkari Pasal</u>) on a particular morning of a day. Considering minimum support 40% and minimum confidence of 50%, answer the followings:

Α	Aaloo	
В	Bandaa	
С	Chamsur	
D	Dhaniya	
G	Ghiraunla	
K	Kaauli	
M	Mula	
Р	Paalungo	
R	RaayoSaag	
Т	Tamaatar	

T1	K, A, T, D
T2	A,B,D
T3	C, P, M
T4	A,G,K,T
T5	R,M,A,B
T6	A,B,C,D,P
T7	K,M,A,D,T
T8	R,C,P,D
T9	B,R.D.K,T
T10	T,K,M,A

- (a) Using Apriori algorithm, identify the list of frequent items. (You need to show all the steps of calculations.)
- (b) Find out all strong association rules of TTP transaction (i.e. $X \land Y \rightarrow Z$).

L 1

 C_2

L_2

L 3

Α	7	K	5
В	4	M	4
С	3	Р	3
D	6	R	3
G	1	Т	5

Α	7
В	4
D	6
K	5
M	4
Т	5

Here is the sample transaction data records of famous grocery store, TTP (Taja Tarkari Pasal) on a particular morning of a day. Considering minimum support 40% and minimum confidence of 50%, answer the followings:

Α	Aaloo	
В	Bandaa	
С	Chamsur	
D	Dhaniya	
G	Ghiraunla	
K	Kaauli	
M	Mula	
Р	Paalungo	
R	RaayoSaag	
Т	Tamaatar	

3

G

T1	K, A, T, D
T2	A,B,D
T3	C, P, M
T4	A,G,K,T
T5	R,M,A,B
T6	A,B,C,D,P
T7	K,M,A,D,T
T8	R,C,P,D
T9	B,R.D.K,T
T10	T,K,M,A

T1	K, A, T, D
T2	A,B,D
T3	C, P, M
T4	A,G,K,T
T5	R,M,A,B
T6	A,B,C,D,P
T7	K,M,A,D,T
T8	R,C,P,D
T9	B,R.D.K,T
T10	T,K,M,A

T1	K, A, T, D
T2	A,B,D
T3	C, P, M
T4	A,G,K,T
T5	R,M,A,B
T6	A,B,C,D,P
T7	K,M,A,D,T
T8	R,C,P,D
T9	B,R.D.K,T
T10	T,K,M,A

K

M

Р

Т

5

4

3

3

5

L	L
Α	7
В	4
D	6
K	5
M	4
Т	5

(b) Find out all strong association rules of TTP transaction (i.e. $X \wedge Y \rightarrow Z$).

C_2

Α	Aaloo	
В	Bandaa	
С	Chamsur	
D	Dhaniya	
G	Ghiraunla	
K	Kaauli	
М	Mula	
P	Paalungo	
R	RaayoSaag	
Т	Tamaatar	

T1	K, A, T, D
T2	A,B,D
T3	C, P, M
T4	A,G,K,T
T5	R,M,A,B
T6	A,B,C,D,P
T7	K,M,A,D,T
T8	R,C,P,D
T9	B,R.D.K,T
T10	T,K,M,A

- (a) Using Apriori algorithm, identify the list of frequent items. (You need to show all the steps of calculations.)
 (b) Find out all strong association rules of TTP transaction
- (b) Find out all strong association rules of TTP transaction (i.e. $X \land Y \rightarrow Z$).

Α	7	K	5
В	4	M	4
С	3	Р	3
D	6	R	3
G	1	Т	5

_		
	Α	Aaloo
	В	Bandaa
	С	Chamsur
	D	Dhaniya
	G	Ghiraunla
	K	Kaauli
	М	Mula
	Р	Paalungo
	R	RaayoSaag
	Т	Tamaatar

T1	K, A, T, D
T2	A,B,D
T3	C, P, M
T4	A,G,K,T
T5	R,M,A,B
T6	A,B,C,D,P
T7	K,M,A,D,T
T8	R,C,P,D
T9	B,R.D.K,T
T10	T,K,M,A

- (a) Using Apriori algorithm, identify the list of frequent items. (You need to show all the steps of calculations.)
- (b) Find out all strong association rules of TTP transaction (i.e. $X \land Y \rightarrow Z$).

Α	Aaloo
В	Bandaa
С	Chamsur
D	Dhaniya
G	Ghiraunla
K	Kaauli
М	Mula
Р	Paalungo
R	RaayoSaag
Т	Tamaatar

T1	K, A, T, D
T2	A,B,D
T3	C, P, M
T4	A,G,K,T
T5	R,M,A,B
T6	A,B,C,D,P
T7	K,M,A,D,T
T8	R,C,P,D
T9	B,R.D.K,T
T10	T,K,M,A

- (a) Using Apriori algorithm, identify the list of frequent items. (You need to show all the steps of calculations.)
- (b) Find out all strong association rules of TTP transaction (i.e. $X \land Y \rightarrow Z$).

$$A^K \rightarrow T : s(A^K^T) ; s(A^K^T) / s(A^K)$$

$$S (A^K^T) = 4$$

 $S (A^K) = 4$

_	
Α	Aaloo
В	Bandaa
С	Chamsur
D	Dhaniya
G	Ghiraunla
K	Kaauli
M	Mula
Р	Paalungo
R	RaayoSaag
Т	Tamaatar

T1	K, A, T, D
T2	A,B,D
T3	C, P, M
T4	A,G,K,T
T5	R,M,A,B
T6	A,B,C,D,P
T7	K,M,A,D,T
T8	R,C,P,D
T9	B,R.D.K,T
T10	T,K,M,A

- (a) Using Apriori algorithm, identify the list of frequent items. (You need to show all the steps of calculations.)
- (b) Find out all strong association rules of TTP transaction (i.e. $X \land Y \rightarrow Z$).

$$A^K \rightarrow T$$
 (s, c) = (0.4, 1)
 $A^T \rightarrow K$ (s, c) = (0.4, 1)
 $K^T \rightarrow A$ (s, c) = (0.4, 0.8)

Α	Aaloo
В	Bandaa
С	Chamsur
D	Dhaniya
G	Ghiraunla
K	Kaauli
M	Mula
Р	Paalungo
R	RaayoSaag
Т	Tamaatar

T1	K, A, T, D
T2	A,B,D
T3	C, P, M
T4	A,G,K,T
T5	R,M,A,B
T6	A,B,C,D,P
T7	K,M,A,D,T
T8	R,C,P,D
T9	B,R.D.K,T
T10	T,K,M,A

- (a) Using Apriori algorithm, identify the list of frequent items. (You need to show all the steps of calculations.)
- (b) Find out all strong association rules of TTP transaction (i.e. $X \land Y \rightarrow Z$).

$$A^K \rightarrow T$$
 (s, c) = (0.4, 1)
 $A^T \rightarrow K$ (s, c) = (0.4, 1)
 $K^T \rightarrow A$ (s, c) = (0.4, 0.8)

$$A^K \rightarrow T$$

 $S = p(A^K^T) = 4/10 = 0.4$
 $C = p(A^K^T) / p(A^K) = 0.4/0.4 = 1$

Here is the sample transaction data records of famous grocery store, TTP (<u>Taja Tarkari Pasal</u>) on a particular morning of a day. Considering minimum support 40% and minimum confidence of 50%, answer the followings:

Α	Aaloo
В	Bandaa
С	Chamsur
D	Dhaniya
G	Ghiraunla
K	Kaauli
M	Mula
Р	Paalungo
R	RaayoSaag
Т	Tamaatar

T1	K, A, T, D
T2	A,B,D
T3	C, P, M
T4	A,G,K,T
T5	R,M,A,B
T6	A,B,C,D,P
T7	K,M,A,D,T
T8	R,C,P,D
T9	B,R.D.K,T
T10	T,K,M,A

- (a) Using Apriori algorithm, identify the list of frequent items. (You need to show all the steps of calculations.)
- (b) Find out all strong association rules of TTP transaction (i.e. $X \land Y \rightarrow Z$).

c) If the support threshold is decreased to 30% and confidence threshold is decreased to 40%, will there be any association rules to be added?

Scalable Frequent Itemset Mining Methods

- Apriori: A Candidate Generation-and-Test Approach
- Improving the Efficiency of Apriori

FPGrowth: A Frequent Pattern-Growth Approach

Further Improvement of the Apriori Method

- Major computational challenges
 - Multiple scans of transaction database
 - Huge number of candidates
 - Tedious workload of support counting for candidates
- Improving Apriori: general ideas
 - Reduce passes of transaction database scans
 - Shrink number of candidates
 - Facilitate support counting of candidates

Partition: Scan Database Only Twice

- Any itemset that is potentially frequent in DB must be frequent in at least one of the partitions of DB
 - Scan 1: partition database and find local frequent patterns
 - Scan 2: consolidate global frequent patterns
- A. Savasere, E. Omiecinski and S. Navathe, VLDB'95

DHP: Reduce the Number of Candidates

- A k-itemset whose corresponding hashing bucket count is below the threshold cannot be frequent
 - Candidates: a, b, c, d, e
 - Hash entries
 - {ab, ad, ae}
 - {bd, be, de}
 - Frequent 1-itemset: a, b, d, e

count	itemsets
35	{ab, ad, ae}
88	{bd, be, de}
102	{yz, qs, wt}

Hash Table

- ab is not a candidate 2-itemset if the sum of count of {ab, ad, ae} is below support threshold
- J. Park, M. Chen, and P. Yu. An effective hash-based algorithm for mining association rules. SIGMOD'95

Sampling for Frequent Patterns

- Select a sample of original database, mine frequent patterns within sample using Apriori
- Scan database once to verify frequent itemsets found in sample, only borders of closure of frequent patterns are checked : Ex.: check abcd instead of ab, ac, ..., etc.
- Scan database again to find missed frequent patterns
- H. Toivonen. Sampling large databases for association rules. In VLDB'96

DIC: Reduce Number of Scans

DIC

S. Brin R. Motwani, J. Ullman, and S. Tsur. Dynamic itemset counting and implication rules for market basket data. *SIGMOD'97*

- Once both A & D are determined frequent, counting of AD begins
- Once all length-2 subsets of BCD are determined frequent, the counting of BCD begins

Pattern-Growth Approach: Mining Frequent Patterns Without Candidate Generation

- Bottlenecks of the Apriori approach
 - Breadth-first (i.e., level-wise) search
 - Candidate generation and test
 - Often generates a huge number of candidates
- The FPGrowth Approach (J. Han, J. Pei, and Y. Yin, SIGMOD' 00)
 - Depth-first search
 - Avoid explicit candidate generation
- Major philosophy: Grow long patterns from short ones using local frequent items only
 - "abc" is a frequent pattern
 - Get all transactions having "abc", i.e., project DB on abc: DB|abc
 - "d" is a local frequent item in DB|abc → abcd is a frequent pattern

Construct FP-tree from a Transaction Database

TID	Items bought	(ord
100	$\{f, a, c, d, g, i, m\}$	$\{p,p\}$
200	$\{a, b, c, f, l, m, a\}$	
300	$\{b, f, h, j, o, w\}$	
400	$\{b, c, k, s, p\}$	
500	$\{a, f, c, e, l, p, m\}$	$\{n,n\}$

- 1. Scan DB once, find frequent 1-itemset (single item pattern)
- 2. Sort frequent items in frequency descending order, f-list
- 3. Scan DB again, construct FP-tree

Partition Patterns and Databases

- Frequent patterns can be partitioned into subsets according to f-list
 - F-list = f-c-a-b-m-p
 - Patterns containing p
 - Patterns having m but no p
 - **...**
 - Patterns having c but no a nor b, m, p
 - Pattern f
- Completeness and non-redundency

Find Patterns Having P From P-conditional Database

- Starting at the frequent item header table in the FP-tree
- Traverse the FP-tree by following the link of each frequent item p
- Accumulate all of transformed prefix paths of item p to form p's conditional pattern base

Conditional pattern bases

<u>item</u>	cond. pattern base
\boldsymbol{c}	<i>f</i> :3
a	fc:3
\boldsymbol{b}	fca:1, f:1, c:1
m	fca:2, fcab:1
p	fcam:2, cb:1

From Conditional Pattern-bases to Conditional FP-trees

- For each pattern-base
 - Accumulate the count for each item in the base
 - Construct the FP-tree for frequent items of the pattern base

Benefits of the FP-tree Structure

Completeness

- Preserve complete information for frequent pattern mining
- Never break a long pattern of any transaction
- Compactness
 - Reduce irrelevant info—infrequent items are gone
 - Items in frequency descending order: the more frequently occurring, the more likely to be shared
 - Never be larger than the original database (not count node-links and the count field)

The Frequent Pattern Growth Mining Method

- Idea: Frequent pattern growth
 - Recursively grow frequent patterns by pattern and database partition
- Method
 - For each frequent item, construct its conditional pattern-base, and then its conditional FP-tree
 - Repeat the process on each newly created conditional FP-tree
 - Until the resulting FP-tree is empty, or it contains only one path—single path will generate all the combinations of its sub-paths, each of which is a frequent pattern

Scaling FP-growth by Database Projection

- What about if FP-tree cannot fit in memory?
 - DB projection
- First partition a database into a set of projected DBs
- Then construct and mine FP-tree for each projected DB
- Parallel projection vs. partition projection techniques
 - Parallel projection
 - Project the DB in parallel for each frequent item
 - Parallel projection is space costly
 - All the partitions can be processed in parallel
 - Partition projection
 - Partition the DB based on the ordered frequent items
 - Passing unprocessed parts to subsequent partitions

Partition-Based Projection

Advantages of the Pattern Growth Approach

- Divide-and-conquer:
 - Decompose both the mining task and DB according to the frequent patterns obtained so far
 - Lead to focused search of smaller databases
- Other factors
 - No candidate generation, no candidate test
 - Compressed database: FP-tree structure
 - No repeated scan of entire database
 - Basic ops: counting local freq items and building sub FP-tree, no pattern search and matching
- A good open-source implementation and refinement of FPGrowth
 - FPGrowth+ (Grahne and J. Zhu, FIMI'03)

Further Improvements of Mining Methods

- AFOPT (Liu, et al. @ KDD'03)
 - A "push-right" method for mining condensed frequent pattern (CFP) tree
- Carpenter (Pan, et al. @ KDD'03)
 - Mine data sets with small rows but numerous columns
 - Construct a row-enumeration tree for efficient mining
- FPgrowth+ (Grahne and Zhu, FIMI'03)
 - Efficiently Using Prefix-Trees in Mining Frequent Itemsets, Proc. ICDM'03 Int. Workshop on Frequent Itemset Mining Implementations (FIMI'03), Melbourne, FL, Nov. 2003
- TD-Close (Liu, et al, SDM'06)

Extension of Pattern Growth Mining Methodology

- Mining closed frequent itemsets and max-patterns
 - CLOSET (DMKD'00), FPclose, and FPMax (Grahne & Zhu, Fimi'03)
- Mining sequential patterns
 - PrefixSpan (ICDE'01), CloSpan (SDM'03), BIDE (ICDE'04)
- Mining graph patterns
 - gSpan (ICDM'02), CloseGraph (KDD'03)
- Constraint-based mining of frequent patterns
 - Convertible constraints (ICDE'01), gPrune (PAKDD'03)
- Computing iceberg data cubes with complex measures
 - H-tree, H-cubing, and Star-cubing (SIGMOD'01, VLDB'03)
- Pattern-growth-based Clustering
 - MaPle (Pei, et al., ICDM'03)
- Pattern-Growth-Based Classification
 - Mining frequent and discriminative patterns (Cheng, et al, ICDE'07)