Factor Analysis & Structural Equation Models

CS185 Human Computer Interaction

MoodPlay Recommender (Andjelkovic et al, UMAP 2016)

Online system available here:

http://ugallery.pythonanywhere.com/

MoodPlay

Music recommendation system that enables exploration and discovery of new artists through an interactive mood space.

Structural Equation Analysis

Career recommendations — LinkedVis

Experimentation and Results

Factor Analysis

- Factor analysis is an exploratory tool
 - Helps identify simple patterns that underlie complex multivariate data
 - Not about hypothesis testing
 - Rather, it is more like data mining
 - And also helps us understand some principles of SEM

Factor Analysis

- Things you can do with factor analysis:
 - 1. Examine factor loadings
 - Use them to interpret factors that are identified in the data
 - 2. Plot factor loadings
 - Vividly describe which variables "go together" (people score high on one tend to score high on another or vice versa)
 - 3. Compute factor scores
 - Estimate how individual cases score on underlying factors
 - How depressed is each case?
 - 4. Determine variation explained by factors
 - See which factors account for the major patterns in your data
 - 5. "Rotate" the factors
 - Modify them to enhance interpretability... Will discuss later.

EFA: Civic Participation

- Factor loadings describe patterns in data
 - A powerful exploratory tool

Rotated factor loadings (pattern matrix) and unique variances

			L		
Variable	Factor1	Factor2	Factor3		Uniqueness
member volunteer petition boycott demonstrate strike occupybldg	0.8061 0.8055 0.0615 0.1504 0.1358 0.0371 -0.0030	0.0974 0.0377 0.3130 0.5724 0.5614 0.3536 0.2439	0.0139 -0.0087 -0.1456 0.0165 0.0671 0.2421 0.2501	+ 	0.3405 0.3497 0.8771 0.6494 0.6619 0.8150 0.8780

Here, we see a clearer pattern... Factors 1 & 2 are more distinct. Factor 1 = civic membership; factor 2 = protest/social mvmts, etc...

- Factor analysis is purely exploratory
 - It is data mining, not a model
 - However, it is based on the idea that factors which are unobserved – give rise to (i.e., cause) variation on observed variables

- Idea: Let's imagine that depression is a latent variable
 - i.e., a variable we can't directly measure... but gives rise to observed patterns in things we can observe
 - Note: No observed variable perfectly measures the latent variable
 - Each observable variable is a measure... but there is error
 - Observed variables aren't perfectly correlated with latent variable (even though they are "caused" by it)...

This forms the basis for a kind of model:

This model can be expressed as a set of equations:

• Hopeless = B_3 Depression + ε

Full set of Equations:

- Happy = B₁Depression + ε
- WorldGood = B₂Depression + ε
- Hopeless = B_3 Depression + ε
- Sad = B_4 Depression + ε
- Tired = B_5 Depression + ε

- Idea: We can model real data based on those presumed relationships...
 - Estimate slope coefficients for each arrow
 - How do latent variables affect observed variables?
 - Examine overall model fit
 - How much does our theoretically-informed view of the world map onto observed data?
 - If model fits well, our concept of "depression" (and measurement strategy) are likely to be good
 - "Confirmatory" implies that we aren't just "exploring"
 - Different from "exploratory factor analysis"...
 - Rather than data mining, we're testing a theoretically-informed model.

CFA: Civic Engagement

CFA: Civic Engagement

CFA: Civic Engagment

CFA: Text Output

<u>Slopes</u>			Estimate	S.E.	C.R.	Р
Volunteer	<	Civic Membership	1.000			
Member	<	Civic Membership	1.588	.211	7.517	***
Strike	<	Social Movement Participation	1.000			
Boycott	<	Social Movement Participation	3.270	.386	8.473	***
Demonstrate	<	Social Movement Participation	3.165	.376	8.406	***
OccupyBldg	<	Social Movement Participation	.596	.105	5.694	***
<u>Intercepts</u>		Estimate S	.E.	(C.R.	Р
Volunteer		1.333 .0	52	25	.639	***
Member		2.328 .0	60	38	.506	***
Strike		.058 .0	07	8	.517	***
Boycott		.248 .0	13	19	.691	***
Demonstrate		.207 .0	12	17	.552	***
OccupyBldg		.041 .0	06	7	.031	***

CFA: Model Fit

- So, did the model fit?
 - Many strategies to assess fit: Chi-square; "fit indices"
 - Ex: Chi-square test
 - Large Chi-square indicates that data deviate from model expectations
 - e.g., when used to test independence in a crosstab table...
 - If model "fits" well, chi-square will be NON-significant
 - However, this is a sensitive test... if N is large, the model almost always yields a significant Chi-square...

Result (Default model): Civic Participation

N = 1,200 Chi-square = 28.379 Degrees of freedom = 8 Probability level = .000

Low p-value indicates significant difference between model and observed data (not uncommon for large N model)

Model Fit: NFI

- Another way to assess fit: NFI
 - Also called the Bentler-Bonett index

$$NFI = \frac{\chi^2 null - \chi^2 full}{\chi^2 null}$$
 image cannot currently be displayed.

- Where X² null is chi-square of null model (independence)
- X² full is chi-square of model of interest
- NFI ranges from 0 to 1
- NFI > .9 = OK, NFI > .95 is good.

Model Fit: CFI

Comparative Fit Index: CFI

$$CFI = \frac{(\chi^2 null - df) - (\chi^2 full - df)}{(\chi^2 null - df)}$$

$$(\chi^2 null - df)$$

$$(\chi^2 null - df)$$

- CFI ranges from 0 to 1
- CFI > .9 = OK, CFI > .95 is good.

Model Fit: RMSEA

Root Mean Square Error of Approximation

$$RMSEA = \sqrt{\frac{(\chi^2/df) - 1}{\frac{1}{df} - 1}}$$

- RMSEA of 0 = perfect fit
- RMSEA < .05 = good fit
- RMSEA > .1 = poor fit.

CFA: Civic Engagement

Model Fit Summary:

Results greatly edited... many fit indices reported...

Model	RMSEA	↑ F∏s i	mage (a F n ⊺ t cur	rently be displayed.
Default model	.046	.979	.985	Fit indices look pretty good.
Saturated model		1.000	1.000	Not perfect, but
Independence model	.231	.000	.000	OK.

Why Use CFA

- 1. If CFA model fits well, it strongly supports theory underlying the model
 - Poor fitting CFA implies that the latent variables are not empirically present
 - Or don't relate to observed variables in the way we specified
- 2. CFA can be used to compare models
 - Are "petitions" part of "civic membership" or "social movements"? Or both?
 - We can use CFA to assess fit of various models
 - And settle debates about how measures relate to latent variables.

Why Use CFA

- 3. CFA can be used to test applicability of models to different groups
 - Does model for US apply to other countries? Or just to those similar to US (e.g., canada)?
 - Men vs. women... Are patterns of civic life the same?

SEM

- Next step: Structural Equation Models (SEM) with Latent Variables
 - Once we've identified latent variables, it makes sense to analyze them!
 - We can develop models in which we estimate slopes relating latent variables...
 - This is particularly useful when we are interested in latent concepts that are difficult to measure with any single variable.

SEM: Civic Engagement

Note that both latent and observed variables can be used to predict outcomes

Also, under some conditions you can estimate non-recursive models (paths in both directions)

SEM: Divorce & Well-being

- Example 2: Amato, Paul R and Julia M. Sobelowski. 2001. The Effects of Divorce and Marital Discord on Adult Children's Psychological Wellbeing. American Sociological Review, 66,6:900-921.
 - What is effect of divorce on (adult) children's well-being
 - Answer: Divorce mainly has effects by harming parent/child relationship.

SEM: Divorce & Well-being

Figure 3. Unstandardized Coefficients from the Structural Equation Model Showing Links between Marital Discord, Divorce, and Parent-Child Relations at Time 1 and Time 2, and Offspring's Psychological Well-Being

Note: Numbers in parentheses are b coefficients for mothers. For fathers, $\chi^2 = 39.8$, d.f. = 34, GFI = .97, CFI = .98, and RMSEA = .03. For mothers, $\chi^2 = 62.2$, d.f. = 34, GFI = .98, CFI = .95, RMSEA = .05.

*p < .05 **p < .01 (two-tailed tests)

- 1. Very useful when you are concerned about measurement error
 - Use of multiple measures for each latent variable can yield robust analyses, despite weakness of each measure
- 2. Similar to path models (discussed in lab), but allows latent variables
 - You can model the relationship between many latent & observed variables at the same time

- 3. Additional information afforded by multiple measures can permit solution of "nonrecursive" models
 - i.e., models where two variables have a reciprocal relationship
 - Ex: Self-Esteem ← → School Achievement
 - If models are well specified, SEM may help tease out complex issues of causality.

- 3. (cont'd) Non-recursive models...
 - Issue: Identification
 - A big topic can't be covered sufficiently today
 - Obviously, we can't estimate every causal path between vars...
 - Even if we imagine the theoretical possibility of a relationship
 - "Identification" refers to a model that is solveable
 - Models with too many paths = not identified
 - You must simplify the model to allow a solution.

- 4. A powerful tool for formalizing complex theoretical relationships
 - And testing those theories
 - Indeed, many refer to SEM as "causal modeling"
 - The theorist specifies causal paths based on theory, tests those paths...

Problems with SEM

- 1. Model specification issues are even more complex than regression models
 - You are often dealing with MANY paths
 - If any part of the model is mis-specified, it will affect other parts of the model
 - Results are often unstable...
 - Adding a path between two variables can change results a LOT
 - It is easy to produce any desired result by tweaking paths...
- Perhaps not a panacea for determining causality after all...

Problems with SEM

- 2. SEM hasn't been adapted to address many limitations of linear models
 - Generally can't do non-linear models (ex: Poisson)
 - Though software keeps improving. Newest version of AMOS can handle ordered categorical data
 - Not designed to easily handle grouped data
 - E.g., Multi-level models
- 3. Still requires specialized software
 - LISREL, AMOS, EQS
 - Cumbersome not user friendly.