Teorema de Slice para o Espaço de Métricas Riemannianas

Guilherme Cerqueira Gonçalves-IME-USP

Junho 2022

Motivação

- O Teorema de Slice é clássico para Grupos de Lie de dimensão finita e permite estudar estrutura local das folhas da ação.
- Demonstração original desta versão do Teorema (Ebin 1970) é mais analítica envolvendo Espaços de Sobolev. O Survey (D. Corro, J.-B. Kordass 2021) propõe uma demonstração mais próxima da feita em dimensão finita.

Considerações Inciais

- M será uma variedade compacta (orientável) de dimensão finita.
- G um Grupo Topológico Hausdorff (Grupo de Lie de dimensão finita).
- (X,d) Espaço Métrico com d, distância G-invariante, e G age propriamente em X. Então, para cada $p \in X$ existe $\widetilde{\mu}_p: G/G_p \to G(p)$, homeomorfismo G-equivariante.
- $\mathcal{R}(M) \subset \Gamma(S^2T^*M)$ e $T_g\mathcal{R}(M) \cong \Gamma(S^2T^*M)$.
- Diff(M), tal que $\mu(\varphi,g)=(\varphi^{-1})^*g$. $Diff(M)_g\cong Isom(g)$.
- $LIE(Diff(M)) = \mathfrak{X}(M)$. $X \in \mathfrak{X}(M)$, $exp(X) = \Phi^X(1)$.

Teorema de Slice

Teorema 1 (Teorema de Slice)

Dada uma métrica Riemanniana $g \in \mathcal{R}(M)$, existe uma subvariedade $S_g \subset \mathcal{R}(M)$ contendo g tal que:

- (i) Para todo $\varphi \in \mathsf{Diff}(M)_{\mathsf{g}}$, temos que $\varphi \cdot \mathsf{S}_{\mathsf{g}} \subset \mathsf{S}_{\mathsf{g}}$.
- (ii) Se $\varphi \in \text{Diff}(M)$ é um difeo tal que $\varphi \cdot S_g \cap S_g \neq \emptyset$, então $\varphi \in \text{Diff}(M)_g$.
- (iii) Existe uma vizinhança aberta U da identidade na classe lateral $\mathrm{Diff}(M)/\mathrm{Diff}(M)_g$, e uma seção $\chi:U\to\mathrm{Diff}(M)$, tal que a função $F:U\times S_g\to \mathcal{R}(M)$ dado por

$$F(u,s)=\chi(u)\cdot s,$$

é um homeomorfismo com uma vizinhança aberta de $g \in \mathcal{R}(M)$.

Teorema 2 (Teorema B)

Dada uma métrica Riemanniana g seja S_g o Slice passando por g. Então, uma vizinhança fechada da órbita $\mathrm{Diff}(M)(g) \subset \mathcal{R}(M)$ é homeomorfa a

$$\mathsf{Diff}(M) \times_{\mathsf{Isom}(g)} \mathcal{S}_g$$

Esse teorema nos permite descrever vizinhanças da órbita, que podem ser pensadas como uma vizinhança tubular topológica equivariante.

Espaço de Moduli de Métricas

Teorema 3 (Ebin 1970)

Se dim(M) > 1, o subespaço $\mathcal{R}_{triv}(M) \subset \mathcal{R}(M)$ é aberto denso.

Ideia da Prova que é Aberto.

- Aceitando que a existência de $g \in \mathcal{R}_{triv}(M)$ temos vizinhança aberta U_g para cada g e vizinhança aberta da identidade $W_{Id} \subset Diff(M)$.
- Por (iii) do Slice, existe $\varphi \in W_{Id}$ tal que para $g' \in U_g$ e $s \in S_g$ temos $s = \varphi \cdot g'$.
- Então para $\varphi' \in Isom(g')$ temos $(\varphi \circ \varphi' \circ \varphi^{-1})(s) = s$, pela propriedade (ii) do Slice temos $(\varphi \circ \varphi' \circ \varphi^{-1}) \in Isom(g)$. Como φ' é arbitrário:

$$\varphi \operatorname{Isom}(g')\varphi^{-1} \subset \operatorname{Isom}(g)$$

Espaço de Moduli de Métricas

Teorema 3 (Ebin 1970)

Se dim(M) > 1, o subespaço $\mathcal{R}_{triv}(M) \subset \mathcal{R}(M)$ é aberto denso.

Corolario 4

 $\pi(\mathcal{R}_{triv}(M))$ é aberto denso de $\mathcal{M}_d(M)$ e admite estrutura de Fréchet e Riemanniana.

Espaco de Fréchet

Definição 5

Espaço de Fréchet F é Espaço Vetorial Topológico que satisfaz:

- (a) (localmente convexo): $(F, ||\cdot||_{\alpha \in \Lambda})$, $f_k \to f \iff ||f_k - f||_{\alpha} = 0, \forall \alpha \in \Lambda.$
- (b) (Hausdorff): $||f||_{\alpha} = 0, \forall \alpha \in \Lambda \implies f = 0.$
- (c) (Metrizável): Hausdorff $+(|\Lambda| \leq |\mathbb{N}|) \implies Metrizável$. $d(f,g) = \sum_{k=0}^{\infty} 2^{-k} \frac{\|f-g\|_k}{1 + \|f-g\|_k} \quad f,g \in F$
- (d) Completo.
 - Exemplos: $C^{\infty}(M)$, $\Gamma(E)$. (Topologia C^{∞} , lembre-se M é compacto.)

Métrica Riemanniana σ em $\mathcal{R}(M)$

• $S, T \in T_g \mathcal{R}(M) \cong \Gamma(S^2 T^* M)$,

$$\sigma_g(S,T) := \int_M tr_g(S,T) dvol(g) = \int_M g^{ij} S_{il} g^{lm} T_{jm} dvol(g)$$

Obs: Estrutura Riemanniana Fraca, pois $\Gamma(S^2T^*M)$ não é completo.

- É Diff (M) invariante.
- Existe exp Riemanniana de σ . exp^{σ} : $T\mathcal{R}(M) \to \mathcal{R}(M)$ existe em toda direção.
- Existe vizinhança normal para cada $g \in \mathcal{R}(M)$.

Decomposição Ortogonal

- Lembre-se que: $(\mu^g)_* : \mathfrak{X}(M) \to T_g \mathcal{R}(M) \cong \Gamma(S^2 T^* M)$ é tal que $X \mapsto \mathcal{L}_{-X}(g)$.
- Temos que: $\sigma_g(\mathcal{L}_X(g),S)=2g(X^{\flat},div_g(S))$
- ullet Prova-se que $T_g\mathcal{R}(M)\cong T_g(\mathit{Diff}(M)(g))\oplus \mathit{Ker}(\mathit{div}_g)$
- É possível provar que $Diff(M) \curvearrowright \mathcal{R}(M)$ é própria.

\exp^{σ} é Diff(M)—equivariante

$$\sigma(\nabla_X Y, Z) = X\sigma(Y, Z) + Y\sigma(Z, X) - Z\sigma(X, Y) - \sigma(X, [Y, Z]) - \sigma(Y, [X, Z]) + \sigma(Z, [X, Y])$$

- Define-se Conexão de Levi-Civita em $\mathcal{R}(M)$. $(\nabla_X Y)$ poderia não existir pois $T_g \mathcal{R}(M)$ não é completo.)
- ullet Por conta de exp^{σ} a conexão existe, então pela fórmula ela é única.
- Como σ é Diff(M) − inv e a conexão é única, então ∇ é
 Diff(M) − inv.
- Então Diff (M) leva geodésica em geodésica.
- Então, exp^{σ} é Diff(M) equi. (Também Isom(g) equi.)

Construção do Slice

- Seja $B \subset T\mathcal{R}(M)$ aberto tal que exp^{σ} é difeomorfismo com vizinhança da diagonal em $\mathcal{R}(M) \times \mathcal{R}(M)$.
- Seja $B_g := B \cap T_g \mathcal{R}(M)$ aberto das coordenadas normais.
- $B_g^{\perp} := B_g \cap \nu_g(Diff(M)(g)).$
- $V_{g,\delta} \subset B_g^{\perp}$ vetores de norma menor que δ ortogonais ao espaço tangente da órbita no ponto g.
- $exp_g^{\sigma}(V_{g,\delta})$ é o nosso desejado Slice $S_g:=exp_g^{\sigma}(V_g)$.

Ideia da Prova de (i)

- Como exp^{σ} é Isom(g) inv, se γ é geodésica ortogonal à órbita, então $\varphi \cdot \gamma$ é geodésica ortogonal à órbita.
- ullet Como arphi fixa g então ambas as geodésicas começam no ponto g.
- A distância é preservada.
- ullet Como $V_{g,\delta}$ tem todas as direções ortogonais e com módulo menor que delta.

Ideia da Prova de (ii)

- Tome $h, \widetilde{h} \in S_g$, t.q. $\varphi \cdot h = \widetilde{h}, \varphi \cdot g \neq g$.
- Note que: $d(g, \varphi \cdot g) < 2\delta$.
- Para δ pequeno, $\varphi \cdot g \in exp_g^{\sigma}(B_g)$.
- Lema(Corro, Kordass): Existe vizinhança da seção nula $\widetilde{B}^{\perp} \subset \nu \mathcal{R}(M)$ tal que $\exp^{\sigma}|_{(Diff(M)(g),\widetilde{B}^{\perp})}$ é injetora com codomínio $\mathcal{R}(M)$. (para \widetilde{B} possivelmente menor que que B).

Ideia da Prova de (iii) e Teorema B

- A prova de ambos os teoremas é igual ao caso de dimensão finita (portanto usa necessariamente que a ação é própria).
- $Diff(M) \rightarrow Diff(M)/Diff(M)_g$ é um $Diff(M)_g$ -Fibrado Principal (Lembre-se que $Diff(M)_g \cong Isom(g)$ que é Grupo de Lie de dim. fin.)
- $Diff(M)/Diff(M)_g$ é homeomorfo a órbita Diff(M)(g).

Bibliografia Principal

- Corro, D.; Kordass, J.-B., Short Survey on The Existance of Slices for The Space of Riemannian Metrics, Arxiv, https://arxiv.org/abs/1904.07031 (2019)
 - M. M. Alexandrino, R. G. Bettiol, *Lie groups and geometric aspects of isometric actions*, Springer Verlag (2015)