RCaN

Supplementary Material

Hilaire Drouineau¹, Benjamin Planque², and Christian Mullon³

¹INRAE, Bordeaux, France ²HI, Tromsoe, Norway ³IRD, MARBEC, Sete, France

March 25, 2021

1 Introduction

- 1. Goals: an example of a RCaN study.
- 2. The case study: the Barents sea (main text).
- 3. The RCaN file has been previously built. It is joined.
- 4. All following commands in joined R script.
- 5. A first run with all main steps.
- 6. A second run after removing some constraints
- 7. Comparisons between both runs and interpretation

2 Preliminary: R Environment

A few libraries are to be loaded.

- > library(RCaN) #the main package
- > library(ggplot2) #to draw results
- > library(coda) #to explore mcmc
- > library(dplyr) #to manipulate data frame
- > library(xtable) #to create latex tables
- > library(xlsx) # to import excel files

3 The RCaN file

Parameters, observations and constraints have been gathered in an Excel file with a specific structure.

- > NAMEFILE <- '/Users/christianmullon/Desktop/Ocean/BarentsSeaReconstructions_01_02_21.xlsx
- > # NAMEFILE <- '/Users/christianmullon/Desktop/Ocean/CaN_template_mini.xlsx'

3.1 Components

	Component	Inside	AssimilationE	Digestibility	OtherLosses
1	PP	0.00	0.00	0.65	0.00
2	Hzoo	1.00	1.00	0.90	8.40
3	Ozoo	1.00	1.00	0.90	5.50
4	Benthos	1.00	0.94	0.60	1.50
5	PelF	1.00	0.90	0.90	2.85
6	DemF	1.00	0.93	0.85	1.65
7	MM	1.00	1.00	0.00	5.50
8	Birds	1.00	0.84	0.00	60.00
9	Fisheries	0.00	0.00	0.00	0.00
10	NorSeaZoo	0.00	0.00	0.00	0.00

Table 1: Components

- 3.2 Fluxes
- 3.3 Observations
- 3.4 Constraints

	Flux	From	То	Trophic
1	PP_Hzoo	PP	Hzoo	1.00
2	PP_Ozoo	PP	Ozoo	1.00
3	PP_Benthos	PP	Benthos	1.00
4	Hzoo_Ozoo	Hzoo	Ozoo	1.00
5	Hzoo_PelF	Hzoo	PelF	1.00
6	Ozoo_Ozoo	Ozoo	Ozoo	1.00
7	Ozoo_PelF	Ozoo	PelF	1.00
8	$Ozoo_DemF$	Ozoo	DemF	1.00
9	$Ozoo_MM$	Ozoo	MM	1.00
10	Ozoo_Birds	Ozoo	Birds	1.00
11	$Benthos_Benthos$	Benthos	Benthos	1.00
12	Benthos_DemF	Benthos	DemF	1.00
13	PelF_PelF	PelF	PelF	1.00
14	PelF_DemF	PelF	DemF	1.00
15	$PelF_MM$	PelF	MM	1.00
16	PelF_Birds	PelF	Birds	1.00
17	$DemF_DemF$	DemF	DemF	1.00
18	$DemF_MM$	DemF	MM	1.00
19	NorSeaZoo_Hzoo	NorSeaZoo	$_{\rm Hzoo}$	0.00
20	NorSeaZoo_Ozoo	NorSeaZoo	Ozoo	0.00
21	PelF_Fisheries	PelF	Fisheries	0.00
22	DemF_Fisheries	DemF	Fisheries	0.00
23	MM_Fisheries	MM	Fisheries	0.00
24	Ozoo_Fisheries	Ozoo	Fisheries	0.00

Table 2: Fluxes

	Year	Prod_Sat	Hzoo_Biomass	Ozoo_Biomass	Pelagics
1	1988.00		25432.12	24275.61	428.28
2	1989.00		31987.20	16130.85	864.52
3	1990.00		23027.73	7481.54	5831.66
4	1991.00		21188.34	16833.36	7288.56
5	1992.00		27314.02	7940.31	5152.50
6	1993.00		37612.31	11880.41	799.64
7	1994.00		72438.19	22699.62	203.94
8	1995.00		57941.78	23526.60	195.66
9	1996.00		38465.04	24633.25	504.21
10	1997.00		43364.75	19153.71	912.15

Table 3: Observations

	Id	Constraint
1	C01	PP_Hzoo + PP_Ozoo + PP_Benthos <= Prod_Sat * 1.5
2	C02	$PP_Hzoo + PP_Ozoo + PP_Benthos >= Prod_Sat / 1.5$
3	C03	PP_Hzoo + PP_Ozoo + PP_Benthos <= 2000000
4	C04	$PP_{LOO} + PP_{Ozoo} + PP_{Benthos} >= 500000$
5	C05	$NorSeaZoo_Hzoo = 8 * 1600$
6	C06	$NorSeaZoo_Ozoo = 2 * 1600$
7	C07	PelF_Fisheries >= Pel_landings

Table 4: Constraints

4 Building polytope

```
> begin <- Sys.time()
> POLYTOPE <- buildCaN(NAMEFILE)
> end <- Sys.time()
> end-begin
```

Time difference of 3.074418 mins

> summary(POLYTOPE)

	Length	Class	Mode
components_param	10	${\tt data.frame}$	list
species	7	-none-	character
fluxes_def	4	${\tt data.frame}$	list
flow	24	-none-	character
series	22	${\tt data.frame}$	list
ntstep	1	-none-	numeric
${\tt data_series_name}$	21	-none-	character
constraints	5	${\tt data.frame}$	list
H	49	-none-	numeric
N	168	-none-	numeric
A	2009575	${\tt dgCMatrix}$	S4
AA11	2009575	${\tt dgCMatrix}$	S4
C	49600	${\tt dgCMatrix}$	S4
CAll	49600	${\tt dgCMatrix}$	S4
v	64	-none-	numeric
vAll	64	-none-	numeric
L	173600	${\tt dgCMatrix}$	S4
b	2593	-none-	numeric
bAll	2593	-none-	numeric
symbolic_enviro	903	-none-	environment

5 Structure of polytope

The polytope is defined by two pairs of a matrix and and a vector. F being the vector of all flows at all timesteps, first one (A, b) is an equality A.F = b, second one (C, v) is an equality $C.F \leq v$. For the Barents sea, we have: :

```
> dim(POLYTOPE$A)
```

- [1] 2593 775
- > length(POLYTOPE\$b)
- [1] 2593
- > dim(POLYTOPE\$C)

- [1] 64 775
- > length(POLYTOPE\$v)
- [1] 64

6 Checking polytope

As it is defined in the RCaN file for the Barents' sea, the polytope is non-empty and bounded:

> checkPolytopeStatus(POLYTOPE)

[1] "polytope ok"

Limits of the Barents' sea polytope in all dimensions are obtained with getAllBoundsParam:

> BOUNDS <- getAllBoundsParam(POLYTOPE)

 	1	0%
 	I	1%
! = !	I	1%
 = 	I	2%
 == 	I	2%
 == 	I	3%
 === 	1	4%
' === 	1	5%
' ==== 	I	5%
 ==== 	I	6%
 ===== 	1	6%
===== 	I	7%
 ===== 	I	8%
===== 	I	8%
===== 	I	9%
====== 	I	9%
·		

====== 		10%
 =====	I	11%
 ====== 	I	11%
 =======	I	12%
 ======== 	I	12%
 =======	I	13%
 ====== 	I	14%
 ======= 	I	14%
 ====== 	I	15%
 ======= 	I	15%
 ======= 	I	16%
 ======= 	I	17%
 ======= 	I	18%
 ======= 	I	18%
 ======= 	I	19%
 ======== 	I	19%
 =======	I	20%
 ======== 	I	21%
 ===================================	I	21%
 ===================================	I	22%
 ===================================	I	22%
 ===================================	I	23%
 ===================================	I	24%

====================================	1	25%
 ===================================	I	25%
 ===================================	I	26%
 ===================================	I	26%
 ===================================	I	27%
 ===================================	I	28%
 ===================================	I	28%
 ===================================	I	29%
 ===================================	I	29%
 ===================================	I	30%
 ===================================	I	31%
 ===================================	I	31%
 ===================================	I	32%
 ===================================	I	32%
 ===================================	I	33%
 ===================================	I	34%
 ===================================	I	34%
 ===================================	I	35%
 ===================================	I	35%
 ===================================	I	36%
 ===================================	I	37%
 ===================================	I	38%
 ===================================	I	38%

======================================	I	39%
 ===================================	I	39%
ı ====================================	I	40%
 ===================================	I	41%
 ===================================	I	41%
 ===================================	I	42%
 ===================================	I	42%
======= 	I	43%
======= 	I	44%
====================================	1	45%
====================================	1	45%
====================================	l	46%
====================================	l	46%
====================================	I	47%
====================================	I	48%
======= 	I	48%
 	1	49%
 	l	49%
 	l	50%
 	l	51%
 	1	51%
	1	52%
====== 	l	52%

=======	I	53%
 ======= 	I	54%
 ======== 	I	54%
 ======== 	I	55%
 ======= 	I	55%
======== 	I	56%
 ======= 	I	57%
======== 	I	58%
 ======= 	I	58%
 	I	59%
 	I	59%
 	I	60%
 	I	61%
 	I	61%
 ======== 	l	62%
======== 	I	62%
======== 	I	63%
======== 	I	64%
========= 	I	65%
========= 	I	65%
 ======== 	I	66%
=====================================	I	66%
========= 	I	67%

	========	I	68%
	 ===================================	I	68%
	 ===================================	I	69%
	 ===================================	I	69%
	 ===================================	I	70%
	 ===================================	I	71%
	 ===================================	I	71%
	 ===================================	I	72%
	 ===================================	I	72%
	 ===================================	I	73%
	 ===================================	I	74%
	 ===================================	I	74%
	 ===================================	I	75%
	 ===================================	I	75%
	 ===================================	I	76%
	 ===================================	I	77%
	 ===================================	I	78%
	 ===================================	I	78%
	 ===================================	I	79%
	 ===================================	1	79%
	 ===================================	I	80%
	 ===================================	I	81%
	 ===================================	I	81%

======================================	I	82%
ı ====================================	1	82%
====================================	1	83%
 ===================================	I	84%
 	1	85%
 ===================================	1	85%
====================================		86%
 ===================================	1	86%
 ===================================	1	87%
====================================	1	88%
ı ====================================	1	88%
 ===================================	1	89%
 ===================================	1	89%
 ===================================	1	90%
====================================		91%
====================================	1	91%
 ===================================	1	92%
 ===================================		92%
 ===================================	1	93%
 ===================================	I	94%
' ====================================	1	94%
 ===================================	1	95%
 ===================================	I	95%

١		96%
		97%
		98%
		98%
	=======================================	99%
		99%
		 100%

> summary(BOUNDS)

param		lowerbound		upperb	upperbound			
Length:77	5 Mi	n. :	0.0	Min. :	0			
Class :ch	aracter 1s	t Qu.:	0.0	1st Qu.:	2667			
Mode :ch	aracter Me	dian :	0.0	Median :	8629			
	Me	an :	12566.2	Mean :	311440			
	3r	d Qu.:	906.5	3rd Qu.:	86908			
	Ma	x. :	448256.5	Max. :	7983360			

Function plotPolytope2DCaNmod allows seeing the polytope in the plane defined by two parameters. In its first two dimensions, for the second 1990, the Barents sea polytope dimensions appears as.

======== 	1	14%
 ======== 	I	16%
 ===================================	I	18%
 ===================================	I	20%
 ===================================	I	22%
 ===================================	I	24%
ı ====================================	I	26%
 ===================================	I	28%
ı ====================================	I	30%
ı ====================================	I	32%
 ===================================	I	34%
ı ====================================	I	36%
ı ====================================	I	38%
ı ====================================	I	40%
ı ====================================	I	42%
ı ====================================	I	44%
ı ====================================	I	46%
 ======= 	I	48%
ı ======= ı	I	50%
ı ======= ı	I	52%
ı ======= 	I	54%
ı ======= 	I	56%
 ===================================	1	58%

	=======	1	60%
	 ======== 	I	62%
	 ===================================	I	64%
	ı ====================================	I	66%
	 ===================================	I	68%
	 ===================================	I	70%
	 ========== 	I	72%
	====================================	I	74%
	 ===================================	I	76%
	=====================================	I	78%
	=====================================	I	80%
	=====================================	I	82%
	=====================================	I	84%
	=====================================	I	86%
	=====================================	I	88%
	=====================================	I	90%
	=====================================	I	92%
	====================================	I	94%
	====================================	I	96%
	=====================================	I	98%
ı	l ====================================	. 1	100%

7 Sampling polytope

7.1 Sampling

Time difference of 16.11554 mins

7.2 Convergence

```
> nchain(SAMPLE$mcmc)
```

[1] 2

> # summary(SAMPLE\$mcmc)

Gelman diagnostics

- > fluxY <- paste(FLUXES[2,1],'[1990]',sep="")</pre>
- > gelman.diag(SAMPLE\$mcmc[,fluxY])

Potential scale reduction factors:

Autocorrelation function

- > fluxZ <- paste(FLUXES[3,1],'[1990]',sep="")</pre>
- > thinned_SAMPLE <- window(SAMPLE\$mcmc,thin=2)</pre>
- > thin(thinned_SAMPLE)

[1] 2

> acfplot(thinned_SAMPLE[,fluxZ])

7.3 Dynamics

For several variables or flux, plots of sampled dynamics.

```
> fluxX <- FLUXES[1,1]
> fluxY <- FLUXES[2,1]
> compA <- COMPONENTS[2,1]
> c(fluxX,fluxY,compA)
```

[1] "PP_Hzoo" "PP_Ozoo" "Hzoo"

```
> g <- ggSeries(SAMPLE, c(fluxX,fluxY,compA), TRUE)
> g + scale_y_log10() + guides(color = FALSE, fill = FALSE)
```


7.4 Distribution

For a component or a flux, for a year, the distribution of sampled values.

> ggViolin(SAMPLE,c(fluxX,fluxY,compA),year=1990,TRUE)

7.5 Diet relationships

> ggDiet(SAMPLE, compA)

