MÉTODO DE BISECCIÓN

Se suministran 3265 KJ/Kmol de calor a presión constante a cierta cantidad de vapor de agua inicialmente a 107.33°F. Si se sabe que:

$$Q = \int_{T_i}^{T_f} Cp \ dT$$

donde:

$$Cp = 32.24 + 1.924 \times 10^{-3} T + 1.055 \times 10^{-5} T^2 - 3.596 \times 10^{-9} T^3 (KJ/Kmol^{\circ}K)$$

Emplee el MÉTODO DE BISECCIÓN para determinar la Temperatura final Tf del sistema, con una exactitud de 10^{-7} . MUESTRE EN FORMA DE TABLA: #ITERACIONES, T_0 , T_1 , VALOR APROXIMADO, ERROR. EMPLEE NUEVE DECIMALES.

Método de la bisección

introduzca el valor de To: 410.575 introduzca el valor de T1: 410.585

introduzca la función: int(32.24+(1.924e-3)*t+(1.055e-5)*t^2-(3.596e-9)*t^3,t,315,t) - 3265

introduzca el valor de precisión:1e-7

n	То	T1	Tf	error
1	410.575000000	410.585000000	410.580000000	4.101193e-003
2	410.575000000	410.580000000	410.577500000	2.500000e-003
3	410.577500000	410.580000000	410.578750000	1.250000e-003
4	410.578750000	410.580000000	410.579375000	6.250000e-004
5	410.579375000	410.580000000	410.579687500	3.125000e-004
6	410.579687500	410.580000000	410.579843750	1.562500e-004
7	410.579843750	410.580000000	410.579921875	7.812500e-005
8	410.579843750	410.579921875	410.579882812	3.906250e-005
9	410.579843750	410.579882812	410.579863281	1.953125e-005
10	410.579863281	410.579882812	410.579873047	9.765625e-006
11	410.579873047	410.579882812	410.579877930	4.882813e-006
12	410.579877930	410.579882812	410.579880371	2.441406e-006
13	410.579880371	410.579882812	410.579881592	1.220703e-006
14	410.579880371	410.579881592	410.579880981	6.103515e-007
15	410.579880981	410.579881592	410.579881287	3.051758e-007
16	410.579881287	410.579881592	410.579881439	1.525879e-007
17	410.579881287	410.579881439	410.579881363	7.629399e-008
El v	alor aproximado de	Tf es: <u>410.579881</u>	<u>363</u>	

MÉTODO DE ITERACIÓN DE PUNTO FIJO

Emplee el método de iteración de punto fijo para obtener el valor de x que satisfaga la siguiente ecuación: $x^4 + 2x^2 - x - 3 = 0$, con una precisión: $\varepsilon = 10^{-5}$, en el intervalo [-0.88, -0.87]

```
Método de Iteración de punto fijo
introduzca el valor inicial po: -0.88
introduzca el valor de precisión: 1e-5
introduzca la función g: -((x+3)/(x^2+2))^{(1/2)}
        po
 n
                        p
                                     error
    -0.880000000 -0.874144828
                                 5.855172e-003
    -0.874144828 -0.876975921
                                 2.831092e-003
    -0.876975921 -0.875606905
                                 1.369015e-003
    -0.875606905 -0.876268884
                                 6.619784e-004
 5
    -0.876268884 -0.875948782
                                 3.201021e-004
 6
    -0.875948782 -0.876103567 1.547850e-004
    -0.876103567 -0.876028720 7.484645e-005
 8
    -0.876028720 -0.876064912
                                 3.619200e-005
 9
    -0.876064912 -0.876047412
                                 1.750066e-005
10
   -0.876047412 -0.876055874
                                 8.462450e-006
La raíz aproximada es P = -0.876055874
```

MÉTODO DE NEWTON RAPHSON

Un fabricante quiere diseñar una caja abierta que tenga una base cuadrada y un área superficial de $107.25 \, \text{plg}^2$. Emplee el MÉTODO DE NEWTON-RAPHSON para determinar las dimensiones de la caja, para que el volumen de ésta sea igual a $105.875 \, \text{plg}^3$, con una precisión de 10^{-12} . MUESTRE EN FORMA DE TABLA: NUMERO DE ITERACIONES, x_0 , VALORES APROXIMADOS, ERROR. EMPLEE QUINCE DECIMALES.

```
Método de Newton Raphson
introduzca el valor inicial xo: 5.49
introduzca la función f: x^2*(107.25-x^2)/(4*x)-105.875
introduzca la ecuación para calcular z: (107.25-x^2)/(4*x)
introduzca el valor de precisión: 1e-12
 n
           XO
                           X
                                             Z
                                                           error
  5.49000000000000 5.499902077874235 3.500111276688236
                                                          9.902078e-003
   5.499902077874235 5.499999990413247 3.500000010894037
                                                          9.791254e-005
  5.49999990413247 5.50000000000000 3.50000000000000
                                                          9.586753e-009
   5.500000000000000 5.500000000000000 3.500000000000000
                                                         0.000000e+000
Las dimensiones aproximadas son:
altura z = 3.500000000000000
```

METODO DE LA SECANTE

Una esfera de madera de radio r, se sumerge en agua. Si la esfera está construida de una especie de roble cuya densidad es: ρ = 720 kg/m³ y su diámetro d = 780mm, ¿cuánto es la profundidad h a la que está sumergido el polo sur de la esfera?, si se sabe que la masa de agua desplazada cuando se sumerge la esfera viene dada así:

Ma =
$$\rho_a \int_0^h \pi (r^2 - (x - r)^2) dx$$
, donde ρ_a es la densidad del agua, r es el radio de la esfera

Emplee el MÉTODO DE LA SECANTE para determinar la profundidad h, con una precisión de 10⁻¹². MUESTRE EN FORMA DE TABLA: NUMERO DE ITERACIONES, h₀, h₁, VALOR APROXIMADO, ERROR. EMPLEE QUINCE DECIMALES.

Método de la secante introduzca el valor del radio r: 390e-3 introduzca la densidad de la madera d: 720 introduzca la densidad del agua D: 1e3 introduzca el volumen de la esfera v: (4/3)*pi*r^3 introduzca el valor de ho: 0.5 introduzca el valor de h1: 0.51 introduzca la función: D*pi*(r*h^2-(h^3)/3)-d*v introduzca el valor de precisión:1e-12 ho h1 **h2** error 0.500000000000000 0.510000000000000 0.508014210273644 1.985790e-003 1 0.508000826178932 2 0.508014210273644 1.338409e-005 0.510000000000000 3 0.508014210273644 2.298051e-008 0.508000826178932 0.508000849159439 0.508000826178932 0.508000849159439 0.508000849159177 2.622347e-013 La profundidad a la que está sumergido el polo sur, en mt, es: h = 0.508000849159177

METODO DE LA POSICION FALSA

La velocidad vertical de un cohete se calcula mediante la siguiente fórmula:

```
v = uln\left(\frac{mo}{mo - qt}\right) - gt donde: \ g = 9.81 \ m/seg^2 q = tasa \ de \ consumo \ de \ combustible = 2700 \ kg/seg u = velocidad \ con \ la \ que \ se \ expele \ el \ combustible = 7200km/h mo = masa \ inicial \ del \ cohete = 175000 \ kg
```

Emplee el MÉTODO DE POSICIÓN FALSA para determinar el tiempo para el cual el cohete alcanza una velocidad de 865m/s, con una precisión de 10⁻¹². MUESTRE EN FORMA DE TABLA: NUMERO DE ITERACIONES, t₀, t₁, VALOR APROXIMADO, ERROR. EMPLEE QUINCE DECIMALES.

```
Command Window
New to MATLAB? Watch this Video, see Demos, or read Getting Started.
Método de la posición falsa
introduzca el valor de mo: 175000
introduzca el valor de q: 2700
introduzca el valor de g: 9.81
introduzca el valor de u: 2000
introduzca el valor de v: 865
introduzca el valor de to: 28.1
introduzca el valor de t1: 28.2
introduzca la función f:u*log(mo/(mo-g*t))-g*t-v
introduzca el valor de precisión:1e-12
            to
                                       t1
                                                             t2
                                                                                 error
 1
       28.1000000000000001
                                28.19999999999999
                                                           28.188364941249930
                                                                                    1.163506e-002
       28.199999999999999
                                28.188364941249930
                                                           28.188382023145873
                                                                                    1.708190e-005
       28.199999999999999
                                28.188382023145873
                                                           28.188382026448448
                                                                                    3.302574e-009
       28.199999999999999
                                28.188382026448448
                                                           28.188382026449084
                                                                                    6.359357e-013
El valor aproximado de t es: 28.188382026449084
```

METODO DE STEFFENSEN

La concentración de un reactante en un reactor de mezcla completa viene dada por la siguiente expresión:

 $C_{(t)} = 0.78 - 0.05 \text{te}^{-0.4 \text{t}} - 0.23 \text{e}^{-0.4 \text{t}}$, donde $C_{(t)}$ es la concentración del reactante (mol/L) y t el tiempo (min). Determine en cuánto tiempo la concentración del reactante es igual a 0.663 mol/L.

Emplee el MÉTODO DE STEFFENSEN, con una exactitud de 10^{-12} . MUESTRE EN FORMA DE TABLA : NUMERO DE ITERACIONES, t_0 , t_1 , t_2 , VALOR APROXIMADO, ERROR. EMPLEE QUINCE DECIMALES.

METODO DE MULLER

Emplee el MÉTODO DE MULLER para obtener una raíz del polinomio: $P_{(x)} = 2x^5 + 11x^4 - 21x^3 - 10x^2 + 21x - 15$, con DOCE CIFRAS DECIMALES y una precisión de 10^{-12} . Utilice los valores: $x_0 = 1$, $x_1 = 1.8$, $x_2 = 2$.

Método de Muller

introduzca el valor de xo: 1

introduzca el valor de x1: 1.8

introduzca el valor de x2: 2

introduzca la función f: 2*x^5+11*x^4-21*x^3-10*x^2+21*x-15

introduzca el valor de precisión: 1e-12

n xo	x1	x2	ж3
1 1.000000000000	1.80000000000	2.000000000000	1.644902326862
2 1.800000000000	2.000000000000	1.644902326862	1.592038805074
3 2.000000000000	1.644902326862	1.592038805074	1.599595984713
4 1.644902326862	1.592038805074	1.599595984713	1.599385332795
5 1.592038805074	1.599595984713	1.599385332795	1.599385235195
6 1.599595984713	1.599385332795	1.599385235195	1.599385235195
La raíz aproximada es :	x3 = 1.599385235195		
La raíz aproximada es :	x3 = 1.599385235195 b	c	error
•		c 59.000000000000	error 3.550977e-001
а	b	_	
a 147.544000000000	b 218.544000000000	59.00000000000	3.550977e-001
a 147.544000000000 213.566775520984 188.943091936048	b 218.544000000000 80.074425010057	59.000000000000 3.636192665248	3.550977e-001 5.286352e-002
a 147.544000000000 213.566775520984	b 218.544000000000 80.074425010057 68.841843240456	59.000000000000 3.636192665248 -0.531040898196	3.550977e-001 5.286352e-002 7.557180e-003