Loss Reserving Curves Shape Analysis Class Project – STAT 651

Zach Horton

December 11, 2018

Insurance Reserving: Annual Cost Prediction

Reserving is a huge financial burden

Sources of variation in annual cost:

- Standard business costs
- Claims made this year
- Payouts for claims made in past years

Terms:

- Accident year Year the claim is made (incurred cost)
- Payment year Year of claim payment (lagged or raw)
- Ultimate Total payout for a given accident year

Data

- Commercial Auto, Medical Malpractice, Workers Compensation
- 10 payment years per accident year (866, 130, 639)
- Cumulative percent "trajectory"

Goals and Questions

Trajectory Curve Shape Differences

- How do trajectories differ by business line?
- Reason: accurate annual predictions (cheaper)

Model

$$egin{aligned} y_{ik}(t)|oldsymbol{eta}_i,lpha,\gamma&\sim extstyle N(\mathbf{H}(t)oldsymbol{eta}_i,lpha\gamma^{t-1}) \ eta_i| au^2&\sim extstyle N_{10}(\mathbf{0}, au^2\mathbf{P}^{-1}) \ lpha&\sim extstyle InvGamma(a_lpha=0.1,b_lpha=0.1) \ \gamma&\sim extstyle Unif(m=0,M=1) \ au^2&\sim extstyle InvGamma(a_ au=0.1,b_ au=0.1) \end{aligned}$$

- $i \in (1, ..., b = 3)$ denote line of business
- ullet $k\in (1,\ldots,n_i)$ denote an individual accident year
- $ullet \ t \in (1,\dots,10) \subset [1,10]$ denotes payment year lag
- $y_{ik}(t)$ is percent of ultimate paid off at time t

Model

$$y_{ik}(t)|\boldsymbol{\beta}_i, \alpha, \gamma \sim N(\mathbf{H}(t)\boldsymbol{\beta}_i, \alpha\gamma^{t-1})$$

- \bullet **H**(t) evaluates to a row vector
- β_i weighted combination of basis functions forms curve
- Business line specific coefficients (one per year)

Model

$$y_{ik}(t)|\boldsymbol{\beta}_i, \alpha, \gamma \sim N(\mathbf{H}(t)\boldsymbol{\beta}_i, \alpha\gamma^{t-1})$$

- ullet α baseline or initial variance
- \bullet γ geometric variance decay
- $t \in (1, ..., 10) \subset [1, 10]$ denotes payment year lag

$$y_{ik}(t)|\beta_i, \alpha, \gamma \sim N(\mathbf{H}(t)\beta_i, \alpha\gamma^{t-1})$$

$$\beta_i|\tau^2 \sim N_{10}(\mathbf{0}, \tau^2\mathbf{P}^{-1})$$

$$\mathbf{P} = \begin{bmatrix} 2 & -1 & 0 & \dots & 0 \\ -1 & 2 & -1 & \ddots & \ddots & \vdots \\ 0 & -1 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & -1 & 0 \\ \vdots & & \ddots & -1 & 2 & -1 \\ 0 & \dots & \dots & 0 & -1 & 1 \end{bmatrix}$$

P imposes smoothness and shrinkage.

Model Summary

$$egin{aligned} y_{ik}(t)|oldsymbol{eta}_i,lpha,\gamma &\sim extstyle extstyle$$

- Model trajectory curves as noisy versions of business line averages
- Variance decays since all curves approach ultimate
- Fairly diffuse priors

Model Fitting

Alternate Formulation:

$$\mathbf{y}_{ik}|\boldsymbol{\beta}_{i}, \alpha, \gamma \sim N \begin{pmatrix} \mathbf{H}\boldsymbol{\beta}_{i}, \alpha \begin{bmatrix} \gamma^{0} & 0 & \dots & 0 \\ 0 & \gamma^{1} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \gamma^{9} \end{bmatrix} \end{pmatrix}$$

- Gibbs sampler, 33 total parameters
- Conditional conjugacy with β_i , α , τ^2
- ullet Metropolis–Hastings for γ
- Utilize vectorization and stacking (Matrix package)
- Identifiability brought on by $\gamma^0 = 1$

Conjugacy Notes

Normal-Normal Case

$$\mathbf{y}|oldsymbol{eta}, oldsymbol{\Sigma} \sim \mathcal{N}_n(\mathbf{X}oldsymbol{eta}, oldsymbol{\Sigma}) \ eta \sim \mathcal{N}_p(oldsymbol{\mu}, oldsymbol{V})$$

$$eta|-\sim \mathit{N}_{p}((\mathsf{X}'\mathbf{\Sigma}^{-1}\mathsf{X}+\mathsf{V}^{-1})^{-1}(\mathsf{X}'\mathbf{\Sigma}^{-1}\mathsf{y}+\mathsf{V}^{-1}\mu),(\mathsf{X}'\mathbf{\Sigma}^{-1}\mathsf{X}+\mathsf{V}^{-1})^{-1})$$

Normal-Inverse Gamma Case

$$\mathbf{y}|oldsymbol{\mu}, \sigma^2 \sim N_n(oldsymbol{\mu}, \sigma^2 \mathbf{R}) \ \sigma^2 \sim IG(a,b)$$

$$|\sigma^2| - \sim IG(\frac{n}{2} + a, \frac{1}{2}(\mathbf{y} - \boldsymbol{\mu})'R^{-1}(\mathbf{y} - \boldsymbol{\mu}) + b)$$

Convergence

- \hat{R} : minimum = 0.9996, maximum = 1.054
- 10 chains, 2000 iterations, 500 burnin
- 2 iterations per second, 16x speed increase with Matrix package
- Lowest effective sample size: 800 for γ , 1000 for α (out of 15000)

Sensitivity and Model Fit

Considerations:

- IG(2,20) variance priors impose large expected value
- Remove γ
- Use DIC with alternate pD computation to compare fits

	Original Model	Inflated Variance Prior	Removed γ
DIC	-24041.3	-24008.2	-16271.5

Results

Auto	$\beta_{1,1}$	$\beta_{1,2}$	$\beta_{1,3}$	$\beta_{1,4}$	$\beta_{1,5}$	$\beta_{1,6}$	$\beta_{1,7}$	$\beta_{1,8}$	$\beta_{1,9}$	$\beta_{1,10}$	α
Bayes	0.332	0.475	0.659	0.841	0.931	0.971	0.988	0.99	1.001	1	0.098
Freq	0.332	0.475	0.659	0.841	0.931	0.971	0.989	0.99	1.001	1	0.022
Med	$\beta_{2,1}$	$\beta_{2,2}$	$\beta_{2,3}$	$\beta_{2,4}$	$\beta_{2,5}$	$\beta_{2,6}$	$\beta_{2,7}$	$\beta_{2,8}$	$\beta_{2,9}$	$\beta_{2,10}$	γ
Bayes	0.059	0.096	0.337	0.67	0.807	0.913	0.936	1.017	0.971	1	0.645
Freq	0.059	0.094	0.338	0.67	0.807	0.913	0.936	1.018	0.971	1	
Work	$\beta_{3,1}$	$\beta_{3,2}$	$\beta_{3,3}$	$\beta_{3,4}$	$\beta_{3,5}$	$\beta_{3,6}$	$\beta_{3,7}$	$\beta_{3,8}$	$\beta_{3,9}$	$\beta_{3,10}$	τ^2
Bayes	0.277	0.448	0.651	0.795	0.88	0.928	0.957	0.98	0.994	1	0.646
Frea	0.277	0.447	0.651	0.795	0.88	0.928	0.957	0.98	0.994	1	

- All variables significant
- Frequentist method ignores hierarchy
- Methods match coefficients
- $\bullet \ \, \alpha \ \, {\rm reflects} \\ \ \, {\rm heteroskedasticity}$

Results

Posterior Average Trajectories by Insurance Type

Results

Posterior Average Trajectory Bands by Insurance Type

Conclusions

- Medical malpractice takes longer to reach ultimate
- Variance decay over payment years exists
- Matrix library in R
- Improvement: model differences instead of raw confidence regions
- Improvement: Experiment with restricted likelihood support
- Future: Utilize ultimate magnitude