1. 开集和闭集的定义及其等价定义.

Sol 1. 若 E 满足 $E \cap \partial E = \Phi$, 则称 E 为开集.

若 E 满足 $\partial E \subset E$, 则称 E 为闭集.

类似可以得到许多等价定义.

2. 讨论开区间、开集和 Borel 集的关系.

Sol 2. 开集一定是 Borel 集, 但 Borel 集不一定是开集.

开区间是开集, 但开集不一定是开区间, 且开集可以表示为可列个开区间的并,

3. 稠密集和疏朗集的定义.

Sol 3. 若 B 满足 $\forall x \in B, \exists y \in A$ 使得 y 在 x 的任意邻域内, 则称 A 在 B 中稠密. 不在任何集合中稠密的集合是疏朗的.

4. Cantor 集的性质.

Sol 4. Cantor 集是一个闭集, 其补集是开集.

Cantor 集的势为 c, 测度为 0.

Cantor 集是疏朗集, 也是非空完备集.

5. 外测度和可测集的定义及其性质.

Sol 5. 给定一个集合 E, 其外测度表示为 $m^*(E) = \inf \{ \sum_{i=1}^{\infty} |I_i| : \bigcup_{i=1}^{\infty} I_i \supset E \}.$

若 $\forall T \subset \mathbb{R}^n, m^*(T) = m^*(E \cap T) + m^*(E^c \cap T)$, 则称 T 为可测集.

外测度满足以下性质:

单调性: 若 $A \subset B$, 则 $m^*(A) \leq m^*(B)$.

次可加性: $m^*(\bigcup_{i=1}^{\infty} A_i) \leq \sum_{n=1}^{\infty} m^*(A_n)$.

平移不变性: $\forall x \in \mathbb{R}^n$, 有 $m^*(E+x) = m^*(E)$.

分离可加性: 若 $\rho(A,B) > 0$, 则 $m^*(A \cup B) = m^*(A) + m^*(B)$.

可测集满足以下性质:

运算封闭性: 若 A, B 为可测集, 则 $A \cup B, A \cap B, A \setminus B$ 等有限次运算后均为可测集.

等价定义: 若 E 为可测集,则 $\exists F \subset E$ 为闭集,使得 $m(E \backslash F) < \varepsilon$; 若 E 为可测集,则 $\exists G \supset E$ 为闭集,使得 $m(G \backslash E) < \varepsilon$.

6. 零测集和可列集的定义, 并相应说明体现了集合的何种性质.

Sol 6. 零测集是指其外测度为 0 的集合, 即 $m^*(E) = 0$.

可列集是指可以表示为 $\{x_1, x_2, \dots\}$ 的集合.

可列集一定是零测集, 但反之不一定成立, 例如 Cantor 集是一个零测集, 但不是可列集.

零测集反映了集合的测度很小, 而可列集则反映了集合的势是可数的, 也即离散的.

7. 开集、闭集、Borel 集和可测集之间的关系.

Sol 7. 开集和闭集都是 Borel 集, 也都是可测集.

Borel 集是由开集和闭集通过可数次并、交、补运算得到的集合. Borel 集一定是可测集. 但可测集不一定都是 Borel 集, 如 Cantor 集.

8. 可测函数的定义和等价定义.

Sol 8. 若定义在可测集 E 上的 f 满足 $\forall a \in \mathbb{R}, E[f>a]$ 是可测集, 则称 f 为可测函数. 等价定义包括:

若定义在可测集 E 上的 f 满足 $\forall a \in \mathbb{R}, E[f \leqslant a]$ 是可测集,则称 f 为可测函数.若定义在可测集 E 上的 f 满足 $\forall a \in \mathbb{R}, E[f \lessdot a]$ 是可测集,则称 f 为可测函数.若定义在可测集 E 上的 f 满足 $\forall a \in \mathbb{R}, E[f \geqslant a]$ 是可测集,则称 f 为可测函数.若定义在可测集 E 上的 f 满足 $\forall a \in \mathbb{R}, E[f \geqslant a]$ 是可测集,则称 f 为可测函数.

9. 可测函数各种收敛的定义和上面各种收敛之间的关系.

Sol 9. 逐点收敛: $\forall x \in E, \lim_{n \to \infty} f_n(x) = f(x)$.

一致收敛: $\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n \geq N, |f_n(x) - f(x)| < \varepsilon.$

几乎处处收敛: $\exists E_0 \subset E, m(E_0) = 0, \forall x \in E \setminus E_0, \lim_{n \to \infty} f_n(x) = f(x).$

近乎一致收敛: $\forall \varepsilon > 0, \forall \delta > 0, \exists E_0 \subset E, m(E_0) < \delta, \exists N \in \mathbb{N}, \forall n \geqslant N, \forall x \in E \setminus E_0, |f_n(x) - f(x)| < \varepsilon.$

依测度收敛: $\forall k > 0$, $\lim_{n \to \infty} m(E[|f_n - f| \ge \frac{1}{k}]) = 0$.

几种收敛的关系可以由下面定理给出:

若 f_n 在 E 上近乎一致收敛到 f, 则 f_n 在 E 上几乎处处收敛到 f.

(Egoroff) 若 $m(E) < \infty$, f_n 在 E 上几乎处处收敛到 f, 则 f_n 在 E 上近乎一致到 f.

(Lebesgue) 若 $m(E) < \infty$, f_n 在 E 上几乎处处收敛到 f, 则 f_n 在 E 上依测度收敛到 f.

(Riesz) 若 f_n 在 E 上依测度收敛到 f, 则 $\exists f_{n_k}$ 在 E 上几乎处处收敛到 f.

10. 连续函数的定义和等价定义.

Sol 10. 若 f 在点 x_0 处连续,则 $\forall \varepsilon > 0, \exists \delta > 0$,使得 $\forall x \in E, \rho(x, x_0) < \delta, |f(x) - f(x_0)| < \varepsilon$.

在 E 上, 若 f 在每个点 $x_0 \in E$ 处连续, 则称 f 在 E 上连续.

连续函数的等价定义为, 开集的原像是开集, 闭集的原像是闭集.

11. Lusin 定理.

Sol 11. (Lusin I) 设 f 是定义在可测集 E 上的可测函数,则 $\forall \delta > 0, \exists F \subset E$ 为闭集,使得 $m(E \setminus F) < \delta$ 且 $f|_F$ 是连续函数.

 $(Lusin\ II)$ 设 f 是定义在可测集 E 上的可测函数,则 $\forall \delta>0, \exists F\subset E$ 为闭集, $\exists g\in C(\mathbb{R}^n)$ 使得 $m(E\backslash F)<\delta$ 且 $f|_F=g|_F$.

12. Levi、Fatou、Lebesgue 逐项可积定理.

Sol 12. (Levi) 设单增函数列 f_n 在 E 上可测, $f_n(x) \geqslant 0$ a.e. on E, 且 $f_n \to f$, 则 $\lim_{n \to \infty} \int_E f_n(x) dx = \int_E f(x) dx$.

(Fatou) 设函数列 f_n 在 E 上可测, $f_n(x) \geqslant 0$ a.e. on E, 则 $\int_E (\liminf_{n \to \infty} f_n(x)) dx \leqslant \liminf_{n \to \infty} \int_E f_n(x) dx$. (Lebesgue) 设函数列 f_n 在 E 上可测, $f_n(x) \geqslant 0$ a.e. on E, 则 $\int_E (\sum_{n=1}^\infty f_n(x)) dx = \sum_{n=1}^\infty \int_E f_n(x) dx$.

13. Lebesgue 控制收敛定理.

Sol 13. 设在可测集 E 上定义的可测函数列 f_n 有 $f_n \Rightarrow f$, 且存在可测函数 g 使得 $\forall n \in \mathbb{N}, |f_n(x)| \leq g(x)$ a.e. on E, 且 $\int_E g(x) \mathrm{d}x < \infty$, 则 $\lim_{n \to \infty} \int_E f_n(x) \mathrm{d}x = \int_E f(x) \mathrm{d}x$.

14. [a,b] 上有界函数的可积性判定定理.

Sol 14. 设 f 在 [a,b] 上有界,且 $\forall \varepsilon > 0$, $\exists \delta > 0$,使得 $\forall P \in \mathcal{P}([a,b]), \rho(P) < \delta$,则 f 在 [a,b] 上可积, 反之,若 f 在 [a,b] 上可积,则 f 在 [a,b] 上有界.