1

Circuits and Transforms

Aditya Gangula EP20BTECH11001*

1

1

1

CONTENTS

- 1 Definitions
- 2 Laplace Transform
- 3 Initial Conditions

 ${\it Abstract} {\it \bf - This \ manual \ provides \ a \ simple \ introduction}$ to Transforms

1 Definitions

1. The unit step function is

$$u(t) = \begin{cases} 1 & t > 0 \\ \frac{1}{2} & t = 0 \\ 0 & t < 0 \end{cases}$$
 (1.1)

2. The Laplace transform of g(t) is defined as

$$G(s) = \int_{-\infty}^{\infty} g(t)e^{-st} dt$$
 (1.2)

2 Laplace Transform

1. In the circuit, the switch S is connected to position P for a long time so that the charge on the capacitor becomes $q_1 \mu C$. Then S is switched to position Q. After a long time, the charge on the capacitor is $q_2 \mu C$.

Fig. 2.1

- 2. Draw the circuit using latex-tikz.
- 3. Find q_1 .

- 4. Show that the Laplace transform of u(t) is $\frac{1}{s}$ and find the ROC.
- 5. Show that

$$e^{-at}u(t) \stackrel{\mathcal{H}}{\longleftrightarrow} L\frac{1}{s+a}, \quad a > 0$$
 (2.1)

and find the ROC.

6. Now consider the following resistive circuit transformed from Fig. 2.1 where

Fig. 2.2

$$u(t) \stackrel{\mathcal{H}}{\longleftrightarrow} LV_1(s)$$
 (2.2)

$$2u(t) \stackrel{\mathcal{H}}{\longleftrightarrow} LV_2(s)$$
 (2.3)

Find the voltage across the capacitor $V_{C_0}(s)$.

- 7. Find $v_{C_0}(t)$. Plot using python.
- 8. Verify your result using ngspice.
- 9. Obtain Fig. 2.2 using the equivalent differential equation.

3 Initial Conditions

- 1. Find q_2 in Fig. 2.1.
- 2. Draw the equivalent *s*-domain resistive circuit when S is switched to position Q. Use variables R_1, R_2, C_0 for the passive elements. Use latex-tikz.
- 3. $V_{C_0}(s) = ?$
- 4. $v_{C_0}(t) = ?$ Plot using python.
- 5. Verify your result using ngspice.
- 6. Find $v_{C_0}(0-)$, $v_{C_0}(0+)$ and $v_{C_0}(\infty)$.
- 7. Obtain the Fig. in problem 3.2 using the equivalent differential equation.