Efficient Collision Detection Using Bounding Volume Hierarchies of k-DOPs

James T. Klosowski

1998 IEEE Transactions on Visualization and Computer Graphics

Presenter: Yi-Ning Chang

March 29, 2017

Outline

- Introduction
- 2 Preprocessing
- Collision Detection
- 4 Experiment
- 6 Conclusion

- Introduction
- 2 Preprocessing
- Collision Detection
- 4 Experiment
- Conclusion

Introduction

- The author develop and analyze a method, based on bounding-volumn hierarchies, for efficient collision detection for objects moving within environments.
- Previous work
 - Octrees, k-d trees, BSP trees, and so on.
 - RAPID (Robust and Accurate Polygon Interference Detection) system based on OBBTrees.

- Introduction
- 2 Preprocessing
- Collision Detection
- 4 Experiment
- Conclusion

BV-Tree

- BVT(S): a tree structure on a set of geometric object, S. All geometric objects are wrapped in bounding volumes that form the leaf nodes of the tree.
- Set S: n geometry triangles in 3D that specify the boundary of polygonal models.
- Each node v of BVT(S) corresponds to a subset, $S_v \subseteq S$.
- $b(S_v)$: a bounding volume, which is an approximation to the set S_v using a specified class of shapes.

BV-tree

Design Criteria

$$T = N_{v} \times C_{v} + N_{p} \times C_{p} + N_{u} \times C_{u}$$

- T: total cost function for collision detection.
- N_{ν} : number of pairs of bounding volumes tested for overlap.
- C_v : cost of testing a pair of bounding volumes for overlap.
- N_p : number of pairs of primitives tested for contact.
- C_p : cost of testing a pair of primitives for contact.
- N_u : number of nodes of the flying hierarchy must be updated.
- C_u : cost of updating such node.

k-DOP

- k-dop: k-discrete orientation polytope is a convex polytope whose facets are determined by k fixed orientations.
- 6-dop(AABB), 14-dop, 18-dop, 26-dop

	Sphere	k-DOP	OBB
N_{ν}	big	median	small
C_{v}	O(1)	O(k)	$O(k^2)$
C_u	O(1)	<i>O</i> (<i>n</i>)	O(k)

Fig. 1. Approximations of an object by three bounding volumes: an axis-aligned bounding box (AABB), an oriented bounding box (OBB), and a k-dop (where k = 8).

Splitting Rule

- Choice of Axis
 - Min Sum: $O(k|S_v|) + O(k\log k)$
 - Min Max: $O(k|S_v|) + O(k\log k)$
 - Splatter: $O(|S_v|)$
 - Longest Side: O(1)
- Choice of Split Point
 - median: more balanced.
 - mean: less total volume while not harming the balance of the tree severely.

- Introduction
- 2 Preprocessing
- Collision Detection
- 4 Experiment
- Conclusion

Collision Detection Using BV-Trees

- The method of *updating* the k-dops.
- The algorithm for comparing two BV-trees to determine if there is a collision.

Updating the BV-Trees

- Hill climbing algorithm
 - Store the boundary representation of convex hull of S_{ν} .
 - O(n)
- Approximation method
 - store the boundary vertices of the k-dop $b(S_{\nu})$.
 - $O(k \log k)$

Fig. 2. Illustration of the approximation method of handling a rotating object.

Tree Traversal Algorithm

```
Algorithm TraverseTrees(v_F, v_F)
Input: A node v_E of the flying hierarchy, a node v_E of the
environment hierarchy
1. if b(v_F) \cap b(v_E) \neq \emptyset then
     if v_E is a leaf then
3.
       if v_F is a leaf then
4.
         for each triangle t_E of S_{v_a}
5.
           for each triangle t_F of S_{v_F}
6.
             check test triangles t_F and t_F for intersection
       else
8.
         for each child v_f of v_F
           TraverseTrees(v_f, v_E)
10.
     else
11.
       for each child v_e of v_F
12.
         TraverseTrees(v_F, v_e)
13. return
```

Algorithm 1: Pseudocode of the tree traversal algorithm.

- Introduction
- 2 Preprocessing
- Collision Detection
- 4 Experiment
- Conclusion

Experiment for different k

TABLE 2 AVERAGE CD TIME (IN MS), USING OUR "SPLATTER" SPLITTING RULE

	"SPLATTER" SPLITTING HULE						
		Pipes	Torus	747	Swept	Interior	
	Env. Size (no. tri.)	143,690	98,114	100,000	40,000	169,944	
	Object Size (no. tri.)	143,690	20,000	14,646	36	404	
	No. of Steps	2,000	2,000	10,000	1,000	2,528	
	No. of Contacts	2,657	1,472	7,906	0	84,931	
	Hier. Method (ms per check)						
пl	6-dop	0.487	0.294	1.639	0.582	4.375	
1	14-dop	0.392	0.191	0.760	0.153	2.701	
Ш	18-dop	0.366	0.184	0.356	0.109	2.754	
111	26-dop	0.525	0.210	0.415	0.076	2.639	
] [RAPID	0.934	0.242	0.494	0.556	4.375	

TABLE 1 AVERAGE COSTS OF C_v AND C_u (IN MS), FOR DIFFERENT CHOICES OF k

	6-dop	14-dop	18-dop	26-dop
C _V	0.0008	0.0016	0.0020	0.0028
Cu	0.0045	0.0174	0.0235	0.0509

Experiment for preprocessing time

TABLE 3
PREPROCESSING TIME (IN MINUTES),
USING OUR 18-DOP METHOD

Construction Method	Pipes	Torus	747	Swept	Interior
Longest Side	3.61	1.61	1.69	0.31	5.78
Min Sum	26.75	19.12	20.98	7.17	31.03
Min Max	28.03	19.16	20.87	7.19	31.13
Splatter	3.63	1.62	1.71	0.32	5.71
RAPID	1.05	0.69	0.71	0.26	1.31

Experiment for dividing method

TABLE 4
AVERAGE CD TIME (IN MS), USING OUR 18-DOP METHOD,
DIVIDING AT THE MEAN

Construction Method	Pipes	Torus	747	Swept	Interior
Longest Side	0.384	0.192	0.366	0.111	3.036
Min Sum	0.356	0.185	0.330	0.108	2.667
Min Max	0.391	0.191	0.439	0.111	2.783
Splatter	0.366	0.184	0.356	0.109	2.754

TABLE 5
AVERAGE CD TIME (IN MS), USING OUR 18-DOP METHOD,
DIVIDING AT THE MEDIAN

Construction Method	Pipes	Torus	747	Swept	Interior
Longest Side	0.476	0.193	0.412	0.116	3.164
Min Sum	0.450	0.192	0.359	0.111	2.822
Min Max	0.530	0.196	0.450	0.114	3.080
Splatter	0.481	0.194	0.396	0.113	2.774

- Introduction
- 2 Preprocessing
- Collision Detection
- 4 Experiment
- Conclusion

Conclusion

- Proposed a method for efficient collision detection among polygonal models, based on a bounding volumes hierarchy (BV-tree) whose bounding volumes are k-dops.
- Future work
 - Multiple flying objects.
 - Server and client system.