Projeto de Rede Telefônica

Prof. Manoel Henrique

Sequencia

- Definições e materiais.
 - Caixas de distribuição
 - Blocos de terminais
 - Caixas de passagem
 - Tubulação
 - Entrada
 - Primária
 - Secundária
 - Cabos telefônicos
- · Fases do projeto
 - No de pontos telefônicos
 - Dimensionamento de caixas de distribuição e eletrodutos
 - Tubulação primária e prumada
 - Entrada

- Caixa de distribuição geral
 - Caixa na qual são terminados e interligados os cabos da rede externa da concessionária com os cabos internos do edifício.
 - Também chamado de DG (distribuidor geral)

- Caixa de distribuição
 - Caixa pertencente à tubulação primária, destinada a dar passagem aos cabos e fios telefônicos e abrigar os blocos terminais.

- Bloco de terminais
 - Bloco de material isolante que permite a conexão entre fios e cabos telefônicos.
 - Chamado também de BLI (bloco de ligação interna)
 - Fica situado no distribuidor geral.

- Bloco de terminais
 - Bloco de material isolante que permite a conexão entre fios e cabos telefônicos.

- · Caixas de passagem
 - Caixa destinada a limitar o comprimento da tubulação, eliminar curvas e facilitar o puxamento de cabos e fios telefônicos

Definições e materiais

 As caixas de distribuição geral, de distribuição e de passagem devem ser instaladas a uma altura de 130 a 150 cm do piso acabado, ao centro das mesmas e devidamente niveladas.

• Dimensões das caixas

	DIMENSÕES INTERNAS (cm)					
CAIXA	ALTURA	LARGURA	PROFUNDIDADE			
1	10	10	5			
2	20	20	12			
3	40	40	12			
4	60	60	12			
5	80	80	12			
6	120	120	12			
7	150	150	15			
8	200	200	20			

Definições e materiais

 As caixas de distribuição geral, de distribuição e de passagem devem ser definidas em função do número de pontos telefônicos nelas acumulados, conforme tabela.

Pontos Acumulados na Caixa	Caixa de Distribuição Geral	Caixa de Distribuição	Caixa de Passagem	
Até 5	Nº 3	-	Nº 2	
De 6 a 21	Nº 4	Nº 3	Nº3	
De 22 a 35	Nº 5	Nº 4	Nº3	
De 36 a 70	Nº 6	№ 5	Nº4	
De 71 a 140	Nº 7	Nº 6	Nº 5	
De 141 a 280	Nº 8	Nº 7	Nº 6	
Acima de 280	Sala e Poço de Elevação			

- Tubulação de entrada
 - Parte da tubulação que permite a entrada do cabo da rede externa da concessionária e que termina na caixa de distribuição geral.

Definições e materiais • Tubulação de entrada aérea

- Tubulação de entrada
 - Subterrânea
 - O edifício possuir mais que 21 PT.
 - A rede da concessionária for subterrânea.
 - · Por motivos estéticos.
 - Caixa de entrada do edifício
 - Caixa subterrânea, situada em frente ao edifício, junto ao alinhamento do predial, destinada a permitir a entrada do cabo subterrâneo da rede externa da concessionária.

Dimensionamento da Caixa de Entrada de uma Edificação:

PT Total do	Tipo de	Dimensões Internas (cm)			
Edifício	Caixa	Comprimento	Largura	Altura	
Até 35	R1	60	35	50	
De 36 a 140	R2	107	52	50	
De 141 a 420	R3	120	120	130	
Acima de 420	-	215	130	180	

- Tubulação primária
 - Parte da tubulação que abrange a caixa de distribuição geral, caixas de distribuição e as tubulações que as interligam.

• Tubulação primária

Definições e materiais

• Dimensionamento das tubulações

DIÂMETRO INTERNO MÍNIMO DOS ELETRODUTOS (mm)	QUANTIDADE MÍNIMA DE ELETRODUTOS	
19	1	
25	1	
32	1	
38	1	
50	1	
50	2	
50	3	
poço de elevação		
	MÍNIMO DOS ELETRODUTOS (mm) 19 25 32 38 50 50	

- Tubulação secundária
 - Parte da tubulação que abrange as caixas de saída e as tubulações que as interligam às caixas de distribuição.

Definições e materiais

• Tubulação secundária

• Tubulação primária e secundária

Definições e materiais

• Tubulação secundária via canaleta.

• Tubulação secundária via canaleta.

- · Ponto telefônico
 - Previsão de demanda de um telefone principal ou qualquer serviço que utilize pares físicos dentro de uma construção.

Definições e materiais • Ponto telefônico

- · Cabo telefônico
 - Identificação e simbologia

- a: tipo do fio/cabo
- b: capacidade do cabo
- c: distribuição dos pares
- d: identificação do andar

Definições e materiais

• Ponto e cabo telefônico

- Cabos telefônicos
 - Fio FI
 - Construção: O fio é composto por condutores de cobre estanhado recozido de 0,60mm de diâmetro nominal, isolados com PVC. Dois ou três condutores isolados são torcidos juntos.
 - Aplicação: O fio FI é indicado para ligações internas de aparelhos telefônicos.

- · Cabos telefônicos
 - Fio FI

Tipo de fio	Diâmetro nominal do par (mm)	Número de condutores	Peso líquido nominal (kg/km)	Acond. rolo (m)
FI-60 (0,60mm)	3,5	2	11	200

- Cabos telefônicos
 - Cabos telefônicos para rede interna (CCI)
 - Cabo que interliga a caixa de distribuição aos pontos telefônicos.

Definições e materiais

- · Cabos telefônicos
- Cabo CCI

Especificações

Tipo de fio	Diâmetro externo nominal (mm)	Massa líquida nominal (kgf)	Acondicionamento rolo (m)			
CCI 50 - 1	2,80	10,00	200			
CCI 50 - 1 + T	2,80	11,50	200			
CCI 50 - 2	3,80	16,50	200			
CCI 50 - 3	4,00	21,50	200			
CCI 50 - 4	4,50	27,30	200			
CCI 50 - 5	5,00	33,00	200			
CCI - 6	5,20	38,00	200			
T – Terra – Condutor estanhado 0,50 mm de diâmetro						

- · Cabos telefônicos
- Cabo CCI

Identificação dos Condutores

Número do par	Co	ores
Numero do par	Condutor A	Condutor B
1	Branco	Azul
2	Branco	Laranja
3	Branco	Verde
4	Branco	Marrom
5	Branco	Cinza
6	Encarnado	Azul

- Cabos telefônicos
 - Cabos telefônicos para rede interna (CI)
 - Cabo que interliga a caixa de distribuição geral às caixas de distribuição. Devem ser com condutores de cobre estanhado, de 0,5 mm de diâmetro.

- Cabos telefônicos
- Cabo CI

Designação do Cabo CI-XX-YY-CM

CI – Cabo interno XX – Bitola (40, 50 ou 60)

YY - Número de pares

CM - Classe de retardância à chama

Designação	Número de pares	Diâmetro externo máximo (mm)	Comprimento nominal da bobina (m)
CI-50-10	10	10	1000
CI-50-20	20	20	1000
CI-50-30	30	15	1000
CI-50-50	50	18,5	1000
CI-50-100	100	24,5	1000
CI-50-200	200	34	500
CI-50-300	300	40	500

Definições e materiais

· Cabos telefônicos - Cabo CI

Dados Construtivos

Cabo	Número de pares	Diâmetro externo (mm)	Massa líquida (kg/km)	Embalagens bobinas (m)
CI 40	10 20 30 50 75 100 150 200	6.50 8.50 10.00 11.50 14.00 15.00 21.50	65 105 145 220 305 380 600 765	1000 1000 1000 1000 1000 1000 500 500
CI 50	10	8,50	95	1000
	20	10,00	145	1000
	30	12,00	205	1000
	50	14,50	310	1000
	75	15,50	425	1000
	100	18,50	550	1000
	150	22,50	850	1000
	200	25,50	1095	100
CI 60	10	9,00	120	1000
	20	11,50	195	1000
	30	13,50	270	1000
	50	16,00	410	1000
	75	19,00	685	1000
	100	21,00	750	600
	200	30,50	1525	500

· Cabos telefônicos - Cabo CI

Identificação dos Condutores

Número	Cores		Código de	Número	Cores		Código de
do par	Condutor A	Condutor B	cores	do par	Condutor A	Condutor B	cores
1	Branco	Azul	B-Az	13	Preto	Verde	P-V
2	Branco	Laranja	B-L	14	Preto	Marrom	P-M
3	Branco	Verde	B-V	15	Preto	Cinza	P-C
4	Branco	Marrom	B-M	16	Amarelo	Azul	Am-Az
5	Branco	Cinza	B-C	17	Amarelo	Laranja	Am-L
6	Encarnado	Azul	E-Az	18	Amarelo	Verde	Am-V
7	Encarnado	Laranja	E-L	19	Amarelo	Marrom	Am-M
8	Encarnado	Verde	E-V	20	Amarelo	Cinza	Am-C
9	Encarnado	Marrom	E-M	21	Violeta	Azul	Vt-Az
10	Encarnado	Cinza	E-C	22	Violeta	Laranja	∨t-L
11	Preto	Azul	P-Az	23	Violeta	Verde	Vt-V
12	Preto	Laranja	P-L	24	Violeta	Marrom	∨t-M
				25	Violeta	Cinza	Vt-C

Definições e materiais

· Cabos telefônicos - Cabo CI

- Cabos telefônicos
 - Fio FE
 - Construção: O fio é composto por condutores de bronze com 1,00 ou 1,60mm de diâmetro nominal. Dois condutores recebem uma capa de polietileno ou PVC na cor preta, formando uma figura "8", resistente à radiação ultra violeta

- Aplicação: Estes fios são indicados para derivação a partir das caixas de distribuição até a entrada do assinante.
- Instalação: Indicados para instalação aérea auto sustentada.

- · Cabos telefônicos
 - Fio FE

	Diâmetro nominal do fio (mm)	Diâmetro nominal do condutor (mm)	Peso líquido nominal (kg/km)	7010	Tipo de isolação
FE-100	3,4 x 6,9	1,00	40	400	PVC
FE-160	4,0 x 8,0	1,60	60	400	PE

- Cabos telefônicos
 - Cabos Telefônicos CCE-APL
 - devem ser utilizados em instalações aéreas ou subterrâneas para interligar edificações. São constituídos de condutores de cobre de 0,5 mm de diâmetro, isolados em polietileno e protegido por uma capa APL.

Definições e materiais

Cabos telefônicos CCE-APL
 Designação do Cabo CCE-APL-XX-YY

CCE - Cabo telefônico externo isolado em plástico

APL – Capa APL

XX - Bitola (50 ou 65)

YY – Número de pares

Código de fabricação	Indicação em projeto	Número de pares	Diâmetro externo máximo (mm)	Compr-mento nominal bobina (m)
CCE-APL-50-2	CCE-2	2	7,5	500
CCE-APL-50-3	CCE-3	3	8,0	500
CCE-APL-50-4	CCE-4	4	8,5	500
CCE-APL-50-5	CCE-5	5	9,0	500
CCE-APL-50-6	CCE-6	6	9,5	500

• Cabos telefônicos CCE-APL

Dados Construtivos

Cabo	Número de pares	Diâmetro externo máximo (mm)	Massa líquida (kg/km)	Embalagens bobinas (m)	
	2	8,5	43	2000	
	3	8,5	51	2000	
CCE-APL 50	4	9,0	57	2000	
	5	9,5	67	2000	
	6	10,0	74	2000	
	2	9,5	54	2000	
_	3	10,0	66	2000	
CCE-APL 65	4	10,5	78	2000	
_	5	11,0	89	2000	
_	6	12,0	100	2000	

Definições e materiais

· Cabos telefônicos CCE-APL

Identificação dos Condutores

Número do nos	Co	ores
Número do par	Condutor A	Condutor B
1	Branco	Azul
2	Branco	Laranja
3	Branco	Verde
4	Branco	Marrom
5	Branco	Cinza
6	Encarnado	Azul

- Cabo telefônico CTP-APL
 - Devem ser instalados aéreos ou subterrâneos, interligando edificações construídas dentro de um mesmo terreno. É constituído de condutores de cobre isolados com polietileno e polipropileno e protegido por uma capa APL.

Definições e materiais

Cabo telefônico CTP-APL

Designação do Cabo CTP-APL-XX-YY

CTP - Cabo telefônico com isolamento em Polietileno

APL - Capa APL

XX - Bitola (40, 50, 65 ou 90)

Dados Construtivos		YY – Número de pares					
Cabo	Número de pares	Diâmetro externo (mm)	Massa líquida (kg/km)	Embalagens bobinas (m)			
	10	12,0	99	2000			
	20	14,0	135	2000			
	30	15,5	175	2000			
	50	18,0	255	2000			
	75	21,0	340	2000			
	100	23,0	430	2000			
	200	29,0	780	2000			
CTP-APL 40	300	34,0	1130	2000			
	400	39,0	1460	1000			
	600	47,0	2140	1000			
	900	50,0	3150	500			
	1200	56,0	4150	500			
	1500	62,0	5150	400			
	1800	67,0	6100	400			
	2400	77,5	8050	400			

• Cabo telefônico CTP-APL

Identificação dos Condutores

Número	Cores		Código de	Número	Co	Código de		
do par	Condutor A	Condutor B	cores	do par	Condutor A	Condutor B	cores	
1	Branco	Azul	B-Az	13	Preto	Verde	P-V	
2	Branco	Laranja	B-L	14	Preto	Marrom	P-M	
3	Branco	Verde	B-V	15	Preto	Cinza	P-C	
4	Branco	Marrom	B-M	16	Amarelo	Azul	Am-Az	
5	Branco	Branco Cinza B-C		17	Amarelo	Laranja	Am-L	
6	Encarnado	Azul	E-Az	18	Amarelo	Verde	Am-V	
7	Encarnado	Laranja	E-L	19	Amarelo	Marrom	Am-M	
8	Encarnado	Verde	E-V	20	Amarelo	Cinza	Am-C	
9	Encarnado	Marrom	E-M	21	Violeta	Azul	Vt-Az	
10	Encarnado	Cinza	E-C	22	Violeta Laranja		Vt-L	
11	Preto	Azul	P-Az	23	Violeta	Verde	Vt-V	
12	Preto	Laranja	P-L	24	Violeta	Marrom	Vt-M	
				25	Violeta	Cinza	Vt-C	

O projeto

- O projeto em si é constituído dos seguintes documentos necessários à sua aprovação:
 - a Memorial descritivo do projeto.
 - b Plantas da tubulação secundária.
 - c Esquemático das tubulações primárias e de entrada.
 - d Desenhos de detalhes.
 - e Planta de localização do edifício.

Fases do projeto

- Determinação da localização de cada ponto telefônico (levantamento da quantidade de pontos telefônicos).
- Determinação da localização do distribuidor geral telefônico.
- Encaminhamento (trajetos) de tubulação e fios/cabos dentro da edificação.
- · Dimensionamento da entrada.

- Determinação da quantidade de pares telefônicos
 - Os critérios para a previsão de pontos telefônicos são fixados em função do tipo da edificação e do uso a que se destina.

Determinação da quantidade de pontos

Tipos de Edificação	Número Mínimo de PT
Residencial/Predial	Até 2 quartos: 1 PT Até 3 quartos: 2 PT Acima: 3 PT
Lojas	1 PT por 50m2
Escritórios	1 PT por 10m2
Indústrias	Escritório: 1 PT por 10m2 Produção: estudar o caso
Cinemas, Teatros, Mercados, Hotéis	Fazer estudos para cada caso
Habitação Popular	1 PT

- Localização das tomadas telefônicas.
 - Normalmente um ponto em cada quarto e outro na sala.
 - A localização deve ser avaliada de acordo com o lay-out do local.
 - Em escritórios os pontos devem ser distribuídos igualmente ao longo do perímetro.
 - A localização dos pontos no piso dependerá do lay-out dos móveis.

Área de Construção	Casas não Pertencentes a Conjuntos Habitacionais do tipo Popular	Casas Pertencentes a Conjuntos Habitacionais do tipo Popular
Menor ou igual a 60 m2	Sala ou Copa Quarto de Maior Área	Sala ou Copa
Maior que 60 m2 e Menor que 150 m2	Sala(s) Copa Quartos Escritório	Sala ou Copa Quarto de Maior Área
Maior ou Igual a 150 m2	Cozinha (Opcional) Área Externa (Opcional) Outros (Opcional)	

- Nas dependências das edificações residenciais, a localização das caixas de saída deve ser feita de acordo com os seguintes critérios:
 - Sala(s)
 - à(s) caixa(s) de saída deve(m) ser localizada(s) na(s) parede(s) e a 30cm do piso acabado.
 - Escritório
 - a caixa de saída deve ser localizada na parede próxima onde será posicionada a mesa e a 30cm do piso acabado.
 - Copa
 - a caixa de saída deve ser localizada na parede próxima à cozinha, a 150cm do piso acabado.
 - Quarto(s)
 - a(s) caixa(s) de saída deve(m) ser localizada(s) na parede onde provavelmente será posicionada a cabeceira da cama, ao lado desta e a 30cm do piso acabado e outra em frente à cama.
 - Cozinha
 - a caixa de saída deve ser localizada na parede, a 150cm do piso acabado, não devendo ser posicionada nos locais onde provavelmente serão instalados o fogão, a geladeira, o forno, a pia ou armários.

- O projeto de rede secundária em edifícios residenciais consiste em prever fios FI -60 R para interligação de cada apartamento à caixa de distribuição.
- A quantidade de fios FI 60-R para alimentação de cada apartamento deve ser igual ao número de pontos telefônicos previstos para aquele apartamento.
- Os cabos CCI -2P previstos para um apartamento devem interligar as caixas de saída desse apartamento de forma seqüencial e devem estar ligados nas tomadas em todas as caixas. Cada um dos pares de fios do cabo CCI -2P deve ter uma identificação (numeração ou contagem) específica.
- Toda caixa que atende até 5 pontos telefônicos é considerada parte da rede secundária.

Quantidade e localização dos pontos telefônicos

• Exemplo...

- O projeto da rede secundária em escritórios e área comercial / industrial consiste em prever um cabo CCI -2 pares para cada caixa de saída, independentemente da quantidade de pontos necessários para atender a área.
- A previsão da quantidade de pontos deve ser utilizada para dimensionar os cabos da rede primária.
- Com o objetivo de organizar estes cabos dentro da caixa de distribuição, eles devem ser terminados também em blocos internos.

Exemplo...

Fases do projeto

- Determinação da localização de cada ponto telefônico (levantamento da quantidade de pontos telefônicos).
- Determinação da localização do distribuidor geral telefônico.
- Encaminhamento (trajetos) de tubulação e fios/cabos dentro da edificação.
- · Dimensionamento da entrada.

- · Localização do DG
 - A caixa, obrigatoriamente, deverá estar localizada no andar térreo.
 - A caixa não deve ser localizada dentro de salões de festas ou em outras áreas que possam acarretar dificuldades de acesso à mesma.
 - Em prédios de grande porte, pode existir uma sala destinada ao DG e a parte de telecomunicações.

Determinação do DG

• Exemplo...

- · As salas do DG devem ser localizadas:
 - No andar térreo.
 - Em subsolos que n\u00e3o estejam sujeitos a inunda\u00f3\u00f3es, umidade e sejam bem ventilados.
 - Em construção específica, situada no mesmo terreno de uma edificação constituída de vários blocos, tais como indústrias, campus universitário, fábricas etc.
 - Em locais de uso comum da edificação.
 - Sempre que possível, imediatamente abaixo do poço de elevação (figura 66).

Determinação do DG

Nº DE	SALA DE QUIPAMENTOS (SEQ)							
PONTOS TELECOMUN.	DIMENSÃO (m)	ÁREA MÍN. (m2)	PRANCHA DE MADEIRA (m)	DIMENSÃO (m)				
De 289 a 400	3 x 7	20	2 x 5	2 x 3				
401 a 800	4 x 8	32	2 x 6	2 x 4				
801 a 1.200	8 x 5	40	2 x 7	2 x 5				
Acima de 1.200	10 x 5	50	2 x 8	2,5 x 6				

- Localização das caixas de distribuição
 - Será colocada em determinados andares para atendimento estratégico em outros andares vizinhos.
 - Como regra geral, cada caixa deve atender a um andar abaixo e um acima daquele em que estiver localizada, salvo as últimas caixas das prumadas, que poderão atender até dois andares para cima.

Determinação do DG

Número de andares	ANDARES										
	т	3	6	9	12	15	18	21	24	27	etc
Até 2	Х										
3 e 4	Х	Х									
5 a 7	Х	Х	Х								
8 a 10	Х	Х	х	х							
11 a 13	Х	Х	х	х	Х						
14 a 16	Х	Х	х	х	Х	Х					
17 a 19	Х	Х	Х	Х	Х	Х	Х				
20 a 22	Х	Х	Х	Х	Х	Х	Х	Х			
23 a 25	Х	Х	Х	Х	Х	Х	Х	Х	Х		
26 a 28	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
etc.											

- Localização das caixas de distribuição
 - Para indicar como as caixas serão distribuídas ao longo do prédio, utiliza-se a prumada..
 - Serve como esquema de como serão distribuídos os condutores e caixas de distribuição ao longo da vertical de um prédio.

Fases do projeto

- Determinação da localização de cada ponto telefônico (levantamento da quantidade de pontos telefônicos).
- Determinação da localização do distribuidor geral telefônico.
- Encaminhamento (trajetos) de tubulação e fios/cabos dentro da edificação (prumada).
- · Dimensionamento da entrada.

- Prumada
 - Pode ter basicamente dois tipos de configuração:

• Prumada direcionada

Trajeto das tubulações

• Prumada semi direcionada

- Distribuição primária
 - Toda caixa que tenha mais de seis pontos telefônicos sendo atendidos diretamente por ela, faz parte da rede primária e nela deve ser distribuído um cabo telefônico.
 - Os pontos telefônicos previstos para um pavimento podem estar distribuídos, dentro do pavimento, entre diversas caixas de distribuição. Estas caixas de distribuição são ligadas à caixa principal da prumada. Estas ramificações que partem da caixa principal da prumada são partes integrantes da rede primária do prédio.

Trajeto das tubulações

Ramificações da caixa principal direcionada

Quantidade Ideal de Pares em Cada Caixa de Distribuição

Após dfinir o tipo de configuração que a rede terá, o próximo passo do desenvolvimento do projeto da rede primária é a definição da quantidade de pares terminados em cada caixa de distribuição.

De posse da quantidade de pontos que cada caixa de distribuição deve atender e/ou que está nela acumulada (dado obtido no projeto de tubulação), obtém-se a quantidade de pares que devem alimentar aquela caixa e também a quantidade de pares que devem ser nela distribuídos. Para isto basta dividir estes dois valores (pontos acumulados na caixa e pontos atendidos pela caixa) por 0,8. Em projeto deve ser indicado através de contagem A B C D onde:

ARCD

- A Quantidade de pontos atendidos pela caixa;
- B Quantidade de pares previstos a serem distribuídos na caixa;
- C Quantidade de pontos acumulados na caixa;
- D Quantidade de pares para alimentar a caixa.

- Exemplo...
 - Caixa A distribuirá para 9 pontos.
 - Caixa B é uma caixa de passagem.
 - Caixa C distribuirá para 8 pontos.

- Exemplo...
- Caixa A

a - Quantidade de pares a serem distribuídos na caixa:

 $\frac{9}{0.8} = 12 \text{ pares}$

b - Quantidade de pares para alimentar a caixa:

$$\frac{9}{0.8}$$
 = 12 pares

- Exemplo...
- Caixa A

- Exemplo...
- Caixa B (como é caixa de passagem)
- a Quantidade de pares a serem distribuídos na caixa:

 $\frac{0}{0.8} = 0$

b - Quantidade de pares para alimentar a caixa:

$$\frac{9}{0.8} = 12 \text{ pares}$$

- Exemplo...
- · Caixa A B

- Exemplo...
- Caixa C (como a distribuição é direcionada)
- a Quantidade de pares a serem distribuídos na caixa:

$$\frac{8}{0.8} = 10 \text{ pares}$$

b - Quantidade de pares para alimentar a caixa:

$$\frac{8}{0.8} = 10 \text{ pares}$$

- Exemplo...
- Definição da capacidade dos cabos
 - Como os cabos são fabricados com as quantidades de pares padronizadas.
 - O cabo interno deve ter capacidade igual ou imediatamente superior ao valor determinado como quantidade ideal de pares para alimentar a caixa

- Exemplo
- Definição da capacidade dos cabos

Trecho 1
 Cabo a ser distribuído:
 Valor calculado = 12 pares
 Cabo a ser utilizado = 20 pares

Trecho 2 = Trecho 3 = Trecho 4 Cabo alimentador: Valor calculado = 12 pares Cabo a ser utilizado = 20 pares Trecho 5 Cabo a ser distribuído: Valor calculado = 10 pares Cabo a ser utilizado = 10 pares

Trecho 6
Cabo alimentador:
Valor calculado = 10 pares
Cabo a ser utilizado = 10 pares

Trajeto das tubulações

Cabo a ser utilizado....

Designação	Número de pares	Diâmetro externo máximo (mm)	Comprimento nominal da bobina (m)
CI-50-10	10	10	1000
CI-50-20	20	20	1000
CI-50-30	30	15	1000
CI-50-50	50	18,5	1000
CI-50-100	100	24,5	1000
CI-50-200	200	34	500
CI-50-300	300	40	500

 E se nesse exemplo a prumada fosse semidistribuída...

 Em cada andar serão distribuídos 20 pontos telefônicos, dimensionar os cabos necessários e os tamanhos das caixas da rede primária.

Trajeto das tubulações

 Os tamanhos das caixas são dados pela tabela abaixo.

Pontos Acumulados na Caixa	Caixa de Distribuição Geral	Caixa de Distribuição	Caixa de Passagem
Até 5	Nº 3	-	Nº 2
De 6 a 21	Nº 4	Nº 3	Nº3
De 22 a 35	Nº 5	Nº 4	Nº3
De 36 a 70	Nº 6	Nº 5	Nº4
De 71 a 140	Nº 7	Nº 6	Nº 5
De 141 a 280	Nº 8	Nº 7	Nº 6
Acima de 280	Sala e Poço de Elevação		

	DIMENSÕES INTERNAS (cm)								
CAIXA	ALTURA	LARGURA	PROFUNDIDADE						
1	10	10	5						
2	20	20	12						
3	40	40	12						
4	60	60	12						
5	80	80	12						
6	120	120	12						
7	150	150	15						
8	200	200	20						

- · Tamanhos das caixas
 - Para as caixas B e C
 - No de pontos acumulados = 20
 - Tamanho No 3 40 x 40 x 12 cm.
 - Para a caixa A
 - No de pontos acumulados = 60
 - Tamanho No 5 80 x 80 x 12 cm.

Trajeto das tubulações

· Dimensionamento de eletrodutos

Pares de fios na seção	Diâmetro Interno (mm)	Diâmetro Nominal (mm)	Diâmetro Nominal (pol)	Quantidade
Até 5	19	25	3/4	1
De 6 a 21	25	32	1	1
De 22 a 35	38	50	1 1/2	1
De 36 a 140	50	60	2	2
De 141 a 280	75	85	3	2
Acima de 280		Poço de	e elevação	

- No exemplo...
 - Trecho A para B e A para C
 - No de pares no cabo 30 pares.
 - 1 Φ 50mm ou 1.1/2"
 - Trecho DG para A
 - No de pares no cabo 100 pares
 - 2 Ф 60mm ou 2"

Fases do projeto

- Determinação da localização de cada ponto telefônico (levantamento da quantidade de pontos telefônicos).
- Determinação da localização do distribuidor geral telefônico.
- Encaminhamento (trajetos) de tubulação e fios/cabos dentro da edificação.
- Dimensionamento da entrada.

- Dimensionamento da entrada
 - Definir se a entrada será aérea ou subterrânea.
 - · Visto no início do curso.

- Tubulação de entrada
 - Subterrânea
 - O edifício possuir mais que 21 PT.
 - A rede da Concessionária for subterrânea.
 - · Por motivos estéticos.
 - Caixa de entrada do edifício
 - Caixa subterrânea, situada em frente ao edifício, junto ao alinhamento do predial, destinada a permitir a entrada do cabo subterrâneo da rede externa da concessionária.

• Entrada subterrânea

- Para o projeto da entrada subterrânea os seguintes passos devem ser seguidos:
 - 1 Dimensionar a caixa subterrânea de entrada em função dos valores determinados pela tabela.

PONTOS DE	TIPO	DIMI	DIMENSÕES (cm)			
TELECOMUNIC. DA EDIFICAÇÃO	DE CAIXA	сомр.	LARG.	PROFUN.		
Até 14	R0	40	40	50		
De 15 a 58	R1	60	35	50		
De 59 a 288	R2	107	52	50		
De 289 a 1000	R3	120	120	130		
Acima de 1000	I	210	130	190		

- 2 Locar a caixa subterrânea de entrada no passeio, obedecendo aos afastamentos indicados na tabela.
 - a caixa subterrânea de entrada não pode ser posicionada em locais transitáveis por veículos.

Especificação da entrada

• Entrada subterrânea

LARGURA DO PASSEIO (L) ONDE SERÁ CONSTRUÍDA A CAIXA SUBTERRÂNEA (m)	DISTÂNCIA (d) ENTRE A PAREDE EXTERNA DA CAIXA SUBTERRÂNEA E O ALINHAMENTO PREDIAL (m)
L < 2,00	0,45
2,00 < L < 3,00	0,70
3,00 < L < 3,75	1,10
3,75 < L < 4,50	1,35
4,50 < L < 6,00	1,80
6,00 < L	2,10

- 3 Determinar o trajeto da tubulação de entrada, desde a caixa de entrada do edifício até o distribuidor geral (DGT) ou sala de entrada de telecomunicações (SET)
 - projetar caixas de passagens, se necessárias, para limitar o comprimento do lance e/ou o número de curvas.
 - Os comprimentos máximos admitidos para a tubulação subterrânea de entrada são determinados em função da quantidade de curvas existentes
 - Em cada trecho da tubulação podem ser utilizadas, no máximo, duas curvas (nunca superiores a 90º), sendo que a distância mínima entre as mesmas deve ser de 2m

Especificação da entrada

COMPRIMENTOS MÁXIMOS DAS TUBULAÇÕES SUBTERRÂNEAS DE ENTRADA

TRECHOS	COMPRIMENTOS MÁXIMOS HORIZONTAIS		
Retilíneos	40m		
Com uma curva	30m		
Com duas curvas	25m		

 4 - Após determinado o trajeto da tubulação subterrânea de entrada, deve-se dimensionála aplicando-se a tabela.

PONTOS DE TELECOMUNIC.		NTRADA AÉREA	ENTRADA SUBTERRÂNEA		
EM EDIFICAÇÕES	ø	Nº DE DUTOS	ø	Nº DE DUTOS	
Até 14	50	1	50	1	
15 a 58	60	1	60	1	
59 a 144	75	1	75	2	
145 a 288	1	-	100	2	
289 a 500	-	-	100	3	
501 a 1000	1	-	100	4	
Acima de 1000	-	-	100	5	

Especificação da entrada

• Exemplo de entrada subterrânea

• Entrada aérea

Especificação da entrada

 A entrada aérea pode ser projetada de três modos:

- A entrada aérea pode ser projetada de três modos:
 - Diretamente pela fachada. (distância < 5m)

- A entrada aérea pode ser projetada de três modos:
 - Pela fachada, passando por poste de acesso.
 (distância > 5m)

- A entrada aérea pode ser projetada de três modos:
 - Pelo poste de acesso com descida de eletroduto. (distância > 5m)

- A entrada aérea diretamente pela fachada.
 - É utilizada em prédios construídos a uma distância inferior a 5m do alinhamento predial.
 - mas nunca em nível inferior ao da rua.

- A entrada aérea diretamente pela fachada.
 - Locar a posição exata em que a tubulação de entrada deve ser instalada na fachada do edifício.
 - Ver tabela...

Especificação da entrada

 A entrada aérea diretamente pela fachada.

SITUAÇÕES TÍPICAS DE ENTRADAS AÉREAS	ALTURA MÍNIMA DA FERRAGEM EM RELAÇÃO AO PASSEIO	ALTURA MÍNIMA DO ELETRODUTO DA ENTRADA EM RELAÇÃO AO PASSEIO			
Posteação do mesmo lado do edifício	3,50 m	3,00 m			
Posteação do outro lado da rua	5,40 m	3,00 m			
Edifício em nível inferior ao da rua	Utilizar poste de acesso				

- A entrada aérea diretamente pela fachada.
 - O cabo de entrada não deve atravessar terrenos de terceiros.
 - Após definida a posição do eletroduto, determinar o trajeto da tubulação de entrada, desde o ponto determinado na fachada até à caixa de distribuição geral de telecomunicações (CDGT).
 - Projetar caixas de passagem, se necessárias, para limitar o comprimento do lance e do número de curvas.
 - O diâmetro nominal do duto de entrada não deve ser inferior a 50mm

- A entrada aérea pela fachada, passando por poste de acesso
 - utilizada em prédios construídos a uma distância igual ou superior a 5m do alinhamento predial.
 - em prédios construídos em nível inferior ao da rua.
 - quando o cabo de entrada atravessar terrenos de terceiros, se instalado sem o poste de acesso.

- A entrada aérea pela fachada, passando por poste de acesso
 - Locar, no limite predial, um poste de acesso com altura suficiente para atender aos valores estabelecidos na tabela abaixo.

SITUAÇÕES TÍPICAS DE ENTRADAS AÉREAS	ALTURA MÍNIMA DA FERRAGEM EM RELAÇÃO AO PASSEIO	DA ENTRADA EM	,0,80m	- -	ENERGIA ELÉTRICA INSTALAR ISOL DE PORCELAN		= =	1x850mm
Posteação do mesmo lado do edifício	3,50 m	3,00 m	,50m		3,50m			
Posteação do outro lado da rua	5,40 m	3,00 m	۲,	T	 	3,DOm		7
Edifício em nível inferior ao da rua	Utilizar pos	te de acesso	_					- K.

- A entrada aérea pela fachada, passando por poste de acesso
 - Após definida a posição do poste, determinar o trajeto da tubulação de entrada, desde o ponto determinado na fachada até à caixa de distribuição geral de telecomunicações (CDGT), projetando caixas de passagem, se necessárias, para limitar o comprimento do lance e do número de curvas.
 - O diâmetro nominal do duto de entrada não deve ser inferior a 50mm.

- Os comprimentos dos lances de tubulações internas são limitados para facilitar o puxamento dos fios e cabos no duto.
- O principal fator limitante para o comprimento das tubulações é a quantidade de curvas existentes entre as caixas.
- Em cada trecho de tubulação entre duas caixas podem ser utilizadas, no máximo, duas curvas (nunca superior a 90º) sendo que a distância mínima entre as duas curvas deve ser de 2m.

- Os comprimentos máximos admitidos para as tubulações primárias e secundárias são determinados em função da quantidade de curvas existentes.
- Em caso de comprimentos superiores ao máximo permitido, deve(m) ser projetada(s) caixa(s) de passagem.

Trechos	Comprimentos Máximos			
Treellos	Tubulações Verticais	Tubulações Horizontais		
Retilíneos	15m	24m		
Com uma curva	13m	20m		
Com duas curvas	12m	18m		

- A entrada aérea pelo poste de acesso com descida de eletroduto.
 - é utilizada em edifícios construídos a uma distância igual ou superior a 5m do alinhamento predial.
 - em edifícios construídos em nível inferior ao da rua.
 - nos casos onde não se obtêm os afastamentos exigidos pela tabela
 - ou se o construtor assim o decidir por razões estéticas.

- A entrada aérea pelo poste de acesso com descida de eletroduto.
 - Locar, no limite predial, um poste de acesso com altura suficiente para atender aos valores estabelecidos na tabela abaixo.

SITUAÇÕES TÍPICAS DE ENTRADAS AÉREAS	ALTURA MÍNIMA DA FERRAGEM EM RELAÇÃO AO PASSEIO	ALTURA MÍNIMA DO ELETRODUTO DA ENTRADA EM RELAÇÃO AO PASSEIO		
Posteação do mesmo lado do edifício	3,50 m	3,00 m		
Posteação do outro lado da rua	5,40 m	3,00 m		
Edifício em nível inferior ao da rua	Utilizar pos	te de acesso		

- A entrada aérea pelo poste de acesso com descida de eletroduto.
 - Determinar o trajeto da tubulação de entrada (diâmetro nominal igual a 50mm), desde o poste de acesso até à caixa de distribuição geral.
 - Projetando caixas de passagens, se necessárias, para limitar o comprimento do lance e o número de curvas, conforme os critérios vistos anteriormente.

