1

Quantum Mechanics Solutions 3:

PARTICLE IN A BOX

- [easy] 1. $\sin(\theta) = 0$ for $\theta = n\pi$, where n is any integer. Thus, $\psi(x = L) = \sin\left(\frac{2\pi L}{\lambda}\right) = 0$ for $\frac{2\pi L}{\lambda} = n\pi$, for any integer n. Solving this equation for λ tells us that the wavelength can only take on certain discrete values, which we will denote as λ_n , where $\lambda_n = \frac{2L}{n}$, for n = 1, 2, 3, (Think about why we have excluded the value n = 0 and all negative integer values of n.)
- [medium] 2. For these allowed values of wavelength, the corresponding allowed wavefunctions are $\psi_n(x) = \sin\left(\frac{n\pi x}{L}\right)$. For n = 1 this is $\psi_1(x) = \sin\left(\frac{\pi x}{L}\right)$, for n = 2 this is $\psi_2(x) = \sin\left(\frac{2\pi x}{L}\right)$, and so on. The corresponding probability functions are $P_n(x) = \left|\psi_n(x)\right|^2 = \sin^2\left(\frac{n\pi x}{L}\right)$. See sketch:

[hard] 3. From the de Broglie relation $p=\frac{h}{\lambda}$ we have the allowed momentum values: $p_n=\frac{h}{\lambda_n}=\frac{hn}{2L}$, for n = 1, 2, 3, Thus, from the relation $E=\frac{p^2}{2m}$, we have the allowed energy values:

 $E_n = \frac{p_n^2}{2m} = \frac{h^2 n^2}{8mI^2}$. The lowest allowed energy (zero point energy)

is therefore $E_{zeropoint}=E_{1}=rac{h^{2}}{8mL^{2}}$. (Note that in a Newtonian

universe, Planck's constant would be zero (h = 0), and we would have $E_{zeropoint} = 0$) As the box is made smaller (L decreases), the zero point energy increases. Why would squeezing the box to make it smaller give it more energy?