Matematica discreta

Stefano Mecocci2018/2019

Indice

1	1 Insiemi		3
	1.1	Rappresentazioni	3
	1.2	Basi	3
	1.3	Sottoinsiemi	4

1 Insiemi

L'insieme è la base su cui il resto delle strutture matemmatiche sono definite. Esso è definito come una collezione di oggetti.

1.1 Rappresentazioni

Il modo più elementare per rappresentare gli insiemi consiste nell'usare il diagramma di Venn, ma i metodi più usati sono: di elencazione e di proprietà. Rappresentazione per elencazione

$$A = \{1, 2, 3, \dots\} \tag{1}$$

Rappresentazione per proprietà

$$A = \{ x \in X \mid P(x) \} \tag{2}$$

1.2 Basi

Negli appunti sono presenti alcuni simboli speciali di seguito spiegati:

Quando si "sbarra" un simbolo in generale si intende l'opposto (es. \neq significa non uguale)

Attenzione: Bisogna stare attenti ad alcune denotazioni, ovvero tenendo conto che $A = \{a, b, c\}$:

- $\emptyset \neq \{\emptyset\}$
- $a \in A$ è vero
- $\{a\} \subseteq A$ è vero
- $\{a\} \in A \ \text{è falso}$

Inoltre sono presenti anche riferimenti ad insiemi conosciuti:

- $\mathbb{N} = \{0, 1, 2, 3, \ldots\}$ è l'insieme dei numeri naturali
- $\mathbb{Z} = \{\ldots -2, -1, 0, 1, 2, 3, \ldots\}$ è l'insieme dei numeri interi
- $\bullet \ \mathbb{Q} = \{ \frac{a}{b} \mid a,b \in \mathbb{Z} \ \mathrm{e} \ b \neq 0 \}$ è l'insieme dei numeri razionali
- \bullet \mathbb{R} è l'insieme dei numeri reali

Alcuni esempi per chiare i simboli, osservando la definizione dell'insieme B

$$B = \{ x \in \mathbb{Z} \mid x^2 < 1 \} \tag{3}$$

Si può affermare che:

- $1 \notin B$ è vera
- $\forall x \in B \mid x > 10$ è falsa

1.3 Sottoinsiemi

Prendendo come riferimento l'insieme

$$A = \{4, 6, 8, 10, 12, \ldots\} \tag{4}$$

si può affermare che $A \subseteq \mathbb{N}$ è vera in quanto dice che "A è un sottoinsieme di \mathbb{N} ". Se andiamo a controllare gli elementi presenti in A li ritroviamo in \mathbb{N} . Potremmo anche dire che:

- $\forall n \in A \mid n$ è un multiplo di 3 è falsa, infatti non è vero che **tutti** gli elementi di A sono multipli di 3
- $\exists n \in A \mid n$ è un multiplo di 3 è vera, infatti è vero che esiste almeno un elemento di A che sia multiplo di 3