College of Engineering Pune

Linear Algebra and Univariate Calculus(D.S.Y)

Tutorial 2

Vector Space, Subspace, Linear combination, Linearly dependence and Independence

- 1. Show that \mathbb{R}^n forms a vector space over R.
- 2. Show that set of all $n \times n$ matrices over \mathbb{R} i.e., $M_{n \times n}(\mathbb{R})$ forms a vector space over \mathbb{R} .
- 3. Show that set of all continuous functions from set of real numbers to set of real numbers i.e., $C(\mathbb{R}, \mathbb{R})$ forms a vector space over \mathbb{R} .
- 4. Which of the following forms subspaces?

(a)
$$S_1 = \{(x, y) \in \mathbb{R}^2 | x = y \}$$

(b)
$$S_2 = \{(x, y) \in \mathbb{R}^2 | x = 2y \}$$

(c)
$$S_3 = \{(x,y) \in \mathbb{R}^2 | x = cy, c \in \mathbb{R} \setminus 0\}$$

(d)
$$S_4 = \{(x, y) \in \mathbb{R}^2 | x = y + 1 \}$$

(e)
$$S_5 = \{(x, y) \in \mathbb{R}^2 | x = y + c, c \in \mathbb{R} \setminus 0 \}$$

(f)
$$S_6 = \{(x, y, z) \in \mathbb{R}^3 | x + y + z = 0 \}$$

(g)
$$S_7 = \{(x, y, z) \in \mathbb{R}^3 | x = y \text{ and } 2y = z\}$$

(h)
$$S_8 = \{(x, y, z) \in \mathbb{R}^3 | x + y = 3z \}$$

(i)
$$S_9 = \{(x, y, z) \in \mathbb{R}^3 | x = 0\}$$

- 5. Which of the following forms a subspace for $M_{n\times n}(\mathbb{R})$?
 - (a) Set of upper triangular matrices.
 - (b) Set of lower triangular matrices.
 - (c) Set of diagonal matrices.
 - (d) Set of scalar matrices.
 - (e) Set of matrices whose determinant is non-zero.
 - (f) Set of matrices whose determinant is zero.

- (g) Set of matrices whose trace (Sum of diagonal entries) is zero.
- (h) Set of matrices whose trace (Sum of diagonal entries) is non-zero.
- (i) Set of symmetric matrices.
- (j) Set of skew-symmetric matrices.
- 6. Which of the following forms subspaces for $C(\mathbb{R}, \mathbb{R})$.
 - (a) $S_9 = \{ f \in C(\mathbb{R}, \mathbb{R}) | f(0) = 0 \}$
 - (b) $S_9 = \{ f \in C(\mathbb{R}, \mathbb{R}) | f(0) = 1 \}$
 - (c) $S_9 = \{ f \in C(\mathbb{R}, \mathbb{R}) | f(x) = f(-x), \forall x \in \mathbb{R} \}$
 - (d) $S_9 = \{ f \in C(\mathbb{R}, \mathbb{R}) | f(x) = -f(-x), \forall x \in \mathbb{R} \}$
 - (e) $S_9 = \{ f \in C(\mathbb{R}, \mathbb{R}) | f(x+1) = f(x), \forall x \in \mathbb{R} \}$
- 7. Which of the following are subspaces of \mathbb{R}^{∞} .
 - (a) All sequence like (1,0,1,0,1,0,...) i.e., zero at even positions.
 - (b) All sequences $(x_1, x_2, x_3, ...)$ with $x_j = 0$ from some point onwards.
 - (c) All decreasing sequences: $x_{j+1} \leq x_j$ for each j.
- 8. If U and W are subspaces of a vactor space V then show that $U \cap W$ and U + W are also subspaces of V. What can you say about $U \cup W$, does it forms a subspace in general?
- 9. Construct a subset of the x-y plane in \mathbb{R}^2 that is:
 - (a) closed under vector addition and subtraction but not under scalar multiplication.
 - (b) closed under scalar multiplication but not under vector addition.
- 10. Express the given vector X as a linear combination of the given vectors A,B, and find the coordinates of X with respect to A,B.
 - (a) $X = {}^{t}(1,0), A = {}^{t}(1,1), B = {}^{t}(0,1)$
 - (b) $X = {}^{t}(2,1), \quad A = {}^{t}(1,-1), \quad B = {}^{t}(1,1)$
 - (c) $X = {}^{t}(1,0,0), A = {}^{t}(1,1,1), B = {}^{t}(-1,1,0), C = {}^{t}(1,0,-1)$
 - (d) $X = {}^{t}(1,1,1), A = {}^{t}(0,1,-1), B = {}^{t}(1,1,0), C = {}^{t}(1,0,2)$

- 11. Check linear independence and dependence of following vectors.
 - (a) $^{t}(1,2,3), ^{t}(0,0,0), ^{t}(1,0,0).$
 - (b) t(1,1,0), t(1,1,1), t(0,1,-1).
 - (c) $^{t}(0,1,1), ^{t}(0,2,1), ^{t}(1,5,3).$
 - (d) $^{t}(1,1,2), ^{t}(1,2,3), ^{t}(2,2,4).$
 - (e) $\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$, $\begin{bmatrix} 0 & 0 \\ 3 & 0 \end{bmatrix}$, $\begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix}$
 - $(f) \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 3 & 0 & 0 \\ 2 & 1 & 0 \end{bmatrix}$
- 12. Show that v_1, v_2, v_3 are independent but v_1, v_2, v_3, v_4 are dependent:

$$v_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, v_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, v_3 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, v_4 = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$$

- 13. If w_1, w_2, w_3 are independent vectors, show that the differences $v_1 = w_2 w_3, v_2 = w_1 w_3$, and $v_3 = w_1 w_2$ are dependent. (Hint: Find a combination of the v's that gives 0.)
- 14. If w_1, w_2, w_3 are independent vectors, show that the sum $v_1 = w_2 + w_3, v_2 = w_1 + w_3$, and $v_3 = w_1 + w_2$ are linearly independent.
- 15. Suppose v_1, v_2, v_3, v_4 are vectors in \mathbb{R}^3 .
 - (a) These four vectors are dependent because \dots
 - (b) The two vectors v_1 and v_2 will be dependent if ...
 - (c) The vectors v_1 and (0,0,0) are dependent because...
- 16. True or false. Justify
 - (a) Subset of linearly independent set is linearly independent.
 - (b) Subset of linearly dependent set is linearly dependent.
 - (c) Superset of linearly independent set is linearly independent.
 - (d) Superset of linearly dependent set is linearly dependent.