ST2132

AY23/24 SEM 1

github/jovyntls

worth knowing

given in formula sheet will be given

01. PROBABILITY

Expectation

for a function h

$$E\{h(X)\} = \begin{cases} \sum_{i=1}^n h(x_i) p_i & X \text{ is discrete} \\ \int_{-\infty}^\infty h(x) f(x) \, dx & X \text{ is continuous} \end{cases}$$

for joint distribution

$$\begin{array}{ll} \text{for } h: \mathbb{R}^2 \to \mathbb{R}, & E\{h(X,Y)\} = \\ \sum_{i=1}^I \sum_{j=1}^J h(x_i,y_j) p_{ij} & X \text{ is discrete} \\ \int_{-\infty}^\infty \int_{-\infty}^\infty h(x,y) f(x,y) \, dx \, dy & Y \text{ is continuous} \end{array}$$

Variance

variance,
$$\label{eq:var} \begin{split} \text{var}(X) &:= E\{(X-\mu)^2\} \\ &= E(X^2) - E(X)^2 \end{split}$$

standard deviation, $SD(X) := \sqrt{\operatorname{var}(X)}$

useful cases

- $\operatorname{var}(X c) = \operatorname{var}(X)$
- var(X) = cov(X, X)
- $\operatorname{var}(\sum_{i=1}^{N} a_i X_i) =$
- $\sum_{i=1}^N a_i^2 \operatorname{var}(X_i) + 2 \sum_{1 \leq i < j \leq N} a_i a_j \operatorname{cov}(X_i, X_j)$ variance of sum = sum of variances
- $\operatorname{var}(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} \operatorname{var}(x_i)$

Law of Large Numbers

LLN: for a function
$$h$$
, as realisations $r \to \infty$,

$$\frac{1}{r} \sum_{i=1}^{r} h(x_i) \to E\{h(X)\}$$
$$\bar{x} \to E(X), \quad v \to \text{var}(X)$$

monte carlo approximation: simulate x_1, \ldots, x_r from X. by LLN, as $r \to \infty$, the approximation becomes exact

Covariance

$$\text{let } \mu_X = E(X), \mu_Y = E(Y).$$

covariance

$$cov(X,Y) = E\{(X - \mu_X)(Y - \mu_Y)\}$$
$$= E(XY) - \mu_X \mu_Y$$
$$= cov(Y,X)$$

cov(W, aX + bY + c) = a cov(W, X) + b cov(W, Y)

$joint = marginal \times conditional distributions$

$$f(x,y) = f_X(x)f_Y(y|x)$$

= $f_Y(y)f_X(x|y), \quad x, y \in \mathbb{R}$

Independence

- X, Y are independent $\iff \forall x, y \in \mathbb{R}$, 1. $f(x,y) = f_X(x)f_Y(y)$
 - 2. $f_Y(y|x) = f_Y(y)$
- 3. $f_X(x|y) = f_Y(x)$
- X, Y are independent \Rightarrow
- E(XY) = E(X)E(Y)
- cov(X, Y) = 0

(the converse does not hold)

Conditional expectation

discrete case

$$E[Y|x_i] := \sum_{j=1}^{J} y_j f_Y(y_j|x_i)$$

$$var[Y|x_i] := \sum_{j=1}^{J} (y_j - E[Y|x_i])^2 f_Y(y_j|x_i)$$

continuous case

$$\begin{split} E[Y|x] &:= \int_{-\infty}^{\infty} y f_Y(y|x) \, dy \\ \text{var}[Y|x] &:= \int_{-\infty}^{\infty} (y - E[Y|x])^2 f_Y(y|x) \, dy \\ &= E(Y^2|x) - \{E(Y|x)\}^2 \end{split}$$

Distributions

if X is iid with expectation μ , SD σ and $S_n = \sum_{i=1}^n X_i$,

distribution of \boldsymbol{X}	E(X)	$\operatorname{var}(X)$
Bernoulli(p)	p	p(1-p)
Binomial(n, p)	np	np(1-p)
Geometric(n, p)	1/p	$(1-p)/p^2$
$Multinomial(n, \mathbf{p})$	$\begin{bmatrix} \stackrel{n'p'_1}{np_2} \\ \stackrel{:}{np_k} \\ \end{bmatrix}$	$ \begin{aligned} & \operatorname{var}(X_i) = np_i (1-p_i) \\ & \operatorname{var}(X) = \operatorname{covariance\ matrix} M \\ & \operatorname{with} m_{ij} = \\ & \left\{ \operatorname{var}(X_i) & \text{if } i = j \\ & \operatorname{cov}(X_i, X_j) & \text{if } i \neq j \\ \end{aligned} \right. $

- binomial: n coin flips (bernoulli) with probability p
- $X \sim Bin(n, p) \Rightarrow X_i \stackrel{i.i.d.}{\sim} Bernoulli(p)$ $P(X = k) = \binom{n}{k} p^k (1 p)^{n-k}$
- $\operatorname{cov}(X, n X) = -\operatorname{var}(X)$
- multinomial: tally of k possible outcomes (n events)
- $cov(X_i, X_i) < 0$
- $X_i \sim Bin(n, p_i), X_i + X_i \sim Bin(n, p_i + p_i)$

02. PROBABILITY (2)

Mean Square Error (MSE)

$$MSE = E\{(Y - c)^2\}$$

$$= var(Y) + \{E(Y) - c\}^2$$

$$\min MSE = var(Y) \text{ when } c = E(Y)$$
if Y and X are correlated:
$$MSE = var[Y|x] + \{E[Y|x] - c\}^2$$

mean MSE

Y is predicted from realisations x_1, \ldots, x_n

$$\frac{1}{n}\sum_{i=1}^{n} \operatorname{var}[Y|x_i] \approx E\{\operatorname{var}[Y|X]\}$$

random conditional expectations

- E[Y|X] is a r.v. which takes value E[Y|x] with probability/density $f_X(x)$
- var[Y|X] is a r.v. which takes value var[Y|x] with probability/density $f_X(x)$

$$\begin{split} E(E[X_2|X_1]) &= E(X_2) \\ \text{var}(E[X_2|X_1]) &+ E(\text{var}[X_2|X_1]) = \text{var}(X_2) \end{split}$$

CDF (cumulative distribution function)

• domain: \mathbb{R} ; codomain: [0,1]

Standard Normal Distribution

 $Z \sim N(0,1)$ has density function

$$\phi(z) = \frac{1}{\sqrt{2\pi}} \exp\{-\frac{z^2}{2}\}, \quad -\infty < z < \infty$$

$$\mathbf{CDF}, \, \Phi(x) = P(Z \le x) = \int_{-\infty}^{x} \phi(z) \, dz$$

• $E(Z^2) = 1$

general normal distribution

standardisation: $\frac{X-\mu}{\sigma} \sim N(0,1)$

Central Limit Theorem

as $n \to \infty$, the distribution of the standardised $S_n = \frac{S_n - n\mu}{\sqrt{n}\sigma}$ converges to N(0,1)for large n, approximately $S_n \sim N(n\mu, n\sigma^2)$

Distributions

chi-square (χ^2)

let $Z \sim N(0,1)$. \Rightarrow then $Z^2 \sim \chi^2_1$ (1 degree of freedom)

degrees of freedom = number of RVs in the sum

$$E(Z^2) = 1, \quad E(Z^4) = 3$$

 $var(Z^2) = E(Z^4) - \{E(Z^2)\}^2 = 2$

let
$$V_1,\ldots,V_n\stackrel{i.i.d.}{\sim}\chi_1^2$$
 and $V=\sum_{i=1}^nV_i$. then $V\sim\chi_n^2$
$$E(V)=n\quad {\rm var}(V)=2n$$

gamma

let shape parameter $\alpha > 0$, rate parameter $\lambda > 0$. The $Gamma(\alpha, \lambda)$ density is $\frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x}, \quad x > 0$

 $\Gamma(\alpha)$ is a number that makes density integrate to 1

$$E(X) = \frac{\alpha}{\lambda}, \quad \text{var}(X) = \frac{\alpha}{\lambda^2}$$

 $\Gamma(\alpha + 1) = \alpha \Gamma(\alpha)$

• if $X_1 \sim Gamma(\alpha_1, \lambda)$ and $X_2 \sim Gamma(\alpha_2, \lambda)$ are independent, then $X_1 + X_2 \sim Gamma(\alpha_1 + \alpha_2, \lambda)$

t distribution

let $Z \sim N(0,1)$ and $V \sim \chi_n^2$ be independent.

$$\frac{Z}{\sqrt{V/n}} \sim t_n$$

has a t distribution with n degrees of freedom.

- t distribution is symmetric around 0
- $t_n \to Z$ as $n \to \infty$ (because $\frac{V}{n} \to 1$)

F distribution

let $V \sim \chi_m^2$ and $W \sim \chi_n^2$ be independent.

$$\frac{V/m}{W/n} \sim F_{m,n}$$

has an F distribution with (m, n) degrees of freedom.

• even if m=n, still two RVs V,W as they are independent

IID Random Variables

let X_1, \ldots, X_n be iid RVs with mean \bar{X} .

sample variance,
$$S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$$

$$E(S^2) = \sigma^2 \quad \text{but} \quad E(S) < \sigma$$

more distributions:

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2_{n-1} \qquad \qquad \frac{\bar{X}-\mu}{\sigma/\sqrt{n}} \sim N(0,1) \\ \bar{X} \text{ and } S^2 \text{ are independent} \qquad \frac{\bar{X}-\mu}{S/\sqrt{n}} \sim t_{n-1}$$

$$\frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$$
$$\frac{\bar{X} - \mu}{S / \sqrt{n}} \sim t_{n-1}$$

Multivariate Normal Distribution

let μ be a $k \times 1$ vector and Σ be a *positive-definite* symmetric $k \times k$ matrix.

the random vector
$${m X}=(X_1,\dots,X_k)'$$
 has a multivariate normal distribution $N({\pmb \mu},{\pmb \Sigma})$ $E({\pmb X})={\pmb \mu}, \quad {\rm var}({\pmb X})={\pmb \Sigma}$

• two multinomial normal random vectors X_1 and X_2 , sizes h and k, are independent if $cov(X_1, X_2) = \mathbf{0}_{h \times k}$

03. POINT ESTIMATION

for a variable v in population N,

$$\mu = \frac{1}{N} \sum_{i=1}^{N} v_i$$
 $\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (v_i - \mu)^2$

• μ , σ^2 are **parameters** (unknown constants)

draws with replacement

random sample mean,
$$\bar{X}=\frac{1}{n}\sum_{i=1}^{n}X_{i}$$

$$E(\bar{X})=\mu, \, \mathrm{var}(\bar{X})=\frac{\sigma^{2}}{n}$$

$$E(X_{i})=\mu, \quad \mathrm{var}(X_{i})=\sigma^{2}$$

- same distribution: x_i, X_i , population distribution
- the error in \bar{x} is $\mu \bar{x}$; it cannot be estimated

representativeness

- X_1, \ldots, X_n is **representative** of the population
- as n dets larger. \bar{X} dets closer to μ • x_1, \ldots, x_n are *likely* representative of the population

Point estimation of mean

a population (size N) has unknown mean μ , variance σ^2 .

standard error

SE is a constant by definition: $SE = SD(\bar{X}) = \frac{\sigma}{\sqrt{n}}$

point estimation of mean: SE (\bar{x}) is estimated as $\frac{s}{\sqrt{n}}$

Simple random sampling (SRS)

n random draws without replacement from a population

for
$$i \neq j$$
, $cov(X_i, X_j) = -\frac{\sigma^2}{N-1}$

• if n/N is relatively large, account for $\mathrm{cov}(X_i,X_j)$

$$E(\bar{X}) = \mu, \quad \text{var}(\bar{X}) = \frac{N-n}{N-1} \frac{\sigma^2}{n}$$
 • if $n << N$, then SRS is like sampling with replace-

• if n << N, then SRS is like sampling with replacement (treat the data as IID RVs X_1, \dots, X_n)

$$E(\bar{X}) = \mu, \quad \text{var}(\bar{X}) = \frac{\sigma^2}{n}$$

estimating proportion p

- the estimate of σ is $\hat{\sigma}$, not s
- unbiased estimator \hat{p}

•
$$E(\hat{p}) = p$$
, $var(\hat{p}) = \frac{p(1-p)}{n}$, $SE = SD(\hat{p})$

04. ESTIMATION (SE, bias, MSE)

for random draws X_1, \ldots, X_n with replacement

MSE and bias

suppose measurements were from a population with mean w+b where b is a constant: $x_i=w+b+\epsilon_i$

- $E(\bar{X}) = w + b$, $SD(\bar{X}) = \frac{\sigma}{\sqrt{n}}$
 - $SE = \frac{\sigma}{\sqrt{n}}$ measures how far \bar{x} is from w+b, not w
- if $b \neq 0$, then \bar{x} is a biased estimate for w
- $MSE = E\{(\bar{X} w)^2\} = \frac{\sigma^2}{2} + b^2$

general case

let θ be a parameter and $\hat{\theta}$ be an estimator (RV). $SE = SD(\hat{\theta}), \quad \text{bias} = E(\hat{\theta}) - \theta, \\ MSE = E\{(\hat{\theta} - \theta)^2\} = SE^2 + bias^2 \\ \text{as } n \to \infty, \ MSE \to b^2$

05. INTERVAL ESTIMATION

let x_1,\ldots,x_n be realisations of IID RVs X_1,\ldots,X_n with unknown $\mu=E(X_i)$ and $\sigma^2=\mathrm{var}(X_i)$.

point estimation: $\mu \approx \bar{x} \pm \frac{s}{\sqrt{n}}$

interval estimation works well if

- X_i has a normal distribution, for any n>1
- X_i has any other distribution but n is large

normal "upper-tail quantile" z_p

let $Z \sim N(0,1).$ let z_p be the (1-p)-quantile of Z. $p = \Pr(Z > z_p)$

(case 1) normal distribution with known σ^2

 $\begin{array}{l} X_1,\dots,X_n \overset{i.i.d.}{\sim} N(0,1) \text{ with known } \sigma^2. \\ \text{for } 0 < \alpha < 1, \ \Pr(-z_{\frac{\alpha}{2}} \leq Z \leq z_{\frac{\alpha}{2}}) = 1 - \alpha \end{array}$

confidence interval for μ : the random interval

$$\left(\bar{X} - z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}, \bar{X} + z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right)$$

contains μ with probability (confidence level) $1-\alpha$

(case 2) normal distribution with unknown σ^2

replace σ with S and use t distribution:

$$\begin{array}{l} \text{for } 0 t_{p,n}) = p \\ \text{as } n \to \infty, \ \ t_{n,p} \to z_p \end{array}$$

the random interval $\left(\bar{X}-t\tfrac{\alpha}{2},n-1\tfrac{S}{\sqrt{n}},\bar{X}+t\tfrac{\alpha}{2},n-1\tfrac{S}{\sqrt{n}}\right)$ contains μ with probability $1-\alpha$.

(case 3) general distribution with unknown σ^2

- CLT: for large n, approximately $\frac{S_n-n\mu}{\sqrt{n}\sigma}\sim N(0,1)$
- since $\frac{S_n-n\mu}{\sqrt{n}\sigma}=\frac{\bar{X}-\mu}{\sigma/\sqrt{n}}$ and $Spprox\sigma$ for large n,

for large n, the random interval $\left(\bar{X}-z_{\frac{\alpha}{2}}\frac{S}{\sqrt{n}},\bar{X}+z_{\frac{\alpha}{2}}\frac{S}{\sqrt{n}}\right)$ contains μ with probability $\approx 1-\alpha$

- for SRS, multiply SE by correction factor $\sqrt{\frac{N-n}{N-1}}$
- contains μ with probability $< 1 \alpha$ probability $\to 1 \alpha$ as $n \to \infty$
- exception: for Bernoulli, $\sigma = \sqrt{p(1-p)}$ is not estimated by s, but by replacing p with the sample proportion

06. METHOD OF MOMENTS

modified notation of mass/density functions:

- bernoulli: $f(x|p)=p^x(1-p)^{1-x},\quad x=0,1$ parameter space is (0,1)
- poisson: $f(x|\lambda) = \frac{\lambda^x e^{-\lambda}}{x!}, \quad x = 0, 1, \dots$ • parameter space is \mathbb{R}_+

parameter estimation

assuming data x_1,\ldots,x_n are realisations of IID RVs X_1,\ldots,X_n with mass/density function $f(x|\theta)$, where θ is unknown in parameter space Θ .

- 2 methods to estimate θ :
 - method of moments (MOM)
 - · method of maximum likelihood (MLE)
- the estimate of θ is a realisation of an estimator $\hat{\theta}$
- parameter space Θ : set of values that can be used to estimate the real parameter value θ
 - e.g. for $N(\mu, \sigma^2)$, parameter space $\Theta = \mathbb{R} \times \mathbb{R}_+$

Moments of an RV

the k-th moment of an RV X is $\mu_k = E(X^k), \quad k = 1, 2, \dots$

estimating moments

let X_1, \ldots, X_n be IID with the same distribution as X.

the
$$k$$
-th sample moment is
$$\hat{\mu}_k = \frac{1}{n} \sum_{i=1}^n X_i^k$$

$$E(\hat{\mu}_k) = E(\frac{1}{n} \sum_{i=1}^n x_i^k) = \mu_k \quad \Rightarrow \text{unbiased!}$$

MOM: general

let $X \sim Distribution(\theta)$. to obtain \bar{x} and SE:

- 1. $\mu = \mu_1$, $\sigma^2 = \mu_2 \mu_1^2$
- 2. express parameters in terms of moments
- 3. estimate MOM estimator using sample mean \bar{x} : $\hat{\theta} = \hat{\mu}_1 = \bar{X}$
- 4. obtain $SE=SD(\hat{\theta})=\sqrt{\mathrm{var}(\hat{\theta})}=\sqrt{\frac{1}{n}\,\mathrm{var}(X)}$ $\theta\approx \bar{x}\pm\sqrt{\frac{\mathrm{var}(X)}{n}}$

07. MLE

Likelihood function

let x_1,\ldots,x_n be realisations of iid rvs X_1,\ldots,X_n with density $f(x|\theta),\;\theta\in\Theta\subset\mathbb{R}^k.$

likelihood function $L:\Theta
ightarrow \mathbb{R}_+$ is

$$L(\theta) = \prod_{i=1}^{n} f(x_i|\theta)$$
$$= f(x_1|\theta) \times \dots \times f(x_n|\theta)$$

loglikelihood function $\ell:\Theta o\mathbb{R}$ is

$$\ell(\theta) = \log L(\theta) = \sum_{i=1}^{n} \log f(x_i|\theta)$$

(can omit additive constants (ℓ)/constant factors (L))

Maximum Likelihood Estimation (MLE)

- maximiser of L → the maximum likelihood estimate of θ
 (a realisation of the MLEstimator θ̂)
 - maximiser of loglikelihood $\ell = \log L$ over Θ

find the value of θ that maximises (log)likelihood:

- 1. calculate likelihood L, loglikelihood ℓ
- 2. differentiate loglikelihood ℓ : $\ell'(\theta) = 0$
- 3. confirm max point: $\ell''(\theta) < 0$

ML vs MOM

- MOM estimates can always be written in terms of the data (sample moments)
 - ML uses *
- ML has better (smaller) SE and bias than MOM
- MOM/ML estimates are asymptotically unbiased
- as $n \to \infty$, $E(\hat{\theta}_n) \to \theta$

Kullback-Liebler divergence (KL)

let $\mathbf{q}=(q_1,\ldots,q_k)$ and $\mathbf{p}=(p_1,\ldots,p_k)$ be strictly positive probability vectors.

the KL divergence between q and p is

$$d_{KL}(\mathbf{q}, \mathbf{p}) = \sum_{i=1}^{\kappa} q_i \log(\frac{q_i}{p_i})$$

- $d_{KL}(\mathbf{q}, \mathbf{p}) \geq 0$ (equality $\iff \mathbf{q} = \mathbf{p}$) • $d_{KL}(\mathbf{q}, \mathbf{p}) \neq d_{KL}(\mathbf{p}, \mathbf{q})$
- used to maximise ℓ to find MLE for multinomial
- let \mathbf{q} be the MOM estimate for \mathbf{p} . for any \mathbf{p} ,

$$\ell(\mathbf{q}) - \ell(\mathbf{p}) = \sum_{i=1}^{k} x_i \log q_i - \sum_{i=1}^{k} x_i \log p_i$$
$$= n \, d_{KL}(\mathbf{q}, \mathbf{p}) \ge 0$$

• $\ell(\mathbf{q}) - \ell(\mathbf{p}) = 0 \iff \mathbf{p} = \mathbf{q} = \frac{\mathbf{x}}{n}$

Hardy-Weinberg equilibrium (HWE)

let θ be the proportion of a.

the population is in
$$\mbox{{\bf HWE}}$$
 if
$$f(aa)=\theta^2, \quad f(aA)=2\theta(1-\theta), \quad f(AA)=(1-\theta)^2$$

- (e.g. genotypes) Under HWE, the number of a alleles in an individual has a $Binom(2,\theta)$ distribution
 - for n randomly chosen people, number of a alleles $(AA, Aa, aa) \sim Multinomial(n, \theta)$

Multinomial ML estimation

for $(X_1, X_2, X_3) \sim Multinomial(n, \mathbf{p})$

where $p_1 = (1 - \theta)^2$, $p_2 = 2\theta(1 - \theta)$, $p_3 = \theta^2$

- $\begin{array}{l} \bullet \ L(\theta) = p_1^{x_1} \ p_2^{x_2} \ p_3^{x_3} = 2^{x_2} \ (1-\theta)^{2x_1+x_2} \ \theta^{x_2+2x_3} \\ \bullet \ \ell(\theta) = x_2 \log 2 + (2x_1+x_2) \log (1-\theta) + (x_2+2x_3) \log \theta \end{array}$
- ML estimator: $\hat{\theta} = \frac{X_2 + 2X_3}{2n}$
- SE estimation: $\sqrt{\frac{\theta(1-\theta)}{2n}}$
 - $X_2 + 2X_3$ is the number of a alleles: $Binom(2n, \theta)$ $\Rightarrow var(\hat{\theta}) = \frac{\theta(1-\theta)}{2\pi}$

08. LARGE-SAMPLE DISTRIBUTION OF MLEs

asymptotic normality of ML estimator

let $\hat{\theta}_n$ be the ML estimator of $\theta \in \Theta \subset \mathbb{R}$, based on iid RVs X_1,\ldots,X_n with density $f(x|\theta)$.

for large n, approximately $\hat{\theta}_n \sim N(\theta, \frac{\mathcal{I}(\theta)^{-1}}{n})$

Fisher Information

let X have density $f(x|\theta)$, $\theta \in \Theta \subset \mathbb{R}^k$.

the Fisher information is the $k \times k$ matrix $\mathcal{I}(\theta) = -E \left[\frac{d^2 \log f(X|\theta)}{d\theta^2} \right]$

- $\mathcal{I}(\theta)$ is symmetric, with (ij)-entry $-E\left[\frac{\delta^2 \log f(X|\theta)}{\delta \theta_i \delta \theta_i}\right]$
- $\mathcal{I}(\theta)$ measures the information about θ in one sample X.

Approximate CI with ML estimate

 $\hat{\theta}_n$ is the ML estimator of θ based on iid RVs X_1, \ldots, X_n .

- for large n, approximately $\hat{\theta}_n \sim N(\theta, \frac{\mathcal{I}(\theta)^{-1}}{n})$.
- · the random interval

$$\begin{pmatrix} \hat{\theta}_n - z_{\frac{\alpha}{2}} \sqrt{\frac{\mathcal{I}(\theta)^{-1}}{n}}, \hat{\theta}_n + z_{\frac{\alpha}{2}} \sqrt{\frac{\mathcal{I}(\theta)^{-1}}{n}} \end{pmatrix}$$
 covers θ with probability $\approx 1 - \alpha$

Scope of asymptotic normality of ML estimators

• let $\hat{\theta}^n$ be the ML estimator of θ . For strictly increasing or strictly decreasing $h: \Theta \to \mathbb{R}, h(\hat{\theta}^n)$ is the ML estimator of $h(\theta)$, for large n, $h(\hat{\theta}^n)$ is approximately normal

population mean vs parameter

for n random draws with replacement from a population with mean μ and variance σ^2 .

Estimator	E	var	Distribution
random sample mean, $\hat{\mu}$	μ	$\frac{\sigma^2}{n}$	pprox normal
ML estimator, $\hat{ heta}_n$	$\approx \theta$	$pprox rac{\mathcal{I}(heta)^{-1}}{n}$	$\approx \text{normal}$

 $\hat{\theta}_n$ is not normal (but may approach normal for large n)

Cramér-Rao inequality

$$\begin{array}{c} \text{if } \hat{\theta}_n \text{ is unbiased, then } \mathrm{var}(\hat{\theta}_n) \geq \frac{\mathcal{I}(\theta)^{-1}}{n} \\ & \quad \text{efficient} \iff \text{equality} \end{array}$$

$$E(\frac{d\log f(X|\lambda)}{d\lambda}) = 0$$

09. HYPOTHESIS TESTING

let x_1, \ldots, x_n be realisations of IID $N(\mu, \sigma^2)$ RVs X_1, \ldots, X_n where μ is a parameter and σ is known.

> null hypothesis, $H_0: \mu = \mu_0$ alternative hypothesis, $H_1: \mu = \mu_1$

if σ is unknown or $x_1, \ldots, x_n \not\sim N(\mu, \sigma^2)$, we can use CLT

09.1. Rejection region

one-tailed test: $H_0: \mu = \mu_0, \quad H_1: \mu = \mu_1 > \mu_0$ two-tailed test: $H_0: \mu = \mu_0, \quad H_1: \mu = \mu_1 \neq \mu_0$

- 1. state hypotheses H_0, H_1 .
- 2. reject H_0 if $\bar{x} \mu_0 > c$ (or $|\bar{x} \mu_0| > c$)
- 3. $c=z_{\alpha(/2)}\frac{\sigma}{\sqrt{n}}$ by normalising $\alpha=P_{H_0}(\bar{X}>\mu_0+c)$
- since under $H_0, X \sim N(\mu_0, \frac{\sigma^2}{n})$.
- 4. **rejection region**: reject H_0 if . . .
 - $\bar{x} \in (\mu_0 + c, \infty)$
 - $\bar{x} \in (-\infty, \mu_0 c) \cup (\mu_0 + c, \infty)$

composite H_1 : (does not change rejection region) one-tailed test: $H_0: \mu = \mu_0, H_1: \mu > \mu_0$ two-tailed test: $H_0: \mu = \mu_0, \quad H_1: \mu \neq \mu_0$

Size and power

Hypothesis	$\bar{x} < \mu_0 + c$	$\bar{x} > \mu_0 + c$
H_0	\checkmark not reject H_0	$\times (I)$ reject H_0
H_1	$\times (II)$ not reject H_0	\checkmark reject H_0

- type I error: rejecting H_0 when it is true
- type II error: not rejecting H_0 when it is false
- **size** of a test \rightarrow (aka **level**) probability of a Type I error
- $\alpha := P_{H_0}(\bar{X} > \mu_0 + c)$
- (for 2-tail) corresponds to a $(1-\alpha)$ -CI for μ
- **power** of a test $\rightarrow 1-$ probability of a Type II error
 - $\beta := P_{H_1}(\bar{X} > \mu_0 + c) \Rightarrow \mathsf{power} = 1 \beta$
 - as $n \to \infty$, power $\to 1$

 $\uparrow c: \downarrow \alpha, \downarrow \beta$ $(\downarrow \text{ type } I \text{ err}, \uparrow \text{ type } II \text{ err})$

09.2. *P*-value

- **P-value** \rightarrow the probability under H_0 that the random test statistic is more extreme than the observed test statistic • small *p*-value = more "extreme" (more doubt)
- reject H_0 at level $\alpha \iff P < \alpha$
- generally, P-value for two-tailed test is double that of one-tailed test

formulae for P-value

$$\begin{split} H_1 : \mu > \mu_0 \\ P &= P_{H_0}(\bar{X} > \bar{x}) = \Pr\left(Z > \frac{\bar{x} - \mu_0}{\sigma/\sqrt{n}}\right) \\ H_1 : \mu < \mu_0 \\ P &= P_{H_0}(\bar{X} < \bar{x}) = \Pr\left(Z < \frac{\bar{x} - \mu_0}{\sigma/\sqrt{n}}\right) \\ H_1 : \mu \neq \mu_0 \\ P &= P_{H_0}(|\bar{X} - \mu_0| > |\bar{x} - \mu_0|) = \Pr\left(|Z| > \frac{|\bar{x} - \mu_0|}{\sigma/\sqrt{n}}\right) \end{split}$$

10. GOODNESS-OF-FIT

Likelihood Ratio (LR) test

- n iid RVs with density defined by $\theta \in \Omega_1$
- smaller model Ω_0 is **nested** in Ω_1 ($\Omega_0 \subset \Omega_1$)
 - $L_1 > L_0$ (L_0 is the maximum over a subset of L_1)
 - larger $L_1/L_0 \Rightarrow$ poorer fit for smaller model

$$H_0: \theta \in \Omega_0 \qquad H_1: \theta \in \Omega_1 \backslash \Omega_0$$

LR statistic (to test H_0)

$$G = 2\log\left(\frac{L_1}{L_0}\right) = 2(\log L_1 - \log L_0)$$
 if $\theta \in \Omega_0$, as $n \to \infty$,
$$G \sim \chi^2_{\dim \Omega_1 - \dim \Omega_0}$$

LR test: general

- 1. null hypothesis, H_0 : the tighter model holds
- 2. LR test statistic.

$$G = 2\log\left(\frac{L_1}{L_0}\right) = 2(\log L_1 - \log L_0)$$

- 3. approximate P-value to χ^2 -distribution:
 - $P \approx \Pr\left(\chi_{deq}^2 > G\right)$
 - calculate q using observed count x_i and expected count (under H_0 , calculated using ML estimate)
- 4. high *P*-value = better fit for tighter model

LR test: Multinomial

let $(X_1, \ldots, X_k) \sim Multinomial(n, \mathbf{p})$. then $\mathbf{p} \in \Omega_1$, the set of all positive probability vectors of length k. let subspace $\Omega_0 = \{(p_1(\theta), \dots, p_k(\theta)) : \theta \in \Theta \subset \mathbb{R}^h\}$ with $\dim \Omega_0 < \dim \Omega_1 = k - 1$. to test $H_0 : \mathbf{p} \in \Omega_0$

- $G = 2\sum_{i=1}^{k} X_i \log \left(\frac{X_i}{n p_i(\hat{\theta})} \right)$ (ML estimate of \mathbf{p} is $\frac{\mathbf{x}}{n}$)
 - for Ω_1 : $\log L_1 = \sum_{i=1}^k X_i \log(\frac{X_i}{n})$
- $\begin{array}{l} \bullet \text{ for } \Omega_0 \colon \log L_0 = \sum_{i=1}^k X_i \log p_i(\hat{\theta}) \\ \bullet P = P_{H_0}(G > g) \approx \Pr(\chi^2_{k-1 \dim \Omega_0} > g) \text{ for large } n. \end{array}$
- to compute q, replace
 - X_i with observed count x_i
- $np_i(\hat{\theta})$ with expected count (under H_0) using ML estimate of θ

LR test: Independence

for a population with attributes q and r, let p_{ij} be the population proportion of people with $q = q_i$ and $r = r_i$. let $(X_{i,j}: 1 \le i \le I, 1 \le j \le J) \sim Multinomial(n, \mathbf{p}).$

 H_0 : the two attributes q, r are independent

- $p \in \Omega_1$, dim $\Omega_1 = IJ 1 = k 1$.
- if q, r are independent, then $\exists q_1, \dots, q_i, r_1, \dots, r_i$ such that $\sum_{i=1}^{I} q_i = \sum_{j=1}^{J} r_j = 1$ and $p_{ij} = q_i \times r_j$
- under H_0 , for large n, approximately $G \sim \chi^2_{(I-1)(J-1)}$
 - $\dim \Omega_0 = (I-1) + (J-1) = I + J 2$
 - dim Ω_1 dim $\Omega_0 = (I-1)(J-1)$
- $G = 2(\log L_1 \log L_0) = 2\sum_{i,j} X_{i,j} \log \left(\frac{X_{i,j}}{X_{i+1} X_{i+1}/n}\right)$
 - Ω_1 : $\log L_1 = \sum_{i,j} X_{ij} \log(\frac{X_{ij}}{n})$
 - Ω_0 : $\log L_0 = \sum_i X_{i+} \log(\frac{X_{i+}}{r}) + \sum_{j=1}^{r} X_{+j} \log(\frac{X_{+j}}{r})$
- *P*-value = $\Pr\left(\chi^2_{(I-1)(J-1)} > g\right)$
 - the data x_{ij} are the observed counts
 - the data $x_{i+}x_{+i}/n$ are the expected counts

LR test: Normal

$$\begin{array}{c|cccc} X_1,\dots,X_n \overset{i.i.d.}{\sim} N(\mu,\sigma^2). \text{ to test } H_0: \mu=0: \\ \hline \sigma & \Omega_1 & \dim\Omega_1 & \Omega_0 & \dim\Omega_0 \\ \hline \text{known} & \mathbb{R} & 1 & \{0\} & 0 \\ \text{unknown} & \mathbb{R} \times \mathbb{R}_+ & 2 & \{0\} \times \mathbb{R}_+ & 1 \\ \hline \end{array}$$

under H_0 , for large n, approximately $G \sim \chi_1^2$

- case 1: σ known • $\Omega_0 : \log L_0 = -\frac{n\hat{\mu}^2}{2\sigma^2}, \ \Omega_1 : \log L_1 = -\frac{n\hat{\sigma}^2}{2\sigma^2}$
- $G = 2(\log L_1 \log L_0) = \frac{n\bar{X}^2}{2}$
 - if H_0 holds $(\mu=0)$, then $\bar{X}\sim N(0,\frac{\sigma^2}{n})$. for any $n, G \sim \chi_1^2$ exactly.
- case 2: σ unknown

- $\log L_0 = -\frac{n}{2} \log \hat{\mu}_2 \frac{n}{2}$, $\log L_1 = -\frac{n}{2} \log \hat{\sigma}^2 \frac{n}{2}$
- $G = 2(\log L_1 \log L_0) = n \log(\frac{\hat{\mu}_2}{\hat{\mu}_2})$
- if H_0 holds ($\mu = 0$), for large $n, G \sim \chi_1^2$ approximately