MASSACHUSETTS INST OF TECH LEXINGTON LINCOLN LAB

ASYMPTOTICALLY OPTIMAL DETECTOR OF MEMORY P FOR K-DEPENDENT RAN--ETC(U)

MAY 79 L K JONES

TN-1979-42

ESD-TR-79-83

F19628-78-C-0002

NL AD-A072 202 UNCLASSIFIED NL | OF | END DATE FILMED 9-79 AD A072.02 題

DA072202

Accession DDC TAB Unannounc Justifica Ву_ Distribut; Availabi Dist.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY LINCOLN LABORATORY

6 ASYMP	PTOTICALLY OPTIMAL DETECTOR OF ME FOR k-DEPENDENT RANDOM SIGNALS	,
	10 & K. JONES Group 92 Lee	
	14 TIN-197	9-42
Accession For TIS GRAMAI ODC TAB Unamnounced Justification	TECHNICAL NOTE 1979-42 8 MAY \$79	12/19 p.
Distribution/ Availability Codes Availand/or Special	15 F19628-78-C-94021 16 627A Approved for public release; distribution unlimited. (18) ESD (19) TR-79-83	D D C D C C C C C C C C C C C C C C C C

LEXINGTON

Dist.

207650 MASSACHUSETTS
79 08 2 001

Abstract

This note describes a general method for discriminating between two k-dependent stationary discrete random variables using marginal statistics and their first order correlations.

Asymptotically Optimal Detector of Memory p for k - dependent Random Signals

Lee K. Jones

A stationary discrete time series $\{X_i\}_{i=1}^{\infty}$ is said to be k-dependent if for every integer m, $\{X\}_{i\leq m}$ is independent of $\{X_i\}_{i>k+m}$. Suppose $\{X_i^1\}$ and $\{X_i^2\}$ are two stationary k-dependent random signals occurring with prior probabilities α and 1- α respectively. If n pulses of a random signal are observed (n large compared to k) how do we decide whether we observed $\{X_i^1\}_{i=1}^n$ or $\{X_i^2\}_{i=1}^n$?

A detector L of memory p is given by a function L(X) = $L(x_1, x_2, ..., x_n) = \sum_{i=p+1}^{n} g_i(x_i, x_{i-1}, ..., x_{i-p})$ and a set A⁽¹⁾ of real numbers such that:

for L(X) ϵ A we choose class 1

for $L(X) \in A^{C}$ we choose class 2

In view of the stationarity we need only consider (for n large compared to p) detectors for which $g_i = g$ for all i.

Suppose both $\{X_i^1\}$ and $\{X_i^2\}$ are bounded with known (or estimates of) statistical properties (correlations, moments, etc.). In this note we use a straightforward extension of the method of minimal marginal moment variance (2) to determine the g which

⁽¹⁾ For the cases we shall consider, A is the union of one or two intervals.

⁽²⁾ Introduced in [2] to solve for the case p=0, k=0.

minimizes the probability of error. This solves the problem addressed in [1] (p=0, $x_i^1=\theta+n_i$, $x_i^2=n_i$, n_i k-dependent).

Solution: Let 1, h_1 , h_2 , ... be a complete set of continuous functions on R^{p+1} . For $g_q = \sum_{i=1}^{q} a_j h_j$ we find the coefficients a_j which minimize the probability of error. The constant function 1 need not be present in this expansion since it trivially has the same statistical properties under both hypotheses. As q becomes large the error probability using g_q converges to the error probability for the optimal g.

Consider $L(X) = \sum_{i=p+1}^{n} g_{q}(x_{i}, x_{i-1}, ..., x_{i-p})$. It is a sum of bounded k+p-dependent random variables. Hence L is asymptotically normal under each hypothesis. The set A will in general be described by 2 thresholds. (If a single threshold detector is desired the following analysis remains the same.)

Let $\mathcal{E}(a_j)$ = probability of error = $\int_{\infty}^{\infty} \min \{\alpha p_1, (1-\alpha)p_2\}$ dx where p_i is the probability density of L under hypothesis i. By normality p_1 and p_2 are characterized by their means and variances. We now restrict a_j such that $E_2 L(X) - E_1 L(X) = 1$. \mathcal{E} is then a function of the variances of L under each hypothesis: $\mathcal{E} = \mathcal{E}(v_1(a_j), v_2(a_j))$. Taking the gradient wrt a_j and using λ as a Lagrange multiplier we have:

$$\frac{\partial \mathcal{E}}{\partial \mathbf{v}_1} \quad \nabla \mathbf{v}_1 + \frac{\partial \mathcal{E}}{\partial \mathbf{v}_2} \quad \nabla \mathbf{v}_2 - \lambda (\nabla (\mathbf{E}_2 \mathbf{L} - \mathbf{E}_1 \mathbf{L})) = 0 \tag{1}$$

The partials $\frac{\partial \mathbf{E}}{\partial \mathbf{v_i}}$ may be negative (even for a single threshold detector) but are not both zero. It is easy to see that a solution of (1) is a critical point of the objective function $\beta v_1 + (1 - |\beta|)v_2 - \Phi(E_2L - E_1L - 1)$ where Φ is a Lagrange multiplier and $-1 \le \beta \le +1$. This critical point may be determined for various values of β and the β corresponding to minimum probability of error determined from normal tables.

We now proceed with the calculations. Let

$$h_{j}^{i} = h_{j}(x_{i}, x_{i-1}, ..., x_{i-p})$$

$$\rho_{ijs}^{\ell} = E_{i} \left[(h_{j}^{1} - E_{i} h_{j}^{1}) (h_{s}^{1+\ell} - E_{i} h_{s}^{1+\ell}) \right]$$

By differentiating the above objective function wrt a and setting the result equal to zero we obtain:

$$\begin{bmatrix} \beta A_1 + (1-|\beta|)A_2 \end{bmatrix} \vec{a} = \frac{\Phi}{2} (n-p) \vec{m}$$
where $m_j = E_2 h_j^1 - E_1 h_j^1$
and $(A_i)_{js} = (n-p)\rho_{ijs}^0 + \sum_{\ell=1}^{k+p} (n-p-\ell) (\rho_{ijs}^{\ell} + \rho_{isj}^{\ell})$

Solving equation (2) -

$$\vec{a} = \Phi \left(\frac{n-p}{2}\right) \left[\beta A_1 + (1-|\beta|)A_2\right]^{-1} \vec{m} = \Phi \vec{g}_{\beta}$$

Then

$$\Phi = \left(\sum_{j=1}^{q} g_{\beta j} m_{j}\right)^{-1}$$
 from the condition $E_{2}L-E_{1}L=1$.

 v_1 and v_2 may now be calculated and the error (as a function of β) determined. The β corresponding to minimum error is then obtained by a one-parameter minimization. The preceding method will yield an optimal detector whenever the p_i occurring in the expression for $\xi(a_i)$ depend only on the means and variances of L. We need only estimate the error as a function of β from the performance of L on sample data.

References

- [1] H. V. Poor and J. B. Thomas, "Time Detection of a Constant Signal in m-Dependent Noise," IEEE Trans. Inform. Theory IT-25, Pages 54-61, (1979).
- [2] On Optimal Discriminants between two Classes of Random Variables in Terms of the Moments of their Distributions, submitted to SIAM Journal of Appl. Math.

SECURITY CLASSIFICATION OF THIS PAGE (Phon Date Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER		3. RECIPIENT'S CATALOG NUMBER
ESD-TR-79-83		
4- TITLE (and Subtitle)		S. TYPE OF REPORT & PERIOD COVERED
Asymptotically Optimal Detector of Memory p for k-Dependent Random Signals		Technical Note
		4. PERFORMING ORG. REPORT NUMBER Technical Note 1979-42
7. AUTHOR(s)		8. CONTRACT OR GRANT NUMBER(s)
Lee K. Jones		F19628-78-C-0002
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS	
Lincoln Laboratory, M.I.T.		
P.O. Box 73 Lexington, MA 02173		Program Element No. 63311F Project No. 627A
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE
Air Force Systems Command, USAF		8 May 1979
Andrews AFB Washington, DC 20331		13. NUMBER OF PAGES
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)		15. SECURITY CLASS. (of this report)
Electronic Systems Division		Unclassified
Hanscom AFB Bedford, MA 01731		15a DECLASSIFICATION DOWNGRADING
17. DISTRIBUTION STATEMENT (of the abstract entered in Bloc	ck 30, if different from Raport	,
18. SUPPLEMENTARY NOTES		
None		
19. KEY WORDS (Continue on reverse side if necessary and iden	tify by block number)	
k-dependent		stationary
		discriminating
\		
70. ABSTRACT (Continue on reverse side if necessary and ident		