メディア情報学実験・メディア分析 課題レポート

1510151 栁 裕太 2017年11月3日

1 序論・仮説

今回の実験では、"きよしのズンドコ節"という曲を扱った (PV16)。この PV では昭和の歌謡曲のエッセンスを入れたことによって、筆者のような 20 代前半にとっては個人的にはかなり印象深い PV であった。よって今回は、以下の仮説を立ててから解析に臨むことにした。

- PV を構成する任意の要素が洗練されていなくとも、好感度には影響しない
- 映像・メロディに迫力がなくとも、好感度には影響しない
- 聞き取りやすいメロディ・歌詞は好感度上昇に寄与する

2 調査結果分析

2.1 主成分抜粋

主成分抜粋においては、累積寄与率と固有値の2つのデータを基準に足切りを行った。なお、 PC11以降は省略している。

主成分番号	累積寄与率 (%)	固有值	
PC1	38.38390791	7.29294250348674	
PC2	48.55050945	1.93165429251404	
PC3	55.79636735	1.37671299972187	
PC4	61.89941496	1.15957904665	
PC5	67.01570809	0.972095695622575	
PC6	71.71468219	0.892805078337444	
PC7	75.76539908	0.769636208492113	
PC8	79.51202683	0.711859273699518	
PC9	82.66178688	0.598454408935556	
PC10	85.20054444	0.482363935634707	

表 1 主成分毎の累積寄与率と固有値

講義内では、以下の条件で足切りすることが推奨されていた。

- 累積寄与率が80%以下の主成分
- 固有値が1以上の主成分

前者であれば PC8、後者であれば PC4 までとなるが、両者のデータ共に値が著しく変化する境界があまり明瞭ではない。そこで、前者の広い基準を採用し、解析後の P 値等によって解析対象から外すことにした。

2.2 重回帰式による検証

PC1 から PC8 まで全ての主成分を対象に重回帰分析を行った。その結果は以下の通りである。

主成分番号	偏回帰係数	標準誤差	t 値	P値	標準化偏回帰係数	トレランス
PC1	-0.282	0.0119	-23.6	2.09e-64	-0.765	1
PC2	-0.171	0.0232	-7.38	2.66e-12	-0.239	1
PC3	-0.197	0.0275	-7.15	1.05e-11	-0.232	1
PC4	-0.0489	0.0300	-1.63	0.104	-0.0529	1
PC5	0.143	0.0327	4.39	1.72e-05	0.142	1
PC6	0.105	0.0341	3.07	0.00242	0.0994	1
PC7	-0.156	0.0368	-4.24	3.26e-05	-0.137	1
PC8	-0.00994	0.0382	-0.260	0.795	-0.00843	1
定数項	3.15	0.0323	97.7	2.64e-195	NA	NA

表 2 重回帰式結果

これを重回帰式にすると、以下の通りとなる。なお、目的変数は PV_{like} とした。

$$PV_{like} = -0.282PC_1 - 0.171PC_2 - 0.197PC_3 - 0.0489PC_4 + 0.143PC_5 + 0.105PC_6 - 0.156PC_7 - 0.00994PC_8 + 3.15$$
(1)

- 2.3 目的関数に寄与する主成分の選定
- 2.4 重回帰式による再検証
- 2.5 主成分を構成する質問・主成分命名
- 2.6 グループの類推
- 3 結論
- 4 考察