1- LÒGICA I DEMOSTRACIONS

1.1 LÒGICA PROPOSICIONAL

<u>Enunciat o proposició</u>: frase o expressió correcta del llenguatge natural susceptible de ser certa o falsa. Afirma alguna cosa que té sent, sigui certa o falsa.

Proposición: 2+3=7 Cierta 1

: p,q,r, ϕ , ψ ,θ... Falsa 0

Les fórmules de la lògica proposicional es construeixen amb els símbols següents:

• <u>Lletres proposicionals</u>: p, q, r, s...

• Connectives lògiques:

o binàries: Λ (i), V (o), \rightarrow (si llueve voy al cine), \leftrightarrow

O unària: ¬ (negació)

• Parèntesis: (,)

Significat de les connectives

р	¬р
0	1
1	0

р	q	pvq	рΛq	p →q
0	0	0	0	1
0	1	1	0	1
1	0	1	0	0
1	1	1	1	1

$$p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$$

р	q	$p \rightarrow q$	$q \rightarrow p$	$p \leftrightarrow q$
0	0	1	1	1
0	1	1	0	0
1	0	0	1	0
1	1	1	1	1

Tipus de fórmules importants:

Tautologia:	fórmula sempre certa (taula de veritat: columna de 1)
Contradicció:	fórmula sempre falsa (taula de veritat: columna de 0)
Satisfactible:	fórmula que és certa per a alguna assignació (taula de veritat conté algun 1)

insatisfactible = contradicció

Equivalència de fórmules

Distributiva	$\phi \wedge (\psi \vee \theta) \equiv (\phi \wedge \psi) \vee (\phi \wedge \theta)$	$\Phi \lor (\Psi \land \theta) \equiv (\Phi \lor \psi) \land (\Phi \lor \theta)$	
De Morgan	¬(φ ∧ ψ) ≡ ¬φ ∨ ¬ψ	¬(φ∨ψ) ≡ ¬φ∧¬ψ	
Absorció	φ ∧ (φ ∨ ψ) ≡ φ	$\phi \lor (\phi \land \psi) \equiv \phi$	
Idempotència	φ Λ φ ≡ φ	φ V φ = φ	
Commutativa	φ Λ ψ ≡ ψ Λ φ	φ ∨ ψ ≡ ψ ∨ φ	
Associativa	$\Phi \wedge (\Psi \wedge \theta) \equiv (\Phi \wedge \Psi) \wedge \theta$	$\phi \lor (\psi \lor \theta) \equiv (\phi \lor \psi) \lor \theta$	
Neutre	φ Λ 1 ≡ φ	φ∨0 ≡ φ	
Element absorbent	φ∨1 ≡ 1	φ Λ 0 ≡ 0	
Complementari	ф ∨ ¬ф ≡ 1	ф ∧ ¬ф ≡ 0	
Doble negació	¬¬Φ ≡ Φ		
	¬1 ≡ 0	¬0 ≡ 1	

Traducció de la →	$\phi \rightarrow \psi \equiv \neg \phi \lor \psi$	$\neg(\phi \rightarrow \psi) \equiv \phi \land \neg \psi$
Traducció de la	$\phi \leftrightarrow \psi \equiv (\phi \rightarrow \psi) \land (\psi \rightarrow \phi)$	$\neg(\varphi \longleftrightarrow \psi) \equiv (\varphi \land \neg \psi) \lor (\psi \land \neg \varphi)$
\leftrightarrow	$\equiv (\varphi \wedge \psi) \vee (\neg \varphi \wedge \neg \psi)$	$\equiv (\varphi \lor \psi) \land (\neg \psi \lor \neg \varphi)$
Contrarecíproc	$\phi \rightarrow \psi \equiv \neg \psi \rightarrow \neg \phi$	
Reducció a	$\varphi \equiv \neg \varphi \rightarrow 0$	$\varphi \rightarrow \psi \equiv (\varphi \land \neg \psi) \rightarrow 0$
l'absurd		
V al conseqüent	$\psi \lor \theta \equiv \neg \psi \to \theta$	$\varphi \to (\psi \lor \theta) \equiv (\varphi \land \neg \psi) \to \theta$
V a l'antecedent	$(\psi \lor \theta) \to \varphi \equiv (\psi \to \varphi) \land (\theta \to \varphi)$	

Calculo de predicados

Predicado $P(x) \equiv 2+x \equiv 5$

$$P(2) \equiv (2+2=5)$$

$$R(x,y) \equiv (x+2 < y)$$

$$R(1,2) \equiv (1+2 < 2)$$

$S(x,y,z) \equiv (2x \text{ es par}) \land (y+z \text{ es impar})$

$$S(2,y,z) \equiv (2\cdot 2 \text{ es par}) \land (y+z \text{ es impar})$$

$$S(2,5,z) \equiv (2\cdot 2 \text{ es par}) \land (5+z \text{ es impar})$$

$$S(2,5,1) \equiv (2.2 \text{ es par}) \land (5+1 \text{ es impar})$$

1 0

0

Cuantificadores

▼ (Todos), ∃ (alguno)
$$N=(0,1,2.....)$$
 $Z=(..-2,-1,0,1...)$ $Q=(\frac{a}{b},\ a,b\ ,b\neq 0)$ $C=\sqrt{-1}$ $R=Q$ i C

$$P(x) \equiv x=par \ v \ x=impar$$

 $\forall x \in N, x=par \ v \ x=impar$

A=
$$(a,b,c)$$
 P(x)
 $\forall x \in A, P(x) \equiv P(a) \land P(b) \land P(c)$

A=
$$(a,b,c)$$
 P(x)
3 $x \in A$, P(x) \equiv P(a) \vee P(b) \vee P(c)

$$P(x) \equiv x = par$$

$$Q(x) \equiv x \text{ es un cuadrado } (\exists x \in Z x = a^2)$$

$$M(x) \equiv x = 4 \quad (\exists b \in Z \quad x = 4 \cdot b)$$

x<y

fórmula	Significat
$\forall x \ (M(x) \to P(x))$	Tot enter múltiple de 4 és parell
$\exists x (P(x) \land \neg M(x))$	Hi ha nombres parells que no són múltiples de 4
$\forall x ((P(x) \land Q(x)) \to M(x))$	Tot parell quadrat és múltiple de 4
$\exists x \ (P(x) \ \land \ \neg M(x) \ \land \ \neg Q(x))$	Hi ha nombres parells que ni són múltiples de quatre ni són quadrats
$P(2) \wedge \neg Q(2) \wedge \neg M(2)$	2 és parell però no és quadrat ni múltiple de 4
$\exists x (P(x) \land x > 2 \land \neg Q(x))$	Hi ha nombres parells més grans que 2 que no són quadrats

Algunes equivalències importants:

$\neg \forall x \varphi \equiv \exists x \neg \varphi$	$\neg \exists x \varphi \equiv \forall x \neg \varphi$
$\forall x \forall y \mathbf{\Phi} \equiv \forall y \forall x \mathbf{\Phi}$	$\exists x \exists y \varphi \equiv \exists y \exists x \varphi$
$\forall x \ (\phi \land \psi) \equiv \forall x \phi \land \forall x \psi$	$\exists x \ (\phi \lor \psi) \equiv \exists x \phi \lor \exists x \psi$

Demostració d'un existencial $\exists x P(x)$:

Exemples:

•
$$\exists x \in \mathbb{R} \ (x > 0 \land x^2 - 1 < 0) \text{ és cert.}$$

 $X=0.5 \to 0.5>0$

$$\exists x P(x)$$
 es fals $\equiv \forall x, \neg P(x)$ es cert

Demostració d'un universal $\forall x P(x)$:

Exemples/exercicis.
$$A = \{0, 1, 2, 3\}$$

34. Justifiqueu que són falses:

a.
$$\exists x \in A (|x + 4| = 2)$$
 Es falso $\exists \forall x \in A, |x+4| \neq 2 \rightarrow \text{cierto}$

Quantificadors barrejats

- $\exists x \forall y \ P(x, y)$: donar un element x que negui la propietat P(x, y) per a cada y. Fem x = a i demostrem que $\forall y P(a, y)$ és cert. La x no pot dependre de y.
- $\forall x \exists y \ P(x, y)$: per a cada x cal donar una y que sasfà P(x, y). La y normalment dependrà de x. Fem y = E(x) i demostrem que $\forall x P(x, E(x))$ és cert.

La demostració de la falsedat de $\exists x \forall y \ P(x, y)$ o de $\forall x \exists y \ P(x, y)$ es pot fer veient que els seus negats són certs.

Fet: Si $\exists x \forall y P(x, y)$ és cert $\forall y \exists x P(x, y)$ també és cert, però no és val el recíproc en general.

1.2 DEMOSTRACIONS

Passos lògics: (aquí A, B, C són enunciats)

1-
$$(p \land q) \rightarrow p$$

$$2-p \rightarrow (p \lor q)$$

3-
$$((p \lor q) \land \neg p) \rightarrow q$$

3-
$$((p \lor q) \land \neg p) \rightarrow q$$
 4- $(p \land (p \rightarrow q)) \rightarrow q$

5-
$$(\neg q \land (p \rightarrow q)) \rightarrow \neg p$$

5-
$$(\neg q \land (p \rightarrow q)) \rightarrow \neg p$$
 6- $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$

7-
$$0 \rightarrow p$$

Prova directa

Volem demostrar $A \Rightarrow B$.

$$A \Rightarrow A' \Rightarrow A'' \Rightarrow \cdots \Rightarrow B$$

Ex: La suma de dos enters consecutius es senar

$$\forall x \in Z, x+(x+1) = impar$$

x € Z

 $x = par \rightarrow \exists K \in Z, x = 2K$

 $x=impar \rightarrow \exists K' \in Z, x=2K+1$

x € Z, x=par V x=impar

x=par --> x=2K --> x+x+1= 2K+2K+1= 2(2K)+1= 2K'+1= impar

2.
$$\forall x \in \mathbb{Z}$$
, $x = impar --> x^2 = impar$

$$x = 2K + 1$$

$$x^2 = 4K^2 + 4K + 1 = 2 \cdot (2K^2 + 2K) + 1 = 2K' + 1 = impar$$

Prova pel contrarecíproc

Es basa en:
$$p \rightarrow q \equiv \neg q \rightarrow \neg p$$

$$\forall$$
 n \in Z --> n²= par --> n= par
n²= impar --> n=impar

Reducció a l'absurd

p es cierta ≡ ¬p es falsa

Ex: $\sqrt{3}$ irracional

$$X \in Q \rightarrow \exists a,b \in Z, b \neq 0, x = \frac{a}{b}$$

Reducció a l'absurd II

Es basa en:
$$p \rightarrow q \equiv (p \land \neg q) \rightarrow 0$$

Volem demostrar $A \Rightarrow B$.

$$A, \neg B \Rightarrow \cdots \Rightarrow Contradicció$$

Ex: La suma d'un nombre racional i un irracional és irracional.

$$x \in Q \land y \in I \rightarrow x+y \in Q$$

$$x \in Q \land y \in I \land x+y \in Q$$
 $x+y=a$ $y=a-x=d \in Q \rightarrow Q$

Prova d'una disjunció

Es basa en:
$$(q \lor r) \equiv (\neg q \to r)$$

Volem provar
$$B \vee C$$

$$\neg B \Rightarrow \cdots \rightarrow C$$

Ex: n és enter. Demostreu que n és senar o n^2 és múltiple de 4

$$n = impar V n^2 = \dot{4}$$

$$n = 2K \rightarrow n^2 = 4$$

$$n^2 = 4K^2 = 4$$

Disjunció al consequent

Es basa en:
$$p \to (q \lor r) \equiv (p \land \neg q) \to r$$

Volem provar
$$A \Rightarrow (B \lor C)$$

$$A, \neg B \Rightarrow \cdots \rightarrow C$$

Ex: x, y reals. Si $x + y \le 2$ llavors $x \le 1$ o $y \le 1$.

$$(x + y \le 2 \land x > 1) \rightarrow (y \le 1)$$
 Si $y > 1 \rightarrow$ contradicció

Disjunció a l'antecedent

Es basa en:
$$(q \lor r) \rightarrow p \equiv (q \rightarrow p) \land (r \rightarrow p)$$

És equivalent a fer una prova per casos (distingim segons $B \circ C$).

Volem demostrar
$$(B \lor C) \Rightarrow A$$

$$B \Rightarrow \cdots \Rightarrow A$$

$$C \Rightarrow \cdots \Rightarrow A$$

Ex: n és enter. Si el residu de n al dividir per 4 és 1 o 3, el residu de n^2 és 1.

$$(n=4+1) \ V (n=4+3) \rightarrow n^2 = 4 + 1$$

$$(n=4+1 \rightarrow n^2=\dot{4}+1) \land (n=4+3 \rightarrow n^2=\dot{4}+1)$$

Cas 1
$$\rightarrow$$
 n²= ($\dot{4}$ + 1) \cdot ($\dot{4}$ + 1)= $\dot{4}$ + $\dot{4}$ + $\dot{4}$ + 1 = $\dot{4}$ + 1

Cas 2
$$\rightarrow$$
 n²= ($\dot{4}$ + 3) \cdot ($\dot{4}$ + 3)= $\dot{4}$ + 1

Demostració d'una equivalència

Es basa en: $p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$

Volem demostrar $A \Leftrightarrow B$

 $A \Rightarrow B$

 $B \Rightarrow A$

Ex: n, m és enters. Són equivalents:

5n + 3m és senar $\leftrightarrow n - 3m = senar \leftrightarrow n \land m$

5n+3m= 2K+1

 $5m + 3m - 6m = impar \rightarrow 5n - 3 = impar$

Demostració de la unicitat

$\exists ! x, P(x)$

Volem veure: hi ha com a molt un x tal que P(x).

$$P(x), P(y) \Rightarrow \cdots \Rightarrow x = y$$

Ex: En tota operació (A, *) el neutre (u és neutre si $\forall x \in A(x * u = u * x = x)$), en cas d'existir, és únic.

$$\forall x \ A \ (x*V = U*X = X - X = U' - U' * U = U * U' = U' (x*V' = U'*X = X - X = U - U * U' = U' * U = U (V=V')$$

2. Inducció

Inducció simple

$$\forall n \ge n \ 0 \ P(n) \equiv P(n \ 0 \) \land \forall n > n \ 0 \ (P(n-1) \rightarrow P(n))$$

0

 $\forall n \geq n \ 0 \ P(n) \equiv P(n \ 0) \land \forall n > n \ 0 \ (P(n) \Rightarrow P(n+1))$

Ho presentem així:

- Pas Base. $P(n_0)$
- Pas inductiu. Sigui $n > n_0$:
 - Hipòtesi d'Inducció:

P(n-1)

Volem veure(Tesi d'Inducció):

P(n)

En efecte:

Inducció completa

$\forall n \geq n \mid P(n) \equiv P(n \mid 0) \land \forall n > n \mid P(n \mid 0) \land \dots \land P(n \mid 1) \rightarrow P(n)$

Ho fem així:

• Pas Base: $P(n_0)$

• Pas inductiu: per a $n > n_0$:

○ H.I. $P(n_0),...,P(n-2),P(n-1)$

• Volem veure: P(n)

En efecte:

50-
$$a_0 = 0$$
 $a_2 = 42 = 8$ $a_3 = 48 - 4.2 = 24$
 $a_1 = 2$
 $a_1 = 4a_{1-1} - 4a_{1-2}$
 $a_2 = 2 \cdot 2^2$
 $a_1 = 4a_{1-1} - 4a_{1-2}$
 $a_2 = 2 \cdot 2^2$
 $a_1 = 2 \cdot 2^2$
 $a_2 = 2 \cdot 2^2$
 $a_1 = 2 \cdot 2^2$
 $a_2 = 2 \cdot 2^2$
 $a_2 = 2 \cdot 2^2$
 $a_3 = 48 - 4.2 = 24$
 $a_1 = 24$
 $a_2 = 2 \cdot 2^2$
 $a_1 = 24$
 $a_2 = 2 \cdot 2^2$
 $a_1 = 24$
 $a_2 = 2 \cdot 2^2$
 $a_2 = 2 \cdot 2^2$
 $a_1 = 2 \cdot 2^2$
 $a_2 = 2 \cdot 2^2$
 $a_1 = 2 \cdot 2^2$
 $a_2 = 2 \cdot 2^2$
 $a_1 = 2 \cdot 2^2$
 $a_2 = 2 \cdot 2^2$
 $a_1 = 2 \cdot 2^2$
 $a_2 = 2 \cdot 2^2$
 $a_1 = 2 \cdot 2^2$
 $a_2 = 2 \cdot 2^2$
 $a_1 = 2 \cdot 2^2$
 $a_2 = 2 \cdot 2^2$
 $a_1 = 2 \cdot 2^2$
 $a_1 = 2 \cdot 2^2$
 $a_2 = 2 \cdot 2^2$
 $a_1 = 2 \cdot 2^2$
 $a_1 = 2 \cdot 2^2$
 $a_2 = 2 \cdot 2^2$
 $a_1 = 2 \cdot 2^2$
 $a_1 = 2 \cdot 2^2$
 $a_2 = 2 \cdot 2^2$
 $a_1 = 2 \cdot 2$

3. CONJUNTS I RELACIONS

Descripció d'un conjunt

Per descriure un conjunt hem de dir quins elements té (i quins no té). Hi ha dues maneres de fer-ho:

Per **extensió:** Donem la "llista" (cal recordar que no importa l'ordre i no hi ha repeticions) dels seus elements entre claus:

$$A = \{1, 3, 5, 7, 9\}.$$

Per **comprensió**: Donem una propietat P(x) que caracteritza els seus elements (una propietat P(x) que tenen tots els seus elements i ningú més):

$$A = \{ x \mid P(x) \}.$$

Notem que: Si
$$A = \{x \mid P(x)\}$$
 llavors, per a tot x : $x \in A \iff P(x)$

Notem que: Si
$$A = \{ x \in B \mid P(x) \}$$
 llavors
$$per a \text{ tot } x \in B:$$

$$x \in A \iff P(x)$$

Però **no** es compleix per a tot x (hi poden haver $x \notin B$ que compleixin P(x))

Igualtat entre conjunts (principi d'extensionalitat)

El que caracteritza un conjunt són els elements que té (i els que no té). Expressat més clarament, dos conjunts A,B són iguals si i només si tenen els mateixos elements:

$$A = B \iff \forall x (x \in A \leftrightarrow x \in B)$$

Conjunt buit

És el conjunt que no té elements i es denota per \emptyset :

$$\emptyset = \{\} = \{x \mid x \neq x\}$$

Inclusió entre conjunts (⊆)

Idea: Aés una "part" de B: Aconté "alguns" (potser tots!) dels elements de B. Aquesta idea s'expressa més clarament dient que tots els elements de A també són elements de B:

Definició:

$$A \subseteq B \qquad \Leftrightarrow \qquad \forall x (x \in A \to x \in B)$$

Es llegeix dient que A és subconjunt de B(o que A està inclòs a B)

Exemple: Si $A = \{1, 3, 5\}, B = \{1, 3, 5, 7, 9\}$ llavors $A \subseteq B$.

Notem que: el principi de extensionalitat es pot expressar així:

$$A = B \iff A \subseteq B, B \subseteq A$$

Propietats:

- I. $\emptyset \subseteq A$.
- II. $A \subseteq A$.
- III. $A \subseteq B i B \subseteq C$ implica $A \subseteq C$.

Operacions amb conjunts

Unió

Donats dos conjunts A i B definim el **conjunt unió** de A i B així:

$$A \cup B = \{x \mid x \in A \ \lor \ x \in B\}$$

Això es pot expressar de manera equivalent així:

$$x \in A \cup B \iff x \in A \lor x \in B$$

Propietats:

- I. $A \cup A = A$.
- II. $A \cup \emptyset = A$.
- III. $A \cup B = B \cup A$.
- IV. $A \cup (B \cup C) = (A \cup B) \cup C$.
- $V. \quad A \subseteq A \cup B, \ B \subseteq A \cup B.$
- $\forall \mathsf{I}. \quad A \subseteq B \quad \Leftrightarrow \quad A \cup B = B.$
- VII. $A \cup B \subseteq C \Leftrightarrow A \subseteq C$, $B \subseteq C$.

Intersecció

Donats dos conjunts A i B definim el **conjunt intersecció** de A i B així:

$$A \cap B = \{x \mid x \in A \land x \in B\}$$

Això es pot expressar de manera equivalent així:

$$x\in A\cap B\iff x\in A\ i\ x\in B$$

Propietats:

- I. $A \cap A = A$.
- II. $A \cap \emptyset = \emptyset$.
- III. $A \cap B = B \cap A$.
- IV. $A \cap (B \cap C) = (A \cap B) \cap C$.
- $V. \quad A \cap B \subseteq A, \ A \cap B \subseteq B.$
- VI. $A \subseteq B \iff A \cap B = A$.
- VII. $C \subseteq A \cap B \iff C \subseteq A \mid C \subseteq B$.

Quan dos conjunts A, B no tenen elements comuns es diu que són **disjunts**:

 $A i B s on disjunts \Leftrightarrow A \cap B = \emptyset$

Diferència

Donats dos conjunts A i B definim el **conjunt diferència** de A i B així:

$$A - B = \{x \mid x \in A \land x \notin B\}$$

Això es pot expressar de manera equivalent així:

$$x \in A - B \iff x \in A \ i \ x \notin B$$

Propietats:

$$I. \quad A - A = \emptyset$$

II.
$$A - \emptyset = A$$

III.
$$\emptyset - A = \emptyset$$

IV.
$$A - B \subseteq A$$

$$V. \quad (A - B) \cap B = \emptyset$$

VI.
$$A \subseteq B \iff A - B = \emptyset$$

VII.
$$C \subseteq A - B \iff C \subseteq A, C \cap B = \emptyset$$

Altres propietats:

I. (distributiva)

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C),$$

$$A \, \cup \, (B \, \cap \, C) \, = \, (A \, \cup \, B) \, \cap \, (A \, \cup \, C)$$

2-
$$A \cap (A \cup B) = A \cup (A \cap B) = A$$

3-
$$A - (B \cup C) = (A - B) \cap (A - C)$$

4-
$$A \cup B = (A - B) \cup (B - A) \cup (A \cap B)$$

Complementari

Donat un conjunt A subconjunt de Ω , definim el **conjunt complementari** de A així:

$$A^{c} = \Omega - A = \{ x \in \Omega \mid x \notin A \}$$

Això es pot expressar de manera equivalent així:

$$x \in A^{\mathcal{C}} \iff x \in \Omega \land x \notin A$$

Par a tot
$$x \in \Omega$$
: $x \in A^{\mathcal{C}} \iff x \notin A$

Propietats:

Suposem que $A, B, C \subseteq \Omega$

I.
$$\left(A^{c}\right)^{c}=A.$$
II. $\emptyset^{c}=\Omega,\ \Omega^{c}=\emptyset$.

II.
$$\emptyset^C = \Omega$$
, $\Omega^C = \emptyset$.

III.
$$A \cap A^{C} = \emptyset$$
, $A \cup A^{C} = \Omega$.

IV.

(**De Morgan**)
$$(A \cup B)^{c} = A^{c} \cap B^{c}$$
, $(A \cap B)^{c} = A^{c} \cup B^{c}$.

$$A - B = A \cap B^{c}$$

VI.
$$A \subseteq B \iff B^C \subseteq A^C \iff A \cap B^C = \emptyset \iff A^C \cup B = \Omega$$
.
VII. $B = A^C \iff A \cap B = \emptyset$, $A \cup B = \Omega$.

Parella ordenada

$$(a,b)=(c,d) \Leftrightarrow a=c, b=d$$

Producte cartesià

Donats dos conjunts A, B definim el **conjunt producte cartesià** de A per B així:

$$A \times B = \{ x \mid x = (a, b) \text{ per a uns certs } a \in A \text{ i } b \in B \}$$

Exemple:

$$\{1, 2, 3, 4\} \times \{a, b\} = \{ (1, a), (2, a), (3, a), (4, a), (1, b), (2, b), (3, b), (4, b) \}$$

Notem que: $|A \times B| = |A| \cdot |B|$

Propietats:

I. $A \times \emptyset = \emptyset$, $\emptyset \times A = \emptyset$.

II. $A \times (B \cap C) = (A \times B) \cap (A \times C)$.

III. $A \times (B \cup C) = (A \times B) \cup (A \times C)$.

IV. $A \times (B - C) = (A \times B) - (A \times C)$.

Propietats importants que poden tenir les relacions:

Reflexiva	∀x∈A xRx
Simètrica	$\forall x, y \in A \ (xRy \to yRx)$
Transitiva	$\forall x, y, z \in A (xRy \land yRz \rightarrow xRz)$
Antisimètrica	$\forall x, y \in A (xRy \land yRx \rightarrow x = y)$

Una relació d'equivalència és una relació binària que és reflexiva, simètrica i transitiva.

Propietats de tota relació d'equivalència:

- I. $x \in x$.
- II. Si $x \in \overline{y}$ llavors $\overline{x} = \overline{y}$.
- III. Si $x \notin y$ llavors $x \cap y = \emptyset$.
- IV. Les classes formen una "partició" de A. És a dir:
 - a. Cada classe és no buida (ja que $x \in \overline{x}$).
 - b. Dues classes differents són disjuntes: $\forall x, y \in A(x \neq y \to x \cap y = \emptyset)$.
 - c. La reunió de totes les classes és A (ja que $x \in \overline{x}$).

