Contrôle final Vendredi 5 avril 2019

Contrôle final: partie EDP (2 pages)

Consignes

- Les documents ne sont pas autorisés, de même que l'usage de tout ordinateur, calculatrice ou téléphone.
- Ne pas utiliser de correcteur fluide.
- Ecrire avec un stylo à encre noire ou bleu foncé (éviter le stylo plume à encre claire).
- Bien remplir le cartouche de chaque copie en majuscule.
- Bien numéroter les copies.
- Rendre les copies à plat toutes dans le même sens (coin coupé en haut à droite).
- Chacune des affirmations doit être justifiée par une démonstration.
- Les exercices 1 et 2 sont indépendants.

Exercice 1

Sur [0,1], on étudie le problème : trouver $w:[0,1]\to\mathbb{R}$ satisfaisant à

$$\begin{cases} -\left(x \mapsto \frac{w'(x)}{1+x}\right)' + w = 0, \\ w(0) = 1, \quad w'(1) = 0. \end{cases}$$
 (Q)

- Q.1.1 Comment se ramener à un problème avec condition homogène (nulle) en x = 0?
- **Q.1.2** Montrer que $H = \{v \in H^1(0,1) : v(0) = 0\}$ muni du produit scalaire usuel de $H^1(0,1)$ est un espace de Hilbert .
- **Q.1.3** Montrer que, sur $H, v \mapsto ||v'||_{L^2(0,1)}$ est une norme, que l'on notera $||\cdot||_H$, et que, toujours sur H, cette norme est équivalente à la norme $H^1(0,1)$ classique.
- Q.1.4 Montrer l'existence et l'unicité de la solution de classe $C^{\infty}([0,1])$ du problème (Q). On justifiera notamment soigneusement que cette solution vérifie les conditions aux limites du problème (Q).

Exercice 2

On rappelle qu'une matrice B carrée est monotone si pour tout vecteur y à coefficients positifs tel qu'il existe x satisfaisant à Bx = y, le vecteur x est à coefficients positifs.

- **Q.2.1** (Question de cours) Montrer qu'une matrice B monotone est inversible.
- Q.2.2 (Question de cours) Montrer que l'inverse d'une matrice B monotone est à coefficients positifs.

Soit $J \geq 2$. On note h = 1/J le pas de discrétisation et $x_j = jh$ pour $j \in \{0, \dots, x_{J+1}\}$. On considère le schéma numérique suivant : on cherche $V = (v_j)_{1 \leq j \leq J} \in \mathbb{R}^J$, sachant que $v_0 = 1$ est

fixé, tel que

$$\begin{cases}
-\frac{1}{h} \left(\frac{v_{j+1} - v_j}{(1 + h(j+1/2))h} - \frac{v_j - v_{j-1}}{(1 + h(j-1/2))h} \right) + v_j = 0, \ j \in \{1, \dots, J\}, \\
v_{J+1} = v_{J-1}.
\end{cases}$$
(S)

Q.2.3 Ecrire le schéma (S) sous la forme d'un système linéaire $A_h u_h = b_h$ de taille J, en précisant soigneusement la matrice A_h et le vecteur b_h .

INDICATION : On pourra utiliser les notations $\beta: x \mapsto (1+x)^{-1}$ et $\beta_{j-1/2} = \beta(h(j-1/2))/h^2$ pour $j \in \{1, \ldots, J\}$.

- **Q.2.4** Ecrire la matrice A_h et le vecteur b_h pour J=4.
- **Q.2.5** Montrer que la matrice A_h est monotone.
- **Q.2.6** Montrer que, pour tous $x \in [h/2, 1 h/2]$ et $f \in C^2([0, 1])$,

$$f(x+h/2) - f(x-h/2) = f'(x) + O(h^2).$$

Q.2.7 Montrer que le schéma (S) est consistant à l'ordre (au moins) 1 avec l'équation

$$-\left(x \mapsto \frac{w'(x)}{1+x}\right)' + w = 0 \text{ sur }]0,1[.$$
 (E)

Q.2.8 Trouver la solution w_1 de classe $C^{\infty}([0,1])$ du problème suivant et justifier son unicité :

$$\begin{cases} -\left(x \mapsto \frac{w_1'(x)}{1+x}\right)' = 1, \\ w_1(0) = 1, \quad w_1'(1) = 0. \end{cases}$$
 (Q1)

- **Q.2.9** Montrer que la matrice $A_h I$ est monotone.
- Q.2.10 (Question plus difficile) Montrer que le schéma numérique (S) est stable en norme $\|\cdot\|_{\infty}$.

INDICATION : On pourra utiliser les propriétés de la fonction w_1 et les techniques utilisées pour montrer la consistance du schéma avec (E).

Q. 2.11 En utilisant les questions précédentes, montrer la convergence du schéma numérique vers la solution du problème (Q).