Лабораторная работа №17

Задания для самостоятельной работы

Демидович Никита Михайлович

Содержание

1	Мод	елирование работы вычислительного центра	4
	1.1	Постановка задачи	4
	1.2	Код модели	4
	1.3	Отчет модели	6
	1.4	Задание	7
2	Мод	ель работы аэропорта	8
	2.1	Постановка задачи	8
	2.2	Код модели	8
	2.3	Отчет модели	10
	2.4	Задание	11
3	Мод	ель морского порта	12
	3.1	Постановка задачи	12
	3.2	Код модели	12
	3.3	Отчет модели	13
	3.4	Задание	15
4	Выв	оды	18
5	Спис	сок источников	19

Список иллюстраций

1.1	Отчет модели работы вычислительного центра 1
1.2	Отчет модели работы вычислительного центра 2
2.1	Отчет модели работы аэропорта 1
2.2	Отчет модели работы аэропорта 2
3.1	Отчет модели работы морского порта (условие 1)
3.2	Отчет модели работы морского порта (условие 2)
3.3	Отчет модели работы морского порта (условия 1), опт
3.4	Отчет модели работы морского порта (условие 2), опт

Моделирование работы вычислительного центра

1.1 Постановка задачи

На вычислительном центре в обработку принимаются три класса заданий A, B и C. Исходя из наличия оперативной памяти ЭВМ задания классов A и B могут решаться одновременно, а задания класса C монополизируют ЭВМ. Задания класса A поступают через 20 +/- 5 мин, класса B - через 20 +/- 10 мин, класса C - через 28 +/- 5 мин и требуют для выполнения: класс A - 20 +/- 5 мин, класс B - 21 +/- 3 мин, класс C - 28 +/- 5 мин. Задачи класса C загружаются в ЭВМ, если она полностью свободна. Задачи классов A и B могут дозагружаться к решающей задаче. Смоделировать работу ЭВМ за 80 ч. Определить её загрузку.

1.2 Код модели

Ниже представлен код модели:

ram STORAGE 2

;класс А

GENERATE 20,5

QUEUE class_A

ENTER ram,1

DEPART class_A

ADVANCE 20,5

LEAVE ram,1

TERMINATE 0

;класс В

GENERATE 20,10

QUEUE class_A

ENTER ram,1

DEPART class_A

ADVANCE 21,3

LEAVE ram,1

TERMINATE 0

;класс С

GENERATE 28,5

QUEUE class_A

ENTER ram, 2

DEPART class_A

ADVANCE 28,5

LEAVE ram, 2

TERMINATE 0

;таймер

GENERATE 4800

TERMINATE 1

1.3 Отчет модели

Ниже представлен отчет модели (рис. 1.1) - (рис. 1.2):

GPSS World Simulation Report - 1.1.1										
Saturday, May 31, 2025 14:33:28										
START TIME END TIME BLOCKS FACILITIES STORAGES										
0	.000		480	00.000	23	3	0		1	
мдм	E			7	72\T.TJF					
CLASS_A				1000	01.00	0				
RAM				1000						
LABEL					VTRY 24	COUNT	CURRENT	COUNT	RETRY	
			UE UE			10		4	0	
	2	ENT	ER		23			0	0	
			ART			6			0	
			ANCE			16		1	0	
					23	5		0	0	
	7	TER	VE MINATE		23	15		0	0	
			ERATE		23	16			0	
			UE		23			5	ō	
								0	0	
	11	DEP.	ER ART		23	1		0	0	
	12	ADV.	ANCE		23	1		1	0	
	13	LEA	VE		23			0	0	
	14	TER	MINATE		23	0		0	0	
	15	GEN	FRATE		17 17	2		0	0	
			UE		17	2	17	72	0	
			ER			0		0	0	
			ART			0		0	0	
	19	ADV.	ANCE VE			0		0	0	
	20	LEA	VE			0		0	0	
			MINATE			0		0	0	
			ERATE			1		0	0	
	23	TER	MINATE			1		0	0	
QUEUE										
CLASS_A	183	181	648	4	9	2.354	684.1	105	688.354	0

Рис. 1.1: Отчет модели работы вычислительного центра 1

STORAGE RAM		CAP. REM. 2 0		X. ENTRI 2 46	ES AVL		UTIL. RETRY 0.994 0	DELAY 181
FEC XN	PRI	BDT	ASSEM	CURRENT	NEXT	PARAMETER	NALUE	
650	0	4803.512	650	0	1			
636	0	4805.704	636	5	6			
651	0	4807.869	651	0	15			
637	0	4810.369	637	12	13			
652	0	4813.506	652	0	8			
653	0	9600.000	653	0	22			

Рис. 1.2: Отчет модели работы вычислительного центра 2

1.4 Задание

Из отчета нетрудно видеть, что средняя загрузка составила 0.994.

2 Модель работы аэропорта

2.1 Постановка задачи

Самолеты прибывают для посадки в район аэропорта каждые 10 +/- 5 мин. Если взлетно-посадочная полоса свободна, прибывший самолет получает разрешение на посадку. Если полоса занята, самолет выполняет полет по кругу и возвращается в аэропорт каждые 5 мин. Если после пятого круга самолет не получает разрешения на посадку, он отправляется на запасной аэродром. В аэропорту через каждые 10 +/- 2 мин к взлетно-посадочной полосе выруливают готовые к взлету самолеты и получают разрешение на взлет, если полоса свободна. Для взлета и посадки самолеты занимают полосу ровно на 2 мин. Если при свободной полосе одновременно один самолет прибывает для посадки, а другой - для взлета, то полоса предоставляется взлетающей машине.

Требуется:

- выполнить моделирование работы аэропорта в течение суток;
- подсчитать количество самолётов, которые взлетели, сели и были направлены на запасной аэродром;
- определить коэффициент загрузки взлетно-посадочной полосы.

2.2 Код модели

Ниже представлен код модели:

GENERATE 10,5,,,1

ASSIGN 1,0

QUEUE arrival

landing GATE NU runway, wait

SEIZE runway

DEPART arrival

ADVANCE 2

RELEASE runway

TERMINATE 0

;посадка

wait TEST L p1,5,goaway

ADVANCE 5

ASSIGN 1+,1

TRANSFER 0, landing

goaway SEIZE reserve

DEPART arrival

RELEASE reserve

TERMINATE 0

;взлет

GENERATE 10,2,,,2

QUEUE takeoff

SEIZE runway

DEPART takeoff

ADVANCE 2

RELEASE runway

TERMINATE 0

;таймер GENERATE 1440 TERMINATE 1

2.3 Отчет модели

Ниже представлен отчет модели (рис. 2.1) - (рис. 2.2):

GPSS World Simulation Report - 2.2.1

Saturday, May 31, 2025 14:34:24

	START TI			END TIME					
	0.0	00		1440.000	26		1	(0
	NAME				VALUE				
	ARRIVAL			10	002.00	0			
	GOAWAY				14.00	0			
	LANDING				4.00	0			
	RESERVE			UN	SPECIF	IED			
	RUNWAY			10	001.00	0			
	TAKEOFF			10	000.00	0			
	WAIT				10.00	0			
LABEL				TYPE			CURRENT		
		_	GENERA		14	_		0	0
		_	ASSIGN		14			0	0
			QUEUE		14			0	0
LANDING			GATE		18			0	0
		_	SEIZE		14			0	0
			DEPART		14			0	0
			ADVANC	_	14			0	0
			RELEAS	_	14			0	0
			TERMIN	ATE	14			0	0
WAIT			TEST		3			0	0
			ADVANC	_	3			0	0
			ASSIGN		3			0	0
		13	TRANSF	ER	3			0	0
GOAWAY			SEIZE			-		0	0
		15	DEPART			-		0	0
		16	RELEAS	_		•		0	0
		17	TERMIN			-		0	0
			GENERA	TE	14			0	0
			QUEUE		14			0	0
			SEIZE		14			0	0
		21	DEPART		14			0	0
		22	ADVANC	E	14	2		0	0

Рис. 2.1: Отчет модели работы аэропорта 1

		20	SEIZE			142		0		0	
		21	DEPART			142		0		0	
		22	ADVANCE	2		142		0		0	
		23	RELEASE	2		142		0		0	
		24	TERMINA	ATE		142		0		0	
		25	GENERA?	ľE		1		0		0	
		26	TERMINA	ATE		1		0		0	
FACILITY		ENTRIES	UTIL.	AV	E. TIME	AVAIL.	OWNER	PEND	INTER	RETRY	DELAY
RUNWAY		288	0.400)	2.000	1	0	0	0	0	0
QUEUE		MAX CC	ONT. ENT	TRY E	NTRY(0)	AVE.CON	T. AV	E.TIME	E AV	E.(-0)	RETRY
TAKEOFF		1	0 :	L42	114	0.017		0.173	3	0.880	0
ARRIVAL		2	0 :	146	114	0.132	2	1.30	L	5.937	0
FEC XN	PRI	BDT	AS	SSEM	CURRENT	NEXT	PARA	METER	VA:	LUE	
290	2	1440.7	749 2	290	0	18					
291	1	1445.3	367 2	291	0	1					
292	0	2880.0	000 2	292	0	25					

Рис. 2.2: Отчет модели работы аэропорта 2

2.4 Задание

Из отчета нетрудно видеть, что:

- влетело 142 самолета;
- сели 146 самолетов;
- на запасной аэродром отправилось 0 самолетов.

Коэффициент загрузки взлетно-посадочной полосы составил 0.400.

3 Модель морского порта

3.1 Постановка задачи

Морские суда прибывают в порт каждые [а +/- b] часов. В порту имеется N причалов. Каждый корабль по длине занимает M причалов и находится в порту [В +/- e] часов. Требуется построить GPSS-модель для анализа работы морского порта в течение полугода, определить оптимальное количество причалов для эффективной работы порта. Исходные данные: 1) a = 20 ч, b = 5 ч, b = 10 ч, b = 3 ч, b = 10 ч, b = 4 ч, b = 6 м и b = 2 m.

3.2 Код модели

Ниже представлен код модели для первых исходных данных:

```
pier STORAGE 10

GENERATE 20,5

;моделирование занятия причала

QUEUE arrive

ENTER pier,3

DEPART arrive

ADVANCE 10,3

LEAVE pier,3

TERMINATE 0
```

```
;таймер
GENERATE 24
TERMINATE 1
START 180
 Для вторых:
pier STORAGE 6
GENERATE 30,10
;моделирование занятия причала
QUEUE arrive
ENTER pier,4
DEPART arrive
ADVANCE 8,4
LEAVE pier,4
TERMINATE 0
;таймер
GENERATE 24
TERMINATE 1
START 180
```

3.3 Отчет модели

Ниже представлен отчет модели (рис. 3.1) - (рис. 3.2):

GPSS World Simulation Report - 3.3.1

Saturday, May 31, 2025 14:35:52

		IME 000			FACILITIES 0		
	NAME ARRIVE PIER			VALUE 001.000 000.000			
LABEL		LOC BLOCK 1 GENERI 2 QUEUE 3 ENTER 4 DEPARI 5 ADVANG 6 LEAVE 7 TERMIN 8 GENERI 9 TERMIN	ATE CE NATE ATE	215 215 215 215 215 215 214 214 180 180	0 0 0 1 0 0	COUNT RETRY 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
QUEUE ARRIVE						E AVE.(-0)	
STORAGE PIER						UTIL. RETRY I	
395 396	0	BDT 4324.260 4335.233 4344.000	395 5 396 0	6	FARAMETER	NALUE VALUE	

Рис. 3.1: Отчет модели работы морского порта (условие 1)

GPSS World Simulation Report - 3.7.1

		Saturday	7, May 31, 20	25 14:40:1	4	
		IME 000	END TIM 4320.00		FACILITIES 0	
	NAME ARRIVE PIER		_	VALUE 0001.000 0000.000		
LABEL		1 GE 2 QU 3 EN 4 DE 5 AI 6 LE 7 TE 8 GE	OCK TYPE ENERATE JEUE ETER EPART VVANCE EAVE EMINATE ENERATE EMINATE	143 143 143	0 0 0 0	0 0 0 0 0 0
QUEUE ARRIVE						E AVE.(-0) RETRY 0 0.000 0
STORAGE PIER						UTIL. RETRY DELAY 0.087 0 0
324	0	4325.892 4336.699	ASSEM CU 322 324 325	5 6 0 1	T PARAMETER	VALUE

Рис. 3.2: Отчет модели работы морского порта (условие 2)

3.4 Задание

Ниже представлен отчеты наиболее оптимальных моделей (рис. 3.3) - (рис. 3.4):

GPSS World Simulation Report - 3.6.1

Saturday, May 31, 2025 14:38:15

		IME 000		BLOCKS FA		
	NAME ARRIVE PIER		100 100			
LABEL		LOC BLOCK 1 GENERI 2 QUEUE 3 ENTER 4 DEPARI 5 ADVANG 6 LEAVE 7 TERMIN 8 GENERI 9 TERMIN	ATE CE NATE	215 215 215 215 215 215 215 214 214 214 180	CURRENT COUNT 0 0 0 0 0 1 0 0 0	0 0 0 0
QUEUE ARRIVE						AVE.(-0) RETRY 0.000 0
STORAGE PIER					AVE.C. UTI 0.990 0.49	L. RETRY DELAY 95 0 0
395 396	0	BDT 4324.260 4335.233 4344.000	395 5 396 0	6	PARAMETER	VALUE

Рис. 3.3: Отчет модели работы морского порта (условия 1), опт

GPSS World Simulation Report - 3.8.1

Рис. 3.4: Отчет модели работы морского порта (условие 2), опт

Вычисленные мною наиболее оптимальные количества причалов для наиболее эффективной работы порта: 3 - для первого условия и 2 - для второго.

4 Выводы

В процессе выполнения данной лабораторной работы я выполнил самостоятельное задание и реализовал три имитационное модели на GPSS.

5 Список источников

- 1. Jensen, K., Kristensen, L. M. Lecture Notes, 2009
- 2. Электронная библиотека БГУ Модели обслуживания, 2009