CIS501 – Lecture 12

Woon Wei Lee Fall 2013, 10:00am-11:15am, Sundays and Wednesdays

For today:

- Administrative stuff
 - Updated presentation list
- Unsupervised learning
 - Cluster analysis
 - K-means clustering
 - "K-centres"
- Presentations
 - Chih-Hsien Chou
 - Tzu-Chun Lin

Introduction to unsupervised learning

Definition:

- Learning about data without the use of target labels.
- "Exploratory analysis"

Discovery of intrinsic properties of the data

- Without any pre-conceived targets or objectives
- Often more valuable the supervised methods
 - Supervised methods → "Help me to answer this question"
 - Unsupervised methods → "What is the questions which I should be asking?"

Examples of unsupervised learning techniques:

- Density estimation
- Clustering
- Adaptive signal processing
- Mappings/Projections/Correlations
- Visualizations

A simple density estimation problem

- Given a set of data points, find a suitable probabilistic m
- Gaussian model
 - Simply find the mean and std of the data:

$$\mu = \frac{1}{n} \sum_{i=1}^{n} x(i)$$
, $\sigma^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x(i) - \mu)^2$

Then, the data density is:

$$p(x|\mu,\sigma) = \frac{1}{(2\pi\sigma)^{1/2}} e^{\frac{(x-\mu)^2}{2\sigma^2}}$$

- Outlier detection
 - Having described data, anything that doesn't fit that description can be detected)
 - Understanding of nature/physics of the data
 - Ability to "generate" data points for simulations, etc.
 - Build classifiers, probabilistic models, etc.

Slightly fancier..

- Next consider slightly more elaborate data collection on right →
 - Data is now drawn from two separate probability distributions.

$$\mu_1 = \frac{1}{n} \sum_{i=1}^{n} x_1(i)$$
, $\sigma_1^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_1(i) - \mu)^2$

$$\mu_2 = \frac{1}{n} \sum_{i=1}^{n} x_2(i)$$
, $\sigma_2^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_2(i) - \mu)^2$

In which case the PDF becomes:

$$p(x|\theta) = \sum_{i=1,2} \left[\frac{1}{(2\pi \sigma_i)^{1/2}} e^{\frac{(x-\mu_i)^2}{2\sigma^2}} \right]$$

- All this may seem familiar..
 - Problem is.. how do we find the μ 's and σ 's if we don't have the class labels?

Cont'd

- Classic unsupervised learning problem
 - The particular form of probability density encountered here is known as a "mixture model"
 - Trick is to assign each point to one of two component PDFs
 - without knowing labels in advance!
- As in previous problems, an iterative solution might be attempted:
 - Assume (random?) initial values for the μ 's and σ 's
 - Assign each point to one gaussian or the other
 - Recalculate parameters
 - Iterate until termination met
- Is in fact such an algorithm, known as the "EM-Algorithm"
 - Won't be covered here, but we will be looking at a related technique known as k-means clustering
 - Leads to discussion on clustering

Clustering

Definitions

- A.K.A. "Cluster Analysis"
- Detection of self-similar groups within data sets
- For historical reasons, clustering and unsupervised learning are often used interchangeably
 - (But, this is not accurate!)

The basics:

- Collection of techniques and algorithms for finding these groups or clusters
- Objective is to partition data set such that
 - objects which are similar to each other are grouped together
 - Dissimilar objects segregated

Applications

- As a tool for understanding the underlying classes/modes/distribution of the data
- A pre-processing step for other algorithms

Aspects of clustering

Distance measure

Measure of dissimilarity/similarity between objects d(i,j)

Quality measure

- A means of measuring the quality or "success" of a clustering operation
- In general is some comparison of inter-class to intra-class distances

Algorithms - two main classes

- Partition-based algorithms
 - K-means
 - Mixture models
- Hierarchical algorithms
 - Two subclasses:
 - Agglomerative ("bottom up")
 - Divisional ("top down")

Assign each point to its nearest mean

Set each mean to average of its data

K-means clustering

- Is an algorithm for partitioning data set into different groups or clusters
 - Choose a value of *k* (note: this sets the complexity of the model!)
 - Generate *k* initial cluster centers or *centroids*
 - Assign each point to the closest centroid
 - Recompute the location of the centroids using existing class memberships
 - Iterate until stopping criterion is met
- Possible stopping criteria include:
 - Cessation of membership re-assignments
 - Convergence of the centroid locations
 - Convergence of the sum squared error measure:

$$SSE = \sum_{j=1}^{k} \sum_{x \in C_j} dist(x, m_j)^2$$

K-centers

- One of the main advantages of the k-means algorithm is that it is extremely simple
 - Hence, highly configurable
 - A variety of customized versions exist
- The k-centers algorithm allows clustering to be performed with non-vector space data
 - All that is required is that we know the distances between all pairs of points
- Useful in a variety of situations:
 - Bioinformatics → might need to cluster DNA sequences..
 - Document or word clustering → similarity could be defined via Google searches, for e.g.
 - Clustering of signals or features via mutual information/correlation
 - Also permits the use of "kernel" methods, which allow clustering in high dimensional feature spaces

K-centers (Cont'd)

K-centers (Cont'd)

Clustering quality measures

Why?

- A means of validation does clustering work at all?
 - Difficult to tell with high dimensional data!
- Model order selection...
- Clustering algorithms are often stochastic can repeat and choose best outcome
- Allows direct optimization of cluster partitions

Dunn index

$$DI(c) = \min_{i,j \in c: i \neq j} \left\{ \frac{\delta(A_i, A_j)}{\max_{k \in c} \left(\Delta(A_k)\right)} \right\} \quad \text{(Large DI is good!)}$$

- $\delta(A_i, A_j)$ is the distance between the two closest points in clusters i and j
- △(A_i) is the cluster "diameter": i.e. the distance between the two furthest points in cluster i.

Quality measures (cont'd)

Davies-Bouldin Index

$$DB(c) = \frac{1}{c} \sum_{i \in c} \max_{i \neq j} \left\{ \frac{\Delta(A_i) + \Delta(A_j)}{\delta(A_i, A_j)} \right\} \quad \text{(Small } DB \text{ is good!)}$$

• $\triangle(A_i)$ and $\delta(A_i, A_j)$ have the same meanings as in previous formula

C-index

$$C = \frac{S - S_{min}}{S_{max} - S_{min}}$$
 (Small C is good!)

- S sum of distances between all pairs of objects which are in the same cluster(s)
- S_{min} sum of the n smallest distances between all pairs of objects
- S_{max} sum of the *n* biggest distances between all pairs of objects

(cont'd)

"External" quality metrics

- An alternative approach can be applied if we do in fact have labels for the data (but chose not to use it during the clustering)
- In this case, can use any of supervised measures, such as GINI impurity, Information Gain, etc..

Model selection

- Evaluation using the quality measure mentioned here
 - e.g. by evaluating each value of k and finding the "kink" in the metric curve (shown on right)

Reliable clustering

- Clustering algorithms like k-means (et al) are heuristics and may not be globally optimal.
 - By repeating clustering operations multiple times and selecting the best options we can obtain more robust clusters
- Also possible to use optimization algorithms like GA and Particle Swarm to directly optimize these quality metrics

