Combinations with Repetitions

Vladimir Podolskii

Computer Science Department, Higher School of Economics

Outline

Review

Salad

Combinations with Repetitions

We considered selections of k items out of n possible options

We considered selections of k items out of n possible options

	With repetitions	Without repetitions
Ordered		
Unordered		

We considered selections of k items out of n possible options Consider k=2 and n=3 options: a, b, c

	With repetitions	Without repetitions
Ordered		
Unordered		

We considered selections of k items out of n possible options Consider k=2 and n=3 options: a, b, c

	With repetitions	Without repetitions
Ordered	(a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a), (c, b), (c, c)	
Unordered		

We considered selections of k items out of n possible options Consider k=2 and n=3 options: a, b, c

	With repetitions	Without repetitions
Ordered	(a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a), (c, b), (c, c)	(a, b), (a, c), (b, a), (b, c), (c, a), (c, b)
Unordered		

We considered selections of k items out of n possible options Consider k=2 and n=3 options: a, b, c

	With repetitions	Without repetitions
Ordered	(a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a), (c, b), (c, c)	(a, b), (a, c), (b, a), (b, c), (c, a), (c, b)
Unordered		{a, b}, {a, c}, {b, c}

We considered selections of k items out of n possible options Consider k=2 and n=3 options: a, b, c

	With repetitions	Without repetitions
Ordered	(a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a), (c, b), (c, c)	(a, b), (a, c), (b, a), (b, c), (c, a), (c, b)
Unordered	{a, b}, {a, c}, {b, c} {a, a}, {b, b}, {c, c}	{a, b}, {a, c}, {b, c}

	With repetitions	Without repetitions
Ordered		
Unordered		

	With repetitions	Without repetitions
Ordered	Tuples n^k	
Unordered		

	With repetitions	Without repetitions
Ordered	Tuples n^k	k -permutations $rac{n!}{(n-k)!}$
Unordered		

	With repetitions	Without repetitions
Ordered	Tuples n^k	k -permutations $rac{n!}{(n-k)!}$
Unordered		Combinations $\binom{n}{k}$

	With repetitions	Without repetitions
Ordered	Tuples n^k	k -permutations $rac{n!}{(n-k)!}$
Unordered	?	Combinations $\binom{n}{k}$

Example

Example

Suppose we have k videos, each falls into one of n categories. We are interested in the number of videos in each category. How many possible distributions of sizes of categories do we have?

Suppose
$$k = 2$$
, $n = 3$.

Here is the list of all distributions:

$$(2,0,0), (0,2,0), (0,0,2)\\$$

Example

Suppose we have k videos, each falls into one of n categories. We are interested in the number of videos in each category. How many possible distributions of sizes of categories do we have?

• For each of k videos we pick one of n categories

Example

- For each of k videos we pick one of n categories
- Each video contributes 1 to one of the categories

Example

- For each of k videos we pick one of n categories
- Each video contributes 1 to one of the categories
- Each video equally matters, our choices are unordered

Example

- For each of k videos we pick one of n categories
- Each video contributes 1 to one of the categories
- Each video equally matters, our choices are unordered
- Several videos can fall in the same category

Example

- For each of k videos we pick one of n categories
- Each video contributes 1 to one of the categories
- Each video equally matters, our choices are unordered
- Several videos can fall in the same category
- So classifying videos we pick k unordered categories out of n with repetitions

Outline

Review

Salad

Combinations with Repetitions

Problem

Problem

We have an unlimited supply of tomatoes, bell peppers and lettuce. We want to make a salad out of 4 units among these three ingredients (we do not have to use all ingredients). How many different salads we can make?

We pick 4 items out of 3 options with repetitions

Problem

- We pick 4 items out of 3 options with repetitions
- · Order does not matter

Problem

- We pick 4 items out of 3 options with repetitions
- Order does not matter
- So this is our setting

Problem

- We pick 4 items out of 3 options with repetitions
- Order does not matter
- So this is our setting
- Still do not know how to count

Problem

- We pick 4 items out of 3 options with repetitions
- Order does not matter
- So this is our setting
- Still do not know how to count
- We will list all possible salads, then count them

Problem

- We pick 4 items out of 3 options with repetitions
- Order does not matter
- So this is our setting
- Still do not know how to count
- We will list all possible salads, then count them
- But we want to do it wisely

The same salad

• The order does not matter

The same salad

The same salad

- · The order does not matter
- So let's draw tomatoes first, then bell peppers, then lettuce

- · The order does not matter
- So let's draw tomatoes first, then bell peppers, then lettuce

- · The order does not matter
- So let's draw tomatoes first, then bell peppers, then lettuce
- Let's consider all possible numbers of tomatoes in the salad and count in each case separately

Case 1: 4 tomatoes

Case 1: 4 tomatoes

Case 1: 4 tomatoes

Case 2: 3 tomatoes

Case 2: 3 tomatoes

Case 2: 3 tomatoes

Case 2: 3 tomatoes

• 4 tomatoes: 1 salad

Case 3: 2 tomatoes

• 4 tomatoes: 1 salad

Case 3: 2 tomatoes

• 4 tomatoes: 1 salad

Case 3: 2 tomatoes

• 4 tomatoes: 1 salad

Case 3: 2 tomatoes

• 4 tomatoes: 1 salad

Case 3: 2 tomatoes

• 4 tomatoes: 1 salad

• 3 tomatoes: 2 salads

Case 4: 1 tomato

• 4 tomatoes: 1 salad

• 3 tomatoes: 2 salads

Case 4: 1 tomato

• 4 tomatoes: 1 salad

• 3 tomatoes: 2 salads

Case 4: 1 tomato

4 tomatoes: 1 salad

• 3 tomatoes: 2 salads

Case 4: 1 tomato

4 tomatoes: 1 salad

• 3 tomatoes: 2 salads

Case 4: 1 tomato

4 tomatoes: 1 salad

• 3 tomatoes: 2 salads

Case 4: 1 tomato

4 tomatoes: 1 salad

• 3 tomatoes: 2 salads

• 2 tomatoes: 3 salads

Case 5: 0 tomatoes

4 tomatoes: 1 salad

• 3 tomatoes: 2 salads

• 2 tomatoes: 3 salads

Case 5: 0 tomatoes

4 tomatoes: 1 salad

• 3 tomatoes: 2 salads

• 2 tomatoes: 3 salads

Case 5: 0 tomatoes

4 tomatoes: 1 salad

• 3 tomatoes: 2 salads

• 2 tomatoes: 3 salads

Case 5: 0 tomatoes

4 tomatoes: 1 salad

• 3 tomatoes: 2 salads

• 2 tomatoes: 3 salads

Case 5: 0 tomatoes

4 tomatoes: 1 salad

• 3 tomatoes: 2 salads

• 2 tomatoes: 3 salads

Case 5: 0 tomatoes

4 tomatoes: 1 salad

• 3 tomatoes: 2 salads

• 2 tomatoes: 3 salads

Case 5: 0 tomatoes

4 tomatoes: 1 salad

• 3 tomatoes: 2 salads

• 2 tomatoes: 3 salads

• 1 tomato: 4 salads

Case 5: 0 tomatoes

• 4 tomatoes: 1 salad

• 3 tomatoes: 2 salads

• 2 tomatoes: 3 salads

• 1 tomato: 4 salads

0 tomatoes: 5 salads

• In total: 15 salads

List of all Salads

• The solution looks very structured

- The solution looks very structured
- Same structure for larger salads

- The solution looks very structured
- Same structure for larger salads
- But more complicated for more ingredients

- The solution looks very structured
- Same structure for larger salads
- But more complicated for more ingredients
- Yet, the same strategy works for recursive counting for any salad size and any number of ingredients

Outline

Review

Salad

Combinations with Repetitions

Large Salad

Problem

We have an unlimited supply of tomatoes, bell peppers, lettuce and eggplant. We want to make a salad out of 7 units among these four ingredients (we do not have to use all ingredients). How many different salads we can make?

Large Salad

Problem

We have an unlimited supply of tomatoes, bell peppers, lettuce and eggplant. We want to make a salad out of 7 units among these four ingredients (we do not have to use all ingredients). How many different salads we can make?

We can use recursive counting here as well

Large Salad

Problem

We have an unlimited supply of tomatoes, bell peppers, lettuce and eggplant. We want to make a salad out of 7 units among these four ingredients (we do not have to use all ingredients). How many different salads we can make?

- We can use recursive counting here as well
- But now we will obtain a formula

Problem

We have an unlimited supply of tomatoes, bell peppers, lettuce and eggplant. We want to make a salad out of 7 units among these four ingredients (we do not have to use all ingredients). How many different salads we can make?

- We can use recursive counting here as well
- But now we will obtain a formula
- This will be a general solution

· The order does not matter

- · The order does not matter
- Let's list first tomatoes, then bell pepper, then lettuce, then eggplant

• Idea 1: to specify the list it is enough to indicate where the ingredients switch

• Idea 1: to specify the list it is enough to indicate where the ingredients switch

• Idea 1: to specify the list it is enough to indicate where the ingredients switch

- Idea 1: to specify the list it is enough to indicate where the ingredients switch
- Idea 2: Do not even need the text descriptions

- Idea 1: to specify the list it is enough to indicate where the ingredients switch
- Idea 2: Do not even need the text descriptions

- Idea 1: to specify the list it is enough to indicate where the ingredients switch
- Idea 2: Do not even need the text descriptions
- Idea 3: Can represent places of switch as delimiter signs

- Idea 1: to specify the list it is enough to indicate where the ingredients switch
- Idea 2: Do not even need the text descriptions
- Idea 3: Can represent places of switch as delimiter signs

- Idea 1: to specify the list it is enough to indicate where the ingredients switch
- Idea 2: Do not even need the text descriptions
- Idea 3: Can represent places of switch as delimiter signs
- The salad can still be restored: tomatoes are on the left from the left delimiter, bell peppers are next, and so on

 What if there are no, say, bell peppers in the original salad?

- What if there are no, say, bell peppers in the original salad?
- This is fine

- What if there are no, say, bell peppers in the original salad?
- This is fine
- Now, to specify the salad we need to pick three positions among 10 to place delimiters

- What if there are no, say, bell peppers in the original salad?
- This is fine
- Now, to specify the salad we need to pick three positions among 10 to place delimiters
- These are combinations! The answer to the problem is $\binom{10}{3} = 120!$

Problem

We have an unlimited supply of tomatoes, bell peppers, lettuce and eggplant. We want to make a salad out of 7 units among these four ingredients (we do not have to use all ingredients). How many different salads we can make?

Problem

We have an unlimited supply of tomatoes, bell peppers, lettuce and eggplant. We want to make a salad out of 7 units among these four ingredients (we do not have to use all ingredients). How many different salads we can make?

Main ideas:

Order salad in a convenient way

Problem

We have an unlimited supply of tomatoes, bell peppers, lettuce and eggplant. We want to make a salad out of 7 units among these four ingredients (we do not have to use all ingredients). How many different salads we can make?

- Order salad in a convenient way
- Salad is determined by delimiters between types of ingredients

Problem

We have an unlimited supply of tomatoes, bell peppers, lettuce and eggplant. We want to make a salad out of 7 units among these four ingredients (we do not have to use all ingredients). How many different salads we can make?

- Order salad in a convenient way
- Salad is determined by delimiters between types of ingredients
- · Place delimiters in the line with ingredients

Problem

We have an unlimited supply of tomatoes, bell peppers, lettuce and eggplant. We want to make a salad out of 7 units among these four ingredients (we do not have to use all ingredients). How many different salads we can make?

- Order salad in a convenient way
- Salad is determined by delimiters between types of ingredients
- · Place delimiters in the line with ingredients
- It is left to choose delimiters in the line old problem

Combinations with Repetitions

Combinations with Repetitions

The number of combinations of size k of n objects with repetitions is equal to $\binom{k+n-1}{n-1}$

Size of the combination = size of salad

Combinations with Repetitions

- Size of the combination = size of salad
- Number of objects = number of ingredients

Combinations with Repetitions

- Size of the combination = size of salad
- Number of objects = number of ingredients
- The same argument works

Combinations with Repetitions

- Size of the combination = size of salad
- Number of objects = number of ingredients
- The same argument works
- Why k+n-1 and n-1?

Combinations with Repetitions

- Size of the combination = size of salad
- Number of objects = number of ingredients
- The same argument works
- Why k+n-1 and n-1?
- n ingredients mean n-1 delimiters; choosing (n-1) element in the line of k+(n-1) elements

Standard Settings

We considered selections of k items out of n possible options

Standard Settings

We considered selections of k items out of n possible options

	With repetitions	Without repetitions
Ordered	Tuples n^k	k -permutations $rac{n!}{(n-k)!}$
Unordered	Combinations with repetitions $\binom{k+n-1}{n-1}$	Combinations $\binom{n}{k}$