Design and Analysis of Algorithms

L25: Kruskal's Algorithm Minimum Cost Spanning Tree

Dr. Ram P Rustagi
Sem IV (2019-H1)
Dept of CSE, KSIT/KSSEM
rprustagi@ksit.edu.in

Resources

- Text book 2: Sec 4.1, 4.3, 4.4
- Text book 1: Sec 9.1-5.4 Levitin
- RI: Introduction to Algorithms
 - Cormen et al.
- MIT Open CourseWare
 - https://ocw.mit.edu/courses/civil-and-environmental-engineering/1-204-computer-algorithms-in-systems-engineering-spring-2010/lecture-notes/
 MIT I _ 204S I 0 _ lec I I.pdf

Kruskal's Algorithm

- Sort the edges in nondecreasing order of lengths
- "Grow" tree one edge at a time
 - Produce MST through a series of expanding forests $F_1, F_2, ..., F_{n-1}$
- On each iteration,
 - Consider the next edge on the sorted list
 - If this edge creates a cycle,
 - –Skip the edge
 - Else
 - Add the edge to spanning tree

Kruskal's Algorithm

Example 2: Kruskal Algorithm

Q: Construct an MST using Kruskal algo

Analysis of Kruskal's Algorithm

- Algorithm looks easier to implement
 - Just sort the edge in non-increasing order of weights and consider one edge at a time
- Cycle checking is harder to implement
 - A cycle occurs when the added edge connects vertices in the same connected component
- Using Union-Find algorithm to merge the connected components
- Time complexity:
 - -○(m*lg m|), where m is number of edges.
 - The time spent is mostly on sorting.

Implementation of Kruskal's Algorithm

```
Algo Kruskal(G)
// i/p:A weighted connected graph G = \langle V, E \rangle
// o/p: Et, the set of edges composing an MST of G
sort E in non-decreasing order of edge weights i.e.
 W(e_{i_1}) \le W(e_{i_2}) \le ... \le W(e_{i_m})
E_T \leftarrow \emptyset; edgecount \leftarrow 0; k \leftarrow 0
while edgecount < |V| - 1 do
   k \leftarrow k+1
   if E_T U \{e_{i_{\nu}}\} is acyclic
       E_T \leftarrow E_T \cup \{e_{i_k}\}
       edgecount ← edgecount+1
// end while
return \mathbb{E}_{\mathbb{T}}
```

Union-Find Approach

- Using set based Union-Find approach
 - It is almost O(n)
- Union-Find approach
- Consider the set of n elements which are known.
- All these elements put in an array and their id can be the array index i.e.
 - $-a[i] = x_i # i^{th}$ element is x_i .
- Elements are divided into groups (sets)
 - Initially, each element is a group by itself.
- Two kinds of operations:
 - Find the group to which element belongs
 - Merge the two groups

Time Complexity Analysis

Sorting the edges

- While loop: | E | times
 - Checking for cycle formation
 - Use Union Find approach for an edge lg*n
- Time complexity for cycle checking for all edges
 - O(|E|lg*|V|)
- Total time complexity

```
O(|E|lg|E|) + O(|E|lg*|V|)
=O(|E|lg|E|)
```

Union-Find Approach

- Two operations given below are performed in arbitrary order
 - Find(i): return the group id containing element xi.
 - Union(A, B): Combine the (set) group A with (set) group B to form a new group.
 - Give a unique name to this group. All elements of this new group will have this group id.
 - This could be one of earlier groups as well i.e.
 - -The new names should conflict with other names.
- Goal: Design an efficient data structure that will support any sequence of these two operations.

Union-Find Approach

- Approach 1: Quick Find
 - Keep $\underline{Find}(i)$ efficient. Since all elements are accessible at the i^{th} index in array,
 - This can take O(1) time. Essentially, a trivial operation.
 - $\underline{Union}(A, B)$ is expected to take more time.
 - Either change the id of all elements of A to that of B or vice versa.
 - Typically, take the smaller set and change group identity of these elements to that of larger set.
- Time complexity: O(nlog₂n)
 - Each time an element's group is changed, group size at least doubles.

- Approach 2: Quick Union
 - Make $\underline{Union}(A, B)$ efficient at the cost of $\underline{Find}(i)$.
 - Make *Union* operation takes constant time and improve upon the time taken by *Find*.
 - Use the indirect addressing for union to make it in 0 (1) time.
 - Each entry in the array has following parts
 - -Identity of element i.e. group id or value.
 - -Pointer which is initially Nil.
 - -Number of elements in teh group
 - Union(A,B) is performed by making the pointer of B to point to A.
 - After several union operations, data structures becomes like a tree.

Fig: Representation for Union Find problem

- The element at root of the Tree is the identity of group.
- To find the group of an element, follow the path till the root of the tree.

- Take the tree with smaller number of nodes to point to root of the tree of larger number of nodes.
- This requires storing the number of elements in the tree at the root as well.
- On Union operation, update the pointer of smaller tree and count at the larger tree.
 - Break the tie arbitrarily

- Basic idea: Balance and collapse the tree
 - Union operation still takes O(1) time
 - Changing the pointer (1) time
 - Updating the count (1) time
 - Thus, \circ (1) + \circ (1) = \circ (1)
 - i.e. Union operation takes (1) time

Union-Find Approach: Quick Union

- Theorem: When balancing is used, the tree of height h will contain at least 2h nodes.
- Proof outline
 - First union operation results in tree of height 1 with two elements.
 - Consider A is of height h_A and B is of height h_B .
 - Let A is larger tree. Thus, on merging B, root of B points to root of A.
 - If $h_A > h_B$, then A's height remains h_A i.e. unchanged
 - Otherwise, height of tree becomes h_B+1
 - Thus, with increase in height of 1, the size (number of nodes) of tree has at least doubled.
- Thus, time taken for a $\underline{Find}(X)$ operation is $O(\log_2 n)$

Quick Union of 2 Trees

a: Forest representation of two sets used by quick union

b: Result of quick union

Union-Find Approach: Quick Union

- Further improvement
- Any time we do a *Find* operation, change the pointers of all the nodes in the path to directly point to the root of the tree.
 - This is called **path compression**.
- Traversing the path takes only double the number of steps, and thus
 - Time complexity of Find remains the same.
- Time complexity with path compression for m operations is given by
 - O(mlog*n), where log*n is iterated logarithm function

Quick Union of 2 Trees

a: Representation of Tree before finding node 6

b: Result of path compression All nodes in the path from 6 to root 1 point to root 1

Iterated Logarithm

Iterated logarithm function is defined as

```
\log^* n = 1 + \log^* (\lceil \log_2 n \rceil)
loq*2=1 (Given)
log*4 = log*2^{2}
        =1+\log^*(\lceil \log_2(2^2) \rceil)
        =1+\log^* 2=1+1=2
log*16=log*24
        =1+\log^*(\lceil \log_2 2^4 \rceil)
        =1+\log^* 4=1+2=3
log*65536=log*216
        =1+\log^*(\lceil \log_2 2^{16} \rceil)
        =1+\log^*16=1+3=4
loq*2^{65536}=1+loq*65536 = 5 (very large n)
```

Summary

- Kruskal Algo
 - Sort the edges in non-decreasing order of weights
 - take one edge at a time and check for cycle
 - Cycle check is done by using Union-Find algo
 - Time complexity: O(|E|lg|E|)