Chapitre 5.1 - Suites réelles 4 exemples

I Suite arithmétique

Définition 1. Définition d'une suite arithmétique :

Une suite $(u_n)_{n\geq 0}$ est dite arithmétique de raison r si pour tout $n\in\mathbb{N}$:

$$u_{n+1} = \dots$$

Proposition 1. Soit $(u_n)_{n\in\mathbb{N}}$ une suite arithmétique de raison r et de premier terme u_0 .

• Expression explicite: $u_n = \dots$

• Limite: $\lim_{n \to +\infty} u_n = \begin{cases} & \text{Im} \\ & \text{Im} \end{cases}$

• Somme des termes : $\sum_{k=0}^{n} u_k =$

II Suite géométrique

Définition 2. Définition d'une suite géométrique : Une suite $(u_n)_{n\geq 0}$ est dite géométrique de raison q

$$u_{n+1} = \dots$$

Proposition 2. Soit $(u_n)_{n\in\mathbb{N}}$ une suite géométrique de raison q et de premier terme u_0 .

• Expression explicite : $u_n =$

• Limite (pour $u_0 > 0$): $\lim_{n \to +\infty} u_n = \left\{ \right.$

• Somme des termes : $\sum_{k=0}^{n} u_k = \left\{ \right.$

III Suite arithmético-géométrique

Définition 3.	Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle. On dit qu'elle est arithmético-géométrique
s'il existe deux	réels a et b ($a \neq 1$ et $b \neq 0$ sinon on est dans les deux cas précédents) tels
que pour tout	$n \in \mathbb{N}$

 $u_{n+1} = \dots$

- Étude d'une suite auxiliaire $(v_n)_{n\in\mathbb{N}}$ définie par : $\forall n\in\mathbb{N},\ v_n=u_n-\alpha$.
 - \star Chercher α tel que la suite $(v_n)_{n\in\mathbb{N}}$ soit géométrique de raison a.
 - \star En déduire son expression explicite de v_n
- Expression explicite de $(u_n)_{n\in\mathbb{N}}$ en utilisant : $\forall n\in\mathbb{N},\ u_n=v_n+\alpha$.

Remarque. Les réels a et b ne doivent pas dépendre de n. La suite $u_{n+1} = nu_n + 3$ n'est pas arithmético-géométrique. La méthode présentée ensuite ne fonctionne pas.

Exemple 1. Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par : $u_0=2$ et pour tout $n\in\mathbb{N}$: $u_{n+1}=3u_n+4$. Calculer u_n .

1. Chercher α tel que la suite $(v_n)_{n\in\mathbb{N}}$ soit géométrique de raison a.

2. Expression de $(\mathbf{v_n})_{\mathbf{n} \in \mathbb{N}}$

3. Retour à la suite $(\mathbf{u_n})_{\mathbf{n} \in \mathbb{N}}$

IV Suite récurrente linéaire d'ordre deux

Définition 4. Soient $(a, b) \in \mathbb{R}^2$ avec $b \neq 0$. On appelle suite récurrente linéaire d'ordre deux toute suite $(u_n)_{n \in \mathbb{N}}$ vérifiant la relation de récurrence tels que pour tout $n \in \mathbb{N}$

$$u_{n+2} = \dots$$

avec deux conditions initiales données $(u_0 \text{ et } u_1)$.

• Résolution de l'équation caractéristique associée à la suite :

- Expression explicite de la suite selon le signe du discriminant de l'équation caractéristique :
 - \star Si $\Delta > 0$: (E) a deux solutions réelles distinctes r_1 et r_2 , et l'expression explicite de la suite est :

$$\exists (\alpha, \beta) \in \mathbb{R}^2, \forall n \in \mathbb{N}, u_n =$$

 \star Si $\Delta = 0$, (E) a une solution réelle double r_0 , et l'expression explicite de la suite est :

$$\exists (\alpha,\beta) \in \mathbb{R}^2, \forall n \in \mathbb{N}, u_n =$$

* Si $\Delta < 0$: (E) a deux solutions complexes conjuguées que l'on écrit sous forme exponentielle $\rho e^{i\theta}$ et $\rho e^{-i\theta}$ (avec $\rho > 0$ et $\theta \in \mathbb{R}$). L'expression explicite de la suite est alors :

$$\exists (\alpha, \beta) \in \mathbb{R}^2, \forall n \in \mathbb{N}, u_n =$$

• Calcul des constantes α et β à l'aide des valeurs des conditions initiales u_0 et u_1 en résolvant un système linéaire.

Exemple 2. Étudier la suite $(u_n)_{n\in\mathbb{N}}$ définie par : $u_0=1$ et $u_1=2$ et $\forall n\in\mathbb{N}, u_{n+2}=-2u_{n+1}+3u_n$.

1. Résolution de l'équation caractéristique

2. Expression explicite de $(u_n)_{n\in\mathbb{N}}$ avec constantes à déterminer

3. Calcul des constantes				