PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-097914

(43)Date of publication of application: 05.04.2002

(51)Int.Cl.

F01L 3/02 C23C 8/10 F01L // B21J 5/00

(21)Application number: 2001-025415

(71)Applicant: FUJI OOZX INC

(22)Date of filing:

01.02.2001

(72)Inventor: HIROSE MASAHITO

ASANUMA HIROAKI

(30)Priority

Priority number: 2000217507

Priority date: 18.07.2000

Priority country: JP

(54) ENGINE VALVE MADE OF TITANIUM ALLOY AND METHOD OF MANUFACTURING IT

(57)Abstract:

PROBLEM TO BE SOLVED: To provide an engine valve made of titanium alloy and method of manufacturing it, which can improve the abrasion resistance of the surface of a valve body made of a titanium alloy without surface treatment such as nitriding and plating. SOLUTION: An oxygen diffused layer or an oxygen diffused and carbonized layer is formed on the surface for which at least abrasion resistance is required in the valve body 4 made of titanium alloy, in which a mushroom section 3 is connected to one end of the shaft section 2.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision

of rejection]
[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-97914 (P2002-97914A)

(43)公開日 平成14年4月5日(2002.4.5)

(51) Int.Cl.7	識別記号	FΙ	テーマコード(参考)			
F 0 1 L 3/02		F01L 3/02	J 4E087			
			G			
C 2 3 C 8/10		C 2 3 C 8/10				
F01L 3/24		F01L 3/24	D			
# B 2 1 J 5/00		B 2 1 J 5/00	E			
		審查請求 未蘭求 請求項	の数11 OL (全 7 頁)			
(21)出顧番号	特顧2001-25415(P2001-25415)	(71)出顧人 000237123	其人 000237123			
		フジオーゼック	ス株式会社			
(22)出廣日	平成13年2月1日(2001.2.1)	神奈川県藤沢市	円行一丁目22番地の1			
		(72)発明者 廣瀬 正仁				
(31)優先権主張番号	特願2000-217507(P2000-217507)	77) 神奈川県藤沢市円行一丁目22番				
(32)優先日	平成12年7月18日(2000.7.18)	ジオーゼックス株式会社内				
(33)優先権主張国	日本(JP)	(72)発明者 浅沼 宏昭				
		神奈川県藤沢市	円行一丁目22番地の1 フ			
		ジオーゼックス	株式会社内			
		(74)代理人 100060759				
		弁理士 竹沢	荘一 (外2名)			
		Fターム(参考) 4E087 BA05 CB01 HA67				

(54) 【発明の名称】 チタン合金製エンジンパルプ及びその製造方法

(57)【要約】

【課題】 チタン合金よりなるバルブ本体の表面の耐摩 耗性を、窒化やメッキ等の表面処理によることなく、向 上させることができるようにしたチタン合金製エンジン バルブ及びその製造方法を提供する。

【解決手段】 軸部2の一端に傘部3が連設されたチタン合金よりなるバルブ本体4における少なくとも耐摩耗性が要求される表面に、酸素拡散層または酸素拡散及び浸炭層を形成する。

【特許請求の範囲】

【請求項1】 軸部の一端に傘部が連設されたチタン合 金よりなるバルブ本体の表面に、Ti-O固溶体よりな る酸素拡散層を形成したことを特徴とするチタン合金製 エンジンバルブ。

【請求項2】 軸部の一端に傘部が連設されたチタン合 金よりなるバルブ本体の表面に、Ti-O-C固溶体よ りなる酸素及び炭素の拡散層を形成したことを特徴とす るチタン合金製エンジンバルブ。

【請求項3】 拡散層の厚さを、バルブ本体の表面から 10 性も十分ではない。 少なくとも50μmとした請求項1または2記載のチタ ン合金製エンジンバルブ。

【請求項4】 拡散層における酸素濃度(全原子数に対 する酸素原子の割合)を、4~12%とした請求項1~ 3のいずれかに記載のチタン合金製エンジンバルブ。

【請求項5】 拡散層における炭素濃度を、4~6%と した請求項2、または請求項2に従属する請求項3また は4に記載のチタン合金製エンジンバルブ。

【請求項6】 バルブ本体を、 α 相、 α + β 相又は β 相 ~5のいずれかに記載のチタン合金製エンジンバルブ。

【請求項7】 軸部の一端に傘部が連設された形状とし たチタン合金よりなるバルブ本体を、チタン酸化物を形 成する化学量論的量より少ない酸素を含む雰囲気におい て、チタン合金のβ変態点より低い温度で所定時間加熱 することにより、バルブ本体の表面より酸素原子を浸透 させて、Ti-O固溶体よりなる酸素拡散層を形成し、バ ルブ本体の表面を強化することを特徴とするチタン合金 製エンジンバルブの製造方法。

【請求項8】 雰囲気中の酸素の濃度を、バルブ本体の 30 表面積に対して、1.10×10⁻⁷ g/cm² ~1.47×10⁻⁶ g/cmとし、かつ雰囲気を真空に近い状態とした請求項7 記載のチタン合金製エンジンバルブの製造方法。

【請求項9】 バルブ本体の加熱温度を、700~84 0℃とした請求項7または8記載のチタン合金製エンジ ンバルブの製造方法。

【請求項10】 加熱時間を、1~4時間とした請求項 7~9のいずれかに記載のチタン合金製エンジンバルブ の製造方法。

【請求項11】 軸部の一端に傘部が連設された形状と 40 したチタン合金よりなるバルブ本体を、チタン酸化物を 形成する化学量論的量より少ない酸素と、浸炭ガスとを 含むプラズマ真空炉内において、チタン合金のβ変態点 より低い温度で所定時間加熱保持することにより、バル ブ本体の表面より酸素原子と炭素原子とを浸透させて、 Ti-O-C固溶体よりなる酸素及び炭素の拡散層を形成 し、バルブ本体の表面を強化することを特徴とするチタ ン合金製エンジンバルブの製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、他の動弁部品と接 触する部分等の耐摩耗性を向上させたチタン合金製エン ジンバルブ及びその製造方法に関する。

[0002]

【従来の技術】最近、動弁系の慣性質量を軽減して、エ ンジン性能を向上させる目的から、エンジンの吸、排気 バルブを、従来の耐熱鋼に代えて、チタン合金により形 成する試みがなされている。しかし、チタンは、活性を 有するため、他の金属と凝着を起こし易く、また耐摩耗

【0003】そのため、チタン合金製のバルブの表面 に、窒化や酸化(例えば特許第3022015号公報参 照)又は浸炭処理(例えば特許第2909361号公報参 照)を施したり、Niメッキ等による表面処理を施すなど して、その耐摩耗性を向上させているのが通例である。 $\{0004\}$

【発明が解決しようとする課題】上記窒化や酸化処理を 施したバルブは、充分な耐摩耗性を有しているが、硬質 となり過ぎるため、相手側部材に対する攻撃性が大き のいずれかよりなるチタン合金により形成した請求項1 20 い。そのため、バルブと接触する他の動弁系部品の材質 を変更するなどの対策を講じなくてはならず、コスト高 となる。

> 【0005】また、酸化処理は、通常、空気又は酸素が 十分に供給された雰囲気においてワークを高温(750 ~850℃)に保持して行われるため、酸素の拡散浸透 速度が早く、表面には硬くて脆い酸化物層(TiO2. T i2 O3 等)が生成され、それが剥離し易くなる。

> 【0006】バルブの表面に単に浸炭処理を施したのみ では、十分な耐摩耗性を得ることは難しい。Niメッキ 等の表面処理を施したバルブは、耐熱性が十分ではな く、排気バルブとして使用するには不適当である。

> 【0007】本発明は、上記問題点に鑑みてなされたも ので、雰囲気の酸素量を最適に調整することにより、酸 化物を生成することなく、表面の耐摩耗性を大幅に向上 させうるようにした、チタン合金製エンジンバルブ及び その製造方法を提供することを目的としている。

[0008]

【課題を解決するための手段】本発明によると、上記課 題は次のようにして解決される。

【0009】(1) チタン合金製エンジンバルブにおい て、軸部の一端に傘部が連設されたチタン合金よりなる バルブ本体の表面に、Ti-O固溶体よりなる酸素拡散 層を形成する。

【0010】(2) 軸部の一端に傘部が連設されたチタ ン合金よりなるバルブ本体の表面に、Ti-O-C固溶 体よりなる酸素及び炭素の拡散層を形成する。

【0011】(3) 上記(1)または(2)項において、拡 散層の厚さを、バルブ本体の表面から少なくとも50 μ mとする。

50 【0012】(4) 上記(1)~(3)項のいずれかにおい

て、拡散層における酸素濃度(全原子数に対する酸素原 子の割合)を、4~12%とする。

【0013】(5) 上記(2)、または(2)に従属する (3)または(4)において、拡散層における炭素濃度を、 4~6%とする。

【0014】(6) 上記(1)~(5)項のいずれかにおい て、バルブ本体を、 α 相、 α + β 相又は β 相のいずれか よりなるチタン合金により形成する。

【0015】(7) チタン合金製エンジンバルブの製造 方法において、軸部の一端に傘部が連設された形状とし 10 たチタン合金よりなるバルブ本体を、チタン酸化物を形 成する化学量論的量より少ない酸素を含む雰囲気におい て、チタン合金のβ変態点より低い温度で所定時間加熱 することにより、バルブ本体の表面より酸素原子を浸透 させて、Ti-O固溶体よりなる酸素拡散層を形成し、バ ルブ本体の表面を強化する。

【0016】(8) 上記(7)項において、雰囲気中の酸 素の濃度を、バルブ本体の表面積に対して、1.10×10 g/cm^{*} ~1.47×10⁻ g/cm^{*} とし、かつ雰囲気を 真空に近い状態とする。

【0017】(9) 上記(7)または(8)項において、バ ルブ本体の加熱温度を、700~840℃とする。

【0018】(10) 上記(7)~(9)項のいずれかにお いて、加熱時間を、1~4時間とする。

[0019](11)軸部の一端に傘部が連設された 形状としたチタン合金よりなるバルブ本体を、チタン酸 化物を形成する化学量論的量より少ない酸素と、浸炭ガ スとを含むプラズマ真空炉内において、チタン合金のβ 変態点より低い温度で所定時間加熱保持することによ り、バルブ本体の表面より酸素原子と炭素原子とを浸透 30 させて、Ti-O-C固溶体よりなる酸素及び炭素の拡散 層を形成し、バルブ本体の表面を強化する。

【0020】上記(3)~(5)項のようにしたのは、少な くともそれらの値としたときの効果が実験により確認さ れているからである。

【0021】上記(7)項及び(11)項において、雰囲気 中に含める酸素の量を、チタン酸化物を形成する化学量 論的量より少なくしたのは、チタン酸化物を形成させな いようにするためであり、また、加熱温度をチタン合金 が針状化して靭性が低下するのを防止するためである。

【0022】上記(8)項のように、酸素濃度を、1.10× g/cm² ~1.47×10⁻⁸ g/cm² としたのは、1.10× g/cm² 以下であると、表面の硬さが十分でなく、 1.47×10⁻⁶ g/cm² 以上であると、酸素がTiと化合し て、チタン酸化物を生成し、表面に酸化膜を形成してし ~まうからである。

【0023】上記(9)項のように、パルブ本体の加熱温 度を、700~840℃としたのは、700℃以下である。

分でなく、850℃以上であると、エンジンバルブが変形 してしまうので、実用に適さないからである。そのう ち、750℃~800℃とするのが好ましい。

【0024】上記(10)項のように、加熱時間を、1~ 4時間としたのは、1時間以下であると、硬さが十分で なく、4時間以上であると、処理時間が長くなり、バル ブの生産性が低下するからである。そのうち、2~3時 間とするのがより好ましい。

[0025]

【発明の実施の形態】以下、本発明の実施形態を、図面 に基づいて説明する。図1は、本発明のチタン合金製工 ンジンバルブ(1)を示すもので、軸部(2)の下端に傘部 (3)が連設されたバルブ本体(4)は、 $\alpha + \beta$ 相よりなる Ti-6Al-4Vであるチタン合金で作られている。 その他に、α相よりなるTi-5Al-2.5Sn系合 金、Ti-6AI-6V-2Sn、Ti-6Al-2S n-42r-6Mo系合金、β相を少量(10%以下) 含有するα+β相 (Near α) よりなるTi-6Al-2 S n - 4 Z r - 2 Mo, T i - 8 A l - 1 Mo - 1 V20 系合金、又は β 相よりなる Ti-13V-11Cr-3 A1、Ti-15Mo-5Zr-3A1系合金により形 成されていてもよい。

【0026】バルブ本体(4)における耐摩耗性が要求さ れる部分、すなわち、弁フェース部(5)、軸部(2)にお けるバルブガイド (図示略) との摺接部(6)、コッタ溝 (7)、及び軸端面(8)の表面を硬化するために、次のよ うにして表面処理を施した。

【0027】図2に示すように、上述した各種のチタン 合金により形成したエンジンバルブ(1)を、真空加熱炉 (9)内に挿入し、酸素濃度、時間、温度を、表1に示す ように定めて、バルブ本体(4)の表面に酸素拡散層が形 成されるようにした。酸素濃度は、チタン酸化物を形成 させないようにするため、チタン酸化物を形成する化学 量論的量より少なく設定した。また、加熱温度は、チタ ン合金のβ変態点 (995℃) より低い温度に設定し · た。それは、チタン合金の組織が針状化して靭性が低下 するのを防止するためである。

【0028】 (実施例1) 1.10×10⁻⁷ g/cm² の酸素濃 度及び750℃の温度で、4時間加熱したのち、窒素ガス のβ変態点より低い温度としたのは、チタン合金の組織 40 により常温まで、強制冷却した。硬度は、良で、変形は 小であった。

(実施例2)1.83×10⁻⁷ g/cm² の酸素濃度及び800℃の 温度で、3時間加熱したのち、窒素ガスにより常温ま で、強制冷却した。硬度は、良で、変形は小であった。 (実施例3) 1.42×10⁻⁶ g/cm² の酸素濃度及び700℃ の温度で、2時間加熱したのち、窒素ガスにより常温ま で、強制冷却した。硬度は、良で、変形は小であった。 (実施例 4) 1.47×10⁻⁶ g/cm² の酸素濃度及び800℃ の温度で、3時間加熱したのち、窒素ガスにより常温ま と、酸素の拡散浸透が十分に行われないため、硬さが十 50 で、強制冷却した。硬度は、良で、変形は小であった。

6

【0029】以下は比較例である。

(比較例 1) 1.08×10^{-7} g/cm² の酸素濃度及び700℃ の温度で、2 時間加熱したのち、窒素ガスにより常温まで、強制冷却した。変形は小であったが、硬度が不適であった。

(比較例2) 1.50×10⁻⁶ g/cm² の酸素濃度及び800℃ の温度で、3時間加熱したのち、窒素ガスにより常温まで、強制冷却した。変形は小であったが、酸素濃度が高*

* 過ぎたために、OがTiと化合し、バルブ表面にTiO。 よりなる酸化膜が形成された。

(比較例 3) 1.40×10^{-6} g/cm² の酸素濃度及び850 $^{\circ}$ の温度で、2時間加熱したのち、窒素ガスにより常温まで、強制冷却した。温度が高過ぎたために、バルブの変形量が大きく、実用に適さなかった。

[0030]

【表1】

		実施例 1	実施例2	実施例3	実施例4	比較例 1	比較例2	比較例 3
酸素濃度(g/can ')		1.10×10-1	2.83×10-7	1.42×10-4	I. 47×10-4	1.08×10-1	1.50×10-	1.40×10-
温	度	750	800	700	800	700	800	850
辟	阻	4	3	2	3	2	3	2
硬	度	良	良	良	良	不適	酸化膜形成	
変	形		小	小	小	小	小	大

【0031】図3は、本発明による実施例 $1\sim4$ において、電界放射型オージェ電子分光装置により、各深さにおいて測定した酸素濃度の平均値を示している。 横軸は、エンジンバルブの表面からの深さを、縦軸は酸素濃度を示している。 酸素濃度の単位「atomic%」とは、

「分析された全原子数に対しての酸素原子の割合」を意味する。

【0032】また、微小部 X 線回析装置による X 線回析の結果から、チタンの酸化物は確認されず、酸素原子がチタンと化合せずに、酸素原子のままで、チタン原子と侵入型固溶体を形成していることが確認されている。

【0033】図6は、実施例1~4のエンジンバルブ(1)における軸部の断面の硬度分布と、同一素材よりな 30 る未処理バルブにおける軸部の断面の硬度分布とをマイクロビッカース硬度計(島津製作所社製)により測定したときの測定結果を示す。

【0034】この硬度分布図から明らかなように、未処理バルブの、深さ 50μ mまでの硬さが、概ね350HV前後であるのに対し、本発明のバルブ(1)の硬さは全体的に高く、特に、ほぼ 15μ mまでの表層の硬さは、約 $500\sim630HV$ 前後あり、極めて高い硬度を有することが確認された。

【0035】エンジンバルブ(1)に要求される耐摩耗性 40及び硬度は、ほぼ 50μ m程度の深さまでであり、図3と図4から、表面から約 50μ mまでの深さの部分における酸素濃度を、約 $12\sim4$ %の範囲とすれば、十分な耐摩耗性及び硬度が得られることがわかる。

【0036】なお、表面の酸素濃度を12%を超えるようにすると、硬度は向上するが、脆くなるため、その数値を上限とするのが好ましい。

【0037】次に、バルブ本体(4)の表面に、酸素拡散 と浸炭とが共存する層を形成する表面処理方法について 説明する。この方法は、軸部の一端に傘部が連設された 50

形状としたチタン合金よりなるバルブ本体を、チタン酸化物を形成する化学量論的量より少ない酸素と、浸炭ガ20 スとを含むプラズマ真空炉内において、チタン合金のβ変態点より低い温度で所定時間加熱保持することにより、バルブ本体の表面より酸素原子と炭素原子とを浸透させて、Ti-O-C固溶体よりなる酸素と炭素との拡散層(以下酸素拡散及び浸炭層という)を形成し、バルブ本体の表面を強化する方法である。

【0038】 (実施例5) Ti-6A1-4V系チタン合金を熱間鍛造して、上記形状のバルブ本体(4)を成形した後、これを図4に示すようなプラズマ真空浸炭炉(10)に挿入し、炉内を上記実施例2と同様の酸素濃度、すなわ 51.83×10^{-7} g/cm 2 の酸素濃度とし、約800 $^{\circ}$ の酸素濃度で、3 時間加熱する。

【0039】次いで、炉内に浸炭ガスとしてプロパンガスを導入し、炉内でグロー放電させて、イオン浸炭処理を行ない、その後窒素ガスにより常温まで強制冷却した。硬度は、良で、変形は小であった。

【0040】このようにして得られたエンジンバルブ(1)の表面からの深さと酸素濃度及び炭素濃度の関係を図5に、また軸部の断面硬度分布を図7に示している。

【0041】微小部 X 線回析装置の X 線回析の結果によると、バルブ本体(4)の表面には炭化チタンは確認されているが、チタンの酸化物は確認されていないことから、それと図 5 とから、酸素原子はチタンと化合せずに、酸素原子のままで、また炭素原子も一部はチタンと化合して炭化チタンとなるが、残部は炭素原子のままで、チタン原子と侵入型固溶体を形成していることがうかがえる。

【0042】また、図7から、実施例5のものでは、比較例である同一素材よりなる未処理バルブに比して、全体的に硬度が高く、特に、表面からほぼ 15μ mまでの深さの硬さを、ほぼ530HVの均一な値に維持できて

いることがわかる。これによって、相手攻撃性の緩和 と、耐摩耗性の向上との両方を達成することができた。 【0043】さらに、図6と図7とを比較すると、表層 付近の硬度が図7の方が図6よりも低下しており、この ことから、酸素拡散層に浸炭を施すと、表層が硬質とな り過ぎるのが防止され、相手攻撃性が緩和されることが うかがえる。

【0044】本願の発明者らは、上記の要領で、酸素拡 散層を形成したものと、酸素拡散及び浸炭層を形成した 試験片を、上記Ti-6Al-4V系合金と、ニアα相 10 のTi-6Al-2Sn-4Zr-2Mo系合金とを素 材として2種類製作し、摩耗試験を行った。

【0045】まず、摩耗試験機の概略と試験方法につい て説明する。図8は、クロスバー摩耗試験機と称されて いるもので、水平をなすモータ(11)と、その回転軸(11 a) の先端の直上に、軸線同士が直交するように上下動可 能に設けられた、試験片の固定治具(12)と、この固定治 具(12)上に載置される錘(13)とからなっている。

【0046】試験方法としては、まず回転軸(11a)の先 端部に、相手部材としてのスチール製(例えば焼結金) 属)の円板状のチップ(14)を、外周面を平滑に研摩する とともに、脱脂処理を施して同心状に取付ける。

【0047】ついで、固定治具(12)の下面に、脱脂処理 された、下端面が平滑な軸状の試験片(15)を取付けたの ち、その下端面の外周部寄りを、チップ(14)の上端面に 接触させる。

【0048】ついで、固定治具(11)の上面に1Kgの錘 (13)を載せてモータ(11)を作動させ、チップ(14)を一定 速度で回転させる。錘(13)は、チップ(14)と試験片(15) との摺接部が、50mに相当する距離を摺動する毎(モ 30 ータの回転数とチップの外径により検出する)に、50 0gずつ追加していく。

【0049】試験は、試験片(15)におけるチップ(14)と の接触面に焼き付きやかじり等が発生するか、又は35 0m摺動したところで終了する。

【0050】上記試験方法により得られた結果を図9に 示す。図9において、比較例1である(A)及び(B)は、 それぞれ、表面処理を施していないTi-6A1-4V 系合金とTi-6AI-2Sn-4Zr-2Mo系合 金、比較例2である(C)及び(D)は、それぞれ、上記と 40 同じ合金に酸化処理を施したもの、本発明の(E)及び (F)は、同じく上記と同一合金に酸素拡散層のみを形成 したもの、本発明の(G)及び(H)は、同じく上記と同一 合金に酸素拡散及び浸炭層を形成したものを示してい る。

【0051】図9から明らかなように、本発明を適用し て製作した試験片(E)~(H)における焼き付き等発生摺 動距離は、表面処理を施していない比較例1よりも大幅 に延びており、かつ酸化処理を施した比較例2のものと なく、極めて高い耐摩耗性を有することが実証された。 従って、エンジンバルブ(1)についても、各部の耐摩耗 性が大幅に高まることは明らかである。

8

【0052】また、本願の発明者らは、図10に示すよ うに、上述のような各処理を施した直径 6 ㎜の丸棒より なる試験片(16)を製作し、その両端を支点として中央に 荷重を加え、その部分を約1㎜撓ませる曲げ試験を行 い、そのときの表層の状態を調査した。

【0053】その結果、酸化処理を施した試験片(16)で は、表層に剥離が生じ、酸素拡散層のみの試験片(16)で は、表層にクラックが発生し、酸素拡散及び浸炭層を施 した試験片(16)の表層には、何ら異常が認められなかっ た。

【0054】この結果を考察すると、酸化処理を施した 試験片については、従来技術において説明したように、 表層に生成された硬くて脆い酸化物が剥離したものと考 えられ、酸素拡散層のみのものは、表層の硬度が高くな り過ぎた結果のクラックと考えられ、また酸素拡散及び 浸炭層を施したものについては、表層の硬度が若干低下 20 したことによる効果と考えられる。

【0055】以上説明したように、本発明においては、 バルブ本体の表面に酸素拡散層、又は酸素拡散と浸炭と をほぼ同時に行った酸素拡散及び浸炭層を形成すること により、表層の硬度及び耐摩耗性を大幅に高めうるの で、エンジンバルブの耐久性が向上し、かつ従来困難で あった排気バルブにも使用可能となる。特に、酸素拡散 と浸炭とを同時に行うと、相手攻撃性の緩和と、エンジ ンバルブに要求される耐摩耗性(硬さ)の向上とを両立さ せることができる。なお、本発明は、バルブ本体の素材 がTi-Alの金属間化合物よりなるものにおいても適 用することができる。

[0056]

【発明の効果】請求項1記載の発明によれば、従来のよ うな窒化や酸化、浸炭、メッキ等の表面処理によること なく、必要な部分の耐摩耗性を大幅に高めることがで ... き、チタン合金製エンジンバルブの耐久性を向上させう

【0057】請求項2記載の発明によれば、上記請求項 1の効果に加えて、表層の硬度を酸素拡散層のみの場合 よりも若干低下させうるので、相手攻撃性の小さいバル ブが得られる。

【0058】請求項3~5記載の各発明によれば、請求 項1及び2の効果をより確実なものとすることができ

【0059】請求項6記載の発明によれば、バルブ本体 の素材自体の引張延性や疲労強度が高いので、強靭で長 寿命のエンジンバルブが得られる。

【0060】請求項7記載の発明によれば、バルブ本体 を針状組織化させたり、表面に酸化物(TiO。等)を 同様、350mまで摺動させても、焼き付き等の発生は 50 形成させたりすることなく、表面に酸素拡散層を容易に

形成することができ、耐摩耗性に優れるエンジンバルブ が得られる。

【0061】請求項8~10記載の発明によれば、請求項7の効果をより確実なものとすることができる。

【0062】請求項11記載の発明によれば、バルブ本体を針状組織化させたり、表面に酸化物を形成させたりすることなく、表面に酸素拡散と浸炭とが共存し、単独の酸素拡散層より優れた性質を有する層を簡単に形成することができ、相手攻撃性の小さい、耐摩耗性に優れるエンジンバルブが得られる。

【図面の簡単な説明】

【図1】本発明のエンジンバルブの正面図である。

【図2】同じく、酸素拡散層を形成する要領を示す概略 図である。

【図3】同じく、拡散させる酸素濃度分布の一例を示す グラフである。

【図4】同じく、酸素拡散及び浸炭層を形成する要領を 示す概略図である。

【図5】同じく、拡散させる酸素と炭素の濃度分布の一例を示すグラフである。

【図6】同じく、酸素拡散層処理後の断面硬度分布を示す図である。

【図7】同じく、酸素拡散及び浸炭層処理後の断面硬度 分布を示す図である。 *【図8】摩耗試験機とそれによる本発明を適用して製作した試験片の試験方法を示す正面図である。

【図9】酸素拡散層、及び酸素拡散及び浸炭層を形成した試験片の摩耗試験の結果を、比較例と共にグラフ化した図である。

【図10】同じく、棒状試験片による曲げ試験の要領を 示す正面図である。

【符号の説明】

- (1)エンジンバルブ
- 10 (2)軸部
 - (3)傘部
 - (4)バルブ本体
 - (5)弁フェース部
 - (6)摺接部
 - (7)コッタ溝
 - (8)軸端面
 - (9)真空加熱炉
 - (10)プラズマ真空浸炭炉
 - (11)モータ
- 20 (12)固定治具
 - (13)錘
 - (14)チップ
 - (15)(16)試験片

