Discrete Choice Analysis

Taro Mieno

AECN 896-003: Applied Econometrics

Discrete Choice Analysis

- ► Focus on understanding choices that are discrete (not continuous)
 - Whether you own a car or not (binary choice)
 - Whether you use an iPhone, Android, or other types of cell
 - phones (Multinomial choice)Which recreation sites you visit this winter (multinomial)
- Which recreation sites you visit this winter (multinomial)
 Linear models we have seen are often not appropriate

Binary Response

$$y = 0$$
 (if you do not own a car)
 $y = 1$ (if you own at least one car)

Question we would like to answer

How do independent variables x_1, \ldots, x_k affect the status of y (the choice of whether to own at least one car or not)?

Binary Response Model

We try to model the probability of y = 1 (own at least one car)

$$Pr(y = 1 | x_1, \dots, x_k) = f(x_1, \dots, x_k)$$

 $Pr(y = 1 | x_1, \dots, x_k) = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k$

as a function of independent variables.

Binary Response Model

We try to model the probability of y=1 (own at least one car)

$$Pr(y=1|x_1,\ldots,x_k)=f(x_1,\ldots,x_k)$$

as a function of independent variables.

So, how about

$$Pr(y = 1|x_1, ..., x_k) = G(\beta_0 + \beta_1 x_1 + ... + \beta_k x_k)$$

such that G() is a function taking on values strictly between zero and once: 0 < G(z) < 1 for all real numbers z?

Notes

Different choices of G() lead to different models

Logit model

$$G(z) = exp(z)/[1 + exp(z)] = \frac{e^z}{1 + e^z}$$

Probit model

$$G(z)=\Phi(z)$$

where $\Phi(z)$ is the standard normal cumulative distribution function

Interpretation

- - ▶ What do β s measure?

▶ How do we interpret them?

 $Pr(y = 1|x_1,...,x_k) = G(\beta_0 + \beta_1 x_1 + \cdots + \beta_k x_k)$

Before and after

Before: $x_1 = 0, \dots, x_k = 0 \Rightarrow z = \beta_0$

After: $x_1=1$ and $x_2=0,\ldots,x_k=0 \Rightarrow z=\beta_0+\beta_1x_1$

- \triangleright β s measure how far you move along the x-axis
- \blacktriangleright β s does not directly measure how independent variables influence the probility of y=1

Marginal impact of x_k (continuous) on Prob(y=1)

$$Pr(y=1|x_1,\ldots,x_k)=G(z)$$

$$Pr(y = 1 | x_1, \dots, x_k) = G(z)$$

$$z = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k$$

$$Pr(y = 1|x_1, \dots, x_k) = G(z)$$

$$z = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k$$

 $=G'(z)\times\beta_{k}$

Differentiating both sides with respect to x_k ,

 $\frac{\partial Pr(y=1|x_1,\ldots,x_k)}{\partial x_k} = G'(z) \times \frac{\partial z}{\partial x_k}$

Marginal impact of x_k (continuous) on Prob(y=1)

$$Pr(y = 1|x_1, \dots, x_k) = G(z)$$
$$z = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k$$

Differentiating both sides with respect to x_k ,

$$\frac{\partial Pr(y=1|x_1,\dots,x_k)}{\partial x_k} = G'(z) \times \frac{\partial z}{\partial x_k}$$
$$= G'(z) \times \beta_k$$

Notes

- ► The marginal impact of an independent variable depends on the values of all the independent variables: $G(\beta_0 + \beta_1 x_1 + \cdots + \beta_k x_k)$
 - ▶ Since G'() is always positive, the sign of the marginal impact of an independent variable on Prob(y=1) is always the same as the sign of its coefficient

Estimation of Binary Choice Models

- Linear models: OLS
- ► Binary choice models: Maximum Likelihood Estimation (MLE)

OLS

Find parameters that makes the sum of residuals squared the smallest

MLE (very loosely put)

Find parameters (βs) that makes what we observed (collection of binary decisions made by different individuals) most likely (Maximum Likelihood)

Decisions made by two individuals

- Individual 1: y = 1 (own at least one car)
- ▶ Individual 2: y = 0 (does not own a car)

Decisions made by two individuals

lndividual 1: y = 1 (own at least one car)

lndividual 2: y = 0 (does not own a car)

Individual 2: $Prob(y_2 = 0 | \mathbf{x_2}) = 1 - G(z_2)$

Probability of individual decisions

Individual 1 : $Prob(y_1 = 1 | \mathbf{x_1}) = G(z_1)$

Decisions made by two individuals

- ▶ Individual 1: y = 1 (own at least one car)
- ▶ Individual 2: y = 0 (does not own a car)

Probability of individual decisions

 $\begin{aligned} &\text{Individual 1}: &Prob(y_1=1|\mathbf{x_1}) = G(z_1)\\ &\text{Individual 2}: &Prob(y_2=0|\mathbf{x_2}) = 1 - G(z_2) \end{aligned}$

Probability of a collection of decisions

The probability that we observe a collection of choices made by them (if their decisions are independent)

$$Prob(y_1 = 1 | \mathbf{x_1}) \times Prob(y_2 = 0 | \mathbf{x_2}) = G(z_1) \times [1 - G(z_2)],$$

which we call likelihood function.

Probability of individual decisions

Individual 1 : $Prob(y_1 = 1 | \mathbf{x_1}) = G(z_1)$ Individual 2 : $Prob(y_2 = 0 | \mathbf{x_2}) = 1 - G(z_2)$

Probability of a collection of decisions

The probability that we observe a collection of choices made by them (if their decisions are independent)

them (if their decisions are independent)
$$Prob(y_1=1|\mathbf{x_1})\times Prob(y_2=0|\mathbf{x_2})=G(z_1)\times [1-G(z_2)],$$

which we call likelihood function.

MIF

$$Max_{\beta_1,...,\beta_k} \ G(z_1) \times [1 - G(z_2)]$$

MLE of Binary Choice Model in General

Maximize the likelihood function:

$$Max_{\beta_1,...,\beta_k}$$
 L

where $L = \prod_{i=1}^n \left[y_i \times G(z_i) + (1-y_i) \times (1-G(z_i)) \right]$ is the likelihood function.

Log-likelihood function

$$LL = log\left(\prod_{i=1}^{n} \left[y_i \times G(z_i) + (1 - y_i) \times (1 - G(z_i)) \right] \right)$$
$$= \sum_{i=1}^{n} log\left(y_i \times G(z_i) + (1 - y_i) \times (1 - G(z_i)) \right)$$

MLE with LL

 $argmax_{\beta_1,...,\beta_k}$ $L \equiv argmax_{\beta_1,...,\beta_k}$ LL

Implementation in R with an example

Participation of females in labor force:

$$Pr(inlf = 1|\mathbf{x}) = G(z)$$

where

$$z = \beta_0 + \beta_1 nwifeinc + \beta_2 educ + \beta_3 exper +$$
$$+ \beta_4 exper^2 + \beta_5 age + \beta_6 kidslt6 + \beta_7 kidsge6$$

- ► inlf: 1 if in labor force in 1975, 0 otherwise
- ► nwifeinc: earning as a family if she does not work
 - kidslt6: # of kids less than 6 years old
 kidsqe6: # of kids who are 6-18 year old

R code: importing the data

```
#--- import the data ---#
data <- read.dta13('MROZ.dta') %>%
#--- take a look ---#
dplyr::select(data,inlf,nwifeinc,kidslt6,kidsge6,educ) %>%
```

head()

1 10.910060

1 19.499981

1 12.039910 1 6.799996

1 20.100058 1 9.859054

<pre>mutate(exper</pre>	2=exper^2)	ŕ

inlf nwifeinc kidslt6 kidsge6 educ

12

2 12 3 12

3 12 2 14

0 12

Estimating binary choice model using ${\cal R}$

You can use the glm() function (no new packages installation necessary) when using cross-sectional data

- ▶ glm refers to Generalized Linear Model, which encompass linear models we have been using
- you specify the family option to tell what kind of model you are estimating

R code: Probit model estimation using glm() probit_lf <- glm(</pre> #--- formula ---#

```
inlf~nwifeinc+educ+exper+exper2+age+kidslt6+kidsge6,
#--- data ---#
data = data,
#--- models ---#
familv=binomial(link='probit')
```

family option

- binomial(): tells R that your dependent variable is binary
- ightharpoonup link = 'probit': tells R that you want to use the cumulative distribution function of the standard normal distribution as G() in $Prob(y=1|\mathbf{x})=G(z)$

R code: Probit model estimation using glm()

```
summary(probit_lf)$coef
              Estimate
                        Std. Error z value
                                                 Pr(>|z|)
(Intercept) 0.270073573 0.5080781657 0.5315591 5.950314e-01
```

exper 0.123347168 0.0187586870 6.5754692 4.850000e-11 exper2 -0.001887067 0.0005999272 -3.1454942 1.658065e-03 -0.052852442 0.0084623619 -6.2455899 4.222037e-10

kidslt6 -0.868324680 0.1183772702 -7.3352315 2.213386e-13

-0.012023637 0.0049391713 -2.4343430 1.491885e-02

0.130903969 0.0253987284 5.1539576 2.550456e-07

0.036005611 0.0440302624 0.8177469 4.135017e-01

nwifeinc

educ

age

kidsge6

R code: Logit model estimation using glm()

```
logit_lf <- glm(
#--- formula ---#
inlf~nwifeinc+educ+exper+exper2+age+kidslt6+kidsge6,
#--- data ---#
data = data,
#--- models ---#
family=binomial(link='logit')
)</pre>
```

family option

- $lackbox{\ \ }binomial():$ tells R that your dependent variable is binary
- ▶ link = 'logit': tells R that you want to use the function as G() in $Prob(y = 1|\mathbf{x}) = G(z)$

Logit model estimation results

nwifeinc

exper

kidsge6

educ

age kids1t6

```
summary(logit_lf)$coef
              Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.425452376 0.860364519 0.4945025 6.209514e-01
```

0.060112222 0.074789293

-0.021345174 0.008421380 -2.5346410 1.125626e-02

0.221170370 0.043439281 5.0914832 3.552734e-07 0.205869531 0.032056713 6.4220411 1.344591e-10

-1.443354143 0.203582842 -7.0897632 1.343417e-12

0.8037544 4.215388e-01

exper2 -0.003154104 0.001016107 -3.1041065 1.908546e-03 -0.088024375 0.014572890 -6.0402826 1.538446e-09

Table

Dependent variable:	
inlf	
-0.012**	-0.021**
(0.005)	(0.008)
0.131***	0.221***
(0.025)	(0.043)
0.123***	0.206***
(0.019)	(0.032)
-0.002***	-0.003***
(0.001)	(0.001)
-0.053****	-0.088***
(0.008)	(0.015)
-0.868***	-1.443***
(0.118)	(0.204)
0.036	0.060
(0.044)	(0.075)
0.270	0.425
(0.508)	(0.860)
753	753
-401.302	-401.765
818.604	819.530
	ir -0.012** (0.005) 0.131*** (0.025) 0.123*** (0.019) -0.002*** (0.001) -0.053*** (0.008) -0.868*** (0.118) 0.036 (0.044) 0.270 (0.508) 753 -401.302

Post-estimation operations and diagnostics

Log-likelihood

$$LL = \sum_{i=1}^{n} log(y_i \times G(\hat{z}_i) + (1 - y_i) \times (1 - G(\hat{z}_i)))$$

- $\hat{z}_i = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \dots + \hat{\beta}_k x_k$
- $G(\hat{z}_i)$ is the fitted value of $Prob(y=1|\mathbf{x})$

(The greater (less negative) the LL, the better the fit of the regression)

McFadden's pseudo- \mathbb{R}^2

A measure of how much better your model is compared to the model with only the intercept

$$pseudo - R^2 = 1 - LL/LL_0$$

where LL_0 is the log-likelihood when you include only the intercept

R code: pseudo- R^2

LL <- logLik(logit_lf)

'log Lik.' -401.7652 (df=8) #--- pseudo R2 ---# pR2 <- 1-LL/LL0

'log Lik.' 0.2196814 (df=8)

 Π

pR2

```
#--- estimate the model with only the intercept ---#
logit_lf_0 <- glm(inlf~1,data = data,family=binomial(link='logit'))

#--- extract LL using the logLik() function ---#
LL0 <- logLik(logit_lf_0)
LL0

'log Lik.' -514.8732 (df=1)

#--- extract LL using the logLik() function from your preferred model ---#</pre>
```

```
R code: alternative (easier) calculation of pseudo-R^2
```

```
#--- or more easily ---#
```

```
1-logit_lf$deviance/logit_lf$null.deviance
```

Γ17 0.2196814

Γ17 1029.746

[1] 803.5303

#--- what are deviances? ---# $logit_lf\null.deviance # = -2*LL0$

 $logit_lf$ \$deviance # = -2*LL

Testing: joint significance

 $LR = 2(LL_{unrestricted} - LL_{restricted}) \sim \chi_{df_restrictions}^2$

where df-restrictions is the number of restrictions

Testing: joint significance

You can do Likelihood Ratio (LR) test:

 $LR = 2(LL_{unrestricted} - LL_{restricted}) \sim \chi_{df_restrictions}^2$

An example

 $ightharpoonup H_1: H_0$ is false

 \blacktriangleright H_0 : the coefficients on exper, exper2, and age are 0

where df_restrictions is the number of restrictions

R code: LR test for joint significance

```
#--- unrestricted ---#
 logit ur <- glm(
   inlf nwifeinc+educ+exper+exper2+age+kidslt6+kidsge6,
    data = data, family=binomial(link='logit')
 #--- restricted ---#
 logit_r <- glm(</pre>
    inlf~nwifeinc+educ+kidslt6+kidsge6.
    data = data.familv=binomial(link='logit')
 #--- LR test using lrtest() from the lmtest package ---#
 library(lmtest)
 lrtest(logit_r, logit_ur)
Likelihood ratio test
Model 1: inlf ~ nwifeinc + educ + kidslt6 + kidsge6
Model 2: inlf ~ nwifeinc + educ + exper + exper2 + age + kidslt6 + kidsge6
 #Df LogLik Df Chisq Pr(>Chisq)
   5 -464.92
   8 -401.77 3 126.32 < 2.2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Prediction

After estimating a binary choice model, you can easily predict the following two

$$\hat{z} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \dots + \hat{\beta}_k x_k$$

$$Prob(y=1|\mathbf{x}) = G(\hat{z}) = G(\hat{\beta}_0 + \hat{\beta}_1 x_1 + \dots + \hat{\beta}_k x_k)$$

R code: LR test for joint significance

Marginal effect of an independent variable

independent variables on the Prob(y = 1)

- Coefficient estimates across different models (probit and logit) are not meaningful because the same value of a coefficient estimate means different things
- estimate means different things

 They are the estimates of β s, not the direct impact of the

Calculating the marginal effect of an independent variable

$$\frac{\partial Pr(y=1|x_1,\ldots,x_k)}{\partial x_k} = G'(z) \times \beta_k$$

- the marginal impact depends on the current levels of all the independent variables
- ▶ we typically report one of the two types of marginal impacts
 - the marginal impact at the mean (average person): when all
 - the independent variables take on their respective means
 - the average of the marginal impacts calculated for each of all the individuals observed

Marginal impact at the mean

$$\partial Pr(y=1|\bar{x_1},\ldots,\bar{x_k})$$

Mean marginal impact

$$\frac{\partial Pr(y=1|\bar{x_1},\dots,\bar{x_k})}{\partial x_k} = G'(\beta_0 + \beta_1\bar{x_1} + \dots + \beta_k\bar{x_k}) \times \beta_k$$

 $\sum_{i=1}^{n} \frac{\partial Pr(y_i = 1 | x_{i,1}, \dots, x_{i,k})}{\partial x_k} = \sum_{i=1}^{n} G'(z_i) \times \beta_k$

R code: marginal impact of educ at the mean

```
#--- get the coef ---#
probit_lf$coef
(Intercept) nwifeinc
                           educ
                                    exper exper2
0.270073573 -0.012023637 0.130903969 0.123347168 -0.001887067
      age kidslt6 kidsge6
```

z <- probit lf\$coef[1] + sum(probit lf\$coef[-1]*means)</pre>

#--- calculate z ---#

(Intercept) 0.05112843

#--- marignal impact ---# dnorm(z)*probit_lf\$coef['educ']

```
-0.052852442 -0.868324680 0.036005611
```

```
#--- get the mean ---#
means <- summarize(data, mean(nwifeinc), mean(educ), mean(exper), mean(exper2)</pre>
  mean(age), mean(kidslt6), mean(kidsge6))
```

R code: marginal impact of educ at the mean

```
#--- get the coef ---#
 probit_lf$coef
(Intercept) nwifeinc educ exper exper2
0.270073573 -0.012023637 0.130903969 0.123347168 -0.001887067
        age kidslt6
                             kidsge6
-0.052852442 -0.868324680 0.036005611
 #--- get the mean ---#
 means <- summarize(data, mean(nwifeinc), mean(educ), mean(exper), mean(exper2),</pre>
   mean(age), mean(kidslt6), mean(kidsge6))
 #--- calculate z ---#
 z <- probit_lf$coef[1] + sum(probit_lf$coef[-1]*means)</pre>
 #--- marignal impact ---#
 dnorm(z)*probit_lf$coef['educ']
(Intercept)
0.05112843
```

Interpretation

If your eduction goes up by 1 year, you are 5% more likely to be in the labor force when you are an average person

```
R code: mean marginal impact of educ
 #--- get z for all the individuals ---#
 z <- predict(probit_lf,type='link')</pre>
```

#--- mean marignal impact of eduction ---# mean(Gz_indiv)*probit_lf\$coef['educ']

#--- get G'(z) ---# Gz_indiv <- dnorm(z)</pre>

educ 0.03937009

Regression Models for Count Data

Count as the dependent variable

Count variables take non-negative discrete values $(0, 1, \ldots,)$

- ► the number of times people get arrested in a year
- the number of cars owned by a family
- ▶ the number of patents applied for by a firm in a year
- the number of kids in a family

Poisson regression

By far the most pupular choice to analyze count variables is

- Poisson regression
 - ► The outcome (count) variable is assumed to be Poisson distributed
 - ► The mean of the Poisson distribution is assumed to be a function of some variables you believe matter

Poisson regression

By far the most pupular choice to analyze count variables is Poisson regression

- ► The outcome (count) variable is assumed to be Poisson distributed
- ► The mean of the Poisson distribution is assumed to be a function of some variables you believe matter

Poisson distribution

Poisson distribution is a discrete probability distribution that describes the probability of the number of events that occur in a fixed interval of time and/or space

$$Prob(y|\lambda) = \frac{\lambda^y e^{-\lambda}}{y!}, \text{ where } \lambda = E[y]$$

Poisson regression

We try to learn what and how variables affect the expected value (the expected number of events conditional on independent variables)

Expected number of events conditional on independent variables

$$E[y|\mathbf{x}] = G(\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k)$$

- ▶ This is exactly the same modeling framework we used
 - - Linear model: G(z) = zProbit model: $G(z) = \Phi(z)$

Expected number of events conditional on independent variables

$$E[y|\mathbf{x}] = G(\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k)$$

- ▶ This is exactly the same modeling framework we used
 - Linear model: G(z) = zProbit model: $G(z) = \Phi(z)$

A popular choice of G()

$$G(z) = exp(z)$$

ensures that the expected value conditional on x is always positive

The number of events for two individuals

- Individual 1: y = 3 (own three cars)
- Individual 2: y = 1 (own one car)

The number of events for two individuals

- Individual 1: y = 3 (own three cars)
- Individual 2: y = 1 (own one car)

Expected number of events observed

Individual 1 : $\lambda_1 = exp(z_1)$ Individual 2 : $\lambda_2 = exp(z_2)$

The number of events for two individuals

- lndividual 1: y=3 (own three cars)
- lndividual 2: y = 1 (own one car)

Expected number of events observed

Individual 2 : $\lambda_2 = exp(z_2)$

Individual 2 :
$$\lambda_2 = exp(z_2)$$

Individual 1 :
$$\lambda_1 = exp(z_1)$$
Individual 2 : $\lambda_2 = exp(z_2)$

Individual 1: $Prob(y=3|\mathbf{x_1}) = \frac{\lambda_1^3 e^{-\lambda_1}}{3!}$

Individual 2: $Prob(y=1|\mathbf{x_2}) = \frac{\lambda_2^1 e^{-\lambda_2}}{11}$

$$xp(z_1)$$

Probability of observing the number of events we observed

Probability of observing the number of events we observed

$$\begin{split} & \text{Individual 1:} Prob(y=3|\mathbf{x_1}) = \frac{\lambda_1^3 e^{-\lambda_1}}{3!} \\ & \text{Individual 2:} Prob(y=1|\mathbf{x_2}) = \frac{\lambda_2^1 e^{-\lambda_2}}{1!} \end{split}$$

them (if their events are independent)
$$L = Prob(y_1 = 3|\mathbf{x_1}) \times Prob(y_2 = 1|\mathbf{x_2}) = \frac{\lambda_1^3 e^{-\lambda_1}}{3!} \times \frac{\lambda_2^1 e^{-\lambda_2}}{1!}$$

which we call likelihood function.

Probability of observing a series of events by all individuals The probability that we observe a collection of choices made by

them (if their events are independent)

which we call likelihood function.

$$L = Prob(y_1 = 3|\mathbf{x_1}) \times Prob(y_2 = 1|\mathbf{x_2}) = \frac{\lambda_1^3 e^{-\lambda_1}}{3!} \times \frac{\lambda_2^1 e^{-\lambda_2}}{1!}$$

 $LL = log(L) = log(\frac{\lambda_1^3 e^{-\lambda_1}}{2!}) + log(\frac{\lambda_2^1 e^{-\lambda_2}}{1!})$

(Remember $\lambda_i = exp(\beta_0 + \beta_1 x_{i,1} + \cdots + \beta_k x_{i,k})$)

Probability of observing a series of events by all individuals

The probability that we observe a collection of choices made by them (if their events are independent)

$$L = Prob(y_1 = 3|\mathbf{x_1}) \times Prob(y_2 = 1|\mathbf{x_2}) = \frac{\lambda_1^3 e^{-\lambda_1}}{3!} \times \frac{\lambda_2^1 e^{-\lambda_2}}{1!}$$

which we call likelihood function.

$$LL = log(L) = log(\frac{\lambda_1^3 e^{-\lambda_1}}{2!}) + log(\frac{\lambda_2^1 e^{-\lambda_2}}{1!})$$

(Remember
$$\lambda_i = exp(\beta_0 + \beta_1 x_{i,1} + \dots + \beta_k x_{i,k})$$
)

MIE

 $Max_{\beta_1,\ldots,\beta_r}$ LL

Implementation in R with an example

The number of times a man is arrested during 1986:

$$Pr(narr86|\mathbf{x}) = G(z)$$

- $z = \beta_0 + \beta_1 pcnv + \beta_2 tottime + \beta_3 qemp86 + \beta_4 inc86$
- $+\beta_5 black + \beta_6 hispan$
 - ► narr86: # of times arrested in 1986
 - pcnv: proportion of prior conviction
 - tottime: time in prison since 18
 - ightharpoonup qemp86: # quarters employed in 1986
- ightharpoonup inc 1986: legal income in 1986 (in \$100)

998		0	0.00	3.0	133.1	
R ⁹ cc	ode:	0	mbor	ting	the a	lata
1000						
1001			1.00	4.0	54.3	
1002		0	1.00	4.0	152.7	'
1003		0	0.60	0.0	0.0)
1004		1	0.00	2.0	2.5	,
1005		0	0.67	2.0	20.0)
1006		0	1.00	4.0	107.3	
1007		1	0.33	0.0	0.0)
1008		2	0.20	0.0	0.0)
1009		0	1.00	4.0	67.1	
1010		5	0.25	4.0	61.4	
1011		2	0.25	1.0	5.6	,
1012		0	0.00	1.0	9.6	,
1013		0	1.00	4.0	175.6	
1014		0	0.25	2.0	13.7	,
1015		0	0.60	0.0	0.0)
1016		0	0.00	4.0	28.6	,
1017		0	0.00	3.0	54.5	
1018		0	0.40	2.0	8.2	
1019			0.56	0.0	0.0	
1020			0.00	3.0	51.8	
1021			0.00	0.0	0.0	
1022			0.56	2.0	4.3	
1023			0.33	1.0	7.5	
1024			0.50	3.0	44.5	
1025			1.00	2.0	27.3	
1026			0.50	2.0	2.5	

```
R code: Poisson model estimation using glm()

pois_lf <- glm(

#--- formula ---#
narr86~pcnv+tottime+qemp86+inc86+black+hispan,

#--- data ---#
data = data,
```

family option

#--- models ---#

family=poisson(link='log')

- $\blacktriangleright\ poisson():$ tells R that your dependent variable is Poisson distributed
- ▶ link='log': tells R that you want to use exp() (the inverse of log()) as G() in $E(y=1|\mathbf{x})=G(z)$

R code: summary

inc86

black

hispan

```
summary(pois_lf)$coef

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.665805562 0.063749782 -10.4440446 1.560185e-25

pcnv -0.432102017 0.085403627 -5.0595277 4.202962e-07

tottime -0.001206742 0.005504698 -0.2192204 8.264784e-01
```

-0.008395041 0.001039638 -8.0749648 6.749612e-16

0.644485369 0.073922145 8.7184344 2.820750e-18 0.473213044 0.073774349 6.4143303 1.414432e-10

qemp86 -0.009956885 0.028588565 -0.3482821 7.276284e-01

Table

	Dependent variable:
	narr86
pcnv	-0.432***
	(0.085)
tottime	-0.001
	(0.006)
qemp86	-0.010
	(0.029)
inc86	-0.008***
	(0.001)
black	0.644***
	(0.074)
hispan	0.473***
	(0.074)
Constant	-0.666***
	(0.064)
Observations	2,725
Log Likelihood	-2,264.668
Akaike Inf. Crit.	4,543.337

Calculating the marginal impact of an independent variable

$$\frac{\partial E(y|x_1,\dots,x_k)}{\partial x_k} = \beta_k \times exp(\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k)$$

- the marginal impact depends on the current levels of all the independent variables
- ▶ we typically report one of the two types of marginal impacts
 - the marginal impact at the mean (average person): when all
 - the independent variables take on their respective means
 - the average of the marginal impacts calculated for each of all the individuals observed

R code: mean marginal impact of income

```
#--- get z for all the individuals ---#
z <- predict(pois_lf,type='link')</pre>
```

```
#--- get G'(z) ---#
```

```
Gz_indiv <- exp(z)</pre>
#--- mean marignal impact of eduction ---#
mean(Gz_indiv)*pois_lf$coef['inc86']
```

inc86 -0.003394985

R code: mean marginal impact of income

```
#--- get z for all the individuals ---#
z <- predict(pois_lf,type='link')

#--- get G'(z) ---#
Gz_indiv <- exp(z)

#--- mean marignal impact of eduction ---#
mean(Gz_indiv)*pois_lf$coef['inc86']
    inc86
-0.003394985</pre>
```

Interpretation

If your income goes up by \$100, the expected number of getting arrested declines by 0.0034

Notes

- ► Poisson regression model is under the same econometric modeling framework: GLM
 - Codes for testing are exactly the same as those we saw for the binary response models

Multinomial Choice

Instead of two options, you may be picking one option out of more than two options

- which carrier? Verizon

 - Sprint

which transportation means to commute?

- ► AT&T
- ► T-mobile
- own car
 - Uber

 - bus train
 - bike

Multinomial logit model

The most popular model to analyze multinomial choice

- environmental evaluation
- tranposrtation
- marketing

Understanding multinomial logit model through an example

Choice of trains

- 1. 10 euros, 30 minutes travel time, one change
- 2. 20 euros, 20 minutes travel time, one change
- 3. 22 euros, 22 minutes travel time, no change

Associated utility

- 1. $V_1 = \alpha_1 + \beta 10 + \gamma 30 + \rho 1 + v_1$
- 2. $V_2 = \alpha_2 + \beta 20 + \gamma 20 + \rho 1 + v_2$
- 3. $V_3 = \alpha_3 + \beta 22 + \gamma 22 + \rho 0 + v_3$

Choice probability

Logit model assumes that the probability of choosing an

alternative is the following:
$${}^{\circ}_{\circ}^{V_1}$$

alternative is the following:
$$1. \ P_1 = \frac{e^{V_1}}{e^{V_1} + e^{V_2} + e^{V_3}}$$

$$2. \ P_2 = \frac{e^{V_2}}{e^{V_1} + e^{V_2} + e^{V_3}}$$

$$3. \ P_3 = \frac{e^{V_3}}{e^{V_1} + e^{V_2} + e^{V_3}}$$

Choice probability

Logit model assumes that the probability of choosing an alternative is the following:

1.
$$P_1 = \frac{e^{V_1}}{e^{V_1} + e^{V_2} + e^{V_3}}$$

2.
$$P_2 = \frac{e^{V_2}}{e^{V_1} + e^{V_2} + e^{V_3}}$$

3.
$$P_3 = \frac{e^{V_3}}{e^{V_1} + e^{V_2} + e^{V_3}}$$

Notes

▶
$$0 < P_j < 1, \forall j = 1, 2, 3$$
▶ $\sum_{j=1}^{3} = 1$

Probability of observing individual i choosing what i chose

$$P_i = \Pi_{j=1}^3 y_{i,j} \times P_j$$

 $y_{i,1} = 0, y_{i,2} = 1, y_{i,3} = 0$

An example

where
$$y_{i,j}=1$$
 if i chose j , 0 otherwise

 $P_i = \prod_{j=1}^3 y_{i,j} \times P_j = 0 \times P_1 + 1 \times P_2 + 0 \times P_3$

Probability of observing a series of chocies made by all the subjects

If choices made by the subjects are independent with each other,

$$LL = \prod_{i=1}^{n} P_i = \prod_{i=1}^{n} \prod_{j=1}^{3} y_{i,j} \times P_j$$

MLE

 $Max_{\beta,\gamma,\rho} log(LL)$

Interpreatation of the coefficients

Model in general

$$V_{i,j} = \alpha_j + \beta_1 x_{1,i,j} + \dots + \beta_k x_{k,i,j}$$

$$P_{i,j} = \frac{e^{V_{i,j}}}{\sum_{k=1}^{J} e^{V_{i,k}}}$$

Interpreatation of the coefficients

$$\frac{\partial P_{i,j}}{\partial x_{k,i,j}} = \beta_k P_{i,j} (1 - P_{i,j})$$

- \blacktriangleright A marginal change in kth variable for alternative j would change the probability of choosing alternative j by $\beta_k P_{i,j} (1-P_{i,j})$
- ▶ the sign of the impact is the same as the sign of the coefficient

Implementation in R

You can use mlogit package to estimate multinomial logit models

- ▶ format your data in a specific manner
- $\blacktriangleright \ \, {\rm convert \ your \ data \ using} \ \, mlogit.data()$
- estimate using mlogit()

R code: multinomial logit model

```
#--- library ---#
  library(mlogit)
  #--- get the heating data from the mlogit package ---#
  data('TravelMode',package='AER')
  #--- take a look at the data ---#
  # first 10 rows
  head(TravelMode, 10)
   individual mode choice wait vcost travel gcost income size
                air
                        no
                             69
                                   59
                                          100
                                                 70
                                                        35
            1 train
                                                        35
                        nο
                             34
                                   31
                                          372
                                                 71
3
                bus
                        no
                             35 25
                                         417 70
                                                        35
                             0
                                  10
                                                 30
                                                        35
                car
                       ves
                                         180
5
                air
                        no
                             64
                                   58
                                          68
                                                 68
                                                        30
6
            2 train
                             44
                                   31
                                         354
                                                 84
                                                        30
                        no
                bus
                        no
                             53
                                   25
                                          399
                                                 85
                                                        30
8
               car
                            0
                                  11
                                         255
                                                 50
                                                        30
                       ves
9
                air
                             69
                                  115
                                         125
                                                129
                                                        40
                        no
10
            3 train
                        no
                             34
                                   98
                                          892
                                                195
                                                        40
```

R code: data preparation

2 train FALSE

2 bus FALSE

2 car TRUE

3 air FALSE

3 train FALSE

2.train

2.bus

2.car

3.air

3.train

```
#--- convert the data ---#
 TM <- mlogit.data(TravelMode,
   shape='long', # what format is the data in?
   choice='choice'. # name of the variable that indicates choice made
  chid.var='individual', # name of the variable that indicates who made choices
   alt.var='mode' # the name of the variable that indicates options
 #--- take a look at the data ---#
 # first 10 rows
 head(TM, 10)
       individual mode choice wait vcost travel gcost income size
                                      100
1.air
              1 air FALSE
                              69
                                   59
                                             70
                                                     35
1.train
             1 train FALSE
                              34
                                   31
                                        372 71
                                                     35
                                      417 70
1.bus
           1 bus FALSE
                              35 25
                                                    35
1.car
            1 car TRUE 0 10
                                      180 30
                                                    35
2.air
            2 air FALSE
                              64 58
                                         68
                                               68
                                                     30
```

44 31

69

34

53 25

0 11

115

98

354

399

125

892

84

85

255 50

129

195

30

30

30

40

40

R code: multinomial logit model estimation

```
#--- estimate ---#
 ml_reg <- mlogit(choice~wait+vcost+travel,data=TM)</pre>
 #--- summary ---#
 summary(ml_reg)
Call.
mlogit(formula = choice ~ wait + vcost + travel, data = TM, method = "nr")
Frequencies of alternatives:
   air train
                   bus
0.27619 0.30000 0.14286 0.28095
nr method
5 iterations, 0h:0m:0s
g'(-H)^-1g = 0.000192
successive function values within tolerance limits
Coefficients:
                    Estimate Std. Error z-value Pr(>|z|)
train:(intercept) -0.78666667  0.60260733 -1.3054  0.19174
bus:(intercept) -1.43363372 0.68071345 -2.1061 0.03520 *
car:(intercept) -4.73985647 0.86753178 -5.4636 4.665e-08 ***
wait
               -0.09688675 0.01034202 -9.3683 < 2.2e-16 ***
vcost
             -0.01391160 0.00665133 -2.0916 0.03648 *
travel
                 -0.00399468 0.00084915 -4.7043 2.547e-06 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Log-Likelihood: -192.89
McFadden R^2: 0.32024
Likelihood ratio test : chisq = 181.74 (p.value = < 2.22e-16)
```

```
R code: understanding the results
 #--- coefficient ---#
 summary(ml_reg)$coef
train:(intercept) bus:(intercept) car:(intercept)
                                                          wait
    -0.786666672 -1.433633718 -4.739856473
                                                  -0.096886747
                   travel
          vcost
    -0.013911604 -0.003994681
attr(,"names.sup.coef")
character(0)
attr(,"fixed")
train:(intercept) bus:(intercept) car:(intercept)
                                                         wait
          FALSE
                          FALSE
                                         FALSE
                                                         FALSE
          vcost
                      travel
          FALSE FALSE
attr(,"sup")
character(0)
```

Notes

- ightharpoonup intercept for air is dropped (air is the base)
 - ▶ train:(intercept) is -0.786 means that train is less likely to be chosen if all the other included variables are the same
- ▶ the greater the travel time, the less likely the option is chosen