Oprogramowanie do obliczeń wstępnych w procesie projektowania układów optycznych

Damian Korbuszewski

Promotor: dr inż. Arkadiusz Kuś

Motywacja i wymagania

Zakres pracy

Opis działania

Podsumowanie

Motywacja pracy

- Uniezależnienie oprogramowania do obliczeń wstępnych od zamkniętego oraz płatnego oprogramowania,
- Uzupełnienie braków występujących w obecnym oprogramowaniu, cofanie zmian, obliczenia średnic czynnych.
- Stworzenie oprogramowania dla przyszłych studentów.
- Dodanie dodatkowych funkcjonalności, nie występujących w Gabarze.

Wymagania

- Środowisko programistyczne Python
- Obliczenia zgodne z oprogramowaniem Gabar

Zakres pracy

- Przegląd rozwiązań oprogramowania do obliczeń gabarytowych układów optycznych.
- Przygotowanie modułu oprogramowania służącego do przeprowadzania obliczeń wstępnych w języku Python.
 - Obliczenia zgodne z programem GABAR
 - Przygotowanie schematu układu
- Opracowanie interfejsu użytkownika i graficznej prezentacji schematu układu.
- Weryfikacja poprawności działania programu na podstawie przykładowych, cienko-soczewkowych układów optycznych.

Działanie programu

- Wybranie ilości powierzchni oraz współczynnika winietowania
- Uzupełnienie tabeli, po wpisaniu są obliczane pozostałe parametry układu
- Po zakończeniu obliczeń wyświetlenie schematu układu oraz obliczenie średnic czynnych soczewek.

Początek działania programu

Działanie programu

- Wybranie ilości powierzchni oraz współczynnika winietowania
- Uzupełnienie tabeli, po wpisaniu są obliczane pozostałe parametry układu
- Po zakończeniu obliczeń wyświetlenie schematu układu oraz obliczenie średnic czynnych soczewek.

Wpisanie parametrów układu i tryb diagnostyczny

Działanie programu

- Wybranie ilości powierzchni oraz współczynnika winietowania
- Uzupełnienie tabeli, po wpisaniu są obliczane pozostałe parametry układu
- Po zakończeniu obliczeń wyświetlenie schematu układu oraz obliczenie średnic czynnych soczewek.

Opis działania

Uzupełniona tabela parametrów oraz schemat układu

	0	1	2	3
f		26.250000	1.000000e+10	
d	31.5	26.250000	1.312500e+02	
н	0	4.725000	3.937500e+00	0
alpha	-0.15	0.030000	3.000000e-02	
V		-5.000000	1.000000e+00	
L		189.000000	0.000000e+00	
Υ	-1.6	-1.600000	0.000000e+00	8
Beta	0	-0.060952	-6.095238e-02	
Q		0.000000	1.000000e+00	
Т		NaN	-0.000000e+00	
Flcz		10.760000	7.875000e+00	

Opis działania

Weryfikacja wyników

Weryfikacja wyników

	0	1	2	3	4	5
f		27.643097	93.932854	1.000000e+21	81.967213	
d	27.6431	15.000000	10.000000	8.393285e+01	3500.000000	
н	0	24.173486	24.173486	2.160000e+01	0.000000	-900.72
alpha	-0.874485	0.000000	0.257349	2.573486e-01	0.257349	
v		0.526257	0.000000	1.000000e+00	1.000000	
L		13.095714	NaN	-0.000000e+00	0.000000	
Υ	-4.12	-3.903640	-1.668000	0.000000e+00	14.000000	0
Beta	-0.00782693	-0.149043	-0.166800	-1.668000e-01	0.004000	
Q		0.052515	0.893541	1.000000e+00	-41.700000	
т		-472.553470	-1.191429	-0.000000e+00	3583.932854	
Flcz		48.346971	48.346971	4.320000e+01	28.000000	

Opis działania

Zalety rozwiązania

- Możliwość pracy na różnych systemach operacyjnych,
- Nie wymaga dodatkowego oprogramowania, brak zależności od starej, niewspieranej wersji MS Office.
- Oddzielenie warstwy obliczeniowej od interfejsu graficznego.
- Możliwość stworzenia aplikacji na systemy mobilne.
- Cofanie ostatnich wprowadzonych danych,
- Usprawnienia w rysowaniu schematu.

Dalsza praca

- Przygotowanie interfejsu graficznego w Kivy,
- Dodanie pomocy do oprogramowania,
- Dodanie obliczeń iteracyjnych, które nie zostały jeszcze zaimplementowane,
- Dodanie eksportu danych oraz schematu optycznego.

Dodatkowo planowane jest przygotowanie aplikacji dla Androida/iOS jako specyficznego kalkulatora.

Bibliografia

- Leśniewski, M., i W. Magdziarz. "GABAR-an interactive tool for dimensional predesign of arbitrary optical systems". *Optik* 75 (1979): 135–137.
- Leśniewski, M. *Projektowanie układów optycznych*. Wydawnictwo Politechniki Warszawskiej, 1990.
- Kryszczyński, T., i M. Leśniewski. "Method of the initial optical design and its realization". *Optical Security Systems* 5954, numer 4 (2005): 1–12.
- Kryszczyński, T., M. Leśniewski i J. Mikucki. "New approach to the method of the initial optical design based on the matrix optics". *Proc. of SPIE Vol* 7141 (2008): 1–7.

Dziękuje za uwagę.