CS 104

LAB WEEK 10

1. Euclidean Algorithm

Euclidean Algorithm is an algorithm to calculate greatest common divisor (gcd) of two integers. Suppose that we want to calculate gcd of two integers x and y where x>y.

gcd(x,y)=gcd(y,x%y) where x%y is the remainder

Here is an example:

gcd(219, 93) = gcd(93,33) since 219%93=33 = gcd(33,27) since 93%33 = 27 = gcd(27,6) since 33%27 = 6 = gcd(6,3) since 27%6 =3

You should stop if the remainder is 0. gcd is the last nonzero remainder.

= gcd(3,0) since 6%3 =0 STOP

Write a recursive method which takes as parameter two integers and returns their gcd.

2. Population growth

Assume that a city with currently 1 million people has a population growth rate of 1% per year, and it also receives 1 thousand immigrants per year. Find its population in 10 years from now by writing a recursive method called population which takes the year n as its parameter and returns the population after n years.

3. Staircase - Tribonacci Numbers

Suppose you want to walk up a staircase, and you can take 1, 2 or 3 steps at a time. How many ways are there to walk the 6 steps?

For instance, you can take 1-1-1-1-1, 3-3, 3-1-1-1.

Let Sn denote the number of ways to walk n steps. Write a recursive relation by thinking of the last step you are going to take. (There are 3 possibilities.)

Using the recurrence relation you have found write a recursive algorithm to solve the problem.

- **4.** Write a function using recursion to check if a number n is prime (you have to check whether n is divisible by any number below n).
- **5.** Write a function using recursion that takes in a string and returns a reversed copy of the string. The only string operation you are allowed to use is string concatenation
- **6.** Write a recursive function that converts a number from the 10th number system to binary. The function returns the result as a number. For instance, 13 will be converted to 1101.