

Vadhiraj K P P

Department of Electrical Engineering

Unit 2 – Lecture 24 - Analysis of Single-Phase AC circuits with C Load

Vadhiraj K P P

Department of Electrical & Electronics Engineering

PES

Capacitor & the concept of Capacitance

A Capacitor is obtained by placing a dielectric medium between the conducting plates.

Capacitance,
$$C = \frac{\varepsilon A}{d}$$
 Farad

Where, A is the area of each of the plates in m^2 d is the distance between the plates in m ϵ is the permittivity of the dielectric medium in F/m

Voltage – Current relationship in a Capacitor

The charge on the plates of a capacitor is directly proportional to the voltage across its terminals.

i.e.,
$$q(t) \propto v(t) \Rightarrow q(t) = Cv(t)$$

The constant of proportionality 'C' is called Capacitance of the Capacitor.

Hence, current,
$$i(t) = \frac{dq(t)}{dt} = C\frac{dv(t)}{dt}$$

Therefore, v(t) can be expressed as

$$v(t) = \frac{1}{C} \int i(t) dt$$

PES UNIVERSITY

Response of Pure Capacitor to Sinusoidal Supply

Let the supply voltage be $v(t) = V_m \sin(\omega t)$

In a pure capacitor,
$$i(t) = C \frac{dv(t)}{dt}$$

= $CV_m \omega cos(\omega t)$
= $I_m sin(\omega t + 90^\circ)$

Where, $I_m = V_m \omega C$ is the peak value of current

Response of Pure Capacitor to Sinusoidal Supply

In a pure capacitor, current leads voltage by 90°

Response of Pure Capacitor to Sinusoidal Supply

$$v(t)=V_{m}\sin(\omega t) \implies \bar{V}=\frac{V_{m}}{\sqrt{2}}\angle 0^{\circ}$$
$$i(t)=I_{m}\sin(\omega t+90^{\circ}) \implies \bar{I}=\frac{I_{m}}{\sqrt{2}}\angle 90^{\circ}$$

Phasor Diagram:

Where,
$$X_c = \frac{1}{\omega C}$$
 is called 'Capacitive Reactance'

Numerical Example

Question:

A Capacitor of Capacitance $100\mu F$ is connected across an AC voltage source $100\sin(100\pi t)$ V. Determine

- i) Capacitive Reactance
- ii) Impedance
- iii) Instantaneous expression for the current

Also, draw the phasor diagram.

Numerical Example

Solution: Given, $V(t) = 100\sin(100\pi t) V$

Hence, $\omega = 100\pi \text{ rad/s}$

- i) Capacitive Reactance, $X_c = \frac{1}{\omega C} = 31.83\Omega$
- ii) Impedance, $Z = -jX_c = -j31.83\Omega$
- iii) Instantaneous current, i(t)= $V_m \omega C \sin(\omega t + 90^\circ) A$ = 3.14sin($\omega t + 90^\circ$) A

Phasor Diagram:

$$\overline{V} = \frac{100}{\sqrt{2}} \angle 0^{\circ} V$$

$$i = \frac{3.14}{\sqrt{2}} \angle 90^{\circ} \text{ A}$$

$$\begin{array}{c|c}
3.14 \\
\hline
\sqrt{2} \\
\hline
\sqrt{2}
\end{array}$$

Text Book & References

Text Book:

"Electrical and Electronic Technology" E. Hughes (Revised by J. Hiley, K. Brown & I.M Smith), 11th Edition, Pearson Education, 2012.

Reference Books:

- 1. "Basic Electrical Engineering Revised Edition", D. C. Kulshreshta, Tata- McGraw-Hill, 2012.
- 2. "Basic Electrical Engineering", K Uma Rao, Pearson Education, 2011.
- 3. "Engineering Circuit Analysis", William Hayt Jr.,
- Jack E. Kemmerly & Steven M. Durbin, 8th Edition, McGraw-Hill, 2012.

THANK YOU

Vadhiraj K P P

Department of Electrical & Electronics Engineering

vadhirajkpp@pes.edu