Sistemas Distribuidos Comunicación por mensajes

Sergio Yovine

Departamento de Computación, FCEyN, Universidad de Buenos Aires, Buenos Aires, Argentina

Sistemas Operativos, segundo cuatrimestre de 2017

(2) Problemas

Orden de ocurrencia de los eventos

• Exclusión mutua

Consenso

(3) Exclusión mutua: comunicación por mensajes

Requerimiento

- No se pierden mensajes
- Ningún proceso falla

Algoritmos

- Lamport (1978)
 - Orden total
- Token passing
 - Fiber Distributed Data Interface (FDDI)
 - Time-Division Multiple-Access (TDMA)
 - Timed-Triggered Architecture (TTA)

Propiedades

- EXCL
- G-PROG
- Justicia (fairness)

(4) Orden de ocurrencia de los eventos: Lamport (1978)

Relojes

- Un reloj es una función que asigna un valor a cada evento
- Ese valor representa el momento en que el evento e ocurrió
- Cada proceso (o nodo) i tiene un reloj C_i.
- El reloj global C es tal que $C(e) = C_i(e)$ si e ocurre en i.

Eventos

- $a \rightarrow b$ si a ocurre antes que b.
- ullet ightarrow es un orden parcial no reflexivo.
- Si $a \rightarrow b$ y $b \rightarrow c$, entonces $a \rightarrow c$.
- Si $\neg(a \rightarrow b \lor b \rightarrow a)$, entonces a y b son concurrentes.

(5) Orden de ocurrencia de los eventos: Lamport (1978)

Propiedad a satisfacer:

- Si a y b ocurren en i y $a \rightarrow b$, entonces $C_i(a) < C_i(b)$.
- Si $e = snd_i(m)$ y $r = rcv_j(m)$, entonces $C_i(e) < C_j(r)$.

(6) Orden de ocurrencia de los eventos: Lamport (1978)

Algoritmo:

- i incrementa C_i entre todo par de eventos consecutivos.
- i envía: $e = snd_i(m, C_i(e))$.
- j recibe: $r = rcv_j(m, t), C_j(m) = t' > t$.

(7) Exclusión mutua: Lamport (1978)

Orden total

• C(a) < C(b) sii $C_i(a) < C_j(b)$ o $C_i(a) = C_j(b) \land i < j$.

Acciones proactivas

- try_i: i manda (i, req) a todos y lo guarda
- exit_i: i borra (i, req) y envía (i, rel) a todos
- criti:
 - hay un mensaje m = (i, req) en la cola de pedidos de i
 - C(m) < C(m') para todo m' = (i', req) en la cola
 - i recibió todos los mensajes de ack posteriores a m

Acciones reactivas (invisibles)

- en T_i , i recibe (j, ack): lo guarda
- i recibe (j, req): lo guarda y manda un (i, ack) a j
- i recibe (j, rel): borra (j, req)

(8) Consenso

Todos los procesos tienen que estar de *acuerdo*

Un problema de consenso tiene la siguiente forma general:

```
Valores V es un conjunto de valores a decidir, e.g, \{0,1\}
```

Inicio Todo proceso i empieza con $in(i) \in V$

Acuerdo Para todo $i \neq j$, decide(i) = decide(j)

Validez Existe i, in(i) = decide(i)

Terminación Todo i decide en un número finito de transiciones

Valores, acuerdo, validez y terminación cambian según el problema particular de consenso

Si no hay fallas, el problema tiene solución

Veamos algunos ejemplos

(9) Consenso: Elección de líder (sin fallas)

- En un anillo sin fallas con comunicación sincrónica
- Le Lann, Chang y Roberts (N. Lynch, Cap. 3 y Cap. 15.1)
- Algoritmo
 - Valores: $V = \{pid(i) \mid 1, ..., N\}$
 - Inicio: Todo proceso i envía su pid pid(i)
 - Cuando i recibe p:
 - Si pid(i) < p, i propaga p
 - Si pid(i) > p, i descarta p
 - Si pid(i) = p, i se declara lider, decide(i) = p y envía stop(p)
 - Cuando i recibe stop(p), decide(i) = p
- Tiempo
 - Sin fase de stop $\mathcal{O}(n)$
 - Con fase de stop $\mathcal{O}(2 \cdot n)$
- Comunicación
 - $\mathcal{O}(n^2)$
 - Cota inferior $\Omega(n \log n)$. Algoritmo de Hirschberg y Sinclair.

(10) Consenso: Commit en una BD distribuida (sin fallas)

```
Descripción (COMMIT)

Valores V = \{0 \ (abort), 1 \ (commit)\}

Acuerdo \forall i \neq j. \ decide(i) = decide(j)

Validez
```

$$\forall i. in(i) = 1 \implies \forall i. decide(i) = 1$$

Terminación Todo i decide en un número finito de transiciones

(11) Consenso: Commit en una BD distribuida (sin fallas)

Two-phase commit (2PC)

Se elige un proceso distintivo, por ejemplo, 1

- Fase 1
 - $\forall i \neq 1$: i envía in(i) a 1. Si in(i) = 0, decide(i) = 0.
 - 2 i = 1: Si recibe todos 1, decide(i) = in(i), si no, decide(i) = 0.
- Fase 2
 - 0 i = 1: Envía decide(i) a todos.
 - ② $\forall i \neq 1$: Si *i* no decidió, *decide(i)* es el valor recibido de 1.

(12) Consenso con fallas

¿Qué pasa si hay fallas?

- Problema del ataque coordinado o de los Generales Bizantinos
- commit (attack) o abort (don't attack) en una transacción

Hay tres tipos de fallas

- Falla la comunicación
- Los procesos dejan de funcionar
- Los procesos no son confiables (falla bizantina)

(13) Consenso: falla la comunicación

Descripción

```
Valores V = \{0, 1\}
Inicio Todo proceso i empieza con in(i) \in V
Acuerdo Para todo i \neq j, decide(i) = decide(j)
Validez Existe i, in(i) = decide(i)
```

Terminación Todo i decide en un número finito de transiciones

Teorema

No existe ningún algoritmo para resolver consenso

(14) Consenso: los procesos dejan de funcionar

Descripción

```
Valores V = \{0, 1\}
```

Inicio Todos proceso i empieza con $in(i) \in V$

Acuerdo $\not\exists i \neq j$. $decide(i) \neq decide(j)$

Validez Existe i, in(i) = decide(i)

Terminación Todo *i* que *no falla* decide en un número finito de transiciones

Teorema

Si fallan a lo sumo f < n procesos, entonces se puede resolver consenso con $\mathcal{O}((f+1) \cdot n^2)$ mensajes

(15) Consenso: Commit en una BD distribuida

```
Descripción (COMMIT)

Valores V = \{0 \ (abort), 1 \ (commit)\}

Acuerdo \not\exists i \neq j. \ decide(i) \neq decide(j)

Validez \bullet \exists i. \ in(i) = 0 \implies \not\exists i. \ decide(i) = 1

\bullet \forall i. \ in(i) = 1 \land \text{ no fallas} \implies \not\exists i. \ decide(i) = 0

Term. débil Si no hay fallas, todo proceso decide

Term. fuerte Todo proceso que no falla decide
```

Teorema

Two-phase commit resuelve **COMMIT** con terminación débil

Pero

- Two-phase commit no satisface terminación fuerte
- Solución: three-phase commit (N. Lynch, Cap. 7.2 y 7.3)

(16) Consenso: los procesos no son confiables

Falla bizantina (Lamport, 1982)

(17) Consenso: los procesos no son confiables

Descripción

```
Valores V = \{0, 1\}
```

Inicio Todos proceso i empieza con $in(i) \in V$

Acuerdo $\forall i \neq j$, que no fallan, $decide(i) = decide(j) \in V$

Validez Si $\forall i$, que *no falla*, in(i) = v, entonces $\not\exists j$, que *no falla*, tal que $decide(j) \neq v$

Terminación Todo *i* que *no falla* decide en un número finito de transiciones

Teorema

Se puede resolver consenso bizantino para n procesos y f fallas si y sólo si $n > 3 \cdot f$ y la conectividad es mayor que $2 \cdot f$

Conectividad: conn(G) = mínimo número de nodos N tal que $G \setminus N$ no es conexo o es trivial

(18) Consenso: Otros tipos de acuerdo y applicaciones

Acuerdos

• *k*-agreement (o *k*-set agreement)

$$decide(i) \in W$$
, tal que $|W| = k$

Aproximado

$$\forall i \neq j$$
. $|decide(i) - decide(j)| \leq \epsilon$

Probabilístico

$$Pr[\exists i \neq j. \ decide(i) \neq decide(j)] < \epsilon$$

Aplicaciones

- Sincronización de relojes (NTP, RFC 5905 y anteriores)
- Tolerancia a fallas en sistemas críticos

(19) Bibliografía extra

- L. Lamport. Time, clocks, and the ordering of events in a distributed system. CACM 21:7 1978.http://goo.gl/ENh2f7
- L. Lamport, R. Shostak, M. Pease. The Bizantine Generals problem. ACM TOPLAS 4:3, 1982.http://goo.gl/DYOQis
- Hermann Kopetz, Günther Bauer: The time-triggered architecture. Proceedings of the IEEE 91(1): 112-126 (2003). http://goo.gl/RPqfas
- R. Jain. FDDI Handbook. Addison Wesley, 1994. http://goo.gl/YZ2Hy1