Statisztikus fizika A gyakorlat 2020. tavaszi félév	Név:
1. zh	
2020.03.31.	Neptun kód

Két órátok van, hogy megoldjátok a dolgozatot, valamint befényképezzétek és a tárgy e-mail címére (statfizgyak@gmail.com) elküldjétek. Minden feladat új oldalon kezdődjön! Most kivételesen nem muszáj egybefűzni és átkonvertálni pdf-be, azonban ilyenkor a képfájloknak a nevében legyen benne, hogy melyik feladathoz tartoznak! Legkésőbb 18:00-kor meg kell érkeznie a postaládába, innentől percenként -1 pont.

Sima fehér papírra írjatok! Minden beadott lap jobb felső sarkában legyen feltűntetve a név és a Neptun kód! Az oldalak legyenek számozva, és kék vagy fekete tollal írjatok! Csak azt fogadom el, amit el tudok olvasni.

Zh-n az órai jegyzetet lehet használni, és az ott fellépő összefüggéseket is, amennyiben pontosan hivatkoztok rá. Névvel ellátott formuláknál elég a nevet megadni pl Stirlingformula, ekvipartíció tétel, Gauss-integrál stb. Minden számolást írjatok ki részletesen pl bonyolultabb integrálásnál, hogy milyen változócsere volt.

Egyéb segédeszköz, illetve egymással kommunikálás csalásnak minősül, és azonnali bukást, valamint fegyelmi eljárást von maga után.

Beugró

A beugró részt nyugodtan lehet az első feladat elé írni, nem kell új lapra. Elég egy szavas vagy képletes választ írni. Az 5 kérdésből 4-nek hibátlannak kell lennie.

- 1. Mik a nagykanonikus potenciál természetes változói?
- 2. A szabadenergiából hogyan lehet kiszámolni egy gáz nyomását? (legegyszerűbb, homogén eset)
- 3. Mi az ideális gáz állapotegyenlete?
- 4. Adott hőmérsékleten ha egy rendszer energiaszintjeit ε_i -vel jelöljük, akkor egyensúlyban mi az i-edik állapotban a megtalálás valószínűsége?
- 5. Mennyi egy sűrűségmátrix spúrja?

Feladatok

- 1. Egy buborék felületi energiája arányos magával a felülettel. Adott külső nyomáson és hőmérsékleten határozzuk meg a nyomást és a hőmérsékletet a buborék belsejében! (4p)
- 2. Adott egy rendszer, mely független részecskékből áll. Az egyes részecskék $-\Delta$ vagy Δ energiájúak lehetnek. Határozzuk meg, hogy adott energián, azaz makroállapot mellett

mennyi a mikroállapotok száma! Mi az energia és a hőmérséklet közötti összefüggés? (4p)

3. Egy rendszer energiaszintjei: $\varepsilon_n = n\varepsilon_0$, degenerációjuk $g_n = n$ módon függ az $n = 0, 1, 2, \ldots$ kvantumszámtól. Számítsuk ki a rendszer belső energiáját T hőmérsékleten! (4p)

Bónusz kérdés: Adjuk meg a magas és az alacsony hőmérsékletű viselkedést! (+1p)

4. Egy rendszer Hamilton-operátora

$$H = \Delta \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix},$$

a hozzá tartozó sajátvektorok pedig

$$|1\rangle = \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix} \frac{1}{2} \qquad |2\rangle = \begin{pmatrix} 1 \\ 0 \\ -1 \\ 0 \end{pmatrix} \frac{1}{\sqrt{2}} \qquad |3\rangle = \begin{pmatrix} 0 \\ 1 \\ 0 \\ -1 \end{pmatrix} \frac{1}{\sqrt{2}} \qquad |4\rangle = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \frac{1}{2}.$$

Egy fizikai mennyiség operátora pedig

$$A = \begin{pmatrix} 0 & 1 & 2 & 0 \\ 1 & 0 & 0 & 2 \\ 2 & 0 & 0 & 1 \\ 0 & 2 & 1 & 0 \end{pmatrix}.$$

a, Határozzuk meg $Z(\beta)$ állapotösszeget! (1p)

b, Számoljuk ki az $\langle A \rangle$ várható
értéket adott hőmérsékleten! (3p)

 $Segítség\colon Az\ A\ \acute{e}s\ H\ m\'{a}trixok\ kommut\'{a}lnak.$

5. (Bónusz kérdés) Hány keze van egy félkezű embernek? (+1p)

Veszeli Máté