CS 5003: Parameterized Algorithms Lectures 12-13

Krithika Ramaswamy

IIT Palakkad

Vertex Cover

Vertex cover - set of vertices that has at least one endpoint of each edge

Instance: A graph 6 on n vertices m edges and integer k Question: Poes 6 have a vertex cover of size at most k? Parameter: k

- * Kernel with k² edges and 2k²/3 vertices
- * $O(n^3+1.4656^k k^3)$ time algorithm
- 3k vertex kernel

Integer Linear Programming

- * Given
 - * A set of int-valued variables
 - * A set of linear inequalities (constraints)
 - * A linear cost function
- Objective is to find an assignment to the variables satisfying all constraints and maximizes/minimizes the cost function

Integer Linear Programming

$$minimize \sum_{v \in V(G)} x(v)$$

subject to $x(v) + x(u) \ge 1$ for each edge $\{u, v\} \in E(G)$

 $0 \le x(v) \le 1$ for each vertex $v \in V(G)$

 $x(v) \in \mathbb{Z}$ for each vertex $v \in V(G)$

Claim: Optimum value <=k iff G has a vertex cover of size at most k

Integer Linear Programming

$$minimize \sum_{v \in V(G)} x(v)$$

subject to $x(v) + x(u) \ge 1$ for each edge $\{u, v\} \in E(G)$

 $0 \le x(v) \le 1$ for each vertex $v \in V(G)$

 $x(v) \in \mathbb{Z}$ for each vertex $v \in V(G)$

Theorem: Integer Linear Programming is NP-hard

Linear Programming

$$minimize \sum_{v \in V(G)} x(v)$$

subject to
$$x(v) + x(u) \ge 1$$
 for each edge $\{u, v\} \in E(G)$
 $0 \le x(v) \le 1$ for each vertex $v \in V(G)$

 $x(v) \in \mathbb{Z}$ for each vertex $v \in V(G)$

Theorem: Linear Programming is in P

$$minimize \sum_{v \in V(G)} x(v)$$

Linear Programming

subject to $x(v) + x(u) \ge 1$ for each edge $\{u, v\} \in E(G)$ $0 \le x(v) \le 1$ for each vertex $v \in V(G)$

Optimum solution x^*

$$\sum_{v \in V(G)} x^*(v) > k \implies (G, k) \text{ is no instance}$$

Independent Set

 $minimize \sum_{v \in V(G)} x(v)$

Linear Programming

subject to $x(v) + x(u) \ge 1$ for each edge $\{u, v\} \in E(G)$ $0 \le x(v) \le 1$ for each vertex $v \in V(G)$

Optimum solution x*

min vertex cover X

 $minimize \sum_{v \in V(G)} x(v)$

Linear Programming

subject to $x(v) + x(u) \ge 1$ for each edge $\{u, v\} \in E(G)$ $0 \le x(v) \le 1$ for each vertex $v \in V(G)$

Optimum solution x*

min vertex cover X

 $minimize \sum_{v \in V(G)} x(v)$

Linear Programming

subject to $x(v) + x(u) \ge 1$ for each edge $\{u, v\} \in E(G)$ $0 \le x(v) \le 1$ for each vertex $v \in V(G)$

Optimum solution x*

min vertex cover X

A feasible solution better than x*

$$minimize \sum_{v \in V(G)} x(v)$$

Linear Programming

subject to
$$x(v) + x(u) \ge 1$$
 for each edge $\{u, v\} \in E(G)$
 $0 \le x(v) \le 1$ for each vertex $v \in V(G)$

Optimum solution x*

There is a min vertex cover including > 1/2 set and excluding < 1/2 set

$$minimize \sum_{v \in V(G)} x(v)$$

Linear Programming

subject to $x(v) + x(u) \ge 1$ for each edge $\{u, v\} \in E(G)$ $0 \le x(v) \le 1$ for each vertex $v \in V(G)$

Optimum solution x*

(G, k) is yes-instance iff (G-(1 ∪J), k-|J|) is yes-instance

$$minimize \sum_{v \in V(G)} x(v)$$

Linear Programming

subject to $x(v) + x(u) \ge 1$ for each edge $\{u, v\} \in E(G)$ $0 \le x(v) \le 1$ for each vertex $v \in V(G)$

Optimum solution x*

$$=\frac{1}{2}$$

$$k \ge \sum_{v \in V(G)} x^*(v) = \frac{n}{2} \implies n \le 2k$$