Feuille d'exercices

- Fin du Chapitre 1 : Intégrale de Riemann -

Exercice 1 —

- 1. Donner un exemple de fonction continue sur [0, 1], d'intégrale nulle sur [0, 1] mais non-identiquement nulle.
- 2. Soit f une fonction continue sur [0,1] à valeurs positives et telle que $\int_0^1 f(x)dx = 0$. Montrer que f est identiquement nulle.

Exercice 2 —

EXERCICE 2 — Déterminer toutes les fonctions continues $f:[0,1] \longrightarrow [0,1]$ telles que $\int_{[0,1]} f = \int_{[0,1]} f^2$.

Soit $f:[0,1] \longrightarrow \mathbb{R}$ continue. Montrer que $\int_{[0,1]} |f| = \Big| \int_{[0,1]} f \Big|$ si et seulement si f est de signe constant sur [0,1]. Que peut-on dire de $f:[0,1] \longrightarrow \mathbb{C}$ telle que $\int_{[0,1]} |f| = \left| \int_{[0,1]} f \right|$?

Soit $f:[0,1] \longrightarrow \mathbb{R}$ continue par morceaux. Montrer que la suite $\left(n\int_{[0,\frac{1}{n}]}f\right)_{n\in\mathbb{N}^*}$ converge et déterminer sa limite.

Exercice 5 —

Soient $a \leq b$ deux réels et soit $f:[a,b] \longrightarrow \mathbb{R}$ de classe \mathscr{C}^1 telle que f(a)=0.

Démontrer l'inégalité : $\int_{[a,b]} f^2 \le \frac{(b-a)^2}{2} \int_{[a,b]} f'^2.$

Calculer pour tout $a \in \mathbb{R}$ l'intégrale $I(a) := \int_0^1 \min(x, a) dx$.

Exercice 7 —

EXERCICE 7 — Calculer à l'aide d'un changement de variables $\int_{\frac{1}{2}}^{2} \left(1 + \frac{1}{x^2}\right) \operatorname{Arctan}(x) dx$ et $\int_{0}^{\pi} \frac{x}{1 + \sin(x)} dx$.

Exercice 8 —

Pour $a \in \mathbb{R}^+$ et $n \in \mathbb{N}$ on pose $I(a,n) = \int_0^1 x^a (1-x)^n dx$.

- 1. Trouver une relation entre I(a+1,n) et I(a,n).
- 2. Calculer I(a, n) I(a, n + 1).
- 3. En déduire une expression de I(a, n+1) en fonction de I(a, n) puis donner une expression de I(a, n).

EXERCICE 9 (INTÉGRALES DE WALLIS.) — $\int_0^{\frac{\pi}{2}} \cos^n(t) dt$.

- 1. Montrer que $W_n = \int_{a}^{\frac{a}{2}} \sin^n(t) dt$.
- 2. Montrer que $W_{n+2} = \frac{n+1}{n+2}W_n$ puis en déduire une expression de W_{2p} et W_{2p+1} pour tout $p \in \mathbb{N}$.
- 3. Après avoir calculé nW_nW_{n+1} pour tout $n \in \mathbb{N}$ et montré que $W_n \sim W_{n+1}$ lorsque n tend vers $+\infty$, proposer un équivalent de W_n lorsque n tend vers $+\infty$.

Exercice 10 —

Montrer que les suites suivantes convergent et déterminer leurs limites :

1.
$$u_n = \frac{1}{n^3} \sum_{k=1}^n k^2 \sin(\frac{k\pi}{n})$$

2.
$$u_n = \frac{1}{n^2} \sum_{k=1}^n k \sqrt[n]{e^{-k}}$$

3.
$$u_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n}$$

4.
$$u_n = \sum_{k=n+1}^{2n} \frac{n}{k^2}$$

5.
$$u_n = \frac{1}{n} \left(\prod_{p=1}^n (n+p) \right)^{\frac{1}{n}}$$

6.
$$u_n = \frac{\sum_{k=0}^{n-1} \frac{2n^2 + kn}{n^2 + (n+k)^2}}{\sum_{k=0}^{n-1} \sqrt{1 - \frac{k}{n}}}$$

7.
$$u_n = \frac{1}{n^{\frac{3}{2}}} \sum_{k=1}^n E(\sqrt{k}).$$

Exercice 11 —

Soit f continue sur [0,1]. Montrer que la suite $(u_n)_{n\in\mathbb{N}^*}$ définie par $u_n=\frac{1}{n}\sum_{k=0}^n(-1)^kf\left(\frac{k}{n}\right)$ est convergente et déterminer sa limite.

Exercice 12 (Intégrale de Poisson.) —

Soit $a \in \mathbb{R} \setminus \{-1, 1\}$. Montrer en utilisant les sommes de Riemann :

$$\int_0^\pi \ln(a^2 - 2a\cos(x) + 1)dx = \begin{cases} 2\pi \ln|a| & \text{si } |a| > 1\\ 0 & \text{si } |a| < 1. \end{cases}$$

Exercice 13 —

EXERCICE 13 — Montrer que la suite $(u_n)_{n\in\mathbb{N}^*}$ définie par $u_n = \sum_{n=1}^{n-1} \frac{1}{\sqrt{n^2 - p^2}}$ est convergente et déterminer sa limite. (<u>Indication</u>:

on pourra commencer par montrer l'encadrement $\int_{\frac{p-1}{n}}^{\frac{p}{n}} \frac{dx}{\sqrt{1-x^2}} \le \frac{1}{\sqrt{n^2-p^2}} \le \int_{\frac{p}{n}}^{\frac{p+1}{n}} \frac{dx}{\sqrt{1-x^2}}$ en prenant le soin de noter pour quelles valeurs de p et n il est valable."

Exercice 14 —

Soit $f:[0,1] \longrightarrow \mathbb{R}$ continue. Montrer que si $\int_{[0,1]} f = \frac{1}{2}$, alors f a un point fixe.

Exercice 15 —

Soit $f:[a,b] \longrightarrow \mathbb{C}$ continue avec $a \leq b$ deux réels. Démontrer que $\lim_{n \to +\infty} \left(\int_{[a,b]} |f|^n \right)^{\frac{1}{n}} = \sup_{[a,b]} |f|$.

EXERCICE 16 (VERSIONS DU LEMME DE LEBESGUE) — 1. Soit f de classe \mathscr{C}^1 sur [a,b]. Montrer que $\lim_{n\to+\infty}\int_a^b e^{inx}f(x)dx=0$.

2. Montrer que le résultat précédent est encore vrai en supposant seulement f continue par morceaux sur [a,b]. (Indication : on pourra commencer par montrer le résultat pour les fonctions en escalier puis on utilisera un argument de densité.)

Exercice 17 — On considère la fonction $f: x \mapsto \int_{x}^{2x} \frac{t^2}{t^2 + (\sin(t))^2} dt$.

- 1. Déterminer l'ensemble de définition de f.
- 2. Montrer que f est prolongeable par continuité en 0 en une fonction que l'on notera encore f.
- 3. Montrer que f est de classe \mathscr{C}^1 sur \mathbb{R} et donner l'expression de sa dérivée.