Argumentation Basics

□ An argument is:

■ A set of sentences/rules, S, in some background logic (L, \vdash): from which we can derive a conclusion (I.e. $S\vdash \varphi$)

■ Attacking Relation:

- Specifies when one argument (i.e. a set S_1 of rules) attacks another argument S_2 e.g. when:
 - ullet they have some contrary conclusion and S_1 is "as strong" as S_2 .

Admissibility/Acceptability criterion:

- Selects appropriate arguments (from a given corpus), called admissible/acceptable, that "behave well" under their attacks
- □ An argument S is Admissible:
 - S is conflict free (i.e. it does not attack itself) and
 - S attacks (counter-attacks) all its attacks

□ Credulous or Skeptical Reasoning:

A conclusion holds in one or all admissible/acceptable extensions

Argumentation Realization STEP 1

□ Preference based argumentation

■ The attacking relation is defined in terms of a priority structure on the arguments.

Preference Based Argumentation (1)

- What is an attack on S_1 ?
 - An argument S_2 with **contrary** claims (either for the original top-level decision or for the supporting ones)
 - Where S_2 is also **NOT less preferable**.
- What is "less preferable"?
 - Contains weaker components (links)
- What is a "weaker component/link"?

Preference Based Argumentation (2)

- What is a "weaker component/link"?
 - This is stated explicitly in the theory/knowledge, eg.
 - "Social responsibility is stronger than personal gain"
 - "Later laws are stronger than earlier ones"
 - "Later events have stronger information than earlier ones"
 - "Specific information is stronger than general information"
 - LOCALLY specified and lifts via the argumentation to give GLOBAL (overall preferred) decisions.
 - => MODULARITY of Representation
 - => MODULARITY of Design and Architecture of Agents

Preference Based Argumentation (3)

- What is a "weaker component/link"?
 - This weaker/stronger notion is not fixed but conditional e.g.:
 - "A law is stronger than the another WHEN this is passed later"
 - "Accepting a requested task is stronger than carrying out your own task WHEN the request comes from a superior"
 - This dynamic nature of preferences/attacking is vital in a changing environment
 - Adaptability of argumentative reasoning
 - Personalization of argumentative reasoning

Argumentation Realization STEP 2

- □ Realizations in a logical framework
- □ An argument is a set of sentences to support a conclusion in some background monotonic logic (\mathcal{L}, \vdash) :
 - AF = <T, Att>, where T is a theory in some logic
 - Given a subset of sentences S we can derive conclusions $(S \vdash \phi)$
 - □ These conclusions are the positions of the argument

The Attacking Relation

- An attacking relation is realized between sets of sentences, φ and ψ, as:
 - 1) ϕ and ψ have a contrary conclusion
 - 2) Strength Relation via Priorities:

Then $Att(\psi, \phi)$, i.e. ψ attacks ϕ .

Strong and Weak attacks.

Logic Programming without Negation as Failure (LPwNF)

□ LPwNF:

- A concrete scheme of the abstract argumentation framework which uses explicit negation for conflict.
- Labelled rules of the form Label: $L \leftarrow L_1, ..., L_n$ where $L, L_1, ..., L_n$ are positive or explicit negative literals and Label is a functional term.

□ Extensions:

- Generalized the attacking relation to be dynamic.
- Integrated abduction.

Logic Programming without Negation as Failure (LPwNF)

□ Horn background logic:

- Rules: $L \leftarrow L_1, ..., L_n$ where $L, L_1, ..., L_n$ literals $L_i = (\neg)A_i$
- Contrary given by classical negation —
- Priority relation ">" on rules of the theory

Example

 $p \leftarrow q$, not r "p holds if q holds unless r holds"

```
R_1: p \leftarrow q

R_2: \neg p \leftarrow r

R_2 > R_1
```

Attacking relation given by:

■S attacks S' iff there exist L and $S_1 \subseteq S$, $S'_1 \subseteq S'$ s.t.:

$${}^{\square}B \cup S_1 \vdash_{min} L \text{ and } B \cap S'_1 \vdash_{min} \neg L$$

 $\square S_1 \supseteq S'_1$ (If S_1 has a rule of lower priority then it also has one of higher priority)

An Example of Argumentation Theory Policy

Decision policy of a seller agent

```
r1: sell(Prd, Ag, high-price) \leftarrow pay-card(Ag, Prd)
r2: sell(Prd, Ag, high-price) \leftarrow pay-install(Ag, Prd)
r3: sell(Prd, Ag, low-price) \leftarrow pay-cash(Ag, Prd)
r4: \negsell(Prd, Ag, P2) \leftarrow sell(Prd, Ag, P1), P2\neqP1
```

Priority: r1 > r2, r1 > r3, r2 > r3

Argumentation with Roles and Context

- □ Default Context

 definition of roles
 - Market: normal, regular customer
- □ Specific Context
 - High season, sales season
- \square Example Agent theory: $T=(\mathcal{T}, \mathcal{P}_{\mathcal{R}}, \mathcal{P}_{\mathcal{C}})$
 - R1: h-p(r1(Prd, Ag), r3(Prd, Ag))
 - R2: h-p(r3(Prd, Ag), r1(Prd, Ag)) \leftarrow regular(Ag), buy_2(Ag, Prd)
 - R3: h-p(r3(Prd, Ag), r1(Prd, Ag)) \leftarrow regular(Ag), late_del(Ag, Prd)
 - C1: h-p(R1(Prd, Ag), R2(Prd, Ag)) \leftarrow high-season
 - C3: h-p(R2(Prd, Ag), R3(Prd, Ag)) \leftarrow special-product(Prd)
- MODULARITY of representation

Personality Theory

- Maslow's (default) Hierarchy of Human Needs ("other things being equal")
 - Physiological
 - Safety
 - Affiliation or Social
 - Achievement or Ego
 - Self-Actualization or Learning
- Argumentation based preference policy for goal decision

Agent Deliberation on Needs and Motivations (2)

Satisfied and Critical Needs

- \mathbf{S}_{j} : the set of conditions, evaluated in the theory \mathbf{T} of the agent, under which the agent considers that his needs pertaining to motivation \mathbf{m}_{j} are satisfied
- N_j: the set of conditions, evaluated in the theory T of the agent, under which the agent considers that his needs pertaining to motivation m_i are critical
- S_{i} and N_{i} are disjoint

□ Default motivation preference theory of Agent

- R^2_{ij} : $h-p(G_i, G_j) \leftarrow \neg S_i, \neg N_j$

where G_i and G_j are any two potential goals ($i \neq j$) of the agent associated to motivations m_i and m_j respectively

Agent Deliberation on Needs and Motivations (3)

- An agent theory expressing his profile on needs is a theory $T=(T, P_M, P_C)$ where:

 - \square $\mathcal{P}_{\mathcal{M}}$ contains the rules:
 - $\square R^1_{ij}: h-p(G_i, G_i) \leftarrow N_i$
 - □ $R^{2_{ij}}$: h-p(G_i , G_i) $\leftarrow \neg S_i$, $\neg N_i$
 - \square For each pair of rules R_{ij}^k , R_{ji}^k in $\mathcal{P}_{\mathcal{M}}$ we have the following rules in $\mathcal{P}_{\mathcal{C}}$:
 - $\begin{array}{ll} \cdot & H^k_{ij} \colon \text{h-$p(R^k_{ij}, \ R^k_{ji})$} \leftarrow \text{true} \\ \cdot & E^k_{ji} \colon \text{h-$p(R^k_{ji}, \ R^k_{ij})$} \leftarrow \text{sc^k_{ij}} \\ \cdot & \mathcal{C}^k_{ij} \colon \text{h-$p(E^k_{ij}, \ H^k_{ji})$} \leftarrow \text{true} \end{array}$

where sc^k_{ij} are special conditions whose truth can be evaluated in \mathcal{T} .

The rules H_{ij}^k are called the **basic hierarchy** of the theory T and the rules E_{ji}^k the **exception policy** of the theory T.

Agent Deliberation on Needs and Motivations (4)

- □ These profiles $T=(T, P_M, P_C)$ capture via P_C different personalities:
 - Selfish, Altruist, etc
 - But sensitive to special circumstances where the default behaviour is over-written

Example

- \square G_1 =fill up (N_1) , G_2 =help in work $(\neg S_3) \rightarrow G_1$
- \square G_1 =fill up $(\neg S_1)$, G_2 =help in work $(\neg S_3) \rightarrow G_1$
 - Dilemma \rightarrow G_1 or G_2 according to the basic profile of the agent
- \square G_1 =fill up (N_1) , G_2 =help injured $(N_3) \rightarrow G_1$
 - Dilemma $\rightarrow G_1$ or G_2 according ...
 - □ If injured=child (special condition: case 31) $\rightarrow G_2$

Capabilities and Personality(1)

- The Personality can influence the decision making of the agent associated to his different capabilities
- Example: Decide within the problem solving module which requested task to perform according to his "professional" policy and his personality
- Professional Policy r1(A, T1, A1): perform(A, T1, A1) ← ask(A1, T1, A) r2(A, T1, T2, A1): ¬perform(A, T1, A1)← perform(A, T2, self) R1: h-p(r1(A, T1, A1), r2(A, T1, T2, A1)) ← higher_rank(A1, A) R2: h-p(r2(A, T1, T2, A1), r1(A, T1, A1)) ← competitor(A1, A) C1: h-p(R1(A, T1, T2, A1), R2(A, T1, T2, A1)) ← common _project(A, T1, A1) C2: h-p(R2(A, T1, T2, A1), R1(A, T1, T2, A1)) ← urgent(A, T2)
- > Personality Policy: The case of a selfish agent

$$R^{2}_{43}$$
: h-p(G_{4} , G_{3}) $\leftarrow \neg S_{4}$, $\neg N_{3}$
 R^{2}_{34} : h-p(G_{3} , G_{4}) $\leftarrow \neg S_{3}$, $\neg N_{4}$
 H^{2}_{43} : h-p(R^{2}_{43} , R^{2}_{34}) \leftarrow true
 E^{2}_{34} : h-p(R^{2}_{34} , R^{2}_{43}) \leftarrow dangerous_for_company(G_{4})
 C^{2}_{34} : h-p(E^{2}_{34} , H^{2}_{43}) \leftarrow true

Capabilities and Personality(2)

- "Professional" and personality policies can be in conflict
- The method of conflict resolution exploits the agent's ability to synthesize argumentation and abductive reasoning
- It assumes that these conflicts occur due to lack of information
- □ Given two opposing goals G_1 and G_2 there are three possible cases of such a conflict
 - Case 1: G_1 and G_2 are skeptical conclusions of the professional theory of a module and the personality theory respectively
 - Case 2: G_1 is a skeptical conclusion of the professional theory of a module and G_2 is a credulous conclusion (and hence so is G_1) of the personality theory (or vice-versa)
 - Case 3: G_1 and G_2 are credulous conclusions of the professional theory of a module and the personality theory respectively

Capabilities and Personality(3)

- Mechanism for resolving conflicts
 - Suspend decision
 - Deliberate on goals to find supporting information that would strengthen or weaken the conclusions of the separate theories
 - Evaluate if possible (some of) this supporting information in the external environment, and if this results in:
 - Case 1: then the agent chooses one of the goals according to a simple preference for or against the personality choice (i.e. given by the designer)
 - Case 2: then the agent decides for the goal that is skeptically true
 - Case3: then the agent selects randomly one of the two goals