Spectral decimation on self-similar fractals: from singularly continuous spectrum to the Hofstadter butterfly

Joe P. Chen

Department of Mathematics Colgate University

Oberseminar "Spezielle Stochastische Probleme" Universität Düsseldorf October 24, 2018

Colgate University

1/21

Motivation: Analysis on nonsmooth domains

Some fractals are nicer than others

Each of these fractals is obtained from a nested sequence of graphs which has *nice*, *symmetric* replacement rules.

Spectral decimation (= spectral similarity)

Rammal-Toulouse '84, Bellissard '88, Fukushima-Shima '92, Shima '96, etc. A recursive algorithm for identifying the Laplacian spectrum on highly symmetric, finitely ramified self-similar fractals.

Spectral decimation

Definition (Malozemov-Teplyaev '03)

Let $\mathcal H$ and $\mathcal H_0$ be Hilbert spaces. We say that an operator $\mathcal H$ on $\mathcal H$ is spectrally similar to $\mathcal H_0$ on $\mathcal H_0$ with functions φ_0 and φ_1 if there exists a partial isometry $\mathcal U:\mathcal H_0\to\mathcal H$ (that is, $\mathcal U\mathcal U^*=\mathcal I$) such that

$$U(H-z)^{-1}U^* = (\varphi_0(z)H_0 - \varphi_1(z))^{-1} =: \frac{1}{\varphi_0(z)}(H_0 - R(z))^{-1}$$

for any $z \in \mathbb{C}$ for which the two sides make sense.

A common class of examples: \mathcal{H}_0 subspace of \mathcal{H} , U^* is an ortho. projection from \mathcal{H} to \mathcal{H}_0 . Write H-z in block matrix form w.r.t. $\mathcal{H}_0 \oplus \mathcal{H}_0^{\perp}$:

$$H-z=\begin{pmatrix}I_0-z&\overline{X}\\X&Q-z\end{pmatrix}.$$

Then $U(H-z)^{-1}U^*$ is the inverse of the Schur complement S(z) w.r.t. to the lower-right block of H-Z: $S(z)=(I_0-z)-\overline{X}(Q-z)^{-1}X$.

Issue: There may exist a set of z for which either Q-z is not invertible, or $\varphi_0(z)=0$.

Spectral decimation: the main theorem

Spectrum $\sigma(\Delta) = \{z \in \mathbb{C} : \Delta - z \text{ does not have a bounded inverse}\}.$

Definition

The exceptional set for spectral decimation is

$$\mathfrak{E}(H, H_0) \stackrel{\text{def}}{=} \{ z \in \mathbb{C} : z \in \sigma(Q) \text{ or } \varphi_0(z) = 0 \}.$$

Theorem (Malozemov-Teplyaev '03)

Suppose H is spectrally similar to H_0 . Then for any $z \notin \mathfrak{C}(H, H_0)$:

- $R(z) \in \sigma(H_0) \iff z \in \sigma(H)$.
- R(z) is an eigenvalue of H_0 iff z is an eigenvalue of H. Moreover there is a one-to-one map between the two eigenspaces.

Consequence: For an operator H on a self-similar Hilbert space \mathcal{H} ,

$$\mathcal{J}(R) \subset \sigma(H) \subset \mathcal{J}(R) \cup D$$
,

where

- $\mathcal{J}(R)$ is the **Julia set** of R (= the complement in $\mathbb{C} \cup \{\infty\}$ of the domain in which $\{R^{\circ n}\}_n$ converges uniformly on compact subsets).
- D derives from the exceptional set E.

Example: \mathbb{Z}_+

Let Δ be the graph Laplacian on \mathbb{Z}_+ (with Neumann boundary condition at 0), realized as the limit of graph Laplacians on $[0,2^n]\cap\mathbb{Z}_+$.

If $z \neq 2$ and R(z) = z(4 - z), then

- $R(z) \in \sigma(-\Delta) \iff z \in \sigma(-\Delta)$.
- $\sigma(-\Delta) = \mathcal{J}(R)$.
- $\mathcal{J}(R)$ is the full interval [0,4].

Generalizing the interval: The pq-model

A one-parameter model of 1D fractals parametrized by $p \in (0,1)$. Set q = 1 - p.

A triadic interval construction, "next easiest" fractal beyond the dyadic interval.

$$(\Delta_p f)(x) = \sum_y \mathfrak{p}(x, y) f(y) - f(x)$$

where $p(x, y) \in \{1, p, q\}$ depends on the arrow given below.

Assign probability weights to the three segments:

$$m_1 = m_3 = \frac{q}{1+q}, \quad m_2 = \frac{p}{1+q}$$

Then iterate. Let π be the resulting self-similar probability measure.

8 / 21

Spectral decimation for the pq-model

The spectral decimation polynomial is $R(z) = \frac{z(z^2-3z+(2+pq))}{pq}$.

$$\sigma(-\Delta_n) = \{0,2\} \cup \bigcup_{m=0}^{n-1} R^{-m} \{1 \pm q\}$$

9/21

Spectral decimation for the pq-model

The spectral decimation polynomial is $R(z) = \frac{z(z^2-3z+(2+pq))}{pq}$.

$$\sigma(-\Delta_n) = \{0, 2\} \cup \bigcup_{m=0}^{n-1} R^{-m} \{1 \pm q\}$$

The pq-model on \mathbb{Z}_+

- Δ_p is not self-adjoint w.r.t. $\ell^2(\mathbb{Z}_+)$, but is self-adjoint w.r.t. the discretization of the aforementioned self-similar measure π .
- Let $\Delta_p^+ = D^* \Delta_p D$, where

$$D:\ell^2(\mathbb{Z}_+)\to\ell^2(3\mathbb{Z}_+),\quad (Df)(x)=f(3x).$$

Then Δ_p is spectrally similar to Δ_p^+ . Moreover, Δ_p and Δ_p^+ are isometrically equivalent (in $L^2(\mathbb{Z}_+)$ or in $L^2(\mathbb{Z}_+, \pi)$).

The pq-model on \mathbb{Z}_+

Spectrum $\sigma(H) = \{z \in \mathbb{C} : H - z \text{ does not have a bounded inverse}\}$. Facts from functional analysis:

- $\sigma(H)$ is a nonempty compact subset of \mathbb{C} .
- $\sigma(H)$ equals the disjoint union $\sigma_{\rm pp}(H) \cup \sigma_{\rm ac}(H) \cup \sigma_{\rm sc}(H)$. pure point spectrum \cup absolutely continuous spectrum \cup singularly continuous spectrum

Theorem (C.-Teplyaev, J. Math. Phys. '16)

If $p \neq \frac{1}{2}$, the Laplacian Δ_p , regarded as an operator on either $\ell^2(\mathbb{Z}_+)$ or $L^2(\mathbb{Z}_+, \pi)$, has purely singularly continuous spectrum. The spectrum is the Julia set of the polynomial $R(z) = \frac{z(z^2 - 3z + (2+pq))}{zq}$, which is a topological Cantor set of Lebesgue measure zero.

- One of the simplest realizations of purely singularly continuous spectrum. The mechanism
 appears to be simpler than those of quasi-periodic or aperiodic Schrodinger operators. (cf.
 Simon, Jitomirskaya, Avila, Damanik, Gorodetski, etc.)
- See also Grigorchuk-Lenz-Nagnibeda '14, '16 on spectra of Schreier graphs.

Proof of purely singularly continuous spectrum (when $p \neq \frac{1}{2}$)

- Spectral decimation: Δ_p is spectrally similar to Δ_p^+ , and they are isometrically equivalent. After taking into account the exceptional set, $R(z) \in \sigma(\Delta_p) \iff z \in \sigma(\Delta_p)$. Notably, the repelling fixed points of R, $\{0,1,2\}$, lie in $\sigma(\Delta_p)$.
- **②** By **③**, $\bigcup_{n=0}^{\infty} R^{\circ -n}(0) \subset \sigma(\Delta_p)$. Meanwhile, since $0 \in \mathcal{J}(R)$, $\bigcup_{n=0}^{\infty} R^{\circ -n}(0) = \mathcal{J}(R)$. So $\mathcal{J}(R) \subset \sigma(\Delta_p)$.
- If $z \in \sigma(\Delta_p)$, then by •, $R^{\circ n}(z) \in \sigma(\Delta_p)$ for each $n \in \mathbb{N}$. On the one hand, $\sigma(\Delta_p)$ is compact. On the other hand, the only attracting fixed point of R is ∞ , so the Fatou set $(\mathcal{J}(R))^c$ contains the basin of attraction of ∞ , whence non-compact. Infer that $z \notin (\mathcal{J}(R))^c$. So $\sigma(\Delta_p) \subset \mathcal{J}(R)$.

Proof of purely singularly continuous spectrum (when $p \neq \frac{1}{2}$)

- **Φ** Thus $\sigma(\Delta_p) = \mathcal{J}(R)$. When $p \neq \frac{1}{2}$, $\mathcal{J}(R)$ is a disconnected Cantor set. So $\sigma_{\rm ac}(\Delta_p) = \emptyset$.
- **②** Find the formal eigenfunctions corresponding to the fixed points of R, and show that none of them are in $\ell^2(\mathbb{Z}_+)$ or in $L^2(\mathbb{Z}_+,\pi)$. Thus none of the fixed points lie in $\sigma_{\mathrm{pp}}(\Delta_\rho)$. By spectral decimation, none of the pre-iterates of the fixed points under R are in $\sigma_{\mathrm{pp}}(\Delta_\rho)$. So $\sigma_{\mathrm{pp}}(\Delta_\rho) = \emptyset$.
- **6** Conclude that $\sigma(\Delta_p) = \sigma_{\rm sc}(\Delta_p)$.

The Sierpinski gasket lattice (SGL)

Let Δ be the graph Laplacian on SGL. If $z \notin \{2,5,6\}$ and R(z) = z(5-z), then

- $R(z) \in \sigma(-\Delta) \iff z \in \sigma(-\Delta)$.
- $\sigma(-\Delta) = \mathcal{J}_R \cup \mathcal{D}$, where \mathcal{J}_R is the Julia set of R(z) and $\mathcal{D} := \{6\} \cup (\bigcup_{m=0}^{\infty} R^{-m} \{3\})$.
- \bullet \mathcal{J}_R is a disconnected Cantor set.

Thm. (Teplyaev '98, Quint '09) On SGL, $\sigma(\Delta) = \sigma_{\rm pp}(\Delta)$.

Eigenfunctions with finite support are complete.

 \rightarrow Localization due to geometry.

Localized eigenfunctions on SGL

A few related questions

• Spectral decimation meets Kirchhoff's matrix-tree theorem:

On a finite connected graph G on n vertices,

$$\#\{\text{spanning trees on } G\} = \det(-\Delta_G[j]) = \frac{1}{n} \prod_{i=2}^n \lambda_i,$$

where $\Delta_G[j]$ is the minor of Δ_G with the jth row and the jth column removed, and $0=\lambda_1<\lambda_2\leq\lambda_3\leq\cdots\leq\lambda_n$ are the eigenvalues of $-\Delta_G$.

- Counting spanning trees on fractals: Chang-Chen '05, Teufl-Wagner '06, Anema-Tsougkas '16 (uses spectral decimation).
- ▶ Randomly sampled Uniform Spanning Trees on SG: Shinoda—Teufl—Wagner '14.
- ightharpoonup Regularized log det Δ formulas for various self-similar graphs: C.–Teplyaev–Tsougkas '18 (uses spectral decimation).

A few related questions

Wave propagation on fractals

$$u_{tt} = \Delta u$$
, solution is $u(t,x) = \sum_{j=1}^{\infty} c_j \cos(t\sqrt{\lambda_j}) e_j(x)$ where $-\Delta e_j = \lambda_j e_j$

- For the pq-model applied to a compact subinterval of \mathbb{R} , we obtain a good space-time approximation of the solution to the wave equation in Andrews–Bonik–C.–Martin–Teplyaev '17. Animation
- ▶ Gives a concrete example of "infinite speed of wave propagation" on fractals.
- **3** Anderson localization of $H = -\Delta + V_{\omega}$ on fractal lattices?
 - ▶ Molchanov: On finitely ramified lattices, $\sigma_{ac}(H) = \emptyset$ (by the Simon-Wolff method).
 - ► (Still many unanswered questions ...)

Line bundle Laplacian (a.k.a. magnetic Schrödinger operator) on SG

Let θ be a 1-form on the edge set of a connected graph: $\theta(x,y) = -\theta(y,x)$ for all $x \sim y$. The **line bundle Laplacian** on the vertex set is given by

$$(\Delta_{\theta}f)(x) = \frac{1}{\deg(x)} \sum_{y \sim x} \left(f(x) - e^{i\theta(x,y)} f(y) \right), \quad f: V \to \mathbb{R}.$$

Line bundle = Vector bundle with a U(1) connection = $\{e^{i\theta(x,y)}\}_{(x,y)\in E}$.

We are interested in a choice of θ which corresponds to "constant magnetic field" through the SG lattice:

Flux around a cycle, $\sum_{\mathbf{e} \in \text{cycle}} \theta(\mathbf{e})$, is $2\pi \alpha$ if traversed along an upward triangle, and $2\pi \beta$ if along a downward triangle. For consistency with self-similarity, $\alpha = \beta$.

Spectral decimation of the line bundle Laplacian on SG

- Analyzed in several physics papers in the 80s, most notably Ghez-Wang-Rammal-Pannetier-Bellissard '88.
- ullet Ruoyu Guo (Colgate '19) is working on a careful analysis of spectral decimation of $\Delta_{ heta}$ as part of his senior honors thesis.

Proposition (GWRPB '88, C.-Guo '18+)

Let $(\Delta_{\theta}^{(n)}, \alpha)$ denote the line bundle Laplacian with constant flux $2\pi\alpha$ on the nth-level SG. Then there is spectral decimation from $(\Delta_{\theta}^{(n+1)}, \alpha)$ to $(\Delta_{\theta}^{(n)}, 4\alpha)$ with spectral decimation function $R(z, \alpha) = 1 + \frac{A(z, \alpha)}{2|W(z, \alpha)|}$, where

$$A(z,\alpha) = -64z^4 + 256z^3 - 356z^2 - [6\cos(2\pi\alpha) - 200]z$$
$$+ 6\cos(2\pi\alpha) + \cos(4\pi\alpha) - 37,$$

$$\Psi(z,\alpha) = 8z^2 - (2e^{2\pi i(3\alpha)} + 4e^{2\pi i\alpha} + 16)z + 2e^{2\pi i(3\alpha)} + \frac{3}{2}e^{4\pi i\alpha} + 4e^{2\pi i\alpha} + \frac{15}{2}.$$

Spectrum of the line bundle Laplacian

An approximate spectrum: Initialize with points (λ_0, α_0) in $[0,2] \times [0,1]$. Let $(\lambda_n, \alpha_n) = R^{\circ n}(\lambda_0, \alpha_0)$. We expect the spectrum to *roughly* coincide with the Julia set of R. To get a picture of the filled Julia set, we keep points (λ_0, α_0) for which $|R^{\circ n}(\lambda_0, \alpha_0)| \leq C$ for all n.

Figure: The "Hofstadter butterfly" on the Sierpinski gasket

Results to come (in 2019)

- **1** Make the connection between $\sigma((\Delta_{\theta}, \alpha))$ and $\mathcal{J}(R)$ exact.
- ② Establish properties of the spectrum, e.g.: Is it true that for every $\alpha \in [0,1]$, $\sigma(\Delta_{\theta},\alpha) = \sigma_{\mathrm{pp}}(\Delta_{\theta},\alpha)$? Also, the bottom (and top) of the spectrum $\lambda_{\min}(\alpha)$ ($\lambda_{\max}(\alpha)$) seems to be continuous in α . Is this true?
- The line-bundle version of Kirchhoff's matrix-tree theorem [Forman '93, Kenyon '10]

$$\det \Delta_{ heta} = \sum_{\mathsf{CRSFs}} \prod_{\mathsf{cycles}} 2 \left(1 - \mathsf{cos} \left(\sum_{\mathbf{e} \in \mathsf{cycle}} \theta(\mathbf{e}) \right) \right),$$

where the sum runs over all cycle-rooted spanning forests on the graph.

Leads to probabilistic analysis of random spatial processes on fractals.

Results to come (in 2019)

Thank you!