PSALTer results panel $S = \iiint \left(\mathcal{A}^{\alpha\beta\chi} \ \sigma_{\alpha\beta\chi} + f^{\alpha\beta} \ \tau (\Delta + \mathcal{K})_{\alpha\beta} - \frac{1}{2} \ \alpha_{0} \left(\mathcal{A}_{\alpha\chi\beta} \ \mathcal{A}^{\alpha\beta\chi} + \mathcal{A}^{\alpha\beta}_{\alpha} \ \mathcal{A}^{\chi}_{\beta} + 2 \ f^{\alpha\beta} \ \partial_{\beta}\mathcal{A}^{\chi}_{\alpha} - 2 \ \partial_{\beta}\mathcal{A}^{\alpha\beta}_{\alpha} - 2 \ f^{\alpha\beta} \ \partial_{\chi}\mathcal{A}^{\chi}_{\alpha\beta} + 2 \ f^{\alpha}_{\alpha} \ \partial_{\chi}\mathcal{A}^{\beta\chi}_{\beta} \right) + \beta_{1} \left(2 \ \mathcal{A}^{\alpha\beta}_{\alpha} \ \mathcal{A}^{\chi}_{\beta} - 4 \ \mathcal{A}^{\chi}_{\alpha\chi} \ \partial_{\beta}f^{\alpha\beta} + 4 \right) + \beta_{1} \left(2 \ \mathcal{A}^{\alpha\beta}_{\alpha} \ \mathcal{A}^{\chi}_{\beta} - 2 \ \partial_{\beta}f^{\alpha\beta}_{\alpha} - 2 \ \partial_{\beta}f^{\alpha\beta}_{$

Wave operator

	$^{0^{+}}_{ullet}\mathcal{A}^{\parallel}$	$0^+_{\bullet}f^{\parallel}$	$0^{+}_{\bullet}f^{\perp}$	${}^{0^-}_{\boldsymbol{\cdot}}\mathcal{A}^{\parallel}$											
^{0⁺} Æ †	$\frac{1}{2} \left(\alpha_{\stackrel{\bullet}{0}} - 4 \beta_{\stackrel{\bullet}{1}} \right)$	$-\frac{i\left(\alpha_{0}-4\beta_{1}\right)k}{\sqrt{2}}$	0	Θ											
^{⊙⁺} f [∥] †	$\frac{i\left(\alpha_{0}-4\beta_{1}\right)k}{\sqrt{2}}$	$-4 \beta_{1} k^{2}$	0	0											
${\overset{0^+}{{}_{\scriptstyle\bullet}}}f^\perp$ †	0	0	0	0											
⁰⁻ Æ †	0	0	0	$\frac{\alpha_{\bullet}}{2} - 2\beta_{\bullet} + \alpha_{\bullet} k^2$		${}^{1^+}_{ullet}\mathcal{A}^{\perp}_{lphaeta}$		${}^{1^{-}}_{\bullet}\mathcal{A}^{\parallel}{}_{lpha}$	${}^{1^{-}}_{\:\raisebox{1pt}{\text{\circle*{1.5}}}}\mathcal{A}^{\perp}{}_{\alpha}$	$\frac{1}{\bullet}f^{\parallel}_{\alpha}$	$f^{\perp}_{\bullet} f^{\perp}_{\alpha}$				
				$\overset{1^{+}}{\cdot}\mathscr{A}^{\parallel} + \overset{lphaeta}{\cdot}$	$\frac{1}{4} \left(\alpha_{0} - 4 \beta_{1} \right)$	$\frac{\alpha_{0}^{-4}\beta_{1}^{2}}{2\sqrt{2}}$	$\frac{i\left(\alpha_{0}-4\beta_{1}\right)k}{2\sqrt{2}}$	Θ	0	0	Θ				
				$\overset{1^{+}}{\cdot}\mathscr{H}^{\perp} \stackrel{lphaeta}{\cdot}$	$\frac{\alpha_{0}-4\beta_{1}}{2\sqrt{2}}$	0	Θ	Θ	0	Θ	Θ				
				$f^{\parallel} \uparrow f^{\parallel} \uparrow \alpha \beta$	$-\frac{i\left(\alpha_{0}-4\beta_{1}\right)k}{2\sqrt{2}}$	0	Θ	Θ	0	Θ	Θ				
				$^{1}_{\bullet}\mathcal{R}^{\parallel}$ \dagger^{α}	0	0	0	$\frac{1}{4} \left(\alpha_{0} - 4 \beta_{1} \right)$	$-\frac{\alpha_{0}^{-4}\beta_{1}^{2}}{2\sqrt{2}}$	Θ -	$-\frac{1}{2} i \left(\alpha_0 - 4 \beta_1\right) k$				
				1 - \mathcal{A}^{\perp} \dagger^{lpha}	0	0	0	$-\frac{\alpha_{\stackrel{\cdot}{0}}-4\beta_{\stackrel{\cdot}{1}}}{2\sqrt{2}}$	0	Θ	Θ				
				$f^{-1} f^{\parallel} \uparrow^{\alpha}$	0	0	Θ	0	0	Θ	0				
				$^{1} \cdot f^{\perp} \uparrow^{\alpha}$	0	0	0	$\frac{1}{2} i \left(\alpha_{0} - 4 \beta_{1} \right) k$	Θ	0	0	${}^{2^+}_{ullet}\mathcal{A}^{\parallel}{}_{lphaeta}$	${\stackrel{2^+}{\cdot}}f^{\parallel}_{\alpha\beta}$	${}^{2^{-}}\mathcal{H}^{\parallel}{}_{\alpha\beta\chi}$	
											${}^{2^{+}}_{\bullet}\mathcal{A}^{\parallel}$ † lphaeta		$\frac{i\left(\alpha_{0}-4\beta_{1}\right)k}{2\sqrt{2}}$	Θ	
											2 ⁺ _f + αβ	$-\frac{i\left(\alpha_{0}-4\beta_{1}\right)k}{2\sqrt{2}}$	$2 \beta_{i} k^{2}$	0	
											${}^{2^{-}}_{\bullet}\mathcal{A}^{\parallel}$ † ${}^{lphaeta\chi}$	0	0	$-\frac{\alpha_{\bullet}}{4} + \beta_{\bullet}$	

Saturated propagator

Source constraints

		1	
Spin-parity form	Covariant form	Multiplicities	
^{Θ+} τ [⊥] == Θ	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta+\mathcal{K}\right)^{\alpha\beta}=0$	1	
$2 i k \frac{1}{\cdot} \sigma^{\perp}^{\alpha} + \frac{1}{\cdot} \tau^{\perp}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}_{\tau} \left(\Delta + \mathcal{K}\right)^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta\tau} \left(\Delta + \mathcal{K}\right)^{\alpha\beta} + 2 \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi}$	3	
$\frac{1}{\tau} \eta^{\alpha} = 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}_{\tau} \left(\Delta + \mathcal{K}\right)^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta\tau} \left(\Delta + \mathcal{K}\right)^{\beta\alpha}$	3	
$i k \int_{\bullet}^{+} \sigma^{\perp}^{\alpha\beta} + \int_{\bullet}^{+} \tau^{\parallel}^{\alpha\beta} = 0$	$\partial_{\chi}\partial^{\alpha}{}_{\tau}\left(\Delta+\mathcal{K}\right)^{\beta\chi} + \partial_{\chi}\partial^{\beta}{}_{\tau}\left(\Delta+\mathcal{K}\right)^{\chi\alpha} + \partial_{\chi}\partial^{\chi}{}_{\tau}\left(\Delta+\mathcal{K}\right)^{\alpha\beta} + 2 \ \partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + 2 \ \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta} = = \partial_{\chi}\partial^{\alpha}{}_{\tau}\left(\Delta+\mathcal{K}\right)^{\chi\beta} + \partial_{\chi}\partial^{\beta}{}_{\tau}\left(\Delta+\mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}{}_{\tau}\left(\Delta+\mathcal{K}\right)^{\beta\alpha} + 2 \ \partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta} = = \partial_{\chi}\partial^{\alpha}{}_{\tau}\left(\Delta+\mathcal{K}\right)^{\chi\beta} + \partial_{\chi}\partial^{\beta}{}_{\tau}\left(\Delta+\mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}{}_{\tau}\left(\Delta+\mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\partial^{\chi}{}_{\tau}\left(\Delta+\mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\partial^{\chi}{}_{\tau}\left(\Delta+\mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\partial^{\chi}{}_{\tau}\left(\Delta+\mathcal{K}\right)^{\chi} + \partial_{\chi}\partial^{\chi}\partial^{\chi}{}_{\tau}\left(\Delta+\mathcal{K}\right)^{\chi} + \partial_{\chi}\partial^{\chi}\partial^{\chi}\partial^{\chi}{}_{\tau}\left(\Delta+\mathcal{K}\right)^{\chi} + \partial_{\chi}\partial^{\chi}\partial^{\chi}\partial^{\chi}\partial^{\chi}\partial^{\chi}{}_{\tau}\left(\Delta+\mathcal{K}\right)^{\chi} + \partial_{\chi}\partial^{\chi}\partial^{\chi}\partial^{\chi}\partial^{\chi}\partial^{\chi}\partial^{\chi}{}_{\tau}\left(\Delta+\mathcal{K}\right)^{\chi} + \partial_{\chi}\partial^{\chi}\partial^{\chi}\partial^{\chi}\partial^{\chi}\partial^{\chi}\partial^{\chi}\partial^{\chi}\partial^$	3	
Total expected gauge generators:			

Massive spectrum

Massive particle

Pole residue:	$-\frac{1}{\alpha_{\cdot}} > 0$		
Square mass:	$-\frac{\alpha \cdot -4\beta \cdot }{2\alpha \cdot }_{3} > 0$		
Spin:	0		
Parity:	Odd		

Massless spectrum

Massless particle

Pole residue:	$\frac{p^2}{\alpha_0} > 0$
Polarisations:	2

Unitarity conditions

 $\alpha_{\bullet} > 0 \&\& \alpha_{\bullet} < 0 \&\& \beta_{\bullet} < \frac{\alpha_{\bullet}}{4}$