Numerical Computing :: Project Six

Consider the following nonlinear system of equations with two equations and two unknowns. The math problem can be stated as follows. Given $f_1(x_1, x_2)$ and $f_2(x_1, x_2)$ defined as

$$f_1(x_1, x_2) = x_1^3 - x_2^3 + x_1,$$

$$f_2(x_1, x_2) = x_1^2 + x_2^2 - 1.$$
(1)

Find r_1 and r_2 such that $f_1(r_1, r_2) = 0$ and $f_2(r_1, r_2) = 0$.

- 1. Note that all the points such that $f_2 = 0$ define a circle of radius 1 centered at the origin. Make a plot that shows (i) all the points that satisfy $f_1 = 0$ and (ii) all the points that satisfy $f_2 = 0$. Identify the points on the plot that satisfy both $f_1 = 0$ and $f_2 = 0$.
- 2. By hand, calculate the 2×2 Jacobian matrix of the system (f_1, f_2) .
- 3. Use Newton's method for systems to find the two solutions to the system of equations $(f_1 = 0, f_2 = 0)$. Try several (10 or so) different initial guesses. Make a table of the answer that Newton's method gives—something like:

The superscript in the column heading indicates the iteration number, i.e., 0 means the initial guess. Check the plot you made in problem 1 to see whether the answers you're getting make sense.

4. Find a starting point where Newton's method fails. Why did it fail?