ADATSZERKEZETEK ÉS ALGORITMUSOK

- Az első kiegyensúlyozott fa algoritmus
 - Kitalálói: Adelson-Velskii és Landis (1962)
- Tulajdonságok
 - Bináris rendezőfa
 - A bal és jobb részfák magassága legfeljebb 1-gyel különbözik egymástól
 - A részfák is AVL fák

- Jelölje m(f) az f bináris fa magasságát (szintjeinek számát), ha x az f fa egy csúcsa: ekkor m(x) jelöli az x-gyökerű részfa magasságát
- Definíció (AVL-tulajdonság)
 - Egy bináris keresőfa AVL-fa, ha minden x csúcsára teljesül, hogy $|m(bal[x]) m(jobb[x])| \le 1$

Mekkora a k-szintű AVL-fa minimális csúcsszáma?

$$k = 1 \qquad \qquad k = 2 \qquad \qquad k = 3 \qquad \qquad k = 4$$

$$k = 2$$

$$k = 3$$

$$k = 4$$

$$S_1 = 1$$

$$S_2 = 2$$

$$S_3 = 4$$

$$S_1 = 1$$
 $S_2 = 2$ $S_3 = 4$ $S_4 = 7$

Mekkora a k-szintű AVL-fa minimális csúcsszáma?

- Összefüggés az AVL-fa pontszáma és magassága között:
 - n adattal felépíthető fa minimális magassága?
 - Ez egy majdnem teljes bináris fa
 - n adattal felépíthető fa maximális magassága?
 - Ugyanez a kérdés: az adott h szintszámú AVL-fák közül mennyi a minimális pontszám?
 - Válasz
 - A h szintszámú minimális csúcsszámú AVL-fa gyökerének egyik részfája h– 1, a másik h– 2 szintű
 - Az eredeti fa minimalitása miatt pedig mindkét részfa minimális csúcsszámú

AVL fa maximális magassága

AVL fák – magasság

- Tétel Egy h magasságú AVL fának legalább $F_{h+3}-1$ csúcsa van
- Bizonyítás
 - Legyen S_h a legkisebb h magasságú AVL fa mérete
 - ezt jelöljük majd n-nel
 - Ismert, hogy
 - $S_0 = 0$ és $S_1 = 1$, valamint $S_h = 1 + S_{h-1} + S_{h-2}$
 - Indukciót használva
 - $S_h = F_{h+3} 1$
 - Ez a "3-mal eltolt Fibonacci" szám
 - $1 + F_{h+2} 1 + F_{h+1} 1 = F_{h+3} 1$

AVL fák – magasság

- Tétel: Ha F AVL fa, akkor $h(F) \le 1,44 * \log_2(n+1)$ ahol n az F fa pontjainak számát jelöli.
- Bizonyítás: Legyen S_i az i magasságú, legkevesebb pontot tartalmazó AVL fa pontjainak száma, jelöljük $B_i = S_i + 1$
 - Ekkor $B_0 = 1$, $B_1 = 2$ és $B_m = B_{m-2} + B_{m-1}$ (ha m > 1)
 - Lemma: $\Phi^m \le B_m$ ahol $\Phi = \frac{1+\sqrt{5}}{2}$
 - $1 = \Phi^0 \le B_0 \Phi \le B_1$.
 - Teljes indukcióval, a $2 \dots m-1$ -re igaz $B_m = B_{m-2} + B_{m-1} \ge \Phi^{m-2} + \Phi^{m-1} = \Phi^{m-2}(1+\Phi)$
 - Ugyanakkor $(1 + \Phi) = \Phi^2$
- Tehát $\Phi^m \le B_m = S_m + 1 \le n + 1$ azaz $m * \log_2 \Phi \le \log_2 (n + 1)$
- Ekkor $h(F) = m \le \left(\frac{1}{\log_2 \Phi}\right) * \log_2(n+1) = 1,44 * \log_2(n+1)$

Újrakiegyensúlyozás beszúrásnál

- Amikor beszúrunk egy elemet az AVL tulajdonság elromolhat
 - A helyrehozásnak négy különböző esete van
 - 1. és 4. eset, valamint a 2. és 3. eset tükörképei egymásnak

Újrakiegyensúlyozás beszúrásnál

- Egy új attribútumot vezetünk be, a kiegyensúlyozási tényezőt
 - -1 : bal részfa magasabb 1-gyel
 - 0 : egyforma magasak a részfák
 - +1: jobb részfa magasabb 1-gyel

 $\alpha < x < \beta < y < \gamma$

Az új levél a γ részfába került. A beszúrás előtt a fa magassága h+2 volt.

Az új levél a γ részfába került. A beszúrás előtt a fa magassága h+2 volt. Forgatás:

h

A forgatás után ismét h+2 a magasság. Ezért feljebb, a befoglaló fában (ha van), változatlanul érvényes az AVL tulajdonság, nem kell feljebb menni ellenőrizni.

h+1

Példa

Példa

Az új levél a z alatti β vagy γ részfába került. A beszúrás előtt a z csúcs alatti fák egyformák:

 $\alpha < x < \beta < z < \gamma < y < \delta$

A beszúrás után az egyik részfa magassága h lett, a másik maradt h-1.

Dupla forgatás kell: először jobbra:

Dupla forgatás kell: azután balra:

Végeredmény

A beszúrás előtt az x gyökerű fa magassága h+2 volt. A forgatás után ismét h+2 a magasság. Ezért feljebb, a befoglaló fában (ha van), változatlanul érvényes az AVL tulajdonság, nem kell feljebb menni ellenőrizni.

Továbbra is igaz: $\alpha < x < \beta < z < \gamma < y < \delta$

Ennek a tükörképe a (--,+) szabály!

- Ennél az esetnél a két forgatási lépés összetartozik, a kettő között nincsen feltétel vizsgálat.
 - A két forgatás között előfordulhat, hogy a részfák $(\alpha, \beta, \gamma, \delta)$ a kapcsolódó szülőkkel olyan részfa-magasságot eredményeznek, amely elvben nem lehetséges (++,++)
 - Ez azonban átmeneti állapot, látható, hogy a dupla forgatás végeredménye mindenképpen jó lesz
 - Az átmeneti pillanatban nincs is esetvizsgálat.

Újrakiegyensúlyozás beszúrásnál

- Összefoglalva:
 - A beszúrás után az új levéltől felfelé haladva a gyökér felé újra számoljuk a csúcsok címkéit ezen az útvonalon.
 - Ha egy x csúcs címkéje ++ vagy -- lesz, akkor az x gyökerű (rész)fa (esetleg dupla) forgatásával helyreállítható az AVL tulajdonság.
 - A tényleges helyreállítási lépés műveletigénye: O(1)

Újrakiegyensúlyozás beszúrásnál

Tétel

- Legyen S egy n csúcsból álló AVL-fa.
- BESZÚR(s; S) után legfeljebb egy (esetleg dupla) forgatással helyreállítható az AVL-tulajdonság.
- A beszúrás költsége ezzel együtt is $O(\log n)$.
- Bizonyítás
 - az előzőekből következik