Lecture 11: Region labelling

Giving a region a name

Binary Images

- Obtained from gray-level (or color) image g(x, y)
 by Thresholding
- Characteristic Function

$$b(x, y) = 1 \text{ if } g(x, y) < T$$

0 if $g(x, y) >= T$

Selecting a Threshold

Multiple Objects

Need to **SEGMENT** image into separate **COMPONENTS** (regions)

Multiple Objects

Need to **SEGMENT** image into separate **COMPONENTS** (regions)

Connected Components

Maximal Set of Connected points

Remember Graph Theory?

A & B are connected: Path exists between A & B along which b(x,y) is constant.

Connected Component Labeling

Region Growing Algorithm:

- (a) Start with "SEED" point where b(x,y) = 1
- (b) Assign LABEL to seed point
- (c) Assign SAME LABEL to its Neighbors with b(x,y) = 1
- (d) Assign SAME LABEL to Neighbors of Neighbors

Terminates when a component is completely labeled.

Then, pick another **UNLABELED** seed point.

What do we mean by Neighbors?

Connectedness:

4-connectedness

8-connectedness

Neither is perfect!

Adjacency

• 4-adjacency: $q \in N_4(p)$

• 8-adjacency: $q \in N_8(p)$

• m-adjacency: $q \in N_4(p)$ or

$$q \in N_D(p)$$
 and $N_4(p) \cap N_4(q) = \emptyset$

<u>Equivalei</u>	icc rabic
1	0
2	0
3	0
4	0
5	0

1	0
2	0
3	0
4	0
5	0

1	1
2	0
3	0
4	0
5	0

1	1
2	0
3	0
4	0
5	0

1	1
2	0
3	0
4	0
5	0

1	1
2	0
3	0
4	0
5	0

1	1
2	0
3	0
4	0
5	0

1	1
2	2
3	0
4	0
5	0

1	1
2	2
3	0
4	0
5	0

1	1
2	2
3	0
4	0
5	0

1	1
2	2
3	0
4	0
5	0

1	1
2	2
3	3
4	0
5	0

1	1
2	2
3	3
4	0
5	0

1	1
2	2
3	2
4	0
5	0

1	1
2	2
3	2
4	0
5	0

1	1
2	2
3	2
4	0
5	0

1				2	
			2	2	
	3	2	2	2	
3					

1	1
2	2
3	2
4	0
5	0

1				2	
			2	2	
	2	2	2	2	
2					

1	1
2	2
3	2
4	0
5	0

Equivalent Labels

The Labeling Process

Equivalent Labels

Connected component labeling of binary image:

a) binary image

b) connected components labeling

Connected component labeling of binary image:

1	1	0	1	1	1	0	1
1	1	0	1	0	1	0	1
1	1	1	1	0	0	0	1
0	0	0	0	0	0	0	1
1	1	1	1	0	1	0	1
0	0	0	1	0	1	0	1
1	1	0	1	0	0	0	1
1	1	0	1	0	1	1	1

a) binary image

1	1	0	1	1	1	0	2
1	1	0	1	0	1	0	2
1	1	1	1	0	0	0	2
0	0	0	0	0	0	0	2
3	3	3	3	0	4	0	2
0	0	0	3	0	4	0	2
5	5	0	3	0	0	0	2
5	5	0	3	0	2	2	2

b) connected components labeling

Region Properties

- Once a binary image has been processed we could obtain properties about the regions in the processed image.
- Some of those properties are
 - Area, centroid, perimeter, perimeter length, circularity of the region and second circularity measure

Area and Centroid

- Area A = sum of all the 1-pixels in the region.
- Centroid [r',c'] is the average location of the pixels in the region
 - r' = 1/A*Sum of all the rows in the region
 - c' = 1/A*Sum of all the columns in the region.

Perimeter

 A simple definition of the perimeter of a region without holes i set of its interior border pixels.

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	0
2	2	2	2	0	0	0	0	0	1	1	1	1	1	1	0
2	2	2	2	0	0	0	0	1	1	1	1	1	1	1	1
2	2	2	2	0	0	0	0	1	1	1	1	1	1	1	1
2	2	2	2	0	0	0	0	1	1	1	1	1	1	1	1
2	2	2	2	0	0	0	0	0	1	1	1	1	1	1	0
2	2	2	2	0	0	0	0	0	0	1	1	1	1	0	0
2	2	2	2	0	0	0	0	0	0	0	0	0	0	0	0
2	2	2	2	0	0	0	0	0	0	0	0	0	0	0	0
2	2	2	2	0	0	3	3	3	0	0	0	0	0	0	0
2	2	2	2	0	0	3	3	3	0	0	0	0	0	0	0
2	2	2	2	0	0	3	3	3	0	0	0	0	0	0	0
2	2	2	2	0	0	0	0	0	0	0	0	0	0	0	0

labeled connected-components image

region region		row of	col of	perim.	circu-	circu-	radius	radius
num.	area	center	center	length	larity ₁	larity ₂	mean	var.
1	44	6	11.5	21.2	10.2	15.4	3.33	.05
2	48	9	1.5	28	16.3	2.5	3.80	2.28
3	9	13	7	8	7.1	5.8	1.2	0.04

properties of the three regions