Содержание

1. (Основные понятия	2
	1.1. Комплексное число	2
	1.2. Комплексная плоскость	2
	1.3. Предел	4
	1.4. Комплексная функция	5
	1.4. Комплексная функция	5
	1° Определение	5
	2° Предел	6
	3° Элементарные комплексные функции	7

1. Основные понятия

1.1. Комплексное число

 $Mem. \ \mathbb{C} = \{(a, b) \mid a, b \in \mathbb{R}\}\$

Обозначение: z = (a, b) = a + bi, где $i = (0, -1) = \sqrt{-1}$

Основные операции:

- 1. Rez = a вещественная часть, Imz = b мнимая часть
- 2. $z_1 + z_2 = (a_1, b_1) + (a_2, b_2) = (a_1 + a_2, b_1 + b_2) = (a_1 + a_2) + i(b_1 + b_2)$
- 3. $z_1 \cdot z_2 = (a_1 + b_1 i) * (a_2 + b_2 i) = (a_1 a_2 b_1 b_2) + i(a_1 b_2 + a_2 b_1)$
- 4. $z^n = \rho^n(\cos n\varphi + i\sin n\varphi)$ формула Муавра, где $\rho = |z|, \varphi = \arg z$
- 5. $\sqrt[n]{z} = \sqrt[n]{\rho} \left(\cos\frac{\varphi + 2\pi k}{n} + i\sin\frac{\varphi + 2\pi k}{n}\right)$, где $\rho = |z|, \varphi = \arg z, k \in \mathbb{Z}$

6. При
$$n=2$$
 $\sqrt{z}=\sqrt{a+bi}=\pm(c+di)$, где $c=\sqrt{\frac{a+\sqrt{a^2+b^2}}{2}}, d=\mathrm{sign}(b)\sqrt{\frac{-a+\sqrt{a^2+b^2}}{2}}$

Тригонометрическая форма:

$$z=a+bi=
ho(\cos\varphi+i\sin\varphi),$$
 где $\rho=|z|=\sqrt{a^2+b^2}, \varphi=$ $\arg z\in[0;2\pi)$

 $\operatorname{Arg} z = \operatorname{arg} z + 2\pi k, k \in \mathbb{Z}$

По формуле Эйлера $z = \rho(\cos \varphi + i \sin \varphi) = \rho e^{i\varphi}$

1.2. Комплексная плоскость

Def. Окрестность точки $z_0 \in \mathbb{C}$ определяется как $U_\delta(z_0) = \{z \in \mathbb{C} \mid |z-z_0| < \delta\}$

Тогда $\overset{\circ}{U}_{\delta}(z_0) = U_{\delta}(z_0) \setminus \{z_0\}$ - выколотая окрестность

 ${f Def.}$ Для данной множества точек A точка z_0 считается

- ullet внутренней, если для любого δ $U_{\delta}(z_0)\subset A$
- ullet граничной, если для любого δ $\exists z \in U_\delta(z_0) \Big| z \in A$ и $\exists z \in U_\delta(z_0) \Big| z \notin A$
- **Def.** Открытое множество состоит только из внутренних точек
- **Def.** Закрытое множество содержит все свои граничные точки
- $\mathbf{Def.}$ Границой $\Gamma_{\!D}$ (иногда обозн. $\delta D)$ для множества D называют множество всех граничных точек D
- **Def.** Если любые две точки множества можно соединить ломаной линией конечной длины, то множество считается связным
- $\mathbf{Def.}$ Множество $D\subset\mathbb{C}$ называется областью, если D открытая и связная

Def. Кривая $l\subset \mathbb{C}$ считается непрерывной, если $l=\{z\in \mathbb{C}\ |\ z=\varphi(t)+i\psi(t), t\in \mathbb{R}\}$, где $\varphi(t),\psi(t)$ - непрерывные функции

Nota. Если $\varphi(t)$ и $\psi(t)$ дифференцируемы и их производные непрерывные, то кривая l гладкая **Def.** Непрерывная замкнутая (то есть начальная и конечная точки совпадают) без самопересечений кривая называется контуром

Nota. Односвязную область можно стянуть в точку

 $Ex.\ 1.\ D=\{z\in\mathbb{C}\ \Big|\ 0<|z|<\delta\}$ - область свя-

заная, но не односвязная, ее нельзя стянуть $Ex.\ 2.\ D = \{z \in \mathbb{C} \ \big|\ 0 < |z| < \delta, \arg z \neq 0\}$ - область из-за дырки

связная и односвязная

$$Ex.\ 4.\ D=\{z\in\mathbb{C}\ \Big|\ \mathrm{Im}z\geq0,z\notin[0,i]\}$$
 - здесь под $[0,i]$ подразумевается линейный отрезок

 $Ex. \ 3. \ D = \{z \in \mathbb{C} \ \Big| \ |\mathrm{Re}z| < \delta \}$ - несвязная область $_{\mathrm{Ha\ ocu}}$

Nota. Дальше все рассматриваемые Γ_D будут состоять из кусочногладких и изолированных кривых

1.3. Предел

Mem. Последовательность $\{z_n\} = z_1, z_2, z_3, \dots, z_n, \dots$

Def. Пределом $\{z_n\}$ называют число z такое, что $\forall \varepsilon > 0$ $\exists n_0 = \mathbb{N} \mid \forall n > n_0 \mid z_n - z \mid < \varepsilon$ Обозначается $\lim_{n \to \infty} z_n = z$

 $Nota. \{z_n\}$ можно представить как $x_n + iy_n$, то есть двумя \mathbb{R} -последовательностями

Th.
$$\exists \lim_{n \to \infty} z_n = x + iy \iff \exists \lim_{n \to \infty} x_n = \lim_{n \to \infty} \operatorname{Re} z_n = x$$

 $\exists \lim_{n \to \infty} y_n = \lim_{n \to \infty} \operatorname{Im} z_n = y$

Nota. Для комплексных чисел работают теоремы для пределов (сумма пределов, произведение пределов и т.д.), критерий Коши и другие

Def.
$$\lim_{n\to\infty} z_n = \infty \iff \forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ \left| \ n > n_0 \ |z| > \varepsilon \right|$$

Def. Точка z, определенная как предел, равный ∞ , называется бесконечно удаленной. Но существует множество последовательностей, чьи пределы удаляются на бесконечность разными путями на плоскости

Def. Стереографическая проекция (сфера Римана)

Поместим сферу на комплексную плоскость и сделаем биекцию точек плоскости на точки сферы: проведем из верхней точки сферы лучи вниз на плоскость, и точка, где луч пересекает сфера, будет считаться отображением для данной точки. Заметим, что в этом случае бесконечно удаленные точки будут отображаться в верхнюю точку сферы

Def. $\mathbb{C} \cup \{\infty\} = \overline{\mathbb{C}}$ - расширенная комплексная плоскость Однако $z + \infty$ не определена, $\infty + \infty$ не определена. Но $\infty = \lim_{n \to \infty} \frac{1}{z_n}$ при $z_n \xrightarrow[n \to \infty]{} 0$; $\infty = \infty \cdot \lim_{n \to \infty} z_n$ при $z_n \longrightarrow z$

Записью $[-\infty; +\infty]$ обозначается ось $\overline{\mathbb{R}}$;

 $[-i\infty;+i\infty]$ - мнимая расширенная ось

Путь $x \pm i \infty$ при фикс. x - вертикальная прямая;

 $iy \pm \infty$ - горизонтальная прямая;

 $e^{i\varphi}\cdot\infty$ - прямая, проходящая через начало координат

1.4. Комплексная функция

1° Определение

 $\textit{Mem. } f: E \subset \mathbb{R} \longrightarrow D \subset \mathbb{R} \iff \text{ отображение такое, что } \forall x \in E \ \exists ! y \in D \ | \ y = f(x)$

Def. $f:D\subset\mathbb{C}\longrightarrow G\subset\mathbb{C}\iff$ отображение такое, что $\forall z\in D\ \exists w\in G\ |\ f(z)=w$

 $\mathbf{Def.}$ Если $\forall z \in D \ \exists ! w \in G,$ то f называется однозначной функцией

Def. Если $\forall z_1,z_2 \in D(z_1 \neq z_2) \Longrightarrow f(z_1) \neq f(z_2),$ то f называется однолистной функцией

 $Ex. 1. w = \sqrt{z}$ - неоднозначная функция

$$\exists z = 1 = 1(\cos 0 + i \sin 0)$$

$$\sqrt{z} = \sqrt{1} \left(\cos \frac{2\pi k}{2} + i \sin \frac{2\pi k}{2} \right)$$

$$w_1 = 1 \quad w_2 = -1$$

 $Ex. \ 2. \ w = z^2$ - неоднолистная функция

$$z_1 = 1, z_2 = -1$$
 $w(z_1) = w(z_2) = 1$

Nota. Если f(z) однозначна и однолистна, то f(z) - взаимно однозначное соответствие (биекция). Тогда $\exists q(x) \mid q(f(x)) = x$

Комплексную функцию f(z) можно представить как u(x,y)+iv(x,y), где x+iy=z

Ex.
$$w = z^2 = (x + iy)^2 = x^2 + 2ixy - y^2 = (x^2 - y^2) + i \cdot 2xy$$

 $u(x, y) = (x^2 - y^2),$ $v(x, y) = 2xy$

2° Предел

$$\mathbf{Def.}\ L \in \mathbb{C}, f: D \longrightarrow G, \quad L \stackrel{def}{=} \lim_{z \to z_0} f(z) \Longrightarrow \forall \varepsilon > 0 \ \exists \delta > 0 \ \Big| \ z \in D, z \in U_{\delta}^{\circ}(z_0) \ f(x) \in U_{\varepsilon}(L)$$

В определении существование и значение L не должно зависеть от пути, по которому zприближается к точке сгущения z_0 . Может быть так, что для любого направления стремления предел есть, но в общем смысле не существует

$$\begin{split} Ex.\ f(z) &= \frac{1}{2i} \left(\frac{z}{\overline{z}} - \frac{\overline{z}}{z} \right) \\ f(z) &= \frac{1}{2i} \left(\frac{\rho e^{i\varphi}}{\rho e^{-i\varphi}} - \frac{\rho e^{-i\varphi}}{\rho e^{i\varphi}} \right) = \frac{1}{2i} \left(e^{2i\varphi} - e^{-2i\varphi} \right) = \frac{1}{2i} (\cos 2\varphi + i \sin 2\varphi - \cos 2\varphi + i \sin 2\varphi) = \sin 2\varphi \end{split}$$

Зафиксируем $\varphi = \varphi^* \in [0; 2\pi)$, тогда $\sin 2\varphi^* \in [-1; 1]$

$$\lim_{z\to 0} f(z) = \lim_{\begin{subarray}{c} \rho\to 0\\ \varphi=\varphi^*\end{subarray}} f(z) = \lim_{\begin{subarray}{c} \rho\to 0\\ \varphi=\varphi^*\end{subarray}} \sin 2\varphi = \sin 2\varphi^* \in [-1;1]$$

Значения предела занимает отрезок [-1;1] $\nexists \lim_{z \to 0} f(z)$

На рисунке изображена $\sin 2\varphi$, на оси Oz изображена

ния z к 0

Nota. Путь следования предела аналогичен левостороннему и правостороннему пределами **R**-функций

Def. Непрерывность функций в точке z_0 .

 $f:D\longrightarrow G, z_0\in D, \ f(z)$ называется непрерывной в $z_0,\ \mathrm{если}\lim_{z\longrightarrow z_0}f(z)=f(z_0)$

На языке приращений: $\Delta f = f(z_0 + \Delta z) - f(z_0) \xrightarrow{\Delta z \to 0} 0$

$$\Delta z = z - z_0 = \Delta x + i \Delta y \to 0 \Longrightarrow \begin{cases} \Delta x \to 0 \\ \Delta y \to 0 \end{cases} \Longrightarrow \Delta \rho \to 0$$

3° Элементарные комплексные функции

Ex. 1. Линейная f(z) = az + b,

 $a, b \in \mathbb{C}$ $a \neq 0$

Эта функция однозначная, однолистная $\Longrightarrow \exists f^{-1}(z) = g(z) = \frac{z-b}{a}$

Геометрический смысл:

 $a \in \mathbb{C}, z \in \mathbb{C}$

 $az = |a||z|(\cos(\varphi_a + \varphi_z) + i\sin(\varphi_a + \varphi_z))$ - поворот и растяжение $(\varphi_a = \arg a, \varphi_z = \arg z)$ $az + b = (x_{az} + x_b) + i(y_{az} + y_b)$ - сдвиг

То есть линейная функция - композиция из поворота, растяжения и сдвига

 $Ex.\ 2.\$ Степенная $w=z^n,\quad n\in\mathbb{N}$ - однозначная, может быть неоднолистной

Для $n \in \mathbb{Q}$ функция становится неоднозначной

Ex.
$$w = z^2$$
 $z = \rho e^{i\varphi}, w = \rho^2 e^{2i\varphi}$

Пусть $z_1 \neq z_2$ и $w(z_1) = w(z_2)$, тогда $\arg z_1 = \arg z_2 \pm \pi$

$$w(z_1) = \rho^2 e^{2i\arg z_1} = \rho^2 e^{2i(\arg z_1 + 2\pi k)}$$

$$w(z_2) = \rho^2 e^{2i\arg z_2} = \rho^2 e^{2i(\arg z_1 + \pi)} = \rho^2 e^{i(2\arg z_1 + 2\pi)} = w(z_1)$$

Область однолистности z^2 - множество точек, для которых $\arg z \in [0;\pi)$

Точку w = 0 называют точкой разветвления

Ex.
$$w = z^{-1} = \frac{1}{z}$$
 $w(0) = \infty, w(\infty) = 0$

$$z \in \mathbb{C} \setminus \{0\}$$
 - функция обратима $w = re^{i\psi} = \frac{1}{\rho e^{i\phi}} = \frac{1}{\rho} e^{-i\varphi} \Longrightarrow |w| = \frac{1}{|z|}, \arg w = -\arg z$

Преобразование $|w| = \frac{1}{|z|}$ называется инверсией, а $\arg w = -\arg z$ дает симметрию относительно $\operatorname{Re} z$

Ex. 4. Показательная $w = e^z = e^x \cdot e^{iy} = e^x (\cos y + i \sin y)$ Свойства:

2.
$$(e^{z_1})^{z_2} = e^{z_1 z_2}$$

- 3. $e^{z+2\pi i}=e^z\cdot e^{2\pi i}=e^z$ показательная функция периодична с периодом $2\pi i$
- Ex. 5.Логарифмическая w = Lnz

Если
$$e^w=e^{u+vi}=e^u(\cos v+i\sin v)=z=|z|e^{i{
m arg}z},$$
 то $u=\ln|z|,$ $v={
m arg}z+2\pi k$

Тогда
$$Lnz = ln |z| + i(argz + 2\pi k)$$

 $\ln z = \operatorname{Ln} z$ при k = 0 - т. н. главное значение