

Topics to be covered

Medics Test, Revision of Last Class

Primary & Secondary cells, corrosion

Electrolytic cells

MPQ, Home work from modules

Rule to Attend Class

- 1. Always sit in a peaceful environment with headphone and be ready with your copy and pen.
- 2. Never ever attend a class from in between or don't join a live class in the middle of the chapter.
- 3. Make sure to revise the last class before attending the next class & always complete your home work along with DPP.
- 4. Never ever engage in chat whether live or recorded on the topic which is not being discussed in current class as by doing so u can be blocked by the admin team or your subscription can be cancelled.

Rule to Attend Class

- Try to make maximum notes during the class if something is left then u can use the notes pdf after the class to complete the remaining class.
- Always ask your doubts in doubt section to get answer from faculty. Before asking any doubt please check whether same doubt has been asked by someone or not.
- Don't watch the videos in high speed if you want to understand better.

MEDICS

Mastery

Checks your grasp over NEET-level concepts

Evaluation

Judging both knowledge and test-smartness

Decision Making

Testing your speed + accuracy under pressure

Intuition

Some answers need gut + logic - can you spot the trick?

Concepts

It's all about strong basics no shortcuts here

Strategy

The MEDICS test – built for those who heal, hustle, and hope.

The concentration of K+ ions in the interior (in) and exterior (ex) of a nerve cell are 400 mM and 15 mM respectively. Thus, electrical potential that exists across the membrane is (2.303 RT/F = 0.06 V)

- B 0.172 V
- 0.086 V
- 0.086 V

A +0.172 V Rt move from dow Conc. to high Conc.

anode: K > Kesy + et | Eul = + 0.06 $K^{\dagger}(in) \rightarrow K' exc.$ n=1 E CON = 5

E° of different half-cells are given

$$E_{Cu^{2+}/Cu}^{o} = 0.34 \text{ V}$$

$$E_{Zn^{2+}/Zn}^{o} = -0.76 \text{ V}$$

$$E_{Ag^+/Ag}^0 = 0.80 \text{ V}$$

$$E^o_{Mg^{2+}/Mg} = -2.37 \text{ V}$$

In which cell is ΔG° is most negative?

$$Zn | Zn^{2+}(1M) | | Mg^{2+}(1M) | Mg - 2.37 - 0.76 =$$

B Cu | Cu²⁺(1M) || Ag⁺(1M) | Ag

C $Ag | Ag^{+}(1 M) | | Mg^{2+}(1 M) | Mg - 9.37 - 6.8 =$

Zn | Zn²⁺(1M) || Ag⁺(1M) | Ag

For the cell reaction taking place in the galvanic cell, when equilibrium is set up $Zn \mid Zn^{2+}(C_2) \mid Cu^{2+}(C_1) \mid Cu$

the change in free energy at a given temperature is a function of

- B log C₂
- \bigcirc log (C₁ + C₂)
- $\log \left(\frac{C_1}{C_2}\right)$

$$\Delta G^{\circ} = 2.3.3RT (\log \frac{C2}{C_1})$$

Given:
$$E_{Ag^+/Ag}^o = 0.80 \text{ V}$$

$$E_{Cu^{2+}/Cu}^{o} = 0.34 \text{ V}$$

$$E_{Mg^{2+}/Mg}^{o} = -2.37 \text{ V}$$

$$E_{Ha^{2+}/Ha}^{o} = 0.79 \text{ V}$$

$$E_{Hg^{2+}/Hg}^{o} = 0.79 \text{ V}$$

 $E_{Zn^{2+}/Zn}^{o} = -0.76 \text{ V}$

Based on the above values, which storage arrangement is possible?

Potential for the following concentration cell at 298 K is

$$\left(\frac{2.303RT}{F}=0.06V\right) \qquad 0=2$$

$Pt | H_2(1bar) | HCl(aq) | H_2(0.5bar) | Pt$

$$-9 \times 10^{-3} \text{ V}$$

For the following changes

$$\frac{1}{2}\operatorname{Cl}_{2} \xrightarrow{n_{j}=1} \operatorname{Clo}_{-} - \mathbb{O}$$

$$\frac{1}{2}\operatorname{Cl}_{2} \xrightarrow{r_{2} \to 0} \stackrel{+}{\operatorname{ClO}_{3}} - \bigcirc \bigcirc$$

$$\frac{1}{10} \xrightarrow{n_3 = 4} \frac{1}{10} \xrightarrow{n_3 = 4} \frac{1}$$

$$\mathbf{E}_{l}^{\circ} = \mathbf{x}_{1}$$

$$E_2^{\circ} = x_2$$

$$E_3^o = x_3$$

Thus, x_3 expressed in terms of x_1 and x_2 is equal to

$$(x_2 - x_1)$$

$$\frac{(5x_2-x_1)}{4}$$

$$(x_1 - 5x_2)$$

$$eq. (2) - eq. (3)$$
 $-n_8 E_8^0 + n_1 E_1^0 = n_3 E_8^0$
 $-5x_8 + 1x_1 = E_3^0$

nt

For the half-cell, Ma (aq) | M

(E) values are plotted against log [Mn+] as shown,

for different values of n at a given temperature T. Select correct graphs for given value of n. \mathred{m^22.303kT}

For the cell

Pt(H₂) | 0.01M H+(aq) ||

F Cent.

177.

Thus, (x/y) is

- dog 1002c = 0

For a (Ag – Zn) button cell, the net reaction is $Zn(s) + Ag_2O(s) \longrightarrow ZnO(s) + 2Ag(s)$ $\triangle G^\circ = - n + Ecul$ $\triangle G^\circ (Ag_2O) = -11.21 \text{ kJ mol}^{-1}$ $\left[-318.3 - (-11.21) \right] \times (0000 = -2 \times 96500) = -318.3 \text{ kJ mol}^{-1}$ Thus, E°_{cell} of the button cell is

- A 3.182 V
- B 1.71 V
- 1.591 V
- D 1.591 V

Cut all

.

Revision of Last Class

la electorolyte conc.

Electrode Concentration Cells

When Electrode pressure and Electrolyte conc. Both are different:

How Cells are Discharged?

*

Types of Electrochemical Cells

Primary Cells: Which Can't be recharged again & again.

> Secondary Cells: Which Can be recharged again? again.

discharging > electrochenical Cell

recharging > electrolytic Cell

Porimony Cell.

Dry Cell (hecdoncho Cell)

Anode:-

$$Zn(s) \longrightarrow Zn^{2+} + 2e^{-}$$

Cathode:-

Graphite surrounded by paste of MnO₂ and carbon black

$$2MnO_2 + 2NH_4^+ + 2e^- \longrightarrow Mn_2O_3 + 2NH_3 + H_2O$$

Electrolyte:

Mercury Cell Or Rubben Malory Cell or Button Cell

Anode:-

$$Z_{n}^{O} + 20H^{-} \longrightarrow Z_{n}^{+2}O + H_{2}O + 2e^{-}$$

Cathode:-

$$\frac{+2}{\text{HgO} + \text{HgO} + 2e^- \longrightarrow \text{Hg} + 20\text{H}}$$

$$\frac{2n + \text{HgO} \longrightarrow 2nO + \text{Hg}}{}$$

Electrolyte:-

Secondary Cell.

Lead Storage Battery

Bottery is Combination of Cells. 6 Cells of 2 V each Combination 12 V battery.

Dischanging : electorochemical Cell

Anode:- Pb

$$Pb + SO_4$$
 \longrightarrow $PbSO_4 + 2e^-$

Cathode:- PbO₂

$$^{+1}_{PbO_2} + 4H^+ + SO_4^{-2} \longrightarrow ^{+2}_{PbSO_4} + 2H_2O$$

Electrolyte:

38% w/w of H₂SO₄

Note:- When conc. Of H₂SO₄ falls below 1.2 g/ml, then battery needs recharging

Nickel Cadmium Cell

(Ni Cod Cell)

> Anode:-

$$Cd + 2OH^{-} \longrightarrow Cd(OH)_{2} + 2e^{-}$$

Cathode:-

$$NiO_2 + 2H_2O + 2e^- \longrightarrow Ni(OH)_2 + 2OH^-$$

Electrolyte:-

KOH

H₂ - O₂ Fuel Cell

11 days abollo moon flight

Fig: H₂-O₂ Fuel Cell

Anode:-

$$2H_2 + 40H \longrightarrow 4H_2O + 4e^-$$

Cathode:-

$$\frac{\partial}{\partial_2 + 2H_2O + 4e^- \longrightarrow 40H^-}$$

$$\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial y} \longrightarrow 2H_2O(8)$$

744 = (-) NC.

Electrolyte:-

Resin containing aq. NaOH`

1 No pollution.

2 Compact

advantages

B) efficiency high $0 = -\Delta G$

Disadvantages

(1) Costly.

@ gases Contact
is bit difficult

Metalgaide atmospheric gases reduce. Metal

Process of eating away of metal by attack of atmospheric gases on it.

 $Metal \rightarrow Oxidation$

Atmospheric gases → Reduction

Corrosion of Iron is rusting.

Mechanism of rusting:

$$4e^- \longrightarrow 2H_2U$$

$$Fe \longrightarrow Fe^{2+} + 2e^{-}$$

(Cathode)

Oriditto

(anode)

Corrosion

Overall reactions:

► Anode:
$$2\text{Fe}(s) + O_2(g) + 4\text{H}^+ \longrightarrow 2\text{Fe}^{2+} + 4\text{H}_2\text{O}$$

> Cathode:
$$4Fe^{2+} + O_2 + 4H_2O \longrightarrow 2Fe_2O_3^{+3} + 8H^+$$

$$Fe_2O_3 + \underbrace{xH_2O} \longrightarrow Fe_2O_3 \cdot xH_2O$$
Rust

Prevention of Corrosion

Barrier Protection:

- By coating with paint, oil, grease
- ➤ By coating with non-corroding metals such as Ni, Cr and Al (Nichrome coating with Ni + Cr)

Sacrificial Protection

75.0.P. Moore

on: Soll Spettae

Iron coated with more electropositive metal than iron:

> If zinc is coated it is known as galvanisation

Iron attached to more active metal directly or through wire iron acts as cathode and protecting metal as anode

Using Anti-rust solutions:

There are alkaline phosphate and alkaline Chromate solution.

Alkalinity prevents availability of H⁺ ions at atmospheric gases will be reduced less. Iron is oxidised (corroded) less.

Compound A used as a strong oxidizing agent is amphoteric in nature. It is the part of lead storage batteries. Compound A is:

- B PbSO₄
- Pb₃O₄
- PbO

Galvanization is applying a coating of

The overall reaction of a hydrogen-oxygen fuel cell is:

$$2H_2(g) + O_2(g) \longrightarrow 2H_2O(l)$$

B
$$2H_2(g) + 40H^-(aq) \longrightarrow 4H_2O(l) + 4e^-$$

$$O_2(g) + 2H_2O(l) + 4e^- \longrightarrow 40H^-(aq)$$

$$40H^{-}(aq) + 4e^{-} \longrightarrow 2H_{2}O(l)$$

Which of the following is an example of primary battery?

- A Lead storage battery
- Leclanche cell
 - Nickel-cadmium cell
 - None of these

For lead storage battery, pick the correct statements.

- A) During charging of battery, PbSO₄ on anode is converted into PbO₂.
- B) During charging of battery, PbSO₄ on cathode is converted into PbO₂.
- C) Lead storage battery consists of grid of lead packed with PbO₂ as anode.
- D) Lead storage battery has ~38% solution of sulphuric acid as an electrolyte.

Choose the correct answer from the option given below:

A, B, D only

B, D only

B, C, D only

D B, C only

Match List-I with List-II:

List-I		List-II	
(A)	$Cd_{(s)} + 2Ni(OH)_{3(s)} \longrightarrow CdO_{(s)} + 2Ni(OH)_{2(s)} + H_2O_{(l)}$	(I)	Primary Battery
	$Zn(Hg) + HgO_{(s)} \longrightarrow ZnO_{(s)} + Hg(I)$	(II)	Discharging of secondary battery
(C)	$2PbSO_{4(s)} + 2H_2O_{(l)} \longrightarrow Pb_{(s)} + PbO_{2(s)} + 2H_2SO_{4(s)}$	(III)	Fuel cell
(D)	$2H_{2(g)} + O_{2(g)} \longrightarrow 2H_2O_{(l)}$	(IV)	Charging of secondary battery

Choose the correct answer from the options given below:

Hydrogen-oxygen fuel cells are used in space-craft to supply

- (A) XOxygen
- B Power
- © Water
- Both (B) and (C)

When iron is rusted, it is:

- (A) Reduced
- B Decomposed
- Oxidised
- Changed in the fine power

Chemical formula of rust is:

- A Fe₂O₃. H₂O
- B Fe₂O₃.5H₂O
- $Fe_2O_3 \cdot xH_2O$
 - None of these

- Which of the following is/are example/s of corrosion?

 AggS

 Tarnishing of silver

 AggS
- Rusting of iron
- Development of green coating on copper
- All of these

QUESTION [4th Sept 1st Shift-2020]

$$E^o_{Cu^{3+}/Cu}$$
 = +0.34 V; $E^o_{Zn/Zn}$ = -0.76 V. Identify the incorrect statement from the options below for the above cell.

- If $E_{ext} > 1.1 \text{ V, e}^-$ flows from Cu to Zn
- $oxed{B}$ If $E_{\rm ext}$ < 1.1 V, Zn dissolves at anode and Cu deposits at cathode
- If $E_{ext} = 1.1 \text{ V}$, no flow of e^- or current occurs
- If $E_{\rm ext}$ > 1.1 V, Zn dissolves at Zn electrode and Cu deposits at Cu electrode

Based on the following information arrange four metals A, B, C and D in order of decreasing ability to act as reducing agents:

- (I) Only A, B and C react with 1 M HCl to given H₂(g)
- (II) When C is added to solution of the other metal ions, metallic B and D are formed
- (III) Metal C does not reduce An+.

$$\mathbb{C} > A > D > B$$

QUESTION - (AIIMS 2018 (M), 27 May)

In following cell reaction $Mg(s) + 2Ag^+ (0.001 \text{ M}) \rightarrow Mg^{2+} (0.20 \text{ M}) + 2Ag(s)$ Calculate E_{cell} for the reaction. [E° = 3.17 V]

- A 2.63 V
- B 3.04 V
- 3.33 V
- D 3.51 V

Calculate E_{cell} Pt, H_2 (10 atm)/ H^+/H_2 (5 atm), Pt

QUESTION - (AIIMS 2018 (M), 26 May)

Cell equation:

$$A + 2B^{2+} \rightarrow A^{2+} + 2B$$

$$A^{2+} + 2e^- \rightarrow A$$
 $E^{\circ} = +0.34 \text{ V}$

$$E^{\circ} = +0.34 \text{ V}$$

And $\log_{10} K = 15.6$ at 300 K for cell reactions. Find E° for B⁺ + e⁻ \rightarrow B

Given
$$\left[\frac{2.303 \ RT}{F} = 0.059 \right]$$
 at 300 K

- 0.80
- -0.54

Magarmach Practice Questions

QUESTION - (AIIMS 2010)

For a cell reaction involving two electron change, the standard EMF of the cell is 0.295 V at 25°C. The equilibrium constant of the reaction at 25°C will be:

- A 29.5 × 10⁻²
- B 10
- C 1 × 10¹⁰
- 2.95 × 10⁻¹⁰

QUESTION-(NEET 2023)

Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason R:

Assertion A: In equation $\Delta_r G = -nFE_{cell}$ value of $\Delta_r G$ depends on n. Reasons R: E_{cell} is an intensive property and $\Delta_r G$ is an extensive property. In the light of the above statements, choose the correct answer from the options given below:

- A is false but R is true.
- Both A and R are true and R is the correct explanation of A.
- Both A and R are true but R is NOT the correct explanation of A.
- A is true but R is false.

QUESTION-(NEET 2022)

Find the emf of the cell in which the following reaction takes place at 298 K Ni(s) + 2Ag⁺ (0.001 M) \rightarrow Ni²⁺ (0.001 M) + 2Ag(s) (Given that $E_{cell}^0 = 10.5 \text{ V}, \frac{2.303 \text{ RT}}{F} = 0.059 \text{ at } 298 \text{ K}$)

- (A) 1.05 V
- B 1.0385 V
- 1.385 V
- D 10.4115 V

QUESTION-(NEET 2022)

Given below are half cell reaction:

$$MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$$

$$E_{Mn^{2+}/Mn0_{4}}^{0} = -1.510 \text{ V}$$

$$1/2 \ O_2 + 2H^+ + 2e^- \rightarrow H_2O$$

$$E_{0_2/H_20} = +1.223 V$$

Will the permanganate ion MnO_4^- liberate O_2 from water in the presence of an acid?

No, because $E_{cell}^0 = -2.733 \text{ V}$

B Yes, because $E_{cell}^0 = +0.287 \text{ V}$

No, because $E_{cell}^0 = -0.287 \text{ V}$

Yes, because $E_{cell}^0 = +2.733 \text{ V}$

QUESTION-(NEET 2019)

For a cell involving one electron $E^{\circ}_{cell} = 0.59 \text{ V}$ at 298 K, the equilibrium constant for the cell reaction is: [Give that 2.303RT/F = 0.059 V at T = 298 K]

- $\boxed{A} \quad 1.0 \times 10^2$
- B 1.0 × 10⁵
- 1.0 × 10¹⁰
- 1.0×10^{30}

Find E_{cell} of following:

Pt, H₂ | H⁺ (10⁻³ M) || H⁺ (10⁻⁴ M) | H₂, Pt

Home work from modules

Pariketit > 92,5,12,17,18,19,20,27,28

