



# Data Warehousing © Fernando Berzal, berzal@acm.org

### Acceso a los datos



- Bases de datos relacionales: SQL
- O/R Mapping
- Bases de datos distribuidas
- Bases de datos NoSQL
- Bases de datos multidimensionales: Data Warehousing



- OLAP vs. OLTP
- Data Warehousing
- El modelo multidimensional
- Implementación de un data warehouse
- Soluciones de data warehousing
- Apéndice: Business Intelligence



### OLAP vs. OLTP



### **OLTP [On-Line Transaction Processing]**

### Aplicaciones típicas de gestión

- Tareas repetitivas.
- Tareas muy bien estructuradas.
- Transacciones cortas (actualizaciones generalmente).





### OLAP vs. OLTP



### **OLTP [On-Line Transaction Processing]**

### **Prioridad: Gestión de transacciones**

- Las transacciones se realizan sobre grandes bases de datos a las cuales se puede acceder eficientemente mediante índices, ya que cada operación afecta sólo a unos pocos registros.
- Es de vital importancia garantizar la "acidez" de las transacciones (atomicidad, consistencia, aislamiento durabilidad).

### OLAP vs. OLTP



### **OLAP [On-Line Analytical Processing]**

### Sistemas de ayuda a la decisión (DSS)

 Consultas muy complejas (grandes volúmenes de datos y uso defunciones de agregación).



Actualizaciones poco frecuentes.



### OLAP vs. OLTP



### **OLAP [On-Line Analytical Processing]**

### **Prioridad: Procesamiento de consultas**

- Los data warehouses (DW) almacenan datos resumidos de tipo histórico.
- La optimización de las consultas y el tiempo de respuesta son primordiales.



### OLAP vs. OLTP



|             | OLTP                                   | OLAP                                           |  |  |  |
|-------------|----------------------------------------|------------------------------------------------|--|--|--|
| Usuarios    | Operadores                             | "Trabajadores del conocimiento"                |  |  |  |
| Función     | Operaciones cotidianas                 | Soporte a la toma de decisiones                |  |  |  |
| Diseño      | Orientado a las aplicaciones           | Orientado al usuario                           |  |  |  |
| Datos       | Actuales<br>Actualizados<br>Detallados | Históricos<br>Consolidados<br>Resumidos        |  |  |  |
| Uso         | Repetitivo                             | Ad-hoc                                         |  |  |  |
| Acceso      | Consultas simples y actualizaciones    | Consultas complejas                            |  |  |  |
| Rendimiento | Transacciones ACID                     | Consultas: Throughput<br>& tiempo de respuesta |  |  |  |
| Volumen     | GB - TB                                | TB - PB                                        |  |  |  |





#### **Problema**

Las organizaciones manejan enormes cantidades de datos...

- ... en distintos formatos.
- ... que residen en distintas bases de datos.
- ... organizados utilizando distintos tipos de gestores de bases de datos

#### Consecuencia

Resulta difícil acceder y utilizar todos los datos en aplicaciones de análisis (las cuales requieren extraer, preparar e integrar los datos)



### **Data Warehousing**



Diseño de procesos e implementación de herramientas que proporcionen información completa, oportuna, correcta y entendible en la toma de decisiones.

"A data warehouse is a subject-oriented, integrated, time-variant, and nonvolatile collection of data in support of management's decision-making process."

- W. H. Inmon





#### Características de un DW

- Orientado a un tema (clientes, productos, ventas):
   Vista de la BD operativa excluyendo los datos que no son útiles en la toma de decisiones.
- Integrado (ETL) a partir de múltiples fuentes de datos heterogéneas, p.ej. OLTP (RDBMS, NoSQL, ficheros...)
- Perspectiva histórica (mayor horizonte temporal que una base de datos OLTP).
- No volátil (no se realizan actualizaciones, por lo que no se requieren mecanismos de procesamiento de transacciones, control de concurrencia...).



# Data Warehousing



- El DW se mantiene separado de las bases de datos operativas.
- El DW consolida datos históricos para su análisis.
- El DW accede a fuentes de datos heterogéneas, para lo que utiliza herramientas ETL [extract-transform-load]: limpieza, filtrado y transformación de los datos.
- Únicas operaciones: carga inicial de los datos y realización de consultas.





### ¿Por qué se mantiene separado el DW?

Distintos requisitos operativos:

- DBMS optimizado para OLTP: Métodos de acceso, indexación, control de concurrencia, transacciones...
- DW optimizado para OLAP: Consultas complejas, consolidación de datos, datos históricos...



# Data Warehousing



### Modelos arquitectónicos

- Enterprise warehouse (único DW para toda la organización).
- Data marts
   (varios DW para grupos específicos de usuarios).
- Virtual warehouse
   (vistas sobre las bases de datos operativas, de las cuales sólo se materializan algunas de ellas).









# El modelo multidimensional









### El modelo multidimensional



Los datos en un DW se modelan en cubos de datos [data cubes], estructuras multidimensionales (hipercubos, en concreto) cuyas operaciones más comunes son:

- Roll up (incremento en el nivel de agregación de los datos).
- Drill down
   (incremento en el nivel de detalle, opuesto a roll up).
- Slice (reducción de dimensionalidad mediante selección).
- Dice (reducción de dimensionalidad mediante proyección).
- Pivotaje o rotación (reorientación de la visión multidimensional de los datos).



### El modelo multidimensional



### **Modelado multidimensional**

Modelos de datos como conjuntos de medidas descritas por dimensiones.

- Adecuado para resumir y organizar datos (generalización de las hojas de cálculo).
- Enfocado para trabajar sobre datos de tipo numérico.
- Más simple, más fácil de visualizar y de entender que el modelado E/R.



### El modelo multidimensional



#### **Dimensiones**

Perspectivas o entidades respecto a las cuales una organización quiere mantener sus datos organizados.

### Ejemplos:

- Tiempo
- Localización
- Clientes
- Proveedores
- Productos





### El modelo multidimensional



#### **Miembros**

Nombres o identificadores que marcan una posición dentro de la dimensión.

### **Ejemplos:**

- Meses, trimestres y años son miembros de la dimensión tiempo.
- Ciudades, regiones y países son miembros de la dimensión localización.





### El modelo multidimensional



### **Jerarquías**

Los miembros de las distintas dimensiones se suelen organizar en forma de jerarquías.





### El modelo multidimensional



#### **Hechos**

Colecciones de datos relacionados compuestas por medidas y un contexto.

- Las dimensiones determinan el contexto de los hechos.
- Cada hecho particular está asociado a un miembro de cada dimensión.



#### **Medidas**

Atributos numéricos asociados a los hechos (lo que realmente se mide).





### **Wrappers**



- Los wrappers (encapsuladores) se encargan de extraer los datos de las distintas fuentes y transmitirlos al DW.
- Los monitores están en contacto directo con las fuentes de datos para detectar los cambios que se puedan producir en ellas.
- El integrador es el responsable de filtrar, resumir y unificar los datos de las distintas fuentes.



# Implementación de un DW



#### **Metadatos**

- Estructura del DW: esquema, vistas, dimensiones, jerarquías, datos derivados, data marts (localización y contenidos)...
- Metadatos operativos: "linaje de los datos" [data lineage], actualidad de los datos (activos, archivados, purgados) e información de monitorización (estadísticas de uso, informes de errores y auditorías).
- Correspondencia entre el entorno operativo y el DW (p.ej. algoritmos utilizados para resumir los datos).
- Datos del negocio [business data]: Términos y definiciones, propiedad de los datos...





### Alternativas de implementación

### MOLAP [Multidimensional OLAP]

Datos almacenados en estructuras de datos multidimensionales (matrices multidimensionales sobre las que se realizan directamente las operaciones OLAP).

### ROLAP [Relational OLAP]

DW implementado como una base de datos relacional (las operaciones multidimensionales OLAP se traducen en operaciones relacionales estándar).

# Implementación de un DW



### ROLAP con esquema en estrella [star]

Una tabla de hechos y una tabla adicional (denormalizada) por cada dimensión.







### ROLAP con esquema en copo de nieve [snowflake]

Refleja la organización jerárquica de las dimensiones...





# Implementación de un DW



### **ROLAP** con constelaciones de hechos

Múltiples tablas de hechos que comparten dimensiones







Un cubo de datos como un retículo de cuboides:



# Implementación de un DW



Un cubo de datos como un retículo de cuboides:

- El cuboide base tiene D dimensiones.
- El cuboide ápice tiene 0 dimensiones (1 celda).

### Materialización del cubo de datos:

- Completa (todos los cuboides).
- Ninguna (ningún cuboide, i.e. sólo el cuboide base).
- Parcial (algunos cuboides materializados, que se seleccionan en función de su tamaño, uso en distintas consultas, frecuencia de acceso...)





#### Indexación de datos

- Índice bitmap
- Índice de reunión [join index], a.k.a. star index



# Implementación de un DW



### Procesamiento de consultas OLAP

 Se determinan las operaciones que deben realizarse sobre cuboides: se transforman las operaciones sobre cubos de datos (roll up, drill down...) en operaciones relacionales

 Se determinan los cuboides materializados que pueden utilizarse para resolver mejor la consulta.



### **Ejemplo: ROLAP sobre Oracle**



### Índice bitmap tradicional

```
CREATE UNIQUE INDEX FACT_PK ON FACT (FACT_DATE,DIM1_FK,DIM2_FK);
CREATE BITMAP INDEX DIM1_FK ON FACT ( DIM1_FK );
CREATE BITMAP INDEX DIM2_FK ON FACT ( DIM2_FK );
```

# Implementación de un DW



### Ejemplo: ROLAP sobre Oracle

Plan de ejecución de una consulta (bitmap index)

```
B- SELECT STATEMENT ALL_ROWS
 Cost: 90 Bytes: 150 Cardinality: 3
34 — TEMP TABLE TRANSFORMATION
               7 - TABLE ACCESS BY INDEX ROWID TABLE SS.PRODUCT
                     Cost: 40 Bytes: 28,248 Cardinality: 856
6 - E BITMAP CONVERSION TO ROWIDS
                                        --- 1010 BITMAP INDEX SINGLE VALUE INDEX (BITMAP) SS.PRODUCT_B03
                                  BITTIAP OR

2 NO BITMAP INDEX SINGLE VALUE INDEX (BITMAP) SS.PRODUCT_B08
3 NO BITMAP INDEX SINGLE VALUE INDEX (BITMAP) SS.PRODUCT_B08
      33 :— MASH GROUP BY
Cost: 50 Bytes: 150 Cardinality: 3
32 :— # HASH JOIN
Cost: 49 Bytes: 150 Cardinality: 3
30 :— TABLE ACCESS BY INDEX ROWID TABLE SS.POS_DAY
Cost: 48 Systes: 64 Cardinality: 2
                          Cost: 45 Bytes: 64 Cardinality: 2
29 - 20 BITMAP CONVERSION TO ROWIDS
                                 28 - BITMAP AND

14 - BITMAP MERGE
                                             13 d- BITMAP KEY ITERATION

11 d- S: TABLE ACCESS BY INDEX ROWID TABLE SS.LOCATION
Cost: 1 Bytes: 24 Cardinality: 1
                                                         10 - BITMAP CONVERSION TO ROWIDS
                                                                    LIND BITMAP INDEX SINGLE VALUE INDEX (BITMAP) SS.LOCATION B11
                                                   12 - 1010 BITMAP INDEX RANGE SCAN INDEX (BITMAP) SS.POS_DAY_B2
                                       23 - BITMAP MERGE
                                             22 - BITMAP KEY ITERATION
20 - TABLE ACCESS BY INDEX ROWID TABLE SS. PERIOD
                                                         Cost: 3 Bytes: 19 Cardinality: 1

19 - 100 BITMAP CONVERSION TO ROWIDS
                                                            18 — ® BITHAP AND

15 — MO BITHAP INDEX SINGLE VALUE INDEX (BITHAP) SS.PERIOD_B07

16 — MO BITHAP INDEX SINGLE VALUE INDEX (BITHAP) SS.PERIOD_B03

17 — MO BITHAP INDEX SINGLE VALUE INDEX (BITHAP) SS.PERIOD_B03

MO BITHAP INDEX RANGE SCAN INDEX (BITHAP) SS.POS_DAY_B1
                                       27 - BITMAP MERGE
                                              26 - BITMAP KEY ITERATION
                                                           - TABLE ACCESS FULL TABLE (TEMP) SYS.SYS_TEMP_0FD9D660D_30FSD
Cost: 2 Bytes: 13 Cardinality: 1
                                                   25 - 1010 BITMAP INDEX RANGE SCAN INDEX (BITMAP) SS.POS DAY B3
                             TABLE ACCESS FULL TABLE (TEMP) SYS.SYS_TEMP_0FD9D6600_30FSD
Cost: 3 Bytes: 23,112 Cardinality: 856
```





### **Ejemplo: ROLAP sobre Oracle**



### Índice bitmap join (uno por cada dimensión)

```
CREATE UNIQUE INDEX FACT_PK ON FACT (FACT_DATE,DIM1_FK,DIM2_FK);

CREATE BITMAP INDEX FACT_BJ1 ON FACT ( DIM1_FK )

FROM FACT, DIM1

WHERE FACT.DIM1_FK = DIM1.ATTRIBUTE1;

CREATE BITMAP INDEX FACT_BJ2 ON FACT ( DIM2_FK )

FROM FACT, DIM2

WHERE FACT.DIM2 FK = DIM2.ATTRIBUTE1;
```

# Implementación de un DW



### **Ejemplo: ROLAP sobre Oracle**



### Índice bitmap join (único para las dos dimensiones)

```
CREATE UNIQUE INDEX FACT_PK ON FACT (FACT_DATE,DIM1_FK,DIM2_FK);
CREATE BITMAP INDEX FACT_BJ ON FACT ( DIM1_FK, DIM2_FK )
FROM FACT, DIM1, DIM2
WHERE FACT.DIM1_FK = DIM1.ATTRIBUTE1
AND FACT.DIM2_FK = DIM2.ATTRIBUTE1;
```



```
Ejemplo:
                         □-- SELECT STATEMENT ALL_ROWS
                          22 - HASH GROUP BY
ROLAP
                                  Cost: 187 Bytes: 150 Cardinality: 2
                             21 📥 # HASH JOIN
                                     Cost: 186 Bytes: 20,700 Cardinality: 276
sobre Oracle 13 to # HASH JOIN
                                        Cost; 146 Bytes: 21,756 Cardinality: 518
                                     6 - 12 TABLE ACCESS BY INDEX ROWID TABLE SS. PERIOD
Plan de
                                             ost: 3 Bytes: 19 Cardinality
                                        5 - BITMAP CONVERSION TO ROWIDS
                                           4 = BITMAP AND
ejecución
                                                 -----1010 BITMAP INDEX SINGLE VALUE INDEX (BITMAP) SS.PERIOD_B07
                                                  ..... 1010 BITMAP INDEX SINGLE VALUE INDEX (BITMAP) SS.PERIOD_B09
de una
                                              12 - 12 TABLE ACCESS BY INDEX ROWID TABLE SS.POS_DAY_BJ1
consulta
                                            Cost: 141 Bytes: 4.572,584 Cardinality: 198,808
                                       11 - BITMAP CONVERSION TO ROWIDS
                                          10 🖨 🌑 BITMAP AND
(bitmap join)
                                                 ---- 1010 BITMAP INDEX SINGLE VALUE INDEX (BITMAP) SS.POS_DAY_BJ1_BJ2
                                              9 = 1000 BITMAP MERGE
8 1000 BITMAP INDEX RANGE SCAN INDEX (BITMAP) SS.POS_DAY_BJ1_BJ1
                                 20 - TABLE ACCESS BY INDEX ROWID TABLE SS.PRODUCT
                                        Cost: 40 Bytes: 28,248 Cardinality: 856
                                    19 - W BITMAP CONVERSION TO ROWIDS
                                       18 🖨 🌑 BITMAP AND
                                           14 --- 1010 BITMAP INDEX SINGLE VALUE INDEX (BITMAP) SS.PRODUCT_B03
                                           17 📥 👸 BITMAP OR
                                                 16 ...... IOIO BITMAP INDEX SINGLE VALUE INDEX (BITMAP) SS.PRODUCT_BO8
```

# Soluciones DW



### MPP [Massive Parallel Processing]

- Shared-nothing architecturesvs. SMP [Symmetric Multiprocessing]
- Escalabilidad horizontal (añadiendo nodos).
- Descomposición de consultas (procesamiento paralelo en varios nodos).
- Mayor tasa de ingestión de datos (movimiento de datos en paralelo).



### Soluciones DW



#### Mercado

- Proveedores especializados:
   Teradata, Netezza, Vertica, Greenplum
- Proveedores de gestores de bases de datos:
   Microsoft PDW [Parallel Data Warehouse],
   IBM DB2 UDB with DPF [DB Partitioning Feature]
   Oracle Exadata & Oracle Big Data Appliance
- Soluciones híbridas con Hadoop: Impala,
   Stinger, Apache Drill, Shark, Hadapt, Teradata
   SQL-H (Aster Data), EMC HAWK, IBM BigSQL...



### Soluciones DW



### Costes relativos de distintas plataformas

| Teradata        | Hardware and licenses the most                                                                                                                                              |                     |           |          |             |  |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------|----------|-------------|--|
|                 | expensive of all options. Staff costs can<br>be expensive and it takes a great deal of<br>effort to configure and administer.                                               | Hardware & Licenses |           |          | Development |  |
| IBM<br>Netezza  | Hardware and licenses used to be much less than Teradata, but prices have been                                                                                              |                     |           |          |             |  |
|                 | converging. Some of the highest staff cost due to scarcity, but that's tempered by lower effort for configuration and admin of single purpose appliance.                    | Hardware            | & License | s De     | velopment   |  |
| Greenplum       | Commodity hardware. Moderately priced licenses. Few Greenplum specialists, but can be staffed by PostgreSQL DBAs and developers.                                            | Hardware            | License   | s Devel  | opment      |  |
| Vertica         | Commodity hardware. Moderately priced licenses, but special purpose orientation limits usefulness. Few specialists, but can be staffed by traditional DBAs and developerss. | Hardware            | Licenses  | Developm | ent         |  |
| Hadoop<br>HBase | Commodity hardware and no license cost, resulting in lowest up-front cost.                                                                                                  | Hardware            |           | Doval    | opment      |  |
|                 | Likely to buy more hardware for<br>redundancy and load. But requires<br>highly technical staff and implementation<br>is less productive than more mature<br>options.        | naroware            |           | Devel    | ортепт      |  |

Hardware a medida (p.ej. FPGA)

Open Source



### Soluciones DW



### Tendencias...



<sup>1</sup> Gartner Forecast: Memory, Worldwide, 2006-2016, 2Q12 Update





# En el futuro...



#### **RAMCloud**

Stanford University

"a general-purpose storage system... which keeps all of its data in DRAM at all times."



# A Radical Proposal: Replace Hard Disks With DRAM IEEE Spectrum, October 2015





### En el futuro...



### 3D XPoint

**Intel & Micron** 



- Memoria no volátil.
- Más rápida que la memoria flash, más lenta que la memoria DRAM.

https://en.wikipedia.org/wiki/3D XPoint



### En el futuro...



**Hewlett-Packard Labs** 

# "Universal Memory" Say goodbye to disk drives



- The goal: "... with this architecture we can ingest, store, manipulate truly massive datasets while simultaneously achieving multiple orders of magnitude less energy per bit."
- The biggest missing piece: "the memristor a resistor that stores information after losing power and that would allow computers to store and retrieve large datasets far more rapidly than is possible today."

Inside The Machine: Hewlett Packard Labs mission to remake computing

# Bibliografía recomendada



- Ralph Kimball & Margy Ross:
   The Data Warehouse Toolkit:
   The Definitive Guide
   to Dimensional Modeling.
   Wiley, 3rd edition, 2013.
   ISBN 1118530802
- Ralph Kimball & Joe Caserta: The Data Warehouse ETL Toolkit. Wiley, 2004. ISBN 0764567578







# **Business Intelligence**







# **Business Intelligence**







# **Business Intelligence**



### **BI** [Business Intelligence]

- Recopilación de datos: ETL
- Almacenamiento: DW
- Análisis: Data Mining
- Evaluación
- Diseminación: Informes





# Business Intelligence







# **Business Intelligence**







# Business Intelligence





