Convolutional Neural Net

COMP4211

Sparse Connectivity

• receptive field

Feature Hierarchy

 hidden units are connected to a local subset of units in the previous layer

Example: Face Recognition

Growing Receptive Field

Shared Weights

each local receptive field is replicated across the entire image

 weights of the same color are shared (constrained to be identical)

Parameter Sharing

- allows for features to be detected regardless of their position in the image
 - robustness to shifts of the input

Convolutional Layer

multiple feature maps look at the same region of the input

stack the activation maps for all filters along the depth

dimension

- 1 × 1 convolution
 - perform convolution without looking at neighboring pixels
 - dimension reduction

Efficiency of Convolution

parameter sharing greatly reduces the number of free parameters to learn

Input size: 320 by 280

Kernel size: 2 by 1

Output size: 319 by 280

	Convolution	Dense matrix	Sparse matrix
Stored floats	2	319*280*320*280 > 8e9	2*319*280 = 178,640

Nonlinearity

- Convolution is a linear operation
- need nonlinearity
 - \bullet otherwise 2 convolution layers would be no more powerful than 1
- common to apply a rectified linear unit (ReLU): y = max(z, 0)

Zero-Padding

- representation shrink at each layer
- limits the number of layers

Zero-padding

- adding zeros to each layer
- allows the use of an arbitrarily deep convolutional network

Pooling Layer

motivation

once a feature has been detected, only its approximate position relative to other features is relevant

Example

the input image contains

- the endpoint of a roughly horizontal segment in the upper left area
- 2 a corner in the upper right area
- 3 the endpoint of a roughly vertical segment in the lower portion the input image is a seven
 - positions are likely to vary for different instances of the character
 - spatial invariance

Pooling

- max-pooling
 - for each such sub-region (e.g., over a 2×2 area in the previous layer), outputs the maximum value

can also have average pooling

Pooling with Downsampling

- stride of two
- reduces the representation size by a factor of two
- reduces the computational and statistical burden on the next layer

Convolutional Network Components

Example Classification Architecture

Example

- lower-layers: alternating convolution and max-pooling layers
- fully-connected (traditional MLP)
- classification error