

Probabilistic Programming for Scientific Discovery

Lecture 2

Ludger Paehler

Lviv Data Science Summer School

July 29, 2020

Table of Contents

Approaches to Inference - the Inference Engines

Monte-Carlo

Variational Inference

Probabilistic Programming Frameworks

Stan

Venture

Anglican

PyMC3

TensorFlow Probability

Pyro & NumPyro

Edward2

Gen

PyProb

Turing

Practical Introduction to a Probabilistic Programming Framework

Extending the ideas to a more complex examples

Outline

Approaches to Inference - the Inference Engines

Monte-Carlo

Variational Inference

Probabilistic Programming Frameworks

Stan

Venture

Anglican

PyMC3

TensorFlow Probability

Pyro & NumPyro

Edward2

Ger

PyProb

Turing

Practical Introduction to a Probabilistic Programming Framework

Extending the ideas to a more complex examples

Approaches to Inference - the Inference Engines

- A typical probabilistic programming system consists of:
 - A domain-specific language (DSL), which enables the user to express his model using the language-specific primitives
 - Provides a library of inference algorithms, which enable inference on probabilistic models definable in the DSL.
 - Prevalent Monte-Carlo and variational inference approaches have their own specific sets of strength, it is hence important to understand the inference algorithms one utilizes

Figure: Structure of a typical probabilistic programming system. Source: *Gen: A General-Purpose Probabilistic Programming Systems with Programmable Inference*

Hamiltonian Monte-Carlo ¹

¹Neal, R.M., 2011. MCMC using Hamiltonian dynamics. Handbook of markov chain monte carlo, 2(11), p.2.

Hamiltonian Monte-Carlo

Hamiltonian Monte-Carlo

Hamiltonian Monte-Carlo

Random-Walk Metropolis Hastings ^{2 3}

²Gelman, A., Carlin, J.B., Stern, H.S., Dunson, D.B., Vehtari, A. and Rubin, D.B., 2013. Bayesian data analysis. CRC press.

³Gilks, W.R. and Richardson, S., S. and Spiegelhalter, D.(1996). Markov chain Monte Carlo in practice. London, UK: Chapman k Hall/CRC.

Random-Walk Metropolis Hastings

Random-Walk Metropolis Hastings

Random-Walk Metropolis Hastings

Stochastic-Gradient Langevin Dynamics 4 5

⁴Welling, M. and Teh, Y.W., 2011. Bayesian learning via stochastic gradient Langevin dynamics. In Proceedings of the 28th international conference on machine learning (ICML-11) (pp. 681-688).

⁵Brosse, N., Durmus, A. and Moulines, E., 2018. The promises and pitfalls of stochastic gradient Langevin dynamics. In Advances in Neural Information Processing Systems (pp. 8268-8278).

Stochastic-Gradient Langevin Dynamics

Stochastic-Gradient Langevin Dynamics

Stochastic-Gradient Langevin Dynamics

Variational Inference 6 7

⁶Blei, D.M., Kucukelbir, A. and McAuliffe, J.D., 2017. Variational inference: A review for statisticians. Journal of the American statistical Association, 112(518), pp.859-877.

⁷Zhang, C., Bütepage, J., Kjellström, H. and Mandt, S., 2018. Advances in variational inference. IEEE transactions on pattern analysis and machine intelligence, 41(8), pp.2008-2026.

Variational Inference

Variational Inference

Variational Inference

Stochastic Variational Inference 8 9

⁸Hoffman, M.D., Blei, D.M., Wang, C. and Paisley, J., 2013. Stochastic variational inference. The Journal of Machine Learning Research, 14(1), pp.1303-1347.

⁹Robbins, H. and Monro, S., 1951. A stochastic approximation method. The annals of mathematical statistics, pp.400-407.

Stochastic Variational Inference

Stochastic Variational Inference

Stochastic Variational Inference

Automatic Differentiation Variational Inference 10 11

¹⁰Kucukelbir, A., Tran, D., Ranganath, R., Gelman, A. and Blei, D.M., 2017. Automatic differentiation variational inference. The Journal of Machine Learning Research, 18(1), pp.430-474.

¹¹Kucukelbir, A., Ranganath, R., Gelman, A. and Blei, D., 2015. Automatic variational inference in Stan. In Advances in neural information processing systems (pp. 568-576).

Automatic Differentiation Variational Inference

Automatic Differentiation Variational Inference

Automatic Differentiation Variational Inference

Black Box Variational Inference 12 13

¹²Ranganath, R., Gerrish, S. and Blei, D., 2014, April. Black box variational inference. In Artificial Intelligence and Statistics (pp. 814-822).

¹³Chu, C., Minami, K. and Fukumizu, K., 2020. The equivalence between Stein variational gradient descent and black-box variational inference. arXiv preprint arXiv:2004.01822.

Black Box Variational Inference

Black Box Variational Inference

Black Box Variational Inference

Outline

Approaches to Inference - the Inference Engines

Monte-Carlo

Variational Inference

Probabilistic Programming Frameworks

Stan

Venture

Anglican

PyMC3

TensorFlow Probability

Pyro & NumPyro

Edward2

Gen

PyProb

Turing

Practical Introduction to a Probabilistic Programming Framework

Extending the ideas to a more complex examples

Stan ¹⁴ Overview

• General overview of the purpose behind Stan

¹⁴Carpenter, B., Gelman, A., Hoffman, M.D., Lee, D., Goodrich, B., Betancourt, M., Brubaker, M., Guo, J., Li, P. and Riddell, A., 2017. Stan: A probabilistic programming language. Journal of statistical software, 76(1).

StanSyntax

• Example code to get a grasp for the syntax

Stan

Application Performance

• Example applications

Venture 15 16

Overview

• General overview of the purpose behind venture

¹⁵Mansinghka, V., Selsam, D. and Perov, Y., 2014. Venture: a higher-order probabilistic programming platform with programmable inference. arXiv preprint arXiv:1404.0099.

¹⁶Goodman, N., Mansinghka, V., Roy, D.M., Bonawitz, K. and Tenenbaum, J.B., 2012. Church: a language for generative models. arXiv preprint arXiv:1206.3255.

Venture

Syntax

• Example code to get a gauge for the syntax

Venture

Application Performance

Anglican ¹⁷

Overview

• General overview of the purpose behind Anglican

¹⁷Tolpin, D., van de Meent, J.W., Yang, H. and Wood, F., 2016, August. Design and implementation of probabilistic programming language anglican. In Proceedings of the 28th Symposium on the Implementation and Application of Functional programming Languages (pp. 1-12).

Anglican Syntax

• Example code

Anglican

Application Performance

PyMC3 ¹⁸ Overview

• General overview of the purpose behind PcMC3

¹⁸Salvatier, J., Wiecki, T.V. and Fonnesbeck, C., 2016. Probabilistic programming in Python using PyMC3. PeerJ Computer Science, 2, p.e55.

PyMC3 Syntax

• Example code

PyMC3

Application Performance

TensorFlow Probability 19

Overview

• General overview of the purpose behind Tensorflow Probability

¹⁹Dillon, J.V., Langmore, I., Tran, D., Brevdo, E., Vasudevan, S., Moore, D., Patton, B., Alemi, A., Hoffman, M. and Saurous, R.A., 2017. Tensorflow distributions. arXiv preprint arXiv:1711.10604.

TensorFlow Probability

Syntax

• Example code

TensorFlow Probability

Application Performance

Pyro ²⁰ & NumPyro ²¹

Overview

General overview of the purpose behind Pyro & NumPyro

²⁰Bingham, E., Chen, J.P., Jankowiak, M., Obermeyer, F., Pradhan, N., Karaletsos, T., Singh, R., Szerlip, P., Horsfall, P. and Goodman, N.D., 2019. Pyro: Deep universal probabilistic programming. The Journal of Machine Learning Research, 20(1), pp.973-978.

²¹Phan, D., Pradhan, N. and Jankowiak, M., 2019. Composable effects for flexible and accelerated probabilistic programming in NumPyro. arXiv preprint arXiv:1912.11554.

Pyro & NumPyro

Syntax

Example code of Pyro & NumPyro

Pyro & NumPyro

Application Performance

Edward2 ^{22 23}

Overview

General overview of the purpose behind Edward2

²²Tran, D., Hoffman, M.W., Moore, D., Suter, C., Vasudevan, S. and Radul, A., 2018. Simple, distributed, and accelerated probabilistic programming. In Advances in Neural Information Processing Systems (pp. 7598-7609).

²³Tran, D., Dusenberry, M., van der Wilk, M. and Hafner, D., 2019. Bayesian layers: A module for neural network uncertainty. In Advances in Neural Information Processing Systems (pp. 14660-14672).

Edward2

Syntax

• Example code of Edward2

Edward2

Application Performance

Gen ²⁴ ²⁵

Overview

• General overview of the purpose behind Gen

²⁴Cusumano-Towner, M.F., Saad, F.A., Lew, A.K. and Mansinghka, V.K., 2019, June. Gen: a general-purpose probabilistic programming system with programmable inference. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation (pp. 221-236).

²⁵Cusumano-Towner, M., Lew, A.K. and Mansinghka, V.K., 2020. Automating Involutive MCMC using Probabilistic and Differentiable Programming. arXiv preprint arXiv:2007.09871.

Gen

Programmable Inference

• Illustration of Gen's slightly different construction compared to the other frameworks

GenSyntax

• Example code of Gen

Gen

Application Performance

PyProb ²⁶ Overview

General overview of the purpose behind PyProb

²⁶Baydin, A.G., Shao, L., Bhimji, W., Heinrich, L., Naderiparizi, S., Munk, A., Liu, J., Gram-Hansen, B., Louppe, G., Meadows, L. and Torr, P., 2019. Efficient probabilistic inference in the quest for physics beyond the standard model. In Advances in neural information processing systems (pp. 5459-5472).

PyProb Syntax

Example code of PyProb

PyProb

Application Performance

Turing ²⁷ Overview

• General overview of the purpose behind Turing

²⁷Ge, H., Xu, K. and Ghahramani, Z., 2018, March. Turing: A Language for Flexible Probabilistic Inference. In International Conference on Artificial Intelligence and Statistics (pp. 1682-1690).

Turing Syntax

• Example code of Turing

Application performance

Probabilistic Programming Frameworks

Summary

• Summary of all probabilistic programming frameworks in a single table

Outline

Approaches to Inference - the Inference Engines

Monte-Carlo

Variational Inference

Probabilistic Programming Frameworks

Stan

Venture

Anglican

PyMC3

TensorFlow Probability

Pyro & NumPyro

Edward2

Gen

PyProb

Turing

Practical Introduction to a Probabilistic Programming Framework

Extending the ideas to a more complex examples

Introduction to Turing

- We will do our first steps in a probabilistic programming framework with Turing covering
 - The modelling syntax
 - Sampling
 - Accessing the trace
 - Automatic differentiation
 - Working with dynamic Hamiltonian Monte-Carlo
- All content can be accessed in the Jupyter notebook IntrotoTuring.ipynb

Outline

Approaches to Inference - the Inference Engines

Monte-Carlo

Variational Inference

Probabilistic Programming Frameworks

Stan

Venture

Anglicar

PyMC3

TensorFlow Probability

Pyro & NumPyro

Edward2

Gen

PyProb

Turing

Practical Introduction to a Probabilistic Programming Framework

Extending the ideas to a more complex examples

More Complex Example in Turing

Model-based inference for causal effects in completely randomized experiments

- Expanding on the simple syntax we will now move to a more complex case:
 - Starting with a Bayesian perspective on causal inference
 - Assignment mechanisms
 - Posterior inference
- All content can be accessed in the Jupyter notebook MBInferenceforCausalEffects.ipynb