M1 SIAME

TP VHDL - Rapport

Téo Tinarrage

rapport.md 3/20/2023

Design

Le code VHDL de l'entité est fourni dans l'archive.

La logique de la FIFO a été implémentée au moyen de 5 process séparés, gérant respectivement :

- Le bus de sortie Q (DO dans le code)
- Les "flags" (signaux en sortie) EMPTY, MID et FULL
- L'écriture dans les registres.

De cette façon, aucun signal n'est affecté par plus d'un process, ce qui permet déviter des problèmes d'affectation simultanée à un signal.

Simulation

Voici la waveform pour les signaux d'entrée et de sortie otenus après simulation comportementale, contrôlée par le code VHDL de simulation fourni (test_fifo.0.vhd).

Synthèse

La synthèse du code donne initialement les résultats suivants en termes de primitive et de CLBs. (extraits du rapport Utilisation - Synth Design fourni par Vivado après synthèse)

Site Type	Used	Fixed	Prohibited	Available	
Slice LUTs*	41				0.08
LUT as Logic	17	0	0	53200	0.03
LUT as Memory	24	0	0	17400	0.14
LUT as Distributed RAM	24	0			
LUT as Shift Register	0	0			
Slice Registers	41	0	0	106400	0.04
Register as Flip Flop	41	0	0	106400	0.04
Register as Latch	0	0	0	106400	0.00
F7 Muxes	0	0	0	26600	0.00
F8 Muxes	0	0	0	13300	0.00

rapport.md 3/20/2023

2. Memory -----+----+ Site Type | Used | Fixed | Prohibited | Available | Util% | +-----0 | | Block RAM Tile | 0 | 0 | 140 | 0.00 | 0 | RAMB36/FIFO* 0 | 0 | 140 | 0.00 | RAMB18 +----+ * Note: Each Block RAM Tile only has one FIFO logic available and therefore can accommodate only one FIFO36E1 or one FIFO18E1. However, if a FIFO18E1 occupies a Block RAM Tile, that tile can still accommodate a RAMB18E1 . . . 7. Primitives

+	++	+
Ref Name	Used	Functional Category
+	++	+
FDRE	41	Flop & Latch
IBUF	36	IO
OBUF	35	IO
RAMD32	34	Distributed Memory
RAMS32	10	Distributed Memory
LUT6	5	LUT
LUT5	4	LUT
LUT4	4	LUT
LUT3	2	LUT
LUT2	2	LUT
LUT1	2	LUT
BUFG	1	Clock
+	++	+

Le fichier complet, ainsi que le rapport de synthèse, sont fournis dans l'archive, dossier "annexe/1".

On remarque qu'aucune BRAM n'est instanciée. Pour remédier à cela, j'ai essayé de retirer les affectations à l'état Haute Impédance (Z) des signaux de sortie (qui empêche, au moins partiellement, l'instanciation de BRAM), mais sans succès : la seule différence est l'utilisation d'une LUT de moins.

(extrait du rapport d'utilisation suite à la modif :)

1. Slice Logic

rapport.md 3/20/2023

+	+			+	++
Site Type	Used	Fixed	Prohibited	Available	Util%
+	+	H		+	++
Slice LUTs*	41	0	0	53200	0.08
LUT as Logic	17	0	0	53200	0.03
LUT as Memory	24	0	0	17400	0.14
LUT as Distributed RAM	24	0			
LUT as Shift Register	0	0			
Slice Registers	41	0	0	106400	0.04
Register as Flip Flop	41	0	0	106400	0.04
Register as Latch	0	0	0	106400	0.00
F7 Muxes	0	0	0	26600	0.00
F8 Muxes	0	0	0	13300	0.00
		L		L	L L

⁺⁻⁻⁻⁻⁻⁺

. . .

2. Memory

Site Type	Used		Fixed	Prohibited	++ Available Util% +
Block RAM Tile RAMB36/FIFO* RAMB18	0	ĺ	0	0	140 0.00 140 0.00
+	+	-+			+

^{*} Note: Each Block RAM Tile only has one FIFO logic available and therefore can accommodate only one FIFO36E1 or one FIFO18E1. However, if a FIFO18E1 occupies a Block RAM Tile, that tile can still accommodate a RAMB18E1

. . .

7. Primitives

++	+	+
Ref Name	Used	Functional Category
++	+	+
FDRE	41	Flop & Latch
IBUF	36	IO
OBUF	35	IO
RAMD32	34	Distributed Memory
RAMS32	10	Distributed Memory
LUT6	5	LUT
LUT5	4	LUT

^{*} Warning! The Final LUT count, after physical optimizations and full implementation, is typically lower. Run opt_design after synthesis, if not already completed, for a more realistic count.

rapport.md 3/20/2023

Timing

Une synthèse avec contrainte de timing a également été effectuée, avec une clock de 125 MHz. Le timing summary qui en résulte est le suivant (extrait) :

Clock: CLK								
Statistics								
Туре	Worst Slack Total Violation		Failing Endpoints		Total Endpoints			
Setup	4.770 r	ıs	0.000 ns		0	206	206	
Hold	0.125 r	0.000 ns			0	206		
Pulse Width	Pulse Width 2.750 ns		0.000 ns		0	0 86		
Setup		Hold			Pulse Width			
Worst Negative Slack (WNS):	4.770 ns	Worst	Hold Slack (WHS):	0.125 ns	Worst Pulse Width Sla	ick (WPWS):	2.750 ns	
Total Negative Slack (TNS):	0.000 ns	Total I	Total Hold Slack (THS):		Total Pulse Width Negative Slack (TPWS):		0.000 ns	
Number of Failing Endpoints:	0	Numb	Number of Failing Endpoints:		Number of Failing End	Number of Failing Endpoints:		
Total Number of Endpoints:	206	Total f	Number of Endpoints:	206	Total Number of Endp	oints:	86	

All user specified timing constraints are met.

On remarque un slack bien positif, la clock pourrait techniquement être accélérée.

Difficultés rencontrées

La principale difficulté, au sens où elle n'a pas pu être surmontée, a été pour l'instanciation de la BRAM.

A part ça, j'ai passé beaucoup de temps sur la logique de la FIFO elle-même : le VHDL peut se montrer assez complexe à débuguer étant donné la difficulté à obtenir des informations sur le déroulement interne des processes (c'est à dire "faire des prints"), et j'ai perdu un certain temps à essayer de simplement comprendre pourquoi mes flags empty/mid/full ne prenaient pas la bonne valeur.

Vivado lui-même a été une difficulté en soi : certains comportements assez ésotériques du logiciel m'ont empêché d'avancer à plusieurs reprises.