4.1. ПРЕПОЗИЦИОННА ЛОГИКА

1. Определение

Математическата логика е наука за логическите схеми на съжденията (твърденията), като игнорира техните доводи. Определянето на истинността на отделните твърдения не е задача на математическата логика. Математическата логика определя дали дадено съждение (логическа верига, доказателство) е правилно, независимо дали е истина. Предмет на математическата логика е анализът на методите за съждения.

Обобщени схеми на твърдения:

Всички елементи на множеството A притежават свойство B, C е елемент от множеството $\Rightarrow C$ притежава свойство B.

Всички елементи на множеството A са в релация c B, C е елемент от множеството \Rightarrow C е в релация c B.

Съждение — елементарно твърдение с известна истинност, която се определя субективно и не подлежи на по-нататъшен анализ. Съжденията се означават с азбуката на съждителната логика.

Предмет на съждителната логика - методите за установяване на истинността на сложни съждения (логически изрази) независимо от истинността на елементарните съждения.

2. Език на съждителната алгебра

Азбуката на съждителната алгебра включва три множества:

$$\Sigma = G_1 \cup G_2 \cup G_3$$
, където $G_1 = \{A_0, A_1, ..., A_n\}$ е множество от символи; $G_2 = \{\neg, \land, \lor, \rightarrow, \leftrightarrow\}$ - множество от логически съюзи, където \neg , \neg - логическо отрицание (инверсия); \land , & - логическо "и"; \lor , $| -$ логическо "или"; \leftrightarrow , \equiv - логическа еквивалентност; \rightarrow , \supset - логическа импликация ("следва"); $G_3 = \{'(', ')', ', '\}$ - множество от спомагателни символи.

3. Формули на съждителната алгебра

Правилно (построени) форми (ППФ) са логически изрази, които се образуват по следните правила:

- 1. Съждителните променливи са ППФ.
- 2. Ако P и Q са ПП Φ , то \overline{P} , $(P \lor Q)$, $(P \land Q)$, $(P \to Q)$, $(P \leftrightarrow Q)$ са ПП Φ .
- 3. Таблица на истинност: true, T=1; false, F=0.

P	Q	\bar{P}	$P \wedge Q$	$P \lor Q$	$P \rightarrow Q$	$P \leftrightarrow Q$
					$\overline{P} \vee Q$	$(\overline{P} \vee Q) \wedge (P \vee \overline{Q}) =$
						$\overline{(P \wedge \overline{Q})} \wedge \overline{(\overline{P} \wedge Q)} =$
						$\overline{(\overline{P} \vee Q)} \vee \overline{(P \vee \overline{Q})}$
0	0	1	0	0	1	1
0	1	1	0	1	1	0
1	0	0	0	1	0	0
1	1	0	1	1	1	1

- 4. Формули за преобразуване на ППФ.
- а) импликация (следва):

$$T \rightarrow B \equiv B$$
 $B \rightarrow T \equiv T$
 $F \rightarrow B \equiv T$ $B \rightarrow F \equiv \overline{B}$
 $B \rightarrow B \equiv T$ $\overline{B} \rightarrow B \equiv B$
 $\overline{B} \equiv B$

- б) логическо "или": $T \lor B \equiv T$, $B \lor B \equiv B$;
- в) логическо "и" : $T \wedge B \equiv B$, $B \wedge B \equiv B$;
- ε) (\leftrightarrow) еквивалентност и (\oplus) сума по модул 2:

$$T \leftrightarrow B \equiv B$$
 $B \leftrightarrow T \equiv B$
 $F \leftrightarrow B \equiv \overline{B}$ $B \leftrightarrow F \equiv \overline{B}$
 $B \leftrightarrow B \equiv T$ $\overline{B} \leftrightarrow B \equiv F$
 $B \leftrightarrow \overline{B} \equiv F$

д) Помощни формули

$$A \to B \equiv \overline{A} \lor B \qquad A \to B \equiv \overline{A \land \overline{B}}$$

$$A \leftrightarrow B \equiv (A \to B) \land (B \to A)$$

$$\overline{A \to B} \equiv A \land \overline{B}$$

$$\overline{A \leftrightarrow B} \equiv \overline{(A \to B) \land (B \to A)} =$$

$$= \overline{A \to B} \lor \overline{(B \to A)} = (A \land \overline{B}) \lor (B \land \overline{A})$$

$$A \to (B \to C) \equiv (A \land B) \to C$$

$$A \to (B \to C) \equiv B \to (A \to C)$$

$$A \leftrightarrow B \equiv (\overline{A} \lor B) \land (A \lor \overline{B})$$

$$A \leftrightarrow B \equiv \overline{(A \land \overline{B}) \lor (\overline{A} \land B)}$$

$$A \leftrightarrow B \equiv \overline{A} \leftrightarrow \overline{B}$$

$$A \to B \equiv \overline{B} \to \overline{A}$$

- 5. Закони на препозиционната логика
- а) Закони на Де Морган

$$\overline{\frac{A \vee B}{A \wedge B}} = \overline{A} \wedge \overline{B}$$

$$\overline{A \wedge B} = \overline{A} \vee \overline{B}$$

б) Закон на Шенон

$$\overline{\overline{A} \vee B} \wedge \overline{C} = \overline{\overline{A} \vee B \vee C}$$

в) Дистрибутивни закони

$$A \wedge (B \vee C) = (A \wedge B) \vee (A \wedge C)$$
$$A \vee (B \wedge C) = (A \vee B) \wedge (A \vee C)$$

г) Комутативни закони

$$A \leftrightarrow B \equiv B \leftrightarrow A$$

д) Закони за съкращение (поглъщане)

$$A \wedge (\overline{A} \vee B) = A \wedge B$$
$$A \vee (\overline{A} \wedge B) = A \vee B$$
$$A \wedge (A \vee B) = A$$
$$A \vee (A \wedge B) = A$$

е) Асоциативен закон

$$(A \longleftrightarrow B) \longleftrightarrow C \equiv A \longleftrightarrow (B \longleftrightarrow C)$$

Пример:

Да се докаже, че ППФ $(((P \land Q) \to R) \land (P \to Q)) \to (P \to R) \equiv T$ е общовалидна (еквивалентна на true), т.е. ППФ $\equiv T$ Решение:

Премахва се импликацията, след което се разчленява инверсията и прилагат се законите на съждителната логика до доказване на общовалидността в съответствие с изразите

$$A \to B \equiv \overline{A} \lor B$$
, $A \to B \equiv \overline{A \land \overline{B}}$, $Q \lor \overline{Q} = T$ и комутативния закон, т.е.

$$\begin{split} & \underbrace{\left(\!\!\left(\!\!\left(\overline{P} \wedge \overline{Q}\right) \!\vee R\right) \!\wedge \left(\overline{P} \vee Q\right)\right) \!\rightarrow \left(\overline{P} \vee R\right) \equiv T} \\ & \underbrace{\left(\!\!\left(\!\!\left(\overline{P} \wedge \overline{Q}\right) \!\vee R\right) \!\wedge \left(\overline{P} \vee Q\right)\right) \!\vee \left(\overline{P} \vee R\right) \equiv T} \\ & \overline{P} \wedge \overline{Q} \vee R \vee \overline{P} \vee \overline{Q} \vee \left(\overline{P} \vee R\right) \equiv T \\ & P \wedge Q \wedge \overline{R} \vee P \wedge \overline{Q} \vee \overline{P} \vee R \equiv T \\ & P \wedge P \wedge \overline{R} \vee Q \wedge \overline{Q} \vee \overline{P} \vee R \equiv T \\ & P \wedge \overline{R} \vee R \wedge \overline{Q} \vee \overline{P} \vee Q \equiv T \\ & P \wedge \overline{R} \vee R \wedge \overline{P} \vee \overline{Q} \vee Q \equiv T \\ & Q \wedge \overline{R} \vee \overline{Q} \wedge P \vee \overline{P} \vee R \equiv T \\ & Q \wedge \overline{R} \vee \overline{Q} \wedge T \vee R \equiv T \\ & Q \wedge T \vee \overline{Q} \wedge \overline{R} \vee R \equiv T \\ & T \wedge Q \vee \overline{Q} \wedge \overline{R} \vee R \equiv T \\ & T \wedge T \wedge T \equiv T \; ; \end{split}$$

6. Изчисления със съждения

Естествена формална система

Крайно множество от общовалидни ППФ (аксиоми) и крайно множество от съответствия между общовалидни ППФ (правила на извод) дефинират естествена формална система (ЕФС). Една ППФ A е изводима (доказуема, удовлетворима или общовалидна) в рамките на ЕФС, ако може да бъде образувана крайна редица, наречена доказателство на A, от общовалидни ППФ, в която A е последна, а всички предходни са аксиоми или са изведени чрез правилата за извод. Изчислението със съждения е по същество доказателство за общовалидност.

Секвенция от ППФ

Секвенцията Γ е поредица от $\Pi\Pi\Phi$, свързани с логически съюз " \wedge " ("и"), т.е.

$$A_1 \wedge A_2 \wedge ... A_n \rightarrow B \equiv \underbrace{A_1, A_2, ..., A_n}_{\Gamma} \rightarrow B \equiv \Gamma \rightarrow B$$
.

Секвенцията е предпоставена поредица, от която следва $\Pi\Pi\Phi - B$. Редът на предпоставките не е от значение. Съществуват следните три основни форми на секвенция:

- 1. Секвенцията Γ е предпоставка за извода на B: $\underbrace{A_1,A_2,...,A_n}_{\Gamma} \to B$.
- 2. Аксиомата B винаги е вярна без предпоставки: $\to B$.
- 3. Секвенцията е противоречива, от нея не следва нищо: $\underbrace{A_1, A_2, ..., A_n}_{\Gamma} \rightarrow$.

Правило за извод на ППФ

Секвенцията Γ може да бъде изведена от Γ_1 до Γ_n , т.е. $\frac{\Gamma_1,\Gamma_2,...,\Gamma_n}{\Gamma}$, където Γ_i и Γ са произволни секвенции.

Доказателство на ППФ A_n .

 $\Pi\Pi\Phi$ A_n се доказва чрез съставяне на такава последователност от преобразувания, чрез които се извежда $\Pi\Pi\Phi$ A_n , т.е.

$$\Gamma_1 \Rightarrow A_1, \Gamma_2 \Rightarrow A_2, ..., \Gamma_n \Rightarrow A_n$$
.

Всяко правило $\Gamma_i \Rightarrow A_i$ може да бъде или аксиома, или изводимо чрез правила за извод.

7. Аксиоми и правила в съждителната алгебра

Аксиома за предпоставките

От секвенция Γ и предпоставка A следва, че предпоставката A е винаги истина:

$$\rightarrow \Gamma, A \Rightarrow A$$
.

Въвеждане на предпоставка: $\frac{\Gamma \Rightarrow B}{\Gamma, A \Rightarrow B}$.

Ако е дадена секвенция Γ , която представлява предпоставка за B, то от добавянето на някаква друга предпоставка A, следствието не се променя, т.е. $\Gamma \Rightarrow B$.

Елиминиране на предпоставка:
$$\frac{(\Gamma, A \Rightarrow B) \wedge (\Gamma, \overline{A} \Rightarrow B)}{\Gamma \Rightarrow B}$$
.

Ако е вярно, че от секвенция Γ и предпоставка A следва B, както и че от Γ и \overline{A} следва B, то от Γ следва B, а A е излишна предпоставка и може да се премахне, т.е. $\Gamma \Rightarrow B$.

Аксиома за истинност Секвенция от предпоставки е истина, т.е.

$$\Gamma \Rightarrow T$$
, $\Gamma \Rightarrow \overline{F}$, $A \Rightarrow A$.

Други аксиоми

$$((A \land B) \to A) \quad ((A \lor B) \to B)$$

$$(A \to (A \land B)) \quad (B \to (A \lor B))$$

$$(A \to \overline{B}) \to (B \to \overline{A})$$

$$(\overline{A} \to A).$$

8. Правила за извод

Правила за "∨" (логическо "или"):

Въвеждане на "
$$\vee$$
": $\frac{\Gamma \Rightarrow A}{\Gamma \Rightarrow A \vee B}$ $\frac{\Gamma \Rightarrow B}{\Gamma \Rightarrow A \vee B}$;

Елиминиране на "
$$\vee$$
": $\frac{(\Gamma, A \Rightarrow C) \wedge (\Gamma, B \Rightarrow C) \wedge (\Gamma \Rightarrow A \vee B)}{\Gamma \Rightarrow C}$.

Правила за "∧" (логическо "и"):

Въвеждане на "
$$\wedge$$
": $\frac{(\Gamma \Rightarrow A) \wedge (\Gamma \Rightarrow B)}{\Gamma \Rightarrow A \wedge B}$;

Елиминиране на "\\":
$$\frac{\Gamma \Rightarrow A \wedge B}{\Gamma \Rightarrow A}$$
 $\xrightarrow{\Gamma \Rightarrow A} B$;

Правила за "→" (импликация):

Въвеждане на "
$$\rightarrow$$
": $\frac{\Gamma, A \Rightarrow B}{\Gamma \Rightarrow A \rightarrow B}$;

Елиминиране на "
$$\rightarrow$$
": $\frac{(\Gamma \Rightarrow A) \wedge (\Gamma \Rightarrow A \rightarrow B)}{\Gamma \Rightarrow B}$.

Правила за " (инверсия):

Въвеждане на "
$$^-$$
", (правило на абсурда) : $\frac{(\Gamma, A \Rightarrow B) \wedge (\Gamma, A \Rightarrow B)}{\Gamma \Rightarrow \overline{A}}$.

Елиминиране на " : (правило на противоречието):

$$\frac{(\Gamma \Rightarrow A) \wedge (\Gamma \Rightarrow \overline{A})}{\Gamma \Rightarrow B}.$$

Правила за " = " (двойното отрицание):

Въвеждане, елиминиране на отрицание: $\frac{\Gamma \Rightarrow A}{\Gamma \Rightarrow \overline{A}}$ $\frac{\Gamma \Rightarrow \overline{A}}{\Gamma \Rightarrow A}$.

Правила за еквивалентност ⇔

Въвеждане на "
$$\leftrightarrow$$
" : $\frac{(\Gamma \Rightarrow A \to B) \wedge (\Gamma \Rightarrow B \to A)}{\Gamma \Rightarrow A \leftrightarrow B}$.

Елиминиране на "
$$\leftrightarrow$$
": $\frac{\Gamma \Rightarrow A \leftrightarrow B}{\Gamma \Rightarrow A \to B}$ $\frac{\Gamma \Rightarrow A \leftrightarrow B}{\Gamma \Rightarrow B \to A}$.

Пример: Да се изведе:
$$\frac{\Gamma \Rightarrow A \to (B \to C)}{\Gamma \Rightarrow (A \land B) \to C}$$

- 1. $\Gamma \Rightarrow A \rightarrow (B \rightarrow C)$ -дадено;
- 2. $\Gamma, A \land B \Rightarrow A \rightarrow (B \rightarrow C)$ въвеждане на предпоставка;
- 3. Γ , $A \wedge B \Rightarrow A \wedge B$ аксиома за предпоставка;
- 4. $\Gamma, A \wedge B \Rightarrow A$ елиминиране на логическо "и" (\wedge);
- 5. Γ , $A \wedge B \Rightarrow B \rightarrow C$ елиминиране на импликация (\rightarrow) (редове 2 и 4);
- 6. Γ , $A \wedge B \Rightarrow B$ елиминиране на логическо "и" (\wedge) (ред 3);
- 7. $\Gamma, A \wedge B \Rightarrow C$ елиминиране на импликация (ред 5) (\rightarrow);
- 8. $\Gamma \Rightarrow (A \land B) \rightarrow C$ въвеждане на импликация (\rightarrow) .

Пример: Да се докаже $\Rightarrow ((P \land Q \rightarrow R) \land (P \rightarrow Q)) \rightarrow (P \rightarrow R)$

Извежда се $(P \land Q \to R)$, $(P \to Q)$, $P \Rightarrow R$. Прилага се правилото за въвеждане на (\to) и обобщеното правило за въвеждане на (\to) .

Решение:

1. Г, (
$$P \wedge Q \to R$$
), ($P \to Q$), $P \Rightarrow P$ - аксиома за предпоставка;

2.
$$\Gamma$$
, $(P \land Q \to R)$, $(P \to Q)$, $P \Rightarrow P \to Q$ - аксиома за предпоставка;

3.
$$\Gamma$$
, $(P \land Q \rightarrow R)$, $(P \rightarrow Q)$, $P \Rightarrow Q$ - елиминиране на \rightarrow (ред 1 и 2);

4.
$$\Gamma$$
, $(P \land Q \rightarrow R)$, $(P \rightarrow Q)$, $P \Rightarrow P \land Q$ въвеждане на \land (ред 1 и 3);

5.
$$\Gamma$$
, $(P \land Q \rightarrow R)$, $(P \rightarrow Q)$, $P \Rightarrow P \land Q \rightarrow R$ - аксиома за предпоставка;

6.
$$\Gamma$$
, $(P \land Q \rightarrow R)$, $(P \rightarrow Q)$, $P \Rightarrow R$ - елиминиране на \rightarrow (ред 4 и 5);

7.
$$\Gamma$$
, $(P \land Q \rightarrow R)$, $(P \rightarrow Q) \Rightarrow P \rightarrow R$ - въвеждане на \rightarrow (ред 6);

8.
$$\Rightarrow$$
 $((P \land Q \rightarrow R) \land (P \rightarrow Q)) \rightarrow (P \rightarrow R)$ - обобщено въвеждане на \rightarrow (ред 7).