5

10

15

20

25

CLAIMS:

1. Method for the encoding of a source mesh (M) representing a 3D object in which there is determined a simple mesh (M_0) with a limited number of faces, each defined by vertices and ridges, and then coefficients in a base of wavelets of a function (f) of which said source mesh is the image defined on said simple mesh (M_0) , so as to give a subdivision of said source mesh (M) into successive refined meshes (or sub-meshes) (M_j) , according to a predetermined criterion. characterized in that each of the faces of said meshes (M_j) is subdivided into a limited number of facets to form the higher-level mesh (M_{j+1}) , the subdivisions of said face corresponding solely to those needed to comply with a condition of affinity of said function (f) on said face.

- 2. Encoding method according to claim 1, characterized in that said source mesh (M) is subdivided up into a set of trees, each of said trees representing a face of said simple mesh (M_0) and comprising nodes each representing a face of a mesh (M_j) , said function (f) being refined on each of said faces and each of said trees being the smallest such that, when a given face is subdivided into four facets, the corresponding node comprises four offspring representing said four facets.
- 3. Encoding method according to one of the claims 1 and 2, characterized in that it enables access to several levels of encoding quality, corresponding to each of said successive meshes.
- 4. Encoding method according to any of the claims 1 to 3, characterized in that said successive meshes are obtained by the implementation of a recursive algorithm.
- 5. Encoding method according to any of the claims 1 to 4, characterized in that said recursive algorithm comprises the following steps:
 - (a) the reception (31) of a wavelet coefficient indexed by a vertex (s) of barycentric coordinates (α, β, γ) on a face F_0 ;
 - (b) for each neighboring face F_i of F_0 containing said vertices (s):

30

- $F = F_i$ is supposed;
- from the barycentric coordinates (α,β,γ), the coordinates of said vertex (s) in the refined base (42) formed by the vertices of the face F, also referenced (α,β,γ) are deduced;
- if the coordinates α , β or γ are positive or zero and if two of them are strictly positive (43):
 - the face F (45) is subdivided;
 - the processing of the step (b) is resumed for the four offspring of the face F successively.
- 6. Method of reconstruction of a source mesh (M) representing a 3D object encoded according to the encoding method of claim 1, characterized in that said object is reconstructed progressively, using the simple mesh (M_0) , and then by means of successive meshes (M_i) .
- 7. Method of reconstruction according to claim 6, characterized in that it enables access to several levels of quality of encoding, corresponding to each of said successive meshes.
- 8. Application of the encoding method according to any of the claims 1 to 5 to at least one of the following fields:
 - the display of meshed objects in a 3D screen;
 - the progressive display of meshed objects in three dimensions on a screen, said wavelet coefficients being taken into account as and when they arrive;
 - the display of meshed objects in three dimensions on a screen with at least two levels of detail, one level of detail corresponding to one of said successive meshes (M_i);
 - the display of different parts of a meshed object with at least two different levels of detail;
 - the compression of a mesh of a meshed object.

10

5

15

20

25

LEGENDES DES DESSINS

Figure 3;

- 5 31. Reception of a wavelet coefficient d_i
 - 32. Localization
 - 33. Subdivision

Figure 4

10

Reprendre les légendes telles que traduites par le WPO sauf la référence 33 : remplacer « peak » par « vertex ».