ICS Homework 6

October 31, 2019

1 Arithmetic and Logical Operations

Suppose a 64-bit little endian machine has the following memory and register status:

Address	Value	Register	Value
0x100	$0 \times 00000000000002019$	%rax	0x2121
0x108	0xfffffffaabb8922	%rbx	0x100
0x110	0x1212121212121212	%rcx	0x2
0x118	0x1300130013001300	%rdx	0x9

Each operation take effect on the status of memory and register, please fill in the blanks in the following table:

Operation	Destination	Value
subq (%rbx),%rax	%rax	0x108
incq -8(%rax)	0x100	0x0000000000000201a
decq %rdx	% rdx	0x8
imulq \$4,0x100(%rdx,%rcx,4)	0x110	0x4848484848484848
shrq \$4,%rax	%rax	0x10
imulq 0x10	%rax, %rdx	0x100, 0x0
notw (%rax,%rdx)	0x100	0xdfe5
andq 0x10(%rax,%rcx,4),%rax	%rax	0x100
leaq 9(%rax,%rcx,8),%rdx	%rdx	0x119

2 Imply C codes from Assembly

You are given prototypes of three functions and assembly codes when they are compiled. Please write C code for the functions that will have equivalent effect as the assembly code shown. Function parameters a, b, c, and d are stored in registers %rdi, %rsi, %rdx, and %rcx, respectively.

Function prototypes:

```
1 long f1(long a, long b, long c, long d);
2 long f2(long a, long b, long c);
3 long f3(long a, long b);
```

Assembly codes:

```
f1:
2
             (%rsi,%rsi,2), %rax
      leaq
3
      leaq
             (%rax,%rdi,2), %rax
4
      leaq
            (%rdx,%rdx,2), %rdx
5
      addq
            %rdx, %rax
6
      leaq
            (\%rcx,\%rcx,2), \%rdx
7
      addq %rdx, %rax
8
      \mathbf{ret}
9
   f2:
10
      leaq -1(%rsi), %rcx
11
      imulq %rcx, %rdx
12
            (%rdx,%rdi,2), %rax
      leaq
13
      imulq %rsi, %rax
14
      xorq %rdx, %rdx
15
      divq
             $2
16
      \mathbf{ret}
17
   f3:
18
      movq
             %rsi, %rax
19
             %rsi, %rdi
      cmpq
20
      \mathbf{j}\mathbf{g}
             . L5
   . L4:
21
22
      rep ret
23
   . L5 :
24
      movq %rdi, %rax
25
      jmp
             . L4
```

Please implement f1, f2, and f3:

```
long f1(long a, long b, long c, long d) {
2
       long t = 2*a + 3*b + 3*c + 3*d;
3
       return t;
4
5
   long f2 (long a, long b, long c) {
7
       long s = (2*a + (b-1)*c) * b / 2;
8
       return s;
9
   }
10
  long f3(long a, long b) {
```