Алгебра I, листочек 4

1. Найдите группы обратимых элементов в кольцах (здесь \Bbbk – произвольное поле):

- (а) $\mathbb{k}[x]$. В этом кольце элементы частично упорядочены по степени максимального ненулевого члена, причем степень многочлена ведёт себя аддитивно по умножению, а значит если произведение двух полиномов равно 1, то они должны быть свободны от x. С другой стороны свободные члены обратимы, когда они не нули, потому как поле, тогда мультипликативной группой будут $\mathbb{k}^{\times}x^{0}$.
- (b) $\mathbb{k}[[x]]$. Как мы видели на лекции, если у ряда обратим нулевой коэффициент, то обратим и сам ряд по правилу $(a_0+a_1x+...)^{-1}=(b_0+b_1x...)$, где $b_0=a_0^{-1}$ и $b_n=-a_0^{-1}(a_1b_{n-1}+...+a_nb_0)$. Причем, если a_0 не обратим, то тогда не будет $a_0b_0=1$.
- (c) $Mat_2(\mathbb{k})$. Как мы уже видели, то обратимыми будут матрицы с обратимым дискриминантом. Для них верно:

$$\left(\begin{array}{cc} a & b \\ c & d \end{array} \right)^{-1} = \frac{1}{ad - bc} \left(\begin{array}{cc} d & -b \\ -c & a \end{array} \right)$$

Если это не так, то дискриминант в поле равен нулю, а значит c = ak и d = bk, тогда

$$\begin{pmatrix} a & b \\ ka & kb \end{pmatrix} \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} = \begin{pmatrix} \lambda_1 & \lambda_2 \\ k\lambda_1 & k\lambda_2 \end{pmatrix} \neq \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

2. Докажите изоморфизмы колец:

(a) $\mathbb{k}[x]/(f(x)) \cong \mathbb{k}$, если f(x) - многочлен первой степени.

Выберем из каждого класс элемент степени 0. Такой существует, так как мы можем делить с остатком на f(x). Такой элемент единственен, так как разница многочленов нулевой степени из одного класса - многочлен нулевой степени из идеала (f(x)), а это 0. Такое соответсвие однозначно сопоставит элементы поля и кольца. Причем это соответствие будет гомоморфизмом из-за того, как мы перемножаем классы.

(b) $\mathbb{R}[x]/(f(x))\cong \mathbb{C}$, если f(x) – многочлен степени 2, не имеющий вещественных корней.

Если у нас есть такой многочлен, то идеал приводится к виду $(f(x)) = ((x-b)^2 + c)$, где c>0 и вообще любой многочлен можно записать в виде $a_0+a_1(x-b)+a_2(x-b)^2+...$ Тогда при факторизации мы на самом деле говорим, что $(x-b)^2=-c$, тогда можно отправить $(x-b)\mapsto \sqrt{c}i$, а $1\mapsto 1$. Это задаст гомоморфизм колец. Он очевидно будет биективным, потому как это мономорфизм $\mathbb R$ -векторных пространств ранга 2. Изоморфизм построен.

3. Пусть $\mathbb{k} = \mathbb{Z}/(2)$. Докажите, что $\mathbb{K}[x]/(x^2 + x + 1)$ – поле.

Вообще многочлены над полем образуют кольцо главных идеалов, так как мы можем делить в столбик и упорядочивать многочлены по степени. При этом $x^2 + x + 1$ несепарабелен над $\mathbb{Z}/(2)$, так как у него нет корней и он степени 2. Так что идеал $(x^2 + x + 1)$ является максимальным, а фактор по нему имеет только 2 идеала, а значит он поле.

4. Пусть I_i – идеалы в кольце A. Докажите, что

Здесь всё будет доказано для правых идеалов, но также верно и для левых.

(a) $I_1 + I_2$ – идеал

Как мы видели для абелевых групп, I_2+I_1 - абелева подгруппа. Также проверим замкнутость по умножение справа. $i_1\in I_1,\ i_2\in I_2,\ a\in A\Rightarrow i_1a\in I_1,\ i_2a\in I_2\Rightarrow i_1a+i_2a\in I_1+I_2$. Доказано

(b) $I_1I_2 = \{\sum x_iy_i \mid x_i \in I_1, y_i \in I_2\}$ – идеал

Проверим, стабильность по умножению на скаляры $(I_1I_2)A\subseteq I_1(I_2A)\subseteq I_1I_2$. Проверим, что это абелева подгруппа по сложению. Очевидно, что сумма конечных сумм - конечная сумма, так что есть замкнутость по умножению. К тому же так как идеалы не пусты, то и произведение тоже.

1

- (c) $\bigcap_i I_i$ пересечение идеалов идеал $x \in \bigcap_i I_i \Rightarrow \forall i, x \in I_i \Rightarrow \forall i, \forall a, xa \in I_i \Rightarrow \forall a, xa \in \bigcap_i I_i$ $x, y \in \bigcap_i I_i \Rightarrow \forall i, x, y \in I_i \Rightarrow \forall i, x + y \in I_i \Rightarrow x + y \in \bigcap_i I_i$
- (d) $(I_1I_2)I_3 = I_1(I_2I_3)$ $a \in (I_1I_2)I_3 \Rightarrow a = \sum_j (\sum_i x_{i,j}y_{i,j})z_j = \sum_i \sum_j (x_{i,j}y_{i,j})z_j = \sum_i \sum_j x_{i,j}(y_{i,j}z_j) \Rightarrow a \in I_1(I_2I_3)$. Где $x_i \in I_1$, $y_i \in I_2$ и $z_i \in I_3$. Точно также доказывается в обратную сторону.
- (e) $I_1(I_2+I_3)=I_1I_2+I_1I_3$ $I_1I_2,I_1I_3\subseteq I_1(I_2+I_3)$, а значит и их сумма тоже. В другую сторонуа $a=\sum_i x_i(y_i+z_i)=\sum_i x_iy_i+\sum_i x_iz_i\in I_1I_2+I_1I_3$, где $x_i\in I_1$, $y_i\in I_2$ и $z_i\in I_3$.
- 5. Пусть I, J, K идеалы в кольце A. Определим частное идеалов (I:J) следующим образом:

$$(I:J) = \{a \in A \mid aJ \subseteq I\}$$

Покажите, что это идеал.

Пусть $a,b \in (I:J)$ и $\lambda \in A$. Тогда $(a+b)J \subseteq aJ+bJ \subseteq I+I=I$. $\lambda aJ \subseteq \lambda I \subseteq I$ и $a\lambda J=aJ \subset I$. Заметим, что частное является идеалом.

Докажите, что

- (a) $I \subseteq (I:J)$ Пусть $a \in I$ лежит в идеале, тогда $aJ \subseteq I$, а значит $a \in (I:J)$.
- (b) $(I:J)J\subseteq I$ Пусть $a\in (I:J)J$, тогда $a=\sum_i x_iy_i$, где $x_i\in (I:J)$ и $y_i\in J$, тогда $x_iy_i\in I$ по определению частного, тогда и сумма там же.
- (c) ((I:J):K)=(I:JK)=((I:K):J)Пусть $a\in ((I:J):K)$ это равносильно тому, что $aK\subseteq (I:J)$, что в точности $aKJ\subseteq I$, а это определение $a\in (I:KJ)$. Тогда верно ((I:J):K)=(I:KJ) в некоммутативном случае, а в коммутативном ((I:J):K)=(I:KJ)=((I:K):J).
- 6. Докажите, что прообраз простого идеала при гомоморфизме колец является простым идеалом. Является ли прообраз максимального идеала максимальным?

Пусть $f:A\to B$ – гомоморфизм колец и $P\subseteq B$ – простой идеал. Пусть $ab\in f^{-1}[P]$, тогда $f(a)f(b)=f(ab)\in P$, без потери общности по простоте P положим $f(a)\in P$, тогда $a\in f^{-1}[P]$, а значит прообраз прост. Прообраз максимального идиала вообще говоря не максимален, так как вкладывая целые числа в рациональные, прообразом максимального идиала (0) будет не максимальным.

7. Пусть $I \subseteq A$ – двусторонний идеал в кольце. Докажите, что A/I не имеет делителей нуля тогда и только тогда, когда I прост. Докажите, что A/I является полем тогда и только тогда, когда I максимален.

Пусть $ab \in I$, но $a,b \notin I$, тогда (a+I)(b+I) = ab+I = I мы нашли делители нуля. Обратно пусть мы нашли два делителя нуля, тогда $a+I \neq b+I$, но ab+I = I, тогда $ab \in I$, но $a,b \notin I$, а значит идел не простой.

Пусть мы нашли идеал $I\subseteq J\neq A$, положим $J'=\{a+I\mid a\in J\}$ нетрудно видеть, что это множество замкнуто относительно сложения и умножения на элементы кольца. Это нетривиальный идеал фактор кольца, а значит фактор кольцо не поле. Обратно пусть A/I не поле, тогда найдется нетривиальный идеал $J'=\{a+I\}$. Возьмём объединение всех классов $J=\bigcup J'$, это идеал, причем $I\subset J$, и так как J' не был равен всему фактор кольцу, то мы найдем класс который не лежит в J' и возьмём из него элемент, он не будет лежать в J. А значит I не максимально.

8. Пусть A – целостное кольцо. Докажите, что кольца A[x] и A[[x]] – целостные. Опишите их поля частных.

Если A[x] или A[[x]] не целостное, то $(a_nx^n+...)(b_mx^m+...)=(a_nb_mx^{n+m}+...)=0$, то $a_nb_m=0$, а значит A не целостно. Построим поля частных. $A[x]=\{\frac{a_0+...+a_nx^n}{b_0+...+b_mx^m}\}$. Причем для не полей не будет существовать приведенной формы. Точно также в A[[x]] $\frac{a_nx^n+...}{b_mx^m+...}=\frac{x^n(a_n+...)}{x^m(b_m+...)}=\frac{x^n}{x^m}(a_n+...)(b_m^{-1}+...)$ приводится к каноничному виду только если b_m обратимо.

9. Докажите, что кольцо $\Bbbk[[x]]$ нетерово и факториально. Перечислите все простые идеалы в нем.

Пусть есть некий идеал I, кольцо рядов упорядочено по степени наименьшего ненулевого монома, тогда в идеале I можно найти элемент минимальной степени n, так как этот порядок изоморфен порядку \mathbb{N} . А этот минимальный элемент лежит в тех же идеалах, что и x^n , потому как один получается из другого через умножение на единицу кольца, а значит $x^n \in I$. Но также x^n делит любой элемент из I, а значит $I = (x^n)$, в итоге все идеалы образуют линейный порядок $(1) \supset (x) \supset ...$, а значит что для каждого идеала существует только конечное количество идеалов больших него, а значит кольцо нётерово.

Если $a_n x^n + \dots$ неприводим, то n очевидно не больше 1. Причем, если n=0, то элемент обратим, а значит не неприводим, а если n=1, то для любого разложения в произведение один ряд будет обратим, а у другого степень минимального мнома будет равна 1, что получается из решения несложного равенства в \mathbb{N}_0 a+b=1, а как мы видели главные идеалы подходящих элементов (x). Он максимален, а значит прост. Тогда все неприводимые элементы просты, а значит кольцо факториально.

10. (Лемма об избегании простых идеалов) Пусть $\mathfrak{p}_1, ..., \mathfrak{p}_n$ – простые идеалы в кольце A, и пусть I – идеал в A. Пусть $I \subseteq \bigcup_{i=1}^n \mathfrak{p}_i$. Докажите, что $I \subset \mathfrak{p}_i$ для некоторого i.

Пойдём по индукции для эквивалентного утверждения $\forall i, I \nsubseteq \mathfrak{p}_i \Rightarrow I \nsubseteq \bigcup_{i=1}^n \mathfrak{p}_i$. Для n=1 утверждение очевидно. Пусть теперь оно верно для n-1. И пусть $I \nsubseteq \mathfrak{p}_i$. По предположению индукции для каждого i мы найдем a_i из I, что $a_i \notin \mathfrak{p}_j$, для всех $i \neq j$. Если к тому же $a_i \notin \mathfrak{p}_i$ для некоторого i, то победа. В противном случан $\sum_i \prod_{j \neq i} a_j \notin \bigcup_i \mathfrak{p}_i$, и в этом случае доказуемое тоже верно.

11. Докажите, что кольцо $\mathbb{k}[x]/(x^{n+1})$ – артиново.

Заметим, что из нотации видно, что $\mathbb{k}[x]/(x^{n+1}) = \mathbb{k}[[x]]/(x^{n+1})$, потому как в идеале от кольца рядов можно выбрать в каждом классе многочлен степени меньшей n, так что они изоморфны через этих представителей. Так как в между идеалами фактора и идеалами содержащими идеал, по которому факторизуем, наблюдается соответствие, то все идеалы фактор кольца имеют вид (x^k) , где k < n. Их конечное количество, а значит кольцо артиново.

12. Постройте пример артинова кольца, в котором бесконечно много идеалов.

Пусть $A=\mathbb{R}[x,y]/(x^2,y^2,xy)$ - кольцо. Пусть $\mathfrak{a}\subset A$ его нетривиальный идеал. Тогда он содержит ненулевой элемент вида ax+by+c. Если c=0, то он равен ax+by и нильпотент. Если это не так, то $(ax+by+c)(-ac^{-2}x-c^{-2}by+c^{-1})=1$ он обратим. Тогда чтобы идеал не был тривиальным, мы будем рассматривать (ax+by) этот идеал на самом деле прямая плоскости (ax+by)(qx+wy+c)=acx+bcx. Причем две такие разные прямые образуют плоскоть (x,y). (x,y) максимален, так как элементы его дополнения обратимы. А значит, что есть 4 типа идеалов: нулевой, прямые плоскости (x,y), сама плоскость и всё пространство. Идеалы этого кольца $\mathbb R$ -векторные подпространства пространства размерности (x,y)0, а значит максимальная длина цепи со сторогим включением (x,y)1, само в кольце бесконечно много идеалов.

13. Докажите, что в (коммутативном) артиновом кольце имеется лишь конечное число простых идеалов.

Пусть A - кольцо. Возьмём радикал Джекобсона этого кольца \Re - пересечение всех максимальных идеалов. Тогда все элементы \Re имеют следующее описание $x \in \Re \Leftrightarrow 1-xy$ обратим для всех y. Так как если 1-xy не единица, но $x \in \Re$, то $1-xy \in \mathfrak{m}$ он лежит в некотором максимально идеале, но и $x \in \mathfrak{m}$ лежит там же. тогда и $1=(1-xy)+xy \in \mathfrak{m}$, чего не может быть. В обратную сторону, если $x \notin \mathfrak{m}$ не лежит в некотором идеале, то $(\mathfrak{m},x)=(1)$, а значит мы найдем $a \in \mathfrak{m}$ и $y \in A$, что a+xy=1, тогда $1-xy \in \mathfrak{m}$ не обратим.

Пусть кольцо артиново. Пусть $a \in \Re$, посмотрим на убывающую цепочку идеалов $(a^0) \supseteq (a) \supseteq ... \supseteq (a^n)$ Так как кольцо артиново, то она с некоторого шага стабилизируется. Пусть $(a^n) = (a^{n+1})$, Тогда $a^n = a^{n+1}k$, тогда $a^n(1-ak) = 0$, как мы видели ранее 1-ak обратим, а значит $a^n = 0$ и a - нильпотент.

В любом коммутативном кольце с единицей нильпотенты образуют идеал \mathfrak{N} . Так как сумма нильпотентов $a^n=0=b^m$ в степени суммы равна $(a+b)^{n+m}=\sum_i c_i a^i b^{n+m-i}=0$, так как обе степени не могут быть одновременно меньше n и m, а значит каждое слагаемое занулится. Стабильность при домножении на элементы кольца очевидна. Этот идеал называется нильрадикалом и обозначается \mathfrak{N} . Он в точности является пересечением всех простых идеалов. Пусть a - нильпотент, тогда $a^n=0$ лежит в любом простом идеале, а значит по простоте

идеала там лежит и a. В обратную сторону, если a не нильпотент, то возьмём множество S всех идеалов, что никакая степень a в них не лежит. Это множесво не пусто, так как есть нулевой идеал, и упорядочено по включению. Для любой цепи объединение по ней является идеалом и не содержит никакой степени a. Тогда любая цепь имеет верхнюю грань, а значит есть максимальный элемент b. Если $x, y \notin b$, то (x) + b и (y) + b строго больше b, а значит не лежат в S. Тогда в них есть степени a, тогда степень a лежит и в (xy) + b и этот идеал не лежит в S, а значит $xy \notin b$. Поэтому b прост и не содержит a.

Так как любой максимальный идеал прост, то имеет место включение $\mathfrak{N}\subseteq\mathfrak{R}$. Для артиновых колец мы видели, что любой элемент из радикала Джекобсона – нильпотент, а значит для артиновых колец верно $\mathfrak{N}=\mathfrak{R}$.

Докажем ещё одно утверждение. Если идеалы взаимнопросты, то их персечение сопадает с произведением. Докажем это по индукции. Для 2х идеалов всегда верно, что $\mathfrak{ab} \subseteq \mathfrak{a} \cap \mathfrak{b}$, так как произведение вложено как в один идеал, так и в другой. С другой стороны мы имеем $(\mathfrak{a}+\mathfrak{b})(\mathfrak{a}\cap\mathfrak{b})=\mathfrak{a}(\mathfrak{a}\cap\mathfrak{b})+\mathfrak{b}(\mathfrak{a}\cap\mathfrak{b})\subseteq\mathfrak{ab}$ здесь уже слогаемые вложены в произведение, а значит и их сумма, но так как идеалы взаимнопросты, то $\mathfrak{a}+\mathfrak{b}=(1)$, а значит у нас есть включение в 2 стороны. Тогда мы наблюдаем равенство $\mathfrak{ab}=\mathfrak{a}\cap\mathfrak{b}$. Пусть теперь утверждение верно для n-1 идеалов. Обозначим за $\mathfrak{b}=\prod_{i=1}^{n-1}\mathfrak{a}_i$. И так как \mathfrak{a}_i и \mathfrak{a}_n взаимно просты, то есть $x_i\in\mathfrak{a}_i$ и $y_i\in\mathfrak{a}_n$, что $x_i+y_i=1$, тогда $\prod_{i=1}^{n-1}\mathfrak{a}_i$. И так как \mathfrak{a}_i и \mathfrak{a}_n взаимно просты, а произведение из произведения, тогда \mathfrak{b} и \mathfrak{a}_n взаимопросты, так как \mathfrak{a}_i $\mathfrak{a}_$

Утверждение. Пусть $\mathfrak{a}_1, ..., \mathfrak{a}_n$ - некоторые идеалы, \mathfrak{p} - простой идеал, содержащий $\bigcap_{i=1}^n \mathfrak{a}_i$, тогда $\mathfrak{p} \supseteq \mathfrak{a}_i$ для некоторого i. Если в гипотезе равенство, то $\mathfrak{p} = \mathfrak{a}_i$. Предположим, что это не так и $\mathfrak{p} \not\supseteq \mathfrak{a}_i$ для всех i. Тогда выберем элементы $x_i \in \mathfrak{a}_i$, что $x_i \notin \mathfrak{p}$. Тогда по простоте произведение x_i не лежит в \mathfrak{p} , а значит произведение не лежит в пересечение идеалов \mathfrak{a}_i , ну а это противоречие. Если наблюдается равенство $\mathfrak{p} = \bigcap \mathfrak{a}_i$, то $\mathfrak{p} \subseteq \mathfrak{a}_i$, но и так как $\mathfrak{p} \supseteq \mathfrak{a}_i$, то и здесь будет равенство.

Пусть теперь \mathcal{M} — множество идеалов, образованных из конечного произведения максимальных. Так как кольцо артиново, то у любой убывающей цепи есть нижняя грань, а значит есть минимальный элемент $\mathfrak{m}_1 \cdot \ldots \cdot \mathfrak{m}_n$. Пусть \mathfrak{m} — максимальный идеал, так как $\mathfrak{m} \cdot \mathfrak{m}_1 \ldots \mathfrak{m}_n \subseteq \mathfrak{m}_1 \ldots \mathfrak{m}_n$, то по минимальности получим, что $\mathfrak{m} \cdot \mathfrak{m}_1 \cdot \ldots \cdot \mathfrak{m}_n = \mathfrak{m}_1 \cdot \ldots \cdot \mathfrak{m}_n$, а $\mathfrak{m}_1 \cdot \ldots \cdot \mathfrak{m}_n = \mathfrak{m} \cdot \mathfrak{m}_1 \cdot \ldots \cdot \mathfrak{m}_n \subseteq \mathfrak{m}$ останется $\mathfrak{m}_1 \cdot \ldots \cdot \mathfrak{m}_n \subseteq \mathfrak{m}$. Но так как различные максимальные идеалы взаимнопросты, то их произведение совпадает с пересечением, то есть $\mathfrak{m}_1 \cap \ldots \cap \mathfrak{m}_n \subseteq \mathfrak{m}$, но так как максимальный идеал прост, то можно применить предыдущее утверждение и получить, что $\mathfrak{m} \supseteq \mathfrak{m}_i$ для некого i, но так как они оба максимальны, мы наблюдаем равенство. $\mathfrak{m} = \mathfrak{m}_i$, тогда \mathfrak{m}_i для $1 \leq i \leq n$ — все максимальные идеалы и их конечное количество.

Теперь как мы видели радикал Джекобсона – произведение конечного числа максимальных идеалов, они взаимнопросты, а значит фактор по ним изоморфен произведению факторов. Фактор по максимальному идеалу - поле. Тогда фактор по радикалу Джекобсона – произведение полей, а в нём идеалы – это произведения идеалов, так как для каждого идеала можно выписать все индексы для которых есть элементы в которых соответсвующие координаты ненулевые, а значит у нас идеал – произведение с нулями в индексах для которых нет ненулевых координат, и с всеми полями для тех индексов, для которых это встречается. Тогда в таком фактор кольце конечное число идеалов, а так как к тому же любой простой идеал содержит нильрадикал, который в этой задаче совпадает с радикалом Джекобсона, то все простые идеалы стоят в однозначном соответствии с неокторыми идеалами из фактор кольца коих конечное число, а тогда и простых тоже конечное число.

14. Пусть A – нётерово кольцо. Докажите, что кольца A[x] и A[[x]] нетеровы.

Перед тем как доказать это проанализируем то, как устроены нётеровы кольца. Дальше A будет обозначать нётерово коммутативное ассоциатовное кольцо с единицей.

Заметим, что через лемму цорна мы получим, что шнётеоровость эквивалентна, тому что любой набор идаелов кольца имеет максимальный элемент.

Также нётеровость эквивалента тому, что каждый идеал кольца конечно порожден. Пусть идеал $\mathfrak a$ не конечно порожден. Тогда по аксиоме выбора мы найдем последовательность элементов этого идеала $(a_i)_i$, что будут строгими следующие включения $(a_1) \subset (a_1,a_2) \subset (a_1,a_2,a_3) \subset ...$ А тогда кольцо не нётерово. В обратную соторону, пусть все идеалы конечно порождены, тогда возьмём цепь $\mathfrak a_1 \subseteq \mathfrak a_2 \subseteq ...$ Возьмём объединение по этой цепи, мы получим идеал, что конечно порожден. Так как его порождает конечное число элементов, то мы найдем конечно число звеньев, в которых лежат эти элементы, максимальное из звеньев

содержит их все, а значит оно равняется всему объединению и цепь стабилизируется, а тогда кольцо нётерово.

Назовем идаел \mathfrak{a} *неприводимым*, если для любых идеалов \mathfrak{b} , \mathfrak{c} имеет место следующее соотношение $\mathfrak{a} = \mathfrak{b} \cap \mathfrak{c} \Rightarrow \mathfrak{a} = \mathfrak{b}$ или $\mathfrak{a} = \mathfrak{c}$.

Покажем, что любой идеал нётерова кольца A представляется через конечное пересечение неприводимых. Положим M множество всех идеалов A, которые не представляются через конечное пересечение неприводимых. Пусть оно не пусто. Тогда из нётеровости следует, что в нём есть максимальный элемент m. В частности m не приводим, а это значит, если мы обернём определение приводимости, что мы найдем два идеал, что выполнено следующее $m = a \cap b$ и $a \neq m \neq b$. Тогда два найденых идеала строго больше максимального элемента, а значит не лежат в M. Тогда они представимы как конечное пересечение неприводимых, это же будет верно и для m, что ведёт к противоречию, а значит M пусто. Тогда все идеалы представимы как конечное пересечение неприводимых.

Теперь покажем, что собственные неприводимые идеалы в нётеровом кольце примарны. Пусть \mathfrak{p} – неприводимый идеал. Возьмём фактор по нему. Нетрудно видеть, что A/\mathfrak{p} тоже нётерово, а 0 в нём неприводим. Покажем, что в нём нет делителей нуля. Пусть это не так, тогда мы найдем делителей ab=0, что $a\neq 0\neq b$. Также мы построим возрастающую цепь аннуляторов $\mathrm{Ann}(a)\subseteq \mathrm{Ann}(a^2)\subseteq ...$. По нёторовости оно стабилизируется с некоторого шага n. Теперь посмотрем на персечение $(b)\cap (a^n)\ni z$. Элемент из пересечения имеет две записи $z=xa^n=yb$. Домножим это дело на a, $za=xa^{n+1}=yba=y0=0$, тогда x – аннулятор a^{n+1} , а значит и a^n тоже, так как их аннуляторы совпадают. Тогда z=0 и пересечение нуль. Но нулевой идеал неприводим, а значит либо $(a^n)=(0)\Rightarrow a=0$, либо $(b)=(0)\Rightarrow b=0$. Тогда примарный и \mathfrak{p} .

Из всего вышесказанного выходит, что идеалы нётеровых колец - конечные пересечения примарных. Покажем теперь, что на самом деле каждый идеал нётерова кольца содержит некую степень своего радикала. Пусть $\mathfrak a$ – идеал, а $r(\mathfrak a)$ – его радикал. Так как все идеалы нётерова кольца конечно порождены, то мы найдем конечное порождение $r(\mathfrak{a}) = (a_1, a_2, \dots, a_k)$. Тогда для каждого порождающего элемента мы найдем степень n_i в которой он лежит в $\mathfrak a$, то есть $a_i^{n_i} \in \mathfrak{a}$. Если положить $m = \sum n_i$, то можно заметить, что $r(\mathfrak{a})^m = (\prod a_i^{k_i} \mid \sum k_i = m)$, но при этом хотя бы для одного индекса в каждом новом порождающем элементе будет верно, что $k_i \geq n_i$, а значит каждый порождающий лежит в \mathfrak{a} , а тогда $(r(\mathfrak{a}))^m \subseteq \mathfrak{a}$. В частности это означает, что нильрадикал в некоторой степини равен нулю, то есть $(\mathfrak{N})^n = (r((0)))^n = (0)$. Пусть $\mathfrak{a} \subseteq A[X]$, множество старших коэффициентов из \mathfrak{a} очевидно образует идеал \mathfrak{b} в A. Так как кольцо A нётерово, то $\mathfrak b$ конечно порожден элементами $\mathfrak b=(b_1,\dots,b_n)$. Тогда для каждого $1 \le i \le n$ найдем полином $p_i(x) = a_i x^{d_i} +$ (мономы меньшей степени) из \mathfrak{a} . Положим $\mathfrak{a}'=(p_1(x),...,p_i(x))$ и $d=\max\{d_1,...,d_i\}$. Возьмём $M=\{q(x)\in A[x]\mid \deg(q(x))\leq d\}$. Тогда я утверждаю, что $\mathfrak{a}=(\mathfrak{a}\cap M)+\mathfrak{a}'$. Очевидно, что $(\mathfrak{a}\cap M)+\mathfrak{a}'\subseteq \mathfrak{a}$, потому как это верно для каждого из слогаемых. В обратную сторону положим $p(x) = ax^m + ... \in \mathfrak{a}$. Тогда если $m \le d$, то $p(x) \in \mathfrak{a} \cap M$. Тогда проверим для случая, когда m > d. По определению получим, что $a \in \mathfrak{b}$. Тогда мы найдем многочлен из \mathfrak{a}' с подходящим коэффициентом и тогда p(x) будет представлено, как сумма многочлена из \mathfrak{a}' и многочлена меньшей степени. Продолжая так мы за конечное число шагов получим сумму многочленов из \mathfrak{a}' и одного из $a \cap M$. А значит вложение в обратную сторону также верно.