Multitask Pointer Network for Discontinuous Constituent Parsing An application to the German language

James Yu jby21@cam.ac.uk

Faculty of Economics University of Cambridge

15th January 2024

Why use a neural network to model grammar?

Linguistic preliminaries: constituent trees

Let $w = (w_1, \ldots, w_L)$ be a sentence.

Definition

- A constituent tree is a rooted tree whose leaves are the words $(w_i)_{i=1}^L$ and internal nodes are constituents satisfying some constraints.
- \blacksquare A constituent is a triple (Z, \mathcal{Y}, h) containing, respectively, its label, yield, and lexical head.
- A constituent is *discontinuous* if its yield is not contiguous.

Reduction to dependency parsing

Definition

A dependency tree is a rooted tree spanning the words in the sentence $(w_i)_{i=1}^L$. Each edge is labelled and connects a head word (parent) to a dependency (child).

Fernández-González and Martins (2015) show that constituent trees are isomorphic to dependency trees in which the edges contain information about constituent labels and attachment order.

$Mathematical\ formalisation$

- Regressor: sentence $(w_i)_{i=1}^L$.
- Regressand: dependency tree, parts of speech and morphology.
- Bottom-up approach: think of *arcs* going from every child w_i to its parent $y_i^{arc} \in w \setminus w_i$.

Denote the regressand by $y = (y_i)_{i=1}^L$ where $y_i = (y_i^{arc}, y_i^{lab}, y_i^{ord}, y_i^{pos}, y_i^{morph})$ and with mild abuse of notation let $y_{< i} = (y_1, \dots, y_i)$ for each $i = 2, \dots, L$ and $y_{< 1} = 0$.

Assumption

For each $i=1,\ldots,L$, the random variables $y_i^{\mathrm{lab}},y_i^{\mathrm{ord}},y_i^{\mathrm{pos}}$ and y_i^{morph} are mutually independent conditional on $y_i^{\mathrm{arc}},\ y_{< i}$ and w.

We can decompose the conditional probability of y given w:

$$\begin{aligned} p_{w}(y) &= \prod_{i=1}^{L} p_{w}(y_{i} \mid y_{< i}) \\ &= \prod_{i=1}^{L} \left\{ p_{w}(y_{i}^{\mathsf{arc}} \mid y_{< i}) p_{w}(y_{i}^{\mathsf{lab}} \mid y_{i}^{\mathsf{arc}}, y_{< i}) \\ &\cdot p_{w}(y_{i}^{\mathsf{ord}} \mid y_{i}^{\mathsf{arc}}, y_{< i}) p_{w}(y_{i}^{\mathsf{pos}} \mid y_{i}^{\mathsf{arc}}, y_{< i}) p_{w}(y_{i}^{\mathsf{morph}} \mid y_{i}^{\mathsf{arc}}, y_{< i}) \right\}. \end{aligned}$$

Sequence-to-sequence setup

Given an input sentence $w=(w_i)_{i=1}^L$ we generate *embeddings* $\omega=(\omega_i)_{i=1}^L$, where

$$\omega_i = \mathsf{WordEmbed}(w_i) \oplus \mathsf{CharEmbed}(w_i) \oplus \mathsf{BertEmbed}(w_i).$$

- CharEmbed is implemented using a CNN á la Chiu and Nichols (2016).
- BERT model pre-trained on German text by Chan et al. (2020).

Encoder: feed embeddings through a multi-layer bi-directional LSTM with skip-connections and dropout:

$$\mathbf{e} = (\mathbf{e}_i)_{i=0,\ldots,n} = \mathsf{BiLSTM}(\omega).$$

 $(\mathbf{e}_0 \text{ represents the root pseudo-node.})$

Decoder: feed embeddings through a single-layer uni-directional LSTM with dropout:

$$\mathbf{d} = (\mathbf{d}_i)_{i=1,\ldots,n} = \mathsf{LSTM}(\omega).$$

The pointer network: bi-affine attention mechanism

Drawing on Dozat and Manning (2016) and Vinyals et al. (2015).

Obtain dimension-reduced representations:

$$\mathbf{e}^{\mathsf{arc}} = \mathsf{MLP}^{\mathsf{arc}}_{\mathsf{enc}}(\mathbf{e}); \quad \mathbf{d}^{\mathsf{arc}} = \mathsf{MLP}^{\mathsf{arc}}_{\mathsf{dec}}(\mathbf{d}).$$

Obtain latent features varc:

$$\begin{split} \textbf{v}_{i,j}^{\mathsf{arc}} &= \mathsf{BiAff}^{\mathsf{arc}}(\textbf{e}_i^{\mathsf{arc}}, \textbf{d}_j^{\mathsf{arc}}) \\ &\coloneqq \textbf{e}_i^{\mathsf{arc}^\mathsf{T}} \textbf{U}_{\mathsf{h-d}}^{\mathsf{arc}} \textbf{d}_j^{\mathsf{arc}} \\ &\quad + \frac{\textbf{e}_i^{\mathsf{arc}^\mathsf{T}} \textbf{U}_{\mathsf{h-h}}^{\mathsf{arc}} \textbf{e}_i^{\mathsf{arc}} + \textbf{d}_j^{\mathsf{arc}^\mathsf{T}} \textbf{U}_{\mathsf{d-d}}^{\mathsf{arc}} \textbf{d}_j^{\mathsf{arc}}}{ + U_\mathsf{h}^{\mathsf{arc}} \textbf{e}_i^{\mathsf{arc}} + U_\mathsf{d}^{\mathsf{drc}} \textbf{d}_j^{\mathsf{arc}} + u_\mathsf{bias}^{\mathsf{arc}}. \end{split}$$

Obtain attention logits:

$$s_{i,j}^{\mathsf{arc}} = \frac{\mathbf{u}_{\mathsf{agg}}^{\mathsf{arc} \mathsf{T}} \mathsf{tanh}(\mathbf{v}_{i,j}^{\mathsf{arc}})}{\mathsf{n}}$$

Fixing child w_j , the vector **softmax**($s_{:,j}^{\text{arc}}$) can be interpreted as an estimated probability distribution over potential parents:

$$\hat{p}^{\operatorname{arc}}(w_i \mid y_{\leq j}, w) = \operatorname{softmax}(s_{:,j}^{\operatorname{arc}})_i.$$

Part-of-speech and morphology: quadratic classifier Drawing on Dozat and Manning (2016).

- Encoder and decoder are shared across tasks.
 The remaining network is separately trained.
- Classification via a bi-affine architecture allows modelling of class probabilities conditional on arcs.

Example: part-of-speech classification.

$$\label{eq:epos} e^{\text{pos}} = \text{MLP}^{\text{pos}}_{\text{enc}}(e); \quad d^{\text{pos}} = \text{MLP}^{\text{pos}}_{\text{dec}}(d).$$

■ Obtain class *logits* v^{pos}:

$$\begin{split} \mathbf{v}_{i,j}^{\text{pos}} &= \text{BiAff}^{\text{pos}}(\mathbf{e}_i^{\text{pos}}, \mathbf{d}_j^{\text{pos}}) \\ &\coloneqq \mathbf{e}_i^{\text{pos}\mathsf{T}} \mathbf{U}_{\text{h-d}}^{\text{pos}} \mathbf{d}_j^{\text{pos}} + \mathbf{e}_i^{\text{pos}\mathsf{T}} \mathbf{U}_{\text{h-h}}^{\text{pos}} \mathbf{e}_i^{\text{pos}} + U_{\text{h}}^{\text{pos}} \mathbf{e}_i^{\text{pos}} \\ &+ \mathbf{d}_j^{\text{pos}\mathsf{T}} \mathbf{U}_{\text{d-d}}^{\text{pos}} \mathbf{d}_j^{\text{pos}} + U_{\text{d}}^{\text{pos}} \mathbf{d}_j^{\text{pos}} + \mathbf{u}_{\text{bias}}^{\text{pos}}. \end{split}$$

Fixing child w_j , the vector $\mathbf{softmax}(\mathbf{v}_{i,j}^{\mathsf{pos}})$ can be interpreted as an estimated probability distribution over its parts-of-speech conditional on having an arc to w_i :

$$\hat{p}^{\mathsf{pos}}(c \mid w_i, y_{< j}, w) = \mathsf{softmax}(\mathbf{v}_{i,j}^{\mathsf{pos}})_c.$$

Inference and Training

Inference

Given $w = (w_i)_{i=1}^L$, estimate $y = (y_i)_{i=1}^L$ via maximum likelihood:

$$\hat{y} = \operatorname*{arg\,max} \left\{ \prod_{i=1}^{L} \left\{ \hat{p}_w(y_i^{\mathsf{arc}} \mid y_{< i}) \hat{p}_w(y_i^{\mathsf{lab}} \mid y_i^{\mathsf{arc}}, y_{< i}) \right. \\ \left. \cdot \hat{p}_w(y_i^{\mathsf{ord}} \mid y_i^{\mathsf{arc}}, y_{< i}) \hat{p}_w(y_i^{\mathsf{pos}} \mid y_i^{\mathsf{arc}}, y_{< i}) \hat{p}_w(y_i^{\mathsf{morph}} \mid y_i^{\mathsf{arc}}, y_{< i}) \right\} \right\}.$$

The feasible region is very large, so the maximisation is approximated via beam search.

Training

Minimise the *cross-entropy* between \hat{p} and the empirical distribution present in the dataset $(w^n, y^n)_{n=1}^N$:

$$\begin{split} \min_{\hat{p}} \left\{ & - \sum_{n=1}^{N} \log \prod_{i=1}^{L_n} \left\{ \hat{p}_w(y_i^{n\text{arc}} \mid y_{< i}^n) \hat{p}_w(y_i^{n\text{lab}} \mid y_i^{n\text{arc}}, y_{< i}^n) \right. \\ & \cdot \hat{p}_w(y_i^{n\text{ord}} \mid y_i^{n\text{arc}}, y_{< i}^n) \hat{p}_w(y_i^{n\text{pos}} \mid y_i^{n\text{arc}}, y_{< i}^n) \hat{p}_w(y_i^{n\text{morph}} \mid y_i^{n\text{arc}}, y_{< i}^n) \right\} \right\} \\ & = \min_{\hat{p}} \left\{ \text{loss}^{\text{arc}} + \text{loss}^{\text{lab}} + \text{loss}^{\text{ord}} + \text{loss}^{\text{pos}} + \text{loss}^{\text{morph}} \right\}. \end{split}$$

This is approximated via SGD with Nesterov momentum.

Performance metrics

The TIGER treebank is a widely-used corpus of $\sim\!50\,000$ constituency trees. Its main textual basis is the *Frankfurter Rundschau*.

 \blacksquare 97% of the dataset is usable as training examples, with train/dev/test split of 80/10/10%.

Model	F1	Disc. F1
FGonzález & GRodríguez (2022)	89.8	71.0
Corro (2020)	90.0	62.1
Chen & Komachi (2023)	89.6	70.9
This work	89.5	82.2

Table: Comparison of overall F1-score (%) and F1-score measured only on discontinuous constituents (disc. F1). Calculated using disco-dop (Van Cranenburgh et al., 2016) as standard practice. All models configured with BERT

Model	pos	morph (avr)
Kondratyuk et al. (2018)	98.58	98.97
Müller et al. (2013)	98.20	98.27
Schnabel & Schütze (2014)	97.50	97.76
This work	99.16	99.54

Table: Comparison of part-of-speech (pos) and morphology accuracies (%). Morphology accuracies are the average of accuracies for case, degree, gender, mood, number, person and tense.

Bibliography I

Chan, B., Möller, T., Pietsch, M., & Soni, T. (2020). German BERT (bert-base-german-cased). Retrieved September 1, 2023, from https://huggingface.co/bert-base-german-cased

Chen, Z., & Komachi, M. (2023). Discontinuous combinatory constituency parsing. Transactions of the Association for Computational Linguistics, 11, 267–283.

Chiu, J. P., & Nichols, E. (2016). Named entity recognition with bidirectional lstm-cnns. Transactions of the association for computational linguistics, 4, 357–370.

Corro, C. (2020). Span-based discontinuous constituency parsing: A family of exact chart-based algorithms with time complexities from o (n^o 6) down to o (n^o 3). Empirical Methods in Natural Language Processing.

Dozat, T., & Manning, C. D. (2016). Deep biaffine attention for neural dependency parsing.

International Conference on Learning Representations.

Eger, S., Gleim, R., & Mehler, A. (2016). Lemmatization and morphological tagging in german and latin: A comparison and a survey of the state-of-the-art. Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16), 1507–1513.

Fernández-González, D., & Gómez-Rodriguez, C. (2022). Multitask pointer network for multi-representational parsing. *Knowledge-Based Systems*, 236, 107760.

Bibliography II

- Fernández-González, D., & Martins, A. F. (2015). Parsing as reduction. Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). 1523–1533.
 - Gleim, R., Eger, S., Mehler, A., Uslu, T., Hemati, W., Lücking, A., Henlein, A., Kahlsdorf, S., & Hoenen, A. (2019). A practitioner's view: A survey and comparison of lemmatization and morphological tagging in german and latin. *Journal of Language Modelling*, 7(1), 1–52.
 - Kondratyuk, D., Gavenčiak, T., Straka, M., & Hajič, J. (2018). Lemmatag: Jointly tagging and lemmatizing for morphologically-rich languages with brnns. arXiv preprint arXiv:1808.03703.
 - Müller, T., Schmid, H., & Schütze, H. (2013). Efficient higher-order crfs for morphological tagging. Proceedings of the 2013 conference on empirical methods in natural language processing, 322–332.
- Schnabel, T., & Schütze, H. (2014). FLORS: Fast and simple domain adaptation for part-of-speech tagging. *Transactions of the Association for Computational Linguistics*, 2, 15–26.
- Van Cranenburgh, A., Scha, R., & Bod, R. (2016). Data-oriented parsing with discontinuous constituents and function tags. *Journal of Language Modelling*, 4(1), 57–111.
- Vinyals, O., Fortunato, M., & Jaitly, N. (2015). Pointer networks. Advances in neural information processing systems, 28.

Appendix: Mathematical justification of bi-affine classifier

Notation has been simplified for presentational clarity. Take a single class c and suppose

$$\begin{bmatrix} \mathbf{e}_i \\ \mathbf{d}_j \end{bmatrix} \mid c \sim \mathcal{N} \Bigg(\begin{bmatrix} \boldsymbol{\mu}_c \\ \boldsymbol{\phi}_c \end{bmatrix}, \begin{bmatrix} \mathbf{A}_c & \mathbf{Q}_c^\mathsf{T} \\ \mathbf{Q}_c & \mathbf{B}_c \end{bmatrix}^{-1} \Bigg).$$

The conditional log-likelihood of c is the following affine quadratic form:

$$\begin{split} \mathbf{v}_{i,j}^{c} &= \log p(\mathbf{e}_{i} \mid c, \mathbf{d}_{j}) = k^{c} - \frac{1}{2}((\mathbf{e}_{i} - \boldsymbol{\mu}_{c}) - \mathbf{A}_{c}^{-1}\mathbf{Q}_{c}^{\mathsf{T}}(\mathbf{d}_{j} - \boldsymbol{\phi}))^{\mathsf{T}}\mathbf{A}_{c}(\mathbf{e}_{i} - \boldsymbol{\mu}_{c}) - \mathbf{A}_{c}^{-1}\mathbf{Q}_{c}^{\mathsf{T}}(\mathbf{d}_{j} - \boldsymbol{\phi}) \\ &= \mathbf{e}_{i}^{\mathsf{T}}\mathbf{Q}_{c}^{\mathsf{T}}\mathbf{d}_{j} - \frac{1}{2}\mathbf{e}_{i}^{\mathsf{T}}\mathbf{A}_{c}\mathbf{e}_{i} - \frac{1}{2}\mathbf{d}_{j}^{\mathsf{T}}\mathbf{Q}_{c}\mathbf{A}_{c}^{-1}\mathbf{Q}_{c}^{\mathsf{T}}\mathbf{d}_{j} + (\boldsymbol{\mu}^{\mathsf{T}}\mathbf{A}_{c} - \boldsymbol{\phi}^{\mathsf{T}}\mathbf{Q}_{c})\mathbf{e}_{i} + (\boldsymbol{\phi}^{\mathsf{T}}\mathbf{Q}_{c}\mathbf{A}_{c}^{-1}\mathbf{Q}_{c}^{\mathsf{T}} - \boldsymbol{\mu}^{\mathsf{T}}\mathbf{Q}^{\mathsf{T}})\mathbf{d}_{j} \\ &= c\text{th row of } \mathbf{e}_{i}^{\mathsf{T}}\mathbf{U}_{\mathsf{h-d}}\mathbf{d}_{j} + \mathbf{e}_{i}^{\mathsf{T}}\mathbf{U}_{\mathsf{h-h}}\mathbf{e}_{i} + \mathbf{d}_{j}^{\mathsf{T}}\mathbf{U}_{\mathsf{d-d}}\mathbf{d}_{j} + U_{\mathsf{h}}\mathbf{e}_{i} + U_{\mathsf{d}}\mathbf{d}_{j} + u_{\mathsf{bias}} \end{split}$$

Memory-efficient implementation: under conditional normality, the affine quadratic transformation can be computed as

$$v_{i,j}^c = k^c + \left\| W_h^c \mathbf{e}_i + W_d^c \mathbf{d}_j + \mathbf{w}^c \right\|_2$$