

Algorithm Design and Analysis (H) cs216

Prof. Shiqi Yu (于仕琪)

yusq@sustech.edu.cn

http://faculty.sustech.edu.cn/yusq/

Assignment 1

A better assignment/project

The power of O(Kⁿ)

Understand the resource demanded in fight against COVID-19.

Dynamic Programming

Algorithmic Paradigms

•Greedy. Build up a solution incrementally, myopically optimizing some local criterion.

•Divide-and-conquer. Break up a problem into subproblems, solve each sub-problem independently, and combine solution to sub-problems to form solution to original problem.

•Dynamic programming. Break up a problem into a series of overlapping sub-problems, and build up solutions to larger and larger sub-problems.

Dynamic Programming History

•Bellman. [1950s] Pioneered the systematic study of dynamic programming.

Etymology.

- Dynamic programming = planning over time.
- Secretary of Defense was hostile to mathematical research.
- Bellman sought an impressive name to avoid confrontation.

"it's impossible to use dynamic in a pejorative sense" "something not even a Congressman could object to"

Reference: Bellman, R. E. Eye of the Hurricane, An Autobiography.

Dynamic Programming Applications

Areas.

- Bioinformatics.
- Control theory.
- Information theory.
- Operations research.
- Computer science: theory, graphics, AI, compilers, systems,

Some famous dynamic programming algorithms.

- Unix diff for comparing two files.
- Viterbi for hidden Markov models.
- Smith-Waterman for genetic sequence alignment.
- Bellman-Ford for shortest path routing in networks.
- Cocke-Kasami-Younger for parsing context free grammars.

1. Weighted Interval Scheduling

Weighted Interval Scheduling

•Weighted interval scheduling problem.

- \triangleright Job j starts at s_i , finishes at f_i , and has weight or value v_i .
- > Two jobs compatible if they don't overlap.
- > Goal: find maximum weight subset of mutually compatible jobs.

Unweighted Interval Scheduling Review

- •Recall. Greedy algorithm works if all weights are 1.
 - Consider jobs in ascending order of finish time.
 - Add job to subset if it is compatible with previously chosen jobs.

•Observation. Greedy algorithm can fail spectacularly if arbitrary weights are allowed.

Weighted Interval Scheduling

Notation. Label jobs by finishing time: $f_1 \le f_2 \le ... \le f_n$.

Def. p(j) = largest index i < j such that job i is compatible with j.

Ex: p(8) = 5, p(7) = 3, p(2) = 0.

Dynamic Programming: Binary Choice

optimal substructure

Notation. OPT(j) = value of optimal solution to the problem consisting of job requests 1, 2, ..., j.

- Case 1: OPT selects job j.
 - collect profit v_j
 - can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j 1 }
 - must include optimal solution to problem consisting of remaining compatible jobs 1, 2, ..., p(j)

■ Case 2: OPT does not select job j.

- must include optimal solution to problem consisting of remaining compatible jobs 1, 2, ..., j-1
- $OPT(j) = \max(v_j + OPT(p(j)), OPT(j-1))$

Weighted Interval Scheduling: Brute Force

•Brute force algorithm.

```
Input: n, s_1,...,s_n, f_1,...,f_n, v_1,...,v_n

Sort jobs by finish times so that f_1 \leq f_2 \leq ... \leq f_n.

Compute p(1), p(2), ..., p(n)

Compute-Opt(j) {
   if (j = 0)
     return 0
   else
     return max(v_j + Compute-Opt(p(j)), Compute-Opt(j-1))
}
```


Weighted Interval Scheduling: Brute Force

- •Observation. Recursive algorithm fails spectacularly because of redundant sub-problems \Rightarrow exponential algorithms.
- •Ex. Number of recursive calls for family of "layered" instances grows like Fibonacci sequence.

Weighted Interval Scheduling: Memoization

•Memoization. Store results of each sub-problem in a cache; lookup as needed.

```
Input: n, s_1, ..., s_n, f_1, ..., f_n, v_1, ..., v_n
Sort jobs by finish times so that f_1 \leq f_2 \leq \ldots \leq f_n.
Compute p(1), p(2), ..., p(n)
for j = 1 to n
   M[j] = empty <
                       alobal array
M[0] = 0
M-Compute-Opt(j) {
   if (M[j] is empty)
       M[j] = max(v_i + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
   return M[j]
```


Weighted Interval Scheduling: Running Time

- •Claim. Memorized version of algorithm takes O(n log n) time.
 - Sort by finish time: O(n log n).
 - \triangleright Computing p(·): O(n log n) via sorting by start time.
 - > M-Compute-Opt(j): each invocation takes O(1) time and either
 - √ (i) returns an existing value M[j]
 - √ (ii) fills in one new entry M[j] and makes two recursive calls
 - \triangleright Progress measure Φ = # nonempty entries of M[].
 - ✓ initially Φ = 0, throughout $\Phi \le n$.
 - ✓ (ii) increases Φ by 1 \Rightarrow at most 2n recursive calls.
 - Overall running time of M-Compute-Opt (n) is O(n).
- •Remark. O(n) if jobs are pre-sorted by start and finish times.

Weighted Interval Scheduling: Finding a Solution

- •Q. Dynamic programming algorithms computes optimal value. What if we want the solution itself?
- A. Do some post-processing.

```
Run M-Compute-Opt(n)
Run Find-Solution(n)

Find-Solution(j) {
   if (j = 0)
      output nothing
   else if (v<sub>j</sub> + M[p(j)] > M[j-1])
      print j
      Find-Solution(p(j))
   else
      Find-Solution(j-1)
}
```

 \rightarrow # of recursive calls \leq n \Rightarrow O(n).

Weighted Interval Scheduling: Bottom-Up

•Bottom-up dynamic programming. Unwind recursion.

```
Input: n, s_1,...,s_n, f_1,...,f_n, v_1,...,v_n

Sort jobs by finish times so that f_1 \leq f_2 \leq ... \leq f_n.

Compute p(1), p(2), ..., p(n)

Iterative-Compute-Opt {

M[0] = 0

for j = 1 to n

M[j] = max(v_j + M[p(j)], M[j-1])
}
```


2. Segmented Least Squares

Segmented Least Squares

Least squares.

- Foundational problem in statistic and numerical analysis.
- Given n points in the plane P: $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$.
- Find a line L: y = ax + b that minimizes the sum of the squared error:

• Error(L, P) =
$$\sum_{i=1}^{n} (y_i - ax_i - b)^2$$

Solution. Nice closed-form solution \Rightarrow min error is achieved when

$$a=rac{n\sum_i x_i y_i-(\sum_i x_i)(\sum_i y_i)}{n\sum_i x_i^2-(\sum_i x_i)^2}$$
 and $b=rac{\sum_i y_i-a\sum_i x_i}{n}$

Segmented Least Squares

- Segmented least squares.
 - Points lie roughly on a sequence of several line segments.
 - \triangleright Given n points in the plane (x_1, y_1) , (x_2, y_2) , . . . , (x_n, y_n) with
 - \succ $x_1 < x_2 < ... < x_n$, find a sequence of lines that minimizes f(x).

goodness of fit

•Q. What's a reasonable choice for f(x) to balance accuracy and

parsimony?

number of lines

У

Segmented Least Squares

- Segmented least squares.
 - Points lie roughly on a sequence of several line segments.
 - Figure 6.2. Given n points in the plane (x_1, y_1) , (x_2, y_2) , ..., (x_n, y_n) with
 - \rightarrow $x_1 < x_2 < ... < x_n$, find a sequence of lines that minimizes:
 - ✓ the sum of the sums of the squared errors E in each segment
 - ✓ the number of lines L
 - \triangleright Tradeoff function: E + c L, for some constant c > 0.

Dynamic Programming: Multiway Choice

Notation.

- \triangleright OPT(j) = minimum cost for points $p_1, p_{i+1}, \ldots, p_j$.
- \triangleright e(i, j) = minimum sum of squares for points p_i, p_{i+1}, . . . , p_j.

•To compute OPT(j):

- \triangleright Last segment uses points p_i , p_{i+1} , ..., p_i for some i.
- \triangleright Cost = e(i, j) + c + OPT(i-1).

Segmented Least Squares: Algorithm

```
INPUT: n, p_1, ..., p_N c
Segmented-Least-Squares() {
   M[0] = 0
   for j = 1 to n
       for i = 1 to j
           compute the least square error eij for
           the segment p<sub>i</sub>,..., p<sub>j</sub>
   for j = 1 to n
       M[j] = \min_{1 \le i \le j} (e_{ij} + c + M[i-1])
   return M[n]
```

can be improved to $O(n^2)$ by pre-computing various statistics •Running time. $O(n^3)$.

Bottleneck = computing e(i, j) for $O(n^2)$ pairs, O(n) per pair using previous formula.

