Due: March 5th, 6pm PST on Gradescope

101 points. Please highlight or box your final answers.

1. Sampling (65 pts) A continuous time signal x(t) has the CTFT $X(j\Omega)$ with a larger triangle of height 1 and two smaller triangles of height α as shown in Figure 1. The important frequencies are given in terms of Ω_0 in the plot.

Figure 1: Plot of $X(j\Omega)$ for Problem 1.

- (a) i. (**5pts**) What is the value of the maximum frequency f_{\max_1} present in $X(j\Omega)$?, what is the Nyquist rate f_{Nyq_1} ?. Express your answer as a function of Ω_0 .
 - ii. (5pts) Let x[n] be the sampled version of x(t) at the Nyquist rate f_{Nyq_1} . Plot the DTFT of x[n] for frequencies in the interval $[-3\pi, 3\pi]$ and label all the important frequencies and scaling factors.
 - iii. (5pts) Compute x[n] from the above DTFT plot using the known DTFT pairs and the properties from the tables. (Hint: Homework 3, Problem 4)
- (b) Now you are told that due to some hardware limitations, you are not allowed to sample at the rate f_{Nyq_1} , and you are expected to sample at a lower rate. For this, you are given an ideal analog low-pass filter g(t) with the frequency response $G(j\Omega)$,

$$G(j\Omega) = \begin{cases} 1 & |\Omega| \le 1.1\Omega_0 \\ 0 & \text{otherwise} \end{cases}.$$

Let y(t) be the signal obtained by applying the filter g(t) to x(t).

- i. (5pts) Let the CTFT of y(t) be $Y(j\Omega)$. Plot $Y(j\Omega)$ and label all the important frequencies and scaling factors.
- ii. (6 pts) What is the value of the maximum frequency f_{max_2} present in $Y(j\Omega)$?, what is the Nyquist rate f_{Nyq_2} for y(t)?. By what factor the Nyquist rate has reduced compared to part (a)?
- iii. (5pts) Let y[n] be the sampled version of y(t) at the Nyquist rate f_{Nyq_2} . Plot the DTFT of y[n] for frequencies in the interval $[-3\pi, 3\pi]$ and label all the important frequencies and scaling factors.
- iv. (4pts) Compute y[n] from the above DTFT plot using the known DTFT pairs.
- (c) Now consider sampling of y(t) in (b) at the rate f_{Nyq_1} from (a). Let this sampled signal be z[n].
 - i. (5pts) Plot the DTFT of z[n] for frequencies in the interval $[-3\pi, 3\pi]$ and label all the important frequencies and scaling factors.
 - ii. (5pts) Compute z[n] from the above DTFT plot using the known DTFT pairs.

iii. (15pts) Let the normalized error e, a measure of information loss due to the low-pass filtering, be defined as follows:

$$e = \frac{\sum_{n = -\infty}^{\infty} |x[n] - z[n]|^2}{\sum_{n = -\infty}^{\infty} |x[n]|^2}$$

Find a closed-form expression for e in terms of α and Ω_0 . (Hint: Parseval's theorem)

(d) (5pts) Consider the normalized error \hat{e} defined as follows:

$$\hat{e} = \frac{\sum_{n=-\infty}^{\infty} |x[n] - y[n]|^2}{\sum_{n=-\infty}^{\infty} |x[n]|^2}$$

Do you think \hat{e} is a good measure of information loss due to low-pass filtering over e in part (c)? Briefly explain. You don't have to compute \hat{e} . A qualitative explanation is sufficient.

2. Sub-Nyquist Sampling (36 pts) The goal of this problem is to obtain an alternative sampling strategy for a bandlimited signal x(t) when we have additional knowledge about its frequency content. Consider a continuous time signal x(t) with CTFT $X(j\Omega)$ (see Figure 2). Note that $X(j\Omega)$ is zero outside the interval $[\Omega_0 - B/2, \Omega_0 + B/2]$, where $\Omega_0 = 4000\pi$ and $0 < B \le 8000\pi$ is a positive real value.

Figure 2: Plot of $X(j\Omega)$ for Problem 2.

Figure 3: Modulated sub-Nyquist sampling

- (a) (6pt) What is the value of the maximum frequency f_{max} present in $X(j\Omega)$?, what is the Nyquist rate?. Express your answer as a function of B.
- (b) (6pt) Let x[n] be the sampled version of x(t) at the Nyquist rate. Plot the DTFT of x[n] for frequencies in the interval $[-3\pi, 3\pi]$ and label all the important frequencies and scaling factors.
- (c) (8pt) Consider the system from Figure 3. The signal $y(t) = 2\cos(\Omega_0 t)x(t)$ has CTFT $Y(j\Omega) = X(j(\Omega \Omega_0)) + X(j(\Omega + \Omega_0))$. Plot $Y(j\Omega)$ labeling all important frequencies and scaling factors. Derive a precise condition for B so that $Y(j\Omega)$ preserves the shape of $X(j\Omega)$. Hint: think about what would happen if the triangle is thin (B is small), or if the triangle is wide (B is big).
- (d) (8pt)When the shape of $X(j\Omega)$ is preserved by $Y(j\Omega)$ (assuming the conditions from the previous section are true), design an ideal analog low pass filter $H(j\Omega)$ (indicate its gain and cut-off frequency), so that z(t) is bandlimited and $Z(j\Omega)$ preserves the shape of $X(j\Omega)$.

(e) (8pt) What is the value of the maximum frequency of z(t) and what is the Nyquist rate?, how does this sampling rate relate to the Nyquist rate of part (a)?. Let z[n] be the sampled version of z(t) at its Nyquist rate. Plot the DTFT of z[n], make sure you label all important frequencies and include at least 2 periods in your plot.