# FINITE ELEMENT MODELING TECHNIQUES FOR ANALYSIS OF VIIP

A. Feola<sup>1</sup>, J. Raykin<sup>1</sup>, R. Gleason<sup>1</sup>, L. Mulugeta<sup>3</sup>, J. Myers<sup>2</sup>, E. Nelson<sup>2</sup>, B. Samuels<sup>4</sup>, C.R. Ethier<sup>1</sup>

<sup>1</sup>Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA; <sup>2</sup>NASA Glenn Research Center, Cleveland, OH; <sup>3</sup>Universities Space Research Association, Houston, TX; <sup>4</sup>Department of Ophthalmology, U. Alabama at Birmingham, Birmingham, AL



Wallace H. Coulter Department of Biomedical Engineering









# The Eye in Microgravity

 Clinical signs of microgravity in the eye and optic nerve:

Grade 3 edema





Choroidal folds



Posterior Globe Flattening Optic Nerve 'kinking'





~Mader et al. 2011; Kramer et al. 2012

### **Hypothesis**

 Cephalad fluid shifts in microgravity affect intracranial and intraocular pressures, leading to altered biomechanical loads on the connective tissues of the posterior globe and optic nerve

sheath.



~humanresearchroadmap.nasa.gov

### Goal & Approach

 Goal: To model the response of the lamina cribrosa and optic nerve head (ONH) to elevated intracranial pressure (ICP)

- <u>Finite Element Analysis</u> (FEA)
  - Simulates effects of loads (pressures) on tissues with complex anatomy/material properties
  - Previously used to understand how IOP-induced changes affect the stresses and strains in the lamina cribrosa and ONH

## **Initial Steps**

- 1. Develop geometry of the posterior eye
  - Including all relevant tissue components
- 2. Perform a mesh convergence study
  - To ensure mesh independence
- 3. Simulate pressures estimated to occur in microgravity

## Optic Nerve Head (ONH) Geometry

Based on models of Sigal et al., 2005



### **Geometry Continued**

 Our anatomical geometry is axisymmetric but it was required to be modeled as a 3D wedge in the FE solver (FEBio)

- Defined in-plane (y and z) and circumferential (s) element sizes



### **Model Overview**

 All tissues were modeled as isotropic, linear-elastic and incompressible.

| Component              | Modulus (MPa) |  |
|------------------------|---------------|--|
| Sclera                 | 3.0           |  |
| Peripapillary sclera   | 3.0           |  |
| Lamina cribrosa        | 0.3           |  |
| Optic nerve            | 0.03          |  |
| Pia mater              | 3.0           |  |
| Dura mater             | 1.0           |  |
| Central retinal vessel | 0.3           |  |

~ Raykin et al. 2013; Sigal et al. 2004; Sigal et al. 2005

### **Boundary Conditions**

- Intraocular Pressure (IOP)
- Retinal Vessel Pressure (RVp)
- Intracranial Pressure (ICP)



### Convergence Overview

- The average effective strain for each tissue region was calculated for each mesh density.
- Convergence Criteria: Our production mesh was defined as having <5% relative error in the average effective strain from our most refined mesh er of

**Elements** 

|                        | (Hexahedral) |
|------------------------|--------------|
| Sclera                 | 689 – 7589   |
| Peripapillary sclera   | 560 - 21145  |
| Lamina cribrosa        | 265 - 13565  |
| Optic nerve            | 8445 - 52147 |
| Pia mater              | 662 – 53662  |
| Dura mater             | 1835 – 44035 |
| Central retinal vessel | 243 - 126177 |

Component

### Lamina Cribrosa Convergence Plot



## Estimated Pressures in Microgravity

- Intraocular Pressure (IOP) 15 mmHg
- Retinal Vessel Pressure (RVp) 55 mmHg
- Intracranial Pressure (ICP) 30 mmHg



~ Alexander et al. 2012; Mader et al. 2011

### Linear Elastic Model



### Conclusions

- Developed a physiologically relevant model of the posterior eye and optic nerve sheath
  - Performed a mesh convergence study
- We observed that elevating ICP alters the loading conditions in the optic nerve head
  - This may activate mechanosensitive cells and lead to a remodeling of the optic nerve sheath
- However linear-elastic materials may not completely describe the loading conditions of the eye in microgravity.

### **Poroelastic Models**

- We explored implementing poroelastic materials and fluid loading conditions because:
  - The intraocular, retinal vessel, and intracranial pressures are generated by fluids
  - Poroelastic models allows volumetric changes when subjected to a fluid pressure
  - Fluid movement occurs between and within each tissue

### **Poroelastic Simulations**

- Simulated the IOP and ICP as fluid pressures
- We modeled the components of the optic nerve head as poroelastic
  - The lamina cribrosa, optic nerve, and pia mater were poroelastic with a permeability of 0.001 mm<sup>2</sup>/MPa\*s



~ Raykin et al. 2013

# First Principal Strain



|                 | Linear-Elastic | Poroelastic |                       |
|-----------------|----------------|-------------|-----------------------|
|                 | Mean Strain    | Mean Strain | Percent<br>Difference |
| Lamina Cribrosa | 1.64%          | 1.5%        | 2%                    |
| Optic Nerve     | 1%             | 1.4%        | 10.4%                 |

# First Principal Strain



|                 | Linear-Elastic | Poroelastic |                       |
|-----------------|----------------|-------------|-----------------------|
|                 | Mean Strain    | Mean Strain | Percent<br>Difference |
| Lamina Cribrosa | 1.5%           | 1.7%        | 2.4%                  |
| Optic Nerve     | 1.3%           | 2.1%        | 16.3%                 |

# **Third Principal Strain**



|                 | Linear-Elastic | Poroelastic |                       |
|-----------------|----------------|-------------|-----------------------|
|                 | Mean Strain    | Mean Strain | Percent<br>Difference |
| Lamina Cribrosa | -2.8%          | -0.05%      | 24.5%                 |
| Optic Nerve     | -1.7%          | -1.0%       | 11.1%                 |

# **Third Principal Strain**



|                 | Linear-Elastic | Poroelastic |                       |
|-----------------|----------------|-------------|-----------------------|
|                 | Mean Strain    | Mean Strain | Percent<br>Difference |
| Lamina Cribrosa | -2.6%          | -0.3%       | 22.2%                 |
| Optic Nerve     | -1.6%          | -0.44%      | 18.2%                 |

### **Conclusions**

 We observed large differences in the strains between the linear-elastic and poroelastic model simulations

- Poroelastic models may be more physiologically relevant because they can apply fluid pressures and allow fluid flow within tissues
  - However, we need more information on the permeability of ocular structures to implement more accurate FE models

# Acknowledgements

DeVon Griffin



