

PATENT ABSTRACTS OF JAPAN

(11)Publication number : 59-051251
 (43)Date of publication of application : 24.03.1984

(51)Int.CI.

C07C121/66
 C07C120/00
 C07C121/75
 C07C121/76
 C07C121/78
 C07C147/14
 // B01J 27/06
 C07B 27/00
 C07D207/20
 C07D207/34
 C07D209/46
 C07D209/88
 C07D231/16
 C07D263/56
 C07D277/30
 C07D279/22

(21)Application number : 57-160315

(71)Applicant : DAIKIN IND LTD

(22)Date of filing : 14.09.1982

(72)Inventor : SUZUKI HITOMI
NAITO HIROSHI

(54) PREPARATION OF BENZYL CYANIDE COMPOUND

(57)Abstract:

PURPOSE: To prepare the titled compound useful as a synthetic intermediate of a nitrogen-containing heterocyclic compound, in high yield, by reacting an α -cyanoalkylcarboxylic acid ester with a nucleus halogen-substituted compound having aromatic nature in the presence of specific solvent and catalyst.

CONSTITUTION: The α -cyanocarboxylic acid ester of formula I (R_1 is H or lower alkyl; R_2 is lower alkyl) is made to react with a strong base such as sodium hydride in a solvent selected from hexamethylphosphoric acid triamide and N-methylpyrrolidone (i.e. HMPA and NMP), and the resultant reaction mixture is added with a nucleus halogen-substituted compound having aromatic nature (hereinafter called as B) and made to react with each other in the presence of a copper halide (e.g. cuprous iodide) or copper and a halogen to obtain the objective benzyl cyanide compound of formula II (Ar is residue of B wherein one nucleus-substituted halogen is removed therefrom; R_3 is R_1).

I

II

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of
rejection]

[Date of requesting appeal against examiner's
decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

⑯ 日本国特許庁 (JP)
 ⑰ 公開特許公報 (A)

⑪ 特許出願公開
 昭59—51251

⑤ Int. Cl. ³	識別記号	府内整理番号
C 07 C 121/66		7731—4H
120/00		7731—4H
121/75		7731—4H
121/76		7731—4H
121/78		7731—4H
147/14		6667—4H
// B 01 J 27/06		7059—4G
C 07 B 27/00		7457—4H
C 07 D 207/20		7242—4C
207/34		7242—4C
209/46		7132—4C
209/88		7132—4C ※

④ 公開 昭和59年(1984)3月24日

発明の数 1
 審査請求 未請求

(全 12 頁)

⑤ ベンジルシアニド類の製造方法

① 特願 昭57—160315
 ② 出願 昭57(1982)9月14日
 ③ 発明者 鈴木仁美

松山市桑原2丁目9番8号

④ 出願人 ダイキン工業株式会社
 大阪市北区梅田1丁目12番39号
 新阪急ビル

最終頁に続く

明細書

1. 発明の名称

ベンジルシアニド類の製造方法

2. 特許請求の範囲

(1) ヘキサメチル構成トリアミドおよびN-メチルビロリドンから選ばれた少なくとも1種の溶媒中、

一般式：

(式中、R₁は水素または低級アルキル基、R₂は低級アルキル基を示す。)

で表わされる(1)～(3)の新規な製造方法に詳しく述べる。

(1) ハロゲン化銅、または(2)銅およびハロゲンを芳香族性を有する核ハロゲン置換化合物に對し0.08～5倍モル用いる前記第1項記載の

一般式：

(式中、Arはハロゲンが脱離した芳香族性を有する核ハロゲン置換化合物残基、R₁は前記と同じ。)

で表わされるベンジルシアニド類の製造方法。

(2) (a) ハロゲン化銅、または(b)銅およびハロゲンを芳香族性を有する核ハロゲン置換化合物に對し0.08～5倍モル用いる前記第1項記載の

製造方法。

(3) 反応温度が70～180℃である前記第1項記載の製造方法。

3. 発明の詳細な説明

本発明はベンジルシアニド類の新規な製造方法に關し、更に詳しくはα-シアノアルキルカルボン酸エステルと芳香族性を有する核ハロゲン置換化合物を特定の溶媒および触媒の存在下で反応させることからなるベンジルシアニド類の製造方法に関するもの。

ベンジルシアニド類は、例えば、生理活性を

もつ生体アミン関連物質や含蜜聚複素環化合物の合成中間体としてきわめて重要な化合物であり、更に例えば、シアノ基を加水分解することによってカルボン酸となしたもの（例えばイブフェナック、イブプロフェンおよびフルオルビプロフェン）は、抗炎症、鎮痛および解熱作用のすぐれた効力を有する非ステロイド系医薬品として利用されている。

従来ベンジルシアニド類の合成は、主として次に示す方法によっている。

(式中、Arは芳香族性を有する基、Xはハロゲンまたはスルホン基を示す。以下同じ。)

しかし、上記の方法はいずれも原料となるベンジル化合物やベンズアルデヒド化合物の合成が難しく工業的な製法とはいえない。例えば、方法a)で用いられるベンジルハロゲニドは、普

ムアミドを作用させてシアノメチルアニオンを発生させたのち、これを光照射の下で芳香核ハロゲン置換化合物と反応させると該ハロゲンとシアノメチルアニオンとが置換されベンジルシアニド類が生成するということが知られているが、收率が低く実用性に乏しい。

そこで本発明者らは研究を進めた結果、ヘキサメチルリン酸トリアミド（以下HMPAと略す。）、N-メチルピロリドン（以下NMPと略す。）等の溶媒中、 α -シアノアルキルカルボン酸エステルに強塩基を作用させたものに芳香族性を有する核ハロゲン置換化合物を反応させたところ、該置換ハロゲン原子が臭素および沃素の場合はこれらハロゲン原子がシアノアルキル基の置換を容易に受け、対応するベンジルシアニド類が收率良く得られることを見い出し本発明を完成するに至った。

すなわち、本発明の要旨は、ヘキサメチルリン酸トリアミドおよびN-メチルピロリドンから選ばれた少なくとも1種の溶媒中、

通、芳香族化合物のブランクエレ（Blanc-Quellet）法によるハロゲノメチル化、芳香族化合物の側鎖メチル基のハロゲン化、およびベンジルアルコールとハロゲン化水銀の反応によって合成されているが、いずれの反応も芳香核内の置換基の電気的および立体的な影響を受けやすく、芳香核上の特定の位置に希望する置換基をもったベンジルハロゲニド化合物の合成は、著しく困難なものとなっている。

一方、芳香核へ臭素または沃素を導入することは前記ベンジルハロゲニドの合成よりはるかに容易である場合が多く、この芳香核へ導入した臭素または沃素をシアノアルキル基に変換することができるならば、この方法は工業的に有利なベンジルシアニド類の製造方法を提供するものといえよう。

しかしながら、通常の芳香族求核置換反応の条件下では芳香核置換ハロゲンとシアノアルキル基とは置換反応を起さない。特殊な例として、液体アンモニア中でアセトニトリルICナトリウ

一般式：

(式中、R₁は水素または低級アルキル基、R₂は低級アルキル基を示す。)

で表わされる(α -シアノアルキルカルボン酸エステルに強塩基を作用させ、次いで、得られた反応混合物に芳香族性を有する核ハロゲン置換化合物を加え、触媒

(a) ハロゲン化銅または(b)銅およびハロゲンの存在下に反応させ、さらに塩基性水溶液で処理することからなる

一般式：

(式中、Arはハロゲンが脱離した芳香族性を有する核ハロゲン置換化合物残基、R₁は前記と同じ。)

で表わされるベンジルシアニド類の製造方法に存する。

特開昭59- 51251(3)

本発明方法を実施するには、まず溶媒に強塩基を添加し、そこへ α -シアノアルキルカルボン酸エステルを加える。この操作により、 α -シアノアルキルカルボン酸エステル分子中のシアノ基およびカルボニル基が結合した炭素原子からプロトンを脱離させ、該炭素原子をカルバニオンにする。次いで得られた反応混合物に芳香族性を有する核ハロゲン置換化合物および触媒を加え通常70~180°Cで反応させる。好ましい温度範囲は70~135°Cで、この場合、まず中間体として α -(アルコキシカルボニル)ベンジルシアニド類:

(式中、Ar、R₁およびR₂は前記と同じ)
が主として生成する。なお反応温度が185°Cより上で180°C以下であると上記中間体と目的物のベンジルシアニド類の混合物が生成するが、副生成物やその他副産物質が生成するため收

率が落ちる場合がある。また、180°Cより上の温度で反応を行うと副反応が主となり、收率が著しく低下する。

しかし、前記中間体を生成させた後、さらにこれを塩基性の水溶液で、好ましくは80~90°Cに加熱処理することにより、目的物のベンジルシアニド類を得ることができる。この処理の際、一般に用いられるように、第8級アミンを存在させると反応を早めることが出来る。

本発明において用いられる芳香族性を有する核ハロゲン置換化合物とは、通常の芳香族性を有する化合物のその芳香核にハロゲンが置換したものをおい、本発明において該ハロゲンは臭素および沃素をさす。芳香族性を有する核ハロゲン置換化合物の代表例としては、

等が挙げられ、また上記の沃素化合物に対応する奥素化合物も同様に反応に供することが出来る。

α -シアノカルボン酸エステルの例としては、シアノ酢酸、 α -シアノプロピオン酸、 α -シアノ酢酸等のメチル、エチル、プロピルエステ

ル等が挙げられる。

上記の α -シアノカルボン酸エステルからカルバニオシを発生させるための強塩基としては、水素化ナトリウム、ナトリウムアミド等が用いられ、好ましくは水素化ナトリウムが用いられる。

触媒であるハロゲン化銅の例としては、ヨウ化銅(I)、臭化銅(I)および臭化銅(II)が挙げられる。ハロゲンの例としては臭素および沃素が挙げられる。これら触媒は芳香族性を有する核ハロゲン置換化合物に対し、0.08~5倍モル、好ましくは0.3~8倍モルで用いられる。

溶媒として、非プロトン性極性溶媒のHMPAおよびNMPが用いられる。これら非プロトン性極性溶媒は、単独で用いることができるほか、他の極性溶媒と混合して使用することができる。他の極性溶媒としては、たとえばジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、スルホラン、グライム類などが挙げられる。

中間体の α -(アルコキシカルボニル)ベンジルシアニド類を処理する塩基性水溶液としてアルカリ金属(例えばカリウムおよびナトリウム)またはアルカリ土類金属(例えばカルシウム)の水酸化物の1~10重量%水溶液が用いられる。

反応時間は通常、中間体を生成させるのに1~10時間、中間体を処理するのに1~5時間である。

次に実施例を示し、本発明を更に具体的に説明する。

実施例1 [ベンジルシアニド類の合成例]

恒温冷却器、温度計および炭素ガスの導入管を取りつけた三つロフラスコ(20 ml)に60%~水素化ナトリウム(0.16 g : 4 mmol)をとり、これをヘキサンで洗浄(2 mlで3回)して、油分を除去する。つぎに、前記三つロフラスコにHMPA(1 ml)を加えて磁気かきませ機上で攪拌しながら、炭素気流下にシアノ酢酸エチル(2.5 ml)を落下する。数分後に白色の懸濁液は

無色の透明な溶液に変る。これに4-メチルヨードベンゼン(0.486 g : 2 mmol)のHMPA溶液(1 ml)とヨウ化銅(0.762 g : 4 mmol)を順に加えると、溶液は黒かっ色に変る。反応混合物を90~95°Cで8時間反応させた(ここまでを反応操作という。)後、水酸化ナトリウム(0.12 g : 3 mmol)の水溶液(3 ml)を加えて、さらに80~90°Cで2時間処理する(ここまでを処理操作という。)。放冷後、反応混合物を希塩酸(10 ml)中へ注ぎ、生成物をエーテルで抽出(20 mlで3回)すると、対応するベンジルシアニド類(4-メチルベンジルシアニド)が得られる。

結果を第1表に示す。

実施例2~3 [ベンジルシアニド類の合成例]

第1表に示す条件を採用して、実施例1と同様の操作で反応を行った。結果を実施例1とともに第1表に示す。

〔ベンジルシアニド類の合成例〕

反応操作条件		処理操作条件				結果	
		NCCl ₃ , CO ₂ ,Et ₃ N	NaPd N ₂ H ₄	触媒 反応温度 時間	N ₂ OH/H ₂ O	燃素性水溶液	ベンジルアミ ドの生成 (收率)
実験例 1	4-メトキ ル-2-ブ チノン (2mmol) (2ml mol)	0.186g 4 ml (4mmol) (2ml mol)	0.160g 4 ml (4mmol) (2ml mol)	CuI 90-95 ℃	0.160g/3 ml 80-90 ℃	2.5ml 2.5ml	0.182g (69.5%)
2	4-メトキ ル-1,3-ジ カルボイ ン酸 (2mmol) (2ml mol)	0.186g 4 ml (4mmol) (2ml mol)	0.160g 4 ml (4mmol) (2ml mol)	同上 同上 同上 同上	0.144g/3 ml 同上 同上 同上 同上	0.249g (77%)	0.249g (77%)
8	2,4,6,6- テトラブ チル-2-ブ チノン (2mmol)	0.160g 4 ml (4mmol) (2ml mol)	0.160g 4 ml (4mmol) (2ml mol)	同上 同上 同上 同上	0.160g/3 ml 同上 同上 同上 同上	0.209g (60%)	0.209g (60%)

る中間体の*i*-アルコキジカルボニルベンジルシアニド類 (*i*-ブチル- α -(エトキジカルボニル)ベンジルシアニド) が得られた。

結果を第2表に示す。

実施例 5 ~ 12 [(x- (アルコキシカルボニル) ベンゼンスルホン酸の合成例)

第2表に示す条件を採用して実施例4と同様の操作で反応を行った。結果を実施例4とともに第2表に示す。

実施例4 [α -(アルコキシカルボニル)ベンジルシアニド類の合成例]

恒温冷却器、温度計および窒素ガスの導入管を取りつけた三つロフラスコ(20 ml)に60%—水素化ナトリウム(0.16 g : 4 mmol)をとり、これをヘキサンで洗浄(2 mlで8回)して油分を除去する。つぎに、HMPA(1 ml)を加えて磁気かきまぜ器で攪拌しながら、窒素ふん押気下にシアノ酢酸エチル(純度93% : 0.486 g : 4 mmol)のHMPA溶液(2.5 ml)を滴下する。10分ほどたつと、白濁色の反応混合物は透明な溶液に變る。これに4-1-ブチルヨードベンゼン(0.52 g : 2 mmol)のHMPA溶液(1 ml)とヨウ化鉄(0.762 g : 4 mmol)を順に加える。加热を始めると溶液は次第に黒かっ色に變る。90~95°Cに5時間保ったのち放冷し、反応混合物を希塩酸(10 ml)中へ注ぎ、エーテルで抽出(20 mlで3回)する。抽出液を無水硫酸ナトリウムで乾燥後、溶媒を減圧下で除去し、残分をシリカゲルカラムに通じて精製すると、対応す

表2 $(\alpha-(\text{アルコキシカルボニル})\text{-ベンジルシアニド基の} \beta\text{-ヒドロキシ化})$

	反応操作条件	結果	
実験例	芳香族性を有する核へローリン既成化合物	NOOEt ₂ , HMPA またはNMP CuI 時間	
4	4-トブチル-2-ビベンゼン 0.520g (2mmol)	0.486g (4mmol) HMPA 4 mL 0.160g (4mmol) CuI 90~95°C 5時間	0.384g(78%)
6	2-エトキシ-4-トブチベンゼン 0.498g (2mmol)	同上 同上 同上 同上 同上 同上 2時間	0.428g(90%)
6	2,4-ジトキシ-4-メチベンゼン 1.820g (5mmol)	0.780g (6mmol) HMPA 7 mL 0.480g (10mmol) CuI 同上 3時間	0.895g(72%)
7	4-オクタード-1,8-ジオキサインジン 0.496g (2mmol)	0.486g (4mmol) HMPA 4 mL 0.160g (4mmol) CuI 0.762g 同上 2時間	0.330g(71%)
8	2-エトキシ-4-トブチベンゼン 0.612g (2mmol)	0.729g (6mmol) HMPA 5 mL 0.240g (6mmol) CuI 1.143g 同上 5時間	0.312g(83%)
9	2,8-ジトキシ-2-エトキシベンゼン 1.820g (5mmol)	0.780g (6mmol) 同上 同上 CuI 1.905g (10mmol) 同上 7時間	0.666g(54%)
10	2,4,8-トリメチルヘロービベンゼン 0.492g (2mmol)	0.486g (4mmol) HMPA 4 mL 0.160g (4mmol) CuI 0.762g 同上 6時間	0.338g(73%)
11	4-トブチル-2-ビベンゼン 0.520g (2mmol)	同上 NMP 4 mL 同上 同上 同上 同上 同上 同上 金属性 (4mmol) CuI (2mmol)	0.345g(70%)
12	同上	同上 HMPA 4 mL 同上 同上 同上 同上 同上 0.369g(75%)	0.369g(75%)

実施例13 [ベンジルシアニド類の185~180°Cの反応温度での合成例]

還流冷却器、温度計および窒素ガスの導入管を取りつけた三つロフラスコ(20 ml)に60%一水素化ナトリウム(0.112 g : 2.8 mmol)をとり、これをヘキサンで洗浄(2 mlで8回)して油分を除去する。つぎに、HMPA(1 ml)を加えて磁気かきまぜ器上で攪拌しながら、窒素ふん開気下にシアノ酢酸エチル(0.292 g : 2.4 mmol)のHMPA溶液(2 ml)を滴下したのち、約15分間かきまぜ、さらに3-OH、OH、OH-トリフルオロプロモベンゼン(0.450 g : 2 mmol)のHMPA溶液(1 ml)と沃化銅(0.762 g : 4 mmol)を一度に加えて、10時間加熱下に反応を行わせる。この時の反応混合物の組成の経時変化を表3に示す。

実施例14~17 [ベンジルシアニド類の185~180°Cの反応温度での合成例]

第3表に示す条件を採用して実施例13と同様の操作で反応を行った。反応混合物の組成の経時変化を実施例13とともに第3表に示す。

表3 [ベンジルシアニド類の185~180°Cの反応温度での合成例]

反応操作条件	未反応の芳香族 化合物を除いた 反応混合物						Cu-(アセト酸) ベンジルシアニド mol %
	NCO ₂ H mol	HMPA (2.4 mmol)	CuI (2.8 mmol) (2.0 mmol)	反応 温度 °C	時間 h	モル比 n:N	
3-OH、OH、OH- トリフルオロ プロモベンゼン 13	0.292 g (2.4 mmol)	2 ml (2.4 mmol)	CuI 0.112 g (2.8 mmol) (2.0 mmol)	135 140 140	1 5 7	0.1 1.4 8 4 2	44 46 65 61 52
14	向 上	向 上	向 上	150 150	5 7	1 1	56 37 31 25 34
15	向 上	向 上	向 上	175 180	3 10	4 4	69 52 16 80
16	向 上	向 上	向 上	155 160 160	8 6 5	47 82 22 13	45 62 72 51
17	向 上	向 上	向 上	155 155 155 155 155	1 1 1 1 1	69 51 41 21 8	19 81 21 15

手 続 補 正 書

第1頁の続き
⑤Int. Cl.³ 識別記号 庁内整理番号
C 07 D 231/16 7133-4C
263/56 7330-4C
277/30 7330-4C
279/22 7330-4C

⑦発明者 内藤大嗣
茨木市高田町21番6号

昭和57年11月16日

特許庁長官 若杉和夫 殿

1. 事件の表示 昭和57年特許願第160315号

2. 発明の名称 ベンジルシアニド類の製造方法

3. 補正をする者

事件との関係 特許出願人

住所 大阪市北区梅田1丁目12番39号新阪急ビル

名称 (285)ダイキン工業株式会社

代表者 山田 稔

4. 補正命令の日付 自發

5. 補正の対象

明細書の「発明の名称」の欄、「特許請求の範囲」の欄および「発明の詳細な説明」の欄

6. 補正の内容

別紙の通り。

以上

(別紙)

訂 正 明 細 書

1. 発明の名称

ベンジルシアニド類の製法

2. 特許請求の範囲

(1) ヘキサメチル樹脂トリアミドおよびN-メチルビロリドンから選ばれた少なくとも1種の溶媒中、

一般式：

(式中、 R_1 は水素または低級アルキル基、 R_2 は低級アルキル基を示す。)

で表わされる α -シアノアルキルカルボン酸エステルに強塩基を作成させ、次いで、得られた反応混合物に芳香族性を有する核ハロゲン置換化合物を加え、

触媒

(a) ハロゲン化銅または

3. 発明の詳細な説明

本発明はベンジルシアニド類の新規な製法に関する、更に詳しくは α -シアノアルキルカルボン酸エステルと芳香族性を有する核ハロゲン置換化合物を特定の溶媒および触媒の存在下で反応させることからなるベンジルシアニド類の製法に関する。

本発明方法で製造される、一般式：

(式中、 Ar はハロゲンが脱離した芳香族性を有する核ハロゲン置換化合物残基、 R_1 は水素または低級アルキル基、 R_2 は水素または-COOR₃基、 R_3 は低級アルキル基を示す。)

で表わされるベンジルシアニド類は、例えば、生理活性をもつ生体アミン関連物質や含窒素複素環化合物の合成中間体としてきわめて重要な化合物であり、更に例えば、前記一般式で R_1 がHの場合、シアノ基を加水分解することによ

(b) 銅およびハロゲン

の存在下に反応させることからなる

一般式：

(式中、 Ar は一つの核置換ハロゲンが脱離した芳香族性を有する核ハロゲン置換化合物残基、 R_1 は水素または低級アルキル基、 R_2 は水素または-COOR₃基、 R_3 は低級アルキル基を示す。)

で表わされるベンジルシアニド類の製法。

(2) 触媒

(a) ハロゲン化銅

(b) 銅およびハロゲン

を芳香族性を有する核ハロゲン置換化合物に對し0.03～5倍モル用いる前記第1項記載の製法。

ってカルボン酸となしたもの（例えばイブプロフェンおよびフルルビプロフェン）は、抗炎症、鎮痛および解熱作用のすぐれた薬効を有する非ステロイド系医薬品として利用されている。また前記一般式で R_1 が-COOR₃の場合は、さらにこれを塩基性水溶液で処理して R_1 がHの化合物を得るための合成中間体として利用される。

従来ベンジルシアニド類の合成は、主として次に示す方法によっている。

a) $\text{ArCH}_2\text{XNaCN}$ または KCN ArCH_2CN

(式中、 Ar は芳香族性を有する基、Xはハロゲンまたはスルホン基を示す。以下同じ。)

b) $\text{ArCH}_2\text{CONH}_2 + \text{H}_2\text{O} \rightarrow \text{ArCH}_2\text{CN}$ c) $\text{ArCHO} \xrightarrow{\text{HCN}} \text{ArCH(OH)CN} \xrightarrow{\text{SOCl}_2} \text{ArCHClCN} \xrightarrow{+\text{H}_2} \text{ArCH}_2\text{CN}$

しかし、上記の方法はいずれも原料となるベンジル化合物やベンズアルデヒド化合物の合成が難しく工業的な製法とはいえない。例えば、方法a)で用いられるベンジルハロゲニドは、普通、芳香族化合物のブランクエレ [Blanc

-Quellet]法によるハロゲノメチル化、芳香族化合物の側鎖メチル基のハロゲン化、およびベンジルアルコールとハロゲン化水素の反応によって合成されているが、いずれの反応も芳香核内の置換基の選択性および立体的な影響を受けやすく、芳香核上の特定の位置に希望する置換基をもったベンジルハロゲニド化合物の合成は、著しく困難なものとなっている。

一方、芳香核へ臭素または沃素を導入することは前記ベンジルハロゲニドの合成よりはるかに容易である場合が多く、この芳香核へ導入した臭素または沃素をシアノアルキル基に変換することができるならば、この方法は工業的に有利なベンジルシアニド類の製造方法を提供するものといえよう。

しかしながら、通常の芳香族求核置換反応の条件下では芳香核置換ハロゲンとシアノアルキル基とは置換反応を起さない。特殊な例として、液体アンモニア中でアセトニトリルにナトリウムアミドを作用させてシアノメチルアニオンを

発生させたのち、これを光照射の下で芳香核ハロゲン置換化合物と反応させると該ハロゲンとシアノメチルアニオンとが置換されベンジルシアニド類が生成するということが知られているが、收率が低く実用性に乏しい。

そこで本発明者らは鋭意研究を進めた結果、ヘキサメチルリン酸トリアミド(以下HMPAと略す。)、N-メチルピロリドン(以下NMPと略す。)等の溶媒中、 α -シアノアルキルカルボン酸エステルに強塩基を作用させたものに芳香族性を有する核ハロゲン置換化合物を反応させたところ、該置換ハロゲン原子が臭素および沃素の場合にはこれらハロゲン原子がシアノアルキル基の置換を容易に受け、対応するベンジルシアニド類が收率良く得られることを見い出し本発明を完成するに至った。

すなわち、本発明の要旨は、ヘキサメチルリン酸トリアミドおよびN-メチルピロリドンから選ばれた少なくとも1種の溶媒中、

一般式：

(式中、 R_1 は水素または低級アルキル基、 R_2 は低級アルキル基を示す。)

で表わされる α -シアノアルキルカルボン酸エステルに強塩基を作用させ、次いで、得られた反応混合物に芳香族性を有する核ハロゲン置換化合物を加え、

触媒

(a) ハロゲン化銅

(b) 銅およびハロゲン

の存在下に反応させることからなる。

一般式：

(式中、 Ar は一つの核置換ハロゲンが脱離した芳香族性を有する核ハロゲン置換化合物残基、 R_1 は水素または低級アルキル基、 R_2 は水素

または $-\text{COOR}_3$ 基、 R_3 は低級アルキル基を示す。)で表わされるベンジルシアニド類の製法に存する。

本発明方法を実施するには、まず溶媒に強塩基を添加し、そこに α -シアノアルキルカルボン酸エ斯特ルを加える。この操作により、 α -シアノアルキルカルボン酸エ斯特ル分子中のシアノ基およびカルボニル基が結合した炭素原子からプロトンを脱離させ、該炭素原子をカルバニオンにする。次いで得られた反応混合物に芳香族性を有する核ハロゲン置換化合物および触媒を加え通常70~180°Cで反応させる。この反応の際、採用する温度範囲により前記ベンジルシアニド類一般式中の R_2 が変化する。すなわち、該温度が70~135°Cの場合、主として

の化合物(以下、 α -(アルコキシカルボニル)ベンジルシアニド類といいう。)が生成し、135~180°Cの場合、前記 α -(アルコキシカルボニル)

ベンジルシアニド類と Ar-C-CN (ArおよびR₁は前記と同じ) の化合物(以下、α-ヒドロベンジルシアニド類といふ)の混合物が生成し、高温になるほどα-ヒドロベンジルアニド類の生成割合が多くなる。また、180℃より上の温度で反応を行うと副反応が主となり、収率が著しく低下する。

しかし、 α -（アルコキシカルボニル）ベンジルシアニド類を生成させた後、さらにこれを塩基性の水溶液で、好ましくは80~90°Cに加熱処理することにより、 α -ヒドロベンジルシアニド類を得ることができる。この処理の際、一般に用いられるように、第3級アミンを存在させると反応を早めることが出来る。

本発明において用いられる芳香族性を有する核ハロゲン置換化合物とは、通常の芳香族性を有する化合物のその芳香核にハロゲンが置換したものをおい。本発明において該ハロゲンは臭素およびフッ素をさす。芳香族性を有する核ハロゲン置換化合物の代表例としては、

等が挙げられ、また上記の沃素化合物に対応する奥素化合物も同様に反応に供することが出来る。

α -シアノカルボン酸エステルの例としては、シアノ酢酸、 α -シアノプロピオン酸、 α -シアノ酪酸等のメチル、エチル、プロピルエステル等が挙げられる。

上記の α -シアノカルボン酸エステルからカルバニオンを発生させるための強塩基としては、水素化ナトリウム、ナトリウムアミド等が用いられ、好ましくは水素化ナトリウムが用いられる。

触媒であるハロゲン化銅の例としては、ヨウ化銅(I)、臭化銅(I)および臭化銅(II)が挙げられる。ハロゲンの例としては臭素および沃素が挙げられる。これら触媒は芳香族性を有する核ハロゲン置換化合物に対し、0.03～5倍モル、好ましくは0.3～3倍モルで用いられる。

溶媒として、非プロトン性極性溶媒のHMPAおよびNMPが用いられる。これら非プロトン性

極性溶媒は、単独で用いることができるほか、他の極性溶媒と混合して使用することができる。他の極性溶媒としては、たとえばジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、スルホラン、グライム類などが挙げられる。

α -(アルコキシカルボニル)ベンジルシアニド類を処理する塩基性水溶液としてアルカリ金属(例えばカリウムおよびナトリウム)またはアルカリ土類金属(例えばカルシウム)の水酸化物の1～10重抗多水溶液が用いられる。

反応時間は通常、 α -(アルコキシカルボニル)ベンジルシアニド類と α -ヒドロベンジルシアニド類の混合物を生成させるのに1～10時間、 α -(アルコキシカルボニル)ベンジルシアニド類から α -ヒドロベンジルシアニド類を得るのに1～5時間である。

次に実施例を示し、本発明を更に具体的に説明する。

実施例1 [ベンジルシアニド類の135～180℃の反応温度での合成例]

還流冷却器、温度計および窒素ガスの導入管を取りつけた三つロフラスコ(2mL)に60%水素化ナトリウム(0.112g: 2.8mmol)をとり、これをヘキサンで洗浄(2mLで3回)して油分を除去する。つぎに、HMPA(1mL)を加えて磁気かきませ器上で攪拌しながら、窒素ふん囲気下にシアノ酢酸エチル(0.292g: 2.4mmol)のHMPA溶液(2mL)を滴下したのち、約15分間かきませ、さらに3- α , α , α -トリフルオロプロモベンゼン(0.450g: 2mmol)のHMPA溶液(1mL)と沃化銅(0.762g: 4mmol)を一度に加えて、10時間加熱下に反応を行わせる。この時の反応混合物の組成の経時変化を表1に示す。

実施例2～5 [ベンジルシアニド類の135～180℃の反応温度での合成例]

第1表に示す条件を採用して実施例1と同様の操作で反応を行った。反応混合物の組成の経時変化を実施例1とともに第1表に示す。

実施例6 [α -（アルコキシカルボニル）ベンジルシアニド類の合成例]

ルシアニド類の合成例]

還流冷却器、温度計および窒素ガスの導入管を取りつけた三つロフラスコ（20mL）に60%水素化ナトリウム（0.16g: 4mmol）をとり、これをヘキサンで洗浄（2回で3回）して油分を除去する。つぎに、HMPA（1mL）を加えて吸気かきませ器で攪拌しながら、窒素ふん閉気下にシアノ酢酸エチル（純度93%: 0.486g: 4mmol）のHMPA溶液（2.5mL）を滴下する。10分ほどたつと、白濁色の反応混合物は透明な溶液に変る。これに4-イーブチルヨードベンゼン（0.52g: 2mmol）のHMPA溶液（1mL）とヨウ化銅（0.762g: 4mmol）を順に加える。加热を始めると溶液は次第に黒かっ色に変る。90~95°Cに5時間保ったのち放冷し、反応混合物を希塩酸（10mL）中へ注ぎ、エーテルで抽出（20mLで3回）する。抽出液を無水硫酸ナトリウムで乾燥後、溶媒を減圧下で除去し、残分をシリカゲルカラムにて精製すると、対応する

表1 [ベンジルシアニド類の135~180°Cの反応温度での合成例]

反応操作条件	反応の芳香族性質を有する試験化合物						反応時間	反応温度	α -（アルコキシカルボニル）ベンジルシアニド類の収率 (%)
	NCCH ₂ CO ₂ Et	HMPA	NaH	触媒	反応温度	反応時間			
実施例1 3- α , α - α - α - N-(2-ブチルヨードベンゼン （2.0mmol）	3mL 0.450g （2.4mmol）	CuI 0.112g （2.8mL 0.6mL）	135 140 145 150	1時間 1時間 1時間 1時間	31 8 2 2	1 11	44 65 61 52	44 65 61 52	44 65 61 52
2	同上	同上	同上	同上	155 160 160 170	2 1 1 1	6 16 16 25	56 37 31 12	56 37 31 12
3	同上	同上	同上	同上	175 180 180 190	3 4 4 10	9 9 16 30	69 32 32 15	69 32 32 15
4	同上	同上	同上	同上	153 160 160 170	1時間 3 5 8	47 32 22 13	45 62 72 51	45 62 72 51
5	同上	同上	同上	同上	CuBr 0.574g （同上 mL）	1時間 3 同上 8	69 51 41 28	19 31 21 15	19 31 21 15

る中間体の α -アルコキシカルボニルベンジルシアニド類（4-イーブチル- α -（エトキシカルボニル）ベンジルシアニド）が得られた。結果を第2表に示す。

実施例7~14 [α -（アルコキシカルボニル）ベンジルシアニド類の合成例]

第2表に示す条件を採用して実施例6と同様の操作で反応を行った。結果を実施例6とともに第2表に示す。

表2 [α -（アルコキシカルボニル）ベンジルシアニド類の合成例]

実施例	反応操作条件	反応操作条件						α -（アルコキシカルボニル）ベンジルシアニド類の収率 (%)
		芳香族性質を有する試験化合物	NCCH ₂ CO ₂ Et または NMP	HMPA	NaH	触媒	反応時間	
6	4-イーブチルヨードベンゼン 0.520g （2mmol）	0.486g （4mmol）	IMPA 4mL	0.160g （4mmol）	CuI 0.762g （4mmol）	90~95°C	5時間	0.384% (78%)
7	2-ニトロヨードベンゼン 0.498g （2mmol）	同上	同上	同上	同上	同上	2時間	0.423% (90%)
8	2,4-ジヨードヨードベンゼン 1.320g （5mmol）	0.730g （6mmol）	HMPA 7mL	0.480g （12mmol）	CuI 1.905g （10mmol）	同上	3時間	0.695% (72%)
9	4-ヨード-1,3-ジキオキサンタン 0.496g （2mmol）	0.486g （4mmol）	HMPA 4mL	0.160g （4mmol）	CuI 0.762g （4mmol）	同上	2時間	0.330% (71%)
10	ヨードベンゼン 0.612g （3mmol）	0.729g （6mmol）	IMPA 5mL	0.240g （6mmol）	CuI 1.143g （6mmol）	同上	5時間	0.312% (83%)
11	2,3-ジヨードキシヨードベンゼン 1.320g （5mmol）	0.730g （6mmol）	同上	同上	CuI 1.905g （10mmol）	同上	7時間	0.666% (54%)
12	2,4,6-トリヨードヨードベンゼン 0.492g （2mmol）	0.486g （4mmol）	HMPA 4mL	0.160g （4mmol）	CuI 0.762g （4mmol）	同上	5時間	0.338% (73%)
13	4-イーブチルヨードベンゼン 0.520g （2mmol）	同上	NMP 4mL	同上	同上	同上	同上	0.345% (70%)
14	同上	同上	HMPA 4mL	同上	金銀銅 （4mmol） 錫及び 鉛 （2mmol）	同上	同上	0.369% (75%)

実施例 15 [α - (アルコキシカルボニル) ベンジルシアニド類を経由する α -ヒドロベンジルシアニド類の合成例]

遮光冷却器、温度計および窒素ガスの導入管を取りつけた三つ口フラスコ (20 mL) に 60 % - 水素化ナトリウム (0.16 g : 4 mmol) をとり、これをヘキサンで洗浄 (2 mL で 3 回) して、油分を除去する。つぎに、前記三つ口フラスコに HMPA (1 mL) を加えて磁気かきませ機上で攪拌しながら、窒素気流下にシアノ酢酸エチル (2.5 mL) を滴下する。数分後に白色の懸濁液は無色の透明な溶液に変る。これに 4 - メチルヨードベンゼン (0.436 g : 2 mmol) の HMPA 溶液 (1 mL) とヨウ化銅 (0.762 g : 4 mmol) を順に加えると、溶液は黒かっ色に変る。反応混合物を 90 ~ 95 °C で 3 時間反応させた (ここまでを反応操作という) 後、水酸化ナトリウム (0.12 g : 3 mmol) の水溶液 (3 mL) を加えて、さらに 80 ~ 90 °C で 2 時間処理する (ここまでを処理操作という)。放冷後、反応混合物を希塩酸

(10 mL) 中へ注ぎ、生成物をエーテルで抽出 (20 mL で 3 回) すると、対応する α -ヒドロベンジルシアニド類 (4 - メチルベンジルシアニド) が得られる。

結果を第 3 表に示す。

実施例 16~17 [α - (アルコキシカルボニル) ベンジルシアニド類を経由する α -ヒドロベンジルシアニド類の合成例]

第 3 表に示す条件を採用して、実施例 15 と同様の操作で反応を行った。結果を実施例 15 とともに第 3 表に示す。

表3 [α - (アルコキシカルボニル) ベンジルシアニド類を経由する α -ヒドロベンジルシアニド類の合成例]

実験例	反応操作条件	結果操作条件					
		溶媒	反応温度	時間	吸湿性水溶液	NaOH/H ₂ O	α-ヒドロベンジルシアニド類の回収率 (%)
15	芳香族を有するはへロケン置換化合物 NCCH ₂ CO ₂ E ¹	4 mL (4 mmol)	0.160 g CuI (4 mmol)	0.162 g (4 mmol)	90 ~ 95 °C 3時間	0.160 g / 3 mL	80 ~ 90 °C 2時間 0.182 g (69%)
16	4-メチルヨードベンゼン -1,3-ジオキヤング	同上	同上	同上	同上	0.144 g / 3 mL	同上 同上 0.249 g (77%)
17	2,3,5,6-テトラメチルヨードベンゼン 0.520 g (5 mmol)	同上	同上	同上	同上	0.160 g / 3 mL 0.160 g / 3 mL	0.209 g (60%)