ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) ФИЗТЕХ-ШКОЛА ФИЗИКИ И ИССЛЕДОВАНИЙ им. ЛАНДАУ

Лабораторная работа № 2.5.1 Измерение коэффициента поверхностного натяжения жидкости

Плотникова Анастасия Александровна Группа Б02-406

Цель работы:

- 1) измерение коэффициента поверхностного натяжения исследуемой жидкости при разной температуре с использованием известного коэффициента поверхностного натяжения другой жидкости;
- 2) определение полной поверхностной энергии и теплоты, необходимой для изотермического образования единицы поверхности жидкости.

В работе используются:

прибор Ребиндера, оснащенный

- микроманометром,
- термостатом LOIP LT-100 (установления: $dT = 0.2^{\circ}C$, поддержания: $dT = 0.1^{\circ}C$); исследуемые жидкости (спирт этиловый, вода дистиллированная);

микроскоп.

Теоретическая справка

Формула Лапласа

Наличие поверхностного слоя приводит к различию давлений по разные стороны от искривленной границы раздела двух сред. Для сферического пузырька с воздухом внутри жидкости избыточное давление даётся формулой Лапласа:

$$\Delta P = \frac{2\sigma}{r}$$

где σ — коэффициент поверхностного натяжения, ΔP — разница давлений внутри и снаружи пузырька, r — радиус кривизны поверхности раздела двух фаз.

Закон Кирхгофа

$$L(T) = L(T_0) + \int_{T_0}^{T} (C_{p(\pi)} - C_{p(\kappa)}) dT$$

$$L(T) = L(T_0) + (C_{p(\pi)} - C_{p(\kappa)})(T - T_0)$$

Экспериментальная установка

Схема установки изображена на рисунке (1).

Исследуемая жидкость наливается в сосуд В, дистиллированная вода – в сосуд Е. Через герметично закрытую пробку сосуда с иглой С создаётся разрежение, и воздух пробулькивает через жидкость. Поверхностное натяжение определяется по величине разрежения.

При приоткрытом кране K1 из аспиратора A вытекает вода, создавая разрежение, измеряемое манометром M. Его показания, умноженные на коэффициент (обычно 0,2), дают давление в $\kappa rc/m^2$ (1 $\kappa rc/m^2 = 9.8~\Pi a$). Для пополнения воды кран K2 соединяет нижнюю часть аспиратора с атмосферой.

Температура стабилизируется водой из термостата через рубашку D. Игла обычно касается поверхности жидкости, но при измерении температурной зависимости

Рис. 1: Схема установки для измерения температурной зависимости коэффициента поверхностного натяжения.

натяжения возникают сложности: охлаждение конца иглы и тепловое расширение жидкости. Эти погрешности устраняются, если опустить иглу до дна.

Давление определяется как:

$$P = \Delta P + \rho g h$$
.

Для измерения ρgh используются два метода:

- 1. Определение P_1 при касании поверхности и P_2 при погружении до дна ($\rho gh = P_2 P_1$).
- 2. Измерение h_1 и h_2 при P_1 и P_2 .

Чувствительность микроманометров высока, поэтому перед изменениями в установке их переключают на атмосферу. При заполнении аспиратора без сброса давления возможны пузыри, нарушающие калибровку и точность измерений.

Ход работы

1. Убедимся в исправности установки. Аспиратор был заполнен водой, а чистая сухая игла установлена в сосуде со спиртом, не касаясь поверхности воды. Опустим иглу так, чтобы её кончик едва коснулся поверхности воды. Установим скорость падения капель примерно 1 капля в 3 секунды. Откроем кран аспиратора, заметим пробулькивания пузырьков воздуха в колбе. Манометр показывает медленный рост давления до некоторого максимального значения и затем быстрое его падение при пробулькивании пузырька.

- 2. Подберём частоту падения капель так, чтобы максимальное давление не зависело от этой частоты. Для этого пузырьки не должны пробулькивать слишком часто (примерно 1 пузырёк в 3-5 секунд).
- 3. Измерим максимальное давление при пробулькивании пузырька. Для точности проведем десять измерений и усредним полученное значение. Результаты представлены в таблице (1).

$$h_{\text{сп}}, \, \text{мм} \, \left| \, \, 47 \, \, \, 47 \, \, \, 47 \, \, \, 47 \, \, \, 48 \, \, \, 47 \, \, \, 48 \, \, \, 47 \, \, \, 47 \, \, \, 47 \, \, \, 47.2 \, \, \left| \, \, \sigma_h = 1 \, \, \right| \right.$$
 Таблица 1:

По разбросу результатов оценим случайную погрешность ($\varepsilon_{h_{\rm cn}} = 0.032$).

$$h_{\rm cm} = (47 \pm 2) \, {\rm mm} = (4.7 \pm 0.2) \cdot 10^{-2} \, {\rm m}$$

Комнатная температура: $t=(24.8\pm0.3)^{\circ}C=(298.0\pm0.3)K$ Коэффициент поверхностного натяжения спирта (для $t\approx25^{\circ}C$):

$$\sigma_{\text{cm}} = \frac{1}{2}(22.87 + 21.90) = 22.39 \frac{\text{MH}}{\text{M}}$$

$$d(\sigma_{\text{cm}}) = \frac{1}{2}(22.87 - 21.90) + 0.02 = 0.49 + 0.02 = 0.51 \frac{\text{MH}}{\text{M}}$$

$$\sigma_{\text{cm}} = (22.4 \pm 0.5) \frac{\text{MH}}{\text{M}} = (2.24 \pm 0.05) \cdot 10^{-4} \frac{\text{H}}{\text{M}}$$

Плотность спирта (для $t \approx 25^{\circ}C$):

$$\rho_{\text{cr}} = \frac{1}{2}(789.5 + 781.0) = 785.3 \frac{\text{K}\Gamma}{\text{M}^3}$$
$$d(\rho_{\text{cr}}) = \frac{1}{2}(789.5 - 781.0) + 0.2 = 4.3 + 0.2 = 4.5 \frac{\text{K}\Gamma}{\text{M}^3}$$
$$\rho_{\text{cr}} = (785 \pm 5) \frac{\text{K}\Gamma}{\text{M}^3} = (7.85 \pm 0.05) \cdot 10^{-2} \frac{\text{K}\Gamma}{\text{M}^3}$$

Пользуясь табличным значением коэффициента поверхностного натяжения воды, определим диаметр иглы.

$$\begin{split} \Delta P &= \frac{2\sigma_{\text{ch}}}{r} = \frac{4\sigma}{d}, \quad d = \frac{4\sigma}{\Delta P} = \frac{4\sigma}{\rho_{\text{ch}} g l \sin \alpha} = 1.238 \cdot 10^{-3} \, \text{m} \\ \varepsilon_d &= \sqrt{\varepsilon_\sigma^2 + \varepsilon_{\rho_{\text{ch}}}^2 + \varepsilon_l^2} = 0.031, \quad d(d) = d \cdot \varepsilon_d = 3.9 \cdot 10^{-5} \, \text{m} \\ d &= (1240 \pm 40) \, \text{mm} = (1.24 \pm 0.04) \cdot 10^3 \, \text{m} \end{split}$$

Проверим применимость формулы Лапласа. Сравним полученный результат с прямыми измерениями диаметра иглы, представленными на рисунке (2). Провели два измерения, значения совпали. К сожалению, только одно из измерений получилось качественно запечатлеть на фотографии.

$$d = (1.1 \pm 0.1) \,\mathrm{MM} = (1.1 \pm 0.1) \cdot 10^{-3} \,\mathrm{M}$$

Значения совпадают в пределах погрешности. Формула Лапласа верна с достаточной точностью.

Рис. 2: Изображение разреза иглы в увеличении микроскопа

4. Перенесём иглу в сосуд с дистиллированной водой. Измерим максимальное давление в пузырьках, когда игла лишь касается поверхности жидкости. Измерим $h_1 = h_{\rm B}$ десять раз, занесем полученные значения в таблицу (2).

$$h_1$$
, MM | 125 | 124 | 125 | 125 | 125 | 125 | 125 | 125 | 125 | 125 | 125 | 125 | $\sigma_h = 1$

Таблица 2:

Рассчитаем случайную погрешность ($\varepsilon_{h_1} = 0.018$).

$$h_1 = (125 \pm 2) \text{ MM} = (1.25 \pm 0.02) \cdot 10^{-1} \text{ MM}$$

 $\Delta P_1 = \rho_{\rm cn} g h_1 \sin \alpha = 192.52 \,\Pi a$
 $\Delta P_1 = (193 \pm 5) \,\Pi a = (1.93 \pm 0.05) \cdot 10^2 \,\Pi a$ (2.4%)

Сравним с результатом, выраженным через табличные величины.

$$d \sim \frac{\sigma}{h} \Longrightarrow \frac{\sigma_{\rm cii}}{h_{\rm cii}} = \frac{\sigma_{\rm b}}{h_{\rm b}}$$

$$h_{\rm b} = h_{\rm cii} \frac{\sigma_{\rm b}}{\sigma_{\rm cii}} = 47 \cdot 10^{-3} \frac{(72.0 \pm 0.5) \cdot 10^{-3}}{(22.4 \pm 0.5) \cdot 10^{-3}} = (151 \pm 3) \, {\rm mm} = (1.51 \pm 0.03) \cdot 10^{-1} \, {\rm m}$$

Значения различаются на 20%, порядок совпадает.

5. Утопим иглу до предела, насколько это позволяет установка. Между концом иглы и дном останется небольшой зазор, так, образующийся пузырёк не будет касаться дна.

Измерим расстояние от верхней части установки до подвижной части крепления иглы до и после установки по два раза (совпали, случайную погрешность не учитываем). Его изменение равно глубине погружения.

$$h_1 = (17 \pm 1) \,\mathrm{mm}, \quad h_2 = (6 \pm 1) \,\mathrm{mm}$$

$$\Delta h = h_1 - h_2 = (11 \pm 2) \,\mathrm{mm}$$

Измерим максимальное давление в пузырьках. По разности давлений в этом и предыдущем пункте определим глубину погружения. Измерим h_2 . Полученные давления представлены в таблице (3).

Таблица 3:

$$h_2 = (196 \pm 4) \text{ mm} = (1.96 \pm 0.04) \cdot 10^{-1} \text{ mm}$$

$$\Delta P_2 = \rho_{\rm cn} g h_2 \sin \alpha = 307.87 \,\Pi {\rm a}$$

$$\Delta P_2 = (310 \pm 10) \,\Pi {\rm a} = (3.1 \pm 0.1) \cdot 10^2 \,\Pi {\rm a} \qquad (3.8\%)$$

Проверим закон Паскаля. Сравним ΔP , вычисленное через разность уровней жидкости, и ΔP с рассчитанным как $\Delta P_2 - \Delta P_1$.

$$\Delta P = \Delta P_2 - \Delta P_1 = (110 \pm 20) \,\Pi a$$
 (18%)
 $\Delta P = \rho g \Delta h = (84 \pm 15) \,\Pi a = (80 \pm 20) \,\Pi a$ (18%)

Значения совпадают в пределах погрешности. Закон Паскаля выполняется.

6. Снимем зависимость $\sigma(T)$ при нагревании дистиллированной воды. Для этого включим термостат и подождём, пока нужная температура стабилизируется. Измерения будем проводить через каждые три градуса, не нагревая выше 60 °C. Для уменьшения теплопотерь на колбу с исследуемой жидкостью наденем по-

Результаты представлены в таблице (4).

ролоновый чехол.

T, \circ	$C \mid h^1$, MM	h^2 , MM	h^3 , MM	h^4 , MM	h^5 , MM	h, MM	Р, Па	dP , Πa	σ , м $H/$ м	$d\sigma$, м $H/$ м
25.	0 197	197	197	197	197	197.0	303.4	7.8	83.4	2.0
28.	0 196	195	196	196	196	195.8	301.5	7.8	82.9	1.9
31.	0 194	195	195	194	195	194.6	299.7	7.7	82.4	1.9
34.	0 194	194	195	194	194	194.2	299.1	7.8	82.2	1.9
37.	1 194	193	194	193	194	193.6	298.1	7.8	81.9	1.9
40.	0 193	193	193	193	193	193.0	297.3	7.7	81.7	1.9
43.	1 192	192	193	192	192	192.2	296.0	7.6	81.4	1.9
46.	0 191	191	191	191	191	191.0	294.2	7.6	80.9	1.9
49.	0 189	190	190	190	189	189.6	292.0	7.5	80.3	1.9
52.	0 188	188	189	188	189	188.4	290.2	7.5	79.8	1.9
54.	9 187	188	187	188	187	187.4	288.6	7.5	79.4	1.9
58.	0 186	186	186	186	186	186.0	286.5	7.4	78.8	1.9
61.	0 185	185	186	185	185	185.2	285.2	7.3	78.4	1.8

Таблица 4: Значения T, h, P, σ и их погрешности

- 7. Повторные измерения при понижении температуры не проводим. Для охлаждения установки пропустим водопроводную воду через термостат.
- 8. Оценим погрешности измерения давления и температуры. См. результаты в таблице (4).
- 9. Построим график зависимости σ от T (см. рисунок (3)) и с его помощью определим $d\sigma/dT$.

Рис. 3: Зависимость σ от T

$$\frac{d\sigma}{dT} = -0.135 \cdot 10^{-3} \frac{H}{M \cdot C}$$

Оценим погрешность метода наименьших квадратов ($\varepsilon_{\text{мнк}}=0.037$) и погрешность прямых измерений.

$$\varepsilon_{\text{изм}} = \sqrt{\varepsilon_{\sigma}^2 + \varepsilon_T^2} = \sqrt{0.024^2 + 0.003^2} = 0.024$$

$$\varepsilon(\frac{d\sigma}{dT}) = 0.037 + 0.024 = 0.061$$

$$d(\frac{d\sigma}{dT}) = 0.061 \cdot (-0.135 \cdot 10^{-3}) = 0.008 \cdot 10^{-3} \, \frac{\text{H}}{\text{M} \cdot ^{\circ} C}$$
 Итак,
$$\frac{d\sigma}{dT} = -(1.35 \pm 0.08) \cdot 10^{-4} \, \frac{\text{H}}{\text{M} \cdot ^{\circ} C}$$

10. На том же графике изобразим зависимость от температуры теплоты образования единицы площади поверхности q и поверхностной энергии единицы площади поверхности U/Π .

$$q = -T \cdot \frac{d\sigma}{dT}, \qquad \frac{U}{F} = \sigma - T \cdot \frac{d\sigma}{dT}$$

Значения, по которым построен график, приведены в таблице (??). Погрешности рассчитываются тривиально: $\varepsilon_q = \sqrt{\varepsilon_T^2 + \varepsilon(\frac{d\sigma}{dT})^2}$ и $d(\frac{U}{F}) = d\sigma + dq$.

Сам график изображен на рисунке (4).

$T, \circ C$	$\sigma, \frac{MH}{M}$	$q, \frac{MH}{M}$	$U/F, \frac{MH}{M}$
25.0	83.4	3.38	86.78
28.0	82.9	3.78	86.68
31.0	82.4	4.19	86.59
34.0	82.2	4.59	86.79
37.1	81.9	5.01	86.91
40.0	81.7	5.40	87.10
43.1	81.4	5.82	87.22
46.0	80.9	6.21	87.11
49.0	80.3	6.62	86.92
52.0	79.8	7.02	86.82
54.9	79.4	7.41	86.81
58.0	78.8	7.83	86.63
61.0	78.4	8.24	86.64

Таблица 5: Таблица значений температуры и соответствующих величин

Рис. 4: Зависимость q и U/Π от T

11. Проверим закон Кирхгофа. Будем считать теплоемкость воды постоянной.

$$L(T) = L(T_0) + (C_{p(\pi)} - C_{p(\aleph)})(T - T_0),$$
 где $L(T_0) = 44$ кДж/моль,
$$\Delta C = C_{p(\pi)} - C_{p(\aleph)} = -42$$
Дж/моль · K Зная, что $\sigma \sim L$,
$$\sigma = \sigma_0 + k(T - T_0), \qquad k = \frac{d\sigma}{dT}$$

$$\frac{\left|\frac{d\sigma}{dT}\right|}{\sigma_0} = \frac{\left|C_{p(\Pi)} - C_{p(\mathbb{K})}\right|}{L_0} \sim \frac{\frac{dl}{dT}}{l_0}$$

Построим график h(T) на рисунке (5). С помощью метода наименьших квадратов определим его угловой коэффициент k'. Учтем погрешность метода и погрешность измерений.

Рис. 5: Зависимость высоты спиртового столбца от температуры

$$k' = -(0.32 \pm 0.02) \cdot 10^{-3} \frac{M}{K} = -(3.2 \pm 0.2) \cdot 10^{-4} \frac{M}{K}$$

Тогда,

$$k = \frac{\Delta l}{\Delta T} \frac{\sigma_c}{l_0} = -(1.9 \pm 0.1) \cdot 10^{-4} \frac{H}{M \cdot K}, \qquad \varepsilon_k = 0.06$$

Проверим, выполняется ли соотношение, связанное с законом Кирхгофа:

$$\frac{k}{\sigma_0} \approx \frac{|C_{p(\pi)} - C_{p(\kappa)}|}{L_0}$$

Подставляя числовые значения:

$$\frac{(1.9 \pm 0.1) \times 10^{-4}}{72.0 \cdot 10^{-3}} \approx \frac{42}{44 \times 10^3}, \qquad 2.6 \cdot 10^{-3} \approx 1.0 \cdot 10^{-3}$$

Оценка дает совпадение в порядке, но значения отличаются примерно в три раза. Выполнение закона Кирхгофа с достаточной точностью подтвердить не удается.

Вывод

Все цели работы достигнуты.

В работе была исследована температурная зависимость коэффициента поверхностного натяжения дистиллированной воды.

Была определена полная поверхностная энергия U/Π и теплота q, необходимая для изотермического образования единицы поверхности жидкости.

Проверены законы Лапласа, Паскаля, Кирхгофа.