# DIALOG(R) le 352 Derwent WPI (c) 2001 Derwent Info Ltd. All rts. reserv.

#### 010262481

WPI Acc No: 1995-163736/199522

XRAM Acc No: C95-075733 XRPX Acc No: N95-128427

Crystallisation of amorphous silicon films — using a catalyst to

accelerate the process

Patent Assignee: SEMICONDUCTOR ENERGY LAB (SEME ); HANDOTA! ENERGY

KENKYUSHO KK (SEME )

Inventor: FUKUNAGA T; MIYANAGA A; OHTANI H; ZHANG H Number of Countries: 008 Number of Patents: 014

Patent Family:

| Patent No    | Kind | Date     | Αpı | olicat No | Kind | Date     | Week   |   |
|--------------|------|----------|-----|-----------|------|----------|--------|---|
| EP 651431    | A2   | 19950503 | ΕP  | 94307986  | Α    | 19941031 | 199522 | В |
| JP 7130652   | Α    | 19950519 | JP  | 93294633  | Α    | 19931029 | 199529 |   |
| JP 7135174   | Α    | 19950523 | JP  | 93303436  | Α    | 19931109 | 199529 |   |
| JP 7183540   | Α    | 19950721 | JP  | 94162705  | Α    | 19940620 | 199538 |   |
| TW 264575    | Α    | 19951201 | TW  | 94109844  | Α    | 19941024 | 199608 |   |
| EP 651431    | A3   | 19950607 |     |           |      |          | 199610 |   |
| US 5643826   | Α    | 19970701 | US  | 94329644  | Α    | 19941025 | 199732 |   |
| CN 1110004   | Α    | 19951011 | CN  | 94112820  | Α    | 19941028 | 199735 |   |
| US 5923962   | Α    | 19990713 | US  | 94329644  | Α    | 19941025 | 199934 |   |
|              |      |          | US  | 95430623  | Α    | 19950428 |        |   |
| CN 1223459   | Α    | 19990721 | CN  | 94112820  | A.   | 19941028 | 199947 |   |
|              |      |          | CN  | 98120978  | Α    | 19941028 |        |   |
| CN 1238553   | Α    | 19991215 | CN  | 94112820  | Α    | 19941028 | 200017 |   |
|              |      |          | CN  | 99106954  | Α    | 19941028 |        |   |
| JP 200006820 | 4 A  | 20000303 | JP  | 94162705  | Α    | 19940620 | 200023 |   |
|              |      |          | JP  | 99233210  | Α    | 19940620 |        |   |
| JP 200011454 | 3 A  | 20000421 | JP  | 93303436  | Α    | 19931109 | 200031 |   |
|              |      |          | JP  | 99233206  | Α    | 19931109 |        |   |
| JP 200013837 | 8 A  | 20000516 | JP  | 93303436  | Α    | 19931109 | 200032 |   |
|              |      |          | JP  | 99233204  | Α    | 19931109 |        |   |

Priority Applications (No Type Date): JP 94162705 A 19940620; JP 93294633 A 19931029; JP 93303436 A 19931109: JP 93307206 A 19931112: JP 99233206 A 19931109; JP 99233204 A 19931109

Cited Patents: 1. Jnl. Ref: EP 612102: US 5130264: US 5147826: WO 8603621

Patent Details:

Patent No. Kind Lan Pg Main IPC Filing Notes

EP 651431 A2 E 31 H01L-021/20

Designated States (Regional): DE FR GB NL

JP 7130652 A 9 H01L-021/20
JP 7135174 A 13 H01L-021/20
JP 7183540 A 16 H01L-029/786
TW 264575 A H01L-049/02
EP 651431 A3 H01L-021/20
US 5643826 A 26 H01L-021/228

CN 1110004 H01L-021/208 US 5923962 HO1L-021/84 CIP of application US 94329644 CIP of patent US 5643826 CN 1223459 HO1L-021/00 Div ex application CN 94112820 CN 1238553 H01L-021/00 Div ex application CN 94112820 JP 2000068204 A 16 H01L-021/20 Div ex application JP 94162705 JP 2000114543 A 13 H01L-029/786 Div ex application JP 93303436 JP 2000138378 A 12 H01L-029/786 Div ex application JP 93303436

Abstract (Basic): EP 651431 A

Mfg a semiconductor device comprises: (a) disposing a soln. in contact with a portion of a Si film on a substrate, the solution containing a catalyst for promoting crystallisation of the film; (b) crystallising the film by heating. Also claimed is the method using Ni as the catalyst and (III) the method as (i) in which crystals grow from the catalysed portion to a non catalysed portion and the devices (IV) made using the methods.

USE - Mfr. of electro-optical devices e.g. active matrix liq. crystal devices.

ADVANTAGE - Improved stability and reliability.

Title Terms: CRYSTAL; AMORPHOUS: SILICON; FILM; CATALYST; ACCELERATE; PROCESS

Derwent Class: E12: E31: L03: P81; U11: U14

International Patent Class (Main): H01L-021/00; H01L-021/20: H01L-021/208;

H01L-021/228: H01L-021/84: H01L-029/786: H01L-049/02

International Patent Class (Additional): C01B-033/02: G02F-001/1365: H01L-021/26; H01L-021/268: H01L-021/316: H01L-021/336: H01L-027/12:

H01L-027/13; H01L-031/00: H01L-031/10

File Segment: CPI: EPI: EngPI

DIALOG(R) File 347: JAP10 (c) 2000 JPO & JAPIO. All rts. reserv.

04890940 \*\*|mage available\*\* SEMICONDUCTOR DEVICE AND MANUFACTURE THEREOF

PUB. NO. :

07-183540 [JP 7183540 A]

PUBL I SHED:

July 21, 1995 (19950721)

INVENTOR(s): OTANI HISASHI

FUKUNAGA KENJI

MIYANAGA SHOJI

CHIYOU KOUYUU

APPLICANT(s): SEMICONDUCTOR ENERGY LAB CO LTD [470730] (A Japanese Company

or Corporation), JP (Japan)

APPL. NO. :

06-162705 [JP 94162705]

FILED:

June 20, 1994 (19940620)

INTL CLASS:

[6] H01L-029/786: H01L-021/336; H01L-021/20: H01L-021/26;

H01L-021/268: H01L-027/12

JAPIO CLASS: 42.2 (ELECTRONICS -- Solid State Components): 14.1 (ORGANIC

CHEMISTRY -- Organic Compounds)

JAPIO KEYWORD: ROO2 (LASERS): ROO4 (PLASMA): RO96 (ELECTRONIC MATERIALS --

Glass Conductors)

#### ABSTRACT

PURPOSE: To previously control a solution which accelerates the crystallization of a silicon film in element concentration so as to improve the silicon film in crystallinity and to lessen the solution in element content by a method wherein an amorphous silicon film is made to retain the solution and thermally treated to form an active region.

CONSTITUTION: An amorphous silicon film 12 is formed on a glass substrate 11. After a hydrofluoric acid treatment, an oxide film 13 is formed on the siicon film 12. Then, nickel is added to an acetate solution, wherein nickel is 100ppm in concentration. 2ml of the acetate solution is made to drip on the surface of the oxide film 13 on the amorphous silicon film 12, the substrate 11 is left to stand for five minutes keeping the oxide film 13 in this state, and the oxide film 13 is spin-dried up by a spinner 15. By this setup, a nickel-containing acetate solution film 14 can be formed. Thereafter, the substrate 11 is kept in this state for five minutes and then thermally treated in a nitrogen atmosphere at a temperature of 550 deg. C for four hours in a heating oven to obtain a crystalline silicon thin film 12.

### (19)日本国特許庁 (JP) \_ (12) 公開特許公報 (A)

#### (11)特許出願公開番号

## 特開平7-183540

(43)公開日 平成7年(1995)7月21日

| (51) Int.Cl. <sup>6</sup><br>H 0 1 L 29/786 | <b>識別記号</b>                           | FΙ        | 技術表示箇所                                       |
|---------------------------------------------|---------------------------------------|-----------|----------------------------------------------|
| 21/336<br>21/20                             | 8418-4M<br>9056-4M                    | H01L      | 29/ 78 3 1 1 Y                               |
|                                             | ************************************* |           | 21/26 L<br>(の数22 FD (全 16 頁) 最終頁に続く          |
| (21) 出願番号                                   | <b>特願平6</b> -162705                   | (71) 出願人  |                                              |
| (22)出顯日                                     | 平成6年(1994)6月20日                       | (72)発明者   | 株式会社半導体エネルギー研究所<br>神奈川県厚木市長谷398番地<br>大谷      |
| (31) 優先権主張番号<br>(32) 優先日                    | 特願平5-307206<br>平 5 (1993)11月12日       | (10/)1918 | 神奈川県厚木市長谷398番地 株式会社半 導体エネルギー研究所内             |
| (33)優先権主張国                                  | 日本(JP)                                |           | 福永 健司 神奈川県厚木市長谷398番地 株式会社半                   |
|                                             |                                       | (72)発明者   | 導体エネルギー研究所内<br>宮永 昭治<br>神奈川県厚木市長谷398番地 株式会社半 |
|                                             |                                       | 1         | <b>導体エネルギー研究所内</b>                           |
|                                             | *                                     |           | 最終頁に統く                                       |

#### (54) 【発明の名称】 半導体装置およびその作製方法

#### (57)【要約】

【目的】 結晶化を助長する触媒元素を用いて、550 ℃程度、4時間程度の加熱処理で結晶性珪素を得る方法 において、触媒元素の導入量を精密に制御する。

【構成】 ガラス基板11上に形成された非晶質珪素膜12上に極薄の酸化膜13を形成し、ニッケル等の触媒元素を10~200ppm(要調整)添加した酢酸塩溶液等の水溶液14を滴下する。この状態で所定の時間保持し、スピナー15を用いてスピンドライを行なう。そして、550℃、4時間の加熱処理を行なうことにより、結晶性珪素膜を得る。上記構成において、溶液中の触媒元素の濃度を調整することで、完成した結晶性珪素膜中における触媒元素の濃度を精密に制御することができる。そしてこの結晶性珪素膜を用いることで、高い特性を有する半導体装置を得ることができる。



#### 【特許請求の範囲】

【請求項1】 結晶性を有する珪素膜を利用して活性領 域が絶縁表面を有する基板上に構成された半導体装置で あって、

前記活性領域は、非晶質珪素膜に接して該珪素膜の結晶 化を助長する触媒元素を溶媒に解かして保持させ、加熱 処理を施すことにより形成されたものであることを特徴 とする半導体装置。

【請求項2】 結晶性を有する珪素膜を利用して活性領 域が絶縁表面を有する基板上に構成された半導体装置で あって、

前記活性領域は、非晶質珪素膜に接して該珪素膜の結晶 化を助長する触媒元素を含む化合物を保持させ、加熱処 理を施すことにより形成されたものであることを特徴と する半導体装置。

【請求項3】 請求項1または請求項2において、 触媒元素として、Ni、Pd、Pt、Cu、Ag、A u, In, Sn, Pd, Sn, Pd, P, As, Sbh ら選ばれた一種または複数種類の元素が用いられたこと を特徴とする半導体装置。

【請求項4】 請求項1または請求項2において、 触媒元素として、VIII族、IIIb族、IVb族、Vb族元素か ら選ばれた一種または複数種類の元素が用いられたこと を特徴とする半導体装置。

【請求項5】 請求項1または請求項2において、 活性領域に形成された半導体装置は、薄膜トランジスタ またはダイオードまたは光センサーであることを特徴と する半導体装置。

【請求項6】 請求項1または請求項2において、 前記活性層領域中における触媒元素の濃度が、1×10  $^{16}$ atoms cm $^{-3}$ ~ 1×10 $^{19}$ atoms cm $^{-3}$ であることを 特徴とする半導体装置。

【請求項7】 請求項1または請求項2において、 活性領域はPI、PN、NIで示される接合を少なくと も一つ有することを特徴とする半導体装置。

【請求項8】 非晶質珪素膜に接して該非晶質珪素膜の 結晶化を助長する触媒元素単体または前記触媒元素を含 む化合物を保持させ、前記非晶質珪素膜に前記触媒元素 単体または前記触媒元素を含む化合物が接した状態にお いて、加熱処理を施し、前記非晶質珪素膜を結晶化させ 40 ることを特徴とする半導体装置作製方法。

【請求項9】 非晶質珪素膜上に該非晶質珪素膜の結晶 化を助長する触媒元素単体を溶解あるいは分散させた溶 液を塗布する工程と、

前記非晶質珪素膜を加熱処理することにより結晶化させ る工程と、

を有する半導体装置作製方法。

【請求項10】請求項8または請求項9において、 触媒元素として、Ni、Pd、Pt、Cu、Ag、A u、In、Sn、Pd、Sn、Pd、P、As、Sbか 50 を有する半導体装置作製方法。

ら選ばれた一種または複数種類の元素が用いられること を特徴とする半導体装置作製方法。

【請求項11】請求項8または請求項9において、

触媒元素として、VIII族、IIIb族、IVb族、Vb族元素か ら選ばれた一種または複数種類の元素が用いられること を特徴とする半導体装置作製方法。

【請求項12】非晶質珪素膜上に該非晶質珪素膜の結晶 化を助長する触媒元素を含む化合物を極性溶媒に溶解あ るいは分散させた溶液を塗布する工程と、

10 前記非晶質珪素膜を加熱処理することにより結晶化させ る工程と、

を有する半導体装置作製方法。

【請求項13】請求項12において、極性溶媒として、 水、アルコール、酸、アンモニア水から選ばれた1つま たは複数が用いられることを特徴とする半導体装置作製

【請求項14】請求項12において、触媒元素として二 ッケルを用い、該ニッケルはニッケル化合物として用い られることを特徴とする半導体装置作製方法。

【請求項15】請求項14において、ニッケル化合物と 20 して、臭化ニッケル、酢酸ニッケル、蓚酸ニッケル、炭 酸ニッケル、塩化ニッケル、沃化ニッケル、硝酸ニッケ ル、硫酸ニッケル、強酸ニッケル、ニッケルアセチルア セトネート、4-シクロヘキシル酪酸ニッケル、酸化二 ッケル、水酸化ニッケルから選ばれた少なくとも1種類 が用いられることを特徴とする半導体装置作製方法。

【請求項16】非晶質珪素膜上に該非晶質珪素膜の結晶 化を助長する触媒元素を含む化合物を無極性溶媒に溶解 あるいは分散させた溶液を塗布する工程と、

30 前記非晶質珪素膜を加熱処理することにより結晶化させ る工程と、

を有する半導体装置作製方法。

【請求項17】請求項16において、無極性溶媒とし て、ペンゼン、トルエン、キシレン、四塩化炭素、クロ ロホルム、エーテルから選ばれた少なくとも一つが用い られることを特徴とする半導体装置作製方法。

【請求項18】請求項16において、触媒元素として二 ッケルを用い、該ニッケルはニッケル化合物として用い られることを特徴とする半導体装置作製方法。

【請求項19】請求項18において、ニッケル化合物と してニッケルアセチルアセトネート、4-シクロヘキシ ル酪酸ニッケル、酸化ニッケル、水酸化ニッケル、2-エチルヘキサン酸ニッケルから選ばれた少なくとも1種 類が用いられることを特徴とする半導体装置作製方法。

【請求項20】非晶質珪素膜上に該非晶質珪素膜の結晶 化を助長する触媒元素単体を溶解あるいは分散させた溶 液に界面活性剤を混合し塗布する工程と、

前記非晶質珪素膜を加熱処理することにより結晶化させ る工程と、

40

【請求項21】結晶性を有する珪素膜を利用して活性領 域が絶縁表面を有する基板上に構成された半導体装置で

前記活性領域は、非晶質珪素膜に接して該珪素膜の結晶 化を助長する触媒元素を溶媒に解かして選択的に保持さ せ、加熱処理を施すことにより前記保持させた領域から その周辺領域へと結晶成長が行われたものであることを 特徴とする半導体装置。

【請求項22】結晶性を有する珪素膜を利用して活性領 あって、

前記活性領域は、非晶質珪素膜に接して該珪素膜の結晶 化を助長する触媒元素を含む化合物を選択的に保持さ せ、加熱処理を施すことにより前記保持させた領域から その周辺領域へと結晶成長が行われたものであることを 特徴とする半導体装置。

#### 【発明の詳細な説明】

[0001]

【産業上の利用分野】 本発明は結晶性を有する半導体を 用いた半導体装置およびその作製方法に関する。

[0002]

【従来の技術】薄膜半導体を用いた薄膜トランジスタ (以下TFT等)が知られている。このTFTは、基板 上に薄膜半導体を形成し、この薄膜半導体を用いて構成 されるものである。このTFTは、各種集積回路に利用 されているが、特に電気光学装置特にアクティブマトリ ックス型の液晶表示装置の各画素の設けられたスイッチ ング素子、周辺回路部分に形成されるドライバー素子と して注目されている。

【0003】TFTに利用される薄膜半導体としては、 非晶質珪素膜を用いることが簡便であるが、その電気的 特性が低いという問題がある。TFTの特性向上を得る ためには、結晶性を有するシリコン薄膜を利用するばよ い。結晶性を有するシリコン膜は、多結晶シリコン、ポ リシリコン、微結晶シリコン等と称されている。この結 晶性を有するシリコン膜を得るためには、まず非晶質珪 素膜を形成し、しかる後に加熱によって結晶化さればよ 41,

【0004】しかしながら、加熱による結晶化は、加熱 温度が600℃以上の温度で10時間以上の時間を掛け ることが必要であり、基板としてガラス基板を用いるこ とが困難であるという問題がある。例えばアクティブ型 の液晶表示装置に用いられるコーニング7059ガラス はガラス歪点が593℃であり、基板の大面積化を考慮 した場合、600℃以上の加熱には問題がある。

【0005】〔発明の背景〕本発明者らの研究によれ ば、非晶質珪素膜の表面にニッケルやパラジウム、さら には鉛等の元素を微量に堆積させ、しかる後に加熱する ことで、550℃、4時間程度の処理時間で結晶化を行 なえることが判明している。

【0006】上記のような微量な元素(結晶化を助長す る触媒元素)を導入するには、ブラズマ処理や蒸着、さ らにはイオン注入を利用すればよい。プラズマ処理と は、平行平板型あるいは陽光柱型のプラズマCVD装置 において、電極として触媒元素を含んだ材料を用い、窒 素または水素等の雰囲気でブラズマを生じさせることに よって非晶質珪素膜に触媒元素の添加を行なう方法であ

【0007】しかしながら、上記のような元素が半導体 域が絶縁表面を有する基板上に構成された半導体装置で 10 中に多量に存在していることは、これら半導体を用いた 装置の信頼性や電気的安定性を狙害するものであり好ま しいことではない。

> 【0008】即ち、上記のニッケル等の結晶化を助長す る元素(触媒元素)は、非晶質珪素を結晶化させる際に は必要であるが、結晶化した珪素中には極力含まれない ようにすることが望ましい。この目的を達成するには、 触媒元素として結晶性珪素中で不活性な傾向が強いもの を選ぶと同時に、結晶化に必要な無媒元素の量を極力少 なくし、最低限の量で結晶化を行なう必要がある。そし てそのためには、上記触媒元素の添加量を精密に制御し て導入する必要がある。

> 【0009】また、ニッケルを触媒元素とした場合、非 晶質珪素膜を成膜し、ニッケル添加をプラズマ処理法に よって行ない結晶性珪素膜を作製し、その結晶化過程等 を詳細に検討したところ以下の夢項が判明した。

- (1) プラズマ処理によってニッケルを非晶質珪素膜上 に導入した場合、熱処理を行なう以前に既に、ニッケル は非晶質珪素膜中のかなりの深さの部分まで侵入してい
- (2)結晶の初期核発生は、ニッケルを導入した表面か ら発生している。
  - (3) 蒸着法でニッケルを非晶質珪素膜上に成膜した場 合であっても、プラズマ処理を行なった場合と同様に結 晶化が起こる。

【0010】上記事項から、プラズマ処理によって導入 されたニッケルが全て効果的に機能していないというこ とが結論される。即ち、多量のニッケルが導入されても 十分に捜能していないニッケルが存在していると考えら れる。このことから、ニッケルと珪素が接している点

(面) が低温結晶化の際に機能していると考えられる。 そして、可能な限りニッケルは镦細に原子状に分散して いることが必要であることが結論される。即ち、「必要 なのは非晶質珪素膜の表面近傍に低温結晶化が可能な範 囲内で可能な限り低濃度のニッテルが原子状で分散して 導入されればよい。ということが結論される。

【0011】非晶質珪素膜の表面近旁のみに極微量の二 ッケルを導入する方法、言い換えるならば、非晶質珪素 膜の表面近傍のみ結晶化を助長する触媒元素を極微量導 入する方法としては、蒸着法を挙げることができるが、

50 蒸着法は制御性が悪く、触媒元素の導入量を厳密に制御

することが困難であるという問題がある。

[0012]

[発明が解決しようとする課題] 本発明は、触媒元素を 用いた600℃以下の熱処理による結晶性を有する薄膜 珪素半導体の作製において、

- (1) 触媒元素の量を制御して導入し、その量を最小限 の量とする。
- (2) 生産性の高い方法とする。

といった要求を満たすことを目的とする。

[0013]

【課題を解決するための手段】本発明は、上記目的を満 足するために以下の手段を用いて結晶性を有した珪素膜 を得る。非晶質珪素膜に接して該非晶質珪素膜の結晶化 を助長する触媒元素単体または前記触媒元素を含む化合 物を保持させ、前記非晶質珪素膜に前記触媒元素単体ま たは前記触媒元素を含む化合物が接した状態において、 加熱処理を施し、前記非晶質珪素膜を結晶化させる。

【0014】具体的には、触媒元素を含む溶液を非晶質 珪素膜表面に塗布し、触媒元素の導入を行なうことによ って、上記構成は実現される。特に本発明においては、 非晶質珪素膜の表面に接して触媒元素が導入されること が特徴である。このことは、触媒元素の量を制御する上 で極めて重要である。

【0015】さらにこの結晶性珪素膜を用いて半導体装 置のPN、PI、NIその他の電気的接合を少なくとも 1つ有する活性領域を構成することを特徴とする。半導 体装置としては、薄膜トランジスタ(TFT)、ダイオ ード、光センサを用いることができる。

【0016】本発明の構成を採用することによって以下 に示すような基本的な有意性を得ることができる。

- (a) 溶液中における触媒元素濃度は、予め厳密に制御 し結晶性をより高めかつその元素の量をより少なくする ことが可能である。
- (b) 溶液と非晶質珪素膜の表面とが接触していれば、 触媒元素の非晶質珪素への導入量は、溶液中における触 媒元素の濃度によって決まる。
- (c) 非晶質珪素膜の表面に吸着する触媒元素が主に結 晶化に寄与することとなるので、必要最小限度の濃度で 触媒元素を導入できる。

含有させた溶液を塗布する方法としては、溶液として水 溶液、有機溶媒溶液等を用いることができる。ここで含 有とは、化合物として含ませるという意味と、単に分散 させることにより含ませるという意味との両方を含む。

【0018】触媒元素を含む溶媒としては、極性溶媒で ある水、アルコール、酸、アンモニアから選ばれたもの を用いることができる。

【0019】触媒としてニッケルを用い、このニッケル を極性溶媒に含ませる場合、ニッケルはニッケル化合物 的には臭化ニッケル、酢酸ニッケル、蓚酸ニッケル、炭 酸ニッケル、塩化ニッケル、沃化ニッケル、硝酸ニッケ ル、硫酸ニッケル、蟻酸ニッケル、ニッケルアセチルア セトネート、4ーシクロヘキシル酪酸ニッケル、酸化二 ッケル、水酸化ニッケルから選ばれたものが用いられ

6

【0020】また触媒元素を含む溶媒として、無極性溶 媒であるベンゼン、トルエン、キシレン、四塩化炭素、 クロロボルム、エーテルから選ばれたものを用いること 10 ができる。

【0021】この場合はニッケルはニッケル化合物とし て導入される。このニッケル化合物としては代表的に は、ニッケルアセチルアセトネート、2-エチルヘキサ ン酸ニッケルから選ばれたものを用いることができる。

【0022】また触媒元素を含有させた溶液に界面活性 剤を添加することも有用である。これは、被墜布面に対 する密着性を高め吸着性を制御するためである。この界 面活性剤は予め被塗布面上に塗布するのでもよい。

【0023】触媒元素としてニッケル単体を用いる場合 20 には、酸に溶かして溶液とする必要がある。

【0024】以上述べたのは、触媒元素であるニッケル が完全に溶解した溶液を用いる例であるが、ニッケルが 完全に溶解していなくとも、ニッケル単体あるいはニッ ケルの化合物からなる粉末が分散媒中に均一に分散した エマルジョンの如き材料を用いてもよい。なおこれらの ことは、触媒元素としてニッケル以外の材料を用いた場 合であっても同様である。

【0025】結晶化を助長する触媒元素としてニッケル を用い、このニッケルを含有させる溶液溶媒として水の 30 如き極性溶媒を用いた場合において、非晶質珪素膜にこ れら溶液を直接塗布すると、溶液が弾かれてしまうこと がある。この場合は、100A以下の薄い酸化膜をまず 形成し、その上に触媒元素を含有させた溶液を塗布する ことで、均一に溶液を塗布することができる。また、界 面活性剤の如き材料を溶液中に添加する方法により濡れ を改善する方法も有効である。また、薄い酸化별を形成 したのち、ラビング処理をおこなって、酸化膜に一定の 間隔、幅、方向で凹凸を形成してもよい。このような凹 凸は溶媒の浸透をより一層、促進せしめ、結晶粒の大き 【0017】非晶質珪素膜上に結晶化を助長する元素を 40 さを平均化し、結晶粒の方向を揃える上で効果的であ る。また、このように方向性を持たせた結晶性珪素膜を 適切な方向に電流が流れるように半導体素子を形成する と、素子の特性のパラツキを抑制する上で効果的であっ た。

【0026】また、溶液として2-エチルヘキサン酸二 ッケルのトルエン溶液の如き無極性溶媒を用いること で、非晶質珪素膜表面に直接塗布することができる。こ の場合にはレジスト塗布の際に使用されている密着剤の 如き材料を予め塗布することは有効である。しかし塗布 として導入される。このエッケル化合物としては、代表 50 量が多過ぎる場合には逆に非晶質珪素中への触媒元素の

添加を妨害してしまうために注意が必要である。

【0027】溶液に含ませる触媒元素の量は、その溶液の種類にも依存するが、概略の傾向としてはニッケル量として溶液に対して200ppm~1ppm、好ましくは50ppm~1ppm(重量換算)とすることが望ましい。これは、結晶化終了後における膜中のニッケル濃度や耐フッ酸性に鑑みて決められる値である。

【0028】また、触媒元素を含んだ溶液を選択的に塗布することにより、結晶成長を選択的に行なうことができる。特にこの場合、溶液が塗布されなかった領域に向かって、溶液が塗布された領域から珪素膜の面に概略平行な方向に結晶成長を行なわすことができる。この珪素膜の面に概略平行な方向に結晶成長が行なわれた領域を本明細書中においては横方向に結晶成長した領域ということとする。

【0029】またこの横方向に結晶成長が行なわれた領域は、触媒元素の濃度が低いことが確かめられている。 半導体装置の活性層領域として、結晶性珪素膜を利用することは有用であるが、活性層領域中における不純物の 濃度は一般に低い方が好ましい。従って、上記横方向に 結晶成長が行なわれた領域を用いて半導体装置の活性層 領域を形成することはデバイス作製上有用である。

【0030】本発明においては、触媒元素としてニッケルを用いた場合に最も顕著な効果を得ることができるが、その他利用できる触媒元素の種類としては、好ましくはNi、Pd、Pt、Cu、Ag、Au、In、Sn、Pd、Sn、Pd、P、As、Sbを利用することができる。また、VIII族元素、IIIb、IVb、Vb元素から選ばれた一種または複数種類の元素を利用することもできる。一

【0031】また、触媒元素の導入方法は、水溶液やアルコール等の溶液を用いることに限定されるものではなく、触媒元素を含んだ物質を広く用いることができる。例えば、触媒元素を含んだ金属化合物や酸化物を用いることができる。

[0032].

#### 【実施例】

#### 〔実施例1〕

【0033】本実施例では、結晶化を助長する触媒元素 に拡散し、結晶化を助長する触媒として作用する。な を水溶液に含有させて、非晶質珪素膜上に塗布し、しか 40 お、この層というのは、完全な膜になっているとは限ら る後に加熱により結晶化させる例である。 ない、

【0034】まず図1を用いて、触媒元素(ここではニッケルを用いる)を導入するところまでを説明する。本実施例においては、基板としてコーニング7059ガラスを用いる。またその大きさは100mm×100mmとする。

【0035】まず、非晶質珪素膜をプラズマCVD法や LPCVD法によってアモルファス状のシリコン膜を1 00~1500A形成する。ここでは、プラズマCVD 法によって非晶質珪素膜12を1000Aの順さに成膜 する。(図1(A))

【0036】そして、汚れ及び自然酸化膜を取り除くためにフッ酸処理を行い、その後酸化膜13を10~50 Åに成膜する。汚れが無視できる場合には、この工程を省略しても良いことは言うまでもなく、酸化膜13は極薄のため正確な膜厚は不明であるが、20 Å程度であると考えられる。ここでは酸素雰囲気中でのUV光の照射により酸化膜13を成膜する。成膜条件は、酸素雰囲気中においてUVを5分間照射することにおって行なった。この酸化膜13の成膜方法としては、熱酸化法を用いるのでもよい。また過酸化水素による処理によるものでもよい。

8

【0037】この酸化菓13は、後のニッケルを含んだ酢酸塩溶液を塗布する工程で、非晶質珪素膜の表面全体に酢酸塩溶液を行き渡らせるため、即ち濡れ性の改善の為のものである。例えば、非晶質珪素膜の表面に直接酢酸塩溶液を塗布した場合、非晶質珪素が酢酸塩溶液を弾いてしまうので、非晶質珪素膜の表面全体にニッケルを20 導入することができない。即ち、均一な結晶化を行うことができない。

【0038】 つぎに、酢酸塩溶液中にニッケルを添加した酢酸塩溶液を作る。ニッケルの濃度は100ppmとする。そしてこの酢酸塩溶液を非晶質珪素膜12上の酸化膜13の表面に2m1滴下し、この状態を5分間保持する。そしてスピナーを用いてスピンドライ(2000rpm、60秒)を行う。(図<math>1(C)、(D))

【0039】酢酸溶液中におけるニッケルの濃度は、1 ppm以上好ましくは10ppm以上であれば実用にな 30 る。また、溶液として2-エチルヘキサン酸ニッケルの トルエン溶液の如き無極性溶媒を用いる場合、酸化膜1 3は不要であり、直接非晶質珪素膜上に触媒元素を導入 することができる。

【0040】このニッケル溶液の塗布工程を、1回~複数回行なうことにより、スピンドライ後の非晶質珪素膜12の表面に数点~数百点の平均の変厚を有するニッケルを含む層を形成することができる。この場合、この層のニッケルがその後の加熱工程において、非晶質珪素膜に拡散し、結晶化を助長する触媒として作用する。なお、この層というのは、完全な膜になっているとは限らない。

【0041】上記溶液の塗布の後、5分間その状態を保持させる。この保持させる時間によっても、最終的に珪素膜12中に含まれるニッケルの濃度を制御することができるが、最も大きな制御因子は溶液の濃度である。

【0042】そして、加熱炉において、窒果雰囲気中において350度、4時間の加熱処理を行う。この結果、基板11上に形成された結晶性を有する珪素薄膜12を得ることができる。

法によって非晶質珪素膜12を1000Aの厚さに成膜 50 【0043】上記の加熱処理は450度以上の温度で行

うことができるが、温度が低いと加熱時間を長くしなけ らばならず、生産効率が低下する。また、550度以上 とすると基板として用いるガラス基板の耐熱性の問題が 表面化してしまう。

【0044】本実施例においては、非晶質珪素膜上に触 媒元素を導入する方法を示したが、非晶質珪素膜下に触 媒元素を導入する方法を採用してもよい。この場合は、 非晶質珪素膜の成膜前に触媒元素を含有した溶液を用い て、下地膜上に触媒元素を導入すればよい。

【0045】 [実施例2] 本実施例は、実施例1に示す 作製方法において、1200人の酸化珪素膜を選択的に 設け、この酸化珪素膜をマスクとして選択的にニッケル を導入する例である。

【0046】図2に本実施例における作製工程の概略を 示す。まず、ガラス基板(コーニング7059、10c m角)上にマスクとなる酸化珪素膜21を1000A以 上、ここでは1200Aの厚さに成膜する。この酸化珪 素膜21の膜厚については、発明者等の実験によると5 00Aでも問題がないことを確認しており、膜質が緻密 であれば更に薄くても良いと思われる。

【0047】そして通常のフォトリソパターニング工程 によって、必要とするパターンに酸化珪素膜21をパー ニングする。そして、酸素雰囲気中における紫外線の照 射で薄い酸化珪素膜20を成膜する。この酸化珪素膜2 0の作製は、酸素雰囲気中でUV光を5分間照射するこ とによって行なわれる。なおこの酸化珪素膜20の厚さ は20~50A程度と考えられる(図2(A))。尚、 この濡れ性を改善するための酸化珪素膜については、溶 液とパターンのサイズが合致した場合には、マスクの酸 化珪素膜の親水性のみによっても丁度よく添加される場 30 合がある。しかしながらこの様な例は特殊であり、一般 的には酸化珪素膜20を使用したほうが安全である。

【0048】この状態において、実施例1と同様に10 0ppmのニッケルを含有した酢酸塩溶液を5ml滴下 (10cm角基板の場合) する。またこの際、スピナー で50rpmで10秒のスピンコートを行い、基板表面 全体に均一な水膜を形成させる。さらにこの状態で、5 分間保持した後スピナーを用いて2000rpm、60 秒のスピンドライを行う。なおこの保持は、スピナー上 において0~150 rpmの回転をさせながら行なって 40 ルコール溶液は、非晶質珪素膜下に塗布するのでもよ もよい。(図2(B))

【0049】そして550度(窒素雰囲気)、4時間の 加熱処理を施すことにより、非晶質珪素膜12の結晶化 を行う。この際、ニッケルが導入された部分22の領域 から23で示されるように、ニッケルが導入されなった 領域へと横方向に結晶成長が行われる。図2(C)にお いて、24がニッケルが直接導入され結晶化が行われた 領域であり、25が横方向に結晶化が行われた領域であ る。なお25の領域は、概略 (111) 軸方向に結晶成 長が行われていることが確認されている。

【0050】本実施例において、溶液濃度、保持時間を 変化させることにより、ニッケルが直接導入された領域 におけるニッケルの濃度を $1 \times 10^{16}$ atoms cm<sup>-3</sup>~1 ×10<sup>19</sup>atoms cm<sup>-3</sup>の範囲で制御可能であり、同様に 横成長領域の濃度をそれ以下に制御することが可能であ

10

【0051】本実施例で示したような方法によって形成 された結晶珪素膜は、耐フッ酸性が良好であるという特 徴がある。本発明者らによる知見によれば、ニッケルを 10 ブラズマ処理で導入し、結晶化させた結晶性珪素膜は、 耐フッ酸性が低い。

【0052】例えば、結晶性珪素膜上にゲイト絶縁膜や 層間絶縁膜として機能する酸化珪素膜を形成し、しかる 後に電極の形成のために穴開け工程を経て、電極を形成 をする作業が必要とされる場合がある。このような場 合、酸化珪素膜をバッファフッ酸によって除去する工程 が普通採用される。しかしながら、結晶性珪素膜の耐フ ッ酸性が低い場合、酸化珪素膜のみを取り除くことは困 難であり、結晶性珪素膜をもニッチングしてしまうとい 20 う問題がある。

【0053】しかしながら、結晶性珪素膜が耐フッ酸性 を有している場合、酸化珪素膜と結晶性珪素膜のエンチ ッングレートの違い(選択比)を大きくとることができ るので、酸化珪素膜のみを選択的の除去でき、作製工程 上極めて有意なものとなる。

【0054】以上述べたように、横方向に結晶が成長し た領域は触媒元素の濃度が小さく、しかも結晶性が良好 であるので、この領域を半導体装置の活性領域として用 いることは有用である。例えば、薄膜トランジスタのチ ャネル形成領域として利用することは極めて有用であ

【0055】〔実施例3〕本実施例は、触媒元素である ニッケルを非水溶液であるアルコールに含有させ、非晶 質珪素膜上に塗布する例である。本実施例では、ニッケ ルの化合物としてニッケルアセチルアセトネートを用 い、該化合物をアルコールに含有させる。ニッケルの濃 度は必要とする濃度になるようにすればよい。

【0056】後の工程は、実施例1または実施例2に示 したのと同様である。また、このニッケルを含有したア い。この場合、非晶質珪素膜の形成前にこの溶液をスピ ナーを用いて塗布すればよい。またアルコールを用いた 場合、非晶質珪素膜上に直接塗布することが可能であ ā.

【0057】以下具体的な条件を説明する。まず、ニッ ケル化合物として、ニッケルアセチルアセトネートを用 意する。この物質は、アルコールに可溶であり、分解温 度が低いため、結晶化工程における加熱の際に容易に分 解させることができる。

50 【0058】また、アルコールとしてはエタノールを用

いる。まずエタノールに前記のニッケルアセチルアセトネートをニッケルの量に換算して100ppmになるように調整し、ニッケルを含有した溶液を作製する。

【0059】そしてこの溶液を非晶質珪素膜上に塗布する。なお、非晶質珪素膜は、酸化珪素の下地膜(2000A厚)が形成された100mm角のガラス基板上に1000Aの厚さでブラズマCVD法で形成したものである。

[0060]上記非晶質珪素膜上への溶液の塗布は、実施例1や実施例2の水溶液を用いた場合より、少なくて 10 すむ。これは、アルコールの接触角が水のそれよりも小さいことに起因する。ここでは、100mm角の面積に対し、2mlの滴下とする。

【0061】そして、この状態で5分間保持する。その後、スピナーを用い乾燥を行う。この際、スピナーは1500rpmで1分間回転させる。この後は、550で、4時間の加熱を行ない結晶化を行う。こうして結晶性を有する珪素膜を得る。

【0062】 〔実施例4〕 本実施例は、触媒元素である 長248 nm、パルス幅20 n s e c ) あるいはそれと ニッケル単体を酸に溶かし、このニッケル単体が溶けた 20 同等な強光を照射することで、シリコン領域104の結 酸を非晶質珪素膜上に塗布する例である。 晶化を助長さえてもよい、特に 赤外光を用いた R T x

【0063】本実施例においては、酸として0.1mo 1/1の硝酸を用いる。この硝酸の中にニッケルの濃度が50ppmとなるように、ニッケルの粉末を溶かし、これを溶液として用いる。この後の工程は、実施例1の場合と同様である。

【0064】〔実施例5〕本実施例は、本発明の方法を利用して作製した結晶性珪素膜を用いて、アクティブマトリックス型の液晶表示装置の各画素部分に設けられるTFTを作製する例を示す。なお、TFTの応用範囲としては、液晶表示装置のみではなく、一般に言われる薄膜集積回路に利用できることはいうまでもない。

【0065】図3に本実施例の作製工程の概要を示す。 まずガラス基板上に下地の酸化珪素膜(図示せず)を2 000Åの厚さに成膜する。この酸化珪素膜は、ガラス 基板からの不純物の拡散を防ぐために設けられる。

【0066】そして、非晶質珪素膜を実施例1と同様な方法で1000Aの厚さに成膜する。そして、自然酸化膜を取り除くためのフッ酸処理の後、薄い酸化膜20を20A程度の厚さに酸素雰囲気でのUV光の照射によっ 40 て成膜する。

【0067】そして10ppmのニッケルを含有した酢酸塩溶液を塗布し、5分間保持し、スピナーを用いてスピンドライを行う。その後バッファフッ酸によって酸化珪素膜20と21を取り除き、550度、4時間の加熱によって、珪素膜100を結晶化させる。(ここまでは実施例1に示した作製方法と同じ)

【0068】このニッケルを導入する工程は、実施例3または実施例4に示した方法によってもよい。勿論、ニッケルの濃度や保持時間は適時選択すればよい。

【0069】次に、結晶化した珪素膜をパターニングして、島状の領域 104 を形成する。この島状の領域 104 はTFTの活性層を構成する。そして、厚さ 200 ~ 1500 Å、ここでは 1000 Åの酸化珪素 105 を形成する。この酸化珪素 205 成する。この酸化珪素 205 機能する。(図 3(A))

【0070】上記酸化珪素膜105の作製には注意が必 要である。ここでは、TEOSを原料とし、酸業ととも に基板温度150~600℃、好ましくは300~45 O℃で、RFプラズマCVD法で分解・堆積した。TE OSと酸素の圧力比は1:1~1:3、また、圧力は 0. 05~0. 5 torr, RF/77-4100~25 OWとした。あるいはTEOSを原料としてオソンガス とともに滅圧CVD法もしくは常圧CVD法によって、 基板温度を350~600℃、好ましくは400~55 0℃として形成した。成膜後、酸素もしくはオソンの雰 囲気で400~600℃で30~60分アニールした。 【0071】この状態でKrFエキシマーレーザー(波 長248mm、パルス幅20msec) あるいはそれと 晶化を助長さえてもよい。特に、赤外光を用いたRTA (ラピットサーマルアニール) は、ガラス基板を加熱せ ずに、珪素のみを選択的に加熱することができ、しかも 珪素と酸化珪素膜との界面における界面準位を減少させ ることができるので、絶縁ゲイト型電界効果半導体装置 の作製においては有用である。

【0072】その後、厚さ2000A~1μπのアルミニウム膜を電子ビーム蒸着法によって形成して、これをパターニングし、ゲイト電極106を形成する。アルミコウムにはスカンジウム(Sc)を0.15~0.2 重量%ドーピングしておいてもよい。次に基板をpH=7、1~3%の酒石酸のエチレングリコール溶液に浸し、白金を陰極、このアルミニウムのゲイト電極をでは、最初一定電話では、陽極酸化を行う。陽極酸化は、最初一定電流で20Vまで電圧を上げ、その状態では、電圧の上昇をではる。本実施例では定電流状態では、電圧の上昇を実は2~5V/分が適当である。このようにして、厚さ1500~3500A、例えば、2000Aの陽極酸化物109を形成する。(図3(B))

0 【0073】その後、イオンドーピング法(プラズマドーピング法ともいう)によって、各TFTの島状シリコン膜中に、ゲイト電極部をマスクとして自己整合的に不純物(燐)を注入した。ドーピングガスとしてはフォスフィン( $PH_3$ )を用いた。ドーズ量は、 $1\sim4\times10$   $15~c~m^{-2}$ とする。

【0074】さらに、図3 (C) に示すようにKrFエキシマーレーザー(波長248nm、バルス富20nsec)を照射して、上記不純物領域の導入によって結晶性の劣化した部分の結晶性を改善させる。レーザーのエネルギー密度は150~400mJ cm²、好ましく

は200~250mJ/cm $^2$  である。こうして、N型 不純物(燐)領域108、109を形成する。これらの 領域のシート抵抗は200~800Ω/□であった。

【0075】この工程において、レーザーを用いるかわ りに、フラッシュランプを使用して短時間に1000~ 1200℃(シリコンモニターの温度)まで上昇させ、 試料を加熱する、いわゆるRTA(ラピッド・サーマル ·アニール) (RTP、ラピット・サーマル・プロセス ともいう)を用いてもよい。

【0076】その後、全面に層間絶縁物110として、 TEOSを原料として、これと酸素とのプラズマCVD 法、もしくはオゾンとの滅圧CVD法あるいは常圧CV D法によって酸化珪素膜を厚さ3000A形成する。基 板温度は250~450℃、例えば、350℃とする。 成膜後、表面の平坦性を得るため、この酸化珪素膜を機 械的に研磨する。さらに、スパッタ法によってIT〇被 膜を堆積し、これをパターニングして画素電極111と する。(図3(D))

【0077】そして、層間絶縁物110をエッチングし て、図1(E)に示すようにTFTのソース/ドレイン 20 を助長する触媒元素であるニッケル元素を含んだ溶液 にコンタクトホールを形成し、クロムもしくは窒化チタ ンの配線112、113を形成し、配線113は画素電 極111に接続させる。

【0078】プラズマ処理を用いてニッケルを導入した 結晶性珪素膜は、酸化珪素膜に比較してバッファフッ酸 に対する選択性が低いので、上記コンタクトホールの形 成工程において、エッチングされてしまうことが多かっ た。

【0079】しかし、本実施例のように10ppmの低 **濃度で水溶液を用いてニッケルを導入した場合には、耐 30 るように基板に対して平行な方向に結晶成長が進行す** フッ酸性が高いので、上記コンタクトホールの形成が安 定して再現性よく行なうことができる。

【0080】最後に、水素中で300~400℃で0. 1~2時間アニールして、シリコンの水素化を完了す る。このようにして、TFTが完成する。そして、同時 に作製した多数のTFTをマトリクス状に配列せしめて アクティブマトリクス型液晶表示装置として完成する。 このTFTは、ソース/ドレイン領域108/109と チャネル形成領域114を有している。また115がN Iの電気的接合部分となる。

【0081】本実施例の構成を採用した場合、活性層中 に存在するニッケルの濃度は、 $3 \times 10^{18} \, \mathrm{cm}^{-3}$ 程度あ るいはそれ以下の、 $1 \times 10^{16} a toms$  c  $m^{-3} \sim 3 \times 10$ <sup>18</sup>atoms c m<sup>-3</sup>であると考えられる。

【0082】〔実施例6〕本実施例においては、実施例 2に示すようにニッケルを選択的に導入し、その部分か ら横方向(基板に平行な方向)に結晶成長した領域を用 いて電子デバイスを形成する例を示す。このような構成 を採用した場合、デバイスの活性層領域におけるニッケ ル濃度をさらに低くすることができ、デバイスの電気的 50 【0088】その後、100体積%の水蒸気を含む10

安定性や信頼性の上から極めて好ましい構成とすること ができる。

【0083】本実施例におけるニッケル元素の導入方法 としては、実施例3、実施例4で示す方法によってもよ

【0084】本実施例は、アクティブマトリクスの画素 の制御に用いられるTFTの作製工程に関するものであ る。図4に本実施例の作製工程を示す。まず、基板20 1を洗浄し、TEOS (テトラ・エトキシ・シラン) と 10 酸素を原料ガスとしてブラズマCVD法によって厚さ2 000Aの酸化珪素の下地膜202を形成する。そし て、プラズマCVD法によって、厚さ500~1500 A、例えば1000Aの真性 (I型) の非晶質珪素膜2 03を成膜する。次に連続的に厚き500~2000 A、例えば1000Aの酸化珪素膜205をブラズマC VD法によって成膜する。そして、酸化珪素膜205を 選択的にエッチングして、非晶質珪素の露出した領域 2 06を形成する。

【0085】そして実施例2に示した方法により結晶化 (ここでは酢酸塩溶液) 塗布する。酢酸溶液中における ニッケルの濃度は100ppmである。その他、詳細な 工程順序や条件は実施例2で示したものと同一である。 この工程は、実施例3または実施例4に示した方法によ るものであってもよい。

【0086】この後、窒素雰囲気下で500~620 ℃、例えば550℃、4時間の加熱アニールを行い、珪 業膜303の結晶化を行う。結晶化は、ニッケルと珪素 膜が接触した領域206を出発点として、矢印で示され る。図においては領域204はニッケルが直接導入され て結晶化した部分、領域203は横方向に結晶化した部 分を示す。この203で示される横方向への結晶は、2  $5\mu$ m程度である。またその結晶成長方向は概略  $\langle 11$ 1) 軸方向であることが確認されている。(図4 (A)

【0087】次に、酸化珪素膜205を除去する。この 際、領域206の表面に形成される酸化膜も同時に除去 する。そして、珪素膜204をバターニング後、ドライ 40 エッチングして、島状の活性層領域208を形成する。 この際、図4(A)で206で示された領域は、ニッケ ルが直接導入された領域であり、ニッケルが高濃度に存 在する領域である。また、結晶成長の先端にも、やはり ニッケルが高濃度に存在することが確認されている。こ れらの領域では、その中間の領域に比較してニッケルの 濃度が高いことが判明している。したがって、本実施例 においては、活性層208において、これらのニッケル 濃度の高い領域がチャネル形成領域と重ならないように した。

気圧、500~600℃の、代表的には550℃の雰囲 気中において、1時間放置することによって、活性層 (珪素膜) 208の表面を酸化させ、酸化珪素膜209 を形成する。酸化珪素膜の厚さは1000Aとする。熱 酸化によって酸化珪素膜209を形成したのち、基板 を、アンモニア雰囲気(1気圧、100%)、400℃ に保持させる。そして、この状態で基板に対して、波長 0. 6~4μm、例えば、0. 8~1. 4μmにピーク をもつ赤外光を30~180秒照射し、酸化珪素膜20 9に対して窒化処理を施す。なおこの際、雰囲気に0. 1~10%のHClを混入してもよい。

【0089】赤外線の光源としてはハロゲンランブを用 いる。赤外光の強度は、モニターの単結晶シリコンウェ ハー上の温度が900~1200℃の間にあるように調 整する。具体的には、シリコンウェハーに埋め込んだ熱 電対の温度をモニターして、これを赤外線の光源にフィ ードバックさせる。本実施例では、昇温は、一定で速度 は50~200℃/秒、降温は自然冷却で20~100 ℃とする。この赤外光照射は、珪素膜を選択的に加熱す ることができる。(図4(B))

【0090】引き続いて、スパッタリング法によって、 厚さ3000~8000A、例えば6000Aのアルミ ニウム (0.01~0.2%のスカンジウムを含む)を 成膜する。そして、アルミニウム膜をパターニングし て、ゲイト電極210を形成する。(図2(C))

【0091】さらに、このアルミニウムの電極の表面を 陽極酸化して、表面に酸化物層211を形成する。この 陽極酸化は、酒石酸が1~5%含まれたエチレングリコ 一ル溶液中で行う。得られる酸化物層211の厚さは2 000Aである。なお、この酸化物211は、後のイオ ンドーピング工程において、オフセットゲイト領域を形 成する厚さとなるので、オフセットゲイト領域の長さを 上記陽極酸化工程で決めることができる。(図4 (D))

【0092】次に、イオンドーピング法(ブラズマドー ピング法とも言う)によって、活性層領域(ソース/ド レイン、チャネルを構成する) にゲイト電極部、すなわ ちゲイト電極210とその周囲の酸化層211をマスク では燐)を添加する。ドーピングガスとして、フォスフ ィン(PH3)を用い、加速電圧を60~90kV、例 えば80kVとする。ドーズ量は $1 \times 10^{15} \sim 8 \times 10$  $^{15}$  c m $^{-2}$ 、例えば、 $4 \times 10^{15}$  c m $^{-2}$ とする。この結 果、N型の不純物領域212と213を形成することが できる。図からも明らかなように不純物領域とゲイト電 極とは距離xだけ放れたオフセット状態となる。このよ うなオフセット状態は、特にゲイト電極に逆電圧(Nチ ャネルTFTの場合はマイナス)を印加した際のリーク 電流(オフ電流ともいう)を低減する上で有効である。

特に、本実施例のようにアクティブマトリクスの画素を 制御するTFTにおいては良好な画像を得るために画案 電極に蓄積された電荷が逃げないようにリーク電流が低 いことが望まれるので、オフセットを設けることは有効 である。

【0093】その後、レーザー光の照射によってアニー ルを行った。レーザー光としては、KrFエキシマレー ザー(液長248nm、パルス幅20nsec)を用い るが、他のレーザーであってもよい。 レーザー光の照射 条件は、エネルギー密度が 2 0 0 ~ 4 0 0 m J / c m  $^2$ 、例えば250mJ/cm $^2$  とし、一か所につき2~ 10ショット、例えば2ショット照射した。このレーザ 一光の照射時に基板を200~450℃程度に加熱する ことによって、効果を増大せしめてもよい。(図4

[0094] 続いて、厚さ6000人の酸化珪素膜21 4を層間絶縁物としてブラズマCVD法によって形成す る。さらに、スピンコーティング法によって透明なポリ イミド膜215を形成し、表面を平坦化する。このよう ることになるので、ガラス基板への加熱を最小限に抑え 20 にして形成された平面上にスパッタ法によって厚さ80 O Aの透明導電性膜 (ITO膜)を成襲し、これをバタ ーニングして画業電極216を形成する。

> 【0095】そして、層間絶縁物214、215にコン タクトホールを形成して、金属材料、例えば、窒化チタ ンとアルミニウムの多層膜によってTFTの電極・配線 217、218を形成する。最後に、1気圧の水素雰囲 気で350℃、30分のアニールを行い、TFTを有す るアクティブマトリクスの画業回路を完成する。(図4

【0096】〔実施例7〕図5に本実施例の作製工程の 断面図を示す。まず、基板(コーニング7059)50 1上にスパッタリング法によって厚さ2000Aの酸化 珪素の下地膜102を形成した。基板は、下地膜の成類 の前もしくは後に、歪み温度よりも高い温度でアニール をおこなった後、 $0.1\sim1.0$  $\mathbb{C}/\mathcal{G}$ で歪み温度以下 まで徐冷すると、その後の温度上昇を伴う工程(本発明 の熱酸化工程およびその後の熱アニール工程を含む)で の基板の収縮が少なく、マスク合わせが用意となる。コ ーニング7059基板では、620~660℃で1~4 として、自己整合的にN導電型を付与する不純物(ここ 40 時間アニールした後、0.03~1.0℃/分、好まし くは、0.1~0.3℃/分で徐冷し、400~500 ℃まで温度が低下した段階で取り出すとよい。

> 【0097】次に、ブラズマCVD法によって、厚さ5 00~1500点、例えば1000点の真性(1型)の 非晶質珪素膜を成膜した。そして、実施例1で示した方 法により非晶質珪素膜の結晶化を行なった。そして窒素 雰囲気(大気圧)、600℃、48時間アニールして結 晶化させ、差素膜を10~1000μm角の大きさにバ ターニングして、島状の珪素膜 (TFTの活性層) 50 50 3を形成した。(図5(A))

例えば $250 \,\mathrm{mJ/c\,m^2}$  とし、一か所につき $2\sim10$ ショット、例えば2ショット照射した。このレーザー光 の照射時に基板を200~450℃程度に加熱すること によって、効果を増大せしめてもよい。(図5(C)) 【0102】また、この工程は、近赤外光によるランブ アニールによる方法でもよい。近赤外線は非晶質珪素よ りも結晶化した珪素へは吸収されやすく、1000℃以 上の熱アニールにも匹敵する効果的なアニールを行うこ とができる。その反面、ガラス基板(遠赤外光はガラス

基板に吸収されるが、可視・近赤外光 (波長0.5~4 μm) は吸収されにくい) へは吸収されにくいので、ガ ラス基板を高温に加熱することがなく、また短時間の処 理ですむので、ガラス基板の縮みが問題となる工程にお いては最適な方法であるといえる。

【0103】続いて、厚さ6000Aの酸化珪素膜50 8を層間絶縁物としてブラズマCVD法によって形成し た。この層間絶縁物としてはポリイミドを利用してもよ い。さらにコンタクトホールを形成して、金属材料、例 えば、窒化チタンとアルミニウムの多層膜によってTF Tの電極・配線509、510を形成した。最後に、1 気圧の水素雰囲気で350℃、30分のアニールを行 い、TFTを完成した。(図5 (D))

【0104】上記に示す方法で得られたTFTの移動度 は110~150cm<sup>2</sup> / Vs、S値は0.2~0.5 V/桁であった。また、同様な方法によってソース/ド レインにホウ素をドーピングしたPチャネル型TFTも 作製したところ、移動度は $9.0 \sim 1.2.0 \text{ cm}^2 / \text{Vs}$ 、 S値は0.4~0 6 V / 桁であり、公知のP V D 法や CVD法によってゲイト絶縁膜を形成した場合に比較し て、移動度は2割以上高く、5値は20%以上も減少し た。また、信頼性の面からも、本実施例で作製されたT FTは1000℃の高温熱酸化によって作製されたTF Tにひけをとらない良好な結果を示した。

【0105】〔実施例8〕本実施例はアクティブマトリ クス型の液晶表示装置に本発明を利用する場合の例を示 す。図6のアクティブマトリクス型の液晶表示装置の一 方の基板の概要を示した上面図を示す。

【0106】図において、61はガラス基板であり、6 2はマトリクス状に構成された画素領域であり、画素領 域には数百×数百の画素が形成されている。この画素の 一つ一つにはスイッチング素子としてTFTが配置され ている。この画素領域のTFTを駆動するためのドライ パーTFTが配置されているのが周辺ドライバー領域6 2 である。画素領域 6 3 とドライバー領域 6 2 とは同一 基板61上に一体かされて形成されている。

【0107】ドライバー領域62に配置されるTFTは 大電流を流す必要があり、高い移動度が必要とされる。 また、画素領域63に配置されるTFTは画素電極の電 荷を保持率を固める必要があるので、オフ電流(リーク 件は、エネルギー密度が $200\sim400\,\mathrm{m\,J/c\,m^2}$ 、 50 電流)が少ない特性が必要とされる。例えば、画業領域

[0098] その後、70~90%の水蒸気を含む1気 圧、500~750℃、代表的には600℃の酸素雰囲 気を水素/酸素=1.5~1.9の比率でパイロジェニ ック反応法を用いて形成した。かかる雰囲気中におい て、3~5時間放置することによって、珪素膜表面を酸 化させ、厚さ500~1500A、例えば1000Aの 酸化珪素膜504を形成した。注目すべき歯、かかる酸 化により、初期の珪素膜は、その表面が50A以上減少 し、結果として、珪素膜の最表面部分の汚染が、珪素ー 酸化珪素界面には及ばないようになった、すなわち、清 浄な珪素一酸化珪素界面が得られたことである。酸化珪 秦膜の厚さは酸化される珪素膜の2倍であるので、10 00 Åの厚さの珪素膜を酸化して、厚さ1000 Åの酸 化珪素膜を得た場合には、残った珪素膜の厚さは500 Aということになる。

【0099】一般に酸化珪素膜(ゲイト絶縁膜)と活性 層は薄ければ薄いほど移動度の向上、オフ電流の減少と いう良好な特性が得られる。一方、初期の非晶質珪素膜 の結晶化はその膜厚が大きいほど結晶化させやすい。し たがって、従来は、活性層の厚さに関して、特性とブロ セスの面で矛盾が存在していた。本発明はこの矛盾を初 めて解決したものであり、すなわち、結晶化前には非晶 質珪素膜を厚く形成し、良好な結晶性珪素膜を得る。そ して、次にはこの珪素膜を酸化することによって珪素膜 を薄くし、TFTとしての特性を向上させるものであ る。さらに、この熱酸化においては、再結合中心の存在 しやすい非晶質成分、結晶粒界が酸化されやすく、結果 的に活性層中の再結合中心を減少させるという特徴も有 する。このため製品の歩留りが高まる。

【0100】熟酸化によって酸化珪素膜504を形成し たのち、基板を一酸化二窒素雰囲気 (1気圧、100 %)、600℃で2時間アニールした。(図5(B)) 引き続いて、減圧CVD法によって、厚さ3000~8 000A、例えば6000Aの多結晶珪藻 (0.01~ 0.2%の燐を含む)を成膜した。そして、珪素膜をバ ターニングして、ゲイト電極505を形成した。さら に、この珪素膜をマスクとして自己整合的に、イオンド ーピング法(プラズマドーピング法とも言う)によっ て、活性層領域(ソース/ドレイン、チャネルを構成す る)にN導電型を付与する不純物(ここでは燐)を添加 した。ドーピングガスとして、フォスフィン( $PH_3$ ) を用い、加速電圧を60~90kV、例えば80kVと した。ドーズ量は $1 \times 10^{15} \sim 8 \times 10^{15} \text{ cm}^{-2}$ 、例え ば、 $5 \times 10^{15}\,\mathrm{cm}^{-2}$ とした。この結果、N型の不純物 領域506と507が形成された。

【0101】その後、レーザー光の照射によってアニー ル行った。レーザー光としては、KェFエキシマレーザ 一(波長248nm、パルス幅20nsec)を用いた が、他のレーザーであってもよい、レーザー光の照射条 63に配置されるTFTは、実施例5に示すTFTを用 いることができる。

【0108】 [実施例9] 本実施例は、実施例1に示す 作製方法において、酢酸ニッケル水溶液を塗布する工程 の前に、酸化珪素膜表面にラピング処理をおこなうこと によって、該酸化珪素膜表面に微細な擦り傷を形成し、 ある一定の方向、幅、間隔をもたせて非晶質珪素膜に二 ッケルを導入する例である。

【0109】まず、基板 (コーニング7059) 上に下 地膜としてスパッタリング法によって酸化珪素膜を20 00Å形成した。そして、非晶質珪素膜をプラズマCV D法によって300~800A、例えば、500Aに成 膜した。そして、汚れおよび自然酸化膜をを取り除くた めにフッ酸処理をおこない、その後、酸素雰囲気中にお いてUV光の照射をおこない、10~100Aの酸化珪 素膜を形成した。このとき、過酸化水素による処理や熱 酸化によって酸化珪素膜を形成してもかまわない。

【0110】酸化珪素膜形成後、酸化珪素膜表面にラビ ング処理をおこない、図7(A)のように微細な擦り傷 を膜表面に形成した。このラビング処理は、ダイヤモン 20 が多かった。 ドペーストを用いておこなったが、綿布、ラバー等にお いても可能である。ここで、接り傷が一定の方向、幅、 間隔となることが好ましい。

【0111】以上のように膜表面に接り傷による凹凸を 形成した後、実施例1と同様にスピンコーティング法に よって酢酸ニッケルの膜を形成した。このとき、先の工 程で形成した擦り傷の凹部分に、酢酸ニッケル水溶液が 一様にしみ込んでいる。

【0112】その後、実施例1と同様に加熱炉におい なった。この結果、結晶性を有する珪素膜(結晶性珪素 膜)を得ることができた。本実施例においては、酸化珪 秦膜にラビング処理を施すことによって、非晶質珪素膜 に対して、一定の方向、幅、間隔を持たせてニッケルを 導入したため、図7 (B) の如く、この結晶性珪素膜 は、結晶粒界の方向、大きさがある程度そろったものが 得られた。すなわち、長方形もしくは楕円形のように、 一方向に長い結晶粒が多く得られた。図7 (B) におい ては、結晶の形状が楕円形であるように書かれている が、それ以外の形状の結晶も同時に得られた。結晶粒の 40 場合、各TFTのチャネル内に存在する結晶(粒界)数 長手方向は概略、ラビングの方向であった。

【0113】凹凸の幅、間隔はラビングの時間、ダイヤ モンドペーストの密度等を変化させて最適となるように すればよい。ただし、顕微鏡観察では明確に幅や間隔を 測定できないので、得られる結晶性珪素膜の結晶粒の大 きさや非晶質珪素残りの密度等が最適になるように条件 を決定した。本実施例では、非晶質珪素の残り(未結晶 化領域)の大きさ(長径)が1μm以下、好ましくは、 0. 3 μm以下となるようにした。

酢酸ニッケルを塗布し、結晶化をおこなった場合におい ては、ニッケルのしみ込みが一様でなく、結晶化が一様 におこなわれず、 $1\sim10~\mu\,\mathrm{m}$ 程度の大きさの円形の未 結晶化領域が見られた。しかし、本実施例においては、 このような未結晶化領域の個数は格段に少なくなり、ま た、その大きさも小さくできた。

【0115】〔実施例10〕本実施例は、実施例9で作 製した結晶性珪素膜を用いて画業TFTを作製した例で ある。図8に本実施例の作製工程を示す。まず、基板8 10 01 (コーニング7059、10cm角) 上に、下地膜 として酸化珪素膜802をブラズマCVD法によって3 000Aに成膜した。そして、ブラズマCVD法によっ て非晶質珪素膜を300~1000A、例えば、500 Aに成襲した。

【0116】その後、実施例9と同様に、非晶質珪素膜 状に酸化珪素膜を形成し、ラビング処理を施し、スピン コーティング法によって酢酸ニッケル膜を形成した。そ して、窒素雰囲気中において、550℃、4時間の加熱 処理を施し、結晶化せしめた。結晶は一方向に長いもの

【0117】その後、更に結晶性を向上させるためにレ ーザー光を照射した。このとき、KFFエキシマレーザ 一光(波長248nm)を200~350mJ/cm² で照射することによって、さらに、良好な結晶性珪素膜 803が得られた。また、この結果、僅かに存在してい た未結晶化領域は完全に結晶化された。 (図 8 (A)) 【0118】つぎに、この様にして得られた結晶性珪素 **襲803をバターニングして、島状の領域804(島状** 珪素膜)を形成した。この島状の領域を形成する際、図 て、窒素雰囲気中で 5.50  $\mathbb{C}$  、 4 時間の加熱処理をおこ 30 9 (A) 、 (B) の様に結晶粒界に対して、垂直方向と 平行方向の二通りとることができる。

【0119】このとき、TFTを流れる電流は粒界を横 切る際、粒界の抵抗が大きい。また、粒界にそっては電 流が流れやすい。このため、チャネル領域に含まれる粒 界の数およびその方向によって、TFTのリーク電流 (ゲイト電極に逆パイアス電圧を印加した状態でのドレ イン電流。例えば、Nチャネル型TFTの場合には、ゲ イト電極に負の電圧を印加した状態でのドレイン電圧) は大きな影響を受ける。特に、複数のTFTが存在する や方向が大きくばらつくと、リーク電流のバラツキの原 因となる。

【0120】これは、結晶粒の大きさがチャネルの大き さと同程度、もしくはそれ以下となった場合に大きな問 題となる。チャネルが結晶粒に比べて十分に大きな場合 には、このようなバラツキは平均化されてしまい、現象 として観測されない。例えば、チャネル内に粒界が1つ 存在するかしないが、という状況では、粒界が存在しな い場合には単結晶のTFTと同じ特性が期待できる。一 【 $\Omega$  1 1 4  $\}$  実施例 1 のようにラビング処理を施さずに50 方、粒界がドレイン電流に平行に存在する場合には、リ

一ク電流が大きくなる。逆に、粒界がドレイン電流に直 角に存在する場合には、リーク電流が小さくなる。

【0121】本実施例では、結晶はラビング方向に長細 く成長するので、ドレイン電流が流れる方向をその方向 に対して、平行にとった場合 (2 (A) には、チャ ネル領域内に存在する粒界 (結晶) の数が平均化されに くく、リーク電流がばらつきやすい。しかも、概して、 ドレイン電流の方向が粒界の方向であるので、リーク電 流が大きい。一方、図9(B)のように垂直にとった場 合、本発明においては、結晶粒901の幅がほぼ一定で 10 VD法によって酸化珪素膜を厚さ3000Aに成膜し あるため、チャネル領域902内に存在する粒界903 の数がほぼ等しく、安定したIoffが期待できる。故 に、図9(B)のように島状珪素膜804はドレイン電 流が流れる方向が粒界方向に対して垂直となる方向 (す なわち、ラピング方向に概略垂直)に形成するとよい。 この島状珪素膜804はTFTの活性層を形成する。

【0122】本実施例では、上記以外にも、ラビング処 理を施すことによる結晶粒の平均化による降下もあっ た。例えば、結晶粒の大きさが大きく変動すると、チャ ネルに存在しうる結晶の数に大きな変動が生じるので、 特にリーク電流のバラツキの原因となった。実施例1の 場合には、ニッケルの拡散が不均一であったので結晶粒 の大きさはまちまちとなることがあり、また、 $10 \mu m$ 以上の大きな未結晶化領域はレーザー照射によって結晶 化しても結晶性が著しく劣った。

【0123】しかしながら、本実施例のようにラビング 処理をおこなうと結晶の大きさは比較的、揃ったものと なり、また、未結晶化領域はレーザー照射によって結晶 化される際に、近傍の結晶の影響を強く受けてエピタキ シャル的な成長をおこなうため、良好な結晶性を示し た。このようにラビング処理を施すことによる効果が見 られた。つぎに、ゲイト絶縁膜805として、膜厚20 0~1500A、例えば、1000Aの酸化珪素膜をブ ラズマCVD法によって形成した。

【0124】その後、厚さ1000Å~3μm、例え ば、5000Aのアルミニウム(1wt%のSi、もし くは0.1~0.3wt%のScを含む) 膜をスパッタ リング法によって成膜して、これをパターニングして、 グイト電極806を形成した。 つぎに基板をpH=7、  $1 \sim 3$ %の酒石酸のエチレングリコール溶液に浸し、白 40金を陰極、アルミニウムのゲイト電極806を陽極とし て、陽極酸化をおこなった。陽極酸化は、最初一定電流 で220 Vまで電圧を上げ、その状態で1時間保持して 終了させた。このようにして、厚さ1500~3500 A、例えば、2000Aの陽極酸化物807を形成し た。(図8 (B))

【0125】その後、イオンドーピング法によって、島 状珪素膜804に、ゲイト電極306をマスクとして自 己整合的に不純物を注入した。ここでは、ジボラン (B 2. H.s.)をドーピングガスとして硼素を注入して、P型 50 1.1・・・ガラス基板

不純物領域808を形成した。この場合、硼素のドーズ 量は $4\sim1~0\times1~0^{15}~c~m^{-2}$ 、加速電圧を6.5~k~Vとし た。(図 S (C))

22

【0126】さらに、KrFエキシマレーザー(波長2 48 nm、パルス幅20 nsec)を照射して、ドーピ ングされた不純物領域808の活性化をおこなった。レ ーザーのエネルギー密度は200~400mJ/c  $m^2$  、好ましくは250~300mJ/c $m^2$  が適当で あった。つぎに、層間絶縁膜809として、ブラズマC た。

【0127】そして、層間絶縁膜809、ゲイト絶縁膜 805のエッチングをおこない、ソースにコンタクトホ ールを形成した。その後、アルミニウム膜をスパッタリ ング法によって形成し、パターニングしてソース電極8 10を形成した。(図8(D))

【0128】最後に、パッシペーション膜811として 厚さ2000~6000Å、例えば、3000Åの窒化 珪素膜をブラズマCVD法によって形成し、これと層間 20 絶縁膜809、ゲイト絶縁膜805をエッチングして、 ドレインに対してコンタクトホールを形成した。そし て、インディウム錫酸化物膜(ITO膜)を形成し、こ れをエッチングして、画素電極812を形成した。(図 8 (E))

以上のようにして、画素TFTが形成された。

[0129]

【効果】触媒元素を導入して低温で短時間で結晶化させ た結晶性珪素膜を用いて、半導体装置を作製すること で、生産性が高く、特性のよいデバイスを得ることがで 30 きる。

【図面の簡単な説明】

【図 1】 実施例の工程を示す

【図2】 実施例の工程を示す。

溶液中のニッケル濃度と横方向への結晶成長 [図3] 距離との関係を示す。

【図4】 実施例の作製工程を示す。

【図5】 実施例の作製工程を示す。

[図6] 実施例の構成を示す。

【図7】 実施例の結晶成長について示す。

【図8】 実施例の作製工程を示す。

【図9】 実施例のTFTの活性層の配置を示す。 【符号の説明】

11・・・ガラス基板

12・・・・非晶質珪素膜

13 · · · · 酸化珪素膜

14・・・・ニッケルを含有した酢酸溶液膜

15・・・・ズピナー

21・・・・マスク用酸化珪素膜

20 · · · · 酸化珪素膜

104・・・活性層

105・・・酸化珪素膜 106・・・ゲイト電極

109・・・酸化物層

108・・・ソース/ドレイン領域

[図1]



109・・・ドレイン/ソース領域 110・・・層間絶繰襲(酸化珪素膜)

111・・・画素電極(IT〇)

1 1 2 · · · 電極 1 1 3 · · · 電極

[図2]

24











(A) -801 -802 -808 (B) -806 -807 -805 (C) -804 (C) -809 (D) -810 -809 (E) -811 -812







#### フロントページの続き

 (51) Int. Cl. 6
 識別記号
 庁內整理番号
 FI
 技術表示箇所

 H 0 1 L 21/26
 21/268
 Z

#### (72)発明者 張 宏勇

27/12

神奈川県厚木市長谷398番地 株式会社半 導体エネルギー研究所内

R