Biostat 602 Winter 2017

Lecture Set 3

Principles of Data Reduction (Minimal Sufficiency)

Minimal Sufficient Statistic

Reading: CB 6.2

- Sufficient statistics are not unique.
- $T(\mathbf{x}) = \mathbf{x}$: The random sample itself is a trivial sufficient statistic for any θ .
- The set of order statistics $T(\mathbf{X}) = (X_{(1)}, \dots, X_{(n)})$ is always a sufficient statistic for θ , if X_1, \dots, X_n are iid.
- For any sufficient statistic $T(\mathbf{X})$, its one-to-one function $q(T(\mathbf{X}))$ is also a sufficient statistic for θ .

Question Can we find a sufficient statistic that achieves the maximum data reduction?

Definition 6.2.11

A sufficient statistic $T(\mathbf{X})$ is called a *minimal sufficient statistic* if, for any other sufficient statistic $T'(\mathbf{X})$, $T(\mathbf{X})$ is a function of $T'(\mathbf{X})$.

Remarks

- $T(\mathbf{X})$ is a function of $T'(\mathbf{X}) \implies \text{if } T'(\mathbf{x}) = T'(\mathbf{y}) \text{ then } T(\mathbf{x}) = T(\mathbf{y}).$
- ullet The sample space ${\mathcal X}$ consists of every possible sample finest partition
- Given $T(\mathbf{X})$, \mathcal{X} can be partitioned into A_t where $t \in \mathcal{T} = \{t : t = T(\mathbf{X}) \text{ for some } \mathbf{x} \in \mathcal{X}\}$
- \bullet Maximum data reduction is achieved when cardinality of $\mathcal T$ is minimal.
- If size of $\mathcal{T}' = \{t : t = T'(\mathbf{x}) \text{ for some } \mathbf{x} \in \mathcal{X}\}$ is not less than that of \mathcal{T} , then \mathcal{T} is a minimal sufficient statistic. In this case, the partition induced by \mathcal{T} is the *coarsest* possible.

Question 1: If T is $minimal\ sufficient$, is a one-to-one function of T also $minimal\ sufficient$?

Question 2: Is there always a one-to-one function between any two *minimal sufficient* statistics?

Note that sufficiency is tied to the parameter under consideration. Consider a random sample X_1, \ldots, X_n from a $N(\mu, \sigma^2)$ population, where σ^2 is **known**. We have seen earlier that in this case, $T(\mathbf{X}) = \overline{X}$ is sufficient for μ . Consider the statistic $\mathbf{T}'(\mathbf{X}) = (T_1(\mathbf{X}), T_2(\mathbf{X})) = (\overline{X}, S^2)$.

- \mathbf{T}' is sufficient for μ (factorization theorem).
- T achieves a coarser data reduction than T'.
- No additional information is gained about μ from \mathbf{T}' .
- When σ^2 is not known, T is **not sufficient** for (μ, σ^2) . In this case, $\mathbf{T}' = (\overline{X}, S^2)$ is jointly sufficient for (μ, σ^2) .

Question Is (\overline{X}, S^2) minimal sufficient for (μ, σ^2) (how to check)?

Theorem 6.2.13

Suppose $f_{\mathbf{X}}(\mathbf{x}|\theta)$ be the pdf or pmf of a sample \mathbf{X} parameterized by θ . Suppose there exists a function $T(\mathbf{x})$ such that, for any two sample points \mathbf{x} and \mathbf{y} , the ratio $f_{\mathbf{X}}(\mathbf{x}|\theta)/f_{\mathbf{X}}(\mathbf{y}|\theta)$ is constant as a function of θ if and only if $T(\mathbf{x}) = T(\mathbf{y})$. Then $T(\mathbf{x})$ is minimal sufficient for θ .

In other words

- $f_{\mathbf{X}}(\mathbf{x}|\theta)/f_{\mathbf{X}}(\mathbf{y}|\theta)$ is constant as a function of $\theta \Longrightarrow T(\mathbf{x}) = T(\mathbf{y})$.
- $T(\mathbf{x}) = T(\mathbf{y}) \Longrightarrow f_{\mathbf{X}}(\mathbf{x}|\theta)/f_{\mathbf{X}}(\mathbf{y}|\theta)$ is constant as a function of θ

Proof:

Example 1: Let X_1, X_2, X_3 be i.i.d. Bernoulli(p). Consider

$$T_1(\mathbf{X}) = X_1 + X_2 + X_3.$$

(a) Is T_1 sufficient for p?

$$f_{\mathbf{X}}(\mathbf{x}|p) = p^{x_1 + x_2 + x_3} (1 - p)^{3 - x_1 - x_2 - x_3}$$

$$= \left(\frac{p}{1 - p}\right)^{x_1 + x_2 + x_3} (1 - p)^3$$

$$h(\mathbf{x}) = 1$$

$$g(t|p) = \left(\frac{p}{1 - p}\right)^t (1 - p)^3$$

Since

$$f_{\mathbf{X}}(\mathbf{x}|p) = g(x_1 + x_2 + x_3|p)h(\mathbf{x}),$$

by factorization Theorem, T_1 is sufficient for p.

(b) Is T_1 minimal sufficient for p?

$$\frac{f_{\mathbf{X}}(\mathbf{x}|\theta)}{f_{\mathbf{X}}(\mathbf{y}|\theta)} = \frac{p^{\sum x_i}(1-p)^{3-\sum x_i}}{p^{\sum y_i}(1-p)^{3-\sum y_i}}$$

$$= \left(\frac{p}{1-p}\right)^{\sum x_i - \sum y_i}$$

- If $T_1(\mathbf{x}) = T_1(\mathbf{y})$, i.e. $\sum x_i = \sum y_i$, then the ratio does not depend on p.
- The ratio above is constant as a function of p only if $\sum x_i = \sum y_i$, i.e. $T_1(\mathbf{x}) = T_1(\mathbf{y})$.

Therefore, $T_1(\mathbf{X}) = \sum X_i$ is a minimal sufficient statistic for p by Theorem 6.2.13.

Example 2: Same premise as in Example 1. Consider

$$\mathbf{T}_2(\mathbf{X}) = (X_1 + X_2, X_3).$$

(a) Is T_2 sufficient for p?

$$f_{\mathbf{X}}(\mathbf{x}|p) = p^{x_1+x_2+x_3}(1-p)^{3-x_1-x_2-x_3}$$

$$= p^{x_1+x_2}(1-p)^{2-x_1-x_2}p^{x_3}(1-p)^{1-x_3}$$

$$h(\mathbf{x}) = 1$$

$$g(t_1, t_2|p) = p^{t_1}(1-p)^{2-t_1}p^{t_2}(1-p)^{1-t_2}$$
and $f_{\mathbf{X}}(\mathbf{x}|p) = g(x_1 + x_2, x_3|p)h(\mathbf{x})$

Hence $\mathbf{T}_2(\mathbf{X}) = (X_1 + X_2, X_3)$ is sufficient for p.

(b) Is T_2 minimal sufficient for p?

Let
$$A(\mathbf{X}) = X_1 + X_2$$
, and $B(\mathbf{X}) = X_3$.

$$f_{\mathbf{X}}(\mathbf{x}|p) = p^{x_1+x_2}(1-p)^{2-x_1-x_2}p^{x_3}(1-p)^{1-x_3}$$
$$= p^{A(\mathbf{x})+B(\mathbf{x})}(1-p)^{3-A(\mathbf{x})-B(\mathbf{x})}$$

$$\frac{f_{\mathbf{X}}(\mathbf{x}|\theta)}{f_{\mathbf{X}}(\mathbf{y}|\theta)} = \frac{p^{A(\mathbf{x})+B(\mathbf{x})}(1-p)^{3-A(\mathbf{x})-B(\mathbf{x})}}{p^{A(\mathbf{y})+B(\mathbf{y})}(1-p)^{3-A(\mathbf{x})-B(\mathbf{y})}}$$

$$= \left(\frac{p}{1-p}\right)^{A(\mathbf{x})+B(\mathbf{x})-A(\mathbf{y})-B(\mathbf{y})}$$

- The ratio above is constant as a function of p if (but not only if) $A(\mathbf{x}) = A(\mathbf{y})$ and $B(\mathbf{x}) = B(\mathbf{y})$
- The ratio is still constant as long as $A(\mathbf{x}) + B(\mathbf{x}) = A(\mathbf{y}) + B(\mathbf{y})$, even though $A(\mathbf{x}) \neq A(\mathbf{y})$ and $B(\mathbf{x}) \neq B(\mathbf{y})$

Therefore, $\mathbf{T}_2(\mathbf{X}) = (A(\mathbf{X}), B(\mathbf{X})) = (X_1 + X_2, X_3)$ is not a minimal sufficient statistic for p by Theorem 6.2.13.

Partition of the Sample Space

X_1	X_2	X_3	$\mathbf{T_2}(X) = (X_1 + X_2, X_3)$	$T_1(\mathbf{X}) = X_1 + X_2 + X_3$
0	0	0	(0,0)	0
0	0	1	(0,1)	
0	1	0	(, ,	3*1
1	0	0	2*(1,0)	
0	1	1		
1	0	1	$2^*(1, 1)$	3*2
1	1	0	(2,0)	
1	1	1	(2,1)	3

Clearly the partition induced by T_1 is coarser than the one induced by T_2 .

Some Algebraic Results

Assume that $a, b, c, d, a_1, \dots, a_n$ are constants.

1.
$$a\theta^2 + b\theta + c = 0$$
 for any $\theta \in \mathbb{R} \iff a = b = c = 0$.

2.
$$\sum_{i=1}^{k} a_i \theta^i = c$$
 for any $\theta \in \mathbb{R}$ $\Leftrightarrow a_1 = \cdots = a_k = 0, c = 0$.

3.
$$a\theta_1 + b\theta_2 + c = 0$$
 for all $(\theta_1, \theta_2) \in \mathbb{R}^2 \iff a = b = c = 0$.

4. The following equation is constant

$$\frac{1 + a_1\theta + a_2\theta^2 + \dots + a_k\theta_k^k}{1 + b_1\theta + b_2\theta^2 + \dots + b_k\theta_k^k}$$

$$\Leftrightarrow a_1 = b_1, \cdots, a_k = b_k.$$

Note that this does not hold without the constant 1, for example,

$$\frac{\theta + 2\theta^2}{2\theta + 4\theta^2} = \frac{1}{2}$$

5.
$$\frac{I(a < \theta < b)}{I(c < \theta < d)}$$
 is a constant function of $\theta \Leftrightarrow a = c$, and $b = d$.

6. θ^t is constant function of $\theta \iff t = 0$.

Example 3: Let X_1, \dots, X_n be iid Uniform $(\theta, \theta + 1)$, where $-\infty < \theta < \infty$. Find a minimal sufficient statistic for θ .

Joint pdf of X

$$f_{\mathbf{X}}(\mathbf{x}|\theta) = \prod_{i=1}^{n} I(\theta < x_i < \theta + 1)$$

Hence,

$$\frac{f_{\mathbf{X}}(\mathbf{x}|\theta)}{f_{\mathbf{X}}(\mathbf{y}|\theta)} = \frac{\prod_{i=1}^{n} I(\theta < x_{i} < \theta + 1)}{\prod_{i=1}^{n} I(\theta < y_{i} < \theta + 1)}$$

$$= \frac{I(\theta < x_{1} < \theta + 1, \dots, \theta < x_{n} < \theta + 1)}{I(\theta < y_{1} < \theta + 1, \dots, \theta < y_{n} < \theta + 1)}$$

$$= \frac{I(\theta < x_{(1)} \text{ and } x_{(n)} < \theta + 1)}{I(\theta < y_{(1)} \text{ and } y_{(n)} < \theta + 1)}$$

$$= \frac{I(x_{(n)} - 1 < \theta < x_{(1)})}{I(y_{(n)} - 1 < \theta < y_{(1)})}$$

The ratio above is constant if and only if $x_{(1)} = y_{(1)}$ and $x_{(n)} = y_{(n)}$. Therefore, $\mathbf{T}(\mathbf{X}) = (X_{(1)}, X_{(n)})$ is a minimal sufficient statistic for θ .

Example 4(a): Let X_1, \dots, X_n be iid $\mathcal{N}(\mu, \sigma^2)$, where both parameters are unknown. The parameter is a vector: $\boldsymbol{\theta} = (\mu, \sigma^2)$. The problem is to use find a minimal sufficient statistic for $\boldsymbol{\theta}$.

The joint pdf

$$f_{\mathbf{X}}(\mathbf{x}|\mu,\sigma^2) = (2\pi\sigma^2)^{-n/2} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2\right)$$

$$\frac{f_{\mathbf{X}}(\mathbf{x}|\mu,\sigma^{2})}{f_{\mathbf{X}}(\mathbf{y}|\mu,\sigma^{2})} = \exp\left(-\frac{\sum_{i=1}^{n}(x_{i}-\mu)^{2}}{2\sigma^{2}}\right) / \exp\left(-\frac{\sum_{i=1}^{n}(y_{i}-\mu)^{2}}{2\sigma^{2}}\right)$$

$$= \exp\left[-\frac{1}{2\sigma^{2}}\left(\sum_{i=1}^{n}(x_{i}^{2}-2\mu x_{i}+\mu^{2})-\sum_{i=1}^{n}(y_{i}^{2}-2\mu y_{i}+\mu^{2})\right)\right]$$

$$= \exp\left[-\frac{1}{2\sigma^{2}}\left(\sum_{i=1}^{n}x_{i}^{2}-\sum_{i=1}^{n}y_{i}^{2}\right)+\frac{\mu}{\sigma^{2}}\left(\sum_{i=1}^{n}x_{i}-\sum_{i=1}^{n}y_{i}\right)\right]$$

The ratio above will not depend on (μ, σ^2) if and only if

$$\begin{cases} \sum_{i=1}^{n} x_i^2 = \sum_{i=1}^{n} y_i^2 \\ \sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i \end{cases}$$

Therefore, $\mathbf{T}(\mathbf{X}) = (\sum_{i=1}^n X_i, \sum_{i=1}^n X_i^2)$ is a minimal sufficient statistic for (μ, σ^2) by Theorem 6.2.13

Define $\mathbf{T}'(\mathbf{X}) = (\overline{X}, \sum (X_i - \overline{X})^2/(n-1)) = (\overline{X}, S^2)$. Then, there exist one-to-one functions such that

$$\sum X_i = g_1(\overline{X}, \sum (X_i - \overline{X})^2/(n-1))$$

$$\sum X_i^2 = g_2(\overline{X}, \sum (X_i - \overline{X})^2/(n-1))$$

and

$$\overline{X} = h_1(\sum X_i, \sum X_i^2)$$
$$\sum (X_i - \overline{X})^2 / (n - 1) = h_2(\sum X_i, \sum X_i^2)$$

Thus \mathbf{T}' is minimal sufficient.

Example 4(b): Let X_1, \dots, X_n be iid $\mathcal{N}(\mu, \sigma^2)$. In each of the following cases, identify a minimal sufficient statistic for the parameter of interest.

- When $\sigma = \sqrt{\mu}$.
- When $\sigma = \mu$.

Example 5: Let X_1, \dots, X_n be a random sample from $Gamma(\alpha, \beta)$ with pdf

 $f(x|\alpha,\beta) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha-1} \exp(-x/\beta).$

Define $T_1(\mathbf{x}) = \prod_{i=1}^n x_i$, $T_2(\mathbf{x}) = \sum_{i=1}^n x_i$. Show that (T_1, T_2) are jointly sufficient for (α, β) . Are they minimal sufficient?