EVALUACIÓN FINAL

- •			
Prim	er i	nar	ะเวเ
	~ :	pui	CIGI

Examen 70% Prácticas 30%

- Práctica 1
- Práctica 2
- Práctica 3
- Práctica 4
- Práctica 5

Segundo parcial

Examen 60% Prácticas 40%

- Práctica 6
- Práctica 7
- Práctica 8
- Práctica 9

Tercer parcial

Proyecto 50% Prácticas 50%

- Práctica 10
- Práctica 11
- Práctica 12
- Práctica 13

EVALUACION DE PROYECTO FINAL

- 1. Implementar el proyecto final con las especificaciones abajo mencionadas
- 2. Grabar un video con duración máxima de 20 minutos, en el cual mostrará y explicará:
 - a. Funcionamiento del programa asignado utilizando como recursos el diagrama RTL y la simulación en forma de onda 50%
 - b. Cálculo de microinstrucción de instrucción asignada 50%
- 3. Subir su video a su Drive personal y compartir del link en Classroom en la asignación creada para ello

ESPECIFICACIONES PARA PROYECTO FINAL

1. Implemente el procesador diseñado a lo largo del curso con las siguientes especificaciones

a. Organización de la Memoria de Datos: 1K x 16b. Organización de la Memoria de Programa: 1K x 25

c. Tamaño de Operandos de ALU: 16 bits

- 2. Cargue en la memoria de programa el código del contador (Primer programa realizado en clase)
- 3. Realice la simulación del procesador tomando como vector de salida el Bus de datos de entrada para la memoria de Datos.
- 4. Realice el análisis de cada uno de los valores de las salidas en el Bus de datos de entrada para la memoria de Datos, para Read_data1, Read_data2 y Resultado ALU y llene la siguiente tabla.

Puerto	Ciclo1	Ciclo2	Ciclo3	Ciclo4	Ciclo5	Ciclo6	Ciclo7	Ciclo8	Ciclo9	Ciclo10
PC										
Instrucción										
Read_data1										
Read_data2										
Resultado ALU										

5. Cargue en la memoria de programa el código del programa asignado y realice el análisis y realice el análisis de cada uno de los valores de las salidas en el Bus de datos de entrada para la memoria de Datos, para Read_data1, Read_data2 y Resultado ALU y llene la siguiente tabla.