Лекция 13: Бустинг

м.

«Самый древний» дискретный бустинг

- Усиление за счет фильтрации (Schapire 1989):
 - □ Случайно выбрать $n_1 < n$ примеров из выборки D без удаления
 - \square Получить D_1 и построить «слабую» модель $b_1(x)$
 - □ Выбрать $n_2 < n$ примеров из D с фильтрацией по $b_1(x)$ применить к примерам $b_1(x)$, и с вероятностью ½ добавлять ошибки в D_2 и с вероятностью ½ не ошибки
 - \square На D_2 , где половина ошибки $b_1(x)$, построить «слабую» модель $b_2(x)$
 - □ Выбрать все D_3 из D где $b_1(x)$ и $b_2(x)$ дают разный прогноз и построить «слабую» модель $b_3(x)$
 - \square Финальный «усиленный» классификатор голосование $b_1(x), b_2(x), b_3(x)$
- Почему работает?
 - □ в голосовании должно быть 2+ голосов
 - $\Box b_1(x)$ и $b_2(x)$ максимально не похожи
 - \Box если $b_1(x) \neq b_2(x)$, то решает $b_3(x)$, который для этого учился
 - \square если $b_1(x) = b_2(x)$, то мнение $b_3(x)$ не интересно

Идея адаптивного бустинга

- Развивает идею «старого» бустинга с фильтрацией:
 - □ Вместо случайной выборки перевзвешивание, т.е. оценка «важности» или «сложности» примеров (зависит от ошибки ансамбля на примере)
 - □ Построение «слабых» классификаторов (точность хотя бы >50%)
 - □ Результирующий «сильный» классификатор может иметь много слабых классификаторов и пользуется взвешенным голосованием, здесь вес базового классификатора – его «сила»
- Заимствует постановку задачи и подход у Forward Stagewise
 Additive Modeling (FSAM), решающего задачу прогнозирования:
 - \square Выборка $Z = \{(x_i, y_i)\}_{i=1}^l \in X \times Y$
 - □ Модель взвешенный с весами α_i ансамбль M базовых моделей $a(x) = \sum_m \alpha_m \, b_m(x)$, который строится последовательно $a_m(x) = a_{m-1}(x) + \alpha_m b_m(x)$, где ищутся α_m , b_m при фиксированном a_{m-1}
 - \square Функция потерь $L: Y \times Y \to \mathbb{R}^+$

M

Forward Stagewise Additive Modeling

- FSAM
 - строит модель **последовательно**, добавляя к текущей модели a_m на шаге m «лучший» b_m с «лучшим» весом α_m :
 - \square Инициализация $a_0(x) = 0$
 - \square Цикл M итераций по m:

$$(b_m, \alpha_m) = \underset{b,\alpha}{\operatorname{argmin}} \sum_{i=1}^{l} L(y_i, a_{m-1}(x_i) + \alpha b(x_i))$$
$$a_m(x) = a_{m-1}(x) + \alpha_m b_m(x)$$

- Для некоторых *L* и b_i простое аналитическое решение, примеры:
 - □ **AdaBoost:** L экспоненциальная функция потерь, b_i простое дерево (или даже «пень»), a_i вычисляются аналитически
 - □ **Additive Groves**: L квадратичная, а b_i дерево, $a_i = 1$, получаем ансамбль на остатках, для борьбы с переобучением используется bagging и специальный алгоритм, ищущий «оптимальное» сочетание сложности ансамбля и индивидуальных моделей

Additive (Tree) Groves

- Особенности метода:
 - Аддитивный ансамбль (без весов) $a(x) = \sum_m b_m(x)$, деревьев решений $b_m(x)$, построенных на $Z_m = \left\{ \left(x_i, y_i a_{m-1}(x_i) \right) \right\}_i^l$, где вместо отклика используются остатки от предыдущего ансамбля.

- □ Поскольку обучение на остатках, то на сложных b_m быстро переобучается при увеличении, исчерпываются остатки $\{(x_i,0)\}_i^{n< l}$
- □ Использует бутсрепинг подвыборку меньшего размера Z_m^* (как в random forest)
- специальный алгоритм для контроля сложности на основе роста дерева «по слоям»

Контроль сложности Additive Groves

- Переборный алгоритм контроля сложности:
 - □ От простого (одно маленькое дерево) делаются шаги в сторону увеличения ансамбля без изменения сложности деревьев (увеличивается параметр М размер ансамбля) и в сторону увеличения глубины деревьев без увеличения ансамбля (меняется параметр обрубания или число листьев D)
 - □ Если качество по ООВ улучшается, то шаг принимается
 - □ Осуществляется поиск «оптимальной» точки гиперпарамтеров (N,D), без повторных вычислений (если пришли в точку разными путями)

Адаптивный дискретный бустинг

- Основные допущения:
 - Выборка $Z = \{(x_i, y_i)\}_{i=1}^l \in X \times \{-1, +1\}$, где у каждого наблюдения (x_i, y_i) свой вес $w_i \geq 0$, причем $\sum_i w_i = 1$ (распределение)
 - \square Модель-ансамбль с взв. голосованием $a(x) = sign[\sum_m \alpha_m b_m(x)]$
 - Введем понятие взвешенной (по распределению w_i) ошибки классификации:

$$Err_w(a(x)) = \sum_{i=1}^l w_i I[y_i \neq a(x_i)]$$

- □ Будем использовать экспоненциальную функцию потерь $L_{exp}(y,a(x)) = \exp(-y\sum_{m}\alpha_{m}\,b_{m}(x))$
- Идея алгоритма обучения (цикл):
 - 1. считаем ошибки для всех примеров
 - 2. перевзвешиваем все примеры
 - 3. обучаем базовый классификатор
 - 4. добавляем его в ансамбль с новым весом

.

AdaBoost (алгоритм)

- Инициализация:
 - $\Box a_0(x) = 0, \forall i: w_i^{(1)} = 1/l$
- Итераций по m от 1 до М:
 - Строим слабый классификатор $b_m(x)$, минимизирующий и допускающий ошибку $Err_{w^{(m)}}(b_m) < 0.5$

$$b_m(x) = \underset{b}{\operatorname{argmin}} \sum_{i=1}^{l} w_i^{(m)} I[b(x_i) \neq y_i]$$

□ Добавляем b_m в ансамбль $a_m(x) = a_{m-1}(x) + \alpha_m b_m(x)$, где силу классификатора вычисляем как:

$$\alpha_m = \frac{1}{2} \log \left(\frac{\left(1 - Err_{w(m)}(b_m) \right)}{Err_{w(m)}(b_m)} \right)$$

Пересчитываем и нормируем веса важности примеров:

$$\widetilde{w}_i = w_i^{(m)} \exp(-y_i \alpha_m b_m(x_i)), w_i^{(m+1)} = \widetilde{w}_i / \sum_j \widetilde{w}_j$$

■ Откуда взялись формулы для b_m , α_m и $w^{(m)}$?

×

Adaboost (демо)

■ Простой пример Adaboost (длины 3) на «пнях» (деревьях глубины 1):

• Финальный классификатор:

$$a(x) = \text{sign}\left(0.42 * + 0.65 * + 0.92 * \right)$$

Пример

Пересчет весов классификаторов

 Рассмотри на итерации m алгоритма эмпирический риск с функцией потерь на основе ошибки классификации, он ограничен сверху риском с экспоненциальной функцией потерь:

$$Q_{perc}^{(m)} = \sum_{i=1}^{l} I[y_i \neq a_m(x_i)] \leq Q_{exp}^{(m)} = \sum_{i=1}^{l} \exp[-y_i a_m(x_i)] = \\ = \sum_{i=1}^{l} \exp\left[-y_i(\sum_{j=1}^{m} \alpha_j b_j(x_i))\right] = \sum_{i=1}^{l} \exp\left[-y_i(\sum_{j=1}^{m-1} \alpha_j b_j(x_i))\right] \exp[-y_i \alpha_m b_m(x_i)] \sim \\ \sim w_i^{(m)} - \text{He 3abucut of } \alpha_m, b_m$$

$$\sim \sum_{i=1}^{l} w_{i}^{(m)} \exp[-y_{i} \alpha_{m} b_{m}(x_{i})] = e^{-\alpha_{m}} \sum_{i: y_{i} = b_{m}(x_{i})} w_{i}^{(m)} + e^{\alpha_{m}} \sum_{i: y_{i} \neq b_{m}(x_{i})} w_{i}^{(m)} =$$
...

$$e^{-\alpha b} = e^{-\alpha}I[b=1] + e^{\alpha}I[b=-1]$$

доля верных прогнозов с весами $(1 - Err_{w^{(m)}})$

доля ошибок с весами $Err_{w^{(m)}}$

ĸ.

Пересчет весов классификаторов

Продолжение:

$$\dots = \left(1 - Err_{w^{(m)}}\right)e^{-\alpha_m} + \left(Err_{w^{(m)}}\right)e^{\alpha_m} = Q_{Err_{w^{(m)}}}(\alpha_m) \to min$$

■ Найдем $\min_{\alpha_m}[Q_{Err_{w^{(m)}}}(\alpha_m)]$:

$$\frac{\partial Q_{Err_{w}(m)}}{\partial \alpha_{m}} = 0 \Rightarrow \alpha_{m} = \frac{1}{2} \log \left(\frac{1 - Err_{w}(m)}{Err_{w}(m)} \right)$$

■ Подставляем α_m в $Q_{Err_{w^{(m)}}}$ и получаем, что верхняя оценка эмпирического риска экспоненциально уменьшается с уменьшением взвешенной ошибки $Err_{w^{(m)}}$:

$$(1 - Err_{w^{(m)}})e^{-\frac{1}{2}\log\left(\frac{1 - Err_{w^{(m)}}}{Err_{w^{(m)}}}\right)} + (Err_{w^{(m)}})e^{\frac{1}{2}\log\left(\frac{1 - Err_{w^{(m)}}}{Err_{w^{(m)}}}\right)} = 2\sqrt{Err_{w^{(m)}}(1 - Err_{w^{(m)}})} \le \exp\left(-2\left(0.5 - Err_{w^{(m)}}\right)^{2}\right)$$

2

Обучение слабых классификаторов и пересчет весов

lacktriangle При фиксированном $lpha_m>0$ выразим наилучший слабый b_m :

$$e^{-\alpha_m} \sum_{i:y_i = b(x_i)} w_i^{(m)} + e^{\alpha_m} \sum_{i:y_i \neq b(x_i)} w_i^{(m)} =$$

$$= [(e^{\alpha_m} - e^{-\alpha_m}) \sum_i w_i^{(m)} I[y_i \neq b(x_i)] + e^{-\alpha_m} \sum_i w_i^{(m)}] \rightarrow \min_{b_m}$$

$$b_m(x) = \underset{b}{\operatorname{argmin}} \sum_{i=1}^{l} w_i^{(m)} I[b(x_i) \neq y_i]$$
Не зависит от b_m и >0 при $\alpha_m > 0$

■ Поскольку $a_m(x) = a_{m-1}(x) + \alpha_m b_m(x)$ потери выразим рекурсивно:

$$\begin{split} \sum_{i=1}^{l} \exp[-y_{i} \alpha_{m}(x_{i})] &= \sum_{i=1}^{l} \exp\left[-y_{i} (\sum_{j=1}^{m} \alpha_{j} b_{j}(x_{i}))\right] = \\ &= \sum_{i=1}^{l} w_{i}^{(m)} \exp[-y_{i} \alpha_{m} b_{m}(x_{i})] = \sum_{i=1}^{l} w_{i}^{(m-1)} \exp[-y_{i} (\alpha_{m-1} b_{m-1}(x_{i}) + \alpha_{m} b_{m}(x_{i}))] = \\ &= \sum_{i=1}^{l} w_{i}^{(1)} \exp[-y_{i} \alpha_{1} b_{1}(x_{i})] \exp[-y_{i} \alpha_{2} b_{2}(x_{i})] \dots \exp[-y_{i} \alpha_{m} b_{m}(x_{i})] \Rightarrow \\ &= > w_{i}^{(m+1)} = w_{i}^{(m)} \exp(-y_{i} \alpha_{m} b_{m}(x_{i})) \end{split}$$

M

Теоретические результаты

- Условия применимости:
 - «достаточно богатое» семейство слабых классификаторов
 - качество слабого классификатора лучше случайного прогноза
 - «не слишком высокая» зашумленность данных
- Формально доказан ряд важных свойств алгоритма Adaboost:
 - □ приводит к минимизации эмпирического риска с экспоненциальной функцией потерь при использовании предложенной процедуры пошагового усложнения ансамбля и полученных формул пересчета нормированных весов примеров и весов слабых классификаторов
 - □ сходится за конечное число шагов
 - □ с увеличением числа итераций увеличивает зазор между классами и, значит, уменьшает ошибку классификации – полезно строить график зазора от шага итерации и распределение отступов на каждом шаге

Сложность ансамбля Adaboost и борьба с переобучением

- Сложность ансамбля:
 - □ Определяется размером ансамбля (чем больше тем сложнее)
 - □ Определяется сложностью базового классификатора
 - □ За счет экспоненциальной функции потерь может улучшаться на проверочной выборке даже когда ошибка на тренировочной ушла в 0

- Методы борьбы с переобучением:
 - □ Управлять размером ансамбля
 - Ограничивать сложность или упрощать (например pruning) слабые классификаторы
 - Можно пытаться контролировать (менять вес) или удалять выбросы «на лету», анализируя веса или отступы и их распределение (оно с каждой итерацией должно «смещаться вправо», «раздвигая» классы)
 - □ В некоторых реализациях можно контролировать learning rate или использовать регуляризацию
 - □ Т.к. бустинг ищет зависимости от простых к сложным, то можно использовать early stopping

M

Недостатки Adaboost

- из-за экспоненциальной функции потерь может быстро переобучаться при наличии шума
- нужно использовать простые слабые модели, в результате не позволяет строить маленькие ансамбли сложных моделей, только большие ансамбли простых моделей

Проблемы применения:

- □ Вычислительно сложная модель (если много базовых)
- Не интерпретируемая модель, даже если базовые модели интерпретируется

Проблемы обучения:

- □ Склонен к переобучению в зашумленных задачах
- □ Требуются большие выборки
- □ Плохо распаралелливается (только «внутри» обучения базовой модели)

Сравнение Adaboost

Бустинг с перевыборкой (пример)

- Arc-x4 (Breiman, 1996) как в AdaBoost последовательно строит модель $a_m(x) = a_{m-1}(x) + \alpha_m b_m(x)$, но:
 - □ В классической версии нет весов классификаторов голосующий комитет или усреднение (хотя есть версии с эвристическим или FSAM пересчетом весов)
 - □ слабый классификатор **не учитывает веса примеров**, а строится на случайной выборке, где у наблюдения вероятность попасть в нее пропорциональная весу
 - Не требуется взвешенная функция ошибки или функция потерь –
 может «бустить» любые базовые модели
 - □ Вес имеет семантику как и в AdaBoost «сложность» примера, и пересчитывается в зависимости от числа ошибок на нем слабых классификаторов ансамбля, классическая формула для классификации (эвристика):

$$w_i^{(m)} = \frac{(1 + \sum_{s=1}^m I[b_s(x_i) \neq y_i])^4}{\sum_{j=1}^l w_j^{(m)}}$$

Алгоритм Arc-X4

- Инициализация: $a_0(x) = 0$, $\forall i : w_i^{(1)} = 1/l$
- Цикл алгоритма (М итераций):
 - □ Формируется из набора Z случайная выборка $Z^{(m)}$ размера n, с вероятностью выбора примера пропорциональной распределению весов примеров (n < l параметр): $P(x_i \in Z^{(m)}) \propto w_i^{(m)}$
 - \square Обучается **слабая модель** $b_m(x)$ со своей функцией потерь
 - □ Добавляется b_m в ансамбль $a_m(x)$, где **силу классификатора** не меняют (хотя есть версии с весами и регуляризацией):

для классификации:
$$a(x) = \operatorname{argmax}_i[b_i(x)]$$
 для регрессии: $a(x) = \frac{1}{M} \sum b_i(x)$

□ Пересчитываются и нормируются **веса важности** примеров в зависимости от числа ошибшихся слабых классификаторов:

$$w_i^{(m)} = \frac{(1 + \sum_{s=1}^m L[b_s(x_i), y_i])^4}{\sum_{j=1}^l w_i^{(m)}}$$

1

Arc-x4

- Достоинства:
 - □ Простота и эффективность (сопоставим с AdaBoost по качеству)
 - □ Не накладывает требования на тип моделей и функции потерь
 - □ Можно использовать свои эвристики весов
 - □ Легко адаптируется к разным задачам прогнозирования
- Основной недостаток нет теоретического обоснования
- Демо-пример:

$$P(x_i \in Z^{(m)}) \propto (1 + Err_m)^4$$

$$Err_m = \sum_{s=1}^m I[b_s(x_i) \neq y_i]$$

	m=1	m=2	m=3	m=4
<u>X</u>	w Err	w <u>Err</u>	w Err	<u>w</u>
1	1 1	1.5 1	.5 <mark>2</mark>	.97
2	1 0	.75 <mark>0</mark>	.25 0	.06
3	1 1	1.5 2	4.25 3	4.69
4	1 0	.75 1	.5 1	.11
5	1 0	.75 <mark>0</mark>	.25 0	.06
6	1 0	.75 <mark>0</mark>	.25 <mark>1</mark>	.11
		• >		\$ 6 \$
		X •	6 6	6 6 6 6

Идея градиентного бустинга

- Снова рассмотрим FSAM:
 - □ На каждом шаге цикл последовательного формирования ансамбля $a_m(x) = a_{m-1}(x) + \alpha_m b_m(x)$ требует решения:

$$(b_m, \alpha_m) = \operatorname*{argmin}_{b,\alpha} Q_m(b, \alpha), Q_m(b, \alpha) = \sum_{i=1}^t L(y_i, a_{m-1}(x_i) + \alpha b(x_i))$$

- □ Но не для всех L есть аналитическое решение, что делать?
- Использовать приближенное решение:
 - $\hfill \square$ Рассмотрим $Q_m(F_m)$ на шаге m как функцию от вектора прогнозов для всех примеров

$$F_m = [a_m(x_i)]_{i=1}^l = \left[\left(\sum_{j=1}^{m-1} \alpha_j b_j(x_i) + \alpha_m b_m(x_i) \right) \right]_{i=1}^l = [F_{m-1} + \alpha_m b_m(x_i)]_{i=1}^l$$

- \square Нужно минимизировать по F_m $Q_m = \sum_i L(y_i, F_m(x_i))$
- Оптимизация не в пространстве параметров модели, а в пространстве прогнозов модели (размера всей выборки)

Градиентный бустинг

- Почему «градиентный»?
 - $\ \square$ Раскладываем риск Q_m в ряд Тейлора 1 порядка по вектору F_{m-1} :

$$\sum_{i} L(y_i, F_{m-1}(x_i) + a_m b(x_i)) \approx \sum_{i} L(y_i, F_{m-1}(x_i)) + a_m b(x_i) \frac{\partial L(y_i, F_{m-1})}{\partial F_{m-1}}(x_i) + \cdots$$

 \square Итерационно (**градиентным методом с шагом** α_m) минимизируем Q по

$$F_m = F_{m-1} - lpha_m
abla Q_m$$
, где $abla Q_m = \left[rac{\partial Q}{\partial F_{m-1}}(x_i)
ight]_{i=1}^l = \left[rac{\partial L(y_i, F_{m-1})}{\partial F_{m-1}}(x_i)
ight]_{i=1}^l$

- □ В тоже время $F_m = F_{m-1} + \alpha_m b_m = >$ нужно находить такое b_m , чтобы он прогнозировал антиградиент функции потерь
- \square Значит на каждом шаге строим слабую модель (со своей функцией потерь) $b_m(x)$ на обучающем наборе $Z_m=\{(x_i,-\nabla Q_m(x_i))\}_{i=1}^l$, с $-\nabla Q_m$ в качестве отклика
- Паходим размер шага с помощью любого метода оптимизации для одномерной задачи, например, с помощью линейного поиска (вектор прогнозов $b_m(x_i)$ зафиксирован):

$$\alpha_m = \underset{\alpha \in \mathbb{R}}{\operatorname{argmin}} \sum_{i=1}^{N} L(y_i, F_{m-1}(x_i) + \alpha b_m(x_i))$$

Градиентный бустинг деревьев

Финальная модель (М – число итераций):

$$F_m(x) = F_{m-1}(x) + \nu \alpha_m T_m(x) = F_0 + \nu \alpha_1 T_1(x) + \nu \alpha_2 T_2(x) + \dots + \nu \alpha_M T_m(x)$$

Каждая базовая модель – дерево:

$$T_m(x) = \sum_{R \in R_m} \gamma_R I[x \in R]$$

- □ Каждая следующая модель T_m(x)
 обучается на «псевдоостатках»

ot
$$F_{m-1}$$
: $y_i^{(m)} = -\frac{\partial L(y_i, F_{m-1})}{\partial F_{m-1}}(x_i)$

□ $0 < \nu < 1$ — shrinkage регуляризация m=3

$$u\alpha_1 + u\alpha_2$$
Исправляет ошибки $u\alpha_1 + u\alpha_2 + u\alpha_2$

Исправляет ошибки

2

Борьба с переобучением

- Градиентный бустинг склонен к переобучению в условиях шума
- Методы борьбы с переобучением:
 - □ Стохастический градиентный бустинг случайные подвыборки (можно использовать ООВ оценки) меньшего размера для обучения базовых моделей на каждой итерации (иногда используют бутсрепинг): $Z_m = (x_i, -\nabla Q_m(x_i))_{i=1}^{n < l}$
 - □ Ранняя остановка (по порогам или по контрольной выборке)
 - □ Контроль размера ансамбля и ограничение (или упрощение, например, pruning) сложности базовых моделей, также можно использовать дообучение деревьев по уровням
 - □ Shrinkage (или learning rate) –
 не позволяет быстро «исчерпать»
 псевдоостатки, но требуется больше
 моделей в финальном ансамбле
 - $\ \square \$ Регуляризация L_0 , L_1 или L_2

Функции потерь

■ Кастомизируемые и робастные функции потерь:

Задача	Потери	Псевдоостаток (производная функции потерь)
Регрессия	$\left(y_i - a(x_i)\right)^2$	$y_i - a(x_i)$
Регрессия	$ y_i - a(x_i) $	$sign(y_i - a(x_i))$
Регрессия	Huber	$y_i - a(x_i)$, при $ y_i - a(x_i) \le \sigma$, иначе $\mathrm{sign}(y_i - a(x_i))$
К классов	К классов	$I[y_i = \mathcal{C}_k] - p_k(x_i)$ для класса k
2 класса	$\log(1 + e^{-a(x_i)y_i})$	$-y_i/(1+e^{-a(x_i)y_i})$

2

Би- и Мульти- номинальная функция потерь

- Классификации с несколькими классами:
 - $\square Y = \{C_1, ..., C_K\}, p_k(x) = P(Y = C_k | x)$
 - \square Правило Байеса $k = \operatorname{argmax}_s[p_s(x)]$
 - $\Box g_k(x)$ дискриминантная функция класса k
 - $p_k(x) = \text{softmax}(g_1(x), ..., g_K(x)) = \frac{e^{g_k(x)}}{\sum_{s=1}^K e^{g_s(x)}}$
 - \square Кросс энтропия: $L(y,p(x)) = -\sum_{k=1}^K I[y=k] \log(p_k(x)) = -\sum_{k=1}^K I[y=k] g_k(x) + \log(\sum_{s=1}^K e^{g_s(x)})$
 - \square Псевдоостаток для класса k: $-L'ig(y,p_k(x)ig)=I[y_i=\mathcal{C}_k]-p_k(x_i)$
- Бинарный случай:

$$Y = \{0,1\}, p(x) = p_1(x) = P(Y = 1|x) = \frac{1}{1 + e^{-g(x)}}, p_0(x) = 1 - p(x)$$

$$\Box \ L\big(y,p(x)\big) = y \log \big(p(x)\big) + (1-y) \log \big(1-p(x)\big), \text{ и если } g(x) \equiv a(x) \Rightarrow \\ L\big(y,a(x)\big) = \log (1+e^{-a(x)y}) \Rightarrow$$

Псевдоостаток
$$L'(y,a(x)) = -y/(1+e^{-a(x)y})$$

Градиентный бустинг (пример)

```
from sklearn.datasets import fetch california housing
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.metrics import mean absolute percentage error
housing = fetch california housing()
X, y = housing.data, housing.target
X.shape, y.shape, housing target names
((20640, 8), (20640,), ['MedHouseVal'])
N = 15000
X_train, y_train = X[:N], y[:N]
X test, y test = X[N:], y[N:]
n estimators = 100
boosting = GradientBoostingRegressor(n_estimators=n_estimators, learning_rate=0.1,
                                     max depth=5,
                                     max leaf nodes=10,
                                      subsample=0.75, # stohastic if <1.0</pre>
                                     ccp alpha=0.0, # pruning
                                     warm start=True, # add trees to the existing forest
                                      random state=0)
#boosting.fit(X train, y train)
history = sklearn fit history(boosting, n estimators, X train, y train, (X test, y test))
```

Градиентный бустинг (пример)

Качество от сложности дерева (max число листьев)

Качество от shrinkage

Качество от размера подвыборки

Оценить важность переменных по ансамблю: Можно «добраться» до каждого дерева в ансамбле

```
importance = pd.Series(index=housing.feature_names, data=boosting.feature_importances_)
importance.sort_values().plot()
plt.xticks(rotation='vertical');
```

средний прирост качества разбиения по переменной x_i всем деревьям ансамбля


```
riedman mse = 1.244
                                                 samples = 11250
                                                                         MedInc <= 6.582
                         iedman mse = 0.737
                                                                        riedman mse = 1.232
                          samples = 9059
                                                                         samples = 2191
                          value = -0.315
                                                                          value = 1.304
            Latitude <= 34.425
                                    AveOccup <= 2.373
                                                            AveOccup <= 2.52
                                                                                     MedInc <= 7 815
           friedman mse = 0.481
                                   friedman mse = 0.757
                                                           friedman mse = 0.925
                                                                                  friedman mse = 0.857
                                                             samples = 1400
                                                                                      samples = 791
              samples = 4580
                                     samples = 4479
                              HouseAge friedman m friedman m friedman m friedman m friedman m friedman mse = 0.541
                 friedman m
                              friedman
                    samples
                                                        samples
                                           samples
                                                                   samples
                                                                                           samples = 398
       samples
                                samples
friedman m
           friedman m friedman m
                                   friedman mse = 1.226
              samples
                          samnle
                                      samples = 743
```

```
tree = boosting.estimators_[0][0]
plot_tree(tree, fontsize=8, feature_names=housing.feature_names)
plt.gcf().set_size_inches(8, 8)
```

М

Современные алгоритмы бустинга

Общие особенности:

- □ Распараллеливание, поддержка GPU, TPU, возможности AutoML
- □ Возможность дообучения для больших объемов данных
- □ Разные стандартные и пользовательские метрики и функции потерь
- □ Бэгинг, подвыборки и случайные подпространства, могут быть как RF
- \square L_p регуляризации, ранняя остановка и контроль learning rate
- □ Гистограммные методы поиска разбиений для числовых признаков
- □ Колбэки и кастомное журналирование

M

Гистограммный подход для числовых признаков

- Предварительная дискретизация числовой переменной:
 - □ обычно на равные интервалы (buckets), получаем порядковую переменную с «весами» число наблюдений в интервале

- число перебираемых вариантов разбиения число интервалов, а не число различных значений; ускоряется расчет критериев разбиения (за счет весов интервалов, удаления пустых или слабо заполненных); рекурсивный «досчет» на интервалах
- □ эффективно сочетается с ростом дерева «в глубину» (list-wise)
- □ распараллеливается расчет гистограмм

Отличия (самые важные)

LightGBM:

- □ Оптимизирован под рост «в глубину»
- □ Gradient-based One-Side Sampling (GOSS) адаптивный сэмплинг пропорционально важности примера (градиенту) при поиске разбиения
- □ Exclusive Feature Bundling жадный алгоритм «группировки» значений категориальных признаков на непересекающиеся группы

CatBoost:

- □ Оптимизирован под ОDТ
- □ SWOE кодирование категориальных предикторов
- □ Упорядоченный семплинг (для борьбы с переобучением градиентов)

XGBoost:

- □ Оптимизирован под рост «в ширину»
- Ньютоновский бустинг критерий поиска разбиений и/или обрубания, учитывающий качество и регуляризацию всего ансамбля

м

Дополнительные модификации деревьев решений и методов подвыборок бустинга

- Цель:
 - Ускорить процесс построения дерева, возможно за счет ухудшения качества и внесения дополнительной случайности («шума»)
 - □ Это плохо для обычных деревьев и иногда для бэгинга (может увеличивать смещение базовых моделей), но хорошо для бустинга, т.к. он уменьшает не только дисперсию, но и смещение
- «Ускорение»/ослабление обучения базовых деревьев решений:
 - □ Предобработка (сокращение перебора): для категориальных переменных SWOE (отображаем на порядковую шкалу) и жадная группировка значений категориальных переменных; для числовых – гистограммный подход
 - □ Уменьшение выборки при поиске разбиения взвешенный градиентный sampling, упорядоченный бустинг
 - □ Упрощения структуры деревьев: рост «в глубину» **list-wise** (сложный) и в «ширину» **level-wise** (по уровням простой), Oblivious Decision Trees (**ODT**) решающие таблицы

Предобработка категориальных признаков

- SWOE (по текущей подвыборке) для категориальных:
 - $\hfill \square$ Пусть $\{v_1,\dots,v_k\}$ множество значений категориальной переменной x в подвыборке Z_m
 - \square Для бинарного отклика $ho_1 = P(y_i = 1 | (x_i, y_i) \in Z_m)$, c параметр $x = v \Rightarrow SWOE_x(v) = \log \left(rac{\sum_{x_i \in Z_m} I[x_i = v]I[y_i = 1] + c
 ho_1}{\sum_{x_i \in Z_m} I[x_i = v]I[y_i = 0] + c(1
 ho_1)}
 ight)$
 - \square Для числового отклика $ho = E(y_i|(x_i,y_i)\in Z_m),$ c параметр $x=v\Rightarrow SWOE_x(v)=rac{\sum_{x_i\in Z_m}y_iI[x_i=v]+c
 ho}{\sum_{x_i\in Z_m}I[x_i=v]+c}$
- Жадная группировка значений категориальных переменных:
 - □ Кодируем по порядку частовстречающиеся комбинации значенийпризнаков, а не их декартово произведение
 - □ Эффективно при One-hot-encoding

Градиентный sampling

- Идея близка к Arc-x4:
 - учить деревья (или искать отдельные разбиения) на подмножестве «важных» примеров
 - важность примера значение градиента на нем (псевдоостаток)
 - □ популярный вариант отбираем топ % «важных» примеров, их всегда берем, а среди «не важных», часть берем случайно, но увеличиваем их градиент (меняем вес) пропорционально числу отобранных, так, чтобы не поменялось распределение «важных».

LightGBM (пример)

 $\textbf{from} \ \ \textbf{lightgbm} \ \ \textbf{import} \ \ \textbf{LGBMClassifier}, \ \ \textbf{early_stopping}, \ \ \textbf{record_evaluation}, \ \ \textbf{plot_importance}$

LightGBM (пример)

```
train = history["training"]["multi_logloss"]
valid = history["valid_0"]["multi_logloss"]
pd.DataFrame(dict(train=train, valid=valid)).plot()
```


plot_importance(lgbm_classifier, figsize=(10, 10));

Упрощения роста дерева

- Стратегии роста дерева:
 - «в глубину» (list-wise) классический, жадный, вычислительно долгий, сложно контролировать сложность всего дерева

 «в ширину» (level-wise) – упрощенный вариант, на каждом шаге плюс уровень для всех текущих листьев

■ «Небрежные» деревья решений (Oblivious Decision Trees – ODT)
 или решающие таблицы – «в ширину», а еще правило разбиения (и переменная, и точка разбиения) одинаковые для всего уровня

Oblivious Decision Trees

- Основная идея искать одно разбиение на весь уровень:
 - \Box $b_d(x)$ решающее правило (сплит) для всего уровня d
- 100 D1 = 364D7 = 36480 D9 = 336n = 106460 X1<38.5 No-1 Yes-20 D1 = 293D1 = 71D7 = 363D7 = 1D9 = 42D9 = 294n = 698n = 366X10 Root 100 D1 = 293D1 = 710,0 9 D7 = 363D7 = 1D9 = 42D9 = 294n = 698n = 366No-01 No-11 Yes-00 Yes-10 D1 = 185D1 = 67D1 = 4D1 = 108D7 = 320D7 = 43D7 = 1D7 = 0D9 = 276D9 = 10D9 = 32D9 = 1840 n = 469n = 86n = 280n = 229X10

- Решающая таблица:
 - □ Для дерева глубины *D* пространство *X* делится на 2^D ячеек с решающим правилом:

$$B: \{0,1\}^D o Y,$$
 $a(x) = B(b_1(x), ..., b_D(x))$ $b_1(x), ..., b_D(x)$ — вектор прогнозов определяет «координаты» ячейки

Алгоритм обучения (бинарного) ODT

- Алгоритм разбиения по уровням (для уровня d)
 - □ Сформировать множество *гипотез* $\{f_i\}$ для разбиения по всем признакам, $f_i: X \to \{0,1\}$ разбивает все пространство на два региона
 - □ Рассчитать значение критерия разбиения для каждой гипотезы с учетом уже существующего разбиения уровня d и выбрать лучшую по критерию (например, по увеличению однородности):

$$\Delta i = \sum_{p \in leaves_d} \left(i_p - \frac{n_{p,0} i_{p,0} + n_{p,1} i_{p,1}}{n_p} \right) o \max$$
 Level $d \operatorname{leaf_1}$ impurity_d1 ... Level $d \operatorname{leaf_k}$ impurity_dk impurity_dk impurity_dk impurity_dk impurity_dk,0 impurity_dk,1 impurity

примеров в дочерних узлах одного из листьев уровня d

□ Дорастить дерево «в ширину»: каждый лист уровня d превращается во внутренний узел с двумя новыми ветвями

Упорядоченный бустинг

- Важная проблема градиентного бустинга target leakage:
 - «Переобучение градиента» за счет того, что на шаге m градиенты функции потерь (псевдоостатки) считаются с учетом отклика и на тех же точках $\{(x_i)_{i=1}^l$, на которых обучался ансамбль a_{m-1} на предыдущем шаге
- Как этого избежать?
 - □ Считать градиент функции потерь для x_i по ансамблю с шага $a_{m-1}^{(i)}$, который бы учился на $Z_m^{(i)}$, таком что $x_i \notin Z_m^{(i)}$.
 - \square Но считать и хранить l ансамблей одновременно плохая идея ...
- Основные идеи упорядоченного бустинга:
 - Цель стараться вычислять градиент (псевдоостаток) для x_i по ансамблю $a_{m-1}^{(i)}$, который не учился на x_i
 - \square Строить обучающие подвыборки **последовательно** увеличивая размер (например, удваивая длину, тогда нужно не O(l) моделей, а $O\left(\log(l)\right)$)
 - □ Нужно несколько случайно **перемешанных** подвыборок, чтобы они не перекрывались

7

Генерация выборок для упорядоченного бустинга

■ Основная идея:

- □ Заимствована из онлайн обучения (дообучаемся как накопятся данные, например, удвоилась выборка), но еще с перестановками
- \square s_0, s_1, \dots, s_k случайные упорядоченные перестановки выборки $\{x_i\}_{i=1}^l$
- $\square \ X^{jr}$ подвыборка первых j элементов из s_r , r>0 s_0 «запасная»
- $g_m^{jr}(x_i) = -L'(a_{m-1}^{jr}(x_i), y_i) i$ -я координата (в точке x_i) градиента функции потерь (псевдоостаток) модели, которая не обучалась на x_i
- \square если дообучаемся после удвоения, то $j=\mathrm{int}(\log_2(i-1))$ задает длину выборки, в которой еще не учился i-й объект
- \Box $a_m^{jr}(x)$ ансамбль-заготовка, обученный на X^{jr} , их всего $k*\log(l)$ $a_{m-1}^{jr}(x)$

Алгоритм упорядоченного бустинга (CatBoost)

- Повторить m = 1, ..., M раз, где M размер ансамбля:
 - 1. Выбрать **случайно** перестановку $s_r \in \{s_1, ..., s_k\}, s_0$ отложена
 - 2. Для всех наблюдений x_i , i=1,...,l вычислить **несмещенный** антиградиент (псевдоостаток), находя для каждого i такое максимальное j, чтобы a_{m-1}^{jr} не учился еще на x_i : $g_m^{jr}(x_i) = L'(a_{m-1}^{jr}(x_i), y_i)$
 - 3. Обучить на найденных псевдоостатках и примерах $\{(x_i, -g_m^{jr}(x_i))\}$ новое специальное базовое дерево $b_m^{base}(x)$, где разбиения и прогнозы в листьях для каждого наблюдения считаются с учетом порядка X^{jr}
 - 4. Для всех r=0,...,k берем **общую структуру дерева** $b_m^{base}(x)$ («жульничаем», чтобы не перестраивать дерево на всех перестановках), а прогноз отклика в листьях пересчитываем на всех s_r с учетом X^{jr}
 - 5. Получаем, во-первых, **базовые модели** $b_m^{jr}(x)$ для ансамблей-заготовок $a_m^{jr}(x)$, и $b_m^0(x)$, пересчитанный на s_0 для добавления в **финальный** α_m^0
 - 6. Для всех jr и 0 находим **градиентный шаг** α_m^* , где *=jr или *=0:

$$\alpha_m^* = \operatorname{argmin} \sum_{i=1}^N L(y_i, a_{m-1}^*(x_i) + \alpha b_m^*(x_i))$$

Алгоритм построения специальных базовых деревьев в CatBoost

```
Algorithm 2: Building a tree in CatBoost
input: M, \{(\mathbf{x}_i, y_i)\}_{i=1}^n, \alpha, L, \{\sigma_i\}_{i=1}^s, Mode
grad \leftarrow CalcGradient(L, M, y);
r \leftarrow random(1, s);
if Mode = Plain then
 | G ← (grad<sub>r</sub>(i) for i = 1..n);
if Mode = Ordered then
 G \leftarrow (grad_{r,\sigma_r(i)-1}(i) \text{ for } i = 1..n);
T \leftarrow \text{empty tree};
foreach step of top-down procedure do
     foreach candidate split c do
          T_c \leftarrow \text{add split } c \text{ to } T;
          if Mode = Plain then
                \Delta(i) \leftarrow \operatorname{avg}(\operatorname{grad}_r(z)) for
                p: leaf_r(p) = leaf_r(i)) for i = 1..n;
          if Mode = Ordered then
                \Delta(i) \leftarrow \operatorname{avg}(\operatorname{grad}_{r,\sigma_r(i)-1}(p)) for
                 p: leaf_r(p) = leaf_r(i), \sigma_r(p) < \sigma_r(i)
                 for i = 1..n;
          loss(T_c) \leftarrow cos(\Delta, G)
     T \leftarrow \arg\min_{T_c} (loss(T_c))
if Mode = Plain then
     M_{r'}(i) \leftarrow M_{r'}(i) - \alpha \operatorname{avg}(\operatorname{grad}_{r'}(p)) for
      p: leaf_{r'}(p) = leaf_{r'}(i) for r' = 1...s, i = 1...n;
if Mode = Ordered then
     M_{r',j}(i) \leftarrow M_{r',j}(i) - \alpha \operatorname{avg}(\operatorname{grad}_{r',j}(p)) for
       p: leaf_{r'}(p) = leaf_{r'}(i), \sigma_{r'}(p) \leq j) \text{ for } r' = 1...s,
      i = 1..n, j \ge \sigma_{r'}(i) - 1;
return T, M
```

• Особенности:

- «прогноз» в листьях (а значит и всего дерева) не константа для всех примеров листа, а вектор длины l с усреднением прогноза для x_i с учетом его листа и порядка в X^{jr}
- □ Потери (критерий оценки разбиения)
 − косинусная мера сходства с вектором несмещенных антиградиентов
- □ Пересчет «векторного» прогноза в «точеный» – усреднением по всем

Пример CatBoost c ordered boosting

```
learn: 1.3244454
                                test: 1.3274746 best: 1.3274746 (0)
                                                                         total: 10.8ms
                                                                                          remaining: 5.39s
0:
100:
        learn: 0.4770844
                                test: 0.5501835 best: 0.5501835 (100)
                                                                         total: 1.25s
                                                                                          remaining: 4.95s
        learn: 0.3820112
                                                                         total: 2.53s
                                                                                          remaining: 3.76s
200:
                                test: 0.5085822 best: 0.5085822 (200)
300:
        learn: 0.3180690
                                test: 0.4868846 best: 0.4868102 (299)
                                                                         total: 3.6s
                                                                                          remaining: 2.38s
                                                                         total: 4.96s
400:
        learn: 0.2719426
                                test: 0.4756932 best: 0.4756932 (400)
                                                                                          remaining: 1.23s
499:
        learn: 0.2394187
                                test: 0.4701613 best: 0.4699182 (495)
                                                                         total: 6.32s
                                                                                          remaining: Ous
bestTest = 0.4699181794
bestIteration = 495
Shrink model to first 496 iterations.
0:
        learn: 1.2894816
                                test: 1.2931179 best: 1.2931179 (0)
                                                                         total: 9.73ms
                                                                                          remaining: 4.85s
        learn: 0.4119708
                                test: 0.5314217 best: 0.5314217 (100)
                                                                         total: 897ms
                                                                                          remaining: 3.54s
100:
       learn: 0.2999559
                                test: 0.4992096 best: 0.4992096 (200)
                                                                         total: 1.8s
                                                                                          remaining: 2.68s
       learn: 0.2308821
                                                                                          remaining: 1.79s
                                test: 0.4853332 best: 0.4853332 (300)
                                                                         total: 2.71s
                                 (10 iterations wait)
Stopped by overfitting detector
bestTest = 0.4808030753
bestIteration = 355
Shrink model to first 356 iterations.
```

```
0:
        learn: 1.3175380
                                test: 1.3213286 best: 1.3213286 (0)
                                                                         total: 11.4ms
                                                                                         remaining: 5.71s
        learn: 0.4224715
                                                                         total: 1.02s
                                                                                         remaining: 4.02s
100:
                                test: 0.5395996 best: 0.5395996 (100)
        learn: 0.3073328
                                                                         total: 2.08s
                                                                                         remaining: 3.1s
200:
                                test: 0.5033971 best: 0.5032791 (197)
        learn: 0.2355510
                                test: 0.4854600 best: 0.4854600 (300)
                                                                         total: 3.18s
                                                                                         remaining: 2.1s
300:
       learn: 0.1859574
                                test: 0.4783043 best: 0.4780336 (398)
                                                                         total: 4.29s
                                                                                         remaining: 1.06s
Stopped by overfitting detector
                                 (10 iterations wait)
```

bestTest = 0.4780336062
bestIteration = 398

Shrink model to first 399 iterations.

Сравнение CatBoost c упорядоченным и обычным boosting

```
model = CatBoostClassifier(iterations=500, # Number of boosting iterations
                           learning rate=0.3, # Learning rate
                            depth=3, # Depth of the tree
                           boosting type = "Plain",
                           verbose=100, # Print training progress every 50 iterations
                            early stopping rounds=10, # stops training if no improvement in 10 consequtive rounds
                           loss function='MultiClass') # used for Multiclass classification tasks
                                  test: 1.3220541 best: 1.3220541 (0)
                                                                                              remaining: 3.34s
0:
        learn: 1.3214366
                                                                             total: 6.69ms
                                  test: 0.5993844 best: 0.5993844 (100)
100:
        learn: 0.5648893
                                                                             total: 793ms
                                                                                              remaining: 3.13s
200:
        learn: 0.5041605
                                  test: 0.5639954 best: 0.5639954 (200)
                                                                             total: 1.63s
                                                                                              remaining: 2.42s
300:
        learn: 0.4606368
                                  test: 0.5450221 best: 0.5450221 (300)
                                                                             total: 2.57s
                                                                                              remaining: 1.7s
        learn: 0.4276630
                                  test: 0.5317555 best: 0.5317555 (400)
                                                                                              remaining: 867ms
400:
                                                                             total: 3.51s
499:
        learn: 0.4005115
                                  test: 0.5217715 best: 0.5215625 (496)
                                                                            total: 4.45s
                                                                                              remaining: Ous
bestTest = 0.5215625037
```

bestTest = 0.5215625037 bestIteration = 496

Shrink model to first 497 iterations.

Обычный – быстрее делает итерации, но хуже сходится

```
0:
       learn: 1.3244454
                                test: 1.3274746 best: 1.3274746 (0)
                                                                        total: 10.8ms
                                                                                        remaining: 5.39s
100:
       learn: 0.4770844
                                test: 0.5501835 best: 0.5501835 (100)
                                                                        total: 1.25s
                                                                                        remaining: 4.95s
200:
       learn: 0.3820112
                                test: 0.5085822 best: 0.5085822 (200)
                                                                        total: 2.53s
                                                                                         remaining: 3.76s
                                test: 0.4868846 best: 0.4868102 (299)
300:
       learn: 0.3180690
                                                                        total: 3.6s
                                                                                         remaining: 2.38s
       learn: 0.2719426
                                test: 0.4756932 best: 0.4756932 (400)
                                                                        total: 4.96s
                                                                                        remaining: 1.23s
400:
                                                                       total: 6.32s
499:
       learn: 0.2394187
                                test: 0.4701613 best: 0.4699182 (495)
                                                                                        remaining: Ous
```

bestTest = 0.4699181794
bestIteration = 495

Упорядоченный

Shrink model to first 496 iterations

Особенности классического градиентного бустинга деревьев решений

В сравнении с основным конкурентом случайным лесом:
□ уменьшает не только разброс, но и смещение всего ансамбля
 □ с ростом числа базовых моделей не склонен к переобучению, когда нет шума (выбросов), но склонен когда выбросы есть
 плохо распараллеливается (только на уровне отдельных моделей) и требует больше вычислений (пересчет псевдоостатков, поиск веса базовой модели на каждом шаге)
□ помимо ограничений на сложность есть и регуляризация (shrinkage-сокращение, штрафы L0, L1, L2, ранняя остановка)
 может использовать идеи из случайного леса: случайные подпространства признаков при поиске разбиения (часто полезно) и дополнительно бутсретпинг в стохастическом градиентном бустинге (часто бесполезно)
 □ базовые деревья (регионы и прогнозы в них) строятся без использовании информации о всем ансамбле – это плохо! А

можно ли исправить? ДА!

Учет потерь ансамбля в каждом дереве

- Бустинг деревьев решений:
 - \Box Ансамбль: $F_m(x) = F_0 + \alpha_1 T_1(x) + \alpha_2 T_2(x) + \ldots + \alpha_m T_m(x)$

$$F_{m}(x) = F_{0} + \alpha_{1} * \begin{bmatrix} \gamma_{R_{11}} & \gamma_{R_{13}} \\ \gamma_{R_{12}} & \gamma_{R_{21}} & \gamma_{R_{23}} \\ \gamma_{R_{21}} & \gamma_{R_{24}} & \gamma_{R_{33}} \\ \gamma_{R_{33}} & \gamma_{R_{33}} & \gamma_{R_{33}} \end{bmatrix} + \cdots + \alpha_{m} * \begin{bmatrix} \gamma_{R_{m2}} & \gamma_{R_{m1}} \\ \gamma_{R_{m2}} & \gamma_{R_{m3}} \\ \gamma_{R_{33}} & \gamma_{R_{33}} & \gamma_{R_{34}} \end{bmatrix}$$

- □ Базовая модель дерево $T_m(x) = \sum_{R \in R_m} \gamma_R \, I[x \in R]$, обученное на псевдоостатках в качестве вектора отклика $-\left[\frac{\partial L(y_i, F_{m-1})}{\partial F_{m-1}}(x_i)\right]_{i=1}^l$
- \square Ансамбль минимизирует потери: $Q_m = \sum_i L(y_i, F_m(x_i))$, а можно сразу искать $(\{\gamma_R\}_{R\in R_m}, R_m) = \operatorname{argmin}_{R_m, \gamma} Q_m$ при фиксированном Q_{m-1} ?

Ньютоновский бустинг (XGBoost)

Раскладываем потери в ряд Тейлора до 2 слагаемого:

$$\sum_{i} L(y_{i}, F_{m-1}(x_{i}) + b(x_{i})) \approx$$

$$\approx \sum_{i} L(y_{i}, F_{m-1}(x_{i})) + b(x_{i}) \frac{\partial L(y_{i}, F_{m-1})}{\partial F_{m-1}}(x_{i}) + \frac{1}{2}b^{2}(x_{i}) \frac{\partial^{2} L(y_{i}, F_{m-1})}{(\partial F_{m-1})^{2}}(x_{i}) \dots$$

□ Обозначим:

$$b_i = b(x_i), g_i = \frac{\partial L(y_i, F_{m-1})}{\partial F_{m-1}}(x_i), h_i = \frac{\partial^2 L(y_i, F_{m-1})}{(\partial F_{m-1})^2}(x_i)$$

□ Тогда приближенно потери:

$$\sum_{i} L(y_i, F_m(x_i)) \sim \sum_{i} [g_i b_i + \frac{1}{2} h_i b_i^2] + const$$

□ Добавим регуляризацию L_2 на отклик и L_0 (число листьев) на сложность дерева, получим критерий для минимизации:

$$Q_{m} = \sum_{i} [g_{i}b_{i} + \frac{1}{2}h_{i}b_{i}^{2}] + \lambda_{2}|T_{m}(x)| + \frac{1}{2}\lambda_{1}\sum_{R \in R_{m}} \gamma_{R}^{2} \to \min_{R_{m}, \gamma_{R}}$$

Ньютоновский бустинг (XGBoost)

- Логика вывода основных формул:
 - □ Если зафиксируем структуру дерева (регионы R_m), то из $\frac{\partial Q_m}{\partial \gamma_R} = 0$ ⇒

$$\gamma_R = \frac{\sum_{x_i \in R} g_i}{\lambda_1 + \sum_{x_i \in R} h_i}$$

 \square Подставляя γ_R в Q_m получим новый критерия поиска разбиения:

$$\Phi_m = -\frac{1}{2} \sum_{R \in R_m} \frac{\left(\sum_{x_i \in R} g_i\right)^2}{\lambda_1 + \sum_{x_i \in R} h_i} + \lambda_2 |T_m| \to \min$$

□ Прирост для поиска бинарного разбиения:

$$Gain = -\frac{1}{2} \left[\frac{\left(\sum_{x_i \in R_{left}} g_i\right)^2}{\lambda_1 + \sum_{x_i \in R_{left}} h_i} + \frac{\left(\sum_{x_i \in R_{right}} g_i\right)^2}{\lambda_1 + \sum_{x_i \in R_{right}} h_i} - \frac{\left(\sum_{x_i \in R_{parent}} g_i\right)^2}{\lambda_1 + \sum_{x_i \in R_{parent}} h_i} \right] - \lambda_2$$

XGBoost

```
import xgboost as xgb
# https://xgboost.readthedocs.io/en/stable/parameter.html
param = dict(objective="multi:softprob", num class=10, # softmax
             booster="gbtree", learning rate=0.1, max depth=5, subsample=0.5,
             alpha=5, # l1 regularization
             tree method="auto") # approx, hist, gpu hist
N = 1000
dtrain = xgb.DMatrix(digits.data[:N], label=digits.target[:N])
dvalid = xgb.DMatrix(digits.data[N:], label=digits.target[N:])
evallist = [(dtrain, 'train'), (dvalid, 'eval')]
xgb classifier = xgb.train(param, dtrain, 1000, evals=evallist, early stopping rounds=10)
# xqb classifier.save model('mymodel')
       train-mlogloss:2.03753 eval-mlogloss:2.08882
[0]
[1]
       train-mlogloss:1.82993 eval-mlogloss:1.90860
[2]
       train-mlogloss:1.66188 eval-mlogloss:1.76258
[3]
       train-mlogloss:1.53163 eval-mlogloss:1.65200
[475]
        train-mlogloss:0.16262 eval-mlogloss:0.45679
        train-mlogloss:0.16262
                                 eval-mlogloss:0.45679
[476]
```

XGBoost


```
result = []
for i in range(xgb_classifier.best_iteration):
    true = dvalid.get_label()
    pred = xgb_classifier.predict(dvalid, iteration_range=(0, i + 1))
    result.append(dict(acc=accuracy_score(true, np.argmax(pred, axis=-1))))
pd.DataFrame(result).plot()
```

Сравнение (по logloss) XGBoost, LGBM и CatBoost

		•	· · · · · · · · · · · · · · · ·			<i>7</i> . • • • • • • • • • • • • • • • • • •		•		
	CatBoost		LightGBM		XGBoost					
	Tuned	Default	Tuned	Default	Tuned	Default				
L [®] Adult	0.26974	0.27298 +1.21%	0.27602 +2.33%	0.28716 +6.46%	0.27542 +2.11%	0.28009 +3.84%	Epsilon dataset	Hig	gs dataset	
								CatBoost	XGBoost	LightGE
L Amazon	0.13772	0.13811 +0.29%	0.16360 +18.80%	0.16716 +21.38%	0.16327 +18.56%	0.16536 +20.07%	CDIT (Noon EE 2660.4)	F27	4220	1146 sec
							CPU (Xeon E5-2660v4)	527 sec	4339 sec	1146 Sec
Click prediction	0.39090	0.39112 +0.06%	0.39633 +1.39%	0.39749 +1.69%	0.39624 +1.37%	0.39764 +1.73%	GTX 1080Ti (11GB)	18 sec	890 sec	110 sec
L KDD appetency	0.07151	0.07138 -0.19%	0.07179 +0.40%	0.07482 +4.63%	0.07176 +0.35%	0.07466 +4.41%	Dataset Epsilon (400K sa	imples, 2000 features). P	arameters: 128 bins, 64 leafs, 400 ite	erations.
■ KDD churn	0.23129	0.23193 +0.28%	0.23205 +0.33%	0.23565 +1.89%	0.23312 +0.80%	0.23369 +1.04%	Epsilon data	aset Hig	gs dataset	
■ KDD internet	0.20875	0.22021 +5.49%	0.22315 +6.90%	0.23627 +13.19%	0.22532 +7.94%	0.23468 +12.43%		CatBoost	XGBoost	LightGBM
		. 3. 4370	10.30%	. 13.13%	17.5470	12.43%	CPU (Xeon E5-2660v4)	770 sec	881 sec	438 sec
L [™] KDD upselling	0.16613	0.16674 +0.37%	0.16682 +0.42%	0.17107 +2.98%	0.16632 +0.12%	0.16873 +1.57%				
		+0.37%	+0.42%	+2.96%	+0.12%	+1.57%	GTX 1080Ti (11GB)	32 sec	91 sec	94 sec
LE KDD 98	0.19467	0.19479	0.19576	0.19837	0.19568	0.19795				
		+0.07%	+0.56%	+1.91%	+0.52%	+1.69%	Dataset Higgs (4M samp	oles, 28 features). Parame	eters: 128 bins, 64 leafs, 400 iterations	5.
Kick prediction	0.28479	0.28491	0.29566	0.29877	0.29465	0.29816				
		+0.05%	+3.82%	+4.91%	+3.47%	+4.70%				

M

Смесь экспертов

- Постановка:
 - $\Box a(x) = \sum g_m(x)b_m(x)$
 - □ где $g_m: X \to \mathbb{R}^+$ функция **компетентности**, строится (обучается) отдельно и зависит от x, нормирована $\sum g_m(x) = 1$
 - □ можно нормировать через параметрическую softmax (получим голосование при $\gamma \to \infty$):

$$g_m(x) = \operatorname{softmax}(\tilde{g}_1(x), \dots, \tilde{g}_M(x); \gamma) = \frac{e^{\gamma \tilde{g}_m(x)}}{\sum_{j=1}^M e^{\gamma \tilde{g}_j(x)}}$$

- Виды функций компетентности (похоже на функции активации в нейросетях), экспертная или параметрическая привязка к:
 - \Box *j*-му $f_i(x)$ признаку $g(x) = 1/(1 + \exp(-\alpha f_i(x) \beta))$
 - □ направлению α вектор $g(x) = 1/(1 + \exp(-x^T\alpha \beta))$
 - □ наблюдению α вектор (наблюдение) $g(x) = \exp(-\beta(x-\alpha)^2)$)
 - α, β могут обучаться вместе с ансамблем, обучаться заранее и фиксироваться или задаваться экспертом и фиксироваться

Выпуклая функция потерь

- Для выпуклых L(a(x), y) и $\sum g_m(x) = 1$:
 - □ выполняется неравенство Йенсена для эмпирического риска:

$$Q(a) = \sum_{i=1}^{l} L([\sum_{m=1}^{M} g_m(x_i) b_m(x_i)], y_i) \le$$

$$\le \sum_{m=1}^{M} \left(\sum_{i=1}^{l} g_m(x_i) L(b_m(x_i), y_i)\right) = \sum_{m=1}^{M} \left(Q_m(g_m, b_m)\right) \to \min$$

- Итерационный ЕМ алгоритм (в цикле до сходимости):
 - □ Начальное приближение (случайные, равные, подобранные) $g_1, ..., g_M$
 - \square **М-шаг**: для всех m=1,...,M фиксируем g_m и находим

$$b_m = \underset{b}{\operatorname{argmin}} \sum_{i=1}^{l} g_m(x_i) L(b(x_i), y_i)$$

 \square **Е-шаг**: для всех m=1,...,M фиксируем b_m и находим

$$(\tilde{g}_1, \dots, \tilde{g}_M) = \underset{g_1, \dots, g_M}{\operatorname{argmin}} \sum_{i=1}^l L\left(\left[\sum_{m=1}^M g_m(x_i)b_m(x_i)\right], y_i\right)$$

- \square Нормировка для всех m=1,...,M: $g_m(x)=\operatorname{softmax}(\tilde{g}_1(x),...,\tilde{g}_M(x);\gamma)$
- \square Если не стабилизировались g_m и b_m то переход на М-шаг

Продвинутые смеси экспертов

- Предложено много расширений и подходов к обучению:
 - \square Иерархические: $g_{i|i}(x)g_i(x)$
 - □ Байесовские: $g_m = P(b_m|Z) \sim P(b_m) \cdot P(Z|b_m)$ «байесовский вес» базовой модели или «условная компетентность» на наборе Z, $P(Z|b_m)$ правдоподобие модели компетентности
 - □ Нейросетевые (в том числе с глубоким обучением и трансформерами)

Пример МОЕ

 Смесь экспертов - МНК линейных и полиномиальных регрессий на наборе California Housing, оценка качества по R²

```
import numpy as np
from smt.applications import MOE
housing = fetch california housing()
X, y = housing.data, housing.target
X.shape, y.shape, housing.target names
N = 15000
X train, y train = X[:N], y[:N]
X_{\text{test}}, y_{\text{test}} = X[N:], y[N:]
def sklearn fit history moe(X train, y train, X valid, y valid):
    result = []
    for i in range(2, 15, 1):
        print(f"Number of experts={i}")
        moe = MOE(n clusters=i, allow=["LS","QP"])
        moe.set training values(X train, y train)
        moe.train()
        d = \{\}
        d["i"]=i
        y moe = moe.predict values(X valid)
        d["R2 valid score"] = r2 score(y valid, y moe)
        y moe = moe.predict values(X train)
        d["R2_train_score"] = r2_score(y train, y moe)
        result.append(d)
    return pd.DataFrame(data=result).set index("i")
history=sklearn fit history moe(X,y,X test, y test)
history.plot()
```


Number of experts=2 LS 29.92791962496508 QP 27.18807751579454 Best expert = QP LS 5.501784342614732 QP 11.215110336591684 Best expert = LS

Number of experts=10 LS 10.29898080711618 QP 9.687474569666911 Best expert = QP LS 10.528101535305112 QP 9.575876793498624 Best expert = QP LS 5.224169041577111 QP 4.791085016027925 Best expert = QP LS 2.1439357658079537e-05 QP 2.080389114006695e-05 Best expert = QP LS 7.939421703962029 QP 68.86759267628352 Best expert = LS

LS 3.1637648277425874
QP 2.9549016444130336
Best expert = QP
LS 4.162144513803613
QP 3.9500173244680123
Best expert = QP
LS 7.296109359634265
QP 6.289615840759818
Best expert = QP
LS 6.771505099293365
QP 6.377682524464259
Best expert = QP
LS 7.732637050336106
QP 8.768475340330385
Best expert = LS

м

Выводы по ансамблям

- Позволяют существенно повышать качество базовых моделей.
- Базовые модели часто это деревья решений (универсальная, не очень точная, не стабильная модель, что хорошо)
- Ансамбли бывают разных типов для разных задач
- Модели «из коробки» Random Forest и градиентный бустинг
- ECOC, смеси экспертов и stacking тоже важны для своих задач
- Управлять качеством ансамбля можно варьируя сложность ансамбля (размер и/или гибкость агрегационной функции), сложность базовой модели и случайность (зависит от подвыборок и настроек базовых моделей)
- Большинство ансамблей уменьшают дисперсию прогноза, но некоторые могут уменьшать и смещение
- Основной минус долго строить и применять, как правило теряется интерпретация исходных базовых моделей