

Elettrotecnica (082742 – 082748 – 097245) Proff. Bizzarri, Codecasa, Gruosso, Maffezzoni, Pignari

Esame, 29 Agosto 2018

Cognome						Nome						
Matricola						Firma						
AVVERTENZE												
• L												
• Le domande D1 – D7 a risposta multipla <u>hanno ciascuna una sola risposta esatta</u> (+2/-1/0 punti per ogni risposta giusta/errata/senza risposta).												
 Gli studenti iscritti al corso 097245 (9CFU) non dovranno rispondere al quesito D7 e il punteggio conseguito 												
complessivamente sarà rinormalizzato a 32.												
• I punteggi massimi complessivi per ogni quesito sono riportati nella tabella sottostante; <u>un punteggio inferiore a 16 invalida la prova.</u>												
Ese	rcizio	D1 – D7	E1	E2	Е3				Voto Finale			
		14 punti	6 punti	6 punti	6 punti		,					
Voto												
D1	D1 Il bipolo descritto dall'equazione caratteristica $i = 1 [A]$ è											
	control	labile in corr	ente.									
	controllabile in corrente e in tensione.											
	control	labile in tens	ione.	-			· · ·	*		M		
D2	Data la	sinusoide <i>x</i>	c(t) = cos(3t)	$t+\frac{\pi}{4}$) di fas	ore \overline{x} , la sin	usoide $y(t)$	$=\frac{d}{dt}x(t)+c$	4x(t) ha fasore				
	$\bar{y} = j\bar{x} + 4\bar{x}$											
	$\overline{y} = j3\overline{x} + 4\overline{x}$								X			
	$\bar{y} = 3jz$	v + 4			V.				,			
D3	Se la funzione di rete $H(j\omega)$ (guadagno di tensione), di un circuito in regime sinusoidale permanente (AC), alla pulsazione ω_0 vale $H(j\omega_0)=1+j$, e il fasore di uscita è $\overline{v}_{out}=j2$ [V], il segnale sinusoidale in ingresso risulta essere:											
	$v_{in}(t)$ =	$= cos(\omega_0 t +$	- 135°) [V]									
	$v_{in}(t) = -2sin(\omega_0 t) [V]$											
	$v_{im}(t) =$	$=\sqrt{2}\cos(\omega_0)$	t + 45°) [V]	8 0				* <	- NC - V	10/		

D4	In un circuito dinamico del primo ordine (non degenere e con ingressi limitati) quale variabile è una funzione continua del tempo?										
	La corrente nel condensatore.										
	La tensione ai morsetti dell'induttore.										
	La corrente nell'induttore.										
D5	In un carico trifase bilanciato a triangolo vale la seguente relazione fra moduli delle correnti:										
	la corrente di linea è $\sqrt{3}$ volte la corrente di fase.	×									
	la corrente di fase è $\sqrt{3}$ volte la corrente di linea.										
	la corrente di fase e la corrente di linea coincidono (a causa dell'assenza del centro stella).										
D6	Il bipolo in figura ha equazione costitutiva $v-3i-4=0$ ed è quindi in grado di erogare una potenza massima pari a										
j	$\frac{1}{3}[W]$										
	$-\frac{4}{3}[W]$										
	$\frac{4}{3}[W]$	×									
	YI										
D 7	Una coppia di fili sottili paralleli con separazione s , costituisce un binario sul quale può scorrere in contatto elettrico un filo sottile, con moto uniforme di velocità v diretta verso destra. All'istante $t=0$, la posizione del filo scorrevole è $x=0$. All'estremità sinistra, immobile, è collegato un resistore di resistenza R . Il tutto è immerso in un campo di induzione magnetica \overline{B} costante nel tempo, perpendicolare al piano dei fili, con il verso in figura. L'espressione della corrente $i(t)$ per $t>0$ è										
D.	$i(t) = -\frac{svB}{R}$										
	$i(t) = \frac{svB}{R}$	M									
	$i(t) = \frac{svB}{R}t$										

.

Riportare i risultati e i passaggi salienti nel riquadro relativo ad ogni esercizio.

E1

In $t=0^-$ il circuito si trova a regime con e(t)=0 per t<0 ed e(t)=E per t>0. Determinare analiticamente e graficamente $v_C(t)$ e $v_x(t)$ per t=0 e per t>0 assumendo $R=3\Omega$, C=1mF, E=6V ed $\alpha=0.5$.

Analizzo il circumo in
$$t=0$$

$$i=i_{X}=\frac{\alpha U_{X}}{2R}: U_{X}=Ri_{X}=\frac{\alpha U_{X}}{2} \longrightarrow \begin{array}{c} Poiohé \alpha \neq 0 \\ V_{X}=0. \end{array}$$

$$V_{X}=0.$$

$$V_{Z}=0.$$

$$V_{Z$$

Analizzo Il cicuito per tro

$$U_{c} = e - U_{x}; U_{x} = R | x = R \left(\frac{U_{c} + \alpha U_{x}}{R} + 1c \right) = U_{c} + \alpha U_{x} + R | c$$

$$\int_{C} \frac{1}{1 - \alpha} \frac{1}{$$

$$\frac{\sqrt{c}\left(\frac{2-\alpha}{1-\alpha}\right)-e=-\frac{RC}{1-\alpha}\frac{d\sqrt{c}}{dt}}{\frac{d\sqrt{c}}{dt}} = \left(-\frac{2-\alpha}{RC}\right)\sqrt{c}(t) + \frac{E(1-\alpha)}{RC}$$

Soltana etildez . os K

Calcolo
$$U_{CIP} \sim D = -\frac{2-\alpha}{RC}U_{CIP} + \frac{e(1-\alpha)}{RC} \sim D_{CIP} = \frac{e(1-\alpha)}{(2-\alpha)} = 2V$$
Satto limitato... $\sim U_{C}(\sigma) = U_{C}(\sigma^{\dagger}) = 0 = U_{CO} + U_{CIP} \sim DU_{CO} = -U_{CIP}$
Vale la Carinatió $\sim U_{C}(\sigma^{\dagger}) = U_{C}(\sigma^{\dagger}) = 0 = U_{CO} + U_{CIP} \sim DU_{CO} = -U_{CIP}$
Satto Variabili di

Otheropo;

$$U_{c}(t) = -2e^{-5\infty t} + 2 \left[V\right]$$

 $U_{x}(t) = \frac{1}{1-\alpha} \left(U_{c} + RI_{o}\right) = \frac{1}{1-\alpha} \left(U_{c} + RCdU_{c}\right) = \frac{1}{1-\alpha} \left(U_{c} + RU_{c}\right) = \frac{1}{1-\alpha} \left(U_{c} + RU$

Si determinino i parametri del circuito equivalente Norton ai morsetti A e B del bipolo composito mostrato in figura. Si assumano $R_1 = 4k\Omega$, $R_2 = 2k\Omega$, $R_3 = 2k\Omega$, E = 8V, I = 2mA ed $r = 2k\Omega$.

$$i = \sigma \left(\frac{R_z + R_z}{R_z R_z}\right) + \left(\frac{r - R_z}{R_z}\right) \left(\frac{E - \sigma}{r + R_z}\right) + T$$

$$i = U \left(\frac{R_2 + R_3}{R_2 R_3} - \frac{Y - R_2}{R_2 (Y + R_3)} \right) + I + E \left(\frac{Y - R_2}{R_2 (Y + R_3)} \right)$$

$$GrN$$

$$Arr$$

Utilizzando i parametri ndicati nel Teatora othere quanto seque:

= 0,00010+ 0,0002 [A]

$$G_{NV} = 40^{3} [5]$$
 $A_{NV} = 2.40^{-3} [A]$

Il circuito in figura evolve in regime sinusoidale permanente (opera cioè in AC) alla pulsazione ω . Si determini la funzione di rete $H(j\omega) = \frac{\overline{v}_o}{\overline{\iota}_s}$. Assumendo poi $i_s(t) = cos(100t)$ [A], $R = 1\Omega$, C = 1mF ed $\alpha = 9$, si ricavi l'espressione della tensione $v_o(t)$.

$$\overline{U_R} = \frac{R}{1 + \text{JWCR}(1 + \alpha)} = \overline{U_R}(1 + \alpha) = \frac{R(1 + \alpha)}{1 + \text{JWCR}(1 + \alpha)} = \frac{R(1 + \alpha)}{1 + \text{JWCR}(1 + \alpha)}$$