Wine Quality Analysis

Executive Summary

Project Overview

Predicting the Quality of Wine

- Business Objectives
 - Better understand the factors related to identifying which attributes best determine the quality of the wine (the response variable is "Quality")
- Data Sources
 - Wine quality dataset: an excel file that contains a dataset of wine; it contains 15 columns of information with 1599 rows of data

Data Dictionary

Descriptive Analysis

variable name	Description
fixed.acidity	The amount of non-volatile acids present in the wine.
volatile.acidity	The amount of volatile (or steam-distillable) acids present in the wine, primarily acetic acid.
citric.acid	Found in small quantities, citric acid can add 'freshness' and flavor to wines.
residual.sugar	The amount of sugar left after fermentation stops, measured in grams.
chlorides	The amount of salt present in the wine.
free.sulfur.dioxide	The free form of SO_2 present in the wine. It prevents microbial growth and the oxidation of wine.
total.sulfur.dioxide	The total amount of SO ₂ in the wine.
density	The density of the wine, which can provide insights into the alcohol percentage and sugar content.

Data Dictionary

density	The density of the wine, which can provide insights into the alcohol percentage and sugar content.
pН	A measure of how acidic or basic the wine is on a scale from 0 (very acidic) to 14 (very basic); most wines are between 3-4 on the pH scale.
sulphates	A wine additive that contributes to SO ₂ gas levels and acts as an antimicrobial and antioxidant.
alcohol	The percentage of alcohol content in the wine.
quality	A score between 0 and 6 given to the wine based on sensory data.
fixed acidity category	This categorical variable classifies the fixed acidity levels of the wine.
alcohol_category	This categorical variable classifies the alcohol content of the wine.
sugar_category	This variable categorizes wines based on their residual sugar content.

Initial Data Review and Cleanup

Character Attributes

```
> summarize_character(wine_quality)
Attribute Missing Values Unique Values

1 fixed_acidity_category 6 4

2 alcohol_category 6 4

3 sugar_category 7 4
```

Convert the 3 categories to factors

Character Attributes to Factor Attributes

```
wine_quality = wine_quality %>% mutate(
   fixed_acidity_category = factor(fixed_acidity_category, levels = c("Low", "Medium", "High"), ordered = TRUE),
   alcohol_category = factor(alcohol_category, levels = c("Low", "Medium", "High"), ordered = TRUE),
   sugar_category = as.factor(sugar_category)
)
```

```
      — Variable type: factor
      — skim_variable
      n_missing complete_rate ordered n_unique top_counts

      1 fixed_acidity_category
      6
      0.996 TRUE
      3 Med: 780, Low: 419, Hig: 394

      2 alcohol_category
      6
      0.996 TRUE
      3 Med: 779, Low: 434, Hig: 380

      3 sugar_category
      7
      0.996 TRUE
      3 Dry: 616, Swe: 518, Sem: 458
```

All 3 categories have values missing

Numeric Attributes

_	Variable type: numeri	.c	1 1150 - 2000 - 115	3 27/10		100	327 lo 115	3 327010	3165 A	2010 1155	
	skim_variable	n_missing	complete_rate	mean	sd	p0	p25	p50	p75	p100	hist
1	fixed acidity	3	0.998	8.32	1.74	4.6	7.1	7.9	9.2	15.9	
2	volatile acidity	6	0.996	0.528	0.179	0.12	0.39	0.52	0.64	1.58	4
3	citric acid	1	0.999	0.271	0.195	0	0.09	0.26	0.42	1	
4	residual sugar	5	0.997	2.54	1.41	0.9	1.9	2.2	2.6	15.5	
5	chlorides	2	0.999	0.0875	0.0471	0.012	0.07	0.079	0.09	0.611	
6	free sulfur dioxide	3	0.998	15.9	10.5	1	7	14	21	72	L
7	total sulfur dioxide	3	0.998	46.5	32.9	6	22	38	62	289	L
8	density	6	0.996	0.997	0.00189	0.990	0.996	0.997	0.998	1.00	
9	pH	5	0.997	3.31	0.154	2.74	3.21	3.31	3.4	4.01	
10	sulphates	4	0.997	0.658	0.170	0.33	0.55	0.62	0.73	2	L
11	alcohol	0	1	10.4	1.07	8.4	9.5	10.2	11.1	14.9	II
12	quality	8	0.995	5.64	0.806	3	5	6	6	8	

Initial Observations

- Data quality overview
 - There are missing values for almost every variable except for alcohol
 - Data appears to contain suitable "response variable": Quality but it is missing 8 values
 - Data may contain outliers in free sulfur dioxide and total sulfur dioxide
- Composition
 - 12 numeric variables
 - 11 out of 12 variables having missing values (alcohol doesn't have missing values)
 - 3 factor variables
 - All are categories

Factors

Investigate factors missing values

Fixed Acidity Category					
# A tibb	ole: 1 × 3				
Total_	_Observations Miss	ing_Values Pe	rcent_Missing		
	<int></int>	<int></int>	<db1></db1>		
1	<u>1</u> 599	6	0.375		
.ocut_(Observations Missi <int></int>	<int></int>	<dbl></dbl>		
1	<int> 1599</int>	<int></int>	<dbl></dbl>		
<u>. I</u>					
	Sugar C	Category			
Total_	Observations Miss	ing_Values Pe	rcent_Missing		
	<int></int>	<int></int>	<db1></db1>		
1	1599	7	0.438		

Based on this analysis, the percentage of missing values for the 3 factors don't appear to have a significant impact on the dataset but we don't want to delete rows since the data could be meaningful

Investigate factors missing values

Approach: Impute most frequent level

```
# fixed_acidity_category
wine_quality$fixed_acidity_category[is.na(wine_quality$fixed_acidity_category)] <- "Medium"
# alcohol_category
wine_quality$alcohol_category[is.na(wine_quality$alcohol_category)] <- "Medium"
# sugar_category
wine_quality$sugar_category[is.na(wine_quality$sugar_category)] <- "Dry"</pre>
```

```
      — Variable type: factor
      — skim_variable
      n_missing complete_rate ordered n_unique top_counts

      1 fixed_acidity_category
      0
      1 TRUE
      3 Med: 786, Low: 419, Hig: 394

      2 alcohol_category
      0
      1 TRUE
      3 Med: 785, Low: 434, Hig: 380

      3 sugar_category
      0
      1 TRUE
      3 Dry: 623, Swe: 518, Sem: 458
```

Data Cleaning Numeric

Investigate numeric missing values

Variable	Missing Values	Percent Missing	
Fixed acidity	3	0.188	
volatile acidity	6	0.375	
citric acid	1	0.0625	
residual sugar	5	0.313	
chlorides	2	0.125	Based on this analysis, the percentage of missing values don't appear to have a
free sulfur dioxide	3	0.188	significant impact on the dataset but since there are missing values on 11 of the 12
total sulfur dioxide	3	0.188	numeric values, we don't want to delete the rows that could have meaningful
density	6	0.375	information
рН	5	0.313	
sulphates	4	0.250	
quality	8	0.500	
Total	46	2.88%	

Investigate numeric missing values

Approach 2: Impute with median value for fixed acidity

```
# impute the median value for missing values
median <- median(wine_quality$`fixed acidity`, na.rm = TRUE)
wine_quality$`fixed acidity` <- replace_na(wine_quality$`fixed acidity`, median)</pre>
```

No missing values for variable

Investigate numeric missing values

Approach 2: Impute with median value for missing values

Repeat for rest of variables with missing values

skim_variable	n_missing	complete_rate	mean	sd	p0	p25	p50	p75	p100	hist
fixed acidity	0	1	8.32	1.74	4.6	7.1	7.9	9.2	15.9	_
volatile acidity	0	1	0.528	0.179	0.12	0.39	0.52	0.64	1.58	4
citric acid	0	1	0.271	0.195	0	0.09	0.26	0.42	1	II .
residual sugar	0	1	2.54	1.41	0.9	1.9	2.2	2.6	15.5	
chlorides	0	1	0.0875	0.0471	0.012	0.07	0.079	0.09	0.611	4.5
free sulfur dioxide	0	1	15.9	10.5	1	7	14	21	72	
total sulfur dioxide	0	1	46.5	32.9	6	22	38	62	289	L
density	0	1	0.997	0.00188	0.990	0.996	0.997	0.998	1.00	_
pH	0	1	3.31	0.154	2.74	3.21	3.31	3.4	4.01	
sulphates	0	1	0.658	0.169	0.33	0.55	0.62	0.73	2	L
alcohol	0	1	10.4	1.07	8.4	9.5	10.2	11.1	14.9	I
Z quality	0	1	5.64	0.805	3	5	6	6	8	

Investigate numeric values for outliers

> 5	summarize_numeric(wine	_quality)	2001 F18	500000 or		2000	2.7	
	Attribute	Missing Values	Unique	Values	Mean	Min	Max	SD
1	fixed acidity	0		96	8.31707317	4.60000	15.90000	1.736911344
2	volatile acidity	0		143	0.52810819	0.12000	1.58000	0.178897598
3	citric acid	0		80	0.27073796	0.00000	1.00000	0.194582331
4	residual sugar	0		91	2.53924328	0.90000	15.50000	1.409634066
5	chlorides	0		153	0.08747905	0.01200	0.61100	0.047061706
6	free sulfur dioxide	0		60	15.88055034	1.00000	72.00000	10.456842144
7	total sulfur dioxide	0		144	46.50156348	6.00000	289.00000	32.877053618
8	density	0		436	0.99675067	0.99007	1.00369	0.001883759
9	pН	0		89	3.31081301	2.74000	4.01000	0.154171741
10	sulphates	0		96	0.65809881	0.33000	2.00000	0.169488335
11	alcohol	0		65	10.42298311	8.40000	14.90000	1.065667582
12	quality	0		6	5.63914947	3.00000	8.00000	0.804706604

Free sulfur dioxide and total sulfur dioxide seem to have outliers but we didn't remove/impute them because we still need to analyze the dataset. Other variables seem to have potential outliers but we will leave them to analyze the whole dataset first

Logical Groupings of Attributes

Numeric (12)

- Wine Composition: fixed acidity, volatile acidity, citric acid, residual sugar, chlorides, density, pH, sulphates, alcohol
- Sulfur Dioxide Levels: free sulfur dioxide, total sulfur dioxide

Factors (3)

- Flavor Content: Fixed acidity, alcohol, sugar
- Quality Metrics: Quality

Analysis and Initial Observations

All Numeric Attributes

quality

Quality doesn't seem to have a strong correlation with many of the variables; it seems to have some correlation with alcohol

alcohol sulphates рН Corr density total sulfur dioxide 0.5 0.0 free sulfur dioxide -0.5 chlorides residual sugar citric acid volatile acidity fixed acidity volatile acidity residual sugar Hee Suhu dio Ade odal sutur dioxide citric acid suphates alcohol

There seems to be some correlation between alcohol and quality

There seems to be a strong correlation between total sulfur dioxide and free sulfur dioxide

There seems to be a strong correlation between fixed acidity and density and fixed acidity and pH

There are multiple correlations in this area of the map: citric and fixed acidity, citric acid and volatile acid

Category	Frequency	Percentage
3	9	0.56 %
4	53	3.31 %
5	679	42.46%
6	641	40.09%
7	199	12.45%
8	18	1.13%
Total	1599	100%

Both the plot and the table shows that the vast majority of the data points in the dataset are concentrated within the set of average wines (5-6) with a decrease of data points for the higher quality (7-8) and lower quality (3-4) wines **Full univariate analysis: Factors**

Univariate Summary of Factors – Fixed Acidity Category

It is observed that the majority of wine variety falls under medium acidity. Low and high fixed acidity roughly have the same count

Univariate Summary of Factors – Alcohol Category

It is observed that majority of the wine has medium alcohol content. Low and high fixed alcohol categories roughly have the same count

Univariate Summary of Factors – Sugar Category

It is observed that majority of the wine falls under the dry sugar category followed by sweet then semi-dry. **Full univariate analysis: Numeric**

Univariate Summary of Numeric – Fixed Acidity

Fixed acidity appears to have a positive skew (mean > median) and the average is roughly 8.31.

Univariate Summary of Numeric – Volatile Acidity

Volatile Acidity appears to have a positive skew and the average is about 0.53. Also some outliers are observed here that have high volatile acidity (it could be a true or false outlier but we don't know yet).

Univariate Summary of Numeric – Citric acid

Citric acid appears to have a positively skewed; citric acid is found in small quantities which adds to the freshness and flavor of the wines. There seems to be an outlier towards the end of the tail.

Univariate Summary of Numeric – Residual Sugar

It appears that the Residual sugar has a positive skew with majority of the wines having less amount of sugar post fermentation, while some wines with very large quantities of residual sugar can be observed. There seems to be a few outliers towards the tail.

Univariate Summary of Numeric – Chlorides

It appears that Chlorides has a positive skew with majority of the wines having smaller levels of salt present. There's a few outliers towards the tail.

Univariate Summary of Numeric – Free sulfur dioxide

It appears that free sulfur dioxide has a positive skew with majority of the wines having on average 15.88 which helps with preventing microbial growth and oxidation of wine. There's a few outliers towards the tail.

Univariate Summary of Numeric – Total sulfur dioxide

It appears that total sulfur dioxide has a positive skew with majority of the wines having on average 46.5. There's a few outliers towards the tail.

Univariate Summary of Numeric – Density

It appears that density has a semi normal distribution with an average of 0.997 which provides insights into the alcohol percentage and sugar content.

Univariate Summary of Numeric – pH

It appears that pH has a semi normal distribution with an average of 3.13 which provides insights on the acidity of the wine so most of the wine falls under the the average pH of 3-4.

Univariate Summary of Numeric – Sulphates

antimicrobial and antioxidant. There's a

few outliers towards the tail.

Univariate Summary of Numeric – Alcohol

It appears that alcohol has a positive skew with majority of the wines with an average of 10.42 which represents the alcohol content in the wine.

Univariate Summary of Numeric – Quality

Full bivariate analysis: Factors

Each variable vs the response variable

Bivariate Summary of Factors – Fixed Acidity Category

The wines tend to fall under the medium fixed acidity category with the majority being at 5-6 quality.

Bivariate Summary of Factors – Alcohol Category

The wines tend to fall under the medium alcohol category with the majority being at 5-6 quality.

Bivariate Summary of Factors – Sugar Category

The wines tend to fall under the dry sugar category with the majority being at 5-6 quality.

Full bivariate analysis: Numerics

Each variable vs the response variable

Fixed Acidity

It seems that the fixed acidity for each factor is around the same for each category for quality.
Quality 8 seems to have the largest range for fixed acidity. There also seems to be some outliers in some of the qualities.

Volatile Acidity - Potential Correlation

As quality increases, volatile acidity decreases so there could be a negative linear correlation. This could indicate that people prefer wines with lower volatile acid.

Citric Acid - Potential Correlation

As quality increases, citric acid increases so there could be a positive linear correlation. Citric acid adds to the freshness and flavor of the wines which could explain why higher quality wines have more citric acid.

Residual Sugar

It seems that the residual sugar for each factor is around the same for each category for quality. Quality 1 seems to have the largest range for residual sugar. There also seems to be some outliers in some of the qualities.

Chlorides

It seems that the chlorides for each factor is around the same for each category for quality.
Quality 1 seems to have the largest range for residual sugar. There also seems to be some outliers in some of the qualities. This could indicate that wines contains roughly the same amount of salt.

Free Sulfur Dioxide

It seems that the free sulfur dioxide increases up until quantity 5 then it starts to slowly decrease. Free sulfur dioxide prevents microbial growth and oxidation of wine which could explain why wines in quality 5-6 have more of it.

Total Sulfur Dioxide

It seems that the total sulfur dioxide increases up until quantity 5 then it starts to slowly decrease.

Density

It seems that the density is the same for quality 0 to 4 then it slightly decreases for quality 5 and 6. Density provides insight into the alcohol percentage and sugar content so it could be inferred that people potentially prefer wines with lower density.

Wine with lower PH value tend to have better quality. pH indicates how acid the wine is so people might prefer wines with lower pH

Sulphates- Potential Correlation

As quality increases, sulphates slightly increase so there could be a positive linear correlation. This could be because people might prefer wines that have higher levels of sulphates since it acts as a antimicrobial and antioxidant.

Alcohol - Potential Correlation

As quality increases, alcohol seems constant for quality 3 to 5 then it increases from 6 to 8 which could indicate that people prefer wines with higher levels of alcohol.

Attributes with highest correlation (based on graphs)

Volatile Acidity: negative linear correlation

Citric Acid: positive linear correlation

Alcohol: constant then positive linear correlation

Initial Observations for Numeric vs Numeric Variables

Fix acidity VS Citric Acid (Positive Correlation)

Could potentially indicate that the more citric acid the more fresh and flavorful the wine is which increased the amount of non-volatile acids present in the wine.

Citric Acid VS Volatile Acidity (Negative Relation)

Could potentially indicate that the less citric acid there is in the wine which could indicate that the wine isn't as fresh increases the steam-distillable acids present on wine.

Density VS Residual Sugar (Positive Correlation)

Could potentially indicate that as density increases the amount of sugar slightly increases so potentially the alcohol percentage and sugar content increase as the amount of sugar left after fermentation increases.

Citric Acid VS Volatile Acidity (No Relation)

Further Investigation Indicated

- Why there is more data for medium fixed acidity category?
- Why there is a tendency for medium alcohol category?

Potential Feature Generation

- We convert wine with quality from 3 to 6 as "Medium Quality Wine" and convert wine with quality 7 or 8 as "Premium Wine"
- We can make a logistical regression to find out what variables could influence the these two categories

Potentially influence factors in Wine Quality are observed in the following situations:

- Fix Acidity appears to have positive correlation with quality of wine
- Citric Acid has positive correlation with fix acidity, thus it has positive correlation with quality as well
- Sulphates appears to have an obvious and linear positive correlation with quality of wine
- Alcohol appears to have a positive correlation with quality of wine
- PH value as an indicator of acidity, thus wine smaller PH value appears to have better quality
- Volatile Acidity appear to have negative correlation with quality
- Total Sulfur dioxide and Free Sulfur dioxide has a trend of increasing from quality 3 to 5 and a trend of decreasing from 6 to 8
- Residual Sugar and Chlorides have no obvious correlation with quality
- Density appears to have positive correlation with sugar, thus it has no relation to
 quality.

Next Steps

Bivariate Analysis

- Investigate the relationship between quality and the numeric attributes including volatile acidity, citric acid, and alcohol
- Investigate the relationship between some pairs of numeric attributes

Purpose: determine which variables have a correlation with quality

Next Steps: statistical analysis

Feature Engineering

pca result 2.0 0.5

PCA

6 principal components should be used for subsequent analyses

This means that the first 6 principal components capture a significant amount of variance and the loadings for these components have a clear pattern of strong influences from specific variables

	PC1	PC2	PC3	PC4	PC5	PC6
fixed acidity	0.487542914	0.004504596	0.16584011	0.230657121	0.0819416	-0.06593994
volatile acidity	-0.266566111	-0.337237491	0.22808315	-0.042470512	-0.2949809	-0.31756515
citric acid	0.473513809	0.137482090	-0.09995172	0.056846166	0.1187747	-0.12584512
residual sugar	0.138838389	-0.167741531	-0.24291041	0.381131118	-0.7117976	-0.10606049
chlorides	0.197911647	-0.190724227	0.02914480	-0.655474773	-0.2629106	-0.32767017
free sulfur dioxide	-0.043998653	-0.260613509	-0.61581280	0.032654331	0.1595064	0.03978972
total sulfur dioxide	0.004656223	-0.364576635	-0.54068191	0.028634554	0.2169065	-0.11596840
density	0.368562158	-0.330437575	0.17142282	0.202113056	-0.2121880	0.42148812
рН	-0.432556029	0.066956040	-0.06920975	0.004484637	-0.2586487	0.48814065
sulphates	0.255028527	0.109272464	-0.21122280	-0.561160834	-0.2162230	0.39408597
alcohol	-0.074187912	0.502518303	-0.22633604	0.087580535	-0.2580925	-0.39668801
quality	0.114630841	0.473142224	-0.22146947	0.039065063	-0.1364143	0.12930653

Importance of components:

PC1 PC2 PC3 PC4 PC5 PC6

Standard deviation 1.7658 1.4962 1.2966 1.1017 0.98749 0.81628

Proportion of Variance 0.2598 0.1865 0.1401 0.1012 0.08126 0.05553

Cumulative Proportion 0.2598 0.4464 0.5865 0.6876 0.76889 0.82442

PC1 explains the majority of the total variance followed by PC2 and PC3 and so on

We only only analyze the first 4 PCAs

PCA	Positive values vs Negative values	Interpretation
PC1	Fixed acidity, citric acid, density vs pH	Could indicate a specific type, style or origin of wines
PC2	Alcohol, quality vs volatile acidity, total sulfur dioxide, density	Could indicate a specific type, style or origin of wines
PC3	Significantly negative values: total sulfur dioxide, free sulfur dioxide	Could indicate a certain style or type of wine
PC4	Significantly negative values: chlorides, sulphates	Could indicate a certain style or type of wine

Doesn't tell us much

EFA

4 factors to use

EFA

residual sugar

0.709 density 0.005 quality 0.722

Uniquenesses:					
fixed acid	ity vo	latile a	idity	cit	ric acid
0.3	113		0.777		0.393
chlorio	des free	sulfur di	loxide to	otal sulfur	dioxide
0.9	920		0.481		0.127
	pH	sulp		alcohol	
0.2	279		0.902		0.005
Loadings:					
	Factor	1 Factor	2 Factor:	3 Factor4	
fixed acidity	0.815	-0.152	-0.217	0.391	
volatile acidity	-0.433	-0.165			
citric acid	0.754			0.193	
residual sugar			0.189	0.503	
chlorides	0.150	-0.235			
free sulfur dioxid	de		0.714		
total sulfur diox	ide	-0.159	0.915		
density	0.313	-0.540	-0.109	0.771	
pH	-0.800	0.274			
sulphates	0.267			0.138	
alcohol		0.992			
quality	0.249	0.451	-0.111		
Fac	ctor1 Fact	or2 Facto	or3 Facto	or4	
SS loadings	2.326 1.	695 1.4	161 1.0	886	
Proportion Var	0.194 0.	141 0.3	122 0.0	091	
Cumulative Var	0.194 0.	335 0.4	157 0.5	547	
	V 100 0	0.00			

Test of the hypothesis that 4 factors are sufficient. The chi square statistic is 1632.96 on 24 degrees of freedom. The p-value is 0 $\,$

EFA

Factors	Important values	Interpretation
1	Positive: Fixed acidity, citric acidity vs Negative: pH	Wine Quality and Composition
2	Positive: alcohol, quality vs negative: density	Types of wine
3	Total sulfur dioxide, free sulfur dioxide	Better preservation, reduced spoilage, could indicate white wines
4	Density, residual sugar	Sweet or dry wines, dessert wines, regional varations

Analysis from PCA & EFA

Potential variables to analyze for model

PCA	Positive values vs Negative values
PC1	Fixed acidity, citric acid, density vs pH
PC2	Alcohol, quality vs volatile acidity, total sulfur dioxide, density
PC3	Significantly negative values: total sulfur dioxide, free sulfur dioxide
PC4	Significantly negative values: chlorides, sulphates

EFA	
Factors	Important values
1	Positive: Fixed acidity, citric acidity vs Negative: pH
2	Positive: alcohol, quality vs negative: density
3	Total sulfur dioxide, free sulfur dioxide
4	Density, residual sugar

- Analyze the values in PC1 & Factor 1
- Analyze the values in PC2 & Factor 2
- Analyze the values in PC3 & Factor 3

Analysis from PCA & EFA

Potential variables to analyze for model

Positive values vs Negative values

Fixed acidity, citric acid, density vs pH

Alcohol, quality vs volatile acidity, density

total sulfur dioxide, free sulfur dioxide

Statistical Analyses

Tests to Do

- T-Test for Measures Against Response
- Chi-square for Factors Against Response

Testing statistical significance of factors

Chi-Squared Test Results

MeasureName <chr></chr>	PValue Significant <dbl> <chr></chr></dbl>	
fixed_acidity_category	2.073190e-06	Yes
alcohol_category	1.539408e-77	Yes
sugar_category	1.061797e-01	No

Fixed Acidity and Alcohol Categories: Both show strong statistical evidence of an association with the quality

Sugar Category: Does not show a statistically significant association

Testing statistical significance of measures

T- Test Results

MeasureName <chr></chr>	DifferenceInMean <dbl></dbl>	PValue <dbl></dbl>	Significant <chr></chr>
fixed acidity	-0.566666667	4.218427e-01	No
volatile acidity	0.495000000	1.822808e-03	Yes
citric acid	-0.27444444	3.246019e-03	Yes
residual sugar	0.105555556	8.580156e-01	No
chlorides	0.059444444	3.050423e-02	Yes
free sulfur dioxide	-2.166666667	6.237329e-01	No
total sulfur dioxide	-11.000000000	1.814288e-01	No
density	0.001881111	2.873190e-02	Yes
рН	0.147222222	3.904486e-02	Yes
sulphates	-0.19777778	1.566449e-03	Yes
alcohol	-2.033333333	2.810226e-05	Yes

Analysis from PCA & EFA

Potential variables to analyze for model

Numeric

Values

Fixed acidity, citric acid, density vs pH

Alcohol, quality vs volatile acidity, density

Total sulfur dioxide, free sulfur dioxide

T-test & PCA: sulphates, alcohol

Factors

Category

Chi-square: Alcohol

Descriptive Modeling

Test to do

- one linear model
- one decision tree model
- will add a classification with 6 possible clusters
- multinomial regression
- Model 1, 2, 3 similar to sample EDA report

Binary Model

```
600
     ## logistic regression
601
602
     library(dplyr)
603
604
     # Create a new variable "WineCategory"
605
     df <- wine_quality %>%
606
       mutate(WineCategory = case_when(
607
         quality %in% 3:6 ~ "Low to Medium Quality", # what makes for really good wine
608
         quality %in% 7:8 ~ "Premium Wine", # small number of these -> higher quality wines
609
         TRUE ~ "Other"
610
       ))
611
     df$BinaryCategory = ifelse(df$WineCategory == "Premium Wine", 1, 0)
612
613
614
     # Fit logistic regression model
615
     # variables: some subset of original variables
616
617
     # start with small number that should be important then try adding others to see if it improves model
618
     model <- glm(BinaryCategory ~ , data = df, family = "binomial")</pre>
619
620
     # Print model summary
621
622
     summary(model)
```

Logistic Regression Models

Model 1 - Limited Numerics

Based on results of EDA and statistical analyses, an initial logistic regression model was created with the following variables:

Clustering

Analyses Plan