

CNC 2013

Mathématiques 2

AQALMOUN MOHAMED agrégé de mathématiques MPSI CPGE Khouribga Énoncé

Le sujet de cette épreuve est composé de deux exercices et d'un problème, tous indépendants.

Premier exercice Matrice de Gram et application

Soient u_1, \ldots, u_n des vecteurs de \mathbb{R}^n , $n \geq 2$; on note $G(u_1, \ldots, u_n)$ la matrice de $\mathcal{M}_n(\mathbb{R})$ de terme général $\langle u_i, u_j \rangle$, où $\langle ., . \rangle$ désigne le produit scalaire canonique de \mathbb{R}^n . La matrice $G(u_1, \ldots, u_n)$ est dite la matrice de Gram.

On note $\mathcal{B}=(e_1,\ldots,e_n)$ la base canonique de \mathbb{R}^n et, pour tout $j\in\{1,\ldots,n\}$, on note $u_j=\sum_{k=1}^n m_{k,j}e_k$ l'expression du vecteur u_j dans la base \mathcal{B} . on désigne enfin par M la matrice de $\mathcal{M}_n(\mathbb{R})$ de terme général $m_{i,j}$.

- 1. Pour tout couple (i, j) d'éléments de $\{1, \ldots, n\}$, exprimer le produit scalaire $\langle u_i, u_j \rangle$, à l'aide des coefficients de la matrice M et en déduire que $G(u_1, \ldots, u_n) = {}^t MM$.
- 2. Montrer que la matrice $G(u_1, \ldots, u_n)$ est symétrique et positive, et que si la famille (u_1, \ldots, u_n) est libre alors la matrice $G(u_1, \ldots, u_n)$ est définie positive.
- 3. On note A_n la matrice de $\mathcal{M}_n(\mathbb{R})$ de terme général $a_{i,j} = \min(i,j)$.
 - (a) Exprimer A_n comme martice de Gram et en déduire qu'elle est symétrique définie positive, puis expliciter une matrice $R_n \in \mathcal{M}_n(\mathbb{R})$, triangulaire supérieure, telle que $A_n = {}^tR_nR_n$.
 - (b) On prend n=4 et note X, (resp. Y, resp. Z) le vecteur de $\mathcal{M}_{4,1}(\mathbb{R})$ de composantes x_1,x_2,x_3 et x_4 (resp. 1,2,3 et 4, resp. z_v,z_2,z_3 et z_4). Résoudre les système linéaires ${}^tR_4Z=Y$ et $R_4X=Z$ puis en déduire la solution du système $A_4X=Y$.

Deuxième exercice

Résolution de l'équation $X^2 + 3X = A$ dans $\mathcal{M}_3(\mathbb{R})$

On note u l'endomorphisme de \mathbb{R}^3 canoniquement associé à la matrice $A=\begin{pmatrix}10&0&0\\0&4&1\\0&0&0\end{pmatrix}$

- 1. Justifier que A est diagonalisable dans $\mathcal{M}_3(\mathbb{R})$. On note λ_1, λ_2 et λ_3 les valeurs propres de A et on suppose que $\lambda_1 > \lambda_2 > \lambda_3$.
- 2. Pour tout $k \in \{1, 2, 3\}$, déterminer le vecteur propre e_k de u associé à la valeur propre λ_k et ayant pour composantes des nombres entiers dont l'un est égal à 1.

- 3. Justifier que (e_1, e_2, e_3) est une base de \mathbb{R}^3 et écrire la matrice Δ de u relativement à cette base
- 4. Déterminer une matrice $P \in GL_3(\mathbb{R})$ telle que $A = P\Delta P^{-1}$ puis calculer P^{-1} .
- 5. Soit $B \in \mathcal{M}_3(\mathbb{R})$ une matrice vérifiant $B^2 + 3B = A$; on note v l'endomorphisme de \mathbb{R}^3 canoniquement associé à B.
 - (a) Justifier que $v^2 + 3v = u$.
 - (b) Vérifier que uv = vu et en déduire que, pour tout $k \in \{1,2,3\}$, le vecteur $v(e_k)$ est colinéaire à e_k , conclure que la matrice V de v relativement à la base (e_1,e_2,e_3) est diagonale.
 - (c) On pose $V=\mathrm{diag}(\alpha_1,\alpha_2,\alpha_3)$. Expliciter Δ en fonction de V puis déterminer les valeurs possibles de $\alpha_1,\alpha_2,\alpha_3$ ainsi que celle de la matrice B. La relation $B^2+3B=A$ est équivalente à $V^2+3V=\Delta$. Et cette dernière relation est équivalente à $\alpha_1^2+3\alpha_1=10$, $\alpha_2^2+3\alpha_2=4$ et $\alpha_3^2+3\alpha_3=0$, après la résolution de ces équations, on obtient $\alpha_1=-5$ ou 2, $\alpha_2=-4$ ou 1, et $\alpha_3=0$ ou -3.
 - (d) Combien de solutions l'équation $X^2 + 3X = A$ admet-t-elle dans $\mathcal{M}_3(\mathbb{R})$?

Problème

Dans ce problème, $\mathcal{C}^{\infty}(\mathbb{R},\mathbb{C})$ désigne l'espace vectoriel des applications de classe \mathcal{C}^{∞} de \mathbb{R} dans \mathbb{C} et \mathscr{D} l'opérateur de dérivation défini sur l'espace vectoriel $\mathcal{C}^{\infty}(\mathbb{R},\mathbb{C})$ par : $\mathscr{D}(f)=f'$, $f\in\mathcal{C}^{\infty}(\mathbb{R},\mathbb{C})$; de même, $\mathbb{C}[X]$ désigne l'espace vectoriel des polynômes à coefficients complexes à une indéterminée et D l'opérateur de dérivation défini sur cet espace vectoriel par : D(P)=P', $P\in\mathbb{C}[X]$.

On rappelle que \mathscr{D} et D sont des endomorphismes de $\mathcal{C}^{\infty}(\mathbb{R},\mathbb{C})$ et $\mathbb{C}[X]$ respectivement. Si $P=a_0+a_1X+\ldots+a_nX^n$ est un polynôme à coefficients complexes de degré $n\geq 1$, on lui associé l'équation différentielle homogène noté \mathscr{E}_P suivante :

$$a_n y^{(n)} + \ldots + a_1 y' + a_0 y = 0.$$
 (E_P)

Par "solution la solution de l'équation différentielle (\mathscr{E}_P) " on fait référence à toute application $f: \mathbb{R} \to \mathbb{C}$ n-fois dérivable telle que

$$\forall x \in \mathbb{R}, \ a_n f^{(n)(x)} + \ldots + a_1 f'(x) + a_0 f(x) = 0.$$

Comme $a_n \neq 0$, il est évident que toute solution de \mathscr{E}_P est un élément de $\mathcal{C}^{\infty}(\mathbb{R}, \mathbb{C})$. L'ensemble des solutions est donc un sous espace vectoriel de $\mathcal{C}^{\infty}(\mathbb{R}, \mathbb{C})$.

La troisième partie du problème utilise les résultats de l'avant dernière question de la seconde partie; la deuxième partie utilise les résultats de la première.

Première partie Résultats préliminaires

- 1.1. Soit n un entier naturel quelconque ; on note $\mathbb{C}_n[X]$ le sous espace vectoriel de $\mathbb{C}[X]$ formé des polynômes de degré $\leq n$.
 - 1.1.1. Montrer que $\mathbb{C}_n[X]$ est stable par l'endomorphisme D.

 Dans la suite on note D_n l'endomorphisme induit par D sur $\mathbb{C}_n[X]$ et I_n l'application identité de $\mathbb{C}_n[X]$ définie par : $I_n(P) = P$, $P \in \mathbb{C}_n[X]$.

- 1.1.2. Montrer que l'endomorphisme D_n est nilpotent.
- 1.1.3. Montrer que, pour tout complexe non nul α , l'edomorphisme $D_n + \alpha I_n$ est inversible et exprimer son inverse à l'aide des puissances de α et D_n .
- 1.2. Déduire de ce qui précède que si α est un complexe non nul et $R \in \mathbb{C}[X]$ est un polynôme de degré $n \in \mathbb{N}$, alors il existe un unique polynôme $R_1 \in \mathbb{C}[X]$ tel que $R'_1 + \alpha R_1 = R$; vérifier que R_1 et de degré n et l'exprimer en fonction de R.
- 1.3. Soit λ un nombre complexe et $g : \mathbb{R} \to \mathbb{C}$ une fonction continue.
- 1.3.1. Montrer que les solutions de l'équation différentielle $y' \lambda y = g$ sont de la forme $x \mapsto G(x)e^{-\lambda x}$ où G est une primitive de la fonction $s \mapsto g(x)e^{-\lambda x}$.
 - 1.3.2. Dans cette question, on pose $g(x)=R(x)e^{\lambda x}$, $x\in\mathbb{R}$, où R est un polynôme à coefficients complexes. Montrer que les solutions de l'équation différentielle $y'-\lambda y=g$ sont de la forme $x\mapsto S(x)e^{\lambda x}$, où S est un polynôme à coefficients complexes dont le polynôme dérivé est égal à R.
 - 1.3.3. Dans cette question, on pose $g(x)=R(x)e^{\mu x}$, $x\in\mathbb{R}$, où μ désigne un complexe distinct de λ et R est un polynôme à coefficients complexes. Montrer que les solution de l'équation différentielle $y'-\lambda y=g$ sont de la forme $x\mapsto R_1(x)e^{\mu x}+ce^{\lambda x}$ où R_1 est l'unique polynôme à coefficients complexes vérifiant $R_1'=(\mu-\lambda)R_1=R$ et c est un paramètre complexe.

Deuxième partie Expression des solutions de l'équation différentielle (\mathscr{E}_P)

- 2.1. Cas où $P=(X-\lambda)^n$ avec $\lambda\in\mathbb{C}$ et $n\in\mathbb{N}^*$ Montrer que dans ce cas, $f\in\mathcal{C}^\infty(\mathbb{R},\mathbb{C})$ est solution de l'équation différentielle \mathscr{E}_P si, et seulement si, il existe un polynôme $R\in\mathbb{C}_{n-1}[X]$ tel que $f(x)=R(x)e^{\lambda x},\,x\in\mathbb{R}$. On pourra calculer la dérivée n-ième de la de la fonction $h:x\mapsto e^{-\lambda x}f(x)$.
- 2.2. Soit $\lambda \in \mathbb{C}$ et $Q \in \mathbb{C}[X]$ un polynôme non nul ; on pose $P = (X \lambda)Q$.
 - 2.2.1. Montrer que les deux endomorphismes $Q(\mathcal{D})$ et $(\mathcal{D} \lambda I)$ de $\mathcal{C}^{\infty}(\mathbb{R}, \mathbb{C})$, commutent ; I désigne l'application identité du \mathbb{C} -espace vectoriel $\mathcal{C}^{\infty}(\mathbb{R}, \mathbb{C})$.
 - 2.2.2. En déduire que $f \in \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{C})$ est solution de l'équation différentielle \mathscr{E}_P si, et seulement si, $P(\mathscr{D})(f) = 0$ si, et seulement si, $f' \lambda f$ est solution de l'équation différentielle \mathscr{E}_O .
- 2.3. En faisant un raisonnement par récurrence, retrouver le résultat de la question 2.1. cidessus sans savoir recours à un calcul de la dérivéé *n*-ième.
- 2.4 **Un exemple :** Déterminer les entiers qui sont racines du polynôme $P_1 = (X-1)(X+1)^3$ puis le factoriser dans $\mathbb{C}[X]$; donner l'expression des solutions de l'équarion différentielle \mathscr{E}_{P_1} .
- 2.5. Cas général :On suppose ici que le polynôme s'écrit $P = \prod_{k=1}^r (X \lambda_k)^{m_k}$, où r est un entier $\geq 2, \lambda_1, \ldots, \lambda_r$ sont des complexes deux à deux distincts, et m_1, \ldots, m_r des entiers naturels non nuls En faisant un raisonnement par récurrence sur le degré de P, montrer que les solutions de l'équation différentielle \mathscr{E}_P sont les fonctions de la forme $x \mapsto \sum_{k=1}^r R_k(x) e^{\lambda_k x}$, où $R_k \in \mathbb{C}_{m_k-1}[X]$ pour tout $k \in \{1,\ldots,r\}$. On pourra exploiter le résultat de la question 2.2.2.. Pour n=2.

www.aqalmoun.com

- 2.6. Montrer en précisant l'énoncé du théorème utilisé, que pour tout $P \in \mathbb{C}[X]$, les solutions de l'équation différentielle \mathscr{E}_P ont toujours la forme des solutions trouvées dans la question 2.5. précédente. Quelle est alors la dimension du \mathbb{C} -espace vectoriel des solutions de \mathscr{E}_P ?
- 2.7. **Un autre exemple :** Donner la forme générale des solutions de l'équation différentielle \mathscr{E}_{P_2} où $P_2 = X^7 3X^6 + 5X^5 7X^4 + 7X^3 5X^2 + 3X 1$, sachant que 1 est racine triple de P_2 .

Troisième partie Un résultat de finitude

Soit $f: \mathbb{R} \to \mathbb{C}$ une fonction dérivable; pour tout réel τ , on désigne par f_{τ} la fonction de \mathbb{R} dans \mathbb{C} définie par $f_{\tau}(x) = f(x+\tau)$, $x \in \mathbb{R}$; on note $E_f = \mathrm{Vect}(\{f_{\tau} \; ; \; \tau \in \mathbb{R}\})$ le sous espace vectoriel complexe de $\mathcal{F}(\mathbb{R}, \mathbb{C})$ engendré par les fonctions f_{τ} lorsque τ décrit \mathbb{R} .

On se propose dans cette partie de caractériser f pour que E_f soit de dimension finie. On suppose donc que E_f est de dimension finie $p \ge 1$ et on note $(\varphi_1, \ldots, \varphi_p)$ une base de E_f .

- 3.1. Pour $n \in \mathbb{N}^*$, on défini la fonction $g_n : \mathbb{R} \to \mathbb{C}$ par $g_n(x) = n(f(x + \frac{1}{n} + x) f(x)), x \in \mathbb{R}$.
 - 3.1.1. Vérifier que, pour tout $n \in \mathbb{N}^*$, la fonction $g_n \in E_f$ et justifier qu'il existe des com-

plexes
$$\alpha_{1,n}, \dots, \alpha_{p,n}$$
 tels que $g_n = \sum_{k=1}^p \alpha_{k,n} \varphi_k$ (1)

- 3.1.2. Montrer que la suite de fonctions $(g_n)_{n\geq 1}$ converge simplement sur \mathbb{R} vers f'.
- 3.2. Pour tout $k \in \{1, \dots, p\}$ et tout k-uplet (x_1, \dots, x_k) de réels, on note $\Delta_k(x_1, \dots, x_k)$ la matrice de $\mathcal{M}_k(\mathbb{R})$ "doit être dans $\mathcal{M}_k(\mathbb{C})$?" de terme général $\varphi_j(x_i)$, $(i,j) \in \{1, \dots, k\}^2$ (coefficient de la i-ième ligne et la j-ième colonne), et désigne par $\delta_k(x_1, \dots, x_k)$ le déterminant de la matrice $\Delta_k(x_1, \dots, x_k)$.

On cherche ici qu'il existe $(a_1, \ldots, a_p) \in \mathbb{R}^p$ tel que, pour tout $k \in \{1, \ldots, p\}$, $\delta_k(a_1, \ldots, a_k) \neq 0$. On va établir l'existence des a_k , $1 \leq k \leq p$, par récurrence.

On choisit donc $a_1 \in \mathbb{R}$, tel que $\varphi(a_1) \neq 0$, ce qui est possible puisque la fonction φ_1 n'est pas identiquement nulle.

- 3.2.1. Montrer que fonction $x \mapsto \delta_2(a_1, x)$ définie sur \mathbb{R} n'est pas identiquement nulle, puis en déduire l'existence de $a_2 \in \mathbb{R}$ tel que la matrice $\Delta_2(a_1, a_2)$ soit inversible.
- 3.2.2. Soit $1 \le k < p$; on suppose qu'on ait construit les a_i pour $1 \le i \le k$ et on cherche à construire a_{k+1} . Montrer que la fonction $x \mapsto \delta_{k+1}(a_1, \ldots, a_k, x)$, définie sur \mathbb{R} , n'est pas identiquement nulle puis conclure. on pourra raisonner par l'absurde et développer le déterminant par rapport à sa dernière ligne.
- 3.3. Dans la suite, on désigne par (a_1, \ldots, a_p) un p-uplet de nombres réels pour lequel la matrice $M = \Delta_p(a_1, \ldots, a_p)$ est inversible. On conserve les notations de la question 3.1.
 - 3.3.1. Pour $n \in \mathbb{N}^*$, on note Z_n le vecteur de $\mathcal{M}_{p,1}(\mathbb{C})$ de composantes $g_n(a_1), \ldots, g_n(a_p)$ et Y_n le vecteur de composantes $\alpha_{1,n}, \ldots, \alpha_{p,n}$. Vérifier que $Z_n = MY_n$.
 - 3.3.2. Montrer alors que la suite $(Y_n)_{n\geq 1}$ d'éléments de $\mathcal{M}_{p,1}(\mathbb{C})$ est convergente et exprimer sa limite à l'aide de la matrice m^{-1} et les complexes $f'(a_1),\ldots,f'(a_p)$, On notera Y cette limite et α_1,\ldots,α_p les composantes de Y.
 - 3.3.4. Déduire de ce qui précède que $f' \in E_f$. On pourra exploiter la relation (1) vu en 3.1.1.
- 3.4. Montrer plus généralement que si $h \in E_f$ alors h est dérivable et $h' \in E_f$, puis que déduire que E_f est un sous espace vectoriel de $\mathcal{C}^{\infty}(\mathbb{R},\mathbb{C})$ stable par \mathscr{D} , l'opérateur de dérivation sur $\mathcal{C}^{\infty}(\mathbb{R},\mathbb{C})$.

3.5. On note \mathcal{D} l'endomorphisme de E_f induit par l'opérateur \mathscr{D} et on désigne par P le polynôme caractéristique de \mathcal{D} . Montrer, en précisant le résultat utilisé, que la fonction f est solution de l'équation différentielle \mathscr{E}_P . En déduire une expression de f puis vérifier que ce type de fonction répond bien à la question.

www.aqalmoun.com