

Electrical Subsystem

Date:

06.05.2022

Agenda

INTRO

O1

KEY METRICS °

DEEP DIVES

03

FUTURE

 Δ

01

Jibebe

02

Tricycle

03

Tractor

JBBBE

Jibebe is a project formed as a collaboration between the Africa-Ai-JAPAN and Jomo Kenyatta University of Agriculture and Technology.

The project aims to deliver both a production-ready electric tricycle and the first fully autonomous electric tractor with self-tilling capabilites.

01

Tricycle

Tractor

JIBEBE AT A GLANCE

TRICYCLE

The electric tricycle was commissioned to be an alternative to the current human-powered mobility vehicles

It seeks to provide an easy and affordable mobility solution to disabled persons.

It was commissioned by the Association for the Physically Disabled of Kenya

AUTONOUSTRACTOR

The autonomous tractor was meant to be an improved electric version of the existing Shujaa Tractor.

It also adds features like being fully autonomous and having self-tilling capabilities

BIG CYCE

ELECTRICAL SYSTEM

Component Sizing

Sizing of both the motor to be used(BLDC) and sizing of the battery required to supply that motor.

This took into consideration both torque requirements and operation time requirements.

User experience

Design the systems which which the user interacts with the tricycle.
Starting and Stopping, security locks, speed display, battery display.
Reverse mode engagement and brake lights

PCB Design

Design of PCB to support all electrical functions e.g brake lights, buzzer, speed display

KEY METRICS

BLDC Motor Power

Battery Capacity

Top Speed

1.2KW

48V 24AH 16KM/H

Operating time

Max Carrying weight(Rider inclusive)

Charging time

3 HRS

150 KG

5 HRS

KEY METRICS

BLDC Motor Price

Battery Price

Throtlle Price

30,000

40,000

20,000

PCB & other components price

10,000

USER INTERACTION

The user is provided with a key for turning the system on or off.

They have a mounted hub for monitoring Speed, and Battery Percentage.

The hub also has provisions for engaging reverse mode.

They also have a charger for charging the battery. This plugs into standard outlets.

DEEP DIVES

01

Topic 1: PCB Design

02

Topic 2: Speed and Throttle Control

PGB DESIGN

What am I seeing?

The final PCB of the Jibebe Tricycle system.

It handles speed and throttle control, braking, power distribution, logic control.

JIBEBE PCB

SPEED AND THROTTLE CONTROL

What am I seeing?

The team managed to design an innovative constant acceleration linear speed system.

This allowed the tricycle to start and travel smoothly without uncomfortable jerking.

A paper on solving the same phenomenon is being written by the electrical team

BAGIOR

ELECTRICAL SYSTEM

Component Sizing

Sizing of both the motor to be used(BLDC/AC) and sizing of the battery required to supply that motor.

This took into consideration both torque requirements and operation time requirements.

User experience

Design the systems which which the user interacts with the tractor.
Starting and Stopping, security locks, speed display, battery display.
Reverse mode engagement and brake lights

PCB Design

Design of PCB to support all electrical functions e.g brake lights, buzzer, speed display

TRACTOR TIMELINE

PHASE I

Major Component sizing and scope of work

PHASE II

Function design and PCB design

PHASE III

Alpha testing

PHASE IV

Subsystem Integration and Product launch

OBSTACLES

Lack of availability of required components in the country thus eading to delays in meeting objectives.

ELECTRICTEAM

