Übungsblatt 03 Elias Gestrich

Aufgabe 3.1:

(a) $U_1,U_2\subset V_1=V_2$, und $U_1+U_2=V$ und $U_1\cap U_2=\emptyset$, also $V_1/U_1\cong U_2$ und $V_2/U_2\cong U_1$. Außerdem sind U_1 und U_2 Isomorph zueinander, da

$$T: U_1 \to U_2, (x,0)^t \mapsto (0,x)^t,$$

injektiv: $\forall (x,0)^t: T((x,0)^t) = (0,0) \implies x = 0 \implies (x,0)^t = 0$ und surjektiv: $\dim U_1 = 1 = \dim U_2$. (Also weil $\{(1,0)^t\}$ Basis von U_1 , usw.) D.h. $V_1/U_1 \cong U_2 \cong U_1 \cong V_2/U_1$?

(b) $\{u_{11} := (1, -1, 0, 2)^t, u_{12} := (0, 1, 1, 1)^t\}$ ist eine Basis von U_1 , da

$$\forall u \in U_1 : \exists a, b \in \mathbb{Q} : u = (a, -a + b, b, 2a + b)^t = au_{11} + bu_{12} \text{ und}$$

$$\forall u \in \text{span} \{u_{11}, u_{12}\} : \exists a, b \in Q : u = au_{11} + bu_{12} = (a, -a + b, b, 2a + b)^t \in U_1.$$

Außerdem ist $\{u_{11}, u_{12}, u_{13} \coloneqq (0, 0, 1, 0)^t, u_{14} \coloneqq (0, 0, 0, 1)^t\}$ eine Basis von \mathbb{Q}^4 , da:

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 2 & 1 & 0 & 1 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Also invertierbar, also linear unabhängig und erzeugend. Sei

$$T: \mathbb{Q}^4 \to \mathbb{Q}^2, \begin{cases} u_{11} \mapsto 0, \\ u_{12} \mapsto 0, \\ u_{13} \mapsto (1,0)^t \text{ und } \\ u_{14} \mapsto (0,1)^t. \end{cases}$$

Dann ist $\ker T = \text{span}\{u_{11}, u_{12}\} = U_1 \text{ und } R_T = \text{span}\{(1,0)^t, (0,1)^t\} = \mathbb{Q}^2 \text{ Also ist } V_1/U_1 = V_1/\ker T \cong R_T = \mathbb{Q}^2.$

$$V_1/\{0\} = \mathbb{Q}^2/\ker\operatorname{Id} \cong R_{\operatorname{Id}} = \mathbb{Q}^2$$
. Also ist $V_1/U_1 \cong V_2/U_2$

Aufgabe 3.2:

Sei $\{w_1, \ldots, w_m\}$ geordnete Basis von W und $\{w_1, \ldots, w_m, w_{m+1}, \ldots, w_n\}$ eine geordnete Basis von V. Sodass $\{f_1, \ldots, f_m\}$ Dualbasis von W^* und $\{f_1, \ldots, f_m, f_{m+1}, \ldots, f_n\}$ Dualbasis von V^* .

(a) Zu zeigen, $\forall f,g \in V^*, c \in K: \rho(f+cg) = \rho(f) + c\rho(g),$ dafür: $\forall x \in W:$

$$\rho(f+cg)(x) = (f+cg)|_{W}(x)$$

$$= (f+cg)(x)$$

$$\stackrel{\text{L. von } V^*}{=} f(x) + cg(x)$$

(b) Beh.: $\ker \rho = \text{span}(\{f_{m+1}, \dots, f_n\}), R_{\rho} = W^*$

Zu zeigen $\forall f \in V^* : \rho(f) = 0 \iff f \in \text{span}(\{f_{m+1}, \dots, f_n\}): \text{ Sei } f \in V^* \text{ gegeben mit } \rho(f) = 0,$ zu zeigen $f \in \text{span}(\{f_{m+1}, \dots, f_n\}).$

 $\rho(f) \implies f|_W = 0 \implies \forall w \in W : f|_W = 0.$ Beweis durch Widerspruch, sei $f \notin \text{span}(\{f_{m+1},\ldots,f_n\})$, also $f \coloneqq \sum_{i=1}^n a_i f_i$ mit $a_i \in K$ und $\exists i \in \mathbb{N} : 1 \le i \le m : a_i \ne 0$, D.h. aber, dass für ein solches i gilt $f|_W(w_i) = a_i \ne 0$. Also war die Annahme falsch und $f|_W$ muss in $\text{span}(\{f_{m+1},\ldots,f_n\})$ liegen.

Sei $f \in \text{span}(\{f_{m+1},\ldots,f_n\})$ gegeben, sodass $\exists a_{m+1},\ldots,a_n: f=\sum_{i=m+1}^n a_i f_i$, dann folgt bereits für alle $w \in W$, für die b_1,\ldots,b_m existieren mit $w=\sum_{i=1}^m b_i w_i$:

$$\rho(f)(w) = f|_{W}(w)$$

$$= \left(\sum_{i=m+1}^{n} a_{i} f_{i}\right)(w)$$

$$\stackrel{\text{Linearität}}{=} \sum_{i=m+1}^{n} a_{i} f_{i}(w)$$

$$= \sum_{i=m+1}^{n} a_{i} f_{i}\left(\sum_{j=1}^{m} b_{j} w_{j}\right)$$

$$= \sum_{i=m+1}^{n} \sum_{j=1}^{m} a_{i} b_{j} \underbrace{f_{i}(w_{j})}_{j < i}$$

$$= 0$$

Also $f \in \ker \rho$

Für $R_{\rho} = W^*$: $R_{\rho} \subset W^*$ trivial.

 $W^* \subset R_{\rho}$: Sei $f|_W \in W^*$ gegeben, zu zeigen $f|_W \in R_{\rho}$, also zu zeigen, $\exists g \in V^* : \rho(g) = f|_W$, Wähle g := f, dann gilt: $\rho(g) = \rho(f) = f|_W$

(c) Beh.: $\mathcal{B} := \{f_1 + \ker \rho, \dots, f_m + \ker \rho\}$ ist eine Basis für $V^*/\ker \rho$, dafür span $(\mathcal{B}) \subset V^*/\ker \rho$ trivial und dim span $(\mathcal{B}) = m = n - (n - m) = \dim V^* - \dim \ker \rho$. Nach (b) ist $R_{\rho} = W^*$. Definiere

$$T: V^*/\ker \rho \to R_\rho$$

Wobei für $\alpha \in V^*/\ker \rho$, mit $\exists a_1, \ldots, a_m \in K : \alpha = \sum_{i=1}^m a_i f_i + \ker \rho$ gilt, $T(\alpha) = \sum_{i=1}^m a_i f_i$. Zu zeigen: $\forall \alpha \in V^*/\ker \rho = 0 \implies \alpha = 0$ und dim $R_T = \dim R_\rho$. Sei $\alpha \in V^*/\ker \rho$ gegeben mit $T(\alpha) = 0$, dann existieren $a_1, \ldots, a_m \in K : \alpha = \sum_{i=1}^m a_i f_i + \ker \rho$ sodass gilt:

$$T(\alpha) = 0$$
 $\iff \sum_{i=1}^{m} a_i f_i = 0 \quad | \text{ Da } f_i \text{ l.u.}$
 $\iff a_1, \dots, a_m = 0$
 $\iff \sum_{i=1}^{m} 0 \cdot f_i + \ker \rho = \alpha$
 $\iff \alpha = 0$

Zu den Dimensionen: $\dim R_T \stackrel{\text{L.A.I Dimensionssatz}}{=} \dim V^* / \ker \rho - \dim \ker T = |\mathcal{B}| - 0 = m = \dim W = \dim W^* = R_{\rho}$

Also ist T ein Isomorphismus von $V^*/\ker \rho$ nach R_{ρ} .

Aufgabe 3.3:

 $\dim U - \dim(U \cap W) = \dim U - (\dim U + \dim W - \dim U + W) = \dim(U + W) - \dim W.$ Sei $\mathcal{B}_1 := \{\alpha_1, \dots, \alpha_l\}$ eine Basis für $U \cap W$, $\mathcal{B}_U := \{\alpha_1, \dots, \alpha_l, \beta_1, \dots, \beta_m\}$ eine geordnete Basis für U und $\mathcal{B}_W := \{\alpha_1, \dots, \alpha_l, \gamma_1, \dots, \gamma_n\}$ eine Basis für W. Sei

$$T_1:U\to U\setminus W$$

Wobei $T_1(\alpha_i) = 0$ für $1 \le i \le l$ und $T_1(\beta_i) = \beta_i$ $\forall 1 \le i \le m$. dann $\ker T_1 = \{\alpha_1, \dots, \alpha_l\} = U \cap W$, und da $\beta_i \in U \setminus W$ für alle $1 \le i \le m$ und $\dim R_{T_1} = \dim U - \dim \ker T_1 = l + m - l = m = \dim U \setminus W$, also T_1 ein Isomorphismus und $T_1 = U \setminus W$ also $T_1 = U \setminus W$. Sei

$$T_2: U+W \to U \setminus W$$
,

wobei $T_2(\beta_i) \to \beta_i$ mit $1 \le i \le m$ und $T_2(\alpha_i) = 0 = T_2(\gamma_j)$ für $1 \le i \le l, 1 \le j \le n$. Dann gilt ker $T_2 = \{\alpha_1, \dots, \alpha_l, \gamma_1, \dots, \gamma_n\} = W$ und $R_{T_2} = \{\beta_1, \dots, \beta_m\} = U \setminus W$, also

$$(U+W)/W = (U+W)/\ker T_2 \simeq R_{T_2} = W = R_{T_1} \simeq U/\ker T_1 = U/(U\cap W)$$

Aufgabe 3.4:

(a) Beweis durch Vollständige Induktion:

I.A.:
$$k = 0$$
: $x^k = x^0 = (\underbrace{1}_{0\text{-te Stelle}}, 0, \dots)$. Wie gewünscht.

I.S.: I.V.:
$$x^k = (0, \dots, 0, \underbrace{1}_{k\text{-te Stelle}}, 0, \dots).$$

$$k \curvearrowright k+1,$$

zu zeigen
$$x^{k+1}=(0,\ldots,0,\underbrace{0}_{k\text{-te Stelle}},\underbrace{1}_{(k+1)\text{-te Stelle}},0,\ldots),$$
 Also zu zeigen $(x^{k+1})_{i\text{-te Stelle}}=(x^{k+1})_i=\begin{cases} 1, & i=k+1\\ 0, & \text{sonst} \end{cases}=\delta_{i,k+1},$ während $(x)_i=\delta_{i,1},(x^k)_i=\delta_{i,k}$ gilt
$$(x^{k+1})_i=(x\cdot x^k)_i=(\underbrace{\sum_{j=0}^i(x)_j(x^k)_{i-j}}_{j=0})$$

$$=\sum_{j=0}^i\delta_{j,1}\delta_{i-j,k}$$

$$=\delta_{i-1,k}$$

(b) Zu zeigen: $\forall f, g, h \in K^{\mathbb{N}_0}$: $f \cdot (g+h) = f \cdot g + f \cdot h$: Sei $f, g, h \in K^{\mathbb{N}_0}$, mit $f = (f_0, f_1, \dots), g = (g_0, \dots), h = (h_0, \dots)$. Zu zeigen $(f \cdot (g+h))_i = (f \cdot g + f \cdot h)_i \quad \forall i \in \mathbb{N}_0$

$$(f \cdot (g+h))_{i} = \sum_{j=0}^{i} f_{j} \cdot (g+h)_{i-j}$$

$$= \sum_{j=0}^{i} f_{j} \cdot (g_{i-j} + h_{i-j})$$

$$= \sum_{j=0}^{i} f_{j} \cdot g_{i-j} + f_{j} \cdot h_{i-j}$$

$$= \sum_{j=0}^{i} f_{j} \cdot g_{i-j} + \sum_{j=0}^{i} f_{j} \cdot h_{i-j}$$

$$= (f \cdot g)_{i} + (f \cdot h)_{i}$$

$$= (f \cdot g + f \cdot h)_{i}$$

 $=\delta_{i,k+1}$

Sei $c \in K$, zu zeigen: c(fg) = (cf)g:

$$(c(fg))_i = c(fg)_i$$

$$= c \sum_{j=0}^i f_j g_{i-j}$$

$$= \sum_{j=0}^i c f_j g_{i-j}$$

$$= \sum_{j=0}^i (cf)_j g_{i-j}$$

$$= ((cf)g)_i$$

(c) Sei $f,g\in K[x]$ mit $f+g\neq 0$, und $f=\sum_{j=0}^n a_jx^j,g=\sum_{j=0}^m b_jx^j$. Zu zeigen $\deg(f+g)\leq \max\left\{\deg f,\deg g\right\}$: Œ $n\geq m$, sei $b_{m+1},\ldots,b_n=0$

$$f + g = \sum_{j=0}^{n} a_j x^j + \sum_{j=0}^{m} b_j x^j$$
$$= \sum_{j=0}^{n} (a_j + b_j) x^j$$

Also ist $\deg(f+g) < n = \max\{n, m\} = \{\deg f, \deg g\}$, für m = n und $a_j + b_j = 0 \iff a_j = -b_j$, aber existiert, da $f + g \neq 0 \iff \deg(f + g) \geq 0$ und sonst $\deg(f + g) = n = \max\{n, m\} = \max\{\deg f, \deg g\}$.

(d) Sei $f, g \in K[x]$ mit $f = \sum_{j=0}^{n} a_j x^j, g = \sum_{j=0}^{m} b_j x^j$, und $\deg f \neq \deg g \iff n \neq m$ Zu zeigen $\deg(f+g) = \max\{\deg f, \deg g\}$: Œ n > m, sei $b_{m+1}, \ldots, b_n = 0$

$$f + g = \sum_{j=0}^{n} a_j x^j + \sum_{j=0}^{m} b_j x^j$$
$$= \sum_{j=0}^{m} (a_j + b_j) x^j + \sum_{j=m+1}^{n} a_j x^j$$

Also ist $\deg(f+g) = n = \max\{n, m\} = \max\{\deg f, \deg g\}.$

Sorry, war ein bisschen frustriert, deswegen ist es leider nicht so schön strukturiert :c