Lógica. Clase práctica 1

- 1. Diga si son verdaderas o falsas las siguientes proposiciones. Justifique su respuesta.
 - a) $\emptyset \subseteq \{\emptyset\}$
 - b) $\emptyset \in \{\emptyset\}$
 - c) $\emptyset \in \emptyset$
 - d) $\emptyset \subseteq \emptyset$
 - e) $\emptyset \in 2^A \emptyset$
 - f) $\emptyset \subseteq 2^A \emptyset$
 - g) $\emptyset \in 2^A \{\emptyset\}$
 - h) $\emptyset \subseteq 2^A \{\emptyset\}$
- 2. Sea el universo $U=\{1,2,3,4\}$ y sean los conjuntos $A=\{1,2,3\}$ y $B=\{1,2\}$. Diga si son verdaderos o falsos los siguientes enunciados. Justifique su respuesta.
 - a) $B \subseteq A$
 - b) $2 \in A \cap B$
 - c) $B \subseteq \{A\}$
 - d) $A \subseteq B$
 - e) $(B \cap A)^c \subset A B$
- 3. Sean A y B conjuntos definidos sobre el universo U. Demuestre para cada uno de los incisos siguientes que si al menos uno de los enunciados es verdadero también son verdaderos los restantes.
 - a) $A \subseteq B, B^c \subseteq A^c, A \cup B = B, A \cap B = A$
 - b) $A \cup B = U, A^c \subseteq B, B^c \subseteq A$
 - c) $A \cap B = \emptyset, A \subseteq B^c, B \subseteq A^c$
- 4. Establezca si son verdaderos o falsos los enunciados a continuación. Justifique su respuesta.
 - a) $\emptyset \cap \{\emptyset\} = \emptyset$
 - b) $\{\emptyset\} \cap \{\emptyset\} = \emptyset$
 - c) $\{\emptyset, \{\emptyset\}\} \{\{\emptyset\}\} = \emptyset$
 - $\mathrm{d})\ \{\emptyset\} \emptyset = \emptyset$
 - e) $\{\emptyset, \{\emptyset\}\} \{\emptyset\} = \{\{\emptyset\}\}\$

- 5. Complete los incisos siguientes escribiendo \in o \subseteq según sea el caso.
 - a) $2_{\{1,2,3\}}$
 - b) $\{2\}_{\{1,2,3\}}$
 - c) {2}_{{1},{2},{3}}
 - d) $\emptyset_{\{1,2,3\}}$
 - e) N_Z
 - f) $\{2\}$ _ \mathbb{Z}
 - g) $\{2\}_{2}^{\mathbb{Z}}$
- 6. Demuestre los siguientes enunciados.
 - a) $(A \cup B^c)^c = A^c \cap B$
 - b) $((A \cup B)^c) \cup C)^c = (A \cup B) \cap C^c$
 - c) $((A \cup B)^c) \cup A)^c = B \cap A^c$
 - d) $((A \cup B)) \cup (A \cap B)^c = U$
 - e) $A \cap ((B \cap A) \cup B \cup (B^c \cap A)) = A$
 - f) $((A \cup B) \cap C) \cup A^c \cup B^c = A^c \cup B^c \cup C$
 - g) $A \cap (A B^c) \subseteq B$
 - h) $(A \cup B) \cap ((A \cup B) \cap (A \cap B)^c)^c = A \cap B$
- 7. Demuestre que:
 - a) $A \nsubseteq B$ si y solo si $A B \neq \emptyset$
 - b) Si $U \subseteq B$ entonces B = U
 - c) Si $A^c \subseteq B \cap B^c$ entonces A = U
 - d) Si $A^c \subseteq A$ entonces A = U
 - e) Si $B \subseteq C$ y $A^c \subseteq B \cap C^c$ entonces A = U
- 8. Sean A y B dos conjuntos demuestre que $(A-B) \cup (B-A) = \emptyset$ si y solo si A=B.
- 9. Sean B y C dos conjuntos cualesquiera. Demuestre que si para todo conjunto X se cumple que $X \cap B = X \cap C$ entonces B = C.