Syntaks og semantik

Lektion 9

15 marts 2007

Semantik

- Syntaks vs. semantik
 - Forskellige tilgange til semantik
- 3 Anvendelser

Syntaks: Læren om sprogs form

- hvordan ser et lovligt program ud?
- beskriv byggesten (alfabet) og hvordan de kan sættes sammen (grammatik, automat etc.)

Semantik: Læren om sprogs betydning

- hvordan opfører et givet program sig?
- beskriv betydningen af byggesten og hvordan betydningen af sammensætninger af byggesten fås ud fra de enkelte betydninger

- denotationel semantik
 - beskriv et programs betydning som funktion fra input til output
 - Hvad laver det her program?
- operationel semantik
 - beskriv et programs betydning som transitionssystem
 - Hvordan udføres det her program?
- aksiomatisk semantik
 - beskriv et program ved præ- og post-betingelser
 - Hvilke egenskaber har det her program?
- (algebraisk semantik: variant af aksiomatisk semantik)

- præcis beskrivelse af programmeringssprog
 - "rettesnor" til implementation
- automatisk generering af compilere og fortolkere
- automatisk verifikation af programmer
 - det kan være dyrt at finde fejl i et program ved aftestning
 - ⇒ heller finde fejl før

Transitionssystemer Aud: big-step Derivationstræer Aud: small-step Egenskaber Bud: big-step

Operationel semantik

Bims

- 4 Abstrakt syntaks for **Bims**
- Transitionssystemer
- Big-step-semantik for aritmetiske udtryk (uden variable)
- Derivationstræer
- 8 Small-step-semantik for aritmetiske udtryk (uden variable)
- Egenskaber
- 10 Big-step-semantik for boolske udtryk (uden variable)

 $n \in Num - Numeraler$

 $x \in Var - Variable$

a ∈ Aud – Aritmetiske udtryk

b ∈ Bud - Boolske udtryk

 $S \in Kom - Kommandoer$

$$S ::= x := a \mid ext{skip} \mid S_1; S_2 \mid ext{if } b ext{ then } S_1 ext{ else } S_2 \mid ext{while } b ext{ do } S$$

$$b ::= a_1 = a_2 \mid a_1 < a_2 \mid \neg b_1 \mid b_1 \wedge b_2 \mid (b_1)$$

$$a ::= n | x | a_1 + a_2 | a_1 * a_2 | a_1 - a_2 | (a_1)$$

basiselementer

sammensatte elementer

umiddelbare bestanddele

- Γ : en mængde af konfigurationer (eller tilstande)
- **3** $T \subseteq \Gamma$: mængden af slut-konfigurationer
- en orienteret graf

Det forudsættes desuden at slutkonfigurationerne er terminale, dvs. ikke har nogen udgående transitioner: for ethvert $\gamma \in T$ findes der ingen $\gamma' \in \Gamma$ med $\gamma \to \gamma'$.

Operationel semantik = at oversætte et *program* til et *transitionssystem*:

- konfigurationer = programtilstande
- transitioner = programskridt

Eksempel: En operationel semantik for *endelige automater*:

Givet en NFA $M = (Q, \Sigma, \delta, q_0, F)$:

- konfigurationer: tilstand i Q plus tilbageværende del af inputstrengen
 dvs. Γ = Q × Σ* (uendeligt mange konfigurationer!)
- slutkonfigurationer: sluttilstand i F plus tom streng dvs. T = {(q, ε) | q ∈ F}
- transitioner: at læse et tegn (eller ε) og gå i en anden tilstand dvs. $(q, aw) \rightarrow (q', w)$ hver gang $q' \in \delta(q, a)$, og for alle $w \in \Sigma^*$

M accepterer en streng *w* hvis og kun hvis der findes $\gamma \in T$ således at $(q_0, w) \stackrel{*}{\to} \gamma$.

Eksempel: En operationel semantik for kontekstfrie grammatikker:

Givet en CFG $G = (V, \Sigma, R, S)$:

- konfigurationer: strenge af variable og terminaler: $\Gamma = (V \cup \Sigma)^*$
- slutkonfigurationer: strenge af terminaler: $T = \Sigma^*$
- transitioner: derivationsskridt! $uAv \Rightarrow uwv$ hvis $A \rightarrow w$ er i R

G genererer en streng $w \in T$ hvis og kun hvis $S \stackrel{*}{\Rightarrow} w$.

Definition 3.11: Lad $(\Gamma, \Longrightarrow, T)$ være et transitionssystem. Transitionsaflukningen i k skridt $\stackrel{k}{\Longrightarrow}$ er defineret induktivt ved

$$\gamma \stackrel{0}{\Longrightarrow} \gamma$$
 for alle γ
 $\gamma \stackrel{n+1}{\Longrightarrow} \gamma'$ hvis der findes γ'' for hvilket $\gamma \Longrightarrow \gamma'' \stackrel{n}{\Longrightarrow} \gamma'$

Vi skriver $\gamma \stackrel{*}{\Longrightarrow} \gamma'$ hvis der findes et k så $\gamma \stackrel{k}{\Longrightarrow} \gamma'$.

- dvs. $\gamma \stackrel{k}{\Longrightarrow} \gamma'$ hvis der findes en *transitionsfølge* $\gamma \Longrightarrow \gamma_1 \Longrightarrow \gamma_2 \Longrightarrow \ldots \Longrightarrow \gamma_{k-1} \Longrightarrow \gamma'$
- vi har allerede brugt aflukningen ⇒ adskillige gange!

Aud:
$$a ::= n | a_1 + a_2 | a_1 * a_2 | a_1 - a_2 | (a_1)$$

hvor *n* er et numeral (talord) (en streng!), ikke et tal

- numeraler skrives 42, tal skrives 42
- værdien af 42 er 42
- vi har en *semantisk funktion* $\mathcal{N}: \mathbf{Num} \to \mathbb{Z}$ som giver værdien af en numeral

Big-step-semantik: udtryk evalueres i ét hug

- transitioner fra udtryk til værdier
- f.x. en transition $(2+4) \star (6+1) \rightarrow 42$

$$\frac{a_1 \to v_1}{a_1 + a_2 \to v_2}$$
 hvor $v = v_1 + v_2$

$$[\mathsf{minus}_\mathsf{bss}] \quad \frac{a_1 \to v_1 \quad a_2 \to v_2}{a_1 - a_2 \to v} \qquad \mathsf{hvor} \ v = v_1 - v_2$$

[mult_{bss}]
$$\frac{a_1 \rightarrow v_1}{a_1 \rightarrow v_2} = \frac{a_2 \rightarrow v_2}{a_1 \rightarrow v_2}$$
 hvor $v = v_1 \cdot v_2$

$$[\mathsf{parent}_\mathsf{bss}] \qquad \qquad \frac{a_1 \to \mathit{V}_1}{(a_1) \to \mathit{V}_1}$$

[num_{bss}]
$$n \rightarrow v$$
 hvis $\mathcal{N}[n] = v$

[num_{bss}]

Bims

hvor
$$v = v_1 - v_2$$

sidebetingelse

aksiom (transitionsregel uden præmis)
$$n \to v \quad \text{hvis} \quad \mathcal{N}[\![n]\!] = v$$

[plus_{bss}]

[mult_{bss}]

[num_{bss}]

Bims

hvor $v = v_1 + v_2$

[minus_{bss}]
$$\frac{a_1 \rightarrow v_1 \quad a_2 \rightarrow v_2}{a_1 - a_2 \rightarrow v}$$

$$a_2 o v_2$$
 hvor $v = v_1 - v_2$

$$[parent_{hss}] \qquad \frac{a_1 \rightarrow v_1}{(a_1) \rightarrow v_1}$$

$$\frac{\frac{\omega_2}{2} \to v}{} \to v \qquad \text{hvor } v = v_1 \cdot v_2$$

$$\overline{(a_1)
ightarrow v_1}$$
 $n
ightarrow v$ hvis $\mathcal{N}\llbracket n
rbracket = v$

Transitions systemet (Γ, \rightarrow, T) :

- $\Gamma = \text{Aud} \cup \mathbb{Z}$. $T = \mathbb{Z}$
- består af præcis de transitioner som kan udledes af aksiomerne ved brug af et endeligt antal transitionsregler

$$(\underline{2} + \underline{4}) \star (\underline{6} + \underline{1}) \rightarrow ?$$

$$(2+4) \rightarrow ?$$

$$(\underline{6} + \underline{1}) \rightarrow ?$$

$$(\underline{2} + \underline{4}) \star (\underline{6} + \underline{1}) \rightarrow ?$$

At konstruere et derivationstræ for udtrykket $(\underline{2} + \underline{4}) \star (\underline{6} + \underline{1})$:

$$(\underline{2} + \underline{4}) \rightarrow ?$$

$$(\underline{6} + \underline{1}) \rightarrow ?$$

$$(\underline{2} + \underline{4}) \star (\underline{6} + \underline{1}) \rightarrow ?$$

At konstruere et derivationstræ for udtrykket (2+4) * (6+1):

$$\underline{2} \rightarrow \underline{2} \qquad \underline{4} \rightarrow \underline{4} \qquad \qquad \underline{6} \rightarrow \underline{6} \qquad \underline{1} \rightarrow \underline{1}$$

$$\underline{6} \rightarrow \underline{6} \qquad \underline{1} \rightarrow \underline{7}$$

$$\underline{2} + \underline{4} \rightarrow \underline{6}$$

$$\underline{6} + \underline{1} \rightarrow \overline{7}$$

$$(\underline{2} + \underline{4}) \rightarrow 6$$

$$(\underline{6} + \underline{1}) \rightarrow 7$$

$$(\underline{2}+\underline{4}) * (\underline{6}+\underline{1}) \rightarrow 42$$

At konstruere et derivationstræ for udtrykket $(\underline{2} + \underline{4}) \star (\underline{6} + \underline{1})$:

derivationstræer:

- aksiomer i bladene
- knude k har sønner p_1, p_2, \dots, p_n hvis og kun hvis der er en transitionsregel p_1, p_2, \dots, p_n

Small-step-semantik: udtryk evalueres et skridt ad gangen

- transitioner fra udtryk til udtryk og fra udtryk til værdier
- f.x.

$$(\underline{2} + \underline{4}) * (\underline{6} + \underline{1}) \Rightarrow (2 + \underline{4}) * (\underline{6} + \underline{1})$$
$$\Rightarrow (2 + 4) * (\underline{6} + \underline{1})$$
$$\Rightarrow (6) * (\underline{6} + \underline{1})$$

- transitions system (Γ, \Rightarrow, T) :
 - ullet $\Gamma = \mathsf{Aud}' \cup \mathbb{Z}, \ T = \mathbb{Z}$
 - ⇒ defineret ved transitionsregler (coming up!)

Aritmetiske udtryk uden variable, men med værdier:

Aud':
$$a ::= n | v | a_1 + a_2 | a_1 * a_2 | a_1 - a_2 | (a_1)$$

hvor $n \in \mathbf{Num}$ er et numeral og $v \in \mathbb{Z}$ en værdi

$$\begin{array}{l} [\text{plus-1}_{\text{SSS}}] & \frac{a_1 \Rightarrow a_1'}{a_1 + a_2 \Rightarrow a_1' + a_2} \\ [\text{plus-2}_{\text{SSS}}] & \frac{a_2 \Rightarrow a_2'}{a_1 + a_2 \Rightarrow a_1 + a_2'} \\ [\text{plus-3}_{\text{SSS}}] & v_1 + v_2 \Rightarrow v \text{ hvor } v = v_1 + v_2 \\ [\text{mult-1}_{\text{SSS}}] & \frac{a_1 \Rightarrow a_1'}{a_1 * a_2 \Rightarrow a_1' * a_2'} \\ [\text{mult-2}_{\text{SSS}}] & \frac{a_2 \Rightarrow a_2'}{a_1 * a_2 \Rightarrow a_1 * a_2'} \\ \end{array}$$

[mult-3_{sss}] $v_1 * v_2 \Rightarrow v$ hvor $v = v_1 \cdot v_2$

[num_{sss}]

 $n \Rightarrow v$ hvis $\mathcal{N}[n] = v$

$$\begin{array}{l} [\mathsf{sub-1}_{\mathsf{sss}}] & \frac{a_1 \Rightarrow a_1'}{a_1 - a_2 \Rightarrow a_1' - a_2} \\ [\mathsf{sub-2}_{\mathsf{sss}}] & \frac{a_2 \Rightarrow a_2'}{a_1 - a_2 \Rightarrow a_1 - a_2'} \\ [\mathsf{sub-3}_{\mathsf{sss}}] & v_1 - v_2 \Rightarrow v \quad \mathsf{hvor} \quad v = v_1 - v_2 \\ [\mathsf{parent-1}_{\mathsf{sss}}] & \frac{a_1 \Rightarrow a_1'}{(a_1) \Rightarrow (a_1')} \\ [\mathsf{parent-2}_{\mathsf{sss}}] & (v) \Rightarrow v \end{array}$$

Sætning: Vores big-step- og small-step-semantikker for **Aud** er ækvivalente: Givet $a \in \text{Aud}$ og $v \in \mathbb{Z}$, da har vi $a \to v$ hvis og kun hvis $a \stackrel{*}{\Rightarrow} v$. (Bevis næste gang)

Definition: En operationel semantik givet ved et transitionssystem (Γ, \to, T) kaldes deterministisk hvis $\gamma \to \gamma_1$ og $\gamma \to \gamma_2$ medfører $\gamma_1 = \gamma_2$ for alle $\gamma \in \Gamma$ og $\gamma_1, \gamma_2 \in T$ (!). Semantikken kaldes deterministisk på lang sigt hvis $\gamma \stackrel{*}{\to} \gamma_1$ og $\gamma \stackrel{*}{\to} \gamma_2$ medfører $\gamma_1 = \gamma_2$ for alle $\gamma \in \Gamma$ og $\gamma_1, \gamma_2 \in T$.

Sætning 3.13 / 3.15 : Vores big-step-semantik for **Aud** er deterministisk. Vores small-step-semantik for **Aud** er deterministisk på lang sigt. (Bevises senere)

Opgave π : Vores small-step-semantik for **Aud** er *ikke* deterministisk. Lav den om så den er!

[størreend-2_{hss}]

Bims

hvis $v_1 \not< v_2$

Boolske udtryk uden variable:

Bud:
$$b ::= a_1 = a_2 \mid a_1 < a_2 \mid \neg b_1 \mid b_1 \land b_2 \mid (b_1)$$

- transitions system (**Bud** \cup {tt, ff}, \rightarrow_b , {tt, ff})
- tt = sandt, ff = falsk
- $\bullet \rightarrow_a$ er transitioner fra **Aud**-transitionssystemet

$$\frac{b \to_b tt}{\neg b \to_b ff}$$

$$\frac{b \to_b ff}{\neg b \to_b tt}$$

$$b_1 \rightarrow_b tt \quad b_2 \rightarrow_b tt$$

 $\frac{b_1 \to_b v}{(b_1) \to_b v}$

 $[og-1_{bss}]$

$$b_1 \wedge b_2 \rightarrow_b tt$$

$$b_1 \rightarrow_b ff$$

$$b_1 \wedge b_2 \rightarrow_b ff$$
 $b_2 \rightarrow_b ff$

$$\frac{b_2 \rightarrow_b ff}{b_1 \wedge b_2 \rightarrow_b ff}$$