Redes 2

Internet - Continuação

- A Internet e o Protocolo IP
 - o O protocolo IP é o protocolo da camada de rede da Internet
 - A principal funcionalidade dessa camada é o roteamento
 - Na Internet o encaminhamento dos pacotes é feito pelo protocolo IP
 - Mas o roteamento envolve outros protocolos ditos de roteamento BGP, OSPF, RIP, etc.
 - Para ser mais preciso: encaminhamento de datagramas
 - O IP é um protocolo não confiável, tendo em vista que você pode transmitir e não sabe se ele chegou ou não
 - Cada roteamento de pacote é feito individualmente, portanto: pacotes diferentes podem inclusive seguir caminhos diferentes
 - Resultado: pacotes podem chegar fora de ordem ao destino
- Arquitetura da Internet
 - A Internet moveu a confiabilidade da comunicação para as pontas
 - Na ponta os hosts verificam se pacotes foram perdidos, duplicados, estão fora de ordem, etc.
 - TCP é um protocolo confiável e orientado a conexão, que faz essa verificação
 - O termo "datagrama" é usado para o pacote dos protocolos não-confiáveis, não orientados à conexão
 - No contexto da Internet usado para o IP e também para o UDP
- Roteamento com o protocolo IP
 - Como é o protocolo da rede da Internet, o IP é responsável pelo roteamento de pacotes de qualquer origem para qualquer destino
 - O endereço de destino é usado para tomar decisões de roteamento e cada pacote roteado de forma independente
 - Dessa forma, não há um circuito (nem virtual) entre origem e destino no nível IP
 - Existem 3 possíveis roteamentos
 - Origem = Destino (Tipo 1 Direto)
 - Mesmo NET_ID, mesmo HOST_ID ou endereço de loopback(127.0.0.1)
 - O pacote não chega na placa de rede quando a comunicação é entre processos locais

- Na mesma rede física (Tipo 2 Direto)
 - Mesmo NET_ID, mas HOST_ID diferentes
 - Ocorre sobre um enlace físico apenas
 - O IP chama o ARP para obter o endereço físico correspondente e comunica usando o protocolo de enlace disponível

- NET_ID origem != NET_ID destino (Tipo 3 Indireto)
 - Máquinas em redes físicas diferentes
 - Cada pacote passa por pelo menos um roteador

Roteadores

- Os protocolos de roteamento preenchem a tabela com informações frescas/válidas
- Obs: o IP apenas usa a tabela de roteamento

TABELA DE ROTEAMENTO ou TABELA IP

Net-id Destino	Prox-Passo
net-id-A	R1
net-id-X	R3
Nenhum acima	Rdefault

- Default é utilizado quando o NET ID não é encontrado na tabela
- Host: máquina conectada (em geral) a uma rede
- o Roteador: máquina que conecta duas ou mais redes
- Cada roteador toma decisões baseadas na tabela local e independente das decisões dos demais roteadores
- Dessa forma, loops podem ocorrer
- As rotas de uma máquina A para máquina B, não são necessariamente iguais as rotas da máquina B para a máquina A
- Manipulação de endereços IP
 - Muitas vezes é necessário alterar a forma de como o endereço IP é processado
 - No original:

Classe A = 127 Redes com até 16.777.216 Hosts

Classe B = 16K Redes com até 65534 Hosts

Classe C = 2M Redes com até 254 Hosts

- Estratégias
 - 1. Proxy ARP (Pouco usada)
 - 2. Subredes
 - 3. CIDR
- Proxy ARP
 - O ARP é usado antes de toda comunicação em um enlace, isto é, em uma rede local física
 - Uma proxy é um intermediário

- Ao invés de comunicar com o destino, a origem se comunica com a proxy
- A proxy pode então comunicar com o destino, ou pode já tê-lo feito: já tem o que a origem precisa

- Vários usos: cache da Web, cache de streaming, reforço de segurança, até proxy de roteamento, etc.
- A Proxy ARP é usada para permitir que 2 redes físicas tenham o mesmo NET-ID
- Quando a máquina de uma das redes quer comunicar com outra máquina da outra rede, a Proxy ARP responde com seu próprio endereço

- A Proxy ARP efetivamente recebe e encaminha todos os quadros de uma rede para outra e da outra para a uma
- Mantém uma tabela completa com todos os endereços em ambas as redes
- Solução na camada de enlace

Subredes

- Com o mesmo problema, de 2 redes físicas em uma organização
- A solução é: usar roteadores para controlar as redes internas (subredes) de forma transparente para o restante da internet
- Como identificar as subredes? "Emprestar" bits do HOST_ID para marcar as redes internas conforme a necessidade
- Para definir quais bits são usados para Host e Rede, usamos uma máscara de subrede
- Máscara: mesmo número de bits do endereço (32 bits)
- Se o bit da máscara = 1 -> bit endereço é da rede/subrede
 Senão, o bit é do host
- Solução na camada de rede
- Subredes permitem administração descentralizada das redes físicas

