

Task weighting:

Mathematics Specialist Unit 3

TEST 3

Student name:	Teacher name:
Time allowed for this task:	45 minutes , in class, under test conditions Calculator-Assumed
Materials required: Standard items:	Pens (blue/black preferred), pencils (including coloured), sharpener, correction fluid/tape, eraser, ruler, highlighters, SCSA Formula Sheet Classpad Calculator and Scientific Calculator.
Special items:	Drawing instruments, templates
Marks available:	44 marks

8%

The points A and B have position vectors $3\mathbf{i} - 2\mathbf{j} + 2\mathbf{k}$ and $\mathbf{i} + 3\mathbf{j} - 2\mathbf{k}$ respectively.

(a) Determine a vector equation for the straight line passing through A and B (2 marks)

(b) Write your answer to (a) in its parametric equivalent and hence, or otherwise, express $\frac{x-a}{p} = \frac{y-b}{q} = \frac{z-c}{r}$ the Cartesian equation of the line in the form

(c) Determine a unit vector parallel to the straight line in (a). (2 marks)

A plane Π contains the two lines $r = \mathbf{j} - \mathbf{j} + 2\mathbf{k} + \lambda(2\mathbf{j} + 3\mathbf{j} - \mathbf{k})$ and

$$r = \mathbf{j} - \mathbf{j} + 2\mathbf{k} + \mu(-\mathbf{j} + \mathbf{j} + 3\mathbf{k})$$

(a) Write down a vector equation of the plane Π .

(1 mark)

(b) The point $^{8\dot{L}+2\dot{L}+c\dot{k}}$ lies in the plane Π . Determine the value of the constant c. (3 marks)

(c) The vector $a\dot{\mathbf{L}} + b\dot{\mathbf{L}} + \mathbf{k}$ is perpendicular to the plane Π . Determine the values of the constants \mathbf{a} and \mathbf{b} . (3 marks)

(d) State the equation of the plane Π in the form $r \cdot n = k$.

(i) Find the Cartesian equation of a sphere with centre (1, -2, 3) and radius 5. (2marks)

(ii) Hence write the vector equation of this sphere. (1mark)

(b) Find the radius and centre of a sphere with the equation: (2marks)

$$x^{2} + y^{2} + z^{2} - 6x + 8y + 4z + 4 = 0$$

Question 4	(9 marks)

A particle P, begins from a point ${}^{10}\dot{\mathbf{j}}$ m and continues with constant velocity ${}^{2}\dot{\mathbf{j}} - \dot{\mathbf{j}}$ ms⁻¹. One second later another particle, starts at the point ${}^{2}\dot{\mathbf{j}} + {}^{15}\dot{\mathbf{j}}$ m and moves with constant velocity ${}^{2}\dot{\mathbf{j}} - 5\dot{\mathbf{j}}$ ms⁻¹.

(a) Show that the particles collide. (5 marks)

(b) Find the Cartesian equations of their paths. (2 marks)

Question 5

(7 marks)

In the diagram below, E, F, G and H are midpoints of the sides of the quadrilateral OBCD.

Let $\overrightarrow{OB} = 2b$ $\overrightarrow{OC} = 2c$ and $\overrightarrow{OD} = 2d$.

(a) Show that
$$\overrightarrow{OF} = b + c$$
.

(2 marks)

(b) Determine \overrightarrow{OG} in terms of b, c, and d

(2 marks)

(c) Prove that *EFGH* is a parallelogram.

(3 marks)

Question 6 (7 marks)

Use the vector product (cross product) to find the area of the triangle with vertices

A(-1,3,2), B(3,5,1) and C(1,6,-2)

