Photo Gallery Organization using Autoencoders

How to Organize a Photo Gallery?

Deep Learning!

- Are there people present in the photo?
 - What does the background consist of?
- Is a picture of a scene?
- What other objects are present in the picture
- Is there text written in the image?

• Less complex dataset

- Less complex dataset
- Actual solution present

Analyt Vidhya

1	filename	label
2	0.png	4
3	1.png	9
4	2.png	1
5	3.png	7
6	4.png	3
7	5.png	9
8	6.png	4
^	7 000	0

Use a trained Autoencoder model to extract features from the images

- 1. Use a trained Autoencoder model to extract features from the images
 - a. Prepare data
 - b. Create autoencoder model and train it
 - Extract features from images using the trained encoder

- 1. Use a trained Autoencoder model to extract features from the images
 - a. Prepare data
 - b. Create autoencoder model and train it
 - c. Extract features from images using the trained encoder
- 2. Cluster images on the basis of extracted features

- 1. Use a trained Autoencoder model to extract features from the images
 - a. Prepare data
 - b. Create autoencoder model and train it
 - c. Extract features from images using the trained encoder
- 2. Cluster images on the basis of extracted features
 - a. Prepare clustering algorithm
 - b. Get clusters from the features
 - c. Visualize results

