ΦΥΣ 112 - ΓΕΝΙΚΗ ΦΥΣΙΚΗ ΙΙ

Φροντιστήριο 11

Διδάσκων: Καθηγητής Φώτιος Πτωχός

Βοηθοί Διδασκαλίας: Ευτύχιος Καϊμακκάμης - Γιάννος Χαρίτου

Νοέμβριος 30, 2022

Τμήμα Φυσικής Πανεπιστήμιο Κύπρου 2022 31.34) Μια γεννήτρια εναλλασσόμενου ρεύματος με $\text{HE}\Delta \, \mathcal{E} = \mathcal{E}_m \, \sin \omega_d t$, όπου $\mathcal{E}_m = 25.0 \, V$ και $\omega_d = 377 \, \text{rad}/s$ είναι συνδεδεμένη σε πυκνωτή χωρητικότητας $4.15 \, \mu F$. (a) Πόση είναι η μέγιστη τιμή του ρεύματος; (b) Όταν το ρεύμα είναι στην μέγιστη τιμή, πόση είναι η $\text{HE}\Delta$ στην γεννήτρια; (c) Όταν η $\text{HE}\Delta$ της γεννήτριας είναι $-12.5 \, V$ και αυξανόμενη σε μέτρο, πόσο είναι το ρεύμα;

31.48) Το χάτωθι σχήμα δείχνει ένα χύχλωμα RLC εναλασσόμενου ρεύματος με δύο πανομοιότυπους πυχνωτές και δύο διαχόπτες. Το πλάτος της $HE\Delta$ τίθεται στα $12.0\,V$ και η συχνότητα ταλάντωσης του ρεύματος είναι $60.0\,Hz$. Με τους δύο διαχόπτες ανοιχτούς, το ρεύμα προηγείται της $HE\Delta$ κατά φάση 30.9 μοιρών. Με τον διαχόπτη S_1 χλειστό και τον S_2 αχόμα ανοιχτό, η $HE\Delta$ προηγείται του ρεύματος κατά 15.0 μοίρες. Και με τους δύο διαχόπτες χλειστούς, το πλάτος του ρεύματος είναι $447\,mA$. Πόση είναι (a) η αντίσταση R, (b) η χωρητιχότητα C χαι (c) η επαγωγή L;

31.49) Στο σχήμα που ακολουθεί, η γεννήτρια έχει μεταβλητή συχνότητα ταλάντωσης και συνδέεται με αντιστάτη $R=100\,\Omega$, επαγωγές $L_1=1.70\,mH$ και $L_2=2.30\,mH$, και πυκνωτές $C_1=4.00\,\mu F$, $C_2=2.50\,\mu F$ και $C_3=3.50\,\mu F$. (a) Ποια είναι η συχνότητα συντονισμού του κυκλώματος; Τι συμβαίνει στην συχνότητα συντονισμού αν (b) αυξηθεί το R, (c) αυξηθεί το L_1 και (d) αν αφαιρεθεί ο C_3 από το κύκλωμα;

31.58) Για το πιο κάτω σχήμα, δείξτε ότι ο μέσος όρος ρυθμού απώλειας ενέργειας στον αντιστάτη R είναι μέγιστος όταν το R είναι ίσο με την εσωτερική αντίσταση r της γεννήτριας εναλλασσόμενου ρεύματος (χωρίς να υποθέσετε ότι r=0).

31.59) Για το ακόλουθο σχήμα έχουμε $R=15.0\,\Omega$, $C=4.70\,\mu F$ και $L=25.0\,m H$. Η γεννήτρια παρέχει $\text{HE}\Delta$ με τάση rms (root mean square) $75.0\,V$ και συχνότητα $550\,Hz$. (a) Πόσο είναι το ρεύμα rms; Πόση είναι η τάση rms (b) στον αντιστάτη R, (c) στον πυκνωτή C, (d) στην επαγωγή L, (e) στα C και L μαζί, και (f) στα R, L και C μαζί; Κατά μέσο όρο, ποιος είναι ο ρυθμός απώλειας ενέργειας (g) στον R, (h) στον C και (i) στην L;

31.65) Μια γεννήτρια εναλλασσόμενου ρεύματος παρέχει ${\rm HE}\Delta$ σε φορτίο αντίστασης σε ένα απομαχρυσμένο εργοστάσιο μέσω μιας γραμμής μετάδοσης αποτελούμενη από δύο χαλώδια. Στο εργοστάσιο ένας μετασχηματιστής χατάβασης μειώνει την τάση από την (rms) τιμή μετάδοσης V_t σε μια πολύ χαμηλότερη τιμή που είναι ασφαλής χαι εύχρηστη για το εργοστάσιο. Η αντίσταση της γραμμής μετάδοσης είναι $0.30\,\Omega/$ Χαλώδιο χαι η ισχύς της γεννήτριας είναι $250\,kW$. Αν $V_t=80\,kV$, πόση είναι (a) η μείωση τάσης ΔV χατά μήχος της γραμμής μετάδοσης χαι (b) ο ρυθμός P_d που η γραμμή χάνει ενέργεια σαν θερμότητα; $\Delta V_t=8.0\,kV$, πόση είναι (c) η ΔV χαι (d) η P_d ; $\Delta V_t=0.8\,kV$, πόση είναι (e) η ΔV_t χαι (f) η (f)

Problem	o a a R
	31.49) R=100 R
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
,	1 - 2 = 70 = H
	C1 = 400 p F
	C, = 250 pF
***************************************	(a) Ley = L, + L, = 4 00 mH (or veyob) (3 = 3,50 pF
	$Ceq = C_1 + C_2 + C_3 = 10,00 \text{ pF } (Oaph) Julya)$
	$\rightarrow W = \frac{1}{\sqrt{L_{eq} \ell_{eq}}} = \sqrt{f} = \frac{W}{2\pi} = \frac{1}{2\pi \sqrt{L_{eq} \ell_{eq}}} = 795,77 H_{z}$
	(b) Ar avgnori ? R => f'=f) (Sir Ezaplilar avi ? R)
	(c) Ar arznoti ? L. => Lej' > Lej => [f' < f] (privrilai)
	(d) Ar avojanjurbil lo C3 => Ceg < Ceg => f'>f) (auzarslac)
Problem	3/.58)
	$\frac{1}{5} \rightarrow V \neq 0$
-	
	$\Rightarrow L = C = 0 \Rightarrow k_{apid} = k_{apid} = k_{apid}$
	EO) => Erms = Irms Roj
	$= I_{rms}(R+r)$
	$Aoijsia = Prms = Irms \cdot R = (R+r)^2 R$ $Srippins old R J$
	P (P) - P max
X	$P_{rrs}(R_0) = P_{rrs}$ $= > \frac{dP_{rrs}}{dR} = 0$
	$= \frac{\mathcal{E}_{rms}^2}{(R_t r)^2} - \frac{2 \mathcal{E}_{rms} R_0}{(R_t r)^3} = 0$
	$= > (R_0 + r) - 2R_0 = 0$
	$=>R_o=V$

$$V_{x}' = 8 \text{ a k } V = \frac{V_{x}}{10} = 3 \text{ Ins}' = 10 \text{ Ins}$$

$$(c) \Delta V' = I_{rns}' R = 10 \Delta V = \frac{19 V}{19 V}$$

$$(J) P_{y}' = (I_{rns}')^{2} R = 100 P_{y} = \frac{570 W}{100}$$

$$V_{x}'' = 0.8 \text{ kV} = \frac{V_{x}}{100} = 3 \text{ Ins} = 100 \text{ Ins}$$

$$(e) \Delta V'' = I_{rns}'' R = 100 \Omega P_{y} = \frac{170 V}{170 V}$$

$$(f) P_{y}'' = (I_{rns}')^{2} R = 100 \Omega P_{y} = \frac{590 W}{100}$$

