DATA SHARING AND STANDARDS IN MOVEMENT ECOLOGY

WHY AND HOW TO ARCHIVE YOUR DATA

What happens to your data?

What is data sharing?

archiving for future re-use

compilation with collaborators

sharing "by request" or on university or journal website

informal exchange between colleagues

within an organization or research group

Why share data?

- Give access to results of publicly-funded research
- Allow data to be re-used for other purposes
- Receive additional citations for your research
- Allow analyses to be verified
- Fulfill data sharing and management requirements

elecoms.com

Why share data?

Studies for which the related data were made publicly available showed a 69% increase in citations (cancer microarray clinical trial data).

Piwowar et al. 2007

Author reluctance to share data was correlated with weaker statistical evidence against null hypothesis and more apparent errors in reporting statistical results (psychology).

Wicherts et al. 2011

Studies for which the related code were made publicly available were more

highly cited (image processing research).

Vandewalle 2012

Why share data?

Journals with data-sharing requirements

The American Naturalist

Behavioral Ecology

Biology Letters

Ecological Applications

Ecological Monographs

Ecology and Evolution

Functional Ecology

Journal of Animal Ecology

Journal of Applied Ecology

Journal of Avian Biology

Journal of Avian Biology

Journal of Ecology

Journal of Fish and Wildlife Management

Journal of Zoology

Methods in Ecology and Evolution

Philosophical Transactions of the Royal Society B

PLOS journals

PNAS

Proceedings of the Royal Society B

Science

Why shar

Science Home News Journals Topics Careers

species: 57

individuals: 803

projects: dozens

A

REPORT

Moving in the Anthropocene: Global

reductions in terrestrial mammalian

movements

Marlee A. Tucker^{1,2,*}, Katrin Böhning-Gaese^{1,2}, William F. Fagan^{3,4}, John M. Fryxell², Bram Van Moorter², Susan C. Alberts⁷, Abdullahi H. Ali⁸, Andrew M. Allen^{9,10}, Nina Attias¹¹, Tal Avgar¹², Hattie Bartlam-Brooks¹³, Buuveibaatar Bayarbaatar¹⁴, Jerrold L. Belant¹⁵, Alessandra Bertassoni¹⁶, Dean Beyer¹⁷, Laura Bidner¹⁸, Floris M. van Beest¹⁹, Stephen Blake^{20,21}, Niels Blaum²⁷, Chloe Bracis^{1,2}, Danielle Brown²³, P. J. Nico de Bruyn²⁴, Francesca Caonacci^{23,25}, Justin M. Calabrese^{3,27}, Constança Camilo-Alves^{23,25}, Simon Chamaillé-Jammes²⁰, Andre Chiaradia^{21,32}, Sarah C. Davidson^{33,20}, Todd Dennis³⁴, Stephen DeStefano³⁸, Duane Diefenbach^{3,5}, Jain Douglas-Hamilton^{37,2,3}, Julian Fennessy^{3,5}, Claudia Fichtel^{4,0}, Wolfgang Fiedler²⁰, Christina Fischer⁴¹, Ilya Fischhoff⁴⁷, Christen H. Fleming^{3,27}, Adam T. Ford⁴³, Susanne A. Fritz^{1,2}, Benedikt Cehr⁴⁴, Jacob R. Ccheen⁴⁵, Eligzer Gurarie^{3,46}, Mark Hebblewhitz⁴⁷, Marco Heurich^{48,45}, A. J. Mark Hewison⁵⁰, Christian Hof¹, Edward Hurme³, Lynne A. Isbell^{18,51}, René Janssen⁵², Florian Jeltsch²², Petra Kaczensky^{6,53}, Adam Kane⁵⁴, Peter M. Kappeler⁶², Matthew Kauffman⁶⁵, Roland Kays^{56,57}, Duncan Kimuyu⁵⁶, Flavia Koch^{40,59}, Bart Kranstauber⁴⁴, Soott LaPoint^{20,61}, Peter Leimgruber²⁷, John D. C. Linnell⁶, Pascual López-López⁵¹, A. Catherine Markham⁵², Jenny Mattisson⁶, Emilia Patricia. Medici^{68,64}, Ugo Mellone⁵⁵, Evelyn Merri II¹⁵, Gui herme de Miranda Mourão⁶⁵, Ronaldo G. Morato⁶⁷, Nicolas Morellet⁵⁰, Thomas A. Morrison⁶³, Samuel L. Díaz-Muñoz^{63,75}, Atle Mysterud⁷¹, Dejid Nandintsetseg^{1,7}, Ran Nathan⁷², Aidin Niamir¹, John Odden⁷⁵, Robert B. O'Hara^{1,74}, Luiz Gustavo R. Oliveira-Santos⁷⁵, Kirk A. Olson¹⁴, Bruce D. Patterson⁷⁶, Rogerio Cunha de Paula⁶⁷, Luca Pedrotti⁷⁷, Björn Reineking^{78,79}, Martin Rimmler⁸⁰, Tracey L. Rogers⁸¹, Christer Moe Rolandsen⁶, Christopher S. Rosenberry⁸², Daniel I. Rubenstein⁸³, Kamran Safi^{20,84}, Sonia Saïd⁸⁶, Nir Sapir⁸⁶, Hall Sawyer⁸⁷, Niels Martin Schmidt^{19,88}, Nuria Selva⁸⁹, Agnieszka Sergiel⁸⁹, Enkhtuvshin Shiilegdamba¹⁴, João Paulo Silva ^{30,01,12}, Navinder Singh ⁹, Erling J. Solberg ⁶, Orr Spiege ⁶⁸, Olav Strand ⁶, Siva Sundaresan ⁴⁴, Wiebke Ullmann²², Ulrich Voigt⁹⁵, Jake Wall³⁷, David Wattles³⁵, Martin Wikelski^{25,84}, Christopher C. Wilmers⁹⁶, John W. Wilson⁸⁷, George Wittemyer^{37,98}, Filip Ziebs⁹⁵, Tomasz Zwijacz-Kozics⁸⁹, Thomas Mueller^{1,227,5}

January 2018

Risks and concerns

Someone will steal my data!

- Others must acknowledge data authorship
- Share after publication and embargo

Others won't understand my data!

Thoroughly describe your data

The data are sensitive!

Controlled and limited sharing possible

I don't have time!

- Practice good data management
- Use available resources
- Publishing provides academic credit

Options for data sharing

Publish in a data repository

Add to a shared database

Publish as a data paper

Provide upon request

Publish as supplementary files with a paper

When asked to provide data from papers recently published in high-impact psychology journals, 73% of authors failed to comply, despite data-sharing policies and six months of repeated requests (n=141).

Wicherts et al. 2006

26% of supplemental data links for biomedical research papers published 1998-2005 were no longer accessible (n=655).

Anderson et al. 2006

Data "Publishing"

Review process

Quality control

Persistent identifiers

Permanence

Licenses

Explicit re-use conditions

Persistent identifiers

Unique and persistent reference to a digital object

find the object if it is moved or renamed

Examples

- DOI (digital object identifier)
- LSID (life science identifier)
- non-digital: ISBN (international standard book number)

Licensing data

Data licensing options for re-use

Creative Commons CC-Zero

creativecommons.org

Open Data Commons PDDL, OCD-By

opendatacommons.org

License restrictions

- Require attribution
- Restrict Public Domainial uses
- Prohibit modification

Credit is still required based on professional norms!

Avoids unintended constraints

Publish in a data repository

Publish data underlying published journal articles

Movebank Data Repository: animal movement data

datarepository.movebank.org

 ZoaTrack: animal movement data datadryad.org

 Dryad: scientific and medical data datadryad.org

Data from: Costs of migratory decisions: a comparison across eight white stork populations

When using this dataset, please cite the original article.

__ Citations

Flack A, Fiedler W, Blas J, Pokrovski I, Kaatz M, Mitropolsky M, Aghababyan K, Fakriadis Y, Makrigianni E, Jerzak L, Shamina Flack A, Fiedler W, Blas J, Pokrovski I, Kaatz M, Mitropolsky M, Aghababyan K, Fakriadis Y, Makrigianni E, Jerzak L, Azefzaf H, Feltrup-Azefzaf G, Rotics S, Mokotjomela TM, Nathan R, Wikelski M, 2016, Costs of migratory decisions: a comparison across eight white stork populations. Science Advances 2(1): e1500931. doi:10.1126/sciadv.1500931

Additionally, please cite the Movebank data package:

Flack A, Fiedler W, Blas J, Pokrovski I, Mitropolsky B, Kastz M, Aghababyan K, Khachatryan A, Fakriadis I, Makrigianni E, Jerzak L, Shamin M, Shamina G, Azafzaf H, Feltrup-Azafzaf G, Mokotjomela TM, Wikelski M (2015) Data from: Gosta of migratory decisions: a comparison across eight white stork populations. Movebank Data Repository.

Dublic domain license

Public domain license**

Cite | Share

Package Identifier

dol:10.5441/001/1.78152p3q

Persistent identifier (

(cc)) /HXI

Abstract

Annual migratory movements can range from a few tens to thousands of kilometers, creating unique energetic requirements for each specific species and journey. Even within the same species, migration costs can vary largely because of flexible, opportunistic life history strategies. We uncover the large extent of variation in the lifetime migratory decisions of young white storks originating from eight populations. Not only did juvenile storks differ in their geographically distinct wintering locations, their diverse migration patterns also affected the amount of energy individuals invested for locomotion during the first months of their life. Overwintering in areas with higher human population reduced the stork's overall energy expenditure because of shorter daily foraging trips, closer wintering grounds, or a complete suppression of migration. Because migrants can change ecological processes in several distinct communities simultaneously, understanding their life history decisions helps not only to protect migratory species but also to conserve stable ecosystems.

Metadata

Keywords

animal tracking, avian migration. Ciconia ciconia, Env-DATA, Movebank, movement ecology, white storks.

MPIO white stork lifetime tracking data (2013-2014)-gps.csv View File Details

Download: README.txt (14.21Kb)

Download: MPIO white stork lifetime tracking data (2013-2014)-gps.csv.zip (24.20Mb)

Publish as a data paper

- Biodiversity Data Journal
- BioRisk
- Dataset Papers in Science
- Ecological Archives
- Ecological Research
- Scientific Data (Nature)
- GBIF Integrated Publishing Toolkit

Share in an online tracking database

Seabird Tracking Database
Tracking Opean Warderers

seaturtle.org

and many others!

Animal or researcher?

	\				
24556		41.1247	-73.7935	08.12.2008	2:00
24556	1	41.1247	-73.8125	08.12.2008	8:00
24556	Anne	41.1248	-73.8287	08.12.2008	14:00
24556	Anne	41.1248	-73.7991	08.12.2008	20:00
24556	Anne	41.1247	-73.7975	09.12.2008	8:00
24556	Anne	41.1158	-73.7883	09.12.2008	14:00
24556	Anne	41.1158	-73.7883	09.12.2008	20:00
24556	Anne	41.1243	-73.7883	10.12.2008	2:00

Why are these blank? Measured or modelled?

				Dat	e format?
tag	dnimal	latitude	longitude	date	time
24556	1	41.1247	-73.7935	08.12.2008	2:00
24556		41.1247	-73.8125	08.12.2008	8:00
24556	Anne	41.1248	-73.8287	08.12.2008	14:00
24556	Anne	41.1248	-73.7991	08.12.2008	20:00
24556	Anne	41.1247	-73.7975	09.12.2008	8:00
24556	Anne	41.1158	-73.7883	09.12.2008	14:00
24556	Anne	41.1158	-73.7883	09.12.2008	20:00
24556	Anne	41.1243	-73.7883	10.12.2008	2:00

Time zone?

```
tag id of tag deployed on the animal id of animal tracked what species? manipulated? latitude measured latitude, decimal degrees, WGS84 datum longitude measured longitude, decimal degrees, WGS84 datum date date of observation, dd.mm.yyyy time time of observation, UTM, hh:mm
```

tag	animal	latitude	longitude	date	time
24556		41.1247	-73.7935	08.12.2008	2:00
24556		41.1247	-73.8125	08.12.2008	8:00
24556	Anne	41.1248	-73.8287	08.12.2008	14:00
24556	Anne	41.1248	-73.7991	08.12.2008	20:00
24556	Anne	41.1247	-73.7975	09.12.2008	8:00
24556	Anne	41.1158	-73.7883	09.12.2008	14:00
24556	Anne	41.1158	-73.7883	09.12.2008	20:00
24556	Anne	41.1243	-73.7883	10.12.2008	2:00

tag	animal	deployOnDate	taxon	tagType	manipulation
24556	Anne	08.12.2008 12:00	Canis latrans	GPS	none
24558	Hans	08.12.2008 12:15	Canis latrans	GPS	translocated from Allegheny National Forest
24559	Fred	08.12.2008 13:42	Canis latrans	GPS	translocated from Allegheny National Forest

tag	animal	latitude	longitude	date	time
24556		41.1247	-73.7935	08.12.2008	2:00
24556		41.1247	-73.8125	08.12.2008	8:00
24556	Anne	41.1248	-73.8287	08.12.2008	14:00
24556	Anne	41.1248	-73.7991	08.12.2008	20:00
24556	Anne	41.1247	-73.7975	09.12.2008	8:00
24556	Anne	41.1158	-73.7883	09.12.2008	14:00
24556	Anne	41.1158	-73.7883	09.12.2008	20:00
24556	Anne	41.1243	-73.7883	10.12.2008	2:00

Who did this study and why?

How can others search for and find this dataset?

author Doe, J.I.

title Effects of coyote reintroduction on native population

and territory distribution near White Plains, New

York

year published 2012

key words animal tracking, habitat use

temporal coverage 12/8/2008-2/20/2012

taxon Canis latrans

type of resource dataset

file format csv

language English

Data standards

Interoperability: ability of systems (databases, search engines, analysis software) to work together

- Basic: Describe my data set so others can find it online.
- Advanced: Describe and format my data so it can be seamlessly analyzed with others' data in R.
- Requires standard formats and descriptions

Why standardize?

- Standardized and well-documented archiving
- Increased discoverability
- Less time needed to collect and integrate datasets
- Reduced error and uncertainty
- More collaborations and re-use
- Increased accessibility and reduced support needs for shared tools
- Enabled conservation efforts, media coverage and outreach

Data standards

Personal database

author Doe, John I.

Effects of coyote reintroduction on native population

and territory distribution near White Plains, New

title York

year published 2012

key words animal tracking, habitat use

temporal coverage 12/8/2008-2/20/2012

taxon Canis latrans

type of resource dataset

file format csv

language English

Data standards: Terms

language

Language

DataCite term	Personal database	
creatorName	author	Doe, John I.
		Effects of coyote reintroduction on native population and territory distribution near White Plains, New
title	title	York
publicationYear	year published	2012
subject	key words	animal tracking, habitat use
StartDate, EndDate	temporal coverage	12/8/2008-2/20/2012
taxonID	taxon	Canis latrans
type	type of resource	dataset
Format	file format	CSV

English

Data standards: Terms and format

```
<resource xmlns="http://datacite.org/schema/kernel-2.2" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://datacite.org/schema/kernel-2.2 http://schema.datacite.org/meta/kernel-2.2/metadata.xsd">
 <identifier identifierType="DOI">12.3456/789/xx00xx1</identifier>
 <creators>
  <creator>
   <creatorName>Doe, John. I.</creatorName>
  </creator>
 </creators>
 <titles>
  <title>Effects of coyote reintroduction on native population and territory distribution near White Plains, New
   York</title>
 </titles>
 <publicationYear>2012/publicationYear>
 <subjects>
  <subject>animal tracking</subject>
                                                                      Machine readable
  <subject>habitat use</subject>
 </subjects>
 <language>eng
 <resourceType resourceTypeGeneral="Dataset"/>
 <formats>
  <format>csv</format>
 </formats>
 <rights>Creative Commons CCZero Waiver and Public Domain Dedication, http://creativecommons.org/
  publicdomain/zero/1.0/</rights>
</resource>
```

Data standards: Discoverability

Data standards: Discoverability

ARGOS Satellite Tracking of animals

Occurrence dataset published by Australian Antarctic Data Centre

346.511 Occurrences View occurrences

Information

Summary

FULL TITLE

ARGOS Satellite Tracking of animals.

DESCRIPTION

Various species have been tracked using ARGOS PTT trackers since the early 1990's. These include Emperor, King and Adelie pengiuns, Light-mantled Scoty, Grey-headed and Black-browed albatrosses, Antarctic and Australian für seals, Southern Elephant. Seal and Blue and Humpback whales. Note that not all data for any species or locations is or will be exposed to OBIS. Geographic coverage is from Heard Island to the west and Macquarie Island to the east and several islands near the southern end of Chile. The data has been filtered to remove most but not all erroneous positions.

LANGUAGE OF METADATA

ENGLISH

Biodiversity Standards

DOI doi:10.15468/fancjy

PUBLISHED BY

Australian Antarctic Data Centre

REGISTRATION DATE

Apr 3, 2007

SERVED BY

DiGIR Installation

LINKS

Dataset homepage

ALTERNATIVE IDENTIFIERS

 GBIF Portal ID http://data.gbif.org/datasets/...

EXTERNAL DATA

DiGIR

METADATA DOCUMENTS

GBIF annotated version (EML) T

Data standards: Biodiversity & GIS

Biodiversity

Biodiversity Information Standards

Darwin Core

ABCD

Ecological Metadata Language (EML)

GIS & remote sensing

Open Geospatial Consortium

6th International Bio-logging Symposium 27 September 2017 Konstanz, Germany

A FUTURE FOR A COMMON BIO-LOGGING LANGUAGE?

Discussions about data standards and interoperability in the bio-logging world

Many and diverse sensors and manufacturers

Many and diverse databases for bio-logging data

Many and diverse analysis tools

Resources often customized based on taxonomy, administrative unit, geography, etc.

There are lots of good reasons for this! **But...**

There are lots of good reasons for this! **But...**

Inconsistent data formats, terms, documentation

Many datasets remain poorly documented or undiscoverable

Little guidance for many data users and providers

IBLS Data Standards Working Group

Goal: Standards to enable the integration and use of data collected by animal-borne sensors originating from different projects, sensor types and manufacturers

Conclusions

- Data sharing has many potential benefits
- Data sharing requires thorough data description and good management
- Many resources exist to help make your data accessible

 Efforts are underway to increase data standardization for movement ecology

Thank you!

This presentation was prepared for the course "Dealing with Spatio-temporal Data in Movement and Population Ecology" which took place 17–22 June 2018, at the Fondazione Edmund Mach in San Michele all'Adige, Trento, Italy.

This work is licensed under a Creative Commons Attribution 3.0 Unported License (http://creativecommons.org/licenses/by/3.0/deed.en_US). If you reuse information from this presentation, please cite it as "Davidson SC, Urbano F, Cagnacci F (2018) Data sharing and standards in movement ecology. Trento, Italy, 1–21 June 2018."

