Introduction to Networking

Network Components

- Hosts (End Systems): Laptops, smartphones, devices
- Routers (Switches): Forward data between hosts
- Links: Wired or wireless connections

The Internet

- A global network of interconnected networks
- Uses the Internet Protocol (IP) for communication

Packet vs. Circuit Switching

Circuit Switching

- Dedicated communication path between hosts
- Pros: Predictable performance
- Cons: Inefficient resource usage

Packet Switching

- Data sent in packets over shared network
- Pros: Efficient resource usage
- Cons: Variable performance due to congestion

Performance Metrics

Delays

- Processing Delay (d_{proc})
- Queuing Delay (d_{queue})
- Transmission Delay $(d_{\text{trans}} = \frac{L}{R})$
- Propagation Delay $(d_{\text{prop}} = \frac{d}{s})$

Total Delay:

 $d_{\rm total} = d_{\rm proc} + d_{\rm queue} + d_{\rm trans} + d_{\rm prop}$

Throughput

 $Throughput = \frac{Total\ Data\ Transferred}{Total\ Time}$

Layers and Protocols

Internet Protocol Stack

- 1. Application Layer: HTTP, SMTP, FTP
- 2. Transport Layer: TCP, UDP
- 3. Network Layer: IP
- 4. Link Layer: Ethernet, Wi-Fi
- 5. **Physical Layer**: Hardware transmission technologies

Protocol

- Set of rules governing communication between entities
- Defines message formats and exchange sequences

The Web and HTTP

Hypertext Transfer Protocol (HTTP)

- Request-Response Protocol: Clients send requests; servers send responses
- Methods: GET, POST, HEAD, PUT, DELETE
- Status Codes: 200 OK, 404 Not Found

Persistent Connections

• Reuse the same TCP connection for multiple requests

Domain Name System (DNS)

Purpose

• Translates human-readable domain names to IP addresses

Hierarchy

- Root Servers: Top-level of the DNS hierarchy
- Top-Level Domain (TLD) Servers: .com, .org, .edu
- Authoritative DNS Servers: Organization-specific servers

Resource Records

- Type A: Maps a name to an IP address
- Type NS: Delegates a DNS zone to use the given authoritative name servers
- Type CNAME: Alias of one name to another

Content Distribution Networks (CDNs)

Purpose

• Distribute content to servers located close to users to reduce latency

Mechanism

- Use DNS to redirect users to the nearest CDN server
- Replicate content across multiple geographically distributed servers

Video Streaming

DASH (Dynamic Adaptive Streaming over HTTP)

- Client-driven adaptation of video quality based on available bandwidth
- Video is divided into chunks, each encoded at multiple quality levels

Transport Layer Protocols

TCP (Transmission Control Protocol)

- Reliable, ordered, and connection-
- Implements flow control and congestion control
- Uses three-way handshake: SYN, SYN-ACK, ACK

UDP (User Datagram Protocol)

- Unreliable, unordered, and connectionless
- Minimal overhead, suitable for applications needing speed over reliability

TCP Congestion Control

- Slow Start: Begin with a small congestion window and increase exponentially
- Congestion Avoidance: Increase congestion window linearly
- Fast Retransmit and Fast Recovery: Detect and recover from packet loss quickly

Network Performance

Little's Law

$$L = \lambda \times W$$

- L: Average number of items in the system
- λ : Average arrival rate
- ullet W: Average time an item spends in the system

Datacenters

Purpose

 Host large-scale applications and services (e.g., cloud computing)

Network Architecture

- Hierarchical structure with Core, Aggregation, and Edge (Top-of-Rack) switches
- Designed for high bandwidth and low latency

Challenges

• Scalability, reliability, cost efficiency

Key Equations and Concepts

Transmission Delay

$$d_{\text{trans}} = \frac{L}{R}$$

- L: Packet length (bits)
- R: Link bandwidth (bps)

Propagation Delay

$$d_{\text{prop}} = \frac{d}{s}$$

- d: Distance between nodes
- s: Propagation speed (typically 2×10⁸ m/s)

Effective Delay

$$d_{\text{eff}} = d_{\text{trans}} + d_{\text{prop}}$$

Packet Loss

• Occurs when packets are dropped due to congestion (e.g., router buffer overflow)

Summary

- Networking involves multiple layers, each with specific protocols and functions
- Performance metrics are essential for evaluating network efficiency
- The Internet relies on various technologies and protocols to deliver data reliably