Package 'SFM'

November 12, 2024

2 calculate_errors

	calculate_errors	calculate errors Function
--	------------------	---------------------------

Description

This function calculates the Mean Squared Error (MSE) and relative error for factor loadings and uniqueness estimates obtained from factor analysis.

Usage

```
calculate_errors(data, A, D)
```

Arguments

data	Matrix of SFM data.
Α	Matrix of true factor loadings.
D	Matrix of true uniquenesses.

Value

A named vector containing:

MSEA	Mean Squared Error for factor loadings.
MSED	Mean Squared Error for uniqueness estimates.
LSA	Relative error for factor loadings.
LSD	Relative error for uniqueness estimates.

```
set.seed(123) # For reproducibility
# Define dimensions
n <- 10  # Number of samples
p <- 5  # Number of factors

# Generate matrices with compatible dimensions
A <- matrix(runif(p * p, -1, 1), nrow = p)  # Factor loadings matrix (p x p)
D <- diag(runif(p, 1, 2))  # Uniquenesses matrix (p x p)
data <- matrix(runif(n * p), nrow = n)  # Data matrix (n x p)

# Calculate errors
errors <- calculate_errors(data, A, D)
print(errors)</pre>
```

```
huber.reg.adaptive.skew
```

Adaptive Huber Regression for Skew Factor Models

Description

Performs adaptive Huber regression tailored for skew factor models, and returns the estimated regression coefficients in a matrix (loading matrix) format.

Usage

```
huber.reg.adaptive.skew(
   X,
   Y,
   tau = 1.35,
   max_iterations = 100,
   tolerance = 1e-06,
   n_factors = 1
)
```

Arguments

```
X A matrix of predictor variables.
Y A vector of response variables.
tau Initial robustification parameter (default is 1.35).
max_iterations Maximum number of iterations (default is 100).
tolerance Convergence tolerance (default is 1e-6).
n_factors The number of factors (columns) for the loading matrix (default is 1).
```

Value

A matrix of estimated regression coefficients with dimensions 'p x n_factors'.

```
# Generate some example data for skew factor models
set.seed(123)
n <- 200
d <- 10
beta <- rep(1, d)
skew_factor <- rnorm(n)  # Adding a skew factor
X <- matrix(rnorm(n * d), n, d)
err <- rnorm(n)
Y <- 1 + skew_factor + X %*% beta + err
# Perform adaptive Huber regression for skew factor model
loading_matrix <- huber.reg.adaptive.skew(X, Y, n_factors = 3)</pre>
```

4 SFM

```
print(loading_matrix)
```

SFM

The SFM function is to generate Skew Factor Models data.

Description

The function supports various distribution types for generating the data, including: Skew-Normal Distribution, Skew-Cauchy Distribution, Skew-t Distribution.

Usage

```
SFM(n, p, m, xi, omega, alpha, distribution_type)
```

Arguments

n	Sample size.	
р	Sample dimensionality.	
m	Number of factors.	
хi	A numerical parameter used exclusively in the "Skew-t" distribution, representing the distribution's xi parameter.	
omega	A numerical parameter representing the omega parameter of the distribution, which affects the degree of skewness in the distribution.	
alpha	A numerical parameter representing the alpha parameter of the distribution, which influences the shape of the distribution.	
distribution_type		
	The type of distribution.	

Value

A list containing:

data A matrix of generated data.

A matrix representing the factor loadings.

D A diagonal matrix representing the unique variances.

```
library(MASS)
library(SOPC)
library(sn)
library(matrixcalc)
n <- 100
p <- 10
m <- 5</pre>
```

SOPC_estimation 5

```
xi <- 5
omega <- 2
alpha <- 5
distribution_type <- "Skew-Normal Distribution"
X <- SFM(n, p, m, xi, omega, alpha, distribution_type)</pre>
```

SOPC_estimation

SOPC Estimation Function

Description

This function processes Skew Factor Model (SFM) data using the Sparse Online Principal Component (SOPC) method.

Usage

```
SOPC_estimation(data, gamma, eta)
```

Arguments

data Matrix of SFM data.

gamma Tuning parameter for the sparseness of the loadings matrix.

eta Tuning parameter for the sparseness of the common factors matrix.

Value

A list containing:

Aso Estimated factor loadings.

Dso Estimated common factors.

tauA Sparsity of the loadings matrix, calculated as the proportion of zeros.

```
set.seed(123) # For reproducibility
data <- matrix(runif(200), nrow = 20) # Skew Factor Model data
sopc_results <- SOPC_estimation(data, 0.1, 0.8)
print(sopc_results)</pre>
```

Index

```
calculate_errors, 2
huber.reg.adaptive.skew, 3
SFM, 4
SOPC_estimation, 5
```