

SEQUENCE LISTING

<110> Nguyen, Thai D.
 Polansky, Jon R.
 Chen, Pu
 Chen, Hua

<120> Nucleic Acids, Kits, And Methods For The Diagnosis, Prognosis And Treatment Of Glaucoma And Related Disorders

<130> 07425.0057.US00

<140> US 09/227,881
 <141> 1999-01-11

<150> US 08/938,669
 <151> 1997-09-26

<160> 36

<170> Microsoft Word 97

<210> 1
 <211> 5300
 <212> DNA
 <213> Homo sapiens

<400> 1

atctttgttc	agtttacctc	agggttatttt	tgaaatgaaa	tgagataacc	aatgtgaaag	60
tcctataaac	tgtatagcct	ccattcgat	gtatgtctt	ggcaggatga	taaagaatca	120
ggaagaagga	gtatccacgt	tagccaagt	tccaggctgt	gtctgcttt	attttagtga	180
cagatgttc	tcctgacaga	agctatttt	cagggaaacat	cacatccaat	atggtaaatc	240
catcaaacag	gagctaagaa	acaggaatga	gatgggcact	tgcccaagga	aaaatgccag	300
gagagcaaat	aatgatgaaa	aataaaactt	tcccttgg	ttaatttca	ggaaaaaaatg	360
atgaggacca	aaatcaatga	ataaggaaaa	cagctcagaa	aaaagatgtt	tccaaatttg	420
taattaagta	tttgttcctt	ggggagagac	ctccatgtga	gcttgatggg	aaaatggaa	480
aaacgtcaaa	agcatgatct	gatcagatcc	caaagtggat	tattatttta	aaaaccagat	540
ggcatcactc	tggggaggca	agttcaggaa	ggtcatgtt	gcaaggaca	taacaataac	600
agcaaaatca	aaattccgca	aatgcaggag	gaaaatgggg	actggggaaag	ctttcataac	660
agtgattagg	cagttgacca	tgttcgcaac	acctccccgt	ctataccagg	gaacacaaaa	720
attgactggg	ctaaggctgg	actttcaagg	gaaatatgaa	aaactgagag	caaaaacaaaa	780
gacatggta	aaaggcaacc	agaacattgt	gagccttcaa	agcagcagt	cccctcagca	840
gggaccctga	ggcatttgcc	tttaggaagg	ccagtttct	taaggaatct	taagaaactc	900
ttgaaagatc	atgaatttt	accatttta	gtataaaaca	aatatgcgt	gcataatcag	960
tttagacatg	ggtcccaatt	ttataaagtc	aggcatacaa	ggataacgt	tcccagctcc	1020
ggataggtca	gaaatcatta	gaaatcactg	tgtccccatc	ctaactttt	cagaatgatc	1080
tgtcatagcc	ctcacacaca	ggcccgatgt	gtctgaccta	caaccacatc	tacaacccaa	1140
gtgcctcaac	cattgttaac	gtgtcatctc	agtaggtccc	attacaaatg	ccacctcccc	1200
tgtcagccc	atcccgtcc	acaggaagtc	tcccccactct	agacttctgc	atcacgatgt	1260
tacagccaga	agctccgtga	gggtgagggt	ctgtgtctta	cacctacctg	tatgctctac	1320
acctgagetc	actgcaacct	ctgcctccca	ggttcaagca	attctcctgt	ctcagcctcc	1380
cgcgtagctg	ggactacagg	cgcacgccc	gctaattttt	gtattgttag	tagagatggg	1440

a
Con

gtttcaccat attagccccg ctggcttga actcctgacc tcaggtgatc caccacacctc 1500
agcctcctaa agtgctggg ttacaggcat gagtccacgc gcccggccaa gggtcagtgt 1560
ttaataagga ataacttcaa tggtttacta aaccaacagg gaaacagaca aaagctgtga 1620
taatttcagg gattcttggg atggggaatg gtgcctgatc ctgcctgcct agtcccagac 1680
caactggcct catcaacttc ttccctcatc ctcattttca ggctaagttt ccattttattt 1740
caccatgctt ttgtggtaag cctccacatc gttactgaaa taagagtata cataaaactag 1800
ttccatggg ggccatctgt gtgtgttatc aggggaggag ggcataccccc agagactcct 1860
tgaagcccc ggcagaggtt tcctctccag ctgggggagc cctgcaagca cccgggggtcc 1920
tgggtgtcct gagaacactg ccagccccgtg ccactggtt ttttgttac actctcttagg 1980
gacctgttgc tttctatttc tgtgtgactc gttcatttcat ccaggcattt attgacaattt 2040
tattgagttac ttatatctgc cagacaccag agacaaaatg gtgagcaaag cagtcaactgc 2100
cctaccttcg tggaggtgac agtttctcat ggaagacgtg cagaagaaaa ttaatagcca 2160
gccaacttaa acccagtgtt gaaagaaaagg aaataaacac catcttgaag aattgtgcgc 2220
agcatccctt aacaaggcca cctcccttagc gccccctgt gcctccatcg tgcccgagg 2280
cccccaagcc cgagtcttcc aagccctctc ctccatcaatc cacagcgctg cagctggcct 2340
gcctcgcttc ccgtgaatcg tcctggtgca tctgagctgg agactccttgc gctccaggct 2400
ccagaaaagga aatggagagg gaaacttagtca taacggagaa tctggagggg acagtgtttc 2460
ctcagagggg aaggggcctc cacgtccagg agaattccatc gaggtggggg ctgcaggagg 2520
tggggacgct ggggctgagc ggggtgctgaa aggccaggaag gtgaaaaggg caaggctgaa 2580
gctgcccaga tggtcagtgt tggtcacggg gctgggagtt ttccgttgct tcctgtgagc 2640
cttttatct tttctctgct tggaggagaa gaagtctatt tcatgaaggg atgcagttt 2700
ataaaagttagt ctgttaaaat tccagggtgt gcatgggtt tccttcacga aggcccttat 2760
ttaatggaa tataaggaagc gagctcattt cctaggccgt taattcacgg aagaagtgac 2820
tggagtctt tcttcatgt cttctgggca actactcagc cctgtgggtt acttggctta 2880
tgcaagacgg tcgaaaaacct tggaaatcagg agactcggtt ttcttctgg ttctgccatt 2940
gttggctgt gcgaccgtgg gcaagtgtct ctccttccct gggccatagt ttctctgct 3000
ataaaagaccc ttgcagctt cgtttctgt gaacacttcc ctgtgatttct ctgtgagggg 3060
ggatgttgag aggggaagga ggcagagctg gaggcagctga gccacagggg aggtggaggg 3120
ggacagggaa gcaaggcagaa gctgggtgtt ccatcagtcc tcactgatca cgtcagactc 3180
caggaccgag agccacaatg ctccaggaaa gctcaatgaa cccaaacagcc acattttcct 3240
tccctaagca tagacaatgg catttgc当地 taacaaaaaa gaatgcagag actaactgg 3300
ggtagcttt gcctggcatt caaaaactgg gccagagcaa gtggaaaatg ccagagattt 3360
ttaaactttt caccctgacc agcacccttcc gcaactcagc agtgaactgtt gacagcacgg 3420
agtgaccttc agcgcagggg aggagaagaa aaagagaggg atagtgtatg agcaagaaag 3480
acagattcat tcaagggcag tggaaattga ccacaggat tatagtccac gtatccctgg 3540
gttcttaggg gcaaggctat attgtgggg gaaaaaatca gttcaaggga agtcgggaga 3600
cctgatttct aatactat ttttcctta caagcttactt gcaacttactt aattctgagc aagtccacaag 3660
gttagtaactg aggctgttaag attacttagt ttctcctttagt taggaactct tttctctgt 3720
ggagtttagca gcacaagggc aatcccgat ttttaacag gaagaaaaaca ttctctaagag 3780
taaagccaaa cagattcaag ccttaggtttt gctgactata tgattgggtt tttggaaaat 3840
catttcagcg atgttacta tctgatttcc gaaatgagac tagtaccctt tggtcagctg 3900
taaacaaca cccatttgc aatgtctcaa gttcagctt aactgcagaa ccaatcaaat 3960
aagaatagaa tcttttagagc aaactgtgtt tctccactt ggaggtgagt ctgccaggc 4020
agtttggaaa tatttacttc acaagttttt acactgtgtt tggttataac aacataaaatg 4080
tgctcaaagg caatcattt ttcaggatggc ttaaagttac ttctgacagt ttgggtatat 4140
ttattggcta ttggcatttgc ttttttgtt tttctctttt ggtttattaa tgtaaagcag 4200
ggattattaa cctacagtcc agaaaggctg tgaatttgc gggggaaaa attacatttt 4260
tggttttacc accttctaac taaatttacat ttttatttcc attgcgataa gagccataaa 4320
ctcaaagtgg taataacagt acctgtgatt ttgtcatttac caatagaaat cacagacatt 4380
ttatactata ttacagttgt tgcagatatac ttgttaagtga aatatttata ctc当地acta 4440
ctttgaaattt agacccctcg ctggatcttgc ttttaacat attaataaaaa catgtttaaa 4500
attttgtat tttgataatc atatttcatc atcatttgc ttctttgtt tctatatttt 4560

atatatttga aaacatctt ctgagaagag ttccccagat ttcaccaatg aggttcttgg 4620
 catgcacaca cacagagtaa gaactgatt agaggctaac attgacattg gtgcctgaga 4680
 tgcaagactg aaatttagaaa gttctccaa agatacacag ttgtttaaa gctaggggtg 4740
 aggggggaaa tctgccgctt ctataggaat gctctccctg gagcctggta gggtgctgtc 4800
 cttgtgttct ggctggctgt tattttctc tgtccctgct acgtcttaaa ggacttgg 4860
 ggatctccag ttccctagcat agtgccctggc acagtgcagg ttctcaatga gtttcagag 4920
 tgaatggaaa tataaactag aaatatatcc ttgttggaaat cagcacacca gtagtcctgg 4980
 tgtaagtgtg tgtacgtgtg tgtgtgtgtg tgtgtgtgtg tgtaaaaacca ggtggagata 5040
 taggaactat tattgggta tgggtgcata aattgggatg ttcttttaa aaagaaaactc 5100
 caaacagact tctggaaagg tattttctaa gaatctgct ggcagcgtga aggcaacccc 5160
 cctgtgcaca gcccccaccca gcctcacgtg gccacctctg tcttccccca tgaaggctg 5220
 gctccccagt atatataaac ctctctggag ctgggcatg agccagcaag gccacccatc 5280
 caggcaccc tcagcacac 5300

<210> 2

<211> 5304

<212> DNA

<213> Homo sapiens

<400> 2

atctttgttc agtttacctc agggctatta tgaaatgaaa tgagataacc aatgtgaaag 60
 tcctataaac tgtatagcct ccattcgat gtatgtctt ggcaggatga taaagaatca 120
 ggaagaagga gtatccacgt tagccaagtg tccaggctgt gtctgcttt atttttagtga 180
 cagatgttc tcctgacaga agctattctt cagaaacat cacatccaat atgtaaatc 240
 catcaaacag gagctaagaa acaggaatga gatgggact tgcccaagga aaaatgccag 300
 gagagcaaat aatgatgaaa aataaacttt tcccttggtt ttaatttca gaaaaaaatg 360
 atgaggacca aaatcaatga ataaggaaaa cagctcagaa aaaagatgtt tccaaattgg 420
 taattaagta tttgttcctt gggaaagagac ctccatgtga gcttgatggg aaaatggaa 480
 aaacgtcaaa agcatgatct gatcagatcc caaagtggat tattatttta aaaaccagat 540
 ggcacactc tggggaggca agttcaggaa ggtcatgtt gcaaaggaca taacaataac 600
 agcaaaatca aaattccgca aatgcaggag gaaaatgggg actgggaaag ctttcataac 660
 agtgattagg cagttgacca tggcgcaac acctccccgt ctataccagg gaacacaaaa 720
 attgactggg ctaaggctgg actttcaagg gaaatatgaa aaactgagag caaaacaaaa 780
 gacatggta aaaggcaacc agaacattgt gaggctcaa agcagcgtg cccctcagca 840
 gggaccctga ggcatttgcc tttaggaagg ccagtttct taaggaatct taagaaactc 900
 ttgaaagatc atgaattttt accattttaa gtataaaaca aatatgcgt gcataatcag 960
 tttagacatg ggtcccaatt ttataaagtc aggcatacaa ggataacgtg tcccagctcc 1020
 ggttaggtca gaaatcatta gaaatcactg tgcctccatc ctaactttt cagaatgatc 1080
 tgtcatagcc ctcacacaca ggcccgatgt gtctgacca caaccacatc tacaacccaa 1140
 gtgcctcaac cattgttaac gtgtcatctc agtaggtccc attacaaatg ccacccccc 1200
 tgtcagccc atcccgctcc acaggaagtc tcccccactct agacttctgc atcacgtgt 1260
 tacagccaga agtccgtga gggtaggggt ctgtgtctt cacctacctg tatgtctcac 1320
 acctgagctc actgcaaccc ctgcctccca ggttcaagca attctcctgt ctgcctcc 1380
 cgcgttagctg ggactacagg cgacaccccg gctaattttt gtattgttag tagagatgg 1440
 gtttcaccat attagcccg ctggtcttga actcctgacc tcaggtgtat caccaccc 1500
 agcctcccaa agtgcggaa ttacaggcat gagtcaccgc gcccggccaa ggtcagtgt 1560
 ttaataagga ataacttggaa tggttacta aaccaacagg gaaacagaca aaagctgtga 1620
 taatttcagg gattcttggg atggggatg gtgcctgag ctgcctgct agtcccagac 1680
 cactggtcct catcaacttc ttccctcatc ctcattttca ggctaaatgtt ccattttatt 1740
 caccatgctt ttgtggtaag cttccacatc gttactgaaa taagagtata cataaaactag 1800
 ttccattttgg ggcacatctgt gtgtgtgtat aggggaggag ggcataacccc agagactcct 1860
 tgaagccccc ggcacaggtt tcctctccag ctgggggagc cctgcaagca cccgggtcc 1920

A
Cont

gggtgttcct gagcaacctg ccagcccgta ccactggttt ttttgttata actctcttagg 1980
gacctgtgc tttctatttc tgttgactc gttcattcat ccaggcattc attgacaatt 2040
tattgagtagtac ttatatctgc cagacaccag agacaaaatg gtgagcaaag cagtcactgc 2100
cctacccctcg tggaggtgac agtttctcat ggaagacgtg cagaagaaaa ttaatagcca 2160
gccaacttaa acccagtgtc gaaagaaaagg aaataaacac catcttgaag aattgtgcgc 2220
agcatccctt aacaaggcca cctccctagc gccccctgct gcctccatcg tgccccggagg 2280
cccccaagcc cgagtcttcc aagcctcctc ctccatcagt cacagcgtc cagctggct 2340
gcctcgcttc cctgtaatcg tcctggtgca tctgagctgg agactccttgc gctccaggct 2400
ccagaaagga aatggagagg gaaactagtc taacggagaa tctggagggg acagtgttc 2460
ctcagaggga aaggggcctc cacgtccagg agaattccag gaggtggggg ctgcagggag 2520
tggggacgct ggggctgagc gggtgcgtgaa aggcaaggaag gtaaaaaggg caaggctgaa 2580
gctgcccaga ttttcgtgt tggtcacggg gctggagtt ttccgttgct tcctgtgagc 2640
cttttatct ttctctgtc tggaggagaa gaagtcttatt tcatgaaggg atgcagttc 2700
ataaagttagt cttttaaaat tccagggtgt gcatgggtt tccttcacga aggcctttat 2760
ttaatgggaa tataggaagc gagtcattt cctaggccgt taattcacgg aagaagtgac 2820
tggagtcattt tctttcatgt cttctggca actactcagc cctgtgggtt acttggctt 2880
tgcaagacgg tcgaaaaacct tggaatcagg agactcgtt ttcttctgg ttctgcccatt 2940
ggttggctgt ggcaccgtgg gcaagtgtct ctccttcct gggccatagt cttctctgtc 3000
ataaagaccc ttgcagctc cgtttctgt gaacacttcc ctgtgattct ctgtgagggg 3060
ggatgtttag aggggaagga ggcagagctg gagcagctga gccacagggg aggtggaggg 3120
ggacaggaag gcaggcagaa gctgggtgct ccatcagtc tcactgatca cgtcagactc 3180
caggaccgag agccacaatg cttagggaaa gctcaatgaa cccaaacagcc acattttct 3240
tccctaagca tagacaatgg catttgccaa taacaaaaaa gaatgcagag actaactggt 3300
ggtagcttt gcctggcatt caaaaactgg gccagagcaa gtggaaaatg ccagagattg 3360
ttaaactttt caccctgacc agcaccccac gcagctcagc agtgaactgtc gacagcacgg 3420
agtgaacctgc agcgcagggg aggagaagaa aaagagaggg atagtgtatg agcaagaaag 3480
acagattcat tcaagggcag tggaaattga ccacaggat tatagtccac gtgatcctgg 3540
gttcttaggag gcagggttat attgtggggg gaaaaaatca gttcaaggga agtcgggaga 3600
cctgatttct aatactataat tttccttta caagctgagt aattctgagc aagtccacaag 3660
gttagtaactg aggctgtaaat attacttagt ttctccttta taggaactct tttctctgt 3720
ggagtttagca gcacaaggcc aatcccgtt ctttaacag gaagaaaaca ttcctaagag 3780
taaagccaaa cagattcaag cctaggtctt gctgactata tgattgggtt tttgaaaaat 3840
catttcagcg atgttacta tctgattcaag aaaatgagac tagtaccctt tggtcagctg 3900
taaacaaca cccattttaa aatgtctcaa gttcaggctt aactgcagaa ccaatcaa 3960
aagaatagaa tcttttagagc aaactgtgtt tctccactct ggaggttgagt ctgccagggc 4020
agtttggaaa tatttacttc acaagtatttgc tgctcaaagg caatcattt ttctgat 4080
tttgcatttgc ttgcatttgc cttttgttt tttctcttgc ggattattaa cctacagtc agaaagcctg tggattttaaac
tatatttacc accttctaa taaatttac attttattcc ctcaaagtgg taataagagt acctgtgatt ttgtcattac
ttatactata ttacagtgt tgcaaggatc ttgttaagtga ctttggaaatt agacccctg ctggatcttgc ttttaacat
attttgatatt ttgtataatc atatttatttgc atcattttgtt atatatttgc aaacatctt ctgagaagag ttcccagat
catgcacaca cacagagtaa gaactgattt agaggtcaac tgcaagactg aaatttagaaa gttctcccaa agatacacag
agggggaaa tctgcccgtt ctataggaat gctccctg cttgtgttgc ggctggctgt tattttctc tgccctgct
ggatctccag ttccttagcat agtgcctggc acagtgcagg tgaatggaaa tataaacttag aatatatct ttgttgaaat
tgtaagtgtg tgcgtgtgtg tgcgtgtgtg tgcgtgtgtg ttttgttaaa gctaggggtg 4740
gagcctggta ggggtctgtc acgtcttaaa ggacttggtt 4800
ttctcaatga gtttgcagag cagcacacca gtagtcctgg 4980
tgtgtgtaaa accaggtgga 5040

gatataaggaa ctattattgg ggtatgggtg cataaaattgg gatgttcttt taaaaaagaa 5100
actccaaaca gacttctgga aggttatttt ctaagaatct tgctggcagc gtgaaggcaa 5160
ccccctgtg cacagccccca cccagcctca cgtggccacc tctgtcttcc cccatgaagg 5220
gctggctccc cagtatatat aaacctctct ggagctcgaa catgagccag caaggccacc 5280
catccaggca cctctcagca cagc 5304

<210> 3

<211> 6169

<212> DNA

<213> Homo sapiens

<400> 3

atctttgttc agtttacctc agggctatta tgaaatgaaa tgagataacc aatgtgaaag 60
tcctataaac tgtatagcct ccattcggat gtatgtctt ggcaggatga taaaagaatca 120
ggaagaagga gtatccacgt tagccaagtq tccaggctgt gtctgcttt atttttagtga 180
cagatgttc tcctgacaga agctattctt cagggaaacat cacatccaat atggtaaatc 240
catcaaacag gagctaagaa acaggaatga gatgggcact tgcccaagga aaaatgccag 300
gagagcaaat aatgatgaaa aataaaactt tcccttggg ttaatttca gaaaaaaatg 360
atgaggacca aaatcaatga ataaggaaaa cagctcagaa aaaagatgtt tccaaattgg 420
taattaagta ttgttcctt gggaaagagac ctccatgtga gcttgatggg aaaatgggaa 480
aaacgtcaaa agcatgatct gatcagatcc caaagtggat tatttttta aaaaccagat 540
gcatcactc tggggaggca agttcaggaa ggtcatgtt gcaaggaca taacaataac 600
agcaaaatca aaattccgca aatgcaggag gaaaatgggg actgggaaag ctttcataac 660
agtgatttagg cagttgacca tgttcgcaac acctcccggt ctataccagg gaacacaaaa 720
attgactggg ctaagcctgg actttcaagg gaaatatgaa aaactgagag caaaacaaaa 780
gacatggta aaaggcaacc agaacattgt gggcctcaa agcagcagtg cccctcagca 840
gggaccctga ggcatttgcc tttaggaagg ccagtttct taaggaatct taagaaactc 900
ttgaaagatc atgaatttta accatttta gtataaaaca aatatgcgt gcataatcag 960
tttagacatg ggtcccaatt ttataaagtct aggcatacaa ggataacgtg tccagctcc 1020
ggataggta gaaatcatta gaaatcactg tgcctccatc ctaactttt cagaatgatc 1080
tgtcatagcc ctcacacaca ggcccgatgt gtctgaccta caaccacatc tacaacccaa 1140
gtgcctcaac cattgttaac gtgtcatctc agtaggtccc attacaaatg ccacccccc 1200
tgtgcagccc atcccgctcc acaggaagtct tccctactt agacttctgc atcacgatgt 1260
tacagccaga agtccgtga gggtagggg ctgtgtctta cacctacctg tatgtctac 1320
acctgagctc actgcaaccc ctgcctccca ggtcaagca attctcctgt ctcagctcc 1380
cgcgtagctg ggactacagg cgacgccccg gctaattttt gtattgttag tagagatggg 1440
gtttcaccat attagcccg ctggtcttga actcctgacc tcaggtgatc caccaccc 1500
agcctcctaa agtgcggta ttacaggcat gagtcaccgc gcccggccaa gggcagtgt 1560
ttaataagga ataacttggaa tggttacta aaccaacagg gaaacagaca aaagctgtga 1620
taatttcagg gattttggg atggggatg gtccatgag ctgcctgcct agtcccagac 1680
cactggtcct catcaatttc ttccctcatc ctcatattca ggctaagtta ccattttt 1740
caccatgctt ttgtggtaag cttccacatc gttactgaaa taagagtata cataaaactag 1800
ttccatattgg ggccatctgt gtgtgttat aggggaggag ggcataaccc agagactcct 1860
tgaagcccccc ggcagaggtt tcctctccag ctggggagc cctgcaagca cccgggtcc 1920
tgggtgtcct gagaacactg ccagccccgtg ccactggtt tttgttatac actctctagg 1980
gacctgttgc tttctatttc tgtgtgactc gttcattcat ccaggcatcc attgacaatt 2040
tattgagttac ttatattctgc cagacaccag agacaaaatg gtgagcaaag cagtcactgc 2100
cctaccttcg tggaggtgac agtttctcat ggaagacgtg cagaagaaaa ttaatagcca 2160
gccaacttaa acccagtgt gaaagaaaagg aaataaacac catcttgaag aattgtgcgc 2220
agcatccctt aacaaggcca cttcccttagc gccccctgt gcctccatcg tgcccgagg 2280
cccccaagcc cgagtcttc aagccctctc ctccatcagt cacagcgctg cagctggcct 2340
gcctcgcttc ccgtaaatcg tcctggta tctgagctgg agactccctt gctccaggct 2400

A
Cont'

cagagcagag ccaggccatg tcagtcatcc ataacttaca gagagacagc agcacccaac 5580
gcttagacct ggaggccacc aaagctcgac tcagctccct ggagagccctc ctccaccaat 5640
tgaccttggc ccaggctgcc aggccccagg agacccagga ggggctgcag agggagctgg 5700
gcaccctgag gcgggagcgg gaccagctgg aaacccaaac cagagagttg gagactgcct 5760
acagcaacct cctccgagac aagttagttc tggaggaaga gaagaagcga ctaaggcaag 5820
aaaatgagaa tctggccagg aggttggaaa gcagcagcca ggaggttagca aggctgagaa 5880
ggggccagtg tccccagacc cgagacactg ctgggctgt gccaccaggc tccagagaag 5940
gtaagaatgc agagtgggg gactctgagt tcagcaggtg atatggctcg tagtgacctg 6000
ctacaggcgc tccaggectc cctgccctt ctcctagaga ctgcacagct agcacaagac 6060
agatgaatta agaaaagcac acgatcacct tcaagtattt cttagtaattt agtcctgag 6120
agttcattt agatttagtgg tttagtggccc ccatgtcag 6169

<210> 4

<211> 926

<212> DNA

<213> Homo sapiens

<400> 4

aaggtaggca cattgccctg caatttataa tttatgaggt gttcaattat ggaatttgtca 60
aatattaaca aaagttagaga gactacaatg aactccaatg tagccataac tcaggcccaa 120
ctgttatcag cacagtccaa tcatgtttt tcttcccttc tctgacccccc aacccatccc 180
cagtccttat ctAAAatcaa atatcaaaca ccatactctt tgggagccta tttatTTtagt 240
tagtttagtt tcagacagag tttctttttt gttcccaagc tggagtacaa tagtgttagtc 300
tcggctaaaca gcaatctccc cctccttggg tcaagcaatt ctcctgcctc agtctcccaa 360
gaagctggga ttatagacac ctgcccaccac atccagctaa tttttttgtg ttttagaaaa 420
gacagggttt caccatgtt gccaggctgg tttcgaactc ctgacctcag gtgatccgccc 480
tgcctcgccc tcccaaagtg ctgggattac aggcatgagc caccacgcct ggccggcagc 540
ctatTTaaat gtcatcctca acatagtcaa tccttggcc atttttttttt acagtaaaat 600
tttgcctctt tcttttaatc agtttctacg tggaaatttgg acactttggc cttccaggaa 660
ctgaagtccg agctaactga agttcctgct tcccgaattt tgaaggagag cccatctggc 720
tatctcagga gtggagaggg agacaccggg atgaagttaa gtttcttccc ttttgtgccc 780
acgtggctt tattcatgtc tagtgctgtg tttagagaat cagtagatggg taaatgccca 840
cccaagggggg aaatTAactt ccctgggagc agagggaggg gaggagaaga ggaacagaac 900
tctctctctc tctctgttac ctttgc 926

A
<210> 5

Cont.
<211> 2099

<212> DNA

<213> Homo sapiens

<400> 5

tggctctgcc aagcttccgc atgatcattt tctgtgtttt gaagattatg gattaagtgg 60
tgcttcgttt tctttctgaa tttaccagga tggagaaac tagttgggtt aggagagcct 120
ctcacgctga gaacagcaga aacaattact ggcaagttt gtgtgtggat gcgagacccc 180
aagcccacct accctacac ccaggagacc acgtggagaa tcgacacagt tggcacggat 240
gtccgcccagg tttttagta tgacccatc agccagttt tgcagggtca cccttctaag 300
gttacacatac tgccttaggcc actggaaac acgggtgtt tgggttactc ggggagcctc 360
tatttccagg gcgtctgatc cagaactgtc ataagatatg agctgaatac cgagacagtgg 420
aaggctgaga agggaaatccc tggagctggc taccacggac agttcccgta ttcttgggg 480
ggctacacgg acattgactt ggctgtggat gaagcaggcc tctgggtcat ttacagcacc 540
gatgaggcca aagggtgccat tgcctctcc aaactgaacc cagagaatct ggaactcgaa 600
caaacctggg agacaaacat ccgtaaagcag tcagtcgcca atgccttcat catctgtggc 660

accttgtaca ccgtcagcag ctacaccta gcagatgcta ccgtcaactt tgcttatgac 720
acaggcacag gtatcagcaa gaccctgacc atcccattca agaaccgcta taagtacagc 780
agcatgattt actacaaccc cctggagaag aagctcttg cctgggacaa cttgaacatg 840
gtcaacttatg acatcaagct ctccaagatg taaaagcct ccaagctgta caggcaatgg 900
cagaaggaga tgctcagggc tcctgggggg agcaggctga agggagagcc agccagccag 960
ggcccaggca gctttgactg ctttcaagt ttcattaat ccagaaggat gaacatggtc 1020
accatctaac tattcaggaa ttgttagtctg agggcgtaga caatttcata taataaataat 1080
cctttatctt ctgtcagcat ttatgggatg ttaatgaca tagttcaagt ttcttgtga 1140
tttggggcaa aagctgttaag gcataatagt ctttcctga aaaccattgc tcttgcattgt 1200
tacatggta ccacaagcca caataaaaag cataacttct aaaggaagca gaatagctcc 1260
tctggccagc atcgaatata agtaagatgc atttactaca gttggcttct aatgcttcag 1320
atagaataca gttgggtctc acataaccct tacattgtga aataaaaattt tcttacccaa 1380
cgttctcttc cttgaactt gtgggaatct ttgcttaaga gaaggatata gattccaacc 1440
atcaggtaat tccttcaggt tgggagatgt gattgcagga ttttgggtt gtgtgtgtgt 1500
gtgtgtgtgt gtgtgttaact gagaggcttgc cgcctggtt tgagggtctg cccaggatga 1560
cgccaaagcaa atagcgcatac cacacttcc cacccatc tcctgggtgt ctccggacta 1620
ccggagcaat cttccatct ctccccctgaa cccaccctct attcaccctta actccacttc 1680
agtttgcttt tgatttttt tttttttt tttttttt gagatgggtt ctcgctctgt 1740
cacccaggct ggagtgcagt ggcacgatct cggctcaactg caagttccgc ctccagggtt 1800
cacaccattc tcctgcctca gcctcccaag tagctggac tacaggcacc tgccaccacg 1860
cctggctaat tttttttt tccagtgaag atgggttca ccatgttagc caggatggtc 1920
tcgatctcct gacttgtca tccacccacc ttggcctccc aaagtgcctgg gattacaggc 1980
gtgagccacc acgcccagcc cctccacttc agtttttatac tgcattcagg ggtatgaatt 2040
ttataagcca cacctcaggt ggagaaaagct tgcattcagg cttgagttt ctatactgt 2099

<210> 6

<211> 19

<212> DNA

<213> Homo sapiens

<400> 6

tgaggcttcc tctggaaac

19

<210> 7

<211> 20

<212> DNA

<213> Homo sapiens

<400> 7

tgaaatcagc acaccagtag

20

<210> 8

<211> 21

<212> DNA

<213> Homo sapiens

<400> 8

gcacccatac cccaaataata g

21

<210> 9

<211> 20

<212> DNA

<213> Homo sapiens

<400> 9
agagttcccc agatttcacc 20

<210> 10
<211> 20
<212> DNA
<213> Homo sapiens

<400> 10
atctgggaa ctcttctcag 20

<210> 11
<211> 19
<212> DNA
<213> Homo sapiens

<400> 11
tacagttgtt gcagatacg 19

<210> 12
<211> 21
<212> DNA
<213> Homo sapiens

<400> 12
acaacgtatc tgcaacaact g 21

<210> 13
<211> 20
<212> DNA
<213> Homo sapiens

<400> 13
tcaggcttaa ctgcagaacc 20

a
com

<210> 14
<211> 19
<212> DNA
<213> Homo sapiens

<400> 14
ttggttctgc agttaagcc 19

<210> 15
<211> 19
<212> DNA
<213> Homo sapiens

<400> 15
agcagcacaa gggcaatcc 19

<210> 16
<211> 18
<212> DNA
<213> Homo sapiens

<400> 16
acagggctat attgtggg 18

<210> 17
<211> 19
<212> DNA
<213> Homo sapiens

<400> 17
cctgagatgc cagctgtcc 19

<210> 18
<211> 20
<212> DNA
<213> Homo sapiens

<400> 18
ctgaaggcatt agaagccaac 20

<210> 19
<211> 20
<212> DNA
<213> Homo sapiens

<400> 19
accttggacc aggctgccag 20

a
cont

<210> 20
<211> 19
<212> DNA
<213> Homo sapiens

<400> 20
aggtttgttc gagttccag 19

<210> 21
<211> 20
<212> DNA
<213> Homo sapiens

<400> 21
acaattactg gcaagtatgg 20

<210> 22
<211> 19
<212> DNA

<213> Homo sapiens
 <400> 22
 ccttctcagc cttgctacc 19
 <210> 23
 <211> 20
 <212> DNA
 <213> Homo sapiens
 <400> 23
 acacacctcagc agatgctacc 20
 <210> 24
 <211> 19
 <212> DNA
 <213> Homo sapiens
 <400> 24
 atggatgact gacatggcc 19
 <210> 25
 <211> 19
 <212> DNA
 <213> Homo sapiens
 <400> 25
 aaggatgaac atggtcacc 19
 <210> 26
 <211> 1548
 <212> DNA
 <213> Homo sapiens
 <400> 26
 agagctttcc agaggaagcc tcaccaagcc tctgcaatga gtttcttctg tgcacgttgc 60
 tgcaagcttg ggctctgagat gccagctgtc cagctgctgc ttctggcctg cctgggtgtgg 120
 gatgtggggg ccaggacagc tcagctcagg aaggccaatg accagagtgg ccgatgccag 180
 tataccttca gtgtggccag tcccaatgaa tccagctgcc cagagcagag ccaggccatg 240
 tcagtcatcc ataaacttaca gagagacagc agcaccac gcttagacact ggaggccacc 300
 aaagctcgac tcagctccct ggagagcctc ctccaccaat tgaccttgaa ccaggctgcc 360
 aggccccagg agacccagga ggggctgcag agggagctgg gcaccctgag gcgggagcgg 420
 gaccagctgg aaacccaaac cagagagttg gagactgcct acagcaacct cttccgagac 480
 aagtcaagtcc tggaggaaga gaagaagcga ctaaggcaag aaaatgagaa tctggccagg 540
 aggttggaaa gcagcagccaa ggaggttagca aggctgagaa ggggcccagtg tccccagacc 600
 cgagacactg ctggggctgt gccaccaggc tccagagaag tttctacgtg gaatttggac 660
 actttggcct tccaggaact gaagtccgag ctaactgaag ttctgtctc ccgaattttg 720
 aaggagagcc catctggcta tctcaggagt ggagagggag acaccggatg tggagaacta 780
 gtttgggttag gagagcctct cacgctgaga acagcagaaaa caattactgg caagtatgg 840
 gtgtggatgc gagaccccaa gcccacctac ccctacaccc aggagaccac gtggagaatc 900
 gacacagttg gcacggatgt ccgccagggtt tttgagatg acctcatcag ccagtttatg 960
 cagggctacc cttctaaggt tcacatactg ccttaggccac tggaaagcac gggtgctgtg 1020

*A
Cont*

gtgtactcg ggagcctcta tttccaggc gctgagtcca gaactgtcat aagatatgag 1080
ctgaataccg agacagtcaa ggctgagaag gaaatccctg gagctggcta ccacggacag 1140
ttccccgtatt cttggggtgg ctacacggac attgacttgg ctgtggatga agcaggcctc 1200
tgggtcattt acagcaccga tgaggccaaa ggtgccattg tcctctccaa actgaaccca 1260
gagaatctgg aactcgaaca aacctggag acaaacatcc gtaagcagtc agtcgccaat 1320
gccttcatca tctgtggcac cttgtacacc gtcagcagct acacctcagc agatgctacc 1380
gtcaactttg cttatgacac aggacacaggt atcagcaaga ccctgaccat cccattcaag 1440
aaccgctata agtacagcag catgattgac tacaaccccc tggagaagaa gctctttgcc 1500
tggacaact tgaacatggt cacttatgac atcaagctct ccaagatg 1548

<210> 27

<211> 178

<212> PRT

<213> Homo sapiens

<400> 27

Thr Gly Ala Val Val Tyr Ser Gly Ser Leu Tyr Phe Gln Gly Ala Glu
1 5 10 15
Ser Arg Thr Val Ile Arg Tyr Glu Leu Asn Thr Glu Thr Val Lys Ala
20 25 30
Glu Lys Glu Ile Pro Gly Ala Gly Tyr His Gly Gln Phe Pro Tyr Ser
35 40 45
Trp Gly Gly Tyr Thr Asp Ile Asp Leu Ala Val Asp Glu Ala Gly Leu
50 55 60
Trp Val Ile Tyr Ser Thr Asp Glu Ala Lys Gly Ala Ile Val Leu Ser
65 70 75 80
Lys Leu Asn Pro Glu Asn Leu Glu Leu Glu Gln Thr Trp Glu Thr Asn
85 90 95
Ile Arg Lys Gln Ser Val Ala Asn Ala Phe Ile Ile Cys Gly Thr Leu
100 105 110
Tyr Thr Val Ser Ser Tyr Thr Ser Ala Asp Ala Thr Val Asn Phe Ala
115 120 125
Tyr Asp Thr Gly Thr Gly Ile Ser Lys Thr Leu Thr Ile Pro Phe Lys
130 135 140
Asn Arg Tyr Lys Tyr Ser Ser Met Ile Asp Tyr Asn Pro Leu Glu Lys
145 150 155 160
Lys Leu Phe Ala Trp Asp Asn Leu Asn Met Val Thr Tyr Asp Ile Lys
165 170 175
Leu Ser

A
l
Ant.

<210> 28

<211> 131

<212> PRT

<213> Homo sapiens

<400> 28

Arg Phe Asp Leu Lys Thr Glu Thr Ile Leu Lys Thr Arg Ser Leu Asp
1 5 10 15
Tyr Ala Gly Tyr Asn Asn Met Tyr His Tyr Ala Trp Gly Gly His Ser
20 25 30
Asp Ile Asp Leu Met Val Asp Glu Ser Gly Leu Trp Ala Val Tyr Ala
35 40 45

Thr Asn Gln Asn Ala Gly Asn Ile Val Val Ser Arg Leu Asp Pro Val
50 55 60
Ser Leu Gln Thr Leu Gln Thr Trp Asn Thr Ser Tyr Pro Lys Arg Xaa
65 70 75 80
Pro Gly Xaa Ala Phe Ile Ile Cys Gly Thr Cys Tyr Val Thr Asn Gly
85 90 95
Tyr Ser Gly Gly Thr Lys Val His Tyr Ala Tyr Gln Thr Asn Ala Ser
100 105 110
Thr Tyr Glu Tyr Ile Asp Ile Pro Phe Gln Asn Lys Leu Xaa Pro His
115 120 125
Phe Pro Cys
130

<210> 29

<211> 178

<212> PRT

<213> Rattus norvegicus

<400> 29

Gly Thr Gly Gln Val Val Tyr Asn Gly Ser Ile Tyr Phe Asn Lys Phe
1 5 10 15
Gln Ser His Ile Ile Ile Arg Phe Asp Leu Lys Thr Glu Thr Ile Leu
20 25 30
Lys Thr Arg Ser Leu Asp Tyr Ala Gly Tyr Asn Asn Met Tyr His Tyr
35 40 45
Ala Trp Gly Gly His Ser Asp Ile Asp Leu Met Val Asp Glu Asn Gly
50 55 60
Leu Trp Ala Val Tyr Ala Thr Asn Gln Asn Ala Gly Asn Ile Val Ile
65 70 75 80
Ser Lys Leu Asp Pro Val Ser Leu Gln Ile Leu Gln Thr Trp Asn Thr
85 90 95
Ser Tyr Pro Lys Arg Ser Ala Gly Glu Ala Phe Ile Ile Cys Gly Thr
100 105 110
Leu Tyr Val Thr Asn Gly Tyr Ser Gly Gly Thr Lys Val His Tyr Ala
115 120 125
Tyr Gln Thr Asn Ala Ser Thr Tyr Glu Tyr Ile Asp Ile Pro Phe Gln
130 135 140
Asn Lys Tyr Ser His Ile Ser Met Leu Asp Tyr Asn Pro Lys Asp Arg
145 150 155 160
Ala Leu Tyr Ala Trp Asn Asn Gly His Gln Thr Leu Tyr Asn Val Thr
165 170 175
Leu Phe

<210> 30

<211> 177

<212> PRT

<213> Rana catesbeiana

<400> 30

Gly Ala Gly Val Val Val His Asn Asn Asn Leu Tyr Tyr Asn Cys Phe
1 5 10 15
Asn Ser His Asp Met Cys Arg Ala Ser Leu Thr Ser Gly Val Tyr Gln

20 25 30

Lys Lys Pro Leu Leu Asn Ala Leu Phe Asn Asn Arg Phe Ser Tyr Ala
35 40 45

Gly Thr Met Phe Gln Asp Met Asp Phe Ser Ser Asp Glu Lys Gly Leu
50 55 60

Trp Val Ile Phe Thr Thr Glu Lys Ser Ala Gly Lys Ile Val Val Gly
65 70 75 80

Lys Val Asn Val Ala Thr Phe Thr Val Asp Asn Ile Trp Ile Thr Thr
85 90 95

Gln Asn Lys Ser Asp Ala Ser Asn Ala Phe Met Ile Cys Gly Val Leu
100 105 110

Tyr Val Thr Arg Ser Leu Gly Pro Lys Met Glu Glu Val Phe Tyr Met
115 120 125

Phe Asp Thr Lys Thr Gly Lys Glu Gly His Leu Ser Ile Met Met Glu
130 135 140

Lys Met Ala Glu Lys Val His Ser Leu Ser Tyr Asn Ser Asn Asp Arg
145 150 155 160

Lys Leu Tyr Met Phe Ser Glu Gly Tyr Leu Leu His Tyr Asp Ile Ala
165 170 175

Leu

<210> 31

<211> 74

<212> PRT

<213> Artificial sequence

<220>

<223> Consensus homology of SEQ ID NO: 27, 28, 29 and 30

<400> 31

Gly Val Val Tyr Ser Arg Leu Thr Glu Thr Leu Ala Gly Tyr Asn Asn
1 5 10 15

Tyr Ala Trp Gly Gly Asp Ile Asp Leu Val Asp Glu Gly Leu Trp Tyr
20 25 30

Thr Ala Gly Ile Val Ser Lys Leu Pro Leu Gln Thr Trp Thr Lys Ala
35 40 45

Phe Ile Ile Cys Gly Thr Leu Tyr Val Thr Tyr Val Tyr Ala Tyr Thr
50 55 60

Ile Tyr Asp Tyr Asn Pro Lys Leu Tyr Leu
65 70

<210> 32

<211> 504

<212> PRT

<213> Homo sapiens

<400> 32

Met Arg Phe Phe Cys Ala Arg Cys Cys Ser Phe Gly Pro Glu Met Pro
1 5 10 15

Ala Val Gln Leu Leu Leu Leu Ala Cys Leu Val Trp Asp Val Gly Ala
20 25 30

Arg Thr Ala Gln Leu Arg Lys Ala Asn Asp Gln Ser Gly Arg Cys Gln

35 40 45
 Tyr Thr Phe Ser Val Ala Ser Pro Asn Glu Ser Ser Cys Pro Glu Gln
 50 55 60
 Ser Gln Ala Met Ser Val Ile His Asn Leu Gln Arg Asp Ser Ser Thr
 65 70 75 80
 Gln Arg Leu Asp Leu Glu Ala Thr Lys Ala Arg Leu Ser Ser Leu Glu
 85 90 95
 Ser Leu Leu His Gln Leu Thr Leu Asp Gln Ala Ala Arg Pro Gln Glu
 100 105 110
 Thr Gln Glu Gly Leu Gln Arg Glu Leu Gly Thr Leu Arg Arg Glu Arg
 115 120 125
 Asp Gln Leu Glu Thr Gln Thr Arg Glu Leu Glu Thr Ala Tyr Ser Asn
 130 135 140
 Leu Leu Arg Asp Lys Ser Val Leu Glu Glu Lys Lys Arg Leu Arg
 145 150 155 160
 Gln Glu Asn Glu Asn Leu Ala Arg Arg Leu Glu Ser Ser Ser Gln Glu
 165 170 175
 Val Ala Arg Leu Arg Arg Gly Gln Cys Pro Gln Thr Arg Asp Thr Ala
 180 185 190
 Arg Ala Val Pro Pro Gly Ser Arg Glu Val Ser Thr Trp Asn Leu Asp
 195 200 205
 Thr Leu Ala Phe Gln Glu Leu Lys Ser Glu Leu Thr Glu Val Pro Ala
 210 215 220
 Ser Arg Ile Leu Lys Glu Ser Pro Ser Gly Tyr Leu Arg Ser Gly Glu
 225 230 235 240
 Gly Asp Thr Gly Cys Gly Glu Leu Val Trp Val Gly Glu Pro Leu Thr
 245 250 255
 Leu Arg Thr Ala Glu Thr Ile Thr Gly Lys Tyr Gly Val Trp Met Arg
 260 265 270
 Asp Pro Lys Pro Thr Tyr Pro Tyr Thr Gln Glu Thr Thr Trp Arg Ile
 275 280 285
 Asp Thr Val Gly Thr Asp Val Arg Gln Val Phe Glu Tyr Asp Leu Ile
 290 295 300
 Ser Gln Phe Met Gln Gly Tyr Pro Ser Lys Val His Ile Leu Pro Arg
 305 310 315 320
 Pro Leu Glu Ser Thr Gly Ala Val Val Tyr Ser Gly Ser Leu Tyr Phe
 325 330 335
 Gln Gly Ala Glu Ser Arg Thr Val Ile Arg Tyr Glu Leu Asn Thr Glu
 340 345 350
 Thr Val Lys Ala Glu Lys Glu Ile Pro Gly Ala Gly Tyr His Gly Gln
 355 360 365
 Phe Pro Tyr Ser Trp Gly Gly Tyr Thr Asp Ile Asp Leu Ala Val Asp
 370 375 380
 Glu Ala Gly Leu Trp Val Ile Tyr Ser Thr Asp Glu Ala Lys Gly Ala
 385 390 395 400
 Ile Val Leu Ser Lys Leu Asn Pro Glu Asn Leu Glu Leu Glu Gln Thr
 405 410 415
 Trp Glu Thr Asn Ile Arg Lys Gln Ser Val Ala Asn Ala Phe Ile Ile
 420 425 430
 Cys Gly Thr Leu Tyr Thr Val Ser Ser Tyr Thr Ser Ala Asp Ala Thr
 435 440 445
 Val Asn Phe Ala Tyr Asp Thr Gly Thr Gly Ile Ser Lys Thr Leu Thr

A
 cont

450	455	460
Ile Pro Phe Lys Asn Arg Tyr Lys Tyr Ser Ser Met Ile Asp Tyr Asn		
465	470	480
Pro Leu Glu Lys Lys Leu Phe Ala Trp Asp Asn Leu Asn Met Val Thr		
	485	495
Tyr Asp Ile Lys Leu Ser Lys Met		
	500	

<210> 33

<211> 20

<212> DNA

<213> Homo sapiens

<400> 33

caaacagact tccggaagg

20

<210> 34

<211> 5271

<212> DNA

<213> Homo sapiens

<400> 34

atctttgttc	agtttacctc	agggttattta	tgaaatgaaa	ttagataacc	aatgtgaaag	60
tcctataaac	tgtatagcct	ccattcgat	gtatgtcttt	ggcaggatga	taaagaatca	120
ggaagaagga	gtatccacgt	tagccaagt	tccaggctgt	gtctgctctt	attttagtga	180
cagatgttc	tcctgacaga	agctattctt	caggaacat	cacatccaat	atgttaaatc	240
catcaaacag	gagctaagaa	acaggaatga	gatgggcact	tgcacaagga	aaaatgccag	300
gagagcaaat	aatgatgaaa	aataaacttt	tcccttggtt	ttaatttca	ggaaaaaatg	360
atgaggacca	aaatcaatga	ataaggaaaa	cagctcagaa	aaaagatgtt	tccaaattg	420
taattaagta	tttggcctt	gggaagagac	ctccatgtga	gcttgatggg	aaaatggaa	480
aaacgtcaaa	agcatgatct	gatcagatcc	caaagtggat	tattatTTA	aaaaccagat	540
ggcatcactc	tggggaggca	agttcaggaa	ggtcatgtta	gcaaggacaa	taacaataac	600
agcaaaaatca	aaattccgca	aatgcaggag	gaaaatgggg	actgggaaag	cttcataac	660
agtgatttag	cagttgacca	ttttcgcaac	acctccccgt	ctataccagg	gaacacaaaa	720
attgactggg	ctaagcctgg	actttcaagg	gaaatatgaa	aaactgagag	caaaacaaaa	780
gacatggta	aaaggcaacc	agaacattgt	gagcctcaa	agcagcagt	cccctcagca	840
gggaccctga	ggcatttgcc	tttaggaagg	ccagtttct	taaggaatct	taagaaactc	900
ttgaaagatc	atgaatttta	accattttaa	gtataaaaaca	aatatgcgt	gcataatcag	960
tttagacatg	ggtcccaatt	ttataaagt	aggcatacaa	ggataacgt	tcccgctcc	1020
ggatagggtca	gaaatcatta	gaaatcactg	tgtccccatc	ctaactttt	cagaatgatc	1080
tgtcatagcc	ctcacacaca	ggcccgatgt	gtctgaccta	caaccacatc	tacaacccaa	1140
gtgcctcaac	cattgttaac	gtgtcatctc	agtaggtccc	attacaaatg	ccacccccc	1200
tgtgcagccc	atcccgctcc	acaggaagt	tccccactct	agacttctgc	atcacgatgt	1260
tacagccaga	agctccgt	gggtgagggt	ctgtgtctt	cacctacctg	tatgtctac	1320
acctgagctc	actgcaac	ctgcctccca	ggttcaagca	attctcctgt	ctcagcctcc	1380
cgcgttagctg	ggactacagg	cgcaccccc	gctaatttt	gtattgttag	tagagatggg	1440
gtttcaccat	attagcccgg	ctggtcttga	actcctgacc	tcaaggatc	caccaccc	1500
agcctcctaa	agtgcgtgg	ttacaggcat	gagtcaccgc	gcccggccaa	gggtcagtgt	1560
ttaataagga	ataacttgaa	tggttacta	aaccaacagg	gaaacagaca	aaagctgtga	1620
taatttcagg	gattcttggg	atggggatg	gtgccatgag	ctgcctgcct	agtcccagac	1680
cactggtcct	catcaacttc	ttccctcatc	ctcattttca	ggctaagtt	ccatTTTatt	1740
caccatgctt	tttgtggtaag	cctccacatc	gttactgaaa	taagagtata	cataaactag	1800

I
a
Cont

ttccatttgg ggccatctgt gtgtgttat aggggaggag ggcatacccc agagactct 1860
tgaagccccc ggcagaggtt tcctctccag ctgggggagc cctgcaagca cccggggtc 1920
tgggtgtcct gagcaacctg ccagccctg ccactggtg ttttgttac actctctagg 1980
gacctgtgc tttctatttc tggtgtactc gttcattcat ccaggcattc attgacaatt 2040
tattgagtac ttatatctgc cagacaccag agacaaaatg gtgagcaaag cagtcactgc 2100
cctacccctcg tggaggtgac agtttctcat ggaagacgtg cagaagaaaa ttaatagcca 2160
gccaacttaa acccagtgt gaaagaaaagg aaataaacac catcttgaag aattgtgcgc 2220
agcatccctt aacaaggcca cctcccttagc gccccctgct gcctccatcg tgcccccgg 2280
cccccaagcc cgagtcttc aagcctcctc ctccatcagt cacagcgtc cagctggcct 2340
gcctcgcttc ccgtgaatcg tcctggtgca tctgagctgg agactccttgc gctccaggct 2400
ccagaaagga aatggagagg gaaactagtc taacggagaa tctggagggg acagtgtttc 2460
ctcagaggg aaggggcctc cacgtccagg agaattccag gaggtgggga ctgcagggg 2520
tggggacgct ggggctgagc gggtgctgaa aggcaaggaag gtgaaaaggg caaggctgaa 2580
gctgcccaga tgttcagtt tgttcacggg gctggagtt ttccgttgc tcctgtgagc 2640
cttttatct tttctctgt tgaggagaaa gaagtctatt tcatgaaggg atgcagttc 2700
ataaagtca gttaaaaat tccagggtgt gcatgggtt tccttcacga aggcctttat 2760
ttaatggaa tataggaagc gagtcattt cctaggccgt taattcacgg aagaagtgc 2820
tggagtctt tcttcatgt cttctggca actactcagc cctgtggtgg acttggctta 2880
tgcaagacgg tcgaaaacct tggaatcagg agactcggtt ttctttctgg ttctgccatt 2940
ggttggctgt gcgaccgtgg gcaagtgtct ctcctccct gggccatagt cttctctgct 3000
ataaagaccc ttgcagctct cgtgttctgt gaacacttcc ctgtgattct ctgtgagggg 3060
ggatgtttag gggggaaagga ggcagagctg gagcagctga gccacagggg aggtggaggg 3120
ggacaggaag gcaggcagaa gctgggtgct ccatcagtcc tcactgatca cgtcagactc 3180
caggaccgg agccacaatg cttcaggaaa gctcaatgaa cccaacagcc acatttcct 3240
tccctaagca tagacaatgg cattgccaa taacaaaaaa gaatgcagag actaactggt 3300
ggttagcttt gcctggcatt caaaaactgg gccagagcaa gtggaaaatg ccagagattg 3360
ttaaactttt caccctgacc agcacccccac gcagctcagc agtgaactgct gacagcacgg 3420
agtgacctgc agcgcagggg aggagaagaa aaagagaggg atagtgtatg agcaagaaag 3480
acagattcat tcaagggcag tggaattga ccacagggat tatagtccac gtgatcctgg 3540
gttctaggag gcagggttat attgtggggg gaaaaaatca gttcaaggga agtcgggaga 3600
cctgatttct aatactatat tttccttta caagctgagt aattctgagc aagtccaaag 3660
gttagtaactg aggctgttaag attacttagt ttctccttat taggaactct tttctctgt 3720
ggagtttagca gcacaagggc aatcccgtt ctttaacag gaagaaaaca ttccctaagag 3780
taaagccaaa cagattcaag cctaggtctt gctgactata tgattggtt ttgaaaaat 3840
catttcagcg atgtttacta tctgattcag aaaatgagac tagtaccctt tggcagctg 3900
taaacaaca cccagttta aatgtctcaa gttcaggctt aactgcagaa ccaatcaaaa 3960
agaatagaat cttagagca aactgtgttt ctccacatct ggaggtgagt ctgccaggc 4020
agtttggaaa tatttacttc acaagtattg acactgtgt tggattaaac aacataaaatg 4080
tgctcaaagg caatcattat ttcaagtggc taaaagttac ttctgacagt ttggtatat 4140
ttattggcta ttgcatttg cttttgttt tttctcttg gtttattaa tgtaaagcag 4200
ggattattaa cctacagtcc agaaagcctg tgaatttga tgagaaaaaa attacatttt 4260
tgttttacc accttctaac taaatttaac attttattcc attgcgaata gagccataaa 4320
ctcaaagtgg taataacagt acctgtgatt ttgtcattac caatagaaat cacagacatt 4380
ttatactata ttacagtgt tgtagatcag ttgtaaatgaa aatatttata ctc当地 4440
ctttgaaatt agacccctcg ctggatctt ttttaacat atttgcataaa catgtttaaa 4500
atttgatata ttgataatc atatttcatc atcatttgc tcccttgc tctatatttt 4560
atataatttga aacatcttt ctgagaagag ttccccagat ttcaccaatg aggttcttgg 4620
catgcacaca cacagagtaa gaactgattt agaggctaac attgacattg gtgcctgaga 4680
tgcaagactg aaatttagaaa gttctcccaa agatacacag ttgtttaaa gctaggggtg 4740
agggggaaa tctcccgctt ctataggaat gctccctcg gaggcctggta gggtgctgtc 4800
cttgcgttct ggctggctgt tattttctc tgcctgtct acgtctaaa ggactgttt 4860
ggatctccag ttccatgt gtcctggc acagtgcagg ttctcaatga gtttgcagag 4920

tgaatggaaa tataaactag aaatatatcc ttgttcaaata cagcacacca gtagtcctgg 4980
tgtaagtgtg tgtacgtgtg tgtgtgtgtg tgtgtgtgtg tgtaaaacca ggtggagata 5040
taggaactat tattggggta tgggtgcata aattgggatg ttcttttaa aaagaaactc 5100
caaacagact tctggaaagg tattttctaa gaatctgtc ggcagcgtga aggcaacccc 5160
cctgtgcaca gccccaccca gcctcacgtg gccacctctg tcttccccca tgaagggctg 5220
gctccccagt atatataaac ctctctggag ctgggcatg agccagcaag g 5271

<210> 35

<211> 19

<212> DNA

<213> Homo sapiens

<400> 35

aactattatt ggggtatgg

19

a
cont
<210> 36

<211> 19

<212> DNA

<213> Homo sapiens

<400> 36

ttggtgaggg ttcctctgg

19