SEARCHING AND SORTING ALGORITHMS

SEARCH ALGORITHMS

- search algorithm method for finding an item or group of items with specific properties within a collection of items
- collection could be implicit
 - example find square root as a search problem
 - exhaustive enumeration
 - bisection search
 - Newton-Raphson
- collection could be explicit
 - example is a student record in a stored collection of data?

SEARCHING ALGORITHMS

- linear search
 - brute force search
 - list does not have to be sorted
- bisection search
 - list MUST be sorted to give correct answer
 - will see two different implementations of the algorithm

LINEAR SEARCH ON UNSORTED LIST

```
def linear_search(L, e):
    found = False
    for i in range(len(L)):
        if e == L[i]:
            found = True
        return found

def linear_search(L, e):
        found = False
        found = False
        speed up a little by
        speed up a little by
```

- must look through all elements to decide it's not there
- O(len(L)) for the loop * O(1) to test if e == L[i]
- overall complexity is O(n) where n is len(L)

Assumes we constant retrieve element of list in constant of list in constant

CONSTANT TIME LIST ACCESS

6.00.01X LECTURE

LINEAR SEARCH ON **SORTED** LIST

```
def search(L, e):
    for i in range(len(L)):
        if L[i] == e:
            return True
        if L[i] > e:
            return False
    return False
```

- must only look until reach a number greater than e
- O(len(L)) for the loop * O(1) to test if e == L[i]
- overall complexity is O(n) where n is len(L)

USE BISECTION SEARCH

- 1. Pick an index, i, that divides list in half
- 2. Ask if L[i] == e
- 3. If not, ask if L[i] is larger or smaller than e
- 4. Depending on answer, search left or right half of \perp for \in

A new version of a divide-and-conquer algorithm

- Break into smaller version of problem (smaller list), plus some simple operations
- Answer to smaller version is answer to original problem

BISECTION SEARCH COMPLEXITY ANALYSIS

finish looking through list when

$$1 = n/2^{i}$$

so i = log n

complexity isO(log n) –where n is len(L)

BISECTION SEARCH IMPLEMENTATION 1

```
constant
def bisect search1(L, e):
                             0(1)
    if L == []:
                            constant
         return False
    elif len(L) == 1:
                             0(1)
                                             NOT constant,
copies list
         return L[0] == e
    else:
                                   0(1)
         half = len(L)//2
                                                       NOT constant
         if L[half] > e:
             return bisect search1([L[:half], e)
                                                        NOT constant
         else:
             return bisect search1( L[half:], e)
```

BISECTION SEARCH IMPLEMENTATION 2

```
def bisect search2(L, e):
    def bisect search helper(L, e, low, high):
        if high == low:
            return L[low] == e
        mid = (low + high)//2
        if L[mid] == e:
            return True
                                                         NOT constant
        elif L[mid] > e:
            if low == mid: #nothing left to search
                return False
            else:
                return bisect search helper(L, e, low, mid - 1)
        else:
                                                          NOT constant
            return bisect search helper(L, e, mid + 1, high)
    if len(L) == 0:
       return False
    else:
        return bisect search helper(L, e, 0, len(L) - 1)
```

COMPLEXITY OF THE TWO BISECTION SEARCHES

Implementation 1 – bisect_search1

- O(log n) bisection search calls
- O(n) for each bisection search call to copy list
- → O(n log n)
- → O(n) for a tighter bound because length of list is halved each recursive call
- Implementation 2 bisect_search2 and its helper
 - pass list and indices as parameters
 - list never copied, just re-passed
 - → O(log n)

SEARCHING A SORTED LIST -- n is len(L)

- using linear search, search for an element is O(n)
- using binary search, can search for an element in O(logn)
 - assumes the list is sorted!
- when does it make sense to sort first then search?
 - $SORT + O(\log n) < O(n)$ $\rightarrow SORT < O(n) O(\log n)$
 - when sorting is less than O(n) \rightarrow never true!

AMORTIZED COST -- n is len(L)

- why bother sorting first?
- in some cases, may sort a list once then do many searches
- AMORTIZE cost of the sort over many searches
- SORT + K*O(log n) < K*O(n)
 - → for large K, **SORT time becomes irrelevant**

6.00.01X LECTURE 15

MONKEY SORT

- aka bogosort, stupid sort, slowsort, permutation sort, shotgun sort
- to sort a deck of cards
 - throw them in the air
 - pick them up
 - are they sorted?
 - repeat if not sorted

COMPLEXITY OF BOGO SORT

```
def bogo_sort(L):
    while not is_sorted(L):
        random.shuffle(L)
```

- best case: O(n) where n is len(L) to check if sorted
- worst case: O(?) it is unbounded if really unlucky

6.00.01X LECTURE 18

BUBBLE SORT

- compare consecutive pairs of elements
- swap elements in pair such that smaller is first
- when reach end of list,start over again
- stop when no moreswaps have been made

CC-BY Hydrargyrum https://commons.wikimedia.org/wiki/File:Bubble_sort_animation.gif

COMPLEXITY OF BUBBLE SORT

- inner for loop is for doing the comparisons
- outer while loop is for doing multiple passes until no more swaps
- O(n²) where n is len(L) to do len(L)-1 comparisons and len(L)-1 passes

20

6.00.01X LECTURE 21

SELECTION SORT

- first step
 - extract minimum element
 - swap it with element at index 0
- subsequent step
 - in remaining sublist, extract minimum element
 - swap it with the element at index 1
- keep the left portion of the list sorted
 - at ith step, first i elements in list are sorted
 - all other elements are bigger than first i elements

22

SELECTION SORT WITH MIT STUDENTS

SELECTION SORT DEMO

ANALYZING SELECTION SORT

loop invariant

- given prefix of list L[0:i] and suffix L[i+1:len(L)], then prefix is sorted and no element in prefix is larger than smallest element in suffix
 - base case: prefix empty suffix whole list invariant true
 - induction step: move minimum element from suffix to end of prefix. Since invariant true before move, prefix sorted after append
 - 3. when exit, prefix is entire list, suffix empty, so sorted

COMPLEXITY OF SELECTION SORT

- outer loop executes len(L) times
- inner loop executes len(L) i times
- complexity of selection sort is O(n²) where n is len(L)

26

6.00.01X LECTURE 27

- use a divide-and-conquer approach:
 - 1. if list is of length 0 or 1, already sorted
 - if list has more than one element, split into two lists, and sort each
 - 3. merge sorted sublists
 - 1. look at first element of each, move smaller to end of the result
 - 2. when one list empty, just copy rest of other list

divide and conquer

split list in half until have sublists of only 1 element

29

divide and conquer

merge such that sublists will be sorted after merge

divide and conquer

- merge sorted sublists
- sublists will be sorted after merge

divide and conquer

- merge sorted sublists
- sublists will be sorted after merge

divide and conquer – done!

sorted

MERGE SORT WITH MIT STUDENTS

00.01X LECTURE

MERGE SORT DEMO

6.00.01X LECTURE 35

EXAMPLE OF MERGING

Left in list 1	Left in list 2	Compare	Result
[1,5,12,18,19,20]	[2,3,4,17]	1, 2	[]
[5,12,18,19,20]	[2,3,4,17]	5, 2	[1]
[5,12,18,19,20]	[3,4,17]	5, 3	[1,2]
[5,12,18,19,20]	[4,17]	5, 4	[1,2,3]
[5,12,18,19,20]	[17]	5, 17	[1,2,3,4]
[12,18,19,20]	[17]	12, 17	[1,2,3,4,5]
[18,19,20]	[17]	18, 17	[1,2,3,4,5,12]
[18,19,20]	[]	18,	[1,2,3,4,5,12,17]
[]	[]		[1,2,3,4,5,12,17,18,19,20]

MERGING SUBLISTS STEP

```
v, 0
while i < len(left) and j < len(right):-left and right
if left[i] < right[j]:
    result.appor
</pre>
def merge(left, right):
                                                           sublists depending on
                                                            which sublist holds next
                                                             smallest element
               i += 1
          else:
               result.append(right[j])
               i += 1
                                             sublist is empty
                                            when right
     while (i < len(left)):</pre>
          result.append(left[i])
                                            when left
                                             sublist is empty
          i += 1
     while (j < len(right)):</pre>
          result.append(right[j])
          i += 1
     return result
```

COMPLEXITY OF MERGING SUBLISTS STEP

- go through two lists, only one pass
- compare only smallest elements in each sublist
- O(len(left) + len(right)) copied elements
- O(len(longer list)) comparisons
- linear in length of the lists

MERGE SORT ALGORITHM -- RECURSIVE

```
def merge_sort(L):
    if len(L) < 2:
        return L[:]

else:
    middle = len(L)//2
    left = merge_sort(L[:middle])
    right = merge_sort(L[middle:])

    return merge(left, right)

conquer with
the merge step</pre>
```

- divide list successively into halves
- depth-first such that conquer smallest pieces down one branch first before moving to larger pieces

COMPLEXITY OF MERGE SORT

- at first recursion level
 - n/2 elements in each list
 - O(n) + O(n) = O(n) where n is len(L)
- at second recursion level
 - n/4 elements in each list
 - two merges \rightarrow O(n) where n is len(L)
- each recursion level is O(n) where n is len(L)
- dividing list in half with each recursive call
 - O(log(n)) where n is len(L)
- overall complexity is O(n log(n)) where n is len(L)

SORTING SUMMARY

-- n is len(L)

- bogo sort
 - randomness, unbounded O()
- bubble sort
 - O(n²)
- selection sort
 - O(n²)
 - guaranteed the first i elements were sorted
- merge sort
 - O(n log(n))
- O(n log(n)) is the fastest a sort can be