Animation & Simulation

He Wang (王鹤)

- Forces used to keep geometric relationships
 - We only care geometry at the end of day, not physics
 - Modelling the underlying governing laws
 - Cloth, we only see wrinkles, need to model forces that generate them
 - Dynamic control
 - The forces needed to achieve target goals

Basic physics

$$f = ma$$
 $a = \frac{f}{m}$ $p' = p + \frac{1}{2}(v + v')\Delta t$

What scheme here?

- Basic physics
 - A spring
 - Virtual spring as forces between object, particles, lumped mass points

$$f_s = -k_s(L_c - L_r) \left(\frac{p_2 - p_1}{\|p_2 - p_1\|} \right)$$

spring force (f_s) rest length (L_r) current length (L_c) constant of proportionality (k_s) , also called the *spring constant*.

Stiffness

- Basic physics
 - A spring
 - Virtual spring as forces between object, particles, lumped mass points

$$f_s = -k_s (L_c - L_r) \left(\frac{p_2 - p_1}{\|p_2 - p_1\|} \right)$$
 Linear

Non-linear: k_s changes at certain lengths, or in general a function of length

- Basic physics
 - A spring
 - Virtual spring as forces between object, particles, lumped mass points
 - Damper

$$f_d = -k_d (\dot{p}_2 - \dot{p}_1) \cdot \left(\frac{p_2 - p_1}{\|p_2 - p_1\|} \right) \left(\frac{p_2 - p_1}{\|p_2 - p_1\|} \right)$$

- Basic physics
 - A spring
 - Virtual spring as forces between object, particles, lumped mass points
 - Damper
 - Viscosity

$$f_{v} = -k_{v}v$$

Momentum

$$\sum m_i \mathbf{v}_i = \mathbf{c}$$
 $\tau = I\alpha$

- Basic physics
 - Spring-damp pair

$$f_s = -k_s(L_c - L_r) \left(\frac{p_2 - p_1}{\|p_2 - p_1\|} \right) \qquad f_d = -k_d \left(\dot{p}_2 - \dot{p}_1 \right) \cdot \left(\frac{p_2 - p_1}{\|p_2 - p_1\|} \right) \left(\frac{p_2 - p_1}{\|p_2 - p_1\|} \right)$$

Linear Spring

damper

$$f = \left(k_s(L_c - L_r) - k_d(\dot{p}_2 - \dot{p}_1) \cdot \left(\frac{p_2 - p_1}{\|p_2 - p_1\|}\right)\right) \left(\frac{p_2 - p_1}{\|p_2 - p_1\|}\right)$$

- Spring animation
 - Flexible objects
 - Mass-spring-damper model

$$f = \left(k_s(L_c - L_r) - k_d(\dot{p}_2 - \dot{p}_1) \cdot \left(\frac{p_2 - p_1}{\|p_2 - p_1\|}\right)\right) \left(\frac{p_2 - p_1}{\|p_2 - p_1\|}\right)$$

Write the force equations for three vertices Assuming:

- Initial velocities are zeros
- 2. Initial positions are (x1, y1) (x2, y2)(x3, y3)
- 3. Force F applied onto V2
- 4. Initial rest spring lengths are E11, E23 and E31
- 5. Masses are m1, m2 and m3
- 6. Ks and kd are known for all springs Compute the positions at t + delta t

- Spring animation
 - Flexible objects
 - Mass-spring-damper model
 - Not stable if only edges are modelled: a cube could turn inside out
 - Add more springs

- Spring animation
 - Flexible objects
 - Mass-spring-damper model
 - Not stable if only edges are modelled: a cube could turn inside out
 - Add more springs
 - Add angular springs to maintain right angles

$$\hat{\tau} = k_{\rm s}(\theta(t) - \theta_{\rm r}) - k_{\rm d} \dot{\theta}(t)$$

- Spring animation
 - Flexible objects
 - Mass-spring-damper model
 - Not stable if only edges are modelled: a cube could turn inside out
 - Add more springs
 - Add angular springs to maintain right angles
 - Too many parameters to tune Ks, Kd, Kv for each spring
 - Hard to tune
 - Numerically explode
 - Why? Forces are assumed constant during the time step
 - Clipping values might help, but introducing slaggishness

- Spring animation
 - Virtual Springs
 - Proportional derivative control (PD)

$$u(t) = K_{\mathrm{p}}e(t) + K_{\mathrm{d}}\frac{de(t)}{dt}$$

$$\tau = k_{s}(\theta(t) - \theta_{d}(t)) - k_{d}(\dot{\theta}(t) - \dot{\theta}_{d}(t))$$

• Proportional integral control (PI)

$$u(t)=K_{\mathrm{p}}e(t)+K_{\mathrm{i}}\int_{0}^{t}e(t^{\prime})\,dt^{\prime}$$

Proportional integral derivative control (PID)

$$u(t) = K_\mathrm{p} e(t) + K_\mathrm{i} \int_0^t e(t') \, dt' + K_\mathrm{d} rac{de(t)}{dt}$$

- Particle Systems
 - A large number of small particles, common simplifications:
 - Volume of individual particles are (largely) ignored
 - Masses are assumed to be lumped at points
 - Not colliding with other particles
 - Not casting shadows
 - Not reflecting lights

- Particle Systems
 - A large number of small particles, common simplifications:
 - Life spans
 - Particles born in this time step
 - Attributes assigned
 - Terminating dead particles
 - Animating remaining particles
 - Render particles

- Particle Systems
 - A large number of small particles, common simplifications:
 - Life spans
 - Particles born in this time step

$$\# of \ particles = n + Rand() * r$$

 $\# of \ particles = n(A) + Rand() * r$

- Particle Systems
 - A large number of small particles, common simplifications:
 - Life spans
 - Particles born in this time step
 - Attributes assigned
 - Pos, vel, shape, color, transparency, lifetime

- Particle Systems
 - A large number of small particles, common simplifications:
 - Life spans
 - Particles born in this time step
 - Attributes assigned
 - Terminating dead particles
 - Check particle clocks, remove dead ones

- Particle Systems
 - A large number of small particles, common simplifications:
 - Life spans
 - Particles born in this time step
 - Attributes assigned
 - Terminating dead particles
 - Animating remaining particles
 - Simulation (gravity, wind, force field, etc.)

- Particle Systems
 - A large number of small particles, common simplifications:
 - Life spans
 - Particles born in this time step
 - Attributes assigned
 - Terminating dead particles
 - Animating remaining particles
 - Render particles
 - Render as light sources

- Rigid body simulation
 - Cloth (listed under 'rigid body simulation'?)
 - Direct modelling of folds, pure geometry
 - Only works for very special situations
 - Physically based modelling
 - Stretch, bend, skew
 - Springs or energy functions

- Rigid body simulation
 - Cloth
 - · Physically based modelling
 - Stretch

Rest length Current length
$$F_{\rm s} = \left(\frac{k_{\rm s}|v1-v2|-|v1^*-v2^*|}{|v1^*-v2^*|}\right) \frac{v1-v2}{|v1-v2|}$$

$$E_{\rm s} = k_{\rm s} \frac{1}{2} \left(\frac{|v1-v2|-|v1^*-v2^*|}{|v1^*-v2^*|}\right)^2$$

- Rigid body simulation
 - Cloth
 - · Physically based modelling
 - Stretch
 - In-plane skew

$$S(v1, v2) = \left(\frac{1}{2}\right) \left(\frac{|v1 - v2| - |v1^* - v2^*|}{|v1^* - v2^*|}\right)^2$$

$$E_{\mathbf{w}} = k_{\mathbf{w}} \cdot S(v1, v3) S(v2, v4)$$

A Original quadrilateral of mesh

B Skew of original quadrilateral without changing the length of edges

C Diagonal springs to control skew

- Rigid body simulation
 - Cloth
 - · Physically based modelling
 - Stretch
 - In-plane skew
 - Out-plane skew (restricting dihedral angle or control vertices separation)

Original dihedral angle

Bending along the edge that changes dihedral angle

$$F_b = k_b(\theta_i - \theta_i^*)$$

$$F_{\rm b} = k_{\rm b} \left(\frac{l3}{(l1+l2)} - \frac{l3^*}{(l1^*+l2^*)} \right)$$

- Rigid body simulation
 - Cloth
 - Physically based modelling
 - Mass-spring-damper model, compute forces and update states of mass points
 - Integration

$$y_{n+1} = y_n + hf'(x_n, y_n)$$

explicit Euler (fast but ?)

- Rigid body simulation
 - Cloth
 - · Physically based modelling
 - Mass-spring-damper model, compute forc
 - Integration

Fourth-order Runge-Kutta

$$k_{1} = hf'(x_{n}, y_{n})$$

$$k_{2} = hf'\left(x_{n} + \frac{h}{2}, y_{n} + \frac{k_{1}}{2}\right)$$

$$k_{3} = hf'\left(x_{n} + \frac{h}{2}, y_{n} + \frac{k_{2}}{2}\right)$$

$$k_{4} = hf'(x_{n} + h, y_{n} + k_{3})$$

$$y_{n+1} = y_{n} + \frac{k_{1}}{6} + \frac{k_{2}}{3} + \frac{k_{3}}{3} + \frac{k_{4}}{6} + O(h^{5})$$

Compute the derivative at the beginning of A the interval

Step to new midpoint from initial point C using midpoint's derivative just computed

Use new midpoint's derivative and step from initial point to end of interval

E

Step to midpoint (using derivative previously computed) and compute derivative

Compute the derivative at the new midpoint

Compute derivative at end of interval and average with 3 previous derivatives to step from initial point to next function value

- Rigid body simulation
 - Cloth
 - · Physically based modelling
 - Mass-spring-damper model, compute forces and update states of mass points
 - Integration

Implicit Euler

$$y_{n+1} = y_n + hf'(x_{n+1}, y_{n+1})$$

Unknowns on both sides, need to solve an equation for every step

Baraff et al, Large Steps in Cloth Simulation. 1998

- Rigid body simulation
 - Cloth
 - Physically based modelling
 - Mass-spring-damper model, compute forces and update states of mass points
 - Integration

Semi-implicit Euler

$$y_{n+1} = y_n + hf'(x_{n+1}, y_n + hf'(x_n, y_n))$$

- Rigid body simulation
 - Cloth
 - · Physically based modelling
 - Mass-spring-damper model, compute forces and update states of mass points
 - Integration
 - Control stretching
 - Spring model can lead to unrealistic stretching:super-elasticity
 - Stiffer springs, smaller time steps, limiting initial stretching, modelling non-linear effects
 - Biphasic springs (allow initial stretching but becomes stiff exceeding threshold)
 - Velocity damping (controlling vertex displacement)

- Rigid body simulation
 - Cloth
 - · Physically based modelling
 - Mass-spring-damper model, compute forces and update states of mass points
 - Integration
 - Control stretching
 - Collision detection (self and environment)
 - Hierarchical bounding volumes to accelerate the detection

Harmon et al, Asynchronous Contact Mechanics, 2011

- Rigid body simulation
 - Cloth
 - · Physically based modelling
 - Mass-spring-damper model, compute forces and update states of mass points
 - Integration
 - Control stretching
 - Collision detection (self and environment)
 - Collision response
 - Damped inelastic collision
 - Restraining the positions/velocities of the colliding vertices
 - Open research question

- Rigid body simulation
 - Cloth
 - · Physically based modelling
 - Mass-spring-damper model, compute forces and update states of mass points
 - Integration
 - Control stretching
 - Collision detection (self and environment)
 - Collision response
 - · Folds, wrinkles, buckling
 - More difficult, still under research

