Under content/HW in your pilot, there are some home exercise questions along with their brief answers for you to practice.

Circuit Outline

- CMOS Gate Design
- Pass Transistors
- □ Transmission gate
- □ Tristate
- Multiplexer
- □ CMOS Latches & Flip-Flops

CMOS Gate Design

- ☐ Activity:
 - Sketch a 4-input CMOS NOR gate

Series and Parallel

- nMOS: 1 = ON
- □ pMOS: 0 = ON
- Series: all must be ON

☐ Parallel: any can be ON

$$g1 \rightarrow g2$$
 $0 \downarrow 0$
 $0 \downarrow 1$
 $0 \downarrow 0$
 $0 \downarrow 1$
 $0 \downarrow 0$
 0

Conduction Complement

- Complementary CMOS gates always produce 0 or 1 for digital circuits
- □ Ex: NAND gate
 - Series nMOS: Y=0 when both inputs are 1
 - Thus Y=1 when either input is 0
 - Requires parallel pMOS

- ☐ Rule of Conduction Complements
 - Pull-up network is complement of pull-down
 - Parallel -> series, series -> parallel

Compound Gates—inverting circuit

Ex: Y=((A.B)+(C.D))—this function is sometimes called AND-OR-INVERT-22 or AOI22 because it performs the NOR of a pair of 2-input ANDs

FIG 1.17 CMOS compound gate for function $Y = \overline{(A \cdot B) + (C \cdot D)}$

Z=(abc+d) is called AOI31; Z=(ab+cd+e) is called AOI221

Non-inverting circuits

- ☐ In general, the circuit outputs are not always the inverted inputs function
- ☐ Example 1 F=abc
 - Two ways
 - Straight forward--adding an inverter to output let G=(abc), F=G=(abc)
 Total transistors =6+2=8
 - 2. Double inverter and use De Morgan—

$$\overline{F}$$
=(abc)=a + b + c =>

Which required three inverters

Total transistors =6+6=12

Non-inverting circuits (Cont)

☐ Example 2

$$Z=(A+B)\bar{C}\bar{D}=Z+D$$

A. Find ckt for $G=\overline{Z}$ and invert the output

transistors

14

B. Double inverter and use De Z Morgan (no output inverter)

transistors

 $2 = (\alpha + b) + \overline{c} + \overline{b}$ $= \alpha \overline{b} + c + \overline{b}$

Circuits

Non-inverting circuits (Cont)

- \Box Example 3 F=(a'+b')(c+d)
 - A. Add inverter to output of G
 F=G'; G'=((a'+b')(c+d))
 8+4+2=14 transistors

B. De Morgan (no inverter output)

■ Which is a better design

- ☐ Exercise for yourself
 - Design both schematic and stick diagram for OR2/XOR2/NOR2/AND2 gates by using minimum CMOS transistors.
 - 2. Design schematic CMOS compound gates for functions Z=((a+b)(c+d))' and Z=(a'b'c+d) using least number of transistors.

Signal Strength

- ☐ Strength of signal
 - How close the signal approximates to ideal voltage source
- V_{DD} and GND rails are strongest '1'and '0'
- □ nMOS passes strong '0'
 - But degraded or weak '1'
- pMOS passes strong '1'
 - But degraded or weak '0'
- Thus nMOS are best for pull-down network and pMOS are best for pull-up network

Pass Transistors

☐ Transistors can be used as switches

$$g = '0'$$
 $s \longrightarrow d$

Input
$$g = 1$$
 Output $0 \rightarrow strong 0$

Input
$$g = 0$$
 Output $0 \rightarrow -$ degraded 0

Pass Transistors

- We have assumed source is grounded
- What if source > 0?
 - e.g. pass transistor passing V_{DD}

Pass Transistors

- We have assumed source is grounded
- What if source > 0?
 - e.g. pass transistor passing V_{DD}
- \Box $V_g = V_{DD}$

$$-$$
 If $V_s > V_{DD}-V_t$, $V_{gs} < V_t$

- Hence transistor would turn itself off
- □ nMOS pass transistors pull no higher than V_{DD}-V_{tn}
 - Called a degraded "1"
 - Approach degraded value slowly (low I_{ds})
- \Box pMOS pass transistors pull no lower than $|V_{tp}|$

Pass Transistor Ckts

Pass Transistor Ckts

$$V_{DD} = V_{DD}$$

$$V_{s} = V_{DD} - V_{tn}$$

$$V_s = |V_{tp}|$$

$$V_{DD}$$
 V_{DD} V_{tn} V_{DD} V_{DD} V_{tn}

Transmission Gates

- Pass transistors produce degraded outputs
- ☐ Transmission gates pass both 0 and 1 well

$$g = 0$$
, $gb = 1$
 $a - b$

$$g = 1$$
, $gb = 0$
 $a \rightarrow b$

Input

$$g = 1$$
, $gb = 0$
 $0 \rightarrow \rightarrow c$ strong 0

Tristates

☐ *Tristate buffer* produces Z when not enabled

EN	А	Υ
0	0	
0	1	
1	0	
1	1	

Nonrestoring Tristate

- ☐ Transmission gate acts as tristate buffer
 - Only two transistors
 - But nonrestoring
 - Noise on A is passed on to Y

Tristate Inverter

- ☐ Tristate inverter produces restored output
 - Violates conduction complement rule
 - Because we want a Z output

Multiplexers

☐ 2:1 multiplexer chooses between two inputs

S	D1	D0	Υ
0	X	0	
0	X	1	
1	0	X	
1	1	X	

Gate-Level Mux Design

- \square $Y = SD_1 + \overline{S}D_0$ (too many transistors)
- ☐ How many transistors are needed?

Transmission Gate Mux

- Nonrestoring mux uses two transmission gates
 - Only 6 transistors

Inverting Mux

- ☐ Inverting multiplexer
 - Use compound AOI22
 - Or pair of tristate inverters
 - Essentially the same thing
- Noninverting multiplexer adds an inverter

4:1 Multiplexer

- ☐ 4:1 mux chooses one of 4 inputs using two selects
 - Two levels of 2:1 muxes
 - Or four tristates

D Latch

- ☐ When CLK = '1', latch is *transparent*
 - D flows through to Q like a buffer
- ☐ When CLK = '0', the latch is *opaque*
 - Q holds its old value independent of D
- □ a.k.a. *transparent latch* or *level-sensitive latch*

D Latch Design

■ Multiplexer chooses D or old Q

D Latch Operation

Circuits

CMOS VLSI Design

D Flip-flop

- ☐ When CLK rises, D is copied to Q
- ☐ At all other times, Q holds its value
- □ a.k.a. positive edge-triggered flip-flop, master-slave flip-flop

D Flip-flop Design

■ Built from master and slave D latches

D Flip-flop Operation

