1 Hypothesis Testing & Inference

1.1 Null-Hypotheses

Null-hypothesis (H_0) , usually $H_0: \beta = 0$, where $\beta =$ population parameter of interest. Alternative hypothesis (H_a) , can be two-sided $(H_a: \beta > 0)$, one-sided $(H_a: \beta > 0)$ or $H_a: \beta < 0$.

1.2 *T*-Test

The *T*-statistic compares $\hat{\beta}$ to it's estimated sampling variability, $\widehat{SE}(\hat{\beta})$. In OLS,

$$\widehat{SE}(\hat{\beta}) = \sqrt{\frac{\sum (Y_i - \hat{Y}_i)^2}{(n - k - 1) \cdot \sum (x_i - \bar{x})^2}}$$

given a β_0 (under the null), the *T*-statistic is then (and always) calculated by

$$T = \frac{\hat{\beta} - \beta_0}{\widehat{SE}(\hat{\beta})}$$

Usually, $\beta_0 = 0$.

1.3 p-values

In OLS, we compare T the T-distribution w/df = n-k-1 to get a p-value, which gives us the $Pr(|\hat{\beta}| \geq \hat{\beta} \mid \beta = 0)$. For a two-sided test, $-|T| < T(\frac{\alpha}{2}, df)$ for us to reject the null-hypothesis at α significance level. For multiple comparisons p-values have to be adjusted. Bonferroni correction

$$p_{Adj.} = p \cdot n_{tests}$$

1.4 Confidence Intervals

Confidence way of inverting p-values to get range of plausible values of β .

$$\hat{\beta} \pm |T(\frac{\alpha}{2}, df)| \cdot \widehat{SE}(\hat{\beta})$$

Valid interpretations of 95% CIs: "At the 95% confidence level we estimate that the population parameter lies between [...]", or "Interval contains the parameter with 95% confidence."

2 Ordinary Least Squares

With independent and identically distributed (iid) observations Y_i and $X_1, ..., X_k$ linear model is

$$Y_i = \alpha + \beta_1 X_{1i} + \dots + \beta_1 X_{ki} + \epsilon_i$$

2.1 Model Assumptions

- 1. $Y_i \perp \!\!\!\perp Y_j \; \forall \; i \neq j$
- 2. $\epsilon_i \sim \mathcal{N}(0, \sigma)$ with $\sigma^2 < \infty$
- 3. $\mathbb{E}[Y_i]$ is linear in all X
- 4. $Cov[\epsilon_i, \epsilon_i] = 0 \ \forall \ i \neq j$

2.2 Simple Linear Regression

In **SLR**, can estimate the *T*-statistic of $\hat{\beta}$ using R^2 by the following formula

$$T = \frac{\sqrt{R^2}}{\sqrt{\frac{1-R^2}{n-2}}}$$

In **SLR**, $R^2 = r_{XY}^2$, where r_{XY} correlation of X, Y.

2.3 Interaction Effects

$$Y = \alpha + \beta_1 X_1 + \beta_2 X_2 + \beta_3 (X_1 \cdot X_2) + \epsilon$$

Partial association of X_1, Y has to be interpreted using $\beta_1 + \beta_3 X_2$. I.e., if $\beta_3 > 0$ as X_2 increases, partial relationship between X_1, Y gets **stronger**. If $\beta_3 < 0$ relationship gets **weaker**. Relationship between X_1, Y always has to be interpreted **conditional** on X_2 .

2.4 R^2 and Adjusted R^2

Residual standard deviation is estimated by

$$\hat{\sigma} = \sqrt{\frac{SSE}{n - k - 1}}$$

95% of observations fall within $\pm 1.96 \cdot \hat{\sigma}$ of the regression line. Goodness of fit measure

$$R^{2} = \frac{TSS - SSE}{TSS} = \frac{\sum (Y_{i} - \bar{Y})^{2} - \sum (Y_{i} - \hat{Y}_{i})^{2}}{\sum (Y_{i} - \bar{Y})^{2}}$$

Adjusted R^2 is given by

$$R_{adj}^2 = \frac{\frac{TSS}{n-1} - \frac{SSE}{n - (k+1)}}{\frac{TSS}{n-1}} = \frac{(n-1)R^2 - k}{n - (k+1)}$$

Whether $R_{adj}^2 \ll R^2$ depends on whether $\frac{k}{n}$ is large.

2.5 F-Test

To test whether a set of coefficient estimates are all zero, F-test. Null-hypothesis of F-test:

$$H_0: \beta_{q+1} = \beta_{q+2} = \dots = \beta_k = 0$$

$$H_a$$
: at least one of $\beta_{q+1}, \beta_{q+2}, ..., \beta_k$ is not 0

In the context of OLS, usually a model M_0 with k_0 independent variables (IVs), and M_a with k_a IVs. M_0 is nested in M_a .

$$F = \frac{\frac{SSE_0 - SSE_a}{k_a - k_0}}{\frac{SSE_a}{n - (k_a + 1)}} = \frac{\frac{R_a^2 - R_0^2}{k_a - k_0}}{\frac{1 - R_a^2}{n - k_a - 1}} = \frac{\frac{\Delta R^2}{\Delta df}}{\frac{1 - R_a^2}{n - (k_a + 1)}}$$

Sampling distribution of F-statistic under the null hypothesis is the F-distribution with $k_a - k_0$ and $n - (k_a + 1)$ degrees of freedom. If M_a has an additional coefficient, than $F = T^2$. If M_0 has no explanatory variables ($k_0 = 0$, $R_0^2 = 0$, $SSE_0 = TSS$), F-statistic becomes

$$F = \frac{\frac{R^2}{k}}{\frac{1-R^2}{n-(k+1)}} = \frac{\frac{SSM}{k}}{\frac{SSE}{n-(k+1)}}$$

2.6 Residual Diagnostics

3 Binary Logistic Regression

Because $0 \leq Pr(Y_i = 1) = \pi_i \leq 1$, need to model transformation of π . To expand domain to $(0, \infty)$, we use Odds $= \frac{\pi}{1-\pi}$, then take the \log_e , to expand domain to $(-\infty, \infty)$. With **iid** observations $Y_i \in \{0, 1\}$ and $X_1, ..., X_k$ binary logistic regression (BLR) model is

$$\text{logit} = \log_e(\frac{\pi_i}{1 - \pi_i}) = \alpha + \beta_1 X_{1i} + \dots + \beta_1 X_{ki}$$

where $\pi_i = P(Y_i = 1)$. Underlying distribution is Bernoulli (special case of binomial), with $\mathbb{E}[Y] = \pi$, and $Var[Y] = \pi(1 - \pi)$. Fitted probabilities/odds

$$\log\left(\frac{\pi_i}{1-\pi_i}\right) = \alpha + \beta_1 X_{1i} + \dots + \beta_k X_{ki}$$

$$Odds = \frac{\pi_i}{1-\pi_i} = e^{\alpha+\beta_1 X_{1i} + \dots + \beta_k X_{ki}}$$

$$\pi_i = \frac{e^{\alpha+\beta_1 X_{1i} + \dots + \beta_k X_{ki}}}{1+e^{\alpha+\beta_1 X_{1i} + \dots + \beta_k X_{ki}}}$$

3.1 p-values and CIs for BLR

BLR coefficients tested for significance using

$$z = \frac{\hat{\beta}}{\widehat{SE}(\hat{\beta})}$$

p-values from the standard normal distribution (t-distribution with $df = \infty$). For 2-tailed test with $\alpha = 0.05, z_{\alpha} \approx 1.96$. Wald test statistic

$$W = z^2 = \left(\frac{\hat{\beta}}{\widehat{SE}(\hat{\beta})}\right)^2$$

is compared to χ^2 distribution with df = 1. Confidence intervals in log-odds are calculated by

$$\hat{\beta} \pm z_{\alpha} \cdot \widehat{SE}(\hat{\beta})$$

and in odds ratios by

$$e^{\hat{\beta}\pm z_{\alpha}\cdot\widehat{SE}(\hat{\beta})}$$

3.2 Likelihood Ratio Test

Likelihood $L \propto$ to probability of obtaining observed pattern of results in sample if, model were true. Likelihood ratio test compares models for improvements in fit. Consider L_0 of simpler M_0 , L_a of complex M_a with additional β_k (M_0 nested in M_a). Likelihood ratio test $H_0: \beta_k = 0$, for as many additional β_k 's as needed. Likelihood ratio test statistic is calculated by:

$$L^{2} = \log \left(\frac{L_{a}}{L_{0}}\right)^{2} = -2\log \left(\frac{L_{a}}{L_{0}}\right)$$
$$= -2\left(\log (L_{0}) - \log (L_{a})\right)$$
$$= 2\log (L_{a}) - 2\log (L_{0})$$

Compare to χ^2 -distribution with df = extra parameters in M_a .

3.3 Fit Statistics

MacFadden's Pseudo- R^2 given by

$$\frac{-\log L_N - (-\log L_1)}{-\log L_1}$$

where L_N = likelihood of null (intercept only) model. Interpretation: proportional improvement in fit, **not** explained variance.

Deviance is "distance" between model of interest and "saturated" model with n parameters. $L_S =$ likelihood of

saturated model.

Null deviance
$$2\log (L_S) - 2\log (L_N) \text{ with } df = df_S - df_N$$

$$2\log (L_S) - 2\log (L_1) \text{ with } df = df_S - df_1$$
Residual deviance

Information criteria (IC), e.g. Akaike's IC (AIC) $AIC = -2\log L_1 + 2k$, with k = number of model parameters, including intercept (and in case of Negative-Binomial underdispersion parameter. Smaller AIC's are better.

4 Multinomial Logistic Regression

Odds generalise from something not happening/happening to something happening/something else happening.

$$Odds(Y = 1) = \frac{Pr(Y = 1)}{Pr(Y = 0)} = \frac{Pr(Y = 1)}{1 - Pr(Y = 1)}$$
$$Odds_{k'}(k) = \frac{Pr(Y = k)}{Pr(Y = k')}$$

The multinomial logistic regression (MLR) model uses this property. Consider $Y_i, X_{1i}, X_{2i}, ..., X_{ki} \, \forall i \in \{1, 2, ..., n\}$, where $Y_i \in \{0, 1, ..., C-1\}$ (C = number of categories). Again Y_i 's are **iid** from multinomial distribution with probabilites $\pi_i^{(0)}, \pi_i^{(1)}, ..., \pi_i^{(C-1)}$. MLR model is then defined as

$$\log \left(\frac{\pi_i^{(j)}}{\pi_i^{(0)}}\right) = \alpha^{(j)} + \beta_1^{(j)} X_{1i} + \dots + \beta_k^{(j)} X_{ki}$$

 $\forall j \in \{1, 2, ..., C-1\}$. Interpretation to the reference category are analogous to BLR. For non-reference categories, i.e. from j to 1, $e^{\beta^{(j)}-\beta^{(1)}}$.

$$\log\left(\frac{\pi_i^{(j)}}{\pi_i^{(1)}}\right) = (\alpha^{(j)} - \alpha^{(1)}) + \sum_{l=1}^k (\beta_l^{(j)} - \beta_l^{(1)}) X_{ki}$$

for each $j \in \{2, ..., C-1\}$.

4.1 Fitted Probabilities

Let

$$L(j) = \log \left(\frac{\pi_i^{(j)}}{\pi_i^{(0)}} \right) = \alpha^{(j)} + \beta_1^{(j)} X_{1i} + \dots + \beta_k^{(j)} X_{ki}$$

then

$$\pi^{(j)} = P(Y = j) = \frac{e^{L(j)}}{1 + \sum_{l=1}^{C-1} e^{L(l)}}$$
$$\pi^{(0)} = P(Y = 0) = \frac{1}{1 + \sum_{l=1}^{C-1} e^{L(l)}}$$

4.2 p-values and CIs

As with BLR, i.e. using z-statistic for individual coefficients, and likelihood ratio test for multiples coefficients.

4.3 Model Assumption

MLR has relies on **independence of irrelevant alternatives** (IIA), implies that presence or absence of alternative has no effect on relative proportion of individuals choosing among remaining alternatives. Unlikely to be sensible in applications of MLR.

5 Ordinal Logistic Regression

Consider **iid ordinal** outcome variable Y_i with C categories, such that $j \in \{1, 2, ..., C\}$. Then

$$Pr(Y = j) = \pi^{(j)}$$

 $\forall j \in \{1, 2, ..., C\}, \text{ and }$

$$Pr(Y \le j) = \gamma^{(j)} = \sum_{l=1}^{j} \pi^{(l)}$$

 $\forall j \in \{1, 2, ..., C - 1\}$ and

$$Pr(Y \le C) = \gamma^{(C)} = 1$$

The ordinal logistic regression (OLR) model considers a model for each comparison of all categories below a threshold to all categories above

$$\frac{Pr(Y \le j)}{Pr(Y > j)} = \frac{\gamma^{(j)}}{1 - \gamma^{(j)}} \forall \ j \in \{1, 2, ..., C - 1\}$$

The OLR model with $X_1, ..., X_k$ explanatory variables is then

$$\log \left(\frac{Pr(Y_i \le j)}{Pr(Y_i > j)} \right) = \log \left(\frac{\gamma_i^{(j)}}{1 - \gamma_i^{(j)}} \right)$$

$$= \alpha^{(j)} - (\beta_1 X_{1i} + \dots + \beta_k X_{ki})$$

$$Pr(Y_i \le j) = \gamma_i^{(j)} = \frac{e^{\alpha^{(j)} - (\beta_1 X_{1i} + \dots + \beta_k X_{ki})}}{1 + e^{\alpha^{(j)} - (\beta_1 X_{1i} + \dots + \beta_k X_{ki})}}$$

Properties of coefficients are that $\alpha^{(1)} < ... < \alpha^{(C-1)}$, to guarantee that $\gamma^{(1)} < ... < \gamma^{(C-1)}$. $\beta_1, \beta_2, ..., \beta_k$ are the same $\forall j$. Finally,

$$Pr(Y_i = j) = Pr(Y_i \le j) - Pr(Y_i \le j - 1) = \gamma^{(j)} - \gamma^{(j-1)}$$

properties

5.1 Fitted Probabilities

Fitted probabilities for individual categories j are

$$P(Y = 1) = \gamma^{(1)} = \frac{e^{\alpha^{(1)} - (\beta_1 X_1 + \dots + \beta_k X_k)}}{1 + e^{\alpha^{(1)} - (\beta_1 X_1 + \dots + \beta_k X_k)}}$$
 Estimates model of similar form as Poisson + θ .
$$P(Y = j) = \gamma^{(j)} - \gamma^{(j-1)} = \frac{e^{\alpha^{(j)} - (\beta_1 X_1 + \dots + \beta_k X_k)}}{1 + e^{\alpha^{(j)} - (\beta_1 X_1 + \dots + \beta_k X_k)}}$$
 Same as with BLR.
$$-\frac{e^{\alpha^{(j-1)} - (\beta_1 X_1 + \dots + \beta_k X_k)}}{1 + e^{\alpha^{(j-1)} - (\beta_1 X_1 + \dots + \beta_k X_k)}}$$
 7 Properties of log and e

$$\mathbb{E}[y|\lambda] = \lambda$$
$$Var[y|\lambda] = \lambda + \frac{\lambda^2}{\theta}$$

6.3 p-values and CIs

Same as with BLR.

7 Properties of log and e

for
$$j \in \{2, ..., C-1\}$$
, and

$$P(Y = C) = 1 - \gamma^{(C-1)} = 1 - \frac{e^{\alpha^{(C-1)} - (\beta_1 X_1 + \dots + \beta_k X_k)}}{1 + e^{\alpha^{(C-1)} - (\beta_1 X_1 + \dots + \beta_k X_k)}}$$

5.2 p-values and CIs

Same as with BLR

5.3 Proportional Odds Assumption

The OLR model assumes same coefficients $\beta_1, ..., \beta_k \ \forall \ j$. The increase in the odds of going from $Y \leq j$ to Y > jassociated with a increase in X, is the same $\forall j$.

6 Count Regression Models

6.1 Poisson Regression

Can use poisson distribution for count data, models probability of observing a number y of events per unit of observation.

$$p(y|\lambda) = \frac{\lambda^y e^{-\lambda}}{y!}$$
$$\mathbb{E}[y|\lambda] = \lambda$$
$$Var[y|\lambda] = \lambda$$

with $y \in \{0, \mathbb{N}\}, \lambda \in (0, \infty)$. Poisson regression model is then

$$\log(\lambda_i) = \alpha + \beta_1 X_{1i} + \dots + \beta_k X_{ki}$$
$$\lambda_i = e^{\alpha + \beta_1 X_{1i} + \dots + \beta_k X_{ki}}$$

Assumption that for given $\mathbb{E}[y] = \lambda$, $Var[y] = \lambda$ too is very strong. When there is overdispersion, Poisson will tend to yield SEs that are too small.

6.2 Negative-Binomial Regression

The negative-binomial relaxes this interpretation, allows for overdispersion (not for underdispersion). Following

$$\log(e) = 1$$

$$\log(1) = 0$$

$$\log(x^r) = r \cdot \log(x)$$

$$\log(e^A) = A$$

$$e^{\log(A)} = A$$

$$\log(AB) = \log(A) + \log(B)$$

$$\log\left(\frac{A}{B}\right) = \log(A) - \log(B)$$

$$e^{AB} = (e^A)^B$$

$$e^{A+B} = e^A e^B$$

$$e^{A-B} = \frac{e^A}{e^B}$$