

Empirically Based Analysis: The DDoS Case

Jul 22nd, 2004

CERT® Analysis Center Software Engineering Institute Carnegie Mellon University Pittsburgh, PA 15213-3890

The CERT Analysis Center is part of the Software Engineering Institute. The Software Engineering Institute is sponsored by the U.S. Department of Defense.

© 2003 by Carnegie Mellon University

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to ompleting and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar DMB control number.	ion of information. Send comment arters Services, Directorate for Info	s regarding this burden estimate or ormation Operations and Reports	or any other aspect of th , 1215 Jefferson Davis	nis collection of information, Highway, Suite 1204, Arlington	
1. REPORT DATE 22 JUL 2004		2. REPORT TYPE		3. DATES COVERED 00-00-2004 to 00-00-2004		
4. TITLE AND SUBTITLE				5a. CONTRACT NUMBER		
Empirically Based Analysis: The DDoS Case				5b. GRANT NUMBER		
				5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)				5d. PROJECT NUMBER		
				5e. TASK NUMBER		
				5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Carnegie Mellon University,Software Engineering Institute,Pittsburgh,PA,15213				8. PERFORMING ORGANIZATION REPORT NUMBER		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)		
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAII Approved for publ	LABILITY STATEMENT ic release; distributi	on unlimited				
13. SUPPLEMENTARY NO presented at FloCo	otes on 2004, Crystal City	y, VA, July 2004.				
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFIC	17. LIMITATION OF	18. NUMBER	19a. NAME OF			
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	Same as Report (SAR)	OF PAGES 13	RESPONSIBLE PERSON	

Report Documentation Page

Form Approved OMB No. 0704-0188

Introduction

- ØAccess to the dataset gives us a large enough record of traffic to test hypotheses in network security.
- ØGiven this, we select and evaluate various security measures against real traffic
 - Or a reasonable facsimile thereof
- **ØOne example: target resident DDoS Filters**
 - Heavily constrain the problem
 — not considering SYN floods, smurfing, reflection attacks...

Attacks like this

How Do We Test?

- **ØAny analysis opens a can of worms...err,** "assumptions"
 - The network constantly changes
 - What is a representative host?
- ØRerunning attacks is of debatable value
 - Most of the legitimate traffic is dropped, that's what a DoS is for
- **ØWe want our results to be representative**
 - Test and summarize over multiple machines
- ØWe want our results to be reproducible
 - Depend heavily on SiLK structures and tools

Evaluation

- ØTrained filters on 15 days of legitimate traffic
 - Built a representation of IP address: volume relationship (via rwaddrcount)
- **ØThen generated a simulated DoS**
 - Botnet IPs collected with rwset
 - Normal traffic selected from another day
- ØResulting traffic was then evaluated for failure rates
- **ØTested 2 types of filters:**
 - Clustering groups of adjacent IP addresses
 - PI path marking approach

DoS Filters

Initial Observations

- **ØTwo groups**
 - One group assumes a magic DoS Detection Oracle
 - That's the group with better results
- ØIn general, the filters don't do well
 - Should we compare IP addresses, or packets?
 - Is traffic different for different servers?
- ØLet's look at one result in more depth

One result in more depth

Observations

- **ØNormal traffic varies extensively**
 - Although it seems to vary more with "smaller" servers
 - And it's better when you look at packet counts
 - Which makes sense, given the absurd number of scanners we see.
- ØFalse negative rate (attackers accepted) seems to be related to server activity the busier the higher.
 - Attackers don't vary as much

Learning Curves – 95% threshold

Other Observations

- ØIn the majority of cases, packets are dropped because they've never been seen before
 - Short learning curves effectively no change in false positive rate after a week of learning.
 - Especially true for spoofed traffic
- ØEntropy is lower than expected
 - Filters that rely on spoof defense (HCF, PI) drop less than 10% of their packets because they detect a spoof

Further Work

- ØExploiting our DoS attack traffic records further
 - We know how the network reacts
 - We know how the attack starts and ends
 - Which impacts learning curve for defenses that only profile the attack
- ØFurther use of other network maps
 - Skitter (used for PI), &c.
- ØFormalization of the techniques used
 - Developed a matrix based approach for the final iteration
 - Tools are going to be available publicly

A Final Note

ØURL for the SiLK tools: http://silktools.sourceforge.net