Estatística e Probabilidade – 1ª Lista de Exercícios

1. Uma amostra de 500 adultos foi extraída, e perguntou-se a esses adultos se eles preferem assistir a um programa de esportes ou a uma novela. A tabela a seguir apresenta os resultados da pesquisa por sexo.

Sexo	Prefere assistir a	Prefere assistir	Total
	esportes	novela	
Homem	156	84	240
Mulher	78	182	260
Total	234	266	500

- a) Calcule as porcentagens adequadas de modo a comparar homens e mulheres em relação à preferência.
- b) Escreva um parágrafo sobre a comparação usando as porcentagens calculadas.
- 2. Um questionário foi aplicado a quinze funcionários de uma empresa. Os dados apresentados na tabela a seguir.

- · / ·			0.17.	
Funcionário	Escolaridade	Idade	Salário semanal	Anos de empresa
			(reais)	
1	Superior	34	1100	5
2	Superior	28	1000	2
3	Superior	23	1200	3
4	Superior	30	1150	2
5	Superior	43	1450	8
6	Médio	31	850	6
7	Médio	37	900	8
8	Médio	24	700	3
9	Médio	25	550	2
10	Médio	27	620	2
11	Fundamental	21	450	3
12	Fundamental	26	500	3
13	Fundamental	45	350	2
14	Fundamental	25	320	2
15	Fundamental	28	500	4

- a) Classifique as variáveis em qualitativas (nominais ou ordinais) ou quantitativas (discretas ou contínuas).
- b) Complete a tabela abaixo com a síntese da variável Salário para os funcionários com curso superior. O desvio padrão deve ser calculado passo a passo.

Escolaridade	Mínimo	Máximo	Média	Mediana	Moda	Desvio padrão	Coeficiente de variação (%)
Superior							
Médio	550	900	724	700	-	148,8	20,55
Fundamental	320	500	424	450	500	84,4	19,91

- c) Faça uma comparação dos salários por grau de instrução. Apresente duas conclusões, uma em relação à média e outra em relação à variabilidade em torno da média. Não se esqueça de apresentar os valores durante a comparação.
- 3. Quer-se estudar o número de erros de impressão de um livro. Para isso escolheu-se um amostra de 50 páginas, encontrando-se o número de erros por página da tabela abaixo.

Nº de Erros	Frequência	
0	25	
1	20	
2	3	
3	1	
4	1	
Total	50	

- a) Qual é o número médio de erros por página?
- b) E o número mediano?
- c) Qual é o desvio padrão? (É necessário apresentar os cálculos passo a passo.)
- d) Faça uma representação gráfica para a distribuição.
- e) Se o livro tem 500 páginas, qual é o número total de erros esperado no livro?
- 4. Uma indústria de brinquedos A deseja estudar o tempo que um adulto gasta para montar um determinado brinquedo do tipo "fácil de montar". No Ramo-e-Folhas a seguir são apresentados os tempos de montagem do brinquedo A, em minutos, para uma amostra aleatória de 40 adultos.

```
0
1
   2
        3
1
        5
            5
   6
        6
            7
1
1
   8
        8
            8
                 8
2
   0
        0
            1
                 1
                     1
                              1
2
   2
        2
            2
2
   4
        4
2
   6
2
   8
3
   0
3
   2
```

Nota: 0 | 8 corresponde a um tempo de montagem de 8 minutos.

- a) Qual é a forma da distribuição dos tempos de montagem do brinquedo.
- b) Calcule a mediana.
- c) Calcule o primeiro e o terceiro quartis.
- d) A indústria também está interessada em comparar o tempo de montagem do brinquedo que fabrica (brinquedo A) com o similar de uma indústria concorrente (brinquedo B). Para tanto, selecionou outra amostra, também com 40 adultos, cujos resultados estão sintetizados na tabela abaixo. Complete o quadro com as medidas que você já calculou nos itens a) e b) para o brinquedo A.

Brinquedo	n	mínimo	máximo	média	Moda	Desvio	Q1	mediana	Q3	CV
						padrão				
Α	40			19,8		5,26				
В	40	12	39	26,2	26	6,33	22	26	30,5	24,12%

- d) Compare os tempos de montagem dos dois brinquedos levando em conta as medidas de posição e de variabilidade. Apresente uma conclusão em relação á media, uma em relação à variabilidade em torno da média, uma em relação à mediana apresentando porcentagens na comparação e a última em relação aos quartis apresentando pornentagens na comparação. Não se esqueça de apresentar os valores durante a comparação.
- 5. Uma pesquisa investigou a relação entre o número de horas de sono na noite anterior e o tempo de reação e prontidão (em segundos). A tabela a seguir apresenta os valores para uma amostra de 6 pessoas.

<u>а ртаннама (ант аад</u>	ana 00 g	an aprocessa so raise so para associa ac o possocio.
Horas de sono	Tempo de reação	
	(em segundos)	
5,0	13	
10,0	8	
4,0	15	
6,0	12	
6,5	13	
4,5	17	
Total		

- a) Escolha adequadamente X e Y.
- b) Calcule: $\sum_{i=1}^{n} (x_i \overline{x})^2$, $\sum_{i=1}^{n} (y_i \overline{y})^2$ e $\sum_{i=1}^{n} (x_i \overline{x})(y_i \overline{y})$. É necessário apresentar os cálculos.
- c) Calcule e interprete o coeficiente de correlação linear.
- d) Estime a reta de regressão de mínimos quadrados.
- e) Interprete as estimativas dos parâmetros da reta.
- f) Faça o gráfico de dispersão com a reta estimada.
- g) Determine e interprete o coeficiente de determinação da reta.
- 6. (Pontuação extra da 1ª Prova) O número de clientes Y que passa diariamente pelo caixa de um supermercado foi observado durante certo período. Constatou-se que o valor médio de Y é de 20 clientes, com desvio padrão igual a 2.
 - a) Usando o teorema de Tchebichev, encontre a porcentagem mínima de dias em que o número de clientes está entre 0 e 40.
 - b) O que nos diz o teorema de Tchebichev, com k = 8, quanto ao número de clientes que passa diariamente pelo caixa de um supermercado.

Respostas:

2.

Escolaridade	Mínimo	Máximo	Média	Mediana	Moda	Desvio	Coeficiente de
						padrão	variação (%)
Superior	1000	1450	1180	1200		168,1	14,24

3. (a) 0,66 (b) 0,5 (c) 0,8393 (d) 330

4.

Brinquedo	n	Mínimo	Máximo	média	Moda	Desvio padrão	Q1	mediana	Q3	CV
Α	40	8	32	19,8	21	5,26	16,25	20,5	22,75	26,64%

6. (a) 99% (b) Em no mínimo 98,44% dos dias ... 4 e 36 clientes.

Formulário:

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n} \quad s^2 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1} = \frac{\sum_{i=1}^{n} x_i^2 - n\bar{x}^2}{n-1} = \frac{\sum_{i=1}^{n} x_i^2 - \frac{\left(\sum_{i=1}^{n} x_i\right)^2}{n}}{n-1}$$

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i n_i}{n} \quad s^2 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2 n_i}{n - 1} = \frac{\sum_{i=1}^{n} x_i^2 n_i - n\bar{x}^2}{n - 1} = \frac{\sum_{i=1}^{n} x_i^2 n_i - \frac{\left(\sum_{i=1}^{n} x_i n_i\right)^2}{n}}{n = 1}$$

Coeficiente de variação: $CV = \frac{s}{\overline{x}} \times 100\%$

Teorema de Tchebichev: A porcentagem mínima de dados no intervalo $(\bar{x} - ks; \bar{x} + ks)$ é $\left(1 - \frac{1}{k^2}\right) \times 100, \ k > 1.$

$$\sum_{i=1}^{n} (x_i - \bar{x})^2 = \sum_{i=1}^{n} x_i^2 - n\bar{x}^2 = \sum_{i=1}^{n} x_i^2 - \frac{\left(\sum_{i=1}^{n} x_i\right)^2}{n} = (n-1)s_X^2$$

$$\sum_{i=1}^{n} (y_i - \overline{y})^2 = \sum_{i=1}^{n} y_i^2 - n\overline{y}^2 = \sum_{i=1}^{n} y_i^2 - \frac{\left(\sum_{i=1}^{n} y_i\right)^2}{n} = (n-1)s_Y^2$$

$$\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) = \sum_{i=1}^{n} x_i y_i - n\bar{x}\bar{y} = \sum_{i=1}^{n} x_i y_i - \frac{\left(\sum_{i=1}^{n} x_i\right) \left(\sum_{i=1}^{n} y_i\right)}{n}$$

$$r = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

$$\hat{y} = a + bx$$
 onde $a = \bar{y} - b\bar{x}$ e $b = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$