Chapitre 12: Limites et continuité

Dans tout le chapitre I désignera un intervalle de \mathbb{R} non vide et non réduit à un point.

1 Limites de fonctions

1.1 Définitions

Définition

Soit $f: I \to \mathbb{R}$ une fonction et a un élément de I ou une extrémité de I (éventuellement $\pm \infty$).

- Si $a \in \mathbb{R}$, on dit que f vérifie la propriété P au voisinage de a ssi il existe r > 0 tel que f vérifie P sur $I \cap]a r, a + r[$.
- Si $a = +\infty$, on dit que f vérifie la propriété P au voisinage de a ssi il existe $A \in \mathbb{R}$ tel que f vérifie P sur $I \cap [A, +\infty[$.
- Si $a = -\infty$, on dit que f vérifie la propriété P au voisinage de a ssi il existe $A \in \mathbb{R}$ tel que f vérifie P sur $I \cap]-\infty, A]$.

Remarque: $x \mapsto x^2 - x$ est positive au voisinage de $+\infty$: $\exists c \in \mathbb{R}$, $\forall x \in [c, +\infty[, x^2 - x \ge 0]$.

Définition: Limite en un point

Soient $f: I \to \mathbb{R}$ et a un réel, élément de I ou extrémité (finie) de I. On dit que :

• f admet une limite (finie) $l \in \mathbb{R}$ en a, notée $f(x) \xrightarrow[x \to a]{} l$, ssi:

$$\forall \epsilon > 0, \ \exists \eta > 0, \ \forall x \in I, \quad |x - a| \le \eta \Longrightarrow |f(x) - l| \le \epsilon.$$

• f admet pour limite $+\infty$ en a, notée $f(x) \xrightarrow[r \to a]{} +\infty$, ssi :

$$\forall M \in \mathbb{R}, \ \exists \eta > 0, \ \forall x \in I, \quad |x - a| \le \eta \Longrightarrow f(x) \ge M$$

• f admet pour limite $-\infty$ en a, notée $f(x) \underset{x \to a}{\longrightarrow} -\infty$, ssi :

$$\forall M \in \mathbb{R}, \ \exists \eta > 0, \ \forall x \in I, \quad |x - a| \le \eta \Longrightarrow f(x) \le M$$

Remarque : Dans le cas où $f(x) \underset{x \to a}{\longrightarrow} l \in \mathbb{R}$, la définition signifie que la distance de f(x) à l peut être rendue inférieure à tout nombre $\epsilon > 0$ donné, à condition que la distance de x à a soit assez petite.

Définition: Limite en $+\infty$

Soient $f:I\to\mathbb{R}.$ On suppose que $+\infty$ est une extrémité de I. On dit que :

• f admet une limite (finie) $l \in \mathbb{R}$ en $+\infty$, notée $f(x) \underset{x \to +\infty}{\longrightarrow} l$, ssi :

$$\forall \epsilon > 0, \ \exists A \in \mathbb{R}, \ \forall x \in I, \quad x \ge A \Longrightarrow |f(x) - l| \le \epsilon.$$

• f admet pour limite $+\infty$ en $+\infty$, notée $f(x) \underset{x \to +\infty}{\longrightarrow} +\infty$, ssi :

$$\forall M \in \mathbb{R}, \ \exists A \in \mathbb{R}, \ \forall x \in I, \quad x \ge A \Longrightarrow f(x) \ge M$$

• f admet pour limite $-\infty$ en $+\infty$, notée $f(x) \underset{x \to +\infty}{\longrightarrow} -\infty$, ssi :

$$\forall M \in \mathbb{R}, \ \exists A \in \mathbb{R}, \ \forall x \in I, \quad x \ge A \Longrightarrow f(x) \le M$$

Remarque : Dans le cas où $f(x) \underset{x \to +\infty}{\longrightarrow} l \in \mathbb{R}$, la définition signifie que la distance de f(x) à l peut être rendue inférieure à tout nombre $\epsilon > 0$ donné, à condition que x soit assez grand.

Définition : Limite en $-\infty$

Soient $f: I \to \mathbb{R}$. On suppose que $-\infty$ est une extrémité de I. On dit que :

• f admet une limite (finie) $l \in \mathbb{R}$ en $-\infty$, notée $f(x) \underset{x \to -\infty}{\longrightarrow} l$, si :

$$\forall \epsilon > 0, \ \exists A \in \mathbb{R}, \ \forall x \in I, \quad x \le A \Longrightarrow |f(x) - l| \le \epsilon.$$

• f admet pour limite $+\infty$ en $-\infty$, notée $f(x) \xrightarrow[x \to -\infty]{} +\infty$, si :

$$\forall M \in \mathbb{R}, \; \exists A \in \mathbb{R}, \; \forall x \in I, \quad x \leq A \Longrightarrow f(x) \geq M$$

• f admet pour limite $-\infty$ en $-\infty$, notée $f(x) \xrightarrow[x \to -\infty]{} -\infty$, si :

$$\forall M \in \mathbb{R}, \ \exists A \in \mathbb{R}, \ \forall x \in I, \quad x \le A \Longrightarrow f(x) \le M$$

Proposition Unicité de la limite

Soit $f:I\to\mathbb{R}$ et a un élément ou une extrémité de I (éventuellement $\pm\infty$). Si $f(x)\underset{x\to a}{\longrightarrow} l_1$ et $f(x)\underset{x\to a}{\longrightarrow} l_2$ avec l_1 , $l_2 \in \mathbb{R} \cup \{\pm \infty\}$ alors $l_1 = l_2$.

Démonstration. On fait la preuve dans le cas où a, l_1 , l_2 sont des réels finis. Elle s'adapte facilement aux autres cas. Raisonnons par l'absurde. Supposons $l_1 \neq l_2$.

Posons
$$\epsilon = \frac{|\vec{l}_1 - l_2|}{3} > 0$$
.
Par définition de la limite en a :

il existe
$$\eta_1 > 0$$
 tel que : $\forall x \in I, |x - a| \le \eta_1 \Longrightarrow |f(x) - l_1| \le \epsilon$ il existe $\eta_2 > 0$ tel que : $\forall x \in I, |x - a| \le \eta_2 \Longrightarrow |f(x) - l_2| \le \epsilon$

Posons $\eta = \min(\eta_1, \eta_2)$.

Soit $x \in I$ tel que $|x - a| \le \eta$. Alors :

$$|l_1 - l_2| = |(l_1 - f(x)) + (f(x) - l_2)| \le |f(x) - l_1| + |f(x) - l_2| \le 2 \frac{|l_1 - l_2|}{3}$$

D'où $1 \le \frac{2}{3}$ car $|l_1 - l_2| \ne 0$. Absurde. Ainsi, $l_1 = l_2$. D'où le résultat.

Remarque:

- La limite en a d'une fonction (si elle existe) étant unique, on la note $\lim_{x\to a} f(x)$.
- <u>M</u> Cette notation est réservée à des fonctions pour lesquelles on a montré a priori l'existence de la limite en *a*.
- La notion de limite est une notion «locale » c'est à dire qu'elle ne dépend que des propriétés de la fonction au voisinage de a.

Proposition

Soit $f: I \to \mathbb{R}$ et a un élément ou une extrémité de I (éventuellement $\pm \infty$).

- Soit $l \in \mathbb{R}$. Alors, $f(x) \xrightarrow{x \to a} l$ si et seulement si $|f(x) l| \xrightarrow{x \to a} 0$.
- En particulier, $f(x) \xrightarrow[x \to a]{} 0$ si et seulement si $|f(x)| \xrightarrow[x \to a]{} 0$.

Proposition

Soient $f: I \to \mathbb{R}$, a un élément ou une extrémité de I (éventuellement $\pm \infty$) et $l \in \mathbb{R}$. S'il existe $g: I \to \mathbb{R}$ telle que $\lim_{x \to a} g(x) = 0$ et $|f(x) - l| \le g(x)$ au voisinage de a alors $\lim_{x \to a} f(x) = l$.

Démonstration. Comme $|f(x) - l| \le g(x)$ au voisinage de a, il existe r > 0 tel que : $\forall x \in I \cap]a - r$, a + r[, $|f(x) - l| \le g(x)$. Soit $\epsilon > 0$. Il existe $\eta > 0$ tel que : $\forall x \in I$, $|x - a| \le \eta \implies |g(x)| \le \epsilon$.

Posons: $\eta_0 = \min\left(\eta, \frac{1}{2}\right)$.

Soit $x \in I$ tel que : $|x - a| \le \eta_0$. On a $|f(x) - l| \le \epsilon$. D'où $\lim_{x \to a} f(x) = l$.

Proposition

Soient $f: I \to \mathbb{R}$, a un élément ou une extrémité de I (éventuellement $\pm \infty$) et $l \in \mathbb{R}$. Si $f(x) \underset{x \to a}{\longrightarrow} l$ alors $|f(x)| \underset{x \to a}{\longrightarrow} |l|$.

Démonstration. Pour tout $x \in I$, $||f(x)| - |l|| \le |f(x) - l|$. Or, on sait que $\lim_{x \to a} f(x) = l$ $\iff \lim_{x \to a} |f(x) - l| = 0$. Ainsi, on en déduit que $\lim_{x \to a} |f(x) - l| = 0$ puis le résultat s'obtient directement en utilisant le corollaire précédent. □

1.2 Limites à droite et à gauche

Définition: Limites à droite et à gauche

Soient $f: I \to \mathbb{R}$ et a un élément ou une extrémité finie de I.

- Si a n'est pas l'extrémité inférieure de I. On dit que f admet une limite à gauche en a ssi $f_{|I\cap]-\infty,a[}$ admet une limite en a. Cette limite est alors notée : $\lim_{x\to a^-} f(x)$ ou $\lim_{x\to a} f(x)$.
- Si a n'est pas l'extrémité supérieure de I. On dit que f admet une limite à droite en a ssi $f_{|I\cap]a,+\infty[}$ admet une limite en a. Cette limite est alors notée : $\lim_{x\to a^+} f(x)$ ou $\lim_{x\to a} f(x)$

Corollaire

Si $f: I \to \mathbb{R}$ et $a \in I$ distinct de ses extrémités. f admet une limite $l \in \mathbb{R}$ en a si et seulement si f admet une limite à gauche et à droite en a égale à l et si l = f(a).

Démonstration. • Supposons que f admette une limite $l \in \mathbb{R}$ en a. Soit $\epsilon > 0$. Il existe $\eta > 0$ tel que :

$$\forall x \in I, |x-a| \le \eta \implies |f(x)-l| \le \epsilon.$$

En particulier, on a ::

$$\forall x \in I \cap]-\infty, a[, |x-a| \le \eta \implies |f(x)-l| \le \epsilon$$

donc f admet l pour limite à gauche en a.

$$\forall x \in I \cap]a, +\infty[, |x-a| \le \eta \implies |f(x)-l| \le \epsilon$$

donc f admet l pour limite à droite en a.

Par l'absurde, supposons que $f(a) \neq l$. Posons $\epsilon = \frac{|f(a) - l|}{2}$. Or, par définition de la limite, il existe $\eta_0 > 0$ tel que :

$$\forall x \in I, |x-a| \le \eta_0 \implies |f(x)-l| \le \epsilon.$$

En particulier, $|f(a)-l| \le \frac{|f(a)-l|}{2}$. D'où $|f(a)-l| \le 0$ donc|f(a)-l| = 0. Absurde.

Ainsi, f(a) = l et les limites à droite et à gauche en a sont donc égales à f(a).

• Réciproquement supposons que f admette une limite à droite et à gauche en a qui vaut l et que l = f(a).

Soit $\epsilon > 0$. Il existe $\eta_1 > 0$ tel que : $\forall x \in I \cap]-\infty$, $a[, |x-a| \le \eta_1 \implies |f(x)-f(a)| \le \epsilon$.

Il existe $\eta_2 > 0$ tel que : $\forall x \in I \cap]a, +\infty[, |x-a| \le \eta_1 \implies |f(x) - f(a)| \le \epsilon$.

Posons, $\eta = \min(\eta_1, \eta_2)$.

Soit $x \in I$ tel que $|x - a| \le \eta$.

- si $x \in]-\infty$, a[alors, $|f(x)-l| \le \epsilon$ car $|x-a| \le \eta \le \eta_1$.
- si $x \in]a, +\infty[$ alors, $|f(x) l| \le \epsilon \operatorname{car} |x a| \le \eta \le \eta_2.$
- si x = a alors, $|f(x) l| = 0 \le \epsilon$

Ainsi, on a:

$$\forall x \in I, |x-a| \le \eta \implies |f(x) - f(a)| \le \epsilon$$

donc f admet pour limite l en a.

Remarque : Il est insuffisant de vérifier si f admet une limite à droite et à gauche qui coïncident. Il faut également s'intéresser à la valeur de f(a).

Exemple : Considérons f définie sur \mathbb{R} par : $f(x) = \begin{cases} 0 & \text{si } x \in \mathbb{R}^* \\ 1 & \text{si } x = 0 \end{cases}$

On a bien $\lim_{x\to 0^-} f(x) = \lim_{x\to 0^+} f(x) = 0$. Par la proposition précédente, si f a une limite en 0, celle ci est nécessairement 0.

Posons $\epsilon = \frac{1}{2}$ et a = 0. Pour tout $\eta > 0$, on a $0 = |0 - a| \le \eta$, alors que $|f(0) - 0| = 1 > \epsilon$.

f n'admet donc pas 0 comme limite et n'admet donc pas de limite en 0.

Définition

Soit a est un élément de I distinct de ses extrémités et $f: I \setminus \{a\} \to \mathbb{R}$. On dit que f admet une limite $l \in \mathbb{R} \cup \{\pm \infty\}$ ssi elle admet une limite à droite et une limite à gauche en a et que celles-ci coïncident.

Remarque:

• Soit $l \in \mathbb{R}$ et a un élément de I distinct de ses extrémités. Une fonction $f: I \setminus \{a\} \to \mathbb{R}$ admet donc l pour limite en a ssi:

$$(\cos l \in \mathbb{R}) \qquad \forall \epsilon > 0, \ \exists \eta > 0, \ \forall x \in I \setminus \{a\}, \ \Big(|x - a| \le \eta \implies |f(x) - l| \le \epsilon\Big)$$

On procède de même dans le cas où $l \in \{\pm \infty\}$.

• Il convient de repérer si f est définie ou non en a lorsqu'on prend la limite. Cette dernière définition s'applique uniquement lorsque f n'est pas définie en a.

Exemple:

- $\lim_{x\to 0^-} \frac{1}{x} = -\infty$ et $\lim_{x\to 0^+} \frac{1}{x} = +\infty$. La fonction inverse n'admet donc pas de limite quand $x\to 0$.
- $\lim_{x\to 0^-} \frac{1}{|x|} = +\infty$ et $\lim_{x\to 0^+} \frac{1}{|x|} = +\infty$. La fonction $x\mapsto \frac{1}{|x|}$ admet donc une limite en 0 qui vaut $+\infty$.
- $\forall x \in \mathbb{R}_+^*$, $\frac{|x|}{x} = 1$ et $\forall x \in \mathbb{R}_-^*$, $\frac{|x|}{x} = -1$ donc $\lim_{x \to 0^+} \frac{|x|}{x} = 1$ et $\lim_{x \to 0^-} \frac{|x|}{x} = -1$. La fonction $x \mapsto \frac{|x|}{x}$ n'admet donc pas de limite quand $x \to 0$
- Soit $n \in \mathbb{Z}$, pour tout $x \in]n-1$, $n[, \lfloor x \rfloor = n-1 \text{ donc } \lim_{x \to n^-} \lfloor x \rfloor = n-1 \text{ et pour tout } x \in]n, n+1[, \lfloor x \rfloor = n \text{ donc } \lim_{x \to n^+} \lfloor x \rfloor = n \text{ donc la fonction partie entière n'admet pas de limite en } n.$

1.3 Propriétés

Proposition

Soit $f: I \to \mathbb{R}$ et a un point ou une extrémité de I (éventuellement $\pm \infty$). Si f admet une limite finie en a, alors f est bornée au voisinage de a.

Démonstration. Faisons la preuve dans le cas où a est fini (on procède de la même manière si $a=\pm\infty$). Notons l la limite de f en a. Posons $\epsilon=1$, il existe $\eta>0$ tel que pour tout $x\in I$, $|x-a|\leq \eta$ ⇒ $|f(x)-l|\leq 1$. Ainsi, d'après l'inégalité triangulaire, on a :

$$\forall x \in I \cap [a - \eta, a + \eta], |f(x)| = |f(x) - l + l| \le |f(x) - l| + |l| \le 1 + |l|$$

Ainsi, f est bornée au voisinage de a.

Proposition

Soient $f: I \to \mathbb{R}$ et a un point ou une extrémité de I (éventuellement $\pm \infty$) et $l \in \mathbb{R} \cup \{\pm \infty\}$. Si f admet une limite l en a alors :

- Pour tout M > l, f est majorée par M au voisinage de a.
- Pour tout m < l, f est minorée par m au voisinage de a.

Démonstration. Faisons la preuve dans le cas où l ∈ \mathbb{R} et $a = +\infty$.

Soit M > l. Posons $\epsilon = M - l$.

Par définition de la limite, il existe $A \in \mathbb{R}$ tel que :

$$\forall x \in I, x \ge A \implies |f(x) - l| \le \epsilon.$$

Soit $x \in I \cap [A, +\infty -, \text{ on a } : f(x) \le \varepsilon + l = M$.

Ainsi, f est majorée par M.

On procède de même pour la minoration pour m < l.

Corollaire

Soit $f:I\to\mathbb{R}$ et a un point ou une extrémité de I (éventuellement $\pm\infty$).

Si f tend vers $l \in \mathbb{R}^* \cup \{\pm \infty\}$ alors, l ne s'annule pas au voisinage de a.

Démonstration. • Si f tend vers +∞ en a alors f est minorée par 1 au voisinage de a donc en s'annule pas au voisinage de a.

- Si f tend vers $-\infty$ en a alors f est majorée par -1 au voisinage de a donc ne s'annule pas au voisinage de a.
- Si f tend vers $l \in \mathbb{R}^*$ alors |f| tend vers $|l| \in \mathbb{R}^*$.

 De plus, $0 < \frac{|l|}{2} < |l|$ donc par la propriété précédente, |f| est minorée par $\frac{|l|}{2}$ au voisinage de a donc f ne s'annule pas au voisinage de a.

Théorème : Caractérisation séquentielle de la limite

Soit $f: I \to \mathbb{R}$, a un élément ou une extrémité de I (éventuellement $\pm \infty$) et $l \in \mathbb{R} \cup \{\pm \infty\}$. La fonction f admet pour limite l en a si et seulement si pour toute suite $(u_n)_{n \in \mathbb{N}}$ d'éléments de I qui tend vers a, la suite $(f(u_n))_{n \in \mathbb{N}}$ tend vers l.

Démonstration. On fait la preuve dans le cas $a \in \mathbb{R}$ et que l est fini, les autres preuves sont analogues.

• Supposons que $\lim_{x\to a} f(x) = l$. Soit $\epsilon > 0$. Par définition de la limite, il existe $\eta > 0$ tel que :

$$\forall x \in I, |x - a| \le \eta \implies |f(x) - l| \le \epsilon$$

Soit $(u_n)_{n\in\mathbb{N}}$ une suite d'éléments de I convergeant vers a. Alors, par définition de la limite, il existe $N\in\mathbb{N}$ tel que :

$$\forall n \in \mathbb{N}, n \geq N \Longrightarrow |u_n - a| \leq \eta$$

Soit $n \ge N$, on a $|u_n - a| \le \eta$ donc $|f(u_n) - l| \le \epsilon$.

On a donc prouvé que:

$$\forall \epsilon, \exists N \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq N \implies |f(u_n) - l| \leq \epsilon$$

La suite $(f(u_n))_{n\in\mathbb{N}}$ tend donc vers l.

• Pour montrer la réciproque, nous allons procéder par contraposition. Supposons que f ne tende pas vers l quand x tend vers a. Ainsi, il existe $\epsilon > 0$ tel que :

$$\forall \eta > 0, \ \exists x \in I, |x - a| \le \eta \ \text{et} \ |f(x) - l| > \epsilon$$
 (*)

Pour tout $n \in \mathbb{N}^*$, on pose $\eta_n = \frac{1}{n}$. D'après (*), pour tout $n \in \mathbb{N}^*$, il existe $x_n \in I$ tel que $|x_n - a| \le \eta$ et $|f(x_n) - l| > \epsilon$. On construit ainsi une suite $(x_n)_{n \in \mathbb{N}} \in I^{\mathbb{N}}$ telle que : $\forall n \in \mathbb{N}$, $|x_n - a| \le \frac{1}{n}$ donc $\lim_{n \to +\infty} x_n = a$. Mais : $\forall n \in \mathbb{N}$, $|f(x_n) - l| > \epsilon$ donc $(f(x_n))_{n \in \mathbb{N}}$ ne converge pas vers l.

Par contraposée, on a l'implication souhaitée.

Méthode

Pour montrer qu'une fonction n'admet pas de limite en a (finie ou infinie), on peut chercher deux suites $(x_n)_{n\in\mathbb{N}}$ et $(y_n)_{n\in\mathbb{N}}$ qui tendent vers a et telles que $(f(x_n))_{n\in\mathbb{N}}$ et $(f(y_n))_{n\in\mathbb{N}}$ ont deux limites différentes.

1.4 Opérations sur les limites

Proposition

Soient $f,g:I\to\mathbb{R}$ et a un élément ou une extrémité de I (éventuellement $\pm\infty$). Si $\lim_{x\to a}f(x)=0$ et g est bornée au voisinage de a alors $\lim_{x\to a}f(x)g(x)=0$.

Démonstration. On fait la preuve dans le cas a fini. Comme g est bornée au voisinage de a, il existe r > 0 et il existe $M ∈ \mathbb{R}$ tel que :

$$\forall x \in I \cap]a-r, a+r[, |g(x)| \leq M$$

Soit $\epsilon > 0$.

Par définition de la limite, il existe $\eta_1 > 0$ tel que :

$$\forall x \in I, |x - a| \le \eta_1 \implies |f(x)| \le \frac{\epsilon}{M}$$

Posons $\eta = \min\left(\eta_1, \frac{r}{2}\right) > 0$. Soit $x \in I$ tel que $|x - a| \le \eta$. On a alors:

$$|f(x)g(x)| = |f(x)||g(x)|$$

$$\leq \frac{\epsilon}{M} \times M$$

$$\leq \epsilon$$

Ainsi, $\lim_{x \to a} f(x)g(x) = 0$.

Exemple: $x \mapsto \frac{\sin x}{x}$ admet 0 comme limite en $+\infty$

Proposition

Soit a un élément ou une extrémité de I (éventuellement $\pm \infty$). Soient f, $g: I \to \mathbb{R}$ telles que $\lim_{x \to a} f(x) = l \in \mathbb{R}$ et $\lim_{x \to a} g(x) = l' \in \mathbb{R}. \text{ Alors}:$

- $\begin{aligned} & & \lim_{x \to a} (f+g)(x) = l + l'. \\ & & \forall \lambda \in \mathbb{R}, \ \lim_{x \to a} \lambda f(x) = \lambda l. \end{aligned}$
- $\lim_{x \to a} f(x)g(x) = ll'$.

Démonstration. preuve similaire à celle effectuée sur les suites.

Proposition

Soient $f,g:I\to\mathbb{R}$ et a un élément ou une extrémité de I (éventuellement $\pm\infty$). On suppose que $\lim_{x\to a}g(x)=+\infty$.

- Si g est minorée au voisinage de a alors $\lim_{x \to a} (f(x) + g(x)) = +\infty$.
- Si g est minorée par un réel strictement positif au voisinage de a alors $\lim_{x \to a} f(x)g(x) = +\infty$.

Démonstration. Preuve similaire à celle réalisée sur les suites.

Proposition

Soit $f: I \to \mathbb{R}$ et a un élément de I ou une extrémité de I (éventuellement $\pm \infty$).

- Si $\lim_{x \to a} f(x) = l \in \mathbb{R}$ et $\lim_{x \to a} g(x) = l' \in \mathbb{R}^*$, $\frac{f}{g}$ est définie au voisinage de a et $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{l}{l'}$.
- Si $\lim_{x \to a} f(x) = \pm \infty$ alors $\frac{1}{f}$ est définie au voisinage de a et $\lim_{x \to a} \frac{1}{f(x)} = 0$.
- Si f est strictement positive au voisinage de a et $\lim_{x\to a} f(x) = 0$ alors $\frac{1}{f}$ est définie au voisinage de a et $\lim_{x \to a} \frac{1}{f(x)} = +\infty.$

Démonstration. Preuve similaire à celle réalisée sur les suites.

On déduit des propositions précédentes les opérations sur les limites :

Soit $a \in \mathbb{R} \cup \{+\infty, -\infty\}$. Soient $\lambda, l, l' \in \mathbb{R}$.

On considère, dans les tableaux suivants, deux fonctions f et g telles que les limites données aient un sens.

$\lim_{\mathbf{x}\to\mathbf{a}}(\mathbf{f}(\mathbf{x})+\mathbf{g}(\mathbf{x}))$	$\lim_{x \to a} f(x) = l$	$\lim_{x \to a} f(x) = +\infty$	$\lim_{x \to a} f(x) = -\infty$
$\lim_{x \to a} g(x) = l'$	l + l'	+∞	$-\infty$
$\lim_{x \to a} g(x) = +\infty$	+∞	+∞	forme indéterminée
$\lim_{x \to a} g(x) = -\infty$	-∞	forme indéterminée	$-\infty$

$\lim_{\mathbf{x}\to\mathbf{a}}(\lambda\mathbf{f}(\mathbf{x}))$	$\lim_{x \to a} f(x) = l$	$\lim_{x \to a} f(x) = +\infty$	$\lim_{x \to a} f(x) = -\infty$
$\lambda > 0$	λl	+∞	$-\infty$
$\lambda < 0$	λl	$-\infty$	+∞
$\lambda = 0$	0	0	0

$\lim_{\mathbf{x}\to\mathbf{a}}(\mathbf{f}(\mathbf{x}).\mathbf{g}(\mathbf{x}))$	$\lim_{x \to a} f(x) = l \neq 0$	$\lim_{x \to a} f(x) = 0$	$\lim_{x \to a} f(x) = +\infty$	$\lim_{x \to a} f(x) = -\infty$
$\lim_{x \to a} g(x) = l' \neq 0$	l.l'	0	$+\infty$ si $l' > 0$ $-\infty$ si $l' < 0$	$-\infty$ si $l' > 0$ $+\infty$ si $l' < 0$
$\lim_{x \to a} g(x) = 0$	0	0	forme indéterminée	forme indéterminée
$\lim_{x \to a} g(x) = +\infty$	$+\infty$ si $l > 0$ $-\infty$ si $l < 0$	forme indéterminée	+∞	-∞
$\lim_{x \to a} g(x) = -\infty$	$-\infty \operatorname{si} l > 0$ $+\infty \operatorname{si} l < 0$	forme indéterminée	$-\infty$	+∞

$\lim_{x\to a}\frac{f(x)}{g(x)}$	$\lim_{x \to a} f(x) = l \neq 0$	$\lim_{x \to a} f(x) = 0$	$\lim_{x \to a} f(x) = +\infty$	$ \lim_{x \to a} f(x) = -\infty $
$\lim_{x \to a} g(x) = l' \neq 0$	$\frac{l}{l'}$	0	$+\infty \text{ si } l' > 0$ $-\infty \text{ si } l' < 0$	$-\infty \operatorname{si} l' > 0$ $+\infty \operatorname{si} l' < 0$
$\lim_{x \to a} g(x) = 0$	±∞(*)	forme indéterminée	±∞(*)	±∞(*)
$\lim_{x \to a} g(x) = +\infty$	0	0	forme indéterminée	forme indéterminée
$\lim_{x \to a} g(x) = -\infty$	0	0	forme indéterminée	forme indéterminée

(*) La règle des signes donne le signe de la limite du quotient.

Proposition: Composition des limites

Soient $f: I \to \mathbb{R}$ et $g: J \to \mathbb{R}$ telles que $f(I) \subset J$. Soit a un élément ou une extrémité de I (éventuellement $\pm \infty$). Si $\lim_{x \to a} f(x) = b$ et $\lim_{y \to b} g(y) = c$, alors $g \circ f$ admet une limite en a et $\lim_{x \to a} (g \circ f)(x) = c$.

Démonstration. Faisons la preuve dans le cas où a,b,c sont finis. Soit $\epsilon > 0$. Par définition de la limite de g, il existe v > 0 tel que

$$\forall y \in J, |y - b| \le v \implies |g(y) - c| \le \epsilon$$

Maintenant par définition de la limite de f , il existe $\eta > 0$ tel que :

$$\forall x \in I, |x-a| \le \eta \implies |f(x)-b| \le v$$

Soit $x \in I$ tel que $|x - a| \le \eta$ alors $|f(x) - b| \le v$ donc $|g(f(x)) - c| \le \epsilon$ ce qui permet de conclure.

1.5 Passage à la limite dans les inégalités larges

Proposition Passage à la limite des inégalités larges

Soient $f,g:I\to R.$ Soit a un élément ou une extrémité de I (éventuellement $\pm\infty$). Si ·

- $f \le g$ au voisinage de a
- f et g ont des limites finies en a

alors $\lim_{x \to a} f(x) \le \lim_{x \to a} g(x)$.

Démonstration. Notons l et l' les limites respectives de f et g.

On fait la preuve dans le cas où $a = -\infty$.

Par l'absurde, supposons l' < l. On pose alors $\epsilon = \frac{l-l'}{3} > 0$. Par définition de la limite, il existe $A_1 \in \mathbb{R}$ tel que

$$\forall x \in I, \ x \le A_1 \implies |f(x) - l| \le \epsilon$$

il existe $A_2 \in \mathbb{R}$ tel que :

$$\forall x \in I, |x \le A_2 \implies |g(x) - l'| \le \epsilon$$

De plus, il existe $A_3 \in \mathbb{R}$ tel que pour tout $x \in I \cap]-\infty$, A_3 , $f(x) \leq g(x)$. Posons $A = \min(A_1, A_2, A_3)$. Soit $x \in I$ tel que x < A, on

$$l - \epsilon \le f(x) \le l + \epsilon$$

$$l' - \epsilon \le g(x) \le l' + \epsilon$$

$$f(x) \le g(x)$$

П

Ainsi,
$$l - \epsilon \le f(x) \le g(x) \le l' + \epsilon$$
. On a donc $l - l' \le 2\epsilon = \frac{2}{3}(l - l')$. D'où $1 \le \frac{2}{3}$ Absurde. Ainsi, $l \le l'$.

Remarque: Comme pour les suites, les inégalités deviennent larges par passage à la limite.

Théorèmes d'existence de limites

2.1 Existence et inégalités

Théorème d'encadrement (limite finie)

Soient f, g et $h: I \to \mathbb{R}$ et a un élément ou une extrémité de I (éventuellement $\pm \infty$). Si :

- $f \le g \le h$ voisinage de a
- les fonctions f et h ont la même limite finie l en a.

alors, g admet une limite en a et $\lim_{x \to a} g(x) = l$.

Démonstration. On fait la preuve dans le cas où *a* est fini.

Soit $\epsilon > 0$. Par définition de la limite, il existe $\eta_1 > 0$ tel que :

$$\forall x \in I, |x-a| \le \eta_1 \implies |f(x)-l| \le \epsilon$$

et il existe $\eta_2 > 0$ tel que :

$$\forall x \in I, |x-a| \le \eta_2 \implies |h(x)-l| \le \epsilon$$

De plus, il existe $\eta_3 > 0$ tel que : $\forall x \in I \cap]a - \eta_3, a + \eta_3[, f(x) \le g(x) \le h(x).$

Posons $\eta = \min(\eta_1, \eta_2, \frac{\eta_3}{2})$. Soit $x \in I$ tel que $|x - a| \le \eta$, on a:

$$l - \epsilon \le f(x) \le l + \epsilon$$

$$l - \epsilon \le h(x) \le l + \epsilon$$

$$f(x) \le g(x) \le h(x)$$

Ainsi, $l - \epsilon \le f(x) \le g(x) \le h(x) \le l + \epsilon$. On a donc $|g(x) - l| \le \epsilon$.

Ainsi, on a bien montré que g admet une limite en a et que $\lim_{x \to a} g(x) = l$.

Théorème de minoration (limite $+\infty$) ou majoration (limite $-\infty$)

Soient f et g deux fonctions de I dans \mathbb{R} , a un élément ou une extrémité de I (éventuellement $\pm \infty$).

1. Si
$$\begin{cases} f(x) \le g(x) \text{ au voisinage de } a \\ \lim_{x \to a} f(x) = +\infty \end{cases}$$
, alors $\lim_{x \to a} g(x) = +\infty$.

2. Si
$$\begin{cases} f(x) \le g(x) \text{ au voisinage de } a \\ \lim_{x \to a} g(x) = -\infty \end{cases}$$
, alors $\lim_{x \to a} f(x) = -\infty$.

Démonstration. La preuve est similaire à celle réalisée sur les suites.

2.2 Fonctions monotones

Théorème de la limite monotone

Soient $a, b \in \mathbb{R} \cup \{\pm \infty\}$ tels que a < b et $f :]a, b[\rightarrow \mathbb{R}$.

- ➤ Si f est croissante, on a:
 - Si f est majorée, alors f admet une limite finie en b et $\lim_{x \to b} f(x) = \sup_{x \in]a,b[} f(x)$. $\operatorname{sinon} \lim_{x \to b} f(x) = +\infty.$
 - Si f est minorée, alors f admet une limite finie en a et $\lim_{x \to a} f(x) = \inf_{x \in [a,b]} f(x)$ sinon $\lim_{x \to a} f(x) = -\infty$.
- ➤ Si f est décroissante, on a :
 - Si f est minorée, alors f admet une limite finie en b et $\lim_{x \to b} f(x) = \inf_{x \in]a,b[} f(x)$
 - Si f est majorée, alors f admet une limite finie en a et $\lim_{x \to a} f(x) = \sup_{x \in [a,b[} f(x)$

Démonstration. (Non exigible) Nous allons faire la preuve dans le cas où f est croissante pour la limite en b, les autres points se montrent de même.

* Supposons f majorée. Alors, l'ensemble $E = \{f(x), x \in]a, b[\}$ est majoré. Il est non vide car a < b, donc il admet une borne supérieure que l'on note $l \in \mathbb{R}$. Soit $\epsilon > 0$. Par caractérisation de la borne supérieure, il existe $y_0 \in E$ tel que $l - \epsilon < y_0$. Comme $y_0 \in E$, il existe $x_0 \in A$, $t \in A$

tel que $y_0 = f(x_0)$. Pour tout $x \in [x_0, b[$, on a alors $l - \epsilon \le f(x_0) \le f(x)$ (car f est croissante) et $f(x) \le l$ (car $f(x) \in E$). Donc : $\forall x \in [x_0, b[, l - \epsilon \le f(x) \le l]$. D'où : $\forall x \in [x_0, b[, |f(x) - l| \le \epsilon]$. Ainsi, en posant $\eta = b - x_0$, on a que : $\forall x \in]a, b[, |x-b| \le \eta \implies |f(x)-l| \le \epsilon.$ On a donc montré que $\lim_{x \to a} f(x) = l.$

* Supposons f non majorée. Soit A > 0. Comme A ne majore pas f, il existe $x_A \in]a,b[$ tel que $f(x_A) > A$. Pour tout $x \in [x_A, b[$, on a alors $A \le f(x_A) \le f(x)$ (car f est croissante). On a donc montré que $\lim_{x \to a} f(x) = +\infty$.

Remarque: Ne pas hésiter à faire un dessin pour savoir s'il faut montrer que la fonction est majorée ou minorée pour la limite considérée.

Exemple : On considère la fonction $x \mapsto F(x) = \int_0^x e^{-t^2} dt$. Montrons qu'elle a une limite finie en $+\infty$.

D'une part, F est croissante comme primitive d'une fonction positive $x \mapsto e^{-t^2}$. Il suffit d'établir qu'elle est majorée. On a : $\forall t \ge 1$, $\exp(-t^2) \le \exp(-t)$.

Soit $x \ge 1$, on a:

$$F(x) = \int_0^1 e^{-t^2} dt + \int_1^x e^{-t^2} dt \le \int_0^1 e^{-t^2} dt + \int_1^x e^{-t} dt = \int_0^1 e^{-t^2} dt + e^{-1} - e^{-x} \le \int_0^1 e^{-t^2} dt + e^{-1}.$$

Ainsi, F est croissante, majorée par $\int_0^1 e^{-t^2} dt + e^{-1}$: elle admet donc une limite en $+\infty$.

Corollaire

Soient $f: I \to \mathbb{R}$ une fonction monotone et $a \in I$ tel que a ne soit pas une borne de I. Alors, f admet des limites finies à gauche et à droite en a et on a :

$$\lim_{x \to a^{-}} f(x) \le f(a) \le \lim_{x \to a^{+}} f(x) \quad \text{(si } f \text{ croissante)}$$

$$\lim_{x \to a^+} f(x) \le f(a) \le \lim_{x \to a^-} f(x) \quad \text{(si } f \text{ décroissante)}.$$

Démonstration. Montrons le résultat dans le cas f croissante et notons c et d les bornes de I. $f_{||c,a||}$:]c, a[→ \mathbb{R} est croissante, et pour $x \in]c, a[$, $f(x) \le f(a)$, donc cette fonction est majorée. Elle admet donc une limite quand x tend vers a. De plus pour tout $x \in]c, a[, f(x) \le f(a),$ donc en passant à la limite x tend vers a, $\lim_{x \to a^-} f(x) \le f(a)$.

De même, en considérant $f_{||a,d|}$, on montre que $\lim_{x \to a} f(x)$ existe et est supérieure ou égale à f(a).

Remarque: Attention, les deux inégalités peuvent être strictes (penser à la fonction partie entière).

On pourra cependant établir sa continuité en a en prouvant que $\lim_{x \to a^-} f(x) = f(a) = \lim_{x \to a^+} f(x)$, l'existence des limites étant assurées par la monotonie de f.

3 Continuité

3.1 Continuité en un point

Proposition

Soit $f: I \to \mathbb{R}$ et $a \in I$.

On dit que f est continue en a si et seulement si f admet une limite finie l en a. On a alors l = f(a). Autrement dit, f est continue en a si et seulement si :

$$\forall \epsilon > 0, \ \exists \eta > 0, \ \forall x \in I, \ |x - a| \le \eta \implies |f(x) - f(a)| \le \epsilon$$

Dans le cas contraire, on dit que f est discontinue en a.

Démonstration. Montrons que si f a une limite finie l en $a \in I$, alors l = f(a).

Soit $\epsilon > 0$, il existe $\eta > 0$ tel que :

$$\forall x \in I, |x - a| \le \eta \implies |f(x) - l| \le \epsilon.$$

Comme $a \in [a - \eta, a + \eta] \cap I$, on a $|f(a) - l| \le \epsilon$.

Ainsi : $\forall \epsilon > 0$, $|f(a) - l| \le \epsilon$.

Supposons $l \neq f(a)$.

Posons
$$\epsilon = \frac{|f(a) - l|}{2}$$
, on obtient: $|f(a) - l| \le \frac{|f(a) - l|}{2}$ d'où $1 \le \frac{1}{2}$. Absurde. Donc $l = f(a)$.

Remarque:

• Si f admet une limite en $a \in I$ alors cette limite est finie.

On fait la preuve dans le cas *a* fini.

Par l'absurde.

- Supposons que f tend vers $+\infty$ en a. Alors, il existe $\eta > 0$ tel que : $\forall x \in I$ tel que $|x a| \le \eta$, $f(x) \ge f(a) + 1$. Pour x = a, on obtiendrait : $f(a) \ge f(a) + 1$. Absurde.
- Supposons que f tend vers $-\infty$ en a. Alors, il existe $\eta > 0$ tel que : $\forall x \in I$ tel que $|x a| \le \eta$, $f(x) \le f(a) 1$. Pour x = a, on obtiendrait : $f(a) \le f(a) 1$. Absurde.

Ainsi, f tend vers une valeur finie.

- Géométriquement, une fonction est continue si est seulement si son graphe se trace « sans lever le crayon ».
- Pour parler de continuité en *a*, il faut que *f* soit définie en *a*.

Exemple : La fonction $x \mapsto \sqrt{x}$ est continue en 2. En effet : $\forall x \in \mathbb{R}_+$, $|\sqrt{x} - \sqrt{2}| = \frac{|x - 2|}{\sqrt{x} + \sqrt{2}} \le |x - 2|$.

Soit $\epsilon > 0$, posons $\eta = \epsilon > 0$, soit $x \in \mathbb{R}_+$ tel que $|x - 2| \le \epsilon$. Alors $|\sqrt{x} - \sqrt{2}| \le \epsilon$.

Définition: Continuité à gauche et à droite

Soient $f: I \to \mathbb{R}$ une fonction et a un élément de I qui n'est pas une extrémité. On dit que :

- f est continue à gauche en a si et seulement si $f_{|I\cap]-\infty,a|}$ est continue en a.
- f est continue à droite en a si et seulement si $f_{|I \cap [a,+\infty[}$ est continue en a.

Remarque : Soient $f: I \to \mathbb{R}$ une fonction et a un élément de I qui n'est pas une extrémité. $f_{|I\cap]-\infty,a|}$ est continue en a si et seulement si f admet une limite à gauche qui vaut f(a).

 $f_{|I\cap[a,+\infty[]}$ est continue en a si et seulement si f admet une limite à droite qui vaut f(a).

Exemple:

• La fonction $x \mapsto \lfloor x \rfloor$ est continue à droite en tout point de \mathbb{R} mais elle n'est continue à gauche qu'aux points de $\mathbb{R} \setminus \mathbb{Z}$.

• La fonction f suivante admet une limite à droite égale à la limite à gauche en x = 2, mais elle n'est pas continue en x = 2 (ni même à gauche ou à droite) puisque cette limite n'est pas égale à f(2).

Proposition

Toute fonction continue en un point *a* est bornée au voisinage de *a*.

Démonstration. C'est une conséquence d'une propriété vue sur les limites.

Proposition

Soient $f: I \to \mathbb{R}$ une fonction et a un élément de I distinct de ses extrémités. On a l'équivalence : f est continue en a si et seulement si f est continue à droite et à gauche en a.

Démonstration. Conséquence du résultat sur les limites.

f est continue en a si et seulement si f tend vers f(a) lorsque x tend vers a si et seulement si f admet une limite à droite et à gauche qui valent f(a).

Proposition : Continuité et limites de suites

Soit $f: I \to \mathbb{R}$ une fonction continue en $a \in I$. Alors pour toute suite $(x_n)_{n \in \mathbb{N}}$ d'éléments de I convergeant vers a, la suite $(f(x_n))_{n \in \mathbb{N}}$ converge vers f(a).

Démonstration. C'est une conséquence directe de la caractérisation séquentielle de la limite.

Théorème

Soient $f: I \to I$ et $(u_n)_{n \in \mathbb{N}}$ une suite vérifiant $u_0 \in I$ et, pour tout $n \in \mathbb{N}$, la relation $u_{n+1} = f(u_n)$. Si :

- la suite $(u_n)_{n\in\mathbb{N}}$ est convergente,
- sa limite l'appartient à I,
- la fonction f est continue en l,

alors, l est un point fixe de f, i.e f(l) = l.

 $D\acute{e}monstration$. Supposons que $(u_n)_{n\in\mathbb{N}}$ converge vers $l\in I$. Alors, par extraction, $\lim_{n\to+\infty}u_{n+1}=l$. De plus, par continuité de f en $l:u_{n+1}=f(u_n)\underset{n\to+\infty}{\longrightarrow} f(l)$. Par unicité de la limite, f(l)=l.

Proposition: Opérations

Soient $f, g: I \to \mathbb{R}$ deux fonctions continues en un point $a \in I$ et $(\lambda, \mu) \in \mathbb{R}^2$.

Alors les fonctions |f|, $\lambda f + \mu g$ et fg sont continues en a.

Si de plus, g ne s'annule pas en a, alors le fonction $\frac{f}{g}$ est continue en a.

Proposition

Soit $f: I \to \mathbb{R}$ une fonction continue en $a \in I$ et $g: J \to \mathbb{R}$ une fonction continue en $f(a) \in J$ telles que $f(I) \subset J$. Alors, la fonction $g \circ f$ est continue en a.

Définition: Prolongement par continuité

Soit $a \in I$ et $f: I \setminus \{a\} \to \mathbb{R}$. On dit que f est prolongeable par continuité en a si et seulement si il existe une fonction $g: I \to \mathbb{R}$ telle que $g|_{I \setminus \{a\}} = f$ et g continue en a.

Théorème

Soit $a \in I$ et $f: I \setminus \{a\} \to \mathbb{R}$ une fonction.

f est prolongeable par continuité en a si et seulement si f admet une limite finie l en a. Dans ce cas un tel

prolongement est unique et est défini par : g : $x \mapsto \begin{cases} f(x) \text{ si } x \neq a \\ l \text{ sinon} \end{cases}$. g est appelé le prolongement par

continuité de f en a.

• Si f est prolongeable par continuité en a alors il existe $g:I\to\mathbb{R}$ continue en a prolongeant f sur I. De plus, g est continue en a donc $g(x) \underset{x \to a}{\rightarrow} g(a)$. Donc :

$$g|_{I\setminus\{a\}}(x)\underset{x\to a}{\longrightarrow}g(a)$$

Or: $for all x \in I \setminus \{a\}, g(x) = f(x)$. Ainsi,

$$f(x) \underset{x \to a}{\to} g(a)$$
.

Ainsi, f admet une limite finie en a et on a : $\lim_{x \to a} f(x) = g(a)$.

Ceci prouve également l'unicité d'un tel du prolongement, s'il existe.

On a bien $g|_{I\setminus\{a\}} = f$. Montrons que g est continue en a.

Soit $\epsilon > 0$. Par définition, il existe $\eta > 0$ tel que : $\forall x \in I \setminus \{a\}, |x - a| \le \eta \implies |f(x) - l| \le \epsilon$.

Par conséquent :

$$\forall x \in I \setminus \{a\}, |x-a| \le \eta \implies |g(x)-l| \le \epsilon.$$

Or, g(a) = l, donc:

$$\forall x \in I \setminus \{a\}, |x-a| \le \eta \implies |g(x) - g(a)| \le \epsilon.$$

Or, $|g(a) - g(a)| = 0 \le \epsilon$. Ainsi:

$$\forall x \in I, |x - a| \le \eta \implies |g(x) - g(a)| \le \epsilon$$

Exemple : Soit $f: x \mapsto \frac{\sin x}{x}$. f est définie sur \mathbb{R}^* , mais $f(x) \xrightarrow[x \to 0]{} 1$ (taux d'accroissement). $\mathbb{R} \to \mathbb{R}$ Ainsi, la fonction $\tilde{f}: x \mapsto \begin{cases} \frac{\sin x}{x} \sin x \neq 0 & \text{est continue en } 0 : \text{c'est le prolongement par continuité de } f \text{ en } 0. \\ 1 \sin x = 0 \end{cases}$

3.2 Continuité sur un intervalle I

Définition

On dit que $f: I \to \mathbb{R}$ est continue sur I si et seulement si elle est continue en tout point de I.

On note $\mathscr{C}^0(I,\mathbb{R})$ l'ensemble des fonctions continues de I dans \mathbb{R} . On dit qu'une fonction continue sur I est de classe \mathscr{C}^0 sur I.

Proposition: Opérations sur les fonctions continues

Soient f et g deux fonctions continues sur I et $(\lambda, \mu) \in \mathbb{R}^2$. Alors, les fonctions |f|, $\lambda f + \mu g$, fg sont continues sur I. Si, de plus, g ne s'annule pas sur I, $\frac{f}{g}$ est continue sur I.

Proposition

Soient $f: I \to \mathbb{R}$ continue sur I et $g: J \to \mathbb{R}$ continue sur J avec $f(I) \subset J$. Alors, la fonction $g \circ f$ est continue sur I.

Démonstration. Il suffit d'appliquer à chaque point de I les énoncés ponctuels vus dans la partie précédente.

Exemple : Si $f,g:I \to \mathbb{R}$ sont continues sur I, alors $u:x \mapsto \max(f(x),g(x))$ et $v:x \mapsto \min(f(x),g(x))$ sont continues sur I:Isuffit de noter que :

$$u = \frac{|f - g| + g + f}{2}$$
 et $v = \frac{f + g - |f - g|}{2}$.

Ces fonctions sont alors continues comme composées et combinaisons linéaires de fonctions continues.

Remarque: Hors point à problème, on justifie en une ligne la continuité de *f* comme combinaison linéaire, produit, quotient, composée de fonctions qui le sont, les fonctions usuelles étant continues sur leurs domaines de définition.

Image d'un intervalle par une fonction continue 3.3

Théorème : Théorème des valeurs intermédiaires

Soient $f: I \to \mathbb{R}$ une fonction continue et $(a, b) \in I^2$ tels que a < b. Alors, pour tout y comprise ntre f(a) et f(b), il existe $c \in [a, b]$ tel que f(c) = y.

Démonstration. Quitte à changer f en -f, on peut supposer que $f(a) \le f(b)$. Soit $y \in [f(a), f(b)]$.

Posons $g: x \mapsto f(x) - y$. La fonction g est continue sur [a, b] et $g(a) = f(a) - y \le 0$ et $g(b) = f(b) - y \ge 0$. Ainsi, g(a) et g(b)sont de signes contraires.

On cherche à prouver qu'il existe $c \in [a, b]$ tel que g(c) = 0.

On pose:

$$a_0 = a, b_0 = b$$

$$\forall n \in \mathbb{N}, (a_{n+1}, b_{n+1}) = \begin{cases} \left(a_n, \frac{a_n + b_n}{2}\right) & \text{si } g(a_n)g\left(\frac{a_n + b_n}{2}\right) \le 0\\ \left(\frac{a_n + b_n}{2}, b_n\right) & \text{sinon} \end{cases}$$

Montrons par récurrence que : $\forall n \in \mathbb{N}, \ a \le a_n \le b_n \le b$ et $b_n - a_n = \frac{b-a}{2^n}, \ g(a_n)g(b_n) \le 0$.

- Pour n = 0, $a_0 = a \le b = b_0$ et on a $b_0 a_0 = b a = \frac{b a}{2^0}$, $g(a_0)g(b_0) = g(a)g(b) \le 0$.
- Soit $n \in \mathbb{N}$, supposons que $a \le a_n \le b_n \le b$ et $b_n a_n = \frac{b-a}{2^n}$, $g(a_n)g(b_n) \le 0$.
 - Si $g(a_n)g\left(\frac{a_n+b_n}{2}\right) \le 0$, on pose $(a_{n+1},b_{n+1}) = \left(a_n,\frac{a_n+b_n}{2}\right)$. Ainsi, on a $g(a_{n+1})g(b_{n+1}) \le 0$. De plus $b_{n+1} - a_{n+1} = \frac{a_n + b_n}{2} - a_n = \frac{b_n - a_n}{2} = \frac{b - a_n}{2^{n+1}}$

Enfin, d'après l'hypothèse de récurrence, $a \le a_n \le \frac{a_n + b_n}{2} \le b_n \le b$ donc $a \le a_{n+1} \le b_{n+1} \le b$.

• sinon, on a $g(a_n)g\left(\frac{a_n+b_n}{2}\right) > 0$, on pose alors $(a_{n+1},b_{n+1}) = \left(\frac{a_n+b_n}{2},b_n\right)$. Ainsi, on a $b_{n+1}-a_{n+1}=b_n-\frac{a_n+b_n}{2}=\frac{b_n-a_n}{2}=\frac{b-a}{2^{n+1}}$.

Ainsi, on a
$$b_{n+1} - a_{n+1} = b_n - \frac{a_n + b_n}{2} = \frac{b_n - a_n}{2} = \frac{b - a}{2^{n+1}}$$
.

De plus, d'après l'hypothèse de récurrence, $a \le a_n \le \frac{a_n + b_n}{2} \le b_n \le b$ donc $a \le a_{n+1} \le b_{n+1} \le b$.

Enfin, on a
$$g(a_{n+1})g(b_{n+1}) = g\left(\frac{a_n + b_n}{2}\right)g(b_n) = \frac{g(a_n)g\left(\frac{a_n + b_n}{2}\right)^2g(b_n)}{g(a_n)g\left(\frac{a_n + b_n}{2}\right)}.$$

Or, $g(a_n)g(b_n) \le 0$ donc le numérateur est négatif. Le dénominateur est quant à lui strictement positif. Ainsi, $g(a_{n+1})g(b_{n+1}) \le 0$.

• Ainsi, ces propriétés sont vraies pour tout $n \in \mathbb{N}$.

Montrons désormais que les suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ sont adjacentes.

- Soit $n \in \mathbb{N}$:
 - Si $g(a_n)g\left(\frac{a_n+b_n}{2}\right) \le 0$, on a: $a_{n+1}-a_n=0$ et $b_{n+1}-b_n=\frac{a_n+b_n}{2}-b_n=\frac{a_n-b_n}{2} \ge 0$.
 - Sinon, on a: $a_{n+1} a_n = \frac{a_n + b_n}{2} a_n = \frac{b_n a_n}{2} \ge 0$ et $b_{n+1} b_n = b_n b_n = 0$.

Dans tous les cas $a_{n+1}-a_n \ge 0$ et $b_{n+1}-b_n \le 0$. Ainsi, $(a_n)_{n \in \mathbb{N}}$ est croissante et $(b_n)_{n \in \mathbb{N}}$ est décroissante.

• De plus, $(b_n - a_n)_{n \in \mathbb{N}}$ = $\left(\frac{b - a}{2^n}\right)_{n \in \mathbb{N}}$ donc $(b_n - a_n)_{n \in \mathbb{N}}$ converge vers 0.

Ainsi, $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ sont adjacentes donc converge vers la même limite que l'on note c.

Comme : $\forall n \in \mathbb{N}$, $a \le a_n \le b$, on a par passage à la limite dans les inégalités, $c \in [a, b]$.

Comme g est continue sur [a,b], $(g(a_n))_{n\in\mathbb{N}}$ converge vers g(c) et $(g(b_n))_{n\in\mathbb{N}}$ converge vers g(c).

De plus : $\forall n \in \mathbb{N}$, $g(a_n)g(b_n) \le 0$. D'où en passant à la limite cette inégalité $g(c)^2 \le 0$.

Ainsi g(c) = 0 et le théorème est démontré.

Remarque:

• On peut montrer que l'on a le même genre d'énoncé dans le cas où a et b sont des extrémités de I qui ne sont pas dans I. Les valeurs f(a) et f(b) sont alors remplacés par $\lim_{x\to a} f(x)$ et $\lim_{x\to a} f(x)$.

• Ce théorème permet de montrer théoriquement l'existence d'au moins une solution à des équations.

Recherche d'un zéro par dichotomie:

Soient $(a, b) \in \mathbb{R}^2$, avec a < b et $f \in \mathcal{C}^0([a, b], \mathbb{R})$ telle que $f(a)f(b) \le 0$. On pose :

$$a_0 = a, \ b_0 = b$$

$$\forall n \in \mathbb{N}, \ (a_{n+1}, b_{n+1}) = \left\{ \begin{array}{l} \left(a_n, \frac{a_n + b_n}{2}\right) & \text{si } f(a_n) f\left(\frac{a_n + b_n}{2}\right) \leq 0 \\ \left(\frac{a_n + b_n}{2}, b_n\right) & \text{sinon} \end{array} \right.$$

Alors, pour tout $n \in \mathbb{N}$, f admet au moins un zéro dans $[a_n,b_n]$ et $\frac{a_n+b_n}{2}$ fournit une approximation d'un zéro de f à la précision $\frac{b-a}{2^{n+1}}$ près.

Corollaire

Si *I* est un intervalle et si f est continue sur *I*, alors f(I) est un intervalle.

Démonstration. On souhaite prouver que :

$$\forall u, v \in f(I), [u, v] \subset f(I).$$

i.e:

$$\forall u, v \in f(I), \forall y \in [u, v], y \in f(I).$$

ce qui s'écrit encore :

$$\forall u, v \in f(I), \forall v \in [u, v], \exists c \in I, v = f(c).$$

Soit $(u, v) \in f(I)^2$, il existe $(a, b) \in I^2$ tel que u = f(a) et v = f(b).

Soit y compris entre f(a) et f(b) Par le théorème des valeurs intermédiaires, il existe c compris entre a et b tel que f(c) = y. Or, I est un intervalle donc $c \in I$. Ainsi $y \in f(I)$ et donc $[u, v] \subset f(I)$, ce qui prouve que f(I) est un intervalle.

Remarque : Notons que l'intervalle d'arrivée f(I) n'est pas toujours de même nature que l'intervalle de départ I. **Exemple :**

$$f(x) = \sin(x)$$
 et $f(]-\pi,\pi[) = [-1,1];$
 $g(x) = x^2$ et $g(]-1,1[) = [0,1[.$

Proposition (Admis)

Une fonction continue sur un segment est bornée et atteint ses bornes.

Autrement dit, si $f : [a, b] \to \mathbb{R}$ est continue sur [a, b] avec a < b, alors il existe $(c, d) \in [a, b]^2$ tel que :

$$\forall x \in [a, b], f(c) \le f(x) \le f(d).$$

Remarque: On dit que f admet un maximum en d et que f admet un minimum en c.

Lemme

Si f est monotone sur un intervalle I et si f(I) est un intervalle alors f est continue sur I.

Démonstration. Quitte à changer f en -f, on peut supposer f croissante.

Soit a un élément de I distinct de ses extrémités.

Montrons que f est continue en a.

Comme *f* est croissante, on sait que :

$$\lim_{x \to a^{-}} f(x) \le f(a) \le \lim_{x \to a^{+}} f(x)$$

Raisonnons par l'absurde et supposons que f n'est pas continue. Alors, une de ces inégalités est stricte.

Supposons par exemple : $f(a) < \lim_{x \to a} f(x)$.

Soit
$$y \in]f(a)$$
, $\lim_{x \to a^+} f(x)[$.

• Comme *a* n'est pas l'extrémité supérieure de *I*, il existe $u \in I \cap]a, +\infty[$.

On a alors: $\lim_{x \to a} f(x) \le f(u)$.

En effet : $\forall z \in]a, u], f(z) \le f(u).$

En faisant tendre z vers a, on obtient le résultat.

On a alors : $y \in [f(a), f(u)]$ avec $f(a), f(u) \in f(I)$. Donc $y \in f(I)$ car f(I) est un intervalle.

Donc $y \in f(I) \cap]f(a)$, $\lim_{x \to a} f(x)[D'où]f(a)$, $\lim_{x \to a} f(x)[-f(I) \cap]f(a)$.

- Soit $t \in I$.
 - Si $t \le a$ alors $f(t) \le f(a)$ car f est croissante.
 - Si t > a, alors $f(t) \ge \lim_{x \to a} f(x)$.

En effet, on a: $\forall z \in]a, t], f(z) \le f(t).$

En passant à la limite lorsque z tend vers a, on obtient le résultat souhaité.

D'où , $f(I) \cap]f(a)$, $\lim_{x \to a^+} f(x) [= \emptyset$.

Absurde car] f(a), $\lim_{x \to a^+} f(x)$ [$\neq \emptyset$ et] f(a), $\lim_{x \to a^+} f(x)$ [$\subset f(I) \cap$] f(a), $\lim_{x \to a^+} f(x)$ [. Donc $f(a) = \lim_{x \to a^+} f(x)$. De même on prouve que l'on a : $f(a) = \lim_{x \to a^-} f(x)$.

f est donc continue en a.

Si a est une extrémité de I on procède de même en ne conservant qu'une des deux inégalités.

Ainsi, f est continue sur I.

Théorème

Toute fonction f continue et strictement monotone sur un intervalle I réalise une bijection de I sur l'intervalle f(I). Sa réciproque est continue et strictement monotone sur l'intervalle f(I), et de même monotonie que f.

Démonstration. Quitte à remplacer f par -f, on peut supposer f strictement croissante.

- Comme f est continue sur un intervalle I, on a déjà prouvé que f(I) est un intervalle.
- Bijectivité:

On sait que $f: I \to f(I)$ est surjective car par définition, pour tout $y \in f(I)$, il existe $x \in I$ tel que y = f(x).

De plus, f est strictement croissante. Soit $(x_1, x_2) \in I^2$:

- si $x_1 < x_2$, on a $f(x_1) < f(x_2)$ par stricte croissance de f;
- si $x_1 > x_2$, on a $f(x_1) > f(x_2)$.

Ainsi: $\forall x_1, x_2 \in I, x_1 \neq x_2 \implies f(x_1) \neq f(x_2).$

Ainsi, par contraposée : $\forall x_1, x_2 \in I$, $f(x_1) = f(x_2) \implies x_1 = x_2$ donc f est injective.

f réalise donc une bijection de I sur f(I). On note $f^{-1}: f(I) \to I$ sa bijection réciproque.

• Monotonie de f^{-1} : Soient $y, y' \in f(I)$, supposons y < y'.

Par l'absurde, supposons que $f^{-1}(y) \ge f^{-1}(y')$, on aurait par croissance de f, $f(f^{-1}(y)) \ge f(f^{-1}(y'))$ donc $y \ge y'$.

Ainsi, on a $f \circ f^{-1}(y) < f \circ f^{-1}(y')$.

Donc f^{-1} est strictement croissante (donc strictement monotone et de même monotonie que f).

• Continuité de f^{-1} . f^{-1} est monotone sur l'intervalle f(I). De plus, $f^{-1}(f(I)) = I$ qui est un intervalle. Donc d'après le lemme, f^{-1} est continue sur f(I).

4 Extension aux fonctions à valeurs dans C

Définition

Soient $f: I \to \mathbb{C}$ et a un élément ou une extrémité de I (éventuellement $\pm \infty$).

• On dit que f admet une limite $l \in \mathbb{C}$ en a ssi :

 $\begin{array}{ll} \text{Cas } a \in \mathbb{C}: & \forall \varepsilon > 0, \ \exists \eta > 0, \ \forall x \in I, \ |x - a| \leq \eta \implies |f(x) - l| \leq \varepsilon. \\ \text{Cas } a = +\infty: & \forall \varepsilon > 0, \ \exists A \in \mathbb{R}, \ \forall x \in I, \ x \geq A \implies |f(x) - l| \leq \varepsilon. \\ \text{Cas } a = -\infty: & \forall \varepsilon > 0, \ \exists A \in \mathbb{R}, \ \forall x \in I, \ x \leq A \implies |f(x) - l| \leq \varepsilon. \end{array}$

• On dit que f est continue en $a \in I$ ssi f admet une limite finie l en a. On a alors l = f(a). On dit que f est continue sur I si f est continue en tout point de I.

Remarque : $\bigwedge I$ est toujours un intervalle de \mathbb{R} .

Définition

On dit que $f: I \to \mathbb{C}$ est bornée au voisinage de a si,

$$\exists M \in \mathbb{R}, \exists r > 0, \ \forall x \in I \cap]a - r, a + r[, |f(x)| \le M.$$

Proposition

Toute fonction $f: I \to \mathbb{C}$ admettant une limite finie en a (un élément de I ou une extrémité de I, éventuellement $\pm \infty$) est bornée au voisinage de a.

Proposition: Opérations sur les limites

Soit a un élément ou une extrémité de I (éventuellement $\pm \infty$). Soient f, $g:I\to \mathbb{C}$ telles que $\lim_{x\to a}f(a)=l\in \mathbb{C}$ et $\lim_{x\to a}g(x)=l'\in \mathbb{C}$. Alors :

16

- Pour tout $(\lambda, \mu) \in \mathbb{C}^2$, $\lim_{x \to a} (\lambda f + \mu g)(x) = \lambda l + \mu l'$.
- $\lim_{x \to a} f(x)g(x) = ll'.$
- Si $l' \neq 0$, $\frac{f}{g}$ est définie au voisinage de a et $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{l}{l'}$.

Proposition : Opérations sur les fonctions continues en a

Soient $f, g: I \to \mathbb{C}$ deux fonctions continues en un point $a \in I$.

- Pour tout $(\lambda, \mu) \in \mathbb{C}^2$, $\lambda f + \mu g$ est continue en a.
- *f g* est continue en *a*.
- Si de plus, g ne s'annule pas en a, alors la fonction $\frac{f}{g}$ est continue en a.

Proposition : Opérations sur les fonctions continues sur I

Soient $f, g: I \to \mathbb{C}$ deux fonctions continues sur I.

- Pour tout $(\lambda, \mu) \in \mathbb{C}^2$, $\lambda f + \mu g$ est continue sur *I*.
- fg est continue sur I.
- Si de plus, g ne s'annule pas en a, alors la fonction $\frac{f}{g}$ est continue sur I.

Proposition

Soient $f:I\to\mathbb{C}$ et a un élément ou une extrémité de I (éventuellement $\pm\infty$).

f admet une limite (finie) en a si et seulement si Re(f) et Im(f) admettent des limites finies en a, et on a alors

$$\lim_{x \to a} f(x) = \lim_{x \to a} \operatorname{Re}(f(x)) + i \lim_{x \to a} \operatorname{Im}(f(x)).$$

Démonstration. Preuve similaire à celle réalisée sur les suites.

Corollaire

Soient $f:I\to\mathbb{C}$, a un élément de I ou une extrémité de I (éventuellement $\pm\infty$) et $l\in\mathbb{C}$.

Si $\lim_{x \to a} f(x) = l$ alors $\lim_{x \to a} \overline{f(x)} = \overline{l}$.

Corollaire

Soit $f: I \to \mathbb{C}$. On a l'équivalence :

f est continue sur I si et seulement si Re(f) et Im(f) sont continues sur I.

Ce qui reste valable :	Ce qui n'est plus valable :
Unicité de la limite	Monotonie
Toute fonction admettant une limite finie en <i>a</i>	Majorant/minorant
est bornée au voisinage de <i>a</i>	
Opérations sur les fonctions admettant	Limites infinies
une limite finie en <i>a</i>	
Opérations sur les fonctions continues en <i>a</i> ou sur <i>I</i>	Passage à la limite dans les inégalités larges
	Théorème d'encadrement (limite finie)
	Théorème de minoration et de majoration
	Théorème de la limite monotone
	Théorème des valeurs intermédiaires
	Maximum/minimum