# "A Comprehensive Analysis of Google Play Store Apps"

Made by: ASHISH SINGH

Internship ID: CRIN2301701

#### PROBLEM STATEMENT

Technology is an increasing need nowadays and used everywhere. One of the features of Technology is android. Which we all use in our daily life. Android is a mobile operating system based on a modified version of the Linux kernel and other open-source software, designed primarily for touchscreen mobile devices such as smartphones and tablets. Do ETL: Extract-Transform-Load the dataset and find for me some information from this large data. This is a form of data mining. What all information can be achieved by mining this data would be brainstormed by the interns.

Find key metrics and factors and show the meaningful relationships between attributes. Do your own research and come up with your findings.

#### **INTRODUCTION**

The **Data Science Project** aims to analyze a dataset provided from the Twilearn, that contains information about various mobile applications available on the Google Play Store. The dataset includes attributes such as the Name of the App, category, rating, reviews, size, installs, genres, etc.

The goal of the project is to **use data analysis techniques to gain insights into the mobile app market**, identify trends and patterns, and make data-driven recommendations for app developers to improve their products and reach a wider audience.

```
In [1]: # importing all necessary libraries
import numpy as np
import pandas as pd
import sklearn as sklearn
import seaborn as sns
import matplotlib.pyplot as plt
sns.set_style('whitegrid')
```

```
In [2]: %matplotlib inline
In [3]: # importing the dataset
```

In [4]: data.head()

In [4]: data.nead(,

Out[4]

| ]: | ı | Unnamed:<br>0.1 | Unnamed:<br>0 | Арр                                                  | Category          | Rating | Reviews | Size | Installs | Туре | Price | Content<br>Rating | Last<br>Updated     | Current<br>Ver           | Minimum<br>Android Ver | Genres          |
|----|---|-----------------|---------------|------------------------------------------------------|-------------------|--------|---------|------|----------|------|-------|-------------------|---------------------|--------------------------|------------------------|-----------------|
|    | 0 | 0               | 0             | Photo Editor &<br>Candy Camera &<br>Grid & ScrapBook | Art And<br>Design | 4.1    | 159     | 19.0 | 10000    | Free | 0.0   | Others            | January 7,<br>2018  | 1.0.0                    | 4.0.3                  | Art &<br>Design |
|    | 1 | 1               | 1             | Coloring book<br>moana                               | Art And<br>Design | 3.9    | 967     | 14.0 | 500000   | Free | 0.0   | Others            | January<br>15, 2018 | 2.0.0                    | 4.0.3                  | Art &<br>Design |
|    | 2 | 2               | 5             | U Launcher Lite –<br>FREE Live Cool<br>Themes, Hide  | Art And<br>Design | 4.7    | 87510   | 8.7  | 5000000  | Free | 0.0   | Others            | August 1,<br>2018   | 1.2.4                    | 4.0.3                  | Art &<br>Design |
|    | 3 | 3               | 6             | Sketch - Draw &<br>Paint                             | Art And<br>Design | 4.5    | 215644  | 25.0 | 50000000 | Free | 0.0   | Teen              | June 8,<br>2018     | Varies<br>with<br>device | 4.2                    | Art &<br>Design |
|    | 4 | 4               | 7             | Pixel Draw -<br>Number Art<br>Coloring Book          | Art And<br>Design | 4.3    | 967     | 2.8  | 100000   | Free | 0.0   | Others            | June 20,<br>2018    | 1.1                      | 4.4                    | Art &<br>Design |

In [5]: print('The Shape of the Dataset: ',data.shape)

data=pd.read\_csv('Google Apps data.csv')

The Shape of the Dataset: (8276, 15)

It appears that there are **8276** Records in the dataset and **15** Attributes in the Dataset.

#### **DATA PREPROCESSING**

It seems that the **Column 1:** "Unnamed: 0.1" is just describing the Serial Number of the Entries in the Dataset.

```
data.info()
In [6]:
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 8276 entries, 0 to 8275
        Data columns (total 15 columns):
             Column
                                  Non-Null Count Dtype
             ____
                                  _____
             Unnamed: 0.1
                                  8276 non-null
                                                 int64
             Unnamed: 0
                                  8276 non-null
                                                int64
         2
                                  8276 non-null object
             App
         3
             Category
                                 8276 non-null object
         4
             Rating
                                  8276 non-null
                                                float64
         5
                                  8276 non-null
             Reviews
                                                 int64
             Size
                                  8276 non-null
                                                 float64
         7
                                  8276 non-null int64
             Installs
         8
             Type
                                 8276 non-null
                                                 object
         9
             Price
                                  8276 non-null float64
         10 Content Rating
                                  7915 non-null
                                                 object
         11 Last Updated
                                  8276 non-null
                                                 object
         12 Current Ver
                                 8276 non-null
                                                 object
         13 Minimum Android Ver 8276 non-null
                                                 object
         14 Genres
                                  8276 non-null
                                                 object
        dtypes: float64(3), int64(4), object(8)
        memory usage: 970.0+ KB
        There is missing values in Content Rating
        data['Content Rating'].isna().sum()
        361
Out[7]:
        It summarizes that there are: 8276 Records and the Column: Content Rating contains 361 missing values.
        data['Content Rating'].unique()
In [8]:
        array(['Others', 'Teen', nan], dtype=object)
Out[8]:
        data['Content Rating']
```

```
Others
Out[9]:
                  Others
                  Others
          2
          3
                    Teen
                  Others
                   . . .
         8271
                  Others
         8272
                 Others
         8273
                 Others
         8274
                     NaN
          8275
                  Others
         Name: Content Rating, Length: 8276, dtype: object
         Using Imputation Techniques to fill the missing values in the Content Rating Attribute.
In [10]: from sklearn.impute import SimpleImputer
          si=SimpleImputer(strategy='most_frequent', missing_values=np.nan)
          data['Content Rating']=si.fit_transform(np.array(data['Content Rating']).reshape(-1,1))
          data['Content Rating'].unique()
In [11]:
         array(['Others', 'Teen'], dtype=object)
Out[11]:
          data.describe()
In [12]:
```

| Out[12]: | t[12]: Unnamed: 0.1 |             | Unnamed: 0  | Rating               | Reviews                | Size        | Installs     | Price       |
|----------|---------------------|-------------|-------------|----------------------|------------------------|-------------|--------------|-------------|
|          | count               | 8276.000000 | 8276.000000 | 8276.000000          | 8.276000e+03           | 8276.000000 | 8.276000e+03 | 8276.000000 |
|          | mean                | 4137.500000 | 4560.609957 | 4.175121             | 2.803270e+05           | 18.897761   | 9.658206e+06 | 1.028758    |
|          | std                 | 2389.219747 | 2560.879748 | 0.534762             | 2.096170e+06           | 22.376521   | 5.986505e+07 | 16.776622   |
|          | min                 | 0.000000    | 0.000000    | 1.000000             | 1.000000e+00           | 0.008300    | 1.000000e+00 | 0.000000    |
|          | 25%                 | 2068.750000 | 2459.750000 | 2459.750000 4.000000 |                        | 2.800000    | 1.000000e+04 | 0.000000    |
|          | 50%                 | 4137.500000 | 4613.500000 | 4.300000             | 3.213500e+03           | 9.500000    | 1.000000e+05 | 0.000000    |
|          | <b>75</b> %         | 6206.250000 | 6765.250000 | 4.500000             | 4.627800e+04 27.000000 |             | 1.000000e+06 | 0.000000    |
|          | max                 | 8275.000000 | 8916.000000 | 5.000000             | 7.815831e+07           | 100.000000  | 1.000000e+09 | 400.000000  |

```
In [13]: ## removing un-neccessary columns
unneccesary=['Unnamed: 0.1','Unnamed: 0','Current Ver']
data1=data.drop(columns=unneccesary,axis=1)
data1.head(3)
```

Out[13]:

| • | Арр                                               | Category          | Rating | Reviews | Size | Installs | Туре | Price | Content<br>Rating | Last Updated        | Minimum Android<br>Ver | Genres          |
|---|---------------------------------------------------|-------------------|--------|---------|------|----------|------|-------|-------------------|---------------------|------------------------|-----------------|
|   | Photo Editor & Candy Camera & Grid<br>& ScrapBook | Art And<br>Design | 4.1    | 159     | 19.0 | 10000    | Free | 0.0   | Others            | January 7,<br>2018  | 4.0.3                  | Art &<br>Design |
|   | Coloring book moana                               | Art And<br>Design | 3.9    | 967     | 14.0 | 500000   | Free | 0.0   | Others            | January 15,<br>2018 | 4.0.3                  | Art &<br>Design |
| 2 | U Launcher Lite – FREE Live Cool<br>Themes, Hide  | Art And<br>Design | 4.7    | 87510   | 8.7  | 5000000  | Free | 0.0   | Others            | August 1,<br>2018   | 4.0.3                  | Art &<br>Design |

It appears that Columns: Category and Genres contains the same data. Let's check it.

```
In [14]: # Checking whether Category and Genres Col. have the same entries or not
if (data1['Category'] == data1['Genres']).all():
```

```
print("The values in the two attributes are equal.")
          else:
             print("The values in the two attributes are not equal.")
          # the all() method is used to check whether all the values in the two columns are equal.
         The values in the two attributes are not equal.
         data1['Category'].nunique()
In [15]:
Out[15]:
         data1['Category'].unique()
In [16]:
         array(['Art And Design', 'Auto And Vehicles', 'Beauty',
Out[16]:
                 'Books And Reference', 'Business', 'Comics', 'Communication',
                 'Dating', 'Education', 'Entertainment', 'Events', 'Finance',
                 'Food And Drink', 'Health And Fitness', 'House And Home',
                 'Libraries And Demo', 'Lifestyle', 'Game', 'Family', 'Medical',
                 'Social', 'Shopping', 'Photography', 'Sports', 'Travel And Local',
                 'Tools', 'Personalization', 'Productivity', 'Parenting', 'Weather',
                 'Video Players', 'News And Magazines', 'Maps And Navigation'],
               dtype=object)
         data1['Genres'].nunique()
Out[17]:
         data1['Genres'].unique()
In [18]:
```

```
array(['Art & Design', 'Auto & Vehicles', 'Beauty', 'Books & Reference',
Out[18]:
                 'Business', 'Comics', 'Communication', 'Dating', 'Education',
                 'Entertainment', 'Events', 'Finance', 'Food & Drink',
                 'Health & Fitness', 'House & Home', 'Libraries & Demo',
                 'Lifestyle', 'Adventure', 'Arcade', 'Casual', 'Card', 'Action',
                 'Strategy', 'Puzzle', 'Sports', 'Music', 'Word', 'Racing',
                 'Simulation', 'Board', 'Trivia', 'Role Playing', 'Educational',
                 'Music & Audio', 'Video Players & Editors', 'Medical', 'Social',
                 'Shopping', 'Photography', 'Travel & Local', 'Tools',
                 'Personalization', 'Productivity', 'Parenting', 'Weather',
                 'News & Magazines', 'Maps & Navigation', 'Casino'], dtype=object)
In [19]: data['Rating'].unique()
         array([4.1, 3.9, 4.7, 4.5, 4.3, 4.4, 3.8, 4.2, 4.6, 4., 4.8, 4.9, 3.6,
Out[19]:
                3.7, 3.2, 3.3, 3.4, 3.5, 3.1, 5., 2.6, 3., 1.9, 2.5, 2.8, 2.7,
                1., 2.9, 2.3, 2.2, 1.7, 2., 1.8, 2.4, 1.6, 2.1, 1.4, 1.5, 1.2])
          data['Reviews'].unique()
In [20]:
                                                603, 1195, 398307], dtype=int64)
         array([ 159,
                           967, 87510, ...,
Out[20]:
In [21]: data['Size'].unique()
```

```
array([1.9000e+01, 1.4000e+01, 8.7000e+00, 2.5000e+01, 2.8000e+00,
Out[21]:
                 5.6000e+00, 2.9000e+01, 3.3000e+01, 3.1000e+00, 2.8000e+01,
                 1.2000e+01, 2.0000e+01, 2.1000e+01, 3.7000e+01, 5.5000e+00,
                 1.7000e+01, 3.9000e+01, 3.1000e+01, 4.2000e+00, 2.3000e+01,
                 6.0000e+00, 6.1000e+00, 4.6000e+00, 9.2000e+00, 5.2000e+00,
                 1.1000e+01, 2.4000e+01, 1.0000e+00, 9.4000e+00, 1.5000e+01,
                 1.0000e+01, 1.2000e+00, 2.6000e+01, 8.0000e+00, 7.9000e+00,
                 5.6000e+01, 5.7000e+01, 3.5000e+01, 5.4000e+01, 1.9629e-01,
                 3.6000e+00, 5.7000e+00, 8.6000e+00, 2.4000e+00, 2.7000e+01,
                 2.7000e+00, 2.5000e+00, 7.0000e+00, 1.6000e+01, 3.4000e+00,
                 8.9000e+00, 3.9000e+00, 2.9000e+00, 3.8000e+01, 3.2000e+01,
                 5.4000e+00, 1.8000e+01, 1.1000e+00, 2.2000e+00, 4.5000e+00,
                 9.8000e+00, 5.2000e+01, 9.0000e+00, 6.7000e+00, 3.0000e+01,
                 2.6000e+00, 7.1000e+00, 2.2000e+01, 6.4000e+00, 3.2000e+00,
                 8.2000e+00, 4.9000e+00, 9.5000e+00, 5.0000e+00, 5.9000e+00,
                 1.3000e+01, 7.3000e+01, 6.8000e+00, 3.5000e+00, 4.0000e+00,
                 2.3000e+00, 2.1000e+00, 4.2000e+01, 9.1000e+00, 5.5000e+01,
                 2.2460e-02, 7.3000e+00, 6.5000e+00, 1.5000e+00, 7.5000e+00,
                 5.1000e+01, 4.1000e+01, 4.8000e+01, 8.5000e+00, 4.6000e+01,
                 8.3000e+00, 4.3000e+00, 4.7000e+00, 3.3000e+00, 4.0000e+01,
                 7.8000e+00, 8.8000e+00, 6.6000e+00, 5.1000e+00, 6.1000e+01,
                 6.6000e+01, 7.7150e-02, 8.4000e+00, 3.7000e+00, 1.1523e-01,
                 4.4000e+01, 6.7871e-01, 1.6000e+00, 6.2000e+00, 5.3000e+01,
                 1.4000e+00, 3.0000e+00, 7.2000e+00, 5.8000e+00, 3.8000e+00,
                 9.6000e+00, 4.5000e+01, 6.3000e+01, 4.9000e+01, 7.7000e+01,
                 4.4000e+00, 7.0000e+01, 9.3000e+00, 8.1000e+00, 3.6000e+01,
                 6.9000e+00, 7.4000e+00, 8.4000e+01, 9.7000e+01, 2.0000e+00,
                 1.9000e+00, 1.8000e+00, 5.3000e+00, 4.7000e+01, 5.4297e-01,
                 5.1367e-01, 7.6000e+01, 7.6000e+00, 5.9000e+01, 9.7000e+00,
                 7.8000e+01, 7.2000e+01, 4.3000e+01, 7.7000e+00, 6.3000e+00,
                 3.2617e-01, 9.3000e+01, 6.5000e+01, 7.9000e+01, 1.0000e+02,
                 5.8000e+01, 5.0000e+01, 6.8000e+01, 6.4000e+01, 3.4000e+01,
                 6.7000e+01, 6.0000e+01, 9.4000e+01, 9.9000e+00, 2.2656e-01,
                 9.9000e+01, 6.0938e-01, 9.5000e+01, 8.3000e-03, 4.0040e-02,
                 2.8516e-01, 8.0000e+01, 1.7000e+00, 7.4000e+01, 6.2000e+01,
                 6.9000e+01, 7.5000e+01, 9.8000e+01, 8.5000e+01, 8.2000e+01,
                 9.6000e+01, 8.7000e+01, 7.1000e+01, 8.6000e+01, 9.1000e+01,
                 8.1000e+01, 9.2000e+01, 8.3000e+01, 8.8000e+01, 6.8750e-01,
                 8.4180e-01, 8.7793e-01, 3.6914e-01, 4.8000e+00, 2.5977e-01,
                 3.6621e-01, 1.3000e+00, 9.5215e-01, 9.5703e-01, 4.1000e+00,
                 8.9000e+01, 6.7969e-01, 5.3125e-01, 5.1270e-01, 8.9844e-01,
```

```
7.6074e-01, 8.3301e-01, 7.0312e-01, 6.9629e-01, 7.5391e-01,
3.1055e-01, 5.6640e-02, 2.3535e-01, 1.9141e-01, 8.3691e-01,
4.9800e-02, 9.3066e-01, 8.4473e-01, 2.4512e-01, 9.0820e-01,
5.2734e-01, 3.0566e-01, 7.2852e-01, 1.9824e-01, 2.5390e-02,
3.0664e-01, 2.3340e-01, 3.6230e-01, 2.1484e-01, 7.1289e-01,
7.3828e-01, 8.8870e-02, 2.8613e-01, 1.6600e-02, 7.2270e-02,
1.3670e-02, 3.0957e-01, 7.6170e-02, 9.0234e-01, 7.9883e-01,
7.9100e-02, 9.1699e-01, 1.6504e-01, 4.3950e-02, 9.4238e-01,
9.0000e+01, 5.3223e-01, 5.9570e-02, 2.7637e-01, 6.3965e-01,
6.9727e-01, 9.0820e-02, 8.5156e-01, 1.1816e-01, 3.1445e-01,
9.5312e-01, 2.0117e-01, 9.3164e-01, 4.3359e-01, 7.0020e-01,
2.0508e-01, 5.9473e-01, 3.0078e-01, 2.9883e-01, 1.7090e-01,
3.4180e-01, 3.7402e-01, 4.4336e-01, 6.8360e-02, 7.9297e-01,
4.3164e-01, 8.2227e-01, 4.0723e-01, 4.0234e-01, 4.4824e-01,
4.6680e-01, 3.2715e-01, 7.6367e-01, 7.0410e-01, 4.1992e-01,
4.1895e-01, 1.8750e-01, 4.4922e-01, 7.1094e-01, 4.8438e-01,
7.9688e-01, 4.0430e-01, 4.9414e-01, 8.6621e-01, 5.9863e-01,
7.5977e-01, 6.6699e-01, 5.7812e-01, 1.8164e-01, 8.2031e-01,
6.3184e-01, 3.6426e-01, 4.2676e-01, 5.8398e-01, 6.9922e-01,
5.7129e-01, 9.5898e-01, 2.1387e-01, 5.3710e-02, 3.1543e-01,
6.7480e-01, 4.9902e-01, 9.2871e-01, 9.4043e-01, 2.4410e-02,
5.4102e-01, 3.4277e-01, 2.6370e-02, 8.0080e-02, 2.0312e-01,
5.3809e-01, 2.8320e-02, 1.0059e-01, 1.1328e-01, 1.4941e-01,
2.0410e-01, 4.8730e-01, 1.6895e-01, 5.8301e-01, 7.9004e-01,
1.1914e-01, 4.0137e-01, 3.9062e-01, 7.8223e-01, 7.6855e-01,
4.8830e-02, 6.2793e-01, 9.6289e-01, 5.0391e-01, 8.1738e-01,
7.6172e-01, 1.9530e-02, 4.8633e-01, 5.8594e-01, 6.4062e-01,
2.1582e-01, 2.2266e-01, 1.7188e-01, 3.3200e-02, 2.5293e-01,
1.6016e-01, 4.4727e-01, 6.1426e-01, 2.7340e-02, 2.8125e-01,
7.5684e-01, 7.6660e-01, 6.2109e-01, 8.9453e-01, 9.7070e-01,
3.0176e-01, 4.7363e-01, 8.9258e-01, 8.8184e-01, 5.9375e-01,
4.8828e-01, 5.2730e-02, 5.4883e-01, 8.2715e-01, 9.2578e-01,
7.9199e-01, 2.6367e-01, 4.6880e-02, 5.1074e-01, 7.6562e-01,
2.7344e-01, 2.3440e-02, 8.7109e-01, 1.5039e-01, 1.7580e-02,
3.2230e-02, 8.3984e-01, 3.5547e-01, 3.7793e-01, 6.1133e-01,
1.5723e-01, 8.5840e-01, 3.8090e-02, 1.6602e-01, 1.3770e-01,
1.5625e-01, 1.4062e-01, 1.3965e-01, 1.8555e-01, 3.6719e-01,
1.8848e-01, 4.6191e-01, 2.4023e-01, 7.1290e-02, 2.4707e-01,
9.3457e-01, 4.1016e-01, 7.0310e-02, 3.9453e-01, 4.5898e-01,
2.2070e-01, 2.3438e-01, 8.6910e-02, 2.2852e-01, 2.5098e-01,
```

```
8.4082e-01, 4.5605e-01, 6.6016e-01, 5.3906e-01, 5.6836e-01,
                6.0449e-011)
In [22]:
         data1['Installs'].unique()
         array([
                    10000,
                               500000.
                                         5000000,
                                                    50000000,
                                                                 100000,
Out[22]:
                     50000,
                              1000000,
                                        10000000,
                                                        5000.
                                                              100000000,
                10000000000,
                                 1000.
                                       500000000,
                                                         100.
                                                                    500.
                                                          1], dtype=int64)
                       10.
                                   5,
                                              50,
         data1['Type'].unique()
In [23]:
         array(['Free', 'Paid'], dtype=object)
Out[23]:
In [24]: data1['Price'].unique()
         array([ 0. , 4.99, 3.99, 6.99,
                                               7.99,
                                                       5.99,
                                                               2.99.
                                                                      3.49,
Out[24]:
                  1.99, 9.99, 7.49, 0.99,
                                               9.,
                                                      5.49, 10., 24.99,
                 11.99, 79.99, 16.99, 14.99, 29.99, 12.99,
                                                              2.49, 10.99,
                                                      3.95.
                                                              4.49, 1.7,
                 1.5 , 19.99, 15.99, 33.99, 39.99,
                  8.99, 1.49, 3.88, 399.99, 17.99, 400.
                                                               3.02, 1.76,
                  4.84, 4.77, 1.61, 2.5, 1.59,
                                                       6.49,
                                                              1.29, 299.99,
                379.99, 37.99, 18.99, 389.99, 8.49, 1.75, 14. , 2. ,
                  3.08, 2.59, 19.4, 3.9, 4.59, 15.46, 3.04, 13.99,
                 4.29, 3.28, 4.6, 1., 2.95, 2.9, 1.97, 2.56.
                 1.2 ])
In [25]: data1['Minimum Android Ver'].unique()
         array(['4.0.3', '4.2', '4.4', '2.3', '3.0', '4.1', '4.0', '2.3.3', '-1',
Out[25]:
                '2.2', '5.0', '6.0', '1.6', '1.5', '2.1', '7.0', '4.3', '2.0',
                '3.2', '5.1', '7.1', '8.0', '3.1', '2.0.1', '1.0'], dtype=object)
         We can observe that there is a data point with Minimum Android Version as -1, it states that the particular application has no Minimum Android Ver. and
         can work perfectly with any version.
In [26]: # rechecking dataset again
```

data1.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 8276 entries, 0 to 8275
Data columns (total 12 columns):
                        Non-Null Count Dtype
    Column
                        8276 non-null
                                        object
    App
    Category
 1
                        8276 non-null object
    Rating
                        8276 non-null float64
 3
    Reviews
                        8276 non-null int64
 4
    Size
                        8276 non-null float64
 5
    Installs
                        8276 non-null int64
                        8276 non-null object
    Type
 7
    Price
                        8276 non-null float64
    Content Rating
                        8276 non-null object
    Last Updated
                        8276 non-null
                                       object
10 Minimum Android Ver 8276 non-null object
 11 Genres
                        8276 non-null
                                        object
dtypes: float64(3), int64(2), object(7)
memory usage: 776.0+ KB
```

## **EXPLORATORY DATA ANALYSIS (EDA) AND VISUALIZATION**

1. Let's See which Application is mostly installed.

Out[28]:

|      | Арр                                                | Category               | Rating | Reviews | Size | Installs | Туре | Price | Content<br>Rating | Last<br>Updated      | Minimum<br>Android Ver | Genres               |
|------|----------------------------------------------------|------------------------|--------|---------|------|----------|------|-------|-------------------|----------------------|------------------------|----------------------|
| 1844 | KBA-EZ Health Guide                                | Medical                | 5.0    | 4       | 25.0 | 1        | Free | 0.00  | Others            | August 2,<br>2018    | 4.0.3                  | Medical              |
| 4616 | Ra Ga Ba                                           | Game                   | 5.0    | 2       | 20.0 | 1        | Paid | 1.49  | Others            | February 8,<br>2017  | 2.3                    | Arcade               |
| 8181 | Mu.F.O.                                            | Game                   | 5.0    | 2       | 16.0 | 1        | Paid | 0.99  | Others            | March 3,<br>2017     | 2.3                    | Arcade               |
| 1842 | Tablet Reminder                                    | Medical                | 5.0    | 4       | 2.5  | 5        | Free | 0.00  | Others            | August 3,<br>2018    | 4.1                    | Medical              |
| 1848 | Anatomy & Physiology<br>Vocabulary Exam Review App | Medical                | 5.0    | 1       | 4.6  | 5        | Free | 0.00  | Others            | August 2,<br>2018    | 4.0                    | Medical              |
| 1856 | Clinic Doctor EHr                                  | Medical                | 5.0    | 2       | 7.1  | 5        | Free | 0.00  | Others            | August 3,<br>2018    | 8.0                    | Medical              |
| 5187 | Brick Breaker BR                                   | Game                   | 5.0    | 7       | 19.0 | 5        | Free | 0.00  | Others            | July 23, 2018        | 4.1                    | Arcade               |
| 5498 | CB Heroes                                          | Social                 | 5.0    | 5       | 1.8  | 5        | Free | 0.00  | Others            | August 4,<br>2018    | 5.0                    | Social               |
| 5913 | CQ ESPM                                            | Business               | 5.0    | 2       | 3.4  | 5        | Free | 0.00  | Others            | June 3, 2017         | 4.1                    | Business             |
| 6251 | CZ-Help                                            | Books And<br>Reference | 5.0    | 2       | 1.4  | 5        | Free | 0.00  | Others            | July 13, 2018        | 4.4                    | Books &<br>Reference |
| 7083 | EB Cash Collections                                | Business               | 5.0    | 1       | 4.3  | 5        | Free | 0.00  | Others            | July 31, 2018        | 4.4                    | Business             |
| 8082 | FK Atlantas                                        | Sports                 | 1.5    | 2       | 26.0 | 5        | Free | 0.00  | Others            | February 21,<br>2018 | 4.1                    | Sports               |
|      |                                                    |                        |        |         |      |          |      |       |                   |                      |                        |                      |

We can observe that we have **3 Applications** (KBA-EZ Health Guide, Ra Ga Ba, Mu.F.O.) having only single Installs and **9 Applications** having only 5 installs.

### 3. Number of Apps in each Android Version

In [29]: res4=data1['Minimum Android Ver'].value\_counts()

```
In [93]:
          res4
          4.1
                   1843
Out[93]:
          4.0.3
                   1152
          4.0
                   1045
          -1
                    963
          4.4
                    728
          2.3
                    554
          5.0
                    454
          4.2
                    315
          2.3.3
                    233
          2.2
                    203
          3.0
                    202
                    187
          4.3
          2.1
                    112
          1.6
                     87
          7.0
                     42
          6.0
                     42
          3.2
                     31
          2.0
                     27
          5.1
                     16
          1.5
                     15
          3.1
                      8
          2.0.1
                      7
          8.0
                      5
                      3
          7.1
          1.0
                      2
```

Name: Minimum Android Ver, dtype: int64

#### Here we can make the following conclusions:

- 1. 2 Applications support a Minimum Android Version of -1.
- 2. 963 Applications does not require any Minimum Android Version.
- 3. 1843 Applications support (highest) requires a Minimum Android Version of 4.1.

```
fig,ax=plt.subplots(figsize=(12,6))
plt.title('Distruibution according to the "Minimum Android Version" of the App',fontweight=600)
plt.ylabel('Minimum Android Version',fontweight='bold')
plt.xlabel('No. of Apps',fontweight='bold')
```

```
plt.grid(False)
bar_colors = ['red', 'green', 'blue', 'orange', 'purple']
plt.barh(res4.index,res4.values,color=bar_colors)
plt.show()
```





```
In [52]: # creating a bar chart of app categories

cd=['red','black','blue','green','purple','orange','pink','violet','indigo','yellow','c']
fig,ax=plt.subplots(figsize=(12,6))
category_counts = data1['Category'].value_counts()
plt.bar(category_counts.index, category_counts.values,color=cd)
plt.xticks(rotation=90)
fig.set_facecolor('w')
plt.grid(False)
plt.xlabel('Category',fontweight='bold')
plt.ylabel('Number of Apps',fontweight='bold')
plt.title("Category-wise Number of Apps",size=17, fontweight='bold')
for i, v in enumerate(category_counts):
    plt.annotate(str(v), xy=(i, v),ha='center',color='black',va='bottom')

plt.show()
```

# **Category-wise Number of Apps**



Observing the Barchart we can see that Family and Games are the Categories which are having the most number of applications.

In [32]: res=data1.groupby(['Category'])['Installs'].sum()
In [33]: res

```
Category
Out[33]:
         Art And Design
                                   114228100
         Auto And Vehicles
                                    53129800
          Beautv
                                    26916200
         Books And Reference
                                  1665791655
         Business
                                   697018120
         Comics
                                    44931100
         Communication
                                 11039241530
         Dating
                                   140912410
          Education
                                   352852000
          Entertainment
                                  2113660000
          Events
                                    15949410
          Family
                                  8885030590
         Finance
                                   455312400
          Food And Drink
                                   211677750
         Game
                                 13928762717
         Health And Fitness
                                  1144006220
         House And Home
                                    97082000
         Libraries And Demo
                                    51083000
         Lifestvle
                                   503741120
         Maps And Navigation
                                   503267560
         Medical
                                    39252676
         News And Magazines
                                  2369110650
         Parenting
                                    31116110
         Personalization
                                  1532341930
         Photography
                                  4649143130
         Productivity
                                  5793070180
         Shopping
                                  1400331540
         Social
                                  5487841475
         Sports
                                  1296431465
         Tools
                                  8100224500
         Travel And Local
                                  2894859300
         Video Players
                                  3931897200
         Weather
                                   361096500
         Name: Installs, dtype: int64
         cd=['red','yellow','blue','green','purple','orange','pink','violet','indigo','black','c']
In [34]:
          fig,ax=plt.subplots(figsize=(12,6))
          plt.bar(res.index, res.values,color=cd)
          plt.xlabel('Category', fontweight='bold')
```

plt.vlabel('Installs',fontweight='bold')

```
plt.grid(False)
plt.xticks(rotation=90)
plt.title("Number of Installs in each Category", size=17, fontweight='bold')
plt.show()
```



It can be observed from the above graph, that the **Most Number of Installs** are from:

- 1. Games (13928762717 Installs)
- 2. Communication (11039241530 Installs)
- 3. Family (885030590 Installs)
- 4. Tools (8100224500 Installs)
- 5. Productivity (5793070180 Installs)

#### The **Least Number of Installs** are from:

- 1. Events (15949410 Installs)
- 2. Beauty (26916200 Installs)
- 3. Parenting (31116110 Installs)
- 4. Medical (39252676 Installs)
- 5. Comics (44931100 Installs)

```
In [35]: res2=data1.groupby(['Category'])['Rating'].mean()
    res2
```

```
Category
Out[35]:
         Art And Design
                                 4.376667
         Auto And Vehicles
                                 4.190411
          Beautv
                                 4.278571
         Books And Reference
                                 4.344970
          Business
                                 4.098479
          Comics
                                 4.181481
         Communication
                                 4.121401
         Dating
                                 3.970149
          Education
                                 4.364407
          Entertainment
                                 4.135294
          Events
                                 4.435556
          Family
                                 4.187285
          Finance
                                 4.115563
          Food And Drink
                                 4.172340
         Game
                                 4.247645
         Health And Fitness
                                 4.243033
         House And Home
                                 4.150000
         Libraries And Demo
                                 4.179365
         Lifestyle
                                 4.093355
         Maps And Navigation
                                 4.036441
         Medical
                                 4.169178
         News And Magazines
                                 4.121569
                                 4.300000
          Parenting
         Personalization
                                 4.331419
         Photography
                                 4.157414
         Productivity
                                 4.183389
         Shopping
                                 4.230000
          Social
                                 4.247291
         Sports
                                 4.218702
         Tools
                                 4.040334
         Travel And Local
                                 4.069519
         Video Players
                                 4.043333
         Weather
                                 4.243056
         Name: Rating, dtype: float64
In [36]: fig,ax=plt.subplots(figsize=(12,6))
          plt.plot(res2, marker='*', color='red', ms=5, mec='black')
          plt.xlabel('Category', fontweight='bold')
          plt.ylabel('Average Rating',fontweight='bold')
```

plt.grid(False)

```
plt.xticks(rotation=90)
plt.title("Average Rating of each Category", size=17, fontweight='bold')
plt.show()
```

# **Average Rating of each Category**



It can be observed from the above graph, that the **Top 2 Most Rated App Categories are:** 

- 1. Events (4.43)
- 2. Art and Design (4.37)

### **Least Rated App Categories are:**

1. Dating (3.97)

```
In [37]: correlation=data1.corr()
In [38]: fig,ax=plt.subplots(figsize=(8,5))
    sns.heatmap(correlation,annot=True)
Out[38]: <AxesSubplot:>
```



Using the **Correlation Matrix**, we can understand the relationship between the Attributes of the Dataset, here we can observe that Reviews and Installs have the highest correlation.

#### 4. Finding out Number of Paid and Free Apps and their Distribution

```
In [39]: free_or_paid_df=data1.groupby('Type')[['App']].count()
In [40]: free_or_paid_df
```

```
Out[40]: App

Type
Free 7672

Paid 604

In [41]: free_or_paid_df.plot.pie(subplots=True, figsize=(12, 6), wedgeprops={"edgecolor":"0",'linewidth': 2, 'antialiased': True}, autopct='%1.0f%%')
plt.title('Distribution of Apps based on Paid/Free',fontweight=600)

Out[41]: Text(0.5, 1.0, 'Distribution of Apps based on Paid/Free')
```

### Distribution of Apps based on Paid/Free



### **5. Price Range Specific Distribution**

```
In [42]: # Defining the price ranges
price_ranges = [-0.01, 1, 3, 5, 7, 10, 13, 15, 18, 21, float('inf')]
price_labels = ['<1', '1-3', '3-5', '5-7', '7-10', '10-13', '13-15', '15-18', '18-21', '21+']

# Grouping data points based on price ranges
data1['Price Range'] = pd.cut(data1['Price'], bins=price_ranges, labels=price_labels)</pre>
```

```
# Display the data grouped by price ranges
          grouped data = data1.groupby('Price Range')['App'].count()
          grouped_data
          Price Range
Out[42]:
          <1
                   7777
          1-3
                    234
          3-5
                    149
          5-7
                     29
          7-10
                     31
          10-13
          13-15
                     10
          15-18
                      6
          18-21
                      6
          21+
                     25
          Name: App, dtype: int64
          pip install squarify
In [149...
          Defaulting to user installation because normal site-packages is not writeableNote: you may need to restart the kernel to use updated pac
          kages.
          Collecting squarify
            Downloading squarify-0.4.3-py3-none-any.whl (4.3 kB)
          Installing collected packages: squarify
          Successfully installed squarify-0.4.3
In [56]: import squarify
          fig,ax=plt.subplots(figsize=(16,12))
          categories=np.array(grouped data.index)
          values=np.array(grouped data.values)
          # Calculating the sizes for the tree map
          sizes = [value / sum(values) for value in values]
          # Creating the tree map
          squarify.plot(sizes=sizes, label=categories, alpha=0.7)
          # Set the axis Labels and title
          plt.xlabel('Price',fontweight='bold')
          plt.grid(False)
          plt.ylabel('Frequency', fontweight='bold')
```

```
plt.title('Tree Map',fontweight='bold')
plt.show()
```



We can observe that: 7777 Apps are priced 0.0 (Free) and 499 Apps are >0.0 (Paid).

```
Out of the Paid Apps: (Amt. in Dollars)

1-3 ---> 234

3-5 ---> 149

5-7 ---> 29

7-10 --> 31

10-13 -> 9

13-15 -> 10

15-18 -> 6

18-21 -> 6

21+ ---> 25
```

Apps greater than 15\$ can be considered EXPENSIVE APPS.

6. Plotting Heatmap for Number of Apps in each age group.

```
In [44]: plt.title("No. of Apps rated in each Age Group")
sns.heatmap(data1.groupby('Content Rating')[['App']].count(),fmt="d", annot=True, cmap='Reds')
Out[44]: <AxesSubplot:title={'center':'No. of Apps rated in each Age Group'}, ylabel='Content Rating'>
```



### 7. Apps have large Number of Reviews

In [45]: data1.sort\_values(by=['Reviews'],ascending=False).head(10)

#### Out[45]:

|      | Арр                                                  | Category      | Rating | Reviews  | Size | Installs   | Туре | Price | Content<br>Rating | Last<br>Updated   | Minimum<br>Android Ver | Genres                     | Price<br>Range |
|------|------------------------------------------------------|---------------|--------|----------|------|------------|------|-------|-------------------|-------------------|------------------------|----------------------------|----------------|
| 1892 | Facebook                                             | Social        | 4.1    | 78158306 | 1.0  | 1000000000 | Free | 0.0   | Teen              | August 3,<br>2018 | -1                     | Social                     | <1             |
| 287  | WhatsApp Messenger                                   | Communication | 4.4    | 69119316 | 1.0  | 1000000000 | Free | 0.0   | Others            | August 3,<br>2018 | -1                     | Communication              | <1             |
| 1893 | Instagram                                            | Social        | 4.5    | 66577313 | 1.0  | 1000000000 | Free | 0.0   | Teen              | July 31,<br>2018  | -1                     | Social                     | <1             |
| 286  | Messenger – Text and<br>Video Chat for Free          | Communication | 4.0    | 56642847 | 1.0  | 1000000000 | Free | 0.0   | Others            | August 1,<br>2018 | -1                     | Communication              | <1             |
| 1291 | Clash of Clans                                       | Game          | 4.6    | 44891723 | 98.0 | 100000000  | Free | 0.0   | Others            | July 15,<br>2018  | 4.1                    | Strategy                   | <1             |
| 3054 | Clash of Clans                                       | Family        | 4.6    | 44881447 | 98.0 | 100000000  | Free | 0.0   | Others            | July 15,<br>2018  | 4.1                    | Strategy                   | <1             |
| 3072 | Clean Master- Space<br>Cleaner & Antivirus           | Tools         | 4.7    | 42916526 | 1.0  | 500000000  | Free | 0.0   | Others            | August 3,<br>2018 | -1                     | Tools                      | <1             |
| 1275 | Subway Surfers                                       | Game          | 4.5    | 27722264 | 76.0 | 1000000000 | Free | 0.0   | Others            | July 12,<br>2018  | 4.1                    | Arcade                     | <1             |
| 2787 | YouTube                                              | Video Players | 4.3    | 25655305 | 1.0  | 1000000000 | Free | 0.0   | Teen              | August 2,<br>2018 | -1                     | Video Players &<br>Editors | <1             |
| 5746 | Security Master -<br>Antivirus, VPN,<br>AppLock, Boo | Tools         | 4.7    | 24900999 | 1.0  | 500000000  | Free | 0.0   | Others            | August 4,<br>2018 | -1                     | Tools                      | <1             |

## 8. Top 15 Apps with the Largest Size

In [46]: data1.sort\_values(by=['Size'],ascending=False).head(10)

| _      |   |   |      |    |
|--------|---|---|------|----|
| $\cap$ | u | + | 1/16 | ١. |
| $\cup$ | u | L | 140  | ١. |

|      | Арр                                                 | Category              | Rating | Reviews | Size  | Installs | Туре | Price | Content<br>Rating | Last<br>Updated     | Minimum<br>Android Ver | Genres              | Price<br>Range |
|------|-----------------------------------------------------|-----------------------|--------|---------|-------|----------|------|-------|-------------------|---------------------|------------------------|---------------------|----------------|
| 4568 | Gangster Town: Vice District                        | Family                | 4.3    | 65146   | 100.0 | 10000000 | Free | 0.00  | Others            | May 31,<br>2018     | 4.0                    | Simulation          | <1             |
| 6442 | Car Crash III Beam DH Real<br>Damage Simulator 2018 | Game                  | 3.6    | 151     | 100.0 | 10000    | Free | 0.00  | Others            | May 20,<br>2018     | 4.1                    | Racing              | <1             |
| 3629 | Vi Trainer                                          | Health And<br>Fitness | 3.6    | 124     | 100.0 | 5000     | Free | 0.00  | Others            | August 2,<br>2018   | 5.0                    | Health &<br>Fitness | <1             |
| 7047 | Stickman Legends: Shadow<br>Wars                    | Game                  | 4.4    | 38419   | 100.0 | 1000000  | Paid | 0.99  | Others            | August 3,<br>2018   | 4.1                    | Action              | <1             |
| 1737 | Navi Radiography Pro                                | Medical               | 4.7    | 11      | 100.0 | 500      | Paid | 15.99 | Others            | January 14,<br>2018 | 4.0.3                  | Medical             | 15-18          |
| 4304 | The Walking Dead: Our<br>World                      | Game                  | 4.0    | 22435   | 100.0 | 1000000  | Free | 0.00  | Teen              | August 1,<br>2018   | 5.0                    | Action              | <1             |
| 4566 | Miami crime simulator                               | Game                  | 4.0    | 254518  | 100.0 | 10000000 | Free | 0.00  | Others            | July 9, 2018        | 4.0                    | Action              | <1             |
| 4221 | Ultimate Tennis                                     | Sports                | 4.3    | 183004  | 100.0 | 10000000 | Free | 0.00  | Others            | July 19,<br>2018    | 4.0.3                  | Sports              | <1             |
| 6793 | Draft Simulator for FUT 18                          | Sports                | 4.6    | 162933  | 100.0 | 5000000  | Free | 0.00  | Others            | May 11,<br>2018     | 4.1                    | Sports              | <1             |
| 1196 | Talking Babsy Baby: Baby<br>Games                   | Lifestyle             | 4.0    | 140995  | 100.0 | 10000000 | Free | 0.00  | Others            | July 16,<br>2018    | 4.0                    | Lifestyle           | <1             |

## 9. Number of Paid Apps in each Category.

```
In [47]: # Number of paid apps in each category
  paid_apps_by_category = data[data['Type'] == 'Paid'].groupby('Category').size()
  print("\nNumber of Paid Apps in Each Category:")
  print(paid_apps_by_category)
```

| Number of Paid Apps                 | in Each Category: |
|-------------------------------------|-------------------|
| Category                            | 2                 |
| Art And Design<br>Auto And Vehicles | 3<br>1            |
| Books And Reference                 | 8                 |
| Business                            | 9                 |
| Communication                       | 22                |
| Dating                              | 3                 |
| Education                           | 4                 |
| Entertainment                       | 2                 |
| Family                              | 155               |
| Finance                             | 13                |
| Food And Drink                      | 2                 |
| Game                                | 76                |
| Health And Fitness                  | 11                |
| Lifestyle                           | 18                |
| Maps And Navigation                 | 5                 |
| Medical                             | 63                |
| News And Magazines                  | 2                 |
| Parenting                           | 2                 |
| Personalization                     | 64                |
| Photography                         | 15                |
| Productivity                        | 18                |
| Shopping                            | 2                 |
| Social                              | 2                 |
| Sports                              | 22                |
| Tools                               | 63                |
| Travel And Local                    | 8                 |
| Video Players                       | 4                 |
| Weather                             | 7                 |
| dtype: int64                        |                   |

# **THANK YOU**