Data Mining and Machine Learning

Assignment Project Exam Help

Statistical

https://eduassistpro.github.io/

s(2)

Add WeChat edu_assist_pro

Peter Jančovič

Objectives

- So far, we introduced Markov models
- Hidden Markov models (HMMs)
 Assignment Project Exam Help

 Calculating t serva
- Calculating t servation sequence https://eduassistpro.github.io/
- The Forward Probability edu_assist_pro
- HMM training

Hidden Markov Models (HMMs)

- Let's go back to our original shopping example
- Suppose that when a shopper visits a shop he or she makes a single purchase from a set of M possible items I_1 , ... I_M
- Suppose that hitpstelded that sist pring the sequence of purchases shops, we observe the sequence of purchases Add WeChat edu_assist_pro
- Because different shops may sell the same item it is in general not possible to know the shop sequence unambiguously from the purchase sequence

This is an example of a Hidden Markov process

HMMs (continued)

- In a HMM we assume that the current item purchased depends only on the current state (shop) and not on items previously purchased or shops previously vi
- Suppose x_t is https://eduassistpro.github.io/chased at time t
 Add WeChat edu_assist_pro
- The diagram indicates the dependencies:

Markov Model

Hidden Markov Model

• In a hidden Markov model, the relationship between the observation sequence and the state sequence is ambiguous.

HMMs Continued

- Let B_n be the probability distribution for items bought in shop S_n (n=1,...,N)
- Then B_n Assignment Project (Fixam Help $B_n(M)$), where $B_n(m)$ is the probability of buying item I_m in shop S_n https://eduassistpro.github.io/
- Or (better), $B_n^{A}(m)$ We That the edulation of t. Note that this is independent of t.
- We can write all of these probabilities as a $N \times M$ matrix B whose n^{th} row is B_n .

Formal definition of a HMM

- An N state HMM with observations $\{I_1,...,I_M\}$ comprises:
- An under Ninga Mostate Marko Example left efined by an initial state p d N×N state transition pr https://eduassistpro.github.io/

$$-P_0(n) = P(A) dd We Chat edu_assist_pro$$

$$-A_{nm} = P(x_t = S_m \mid x_{t-1} = S_n)$$

• An $N \times M$ state output probability matrix B where

$$-B_{nm} = B_n(m) = P(y_t = I_m / x_t = S_n)$$

Example HMM Probability Calculation

Let's start with our simple 3 state Markov model

In addition left to suppose that the other possible items $I_1, ..., I_4$ that was the purchased is Worneed to specify the probabilities $B_n(m)$ for n = 1, 2, 3 and m = 1, 2, 3, 4. Suppose

$$B = \begin{bmatrix} 0.6 & 0.1 & 0.1 & 0.2 \\ 0.1 & 0.1 & 0.1 & 0.7 \\ 0.2 & 0.2 & 0.3 & 0.3 \end{bmatrix}$$

Example (Continued)

- What is the probability of observing the sequence $I = I_2I_3$?
- This sequence must correspond to an underlying Assignment Project Exam Help state sequence $x = x_1x_2$. Suppose $x_1 = S_1$, $x_2 = S_2$
- Then P(I, x) https://eduassistpro.github.io/

$$= P(I_2|x_1) \times P(I_2|x_1) \times P(x_2|x_1) \times P$$

UNIVERSITY^{OF} BIRMINGHAM

Example (Continued)

- So, P(I, x) = 0.001
- But S_1S_2 is just one of the state sequences that could have generated I. It could also have arisen from S_1S_1 or S_1S_2 or S_2S_3 by S_2S_4 by S_3S_4 or S_3S_2 or S_3S_3 https://eduassistpro.github.io/
- As always, when calculating the probability of an event I which may have arisen through a number of ways x, we have to sum the joint probability P(I,x) over all possible values of x. In other words:

Example (Continued)

- So,
 - $-P(I, S_1S_1) = 0.0025$

 - $P(I, S_1S_2) = 0.0010$ $P(I, S_1S_3) = 0.0045$ Project Exam Help
 - $P(I, S_2S_1)$ + the educasister cegitth U b $\pm 0.0.0264$
 - $P(I, S_2S_2) = 0.0002$ $P(I, S_2S_3) = 0.0048$ Chat edu_assist_pro

 - $-P(I, S_3S_1) = 0.0024$
 - $-P(I,S_3S_2)=0$
 - $-P(I, S_3S_3) = 0.0108$

Calculating the probability of an observed sequence

- Even in our simple example with 3 states and 2 observations there are 9 terms in the summation
- In general, if the Markov model is fully connected and has N st https://eduassistpro.ghtivations, then the number therefore the number of terms in the su s N. This makes direct calculation of P(I) computationally impractical.
- However, there is an efficient solution....

The Forward Probability calculation

- This is very similar to Dynamic Programming
- Given a sequence of observations $y_1, y_2, ..., y_T$, for each t and t define $\alpha_t(t) = P(y_1, y_2, ..., y_t, x_t = S_i)$
- In words, α_t (it) pis: the characteristic distribution of the characteristic distribution of the countries of the characteristic distribution of the countries of the characteristic distribution of the characteristic distri
- This is easier to understand with a picture...

Graphical interpretation of $\alpha_t(i)$

Corresponds to $\alpha_3(2)$

UNIVERSITY^{OF} BIRMINGHAM

Recursive equation for $\alpha_t(i)$

From the diagram,

Ν Assignmen Project FxampHelp

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

$$\alpha_2(2) = 0.0012,$$

 $\alpha_2(3) = 0.0201$

Assignment Project Exam Helpence,

https://edu sistpropgith.up,
$$iQ = S_1$$
) +

Add We hat edu_assisty, $x_2 = S_2$) + $P(y_1, \overline{y_2}, x_2 = S_3) = P(y_1, \overline{y_2}, x_2 = S_3) = P(y_1, \overline{y_2}, x_2 = S_3)$

$$P(y_1, \overline{y_2}, x_2 = S_3) =$$

 $\alpha_2(1) + \alpha_2(2) + \alpha_2(3) =$

$$0.0051 + 0.0012 + 0.0201$$

$$= 0.0264$$

HMM Parameter Estimation

- Given a HMM and a sequence y we can calculate P(y)
- But where does the HMM come from? In other words how do we estimate the HMM's parameters?
 Assignment Project Exam Help orithm similar to
- This is done orithm similar to the E-M alg https://eduassistpro.githpbrio/heters of a GMM Add WeChat edu_assist_pro
- The HMM training algorit d the Baum-Welch algorithm
- Like the E-M algorithm, it involves making an initial estimate and then iteratively improving the estimate until convergence. Hence it is only locally optimal inverse in the estimate of the estimate.

HMM training

- 1. Make an initial estimate of the HMM M_0
- 2. Obtain a large set of training data *Y*Assignment Project Exam Help
 3. Set *i*=1
- 4. Apply the https://eduassistpro.githulp.ig/d M_{i-1} to get a new madel W_e such edu_assist) $P(Y|M_{i-1})$
- 5. If $|P(Y|M_i) P(Y|M_{i-1})| \le \varepsilon$ then stop, else
 - 1. i = i+1
 - 2. Go back to step 4.

Local optimality

UNIVERSITYOF BIRMINGHAM

Summary

- Hidden Markov Models
- Calculating the probability of an observation Assignment Project Exam Help sequence
- The forward https://eduassistpro.github.io/
- HMM trainingdd WeChat edu_assist_pro

