Assignment-4

```
Q-1 A)
```

```
a) Read in the files and visualize the network (try using ggplot2 or networkD3 libraries).
Ans:
 Code:
#Read the subs file over here
edges<-read.table(file.choose(),sep="\t")
colnames(edges)<-c("idsrc","iddest")
#Read the keys file over here
nodes<-read.table(file.choose(),sep="\t")
colnames(nodes)<-c("id","item")</pre>
require(sqldf)
#for changing the name of ids(Source ID,Destination id) to the Item Name
sourcenodenames<-sqldf("select item from edges,nodes where id=idsrc")
destinationnodenames<-sqldf("select item from edges,nodes where id=iddest")
#Created a frame called total which has item names for source and destination
total <- cbind(sourcenodenames, destination nodenames)
colnames(total)<-c("itemsrc","itemdest")</pre>
#ploted graph using networkD3
networkdata<-data.frame(total$itemsrc,total$itemdest)
library(networkD3)
simpleNetwork(networkdata)
```

Output:

Conclusion:

For visualization I've used networkD3 library

Q-1 B)

Calculate the degree centrality of each node.

Ans.

Code:

install.packages("igraph")

library(igraph)

net <- graph.data.frame(edges, nodes, directed=T)</pre>

#plot(net, edge.arrow.size=.4)

#net <- simplify(net, remove.multiple = F, remove.loops = T)</pre>

#calculating centrality for each node in graph degreecentrality<-centralization.degree(net)

#Calculating count of indegree+outdegree
degcentdf<-data.frame(degreecentrality\$res)
View(degcentdf)

Output:

	degreecentrality.res ‡
1	3
2	33
3	4
4	8
5	1
6	19
7	1
8	5
9	5
10	5
11	5
12	29
13	5
14	19
15	22
16	7
17	13
18	q
Showing	1 to 18 of 562 entries

Conclusion:
Created the degree centrality(indegree+outdegree) for each node using centralization.degree() function.
Node 1's total(indegree+outdegree) is 3
Node 2's total(indegree+outdegree) is 33 e.t.c
Q-1D) Which are the most "connected" node(s).
Ans:
Code:
net <- graph.data.frame(edges, nodes, directed=T)
#calculating centrality for each node in graph
degreecentrality<-centralization.degree(net)
#Calculating count of indegree+outdegree
degcentdf<-data.frame(degreecentrality\$res)

View(degcentdf)

#As we can see from data frame that node no with ID 2(degree-33),12(degree-29),79(degree-29) are the most three connected nodes

Conclusion:

We can see from data frame(degcentdf) that node no with ID 2(degree-33),12(degree-29),79(degree-29) are the most three connected nodes(Here I have taken only top 3 most connected nodes)

Q-1C) Visually determine what are the furthest ingredients from cocoa powder?

```
Ans.
Code:
#tmp2 = get.shortest.paths(net, from='408', to='142')
#fromcoca<-shortest_paths(net, from=408)
#Created distMatrix that shows the distance to all other nodes from node cocoa powder(408)
distMatrix <- shortest.paths(net, v=408)
max<-0
coll<-c()
cnt<-0
#for(i in 1:562){
# if(distMatrix[i][1]==1 && !is.na(distMatrix[i][1]))
# {
# cnt<-cnt+1
# }
#}
#PIs empty the coll first and then run the for loop to get required output
#Visually we can see that the nodes which are furthest from node cocoa powder are that nodes which
are not connected to it
#Created a simple for loop to verify the results which I got from visualization for the query
for(i in 1:562){
 if(distMatrix[i][1]==Inf && !is.na(distMatrix[i][1]))
 {
 cnt<-cnt+1
```

```
coll<-union(coll,c(i))
}
}
coll
require(sqldf)
collnames<-sqldf("select item from nodes where id in
(93,94,107,108,109,110,111,113,114,256,353,431,432,459,460,463,464,480,481)")
Output:
#These no of nodes are furthest from node cocoa powder
#[1] 93 94 107 108 109 110 111 113 114 256 353 431 432 459 460 463 464 480 481
#
          item
       marshmallow
#1
#2 marshmallow creme
#3
     yellow mustard
      honey mustard
#4
#5
         mustard
      dijon mustard
#6
#7 spicy brown mustard
#8
          mussel
#9
          clam
#10
      mustard powder
#11
       mustard seed
#12
        pound cake
     angel food cake
#13
#14
         toothpick
#15
          skewer
#16
        baking mix
```

#17 pancake mix

#18 avocado

#19 guacamole

Conclusion:

The nodes which are not connected to the node no 408(cocoa powder) are the furthest node from node no-408. We are getting 19 such nodes in our graph.

Q-2A)

Download 100 users ids that have tweeted about this, and their friends/followers. Note that due to rate limits you may need to include a pause in order to be able to download data on this many users

Code:

```
setup credentials: note you need to change to your own credentials
```

```{r}

require(twitteR)

require(RCurl)

consumer\_key <-'x3DkrJTjJ1PjMAJx3HfCgJQya'

consumer secret <-'XD3tQ5eODm7lCW9bhn2Ptg4oJEBLWrCW6ShDzrVIRde5urbbXw'

access token <-'1154193151-Fq8xxFjr900DVEj2La9kTshvpUUd50GLbl5Fmhp'

access secret <-'DDgYlEuEUvTBd576VFCFe4RnNKOstpFv39rapLHlKhiwS'

setup\_twitter\_oauth(consumer\_key, consumer\_secret, access\_token, access\_secret)

• • • •

#### search using keywords:

I use 10 here for simplicity, large number of n will cause the program running slow or reaching the twitter request limit, result in throwing a following error: In twInterfaceObj\$doAPICall("account/verify\_credentials", ...): Rate limit encountered & retry limit reached - returning partial results

```
Change 10 to at least 200, so we would most likely get at least 100 unique users.
searchTwitter returns List
```{r, echo=FALSE}
myTweets <- searchTwitter("#SXSW2016", n=200, lang="en")
myTweet
Extract the usernames:
Change k = 100, if you want to process 100 users
```{r}
k = 100
tweetsDF <- twListToDF(myTweets)</pre>
nameDF <- tweetsDF[, c("screenName")]</pre>
uniqueNameDF <- unique(nameDF)</pre>
hundredNamesDF <- head(uniqueNameDF, k)</pre>
hundred Names DF\\
use networkD3 to plot the graph, igraph to assess the degree distribution of the graph
{r}
Load package
require(networkD3)
require(igraph)
network_tw <- data.frame(src=character(), target=character(), stringsAsFactors=FALSE)</pre>
```

Netid-fst216 Name-Fenil Tailor

```
for(i in 1:100)
start <- getUser(uniqueNameDF[i],retryOnRateLimit=900)</pre>
#I used retryOnRateLimit=900 when it reached to it's maximum allowed rate limit to get User,Friends
and followers.
 friends.object<-lookupUsers(start$getFriendIDs(retryOnRateLimit=900))
 follower.object<-lookupUsers(start$getFollowerIDs(retryOnRateLimit=900))
 n<- length(friends.object)</pre>
 m<- length(follower.object)</pre>
 friends <- sapply(friends.object[1:n],screenName)</pre>
 followers <- sapply(follower.object[1:m],screenName)
 networkData <- data.frame(src=uniqueNameDF[i], target=friends)</pre>
 network_tw <- merge(network_tw, networkData, all=T)</pre>
 networkData <- data.frame(src=followers, target=uniqueNameDF[i])</pre>
 network_tw <- merge(network_tw, networkData, all=T)</pre>
```

#### Output:

}

Note---Here I have taken retryOnRateLimit=900 argument for getting User,Friends and their Followers. If rate limit crosses the threshold it would repeat the same function (900 times—for ensuring that we get enough data).

Then after I build a network of friends and followers and feed them into a dataframe called network tw



I got 27,623 for 100 users that I have taken from tweetsDF.

**Q-2B)**Assess and plot the degree distribution of your network (choose either in-degree or out-degree and motivate why you chose the metric).

```
Code:
```

```
degree assess
g <- graph.data.frame(network_tw, directed = F)</pre>
```

```
degree(g, mode = "total")
```

```
degree_distribution(g)
```

plot(degree\_distribution(g,mode="total"))

### Output:



## Conclusion:

I have taken mode=total(indegree+outdegree). The reason for choosing total degree is that we can get Complete visualization of each user's friends and followers. If I only choose indegree than I can only be a le to get distribution details of each users followers and If I only choose outdegree than I can only be able to get details of each users friends.

**Q-2C)** Visualize the network (try using ggplot2 or networkD3 libraries).

# Plot

simpleNetwork(network\_tw, zoom = T, linkDistance = 60, opacity = 0.5, linkColour = "grey", nodeColour = "purple",

nodeClickColour = "red", textColour = "blue")

## Output:



## Conclusion

Note---Request to wait for approximately 10-15 minutes to load complete graph after running the script.

I have pasted the zoom out version of the graph so that we can able to see the overall picture of user, friends and their followers (it is for 100 users).

**Q-3A)**Download Tweets from each user above that mention the hashtag you selected (over an appropriate time period)?

```
Code:
```

```
From <- "from:"

sxsw <- "+#SXSW2016"

tweets_list <- data.frame(src=character(), target=character(), stringsAsFactors=FALSE)

#looping to get the tweets from specific user by getting the hundredNamedDF[j](unique usernames) and searching tweets that they've put in recent times

for(j in 1:100)

{

if(j %% 5 == 0){Sys.sleep(600)}

#Pausing the R execution if the rate limit reached to the specific threshold

tweets_object<-do.call("rbind",lapply(searchTwitter(paste(From,hundredNamesDF[j],sxsw,sep = ""),resultType = "recent",lang="en"), as.data.frame))

tweets_list <- merge(tweets_list, tweets_object, all=T)

}
```

#### Conclusion:

tweetsDF<-tweets\_list

For this problem I've used following function

```
tweets_object<-do.call("rbind",lapply(searchTwitter(paste(From,hundredNamesDF[j],sxsw,sep =
""),resultType = "recent",lang="en"), as.data.frame))</pre>
```

This line of code will get the tweets from specific user that he/she has posted in recent times and then after I merge all user's tweets in the recent times into the data frame called tweets\_object

# Output:

	test	favorited	favoriteCount	replyTo5N	created	truncated	replyTeSID	ld .	replyToUID
1	#Austin, TX #Engineering #Job. Power Electronics En.	FALSE	0	tus.	2016-04-11 22:08:48	FALSE	760	719648421003419648	Air
2	#Austin, TX #Engineering #job: Power Electronics En	FALSE	1	166	2018-04-11 22:05:48	PALSE	No	719648421003419648	Arts
3	#Clerical alert: Legal Intern   SunPower   #Austin, TX	FALSE	0	tox	2016-04-11-20:43:36	FALSE	346	719626980509949953	Adl
4	#Clerical in #Milpitas, CA: Mechantronics intern at Su.	FALSE	0	196	2016-04-12 04:21:30	FALSE	64	719742717991919616	NII
5	#Finance #Job alert: General Ledger Accountant   Su.	FALSE	1	104	2016/04/11 08:20:39	FALSE	Alta I	719440010303307776	AM
6	#IT #job in #BinanRCHQ\$P\$\$: O2C Business Proces	FALSE	1	S. Rain.	2016-04-11 23:31:50	FALSE	740	719669314521923584	NV.
2	#Sales in #BinanROHQSPSS: Partner Support Repres	FALSE	0	100	2016-04-12-04:47:46	FALSE	tuk:	710748825431183360	Sec
8	#Sanjose, CA #Construction : Sales Instructional Des	FALSE		100	2010-04-11 15:13:50	FALSE	AR.	719543988621959168	AM
9	#Sanjose, CA #HR #Job: Senior Director, Talent Mana	FALSE		100	2016-04-11 16:27:27	PALSE	Alle	719582515634458624	146
10	Austin was LITTT with @Hhofmoscrill Channel K. #SX	FALSE	7	106	2016-04-11 21:11:03	FALSE	All .	719633885362065408	AM
11	Austin was LITTT with #khofmoscrill Channel K: #5X	PALSE		144	2018-04-11 21:52:15	PALSE	rist	719044254452141512	NE
12	Can you recommend anyone for this #Construction	FALSE	1	Aut.	2016-04-12 01:33:20	FALSE	Alta 1	719699891656597504	Asic
13	Can you recommend anyone for this #Construction	FALSE	3	April 1	2010-04-11 15:38:21	FALSE	748	719550162016731136	74V
14	Can you recommend anyone for this #Construction	FALSE	2	164	2016/04/11 12:47:51	FALSE	NA	719507252348977152	AM
15	Can you recommend anyone for this #Engineering #).	FALSE	0	101	2010-04-11 20:57:12	PACSE	July 1	719630403754004481	Add
İń	Can you recommend anyone for this #Engineering #j.	FALSE	1	All	2016-04-12-03-52-11	FALSE	744	719734835774787584	NA
17	Can you recommend anyone for this #Finance #job?	FALSE	1	101	2016-04-12-04-11-20	PALSE	766	719739655438939284	Na

	replyToUID	status5ource	screenName	retweetCount	IsRetweet	retweeted	longitude	latitude	SPC	target
21003419648	Ade	<a href="http://tweetn.yjobs.com" rel="nofollow">Sa</a>	SunPowerTalent	0	PALSE	PALSE	97.7056561	50.3870686	100	140
21003419648	Ast.	<a href="http://tweeonyjobs.com" rel="nofollow">Sa</a>	SunPowerTalent	0	FALSE	FALSE	97.7036561	30.3870686	PAR	Aid
80509949953	AM.	<a href="http://tweetnyjobs.com" rel="nofollow">Sq</a>	SunPowerTalent		FALSE	FALSE	97.7036501	50.3870686	785	246
17991919616	796.	<a href="http://tweets.yjobs.com" rel="nofollow">Sa</a>	SunPowerTalent	0	FALSE	FALSE	-121.8995741	37,4323341	132	NA
10303307776	10.	<a href="http://tweets.yjobs.com" rel="nofollow">Sa</a>	SunPowerTalent	0	FALSE	PALSE	102,1821816	2.4472500	700	(40)
14521923584	NA.	<a href="http://tweetreyjobs.com" rel="nofollow">Sa</a>	SunPowerTalent	0	FALSE	FALSE	121.774017	12.879721	Add	NE
25431183360	166	<a href="http://tweetnyjobs.com" rel="nofollow">Sa</a>	SunPowerTalent	0	FALSE	FALSE	121.774017	12.879721	788	Net
88621939168	No	<a href="http://tweets.yjobs.com" rel="nofollow">Se</a>	SunPowerTalent	0	FALSE	PALSE	-121.8854337	37.3904943	140	500
15634458624	All	<a href="http://tweeonyjobs.com" rel="nofollow">Sa</a>	SunPowerTalent	0	FALSE	FALSE	-121.9529992	37.4308503	NA	Air
55362065408	AND .	<a download="" href="http://twitter.com/download/liphone" http:="" iphone"="" rel="nofollow" tweemyjobs.com"="" twitter.com="">Sa</a>	SunPowerTalent	0	FALSE	FALSE	-97.7056561	30.3870656	700	Ne
62016731156	144	<a href="http://tweetnyjobs.com" rel="nofollow">Sa</a>	SunPowerTalent	0	FALSE	FALSE	97.7036561	30.3870686	Add	NE
52348977152	WE	<a href="http://tweetmyjobs.com" rel="nofollow">Sa</a>	SunPowerTalent	1	FALSE	FALSE	N	Tall .	/un	766
03754004481	Add	<a <="" href="http://www.tweetmyjobs.com" rel="nofolio" td=""><td>HydeCareers</td><td>0</td><td>PALSE</td><td>PALSE</td><td>78,486671</td><td>17.385044</td><td>146</td><td>NO</td></a>	HydeCareers	0	PALSE	PALSE	78,486671	17.385044	146	NO
35774787584	Ast.	<a href="http://www.tweetmyjobs.com" http:="" rel="nofollow" tweetaviobs.com"="">5a</a>	SunPowerTw/ent		FALSE	FALSE	-121.0529992	17 4308503	744	NE

**Q-3B)** For n = 1, n = 2 and n = 3, submit the list of the 10 most frequent sequences

Ans:

Code:

myTweets <- searchTwitter("#SXSW2016", n=200, lang="en")

tweetsDF <- twListToDF(myTweets)</pre>

install.packages("tm")

library(tm)

tweets\_source <- VectorSource(tweetsDF\$text)</pre>

```
corpus <- Corpus(tweets_source)
corpus <- tm_map(corpus, removePunctuation)</pre>
corpus <- tm_map(corpus, stripWhitespace)</pre>
corpus <- tm_map(corpus, removeWords, stopwords("english"))</pre>
dtm <- DocumentTermMatrix(corpus)
dtm2 <- as.matrix(dtm)
#For n=1(unigram)
frequency <- colSums(dtm2)</pre>
frequency <- sort(frequency, decreasing=TRUE)</pre>
#Output
frequency[1:10]
#For n=2(Bigram)
BigramTokenizer <-
function(x)
 unlist(lapply(ngrams(words(x), 2), paste, collapse = " "), use.names = FALSE)
tdm <- TermDocumentMatrix(corpus, control = list(tokenize = BigramTokenizer))
tdm2 <- as.matrix(tdm)
frequency_2 <- rowSums(tdm2)
frequency_2 <- sort(frequency_2, decreasing=TRUE)</pre>
#Output
frequency_2[1:10]
```

```
#For Trigram
trigramTokenizer <-
function(x)
 unlist(lapply(ngrams(words(x), 3), paste, collapse = " "), use.names = FALSE)
tdm_3 <- TermDocumentMatrix(corpus, control = list(tokenize = trigramTokenizer))</pre>
tdm2_3 <- as.matrix(tdm_3)
frequency 3 <- rowSums(tdm2 3)
frequency 3 <- sort(frequency 3, decreasing=TRUE)</pre>
#Output
frequency_3[1:10]
Output:
For n=1
sxsw2016
 austin
 job
 sxsweco
 SXSW
192
 49
 41
 36
 26
channel khofmoscrill
 work
 littt
 sunpower
 23
23
 23
 20
 20
For n=2
sxsweco sxsw2016
 austin littt
 channel k
 k sxsw2016
 23
 23
 23
khofmoscrill channel littt khofmoscrill austin rt
 httpstcozvp3uu09aw tgod
 23
rt ganggang sxsw2016 httpstcozvp3uu09aw
15
 15
For n=3
austin littt khofmoscrill channel k sxsw2016
 khofmoscrill channel k
 23
littt khofmoscrill channel
```

```
austin rt ganggang httpstcozvp3uu09aw tgod Austin k sxsw2016 httpstcozvp3uu09
15
sxsw2016 httpstcozvp3uu09aw tgod
 realtaylorgang austin littt
tgod austin rt
c) For n = 1, n = 2 and n = 3, submit the sum of all frequencies of all seque
nces for
 that n.
Code:
sum(frequency_3)
sum(frequency_2)
sum(frequency)
Output:
sum(frequency_3)
[1] 1967
> sum(frequency_2)
[1] 2167
> sum(frequency)
[1] 2057
Conclusion:
As we can see that for n=1 sum of all frequencies is 2057(as we have removed
stopwords("English) and punctuation we got less count for n=1)
For n=2 we got 2167 frequency sum count
And For n=3 we got 1967 frequency sum count
Q-3D
Using these frequencies, generate a distance measure for individuals (e.g. th
 share the X most common frequency 3-gram terms, or 2-gram terms, or 1-g
ram term). How does this network look compared to the network generated in g
uestion 2?
Ans:
Code:
myTweets <- searchTwitter("#SXSW2016", n=200, lang="en")</pre>
k = 100
tweetsDF <- twListToDF(myTweets)</pre>
nameDF <- tweetsDF[, c("screenName")]</pre>
```

```
uniqueNameDF <- unique(nameDF)</pre>
hundredNamesDF <- head(uniqueNameDF, k)</pre>
networkdata1 <- data.frame(src=character(), target=character(),distance=numer</pre>
ic(),stringsAsFactors=FALSE)
for(i in 1:100)
 for(j in 1:100)
 networkdata2<-data.frame(src=uniqueNameDF[i],target=uniqueNameDF[j],strings</pre>
AsFactors=FALSE)
 networkdata1<-merge(networkdata1, networkdata2, all=T)</pre>
 }
}
tweets_frame1<-data.frame(screenname=tweetsDF$screenName,tweets=tweetsDF$text</pre>
,stringsAsFactors=FALSE)
tweets_frame1$tweets<-iconv(tweets_frame1$tweets,"UTF-8")</pre>
for (k in 1:length(networkdata1$src))
 networkdata1$distance[k]<-stringdist(as.character(tweets_frame1$tweets[twee</pre>
ts_frame1$screenname==networkdata1$src[k]]),as.character(tweets_frame1$tweets
[tweets_frame1$screenname == networkdata1$target[k]]), method = "ggram", q =
1)
}
View(networkdata1)
Output:
```







### Conclusion:

We have choose n=1 for this analysis and I've generated 100 graphs to compute distance measure of each user. Here,I have shown just two graphs

From these Picture we can say that 1)The distance measure between tweets from user's screen name="414work" to us er's screen name="Adams\_tgod" is 84 which means that 84 characters are differ ent in their tweets