What we have learnt till now?

We used QM/TISE to obtain eigen states for single e- system

We extend the same idea for Multi electronic system

We learned to construct MO's for different molecules

All these theoretical development can only be verified through spectroscopy

We talked about intermolecular forces/potentials and introduced the concept of Dipole moment and polarisability

Experiment is the only means of knowledge at our disposal. Everything else is poetry, imagination

- Max Planck

Molecular Spectroscopy

Important information's for chemist

- Bond Length How to find out bond length of any molecule?
- Bond Strength

How to find out bond strength of any molecule?

Species	Number of electrons	Ground-state electron configuration	Bond order	Bond length/pm	Binding energy/kJ·mol ⁻¹	
H_2^0	1	$(\sigma_{g} 1s)^{1}$	1/2	106	268	
Π_2	2	$(\sigma_{\rm g}^{\rm g} 1s)^2$	1	74	457	
He_2^+	3	$(\sigma_{_{\mathbf{g}}}^{\mathbf{g}}1s)^{2}(\sigma_{_{\mathbf{g}}}1s)^{1}$	1/2	108	241	
He_2	4	$(\sigma_e^2 1s)^2 (\sigma_e 1s)^2$	0	≈ 6000	≪ 1	

Electromagnetic Spectrum

The frequency at which energy is absorbed or emitted is related to the energy levels involved in the transitions by

$$hv = |E_2 - E_1|$$

Electromagnetic Spectrum of interest

We can analyze spectroscopically each motion separately

The molecule must interact with light!

The molecule must have a permanent dipole moment which will eventually produce a oscillating field for either rotational or vibrational motion HCI

For molecule with zero dipole moment, a fluctuating induced dipole moment must be Produced for any one of the rotational or vibrational Motion

The information captured in an experimentally recorded spectra

- # Frequencies or wavenumbers of the spectral transitions
- Not all the transitions are allowed
 Selection rule (can be derived using QM calculations)
- Intensity ratio's of the spectral lines
 -- Populations of the states (Boltzmann Distribution)

 Number of molecules in level j at equilibrium $n_i \propto g_i \exp(-\varepsilon_i / kT)$

How to find out bond length of HCI? A diatomic molecule with permanent dipole moment

in the dipole moment measured in a particular direction.

Rotational motion can create a fluctuating dipole

HCl is rotationally active molecule

Rigid Rotor model

Assumption: The diatomic bond is rigid

Solving the Schrödinger equation, it can shown that the rotational energy levels allowed to the rigid diatomic molecule will be

$$E_J = \frac{h^2}{8\pi^2 I} J(J+1)$$
 joules, where $J = 0,1,2....$

$$I = \frac{m_1 m_2}{m_1 + m_2} r_0^2 = \mu r_0^2 , \qquad \text{where } \mu = \text{Reduced mass}$$

Calculating the Rotational transition energies (ΔE)

$$E_J = \frac{h}{8\pi^2 Ic} J(J+1)$$
 cm⁻¹, where $J = 0,1,2...$

$$E_J = BJ(J+1)$$
 cm⁻¹, where $B = \frac{h}{8\pi^2 Ic}$ = Rotational Constant

Selection Rule: $\Delta J = \pm 1$

$$\Delta E = E(J_{final}) - E(J_{initial})$$
for $\Delta J = +1$

$$\Delta E = B(J+1)(J+2) - BJ(J+1) = 2B(J+1)$$

Spectral features for Rotational Spectra

Rotational energy level get more widely spaced with increasing J

Rotational spectral lines are all equally spaced

Spectral lines have different intensities Why?

A real rotational spectra for CO

Rotational Spectrum of CO

How to find out bond strength of HCl?

A diatomic molecule with permanent dipole moment

Basic assumption:

The bond between two atom behaves like spring

 The atoms vibrate approximately like an harmonic oscillator obeying Hooke's Law:

$$F = -k(r_{eq}-r)$$
 k is the force constant

$$E_{PE} = \frac{1}{2}k(r_{eq} - r)^2$$

Modeling diatomic chemical bond as simple harmonic oscillator

Eigenvalues:

The vibrational terms

$$\tilde{G}_{v} = \left(v + \frac{1}{2}\right)\omega_{e}$$
 $\omega_{e}/\text{cm}^{-1} = \frac{v_{vib}}{\tilde{c}} = \frac{1}{2\pi\tilde{c}}\sqrt{\frac{k_{F}}{\mu}}$

v is the vibrational quantum number = 0, 1, 2,... $\omega_{\rm e}$ the vibrational constant (in cm⁻¹), $k_{\rm F}$ is the Force Constant, μ is the reduced mass

Concept of Zero Point Energy

Modeling diatomic chemical bond as simple harmonic oscillator

Eigenvalues:

The vibrational terms

$$\tilde{G}_{v} = \left(V + \frac{1}{2}\right)\omega_{e}$$
 $\omega_{e}/\text{cm}^{-1} = \frac{V_{vib}}{\tilde{c}} = \frac{1}{2\pi\tilde{c}}\sqrt{\frac{k_{F}}{\mu}}$

v is the vibrational quantum number = 0, 1, 2,... $\omega_{\rm e}$ the vibrational constant (in cm⁻¹), $k_{\rm F}$ is the Force Constant, μ is the reduced mass

Concept of Zero Point Energy

Spectral features for Vibrational Spectra

Vibrational Terms:

$$\tilde{G}_{v} = \left(V + \frac{1}{2}\right)\omega_{e}$$

Selection Rule:

$$\Delta v = \pm 1$$

Transitions at:

$$\tilde{v} = \tilde{G}_{v+1} - \tilde{G}_{v} = \omega_{e}$$

n.b. In absorption, only see transitions from v = 0 since, except at very high T, this is the only level populated:

$$e.g.$$
, if $\omega_{\rm e}$ = 1000 cm⁻¹, T = 300 K

$$\frac{n_{v=1}}{n_{v=0}} = \frac{g_1^{-1}}{g_0} \exp\left\{\frac{-h\tilde{c}\omega_e}{kT}\right\} = 0.008$$

How to break a HCl bond?

Concept of Anharmonic oscillator

Morse Potential

$$V(R) = D_{e} \left[1 - exp \left(-\beta \left(R - R_{e} \right) \right) \right]^{2}$$

Energy Eigenvalues:
$$\tilde{G}_{v} = (v + \frac{1}{2})\omega_{e} - (v + \frac{1}{2})^{2}\omega_{e}X_{e}$$
$$v = 0, 1, 2, 3, \dots v_{max}$$

 x_e is the (dimensionless) anharmonicity constant:

$$X_e = \frac{\omega_e}{4D_e}$$

SHO a good approx. at small x (low v)

the experimental dissociation energy, $D_0 = D_e$ -ZPE

Spectral features for Anharmonic Vibrational Spectra

Specific Selection rule: $\Delta v = \pm 1$, $(\pm 2, \pm 3, \text{ weaker})$

Transitions: fundamental $(0 \rightarrow 1)$ $\tilde{v} = \omega_e - 2\omega_e X_e$ 1^{st} overtone $(0 \rightarrow 2)$ $\tilde{v} = 2\omega_e - 6\omega_e X_e$

IR Spectrum of Carbon Monoxide (CO)

The fundamental absorption (centred at about 2143 cm⁻¹) and the first overtone (centred at about 4260 cm⁻¹) of carbon monoxide; the fine structure of the P branch in the fundamental is partially resolved. (Gas pressure 650 mm Hg in a 10 cm cell.)

Different Energy Levels within a molecule

Different Energy Levels within a molecule

How to find out bond length of H_2 ? A diatomic molecule without permanent dipole moment

H₂ does have polarisability thus dipole moment can be induced

Molecular rotation or vibration can transform this into an oscillating induced dipole

Raman Spectroscopy

- Different principles. Based on scattering of (usually) visible monochromatic light by molecules of a gas, liquid or solid
- Two kinds of scattering encountered:
 - Rayleigh (1 in every 10,000)
 - Raman (1 in every 10,000,000)

same frequency

different frequencies

Raman Spectroscopy

- Rayleigh scattering: no change in wavenumber of light
- Raman scattering:

either greater than original or less than original by a constant amount determined by molecular energy levels & independent of incident light frequency

Rotational Raman Spectroscopy

Rotational Raman, carbon dioxide, 200 /cm

In Raman Spectra we measure spectral shift

Vibrational Raman Spectroscopy

Raman spectrum of CCI₄

Eigenvalues:
$$\tilde{G}_{v} = (v + \frac{1}{2})\omega_{e} - (v + \frac{1}{2})^{2}\omega_{e}X_{e}$$
$$v = 0, 1, 2, 3, \dots v_{max}$$

Selection Rule: $\Delta v = 0, \pm 1, \pm 2, \dots$

It doesn't matter how beautiful your theory is, it doesn't matter how smart you are. If it doesn't agree with experiment, it's wrong.

R. P. Feynman

What we achieved in Ch-107 course?

