2022 師大附中資訊校隊培訓 模擬競賽 I

注意事項

- 本次測驗時間為 8:30 至 11:30, 共 180 分鐘; 共有 5 題, 每題 100 分,總分為 500
 分。
- 2. 測驗中不可查閱紙本或電子參考資料、不可使用手機或其他電腦可讀取之設備,亦不得瀏覽評測系統以外之網頁,評測系統上附有 STL 標準樣板函式庫可供查閱。
- 3. 測驗中不提供計分板。
- 4. 測驗中不可與他人交談。
- 5. 每題的兩次提交須間隔一分鐘以上,且同一題最多只能提交 50 次。
- 6. 若有任何與題目相關的問題,請透過評測系統詢問。若為硬體設備之問題,請舉手通知 監考人員。
- 7. 如須離開座位(如裝水、上廁所),或要提早交卷,請舉手告知監考人員
- 8. 除非於「評分說明」部份特別說明,否則每道題目的得分為該題所有子題得分總和, 而一個子題的分數為所有提交當中,分數最高者。
- 9. 本次測驗只開放使用以下程式語言: C11、C++14、C++17。

人生失敗組 (Failure)

問題敘述

近期網紅 Steven He 的名聲大噪,他主打模仿許多人刻板印象中的亞洲家長(以下簡稱亞洲家長)的視角、口吻、腔調與行為,錄製搞笑短片上傳到影音平台上。

在亞洲家長的眼裡,小孩三歲就該學會寫程式、打競程了,所以在看題本的各位,包括出題者本人,都是亞洲家長心目中的人生失敗組,也就是一群 failure。Steven He 最近提出了一個凝聚粉絲的口號:"Failures together strong!" 這些 failure 雖然都很失敗,但至少團結力量大,所以都會聚在一起。

這些 failure 都很變態,每一個會跟蹤某幾個 failure。現在 Steven's Dad 想要確保他一定可以透過某個 failure 知道某另一個 failure 在哪裡,還有哪一個該死的 failure 竟敢找不到對方。

輸入說明

第一行有兩個整數 N, M,表示有 N 個 failure 和 M 個跟蹤關係。 接下來 M 行,每一行有兩個整數 a,b,表示編號 a 的 failure 會跟蹤編號 b 的 failure。

輸出說明

第一行輸出是否有由某個 failure 出發找不到另一個 failure 的可能。

若沒有,則輸出 "Failures together strong!"(不含雙引號)。

若有,則輸出 "There are ultra failures!"(不含雙引號),在下一行輸出兩個正整數 u,v 表示從編號 u 的 failure 出發找不到編號 v 的 failure。

測資限制

- $1 \le N, M \le 2 \times 10^5$
- $1 \le a, b \le N$

範例測資

範例輸入

- 4 5
- 1 2
- 2 3
- 3 1
- 1 /
- 3 4

範例輸出

There are ultra failures! 4 2

評分說明

子任務	分數	額外輸入限制
1	21	$N \leq 8$
2	20	$N \leq 1000$
4	59	無額外限制

Hint

現在是不是大家都喜歡當 ultra failure 啊

蜘蛛詭雷(Patrol)

問題敘述

有一個 $N \times M$ 的地圖、地圖上有障礙物、第 r 列第 c 行的位置座標為 (r,c)。有 K 個蜘蛛詭雷,每個詭雷有一個巡邏路徑 $P_i = \{(x_{i,1},y_{i,1}),(x_{i,2},y_{i,2}),\cdots,(x_{i,l_i},y_{i,l_i})\}$,以及一個偵測半徑 r_i ,一開始每個詭雷都會在巡邏路徑的第一個位置。小雷會從 (s_x,s_y) 開始,目標地點是 (t_x,t_y) 。每一單位時間小雷可以向上下左右移動一格,也可以選擇停在原地。在小雷移動(或是停在原地)完之後,所有詭雷會移動到巡邏路徑中的下一格(若在路徑結尾,則會反著走回去)。若小雷這時位於 c 個詭雷的偵測範圍當中,則小雷會受到 c 點傷害。求小雷最少要受到幾點傷害才能到達終點,以及最小化傷害時的最少時間。若無法到達終點,則輸出 -1。

輸入說明

第一行有三個整數 N, M, K。

接下來有 N 行,每行有 M 個字元 $\{.,\#\}$,若輸入字元 #、則代表該格有障礙物。接下來有 K 行,每行一開始有兩個整數 l,r,接著有 2l 個整數 $x_1,y_1,x_2,y_2,\cdots,x_l,y_l$ 。最後一行有四個整數 s_x,s_y,t_x,t_y 。

輸出說明

若可以到達終點·輸出兩個整數於一行·分別代表小雷承受的最低傷害·以及最小化傷害時的最短時間·否則輸出 -1 ·

測資限制

- $1 \le N, M \le 100$
- $0 \le K \le 100$
- $0 \le r_i \le 20$
- $1 \leq l_i \leq 4$

範例測資

範例輸入1

```
3 6 1
....#.
..#...
2 1 3 4 2 4
```

3 1 1 6

範例輸出1

1 10

範例說明1

一個可能的最佳路徑為

其中 ● 代表在那格停留一次

範例輸入 2

1 3 0

.#.

1 1 1 3

範例輸出 2

-1

範例輸入3

```
5 3 2
.##
.#.
.#.
.#.
.##
1 2 2 3
2 2 3 4 3
```

範例輸出3

1 1 5 1

1 5

範例輸入 4

範例輸出 4

1 1

評分說明

子任務	分數	額外輸入限制
1	6	k = 0
2	16	k = 1
3	10	$l_i=1$
4	19	$r_i=0$
5	24	m=1
6	25	無額外限制

Q&A

- ullet 若小雷目前位置是 x,y · 我們說他在詭雷 i 的範圍內若且唯若 $|x_i-x|+|y_i-y|\leq r_i$ 。
- 小雷可以和詭雷停在同一格上。
- 詭雷可以跨過障礙物偵測。

- 保證起始格在開始時不會被詭雷偵測。
- 保證起始格與目標格上不會有障礙物。
- 詭雷會來回在巡邏路徑上移動,也就是若路徑為 $\{(1,1),(2,1),(3,1)\}$ 、則詭雷移動軌跡會是 $(1,1)\to(2,1)\to(3,1)\to(2,1)\to(1,1)\to(2,1)\to\cdots$ 。
- 詭雷每次只會移動到以它為中心的九宮格內的任意一格(可以停留)。
- 起始格可以等於目標格。

一般圖最大最小權極大匹配 (Matching)

問題敘述

VVivvi 是一個不會匹配的競程選手,每次看到和匹配有關的問題他都不會做。UUiuui 覺得 VVivvi 不能再這樣下去了,於是決定對他展開匹配特訓。

在經過 UUiuui 連續兩週的魔鬼特訓後,VVivvi 不僅做了各種比賽裡的匹配題目,還學了最大權匹配之類的怪東西。他認為自己已經對匹配瞭如指掌,無論看到什麼樣的題目,只要跟匹配有關,他肯定能立刻做出來!

在好不容易活著走出得田館(他們的訓練場所)後,VVivvi 在得田館門口看到了 N 個節點排成一列,第 i 個節點的位置在 x_i ,而如果兩個節點 i,j 的距離不超過 K(也就是 $|x_i-x_j|\leq K$),那麼 i,j 之間就會有一條無向邊。此外,每個點都帶有一個權重 w_i 。

這張圖的擁有者正在做匹配,VVivvi 看到他不斷把他所能看見的,相鄰的未匹配點配成一對, 直到沒有這樣的點對為止,他便把所有未匹配點的權重總和記錄下來。

VVivvi 馬上開始思考這個問題:在這張圖的所有可能的「極大」(maximal)匹配中,未匹配點的權重總和最大和最小可以是多少?

匹配(matching)的定義是一個邊的子集,滿足其中的任兩條邊都不共用端點。這個子集中的 邊稱為匹配邊。若一個節點有一條鄰邊是匹配邊,那它就被稱為匹配點,反之就是未匹配點。

「極大」匹配(maximal matching)的意思是,圖上不存在一條邊使得它的兩端都是未匹配點。注意極大匹配和最大匹配(maximum matching,匹配邊數量最多的匹配)並不等價。

輸入說明

第一行有三個整數 T,N,K,表示 VVivvi 想知道的問題類型、節點的數量和兩個節點間有邊的最大距離限制。如果 T=1,表示 VVivvi 想知道未匹配點的權重總和最小值,如果 T=2,則表示他想要知道最大值。

接下來有 N 行,其中第 i 行包含兩個整數 x_i, w_i ,分別表示第 i 個節點的位置和權重。

輸出說明

輸出一個整數於一行,表示答案。

測資限制

- $1 \le N \le 10^5$
- $1 \le K \le 10^9$
- $0 \le x_i \le 10^9$
- $1 \le w_i \le 10^4$

範例測資

範例輸入1

- 2 5 2
- 1 2
- 3 2
- 4 2
- 5 1
- 7 2

範例輸出1

6

範例說明 1

一種匹配方式為 $\left\{(2,4)\right\}$,未匹配點有 $\left\{(2,4)\right\}$,未匹配點有 $\left\{(2,4)\right\}$,

範例輸入2

- 1 5 2
- 1 2
- 3 2
- 4 2
- 5172
- 範例輸出 2

2

範例說明 2

一種匹配方式為 $\{(1,2),(4,5)\}$,未匹配點有3,權重總和為2。

範例輸入3

2 15 7

3 693

10 196

12 182

14 22

15 587

31 773

38 458

39 58

40 583

41 992

84 565

86 897

92 197

96 146

99 785

範例輸出3

2470

評分說明

子任務	分數	額外輸入限制
1	23	T=1
2	30	$T=2, N \leq 5000$
3	37	T=2

棋王 (Chess)

問題敘述

Dry 是屍大附中的棋王,他下象棋所向披靡,他的 N-2 個同學都被電得苦不堪言,只有Wet 與他不分軒輊,但還是都敗下陣來。於是,他們聯手設計一場象棋比賽,想把 Dry 幹掉。

這場比賽的賽制為「乾濕瑞士制」:

贏棋得 2 分,和棋得 1 分,輸棋不得分。總共比五輪。紅棋先行(等同於執黑棋者讓一 先)。

因為 Dry 班上人數是偶數,所以不會有輪空的情形。

每個人都有初始的腦力值,但因為實力(腦力)差距懸殊,他們還要求依段位差距讓子、讓 先。每顆棋子的價值不同,分別為:

棋子	價值
帥、將	100
仕、士	2
相、象	2
俥、車	10
傌、馬	5
炮、包	5
兵、卒	1
1 先	1

象棋段位最低為 13 級,1 級後則升段,由初段至最高八段,但因 Dry 實力太強大,於是他有可能是九段棋手。

若兩人段位相同,編號小者執紅棋(編號大者讓一先),每差一級或一段,則段位較高者多讓一先。

例:五段棋手需讓二段棋手三先,也就是開局時二段棋手先下三步再換五段棋手下。 因為讓超過三先太難取勝,所以最多只能讓三先。若讓超過三先,則以讓子取代。 例:五段棋手需讓初段棋手四先,改為五段棋手讓傌並執紅棋(即初段棋手讓一先)。 若讓馬三先(即為讓馬外加讓三先)還不夠,如九段對初段,則讓下一種棋子,即讓炮、執 紅棋,依此類推。讓子順序如下:

傷(馬)炮(包)俥(車)雙傷(馬)九子(雙仕、雙相、五隻兵)俥(車)傷(馬)俥(車)炮(包)

完整讓子、讓先順序為:

俥(車)傌(馬)炮(包)

依此類推,唯獨讓九子不讓先、只執紅棋。

在每輪比賽開始前,每位棋手會先失去等同於他讓的子、先的價值的腦力值。腦力值最多只會扣到剩 0,剩下的賽程該棋手會以無腦的方式下棋。腦力值較大的棋手將贏得該輪比賽, 低的人則落敗;若兩人腦力值相等則和棋。

每輪的賽程會將棋手依腦力值由大到小排序,兩兩對戰。若腦力值相同則依編號由小到大排 序。

請模擬賽程,算出 Dry(編號 1)、Wet(編號 2)與他們的同學在賽事結束後的總得分與 剩餘的腦力值,以及 Wet 是否成功如願打敗 Dry 成為新的棋王。

因為 Dry 和 Wet 可能不只對戰一輪,所以用最後一次的勝負(和)判斷誰是棋王。

輸入說明

輸入總共有 N+2 行。

第一行有一個整數 N,表示班上總共有 N 位同學(包含 Dry 和 Wet)

第二行有 N 個整數 b_i ,表示每位同學的初始腦力值。

接下來 N 行有 N 個字串 s_i ,表示每位同學的段位、級位。一個人只會有一個段位或一個級位。

" x_i pieces" 表示第 i 位同學 x_i 段,"level y_i " 表示第 i 位同學 y_i 級,不包括雙引號。

輸出說明

輸出總共有三行。

第一行輸出 N 個整數,表示每個人的總得分。

第二行輸出 N 個整數,表示每個人剩餘的腦力值。

第三行輸出 Wet 與 Dry 的戰果。

"10 minutes has passed!"表示 Dry 獲勝,"I just mopped the floor!"表示 Wet 獲勝,

"Liquid-gas interface"表示兩人沒有交戰或和棋,不包括雙引號。

測資限制

- $6 < N < 10^4, N = 2k$
- $0 \le b_i \le 10^9$
- $1 < x_1 < 9$
- $1 \le x_i \le 8, i \in \{2...N\}$
- $1 \le y_i \le 13$

範例測資

範例輸入

6

100 100 100 100 100 100

- 8 pieces
- 7 pieces
- 6 pieces
- 5 pieces
- 4 pieces
- 3 pieces

範例輸出

評分說明

子任務	分數	額外輸入限制
1	20	只有段位棋手
2	20	只有級位棋手
3	60	無額外限制

Hint

冠軍有可能不是 Dry 也不是 Wet,但因為其他同學只崇拜他們兩個其中一個,所以只需要關心他們兩人的對戰結果。

Q&A

Q: 讓九子為什麼不能讓先?

A: 第一步走炮中間一將軍臉就歪了, 走不下去啊...

Q: 真的有九段棋手嗎?

A: 沒有,象棋最高段位是八段,而且人數很少。我們來看看 Dry 是否能成為下一位吧!

Q: 拖完地過十分鐘後, 地會是乾的還是濕的呢?

A: Dry 覺得是乾的, Wet 覺得是濕的, 所以他們展開這場大戰來決定...

A(Q): 你覺得呢?

戰地前線(Frontline)

問題敘述

Melon 又在打電動了。Melon 現在在玩一款叫做 Frontline 的遊戲。遊戲內容如下:在一條數線上有n 個敵人、每個敵人的座標是 x_i 、且偵測距離為 d_i 。Melon 一開始在座標 0,生命值為 h。Melon 有一把狙擊槍和一個盾牌,狙擊槍可以將前方距離 k 以內的敵人全部擊殺,盾牌可以擋下所有攻擊。每一單位時間,Melon 可以做兩種操作:一、向前一單位距離,二、開槍並舉盾。在 Melon 做完操作後,若 Melon 在 c 個敵人的偵測範圍內且沒有舉盾,會受到 c 點傷害。當 Melon 的生命值 ≤ 0 時,遊戲失敗。在擊殺完所有敵人之後、則遊戲通關。因為 Melon 想要在最快的時間內通關,所以請告訴 Melon 通關最少需要的時間,以及通關後最多剩下多少生命值。若無法通關,則輸出 -1。

輸入說明

第一行有三個整數 n,h,k。 接下來有 n 行,每行有二個整數 x_i,d_i 。

輸出說明

若可以通關·輸出兩個整數於一行·分別代表通關需要最少的時間·以及剩下的生命值·否則輸出 -1。

測資限制

- $1 \le n, h \le 100$
- $1 \le d_i, k \le 10^9$
- $1 \le x_i \le 10^9, x_i < x_{i+1}$
- $\bullet \ \ x_i-d_i>0$

範例測資

範例輸入1

- 5 10 4
- 3 2
- 4 1
- 10 3
- **15** 6
- 20 8

範例輸出1

範例輸入 2

5 10 6

3 2

4 1

10 3

14 6

17 8

範例輸出 2

14 4

範例說明 2

在座標 0,8,11 開槍是最好的策略。

範例輸入3

1 1 1

範例輸出3

-1

評分說明

子任務	分數	額外輸入限制
1	16	n = 1
2	17	k=1
3	18	$d_i=1$
4	49	無額外限制

Q&A

- ullet 若 Melon 目前的位置是 p · 則 Melon 可以擊殺所有在 [p+1,p+k] 內的敵人。
- ullet 若 Melon 目前的位置是 p · 我們說 Melon 會受到敵人 i 的攻擊若且唯若 $x_i-p\leq d_i$ 。

•	在敵人攻擊結束後,	盾牌會自動放下。	也就是只有開槍的那一	一個時間單位可以擋下攻擊。	