编程技巧

陈元昊

2022 年 9 月 30 日

目录

1	Lin	ux	2
	1.1	指令技巧	2
		1.1.1 grep	2
		1.1.2 gcc/g++	2
		1.1.3 git	2
	1.2	基本概念	2
		1.2.1 进程管理	2
		1.2.2 ECF	2
	1.3	WSL2	3
		1.3.1 网络	3
9	C/C	C++	4
4	•		4
	2.1	2.1.1 预处理	4
		2.1.2 算法执行	4
		2.1.3 算法评估	4
	2.2	语言特性	4
	2.2	2.2.1 基本语法	4
		2.2.2 面向对象	5
	2.3	Qt	5
	2.0	2.3.1 绘图	5
		2.3.2 原理	5
		2.0.2 /// // // / / / / / / / / / / / / / /	J
3	\mathbf{Pyt}	chon	6
	3.1	语言规范	6
		3.1.1 程序结构	6
	3.2	语言特性	6
		3.2.1 运行特性	6
	3.3	具体应用	6
		3.3.1 正则表达式	6
4	Java	${f raccript}$	7
	4.1		7
		4.1.1 函数	7
		4.1.2 对象与原型	7

1 Linux

1.1 指令技巧

1.1.1 grep

1. 加-E选项后,可以在使用正则匹配时不用给括号转义

1.1.2 gcc/g++

- 1. 加-E选项后仅执行到预处理, 文件后缀.i
- 2. 加-S选项后仅执行到编译,文件后缀.s
- 3. 加-C选项后仅执行到汇编,文件后缀.o

1.1.3 git

1. 当因为token的原因(一般存在于报错)无法clone时,可尝试设置一个在网站上设置一个具有权限的token,复制之,然后在Windows凭据管理器上新建/修改一个普通凭据,注意密码应为token

1.2 基本概念

1.2.1 进程管理

- 1. 挂起,一般通过按ctrl+z实现,效果为暂停执行(前台或后台程序均可以),但可用fg或bg恢复执行
- 2. 后台运行,一般通过在命令行末尾加"&"符号实现,也可以通过挂起+后台恢复间接实现,效果为以不占用终端的方式运行
- 3. 由于后台运行不能让shell以阻塞方式等待,所以不能直接用waitpid的方式等待,而是要先使用信号通知shell某个子进程的结束,再进行waitpid
- 4. 单纯用户态和内核态之间的切换不一定涉及上下文切换,所做的工作可能只是将寄存器保存在内核栈中以及其他关于状态(用户态/内核态)、程序计数器、栈指针的调整

1.2.2 ECF

- 1. Exception分为Interrupt (async)、Trap (sync)、Fault (sync)、Abort (sync)
- 2. Signal是软件层级的ECF,位于软件层面,用于向进程发送通知
- 3. 信号处理程序中不能使用printf,原因是printf在更改缓冲区时会加锁,若主程序调用printf时,控制权离开并返回主程序,且返回主程序时发现有pending且非blocked的信号,进入信号处理程序时也调用printf,则信号程序中的printf由于主程序的printf的锁不得不等待,又由于主程序和信号处理程序处在同一个进程/线程中,因此主程序printf的锁总是无法解除,从而导致死锁
- 4. 每个线程有自己独享的信号处理

1.3 WSL2

1.3.1 网络

- 1. 宿主机可以用127.0.0.1访问WSL2, 反之则不行
- 2. 当代理软件 (Clash) 位于Windows上时,Windows配置代理仅需要set http(s)_proxy="127.0.0.1:7890",而WSL2在使用export http(s)_proxy="宿主机IP:7890"之前,要先用cat /etc/resolv.conf grep nameserver awk 'print \$2 '获取宿主机IP (此外,用hostname -I awk 'print \$1'获取WSL2自身IP)

2 C/C++

2.1 算法技巧

2.1.1 预处理

- 1. 二分前先使数组有序
- 2. 注意隐藏边界(长度为0,1等)
- 3. 先排序再计算往往可以简化计算过程
- 4. 有可能样例输入有序,测试点输入无序
- 5. 注意图的输入中的重边和自环,以及有向输入转化为无向图

2.1.2 算法执行

- 1. 二分区间的开闭由具体问题决定(一般一边开一边闭)
- 2. 递归算法需要数组记录答案时可以不用"触底"时全部修改,然后利用一个全局的bool变量连续退出,而是可以 回溯时逐步修改,从而减小代码复杂度
- 3. 注意浮点数计算的上下浮动
- 4. 尝试将n! (排列) 转化为 2^n (组合)

2.1.3 算法评估

1. 计算递归算法复杂度可先计算递归实例的数量

2.2 语言特性

2.2.1 基本语法

- 1. 注意循环嵌套中,循环变量i、j、k等不要重复使用
- 2. 循环体中的变量地址不变
- 3. 使用getchar前注意去除cin等留下的回车等干扰字符
- 4. 注意数组下标越界有可能完全无异常(越在其他变量内部)
- 5. switch分支结构注意用break
- 6. 函数调用计数可利用函数体中的局部静态变量
- 7. 可以使用位域直接操作内存中的位

2.2.2 面向对象

- 1. 对象内部局部变量需要初始化
- 2. 注意写public (默认为private)
- 3. 友元函数函数不是成员函数,不能加作用域符号
- 4. 引用本质只是别名,其创建时不会产生任何构造过程
- 5. 注意避免自身赋值
- 6. 当一个内部类或内部对象需要访问外部对象时,尽量通过外部对象成员变量的指针来访问,否则有可能出现构造顺序或访问权限的问题
- 7. 尽量不要创建野指针,如果不可避免要创建野指针,一定要初始化为nullptr
- 8. 移动构造、赋值前注意删除当前指针的内容,避免当前指针赋新值后内存泄漏
- 9. delete前对象最好指针最好不是nullptr, delete后对象指针最好置为nullptr
- 10. 在返回值和参数均可被析构时, 先析构返回值, 再析构参数(符合栈的顺序)
- 11. 虚函数/常量函数不能为静态函数,因为其调用/参数中需要/含有this指针
- 12. 模板函数将成员函数作为形参时,成员函数应设为静态函数,非静态成员函数因为有this指针形参,参数数量不一致,可能导致错误(sort)
- 13. std::move()对常引用无效
- 14. 派生类新定义的非虚函数和新定义的变量会在函数形参为值/引用/指针(所有情况)时被切片
- 15. 重写函数调用时,与所有当前形式类中的函数同名且参数不同的函数会被隐藏,然后按虚函数机制调用
- 16. 在派生类没有直接写出新函数的情况下,派生类不会自动生成新的虚函数继承版本,而是在虚函数表中沿用旧版本(注意与重写隐藏的关系)
- 17. 基类指针指向派生类对象时,调用被基类声明、派生类继承的虚函数不需要dynamic_cast,调用派生类声明的函数需要dynamic_cast
- 18. 模板的声明与实现需要在同一文件中(模板实例化在编译期确定)

2.3 Qt

2.3.1 绘图

1. Qt画圆的坐标原点为外界矩形的左上角点

2.3.2 原理

1. Qt画圆的坐标原点为外界矩形的左上角点

3 Python

3.1 语言规范

3.1.1 程序结构

- 1. 引用原生库和手写库
- 2. 定义全局变量
- 3. 定义修饰器
- 4. 定义类(包括函数对象)
- 5. 定义函数(包括argparse)
- 6. 定义主函数

3.2 语言特性

3.2.1 运行特性

- 1. 在使用import时正确的路径是针对main.py而言的,而不是针对当前文件而言的
- 2. global关键字的使用是为了在局部作用域中引用并修改全局变量
- 3. 闭包函数若要修改上级作用域中的变量,需要用nonlocal关键字
- 4. Python中只有模块(module),类(class)以及函数(def、lambda)才会引入新的作用域,其它的代码块(如if、try、for等)不会引入新的作用域,因此在代码块外部可以直接引用代码块内声明的变量
- 5. Python的变量是动态声明的,未考虑到这点可能出现bug,例如在if语句中声明了变量,若该if语句条件为假,则不仅其内部语句不执行,其内部变量也不会被定义。因此,很多时候有必要在if语句之前声明变量

3.3 具体应用

3.3.1 正则表达式

- 1. 在?、+、*以及{n,m}后加?表示进行懒惰匹配(与默认的贪婪匹配相反)
- 2. \b、\$以及^匹配的是单词边界,而非字符(匹配的是"一条线")

4 Javascript

4.1 语言特性

4.1.1 函数

1. 闭包中的作用于整个函数的变量为引用,而在某个循环内部的变量为拷贝

4.1.2 对象与原型

1. this永远指向最近的调用者