Linear Regression

In this lecture you will learn about LOSS Function and SOLVER formulation

(C) Dr. Kalidas Y., IIT Tirupati.

Objects can be ANY... literally ANY..! concept in the world!!

<verb → <Verb>-er, <Verb>-able objects,

e.g. walk -> Walk-er or Walk-able, talk -> Talk-er, Talk-able

(C) Dr. Kalidas Y., IIT Tirupati.

AudioRecordingFileSizeObject
- file size value

X	Y Target or Label
x1	y1
x2	y2
х3	у3
x4	y4
x5	y5

Mapping

 x_i vector to y_i vector

List notation

$$X = [x_i]_{i \in [1..5]}$$

$$Y = [y_i]_{i \in [1..5]}$$

$$Y_{\text{(C) Dr. Kalidas Y., IIT Tire}}[y_i]_{i \in [1..5]}$$

(C) Dr. Kalidas Y., IIT Tirupati.

Mapping

 x_i vector to y_i vector List notation

$$Y = f(X)$$

Mapping

 x_i vector to y_i vector List notation Y = f(X)f() is called model model's fit(X,Y)

model's predict(Xnew)

Left side (X) → Machine Learning → Right side (Y)

Left side (X) \rightarrow Machine Learning \rightarrow Right side (Y)


```
y = x^2? or...

y = x^3? or...
y = 3x + 34? or..
y = -67 x^2 + 45? or..
????
5555
```

a egression

Left side (X) \rightarrow Machine Learning \rightarrow Right side (Y)

<u> Line...</u>

passing through two points (x1,y1) and (x2,y2)

$$y = m x + c$$

$$\frac{y - y1}{x - x1} = \frac{y2 - y1}{x2 - x1}$$

$$y = \frac{y2 - y1}{x2 - x1} *_{\text{Ti}} x + \left(y1 - x1 * \frac{y2 - y1}{x2 - x1}\right)$$

agression

Left side (X) \rightarrow Machine Learning \rightarrow Right side (Y)

Line passing through two points (x1,y1) and (x2,y2)

$$y = m x + c$$

$$\frac{y - y1}{x - x1} = \frac{y2 - y1}{x2 - x1}$$

$$y = \frac{y2 - y1}{x2 - x1} * x + \left(y1 - x1 * \frac{y2 - y1}{x2 - x1}\right)$$

(C) Dr. Kalidas Y., HT Tirupati.

aegression

Left side (X) \rightarrow Machine Learning \rightarrow Right side (Y)

Line passing through two points (x1,y1) and (x2,y2)

$$y = \frac{y2 - y1}{x2 - x1} * x + \left(y1 - x1 * \frac{y2 - y1}{x2 - x1}\right)$$

Substitute (x,y) = (x3,y3)Substitute (x,y) = (x4,y4)...and then do what!!??

Left side (X) \rightarrow Machine Learning \rightarrow Right side (Y) Line passing through two points (x1,y1) and (x2,y2)

$$y = \frac{y2 - y1}{x2 - x1} * x + \left(y1 - x1 * \frac{y2 - y1}{x2 - x1}\right)$$

Substitute (x,y) – (x3,y3)Substitute (x,y) – (x4,y4)

Need goodness measure! Need badness measure! **Need quality measure!**

negression

Left side (X) \rightarrow Machine Learning \rightarrow Right side (Y)

Line passing through two points (x1,y1) and (x2,y2)

$$y = \frac{y^2 - y^1}{x^2 - x^1} \cdot x + \left(y^1 - x^1 + \frac{y^2 - y^1}{x^2 - x^1}\right)$$

(C) Dr. Kalidas Y., IIT Tirupati.

agression

Left side (X) \rightarrow Machine Learning \rightarrow Right side (Y)

Equation of Line:
$$y = m * x + c$$

Need goodness or badness measure!

(C) Dr. Kalidas Y., HT Tirupati.

aression

Left side (X) \rightarrow Machine Learning \rightarrow Right side (Y)

Equation of Line:
$$y = m * x + c$$

$$y1 = m * x1 + c?$$

 $y2 = m * x2 + c?$

$$y5 = m * x5 + c$$
?

???

Left side = Exactly same as = Right side ??? Exactly can they be same? For any value of m and c What is learning here?

(C) Dr. Kalidas Y., HT Tirupati.

agression

Left side (X) \rightarrow Machine Learning \rightarrow Right side (Y)

Equation of Line:
$$y = m * x + c$$

$$y1 = m * x1 + c?$$

 $y2 = m * x2 + c?$

What could be a badness measure?...

$$y5 = m * x5 + c$$
?

(C) Dr. Kalidas Y., IIT Tirupati

aegression

Left side (X) \rightarrow Machine Learning \rightarrow Right side (Y)

Equation of Line:
$$y = m * x + c$$

Badness for (x1,y1) :-
$$(y1 - (m * x1 + c))^2$$

Badness for (x2,y2) :- $(y2 - (m * x2 + c))^2$

• • •

Badness for (x5,y5) :-
$$(y5 - (m * x5 + c))^2$$

(C) Dr. Kalidas Y., IIT Tirupati

agression

Left side (X) \rightarrow Machine Learning \rightarrow Right side (Y)

Equation of Line :-
$$y = m * x + c$$

$$L(m, c, X, Y) = \sum_{i=1}^{i=5} (y_i - (m * x_i + c))^2$$

LOSS FUNCTION

ERROR FUNCTION

(C) Dr. Kalidas Y., HT Tirupati.

aression

Left side (X) \rightarrow Machine Learning \rightarrow Right side (Y)

What are the different ways?

2nd argument is the list of Parameters

BruteForceSolver(

$$minval = +10000.0$$

FOR
$$m \in [-100, ..., +100]$$

FOR
$$c \in [-100, ..., +100]$$

Compute
$$v = L(m, c)$$

IF
$$v < minval$$
:
 $v = minval$
 $m1 = m$,
 $c1 = c$

Questions...

- -100 to +100, who gave the range?
- What is the step size?
- What if the solution is highly fine, (3.451, -89.1123)

(C) Dr. Kalidas Y., IIT Tirupat. Can we speed up?

[m1,c1])

What are the different ways?

2nd argument is the list of Parameters

RandomSolver(

[m1,c1]

minval = +10000.0

FOR ITER= 1:100000

FOR m = RAND(-100, 100)

FOR c = RAND(-100, 100)

Compute v = L(m, c)

IF v < minval: v = minvalm1=mc1 = c

1st argument is the Loss function

Questions...

- -100 to +100, who gave the range?
- What is the step size?
- What if the solution is highly fine, (3.451, -89.1123)

(C) Dr. Kalidas Y., IIT Tirupat. Can we speed up?

