

第二章数据的机器层次表示

- 2.1 数值数据的表示
- 2.2 机器数的定点表示与浮点表示
- 2.3 非数值数据的表示
- 2.4 十进制数和数串的表示
- 2.5 现代微型计算机系统中的数据表示举例
- 2.6 数据校验码

2.1 数值数据的表示

- 2.2 机器数的定点表示与浮点表示
- 2.3 非数值数据的表示
- 2.4 十进制数和数串的表示
- 2.5 现代微型计算机系统中的数据表示举例
- 2.6 数据校验码

2.1.1 计算机中的数值数据

• 在计算机中常用后缀字母来表示不同的数制。

十进制数 (D)

二进制数 (B)

八进制数 (Q)

十六进制数 (H)

• 在C语言中,八进制常数以前缀0开始,十六进制常数以前缀0x开始。

2.1.2 无符号数和带符号数

所谓无符号数,就是整个机器字长的全部二进制位均表示数值位 (没有符号位),相当于数的绝对值。

 $N_1 = 01001$

表示无符号数9

 $N_2 = 11001$

表示无符号数25

• 对于字长为n+1位的无符号数的表示范围是

```
00000000 Pn 11111111
```

• 例如: 大为8 1, 无符号数的表示范围是 0~255。

- 所谓带符号数,即正、负数。在日常生活中,我们用"+"、"-'号加绝对值来表示数值的大小,用这种形式表示的数值在计算机技术中称为"真值"。
- 所谓机器数,就是将真值的符号数码化,约定二进制数的最高位为符号位,"0"表示正号,"1"表示负号,计算机能够识别和使用的表示形式。

- 对于带符号数,最高位用来表示符号位,而不再表示数值位了,前例中的N₁、N₂在这里变为:
- $N_1 = 01001$
 - -表示带符号数+9
- $N_2 = 11001$
 - -根据不同的机器数表示不同的值,如:
 - x 原码时表示带符号数-9,
 - x 补码则表示-7,
 - x 反码则表示-6。

2.1.3 原码表示法

- 最简单的机器数表示法
- 用最高位表示符号位
 - -符号位为"0"表示该数为正
 - -符号位为"1"表示该数为负
- 数值部分与真值相同

2.1.3 原码表示法

·若真值为纯小数,原码形式为X_s.X₁X₂...X_n(X_s表示符号位)

例1:
$$X_1=0.0110$$
, $X_2=-0.0110$
$$[X_1]_{\bar{\mathbb{B}}}=0.0110 , [X_2]_{\bar{\mathbb{B}}}=1.0110$$

• 若真值为纯整数,原码形式为 $X_sX_1X_2...X_n$ (X_s 表示符号位)

例2:
$$X_1=1101$$
, $X_2=-1101$ $[X_1]_{\bar{\mathbb{R}}}=0,1101$, $[X_2]_{\bar{\mathbb{R}}}=1,1101$

• 在原码表示中,真值0有两种不同的表示形式:

$$[+0]_{\bar{\mathbb{R}}} = 00000;$$
 $[-0]_{\bar{\mathbb{R}}} = 10000$

2.1.3 原码表示

- 原码表示法优点
 - -直观易懂
 - 机器数和真值相互转换很容易
 - 用原码实现乘、除运算的规则很简单
- 原码表示法缺点
 - -实现加、减运算的规则较复杂

2.1.4 补码表示法

- 使符号位参加运算,从而简化加减法的规则;使减法运算转化成加法运算,从而简化机器的运算器电路。
- 补码表示
 - -符号位表示方法与原码相同
 - -数值部分的表示与数的符号有关
 - x 对于正数,数值部分与真值形式相同。
 - x 对于负数, 其数值部分为真值形式按位取反, 且在最低位加1。

2.1.4 补码表示法

·若真值为纯小数,补码形式为X_s.X₁X₂...X_n(X_s表示符号位)

例1:
$$X_1 = 0.0110$$
, $X_2 = -0.0110$
$$[X_1]_{\frac{1}{2}} = 0.0110$$
, $[X_2]_{\frac{1}{2}} = 1.1010$

· 若真值为纯整数,补码形式为X_sX₁X₂...X_n(X_s表示符号位)

例2:
$$X_1 = 1101$$
, $X_2 = -1101$
$$[X_1]_{\frac{1}{2}} = 0,1101, \quad [X_2]_{\frac{1}{2}} = 1,0011$$

• 在补码表示中,真值0的表示形式是唯一的

$$[+0]_{\frac{1}{2}} = [-0]_{\frac{1}{2}} = 00000$$

2.1.4 补码表示法

- 由真值、原码转换为补码
- 当X为正数时,[X]_补=[X]_原=X。
- 当X为负数时,由[X]_原转换为[X]_补的方法:
 - x ①[X]原除掉符号位外的各位取反加 "1"。
 - ¤②自低位向高位,尾数的第一个"1"及其右部的"0"保持不变,左部的各位取反,符号位保持不变。
- 例如: [X]_原 =1.1110011000

2.1.5 反码表示法

- 符号位表示方法与原码相同
- 数值部分的表示与数的符号有关
 - -对于正数,数值部分与真值形式相同。
 - -对于负数,数值部分为真值形式按位取反。

2.1.5 反码表示法

·若真值为纯小数,反码形式为X_s.X₁X₂...X_n(X_s表示符号位)

例1:
$$X_1=0.0110$$
, $X_2=-0.0110$
$$[X_1]_{\overline{\mathbb{D}}}=0.0110, \quad [X_2]_{\overline{\mathbb{D}}}=1.1001$$

·若真值为纯整数,反码形式为X_sX₁X₂...X_n(X_s表示符号位)

例2:
$$X_1=1101$$
, $X_2=-1101$
$$[X_1]_{\overline{\mathbb{D}}}=0,1101 , \quad [X_2]_{\overline{\mathbb{D}}}=1,0010$$

• 在反码表示中, 真值0也有两种不同的表示形式:

$$[+0]_{\overline{\boxtimes}} = 00000$$

 $[-0]_{\overline{\boxtimes}} = 11111$

2.1.6

3种机器数的比较

- (1) 正数都等于真值本身,负数表示方法不同。
- (2) 最高位都表示符号位,补码和反码的符号位可和数值位一起参加运算;但原码的符号位必须分开进行处理。
- (3) 对于真值0,原码和反码各有两种不同的表示形式,而补码只有唯一的一种表示形式。
- (4) 原码、反码表示的正、负数范围是对称的;但补码负数能多表示一个最负的数(绝对值最大的负数),其值等于-2°(纯整数)或-1(纯小数)。

• 设机器字长4位(含1位符号位),以纯整数为例:

• 原码或反码可表示的数

• 补码可表示的数 (多表示一个负数)

• 真值与3种机器数间的对照

真值 X		[X] _原 [X] _补 [X] _反	真值 X		[X] _原	[X] _*	[X] _反
十进制	二进制		十进制	二进制			
+0	+000	0000	-0	-000	1000	0000	1111
+1	+001	0001	-1	-001	1001	1111	1110
+2	+010	0010	-2	-010	1010	1110	1101
+3	+011	0011	-3	-011	1011	1101	1100
+4	+100	0100	-4	-100	1100	1100	1011
+5	+101	0101	-5	-101	1101	1011	1010
+6	+110	0110	- 6	-110	1110	1010	1001
+7	+111	0111	-7	-111	1111	1001	1000
+8	_		-8	-1000		1000	_

习题

机器内的数值代码1001,它所表示的十进制真值为

- B. -1 C. -7 D. 以上三者均有可能

• 2. 在机器数()中,零的表示形式是唯一的。

- A. 原码 B. 补码 C.反码 D. 原码和反码

• 3. 设寄存器内容为11111111, 若它等于+127, 则为()。

- A. 原码

- B. 反码 C. 补码 D. 移码

- 2.1 数值数据的表示
- 2.2 机器数的定点表示与浮点表示
- 2.3 非数值数据的表示
- 2.4 十进制数和数串的表示
- 2.5 现代微型计算机系统中的数据表示举例
- 2.6 数据校验码

2.2.1 定点表示法

- 在定点表示法中约定:所有数据的小数点位置固定不变。通常, 把小数点固定在有效数位的最前面或末尾,这就形成了两类定点 数。
- 1. 定点小数
 - -小数点的位置固定在最高有效数位之前,符号位之后,记作 X_s . X_1X_2 ... X_n
 - 这个数是一个纯小数。定点小数的小数点位置是隐含约定的, 小数点并不需要真正地占据一个二进制位。

定点表示法

当
$$X_s=0$$
, $X_1 \sim X_n=1$ 时, X 为最大正数,

定点表示法

当
$$X_n=1$$
, $X_s \sim X_{n-1}=0$ 时, X 为最小正数, 即: $X_{\text{最小正数}}=2^{-n}$

2.2.1

定点表示法

• 当 X_s =1,表示X为负数,原码与补码所能表示的绝对值最大的负数不同,所以原码和补码的表示范围有一些差别。

定点表示法

原码表示的绝对值最大负数

补码表示的绝对值最大负数

2^0	2^{-1}	2^{-2}	• • •	$2^{-(n-)}$	$^{-1)}2^{-r}$
1	0	0	• • •	0	0

X_{绝对值最大负数(补码表示时)} = -1

2.2.1

定点表示法

- 综上所述:
- 若机器字长有n+1位,则:
 - 原码定点小数表示范围为: -(1-2-n) ~ (1-2-n)
 - 补码定点小数表示范围为: -1~(1-2-n)
- 若机器字长有8位,则:
 - 原码定点小数表示范围为: -(1-2⁻⁷) ~ (1-2⁻⁷)
 - 补码定点小数表示范围为: -1~(1-2⁻⁷)

定点表示法

- 2. 定点整数
- 小数点位置隐含固定在最低有效数位之后,记作X_sX₁X₂...X_n,这个数是一个纯整数。

2.2.1

定点表示法

原码表示的绝对值 最大负数

2^{n} 2^{n-1} 2^{n-2}			• • •	2^1	2^0
1	1	1	•••	1	1

$$X_{\text{绝对值最大负数 (原码表示时)}} = -(2^n-1)$$

补码表示的绝 对值最大负数

2.2.1

定点表示法

- 综上所述:
- 若机器字长有n+1位,则:
 - 原码定点整数的表示范围为: -(2n-1)~(2n-1)
 - 补码定点整数的表示范围为: -2ⁿ ~ (2ⁿ-1)
- 若机器字长有8位,则:
 - -原码定点整数表示范围为: -127~127
 - -补码定点整数表示范围为: -128~127

习题

• 1. 某机器字长为32位, 其中1位表示符号位。若用定点整数原码

表示,则最小负整数为()。

A.
$$-(2^{31}-1)$$

B.
$$-(2^{30}-1)$$

C.
$$-(2^{31}+1)$$

D.
$$-(2^{30}+1)$$

• 小数点的位置根据需要而浮动,这就是浮点数。 例如:

$$N=M\times r^E = M\times 2^E$$

- 式中:r为浮点数阶码的底,与尾数的基数相同,通常r=2。E和M都是带符号数,E叫做阶码,M叫做尾数。
- 在大多数计算机中,尾数为纯小数,常用原码或补码表示;阶码为纯整数,常用移码或补码表示。

浮点表示法

• 浮点数的一般格式:

- 浮点数的底是隐含的,在整个机器数中不出现。阶码的符号位为e_s,阶码的大小反映了在数N中小数点的实际位置;尾数的符号位为m_s,它是整个浮点数的符号位,反映了该浮点数的正负。
- 假设阶码和尾数部分均用补码表示。

- 1.浮点数的表示范围
- -当 e_s =0, m_s =0, 阶码和尾数的数值位各位全为1 (即阶码和尾数都为最大正数) 时,该浮点数为最大正数。

$$X$$
最大正数= $(1-2-n) \times 2^{2^{k}-1}$

- 1.浮点数的表示范围
- -当 e_s =1, m_s =0, 尾数的最低位 m_n =1, 其余各位为0 (即阶码为绝对值最大负数, 尾数为最小正数) 时,该浮点数为最小正数。

$$X$$
最小正数= $2^{-n} \times 2^{-2^k}$

• 1.浮点数的表示范围

 $-3e_s=0$,阶码的数值位为全1; $m_s=1$,尾数的数值位为全0 (即阶码为最大正数,尾数为绝对值最大的负数) 时,该浮点数为绝对值最大负数。

$$X$$
绝对值最大负数=-1×2^{2k}-1

- 2.规格化的浮点数
- 为了提高运算的精度,需要充分地利用尾数的有效数位,通常采取规格化的浮点数形式,即规定尾数的最高数位必须是一个有效值。

$$1/r \le |M| < 1$$

如果r=2,则有1/2≤|M|<1。

- 在尾数用原码表示时,规格化浮点数的尾数的最高数位总等于1。 在尾数用补码表示时,规格化浮点数应满足<mark>尾数最高数位与符号位不同($m_s \oplus m_1 = 1$),即当 $1/2 \le M < 1$ 时,应有0.1xx...x形式,当 $-1 \le M < -1/2$ 时,应有1.0xx...x形式。</mark>
- 需要注意的是当M=-1/2,对于原码来说,是规格化数,而对于补码来说,不是规格化数;当M=-1时,对于原码来说,这将无法表示,而对于补码来说,这是一个规格化数。

$$X$$
规格化的最小正数= $2^{-1}\times 2^{-2^k}$

$$X$$
 规格化的绝对值最小负数= -(2-1+2-n) \times 2-2k

- 5	E	и	
	\geq	/	/
	₹	C	
		ď.	

	浮点	数代码		
	阶码	尾数	真值	
最大正数	01…1	0.11…11	(1-2-n)×2 ^{2*-1}	
绝对值最大负数	01…1	1.00…00	-1×2 ^{2*-1}	
最小正数	10…0	0.00…01	2-n×2 ^{-2*}	
规格化的最小正数	10…0	0.10…00	$2^{-1} \times 2^{-2^{\star}}$	
绝对值最小负数	10…0	1.1111	-2-n×2 ^{-2*}	
规格化的绝对值最小负数	10…0	1.01…11	$(-2^{-1}-2^{-n}) \times 2^{-2^k}$	

2.2.3

浮点数阶码的移码表示法

- 移码就是在真值X上加一个常数(偏置值),相当于X在数轴上向正方向平移了一段距离。
- 移码也可称为增码或偏码。

字长n+1位定点整数的移码形式为 $X_0X_1X_2...X_n$ 。

2.2.3

浮点数阶码的移码表示法

 $[X]_{\lambda} = 10100011$

• 最常见的移码的偏置值为2°。当字长8位时,偏置值为2°。

例1:
$$X=1011101$$

$$[X]_{8}=2^{7}+X=10000000+1011101=11011101$$

$$[X]_{1}=01011101$$
 例2: $X=-1011101$
$$[X]_{8}=2^{7}+X=10000000-1011101=00100011$$

浮点数阶码的移码表示法

真值X(十进制)	真值X(二进制)	[X]*	[X] _{&}
-128	-10000000	10000000	00000000
-127	-1111111	10000001	00000001
1		i i	010
-1	-0000001	11111111	01111111
0	0000000	00000000	10000000
1	0000001	00000001	10000001
127	1111111	01111111	11111111

浮点数阶码的移码表示法

· 偏置值为2n的移码具有以下特点:

- -(1) 在移码中, 最高位为 "0" 表示负数, 最高位为 "1" 表示正数。
- -(2) 移码为全0时,它所对应的真值最小,为全1时,它所对应的真值最大。
- -(3) 真值0在移码中的表示形式是唯一的,即[+0]₈=[-0]₈=100...0。
- -(4) 移码把真值映射到一个正数域,所以可将移码视为无符号数,直接按无符号数规则比较大小。
- -(5) 同一数值的移码和补码除最高位相反外,其他各位相同。

浮点数阶码的移码表示法

- 浮点数的阶码常采用移码表示最主要的原因有:
- 便于比较浮点数的大小。阶码大的,其对应的真值就大,阶码小的,对应的真值就小。
- 简化机器中的判零电路。当阶码全为0, 尾数也全为0时, 表示机器零。

习题

- 1.设浮点数的格式为:
- 第15位: 符号位;
- -第14位到第8位:阶码,采用补码表示;
- 第7位到第0位: 尾数,与符号位一起采用规格化的补码表示,基数为2。
- 问:
 - 它能表示的数值范围是什么?
 - 它能表示的最接近于0的正数和负数分别是什么?
 - 它共能表示多少个数值?

习题

(1)范围:实际上是求绝对值最大的正数和负数(规格化)

最大: 0,0111111,11111111

$$(1-2^{-8})*2^{2^6-1}$$
 (阶码和尾数都最大)

最小: 1,0111111,00000000

(2)本质是求绝对值最小的正数和负数(规格化)

最小的正数(最接近于0的正数): 0,1000000,10000000

$$2^{-1}*2^{-2^6}$$

最大的负数(最接近于0的负数):

1, 1000000, 011111111
$$-(2^{-1}+2^{-8})*2^{-2^6}$$

(3)可以表示 216个数值

实用浮点数举例

· 大多数计算机的浮点数采用IEEE 754标准, 其格式如下, IEEE 754标准中有三种形式的浮点数。

	\mathbf{m}_{s}	E	m
--	---------------------------	---	---

类型	数符 ms	阶码 E	尾数 m	总位数	偏置值	
短浮点数	1	8	23	32	7FH	127
长浮点数	1	11	52	64	3FFH	1023
临时浮点数	1	15	64	80	3FFFH	16383

实用浮点数举例

- 以短浮点数为例讨论浮点代码与其真值之间的关系
 - 最高位为数符位;其后是8位阶码,以2为底,阶码的偏置值为127;其余23位是尾数。
 - 为了使尾数部分能表示更多一位的有效值, IEEE754采用隐 含尾数最高数位1的方法, 因此尾数实际上是24位。
 - x 注意, 隐含的1是一位整数 (即位权为2°), 在浮点格式中表示出来的23位 尾数是纯小数, 并用原码表示。

2.2.4

实用浮点数举例

- 例1: 将(100.25)10转换成短浮点数格式。
 - (1) 十进制数→二进制数 (100.25)₁₀=(1100100.01)₂
 - (2) 非规格化数→规格化数 1100100.01=1.10010001×2⁶
 - (3) 计算移码表示的阶码 (偏置值+阶码真值) 1111111+110=10000101

224

实用浮点数举例

- · 例2: 把短浮点数C1C90000H转换成为十进制数。

 - (2) 计算出阶码真值 (移码 偏置值) 10000011-1111111=100
 - (3) 以规格化二进制数形式写出此数 1.1001001×24
 - (4) 写成非规格化二进制数形式 11001.001
 - (5) 转换成十进制数,并加上符号位 该浮点数=-25.125

例1 某浮点数格式如图示,字长32其中阶码8位,含一位阶符,补码表示,以2为底;尾数24位,含一位数符,补码表示,规格化。若浮点数代码为(A3680000)_{16,}求其真值。

(A3680000)
$$_{16}$$
 = (10100011, 01101000000...0) $_2$
E= - (1011101) $_2$ = - (93) $_{10}$
M= (0.11010...0) $_2$ = (0.8125) $_{10}$
N=2⁻⁹³×0.8125

例2 按上述浮点格式将 - (1011.11010...0) 2写成浮点数代码。

$$N = - (1011.11010...0)_2 = - (0.101111010...0)_2 \times 2^4$$

$$E = (4)_{10} = (0000100)_{2}$$

$$E_{\lambda h} = 00000100$$

$$M_{k} = (1.010000110...0)_{2}$$

浮点数代码为 (00000100, 1010000110...0) ₂ = (04A18000) ₁₆

例3 按上述浮点格式将 - 26×0.4375写成浮点数代码。

$$N = (-2^{6} \times 0.4375)_{10} = -(0.011100000000)_{2} \times 2^{6}$$

$$= -(0.111000000000)_{2} \times 2^{5}$$

$$E = (5)_{10} = (0101)_{2}$$

$$E_{8} = 1000 + E = (1101)_{2}$$

$$M_{1} = (1.00100000000)_{2}$$

EDU

浮点数代码为(1101, 100100000000)₂ = (D900)₁₆

例4 某浮点数格式如图示,字长32,其中阶码8位,含一位阶符,移码表示,以2为底;尾数24位,含一位数符,补码表示,规格化。若浮点数代码为(BDB40000)₁₆求其真值。

(BDB40000) $_{16}$ = (1011 1101, 1011 0100 0000...00) $_2$ (E) $_{86}$ = (1011 1101) $_2$ = $_2$ + E E= (111101) $_2$ = (61) $_{10}$ (M) $_{10}$ = 1.011010...0 M = - (0.100110...0) $_2$ = - (0.59375) $_{10}$ N = - (0.59375) $_{10}$

例5:写出下列十进制数的IEEE754短浮点数编码。

$$E_{8} = 127 - 3 = (124)_{10} = (01111100)_{2}$$

0 01111100 010000...00

例5:写出下列十进制数的IEEE754短浮点数编码。

解:
$$(2) - (5)_{10} = - (101)_2$$
,
 $- (1.01 \times 2^2)$,
 $E_8 = 127 + 2 = (129)_{10} = (10000001)_2$

1 10000001 01000...00

练三

例6: 若短浮点数IEEE754编码为

阶码的真值 = E - 127 = 01111110 - 01111111 = -1

尾数(包含隐含位) = (1.10000000...0) 2

其代表的十进制数为 - $(1.1) \times 2^{-1} = -(0.11)_2 = -(0.75)_{10}$

1. (2011)float型数据通常用IEEE754单精度浮点数格式表示。若编

译器将float型变量x分配在一个32位浮点寄存器FR1中,且x=-

8.25,则FR1的内容是(A)

(A)C104 0000H

(B) C242 0000H

(C) C184 0000H

(D) C1C2 0000H

2. (2013)某数采用IEEE 754单精度浮点数格式表示为C640 0000H,

则该数的值是(A)

 $(A)-1.5\times2^{13}$

(B) -1.5×2^{12}

(C) $-0.5x \times 2^{13}$

(D) -0.5×2^{12}

- 2.1 数值数据的表示
- 2.2 机器数的定点表示与浮点表示
- 2.3 非数值数据的表示
- 2.4 十进制数和数串的表示
- 2.5 现代微型计算机系统中的数据表示举例
- 2.6 数据校验码

2.3.1

字符和字符串的表示方法

- 1.ASCII字符编码
- 常见的ASCII码用七位二进制表示一个字符,它包括10个十进制数字(0~9)、52个英文大写和小写字母(A~Z,a~z)、34个专用符号和32个控制符号,共计128个字符。

非数值数据的表示

b ₆ b ₅ b ₄	000	001	010	011	100	101	110	111
b3b2b1b0								
0000	NUL	DLE	SP	0	@	P		p
0001	SOH	DC1	1	1	A	Q	a	q
0010	STX	DC2	11	2	В	R	ь	r
0011	ETX	DC3	#	3	С	S	c	s
0100	EOT	DC4	\$	4	D	T	d	t
0101	ENQ	NAK	%	5	E	U	e	u
0110	ACK	SYN	&	6	F	V	f	v
0111	BEL	ETB	E	7	G	W	g	w
1000	BS	CAN	(8	н	X	h	x
1001	HT	EM)	9	I	Y	i	У
1010	LF	SUB	*		J	Z	j	z
1011	VT	ESC	+	;	K	[k	{
1100	FF	FS	,	<	L	١	1	
1101	CR	GS	<u> </u>	=	M	1	m	}
1110	RO	RS		>	N	1	n	~
1111	SI	US	1	?	0	12	0	DEL

非数值数据的表示

- 2.字符串的存放
- 2.3.2 汉字的表示
 - -1.汉字国标码
 - -2.汉字区位码
 - -3.汉字机内码
 - -4.汉字字形码

2.3.3 统一代码 (Unicode)

• 随着国际间的交流与合作的扩大,信息处理应用对字符集提出了多文种、大字量、多用途的要求,解决问题的最佳方案是设计一种全新的编码方法,这种方法必须有足够的能力来表示任意一种语言里使用的所有符号,这就是统一代码(Unicode)。

- 2.1 数值数据的表示
- 2.2 机器数的定点表示与浮点表示
- 2.3 非数值数据的表示
- 2.4 十进制数和数串的表示
- 2.5 现代微型计算机系统中的数据表示举例
- 2.6 数据校验码

2.4.1

十进制数的编码

- 十进制数的编码 (二 十进制编码)
- 用四位二进制数来表示一位十进制数,称为二进制编码的十进制数,简称

BCD码。

• 常见的BCD码

十进制数	8421码	2421码	余3码	Gray码
0	0000	0000	0011	0000
1	0001	0001	0100	0001
2	0010	0010	0101	0011
3	0011	0011	0110	0010
4	0100	0100	0111	0110
5	0101	1011	1000	1110
6	0110	1100	1001	1010
7	0111	1101	1010	1011
8	1000	1110	1011	1001
9	1001	1111	1100	1000