					t ₁		
$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{i}{k(1+2k^2)(2r_3+r_5)}$	$\frac{i(6k^2(2r_3+r_5)+t_1)}{\sqrt{2}k(1+2k^2)^2(2r_3+r_5)t_1}$	0	$\frac{6k^2(2r_3+r_5)+t_1}{(1+2k^2)^2(2r_3+r_5)t_1}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{1}{\sqrt{2} \; (k^2 + 2 k^4) (2 r_3 + r_5)}$	$\frac{6k^2(2r_3+r_5)+t_1}{2(k+2k^3)^2(2r_3+r_5)t_1}$	0	$-\frac{i(6k^2(2r_3+r_5)+t_1)}{\sqrt{2}k(1+2k^2)^2(2r_3+r_5)t_1}$
$\sigma_{1^-}^{\#1}{}_{\alpha}$	0	0	0	$\frac{1}{k^2 \left(2 r_3 + r_5\right)}$	$-\frac{1}{\sqrt{2} (k^2 + 2k^4) (2r_3 + r_5)}$	0	$\frac{i}{k(1+2k^2)(2r_3+r_5)}$
$\tau_{1}^{\#1}_{\alpha\beta}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{-2ik^3(2r_3+r_5)+ikt_1}{(1+k^2)^2t_1^2}$	$\frac{-2k^4(2r_3+r_5)+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta}$		$\frac{-2 k^2 (2 r_3 + r_5) + t_1}{(1 + k^2)^2 t_1^2}$	$\frac{i(2k^3(2r_3+r_5)-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	0	$\frac{\sqrt{2}}{t_1 + k^2 t_1}$	$\frac{i\sqrt{2}k}{t_1 + k^2 t_1}$	0	0	0	0
	$\sigma_{1}^{\#1} + \alpha^{eta}$	$\sigma_1^{#2} + \alpha \beta$	$\tau_{1+}^{\#1} + \alpha \beta \qquad \frac{i \sqrt{2} k}{t_1 + k^2 t_1}$	$\sigma_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$\sigma_{1}^{\#2} +^{\alpha}$	$t_{1}^{\#1} + ^{lpha}$	$ au_1^{\#2} + ^{lpha}$

	#	1	1	3	3	3	2	16	
source constraints	SO(3) irreps	$\tau_{0}^{#2} == 0$	$ \tau_{0+}^{\#1} == 0 $	$t_1^{\#2}{}^{\alpha} + 2 i k o_1^{\#2}{}^{\alpha} == 0$	$\tau_{1}^{\#1}{}^{\alpha} := 0$	$\tau_{1+}^{\#1}\alpha\beta + ik \ \sigma_{1+}^{\#2}\alpha\beta == 0$	$\tau_{2+}^{\#1}\alpha\beta$ - 2 ik $\sigma_{2+}^{\#1}\alpha\beta$ == 0	Total #:	

	$\sigma_{2^{+}lphaeta}^{\#1}$	$ au_2^{\#1}_{lphaeta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
$\sigma_{2}^{\#1}\dagger^{lphaeta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$\tau_{2}^{\#1} \dagger^{\alpha\beta}$	$\frac{2 i \sqrt{2} k}{(1+2 k^2)^2 t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	$\frac{2}{t_1}$

ιβχ	.#1
	•
	t #1
	4
	† 1
	,,#1

$\omega_{2}^{\#1}$ $\omega_{2}^{\#1}$ $\omega_{2}^{\#1}$ $\omega_{2}^{\#1}$	0	0	$\frac{t_1}{2}$
$f_2^{\#1}_2 \alpha \beta$	$-\frac{ikt_1}{\sqrt{2}}$	$k^2 t_1$	0
$\omega_2^{\#_1}{}_+\alpha\beta$	$\frac{t_1}{2}$	$\frac{ikt_1}{\sqrt{2}}$	0
	$\omega_{2}^{\#1} +^{\alpha\beta}$	$f_2^{#1} + ^{\alpha \beta}$	$\omega_{2}^{\#1} +^{lphaeta\chi}$

$f_{1^{-}}^{\#2}$	0	0	0	<u>ikt1</u> 3	$\frac{1}{3}i\sqrt{2}kt_1$	0	$\frac{2k^2t_1}{3}$
$f_{1^{}}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\omega_{1^{\bar{-}}\alpha}^{\#2}$	0	0	0	$\frac{t_1}{3\sqrt{2}}$	€ 1 7	0	$-\frac{1}{3}\bar{l}\sqrt{2}kt_1$
$\omega_{1^{-}}^{\#1}{}_{\alpha}$	0	0	0	$k^2 (2 r_3 + r_5) + \frac{t_1}{6}$	$\frac{t_1}{3\sqrt{2}}$	0	$-rac{1}{3}ec{\it l}\it kt_1$
$f_1^{\#1}$	$-\frac{i k t_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{\#2}_{+\alpha\beta}\ f_{1}^{\#1}_{+\alpha\beta}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{\#1}{}_{\alpha\beta}$	$k^2 (2 r_3 + r_5) - \frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$\frac{i k t_1}{\sqrt{2}}$	0	0	0	0
	$^{1}_{+}$ $^{+}$ $^{\alpha\beta}$	$^{2}_{+}$ $^{+}$	$^{1}_{+}$ $^{+}$	$\omega_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$\omega_1^{\#2} +^{lpha}$	$c_1^{\#1} + \alpha$	$\epsilon_{1}^{#2} + \alpha$

Lagrangian density

 $r_5\,\partial_\theta\omega_\lambda^{\alpha}\,\partial_\kappa\omega^{\theta\kappa\lambda}-2\,r_3\,\partial_\alpha\omega_\lambda^{\alpha}\,\partial^\kappa\omega^{\kappa\lambda\theta}-r_5\,\partial_\alpha\omega_\lambda^{\alpha}\,\partial^\kappa\omega^{\kappa\lambda\theta}+4\,r_3\,\partial_\theta\omega_\lambda^{\alpha}\,\partial_\kappa\omega^{\kappa\lambda\theta}+$ $r_5\,\partial_i\omega^{\kappa\lambda}_{\kappa}\,\partial^i\omega_{\alpha}^{\alpha} + 2\,r_3\,\partial_\alpha\omega_{\alpha}^{\alpha}\,\partial_\kappa\omega^{\theta\kappa\lambda}_{} - r_5\,\partial_\alpha\omega_{\alpha}^{\alpha}_{\alpha}\partial_\kappa\omega^{\theta\kappa\lambda}_{} - 2\,r_3\,\partial_\theta\omega_{\alpha}^{\alpha}\,\partial_\kappa\omega^{\theta\kappa\lambda}_{} +$ $2r_3\partial_\alpha\omega_\lambda^{\alpha}\partial^\lambda\omega^{\theta\kappa}_{\kappa}+r_5\partial_\alpha\omega_\lambda^{\alpha}\partial^\lambda\omega^{\theta\kappa}_{\kappa}+2r_3\partial_\theta\omega_\lambda^{\alpha}\partial^\lambda\omega^{\theta\kappa}_{\kappa}-r_5\partial_\theta\omega_\lambda^{\alpha}\partial^\lambda\omega^{\theta\kappa}_{\kappa}$ $2r_5\partial_\theta\omega_\lambda^{\ \alpha}\partial_\kappa\omega^{\kappa\lambda\theta} - \tfrac{1}{2}t_1\partial^\alpha f_{\theta\kappa}\partial^\kappa f_\alpha^{\ \theta} - \tfrac{1}{2}t_1\partial^\alpha f_{\kappa\theta}\partial^\kappa f_\alpha^{\ \theta} - \tfrac{1}{2}t_1\partial^\alpha f^\lambda_{\ \kappa}\partial^\kappa f_{\alpha\lambda} +$ $\frac{1}{2}t_1\partial_\kappa f_{\ \theta}^{\ \lambda}\partial^\kappa f_{\ \lambda}^{\ \theta} + \frac{1}{2}t_1\partial_\kappa f^{\ \lambda}_{\ \theta}\partial^\kappa f_{\ \lambda}^{\ \theta} - \frac{1}{3}t_1\partial^\alpha f^{\ \lambda}_{\ \alpha}\partial^\kappa f_{\ \lambda\kappa} - 4\,r_3\,\partial^\beta \omega_{\ \lambda}^{\ \lambda\alpha}\partial_\lambda \omega_{\alpha\beta}^{\ \ \prime} \frac{1}{3}t_{1}\;\omega_{\kappa\alpha}^{\;\;\alpha}\,\partial^{\kappa}f'_{\;\;\prime} + \frac{1}{3}t_{1}\;\omega_{\kappa\lambda}^{\;\;\lambda}\;\partial^{\kappa}f'_{\;\;\prime} + \frac{2}{3}t_{1}\,\partial^{\alpha}f_{\;\kappa\alpha}\;\partial^{\kappa}f'_{\;\;\prime} - \frac{1}{3}t_{1}\,\partial_{\kappa}f^{\lambda}_{\;\;\lambda}\,\partial^{\kappa}f'_{\;\;\prime} +$ $2t_{1}\;\omega_{,k\theta}\;\partial^{k}f^{'\theta}-\tfrac{1}{3}t_{1}\;\omega_{,\alpha}^{\;\;\alpha}\;\partial^{k}f^{'}_{\;\;\kappa}-\tfrac{1}{3}t_{1}\;\omega_{,\lambda}^{\;\;\lambda}\;\partial^{k}f^{'}_{\;\;\kappa}+\tfrac{1}{2}t_{1}\;\partial^{\alpha}f^{\lambda}_{\;\;\kappa}\;\partial^{k}f_{\lambda\alpha}+$

	$\omega_0^{\#1}$	$f_{0}^{#1}$	$f_{0}^{#2}$	$\omega_{0}^{#1}$
$\omega_{0}^{\#1}$ †	$6 k^2 r_3$	0	0	0
$f_{0^{+}}^{#1}\dagger$	0	0	0	0
$f_{0}^{#2}$ †	0	0	0	0
$\omega_0^{\sharp 1}$ †	0	0	0	$-t_1$

_	$\sigma_{0}^{\#1}$	$\tau_{0}^{\#1}$	$\tau_{0}^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0^{+}}^{\#1}$ †	$\frac{1}{6 k^2 r_3}$	0	0	0
$\tau_{0^{+}}^{\#1} \dagger$	0	0	0	0
$\tau_{0^{+}}^{\#2} \dagger$	0	0	0	0
$\sigma_{0}^{\#1}$ †	0	0	0	$-\frac{1}{t_1}$

?		
?	Quadratic pole	2
	Pole residue:	$\left -\frac{1}{(2r_3+r_5)t_1^2} > 0 \right $
?	Polarisations:	2
?	i diarisacions.	-

Unitarity conditions

 $r_5 < -2 r_3 \&\& t_1 < 0 \mid \mid t_1 > 0$

(No massive particles)