Computing Smith Normal Form

Jiang-Hua Lu

The University of Hong Kong

Algebra II, HKU

Monday Feb 17, 2025

In this file:

- §2.1.1. Cauchy-Binet Formula;
- §2.1.2: Statement of Smith Normal Form Theorem.

§2.1.1. Cauchy-Binet Formula

Definitions. Let R be any commutative ring, and $m, n \ge 1$ integers.

- $M_{m,n}(R)$ is the set of all $m \times n$ matrices with entries in R.
- $M_{n,n}(R)$ is a ring with matrix addition and multiplication. $\begin{pmatrix} A & I \\ O & B \end{pmatrix}$

$$\det(A) = \sum_{\sigma \in S_n} \operatorname{sign}(\sigma) a_{1,\sigma(1)} a_{2,\sigma(2)} \cdots a_{n,\sigma(n)} \in R.$$

• $\det(AB) = \det(A) \det(B)$ for any $A, B \in M_{n,n}(R)$.

§2.1.1: Cauchy-Binet Formula

Notation. For any commutative ring R and any $A \in M_{m,n}(R)$ and

$$I \subset \{1,\ldots,m\}, \quad J \subset \{1,\ldots,n\}, \quad |I| = |J| = k,$$

- let [A]_{I,J} be determinant of the sub-matrix of A formed by the rows from I and columns from J;
- call $[A]_{I,J}$ a $(k \times k)$ -minor of A.

Lemma. Cauchy-Binet formula. For $A \in M_{m,n}(R)$, $B \in M_{n,p}(R)$, and $I \subset \{1, ..., m\}$ and $J \subset \{1, ..., p\}$ with |I| = |J| = k, one has

$$[AB]_{I,J} = \sum_{K \subset \{1,...,n\}, |K| = k} [A]_{I,K} [B]_{K,J}. \tag{1}$$

Proof. Assume R is an integral domain and let F = Frac(R). Have

$$A: \wedge^k F^n \longrightarrow \wedge^k F^m, \quad B: \wedge^k F^p \longrightarrow \wedge^k F^n.$$

§2.1.2: Statement of the Smith Normal Form Theorem

Notation: Let R be any commutative ring. AB=I \longrightarrow old A dat B=I

• $A \in M_{n,n}(R)$ has an inverse if and only if $det(A) \in R$ is a unit:

$$AA^{\text{co-factor}} = A^{\text{co-factor}}A = \det(A)I_n.$$

- $GL(n,R) := \{A \in M_{n,n}(R) : \det(A) \text{ is a unit in } R\}$ is a group. $GL(n, 2) = \{A \in M_{m,m}(2), \det A = 1\}$ For $1 \le s \le \min(m,n)$ and $d_1, \ldots, d_s \in R$, have

$$\operatorname{diag}(d_1,d_2,\ldots,d_s,0,\ldots,0) = \left(\begin{array}{cccccc} d_1 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ 0 & d_2 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots & \vdots & \vdots & \vdots & 0 \\ 0 & 0 & \cdots & d_s & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots & \vdots & \vdots & \vdots & 0 \\ 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \end{array} \right),$$

diagonal matrix of size $m \times n$.

SMF Thm:

$$A \in M_{m \times n}(R)$$
 $B \land B^{-1}$
 $P \land GR$
 $CL(n, R)$

Smith Normal Form Theorem (SNF Theorem).

Theorem,

Let R be a PID. For any $A \in M_{m,n}(R)$, there exist $P \in GL(m,R)$ and $Q \in GL(n,R)$, an integer $1 \le s \le \min(m,n)$, and $d_1,\ldots,d_s \in R \setminus \{0\}$ with $d_1|d_2|\cdots|d_s$, such that

$$\textit{PAQ} = \mathrm{diag}(\textit{d}_1, \textit{d}_2, \ldots, \textit{d}_s, 0, \ldots, 0).$$

Moreover, the integer s is unique and the elements d_1, \ldots, d_s of R are unique up to up to associates.

r(A)

- The integer s is called the rank of A and denoted as s(A);
- the non-zero $d_1, \ldots, d_s \in R$ are called the invariant factors of A.
- $\operatorname{diag}(d_1, d_2, \dots, d_s, 0, \dots, 0)$ is called the Smith normal form of A.

§2.1.2: Statement of the Smith Normal Form Theorem

Notation. For $A \in M_{m,n}(R)$ and an integer $1 \le k \le \min(m,n)$,

- **1** Let $I_k(A)$ be the ideal generated by all $(k \times k)$ -minors of A;
- 2 Let $m_k(A)$ be a generator of $I_k(A)$. Let $m_0(A) = 1$.
- **3** When $I_k(A) \neq 0$, $m_k(A)$ is a gcd of all non-zero $k \times k$ minors of A.
- **4** Let $s(A) = \max\{1 \le k \le \min(m, n) : I_k(A) \ne 0\}.$

Lemma: Let R be a PID. For any $A \in M_{m,n}(R)$, $P \in GL(m,R)$, $Q \in GL(n,R)$, and $1 \le k \le \min(m,n)$, one has

$$s(PAQ) = s(A)$$
 and $I_k(PAQ) = I_k(A)$.

Proof. Let $1 \le k \le \min(m, n)$. By Cauchy-Binet,

$$I_k(PA) \subset I_k(A), \quad I_k(A) = I_k(P^{-1}PA) \subset I_k(PA),$$

so
$$I_k(PA) = I_k(A)$$
. Similarly, $I_k(AQ) = I_k(A)$.

Q.E.D.

Proposition

Let R be a PID. If $A \in M_{m,n}(R)$ is non-zero, and if $P \in GL(m,R)$ and $Q \in GL(n,R)$, integer $1 \le s \le \min(m,n)$, and elements $d_1,\ldots,d_s \in R \setminus \{0\}$ are such that $d_1|d_2|\cdots|d_s$ and

$$PAQ = \operatorname{diag}(d_1, \ldots, d_s, 0, \ldots, 0),$$

then $s = \max\{1 \le k \le \min(m, n) : I_k(A) \ne 0\}$, and

$$d_k = u_k m_k(A)/m_{k-1}(A), \quad 1 \leq k \leq s,$$

where u_1, \ldots, u_s can be any units of R.

Proof. For
$$1 \le k \le \min(m, n)$$
, $I_k(A) = I_k(PAD)$, so
$$s = \max\{1 \le k \le \min(m, n) : I_k \ne 0\}$$
 and $m_k(A) = m_k(PAQ) = d_1 \cdots d_k$ for $1 \le k \le s$. The $m_k(PAQ) = d_1 \cdots d_k$ for $1 \le k \le s$.

Example.
$$A = \frac{1}{4} = \frac$$

for some
$$P, Q \in GL(4, \mathbb{Z})$$
.

$$PAQ = \begin{pmatrix} -1 & 2 & \\ & 2 & 6 \end{pmatrix}$$

$$m_1 = \gcd(4, 2, 6, 3) = 1$$

 $m_2 = \gcd(---) = 2$

$$m_{z} = gcol(---) = 2$$

 $m_{z} = gcol(---) = 2$
 $m_{z} = gcol(4x2x6, 4x2x8, 2x6x2, 4x6x3) = 12$
 $m_{y} = olet = 4 \times 2 \times 6 \times 3$
 $d_{z} = m_{y}m_{0} = 1$ $d_{z} = m_{z}/m_{1} = 6$ $d_{z} = m_{y} = 12$
 $d_{z} = m_{y}m_{0} = 1$ $d_{z} = m_{z}/m_{1} = 2$, $d_{z} = m_{z}/m_{2} = 6$ $d_{z} = m_{y} = 12$

Example.

$$A = diag(4, 2, 6, 3) = P^{-1} diag(1, 2, 6, 12)Q^{-1} \in M_{4,4}(\mathbb{Z})$$

for some $P, Q \in GL(4, \mathbb{Z})$.

A =
$$\begin{pmatrix} \chi + \chi + \chi \\ \chi + \chi + \chi \\ \chi - 1 \end{pmatrix}$$
 $M_1 = 1$
 $M_2 = 1$
 $M_3 = obst$

$$-x^{2}+4x+1$$

$$\chi^{2}-2 x = x(x-2)$$