Regressão Linear Múltipla: Cálculo Matricial

Matrix Algebra with R: Whiskey Example

```
> one \leftarrow rep(1,10); age \leftarrow c(0,.5,1,2,3,4,5,6,7,8)
> y <- c(104.6, 104.1, 104.4, 105.0, 106.0,
         106.8, 107.7, 108.7, 110.6, 112.1)
> X <- matrix(c(one, age), ncol=2)</pre>
> XtX <- t(X) %*% X; XtX
      [,1]
             [,2]
[1,] 10.0 36.50
[2,] 36.5 204.25
> solve(XtX)
             [,1]
                         [,2]
[1,] 0.28757480 -0.05139036
[2,] -0.05139036 0.01407955
> b <- solve(XtX) %*% t(X)%*%y; b
             [,1]
[1,] 103.5131644
[2,] 0.9552974
> H <- X %*% solve(XtX) %*% t(X)
> e <- y - H %*% y; SSE <- t(e) %*% e; SSE
          [,1]
[1,] 3.503069
> as.numeric(SSE/8) * solve(XtX)
             [,1]
                           [,2]
[1,] 0.12592431 -0.022502997
[2,] -0.02250300 0.006165205
> summary(lm(y ~ age))
Coefficients:
              Estimate Std.Error t value Pr(>|t|)
              103.51316  0.35486  291.70  < 2e-16 ***
 (Intercept)
                0.95530 0.07852 12.17 1.93e-06 ***
age
```

EXERCICIO 1:

Suponha que se pretende ajustar um modelo $y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \varepsilon_i$ onde $E(\varepsilon_i \varepsilon_j) = 0$ para $i \neq j$ e $E(\varepsilon_i^2) = \sigma^2$ para os seguintes dados:

y	x1	x2
-43,6	27	34
3,3	33	30
-12,4	27	33
7,6	24	11
11,4	31	16
5,9	40	30
-4,5	15	17
22,7	26	12
-14,4	22	21
-28,3	23	27

Resolva as seguintes questões, aplicando **apenas** operações com matrizes (isto é, **Não Aplicar o Comando lm**)

a) Obtenha as estimativas de mínimos quadrados de $\beta = (\beta_0, \beta_1, \beta_2)'$ e interprete as estimativas obtidas.

Solução:
$$\hat{\beta}_0 = -7.6132$$
 $\hat{\beta}_1 = 1.8641$ $\hat{\beta}_2 = -2.0595$

b) Calcule o coeficiente de determinação.

Solução:
$$R^2 = 0.7562$$

c) Estime a matriz de covariâncias e de variâncias dos estimadores dos parâmetros.

Solução:
$$\begin{bmatrix} 213.64 & -6.09766 & -1.7048 \\ -6.09766 & 0.31296 & -0.9912 \\ -1.7048 & -0.9912 & 0.188807 \end{bmatrix}$$

EXERCICIO 2:

Para fins de planeamento da actividade de uma empresa foram analisadas várias especificações, entre as quais a seguinte $y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \varepsilon_i$ com

 $y_i = Vendas$ (em quantidades) no ano i

x_{i1} = Número de promotores comerciais no ano i

x_{i2} = Dias de crédito concedidos aos clientes no ano i

 $\varepsilon_i = \text{Termo de pertubação}$

A partir de 12 observações obtiveram-se as seguintes grandezas:

$$X'X = \begin{bmatrix} 12 & 302 & 153 \\ 302 & 10514 & 3884 \\ 153 & 3884 & 2219 \end{bmatrix}; \quad X'Y = \begin{bmatrix} 17849 \\ 592230 \\ 233230 \end{bmatrix}; \quad Y'Y = 33641400$$

a) Obtenha as estimativas de mínimos quadrados de $\beta = (\beta_0, \beta_1, \beta_2)'$ e interprete as estimativas obtidas.

Solução:
$$\hat{\beta}_0 = 65.42602$$
 $\hat{\beta}_1 = 48.91725$ $\hat{\beta}_2 = 14.97306$