(Non-)specificity across languages: constancy, variation, ν -variation

Maria Aloni Marco Degano University of Amsterdam

Semantics and Linguistic Theory (SALT32) 8 June 2022

Plan

- 1. Introduction
- 2. Desiderata
- 3. The Framework
- 4. Applications
- 5. Epistemic Indefinites
- 6. Conclusion

Outline

- 1. Introduction
- 2. Desiderata
- The Framework
- 4. Applications
- 5. Epistemic Indefinites
- 6. Conclusion

A wealth of Indefinites

Cross-linguistically, we witness a wealth of indefinite forms:

```
English: some, any, no, . . .
Italian: qualcuno, qualunque, nessuno, (un) qualche, ...
Dutch: iets, enig, wie dan ook, niets, ...
German: ein, irgendein, . . .
Russian: koe-, -to, -nibud, . . .
Spanish: algún, cualquiera, ningun, . . .
Náhuatl/Mexicano (Tuggy 1979): yeka, sente, olgo, ...
. . .
```

A wealth of Indefinites

Cross-linguistically, we witness a wealth of indefinite forms:

```
English: some, any, no, . . .
Italian: qualcuno, qualunque, nessuno, (un) qualche, ...
Dutch: iets, enig, wie dan ook, niets, ...
German: ein, irgendein, . . .
Russian: koe-, -to, -nibud, . . .
Spanish: algún, cualquiera, ningun, . . .
Náhuatl/Mexicano (Tuggy 1979): yeka, sente, olgo, ...
. . .
```

How to capture this variety? Which semantic theories can be developed to account for differences within indefinites' systems?

A wealth of Indefinites

Cross-linguistically, we witness a wealth of indefinite forms:

```
English: some, any, no, . . .
```

Italian: qualcuno, qualunque, nessuno, (un) qualche, . . .

Dutch: iets, enig, wie dan ook, niets, ...

German: ein, irgendein, . . .

Russian: koe-, -to, -nibud, . . .

Spanish: algún, cualquiera, ningun, ...

Náhuatl/Mexicano (Tuggy 1979): yeka, sente, olgo, ...

. . .

How to capture this variety? Which semantic theories can be developed to account for differences within indefinites' systems?

Today's focus: scopal (specific vs non-specific) and epistemic (known vs unknown) uses of indefinites.

Haspelmath (1997)'s map: a useful typological tool to capture the functional distribution of indefinites:

Haspelmath's map

Specific Known, Specific Unknown and Non-Specific

We focus on three main uses in the area of (non)specificity:

- (1) a. Specific known: Someone called. I know who.
 - b. Specific unknown: Someone called. I do not know who.
 - c. Non-specific: John wants to go somewhere else.

Specific Known, Specific Unknown and Non-Specific

We focus on three main uses in the area of (non)specificity:

- (1) a. Specific known: Someone called. I know who.
 - b. Specific unknown: Someone called. I do not know who.
 - c. Non-specific: John wants to go somewhere else.

Specific vs non-specific: indefinites marked for specificity tend to presuppose the existence of their referent, and they can have discourse referents.

Specific Known, Specific Unknown and Non-Specific

We focus on three main uses in the area of (non)specificity:

- (1) a. Specific known: Someone called. I know who.
 - b. Specific unknown: Someone called. I do not know who.
 - c. Non-specific: John wants to go somewhere else.

Specific vs non-specific: indefinites marked for specificity tend to presuppose the existence of their referent, and they can have discourse referents.

Known vs unknown: indefinites marked for (un)known signal that the speaker does (not) know the identity of the referent.

German irgend-

Kazakh älde

Outline

- 1. Introduction
- 2. Desiderata
- 3. The Framework
- 4. Applications
- 5. Epistemic Indefinites
- 6. Conclusion

Our Goals

 the logical characterization of the specific known (SK), specific unknown (SU) and non-specific (NS) uses;

- (2) a formal account of the variety of marked indefinites encoding SK, SU, and NS; and their properties.
- (3) a formal account of the contribution of epistemic indefinites (*irgend-*).

Our Goals

- (1) the logical characterization of the specific known (SK), specific unknown (SU) and non-specific (NS) uses;
- (2) a formal account of the variety of marked indefinites encoding SK, SU, and NS; and their properties.
- (3) a formal account of the contribution of epistemic indefinites (*irgend-*).

Main idea: Indefinites are sensitive to *dependence* and *non-dependence* relationships in their value assignments. (building on insights from Brasoveanu and Farkas 2011; Farkas and Brasoveanu 2020).

Our Goals

- the logical characterization of the specific known (SK), specific unknown (SU) and non-specific (NS) uses;
- (2) a formal account of the variety of marked indefinites encoding SK, SU, and NS; and their properties.
- (3) a formal account of the contribution of epistemic indefinites (*irgend-*).

Main idea: Indefinites are sensitive to *dependence* and *non-dependence* relationships in their value assignments. (building on insights from Brasoveanu and Farkas 2011; Farkas and Brasoveanu 2020).

Implementation: Two-sorted team semantics with dependence atoms.

Marked Indefinites

Possible **marked indefinites** based on Specific Known (SK), Specific Unknown (SU) and Non-specific (NS):

type	functions			example
	SK	SU	NS	схиттріс
(i) unmarked	✓	1	✓	Italian <i>qualcuno</i>
(ii) specific	1	1	Х	Georgian <i>-ghats</i>
(iii) non-specific	X	X	1	Russian <i>-nibud</i>
(iv) epistemic	X	1	1	German <i>irgend-</i>
(v) specific known	1	Х	Х	Russian <i>koe-</i>
(vi) SK + NS	1	Х	1	unattested
(vii) specific unknown	Х	1	Х	Kannada <i>-oo</i>

Marked Indefinites

Possible **marked indefinites** based on Specific Known (SK), Specific Unknown (SU) and Non-specific (NS):

type	functions			example
туре	SK	SU	NS	example
(i) unmarked	1	1	✓	Italian <i>qualcuno</i>
(ii) specific	1	1	Х	Georgian <i>-ghats</i>
(iii) non-specific	X	X	1	Russian <i>-nibud</i>
(iv) epistemic	X	1	1	German <i>irgend-</i>
(v) specific known	1	Х	Х	Russian <i>koe-</i>
(vi) SK + NS	1	Х	1	unattested
(vii) specific unknown	Х	1	Х	Kannada <i>-oo</i>

How to capture this variety?

Marked Indefinites

Possible **marked indefinites** based on Specific Known (SK), Specific Unknown (SU) and Non-specific (NS):

typo	fu	inctio	ns	example
type	SK	SU	NS	example
(i) unmarked	1	✓	✓	Italian <i>qualcuno</i>
(ii) specific	1	1	Х	Georgian <i>-ghats</i>
(iii) non-specific	X	X	1	Russian <i>-nibud</i>
(iv) epistemic	X	1	1	German <i>irgend-</i>
(v) specific known	1	Х	X	Russian <i>koe-</i>
(vi) SK + NS	1	Х	1	unattested
(vii) specific unknown	Х	✓	Х	Kannada <i>-oo</i>

Why non-specific have a restricted distribution (unavailable in episodic contexts)?

Marked Indefinites

Possible **marked indefinites** based on Specific Known (SK), Specific Unknown (SU) and Non-specific (NS):

typo	fu	nctio	ns	example
type	SK	SU	NS	example
(i) unmarked	1	1	✓	Italian <i>qualcuno</i>
(ii) specific	1	1	Х	Georgian <i>-ghats</i>
(iii) non-specific	X	X	1	Russian <i>-nibud</i>
(iv) epistemic	X	1	1	German <i>irgend-</i>
(v) specific known	1	X	X	Russian <i>koe-</i>
(vi) SK + NS	1	Х	1	unattested
(vii) specific unknown	Х	1	Х	Kannada <i>-oo</i>

How to characterize the obligatory ignorance inferences typical of epistemic indefinites?

Marked Indefinites

Possible **marked indefinites** based on Specific Known (SK), Specific Unknown (SU) and Non-specific (NS):

typo	fu	inctio	ns	example
type	SK	SU	NS	example
(i) unmarked	1	1	✓	Italian <i>qualcuno</i>
(ii) specific	1	1	Х	Georgian <i>-ghats</i>
(iii) non-specific	X	X	1	Russian <i>-nibud</i>
(iv) epistemic	X	1	1	German irgend-
(v) specific known	1	Х	X	Russian <i>koe-</i>
(vi) SK + NS	1	Х	1	unattested
(vii) specific unknown	Х	✓	Х	Kannada <i>-oo</i>

Why diachronically non-specific indefinites tend to turn into epistemic ones?

Marked Indefinites

Possible **marked indefinites** based on Specific Known (SK), Specific Unknown (SU) and Non-specific (NS):

typo	functions			example
type	SK	SU	NS	example
(i) unmarked	1	1	1	Italian <i>qualcuno</i>
(ii) specific	1	1	Х	Georgian <i>-ghats</i>
(iii) non-specific	Х	Х	1	Russian <i>-nibud</i>
(iv) epistemic	X	1	1	German <i>irgend-</i>
(v) specific known	1	Х	Х	Russian <i>koe-</i>
(vi) SK + NS	1	Х	1	unattested
(vii) specific unknown	x / x		Х	Kannada <i>-oo</i>

Why (vi) is unattested and (vii) rare?

Marked Indefinites

Possible **marked indefinites** based on Specific Known (SK), Specific Unknown (SU) and Non-specific (NS):

type	functions			example
type	SK	SU	NS	example
(i) unmarked	✓	1	✓	Italian <i>qualcuno</i>
(ii) specific	1	1	Х	Georgian <i>-ghats</i>
(iii) non-specific	X	X	1	Russian <i>-nibud</i>
(iv) epistemic	X	1	1	German irgend-
(v) specific known	1	X	X	Russian <i>koe-</i>
(vi) SK + NS	1	Х	1	unattested
(vii) specific unknown	Х	1	Х	Kannada <i>-oo</i>

What scope configurations are possible for marked indefinites (e.g. narrow, intermediate, wide)?

Outline

- 1. Introduction
- 2. Desiderata
- 3. The Framework
- 4. Applications
- 5. Epistemic Indefinites
- 6. Conclusion

Language & Team

In team semantics, formulas are interpreted wrt **sets** of evaluation points (*teams*) and not single evaluation points

Language & Team

In team semantics, formulas are interpreted wrt **sets** of evaluation points (*teams*) and not single evaluation points

Here, we use a **two-sorted** framework (a model is a triple $M = \langle D, W, I \rangle$):

- (i) possible worlds introduced as second sort of entities (special variables v_1 , v_2 for worlds which can be quantified over);
- (ii) ν as designated variables over worlds, representing alternative ways things might be (epistemic possibilities).

Language & Team

In team semantics, formulas are interpreted wrt **sets** of evaluation points (*teams*) and not single evaluation points

Here, we use a **two-sorted** framework (a model is a triple $M = \langle D, W, I \rangle$):

- (i) possible worlds introduced as second sort of entities (special variables v_1 , v_2 for worlds which can be quantified over);
- (ii) ν as designated variables over worlds, representing alternative ways things might be (epistemic possibilities).

Language:

```
\phi ::= P(\vec{x}) |\phi \vee \psi| \phi \wedge \psi |\exists_{strict} x \phi |\exists_{lax} x \phi | \forall x \phi | dep(\vec{x}, y) | var(\vec{x}, y)
```

Language & Team

In team semantics, formulas are interpreted wrt **sets** of evaluation points (*teams*) and not single evaluation points

Here, we use a **two-sorted** framework (a model is a triple $M = \langle D, W, I \rangle$):

- (i) possible worlds introduced as second sort of entities (special variables v_1 , v_2 for worlds which can be quantified over);
- (ii) ν as designated variables over worlds, representing alternative ways things might be (epistemic possibilities).

Language:

$$\phi ::= P(\vec{x}) |\phi \vee \psi| \phi \wedge \psi |\exists_{strict} x \phi |\exists_{lax} x \phi | \forall x \phi | dep(\vec{x}, y) | var(\vec{x}, y)$$

Team:

Given a model $M = \langle D, W, I \rangle$ and a sequence of variables \vec{z} , a team T over M with domain $Dom(T) = \vec{z}$ is a set of assignment functions mapping world variables to elements of W and individual variables to elements of D.

Teams represent information states of speakers.

In initial teams only factual information is represented.

Initial team: A team T is *initial* iff $Dom(T) = \{v\}$.

The world variable ν captures the speaker's epistemic possibilities.

Teams where ν receives only one value are teams of maximal information.

ν	
ν_1	
ν_2	
ν_n	

Teams represent information states of speakers.

In initial teams only factual information is represented.

Initial team: A team T is *initial* iff $Dom(T) = \{v\}$.

The world variable ν captures the speaker's epistemic possibilities.

Teams where ν receives only one value are teams of maximal information.

ν	х	
ν_1	а	
ν_2	а	
	а	
v_n	а	

Teams represent information states of speakers.

In initial teams only factual information is represented.

Initial team: A team T is *initial* iff $Dom(T) = \{v\}$.

The world variable ν captures the speaker's epistemic possibilities.

Teams where ν receives only one value are teams of maximal information.

ν	х	w	
ν_1	а	w_1	
ν_2	а	w_2	
	а		
v_n	а	w_n	

Teams represent information states of speakers.

In initial teams only factual information is represented.

Initial team: A team T is *initial* iff $Dom(T) = \{v\}$.

The world variable ν captures the speaker's epistemic possibilities.

Teams where ν receives only one value are teams of maximal information.

ν	х	w	У	
ν_1	а	w_1	b_1	
ν_2	а	w_2	b_2	
	а			
v_n	а	w_n	b_n	

Teams represent information states of speakers.

In initial teams only factual information is represented.

Initial team: A team T is *initial* iff $Dom(T) = \{v\}$.

The world variable ν captures the speaker's epistemic possibilities.

Teams where ν receives only one value are teams of maximal information.

ν	х	w	У	
ν_1	а	w_1	b_1	
ν_2	а	w_2	b_2	
	а			
v_n	а	w_n	b_n	

Teams represent information states of speakers.

In initial teams only factual information is represented.

Initial team: A team T is *initial* iff $Dom(T) = \{v\}$.

The world variable ν captures the speaker's epistemic possibilities.

Teams where ν receives only one value are teams of maximal information.

Discourse information is then added by operations of assignment extensions.

ν	х	w	У	
ν_1	а	w_1	b_1	
ν_2	а	w_2	b_2	
	а			
v_n	а	w_n	b_n	

Felicitious sentence : A sentence is *felicitous/grammatical* if there is an initial team which supports it.

$$T[y] = \{i[d/y] : i \in T \text{ and } d \in D\}$$

A **universal extension** of a team T with y, denoted by T[y], amounts to consider all assignments that differ from the ones in T only with respect to the value of y.

T
i_1
i ₂

ν	У	T[y]
V1 -	$\rightarrow d_1$	i_{11}
•1	*d_2	i ₁₂
v ₂ =	$\rightarrow d_1$	i ₂₁
v 2 _	d_2	i ₂₂

 $(D = \{d_1, d_2\}.$ Universal extensions are unique.)

Strict Functional Extension

 $T[h/y] = \{i[h(i)/y] : i \in T\}, \text{ for some function } h : T \to D$

A **strict functional extension** of a team T with y, denoted by T[h/y], amounts to assign only one value to y for each original assignment in T.

ν	Τ
ν_1	i_1
ν_2	i ₂

With $D = \{d_1, d_2\}$ we have 4 possible strict functional extensions:

ν	У	$T[h_1/y]$
ν1 —	• d ₁	i ₁₂
ν ₂ —	<i>d</i> ₁	i ₂₁

\overline{x} y	$T[h_3/y]$
$v_1 \longrightarrow d_1$	i ₁₂
$V_2 \rightarrow d_2$	i ₂₁

ν	У	$T[h_2/y]$
ν1 –	→ d ₂	i ₁₂
ν2 —	→ d ₂	i ₂₁

X	У	$T[h_4/y]$
ν1 –	→ d ₂	i ₁₂
ν ₂ –	→ d 1	i ₂₁

Lax Functional Extension

 $T[f/y] = \{i[d/y] : i \in T \text{ and } d \in f(i)\}, \text{ for some function } f: T \to \wp(D) \setminus \{\emptyset\}$

A **lax functional extension** of a team T with y, denoted by T[h/y], amounts to assign one or more values to y for each original assignment in T.

ν	T
ν_1	i_1
ν_2	i ₂

ν	У	T[f/y]
ν_1 –	→ d ₂	i ₁₂
ν ₂ <	<i>→</i> d ₁	i ₂₁
• 2 _	* d ₂	i ₂₂

(With $D = \{d_1, d_2\}$ we have 9 possible lax functional extensions)

Semantic Clauses

$$M, T \models P(x_1, ..., x_n) \Leftrightarrow \forall j \in T : \langle j(x_1), ..., j(x_n) \rangle \in I(P^n)$$

$$M, T \models \phi \land \psi$$
 \Leftrightarrow $M, T \models \phi$ and $M, T \models \psi$

$$M, T \models \phi \lor \psi$$
 $\Leftrightarrow T = T_1 \cup T_2 \text{ for teams } T_1 \text{ and } T_2$

s.t.
$$M, T_1 \models \phi \text{ and } M, T_2 \models \psi$$

 $M, T \models \forall y \phi \iff M, T[y] \models \phi, \text{ where } T[y] = \phi$

$$\{i[d/y]: i \in T \text{ and } d \in D\}$$

$$M T \vdash \exists \dots \forall A \qquad \Leftrightarrow \text{ there is a function } h : T \rightarrow D$$

$$M, T \models \exists_{\text{strict}} y \phi \qquad \Leftrightarrow \quad \text{there is a function } h : T \to D$$

s.t. $M, T[h/y] \models \phi$, where

$$T[h/y] = \{i[h(i)/y] : i \in T\}$$

$$M, T \models \exists_{lax}y\phi \qquad \Leftrightarrow \text{ there is a function } f : T \rightarrow \\ \wp(D) \setminus \{\emptyset\} \text{ s.t. } M, T[f/y] \models \phi, \\ \text{ where } T[f/y] = \{i[d/y] : i \in \}$$

$$T \text{ and } d \in f(i)\}$$

$$M, T \models dep(\vec{x}, y) \qquad \Longleftrightarrow \qquad \text{for all } i, j \in T : i(\vec{x}) = j(\vec{x}) \Rightarrow$$

$$i(y) = j(y)$$

$$M, T \models var(\vec{x}, y) \qquad \Leftrightarrow \text{ there is } i, j \in T : i(\vec{x}) = i(\vec{x}) \& i(y) \neq i(y)$$

Dependence atoms (Väänänen 2007; Galliani 2015) model dependency patterns between variables' values:

Dependence Atom:

$$M, T \models dep(\vec{x}, y) \Leftrightarrow \text{ for all } i, j \in T : i(\vec{x}) = j(\vec{x}) \Rightarrow i(y) = j(y)$$

$$M, T \models var(\vec{x}, y) \Leftrightarrow \text{ there is } i, j \in T : i(\vec{x}) = j(\vec{x}) \& i(y) \neq j(y)$$

Dependence atoms (Väänänen 2007; Galliani 2015) model dependency patterns between variables' values:

Dependence Atom:

$$M, T \models dep(\vec{x}, y) \Leftrightarrow \text{ for all } i, j \in T : i(\vec{x}) = j(\vec{x}) \Rightarrow i(y) = j(y)$$

Variation Atom:

$$M, T \models var(\vec{x}, y) \Leftrightarrow \text{ there is } i, j \in T : i(\vec{x}) = j(\vec{x}) \& i(y) \neq j(y)$$

Τ	X	У	Z	l
i	a_1	b_1	c_1	d_1
j	a_1	b_1	c_2	d_1
k	a ₃	b_2	C 3	d_1

 $dep(x,y) \checkmark$

References

Dependence Atoms

Dependence atoms (Väänänen 2007; Galliani 2015) model dependency patterns between variables' values:

Dependence Atom:

$$M, T \models dep(\vec{x}, y) \Leftrightarrow \text{ for all } i, j \in T : i(\vec{x}) = j(\vec{x}) \Rightarrow i(y) = j(y)$$

$$M, T \models var(\vec{x}, y) \Leftrightarrow \text{ there is } i, j \in T : i(\vec{x}) = j(\vec{x}) \& i(y) \neq j(y)$$

T	х	У	Z	l
i	a_1	b_1	c_1	d_1
j	a_1	b_1	c_2	d_1
k	<i>a</i> ₃	b_2	C 3	d_1

$$dep(x, y) \checkmark$$

Dependence atoms (Väänänen 2007; Galliani 2015) model dependency patterns between variables' values:

Dependence Atom:

$$M, T \models dep(\vec{x}, y) \Leftrightarrow \text{ for all } i, j \in T : i(\vec{x}) = j(\vec{x}) \Rightarrow i(y) = j(y)$$

$$M, T \models var(\vec{x}, y) \Leftrightarrow \text{ there is } i, j \in T : i(\vec{x}) = j(\vec{x}) \& i(y) \neq j(y)$$

T	х	У	Z	l
i	a_1	b_1	c_1	d_1
j	a_1	b_1	c_2	d_1
k	a ₃	b_2	C 3	d_1

$$dep(x, y) \checkmark$$

Dependence atoms (Väänänen 2007; Galliani 2015) model dependency patterns between variables' values:

Dependence Atom:

$$M, T \models dep(\vec{x}, y) \Leftrightarrow \text{ for all } i, j \in T : i(\vec{x}) = j(\vec{x}) \Rightarrow i(y) = j(y)$$

$$M, T \models var(\vec{x}, y) \Leftrightarrow \text{ there is } i, j \in T : i(\vec{x}) = j(\vec{x}) \& i(y) \neq j(y)$$

Т	х	У	Z	l
i	a_1	b_1	<i>c</i> ₁	d_1
j	a_1	b_1	c_2	d_1
k	a_3	b_2	C 3	d_1

$$dep(x, y) \checkmark var(x, z) \checkmark$$

$$dep(\emptyset, l) \checkmark$$

Dependence atoms (Väänänen 2007; Galliani 2015) model dependency patterns between variables' values:

Dependence Atom:

$$M, T \models dep(\vec{x}, y) \Leftrightarrow \text{ for all } i, j \in T : i(\vec{x}) = j(\vec{x}) \Rightarrow i(y) = j(y)$$

$$M, T \models var(\vec{x}, y) \Leftrightarrow \text{ there is } i, j \in T : i(\vec{x}) = j(\vec{x}) \& i(y) \neq j(y)$$

T	х	У	Z	l
i	a_1	b_1	c_1	d_1
j	a_1	b_1	c_2	d_1
k	<i>a</i> ₃	b_2	C 3	d_1

$$dep(x,y) \checkmark var(x,z) \checkmark$$

$$dep(\emptyset, l) \checkmark var(\emptyset, x) \checkmark$$

Dependence atoms (Väänänen 2007; Galliani 2015) model dependency patterns between variables' values:

Dependence Atom:

$$M, T \models dep(\vec{x}, y) \Leftrightarrow \text{ for all } i, j \in T : i(\vec{x}) = j(\vec{x}) \Rightarrow i(y) = j(y)$$

$$M, T \models var(\vec{x}, y) \Leftrightarrow \text{ there is } i, j \in T : i(\vec{x}) = j(\vec{x}) \& i(y) \neq j(y)$$

T	х	У	Z	l
i	a_1	b_1	c_1	d_1
j	a_1	b_1	c_2	d_1
k	<i>a</i> ₃	b_2	C 3	d_1

$$dep(x,y) \checkmark var(x,z) \checkmark$$

$$dep(\emptyset, l) \checkmark var(\emptyset, x) \checkmark$$

$$dep(xy, z) \times var(x, y) \times$$

Outline

- 1. Introduction
- 2. Desiderata
- 3. The Framework
- 4. Applications
- 5. Epistemic Indefinites
- 6. Conclusion

Indefinites as Existentials

We propose that:

(i) Indefinites are **strict existentials** $(\exists_{s(trict)}x)$.

Indefinites as Existentials

We propose that:

- (i) Indefinites are **strict existentials** $(\exists_{s(trict)}x)$.
- (ii) They are interpreted in-situ.

Indefinites as Existentials

We propose that:

- (i) Indefinites are **strict existentials** $(\exists_{s(trict)}x)$.
- (ii) They are interpreted in-situ.

Dependence atoms can be used to model the **scope** behaviour of indefinites, by specifying how their value (co-)varies with other operators.

Indefinites as Existentials

We propose that:

- (i) Indefinites are **strict existentials** $(\exists_{s(trict)}x)$.
- (ii) They are interpreted in-situ.

Dependence atoms can be used to model the **scope** behaviour of indefinites, by specifying how their value (co-)varies with other operators.

(For scope, our system parallels Brasoveanu and Farkas (2011)'s treatment).

Application I: Exceptional Scope

- (2) Every kid_x ate every food_z that a doctor_y recommended.
 - a. WS $[\exists y/\forall x/\forall z]$: $\forall x\forall z\exists_s y(\phi \land dep(v,y))$
 - b. IS $[\forall x/\exists y/\forall z]: \forall x\forall z\exists_s y(\phi \land dep(vx, y))$
 - c. NS $[\forall x/\forall z/\exists y]$: $\forall x\forall z\exists_s y(\phi \land dep(vxz, y))$

ν	X	Z	У
ν_1			b_1

ν	X	Z	y
ν_1	a_1		b_1
$\overline{}_{\nu_1}$	a_1		b_1
$\overline{\nu_1}$	a ₂		b ₂
$\overline{\nu_1}$	a ₂		b ₂

ν	х	Z	У
ν_1	a_1	<i>c</i> ₁	b_1
ν_1	a_2	<i>C</i> ₂	b ₂
ν_1	a_3	<i>C</i> ₃	<i>b</i> ₃
ν_1	a ₄	C4	b ₄

WS: dep(v, y)

IS: dep(vx, y)

NS: dep(vxz, y)

Application I: Exceptional Scope

- (2) Every kid_x ate every $food_z$ that a $doctor_y$ recommended.
 - a. WS $[\exists y/\forall x/\forall z]$: $\forall x\forall z\exists_s y(\phi \land dep(v, y))$
 - b. IS $[\forall x/\exists y/\forall z]$: $\forall x\forall z\exists_s y(\phi \land dep(vx, y))$
 - c. NS $[\forall x/\forall z/\exists y]$: $\forall x\forall z\exists_s y(\phi \land dep(vxz, y))$

V	X	Z	У
ν_1			b_1

ν	X	Z	y
ν_1	a_1		b_1
ν_1	a_1		b_1
ν_1	a_2		b ₂
$\overline{\nu_1}$	a ₂		b ₂

ν	X	Z	У
ν_1	a_1	<i>c</i> ₁	b_1
ν_1	a ₂	<i>C</i> ₂	b ₂
ν_1	<i>a</i> ₃	<i>C</i> ₃	<i>b</i> ₃
ν_1	a4	C4	b ₄

WS: dep(v, y)

IS: dep(vx, y)

NS: dep(vxz, y)

But how to account for the known vs unknown contrast?

Application II: Specific Known, Specific Unknown, Non-specific

		ν	X
constancy	$dep(\emptyset, x)$		d_1
			d_1
		ν	X
variation	$var(\emptyset, x)$		d_1
			d ₂
		ν	х
ν-constancy	dep(v,x)	ν_1	d_1
		ν_2	d_2
		ν	х
u-variation	var(v,x)	$\overline{\nu_1}$	d_1
		ν_1	d_2

Application II: Specific Known, Specific Unknown, Non-specific

		ν	X
constancy	$dep(\emptyset, x)$		$\overline{d_1}$
			d_1
variation		ν	X
	var(Ø, x)		d_1
			d ₂
	dep(v,x)	ν	х
u-constancy		ν_1	d_1
		ν_2	$\overline{d_2}$
		ν	х
u-variation	var(v,x)	$\overline{\nu_1}$	$\overline{d_1}$
		ν_1	d_2

Specific Known: constancy $dep(\emptyset, x)$

$$\begin{array}{cccc} V & \dots & X \\ \hline v_1 & \dots & d_1 \\ \hline v_2 & \dots & d_1 \end{array}$$

Application II: Specific Known, Specific Unknown, Non-specific

		ν	X
constancy	$dep(\emptyset, x)$		$\overline{d_1}$
			d_1
		ν	X
variation	$var(\emptyset, x)$		d_1
			d ₂
		ν	х
ν-constancy	dep(v,x)	ν_1	d_1
		ν_2	d_2
		ν	х
u-variation	var(v,x)	ν_1	$\overline{d_1}$
		ν_1	d ₂

Specific Unknown:
$$v$$
-constancy $dep(v,x) + v$ ariation $var(\emptyset,x)$

$$\begin{array}{cccc} v & \dots & x \\ \hline v_1 & \dots & d_1 \\ \hline v_2 & \dots & d_2 \end{array}$$

Application II: Specific Known, Specific Unknown, Non-specific

		ν	X
constancy	$dep(\emptyset, x)$		d_1
			d_1
		ν	X
variation	$var(\emptyset, x)$		d_1
	•		d ₂
		ν	х
ν-constancy	dep(v,x)	ν_1	d_1
		ν_2	d_2
u-variation		ν	х
	var(v, x)	ν_1	$\overline{d_1}$
		$\overline{\nu_1}$	$\overline{d_2}$

Non-specific:
$$v$$
-variation $var(v, x)$

$$\begin{array}{cccc} V & \dots & X \\ \hline V_1 & \dots & d_1 \\ \hline V_1 & \dots & d_2 \end{array}$$

Application III: Variety of Indefinites

type		nctio		requirement	example
-7	sk	su	ns		<u>'</u>
(i) unmarked	✓	1	1	none	Italian <i>qualcuno</i>
(ii) specific	1	1	Х	dep(v,x)	Georgian -ghats
(iii) non-specific	Х	Х	✓	var(v,x)	Russian -nibud
(iv) epistemic	Х	✓	✓	$var(\emptyset, x)$	German -irgend
(v) specific known	1	Х	Х	$dep(\emptyset, x)$	Russian -koe
(vi) SK + NS	1	Х	✓	$dep(\emptyset, x) \vee var(v, x)$	unattested
(vii) specific unknown	Х	✓	Х	$dep(v,x) \wedge var(\emptyset,x)$	Kannada <i>-oo</i>

Application III: Variety of Indefinites

type	fu	nctio	ns	requirement	example
type	sk	su	ns	requirement	cxumpic
(i) unmarked	1	1	1	none	Italian <i>qualcuno</i>
(ii) specific	1	1	Х	dep(v,x)	Georgian -ghats
(iii) non-specific	Х	Х	1	var(v,x)	Russian -nibud
(iv) epistemic	Х	√	1	$var(\emptyset, x)$	German -irgend
(v) specific known	1	Х	Х	$dep(\emptyset, x)$	Russian -koe
(vi) SK + NS	1	Х	1	$dep(\emptyset, x) \vee var(v, x)$	unattested
(vii) specific unknown	Х	✓	Х	$dep(v,x) \wedge var(\emptyset,x)$	Kannada <i>-oo</i>

(vii) specific unknown: increased complexity

Application III: Variety of Indefinites

type	type functions		requirement	example	
турс	sk	su	ns	requirement	CXUTTPIC
(i) unmarked	/	√	√	none	Italian <i>qualcuno</i>
(ii) specific	1	1	Х	dep(v,x)	Georgian -ghats
(iii) non-specific	Х	Х	1	var(v,x)	Russian -nibud
(iv) epistemic	Х	✓	1	var(Ø, x)	German -irgend
(v) specific known	1	Х	Х	$dep(\emptyset, x)$	Russian -koe
(vi) SK + NS	1	Х	1	$dep(\emptyset, x) \vee var(v, x)$	unattested
(vii) specific unknown	Х	✓	Х	$dep(v,x) \wedge var(\emptyset,x)$	Kannada <i>-oo</i>

(vii) specific unknown: increased complexity

(vi) SK + NS: violation of connectedness (Gardenfors 2014; Enguehard and Chemla 2021)

Application IV: Licensing of non-specific indefinites

Non-specific indefinites are **ungrammatical in episodic sentences** and they need an operator (e.g. a universal quantifier or a modal) which licenses them:

- (3)**Ivan včera kupil kakuju-nibud' knigu.* Ivan yesterday bought which-indef. book.
 - 'Ivan bought some book [non-specific] yesterday.'
- (4) Ivan hotel spet' kakuju-nibud' pesniu. Ivan want-PAST sing-INF which-indef. song.
 - Ivan wanted to sing some song [non-specific].

Recall that non-specific indefinites trigger ν -variation: $var(\nu, x)$.

Recall that non-specific indefinites trigger ν -variation: $\nu ar(\nu, x)$.

$$\exists_s x (\phi \land var(v, x))$$

$$\begin{array}{c|c} v & v & x \\ \hline v_1 & v_1 & a_1 \end{array}$$

Recall that non-specific indefinites trigger ν -variation: $\nu ar(\nu, x)$.

$$\frac{v}{v_1} \qquad \frac{v \quad y}{v_1 \quad b_1}$$

Recall that non-specific indefinites trigger ν -variation: $\nu ar(\nu, x)$.

$$\forall y \exists_s x (\phi \land var(v, x))$$

ν	
ν_1	

ν	У
ν_1	b_1
	b_2

$$\begin{array}{cccc}
v & y & x \\
v_1 & b_1 & a_1 \\
b_2 & a_2
\end{array}$$

Recall that non-specific indefinites trigger ν -variation: $\nu \alpha r(\nu, x)$.

$$\forall y \exists_s x (\phi \wedge var(v, x))$$

$$\frac{v}{v_1}$$

ν	У	
ν_1	b_1	
	b_2	

$$\begin{array}{cccc}
v & y & x \\
v_1 & b_1 & a_1 \\
b_2 & a_2
\end{array}$$

But indefinites can also be licensed by modals.

Modality

We can analyze modals as (lax) quantifiers $(\lozenge_W \sim \exists_{l(ax)} w; \square_W \sim \forall w)$ modulo an accessibility relation.

- (5) You must/can take nibud-book (non-specific).
 - a. $\forall w \exists_s x (\phi \land var(v, x))$
 - b. $\exists_l w \exists_s x (\phi \wedge var(v, x))$

ν	W	X
ν_1	w_1	a_1
	w_2	a_2

Supporting

ν	W	х
ν_1	w_1	a_1
	w_2	a_1

Non-supporting

Application V: Epistemic Indefinites and ignorance inference

Epistemic indefinites (e.g. Italian *un qualche*, German *irgend-*, . . .) signal speaker's **lack of knowledge**.

(6) Irgendjemand hat angerufen. irgend-someone has called.

'Someone called. The speaker does not know who.'

Application V: Epistemic Indefinites and ignorance inference

Epistemic indefinites (e.g. Italian *un qualche*, German *irgend-*, ...) signal speaker's **lack of knowledge**.

(6) Irgendjemand hat angerufen. irgend-someone has called.

'Someone called. The speaker does not know who.'

Ignorance inferences are typically undefeasible:

(7) Irgendjemand hat angerufen. #Rat mal wer irgend-someone has called. guess who?

'Someone called. #Guess who?

(Kratzer and Shimoyama 2002; Alonso-Ovalle and Menéndez-Benito 2010; Alonso-Ovalle and Menéndez-Benito 2017; Jayez and Tovena 2006; Aloni and Port 2015; Chierchia 2013)

Application V: Epistemic Indefinites and ignorance inference

(8) Irgendjemand hat angerufen. irgend-someone has called.

'Someone called. **The speaker does not know who**.'

Recall that epistemic indefinites trigger $var(\emptyset, x)$:

$$\exists_s x (\phi(v,x) \land var(\emptyset,x))$$

ν	χ
ν_1	a_1
ν_2	a_2

Supporting

Non-supporting

Final Proposal

We propose that:

(i) Indefinites are **strict existentials**;

Introduction Desiderata The Framework Applications Epistemic Indefinites Conclusion References

Final Proposal

We propose that:

- (i) Indefinites are **strict existentials**;
- (ii) They are interpreted in-situ;

Final Proposal

We propose that:

- (i) Indefinites are **strict existentials**;
- (ii) They are interpreted **in-situ**;
- (iii) An unmarked/plain indefinite $\exists_s x$ in **syntactic scope** of $O_{\vec{z}}$ allows all $dep(\vec{y}, x)$, with \vec{y} included in $v\vec{z}$:

$$O_{z_1} \dots O_{z_n} \exists_s x (\phi \land dep(\vec{y}, x))$$

Final Proposal

We propose that:

- (i) Indefinites are strict existentials;
- (ii) They are interpreted **in-situ**;
- (iii) An unmarked/plain indefinite $\exists_s x$ in **syntactic scope** of $O_{\vec{z}}$ allows all $dep(\vec{y}, x)$, with \vec{y} included in $v\vec{z}$:

$$O_{z_1} \dots O_{z_n} \exists_s x (\phi \wedge dep(\vec{y}, x))$$

(iv) Marked indefinites trigger the obligatory activation of particular dependence or variation atoms.

Final Proposal

$$O_{z_1} \dots O_{z_n} \exists_s x (\phi \land \dots)$$

Plain: $dep(\vec{y}, x)$, where $\vec{y} \subseteq v\vec{z}$

SK: $dep(\vec{y}, x)$ with $\vec{y} = \emptyset$

Specific: $dep(\vec{y}, x)$ with $\vec{y} \subseteq \{v\}$

Epistemic: $dep(\vec{y}, x) \wedge var(\vec{z}, x)$ with $\vec{z} \subseteq \{v\}$

Non-specific: $dep(\vec{y}, x) \wedge var(\vec{z}, x)$ with $\vec{z} = v$

SU: $dep(\vec{y}, x) \wedge var(\vec{z}, x)$ with $\vec{y} = v$ and $\vec{z} = \emptyset$

Introduction Desiderata The Framework Applications Epistemic Indefinites Conclusion References

Application VI: Interaction with Scope

VZVYJSΛΨ				
	WS-K dep(Ø, x)	WS-U $dep(v, x)$	IS dep(vy,x)	NS dep(vyz, x)
unmarked	✓	✓	✓	✓
specific dep(⊆ v,x)	1	1	Х	×
non-specific var(v,x)	×	×	1	✓
epistemic $var(\emptyset, x)$	×	1	✓	✓
specific known $dep(\emptyset, x)$	✓	×	×	×
specific unknown $dep(v,x) \wedge var(\emptyset,x)$	×	1	Х	×

Introduction Desiderata The Framework Applications Epistemic Indefinites Conclusion References

Application VI: Interaction with Scope

$\forall z \forall y \exists_s x \phi$

ν <i>Σ</i> ν μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ				
	WS-K dep(Ø, x)	WS-U $dep(v, x)$	IS dep(vy,x)	NS dep(vyz, x)
unmarked	✓	✓	✓	✓
specific $dep(\subseteq v, x)$	✓	1	×	Х
non-specific var(v, x)	×	×	1	✓
epistemic var(Ø, x)	×	1	✓	✓
specific known $dep(\emptyset, x)$	✓	×	×	×
specific unknown $dep(v,x) \wedge var(\emptyset,x)$	×	1	Х	×

Note that non-specific indefinites also allow intermediate readings (Partee 2004):

- (9) Možet byt', Maša xočet kupit' kakuju-nibud' knigu. may be, Maša want buy which-indef. book.
 - a. Narrow Scope: It may be that Maša wants to buy some book.
 - b. Intermediate Scope: It may be that there is some book which Maša wants to buy.
 - c. #Wide-scope: There is some book such that it may be that Maša wants to buy it.

Frequent diachronic tendency: **non-specific** > **epistemic** (e.g. French *quelque* (Foulet 1919) and German *irgendein* (Port and Aloni 2015))

Frequent diachronic tendency: **non-specific** > **epistemic** (e.g. French *quelque* (Foulet 1919) and German *irgendein* (Port and Aloni 2015))

Haspelmath (1997)'s explanation: weakening of functions from the right (non-specific) of the functional map to the left (specific).

- (10) Weakening of functions (a) > (b) > (c)
 - (a) non-specific
 - (b) non-specific + specific unknown = epistemic
 - (c) epistemic + specific known = unmarked

Introduction Desiderata The Framework Applications Epistemic Indefinites Conclusion Reference

Application VII: From non-specific to epistemic

Frequent diachronic tendency: **non-specific** > **epistemic** (e.g. French *quelque* (Foulet 1919) and German *irgendein* (Port and Aloni 2015))

Haspelmath (1997)'s explanation: weakening of functions from the right (non-specific) of the functional map to the left (specific).

(10) Weakening of functions (a) > (b) > (c)

- (a) non-specific
- (b) non-specific + specific unknown = epistemic
- (c) epistemic + specific known = unmarked

But then why diachronically we do not observe the change from (b) to (c)?

- (11) Weakening of functions (a) > (b) > (c)
 - (a) non-specific: var(v, x)
 - (b) non-specific + specific unknown = epistemic: $var(\emptyset, x)$
 - (c) epistemic + specific known ($dep(\emptyset, x)$ = unmarked

- (11) Weakening of functions (a) > (b) > (c)
 - (a) non-specific: var(v, x)
 - (b) non-specific + specific unknown = epistemic: $var(\emptyset, x)$
 - (c) epistemic + specific known ($dep(\emptyset, x)$ = unmarked

This framework makes the notion of weakening precise in terms of **logical entailment** between atoms.

- (11) Weakening of functions (a) > (b) > (c)
 - (a) non-specific: var(v, x)
 - (b) non-specific + specific unknown = epistemic: $var(\emptyset, x)$
 - (c) epistemic + specific known ($dep(\emptyset, x)$ = unmarked

This framework makes the notion of weakening precise in terms of **logical entailment** between atoms.

We have 'atomic weakening' from non-specific to epistemic: var(v, x) entails $var(\emptyset, x)$.

Introduction Desiderata The Framework Applications Epistemic Indefinites Conclusion Reference

Application VII: From non-specific to epistemic

(11) Weakening of functions (a) > (b) > (c)

- (a) non-specific: var(v, x)
- (b) non-specific + specific unknown = epistemic: $var(\emptyset, x)$
- (c) epistemic + specific known ($dep(\emptyset, x)$ = unmarked

This framework makes the notion of weakening precise in terms of **logical entailment** between atoms.

We have 'atomic weakening' from non-specific to epistemic: var(v, x) entails $var(\emptyset, x)$.

But no further 'atomic weakening' triggering the acquisition of SK. (Note also that $var(\emptyset, x) \land dep(\emptyset, x) \models \bot$).

To get unmarked from epistemic, we would need $var(\emptyset, x) \lor dep(\emptyset, x)$, which trivializes the dependence conditions (arguably a complex operation).

troduction Desiderata The Framework Applications Epistemic Indefinites Conclusion Reference

Interim Conclusion

We have developed a **two-sorted team semantics** framework accounting for indefinites.

In this framework, **marked indefinites** trigger the obligatoriness of dependence or variation atoms, responsible for their scopal and epistemic interpretations.

We have applied the framework to characterize the **typological variety of indefinites** in the case of (non-)specificity.

We have then showed how this system can be used to explain several **properties and phenomena** associated with (non-)specific indefinites.

Introduction Desiderata The Framework Applications Epistemic Indefinites Conclusion References

Outline

- 1. Introduction
- 2. Desiderata
- 3. The Framework
- 4. Applications
- 5. Epistemic Indefinites
- 6. Conclusion

Desiderata The Framework Applications

Epistemic Indefinites

Niemand hat irgendeine Frage beantwortet. Nobody has irgend-one question answered.

(14) **NPI** (only for some Els, e.g. German *irgend-*)

'Nobody answered any question.'

(15) **Free Choice** (only for some Els, e.g. German *irgend-*) Mary muss irgendeinen Arzt heiraten. Mary must irgend-one doctor marry. 'Mary must marry a doctor, any doctor is a permissible option'.

Basic Data

(12) Undefeasible Ignorance Inference Maria ha sposato un qualche dottore (#cioè Uao). Maria has married un qualche doctor (#namely Ugo) 'Maria married some doctor, namely Ugo.'

(13) Co-Variation

Todos los profesores están bailando con algún estudiante. the professors are dancing with algún student. all 'Every professor is dancing with some student.'

Basic Strategy

We have proposed that epistemic indefinites trigger $var(\subseteq \{v\}, x)$. This already gives us ignorance inferences and co-variation (non-specific) readings.

Basic Strategy

We have proposed that epistemic indefinites trigger $var(\subseteq \{v\}, x)$. This already gives us ignorance inferences and co-variation (non-specific) readings.

Our strategy for the remaining desiderata:

troduction Desiderata The Framework Applications Epistemic Indefinites Conclusion References

Basic Strategy

We have proposed that epistemic indefinites trigger $var(\subseteq \{v\}, x)$. This already gives us ignorance inferences and co-variation (non-specific) readings.

Our strategy for the remaining desiderata:

(i) To account for NPI uses, we adopt an intensional notion of negation.

troduction Desiderata The Framework Applications Epistemic Indefinites Conclusion Reference

Basic Strategy

We have proposed that epistemic indefinites trigger $var(\subseteq \{v\}, x)$. This already gives us ignorance inferences and co-variation (non-specific) readings.

Our strategy for the remaining desiderata:

- (i) To account for NPI uses, we adopt an intensional notion of negation.
- (ii) To account for free choice, we generalize the variation atom to express the cardinality of the variation and to allow for splitting.

Generalized Variation

```
M, T \models var_n(\vec{y}, x) iff \forall d \in D^* \subseteq D with |D^*| \ge n, for all i \in T, there is a j \in T_{i,\vec{y}} s.t. j(x) = d, where T_{i,\vec{y}} = \{j \in T : i(\vec{y}) = j(\vec{y})\}
```

Desiderata

Generalized Variation

 $M, T \models var_n(\vec{y}, x)$ iff $\forall d \in D^* \subseteq D$ with $|D^*| \ge n$, for all $i \in T$, there is a $j \in T_{i,\vec{y}}$ s.t. j(x) = d, where $T_{i,\vec{y}} = \{j \in T : i(\vec{y}) = j(\vec{y})\}$

Example: with $D = \{d_1, d_2, d_3\}, var_{|D|}(y, x)$:

Generalized Variation

 $M, T \models var_n(\vec{y}, x)$ iff $\forall d \in D^* \subseteq D$ with $|D^*| \ge n$, for all $i \in T$, there is a $j \in T_{i,\vec{y}}$ s.t. j(x) = d, where $T_{i,\vec{y}} = \{j \in T : i(\vec{y}) = j(\vec{y})\}$

Example: with $D = \{d_1, d_2, d_3\}, var_{|D|}(y, x)$:

Note: $var(\emptyset, x)$ is equivalent to $var_2(\emptyset, x)$.

German *Irgend*-

Irgend-indefinites associate with $var_2 \subseteq v, x$.

- (16) Jedery hat irgendein_x Buch gelesen. everyone has irgendein book read.
 - a. specific unknown:

$$\overline{\forall y \exists_s x (\phi \land dep(v, x) \land var_2(\emptyset, x))}$$

b. <u>co-variation</u>:

$$\forall y \exists_s x (\phi \land dep(vy, x) \land var_2(v, x))$$

ν	У	х	ν	У	х
	d_1	b_1		d_1	b_1
ν_1	d_2	b_1	ν_1	d_2	b_2
	d_3	b_1		d_3	b_1
	d_1	b_2		d_1	b_2
ν_2	d_2	b_2	ν_2	d_2	b_2
	d_3	b_2		d_3	b_1
	(49a)			(49b)	
	, , ,			, ,	

German Irgend-

- (17) $Mary musste_w irgendeinen_x Mann heiraten.$ Mary had-to irgend-one man marry.
 - a. specific unknown: $\forall w \exists_s x (\phi \land dep(v, x) \land var_2(\emptyset, x))$
 - b. $\underline{\text{non-specific}}$: $\forall w \exists_s x (\phi \land dep(vy, x) \land var_2(v, x))$
 - c. $\frac{\text{free choice}}{\forall w \exists_s x (\phi \land dep(vw, x) \land var_{|D|}(v, x))}$

 $var_{|D|}(v, x)$ models **free choice** (full non-specificity), possibly triggered by prosodic prominence. For $D = \{a, b, c\}$:

w_1	а
w_2	b
w_3	C
w_1	а
w_2	b
w_3	С
	w ₂ w ₃ w ₁ w ₂

German Irgend-

(17) $Mary musste_w irgendeinen_x Mann heiraten.$ Mary had-to irgend-one man marry.

a. specific unknown:

$$\forall w \exists_s x (\phi \land dep(v, x) \land var_2(\emptyset, x))$$

b. non-specific:

$$\forall w \exists_s x (\phi \land dep(vy, x) \land var_2(v, x))$$

c. <u>free choice</u>:

$$\forall w \exists_s x (\phi \land dep(vw, x) \land var_{|D|}(v, x))$$

 $var_{|D|}(v,x)$ models **free choice** (full non-specificity), possibly triggered by prosodic prominence. For $D = \{a, b, c\}$:

ν	W	х
	w_1	а
ν_1	w_2	b
	w_3	C
	w_1	а
\mathbf{v}_2	w_2	b
	w_3	C

In general, we can show that:

$$\square_{W}/\lozenge_{W}\exists_{S}x (\phi \wedge var_{|D|}(v,x)) \rightsquigarrow \forall x(\lozenge_{W} \phi)$$

Negation and Implication

We adopt an intensional notion of negation, along the lines of Brasoveanu and Farkas (2011).

(18) Intensional Negation

$$\neg \phi(v) \Leftrightarrow \forall w(\phi(w) \rightarrow v \neq w)$$

Negation and Implication

We adopt an intensional notion of negation, along the lines of Brasoveanu and Farkas (2011).

(18) Intensional Negation

$$\neg \phi(v) \Leftrightarrow \forall w(\phi(w) \rightarrow v \neq w)$$

(19) Semantic Clause for Implication

 $M, X \models \phi \rightarrow \psi \Leftrightarrow \text{for some } X' \subseteq X \text{ s.t. } M, X' \models \phi \text{ and } X' \text{ is maximal (i.e. for all } X'' \text{ s.t. } X' \subset X'' \subseteq X \text{, it holds}$ $M, X'' \not\models \phi)$, we have $M, X' \models \psi$

[Dependence Logics (Yang 2014; Abramsky and Väänänen 2009) employ different notions of implication (material, intuitionistic, linear and maximal). Here we adopt (a version of) the maximal implication.]

Negation and Epistemic Indefinites

Els under negation behave like NPI (e.g., any).

In our framework, Els under negation as in (20) are supported only if the initial team is $\{w_{\emptyset}\}$. (In w_{\emptyset} John read no book, in w_{α} John read only book α , and so on.)

- (20) John does not have *irgend*-book (epistemic).
 - a. $\forall w(\exists_s x(\phi(x, w) \land var(\emptyset, x)) \rightarrow v \neq w)$

ν	W	X
WØ	WØ	а
Wø	w_a	а
WØ	w_b	b
w_{\emptyset}	w_{ab}	b

(a) Supporting Team

ν	W	Х
$\overline{w_a}$	WØ	b
Wα	Wα	α
w_a	w_b	b
w_a	w_{ab}	а

(b) Non-Supporting Team

[maximal teams of antecedent in blue]

Negation and Specific Indefinites

For (21), specific indefinites under negation are supported by $\{w_{\emptyset}\}$ (John read no book), but also by $\{w_a\}$ (John read book a and not b) or $\{w_b\}$.

We predict that (21) is false only for the case of $\{w_{ab}\}$.

[The antecedent of (21a) is supported by more than one maximal team, due to different constant values of x induced by $dep(\emptyset, x)$, but for the second reading only one is supporting.]

(21) John does not have some-SK book.

a.
$$\forall w(\exists_S x(\phi(x, w) \land dep(\emptyset, x)) \rightarrow v \neq w)$$

ν	W	X
Wø	w_{\varnothing}	а
wø	w_a	а
Wø	w_b	а
w_{\emptyset}	w_{ab}	а

ν	W	х
$\overline{\mathbf{w}_a}$	WØ	b
w_a	w_a	b
wa	w_b	b
w_a	w_{ab}	b

 V
 W
 X

 Wab
 WØ
 a

 Wab
 Wa
 a

 Wab
 Wab
 a

(a) Supporting Team

(b) Supporting Team

(c) Non-Supporting Team

Introduction Desiderata The Framework Applications Epistemic Indefinites Conclusion References

Outline

- 1. Introduction
- 2. Desiderata
- 3. The Framework
- 4. Applications
- 5. Epistemic Indefinites
- 6. Conclusion

troduction Desiderata The Framework Applications Epistemic Indefinites Conclusion Reference

Conclusion

Some directions of future research:

- (a) Explore language-specific distinctions in the domain of specificity;
- (b) Expand our team-based analysis to other areas of the map (e.g. NPI);
- (c) Integrate our framework with conceptual covers;
- (d) Model epistemic modals vs root modals in a team-based system;
- (e) Develop a dynamic version of our logic (including dependence atoms).
- (f) ...

Introduction Desiderata The Framework Applications Epistemic Indefinites Conclusion References

Conclusion

THANK YOU!

Introduction Desiderata The Framework Applications Epistemic Indefinites Conclusion References

Conclusion

THANK YOU!

1. Introduction

- 1.1 A wealth of Indefinites
- 1.2 Haspelmath Map
- 1.3 Specific Known, Specific Unknown and Non-Specific

2. Desiderata

- 2.1 Our Goals
- 2.2 Marked Indefinites

3. The Framework

- 3.1 Language & Team
- 3.2 Teams as information states
- 3.3 Universal Extension
- 3.4 Strict Functional Extension

- 3.5 Lax Functional Extension
- 3.6 Semantic Clauses
- 3.7 Dependence Atoms

4. Applications

- 4.1 Indefinites as Existentials
- 4.2 Application I: Exceptional Scope
- 4.3 Application II: Specific Known, Specific Unknown, Non-specific
- 4.4 Application III: Variety of Indefinites
- 4.5 Application IV: Licensing of non-specific indefinites
- 4.6 Application V: Epistemic Indefinites and ignorance inference
- 4.7 Final Proposal

- 4.8 Application VI: Interaction with Scope
- 4.9 Application VII: From non-specific to epistemic
- 4.10nterim Conclusion

5. Epistemic Indefinites

- 5.1 Basic Data
- 5.2 Basic Strategy
- 5.3 Generalized Variation
- 5.4 German Irgend-
- 5.5 Negation and Implication
- 5.6 Negation and Epistemic Indefinites
- 5.7 Negation and Specific Indefinites
- 6. Conclusion

- Abramsky, Samson and Jouko Väänänen (2009). "From if to bi". In: *Synthese* 167.2, pp. 207–230.
- Aloni, Maria (2001). "Quantification under Conceptual Covers". PhD thesis. ILLC, University of Amsterdam.
- Aloni, Maria and Angelika Port (2015). "Epistemic indefinites and methods of identification". In: Epistemic indefinites: Exploring modality beyond the verbal domain, pp. 117–140.
- Alonso-Ovalle, Luis and Paula Menéndez-Benito (2010). "Modal indefinites". In: Natural Language Semantics 18.1, pp. 1–31.
- (2017). "Epistemic indefinites: on the content and distribution of the epistemic component". In: Modality Across Syntactic Categories, pp. 11–29.
- Brasoveanu, Adrian and Donka F Farkas (2011). "How indefinites choose their scope". In: *Linguistics and philosophy* 34.1, pp. 1–55.
- Chierchia, Gennaro (2013). Logic in grammar: Polarity, free choice, and intervention. OUP Oxford. doi:
 - 10.1093/acprof:oso/9780199697977.001.0001.
- Farkas, Donka (2002). "Varieties of indefinites". In: Semantics and Linguistic Theory. Vol. 12, pp. 59–83.
- Farkas, Donka F and Adrian Brasoveanu (2020). "Kinds of (Non) Specificity". In: The Wiley Blackwell Companion to Semantics, pp. 1–26.
- Foulet, Lucien (1919). "Étude de syntaxe française: Quelque". In: Romania 45.178. doi: 10.3406/roma.1919.5158.

- Galliani, Pietro (2015). "Upwards closed dependencies in team semantics". In: *Information and Computation* 245, pp. 124–135.
- (2021). "Dependence Logic". In: The Stanford Encyclopedia of Philosophy. Ed. by Edward N. Zalta. Summer 2021. Metaphysics Research Lab, Stanford University.
- Haspelmath, Martin (1997). *Indefinite Pronouns*. Published to Oxford Scholarship Online: November 2017. Oxford University Press. doi: 10.1093/oso/9780198235606.001.0001.
- Hodges, Wilfrid (1997). "Compositional semantics for a language of imperfect information". In: *Logic Journal of the IGPL* 5.4, pp. 539–563.
- Jayez, Jacques and Lucia M Tovena (2006). "Epistemic determiners". In: *Journal of Semantics* 23.3, pp. 217–250.
- Kratzer, Angelika (1998). "Scope or pseudoscope? Are there wide-scope indefinites?" In: *Events and grammar*. Springer, pp. 163–196.
- Kratzer, Angelika and Junko Shimoyama (2002). "Indeterminate Pronouns: The View from Japanese". In: Paper presented at the 3rd Tokyo Conference on Psycholinguistics. url: https://people.umass.edu/partee/RGGU_2004/Indeterminate%20Pronouns.pdf.
- Partee, Barbara Hall (2004). Semantic Typology of Indefinites II. Lecture
 Notes RGGU 2004. url: https:
 //people.umass.edu/partee/RGGU_2004/RGGU0411annotated.pdf.
- Port, Angelika and Maria Aloni (2015). The diachronic development of German Irgend-indefinites. Ms, University of Amsterdam.

- Reinhart, Tanya (1997). "Quantifier scope: How labor is divided between QR and choice functions". In: *Linguistics and philosophy*, pp. 335–397.
- Tuggy, David H (1979). "Tetelcingo Nahuatl". In: Modern Aztec Grammatical Sketches. Ed. by Ronald W. Langacker. Vol. 2. Studies in Uto-Aztecan Grammar. Arlington: Summer Institute of Linguistics, pp. 1–140.
- Väänänen, Jouko (2007). Dependence logic: A new approach to independence friendly logic. Vol. 70. Cambridge University Press.
- Yang, Fan (2014). On extensions and variants of dependence logic.