Lecture 7 Pushdown Automata

COSE215: Theory of Computation

Seunghoon Woo

Fall 2023

Review: Pushdown Automata

- Is it possible to push/pop multiple stack alphabets in one transition?
- Is it possible to push/pop simultaneously in one transition?

Review: Pushdown Automata

- Is it possible to push/pop multiple stack alphabets in one transition?
- Is it possible to push/pop simultaneously in one transition?

Pushdown Automata

- (Nondeterministic) Pushdown Automata: Formal definition
 - A pushdown automaton (PDA) is a 7-tuple: $M = (Q, \Sigma, \Gamma, \delta, q_0, z, F)$
 - Q is a finite set of internal states
 - Σ is a finite set of symbols
 - Υ is a finite set of symbols called stack alphabets
 - \bullet δ is a set of transition functions
 - δ: Q × (Σ ∪ {λ}) × Γ → 2^(Q×Γ*)
 - $q_0 \in Q$ is the initial state
 - ❖ z ∈ Γ is the **initial stack alphabet**
 - $F \subseteq Q$ is a set of **final states**

Review: Pushdown Automata

- Is it possible to push/pop multiple stack alphabets in one transition?
 - YES
- Is it possible to push/pop simultaneously in one transition?
 - YES
- Given a nPDA with multiple push/pop operations, we can generate an equivalent nPDA that pushes/pops one symbol per transition

Contents

- Convert CFG to PDA
- Convert PDA to CFG

- Generate an nPDA from a given CFG
 - Assumption
 - ❖ CFG is in GNF
 - Consider a leftmost derivation of strings
 - Basic idea
 - ❖ Variables in right-hand side → stack
 - ❖ Terminals in right-hand side → input

Greibach Normal Forms

- Definition
 - Restrict not the length of a production, but the **positions**
 - A CFG (V, T, S, P) is in Greibach normal form if all Ps are of the form $A \to ax$ $A \to$

- Generate an nPDA from a given CFG
 - Step (I) start symbol → stack

- Generate an nPDA from a given CFG
 - Step (I) start symbol → stack
 - Step (2) $\forall A \rightarrow ax$
 - \Rightarrow Stack: $A \rightarrow x$
 - **!** Input: $a \rightarrow \lambda$

- Generate an nPDA from a given CFG
 - Example: $S \rightarrow aSbb \mid a$

10

- Generate an nPDA from a given CFG
 - Example: $S \rightarrow aSbb \mid a$
 - (I) Convert to GNF: $S \rightarrow aSA \mid a, A \rightarrow bB, B \rightarrow b$

- Generate an nPDA from a given CFG
 - Example: $S \rightarrow aSbb \mid a$
 - (I) Convert to GNF: $S \rightarrow aSA \mid a, A \rightarrow bB, B \rightarrow b$
 - (2) $\delta(q_0, \lambda, z) = \{(q_1, Sz)\}$

... start symbol \rightarrow stack

Generate an nPDA from a given CFG

- Example: $S \rightarrow aSbb \mid a$
 - (I) Convert to GNF: $S \rightarrow aSA \mid a, A \rightarrow bB, B \rightarrow b$
 - (2) $\delta(q_0, \lambda, z) = \{(q_1, Sz)\}$
 - (3) $\delta(q_1, a, S) = \{(q_1, SA), (q_1, \lambda)\}$

... start symbol \rightarrow stack

... $\forall A \rightarrow ax$, Stack: $A \rightarrow x$, Input: $a \rightarrow \lambda$

Generate an nPDA from a given CFG

- Example: $S \rightarrow aSbb \mid a$
 - (I) Convert to GNF: $S \rightarrow aSA \mid a, A \rightarrow bB, B \rightarrow b$
 - (2) $\delta(q_0, \lambda, z) = \{(q_1, Sz)\}$
 - (3) $\delta(q_1, a, S) = \{(q_1, SA), (q_1, \lambda)\}$
 - (4) $\delta(q_1, b, A) = \{(q_1, B)\}$

... start symbol \rightarrow stack

... $\forall A \rightarrow ax$, Stack: $A \rightarrow x$, Input: $a \rightarrow \lambda$

... $\forall A \rightarrow ax$, Stack: $A \rightarrow x$, Input: $a \rightarrow \lambda$

Generate an nPDA from a given CFG

- Example: $S \rightarrow aSbb \mid a$
 - (I) Convert to GNF: $S \rightarrow aSA \mid a, A \rightarrow bB, B \rightarrow b$
 - (2) $\delta(q_0, \lambda, z) = \{(q_1, Sz)\}$
 - (3) $\delta(q_1, a, S) = \{(q_1, SA), (q_1, \lambda)\}$
 - (4) $\delta(q_1, b, A) = \{(q_1, B)\}$
 - (5) $\delta(q_1, b, B) = \{(q_1, \lambda)\}$

... start symbol \rightarrow stack

... $\forall A \rightarrow ax$, Stack: $A \rightarrow x$, Input: $a \rightarrow \lambda$

... $\forall A \rightarrow ax$, Stack: $A \rightarrow x$, Input: $a \rightarrow \lambda$

... $\forall A \rightarrow ax$, Stack: $A \rightarrow x$, Input: $a \rightarrow \lambda$

Generate an nPDA from a given CFG

- Example: $S \rightarrow aSbb \mid a$
 - (I) Convert to GNF: $S \rightarrow aSA \mid a, A \rightarrow bB, B \rightarrow b$
 - (2) $\delta(q_0, \lambda, z) = \{(q_1, Sz)\}$
 - (3) $\delta(q_1, a, S) = \{(q_1, SA), (q_1, \lambda)\}$
 - (4) $\delta(q_1, b, A) = \{(q_1, B)\}$
 - (5) $\delta(q_1, b, B) = \{(q_1, \lambda)\}$
 - (6) $\delta(q_1, \lambda, z) = \{(q_2, z)\}$

... start symbol \rightarrow stack

... $\forall A \rightarrow ax$, Stack: $A \rightarrow x$, Input: $a \rightarrow \lambda$

... $\forall A \rightarrow ax$, Stack: $A \rightarrow x$, Input: $a \rightarrow \lambda$

... $\forall A \rightarrow ax$, Stack: $A \rightarrow x$, Input: $a \rightarrow \lambda$

... final state

Generate an nPDA from a given CFG

- Example: $S \rightarrow aSbb \mid a$
 - (I) Convert to GNF: $S \rightarrow aSA \mid a, A \rightarrow bB, B \rightarrow b$

(2)
$$\delta(q_0, \lambda, z) = \{(q_1, Sz)\}$$

(3)
$$\delta(q_1, a, S) = \{(q_1, SA), (q_1, \lambda)\}$$

(4)
$$\delta(q_1, b, A) = \{(q_1, B)\}$$

(5)
$$\delta(q_1, b, B) = \{(q_1, \lambda)\}$$

(6)
$$\delta(q_1, \lambda, z) = \{(q_2, z)\}$$

$$a, S \to SA$$

$$a, S \to \lambda$$

$$b, A \to B$$

$$b, B \to \lambda$$

- Generate an nPDA from a given CFG
 - Example: $S \rightarrow aSbb \mid a$
 - ❖ Processing "aaabbbb"
 - $(q_0, aaabbbb, z)$
 - $\vdash (q_1, aaabbbb, Sz) \vdash (q_1, aabbbb, SAz)$
 - $\vdash (q_1, abbbb, SAAz) \vdash (q_1, bbbb, AAz) \vdash (q_1, bbb, BAz)$
 - $\vdash (q_1, bb, Az) \vdash (q_1, b, Bz) \vdash (q_1, \lambda, z) \vdash (q_2, \lambda, z)$

$$a, S \rightarrow SA$$

$$a, S \rightarrow \lambda$$

$$b, A \rightarrow B$$

$$b, B \rightarrow \lambda$$

- Generate an nPDA from a given CFG
 - How about none-GNF case?

- Generate an nPDA from a given CFG
 - How about none-GNF case?

$$G = (V, T, S, P)$$

 $\blacksquare \forall A \rightarrow \alpha$

$$\delta(q, \lambda, A) \rightarrow \{(q, \alpha)\} \ (A \in V)$$

$$\delta(q, a, a) \to \{(q, \lambda)\} \ (a \in T)$$

- Basic idea
 - ❖ Remaining input = stack

- Generate an nPDA from a given CFG
 - Example: $S \rightarrow AS \mid \lambda, A \rightarrow aAb \mid Ab \mid ab$

- Generate an nPDA from a given CFG
 - Example: $S \rightarrow AS \mid \lambda, A \rightarrow aAb \mid Ab \mid ab$

$$\delta(q_0, \lambda, z) \to \{(q_1, Sz)\}$$

Generate an nPDA from a given CFG

$$\delta(q_0, \lambda, z) \rightarrow \{(q_1, Sz)\}$$

$$\delta(q_1, \lambda, S) \rightarrow \{(q_1, AS), (q_1, \lambda)\}$$

$$δ$$
 $(q_1, λ, A) → {(q_1, aAb), (q_1, Ab), (q_1, ab)}$

Generate an nPDA from a given CFG

$$\delta(q_0, \lambda, z) \rightarrow \{(q_1, Sz)\}$$

$$\delta(q_1, \lambda, S) \rightarrow \{(q_1, AS), (q_1, \lambda)\}$$

$$δ$$
 $(q_1, λ, A) → {(q_1, aAb), (q_1, Ab), (q_1, ab)}$

$$\delta(q_1, a, a) \to \{(q_1, \lambda)\}$$

$$\delta(q_1,b,b) \rightarrow \{(q_1,\lambda)\}$$

$\forall A \rightarrow \alpha$

Generate an nPDA from a given CFG

$$\delta(q_0, \lambda, z) \to \{(q_1, Sz)\}$$

$$\delta(q_1, \lambda, S) \rightarrow \{(q_1, AS), (q_1, \lambda)\}$$

$$\bullet$$
 δ(q₁, λ, A) → {(q₁, aAb), (q₁, Ab), (q₁, ab)}

$$\delta(q_1,b,b) \rightarrow \{(q_1,\lambda)\}$$

Generate an nPDA from a given CFG

$$\delta(q_0, \lambda, z) \to \{(q_1, Sz)\}$$

$$\bullet$$
 δ(q₁, λ, A) → {(q₁, aAb), (q₁, Ab), (q₁, ab)}

$$\lambda, S \rightarrow AS$$
 $\lambda, S \rightarrow \lambda$
 $\lambda, A \rightarrow aAb$
 $\lambda, A \rightarrow Ab$
 $\lambda, A \rightarrow ab$
 $a, a \rightarrow \lambda$
 $b, b \rightarrow \lambda$

- $\forall A \rightarrow \alpha$

Generate an nPDA from a given CFG

- Example: $S \rightarrow AS \mid \lambda, A \rightarrow aAb \mid Ab \mid ab$
- Processing "aabbb"
 - $(q_0, aabbb, z)$
 - $\vdash (q_1, aabbb, Sz) \vdash (q_1, aabbb, ASz)$
 - $\vdash (q_1, aabbb, aAbSz) \vdash (q_1, abbb, AbSz) \vdash (q_1, abbb, AbbSz)$
 - $\vdash (q_1, abbb, abbbSz) \vdash (q_1, bbb, bbbSz) \vdash (q_1, bb, bbSz)$
 - $\vdash (q_1, b, bSz) \vdash (q_1, \lambda, Sz) \vdash (q_1, \lambda, z) \vdash (q_2, \lambda, z)$

$$\lambda, S \rightarrow \lambda$$

$$\lambda, A \rightarrow aAb$$

$$\lambda, A \rightarrow Ab$$

$$\lambda, A \rightarrow ab$$

$$a, a \rightarrow \lambda$$

$$b, b \rightarrow \lambda$$

- Generate an nPDA from a given CFG: Practice
 - Example: $S \rightarrow \lambda \mid aSb \mid bSa \mid SS$

- Generate an nPDA from a given CFG: Practice
 - Example: $S \rightarrow \lambda \mid aSb \mid bSa \mid SS$

- Generate a CFG from a given nPDA
 - Warning: this is very very complicated

- Generate a CFG from a given nPDA
 - Warning: this is very very complicated
 - We consider the following type of nPDA
 - An nPDA that has only one final state and can only enter final state when the stack is empty
 - \diamond Every transition to a symbol α increases or decreases the contents of the stack by one element
 - E.g., $\delta(q_i, a, A) = (q_j, \lambda)$ or $\delta(q_i, a, A) = (q_j, BC)$
 - Any nPDA can be converted to nPDA that satisfies the above conditions

- Step (2) $\forall A \rightarrow ax$

 - **❖** Input: $a \rightarrow \lambda$

- Generate a CFG from a given nPDA
 - Case (I) $\delta(q_i, a, A) = (q_j, \lambda)$
 - ❖ CFG has the rule $(q_iAq_i) \rightarrow a$
 - (q_iAq_j) is intended to pop A from the stack while going from state q_i to state q_j

- Step (2) $\forall A \rightarrow ax$
 - \star Stack: $A \rightarrow x$
 - **❖** Input: $a \rightarrow \lambda$

- Case (2) $\delta(q_i, a, A) = (q_i, BC)$
 - \Leftrightarrow CFG has the rule $(q_iAq_k) \to a(q_iBq_l)(q_lCq_k)$
 - q_l and q_k are all possible states belonging to Q
 - $(q_i A q_k) \rightarrow a(q_i B q_l)(q_l C q_k)$
 - One way to pop A and go from state q_i to state q_k is to read a, then use some input to pop B off the stack while going from state q_j to state q_l , then read some more input that pops C off the stack and goes from state q_l to state q_k

- Step (2) $\forall A \rightarrow ax$

 - **❖** Input: $a \rightarrow \lambda$

- Generate a CFG from a given nPDA
 - Starting variable = $(q_0 z q_f)$

Generate a CFG from a given nPDA

Example $(q_0: initial state, q_2: final state)$

$$\delta(q_0, a, z) = \{(q_0, Az)\}$$

$$\delta(q_3, \lambda, z) = \{(q_0, Az)\}$$

$$\delta(q_0, a, A) = \{(q_3, \lambda)\}$$

$$\delta(q_1, \lambda, z) = \{(q_2, \lambda)\}$$

Generate a CFG from a given nPDA

Example $(q_0: initial state, q_2: final state)$

$$\delta(q_0, a, z) = \{(q_0, Az)\}$$

$$\delta(q_3, \lambda, z) = \{(q_0, Az)\}$$

$$\delta(q_0, a, A) = \{(q_3, \lambda)\}$$

$$\delta(q_0, b, A) = \{(q_1, \lambda)\}$$

$$\delta(q_1, \lambda, z) = \{(q_2, \lambda)\}$$

$$\Rightarrow$$
 $(q_0Aq_3) \rightarrow a$

$$\Rightarrow$$
 $(q_0Aq_1) \rightarrow b$

$$\Rightarrow$$
 $(q_1zq_2) \rightarrow \lambda$

• Case (I)
$$\delta(q_i, a, A) = (q_j, \lambda)$$

❖ CFG has the rule
$$(q_iAq_j)$$
 → a

• Case (2)
$$\delta(q_i, a, A) = (q_i, BC)$$

❖ CFG has the rule
$$(q_iAq_k)$$
 → $a(q_iBq_l)(q_lCq_k)$

•
$$q_l$$
 and q_k are all possible states belonging to Q

- Case (2) $\delta(q_i, a, A) = (q_j, BC)$
 - **❖** CFG has the rule (q_iAq_k) → $a(q_iBq_l)(q_lCq_k)$
 - q_l and q_k are all possible states belonging to Q

- **Example** $(q_0: initial state, q_2: final state)$
 - $\delta(q_0, a, z) = \{(q_0, Az)\}$

- Case (2) $\delta(q_i, a, A) = (q_j, BC)$
 - **❖** CFG has the rule (q_iAq_k) → $a(q_jBq_l)(q_lCq_k)$
 - q_l and q_k are all possible states belonging to Q

- **Example** $(q_0: initial state, q_2: final state)$
 - $\delta(q_3, \lambda, z) = \{(q_0, Az)\}$

- **Example** $(q_0: initial state, q_2: final state)$
 - $(q_0Aq_3) \rightarrow a$,
 - $(q_0 A q_1) \to b,$

 - $(q_0zq_3) \rightarrow a(q_0Aq_0)(q_0zq_3) \mid a(q_0Aq_1)(q_1zq_3) \mid a(q_0Aq_2)(q_2zq_3) \mid a(q_0Aq_3)(q_3zq_3),$

Generate a CFG from a given nPDA

Example $(q_0: initial state, q_2: final state)$

- $(q_0Aq_3) \rightarrow a$
- $(q_0 A q_1) \to b,$
- $(q_1zq_2) \rightarrow \lambda$,
- $(q_0 z q_0) \rightarrow a(q_0 A q_0)(q_0 z q_0) + a(q_0 A q_1)(q_1 z q_0) + a(q_0 A q_2)(q_2 z q_0) + a(q_0 A q_3)(q_3 z q_0),$

- $(q_0 z q_3) \rightarrow a(q_0 A q_0)(q_0 z q_3) \mid a(q_0 A q_1)(q_1 z q_3) \mid a(q_0 A q_2)(q_2 z q_3) \mid a(q_0 A q_3)(q_3 z q_3),$

unnecessary variable No transitions

 (q_0Aq_0)

 (q_0Aq_2)

1->0

1->1

1->3

2->2

- **Example** $(q_0: initial state, q_2: final state)$
 - $(q_0Aq_3) \rightarrow a$

 - $(q_1zq_2) \rightarrow \lambda$,

 - $(q_0zq_2) \rightarrow a(q_0Aq_1)(q_1zq_2) \mid a(q_0Aq_3)(q_3zq_2),$

Generate a CFG from a given nPDA

Example $(q_0: initial state, q_2: final state)$

$$(q_0Aq_3) \rightarrow a$$

$$(q_1zq_2) \rightarrow \lambda$$
,

$$(q_0zq_2) \rightarrow a(q_0Aq_1)(q_1zq_2) \mid a(q_0Aq_3)(q_3zq_2),$$

$$(q_3zq_2) \rightarrow (q_0Aq_1)(q_1zq_2) \mid (q_0Aq_3)(q_3zq_2),$$

Deriving "aab"

$$(q_0zq_2) \Rightarrow a(q_0Aq_3)(q_3zq_2)$$

$$\Rightarrow aa(q_3zq_2)$$

$$\Rightarrow aa(q_0Aq_1)(q_1zq_2)$$

$$\Rightarrow aab(q_1zq_2)$$

$$\Rightarrow aab$$

Context-Free Languages

- If L = L(M) for some NPDA M, then L is a context-free language
- A language is context-free iff it is accepted by some NPDA
 - For every CFG, there exists an equivalent NPDA
 - For every NPDA, there exists an equivalent CFG

Next Lecture

• Deterministic Pushdown Automata