Jilin Zheng // U49258796	
EUS81 Havevork #10	
Rablem 1.	
(a) Confidence Level = 0.9 → a = 0.1	
$E = \frac{-\sqrt{V_q}}{\sqrt{q}} F_{T_8}^{-1} \left(\frac{0.1}{2} \right) = \frac{-\sqrt{0.36}}{3} F_{T_8}^{-1} \left(0.05 \right) = 0.38$	
Considere Interial = [6.1 ± 0.38]	
(b) $\mathcal{M}_{q} = 6.1$, $V_{q} = 0.36$, $\mu = 5.4$, $\alpha = 0.05$ 7- Slebste: $I = \frac{\sqrt{\mathcal{M}_{u} - \mu}}{\sqrt{v_{u}}} = \frac{\sqrt{2}(6.1 - 5.4)}{\sqrt{0.36}} = 3.5$	
p-velue=2F _{T8} (-13.51)=0.008	
The sample IS symbolic different because we roject the well hypothess, since $0.008 < 0.05$ (c) $M_{10} = \frac{(6.1 \cdot 9 + 5)}{10} = 5.99$	
(c) $M_{10} = 10 = 5.99$	
Roblem 2.	
(a) Two-Sample T-Test	
(b) Sample Means: Miss = 80, Miss = 83	
Sauple Variences: V128 = 60, V118 = 68	
Ported Sample Vartence: $\hat{\sigma}^2 = \frac{(127.687)}{(128+128-2)} = 64$	
Sample Variences: $V_{128}^{(1)} = 60$, $V_{128}^{(2)} = 68$ Ported Sample Varience: $\hat{\sigma}^2 = \frac{(127.60 \pm 127.68)}{(128 \pm 128 - 2)} = 64$ (c) T-Statistic: $T = \frac{(80 - 83)}{\sqrt{64(\frac{1}{124} + \frac{1}{128})}} = -3$	
(d) a=0.01, p-velue=2 F _{test} (-1-31)=0.00297	
Since 0.00297 < 0.01, reject the null hypothesis	
Problem 3.	
(a) One Souple T-Test	
(b) $M_{25} = 11.92$, $N_{25} = 0.04$, $\mu = 12$ Test - Statistic: $T = \frac{\sqrt{25}(11.92 - 12)}{\sqrt{10.04}} = -2$	
(c) a=0.05, p-value=2F _{Tg4} (-1-21)=0.0569	
Since 0.0569 \ge 0.05, fail to reject the null hypothesis	
(d) Conference Inferral = 0.9 → a = 0.1	
$E = \frac{-\sqrt{0.04}}{\sqrt{25}} F_{1/24}^{-1}(0.05) = 0.0684$	
Carolone Interval: [11.92 ± 0.0684]	