Adopted Levels, Gammas

```
Q(\beta^-)=10470\ 40;\ S(n)=2470\ 40;\ S(p)=18680\ 40;\ Q(\alpha)=-13690\ 40 2021Wa16 S(2n)=10020\ 40,\ S(2p)=33930\ 40,\ Q(\beta^-n)=2090\ 40\ (2021Wa16). Isotope discovery (2012Th10): ^{232}Th(^{40}Ar,X) at Dubna (1971Ar32). ^{35}Si production:
```

- 2015Mo17: ⁹Be(⁴⁰Ar,X) at E(⁴⁰Ar)=95 MeV/nucleon at RIKEN. Measured angular distributions and transverse momentum distributions of fragments. Deduced formulation for the width of transverse momentum distribution as a function of fragment velocity.
- 2012Kw02: ⁹Be,^{nat}Ni,¹⁸¹Ta(⁴⁰Ar,X) at E(⁴⁰Ar)=140 MeV/nucleon at NSCL. Measured fragmentation cross sections, parallel momentum transfers, and widths. Compared with empirical formula EPAX, and predictions from internuclear cascade and deep inelastic models using Monte Carlo ISABEL-GEMINI and DIT-GEMINI codes.
- 2012Zh06: ⁹Be, ¹⁸¹Ta(⁴⁰Ar,X) at E(⁴⁰Ar)=57 MeV/nucleon at HIRFL. Measured momentum distributions and production cross sections of fragments. Observed competition between projectile fragmentation and other mechanisms. Compared with EPAX, abrasion- ablation, and HIPSE models. Studied target dependence of fragment cross sections.
- 2007No13: ⁹Be(⁴⁰Ar,X) at E(⁴⁰Ar)=100 MeV/nucleon at RIKEN. Measured fragment momentum distributions and production cross sections.
- 2006Ro34: ${}^{2}H({}^{42}S,X)$ at E(${}^{42}S$)=99.8 MeV/nucleon at NSCL. Measured production cross sections.
- 1997Fo01: ²⁰⁸Pb(³⁷Cl,X) at E(³⁷Cl)=230 MeV at Legnaro. Measured yields.
- ³⁵Si decay measurements:
- 1986Du07,1986HuZW,1987DuZU,1988DuZS,1988DuZT: 9 Be(40 Ar,X) at GANIL. Measured $T_{1/2}$ and β^- -delayed γ rays.
- 2007Ne14: Polarized 35 Si from 9 Be(36 S,X) 1n pickup at GANIL. 35 Si g.s. magnetic moment and g-factor using β -NMR.
- ³⁵Si radius measurements:
- 2006Kh08: ³⁵Si produced by ¹⁸¹Ta(⁴⁸Ca,X) fragmentation at E(⁴⁸Ca)=60.3 MeV/nucleon at GANIL. Measured energy-integrated reaction cross sections at 30-65 MeV/nucleon using a silicon telescope as both active target and detector. Deduced reduced strong absorption radii, isospin dependence, and possible halo structure or large deformation.
- 1999Ai02: Si(³⁵Si,X) at NSCL. Measured energy-integrated reaction cross sections at E=38-80 MeV/ nucleon. Deduced strong absorption radii.

 35 Al β^{-} decay (38.1 ms)

35Si Levels

Cross Reference (XREF) Flags

			B C	30 Al β^- n decay (12.0 ms) E 9 Be(30 Si, 33 Si γ)
E(level) [†]	\mathbf{J}^{π}	T _{1/2}	XREF	Comments
0	$(7/2)^{-}$	0.78 s <i>12</i>	ABCDE	$\%\beta^-=100; \%\beta^- \text{n}<5 \text{ (1995ReZZ,2008ReZZ)}$
				μ =(-)1.639 4 (2007Ne14,2019StZV)
				μ : From original (-)1.638 4 using β -NMR (2007Ne14) with corrections by 2019StZV.
				J^{π} : L(² H(³⁴ Si,p))=L(³⁶ Si, ³⁵ Si)=3 from 0 ⁺ and $vf_{7/2}$ configuration from shell model.
				$T_{1/2}$: From $\beta \gamma(t)$ (1988DuZS,1988DuZT). Other: 0.87 s 17 by the same group (1986Du07).
				Reduced strong absorption radius r_0^2 =1.261 fm ² 35 from the energy-integrated σ of Si(35 Si,X) (2006Kh08) and r_0^2 =1.258 fm ² 92 from the energy-integrated σ of Si(35 Si,X) (1999Ai02).
909.95 23	(3/2)-	55 ps <i>14</i>	ABCDE	J^{π} : $L(^{2}H(^{34}Si,p))=L(^{36}Si,^{35}Si)=1$ from 0^{+} and $\nu p_{3/2}$ configuration from shell model.
				$T_{1/2}$: From analysis of broadened line shapes in (^{36}Si , $^{35}Si\gamma$).

³⁵Si mass measurements: 1986Fi06, 1986Sm05, 1984Ma49.

Theoretical calculations (binding energies, deformation, quadrupole moments, radii, levels, J^{π} , etc.): 2011Ka03, 2009No01, 2008Wi11, 2007Ch82, 2004Kh16, 1999Du05, 1994Mo37, 1994Po05, 1987Wa10, 1986Wo02.

Adopted Levels, Gammas (continued)

³⁵Si Levels (continued)

E(level) [†]	${ m J}^{\pi}$	$T_{1/2}$	XREF		Comments			
973.88 18	(3/2+)	5.9 ns 6	A	E	J^{π} : $vd_{3/2}$ configuration from shell model and 715 γ from 1688, $1/2^+$. $T_{1/2}$: From $\beta\gamma(t)$ in 35 Al β^- decay.			
1689.4 28 1970 <i>6</i>	1/2+			E E	J^{π} : L(36 Si, 35 Si)=0 from 0 ⁺ .			
2044 5	$(1/2)^{-}$			DE	J^{π} : L(² H(³⁴ Si,p))=1 from 0 ⁺ and ν p _{1/2} configuration from shell model.			
2168.2 4	(5/2+)		A	E	J^{π} : From shell model and its possible isobaric analog state in 35 P with $L(^{1}H(^{34}Si,p))=2$ from R-matrix analysis in $2012Im01$. $L(^{36}Si,^{35}Si)=2,3$ from 0^{+} .			
2275 6				E				
2377 7				E				
3140	$(3/2^+,5/2^+,7/2^+)^{\ddagger}$		Α					
3450	$(3/2^+,5/2^+,7/2^+)^{\ddagger}$		Α					
3611? 8				E	XREF: E(?)			
3770	$(3/2^+,5/2^+,7/2^+)^{\ddagger}$		Α					
5190	$(3/2^+,5/2^+,7/2^+)^{\ddagger}$		Α					
≈5500	(5/2)-			D	E(level): A broad level at ≈ 5500 deduced from E_p in $^2H(^{34}Si,p)$. J^{π} : $L(^2H(^{34}Si,p))=3$ from 0^+ and $vf_{5/2}$ configuration from shell model.			
5760	$(3/2^+,5/2^+,7/2^+)^{\ddagger}$		Α					
6330	$(3/2^+,5/2^+,7/2^+)^{\ddagger}$		Α					
7360	$(3/2^+,5/2^+,7/2^+)^{\ddagger}$		Α					
7690	$(3/2^+,5/2^+,7/2^+)^{\ddagger}$		A					

[†] From a least-squares fit to γ -ray energies for levels connected with γ transitions; from ³⁵Al β ⁻-delayed neutron decays for other levels, unless otherwise noted. [‡] Allowed β ⁻ feeding from (5/2)⁺ parent.

						γ (35Si)		
$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.	$\alpha^{\#}$	Comments
909.95	(3/2)-	910.11 30	100	0	(7/2)-	[E2]	4.13×10 ⁻⁵ 6	B(E2)(W.u.)=2.4 +8-5
								E_{γ} : Others: 910 3 from ${}^{2}H({}^{34}Si, \gamma)$ and 908 4 from (${}^{36}Si, {}^{35}Si\gamma$).
973.88	$(3/2^+)$	64.1 <i>3</i>	100	909.95	$(3/2)^{-}$	[E1]	0.0368 8	$B(E1)(W.u.)=3.52\times10^{-4} +41-34$
		973.78 20	11.8 24	0	$(7/2)^{-}$	[M2]	5.05×10^{-5} 7	B(M2)(W.u.)=0.057 +13-12
1689.4	1/2+	715 [‡] 4	14.6 [‡] <i>16</i>	973.88	$(3/2^+)$			
		780 [‡] 4	100‡ 8	909.95	$(3/2)^{-}$			
1970		1970 [‡] 6	100	0	$(7/2)^{-}$			
2044	$(1/2)^{-}$	1134‡ 5	100	909.95	$(3/2)^{-}$			E_{γ} : Other: 1134 6 from ${}^{2}H({}^{34}Si,p\gamma)$.
2168.2	$(5/2^+)$	1194.2 <i>4</i>	35 8	973.88	$(3/2^+)$,
		2168.2 6	100 20	0	$(7/2)^{-}$			E_{γ} : Other: 2164 6 from ($^{36}Si,^{35}Si\gamma$).
2275		2275 [‡] 6	100	0	$(7/2)^{-}$			
2377		2377 [‡] 7	100	0	$(7/2)^{-}$			
3611?		3611 [‡] 8	100	0	$(7/2)^{-}$			

 $^{^{\}dagger}$ From $^{35} Al \, \beta^-$ decay, unless otherwise noted. ‡ From $^9 Be (^{36} Si,^{35} Si \gamma).$

Adopted Levels, Gammas (continued)

γ (35Si) (continued)

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with "Frozen Orbitals" approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

