

Reinforcement Learning for ABM

Presented

by Thomas Asikis, asikist@ethz.ch

Agent-Based Modeling and Social System Simulation

Fall Semester 2019

1

In Today's Course

An agent learns to become billionaire...

- How to design agents that learn to optimize!
- Relevant code is found in:

https://github.com/asikist-ethz/reinforcement_learning

2

TH zürich

MDP Example: Investing Agent

Target State

State

decision

transition

probability, reward

* SUTTON, R. S. . B. (2018). *REINFORCEMENT LEARNING*: an introduction. MIT PRESS. Ch.3 Finite Markov Decision Processes, p.52

Intro

Reinforcement Learning Agents

- Main elements: an agent and an environment.
- "A goal directed agent in an uncertain environment".
- Learn a behavior that achieves a goal by interacting with environment:
 - Behavior: choice of actions.
- Maximization of a reward (or minimization of cost).
- Multi Agent simulations can be done via Independent Reinforcement Learning, and then extended by using communication

4

Reinforcement Learning and Machine Learning

Machine Learning	Supervised	Learning from labeled set - External supervisor
		External supervisor
		Certainty: for given input always the same correct output
	Unsupervised	Finding structure/patterns in data.
		No goal
		Descriptive
	Reinforcement	Goal Driven agents Learn to optimize: Exploration vs Exploitation Uncertainty: same input does not always result to same output
		Sequential: The current model output affects future received inputs
		Delayed feedback, as the evaluation of the current output may be included in a later sample.

^{*} SUTTON, R. S. . B. (2018). REINFORCEMENT LEARNING : an introduction. MIT PRESS. Ch.1 Introduction, p.2

Reinforcement Learning and Planning

Markov Decision Process

Agent: The learner and decision maker

Environment: The agent interacts with the environment,

which comprises everything outside the agent.

Time t: Discrete timesteps (Discrete time).

State S: The agent's perception about the environment.

Action a: An action the agent takes based on observing S.

Reward r: Consequence of action.

^{*} SUTTON, R. S. . B. (2018). REINFORCEMENT LEARNING: an introduction. MIT PRESS. Ch.3 Finite Markov Decision Processes, p.47

TH zürich

MDP Example: Investing Agent

Target State

State

decision

transition

probability, reward

* SUTTON, R. S. . B. (2018). *REINFORCEMENT LEARNING* : an introduction. MIT PRESS. Ch.3 Finite Markov Decision Processes, p.52

MDP Example ~ Accumulating Experience

S	а	s'	r(s,a,s')
Low	Invest	Low	0
Low	Save	Medium	1
Medium	Save	Medium	0
Medium	Invest	High	0
High	Invest	High	0
High	Invest	Low	0

9

Usual Setting

- Optimization Objective: $min(O(a, s)) \vee max(O(a, s))$.
- Time t: Usually discrete, (non-)uniform time intervals.
- State $s_t \in \mathbb{S} \subset \mathbb{R}^{n \times m \times \cdots}$
- Actions $a_{t.} \in \mathbb{A} \subset \mathbb{R}^{n \times m \times \cdots}$
- Reward: $r_t = h(O(a, s))$, usually noise estimate of (O(a, s))
- Environment \rightarrow State transition: $s_{t+1} = g(s_t, a_t)$

State transition $g(s_t, a_t)$

Usually it is used to model the environment, and the true function is unknown.

- Deterministic
- Stochastic
 - Same action-state may lead to different states. This is often the case for a single agent in a single agent environment.
- Affected by:
 - Current action and state
 - and past actions and states

Policy

The strategy to select an action:

$$\pi(a_t|s_t)$$

 $\pi: \mathbb{S} \to \mathbb{A}$

Usually deterministic. Probabilistic mostly to explore new actions.

S	а
Low	Save
Medium	Save
Medium	Invest
High	Buy

Reward

- Skirner, Behavioral Theory
- Positive is encouragement
- Negative is punishment
- Reward ≠ Objective:
 e.g. difference of objective values in consecutive timesteps:

$$\mathbf{r_t} = O_t - O_{t-1}$$

Cumulative Reward & Return

- Reward in the long term
- Greedy selection of current maximum reward, or ...
- Non-optimal selection now, long term optimization later
- Episode: interval of timesteps until goal or failure (t=T)
- Usually a discount factor is used (discounted reward):

$$R_t = \sum_{k=0}^{\infty} \gamma^k r_{t+k} , 0 < \gamma < 1$$

The return is the cumulative reward at the end of an episode*:

$$G_t = \sum_{k=0}^{T} \gamma^k r_{t+k}$$

State Value Function

- Estimate how good is to for an agent to be in a state
 - in terms of acquiring high future rewards
- True state value function v(s)
- Each policy has its own true state value function:

$$v_{\pi}(s) = \mathbb{E}_{\pi}(G_t|S_t = s)$$

- Usually $v_{\pi}(s)$ is unknown, so we need to approximate it:

$$V_{\pi}(s) \rightarrow v_{\pi}(s)$$

For fixed policy, the Bellman equation can be derived:

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{r,s'} p(s',r|a,s) \left[r + \gamma v_{\pi}(s')\right], \forall s \in \mathbb{S}$$

Action-State Value Function

- Estimate how good is to for an agent to be in a state
 - in terms of acquiring high future rewards
- True state value function q(s)
- Each policy has its own true state value function:

$$q_{\pi}(a|s) = \mathbb{E}_{\pi}(G_t|S_t = s, A_t = a)$$

• Usually $q_{\pi}(a|s)$ is unknown, so we need to approximate it:

$$Q_{\pi}(a|s) \rightarrow q_{\pi}(s)$$

For fixed policy, the Bellman equation can be derived:

$$q_{\pi}(a|s) = \sum_{r,s'} p(s',r|a,s) \left[r + \gamma \sum_{a'} \pi(a'|s') Q_{\pi}(a|s) \right]$$

The Prediction Problem: Estimating values

- Estimating a true value function given a policy (Policy Evaluation).
- Several parts of the Bellman equation can be estimated (if unknown) to predict the actual value value function.
- Different methods, e.g. Monte-Carlo, Dynamic Programming,
 Temporal Differences have different approaches to prediction.
- There are methods without value estimation for policy optimization: genetic algorithms, simulated annealing.

The Control Problem: Finding an Optimal Policy

Optimal policy: The policy that maximizes return by selecting optimal actions:

$$\pi_*(a_t|s_t,o_t)$$

The optimal policy has the optimal value functions:

$$v_*$$
, q_*

To optimize the policy, many iterations are repeated over all states updating the policy, until the policy is stable:

i.e. for all states, it yields the same action for the same state in consecutive iterations.

Generalized Policy Iteration

Solving both problems simultaneously:

Dynamic Programming

- The dynamics of the system are known, e.g. transition probabilities and rewards in MDP.
- We can then derive a policy iteration algorithm that solves the prediction and control problems efficiently.
- Polynomial time with states and actions, less than direct search which takes exponential time.
- Asynchronous dynamic programming can be used to avoid systematic sweeps of the whole state space. Still, all states need to be visited at least once.
- Next slides contain pseudocode relevant to the prediction and control problem in DP!

Policy Evaluation

Policy Evaluation Algorithm

- Input: $\pi(s)$, policy to evaluate
- Parameters: $\theta > 0$, small threshold for accuracy of estimation
- **Variable:** $V(s) \forall s \in S$: a dictionary/map such that:

$$V(s) \sim \mathcal{U} \ \forall \ s \in S^+ \ \text{and} \ V(s_{terminal}) = 0$$

Do:

Return V(s)

* SUTTON, R. S. . B. (2018). REINFORCEMENT LEARNING: An introduction. MIT PRESS. Ch.4 Dynamic Programming, p.75

Complementary Notation:

U: A uniform distribution $S_{terminal}$: The terminal state S^+ : The set of all states except terminal

Policy Improvement

Policy Improvement Algorithm

- Input: V(s), a value function for states
- Variables: π(s) a randomly generated policy policy-stable ← true

```
For each s \in S:
a_{old} \leftarrow \pi(s)
\pi(s) \leftarrow \underset{a}{\operatorname{argmax}} \left[ \sum_{r,s'} p(s',r|s,a)[r + \gamma V(s')] \right]
\text{policy-stable} \leftarrow a_{old} = \pi(s)
```

Return $\pi(s)$, policy-stable

Policy Iteration

```
Policy Iteration Algorithm

• Variables : V(s), any value function for states \pi(s), any policy to decide actions policy-stable \leftarrow true

Do: V(s) \leftarrow \text{Policy Evaluation Algorithm}(\pi(s)) \pi(s), policy-stable \leftarrow Policy Improvement Algorithm(V(s))

While not policy-stable

Return \pi(s), V(s)
```

^{*} SUTTON, R. S. . B. (2018). REINFORCEMENT LEARNING: An introduction. MIT PRESS. Ch.4 Dynamic Programming, p.80

Value Iteration

```
Value Iteration Algorithm
     Variables: V(s), any value function for states
                        \pi(s), any policy to decide actions
Do:
  \Lambda \leftarrow 0
   For each s \in S:
        v \leftarrow V(s)
        v \leftarrow \max_{a} \left[ \sum_{r,s'} p(s',r|s,a) [r + \gamma V(s')] \right]
        \Delta \leftarrow \max(\Delta, |v - V(s)|)
While \Delta < \theta
For each s \in S:
   \pi(s) \leftarrow \operatorname{argmax} \left[ \sum_{r,s'} p(s',r|s,a) [r + \gamma V(s')] \right]
Return V(s), \pi(s)
```


Monte Carlo Control

- The dynamics of the system are unknown.
- We can sample action-state pairs and estimate their returns for entire.
- Monte Carlo methods will estimate values asymptotically.
- Assumptions:
 - exploring starts (starting from all possible states)
 - Infinite samples of episodes
- Assumptions can be lifted via:
 - ϵ -soft policies (always non-zero probability for taking an action, exploring via "random" actions)
 - Importance sampling (sampling episodes that contain more information about value estimation and policy optimization)
- Next slides contain pseudocode relevant to the prediction and control problem in MC!

Sample experiences

```
Play Episode Algorithm

Input: \pi(s), policy to evaluate environment

experiences \leftarrow list s \leftarrow environment.initial_state()

While s \neq s_{terminal}: a \leftarrow \pi(s) s', r \leftarrow environment.apply(a) experiences.add(s, a, s', r)
```

Return experiences

On Policy Iteration First Visit Monte Carlo

LEARNING: An introduction, MIT PRESS. Policy First Visit Monte Carlo Algorithm Ch.4 Dynamic Programming, p.101 **Inputs**: ϵ -soft $\pi(s)$, environment Parameters: γ, ϵ **Variables:** V(s), total_episodes, Q(s, a), the expected return after taking and action a on state s state_returns: $\{a, s, list\}$, Structure for all observed returns for each pair (a, s)For episode in total_episodes: experiences \leftarrow Play Episode Algorithm($\pi(s)$, environment) $G \leftarrow 0$, $T \leftarrow experinces. length$ For t in [T, T-1, ..., 0]: $s_t, a_t, s_{t+1}, r_t \leftarrow \text{experiences.get}(t)$ $G \leftarrow \gamma G + r_t$ If (a_t, s_t) not in experiences.get(t-1, t-2, ..., 0): state_returns.get((a_t, s_t)).append(G) $Q(s, a) \leftarrow \text{mean}(\text{state_returns.get}((a_t, s_t)))$ $a^* \leftarrow \operatorname{argmax} Q(s_t, a)$ For a in \mathcal{A}_t : $\#\mathcal{A}_t \leftarrow \text{environment.all_possible_actions}(s_t)$ $\pi(a|s_t) = \begin{cases} 1 - \epsilon + \frac{\epsilon}{|\mathcal{A}_t|}, a = a^* \\ \frac{\epsilon}{|\mathcal{A}_t|}, a \neq a^* \end{cases}$

* SUTTON, R. S. . B. (2018). REINFORCEMENT

Summary

- Reinforcement Learning can be used for uncertain and dynamic environments
- Exploitation vs Exploration
- Control Problem: optimal policy ~ policy iteration
- Prediction Problem: optimal estimation ~ policy evaluation
- Dynamic Programming: System dynamics are known, guaranteed convergence & optimality
- Monte Carlo: Sample whole episodes, asymptotically optimal

Questions

Some References

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: an introduction. MIT Press. Retrieved from https://drive.google.com/file/d/1opPSz5AZ kVa1uWOdOiveNiBFiEOHjkG/view

Interesting Chapters:

- 1 Introduction: 1.1 Reinforcement Learning, 1.2 Examples, 1.3 Elements of Reinforcement Learning
- 3 Finite Markov Processes: 3.1 The Agent-Environment Interface, 3.2 Goals and Rewards, 3.3 Returns and Episodes
- 4 Dynamic Programming: All
- 5 Monte Carlo Methods: All
- 6 Temporal-Difference Learning: 6.1 TD Prediction, 6.2 Advantages of TD Prediction Methods, 6.4 Sarsa: On-policy TD Control, 6.5 Q-learning Off-policy TD Control
- 8 Planning and Learning with Tabular Methods: 8.1 Models and Planning, 8.2 Dyna: Integrated Planning, Acting, and Learning, 8.13 Summary of Part I: Dimensions
- 9 On-policy Prediction with Approximation: 9.1 Value-function Approximation, 9.2 The Prediction Objective (\overline{VE}) , 9.3 Stochastic-gradient and Semi-gradient Methods
- 13 Policy Gradient Methods: 13.1 Policy Approximation and its Advantages, 13.2 The Policy Gradient Theorem, 13.5 Actor-Critic Methods
- 14 Psychology: 14.1 Prediction and Control
- 15 Neuroscience: 15.4 Dopamine, 15.7 Neural Actor-Critic, 15.9 Hedonistic Neurons, 15.10 Collective Reinforcement Learning
- 17 Frontiers: 17.3 Observations and State
- Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., ... Hassabis, D. (2017). Mastering the game of Go without human knowledge. Nature, 550(7676), 354–359. https://doi.org/10.1038/nature24270
- David Silver's slides:
 http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

Extra Slides

Just in case

Notation Table I

Symbol	Explanation
i, j	Agent indices
O(x)	An objective function that operates on input \boldsymbol{x}
t	A timestep
a_t	An action taken by agent at time t
s_t	The agent state of agent at time t
r_t	The reward received by an agent at time t
$g(s_t a_t)$	The state transition that happens from time t to $t+1$ given agent state and selected action
$V(s_t)$	The value function, that provides the agent estimates about how optimal is its state at time \boldsymbol{t}
$Q(s_t, a_t)$	The action-value function, that provides the agent estimates about how optimal is its state s_t and the action it selected a_t at time t

Notation Table II

Symbol	Explanation
$v(s_t) \\ q(s_t, a_t)$	The true state and action-state value functions that provided the actual value of how optimal the state s_t and selected action a_t are for agent at time t . Usually, they are not known.
$\pi(a_t s_t)$	The policy that selects the action \boldsymbol{a}_t given the state \boldsymbol{s}_t for the agent at time t .
γ	The discount factor, usually $0 \leq \gamma \leq 1$, which discounts future rewards and values
R_t	The cumulative reward from time t and on, for agent.
G_t	The return, which is the cumulative reward from time t until the end of an episode (e.g. when a goal is met or failed for an agent).
$\pi_*(a_t s_t)$	The optimal policy that maximizes cumulative reward and return.
o_t	The environmental observation of an agent at time t . Usually modelled along with state.