IUT DE COLMAR

R301

Année 2022-23

Réseaux de campus

MARTIN BAUMGAERTNER

Table des matières

1	\mathbf{CM}	1 - 5 septembre 2022	2
	1.1	Les technologies sans fils	2
	1.2	Organisme régulateurs	2
	1.3	Portée du signal	3
	1.4	Rappel collisions et intrerférences	3
	1.5	Bande ISM	3
	1.6	Les topologies de base	3
	1.7	Mode infrasctucture	4
	1.8	Mode répéteur (repeaters)	4
	1.9	Sécuriser son réseau	4
	1.10	Pirater son réseau	4
2	$\mathbf{C}\mathbf{M}$	2 - 12 septembre 2022	5
	2.1	-	5
3	TD	2 - 12 septembre 2022	6
	3.1	-	6
	3.2		6
	3.3		6
	3.4	·	6
	3.5		6
	3.6	·	6
	3.7		6
	3.8		6
	3.9		6
	3.10		6
	3.11		7
			7
			7
			7

1 CM 1 - 5 septembre 2022

1.1 Les technologies sans fils

- WPAN (Wireless Personal Area Network) : réseau sans fil de petite portée (10m) entre des appareils mobiles (téléphones, ordinateurs portables, etc.). Exemples : Bluetooth, ZigBee, etc.
- WMAN (Wireless Metropolitan Area Network) : réseau sans fil de moyenne portée (1km) entre des appareils mobiles (téléphones, ordinateurs portables, etc.). Exemples : Wi-Fi, WiMax, etc.
- WLAN (Wireless Local Area Network) : réseau sans fil de grande portée (10km) entre des appareils mobiles (téléphones, ordinateurs portables, etc.). Exemples : Wi-Fi, WiMax, etc.
- WAN (Wide Area Network) : réseau sans fil de très grande portée (100km) entre des appareils mobiles (téléphones, ordinateurs portables, etc.). Exemples : Wi-Fi, WiMax, etc.

1.2 Organisme régulateurs

- Wifi alliance = consortium industriel qui possède la marque Wifi.
- IEE = Institute of Electrical and Electronics Engineers.

1.3 Portée du signal

- -2,4 GHz (802.11 b/g/n) : 70 m en intérieur
- -5 GHz (802.11 n/ac/ax) : 35m en intérieur
- 6 Ghz (802.11 be) : 30m en général

En gros, on peut retenir que quand la fréquence diminue, le débit diminue mais la portée augmente.

FIGURE 1 – Réception d'un signal

1.4 Rappel collisions et intrerférences

Collisons = sur un meme canal gégrées par un algorithme.

1.5 Bande ISM

Les canaux 12 et 13 sont quasi interdits aux USA sauf à faire puissance le 14 étant strictement interdit dans le pays.

1.6 Les topologies de base

Avec point d'accès = la borne n'est pas barrée Sans point d'accès = la borne est barrée

1.7 Mode infrasctucture

ESSID/SSID : nom du réseau

Un AP configuré dans ce mode va jouer le rôle de simple carte WIFI, via le câble ethernet.

1.8 Mode répéteur (repeaters)

- Sert à étendre le réseau dans des zones d'ombres
- Débit divisé par 2
- Risque de collision élevé car c'est sur la même fréquence

1.9 Sécuriser son réseau

- WEP: Wired Equivalent Privacy (déjà obsolète), très facile à pirater
- WPA: Wi-Fi Protected Access, plus sécurisé que WEP, solution transitoire
- conçue avant la finalisation de la norme 801.11i
- WPA2 : Wi-Fi Protected Access 2, plus sécurisé que WPA, respecte a norme
- 802.11i et imposee le protocole de gestion de cles CCMP
- WPA3 : Wi-Fi Protected Access 3, plus sécurisé que WPA2, introduit en 2018
- WPA Personal : WPA avec une seule clé partagée par tous les utilisateurs, conçue pour les petits réseaux
- WPA entreprise : WPA avec une clé différente pour chaque utilisateur, conçue pour les grands réseaux d'entreprise

Voici quelques solution pour sécurer son réseau :

- Cacher le SSID
- Filtrer adresses MAC
- Utiliser le WPA3

1.10 Pirater son réseau

- Utiliser Macchanger pour changer adresse MAC
- utiliser airodump-ng pour les stations disponibles
- utiliser aireplay-ng pour envoyer une trame de déconnexion d'une station connectéé, qui va alors tenter de se reconnecter automatiquement
- Utiliser AirCrack-ng avec un fichier adéquat

$2 \quad \text{CM 2 - } 12 \text{ septembre } 2022$

2.1 La transmission hertzienne

- La transmission hertzienne est une transmission sans fil
- Elle utilise les ondes électromagnétiques
- Elle est utilisée pour la télévision, la radio, le téléphone, etc.
- Elle est basée sur la propagation des ondes électromagnétiques
- Elle est utilisée pour la transmission de données
- Très robuste maus 1 bit/signal

3 TD 2 - 12 septembre 2022

3.1 Question 1

La distance maximal en 802.11b est de 100m. Lorsque l'on veut calculer le temps nécessaire à la propagation nous faisons $\frac{100}{3*10^8}$, nous obtenons $3,33*10^{-7}$ secondes. Donc temps de propagation = 0,3µs. ce qui est très faible donc négligeable.

3.2 Question 2

Pour le standard IEEE 802.11b, les durées sont les suivantes : SIFS : 10µs, DIFS 50µs, TS = 20

3.3 Question 3

La formule reliant les 3 variables : DIFS = SIFS + 2*TS.

3.4 Question 4

Tbackoff = Rand[0,CW] x Ts avec CWi=2k-1

- 3.5 Question 5
- 3.6 Question 6
- 3.7 Question 7
- 3.8 Question 8

3.9 Question 9

L'en-tête MAC d'une trame est de 30 octets. Et le corps de la trame en wifi fait entre 0 et 2312 octets. Et sa séquence de contrôle est de 4 octets.

3.10 Question 10

Il faudra 24,7μs car nous faisons Temps de transmission = Taille des données / Vitesse de transfert.

3.11 Question 11

Le PLCP est un type d'en-tête ajouté à la couche Physique. Il se compose de deux parties principales, le préambule et l'en-tête, comme indiqué ci-dessous.

FIGURE 2 – Le PLCP

La première partie du PLCP est pour 'Sync' (Synchronisation). Il s'agit d'une partie composée de 80 bits d'alternance 0 et 1.

La partie suivante est le SFD (Start Frame Delimiter). C'est une sorte de balise indiquant le début de la trame physique et c'est une séquence de 16 bits spécifiquement déterminée (0000110010111101).

3.12 Question 12

Pour calculer la taille de données nous modifions la formule et il faut faire taille de données = Temps de transmission * Vitesse de transfert. donc, $1,92^{-4}$ * 1Mbps = 0,0015 bits.

3.13 Question 13

La taille totale d'une trame ACK est de 14 octets.

3.14 Question 14