Bayes Rule

- A method to calculate the conditional probability of one event based on the conditional probability of another
 - Why? One conditional probability may be easier to calculate than the other
 - We want to obtain the probability of an event given some evidence, some data, some observations, some experiments

Bayes Rule

- A method to calculate the conditional probability of one event based on the conditional probability of another
 - Why? One conditional probability may be easier to calculate than the other
 - We want to obtain the probability of an event given some evidence, some data, some observations, some experiments

•
$$P(X|Y) = \frac{P(Y|X) \cdot P(X)}{P(Y)}$$

- $P(X|Y) \rightarrow$ Posterior probability
- $P(X) \rightarrow$ Prior probability
- $P(Y|X) \rightarrow$ Likelihood
- $P(Y) \rightarrow$ Evidence
- Posterior = Likelihood x Prior / Evidence

- C = have covid
- T = test result
- Problem: If a randomly selected patient has the test and it comes back positive, what is the probability that the patient has covid?
 - Test sensitivity (true positives) : P(T=positive | C=true) = 0.85 → 85% probability?

- C = have covid
- T = test result
- Problem: If a randomly selected patient has the test and it comes back positive,
 what is the probability that the patient has covid?
 - Test sensitivity (true positives): P(T=positive | C=true) = 0.85 → 85% probability? NO!

- C = have covid
- T = test result
- Problem: If a randomly selected patient has the test and it comes back positive, what is the probability that the patient has covid?
 - Test sensitivity (true positives): P(T=positive | C=true) = 0.85 → 85% probability? NO!
 - P(C=true | T=positive)?
 - P(C=true) = 0.02%
 - P(T=positive) = 5%

- C = have covid
- T = test result
- Problem: If a randomly selected patient has the test and it comes back positive, what is the probability that the patient has covid?
 - Test sensitivity (true positives) : P(T=positive | C=positive) = 0.85 → 85% probability? NO!
 - P(C=true | T=positive)?
 - P(C=true) = 0.02%
 - P(T=positive) = 5%
 - P(C=true | T=positive) = P(T=positive | C=true) P(C=true) / P(T=positive) = 0.85 x 0.0002 / 0.05 = 0.0034 = 0.34%

