

SHEHAB AHMED

LUC SUZUKI

ERIN NG

YARA IDRIS

Stakeholders

- 1. PETS (END-USER)
- 2. PET OWNERS (COMMUNITY)
- 3. ONLINE RETAILERS

Project Challenge

Challenge Area: Managing various food types for many pets

Pet owners face following challenges:

- Ensure pets are fed on time
- Managing different food types (cat, dog, etc.)

Current manual feeders or basic automated ones are:

- Not versatile
- Cannot differentiate different foods
- Lack cloud-based features ensuring feeder is always stocked

How might IoT address this challenge?

Automation and remote management is enabled by IoT by connecting the feeder to the internet.

Ultrasonic and RFID sensors detect and identify the pet's presence.

IoT technology facilitates the ordering of the pet food through cloud integration.

Professional Articulation - Part A

Current Solution

- Portion Management + Meal Scheduling
- Pet Monitoring
- Usage History
- Application Software

Shortfalls

- Only dispenses food
- Only dispenses one type of food
- Manually purchase food to restock
- Costly

Professional Articulation - Part B

Project Description

- Al Image recognition to detect presence + identify type of pet
- Infrared sensors measures levels of food
- Liquid level sensors measures water level
- Real-time control + Monitoring via Application

Overcome The Shortfalls

- Cloud integration ensures timely restocking.
- Feeds more than one pet
- Dispenses food and water
- Cost effective

Proof of Concept

Animal Recognition

- Using RFID tags multiple pets can access their food on a timely basis
- Unique ID's will dispense their respective foods which can be customized

Remote Feeding

- Using an MQTT protocol users can dispense food manually or in a timed fashion
- Emergency stop to terminate dispensing

Inventory Management

- Ultrasonic level sensors will be used to monitor the food left in the reserve
- Restocking through Amazon can be customized to ensure food is always available

Proof of Concept - Block Diagram

Proof of Concept - Budget

Component	Quantity	Cost	Total
<u>Arduino Kit</u>	1	\$40	\$85
<u>Ultrasonic Sensor</u>	2	\$6	
RFID Sensor	1	\$5	
Servo Motor	1	\$15	
3D Printed Components	1	\$19	

Project Risks

Sensor Malfunction from pet interference

issues due to network reliability

Retailer Dependence

Mitigation Tactic

Use high-quality, pet-proof components

Mitigation Tactic

Ensure fallback mechanisms for feeding if IoT fails

Mitigation Tactic

Maintain multiple retailer partnerships to always ensure stock availability

Thank you for your time!

FROM TEAM **SLEY**

