Data Analyst

Problématique

Comment établir un état des lieux via les chiffres d'affaires d'une entreprise ?

Index

- I. Traitement des données
 - A. Data's
 - B. Traitement des données
 - C. Enregistrement
 - D. Résumé
- II. Analyse de donnée
 - A. Graphique d'analyses & explication
- III. Corrélation des données
 - A. Explication des plots
- IV. Conclusions
- V. Questions

Stack technique

Nous avons mis en place tout un environnement afin de pouvoir manipuler les donnée de manière sécurisée. Le projet utilise le langage python via l'IDE Jupyter et un gestionnaire de container qui est docker

Traitement des données

Data's

Data

On interagit avec 3 dataframes différents:

- 1. Les produits
- 2. Les transactions
- 3. Les clients

Produits

	id_prod	price	categ
0	0_1421	19.99	0
1	0_1368	5.13	0
2	0_731	17.99	0
3	1_587	4.99	1
4	0_1507	3.99	0

Transactions

	id_prod	date	session_id	client_id
0	0_1483	2021-04-10 18:37:28.723910	s_18746	c_4450
1	2_226	2022-02-03 01:55:53.276402	s_159142	c_277
2	1_374	2021-09-23 15:13:46.938559	s_94290	c_4270
3	0_2186	2021-10-17 03:27:18.783634	s_105936	c_4597
4	0_1351	2021-07-17 20:34:25.800563	s_63642	c_1242

Clients

client_id	sex	birth
c_4410	f	1967
c_7839	f	1975
c_1699	f	1984
c_5961	f	1962
c_5320	m	1943
	c_4410 c_7839 c_1699 c_5961	c_7839 f c_1699 f c_5961 f

Traitement des données

Pour chacune de ces dataframes évoqués nous allons appliquer un traitement de données. Ceci implique plusieurs faits :

- 1. Correction des valeurs aberrantes
- 2. Enlever les valeurs négatives
- 3. Identifier les valeurs nulles

Produit

Data

Pour chaque items, elle correspondent à une catégorie unique et un prix fixe.

Problématique ? Oui, car elle à des valeurs négatives mais aussi de test.

Test Values

detectTestValue = products[products['id_prod'].str.contains('T', na=True) == True]
detectTestValue

	id_prod	price	cate	
31	Т 0	-1.0	(

Negative values

 id_prod
 price
 categ

 731
 T_0
 -1.0
 0

Transaction

Data

Pour chaque colonne, elle correspondent à un id de produit, une date, un client et une session

Problématique ? Oui, nous obtenons 200 lignes de test.

Afin de mieux traités les données. On applique une fonction de datatime

Test Values

	id_prod	date	session_id	client_id
1431	T_0	test_2021-03-01 02:30:02.237420	s_0	ct_1
2365	T_0	test_2021-03-01 02:30:02.237446	s_0	ct_1
2895	T_0	test_2021-03-01 02:30:02.237414	s_0	ct_1
5955	T_0	test_2021-03-01 02:30:02.237441	s_0	ct_0
7283	T_0	test_2021-03-01 02:30:02.237434	s_0	ct_1
				311
332594	T_0	test_2021-03-01 02:30:02.237445	s_0	ct_0
332705	T_0	test_2021-03-01 02:30:02.237423	s_0	ct_1
332730	T_0	test_2021-03-01 02:30:02.237421	s_0	ct_1
333442	T_0	test_2021-03-01 02:30:02.237431	s_0	ct_1
335279	T_0	test_2021-03-01 02:30:02.237430	s_0	ct_0

200 rows x 4 columns

Client

Data

Pour chaque items, elle correspondent à un

client unique, un sexe, age

Problématique ? Oui, car elle à des valeurs de test

Test Values

	client_id	sex	birth
2735	ct_0	f	2001
8494	ct_1	m	2001

Données manquantes

Data

Suite aux jointures des dataframes on se retrouve avec des données qui n'ont pas de prix et de catégorie.

Indice : code_produit liée à la catégorie Et application d'une moyenne

CA cat 0 avant = 2 229 722 CA cat 0 après = 2 230 817

103 x 10.64 (prix moyen de la cat)

Donnée orpheline

	id_product	sell_date	session_id	client_id	transaction_date	sell_year	month	sex	user_birthday	price	category_id
6231	0_2245	2021-06-17 03:03:12.668129	s_49705	c_1533	2021-06-17	2021	6	m	1972	NaN	NaN
10797	0_2245	2021-06-16 05:53:01.627491	s_49323	c_7954	2021-06-16	2021	6	m	1973	NaN	NaN
14045	0_2245	2021-11-24 17:35:59.911427	s_124474	c_5120	2021-11-24	2021	11	f	1975	NaN	NaN
17480	0_2245	2022-02-28 18:08:49.875709	s_172304	c_4964	2022-02-28	2022	2	f	1982	NaN	NaN
21071	0_2245	2021-03-01 00:09:29.301897	s_3	c_580	2021-03-01	2021	3	m	1988	NaN	NaN
322523	0_2245	2021-04-06 19:59:19.462288	s_16936	c_4167	2021-04-06	2021	4	f	1979	NaN	NaN
329226	0_2245	2021-03-30 23:29:02.347672	s_13738	c_7790	2021-03-30	2021	3	f	1983	NaN	NaN
330297	0_2245	2021-12-03 14:14:40.444177	s_128815	c_6189	2021-12-03	2021	12	f	1984	NaN	NaN
335331	0_2245	2021-04-27 18:58:47.703374	s_26624	c_1595	2021-04-27	2021	4	f	1973	NaN	NaN
336020	0_2245	2021-05-01 03:35:03.146305	s_28235	c_5714	2021-05-01	2021	5	f	1972	NaN	NaN

103 rows x 11 columns

Enregistrement des données

Une fois les données approuvées et conforme à nos attentes nous allons les enregistrer dans un dossier 'data_clear_values'. Ce dossier contient nos 4 dataframes différents pour rappel :

- 1. Clients
- 2. Produits
- 3. Transactions
- 4. Merge (fusion des de ces dataframes)

Récapitulatif : traitement des données

Sur l'ensembles des dataframes, suites aux divers traitement effectué, une pertes de plus de 400 lignes sur l'ensembles des données.

Analyse de données

Première analyses

En 2021 : cette librairie réalise un chiffre d'affaire de plus de 4 millions d'euros de CA.

Nous pouvons décomposer les ventes en 3 grande catégorie.

La catégorie 0 représente 39% des transactions.

On remarque que ces catégories se traduit aussi en gamme de prix.

La société à générer plus de 250 000 transactions sur 12 mois.

Par catégorie / transaction

Chiffre d'affaires

categories

Attention, suite à cette visualisation on observe une anomalie sur le mois d'octobre.

Ca / catégorie

Chiffre d'affaires octobre

categories

A l'intérieur du Dataframe on constate des données non enregistrées sur la catégorie n*1 . On décide de supprimer ce mois de notre analyse.

Toutes les analyses sont calculé sans le mois d'octobre

Ca / catégorie

Catégorie / achat

Box plot

Catégorie 0 : 209 426 Catégorie 1 : 109 735 Catégorie 2 : 17 552

Dans la catégorie n*2 on observe une grande dispersion au niveaux des prix.
Certains article, bien que non majoritaire possède une valeur largement supérieur au prix médiant.

Les dépense via les catégories.

Volumes des ventes / clients

Indice de gini de 0.4 : corréspond a deux fois l'air entre la courbe bleu et les pointillés.(plus elle est basse plus elle est inégalitaire) lorenz curve (très peu de client représente beaucoup de CA)

Analyse bi-varié CA = Catégorie / tranche d'âge

Identification des plus gros clients

CA par Client

4 plus gros clients

On constates que c'est 4 clients représente plus de 7% du chiffre d'affaire global sur ces 12 mois. (hypothèse c'est sans doute une école ou une université)

	client_id	price	client_id	sex	user_age
677	c_1609	162007.34	c_8233	m	58
4388	c_4958	144257.21	c_1123	f	42
6337	c_6714	73197.34	c_1503	m	35
2724	c_3454	54442.92	c_1476	m	50

Synthèse de l'analyse de donnée

Suite à cette première analyse on constate :

- Plus de 50% des clients sont de la même catégorie
- Suppression du mois d'octobre dans le dataframe
- Les 3 plus gros clients représentent plus de 4% du Chiffre d'affaire global (représenté aussi par la courbe de lorenz
- Le panier moyen toute catégorie est de 33 euros

Corrélation des variables

Corrélation des variables

Le but d'avoir des grosses données l'optimisation du CA dans ce cas précis en extrayant différentes variable on peut voir le comportement des consommateurs

Y-a t-il une corrélation entre le sexe des client et les catégories achetés ?

CHI-2

Une utilise cette technique afin de voir si deux variable qualitative sont corréler. Visuellement on utilise un tableau de contingence

La p-value : 1 Chi-2 : 1.92

Légère corrélation entre la catégorie 1 et 2 . La troisième n'impacte pas .

Y-a t-il une corrélation entre l'âge des clients et le montant des achats ?

Régression linéaire

Une utilise cette technique de corrélation car les variables sont quantitatives.

Corrélation de pearson = 0.2 Cette corrélation négative faible entre l' âge des clients et leur dépenses.

P-val: 3.8

Y-a t-il une corrélation entre l'âge des clients la moyenne des achats ?

Dispersion

Une utilise cette technique de corrélation car les variables sont quantitatives.

Y-a t-il une corrélation entre l'âge et la fréquence des achats?

Box Plot

On peut faire le rapprochement avec la régression linéaire.

L'écart type des jeunes et ceux qui achète le plus souvent

Etat**2 = 0.37

Y-a t-il une corrélation entre l'âge et le panier moyen?

Regréssion

Tranche d'âge et panier moyen

Cette régression n'est pas explicative. On référence que 30%. On constate visuellement qu'il n'y a pas de corrélation entre elle.

R**2 = 0.30

Y-a t-il une corrélation entre l'âge et les catégorie ?

Contingence

Intérêt des jeune pour la catégorie 2. Pour le autres tranches d'âges. Il n'y a pas d'impact significatif entre les autres catégories et les autres tranches d'âges.

 $xi_n = 0$ P-value = 0

Conclusion

- 1. Une augmentation du chiffre d'affaire à part au mois d'octobre grosse baisse
- 2. Le sexe n'interfaire pas avec le CA
- 3. Les 30-40 sont ce qui dépensent le plus
- 4. Il y a une niche commercial pour les plus de 40 ans car ce groupe achète les livre les plus chères
- Cela nécessite énormément de traitement avant d'obtenir des datas clear

Questions?

Sources

- https://datascientest.com/correlation-entre-variables-comment-mesurer-la-dependance
- https://openclassrooms.com/
- http://www.xavierdupre.fr/app/ensae_teaching_cs/helpsphinx/notebooks/td2a_eco_reg ressions_lineaires.html