

Data Structure & Algorithms

Sunbeam Infotech

process heap us heap data sinchere?

7	RAM Styres call (FAR 9F) H -> dyramic mem alloc. RD -> String Carstants	Heap data Struct
	D - 8 lo but & static vare	Cubyon Blackan fee
	T -> machine code	Tyre:
beodern		More Heap
7 D RD		win Head
187 . ene	PCB malloc (7 or new _	
ndick) Heep	: Pictionary meaning Collection of untidy objects	

Agenda

- B-Tree vs B+ Tree /
- Graph Introduction
- Graph terminologies
- Spanning trees -
- Forest
- Graph types
- Graph implementation
 - Adjacency matrix
 - Adjacency list
- BFS & DFS Traversal

BTree - specialization of on-may free (tree with degree on).

- A B-Tree of order m can have at most m-1 keys and m children.
- B tree store large number of keys in a single node. This allows storing number of values keeping height minimal.
- Note that in B-Tree all leaf nodes are at same level.
- B-Tree is commonly used for indexing into file systems and databases. It ensures quick data searching and speed up disk access.

B+ Tree

- Extension of B-Tree for efficient insert, delete and search operation.
- Data is stored in leaf nodes only and all leaf nodes are linked together for sequential access.
- · Search keys may be redundant.
- Faster searching, simplified deletion (as only from leaf nodes).
- B+Tree is commonly used for indexing into file systems and databases. It ensures quick data searching and speed up disk access.

D'	ictionary =	Host wood	= resab	= Ha	32 Table
Are	ay (Table)	•			
O pen	Charena				
addreis	123	ket - Itak	ed list or	BST a	or AVR tree
	Pro	keh - John			B Tree
					AS S TO S
	->				
	- per				
1	7,00				

Graph

- Graph is a non-linear data structure.
- Graph is defined as set of vertices and edges. Vertices (also called as nodes) hold data, while edges connect vertices and represent relations between them.
 - G = { V, E }
 - V = { A, B, C, D, E }
- · Graph edges may or may not have directions.
- Undirected edges
 - $E = \{ (A,B), (A,D), (B,C), (B,D), (C,E), (D,E) \}$
- Directed edges
 - $E = \{ \langle A,B \rangle, \langle B,C \rangle, \langle B,D \rangle, \langle C,E \rangle, \langle D,A \rangle, \langle E,D \rangle \}$

ad a com

Undirected Graph

Graph terminologies

- Degree of node: Number of nodes adjacent to the node.
 - Degree of A is 3
 - Degree of E is 2
- Degree of graph: Maximum degree of any node in graph.
- Path: Set of edges between two vertices. There can be multiple paths between two vertices.
 - A-D-E ~
 - A-B-E ✓
 - A-C-B-E ∨
- Cycle: Path whose start and end vertex is same.

$$\rightarrow$$
 A-B-C-A

- A-B-E-D-A
- Loop: Edge connecting vertex to itself. It is smallest cycle.

Graph Types

- CO W O VCC
- NOSAT 4P > WEO 42

- Graph edges do not have directions.
- If P is adjacent to Q, Q is adjacent to P.

(P,Q)

- Graph edges have direction.
- If P is adjacent to Q, Q may not be adjacent to P.
- Out-degree: Number of edges originated from the node
- In-degree: Number of edges terminated on the node.
- Weighted graph
 - Graph edges have weight associated with them.
 - Weight represent some value e.g. distance, resistance.
- Directed Weighted graph (Network)
 - Graph edges have directions as well as weights.

Graph types

- Simple graph
 - Doesn't have multiple edges in adjacent vertices or loops.
- Connected graph
 - From each vertex some path exists for every other vertex.
 - Can traverse the entire graph starting from any vertex.
- Complete graph
 - direct edique
 - Each vertex of a graph is adjacent to every other vertex.
 - For un-directed graph
- The vertex of a graph or un-directed graph

 Number of edges = n (n-1)/2 = 54412 = 10 mot simple south
 - For directed graph
- Bi-partite graph
 - Vertices can be divided in two disjoint sets.
 - Vertices in first set are connected to vertices in second set.
 - Vertices in a set are not directly connected to each other.

Spanning Tree

- Tree is a graph without cycles.
- Spanning tree is connected sub-graph of the given graph that contains all the vertices and sub-set of edges.
- Spanning tree can be created by removing few edges from the graph which are causing cycles to form.
- One graph can have multiple different spanning trees.
- In weighted graph, spanning tree can be made who has minimum weight (sum of weights of edges). Such spanning tree is called as Minimum Spanning Tree.
- Spanning tree can be made by various algorithms.
 - BFS Spanning tree ✓
 - DFS Spanning tree
 - Prim's MST ✓
 - Kruskal's MST ✓

kosmy , subpresentation - Adjacency Matrix Linked List :[V][V] +max (V)[V]; list <imt> are Co); Vector < rector < in+>> rector < list </mi> may;

Graph Implementation – Adjacency Matrix

- If graph have V vertices, a V x V matrix can be formed to store edges of the graph.
- Each matrix element represent presence or absence of the edge between vertices.
- For non-weighted graph, 1 indicate edge and 0 indicate no edge.
- For weighted graph, weight value indicate the edge and infinity sign ∞ represent no edge.
- For un-directed graph, adjacency matrix is always symmetric across the diagonal.
- Space complexity of this implementation is $O(V^2)$.

	A	В	С	D	ш	F
A	0	-	_	1	0	0
В	\	0		0	1	0
C	(1)	1	0	0	0	0
D	١	0	0	0	1	\
Ε	ಲ	1	0	١	0	0
Ę	0	0	0	١	Ð	0

	A	В	С	D	E	F
A	8	7	4	8	00	œ
В	7	∞	9	®	5	œ
С	J	9	8	<i>0</i> 0	8	œ
D	80	8	8	8	6	2
Е	8	5	8	6	00	æ
Ę	8	8	8	2	8	8

Graph Traversal – BFS & DFS

035421

- DFS algorithm.
- 2 · Push start vertex on stack & mask as visited
- Pop vertex from stack.
- Print the vertex.
- Put all non-visited neighbours of the vertex on the stack and mark them as visited.
- @ repeat 3-5 until stade is empty.
- BFS algorithm.
 - Choose a vertex as start vertex.
- 2 · Push start vertex on queue & mask a vished
- Pop vertex from queue.
- Print the vertex.
- Put all non-visited neighbours of the vertex on the stack and mark them as visited.

Thank you!

Nilesh Ghule <nilesh@sunbeaminfo.com>

