Kapitel I

Galois theory

§ 1 Algebraic field extensions

Notations 1.1 If k, L are fields and $K \subseteq L$, L/k is called a *field extension*. The dimension $[L:k] := \dim_k L$ of L considered as a k-vector space, is called the degree of the field extension of L over k. A field extension L/k is called *finite*, if $[L:k] < \infty$. The polynomial ring over k is defined as

$$k[X] := \left\{ f = \sum_{i=0}^{n} a_i X^i \mid n \geqslant 0, a_i \in k \ \forall i \in \{0, ..., n\}, a_n \neq 0 \right\} \cup \{0\}.$$

Reminder 1.2 Let L/k a field extension, $\alpha \in L$, $f \in k[X]$.

- (i) $f(\alpha)$ is well defined.
- (ii) $\phi_{\alpha}: k[X] \to L, f \mapsto f(\alpha)$ is a homomorphism.
- (iii) $\operatorname{im}(\phi_{\alpha}) := k[\alpha]$ is the smallest subring of L containing k and α .
- (iv) $\ker(\phi_{\alpha}) = \{ f \in k[\alpha] \mid f(\alpha) = 0 \} \triangleleft k[X] \text{ is a prime ideal.}$
- (v) $\ker(\phi_{\alpha})$ is a principle ideal.
- (vi) If $f_{\alpha} \neq 0$ and the leading coefficient of f_{α} is 1, f_{α} is called the *minimal polynomial* of α , i.e. $f_{\alpha}(\alpha) = 0$ and f_{α} is the polynomial of smallest degree with this property. In this case, f_{α} is irreducible and $\ker(\phi_{\alpha}) = (f_{\alpha})$ is a maximal ideal.
- (vii) Then $L_{\alpha} := k[X] / \ker(\phi_{\alpha}) = k[X] / (f_{\alpha})$ is a field.
- (viii) We have $k[\alpha] = \operatorname{im}(\phi_{\alpha}) \cong k[X]/\operatorname{ker}(\phi_{\alpha}) = L_{\alpha}$, if $f_{\alpha} \neq 0$. Moreover $k[\alpha] = k(\alpha)$, where $k(\alpha)$ is the smallest field containing k and α . In particular, $\frac{1}{\alpha} \in k[\alpha]$.
- (ix) The degree of the field extension $k[\alpha]/k$ is $[k[\alpha]:k] = \deg(f_{\alpha})$.

proof. (ii) For $f, f_1, f_2 \in k[X], \lambda \in k$ we have

$$(f_1 + f_2)(\alpha) = f_1(\alpha) + f_2(\alpha) \operatorname{and}(\lambda f)(\alpha) = \lambda f(\alpha)$$

(iii) Clear.

(iv) Let $f, g \in k[X]$ such that $f \cdot g \in \ker(\phi_{\alpha})$: Then

$$0 = (f \cdot g)(\alpha) = f(\alpha) \cdot g(\alpha)$$

and since L has no zero divisors, $f(\alpha) = 0$ or $g(\alpha) = 0$ and hence $f \in \ker(\phi_{\alpha})$ or $g \in \ker(\phi_{\alpha})$

(v) Remember that the polynomial ring is euclidean. Take $f_{\alpha} \in \ker(\phi_{\alpha})$ of minimal degree. We will show, that $\ker(\phi_{\alpha})$ is generated by f_{α} . Let $g \in \ker(\phi_{\alpha})$ arbitrary and write

$$g = q \cdot f_{\alpha} + r \text{ with } q, r \in k[X], \qquad \deg(r) < \deg(f_{\alpha}) \text{ or } r = 0.$$

Since $r = q \cdot f_{\alpha} \in \ker(\phi_{\alpha})$ and the choice of f_{α} , $\deg(r) \leqslant \deg(f_{\alpha})$, hence $r = 0 \Rightarrow g \in (f_{\alpha})$.

- (vi) If $f_{\alpha} = g \cdot h$, either $g(\alpha) = 0$ or $h(\alpha) = 0$. As above, this implies $g \in k$ or $h \in k^{\times}$, i.e. f or g is irreducible. Now assume, there is and ideal $I \leq k[X]$ satisfying $(f_{\alpha}) \subseteq I \subseteq k[K]$. Let $g \in I \setminus (f_{\alpha})$, such that (g) = I. Such a g exists by proof of (v). Then $f_{\alpha} = g \cdot h$, $h \in k[X]$. This implies, that either g or h is a constant polynomial, hence a unit. In the first case, I = k[X] and in the second one $I = (f_{\alpha})$, which implies the claim.
- (vii) We show the more general argument: If R is a ring, $\mathfrak{m} \lhd R$ a maximal ideal, then R/\mathfrak{m} is a field. Let $\overline{a} \in R/\mathfrak{m}$ for some $a \in R$, $\overline{a} \neq 0$. Let $I := (\mathfrak{m}, a)$ the smallest ideal in R containing \mathfrak{m} and a. Since $\overline{a} \neq 0$, hence $a \notin \mathfrak{m}$ we have $\mathfrak{m} \subsetneq I$ and since \mathfrak{m} is a maximal ideal, I = R. Hence $1 \in I$, so we can write 1 = x + ab for some $x \in \mathfrak{m}$ and $b \in R$. Then we get

$$\overline{1} = \overline{x + ab} = \overline{x} + \overline{a}\overline{b} = \overline{a}\overline{b},$$

hence \overline{a} is invertible in R/\mathfrak{m} .

(viii) Let

$$f_{\alpha} = \sum_{i=0}^{n} a_i X^i$$

Note, that $a_n = 1$ and $a_0 \neq 0$, since f_{α} is irreducible. We get

$$\Rightarrow 0 = f_{\alpha}(\alpha) = \sum_{i=0}^{n} a_{i}\alpha^{i} = a_{0} + a_{1}\alpha + \dots + a_{n}\alpha^{n}$$

$$\Rightarrow a_{0} = -\alpha \cdot \left(a_{1} + a_{2}\alpha + \dots + a_{n-2}\alpha^{n-2} + \alpha^{n-1}\right)$$

$$\Rightarrow 1 = -\alpha \cdot \left(\frac{a_{1}}{a_{0}} + \frac{a_{2}}{a_{0}}\alpha + \dots + \frac{a_{n-2}}{a_{0}}\alpha^{n-2} + \frac{1}{a_{0}}\alpha n - 1\right)$$

$$\Rightarrow \frac{1}{\alpha} = -\frac{a_{1}}{a_{0}} - \frac{a_{2}}{a_{0}}\alpha - \dots - \frac{a_{n-2}}{a_{0}}\alpha^{n-2} - \frac{1}{a_{0}}\alpha^{n-1}$$

Hence $\frac{1}{\alpha} \in k[X]$ and k[X] is a field.

(ix) The family $\{1, \alpha, \dots, \alpha^{n-1}\}$ forms a basis of $k[\alpha]$ as a k-vector space.

Example 1.3 Let $k = \mathbb{Q}$, $L = \mathbb{C}$, $\alpha = 1 + i$, $\beta = \sqrt{2}$. Then the minimal polynomials of α and β are

$$f_{\alpha} = (X - 1)^2 + 1, \quad f_{\beta} = X^2 - 2.$$

Proposition 1.4 (Kronecker) Let k be a field, $f \in k[X]$, $\deg(f) \ge 1$.

Then there exists a finite field extension L/k and $\alpha \in L$, such that $f(\alpha) = 0$.

proof. W.l.o.g. we may assume, that f is irreducible, since $f = g \cdot h = 0 \Rightarrow g = 0$ or h = 0. Then by 1.2 $(f) = \{f \cdot g \mid g \in k[X]\}$ is a maximal ideal and L := k/(f) is a field.

Clearly k is a subfield of L, since (f) does not contain any constant polynomial, i.e., if

$$\pi: k[X] \longrightarrow k[X]/(f)$$

denotes the residue map, we have $\ker(\pi) \cap k = \{0\}$, hence $\pi|_k$ is injective. Write

$$f = \sum_{i=0}^{n} a_i X^i.$$

Then we have

$$f(\pi(X)) = \sum_{i=0}^{n} a_i \pi(X)^i = \sum_{i=0}^{n} \pi(a_i) \pi(X)^i = \pi\left(\sum_{i=0}^{n} a_i X^i\right) = \pi(f) = 0,$$

hence $\alpha := \pi(X)$ is a zero of f in L. Moreover L/k is finite with degree $[L:k] = \deg(f) = n$, since $\{1, \alpha, \dots, \alpha^{n-1}\}$ is basis of L as a k-vector space. For the independence write

$$\sum_{i=0}^{n-1} \lambda_i \alpha^i = 0, \qquad \lambda_i \in k.$$

Assume, there is $0 \le j \le n-1$ with $\lambda_j \ne 0$. Then the polynomial

$$g = \sum_{i=0}^{n-1} \lambda_i X^i$$

satisfies $g(\alpha) = 0$ with $\deg(g) < \deg(f)$, which is not possible by irreducibility of f. It remains to show, that L is generated by the powers of α . We have $\alpha^n + a_{n-1}\alpha^{n-1} + \cdots + a_1\alpha + a_0 = 0$, hence we write

$$\alpha^{n} = -(a_{n-1}\alpha^{n-1} + \dots + a_{1}\alpha + a_{0}) \in (1, \dots, \alpha^{n-1}).$$

By induction on n, we get $\alpha^k \in (1, \dots, \alpha^{n-1})$ for all $k \ge n$.

Example 1.5 Let $k = \mathbb{Q}$, $f = X^n - a$ for some $a \in \mathbb{Q}$. For now we assume that f is irreducible (we may be able to prove this later). Then

$$L := \mathbb{Q}[X] \, \big/ (f) \, = \mathbb{Q}[X] \, \big/ (X^n - a) \, \cong \mathbb{Q}[\sqrt[n]{a}] = \mathbb{Q}(\sqrt[n]{a})$$

and the degree of the extension is equal to n.

Definition 1.6 Let L/k a field extension, $\alpha \in L$.

- (i) α is called algebraic over k, if there exists $f \in \mathbb{X}[X] \setminus \{0\}$, such that $f(\alpha) = 0$.
- (ii) Otherwise α is called transcendental.
- (iii) L/k is called an algebraic field extension, if every $\alpha \in L$ is algebraic over k.

Proposition 1.7 Every finite field extension L/k is algebraic.

proof. Let $\alpha \in L$, n := [L : k] the degree of L/k. Then $1, \alpha, \dots \alpha^n$ are linearly dependant over k, i.e. there exist $\lambda_0, \dots, \lambda_n \in k$, $\lambda_j \neq 0$ for at least one $0 \leq j \leq n$, such that

$$\sum_{i=0}^{n} \lambda_i \alpha^i = 0.$$

Hence the polynomial

$$f = \sum_{i=0}^{n} \lambda_i X^i \neq 0$$

satisfies $f(\alpha) = 0$, thus α is algebraic over k. Since α was arbitrary, L/k is algebraic.

Proposition 1.8 Let L/k a field extension, $\alpha, \beta \in L$.

- (i) If α, β are algebraic over k, then $\alpha + \beta, \alpha \beta, \alpha \cdot \beta$ are also algebraic over k.
- (ii) If $\alpha \neq 0$ is algebraic over k, then $\frac{1}{\alpha}$ is also algebraic over k.
- (iii) $k_L := \{ \alpha \in L | \alpha \text{ is algebraic over } k \} \subseteq L \text{ is a subfield of } L.$

proof. (i) Since $\alpha \in L$ is algebraic over $k \Rightarrow k[\alpha] = k(\alpha)$ is a finite field extension of k. Since β is algebraic over $k \Rightarrow \beta$ is algebraic over $k[\alpha]$, hence $(k[\alpha])[\beta]/k[\alpha]$ is a finite field extension. Further, we have

$$k \subseteq k[a] \subseteq (k[\alpha])[\beta] = k[\alpha, \beta].$$

Thus $k[\alpha, \beta]/k$ is algebraic with Proposition 1.5. This implies the claim, as $\alpha + \beta$, $\alpha - \beta$, $\alpha \cdot \beta \in k[\alpha, \beta]$.

- (ii) If $\alpha \neq 0$, $\frac{1}{\alpha}$ is algebraic over k with part (i).
- (iii) Follows from (i) and (ii).

Definition + **proposition 1.9** Let k be a field, $f \in k[X]$, $\deg(f) = n$.

- (i) A field extension L/k is called a *splitting field of* f, if L is the smallest field in which f decomposes into linear factors.
- (ii) A splitting field L(f) exists.
- (iii) The field extension L(f)/k is algebraic over k.
- (iv) For the degree we have $[L(f):k] \leq n!$. proof.
 - (ii) Do this by induction on n.

n=1 Clear.

n>1 Write $f = f_1 \cdots f_r$ with irreducible polynomials $f_i \in k[X]$. Then f splits if and only every f_i splits. Hence we may assume that f is irreducible

Consider $L_1 := k/(f)$. Then f has a zero in L_1 ; say α . Then we have $L_1 = k[\alpha]$. Now we can write $f = (X - \alpha) \cdot g$ for some $g \in k[X]$ with $\deg(g) = n - 1$. By induction hypothesis, there exists a splitting field L(g) for g. Then f splits over $L(g)[\alpha]$.

- (iii) Follows by part (iv) and Proposition 1.5
- (iv) Do this again by induction.

n=1 Clear.

n>1 In the notation of part (ii) we have $[k[\alpha]:k] = \deg(f) = n$. By the multiplication formula for the degree and induction hypothesis we have

$$[L(f):k] = [L(g)[\alpha]:k] = [L(g)[\alpha]:L(g)] \cdot [L(g):k] \le n \cdot (n-1)! = n!$$

Definition + **proposition 1.10** Let k be a field.

- (i) k is called algebraically closed, if every $f \in k[X]$ splits over k.
- (ii) The following statements are equivalent:
 - (1) k is algebraically closed
 - (2) Every nonconstant polynomial $f \in k[X]$ has a zero in k.
 - (3) There is no proper algebraic field extension of k.
 - (4) If $f \in k[X]$ is irreducible, then $\deg(f) = 1$.

proof. '(1) \Rightarrow (2)' Let $f \in k[X]$ be a non-constant polynomial of degree n. Then f splits over k, i.e. we have a presentation

$$f = \prod_{i=0}^{n} (X - \lambda_i)$$

with $\lambda_i \in k$ for $1 \leq i \leq n$. Every λ_i is a zero. Since $n \geq 1$, we find a zero for any nonconstant polynomial.

- '(2) \Rightarrow (3)' Assume L/k is algebraic, $\alpha \in L$. Let f_{α} be the minimal polynomial of α . By assumption, f_{α} has a zero in k. Since f_{α} is irreducible, we must have $f_{\alpha} = X \alpha$, hence $\alpha \in k$, since $f \in k[X]$.
- '(3) \Rightarrow (4)' Let $f \in k[X]$ irreducible. Then L := k[X]/(f) is an algebraic field extension. By (3), L = k, hence $1 = [L : k] = \deg(f)$.
- $(4) \Rightarrow (1)'$ For $f \in k[X]$ write $f = f_1 \cdots f_r$ with irreducible polynomials f_i for $1 \leq i \leq r$. With (4), $\deg(f_i) = 1$ for any i, hence f splits.

Lemma 1.11 Let k be a field. Then there exists an algebraic field extension k'/k, such that every $f \in k[X]$ has a zero in k'.

proof. For every irreducible polynomial $f \in k[X]$ introduce a symbol X_f and consider

$$R := k[\{X_f | f \in k[X] \text{ irreducible}\}] \supseteq k.$$

Monomials in R look like

$$g = \lambda \cdot X_{f_1}^{n_1} X_{f_2}^{n_2} \cdots X_{f_k}^{n_k}$$

with $\lambda \in k$, $n_i \in \mathbb{N}$. Let $I \leq R$ be the ideal generated by the $f(X_f)$, $f \in k[X]$ irreducible. The following claims prove the lemma:

Claim (a) $I \neq R$

Claim (b) There exists a maximal ideal $\mathfrak{m} \leq R$ containing I.

Claim (c) $k' = R/\mathfrak{m}$

To finish the proof, it remains to show the claims.

(a) Assume I = R. Then $1 \in I$, i.e.

$$1 = \sum_{i=1}^{k} g_{f_i} f_i (X_{f_i})$$

for suitable $g_{f_i} \in R$. Let L/k be a field extension in which all f_i have a zero α_i . Define a ring homomorphism by

$$\pi: R \longrightarrow L, X_f \mapsto \begin{cases} \alpha_i, & f = f_i \\ 0, & \text{otherwise} \end{cases}$$

Then we obtain

$$1 = \pi(1) = \pi\left(\sum_{i=1}^{k} g_{f_i} f_i\left(X_{f_i}\right)\right) = \sum_{i=1}^{k} \pi(g_{f_i}) f_i\left(\pi(X_{f_i})\right) = \sum_{i=1}^{k} \pi(g_{f_i}) f_i\left(\alpha_i\right) = 0,$$

hence our assumption was false and we have $I \neq R$.

(b) Let S be the set of all proper ideals of R containing I. By claim 2, $I \in S$. Let now

$$S_1 \subseteq S_2 \subseteq S_3 \subseteq \dots$$

be elements of \mathcal{S} . More generally let N be a totally ordered subset of \mathcal{S} and

$$S := \bigcap_{J \in N} J$$

Then $S \in \mathcal{S}$, hence \mathcal{S} is nonempty. By Zorn's Lemma we know that \mathcal{S} contains a maximal element $\mathfrak{m} \neq R$. Then \mathfrak{m} is maximal ideal of R, since an ideal $J \leq R$ satisfying $\mathfrak{m} \subsetneq J \subsetneq R$ is contained in \mathcal{S} , which is a contradiction considering the choice of \mathfrak{m} .

(c) Clearly k' is a field extension of k. Let $f \in k[X]$ be irreducible and $\pi: R \longrightarrow k/\mathfrak{m}$ denote the residue map. Then

$$f(X_f) \in I \subseteq \mathfrak{m}$$

i.e. we have

$$\pi(X_f) = 0$$

and thus $f(\pi(X_f)) = 0$. Hence $\pi(X_f)$ is algebraic over k.

Since k' is generated by the $\pi(X_f)$, k'/k is algebraic, which finishes the proof.

Theorem 1.12 Let k be a field. Then there exists an algebraic field extension \overline{k}/k such that \overline{k} is algebraically closed. \overline{k} is called the algebraic closure of k.

proof. By Lemma 1.9 there is an algebraic field extension k'/k, such that every $f \in k[X]$ has a zero in k'. Then let

$$k_0 := k, \quad k_1 = k'_0, \quad k_2 = k'_1, \quad k_{i+1} = k'_i \quad \text{for } i \geqslant 1$$

Clearly k_i is algebraic over k for all $i \in \mathbb{N}_0$ and $k_i \subseteq k_{i+1}$. Define

$$\overline{k} := \bigcup_{i \in \mathbb{N}_0} k_i$$

Then \overline{k}/k is an algebraic field extension. For $f \in \overline{k}[X]$ we find $i \in \mathbb{N}_0$ with $f \in k_i[X]$, hence f has a zero in k_i . With proposition 1.8, \overline{k} is algebraically closed.

§ 2 Simple field extensions

Definition 2.1 A field extension L/k is called *simple*, if there exists some $\alpha \in L$ such that $L = k[\alpha]$.

Example 2.2 Let $f \in k[X]$ be irreducible, L := k[X]/(f). Then $L = k[\alpha]$ where $\alpha = \pi(X) = \overline{X}$ and $\pi : k[X] \longrightarrow L$ denotes the residue map. Conversely, if L/k is simple and algebraic, then $L = k[\alpha]$ for some algebraic $\alpha \in L$. Let $f \in k[X]$ be the minimal polynomial of α over k, then

$$L = k[\alpha] = k(\alpha) = k[X]/(f).$$

Proposition 2.3 Let L be a field. Then any finite subgroup G of the multiplicative group L^{\times} is cyclic.

proof. Let $\alpha \in G$ be an element of maximal order, $n := \operatorname{ord}(\alpha)$. Define

$$G' := \{ \beta \in G : \operatorname{ord}(\beta) | n \}$$

We first show G' = G and then $G' = (\alpha)$. Let $\beta \in G$, $m := \operatorname{ord}(\beta)$. Then

$$\operatorname{ord}(\alpha\beta) = \operatorname{lcm}(m, n) \leq n$$

by the property of n. Thus m|n and $\beta \in G'$ and hence $G \subseteq G'$. Since $G' \subseteq G$ by definition, we have G' = G. Let now $\gamma \in G'$. We have $\gamma^n = 1$, hence γ is zero of

$$f = X^n - 1$$

f has at most n zeros, but since $|(\alpha)| = n$, we have $(\alpha) = G'$ which finishes the proof.

Corollary 2.4 Let k be a finite field. Then every finite field extension L/k is simple.

proof. We have $|L| = |k|^{[L:k]}$ and thus L is also finite. With proposition 2.2 there exists some $\alpha \in L$ such that $L^{\times} = L \setminus \{0\} = (\alpha)$, hence $L = k[\alpha]$, which proves the claim.

Remark 2.5 Let L/k be a finite field extension, $f \in k[X]$ and $\alpha \in L$ a zero of f. Let \overline{k} be an algebraic closure of k and $\sigma: L \longrightarrow \overline{k}$ a homomorphism of field such that $\sigma|_k = id_k$. Then $\sigma(\alpha)$ is a zero of f.

proof. Write

$$f = \sum_{i=0}^{n} a_i X^i$$

with coefficients $a_i \in k$, hence we have $\sigma(a_i) = a_i$ for $0 \le i \le n$. We obtain

$$f(\sigma(\alpha)) = \sum_{i=0}^{n} a_i (\sigma(\alpha))^i = \sum_{i=0}^{n} \sigma(a_i) (\sigma(\alpha))^i = \sigma\left(\sum_{i=0}^{n} a_i \alpha^i\right) = \sigma(f(\alpha)) = \sigma(0) = 0,$$

which finishes the proof.

Theorem 2.6 Let L/k be a finite field extension of degree n := [L : k] and \overline{k} an algebraic closure of k. If there exist n different field homomorphisms $\sigma_1, \ldots \sigma_n : k \longrightarrow L$ such that $\sigma_i|_k = id_k$, then L/k is simple.

proof. Let $L = k[\alpha_1, ..., \alpha_r]$ for some $r \ge 1$ and $\alpha_i \in L$. Prove the statement by induction on r. $\mathbf{r} = \mathbf{1}$ $L = k[\alpha_1]$, hence L is simple.

r>1 Let now $L'=k[\alpha_1,\ldots\alpha_{r-1}]$. By hypothesis, L'/k is simple, say $L=k[\beta]$. Then we have

$$L = k[\alpha_1, \dots \alpha_r] = L'[\alpha_r] = k[\alpha, \beta]$$

with $\alpha := \alpha_r$. For $\lambda \in k$ consider

$$\gamma := \gamma_{\lambda} = \alpha + \lambda \beta.$$

By remark 2.4 it suffices to show

$$\sigma_i(\gamma) \neq \sigma_i(\gamma)$$
 for $i \neq j$.

Assume there are $i \neq j$ such that $\sigma_i(\gamma) = \sigma_j(\gamma)$. Then

$$\sigma_i(\alpha) + \lambda \sigma_i(\beta) = \sigma_j(\alpha) + \lambda \sigma_j(\beta),$$

so we get

$$\sigma_i(\alpha) - \sigma_i(\alpha) + \lambda \left(\sigma_i(\beta) - \sigma_i(\beta)\right) = 0.$$

Consider the polynomial

$$g := \prod_{1 \leq i \neq j \leq n} \sigma_i(\alpha) - \sigma_j(\alpha) + X \cdot (\sigma_i(\beta) - \sigma_j(\beta)).$$

By proposition 2.2 we may assume, that k is infinite. Note that g is not the zero polynomial: If g = 0, we find $i \neq j$ such that $\sigma_i(\alpha) = \sigma_j(\alpha)$ and $\sigma_i(\beta) = \sigma_j(\beta)$. Since α, β generate L, σ_i and σ_j must be equal on L, which is a contradiction. Therefore we find $\lambda \in k$, such that $g(\lambda) \neq 0$. Hence the minimal polynomial $m_{\gamma_{\lambda}}$ of $\gamma_{\lambda} = \alpha + \lambda \beta$ has at least n zeroes, i.e.

$$deg(m_{\gamma_{\lambda}}) \geqslant n \Rightarrow [k[\gamma_{\lambda}]:k] \geqslant n$$

and hence $k[\gamma_{\lambda}] = L$.

Proposition 2.7 Let $L = k[\alpha]$ be a simple, finite field extension, \overline{k} an algebraic closure of k. Let $f \in k[X]$ the minimal polynomial of α . Then for every zero β of f in \overline{k} there exists a unique homomorphism of fields $\sigma: L \longrightarrow \overline{k}$ such that $\sigma(\alpha) = \beta$.

proof. The uniqueness is clear. It remains to show the existence. Define

$$\phi_{\beta}: k[X] \longrightarrow \overline{k}, \qquad g \mapsto g(\beta).$$

We have $f(\beta) = 0$, thus $(f) \subseteq ker(\phi_{\beta})$ and hence ϕ_{β} factors to a homomorphism

$$\overline{\phi_{\beta}}: L \cong k[X]/(f) \longrightarrow \overline{k}$$

such that $\phi_{\beta} = \overline{\phi_{\beta}} \circ \pi$ where $\pi : k[X] \longrightarrow k[X]/(f)$ denotes the residue map. Let

$$\tau: L \longrightarrow k[X]/(f)$$

be an isomorphism. Then

$$\sigma:=\overline{\phi_\beta}\circ\tau:L\longrightarrow\overline{k}$$

satisfies

$$\sigma(\alpha) = \left(\overline{\phi_{\beta}} \circ \tau\right)(\alpha) = \overline{\phi_{\beta}}(\tau(\alpha)) = \overline{\phi_{\beta}}(\overline{X}) = \overline{\phi_{\beta}}(\pi(X)) = \phi_{\beta}(X) = \beta,$$

thus the claim. \Box

Corollary 2.8 Let $f \in k[X]$ be a nonconstant polynomial. Then the splitting field of f over k is unique, i.e. any two splitting fields L, L' of f over k are isomorphic.

proof. Let $L = k[\alpha_1, \dots \alpha_n], L' = k[\beta_1, \dots \beta_m].$

Assume that f is irreducible. W.l.o.g. we have $f(\alpha_1) = f(\beta_1) = 0$. By Proposition 2.6 we find field homomorphisms

$$\sigma_1: k[\alpha_1] \longrightarrow k[\beta_2]$$
 such that $\sigma_1|_k = \mathrm{id}_k$ and $\alpha_1 \mapsto \beta_1$

$$\tau_1: k[\beta_1] \longrightarrow k[\alpha_1]$$
 such that $\tau_1|_k = \mathrm{id}_k$ and $\beta_1 \mapsto \alpha_1$

Hence, since $\sigma_1 \circ \tau_1 = \mathrm{id}_{k[\beta_1]}$ and $\tau_1 \circ \sigma_1 = \mathrm{id}_{k[\alpha_1]}$, σ_1 and τ_1 are isomorphisms, i.e $k[\alpha_1] \cong k[\beta_1]$. By induction on n the corollary follows.

Definition + **proposition 2.9** Let L/k, L'/k be field extension.

(i) We define

$$\operatorname{Hom}_k(L, L') := \{ \sigma : L \longrightarrow L' \text{ field homomorphism s.t. } \sigma|_k = \operatorname{id}_k \}$$

$$\operatorname{Aut}_k(L) := \{ \sigma : L \longrightarrow L \text{ field automorphism s.t. } \sigma|_k = \operatorname{id}_k \}$$

(ii) If L/k is finite, \overline{k} an algebraic closure of k, then

$$|\operatorname{Hom}_k(L, L')| \leq [L:k].$$

proof. Assume first $L = k[\alpha]$ for some algebraic $\alpha \in L$. Let f be the minimal polynomial of α over k, i.e. $f \in k[X]$, $\deg(f) = [L:k]$. By 2.4 and 2.6, the elements on $\operatorname{Hom}_k(L, \overline{k})$ correspond bijectively to the zeroes of f. Then we get

$$|\operatorname{Hom}_k(L, \overline{k})| = |\{\text{zeroes of f in } \overline{k}\}| \leq \deg(f) = [L:k].$$

Now consider the general case. Let $L = k[\alpha_1, \dots \alpha_n]$ and $L' = k[\alpha_1, \dots \alpha_{n-1}] \subseteq L = L'[\alpha_n]$. By induction on n we have $|\text{Hom}_k(L', \overline{k})| \leq [L' : k]$. Let now

$$f = \sum_{i=0}^{d} a_i X^i \in L'[X]$$

with coefficients $a_i \in L'$ be the minimal polynomial of α_n over L'. Let $\sigma \in \operatorname{Hom}_k(L, \overline{k})$ and $\sigma' = \sigma|_{L'} \in \operatorname{Hom}_k(L', \overline{k}), f^{\sigma'} := \sum_{i=0}^d \sigma'(a_i) X^i$. Then

$$f^{\sigma'}(\sigma(\alpha_n)) = \sum_{i=0}^d \sigma'(a_i) (\sigma(\alpha_n))^i = \sum_{i=0}^d \sigma(a_i) (\sigma(\alpha_n))^i = \sigma\left(\sum_{i=0}^d a_i \alpha_n^i\right) = 0.$$

Thus

$$|\{\operatorname{Hom}_{L'}(L, \overline{k})\}| = |\{\sigma \in \operatorname{Hom}_k(L, \overline{k}) | \sigma|_{L'} = \operatorname{id}_{L'}\}| \leq \operatorname{deg}(f^{\sigma'}) = \operatorname{deg}(f) = [L' : L]$$

So all in all we have

$$|\operatorname{Hom}_k(L, \overline{k})| \leq |\operatorname{Hom}_k(L', \overline{k})| \cdot [L : L'] \leq [L : L'] \cdot [L' : k] = [L : k],$$

which is exactly the assignment.

Definition 2.10 Let k be a field, $f = \sum_{i=0}^{d} a_i X^i \in k[X]$, \overline{k} an algebraic closure of k, L/k an algebraic field extension.

- (i) f is called *separable* over k, if f has deg(f) different roots in \overline{k} , i.e. there are no multiple roots.
- (ii) $\alpha \in L$ is called *separable* over k, if the minimal polynomial of α over k is separable.
- (iii) L/k is called *separable*, if any $\alpha \in L$ is separable over k.
- (iv) We define the formal derivative of f by

$$f' := \sum_{i=1}^{d} i \cdot a_i X^{i-1}$$

We have well known properties of the derivative:

$$(f+g)' = f' + g',$$
 $1' = 0,$ $(f \cdot g)' = f \cdot g' + f' \cdot g.$

Proposition 2.11 Let

$$f = \prod_{i=1}^{n} (X - \alpha_i) \in k[X], \quad a_i \in \overline{k} \text{ for } 1 \leq i \leq n$$

Then the following statements are equivalent:

- (i) f is separable.
- (ii) $(X \alpha_i) \nmid f' \text{ for } 1 \leq i \leq n.$
- (iii) gcd(f, f') = 1 in k[X].

proof. $(i) \Leftrightarrow (ii)$ We have

$$f' = \sum_{i=1}^{n} \prod_{j \neq i} (X - \alpha_j),$$

thus we get

$$(X - \alpha_i) \mid f' \Leftrightarrow (X - \alpha_i) \mid \prod_{j \neq i} (X - \alpha_j) \Leftrightarrow \alpha_i = \alpha_j \text{ for some } i \neq j.$$

'(ii) \Rightarrow (iii)' Assume $(X - \alpha_i) \nmid f'$ for all $1 \leqslant i \leqslant n$. Then

$$gcd(f, f') = 1$$
 in $\overline{k}[X] \Longrightarrow gcd(f, f') = 1$ in $k[X]$.

'(iii) \Rightarrow (ii)' Let now $\gcd(f, f') = 1$ in k[X]. Then we can write

$$1 = af + bf', \ a, b \in k[X].$$

Since again $k[X] \subseteq \overline{k}[X]$, we can write 1 = af + bf' for $a, b \in \overline{k}[X]$ an hence we obtain gcd(f, f') = 1 in $\overline{k}[X]$. This implies

$$(X - \alpha_i) \nmid f'$$
 for all $1 \leq i \leq n$,

which was to be shown.

Corollary 2.12 (i) An irreducible polynomial $f \in k[X]$ is separable if and only if $f' \neq 0$.

(ii) Any algebraic field extension in characteristic 0 is separable.

Example 2.13 Let char(k) = p > 0. Then

$$X^p - 1 = (X - 1)^p$$

Let $k = \mathbb{F}_p(t)$ and $f = X^p - t \in \mathbb{F}_p(t)[X]$. Then f' = 0, hence f is not separable, but f is irreducible in $\mathbb{F}_p(t)[X]$.

Definition + **proposition 2.14** Let L/k be a finite field extension, \overline{k} an algebraic closure of k and L.

- (i) $[L:k]_s := |\text{Hom}_k(L,\bar{k})|$ is called the degree of separability of L/k.
- (ii) If $L = k[\alpha]$ for some separable $\alpha \in L$ with minimal polynomial m_{α} over k, then

$$[L:k]_s = \deg(m_\alpha) = [L:k].$$

(iii) If $L = k[\alpha]$ for some $\alpha \in L$, $\operatorname{char}(k) = p > 0$, then there exists $n \ge 0$, such that

$$[L:k] = p^n \cdot [L:k]_s$$

(iv) If $k \subseteq \mathbb{F} \subseteq L$ is an intermediate field extension, then

$$[L:k]_s = [L:\mathbb{F}]_s \cdot [\mathbb{F}:k]_s$$

proof. (i) This follows from Propoition 2.6:

$$[L:k]_s = |\operatorname{Hom}_k(L,\overline{k})| = |\{ \text{ different zeroes of } f\}| = n = [L:k].$$

(iii) Write

$$f = \sum_{i=0}^{n} a_i X i.$$

If α is separable over k, we are done with part (ii). Otherwise by Corollary 2.11 we have

$$f' = \sum_{i=1}^{n} i \cdot a_i \cdot X^{i-1} \stackrel{!}{=} 0 \iff i \cdot a_i \equiv 0 \mod p \text{ for all } 0 \leqslant i \leqslant n$$

Thus we can write $f = g(X^p)$ for some $g \in k[X]$. Continue this way until we can write $f = g(X^{p^n})$ for some $n \in \mathbb{N}_0$ and separable g. Then

$$[k[\alpha]:k]_s = |\{ \text{ zeroes of } g \text{ in } \overline{k}\}| = \deg(g)$$

and thus we obtain

$$[k[\alpha]:k] = \deg(f) = \deg(g) \cdot p^n = p^n \cdot [k[\alpha]:k]_s.$$

(iv) Consider first the simple case $L = k(\alpha)$. Let

$$f = \sum_{i=0}^{n} a_i X^i \in \mathbb{F}[X]$$

be the minimal polynomial of α over \mathbb{F} . Let $\tau \in \operatorname{Hom}_k(\mathbb{F}, \overline{k})$ and let

$$f^{\tau} = \sum_{i=0}^{n} \tau(a_i) X^i.$$

Given $\sigma \in \operatorname{Hom}_k(L, \overline{k})$ with $\sigma|_{\mathbb{F}} = \tau$, notice that $\sigma(\alpha)$ is a zero of f^{τ} . Moreover by Proposition 2.6, every zero β of f^{τ} determines a unique σ such that $\sigma(\alpha) = \beta$. Thus we have

$$\begin{split} \left| \left\{ \sigma \in \operatorname{Hom}_k(L, \overline{k}) \mid \sigma|_{\mathbb{F}} = \tau \right\} \right| &= \left| \left\{ \beta \in \overline{k} \mid f^{\tau}(\beta) = 0 \right\} \right| \\ &= \left| \left\{ \beta \in \overline{k} \mid f(\beta) = 0 \right\} \right| \stackrel{2.6}{=} [L : \mathbb{F}]_s. \end{split}$$

We conclude

$$\begin{split} [L:k]_s &= \left| \operatorname{Hom}_k(L,\overline{k}) \right| \; = \; \left| \; \bigcup_{\tau \in \operatorname{Hom}_k(\mathbb{F},\overline{k})} \left\{ \sigma \in \operatorname{Hom}_k(L,\overline{k}) \; \mid \; \sigma|_{\mathbb{F}} = \tau \right\} \right| \\ &= \left| \left\{ \sigma \in \operatorname{Hom}_k(L,\overline{k}) \; \mid \; \sigma|_{\mathbb{F}} = \tau \right\} \right| \cdot \left| \operatorname{Hom}_k(\mathbb{F},\overline{k}) \right| \\ &= [L:\mathbb{F}]_s \cdot [\mathbb{F}:k]_s \end{split}$$

For the general case we can write $L = \mathbb{F}(\alpha_1, \ldots, \alpha_n)$. Define $L_i := \mathbb{F}(\alpha_1, \ldots, \alpha_i)$, $L_0 := \mathbb{F}(\alpha_1, \ldots, \alpha_n)$

and $L_n = L$. Then L_i/L_{i-1} is simple and by the special case above we get

$$[L:k]_{s} = [L_{n}:L_{n-1}]_{s} \cdot [L_{n-1}:k]_{s}$$

$$\vdots$$

$$= [L_{n}:L_{n-1}]_{s} \cdot \cdots [L_{2}:L_{1}]_{s} \cdot [L_{1}:L_{0}]_{s} \cdot [L_{0}:k]_{s}$$

$$= [L_{n}:L_{n-1}]_{s} \cdot \cdots [L_{2}:L_{1}]_{s} \cdot [L_{1}:\mathbb{F}]_{s} \cdot [\mathbb{F}:k]_{s}$$

$$= [L_{n}:L_{n-1}]_{s} \cdot \cdots [L_{2}:\mathbb{F}]_{s} \cdot [\mathbb{F}:k]_{s}$$

$$\vdots$$

$$= [L_{n}:\mathbb{F}]_{s} \cdot [\mathbb{F}:k]_{s}$$

$$= [L:\mathbb{F}]_{s} \cdot [\mathbb{F}:k]_{s},$$

which implies the claim.

Proposition 2.15 A finite field extension L/k is separable if and only if $[L:k] = [L:k]_s$.

proof. ' \Rightarrow ' Let $L = k[\alpha_1, \dots \alpha_n]$. Prove this by induction on n.

n=1 This is proposition 12.2(ii)

n>1 Let $L'=k[\alpha_1,\ldots\alpha_{n-1}]$. Then by induction hypothesis $[L':k]_s=[L':k]$. Moreover $[L:L']_s=[L:L']$, since L/L' is simple by $L=L'[\alpha_n]$. By proposition 12.2 (iv) we get

$$[L:k]_s = [L:L']_s \cdot [L':k]_s = [L:L'] \cdot [L'.k] = [L:k].$$

'\(\infty\) Let $\alpha \in L$ and $f = m_{\alpha} \in k[X]$ its minimal polynomial. If $\operatorname{char}(k) = 0$, f is separable, so α is separable by corollary 2.11. Let now $\operatorname{char}(k) = p > 0$. By proposition 12.2 there exists $n \geq 0$ such that

$$[k[\alpha]:k] = p^n \cdot [k[\alpha]:k]_s$$

We find

$$[L:k] = [L:k[\alpha]] \cdot [k[\alpha]:k] \geqslant [L:k[\alpha]]_s \cdot p^n [k[\alpha]:k]_s = p^n [L:k]_s = p^n [L:k]_s$$

Hence we must have n = 0, i.e. $[k[\alpha] : k] = [k[\alpha] : k]_s$. Thus α is separable over k.

§ 3 Galois extensions

Definition 3.1 A field extension L/k is called *normal*, if there is a subset $\mathcal{F} \subseteq k[X]$ such that L is the smallest field which any $f \in \mathcal{F}$ splits over.

Remark 3.2 Let L/k be a normal field extension, \overline{k} an algebraic closure of k. Then

$$\operatorname{Hom}_k(L, \overline{k}) = \operatorname{Aut}_k(L).$$

proof. \supseteq Clear.

 \subseteq Let L be the splitting field of \mathcal{F} . Let

$$f = \sum_{i=0}^{d} a_i X^i \in \mathcal{F}$$

and $\alpha \in L$ such that $f(\alpha) = 0$. Let $\sigma \in \text{Hom}_k(L, \overline{k})$. Then

$$f(\sigma(\alpha)) = \sum_{i=0}^{d} a_i \sigma(\alpha)^i = \sum_{i=0}^{d} \sigma(a_i) \sigma(\alpha)^i = \sigma\left(\sum_{i=0}^{d} a_i \alpha^i\right) = \sigma\left(f(\alpha)\right) = 0,$$

hence $\sigma(\alpha)$ is zero of f. Since f splits over L, i.e. all zeroes of f are in L, we have $\sigma(\alpha) \in L$. Moreover L is generated over k by the zeroes of $f \in \mathcal{F}$, thus $\sigma(L) \subseteq L$ and hence we get $\sigma \in \operatorname{Hom}_k(L, L)$.

It remains to show bijectivity. σ is clearly injective. For the surjectivity consider that σ permutes all the zeroes of any $f \in \mathcal{F}$. Finally $\sigma \in \operatorname{Aut}_k(L)$.

Definition 3.3 An algebraic field extension L/k is called *Galois extension* or *Galois*, if it is normal and separable. In this case, the *Galois group* of L/k is defined as

$$Gal(L, k) := Aut_k(L).$$

Proposition 3.4 A finite field extension L/k is Galois if and only if $|\operatorname{Aut}_k(L)| = [L:k]$.

proof. \Rightarrow We have

$$|\operatorname{Aut}_k(L)| = |\operatorname{Hom}_k(L, \overline{k})| = [L:k]_s = [L:k]$$

 $' \Leftarrow '$ We have to show that L/k is separable and normal. First we see

$$[L:k] = |\operatorname{Aut}_{k}(L)| \leq |\operatorname{Hom}_{k}(L,\overline{k})| = [L:k]_{s} \leq [L:k]$$

Hence we have equality on each inequality, i.e. $[L:k] = [L:k]_s$ and L/k is separable.

By Theorem 2.5 we know that L/k is simple, say $L = k[\alpha]$ for some $\alpha \in L$.

Let $m_{\alpha} \in k[X]$ be the minimal polynomial of α over k. Moreover let $\beta \in \overline{k}$ be another zero of m_{α} . Then there exists $\sigma \in \operatorname{Hom}_k(L, \overline{k})$ such that $\sigma(\alpha) = \beta$. By the (in-)equality above we know $\operatorname{Aut}_k(L) = \operatorname{Hom}_k(L, \overline{k})$, hence $\sigma(\beta) \in L$. Since β was arbitrary, m_{α} , f splits over L, i.e. L is the splitting field of f over k. Thus L/k is normal and finally Galois. \square

Example 3.5 All quadratic field extensions are normal. Moreover, if $char(k) \neq 2$, then all quadratic field extensions of k are Galois.

Remark 3.6 Let L/k be a Galois extension and $k \subseteq K \subseteq L$ an intermediate field.

(i) Then L/K is Galois and

$$Gal(L/K) \leq Gal(L/k)$$

(ii) If K/k is Galois, then $Gal(L/K) \leq Gal(L/k)$ is a normal subgroup and

$$\operatorname{Gal}(L/k)/\operatorname{Gal}(L/K) \cong \operatorname{Gal}(K/k).$$

- proof. (i) Clearly L/K is normal, since L is the splitting field for the same polynomials as in L/k. Let now $\alpha \in L$. Then the minimal polynomial m_{α} of α over K divides the minimal polynomial m'_{α} of α over k, since $k \subseteq K$. Since m'_{α} has no multiple roots, m_{α} does not either and hence L/K is separable and thus Galois.
 - (ii) Define

$$\rho: \operatorname{Gal}(L/k) \longrightarrow \operatorname{Gal}(K/k), \ \sigma \mapsto \sigma|_{K}.$$

 ρ is well defined since $\sigma|_K \in \operatorname{Hom}_K k(K, \overline{k}) = \operatorname{Aut}_k(K) = \operatorname{Gal}(K/k)$ as K/k is Galois:

$$[K:k] = |\operatorname{Aut}_k(K)| \le |\operatorname{Hom}_k(K,\overline{k})| \le [K:k].$$

Moreover ρ is surjective. For the kernel we get

$$\ker(\rho) = \{ \sigma \in \operatorname{Gal}(L/k) \mid \sigma|_K = \operatorname{id}_K \} = \operatorname{Gal}(L/K)$$

and thus we obtain $\operatorname{Gal}(L/k)/\operatorname{Gal}(L/K) \cong \operatorname{Gal}(K/k)$.

Theorem 3.7 (Main theorem of galois theory) Let L/k be a finite Galois extension and $G := \operatorname{Gal}(L/k)$. Then the subgroups $H \leq G$ correspond bijectively to the intermediate fields $k \subseteq K \subseteq L$. Explicitly we have inverse maps

$$K \mapsto \operatorname{Gal}(L/K) \leq G$$

$$H \mapsto L^H := \{ \alpha \in L \mid \sigma(\alpha) = \alpha \text{ for all } \sigma \in H \}.$$

proof. Clearly L^H is a field for any $H \leq G$. We now have to show

- (i) $Gal(L/L^H) = H$ for any $H \leq G$.
- (ii) $L^{\operatorname{Gal}(L/K)} = K$ for any intermediate field $k \subseteq K \subseteq L$.

Theese prove the theorem.

- (i) We show both inclusion.
 - '⊇' Clear by definition.
 - '⊆' It suffices to show $|\mathrm{Gal}(L/L^H)| \leq |H|$. By 3.4(i) we have

$$|\operatorname{Gal}(L/L^H)| = [L:L^H].$$

By theorem 2.5 L/L^H is simple, say $L = L^H[\alpha]$. Define

$$f = \prod_{\sigma \in H} (X - \sigma(\alpha))$$

with $\deg(f) = |H|$. Further, since $\mathrm{id} \in H$, we have $f(\alpha) = 0$. Clearly $f \in L[X]$. We want to show that $f \in L^H[X]$. Therefore for $\tau \in H$ define

$$g^{\tau} := \sum_{i=0}^{n} \tau(a_i) X^i \text{ for } g = \sum_{i=0}^{n} a_i X^i$$

Then for f as defined above we have

$$f^{\tau} = \prod_{\sigma \in H} (X - \tau (\sigma(\alpha))) = \prod_{\sigma \in H} (X - \sigma(\alpha)) = f$$

hence $f \in L^H[X]$. From $f(\alpha) = 0$ we know that the minimal polynomial m_α of α over L^H divides f, thus

$$|\operatorname{Gal}(L/L^H)| = [L:L^H] = \deg(m_\alpha) \leq \deg(f) = |H|$$

(ii) '⊇' Clear by definition.

' \subseteq ' Let $H := \operatorname{Gal}(L/K)$. Since $K \subseteq L^H$ it suffices to show $[L^H : K] = 1$. Since L^H/K is separable, this is equivalent to $[L^H : K]_s = 1$. Let now $\sigma \in \operatorname{Hom}_K(L^H, \overline{k})$. By 2.6 we can extend σ to

$$\tilde{\sigma}:L\longrightarrow\overline{k}$$

with $\tilde{\sigma}|_{L^H} = \sigma$. Explicitly: Let $L = L^H[\alpha]$ and $f \in L^H[X]$ its minimal polynomial. Choose a zero $\beta \in \overline{k}$ of f^{σ} . Then by 2.6 there exists $\tilde{\sigma} : L \longrightarrow \overline{k}$ with $\tilde{\sigma}(\alpha) = \beta$ and $\tilde{\sigma}|_{L^H} = \sigma$. We get $\tilde{\sigma} \in \operatorname{Gal}(L/K) = H$ and $\sigma = \tilde{\sigma}|_{L^H} = \operatorname{id}_K$ which finally implies $[L^H : K] = 1$.

Remark 3.8 An intermediate field $k \subseteq K \subseteq L$ is Galois over k if and only if $Gal(L/K) \leq Gal(L/k)$ is a normal subgroup.

proof. ' \Rightarrow ' If K/k is Galois, then $Gal(L/K) = ker(\rho)$ is a normal subgroup by 3.5.

' \Leftarrow ' Conversely let $\operatorname{Gal}(L/K) =: H \leqslant \operatorname{Gal}(L/k)$ be a normal subgroup. By 3.4 it suffices to show $\operatorname{Hom}_k(K, \overline{k}) = \operatorname{Aut}_k(K)$. Let now $\sigma \in \operatorname{Hom}_k(K, \overline{k})$ and $\alpha \in K$. Extend σ to $\tilde{\sigma} : L \longrightarrow \overline{k}$. Then $\tilde{\sigma} \in \operatorname{Gal}(L/k)$. By the theorem it suffices to show that $\sigma(\alpha) \in L^{\operatorname{Gal}(L/K)} = K$, i.e. $\sigma(K) \subseteq K$. Let $\tau \in \operatorname{Gal}(L/L^H)$. Then, since $\operatorname{Gal}(L/K)$ is normal, we obtain

$$\tau\left(\sigma(\alpha)\right) = \tau\left(\tilde{\sigma}(\alpha)\right) = \left(\tilde{\sigma} \circ \tau'\right)(\alpha) = \tilde{\sigma}(\alpha) = \sigma(\alpha),$$

which implies the claim.

Example 3.9 Let $k = \mathbb{Q}$, $f = X^5 - 4X + 2 \in \mathbb{Q}[X]$. Further let L = L(f) be the splitting field of f over \mathbb{Q} . What is $Gal(L/\mathbb{Q})$?.

We first want to show that f is irreducible. But this immediately follows by By Eisenstein's criterion for irreducibility with p = 2.

Thus L is an extension of $\mathbb{Q}/(f)$. Therefore $[L:\mathbb{Q}]$ is multiple of $[\mathbb{Q}/(f)] = 5$, hence $|\operatorname{Gal}(L/\mathbb{Q})|$ is divisible by 5. By Lagrange's theorem we know that $\operatorname{Gal}(L/\mathbb{Q})$ contains an element of order 5. Further note that f has exactly 3 zeroes in \mathbb{R} . With

$$\lim_{x \to \infty} f(x) = -\infty < 0, \quad f(0) = 2 > 0, \quad f(1) = -1 < 0, \quad \lim_{x \to -\infty} f(x) = \infty > 0$$

we see by the intermediate value theorem that f has at least 3 zeroes. Moreover

$$f' = 5X^4 - 4 = 5 \cdot \left(X^4 - \frac{4}{5}\right) = 5 \cdot \left(X^2 - \frac{2}{\sqrt{5}}\right) \cdot \left(X^2 + \frac{2}{\sqrt{5}}\right)$$

Obviously, since the second factor has not real zeroes, the derivative of f has 2 zeroes, hence f has at most 3 zeroes. Together we obtain that f has exactly 3 zeroes. Since f splits over \mathbb{C} , f has two more conjugate zeroes in \mathbb{C} , say $\beta, \overline{\beta}$. Hence we know that the conjugation in \mathbb{C} must be an element of $Gal(L/\mathbb{Q})$.

To sum it up, we know: $Gal(L/\mathbb{Q})$ is isomorphic to a subgroup of S_5 , contains the conjugation, which corresponds to a transposition and moreover an element of order 5, i.e. a 5-cycle. But these two elements generate the whole group S_5 . Hence we have $Gal(L/\mathbb{Q}) \cong S_5$.

Proposition 3.10 (Cyclotomic fields) Let k be a field, $n \in \mathbb{N}$, char $(k) \nmid n$ and L the splitting field of the polynomial $f = X^n - 1$.

Then L/k is Galois and $\operatorname{Gal}(L_n/k)$ is isomorphic to a subgroup of $(\mathbb{Z}/n\mathbb{Z})^{\times}$.

proof. We have $f' = nX^{n-1}$ and $f' = 0 \Leftrightarrow X = 0$ but $f(0) \neq 0$, hence f' and f_n are coprime. Thus f is separable. Since L is the splitting field of f by definition, L/k is normal, thus Galois. The zeroes of f form a group $\mu_n(k)$ under multiplication. By proposition 2.3 $\mu_n(k)$ is cyclic. Let ζ_n be a generator of $\mu_n(k)$. Define a map

$$\chi_n : \operatorname{Gal}(L_n/k) \longrightarrow (\mathbb{Z}/n\mathbb{Z})^{\times} \ \sigma \mapsto m \text{ if } \sigma(\zeta_n) = \zeta_n^m$$

where m is relatively coprime to n. We obtain that χ_n is a homomorphism of groups since for $\sigma_1.\sigma_2 \in \operatorname{Gal}(L_n/k)$ we have $\sigma_2\sigma_1(\zeta_n) = \sigma_2\left(\zeta_n^{k_1}\right) = \left(\zeta_n^{k_1}\right)^{k_2} = \zeta_n^{k_1k_2}$ and hence

$$\chi_n(\sigma_1\sigma_2) = k_1 \cdot k_2 = \chi_n(\sigma_1) \cdot \chi_n(\sigma_2).$$

Moreover χ_n is injective, since

$$\chi_n(\sigma) = 1 \Leftrightarrow \sigma(\zeta_n) = \zeta_n \Leftrightarrow \sigma = id.$$

This proofs the proposition. Recall that $|(\mathbb{Z}/n\mathbb{Z})^{\times}| = \phi(n)$ Where ϕ is Euler's ϕ -function.

§ 4 Solvability of equations by radicals

Definition + remark 4.1 Let k be a field, $f \in k[X]$ separable.

(i) Let L(f) be the splitting field of f over k. The Galois group of the equation f = 0 is defined by

$$Gal(f) := Gal(L(f)/k).$$

- (ii) There exists an injective homomorphism of groups $Gal(f) \longrightarrow S_n$ where $n := \deg(f)$.
- (iii) If L/k is a finite, separable field extension, the $Aut_k(L)$ is isomorphic to a subgroup of S_n , where n = [L:k].

proof. (ii) Clear, since automorphisms permute the zeroes of f, of which we have at most n.

- (iii) We know L/k is simple, say $L = k[\alpha]$ for some $\alpha \in L$. Let m_{α} be the minimal polynomial of α over k. Then $\deg(f) = n$. Every $\sigma \in \operatorname{Aut}(L/k)$ maps α to a zero of f and the same for every zero of f. Hence the claim follows.
- **Definition 4.2** (i) A simple field extension $L = k[\alpha]$ of a field k is called an *elementary* radical extension if either
 - (1) α is a root of unity, i.e. a zero of the polynomial $X^n 1$ for some $n \in \mathbb{N}$.
 - (2) α is a root of $X^n \gamma$ for some $\gamma \in k, n \in \mathbb{N}$ such that $\operatorname{char}(k) \nmid n$.
 - (3) α is a root of $X^p X \gamma$ for somme $\gamma \in k$ where $p = \operatorname{char}(k)$.

In the following, we will denote (1), (2) and (3) as the three *types* of elementary radical extensions.

(ii) A finite field extension L/k is called a radical extension, if there is a field extension L'/L and a chain of field extension

$$k = L_0 \subseteq L_1 \subseteq \cdots \subseteq L_m = L'$$

such that L_i/L_{i-1} is an elementary radical extension for every $1 \leq i \leq m$.

Example 4.3 Let $k = \mathbb{Q}$, $f = X^3 - 3X + 1$. The zeroes of f (in \mathbb{C}) are

$$\alpha_1 = \zeta + \zeta^{-1} \in \mathbb{R}, \ \alpha_2 = \zeta^2 + \zeta^{-2} \text{ and } \alpha_3 = \zeta^4 + \zeta^{-4}$$

where $\zeta = e^{\frac{2\pi i}{9}}$ is a primitive ninth root of unity. We show this exemplarily for α_1 . We have

$$f(\alpha_1) = (\alpha_1^3 - 3\alpha_1 + 1) = \zeta^3 + 3\zeta + 3\zeta^{-1} + \zeta^{-3} - 3\zeta - 3\zeta^{-1} + 1 = \zeta^3 + \zeta - 3 + 1 = 0$$

where we use $\zeta^{-3} = \overline{\zeta^{-3}}$ and since $z + \overline{z} = 2 \cdot \mathfrak{Re}(z)$ for any $z \in \mathbb{C}$ we have

$$\zeta^3 + \zeta^{-3} \ = \ 2 \cdot \mathfrak{Re} \left(\zeta^3 \right) \ = \ 2 \cdot \mathfrak{Re} \left(e^{\frac{2\pi i}{3}} \right) \ = \ 2 \cdot \mathfrak{Re} \left(\cos \frac{2\pi}{3} + i \cdot \sin \frac{2\pi}{3} \right) \ = \ 2 \cdot \cos \frac{2\pi}{3} \ = \ 2 \cdot \left(-\frac{1}{2} \right) \ = \ -1.$$

Further we have

$$\alpha_1^2 = \zeta^2 + 2\zeta^{-2} + 2 = \alpha_2 + 2,$$

hence $\alpha_2 \in \mathbb{Q}(\alpha_1)$ and $\alpha_1 + \alpha_2 + \alpha_3 = 0$, hence $\alpha_3 \in \mathbb{Q}(\alpha_1, \alpha_2) = \mathbb{Q}(\alpha_1)$.

This means that $\mathbb{Q}(\alpha_1)$ contains all the zeroes of f, i.e. is a splitting field of f. We conclude

$$\mathbb{Q}(\alpha_1) \cong \mathbb{Q}/(f), \qquad [\mathbb{Q}(\alpha_1) : \mathbb{Q}] = 3.$$

From the f we see that $\mathbb{Q}(\alpha_1)/\mathbb{Q}$ is not an elementary radical extension, but a radical extension, since for $\mathbb{Q}(\zeta)$ we have $\mathbb{Q}(\alpha_1) \subseteq \mathbb{Q}(\zeta)$ and $\mathbb{Q}(\zeta)/\mathbb{Q}$ is an elementary radical extension.

Definition 4.4 Let k be afield, $f \in k[X]$ a separable, non-constant polynomial. We say f is solvable by radicals, if the splitting field L(f) is a radical extension.

Remark 4.5 Let L/k be an elementary field extension, referring to Definition 4.1 of type

(1) $L = k[\zeta]$ for some root of unity ζ (primitive for some suitable $n \in \mathbb{N}$, char $(k) \nmid n$). Then L/k is Galois with abelian Galois group

$$\operatorname{Gal}(L/k) \cong (\mathbb{Z}/n\mathbb{Z})^{\times}$$
.

- (2) $L = k[\alpha]$ where α is a root of $X^n \gamma$ for some $\gamma \in k, n \in \mathbb{N}$, char $(k) \nmid n$. If k contains the n-th roots of unity, i.e. $\mu_n(\overline{k})$, then L/k is Galois with cyclic Galois group.
- (3) $L = k[\alpha]$, where α is a root of $X^p X \gamma$ for some $\gamma \in k^{\times}$. Then L/k is Galois with Galois group

$$\operatorname{Gal}(L/k) \cong \mathbb{Z}/p\mathbb{Z}$$
.

proof. (1) We proved this in proposition 3.9.

(2) Let $\zeta \in k$ be a primitive *n*-th root of unity. Then $\zeta^i \cdot \alpha$ is a zero of $X^n - \gamma$, where we assume n to be minimal such tthat $X^n - \gamma$ is irreducible. Then L contains all roots of $X^n - \gamma$, i.e. L/k is normal and thus Galois with

$$|\operatorname{Gal}(L/k)| = [L:k] = \deg(X^n - \gamma) = n$$

Since the automorphism $\sigma \in \operatorname{Gal}(L/k)$ that maps $\alpha \mapsto \zeta \cdot \alpha$ has order n, $\operatorname{Gal}(L/k)$ is cyclic.

(3) $f = X^p - X - \gamma$ has p zeroes in $L = k[\alpha]$. Since $f(\alpha) = 0$, we have

$$f(\alpha + 1) = (\alpha + 1)^p - (\alpha + 1) - \gamma = \alpha^p + 1 - \alpha - 1 - \gamma = \alpha^p - \alpha - \gamma = f(\alpha) = 0$$

Hence L is the splitting field of f and L/k is normal. Moreover $f' = -1 \neq 0$, hence L/k is separable and thus Galois with

$$|\operatorname{Gal}(L/k)| = [L:k] = \deg(f) = p$$

Further $Gal(L/k) \ni \sigma: \alpha \mapsto \alpha + 1$ has order p, hence Gal(L/k) is cyclic and thus

$$Gal(L/k) \cong \mathbb{Z}/p\mathbb{Z},$$

which is the claim. \Box

Remark 4.6 Let L/k be an elementary radical extension of type (ii), i.e. $L = k[\alpha]$, where α is the root of $f = X^n - \gamma$ for some $\gamma \in k, n \ge 1$, $\operatorname{char}(k) \nmid n$. $X^n - \gamma$ is irreducible Let \mathbb{F} be a splitting field of $X^n - 1$ over k and $L\mathbb{F} = k(\alpha, \zeta)$ be the compositum of L and \mathbb{F} , i.e. the smallest subfield of \overline{k} containing L and \mathbb{F} .

 \tilde{L} is a splitting field of $X^n - \gamma$ over \mathbb{F} , hence \tilde{L}/\mathbb{F} is Galois and by 4.4(ii), $\operatorname{Gal}(\tilde{L}/\mathbb{F})$ is cyclic. Moreover \mathbb{F}/k is Galois and $\operatorname{Gal}(\mathbb{F}/k)$ is abelian. Hence \tilde{L}/k is Galois and

$$\operatorname{Gal}(\tilde{L}/k) / \operatorname{Gal}(\tilde{L}/\mathbb{F}) \cong \operatorname{Gal}(\mathbb{F}/k)$$

i.e. we have a short exact sequence

$$1 \longrightarrow \underbrace{\operatorname{Gal}(\tilde{L}/\mathbb{F})}_{cyclic} \xrightarrow{inj.} \operatorname{Gal}(\tilde{L}/k) \xrightarrow{surj.} \underbrace{\operatorname{Gal}(\mathbb{F}/k)}_{abelian} \longrightarrow 1.$$

Example 4.7 Let $k = \mathbb{Q}$, $f = X^3 - 2$. Then $L = \mathbb{Q}[\alpha]$ with $\alpha = \sqrt[3]{2}$ and $\mathbb{F} = \mathbb{Q}[\zeta]$ with $\zeta = e^{\frac{2\pi}{3}}$. Then $\tilde{L} = L(f)$ with $[\tilde{L} : \mathbb{Q}] = 6$. We obtain

$$\operatorname{Gal}(\tilde{L}/\mathbb{F}) \cong \mathbb{Z}/3\mathbb{Z}, \ \operatorname{Gal}(\mathbb{F}/k) \cong \mathbb{Z}/2\mathbb{Z}, \ \operatorname{Gal}(\tilde{L}/\mathbb{Q}) \cong S_3.$$

Definition 4.8 A group G is called *solvable*, if there exists a chain of subgroups

$$1 = G_0 \triangleleft G_1 \triangleleft \ldots \triangleleft G_n = G$$

where $G_{i-1} \triangleleft G_i$ is a normal subgroup and G_i / G_{i-1} is abelian for all $1 \le i \le n$.

Example 4.9 (i) Every abelian group is solvable.

(ii) S_4 is solvable by

$$1 \triangleleft V_4 \triangleleft A_4 \triangleleft S_4$$

where $V_4 = \{id, (12)(34), (13)(24), (14)(23)\}$. For the quotients we have

$$V_4/\{1\} \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}, \qquad A_4/V_4 \cong \mathbb{Z}/3\mathbb{Z}, \qquad S_4/A_4 \cong \mathbb{Z}/2\mathbb{Z}.$$

- (iii) S_5 is not solvable, since A_5 is simple (EAZ 6.6) but the quotient $A_5 / \{1\}$ is not abelian.
- (iv) If G, H are solvable groups, then the direct product $G \times H$ is solvable.

Proposition 4.10 (i) Let G be a solvable group. Then

- (1) Every subgroup $H \leq G$ is solvable.
- (2) Every homomorphic image of G is solvable.
- (ii) Let

$$1 \longrightarrow G' \longrightarrow G \longrightarrow G'' \longrightarrow 1$$

be a short exact sequence. Then G is solvable if and only if G' and G'' are solvable.

proof. (i) (1) Let G be solvable, i.e. we have a chain $1 = G_0 \triangleleft G_1 \triangleleft \cdots \triangleleft G_n = G$. Let $G' \leqslant G$ a subgroup. Then

$$1 \triangleleft G_1 \cap G' \triangleleft \ldots \triangleleft G_n \cap G' = G'$$

is a chain of subgroups of G' and we have $G_i \cap G' \triangleleft G_{i+1} \cap G'$ and moreover

$$(G_{i+1} \cap G')/(G_i \cap G') \cong G_i(G_{i+1} \cap G')/G_i \leqslant G_{i+1}/G_i$$
.

Hence we have abelian quotients and G' is solvable.

(2) Let H be a group and $\phi: G \longrightarrow H$ be a surjective homomorphism of groups. Let

$$1 \triangleleft G_1 \triangleleft \ldots \triangleleft G_n = G.$$

Let $H_i := \phi(G_i)$. Then H_i is normal in H_{i+1} . It remains to show that the quotients are abelian. Consider

(We have $G_i \subseteq \ker(\tilde{\phi})$, since $\phi(G_i) = H_i = \ker(\pi_H)$. Hence $\tilde{\phi}$ factors to

$$\overline{\phi}: \underbrace{G_{i+1}/G_i}_{abelian} \xrightarrow{\Rightarrow} \underbrace{H_{i+1}/H_i}_{abelian!}$$

and we get $\overline{\phi}(a)\overline{\phi}(b) = \overline{\phi}(ab) = \overline{\phi}(ba) = \overline{\phi}(b)\overline{\phi}(a)$, hence the quotient is abelian and

 $H = \phi(G)$ is solvable.

(ii) \Rightarrow Clear.

'←' Let

$$1 \triangleleft G_1 \triangleleft \cdots \triangleleft G_m = G', \qquad 1 \triangleleft H_{m+1} \triangleleft \cdots \triangleleft H_{m+k} = G''$$

chains of subgroups with abelian quotients. Define

$$G_i := \pi^{-1} (H_i)_{m+1 \le i \le m+k}, \ \pi : G \longrightarrow G''.$$

Then G_i is normal in G_{i+1} and we have

$$G_{m+0} = \pi^{-1}(\{1\}) = G' = G_m.$$

For $m+1 \le i \le m+k$ we have

$$G_{i+1}/G_i = \pi^{-1}(H_{i+1}/H_i) \cong H_{i+1}/H_i$$

and hence the chain

$$1 \triangleleft G_1 \triangleleft \cdots \triangleleft G_m = G' \triangleleft G_{m+1} \triangleleft \cdots \triangleleft G_{m+k} = G$$

reveals the solvability of G.

Lemma 4.11 A finite separable field extension L/k is a radical extension if and only if there exists a finite Galois extension L'/k, $L \subseteq L'$ such that Gal(L'/k) is solvable.

proof. \Rightarrow Let

$$k = k_0 = L_0 \subseteq L_1 \subseteq \dots \subseteq L_n$$

a chain as in definition 4.7 with $L \subseteq L_n$, we prove the statement by induction.

- n=1 This is exactly remark 4.5, 4.6
- n>1 By induction hypothesis L_{n-1}/k is solvable. Moreover L_n/L_{n-1} is solvable, too. This is equivalent to the fact, that L_{n-1} is contained in a Galois extension \tilde{L}_{n-1}/k such that $Gal(\tilde{L}/k)$ is solvable and L_n is contained in a Galois extension \tilde{L}/L_{n-1} such that $Gal(\tilde{L}/L_{n-1})$ is solvable. We have a diagramm

We obtain, that M is Galois over L_{n-1} , since L, L_{n-1} are Galois over L_{n-1} , hence by

$$\iota: \operatorname{Gal}(\mathbb{M}/\tilde{L}_{n-1}) \longrightarrow \operatorname{Gal}(\tilde{L}/L_{n-1}), \ \sigma \mapsto \sigma|_{\tilde{L}}$$

an injective homomorphism of groups is given, hence

$$\operatorname{Gal}(\mathbb{M}/\tilde{L}_{n-1}) \leqslant \operatorname{Gal}(\tilde{L}/L_{n-1})$$

is solvable as a subgroup of a solvable group.

Let now $\tilde{\mathbb{M}}/\mathbb{M}$ be a minimal extension, such that $\tilde{\mathbb{M}}/k$ is Galois. Explicitly, $\tilde{\mathbb{M}}$ is defined as the *normal hull* of \mathbb{M} , i.e. the splitting field of the minimal polynomial of a primitive element of \mathbb{M}/k .

Now we want to show that $Gal(\mathbb{M}/k)$ is solvable. This finishes the proof of the sufficiency of our Lemma. Consider the short exact sequence

$$1 \longrightarrow \operatorname{Gal}(\tilde{\mathbb{M}}/\tilde{L}_{n-1}) \longrightarrow \operatorname{Gal}(\mathbb{M}/k) \longrightarrow \operatorname{Gal}(\tilde{L}_{n-1}/k) \longrightarrow 1.$$

By proposition 4.8 and our induction hypothesis it suffices to show that $\operatorname{Gal}(\tilde{\mathbb{M}}/\tilde{L}_{n-1})$ is solvable. Therefore observe that $\tilde{\mathbb{M}}$ is generated over k by the $\sigma(k)$ for $\sigma \in \operatorname{Hom}_k(\mathbb{M}, \overline{k})$, where \overline{k} denotes an algebraic closure of k. For any $\sigma \in \operatorname{Hom}_k(\mathbb{M}, \overline{k})$, $\sigma(\mathbb{M})/\sigma(L_{n-1}) = \sigma(\mathbb{M})/\tilde{L}_{n-1}$ is Galois. Hence

$$\Phi: \operatorname{Gal}(\tilde{\mathbb{M}}/\tilde{L}_{n-1}) \longrightarrow \prod_{\sigma \in \operatorname{Hom}_{\mathbf{k}}(\mathbb{M},\overline{\mathbf{k}})} \operatorname{Gal}\left(\sigma(\mathbb{M})/\tilde{L}_{n-1}\right), \ \tau \mapsto \left(\tau|_{\sigma(\mathbb{M})}\right)_{\sigma}$$

is injective. Hence $\operatorname{Gal}(\tilde{\mathbb{M}}/\tilde{L}_{n-1})$ is solvable as a subgroup of a product of solvable groups.

'\(\infty\)' Let now \tilde{L}/L finite such that $\operatorname{Gal}(\tilde{L}/k)$ is solvable. Let

$$1 \triangleleft G_1 \triangleleft \ldots \triangleleft G_n = G$$

be a chain of subgroups as in definition 4.7. By the main theorem we have bijectively correspond intermediate fields

$$\tilde{L} = L_n \supseteq L_{n-1} \supseteq \cdots \supseteq L_0 = k$$

where L_{i+1}/L_i is Galois and $\operatorname{Gal}(L_{i+1}/L) \cong \mathbb{Z}/p\mathbb{Z}$ for all $1 \leq i \leq n-1$. We now have to differ between three cases.

case 1 $p_i = \text{char}(k)$. Then L_{i+1}/L_i is an elementary radical extension of type (iii), i.e. L/k is a radical extension.

case 2 $p_i \neq \text{char}(k)$ and L_i contains a primitive p_i -th root of unity. Then L_{i+1}/L_i is an elementary radical extension of type (ii), i.e. L/k is a radical extension.

case 3 $p_i \neq \text{char}(k)$ and L_i does not contain any primitive p_i -th root of unity. Then define

$$d:=\prod_{p\in\mathbb{P},p||G|}p$$

And let \mathbb{F} be the splitting field of $X^d - 1$ over k. Then \mathbb{F}/k is an elementary radical extension of type (i). Let $L' := \tilde{L}\mathbb{F}$ be the composite of \tilde{L} and \mathbb{F} in \overline{k} . Then L'/\mathbb{F} is Galois by remark 4.5. Let $G' = \operatorname{Gal}(L'/\mathbb{F})$. Consider the map

$$\Psi: \operatorname{Gal}(L'/\mathbb{F}) \longrightarrow \operatorname{Gal}(\tilde{L}/k), \ \sigma \mapsto \sigma|_{\tilde{L}}.$$

 Ψ is a well defined injective homomorphism of groups, hence $\operatorname{Gal}(L'/\mathbb{F}) \leq \operatorname{Gal}(\tilde{L}/k)$ is solvable as a subgroup of a solvable group. Let

$$1 \triangleleft G_1 \triangleleft \ldots \triangleleft G_n = G'$$

a chain of subgroups as in definition 4.7. Let further be

$$k \subseteq \mathbb{F} = L_0 \subseteq L_1 \subseteq \cdots \subseteq L_n = L'$$

be the corresponding chain of intermediate fields, i.e L_i/L_{i-1} is Galois and $\operatorname{Gal}(L_i/L_{i-1}) \cong \mathbb{Z}/p\mathbb{Z}$ for $1 \leq i \leq n$. Hence, L_i/L_{i-1} is a radical extension of type (ii). Thus L/k is a radical extension, which finishes the proof.

Theorem 4.12 Let $f \in k[X]$ be a separable non-constant polynomial. Then f is solvable by radicals if and only if Gal(f) = Gal(L(f)/k) is solvable.

proof. Let f be solvable by radicals, i.e. L(f)/k be a radical field extension.

 $\iff L(f)$ is contained in some Galois extension \tilde{L}/k and $\operatorname{Gal}(\tilde{L}/k)$ is solvable.

 \iff In $k \subseteq L(f) \subseteq \tilde{L}$ all extensions are Galois.

 $\stackrel{3.5}{\Longleftrightarrow} \ \operatorname{Gal}(L(f)/k) \cong \operatorname{Gal}(\tilde{L}/k) \left/ \operatorname{Gal}(\tilde{L}/L(f)) \right.$

 $\stackrel{4.8}{\iff}$ Gal(L(f)/k) is solvable.

Theorem 4.13 Let G be a group, k a field. Then the subset $Hom(G, k^{\times}) \subseteq Maps(G, k)$ is linearly independent in the k-vector space Maps(G, k).

proof. Suppose $\text{Hom}(G, k^{\times})$ is linearly dependent. Then let n > 0 minimal, such that there exist distinct elements $\chi_1, \ldots, \chi_n \in \text{Hom}(G, k^{\times})$ and $\lambda_1, \ldots, \lambda_n \in k^{\times}$ such that

$$\sum_{i=0}^{n} \lambda_i \chi_i = 0.$$

The χ_i are called *characters*. Clearly we have $n \ge 2$. Choose $g \in G$ such that $\chi_1(g) \ne \chi_2(g)$. For any $h \in G$ we have

$$0 = \sum_{i=0}^{n} \lambda_i \chi_i(gh) = \sum_{i=0}^{n} \underbrace{\lambda_i \chi_i(g)}_{=:\mu_i} \chi_i(h) = \sum_{i=0}^{n} \mu_i \chi_i(h).$$

Then we get

$$0 = \sum_{i=0}^{n} \mu_i \chi_i(h) = \sum_{i=0}^{n} \lambda_i \chi_i(g) \chi_i(h) \implies \sum_{i=0}^{n} \underbrace{(\mu_i - \lambda_i \chi_1(g))}_{\text{out}} \chi_i(h) = 0.$$

Consider

$$\nu_1 = \mu_1 - \lambda_1 \chi_1(g) = \lambda_1 \chi_1(g) - \lambda_1 \chi_1(g) = 0,$$

$$\nu_2 = \mu_2 - \lambda_2 \chi_1(g) = \lambda_2 \chi_2(g) - \lambda_2 \chi_1(g) = \underbrace{\lambda_2}_{\neq 0} \cdot \underbrace{(\chi_2(g) - \chi_1(g))}_{\neq 0} \neq 0.$$

Hence $\chi_2, \ldots \chi_n$ are linearly dependent. This is a contradiction to the minimality of n.

Proposition 4.14 Let L/k be a Galois extension such that $G := \operatorname{Gal}(L/k) = (\sigma)$ is cyclic of order d for some $\sigma \in G$, where $\operatorname{char}(k) \nmid d$. Let $\zeta_d \in k$ be a primitive d-th root of unity. Then there exists $\alpha \in L^{\times}$ such that $\sigma(\alpha) = \zeta \cdot \alpha$.

proof. Let

$$f: L \longrightarrow L, \qquad f(X) = \sum_{i=0}^{d-1} \zeta^{-i} \cdot \sigma^{i}(X).$$

Applying Theorem 4.10 on $G = L^{\times}$ and k = L shows $f \neq 0$. Then let $\gamma \in L$ such that $\alpha := f(\gamma) \neq 0$. Then we have

$$\begin{split} \sigma(\alpha) &= \sigma\left(f(\gamma)\right) = \sigma\left(\sum_{i=0}^{d-1} \zeta^{-i} \cdot \sigma^i(\gamma)\right) &= \sum_{i=0}^{d-1} \zeta^{-i} \cdot \sigma^{i+1}(\gamma) = \zeta \cdot \sum_{i=0}^{d-1} \zeta^{-(i+1)} \cdot \sigma^{i+1}(\gamma) \\ &= \zeta \cdot \sum_{i=1}^{d} \zeta^{-i} \cdot \sigma^i(\gamma) &= \zeta \left(\left(\sum_{i=1}^{d-1} \zeta^{-i} \cdot \sigma^i(\gamma)\right) + \gamma\right) \\ &= \zeta \cdot f(\gamma) &= \zeta \cdot \alpha. \end{split}$$

Remark: The claim follows from Proposition 5.2 by insertig $\beta = \zeta$.

Corollary 4.15 Let L/k be a Galois extension, such that $G := Gal(L/k) = (\sigma)$ is cyclic of order d for some $\sigma \in G$, where $char(k) \nmid d$. Assume k contains a primitive d-th root of unity. Then L/k is an elementary radical extension of type (ii).

proof. Let $\zeta_d \in k$ be a primitive d-th root of unity and $\alpha \in L^{\times}$ such that $\sigma(\alpha) = \zeta \cdot \alpha$. We have

$$\sigma^i(\alpha) = \zeta^i \cdot \alpha$$
 for $1 \le i \le d$.

The minimal polynomial of α over k has at least d zeroes, namely $\alpha, \sigma(\alpha), \ldots, \sigma^{d-1}(\alpha)$. Thus $L = k[\alpha]$. Moreover we have

$$\sigma(\alpha^d) = (\sigma(\alpha))^d = (\zeta \cdot \alpha)^d = \alpha^d$$

hence

$$\alpha^d \in L^{(\sigma)} = L^{\operatorname{Gal}(L/k)} = k$$

where the last equation follows by the main theorem. Define $\gamma := \alpha^d$. Then the minimal polynomial of α over k is $X^d - \gamma \in k[X]$, which proves the claim.

Proposition 4.16 Let L/k be a Galois extension of degree $p = \operatorname{char}(k)$ with cyclic Galois group $\operatorname{Gal}(L/k) \cong \mathbb{Z}/p\mathbb{Z} = (\sigma)$. Then there exists $\alpha \in L^{\times}$ such that $\sigma(\alpha) = \alpha + 1$.

proof. The proof follows by Proposition 5.4 by setting $\beta = -1$.

Corollary 4.17 Let L/k be a Galois extension of degree $p = \operatorname{char}(k)$ with cyclic Galois group $\operatorname{Gal}(L/k) \cong \mathbb{Z}/p\mathbb{Z} = (\sigma)$. Then L/k is an elementary radical extension of type (iii).

proof. Let $\alpha \in L^{\times}$ such that $\sigma(\alpha) = \alpha + 1$. We have

$$\sigma^i(\alpha) = \alpha + i$$
 for $1 \le i \le p$,

thus we have $L = k[\alpha]$. Moreover we have

$$\sigma(\alpha^p - \alpha) = \sigma^p(\alpha) - \sigma(\alpha) = (\alpha + 1)^p - (\alpha + 1) = \alpha^p + 1 - \alpha - 1 = \alpha^p - \alpha.$$

Thus again we have $\alpha^p \in k$. Define $\gamma := \alpha^p - \alpha$. Then the minimal polynomial of α over k is $X^p - X - \gamma$, which proves the claim.

§ 5 Norm and trace

Definition + **remark 5.1** Let L/k be a finite separable field extension, [L:k] = n. Let $\operatorname{Hom}_k(L,\overline{k}) = \{\sigma_1,\ldots\sigma_n\}$.

(i) For $\alpha \in L$ we define the *norm* of α over k by

$$N_{L/k}(\alpha) := \prod_{i=1}^{n} \sigma_i(\alpha).$$

- (ii) $N_{L/k} \in k$ for all $\alpha \in L$.
- (iii) $N_{L/k}: L^{\times} \longrightarrow k^{\times}$ is a homomorphism of groups.

proof. (ii) Let $\alpha \in L$. Assume first that L/k is Galois. Then $\operatorname{Hom}_k(L, \overline{k}) = \operatorname{Aut}_k(L) = \operatorname{Gal}(L/k)$. For $\tau \in \operatorname{Gal}(L/k)$ we have

$$\tau\left(N_{L/k}\right) = \tau\left(\prod_{i=1}^{n} \sigma_i(\alpha)\right) = \prod_{i=1}^{n} \underbrace{\left(\tau\sigma_i\right)}_{\in \operatorname{Gal}(L/k)}(\alpha) = N_{L/k},$$

hence $N_{L/k} \in L^{\operatorname{Gal}(L/k)} = k$. Now consider the general case. Let $\tilde{L} \supseteq L$ be the normal hull of L over k. Recall that \tilde{L} is the composition of the $\sigma_i(L)$, i.e. we have

$$\tilde{L} = \prod_{i=1}^{n} \sigma_i(L).$$

Then \tilde{L}/k is Galois an for $\tau \in \operatorname{Gal}(\tilde{L}/k)$ we have

$$\tau\left(N_{L/k}(\alpha)\right) = \prod_{i=1}^{n} \underbrace{\left(\tau\sigma_{i}\right)}_{\in \operatorname{Hom}_{k}(L,\bar{k})} (\alpha) = \prod_{i=1}^{n} \sigma_{i}(\alpha) = N_{L/k}(\alpha),$$

hence $N_{L/k}(\alpha) \in \tilde{L}^{\operatorname{Gal}(\tilde{L}/k)} = k$.

(iii) We have $N_{L/k}(\alpha) = 0 \iff \sigma_i(\alpha) = 0$ for some $1 \le i \le n \Leftrightarrow \alpha = 0$. Moreover

$$N_{L/k}(\alpha \cdot \beta) = \prod_{i=1}^{n} \sigma_i(\alpha \beta) = \prod_{i=1}^{n} \sigma_1(\alpha) \sigma_i(\beta) = \left(\prod_{i=1}^{n} \sigma_i(\alpha)\right) \cdot \left(\prod_{i=1}^{n} \sigma_i(\beta)\right)$$
$$= N_{L/k}(\alpha) \cdot N_{L/k}(\beta),$$

which proves the claim.

Example 5.2 (i) Let $\alpha \in k$. Then

$$N_{L/k}(\alpha) = \prod_{i=1}^{n} \sigma_i(\alpha) = \prod_{i=1}^{n} \alpha = \alpha^n.$$

- (ii) Let $k = \mathbb{R}$, $L = \mathbb{C}$. Then $\operatorname{Hom}_{\mathbb{R}}(\mathbb{C}, \overline{\mathbb{R}}) = \operatorname{Gal}(\mathbb{C}/\mathbb{R}) = \{\operatorname{id}, \mathbf{z} \mapsto \overline{\mathbf{z}}\}$ and thus the norm ist $N_{L/k}(z) = z\overline{z} = |z|^2$.
- (iii) Let $k = \mathbb{Q}$, $L = \mathbb{Q}[\sqrt{d}]$ for $d \in \mathbb{Z}$ squarefree. We have $[\mathbb{Q}[\sqrt{d}] : \mathbb{Q}] = 2$ and

$$Gal(\mathbb{Q}[\sqrt{d}]/\mathbb{Q}) = \{id, \sqrt{d} \mapsto -\sqrt{d}\} = \{a + b\sqrt{d} \mapsto a + b\sqrt{d}, a + b\sqrt{d} \mapsto a - b\sqrt{d}\}.$$

Then we have

$$N_{\mathbb{Q}[\sqrt{d}]/\mathbb{Q}}(a+b\sqrt{d}) = (a+b\sqrt{d})(a-b\sqrt{d}) = a^2 - db^2$$

- d < 0: $d = -\tilde{d}$, hence $a^2 + \tilde{d}b^2 \stackrel{!}{=} 1 \Rightarrow$ either $a = \pm 1, b = 0$ or $a = 0, b = \pm 1, \tilde{d} = 1$.
- d > 0: Infinitely many solutions for $a^2 bd^2 = 1$.

Proposition 5.3 (Hilbert's theorem 90 - multiplicative version) Let L/k a finite Galois extension with cyclic Galois group $Gal(L/k) = (\sigma)$, n = [L:k]. Let $\beta \in L$ with $N_{L/k}(\beta) = 1$. Then there exists $\alpha \in L^{\times}$ such that $\beta = \frac{\alpha}{\sigma(\alpha)}$. proof. Define

$$f = \mathrm{id}_{\mathrm{L}} + \beta \sigma + \beta \sigma(\beta) \sigma^2 + \ldots + \beta \sigma(\beta) \sigma^2(\beta) \cdots \sigma^{\mathrm{n}-2}(\beta) \sigma^{\mathrm{n}-1} = \sum_{\mathrm{i}=0}^{\mathrm{n}-1} \sigma^{\mathrm{i}} \prod_{\mathrm{i}=1}^{\mathrm{j}} \sigma^{\mathrm{i}-1}(\beta).$$

Then by Theorem 4.10 $f \neq 0$. Choose $\gamma \in L$ such that $\alpha := f(\gamma) \neq 0$. Then we have

$$\beta \cdot \sigma(\alpha) = \beta \cdot \sigma(f(\gamma)) = \beta \cdot \left(\sigma\left(\gamma + \beta\sigma(\gamma) + \dots + \prod_{i=0}^{n-2} \sigma^{i}(\beta)\sigma^{n-1}(\gamma)\right)\right)$$

$$= \beta \cdot \left(\sigma(\gamma) + \sigma(\beta)\sigma^{2}(\gamma) + \dots + \prod_{i=0}^{n-2} \sigma^{i+1}(\beta)\sigma^{n}(\gamma)\right)$$

$$= \beta \cdot \left(\sigma(\gamma) + \sigma(\beta)\sigma^{2}(\gamma) + \dots + \frac{1}{\beta}N_{L/k}(\beta) \cdot \gamma\right)$$

$$= \beta \cdot \left(\sigma(\gamma) + \sigma(\beta)\sigma^{2}(\gamma) + \dots + \gamma\right)$$

$$= \gamma + \beta\sigma(\gamma) + \beta\sigma(\beta)\sigma^{2}(\gamma) + \dots + \beta \cdot \prod_{i=1}^{n-2} \sigma^{i}(\beta)\sigma^{n-1}(\gamma)$$

$$= f(\gamma) = \alpha,$$

which is the claim. \Box

Definition + **remark 5.4** Let L/k be a finite separable field extension, [L:k] = n. Let $\operatorname{Hom}_k(L,\overline{k}) = \{\sigma_1,\ldots\sigma_n\}$.

(i) For $\alpha \in L$,

$$tr_{L/k}(\alpha) := \sum_{i=0}^{n} \sigma_i(\alpha)$$

is called the *trace* of α over k.

- (ii) $tr_{L/k}(\alpha) \in k$ for all $\alpha \in L$.
- (iii) $tr_{L/k}: L \longrightarrow k$ is k-linear.

proof. (ii) As in proof 5.1, $tr_{L/k}(\alpha)$ is invariant under Gal(L/k).

(iii) Clear.
$$\Box$$

Example 5.5 (i) Let $\alpha \in k$. Then

$$tr_{L/k}(\alpha) = \sum_{i=0}^{n} \sigma_i(\alpha) = \sum_{i=0}^{n} \alpha = n \cdot \alpha.$$

(ii) Let $k = \mathbb{R}$, $L = \mathbb{C}$. Then $tr_{\mathbb{C}/\mathbb{R}}(z) = z + \overline{z} = 2 \cdot \mathfrak{Re}(z)$.

Proposition 5.6 (Hilbert's theorem 90 - additive version) Let L/k be a Galois extension with cyclic Galois group $Gal(L/k) = (\sigma)$ and $[L:k] = char(k) = p \in \mathbb{P}$. Then for every $\beta \in L$ with $tr_{L/k}(\beta) = 0$ there exists $\alpha \in L$ such that $\beta = \alpha - \sigma(\alpha)$.

proof. Define

$$g = \beta \cdot \sigma + (\beta + \sigma(\beta)) \cdot \sigma^2 + \ldots + \left(\sum_{i=0}^{p-2} \sigma^i(\beta)\right) \cdot \sigma^{p-1} = \sum_{i=0}^{p-2} \left(\sum_{j=0}^i \sigma^j(\beta)\right) \cdot \sigma^{i+1}.$$

Let now $\gamma \in L$ such that $tr_{L/k}(\gamma) \neq 0$ (existing by 4.11). Then for

$$\alpha := \frac{1}{tr_{L/k}(\gamma)} \cdot g(\gamma)$$

we have

$$\alpha - \sigma(\alpha) = \frac{1}{tr_{L/k}(\gamma)} \cdot (g(\gamma) - \sigma(g(\gamma)))$$

$$= \frac{1}{tr_{L/k}(\gamma)} \left(\left(\sum_{i=0}^{p-2} \left(\sum_{j=0}^{i} \sigma^{j}(\beta) \right) \sigma^{i+1}(\gamma) \right) - \left(\sum_{i=0}^{p-2} \left(\sum_{j=0}^{i} \sigma^{j+1}(\beta) \right) \sigma^{i+2}(\gamma) \right) \right)$$

$$= \frac{1}{tr_{L/k}(\gamma)} \left(\left(\sum_{i=0}^{p-2} \left(\sum_{j=0}^{i} \sigma^{j}(\beta) \right) \sigma^{i+1}(\gamma) \right) - \left(\sum_{i=1}^{p-1} \left(\sum_{j=1}^{i} \sigma^{j}(\beta) \right) \sigma^{i+1}(\gamma) \right) \right)$$

$$= \frac{1}{tr_{L/k}(\gamma)} \cdot \left(\sum_{i=0}^{p-1} \beta \cdot \sigma^{i}(\gamma) \right) = \beta,$$

and we obtain the claim.

Proposition 5.7 Let L/k be a finite separable extension, $\alpha \in L$. Consider the k-linear map

$$\phi_{\alpha}: L \longrightarrow L, \quad x \mapsto \alpha \cdot x.$$

Then

- (i) $N_{L/k}(\alpha) = \det(\phi_{\alpha})$.
- (ii) $tr_{L/k}(\alpha) = tr(\phi_{\alpha})$.

proof. Let

$$f = \sum_{i=0}^{d} a_i X^i$$

be the minimal polynomial of α over k. Then it holds

$$(f \circ \phi_{\alpha})(x) = f(\phi_{\alpha}(x)) = \sum_{i=0}^{d} a_i \phi_{\alpha}^i(x) = \sum_{i=0}^{d} a_i \alpha^i \cdot x = x \cdot \sum_{i=0}^{d} a_i \alpha^i = x \cdot f(\alpha) = 0$$

For arbitrary $x \in L$, hence $f(\phi_{\alpha}) = 0$.

case 1.1 Assume first $L = k[\alpha]$ for some $\alpha \in k$. Then $[L:k] = \deg(f) = d$, so $\{1, \alpha, \dots, \alpha^{d-1}\}$ is a k-basis of L. Then we have a transformation matrix of ϕ_{α} with respect to the basis $\{1, \alpha, \dots, \alpha^{d-1}\}$

$$D = \begin{pmatrix} 0 & 0 & 0 & 0 & a_0 \\ 1 & 0 & \vdots & -a_1 \\ 0 & 1 & \vdots & \vdots \\ \vdots & \vdots & \ddots & 0 & \vdots \\ 0 & \dots & 0 & 1 & -a_{d-1} \end{pmatrix}$$

thus we have $\operatorname{tr}(\phi_{\alpha}) = -a_{d-1}$ and $\operatorname{det}(\phi_{\alpha}) = (-1)^d \cdot a_0$. We know that f splits over \overline{k} , say

$$f = \prod_{i=1}^{d} (X - \lambda_i) = \prod_{i=1}^{d} (X - \sigma_i(\alpha))$$

Then we easily see

$$\det(\phi_{\alpha}) = (-1)^{d} \cdot a_{0} = (-1)^{d} \cdot f(0) = (-1)^{d} \cdot \prod_{i=1}^{d} (0 - \sigma_{i}(\alpha)) = \prod_{i=1}^{d} \sigma_{i}(\alpha) = N_{L/k}(\alpha),$$

$$\operatorname{tr}(\phi_{\alpha}) = -a_{d-1} = \operatorname{tr}_{L/k}(\alpha).$$

case 1.2 For the case $\alpha \in k$, ϕ_{α} is represented by the diagonal matrix $\begin{pmatrix} \alpha & 0 \\ & \ddots & \\ 0 & \alpha \end{pmatrix} \in k^{d \times d}$.

We obtain

$$\operatorname{tr}(\phi_{\alpha}) = d \cdot \alpha = \operatorname{tr}_{L/k}(\alpha)$$
 $\operatorname{det}(\phi_{\alpha}) = \alpha^d = \operatorname{tr}_{L/k}(\alpha).$

case 2 For the general case we have $k \subseteq k(\alpha) \subseteq L$.

Claim (a) The following is true:

$$N_{L/k}(\alpha) = N_{k(\alpha)k} \left(N_{L/k(\alpha)}(\alpha) \right), \qquad tr_{L/k}(\alpha) = tr_{k(\alpha)/k} \left(tr_{L/k(\alpha)}(\alpha) \right)$$

Claim (b) The following identity holds:

$$\det(\phi_{\alpha}) = \left(\det\left(\phi_{\alpha}|_{k(\alpha)}\right)\right)^{[L:k(\alpha)]} \qquad \operatorname{tr}(\phi_{\alpha}) = [L:k(\alpha)] \cdot \operatorname{tr}\left(\phi_{\alpha}|_{k(\alpha)}\right).$$

Assuming Claim (a) and (b), we get

$$\det(\phi_{\alpha}) = \left(\det\left(\phi_{\alpha}|_{k(\alpha)}\right)\right)^{[L:k(\alpha)]} \stackrel{1.1}{=} \left(N_{k(\alpha)/k}\right)^{[L:k(\alpha)]} = N_{k(\alpha)/k}\left(\alpha^{[L:k(\alpha)]}\right)$$

$$\stackrel{1.2}{=} N_{k(\alpha)/k}\left(N_{L/k(\alpha)}(\alpha)\right)$$

$$\stackrel{(a)}{=} N_{L/k}(\alpha)$$

And analogously $\operatorname{tr}(\phi_{\alpha}) = tr_{L/k}(\alpha)$.

Let's now proof the claims.

(b) Let $x_1, \ldots x_d$ be a basis of $k(\alpha)/$ as a k-vector space and $y_1, \ldots y_m$ a basis of L as a $k(\alpha)$ vector space. Then the $x_i y_j$ for $1 \le i \le d$, $1 \le j \le m$ form a k-basis for L. Let now $D \in k^{d \times d}$ be the matrix representing $\phi_{\alpha}|_{k(\alpha)}$. Then we have

$$\alpha x_i y_j = \underbrace{(\alpha x_i)}_{\in k(\alpha)} y_j = (D \cdot x_i) y_j,$$

hence ϕ_{α} is represented by

$$\tilde{D} = \begin{pmatrix} A & 0 & \dots & 0 \\ 0 & A & & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & A \end{pmatrix}$$

(a) This is an exercise.

Definition + remark 5.8 Let L/k be a finite field extension, $r = [L:k]_s = |\text{Hom}_k(L, \overline{k})|$. Let $q = \frac{[L:k]}{[L:k]_s}$.

(i) For $\alpha \in L$ define

$$N_{L/k}(\alpha) = \det(\phi_{\alpha})$$
 $\operatorname{tr}_{L/k}(\alpha) = \operatorname{tr}(\phi_{\alpha}).$

(ii) Let $\operatorname{Hom}_{\mathbf{k}}(\mathbf{L}, \overline{\mathbf{k}}) = \{\sigma_1, \dots, \sigma_r\}$. Then

$$N_{L/k}(\alpha) = \left(\prod_{i=1}^r \sigma^i(\alpha)\right)^q, \qquad tr_{L/k}(\alpha) = \left(\sum_{i=1}^r \sigma_i(\alpha)\right) \cdot q.$$

proof. Copy the proof of 5.5. Recall that the minimal polynomial of α over k is given by

$$m_{\alpha} = \prod_{i=1}^{r} (X - \sigma_i(\alpha))^q,$$

where q is defined as above.

§ 6 Normal series of groups

Definition 6.1 Let G be a group.

(i) A series

$$G = G_0 \rhd G_1 \rhd \ldots \rhd G_n$$

of subgroups is called a *normal series* for G, if $G_i \triangleleft G_{i-1}$ is a normal subgroup in G_{i-1} and $G_i \neq G_{i-1}$ for $1 \leq i \leq n$. The groups $H_i := G_{i-1}/G_i$ are called *factors* of the series.

- (ii) A normal series as above is called a *composition series* for G, if all its factors are simple groups and $G_n = \{e\}$.
- **Example 6.2** (i) For $G = S_4$ we have a composition series

$$G = S_4 \triangleright A_4 \triangleright V_4 \triangleright T_4 \triangleright \{e\}$$

where $T_4 = \{id, \sigma\} \cong \mathbb{Z}/2\mathbb{Z}$ for some transposition $\sigma \in S_4$. We have quotients

$$S_4/A_4 = \mathbb{Z}/2\mathbb{Z}, \quad A_4/V_4 = \mathbb{Z}/3\mathbb{Z}, \quad V_4/T_4 = \mathbb{Z}/2\mathbb{Z}, \quad T_4/\{e\} = \mathbb{Z}/2\mathbb{Z}$$

- (ii) \mathbb{Z} has no composition series.
- (iii) Every normal series is a composition series.
- (iv) Every finite group has a composition series.

Remark 6.3 If $G = G_0 \triangleright G_1 \triangleright ... \triangleright G_n = \{e\}$ is a normal composition series for a finite group G, then the following is clear:

$$|G| = \prod_{i=1}^{n} |G_{i-1}/G_i|$$

Definition + **remark 6.4** Let G be a group.

(i) For subgroups $H_1, H_2 \leq G$ let $[H_1, H_2]$ denote the subgroup of G generated by all *commutators*

$$[h_1, h_2] = h_1 h_2 h_1^{-1} h_2^{-1}$$
 with $h_i \in H_i$ for $i \in \{1, 2\}$.

- (ii) [G,G] = G' is called the derived or commutator subgroup of G.
- (iii) $G' \triangleleft G$ and $G^{ab} := G/G'$ is abelian.
- (iv) Let A be an abelian group and $\phi: G \longrightarrow A$ a homomorphism of groups. Let $\pi: G \longrightarrow G^{ab}$ denote the residue map. Then $G' \subseteq \ker(\phi)$, thus ϕ factors to a unique homomorphism

$$\overline{\phi}: G^{\mathrm{ab}} \longrightarrow A, \quad \text{such that } \phi = \overline{\phi} \circ \pi.$$

(v) The chain

$$G \rhd G' \rhd G'' = [G', G'] \rhd \ldots \rhd G^{(n+1)} = [G^n, G^n]$$

is called the *derived series* of G.

(vi) G is solvable if and only if its derived series stops at $\{e\}$.

proof. (iii) For $g \in G$, $a, b \in G$ we have

$$g[ab]g^{-1} = gaba^{-1}b^{-1}g^{-1} = ga\underbrace{g^{-1}g}_{=e}b\underbrace{g^{-1}g}_{=e}a^{-1}\underbrace{g^{-1}g}_{=e}b^{-1}g^{-1} = [gag^{-1}, gbg^{-1}] \in G'.$$

Moreover

$$e = [\overline{a}, \overline{b}] = \overline{[a, b]} = \overline{aba^{-1}b^{-1}} \quad \Longleftrightarrow \quad \overline{ab} = \overline{a}\overline{b} = \overline{b}\overline{a} = \overline{ba}.$$

(iv) Let A be an abelian group, $\phi: G \longrightarrow A$ a himomorphism. For $x, y \in G$ we have

$$\phi([x,y]) = \phi(xyx^{-1}y^{-1}) = \phi(x) = \phi(y)\phi(x)^{-1}\phi(y)^{-1} = e \implies G' \subseteq \ker(\phi).$$

- (vi) ' \Leftarrow ' If the derived series of G stops at $\{e\}$, G has a normal series with abelian factors and is solvable.
 - '⇒' Let now $G = G_0 \rhd \ldots \rhd G_n = \{e\}$ be a normal series with abelian factors. We have to show that $G^{(n)} = \{e\}$.

Claim (a) We have $G^{(i)} \subseteq G_i$ for $0 \le i \le n$.

Then we see $G^{(n)} \subseteq G_n = \{e\}$ an hence the derived series of G stops at $\{e\}$. It remains to prove the claim.

(a) We have $\pi_i: G_i \longrightarrow G_i/G_{i+1}$ is a homomorphism from G to an abelian group. Then by part (iv), we have $G_i^{(1)} = G_i' \subseteq \ker(\pi_i) = G_{i+1}$.

By induction on n we have $G^{(i)} = (G^{(i-1)})' \subseteq G_i$, hence $(G^{(i)})' \subseteq G_i$?.

Thus we get

$$G^{(i+1)} = \left(G^{(i)}\right)' \subseteq G_i' \subseteq \ker(\pi_I) = G_{i+1},$$

which finishes the proof.

Proposition 6.5 A finite group G is solvable if and only if the factors of its composition series are cyclic of prime order.

proof. \Rightarrow Let

$$G = G_1 \rhd G_2 \rhd \ldots \rhd G_m = \{1\}$$

be a normal series of G with abelian quotients $G_i - 1/G_i$ for $1 \le i \le m$. Refine it to a composition series

$$G = G_0 = H_{0,0} \triangleright H_{0,1} \triangleright \dots \triangleright H_{0,d_0} = G_1 = H_{1,0} \triangleright \dots \triangleright H - 1, d_1 = G_2 \triangleright \dots \triangleright G_m = \{1\}.$$

Then we have

$$H_{i,j}/H_{i,j+1} \cong H_{i,j}/G_{i+1}/H_{i,j+1}/G_{i+1} \subseteq G_i/G_{i+1}/H_{i,j+1}/G_{i+1}$$

hence $H_{i,j}/H_{i,j+1}$ is isomorphic to a subgroup of a factor group of an abelian group, thus abelian.

' \Leftarrow ' Since the factor groups of the composition series are isomorphic to $\mathbb{Z}/p\mathbb{Z}$ for some primes p, the quotients are abelian, thus G is solvable.

Theorem 6.6 (Jordan - Hölder) Let G be a group and

$$G = G_0 \rhd G_1 \rhd \ldots \rhd G_n = \{e\}$$

$$G = H_0 > H_1 > \ldots > H_m = \{e\}$$

be two composition series of G. Then n = m and there ist $\sigma \in S_n$ such that

$$H_i/H_{i+1} \cong G_{\sigma(i)}/G_{\sigma(i)+1}$$
 for $0 \le i \le n-1$

proof. We prove the statement by induction on n.

n=1 G is simple and thus $H_1 = \{e\}$.

n>1 Let $\overline{G}:=G/G_1$ and $\pi:G\longrightarrow \overline{G}$ be the residue map.

Then $\overline{H}_i = \pi(H_i) \leq \overline{G}$ is a normal subgroup. Since \overline{G} is simple, hence we have $\overline{H}_i \in \{\{e\}, \overline{G}\}$. If $\overline{H}_1 = \overline{G}$, then \overline{H}_2 is a normal subgroup of $\overline{H}_1 = \overline{H}$, and so on. Hence we find $j \in \{1, \ldots, m\}$ such that

$$\overline{H}_i = \overline{G} \text{ for } 0 \leqslant 1 \leqslant j \text{ and } \overline{H}_i = \{e\} \text{ for } j+1 \leqslant i \leqslant m.$$

Define $C_i := H_i \cap G_1 < G_1$ for $0 \le i \le m$.

Claim (a) If $j \leq m-2$, then we have a composition series for G_1 :

$$G_1 = C_0 \rhd C_1 \rhd \ldots \rhd C_i \rhd C_{i+2} \rhd \ldots \rhd C_m = \{e\}.$$

If j = m - 1, we have a composition series for G_1 :

$$G_1 = C_0 > C_1 > \ldots > C_{m-1} = \{e\}.$$

Clearly $G_1 > G_2 > ... > G_n = \{e\}$ is a composition series, too. By induction hypothesis we have n-1=m-1, hence n=m. Moreover we have for $i \neq j$

$$\begin{pmatrix}
C_i / C_{i+1} &\cong G_{\sigma(i)} / G_{\sigma(i)+1} \\
C_j / C_{j+2} &\cong G_{\sigma(j)} / G_{\sigma(j)+1}
\end{pmatrix} (*)$$

For some $\sigma:\{0,1,\ldots,j,j+2,j+3,\ldots,n-1\}\longrightarrow\{1,\ldots,n-1\}$

Claim (b) We have

- (1) $C_{j+1} = C_j$
- (2) $C_i / C_{i+1} \cong H_i / H_{i+1}$ for $i \neq j$.
- (3) $H_j/H_{j+1} \cong \overline{G} = G/G_1$.

By (*) and Claim (a),(b) the theorem is proved.

It remains to show the Claims.

(a) C_{i+1} is a normal subgroup of C_i , $C_{i+1} = H_{i+1} \cap G_1$. Further C_{j+1} is normal in $C_j = C_{j+1}$

by Claim (b)(2) and $C_i/C_{i+1} \cong H_i/H_{i+1}$ for $i \neq j$ is simple by Claim (b)(2). Then $C_j/C_{j+2} = C_j/C_{j+1} = H_j/H_{j+1}$ is simple, too.

- (b) (1) We have $H_{j+1} \subseteq G_1$, hence $H_{j+1} \cap G_1 = H_{j+1} = C_{j+1}$. $C_j = H_j \cap G_1$ is normal subgroup of H_j . Thus $H_j \rhd C_j \rhd C_{j+1} = H_{j+1}$. Since H_i / H_{i+1} is simple, we must have $C_j = C_{j+1}$.
 - (2) $\mathbf{i} > \mathbf{j}$ Then $C_i = H_i \cap G_1 = H_i$ since $H_i \subseteq G_1$. $\mathbf{i} < \mathbf{j}$ We have $\overline{H}_i = \overline{G} = G/G_1$. Then we have $G_1H_i = G$ (*), since:

'⊆' Clear.

'⊇' For $g \in G, \overline{g} \in \overline{G}$ its image there exists $h \in H_i$ such that

$$\overline{h} = \overline{g} \Longrightarrow \overline{h}^{-1} \overline{g} \in G_1 \Longleftrightarrow \overline{h}^{-1} \overline{g} = g_1 \in G_1 \Longrightarrow g = hg_1 \in H_iG_1.$$

With the isomorphism theorem we obtain

$$C_i/C_{i+1} = C_i/H_{i+1} \cap G_i = C_i/H_{i+1} \cap C_i \cong C_iH_{i+1}/H_{i+1}$$
.

Therefore it remains to show that $C_iH_{i+1} = H_i$.

- \subseteq Since $C_i, H_{i+1} \subseteq H_i$ we also have $C_i H_{i+1} \subseteq H_i$
- ' \supseteq ' Let $x \in H_i$. by (*) we have $H_{i+1}G_i = G$. Then there exists $g \in G_1, h \in H_{i+1}$ such that x = gh, thus we have $g = xh^{-1} \in H_iH_{i+1} = H_i$, i.e. $g \in G_i \cap H_i = C_1$ and thus $x \in C_iH_{i+1}$.
- (3) We have

$$H_i/H_{i+1} = H_i/C_{j+1} = H_j/C_j = H_j/H_j \cap G_1 = G_1H_j/G_1 \stackrel{(*)}{=} G/G_1,$$

which finishes the proof, paragraph and chapter.