离散数学第六次作业

Problem 1

设 a,b,c,d 均为正整数,下列命题是否为真? 若为真,给出证明;否则,给出反例。

a) 若 a | c, b | c, 则 ab | c

b) 若 a | c, b | d, 则 ab | cd

c) 若 ab | c, 则 a | c

d) 若 $a \mid bc$, 则 $a \mid b$ 或 $a \mid c$

Problem 2

证明:任何3个连续整数的乘积可以被6整除。

Problem 3

计算:

a) 23300 mod 11

b) $2^{3300} \mod 31$

c) $3^{516} \mod 7$

Problem 4

证明: 如果 a 和 b 为正整数,则 $(2^a-1) \operatorname{mod}(2^b-1) = 2^{a \operatorname{mod} b} - 1$ 。

Problem 5

证明;如果 2^n-1 是质数,则 n 也为质数。

Problem 6

证明: 对于任意的整数 n

a) $6 \mid n(n+1)(n+2)$

b) $\frac{1}{5}n^5 + \frac{1}{3}n^3 + \frac{7}{15}n$ 是整数.

Problem 7

证明:

- a) 设 $d \ge 1$, $d \mid m$, 则 $a \equiv b \pmod{m} \Rightarrow a \equiv b \pmod{d}$
- b) 设 $d \ge 1$, 则 $a \equiv b \pmod{m} \Leftrightarrow da \equiv db \pmod{dm}$
- c) 设 c 与 m 互质, 则 $a \equiv b (\text{mod } m) \Leftrightarrow ca \equiv cb (\text{mod } m)$

Problem 8

借助于费马小定理证明如果 n 是一个正整数, 则 42 能整除 $n^7 - n$ 。

Problem 9

试证明: 若 $p \ge 7$ 为质数,则 240 | (p^4-1) 。

Problem 10

证明: 若m 和n 互质,则 $m^{\phi(n)} + n^{\phi(m)} \equiv 1 \pmod{mn}$ 。