

Auto Scaling, Amazon ELB

NEAL DAVISFounder and AWS Instructor

Virtual Classroom Requirements

- Update your Zoom name to be your first/last name
- 2) Video must be always on
- 3) Raise your hand if you have a question and we'll let you know when to unmute

Live Training Topics

Section 3 Public & Private Subnets

Section 3 NAT Gateways

Section 4 Scaling Strategies

Section 4 Stateful vs Stateless Applications

Section 4 Gateway Load Balancer

Section 4

ALB/NLB Access Control

Section 4

Identifying Client IPs with ELB

Section X

Troubleshooting ELB

Amazon EC2 in Public and Private Subnets

Public subnets require:

- A route to an Internet gateway
- Auto-assign public IPv4 or IPv6 address

Private subnets:

- Do not auto assign public addresses
- Do not have a route to an internet gateway

Network Address Translation (NAT)

Network Address Translation (NAT)

Network Address Translation (NAT)

NAT Gateways

Private Subnet Route Table		
Destination	Target	
10.0.0.0/16	Local	
0.0.0.0/0	nat-gateway-id	

NAT Gateways deployment requirements:

- Deployed in public subnets
- Have an Elastic IP attached
- Route to the NAT gateway added to private subnet

High Availability for NAT Gateway

NAT gateways have redundancy within an AZ

AZ1 Private Route Table

Destination	Target	
10.0.0.0/16	Local	
0.0.0.0/0	nat-gw-az1	

AZ2 Private Route Table

Destination	Target	
10.0.0.0/16	Local	
0.0.0.0/0	nat-gw-az2	

AZ3 Private Route Table

Destination	Target
10.0.0.0/16	Local
0.0.0.0/0	nat-gw-az3

Questions?

DNS vs Load Balancing

Domain Name System (DNS)

- Responds to queries with an address
- Direct traffic to any Region or non-AWS endpoint

Elastic Load Balancing

- Receives connections and forwards to target
- AWS targets must be within a Region

Scaling Up vs Out

Scaling OUT

Which scaling model should be used?

Scale <u>UP</u>

EC2 with MySQL DB

Scale <u>OUT</u>

EC2 with **Static** Website

Which scaling model should be used?

...It depends

EC2 with **Dynamic** Website

Stateless Application (static website)

Stateful Application (dynamic website)

State is maintained on each instance Experience may be inconsistent

Load Balanced Dynamic Website

Without Sticky Sessions

With Sticky Sessions

Storing Session State

ElastiCache is also a popular solution for storing **session-state data**

Questions?

Gateway Load Balancer Deployments

GLB endpoint is a target in the subnet route table

Access Control with ALB and NLB

DigitalCloud

What's the Source IP Address the App sees?

Note: X-forwarded-for can be used with ALB to capture client IPs

AWS NLB

AWS NLB

Applicable to TCP
and TLS – for UDP
and TCP_UDP
should be IP=A

CLB and ALB use **private IP** of their **ENIs** as source address

Source Protocol Port
IP=A TCP 80

Source	Protocol	Port
IP=B	ТСР	80

When using an NLB with a VPC Endpoint or AWS GA source IPs are private IPs of NLB nodes

Troubleshooting Load Balancer Deployments

What must be configured correctly?

- Listener / target ports
- Health check ports
- Web service running
- Security group for EC2
- Security group for ALB
- Network ACL
- Internet gateway
- Route tables

Questions?

Hands-On Practice Session

Load Balanced Architecture with Advanced Request Routing

Exercise 1 - Create the Red and Blue EC2 instances

Exercise 2 - Enable Path-based Routing

Exercise 3 - Enable Host-based Routing

Bonus (if time allows) - Add Auto Scaling

Use the Lab Guide from the resources page:

 Load Balanced Architecture with Advanced Request Routing.pdf

Download the code:

advanced-request-routing-code.zip

Path-Based Routing

Routing Rules

Host-Based Routing

Routing Rules

