138. Determina si las siguientes sucesiones $\{x_n : n \in \mathbb{N}\}$ son convergentes o divergentes, si:

- (1) $x_n = n/(n+1)$ para todo $n \in \mathbb{N}$;
- (2) $x_n = (-1)^n n/(n+1)$ para todo $n \in \mathbb{N}$;
- (3) $x_n = n^2/(n+1)$ para todo $n \in \mathbb{N}$;
- (4) $x_n = (2n^2 + 3)/(n^2 + 1)$ para todo $n \in \mathbb{N}$;

Solución. (1) Veamos que lím $x_n = 1$. Sea $\varepsilon > 0$ existe N_{ε} tal que $1/N_{\varepsilon} \le \varepsilon$ por la Prop. Arquimediana, de forma que para todo $n \ge N_{\varepsilon}$,

$$\left|\frac{n}{n+1} - 1\right| = \frac{1}{n+1} \le \frac{1}{n} \le \frac{1}{N_{\varepsilon}} \le \varepsilon$$

- (2) Veamos que no converge. Consideremos la subsucesión $\{x_{2n}\}_{n=1}^{\infty}$, la cual es una subsucesión de $\{n/(n+1)\}_{n=1}^{\infty}$ y por ende converge a 1 por el apartado anterior. La subsucesión $\{x_{2n-1}\}_{n=1}^{\infty}$, por contra, converge a -1, por el mismo argumento. Con ello, la sucesión original no puede ser convergente.
- (3) Veamos que lím $x_n = +\infty$. Sea M > 0, existe $N_{\varepsilon} \in \mathbb{N}$ tal que $N_{\varepsilon} \geq 2M$ por la propiedad arquimediana, de forma que para todo $n \geq N_{\varepsilon}$,

$$\left| \frac{n^2}{n+1} \right| \underset{n+1 \le n+n=2n}{\geq} \frac{n^2}{2n} = \frac{1}{2} n \ge \frac{1}{2} N_{\varepsilon} \ge \frac{1}{2} (2M) = M$$

(4) Veamos que lím $x_n = 2$. Sea $\varepsilon > 0$, ...

$$\left| \frac{2n^2 + 3}{n^2 + 1} - 2 \right| = \left| \frac{(2n^2 + 3) - 2(n^2 + 1)}{n^2 + 1} \right| = \frac{1}{n^2 + 1} \le \frac{1}{n} \le \frac{1}{N_{\varepsilon}} \le \varepsilon.$$

139. Proporciona ejemplos de sucesiones divergentes $\{x_n : n \in \mathbb{N}\}$ e $\{y_n : n \in \mathbb{N}\}$ tales que (1) su suma $\{x_n + y_n : n \in \mathbb{N}\}$ converja; (2) su producto $\{x_n y_n : n \in \mathbb{N}\}$ converja.

Solución. (1) tomamos $x_n = n$, $y_n = -n$, entonces $x_n + y_n = 0$ constante, que converge claramente.

- (2) no hay ejemplos de sucesiones *propiamente* divergentes cuyo producto sea convergente, pero sí podemos considerar $\{x_n\} = \{1, 0, 1, 0, 1, 0...\}$ y $\{y_n := 1 x_n\} = \{0, 1, 0, 1, 0, 1, ...\}$
- **140.** Demuestra que si $\{x_n : n \in \mathbb{N}\}$ e $\{y_n : n \in \mathbb{N}\}$ son sucesiones tales que $\{x_n : n \in \mathbb{N}\}$ y $\{x_n + y_n : n \in \mathbb{N}\}$ convergen, entonces $\{y_n : n \in \mathbb{N}\}$ es convergente.

Solución. Basta observar que $y_n = (x_n + y_n) + (-1) \cdot x_n$; y como existen los límites de $(x_n + y_n)$ y de x_n y por ende el de $(-1) \cdot x_n$, existe el límite de la sucesión suma.

141. Demuestra que si $\{x_n : n \in \mathbb{N}\}$ e $\{y_n : n \in \mathbb{N}\}$ son dos sucesiones tales que $\{x_n : n \in \mathbb{N}\}$ converge a cierto $x \in \mathbb{R} \setminus \{0\}$, y $\{x_n y_n : n \in \mathbb{N}\}$ converge, entonces $\{y_n : n \in \mathbb{N}\}$ es convergente.

Solución. Dado que $x_n \to x \neq 0, \forall \varepsilon > 0 \quad \exists K_{\varepsilon} \quad \forall n \geq K_{\varepsilon} \quad x_n > 0 \qquad (0 \leq |x_n - x| \leq \varepsilon)$

Así, para todo $n \geq K_{\varepsilon}, y_n = \frac{x_n y_n}{x_n}$ luego la cola $\{y_n\}_{n=K_{\varepsilon}}^{\infty}$ converge a L/x,

con lo que la sucesión original $\{y_n\}_{n=1}^{\infty}$ también.

142. Demuestra que las sucesiones $\{x_n : n \in \mathbb{N}\}$ no son convergentes, si: (1) $x_n = 2^n$ para todo $n \in \mathbb{N}$; (2) $x_n = (-1)^n n^2$ para todo $n \in \mathbb{N}$.

Solución. (1) Veamos primero que $n \leq 2^n$ por inducción sobre n, lo cual nos proporciona la divergencia de la serie por la Prop. Arquimediana:

$$1 < 2 = 2^1$$
, $n+1 \le n+n = 2 \cdot n < 2 \cdot 2^n = 2^{n+1}$.

Con ello, para todo M > 0 existe $N_M \in \mathbb{N}$ (por la Prop. Arq. tal que $M \leq N_M$) de forma que para todo $n \geq N_M$, $2^n \geq n \geq N_M \geq M$.

(2) La subsucesión $\{x_{2n}=4n^2\}$ es claramente divergente a $+\infty$, mientras que la subsucesión $\{x_{2n-1}=$

 $-(2n-1)^2$ } es claramente divergente a $-\infty$. Para que la sucesión original convergiera, todas sus subsucesiones deberían ser convergentes al mismo límite, un número real, obviamente, no vale $\pm\infty$.

143. Determina los valores de los siguientes límites:

(1)
$$\lim_{n \to \infty} \left(2 + \frac{1}{n} \right)^2;$$
 (3)
$$\lim_{n \to \infty} \frac{\sqrt{n-1}}{\sqrt{n+1}};$$

(2)
$$\lim_{n \to \infty} \frac{(-1)^n}{n+2};$$
 (4)
$$\lim_{n \to \infty} \frac{n+1}{n\sqrt{n}}.$$

Solución.

(1)
$$\left(2+\frac{1}{n}\right)^2 = 4+\frac{4}{n}+\frac{1}{n^2} \to 4+0+0=4.$$

(2)
$$0 \leftarrow \frac{-1}{n+2} \le \frac{(-1)^n}{n+2} \le \frac{1}{n+2} \to 0$$
 applicar Sandwich

(3)
$$\frac{\sqrt{n}-1}{\sqrt{n}+1} = \frac{\sqrt{n}-1}{\sqrt{n}+1} \frac{\frac{1}{\sqrt{n}}}{\frac{1}{\sqrt{n}}} = \frac{1-1/\sqrt{n}}{1+1/\sqrt{n}} \to \frac{1-0}{1+0} = 1.$$

$$(4) \quad 0 \leftarrow \frac{1}{\sqrt{n}} = \frac{n}{n\sqrt{n}} \le \frac{n+1}{n\sqrt{n}} \le \frac{2n}{n\sqrt{n}} = \frac{2}{\sqrt{n}} \to 0 \quad \text{ aplicar Sandwich.}$$

144. Sea $\{b_n : n \in \mathbb{N}\}$ una sucesión acotada y sea $\{a_n : n \in \mathbb{N}\}$ una sucesión tal que $a_n \to 0$ cuando $n \to \infty$. Demuestra que $a_n b_n \to 0$ cuando $n \to \infty$.

Solución. Tenemos: • $\exists C>0 \quad |b_n|< C \quad \forall n\in \mathbb{N}.$ • $\forall \varepsilon>0 \quad \exists N_\varepsilon \quad \forall n\geq N_\varepsilon \quad |a_n|\leq \varepsilon.$

Con ello:
$$\forall \varepsilon > 0 \quad \exists \tilde{N}_{\varepsilon} := N_{\varepsilon/C} \quad \forall n \geq N_{\varepsilon} \quad |a_n b_n| = |a_n||b_n| \leq (\varepsilon/C) \cdot C = \varepsilon.$$

145. Denotemos $y_n = \sqrt{n+1} - \sqrt{n}$ para cada $n \in \mathbb{N}$. Demuestra que ambas sucesiones $\{y_n : n \in \mathbb{N}\}$ y $\{\sqrt{n}y_n : n \in \mathbb{N}\}$ son convergentes y determina el valor de sus respectivos límites.

Solución. (1) Suponemos sabido que \sqrt{n} es creciente.

$$0 \le y_n = (\sqrt{n+1} - \sqrt{n}) \frac{\sqrt{n+1} + \sqrt{n}}{\sqrt{n+1} + \sqrt{n}} = \frac{n+1-n}{\sqrt{n+1} + \sqrt{n}} \stackrel{=:(*)}{=} \frac{1}{\sqrt{n+1} + \sqrt{n}} \le \frac{1}{\sqrt{n}} \to 0$$

(2)
$$\sqrt{n}y_n \stackrel{(*)}{=} \frac{\sqrt{n}}{\sqrt{n+1} + \sqrt{n}} = \frac{\sqrt{n}}{\sqrt{n+1} + \sqrt{n}} \frac{\frac{1}{\sqrt{n}}}{\frac{1}{\sqrt{n}}} = \frac{1}{\sqrt{1+1/n} + 1} \to \frac{1}{\sqrt{1} + 1} = \frac{1}{2}$$

146. Calcula los siguientes límites:

(1)
$$\lim_{n \to \infty} [(3\sqrt{n})^{1/2n}];$$
 (2) $\lim_{n \to \infty} [(n+1)^{1/\ln(n+1)}].$

Solución. (1) Reescribamos la expresión: $[3\sqrt{n}]^{1/2n} = 3^{1/2n} \cdot (\sqrt{n})^{1/2n} = (\sqrt{3})^{1/n} \cdot (n^{1/n})^4$.

Para demostrar que $\lim_{n \to \infty} (\sqrt{3})^{1/n}$ podemos emplear el teorema del Binomio,

dado que
$$1 \le (\sqrt{3})^0 = (\sqrt{3})^{1/n}$$
, denotamos $\sqrt{3}^{1/n} =: 1 + \alpha_n$

dada la acotación anterior, basta demostrar que $\alpha_n \to 0$ y aplicar la Regla del Sandwich:

$$\sqrt{3} = [(\sqrt{3})^{1/n}]^n = (1 + \alpha_n)^n = 1 + n\alpha_n + \frac{1}{2}n(n-1)\alpha_n^2 + \dots + \alpha_n^n > \frac{1}{2}n(n-1)\alpha_n^2$$

$$\implies \alpha_n^2 \le \frac{2\sqrt{3}}{n(n-1)} \le \frac{2\sqrt{3}}{(n-1)^2} \implies \alpha_n \le \frac{\sqrt{2}\sqrt[4]{3}}{n-1} \to 0$$

(la identidad es válida para $n \ge 3$ pero con eso basta pues da la convergencia de una cola y por tanto la de la original)

Empleamos el mismo procedimiento para demostrar que lím $n^{1/4n} = 1$.

40

Dado que $1 \le 1^{1/n} \le n^{1/n}$, podemos escribir $n^{1/n} = 1 + \beta_n$.

Empleando el Teorema del Binomio,

$$n = (n^{1/n})^n = (1 + \beta_n)^n = 1 + n\beta_n + \frac{n(n-1)}{2}\beta_n^2 + \dots + \beta_n^n \ge \frac{1}{2}n(n-1)\beta_n^2$$

$$\implies \beta_n^2 \le \frac{2n}{n(n-1)} = \frac{2}{n-1} \implies 0 \le \beta_n \le \frac{\sqrt{2}}{\sqrt{n-1}} \to 0$$

(la identidad es válida para $n \ge 3$ pero con eso basta pues da la convergencia de una cola y por tanto la de la original)

(2) Dado que la sucesión dada es una cola de $\{n^{1/\ln(n)}\}$, basta calcular el límite de ésta.

$$n^{1/\ln(n)} = [e^{\ln(n)}]^{(1/\ln(n))} = e^1 = e.$$

(también vale sin lo de la cola).

147. Sean $a, b \in \mathbb{R}$ tales que 0 < a < b. Determina

$$\lim_{n\to\infty}\frac{a^{n+1}+b^{n+1}}{a^n+b^n}.$$

Solución.

$$\frac{a^{n+1}+b^{n+1}}{a^n+b^n} = \frac{a^{n+1}+b^{n+1}}{a^n+b^n} \frac{\frac{1}{b^n}}{\frac{1}{b^n}} = \frac{a\left(\frac{a}{b}\right)^n+b}{\left(\frac{a}{b}\right)^n+1} \to \frac{a\cdot 0+b}{0+1} = b,$$

donde hemos empleado que, para $0 < c := \frac{a}{b} < 1$, se tiene $\lim_{n \to \infty} c^n = 0$.