Lista 2a

Análise de Regressao Linear

Davi Wentrick July 9, 2023

1 Considere a função resposta: $E(Y) = 25 + 3X_1 + 4X_2 + 1, 5X_1X_2$

1.1 Faça o gráfico de $E(Y) \times X_1$ quando $X_2 = 3$ e $X_2 = 6$.

Gráfico do Polinômio X=3

Runninghead

Author

1.2 Os efeitos de X_1 e X_2 são aditivos? Como você identificou isto no gráfico obtido no item a.

O modelo é aditivo podemos perceber que a escala ela dobra quando dobramos o X indicando que o valores sao maiores

- 2 Estabeleça a matriz X e os vetores Y β e para os seguintes modelos (assuma que i=1,2,3,4).
- **2.1** $Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i1} X_{i2} + \epsilon_i$
- **2.2** $\sqrt{Y_i} = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \epsilon_i$
- 3 Por que não é siginificativo atribuir um sínal ao coeficiente de correlação múltipla, embora façamos isso para o coeficiente de correlação linear simples?
- 4 Preferência de marca : Vamos estudar a relacao entre gosto da marca (Y), Teor de Umidade (X_1) e Doçura (X_2).

Table 1: Dados do estudo de preferência de marca

	X1	X2	Υ
1	4.00	2.00	64.00
2	4.00	4.00	73.00
3	4.00	2.00	61.00
4	4.00	4.00	76.00
5	6.00	2.00	72.00
6	6.00	4.00	80.00
7	6.00	2.00	71.00
8	6.00	4.00	83.00
9	8.00	2.00	83.00
10	8.00	4.00	89.00
11	8.00	2.00	86.00
12	8.00	4.00	93.00
13	10.00	2.00	88.00
14	10.00	4.00	95.00
15	10.00	2.00	94.00
16	10.00	4.00	100.00

4.1 Obtenha o grafico de dispersao e a matriz de correlacao

Vamos utilizar o pacote GGally e a funcao ggpairs () para criar uma matriz que contem os gráficos de dispersao, densidade e correlacao entre as variaveis do banco

Podemos notar pelo grafico de dispersao que a variavel X_2 é categorica com 2 valores 4 e 2.

4.2 Ajuste o modelo aos dados. Escreva a funcao de regressao e interprete β_1

Ao ajustar o modelo no R temos o seguinte resultado

```
##
## Call:
## lm(formula = Y ~ X1 + X2, data = dados)
##
## Residuals:
     Min
             1Q Median
                           3Q
                                 Max
## -4.400 -1.762 0.025 1.587 4.200
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
                           2.3129 20.061 3.66e-11 ***
## (Intercept) 46.4000
## X1
                4.4250
                           0.3011 14.695 1.78e-09 ***
## X24
                8.7500
                           1.3466
                                    6.498 2.01e-05 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.693 on 13 degrees of freedom
## Multiple R-squared: 0.9521, Adjusted R-squared: 0.9447
## F-statistic: 129.1 on 2 and 13 DF, p-value: 2.658e-09
```

E obtemos a seguinte equacao de regressao:

$$Y = 46, 4 + 4.425X_1 + 8.75X_2$$

Nosso β_1 é o aumento que teremos no Gosto da marca (Y) a cada unidade fixado um X_2

4.3 Obtenha os residuo, monte um boxplot e interprete.

Boxplot com Medidas Resumo

Normal Q-Q Plot

O boxplot parece indicar que os residuos seguem normalidade e podemos confirmar isso pelo

gráfico QQplot feito usando os valores residuais. Logo podemos realizar um teste de Shapiro para verificar essa hipotese:

```
##
## Shapiro-Wilk normality test
##
## data: residuos
## W = 0.97585, p-value = 0.9222
```

Agora com o p-valor de 0.922 podemos assumir que os residuos seguem normalidade

4.4 Faca o plot dos residuos contra \hat{Y} , X_1 , X_2 e X_1X_2 em graficos separados. E faca um grafico de probabilidade Normal e interprete os resultados

O grafico de normalidade ja foi feito anteriormente

4.5 Realize o teste de Breusch-Pagan para a consistencia da variancia do erro com $\alpha=0.01$.

[1] 0.8220519

4.6 Realize um teste de falta de ajuste com $\alpha=0.01$

[1] 0.007077954