MINIMAL AND MAXIMAL ELEMENTS (MEMBERS)

Maximum. Minimum.

Maximal elements: Let (S, \leq) be a poset an element $a \in S$, is called a maximal element of S if there is no element $b \in S$ such that a < b.

Minimal elements: Let (S, \leq) be a poset an element $a \in S$, is called a minimal element of S if there is no element $b \in S$ such that b < a.

Example 1: Consider the poset shown in Fig. 5.6

There are two maximal elements and two minimal elements.

The elements 3, 5 are maximal and the elements 1 and 6 are minimal.

Example 2: Let $A = \{a, b, c, d, e\}$ and let Fig. 5.7 represent the partial order on A in the natural way. The element x is maximal. The elements d and e are minimal.

Distinct minimal members of a partially ordered set are incomparable and distinct maximal members of a poset are also incomparable.

Example

What are the minimal, maximal, minimum, maximum elements?

- Minimal: $\{a,b\}$ Maximal: $\{c,d\}$
- There are no unique minimal or maximal elements.

4

Sometimes there is an element in a poset that is greater than every other element. Such an element is called the greatest element. That is, a is the **greatest element** of the poset (S, \leq) if $b \leq a$ for all $b \in S$. The greatest element is unique when it exists

Likewise, an element is called the least element if it is less than all the other elements in the poset. That is, a is the **least element** of (S, \preceq) if $a \preceq b$ for all $b \in S$. The least element is unique when it exists

Example: Determine whether the posets represented by each of the Hasse diagrams in Figure 6 have a greatest element and a least element.

Max-greent min greent

UPPER AND LOWER BOUNDS

Sometimes it is possible to find an element that is greater than or equal to all the elements in a subset A of a poset (S, \preccurlyeq) . If u is an element of S such that $a \preccurlyeq u$ for all elements $a \in A$, then u is called an **upper bound** of A. Likewise, there may be an element less than or equal to all the elements in A. If l is an element of S such that $l \preccurlyeq a$ for all elements $a \in A$, then l is called a **lower bound** of A.

Example 1:
$$A = \{1, 2, 3, ..., 6\}$$
 be ordered as pictured in

The upper bounds of B are 1, 2, 3. The lower bound of B is 6.

If $B = \{4, 5\}$ then

Find the lower and upper bounds of the subsets $\{a,b,c\}$, $\{j,h\}$ and $\{a,c,d,f\}$ in the poset with the Hasse diagram shown in Figure 7.

Solution: The upper bounds of $\{a, b, c\}$ are e, f, j, and h, and its only lower bound is a. There are no upper bounds of $\{j, h\}$, and its lower bounds are $a, \underline{b}, \underline{c}, \underline{d}, \underline{e}$, and \underline{f} . The upper bounds of $\{a, c, d, f\}$ are f, h, and j, and its lower bound is a.

Example 2: Let $A = \{a, b, c\}$ and $(P(A) \le)$ be the partially ordered set. The Hasse diagram of the Poset be as pictured in Fig. 5.9.

Least Upper Bound (Supremum)

Set A be a partially ordered set and B a subset of A. An element $M \in A$ is called the least upper bound of B if M is an upper bound of B and $M \leq M'$ whenever M' is an upper bound of B.

A least upper bound of a partially ordered set if it exist is unique.

Example: Let $A = \{a, b, c, d, e, f, g, h\}$ denote a partially ordered set. Whose Hasse diagram is shown

If $B = \{c, d, e\}$ then f, g, h are upper bounds of B. The elements f is least upper bound.

The Greatest Lower Bound (Infimum)

Let A be a partially ordered set and B denote a subset of A. An element L is called a greatest lower bound of B if l is a lower of B and $L' \le L$ whenever L' in a lower bound of B.

The greatest lower bound of a poset if it exists is unique.

Example: Consider the poset $A = \{1, 2, 3, 4, 5, 6, 7, 8\}$ whose Hasse diagram is shown in Fig. 5.11 and let $B = \{3, 4, 5\}$

The elements 1, 2, 3 are lower bounds of B 3 is greatest lower bound

The least upper bound (LUB) and the greatest lower bound (GLB) of subset B are also called the supremum and infimum of the subset B.

Example

What are the lower/upper bounds and glb/lub of the sets $\{d,e,f\},~\{a,c\}$ and $\{b,d\}$

$\{d, e, f\}$

- Lower Bounds: \emptyset , thus no glb either.
- Upper Bounds: ∅, thus no lub either.

$\{a,c\}$

- Lower Bounds: Ø, thus no glb either.
- Upper Bounds: $\{h\}$, since its unique, lub is also h.

$\{b,d\}$

- Lower Bounds: $\{b\}$ and so also glb.
- Upper Bounds: $\{d,g\}$ and since $d \prec g$, the lub is d.

Example

Minimal/Maximal elements?

- Minimal & Minimum Element: a.
- Maximal Elements: b, d, i, j.

Bounds, glb, lub of $\{c, e\}$?

- Lower Bounds: $\{a, c\}$, thus glb is c.
- ullet Upper Bounds: $\{e,f,g,h,i.j\}$ thus lub is e

Bounds, glb, lub of $\{b, i\}$?

- Lower Bounds: $\{a\}$, thus glb is a.
- Upper Bounds: ∅, thus lub DNE.