Gráfalgoritmusok - Folyamfeladatok

Gaskó Noémi

2023. április 16.

Tartalomjegyzék

- Maximális folyam feladat
- Minimális vágat
- Ford-Fulkerson algoritmus
- Edmonds-Karp algoritmus
- Boykov-Kolmogorov algoritmus
- Pumpáló algoritmusok
- Alkalmazások
- 💿 Folyamfeladatok változatai

Egy feladat

Sherlock Holmes ördöglakatokat rendel Kolozsvárról Londonba. Megkéri néhány ismerősét, hogy vigyék el neki, de mindenki csak néhány darabot tud elszállítani, adott városokig, amit a következő ábra szemléltet:

Feladat (folyt.)

Kérdés: hány ördöglakatot kaphat meg Sherlock Londonban?

Egyéb feladatok

Tengeri szállítás

Adott m kikötő, $x_1, x_2, ..., x_m$, amelyekben bizonyos áru rendre $s_1, s_2, ..., s_m$ mennyiségben fordul elő; n kikötő, $y_1, y_2, ..., y_n$, ahol az illető áruból rendre $d_1, d_2, ..., d_n$ mennyiséget igényelnek.

Egyéb feladatok

Tengeri szállítás

Adott m kikötő, $x_1, x_2, ..., x_m$, amelyekben bizonyos áru rendre $s_1, s_2, ..., s_m$ mennyiségben fordul elő; n kikötő, $y_1, y_2, ..., y_n$, ahol az illető áruból rendre $d_1, d_2, ..., d_n$ mennyiséget igényelnek.

Hogyan lehet megoldani minél több áru elszállítását, ha tudjuk, hogy egy adott x_i kikötőből egy y_j kikötőtőbe adott intervallumban c_{ij} mennyiség szállítható (a hajó kapacitása).

Egyéb feladatok

Tengeri szállítás

Adott m kikötő, $x_1, x_2, ..., x_m$, amelyekben bizonyos áru rendre $s_1, s_2, ..., s_m$ mennyiségben fordul elő; n kikötő, $y_1, y_2, ..., y_n$, ahol az illető áruból rendre $d_1, d_2, ..., d_n$ mennyiséget igényelnek.

Hogyan lehet megoldani minél több áru elszállítását, ha tudjuk, hogy egy adott x_i kikötőből egy y_j kikötőtőbe adott intervallumban c_{ij} mennyiség szállítható (a hajó kapacitása).

Egyéb feladatok (2)

Családi kirándulás

 $a_1,\ a_2,...,a_m$ családok rendre $s_1,s_2,...,s_m$ tagúak n busz áll a rendelkezésünkre: $b_1,\ b_2,...,b_n$, amelyek rendre $d_1,\ d_2,\ ...,\ d_n$ személyt szállítanak

Egyéb feladatok (2)

Családi kirándulás

 $a_1,\ a_2,...,a_m$ családok rendre $s_1,s_2,...,s_m$ tagúak n busz áll a rendelkezésünkre: $b_1,\ b_2,...,b_n$, amelyek rendre $d_1,\ d_2,\ ...,\ d_n$ személyt szállítanak

Lehetséges-es úgy megszervezni a kirándulást, hogy a családtagok mind különböző buszokba kerüljenek?

Egyéb feladatok (2)

Családi kirándulás

 $a_1,\ a_2,...,a_m$ családok rendre $s_1,s_2,...,s_m$ tagúak n busz áll a rendelkezésünkre: $b_1,\ b_2,...,b_n$, amelyek rendre $d_1,\ d_2,\ ...,\ d_n$ személyt szállítanak

Lehetséges-es úgy megszervezni a kirándulást, hogy a családtagok mind különböző buszokba kerüljenek?

Egyéb feladatok (3)

Buli Meg lehet-e szervezni egy táncot úgy, hogy minden lány olyan fiúval táncoljon, akit ismer?

Egyéb feladatok (3)

Buli Meg lehet-e szervezni egy táncot úgy, hogy minden lány olyan fiúval táncoljon, akit ismer?

Akkor van megoldás, ha létezik olyan maximális folyam, ami telíti az s-ből kifutó éleket.

Egyéb feladatok (4)

- repülőgépek útvonalainak és repülésének ütemezése
- baseball meccseken a kiesések ütemezése
-

Folyamok - szállítási hálózatok

(Közlekedési) hálózat

Egy közlekedési hálózat egy (V,E) irányított gráf a következő tulajdonságokkal:

- $\bullet \ \exists s \in V : N^{be}(s) = \emptyset, \ s \ \text{forrás},$
- $\bullet \ \exists t \in V : N^{ki}(s) = \emptyset, \ t \ \text{nyelő,}$
- a kapacitásfüggvényt a következőképpen:

$$\alpha: V \times V \to \mathbb{Z}_+$$
 úgy hogy

$$\alpha(x,y)>0,$$
 ha $(x,y)\in E$ $\alpha(x,y)=0,$ ha $(x,y)\not\in E$

A hálózatat a következőképpen jelöljük: $H=(V,E,\alpha,s,t)$.

Értelmezések

Folyam

Folyamnak nevezzük az $f:V\times V\to \mathbb{Z}_+$ függvényt, amely a következő tulajdonságokkal rendelkezik:

- $f(x,y) \le \alpha(x,y)$ (kapacitás-megszorítás)
- $f(x,V) = f(V,x) \forall x \in V \{s,t\}$ (egyensúly feltétel)

Értelmezések

Folyam

Folyamnak nevezzük az $f:V\times V\to \mathbb{Z}_+$ függvényt, amely a következő tulajdonságokkal rendelkezik:

- $f(x,y) \le \alpha(x,y)$ (kapacitás-megszorítás)
- $f(x,V) = f(V,x) \forall x \in V \{s,t\}$ (egyensúly feltétel)

Folyam értéke

A v(f)=f(s,V) értéket az f folyam értékének nevezzük. Egy folyam telít egy élt, ha azon az élen a folyam értéke egyező a kapacitással.

Értelmezések

Folyam

Folyamnak nevezzük az $f:V\times V\to \mathbb{Z}_+$ függvényt, amely a következő tulajdonságokkal rendelkezik:

- $f(x,y) \le \alpha(x,y)$ (kapacitás-megszorítás)
- $f(x,V) = f(V,x) \forall x \in V \{s,t\}$ (egyensúly feltétel)

Folyam értéke

A v(f)=f(s,V) értéket az f folyam értékének nevezzük. Egy folyam telít egy élt, ha azon az élen a folyam értéke egyező a kapacitással.

Tétel

$$v(f) = f(s, V) = f(V, t)$$
 bármely f folyamra.

A vágat

Vágat értelmezése

Ha egy hálózatban van a csúcsoknak egy olyan $A\subseteq V, \overline{A}=V-A$ particiója, hogy $s\in A$ és $t\in \overline{A}$, akkor ezt (A,\overline{A}) vágatnak nevezzük.

A vágat

Vágat értelmezése

Ha egy hálózatban van a csúcsoknak egy olyan $A \subseteq V, \overline{A} = V - A$ particiója, hogy $s \in A$ és $t \in \overline{A}$, akkor ezt (A, \overline{A}) vágatnak nevezzük.

Kapacitás

Az (A, \overline{A}) vágat kapacitása egyenlő az éleihez rendelt kapacitások összegével:

$$\alpha(A, \overline{A}) = \sum_{x \in A, y \in \overline{A}} \alpha(x, y).$$

Minimális vágat

A legkisebb kapacitású vágatot egy adott hálózatban minimális vágatnak nevezzük.

Minimális vágat

A legkisebb kapacitású vágatot egy adott hálózatban minimális vágatnak nevezzük.

Tétel

Ha (A, \overline{A}) vágat egy hálózatban, akkor tetszőleges f folyamra:

$$v(f) = f(A, \overline{A}) - f(\overline{A}, A) \le \alpha(A, \overline{A}).$$

Minimális vágat

A legkisebb kapacitású vágatot egy adott hálózatban minimális vágatnak nevezzük.

Tétel

Ha (A, \overline{A}) vágat egy hálózatban, akkor tetszőleges f folyamra:

$$v(f) = f(A, \overline{A}) - f(\overline{A}, A) \le \alpha(A, \overline{A}).$$

Ford-Fulkerson tétele

Egy hálózatban egy maximális folyam értéke egyenlő a minimális vágatkapacitással.

Reziduális gráf

Reziduális kapacitás:

$$c_f(u,v) = \alpha(u,v) - f(u,v)$$

Példa:

$$\alpha(u, v) = 16, f(u, v) = 11 \rightarrow c_f(u, v) = 5$$

Reziduális gráf

Reziduális gráf

$$G_f = (V, E_f)$$
 reziduális hálózat, ahol $E_f = \{(u, v) \in V \times V : C_f(u, v) > 0\}$

Ford-Fulkerson algoritmus

```
Ford-Fulkerson(G, s, t)
     for minden (u,v) \in E él esetén
2.
          f(u,v) = f(v,u) = 0
3.
     while létezik p út s-bol t-be a G_f reziduális gráfban
          c_f(p) = min\{c_f(u, v) : (u, v) \in p\}
4.
5.
          for minden (u,v) \in p esetén
6.
               f(u,v) = f(u,v) + c_f(p)
7.
               f(v,u) = -f(u,v)
```

Egy példa

Lásd 7_jegyzet.pdf

Ford-Fulkerson algoritmus elemzése

Mi történik valós kapacitás esetén?

lásd 7_jegyzet.pdf

Ford-Fulkerson algoritmus elemzése

Hány lépés alatt találjuk meg a maximális folyamot?

Ford-Fulkerson algoritmus elemzése (2)

 két lépésben is megkapható: 1-2-4 útvonalon növeljük 100-al, majd az 1-3-4-en is növelhetjük 100-al.

Ford-Fulkerson algoritmus elemzése (2)

- két lépésben is megkapható: 1-2-4 útvonalon növeljük 100-al, majd az 1-3-4-en is növelhetjük 100-al.
- de ha először az 1-3-2-4 utat választjuk 1-el növelhetjük, ezek után az 1-2-3-4 láncot használva a folyamot 1-el lehet növelni, így 200 lépésben kapjuk meg a folyamot.

Edmonds-Karp algoritmus

- a Ford-Fulkerson algoritmuson alapul
- alapötlet: a lehetsége láncok közül a legrövidebbet (a legkevesebb élből állót) választjuk - ha ezt szélességi bejárással határozzuk meg akkor a legrövidebbet kapjuk

Boykov-Kolmogorov algoritmus

- a Ford-Fulkerson algoritmuson alapul, képfeldolgozás esetén szokták használni
- két kereső fa: egyik a forrástól, másik a nyelőtől, ezek változnak az algoritmus futása során, és ezek tartják nyilván a javító utakat

Pumpáló algoritmusok

- az előző algoritmusok esetén javító utak, azaz érvényes folyamok
- a pumpáló algoritmusban nincs érvényes folyam, addig módosul az előfolyam ameddig érvényessé nem válik
- előfolyam: nemnegaitivitás, kapacitáskorlát, a folyammegmaradás kritériumát nem kell betartsa

Pumpáló algoritmus

ELOFOLYAM INIT(G, s, t)1: $\setminus \setminus$ inicializálási lépés f(u,v) és h(u,v), $\forall u,v \in V$ 2: for minden $v \in V$ do 3: v.h = 04: v.e = 05: **for** minden $(u, v) \in E$ **do** (u,v).f=07: s.h = |V|8: **for** minden $v \in s.Adj$ **do** (s,v).f = c(s,v)10: v.e = c(s, v)11: s.e = s.e - c(s, v)

Pumpáló algoritmus (folyt.)

POMPALAS(u,v)

```
1: \\ alkalmazzuk ha: u \notin \{s,t\} \land u.e > 0 \land c_f(u,v) > 0 \land u.h = v.h + 1
2: \\ pompálja a folyam mennyiséget \Delta_f(u,v) = min(u.e,c_f(u,v))
```

2. \\ pointpails a rolyant mennyiseget
$$\Delta f(u,v) = min(u.e,cf(u,v))$$

3:
$$\Delta_f(u,v) = min(u.e, c_f(u,v))$$

4: if
$$(u,v) \in E$$
 then

5:
$$(u, v).f = (u, v).f + \Delta_f(u, v)$$

6: else

7:
$$(v,u).f = (v,u).f - \Delta_f(u,v)$$

8:
$$u.e = u.e - \Delta_f(u, v)$$

9:
$$v.e = v.e + \Delta_f(u, v)$$

Pumpáló algoritmus (folyt.)

```
EMELES(u)
 1: \\ alkalmazzuk, ha:
    u \notin \{s,t\} \land u.e > 0 \land [u.h \le v.h | \forall v \in V, (u,v) \in E_f]
 2: \ megnöveli a magasságot u.h
 3: u.h = 1 + min\{v.h|(u,v) \in E_f\}
POMPALAS ELOFOLYAM(G, s, t)
 1: ELOFOLYAM INIT(G,s,t)
 while TRUE do.
        if \exists u \notin \{s,t\} \land u.e > 0 \land c_f(u,v) > 0 \land u.h = v.h + 1 then
 3:
            POMPALAS(u,v)
 4:
            continue
 5:
        if \exists u \notin \{s,t\} \land u.e > 0 \land [u.h \leq v.h | \forall v \in V, (u,v) \in E_f] then
 6:
            EMELES(u)
 7:
            continue
 8:
        break
 9:
```

Topológiai pompálás

```
TOPOLOGIAI POMPALAS (G, s, t)
 1: ELOFLYAM INICIALIZALAS(G,s,t)
 2: L = V \setminus \{s, t\}
 3: for minden u \in V \setminus \{s, t\} do
       u.curent = u.N.head
 5: u = L.head
 6: while u \neq NIL do
       regi magassag = u.h
 7:
       LETOLTES(u)
 8:
       if u.h > regi magassag then
 9:
           u-t tegyük át az L lista elejére
10:
11:
       u.next
```

Topológiai pompálás (folyt.)

```
LETOLTES(u)
 1: while u.e > 0 do
 2:
     v = u.curent
       if v == NIL then
 3:
          EMELES(u)
 4:
          u.curent = u.N.head
 5:
       else if c_f(u,v) > 0 \land u.h == v.h + 1 then
 6:
          POMPALAS(u,v)
 7:
       else
 8:
          u.curent = u.kovetkezo szomszed
 9:
```

Algoritmusok bonyolultsága

- Ford-Fulkerson: $O(|E||f_{max}|)$
- Edmonds-Karp: $O(|E|^2|V|)$
- ullet Pumpáló algoritmus: $O(|V|^2E)$
- Topológia pumpáló algoritmus: $O(|V|^3)$

Minimális vágások alkalmazásai

Minimális vágások alkalmazásai (2)

Original image

A minimum cut

Általánosítás

Hálózat általánosítása: a kapacitás mellett megadunk egy alsó határt is minden élen, a folyam értéke a két érték közé kell essen.

Általánosítás

Hálózat általánosítása: a kapacitás mellett megadunk egy alsó határt is minden élen, a folyam értéke a két érték közé kell essen.

Értelemzés

Legyen $H^*=(V,E,\beta,\alpha,s,t)$ általánosított hálózat, ahol V,E,s,t jelentése ugyanaz. A β és α függvények $V\times V$ -n értelmezettek és nem negatív egész értékûek. Ezek alsó és felső kapacitásfüggvények, $\beta\leq\alpha$ és

- $\alpha(x,y) = 0$ ha $(x,y) \notin E$.

Az általánosított folyam egy általánosított hálózatban az $f:V\times V\to \mathbb{Z}_+$ függvény, amely a következő tulajdonságokkal rendelkezik:

- $\quad \circ \ \beta(x,y) \leq f(x,y) \leq \alpha(x,y), \ \text{ha} \ x,y \in V$
- $f(V,x) = f(x,V), \text{ ha } x \in V \{s,t\}.$

Az általánosított folyam egy általánosított hálózatban az $f:V\times V\to \mathbb{Z}_+$ függvény, amely a következő tulajdonságokkal rendelkezik:

$$\quad \ \ \, \beta(x,y) \leq f(x,y) \leq \alpha(x,y), \ \, \text{ha} \ \, x,y \in V$$

•
$$f(V,x) = f(x,V)$$
, ha $x \in V - \{s,t\}$.

Általánosított folyam értéke

Az általánosított folyam értéke v(f) = f(s, V) = f(V, t)

Általánosított folyam értéke

Létezik-e mindig maximális folyam?

Általánosított folyam értéke

Létezik-e mindig maximális folyam? Milyen feltétel mellett létezik maximális folyam?

Ebben a hálózatban létezhet-e maximális folyam?

Általánosított folyam átalakítása hagyományos folyamfeladattá

A H általánosított hálózathoz hozzárendelünk egy hagyományos $H^*=(V^*,E^*,\alpha^*,a,z)$ a következőképpen:

•
$$V^* = V \cup \{(a, z)\}$$

•
$$E^* = E \cup \{(a, x) | N_G^{be}(x) \neq \emptyset\} \cup \{(x, z) | N_G^{ki}(x) \neq \emptyset\} \cup \{(t, s)\}$$

$$\bullet \ \alpha^*(x,y) = \alpha(x,y) - \beta(x,y), \forall x,y \in V.$$

$$\bullet \alpha^*(t,s) = \infty$$

Általánosított folyam átalakítása hagyományos folyamfeladattá

Mikor létezik általánosított folyam?

Α

H általánosított hálózatban akkor és csakis akkor létezik általánosított folyam, ha a H^st hozzárendelt hálózatban létezik olyan maximális folyam, amely telíti az a csúcsból kiinduló éleket.

Minimális költségű maximális folyam

Legyen adott egy $G=(V,E,\alpha,s,t)$ hálózat és egy $c:V\times V\to R_+$ költségfüggvény (ahol R_+ a nem negatív valós számok halmaza). Ha f folyam G-ben, akkor az f folyam $k\"olts\acute{e}ge$:

$$C(f) := \sum_{x,y \in V} c(x,y) f(x,y)$$

Ha $(x,y) \notin E$, akkor vehetjük, hogy c(x,y) = 0.

Természetesen, a legkisebb költségű maximális folyam érdekel bennünket. Hogyan lehet eldönteni egy maximális folyamról, hogy minimális költségű? Megoldás: egy adott hálózathos és maximális folyamhoz hozzárendelünk egy súlyozott irányított gráfot, amelyben a negatív hosszúságú kör hiánya mutatja meg, hogy a maximális folyam minimális költségű.

Ennek a folyamnak a költsége

$$\mathcal{C}(f) = 3 \cdot 1 + 3 \cdot 1 + 2 \cdot 1 + 1 \cdot 3 + 1 \cdot 2 + 1 \cdot 1 + 3 \cdot 4 + 4 \cdot 2 = 34.$$

Több forrás, több nyelő

- visszavezethető egy klasszikus folyamfeladatra
- hozzáadunk egy szuperforrást és egy szupernyelőt, és a szuperforrást összekötjük az összes forrással ∞ kapacitású éllel, illetve az eredeti nyelőket a szupernyelővel ∞ kapacitású éllel

Kapacitás a csúcsokon

- a csúcsoknak is van egy értéke, ami azt jelzi, hogy egy korlátozás van
- ebben az esetben megduplázzuk a csúcsokat, és közéjük egy élt teszünk, amely kapacitása egyenlő lesz a csúcs kapacitásával
- azok az élek, amelyek eddig a csomópontra mutattak, a "bemenő" csomópontba fognak mutatni, míg amik kifelé mutattak a másik csomópontból fognak kifelé mutatni

Forrásanyag

- Kása jegyzet
- Jean Claude Fournier, Graph Theory and Applications, 2009
- Santana Sahu Ray, Graph Theory with Algorithms and its Applications, Springer, 2013