FCT/Unesp – Presidente Prudente Departamento de Matemática e Computação

Análise de Algoritmos de Ordenação Parte 3

Prof. Danilo Medeiros Eler danilo.eler@unesp.br

Apresentação adaptada (ver referências)

Ordenação por Seleção

Ordenação por Seleção

 Idéia básica: os elementos são selecionados e dispostos em suas posições corretas

 Seleção direta (ou simples), ou classificação de deslocamento descendente

Heap-sort, ou método do monte

Método

- Selecionar o elemento que apresenta o menor valor
- Trocar o elemento de lugar com o primeiro elemento da seqüência, x[0]
- Repetir as operações 1 e 2, envolvendo agora apenas os n-1 elementos restantes, depois os n-2 elementos, etc., até restar somente um elemento, o maior deles

x = 44,55,12,42,94,18,06,67

(vetor original)	44	55	12	42	94	18	06	67
• (vetol original)	44	JJ	12	42	94	TO	UU	0/


```
void selecao(int x[], int n) {
   int i, j, menor, index;
   for (i = 0; i < n-1; i++) {
        menor = x[i];
        index = i;
        for (j = i+1; j < n; j++) {
                if (x[j] < menor) {
                        menor = x[j];
                        index = j;
        x[index] = x[i];
        x[i] = menor;
```


- No primeiro passo ocorrem n 1 comparações, no segundo passo n - 2, e assim por diante
 - Logo, no total, tem-se (n 1) + (n 2) + ... + 1 = n *(n - 1)/2 comparações: $\Theta(n^2)$
- Não existe melhoria se a entrada está completamente ordenada ou desordenada
- É melhor que o Bubble-sort
- É útil apenas quando n é pequeno

Melhor Caso e Pior Caso são iguais: $\Theta(n^2)$

 Utiliza uma estrutura de dados - um heap – para ordenar os elementos

 Atenção: a palavra heap é utilizada atualmente em algumas linguagens de programação para se referir ao "espaço de armazenamento de lixo coletado"

 Um heap é um vetor que implementa (representa) uma árvore binária <u>quase completa</u>

								8	
16	14	10	8	7	9	3	2	4	1

Filhos do nó k:

- filho esquerdo = 2k + 1
- filho direito = 2k + 2

Pai do nó k: (k-1)/2

Folhas de n/2 em diante

- Um heap observa conceitos de ordem e de forma
 - Ordem: o item de qualquer nó deve satisfazer uma relação de ordem com os itens dos nós filhos
 - Heap máximo (ou descendente): pai >= filhos, sendo que a raiz é o maior elemento
 - Propriedade de heap máximo
 - Heap mínimo (ou heap ascendente): pai <= filhos, sendo que a raiz é o menor elemento
 - Propriedade de heap mínimo
 - Forma: a árvore binária tem seus nós-folha, no máximo, em dois níveis, sendo que as folhas devem estar o mais à esquerda possível

É um heap máximo

Não é um heap máximo

- Assume-se que:
 - A raiz está sempre na posição 0 do vetor
 - comprimento(vetor) indica o número de elementos do vetor
 - tamanho_do_heap(vetor) indica o número de elementos no heap armazenado dentro do vetor
 - Ou seja, embora A[1..comprimento(A)] contenha números válidos, nenhum elemento além de A[tamanho_do_heap(A)] é um elemento do heap, sendo que tamanho_do_heap(A)<=comprimento(A)

- A idéia para ordenar usando um heap é:
 - Construir um heap máximo
 - Trocar a raiz o maior elemento com o elemento da última posição do vetor
 - Diminuir o tamanho do heap em 1
 - Rearranjar o heap máximo, se necessário
 - Repetir o processo n-1 vezes

 O processo continua até todos os elementos terem sido incluídos no vetor de forma ordenada

É necessário:

- Saber construir um heap a partir de um vetor qualquer
 - Procedimento build_max_heap
- Saber como rearranjar o heap, i.e., manter a propriedade de heap máximo
 - Procedimento max_heapify

- Procedimento max_heapify: manutenação da propriedade de heap máximo
 - Recebe como entrada um vetor A e um índice i
 - Assume que as árvores binárias com raízes nos filhos esquerdo e direito de i são heap máximos, mas que A[i] pode ser menor que seus filhos, violando a propriedade de heap máximo
 - A função do procedimento max_heapify é deixar A[i] "escorregar" para a posição correta, de tal forma que a subárvore com raiz em i torne-se um heap máximo

$max_heapify(A,3)$

Na realidade, trabalhando-se com o vetor A

Execução recursiva de max_heapify(A,3)

0			_			_	_		_
16	14	10	8	7	9	3	2	4	1

 Lembrete: as folhas do heap começam na posição n/2+1

- Procedimento build_max_heap
 - Percorre de forma ascendente os primeiros n/2 nós (que não são folhas) e executa o procedimento max_heapify
 - A cada chamada do max_heapify para um nó, as duas árvores com raiz neste nó tornam-se heaps máximos
 - Ao chamar o max_heapify para a raiz, o heap máximo completo é obtido

- Procedimento Heap-Sort
 - 1- Construir um heap máximo (via build_max_heap)
 - 2 Trocar primeiro elemento com o último
 - 3 Diminuir tamanho do heap
 - 4 Rearranjar o heap máximo (aplicar o max_heapify para o elemento da posição 1)
 - Repetir os passos 2 a 4 até de N até 1 (nesse caso, N controla o tamanho do heap)

- O método Heap-Sort tem complexidade O(nlogn)
 - É eficiente mesmo quando o vetor já está ordenado
 - Faz n-1 chamadas à função max_heapify, que tem custo O(log n)
 - build_max_heap é O(n)

Ordenação por Intercalação

Ordenação por Intercalação

- Também chamado merge-sort
- Idéia básica: dividir para conquistar
 - Um vetor v é dividido em duas partes, recursivamente
 - Cada metade é ordenada e ambas são intercaladas formando o vetor ordenado
 - Usa um vetor auxiliar para intercalar

5 2 4 7 1 3 2 6


```
void MergeSort(int *A, int e, int d)
{
  int q;

  if (e < d)
  {
    q = floor((e+d)/2); // Determina a metade do vetor
    MergeSort(A,e,q); // Primeira metade
    MergeSort(A,q+1,d); // Segunda metade
    Merge(A,e,q,d); // Combina as metades já ordenadas
  }
}</pre>
```

Qual a complexidade?

- Complexidade
- Se o particionamento gerar dois subconjuntos de tamanho n/2 temos a recorrência T(n) = 2T(n/2) + n
- Caso 2 do teorema mestre

$$\neg f(n) = \Theta(n)$$

$$T(n) = \Theta(n \log n)$$

Comparação Entre os Métodos

Comparação Entre os Métodos

- Ordem aleatória dos elementos
 - O mais rápido recebe valor 1 e o restante é recalculado em função disso

	500	5.000	10.000	30.000
Inserção	11,3	87	161	-
Seleção	16,2	124	228	-
Shellsort	1,2	1,6	1,7	2
Quicksort	1	1	1	1
Heapsort	1,5	1,6	1,6	1,6

Ziviani, 2007

Comparação Entre os Métodos

 Ordem ascendente dos elementos (já ordenado)

	500	5.000	10.000	30.000
Inserção	1	1	1	1
Seleção	128	1.524	3.066	
Shellsort	3,9	6,8	7,3	8,1
Quicksort	4,1	6,3	6,8	7,1
Heapsort	12,2	20,8	22,4	24,6

Ziviani, 2007

Comparação Entre os Métodos

Ordem descendente dos elementos

	500	5.000	10.000	30.000
Inserção	40,3	305	575	-
Seleção	29,3	221	417	-
Shellsort	1,5	1,5	1,6	1,6
Quicksort	1	1	1	1
Heapsort	2,5	2,7	2,7	2,9

Ziviani, 2007

Visualização dos Algoritmos

- http://sorting.at/
 - Visitado em 27/03/2016

Considerações Finais

- Quick-sort é o mais rápido para todos os arranjos com elementos aleatórios
- Heap-sort e quick-sort tem uma diferença constante, sendo o heap-sort mais lento
- Para arranjos pequenos, shell-sort é melhor do que o heap-sort

Considerações Finais

- O método da inserção direta é mais rápido para arranjos ordenados
- O método da inserção direta é melhor do que o método da seleção direta para arranjos com elementos aleatórios
- Shell-sort e quick-sort são sensíveis em relação as ordenações ascendentes e descendentes
- Heap-sort praticamente não é sensível em relação às ordenações ascendentes e descendentes

Adaptado de

Métodos de Ordenação

SCC-201 Introdução à Ciência da Computação II

Rosane Minghim 2010/2011

Baseado no material dos Professores Rudinei Goularte e Thiago Pardo

Referências Bibliográficas

- CORMEN, T. H.; LEISERSON, C. E.; RIVEST, R. L.; (2002).
 Algoritmos Teoria e Prática. Tradução da 2ª edição americana.
 Rio de Janeiro. Editora Campus
- TAMASSIA, ROBERTO; GOODRICH, MICHAEL T. (2004).
 Projeto de Algoritmos -Fundamentos, Análise e Exemplos da Internet
- ZIVIANI, N. (2007). Projeto e Algoritmos com implementações em Java e C++. São Paulo. Editora Thomson

