TP nº 5. INDUCCIÓN - RECURSIÓN y CONTEO

(Anexo)

Agregar estos ejercicios al final del TP nº 5 con la numeración que aquí se menciona.

1. Demuestre que las siguientes igualdades son válidas para todo $n \in N$.

a)
$$1 + 2 + 3 + 4 + \dots + n = \frac{n(n+1)}{2}$$
 b) $1 + 3 + 5 + 7 + \dots + (2n-1) = n^2$

b)
$$1 + 3 + 5 + 7 + \dots + (2n - 1) = n^2$$

c)
$$1.1! + 2.2! + \cdots + n \cdot n! = (n+1)! \cdot n$$

c)
$$1.1! + 2.2! + \dots + n.n! = (n+1)!.n$$
 d) $\frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^n} = 1 - \frac{1}{2^n}$

e)
$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

f)
$$\sum_{i=1}^{n} 3^i = \frac{3(3^{n}-1)}{2}$$

2. Encontrar los 5 primeros términos de estas sucesiones definidas por recurrencia.

a.
$$a_2 = 98$$

a.
$$a_2 = 98$$
 $a_n = 7 . a_{n-1}$ $(n \ge 1)$

b.
$$a_n = a_{n-1} + n - 1$$
 $a_0 = 0$ $n \ge 2$

$$= 0$$

$$n \geq 2$$

3. Encontrar una relación de recurrencia con condición inicial de las siguientes sucesiones geométricas.

4. Dadas las sucesiones (a_n) de números reales, halle la expresión de $a_n\,$ para un $n\,$ arbitrario, utilizando el método de iteración.

$$a = a = 2$$

a.
$$a_1 = 2$$
 $a_{n+1} = a_n + 4$ $(n \in N)$

$$h a_4 = 3$$

$$a_{11} = a_{11} + 3^n \text{ (n > 1)}$$

b. $a_1 = 3$ $a_n = a_{n-1} + 3^n \text{ (n > 1)}$ (sug: Utilice el ejercicio 1-f)

c.
$$a_1 = 1$$

c.
$$a_1 = 1$$
 $a_n = a_{n-1} + 2 \quad (n > 1)$

d.
$$a_1 = 1$$

d.
$$a_1 = 1$$
 $a_{(k>2)} + a_{\lceil (k+1) > 2 \rceil} + 2$ $(k \ge 2)$

$$(\kappa \geq 2)$$

5. Resolver las siguientes ecuaciones homogéneas.

a.
$$a_0 = 2$$
 $a_1 = 1$

a.
$$a_0 = 2$$
 $a_1 = 1$ $a_n - 7a_{n-1} + 10a_{n-2} = 0$ $(n > 2)$

b.
$$a_0 = 6 \ a_1 = 8$$

b.
$$a_0 = 6$$
 $a_1 = 8$ $a_n = 4a_{n-1} - 4a_{n-2}$ $(n > 1)$

c.
$$a_1 = 6$$
 $a_2 = 0$

c.
$$a_1 = 6$$
 $a_2 = 0$ $a_n - 5a_{n-1} + 6a_{n-2} = 0$ $(n \ge 3)$

d.
$$a_0 = a_1 = 1$$

d.
$$a_0 = a_1 = 1$$
 $a_{n+2} = 5a_{n+1} - 4a_n$ $(n \ge 0)$

$$(n \geq 0)$$

7. Hallar el valor de $k \in R$ de modo tal que 5^n sea solución de $a_{n+2} - 3_{n+1} = ka_n \ (n \ge 0)$