Contour in the field of a point charge. A point charge Q is situated in free space. The line integral (circulation) of the electric field intensity vector \mathbf{E} due to this charge alone the contour C in Fig. Q1.7, composed of two circular parts of radii a and 2a, respectively, and two radial parts of length a, amounts to (ε_o is the permittivity of a vacuum)

- (A) $Q/(4\pi\varepsilon_o a)$.
- (B) $-Q/(4\pi\varepsilon_o a)$.
- (C) $Q/(8\varepsilon_o a)$.
- (D) $-Q/(8\varepsilon_o a)$.
- (E) zero.

Figure Q1.7 Contour C in the electric field of a point charge Q in free space; for Question 1.8.

Solution: (E) Answer: (E)