Fault Attacks Against Lattice-Based Signatures

T. Espitau † P-A. Fouque B. Gérard M. Tibouchi

†Lip6, Sorbonne Universités, Paris

October 26, 2016 SAC – 16

Towards postquantum cryptography

 Quantum computers would break all currently deployed public-key crypto: RSA, discrete logs, elliptic curves

- Agencies warnings
 - NSA deprecating Suite B (elliptic curves)
 - ► NIST starting postquantum competition

Towards postquantum cryptography

- ► In theory, plenty of schemes quantum-resistant
 - ► Code-based, hash trees, multivariate crypto, isogenies...
 - ► Almost everything possible with lattices

- ► In practice, very few actual implementations
 - ► Secure parameters often unclear
 - ► Concrete software/hardware implementation papers quite rare
 - Almost no consideration for implementation attacks

Serious issue for practical postquantum crypto

Implementations of lattice-based schemes (I)

► Implementation of lattice-based crypto:

Limited and mostly academic

- One scheme has "industry" backing and quite a bit of code: NTRU
 - ► NTRUEncrypt, ANSI standard, believed to be okay,
 - ▶ NTRUSign is a trainwreck that has been patched and broken

Implementations of lattice-based schemes (II)

- ► In terms of practical schemes, other than NTRU, main efforts on signatures
 - ► GLP: improvement of Lyubashevsky signatures, efficient in SW and HW (CHES'12)
 - ► BLISS: improvement of GLP, even better (CRYPTO'13, CHES'14)
 - ► GPV: obtained as part of Ducas, Lyubashevsky, Prest NTRU-based IBE (AC'14),
 - ► PASSSign (ACNS'14), TESLA (LATINCRYPT 14),...

Implementation attacks vs provable security

Break a provably secure cryptographic scheme:

Solve a hard computational problem

Break an implementation

Potentially bypass security proof

"Problem Exists Between Keyboard And Chair'

Implementation attacks

- ► Side-channel attacks: Passive physical attacks, exploiting information leakage
 - ► Timing attacks, power analysis, EM attacks, cache attacks, acoustic attacks...

- ► Fault attacks: Active physical attacks, extract secret information by tampering with the device to cause errors
 - ► Faults on memory: lasers, x-rays...
 - ► Faults on computation: variations in supply voltage, external clock, temperature...

BLISS: the basics

► Introduced by *Ducas, Durmus, Lepoint and Lyubashevsky* at CRYPTO'13

► Improvement of Ring-SIS-based scheme of Lyubashevsky

► Still kind of "Fiat—Shamir signatures"

BLISS: the basics

 $lackbox{ Defined over } \mathcal{R} = \mathbb{Z}[\mathbf{x}]/(\mathbf{x}^n+1)$

► Main improvement: Reduce the size of parameters by Bimodal Gaussian distributions

BLISS: the basics

▶ Defined over $\mathcal{R} = \mathbb{Z}[\mathbf{x}]/(\mathbf{x}^n + 1)$

► Main improvement: Reduce the size of parameters by Bimodal Gaussian distributions

Distributio Camelus bactrianus

BLISS: key generation

- 1: function KeyGen()
- 2: choose \mathbf{f}, \mathbf{g} as uniform polynomials with exactly $d_1 = \lceil \delta_1 n \rceil$ entries in $\{\pm 1\}$ and $d_2 = \lceil \delta_2 n \rceil$ entries in $\{\pm 2\}$
- 3: $\mathbf{S} = (\mathbf{s}_1, \mathbf{s}_2)^T \leftarrow (\mathbf{f}, 2\mathbf{g} + 1)^T$
- 4: if $N_{\kappa}(\mathbf{S}) \geqslant C^2 \cdot 5 \cdot (\lceil \delta_1 n \rceil + 4\lceil \delta_2 n \rceil) \cdot \kappa$ then restart
- 5: **if** f is not invertible **then restart**
- 6: $\mathbf{a}_q = (2\mathbf{g} + 1)/\mathbf{f} \mod q$
- 7: **return** $(pk = \mathbf{A}, sk = \mathbf{S})$ where
 - $\overline{\mathbf{A}=(\mathbf{a}_1=2\mathbf{a}_q,q-2)}$ mod 2q
- 8: end function

```
1: function Sign(\mu, pk = A, sk = S)
            \mathbf{y}_1, \mathbf{y}_2 \leftarrow D_{\mathbb{Z}_{\sigma}\sigma}^n
                                                                                     3: \mathbf{u} = \zeta \cdot \mathbf{a}_1 \cdot \mathbf{y}_1 + \mathbf{y}_2 \mod 2a
                                                                                             \triangleright \zeta = 1/(q-2)
 4: \mathbf{c} \leftarrow H(|\mathbf{u}|_d \mod p, \mu)
                                                                                            ▷ special hashing
 5. choose a random bit b
 6: \mathbf{z}_1 \leftarrow \mathbf{y}_1 + (-1)^b \mathbf{s}_1 \mathbf{c}
 7: \mathbf{z}_2 \leftarrow \mathbf{v}_2 + (-1)^b \mathbf{s}_2 \mathbf{c}
             continue with probability
      1/(M\exp(-\|\mathbf{Sc}\|/(2\sigma^2))\cosh(\langle \mathbf{z},\mathbf{Sc}\rangle/\sigma^2) otherwise restart
            \mathbf{z}_2^\dagger \leftarrow (|\mathbf{u}|_d - |\mathbf{u} - \mathbf{z}_2|_d) \mod p
            return (\mathbf{z}_1, \mathbf{z}_2^{\dagger}, \mathbf{c})
11: end function
```

BLISS: verification

- 1: function Verify $(\mu, \mathbf{A}, (\mathbf{z}_1, \mathbf{z}_2^{\dagger}, \mathbf{c}))$
- 2: **if** $\|(\mathbf{z}_1|2^d \cdot \mathbf{z}_2^{\dagger})\|_2 > B_2$ **then** reject
- 3: if $\|(\mathbf{z}_1|2^d \cdot \mathbf{z}_2^{\dagger})\|_{\infty} > B_{\infty}$ then reject
- 4: accept iff $\mathbf{c} = H(\lfloor \zeta \cdot \mathbf{a}_1 \cdot \mathbf{z}_1 + \zeta \cdot q \cdot \mathbf{c} \rceil_d + \mathbf{z}_2^\dagger \mod p, \mu)$
- 5: end function

Let's break things!


```
1: function Sign(\mu, pk = A, sk = S)
            \mathbf{y}_1, \mathbf{y}_2 \leftarrow D_{\mathbb{Z}_{\sigma}\sigma}^n
                                                                                     3: \mathbf{u} = \zeta \cdot \mathbf{a}_1 \cdot \mathbf{y}_1 + \mathbf{y}_2 \mod 2a
                                                                                             \triangleright \zeta = 1/(q-2)
 4: \mathbf{c} \leftarrow H(|\mathbf{u}|_d \mod p, \mu)
                                                                                            ▷ special hashing
 5. choose a random bit b
 6: \mathbf{z}_1 \leftarrow \mathbf{y}_1 + (-1)^b \mathbf{s}_1 \mathbf{c}
 7: \mathbf{z}_2 \leftarrow \mathbf{v}_2 + (-1)^b \mathbf{s}_2 \mathbf{c}
             continue with probability
      1/(M\exp(-\|\mathbf{Sc}\|/(2\sigma^2))\cosh(\langle \mathbf{z},\mathbf{Sc}\rangle/\sigma^2) otherwise restart
            \mathbf{z}_2^\dagger \leftarrow (|\mathbf{u}|_d - |\mathbf{u} - \mathbf{z}_2|_d) \mod p
            return (\mathbf{z}_1, \mathbf{z}_2^{\dagger}, \mathbf{c})
11: end function
```

```
1: function Sign(\mu, pk = A, sk = S)
            \mathbf{y}_1, \mathbf{y}_2 \leftarrow D_{\mathbb{Z}_{\sigma}\sigma}^n
                                                                                       3: \mathbf{u} = \zeta \cdot \mathbf{a}_1 \cdot \mathbf{y}_1 + \mathbf{y}_2 \mod 2a
                                                                                               \triangleright \zeta = 1/(q-2)
 4: \mathbf{c} \leftarrow H(|\mathbf{u}|_d \mod p, \mu)
                                                                                              ▷ special hashing
 5: choose a random bit b
 6: \mathbf{z}_1 \leftarrow \mathbf{y}_1 + (-1)^b \mathbf{s}_1 \mathbf{c}
 7: \mathbf{z}_2 \leftarrow \mathbf{y}_2 + (-1)^b \mathbf{s}_2 \mathbf{c}
             continue with probability
      1/(M\exp(-\|\mathbf{Sc}\|/(2\sigma^2))\cosh(\langle \mathbf{z},\mathbf{Sc}\rangle/\sigma^2) otherwise restart
             \mathbf{z}_2^\dagger \leftarrow ( |\mathbf{u}|_d - |\mathbf{u} - \mathbf{z}_2|_d ) \ \mathsf{mod} \ p
             return (\mathbf{z}_1, \mathbf{z}_2^{\dagger}, \mathbf{c})
11: end function
```

```
1: function Sign(\mu, pk = A, sk = S)
 3: \mathbf{u} = \zeta \cdot \mathbf{a}_1 \cdot \mathbf{y}_1 + \mathbf{y}_2 \mod 2q
                                                                                               \triangleright \zeta = 1/(q-2)
 4: \mathbf{c} \leftarrow H(|\mathbf{u}|_d \mod p, \mu)
                                                                                             ▷ special hashing
 5. choose a random bit b
 6: \mathbf{z}_1 \leftarrow \mathbf{y}_1 + (-1)^b \mathbf{s}_1 \mathbf{c}
 7: \mathbf{z}_2 \leftarrow \mathbf{v}_2 + (-1)^b \mathbf{s}_2 \mathbf{c}
             continue with probability
      1/(M\exp(-\|\mathbf{Sc}\|/(2\sigma^2))\cosh(\langle \mathbf{z},\mathbf{Sc}\rangle/\sigma^2) otherwise restart
             \mathbf{z}_2^\dagger \leftarrow ( |\mathbf{u}|_d - |\mathbf{u} - \mathbf{z}_2|_d ) \ \mathsf{mod} \ p
             return (\mathbf{z}_1, \mathbf{z}_2^{\dagger}, \mathbf{c})
11: end function
```

Attacking y

 $ightharpoonup y_1$ (\equiv discrete Gaussian) pprox additive mask in

$$\mathbf{z_1} \equiv \mathbf{y_1} + (-1)^b \mathbf{s_1} \mathbf{c} \pmod{q}$$

Sampling: coefficient by coefficient

 $ilde{}$ Use fault injection to abort the sampling early \Longrightarrow faulty signature with a low-degree y_1

- Done by attacking
 - Branching test of the loop (voltage spike, clock variation...
 - Contents of the loop counter (lasers, x-rays...)

Attacking \mathbf{y}

▶ \mathbf{y}_1 (\equiv discrete Gaussian) pprox additive mask in

$$\mathbf{z_1} \equiv \mathbf{y_1} + (-1)^b \mathbf{s_1} \mathbf{c} \pmod{q}$$

► Sampling: coefficient by coefficient

ightharpoonup Use fault injection to abort the sampling early \Longrightarrow faulty signature with a low-degree \mathbf{y}_1

- Done by attacking:
 - Branching test of the loop (voltage spike, clock variation...)
 - Contents of the loop counter (lasers, x-rays...)

Attacking y

 $ightharpoonup \mathbf{y}_1\ (\equiv$ discrete Gaussian $)pprox \mathsf{additive}$ mask in

$$\mathbf{z_1} \equiv \mathbf{y_1} + (-1)^b \mathbf{s_1} \mathbf{c} \pmod{q}$$

► Sampling: coefficient by coefficient

 \blacktriangleright Use fault injection to abort the sampling early \Longrightarrow faulty signature with a low-degree y_1

- Done by attacking:
 - Branching test of the loop (voltage spike, clock variation...)
 - Contents of the loop counter (lasers, x-rays...)

Attacking ${f y}$

▶ y_1 (\equiv discrete Gaussian) \approx additive mask in

$$\mathbf{z_1} \equiv \mathbf{y_1} + (-1)^b \mathbf{s_1} \mathbf{c} \pmod{q}$$

► Sampling: coefficient by coefficient

lacktriangle Use fault injection to abort the sampling early \Longrightarrow faulty signature with a low-degree y_1

- ► Done by attacking:
 - ▶ Branching test of the loop (voltage spike, clock variation...)
 - Contents of the loop counter (lasers, x-rays...)

- ▶ Signature generated with y_1 of degree $m \ll n$
- ▶ If **c** invertible (probability $(1 1/q)^n \approx 96\%$):

$$\mathbf{v} = \mathbf{c}^{-1}\mathbf{z}_1 \equiv \mathbf{c}^{-1}\mathbf{y}_1 + (-1)^b\mathbf{s}_1 \pmod{q}$$

$$WLOG$$
, $b = 0$ (equivalent keys)

 $ightharpoonup \mathbf{s}_1$ is short \Longrightarrow \mathbf{v} very close to lattice

$$L = \operatorname{Span}(q\mathbb{Z}^n, (\mathbf{w}_i = \mathbf{c}^{-1}\mathbf{x}')_{0 \leqslant i \leqslant m-1})$$

- ▶ Signature generated with y_1 of degree $m \ll n$
- ▶ If **c** invertible (probability $(1 1/q)^n \approx 96\%$):

$$\mathbf{v} = \mathbf{c}^{-1}\mathbf{z}_1 \equiv \mathbf{c}^{-1}\mathbf{y}_1 + (-1)^b\mathbf{s}_1 \pmod{q}$$

$$WLOG$$
, $b=0$ (equivalent keys)

 $lacktriangleright \mathbf{s}_1$ is short \Longrightarrow v very close to lattice

$$L = \operatorname{Span}(q\mathbb{Z}^n, (\mathbf{w}_i = \mathbf{c}^{-1}\mathbf{x}^i)_{0 \leqslant i \leqslant m-1})$$

- ▶ Signature generated with y_1 of degree $m \ll n$
- ▶ If **c** invertible (probability $(1 1/q)^n \approx 96\%$):

$$\mathbf{v} = \mathbf{c}^{-1}\mathbf{z}_1 \equiv \mathbf{c}^{-1}\mathbf{y}_1 + (-1)^b\mathbf{s}_1 \pmod{q}$$

$$WLOG$$
, $b = 0$ (equivalent keys)

 $lacktriangleright \mathbf{s}_1$ is short $\Longrightarrow \mathrm{v}$ very close to lattice

$$L = \operatorname{Span}(q\mathbb{Z}^n, (\mathbf{w}_i = \mathbf{c}^{-1}\mathbf{x}^i)_{0 \leqslant i \leqslant m-1})$$

- ▶ Signature generated with y_1 of degree $m \ll n$
- ▶ If **c** invertible (probability $(1 1/q)^n \approx 96\%$):

$$\mathbf{v} = \mathbf{c}^{-1}\mathbf{z}_1 \equiv \mathbf{c}^{-1}\mathbf{y}_1 + (-1)^b\mathbf{s}_1 \pmod{q}$$

$$WLOG$$
, $b = 0$ (equivalent keys)

 $lackbox{ iny s_1 is short }\Longrightarrow v$ very close to lattice

$$L = \operatorname{Span}(q\mathbb{Z}^n, (\mathbf{w}_i = \mathbf{c}^{-1}\mathbf{x}^i)_{0 \leqslant i \leqslant m-1})$$

- ▶ Signature generated with $\mathbf{y_1}$ of degree $m \ll n$
- ▶ If **c** invertible (probability $(1 1/q)^n \approx 96\%$):

$$\mathbf{v} = \mathbf{c}^{-1}\mathbf{z}_1 \equiv \mathbf{c}^{-1}\mathbf{y}_1 + (-1)^b\mathbf{s}_1 \pmod{q}$$

$$WLOG$$
, $b = 0$ (equivalent keys)

 $lackbox{ iny s_1 is short }\Longrightarrow v$ very close to lattice

$$L = \operatorname{Span}(q\mathbb{Z}^n, (\mathbf{w}_i = \mathbf{c}^{-1}\mathbf{x}^i)_{0 \leqslant i \leqslant m-1})$$

- ▶ Signature generated with y_1 of degree $m \ll n$
- ▶ If **c** invertible (probability $(1 1/q)^n \approx 96\%$):

$$\mathbf{v} = \mathbf{c}^{-1}\mathbf{z}_1 \equiv \mathbf{c}^{-1}\mathbf{y}_1 + (-1)^b\mathbf{s}_1 \pmod{q}$$

$$WLOG$$
, $b = 0$ (equivalent keys)

 $lackbox{ iny s_1 is short }\Longrightarrow v$ very close to lattice

$$L = \operatorname{Span}(q\mathbb{Z}^n, (\mathbf{w}_i = \mathbf{c}^{-1}\mathbf{x}^i)_{0 \leqslant i \leqslant m-1})$$

▶ dim(L) = n too large to apply lattice reduction

Same relation on subset of coefficients: REDUCE THE DIM

▶ Subset $I \subset \{0, ..., n-1\}$ of cardinal $\ell \varphi_I : \mathbb{Z}^n \to \mathbb{Z}^I$ projection

 $ightharpoonup arphi_l(\mathbf{v})$ close to the lattice generated by $arphi_l(\mathbf{w}_i)$ and $q\mathbb{Z}^l$ If ℓ large enough, difference should be $arphi_l(\mathbf{s}_1)$.

▶ CVP using Babai nearest plane algorithm. Condition on ℓ to recover $\varphi_{\ell}(\mathbf{s_1})$:

$$\ell+1 \gtrsim rac{m+2+rac{\log\sqrt{\delta_1+4\delta_2}}{\log q}}{1-rac{\log\sqrt{2\pi e(\delta_1+4\delta_2)}}{\log q}}$$

lacktriangle For BLISS-I and BLISS-II, $\ellpprox 1.09\cdot m$

▶ Subset $I \subset \{0, \dots, n-1\}$ of cardinal $\ell \varphi_I : \mathbb{Z}^n \to \mathbb{Z}^I$ projection

▶ $\varphi_l(\mathbf{v})$ close to the lattice generated by $\varphi_l(\mathbf{w}_i)$ and $q\mathbb{Z}^l$ If ℓ large enough, difference should be $\varphi_l(\mathbf{s_1})$.

▶ CVP using Babai nearest plane algorithm. Condition on ℓ to recover $\varphi_{\ell}(\mathbf{s_1})$:

$$\ell+1 \gtrsim rac{m+2+rac{\log\sqrt{\delta_1+4\delta_2}}{\log q}}{1-rac{\log\sqrt{2\pi e(\delta_1+4\delta_2)}}{\log q}}$$

lacktriangle For BLISS–I and BLISS–II, $\ell pprox 1.09 \cdot m$

▶ Subset $I \subset \{0, \dots, n-1\}$ of cardinal $\ell \varphi_I : \mathbb{Z}^n \to \mathbb{Z}^I$ projection

▶ $\varphi_l(\mathbf{v})$ close to the lattice generated by $\varphi_l(\mathbf{w}_i)$ and $q\mathbb{Z}^l$ If ℓ large enough, difference should be $\varphi_l(\mathbf{s_1})$.

▶ CVP using Babai nearest plane algorithm. Condition on ℓ to recover $\varphi_l(\mathbf{s_1})$:

$$\ell+1 \gtrsim rac{m+2+rac{\log\sqrt{\delta_1+4\delta_2}}{\log q}}{1-rac{\log\sqrt{2\pi e(\delta_1+4\delta_2)}}{\log q}}$$

▶ Subset $I \subset \{0, \dots, n-1\}$ of cardinal $\ell \varphi_I : \mathbb{Z}^n \to \mathbb{Z}^I$ projection

 $ightharpoonup arphi_l(\mathbf{v})$ close to the lattice generated by $arphi_l(\mathbf{w}_i)$ and $q\mathbb{Z}^l$ If ℓ large enough, difference should be $arphi_l(\mathbf{s}_1)$.

► CVP using Babai nearest plane algorithm. Condition on ℓ to recover $\varphi_I(\mathbf{s_1})$:

$$\ell+1 \gtrsim \frac{m+2 + \frac{\log \sqrt{\delta_1 + 4\delta_2}}{\log q}}{1 - \frac{\log \sqrt{2\pi e(\delta_1 + 4\delta_2)}}{\log q}}$$

lacktriangle For BLISS–I and BLISS–II, $\ell pprox 1.09 \cdot m$

▶ In practice: Works fine with LLL for $m \lesssim 60$ and with BKZ with $m \lesssim 100$

Apply the attack for several choices of I to recover all of s₁ and subsequently s₂: full key recovery with one faulty signature!

Fault iteration $m=$ Theoretical min dim ℓ_{\min}	2	5	10	20	40	60	80	100
	3	6	11	22	44	66	88	110
Dim ℓ (experimental) Reduction algorithm Success proba. (%) Time recovery ℓ coeffs. (s) Time full key recovery	3	6	12	24	50	80	110	140
	LLL	LLL	LLL	LLL	BKZ–20	BKZ-25	BKZ–25	BKZ–25
	100	99	100	100	100	100	100	98
	0.002	0.005	0.022	0.23	7.3	119	941	33655
	0.5 s	0.5 s	1 s	5 s	80 s	14 min	80 min	38 h

▶ In practice: Works fine with LLL for $m \lesssim 60$ and with BKZ with $m \lesssim 100$

► Apply the attack for several choices of *I* to recover all of s₁, and subsequently s₂: full key recovery with one faulty signature!

Fault iteration $m=$ Theoretical min dim ℓ_{min}	2	5	10	20	40	60	80	100
	3	6	11	22	44	66	88	110
Dim ℓ (experimental)	3	6	12	24	50	80	110	140
Reduction algorithm	LLL	LLL	LLL	LLL	BKZ–20	BKZ-25	BKZ–25	BKZ–25
Success proba. (%)	100	99	100	100	100	100	100	98
Time recovery ℓ coeffs. (s)	0.002	0.005	0.022	0.23	7.3	119	941	33655
Time full key recovery	0.5 s	0.5 s	1 s	5 s	80 s	14 min	80 min	38 h

Attack in a nutshell

▶ **Step 1**: Fault on the generation of the fresh element y_1 .

▶ **Step 2**: Find parts of the secret with multiple CVP instances.

▶ **Step 3**: Recombine them to do a full key recovery.

				20	40	60	80	100
Time full key recovery	0.5 s	0.5 s	1 s	5 s	80 s	14 min	80 min	38 h

GPV-Based scheme

 Variant of Ducas-Lyubashevsky-Prest based on GPV-style lattice trapdoors.

lacktriangle Defined once again over $\mathcal{R}=\mathbb{Z}[\mathbf{x}]/(\mathbf{x}^n+1)$

► Secret key:

$$\mathbf{B} \leftarrow egin{pmatrix} \mathbf{M_{g}} & -\mathbf{M_{f}} \\ \mathbf{M_{G}} & -\mathbf{M_{F}} \end{pmatrix} \in \mathbb{Z}^{2n imes 2n}$$

for
$$\mathbf{f} \leftarrow D_{\sigma_0}^n$$
, $\mathbf{g} \leftarrow D_{\sigma_0}^n$

$$f \cdot G - g \cdot F = q$$

Sign and Verify

- 1: function $SIGN(\mu, sk = B)$
- 2: $\mathbf{c} \leftarrow H(\mu) \in \mathbb{Z}_q^n$
- 3: $(\mathbf{y}, \mathbf{z}) \leftarrow (\mathbf{c}, \mathbf{0}) \text{GAUSSIANSAMPLER}(\mathbf{B}, \sigma, (\mathbf{c}, \mathbf{0})) \triangleright \mathbf{y}, \mathbf{z}$ are short and satisfy $\mathbf{y} + \mathbf{z} \cdot \mathbf{h} = \mathbf{c} \mod q$
- 4: return z
- 5: end function
- 1: function Verify(μ , $pk = \mathbf{h}, \mathbf{z}$)
- 2: **accept iff** $\|\mathbf{z}\|_2 + \|H(\mu) \mathbf{z} \cdot \mathbf{h}\|_2 \le \sigma \sqrt{2n}$
- 3: end function

Sign and Verify

3: end function

```
    function Sign(μ, sk = B)
    c ← H(μ) ∈ Z<sub>q</sub><sup>n</sup>
    (y, z) ← (c, 0) − GaussianSampler(B, σ, (c, 0)) ▷ y, z are short and satisfy y + z ⋅ h = c mod q
    return z
    end function
    function Verify(μ, pk = h, z)
```

accept iff $\|\mathbf{z}\|_2 + \|H(\mu) - \mathbf{z} \cdot \mathbf{h}\|_2 \leqslant \sigma \sqrt{2n}$

Gaussian Sampling

```
1: function GAUSSIANSAMPLER(\mathbf{B}, \sigma, \mathbf{c}) \triangleright \mathbf{b}_i (resp. \mathbf{b}_i) are the
     rows of B (resp. of its Gram-Schmidt matrix B)
         \mathbf{v} \leftarrow \mathbf{0}
3: for i = 2n down to 1 do
                 c' \leftarrow \langle \mathbf{c}, \mathbf{b_i} \rangle / \|\mathbf{b_i}\|_2^2
                 \sigma' \leftarrow \sigma/\|\mathbf{b}_i\|_2
                 r \leftarrow D_{\mathbb{Z},\sigma',c'}
                 \mathbf{c} \leftarrow \mathbf{c} - r\mathbf{b}_i and \mathbf{v} \leftarrow \mathbf{v} + r\mathbf{b}_i
         end for
                        return v > v sampled according to the lattice
     Gaussian distribution D_{\Lambda,\sigma,\mathbf{c}}
                 end function
```

Gaussian Sampling

```
1: function GAUSSIANSAMPLER(\mathbf{B}, \sigma, \mathbf{c}) \triangleright \mathbf{b}_i (resp. \mathbf{b}_i) are the
     rows of B (resp. of its Gram-Schmidt matrix B)
         \mathbf{v} \leftarrow \mathbf{0}
3: for i = 2n down to 1 do
                 c' \leftarrow \langle \mathbf{c}, \mathbf{b_i} \rangle / \|\mathbf{b_i}\|_2^2
                 \sigma' \leftarrow \sigma/\|\mathbf{b}_i\|_2
                 r \leftarrow D_{\mathbb{Z},\sigma',c'}
                 \mathbf{c} \leftarrow \mathbf{c} - r\mathbf{b}_i and \mathbf{v} \leftarrow \mathbf{v} + r\mathbf{b}_i
         end for
                        return v > v sampled according to the lattice
     Gaussian distribution D_{\Lambda,\sigma,\mathbf{c}}
                 end function
```

Attacking the Gaussian sampler

► Correctly generated signature: element of the form

$$\mathbf{z} = \mathbf{R} \cdot \mathbf{f} + \mathbf{r} \cdot \mathbf{F} \in \mathbb{Z}[\mathbf{x}]/(\mathbf{x}^n + 1)$$

Faults introduced after m iterations of the generation of r, R

$$\mathbf{z} = r_0 \mathbf{x}^{n-1} \mathbf{F} + r_1 \mathbf{x}^{n-2} \mathbf{F} + \dots + r_{m-1} \mathbf{x}^{n-m} \mathbf{F}.$$

Belongs to lattice:

$$L = \operatorname{Span}(\mathbf{x}^{n-t}\mathbf{F})$$

for $1 \leqslant i \leqslant m$.

Attacking the Gaussian sampler

► Correctly generated signature: element of the form

$$\mathbf{z} = \mathbf{R} \cdot \mathbf{f} + \mathbf{r} \cdot \mathbf{F} \in \mathbb{Z}[\mathbf{x}]/(\mathbf{x}^n + 1)$$

 \blacktriangleright Faults introduced after m iterations of the generation of r, R:

$$\mathbf{z} = r_0 \mathbf{x}^{n-1} \mathbf{F} + r_1 \mathbf{x}^{n-2} \mathbf{F} + \dots + r_{m-1} \mathbf{x}^{n-m} \mathbf{F}.$$

Belongs to lattice :

$$L = \operatorname{Span}(\mathbf{x}^{n-1}\mathbf{F})$$

for $1 \leqslant i \leqslant m$.

Attacking the Gaussian sampler

► Correctly generated signature: element of the form

$$\mathbf{z} = \mathbf{R} \cdot \mathbf{f} + \mathbf{r} \cdot \mathbf{F} \in \mathbb{Z}[\mathbf{x}]/(\mathbf{x}^n + 1)$$

 \blacktriangleright Faults introduced after m iterations of the generation of r, R:

$$\mathbf{z} = r_0 \mathbf{x}^{n-1} \mathbf{F} + r_1 \mathbf{x}^{n-2} \mathbf{F} + \dots + r_{m-1} \mathbf{x}^{n-m} \mathbf{F}.$$

▶ Belongs to lattice :

$$L = \operatorname{Span}(\mathbf{x}^{n-i}\mathbf{F})$$

for $1 \leqslant i \leqslant m$.

 $ightharpoonup \mathbf{z}^{(1)}, \dots, \mathbf{z}^{(\ell)}$ faulty signatures.

- lacktriangle SVP of L should be one of the $\mathbf{x}^{n-i}\mathbf{F}$ for $1\leqslant i\leqslant m$.
 - \implies Full recovery of a basis $(\zeta f, \zeta g, \zeta F, \zeta G)$ for a $\zeta = \pm \mathbf{x}^{\alpha}$ (equivalent keys)

 $ightharpoonup \mathbf{z}^{(1)}, \dots, \mathbf{z}^{(\ell)}$ faulty signatures.

- lacktriangle SVP of L should be one of the $\mathbf{x}^{n-i}\mathbf{F}$ for $1\leqslant i\leqslant m$
 - \Rightarrow Full recovery of a basis $(\zeta f, \zeta g, \zeta F, \zeta G)$ for a $\zeta = \pm \mathbf{x}^{\alpha}$. (equivalent keys)

 $ightharpoonup {f z}^{(1)}, \dots, {f z}^{(\ell)}$ faulty signatures.

- ▶ SVP of *L* should be one of the $\mathbf{x}^{n-i}\mathbf{F}$ for $1 \leq i \leq m$.
 - \Rightarrow Full recovery of a basis $(\zeta f, \zeta g, \zeta F, \zeta G)$ for a $\zeta = \pm \mathbf{x}^{\alpha}$. (equivalent keys)

 $ightharpoonup \mathbf{z}^{(1)}, \dots, \mathbf{z}^{(\ell)}$ faulty signatures.

- ▶ SVP of *L* should be one of the $\mathbf{x}^{n-i}\mathbf{F}$ for $1 \leq i \leq m$.
 - \Rightarrow Full recovery of a basis $(\zeta f, \zeta g, \zeta F, \zeta G)$ for a $\zeta = \pm \mathbf{x}^{\alpha}$. (equivalent keys)

In practice

Fault after iteration number $m=$ Lattice reduction algorithm	2	5	10	20	40	60	80	100
	LLL	LLL	LLL	LLL	LLL	LLL	BKZ–20	BKZ–20
	75	77	90	93	94	94	95	95
	0.001	0.003	0.016	0.19	2.1	8.1	21.7	104
Success probability for $\ell=m+2$ (%)	89	95	100	100	99	99	100	100
Avg. CPU time for $\ell=m+2$ (s)	0.001	0.003	0.017	0.19	2.1	8.2	21.6	146

Conclusion and countermeasures

 Important to investigate implementation attacks on lattice schemes

- ► Faults against Fiat-Shamir and Hash-And-Sign signatures
 - ► Among first fault attacks against non-broken lattice signatures
 - ► Both based on early loop abort
 - ▶ One of them recovers the full key with a single faulty sig.
 - Other one: multiple faulty sig., but still on fault per sig.

Conclusion and countermeasures

► Check that the loop ran completely (two loop counters)

▶ For \mathbf{y}_1 : check that the result has $> (1 - \varepsilon) \cdot n$ non zero coeffs.

 Alternatively: randomize the order of generation of the coefficients (still a bit risky)

Thank you for your attention!

