BDI Logic ||

Yudai Kubono

February 11, 2024

Graduate School of Science and Technology, Shizuoka University

Yudai Kubono 1/14

Previous Presentation

- ▶ BDI theory claims that **belief**, **desire**, **and intention** are necessary to understand or explain practical reasoning.
 - ▶ Belief: we can buy a soda in the vending machine.
 - ▶ Desire: I want to drink something.
 - ▶ Plan: buying a soda in the vending machine.
 - ► Intention: I intend to fulfill the plan.
- ▶ Intention in Bratman's philosophy: a mental attitude characterized by some properties such as future-oriented, pro-attitude, and commitment ("I am planning to do it", "I will do it").

Yudai Kubono 2/14

Intuition to The Notions

▶ Belief:「私の記憶では論文を出した」

▶ Desire:「今月中に論文を出したい」

▶ Intention:「(教授の前で) 今月中に論文を出します」

Yudai Kubono 3/14

Rao & Georgeff's Formalization

- ▶ BDI Logic describes the mental attitudes belief, desire, and intention to analyze the theory.
- ▶ Rao & Georgeff's BDI logic is based on CTL*, which is one of temporal logics.
- ► They proposed a logic for an agent with three mental attitudes.

Yudai Kubono 4/14

Syntax

Let $\mathcal P$ be a countable set of atomic propositions. The language $\mathcal L_{\mathcal P}$ is the union of the two set of formulas $\mathcal L_{\mathcal P}^S$ and $\mathcal L_{\mathcal P}^P$ generated by the following grammar:

$$\mathcal{L}_{\mathcal{P}}^{S} \ni \varphi ::= p \mid \top \mid \neg \varphi \mid \varphi \wedge \varphi \mid A\psi \mid \triangle \varphi,$$

$$\mathcal{L}_{\mathcal{P}}^{P} \ni \psi ::= \varphi \mid \neg \psi \mid \psi \wedge \psi \mid X\psi \mid \psi \mathcal{U}\psi,$$

where $p \in \mathcal{P}$ and $\Delta \in \{BEL, DES, IND\}$. Other temporal operators E, F, and G are defined by $E\varphi := \neg A \neg \varphi$, $F\psi := \top \mathcal{U}\psi$, and $G\psi := \neg F \neg \psi$, respectively. Other logical connectives \vee , \rightarrow , and \leftrightarrow are defined in the usual manner.

Yudai Kubono 5/14

Semantics

Definition 1

A Kripke structure M is defined to be a tuple $\langle W, \{T_w, R_w\}_{w \in W}, V, B, D, I \rangle$, where:

- W is a non-empty set of possible worlds;
- $\{T_w\}_{w\in W}$ is a non-empty set of time points in w;
- $\{R_w\}_{w\in W}$ is a serial binary relation on T_w ;
- $V(w,t_i)$ is a subset of \mathcal{P} for each $w \in W$ and $t_i \in T_w$;
- ullet B is a serial, transitive, and Euclidean binary relation on W;
- ullet D,I are serial binary relations on W.

Yudai Kubono 6/14

Definition 2

A path π_w in w is defined as a infinite sequence $(t_0, \ldots t_n)$ of time points such that for all $i \in \mathbb{N}$, $(t_i, t_{i+1}) \in R_w$. A sub-path in w that starts from t_i is denoted by $\pi_w[t_i]$. The initial time point in a path π_w is denoted as $\pi_w(0)$.

Yudai Kubono 7/14

Satisfaction Relation

Definition 3-1 (State formula)

For each Kripke structure M, possible worlds $w \in W$, and $t_i \in T_w$, a satisfaction relation \models is given as follows:

$$\begin{split} M,w,t_i \vDash p \ \textit{iff} \ \ p \in V(w,t_i); \\ M,w,t_i \vDash \top \ &\text{always holds}; \\ M,w,t_i \vDash \neg \varphi \ \textit{iff} \ \ M,w,t_i \nvDash \varphi; \\ M,w,t_i \vDash \varphi \wedge \chi \ \textit{iff} \ \ M,w,t_i \vDash \varphi, \ \text{and} \ \ M,w,t_i \vDash \chi; \\ M,w,t_i \vDash &\text{A}\psi \ \textit{iff} \ \ M,\pi_w[t_i] \vDash \psi \ \text{for all} \ \pi_w[t_i]; \\ M,w,t_i \vDash & \triangle \varphi \ \textit{iff} \ \ M,v,t_i \vDash \varphi \ \text{for all} \ v \ \text{such that} \ (w,t_i,v) \in R(\triangle); \end{split}$$

Yudai Kubono 8/14

where $\triangle \in \{\text{BEL}, \text{DES}, \text{IND}\}\$ and $R(\triangle) \in \{B, D, I\}$.

Definition 3-2 (Path formula)

For each Kripke structure M, possible world $w \in W$, and path π_w , a satisfaction relation \vDash is given as follows:

$$\begin{split} M, \pi_w &\vDash \varphi \text{ iff } M, w, \pi_w(0) \vDash \varphi; \\ M, \pi_w &\vDash \mathbf{X} \psi \text{ iff } M, \pi_w[t_1] \vDash \psi; \\ M, \pi_w &\vDash \psi \mathcal{U} \chi \text{ iff } \text{ there exists } n \text{ such that } M, \pi_w[t_n] \vDash \chi \text{ and } \\ & \text{ for all } 0 \leq k \leq n, M, \pi_w[t_k] \vDash \psi. \end{split}$$

Yudai Kubono 9/14

Yudai Kubono 10/14

Describing Bratman's Analysis

- $IND\varphi \to DES\varphi$.
- $\neg BEL(E(F\varphi)) \rightarrow \neg IND\varphi$: an agent does not intend to do what she cannot believe to achieve.
- $IND(A(F\varphi)) \to A((IND(A(F\varphi)))\mathcal{U}(BEL\varphi \vee \neg BEL(E(F\varphi))))$: if an agent intends to achieve it sometime in all the futures, then this intention continues until she believes that it holds or she cannot believe that there is a future that it holds anymore.

Yudai Kubono 11/14

Other Properties

- $\mathrm{DES}\varphi \to \mathrm{BEL}\varphi$: an agent only desires to do what she believes.
- $BEL\varphi \to DES\varphi$: an agent only believes in what she desires to do.
- $IND(A(F\varphi)) \to A((IND(A(F\varphi)))\mathcal{U}(BEL\varphi))$: once an agent intends to achieve it, she never gives up.

Yudai Kubono 12/14

BDI Architecture

Figure 1: BDI Architecture quoted from (Nide (2014))

Yudai Kubono 13/14

References

- Rao, A. S. and Georgeff, M. P. (1998). Decision Procedures for BDI Logics. *Journal of Logic and Computation*, 293-343.
- Meyer, J.-J. Ch., Broersen, J, and Herzig, A. (2015). BDI Logics. Handbook of epistemic logic, edited van Ditmarsch, H., van Der Hoek, W., Halpern, J. Y., and Kooi, B. College Publications.
- Nide, N. (2014). BDI -モデル、アーキテクチャ、論理―. 全脳アーキテクチャ勉強会.

Yudai Kubono 14/14