(12)特許協力条約に基づいて公開された国際出願

(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2004年7月8日(08.07.2004)

PCT

(10) 国際公開番号 WO 2004/056992 A1

(51) 国際特許分類7: C12N 9/90, 9/99, 15/09, C12Q 1/533, C07D 401/06, G06F 17/30, 17/50, G01N 33/50

(21) 国際出願番号:

PCT/JP2003/016233

(22) 国際出願日:

2003年12月18日(18.12.2003)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ: 特願 2002-368112

2002年12月19日(19.12.2002)

(71) 出願人(米国を除く全ての指定国について): 独立行 政法人理化学研究所 (RIKEN) [JP/JP]; 〒351-0198 埼 玉県 和光市 広沢 2番 1号 Saitama (JP). 財団法人大 阪パイオサイエンス研究所 (OSAKA BIOSCIENCE INSTITUTE) [JP/JP]; 〒565-0874 大阪府 吹田市 古江 台6丁目2番4号Osaka (JP).

(72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 宮野 雅司 (MIYANO, Masashi) [JP/JP]; 〒679-5148 兵庫県 佐 用郡 三日月町光都 1 丁目 1 番 1 号 独立行政法人 理化学研究所 播磨研究所内 Hyogo (JP). 山本 雅 貴 (YAMAMOTO, Masaki) [JP/JP]; 〒679-5148 兵庫 県 佐用郡 三日月町光都 1 丁目 1 番 1 号 独立行政 法人理化学研究所 播磨研究所内 Hyogo (JP). 熊坂 崇 (KUMASAKA, Takashi) [JP/JP]; 〒679-5148 兵庫 県 佐用郡 三日月町光都 1 丁目 1 番 1 号 独立行政 法人理化学研究所 播磨研究所内 Hyogo (JP). 吾郷 日出夫 (AGO, Hideo) [JP/JP]; 〒679-5148 兵庫県 佐 用郡 三日月町光都1丁目1番1号 独立行政法人 理化学研究所播磨研究所内 Hyogo (JP). 裏出 良博 (URADE, Yoshihiro) [JP/JP]; 〒606-0804 京都府 京都市 左京区下鴨松原町 4 3 グラン・シティオ下鴨四季 彩館503 Kyoto (JP). 入倉 大祐 (IRIKURA, Daisuke) [JP/JP]; 〒565-0874 大阪府 吹田市 古江台 6 丁目 2番4号財団法人大阪パイオサイエンス研究所内 Osaka (JP). 有竹 浩介 (ARITAKE, Kosuke) [JP/JP]; 〒 666-0143 兵庫県 川西市 清和台西 1-5-2 0 清和台 ハイム 1 号棟 1 3 3 号 Hyogo (JP).

- (74) 代理人:河宫治,外(KAWAMIYA,Osamu et al.); 〒 540-0001 大阪府 大阪市 中央区城見 1 丁目 3 番 7 号 IMPビル青山特許事務所 Osaka (JP).
- (81) 指定国(国内): US.
- (84) 指定国 (広域): ヨーロッパ特許 (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR).

添付公開書類:

国際調査報告書

2文字コード及び他の略語については、定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

(54) Title: THREE-DIMENSIONAL STRUCTURE OF LIPOCALIN-TYPE PROSTAGLANDIN D SYNTHASE AND TION OF THE SAME

(54) 発明の名称: リポカリン型プロスタグランジンD合成酵素の3次元立体構造及びその使用

(57) Abstract: Crystals of lipocalin-type prostaglandin D synthase are produced and analyzed by X-ray difractoment three-dimensional structure of the enzyme based on which an inhibitor of the enzyme can be designed and selected. (54) Title: THREE-DIMENSIONAL STRUCTURE OF LIPOCALIN-TYPE PROSTAGLANDIN D SYNTHASE AND UTILIZA-

(57) Abstract: Crystals of lipocalin-type prostaglandin D synthase are produced and analyzed by X-ray difractometry to give the

リポカリン型プロスタグランジンD合成酵素の結晶を作成し、そのX線回折から該酵素の三次元立体 横造を得、それより眩酵素の阻害剤を設計、選択することができる。

BEST AVAILABLE COPY

明 細 書

リポカリン型プロスタグランジンD合成酵素の3次元立体構造及びその使用

5 技術分野

本発明はリポカリン型プロスタグランジンD合成酵素(以下「L-PGDS」という場合がある)の3次元立体構造及び、該3次元立体構造を用いるL-PGDSの阻害剤の選定方法に関する。

10 背景技術

15

20

25

プロスタグランジン(PG)D₂は様々な組織で活発に産生され、多くの生理学的事象に関与する。中枢神経系においてPGD₂はDP受容体依存様式で非眼球急速運動性(ノンレム)睡眠を促進し、痛感性の反応を制御する。PGD₂は、マスト細胞、好塩基球、及びTへルパータイプ 2 細胞によっても活発に産生され、DP及びCRTH 2 受容体を介してアレルギー反応を制御する。PGD₂は9 α , 11 β -PGF₂及びPGJ₂、 Δ ¹²-PGJ₂,及び15-デオキシー Δ ^{12,14}-PGJ₂等のプロスタグランジンのJシリーズに変換される。これらのプロスタグランジン類は生物学的システムにおいてPGD₂とは全く異なる性質を有する。15-デオキシー Δ ^{12,14}-PGJ₂は、PPAR γ 、即ち脂肪細胞、マクロファージ、及び単球の分化に関与する核内受容体のリガンドとして作用し、NF- κ B及びAP-1依存性の遺伝子発現を阻害する。

アラキドン酸カスケードは、ミクロソーム酵素である PGH_2 シンターゼ(シクロオキシゲナーゼ、COX)から出発し、該酵素は細胞膜の脂質二重層から供給されるアラキドン酸から PGH_2 を産生する。9, 11-エンドパーオキサイド基を有する PGH_2 は不安定であり、水溶液中では自発的に分解して主に9-ケト及び11-ヒドロキシ基を有する PGE_2 に異性化される。 PGE_2 のレジオイソマーである9-ヒドロキシ及び11-ケト基を有する PGD_2 はPGDシンターゼ(PGDS,プロスタグランジン H_2 D-イソメラーゼ[EC5. 3.99.2])により特異的に PGH_2 から産生される。

10

15

20

25

PGDSは2つの遺伝的に異なるタイプからなり、1つは造血器型酵素 (Hemopoietic PGS Snynthase; H-PGDS)であり、他はリポカリン型酵素 (Lipokalin-type PGD Synthase; L-PGDS)である(Y. Urade and 0. Hayaishi, Vitamins Hormones 58:89-120 (2000))。H-PGDSは分子量26 KDaを有するグルタチオン依存性酵素である。それは主として抗原提示細胞やマスト細胞に局在している。進化論的及び結晶学的分析によりH-PGDSはグルタチオンS-転移酵素(GST)のシグマクラスに属することが明らかになった。一方、L-PGDSは分子量26 KDaで、H-PGDSと同じ分子量を有するが、グルタチオン非依存性酵素であり、そのアミノ酸配列、遺伝子構造、進化的起源、細胞局在性はH-PGDSとは全く異なる。

L-PGDSは様々な分泌性タンパク質からなるリポカリン遺伝子ファミリー のメンバーであり、脈絡叢、くも膜及び中枢神経系の希突起膠細胞に局在する (Y. Urade and O. Hayaishi, Biochim. Biophys. Acta, 1482:259-271 (2000)). L-PGDS遺伝子ノックアウトマウスはPGE。及びγ-アミノ酪酸により誘 導される異疼痛、接触で生ずる痛みを欠いており(Eguchi et al., Proc. Natl. Acad. Sci. USA, 96:726-730(1998))、睡眠を奪った後のリバウンドとしての ノンレム睡眠が少ない (Eguchi et al., The 3rd International Conference on Oxygen and Life, Kyoto Vol. 1233C:429-433 (2002))。また高脂肪食を負荷す ることにより誘発される心臓肥大が軽度である。またヒトレーPGDS過剰発現 マウスは、脳におけるPGD。の増加と同時に起こる、痛覚刺激後の過剰量のノ ンレム睡眠を示す(Pinzar et al., Proc. Natl. Acad. Sci. USA, 97:4903-4907 (2000))。 L-PGDSは中枢神経系においてPGD,を産生することによって 疼痛感及びノンレム睡眠の調節に寄与すると考えられる。さらに、ヒトレーPG DS過剰発現マウスは、アレルギー性気道炎症が亢進(Fujitani et al:, J. Immunol、168:443-449 (2002))している。また、多発性硬化症(Chabas et al., Science, 294:1731-1735 (2001))、タイーサックス病やサンドホッフ病 (Myerowitz et al., Hum, Mol. Genet, 11:1343-1350 (2002))等の神経変性疾患 患者の脳内でL-PGDS遺伝子発現の亢進が認められる。さらに安定狭心症患 者の冠状動脈の動脈硬化巣でL-PGDSの発現が認められる(Eguchi et al.,

3

Proc. Natl. Acad. Sci. USA, 94:14689-14694(1997)).

従ってL-PGDSの阻害剤を見出すことができれば、該阻害剤は新しいタイプの鎮痛剤、睡眠調節剤、抗アレルギー剤、神経変性疾患治療薬、動脈硬化防止剤、心臓肥大防止剤等として用い得ることが期待できる。

5

10

15

20

25

発明の開示

本発明は、L-PGDSの立体構造を明かにして、その立体構造を用いてL-PGDSの阻害剤を設計、探索する方法を提供することを目的とする。

本発明は、マウスに由来するリポカリン型プロスタグランジンD合成酵素の結晶を提供する。マウスのリポカリン型プロスタグランジンD合成酵素は配列番号 1のアミノ酸配列を有する。配列番号1において1~24位のアミノ酸はシグナルペプチドであるのでこの部分を除いたタンパク質を用いるのが好ましい。またマウスL-PGDSには、65、89、186に3つのシステインを含むので、組換え法でL-PGDSを製造する場合、天然の89及び186間ジスルフィド結合以外のジスルフィド結合の形成を避けるため65位のシステインをアラニンで置換することが結晶構造の解明のため好ましい。このような置換を行い、シグナルペプチド部分を除いたL-PGDSを以下で「天然型Cys⁶⁵Ala L-PGDS」又は単に「天然型L-PGDS」と称することがある。

この天然型L-PGDSから得られる結晶は、斜方晶系の空間群P $2_12_12_1$ を有し、単位格子が $a=46.2\pm0.5$ Å、 $b=66.8\pm0.7$ Å、 $c=105.3\pm1.0$ Åの大きさを有する。結晶学的な非対称単位中に2分子のL-PGDSが存在する。

他の1態様の結晶は、シグナルペプチド部分を除き、 $Cys^{65}Ala$ の置換のほかに、64、94、 $及び145位のメチオニンをセレノメチオニンに置換したL-PGDS(このようなL-PGDSを以下で「<math>Se-Met^2L-PGDS$)より製造する。この $Se-Met^2L-PGDS$ から得られる結晶は斜方晶系の空間群 $C222_1$ を有し、単位格子が $a=45.7\pm0.5$ Å、 $b=66.8\pm0.7$ Å、 $c=104.5\pm1.0$ Åの大きさを有する。結晶学的な非対称単位中に1分子のL-PGDSが存在する。

10

15

20

25

本発明は、表2の構造座標で表わされる3次元立体構造を有するリポカリン型 プロスタグランジンD合成酵素に関する。この構造座標は上記「天然型L-PG DSIの結晶のX線構造解析より得られたものである。

本発明は、表3の構造座標で表わされる3次元立体構造を有するリポカリン型 プロスタグランジンD合成酵素にも関する。この構造座標は上記「Se-Met 型L-PGDS」の結晶のX線構造解析より得られたものである。

天然型Cys⁶⁵Ala L-PGDSとSe-Met型L-PGDSの結晶構造は、野生型L-PGDSの立体構造と以下の理由により相同であると無理なく推定できる。すなわち(i)天然型Cys⁶⁵Ala L-PGDSの結晶構造によって、PGDS反応の触媒機構を無理なく説明できる。(ii)PGH₂という異なる分子と相互作用することから明らかなように、65番目のシステイン残基の側鎖は蛋白質内腔の表面に露出し、またPGDS活性を有する野生型L-PGDSにおいては、65番目のシステイン残基の側鎖は蛋白質骨格の要素であるジスルフィド結合の形成に関与していない。(iii)さらに蛋白質骨格のジスルフィド結合を欠くCys^{89,189}Ala変異体であっても、構造の表現形である酵素活性を保持していることは、L-PGDSのバレル構造はそれ自体が強固で、天然型Cys⁶⁵Ala L-PGDSの構造もアミノ酸置換によって大きく変化しないことを示唆している。(iv)Se-Met型L-PGDSの立体構造は天然型Cys⁶⁵Ala L-PGDSの立体構造と相同である。

表2及び3はプロテインデータバンク (Protein Data Bank,

http://www.rcsb.org/pdb/、アメリカ)所定の書式に従って原子の3次元構造座標を表示している。第1列のATOMはタンパク質を構成する原子であることを示し、第2列は蛋白質を構成する1番のアミノ酸から順に、原子ごとに連続してつけた番号であり、第3列は蛋白質を構成する原子の種類を示す。例えば、Cα炭素原子はCA、アミド窒素原子はN、カルボニル炭素原子はC、カルボニル酸素原子はOと表記される。第4列はアミノ酸の種類を3文字表記法で示す。第5列は分子の種類を示す。第6列はアミノ酸配列における位置番号を示す。第7~9列は順に3次元構造座標X、Y、Zを示す。第10列は占有率と呼ばれる項で通常は1である。第11列は温度因子であり、第12列は表2においては原子の

15

20

25

種類を、表3においては分子の種類を示す。

これらの構造座標を使用するとL-PGDSの阻害剤を選定することができる。 即ち本発明は、リポカリン型プロスタグランジンD合成酵素の阻害剤の選定にお ける表2又は3の構造座標の使用に関する。

本発明はリポカリン型プロスタグランジンD合成酵素の阻害剤の選定方法であって、

- (a) リポカリン型プロスタグランジンD合成酵素の立体構造を表わす表2又は表3の3次元構造座標を提供し:
 - (b) 候補化合物の立体構造を提供し;
- 10 (c) リポカリン型プロスタグランジンD合成酵素の基質結合部位に適合する候 補化合物を阻害剤として選択する;

ことを含む方法に関する。

L-PGDSの「基質結合部位」とは、配列番号1のL-PGDSのアミノ酸配列で、39位、43-48位、54位、65-67位、77-83位、90-96位、103-107位、116-120位、129-133位、143-149位、180位のアミノ酸残基で規定される中空の構造の内側の空間を言う。これらの領域には、アミノ酸が1ないし5個程度前後したものも含まれる。

「適合する」とは、候補化合物の全体又は部分が、上記の基質結合部位の全体 又は部分に形状的及びエネルギー的に安定に結合することを言う。その結果、L -PGDSへの基質の結合が妨げられる。

好ましい態様では上記のようにして選択された阻害剤をプロスタグランジンH2の存在下にL-PGDSと接触させてL-PGDSの酵素活性を測定し、選択された阻害剤の阻害効果を確認する。

本発明の方法によりL-PGDSの新規阻害剤が発見された。即ち本発明は、 4-ジベンゾ(a, d)シクロヘプテン-5-イリデン-1-(4-(2H-テトラゾール-5-イル)プチル)ピペリジン(AT-56)よりなるリポカリン 型プロスタグランジンD合成酵素の阻害剤にも関する。

図面の簡単な説明

20

25

図1はL-PGDSの全体の構造を示す。

- (A) は、天然型L-PGDSの $P2_12_12_1$ 結晶の立体構造のリボン図表示である。バレルに対して直角に見たもの。上側はバレルの開いた末端であり、下側は閉じた末端である。ストランド及びヘリックスはA-H及び1-3と表示した。
- (B) は、開いた(oと示す)末端及び閉じた(cと示す)末端から見たL-P GDSの静電気的特徴を示す図である。黒色は静電的に陽性、白色は陰性を示す。
- (C) は、L-PGDSの保存表面を示す図である。公知のL-PGDS類のアミノ酸配列保存の程度をL-PGDS分子表面に描いている。濃色はより多く保存されていることを示す。

10 図2はマウスL-PGDS及び他のリポカリンの構造を考慮した配列アライメントである。全ての配列において高度なアミノ酸保存が認められるSCR領域は、バレル構造の閉じた末端を構成し、L-PGDSの活性上重要であると推定される。L-PGDSはN末端領域に約20の残基よりなるシグナル配列を有する。PGDS:マウスL-PGDS、HNGAL:ヒト好中球ゼラチナーゼ関連リポカリン、BLG:ヒトβーラクトグロブリン、RBP:ヒトレチナール結合タンパク質、ERABP:ラット精巣上体レチノイン酸結合タンパク質、MUP:マウス主要尿タンパク質、OPB:ウシにおい物質結合タンパク質、BBP:蝶ビリン結合タンパク質。

図3はL-PGDS構造の注目すべき特徴を示す。

- (A) は、注目すべき特徴を有するSe-Met型C222₁結晶のL-PGD Sの全体の骨組み構造のステレオ図である。エンベロープの内側の親水性ベルト内の8つの残基を示す; Cys^{89/186}の1つのS-Sプリッジ及び2つの芳香族残基Trp⁵⁴及びHis¹¹¹が接触した構造がバレル構造の上端に見出される; 左上のGln⁵¹及び右下Gln⁷⁸が2つの推定N-グリコシル化部位である。
 - (B) は、親水性ベルトのクローズアップである。 8 つの極性残基、 Cys^{65} Ala、 Ser^{45} 、 Thr^{67} 、 Ser^{81} 、 Tyr^{149} 、 Thr^{147} 、 Ser^{133} 、及び His^{116} があり、これらは基質 PGH_2 の推定の結合部位を形成する。

図4(A)は、エンベロープの入り口の閉じた、及び開いた様式を示すステレ

10

15

20

25

オ図である。EFループの His^{111} は、 Ω ループの Trp^{54} の芳香族相互作用により基質結合部位の入り口を閉じ(H111c)、又は開く(H111o)ことができる。

(B) はPhe 39 及びTrp 43 の周囲の基質結合部位の底部のステレオ図である。P2₁2₁2₁(F39o)及びC222₁(F39o)結晶構造における2つの回転異性体を示す。

図5は、L-PGDSの提案された PGH_2 結合様式を示すステレオ図である。 PGDS結合及び触媒に関与するその推定残基を、結合した PGH_2 と共に示す。

図6は反応機構の模式図である。 Cys^{65} を含む水素結合ネットワークはチオール及びチオレートの平衡をシフトさせることにより生理学的pHでのチオレートアニオン形成を促進する。 PGH_2 の結合後(1)、 Cys^{65} のチオレートはC11原子に結合したエンドエポキシ酸素に塩基攻撃を及ぼし(2)、推定中間体としてS-O付加物を形成する(3)。不安定なS-O結合は水素結合の協奏的再配置で容易に切断され(3)、生成物 PGD_2 (4)のC11カルボニルを生ずる。

図7は、L-PGDSに対する PGD_2 , PGE_2 、及び $PGF_{2\alpha}$ の結合の結合及び解離速度を示すグラフである。L-PGDSに対する PGD_2 , PGE_2 、及び $PGF_{2\alpha}$ の結合をBIAcoreを用いた表面プラスモン共鳴法により測定した。 PGD_2 濃度は $0.0\sim7.5\mu$ Mで変え、 PGE_2 、及び $PGF_{2\alpha}$ の 濃度は 10μ Mである。

図8は、様々な変異体タンパク質のPGDS活性をpH、8.0、9.0及び 10.0の条件で測定した結果を示すグラフである。グラフの縦軸はPGDSの 比活性を示す

図9は、AT-56が結合したL-PGDSを示すリボン図である。

図10は、AT-56によるL-PGDS酵素活性阻害作用を示すグラフである。

図11は、ヒト小脳髄芽細胞による PGD_2 産生の、AT-56による抑制を示すグラフである。

10

15

20

25

発明を実施するための最良の形態

(I) L-PGDSの立体構造、基質結合部位及び反応機構

(i) L-PGDSの全体の立体構造

L-PGDSの結晶構造は典型的なリポカリンの折りたたみを示し、8つのストランドの逆平行 β バレル、3つの α ヘリックス領域、及びC末端ストランドよりなる(図1A)。そのバレルは $40 \times 30 \times 35$ Åの大きさであり、杯状部分の外側で $C y s ^{89/186}$ の保存されたジスルフィド結合でストランド間を架橋している。そのタンパク質の外表面は荷電又は極性のアミノ酸残基よりなる。推定のリガンド入り口の分子表面は静電的に正で、負に荷電した酵素の基質 PGH_2 及びその生成物 PGD_2 を吸引する(図1B)。

L-PGDSのアミノ酸配列を三次元構造を考慮して公知の多様なリポカリンのアミノ酸配列とアライメントした(図 2)。L-PGDSはカーネルタイプのリポカリンであると分類され、3つの構造的に保存された領域(SCR)1,2及び3を有する。これらのSCRはL-PGDS分子のバレルの閉じた末端を構成し、N-末端へリックス1並びにストランドA,ストランドF及びG,及びストランドHよりなる。ヘリックス1はバレルの閉じた末端近くに位置し、その疎水性相互作用によりバレル構造を安定化すると考えられる。L-PGDSの分子表面でさえも、SCRは保存されている(図1C)。短いヘリックス2を含むループABに対応するEFループ及び Ω ループはバレルの閉じた蓋を構築する。2つのグリコシル化部位はL-PGDSの Ω ループの大きい蓋のAsn⁵¹の位置及びストランドCのAsn⁷⁸の位置にある(図3Aの矢印)。

疎水性側鎖によって支配されるL-PGDSの内部には、図5及び図3Bにおいて右から左へCys 65 Ala, Ser 81 , Thr 67 , Ser 45 , Tyr 149 , Thr 147 , Ser 133 , 及びHis 116 の8つの極性残基からなる注目すべき 親水性ベルトがある。その極性ベルトにおける残基は基質 PGH_2 の結合ばかり ではなく生成物 PGD_2 の遊離にも関与し、後で部位指定突然変異により示すように、 ω 鎖の極性のヒドロキシル基の水和及び脱水和のコストを減少させること により、PGDS活性における生成物 PGD_2 の放出を促進する。

結晶構造でアラニンにより置換されている推定触媒残基 Cys^{65} は、 β スト

10

15

20

25

ランドBのN末端に位置し、タンパク質の開いた縁のバレルの内側に面している(図5及び3B)。その $Cys^{65}Ala$ 残基は水素結合距離内で Ser^{45} , Thr 67 , Ser^{81} のヒドロキシル側鎖のクラスターにより取り囲まれている(図3B)。これらの残基は Tyr^{149} , Thr^{147} , Ser^{133} と共にL-PGDSの疎水性バレル中で水素結合ネットワークを形成する。

(ii) L-PGDSのオープン-クローズ立体配座異性体

我々は、L-PGDSの基質結合部位の入り口においてオープン及びクローズ型を有する2つのタイプの結晶構造を決定した。空間群C2221を有するSe-Met型L-PGDSの結晶構造においては活性部位はQループのTrp⁵⁴及びEFループのHis¹¹¹の間の閉じた芳香族プリッジによりタンパク質外部から分離されている。異なった空間群P2₁2₁2₁を有する天然型のL-PGDS結晶においては、His¹¹¹を有するEFループの異なったコンフォメーションのため基質結合部位の入り口は開いている(図4A)。Trp⁵⁴及び動きやすいEFループの¹⁰⁹SPHXGSの残基は、Xenopusホモログを含む全ての同定されたL-PGDS配列のアミノ酸配列において保存されている。P2₁2₁2₁結晶の非対称単位に含まれる2分子の天然型L-PGDS分子のうちの片方は、ビアループを構成するPro¹¹⁰、His¹¹¹に対応する電子密度が低く、この2残基については原子モデルを電子密度にあてはめなかった。フレキシブルなループのオープンークローズ立体配座異性体は基質及び基質でないリガンドのL-PGDSの基質結合部位への結合に重要な役割を果たすと考えられる。

(i i i) リポカリンとしてのL-PGDSの親油性レチノイン酸結合

必須の結晶化添加物としてレチノイン酸の存在下にL-PGDSを結晶化させた。L-PGDSは多くの他のリポカリンと類似してレチノイン酸及びレチナールを結合する。ポケットの底の Phe^{39} は、異なった結晶形 $P2_12_12_1$ 及び $C22_1$ において異なった回転異性体を示した(図4B)。天然型の $P2_12_12_1$ は晶は Phe^{39} の近くで嵩だかく大きい残留電子密度を有する広い空洞を示し、 $-方Se-MetC222_1$ 結晶においては対応する残留電子密度は Phe^{39} 側鎖の電子密度と連続であり、天然の形のそれより狭い空洞を生じた。天然型の結晶の Phe^{39} 側鎖の近くの Trp^{43} のインドール環付近の残留電子密度は結合

10

15

20

25

したレチノイン酸分子に起因すると結論付けられた。これらのレチノイド類は非 拮抗的にL-PGDS活性を阻害する。このレチノイド類の結合はレチノイド類と相互作用する Trp^{43} を含むL-PGDSの疎水性残基クラスターの再組織 化を必要とする

(iv) 基質PGH。の結合様式

エネルギー最小PGH2モデルを用いた場合、基質PGH2はL-PGDSの 基質結合部位の親水性ベルトに沿って位置する (図5)。提案された結合モデル においてはPGH2の15ーヒドロキシル基を有するω鎖は基質結合部位に挿入 し、シクロペンタン環に結合したエンドパーオキサイドにおけるC11に結合し た酸素原子は触媒のCys⁶⁵残基のチオール基に到達する。PGH₂のα鎖末端 のカルボキシル基の負の電荷はコンプレックスモデルの杯状部分の静電的に正の ふたを作る $L y s ^{92}$ 及び $A r g ^{85}$ の側鎖の正の電荷により相殺される(図 5)。 基質結合部位の親水性ベルトは極性のヒドロキシル基を有するPGH2またはP GD。のω鎖の挿入または脱離を促進することができる。なぜなら溶媒中のω鎖 の15ヒドロキシルの水和水はエンタルピー的な脱水コストなしにこれらの極性 側鎖と交換できるからである。PGH。のエンドパーオキサイドの極性表面はC vs⁶⁵及びSer⁴⁵、Thr⁶⁷、及びSer⁸¹を含むヒドロキシルクラスター に面する。シクロペンタン構造の疎水性部分はPhe⁸³及びMet⁹⁴を含む疎 水性側鎖によりくるまれている。基質結合部位の入り口にあるフレキシブルなE Fループの閉じたコンホメーションはPGDS反応の触媒スペースを提供し、溶 媒中の塩基から触媒部位を分離することにより特異的にPGD₂を製造すること を助け得る。更に、ドッキングスタディにおいて生じた9ーヒドロキシルー11 ーケトーシクロペンタンを有するより嵩高い生成物PGD2を収容する十分なス ペースがある。

(v)L-PGDSの反応機構

L-PGDSにより触媒されるPGDS活性の反応機構を推定し図6に示した。 L-PGDSの触媒残基は Cys^{65} であり、そのチオール基は Ser^{45} 、 Thr^{67} 、及び Ser^{81} との相乗的な水素結合ネットワークにより反応種としてのチオレートイオンとして安定化する。提示した反応機構における PGH_2 のL-

11

PGDSに対する結合様式は、PGDS反応において Cys^{65} の硫黄原子へP GH_2 のC11のエンドパーオキサイド酸素を向ける適当な空間配置を提供する(図5及び図6の工程1)。モデルにおいて触媒の Cys^{65} の Ser^{45} 、 Thr^{67} 、及び Ser^{81} との水素結合ネットワークは、 Cys^{65} のチオール基のpKaを減少させ、生理学的pHでのPGDS触媒の反応種としてチオレートアニオンを安定化させる。提案された反応機構は以下のようである(図6)。

 Cys^{65} のチオレートアニオンは塩基として PGH_2 のC11のエンドパーオキサイド酸素を攻撃し(図6の工程2)、反応中間体として推定されるS-O付加物を生じる(工程3)。 Ser^{45} のヒドロキシル基は不安定なS-O結合を攻撃し、C11の水素原子のプロトンを再配置し、協奏的な方式でカルボニル基に変換する(工程3及び4)。生成物 PGD_2 の脱離後、 Cys^{65} のチオールプロトンは解離して、反応種としてのチオレートアニオンを再び形成する。

(vi) L-PGDS活性の変異体分析

5

10

15

20

25

提案した基質結合及び反応機構を確認するためL-PGDS分子の基質結合ポケット内部の9つのアミノ酸残基へ部位指定突然変異を行った。精製した野性型酵素と同じPGDS活性を有する組換えタンパク質の製造が容易なので Cys^8 $^{9,186}Ala$ 構築物をこの目的に用いた。様々な変異体を発現させ、均一となるまで精製し、pH8、9及び10でL-PGDS活性を比較した(図8)。

Cys⁶⁵はL-PGDS活性の触媒残基として確認された。何故ならCys⁶ 5 Ala変異体は酵素活性を完全に失うからである。触媒ポケット内部のCys⁶⁵を囲むヒドロキシルクラスターのSer⁴⁵、Thr⁶⁷、及びSer⁸¹をAlaにより置換した場合、そのPGDS活性は、PGH₂についてのKmの顕著な減少なしに、 $30\sim15\%$ に減少した(図8及び表1)。従ってkcat/Kmは、Ser⁴⁵Ala及びSer⁸¹Alaの場合それぞれ0.36及び0.50μM⁻¹分⁻¹で野性型酵素の5分の1にまで顕著に減少した。L-PGDS活性は、Ser⁴⁵、Thr⁶⁷及びSer⁸¹のトリプル変異体においてはほとんど消滅した。これらの結果はCys⁶⁵のチオレートアニオンがSer⁴⁵、Thr⁶⁷及びSer⁸¹のヒドロキシルクラスターで安定化され、上記触媒作用における反応

10

15

種として作用するという考えと一致する。

注目すべきことに、3つの変異体Phe 83 Ile、Arg 85 Glu及びLy 82 Gluがそれぞれ4.47、4.86及び5.71 4 M $^{-1}$ 分 $^{-1}$ というk c at/Kmで、2.38 4 M $^{-1}$ 分 $^{-1}$ を有する野性型酵素のそれより、2倍大きい活性を示した(図8及び表1)。一方、PGH $_{2}$ についてのこれらの変異体のKm値($_{2}$ H8で11 $^{-1}$ 5 4 M)はArg 85 Glu変異体($_{2}$ M 4 M)を除けば野性型酵素($_{3}$ 4 4 M)に匹敵する。これらの結果は $_{2}$ 1 $^{-1}$ PGDS反応の律速段階は異性化の触媒過程ではなく生成物脱離であることを示唆する。L $_{2}$ PGD Sのリガンド入り口表面の正の静電的特徴を起しているArg 85 及びLy 82 0 の正電荷はPGH $_{2}$ やPGD $_{2}$ 0 $_{2}$ 4 4 90 の電鎖の負電荷との間に大きな親和力を発生させ(図1B)、生成物を基質結合部位に保つのを助け得る。図5に示すPGH $_{2}$ 2結合モデルと同様に、Phe 83 もその芳香環により触媒Cy 85 残基のまわりの広い穴に生成物を収容するのを助け得る。Thr 147 Ala及びTyr 149 Phe変異体は野性型酵素とくらべて活性が 147 Ala及びTyr 149 Phee変異体は野性型酵素とくらべて活性が 147 Ala及びTyr 149 Dhee変異体は野性型酵素とくらべて活性が 147 Ala

PGDS活性のL-PGDS変異体の動力学的パラメーター

	Km (μM)	Kcat/Km (μM ⁻¹ 分 ⁻¹)
野性型(C 6 5)	1 3	2. 38
S 4 5 A	1 1	0.36
S 8 1 A	1 2	0.50
F83I	1 5	4. 47
R 8 5 E	7	4.86
K 9 2 E	1 4	5. 71
T147A	1 9	0.95
Y149F	1_1	0.82

動力学的パラメーターは p H = 8.0で測定した

10

15

25

(vii) L-PGDSによる生成物PGD2の高親和性結合

L-PGDSは、生成物PGD $_2$ を高親和性(Kd=89.4±3.4nM, $k_{on}=1.24\times10^3\pm37M^{-1}$ $^{-$

(II) 構造座標を用いるL-PGDS阻害剤の選定

表2又は3に示す3次元構造座標を用いて、L-PGDSを阻害する化合物を 選定することができる。

本発明は、リポカリン型プロスタグランジンD合成酵素の阻害剤の選定方法であって、

- (a) リポカリン型プロスタグランジンD合成酵素の立体構造を表わす表 2 又は表 3 の 3 次元構造座標を提供し;
- 20 (b) 候補化合物の立体構造を提供し;

であることを示唆する。

(c) リポカリン型プロスタグランジンD合成酵素の基質結合部位に適合する候補化合物を阻害剤として選択する;

ことを含む方法にも関する。

上記のようにL-PGDSの基質結合部位を構成するアミノ酸残基は、配列番号1のL-PGDSのアミノ酸配列で、39位、43-48位、54位、65-67位、77-83位、90-96位、103-107位、116-120位、129-133位、143-149位、180位のアミノ酸残基である。

L-PGDSの3次元立体構造情報を基に、試験化合物の各々について、L-PGDSの基質結合部位への結合の適合性を評価する。この評価では、各々の試

験化合物の構造を変化させた中から、L-PGDSの活性部位に対して立体構造的かつエネルギー的に安定した結合様式を示す試験化合物とその構造を数値的もしくは視覚的に順位付けする。この評価は、各種バーチャルスクリーニングプログラムによって自動で実行することができる。順位付けされた試験化合物の中から、数値的もしくは視覚的にL-PGDSの基質結合部位に結合しやすいリード化合物を選定する。これで得られた化合物を基本骨格とし、より安定にL-PGDSの基質結合部位へ結合する誘導体をデザインし合成することで、L-PGDSの新規な阻害剤を開発できる。

5

10

15

20

25

阻害剤の設計を行うにはコンピューターを用いて行なうことが好ましい。この際に用いられるコンピューターは、例えばシリコングラフィックス社によって供給されているワークステーションOCTANEなどが好適であるが、これに限定されるものではなく、適当なプログラムが動作するように調整されているコンピューターであればよい。また、コンピューターの記憶媒体にも特に制限はない。設計に用いるプログラムは、例えばアクセルリス社から市販されているコンピューター・プログラムInsight IIを用いることで達成できる。特に、該目的のために特別に作成されたInsight IIのモジュールであるLudiやDOCKといったプログラムを単独又は組み合わせて用いることで、より容易に同定、検索、評価又は設計することができる。

阻害剤の設計には、概念的に2つの段階がある。最初の段階は、当業者においてリード化合物と称される薬物設計の出発点となる化合物を見つけだす段階である。次の段階は、そのリード化合物から出発してより活性が優れる、体内動態が優れる、毒性や副作用の少ないなど、医薬品としてより優れた性質を持つ化合物を見いだすリード化合物の最適化の過程である。

本発明が提供するL-PGDSの構造座標を用いてリード化合物を見つけだす 段階は、例えば複数の化合物の構造が入力してあるコンピューター中のデータベ ースを利用して、データベース中の化合物とL-PGDSの3次元構造上の相互 作用を逐次、視覚的方法によって選別する方法、又はコンピューターにより結合 のエネルギーの大きさを逐次計算し、安定にL-PGDSと結合する化合物をデ ータベースの中から探し出す方法などによって達成される。化合物の構造のデー

10

15

20

25

タベースは3次元構造座標が決定され入力されていることが望ましいが、低分子 化合物の場合には、そのコンフォーメーションは比較的自由に変化されうるし、 各コンフォメーションの3次元構造座標を計算で導くことも比較的短時間で可能 であるので、3次元構造座標のデータベースでなくてもよい。この場合は、低分 子化合物の化学的な共有結合情報をデータベースに入力する。

具体的には、視覚的方法では、まずコンピューターの画面上にL-PGDSを、本発明の構造座標に従って表示する。この際、コンピューターの画面上にクリスタル・アイを用いるなどの3次元表記をしてもよいが、必ずしも3次元表記を用いなくても視覚的な検討は可能である。

考慮すべき化学的相互作用は静電相互作用、疎水性相互作用、水素結合、ファ ンデルワールス相互作用などである。すなわち、該化合物の3次元空間での構造 が、その官能基群においてカルボキシル基、ニトロ基、ハロゲン基などの陰性電 荷を帯びやすい基が、L-PGDSのリジン、アルギニン、ヒスチジンといった 正雷荷を持つアミノ酸残基に相互作用するように、アミノ基、イミノ基、グアニ ジル基などの陽性電荷を帯びやすい基が、L-PGDSのグルタミン酸、アスパ ラギン酸といった負電荷を持つアミノ酸残基に相互作用するように、脂肪族基や 芳香族基といった疎水性の官能基が、アラニン、ロイシン、イソロイシン、バリ ン、プロリン、フェニルアラニン、トリプトファン及びメチオニンといった疎水 性のアミノ酸残基と相互作用するように、水酸基、アミド基などの水素結合に関 与する基が、L-PGDSの主鎖や側鎖部分と水素結合ができるように、更には、 該化合物とL-PGDSとの結合において立体的な障害が生じないように、また、 更には、空隙部分がなるべくできないように空隙部分が充填され、ファンデルワ ールス相互作用が大きくなるようになど、相互作用に好ましい構造になっている かを総合的に考慮することである。このように、静電相互作用、疎水性相互作用、 ファンデルワールス相互作用、水素結合などやその他の因子を、コンピューター 画面上で視覚的に総合的に考慮して、最終的に該化合物がリード化合物として適 当であるか否かの判断を行う。

コンピューターによるエネルギー評価による方法では、分子力場計算を用いて 化合物と、L-PGDSとの結合のエネルギーを求める。その計算をデータベー

10

15

20

25

スの中の各化合物に適用し、安定に結合できるリード化合物となりうる化合物を、このデータベースの中から求める。分子力場計算に用いる力場は、プログラムInsight IIのDISCOVERモジュールにある、蛋白質に最適化されたAMBERの力場、CVFFなどを利用できる。また、Insight IIのLudiなどコンピューター・プログラムによっては、蛋白質分子において相互作用するアミノ酸残基の3次元構造座標を与えると、自動的にリード化合物の候補を出力するものもあり、本発明の方法に用いることが可能である。また、視覚的検討と、エネルギーを考慮した検討は厳密に区別されるものではなく、それぞれの手法を適宜に組み合わせて用いることも有用である。

次の段階であるリード化合物の最適化を行う方法は、あらかじめリード化合物が上記の方法で見いだされている場合に、そのリード化合物を更に優れた分子、例えば阻害剤として更に生物活性の高い化合物や、医薬品として経口投与を考えた場合に有利な構造を有する分子などへ最適化する目的で用いられる。リード化合物とL-PGDSの化学的結合の実態を明らかにすることによって、リード化合物とL-PGDS相互作用において最適ではない相互作用部位を直接見いだし、その部位に最適な官能基を有する化合物を新たに設計することが可能となり、より最適化された化合物が設計できる。

コンピューターによる視覚的検討の場合は、まず、リード化合物の3次元構造 座標と本発明のL-PGDSの3次元構造座標を、分子の3次元構造座標を表現 するコンピューター・プログラムが動作するコンピューター又はそのコンピュー ターの記憶媒体に入力して、コンピューター画面上でリード化合物とL-PGD Sの複合体モデルを表示する。この際、コンピューターの画面上に前述のような クリスタル・アイを用いるなどの3次元表記をしてもよいが、必ずしも3次元表 記を用いなくても視覚的な検討は可能である。そして、リード化合物がL-PG DSと更に好ましく相互作用できるように、若しくは相互作用を保持させたまま、 より体内動態の優れた化合物へと改変することが、論理的な化合物の設計である。

考慮すべき化学的相互作用はリード化合物を見つけだす場合と同様であり、最終的にリード化合物から、阻害剤としてより好ましい性質を持つ化合物を新たに設計する。

コンピューターによるエネルギー評価による方法では、分子力場計算を用いて、リード化合物から設計された新たな化合物とL-PGDSとの結合のエネルギーを求め、該設計の妥当性を判断する。更には、溶媒分子などもモデルに加え、分子動力学法を用いて自由エネルギーを求め、安定に結合できる化合物へ誘導する方法もある。分子力場計算に用いる力場は、プログラムInsight IIのDISCOVERモジュールにある、蛋白質に最適化されたAMBERの力場、CVFFなどを利用できる。ここで名称が出たプログラム、力場はこれに限られるものではなく、同等の機能を有するプログラム、力場を使用することも可能である。

5

10

15

20

25

視覚的検討と、エネルギー評価による方法を適宜に組み合わせて用いてもよい。コンピューターによる視覚的検討やエネルギー評価に加え、リード化合物もしくはリード化合物からデザインされた化合物とL-PGDSを複合体結晶とし、その結晶構造をX線結晶解析によって実験的に解析し、結合様式を構造座標として決定することは、L-PGDSの基質結合部位と化合物の結合の適合性の評価の向上や化合物の設計の質の向上にとって重要な情報を与える。複合体結晶の作製は、L-PGDSと化合物が共存している溶液中で、L-PGDSを結晶化させることで得られる。また化合物を含まない溶液中で作製したL-PGDSの結晶を、化合物を含みなおかつL-PGDS結晶が安定に存在する溶液に漬けることでも得られる。作製した複合体結晶のX線結晶構造解析は、天然型Cys⁶⁵AlaL-PGDSの構造座標の決定で用いた方法で行うことができる。この場合、表2もしくは表3に記載のL-PGDSの構造座標を使って解析を行うことができる。また必要があればSe-Met型L-PGDSの構造座標の決定で用いた方法を用いても良い。

以上のようにしてL-PGDSの阻害剤の候補化合物を選択した後、好ましくは該選択した化合物を基質(プロスタグランジンH₂)存在下に該酵素と接触させて、該化合物の該酵素活性を阻害する能力を確認する(例えば、Shimizu, T., Yamamoto, S., and Hayaishi, O. (1979). Purification and properties of prostaglandin D synthetase from rat brain. J. Biol. Chem. 254, 5222-5228 を参照)。該酵素活性測定は例えば以下のようにして行うことができる。

10

15

20

基質の $[1-^{14}C]$ プロスタグランジン(PG) H_2 は、 $[1-^{14}C]$ アラキドン酸にシクロオキシゲナーゼを反応させて調製する。 PGH_2 は水溶液中では容易に分解する(半減期約5分)ので、乾固させて低温(-80℃)で保存する。酵素反応は1mMジチオスレイトール(DTT)および酵素を含む0.1Mリン酸緩衝液(pH8.0) 49μ 1に、 PGH_2 溶液(x2 トンまたは不揮発性のジエチレングリコールジメチルエーテル溶液) 1μ 1をマイクロシリンジで注入して行う。25 ℃、30 ~60 秒間の反応後、氷冷したエーテル/メタノール/0.1 Mクエン酸混液(30:4:1 y /y /y) 300μ 1を加えて反応を停止し、酸性条件下で基質および反応生成物をエーテル層に抽出する。続いて反応液に無水硫酸ナトリウムを加えて脱水を行い、有機溶媒相の一部(50μ 1程度)を低温室内(4 ℃)でシリカゲル薄層に塗布し、冷凍庫内(-20 ℃)でシリカゲル薄層クロマトグラフィー(展開溶媒:x2 一ル/酢酸(y3 の放射活性を測定し、y4 の変換率をもとに酵素活性を算出する。

市販の非標識 PGH_2 を用いて酵素反応を行い、反応後、 $FeCl_2$ 処理により PGH_2 を12 (S) ーヒドロキシー8, 10ートランスー5ーシスーヘプタデカトリエノール酸に分解した後、11- β - PGE_2 を内部標準とする逆相HPLCあるいは市販のELISAにより PGD_2 を定量する方法も使用できる。

上述のようにL-PGDSの阻害剤は、鎮痛剤、睡眠調節剤、動脈硬化防止剤、 心臓肥大防止剤、抗アレルギー剤、神経変性疾患治療薬等として用い得る。

実施例

実施例1

25 <u>L-PGDSの製造</u>

天然型L-PGDSの製造

Glu24からC末端までのL-PGDS遺伝子 [EMBL/GenBank/DDBJ™アクセッションナンバーD83329] をマウス脳cDNAライプラリーからPCR増幅により得、発現ベクターpGEX-2T (アマシャム・

10

15

20

25

ファルマシア・バイオテック社)に挿入し、その発現ベクターでEscherichia coli DH5 α (東洋紡)を形質転換した。pGEX-2Tは目的遺伝子をグルタチオン (GSH)トランスフェラーゼ (GST)遺伝子の下流に挿入し、目的蛋白質をGST融合蛋白質として発現するための発現ベクターである。Cys65Alaを作成するため、得られた発現ベクターを鋳型としてCys65をAlaに置換されるようにミスマッチコドンを含む一対の合成オリゴマー

5'-GCTGTATTGTATATGgcaAAGACAGTGGTA-3'
5'-TACCACTGTCTTtgcCATATACAATACAGC-3'
を作成した。さらにこのQuick change site-directed mutagenesis キット(ストラタジーン社)を用いてCys65Ala発現ベクターをを作成した。これをグルタチオン(GSH)トランスフェラーゼ遺伝子(EMBL/GenBank/DDBJTMアクセッションナンバーU58012)と結合させ、その発現ベクターでEscherichia coli DH5α(東洋紡)を形質転換した。

この発現ベクターで形質転換したEscherichia coli DH5 α で製造されるL-P GDSはGST融合蛋白質である。形質転換体をLB培地、37 Cで培養し、OD $_{600nm}$ が0.5-0.6になったところで0.6-1 mMになるようにIPT Gを添加し、37 Cで6時間、L-PGDSの生産を行ったのち、培地から形質 転換体を分離した。得られた形質転換体を超音波破砕機によって破砕し、遠心分離によって上清を集め、GSH-セファロース4Bカラムクロマトグラフィーにより精製した。これをトロンビンとインキュベートしL-PGDSとGSHを切り離した後、5 mMトリス/HC1(pH8.0)中でのSuperdex75カラムクロマトグラフィーを行い、引き続いて10 mMクエン酸ナトリウム(pH4.5)中でMonoSoper

なお部位特定突然変異導入はQuickChange部位特定突然変異導入キット (Stratgene, Heiderberg, Germeny)を用いて行った。そのDNA配列は、SequiThermサイクル配列決定キット (Epicentre Technologies, Madison, WI) によるサイクル配列決定の後LI-CORモデル4000L自動DNAシークエンサー (LI-COR Inc., Lincoln, NE) で確認した。Se-Met型L-PGDSの製造

トン同様にして得たpGEX-2TベクターでE.coli B834 (DE 3) (Novagene、WI,米国)を形質転換し、次のセレノメチオニンを含有するア ミノ酸に富んだ培地で培養した(1L当たりのg数):アラニン1. 5g;アル ギニンHC11. 75g;アスパラギン酸1. 2g;システイン0. 1g;グル タミン酸2g;グルタミン1g;グリシン1.626g;ヒスチジン0.1、7.5 g、イソロイシン0.7g;ロイシン0.7g;リシンHCll.26g;フェ ニルアラニン0.4g;プロリン0.3g、セリン6.25g;トレオニン0. 7g; チロシン0.5g; バリン0.7g; アデニン1g; グアノシン1:33 g;チミン0.33g;ウラシル1g、酢酸ナトリウム1.5g;コハク酸3 g;塩化アンモニウム1.5g;水酸化ナトリウム0.85g; K₂HPO₄1 0. 5g; MgSO40. 25g; FeSO4 (II) 0. 0042g; グルコ ース20g;セレノメチオニン0.075g、及びKao and Michayluk Basal ビ タミン溶液 (Sigma-Aldrich)。上記培地での培養に先立って、形質転換体を3 7℃の1mLのLB培地で一晩培養した。この1mLの培養液を500mLの上 記培地に混合し、37℃でさらに一晩培養した。この500mLの培養液のうち 50mLを350mLの新しい上記培地に加え37℃で培養し、ODecomが0. 5-0. 6になったところで0. 6-1 mMになるように I P T G を添加し、37℃で12時間培養を続け、L-PGDSを生産した。

Se-Met型L-PGDSの精製は上記天然型酵素と同じ方法でおこなった。

実施例2

5

10

15

20

25

L-PGDSの結晶化

精製した酵素を、 10μ Mのall-transレチノイン酸を含む $5\,\mathrm{mM}$ トリス/HCl(pH8、結晶化ストック緩衝液)に対し透析し、YM-3膜(ミリポア、Badford, MA)を用いる限外濾過により $10\,\mathrm{mg/ml}$ まで濃縮した。結晶化はハンギングドロップ蒸気拡散法により $22.5\,\mathrm{C}$ の一定温度で行った。 天然型のCys 65 Ala L-PGDSは、 $10\,\mathrm{mg/ml}$ のタンパク質溶液 $2\,\mu$ lを $2\,\mathrm{M}$ マロン酸ナトリウム、 $0.1\,\mathrm{M}$ トリス/HCl(pH8)及び $10\,\mathrm{%}$ (v

/v) 1,4-ジオキサンを含む等容量のリザーバー溶液と混合することによっ

WO 2004/056992

5

10

15

て結晶化させた。 3 週間以内に最大の大きさ 0. 1×0 . 1×0 . 4×0 .

Se-Me t型Cys 65 AlaL-PGDSもハンギングドロップ蒸気拡散 法により得た。液滴は 10μ Mのall-transレチノイン酸を含む 2μ 1 の10mg/m1のタンパク質溶液、及び0.1Mのトリス/HCl(pH9.5)中の1.25Mクエン酸ナトリウム、10%のジオキサン、2%トライトン X-405を含む等容量の母液からなった。

結晶学的パラメーターは回転対陰極型X線発生器及びRigakuRAXIS-IVイメージングプレートシステムを用いて決定した(波長1.0000A)。

天然型のL-PGDSの結晶は単位胞の大きさa=46.2、b=66.8、c=105.3 Åを有する斜方晶系の空間群 $P2_12_12_1$ に属し、非対称単位中に2つの分子よりなる。

Se-Met型L-PGDSの結晶は斜方晶系の空間群 $C222_1$ に属し単位 胞の大きさa=45.7、b=66.8、c=104.5 Åを有し非対称単位中 に1つの分子を有する。

実施例3

データ収集及び構造決定

Se-Met型及び天然型のCys⁶⁵AlaL-PGDSの結晶の回折データはスプリング-8理研ビームラインI(BL45XU)タンパク質クリスタログラフィーステーションで温度100Kで収集した。回折データはDENZO及びSCALEPACK(Otwinowski et al., Methods Enzymol.,276:307-326(1997))を用いて処理した。CCP4スイート(Collaborative Computational Project, Number 4, 1994)を引き続く結晶学的計算に用いた。

空間群C2221に属するSe-Met型Cys⁶⁵Ala L-PGDSの結晶の解析は多波長異常分散法を用いた。セレニウムの3つの部位は差パターソンマップから見出した。位相精密化及び電子密度修飾はSHARP (de La Fortelle et al., Methods Enzymol., 276:472-494 (1997)) 及びSOLOMON

10

15

20

(Abrahams et al., Acta Crystallogr., D32:30-42 (1996)) を用いて行なった。プログラム、O (Jones et al., Acta Crystallogr., A47:110-119 (1991)) 及びX t a l V i e w (McRee, Practical protein crystallography, Academic Press, 1993) をモデル構築のため用いた。結晶学的精密化はCNS (Brunger et al., Acta Crystallogr., D54:905-921 (1996)) による分子動力学を考慮した精密化計算と、手動によるモデルの修正を交互に行うサイクルによって行った。βバレル部分のフレキシブルなループ領域は弱い不明瞭な電子密度を示した。現在のモデルはC 2 2 2 1結晶構造においてCDループのA s n 8 及び9つのN末端残基を含まない。結晶学的R及びR_{free}は、S e -M e t 酵素について 2. 5 Å分解能でそれぞれ 0. 2 3 及び 0. 2 8 であった。

 $P2_12_12_1$ を有する天然型の結晶は分子置換を用いて解き、上と同様な結晶学的精密化を行った後、CCP4スイートのREFMAC5を用いてさらにフルマトリクス最小二乗精密化と手動による方法によって精密化した。非対称単位の2つの分子における1分子のCDループ領域は電子密度が低いので定めなかった。結晶学的R及びR_{free}値は、その天然の酵素について2.1 Å分解能でそれぞれ0.24及び0.28であった。 $P2_12_12_1$ の天然の構造は、4 Å以上の偏差を有するオープンEFループ及びPhe 39 を除いて、C222 $_1$ のSeMetターンパク質と全く類似の構造を示す(全体の原子 $_1$ C. C22 $_1$ C. C26 Å)。両方の構造座標のRamachandranプロットの許されない領域内に残基はない。

得られた天然型L-PGDSの構造座標を表2に、Se-Met型L-PGDSの構造座標を表3に示す。

実施例4

L-PGDSへのPGD₂の結合

L-PGDSへのPGD₂、PGE₂、PGF_{2α}の結合を、BiaCore2000システム (BiaCore, Uppsala, Sweden) で表面プラスモン共鳴測定法を用いて分析した。カルボキシメチルデキストランで被覆したCM5センサーチップ (BIAcore AB) にL-PGDS変異体Cys^{89,186}Alaを固定化した。結合試験は結合及び解離相の両方で0.1~10μM濃度範囲で30μ1/分の一定の流

速で25℃で行った。各試験の後、そのセンサーチップ表面を15µ1の1.5 M尿素により再生させた。速度定数値は、4つの独立した実験によるLangmuir1:1結合モデルを用いて対照表面(ウシ血清アルブミン)を差し引いた後、解析ソフトウエアーBIAエバリュエーション3.0ソフトウエアを用いることにより計算した。結果を図7に示す。

実施例5

5

10

15

20

L-PGDSの立体構造を用いたL-PGDS阻害剤の探索

天然型 $Cys^{65}Ala$ L-PGDSの立体構造をコンピューターの画面上に表示しその構造へ種々の化合物の立体構造を適合させることを試みた。その結果、式:

で示される、4ージベンゾ (a, d) シクロヘプテンー5ーイリデンー1ー(4ー(2Hーテトラゾールー5ーイル) ブチル) ピペリジン (以下ATー56という) が図9に示すように、LーPGDSの立体構造に適合することが解った。ATー56はLーPGDSの39、40、43、45、48、54、67、69、77、79、92、94、96、105、107、109、116、118、120、129、131、133、145、147、149位のアミノ酸残基により形成されるポケットに入っている。このうち45、92、147、149位のアミノ酸残基は基質結合部位であり、ATー56はLーPGDSの阻害剤である可能性がある。

AT-56のL-PGDS 酵素活性阻害<u>作用</u>

ヒト組換え型酵素を用いて、上で見出したAT-56の L-PGDS 酵素に対する阻害作用、及び比較のためAT-56の H-PGDS 酵素に対する阻害

作用を調べた。

5

10

15

20

25

L-PGDS 阻害活性測定には、 [1-14C] PGH₂ (5 µ M) を基質として、ヒト組換え型L-PGDS、0. 1 M Tris-HCl (pH8.0)、1mM DTT (ジチオスレイトール) 存在下に25℃で1分間反応させた。

造血器型PGD合成酵素 (H-PGDS) 阻害活性測定には、 [1-14C] PGH₂ (40 μ Mを基質として、0.1M Tris-HCl (pH8.0)、0.1mM GSH (還元型グルタチオン)、存在下に25℃で30秒間反応させた。

AT-56は基質添加の5分間前処置し、続いて基質を添加した。反応終了後、反応液は薄層クロマトグラフィーにより、 PGD_2 を分離・定量し、酵素活性を算出した。なおAT-56は特開平7-70112号公報 $3\sim4$ 頁に記載の方法に従って製造した。

結果を図10に示す。AT-56は、用量依存的にL-PGDSによる PGH_2 から PGD_2 への異性化反応を阻害し、その50%阻害濃度(IC_{50} 値)は、 95μ Mであった。一方、AT-56($3-300\mu$ M)は、H-PGDSを阻害しなかった。このようにAT-56はL-PGDSを特異的に阻害する化合物であることが確認された。

L−PGDSを発現する細胞 (TE-671) からのPGD₂産生に対するAT−56の抑制作用

L-PGDSを発現するヒト小脳髄芽細胞(TE671)からのカルシウムイオノフォア(A23187;5-(メチルアミノ)-2-[[(2R, 3R, 6S, 8S, 9R, 11R)-3, 9, 11-トリメチルー8-[(1S)-1-メチルー2-オキソー2-(1H-ピロールー2-イル)エチル]-1, 7-ジオキサスピロ[5.5]ウンデカー2ーイル]メチル]-4ーベングキサグールカルボン酸)刺激によるPGD2産生に対するAT-56の抑制作用を調べた。

TE-671を 1×10^5 個の密度でマイクロプレートに播種し、続いて細胞をA23187 ($5 \mu M$) で刺激して PGD_2 産生を惹起した。AT-56あるいは溶媒 (Vehicle) は、A23187刺激の15分前に細胞培養液に添

加した。A23187刺激の15分後に培養液を回収し、培養液中の PGD_2 濃度をエンザイムイムノアッセイ (EIA) 法によって定量した。

結果を図11に示す。TE-671細胞は無刺激に比べ、A23187で刺激することによって PGD_2 産生が増加した。このA23187刺激による PGD_2 産生をAT-56は用量依存的に抑制した。この結果もAT-56がL-PGDSの阻害剤であることを確認するものである。

表2 天然型L-PGDSの3次元構造座標

10	ATOM	1	N	GLN A	35	7. 532	25. 687	-6.080	1.00 33.40	N
	ATOM	2	CA	GLN A	35	7. 880	26. 161	-4.715	1.00 32.79	С
	ATOM	3	СВ	GLN A	35	6. 613	26. 584	-3.976	1.00 34.50	С
	ATOM	4	CG	GLN A	35	5. 450	25. 616	-4.062	1.00 39.74	С
	ATOM	5	CD	GLN A	35	4. 209	26. 171	-3. 369	1.00 49.53	С
15	ATOM	6	OE1	GLN A	35	3. 153	25. 528	-3. 327	1.00 50.48	0
	ATOM	7	NE2	GLN A	35	4. 337	27. 377	-2.817	1.00 49.93	N
	ATOM	8	С	GLN A	35	8. 666	25. 154	-3.873	1.00 30.34	С
	ATOM	9	0	GLN A	35	9. 147	25. 489	-2. 794	1.00 29.61	0
	ATOM	10	N	GLN A	36	8. 811	23. 929	-4. 367	1.00 27.61	N
20	ATOM	11	CA	GLN A	36	9. 561	22. 906	-3.636	1. 00 25. 74	C
	ATOM	12	СВ	GLN A	36	9. 751	21. 657	-4. 503	1.00 24.32	С
	ATOM	13	CG	GLN A	36	10. 312	20. 473	-3. 731	1.00 24.51	С
	ATOM	14	CD	GLN A	36	10. 259	19, 181	-4. 516	1.00 21.94	С
	ATOM	15	OE1	GLN A	36	11. 020	18. 974	-5. 459	1.00 30.10	0
25	ATOM	16	NE2	GLN A	36	9. 350	18. 307	-4. 134	1.00 26.53	N
	ATOM	17	С	GLN A	36	10. 930	23. 421	-3.170	1.00 23.41	С
	ATOM	18	0	GLN A	36	11. 341	23. 145	-2.047	1.00 20.27	0
	ATOM	19	N	ASP A	37	11.625	24. 162	-4. 036	1.00 24.65	N
	ATOM	20	CA	ASP A	37	12. 942	24. 731	-3. 709	1.00 24.97	С

	ATOM	21	СВ	ASP A	37	13. 470	25. 596	-4.859	1.00 28.96	C
	ATOM	22	CG	ASP A	37	14. 187	24. 793	-5. 919	1.00 34.20	С
	ATOM	23	OD1	ASP A	37	14. 733	25. 418	-6.856	1.00 41.87	0
•	ATOM	24	OD2	ASP A	37	14. 208	23. 548	-5.820	1.00 45.04	0
5	ATOM	25	С	ASP A	37	12. 915	25. 597	-2. 457	1.00 23.64	С
	ATOM	26	0	ASP A	37	13. 938	25. 778	-1. 795	1.00 23.30	0
	ATOM	27	N	LYS A	38	11. 745	26. 137	-2. 139	1.00 22.75	N
	ATOM	28	CA	LYS A	38	11. 595	26. 996	-0.974	1.00 23.00	С
	ATOM	29	CB	LYS A	38	10. 238	27. 717	-1. 013	1.00 23.35	С
10	ATOM	30	CG	LYS A	38	10.024	28. 669	-2. 185	1.00 23.60	C
	ATOM	31	CD	LYS A	38	10. 993	29. 825	-2.126	1.00 24.32	C
	ATOM	32	CE	LYS A	38	10.606	30. 923	-3. 107	1.00 27.38	С
	ATOM	33	NZ	LYS A	38	9. 282	31. 485	-2.771	1.00 26.05	N
	ATOM	34	С	LYS A	. 38	11.704	26. 225	0.341	1.00 22.03	С
15	ATOM	35	0	LYS A	. 38	11. 980	26. 815	1. 385	1.00 21.91	0
	ATOM	36	N	PHE A	39	11.501	24. 912	0. 284	1.00 20.33	N
	ATOM	37	CA	PHE A	. 39	11. 535	24. 079	1. 480	1.00 17.56	C
	ATOM	38	СВ	PHE A	39	10.391	23. 056	1.442	1.00 19.18	С
	ATOM	39	CG	PHE A	39	9.012	23.676	1. 421	1.00 21.95	С
20	ATOM	40	CD1	PHE A	39	8. 514	24. 254	0. 263	1.00 16.05	С
	ATOM	41	CE1	PHE A	39	7. 233	24. 811	0. 231	1.00 25.13	С
	ATOM	42	CZ	PHE A	39	6. 442	24. 794	1. 372	1.00 26.46	С
	ATOM	43	CE2	PHE A	39	6. 934	24. 219	2. 544	1.00 28.59	С
	ATOM	44	CD2	PHE A	39	8. 213	23.664	2. 561	1.00 25.15	С
25	ATOM	45	С	PHE A	39	12.860	23. 359	1.692	1.00 18.10	C
	ATOM	46	0	PHE A	39	.12.999	22. 536	2. 598	1.00 15.86	0
	ATOM	47	N	LEU A	40	13. 840	23. 662	0.855	1.00 17.02	N
	ATOM	48	CA	LEU A	40	15. 140	23. 037	1.001	1.00 17.96	С
	ATOM	49	СВ	LEU A	40	16. 034	23. 360	-0. 198	1.00 17.02	С

	ATOM	50	CG	LEU A	A	40	15. 501	22. 886	-1.546	1. 00 20. 11	С
	ATOM	51	CD1	LEU A	A	40	16. 493	23. 229	-2. 659	1.00 20.64	С
	ATOM	52	CD2	LEU .	A	40	15. 266	21. 391	-1. 481	1. 00 15. 79	С
	ATOM	53	С	LEU .	A	40	15. 750	23.602	2. 271	1.00 17.56	С
5	ATOM	54	0	LEU .	A	40	15. 202	24. 528	2.874	1.00 17.30	0
	ATOM	55	N	GLY .	A	41	16. 861	23. 019	2. 702	1.00 16.10	N
	ATOM	56	CA	GLY .	A	41	17. 521	23. 531	3. 888	1.00 15.92	С
	ATOM	57	С	GLY .	A	41	17. 293	22. 823	5. 207	1.00 15.14	С
	ATOM	58	0	GLY	A	41	16. 873	21.667	5. 253	1.00 17.51	0
10	ATOM	59	N	ARG	A	42	17. 564	23. 550	6. 289	1. 00 15. 43	N
	ATOM	60	CA	ARG	A	42	17. 461	23. 028	7. 645	1.00 17.08	С
	ATOM	61	СВ	ARG	A	42	18. 509	23. 721	8. 538	1.00 15.38	С
	ATOM	62	CG	ARG	A	42	18. 574	23. 214	9. 995	1.00 15.81	С
	ATOM	63	CD	ARG	A	42	19. 475	24. 086	10. 917	1.00 17.38	С
15	ATOM	64	NE	ARG	A	42	18. 931	25. 430	11. 127	1.00 20.69	N
	ATOM	65	CZ	ARG	A	42	19. 516	26. 393	11. 846	1.00 24.91	С
	ATOM	66	NH1	ARG	Α	42	20.676	26. 180	12. 449	1.00 18.52	N
	ATOM	67	NH2	ARG	A	42	18. 946	27. 591	11. 948	1.00 23.29	N
	MOTA	68	С	ARG	A	42	16. 093	23. 133	8. 320	1.00 16.71	С
20	ATOM	69	0	ARG	A	42	15. 490	24. 209	8. 393	1.00 17.77	0
	ATOM	70	N	TRP	A	43	15. 627	22. 001	8. 836	1.00 17.28	N
	ATOM	71	CA	TRP	A	43	14. 356	21. 939	9. 552	1.00 18.13	С
	ATOM	72	CB	TRP	A	43	13. 283	21. 239	8. 721	1.00 15.45	С
	ATOM	73	CG	TRP	A	43	12. 856	21. 946	7. 485	1.00 15.71	С
25	ATOM	74	CD	1 TRP	A	43	13. 401	21.834	6. 233	1.00 15.15	С
	ATOM	75	NE:	1 TRP	A	43	12. 662	22. 576	5. 330	1.00 15.14	N
	ATOM	76	CE	2 TRP	A	43	11. 631	23. 187	5. 996	1.00 14.06	С
	ATOM	77	CD	2 TRP	Α	43	11. 721	22. 817	7. 357	1. 00 12. 61	С
	ATOM	78	CE	3 TRP	Α	43	10. 778	23. 319	8. 264	1.00 14.15	С
		•									

PCT/JP2003/016233

	ATOM	79	CZ3	TRP A	43	9. 777	24. 162	7. 792	1.00 11.66	С
	ATOM	80	CH2	TRP A	43	9. 709	24. 512	6. 426	1.00 15.44	С
	ATOM	81	CZ2	TRP A	43	10. 626	24. 034	5. 520	1.00 15.17	С
	ATOM	82	С	TRP A	43	14. 565	21. 126	10.821	1.00 18.08	С
5	ATOM	83	0	TRP A	43	15. 587	20.460	10. 981	1.00 18.87	0
	ATOM	84	N	TYR A	44	13. 583	21. 173	11. 710	1.00 19.02	N
	ATOM	85	CA	TYR A	44	13. 617	20. 413	12. 952	1.00 19.64	С
	ATOM	86	СВ	TYR A	44	13.822	21. 335	14. 154	1.00 19.30	C
	ATOM	87	CG	TYR A	44	15. 113	22. 102	14. 146	1.00 20.96	С
10	ATOM	88	CD1	TYR A	44	16.306	21. 494	14. 524	1.00 21.90	С
	ATOM	89	CE1	TYR A	44	17. 506	22. 194	14. 501	1.00 26.37	С
	ATOM	90	CZ	TYR A	44	17. 512	23. 521	14. 094	1.00 28.61	С
	ATOM	91	ОН	TYR A	44	18. 690	24. 228	14. 082	1.00 31.66	0
	ATOM	92	CE2	TYR A	44	16. 338	24. 145	13. 710	1.00 26.67	С
15	ATOM	93	CD2	TYR A	44	15. 146	23. 434	13. 740	1.00 21.12	С
	ATOM	94	C	TYR A	44	12. 270	19. 717	13. 120	1.00 18.71	С
	ATOM	95	0	TYR A	44	11. 221	20. 356	12. 993	1.00 18.76	0
	ATOM	.96	N	SER A	45	12. 300	18. 413	13. 388	1.00 20.71	N
	ATOM	97	CA	SER A	45	11. 072	17. 658	13. 625	1.00 20.41	С
20	ATOM	98	CB	SER A	45	11. 349	16. 153	13. 541	1.00 21.74	С
	ATOM	99	OG	SER A	45	12. 516	15. 802	14. 276	1.00 19.43	0
	ATOM .	100	С	SER A	45	10.671	18. 051	15. 045	1.00 21.87	С
	ATOM	101	0	SER A	45	11. 377	17. 735	16. 005	1.00 23.08	0
	ATOM	102	N	ALA A	46	9. 553	18. 764	15. 171	1.00 21.80	N
25	ATOM	103	CA	ALA A	46	9. 073	19. 239	16. 464	1.00 20.98	С
	ATOM	104	СВ	ALA A	46	8. 868	20. 756	16. 402	1.00 20.73	С
	ATOM	105	С	ALA A	46	7. 791	18. 570	16. 945	1.00 21.49	С
	ATOM	106	0	ALA A	A 46	7. 464	18. 635	18. 127	1.00 22.81	0
	ATOM	107	N	GLY A	A 47	7. 053	17. 947	16. 034	1.00 21.44	N

	ATOM	108	CA	GLY A	47	5.811	17. 293	16. 420	1.00 21.24	С
	ATOM	109	С	GLY A	47	5. 614	15. 989	15. 682	1.00 20.50	С
	ATOM	110	0	GLY A	47	5. 926	15.895	14. 495	1.00 21.41	0
	ATOM	111	N	LEU A	48	5. 106	14. 976	16. 376	1.00 22.43	N
5	ATOM	112	CA	LEU A	48	4. 879	13.674	15. 755	1.00 24.18	C
	ATOM	113	СВ	LEU A	48	6. 119	12.796	15. 952	1.00 24.03	С
	ATOM	114	CG	LEU A	48	6. 216	11. 439	15. 258	1.00 25.64	С
	ATOM	115	CD1	LEU A	48	6. 256	11.620	13. 745	1.00 23.98	C
	ATOM	116	CD2	LEU A	48	7. 490	10.732	15. 731	1.00 24.77	C
10	ATOM	117	С	LEU A	48	3. 646	12. 997	16. 353	1.00 25.73	С
	ATOM	118	0	LEU A	48	3. 460	12. 988	17. 568	1. 00 28. 24	0
	ATOM	119	N	ALA A	49	2.800	12. 438	15. 492	1.00 26.62	N
	ATOM	120	CA	ALA A	49	1. 590	11. 755	15. 934	1.00 27.70	С
	ATOM	121	СВ	ALA A	49	0.408	12.706	15. 893	1.00 26.11	C
15	ATOM	122	С	ALA A	49	1. 337	10.556	15. 029	1.00 29.92	C
	ATOM	123	0	ALA A	49	1.610	10.612	13. 829	1.00 30.06	0
	ATOM	124	N	SER A	50	0.825	9.470	15. 604	1. 00 33. 10	N
	ATOM	125	CA	SER A	50	0. 556	8. 266	14. 823	1.00 35.56	С
	ATOM	126	СВ	SER A	50	1.874	7.657	14. 346	1.00 34.98	С
20	ATOM	127	OG	SER A	50	1.648	6. 580	13. 458	1.00 37.15	0
	ATOM	128	С	SER A	50	-0, 233	7. 214	15. 600	1.00 37.86	С
	ATOM	129	0	SER A	50	-0. 427	7. 333	16.813	1.00 39.05	0
	ATOM	130	N	ASN A	51	-0. 693	6. 185	14. 888	1.00 39.58	N
	ATOM	131	CA	ASN A	51	-1. 447	5. 091	15. 509	1.00 41.56	C
25	ATOM	132	CB	ASN A	51	-2.817	4. 940	14. 841	1.00 41.04	C
	ATOM	133	CG	ASN A	51	-2.718	4. 653	13. 354	1.00 42.05	С
	ATOM	134	OD1	ASN A	51	-3.726	4. 392	12. 698	1. 00 45. 32	0
	ATOM	135	ND2	ASN A	51	-1.511	4. 706	12. 816	1.00 39.99	N
	ATOM	136	С	ASN A	51	-0. 658	3.790	15. 361	1.00 43.28	С

	ATOM	137	0	ASN A	51	-1. 097	2.723	15. 788	1.00 43.84	0
	ATOM	138	N	SER A	52	0. 516	3.901	14. 751	1.00 45.47	N
	ATOM	139	CA	SER A	52	1. 387	2.760	14. 514	1.00 47.77	С
	ATOM	140	CB	SER A	52	2. 663	3. 228	13.815	1.00 48.05	С
5	ATOM	141	OG	SER A	52	3. 599	2. 173	13. 701	1.00 51.48	0
	ATOM	142	С	SER A	52	1. 755	2.027	15. 796	1.00 48.61	C
	ATOM	143	0	SER A	52	1. 395	2. 444	16. 895	1.00 49.34	0
	ATOM	144	N	SER A	53	2. 475	0. 923	15. 636	1.00 49.72	N
	ATOM	145	CA	SER A	53	2. 933	0.118	16. 762	1.00 50.37	С
10	ATOM	146	CB	SER A	53	3. 129	-1.340	16. 333	1.00 50.55	С
	ATOM	147	0G	SER A	53	1. 912	-1. 919	15. 891	1. 00 52. 17	0
	MOTA	148	С	SER A	53	4. 270	0.704	17. 190	1.00 50.30	С
	ATOM	149	0	SER A	53	4. 579	0.805	18. 379	1.00 50.13	0
	ATOM	150	N	TRP A	54	5. 056	1.082	16. 188	1.00 50.56	N
15	ATOM	151	CA	TRP A	54	6. 372	1.678	16. 380	1.00 50.79	C.
	ATOM	152	CB	TRP A	54	6. 930	2. 116	15. 022	1.00 51.39	С
	ATOM	153	CG	TRP A	54	8. 264	2. 783	15. 090	1.00 54.05	c
	ATOM	154	CD1	TRP A	54	9. 472	2. 183	15. 300	1.00 55.89	C
	ATOM	155	NE1	TRP A	54	10. 473	3. 124	15. 315	1.00 56.28	. N
20	ATOM	156	CE2	TRP A	54	9. 922	4. 362	15. 114	1.00 57.18	C
	ATOM	157	CD2	TRP A	54	8. 529	4. 186	14. 966	1.00 56.11	С
	ATOM	158	CE3	3 TRP A	54	7. 724	5. 313	14. 746	1.00 57.68	C
	ATOM	159	CZ3	TRP A	54	8. 330	6. 564	14. 681	1.00 56.58	C
	ATOM	160	CH2	2 TRP A	54	9. 721	6.706	14. 833	1.00 57.14	C
25	ATOM	161	CZ2	2 TRP A	54	10. 531	5. 621	15. 049	1. 00 57. 71	С
	ATOM	162	C	TRP A	54	6. 261	2.889	17. 301	1.00 49.63	С
	ATOM	163	0	TRP A	54	6. 870	2. 935	18. 374	1.00 48.99	0
	ATOM	164	N	PHE A	55	5. 470	3. 865	16. 868	1.00 48.67	N
	ATOM	165	CA	PHE A	55	5. 268	5. 091	17. 625	1.00 47.55	C

							01				
	ATOM	166	СВ	PHE .	A	55	4. 228	5. 972	16. 928	1.00 47.41	C
	ATOM	167	CG	PHE	A	55	4. 014	7. 298	17. 599	1.00 46.06	C
	ATOM	168	CD1	PHE	A	55	5. 020	8. 258	17. 606	1.00 47.31	С
	ATOM	169	CE1	PHE	A	55	4. 833	9. 479	18. 241	1.00 45.75	С
5	ATOM	170	CZ.	PHE	A	55	3. 633	9. 750	18. 875	1.00 45.84	C
	ATOM	171	CE2	PHE	A	55	2. 621	8. 798	18.874	1.00 44.73	С
	ATOM	172	CD2	PHE	A	55	2. 816	7. 582	18. 238	1.00 44.94	С
	ATOM	173	. C	PHE	A	55	4.822	4. 805	19.054	1.00 47.07	С
	ATOM	174	0	PHE	A	55	5. 415	5. 305	20.011	1.00 45.46	0
10	ATOM	175	N	ARG	A	56	3. 775	3. 997	19. 193	1.00 47.71	N
	ATOM	176	CA	ARG	A	56	3. 243	3.654	20. 509	1.00 48.60	С
	ATOM	177	CB	ARG	A	56	2. 030	2. 732	20. 354	1.00 49.22	С
	ATOM	178	CG	ARG	A	56	0.822	3. 456	19.777	1.00 51.68	С
	ATOM	179	CD	ARG	A	56	-0. 320	2. 516	19. 428	1.00 56.98	С
15	ATOM	180	NE	ARG	A	56	-1. 471	3. 257	18. 913	1.00 59.80	N
	ATOM	181	CZ	ARG	A	56	-2. 578	2. 693	18. 444	1.00 61.91	С
	ATOM	182	NH1	ARG	A	56	-2. 691	1. 373	18. 421	1.00 62.67	N
	ATOM	183	NH2	ARG	A	56	- 3. 575	3. 449	18. 000	1.00 62.84	N
	ATOM	184	С	ARG	A	56	4. 279	3. 019	21. 426	1.00 48.38	С
20	ATOM	185	0	ARG	A	56	4. 270	3. 256	22.634	1.00 48.01	0
	ATOM	186	N	GLU	A	57	5. 183	2. 230	20. 854	1.00 47.94	N
	ATOM	187	CA	GLU	A	57	6. 209	1. 573	21. 652	1.00 48.73	С
	ATOM	188	CB	GLU	A	57	6. 275	0.082	21. 306	1.00 49.15	С
	ATOM	189	CG	GLU	A	57	4. 958	-0.663	21. 500	1.00 50.89	С
25	ATOM	190	CD	GLU	A	57	5. 110	-2. 170	21. 373	1.00 53.24	С
	ATOM	191	OE1	GLU	A	57	5. 686	-2. 632	20. 363	1.00 53.06	0
	ATOM	192	OE2	GLU	A	57	4. 649	-2. 893	22. 285	1.00 56.31	0
	ATOM	193	С	GLU	Α	57	7. 602	2. 188	21. 514	1.00 48.51	С
	ATOM	194	0	GLU	Α	57	8.602	1. 489	21. 668	1.00 48.84	0

								•				
	ATOM	195	N	LYS A	A	58	7. 668	3. 487	21. 234	1.00 47	. 64	N
	ATOM	196	CA	LYS A	Ą	58	8. 950	4. 177	21. 096	1.00 46	5. 97	С
	ATOM	197	CB	LYS A	A	58	9. 579	3.882	19. 729	1.00 48	3. 03	С
	ATOM	198	CG	LYS A	A	58	10. 147	2. 475	19. 597	1.00 51	. 08	С
5	ATOM	199	CD	LYS A	A ~	58	10. 780	2. 245	18. 239	1.00 56	5. 50	С
	ATOM	200	CE	LYS A	A	58	11. 185	0. 787	18. 060	1.00 58	3. 17	С
	ATOM	201	NZ	LYS A	A	58	11.672	0.506	16. 677	1.00 59	90	N
	ATOM	202	С	LYS A	A	58	8.826	5. 683	21. 277	1.00 45	5. 19	С
	ATOM	203	0	LYS A	A	58	9.833	6. 388	21. 334	1.00 44	ł. 57	0
10	ATOM	204	N	LYS A	A	59	7. 592	6. 169	21.371	1.00 43	3. 70	N .
	ATOM	205	CA	LYS A	A	59	7. 326	7. 596	21. 532	1.00 42	2. 75	С
	ATOM	206	CB	LYS A	A	59	5.827	7.826	21. 698	1.00 43	3. 46	С
	ATOM	207	CG	LYS	A	59	5. 236	7. 188	22.944	1.00 48	5. 39	С
	ATOM	208	CD	LYS	A	59	3. 713	7. 187	22. 902	1.00 48	3. 36	С
15	ATOM	209	CE	LYS	A	59	3. 153	8. 591	22. 714	1.00 50). 84	С
	ATOM	210	NZ	LYS	A	59	3. 580	9.517	23. 798	1.00 50). 65	N
	ATOM	211	С	LYS	A	59	8.069	8. 211	22.714	1.00 4	1. 89	С
	ATOM	212	0	LYS .	A	59	8. 541	9. 345	22. 641	1.00 4	1. 05	0
	ATOM	213	N	ALA	A	60	8. 176	7. 457	23.802	1.00 4	0.68	N
20	ATOM	214	CA	ALA .	A	60	8.858	7. 936	24. 996	1.00 3	9. 93	С
	ATOM	215	СВ	ALA	A	60	8. 704	6. 923	26. 124	1.00 3	9. 51	С
	ATOM	216	С	ALA	A	60	10. 338	8. 235	24. 768	1.00 3	9. 23	С
	ATOM	217	0	ALA	Α	60	10. 897	9. 104	25. 436	1.00 3	9. 44	0
	ATOM	218	N	VAL	A	61	10. 970	7. 525	23. 833	1.00 3	7. 14	N
25	ATOM	219	CA	VAL	A	61	12. 395	7. 726	23. 560	1.00 3	5. 90	С
	ATOM	220	CB	VAL	A	61	13. 141	6. 380	23. 339	1.00 3	6. 11	С
	ATOM	221	CG1	VAL	A	61	12. 952	5. 463	24. 537	1.00 3	4. 24	С
	ATOM	222	CG2	VAL	A	61	12. 655	5. 721	22. 063	1.00 3	5. 38	С
	ATOM	223	С	VAL	A	61	12. 698	8. 602	22. 351	1.00 3	5. 45	С

ATOM 224 0 VAL A 61 13.856 8.716 21.940 1.00 35.12

	ATOM	225	N	LEU A	١	62	11. 670	9. 219	21. 778	1.00 33.84	N
	ATOM	226	CA	LEU A	A	62	11. 873	10.074	20. 614	1.00 32.75	С
	ATOM	227	СВ	LEU A	A	62	10. 621	10.062	19. 734	1.00 33.05	С
5	ATOM	228	CG	LEU A	A	62	10, 265	8. 671	19. 212	1.00 35.96	С
•	ATOM	229	CD1	LEU A	4	62	9. 046	8. 756	18. 313	1.00 34.96	С
	ATOM	230	CD2	LEU A	A	62	11. 457	8. 086	18. 460	1.00 39.51	С
	ATOM	231	С	LEU A	A	62	12. 242	11. 512	20. 970	1.00 30.66	С
	ATOM	232	0	LEU A	A	62	11. 663	12. 113	21. 872	1.00 30.48	0
10	ATOM	233	N	TYR	A	63	13. 226	12. 053	20. 261	1.00 29.47	N
	ATOM	234	CA	TYR	A	63	13. 658	13. 425	20. 484	1.00 27.67	С
	ATOM	235	СВ	TYR .	A	63	15. 103	13. 481	21. 003	1.00 29.10	С
	ATOM	236	CG	TYR .	A	63	15. 316	12. 881	22. 378	1.00 31.25	С
	MOTA	237	CD1	TYR	A	63	15. 441	11. 503	22. 549	1.00 33.47	С
15	ATOM	238	CE1	TYR	A	63	15. 642	10.948	23. 810	1.00 39.12	С
	ATOM	239	CZ	TYR	A	63	15. 716	11. 776	24. 922	1.00 38.97	С
	ATOM	240	ОН	TYR	A	63	15. 905	11. 223	26. 175	1.00 44.99	0
	ATOM	241	CE2	2 TYR	A	63	15. 593	13. 152	24. 776	1.00 37.23	С
	ATOM	242	CD2	2 TYR	A	63	15. 394	13. 694	23. 508	1.00 32.70	С
20	ATOM	243	С	TYR	A	63	13. 582	14. 202	19. 181	1.00 25.92	С
	ATOM	244	0	TYR	A	63	13. 420	13. 628	18. 107	1.00 26.31	0
	ATOM	245	N	MET	A	64	13. 705	15. 517	19. 289	1.00 24.98	N
	ATOM	246	CA	MET	A	64	13. 685	16. 381	18. 127	1.00 22.50	С
	ATOM	247	СВ	MET	A	64	13. 755	17. 838	18. 549	1.00 21.53	C
25	ATOM	248	CG	MET	A	64	14. 062	18. 792	17. 408	1.00 23.46	С
	ATOM	249	SD	MET	A	64	14. 026	20. 469	17. 999	1.00 24.75	S
	ATOM	250	CE	MET	A	64	12. 269	20. 682	18. 254	1. 00 26. 17	С
	ATOM	251	. С	MET	A	64	14. 898	16. 059	17. 299	1.00 21.60	С
	ATOM	252	2 0	MET	A	64	15. 984	15. 876	17.840	1.00 20.32	0

	ATOM	253	N	ALA A	65	14. 714	16. 000	15. 984	1.00 21.77	N
	ATOM	254	CA	ALA A	65	15. 801	15. 702	15. 071	1.00 21.68	С
	ATOM	255	СВ	ALA A	65	15. 484	14. 450	14. 268	1.00 22.60	С
•	ATOM	256	С	ALA A	65	16. 048	16.866	14. 130	1.00 21.03	С
5	ATOM	257	0	ALA A	65	15. 154	17670	13. 870	1.00 20.19	0
	ATOM	258	N	LYS A	66	17. 274	16. 959	13. 633	1.00 22.99	N
	ATOM	259	CA	LYS A	66	17. 626	18. 010	12.693	1.00 22.22	С
	ATOM	260	CB	LYS A	66	19. 024	·18. 564	12.967	1.00 23.06	С
	ATOM	261	CG	LYS A	66	19. 499	19. 477	11.847	1. 00 24. 65	С
10	ATOM	262	CD	LYS A	66	21. 009	19. 641	11.800	1.00 30.24	С
	ATOM	263	CE	LYS A	66	21. 462	20. 820	12.622	1.00 35.63	С
	ATOM	264	NZ	LYS A	66	22.848	21. 237	12. 231	1. 00 43. 47	N
	ATOM	265	С	LYS A	66	17. 608	17. 356	11. 326	1.00 23.44	С
	ATOM	266	0	LYS A	66	18. 312	16. 375	11. 091	1.00 24.56	0
15	ATOM	267	N	THR A	67	16.802	17.898	10. 427	1. 00 20. 70	N
	ATOM	268	CA	THR A	67	16. 690	17. 344	9. 085	1.00 20.77	С
	ATOM	269	CB	THR A	67 ·	15. 235	16. 874	8. 816	1.00 19.10	C
	ATOM	270	0G1	THR A	67	14. 823	16.005	9.868	1.00 22.20	0
	ATOM	271	CG2	THR A	67	15. 137	16. 133	7. 516	1. 00 22. 53	С
20	ATOM	272	С	THR A	67	17. 085	18. 378	8.030	1.00 19.13	С
	ATOM	273	0	THR A	67	16. 536	19. 483	7. 992	1.00 19.67	0
	ATOM	274	N	VAL A	68	18. 047	18. 016	7. 189	1.00 17.58	N
	ATOM	275	CA	VAL A	68	18. 494	18. 900	6. 120	1.00 18.47	С
	ATOM	276	CB	VAL A	68	20.042	18. 944	6. 026	1.00 16.97	С
25	ATOM	277	CG1	VAL A	68	20. 480	19. 900	4. 914	1.00 19.31	С
	ATOM	278	CG2	VAL A	68	20. 622	19. 408	7. 349	1.00 17.36	С
	ATOM	279	С	VAL A	68	17. 891	18. 378	4. 824	1.00 16.74	С
	ATOM	280	0	VAL A	68	18. 012	17. 198	4. 496	1.00 17.78	0
	ATOM	281	N	VAL A	69	17. 235	19. 271	4. 095	1.00 15.74	N

	ATOM	282	CA	VAL A	69	16. 565	18. 904	2. 860	1.00 14.97	С
	ATOM	283	CB	VAL A	69	15. 113	19. 412	2.894	1.00 16.13	С
	ATOM	284	CG1	VAL A	69	14. 370	18. 984	1. 643	1.00 18.02	C
	ATOM	285	CG2	VAL A	69	14. 417	18. 867	4. 145	1.00 15.17	С
5	ATOM	286	С	VAL A	69	17. 250	19. 405	1, 595	1.00 14.61	С
	ATOM	287	0	VAL A	69	17. 645	20. 560	1. 504	1.00 14.02	0
	ATOM	288	N	ALA A	70	17. 387	18. 519	0.616	1.00 15.92	N
	ATOM	289	CA	ALA A	70	18. 015	18. 856	-0.661	1.00 16.00	С
	ATOM	290	СВ	ALA A	70	19. 513	18. 524	-0.618	1.00 17.37	С
10	ATOM	291	С	ALA A	70	17. 316	18. 054	-1.749	1.00 15.57	С
	ATOM	292	0	ALA A	70	16. 585	17. 110	-1. 452	1.00 17.54	0
	ATOM	293	N	PRO A	71	17. 535	18. 411	-3.023	1.00 15.95	N
	ATOM	294	CA	PRO A	71	16.886	17. 686	-4. 123	1.00 16.43	С
	ATOM	295	CB	PRO A	71	17. 345	18. 453	-5. 369	1.00 16.22	С
15	ATOM	296	CG	PRO A	71	17. 689	19. 839	-4. 838	1.00 17.77	С
	ATOM	297	CD	PRO A	71	18. 362	19. 521	-3. 536	1.00 15.68	С
	ATOM	298	С	PRO A	71	17. 257	16. 216	-4. 204	1.00 16.59	С
	ATOM .	299	0	PRO A	71	18. 367	15. 841	-3.853	1.00 16.86	0
	ATOM	300	N	SER A	72	16. 320	15. 391	-4.665	1.00 18.06	N
20	ATOM	301	CA	SER A	72	16. 567	13. 972	-4.830	1.00 18.01	С
	ATOM	302	СВ	SER A	72	15. 367	13. 145	-4. 367	1.00 19.58	С
	ATOM	303	OG	SER A	72	14. 336	13. 166	-5. 335	1.00 21.44	0
	ATOM	304	С	SER A	72	16. 805	13. 759	-6. 322	1.00 18.75	С
	ATOM	305	0	SER A	72	16. 501	14. 637	-7. 133	1.00 16.43	0
25	ATOM	306	N	THR A	73	17. 347	12. 597	-6. 679	1.00 18.47	N
	ATOM	307	CA	THR A	73	17. 654	12. 272	-8. 075	1.00 20.83	С
	ATOM	308	CB	THR A	73	18. 125	10.806	-8. 218	1.00 20.62	С
	ATOM	309	0G1	THR A	73	19. 179	10. 534	-7. 285	1.00 16.43	0
	ATOM	310	CG2	THR A	73	18. 617	10. 550	-9. 632	1.00 22.06	С

	ATOM	311	С	THR A	73	16. 495	12. 451	-9. 053	1.00 24.09	С
	ATOM	312	0	THR A	73	16. 659	13.062	-10. 117	1.00 25.21	0
	ATOM	313	N	GLU A	74	15. 334	11. 908	-8. 687	1.00 25.04	N
	ATOM	314	CA	GLU A	74	14. 138	11. 929	-9. 533	1.00 25.92	С
5	ATOM	315	CB	GLU A	74	13. 236	10.750	-9. 159	1. 00_ 26. 06	С
	ATOM	316	CG	GLU A	74	12. 406	10. 178	-10. 286	1.00 34.32	С
	ATOM	317	CD	GLU A	74	13. 256	9. 541	-11. 370	1. 00 38. 16	С
	ATOM	318	0E1	GLU A	74	14. 199	8. 801	-11. 024	1:00 41.27	0
	ATOM	319	OE2	GLU A	74	12. 975	9. 771	-12. 568	1.00 40.53	0
10	ATOM	320	С	GLU A	74	13. 333	13. 217	-9. 440	1.00 26.08	С
	ATOM	321	0	GLU A	74	12. 262	13. 321	-10. 025	1. 00 24. 26	0
	ATOM	322	N	GLY A	7 5	13. 840	14. 194	-8. 701	1.00 26.42	N
	ATOM	323	CA	GLY A	75	13. 117	15. 445	-8. 570	1.00 22.94	С
	ATOM	324	С	GLY A	75	12. 382	15. 554	-7. 247	1.00 23.36	С
15	ATOM	325	0	GLY A	75	11. 727	16. 566	-6. 979	1.00 23.95	0
	ATOM	326	N	GLY A	76	12. 478	14. 509	-6. 427	1.00 21.05	N
	ATOM	327	CA	GLY A	76	11. 831	14. 516	-5. 123	1.00 19.01	С
	ATOM	328	С	GLY A	76	12. 760	15. 147	-4.095	1.00 18.58	С
	ATOM	329	0	GLY A	76	13. 564	16. 004	-4. 450	1.00 18.03	0
20	ATOM	330	N	LEU A	77	12.672	14. 723	-2.834	1.00 17.32	N
	ATOM	331	CA	LEU A	77	13. 518	15. 288	-1. 789	1.00 16.39	С
	ATOM	332	CB	LEU A	77	12663	16. 094	-0.804	1.00 17.26	С
	ATOM	333	CG	LEU A	77	11. 836	17. 252	-1. 368	1.00 18.75	С
	ATOM	334	CD1	LEU A	77	10. 833	17. 685	-0. 329	1.00 21.30	С
25	ATOM	335	CD2	LEU A	77	12. 741	18. 423	-1. 794	1.00 17.34	С
	ATOM	336	С	LEU A	77	14. 354	14. 293	-0. 987	1.00 17.25	С
	MOTA	337	0	LEU A	77	13. 886	13. 223	-0.602	1.00 17.86	0
	ATOM	338	N	ASN A	78	15. 603	14. 676	-0.741	1.00 16.40	N
	ATOM	339	CA	ASN A	78	16. 521	13. 884	0.062	1.00 16.85	С

	ATOM	340	CB	ASN A	78	17. 966	14. 049	-0. 421	1.00 17.82	С
	ATOM	341	CG	ASN A	78	18. 362	13. 029	-1. 456	1. 00 16. 18	С
	ATOM	342	OD1	ASN A	78	17. 533	12. 293	-1.972	1.00 14.36	0
	ATOM	343	ND2	ASN A	78	19. 653	12. 982	-1. 767	1. 00 16. 85	N
5	ATOM -	344	С	ASN A	78	16. 401	14. 508	1. 444	1.00 18.05	С
	MOTA	345	0	ASN A	78	16. 472	15. 730	1. 573	1.00 17.02	0
	ATOM	346	N	LEU A	79	16. 202	13. 682	2. 463	1.00 17.20	N
	ATOM	347	CA	LEU A	79	16. 096	14. 161	3.829	1. 00 17. 68 ⁻	С
	ATOM	348	СВ	LEU A	79	14. 717	13.826	4. 427	1.00 19.58	С
10	ATOM	349	CG	LEU A	79	13. 572	14. 852	4. 291	1.00 19.99	С
	ATOM	350	CD1	LEU A	79	13. 158	15.002	2.851	1.00 17.35	С
	ATOM	351	CD2	LEU A	79	12. 386	14. 413	5. 126	1.00 21.80	С
	ATOM	352	С	LEU A	79	17. 196	13. 480	4.642	1.00 18.93	C
•	MOTA	353	0	LEU A	79	17. 177	12. 264	4. 833	1.00 17.64	0
15	MOTA	354	N	THR A	80	18. 167	14. 271	5. 096	1.00 18.20	N
	ATOM	355	CA	THR A	80	19. 265	13. 749	5.896	1.00 18.43	С
	ATOM	356	CB	THR A	80	20.616	14. 317	5. 406	1.00 17.16	С
	MOTA	357	0G1	THR A	80	20.805	13. 949	4. 029	1.00 17.30	0
	ATOM	358	CG2	THR A	80	21.772	13. 765	6. 241	1.00 17.81	С
20	ATOM	359	С	THR A	80	18. 987	14. 174	7. 327	1.00 19.48	С
	ATOM	360	0	THR A	80	19.005	15. 360	7. 649	1.00 19.03	0
	ATOM	361	N	SER A	81	18. 698	13. 201	8. 181	1.00 19.91	N
	ATOM	362	CA	SER A	81	18. 383	13. 489	9. 569	1.00 22.53	С
	ATOM	363	CB	SER A	. 81	17. 027	12.867	9. 945	1.00 23.42	С
25	ATOM	364	0G	SER A	81	15. 958	13. 406	9. 166	1.00 25.72	0
	ATOM	365	С	SER A	81	19. 443	13. 015	10. 554	1.00 24.28	С
	ATOM	366	0	SER A	81	20. 011	11. 920	10. 425	1.00 25.45	0
	ATOM	367	N	THR A	82	19. 703	13. 870	11. 532	1.00 25.36	N
	ATOM	368	CA	THR A	82	20. 655	13.602	12. 596	1.00 27.24	С

	ATOM	369	CB	THR	A	82	21. 618	14. 791	12. 787	1.00 26.98	С
	ATOM	370	0G1	THR .	A	82	22. 329	15.034	11.566	1.00 30.38	0
	ATOM	371	CG2	THR .	A	82	22. 616	14. 501	13. 905	1.00 27.31	С
	ATOM	372	С	THR .	A	82	19. 779	13. 460	13.840	1.00 28.34	С
5	ATOM	373	0	THR	A	82	19. 031	14. 381	14. 176	1.00 28.53	0
	ATOM	374	N	PHE	A	83	19. 866	12.317	14. 519	1.00 29.40	N
	ATOM	375	CA	PHE	A	83	19. 043	12.076	15. 700	1.00 31.45	C
	ATOM	376	CB	PHE	A	83	17. 748	11.382	15. 279	1.00 32.44	С
	ATOM	377	CG	PHE	A	83	17. 968	10.118	14. 493	1.00 33.67	С
10	ATOM	378	CD1	PHE	A	83	18. 310	10. 171	13. 146	1.00 32.21	С
	ATOM	379	CE1	PHE	A	83	18. 532	9.005	12. 418	1.00 35.94	С
	ATOM	380	CZ	PHE	A	83	18. 415	7. 766	13. 037	1.00 35.35	С
	ATOM	381	CE2	PHE	A	83	18. 075	7. 699	14. 382	1.00 37.16	С
	ATOM	382	CD2	PHE	A	83	17. 853	8.873	15. 104	1.00 33.77	С
15	ATOM	383	С	PHE	A	83	19. 715	11. 249	16. 797	1.00 33.26	С
	ATOM	384	0	PHE	A	83	20. 721	10.571	16. 569	1.00 33.27	0
	ATOM	385	N	LEU	A	84	19. 137	11. 315	17. 991	1.00 35.25	N
	ATOM	386	CA	LEU	A	84	19. 633	10. 578	19. 148	1.00 37.42	C
	ATOM	387	·CB	LEU	A	84	19. 424	11. 413	20. 415	1.00 37.09	.C
20	ATOM	388	CG	LEU	A	84	19. 882	10.858	21. 769	1.00 39.37	С
	ATOM	389	CD1	LEU	A	84	21. 401	10.658	21. 774	1.00 37.77	C
	ATOM	390	CD2	LEU	A	84	19. 467	11.824	22. 870	1.00 39.73	С
	ATOM	391	С	LEU	A	84	18. 836	9. 272	19. 226	1.00 39.36	С
	ATOM	392	0	LEU	A	84	17. 620	9. 292	19. 415	1.00 38.00	0
25	ATOM	393	N	ARG	A	85	19. 524	8. 145	19. 062	1.00 42.28	N
	ATOM	394	CA	ARG	A	85	18. 887	6. 828	19. 092	1.00 46.17	С
	ATOM	395	CB	ARG	A	85	19. 617	5. 895	18. 124	1.00 47.06	С
	ATOM	396	CG	ARG	A	85	19. 280	4. 412	18. 240	1.00 50.03	С
	ATOM	397	CD	ARG	A	85	17. 975	4. 035	17. 555	1.00 54.72	С

	ATOM	398	NE	ARG	A	85	18. 016	2. 648	17. 088	1.00 59.25	N
	ATOM	399	CZ	ARG	A	85	16. 987	1. 994	16. 553	1.00 60.78	С
	ATOM	400	NH1	ARG	A	85	15. 812	2. 596	16. 410	1.00 62.71	N
	ATOM	401	NH2	ARG	A	85	17. 135	0. 736	16. 154	1.00 59.48	N
5	ATOM	402	С	ARG	A	85	18.894	6. 224	20. 493	1.00 48.27	С
	ATOM	403	0	ARG	A	85	17.842	5. 982	21.096	1.00 49.91	0
	ATOM	404	N	LYS	A	86	20.094	5. 966	20. 999	1.00 49.22	N
	ATOM	405	CA	LYS	A	86	20. 266	5. 397	22. 329	1. 00 50. 08	С
	ATOM	406	CB	LYS	A	86	20. 385	3. 873	22. 242	1.00 50.26	С
10	ATOM	407	CG	LYS	A	8 6 ·	19. 188	3. 195	21. 587	1.00 52.36	С
	ATOM	408	CD	LYS	A	86	19. 420	1. 702	21. 391	1. 00 54. 20	С
	ATOM	409	CE	LYS	A	86	18. 224	1. 049	20. 709	1. 00 56. 17	С
	ATOM	410	NZ	LYS	A	86	18. 420	-0. 410	20. 487	1.00 57.21	N
	ATOM	411	С	LYS	A	86	21. 550	5. 991	22. 882	1.00 50.00	C
15	ATOM	412	0	LYS	A	86	22. 583	5. 323	22. 939	1.00 49.77	0
	ATOM	413	N	ASN	A	87	21. 478	7. 260	23. 273	1.00 50.54	N
	ATOM	414	CA	ASN	A	87	22. 632	7. 974	23. 800	1.00 50.72	. C
	ATOM	415	CB	ASN	A	87	23. 159	7. 284	25. 063	1.00 51.47	С
	ATOM	416	CG	ASN	A	87	22. 168	7. 337	26. 219	1.00 52.54	С
20	ATOM	417	0D1	ASN	A	87	21. 041	6.841	26. 118	1.00 53.17	0
	ATOM	418	ND2	2 ASN	A	87	22. 586	7. 940	27. 325	1.00 53.77	N
	MOTA	419	С	ASN	A	87	23. 722	8. 028	22. 735	1.00 50.39	С
	ATOM	420	0	ASN	A	87	24. 910	8.064	23. 047	1.00 50.96	0
	ATOM	421	N	GLN	A	88	23. 303	8. 032	21. 474	1.00 49.81	N
25	ATOM	422	CA	GLN	Α	88	24. 235	8. 088	20. 355	1.00 49.12	С
	ATOM	423	СВ	GLN	Α	88	24. 552	6. 676	19. 859	1.00 49.66	С
	ATOM	424	CG	GLN	Α	88	25. 641	6. 620	18. 804	1.00 52.17	С
	ATOM	425	CD	GLN	I A	88	25. 868	5. 217	18. 273	1.00 54.04	С
	ATOM	426	0E	1 GLN	I A	88	25. 080	4. 704	17. 470	1.00 55.11	0

	ATOM	427	NE2	GLN A	1	88	26. 943	4. 582	18. 729	1. 00 53. 14	N
	ATOM	428	С	GLN A	1	88	23. 640	8. 901	19. 212	1.00 47.52	С
	ATOM	429	0	GLN A	1	88	22. 445	8. 819	18. 935	1.00 46.71	0
	ATOM	430	N	CYS A	1	89	24. 482	9. 690	18. 554	1.00 46.02	N
5	ATOM	431	CA	CYS A	1	89	24. 038	10. 504	17. 435	1.00 44.64	С
	ATOM	432	СВ	CYS A	A	89	24. 929	11. 736	17. 271	1.00 45.12	С
	ATOM	433	SG	CYS A	A	89	24. 884	12. 871	18. 685	1.00 48.12	S
	ATOM	434	С	CYS A	A	89	24. 084	9. 684	16. 158	1.00 42.99	С
	ATOM	435	0	CYS A	A	89	25. 144	9. 207	15. 750	1.00 42.55	0
10	ATOM	436	N	GLU A	A	90	22. 928	9. 515	15. 531	1.00 39.97	N
	ATOM	437	CA	GLU A	A	90	22. 856	8. 763	14. 295	1. 00 38. 16	С
	ATOM	438	СВ	GLU A	A	90	21.899	7. 582	14. 450	1.00 38.06	С
	ATOM	439	CG	GLU A	A	90	22. 573	6. 322	14. 964	1.00 42.17	С
	ATOM	440	CD	GLU A	A	90	21. 585	5. 227	15. 312	1. 00 46. 43	С
15	ATOM	441	OE1	GLU A	A	90	20.657	4. 981	14. 511	1. 00 46. 83	0
	ATOM	442	0E2	GLU A	A	90	21. 745	4. 604	16. 389	1. 00 50. 51	0
	ATOM	443	С	GLU A	A	90	22. 410	9. 657	13. 157	1.00 36.50	С
	ATOM	444	0	GLU A	A	90	21.854	10.729	13. 372	1. 00 35. 05	0
	ATOM	445	N	THR A	A	91	22. 678	9. 214	11.940	1.00 34.79	N
20	ATOM	446	CA	THR A	A	91	22. 295	9. 957	10.761	1. 00 34. 31	С
	ATOM	447	CB	THR	A	91	23. 500	10.641	10. 100	1. 00 34. 34	С
	ATOM	448	OG1	THR A	A	91	23. 799	11. 852	10.805	1.00 30.72	0
	ATOM	449	CG2	THR	A	91	23. 202	10. 958	8.642	1. 00 33. 63	С
	ATOM	450	С	THR	A	91	21.668	8. 991	9. 787	1. 00 34. 16	С
25	ATOM	451	0	THR .	A	91	22. 191	7. 907	9. 545	1.00 35.05	0
	ATOM	452	N	LYS	A	92	20. 530	9. 393	9. 240	1.00 33.69	N
	ATOM	453	CA	LYS	A	92	19. 810	8. 571	8. 289	1.00 33.19	С
	ATOM	454	СВ	LYS	A	92	18. 573	7. 967	8. 963	1.00 34.05	С
	ATOM	455	CG	LYS	A	92	17. 636	7. 235	8. 023	1.00 38.78	С

	ATOM	456	CD	LYS A	92	16. 512	6. 537	8. 781	1.00 46.23	С
	ATOM	457	CE	LYS A	92	15. 775	5. 552	7.877	1.00 48.21	С
	ATOM	458	NZ	LYS A	92	14. 772	4. 739	8. 630	1.00 51.87	N
	ATOM	459	С	LYS A	92	19. 395	9. 419	7. 094	1.00 31.39	С
5	ATOM	460	0	LYS A	92	19. 155	10. 619	7. 224	1.00 30.85	0
	ATOM	461	N	ILE A	93	19. 323	8. 786	5. 930	1.00 29.87	N
	ATOM	462	CA	ILE A	93	18. 924	9. 466	4. 714	1.00 30.20	С
	ATOM	463	СВ	ILE A	93	20.005	9. 352	3.620	1.00 29.62	С
	ATOM	464	CG1	ILE A	93	21. 270	10. 100	4. 057	1.00 29.97	С
10	ATOM	465	CD1	ILE A	93	22. 423	9. 998	3. 066	1.00 34.73	С
	ATOM	466	CG2	ILE A	93	19. 470	9. 910	2.304	1.00 32.79	С
	ATOM	467	С	ILE A	93	17. 635	8. 853	4. 190	1.00 30.28	С
	ATOM	468	0	ILE A	93	17. 567	7. 647	3.943	1.00 31.07	0
	ATOM	469	N	MET A	94	16.609	9. 686	4.049	1.00 28.71	N
15	ATOM	470	CA	MET A	94	15. 320	9. 242	3. 531	1.00 28.72	С
	ATOM	471	CB	MET A	94	14. 180	9.605	4. 482	1.00 30.09	. C
	ATOM	472	CG	MET A	94	14. 264	8. 983	5.854	1.00 34.64	С
	ATOM	473	SD	MET A	94	12.774	9. 336	6.815	1.00 47.69	S
	ATOM	474	CE	MET A	94	13. 206	10.852	7. 645	1.00 42.95	С
20	ATOM	475	С	MET A	94	15. 077	9. 934	2. 198	1.00 25.85	С
	ATOM	476	0	MET A	94	15. 382	11. 111	2. 028	1.00 25.26	0.
	ATOM	477	N	VAL A	95	14. 523	9. 192	1. 254	1.00 24.35	N
	ATOM	478	CA	VAL A	95	14. 234	9. 727	-0.067	1.00 22.51	С
	ATOM	479	CB	VAL A	95	14.830	8.842	-1. 183	1.00 22.28	С
25	ATOM	480	CG:	1 VAL A	95	14. 286	9. 285	-2. 523	1.00 22.94	С
	ATOM	481	. CG	2 VAL A	95	16. 355	8. 923	-1. 171	1.00 24.47	С
	ATOM	482	С	VAL A	95	12. 737	9.812	-0. 301	1.00 21.24	С
	ATOM	483	0	VAL A	95	12. 052	8. 791	-0. 331	1.00 21.21	0
	ATOM	484	N	LEU A	96	12. 232	11. 033	-0. 436	1.00 19.49	N

	ATOM	485	CA	LEU A	A	96	10. 825	11. 245	-0. 729	1.00 21.14	С
	ATOM	486	CB	LEU A	A	96	10. 307	12. 537	-0.088	1.00 19.27	С
	ATOM	487	CG	LEU I	A	96	10. 224	12. 600	1. 444	1.00 25.73	С
	ATOM	488	CD1	LEU A	A	96	9. 644	13.948	1.877	1.00 26.81	С
5	ATOM	489	CD2	LEU A	A	96	9. 366	11. 463	1.966	1.00 24.23	С
	ATOM	490	С	LEU A	A	96	10. 728	11. 344	-2. 252	1.00 21.23	С
	ATOM	491	0	LEU A	A	96	11. 129	12. 355	-2.849	1.00 21.09	0
	ATOM	492	N	GLN A	A	97	10. 214	10. 282	-2.873	1.00 20.36	N
	ATOM	493	CA	GLN .	A	97	10.063	10. 223	-4. 321	1.00 22.02	С
10	ATOM	494	СВ	GLN .	A	97	9. 916	8. 771	-4. 790	1.00 23.57	С
	ATOM	495	CG	GLN .	A	97	11. 029	7, 823	-4. 391	1.00 24.69	С
	ATOM	496	CD	GLN .	A	97	12. 313	8. 111	-5. 120	1.00 28.37	С
	ATOM	497	OE1	GLN .	A	97	12. 318	8. 775	-6. 155	1.00 28.08	0
	ATOM	498	NE2	GLN .	A	97	13. 414	7. 601	-4. 592	1.00 31.31	N
15	ATOM	499	С	GLN .	A	97	8. 821	10. 986	-4. 758	1. 00 21. 48	С
	MOTA	500	0	GLN	A	97	7. 757	10. 836	-4. 164	1.00 21.39	0
	ATOM	501	N	PRO	A	98	8. 936	11. 805	-5. 815	1.00 22.84	N
•	ATOM	502	CA	PRO	A	98	7. 764	12. 554	-6. 273	1.00 23.56	С
	ATOM	503	CB	PRO	A	98	8. 269	13. 252	-7. 540	1. 00 22. 35	С
20	ATOM	504	CG	PRO	A	98	9. 343	12. 347	-8.022	1.00 24.97	С
	ATOM	505	CD	PRO	A	98	10.057	11.974	-6. 749	1.00 20.37	С
	ATOM	506	С	PRO	A	98	6. 621	11. 585	-6. 543	1. 00 25. 12	С
	ATOM	507	0	PRO	A	98	6.847	10. 473	-7. 029	1.00 25.87	0
	ATOM	508	N	ALA	A	99	5. 401	12.001	-6. 219	1. 00 24. 77	N
25	ATOM	509	CA	ALA	A	99	4. 232	11. 151	-6. 410	1.00 26.15	С
	ATOM	510	CB	ALA.	A	99	3. 638	10. 799	-5. 053	1.00 24.62	С
	ATOM	511	С	ALA	A	99	3. 149	11. 739	-7. 323	1.00 27.20	С
	ATOM	512	0	ALA	A	99	1. 973	11. 766	-6. 968	1.00 29.29	0
	ATOM	513	N	GLY	Α	100	3. 547	12. 223	-8. 491	1.00 29.32	N

	ATOM	514	CA	GLY A	100	2. 574	12. 756	-9. 435	1.00 30.75	С
	ATOM	515	С	GLY A	100	2. 006	14. 156	-9. 255	1.00 30.83	C
	ATOM	516	0	GLY A	100	1. 253	14. 621	-10. 118	1.00 32.00	0
	ATOM	517	N	ALA A	101	2. 337	14.832	-8. 158	1.00 27.81	N
5	ATOM	518	CA	ALA A	101	1. 832	16. 185	-7. 931	1.00 27.20	C
	ATOM	519	CB	ALA A	101	0. 371	16. 134	-7. 475	1.00 27.02	С
	ATOM	520	С	ALA. A	101	2. 675	16. 937	-6.904	1.00 25.78	С
	ATOM	521	0	ALA A	101	3. 185	16. 348	-5. 947	1.00 25.96	0
	ATOM	522	N	PRO A	102	2. 818	18. 260	-7. 082	1.00 26.56	N
10	ATOM	523	CA	PRO A	102	3. 615	19.056	-6. 146	1.00 25.86	С
	ATOM	524	CB	PRO A	102	3. 415	20. 487	-6. 650	1.00 27.20	С
	ATOM	525	CG	PRO A	102	3. 201	20. 290	-8. 120	1.00 29.43	С
	ATOM	526	CD	PRO A	102	2. 255	19. 118	-8. 144	1.00 25.60	С
	ATOM	527	С	PRO A	102	3. 164	18. 880	-4. 703	1. 00 24. 43	С
15	ATOM	528	0	PRO A	102	1. 986	19. 050	-4. 386	1.00 25.38	0
	ATOM	529	N	GLY A	103	4. 102	18. 526	-3.831	1.00 22.57	N
	ATOM	530	CA	GLY A	103	3.764	18. 351	-2. 429	1.00 21.83	С
	ATOM	531	С	GLY A	103	3. 324	16. 944	-2.063	1.00 19.05	С
	ATOM	532	0,	GLY A	103	2. 941	16. 685	-0. 920	1.00 20.94	0
20	ATOM	533	N	HIS A	104	3. 393	16. 034	-3. 028	1.00 18.00	N
	ATOM	534	CA	HIS A	104	3.016	14. 644	-2.811	1.00 18.06	С
	ATOM	535	CB	HIS A	104	1.845	14. 277	-3. 719	1.00 17.03	С
	ATOM	536	CG	HIS A	104	0. 598	15. 044	-3. 417	1.00 21.85	С
	ATOM	537	ND1	HIS A	104	-0.398	14. 555	-2. 599	1.00 19.71	N
25	ATOM	538	CE 1	HIS A	104	-1. 329	15. 478	-2. 450	1.00 22.98	С
	ATOM	539	NE2	2 HIS A	104	0.977	16. 546	-3. 144	1.00 16.26	N
	ATOM	540	CD2	2 HIS A	104	0. 221	16. 299	-3. 761	1.00 18.82	С
	ATOM	541	С	HIS A	104	4. 205	13. 741	-3.094	1.00 16.96	С
	ATOM	542	0	HIS A	104	4. 812	13. 815	-4. 154	1.00 15.44	0

	ATOM	543	N	TYR A 1	.05	4. 521	12. 873	-2. 143	1.00 18.87	N
	ATOM	544	CA	TYR A 1	.05	5. 662	11. 982	-2.284	1.00 18.50	С
	ATOM	545	СВ	TYR A 1	.05	6. 836	12. 516	-1. 456	1.00 20.43	С
	ATOM	546	CG	TYR A 1	.05	7. 115	13. 996	-1.628	1.00 20.21	С
5	ATOM	547	CD1	TYR A 1	.05	7. 957	14. 453	-2. 645	1.00 18.18	С
	ATOM	548	CE1	TYR A 1	105	8. 200	15. 810	-2.821	1.00 20.31	С
	ATOM	549	CZ	TYR A 1	105	7. 599	16. 732	-1.975	1.00 20.71	С
	ATOM	550	ОН	TYR A 1	105	7. 845	18. 072	-2. 157	1.00 25.46	0
	ATOM	551	CE2	TYR A 1	105	6. 756	16. 310	-0.952	1.00 18.08	С
10	ATOM	552	CD2	TYR A 1	105	6. 521	14. 941	-0.784	1.00 19.32	С
	ATOM	553	С	TYR A 1	105	5. 349	10. 579	-1. 785	1.00 20.66	С
	ATOM	554	0	TYR A 1	105	4. 355	10. 350	-1. 101	1.00 21.05	0
	ATOM	555	N	THR A	106	6. 220	9.643	-2. 136	1.00 21.73	N
	ATOM	556	CA	THR A	106	6. 110	8. 274	-1.666	1.00 25.27	C
15	MOTA	557	CB	THR A	106	5. 940	7. 271	-2. 825	1.00 24.65	С
	ATOM	558	OG1	THR A	106	7. 009	7. 427	-3. 768	1. 00 27. 25	0
	ATOM	559	CG2	2 THR A	106	4. 603	7. 503	-3. 531	1. 00 26. 01	С
	ATOM	560	С	THR A	106	7. 425	8. 017	-0.932	1. 00 26. 95	C
	ATOM	561	0	THR A	106	8. 470	8. 556	-1.304	1. 00 25. 88	0
20	ATOM	562	N	TYR A	107	7. 375	7. 209	0. 118	1.00 30.17	N
	ATOM	563	CA	TYR A	107	8. 570	6. 916	0.896	1. 00 33. 45	C
	ATOM	564	СВ	TYR A	107	8.648	7. 896	2. 077	1.00 35.24	С
	ATOM	565	CG	TYR A	107	8. 918	7. 296	3. 437	1.00 39.36	С
	ATOM	566	CD	1 TYR A	107	10. 146	6. 707	3. 736	1.00 43.99	С
25	ATOM	567	CE	1 TYR A	107	10. 401	6. 182	4. 999	1.00 47.50	С
	ATOM	568	CZ	TYR A	107	9. 415	. 6. 243	5. 974	1.00 47.29	С
	ATOM	569	OH	TYR A	107	9. 645	5. 718	7. 230	1.00 48.91	0
	ATOM	570	CE	2 TYR A	107	8. 190	6. 823	5. 693	1.00 44.53	С
	ATOM	571	CD	2 TYR A	107	7. 949	7. 342	4. 434	1.00 43.15	С

	ATOM	572	С	TYR A	107	8. 642	5. 478	1. 379	1.00 35.14	С
	ATOM	573	0	TYR A	107	7. 682	4. 943	1. 924	1.00 35.69	0
	ATOM	574	N	SER A	108	9.800	4.864	1. 172	1.00 37.81	N
	ATOM	575	CA	SER A	108	10. 041	3. 490	1. 592	1.00 41.97	С
5	ATOM	576	CB	SER A	108	11. 115	2. 855	0. 711	1.00 41.43	С
	ATOM	577	0G	SER A	108	11. 572	1. 645	1. 282	1.00 44.65	0
	ATOM	578	С	SER A	108	10.500	3. 455	3. 047	1.00 43.76	С
	ATOM	579	0	SER A	108	11. 583	3.940	3. 372	1.00 45.52	0
	ATOM	580	N	SER A	109	9. 684	2.868	3. 918	1.00 46.53	N
10	ATOM	581	CA	SER A	109	10. 017	2. 794	5. 337	1.00 47.99	С
	ATOM	582	СВ	SER A	109	8. 740	2.876	6. 173	1. 00 48. 18	С
	ATOM	583	OG	SER A	109	9.052	2. 943	7. 552	1.00 48.31	0
	ATOM	584	С	SER A	109	10. 799	1. 536	5. 720	1.00 49.24	С
	ATOM	585	0	SER A	109	10.870	0. 568	4. 957	1.00 51.51	0
15	ATOM	586	N	SER A	112	9. 886	-0.863	8. 643	1.00 59.10	N
	ATOM	587	CA	SER A	112	8. 546	-1.374	8. 383	1. 00 58. 71	С
	ATOM	588	CB	SER A	112	7. 531	-0. 229	8. 378	1.00 59.10	С
	ATOM	589	OG	SER A	112	6. 241	-0. 693	8. 014	1.00 60.32	0
	ATOM	590	С	SER A	112	8. 486	-2.096	7. 046	1.00 57.85	С
20	ATOM	591	0	SER A	112	7. 722	-3.046	6.879	1. 00 58. 40	0
	ATOM	592	N	GLY A	113	9. 295	-1. 639	6. 096	1.00 56.85	N
	ATOM	593	CA	GLY A	113	9. 301	-2. 245	4. 777	1.00 55.00	С
	ATOM	594	С	GLY A	113	8. 170	-1. 691	3. 930	1.00 52.98	С
	ATOM	595	0	GLY A	113	8. 254	-1. 656	2. 703	1.00 53.44	0
25	ATOM	596	N	SER A	114	7. 106	-1. 257	4. 595	1.00 50.93	N
	ATOM	597	CA	SER A	114	5. 940	-0. 691	3.929	1.00 49.06	С
	ATOM	598	CB	SER A	114	4. 834	-0. 441	4. 955	1. 00 49. 17	С
	ATOM	599	OG	SER A	114	5. 283	0. 435	5. 980	1.00 50.92	0
	ATOM	600	С	SER A	114	6. 268	0. 620	3. 222	1.00 46.96	С

	ATOM	601	0	SER A	114	7. 323	1. 211	3. 443	1.00 47.26	0
	ATOM	602	N	ILE A	115	5. 355	1. 062	2. 364	1.00 44.72	N
	ATOM	603	CA	ILE A	115	5. 508	2. 315	1. 636	1.00 42.22	С
	ATOM	604	· CB	ILE A	115	5. 204	2. 141	0. 129	1.00 43.03	С
5	ATOM	605	CG1	ILE A	115	6. 307	1. 316	-0. 535	1.00 44.28	C
	ATOM	606	CD1	ILE A	115	7. 674	1. 972	-0. 491	1. 00 47. 16	С
	ATOM	607	CG2	ILE A	115	5. 102	3. 502	-0.552	1.00 43.16	С
	ATOM	608	С	ILE A	115	4. 518	3. 314	2. 223	1.00 40.03	С
	ATOM	609	0	ILE A	115	3. 449	2. 932	2.705	1.00 39.69	0
10	ATOM	610	N	HIS A	116	4.877	4. 591	2. 187	1. 00 36. 34	N
	ATOM	611	CA	HIS A	116	4. 011	5. 630	2. 718	1. 00 34. 27	С
	ATOM	612	CB	HIS A	116	4.662	6. 284	3. 937	1. 00 35. 45	C
	ATOM	613	CG	HIS A	116	4.902	5. 340	5.072	1. 00 38. 20	С
	ATOM	614	ND1	HIS A	116	5.654	5. 683	6. 176	1. 00 41. 13	N
15	ATOM	615	CE1	HIS A	116	5. 698	4. 657	7.008	1. 00 45. 36	С
	ATOM	616	NE2	HIS A	116	5. 001	3.664	6. 485	1. 00 40. 45	N
	ATOM	617	CD2	HIS A	116	4. 492	4.066	5. 273	1. 00 40. 93	C
	ATOM	618	С	HIS A	116	3. 732	6. 690	1. 666	1. 00 31. 61	С
	ATOM	619	0	HIS A	116	4. 542	6. 914	0.768	1.00 30.20	0
20	ATOM	620	N	SER A	117	2. 572	7. 325	1. 781	1.00 28.75	N
	ATOM	621	CA	SER A	117	2. 176	8. 387	0.872	1.00 28.44	С
	ATOM	622	CB	SER A	117	0. 785	8. 119	0.302	1. 00 26. 28	С
	ATOM	623	OG	SER A	117	0.829	7. 005	-0. 566	1.00 32.61	0
	ATOM	624	С	SER A	117	2. 179	9.667	1. 692	1.00 26.02	С
25	ATOM	625	0	SER A	117	1. 323	9.860	2. 556	1. 00 26. 95	0
	ATOM	626	N	VAL A	118	3. 148	10. 534	1. 419	1.00 24.58	N
	ATOM	627	CA	VAL A	118	3. 299	11. 785	2. 161	1.00 22.06	С
	ATOM	628	CB	VAL A	118	4. 796	12. 044	2. 497	1.00 23.75	C
	ATOM	629	CG1	VAL A	118	4. 960	13. 338	3. 304	1.00 23.80	С
					•					

	ATOM	630	CG2	VAL A	118	5. 349	10. 867	3. 279	1.00 25.01	С
	ATOM	631	C	VAL A	118	2. 760	12. 991	1. 413	1.00 21.13	С
	ATOM	632	0	VAL A	118	3.000	13. 152	0. 224	1.00 21.25	0
	ATOM	633	N	SER A	119	2. 033	13. 840	2. 124	1.00 19.39	N
5	ATOM.	634	CA	SER A	119	1. 495	15. 046	1. 522	1.00 19.65	С
	ATOM	635	CB	SER A	119	-0.001	14. 893	1. 247	1.00 18.42	С
	ATOM	636	OG	SER A	119	-0.709	14. 799	2. 467	1.00 16.99	0
	ATOM	637	С	SER A	119	1.720	16. 222	2. 471	1.00 20.44	С
	ATOM	638	0	SER A	119	1.734	16. 060	3. 694	1.00 20.31	0
10	ATOM	639	N	VAL A	120	1. 927	17. 398	1.894	1.00 20.60	N
	ATOM	640	CA	VAL A	120	2. 111	18. 605	2. 680	1.00 20.92	С
	ATOM	641	CB	VAL A	120	2. 911	19.665	1. 909	1.00 21.47	С
	ATOM	642	CG1	VAL A	120	3. 008	20. 934	2. 747	1.00 21.53	С
	ATOM	643	CG2	VAL A	120	4. 304	19. 123	1. 559	1.00 21.20	С
15	ATOM	644	C	VAL A	120	0.713	19. 159	2. 942	1.00 19.42	С
	ATOM	645	0	VAL A	120	0.072	19.668	2. 036	1.00 17.04	0
	ATOM	646	N	VAL A	121	0. 238	19. 040	4. 174	1.00 18.30	N
	ATOM	647	CA	VAL A	121	-1.090	19. 542	4. 519	1.00 17.84	С
	ATOM	648	CB	VAL A	121	-1. 487	19. 110	5. 942	1.00 17.08	С
20	ATOM	649	CG1	VAL A	121 ·	-2. 886	19. 650	6. 297	1. 00 15. 35	С
	ATOM	650	CG2	VAL A	121	-1. 429	17. 607	6. 050	1. 00 18. 80	С
	ATOM	651	С	VAL A	121	-1. 105	21. 069	4. 444	1.00 17.06	С
	ATOM	652	0	VAL A	121	-1.947	21. 667	3. 783	1.00 16.89	0
	ATOM	653	N	GLU A	122	-0. 157	21. 687	5. 129	1.00 17.44	N
25	ATOM	654	CA	GLU A	122	-0.048	23. 139	5. 152	1.00 19.43	С
	ATOM	655	CB	GLU A	122	-0.945	23. 704	6. 254	1.00 17.85	С
	ATOM	656	CG	GLU A	122	-0. 988	25. 207	6. 322	1.00 21.33	С
	ATOM	657	CD	GLU A	122	-1.991	25. 698	7. 356	1.00 24.57	С
	ATOM	658	0E1	GLU A	122	-1. 598	26. 454	8. 275	1.00 28.32	0

	ATOM	659	0E2	GLU	A	122	-3. 172	25. 317	7. 254	1.00 20.65	0
	ATOM	660	С	GLU	A	122	1. 405	23. 465	5. 460	1.00 18.95	С
	ATOM	661	0	GLU	A	122	2. 083	22.676	6. 114	1. 00 16. 79	0
	ATOM	662	N	ALA	A	123	1.879	24. 624	5.008	1.00 21.01	N
5	ATOM	663	C A	ALA	A	123	3. 257	25. 003	5. 280	1.00 20.93	С
	ATOM	664	СВ	ALA	A	123	4. 202	24. 042	4. 559	1.00 20.51	С
	ATOM	665	С	ALA	A	123	3.608	26. 444	4. 913	1.00 21.90	С
	ATOM	666 [.]	0	ALA	A	123	3. 009	27. 036	4. 021	1.00 23.30	0
	ATOM	667	N	ASN	A	124	4. 584	26. 989	5. 638	1.00 21.77	N
10	ATOM	668	CA	ASN	A	124	5. 126	28. 333	5. 433	1.00 20.98	С
	ATOM	669	СВ	ASN	A	124	4. 780	29. 253	6.614	1.00 20.38	С
	ATOM	670	CG	ASN	A	124	5. 392	30. 644	6. 477	1.00 22.16	С
	ATOM	671	OD1	ASN	A	124	6. 495	30. 809	5. 951	1.00 22.44	0
	ATOM	672	ND2	ASN	A	124	4. 683	31.650	6. 971	1.00 26.85	N
15	ATOM	673	С	ASN	Α	124	6. 621	28. 048	5. 422	1.00 20.13	С
	ATOM	674	0	ASN	A	124	7. 211	27. 813	6. 466	1.00 19.09	0
	· ATOM	675	N	TYR	A	125	7. 230	28. 070	4. 244	1.00 20.81	N
	ATOM	676	CA	TYR	A	125	8. 641	27. 753	4. 109	1.00 22.71	С
	ATOM	677	CB	TYR	A	125	9. 067	27. 919	2. 648	1.00 21.66	С
20	ATOM	678	CG	TYR	A	125	9. 073	29. 334	2. 135	1.00 29.19	С
	ATOM	679	CD1	TYR	A	125	10. 112	30. 200	2. 459	1.00 31.37	С
	ATOM	680	CE1	TYR	Α	125	10. 161	31. 485	1. 956	1.00 36.25	С
	ATOM	681	CZ	TYR	A	125	9. 160	31. 924	1. 115	1.00 36.44	С
	ATOM	682	ОН	TYR	A	125	9. 251	33. 193	0. 597	1.00 39.33	0
25	ATOM	683	CE2	2 TYR	A	125	8. 104	31. 089	0.777	1.00 34.28	С
-	ATOM	684	CD2	2 TYR	A	125	8. 067	29. 798	1. 290	1.00 30.61	C
	ATOM	685	С	TYR	A	125	9. 622	28. 453	5. 042	1.00 21.07	С
	ATOM	686	0	TYR	. A	125	10. 748	27. 986	5. 203	1.00 22.41	0
	ATOM	687	N	ASP	P	126	9. 211	29. 549	5. 673	1.00 21.85	N

	ATOM	688	CA	ASP A	126	10. 098	30. 251	6. 603	1.00 22.62	С
	ATOM	689	CB	ASP A	126	9. 947	31. 767	6. 497	1. 00 23. 92	С
	ATOM	690	CG	ASP A	126	10. 622	32. 320	5. 297	1.00 24.44	С
	ATOM	691	OD1	ASP A	126	11.604	31. 692	4.863	1.00 29.05	0
5	ATOM	692	OD2	ASP A	126	10. 179	33. 376	4. 803	1. 00 24. 13	0
	ATOM	693	С	ASP A	126	9.802	29. 884	8. 025	1. 00 22. 45	С
	ATOM	694	0	ASP A	126	10. 487	30. 334	8. 946	1. 00 22. 45	0
	ATOM	695	N	GLU A	127	8. 767	29. 081	8. 217	1.00 22.34	N
	ATOM	696	CA	GLU A	127	8. 389	28.714	9. 565	1. 00 23. 65	С
10	ATOM	697	CB	GLU A	127	7. 182	29. 547	10.007	1.00 23.39	С
	ATOM	698	CG	GLU A	127	7. 483	30. 999	10. 315	1. 00 31. 89	С
	ATOM	699	CD	GLU A	127	6. 262	31. 728	10.861	1. 00 39. 28	С
	ATOM	700	0E1	GLU A	127	5.611	31. 186	11. 783	1. 00 42. 40	0
	ATOM	701	0E2	GLU A	127	5. 951	32. 840	10.378	1.00 43.22	0
15	ATOM	702	С	GLU A	127	8. 087	27. 257	9.836	1.00 21.93	С
	ATOM	703	0	GLU A	127	8. 627	26. 694	10.778	1.00 22.92	0
	ATOM	704	N	TYR A	128	7. 240	26. 637	9. 019	1.00 20.93	N
	ATOM	705	CA	TYR A	128	6.854	25. 263	9. 306	1.00 19.08	С
	ATOM	706	СВ	TYR A	128	5. 827	25. 276	10. 441	1.00 19.89	С
20	ATOM	707	CG	TYR A	128	4. 472	25. 797	9. 992	1.00 20.24	С
	ATOM	708	CD1	TYR A	128	3. 520	24. 934	9. 447	1.00 20.50	С
	ATOM	709	CE1	TYR A	128	2. 296	25. 402	8. 981	1.00 21.38	С
	ATOM	710	CZ	TYR A	128	2. 008	26. 754	9.056	1. 00 26. 85	С
	ATOM	711	OH	TYR A	128	0. 792	27. 207	8. 594	1. 00 28. 12	0
25	ATOM	712	CE2	2 TYR A	128	2. 934	27. 644	9. 593	1. 00 26. 44	С
	ATOM	713	CD2	2 TYR A	128	4. 163	27. 157	10.062	1.00 22.61	С
	ATOM	714	С	TYR A	A 128	6. 267	24. 492	8. 140	1.00 19.35	С
	ATOM	715	0	TYR A	A 128	5. 911	25. 054	7. 110	1.00 19.41	0
	ATOM	716	N	ALA A	A 129	6. 153	23. 183	8. 335	1.00 19.30	N
								•		

	ATOM	717	CA	ALA A	129	5. 600	22. 290	7. 337	1.00 18.44	С
	ATOM	718	СВ	ALA A	129	6. 715	21. 673	6. 493	1.00 19.76	С
	ATOM	719	С	ALA A	129	4. 858	21. 203	8. 079	1.00 19.35	С
	ATOM	720	0	ALA A	129	5. 440	20. 519	8. 923	1.00 19.02	0
5	ATOM	721	N	LEU A	130	_3. 576	21. 052	7. 760	1.00 17.69	N
	ATOM	722	CA	LEU A	130	2. 720	20.050	8. 384	1.00 17.03	С
	ATOM	723	СВ	LEU A	130	1.342	20. 655	8. 678	1.00 16.93	С
	ATOM	724	CG	LEU A	130	0.480	20. 216	9.874	1.00 25.96	С
	ATOM	725	CD1	LEU A	130	-0.956	20. 686	9. 609	1.00 21.15	С
10	ATOM	726	CD2	LEU A	130	0.516	18. 687	10.081	1.00 26.45	С
	ATOM	727	С	LEU A	130	2. 582	18. 932	7.354	1.00 17.75	С
	ATOM	728	0	LEU A	130	2. 005	19. 140	6. 284	1.00 16.09	0
	ATOM	729	N	LEU A	131	3. 128	17. 754	7. 657	1.00 17.47	N
	ATOM	730	CA	LEU A	131	3.040	16. 640	6. 727	1.00 16.94	С
15	ATOM	731	CB	LEU A	131	4. 413	16. 030	6. 464	1.00 18.54	С
	ATOM	732	CG	LEU A	131	5. 595	16. 886	5. 995	1. 00 21. 25	С
	ATOM	733	CD1	LEU A	131	6. 622	15. 972	5. 343	1.00 19.28	С
	ATOM	734	CD2	LEU A	131	5. 153	17. 941	5. 021	1.00 20.56	С
	ATOM	735	С	LEU A	131	2. 122	15. 535	7. 224	1. 00 18. 91	С
20	ATOM	736	0	LEU A	131	2.019	15. 274	8. 429	1.00 18.27	0
	ATOM	737	N	PHE A	132	1. 444	14. 892	6. 286	1. 00 18. 52	N
	ATOM	738	CA	PHE A	132	0. 569	13. 784	6. 628	1.00 20.01	С
	ATOM	739	СВ	PHE A	132	-0.876	14. 046	6. 214	1.00 20.97	С
	ATOM	740	CG	PHE A	132	-1. 786	12. 870	6. 461	1. 00 25. 43	С
25	ATOM	741	CD1	PHE A	132	-2. 106	12. 480	7. 763	1.00 29.99	С
	ATOM	742	CE1	PHE A	132	-2. 904	11. 359	8. 003	1.00 30.06	С
	ATOM	743	CZ	PHE A	132	-3. 391	10. 616	6. 933	1.00 29.29	С
	ATOM	744	CE2	PHE A	132	-3. 083	10. 993	5. 629	1.00 30.24	С
	ATOM	745	CD2	PHE A	132	-2. 282	12. 119	5. 397	1. 00 27. 73	C

	ATOM	746	С	PHE A	13	32 1. 086	12. 574	5. 880	1.00 20.33	C
	ATOM	747	0	PHE A	13	32 1. 369	12.650	4. 694	1.00 19.14	0
	ATOM	748	N	SER A	A 13	33 1. 213	11. 460	6. 582	1. 00 21. 25	N
	ATOM	749	CA	SER A	A 13	33 1. 698	10. 238	5. 973	1. 00 24. 44	С
5	ATOM	750	CB	SER A	A 13	33 3. 077	. 9. 916	6. 536	1.00 22.99	С
	ATOM	751	OG	SER A	A 13	33 3. 655	8. 799	5.894	1.00 35.35	0
	ATOM	752	С	SER A	A 13	33 0. 724	9. 092	6. 247	1. 00 25. 26	С
	ATOM	753	0	SER A	A 13	33 0. 270·	8. 895	7. 375	1.00 24.85	0
	ATOM	754	N	ARG A	A 13	34 0. 381	8. 354	5. 204	1.00 28.87	N
10	ATOM	755	CA	ARG A	A 13	34 -0.525	7. 231	5. 352	1.00 32.47	С
	ATOM	756	CB	ARG A	A 13	34 -1.888	7. 530	4. 701	1.00 32.31	С
	ATOM	757	CG	ARG A	A 13	34 -1.834	8. 152	3. 316	1.00 37.53	С
	ATOM	758	CD	ARG A	A 1:	34 -3. 169	8. 816	2.978	1.00 43.53	C
	ATOM	759	NE	ARG A	A 1	34 -3. 169	9. 553	1.712	1. 00 44. 76	N
15	ATOM	760	CZ	ARG .	A 1	-3. 163	8. 983	0.511	1.00 44.99	С
	ATOM	761	NH,1	ARG .	A 1	.34 -3. 147	7. 661	0.405	1.00 46.67	N
	ATOM	762	NH2	ARG	A 1	-3. 215	9. 732	-0. 587	1.00 42.69	N
	ATOM	763	С	ARG .	A 1	0. 105	5. 994	4. 746	1.00 35.05	С
	ATOM	764	0	ARG	A 1	0. 695	6. 038	3.661	1.00 32.09	0
20	ATOM	765	N	GLY	A 1	0. 003	4.897	5. 484	1.00 38.13	N
	ATOM	766	CA	GLY	A 1	0. 556	3. 640	5. 033	1.00 43.65	С
	ATOM	767	С	GLY	A 1	-0. 446	2. 537	5. 290	1.00 48.01	С
	ATOM	768	0	GLY	A 1	135 -1. 472	2. 760	5. 937	1.00 47.49	0
	ATOM	769	N	THR	A 1	136 -0. 162	1. 344	4. 783	1.00 51.73	N
25	ATOM	770	CA	THR	A 1	136 -1.070	0. 219	4. 969	1.00 55.59	С
	ATOM	771	CB	THR	A 1	136 –2. 315	0. 358	4. 067	1.00 55.84	С
	ATOM	772	0G1	THR	A 1	136 –2. 924	1. 634	4. 284	1. 00 58. 78	0
	ATOM	773	CG2	THR	A 1	136 -3. 331	-0. 725	4. 386	1. 00 56. 76	С
	ATOM	774	С	THR	A 1	136 -0. 382	-1.094	4. 636	1.00 56.89	C
										-

	ATOM	775	0	THR A 136	-0. 138	-1. 392	3. 470	1.00 57.01	0
	ATOM	776	N	LYS A 137	-0.075	-1. 875	5. 667	1.00 59.28	N
	ATOM	777	CA	LYS A 137	0. 580	-3. 162	5. 483	1.00 61.56	С
	ATOM	778	СВ	LYS A 137	0. 971	-3. 763	6.834	1.00 61.96	C
5	ATOM	779	CG	LYS A 137	1. 531	-2. 777	.7, 849	1.00 63.75	С
	ATOM	780	CD	LYS A 137	1.803	-3. 478	9. 176	1.00 66.26	С
	ATOM	781	CE	LYS A 137	2. 248	-2. 499	10. 252	1.00 66.38	С
	ATOM	782	NZ	LYS A 137	2. 545	-3. 196 ·	11. 536	1.00 66.02	N
	ATOM	783	С	LYS A 137	-0. 411	-4. 096	4.800	1.00 62.36	С
10	ATOM	784	0	LYS A 137	-0.041	-5. 159	4.300	1.00 63.04	0
	ATOM	785	N	GLY A 138	-1.678	-3. 691	4. 791	1.00 63.05	N
	ATOM	786	CA	GLY A 138	-2.714	-4. 501	4. 176	1.00 63.35	С
	ATOM	787	С	GLY A 138	-4. 104	-4. 069	4. 610	1.00 63.61	С
	ATOM	788	0	GLY A 138	-4. 231	-3. 171	5. 435	1.00 64.06	0
15	ATOM	789	N	PRO A 139	-5. 168	-4. 690	4. 079	1.00 63.70	N
	ATOM	790	CA	PRO A 139	-6. 555	-4. 348	4. 430	1.00 63.74	С
	ATOM	791	CB	PRO A 139	-7. 369	-5. 364	3. 639	1.00 63.65	С
	ATOM	792	CG	PRO A 139	-6. 503	-5. 603	2. 422	1.00 64.02	С
	ATOM	793	CD	PRO A 139	-5. 125	-5. 708	3. 016	1.00 63.81	С
20	ATOM	794	С	PRO A 139	-6. 833	-4. 419	5. 935	1.00 63.55	С
	ATOM	795	0	PRO A 139	-7. 057	-5. 490	6. 494	1.00 63.71	0
	ATOM	796	N	GLY A 140	-6. 822	-3. 261	6. 584	1.00 63.03	N
	ATOM	797	CA	GLY A 140	-7. 059	-3. 199	8. 018	1.00 62.01	C
	ATOM	798	С	GLY A 140	-5. 787	-2.914	8.800	1.00 60.77	С
25	ATOM	799	0	GLY A 140	-5. 827	-2. 660	10.004	1.00 60.90	0
	ATOM	800	N	GLN A 141	-4. 653	-2.947	8. 112	1.00 59.05	N
	ATOM	801	CA	GLN A 141	-3. 373	-2. 694	8. 752	1.00 57.46	С
	ATOM	802	СВ	GLN A 141	-2. 398	-3. 809	8. 370	1.00 57.71	С
	ATOM	803	CG	GLN A 141	-3. 090	-5. 178	8. 473	1.00 58.74	С

						อง				
	ATOM	804	CD	GLN A	141	-2. 189	-6. 355	8. 151	1. 00 59. 31	С
	ATOM	805	0E1	GLN A	141	-1. 552	-6. 402	7. 093	1.00 58.75	0
	ATOM	806	NE2	GLN A	141	-2. 141	-7. 323	9. 063	1.00 59.08	N
	ATOM	807	С	GLN A	141	-2.882	-1. 323	8. 304	1.00 55.66	С
5	ATOM	808	0	GLN A	141	-1. 699	-1. 125	8. 029	1.00 55.85	0
	ATOM	809	N	ASN A	142	-3.825	-0. 383	8. 247	1.00 53.33	N
	ATOM	810	CA	ASN A	142	-3. 570	0. 998	7. 836	1.00 51.55	С
	ATOM	811	CB	ASN A	142	-4.857	1.649	7. 316	1.00 51.60	С
	ATOM	812	CG	ASN A	142	-5. 936	0.642	6. 973	1.00 53.89	С
10	ATOM	813	0D1	ASN A	142	-7. 123	0. 905	7. 172	1.00 53.86	0
	ATOM	814	ND2	ASN A	142	-5. 534	-0. 511	6. 442	1.00 58.03	N
	ATOM	815	C	ASN A	142	-3.069	1.843	9.005	1.00 49.32	C
	ATOM	816	0	ASN A	142	-3. 655	1.828	10.081	1.00 49.92	0
	ATOM	817	N	PHE A	143	-1. 995	2. 593	8. 787	1.00 46.30	N
15	ATOM	818	CA	PHE A.	143	-1. 459	3. 458	9.829	1.00 43.59	С
	ATOM	819	CB	PHE A	143	-0.089	2. 953	10. 285	1.00 44.54	С
	ATOM	820	CG	PHE A	143	1.056	3. 775	9.777	1.00 48.28	С
	ATOM	821	CD1	PHE A	143	1.621	4. 764	10. 573	1.00 51.58	С
	ATOM	822	CE1	PHE A	143	2.650	5. 570	10.093	1.00 54.13	С
20	ATOM	823	CZ	PHE A	143	3. 121	5. 388	8.807	1.00 52.35	С
	ATOM	824	CE2	PHE A	143	2. 566	4. 400	8.001	1.00 53.51	С
	ATOM	825	CD2	PHE A	143	1. 538	3. 597	8. 490	1.00 50.84	С
	ATOM	826	С	PHE A	143	-1. 350	4. 886	9. 292	1.00 40.43	С
	ATOM	827	0	PHE A	143	-1. 134	5. 094	8. 103	1.00 37.35	0
25	ATOM	828	N	ARG A	144	-1. 509	5.864	10. 176	1.00 37.08	N
	ATOM	829	CA	ARG A	144	-1. 441	7. 267	9. 796	1. 00 34. 89	С
	ATOM	830	СВ	ARG A	144	-2. 833	7. 897	9. 918	1.00 35.73	С
	ATOM	831	CG	ARG A	144	-3. 816	7. 364	8. 872	1.00 39.13	С
	ATOM	832	CD	ARG A	144	-5. 240	7. 894	9. 029	1.00 46.28	С

833 NE ARG A 144 -6.006 7.160 10.035 1.00 49.14 N

WO 2004/056992 PCT/JP2003/016233

ATOM

	ATOM	834	CZ	ARG A	144	-5. 866	7. 314	11. 348	1.00 52.48	С
	ATOM	835	NH1	ARG A	144	-4. 988	8. 182	11.829	1.00 54.40	N
	ATOM	836	NH2	ARG A	144	-6.608	6. 599	12. 183	1.00 54.82	N
5	ATOM	837	С	ARG A	144	-0. 435	8. 017	10.666	1.00 32.66 _	С
	ATOM	838	0	ARG A	144	-0. 278	7.712	11.846	1.00 30.70	0
	ATOM	839	N	MET A	145	0. 259	8. 988	10.084	1.00 28.76	N
	ATOM	840	CA	MET A	145	1. 232	9.749	10.850	1.00 27.41	С
	ATOM	841	CB	MET A	145	2.612	9. 099	10.747	1.00 27.81	С
10	ATOM	842	CG	MET A	145	3. 715	9. 914	11.408	1.00 30.09	С
	ATOM	843	SD	MET A	145	5. 311	9. 070	11.470	1.00 35.29	S
	ATOM	844	CE	MET A	145	5.842	9. 159	9. 789	1.00 30.22	С
	ATOM	845	С	MET A	145	1. 336	11. 214	10. 452	1. 00 26. 47	С
	ATOM	846	0	MET A	145	1. 565	11. 543	9. 285	1.00 27.37	0
15	ATOM	847	N	ALA A	146	1. 178	12.086	11. 442	1.00 24.27	N
	ATOM	848	CA	ALA A	146	1. 267	13. 527	11. 242	1.00 22.72	С
	ATOM	849	СВ	ALA A	146	0.161	14. 223	12.004	1.00 23.19	С
	ATOM	850	С	ALA A	146	2.633	13. 998	11. 743	1.00 21.85	С
	ATOM	851	0	ALA A	146	3.047	13. 670	12.860	1.00 20.76	0
20	ATOM	852	N	THR A	147	3. 332	14. 765	10. 914	1.00 21.71	N
	ATOM	853	CA	THR A	147	4. 652	15. 261	11. 281	1.00 20.82	С
	ATOM	854	CB	THR A	147	5. 747	14. 641	10. 388	1. 00 22. 25	С
	ATOM	855	OG1	THR A	147	5. 541	13. 224	10. 287	1.00 23.42	0
	ATOM	856	CG2	2 THR A	147	7. 125	14. 910	10. 977	1.00 22.09	С
25	ATOM	857	С	THR A	147	4. 738	16. 776	11. 143	1.00 20.34	С
	ATOM	858	0	THR A	A 147	4. 339	17. 342	10. 125	1.00 19.27	0
	ATOM	859	N	LEU A	A 148	5. 269	17. 430	12. 170	1.00 19.28	N
	ATOM	860	CA	LEU A	A 148	5. 409	18. 878	12. 137	1.00 19.58	С
	ATOM	861	СВ	LEU A	A 148	4. 675	19. 516	13. 317	1.00 21.33	С

	ATOM	862	CG	LEU A	148	4. 786	21.045	13. 445	1. 00 20. 43	С
	ATOM	863	CD1	LEU A	148	4. 224	21. 747	12. 219	1.00 22.47	. C
	ATOM	864	CD2	LEU A	148	4. 026	21. 472	14. 671	1.00 24.32	С
	ATOM	865	С	LEU A	148	6.877	19. 289	12. 155	1.00 19.02	С
5	ATOM	866	0	LEU A	148	7. 605	19.046	13. 127	1.00 18.11	0
	ATOM	867	N	TYR A	149	7. 308	19.887	11. 051	1.00 19.53	N
	ATOM	868	CA	TYR A	149	8. 671	20. 378	10. 923	1.00 19.40	С
	ATOM	869	CB	TYR A	149	9. 206	20. 132	9. 518	1.00 19.80	C
	ATOM	870	CG	TYR A	149	9.662	18.712	9. 281	1.00 22.86	C
10	ATOM	871	CD1	TYR A	149	10.829	18. 219	9.873	1. 00 24. 22	C
	ATOM	872	CE1	TYR A	149	11. 236	16.889	9. 672	1.00 25.00	С
	ATOM	873	CZ	TYR A	149	10. 464	16.058	8. 877	1.00 26.70	С
	ATOM	874	ОН	TYR A	149	10. 819	14.742	8. 693	1.00 36.47	0
	ATOM	875	CE2	TYR A	149	9. 305	16. 531	8. 280	1. 00 27. 17	С
15	ATOM	876	CD2	TYR A	149	8. 910	17.844	8. 482	1.00 25.06	С
	ATOM	877	С	TYR A	149	8. 658	21. 872	11. 208	1.00 19.85	С
	ATOM	878	0	TYR A	149	7. 672	22. 562	10. 938	1.00 18.56	0
	ATOM	879	N	SER A	150	9.764	22. 363	11. 750	1.00 19.94	N
	ATOM	880	CA	SER A	150	9. 903	23. 764	12. 102	1.00 20.50	С
20	ATOM	881	CB	SER A	150	9. 704	23. 915	13. 615	1.00 21.21	С
	ATOM	882	OG	SER A	150	9. 899	25. 250	14. 047	1.00 22.73	0
	ATOM	883	С	SER A	150	11. 282	24. 302	11. 701	1.00 20.46	C
	ATOM	884	0	SER A	150	12. 292	23. 593	11. 778	1.00 18.66	0
	ATOM	885	N	ARG A	151	11. 319	25. 556	11. 261	1.00 21.36	N
25	ATOM	886	CA	ARG A	151	12. 587	26. 164	10. 878	1.00 22.36	С
	ATOM	887	CB	ARG A	151	12. 355	27. 467	10. 102	1.00 21.14	С
	ATOM	888	CG	ARG A	151	11.888	27. 250	8. 673	1.00 22.84	С
	ATOM	889	CD	ARG A	151	12. 914	26. 442	7. 873	1.00 19.77	C
	ATOM	890	NE	ARG A	151	12. 582	26. 404	6. 448	1. 00 24. 92	N

	ATOM	891	CZ	ARG A	A	151	13. 337	25. 841	5. 511	1.00	20.64	С
	ATOM	892	NH1	ARG .	A	151	14. 479	25. 258	5. 836	1.00	22. 01	N
	ATOM	893	NH2	ARG .	A	151	12.948	25. 869	4. 243	1.00	21.20	N
	ATOM	894	С	ARG .	A	151	13. 387	26. 437	12. 145	1. 00	23. 99	С
5	ATOM	895	0	ARG .	A	151	14. 615	26. 506	12. 115	1. 00	24. 51	0
	ATOM	896	N	THR .	A	152	12.676	26. 578	13. 258	1. 00	24. 32	N
	ATOM	897	CA	THR	A	152	13. 305	26. 832	14. 548	1.00	26. 33	С
	ATOM	898	CB	THR	A	152	12. 765	28. 120	15. 185	1. 00	27. 25	С
	ATOM	899	OG1	THR	A	152	11. 347	27. 997	15. 378	1.00	25. 22	0
10	ATOM	900	CG2	THR	A	152	13.063	29. 327	14. 295	1. 00	25. 83	C
	ATOM	901	С	THR	A	152	13. 047	25. 687	15. 528	1. 00	27.69	С
	ATOM	902	0	THR	A	152	12. 090	24.928	15. 372	1.00	26. 48	0
	ATOM	903	N	GLN	A	153	13. 906	25. 576	16. 536	1. 00	28. 98	N
•	ATOM	904	CA	GLN	A	153	13. 776	24. 538	17. 551	1. 00	30.08	С
15	ATOM	905	СВ	GLN	A	153	15. 090	24. 396	18. 329	1. 00	29. 88	С
	ATOM	906	CG	GLN	A	153	16. 182	23. 642	17. 582	1.00	32.02	С
	ATOM	907	CD	GLN	A	153	17. 493	23. 587	18. 347	1.00	35. 05	С
	ATOM	908	OE1	GLN	A	153	18. 400	24. 373	18. 099	1. 00	36. 34	0
	ATOM	909.	NE2	GLN	A	153	17. 591	22. 658	19. 289	-1.00	36. 94	N
20	ATOM	910	С	GLN	A	153	12.629	24.848	18. 513	1. 00	30. 99	С
	ATOM	911	0	GLN	A	153	12. 158	23. 972	19. 236	1. 00	31. 14	0
	ATOM	912	N	THR	A	154	12. 187	26. 100	18. 517	1. 00	33. 09	N
	ATOM	913	CA	THR	A	154	11. 095	26. 526	19. 382	1.00	35. 59	С
	ATOM	914	CB	THR	A	154	11. 334	27. 944	19. 923	1. 00	35. 74	С
25	ATOM	915	0G1	THR	A	154	12. 404	27.905	20. 870	1. 00	40. 23	0
	ATOM	916	CG2	THR	A	154	10.090	28. 481	20.608	1.00	36. 81	C
	ATOM	917	С	THR	A	154	9. 788	26. 492	18. 611	1.00	36.05	C
	ATOM	918	0	THR	A	154	9. 737	26. 835	17. 431	1. 00	36. 13	0
	ATOM	919	N	LEU	A	155	8. 724	26. 083	19. 288	1. 00	37. 13	N

	ATOM	920	CA	LEU	A	155	7. 422	25. 975	18.648	1.00 38.42	С
	ATOM	921	СВ	LEU	A	155	6.965	24. 516	18. 714	1.00 37.88	С
	ATOM	922	CG	LEU	A	155	6.062	23. 916	17. 638	1.00 39.67	С
	ATOM	923	CD1	LEU	A	155	6. 706	24. 033	16. 262	1.00 35.31	С
5	ATOM	924	CD2	LEU	A	155	5. 816	22. 456	17. 984	1. 00 38. 75	С
	ATOM	925	С	LEU	Α	155	6. 405	26. 878	19. 337	1.00 39.23	С
	ATOM	926	0	LEU	A	155	6. 264	26. 841	20. 561	1.00 39.64	0
	ATOM	927	N	LYS	A	156	5. 708	27. 697	18. 553	1. 00 39. 22	N
	ATOM	928	CA	LYS	A	156	4. 690	28. 589	19. 102	1.00 39.41	С
10	ATOM	929	СВ	LYS	A	156	4. 362	29. 716	18. 120	1.00 39.99	С
	ATOM	930	CG	LYS	A	156	5. 469	30. 741	17. 955	1.00 41.50	С
	ATOM	931	CD	LYS	A	156	5.064	31. 818	16. 971	1.00 44.94	С
	ATOM	932	CE	LYS	A	156	6. 165	32.854	16. 791	1.00 46.38	С
	ATOM	933	NZ	LYS	A	156	5. 773	33. 857	15. 764	1.00 47.77	N
15	ATOM	934	С	LYS	A	156	3. 426	27. 798	19. 398	1.00 39.33	С
	ATOM	935	0	LYS	A	156	3.010	26. 953	18. 602	1.00 37.57	0
	ATOM	936	N	ASP	A	157	2.815	28. 082	20. 544	1.00 39.71	N
	ATOM	937	CA	ASP	A	157	1.603	27. 389	20. 961	1.00 39.53	С
	ATOM	938	CB	ASP	A	157	1. 028	28. 063	22. 208	1.00 41.01	С
20	ATOM	939	CG	ASP	A	157	2. 033	28. 131	23. 343	1.00 43.20	С
	ATOM	940	OD1	ASP	A	157	3. 036	28. 863	23. 205	1.00 47.67	0
	ATOM	941	OD2	ASP	A	157	1.828	27. 445	24. 368	1.00 46.90	0
	ATOM	942	С	ASP	Α	157	0. 538	27. 310	19. 868	1.00 38.74	С
	ATOM	943	0	ASP	Α	157	-0. 132	26. 287	19. 720	1.00 37.95	0
25	ATOM	944	N	GLU	Α	158	0.384	28. 383	19. 101	1.00 37.72	N
	ATOM	945	CA	GLU	Α	158	-0.609	28. 398	18. 033	1.00 37.05	С
	ATOM	946	СВ	GLU	I A	158	-0. 614	29. 752	17. 321	1.00 37.76	С
	ATOM	947	CG	GLU	J A	158	-0. 463	30. 954	18. 243	1.00 41.78	С
	ATOM	948	CD	GLU	J A	158	0. 977	31. 198	18. 656	1.00 46.94	С

	ATOM	949	0E1	GLU A	158	1. 798	31. 525	17. 772	1.00 50.90	0
	ATOM	950	0E2	GLU A	158	1. 292	31. 063	19.859	1.00 49.28	0
	ATOM	951	С	GLU A	158	-0. 294	27. 301	17. 024	1.00 35.99	С
	ATOM	952	0	GLU A	158	-1. 187	26. 761	16. 378	1.00 34.01	0
5	ATOM	953	N	LEU A	159	0. 990	26. 981	16.895	1.00 35.06	N
	ATOM	954	CA	LEU A	159	1. 437	25. 948	15.969	1.00 32.93	С
	ATOM	955	CB	LEU A	159	2. 924	26. 130	15.666	1.00 33.58	С
	ATOM	956	CG	LEU A	159	3. 403	25. 650	14. 295	1.00 32.35	С
	ATOM	957	CD1	LEU A	159	2. 543	26. 264	13. 202	1.00 35.68	С
10	ATOM	958	CD2	LEU A	159	4.857	26. 040	14. 104	1.00 33.17	С
	ATOM	959	С	LEU A	159	1. 182	24. 588	16.600	1.00 31.25	С
	ATOM	960	0	LEU A	159	0.851	23. 622	15. 914	1.00 29.46	0
	ATOM	961	N	LYS A	160	1. 330	24. 518	17. 918	1.00 29.57	N
	ATOM	962	CA	LYS A	160	1. 077	23. 276	18. 633	1.00 29.07	C
15	ATOM	963	СВ	LYS A	160	1. 448	23. 410	20.114	1.00 29.49	С
	ATOM	964	CG	LYS A	160	2. 938	23. 535	20. 410	1.00 31.30	С
	ATOM	965	CD	LYS A	160	3. 195	23. 359	21.902	1.00 32.92	С
	ATOM	966	CE	LYS A	160	4.671	23. 470	22. 231	1.00 39.23	С
	ATOM	967	NZ	LYS A	160	4. 974	23. 172	23.664	1.00 42.27	N
20	ATOM	968	С	LYS A	160	-0.408	22. 937	18. 514	1.00 28.08	С
	ATOM	969	0	LYS A	160	-0.779	21. 773	18. 330	1.00 27.38	0
	ATOM	970	N	GLU A	161	-1. 254	23. 959	18.605	1.00 27.07	N
	ATOM	971	CA	GLU A	161	-2. 695	23. 762	18. 517	1.00 27.31	С
	ATOM	972	CB	GLU A	A 161	-3. 439	25.064	18. 830	1.00 28.93	С
25	ATOM	973	CG	GLU A	A 161	-3. 159	25. 662	20. 201	1.00 32.16	С
	ATOM	974	CD	GLU A	A 161	-4. 254	26. 629	20.639	1.00 38.78	С
	ATOM	975	OE1	GLU .	A 161	-4. 944	27. 191	19. 758	1.00 39.33	0
	ATOM	976	0E2	GLU .	A 161	-4. 422	26. 831	21.864	1.00 43.12	0
	ATOM	977	С	GLU	A 161	-3. 100	23. 270	17. 134	1.00 26.18	С

	ATOM	978	0	GLU A	161	-3. 950	22. 383	16.992	1. 00 26. 11	0
	ATOM	979	N	LYS A	162	-2. 492	23. 848	16. 109	1.00 24.62	N
	ATOM	980	CA ·	LYS A	162	-2.794	23. 440	14. 742	1. 00 24. 49	С
	ATOM	981	CB	LYS A	162	-1. 989	24. 293	13. 751	1.00 24.75	С
5	ATOM	982	CG	LYS A	162	-2. 266	23. 987	12. 292	1.00 26.25	С
	ATOM	983	CD	LYS A	162	-1. 240	24. 660	11. 369	1.00 30.87	С
	ATOM	984	CE	LYS A	162	-1.321	26. 180	11.412	1.00 29.17	С
	ATOM	985	NZ	LYS A	162	-2. 572	26. 713	10.801	1.00 30.29	N
	ATOM	986	С	LYS A	162	-2. 454	21. 957	14. 564	1.00 23.72	С
10	ATOM	987	0	LYS A	162	-3. 219	21. 198	13. 973	1.00 21.42	0
	ATOM	988	N	PHE A	163	-1.304	21. 545	15. 090	1.00 23.78	N
	ATOM	989	CA	PHE A	163	-0.867	20. 155	14. 974	1.00 23.17	C
	ATOM	990	СВ	PHE A	163	0.539	20.007	15. 560	1.00 21.98	С
	ATOM	991	CG	PHE A	163	1. 159	18.664	15. 306	1.00 21.44	C
15	MOTA	992	CD1	PHE A	163	1.376	18. 219	14.008	1.00 17.30	С
	ATOM	993	CE1	PHE A	163	1.953	16. 985	13.772	1.00 18.89	С
	ATOM	994	CZ	PHE A	163	2. 323	16. 173	14. 841	1.00 22.89	С
	ATOM	995	CE2	PHE A	163	2. 111	16.602	16. 138	1.00 23.52	С
	ATOM	996	CD2	PHE A	163	1.531	17.844	16. 367	1.00 21.36	С
20	ATOM	997	С	PHE A	163	-1.842	19. 218	15. 699	1.00 23.35	С
	MOTA	998	0	PHE A	163	-2. 291	18. 213	15. 139	1.00 24.15	0
	ATOM	999	N	THR A	164	-2. 161	19. 550	16. 946	1.00 26.31	N
	ATOM	1000	CA	THR A	164	-3.097	18. 761	17. 743	1.00 27.06	С
	ATOM	1001	СВ	THR A	164	-3. 287	19. 389	19. 139	1.00 26.63	С
25	ATOM	1002	0G1	THR A	164	-2. 023	19. 415	19.817	1.00 29.13	0
	ATOM	1003	CG2	THR A	164	-4. 288	18. 585	19. 969	1.00 28.94	C
	ATOM	1004	С	THR A	164	-4. 447	18. 681	17. 034	1.00 26.30	С
	ATOM	1005	0	THR A	164	-5. 045	17. 609	16. 937	1.00 27.05	0
	ATOM	1006	N	THR A	165	-4. 917	19. 817	16. 534	1.00 26.32	N

	ATOM	1007	CA	THR A 16	65 -	6. 191	19. 865	15. 813	1.00 28.31	С
	ATOM.	1008	СВ	THR A 16	65 -	-6. 511	21. 294	15. 320	1.00 27.79	С
	ATOM	1009	OG1	THR A 16	65 -	-6. 587	22. 184	16. 441	1.00 31.94	0
	ATOM	1010	CG2	THR A 16	65 -	-7. 834	21. 316	14. 579	1.00 31.80	С
5	ATOM	1011	С	THR A 16	65 -	-6. 178	18. 947	14. 585	1.00 26.45	С
	ATOM	1012	0	THR A 16	65 -	-7. 073	18. 108	14. 406	1.00 25.73	0
	ATOM	1013	N	PHE A 10	66 -	-5. 172	19. 110	13. 731	1.00 25.04	N
	ATOM	1014	CA	PHE A 10	66 -	-5. 087	18. 278	12. 540	1.00 23.74	С
	ATOM	1015	СВ	PHE A 1	66 -	-3. 878	18. 635	11.684	1. 00 22. 45	С
10	ATOM	1016	CG	PHE A 1	66 -	-3. 663	17. 672	10. 542	1. 00 23. 00	С
	ATOM	1017	CD1	PHE A 1	.66	-4. 578	17.605	9. 492	1.00 17.54	С
	ATOM	1018	CE1	PHE A 1	.66	-4. 408	16. 709	8. 451	1. 00 15. 87	С
	ATOM	1019	CZ	PHE A 1	.66	-3. 305	15. 859	8. 437	1.00 15.82	С
	MOTA	1020	CE2	PHE A 1	.66	-2. 380	15.912	9. 481	1. 00 20. 54	С
15	ATOM	1021	CD2	PHE A 1	.66	-2. 564	16.818	10. 524	1.00 23.28	С
	ATOM	1022	С	PHE A 1	166	-4. 986	16.808	12.909	1.00 23.55	С
	ATOM	1023	0	PHE A 1	166	-5.601	15. 954	12. 266	1. 00 24. 15	0
	ATOM	1024	N	SER A 1	167	-4. 196	16. 522	13. 937	1. 00 24. 73	N
	ATOM	1025	CA	SER A 1	167	-3.994	15. 156	14. 392	1.00 25.60	С
20	ATOM	1026	СВ	SER A 1	167	-2. 978	15. 132	15. 541	1.00 26.04	С
	ATOM	1027	OG	SER A 1	167	-1. 734	15. 675	15. 130	1.00 23.06	0
	ATOM	1028	С	SER A 1	167	-5. 299	14. 516	14.853	1.00 27.30	С
	ATOM	1029	0	SER A	167	-5. 573	13. 349	14. 561	1.00 27.39	0
	ATOM	1030	N	LYS A	168	-6. 105	15. 279	15. 580	1.00 28.09	N
25	ATOM	1031	CA	LYS A	168	-7.364	14. 753	16. 070	1.00 28.24	С
	ATOM	1032	CB	LYS A	168 .	-7. 915	15. 668	17. 167	1.00 28.85	С
	ATOM	1033	CG	LYS A	168	-7.015	15. 656	18. 404	1.00 29.37	С
	ATOM	1034	CD	LYS A	168	-7. 628	16. 376	19. 581	1.00 31.71	С
	ATOM	1035	CE	LYS A	168	-6. 778	16. 162	20. 821	1.00 31.05	С

	ATOM	1036	NZ	LYS A 1	168	-7. 424	16. 689	22. 059	1.00 33.19	N
	ATOM	1037	С	LYS A 1	168	-8. 346	14. 587	14. 924	1.00 28.80	C
	ATOM	1038	0	LYS A 1	168	-9. 116	13. 632	14. 896	1.00 28.47	0
	ATOM	1039	N	ALA A	169	-8. 292	15. 499	13. 959	1.00 29.16	N
5	ATOM	1040	CA	ALA A	169	-9. 172	15. 430	12. 798	1.00 30.36	С
	ATOM	1041	CB	ALA A	169	-9.021	16. 681	11. 949	1.00 29.30	С
	ATOM	1042	С	ALA A	169	-8.819	14. 194	11. 978	1.00 31.34	С
	ATOM	1043	0	ALA A	169	-9. 472	13.880	10.988	1.00 32.11	0
	ATOM	1044	N	GLN A	170	-7.774	13. 493	12. 394	1.00 32.26	N
10	ATOM	1045	CA	GLN A	170	-7.347	12. 295	11. 689	1.00 32.22	С
	ATOM	1046	СВ	GLN A	170	-5.871	12. 412	11. 301	1.00 31.66	С
	ATOM	1047	CG	GLN A	170	-5. 570	13. 544	10. 319	1.00 31.19	С
	MOTA	1048	CD	GLN A	170	-6.351	13. 407	9. 018	1.00 30.95	С
	ATOM	1049	OE1	GLN A	170	-6, 326	12. 355	8. 383	1.00 26.84	0
15	ATOM	1050	NE2	GLN A	170	-7.042	14. 470	8. 618	1.00 28.03	N
	ATOM	1051	С	GLN A	170	-7. 570	11. 048	12. 539	1.00 33.04	С
	ATOM	1052	0	GLN A	170	-7. 102	9. 961	12. 203	1.00 33.24	0
	ATOM	1053	N	GLY A	171	-8. 291	11. 211	13.641	1.00 34.12	N
	ATOM	1054	CA	GLY A	171	-8. 565	10.082	14. 509	1.00 36.19	С
20	ATOM	1055	С	GLY A	171	-7. 421	9.742	15. 445	1.00 37.27	С
	ATOM	1056	0	GLY A	171	-7. 243	8. 584	15. 823	1.00 37.31	0
	ATOM	1057	N	LEU A	172	-6.633	10. 747	15.812	1.00 38.22	N
	ATOM	1058	CA	LEU A	172	- 5. 518	10. 537	16. 721	1.00 38.52	С
	ATOM	1059	CB	LEU A	172	-4. 226	11. 119	16. 135	1.00 37.99	С
25	ATOM	1060	CG	LEU A	172	-3.719	10. 490	14. 825	1.00 38.07	С
	ATOM	1061	CD1	LEU A	172	-2. 419	11. 158	14. 387	1.00 34.97	С
	ATOM	1062	CD2	LEU A	172	-3. 496	8.998	15. 018	1.00 38.27	С
	ATOM	1063	С	LEU A	172	-5. 843	11. 204	18.049	1.00 39.21	С
	ATOM	1064	0	LEU A	172	-6. 293	12. 348	18. 090	1.00 40.20	0

	ATOM	1065	N	THR A 173	-5. 627	10. 480	19. 138	1.00 39.94	N
	ATOM	1066	CA	THR A 173	-5. 893	11. 011	20. 467	1.00 40.68	С
	ATOM	1067	СВ	THR A 173	-6. 269	9.884	21. 436	1.00 40.28	С
	ATOM	1068	OG1	THR A 173	-5. 329	8. 813	21. 305	1.00 41.86	0
5	ATOM	1069	CG2	THR A 173	-7. 666	9. 370	21. 133	1. 00 42. 41	С
	ATOM	1070	С	THR A 173	-4. 667	11. 738	21. 003	1. 00 40. 29	С
	ATOM	1071	0	THR A 173	-3. 575	11.623	20. 446	1.00 39.42	0
	ATOM	1072	N	GLU A 174	-4. 853	12. 487	22. 085	1.00 41.07	N
	ATOM	1073	CA	GLU A 174	-3. 757	13. 227	22. 690	1.00 41.95	C
10	ATOM	1074	СВ	GLU A 174	-4. 264	14. 047	23.877	1.00 42.62	. C
	ATOM	1075	CG	GLU A 174	-5. 227	15. 138	23. 465	1. 00 46. 48	С
	ATOM	1076	CD	GLU A 174	-5. 351	16. 234	24. 497	1.00 52.49	C
	MOTA	1077	0E1	GLU A 174	-5. 735	15. 926	25. 647	1.00 55.08	0
	ATOM	1078	0E2	GLU A 174	-5.063	17. 404	24. 154	1.00 53.65	0
15	ATOM	1079	С	GLU A 174	-2. 621	12. 311	23. 128	1. 00 41. 47	С
	ATOM	1080	0	GLU A 174	-1. 451	12. 688	23. 063	1.00 41.74	0
	ATOM	1081	N	GLU A 175	-2.964	11. 107	23. 569	1.00 40.71	N
	ATOM	1082	CA	GLU A 175	-1.950	10. 149	23.985	1.00 41.13	С
	ATOM	1083	CB	GLU A 179	-2.612	8. 908	24. 580	1.00 41.37	С
20	ATOM	1084	CG	GLU A 175	-3.614	8. 278	23. 631	1.00 47.30	С
	ATOM	1085	CD	GLU A 17	-4. 310	7. 065	24. 212	1.00 54.26	C
	ATOM	1086	OE:	GLU A 17	5 -4. 885	7. 182	25. 316	1.00 55.90	0
	ATOM	1087	OE2	2 GLU A 17	5 -4. 287	5. 998	23. 556	1.00 56.76	0
	ATOM	1088	С	GLU A 17	5 -1. 127	9. 760	22. 759	1.00 39.75	С
25	ATOM	1089	0	GLU A 17	5 -0.008	9. 256	22. 878	1.00 40.30	0
	ATOM	1090	N	ASP A 17	6 –1. 688	9, 995.	21. 578	1.00 37.64	N
	ATOM	1091	CA	ASP A 17	6 –1. 001	9. 678	20. 328	1.00 36.84	С
	ATOM	1092	СВ	ASP A 17	6 -1. 994	9. 192	19. 265	1.00 37.43	С
	ATOM	1093	CG	ASP A 17	6 -2.510	7. 795	19. 532	1.00 39.43	С
				_					

	MOTA	1094	OD1	ASP A	176	-1. 680	6.870	19. 681	1.00 42.70	0
	ATOM	1095	OD2	ASP A	176	-3. 746	7. 621	19. 577	1.00 40.96	0
	ATOM	1096	С	ASP A	176	-0. 247	10.884	19. 767	1.00 34.37	С
	ATOM	1097	0	ASP A	176	0.384	10. 787	18. 723	1.00 33.91	0
5	ATOM	1098	N	ILE A	177	-0.314	12. 010	20. 466	1.00 32.64	N
	ATOM	1099	CA	ILE A	177	0.340	13. 237	20. 020	1.00 30.44	С
	ATOM	1100	CB	ILE A	177	-0.682	14. 392	19. 970	1.00 30.45	С
	ATOM	1101	CG1	ILE A	177	-1.812	14. 034	18. 994	1.00 29.49	С
	ATOM	1102	CD1	ILE A	177	-3.029	14. 940	19.082	1.00 31.49	С
10	ATOM	1103	CG2	ILE A	177	0.008	15. 688	19. 568	1.00 29.62	С
	ATOM	1104	С	ILE A	177	1. 499	13. 633	20. 933	1.00 29.89	С
	ATOM	1105	0	ILE A	177	1.359	13. 647	22. 154	1.00 28.34	0
	ATOM	1106	N	VAL A	178	2.645	13. 960	20. 342	1.00 28.91	N
	ATOM	1107	CA	VAL A	178	3.803	14. 337	21. 142	1.00 28.66	С
15	ATOM	1108	CB	VAL A	178	4. 711	13. 111	21. 412	1.00 28.61	С
	ATOM	1109	CG1	VAL A	178	5. 249	12. 566	20. 101	1.00 30.80	С
	ATOM	1110	CG2	VAL A	178	5.862	13. 501	22. 331	1.00 30.83	С
	ATOM	1111	С	VAL A	178	4. 663	15. 430	20. 522	1.00 27.43	С
	ATOM	1112	0	VAL A	178	4. 968	15. 402	19. 332	1.00 26.89	0
20	ATOM	1113	N	PHE A	179	5.043	16. 402	21. 339	1.00 27.15	N
	ATOM	1114	CA	PHE A	179	5. 905	17. 478	20. 881	1.00 27.17	С
	ATOM	1115	CB	PHE A	179	5. 451	18. 813	21. 477	1.00 26.48	С
	ATOM	1116	CG	PHE A	179	4. 115	19. 257	20.961	1.00 27.02	С
	ATOM	1117	CD1	PHE A	A 179	3. 979	19. 704	19.650	1. 00 26. 14	С
25	ATOM	1118	CE1	PHE A	A 179	2. 724	20. 041	19. 136	1.00 28.69	С
	ATOM	1119	CZ	PHE A	A 179	1. 593	19. 930	19. 939	. 1. 00 27. 93	С
	ATOM	1120	CE2	PHE	A 179	1. 717	19. 488	21. 250	1.00 27.21	С
	ATOM	1121	CD2	PHE	A 179	2. 974	19. 156	21. 755	1.00 30.11	С
	ATOM	1122	С	PHE	A 179	7. 306	17. 088	21. 323	1.00 27.37	С
					-					

	ATOM	1123	0	PHE A	179	7. 644	17. 138	22. 509	1.00 27.77	0
	ATOM	1124	N	LEU A	180	8. 093	16. 665	20. 337	1.00 27.22	N
	ATOM	1125	CA	LEU A	180	9. 458	16. 194	20. 513	1.00 26.96	С
	ATOM	1126	СВ	LEU A	180	10.075	15. 921	19. 134	1.00 26.82	С
5	ATQML	1127	CG	LEU A	180	9. 260	14. 959	18. 257	1.00 26.68	С
	ATOM	1128	CD1	LEU A	180	9. 924	14. 776	16. 901	1.00 21.86	С
	ATOM	1129	CD2	LEU A	180	9. 123	13.616	18. 966	1.00 21.60	С
	ATOM	1130	С	LEU A	180	10. 362	17. 113	21. 332	1.00 28.51	С
	ATOM	1131	0	LEU A	180	10. 543	18. 288	21.004	1.00 28.44	0
10	ATOM	1132	N	PRO A	181	10.943	16. 579	22. 421	1.00 29.38	N
	ATOM	1133	CA	PRO A	181	11.826	17. 378	23. 271	1.00 30.92	С
	ATOM	1134	СВ	PRO A	181	11. 957	16. 524	24. 528	1.00 30.61	С
	ATOM	1135	CG	PRO A	181	11. 939	15. 148	23. 982	1.00 29.83	С
	ATOM	1136	CD	PRO A	181	10. 827	15. 204	22.940	1.00 29.63	С
15	ATOM	1137	С	PRO A	181	13. 164	17.622	22. 590	1.00 31.85	С
	ATOM	1138	0	PRO A	A 181	13. 683	16. 764	21.875	1.00 32.03	0
	ATOM	1139	N	GLN A	A 182	13. 700	18. 814	22.812	1.00 34.15	N
	ATOM	-1140	CA	GLN A	A 182	14. 972	19. 230	22. 248	1.00 38.42	С
	ATOM	1141	CB	GLN .	A 182	15. 160	20. 727	22. 513	1.00 38.11	С
20	ATOM	1142	CG	GLN .	A 182	16. 349	21. 358	21.838	1.00 43.04	С
	ATOM	1143	CD	GLN	A 182	16. 516	22. 813	22. 231	1.00 47.27	С
	ATOM	1144	0E	1 GLN	A 182	15. 580	23. 609	22. 117	1.00 48.82	0
	ATOM	1145	NE	2 GLN	A 182	17. 711	23. 170	22. 697	1.00 49.54	N
	ATOM	1146	С	GLN	A 182	16. 112	18. 428	22. 879	1.00 39.16	С
25	ATOM	1147	0	GLN	A 182	16. 316	18. 480	24. 086	1.00 38.96	0
	ATOM	1148	N	PRO	A 183	16. 859	17. 662	22.064	1.00 41.26	N
	ATOM	1149	CA	PRO	A 183	17. 982	16. 847	22. 544	1.00 43.14	С
	ATOM	1150	CE	PRO	A 183	18. 400	16. 062	21. 301	1.00 42.53	С
	ATOM	1151	. CG	PRO	A 183	17. 158	16.009	20. 489	1.00 42.51	С

	ATOM	1152	CD	PRO A	183	16.605	17. 398	20. 641	1.00 41.37	С
	ATOM	1153	С	PRO A	183	19. 108	17. 739	23. 043	1.00 45.17	С
	MOTA	1154	0	PRO A	183	19. 222	18. 894	22.630	1.00 45.74	0
	ATOM	1155	N	ASP A	184	19. 939	17. 208	23. 931	1.00 47.82	N
5	ATOM	1156~	_CA	ASP A	184	21. 059	17. 974	24. 468	1.00 50.56	С
	ATOM	1157	CB	ASP A	184	21. 516	17. 365	25. 799	1. 00 51. 23	С
	ATOM	1158	CG	ASP A	184	22. 507	18. 246	26. 543	1. 00 54. 35	С
	ATOM	1159	0D1	ASP A	184	23. 479	18. 717	25. 914	1. 00 58. 16	0
	ATOM	1160	0D2	ASP A	184	22. 324	18. 461	27. 763	1.00 57.05	0
10	ATOM	1161	С	ASP A	184	22. 203	17. 949	23. 453	1. 00 51. 40	С
	ATOM	1162	0	ASP A	184	22. 988	18.890	23. 366	1. 00 52. 48	0
	ATOM	1163	N	LYS A	185	22. 284	16.869	22. 684	1. 00 52. 40	N
	ATOM	1164	CA	LYS A	185	23. 319	16. 719	21.668	1. 00 53. 25	С
	ATOM	1165	CB	LYS A	185	24. 352	15. 684	22. 118	1. 00 53. 85	С
15	ATOM	1166	CG	LYS A	185	23. 763	14. 312	22. 430	1.00 54.84	С
	ATOM	1167	CD	LYS A	185	24. 851	13. 323	22. 816	1.00 57.25	С
	ATOM	1168	CE	LYS A	185	24. 267	11. 984	23. 237	1.00 59.39	С
	ATOM	1169	NZ	LYS A	185	25. 336	11. 017	23. 617	1.00 59.87	N
	ATOM	1170	С	LYS A	185	22.716	16. 284	20. 334	1.00 53.50	С
20	ATOM	1171	0	LYS A	185	21. 499	16. 182	20. 199	1.00 53.06	0
	ATOM	1172	N	CYS A	186	23. 585	16.034	19. 357	1.00 54.14	N
	ATOM	1173	CA	CYS A	186	23. 183	15. 596	18. 021	1.00 55.37	С
	ATOM	1174	CB	CYS A	186	22. 282	14. 353	18. 107	1.00 54.41	С
	ATOM	1175	SG	CYS A	186	22. 903	12. 974	19. 126	1.00 51.22	S
25	ATOM	1176	С	CYS A	186	22. 467	16. 652	17. 176	1.00 56.92	С
	ATOM	1177	0	CYS A	186	21. 884	16. 315	16. 147	1.00 57.78	0
	ATOM	1178	N	ILE A	187	22. 513	17. 919	17. 580	1.00 59.30	N
	ATOM	1179	CA	ILE A	187	21. 817	18. 953	16. 812	1.00 61.99	С
	ATOM	1180	СВ	ILE A	187	20. 357	19. 109	17. 314	1.00 62.28	С

	ATOM	1181	CG1	ILE A	187	19. 545	17. 872	16. 927	1.00 61.77	С
	ATOM ·	1182	CD1	ILE A	187	18. 090	17. 965	17. 308	1.00 65.79	С
	ATOM	1183	CG2	ILE A	187	19. 710	20. 354	16. 726	1.00 63.84	С
	ATOM	1184	С	ILE A	187	22. 440	20. 346	16. 751	1.00 63.97	С
5	ATOM	1185	0	ILE. A	187	22. 046	21. 143	15. 904	1.00 64.66	0
	ATOM	1186	N	GLN A	188	23. 412	20.642	17. 609	1.00 66.08	N
	ATOM	1187	CA	GLN A	188	24. 019	21. 978	17. 637	1.00 68.34	С
	ATOM	1188	СВ	GLN A	188	24. 150	22. 572	16. 226	1.00 68.29	С
	ATOM	1189	CG	GLN A	188	25. 566	22. 753	15. 711	1.00 70.61	С
10	ATOM	1190	CD	GLN A	188	26. 306	21. 441	15. 570	1.00 72.82	С
	ATOM	1191	0E1	GLN A	188	25. 787	20. 479	14. 999	1.00 73.93	0
	ATOM	1192	NE2	GLN A	188	27. 531	21. 395	16. 082	1.00 74.08	N
	ATOM	1193	С	GLN A	188	23.042	22. 830	18. 444	1.00 69.30	С
	ATOM	1194	0	GLN A	188	23. 017	24. 055	18. 331	1.00 69.66	0
15	ATOM	1195	N	GLU A	189	22. 232	22. 135	19. 242	1.00 70.42	N
	ATOM	1196	CA	GLU A	189	21. 203	22. 703	20. 112	1.00 71.39	С
	ATOM	· 1197	СВ	GLU A	189	21. 351	22. 125	21. 520	1.00 71.77	С
	ATOM	1198	CG	GLU A	189	22. 147	20.827	21. 579	1.00 72.99	С
	ATOM	1199	CD	GLU A	189	21.669	19. 790	20. 583	1.00 73.77	С
20	ATOM	1200	0E1	GLU A	189	20. 472	19. 433	20. 610	1.00 76.28	0
	ATOM	1201	0E2	GLU A	A 189	22. 494	19. 324	19. 770	1.00 73.47	0
	ATOM	1202	С	GLU A	A 189	21. 165	24. 227	20. 195	1.00 71.75	С
	ATOM	1203	0	GLU A	A 189	21. 377	24. 768	21. 303	1.00 71.94	0
	ATOM	1204	OXT	GLU A	A 189	20. 906	24. 868	19. 153	1.00 72.13	0
25	ATOM	1205	N	GLN 1	B 35	16. 520	25. 594	58. 782	1.00 37.06	N
	ATOM	1206	CA	GLN 1	B 35	16. 131	26. 126	57. 446	1.00 35.29	С
	ATOM	1207	СВ	GLN 1	B 35	17. 377	26. 612	56. 704	1.00 35.86	С
	ATOM	1208	CG	GLN	B 35	18. 466	25. 564	56. 576	1.00 40.43	С
	ATOM	1209	CD	GLN	B 35	19. 622	26. 021	55. 700	1.00 46.53	С

	ATOM	1210	OE1	GLN B	35	20. 623	25. 313	55. 554	1.00 51.77	0
	ATOM	1211	NE2	GLN B	35	19. 487	27. 204	55. 107	1.00 49.87	N
	ATOM	1212	С	GLN B	35	15. 384	25. 108	56. 577	1.00 33.30	С
	ATOM	1213	0	GLN B	35	15. 044	25. 406	55. 435	1.00 32.10	0
5	ATOM	1214	N	GLN B	36	- 15. 123	23. 917	57. 113	1.00 31.25	N
	ATOM	1215	CA	GLN B	36	14. 423	22. 876	56. 353	1.00 29.23	С
	ATOM	1216	СВ	GLN B	36	14. 196	21. 618	57. 203	1.00 29.22	С
	ATOM	1217	CG	GLN B	36	13. 615	20. 451	56. 401	1.00 30.50	С
	ATOM	1218	CD	GLN B	36	13. 423	19. 185	57. 222	1.00 31.43	С
10	ATOM	1219	OE1	GLN B	36	12. 508	19. 086	58.053	1.00 36.00	0
	ATOM	1220	NE2	GLN B	36	14. 290	18. 209	56.996	1.00 27.78	N
	ATOM	1221	С	GLN B	36	13. 083	23. 366	55. 840	1.00 26.86	С
	ATOM	1222	0	GLN B	36	12. 708	23. 095	54. 699	1.00 23.30	0
	ATOM	1223	N	ASP B	37	12. 363	24. 084	56. 694	1.00 27.22	N
15	ATOM	1224	CA	ASP B	37	11. 050	24. 609	56. 338	1.00 27.10	С
	ATOM	1225	CB	ASP B	37	10. 457	25. 408	57. 499	1.00 30.98	С
	ATOM	1226	CG [.]	ASP B	37	9.837	24. 522	58. 561	1.00 35.24	С
	ATOM	1227	OD1	ASP B	37	10. 576	23. 732	59. 182	1.00 47.18	0
	ATOM	1228	OD2	ASP B	37	8. 609	24. 616	58.778	1.00 45.07	0
20	ATOM	1229	С	ASP B	37	11. 066	25. 480	55. 097	1.00 25.31	С
	ATOM	1230	0	ASP B	37	10. 045	25. 635	54. 435	1.00 24.94	0
	ATOM	1231	N	LYS B	38	12. 223	26. 054	54. 786	1.00 24.03	N
	ATOM	1232	CA	LYS B	38	12. 345	26. 911	53.617	1.00 23.34	С
	MOTA	1233	CB	LYS B	38	13. 643	27. 722	53. 691	1.00 23.59	С
25	MOTA	1234	CG	LYS B	38	13. 641	28. 770	54.800	1.00 26.63	С
	ATOM	1235	CD	LYS B	38	12. 474	29. 733	54. 619	1.00 28.10	С
	ATOM	1236	CE	LYS B	38	12. 507	30. 861	55. 636	1.00 34.26	С
	ATOM	1237	NZ	LYS B	38	13. 727	31. 698	55. 494	1.00 36.28	N
	ATOM	1238	С	LYS B	38	12. 297	26. 139	52. 304	1.00 22.17	С

	ATOM	1239	0	LYS	В	38	12. 019	26. 719	51. 262	1.00 23.22	0
	ATOM	1240	N	PHE	В	39	12. 555	24. 836	52. 362	1.00 19.91	N
	ATOM	1241	CA	PHE	В	39	12. 561	24. 000	51. 171	1.00 17.90	С
	ATOM	1242	CB	PHE	В	39	13.749	23. 033	51. 226	1.00 19.08	С
5	ATOM	1243	CG	PHE	В	39	15. 089 -	23. 725	51. 228	1.00 18.43	С
	ATOM	1244	CD1	PHE	В	39	15. 607	24. 265	52. 398	1.00 16.91	C
	ATOM	1245	CE1	PHE	В	39	16. 823	24. 930	52. 401	1.00 19.03	С
	ATOM	1246	CZ	PHE	В	39	17. 546	25. 067	51. 211	1.00 20.75	С
	ATOM	1247	CE2	PHE	В	39	17. 035	24. 531	50.034	1.00 21.98	С
10	ATOM	1248	CD2	PHE	В	39	15.811	23. 862	50.050	1.00 19.07	С
	ATOM	1249	С	PHE	В	39	11. 270	23. 224	50. 967	1.00 16.73	С
	ATOM	1250	0	PHE	В	39	11. 175	22. 390	50.068	1.00 16.56	0
	ATOM	1251	N	LEU	В	40	10. 272	23. 492	51.800	1.00 15.91	N
	ATOM	1252	CA	LEU	В	40	9.000	22. 803	51. 653	1.00 17.17	C
15	ATOM	1253	CB	LEU	В	40	8. 113	23. 043	52.878	1.00 17.42	С
	ATOM	1254	CG	LEU	В	40	8. 753	22. 577	54. 192	1.00 19.17	C
	ATOM	1255	CD1	LEU	В	· 40	7. 779	22. 756	55. 337	1.00 24.49	C
	ATOM	1256	CD2	LEU	В	40	9. 161	21. 117	54.075	1.00 20.54	С
	ATOM	1257	С	LEU	В	40	8. 345	23. 357	50. 401	1.00 17.51	C
20	ATOM	1258	0	LEU	В	40	8.832	24. 325	49. 816	1.00 17.99	0
	ATOM	1259	N	GLY	В	41	7. 266	22. 729	49. 960	1.00 17.31	N
	ATOM	1260	CA	GLY	В	41	6. 588	23. 237	48. 783	1.00 17.09	С
	ATOM	1261	С	GLY	В	41	6. 856	22. 523	47. 477	1.00 17.14	C
	ATOM	1262	0	GLY	В	41	7. 352	21. 394	47. 444	1.00 18.05	0
25	ATOM	1263	N	ARG	В	42	6. 543	23. 215	46. 389	1. 00 16. 40	N
	ATOM	1264	CA	ARG	В	42	6. 680	22. 676	45. 043	1.00 18.88	С
	ATOM	1265	СВ	ARG	В	42	5. 614	23. 311	44. 155	1.00 17.27	С
	ATOM	1266	CG	ARG	В	42	5. 756	22. 949	42. 697	1.00 25.31	С
	ATOM	1267	CD	ARG	В	42	5. 545	24. 170	41.836	1.00 28.18	С

	ATOM	1268	NE	ARG B	42	4. 160	24. 356	41. 464	1.00 27.84	N
	ATOM	1269	CZ	ARG B	42	3.700	25. 456	40. 879	1.00 32.90	С
	ATOM	1270	NH1	ARG B	42	4. 526	26. 466	40.622	1.00 29.84	N
	ATOM	1271	NH2	ARG B	42	2. 428	25. 527	40. 509	1.00 28.11	N
5	ATOM	1272	С	ARG B	42	8.043	22. 809	.44. 355	1.00 17.36	С
	ATOM	1273	0	ARG B	42	8. 626	23. 894	44. 278	1.00 16.56	0
	ATOM	1274	N	TRP B	43	8. 530	21. 686	43. 837	1.00 18.23	N
	ATOM	1275	CA	TRP B	43	9. 796	21. 653	43. 113	1.00 17.56	С
	ATOM	1276	СВ	TRP B	43	10.903	21. 021	43. 949	1.00 16.97	С
10	ATOM	1277	CG	TRP B	43	11. 305	21.771	45. 176	1.00 16.19	С
	ATOM	1278	CD1	TRP B	43	10. 757	21. 668	46. 424	1. 00 17. 38	С
	ATOM	1279	NE1	TRP B	43	11. 444	22. 462	47. 312	1.00 14.16	N
	ATOM	1280	CE2	TRP B	43	12. 452	23. 102	46. 641	1.00 14.82	С
	ATOM	1281	CD2	TRP B	43	12. 393	22. 692	45. 290	1.00 15.35	С
15	MOTA	1282	CE3	TRP B	43	13. 322	23. 210	44. 384	1.00 13.96	С
	ATOM	1283	CZ3	TRP B	43	14. 281	24. 114	44. 850	1.00 18.19	С
	ATOM	1284	CH2	TRP B	43	14. 313	24. 501	46. 202	1.00 16.46	С
	ATOM	1285	CZ2	TRP B	43	13. 409	24. 008	47. 107	1.00 16.31	С
	ATOM	1286	С	TRP B	43	9. 621	20. 813	41. 863	1.00 17.89	С
20	ATOM	1287	0	TRP B	43	8. 650	20. 071	41. 733	1.00 17.99	0
	ATOM	1288	N	TYR B	44	10. 579	20. 925	40. 952	1.00 18.35	N
	ATOM	1289	CA	TYR B	44	10. 568	20. 162	39. 712	1.00 19.01	С
	MOTA	1290	CB	TYR B	44	10. 294	21. 085	38. 523	1.00 20.26	С
	ATOM	1291	CG	TYR B	44	8. 927	21. 731	38. 531	1.00 19.50	С
25	ATOM	1292	CD	1 TYR B	44	7. 799	21. 020	38. 120	1.00 21.39	С
	ATOM	1293	CE	1 TYR B	44	6. 529	21. 605	38. 129	1.00 21.89	С
	ATOM	1294	. CZ	TYR E	3 44	6. 387	22. 916	38. 557	1.00 23.64	С
	ATOM	1295	ОН	TYR E	3 44	5. 135	23. 485	38. 590	1.00 21.63	0
	ATOM	1296	CE	2 TYR E	3 44	7. 496	23. 647	38. 973	1.00 22.08	С

	ATOM	1297	CD2	TYR B	44	8. 760	23. 050	38. 958	1.00 21.31	С
	ATOM	1298	С	TYR B	44	11. 937	19. 506	39. 528	1.00 20.14	C
	ATOM	1299	0	TYR B	44	12. 979	20. 175	39. 631	1.00 19.15	0
	ATOM	1300	N	SER B	45	11. 940	18. 197	39. 273	1.00 21.35	N
5	ATOM	1301	CA	SER B	45	13. 192	17. 487	39. 032	1.00 23.58	С
	ATOM	1302	СВ	SER B	45	12. 987	15. 970	39. 141	1. 00 25. 18	С
	ATOM	1303	0G	SER B	45	11. 926	15. 531	38. 307	1. 00 26. 39	0
	ATOM	1304	С	SER B	45	13. 585	17. 878	37. 612·	1. 00 24. 18	С
	ATOM	1305	0	SER B	45	12. 903	17. 521	36. 656	1. 00 25. 49	0
10	ATOM	1306	N	ALA B	46	14. 680	18.627	37. 484	1.00 24.22	N
	ATOM	1307	CA	ALA B	46	15. 136	19. 102	36. 186	1.00 21.23	С
	ATOM	1308	CB	ALA B	4 6	15. 312	20.621	36. 231	1.00 20.41	С
	ATOM	1309	С	ALA B	4 6	16. 423	18. 458	35. 693	1. 00 21. 73	С
	ATOM	1310	0	ALA B	4 6	16. 724	18. 505	34. 503	1. 00 21. 13	0
15	ATOM	1311	N	GLY B	47	17. 195	17. 878	36. 605	1. 00 22. 14	N
	ATOM	1312	CA	GLY B	47	18. 452	17. 261	36. 217	1. 00 22. 69	С
	ATOM	1313	С	GLY B	47	18. 706	15: 987	36. 987	1.00 22.41	С
	ATOM	1314	0	GLY B	47	18. 440	15. 922	38. 186	1.00 21.93	0
	ATOM	1315	N	LEU B	48	19. 219	14. 973	36. 296	1.00 24.68	N
20	ATOM	1316	CA	LEU B	48	19. 496	13. 682	36. 919	1. 00 26. 44	С
	ATOM	1317	CB	LEU B	48	18. 288	12. 762	36. 740	1. 00 25. 78	С
	ATOM	1318	CG	LEU B	48	18. 301	11. 366	37. 357	1.00 27.38	С
	ATOM	1319	CD1	LEU B	48	18. 364	11. 455	38. 880	1.00 31.44	С
	ATOM	1320	CD2	LEU B	48	17. 031	10. 633	36. 942	1. 00 29. 28	С
25	ATOM	1321	С	LEU B	48	20. 744	13. 035	36. 315	1. 00 28. 13	С
	ATOM	1322	0	LEU B	48	20. 924	13. 018	35. 096	1. 00 28. 67	0
	ATOM	1323	N	ALA B	49	21. 608	12. 513	37. 177	1.00 29.37	N
	ATOM	1324	CA	ALA B	49	22. 836	11. 860	36. 736	1.00 30.98	С
	MOTA	1325	CB	ALA B	49	23. 987	12.849	36. 763	1. 00 29. 77	С

	ATOM	1326	С	ALA B	49	23. 134	10. 674	37. 650	1.00 32.18	С
	ATOM	1327	0	ALA B	49	22. 876	10. 731	38. 849	1.00 32.22	0
	ATOM	1328	N	SER B	50	23. 671	9. 598	37. 084	1.00 34.77	N
	ATOM	1329	CA	SER B	50	23. 980	8. 408	37. 872	1.00 36.25	C
5	ATOM	1330	CB	SER B	50	22. 684	7. 746	38. 339	1.00 35.93	C
	ATOM	1331	OG	SER B	50	22. 950	6. 569	39. 084	1.00 36.08	0
	ATOM	1332	С	SER B	50	24. 815	7. 386	37. 109	1.00 37.63	С
	ATOM	1333	0	SER B	50	25. 029	7. 518	35. 903	1.00 38:29	0
	ATOM	1334	N	ASN B	51	25. 287	6. 369	37.825	1.00 38.85	N
10	ATOM	1335	CA	ASN B	51	26.076	5. 302	37. 222	1.00 40.59	С
	ATOM	1336	CB	ASN B	51	27. 459	5. 203	37. 880	1.00 40.57	С
	MOTA	1337	CG	ASN B	51	27. 391	4. 940	39. 380	1.00 39.49	C
	ATOM	1338	OD1	ASN B	51	28. 419	4. 773	40.030	1. 00 42. 49	0
	ATOM	1339	ND2	ASN B	51	26. 185	4. 903	39. 931	1.00 34.80	N
15	ATOM	1340	С	ASN B	51	25. 328	3. 984	37. 377	1.00 42.31	С
	ATOM	1341	0	ASN B	51	25. 792	2. 935	36. 941	1.00 42.26	0
	ATOM	1342	N	SER B	52	24. 160	4. 058	38. 004	1.00 44.68	N
	ATOM	1343	CA	SER B	52	23. 323	2.888	38. 233	1. 00 47. 48	С
	ATOM	1344	CB	SER B	52	22. 033	3. 306	38. 944	1.00 48.00	С
20	ATOM	1345	OG	SER B	52	21.065	2. 269	38. 892	1. 00 52. 56	0
	ATOM	1346	С	SER B	52	22. 964	2. 146	36. 952	1.00 48.12	С
	ATOM	1347	0	SER B	52	23. 280	2. 590	35. 850	1.00 48.41	0
	ATOM	1348	N	SER B	53	22. 301	1.006	37. 118	1.00 49.66	N
	ATOM	1349	CA	SER B	53	21.859	0. 188	35. 996	1.00 50.25	С
25	ATOM	1350	CB	SER B	53	21. 713	-1. 273	36. 437	1.00 50.27	С
	ATOM	1351	OG	SER B	53	22. 947	-1. 793	36. 907	1.00 51.05	0
	ATOM	1352	С	SER E	53	20. 507	0.745	35. 567	1.00 50.62	С
	ATOM	1353	0	SER E	3 53	20. 218	0.874	34. 378	1.00 50.70	0
	ATOM	1354	N	TRP E	3 54	19. 693	1. 077	36. 564	1.00 51.37	N

	ATOM	1355	CA	TRP I	3	54	18. 364	1. 638	36. 358	1. 00 52. 70	С
	ATOM	1356	CB	TRP I	3	54	17. 776	2.047	37. 709	1.00 53.23	С
	ATOM	1357	CG	TRP I	В	54	16. 450	2. 737	37. 630	1. 00 56. 64	C
	ATOM	1358	CD1	TRP 1	В	54	15. 234	2. 162	37. 391	1. 00 59. 22	С
5	ATOM	1359	NE1	TRP 1	В	54	14. 244	3. 119	37. 411	1. 00 60. 28	N
	ATOM	1360	CE2	TRP 1	В	54	14.813	4. 340	37. 661	1. 00 60. 04	С
	ATOM	1361	CD2	TRP 1	В	54	16, 205	4. 138	37. 804	1. 00 58. 84	С
	ATOM	1362	CE3	TRP :	В	54	17. 027	5. 243	38.068	1.00 59.81	С
	ATOM	1363	CZ3	TRP	В	54	16. 441	6.500	38. 179	1. 00 60. 48	С
10	ATOM	1364	СН2	TRP	В	54	15. 052	6.669	38. 032	1. 00 61. 73	С
	ATOM	1365	CZ2	TRP	В	54	14. 224	5.606	37.774	1.00 61.41	С
	ATOM	1366	С	TRP	В	54	18. 439	2.855	35. 441	1. 00 52. 10	С
	ATOM	1367	0	TRP	В	54	17. 820	2.889	34. 373	1. 00 52. 71	0
	ATOM	1368	N	PHE	В	55	19. 205	3. 851	35. 869	1.00 51.33	N
15	ATOM	1369	CA	PHE	В	55	19. 376	5.082	35. 109	1.00 50.85	С
	ATOM	1370	CB	PHE	В	55	20. 395	5. 984	35. 812	1.00 50.43	С
	ATOM	1371	CG	PHE	В	55	20. 594	7.314	35. 146	1.00 48.28	C
	ATOM	1372	CD1	PHE	В	55	19. 562	8. 245	35. 099	1.00 46.15	C
	ATOM	1373	CE1	. PHE	В	55	19. 740	9. 474	34. 471	1.00 46.51	C
20	ATOM	1374	CZ	PHE	В	55	20. 960	9.780	33. 881	1.00 46.07	С
	ATOM	1375	CE2	PHE	В	55	21. 998	8.856	33. 923	1.00 46.09	С
	ATOM	1376	CD2	PHE	В	55	21. 810	7.632	34. 553	1.00 46.98	С
	ATOM	1377	С	PHE	В	55	19. 826	4. 801	33. 677	1.00 51.09	С
	MOTA	1378	0	PHE	В	55	19. 209	5. 271	32. 719	1.00 51.00	0
25	ATOM	1379	N	ARG	В	56	20. 903	4. 034	33. 541	1.00 51.57	N
	ATOM	1380	CA	ARG	В	56	21. 445	3. 677	32. 229	1.00 52.15	С
	ATOM	1381	CB	ARG	В	56	22. 640	2. 726	32. 393	1. 00 52. 46	С
	ATOM	1382	CG	ARG	В	56	23. 954	3. 386	32. 783	1. 00 54. 53	С
	ATOM	1383	CD	ARG	В	56	24. 907	2. 357	33. 397	1.00 58.48	С

	ATOM	1384	NE	ARG B	56	26. 299	2.806	33. 475	1.00 62.11	N
	ATOM	1385	CZ	ARG B	56	26. 693	3.976	33. 970	1.00 65.15	С
	ATOM	1386	NH1	ARG B	56	25. 802	4.841	34. 437	1.00 66.66	N
	ATOM	1387	NH2	ARG B	56	27. 984	4. 281	34.006	1.00 65.67	N
5	ATOM	1388	С	ARG B	56	20. 411	3. 027	31. 306	1.00 51.62	С
	ATOM	1389	0	ARG B	56	20. 424	3. 258	30.099	1.00 51.26	0
	ATOM	1390	N	GLU B	57	19. 515	2. 223	31.872	1.00 51.11	N
	ATOM	1391	CA	GLU B	57	18. 507	1. 540	31. 071	1.00 51.51	С
	ATOM	1392	CB	GLU B	57	18. 503	0.046	31. 415	1.00 51.87	С
10	ATOM	1393	CG	GLU B	57	19. 780	-0.677	31. 007	1.00 53.93	С
	ATOM	1394	CD	GLU B	57	19. 773	-2. 151	31. 375	1.00 56.43	C
	ATOM	1395	0E1	GLU B	57	19. 748	-2. 462	32. 585	1.00 58.93	0
	ATOM	1396	0E2	GLU B	57	19. 794	-2. 996	30. 452	1.00 56.91	0
	ATOM	1397	С	GLU B	57	17. 094	2. 107	31. 210	1. 00 50. 67	С
15	ATOM	1398	0	GLU B	57	16. 108	1. 381	31. 058	1.00 51.18	0
	ATOM	1399	N	LYS B	58	16. 991	3. 402	31. 491	1.00 49.06	N
	ATOM	1400	CA	LYS B	58	15. 683	4. 039	31. 646	1.00 47.54	С
	ATOM	1401	CB	LYS B	58	15. 107	3.722	33. 032	1.00 48.39	С
	ATOM	1402	CG	LYSB	58	13. 686	4. 226	33. 258	1.00 49.62	. C
20	ATOM	1403	CD	LYS B	58	13. 212	3. 952	34. 682	1.00 52.77	С
	MOTA	1404	CE	LYS B	58	11. 825	4. 545	34. 941	1.00 52.82	С
	ATOM	1405	NZ	LYS B	58	11. 389	4. 377	36. 358	1.00 52.01	N
	ATOM	1406	С	LYS B	58	15. 764	5. 549	31. 457	1.00 45.21	С
	ATOM	1407	0	LYS B	58	14. 746	6. 226	31. 389	1.00 44.48	0
25	ATOM	1408	N	LYS B	59	16. 983	6.065	31. 359	1. 00 43. 69	N
	ATOM	1409	CA	LYS B	59	17. 211	7. 494	31. 189	1.00 42.38	С
	ATOM	1410	СВ	LYS B	59	18. 709	7. 758	31. 034	1.00 43.61	С
	ATOM	1411	CG	LYS B	59	19. 336	7. 073	29. 832	1. 00 44. 44	С
	ATOM	1412	CD	LYS E	59	20. 858	7.044	29. 928	1.00 49.79	С

	ATOM	1413	CE	LYS B	59	21. 441	8. 431	30. 163	1.00 52.89	С
	ATOM	1414	NZ	LYS B	59	21, 020	9. 404	29. 118	1. 00 56. 53	N
	MOTA	1415	С	LYS B	59	16. 459	8. 087	30.003	1.00 40.91	С
	ATOM	1416	0	LYS B	59	15. 966	9. 213	30. 071	1.00 40.09	0
5	ATOM	1417	N	ALA B	60	16. 367	7. 324	28. 919	1.00 39.16	N
	ATOM	1418	CA	ALA B	60	15. 682	7. 785	27. 723	1.00 36.81	С
	ATOM	1419	СВ	ALA B	60	15.850	6. 773	26. 605	1.00 37.20	С
	ATOM	1420	С	ALA B	60	14. 200	8.054	27. 952	1. 00 35. 75	С
	MOTA	1421	0	ALA B	60	13.627	8. 923	27. 300	1. 00 35. 18	0
10	ATOM	1422	N	VAL B	61	13. 584	7. 319	28.875	1.00 33.10	N
	ATOM	1423	CA	VAL B	61	12. 157	7. 485	29. 147	1.00 32.61	С
	ATOM	1424	CB	VAL B	61	11.462	6. 114	29. 347	1.00 32.54	С
	ATOM	1425	CG1	VAL B	61	11. 692	5. 234	28. 127	1.00 33.11	С
	ATOM	1426	CG2	VAL B	61	11. 981	5. 434	30.612	1. 00 31. 73	С
15	ATOM	1427	С	VAL B	61	11. 832	8. 353	30. 358	1.00 31.55	С
	ATOM	1428	0	VAL B	61	10. 675	8. 446	30. 761	1.00 31.40	0
	ATOM	1429	N	LEU B	62	12.844	8. 991	30. 935	1.00 30.56	N
	ATOM	1430	CA	LEU B	62	12. 621	9.839	32. 103	1.00 30.36	С
	ATOM	1431	СВ	LEU B	62	13.877	9.865	32.975	1.00 31.00	С
20	ATOM	1432	CG	LEU B	62	14. 292	8. 491	33. 516	1.00 33.97	С
	ATOM	1433	CD1	LEU B	62	15. 598	8. 599	34. 288	1.00 33.22	С
	ATOM	1434	CD2	LEU B	62	13. 183	7. 942	34. 407	1.00 34.87	С
	MOTA	1435	С	LEU B	62	12. 212	11. 265	31. 740	1.00 27.77	С
	MOTA	1436	0	LEU B	62	12. 790	11. 881	30. 849	1.00 27.70	0
25	ATOM	1437	N	TYR B	63	11. 196	11. 772	32. 431	1.00 27.50	N
	ATOM	1438	CA	TYR B	63	10. 705	13. 127	32. 211	1.00 26.18	С
	ATOM	1439	СВ	TYR B	63	9. 240	13. 133	31. 747	1.00 26.26	С
	ATOM	1440	CG	TYR B	63	8. 992	12. 606	30. 357	1.00 27.42	С
	ATOM	1441	CD1	TYR B	63	8.814	11. 243	30. 127	1.00 29.98	С

	ATOM	1442	CE1	TYR B	63	8. 572	10. 757	28. 843	1.00 33.87	С
	ATOM	1443	CZ	TYR B	63	8. 514	11.640	27. 775	1.00 32.87	С
	MOTA	1444	ОН	TYR B	63	8. 286	11. 168	26. 500	1.00 38.94	0
	ATOM	1445	CE2	TYR B	63	8. 691	13. 000	27. 981	1.00 32.51	С
5	ATOM	1446	CD2	TYR B	63	8. 926	13. 474	29. 268	1.00 28.18	С
	ATOM	1447	С	TYR B	63	10. 783	13.909	33. 513	1.00 24.64	С
	ATOM	1448	0	TYR B	63	10. 958	13. 335	34. 580	1.00 26.37	0
	ATOM	1449	N	MET B	64	10. 654	15. 224	33. 406	1.00 24.11	N
	ATOM	1450	CA	MET B	64	10.666	16. 089	34. 564	1.00 21.60	C
10	ATOM	1451	CB	MET B	64	10. 551	17. 543	34. 137	1.00 21.40	С
	ATOM	1452	CG	MET B	64	10. 203	18. 491	35. 274	1.00 21.55	С
	ATOM	1453	SD	MET B	64	10.078	20. 155	34. 653	1.00 23.70	S
	ATOM	1454	CE	MET B	64	11. 772	20. 441	34. 213	1.00 23.94	С
	ATOM	1455	С	MET B	64	9. 454	15. 723	35. 391	1.00 20.89	C
15	ATOM	1456	0	MET B	64	8. 387	15. 462	34. 841	1.00 20.65	0
	MOTA	1457	N	ALA B	65	9. 620	15. 710	36. 709	1.00 21.78	N
	MOTA	1458	CA	ALA B	65	8. 529	15. 381	37. 610	1.00 22.90	С
	MOTA	1459	CB	ALA B	65	8. 873	14. 137	38. 417	1.00 23.61	С
	ATOM	1460	С	ALA B	65	8. 243	16. 536	38. 550	1.00 22.81	С
20	ATOM	1461	0	ALA B	65	9. 114	17. 356	38. 829	1.00 23.08	0
	ATOM	1462	N	LYS B	66	7. 008	16. 595	39. 026	1. 00 24. 13	N
	ATOM	1463	CA	LYS B	66	6. 592	17. 625	39. 968	1. 00 24. 90	С
	ATOM	1464	CB	LYS B	66	5. 175	18. 090	39. 635	1.00 24.40	C
	ATOM	1465	CG	LYS B	66	4. 531	19. 010	40. 658	1. 00 25. 61	С
25	ATOM	1466	CD	LYS B	66	3. 216	19. 555	40. 101	1.00 24.44	С
	MOTA	1467	CE	LYS B	66	2. 390	20. 253	41. 157	1. 00 29. 98	С
	ATOM	1468	NZ	LYS B	66	1. 154	20. 853	40. 569	1.00 39.00	N
	MOTA	1469	С	LYS B	66	6. 641	16. 990	41. 356	1.00 24.30	С
	MOTA	1470	0	LYS B	66	5. 955	15. 999	41.616	1.00 26.16	0

	ATOM	1471	N	THR E	3 6	67	7. 468	17. 543	42. 234	1.00 21.31	N
	ATOM	1472	CA	THR E	3 6	67	7. 608	17. 017	43. 582	1.00 20.57	С
	MOTA	1473	СВ	THR E	3 6	5 7	9.066	16. 619	43. 871	1.00 21.25	С
	ATOM	1474	0G1	THR E	3 6	67	9. 494	15. 626	42. 934	1.00 21.89	0
5	ATOM	1475	CG2	THR E	3 6	67	9. 190	16.068	45. 285	1. 00 25. 45	С
	ATOM	1476	С	THR E	3 6	67	7. 186	18.043	44. 639	1.00 20.93	С
	ATOM	1477	0	THR F	3 6	67	7. 706	19. 165	44. 676	1.00 19.49	0
	ATOM	1478	N	VAL I	3 (68	6. 244	17. 655	45. 494	1. 00 19. 26	N
	ATOM	1479	CA	VAL I	в (68	5. 784	18. 536	46. 556	1.00 18.83	С
10	ATOM	1480	СВ	VAL I	В	68	4. 248	18. 560	46. 641	1. 00 18. 95	C
	ATOM	1481	CG1	VAL 1	В	68	3. 809	19. 454	47.803	1. 00 21. 13	C
	ATOM	1482	CG2	VAL 1	В	68	3. 675	19.070	45. 313	1.00 17.89	С
	ATOM	1483	С	VAL 1	В	68	6. 382	18. 032	47.848	1.00 17.05	С
	MOTA	1484	0	VAL 1	В	68	6. 272	16. 850	48. 180	1.00 18.24	0
15	ATOM	1485	N	VAL 1	В	69	7. 038	18. 938	48. 567	1.00 17.22	N
	ATOM	1486	CA	VAL	В	69	7. 722	18. 593	49. 807	1.00 15.35	С
	ATOM	1487	СВ	VAL	В	69	9. 151	19. 150	49. 772	1.00 15.47	С
	ATOM	1488	CG1	VAL	В	69	9. 898	18. 773	51.041	1.00 13.26	С
	ATOM	1489	CG2	VAL.	В	69	9.875	18. 625	48. 511	1.00 15.70	С
20	ATOM	1490	С	VAL	В	69	7. 027	19. 086	51.077	1.00 15.51	С
	ATOM	1491	0	VAL	В	69	6.649	20. 256	51. 182	1.00 16.17	0
	ATOM	1492	N	ALA	В	70	6.863	18. 181	52. 036	1.00 16.04	N
	ATOM	1493	CA	ALA	В	70	6. 229	18. 511	53. 316	1.00 16.88	С
	ATOM	1494	CB	ALA	В	70	4. 739	18. 155	53. 280	1.00 17.76	С
25	ATOM	1495	С	ALA	В	70	6. 937	17. 725	54. 413	1.00 16.99	С
	ATOM	1496	0	ALA	В	70	7. 651	16. 766	54. 126	1.00 19.87	0
	ATOM	1497	N	PRO	В	71	6. 742	18. 110	55. 687	1.00 18.18	N
	ATOM	1498	CA	PRO	В	71	7. 399	17. 407	56. 796	1.00 17.02	С
	MOTA	1499	СВ	PRO	В	71	6. 943	18. 192	58. 024	1.00 18.58	С

	ATOM	1500	CG	PRO B	71	6. 643	19. 577	57. 471	1.00 19.30	С
	ATOM	1501	CD	PRO B	71	5. 930	19. 236	56. 192	1.00 16.39	С
	ATOM	1502	С	PRO B	71	7. 034	15. 930	56. 905	1.00 18.37	С
	ATOM	1503	0	PRO B	71	5. 907	15. 537	56. 594	1.00 15.78	0
5	ATOM	1504	N	SER B	72	7. 993	15. 122	57. 353	1.00 18.33	N
	ATOM	1505	CA	SER B	72	7. 769	13. 699	57. 529	1.00 20.27	С
	ATOM	1506	CB	SER B	72	8. 978	12. 884	57.061	1.00 21.15	C
	ATOM	1507	OG	SER B	72	10. 036	12. 957	57. 997	1.00 23.81	0
	ATOM	1508	С	SER B	72	7. 535	13. 482	59.016	1.00 21.63	С
10	ATOM	1509	0	SER B	72	7. 788	14. 377	59.825	1.00 22.26	0
	ATOM	1510	N	THR B	73	7. 058	12. 297	59. 378	1.00 22.59	N
	ATOM	1511	CA	THR B	73	6. 757	12. 006	60. 779	1.00 23.74	С
	ATOM	1512	СВ	THR B	73	6. 236	10. 564	60. 952	1.00 22.91	С
	ATOM	1513	OG1	THR B	73	5. 172	10. 318	60. 025	1.00 18.94	0
15	ATOM	1514	CG2	THR B	73	5. 697	10. 368	62. 375	1.00 24.56	С
	ATOM	1515	С	THR B	73	7. 926	12. 201	61. 747	1.00 24.50	С
	ATOM	1516	0	THR B	73	7. 758	12. 806	62. 800	1.00 24.98	0
	ATOM	1517	N	GLU B	74	9. 101	11. 684	61. 389	1.00 25.95	N
	ATOM	1518	CA	GLU B	74	10. 287	11. 785	62. 243	1.00 26.06	С
20	ATOM	1519	СВ	GLU B	74	11. 271	10. 657	61. 926	1.00 26.86	С
	ATOM	1520	CG	GLU B	74	10.734	9. 266	62. 197	1.00 29.93	С
	ATOM	1521	CD	GLU B	74	10. 240	9. 113	63. 612	1.00 34.17	С
	ATOM	1522	0E1	GLU B	74	11.018	9. 405	64. 549	1.00 38.32	0
	ATOM	1523	OE2	GLU B	74	9. 075	8. 701	63. 790	1.00 39.68	0
25	ATOM	1524	С	GLU B	74	11. 028	13. 105	62. 140	1. 00 26. 53	С
	ATOM	1525	0	GLU B	74 .	12.075	13. 269	62. 754	1.00 26.06	0
	ATOM	1526	N	GLY B	75	10. 495	14. 042	61. 365	1. 00 26. 90	N
	ATOM	1527	CA	GLY B	75	11. 163	15. 321	61. 217	1. 00 26. 25	· C
	ATOM	1528	С	GLY B	75	11. 902	15. 432	59. 895	1.00 26.38	С

	ATOM	1529	0	GLY B	75	12. 521	16. 458	59.607	1.00 27.95	0
	ATOM	1530	N	GLY B	76	11. 854	14. 367	59. 097	1. 00 24. 68	N
	ATOM	1531	CA	GLY B	76	12. 498	14. 376	57. 796	1. 00 22. 08	С
	ATOM	1532	С	GLY B	76	11. 570	14. 981	56. 751	1.00 21.83	С
5	ATOM	1533	0	GLY B	76	10. 769	15. 857	57.076	1.00 19.87	0
	ATOM	1534	N	LEU B	77	11.655	14. 508	55. 505	1.00 20.87	N
	ATOM	1535	CA	LEU B	77	10.820	15. 038	54. 433	1.00 19.22	С
	ATOM	1536	CB	LEU B	77	11. 679	15. 795	53. 418	1.00 19.77	С
	ATOM	1537	CG	LEU B	77	12. 495	17. 003	53.873	1. 00 21. 45	С
10	MOTA	1538	CD1	LEU B	77	13. 547	17. 334	52.816	1.00 23.98	С
	ATOM	1539	CD2	LEU B	77	11. 577	18. 164	54. 122	1.00 17.71	С
	ATOM	1540	С	LEU B	77	9. 981	14. 022	53.657	1. 00 20. 65	С
	ATOM	1541	0	LEU B	77	10. 445	12. 943	53. 291	1.00 20.00	0
	ATOM	1542	N	ASN B	78	8. 731	14. 392	53. 410	1.00 19.49	N
15	ATOM	1543	CA	ASN B	78	7.822	13. 577	52. 629	1.00 19.83	С
	ATOM	1544	CB	ASN B	78	6. 382	13. 725	53. 137	1.00 20.64	С
	ATOM	1545	CG	ASN B	78	5. 973	12. 637	54. 111	1.00 21.67	С
	MOTA	1546	0D1	ASN B	78	6. 799	11.869	54. 604	1.00 18.96	0
	MOTA	1547	ND2	ASN B	78	4. 679	12. 575	54. 398	1.00 16.01	N
20	ATOM	1548	С	ASN B	78	7. 923	14. 203	51. 241	1.00 19.96	С
	ATOM	1549	0	ASN B	78	7. 819	15. 424	51. 106	1.00 21.03	0
	ATOM	1550	N	LEU B	79	8. 154	13. 379	50. 227	1.00 19.97	N
	ATOM	1551	CA	LEU B	79	8. 243	13. 857	48. 855	1.00 20.38	С
	ATOM	1552	СВ	LEU B	79	9. 607	13. 528	48. 224	1.00 21.06	С
25	ATOM	1553	CG	LEU B	79	10. 830	14. 410	48. 503	1.00 20.33	С
	ATOM	1554	CD1	LEU B	79	11. 176	14. 376	49. 981	1.00 15.77	С
	MOTA	1555	CD2	LEU B	79	12. 006	13. 919	47. 655	1.00 25.25	С
	ATOM	1556	С	LEU B	79	7. 153	13. 157	48. 055	1.00 21.10	С
	ATOM	1557	0	LEU B	79	7. 196	11. 938	47.865	1.00 20.88	0

	ATOM	1558	N	THR B	80	6. 164	13. 926	47. 609	1.00 20.87	N
	MOTA	1559	CA	THR B	80	5. 086	13. 365	46.810	1. 00 20. 85	С
	ATOM	1560	CB	THR B	80	3. 702	13.899	47. 273	1.00 20.49	С
	ATOM	1561	0G1	THR B	80	3. 477	13. 532	48. 643	1.00 20.65	0
5	ATOM	1562	CG2	THR B	80	2. 587	13. 314	46. 415	1.00 19.59	C
	ATOM	1563	С	THR B	80	5. 363	13. 783	45.370	1.00 20.80	С
	ATOM	1564	0	THR B	80	5. 304	14. 963	45.037	1.00 20.97	0
	ATOM	1565	N	SER B	81	5. 691	12.816	44. 525	1.00 21.75	N
	ATOM	1566	CA	SER B	81	6.002	13. 107	43. 132	1.00 22.99	С
10	ATOM	1567	CB	SER B	81	7. 352	12. 494	42.752	1.00 22.82	С
	ATOM	1568	OG	SER B	81	8. 418	13. 029	43. 522	1.00 27.07	0
	ATOM	1569	С	SER B	81	4. 951	12.612	42. 145	1.00 24.46	С
	ATOM	1570	0	SER B	81	4. 392	11. 514	42. 285	1.00 24.48	0
	ATOM	1571	N	THR B	82	4. 688	13. 445	41. 147	1.00 25.52	N
15	ATOM	1572	CA	THR B	82	3.744	13. 130	40.085	1.00 26.98	С
	ATOM	1573	CB	THR B	82	2.716	14. 253	39. 910	1.00 27.26	С
	ATOM	1574	0G1	THR B	82	1.968	14. 397	41. 124	1.00 28.56	0
	ATOM	1575	CG2	THR B	82	1. 768	13. 939	38. 759	1.00 26.26	С
	ATOM	1576	С	THR B	82	4. 618	13.023	38. 841	1.00 28.72	С
20	ATOM	1577	0	THR B	82	5. 343	13.964	38. 507	1.00 28.19	0
	ATOM	1578	N	PHE B	83	4. 560	11.877	38. 166	1.00 30.09	N
	ATOM	1579	CA	PHE B	83	5. 385	11. 659	36. 989	1.00 33.13	C
	ATOM	1580	СВ	PHE B	83	6. 702	11.011	37. 408	1.00 33.32	С
	ATOM	1581	CG	PHE B	83	6. 532	9. 719	38. 164	1.00 35.08	C
25	ATOM	1582	CD1	PHE B	83	6.000	9. 710	39. 452	1.00 35.79	С
	ATOM	1583	CE1	PHE B	83	5. 858	8. 515	40. 160	1.00 37.06	С
	ATOM	1584	CZ	PHE B	83	6. 250	7. 309	39. 580	1.00 35.12	С
	ATOM	1585	CE2	PHE B	83	6. 780	7. 305	38. 297	1.00 34.32	С
	ATOM	1586	CD2	PHE B	83	6. 919	8. 508	37. 595	1.00 35.78	С

	ATOM	1587	С	PHE B		83	4. 736	10. 807	35. 904	1. 00 35. 08	С
	ATOM	1588	0	PHE B		83	3. 757	10. 104	36. 145	1. 00 35. 20	0
	ATOM	1589	N	LEU B		84	5. 300	10.888	34. 703	1. 00 37. 29	N
	ATOM	1590	CA	LEU B	}	84	4.827	10. 126	33. 552	1.00 39.17	С
- 5.	ATOM	1591	СВ	LEU B	}	84	5. 018	10. 947	32. 273	1.00 38.63	С
	ATOM	1592	CG	LEU E	}	84	4. 592	10. 337	30. 934	1. 00 37. 74	С
	ATOM	1593	CD1	LEU E	3	84	3. 086	10. 104	30. 921	1.00 36.04	С
	ATOM	1594	CD2	LEU E	3	84	4. 997	11. 274	29. 806	1. 00 35. 51	С
	ATOM	1595	С	LEU E	3	84	5. 663	8.847	33. 485	1. 00 40. 90	С
10	ATOM	1596	0	LEU I	3	84	6.877	8. 911	33. 298	1.00 40.46	0
	MOTA	1597	N	ARG I	3	85	5. 014	7. 696	33. 651	1.00 43.31	N
	ATOM	1598	CA	ARG 1	3	85	5. 705	6. 404	33. 628	1.00 46.39	С
	ATOM	1599	CB	ARG 1	В	85	5. 027	5. 426	34. 582	1.00 46.96	С
	ATOM	1600	CG	ARG 1	В	85	5. 722	4. 082	34. 680	1.00 47.76	С
15	ATOM	1601	CD	ARG :	В	85	6.855	4. 137	35. 685	1.00 50.67	С
	ATOM	1602	NE	ARG	В	85	7. 456	2.829	35. 941	1.00 52.88	N
	ATOM	1603	CZ	ARG	В	85	6. 776	1. 731	36. 263	1.00 55.13	С
	ATOM	1604	NHI	ARG	В	85	5. 451	1. 761	36. 367	1.00 55.46	N
	ATOM	1605	NH2	2 ARG	В	85	7. 425	0. 598	36. 499	1.00 54.74	N
20	ATOM	1606	С	ARG	В	85	5. 710	5. 788	32. 237	1.00 48.35	С
	MOTA	1607	0	ARG	В	85	6. 766	5. 559	31. 646	1.00 49.00	. 0
	ATOM	1608	N	LYS	В	86	4. 514	5. 500	31. 735	1.00 49.68	N
	ATOM	1609	CA	LYS	В	86	4. 346	4. 913	30. 414	1.00 50.77	С
	ATOM	1610	CB	LYS	В	86	4. 293	3. 390	30. 521	1.00 50.85	С
25	ATOM	1611	CG	LYS	В	86	5. 499	2. 811	31. 242	1. 00 52. 18	С
	ATOM	1612	CD	LYS	В	86	5. 446	1. 302	31. 337	1. 00 55. 10	С
	ATOM	1613	CE	LYS	В	86	6. 667	0. 775	32. 067	1.00 56.19	С
	ATOM	1614	. NZ	LYS	В	86	6. 681	-0.709	32. 134	1.00 54.56	N
	ATOM	1615	5 C	LYS	В	86	3. 038	5. 457	29.872	1.00 51.30	С
						•					

	ATOM	1616	0	LYS	В	86	2.026	4. 760	29. 839	1.00 51.59	0
	ATOM	1617	N	ASN	В	87	3. 072	6. 720	29. 460	1.00 51.82	N
	ATOM	1618	CA	ASN	В	87	1. 896	7. 397	28. 939	1.00 52.40	С
	ATOM	1619	СВ	ASN	В	87	1. 362	6. 700	27. 685	1.00 53.21	С
5	ATQM	1620	CG	ASN	В	87	2. 156	7.048	26. 445	1.00 54.72	С
	ATOM	1621	OD1	ASN	В	87	3. 274	6. 565	26. 247	1.00 56.95	0
	ATOM	1622	ND2	ASN	В	87	1. 587	7. 905	25. 605	1.00 55.62	N
	· ATOM	1623	С	ASN	В	87	0.814	7. 449	30.001	1.00 51.79	С
	ATOM	1624	0	ASN	В	87	-0.375	7. 490	29. 688	1.00 52.58	0
10	ATOM	1625	N	GLN	В	88	1. 235	7. 437	31. 261	1.00 51.17	N
	ATOM	1626	CA	GLN	В	88	0. 303	7. 511	32. 380	1.00 50.52	С
	ATOM	1627	СВ	GLN	В	88	-0 . 030	6. 124	32. 940	1.00 50.99	С
	ATOM	1628	CG	GLN	В	88	-1. 045	6. 212	34. 090	1.00 52.80	С
	ATOM	1629	CD	GLN	В	88	-1. 101	4. 976	34. 971	1.00 55.25	С
15	ATOM	1630	OE1	GLN	В	88	-0.099	4. 567	35. 561	1.00 54.92	0
	ATOM	1631	NE2	GLN	В	88	-2. 285	4. 382	35. 076	1.00 55.03	N
	ATOM	1632	С	GLN	В	88	0.882	8. 350	33. 512	1.00 49.33	С
	ATOM	1633	0	GLN	В	88	2.079	8. 292	33. 792	1.00 48.79	0
	ATOM	1634	N	CYS	В	89	0.025	9. 129	34. 161	1.00 48.09	N
20	ATOM	1635	CA	CYS	В	89	0.451	9. 956	35. 278	1.00 47.25	С
	ATOM	1636	CB	CYS	В	89	-0. 463	11. 173	35. 441	1.00 47.96	С
	ATOM	1637	SG	CYS	В	89	-0.440	12. 321	34. 033	1.00 52.30	S
	ATOM	1638	С	CYS	В	89	0. 417	9. 134	36. 557	1.00 45.36	С
	ATOM	1639	0	CYS	В	89	-0.634	8. 637	36. 961	1.00 45.21	0
25	ATOM	1640	N	GLU	В	90	1. 573	8. 986	37. 187	1.00 42.70	N
	ATOM	1641	CA	GLU	В	90	1.662	8. 234	38. 423	1.00 41.56	С
	ATOM	1642	СВ	GLU	В	90	2. 663	7. 085	38. 283	1.00 41.43	С
	ATOM	1643	CG	GLU	В	90	2.074	5. 833	37. 660	1.00 45.26	С
	ATOM	1644	CD	GLU	В	90	3. 097	4. 728	37. 493	1.00 48.56	С

PCT/JP2003/016233

	ATOM	1645	OE1	GLU	В	90	3.894	4. 508	38. 430	1.00 49.59	0
	ATOM	1646	OE2	GLU	В	90	3.099	4.071	36. 430	1.00 50.95	0
	MOTA	1647	С	GLU	В	90	2. 075	9. 146	39. 564	1.00 40.06	С
	MOTA	1648	0	GLU	В	90	2. 608	10. 234	39. 347	1.00 39.58	0
5	ATOM	1649_	N	THR	В	91	1.809	8. 697	40. 781	1.00 37.76	N
	ATOM	1650	CA	THR	В	91	2. 159	9. 455	41. 964	1.00 37.06	С
	ATOM	1651	СВ	THR	В	91	0.922	10. 101	42.610	1.00 37.34	С
	ATOM	1652	0G1	THR	В	91	0.602	11. 308	41. 908	1.00 37.99	0
	ATOM	1653	CG2	THR	В	91	1. 180	10. 428	44.069	1.00 36.87	С
10	ATOM	1654	С	THR	В	91	2.815	8. 524	42.956	1.00 35.97	С
•	ATOM	1655	0	THR	В	91	2. 307	7. 442	43. 234	1.00 36.79	0
	ATOM	1656	N	LYS	В	92	3. 961	8. 942	43. 470	1.00 34.66	N
	ATOM	1657	CA	LYS	В	92	4. 670	8. 141	44. 442	1.00 34.25	С
	ATOM	1658	СВ	LYS	В	92	5. 930	7. 526	43.823	1.00 35.39	С
15	ATOM	1659	CG	LYS	В	92	6. 573	6. 473	44. 724	1.00 40.91	С
	ATOM	1660	CD	LYS	з В	92	7. 770	5. 797	44. 073	1.00 47.37	С
	MOTA	1661	CE	LYS	S B	92	8. 295	4. 668	44. 950	1.00 49.29	С
	ATOM	1662	NZ	LYS	з В	92	9. 460	3.958	44. 346	1.00 51.25	N
	ATOM	1663	С	LY	S B	92	5. 047	9. 016	45. 624	1.00 32.07	С
20	ATOM	1664	0	LY	s B	92	5. 201	10. 229	45. 492	1.00 31.59	0
	ATOM	1665	N	IL	E B	93	5. 177	8. 394	46. 787	1.00 30.05	N
	ATOM	1666	CA	IL	E B	93	5. 564	9. 110	47. 986	1.00 29.86	С
	ATOM	1667	CE	3 IL	EE	93	4. 489	9. 004	49.082	1.00 28.91	С
	ATOM	1668	3 C(G1 IL	E E	3 93	3. 221	9. 726	48. 619	1.00 29.22	С
25	ATOM	1669	e CI	01 II	E E	3 93	2. 075	9. 651	49. 590	1.00 33.59	С
	MOTA	1670) C	G2 II	E I	3 93	5. 006	9. 615	50.381	1.00 31.24	. C
	ATOM	167	1 C	II	E l	B 93	6. 865	8. 524	48. 500	1.00 29.02	С
	ATOM	167	2 0	IJ	LE 1	В 93	6. 973	7. 31	48. 69	7 1.00 29.59	0
	ATOM	167	3 N	M	ET !	B 94	7. 85	9. 38 ⁹	9 48.68	3 1.00 28.74	N

83

C 49.192 1.00 28.69 8.982 9.157 MET B 94 MOTA 1674 CA C 48. 223 1.00 30.16 9.380 94 10. 268 MOTA 1675 CB MET B C 8.774 46.852 1.00 33.76 MET B 94 10. 133 ATOM 1676 CG S 1.00 42.95 45.713 9.469 SD MET B 94 11.342 **ATOM** 1677 C 46. 225 1.00 39.86 12.813 8.613 CE MET B 94 **ATOM** 1678 5 C 50.519 1.00 26.85 9.693 9.386 C MET B 94 **ATOM** 1679 0 1.00 26.13 10.879 50.671 9.071 MET B 94 MOTA 1680 0 N 1.00 24.54 8.962 51.477 9.938 VAL B 95 ATOM 1681 N C 10. 222 52.781 1.00 23.92 9. 525 95 CA VAL B ATOM 1682 C 8.653 53.915 1.00 23.21 9.664 CB VAL B 95 ATOM 1683 10 C 9.197 55. 253 1.00 23.76 10.142 95 CG1 VAL B MOTA 1684 C 8.611 53.859 1.00 26.68 8.133 95 CG2 VAL B ATOM 1685 C 9.645 53.001 1.00 23.60 11.725 VAL B 95 C ATOM 1686 0 8.639 53.039 1.00 24.63 12.438 95 VAL B ATOM 1687 0 N 1.00 23.77 10.880 53.122 12. 199 LEU B 96 ATOM 1688 N 15 C 11. 130 53.408 1.00 24.17 13.605 96 ATOM 1689 · CA LEU B C 1.00 24.53 12.432 52.762 14.077 1690 CB LEU B 96 ATOM . C 1.00 26.20 12.475 51.231 LEU B 96 14.079 1691 CG ATOM С 1.00 29.41 13.838 50.746 CD1 LEU B 96 14. 585 ATOM 1692 C 1.00 26.73 14.956 11.368 50.693 CD2 LEU B 96 1693 ATOM 20 C 1.00 23.73 13.682 11.241 54.926 LEU B 96 C **ATOM** 1694 0 13.213 12.221 55. 516 1.00 22.46 96 1695 0 LEU B **ATOM** N 1.00 25.09 14.250 10. 213 55. 550 97 N GLN B 1696 **ATOM** C 1.00 26.98 10. 160 56.996 97 14.396 CA GLN B **MOTA** 1697 1.00 28.85 С 8.703 57.446 97 14. 563 CB GLN B 1698 25 ATOM C 1.00 37.81 8. 208 58. 442 13. 516 CG GLN B 97 ATOM 1699 С 57.798 7.884 1.00 46.93 12. 180 CD GLN B 97 **ATOM** 1700 0 56.840 1.00 52.64 7. 113 1701 OE1 GLN B 97 12. 107 **ATOM** N 1.00 50.81 8.464 58. 329 11.116 NE2 GLN B 97 **MOTA** 1702

15. 611 10. 969 57. 433 1. 00 26. 07

16.664 10.901 56.811 1.00 25.85

C

0

WO 2004/056992 PCT/JP2003/016233

GLN B 97

GLN B 97

1703 C

1704 0

ATOM

ATOM

	A I OM	1104	v	ODA V D	٠.	10. 001				
	ATOM	1705	N	PRO B	98	15. 489	11. 725	58. 533	1.00 27.95	N
	ATOM	1706	CA	PRO B	98	16. 634	12. 522	58. 991	1.00 28.20	С
5	ATOM	1707	СВ	PRO B	98	16. 143	13. 128	60. 310	1.00 27.26	С
	ATOM	1708	CG	PRO B	98	14. 649	12.996	60. 249	1.00 31.44	С
	ATOM	1709	CD	PRO B	98	14. 448	11.672	59. 567	1. 00 26. 47	С
	ATOM	1710	С	PRO B	98	17. 848	11.616	59. 204	1. 00 28. 83	С
	ATOM	1711	0	PRO B	98	17. 701	10.470	59. 647	1.00 30.17	0
10	ATOM	1712	N	ALA B	99	19. 041	12. 124	58. 902	1.00 28.42	N
	ATOM	1713	CA	ALA B	99	20. 254	11.331	59. 076	1.00 28.17	С
	ATOM	1714	СВ	ALA B	99	20. 883	11.034	57. 709	1.00 26.53	С
	ATOM	1715	С	ALA B	99	21. 298	11.954	60.013	1.00 28.73	С
	ATOM	1716	0	ALA B	99	22. 477	12.021	59.681	1.00 30.28	0
15	ATOM	1717	N	GLY B	100	20.860	12. 424	61. 174	1.00 30.15	N
	ATOM	1718	CA	GLY B	100	21. 788	12. 988	62. 143	1.00 30.98	С
	ATOM	1719	С	GLY B	100	22. 332	14. 399	61.954	1.00 32.27	С
	ATOM	1720	0	GLY B	100	23. 053	14.891	62.833	1.00 32.39	0
	ATOM	1721	N	. ALA B	101	22. 005	15. 050	60.836	1.00 30.10	N
20	ATOM	1722	CA	ALA B	101	22. 483	16. 407	60. 575	1.00 28.93	С
	ATOM	1723	CB	ALA B	101	23. 926	16. 364	60. 098	1. 00 29. 35	С
	MOTA	1724	C	ALA E	101	21. 616	17. 136	59. 546	1. 00 27. 78	С
	ATOM	1725	0	ALA E	3 101	21. 133	16. 536	58. 587	1.00 27.81	0
	ATOM	1726	N	PRO I	3 102	21. 428	18. 455	59. 724	1. 00 27. 63	N
25	ATOM	1727	CA	PRO I	3 102	20. 606	19. 232	58. 789	1.00 27.52	С
	ATOM	1728	CE	PRO 1	B 102	20. 770	20.668	59. 286	1.00 27.31	С
	ATOM	1729) C	PRO	B 102	21. 02	20. 482	60. 767	1.00 28.49	С
	ATOM	1730) CI	PRO 1	B 102	21. 980	0 19.317	7 60. 785	5 1.00 27.05	С
	ATOM	173	ı c	PRO 1	B 102	21. 06	0 19.069	57. 34	5 1.00 26.25	С

	ATOM	1732	0	PRO B	102	22. 233	19. 265	57. 034	1.00 26.32	0
	ATOM	1733	N	GLY B	103	20. 125	18. 706	56. 471	1.00 24.95	N
	ATOM	1734	CA	GLY B	103	20. 448	18. 533	55.066	1.00 23.66	С
	ATOM	1735	С	GLY B	103	20. 925	17. 135	54. 711	1. 00 20. 21	С
5	ATOM	1736	0	GLY B	103	21. 343.	16.895	53. 578	1.00 21.21	0
	ATOM	1737	N	HIS B	104	20.857	16. 218	55. 672	1.00 17.17	N
	ATOM	1738	CA	HIS B	104	21. 280	14. 844	55. 451	1.00 19.03	С
	ATOM	1739	CB	HIS B	104	22. 481	14. 536	56. 334	1.00 17.66	С
	ATOM	1740	CG	HIS B	104	23. 672	15. 379	56.015	1.00 21.52	С
10	ATOM	1741	ND1	HIS B	104	24. 690	14. 942	55. 196	1.00 17.48	N
	ATOM	1742	CE1	HIS B	104	25. 546	15. 929	55.002	1.00 19.71	С
	ATOM	1743	NE2	HIS B	104	25. 123	16. 987	55. 671	1.00 20.79	N
	ATOM	1744	CD2	HIS B	104	23. 956	16.669	56. 318	1.00 19.37	С
	ATOM	1745	С	HIS B	104	20. 136	13. 897	55. 747	1.00 16.96	С
15	ATOM	1746	0	HIS B	104	19. 540	13.953	56.810	1. 00 16. 73	0
	ATOM	1747	N	TYR B	105	19. 836	13. 022	54. 795	1.00 19.61	N
	ATOM	1748	CA	TYR B	105	18. 735	12.080	54. 945	1.00 21.07	С
	ATOM	1749	CB	TYR B	105	17. 532	12. 543	54. 123	1.00 21.53	С
	ATOM	1750	CG	TYR B	105	17. 107	13. 974	54. 357	1.00 21.91	С
20	ATOM	1751	CD1	TYR B	105	16. 219	14. 302	55. 389	1.00 20.70	С
	ATOM	1752	CE1	TYR B	105	15. 843	15. 621	55. 616	1. 00 22. 27	С
	ATOM	1753	CZ	TYR B	105	16. 354	16. 636	54. 807	1.00 23.20	С
	ATOM	1754	OH	TYR B	105	15.977	17. 950	55. 020	1.00 23.16	0
	ATOM	1755	CE2	TYR E	105	17. 237	16. 335	53. 776	1.00 18.32	С
25	ATOM	1756	CD2	TYR E	105	17.608	15. 007	53. 555	1.00 21.82	С
	ATOM	1757	С	TYR E	105	19. 106	10. 698	54. 451	1.00 21.92	С
	ATOM	1758	0	TYR E	3 105	20. 104	10. 514	53.763	1.00 23.47	0
	ATOM	1759	N	THR E	3 106	18. 267	9. 733	54. 790	1.00 24.22	N
	ATOM	1760	CA	THR E	3 106	18. 438	8.364	54. 333	1.00 26.64	С

	ATOM	1761	СВ	THR B	106	18. 666	7. 393	55. 504	1.00 25.91	С
	ATOM	1762	OG1	THR B	106	17. 607	7. 541	56. 463	1.00 30.22	0
	ATOM	1763	CG2	THR B	106	20. 011	7. 689	56. 174	1.00 26.89	С
	ATOM	1764	С	THR B	106	17. 126	8. 029	53. 635	1.00 27.69	С
5	MOTA	1765	0	THR B	106	16. 056	8. 487	54. 057	1.00 25.39	0
	ATOM	1766	N	TYR B	107	17. 214	7. 253	52. 561	1.00 29.73	N
	ATOM	1767	CA	TYR B	107	16. 038	6.864	51.801	1.00 33.54	С
	ATOM	1768	СВ	TYR B	107	15. 924	7. 714	50. 537	1. 00 33. 57	С
	ATOM	1769	CG	TYR B	107	15. 054	7. 073	49. 482	1.00 37.64	С
10	ATOM	1770	CD1	TYR B	107	13. 708	6. 794	49.738	1.00 41.90	С
	ATOM	1771	CE1	TYR B	107	12. 909	6. 159	48. 790	1. 00 43. 55	С
	ATOM	1772	CZ	TYR B	107	13. 459	5. 792	47. 571	1.00 46.00	С
	ATOM	1773	ОН	TYR B	107	12.673	5. 158	46. 635	1.00 49.14	0
	ATOM	1774	CE2	TYR B	107	14. 796	6.060	47. 292	1.00 43.74	С
15	ATOM	1775	CD2	TYR B	107	15. 583	6. 702	48. 247	1.00 38.84	С
	MOTA	1776	С	TYR B	107	16.061	5. 388	51. 420	1.00 36.23	С
	ATOM	1777	0	TYR B	107	17.018	4. 899	50. 818	1.00 35.45	0
	ATOM	1778	N	SER B	108	14. 993	4. 681	51. 769	1.00 40.28	N
	ATOM	1779	CA	SER B	108	14.877	3. 259	51.470	1.00 44.66	С
20	ATOM	1780	CB	SER B	108	13. 988	2. 580	52. 506	1.00 44.48	С
	ATOM	1781	OG	SER B	108	13. 351	1. 451	51.940	1.00 47.59	0
	ATOM	1782	С	SER E	3 108	14. 306	2. 996	50.086	1.00 47.15	С
	MOTA	1783	0	SER E	3 108	13. 296	3. 581	49. 703	1.00 47.89	0
	ATOM	1784	N	SER E	3 109	14. 943	2. 094	49. 348	1.00 50.48	N
25	ATOM	1785	CA	SER E	3 109	14. 487	1. 751	48. 007	1.00 53.87	С
	ATOM	1786	СВ	SER F	3 109	15. 609	1. 994	46. 993	1.00 54.04	С
	ATOM	1787	OG	SER I	3 109	15. 234	1. 547	45. 700	1.00 57.33	0
	ATOM	1788	С	SER I	3 109	14. 023	0. 298	47. 920	1. 00 55. 77	C
	ATOM	1789	0	SER I	В 109	14. 760	-0. 567	47. 445	1.00 55.70	0

	ATOM	1790	N	PRO B	110	12. 791	0.010	48. 379	1.00 57.97	N
	ATOM	1791	CA	PRO B	110	12. 247	-1. 352	48. 342	1.00 59.41	C
	ATOM	1792	CB	PRO B	110	10. 771	-1. 137	48.658	1.00 59.43	С
	ATOM	1793	CG	PRO B	110	10. 826	-0.010	49. 639	1.00 59.26	С
5	ATOM	1794	CD	PRO B	110	11. 814	0.940	48.977	1.00 58.27	С
	ATOM	1795	С	PRO B	110	12. 466	-2.035	46. 994	1.00 60.89	С
	ATOM	1796	0	PRO B	110	12. 780	-3. 225	46. 941	1.00 61.42	0
	ATOM	1797	N	HIS B	111	12. 298	-1. 279	45.908	1.00 62.25	N
	ATOM	1798	CA	HIS B	111	12. 501	-1. 818	44. 564	1.00 63.28	С
10	ATOM	1799	СВ	HIS B	111	12. 336	-0.724	43. 502	1.00 64.21	С
	ATOM	1800	CG	HIS B	111	10.952	-0. 166	43. 405	1.00 67.26	С
	ATOM	1801	ND1	HIS B	111	10. 332	0. 482	44. 453	1.00 69.85	N
	ATOM	1802	CE1	HIS B	111	9. 130	0.877	44.074	1.00 70.46	С
	ATOM	1803	NE2	HIS B	111	8. 946	0. 508	42.818	1.00 70.26	N
15	ATOM	1804	CD2	HIS B	111	10.070	-0. 146	42.377	1.00 69.17	C
	ATOM	1805	C	HIS B	111	13. 918	-2. 370	44. 469	1. 00 62. 59	С
	ATOM	1806	0	HIS B	111	14. 148	-3. 571	44. 615	1.00 63.03	0
	ATOM	1807	N	SER B	112	14. 862	-1. 466	44. 221	1.00 61.45	N
	ATOM	1808	CA	SER B	112	16. 272	-1.804	44. 101	1.00 60.38	С
20	ATOM	1809	CB	SER E	112	17. 115	-0. 527	44. 156	1.00 60.82	С
	ATOM	1810	OG	SER E	112	18. 482	-0. 823	44. 399	1.00 62.59	0
	ATOM	1811	С	SER E	112	16. 730	-2. 749	45. 200	1.00 58.84	С
	ATOM	1812	0	SER E	3 112	17. 523	-3. 661	44. 962	1.00 58.90	0
	ATOM	1813	N	GLY E	3 113	16. 216	-2. 529	46. 405	1.00 57.13	N
25	ATOM	1814	CA	GLY F	3 113	16.618	-3. 346	47. 530	1.00 55.12	С
	ATOM	1815	С	GLY E	3 113	17. 859	-2.704	48. 119	1.00 53.27	С
	ATOM	1816	0	GLY I	3 113	18. 847	-3. 378	48. 414	1.00 52.87	0
	ATOM	1817	N	SER I	3 114	17. 811	-1. 384	48. 274	1.00 51.27	N
	ATOM	1818	CA	SER I	3 114	18. 942	-0. 654	48. 827	1.00 49.51	С

								_
ATOM	1819	CB	SER B 114	19. 952	-0. 353	47. 719	1. 00 50. 16	С
ATOM	1820	0G	SER B 114	19. 337	0.344	46. 644	1.00 48.59	0
ATOM	1821	С	SER B 114	18. 548	0.647	49. 519	1.00 48.18	С
ATOM	1822	0	SER B 114	17. 461	1. 183	49. 296	1.00 48.12	0
ATOM	1823	N	ILE B 115	19. 445	1. 133	50. 372	1.00 46.06	N
ATOM	1824	CA	ILE B 115	19. 248	2.383	51. 100	1. 00 44. 42	С
ATOM	1825	CB	ILE B 115	19.600	2. 237	52.606	1.00 44.90	С
ATOM	1826	CG1	ILE B 115	18. 543	1.394	53. 322	1.00 46.80	С
ATOM	1827	CD	ILE B 115	17. 184	2.066	53. 435	1. 00 45. 52	С
ATOM	1828	CG	2 ILE B 115	19. 687	3.610	53. 261	1.00 46.02	С
ATOM	1829	С	ILE B 115	20. 189	3.412	50.480	1.00 41.86	С
ATOM	1830	0	ILE B 115	21. 241	3.060	49.949	1.00 41.37	0
ATOM	1831	N	HIS B 116	19. 799	4.681	50. 534	1.00 39.40	N
ATOM	1832	CA	HIS B 116	20. 613	5.749	49. 974	1.00 36.16	С
ATOM	1833	СВ	HIS B 116	19. 902	6. 413	48. 783	1.00 36.63	С
ATOM	1834	. CG	HIS B 116	19. 458	5.460	47. 714	1.00 37.67	С
MOTA	1835	NE	1 HIS B 116	18. 918	5. 892	46. 519	1.00 41.47	N
ATOM	1836	6 CE	E1 HIS B 116	18. 570	4. 847	45. 790	1.00 40.60	С
ATOM	1837	7 . NE	2. HIS B 116	18. 867	3.752	46. 466	1.00 38.98	N
ATOM	1838	3 CI	02 HIS B 116	19. 426	4. 109	47. 671	1.00 39.98	С
ATOM	1839	э с	HIS B 116	20. 874	6.810	51. 037	1.00 33.97	C
ATOM	184	0 0	HIS B 116	20. 077	6. 991	51. 954	1.00 32.57	0
ATOM	184	1 N	SER B 117	22. 003	7. 498	50.908	1. 00 31. 18	N
ATOM	184	2 C	A SER B 117	22. 379	8. 564	51.828	3 1.00 30.38	C
ATOM	184	3 C	B SER B 117	23. 787	7 8.339	52. 382	2 1.00 28.97	C
ATOM	184	4 0	G SER B 117	23. 80	7. 236	5 53. 268	3 1.00 35.19	0
ATOM	184	5 C	SER B 117	22. 33	6 9.840	51.009	1.00 28.86	С
ATOM	184	46 C	SER B 117	23. 18	1 10.05	8 50.139	9 1.00 28.75	0
ATOM	i 184	17 N	VAL B 118	21. 34	4 10.67	7 51. 29	3 1.00 27.21	N
	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	ATOM 1820 ATOM 1821 ATOM 1822 ATOM 1823 ATOM 1824 ATOM 1825 ATOM 1826 ATOM 1827 ATOM 1828 ATOM 1829 ATOM 1830 ATOM 1831 ATOM 1832 ATOM 1833 ATOM 1833 ATOM 1836 ATOM 1836 ATOM 1836 ATOM 1836 ATOM 1836 ATOM 1836 ATOM 1837 ATOM 1838 ATOM 1844	ATOM 1820 OG ATOM 1821 C ATOM 1822 O ATOM 1823 N ATOM 1824 CA ATOM 1825 CB ATOM 1826 CG1 ATOM 1827 CD1 ATOM 1828 CG2 ATOM 1829 C ATOM 1830 O ATOM 1831 N ATOM 1832 CA ATOM 1833 CB ATOM 1834 CG ATOM 1835 ND ATOM 1836 CE ATOM 1837 NE ATOM 1838 CI ATOM 1839 C ATOM 1841 N ATOM 1841 N ATOM 1842 CA ATOM 1841 N ATOM 1842 CA ATOM 1843 CI ATOM 1844 O ATOM 1844 O ATOM 1845 CI ATOM 1846 O	ATOM 1820 OG SER B 114 ATOM 1821 C SER B 114 ATOM 1822 O SER B 114 ATOM 1823 N ILE B 115 ATOM 1824 CA ILE B 115 ATOM 1825 CB ILE B 115 ATOM 1826 CG1 ILE B 115 ATOM 1827 CD1 ILE B 115 ATOM 1828 CG2 ILE B 115 ATOM 1829 C ILE B 115 ATOM 1830 O ILE B 115 ATOM 1831 N HIS B 116 ATOM 1832 CA HIS B 116 ATOM 1833 CB HIS B 116 ATOM 1834 CG HIS B 116 ATOM 1835 ND1 HIS B 116 ATOM 1836 CE1 HIS B 116 ATOM 1837 NE2 HIS B 116 ATOM 1838 CD2 HIS B 116 ATOM 1839 C HIS B 116 ATOM 1840 O HIS B 116 ATOM 1841 N SER B 117 ATOM 1842 CA SER B 117 ATOM 1843 CB SER B 117 ATOM 1844 OG SER B 117 ATOM 1845 C SER B 117	ATOM 1820 OG SER B 114 19.337 ATOM 1821 C SER B 114 18.548 ATOM 1822 O SER B 114 17.461 ATOM 1823 N ILE B 115 19.445 ATOM 1824 CA ILE B 115 19.248 ATOM 1825 CB ILE B 115 19.600 ATOM 1826 CG1 ILE B 115 18.543 ATOM 1827 CD1 ILE B 115 19.687 ATOM 1828 CG2 ILE B 115 19.687 ATOM 1830 O ILE B 115 20.189 ATOM 1831 N HIS B 116 19.799 ATOM 1832 CA HIS B 116 19.902 ATOM 1833 CB HIS B 116 19.902 ATOM 1834 CG HIS B 116 19.458 ATOM 1835 ND1 HIS B 116 19.458 ATOM 1836 CE1 HIS B 116 18.570 ATOM 1837 NE2 HIS B 116 19.426 ATOM 1838 CD2 HIS B 116 19.426 ATOM 1839 C HIS B 116 19.426 ATOM 1839 C HIS B 116 20.874 ATOM 1841 N SER B 117 22.003 ATOM 1841 N SER B 117 22.378 ATOM 1843 CB SER B 117 23.787 ATOM 1844 OG SER B 117 23.787 ATOM 1845 C SER B 117 23.787 ATOM 1845 C SER B 117 23.807	ATOM 1820 OG SER B 114 19.337 0.344 ATOM 1821 C SER B 114 18.548 0.647 ATOM 1822 O SER B 114 17.461 1.183 ATOM 1823 N ILE B 115 19.445 1.133 ATOM 1824 CA ILE B 115 19.248 2.383 ATOM 1825 CB ILE B 115 19.600 2.237 ATOM 1826 CG1 ILE B 115 18.543 1.394 ATOM 1827 CD1 ILE B 115 19.687 3.610 ATOM 1828 CG2 ILE B 115 19.687 3.610 ATOM 1829 C ILE B 115 20.189 3.412 ATOM 1830 O ILE B 115 21.241 3.060 ATOM 1831 N HIS B 116 19.799 4.681 ATOM 1832 CA HIS B 116 19.799 4.681 ATOM 1833 CB HIS B 116 19.902 6.413 ATOM 1834 CG HIS B 116 19.458 5.460 ATOM 1835 ND1 HIS B 116 19.458 5.460 ATOM 1836 CE1 HIS B 116 18.570 4.847 ATOM 1838 CD2 HIS B 116 19.426 4.109 ATOM 1839 C HIS B 116 20.077 6.991 ATOM 1840 O HIS B 116 20.077 6.991 ATOM 1841 N SER B 117 22.003 7.498 ATOM 1842 CA SER B 117 22.379 8.564 ATOM 1843 CB SER B 117 23.787 8.339 ATOM 1844 OG SER B 117 23.801 7.236 ATOM 1845 C SER B 117 23.801 7.236	ATOM 1820 OG SER B 114 19. 337 0. 344 46. 644 ATOM 1821 C SER B 114 18. 548 0. 647 49. 519 ATOM 1822 O SER B 114 17. 461 1. 183 49. 296 ATOM 1823 N ILE B 115 19. 445 1. 133 50. 372 ATOM 1824 CA ILE B 115 19. 248 2. 383 51. 100 ATOM 1825 CB ILE B 115 19. 600 2. 237 52. 606 ATOM 1826 CG1 ILE B 115 19. 600 2. 237 52. 606 ATOM 1827 CD1 ILE B 115 19. 600 2. 237 52. 606 ATOM 1828 CG2 ILE B 115 17. 184 2. 066 53. 435 ATOM 1829 C ILE B 115 19. 687 3. 610 53. 261 ATOM 1830 O ILE B 115 20. 189 3. 412 50. 480 ATOM 1831 N HIS B 116 19. 799 4. 681 50. 534 ATOM 1832 CA HIS B 116 20. 613 5. 749 49. 974 ATOM 1833 CB HIS B 116 19. 902 6. 413 48. 783 ATOM 1834 CG HIS B 116 19. 458 5. 460 47. 714 ATOM 1835 ND1 HIS B 116 18. 918 5. 892 46. 519 ATOM 1836 CE1 HIS B 116 18. 867 3. 752 46. 466 ATOM 1839 C HIS B 116 19. 426 4. 109 47. 671 ATOM 1840 O HIS B 116 20. 077 6. 991 51. 954 ATOM 1841 N SER B 117 22. 379 8. 564 51. 326 ATOM 1842 CA SER B 117 23. 787 8. 339 52. 382 ATOM 1844 OG SER B 117 23. 787 8. 339 52. 382 ATOM 1845 C SER B 117 23. 787 8. 339 52. 382 ATOM 1844 OG SER B 117 23. 787 8. 339 52. 382 ATOM 1845 C SER B 117 23. 787 8. 339 52. 382 ATOM 1846 O SER B 117 23. 787 8. 339 52. 382 ATOM 1846 C SER B 117 23. 787 8. 339 52. 382	ATOM 1820 OG SER B 114 19.337 0.344 46.644 1.00 48.59 ATOM 1821 C SER B 114 18.548 0.647 49.519 1.00 48.18 ATOM 1822 O SER B 114 17.461 1.183 49.296 1.00 48.12 ATOM 1823 N ILE B 115 19.445 1.133 50.372 1.00 46.06 ATOM 1824 CA ILE B 115 19.600 2.237 52.606 1.00 44.42 ATOM 1826 CG1 ILE B 115 19.600 2.237 52.606 1.00 44.90 ATOM 1827 CD1 ILE B 115 19.600 53.322 1.00 46.80 ATOM 1828 CG2 ILE B 115 19.687 3.610 53.261 1.00 45.52 ATOM 1829 C ILE B 115 20.189 3.412 50.480 1.00 41.37 ATOM 1830 O ILE B 115 21.241 3.060 49.949 1.00 41.37 ATOM 1831 N HIS B 116 19.799 4.681 50.534 1.00 39.40 ATOM 1832 CA HIS B 116 19.902 6.413 48.783 1.00 36.63 ATOM 1833 CB HIS B 116 19.458 5.460 47.714 1.00 37.67 ATOM 1834 CG HIS B 116 18.570 4.847 45.790 1.00 40.60 ATOM 1839 C HIS B 116 19.426 4.109 47.671 1.00 39.98 ATOM 1840 O HIS B 116 20.077 6.991 51.954 1.00 32.57 ATOM 1844 OG SER B 117 23.381 7.236 53.268 1.00 35.19 ATOM 1844 OG SER B 117 23.381 7.236 53.268 1.00 35.19 ATOM 1844 OG SER B 117 23.381 7.236 53.268 1.00 35.19 ATOM 1844 OG SER B 117 23.381 7.236 53.268 1.00 35.19 ATOM 1844 OG SER B 117 23.381 7.236 53.268 1.00 35.19

	ATOM	1848	CA	VAL B	118	21. 139	11. 920	50. 555	1.00 24.78	С
	ATOM	1849	CB	VAL B	118	19. 634	12. 130	50. 259	1.00 24.46	С
	ATOM	1850	CG1	VAL B	118	19. 417	13. 417	49. 484	1.00 25.74	С
	ATOM	1851	CG2	VAL B	118	19. 093	10. 944	49. 492	1.00 28.06	С
5	ATOM	1852	С	VAL B	118	21. 644	13. 155	51. 281	1.00 24.11	C.
	ATOM	1853	0	VAL B	118	21. 399	13. 338	52. 469	1.00 23.10	0
	ATOM	1854	N	SER B	119	22. 346	14. 011	50. 551	1.00 23.66	N
	ATOM	1855	CA	SER B	119	22. 838	15. 238	51. 135	1.00 23.20	С
	ATOM	1856	СВ	SER B	119	24. 342	15. 125	51. 435	1.00 23.15	С
10	ATOM	1857	OG	SER B	119	25. 095	14. 833	50. 271	1.00 27.22	0
	ATOM	1858	С	SER B	119	22. 563	16. 397	50. 188	1.00 21.37	С
	ATOM	1859	0	SER B	119	22. 489	16. 216	48. 978	1.00 20.94	0
	ATOM	1860	N	VAL B	120	22. 364	17. 582	50. 756	1.00 22.48	N
	ATOM	1861	CA	VAL B	120	22. 134	18. 784	49. 966	1.00 21.59	C
15	ATOM	1862	СВ	VAL B	120	21. 263	19.802	50. 726	1.00 23.28	С
	ATOM	1863	CG1	VAL B	120	21. 150	21. 090	49. 926	1.00 20.40	С
	ATOM	1864	CG2	VAL B	120	19.861	19. 218	50. 963	1.00 23.55	С
	ATOM	1865	С	VAL B	120	23. 509	19. 397	49. 718	1.00 21.37	С
	ATOM	1866	0	VAL B	120	24. 131	19. 938	50. 628	1.00 20.79	0
20	ATOM	1867	N	VAL B	121	23. 990	19. 297	48. 488	1.00 20.82	N
	ATOM	1868	CA	VAL B	121	25. 299	19. 838	48. 147	1.00 18.66	С
	ATOM	1869	CB	VAL B	121	25. 717	19. 392	46. 738	1.00 19.78	С
	ATOM	1870	CG1	VAL B	121	27. 081	20. 006	46. 358	1. 00 20. 77	С
	ATOM	1871	CG2	VAL B	121	25. 759	17. 882	46. 681	1. 00 22. 61	С
25	ATOM	1872	С	VAL B	121	25. 274	21. 362	48. 192	1.00 18.80	C
	ATOM	1873	0	VAL B	121	26. 117	22. 005	48. 825	1. 00 15. 52	0
	ATOM	1874	N	GLU B	122	24. 285	21. 931	47. 524	1.00 18.78	N
	ATOM	1875	CA	GLU B	122	24. 139	23. 376	47. 447	1.00 20.84	С
	ATOM	1876	CB	GLU B	122	25. 021	23. 914	46. 321	1.00 20.82	С

	ATOM	1877	CG	GLU B	122	25. 154	25. 410	46. 270	1.00 23.89	С
	ATOM	1878	CD	GLU B	122	26. 095	25.847	45. 169	1.00 28.52	С
	ATOM	1879	0E1	GLU B	122	25. 625	26. 400	44. 154	1.00 31.82	0
	ATOM	1880	0E2	GLU B	122	27. 311	25.618	45. 314	1.00 29.06	0
5	ATOM	1881	С	GLU E	122	22. 684	23.665	47. 132	1.00 20.92	С
	ATOM	1882	0	GLU E	122	22. 026	22.865	46. 460	1.00 20.92	0
	ATOM	1883	N	ALA E	123	22. 177	24. 805	47. 593	1. 00 22. 15	N
	ATOM	1884	CA	ALA E	123	20. 780	25. 130	47. 333	1.00 23.57	С
	ATOM	1885	СВ	ALA E	123	19. 876	24. 114	48.050	1.00 21.65	С
10	ATOM	1886	С	ALA E	3 123	20. 361	26. 545	47. 714	1.00 24.94	С
	ATOM	1887	0	ALA I	3 123	20. 909	27. 143	48. 633	1.00 27.17	0
	ATOM	1888	N	ASN I	3 124	19. 380	27. 056	46. 975	1.00 25.25	N
	ATOM	1889	CA	ASN I	3 124	18. 770	28. 374	47. 181	1.00 25.20	С
	ATOM	1890	CB	ASN I	3 124	19.054	29.306	46.003	1.00 25.23	С
15	ATOM	1891	CG	ASN I	3 124	18. 413	30.663	46. 180	1.00 29.26	C
	ATOM	1892	OD1	ASN I	3 124	17. 257	30.770	46. 594	1.00 26.62	0
	ATOM	1893	ND2	ASN 1	B 124	19. 158	31.715	45. 854	1. 00 32. 85	N
	ATOM	1894	С	ASN 1	B 124	17. 288	28. 034	47. 191	1.00 23.20	С
	ATOM	1895	0	ASN 1	B 124	16. 723	27. 733	46. 149	1. 00 21. 33	0
20	ATOM	1896	N	TYR 1	B 125	16. 657	28. 088	48. 359	1.00 23.13	N
	ATOM	1897	CA	TYR	B 125	15. 259	27. 704	48. 475	1.00 24.00	С
	ATOM	1898	CB	TYR	B 125	14. 801	27. 806	49. 934	1.00 25.22	C
	ATOM -	1899	CG	TYR	B 125	15. 077	29. 124	50. 607	1.00 28.94	С
	ATOM	1900	CD1	TYR	B 125	14. 295	30. 247	50. 338	1.00 31.58	С
25	ATOM	1901	CE1	TYR	B 125	14. 559	31. 469	50. 950	1.00 34.01	С
	ATOM	1902	CZ	TYR	B 125	15. 616	31. 568	51. 836	1.00 34.12	С
	ATOM	1903	ОН	TYR	B 125	15. 909	32. 776	52. 421	1.00 38.52	0
	ATOM	1904	CE2	2 TYR	B 125	16. 404	30. 462	52. 123	1.00 34.39	С
	ATOM	1905	CD2	2 TYR	B 125	16. 131	29. 252	51. 508	1.00 30.83	С

	ATOM	1906	С	TYR	В	125	14. 253	28. 380	47. 551	1.00 24.08	С
	ATOM	1907	0	TYR	В	125	13. 123	27. 909	47. 424	1.00 22.03	0
	ATOM	1908	N	ASP	В	126	14. 652	29. 468	46. 900	1.00 23.69	N
	ATOM	1909	CA	ASP	В	126	13. 753	30. 150	45. 976	1.00 24.21	С
5	ATOM	1910	CB	ASP	В	126	13. 891	31. 668	46.068	1.00 25.29	С
	ATOM	1911	CG	ASP	В	126	13. 295	32. 230	47. 316	1.00 26.34	С
	ATOM	1912	OD1	ASP	В	126	12. 139	31. 869	47. 625	1.00 29.25	0
	ATOM	1913	OD2	ASP	В	126	13. 985	33. 038	47. 974	1.00 27.99	0
	ATOM	1914	С	ASP	В	126	14. 072	29. 764	44. 554	1. 00 25. 46	С
10	ATOM	1915	0	ASP	В	126	13. 380	30. 180	43. 624	1.00 26.59	0
	ATOM	1916	N	GLU	В	127	15. 124	28. 983	44. 365	1.00 24.21	N
	ATOM	1917	CA	GLU	В	127	15. 502	28. 628	43. 011	1.00 25.61	С
	ATOM	1918	CB	GLU	В	127	16.654	29. 531	42. 536	1.00 25.52	С
	ATOM	1919	CG	GLU	В	127	16. 297	31. 019	42. 467	1. 00 32. 98	С
15	ATOM	1920	CD	GLU	В	127	17. 396	31. 871	41.838	1. 00 39. 11	С
	ATOM	1921	OE1	GLU	В	127	17.852	31. 547	40. 719	1.00 41.53	0
	ATOM	1922	0E2	GLU	В	127	17. 799	32. 875	42. 459	1.00 44.56	0
	ATOM	1923	С	GLU	В	127	15.870	27. 184	42.745	1.00 23.89	С
	ATOM	1924	0	GLU	В	127	15. 350	26. 594	41.805	1.00 23.89	0
20	ATOM	1925	N	TYR	В	128	16. 751	26. 603	43. 554	1.00 23.39	N
	ATOM	1926	CA	TYR	В	128	17. 169	25. 240	43. 274	1.00 22.92	С
	ATOM	1927	CB	TYR	В	128	18. 173	25. 266	42. 126	1.00 21.87	С
	ATOM	1928	CG	TYR	В	128	19. 509	25. 847	42. 552	1.00 24.09	С
	ATOM	1929	CD1	TYR	В	128	20. 464	25. 047	43. 182	1.00 22.01	С
25	ATOM	1930	CE1	TYR	В	128	21. 647	25. 578	43. 659	1.00 24.98	С
	ATOM	1931	CZ	TYR	В	128	21. 900	26. 927	43. 511	1.00 26.66	С
	ATOM	1932	OH	TYR	В	128	23. 079	27. 431	43. 998	1.00 30.76	0
	ATOM	1933	CE2	TYR	В	128	20. 979	27. 755	42. 885	1.00 29.10	С
	ATOM	1934	CD2	TYR	В	128	19. 785	27. 210	42. 405	1.00 23.51	С

	ATOM	1935	С	TYR B	128	17. 790	24. 506	44. 452	1.00 22.50	С
	ATOM	1936	0	TYR B	128	18. 143	25. 101	45. 464	1.00 23.17	0
	ATOM	1937	N	ALA B	129	17. 939	23. 196	44. 280	1.00 23.06	N
	ATOM	1938	CA	ALA B	129	18. 523	22. 326	45. 281	1.00 22.00	С
5	ATOM	1939	CB	ALA B	129	17. 429	21. 691	46. 143	1.00 22.73	С
·	ATOM	1940	С	ALA B	129	19. 300	21. 251	44. 546	1.00 23.97	С
	ATOM	1941	0	ALA B	129	18. 751	20. 543	43.704	1.00 23.33	0
	ATOM	1942	N	LEU B	130	20. 588	21. 154	44. 858	1.00 23.49	N
	ATOM	1943	CA	LEU B	130	21. 465	20. 166	44. 250	1.00 24.77	C
10	ATOM	1944	СВ	LEU B	130	22.806	20.807	43.893	1.00 24.15	С
	ATOM	1945	CG	LEU B	130	23. 789	19. 994	43.047	1.00 30.51	С
	ATOM	1946	CD1	LEU B	130	23. 151	19.653	41. 706	1.00 30.79	С
	ATOM	1947	CD2	LEU B	130	25. 075	20.800	42.840	1.00 28.10	С
	ATOM	1948	С	LEU B	130	21.670	19.060	45. 276	1.00 24.21	С
15	ATOM	1949	0	LEU B	130	22. 287	19. 285	46. 322	1.00 25.91	0
	ATOM	1950	N	LEU B	131	21. 142	17. 873	44. 982	1.00 24.62	N
	ATOM	1951	CA	LEU B	131	21. 259	16. 741	45. 894	1.00 24.99	C
	ATOM	1952	CB	LEU B	131	19. 907	16.062	46. 097	1.00 23.32	С
	ATOM	1953	CG	LEU B	131	18.654	16. 817	46. 533	1.00 27.65	С
20	MOTA	1954	CD1	LEU B	131	17. 598	15. 779	46. 854	1.00 27.12	С
	MOTA	1955	CD2	LEU B	131	18.909	17. 681	47. 747	1.00 24.33	С
	ATOM	1956	С	LEU B	131	22. 238	15. 681	45. 406	1.00 26.69	С
	ATOM	1957	0	LEU B	131	22. 398	15. 454	44. 199	1.00 27.32	0
	ATOM	1958	N	PHE B	132	22.894	15. 035	46. 362	1.00 26.02	N
25	ATOM	1959	CA	PHE B	132	23. 820	13. 969	46.052	1.00 26.25	C
	ATOM	1960	СВ	PHE B	132	25. 237	14. 305	46. 493	1.00 26.48	С
	ATOM	1961	CG	PHE B	132	26. 221	13. 193	46. 239	1.00 30.21	С
	ATOM	1962	CD1	PHE B	132	26. 596	12. 860	44. 933	1.00 33.16	С
	ATOM	1963	CE1	PHE B	132	27. 476	11. 805	44. 686	1.00 34.30	С

ATOM

1964 CZ PHE B 132 27.992 11.071 45.751 1.00 34.39 C

		200				_						
	ATOM	1965	CE2	PHE E	3 1	32	27. 629	11. 392	47.057	1.00 3	36. 12	С
	ATOM	1966	CD2	PHE E	3 1	.32	26. 746	12. 452	47. 296	1.00 3	32. 16	С
	ATOM	1967	С	PHE E	3 1	.32	23. 345	12. 750	46.807	1.00 2	26. 32	С
5	ATOM	1968	0	PHE I	B 1	.32	23. 065	12. 816	48.001	1.00 2	27. 04	0
	ATOM	1969	N	SER I	B 1	.33	23. 231	11.640	46.099	1.00 2	27. 21	N
	ATOM	1970	CA	SER I	B 1	33	22. 802	10. 401	46.714	1.00 3	30. 77	С
	ATOM	1971	СВ	SER I	B 1	133	21. 440	9. 993	46. 170	1.00 3	30. 65	С
	ATOM	1972	OG	SER I	B 1	133	21. 074	8. 721	46.675	1.00	36. 04	0
10	ATOM	1973	С	SER I	B 1	133	23. 820	9. 294	46. 446	1.00	32. 06	С
	ATOM	1974	0	SER 1	B 1	133	24. 303	9. 123	45.326	1.00	32. 43	0
	ATOM	1975	N	ARG 1	В	134	24. 169	8. 559	47. 487	1.00	33. 25	N
	ATOM	1976	CA	ARG :	В :	134	25. 104	7. 465	47. 334	1.00	35. 64	С
	ATOM	1977	CB	ARG	B :	134	26. 446	7. 788	48.007	1.00	34. 49	С
15	ATOM	1978	CG	ARG	B :	134	26. 345	8. 228	49. 450	1.00	37. 30	С
	ATOM	1979	CD	ARG	В	134	27. 377	9. 305	49. 764	1.00	38. 87	С
	MOTA	1980	NE	ARG	В	134	27. 331	9. 725	51. 162	1.00	39. 78	N
	ATOM	1981	CZ	ARG	В	134	27. 740	8. 970	52. 176	1.00	39. 69	С
	ATOM	1982	NH1	ARG	В	134	28. 229	7. 757	51. 945	1.00	42. 68	N
20	ATOM	1983	NH2	ARG	В	134	27. 659	9. 418	53. 420	1.00	36. 98	N
	ATOM	1984	С	ARG	В	134	24. 479	6. 221	47. 930	1.00	36. 40	С
	ATOM	1985	0	ARG	В	134	23. 870	6. 268	49.002	1.00	35. 15	0
	ATOM	1986	N	GLY	В	135	24. 603	5. 119	47. 198	1.00	38. 19	N
	ATOM	1987	CA	GLY	В	135	24. 066	3.846	47. 642	1.00	41.62	С
25	ATOM	1988	С	GLY	В	135	25. 098	2. 763	47. 406	1. 00	44. 13	С
	ATOM	1989	0	. GLY	В	135	26. 115	2. 998	46. 753	1.00	42. 97	0
	ATOM	1990	N	THR	В	136	24. 844	1.571	47. 931	1.00	47. 49	N
	ATOM	1991	CA	THR	В	136	25. 777	0. 471	47. 764	1.00	50. 61	С
	ATOM	1992	СВ	THR	В	136	27. 029	0. 670	48. 632	1.00	51. 09	С

	ATOM	1993	0G1	THR B	136	27. 838	-0. 514	48. 580	1.00 52.66	0
	ATOM	1994	CG2	THR B	136	26. 635	0. 975	50. 071	1.00 52.23	С
	ATOM	1995	С	THR B	136	25. 148	-0.858	48. 131	1.00 52.28	C
	ATOM	1996	0	THR B	136	24. 947	-1. 158	49. 306	1.00 52.60	0
5	ATOM	1997	N	LYS B	137	24. 830	-1.651	47. 114	1.00 53.62	N
	ATOM	1998	CA	LYS B	137	24. 238	-2.964	47. 327	1.00 54.93	С
	ATOM	1999	СВ	LYS B	137	23. 811	-3.563	45. 986	1.00 55.60	C
	ATOM	2000	CG	LYS B	137	22. 315	-3. 750	45. 819	1.00 56.78	С
	ATOM	2001	CD	LYS B	137	21. 977	-4. 167	44. 384	1.00 58.70	C
10	ATOM	2002	CE	LYS B	137	22. 698	-5. 457	43. 978	1.00 58.92	С
	ATOM	2003	NZ	LYS B	137	22. 598	-5. 762	42. 517	1.00 58.82	N
	ATOM	2004	С	LYS B	137	25. 245	-3.890	48.007	1.00 55.28	С
	ATOM	2005	0	LYS B	137	24. 880	-4.940	48. 531	1.00 55.22	0
	ATOM	2006	N	GLY B	138	26. 515	-3. 490	47. 978	1.00 55.65	N
15	ATOM	2007	CA	GLY B	138	27. 573	-4. 277	48. 584	1.00 55.72	С
	ATOM	2008	С	GLY B	138	28. 934	-3.779	48. 145	1. 00 55. 93	С
	ATOM	2009	0	GLY B	138	29. 019	-2.852	47. 334	1.00 55.96	0
	ATOM	2010	N	PRO B	139	30. 021	-4. 374	48.662	1.00 55.62	N
	ATOM	2011	CA	PRO B	139	31. 381	-3.969	48. 309	1.00 55.42	С
20	ATOM	2012	CB	PRO B	139	32. 250	-4. 922	49. 125	1.00 55.83	С
	ATOM	2013	CG	PRO B	139	31. 413	-5. 209	50. 321	1.00 55.60	С
	ATOM	2014	CD	PRO B	139	30. 048	-5. 415	49. 701	1.00 55.87	С
	ATOM	2015	С	PRO B	139	31. 682	-4.044	46. 819	1. 00 54. 93	С
	MOTA	2016	0	PRO B	139	32. 059	-5. 092	46. 298	1. 00 56. 18	0
25	ATOM	2017	N	GLY B	140	31. 505	-2. 920	46. 134	1.00 53.90	N
	MOTA	2018	CA	GLY B	140	31. 783	-2.864	44. 705	1. 00 52. 20	С
	ATOM	2019	С	GLY B	140	30. 527	-2. 585	43. 913	1.00 51.21	С
	ATOM	2020	0	GLY B	140	30. 576	-2. 319	42. 713	1.00 51.38	0
	MOTA	2021	N	GLN B	141	29. 396	-2. 665	44. 603	1.00 49.60	N

	ATOM	2022	CA	GLN B	141	28. 103	-2.413	43. 994	1.00 47.90	С
	MOTA	2023	CB	GLN B	141	27. 085	-3.474	44. 431	1.00 47.88	С
	ATOM	2024	CG	GLN B	141	27. 328	-4.884	43. 913	1.00 46.95	С
	ATOM	2025	CD	GLN B	141	26. 237	-5.858	44. 349	1.00 45.80	С
5	ATOM	2026	0E1	GLN B	141	26. 126	-6. 201	45. 522	1.00 46.77	0
	ATOM	2027	NE2	GLN B	141	25. 422	-6. 296	43. 401	1.00 44.27	N
	ATOM	2028	С	GLN B	141	27. 622	-1.030	44. 429	1.00 46.82	С
	ATOM	2029	0	GLN B	141	26. 440	-0.827	44. 695	1.00 45.66	0
	ATOM	2030	N	ASN B	142	28. 557	-0.086	44. 493	1.00 45.91	N
10	ATOM	2031	CA	ASN B	142	28. 275	1. 284	44.906	1.00 44.46	С
	ATOM	2032	CB	ASN E	142	29. 542	1. 943	45. 455	1. 00 44. 95	С
	ATOM	2033	CG	ASN E	3 142	30. 593	0. 932	45.861	1. 00 46. 96	С
	ATOM	2034	OD1	ASN E	3 142	30. 373	0. 115	46. 759	1. 00 51. 35	0
	MOTA	2035	ND2	ASN E	3 142	31. 745	0. 978	45. 197	1.00 47.04	N
15	ATOM	2036	С	ASN E	3 142	27. 778	2. 110	43. 740	1.00 43.18	С
	ATOM	2037	0	ASN E	3 142	28. 372	2. 092	.42.669	1.00 42.88	0
	ATOM	2038	N	PHE I	3 143	26. 689	2.837	43.943	1.00 40.49	N
	ATOM	2039	CA	PHE I	3 143	26. 172	3. 688	42.885	1.00 39.21	С
	ATOM	2040	CB	PHE I	3 143	24. 855	3. 120	42.335	1.00 39.22	С
20	ATOM	2041	CG	PHE I	3 143	23.646	3. 464	43. 147	1.00 41.52	С
	ATOM	2042	CD1	PHE I	3 143	23. 104	4. 743	43.097	1.00 43.86	С
	ATOM	2043	CE1	PHE I	3 143	21. 971	5.063	43.823	1.00 46.05	С
	ATOM	2044	CZ	PHE !	B 143	21. 363	4. 097	44. 612	1.00 47.94	С
	ATOM	2045	CE2	PHE !	B 143	21. 893	2.813	44. 673	1.00 44.88	С
25	ATOM	2046	CD2	PHE !	B 143	23. 029	2. 503	43. 940	1.00 43.37	С
	ATOM	2047	С	PHE	B 143	25.991	5. 110	43. 420	1.00 37.46	С
	ATOM	2048	0	PHE	B 143	25. 731	5. 308	44. 607	1.00 35.21	0
	ATOM	2049	N	ARG	B 144	26. 143	6. 090	42. 537	1.00 35.85	N
	ATOM	2050	CA	ARG	B 144	26. 013	7. 494	42.902	1.00 35.66	С

	ATOM	2051	СВ	ARG E	144	27. 356	8. 201	42. 737	1.00 37.36	С
	ATOM	2052	CG	ARG E	144	28. 516	7. 552	43. 461	1.00 40.81	C
	ATOM	2053	CD	ARG E	144	29. 802	8. 273	43. 113	1.00 47.72	С
	ATOM	2054	NE	ARG E	144	30. 956	7. 704	43. 796	1.00 52.59	N
5	ATOM	2055	CZ	ARG E	144	32. 207	8. 103	43. 596	1.00 56.44	С
	ATOM	2056	NH1	ARG E	144	32. 461	9. 076	42.732	1.00 59.03	N
	ATOM	2057	NH2	ARG E	144	33. 202	7. 525	44. 254	1.00 58.04	N
	ATOM	2058	С	ARG E	144	24. 985	8. 207	42. 025	1.00 34.31	С
	ATOM	2059	0	ARG E	144	24. 860	7. 913	40.835	1.00 32.59	0
10	ATOM	2060	N	MET E	145	24. 260	9. 157	42.605	1.00 32.17	N
	ATOM	2061	CA	MET E	145	23. 270	9. 900	41.842	1.00 31.38	С
	ATOM	2062	СВ	MET E	145	21. 907	9. 224	41. 957	1.00 32.20	С
	ATOM	2063	CG	MET E	145	20.805	10.000	41. 282	1.00 36.58	С
	ATOM	2064	SD	MET E	145	19. 260	9. 102	41. 257	1.00 41.13	S
15	ATOM	2065	CE	MET E	145	18. 612	9. 475	42.864	1.00 39.42	С
	MOTA	2066	C	MET E	145	23. 146	11. 371	42. 239	1.00 30.58	С
	MOTA	2067	0	MET E	3 145	22. 959	11. 707	43. 413	1.00 29.84	0
	ATOM	2068	N	ALA E	3 146	23. 261	12. 241	41. 241	1.00 28.92	N
	ATOM	2069	CA	ALA F	3 146	23. 136	13. 681	41. 429	1.00 26.73	С
20	MOTA	2070	CB	ALA I	3 146	24. 231	14. 409	40.666	1.00 26.72	С
	ATOM	2071	C	ALA I	3 146	21. 765	14. 101	40.904	1. 00 26. 22	С
	ATOM	2072	0	ALA I	3 146	21. 378	13. 743	39. 792	1.00 25.15	0
	ATOM	2073	N	THR I	3 147	21. 034	14. 858	41.712	1.00 26.04	N
	ATOM	2074	CA	THR I	3 147	19. 707	15. 320	41. 335	1.00 24.43	С
25	ATOM	2075	CB	THR I	3 147	18.635	14. 690	42. 225	1.00 24.48	С
	ATOM	2076	0G1	THR I	3 147	18. 895	13. 287	42. 346	1.00 28.38	0
	ATOM	2077	CG2	THR I	3 147	17. 255	14. 891	41.617	1.00 24.67	С
	ATOM	2078	С	THR 1	3 147	19. 606	16. 837	41. 464	1.00 23.63	С
	ATOM	2079	0	THR I	3 147	20.044	17. 422	42.462	1.00 22.67	0

PCT/JP2003/016233

	ATOM	2080	N	LEU B	148	19. 033	17. 472	40. 448	1.00 22.08	N
	ATOM	2081	CA	LEU B	148	18.861	18. 919	40. 465	1.00 21.25	С
	ATOM	2082	CB	LEU B	148	19. 545	19. 556	39. 255	1.00 22.23	С
	ATOM	2083	CG	LEU B	148	19. 335	21. 066	39. 029	1. 00 23. 35	С
~ .5	ATOM	2084	CD1	LEU B	148	19. 992	21. 874	40. 123	1.00 24.17	С
	ATOM	2085	CD2	LEU B	148	19. 920	21. 453	37. 696	1.00 25.57	С
	ATOM	2086	С	LEU B	148	17. 383	19. 275	40. 467	1.00 20.22	С
	ATOM	2087	0	LEU B	148	16.664	18. 997	39. 510	1.00 19.83	0
•	ATOM	2088	N	TYR B	149	16. 937	19.865	41. 567	1.00 20.43	N
10	ATOM	2089	CA	TYR B	149	15. 552	20. 297	41.715	1.00 21.42	С
	MOTA	2090	СВ	TYR B	149	15. 058	20. 016	43. 132	1.00 22.01	C.
	ATOM	2091	CG	TYR B	149	14. 633	18. 591	43. 344	1. 00 23. 22	С
	ATOM	2092	CD1	TYR B	149	13. 435	18. 123	42. 820	1.00 27.87	С
	ATOM	2093	CE1	TYR B	149	13. 022	16. 814	43. 019	1. 00 29. 19	С
15	ATOM	2094	CZ	TYR E	149	13.815	15. 955	43. 746	1. 00 30. 82	С
	ATOM	2095	OH	TYR E	149	13. 394	14. 659	43. 937	1. 00 37. 77	0
	ATOM	2096	CE2	TYR E	149	15. 020	16. 390	44. 277	1. 00 30. 92	С
	ATOM	2097	CD2	TYR E	149	15. 423	17. 705	44. 075	1. 00 27. 50	С
	ATOM	2098	С	TYR E	149	15. 482	21. 789	41. 434	1. 00 21. 29	С
20	ATOM	2099	0	TYR E	3 149	16. 435	22. 530	41. 707	1. 00 20. 13	0
	ATOM	2100	N	SER E	3 150	14. 350	22. 223	40.895	1.00 21.81	N
	ATOM	2101	CA	SER E	3 150	14. 144	23. 623	40.557	1.00 22.08	С
	ATOM	2102	CB	SER E	3 150	14. 355	23. 807	39. 050	1.00 23.22	С
	ATOM	2103	OG	SER I	3 150	14. 148	25. 147	38. 655	1.00 20.11	0
25	ATOM	2104	С	SER I	3 150	12.745	24. 116	40.946	1.00 22.46	С
	ATOM	2105	0	SER I	3 150	11. 767	23. 378	40. 830	1.00 20.73	0
	MOTA	2106	N	ARG I	3 151	12. 659	25. 360	41. 411	1.00 22.10	N
	ATOM	2107	CA	ARG I	3 151	11. 373	25. 934	41.777	1.00 22.76	С
	ATOM	2108	CB	ARG I	3 151	11. 561	27. 252	42. 541	1.00 20.89	С

	ATOM	2109	CG	ARG B	151	12. 009	27. 087	43.994	1.00 19.59	С
	ATOM	2110	CD	ARG B	151	10. 946	26. 397	44.861	1.00 14.05	С
	ATOM	2111	NE	ARG B	151	11. 344	26. 371	46. 270	1.00 16.55	N
	ATOM	2112	CZ	ARG B	151	10.649	25. 800	47. 250	1.00 17.56	С
5	_ATOM	2113	NH1	ARG B	151	9. 501	25. 182	46. 998	1.00 18.38	N
	ATOM	2114	NH2	ARG B	151	11. 096	25. 867	48. 496	1.00 16.44	N
	ATOM	2115	С	ARG B	151	10. 573	26. 184	40. 497	1.00 25.21	С
	· ATOM	2116	0	ARG B	151	9. 351	26. 262	40. 524	1.00 25.14	0
	ATOM	2117	N	THR B	152	11. 275	26. 294	39. 373	1.00 26.93	N
10	ATOM	2118	CA	THR B	152	10. 635	26. 539	38. 086	1.00 29.69	С
	ATOM	2119	CB	THR B	152	11. 167	27. 824	37. 451	1.00 29.18	С
	ATOM	2120	OG1	THR B	152	12. 569	27. 667	37. 190	1.00 32.70	0
	ATOM	2121	CG2	THR B	152	10. 956	29. 007	38. 377	1.00 30.82	С
	ATOM	2122	С	THR B	152	10. 922	25. 403	37. 116	1.00 31.23	С
15	ATOM	2123	0	THR B	152	11. 878	24. 645	37. 293	1.00 31.69	0
	ATOM	2124	N	GLN B	153	10. 101	25. 300	36. 080	1.00 32.65	N
	ATOM	2125	CA	GLN B	153	10. 283	24. 264	35. 077	1.00 35.10	С
	ATOM	2126	CB	GLN B	153	8. 985	24. 043	34. 322	1.00 35.06	С
	ATOM	2127	CG	GLN B	153	7. 878	23. 553	35. 214	1.00 36.53	С
20	ATOM	2128	CD	GLN B	153	6. 621	23. 266	34. 447	1.00 38.81	С
	ATOM	2129	OE1	GLN B	153	6. 607	22. 421	33. 560	1.00 42.69	0
	ATOM	2130	NE2	GLN B	153	5. 554	23. 970	34. 780	1.00 37.04	N
	ATOM	2131	С	GLN B	153	11. 394	24. 614	34. 100	1.00 36.36	С
	ATOM	2132	0	GLN B	153	11. 876	23. 755	33. 368	1.00 37.01	0
25	ATOM	2133	N	THR B	154	11.802	25. 877	34. 100	1.00 38.47	N
	ATOM	2134	CA	THR B	154	12. 862	26. 341	33. 217	1. 00 .40. 05	С
	ATOM	2135	CB	THR B	154	12. 584	27. 772	32. 722	1.00 40.61	С
	ATOM	2136	0G1	THR B	154	11. 270	27. 831	32. 153	1.00 42.12	0
	ATOM	2137	CG2	THR B	154	13. 605	28. 183	31.668	1.00 40.94	С

PCT/JP2003/016233 WO 2004/056992

	ATOM	2138	С	THR B	154	14. 169	26. 333	33. 992	1.00 40.87	С
	ATOM	2139	0	THR B	154	14. 198	26. 665	35. 180	1.00 42.00	0
	ATOM	2140	N	LEU B	155	15. 249	25. 956	33. 319	1.00 40.55	N
	ATOM	2141	CA	LEU B	155	16. 554	25. 888	33. 961	1.00 41.78	С
5	ATOM	2142	CB	LEU B	155 _.	17. 058	24. 441	33. 923	1.00 41.27	С
	ATOM	2143	CG	LEU B	155	17. 825	23. 880	35. 120	1.00 41.78	С
	ATOM	2144	CD1	LEU B	155	16. 977	23. 974	36. 390	1.00 36.65	С
	ATOM	2145	CD2	LEU B	155	18. 186	22. 432	34. 828 .	1. 00 40. 61	С
	ATOM	2146	С	LEU B	155	17. 556	26. 810	33. 266	1. 00 42. 44	С
10	ATOM	2147	0	LEU B	155	17. 723	26. 751	32. 045	1.00 42.40	0
	ATOM	2148	N	LYS B	156	18. 214	27. 667	34. 041	1.00 42.99	N
	ATOM	2149	CA	LYS B	156	19. 206	28. 580	33. 485	1.00 43.59	С
	ATOM	2150	CB	LYS B	156	19. 458	29. 743	34. 449	1.00 43.63	С
	ATOM	2151	CG	LYS B	156	18. 268	30. 680	34. 561	1.00 45.43	С
15	ATOM	2152	CD	LYS B	156	18. 510	31. 823	35. 528	1.00 45.63	С
	ATOM	2153	CE	LYS B	156	17. 297	32. 749	35. 567	1.00 47.26	С
•	ATOM	2154	NZ	LYS B	156	17. 407	33. 814	36.609	1.00 47.89	N
	ATOM	2155	С	LYS B	156	20. 509	27. 836	33. 203	1.00 43.26	С
	ATOM	2156	0	LYS B	156	20. 967	27. 032	34. 012	1.00 41.69	0
20	ATOM	2157	N	ASP B	157	21. 098	28. 110	32.045	1.00 44.05	N
	ATOM	2158	CA	ASP B	157	22. 340	27. 463	31. 637	1.00 44.05	С
	ATOM	2159	СВ	ASP B	157	22. 901	28. 163	30. 402	1.00 45.56	С
	ATOM	2160	CG	ASP B	157	22.056	27. 924	29. 172	1.00 46.47	С
	ATOM	2161	OD1	ASP B	157	20. 830	28. 140	29. 243	1. 00 49. 10	0
25	MOTA	2162	0D2	ASP B	157	22.619	27. 521	28. 134	1.00 50.45	0
	ATOM	2163	С	ASP E	157	23. 403	27. 410	32. 732	1.00 43.87	С
	ATOM	2164	0	ASP B	157	24. 088	26. 396	32. 891	1.00 43.50	0
	ATOM	2165	N	GLU E	158	23. 548	28. 492	33. 487	1.00 43.29	N
	MOTA	2166	CA	GLU E	158	24. 536	28. 512	34. 555	1.00 42.24	С

	ATOM	2167	CB	GLU B	158	24. 580	29.895	35. 211	1. 00 43. 13	С
	ATOM	2168	CG	GLU B	158	23. 234	30. 592	35. 298	1. 00 45. 98	C
	ATOM	2169	CD	GLU B	158	23. 329	32.071	34. 947	1. 00 48. 36	С
	ATOM	2170	OE1	GLU B	158	24. 183	32. 773	35. 533	1. 00 48. 34	0
5	ATOM	2171	0E2	GLU B	158	22. 545	32. 529	34. 085	1.00 49.65	0
	ATOM	2172	С	GLU B	158	24. 222	27. 432	35. 581	1.00 40.64	С
	ATOM	2173	0	GLU B	158	25. 115	26. 915	36. 250	1.00 39.52	0
	ATOM	2174	И.	LEU B	159	22. 945	27. 080	35. 681	1.00 39.39	N
	ATOM	2175	CA	LEU B	159	22. 494	26. 051	36. 613	1.00 37.85	С
10	ATOM	2176	СВ	LEU B	159	20.995	26. 202	36. 847	1. 00 38. 48	С
	ATOM	2177	CG	LEU B	159	20. 420	25. 783	38. 196	1.00 38.76	С
	ATOM	2178	CD1	LEU B	159	21. 193	26. 457	39. 314	1.00 39.56	С
	ATOM	2179	CD2	LEU B	159	18.948	26. 167	38. 248	1.00 38.13	С
	ATOM	2180	С	LEU B	159	22.806	24. 687	36. 005	1.00 37.07	С
15	ATOM	2181	0	LEU B	3 159	23. 174	23. 742	36. 703	1. 00 36. 52	0
	ATOM	2182	N	LYS E	3 160	22.661	24. 591	34. 690	1. 00 36. 16	N
	MOTA	2183	CA	LYS E	3 160	22. 968	23. 358	33. 992	1.00 35.31	С
	ATOM	2184	СВ	LYS E	3 160	22. 590	23. 471	32. 517	1.00 36.22	С
	ATOM	2185	CG	LYS I	3 160	21. 096	23. 433	32. 231	1. 00 37. 33	С
20	ATOM	2186	CD	LYS I	B 160	20. 848	23. 347	30. 727	1.00 38.65	С
	ATOM	2187	CE	LYS I	В 160	19. 369	23. 283	30. 398	1. 00 40. 87	С
	ATOM	2188	NZ	LYS	В 160	19. 138	23. 283	28. 921	1.00 44.32	N
	MOTA	2189	С	LYS	В 160	24. 465	23. 068	34. 113	1.00 34.93	, C
	ATOM	2190	0	LYS	В 160	24. 875	21. 920	34. 311	1.00 34.72	0
25	ATOM	2191	N	GLU	B 161	25. 278	24. 115	33. 999	1.00 33.85	N
	ATOM	2192	CA	GLU	B 161	26. 730	23. 981	34. 089	1.00 33.69	С
	ATOM	2193	CE	GLU	B 161	27. 388	3 25. 316	33. 729	1.00 34.67	С
	ATOM	2194	E CG	GLU	B 161	27. 208	3 25. 686	32. 260	1.00 36.90	С
	ATOM	2195	5 CI	GLU	B 161	27. 516	6 27. 143	31.964	1.00 44.37	С

	ATOM	2196	OE1	GLU B	161	28. 518	27. 668	32. 504	1.00 4	14. 62	0
	ATOM	2197	0E2	GLU B	161	26. 759	27. 761	31. 179	1.00	45. 41	0
	ATOM	2198	С	GLU B	161	27. 163	23. 522	35. 478	1.00	32.63	С
	ATOM	2199	0	GLU B	161	28. 034	22. 658	35. 623	1.00	32. 33	0
5	ATOM	2200	N	LYS B	162	26. 542	24. 088	36. 503	1.00	32. 15	N
	ATOM	2201	CA	LYS B	162	26. 868	23. 700	37.862	1.00	31. 19	С
	ATOM	2202	CB	LYS B	162	26. 037	24. 515	38. 858	1.00	32. 11	С
	ATOM .	2203	CG	LYS E	3 162	26. 316	24. 191	40. 317	1.00	30. 24	С
	ATOM	2204	CD	LYS E	3 162	25. 256	24. 803	41. 226	1.00	29.84	С
10	ATOM	2205	CE	LYS E	3 162	25. 296	26. 322	41. 201	1.00	28. 84	С
	ATOM	2206	NZ	LYS I	3 162	26. 579	26. 847	41. 743	1.00	28. 90	N
	ATOM	2207	С	LYS I	3 162	26. 595	22. 209	38. 044	1.00	29. 86	С
	ATOM	2208	0	LYS I	B 162	27. 412	21. 490	38. 612	1. 00	30. 46	0
	MOTA	2209	N	PHE I	В 163	25. 450	21. 751	37. 546	1. 00	29. 69	N
15	ATOM	2210	CA	PHE 1	B 163	25. 054	20. 346	37. 655	1. 00	29.00	С
	ATOM	2211	CB	PHE !	В 163	23.648	20. 157	37. 071	1.00	28. 39	С
•	ATOM	2212	CG	PHE	B 163	23. 074	18. 795	37. 301	1.00	26. 32	С
	MOTA	2213	CD	1 PHE	В 163	22. 834	18. 337	38. 587	1.00	22. 99	С
	ATOM	2214	CE	1 PHE	B 163	22. 304	17. 077	38. 802	1. 00	22.53	С
20	ATOM	2215	CZ	PHE	В 163	22.007	16. 256	37. 723	1.00	21.90	С
	ATOM	2216	CE	2 PHE	В 163	22. 239	16. 698	36. 440	1. 00	25.70	С
	ATOM	2217	CD	2 PHE	B 163	22. 771	17. 963	36. 231	1.00	26. 75	С
	ATOM	2218	C	PHE	B 163	26. 038	19. 432	36. 933	1.00	29. 29	С
	ATOM	2219	0	PHE	B 163	26. 504	18. 434	37. 487	1.00	30.36	0
25	ATOM	2220	N	THR	B 164	26. 348	19. 772	35. 688	1.00	30.76	N
	ATOM	2221	L CA	THR	B 164	27. 291	18. 981	34. 904	1.00	31.26	С
	ATOM	2222	2 CI	3 THR	B 164	27. 446	19. 556	33. 478	3 1.00	30.79	С
	ATOM	2223	3 00	31 THR	B 164	26. 173	19. 540	32. 817	7 1.00	32.00	0
•	MOTA	2224	4 C	G2 THR	B 164	28. 432	2 18.716	32. 664	1.00	0 33.63	С

	ATOM	2225	С	THR B	164	28.657	18. 958	35. 595	1.00 30.45	С
	ATOM	2226	0	THR B	164	29. 313	17. 915	35. 660	1.00 31.24	0
	ATOM	2227	N	THR B	165	29.079	20. 107	36. 114	1.00 30.54	N
	ATOM	2228	CA	THR B	165	30. 359	20. 202	36. 811	1.00 31.33	С
5	ATOM	2229	CB_	THR B	165	30. 640	21. 648	37. 243	1.00 31.71	С
	ATOM	2230	OG1	THR B	165	30. 720	22. 475	36. 078	1.00 32.17	0
	ATOM	2231	CG2	THR B	165	31. 945	21. 738	38. 013	1.00 31.92	С
	ATOM	2232	C	THR B	165	30. 385	19. 305	38. 050	1.00 31.31	С
	ATOM	2233	0	THR B	165	31. 304	18. 499	38. 228	1.00 30.04	0
10	ATOM	2234	N	PHE B	166	29. 378	19. 451	38. 908	1.00 31.86	N
	ATOM	2235	CA	PHE B	166	29. 300	18. 635	40. 111	1.00 32.35	С
	ATOM	2236	СВ	PHE B	166	28. 069	19. 007	40. 939	1.00 31.30	С
	ATOM	2237	CG	PHE B	166	27. 861	18. 121	42. 138	1.00 34.42	С
	ATOM	2238	CD1	PHE B	166	28. 755	18. 149	43. 206	1.00 32.31	С
15	ATOM	2239	CE1	PHE B	166	28. 580	17. 302	44. 303	1.00 28.62	С
	ATOM	2240	CZ	PHE B	166	27. 505	16. 420	44. 337	1.00 29.27	С
	ATOM	2241	CE2	PHE B	166	26. 610	16. 386	43. 281	1.00 34.35	С
	ATOM	2242	CD2	PHE B	166	26. 790	17. 234	42. 187	1.00 33.74	С
	ATOM	2243	C	PHE B	166	29. 224	17. 153	39. 739	1.00 32.79	С
20	ATOM	2244	0	PHE B	166	29.836	16. 304	40. 398	1.00 34.11	0
	ATOM	2245	N	SER B	167	28. 471	16.847	38. 687	1. 00 33. 75	N
	ATOM	2246	CA	SER B	167	28. 311	15. 464	38. 245	1.00 33.72	С
	ATOM	2247	CB	SER B	167	27. 298	15. 385	37. 102	1.00 32.77	С
	ATOM	2248	OG	SER B	167	26.006	15. 736	37. 551	1. 00 32. 40	0
25	ATOM	2249	С	SER B	167	29. 629	14. 854	37. 791	1.00 34.67	С
	ATOM	2250	0	SER B	167	29. 936	13. 701	38. 102	1. 00 34. 94	0
	ATOM	2251	N	LYS E	168	30. 404	15. 630	37. 048	1.00 35.59	N
	ATOM	2252	CA	LYS B	168	31. 679	15. 145	36. 555	1. 00 36. 93	С
	ATOM	2253	CB	LYS E	168	32. 221	16. 099	35. 488	1.00 37.02	С

	ATOM	2254	CG	LYS B 1	.68	31. 407	16. 084	34. 194	1.00 38.92	С
	ATOM	2255	CD	LYS B 1	.68	31. 949	17. 072	33. 171	1.00 39.84	С
	ATOM	2256	CE	LYS B 1	168	31. 218	16. 942	31. 845	1.00 42.88	С
	ATOM	2257	NZ	LYS B 1	168	31. 693	17. 934	30. 832	1.00 42.91	N
5	ATOM	2258	С	LYS B 1	L68	32. 658	15.002	37. 713	1.00 37.30	С
	ATOM	2259	0	LYS B	168	33. 441	14. 053	37. 758	1.00 36.54	0
	ATOM	2260	N	ALA B	169	32. 589	15. 934	38. 661	1.00 38.00	N
	ATOM	2261	CA	ALA B	169	33. 460	15. 906	39. 828	1.00 38.86	С
	ATOM	2262	СВ	ALA B	169	33. 263	17. 165	40.655	1.00 37.89	С
10	ATOM	2263	С	ALA B	169	33. 171	14. 670	40.671	1.00 39.70	С
	ATOM	2264	0	ALA B	169	33. 854	14. 408	41.660	1.00 41.32	0
	ATOM	2265	N	GLN B	170	32. 157	13. 910	40. 275	1.00 40.38	N
	ATOM	2266	CA	GLN B	170	31. 785	12. 696	40. 992	1.00 39.99	С
	ATOM	2267	СВ	GLN B	170	30. 317	12. 763	41. 415	1.00 39.42	С
15	ATOM	2268	CG	GLN B	170	30. 049	13. 757	42. 528	1.00 36.89	С
	ATOM	2269	CD	GLN B	170	30.870	13. 469	43.770	1.00 37.17	Ċ
	MOTA	2270	0E1	GLN B	170	30. 931	12. 327	44. 235	1.00 36.89	0
	ATOM	2271	NE2	2 GLN B	170	31. 502	14. 501	44. 317	1.00 33.10	N
	ATOM	2272	С	GLN B	170	32. 019	11. 456	40. 137	1.00 40.67	С
20	ATOM	2273	0	GLN B	170	31. 554	10. 361	40. 464	1.00 40.53	0
	ATOM	2274	N	GLY B	171	32. 739	11. 637	39. 034	1.00 42.18	N
	ATOM	2275	CA	GLY B	171	33. 031	10. 519	38. 158	1.00 42.99	С
	ATOM	2276	С	GLY B	171	31. 891	10. 138	37. 234	1.00 44.08	С
	ATOM	2277	0	GLY B	171	31. 738	8. 970	36. 870	1.00 44.03	0
25	ATOM	2278	N	LEU B	172	31. 077	11. 118	36. 861	1.00 44.44	N
	ATOM	2279) CA	LEU B	172	29. 966	10. 863	35. 957	1.00 44.81	С
	MOTA	2280) CE	LEU B	172	28. 664	11. 432	36. 524	1.00 45.23	С
	ATOM	2281	L CG	LEU B	172	28. 158	3 10.879	37.858	1.00 44.93	С
	ATOM	2282	2 CI)1 LEU B	172	26. 829	11. 536	38. 188	1.00 45.43	С
									•	

	ATOM	2283	CD2	LEU B	172	27. 993	9. 368	37. 783	1.00 45.17	С
	ATOM	2284	С	LEU B	172	30. 281	11. 524	34. 624	1. 00 45. 45	С
	ATOM	2285	0	LEU B	172	30. 717	12. 675	34. 576	1.00 45.61	0
	ATOM	2286	N	THR B	173	30. 073	10. 788	33. 541	1.00 45.63	N
5	ATOM	2287	CA	THR B	173	30, 338	11. 309	32. 209	1.00 46.03	С
	ATOM	2288	CB	THR B	173	30. 765	10. 183	31. 267	1. 00 45. 95	С
	ATOM	2289	OG1	THR B	173	29. 743	9. 183	31. 228	1.00 47.13	0
	ATOM	2290	CG2	THR B	173	32. 054	9. 545	31. 761	1.00 46.88	С
	ATOM	2291	С	THR B	173	29. 089	11. 981	31. 651	1.00 45.65	С
10	ATOM	2292	0	THR B	173	27. 991	11. 801	32. 179	1.00 45.14	0
	ATOM	2293	N	GLU B	174	29. 260	12. 751	30. 581	1. 00 45. 76	N
	ATOM	2294	CA	GLU B	174	28. 140	13. 448	29. 969	1.00 45.79	С
	ATOM	2295	СВ	GLU B	174	28. 615	14. 278	28. 777	1.00 46.84	С
	ATOM	2296	CG	GLU B	174	29. 518	15. 428	29. 181	1.00 49.10	С
15	ATOM	2297	CD	GLU B	174	29. 375	16. 630	28. 273	1.00 51.93	С
	ATOM	2298	OE1	GLU B	174	29. 639	16. 496	27. 058	1.00 53.25	0
	ATOM	2299	0E2	GLU E	174	28.993	17. 709	28. 775	1.00 50.59	0
	ATOM	2300	С	GLU E	174	27. 032	12. 501	29. 541	1. 00 44. 90	С
	ATOM	2301	0	GLU E	174	25. 850	12.846	29. 615	1. 00 45. 22	0
20	ATOM	2302	N	GLU E	175	27. 401	11. 304	29. 100	1. 00 43. 45	N
	ATOM	2303	CA	GLU E	3 175	26. 389	10. 341	28.693	1.00 42.73	С
	ATOM	2304	CB	GLU E	3 175	27. 028	9. 121	28. 017	1. 00 43. 30	C
	ATOM	2305	CG	GLU E	3 175	28. 093	8. 403	28. 815	1.00 47.17	С
	ATOM	2306	CD	GLU E	3 175	27. 817	6. 913	28. 917	1. 00 52. 72	С
25	ATOM	2307	OE1	GLU E	3 175	27. 495	6. 295	27.877	1. 00 54. 49	0
	ATOM	2308	0E2	GLU E	3 175	27. 922	6. 359	30. 034	1. 00 54. 58	0
	ATOM	2309	С	GLU I	3 175	25. 582	9. 918	29. 916	1.00 40.71	С
	ATOM	2310	0	GLU I	3 175	24. 478	9. 390	29. 793	1.00 40.87	0
	ATOM	2311	N	ASP I	3 176	26. 136	10. 166	31. 099	1.00 39.09	N

	ATOM	2312	CA	ASP B	176	25. 460	9. 826	32. 345	1.00 38.13	С
	ATOM	2313	CB	ASP B	176	26. 465	9. 332	33. 391	1.00 38.20	С
	ATOM	2314	CG	ASP B	176	26. 930	7. 910	33. 132	1.00 38.78	С
	ATOM	2315	OD1	ASP B	176	26. 083	7. 055	32. 782	1.00 36.70	0
5	ATOM	2316	OD2	ASP B	176	28. 139	7.644	33. 296	1. 00 40. 22	0
	ATOM	2317	С	ASP B	176	24. 693	11. 019	32. 912	1.00 36.59	С
	ATOM	2318	0	ASP B	176	24. 104	10. 930	33. 982	1.00 36.42	0
	ATOM	2319	N	ILE B	177	24. 698	12. 130	32. 191	1.00 35.68	N
	ATOM	2320	CA	ILE B	177	24. 017	13. 332	32.650	1.00 34.90	С
10	ATOM	2321	CB	ILE B	177	25. 009	14. 507	32. 722	1.00 35.58	С
	ATOM	2322	CG1	ILE B	177	26. 172	14. 132	33. 649	1.00 33.32	С
	ATOM	2323	CD1	ILE B	177	27. 339	15. 103	33. 605	1. 00 34. 46	С
	ATOM	2324	CG2	ILE B	177	24. 301	15.762	33. 207	1. 00 34. 43	С
	ATOM	2325	С	ILE B	177	22. 855	13.697	31. 729	1.00 34.02	С
15	ATOM	2326	0	ILE B	177	23.002	13. 704	30. 509	1.00 33.69 ·	0
	ATOM	2327	N	VAL B	178	21. 701	13. 996	32. 316	1.00 32.85	N
	ATOM	2328	CA	VAL B	178	20. 532	14. 345	31. 517	1.00 31.32	С
	ATOM	2329	CB	VAL B	178	19.650	13. 107	31. 252	1.00 31.12	С
	ATOM	2330	CG1	VAL B	178	19. 180	12. 513	32. 563	1.00 31.16	С
20	ATOM	2331	CG2	VAL B	178	18. 445	13.500	30. 400	1.00 33.20	С
	ATOM	2332	С	VAL B	178	19. 637	15. 412	32. 122	1. 00 29. 38	С
	ATOM	2333	0	VAL B	178	19. 302	15. 355	33. 295	1.00 30.40	0
	ATOM	2334	N	PHE B	179	19. 248	16. 387	31. 308	1. 00 28. 78	N
	ATOM	2335	CA	PHE B	179	18. 341	17. 438	31. 759	1.00 28.53	С
25	ATOM	2336	СВ	PHE B	179	18. 737	18. 786	31. 143	1.00 27.73	С
	ATOM	2337	CG	PHE B	179	20.042	19. 315	31. 684	1.00 29.80	С
	ATOM	2338	CD1	PHE B	179	20. 116	19.813	32. 983	1.00 30.84	С
	ATOM	2339	CE1	PHE B	179	21. 336	20. 190	33. 544	1.00 32.23	С
	ATOM	2340	CZ	PHE B	179	22. 502	20.072	32. 797	1.00 34.74	С

	ATOM	2341	CE2	PHE B	179	22. 443	19. 582	31. 492	1.00 33.64	С
	ATOM	2342	CD2	PHE B	179	21. 215	19. 209	30. 942	1.00 32.32	С
	ATOM	2343	С	PHE B	179	16. 956	16. 974	31. 331	1.00 29.31	С
	ATOM	2344	0	PHE B	179	16. 622	16. 949	30. 143	1.00 29.18	0
5	ATOM	2345	N	LEU B	180	16. 178	16. 565	32. 330	1.00 30.16	. N
	ATOM	2346	CA	LEU B	180	14.836	16. 031	32. 150	1.00 29.93	С
	ATOM	2347	CB	LEU B	180	14. 245	15. 708	33. 524	1.00 30.00	С
	ATOM	2348	CG	LEU B	180	15. 155	14.806	34. 375	1.00 30.73	С
	ATOM	2349	CD1	LEU B	180	14. 558	14. 593	35. 762	1.00 26.95	С
10	ATOM	2350	CD2	LEU B	180	15. 352	13. 468	33. 672	1.00 26.54	С
	ATOM	2351	С	LEU B	180	13. 887	16. 912	31. 351	1.00 30.61	С
	ATOM	2352	0	LEU B	180	13. 620	18. 057	31. 720	1.00 30.66	0
	ATOM	2353	N	PRO B	181	13. 362	16. 382	30. 232	1.00 32.29	N
	ATOM	2354	CA	PRO B	181	12. 437	17. 139	29. 388	1.00 33.25	С
15	ATOM	2355	CB	PRO B	181	12. 331	16. 276	28. 134	1.00 33.09	C
	ATOM	2356	CG	PRO B	181	12. 459	14. 902	28.676	1.00 33.42	С
	ATOM	2357	CD	PRO B	181	13. 589	15. 036	29.674	1.00 30.91	С
	ATOM	2358	С	PRO B	181	11. 091	17. 341	30.070	1.00 34.85	С
	ATOM	2359	0	PRO B	181	10.603	16. 463	30. 773	1.00 33.36	0
20	ATOM	2360	N	GLN B	182	10. 509	18. 517	29.853	1.00 37.61	N
	ATOM	2361	CA	GLN B	182	9. 220	18. 878	30. 421	1.00 41.17	С
	ATOM	2362	СВ	GLN B	182	8. 963	20. 365	30. 174	1.00 41.43	С
	ATOM	2363	CG	GLN B	182	7. 645	20. 876	30. 706	1.00 43.12	С
	ATOM	2364	CD	GLN B	182	7. 403	22. 321	30. 326	1.00 46.68	С
25	ATOM	2365	0E1	GLN B	182	8. 151	23. 214	30.729	1.00 45.85	0
	ATOM	2366	NE2	GLN B	182	6. 360	22. 559	29. 536	1.00 46.64	N
	ATOM	2367	С	GLN B	182	8. 095	18. 043	29. 805	1.00 42.85	С
	ATOM	2368	0	GLN B	182	7.862	18. 090	28. 602	1.00 43.90	0
	ATOM	2369	N	PRO B	183	7. 390	17. 257	30. 629	1.00 44.63	N

	ATOM	2370	CA	PRO 1	В	183	6. 288	16. 416	30. 150	1. 00 46. 17	С
	ATOM	2371	СВ	PRO 1	В	183	5. 904	15. 610	31. 390	1. 00 45. 60	С
	ATOM	2372	CG	PRO 1	В	183	7. 167	15. 564	32. 173	1. 00 45. 82	С
	ATOM	2373	CD	PRO 1	В	183	7. 687	16. 964	32. 038	1. 00 44. 40	С
5	ATOM	2374	С	PRO 1	В	183	5. 130	17. 272	29. 657	1. 00, 47, 47	С
	ATOM	2375	0	PRO 1	В	183	4. 973	18. 413	30. 091	1. 00 47. 66	0
	ATOM	2376	N	ASP 1	В	184	4. 319	16. 726	28. 757	1.00 49.52	N
	ATOM	2377	CA	ASP 1	В	184	3. 181	17. 470	28. 239	1. 00 52. 24	С
	ATOM	2378	СВ	ASP !	В	184	2. 737	16. 898	26. 891	1. 00 52. 89	С
10	ATOM	2379	CG	ASP 1	В	184	2. 513	17. 982	25. 849	1. 00 55. 95	С
	ATOM	2380	OD1	ASP 1	В	184	3. 480	18. 715	25. 534	1.00 57.87	0
	ATOM	2381	OD2	ASP 1	В	184	1. 373	18. 107	25. 346	1. 00 61. 13	0
	ATOM	2382	С	ASP 1	В	184	2.034	17. 410	29. 248	1.00 53.04	С
	ATOM	2383	0	ASP :	В	184	1. 228	18. 332	29. 343	1.00 53.26	0
15	ATOM	2384	N	LYS	В	185	1. 975	16. 321	30. 007	1.00 54.24	N
	ATOM	2385	CA	LYS	В	185	0.945	16. 148	31.024	1.00 55.51	С
	ATOM	2386	CB	LYS	В	185	-0.080	15. 100 ⁻	30. 578	1.00 55.50	С
	ATOM	2387	CG	LYS	В	185	0.500	13. 738	30. 233	1. 00 57. 16	С
	ATOM	2388	CD	LYS	В	185	-0.576	12.827	29.658	1.00 59.05	С
20	ATOM	2389	CE	LYS	В	185	0.029	11. 582	29. 027	1.00 60.15	С
	ATOM	2390	NZ	LYS	В	185	-0.982	10.804	28. 253	1.00 62.13	N
	ATOM	2391	C	LYS	В	185	1. 569	15. 728	32. 351	1.00 55.95	С
	ATOM	2392	0	LYS	В	185	2. 792	15. 651	32. 472	1.00 55.12	0
	ATOM	2393	N	CYS	В	186	0.716	15. 473	33. 340	1.00 57.05	N
25	ATOM	2394	CA	CYS	В	186	1. 139	15. 050	34. 675	1.00 58.53	С
	ATOM	2395	СВ	CYS	В	186	2.096	13.857	34. 595	1.00 57.56	С
	ATOM	2396	SG	CYS	В	186	1. 530	12. 467	33. 576	1. 00 54. 12	S
	ATOM	2397	С	CYS	В	186	1. 815	16. 131	35. 513	1.00 60.82	С
	ATOM	2398	0	CYS	В	186	2. 384	15. 823	36. 559	1.00 61.78	0

	ATOM	2399	N	ILE B 187	7	1. 763	17. 387	35. 080	1.00 63.56	N
	ATOM	2400	CA	ILE B 18'	7	2. 415	18. 454	35. 839	1. 00 66. 53	С
	ATOM	2401	CB	ILE B 18	7	3.874	18. 652	35. 363	1. 00 66. 78	С
	ATOM	2402	CG1	ILE B 18	7	4. 702	17. 408	35. 696	1.00 66.73	С
5	ATOM	2403	CD1	ILE B 18	7	6. 159	17. 512	35. 298	1.00 69.46	C
	ATOM	2404	CG2	ILE B 18	7	4. 487	19. 879	36. 026	1.00 67.81	С
	MOTA	2405	С	ILE B 18	7	1. 711	19.806	35. 806	1.00 68.53	С
	ATOM	2406	0	ILE B 18	37	1. 952	20. 651	36. 669	1.00 69.20	0
	ATOM	2407	N	GLN B 18	88	0.855	20.003	34. 805	1.00 71.16	N
10	ATOM	2408	CA	GLN B 18	88	0.093	21. 243	34. 635	1.00 73.58	С
	ATOM	2409	CB	GLN B 18	38	-0.529	21. 695	35. 961	1.00 73.62	С
	ATOM	2410	CG	GLN B 18	38	-1. 130	20. 595	36. 807	1. 00 75. 18	С
	ATOM	2411	CD	GLN B 18	38	-1. 452	21. 083	38. 206	1.00 78.27	С
	ATOM	2412	OE1	GLN B 18	38	-0.749	21. 937	38. 748	1. 00 79. 42	0
15	ATOM	2413	NE2	GLN B 18	88	-2. 502	20. 535	38. 806	1.00 78.56	N
	ATOM	2414	С	GLN B 18	88	0. 950	22. 385	34. 095	1.00 75.04	С
	ATOM	2415	0	GLN B 18	88	0.985	23. 464	34. 687	1.00 75.36	0
	ATOM	2416	N	GLU B 18	89	1.628	22. 136	32. 977	1.00 76.95	N
	ATOM	2417	CA	GLU B 1	89	2. 494	23. 116	32. 311	1.00 78.69	С
20	ATOM	2418	СВ	GLU B 1	89	3. 166	24. 058	33. 320	1.00 79.07	С
	ATOM	2419	CG	GLU B 1	89	2. 460	25. 402	33. 534	1.00 81.42	С
	ATOM	2420	CD	GLU B 1	.89	2.511	26. 310	32. 312	1.00 84.40	С
	ATOM	2421	OE	1 GLU B 1	.89	1.987	25. 916	31. 246	1.00 85.84	0
	ATOM	2422	OE	2 GLU B 1	.89	3.073	27. 423	32. 419	1.00 84.76	0
25	ATOM	2423	C	GLU B 1	189	3. 572	22. 399	31. 504	1.00 79.10	С
	ATOM	2424	0	GLU B 1	189	4. 766	22. 599	31. 810	1.00 79.70	0
	ATOM	2425	ох	T GLU B 1	189	3. 209	21. 644	30. 576	1.00 79.48	0
	ATOM	2426	6 0	HOH W	1	4. 040	12. 508	8. 261	1.00 26.70	0
	ATOM	2427	7 0	HOH W	2	13. 933	21. 047	-5. 444	1.00 32.16	0

	ATOM	2428	0	HOH W	3	14. 595	10.712	-6. 463	1.00 26.68	0
	ATOM	2429	0	HOH W	4	19. 496	15.770	2. 484	1.00 31.13	0
	ATOM	2430	0	HOH W	5	18. 407	11. 181	-4. 230	1.00 34.02	0
	ATOM	2431	0	HOH W	6	16. 852	13. 205	18. 050	1.00 33.11	0
5	ATOM	2432	0	нон М	7	10. 214	21.072	58. 242	1.00 37.47	0
	ATOM	2433	0	HOH W	8	9. 748	10. 525	59. 061	1.00 34.17	0
	ATOM	2434	0	HOH W	9	20. 458	12. 571	44. 330	1.00 35.78	0
	ATOM	2435	0	HOH W	10	8. 700	11.028	45. 277	1.00 51.91	0
	ATOM	2436	0	НОН ₩	11	16. 314	26. 308	10. 121	1.00 33.23	0
10	ATOM	2437	0	HOH W	12	15. 210	20.001	32. 653	1.00 39.92	0
	ATOM	2438	0	HOH W	13	3. 960	5. 716	47. 160	1.00 45.80	0
	ATOM	2439	0	HOH W	14	26. 435	17.047	49. 748	1.00 40.15	0
	ATOM	2440	0	HOH W	15	-1.112	11. 755	2. 219	1.00 64.01	0
	ATOM	2441	0	HOH W	16	10. 171	28. 451	50. 750	1.00 43.61	0
15	ATOM	2442	0	HOH W	17	10. 104	20. 203	4. 975	1.00 53.19	0
	ATOM	2443	0	HOH W	18	20. 745	16. 542	-2. 769	1. 00 28. 77	0
	ATOM	2444	0	HOH W	19	-5. 660	-7.610	5.960	1. 00 45. 24	0
	ATOM	2445	0	HOH W	20	9.000	20.045	19.857	1.00 38.22	0
	ATOM	2446	. 0	HOH W	21	8. 480	7.462	30.871	1.00 47.46	0
20	ATOM	2447	0	HOH W	22	27. 822	17. 883	54. 991	1. 00 28. 92	0
	ATOM	2448	0	HOH W	23	2. 188	18.872	32. 043	1.00 48.84	0
	ATOM	2449	0	HOH W	24	17. 633	18.838	57. 504	1.00 41.89	0
	ATOM	2450	0	HOH W	25	21. 652	25. 017	51. 935	1.00 57.47	0
	ATOM	2451	0	HOH W	26	7. 604	12. 850	34. 861	1.00 41.07	0
25	ATOM	2452	0	HOH W	27	25. 207	11.648	50. 638	1.00 69.60	0
	ATOM	2453	0	HOH W	29	16. 729	13. 179	27. 696	1.00 47.29	0
	ATOM	2454	0	нон 🛚	30	5. 081	13. 816	26. 987	1.00 66.72	0
	ATOM	2455	0	нон 🛚	31	12. 960	30. 863	40. 957	1. 00 47. 76	0
	ATOM	2456	0	HOH W	32	15. 970	11. 521	7. 301	1. 00 49. 79	0

	ATOM	2457	0	нон 🔻	33	21. 271	23. 315	14. 636	1.00 42.32	0
	ATOM	2458	0	HOH W	34	5. 009	10.689	25. 767	1.00 58.86	0
	ATOM	2459	0	HOH W	35	1. 694	10.843	-1.667	1.00 38.92	0
	ATOM	2460	0	нон ₩	36	-0.310	25. 857	2. 103	1.00 60.86	0
5	ATOM	2461	0	HOH W	37	-8. 796	15. 352	6.606	1.00 69.93	0
	ATOM	2462	0	HOH W	38	20. 951	15. 510	-0.080	1. 00 28. 14	0
	ATOM	2463	0	HOH W	39	15. 352	11. 784	30. 109	1.00 51.67	0
	ATOM	2464	0	нон ₩	40	3. 355	14. 719	53. 024	1.00 37.70	0
	ATOM	2465	0	HOH W	42	-2. 050	9. 295	-4. 545	1.00 57.33	0
10	ATOM	2466	0	HOH W	43	-9. 976	9. 916	9. 991	1.00 87.82	0
	ATOM	2467	0	HOH W	44	5. 572	21. 524	-2.004	1.00 74.94	0
	ATOM	2468	0	HOH W	46	9. 193	11.834	22. 390	1.00 50.58	0
	ATOM	2469	0	HOH W	47	17. 876	15. 823	58. 201	1. 00 45. 45	0
	ATOM	2470	0	HOH W	48	10. 186	1. 800	11.898	1.00 58.91	0
15	ATOM	2471	0	НОН ₩	49	9. 488	10.004	34. 123	1.00 48.87	0
	ATOM	2472	0	HOH W	50	0. 567	26. 733	39. 027	1. 00 52. 93	0
	ATOM	2473	0	HOH W	51	10. 518	24. 208	-7. 159	1.00 43.91	0
	ATOM	2474	0	HOH W	52	11. 275	31. 220	11. 609	1.00 72.49	0
	ATOM	2475	0	HOH W	53	20. 256	5. 993	5. 735	1.00 48.72	0
20	ATOM	2476	0	HOH W	54	-4. 488	19. 914	37. 431	1.00 55.84	0
	ATOM	2477	0	HOH W	55	9. 259	18.064	3. 239	1.00 58.33	0
	ATOM	2478	0	HOH W	56	23. 933	22. 944	51. 722	1.00 54.99	0
	ATOM	2479	0	HOH W	57	24. 841	9. 119	-0.096	1.00 53.03	0
	ATOM	2480	0	HOH W	58	4. 424	16. 540	23. 959	1.00 45.30	0
25	ATOM	2481	0	HOH W	59	23. 572	18. 774	53. 301	1.00 43.19	0
	ATOM	2482	0	HOH W	60	19. 627	11. 112	27. 097	1.00 56.82	0
	ATOM	2483	0	HOH W	61	7. 728	25. 890	42. 676	1.00 40.99	0
	ATOM	2484	0	HOH W	62	13. 333	1. 796	4. 471	1.00 48.50	0
	ATOM	2485	0	HOH W	63	5. 991	15. 776	-5. 712	1.00 36.49	0

	ATOM	2486	0	HOH W	65	6. 100	10. 580	56. 983	1.00 44.25	0
	ATOM	2487	0	HOH W	66	10. 175	17. 800	-9. 148	1.00 50.73	0
	ATOM	2488	0	НОН ₩	67	12. 429	10. 671	26. 357	1.00 43.62	0
	ATOM	2489	0	HOH W	68	14. 092	19. 997	47. 805	1.00 56.02	0
5	ATOM	2490	0	HOH W	69	27. 526	13. 816	40.679	1. 00143. 11	0
	ATOM	2491	0	нон 🔻	70	27. 171	25. 976	50. 883	1.00 70.04	0
	ATOM	2492	0	HOH W	71	25. 949	13. 041	12. 265	1.00 61.46	0
	ATOM	2493	0	HOH W	73	20. 947	34. 715	46. 208	1.00 68.24	0
	ATOM	2494	0	HOH W	74	16. 555	26. 377	22. 214	1.00 59.16	0
10	ATOM	2495	0	HOH W	75	-3. 547	26. 746	2.866	1.00 71.13	0
	ATOM	2496	0	HOH W	76	5. 540	14. 794	-9. 696	1.00 69.89	. 0
	ATOM	2497	0	HOH W	77	23. 279	-0. 635	39. 750	1. 00 62. 15	0
	ATOM	2498	0	HOH W	80	19. 922	16. 795	28. 541	1.00 44.27	0
	ATOM	2499	0	HOH W	81	27. 483	11. 963	53. 993	1.00 45.20	0
15	ATOM	2500	0	HOH W	82	13. 906	22. 578	32.044	1.00 55.11	0
	ATOM	2501	0	HOH W	83	22. 987	24. 494	12. 307	1. 00 58. 59	0
	ATOM	2502	0	нон ₩	84	16. 335	8. 026	21.642	1.00 46.23	0
	ATOM	2503	0	HOH W	85	12. 684	3. 455	13.075	1.00 78.38	0
	ATOM	2504	0	HOH W	86	20.879	16. 549	9.771	1.00 42.57	0
20	ATOM	2505	0	HOH W	87	0. 757	21. 593	28. 527	1.00 69.69	0
	ATOM	2506	0	HOH W	88	13. 879	17. 013	47. 543	1. 00 54. 48	0
	ATOM	2507	0	HOH W	89	15. 694	18. 445	49. 669	1. 00 54. 79	0
	ATOM	2508	0	HOH W	90	-2.076	0. 968	51.836	1.00 59.41	0
	ATOM	2509	0	HOH W	91	19. 272	30. 879	50. 117	1.00 58.03	0
25	ATOM	2510	0	HOH W	92	17. 785	26. 541	5. 860	1. 00 58. 78	0
	ATOM	2511	0	HOH W	93	15. 194	10. 406	18.655	1. 00 51. 55	0
	ATOM	2512	0	HOH W	94	14. 191	10. 352	15. 784	1. 00 59. 53	0
	ATOM	2513	0	HOH W	95	14. 530	8. 322	12. 335	1. 00 57. 57	0
	ATOM	2514	0	HOH W	96	14. 382	6. 550	1. 265	1. 00 39. 82	0

112

	MOTA	2514	0	HOH W	96	14. 382	6. 550	1. 265	1.00 39.82	0
	ATOM	2515	0	HOH W	97	3. 491	9.628	-10. 219	1.00 64.18	0
	MOTA	2516	0	HOH W	98	7. 943	11.032	6.651	1.00 61.55	0
	ATOM	2517	0	HOH W	99	2. 917	34. 621	6. 036	1.00 76.28	0
5	ATOM	2518	0	HOH W	100	6. 976	33.080	4. 434	1.00 63.23	0
	ATOM	2519	0	HOH W	101	4. 575	31. 407	2.694	1.00 62.67	0
	ATOM	2520	0	HOH W	102	10. 274	34. 137	10.082	1. 00 56. 85	0
	ATOM	2521	0	HOH W	103	10. 163	22. 575	20. 912	1. 00 54. 58	0
	ATOM	2522	0	HOH W	104	8. 270	24. 585	21. 965	1.00 47.21	0
10	ATOM	2523	0	HOH W	105	17. 520	21.811	53. 118	1. 00 56. 66	0
	ATOM	2524	0	HOH W	106	9. 883	6. 038	51. 329	1. 00 35. 50	0
	ATOM	2525	0	HOH W	107	14. 590	8.397	41.921	1. 00 81. 43	0
	ATOM	2526	0	HOH W	108	16. 218	11. 381	46. 157	1. 00 72. 99	0
	ATOM	2527	0	HOH W	109	24. 706	15. 452	29. 112	1.00 57.26	0
15	ATOM	2528	0	HOH W	110	18. 692	22. 125	55.822	1. 00 70. 38	0
	ATOM	2529	0	HOH W	111	22. 284	24. 536	58. 178	1. 00 54. 74	0
	ATOM	2530	0	HOH W	112	17. 887	1.620	25. 979	1. 00 51. 74	0
	MOTA	2531	0 .	HOH W	113	25. 868	4. 467	51.867	1.00 74.64	0

表3

20

Se-Met型L-PGDSの3次元構造座標

	MOTA	1	СВ	PHE A	34	-8. 574 -24. 037	55. 181	1.00 80.07	A
	ATOM	2	CG	PHE A	34	-7. 718 -22. 864	54. 718	1.00 79.58	A
25	ATOM	3	CD1	PHE A	34	-7. 455 -22. 691	53. 358	1.00 78.93	A
	ATOM	4	CD2	PHE A	34	-7. 119 -21. 988	55. 626	1.00 78.38	A
	ATOM	5	CE1	PHE A	34	-6.605 -21.683	52.908	1.00 77.67	A
	ATOM	6	CE2	PHE A	34	-6. 265 -20. 975	55. 184	1.00 78.08	A
	ATOM	7	CZ	PHE A	34	-6. 008 -20. 827	53.819	1.00 78.70	A
30	ATOM	8	С	PHE A	34	-7, 194 -24, 354	57, 289	1, 00 78, 35	Α

	ATOM	9	0	PHE .	A	34	-6. 887 −23. 715	58. 301	1.00 79.55	A
	ATOM	10	N	PHE	A	34	-9. 359 -23. 145	57. 369	1.00 80.95	A
	ATOM	11	CA	PHE .	A	34	-8. 607 -24. 254	56.712	1.00 79.32	A
	ATOM	12	N	GLN	A	35	-6. 335 -25. 151	56.657	1.00 75.88	A
5	ATOM	13	CA	GLN	A	35	-4. 962 -25. 309	57. 136	1.00 72.38	A
	ATOM	14	СВ	GLN	A	35	-4. 643 -26. 790	57. 280	1.00 74.51	A
	ATOM	15	CG	GLN	A	35	-5.890 -27.647	57. 401	1.00 75.90	A
	ATOM	16	CD	GLN	A	35	-5.570 -29.094	57.698	1.00 76.72	A
	ATOM	17	OE1	GLN	A	35	-5. 107 -29. 428	58. 794	1.00 78.20	A
10	ATOM	18	NE2	GLN	A	35	-5.808 -29.965	56. 722	1.00 75.23	A
	ATOM	19	С	GLN	A	35	-4.008 -24.658	56. 138	1.00 67.48	A
	ATOM	20	0	GLN	A	35	-3. 528 -25. 318	55. 216	1.00 65.63	A
	ATOM	21	N	GLN	A	36	-3.727 -23.369	56. 335	1.00 62.20	A
	ATOM	22	CA	GLN	A	36	-2.859 -22.638	55. 420	1.00 55.74	A
15	ATOM	23	СВ	GLN	A	36	-2.796 -21.139	55. 794	1.00 53.90	A
	ATOM	24	CG	GLN	A	36	-2. 278 -20. 778	57. 183	1.00 53.70	A
	ATOM	25	CD	GLN	A	36	-1. 986 -19. 277	57. 323	1.00 51.50	A
	ATOM	26	OE1	GLN.	A	36	-2.866 -18.437	57. 155	1.00 52.05	A
	ATOM	27	NE2	GLN	A	36	-0.742 -18.945	57.626	1.00 53.40	A
20	ATOM	28	С	GLN	A	36	-1. 453 -23. 210	55. 233	1.00 52.02	A
	ATOM	29	0	GLN	A	36	-0.789 -22.879	54. 252	1.00 52.24	A
	ATOM	30	N	ASP	A	37	-1.005 -24.066	56. 155	1.00 49.11	A
	ATOM	31	CA	ASP	A	37	0. 317 -24. 702	56.046	1.00 44.61	A
	ATOM	32	CB	ASP	A	37	0. 564 -25. 655	57. 224	1.00 49.16	A
25	ATOM	33	CG	ASP	A	37	1. 188 -24. 968	58. 439	1.00 54.29	A
	ATOM	34	OD1	ASP	A	37	2. 411 -24. 701	58. 416	1.00 56.85	A
	ATOM	35	OD2	ASP	A	37	0. 461 -24. 703	59. 425	1.00 55.81	A
	ATOM	36	С	ASP	A	37	0. 356 -25. 495	54. 728	1.00 41.76	A
	ATOM	37	0	ASP	A	37	1. 408 -25. 659	54. 120	1.00 37.74	A

114

	ATOM	38 N	LYS A	38	-0. 808 -25. 976	54. 297	1. 00 40. 27	A
	ATOM	39 CA	A LYS A	38	-0. 935 -26. 728	53. 046	1.00 39.95	A
	ATOM	40 CI	B LYS A	38	-2. 220 -27. 572	53. 057	1.00 41.46	A
	ATOM	41 C	G LYS A	38	-2. 305 -28. 608	54. 160	1.00 43.07	A
5	ATOM	42 C	D LYS A	38	-1. 357 -29. 759	53.888	1.00 49.21	A
	ATOM	43 C	E LYS A	38	-1. 457 -30. 840	54.968	1. 00 53. 99	A
	ATOM	44 N	Z LYS A	38	-0. 391 -31. 886	54.806	1.00 53.22	A
	ATOM '	45 C	LYS A	38	-0. 978 -25. 770	51.847	1.00 39.66	A
	ATOM	46 0	LYS A	38	-0. 533 -26. 115	50.757	1.00 39.39	A
10	ATOM	47 N	PHE A	39	-1. 532 -24. 576	52.053	1.00 40.20	A
	ATOM	48 (CA PHE A	39	-1.628 -23.556	51.001	1.00 37.86	A
	ATOM	49 (OB PHE A	39	-2.463 -22.362	51.514	1.00 44.93	A
	ATOM	50 (CG PHE A	39	-2.920 -21.388	50. 433	1.00 51.45	A
	ATOM	51 (CD1 PHE	A 39	-2. 409 -21. 439	49. 132	1.00 55.30	A
15	MOTA	52	CD2 PHE	A 39	-3.866 -20.403	50.731	1.00 51.56	A
	ATOM	53	CE1 PHE	A 39	-2. 835 -20. 523	48. 144	1.00 54.21	A
	ATOM	54	CE2 PHE	A 39	-4. 296 -19. 485	49. 751	1.00 50.99	A
	ATOM	55	CZ PHE	A . 39	-3. 779 -19. 547	48. 460	1.00 51.28	A
	ATOM	56	C PHE	A 39	-0. 204 -23. 098	50. 639	1.00 32.24	A
20	MOTA	57	O PHE	A 39	0. 055 -22. 637	49. 535	1.00 28.40	A
	ATOM	58	n leu	A 40	0.719 -23.244	51. 580	1.00 29.46	A
	ATOM	59	CA LEU	A 40	2. 103 -22. 845	51.349	1.00 31.74	A
	ATOM	60	CB LEU	A 40	2. 952 -23. 163	52. 579	1.00 32.26	A
	ATOM	61	CG LEU	A 40	2. 491 -22. 423	53.834	1.00 33.81	A
25	ATOM	62	CD1 LEU	A 40	3. 404 -22. 745	54.998	1.00 35.43	A
	ATOM	63	CD2 LEU	A 40	2. 511 -20. 906	53. 548	3 1.00 36.44	A
	ATOM	64	C LEU	A 40	2. 743 -23. 482	2 50.114	1.00 32.72	A
	ATOM	65	o LEU	A 40	2. 308 -24. 546	49.630	1.00 32.75	A
	ATOM	66	N GLY	A 41	3. 773 -22. 820	49.59	1.00 32.46	A

	ATOM	67	CA	GLY A	41	4. 447 -23. 356 48. 432 1. 00 32. 86	A
	ATOM	68	С	GLY A	41	4. 363 -22. 578 47. 134 1. 00 33. 14	A
	ATOM	69	0	GLY A	41	4. 061 -21. 380 47. 106 1. 00 33. 14	A
	ATOM	70	N	ARG A	42	4. 628 -23. 281 46. 040 1. 00 33. 66	A
5	ATOM	71	CA	ARG A	42	4. 636 -22. 665 44. 725 1. 00 35. 33	A
	ATOM	72	CB	ARG A	42	5. 796 -23. 233 43. 894 1. 00 38. 39	A
	ATOM	73	CG	ARG A	42	5. 705 -22. 932 42. 393 1. 00 45. 57	A
	ATOM	74	CD	ARG A	42	5. 769 -24. 211 41. 537 1. 00 52. 54	A
	ATOM	75	NE	ARG A	42	7. 141 -24. 604 41. 210 1. 00 57. 48	A
10	ATOM	76	CZ	ARG A	42	7. 486 -25. 760 40. 643 1. 00 60. 34	A
	ATOM	77	NH	1 ARG A	42	6. 564 -26. 668 40. 334 1. 00 61. 55	A
	ATOM	78	NH	2 ARG A	42	8. 761 -25. 998 40. 369 1. 00 61. 04	A
	ATOM	79	C	ARG A	42	3. 343 -22. 842 43. 961 1. 00 35. 35	A
	ATOM	80	0	ARG A	42	2. 838 -23. 964 43. 821 1. 00 35. 49	A
15	ATOM	81	N	TRP A	43	2. 806 -21. 734 43. 466 1. 00 33. 00	A
	ATOM	82	CA	TRP A	43	1. 592 -21. 791 42. 674 1. 00 33. 72	A
	ATOM	83	СВ	TRP A	43	0. 406 -21. 172 43. 428 1. 00 26. 08	A
	MOTA	84	E CG	TRP A	43	-0.007 -21.884 44.680 1.00 23.97	A
	ATOM	85	5 CD	2 TRP /	A 43	-1. 096 -22. 810 44. 818 1. 00 22. 06	A
20	ATOM	86	6 CE	E2 TRP	A 43	-1. 171 <i>-</i> 23. 169 46. 183 1. 00 18. 60	A
	ATOM	87	7 CE	E3 TRP	A 43	-2. 015 -23. 371 43. 917 1. 00 20. 78	A
	ATOM	88	3 CI	O1 TRP	A 43	0. 529 -21. 740 45. 936 1. 00 25. 06	A
	ATOM	89	9 NI	E1 TRP	A 43	-0. 171 -22. 508 46. 843 1. 00 18. 01	A
	ATOM	9	0 C2	Z2 TRP	A 43	-2. 128 -24. 053 46. 669 1. 00 23. 31	A
25	ATOM	9	1 C	Z3 TRP	A 43	-2. 964 -24. 249 44. 400 1. 00 24. 79	A
	ATOM	9	2 C	H2 TRP	A 43	-3. 019 -24. 583 45. 766 1. 00 23. 79	A
	ATOM	9	3 C	TRP	A 43	1. 826 -21. 037 41. 358 1. 00 35. 56	A
	ATOM	9	4 0	TRP	A 43	2. 929 -20. 550 41. 095 1. 00 37. 26	A
	ATOM	9	5 N	TYR	A 44	0. 793 -20. 975 40. 525 1. 00 37. 30	A

	ATOM	96	CA	TYR A		44	0. 859 -20. 248 39. 263 1. 00 38. 32 A	
	ATOM	97	СВ	TYR A		44	1. 120 -21. 172 38. 072 1. 00 39. 52 A	
	ATOM	98	CG	TYR A		44	2. 402 -21. 933 38. 138 1. 00 40. 70 A	
	ATOM	99	CD1	TYR A		44	2. 402 -23. 324 38. 354 1. 00 38. 14 A	ı
5	ATOM	100	CE1	TYR A	L	44	3. 587 -24. 029 38. 430 1. 00 37. 42 A	L
	ATOM	101	CD2	TYR A	1	44	3. 625 -21. 274 37. 997 1. 00 39. 25 A	k.
	ATOM	102	CE2	TYR A	1	44	4.814 -21.970 38.067 1.00 41.43 A	¥.
	ATOM	103	CZ	TYR A	١	44	4. 792 -23. 349 38. 286 1. 00 41. 53 A	L
	ATOM	104	OH	TYR A	A	44	5. 985 -24. 029 38. 370 1. 00 45. 03 A	١
10	MOTA	105	С	TYR A	A	44	-0. 487 -19. 577 39. 018 1. 00 40. 46	ł
	ATOM	106	0	TYR A	A	44	-1. 544 -20. 232 39. 158 1. 00 39. 17	A
	ATOM	107	N	SER A	A	45	-0. 433 -18. 290 38. 657 1. 00 40. 82	A
	ATOM	108	CA	SER A	A	45	-1. 618 -17. 505 38. 318 1. 00 43. 52	A
	ATOM	109	· CB	SER A	A	45	-1. 243 -16. 053 37. 994 1. 00 44. 83	A
15	ATOM	110	OG	SER A	A	45	-0.342 -15.512 38.936 1.00 52.14	A
	ATOM	111	С	SER .	A	45	-2. 092 -18. 152 37. 021 1. 00 45. 66	A
	ATOM	112	0	SER .	A	4 5	-1. 315 -18. 257 36. 073 1. 00 47. 25	A
	ATOM	113	N	ALA	A	46	-3. 348 -18. 580 36. 961 1. 00 46. 41	A
	ATOM	114	. CA	ALA	A	46	-3. 850 -19. 219 35. 748 1. 00 45. 31	A
20	ATOM	115	CB	ALA	A	46	-4. 012 -20. 698 35. 977 1. 00 46. 81	A
	ATOM	116	С	ALA	A	46	-5. 166 - 18. 623 35. 296 1. 00 45. 28	A
	ATOM	117	0	ALA	A	46	-5. 489 -18. 639 34. 113 1. 00 48. 63	A
	ATOM	118	N	GLY	A	47	-5. 930 - 18. 104 36. 246 1. 00 45. 61	A
	ATOM	119	CA	GLY	A	47	-7. 205 <i>-</i> 17. 511 35. 910 1. 00 43. 75	A
25	ATOM	120	C	GLY	A	47	-7. 329 -16. 131 36. 505 1. 00 43. 31	A
	ATOM	121	. 0	GLY	A	47	-6. 677 -15. 803 37. 485 1. 00 44. 49	A
	ATOM	122	2 N	LEU	A	48	-8. 170 -15. 313 35. 901 1. 00 43. 33	A
	MOTA	123	B CA	LEU	A	48	-8. 396 -13. 968 36. 384 1. 00 43. 41	A
	ATOM	124	Ł CB	LEU	A	48	-7. 227 -13. 074 36. 001 1. 00 40. 63	A

117

	ATOM	125	CG	LEU A	48	3	-6.373 - 1	12. 435	37. 103	1.00 40.99	A
	ATOM	126	CD1	LEU A	48	8	-5. 112 -	11.878	36. 455	1.00 38.94	A
	ATOM	127	CD2	LEU A	48	8	-7. 127 -	11.320	37.839	1.00 39.06	A
	ATOM	128	С	LEU A	4	8	-9.675 -	13. 458	35. 741	1.00 46.49	A
5	ATOM	129	0	LEU A	4	8	-9.966 -	13. 752	34. 577	1.00 47.60	A
	ATOM	130	N	ALA A	4	9	-10.442 -	12.706	36. 515	1.00 49.82	A
	ATOM	131	CA	ALA A	. 4	.9	-11.687 -	12. 128	36.043	1.00 54.89	A
	ATOM	132	СВ	ALA A	. 4	<u> 9</u>	-12. 791 -	13. 149	36. 156	1.00 54.30	A .
	ATOM	133	С	ALA A	. 4	19	-11. 976 -	-10. 916	36. 928	1.00 58.99	A
10	ATOM	134	0	ALA A	4	19	-12.011 -	-11. 043	38. 155	1.00 61.81	A
	ATOM	135	N	SER A	1 8	50	-12. 182	-9.745	36. 326	1.00 62.36	A
	ATOM	136	CA	SER A	A 5	50	-12. 445	-8. 550	37. 123	1.00 66.74	A
	ATOM	137	CB	SER A	A +	50	-11. 118	-7. 939	37. 577	1.00 65.83	A
	ATOM	138	OG	SER A	A :	50	-11. 334	-6. 795	38. 386	1.00 63.09	A
15	ATOM	139	С	SER	A	50	-13. 284	-7.461	36. 456	1.00 70.85	A
	ATOM	140	0	SER	A	50	-13. 550	-7.511	35. 252	1.00 71.11	A
	ATOM	141	N	ASN	A	51	-13. 692	-6. 480	37. 266	1.00 75.09	A
	ATOM	142	CA	ASN	A .	51	-14. 481	-5. 331	36. 819	1.00 79.23	A
	ATOM	143	CE	B ASN	A	51	-15.582	-4.964	37.824	1.00 81.26	A
20	ATOM	144	F CO	ASN	A	51	-16. 260	-6. 168	38. 435	1.00 84.64	A
	ATOM	145	5 01	O1 ASN	A	51	-16.714	-7.072	37.730	1.00 87.24	A
	ATOM	146	5 N	D2 ASN	A	51	-16. 352	-6. 177	39.762	1.00 83.95	A
	ATOM	14'	7 C	ASN	A	51	-13. 537	-4. 137	36.751	1.00 81.34	A
	ATOM	14	3 O	ASN	A	51	-13. 843	-3. 120	36. 127	1.00 82.27	A
25	ATOM	14	9 N	SER	A	52	-12. 401	-4. 264	4 37.428	3 1.00 83.15	A
	ATOM	15	o c	A SER	A	52	-11. 403	-3. 20	5 37.484	1.00 86.71	A
	ATOM	15	1 0	B SER	Α	52	-10. 126	-3. 72	5 38.14	2 1.00 88.84	A
	ATOM	15	2 0	G SER	A	52	-10. 400	-4. 25	9 39.42	3 1.00 94.06	A
	ATOM	15	3 (SER	A	52	-11. 052	-2.63	2 36.12	5 1.00 88.19	A

	ATOM	154	0	SER A	52	-10. 666	-3. 363	35. 214	1.00 88.95	A
	ATOM	155	N	SER A	53	-11. 191	-1.318	35. 989	1.00 90.75	A
	ATOM	156	CA	SER A	53	-10.846	-0.656	34. 740	1.00 93.53	Α
	ATOM	157	CB	SER A	53	-10. 982	0.863	34.888	1.00 94.58	A
5	ATOM	158	OG	SER A	53	-10. 221	1.345	35. 985	1.00 94.06	A
	ATOM	159	С	SER A	53	-9. 392	-1.034	34. 485	1.00 94.71	A
	ATOM	160	0	SER A	53	-8. 986	-1. 288	33. 350	1.00 94.70	A
	ATOM	161	N	TRP A	54	-8. 626	-1.077	35. 573	1.00 95.46	A
	ATOM	162	CA	TRP A	54	-7. 216	-1. 439	35. 542	1.00 96.17	A
10	ATOM	163	CB	TRP A	54	-6.710	-1.638	36. 966	1.00 99.29	A
	ATOM	164	CG	TRP A	54 .	-5. 362	-2. 259	37. 036	1. 00103. 51	A
	ATOM	165	CD2	2 TRP A	54	-5. 075	-3.654	37. 188	1. 00107. 04	A
	ATOM	166	CE2	2 TRP A	54	-3.669	−3. 795	37. 159	1. 00108. 07	A
	ATOM	167	CE	3 TRP A	54	-5. 870	-4. 801	37. 344	1. 00107. 61	A
15	ATOM	168	CD	1 TRP A	54	-4. 160	-1.628	36. 926	1. 00103. 66	A
	ATOM	169	NE	1 TRP A	54	-3. 136	-2.542	36. 999	1. 00106. 47	A
	ATOM	170	CZ	2 TRP A	54	-3.035	-5.043	37. 281	1. 00108. 58	A
	ATOM	171	. CZ	3 TRP A	54	-5. 241	-6.043	37. 465	1. 00107. 90	A
	ATOM	172	· CH	2 TRP A	4 54	-3.835	-6. 151	37. 433	1. 00107. 76	A
20	ATOM	173	3 C	TRP A	A 54	-7.044	-2.733	34. 759	1.00 95.39	A
	ATOM	174	ŧ 0	TRP A	A 54	-6. 128	2.870	33.946	1.00 96.21	A
	ATOM	175	5 N	PHE	A 55	-7. 930	-3.684	35. 030	1.00 93.38	A
	ATOM	176	6 CA	PHE	A 55	-7. 917	7 −4. 975	34. 359	1.00 91.11	A
	ATOM	177	7 CE	PHE .	A 55	-8. 759	-5.978	35. 152	1.00 87.81	A
25	ATOM	178	8 CC	PHE	A 55	-8. 933	3 -7.302	34. 469	1.00 82.50	A
	ATOM	179	9 CI)1 PHE	A 55	-7.837	7 -8. 109	34. 196	5 1.00 79.44	A
	ATOM	18	o CI	D2 PHE	A 55	-10. 201	1 -7.745	34. 102	2 1.00 80.69	A
	ATOM	18	1 CI	E1 PHE	A 55	-8.00	1 -9. 339	33. 569	1.00 78.70	A
	ATOM	18	2 CI	E2 PHE	A 55	-10. 370	6 -8.971	33. 476	5 1.00 78.47	A

	ATOM	183	CZ	PHE A	į	55	-9. 275	-9.770	33. 208	1.00 78.56	A
	ATOM	184	С	PHE A	į	55	-8. 487	-4. 799	32.954	1.00 92.16	A
	ATOM	185	0	PHE A	į	55	-7. 896	-5. 255	31.974	1.00 92.45	A
	ATOM	186	N	ARG A		56	-9. 638	-4. 135	32.867	1.00 92.56	A
5	ATOM	187	CA	ARG A		56	-10. 285	-3.872	31.586	1.00 92.90	A
	ATOM	188	CB	ARG A	L	56	-11. 320	-2. 755	31. 739	1.00 94.04	A
	ATOM	189	CG	ARG A		56	-12.690	-3. 218	32. 212	1.00 96.96	A
	ATOM	190	CD	ARG A	1	56	-13. 540	-2. 048	32. 705	1.00 98.68	A
	ATOM	191	NE	ARG A	1	56	-14. 968	-2. 368	32. 803	1. 00101. 63	A
10	ATOM	192	CZ	ARG A	A	56	-15. 476	-3. 458	33. 381	1. 00101. 88	A
	ATOM	193	NH1	ARG A	A	56	-14. 682	-4. 369	33. 927	1. 00102. 50	A
	ATOM	194	NH2	ARG	A	56	-16. 790	-3, 636	33. 421	1. 00100. 90	A
	ATOM	195	С	ARG A	A	56	-9, 227	-3. 455	30. 572	1.00 92.68	A
	ATOM	196	0	ARG .	A	56	-9. 123	-4. 030	29. 490	1.00 93.70	A
15	ATOM	197	N	GLU	A	57	-8. 439	-2. 452	30.941	1.00 91.14	A
	ATOM	198	CA	GLU	A	57	-7.380	-1. 956	30.080	1.00 89.61	A
	ATOM	199	CB	GLU	A	57	-6.835	-0. 644	30.631	1.00 90.93	A
	ATOM	200	CG	GLU	A	57	-7. 913	0. 376	30.947	1.00 94.22	A
	ATOM.	201	CD	.GLU	A	57	-7. 384	1. 576	31.711	1.00 94.94	A
20	ATOM	202	OE	1 GLU	A	57	-8. 198	2. 461	32.057	1.00 94.57	A
	ATOM	203	OE	2 GLU	A	57	-6. 160	1.635	31.965	1.00 94.94	A
	ATOM	204	1 C	GLU	A	57	-6. 272	-2.991	30.055	1.00 88.82	A
	ATOM	205	5 0	GLU	A	57	-6. 254	-3.885	29. 207	1.00 89.63	A
	ATOM	206	5 N	ALA	A	58	-5. 358	3 -2.871	31.011	1.00 87.18	A
25	ATOM	20	7 CA	ALA	A	58	-4. 222	2 -3.777	31. 124	1.00 86.44	A
	ATOM	208	8 CE	3 ALA	A	58	-3. 286	5 −3. 28 9	5 32. 226	1.00 85.99	A
	ATOM	209	9 C	ALA	A	58	-4.62 3	-5. 23	31.389	1.00 84.70	A
	ATOM	21	0 0	ALA	A	58	-4. 558	3 -5.70	2 32.525	1.00 85.72	A
	ATOM	21	1 N	LYS	Α	. 59	-5. 030	o −5. 94	6 30.343	3 1.00 81.60	A

	ATOM	212	CA	LYS A	59	-5. 408	-7. 347	30. 486	1.00 78.55	A
	ATOM	213	CB	LYS A	59	-6. 926	-7. 496	30. 586	1.00 77.93	A
	ATOM	214	CG	LYS A	59	-7. 698	-6. 993	29. 391	1. 00 78. 22	A
	ATOM	215	CD	LYS A	59	-9. 189	-6. 930	29. 701	1.00 79.39	A
5	MOTA	216	CE	LYS A	59	-9. 760	-8. 287	30. 103	1.00 79.68	A
	ATOM	217	NZ	LYS A	59	-9. 769	-9. 276	28.990	1.00 78.25	A
	ATOM	218	С	LYS A	59	-4. 880	-8. 157	29. 317	1.00 78.12	A
	ATOM	219	0	LYS A	59	-5. 082	-9. 366	29. 245	1.00 77.03	A
	ATOM	220	N	ALA A	60	-4. 202	-7. 479	28. 399	1.00 78.69	A
10	ATOM	221	CA	ALA A	60	-3. 617	-8. 137	27. 239	1.00 78.11	A
	ATOM	222	CB	ALA A	60	-3.852	-7. 306	25. 987	1.00 77.68	A
	ATOM	223	C	ALA A	60	-2. 122	-8. 287	27. 506	1.00 78.00	A
	ATOM	224	0	ALA A	60	-1. 389	-8.895	26.722	1.00 79.90	A
	MOTA	225	N	VAL A	61	-1. 683	-7. 729	28.629	1.00 76.44	A
15	MOTA	226	CA	VAL A	61	-0. 280	-7. 787	29.023	1.00 74.53	A
	ATOM	227	CB	VAL A	61	0. 300	-6.361	29. 167	1.00 73.76	A
	ATOM	228	CG1	VAL A	61	0. 258	-5. 657	27.824	1.00 74.36	A
	ATOM	229	CG2	VAL A	61	-0. 497	-5. 570	30. 199	1.00 71.91	A
	ATOM	230	С	VAL A	61	-0. 102	-8. 549	30. 340	1.00 72.77	.А
20	ATOM	231	0	VAL A	61	0. 669	-8. 153	31.214	1. 00 72. 52	A
	ATOM	232	N	LEU A	62	-0.829	-9. 649	30. 476	1.00 69.41	A
	ATOM	233	CA	LEU A	62	-0.752	-10.454	31.680	1.00 64.91	A
	ATOM	234	СВ	LEU A	62	-2.019	-10. 270	32. 524	1.00 64.77	A
	ATOM	235	CG	LEU A	62	-2. 228	8 -8.917	33. 220	1.00 64.55	A
25	ATOM	236	CD:	1 LEU A	62	-1.076	-8.658	34. 180	1.00 65.57	A
	ATOM	237	CD	2 LEU A	A 62	-2. 319	-7. 792	32. 191	1.00 65.13	A
	ATOM	238	С	LEU A	A 62	-0.555	5 -11.925	31. 354	1.00 61.50	A
	ATOM	239	0	LEU A	A 62	-1.413	3 -12. 566	30. 760	1.00 61.77	A
	ATOM	240	N	TYR A	A 63	0.600	-12. 446	31.738	1.00 57.28	A

0. 922 -13. 845 31. 515 1. 00 52. 71

2. 378 -14. 011 31. 031 1. 00 57. 16

Α

Α

WO 2004/056992 PCT/JP2003/016233

241 CA TYR A 63

242 CB TYR A 63

ATOM

ATOM

		_								
·	ATOM	243	CG	TYR	A	63	2. 705 -13. 431	29.663	1.00 61.57	A
	ATOM	244	CD1	TYR	A	63	2. 613 -12. 054	29. 423	1.00 60.81	A
5	ATOM	245	CE1	TYR	A	63	2. 936 -11. 517	28. 178	1.00 62.65	A
	ATOM	246	CD2	TYR	A	63	3. 130 -14. 262	28.612	1.00 61.57	A
	ATOM	247	CE2	TYR	A	63	3. 456 -13. 734	27. 361	1.00 62.16	A
	ATOM	248	CZ	TYR	A	63	3. 357 -12. 358	27. 152	1.00 64.02	A
	ATOM	249	ОН	TYR	A	63	3. 688 -11. 812	25. 927	1.00 66.92	A
10	ATOM	250	С	TYR	A	63	0. 782 -14. 579	32. 845	1.00 48.05	A
	ATOM	251	0	TYR	A	63	0. 553 -13. 970	33. 895	1.00 46.41	A
	ATOM	252	N	MET	A	64	0. 938 -15. 895	32. 780	1.00 43.07	A
	ATOM	253	CA	MET	A	64	0. 885 -16. 751	33.949	1.00 37.59	A
	ATOM	254	СВ	MET	A	64	1.044 -18.218	33. 515	1.00 33.62	A
15	ATOM	255	CG	MET	A	64	1. 270 -19. 229	34.631	1.00 34.88	A
	ATOM	256	SD	MET	A	64	1. 253 -20. 956	34.013	1.00 32.69	A
	ATOM	257	CE	MET	A	64	-0.441 -21.029	33. 468	1.00 29.03	A
	ATOM	258	С	MET	Α	64	2.062 -16.304	34.802	1.00 37.67	A
	ATOM .	259	0	MET	A	64	3. 102 -15. 923	34. 273	1.00 35.70	A
20	ATOM	260	N	ALA	A	65	1. 887 -16. 316	36. 119	1.00 38.51	A
	ATOM	261	CA	ALA	A	65	2. 959 -15. 928	37.023	1.00 36.56	A
	ATOM	262	СВ	ALA	A	65	2. 628 -14. 620	37.717	1.00 32.37	A
	ATOM	263	С	AL/	A	65	3. 163 -17. 012	38. 052	1.00 38.63	A
	ATOM	264	0	ALA	A A	65	2. 299 -17. 862	38. 267	1.00 39.28	A
25	ATOM	265	N	LYS	S A	66	4. 332 -16. 997	38. 672	1.00 41.29	A
	ATOM	266	CA	LYS	S A	66	4. 644 -17. 962	39.709	1.00 41.75	A
	ATOM	267	CB	LY	S A	66	6. 048 -18. 539	39. 543	1.00 42.34	A
	ATOM	268	CG	LY	S A	66	6. 470 -19. 366	40.750	1.00 45.37	A
	ATOM	269	CD	LY	S A	66	7. 980 -19. 398	40.965	1.00 47.49	A

	ATOM	270	CE	LYS A	A	66	8. 674 -20. 357	40. 013	1.00 50.27	A
	ATOM	271	NZ	LYS A	A	66	10. 093 -20. 595	40. 427	1.00 49.08	A
	ATOM	272	С	LYS	A	66	4. 594 -17. 174	40.992	1.00 43.12	A
	ATOM	273	0	LYS	A	66	5. 139 -16. 072	41.074	1.00 42.51	A
5	ATOM	274	N	THR .	A	67	3. 916 -17. 723	41. 987	1.00 44.36	A
	ATOM	275	CA	THR .	A	67	3. 828 -17. 060	43. 275	1.00 45.19	A
	ATOM	276	СВ	THR	A	67	2. 391 -16. 536	43. 554	1.00 46.71	A
	ATOM	277	OG1	THR	A	67	2.030 -15.565	42.566	1.00 48.01	A
	ATOM	278	CG2	THR	A	67	2. 308 -15. 892	44. 930	1.00 46.33	A
10	ATOM	279	С	THR	A	67	4. 205 -18. 087	44. 336	1.00 43.89	A
	ATOM	280	0	THR	A	67	3. 664 -19. 195	44. 358	1.00 44.64	A
	ATOM	281	N	VAL	A	68	5. 156 <i>-</i> 17. 745	45. 194	1.00 40.84	A
	ATOM	282	CA	VAL	A	68	5. 525 -18. 679	46. 237	1.00 39.30	A
	ATOM	283	СВ	VAL	A	68	7. 063 -18. 803	46. 403	1.00 40.93	A
15	ATOM	284	CG1	VAL	A	68	7. 383 -19. 742	47. 585	1.00 40.53	A
	ATOM	285	CG2	VAL	A	68	7. 673 -19. 350	45. 119	1. 00 36. 88	A
	ATOM	286	С	VAL	A	68	4. 882 -18. 161	47. 505	1. 00 36. 98	A
	ATOM	287	0	VAL	A	68	4. 999 -16. 981	47.839	1.00 32.83	A
	ATOM.	288	N.	VAL	A	69	4. 192 -19. 060	48. 192	1.00 38.01	A
20	ATOM	289	CA	VAL	A	69	3. 475 -18. 722	49. 401	1.00 40.63	A
	ATOM	290	CB	VAL	A	69	2.051 -19.349	49. 374	1.00 42.62	A
	ATOM	291	CG	l VAL	A	69	1. 302 -19. 042	50.668	1.00 37.81	A
	ATOM	292	CG	2 VAL	A	69	1. 274 -18. 813	48. 160	1.00 40.66	A
	ATOM	293	C	VAL	A	69	4. 191 -19. 161	50.662	1.00 41.24	A
25	ATOM	294	. 0	VAL	. A	69	4. 516 -20. 337	50.839	1.00 42.46	A
	ATOM	295	N	ALA	A	70	4. 423 -18. 197	51. 542	1.00 40.47	A
	ATOM	296	CA	ALA	A	70	5. 079 -18. 463	52. 808	1.00 39.50	A
	ATOM	297	CB	ALA	A	70	6. 533 -18. 046	52. 737	1.00 41.04	A
	ATOM	298	3 C	ALA	A	70	4. 347 -17. 669	53. 880	1.00 39.27	A

	ATOM	299	0	ALA A	70	3. 555 -16. 784	53. 571	1.00 37.53	A
	ATOM	300	N	PRO A	71	4. 578 -18. 001	55. 156	1.00 39.87	A
	ATOM	301	CD	PRO A	71	5. 257 -19. 227	55. 609	1.00 40.51	A
	ATOM	302	CA	PRO A	71	3. 945 -17. 321	56. 287	1.00 39.82	A
5	ATOM	303	СВ	PRO A	71	4. 468 -18. 109	57. 482	1.00 40.61	A
	ATOM	304	CG	PRO A	71	4. 598 -19. 485	56. 936	1.00 38.21	A
	ATOM	305	С	PRO A	71	4. 322 -15. 847	56. 371	1.00 39.47	A
	ATOM	306	0	PRO A	71	5. 402 -15. 457	55.928	1.00 41.31	A
	ATOM	307	N	SER A	72	3. 437 -15. 034	56.940	1.00 39.29	A
10	ATOM	308	CA	SER A	72	3. 703 -13. 605	57.099	1.00 39.85	A
	ATOM	309	СВ	SER A	72	2. 528 -12. 765	56.610	1.00 38.06	A
	ATOM	310	OG	SER A	72	1. 574 -12. 600	57.645	1.00 36.83	A
	ATOM	311	С	SER A	72	3. 915 -13. 311	58. 575	1.00 42.28	A
	ATOM	312	0	SER A	72	3. 416 -14. 032	59. 445	1.00 43.21	A
15	ATOM	313	N	THR A	73	4. 629 -12. 228	58. 851	1.00 44.86	A
	ATOM	314	CA	THR A	. 73	4. 928 -11. 823	60. 219	1. 00 44. 43	A
	ATOM	315	СВ	THR A	73	5. 477 -10. 373	60. 271	1.00 42.84	A
	ATOM	316	OG	1 THR A	73	6. 640 -10. 257	59. 439	1.00 41.61	A
	ATOM	. 317	CG	2 THR A	. 73	5.863 -10.014	61. 687	. 1. 00. 42. 56	A
20	ATOM	318	3 C	THR A	73	3. 748 -11. 903	61. 179	1.00 45.50	A
	ATOM	319	9 0	THR A	A 73	3. 906 -12. 321	62.330	1.00 44.76	Α
	ATOM	320	N C	GLU A	A 74	2.568 -11.514	60.707	1.00 47.50	A
	ATOM	32	ı C	A GLU	A 74	1. 379 -11. 506	61.553	1.00 48.36	A
	ATOM	32	2 C	B GLU	A 74	0. 489 -10. 330	61.177	1.00 50.79	A
25	ATOM	32	3 C	G GLU	A 74	-0. 323 -9. 789	62.322	2 1.00 59.06	A
	ATOM	32	4 C	D GLU	A 74	0. 517 -8. 96	63. 274	1.00 62.89	A
	ATOM	32	5 0	E1 GLU	A 74	0.946 -7.86	62.86	7 1.00 63.68	A
	ATOM	32	6 0	E2 GLU	A 74	0. 754 -9. 41	1 64.41	8 1.00 65.54	A
	ATOM	32	7 C	GLU	A 74	0. 547 -12. 77	5 61.51	0 1.00 47.32	A

	ATOM	328	0	GLU A	١	74	-0. 590 -12. 786	61. 971	1.00 45.23	A
	ATOM	329	N	GLY A	١	75	1. 104 -13. 849	60.967	1.00 48.50	A
	ATOM	330	CA	GLY A	1	7 5	0. 338 -15. 076	60.892	1.00 51.57	A
	MOTA	331	С	GLY A	A	7 5	-0. 492 -15. 094	59.621	1.00 52.32	A
5	ATOM	332	0	GLY A	A	75	-1. 429 -15. 884	59. 487	1.00 55.22	A
	ATOM	333	N	GLY A	A	76	-0. 153 -14. 202	58.695	1.00 48.02	A
	ATOM	334	CA	GLY A	A	76	-0. 851 -14. 148	57. 429	1.00 41.91	A
	ATOM	335	С	GLY A	A	76	-0.010 -14.877	56. 400	1.00 39.57	A
	ATOM	336	0	GLY A	A	76	0. 739 -15. 794	56. 737	1.00 37.39	A
10	ATOM	337	N	LEU A	A	77	-0. 117 -14. 464	55. 144	1.00 37.70	A
	ATOM	338	CA	LEU .	A	77	0.647 -15.099	54. 085	1.00 35.31	A
	ATOM	339	CB	LEU .	A	77	-0. 269 -15. 889	53. 161	1.00 34.86	A
	ATOM	340	CG	LEU	A	77	-1.165 -16.945	53.809	1.00 37.16	A
	ATOM	341	CD1	LEU	A	77	-1.925 -17.682	52.736	1.00 36.06	A
15	ATOM	342	CD2	LEU	A	77	-0.326 -17.909	54.607	1.00 41.20	A
	ATOM	343	С	LEU	A	77	1. 425 -14. 120	53. 245	1.00 34.86	A
	ATOM	344	0	LEU	A	77	0.892 -13.093	52.831	1.00 36.48	A
•	ATOM	345	N	ASN	A	78	2.697 -14.450	53. 013	1.00 35.83	A
	ATOM	346	CA	ASN.	Α	78	3. 594 -13. 661	52. 173	1.00 34.70	A
20	ATOM	347	CB	ASN	A	78	5. 051 -13. 833	52. 588	1.00 35.21	A
	ATOM	348	CG	ASN	A	78	5. 513 -12. 770	53. 556	1.00 35.91	A
	ATOM	349	OD	L ASN	A	78	4. 744 -11. 876	53. 925	1.00 37.78	A
	ATOM	350	ND2	2 ASN	A	78	6. 781 -12. 855	53. 972	1.00 34.50	A
	ATOM	351	С	ASN	A	78	3. 447 -14. 244	50. 799	1.00 36.13	A
25	ATOM	352	0	ASN	A	78	3. 528 -15. 464	50. 636	1.00 40.71	A
	ATOM	353	N	LEU	A	79	3. 206 -13. 398	49. 810	1.00 36.53	A
	ATOM	354	CA	LEU	A	79	3. 088 -13. 890	48. 448	1.00 40.14	A
	ATOM	355	СВ	LEU	A	79	1. 702 -13. 583	47. 864	1.00 42.52	A
	MOTA	356	CG	LEU	A	79	0. 678 -14. 712	48.099	1.00 43.47	A

	ATOM	357	CD1	LEU A		79	0. 435 -14. 889	49. 586	1.00 42.65	A
	ATOM	358	CD2	LEU A		79	-0. 635 -14. 403	47. 401	1.00 42.52	A
	ATOM	359	С	LEU A		79	4. 185 -13. 240	47. 638	1.00 40.10	A
	ATOM	360	0	LEU A		79	4. 192 -12. 023	47. 450	1.00 42.17	A
5	ATOM	361	N	THR A	l	80	5. 138 -14. 058	47. 201	1.00 40.26	A
	ATOM	362	CA	THR A	1	80	6. 270 -13. 587	46. 409	1.00 40.18	A
	MOTA	363	CB	THR A	1	80	7. 612 -14. 139	46.971	1.00 39.78	A
	ATOM	364	0G1	THR A	A.	80	7. 816 -13. 649	48. 301	1.00 39.20	A
	ATOM	365	CG2	THR A	A	80	8. 779 -13. 713	46. 104	1.00 38.24	A
10	ATOM	366	С	THR A	A	80	6. 069 -14. 086	44. 990	1.00 40.51	A
	ATOM	367	0	THR A	A	80	6. 047 -15. 290	44. 745	1.00 39.73	A
	ATOM	368	N	SER A	A	81	5. 915 -13. 165	44. 053	1.00 42.62	A
	MOTA	369	CA	SER .	A	81	5. 692 -13. 569	42.668	1.00 47.88	A
	ATOM	370	CB	SER	A	81	4. 310 -13. 107	42. 205	1.00 47.74	A
15	ATOM	371	OG	SER	A	81	3. 340 -13. 307	43. 224	1.00 50.44	A
	ATOM	372	С	SER	A	81	6. 743 -13. 071	41.679	1.00 49.35	A
	ATOM	373	0	SER	A	81	7. 263 -11. 957	41. 794	1.00 49.68	A
	ATOM	374	N	THR	A	82	7. 045 -13. 929	40.713	1.00 53.53	A
	ATOM	. 375	CA	THR	A	82	8.001 -13.646	39.655	1.00 57.80	A
20	ATOM	376	CB	THR	A	82	9.063 -14.761	39. 564	1.00 59.61	A
	ATOM	377	OG	1 THR	A	82	9. 951 -14. 666	40. 685	1.00 61.12	A
	ATOM	378	CG	2 THR	A	82	9. 854 -14. 653	38, 268	1.00 59.28	A
	ATOM	379	C	THR	A	82	7. 192 -13. 603	38. 357	1.00 59.75	A
	ATOM	380	0	THR	A	82	6. 699 -14. 632	37.884	1.00 58.51	A
25	ATOM	381	. N	PHE	A	83	7. 050 -12. 407	37. 793	1.00 62.90	A
	ATOM	382	2 CA	PHE	A	83	6. 276 -12. 235	36. 571	1.00 65.89	A
	ATOM	383	3 CE	PHE	A	83	4. 961 -11. 511	36. 871	1.00 61.94	A
	ATOM	384	1 CC	HE PHE	A	83	5. 135 -10. 148	37. 483	3 1.00 57.31	A
	ATOM	385	5 CI)1 PHE	A	83	4. 515 -9. 037	36.916	5 1.00 57.80	A

126

	ATOM	386	CD2	PHE	A	83	5. 869 -	9. 979	38. 656	1.00 56.46	A
	ATOM	387	CE1	PHE	A	83	4.617 -	7.774	37. 509	1.00 57.20	A
	ATOM	388	CE2	PHE	A	83	5. 979 -	8.724	39. 257	1.00 57.43	A
	ATOM	389	CZ	PHE	A	83	5. 351 -	-7. 618	38. 683	1.00 58.05	A
5	ATOM	390	С	PHE	A	83	6. 990 -1	1. 496	35. 452	1.00 70.72	A
	ATOM	391	0	PHE	A	83	8.068 -1	10. 935	35. 639	1.00 71.97	A
	ATOM	392	N	LEU	A	84	6. 346 -1	11. 501	34. 288	1.00 75.56	. A
	ATOM	393	CA	LEU	A	84	6.854 -	10. 856	33. 085	1.00 77.58	A
	ATOM	394	CB	LEU	Α	84	6. 588 -	11. 760	31.879	1.00 76.28	Α .
10	ATOM	395	CG	LEU	Α	84	7. 137 -	11. 352	30. 513	1.00 75.52	A
	ATOM	396	CD	LEU	J A	84	8.635 -	11. 047	30.622	1.00 76.74	A
	ATOM	397	CD	2 LEU	JA	84	6.870 -	12. 481	29. 515	1.00 73.55	A
	ATOM	398	С	LE	J A	84	6. 156	-9.517	32. 893	1.00 79.65	A
	ATOM	399	0	LE	J A	84	4. 934	-9. 463	32. 757	1.00 78.63	A
15	ATOM	400	N	AR	3 A	85	6. 933	-8. 438	32. 899	1.00 84.46	A
	ATOM	401	. CA	AR	G A	85	6. 378	-7. 100	32.714	1.00 90.39	A
	ATOM	402	CB	AR	G A	85	6. 306	-6. 343	34.046	1.00 92.46	A
•	ATOM	403	3 CG	AR	G A	85	5. 538	-5. 030	33. 952	1.00 95.39	A
	ATOM	404	4 CI	. AR	G A	85	5. 562	-4. 245	35. 251	1.00 99.40	A
20	ATOM	40	5 NE	E AR	G A	A 85	4. 834	-2. 982	35. 124	1. 00103. 44	A
	ATOM	40	6 C2	Z AF	G A	A 85	4. 795	-2.037	36.061	1. 00105. 03	A
	ATOM	40	7 N	11 AF	RG A	A 85	5. 44 5	-2. 204	37. 207	1.00106.01	A
	ATOM	40	8 N	H2 AI	RG .	A 85	4. 105	-0. 921	35. 852	2 1.00103.52	A
	ATOM	40	9 C	Al	RG .	A 85	7. 237	-6. 319	31.726	1.00 92.84	A
25	ATOM	41	0 0	A	RG	A 85	8. 449	-6. 178	31.91	2 1.00 93.32	A
	ATOM	41	1 N	L	YS	A 86	6. 600	-5. 800	30.67	5 1.00 95.15	A
	ATOM	41	.2 C	A L	YS	A 86	7. 311	-5. 05	9 29.65	3 1.00 96.71	A
	ATOM	41	3 0	B L	YS	A 86	7. 747	-3. 69	3 30.20	3 1.00 97.65	A
	Alom		-								

	ATOM	415	CD	LYS A		86	6. 720	-1.537	31. 131	1. 00100. 81	A
	ATOM	416	CE	LYS A		86	6. 267	-2.073	32. 481	1. 00101. 99	A
	ATOM	417	NZ	LYS A		86	6. 208	-1.012	33. 526	1. 00102. 38	A
	ATOM	418	С	LYS A	1	86	8. 497	-5.898	29. 208	1.00 98.14	A
5	ATOM	419	0	LYS A	١	86	9. 621	-5. 417	29.080	1.00 97.38	A
	ATOM	420	N	ASN A	١	87	8. 206	-7. 180	28.998	1. 00101. 05	A
	ATOM	421	CA	ASN A	ł	87	9. 169	-8. 177	28. 547	1. 00103. 17	A
	ATOM	422	CB	ASN A	ł	87	9. 542	-7.902	27. 089	1.00105.05	A
	ATOM	423	CG	ASN A	A	87	8. 322	-7.843	26. 180	1. 00107. 39	A
10	ATOM	424	OD1	ASN A	A	87	7. 484	-6.946	26. 299	1. 00107. 32	A
	ATOM	425	ND2	ASN A	A	87	8. 213	-8.809	25, 273	1. 00109. 34	A
	ATOM	426	С	ASN A	A	87	10. 425	-8. 279	29. 402	1. 00103. 13	A
	ATOM	427	0	ASN A	A	87	10. 526	- 7. 532	30. 397	1. 00104. 41	A
	ATOM	428	OT	ASN .	A	87	11. 289	-9. 117	29.065	1. 00101. 73	A
15	ATOM	429	С	CYS .	A	89	11. 135	-9.613	35. 440	1.00 79.14	A
	ATOM	430	0	CYS	A	89	12. 261	-9. 207	35. 721	1.00 79.54	A
	ATOM	431	CB	CYS	A	89	11.946	-11.311	33.779	1.00 82.95	A
	ATOM	432	SG	CYS	A	89	11.778	-12. 786	34. 808	1.00 94.11	A
	ATOM	433	N .	CYS	A	89	10.776	-9. 300	32.990	1.00 79.52	A
20	ATOM	434	CA	CYS	A	89	10.857	-10. 295	34. 094	1.00 80.27	A
	ATOM	435	N	GLU	A	90	10. 100	-9. 516	36. 273	1.00 78.18	A
	ATOM	436	CA	GLU	A	90	10. 185	-8.842	37. 571	1.00 74.49	A
	ATOM	437	СВ	GLU	A	90	9. 472	-7. 495	37. 455	1.00 75.68	A
	ATOM	438	CG	GLU	A	90	9. 398	-6.692	38. 725	1.00 80.75	A
25	ATOM	439	CD	GLU	A	90	8. 770	-5. 329	38. 509	1.00 83.66	A
	ATOM	440) OE	1 GLU	A	90	8. 511	-4. 631	39. 519	1.00 87.73	A
	ATOM	441	. OE	2 GLU	A	90	8. 540	-4. 957	37. 334	1.00 80.98	A
	ATOM	442	2 C	GLU	A	90	9. 615	5 −9. 632	38. 758	1.00 70.33	A
	ATOM	443	3 0	GLU	A	90	8. 910	-10. 621	38. 581	1.00 69.86	A

	ATOM	444	N	THR	A	91	9. 928	-9. 188	39. 971	1.00 66.65	A
	ATOM	445	CA	THR	A	91	9. 446	-9. 858	41. 176	1.00 64.70	A
	ATOM	446	СВ	THR	A	91	10. 544	-10. 758	41.812	1.00 64.79	A
	ATOM	447	OG1	THR	A	91	10. 763	-11. 908	40.985	1.00 66.28	A
5	ATOM	448	CG2	THR	A	91	10. 128	-11. 221	43. 202	1.00 62.60	A
	ATOM	449	C	THR	A	91	8. 969	-8.893	42. 243	1.00 62.74	A
	ATOM	450	0	THR	A	91	9. 674	-7. 953	42. 593	1.00 62.35	A
	ATOM	451	N	LYS	A	92	7. 775	-9. 148	42.767	1.00 61.97	A
	ATOM	452	CA	LYS	A	92	7. 203	-8. 314	43.820	1.00 61.35	A
10	ATOM	453	СВ	LYS	A	92	6. 190	-7. 327	43. 234	1.00 64.09	A
	ATOM	454	CG	LYS	Α	92	6. 827	-6.002	42.810	1.00 67.74	A
	ATOM	455	CD	LYS	A	92	7. 705	-5. 439	43. 933	1.00 69.95	A
	ATOM	456	CE	LYS	A	92	6. 954	-5.374	45. 268	1.00 68.61	A
	ATOM	457	NZ	LYS	A	92	7. 876	-5. 187	46. 421	1.00 69.01	A
15	ATOM	458	С	LYS	S A	92	6. 562	-9. 113	44. 950	1.00 59.21	A
	ATOM	459	0	LYS	S A	92	6. 189	-10. 274	44. 764	1.00 58.49	A
	ATOM	460	N	ILI	ΞΑ	93	6. 433	8 -8.477	46. 116	1.00 57.93	A
	ATOM	461	CA	ILI	ΞΑ	93	5. 878	9. 133	47. 300	1.00 57.73	A
	ATOM	462	СВ	ILI	ΞΑ	93	6. 929	9 -9. 223	48. 459	1.00 57.31	A
20	ATOM	463	CG	2 ILI	ΕA	93	6. 352	2 -10.027	49. 624	1.00 53.34	A
	ATOM	464	CG	1 IL	E A	93	8. 209	9 -9.921	47. 989	1.00 60.14	A
	ATOM	465	CD	1 IL	E A	93	8. 99	5 -9.163	46.915	1.00 61.98	A
	ATOM	466	C	IL	E A	93	4. 63	8 -8.477	47.891	1.00 57.41	A
	ATOM	467	0	IL	E A	93	4. 69	0 -7.348	48. 368	1.00 58.52	A
25	ATOM	468	N	ME	T A	94	3. 52	6 -9.202	2 47.872	1.00 57.18	A
	ATOM	469) CA	ME	T A	94	2. 27	5 -8.716	6 48.446	1.00 56.08	A
	ATOM	470) CE	ME	T A	94	1. 09	4 -9.102	2 47.552	1.00 57.29	A
	ATOM	471	L CG	н МЕ	T	A 94	1. 17	8 -8.660	46. 094	1.00 59.72	A
	ATOM	472	2 SI) ME	ET A	A 94	-0.04	3 -9.548	8 45.028	3 1.00 66.73	A

	ATOM	473	CE	MET A	94	-1.634 -9.093 45.788 1.00 58.01	A
	ATOM	474	С	MET A	94	2. 141 -9. 434 49. 799 1. 00 57. 08	A
	ATOM	475	0	MET A	94	2. 504 -10. 613 49. 914 1. 00 58. 30	A
	ATOM	476	N	VAL A	95	1. 644 -8. 738 50. 821 1. 00 53. 57	Α
5	ATOM	477	CA	VAL A	95	1. 460 -9. 360 52. 130 1. 00 49. 11	A
	MOTA	478	CB	VAL A	95	2. 092 -8. 543 53. 298 1. 00 49. 18	A
	ATOM	479	CG1	VAL A	95	1. 530 -9. 046 54. 624 1. 00 46. 36	A
	ATOM	480	CG2	VAL A	95	3. 620 -8. 677 53. 310 1. 00 46. 36	A
	ATOM	481	С	VAL A	95	-0. 012 -9. 502 52. 452 1. 00 48. 44	A
10	ATOM	482	0	VAL A	95	-0.700 -8.509 52.651 1.00 50.11	Α
	ATOM	483	N	LEU A	96	-0.494 -10.737 52.509 1.00 47.81	A
	ATOM	484	CA	LEU A	96	-1. 889 -10. 985 52. 852 1. 00 44. 86	A
	ATOM	485	CB	LEU A	96	-2. 347 -12. 339 52. 306 1. 00 44. 26	A
	ATOM	486	CG	LEU A	96	-3. 377 -12. 254 51. 178 1. 00 44. 31	A
15	ATOM	487	CD	1 LEU A	96	-3.072 -11.080 50.245 1.00 45.94	A
	ATOM	488	CD	2 LEU A	A 96	-3. 370 -13. 565 50. 421 1. 00 42. 82	A
	ATOM	489	C	LEU A	A 96	-2. 031 -10. 968 54. 365 1. 00 43. 84	A
	ATOM	490	0	LEU A	A 96	-1. 466 -11. 801 55. 070 1. 00 42. 58	A
	ATOM	491	N	GLN A	A 97	-2. 784 -10. 006 54. 867 1. 00 45. 66	. A
20	MOTA	492	2 CA	A GLN	A 97	-2. 986 -9. 908 56. 298 1. 00 47. 39	A
	ATOM	493	3 CI	B GLN	A 97	-3. 217 -8. 451 56. 680 1. 00 49. 05	A
	ATOM	494	4 C	G GLN	A 97	-2. 753 -8. 111 58. 069 1. 00 51. 88	Α
	ATOM	49	5 C	D GLN	A 97	-1. 240 -8. 117 58. 188 1. 00 52. 17	A
	MOTA	49	6 0	E1 GLN	A 97	-0. 538 -7. 474 57. 405 1. 00 52. 83	A
25	ATOM	49	7 N	E2 GLN	A 97	-0. 732 -8. 834 59. 177 1. 00 51. 77	A
	ATOM	49	8 C	GLN	A 97	-4. 187 -10. 768 56. 713 1. 00 48. 91	A
	ATOM	49	9 0	GLN	A 97	-5. 225 -10. 791 56. 042 1. 00 45. 86	A
	ATOM	50	0 N	PRO	A 98	-4. 051 -11. 506 57. 818 1. 00 50. 41	A
	ATOM	50	1 (D PRO	A 98	-2. 897 -11. 599 58. 733 1. 00 53. 20	A

	ATOM	502	CA	PRO A	98	-5. 166 -12. 347	58. 267	1.00 52.85	A
	ATOM	503	СВ	PRO A	98	-4. 566 -13. 109	59. 456	1.00 54.22	A
•	ATOM	504	CG	PRO A	98.	-3. 519 -12. 157	59. 986	1.00 54.74	A
	ATOM	505	С	PRO A	98	-6. 368 -11. 469	58. 637	1.00 51.82	A
5	ATOM	506	0	PRO A	98	-6. 194 -10. 401	59. 221	1.00 52.75	A
	ATOM	507	N	ALA A	99	-7. 578 -11. 909	58. 291	1.00 50.67	A
	ATOM	508	CA	ALA A	99	-8. 778 -11. 123	58. 572	1.00 49.91	A
	ATOM	509	СВ	ALA A	99	-9. 428 -10. 698	57. 261	1.00 50.29	A
	ATOM	510	С	ALA A	99	-9. 809 -11. 808	59. 468	1.00 51.08	A
10	ATOM	511	0	ALA A	99	-10.991 -11.910	59. 125	1.00 51.56	A
	ATOM	512	N	GLY A	100	−9. 352 −12. 282	60.619	1.00 53.49	A
	ATOM	513	CA	GLY A	100	-10. 245 -12. 920	61. 569	1.00 55.78	A
	ATOM	514	С	GLY A	100	-10. 778 -14. 305	61. 260	1.00 56.87	A
	ATOM	515	0	GLY A	100	-11. 526 -14. 869	62.068	1.00 58.84	A
15	ATOM	516	N	ALA A	101	-10. 418 -14. 863	60.111	1.00 55.01	A
	ATOM	517	CA	ALA A	101	-10. 898 -16. 197	59. 773	1.00 53.78	A
	ATOM	518	CB	ALA A	101	-12. 313 -16. 105	59. 194	1.00 51.59	A
	ATOM	519	С	ALA A	101	-9. 963 -16. 917	58. 799	1.00 52.67	A
	ATOM	520	0	ALA A	101	-9. 417 -16. 302	57. 882	. 1. 00 53. 80	A
20	ATOM	521	N	PRO A	102	-9. 760 -18. 231	58. 997	1.00 50.85	A
	ATOM	522	CD	PRO A	102	-10. 339 -19. 068	60.065	1.00 49.23	A
	ATOM	523	CA	PRO A	102	-8. 887 -19. 024	58. 121	1.00 49.90	A
	ATOM	524	CB	PRO A	102	-9. 110 -20. 457	58. 616	1.00 49.27	A
	ATOM	525	CG	PRO A	102	-9. 415 -20. 273	60.066	1.00 47.89	A
25	ATOM	526	С	PRO A	102	-9. 336 -18. 841	56. 672	1.00 48.42	A
	ATOM	527	0	PRO A	102	-10. 544 -18. 874	56. 405	1.00 49.19	A
	ATOM	528	N	GLY A	103	-8. 383 -18. 649	55. 752	1. 00 45. 93	A
	ATOM	529	CA	GLY A	103	-8. 726 -18. 444	54. 342	1.00 45.39	A
	ATOM	530	С	GLY A	103	−9 . 323 −17 . 059	54. 045	1.00 45.32	A

	ATOM	531	0	GLY A	103	-9.872 -16.	787 52.963	1.00 42.49	A
	ATOM	532	N	HIS A	104	-9. 202 -16.	172 55.025	1.00 43.72	A
	ATOM	533	CA	HIS A	104	-9. 727 -14.	822 54.907	1.00 42.49	A
	ATOM	534	CB	HIS A	104	-10.847 -14.	611 55.926	1.00 41.21	A
5	ATOM	535	CG	HIS A	104	-12. 101 -15.	334 55.571	1.00 40.30	A
	ATOM	536	CD2	HIS A	104	-12. 547 -16.	. 564 55. 914	1.00 42.49	A
	ATOM	537	ND1	HIS A	104	-13.028 -14	. 820 54. 690	1.00 40.22	A
	ATOM	538	CE1	HIS A	104	-13. 993 -15.	. 701 54. 504	1.00 41.84	A
	ATOM	539	NE2	HIS A	104	-13.724 -16	. 770 55. 235	1.00 45.92	A
10	ATOM	540	С	HIS A	104	-8. 621 -13	. 831 55. 142	1.00 41.81	A
	ATOM	541	0	HIS A	104	-8. 072 - 13	. 746 56. 242	1.00 41.25	A
	ATOM	542	N	TYR A	105	-8. 285 -13	. 083 54. 107	1.00 41.35	A
	ATOM	543	CA	TYR A	105	-7. 221 -12	. 110 54. 258	1.00 43.95	A
	ATOM	544	CB	TYR A	105	-5. 999 -12	. 584 53. 487	1.00 40.86	A
15	ATOM	545	CG	TYR A	105	-5. 594 -13	. 968 53. 900	1.00 40.55	A
	ATOM	546	CD1	TYR A	105	-4. 701 -14	. 167 54. 953	1.00 41.09	A
	ATOM	547	CE1	TYR A	105	-4. 358 -15	5. 442 55. 362	2 1.00 41.55	A
	ATOM	548	CD2	TYR A	105	-6. 138 -15	5. 089 53. 26	5 1.00 38.66	A
	ATOM	549	CE2	TYR A	105	-5. 802 -16	5. 371 53. 66	7. 1.00 38.48	A
20	ATOM	550	CZ	TYR A	105	-4. 914 -16	6. 545 54. 710	6 1.00 40.67	A
	ATOM	551	ОН	TYR A	105	-4, 593 -17	7.811 55.13	5 1.00 45.56	A
	MOTA	552	C	TYR A	105	-7.604 -10). 720 53. 80 ₀	4 1.00 47.35	A
	ATOM	553	0	TYR A	105	-8. 684 -10	0. 487 53. 24	9 1.00 48.78	A
	ATOM	554	N	THR A	106	-6.684 -9	9. 802 54. 04	3 1.00 51.30	A
25	ATOM	555	CA	THR A	106	-6.857 -8	3. 414 53. 68	3 1.00 52.89	A
	ATOM	556	CB	THR A	106	-7. 216 <i>-</i> 7	7. 598 54. 93	1 1.00 48.76	A
	ATOM	557	OG:	thr A	106	-8 . 639 <i>-</i> ′	7. 407 54. 95	7 1.00 46.67	A
	ATOM	558	CG	2 THR A	106	-6, 499 -	6. 270 54. 94	8 1.00 47.39	A
	ATOM	559	С	THR A	106	-5. 565 - 5	7. 937 53. 03	4 1.00 57.01	A

	ATOM	560	0	THR A 1	.06	-4. 475	-8. 326	53. 447	1.00 57.07	A
	ATOM	561	N	TYR A 1	.07	-5. 695	-7. 106	52.007	1. 00 63. 36	A
	ATOM	562	CA	TYR A 1	107	-4. 530	-6.607	51. 293	1. 00 72. 56	A
	ATOM	563	CB	TYR A 1	107	-4. 409	-7. 355	49. 968	1.00 73.77	A
5	ATOM	564	CG	TYR A	107	-3. 209	-6.940	49. 175	1.00 77.55	A
	ATOM	565	CD1	TYR A	107	-1. 930	-7. 033	49. 723	1.00 78.79	A
	ATOM	566	CE1	TYR A	107	-0.816	-6. 592	49. 023	1. 00 81. 45	A
	ATOM	567	CD2	TYR A	107	-3. 348	-6. 400	47. 897	1.00 79.21	A
	ATOM	568	CE2	TYR A	107	-2. 239	-5. 954	47. 183	1.00 80.59	A
10	ATOM	569	CZ	TYR A	107	-0.975	-6.050	47. 754	1.00 81.83	A
	ATOM	570	ОН	TYR A	107	0. 128	-5. 593	47.070	1. 00 82. 92	A
	ATOM	571	С	TYR A	107	-4. 531	-5. 087	51.049	1. 00 78. 59	A
	ATOM	572	0	TYR A	107	-5. 565	-4. 432	51. 172	1.00 80.57	A
	ATOM	573	N	SER A	108	-3. 362	-4. 541	50. 701	1.00 84.94	A
15	ATOM	574	CA	SER A	108	-3. 186	-3. 102	50. 445	1.00 90.11	A
	ATOM	575	СВ	SER A	108	-1.694	-2. 750	50. 393	1.00 91.85	A
	ATOM	576	OG	SER A	108	-1.053	-3.346	49. 277	1.00 92.66	A
	ATOM	577	C	SER A	108	-3. 857	-2.620	49. 161	1.00 94.11	A
	ATOM	578	.0	SER A	108	-4. 755	-3. 282	48.644	1.00 95.60	A
20	ATOM	579	N	SER A	109	-3. 413	-1. 476	48. 637	1. 00 98. 37	A
	ATOM	580	CA	SER A	109	-4.018	-0. 920	47. 424	1. 00102. 82	A
	ATOM	581	CB	SER A	109	-4. 804	0.347	47.772	1. 00102. 05	A
	ATOM	582	OG	SER A	109	-3.931	1. 407	48. 119	1. 00101. 78	A
	ATOM	583	С	SER A	109	-3. 098	-0. 603	46. 239	1. 00106. 03	A
25	ATOM	584	. 0	SER A	109	-3. 205	0. 471	45. 638	1. 00107. 26	A
	ATOM	585	N	PRO A	110	-2. 184	-1. 523	45. 882	1. 00108. 55	A
	ATOM	586	CD	PRO A	110	-1. 863	-2.824	46. 492	1. 00109. 04	A
	ATOM	587	' CA	PRO A	110	-1. 297	-1. 25 3	44. 747	1. 00109. 83	A
	ATOM	588	в СВ	PRO A	110	-0. 192	2 -2. 281	44. 930	1. 00109. 77	A

	ATOM	589	CG	PRO A	110	-0.956	-3. 452	45. 446	1. 00109. 90	A
	ATOM	590	С	PRO A	110	-2.086	-1. 467	43. 452	1. 00110. 93	A
	MOTA	591	0 .	PRO A	110	-3. 207	-1. 985	43. 482	1. 00110. 51	A
	ATOM	592	N	HIS A	111	-1.495	-1.087	42. 323	1. 00111. 85	A
5	ATOM	593	CA	HIS A	111	-2. 161	-1.204	41.028	1.00112.29	A
	ATOM	594	СВ	HIS A	111	-2. 707	-2.620	40.798	1. 00113. 17	A
	ATOM	595	CG	HIS A	111	-1.666	-3.696	40.869	1. 00115. 64	A
	ATOM	596	CD2	HIS A	111	-1. 106	-4. 458	39.901	1. 00116. 28	A
	ATOM	597	ND1	HIS A	111	-1. 092	-4. 101	42.055	1. 00116. 85	A
10	ATOM	598	CE1	HIS A	111	-0.224	-5.067	41.815	1. 00117. 01	A
	ATOM	599	NE2	HIS A	111	-0. 213	-5. 303	40.514	1. 00117. 62	A
	ATOM	600	С	HIS A	111	-3.318	-0.214	41.054	1. 00112. 02	A
	ATOM	601	0	HIS A	111	-3. 121	0.994	40.901	1. 00111. 74	A
	ATOM	602	N	SER A	112	-4. 524	-0. 735	41. 257	1. 00112. 13	A
15	ATOM	603	CA	SER A	112	-5. 720	0.096	41.332	1. 00111. 51	A
	ATOM	604	CB	SER A	A 112	-6. 390	0. 225	39.958	1. 00112. 93	A
	ATOM	605	OG	SER A	A 112	-7. 103	-0. 953	39.618	1. 00112. 49	A
	ATOM	606	С	SER A	A 112	-6. 686	-0.563	42.303	1. 00109. 76	A
	MOTA	607	0	SER A	A 112	-7. 174	-1.668	42.057	1. 00109. 39	A
20	ATOM	608	N	GLY .	A 113	-6. 957	0. 108	43. 414	1. 00107. 11	A
	ATOM	609	CA	GLY .	A 113	-7. 871	-0. 458	44. 383	1. 00103. 45	A
	ATOM	610	C	GLY	A 113	-7. 781	0. 218	45. 731	1. 00101. 21	A
	MOTA	611	0	GLY	A 113	-7. 451	1. 407	45. 832	1. 00103. 49	A
	ATOM	612	N	SER	A 114	-8. 072	-0.550	46. 772	1.00 95.74	A
25	ATOM	613	CA	SER	A 114	-8. 045	-0.042	48. 134	1.00 89.73	A
	ATOM	614	СВ	SER	A 114	-9. 398	0. 595	48. 466	1.00 92.13	A
	ATOM	615	OG	SER	A 114	-10. 475	-0. 257	48. 097	1.00 94.65	A
	ATOM	616	6 C	SER	A 114	-7. 752	-1. 200	49.073	1.00 84.14	A
	ATOM	617	0	SER	A 114	-6. 641	-1.714	49. 107	1.00 84.52	A

	ATOM	618	N	ILE A	115	-8. 750	-1.605	49.843	1.00 77.31	A
	ATOM	619	CA	ILE A	115	-8. 583	-2. 725	50.745	1.00 71.63	A
	ATOM	620	СВ	ILE A	115	- 9. 162	-2. 436	52. 135	1.00 71.29	A
	ATOM	621	CG2	ILE A	115	-8. 163	-1.654	52. 951	1.00 71.00	A
5	ATOM	622	CG1	ILE A	115	-10. 488	-1. 683	52.001	1.00 73.17	A
	ATOM	623	CD1	ILE A	115	-11. 223	-1. 500	53.317	1.00 76.01	A
	ATOM	624	С	ILE A	115	-9. 311	-3. 908	50. 139	1.00 68.78	Α
	ATOM	625	0	ILE A	115	-10. 514	-3. 852	49. 887	1.00 70.59	A
	ATOM	626	N	HIS A	116	-8. 569	-4. 973	49.879	1.00 63.17	A
10	ATOM	627	CA	HIS A	116	-9. 157	-6. 162	49.308	1. 00 56. 48	A
	ATOM	628	CB	HIS A	116	-8. 219	-6. 768	48.269	1.00 52.58	A
	ATOM	629	CG	HIS A	116	-8.046	-5. 922	47.048	1.00 52.19	A
	ATOM	630	CD2	HIS A	116	-7. 667	-4.630	46.903	1.00 51.18	A
	ATOM	631	ND1	HIS A	116	-8. 252	-6. 406	45.772	1.00 53.39	A
15	ATOM	632	CE1	HIS A	116	-8.006	-5. 450	44.894	1.00 52.34	A
	ATOM	633	NE2	HIS A	116	-7. 648	-4. 362	45. 554	1.00 52.64	A
	ATOM	634	С	HIS A	116	-9. 420	-7. 166	50.410	1.00 54.37	A
	ATOM	635	0	HIS A	116	-8. 579	-7. 379	51. 273	1.00 56.26	A
	ATOM	636	N	SER A	117	-10.607	-7. 754	50. 401	1.00 51.47	A
20	ATOM	637	CA	SER A	117	-10. 952	-8. 770	51.381	1.00 48.84	A
	ATOM	638	CB	SER A	117	-12. 363	-8. 566	51.918	1.00 50.14	A
	ATOM	639	OG	SER A	117	-12. 451	-7. 332	52.601	1.00 59.59	A
	ATOM	640	С	SER A	117	-10. 882	-10.032	50. 563	1.00 45.66	A
	ATOM	641	0	SER A	117	-11. 744	-10. 289	49. 721	1.00 45.39	A
25	ATOM	642	N	VAL A	118	-9. 832	-10.804	50.800	1.00 42.70	A
	ATOM	643	CA	VAL A	118	-9.604	-12. 030	50. 055	1.00 39.83	A
	ATOM	644	CB	VAL A	118	-8. 088	-12. 175	49. 706	1.00 39.01	A
	ATOM	645	CG1	L VAL A	118	-7. 839	-13. 416	48. 830	1.00 34.52	A
	ATOM	646	CG2	VAL A	118	-7. 599	-10. 907	49. 022	1.00 33.42	A

	ATOM	647	C	VAL A	118	-10.068 -	13. 258	50. 826	1.00 38.57	A
	ATOM	648	0	VAL A	118	-9. 781 -	13. 414	52. 030	1.00 35.32	A
	ATOM	649	N	SER A	119	-10.789 -	14. 124	50. 122	1.00 36.68	A
	ATOM	650	CA	SER A	119	-11. 289 -	15. 359	50.718	1.00 36.15	A
5	ATOM	651	CB	SER A	119	-12. 798 -	15. 274	51.001	1.00 33.83	A
	ATOM	652	OG	SER A	119	-13. 533 -	15. 202	49. 792	1.00 29.76	A
	ATOM	653	С	SER A	119	-11.038 -	16. 501	49. 762	1. 00 36. 50	A
	ATOM	654	0	SER A	119	-11.099 -	16. 336	48. 533	1. 00 34. 43	A
	ATOM	655	N	VAL A	120	-10.760 -	17. 663	50.340	1.00 36.83	A
10	ATOM	656	CA	VAL A	120	-10.513 -	18. 864	49. 567	1. 00 36. 43	A
	ATOM	657	СВ	VAL A	120	-9. 653 -	19.861	50. 355	1.00 33.61	A
	ATOM	658	CG1	VAL A	120	-9.535 -	21. 166	49.584	1.00 27.88	A
	ATOM	659	CG2	VAL A	120	-8. 270 -	19. 250	50.629	1.00 31.31	A
	ATOM	660	С	VAL A	120	-11. 854 -	-19. 490	49. 274	1.00 39.98	A
15	ATOM	661	0	VAL A	120	-12. 484 -	-20. 053	50. 170	1.00 42.93	A
	ATOM	662	N	VAL A	121	-12. 304 -	-19. 385	48.027	1.00 40.55	A
	ATOM	663	CA	VAL A	121	-13. 593 -	-19. 959	47.654	1.00 41.92	A
	ATOM	664	CB	VAL A	121	-13.989 -	-19. 551	46. 234	1.00 38.14	A
	ATOM	665	CG1	VAL A	121	-15. 379 -	-20. 125	45. 891	1.00 32.71	A
20	ATOM	666	CG2	VAL A	121	-13. 961 -	-18. 030	46. 120	1.00 38.48	A
	ATOM	667	С	VAL A	121	-13. 563 -	-21. 485	47.725	1.00 44.84	A
	ATOM	668	0	VAL A	121	-14. 395 -	-22. 103	48.386	1.00 46.44	A
	ATOM	669	N	GLU A	122	-12, 593	-22. 080	47. 034	1.00 45.48	A
	ATOM	670	CA	GLU A	122	-12, 429	-23. 527	46.993	1.00 41.76	A
25	ATOM	671	CB	GLU A	122	-13. 139 -	-24. 092	45. 766	1.00 39.34	A
	ATOM	672	CG	GLU A	122	-13. 627 ·	-25. 518	45.910	1.00 37.67	A
	ATOM	673	CD	GLU A	122	-14. 569 ·	-25. 899	44. 789	1.00 39.19	A
	ATOM	674	OE:	1 GLU A	122	-14. 093	-26. 096	43.656	1.00 43.74	A
	ATOM	675	OE	2 GLU A	122	-15. 789 ·	-25. 984	45. 028	1.00 39.37	A

	ATOM	676	C	GLU A	122	-10. 937 -23. 749	46. 863	1.00 41.01	A
	ATOM	677	0	GLU A	122	-10. 235 -22. 884	46. 325	1.00 40.90	A
	ATOM	678	N	ALA A	123	-10. 452 -24. 890	47. 357	1.00 39.08	A
	ATOM	679	CA	ALA A	123	-9. 028 -25. 191	47. 289	1.00 38.09	A
5	ATOM	680	CB	ALA A	123	-8. 300 -24. 367	48. 308	1.00 33.08	A
	ATOM	681	С	ALA A	123	-8. 635 -26. 668	47. 456	1.00 39.43	A
	ATOM	682	0	ALA A	123	-9. 014 -27. 323	48. 420	1.00 39.20	A
	ATOM	683	N	ASN A	124	-7. 864 -27. 170	46. 495	1.00 42.59	A
	ATOM	684	CA	ASN A	124	-7. 347 -28. 532	46. 525	1.00 47.72	A
10	ATOM	685	CB	ASN A	124	-7. 603 -29. 251	45. 201	1.00 50.83	A
	ATOM	686	CG	ASN A	124	-7. 084 -30. 673	45. 210	1.00 52.71	Α
	ATOM	687	OD1	ASN A	124	-6. 047 -30. 957	45.809	1.00 54.16	A
	ATOM	688	ND2	ASN A	124	-7. 794 -31. 573	44. 536	1.00 54.16	A
	ATOM	689	С	ASN A	124	-5. 857 -28. 278	46. 683	1.00 51.11	A
15	ATOM	690	0	ASN A	124	-5. 143 -28. 071	45. 699	1.00 51.57	A
	ATOM	691	N	TYR A	125	-5. 396 -28. 297	47. 928	1.00 54.48	A
	ATOM	692	CA	TYR A	125	-4. 007 -27. 993	48. 235	1.00 54.44	A
	ATOM	693	CB	TYR A	125	-3. 734 -28. 230	49. 727	1.00 56.30	A
	ATOM	694	CG	TYR A	125	-3. 279 -29. 620	50.088	1.00 63.82	. A
20	ATOM	695	CD1	TYR A	125	-4. 195 -30. 627	50. 397	1.00 65.44	A
	ATOM	696	CE1	TYR A	125	-3760 -31.906	50, 761	1.00 68.05	A
	ATOM	697	CD2	TYR A	125	-1. 917 -29. 925	50. 147	1.00 67.54	A
	ATOM	698	CE2	TYR A	125	-1. 472 -31. 193	50.504	1.00 69.05	A
	ATOM	699	CZ	TYR A	125	-2. 393 -32. 179	50.810	1.00 69.43	A
25	ATOM	700	ОН	TYR A	125	-1. 929 -33. 430	51. 161	1.00 70.34	A
	ATOM	701	С	TYR A	125	-2. 930 -28. 650	47. 365	1.00 53.21	A
	ATOM	702	0	TYR A	125	-1. 757 -28. 278	47. 444	1.00 53.08	A
	ATOM	703	N	ASP A	126	-3. 306 -29. 603	46. 521	1.00 51.21	A
	ATOM	704	CA	ASP A	A 126	-2. 309 -30. 229	45. 654	1.00 50.82	A

	ATOM	705	СВ	ASP A	126	-2. 291 -31. 746	45. 821	1. 00 50. 35	A
	ATOM	706	CG	ASP A	126	-1.829 -32.174	47. 178	1.00 51.64	A
	ATOM	707	OD1	ASP A	126	-0.687 -31.842	47. 557	1.00 57.64	A
	ATOM	708	OD2	ASP A	126	-2. 613 -32. 851	47. 865	1.00 50.91	A
5	ATOM	709	С	ASP A	126	-2.616 -29.936	44. 204	1.00 49.67	A
	ATOM	710	0	ASP A	126	-1.801 -30.214	43. 321	1.00 49.83	A
	ATOM	711	N	GLU A	127	-3. 789 -29. 356	43.969	1.00 48.57	A
	ATOM	712	CA	GLU A	127	-4. 249 -29. 088	42.613	1.00 47.68	A
	ATOM	713	CB	GLU A	127	-5. 536 -29. 886	42. 381	1.00 49.84	A
10	ATOM	714	CG	GLU A	127	-5. 846 -30. 274	40.949	1. 00 53. 65	A
	ATOM	715	CD	GLU A	127	-7. 135 -31. 087	40.846	1.00 57.80	A
	ATOM	716	0E1	GLU A	127	-7. 293 -32. 051	41.626	1.00 59.17	A
	ATOM	717	OE2	GLU A	127	-7. 989 -30. 767	39. 987	1.00 60.10	A
	ATOM	718	С	GLU A	127	-4. 481 -27. 619	42. 260	1.00 45.31	A
15	ATOM	719	0	GLU A	127	-3. 827 -27. 077	41.362	1.00 44.52	A
	ATOM	720	N	TYR A	128	-5. 397 -26. 970	42.970	1.00 41.80	A
	ATOM	721	CA	TYR A	128	-5. 734 -25. 590	42.657	1.00 37.85	A
	ATOM	722	CB	TYR A	128	-6.814 -25.556	41. 583	1.00 37.33	A
	ATOM	723	CG	TYR A	128	-8. 148 -26. 061	42. 113	1.00 37.22	А.
20	ATOM	724	CD1	TYR A	128	-8. 439 -27. 433	42. 131	1.00 37.72	A
	ATOM	725	CE1	TYR A	128	-9. 613 -27. 917	42. 709	1.00 36.03	A
	ATOM	726	CD2	TYR A	128	-9. 080 -25. 177	42. 687	1.00 36.78	A
	MOTA	727	CE2	TYR A	128	-10. 260 -25. 650	43. 271	1.00 36.78	A
	ATOM	728	CZ	TYR A	128	-10. 517 -27. 027	43. 278	1.00 38.06	A
25	ATOM	729	ОН	TYR A	128	-11. 661 -27. 516	43. 867	1.00 38.71	A
	ATOM	730	С	TYR A	128	-6. 283 -24. 823	43. 842	1.00 38.21	A
	ATOM	731	0	TYR A	128	-6. 538 -25. 378	44. 917	1.00 38.98	A
	ATOM	732	N	ALA A	129	-6. 513 -23. 536	43. 608	1.00 36.38	A
	ATOM	733	CA	ALA A	129	-7. 074 -22. 675	44. 620	1.00 36.08	A

	ATOM	734	СВ	ALA A	129	-5. 979 <i>-</i> 22. 118	45. 531	1.00 33.11	A
	ATOM	735	С	ALA A	129	-7. 800 -21. 555 ⋅	43. 923	1.00 38.48	A
	ATOM	736	0	ALA A	129	-7. 239 -20. 857 ⋅	43. 073	1.00 41.82	A
	ATOM	737	N	LEU A	130	-9. 068 -21. 402	44. 269	1.00 39.88	A
5	ATOM	738	CA	LEU A	130	-9. 889 -20. 353	43. 699	1.00 39.61	A
	ATOM	739	CB	LEU A	130	-11. 242 -20. 931	43. 276	1.00 40.60	A
	ATOM	740	CG	LEU A	130	-12. 118 -20. 126	42. 305	1.00 43.04	A
	ATOM	741	CD1	LEU A	130	-13. 577 -20. 402	42.644	1.00 43.37	A
	ATOM	742	CD2	LEU A	130	-11. 828 -18. 615	42. 409	1.00 42.58	A
10	ATOM	743	С	LEU A	130	-10.080 -19.287	44. 788	1.00 40.62	A
	ATOM	744	0	LEU A	130	-10.650 -19.571	45.848	1.00 40.06	A
	ATOM	745	N	LEU A	131	-9. 588 -18. 073	44. 540	1.00 42.77	A
	ATOM	746	CA	LEU A	131	-9. 729 -16. 992	45. 518	1.00 42.89	A
	ATOM	747	CB	LEU A	131	-8. 394 -16. 328	45. 830	1.00 42.47	A
15	ATOM	748	CG	LEU A	131	-7. 096 -17. 120	45.887	1.00 46.12	A
	ATOM	749	CD	L LEU A	131	-5. 972 -16. 158	46. 240	1.00 45.03	A
	ATOM	750	CD	2 LEU A	131	-7. 207 -18. 267	46.896	1.00 48.77	A
	ATOM	751	С	LEU A	131	-10.648 -15.911	44. 995	1.00 43.71	A
	ATOM	752	0	LEU A	. 131	-10. 784 -15. 720	43.777	1.00 43.25	A
20	ATOM	753	N	PHE A	132	-11. 274 -15. 196	45. 922	1.00 44.52	A
	ATOM	754	L CA	PHE A	132	-12. 156 -14. 096	45. 560	1.00 44.69	A
	ATOM	755	CB	PHE A	A 132	-13. 604 -14. 419	45. 940	1.00 47.03	A
	ATOM	756	G CG	PHE A	A 132	-14. 554 <i>-</i> 13. 278	45. 704	1.00 50.56	A
	ATOM	757	7 CD	1 PHE	A 132	-14. 952 -12. 942	44. 413	1.00 50.73	A
25	ATOM	758	3 CD	2 PHE	A 132	-15. 030 -12. 518	46. 775	1.00 53.02	A
	ATOM	759	e CE	1 PHE	A 132	-15. 808 -11. 869	44. 181	1.00 50.28	A
	ATOM	760	CE	E2 PHE	A 132	-15. 885 -11. 443	46. 558	1.00 53.82	A
	ATOM	76	1 C2	PHE.	A 132	-16. 276 -11. 116	45. 251	1.00 51.52	A
	ATOM	76	2 C	PHE	A 132	-11. 685 -12. 823	46. 277	1.00 43.70	A

	ATOM	763	0	PHE A 132	-11. 307 -	12. 859	47. 460	1.00 42.17	A
	ATOM	764	N	SER A 133	-11. 704 -	11.709	45. 549	1.00 41.97	A
	ATOM	765	CA	SER A 133	-11. 283 -	10. 427	46. 089	1.00 43.63	A
	ATOM	766	CB	SER A 133	-9. 939 -	10.019	45. 500	1.00 45.00	A
5	ATOM	767	OG	SER A 133	-8. 966 -	11. 025	45. 678	1.00 51.07	A
	ATOM	768	С	SER A 133	-12. 288	-9. 321	45. 791	1.00 44.02	A
	ATOM	769	0	SER A 133	-12. 542	-8. 972	44. 641	1.00 43.30	A
	ATOM	770	N	ARG A 134	-12. 852	-8. 756	46.841	1.00 46.89	A
	ATOM	771	CA	ARG A 134	-13. 812	-7. 679	46.679	1.00 50.11	A
10	ATOM	772	CB	ARG A 134	-15. 161	-8.079	47. 299	1.00 48.79	A
	MOTA	773	CG	ARG A 134	-15. 081	-8.394	48.774	1.00 44.61	A
	ATOM	774	CD	ARG A 134	-16. 347	-9.035	49. 281	1.00 45.37	A
	ATOM	775	NE	ARG A 134	-16. 258	-9. 372	50.700	1.00 48.80	A
	ATOM	776	CZ	ARG A 134	-16. 123	-8. 480	51.682	1.00 49.92	A
15	ATOM	777	NH	1 ARG A 134	-16.060	-7. 179	51. 412	1.00 48.02	A
	MOTA	778	NH	2 ARG A 134	-16.051	-8.894	52. 941	1.00 48.55	A
	ATOM	779	С	ARG A 134	-13. 229	-6. 450	47.380	1.00 52.29	A
	ATOM	780	0	ARG A 134	-12.667	-6. 561	48. 478	1.00 51.57	A
	ATOM	781	N	GLY A 135	-13. 341	-5. 293	46.729	1.00 51.95	A
20	ATOM	782	CA	GLY A 135	-12. 825	-4. 063	47. 305	1.00 53.96	A
	ATOM	783	C	GLY A 135	-13. 709	-2.884	46.942	1.00 57.08	A
	ATOM	784	ŧ 0	GLY A 135	-14. 756	-3. 065	46. 324	1.00 56.19	A
	MOTA	785	5 N	THR A 136	-13. 296	-1. 678	47. 325	1.00 60.63	A
	ATOM	786	6 CA	THR A 136	-14. 070	-0. 487	47.004	1.00 64.41	A
25	ATOM	78′	7 CI	3 THR A 136	-15. 524	-0. 631	47. 508	1.00 64.44	A
	ATOM	788	B 00	G1 THR A 136	-16. 384	0. 228	46. 746	1.00 67.53	A
	ATOM	78	9 C	G2 THR A 136	-15. 622	-0. 267	48. 981	1.00 59.31	A
	ATOM	79	0 C	THR A 136	-13. 475	0.793	47. 590	1.00 66.65	A
	ATOM	79	1 0	THR A 136	-13. 016	0.811	48.734	1.00 66.93	A

140

	ATOM	792	N	LYS A 137	-13. 469	1.864	46.800	1.00 68.98	A
	ATOM	793	CA	LYS A 137	-12. 963	3. 141	47. 297	1.00 71.69	A
	ATOM	794	СВ	LYS A 137	-12. 422	4.005	46. 154	1.00 70.74	A
	ATOM	795	CG	LYS A 137	-10. 967	3.727	45.804	1.00 70.35	A
5	ATOM	796	CD	LYS A 137	-10. 796	2. 436	45.030	1.00 70.21	A
	ATOM	797	CE	LYS A 137	-11. 240	2.603	43.591	1.00 71.89	A
	ATOM	798	NZ	LYS A 137	-10. 407	3.632	42.890	1.00 73.45	A
	ATOM	799	С	LYS A 137	-14. 147	3.833	47.965	1.00 73.03	A
	ATOM	800	0	LYS A 137	-13. 991	4.803	48. 723	1.00 74.00	A
10	ATOM	801	N	GLY A 138	-15. 329	3. 298	47.675	1.00 71.01	A
	ATOM	802	CA	GLY A 138	-16. 562	3.826	48. 217	1.00 68.95	A
	ATOM	803	С	GLY A 138	-17. 727	3. 326	47. 386	1.00 68.09	A
	ATOM	804	0	GLY A 138	-17. 521	2.676	46. 360	1.00 64.95	A
	ATOM	805	N	PRO A 139	-18. 968	3, 639	47. 788	1.00 69.29	A
15	ATOM	806	CD	PRO A 139	-19. 280	4. 704	48. 760	1.00 69.05	A
	ATOM	807	CA	PRO A 139	-20. 180	3. 213	47. 075	1.00 68.53	A
	ATOM	808	CB	PRO A 139	-21. 285	3. 989	47. 787	1.00 68.70	A
	ATOM	809	CG	PRO A 139	-20. 575	5. 246	48. 222	1.00 69.56	A
	ATOM	. 810	C	PRO A 139	-20. 127	3. 519	45. 584	1.00 67.82	A
20	ATOM	811	0	PRO A 139	-19. 480	4. 477	45. 165	1.00 70.47	A
	ATOM	812	N	GLY A 140	-20.805	2. 706	44. 783	1.00 67.01	A
	ATOM	813	CA	GLY A 140	-20.805	2. 928	43. 347	1.00 69.03	A
	ATOM	814	Ł C	GLY A 140	-19. 445	2. 699	42.710	1.00 70.29	A
	ATOM	815	0	GLY A 140	-19. 263	2. 910	41.506	1.00 67.84	A
25	ATOM	816	5 N	GLN A 141	-18. 487	2. 269	43. 528	1.00 72.03	A
	ATOM	817	7 CA	GLN A 141	-17. 129	1. 996	43.069	1.00 73.21	A
	ATOM	818	B CB	GLN A 141	-16. 141	2.874	43.839	1.00 70.86	A
	ATOM	819	e co	GLN A 141	-16. 382	4. 352	43.607	1.00 69.25	A
	ATOM	820	CI	GLN A 141	-15. 226	5. 209	9 44.056	1.00 69.17	A

	ATOM	821	0E1	GLN A	141	-14. 951	5. 327	45. 249	1.00 69.67	A
	ATOM	822	NE2	GLN A	141	-14. 531	5, 807	43. 099	1.00 69.51	A
	ATOM	823	С	GLN A	141	-16. 793	0, 512	43. 252	1.00 74.14	A
	ATOM	824	0	GLN A	141	-15. 897	-0.033	42. 597	1.00 73.63	A
5	ATOM	825	N	ASN A	142	-17. 532	-0.125	44. 153	1.00 74.41	A
	ATOM	826	CA	ASN A	142	-17. 387	-1.541	44. 458	1.00 74.91	A
	ATOM	827	CB	ASN A	142	-18. 714	-2.043	45.033	1. 00 77. 40	A
	ATOM	828	CG	ASN A	142	-18. 766	-3. 549	45. 163	1.00 81.04	A
	ATOM	829	OD1	ASN A	142	-19.839	-4. 152	45.072	1.00 82.62	A
10	ATOM	830	ND2	ASN A	142	-17. 609	-4. 168	45. 393	1.00 81.59	A
	ATOM	831	C	ASN A	142	-16. 991	-2. 395	43. 239	1.00 74.86	A
	ATOM	832	0	ASN A	142	-17. 623	-2.322	42. 182	1.00 73.84	A
	ATOM	833	N	PHE A	143	-15. 947	-3, 206	43. 395	1. 00 75. 81	A
	ATOM	834	CA	PHE A	143	-15. 496	-4. 084	42.317	1.00 76.18	A
15	ATOM	835	CB	PHE A	143	-14. 329	-3. 446	41.568	1.00 76.28	A
	ATOM	836	CG	PHE A	143	-13. 055	-3. 422	42. 345	1.00 75.95	A
	ATOM	837	CD1	PHE A	143	-12. 237	-4. 546	42.396	1.00 74.80	A
	ATOM	838	CD2	PHE A	143	-12.669	-2.274	. 43. 033	1.00 77.92	A
	ATOM	839	CE1	PHE A	143	-11.047	-4. 528	43. 122	1.00 77.10	A
20	ATOM	840	CE2	PHE A	143	-11. 480	-2. 241	43. 765	1.00 78.61	A
	ATOM	841	CZ	PHE A	143	-10.667	-3.371	43.808	1.00 79.19	A
	ATOM	842	С	PHE A	143	-15. 092	-5. 476	42.815	1.00 75.21	A
	ATOM	843	0	PHE	143	-14. 874	-5. 695	44. 008	1.00 74.84	A
	ATOM	844	N	ARG A	144	-14. 981	-6. 407	41.876	1.00 74.55	A
25	ATOM	845	CA	ARG A	A 144	-14. 629	-7. 790	42. 184	1.00 73.79	A
	ATOM	846	CB	ARG A	144	-15. 827	-8. 702	41.880	1.00 76.82	A
	ATOM	847	CG	ARG A	A 144	-17. 108	-8. 334	42.626	1.00 82.57	A
	ATOM	848	CD	ARG A	A 144	-18. 340	-8. 494	41. 732	1.00 88.12	A
	ATOM	849	NE	ARG A	A 144	-19. 588	-8. 230	42. 457	1.00 92.89	A

	ATOM	850	CZ	ARG A	144	-20. 775	-8. 046	41.877	1.00 92.42	A
	ATOM	851	NH1	ARG A	144	-20. 888	-8. 091	40.554	1.00 89.93	A
	ATOM	852	NH2	ARG A	144	-21. 852	-7. 822	42.624	1.00 90.40	A
	ATOM	853	С	ARG A	144	-13. 411	-8. 289	41. 399	1.00 70.45	A
5	ATOM	854	0	ARG A	144	-12. 908	-7. 618	40. 493	1.00 71.36	A
	ATOM	855	N	MET A	145	-12. 937	-9. 475	41.768	1.00 66.18	A
	ATOM	856	CA	MET A	145	-11. 809	-10. 100	41.097	1.00 60.85	A
	ATOM	857	СВ	MET A	145	-10. 519	-9. 310	41.315	1.00 63.62	A
	ATOM	858	CG	MET A	145	-9. 309	-9. 999	40. 685	1.00 66.34	A
10	ATOM	859	SD	MET A	145	-7. 851	-8. 958	40. 573	1.00 70.82	A
	ATOM	860	CE	MET A	145	-7. 924	-8. 129	42. 194	1.00 67.76	A
	ATOM	861	С	MET A	145	-11. 607	-11. 529	41.564	1.00 56.57	A
	ATOM	862	0	MET A	145	-11. 229	-11. 780	42.706	1.00 57.01	A
	ATOM	863	N	ALA A	146	-11. 880	-12. 467	40.668	1.00 51.49	A
15	ATOM	864	CA	ALA A	146	-11. 706	-13. 876	40.968	1.00 49.13	A
	ATOM	865	СВ	ALA A	146	-12. 766	-14. 696	40. 260	1.00 42.05	A
	ATOM	866	С	ALA A	146	-10. 321	-14. 252	40. 462	1.00 48.78	A
	ATOM	867	0	ALA A	146	-9. 869	-13. 732	39. 439	1.00 51.44	A
	ATOM	868	N	THR A	147	-9. 637	-15. 136	41. 174	1.00 46.49	A
20	ATOM	869	CA	THR A	147	-8. 318	-15. 555	40.738	1.00 44.25	A
	ATOM	870	СВ	THR A	147	− 7. 225	-14. 925	41. 581	1.00 43.85	A
	ATOM	871	0G1	THR A	147	-7. 387	-13. 507	41.573	1.00 49.82	A
	ATOM	872	CG2	THR A	147	-5. 864	-15. 269	41.020	1.00 42.42	A
	ATOM	873	С	THR A	147	-8. 201	-17.061	40. 838	1.00 44.03	A
25	ATOM	874	0	THR A	147	-8. 708	-17. 668	41.777	1.00 46.81	A
	ATOM	875	N	LEU A	148	-7. 534	-17. 668	39.865	1.00 43.69	A
	ATOM	876	CA	LEU A	148	-7. 374	-19. 111	39.880	1.00 42.50	A
	ATOM	877	CB	LEU A	148	-8. 032	-19. 731	38. 648	1.00 40.72	A
	ATOM	878	CG	LEU A	148	-7. 738	-21. 228	38. 472	1.00 38.40	A

	ATOM	879	CD1	LEU A	148	-8. 257	-22. 027	39.662	1.00 33.14	A
	ATOM	880	CD2	LEU A	148	-8. 383	-21.700	37. 174	1.00 40.34	A
	ATOM	881	С	LEU A	148	-5. 917	-19. 529	39.932	1.00 43.54	A
	ATOM	882	0	LEU A	148	-5. 172	-19. 348	38.964	1.00 41.99	A
5	ATOM	883	N	TYR A	149	-5.505	-20. 089	41.063	1.00 43.29	A
	ATOM	884	CA	TYR A	149	-4. 127	-20. 529	41. 187	1.00 44.40	A
	ATOM	885	СВ	TYR A	149	-3. 579	-20. 188	42. 557	1.00 45.21	A
	ATOM	886	CG	TYR A	149	-3. 203	-18. 731	42.702	1.00 50.01	A
	ATOM	887	CD1	TYR A	149	-4. 145	-17. 778	43.094	1.00 54.12	A
10	ATOM	888	CE1	TYR A	149	-3.784	-16. 432	43. 272	1.00 58.48	A
	ATOM	889	CD2	TYR A	149	-1.890	-18. 312	42.482	1.00 51.47	A
	ATOM	890	CE2	TYR A	149	-1.516	-16. 982	42.653	1.00 55.89	A
	ATOM	891	CZ	TYR A	149	-2. 463	-16. 045	43.051	1.00 58.78	A
	ATOM	892	ОН	TYR A	149	-2.078	-14. 739	43. 238	1.00 60.02	A
15	ATOM	893	С	TYR A	149	-4.003	-22. 025	40.933	1.00 44.94	A
	ATOM	894	0	TYR A	149	-4.868	-22. 804	41.342	1.00 44.18	A
	ATOM	895	N	SER A	150	-2. 928	-22. 410	40.240	1.00 44.38	A
	ATOM	896	CA.	SER A	150	-2. 668	-23. 808	39.914	1.00 41.89	A
	ATOM	897	СВ	SER A	150	-2. 740	-24. 004	38. 393	1.00 40.38	A
20	ATOM	898	OG	SER A	150	-2. 579	-25. 371	38. 026	1.00 40.76	A
	ATOM	899	С	SER A	150	-1. 297	-24. 271	40. 428	1.00 40.25	A
	ATOM	900	0	SER A	150	-0.342	-23. 479	40.500	1.00 39.43	A
	ATOM	901	N	ARG A	151	-1. 202	-25. 547	40.803	1.00 36.60	A
	ATOM	902	CA	ARG A	151	0.074	-26. 082	41. 259	1.00 34.90	A
25	ATOM	903	CB	ARG A	151	-0. 117	-27. 347	42. 104	1.00 28.21	A
	ATOM	904	CG	ARG A	151	-0. 656	-27. 122	43. 514	1.00 25.36	A
	ATOM	905	CD	ARG A	151	0. 340	-26. 356	44. 388	1.00 23.83	A
	ATOM	906	NE	ARG A	151	-0. 013	-26. 412	45. 807	1.00 24.06	A
	ATOM	907	CZ	ARG A	151	0. 683	-25. 813	46. 770	1.00 23.10	A

	ATOM	908	NH1	ARG A	151	1. 761 -25	. 100	46. 465	1.00 21.98	A
	ATOM	909	NH2	ARG A	151	0. 328 -25	. 958	48.046	1.00 24.51	A
	ATOM	910	С	ARG A	151	0.890 -26	. 416	40.015	1.00 35.99	A
	ATOM	911	0	ARG A	151	2.095 -26	6. 617	40.071	1.00 38.57	A
5	ATOM	912	N	THR A	152	0, 222 -26	5. 458	38. 879	1.00 38.62	Α
	ATOM	913	CA	THR A	152	0.893 -26	5. 782	37. 631	1.00 41.72	A
	ATOM	914	CB	THR A	152	0.314 -28	3. 060	37. 036	1.00 41.39	A
	ATOM	915	0G1	THR A	152	-1. 108 -27	7. 927	36. 952	1.00 41.87	A
	ATOM	916	CG2	THR A	152	0.650 -29	9. 253	37.911	1.00 38.85	A
10	ATOM	917	С	THR A	152	0.659 -25	5. 647	36.664	1.00 45.58	A
	ATOM	918	0	THR A	152	-0. 238 -24	4. 831	36. 878	1.00 51.32	A
	ATOM	919	N	GLN A	153	1. 457 -25	5. 573	35.608	1.00 46.22	A
	ATOM	920	CA	GLN A	153	1, 273 -24	4. 502	34.637	1.00 47.59	A
	ATOM	921	CB	GLN A	153	2. 577 -24	4. 241	33.902	1.00 43.91	A
15	ATOM	922	CG	GLN A	153	3, 668 -23	3. 760	34. 825	1.00 45.50	A
	ATOM	923	CD	GLN A	153	5. 026 -23	3. 783	34. 173	1.00 43.12	A
	ATOM	924	OE1	GLN A	153	5. 196 <i>-</i> 23	3. 280	33.071	1.00 44.43	A
	ATOM	925	NE2	GLN A	153	6. 007 -24	4. 362	34. 854	1.00 46.67	A
	ATOM	926	С	GLN A	153	0. 170 -24	4. 889	33.666	1. 00 52. 48	A
20	ATOM	927	0	GLN A	153	-0. 458 -24	4. 033	33. 047	1.00 54.29	A
	ATOM	928	N	THR A	154	-0.068 -20	6. 190	33. 541	1.00 57.63	A
	ATOM	929	CA	THR A	154	-1.118 -20	6. 686	32.667	1.00 61.55	A
	ATOM	930	CB	THR A	154	-0, 829 -28	8. 128	32. 220	1.00 62.65	A
	ATOM	931	0G1	THR A	154	-1.977 -2	8.654	31.540	1.00 64.17	A
25	ATOM	932	CG2	THR A	154	-0.491 -29	9. 003	33. 426	1.00 60.73	A
	ATOM	933	C	THR A	154	-2. 411 -2	6. 652	33. 469	1.00 64.71	A
	ATOM	934	0	THR A	154	-2. 415 - 2	6. 973	34.657	1.00 65.83	A
	ATOM	935	N	LEU A	155	-3.509 -2	6. 263	32.831	1.00 67.39	A
	ATOM	936	CA	LEU A	155	-4.787 -2	6. 179	33. 535	1.00 70.46	A

	ATOM	937	СВ	LEU A 1	55	-5. 283 ·	-24. 728	33. 518	1. 00 68. 52	A
	ATOM	938	CG	LEU A 1	55	-6 . 259 ·	-24. 291	34. 616	1.00 65.62	A
	ATOM	939	CD1	LEU A 1	55	-5. 572	-24. 339	35. 968	1.00 64.23	A
	ATOM	940	CD2	LEU A 1	55	-6. 739	-22. 881	34. 332	1. 00 63. 47	A
5	ATOM	941	С	LEU A 1	.55	-5. 866	-27. 113	32.970	1. 00 72. 41	A
	ATOM	942	0	LEU A 1	.55	-6. 189	-27. 069	31.782	1.00 74.08	A
	ATOM	943	N	LYS A 1	.56	-6. 423	-27. 950	33. 843	1. 00 72. 81	A
	ATOM	944	CA	LYS A 1	56	-7. 457	-28. 917	33. 482	1.00 71.61	A
	ATOM	945	СВ	LYS A 1	156	-7. 656	-29.861	34.660	1.00 72.76	A
10	ATOM	946	CG	LYS A 1	156	-8. 563	-31. 037	34. 411	1.00 75.31	A
	ATOM	947	CD	LYS A 1	156	-8. 518	-31.997	35. 609	1.00 77.01	Α
	ATOM	948	CE	LYS A 1	156	-7. 131	-32.624	35. 781	1.00 77.35	A
	ATOM	949	NZ	LYS A	156	-7.020	-33. 484	36. 993	1.00 77.04	A
	ATOM	950	С	LYS A	156	-8. 771	-28. 219	33. 125	1.00 71.35	A
15	ATOM	951	0	LYS A	156	-9. 241	-27. 357	33.865	1.00 72.68	A
	ATOM	952	N	ASP A	157	-9. 368	-28. 597	31. 997	1.00 70.30	A
	ATOM	953	CA	ASP A	157	-10. 617	-27. 981	31. 539	1.00 68.59	A
	ATOM	954	CB	ASP A	157	-11. 173	-28.711	30. 308	1.00 68.09	A
	ATOM .	955	CG	ASP A	157	-10. 446	-28. 338	29.028	1.00 68.81	A
20	ATOM	956	OD	L ASP A	157	-11.012	-28. 564	27. 936	1.00 68.86	A
	ATOM	957	OD2	2 ASP A	157	-9. 307	-27. 824	29. 109	1.00 68.64	A
	ATOM	958	С	ASP A	157	-11. 723	-27. 860	32. 577	1.00 68.17	A
	ATOM	959	0	ASP A	157	-12. 291	-26. 779	32.751	1.00 66.02	A
	ATOM	960	N	GLU A	158	-12. 046	-28. 957	33. 256	1.00 68.99	A
25	ATOM	961	CA	GLU A	158	-13. 105	-28.904	34. 261	1.00 70.32	A
	ATOM	962	СВ	GLU A	158	-13. 251	-30. 246	34. 976	1.00 72.37	A
	ATOM	963	CG	GLU A	158	-11. 947	⁷ −30. 899	35. 372	1.00 78.69	A
	ATOM	964	CD	GLU A	158	-12. 033	3 -32. 419	35. 311	1.00 82.57	A
	ATOM	965	OE	1 GLU A	158	-12.844	-33. 011	36. 061	1.00 81.84	A

	ATOM	966	OE2	GLU A	158	-11. 293	-33. 022	34. 502	1.00 84.84	A
	ATOM	967	С	GLU A	158	-12. 796	-27. 807	35. 254	1.00 69.10	A
	ATOM	968	0	GLU A	158	-13.694	-27. 178	35.804	1.00 67.41	A
	ATOM	969	N	LEU A	159	-11. 512	-27. 569	35. 466	1.00 70.39	A
5	ATOM	970	CA	LEU A	159	-11. 096	-26. 521	36. 375	1.00 70.62	A
	ATOM	971	СВ	LEU A	159	-9. 608	-26. 667	36. 705	1.00 72.90	A
	ATOM	972	CG	LEU A	159	-9. 266	-27. 035	38. 152	1.00 71.29	A
	ATOM	973	CD1	LEU A	159	-10. 266	-28. 043	38.713	1.00 73.85	A
	ATOM	974	CD2	LEU A	159	-7. 858	-27. 592	38. 186	1.00 72.04	A
10	ATOM	975	С	LEU A	159	-11. 369	-25. 177	35. 716	1.00 68.60	A
	ATOM	976	0	LEU A	159	-11. 785	-24. 224	36. 375	1.00 68.52	A
	ATOM	977	N	LYS A	160	-11. 140	-25.097	34. 411	1.00 66.56	A
	ATOM	978	CA	LYS A	160	-11. 395	-23. 849	33. 714	1.00 66.04	A
	ATOM	979	CB	LYS A	160	-10. 941	-23. 931	32. 254	1.00 66.84	A
15	ATOM	980	CG	LYS A	160	-9.431	-23.947	32.083	1.00 68.12	A
	ATOM	981	CD	LYS A	160	-9.007	-23. 675	30.648	1.00 67.76	A
	ATOM	982	CE	LYS A	160	-9. 354	-24. 828	29. 727	1.00 68.38	A
	ATOM	983	NZ	LYS A	160	-8. 843	-24. 581	28. 352	1.00 69.27	A
	ATOM .	.984	С	LYS A	160	-12. 882	-23. 572	33. 775 .	1.00 65.61	A
20	ATOM	985	0	LYS A	160	-13. 309	-22. 454	34. 072	1.00 64.28	A
	ATOM	986	N	GLU A	161	-13, 667	-24. 609	33. 509	1.00 66.07	A
	ATOM	987	CA	GLU A	161	-15. 119	-24. 495	33. 524	1.00 67.41	A
	ATOM	988	CB	GLU A	161	-15. 732	-25. 852	33. 162	1.00 72.11	A
	ATOM	989	CG	GLU A	161	-17. 236	-25. 860	32. 915	1.00 78.85	A
25	ATOM	990	CD	GLU A	161	-18. 038	-26. 299	34. 135	1.00 85.16	A
	ATOM	991	0E1	GLU A	161	-17. 583	-27. 226	34. 850	1.00 86.78	A
	ATOM	992	0E2	GLU A	161	-19. 130	-25. 729	34. 366	1.00 85.92	A
	ATOM	993	C	GLU A	161	-15. 574	-24. 036	34. 907	1.00 64.62	A
	ATOM	994	0	GLU A	161	-16. 447	-23. 171	35. 041	1.00 62.40	A

	ATOM	995	N	LYS A	162	-14. 959	-24. 607	35. 936	1.00 61.68	A
	ATOM	996	CA	LYS A	162	-15. 299	-24. 255	37. 308	1.00 58.49	A
	ATOM	997	CB	LYS A	162	-14. 516	-25. 118	38. 301	1.00 57.08	A
	ATOM	998	CG	LYS A	162	-14. 909	-24. 877	39. 748	1.00 52.74	A
5	ATOM	999	CD	LYS A	162	-13. 720	-25.005	40.695	1.00 52.91	A
	ATOM	1000	CE	LYS A	162	-13.062	-26. 378	40.620	1.00 54.40	A
	ATOM	1001	NZ	LYS A	162	-13. 972	-27. 464	41.079	1.00 58.06	A
	ATOM	1002	С	LYS A	162	-15.001	-22.790	37. 582	1.00 56.70	A
	ATOM	1003	0	LYS A	162	-15. 753	-22. 135	38. 292	1.00 57.73	A
10	MOTA	1004	N	PHE A	163	-13. 898	-22. 285	37. 028	1.00 56.10	A
	ATOM	1005	CA	PHE A	163	-13. 505	-20.885	37. 218	1.00 54.44	A
	ATOM	1006	CB	PHE A	163	-12.088	-20. 638	36.667	1.00 51.03	A
	ATOM	1007	CG	PHE A	163	-11. 620	-19. 204	36. 781	1.00 44.03	A
	ATOM	1008	CD1	PHE A	163	-11. 203	-18. 504	35.660	1.00 43.43	A
15	ATOM	1009	CD2	PHE A	163	-11, 575	-18.563	38. 011	1.00 41.07	A
	ATOM	1010	CE1	PHE A	163	-10, 743	-17. 177	35. 765	1.00 40.22	A
	ATOM	1011	CE2	PHE A	163	-11. 115	-17. 235	38. 117	1.00 38.32	A
	ATOM	1012	CZ	PHE A	163	-10. 702	-16. 552	36. 991	1.00 34.24	A
	ATOM	1013	С	PHE A	163	-14. 494	-19. 998	36. 482	1.00 56.29	A
20	ATOM	1014	0	PHE A	163	-14. 910	-18. 958	36. 986	1.00 55.86	A
	MOTA	1015	N	THR A	164	-14. 864	-20. 429	35. 281	1.00 57.68	A
	MOTA	1016	CA	THR A	164	-15. 807	-19. 694	34. 465	1.00 59.18	A
	MOTA	1017	CB	THR A	164	-16. 103	-20. 449	33. 167	1.00 62.54	A
	ATOM	1018	OG1	L THR A	164	-14. 887	-20. 598	32. 418	1.00 66.72	A
25	ATOM	1019	CG2	2 THR A	164	-17. 137	-19. 691	32, 325	1.00 64.98	A
	ATOM	1020	C	THR A	164	-17. 102	2 -19. 525	35. 228	1.00 58.45	A
	ATOM	1021	0	THR A	164	-17. 550	-18. 408	35. 484	1.00 58.64	A
	ATOM	1022	N	THR A	165	-17. 697	7 -20.650	35. 590	1.00 57.76	A
	ATOM	1023	CA	THR A	165	-18. 949	9 −20. 653	36. 326	1.00 57.32	A

	ATOM	1024	CB	THR A 165	-19.300 -2	22. 068 3	6. 809	1.00 59.13	Α
	ATOM	1025	0G1	THR A 165	-19. 423 -2	22. 945 3	5. 681	1.00 60.25	Α
	ATOM	1026	CG2	THR A 165	-20, 600 -2	22. 058 3	37. 575	1.00 59.06	A
	ATOM	1027	С	THR A 165	-18. 882 -1	19. 735 3	37. 533	1.00 55.51	Α
5	ATOM	1028	0	THR A 165	-19. 756 -1	18. 884 3	37.722	1.00 53.88	A
	ATOM	1029	N	PHE A 166	-17. 852 -1	19. 899 3	88. 357	1.00 55.03	A
	ATOM	1030	CA	PHE A 166	-17. 748 -1	19. 052 3	39. 529	1. 00 56. 67	A
	ATOM	1031	CB	PHE A 166	-16. 520 -1	19. 373 4	10. 372	1.00 55.47	A
	ATOM	1032	CG	PHE A 166	-16. 287 -1	18. 365 4	11. 467	1.00 55.56	A
10	ATOM	1033	CD1	PHE A 166	-17. 173 - 1	18. 270 4	12. 548	1.00 55.01	A
	ATOM	1034	CD2	PHE A 166	5 -15. 252 -1	17. 435 4	11. 369	1.00 52.09	A
	ATOM	1035	CE1	PHE A 166	5 -17. 036 -1	17. 250	13. 522	1.00 49.17	A
	ATOM	1036	CE2	PHE A 166	5 -15. 108 -	16. 416	12. 331	1.00 50.06	A
	ATOM	1037	CZ	PHE A 166	-16. 007 − 3	16. 326	43. 408	1.00 48.33	A
15	ATOM	1038	С	PHE A 166	5 -17.664 -	17.600	39. 112	1.00 58.10	A
	ATOM	1039	0	PHE A 160	-18.306 -	16. 739	39. 709	1.00 58.87	A
	ATOM	1040	N	SER A 16'	7 -16.856 -	17. 347	38. 089	1.00 59.52	A
	ATOM	1041	CA	SER A 16	7 -16.647 -	16. 007	37. 561 .	1.00 61.95	A
	ATOM	. 1042	CB	SER A 16	7 -15.751 -	16. 070	36. 320	1.00 64.01	A
20	ATOM	1043	OG	SER A 16	7 -14. 496 -	16. 670	36. 603	1.00 68.65	A
	ATOM	1044	С	SER A 16	7 -17. 969 -	15. 342	37. 195	1.00 62.37	Α
	MOTA	1045	0	SER A 16	7 -18. 236 -	14. 203	37. 576	1.00 60.74	A
	MOTA	1046	N	LYS A 16	3 -18. 794 -	16. 059	36. 445	1.00 64.25	A
	ATOM	1047	CA	LYS A 16	8 -20.079 -	15. 519	36. 032	1.00 65.94	A
25	ATOM	1048	CB	LYS A 16	8 -20.693 -	16. 374	34. 918	1.00 68.53	A
	ATOM	1049	CG	LYS A 16	8 -19. 931 -	16. 315	33. 592	1.00 70.35	A
	ATOM	1050	CD	LYS A 16	8 -20. 558 -	17. 226	32. 537	1.00 72.07	A
	ATOM	1051	CE	LYS A 16	8 -19.737 -	17. 228	31. 250	1.00 74.35	A
	ATOM	1052	NZ	LYS A 16	8 -20. 251 -	18. 206	30. 238	1.00 76.09	Α

	ATOM	1053	C	LYS A	168	-21. 016 -15. 454	37. 222	1.00 65.80	A
	ATOM	1054	0	LYS A	168	-21. 728 -14. 467	37. 399	1.00 65.98	A
	ATOM	1055	N	GLY A	169	-21.000 -16.502	38.045	1. 00 65. 48	A
	ATOM	1056	CA	GLY A	169	-21. 851 -16. 528	39. 220	1.00 62.40	A
5	ATOM	1057	С	GLY A	169	-21. 627 -15. 302	40.088	1.00 62.09	A
	MOTA	1058	0	GLY A	169	-22. 241 -15. 164	41. 141	1.00 64.40	A
	ATOM	1059	N	GLN A	170	-20. 764 -14. 394	39. 641	1.00 60.28	A
	ATOM	1060	CA	GLN A	170	-20. 455 -13. 202	40. 410	1.00 60.01	A
	MOTA	1061	CB	GLN A	170	-19.000 -13.268	40.878	1.00 60.09	A
10	MOTA	1062	CG	GLN A	170	-18. 720 -14. 443	41.797	1.00 59.29	A
	ATOM	1063	CD	GLN A	170	-19, 396 -14, 276	43. 144	1.00 60.40	A
	ATOM	1064	0E1	GLN A	170	-19, 838 -15, 255	43.766	1.00 58.57	A
	ATOM	1065	NE2	GLN A	170	-19. 472 -13. 028	43.612	1.00 56.49	A
	ATOM	1066	C	GLN A	170	-20. 688 -11. 920	39.631	1.00 61.05	A
15	ATOM	1067	0	GLN A	170	-20, 510 -10, 825	40.159	1.00 58.93	A
	ATOM	1068	N	GLY A	171	-21. 085 -12. 059	38. 373	1.00 64.02	A
	ATOM	1069	CA	GLY A	171	-21. 325 -10. 884	37.560	1.00 69.34	A
	ATOM	1070	С	GLY A	171	-20. 146 -10. 546	36.667	1.00 72.57	A
	MOTA	1071	0	GLY A	171	-19. 940 -9. 388	36. 293	1.00 73.44	A
20	ATOM	1072	N	LEU A	172	-19, 356 -11, 558	36. 332	1.00 74.78	A
	ATOM	1073	CA	LEU A	172	-18. 211 -11. 369	35. 455	1.00 76.66	A
	MOTA	1074	CB	LEU A	172	-16. 941 -11. 959	36. 082	1.00 76.52	A
	ATOM	1075	CG	LEU A	172	-16. 304 -11. 200	37. 255	1.00 75.12	A
	ATOM	1076	CD1	LEU A	172	-15.622 -9.945	36.746	1.00 74.02	A
25	ATOM	1077	CD2	LEU A	172	-17. 363 -10. 852	38. 295	1.00 76.24	A
	ATOM	1078	С	LEU A	172	-18. 551 -12. 095	34. 166	1.00 77.94	A
	ATOM	1079	0	LEU A	172	-18. 950 -13. 261	34. 192	1.00 78.67	A
	ATOM	1080	N	THR A	173	-18. 410 -11. 407	33. 039	1.00 78.36	A
	ATOM	1081	CA	THR A	173	-18. 727 -12. 017	31. 755	1.00 79.91	A

150

	ATOM	1082	CB	THR A 173	-19. 248 -10. 989	30.752	1.00 80.74	A
	ATOM	1083	OG1	THR A 173	-18. 138 -10. 416	30.051	1.00 82.51	A
	ATOM	1084	CG2	THR A 173	- 20. 021 - 9. 888	31. 467	1.00 81.84	A
	ATOM	1085	С	THR A 173	-17. 516 -12. 679	31. 130	1.00 79.82	A
5	ATOM	1086	0	THR A 173	-16. 417 -12. 653	31. 684	1.00 80.17	A
	MOTA	1087	N	GLU A 174	-17. 732 -13. 257	29. 955	1.00 80.54	A
	MOTA	1088	CA	GLU A 174	-16. 681 -13. 945	29. 222	1.00 82.10	A
	ATOM	1089	CB	GLU A 174	-17. 261 -14. 552	27. 940	1.00 85.56	A
	ATOM	1090	CG	GLU A 174	-16. 541 -15. 799	27. 443	1.00 89.66	A
10	ATOM	1091	CD	GLU A 174	-16. 562 -16. 933	28. 460	1.00 92.42	A
	ATOM	1092	0E1	GLU A 174	-15. 909 -16. 798	29. 520	1.00 94.51	A
	ATOM	1093	0E2	GLU A 174	-17. 235 -17. 957	28. 204	1.00 93.50	A
	ATOM	1094	С	GLU A 174	-15, 543 -12, 991	28.880	1.00 79.44	A
	ATOM	1095	0	GLU A 174	-14. 371 <i>-</i> 13. 358	28. 932	1.00 77.18	A
15	ATOM	1096	N	GLU A 175	-15.896 -11.760	28. 535	1.00 77.88	A
	ATOM	1097	· CA	GLU A 175	-14. 897 -10. 764	28. 188	1.00 76.60	A
	ATOM	1098	СВ	GLU A 175	-15. 569 -9. 498	27. 662	1.00 78.33	A
	ATOM	1099	CG	GLU A 175	-16. 347 -8. 749	28.723	1.00 82.41	A
	MOTA	1100	CD	GLU A 175	-16. 962 -7. 465	28, 209	1.00 84.48	A
20	ATOM	1101	0E1	GLU A 175	-16. 204 -6. 555	27. 819	1.00 86.80	A
	ATOM	1102	OE2	GLU A 175	-18. 207 -7. 365	28, 198	1.00 84.05	A
	ATOM	1103	С	GLU A 175	-14.047 -10.412	29. 399	1.00 74.57	A
	ATOM	1104	0	GLU A 175	-13.009 -9.772	29, 259	1.00 75.53	A
	ATOM	1105	N	ASP A 176	-14. 486 -10. 818	30. 587	1.00 72.84	A
25	ATOM	1106	CA	ASP A 176	-13. 737 -10. 525	31.808	1.00 71.42	A
	ATOM	1107	CB	ASP A 176	-14. 680 -10. 222	32. 974	1. 00 72. 57	A
	ATOM	1108	CG	ASP A 176	-15. 839 -9. 341	32, 576	1.00 74.87	A
	ATOM	1109	OD1	ASP A 176	-16.734 -9.846	31.873	1.00 74.74	A
	ATOM	1110	OD2	2 ASP A 176	-15. 853 -8. 150	32. 963	1.00 75.76	A

	ATOM	1111	С	ASP A 1	176	-12. 855	-11.700	32, 203	1.00 6	9. 16	A
	ATOM	1112	0	ASP A 1	176	-11. 823	-11.530	32, 841	1.00 6	9. 29	A
	ATOM	1113	N	ILE A 1	177	-13. 275	-12.894	31.817	1.00 6	7. 03	A
	ATOM	1114	CA	ILE A 1	177	-12. 545	-14. 101	32. 150	1.00 6	66.00	A
5	ATOM	1115	CB	ILE A	177	-13. 477	-15. 311	32. 114	1.00 6	66. 64	A
	ATOM	1116	CG2	ILE A	177	-12. 815	-16. 492	32.806	1.00 6	6. 54	A
	ATOM	1117	CG1	ILE A	177	-14. 796	-14. 959	32. 802	1.00 6	57. 72	A
	ATOM	1118	CD1	ILE A	177	-15. 848	-16.051	32, 702	1.00 7	'0. 45	A
	ATOM	1119	C	ILE A	177	-11. 370	-14. 364	31. 218	1.00 6	55. 75	A
10	ATOM	1120	0	ILE A	177	-11. 546	-14. 700	30, 045	1.00 6	57. 30	A
	ATOM	1121	N	VAL A	178	-10. 166	-14. 224	31. 756	1.00 6	53 . 32	A
	ATOM	1122	CA	VAL A	178	-8. 955	-14. 447	30. 985	1.00 8	59. 20	A
	ATOM	1123	CB	VAL A	178	-8. 006	-13. 243	31. 082	1.00 8	58. 03	A
	ATOM	1124	CG1	VAL A	178	-6 . 856	-13. 419	30. 114	1.00 6	80. 86	A
15	ATOM	1125	CG2	VAL A	178	− 8. 755	-11.962	30, 803	1.00 8	58. 82	A
	ATOM	1126	C	VAL A	178	-8. 201	-15. 646	31. 529	1.00 8	56. 79	A
	ATOM	1127	0	VAL A	178	-8. 326	-15. 993	32. 698	1.00 8	59. 10	A
	ATOM	1128	N	PHE A	179	-7.419	-16. 284	30.680	1.00 8	55. 88	A
	. ATOM	1129	CA	PHE A	179	-6. 607	-17. 401	.31, 127	1.00	56. 34	A
20	ATOM	1130	CB	PHE A	179	-7. 052	-18. 707	30. 483	1.00	53. 11	A
	MOTA	1131	CG	PHE A	179	-8. 356	-19. 202	31.007	1.00	53. 55	A
	MOTA	1132	CD1	PHE A	179	-9. 548	-18.869	30. 373	1.00	52. 88	A
	ATOM	1133	CD2	PHE A	179	-8. 401	-19. 980	32. 162	1.00	55. 37	A
	ATOM	1134	CE1	PHE A	179	-10.771	-19. 305	30. 878	1.00	51. 85	A
25	ATOM	1135	CE2	PHE A	179	-9. 619	-20. 423	32.680	1.00	54. 21	A
	ATOM	1136	CZ	PHE A	179	-10. 809	-20.084	32.034	1.00	54. 72	A
	ATOM	1137	С	PHE A	179	-5. 175	-17. 082	30.771	1.00	56. 94	A
	ATOM	1138	0	PHE A	179	-4. 750	-17. 224	29.629	1.00	58 . 94	A
	ATOM	1139	N	LEU A	180	-4. 444	-16. 616	31.770	1.00	56. 14	A

	ATOM	1140	CA	LEU A	180	-3.060	-16. 233	31. 596	1.00 57.47	A
	ATOM	1141	CB	LEU A	180	-2. 437	-15. 987	32.963	1.00 57.31	A
	ATOM	1142	CG	LEU A	180	-3. 361	-15. 108	33.810	1.00 56.20	A
	ATOM	1143	CD1	LEU A	180	-3. 093	-15. 359	35. 294	1.00 55.59	A
5	MOTA	1144	CD2	LEU A	180	-3. 185	-13.645	33. 424	1.00 52.11	A
	ATOM	1145	C	LEU A	180	-2. 274	-17. 288	30.843	1.00 58.94	A
	MOTA	1146	0	LEU A	180	-2. 327	-18. 472	31. 176	1.00 59.95	A
	MOTA	1147	N	PRO A	181	-1. 549	-16.867	29.799	1.00 60.40	A
	MOTA	1148	CD	PRO A	181	-1. 633	-15. 518	29. 208	1.00 59.15	A
10	ATOM	1149	CA	PRO A	181	-0.727	-17. 741	28.961	1.00 63.62	Α
	ATOM	1150	CB	PRO A	181	-0.619	-16.953	27.666	1.00 61.46	A
	MOTA	1151	CG	PRO A	181	-0.533	-15. 549	28.166	1.00 57.89	A
	ATOM	1152	C	PRO A	181	0.640	-17. 966	29. 598	1.00 67.50	A
	ATOM	1153	0	PRO A	181	1. 154	-17.086	30. 284	1.00 68.06	A
15	ATOM	1154	N	GLN A	182	1. 223	-19. 138	29.364	1.00 70.91	A
	ATOM	1155	CA	GLN A	182	2. 538	-19. 458	29. 912	1.00 74.68	A
	ATOM	1156	CB	GLN A	182	2. 945	-20.894	29.570	1.00 74.56	A
	ATOM	1157	CG	GLN A	182	1. 933	-21.971	29, 892.	1.00 76.21	A
	ATOM .	1158	CD	GLN A	182	2. 520	-23. 373	.29728	1.00 77.21	A
20	ATOM	1159	0E1	GLN A	182	1. 790	-24. 364	29.679	1.00 77.14	A
	ATOM	1160	NE2	GLN A	182	3. 848	-23. 458	29, 655	1.00 74.73	Α
	ATOM	1161	С	GLN A	182	3. 599	-18. 527	29.329	1.00 77.11	A
	ATOM	1162	0	GLN A	182	3. 851	-18. 546	28, 127	1.00 77.72	A
	ATOM	1163	N	PRO A	183	4. 232	-17. 696	30, 169	1.00 79.26	A
25	ATOM	1164	CD	PRO A	183	3. 959	-17. 395	31. 585	1.00 78.43	A
	ATOM	1165	CA	PRO A	183	5. 260	-16. 800	29, 637	1.00 82.07	A
	ATOM	1166	CB	PRO A	183	5. 334	-15. 706	30, 691	1.00 79.37	A
	ATOM	1167	CG	PRO A	183	5. 106	-16. 472	31.944	1.00 78.09	A
	ATOM	1168	С	PRO A	183	6. 576	-17. 567	29. 497	1.00 86.60	A

	ATOM	1169	0	PRO A 18	33	7. 309 -	17. 743	30. 474	1.00 88.58	A
	ATOM	1170	N	ASP A 18	34	6. 856 -	18. 037	28. 285	1.00 89.35	A
	ATOM	1171	CA	ASP A 18	34	8. 074 -	18. 790	27. 996	1.00 91.71	A
	ATOM	1172	CB	ASP A 18	34	8. 376 -	18. 720	26. 496	1.00 90.76	A
5	ATOM	1173	CG	ASP A 18	34	8. 268 -	17. 308	25. 946	1.00 91.18	A
	ATOM	1174	OD1	ASP A 18	84	9. 028 -	16. 421	26. 394	1.00 92.29	A
	ATOM	1175	OD2	ASP A 18	84	7. 415 -	-17. 080	25.064	1.00 91.05	A
	ATOM	1176	С	ASP A 18	84	9. 287 -	-18. 298	28. 786	1.00 93.40	Α
	ATOM	1177	0	ASP A 18	84	10. 143 -	-19. 090	29. 187	1.00 93.35	A
10	ATOM	1178	N	LYS A 18	85	9. 347 -	-16. 989	29. 014	1.00 95.42	A
	ATOM	1179	CA	LYS A 18	85	10. 451	-16. 376	29. 744	1.00 95.83	A
	ATOM	1180	CB	LYS A 1	85	10.661	-14. 943	29. 239	1.00 96.46	A
	ATOM	1181	CG	LYS A 1	.85	11.974	-14, 287	29.659	1.00 98.21	A
	ATOM	1182	CD	LYS A 1	.85	12.077	-12. 872	29. 092	1. 00100. 88	A
15	ATOM	1183	CE	LYS A 1	85	13. 448	-12. 250	29. 335	1. 00102. 05	A
	ATOM	1184	NZ	LYS A 1	185	13. 760	-12. 116	30. 785	1. 00104. 65	A
	ATOM	1185	С	LYS A 1	185	10. 192	-16. 366	31. 250	1.00 95.82	A
	ATOM	1186	0	LYS A 1	185	9.619	-17. 299	31.804	1.00 94.92	A
	ATOM	1187	N	CYS A 1	186	10.627	-15. 291	31.890	1.00 96.28	. A
20	ATOM	1188	CA	CYS A 1	186	10. 492	-15. 074	33. 321	1.00 97.57	A
	ATOM	1189	C	CYS A	186	10. 358	-16. 297	34. 239	1.00 99.39	A
	ATOM	1190	0	CYS A	186	11. 328	-16. 685	34. 887	1.00100.13	A
	ATOM	1191	СВ	CYS A	186	9. 352	-14. 098	33. 575	1.00 95.95	A
	ATOM	1192	2 SG	CYS A	186	9. 759	-13. 012	34. 968	1.00 98.27	A
25	ATOM	1193	3 N	ILE A	187	9. 171	-16. 889	34. 324	1.00101.87	A
	ATOM	1194	4 CA	ILE A	187	8. 976	-18. 066	35. 175	1.00103.65	A
	ATOM	119	5 CE	ILE A	187	7. 513	-18. 517	35. 189	1.00100.55	A
	ATOM	1196	6 CC	32 ILE A	187	7. 375	-19. 795	35.996	1. 00100. 83	A
	ATOM	119'	7 CC	31 ILE A	187	6. 631	-17. 417	7 35.765	1.00 97.38	B A

	ATOM	1198	CD1	ILE A	187	5. 172 -1	7. 755	35. 710	1.00 94.71	A
	ATOM	1199	С	ILE A	187	9, 805 -1	9. 235	34. 659	1. 00107. 87	A
	ATOM	1200	0	ILE A	187	10.074 -1	9. 324	33. 463	1. 00109. 90	A
	ATOM	1201	N	GLN A	188	10. 193 -2	0. 138	35. 554	1. 00111. 72	A
5	ATOM	1202	CA	GLN A	188	10. 998 -2	21. 296	35. 168	1. 00116. 09	A
	ATOM	1203	CB	GLN A	188	11.467 -2	2. 053	36. 412	1. 00117. 84	A
	ATOM	1204	CG	GLN A	188.	12. 347 -2	21. 230	37. 335	1. 00120. 37	A
	ATOM	1205	CD	GLN A	188	13, 626 -2	20. 764	36.665	1. 00120. 88	A
	ATOM	1206	0E1	GLN A	188	13, 592 -2	20.088	35. 637	1. 00121. 37	A
10	ATOM	1207	NE2	GLN A	188	14. 763 -2	21. 121	37. 250	1. 00120. 87	A
	ATOM	1208	C	GLN A	188	10. 251 -2	22. 249	34. 241	1. 00118. 05	A
	ATOM	1209	0	GLN A	188	9. 512 -2	23. 125	34. 696	1. 00118. 11	A
	MOTA	1210	N	GLU A	189	10. 462 -2	22. 070	32. 938	1. 00120. 59	A
	MOTA	1211	CA	GLU A	189	9, 830 -2	22. 892	31. 904	1. 00121. 84	A
15	MOTA	1212	CB	GLU A	189	10. 296 -2	24. 352	32.015	1.00122.00	A
	ATOM	1213	CĢ	GLU A	189	10.004 -2	25. 210	30. 781	1. 00120. 78	A
	ATOM	1214	CD	GLU A	189	10. 895 -2	24. 865	29.600	1. 00120. 07	A
	ATOM	1215	0E1	GLU A	189	10.855 -2	23. 705	29. 142	1. 00119. 99	A
	ATOM	1216	0E2	GLU A	189	11.636 -2	25. 753	29. 129	1.00120.26	A
20	ATOM	1217	С	GLU A	189	8. 308 -2	22. 830	32.001	1. 00122. 03	A
	ATOM	1218	0	GLU A	189	7. 697 -2	23. 870	32. 332	1.00121.94	A
	ATOM	1219	ОТ	GLU A	189	7.748 -2	21.740	31.749	1. 00121. 99	A
	ATOM	1220	0Н2	WAT W	200	6.622 -1	15. 627	50. 105	1.00 32.46	W
	ATOM	1221	0Н2	WAT W	201	-13. 735 - 3	12. 460	49. 782	1.00 32.29	W
25	ATOM	1222	OH2	WAT W	203	-15. 181 -	17. 532	49. 376	1.00 37.27	W
	ATOM	1223	ОН2	WAT W	204	-15. 122 -	18. 405	51.994	1.00 34.03	W
	ATOM	1224	ОН2	WAT W	205	-11. 282 -	24. 928	56. 736	1.00 73.37	W
	ATOM	1225	ОН2	WAT W	206	1. 440 -	10. 333	58. 570	1.00 44.34	W
	ATOM	1226	OH2	WAT W	207	-6.812 -	15. 884	58.098	1.00 42.35	W

155

	ATOM	1227	OH2 WAT W 208	3 - 12. 965 -	18 384	52. 877	1, 00 32, 22	W
	ATOM		OH2 WAT W 209			25. 292	1.00 74.89	W
	ATOM	1228				39. 538	1.00 40.06	W
	ATOM	1229	OH2 WAT W 210					
	ATOM	1230	OH2 WAT W 21			46.065	1.00 52.52	W
5	ATOM	1231	OH2 WAT W 21	2 -1.942 -	-21. 966	60. 262	1.00 54.38	W
	ATOM	1232	OH2 WAT W 21	3 -10.025	2. 738	39. 161	1. 00 89. 20	W
	ATOM	1233	OH2 WAT W 21	4 -7. 536	3. 097	34.665	1.00 66.61	W
	ATOM	1234	OH2 WAT W 21	5 -6, 865	4. 692	30. 926	1.00 68.98	W
	ATOM	1235	OH2 WAT W 21	6 -5. 056	6. 596	40. 134	1.00 47.28	W
10	ATOM	1236	OH2 WAT W 21	7 -3.634	4. 447	40.783	1.00 83.64	W
	ATOM	1237	OH2 WAT W 21	8 7.394	-11. 367	25. 281	1.00 57.42	W
	ATOM	1238	OH2 WAT W 21	9. 310	-21. 158	25. 421	1.00 59.90	W
	ATOM	1239	OH2 WAT W 22	20 10.366	-24. 989	26. 400	1.00 58.73	W
	ATOM	1240	OH2 WAT W 22	-4. 606	3. 348	26.800	1.00 65.51	W
15	ATOM	1241	OH2 WAT W 22	22 -2.367	6. 175	29. 500	1.00 42.56	W
	ATOM	1242	OH2 WAT W 22	23 -4. 942	6. 474	32. 978	1.00 55.44	W
	ATOM	1243	OH2 WAT W 22	24 –20. 607	-20. 158	31. 933	1.00 59.45	W
	ATOM	1244	. OH2 WAT W 22	25 –25, 839	-21.690	29. 465	1.00 67.32	W
	ATOM	1245	OH2 WAT W 2	26 –27. 537	-18. 582	31. 205	1.00 63.04	W
20	ATOM	1246	OH2 WAT W 2	27 1. 524	-5. 767	50. 296	1.00 37.51	W
	ATOM	1247	OH2 WAT W 2	28 -1.401	−5. 768	53. 755	1.00 58.16	W
	ATOM	1248	OH2 WAT W 2	29 1. 756	0.015	54. 499	1.00 67.42	W
	ATOM	1249	OH2 WAT W 2	30 7. 581	-7. 200	53.652	1.00 51.29	W
	ATOM	1250	OH2 WAT W 2	31 10. 564	-9.875	52.898	1.00 34.20	W
25	ATOM	1251	OH2 WAT W 2	32 -12. 228	8.044	49.309	1.00 43.27	W
	ATOM	1252	OH2 WAT W 2	3. 892	-5. 291	53. 253	1.00 54.32	W
	ATOM	1253	OH2 WAT W 2	34 –12. 406	-27. 193	54. 213	1.00 58.17	W
	ATOM	1254	OH2 WAT W 2	35 –12. 591	-26. 874	57. 492	1.00 59.02	W
	ATOM	1255	OH2 WAT W 2	236 -9. 972	-27. 101	55. 248	1.00 64.22	W

	ATOM	1256	OH2 WAT W 237	-10. 986 -26. 023	59. 916	1.00 85.99	W
	ATOM	1257	OH2 WAT ₩ 238	-8. 633 -24. 722	60. 499	1.00 65.65	W
	ATOM	1258	OH2 WAT W 239	-7. 408 -29. 767	62. 831	1. 00104. 46	W
	ATOM	1259	OH2 WAT W 240	-10. 853 -30. 151	64.764	1.00 64.63	W
5	ATOM	1260	OH2 WAT W 241	-5. 798 -30. 088	64.947	1.00 59.64	W
	ATOM	1261	OH2 WAT W 242	-10. 749 -26. 762	64. 393	1.00 42.38	W
	MOTA	1262	OH2 WAT W 243	-4. 473 -23, 155	64. 989	1.00 62.66	W
	ATOM	1263	OH2 WAT W 244	-7. 538 -16. 683	61.868	1.00 50.16	W
	ATOM	1264	OH2 WAT W 245	-10. 230 -12. 385	64. 294	1.00 56.02	W
10	ATOM	1265	OH2 WAT W 246	-12. 542 -9. 996	64. 001	1.00 54.97	W
	ATOM	1266	OH2 WAT W 247	-3. 345 -14. 402	69. 343	1.00 57.93	W
	ATOM	1267	OH2 WAT W 249	-3. 709 -26. 479	62.036	1.00 92.57	W
	ATOM	1268	OH2 WAT W 250	-0. 479 -31. 295	63. 228	1.00 47.82	W
	ATOM	1269	OH2 WAT W 251	-3. 132 -28. 329	67.027	1. 00 81. 69	W
15	MOTA	1270	OH2 WAT W 252	1.056 -29.536	66. 527	1.00 61.35	W
	MOTA	1271	OH2 WAT W 253	-1.744 -29.498	70.046	1.00 87.09	W
	MOTA	1272	OH2 WAT W 254	-3. 689 -29. 331	72. 794	1. 00, 58. 75	W
	ATOM	1273	OH2 WAT W 255	-1.410 -27.800	75. 675	1.00 97.58	W
	ATOM	1274	OH2 WAT W 256	-5. 043 -29. 537	76. 343	1.00 64.90	W
20	ATOM	1275	OH2 WAT W 257	-4. 475 -32. 406	78, 585	1.00 63.31	W
	ATOM	1276	OH2 WAT W 258	-9. 056 -33. 080	76. 962	1.00 69.69	W
	ATOM	1277	OH2 WAT W 259	-4. 003 -31. 163	82. 151	1.00 71.55	W
	ATOM	1278	OH2 WAT W 260	-5. 860 -21. 668	72.801	1.00 74.39	W
	ATOM	1279	OH2 WAT W 261	-2. 868 -8. 958	39. 980	1.00 74.69	W
25	ATOM	1280	OH2 WAT W 262	-4. 140 -12. 006	44. 306	1.00 62.67	W
	ATOM	1281	OH2 WAT W 263	-3. 803 -8. 642	42.852	1. 00 66. 75	W
	ATOM	1282	OH2 WAT W 264	1. 805 -10. 509	35. 249	1.00 59.42	W
	ATOM	1283	OH2 WAT W 265	-4. 539 -24. 842	50. 726	1.00 36.51	W
	MOTA	1284	OH2 WAT ₩ 266	-19. 503 -1. 261	38. 826	1.00 69.86	W

157

ATOM 1285 OH2 WAT W 267 12.469 -22.407 27.693 1.00 85.12 W

5

15

25

請求の範囲

- 1. マウスに由来するリポカリン型プロスタグランジンD合成酵素の結晶。
- 2. 結晶が斜方晶系の空間群 P 2, 2, 2, を有し、単位格子が a = 46. 2 ±
- 0.5Å、b=66.8±0.7Å、c=105.3±1.QÅの大きさを有する請求の範囲第1項に記載の結晶。
 - 3. 結晶が斜方晶系の空間群 $C222_1$ を有し、単位格子が $a=45.7\pm0.5$ Å、 $b=66.8\pm0.7$ Å、 $c=104.5\pm1.0$ Åの大きさを有する 請求の範囲第1項に記載の結晶。
- 10 4. 表2の構造座標で表わされる3次元立体構造を有するリポカリン型プロス タグランジンD合成酵素。
 - 5. 表3の構造座標で表わされる3次元立体構造を有するリポカリン型プロスタグランジンD合成酵素。
 - 6. リポカリン型プロスタグランジンD合成酵素を阻害する化合物の選定における表2又は表3の構造座標の使用。
 - 7. リポカリン型プロスタグランジンD合成酵素の阻害剤の選定方法であって、
 - (a) リポカリン型プロスタグランジンD合成酵素の立体構造を表わす表 2 又は表 3 の 3 次元構造座標を提供し;
 - (b) 候補化合物の立体構造を提供し;
- 20 (c) リポカリン型プロスタグランジンD合成酵素の基質結合部位に適合する候 補化合物を阻害剤として選択する;
 - ことを含む方法。
 - 8. (d) 選択された阻害剤をプロスタグランジン H_2 の存在下にリポカリン型プロスタグランジンD合成酵素と接触させて、該酵素の活性を測定し該候補化合物の阻害効果を確認することを更に含む請求の範囲第7項に記載の方法。
 - 9. 請求の範囲第7項又は第8項に記載の方法により選定されたリポカリン型 プロスタグランジンD合成酵素の阻害剤。
 - 10. 4ージベンゾ(a, d)シクロヘプテンー5ーイリデンー1ー(4ー(2Hーテトラゾールー5ーイル) プチル)ピペリジンよりなるリポカリン型

159

プロスタグランジンD合成酵素の阻害剤。

図1

	40 60
PGDS	QGHDTVQPNFQQDKPLGRWYSAGLASNS-SWFREKKAVLYMCKTVVAPSTEGG
	1 A 2 B
HNGAL	PAPPLSKVPLQQNFQDNQFQGKWYVVGLAGNAILREDKDPQKMYATIYELKEDKS
BLG	LIVTQTMKGLDIQKVÄGTWYSLAMAASDISLLDAQSAPLKVYVEELKPTPEGD
RBP	CAVSSFRVKENFDKARFSGTWYAMAKKDPE-GLFLODNIVAEFSVDETGOMSATA
ERABP	AVVKDFDISKFLGFWYEIAFASKMGTPGLAHKEEKMGAMVVELKENL
MUP	CVHABEASST GRNFNVEKINGEWHT IILASD KREKIEDNGNFRLFLEO IHVLENS
OBP	AQEEEAEQNLSELSGPWRTVYIGSTN-PEKIQENGPFRTYFRELVFDDEKG
BBP	NVYHDGACPEVRPVDNF DWSNYHGKWWEVAKYPNS-VEKYGKCGWAEYT PEGKSVKVSNY
	SCR1-
	- CALL
	80 100 120
PGDS	LNLTSTFLRKNQCETKIMVLQPAGAPGHYTYSSPHSG-SIHSVSVVEANYDEYALL
200	
MICET	
HNGAL	YNVTSVLFRKKKCDYWIRTFVPGCQPGEFTLGNIKSYPGLTSYLVRVVSTNYNQHAMV
BLG	LEILLQKWENGECAQKKIIAEKTKIPAVFKIDALNENKVL-VLDTDYKKYLLF
RBP	KGRVRLLNNWDVCADMVGTFTDTEDPAKFKMKYWGVASFLQKGNDDHWIVDTDYDTYAVQ
ERABP	Laltttyysedhcvlekvtategdgpakfqvtrlsgkkevvveatdyltyaii
MUP .	LVLKFHTVRDEECSELSMVADKTEKAGEYSVTYDGFNTFTIPKTDYDNFLMA
OBP	TVDFYF5VKRDGKWKNVHVKATKQDDGTYVADYEGQNVFKIVSLSRTHLVAH
BBP	HVIHGKEYFIEGTAYPVGDSKIGKIYHKLTYGGVTKENVFNVLSTDNKNYIIG
	SCR2_
	SCR2_
	140 160 180
PGDS	
PGDS	140 160 180
PGDS HNGAL	140 160 180 FSRGTKGPGQDFRMA-TLYSRTQTLKDKLKEKFTTFSK-AQGLTEKDIVFLPQP-DK
	140 160 180 FSRGTKGPGQDFRMA-TLYSRTQTLKDKLKEKFTTFSK-AQGLTEKDIVFLPQP-DK
HNGAL	140 160 180 FSRGTKGFGQDFRMA-TLYSRTQTLKDELKEKFTTFSK-AQGLTEEDIVFLPQP-DK G H 3 FFKKVSQNREYFKITLYGRTKELTSELKENFIRFSK-SLGLPENHIVF-PVPIDQ
HNGAL BLG	140 160 180 FSRGTKGPGQDFRMA-TLYSRTQTLKDELKEKFTTFSK-AQGLTEEDIVFLPQP-DK G H 3 FFKKVSQNREYFKITLYGRTKELTSELKENFIRFSK-SLGLPENHIVF-PVPIDQ CMENSAEPEQSLACQCLVRTPEVDDEALEKFDKALK-ALPMHIRLSFNPTQLEEQ
HNGAL BLG RBP	140 FSRGTKGPGQDFRMA-TLYSRTQTLKDKLKEKFTTFSK-AQGLTEKDIVFLPQP-DK G H S FFKKVSQNREYFKITLYGRTKELTSELKENFIRFSK-SLGLPENHIVF-PVPIDQ CMENSAEPEQSLACQCLVRTPEVDDEALEKFDKALK-ALPMHIRLSFNPTQLEEQ YSCRLLNLDGTCADSYSF-VFSRDPNGLPPEAQKIVAQRQE-ELCLAAQYRLIVHNGY DITSLVAGAVHRTM-KLYSRSLDDNGEALYNFRKITS-DHGFSETDLYILKHD-LT
HNGAL BLG RBP ERABP MUP	140 FSRGTKGPGQDFRMA-TLYSRTQTLKDKLKEKFTTFSK-AQGLTEKDIVFLPQP-DK G H FFKKVSQNREYFKITLYGRTKELTSELKENFIRFSK-SLGLPENHIVF-PVPIDQ CMENSAEPEQSLACQCLVRTPEVDDEALEKFDKALK-ALPMHIRLSFNPTQLEEQ YSCRLLNLDGTCADSYSF-VFSRDPNGLPPEAQKIVAQRQE-ELCLAAQYRLIVHNGY DITSLVAGAVHRTM-KLYSRSLDDNGEALYNFRKITS-DHGFSETDLYILKHD-LT HLINEKDGETFQLM-GLYGREPDLSSDIKERFAQLCE-EHGILRENIIDLSNA-NR
HNGAL BLG RBP ERABP MUP OBP	140 FSRGTKGPGQDFRMA-TLYSRTQTLKDELKEKFTTFSK-AQGLTEEDIVFLPQP-DK G FFKKVSQNREYFKITLYGRTKELTSELKENFIRFSK-SLGLPENHIVF-PVPIDQ CMENSAEPEQSLACQCLVRTPEVDDEALEKFDKALK-ALPMHIRLSFNPTQLEEQ YSCRLLNLDGTCADSYSF-VFSRDPNGLPPEAQKIVAQRQE-ELCLAAQYRLIVHNGY DITSLVAGAVHRTM-KLYSRSLDDNGEALYNFRKITS-DHGFSETDLYILKHD-LT HLINEKDGETFQLM-GLYGREPDLSSDIKERFAQLCE-EHGILRENIIDLSNA-NR NINVDKHGQKTELT-GLFVKLN-VEDEDLEKFWKLTE-DKGIDKKNVVNFLENEDH
HNGAL BLG RBP ERABP MUP	140 FSRGTKGPGQDFRMA-TLYSRTQTLKDKLKEKFTTFSK-AQGLTEEDIVFLPQP-DK G H S FFKKVSQNREYFKITLYGRTKELTSELKENFIRFSK-SLGLPENHIVF-PVPIDQ CMENSAEPEQSLACQCLVRTPEVDDEALEKFDKALK-ALPMHIRLSFNPTQLEEQ YSCRLLNLDGTCADSYSF-VFSRDPNGLPPEAQKIVAQRQE-ELCLAAQYRLIVHNGY DITSLVAGAVHRTM-KLYSRSLDDNGEALYNFRKITS-DHGFSETDLYILKHD-LT HLINEKDGETFQLM-GLYGREPDLSSDIKERFAQLCE-EHGILRENIIDLSNA-NR NINVDKHGQKTELT-GLFVKLN-VEDEDLEKFWKLTE-DKGIDKKNVVNFLENEDH YYCKYDEDKKGHQDFVWVLSRSKVLTGEAKTAVENYLIGSPVVDSQKLVYSDFSEAA
HNGAL BLG RBP ERABP MUP OBP	140 FSRGTKGPGQDFRMA-TLYSRTQTLKDELKEKFTTFSK-AQGLTEEDIVFLPQP-DK G FFKKVSQNREYFKITLYGRTKELTSELKENFIRFSK-SLGLPENHIVF-PVPIDQ CMENSAEPEQSLACQCLVRTPEVDDEALEKFDKALK-ALPMHIRLSFNPTQLEEQ YSCRLLNLDGTCADSYSF-VFSRDPNGLPPEAQKIVAQRQE-ELCLAAQYRLIVHNGY DITSLVAGAVHRTM-KLYSRSLDDNGEALYNFRKITS-DHGFSETDLYILKHD-LT HLINEKDGETFQLM-GLYGREPDLSSDIKERFAQLCE-EHGILRENIIDLSNA-NR NINVDKHGQKTELT-GLFVKLN-VEDEDLEKFWKLTE-DKGIDKKNVVNFLENEDH
HNGAL BLG RBP ERABP MUP OBP	140 FSRGTKGPGQDFRMA-TLYSRTQTLKDELKEKFTTFSK-AQGLTEEDIVFLPQP-DK G H S FFKKVSQNREYFKITLYGRTKELTSELKENFIRFSK-SLGLPENHIVF-PVPIDQ CMENSAEPEQSLACQCLVRTPEVDDEALEKFDKALK-ALPMHIRLSFNPTQLEEQ YSCRLLNLDGTCADSYSF-VFSRDPNGLPPEAQKIVAQRQE-ELCLAAQYRLIVHNGY DITSLVAGAVHRTM-KLYSRSLDDNGEALYNFRKITS-DHGFSETDLYILKHD-LT HLINEKDGETFQLM-GLYGREPDLSSDIKERFAQLCE-EHGILRENIIDLSNA-NR NINVDKHGQKTELT-GLFVKLN-VEDEDLEKFWKLTE-DKGIDKKNVVNFLENEDH YYCKYDEDKKGHQDFVWVLSRSKVLTGEAKTAVENYLIGSPVVDSQKLVYSDFSEAA
HNGAL BLG RBP ERABP MUP OBP BBP	140 FSRGTKGPGQDFRMA-TLYSRTQTLKDELKEKFTTFSK-AQGLTEEDIVFLPQP-DK G H FFKKVSQNREYFKITLYGRTKELTSELKENFIRFSK-SLGLPENHIVF-PVPIDQ CMENSAEPEQSLACQCLVRTPEVDDEALEKFDKALK-ALPMHIRLSFNPTQLEEQ YSCRLLNLDGTCADSYSF-VFSRDPNGLPPEAQKIVAQRQE-ELCLAAQYRLIVHNGY DITSLVAGAVHRTM-KLYSRSLDDNGEALYNFRKITS-DHGFSETDLYILKHD-LT HLINEKDGETFQLM-GLYGREPDLSSDIKERFAQLCE-EHGILRENIIDLSNA-NR NINVDKHGQKTELT-GLFVKLN-VEDEDLEKFWKLTE-DKGIDKKNVVNFLENEDH YYCKYDEDKKGHQDFVWVLSRSKVLTGEAKTAVENYLIGSPVVDSQKLVYSDFSEAA
HNGAL BLG RBP ERABP MUP OBP	140 FSRGTKGPGQDFRMA-TLYSRTQTLKDELKEKFTTFSK-AQGLTEEDIVFLPQP-DK G H S FFKKVSQNREYFKITLYGRTKELTSELKENFIRFSK-SLGLPENHIVF-PVPIDQ CMENSAEPEQSLACQCLVRTPEVDDEALEKFDKALK-ALPMHIRLSFNPTQLEEQ YSCRLLNLDGTCADSYSF-VFSRDPNGLPPEAQKIVAQRQE-ELCLAAQYRLIVHNGY DITSLVAGAVHRTM-KLYSRSLDDNGEALYNFRKITS-DHGFSETDLYILKHD-LT HLINEKDGETFQLM-GLYGREPDLSSDIKERFAQLCE-EHGILRENIIDLSNA-NR NINVDKHGQKTELT-GLFVKLN-VEDEDLEKFWKLTE-DKGIDKKNVVNFLENEDH YYCKYDEDKKGHQDFVWVLSRSKVLTGEAKTAVENYLIGSPVVDSQKLVYSDFSEAA
HNGAL BLG RBP ERABP MUP OBP BBP	140 FSRGTKGPGQDFRMA-TLYSRTQTLKDELKEKFTTFSK-AQGLTEEDIVFLPQP-DK G H S FFKKVSQNREYFKITLYGRTKELTSELKENFIRFSK-SLGLPENHIVF-PVPIDQ CMENSAEPEQSLACQCLVRTPEVDDEALEKFDKALK-ALPMHIRLSFNPTQLEEQ YSCRLLNLDGTCADSYSF-VFSRDPNGLPPEAQKIVAQRQE-ELCLAAQYRLIVHNGY DITSLVAGAVHRTM-KLYSRSLDDNGEALYNFRKITS-DHGFSETDLYILKHD-LT HLINEKDGETFQLM-GLYGREPDLSSDIKERFAQLCE-EHGILRENIIDLSNA-NR NINVDKHGQKTELT-GLFVKLN-VEDEDLEKFWKLTE-DKGIDKKNVVNFLENEDH YYCKYDEDKKGHQDFVWVLSRSKVLTGEAKTAVENYLIGSPVVDSQKLVYSDFSEAA
HNGAL BLG RBP ERABP MUP OBP BBP	140 FSRGTKGPGQDFRMA-TLYSRTQTLKDELKEKFTTFSK-AQGLTEEDIVFLPQP-DK G H S FFKKVSQNREYFKITLYGRTKELTSELKENFIRFSK-SLGLPENHIVF-PVPIDQ CMENSAEPEQSLACQCLVRTPEVDDEALEKFDKALK-ALPMHIRLSFNPTQLEEQ YSCRLLNLDGTCADSYSF-VFSRDPNGLPPEAQKIVAQRQE-ELCLAAQYRLIVHNGY DITSLVAGAVHRTM-KLYSRSLDDNGEALYNFRKITS-DHGFSETDLYILKHD-LT HLINEKDGETFQLM-GLYGREPDLSSDIKERFAQLCE-EHGILRENIIDLSNA-NR NINVDKHGQKTELT-GLFVKLN-VEDEDLEKFWKLTE-DKGIDKKNVVNFLENEDH YYCKYDEDKKGHQDFVWVLSRSKVLTGEAKTAVENYLIGSPVVDSQKLVYSDFSEAA
HNGAL BLG RBP ERABP MUP OBP BBP PGDS HNGAL BLG	140 FSRGTKGFGQDFRMA-TLYSRTQTLKDELKEKFTTFSK-AQGLTEEDIVFLPQP-DK G H 3 FFKKVSQNREYFKITLYGRTKELTSELKENFIRFSK-SLGLPENHIVF-PVPIDQ CMENSAEPEQSLACQCLVRTPEVDDEALEKFDKALK-ALPMHIRLSFNPTQLEEQ YSCRLLNLDGTCADSYSF-VFSRDPNGLPPEAQKIVAQRQE-ELCLAAQYRLIVHNGY DITSLVAGAVHRTM-KLYSRSLDDNGEALYNFRKITS-DHGFSETDLYILKHD-LT HLINEKDGETFQLM-GLYGREPDLSSDIKERFAQLCE-EHGILRENIIDLSNA-NR NINVDKHGQKTELT-GLFVKLN-VEDEDLEKFWKLTE-DKGIDKKNVVNFLENEDH YYCKYDEDKKGHQDFVWVLSRSKVLTGEAKTAVENYLIGSPVVDSQKLVYSDFSEAA
HNGAL BLG RBP ERABP MUP OBP BBP PGDS HNGAL BLG RBP	140 FSRGTKGFGQDFRMA-TLYSRTQTLKDELKEKFTTFSK-AQGLTEEDIVFLPQP-DK G H 3 FFKKVSQNREYFKITLYGRTKELTSELKENFIRFSK-SLGLPENHIVF-PVPIDQ CMENSAEPEQSLACQCLVRTPEVDDEALEKFDKALK-ALPMHIRLSFNPTQLEEQ YSCRLLNLDGTCADSYSF-VFSRDPNGLPPEAQKIVAQRQE-ELCLAAQYRLIVHNGY DITSLVAGAVHRTM-KLYSRSLDDNGEALYNFRKITS-DHGFSETDLYILKHD-LT HLINEKDGETFQLM-GLYGREPDLSSDIKERFAQLCE-EHGILRENIIDLSNA-NR NINVDKHGQKTELT-GLFVKLN-VEDEDLEKFWRLTE-DKGIDKKNVVNFLENEDH YYCKYDEDKKGHQDFVWVLSRSKVLTGEAKTAVENYLIGSPVVDSQKLVYSDFSEAA
HNGAL BLG RBP ERABP MUP OBP BBP PGDS HNGAL BLG RBP ERABP	140 FSRGTKGPGQDFRMA-TLYSRTQTLKDELKEKFTTFSK-AQGLTEEDIVFLPQP-DK G H FFKKVSQNREYFKITLYGRTKELTSELKENFIRFSK-SLGLPENHIVF-PVPIDQ CMENSAEPEQSLACQCLVRTPEVDDEALEKFDKALK-ALPMHIRLSFNPTQLEEQ YSCRLLNLDGTCADSYSF-VFSRDPNGLPPEAQKIVAQRQE-ELCLAAQYRLIVHNGY DITSLVAGAVHRTM-KLYSRSLDDNGEALYNFRKITS-DHGFSETDLYILKHD-LT HLINEKDGETFQLM-GLYGREPDLSSDIKERFAQLCE-EHGILRENIIDLSNA-NR NINVDKHGQKTELT-GLFVKLN-VEDEDLEKFWKLTE-DKGIDKKNVVNFLENEDH YYCKYDEDKKGHQDFVWVLSRSKVLTGEAKTAVENYLIGSPVVDSQKLVYSDFSEAA
HNGAL BLG RBP ERABP MUP OBP BBP PGDS HNGAL BLG RBP ERABP MUP	140 FSRGTKGFGQDFRMA-TLYSRTQTLKDELKEKFTTFSK-AQGLTEKDIVFLPQP-DK G H S FFKKVSQNREYFKITLYGRTKELTSELKENFIRFSK-SLGLPENHIVF-PVPIDQ CMENSAEPEQSLACQCLVRTPEVDDEALEKFDKALK-ALPMHIRLSFNPTQLEEQ YSCRLLNLDGTCADSYSF-VFSRDPNGLPPEAQKIVAQQQE-ELCLAAQYRLIVHNGY DITSLVAGAVHRTM-KLYSRSLDDNGEALYNFRKITS-DHGFSETDLYILKHD-LT HLINEKDGETFQLM-GLYGREPDLSSDIKERFAQLCE-EHGILRENIIDLSNA-NR NINVDKHGQKTELT-GLFVKLN-VEDEDLEKFWKLTE-DKGIDKKNVVNFLENEDH YYCKYDEDKKGHQDFVWVLSRSKVLTGEAKTAVENYLIGSPVVDSQRLVYSDFSEAA
HNGAL BLG RBP ERABP MUP OBP BBP PGDS HNGAL BLG RBP ERABP	140 FSRGTKGPGQDFRMA-TLYSRTQTLKDELKEKFTTFSK-AQGLTEEDIVFLPQP-DK G H FFKKVSQNREYFKITLYGRTKELTSELKENFIRFSK-SLGLPENHIVF-PVPIDQ CMENSAEPEQSLACQCLVRTPEVDDEALEKFDKALK-ALPMHIRLSFNPTQLEEQ YSCRLLNLDGTCADSYSF-VFSRDPNGLPPEAQKIVAQRQE-ELCLAAQYRLIVHNGY DITSLVAGAVHRTM-KLYSRSLDDNGEALYNFRKITS-DHGFSETDLYILKHD-LT HLINEKDGETFQLM-GLYGREPDLSSDIKERFAQLCE-EHGILRENIIDLSNA-NR NINVDKHGQKTELT-GLFVKLN-VEDEDLEKFWKLTE-DKGIDKKNVVNFLENEDH YYCKYDEDKKGHQDFVWVLSRSKVLTGEAKTAVENYLIGSPVVDSQKLVYSDFSEAA

図3

図4

図 5

図 7

9/11

図10

11/11

1/2

SEQUENCE LISTING

<110> RIKEN

Osaka Bioscience Institute

<120> Three Dimensional Steric Structure of Lipocalin-Type
Prostaglandin D Synthase and Use Thereof

<130> 664192

<160> 1

<210> 1

<211> 189

<212> PRT

<213> mouse

<400> 1

Met Ala Ala Leu Arg Met Leu Trp Met Gly Leu Val Leu Leu Gly Leu

1 5 10 15

Leu Gly Phe Pro Gln Thr Pro Ala Gln Gly His Asp Thr Val Gln Pro \cdot

20 . 25 30

Asn Phe Gln Gln Asp Lys Phe Leu Gly Arg Trp Tyr Ser Ala Gly Leu

35 40 45

Ala Ser Asn Ser Ser Trp Phe Arg Glu Lys Lys Ala Val Leu Tyr Met

50 55 60

Cys Lys Thr Val Val Ala Pro Ser Thr Glu Gly Gly Leu Asn Leu Thr

65 70 75 80

Ser Thr Phe Leu Arg Lys Asn Gln Cys Glu Thr Lys Ile Met Val Leu

85 90 95

2/2 Gln Pro Ala Gly Ala Pro Gly His Tyr Thr Tyr Ser Ser Pro His Ser Gly Ser Ile His Ser Val Ser Val Val Glu Ala Asn Tyr Asp Glu Tyr Ala Leu Leu Phe Ser Arg Gly Thr Lys Gly Pro Gly Gln Asp Phe Arg Met Ala Thr Leu Tyr Ser Arg Thr Gln Thr Leu Lys Asp Glu Leu Lys Glu Lys Phe Thr Thr Phe Ser Lys Ala Gln Gly Leu Thr Glu Glu Asp

Ile Val Phe Leu Pro Gln Pro Asp Lys Cys Ile Gln Glu

WO 2004/056992

PCT/JP2003/016233

International application No. PCT/JP03/16233

A. CLASS Int.	IFICATION OF SUBJECT MATTER C1 ⁷ C12N9/90, C12N9/99, C12N15/ G06F17/30, G06F17/50, G01N3	/09, C12Q1/533, C07D401 33/50	/06,	
According to International Patent Classification (IPC) or to both national classification and IPC				
	S SEARCHED			
Minimum do Int.	ocumentation searched (classification system followed by C1 ⁷ C12N9/90, C12N9/99, C12N15/G06F17/30, G06F17/50, G01N3	/09, C12Q1/533, C07D401	./06,	
•	ion searched other than minimum documentation to the			
Swis	lata base consulted during the international search (name sProt/PIR/GeneSeq, GenBank/EMBI	of data base and, where practicable, sear	ch terms used) LOG).,	
C. DOCU	MENTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where app	<u> </u>	Relevant to claim No.	
X Y A	Eguchi, N. et al., Lack of ta (allodynia) in lipocalin-type D synthase-deficient mice., PUSA., Vol.96, No.2, pages 726	prostaglandin roc.Natl.Acad.Sci.	4,5 1-3,7,8 10	
X Y A	JP 2001-103869 A (Japan Scien Corp.), 17 April, 2001 (17.04.01), (Family: none)	nce and Technology	4,5 1-3,7,8 10	
X Y A	Urade, Y. et al., Biochemical genetic, physiological, and p features of lipocalin-type pr synthase., Biochem.Biophys.Ac No.1-2, pages 259 to 271, (20	eathophysiological costaglandin D cta., Vol.1482,	4,5 1-3,7,8 10	
× Furti	ner documents are listed in the continuation of Box C.	See patent family annex.		
"A" docum	al categories of cited documents: nent defining the general state of the art which is not lered to be of particular relevance r document but published on or after the international filing	"I" later document published after the interpriority date and not in conflict with the understand the principle or theory understand the principle or cannot be considered novel or cannot be considered.	the application but cited to derlying the invention claimed invention cannot be ered to involve an inventive	
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed			claimed invention cannot be p when the document is h documents, such on skilled in the art	
23 6	actual completion of the international search January, 2004 (23.01.04)	Date of mailing of the international sea 10 February, 2004	rch report (10.02.04)	
	mailing address of the ISA/ anese Patent Office	Authorized officer		
Faccimile ?	No.	Telephone No.		

International application No.
PCT/JP03/16233

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
Y	Kanaoka, Y. et al., Cloning and crystal structure of hematopoietic prostaglandin D synthase., Cell, Vol.90, No.6, pages 1085 to 1095, (1997)	1-3,7,8
Y	JP 2002-238553 A (The Institute of Physical and Chemical Research), 27 August, 2002 (27.08.02), (Family: none)	7,8
Y	EP 1065213 A2 (Japan Tobacco Inc.), 27 August, 2002 (27.08.02), & JP 2001-69995 A	7,8
A	Bohm, H.J. et al., The development of a simple empirical scoring function to estimate the binding constant for a protein-ligand complex of known three-dimensional structure., J. Comput.Aided Mol.Des., Vol.8, No.3, pages 243 to 256, (1994)	7,8
	·	
	·	
	·	
	·	

International application No.

PCT/JP03/16233

Box I Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. X Claims Nos.: 6 because they relate to subject matter not required to be searched by this Authority, namely: The invention according to claim 6 relates to methods of using a space coordinate and thus pertains to mere presentation of information, thereby relating to a subject matter which this International Searching Authority is not required, under the provisions of (continued to extra sheet) 2. X Claims Nos.: 9 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically: The substance as set forth in claim 9 is specified exclusively by "a selection method according to claim 7 or 8" and, therefore, involves any substances obtained by these methods. However, the description presents nothing but the substance according to claim 10 as the substance (continued to extra sheet) 3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Dow II Observations where unity of invention is locking (Continuation of item 3 of first sheet)
Box II Observations where unity of invention is lacking (Continuation of item 3 of first sheet) This International Searching Authority found multiple inventions in this international application, as follows:
1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
 As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

International application No.
PCT/JP03/16233

Continuation of Box No. I-1 of continuation of first sheet(1)

Article 17(2)(a)(i) of the PCT and Rule 39.1(v) of the Regulations under the PCT, to search.

Continuation of Box No. I-2 of continuation of first sheet(1)

obtained by the methods and, therefore, claim 9 is neither supported by the description nor disclosed therein. Moreover, the above claim is described in an extremely unclear manner.

国際調査報告 国際出願番号 PCT/JP03/16233 発明の属する分野の分類(国際特許分類(IPC)) Int. C1' C12N9/90、C12N9/99、C12N15/09、C12Q1/533、C07D401/06、G06F17/30、G06F17/50、G01N33/50 調査を行った分野 調査を行った最小限資料(国際特許分類(IPC)) Int. C1' C12N9/90、C12N9/99、C12N15/09、C12Q1/533、C07D401/06、G06F17/30、G06F17/50、G01N33/50 最小限資料以外の資料で調査を行った分野に含まれるもの 国際調査で使用した電子データベース(データベースの名称、調査に使用した用語) SwissProt/PIR/Geneseq, GenBank/EMBL/DDBJ/Geneseq, WPI (DIALOG), BIOSIS (DIALOG), MEDLINE (STN) 関連すると認められる文献 c. 引用文献の 関連する カテゴリー* 請求の範囲の番号 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示

1	\mathbf{x}	Eguchi, N. et al.,	4, 5	
	Y	Lack of tactile pain (allodynia) in lipocalin-type	1-3, 7, 8	
	${f A}$	prostaglandin D synthase-deficient mice.	10	
	•	Proc. Natl. Acad. Sci. USA, Vol. 96, No. 2, pp. 726-730 (1999)	·	
	X	JP 2001-103869 A (科学技術振興事業団) 2001.04.17	4, 5	
	Y	(ファミリーなし)	1-3, 7, 8	١
	Α		10	ı
		•		١
	,			ı
			i	- 1

区欄の続きにも文献が列挙されている。	□ パテントファミリーに関する別紙を参照。
* 引用文献のカテゴリー 「A」特に関連のある文献ではなく、一般的技術水準を示すもの 「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの 「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献(理由を付す) 「O」口頭による開示、使用、展示等に言及する文献「P」国際出願日前で、かつ優先権の主張の基礎となる出願	の日の後に公表された文献 「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの 「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの 「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの 「&」同一パテントファミリー文献
国際調査を完了した日 23.01.2004	国際調査報告の発送日 10.2.2004
国際調査機関の名称及びあて先 日本国特許庁 (ISA/JP) 郵便番号100-8915	特許庁審査官(権限のある職員) 田村明照

電話番号 03-3581-1101 内線 3448

東京都千代田区 額が 関三丁目 4番3号

関連すると認められる文献	
引用文献タ 及び一部の簡配が関連するときけ その関連する簡配の表示	関連する 請求の範囲の番号
Urade, Y. et al., Biochemical, structural, genetic, physiological, and pathophysiological features of lipocalin-type prostaglandin D synthase. Biochim Biophys Acta, Vol. 1482, No. 1-2, pp. 259-271 (2000)	4, 5 1-3, 7, 8 10
Kanaoka, Y. et al., Cloning and crystal structure of hematopoietic prostaglandin D synthase. Cell, Vol. 90, No. 6, pp. 1085-1095 (1997)	1-3, 7, 8
JP 2002-238553 A(理化学研究所)2002.08.27 (ファミリーなし)	7,8
EP 1065213 A2 (日本たばこ産業株式会社) 2002.08.27 & JP 2001-69995 A	7,8
Bohm, H. J. et al., The development of a simple empirical scoring function to estimate the binding constant for a protein-ligand complex of known three-dimensional structure. J. Comput. Aided Mol. Des., Vol. 8, No. 3, pp. 243-256 (1994)	7,8
	Biochemical, structural, genetic, physiological, and pathophysiological features of lipocalin-type prostaglandin D synthase. Biochim Biophys Acta, Vol. 1482, No. 1-2, pp. 259-271 (2000) Kanaoka, Y. et al., Cloning and crystal structure of hematopoietic prostaglandin D synthase. Cell, Vol. 90, No. 6, pp. 1085-1095 (1997) JP 2002-238553 A (理化学研究所) 2002. 08. 27 (ファミリーなし) EP 1065213 A2 (日本たばこ産業株式会社) 2002. 08. 27 & JP 2001-69995 A Bohm, H. J. et al., The development of a simple empirical scoring function to estimate the binding constant for a protein-ligand complex of known three-dimensional structure.

	請求の範囲の一部の調査ができないときの意見(第1ページの2の続き)
法第8条	第3項 (PCT17条(2)(a)) の規定により、この国際調査報告は次の理由により請求の範囲の一部について作
成しなが	った。
1. X	請求の範囲6は、この国際調査機関が調査をすることを要しない対象に係るものである。
	つまり、
	請求の範囲6に記載された発明は、空間座標を使用する方法に関するものであり、情報
	の単なる提示に該当するからPCT17条(2)(a)(i)及びPCT規則39.1(v)の規定
	によりこの国際調査機関が調査をすることを要しない対象に係るものである。
2. X	請求の範囲 9 は、有意義な国際調査をすることができる程度まで所定の要件を満たしてい
	ない国際出願の部分に係るものである。つまり、
	請求の範囲9に記載の物質は、「請求項7、8記載の選定方法」のみによって特定されており、当
	該方法で得られるあらゆる物質を包含するものであるが、明細書には当該方法で得られた請求の範
	囲10の物質が唯一記載されているのみであるから、請求の範囲9は明細書による裏付けを欠き、
	開示も欠き、かつ前記請求の範囲の記載は著しく不明瞭である。
	NIN O N C 1 10 HONDING ADMINISTRATION DO CONTRACTOR DE LA NOME CON DO
3. 🔲	請求の範囲 は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に
1	従って記載されていない。
第Ⅱ欄	<u>発明の単一性が欠如しているときの意見(第1ページの3の続き)</u>
次に立	★べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。
	•
	<u>.</u>
	· · · · · · · · · · · · · · · · · · ·
	·
	i i
	· ·
	· ·
. —	
1. 📙	出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求
	の範囲について作成した。
2.	追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追
	加調査手数料の納付を求めなかった。
3. 📋	出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納
	付のあった次の請求の範囲のみについて作成した。
1	
	\cdot
4.	出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載
	されている発明に係る次の請求の範囲について作成した。
ĺ	
ĺ	
追加調	査手数料の異比の申立てに関する注意
}	追加調査手数料の納付と共に出願人から異議申立てがあった。
1 -	追加額本手教製の独付と共に出願しから思禁中ウナがたかった

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
· · · · · · · · · · · · · · · · · · ·

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.