Formal Languages Assigment 5

Rachel Hwang

November 14, 2013

- Exercise 0.1 Design a PDA to accept each of the following languages.
 - 1. $L = \{a^ib^jc^k : i = jorj = k\}$

2. L= the language of all strings with twice as many 0's as 1's

• Exercise 0.2 Show that if P is a PDA, then there is a PDA P2 with only two stack symbols, such that L(P2) = L(P). Hint: Binary-code the stack alphabet of P.

Let $P = \{Q, \Sigma, \Gamma, \delta, q_0, Z_0\}$. We want to construct $P2 = \{Q', \Sigma, 0, 1, \delta', q'_0, Z'_0\}$. Q' will contain Q, our Σ is the same, and we select a stack alphabet of only two symbols.

To define δ' , let us first define some homomorphism $f:\Gamma\to 0,1*$ encoding, where every symbol in Γ gets a unique encoding. For example, we may number the states, and have the f(q) simply be the binary representation of q's number (state $1\to 0^{k-1}1$, etc.). The encoding will be $k=(log_2n)$ rounded-up symbols long. Note that Z'_0 must be in 0,1.

Now, for every state $q \in Q$, letter $a \in \Sigma$, and symbol $X \in \Gamma$, for every transition $\delta(q, a, X) = (p, \gamma)$, assuming $f(X) = X_1 \dots X_k$ where $X_i \in [0, 1]$, we add to Q', k-1 states. We are essentially adding one state and transitions between them to pop each X_i off the stack, popping off all the X_i which encode X one digit at a time, and then finally pushing γ onto the stack in a final transition to p. For all $1 \le i \le k-2$, we add the transitions

$$\delta(q, a, X_1) = (q_1, \epsilon)$$

$$\delta(q_i, \epsilon, X_{i+1}) = (q_{i+1}, \epsilon)$$

$$\delta(q_{k-1}, \epsilon, X_k) = (p, f(X))$$

We also add the start state q'_0 , and the transition $\delta(q'_0, \epsilon, Z'_0) = (q_0, f(Z_0))$.

We have now created a PDA P2 which has a stack alphabet of two characters and which manipulates the stack in a way equivalent to P.

• Exercise 0.3 Use the CFL pumping lemma to show each of these languages not to be context-free.

1.
$$\{a^i b^j c^k : i < j < k\}$$

For some number n, let us pick a string in L, $z=a^mb^{m+1}c^{m+2}$ where m is larger than n and z=uvwxy, $|vwz|\leq n$ and $vx\neq \epsilon$. By the pumping lemma, we can pick any i and uv^iwx^iy will be in L.

We don't know where in the string v and w are, but it must be one of several cases

- 1) v and x are entirely in the a section of z
- 2) v and x are entirely in the b section of z
- 3) v and x are entirely in the c section of z
- 4) v and x are partially in the a section of z, and partially in the b section
- 5) v and x are partially in the b section of z, and partially in the c section

Since $|vwz| \le n < m$, we know that v and x cannot span all three sections.

In case 1), we can pick i = m + 1, adding at least one a. So the number of a's is no longer less than b's and $z' \notin L$.

In cases 2) and 4), we can pick i = m + 1, adding at least one b. So the number of b's is no longer less than c's and $z' \notin L$.

In case 3), we can pick i = 0, subtracting at least one c. So number of b's is no longer less than c's and $z' \notin L$.

In case 5), we can pick i = 0, subtracting at least one b, so number of a's is no longer less than b's and $z' \notin L$.

Now that we shown that for all cases, we can pick an i such that $z' \notin L$, by the pumping lemma, L is not a context free language.

2. $L = \{a^n b^n c^i : i \le n < k\}$

For some number n, let us pick a string in L, $z = a^{k-1}b^{k-1}c^{k-1}$ where z = uvwxy, $|vwz| \le n$ and $vx \ne \epsilon$. By the pumping lemma, we can pick any p and uv^pwx^py will be in L.

We don't know where in the string v and w are, but it must be one of several cases

- 1) v and x are entirely in the a section of z
- 2) v and x are entirely in the b section of z
- 3) v and x are entirely in the c section of z
- 4) v and x are partially in the a section of z, and partially in the b section
- 5) v and x are partially in the b section of z, and partially in the c section

Since $|vwz| \le n < m$, we know that v and x cannot span all three sections.

In case 1), we can pick p=m+1, adding at least one a. So the number of a's is now greater than k and $z' \notin L$.

In case 2), we can pick p = m + 1, adding at least one b. So the number of b's is now greater than k and $z' \notin L$.

In case 3), we can pick p = m + 1, adding at least one c. So the number of c's is now greater than k and $z' \notin L$.

In cases 4), we can pick p=m+1, which will add at least a and one b. So number of a's and number of b's are both no longer less than k's and $z' \notin L$.

In cases 5), we can pick p = m + 1, which will add at least b and one c. So number of b's and number of c's are both no longer less than k's and $z' \notin L$.

Now that we shown that for all cases, we can pick an i (the same i!) such that $z' \notin L$, by the pumping lemma, L is not a context free language.

3. $L = \{0^p : p \text{ is prime}\}\$

For some number n, let us pick a string in L, $z = 0^m$ where m > n and is prime, and z = uvwxy, $|vwz| \le n$ and $vx \ne \epsilon$. By the pumping lemma, we can pick any i and uv^iwx^iy will be in L.

If we pick i = m+1, we get $z' = uv^{m+1}wx^{m+1}y$. We know that the length of z' is $m+(|v|\cdot m)+(|x|\cdot m)=m+m\cdot(|v|+|x|)$. Since we are adding a multiple of our prime m to the length of z', the length of z' is not prime. Therefore, by the pumping lemma, L is not a context free language.

• Exercise 0.4 Give an algorithm to decide the following: Given a CFG G and one of its variables A, is there any sentential form in which A is the first symbol. Note: Remember that it is possible for A to appear first in the middle of some sentential form but then for all the symbols to its left to derive ϵ .

Given $G = \{V, T, P, S\}$, we can build a directed graph $G = \{V, E\}$ where the set of vertices is the set of variables in G. Any two edges v and v' are connected, that is $(v, v') \in E$, iff v appears in the leftmost position of a production rule $\Rightarrow v'$ appears in the leftmost position of a production rule.

For all production rules in $G, X \to \beta_1 \dots \beta_k$ where $\beta_i \in \{V \cup R \cup \epsilon\}$, we perform the following steps:

- 1. If $\beta_1 \in T$, then that production does not have a variable at its leftmost. Otherwise, add (X, β_1) to E.
- 2. For each β_i , add (X, β_i) to E if
 - a) $\beta_i \notin T$
 - b) for all β_i where j < i, $\beta_i \notin T$ and β_i is nullable.

Once we have finished building our graph using the above method, we can perform a graph search to see if S and A are connected. If they are, this means that $S \Rightarrow^* A\beta_1 \dots \beta_k$, there is some setential form with A in the left-most position.