Assignment One: Model Selection, Probability Theory and Distributions

Show that the variance of a sum is var[X + Y] = var[X] + var[Y] + 2cov[X, Y].

Suppose $\, \theta \sim \textit{Beta}(\alpha, \beta) \,$, derive the mean, mode and variance.

Since a positive definite matrix Σ can be defined as the quadratic form $U^T \Lambda U$, show that a necessary and sufficient condition for Σ to be positive definite is that all the eigenvalues λ_i of Λ are positive.

Derive the maximum likelihood solutions for the mean and the variance of a univariate Gaussian distribution by maximize the log likelihood function with respect to $\,\mu$ and $\,\Sigma$.

Write a pseudo-code for using cross-validation to determine the best K value of K nearest neighbors classifier.