Example 1. drzewo

Definition 1 (ADTree). adt

Definition 2 (Attribute domain). attribute domain

Definition 3 (Bottom-up evaluation of attributes). bottom-up evaluation of attributes

Corollary 1. cor1

Corollary 2. cor2

Corollary 3. cor3

Corollary 4. cor4

Definition 4 (Homogeneous subdag). homogeneous subdag

Definition 5 (Proponent's /opponent's vector). Proponent's /opponent's vector

Definition 6 (Proponent's/opponent's strategy). *Proponent's/opponent's strategy*

Definition 7 (Defense semantics). defense semantics

Example 2. defense semantics of the running example

$$\bigotimes_{i=1}^{n} \mathcal{A}_i := \{ \bigcup_{i=1}^{n} A_i \mid A_i \in \mathcal{A}_i \}, \tag{1}$$

$$\bigoplus_{i=1}^{n} \mathcal{A}_i := \bigcup_{I \subseteq \{1, \dots, n\}} \bigotimes_{i \in I} \mathcal{A}_i, \tag{2}$$

$$\mathcal{A}_1 \oslash \mathcal{A}_2 := \begin{cases} \{\emptyset\}, & \text{if } \mathcal{A}_1 = \{\emptyset\} \text{ or } \mathcal{A}_2 = \{\emptyset\}, \\ \mathcal{A}_1 \cup \mathcal{A}_2, & \text{otherwise,} \end{cases}$$
 (3)

$$\mathcal{A}_1 \odot \mathcal{A}_2 := \mathcal{A}_1 \cup (\mathcal{A}_1 \otimes \mathcal{A}_2). \tag{4}$$

Algorithm 1 Defense semantics for ADTrees

Proposition 1. prop1

$$\beta_T^{SW}(\mathbf{b}) := \begin{cases} \emptyset, & \text{if } \mathbf{b} \in \mathbb{B}^{\mathbf{p}_T}, \\ \{\{\mathbf{b}\}\}, & \text{otherwise.} \end{cases}$$
 (5)

Example 3. sufficient witnesses

Lemma 1. lemma1

$$\mathbb{B}_{T'}^{o_T} := \{ \lambda(v') \colon v' \in V', actor(v') = o_T, \tau(v') = \mathbb{N} \}$$
 (6)

Proposition 2. prop2

Corollary 5. cor5

Proposition 3. prop3

$$\beta_T^O(\lambda(v)) := \begin{cases} \{\{\lambda(v)\}\}, & \text{if } \operatorname{actor}(v) = \mathbf{p}_T, \\ \emptyset, & \text{if } \operatorname{actor}(v) = \mathbf{o}_T, \ \lambda(v) \in O, \\ \{\emptyset\}, & \text{if } \operatorname{actor}(v) = \mathbf{o}_T, \ \lambda(v) \notin O. \end{cases}$$
 (7)

Proposition 4. prop4

Corollary 6. cor6

$$\beta_T^P(\lambda(v)) := \begin{cases} \{\{\lambda(v)\}\}, & \text{if } \arctan(v) = o_T, \\ \emptyset, & \text{if } \arctan(v) = p_T, \lambda(v) \in P, \\ \{\emptyset\}, & \text{if } \arctan(v) = p_T, \lambda(v) \notin P. \end{cases}$$
(8)

Corollary 7. cor7

Corollary 8. cor8, algorithm works

Exploiting attack—defense trees to find an optimal set of countermeasures: An online appendix

Barbara Fila, Wojciech Wideł April 27, 2020

1 Example of the bottom-up evaluation of the satisfiability attribute

The following example illustrates our formalization of a goal achievement in ADTrees.

Example 4. Let T be the ADTree from Figure 1. Assuming that the attacker executes only the actions a and c and the defender executes only d_1, d_2 , and d_3 , which is modeled by assigning 1 to each of these actions and 0 to the remaining basic actions, the defender fails to counter the action a (the value computed at the AND node countering a is 0), and so the attacker achieves the goal of the root node (the value computed at the root node is 1). In other words, for the set $X = \{a, c, d_1, d_2, d_3\}$ the equality achieved a (root a) a) a holds.

2 Proof of Corollary 1

For the proof, we assume that $b \in B$, since otherwise the statement is obviously true.

Suppose first that $\operatorname{actor}(v) = \mathbf{s}_T$. The value of $\operatorname{achieved}_{\mathbf{T}}(v,B)$ is computed by replacing the 0 assigned to the variable corresponding to the basic action \mathtt{b} in $\operatorname{achieved}_{\mathbf{T}}(v,B\setminus\{\mathtt{b}\})$ into 1. Since $\mathtt{b}\in B$ and $B\subseteq\mathbb{B}^{\mathbf{s}_T}$, the function $\operatorname{achieved}_{\mathbf{T}}(v,\cdot)$ is positive in that variable. Together with the equality $\operatorname{achieved}_{\mathbf{T}}(v,B)=0$, this implies that $\operatorname{achieved}_{\mathbf{T}}(v,B\setminus\{\mathtt{b}\})=0$.

Suppose now that $\operatorname{actor}(v) = \bar{s}_T$. Observe that Definition 1 and 3 together with the definition of the $\operatorname{satisfiability}$ attribute domain imply that $\operatorname{achieved}_{\mathsf{T}}(v,\emptyset) = 0$. Together with the fact, the function $\operatorname{achieved}_{\mathsf{T}}(v,\cdot)$ is negative in the variables corresponding to the actions belonging to the set B, this implies that $\operatorname{achieved}_{\mathsf{T}}(v,B\setminus\{\mathtt{b}\})=0$.

3 Lemma 2

Lemma 2. Let $T = (V, E, L, \lambda, actor, \tau)$ be an ADTree, and let $P \subseteq \mathbb{B}^{p_T}$ and $O \subseteq \mathbb{B}^{o_T}$ be sets of basic actions of the actors. If $v \in V$ is a node such that

Figure 1: Bottom-up evaluation of the *satisfiability* attribute. Values assigned to the basic actions are given in black, and values computed at the intermediate nodes using the attribute domain's operations in dark blue.

- $\tau(v) = N$,
- $\operatorname{achieved_T}(\operatorname{root}(T), P \cup O) = 1$, and
- on every path from v to root(T), there exists a node v' s.t. $\text{achieved}_{\mathbb{T}}(v', P) = 0$ and $\text{achieved}_{\mathbb{T}}(v', O) = 0$,

then achieved_T(root(T), $P \cup O \setminus \{\lambda(v)\}\) = 1$.

Proof. Let v' be one of the nodes satisfying the last condition of the lemma. Corollary 4 implies that $\operatorname{achieved}_{\mathbf{T}}(v',P\cup O)=0$. Therefore, when the value of $\operatorname{achieved}_{\mathbf{T}}(\operatorname{root}(T),P\cup O)$ is computed using the bottom-up procedure, the value propagated up to the root from v' is zero. Furthermore, it follows from Corollary 1 that $\operatorname{achieved}_{\mathbf{T}}(v',O\setminus\{\lambda(v)\})=0$ and $\operatorname{achieved}_{\mathbf{T}}(v',P\setminus\{\lambda(v)\})=0$. Thus, by Corollary 4, $\operatorname{achieved}_{\mathbf{T}}(v',P\cup O\setminus\{\lambda(v)\})=0$, i.e., the value propagated from v' remains unchanged after the removal of the basic action $\lambda(v)$ from $P\cup O$. Hence,

$$\operatorname{achieved_T}(\operatorname{root}(T), P \cup O \setminus \{\lambda(v)\}) = \operatorname{achieved_T}(\operatorname{root}(T), P \cup O) = 1.$$

4 Example of the bottom-up evaluation of the sufficient witnesses attribute

Example 5 generalizes the reasoning from Example 3.

Example 5. Let T be an ADTree being a path of 2n+1 alternating non-refined nodes of the proponent and the opponent, with the first node on the path belonging to the proponent, as schematized in Figure 2. The total number of non-empty opponent's strategies in T is 2^n-1 , whereas there are only n-1 strategies in the result of the bottom-up evaluation of SuffWit on T. Furthermore, each of them is a unique witness for one of the proponent's strategies: the opponent's strategy $\{d_1, \ldots, d_i\}$, with $i \in \{1, \ldots, n\}$, is the unique witness for the proponent's strategy $\{b_1, \ldots, b_{i+1}\}$.

Observe the following: if O is an opponent's strategy belonging to the result of the bottom-up evaluation of SuffWit on T and $d_i \in O$, with $i \in \{1, \ldots, n\}$, then $d_j \in O$ for every $j \in \{1, \ldots, i-1\}$. Informally speaking, there are no "gaps" in the obtained opponent's strategies. This is intentional: should the above condition be not satisfied by an opponent's strategy O, say, $O = \{d_1, \ldots, d_i, d_{i+k}\}$, with $i, i+k \in \{1, \ldots, n\}$, k > 1, then O is a witness for the same proponent's strategies as $\{d_1, \ldots, d_i\}$. This example motivates our choice of the operation \odot as the one to be performed in the bottom-up procedure when traversing countermeasures against goals of the opponent.

Figure 2: A schema generalizing the tree from Figure 3

5 Proof of Lemma 1

The proof is by induction on the structure of T'. We consider three cases.

Case 1. The node v is not refined and $\bar{v} \notin V'$.

Since the set $\mathbb{B}_{T'}^{o_T}$ is not empty, it follows that $\operatorname{actor}(v) = o_T$, $\mathbb{B}_{T'}^{o_T} = \{\lambda(v)\}$, and $\operatorname{SuffWit}(T, \beta_T^{\operatorname{SW}}, v) = \{\{\lambda(v)\}\}$. Thus, the claim holds.

Case 2. The node v is not refined and $\bar{v} \in V'$.

If $\operatorname{actor}(v) = \operatorname{p}_T$, then $\mathbb{B}_{T'}^{\operatorname{o}_T} = \mathbb{B}_{T'(\bar{v})}^{\operatorname{o}_T}$. Since $\mathbb{B}_{T'}^{\operatorname{o}_T} \neq \emptyset$, it follows that $\mathbb{B}_{T'(\bar{v})}^{\operatorname{o}_T} \neq \emptyset$, and so the subdag $T'(\bar{v})$ of T' rooted at \bar{v} satisfies all of the assumptions of the

lemma. Thus, by the induction hypothesis, we have $\mathbb{B}_{T'(\bar{v})}^{\circ T} \in \text{SuffWit}(T, \beta_T^{\text{SW}}, \bar{v})$. The definition of the attribute domain for SuffWit and the operation \oplus defined by formula (2) imply that $\text{SuffWit}(T, \beta_T^{\text{SW}}, \bar{v}) \subseteq \text{SuffWit}(T, \beta_T^{\text{SW}}, v)$. Hence, $\mathbb{B}_{T'}^{ord} \in \text{SuffWit}(T, \beta_T^{\text{SW}}, v)$.

If $\operatorname{actor}(v) = \operatorname{o}_T$, then $\mathbb{B}^{\operatorname{o}_T}_{T'} = \mathbb{B}^{\operatorname{o}_T}_{T'(\bar{v})} \cup \{\lambda(v)\}$. From the definition of the attribute domain for SuffWit, the basic assignment $\beta_T^{\operatorname{SW}}$, and the operation \odot defined by formula (4), it follows that both sets $\{\{\lambda(v)\}\}$ and SuffWit $(T, \beta_T^{\operatorname{SW}}, \bar{v}) \otimes \{\{\lambda(v)\}\}$ are subsets of SuffWit $(T, \beta_T^{\operatorname{SW}}, v)$. Therefore, regardless of whether the set $\mathbb{B}^{\operatorname{o}_T}_{T'(\bar{v})}$ is empty or not, we have $\mathbb{B}^{\operatorname{o}_T}_{T'} \in \operatorname{SuffWit}(T, \beta_T^{\operatorname{SW}}, v)$, as required.

Case 3. The node v is refined.

Let k be the size of the (possibly empty) set $\{v' \in \operatorname{ref}_T(v) \cap V' \mid \mathbb{B}^{\circ_T}_{T'(v')} \neq \emptyset\}$. If $k \neq 0$, we use v_1, \ldots, v_k to denote the elements of this set. Depending on whether or not $\bar{v} \in V'$, we have

$$\mathbb{B}_{T'}^{\mathrm{o}_T} = \bigcup_{i=1}^k \mathbb{B}_{T'(v_i)}^{\mathrm{o}_T}$$

or

$$\mathbb{B}_{T'}^{\mathbf{o}_T} = \bigcup_{i=1}^k \mathbb{B}_{T'(v_i)}^{\mathbf{o}_T} \cup \mathbb{B}_{T'(\bar{v})}^{\mathbf{o}_T}.$$

Note that, since $\mathbb{B}^{\mathrm{o}_T}_{T'} \neq \emptyset$, this implies that $k \geq 1$ or the set $\mathbb{B}^{\mathrm{o}_T}_{T'(\bar{v})}$ is not empty. Observe also that, by the induction hypothesis, $\mathbb{B}^{\mathrm{o}_T}_{T'(v_i)} \in \mathtt{SuffWit}(T, \beta^{\mathtt{SW}}_T, v_i)$, for every $i \in \{1, \ldots, k\}$. If in addition $\bar{v} \in V'$ and $\mathbb{B}^{\mathrm{o}_T}_{T'(\bar{v})} \neq \emptyset$, then also $\mathbb{B}^{\mathrm{o}_T}_{T'(\bar{v})} \in \mathtt{SuffWit}(T, \beta^{\mathtt{SW}}_T, \bar{v})$.

We distinguish two subcases, depending on the value of k.

Case 3.1 k=0. The assumption of this case implies that $\operatorname{actor}(v)=\operatorname{p}_T, \bar{v}\in V',$ and $\mathbb{B}_{T'}^{\operatorname{or}}=\mathbb{B}_{T'(\bar{v})}^{\operatorname{or}}\neq\emptyset$. Similarly to Case 2, now it follows from the definition of the attribute domain for SuffWit and the operation defined by formula (2) that $\operatorname{SuffWit}(T,\beta_T^{\operatorname{SW}},\bar{v})\subseteq\operatorname{SuffWit}(T,\beta_T^{\operatorname{SW}},v)$. Hence, $\mathbb{B}_{T'}^{\operatorname{or}}\in\operatorname{SuffWit}(T,\beta_T^{\operatorname{SW}},v)$.

Case 3.2 k > 0.

In this case, the definition of the attribute domain for SuffWit and the operations given by formulæ (1), (4), and (2) imply that the set

$$\bigotimes_{i=1}^k \mathtt{SuffWit}(T,\beta_T^{\mathtt{SW}},v_i)$$

as well as the set

$$\mathtt{SuffWit}(T,\beta_T^{\mathtt{SW}},\bar{v}) \otimes \bigotimes_{i=1}^k \mathtt{SuffWit}(T,\beta_T^{\mathtt{SW}},v_i),$$

if \bar{v} exists, are subsets of $\mathrm{SuffWit}(T,\beta_T^{\mathtt{SW}},v)$. Thus, $\bigcup_{i=1}^k \mathbb{B}_{T'(v_i)}^{\mathtt{o}_T} \in \mathrm{SuffWit}(T,\beta_T^{\mathtt{SW}},v)$, and if \bar{v} exists and the set $\mathbb{B}_{T'(\bar{v})}^{\mathtt{o}_T}$ is not empty, then also $\bigcup_{i=1}^k \mathbb{B}_{T'(v_i)}^{\mathtt{o}_T} \cup \mathbb{B}_{T'(\bar{v})}^{\mathtt{o}_T} \in \mathrm{SuffWit}(T,\beta_T^{\mathtt{SW}},v)$. This completes the proof of Lemma 1.

6 Proof of Proposition 3

The proof is by induction on the structure of T(v) – the maximal subdag of T rooted at v.

For the base case, let v be a non-refined node and assume that \bar{v} does not exist. Since the set $\mathrm{CounterOpp}(T, \beta_T^O, v)$ is not empty, the definition of the basic assignment β_T^O implies that $\mathrm{actor}(v) = \mathrm{p}_T$ and $P = \{\lambda(v)\}$, or $\mathrm{actor}(v) = \mathrm{o}_T$ and $P = \emptyset$. In the former case, the claim follows immediately. In the latter, we have $\lambda(v) \notin O$, implying that

$$\operatorname{achieved}_{\mathbf{T}}(v, P \cup O) = \operatorname{achieved}_{\mathbf{T}}(v, O) = 0,$$

as required.

Case 1. The node v is not refined and \bar{v} exists.

Case 1.1. $actor(v) = p_T$.

Under the assumptions of this case, and since the set $\operatorname{CounterOpp}(T, \beta_T^O, v)$ is not empty, formula (1), the definition of the $\operatorname{CounterOpp}$ domain, and the definition of the basic assignment β_T^O imply that $\operatorname{CounterOpp}(T, \beta_T^O, \bar{v}) \neq \emptyset$ and $P = \overline{P} \cup \{\lambda(v)\}$, for some set $\overline{P} \in \operatorname{CounterOpp}(T, \beta_T^O, \bar{v})$. By the induction hypothesis, the equality achieved $\operatorname{T}(\bar{v}, \overline{P} \cup O) = 0$ holds, and so the definition of the satisfiability attribute domain implies that achieved $\operatorname{T}(v, P \cup O) = 1$.

Case 1.2. $actor(v) = o_T$.

In the case when $\lambda(v) \in O$, we have $\mathtt{CounterOpp}(T, \beta_T^O, v) = \mathtt{CounterOpp}(T, \beta_T^O, \bar{v})$, by formula (3) and the definition of β_T^O . Thus, $P \in \mathtt{CounterOpp}(T, \beta_T^O, \bar{v})$, which together with the induction hypothesis implies achieved $\mathtt{T}(\bar{v}, P \cup O) = 1$. Now the equality achieved $\mathtt{T}(v, P \cup O) = 0$ follows from the definition of the satisfiability attribute domain.

If $\lambda(v) \notin O$, then $\beta_T^O(v) = \{\emptyset\}$, and so CounterOpp $(T, \beta_T^O, v) = \{\emptyset\}$, by formula (3). And indeed, since $\lambda(v) \notin O$, the demanded equality

$$\operatorname{achieved_T}(v,P\cup O) = \operatorname{achieved_T}(v,O) = 0$$

follows from the definition of the satisfiability attribute domain.

If v is a refined node, we let $ref_T(v) = \{v_1, \dots, v_k\}$.

Case 2. The node v is refined and $\tau(v) = 0R$.

Case 2.1. $actor(v) = p_T$.

Depending on whether or not \bar{v} exists, either $P = P_i \cup \overline{P}$ (if \bar{v} does exist) or $P = P_i$ (if \bar{v} does not exist), for some $i \in \{1, \dots, k\}$, $P_i \in \texttt{CounterOpp}(T, \beta_T^O, v_i)$ and $\overline{P} \in \texttt{CounterOpp}(T, \beta_T^O, \bar{v})$. Thus, by the induction hypothesis, we have achieved_T $(\bar{v}, \overline{P} \cup O) = 0$ and achieved_T $(v_i, P_i \cup O) = 1$, implying that achieved_T $(v, P \cup O) = 1$.

Case 2.2. $actor(v) = o_T$.

Again, depending on the existence of \bar{v} , and, if it does exist, on whether or not the set $\operatorname{CounterOpp}(T, \beta_T^O, \bar{v})$ is empty, either $P = (P_1 \cup \ldots \cup P_k)$, for some $P_i \in \operatorname{CounterOpp}(T, \beta_T^O, v_i)$ or $P = \overline{P}$, for some $\overline{P} \in \operatorname{CounterOpp}(T, \beta_T^O, \bar{v})$. In the latter case, we have achieved_T $(\bar{v}, \overline{P} \cup O) = 1$, by the induction hypothesis, and the equality achieved_T $(v, \overline{P} \cup O) = 0$ follows from the definition of the satisfiability attribute domain. Suppose now that the former of the two cases occurs. The induction hypothesis implies that achieved_T $(v_i, P_i \cup O) = 0$, for

 $i \in \{1, ..., k\}$. Now, it follows from Corollary 2 that achieved_T $(v_i, P \cup O) = 0$, for $i \in \{1, ..., k\}$. Thus, achieved_T $(v, P \cup O) = 0$.

Case 3. The node v is refined and $\tau(v) = AND$.

Case 3.1. $actor(v) = p_T$.

Depending on the existence of the countermeasure \bar{v} , it either holds that $P = (P_1 \cup \ldots \cup P_k) \cup \overline{P}$ or $P = (P_1 \cup \ldots \cup P_k)$, for some $P_i \in \texttt{CounterOpp}(T, \beta_T^O, v_i)$ and $\overline{P} \in \texttt{CounterOpp}(T, \beta_T^O, \bar{v})$. The induction hypothesis implies that achieved_T $(v_i, P_i \cup O) = 1$, for $i \in \{1, \ldots, k\}$, and achieved_T $(\bar{v}, \overline{P} \cup O) = 0$. By applying Corollary 2, we get achieved_T $(v, P \cup O) = 1$.

Case 3.2. $actor(v) = o_T$.

If \bar{v} does not exist or $\mathsf{CounterOpp}(T,\beta_T^O,\bar{v}) = \emptyset$, then, by formula (3), $P = P_i$, for some $i \in \{1,\dots,k\}$ and $P_i \in \mathsf{CounterOpp}(T,\beta_T^O,v_i)$. Otherwise, it might hold that $P = \overline{P}$, for some $\overline{P} \in \mathsf{CounterOpp}(T,\beta_T^O,\bar{v})$. In either case, the demanded equality follows from the induction hypothesis and the definition of the satisfiability attribute domain.

7 Proof of Proposition 4

The proof of Proposition 4 is by induction on the structure of T(v), the maximal subdag of T rooted at v. For the base case, assume that v has no children at all, i.e., that $\operatorname{ref}_T(v) = \emptyset$ and that \overline{v} does not exist. If $\operatorname{actor}(v) = \operatorname{p}_T$, then the only set P satisfying the assumptions of the theorem is $P = \{\lambda(v)\}$. If $\operatorname{actor}(v) = \operatorname{o}_T$, then either no such P exists (if $\lambda(v) \in O$) or $P = \emptyset$ (if $\lambda(v) \notin O$). In either case, the statement holds.

We now proceed with the remaining cases.

Case 1. The node v is not refined and \bar{v} exists.

Case 1.1. $actor(v) = p_T$.

Since achieved_T $(v, P \cup O) = 1$, the assumptions of this case imply that achieved_T $(\bar{v}, P \cup O) = 0$. From the minimality of P it follows that P can be represented as $\overline{P} \cup \{\lambda(v)\}$, for some minimal set \overline{P} satisfying achieved_T $(\bar{v}, \overline{P} \cup O) = 0$. By induction hypothesis, we have $\overline{P} \in \text{CounterOpp}(T, \beta_T^O, \bar{v})$, and so $P \in \text{CounterOpp}(T, \beta_T^O, v)$.

Case 1.2. $actor(v) = o_T$.

The proof in this case is analogous to that from the previous one. Nevertheless, we include it for completeness. Since $\operatorname{achieved}_{\mathbf{T}}(v,P\cup O)=0$, it follows from the definition of the $\operatorname{satisfiability}$ domain that $\operatorname{achieved}_{\mathbf{T}}(\bar{v},P\cup O)=1$. The minimality of P implies that $P=\overline{P}$, for some minimal set \overline{P} satisfying $\operatorname{achieved}_{\mathbf{T}}(\bar{v},\overline{P}\cup O)=1$. As $\overline{P}\in\operatorname{CounterOpp}(T,\beta_T^O,\bar{v})$, by the induction hypothesis, the definition of the $\operatorname{CounterOpp}$ attribute domain now implies that $P\in\operatorname{CounterOpp}(T,\beta_T^O,v)$, as required.

For a proof of the remaining cases, when v is a refined node, we let $\operatorname{ref}_T(v) = \{v_1, \dots, v_k\}$ and assume that the node \bar{v} exists. The proof for the cases when \bar{v} does not exist is obtained by skipping the parts related to \bar{v} in what follows.

Case 2. The node v is refined and $\tau(v) = OR$.

Case 2.1. $actor(v) = p_T$.

We begin with proving that there exists $i \in \{1, ..., k\}$, a minimal set P' for which achieved_T $(v_i, P' \cup O) = 1$ and a minimal set \overline{P} for which achieved_T $(\overline{v}, \overline{P} \cup O) = 1$

O)=0, such that $P=P'\cup\overline{P}$. To obtain such sets P' and \overline{P} , proceed iteratively as follows. Set $P':=P, \overline{P}:=P$. As long as there exists a basic action $\mathfrak{b}\in\overline{P}$ such that achieved $_{\mathbf{T}}(\overline{v},\overline{P}\cup O\setminus\{\mathfrak{b}\})=0$, set $\overline{P}:=\overline{P}\setminus\{\mathfrak{b}\}$. Similarly, as long as there exists a basic action $\mathfrak{b}\in P'$ such that achieved $_{\mathbf{T}}(v_i,P'\setminus\{\mathfrak{b}\}\cup O)=1$, for at least one $i\in\{1,\ldots,k\}$, remove \mathfrak{b} from P'. Observe that, by the minimality of P, the actions that were removed from \overline{P} belong to P', and those removed from P' belong to \overline{P} . In other words, the equality $P=P'\cup\overline{P}$ indeed holds. Furthermore, the sets P' and \overline{P} are minimal sets satisfying achieved $_{\mathbf{T}}(\bar{v},\overline{P}\cup O)=0$ and achieved $_{\mathbf{T}}(v_i,P'\cup O)=1$, for some $i\in\{1,\ldots,k\}$. Thus, by the induction hypothesis, we have that $P'\in \mathrm{CounterOpp}(T,\beta_T^O,v_i)$ and $\overline{P}\in \mathrm{CounterOpp}(T,\beta_T^O,\bar{v})$. Hence, $P\in \mathrm{CounterOpp}(T,\beta_T^O,v)$.

Case 2.2. $actor(v) = o_T$.

If $P \in \text{CounterOpp}(T, \beta_T^O, \bar{v})$, then the definition of the CounterOpp attribute domain and operation \oslash defined by (3) imply that $P \in \text{CounterOpp}(T, \beta_T^O, v)$. Thus, in this case the claimed statement holds.

Assume now that $P \notin \mathtt{CounterOpp}(T, \beta_T^O, \bar{v})$. Since $\mathtt{achieved_T}(v, P \cup O) = 0$, it follows from the definition of the $\mathit{satisfiability}$ attribute domain that the equality $\mathtt{achieved_T}(v_i, P \cup O) = 0$ holds, for every $i \in \{1, \dots, k\}$. Furthermore, P being a $\mathit{minimal}$ set satisfying $\mathtt{achieved_T}(v, P \cup O) = 0$ implies that it can be represented as

$$P = P_1 \cup \ldots \cup P_k \tag{9}$$

for some minimal sets P_1,\ldots,P_k satisfying achieved_T $(v_i,P_i\cup O)=0$. To see that this is indeed the case, suppose for a proof by contradiction that it is not. Then, in every representation (9) of P there exists a set P_i satisfying achieved_T $(v_i,P_i\cup O)=0$, for some $i\in\{1,\ldots,k\}$, that is not a minimal set having this property. Let $P'_1\cup\ldots\cup P'_k$ be a representation (9) of P that minimizes the number of such non-minimal sets, and let P'_j be such a non-minimal set. Then, there exists a minimal set $P''_j\subset P'_j$ for which achieved_T $(v_j,P''_j\cup O)=0$ holds. The first statement of Corollary 2 implies that

$$achieved_{\mathbf{T}}(v_i, P'_1 \cup \ldots \cup P''_i \cup \ldots \cup P'_k \cup O) = 0,$$

for every $i \in \{1, \ldots, k\}$. Thus,

$$achieved_{\mathbf{T}}(v, P'_1 \cup \ldots \cup P''_i \cup \ldots \cup P'_k \cup O) = 0.$$

But from the choice of $P'_1 \cup \ldots \cup P'_k$, it follows that

$$P \supset P'_1 \cup \ldots \cup P''_j \cup \ldots \cup P'_k$$
.

This contradicts the minimality of P. Thus, the set P admits the representation (9).

Now it follows from the induction hypothesis that for every $i \in \{1, \ldots, k\}$, the set P_i from (9) belongs to $\mathtt{CounterOpp}(T, \beta_T^O, v_i)$. Together with the definition of the $\mathtt{CounterOpp}$ attribute domain and operation \otimes defined by (1), this fact implies that $P \in \mathtt{CounterOpp}(T, \beta_T^O, v)$, completing the proof of this case.

Case 3. The node v is refined and $\tau(v) = AND$.

Case 3.1. $actor(v) = p_T$.

The assumptions of this case and the fact that P is a minimal set for which the equality achieved_T $(v, P \cup O) = 1$ holds imply that P can be represented

as $P = P_1 \cup \ldots \cup P_k \cup \overline{P}$, for some minimal sets P_1, \ldots, P_k and \overline{P} satisfying achieved_T $(v_i, P_i \cup O) = 1$ and achieved_T $(\overline{v}, \overline{P} \cup O) = 0$. By the induction hypothesis, we have $P_i \in \text{CounterOpp}(T, \beta_T^O, v_i)$, for $i \in \{1, \ldots, k\}$, and $\overline{P} \in \text{CounterOpp}(T, \beta_T^O, \overline{v})$. Thus, $P \in \text{CounterOpp}(T, \beta_T^O, v)$, by the definition of the CounterOpp attribute domain and operation \otimes defined by (1).

Case 3.2. $actor(v) = o_T$.

Similarly as in Case 2.1, we assume that $P \notin \mathtt{CounterOpp}(T, \beta_T^O, \bar{v})$, since otherwise the claimed statement follows immediately. In this case, the definition of the satisfiability domain and the fact that P is a minimal set satisfying achieved_T $(v, P \cup O) = 0$ imply that there exists $i \in \{1, \ldots, k\}$ for which P is a minimal set satisfying achieved_T $(v_i, P \cup O) = 0$. Thus, by the induction hypothesis, $P \in \mathtt{CounterOpp}(T, \beta_T^O, v_i)$. Now it follows immediately from the definition of the $\mathtt{CounterOpp}$ attribute domain that $P \in \mathtt{CounterOpp}(T, \beta_T^O, v)$.

8 Examples of extremal trees

The examples below illustrate the three observations from Section III-C.

Example 6. Let T be the ADTree depicted on Figure 3. Every set of basic actions of the defender that contains a set of the form $\{b_{1i}, b_{2j}, b_{3k}\}$, with $i, j, k \in \{1, 2\}$, is a non-empty defender's strategy in T. There are 3^3 such defender's strategies in T, and each of them belongs to the result of the bottom-up evaluation of the SuffWit attribute on T.

A simple proof by induction shows that in the general case, when there are n OR nodes of the defender, there are 3^n non-empty defender's strategies.

Figure 3: An example of a tree with the number of the opponent's strategies exponential in the number of basic actions

Example 7. Let T be the ADTree depicted on Figure 4. Each of the sets of the form $\{b_1, b_{1i}, b_{2j}, b_{3k}\}$, with $i, j, k \in \{1, 2\}$, is an attacker's strategy witnessed by the defender's strategy $\{d_1\}$. There are 2^3 such strategies.

Example 8. Let T be the ADTree depicted on Figure 3. Each of the sets of the form $\{b_{1i}, b_{2j}, b_{3k}\}$, with $i, j, k \in \{1, 2\}$, is a minimal defender's strategy countering the attacker's strategy $\{d_1\}$. The number of such sets is 2^3 .

Figure 4: An example of a tree with the number of the proponent's strategies witnessed by a single opponent's strategy exponential in the number of basic actions

9 The OSEAD tool interface

Figure 5 illustrates our tool's interface allowing the user to input relevant parameters and displaying run times of different parts of solving the selected problem: the blue frame shows the time of the defense semantics extraction, and the red one the time spent on solving the actual optimization problem.

Figure 5: Solving the coverage problem using OSEAD