CPE 212 REVIEW GUIDE

JOSHUA BAYS

University of Alabama in Huntsville

FALL 2024

ABOUT THIS DOCUMENT

- This document is intended to serve as a useful reference and study tool for the CPE 212 final exam.
- The code snippets presented in this document are designed to be basic representations of different concepts, and may differ from the methods presented in lectures.
- Any suggestions for additions or changes can be made to Joshua Bays by emailing jb0401@uah.edu or by sending a message via CanvasW
- This document and all code are under the GPLv3 license, copying, sharing, modifying copies, and sharing modified copies are permitted.

TABLE OF CONTENTS

- 1 Classes
- 2 Pointers
- 3 Exception Handling
- 4 Software Engineering
- 5 Testing
- 6 Stacks
- 7 Lists
- 8 Queues

- 9 Generic Programming
- 10 Recursion
- 11 Trees
- 12 Heaps
- 13 Graphs
- 14 Searching
- 15 Sorting
- 16 STL

CLASSES

CLASSES - OVERVIEW

- Class: Custom model of abstract data type (ADT)
- Object: Instance of a class
- Member types
 - Public: Can be accessed directly from outside of the class
 - Private: Can be accessed directly only from within the class
 - ► Protected: Can be inherited within derived classes
- Member functions
 - Constructor: Initialize an object
 - ► Transformers: Change an object's state
 - ► Observers: Get (but not change) an object's state
 - Iterators: Process all components within an ADT
 - Destructor: Properly clean up and object (Ex: de-allocate memory)

3 | 76

CLASSES - INHERITANCE

- Inheritance: Reuse existing class code for another class
- Multiple inheritance: Inheriting code from multiple classes
- Parent/Base class: The class being inherited from
- Derived class: A class that inherits from another class
- Virtual function: A member function that can be redefined by an inherited class
- Friend function: Non-member function that can access private members

CLASSES - CODE

Inheritance

```
class baseClass{
   public:
        baseClass();
        virtual int getX();
        int getY():
   private:
   protected:
        int x, v:
class derivedClass: public baseClass{
/* Using the public keyword allows all public members to be inherited */
   public:
        derivedClass():
        int getX();
   private:
   protected:
baseClass::baseClass() { x = 2; y = 2; }
int baseClass::getX(){ printf("Getting x\n"); return x; }
int baseClass:: aetY(){ return v: }
/* Redefine the member functions */
derivedClass::derivedClass() \{ x = 3; y = 3; \}
int derivedClass:: getX() { baseClass:: getX(); return -1*x; }
```

CLASSES - CODE

Inheritance (cont.)

```
int main(){
   baseClass b;
   derivedClass d;
   printf("%! %i\n", b.getX(), b.getY());
   printf("%! %i\n", d.getX(), d.getY());
   return 0;
}
```

Output

```
Getting x
2 2
Getting x
-3 3
```

POINTERS

POINTERS - OVERVIEW

- Pointer: Variable that stores the memory address of another variable
- Dereferencing: Access the value stored in the location stored in the pointer
- Static allocation: Memory allocated at compile time
- Dynamic allocation: Memory allocated during program runtime
- Heap: Free memory for dynamic allocation

POINTERS - OVERVIEW

- Memory leak: Memory dynamically allocated but not deallocated
- Garbage: Locations in memory that can not be accessed any more
- Inaccessible object: Dynamically allocated variable without a pointer
- Dangling pointer: A pointer that points to memory that has been deallocated

Pointers - Dynamic Allocation

- Use the new keyword to allocate memory in C++
- Use the delete keyword on a pointer to deallocate memory in C++

POINTERS - CODE

Static allocation

```
int main() {
  int x = 0;
  int *xPtr = &x; /* Create a pointer for x */
  printf('x is %i and stored at %X\n", x, xPtr);
  *xPtr = 2; /* Dereference the pointer to change x */
  printf('x is %i and stored at %X\n", x, xPtr);
  return 0;
}
```

Output

```
x is 0 and stored at 9B7CEBAC x is 2 and stored at 9B7CEBAC
```

POINTERS - CODE

Dynamic Allocation

```
int main(){
  int* ptr;
  ptr = new int;
  *ptr = 10;
  printf("%i is stored at %X\n", *ptr, ptr);
  delete ptr; /* Deallocate the memory */
  ptr = NULL; /* Set the pointer to NULL because it does not point to any memory */
  return 0;
}
```

Output

10 is stored at 1349DEB0

11 | 76

EXCEPTION HANDLING

EXCEPTION HANDLING - OVERVIEW

- Robustness: How well a program can recover from an error
- Error types
 - Unexpected user input
 - ▶ Hardware issues
 - Software issues
- Ways to handle errors
 - ▶ Print an error message
 - ► Return an unusual value (Ex: -1)
 - ► Use a status variable as an error flag
 - Use assertions to prevent further code execution
 - Exception handling

EXCEPTION HANDLING - OVERVIEW

- Exception: Unexpected event that requires special processing
- Exception handler: Code designed to address a specific exception

EXCEPTION HANDLING - TRY/THROW/CATCH

- Try: Execute code that may cause and exception within its own block
- Throw: If an error is detected terminate the program or execute code to address the exception by "throwing" an error
- Catch: Address the exception based on the type of error provided by the throw statement

EXCEPTION HANDLING - CODE

Basic exception handling

```
int main(){
    try {
        throw 2;
        printf("Print me\n");
    }
    catch(int x){ printf("Error of type int!\n"); return 1; }
    catch(...){ printf("Error of a different type!\n"); return 1; }
    return 0;
}
```

SOFTWARE ENGINEERING

SOFTWARE ENGINEERING - OVERVIEW

- Attributes of good software
 - ▶ Works
 - Can be easily modified
 - ► Is reusable
 - Is completed within time and budget requirements
- Software engineering: The proper application of the principles of design, production, and maintenance of software
 - ► Technical challenges
 - Project management
- Defects in code
 - ► About 1 error is created for every 10 lines of code
 - ▶ 75% of a code's cost is in maintenance of that code
- Software process: The process by which software is developed and maintained

SOFTWARE ENGINEERING - PARTS OF SOFTWARE DEVELOPMENT

- Requirements: High-level description of the product
- Specification: Detailed description containing functional requirements and constraints
- Design: Architectural (high-level) and detailed (low-level) design of the product
- Implementation: Converting the design into code
- Testing/Verification: Finding and fixing errors and demonstrating that the product works correctly
- Postdelivery/Maintenance: Correct errors found by users and enhancing functionality

SOFTWARE ENGINEERING - PROCESSES

- Waterfall process: Each step of the process is an input for the next step
- Agile process: Emphasizing individuals/interactions and working software over specific processes in order to enable quick changing and customer collaboration
- Scrum: Work is designed to be done in short periods called "sprints," with daily work being determined by the needs of the current sprint

SOFTWARE ENGINEERING - TESTING OVERVIEW

- Testing: Trying to discover errors within a program
- Debugging: Removing known errors from a program
- Driver: A program specifically designed to test a part of code
- Stub: Dummy code designed to simulate real-life use cases
- Assertion: A statement that is either true or false
- Precondition: An assertion that must be true in order for a postcondition to be returned
- Postcondition: An assertion that is expected from a certain precondition

SOFTWARE ENGINEERING - TESTING HIERARCHY AND TYPES

- Deskchecking: Informal checking by the developer
- Unit testing: Formally testing individual parts of a program by themselves
- Integration testing: Formally and systematically testing a part of a program within the larger code base
- Acceptance testing: Testing the program with real data in its real environment
- Regression testing: Testing a program following modifications
- Black-box testing: Testing a program by its inputs and outputs
- Clear-box testing: Testing a program utilizing knowledge of its structure

SOFTWARE ENGINEERING - VERIFICATION VS VALIDATION

- Verification: The program works properly
- Validation: The program satisfies the needs of the problem

TESTING

STACKS

STACKS - OVERVIEW

- Stack: Specially organized list
 - ► LIFO structure (Last In, First Out)
 - Data entry is only through the top of the stack
- Basic stack operations:
 - Push: Add an item from the top of the stack
 - Pop: Remove the top item from the stack
 - ▶ Top: Observe the top item from the stack
 - IsEmpty: Returns if the stack has no elements on it
 - IsFull: Returns if the stack is at its maximum capacity
 - ► MakeEmpty: Remove all elements from the stack
- Different methods exist to implement stacks
 - ► Array-based: Less memory used, but harder to resize
 - Linked node-based: Easier to resize, but more memory used

Basic stack code (Linked list)

```
class StackFull{}; /* Error class */
class StackEmpty{}; /* Error class */
class StackNode{
    public:
        StackNode():
        int data:
        StackNode *next:
   private:
class Stack{
   public:
        Stack();
        bool Push(int data);
        bool Pop();
        int Top();
        bool IsEmpty();
        bool IsFull();
        void MakeEmptv();
        void Print():
        ~Stack();
    private:
        StackNode *topPtr:
        int size:
        int maxSize:
```

Basic stack code (cont.)

```
StackNode::StackNode(){
    next = NULL;
}
Stack::Stack(){
    topPtr = NULL;
    size = 0;
    maxSize = 3;
}
```

Basic stack code (cont.)

```
bool Stack:: Push(int data){
    if (IsFull()){
        throw StackFull();
    size++:
    if (IsEmpty()) {
         topPtr = new StackNode();
         topPtr->data = data;
         topPtr->next = NULL;
         return true;
    \text{StackNode } *p = \text{new StackNode ()};
    p->data = data;
    p\rightarrow next = topPtr;
    topPtr = p;
    return true:
```

Basic stack code (cont.)

```
bool Stack::Pop(){
    if (IsEmpty()) { throw StackEmpty(); }
   size --:
   StackNode *p = topPtr:
   topPtr = topPtr->next;
   delete p;
   return true:
int Stack::Top(){
    if (IsEmpty()) { throw StackEmpty(); }
    return topPtr->data:
bool Stack:: IsEmpty() {
    return topPtr == NULL:
bool Stack:: IsFull(){
    return size >= maxSize;
```

Basic stack code (cont.)

```
void Stack::MakeEmpty(){
    while (!IsEmpty()) {
        Pop();
void Stack:: Print(){
    if (IsEmpty()) {
        printf("Empty\n");
        return;
    printf("Top\n");
    StackNode *p = topPtr;
    while (p->next != NULL) {
        printf("%i\n", p->data);
        p = p \rightarrow next;
    printf("%i\n", p->data);
    printf("Bottom\n\n");
Stack:: ~ Stack(){
    MakeEmpty();
```

Lists

LISTS - OVERVIEW

- List: Linear collection of homogeneous items
 - ► Can be sorted or unsorted
- Basic list operations:
 - IsEmpty: Returns if the list has no elements in it
 - IsFull: Returns if the list is at its maximum capacity
 - ► Length: Returns the amount of elements in the list
 - ► Insert: Add an item to the list
 - ▶ Delete: Delete an item from the list
 - ▶ IsPresent: Check if an item exists in the list

QUEUES

GENERIC PROGRAMMING

RECURSION

TREES

HEAPS

GRAPHS

SEARCHING

SEARCHING - OVERVIEW

- Searching: Finding a specific item from a set of data
 - ► Efficiency: Program performance is improved
 - Data retrieval: Specific data is quickly found in a large dataset
 - Problem solving: Data needs to be found in order to solve problems
- Different methods of searching
 - Linear search
 - Binary search
 - Hashing

SEARCHING - LINEAR SEARCH

- Linear search: Sequentially search through a set of data until the value is found
- Complexity:
 - ► Best case: O(1) (The first element)
 - ightharpoonup Worst case: O(n) (The last element)
- Use cases:
 - Small dataset
 - Unordered datasets
 - Linked lists

Basic linear search code

```
int main(){
  int arr[6] = {-1, 7, 12, 17, 3, 4};
  int s = 12;
  for(int i = 0; i < 6; i++){
    if(arr[i] == s){
        printf("%i is at index %i\n", s, i);
        break;
    }
}</pre>
```

Output

12 is at index 2

SEARCHING - BINARY SEARCH

- Binary search: Continually divide the search area in half, comparing the middle value to the target value
- Complexity
 - ightharpoonup Best case: O(1) (The first element)
 - ▶ Worst case: $O(\log n)$ (The last element)
- Use cases:
 - Data must be sorted
 - ▶ Random access should be a constant time function

Basic binary search code

```
int main(){
    int arr[16] = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15\};
    int s = 5:
    int high = 15; int low = 0;
    int mid:
   while(1){
        if(high >= low){
            mid = low + (high - low) / 2;
        if(arr[mid] == s){
            printf("%i is at index %i\n", s, mid);
            break;
        if(arr[mid] > s){
            high = mid - 1;
            continue:
        low = mid + 1:
```

Output

5 is at index 5

SEARCHING - HASHING

- \blacksquare Hashing: Data storage technique designed to allow O(1) search time
 - Assign key-value pairs through a function to data inputs
 - ► Hash function used to store the element and to find if the element exists in the dataset
 - ► Tradeoff of memory space for access speed
- Collision: Repeated outputs for different inputs
 - ► Must be addressed with hash function (Ex: Offsetting the value)

Basic hashing code

```
#define ArrSize 16
bool hash_insert(int x, int *arr){
   bool is Full = true:
    for(int i = 0; i < ArrSize; i++){
        if(arr[i] == -1){isFull = false: break: }
    if(isFull){ return false; }
    int index = x % ArrSize:
   while (arr[index] != -1){ index++; index %= ArrSize; }
    arr[index] = x;
   return true;
int hash_find(int x, int *arr){
    int index = x % ArrSize;
   while (arr[index] != x){
       index++
        index %= ArrSize:
        if (index == x \% ArrSize){ return -1; }
   return index:
```

Basic hashing code (Cont.)

```
int main() {
    int arr[ArrSize];
    for(int i = 0; i < ArrSize; i++){ arr[i] = -1; }

int x = 347;
    int y = 347 + ArrSize;
    hash_insert(x, arr);
    hash_insert(y, arr);
    printf("%i is at index %i\n", x, hash_find(x, arr));
    printf("%i is at index %i\n", y, hash_find(y, arr));
    return 0;
}</pre>
```

Output fontsize=]code/hashing-output.txt

SORTING

SORTING - OVERVIEW

- Sorting: Organizing data based on its value
 - Usually based on numeric value or alphabetical value
- Efficiency
 - Speed: How many comparisons are made and how many swaps are required
 - ► Space: How much memory is required
 - More memory in usually traded for faster speed

SORTING - SELECTION SORT

- Selection sort: Continually swap the smallest/largest unsorted value with the first unsorted element
 - Completes redundant swaps
- Efficiency
 - ▶ Best case: $O(n^2)$
 - ▶ Worst case: $O(n^2)$
 - ightharpoonup Average case: $O(n^2)$
 - ightharpoonup n-1 swaps will always be performed

Basic selection sort code

```
int main(){
   srand(time(0)):
   std::vector<int> arr:
    for(int i = 0; i < 10; i++) \{ arr.push_back(rand() % 100); \}
    int swapIndex: int tmp: int min:
    for(int i = 0; i < arr.size(); i++){}
        for(int j = 0; j < arr.size(); j++){ printf("%i ", arr[j]); }printf("\n");
        swapIndex = i;
        min = arr[i]:
        for(int j = i + 1; j < arr.size(); j++){}
            if(arr[i] < min){
                min = arr[i]
                swapIndex = i:
       tmp = arr[i]:
        arr[i] = min;
        arr[swap|ndex] = tmp;
    printf("\nSorted output: \n");
    for(int i = 0; i < arr.size(); i++){ printf("%i ", arr[i]); }printf("\n");
   return 0:
```

Output

```
74 86 32 0 12 60 75 99 15 48
0 86 32 74 12 60 75 99 15 48
0 12 32 74 86 60 75 99 15 48
0 12 15 74 86 60 75 99 32 48
0 12 15 32 86 60 75 99 74 48
0 12 15 32 48 60 75 99 74 86
0 12 15 32 48 60 75 99 74 86
0 12 15 32 48 60 74 99 75 86
0 12 15 32 48 60 74 75 99 86
0 12 15 32 48 60 74 75 86 99
```

Sorted output:

0 12 15 32 48 60 74 75 86 99

SORTING - BUBBLE SORT

- Bubble sort: Move the smallest/largest value to the front/end of the list
 - Compare each item to its immediate successor
 - ► The next smallest/largest value will be moved to its correct place each pass through
- Efficiency
 - ▶ Best case: O(n), 0 swaps
 - ► Worst case: $O(n^2)$, $\frac{n^2}{2}$ swaps
 - ► Average case: $O(n^2)$, $(\frac{1}{2})(\frac{n^2}{2})$ swaps

Basic bubble sort code

```
int main(){
   srand(time(0)):
   std::vector<int> arr:
    for(int i = 0; i < 10; i++){ arr.push_back(rand() % 100); }
    int tmp:
    for(int i = 0; i < arr.size(); i++){}
        for(int j = 0; j < arr.size(); j++){ printf("%i ", arr[j]); }printf("\n");
        for(int i = 0; i < arr. size() - 1 - i; i++){
            if(arr[j] > arr[j+1]){
               tmp = arr[j+1];
                arr[i+1] = arr[i];
                arr[j] = tmp:
    printf("\nSorted output: \n");
    for(int i = 0; i < arr.size(); i++){printf("%i", arr[i]); }printf("\n");
   return 0:
```

Output

```
41 67 15 2 73 90 8 26 89 57
41 15 2 67 73 8 26 89 57 90
15 2 41 67 8 26 73 57 89 90
2 15 41 8 26 67 57 73 89 90
2 15 8 26 41 57 67 73 89 90
2 8 15 26 41 57 67 73 89 90
2 8 15 26 41 57 67 73 89 90
2 8 15 26 41 57 67 73 89 90
2 8 15 26 41 57 67 73 89 90
2 8 15 26 41 57 67 73 89 90
```

Sorted output:

2 8 15 26 41 57 67 73 89 90

SORTING - INSERTION SORT

- Insertion sort: Move each item to its proper place in reference to its predecessors
 - Assumes the first item is sorted
- Efficiency
 - ▶ Best case: $O(n^2)$
 - ► Worst case: $O(n^2)$, $\frac{n^2}{2}$ swaps
 - ► Average case: $O(n^2)$, $(\frac{1}{2})(\frac{n^2}{2})$ swaps

Basic insertion sort code

```
int main(){
   srand(time(0));
   std::vector<int> arr:
    arr.push_back(0);
    for(int i = 0; i < 10; i++){ arr.push_back(rand() % 100); }
    int cmplndex: int kev:
    for(int i = 1; i < arr.size(); i++){
        for(int i = 0: i < arr.size(): i++){ printf("%| ", arr[i]): }printf("\n"):
        kev = arr[i];
        cmplndex = i-1:
        while (cmplndex >= 0 && arr[cmplndex] > kev){}
            arr[cmplndex+1] = arr[cmplndex];
           cmpIndex--:
        arr[cmplndex+1] = kev;
    arr.erase(arr.begin());
    printf("\nSorted output: \n");
    for(int i = 0; i < arr.size(); i++){ printf("%i", arr[i]); }printf("\n");
   return 0:
```

Output

```
0 58 28 3 45 34 74 77 72 83 48
0 58 28 3 45 34 74 77 72 83 48
0 28 58 3 45 34 74 77 72 83 48
 3 28 58 45 34 74 77 72 83 48
 3 28 45 58 34 74 77 72 83 48
 3 28 34 45 58 74 77 72 83 48
 3 28 34 45 58 74 77 72 83 48
 3 28 34 45 58 74 77 72 83 48
 3 28 34 45 58 72 74 77 83 48
0 3 28 34 45 58 72 74 77 83 48
```

Sorted output:

3 28 34 45 48 58 72 74 77 83

66

SORTING - EFFICIENCY TABLE

Efficiencies of sorting algorithms

Algorithm	Best	Average	Worst
Selection	$O(n^2)$	$O(n^2)$	$O(n^2)$
Bubble	O(n)	$O(n^2)$	$O(n^2)$
Insertion	$O(n^2)$	$O(n^2)$	$O(n^2)$
Quick	$O(n \log n)$	$O(n \log n)$	$O(n^2)$
Radix	O(nk)	O(nk)	O(nk)
Heap	$O(n \log n)$	$O(n \log n)$	$O(n \log n)$

STL