Analyzing Visa Applicant Demographics

Created By: Nirvan Silswal NetID: ns318 Email: nirvan.silswal@duke.edu

##Load Library Packages

```
library(tidyverse)
```

```
## -- Attaching packages
## v tibble 3.0.3
                       v purrr
                                 0.3.4
## v tidyr
            1.1.1
                       v dplyr
                                 1.0.1
## v readr
            1.3.1
                       v forcats 0.5.0
## -- Conflicts -----
## x lubridate::as.difftime() masks base::as.difftime()
## x lubridate::date()
                            masks base::date()
## x dplyr::filter()
                             masks stats::filter()
## x readr::guess_encoding() masks rvest::guess_encoding()
## x lubridate::intersect() masks base::intersect()
## x dplyr::lag()
                             masks stats::lag()
## x purrr::pluck()
                             masks rvest::pluck()
## x lubridate::setdiff()
                             masks base::setdiff()
## x lubridate::union()
                             masks base::union()
library(readxl)
VisaData <- read_excel("DIIG F20 Data Challenge #2.xlsx")</pre>
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Coercing text to numeric in 0146963 / R146963C15: '45870'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Coercing text to numeric in 0164631 / R164631C15: '76700'
```

In this dataset we have data on 167,278 different visa applications each with 16 different attributes associated with the application.

During this analysis I want to answer two major questions:

- 1. What variables makes an application more likely to get approved and what variables make an application less likely to get approved.
- 2. How do Job wages compare across locations?

Lets look at question 1 first:

To start off, we should look at where are applicants who get certified apply from, and where applicants who are denied apply from.

```
ggplot(data = VisaData, mapping =
   aes(x = (WORK_STATE_ABBREVIATION), fill = CASE_STATUS)) +
   geom_bar(position = "fill") + scale_x_discrete(guide=guide_axis(n.dodge=10))
```



```
labs(y = "proportion")
```

```
## $y
## [1] "proportion"
##
## attr(,"class")
## [1] "labels"
```

Certification Rate = the percentage of applicants who were Certified by the Visa office.

While most states hover around and 80% Certification rate, it is interesting to note that the US territory of the Northern Marina Islands (MP) has a Certification rate of less than 50%. This is likely due to the fact that MP is a US territory and not a state - inticing Visa offices to approve less applicants from there.

For the most part, for those applying from a US state, there is no significant difference between Visa certifiaciton rate between states.

It might be more beneficial to analyze certification rates based on the job an applicant has. Lets take a look at that now:

```
ggplot(data = VisaData, mapping =
    aes(x = (JOB_TITLE_SUBGROUP), fill = CASE_STATUS)) +
    geom_bar(position = "fill") + scale_x_discrete(guide=guide_axis(n.dodge=10))
```



```
labs(y = "proportion")
```

```
## $y
## [1] "proportion"
##
## attr(,"class")
## [1] "labels"
```

Based on the data, there doesn't appear to be a significant difference regarding the occupation an applicant holds and their probability of being approved. All the jobs here seem to fluctuate between a 75% - 92% Certification rate. It is worth noting that almost every job had a certification rate of about 92% except for Asistant professors and attorney's - those were closer to the 75% Certification rate.

Finally, we can take a look at how the Visa Class applied for influences the certification rate for an applicant.

```
ggplot(data = VisaData, mapping =
    aes(x = (VISA_CLASS), fill = CASE_STATUS)) +
    geom_bar(position = "fill") + scale_x_discrete(guide=guide_axis(n.dodge=10))
```


labs(y = "proportion")

```
## $y
## [1] "proportion"
##
## attr(,"class")
## [1] "labels"
```

Here we can clearly see that applicants who applied for a Greencard were certified at a rate of about 60% -much lower than the other Visa Classes. Furthermore H-1B1 applicants from Singapore were approved at the highest Certification Rate - almost 90%.

In summary:

Now lets look at how we can answer question 2:

To analyze wages lets first construct a plot of all the different jobs in the dataset

```
ggplot(data = VisaData, mapping = aes(x = JOB_TITLE_SUBGROUP)) + scale_x_discrete(guide=guide_axis(n.doc
geom_bar()
```


Now lets look at the locations where these visa applicants live:

```
ggplot(data = VisaData, mapping = aes(x = WORK_STATE_ABBREVIATION)) + scale_x_discrete(guide=guide_axis
    geom_bar()
```


It's clear to see that the overwhelming majority of Visa-Applicants in this dataset are residing in California. This is important to note as California is a hub for software development jobs. Lets take a look at how many people who applied for a Visa in California also have a software related job.

```
ggplot(data = VisaData, mapping = aes(x = (WORK_STATE = "California"), fill = JOB_TITLE_SUBGROUP)) + sc
geom_bar()
```


An overwhelming majority of the applicants from California are working some sort of software job. This is important to note as these software related jobs typically pay much more than say a teacher.

To further analyze this we should look at average wages in each state:

```
WageMean <- aggregate( PAID_WAGE_PER_YEAR ~ WORK_STATE, VisaData, mean )
WageMean <- WageMean[order(WageMean$PAID_WAGE_PER_YEAR,decreasing=T),]
WageMean</pre>
```

##		WORK_STATE	PAID_WAGE_PER_YEAR
##	55	West Virginia	109426.87
##	5	California	103571.11
##	54	Washington	102176.68
##	35	New York	91601.76
##	4	Arkansas	90270.75
##	1	Alabama	87326.28
##	24	Massachusetts	86610.73
##	43	Pennsylvania	83889.44
##	9	District of Columbia	81968.36
##	27	Mississippi	81950.75
##	41	Oregon	81530.55
##	19	Kansas	81031.78
##	20	Kentucky	80146.98
##	7	Connecticut	79578.57
##	23	Maryland	79153.98
##	31	Nevada	79152.48
##	17	Indiana	78722.99
##	18	Iowa	78219.47

```
## 28
                       Missouri
                                           75495.05
## 26
                      Minnesota
                                           75386.05
## 6
                       Colorado
                                           75155.24
## 53
                       Virginia
                                           74920.77
## 2
                         Alaska
                                           74792.22
## 39
                           Ohio
                                           74777.45
## 36
                 North Carolina
                                           74667.46
                   Rhode Island
## 45
                                           74113.52
## 25
                       Michigan
                                           73812.99
## 49
                          Texas
                                           72765.87
## 30
                       Nebraska
                                           72600.09
## 51
                        Vermont
                                           72542.18
## 10
                        Florida
                                           72338.71
## 11
                                           72287.96
                        Georgia
## 8
                       Delaware
                                           71830.13
## 14
                         Hawaii
                                           71223.47
## 22
                          Maine
                                           71180.42
## 3
                        Arizona
                                           70963.94
## 48
                      Tennessee
                                           70046.77
## 40
                       Oklahoma
                                           68444.30
                                           68073.61
## 15
                          Idaho
## 37
                   North Dakota
                                           67486.34
## 21
                                           67124.28
                      Louisiana
## 57
                        Wyoming
                                           66189.39
## 29
                        Montana
                                           65990.60
## 47
                   South Dakota
                                           61421.45
                 South Carolina
## 46
                                           61375.78
## 42
                          Palau
                                           60000.00
## 34
                     New Mexico
                                           56641.53
## 44
                    Puerto Rico
                                           53040.66
## 13
                         Guamam
                                           48557.00
## 52
                 Virgin Islands
                                           41972.36
## 12
                           Guam
                                           39784.83
## 38 Northern Mariana Islands
                                           18932.39
ggplot(data = VisaData, mapping = aes(x = (WORK_STATE = "West Virginia"), fill = JOB_TITLE_SUBGROUP)) +
  geom_bar()
```

77728.96

77434.66

77240.40

77113.75

76371.10

56

32

50

16

33

Wisconsin

Illinois

New Jersey

Utah

New Hampshire

ggplot(data = VisaData, mapping = aes(x = (WORK_STATE = "Washington"), fill = JOB_TITLE_SUBGROUP)) + sc
geom_bar()

The states with the 4 highest average salaries for Visa Applicants are West Virgina, California, Washington, and New York. California, Washington, and New York are all huge tech hubs with Silicon Valley, Seattle, and Manhatten all within their states.

```
ggplot(data = VisaData, mapping = aes(x = (WORK_STATE = "New Mexico"), fill = JOB_TITLE_SUBGROUP)) + sc
geom_bar()
```

