Determine whether the following series are absolutely convergent, conditionally convergent, or divergent.

$$1. \sum_{n=2}^{\infty} \frac{(-1)^n}{n\sqrt{n}}$$

2.
$$\sum_{n=2}^{\infty} \frac{1}{n(\sqrt{n+1} + \sqrt{n-1})}$$

3.
$$\sum_{n=1}^{\infty} \frac{(n+1)^2 - (n-1)^2}{n^3}$$
 (Hint: Which is it? $\sim \sum_{n=1}^{\infty} \frac{1}{n}$ or $\sim \sum_{n=1}^{\infty} \frac{1}{n^2}$)

4.
$$\sum_{n=1}^{\infty} \frac{5^n - 3^n}{4^n}$$

5.
$$\sum_{n=1}^{\infty} \frac{n+4^n}{5^n}$$

$$6. \sum_{n=1}^{\infty} \frac{(-1)^n e^n}{n^2}$$

7.
$$\sum_{n=1}^{\infty} \left(\frac{1}{4^n}\right) \left(\frac{1}{n}\right)$$

8. Estimate
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^3}$$
 with an error less than 10^{-6} .

9.
$$\sum_{n=1}^{\infty} \ln(1+1/n)^n$$

10. What is the value of
$$\sum_{n=0}^{\infty} \frac{(-1)^n \pi^n}{3^{2n} (2n)!}$$

11. What is
$$\lim_{x \to 0} \frac{\sin(x^2) - x^2}{x^6}$$
?

12. Let
$$J(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{2^{2n} (n!)^2}$$
. What is $J^{(6)}(0)$?

- 13. Consider the function $f(x) = \sin x \cos x$ (Hint: $\sin(2x) = 2\sin x \cos x$)
 - (a) Determine T_4 for f about $a = \pi$
 - (b) Find the Maclaurin series for f.
- 14. Evaluate $\int_0^{0.1} \ln(x^3 + 1) dx$ with error less than $\frac{1}{100}$.
- 15. Evaluate $e^{-\frac{1}{2}}$ with error less than $\frac{1}{10^3}$.
- 16. Find the radius and interval of convergence of the following power series:
 - (a) $\sum_{n=1}^{\infty} \frac{(ex-2)^n}{3^n e^n}$
 - (b) $\sum_{n=1}^{\infty} \frac{(4-x)^n}{n!}$
 - (c) $\sum_{n=1}^{\infty} \frac{(23-6x)^{2n}}{\sqrt{n}}$
 - (d) $\sum_{n=1}^{\infty} \frac{(5-4x)^{2n+1}}{4^n}$
 - (e) $\sum_{n=1}^{\infty} \frac{2x^n}{n^n}$