CHAPTER 11					
DESIGN OF A	SIMPLE	SERIAL A	RITHMET	CIC PROC	ESSOR

11.1 Introduction

Register transfer design Data-path and control circuit.

$\begin{array}{c} d_1 \\ + d_0 \\ \hline y_1 y_0 \\ \\ \text{carry} \end{array}$

11.2 Adder

Table 11.1 Truth table for a half adder.

$d_1 d_0$	y ₁ y ₀
0 0	0 0
0 1	0 1
1 0	0 1
1 1	1 0

Figure 11.1 A half adder.

$$\begin{array}{c} c_i \\ a_i \\ + b_i \end{array}$$

Figure 1.3 A 3-input, 2-output binary circuit.

Table 1.2 Truth table for the circuit in Figure 1.3.

X ₂	\mathbf{x}_1	\mathbf{x}_0		\mathbf{y}_1	\mathbf{y}_0
0	0	0		0	0
0	0	1		0	1
0	1	0		0	1
0	1	1		1	0
1	0	0		0	1
1	0	1		1	0
1	1	0		1	0
1	1	1		1	1
			I		

$$\begin{aligned} y_0 &= F(x_2, x_1, x_0) = \Sigma \ m(1, 2, 4, 7) \\ F(x_2, x_1, x_0) &= x_2' x_1' x_0 + x_2' x_1 x_0' + x_2 x_1' x_0' + x_2 x_1 x_0 \\ F(x_2, x_1, x_0) &= (m_1 + m_2) + (m_4 + m_7) \\ &= (x_2' x_1' x_0 + x_2' x_1 x_0') + (x_2 x_1' x_0' + x_2 x_1 x_0) \\ &= x_2' (x_1' x_0 + x_1 x_0') + x_2 (x_1' x_0' + x_1 x_0) \\ &= x_2' (x_1 \oplus x_0) + x_2 (x_1 \oplus x_0)' \end{aligned}$$

X_2	x ₁ 00	01	11	10
x_0		1		1
1	1		1	

 $= \mathbf{x}_2 \oplus \mathbf{x}_1 \oplus \mathbf{x}_0$

Figure 5.27 K-map for y_0 in Table 1.2.

$$S_i = a_i \oplus b_i \oplus c_i$$

The canonical sum-of-products expression for the carry bit c_{i+1} is

$$c_{i+1} = a_i' b_i c_i + a_i b_i' c_i + a_i b_i c_i' + a_i b_i c_i$$

The simplest sum-of-products expression is

$$c_{i+1} = a_i b_i + b_i c_i + a_i c_i$$
 (11.1)

A different expression for the carry bit can be obtained as follows.

$$c_{i+1} = a_i' b_i c_i + a_i b_i' c_i + a_i b_i$$

$$= (a_i' b_i + a_i b_i')c_i + a_i b_i$$

$$= (a_i \oplus b_i) c_i + a_i b_i$$
(11.2)

c_i	b _i 00	01	11	10
0				
1		1		1

$$\begin{split} S_i &= a_i \oplus b_i \oplus c_i \\ c_{i+1} &= (a_i \oplus b_i) \ c_i + a_i \ b_i \end{split}$$

Figure 11.2 A full adder.

The addition of two n-bit numbers and an initial carry c_0 is given below.

Figure 11.3 A ripple-carry adder.

Figure 11.4 A serial adder.

Table 11.2 Contents of the serial adder.

Clock cycle	R_1	R_2	Xi	y _i	$z_{i}(Q)$	Sum	Carry (D)
0	$a_3 a_2 a_1 a_0$	b ₃ b ₂ b ₁ b ₀	a_0	b_0	c_0	S_0	c_1
1	$S_0 a_3 a_2 a_1$	$b_0 \ b_3 \ b_2 \ b_1$	a_1	b_1	c_1	S_1	c_2
2	$S_1 S_0 a_3 a_2$	$b_1 b_0 b_3 b_2$	a_2	b_2	c_2	S_2	c_3
3	$S_2 S_1 S_0 a_3$	$b_2 b_1 b_0 b_3$	a_3	b_3	c_3	S_3	c_4
4	$S_3 S_2 S_1 S_0$	$b_3 b_2 b_1 b_0$	S_0	b_0	c ₄	N/A	N/A

11.3 Signed Numbers

Sign-magnitude representation

$$-(2^{n-1}-1) \le N \le (2^{n-1}-1)$$

$$0 1 0 0 1 0 1 1 + 75$$

$$0 1 1 1 1 1 1 1 1 + 127$$

$$1 1 1 1 1 1 1 1 1 - 127$$

$$1 0 0 0 0 0 0 0 1 - 1$$

$$0 0 0 0 0 0 0 0 0 + 0$$

$$1 0 0 0 0 0 0 0 0 - 0$$

2's complement representation

$$-2^{n-1} \le N \le (2^{n-1}-1)$$

Figure 11.5 Two's complement representation for 4-bit signed numbers.

The bit inversion of an n-bit number $Y = y_{n-1} y_{n-2} \dots y_2 y_1 y_0$ is equivalent to the subtraction of an n-bit number $2^n - 1$ by Y, which is shown below.

²Y, the 2's complement of Y, is defined as

$$^{2}Y = ^{1}Y + 1$$

Thus the 2's complement of Y can also be obtained by subtracting Y from 2ⁿ because

$$^{2}Y = ^{1}Y + 1 = (2^{n} - 1) - Y + 1 = 2^{n} - Y$$

Subtraction of two n-bit signed numbers: A - B

$$A - B = A + (-B)$$
 \longrightarrow $A + {}^{2}B = A + (2^{n} - B) = (A - B) + 2^{n}$

Decimal:
$$2-5=2+(-5)=-3$$

Binary: $0010-0101=0010+(-0101)$

The result is a negative number. The 2's complement of this number is 0011.

$$5 + 4 = +9$$

Binary:

$$0101 + 0100 = 1001$$

Positive Positive

Negative

0101

+ 1110

1001

$$-5-6 = -5 + (-6) = -11$$

Binary:

$$-(0101) + (-0110)$$

$$(1011) + (1010) = 1(0101)$$

Negative

Negative

Positive

1011

+ 1010

10101

Addition and Subtraction Methods for 2's Complement Signed Number Conversion

The conversions for positive signed numbers between decimal and binary are no difference from what have been done in Chapter 2.

The conversions for negative signed numbers between decimal and .

Note: The weight of signed bit is negative.

8-bit negative signed number 10011010

Binary number 1 0 0 1 1 0 1 0

Weight -128 + 64 + 32 + 16 + 8 + 4 + 2 + 1

(Add weights of all 1-bits)

Decimal number -128 +16 +8 +2 = -102

Convert –79 to a 2's complement 8-bit signed number using the subtraction method

Weight
$$-2^7 = -128$$
 $-(-128)$ $-(-128)$ $-(-128)$ $-(-128)$ difference $2^5 = 32$ -32 -32 difference $2^4 = 16$ -16 -16 difference $2^0 = 1$ -1 difference -1 difference -1 difference -1 difference -1 difference -1 difference -1

$$a_7 = a_5 = a_4 = a_0 = 1$$
, $a_6 = a_3 = a_2 = a_1 = 0$
 $(-79)_{10} = (a_7 a_6 a_5 a_4 a_3 a_2 a_1 a_0)_2 = (10110001)_2$

Figure 11.4 A serial adder.

Table 11.2 Contents of the serial adder.

Clock cycle	R_1	R_2	Xi	y _i	$z_{i}(Q)$	Sum	Carry (D)
0	$a_3 a_2 a_1 a_0$	b ₃ b ₂ b ₁ b ₀	a_0	b_0	c_0	S_0	c_1
1	$S_0 a_3 a_2 a_1$	$b_0 \ b_3 \ b_2 \ b_1$	a_1	b_1	c_1	S_1	c_2
2	$S_1 S_0 a_3 a_2$	$b_1 b_0 b_3 b_2$	a_2	b_2	c_2	S_2	c_3
3	$S_2 S_1 S_0 a_3$	$b_2 b_1 b_0 b_3$	a_3	b_3	c_3	S_3	c_4
4	$S_3 S_2 S_1 S_0$	$b_3 b_2 b_1 b_0$	S_0	b_0	c ₄	N/A	N/A

Figure 11.4 A serial adder.

11.4 Algorithmic State Machine (ASM) Chart

Figure 11.6 Basic elements of ASM charts. (a) State box. (b) Decision box. (c) Conditional output box.

State name	State code Q_1Q_0				
S_0	0 0				
S_1	0 1				
S_2	1 1				
(b)					

Figure 11.7 Conversion of a Moore state diagram to ASM chart. (a)
State diagram. (b) State assignment. (c) ASM chart.

State name	State code Q			
S_0	0			
S_1	1			
(b)				

Figure 11.8 Conversion of a Mealy state diagram to ASM chart. (a9) State diagram. (b) State assignment. (c) ASM chart.

Ring Counter

Table 10.2 State assignment table for a 4-state ring counter

State	$Q_0 Q_1 Q_2 Q_3$			
T_0	1 0 0 0			
T_1	0 1 0 0			
T_2	0 0 1 0			
T_3	0 0 0 1			

Figure 10.6 State diagram for a 4-state ring counter.

Figure 10.6 State diagram for a 4-state ring counter.

Figure 10.7 Circuit diagram for a 4-bit ring counter.

RESET Figure 11.10 ASM chart T_0 for the arithmetic processor. START = 0 $C_2 = 0, C_1 = 1$ START RESET Hold1, Hold2 T_0 Load1 T_1 Hold1, Load2, $C_2 = 1$, $C_1 = 0$ OPCODE T_2 $c_0 = 0$ $c_0 = 1$ T_3 Shift, $C_2 = 1$, $C_1 = 1$ T_4 Shift, $C_2 = 1$, $C_1 = 1$ Shift, $C_2 = 1$, $C_1 = 1$ T_5 Shift, $C_2 = 1$, $C_1 = 1$

Design of State Generator

Table 11.3 State assignment.

State	Q_0	Q_1	Q_2	Q_3	Q_4	Q_5
T_0	1	0	0	0	0	0
T_1	0	1	0	0	0	0
T_2	0	0	1	0	0	0
T_3	0	0	0	1	0	0
T_4	0	0	0	0	1	0
T_5	0	0	0	0	0	1

Table 11.4 State table for state generator.

Present state	START	Next state
T_0	0	T_0
T_{0}	1	T_1
T_1	d	T_2
T_2	d	T_3
T_3	d	T_4
T_4	d	T_5
T_5	d	T_{0}

Figure 11.11 State diagram for state generator.

$$Q_0^+ = Q_0 \cdot START' + Q_5$$
 $Q_1^+ = Q_0 \cdot START$
 $Q_2^+ = Q_1$
 $Q_3^+ = Q_2$
 $Q_4^+ = Q_3$
 $Q_5^+ = Q_4$

$$D_0 = Q_0^+ = Q_0 \cdot START' + Q_5$$
 $D_1 = Q_1^+ = Q_0 \cdot START$
 $D_2 = Q_2^+ = Q_1$
 $D_3 = Q_3^+ = Q_2$
 $D_4 = Q_4^+ = Q_3$
 $D_5 = Q_5^+ = Q_4$

Figure 11.12 State generator.

Design of Control Circuit

Figure 11.13 Block diagram for control circuit.

Table 11.5 Conversion of asserted signals to selection signals for shift register.

Asserted signal	$(s_1s_0)_{R1}$	$(s_1s_0)_{R2}$
Hold1	0 0	N/A
Hold2	N/A	0 0
Load1	1 1	N/A
Load2	N/A	1 1
Shift	0 1	0 1

Table 11.6 Truth table for the control circuit.

State	START	$(s_1s_0)_{R1}$	$(s_1s_0)_{R2}$	C_2	C_1	c_0	
T_0	0	0 0	0 0	0	1	d	
T_0	1	1 1	d d	d	d	d	

Table 11.6 Truth table for the control circuit.

State	START	$(s_1s_0)_{R1}$	$(s_1s_0)_{R2}$	C_2	C_1	c_0	
T_0	0	0 0	0 0	0	1	d	
T_0	1	1 1	d d	d	d	d	
\mathbf{T}_1	d	0 0	1 1	1	0	OPCODE	

Table 11.6 Truth table for the control circuit.

State	START	$(s_1s_0)_{R1}$	$(s_1s_0)_{R2}$	C_2	\mathbf{C}_1	c_0
T_0	0	0 0	0 0	0	1	d
T_0	1	1 1	d d	d	d	d
T_1	d	0 0	1 1	1	0	OPCODE
T_2	d	0 1	0 1	1	1	d
T_3	d	0 1	0 1	1	1	d
T_4	d	0 1	0 1	1	1	d
T_5	d	0 1	0 1	1	1	d

Table 11.6 Truth table for the control circuit.

TART	$(s_1s_0)_{R1}$	$(s_1s_0)_{R2}$	C_2	C_1	c_0
0	0 0	0 0	0	1	d
1	1 1	d d	d	d	d
d	0 0	1 1	1	0	OPCODE
d	0 1	0 1	1	1	d
d	0 1	0 1	1	1	d
d	0 1	0 1	1	1	d
d	0 1	0 1	1	1	d
	1 d d d d	0 0 0 1 1 1 d 0 0 d 0 1 d 0 1 d 0 1	0 0 0 0 0 1 1 1 d d d 0 0 1 1 d 0 1 0 1 d 0 1 0 1 d 0 1 0 1 d 0 1 0 1	0 0 0 0 0 1 1 1 1 d d 0 0 1 1 1 d 0 1 0 1 1 d 0 1 0 1 1 d 0 1 0 1 1 d 0 1 0 1 1	0 0 0 0 0 1 1 1 1 1 0 d d d 0 0 1 1 1 0 0 d 0 1

$$(s_1)_{R1} = T_0 \bullet START$$

$$(s_0)_{R1} = T_0 \bullet START + T_2 + T_3 + T_4 + T_5$$

$$(s_1)_{R2} = T_1$$

$$(s_0)_{R2} \; = \; T_1 + T_2 + T_3 + T_4 + T_5$$

$$C_2 = T_1 + T_2 + T_3 + T_4 + T_5$$

$$C_1 \; = \; T_0 + T_2 + T_3 + T_4 + T_5$$

$$c_0 = OPCODE$$

Table 11.7 Truth table for s_0 ', C_2 ', and C_1 '

State	START	$(s_0')_{R1}$	(s ₀ ') _{R2}	C_2	C_1
T_0	0	1	1	1	0
T_0	1	0	d	d	d
T_1	d	1	0	0	1
T_2	d	0	0	0	0
T_3	d	0	0	0	0
T_4	d	0	0	0	0
T_5	d	0	0	0	0

$$(s_1)_{R1} = T_0 \cdot START$$

 $(s_0)_{R1} = T_0 \cdot START + T_2 + T_3 + T_4 + T_5$
 $(s_1)_{R2} = T_1$
 $(s_0)_{R2} = C_2 = T_1 + T_2 + T_3 + T_4 + T_5$
 $C_1 = T_0 + T_2 + T_3 + T_4 + T_5$
 $c_0 = OPCODE$

From Table 11.7,

$$(s_0')_{R1} = T_0 \cdot START' + T_1$$

 $(s_0')_{R2} = C_2' = T_0$
 $C_1' = T_1$
 $(s_0)_{R1} = (T_0 \cdot START' + T_1)'$
 $(s_0)_{R2} = C_2 = T_0'$
 $C_1 = T_1'$

11.6 Revisit of Arithmetic Processor

Figure 11.14 A processor for eight arithmetic functions.

RESET T_0 , $C_2 = 0, C_1 = 1$ Hold1, Hold2 0 START Figure 11.15 ASM chart for the arithmetic Load1 processor in Figure 11.14. Hold1, Load2, $C_2 = 1$, $C_1 = 0$ Shift, $C_2 = 1$, $C_1 = 1$

Table 11.8 Arithmetic functions for the processor in Figure 11.14.

OP_2	OP_1	OP_0	$x_3x_2x_1x_0 + y_3y_2y_1y_0 + c_0$	Arithmetic function
0	0	0	$a_3a_2a_1a_0 + b_3b_2b_1b_0 + 0$	A + B
0	0	1	$a_3a_2a_1a_0 + b_3b_2b_1b_0 + 1$	A + B + 1
0	1	0	$a_3a_2a_1a_0 + b_3'b_2'b_1'b_0' + 0$	A - B - 1
0	1	1	$a_3a_2a_1a_0 + b_3'b_2'b_1'b_0' + 1$	A - B
1	0	0	$a_3 a_2 a_1 a_0 + a_3 a_2 a_1 a_0 + 0$	2A
1	0	1	$a_3a_2a_1a_0 + a_3a_2a_1a_0 + 1$	2A + 1
1	1	0	$a_3a_2a_1a_0 + 1111 + 0$	A – 1
1	1	1	$a_3a_2a_1a_0 + 1111 + 1$	A

Experiment 5 Arithmetic Processor

1. Sequence assignment

Op ₂ Op ₁	Arithmetic Function
0 0	
0 1	
1 0	
1 1	

2. Processor Design Construct the truth table for the input processor. (Use a_i, b_i, 0, 1)

Op ₂ Op ₁	X _i	y _i	\mathbf{c}_0
00			
01			
10			
11			

Experiment 5 Arithmetic Processor

1. Sequence assignment

Op ₂ Op ₁	Arithmetic Function
0 0	2B + 1
0 1	A - B
1 0	A + B
1 1	A - 1

2. Processor Design Construct the truth table for the input processor. (Use a_i, b_i, 0, 1)

Op ₂ Op ₁	X _i	y _i	c_0
00	b _i	b _i	1
01	a _i	b _i ,	1
10	a _i	b _i	0
11	a _i	1	0

Processor Design Construct the truth table for the input processor. (Use a_i, b_i, 0, 1)

Op ₂ Op ₁	X _i	y _i	C ₀
00	b _i	b _i	1
01	a _i	b _i	1
10	a _i	b _i	0
11	a _i	1	0

Label the data inputs of the two 4-to-1 multiplexers given below for the realization of x_i, y_i.

Express the initial carry c_0 as a function of Op_2 and Op_1 .

$$c_0 =$$

Processor Design Construct the truth table for the input processor. (Use a_i, b_i, 0, 1)

Op ₂ Op ₁	X _i	y _i	c ₀
00	b _i	bi	1
01	a _i	, bi	1
10	a _i	b _i	0
11	a _i	1	0

Label the data inputs of the two 4-to-1 multiplexers given below for the realization of x_i , y_i .

Use the following signal names for input processor 1QD for ai, 2QD for bi, Op2, Op1, xi, yi, zi

Use the following signal names for control signals 1s1, 1s0, 2s1, 2s0, c0, C2, C1

Express the initial carry c_0 as a function of Op_2 and Op_1 . $c_0 = Op_2$ ' Construct the truth table for the control circuit.

State	START	(s ₁) _{R1}	(s ₀) _{R1}	(s ₁) _{R2}	$(s_0)_{R2}$	C ₂	C ₁
T ₀	0						
T ₀	1						
T ₁	d						
T ₂	d						
T ₃	d						
T ₄	d						
T ₅	d						

$$(s_1)_{R1} = (s_0)_{R1} = (s_1)_{R2} = (s_0)_{R2} = C_2 = C_1 =$$

Note the difference in the data inputs of the two multiplexers.

Lab 5 schematic diagram

