Statistical Modeling and Advanced Regression Analyses

R Tutorials

Holger Sennhenn-Reulen[®] Northwest German Forest Research Institute (NW-FVA), Germany.

January 22, 2025

Contents

1	Soft	tware	3
	1.1	Organize R Session	3
2	Line	ear Regression Model	3
	2.1	Data Simulation	3
		2.1.1 Visualisations	4
	2.2	Modeling	8
		2.2.1 Visualisations	
	2.3	Add-Ons	
		2.3.1 Add-On Linear Model: A) Stancode	10
		2.3.2 Add-On Linear Model: B) Posterior predictive check: an introduction 'by hand'	12
3	Bina	ary Regression Model 1	8
	3.1	Data Simulation	18
		3.1.1 Visualisations	18
	3.2	Modeling	
		3.2.1 Visualisations	
		3.2.2 Estimated Expected Value	
4	Pois	sson Regression Model 2	26
	4.1	Data Simulation	26
		4.1.1 Visualisations	
	4.2	Modeling	
	-	4.2.1 Estimated Expected Value	

5	Mix	ed models	31			
	5.1	Data Simulation Function f_sim_data	31			
	5.2	Random Intercept Model	32			
		5.2.1 small simulation study	34			
	5.3	Random Intercept with Random Slope Model	36			
	5.4	Nested Model	38			
		5.4.1 add covariate 'z' as constant within 2nd level	41			
6	Flex	tible Models	44			
	6.1	A 'simple' GAM	44			
	6.2	GAM with bivariate effect surface	50			
	6.3	Meet the ocat family	57			
	6.4	Distributional regression in mgcv	67			
		6.4.1 gaulss	67			
		6.4.2 ziplss	69			
Re	References					

1 Software

We use the statistical software environment *R* (R Core Team, 2024), and R add-on packages *ggplot2* (Wickham, 2016).

This document is produced using *Quarto* (Allaire et al., 2024).

1.1 Organize R Session

```
rm(list = ls())
library("ggplot2")
```

2 Linear Regression Model

2.1 Data Simulation

Data are simulated according to the equations given in the lecture slides¹:

¹For two covariates x_1 and x_2 .

```
 df mu \leftarrow beta_0 + beta_x_1 * df x_1 + beta_x_2 * df x_2 \\ df + rnorm(n = N, mean = 0, sd = sigma)
```

2.1.1 Visualisations

```
ggplot(data = df, aes(x = x_1, y = x_2)) +
geom_point()
```


Figure 1: Scatterplot of the two simulated covariates x_1 and x_2 - each from the uniform distribution between 0 and 1.

```
ggplot(data = df, aes(x = x_1, y = mu, color = x_2)) +
  geom_point()
```


Figure 2: Scatterplot of covariate x_1 with response y - each individual observation is coloured according to the second covariate x_2 .

```
ggplot(data = df, aes(x = x_2, y = mu, color = x_1)) +
  geom_point()
```


Figure 3: Scatterplot of covariate x_2 with response y - each individual observation is coloured according to the first covariate x_1 .

```
ggplot(data = df, aes(x = x_1, y = x_2, color = mu)) +
  geom_point()
```


Figure 4: Scatterplot of the two simulated covariates x_1 and x_2 - each individual observation is coloured according to the underlying true conditional expectation mu.

```
ggplot(data = df, aes(x = x_1, y = x_2, color = y)) + geom_point()
```


Figure 5: Scatterplot of the two simulated covariates x_1 and x_2 - each individual observation is coloured according to the response y.

2.2 Modeling

The basic R command for (frequentist) estimation of the parameters of a linear regression model is a call to the function 1m:

```
Call: lm(formula = y \sim x_1 + x_2, data = df)
```

Residuals:

```
Min 1Q Median 3Q Max -0.82082 -0.19805 0.00329 0.19051 0.81138
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
                        0.03448
(Intercept)
             0.91291
                                 26.476
                                          < 2e-16 ***
x_1
             0.91533
                        0.04668
                                 19.610
                                         < 2e-16 ***
x_2
            -0.36218
                        0.04566
                                 -7.933 1.43e-14 ***
                0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes:
```

Residual standard error: 0.2963 on 497 degrees of freedom Multiple R-squared: 0.4674, Adjusted R-squared: 0.4652 F-statistic: 218 on 2 and 497 DF, p-value: < 2.2e-16

2.2.1 Visualisations

```
nd <- data.frame(x_1 = seq(0, 1, by = .1),
	x_2 = .5)
nd$mu <- predict(m, newdata = nd)
ggplot(data = df, aes(x = x_1, y = mu, color = x_2)) +
geom_point() +
geom_line(data = nd, aes(x = x_1, y = mu, color = x_2))
```


Figure 6: Scatterplot of covariate x_1 with the true conditional expectation mu - each individual observation is coloured according to the second covariate x_2 . The line gives the point estimation for the conditional expectation with the second covariate x_2 fixed to 0.5.

```
geom_point() +
geom_line(data = nd, aes(x = x_1, y = mu, color = x_2, group = x_2))
```


Figure 7: Scatterplot of covariate x_1 with the true conditional expectation mu - each individual observation is coloured according to the second covariate x_2 . The lines give the point estimation for the conditional expectation with the second covariate x_2 taking on values between 0 and 1 (at steps of 0.1).

2.3 Add-Ons

2.3.1 Add-On Linear Model: A) Stancode

2.3.1.1 Stan Users Guide

Probabilistic Programming Languages such as *Stan* (Carpenter et al., 2017) allow to plug together the single parts of a statistical regression model²:

The following Stan-code is published here in the Stan users guide:

```
data {
  int<lower=0> N;
  vector[N] x;
```

 $^{^2}$ Which is actually pretty 'readable' if you get used to the structure for a simple model such the linear regression model.

```
vector[N] y;
}
parameters {
  real alpha;
  real beta;
  real<lower=0> sigma;
}
model {
  y ~ normal(alpha + beta * x, sigma);
}
```

2.3.1.2 Stancode generated by calling brms::brm

The R add-on package *brms* (Bürkner, 2017, 2018) allows to implent advanced regression models without being an expert in 'Stan-programming'.

Here is the Stan-code that is implemented by 'brms' for our linear regression model example:

```
brms::make_stancode(brms::bf(y ~ x_1 + x_2, center = F), data = df)
// generated with brms 2.21.0
functions {
}
data {
  int<lower=1> N; // total number of observations
  vector[N] Y; // response variable
  int<lower=1> K; // number of population-level effects
 matrix[N, K] X; // population-level design matrix
  int prior_only; // should the likelihood be ignored?
}
transformed data {
}
parameters {
  vector[K] b; // regression coefficients
  real<lower=0> sigma; // dispersion parameter
transformed parameters {
  real lprior = 0; // prior contributions to the log posterior
  lprior += student_t_lpdf(sigma | 3, 0, 2.5)
    - 1 * student_t_lccdf(0 | 3, 0, 2.5);
}
model {
  // likelihood including constants
```

```
if (!prior_only) {
   target += normal_id_glm_lpdf(Y | X, 0, b, sigma);
}
// priors including constants
target += lprior;
}
generated quantities {
}
```

2.3.2 Add-On Linear Model: B) Posterior predictive check: an introduction 'by hand'

Having an 1m object already, it is rather straightforward to get posterior samples by using function sim from the *arm* (Gelman & Su, 2024) package:

```
library("arm")
S \leftarrow sim(m)
str(S)
Formal class 'sim' [package "arm"] with 2 slots
  ..@ coef : num [1:100, 1:3] 0.882 1.014 0.904 0.978 0.958 ...
  ...- attr(*, "dimnames")=List of 2
  .. .. ..$ : NULL
  .....$ : chr [1:3] "(Intercept)" "x_1" "x_2"
  ..@ sigma: num [1:100] 0.323 0.303 0.292 0.309 0.29 ...
S <- cbind(S@coef, 'sigma' = S@sigma)
head(S)
     (Intercept)
                       x_1
                                  x_2
                                          sigma
[1,]
       0.8816414 0.9245094 -0.3362733 0.3227662
       1.0139849 0.7317948 -0.3398411 0.3033703
[2,]
[3,]
      0.9037042 0.9155575 -0.3506924 0.2922883
[4,]
      0.9776909 0.8392790 -0.3845609 0.3090220
[5,]
       0.9579213 0.8977625 -0.4284596 0.2900632
[6,]
       0.9549211 0.8478278 -0.3937226 0.3094227
```

Predict the response for the covariate data as provided by the original data-frame df - here only by using the first posterior sample:

geom_histogram(alpha = .5, position = "identity")

Figure 8: Histogram of the original and the posterior predicted response sample.

Now let's repeat the same for 9 different posterior samples:

```
data.frame(y = y_s, source = "predicted", s = s))
}
ggplot(data = pp, aes(x = y, fill = source)) +
  geom_histogram(alpha = .5, position = "identity") +
  facet_wrap(~ s)
```


Figure 9: Histogram of the original and the posterior predicted response sample.

```
ggplot(data = pp, aes(x = y, fill = source)) +
  geom_density(alpha = .5, position = "identity") +
  facet_wrap(~ s)
```


Figure 10: The same as in Figure 9, but now using kernel density visualisations.

```
ggplot(data = pp, aes(x = y, colour = source)) +
  stat_ecdf() +
  facet_wrap(~ s)
```


Figure 11: The same as in Figure 9 or Figure 10, but now using empirical cumulative density function visualisations.

Figure 12: The same as in Figure 12, but now within one plotting window: This visualisation is what brms::pp_check will produce if applied on a brm object.

3 Binary Regression Model

```
rm(list = ls())
library("ggplot2")
library("plyr")
```

3.1 Data Simulation

Data are simulated similarly as for the linear model:

3.1.1 Visualisations

Figure 13: Scatterplot of covariate x_1 with response y - each individual observation is coloured according to the second covariate x_2, and additionally 'jittered' in vertical direction.

3.2 Modeling

The basic R command for (frequentist) estimation of the parameters of a binary regression model is a call to the function glm with family argument binomial:

```
m \leftarrow glm(y \sim x_1 + x_2, data = df,
        family = binomial(link = 'logit'))
summary(m)
Call:
glm(formula = y ~ x_1 + x_2, family = binomial(link = "logit"),
    data = df
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.2908 0.2358 -1.233 0.217531
             1.1598
x 1
                        0.3248 3.570 0.000356 ***
            -0.1713
                        0.3138 -0.546 0.585034
x_2
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
```

Null deviance: 688.53 on 499 degrees of freedom Residual deviance: 675.30 on 497 degrees of freedom

AIC: 681.3

Number of Fisher Scoring iterations: 4

3.2.1 Visualisations

Figure 14: Scatterplot of covariate x_1 with the true linear predictor eta - each individual observation is coloured according to the second covariate x_2 . The line gives the point estimation for the conditional expectation with the second covariate x_2 fixed to 0.5.

Figure 15: Scatterplot of covariate x_1 with the true conditional expectation p - each individual observation is coloured according to the second covariate x_2. The line gives the point estimation for the conditional expectation with the second covariate x_2 fixed to 0.5.

3.2.2 Estimated Expected Value

We can apply the Bernstein-von Mises theorem to estimate the *expected value*:

- **Fit the model**: Obtain the maximum likelihood estimate for the model's coefficients (coef) along with their variance-covariance matrix (vcov).
- **Simulate coefficients**: Perform an 'informal' Bayesian posterior simulation using the multivariate normal distribution, based on the *Bernstein-von Mises theorem*.
- **Convert simulated coefficients**: Apply an appropriate transformation to the simulated coefficients to compute the *simulated quantity of interest*. This quantity typically depends on the values of all explanatory variables, and researchers may:
- Focus on a specific observation (usually an 'average'), or
- Average across all sample observations.

In both cases, the applied transformation incorporates the researcher's specific choice.

```
library("MASS")
coef(m)
(Intercept)
                    x_1
 -0.2907775
            1.1597730 -0.1713224
vcov(m)
            (Intercept)
                                 x_1
                                              x_2
(Intercept) 0.05560471 -0.048970067 -0.047028038
x_1
            -0.04897007 0.105509175 -0.004560743
x_2
            -0.04702804 -0.004560743 0.098439583
set.seed(0)
B <- mvrnorm(n = 100, mu = coef(m), Sigma = vcov(m))
head(B)
     (Intercept)
                                  x_2
                       x_1
[1,] -0.08125910 0.6544775 -0.2581602
[2,] -0.40299145 1.3779659 -0.3263178
[3,] 0.09915843 1.0089580 -0.5398310
[4,] 0.03289839 0.8600445 -0.3880109
[5,] -0.12814786 1.3256621 -0.5036957
[6,] -0.55953065 1.4562644 0.3176658
```

```
nd \leftarrow expand.grid('x_1' = nd$x_1,
                   'x_2' = nd$x_2,
                   's' = 1:nrow(B)
head(nd)
  x_1 x_2 s
1 0.0 0.5 1
2 0.1 0.5 1
3 0.2 0.5 1
4 0.3 0.5 1
5 0.4 0.5 1
6 0.5 0.5 1
nd$p \leftarrow plogis(B[nd$s, 1] + B[nd$s, 2] * nd$x_1 +
                 B[nd\$s, 3] * nd\$x_2)
dd <- ddply(nd, c('x_1'), summarise,</pre>
            p_{mean} = mean(p),
            p_lwr_95 = quantile(p, prob = .025),
            p_upr_95 = quantile(p, prob = .975),
            p_lwr_9 = quantile(p, prob = .05),
            p_upr_9 = quantile(p, prob = .95),
            p_lwr_75 = quantile(p, prob = .125),
            p_upr_75 = quantile(p, prob = .875))
set.seed(0)
ggplot(data = df, aes(x = x_1)) +
  geom_jitter(aes(y = y, color = x_2), width = 0, height = .1) +
  geom_ribbon(data = dd, aes(x = x_1, ymin = p_lwr_95,
                              ymax = p_upr_95), alpha = .4) +
  geom_ribbon(data = dd, aes(x = x_1, ymin = p_lwr_9,
                              ymax = p_upr_9), alpha = .4) +
  geom_ribbon(data = dd, aes(x = x_1, ymin = p_lwr_75,
                              ymax = p_upr_75), alpha = .4) +
  geom_line(data = dd, aes(y = p_mean))
```


Figure 16: Scatterplot of covariate x_1 with the true conditional expectation mu - each individual observation is coloured according to the second covariate x_2 . The line gives the point estimation for the conditional expectation with the second covariate x_2 fixed to 0.5.

4 Poisson Regression Model

```
rm(list = ls())
library("ggplot2")
```

4.1 Data Simulation

Data are simulated similarly as for the linear model:

4.1.1 Visualisations

Figure 17: Scatterplot of covariate x_1 with response y - each individual observation is coloured according to the second covariate x_2.

4.2 Modeling

The basic R command for (frequentist) estimation of the parameters of a binary regression model is a call to the function glm with family argument poisson(link = 'log'):

```
m \leftarrow glm(y \sim x_1 + x_2, data = df, family = poisson(link = 'log')) summary(m)
```

```
Call:
glm(formula = y \sim x_1 + x_2, family = poisson(link = "log"),
   data = df
Coefficients:
            Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.09637 0.11000 -0.876
                                           0.381
                        0.14351 7.354 1.93e-13 ***
x_1
            1.05534
x_2
            -0.54067
                        0.13875 -3.897 9.74e-05 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for poisson family taken to be 1)
   Null deviance: 619.76 on 499 degrees of freedom
Residual deviance: 551.67 on 497 degrees of freedom
AIC: 1395.1
Number of Fisher Scoring iterations: 5
4.2.1 Estimated Expected Value
Let's again apply the Bernstein-von Mises theorem
library("MASS")
coef(m)
(Intercept)
                    x_1
-0.09636825 1.05534471 -0.54067416
vcov(m)
             (Intercept)
                                   x_1
(Intercept) 0.012100215 -0.0115419704 -0.0083283575
            -0.011541970 0.0205956476 -0.0008112633
x_1
           -0.008328358 -0.0008112633 0.0192505213
x_2
set.seed(0)
B <- mvrnorm(n = 100, mu = coef(m), Sigma = vcov(m))
head(B)
```

```
(Intercept)
                        x_1
[1,] 0.05743986 0.8596548 -0.5240625
[2,] -0.10120645 1.1692825 -0.5989887
[3,] 0.01910641 0.9263818 -0.7232511
[4,] 0.02386701 0.8912981 -0.6321912
[5,] -0.06117581 1.0833727 -0.7137618
[6,] -0.30539283 1.1687677 -0.3825595
nd \leftarrow expand.grid('x_1' = seq(0, 1, by = .1),
                   'x_2' = .5,
                   's' = 1:nrow(B)
head(nd)
  x_1 x_2 s
1 0.0 0.5 1
2 0.1 0.5 1
3 0.2 0.5 1
4 0.3 0.5 1
5 0.4 0.5 1
6 0.5 0.5 1
nd$mu \leftarrow exp(B[nd$s, 1] +
                B[nd\$s, 2] * nd\$x_1 +
                B[nd\$s, 3] * nd\$x_2)
dd <- ddply(nd, c('x_1'), summarise,</pre>
            mu_mean = mean(mu),
            mu_lwr_95 = quantile(mu, prob = .025),
            mu_upr_95 = quantile(mu, prob = .975),
            mu_lwr_9 = quantile(mu, prob = .05),
            mu_upr_9 = quantile(mu, prob = .95),
            mu_lwr_75 = quantile(mu, prob = .125),
            mu_upr_75 = quantile(mu, prob = .875))
df_p_B \leftarrow data.frame('x_1' = seq(0, 1, by = .01),
                      'mu' = \exp(\operatorname{coef}(m)[1] +
                                    coef(m)[2] * seq(0, 1, by = .01) +
                                    coef(m)[3] * .5))
set.seed(0)
ggplot(data = df, aes(x = x_1)) +
  geom_jitter(aes(y = y, color = x_2), width = 0, height = .1) +
  geom_ribbon(data = dd, aes(x = x_1, ymin = mu_lwr_95,
                              ymax = mu_upr_95), alpha = .4) +
  geom_ribbon(data = dd, aes(x = x_1, ymin = mu_lwr_9,
                              ymax = mu_upr_9), alpha = .4) +
```


Figure 18: Scatterplot of covariate x_1 with the response observations y - each individual observation is coloured according to the second covariate x_2. The line gives the point estimation for the conditional expectation with the second covariate x_2 fixed to 0.5, the coloured intervals give point-wise central 75%, 90%, and 95% credible intervals for the conditional expectation.

5 Mixed models

```
... a.k.a. hierarchical model, multilevel model, ...
rm(list = ls())
library("lme4")
library("ggplot2")
library("plyr")
```

5.1 Data Simulation Function f_sim_data

```
f_sim_data <- function(seed, type) {</pre>
  set.seed(seed) # Set seed for reproducibility
 parameters <- list(## Global intercept:</pre>
    "beta_0" = rnorm(n = 1, mean = 2, sd = .1),
    ## Global slope of 'x':
    "beta_x" = rnorm(n = 1, mean = 1.5, sd = .1),
    ## Standard deviation of residuals:
    "sigma" = abs(rnorm(n = 1, mean = 1,
                         sd = .1)))
  if (type == "Random_Intercept") {
    ## Standard deviation of random intercept parameters:
    parameterss'sigma_u' \leftarrow abs(rnorm(n = 1, mean = 1, sd = .1))
    ## Number of groups:
    parameters$'G' <- 30
    ## Number of observations per group:
    parameters$'n_per_g' <- 30</pre>
    g <- rep(1:parameters$'G', each = parameters$'n_per_g')</pre>
    x <- runif(n = parameters$'G' * parameters$'n_per_g',</pre>
                min = -1, max = 1)
    df \leftarrow data.frame('x' = x,
                      'g' = g)
    df$u <- rnorm(n = parameters$'G', mean = 0,</pre>
                   sd = parameters$'sigma_u')[df$g]
    df$mu <- parameters$'beta_0' +</pre>
      parameters$'beta_x' * df$x + df$u
    attributes(df)$'type' <- type
    attributes(df)$'parameters' <- parameters
  if (type == "Nested") {
    ## Standard deviation of random intercept parameters:
```

```
parameters$'sigma_u_a' <- abs(rnorm(n = 1, mean = 1, sd = .1))</pre>
  parameters$'sigma_u_b' <- abs(rnorm(n = 1, mean = 1, sd = .1))</pre>
  ## Number of groups in 1st level:
  parameters$'G_a' <- 30
  ## Number of observations per group:
  parameters$'n_per_g_a' <- 30</pre>
  ## Number of groups in 2nd level:
  parameters$'G_b' <- 10
  ## Number of observations per group:
  parameters$'n_per_g_b' <- 6</pre>
  gr <- as.data.frame(expand.grid('g_a' = 1:parameters$'G_a',</pre>
                                     'g_b' = 1:parameters$'G_b'))
  df <- gr[rep(1:nrow(gr), each = parameters$'n_per_g_b'), ]</pre>
  df <- df[order(df$g_a, df$g_b), ]</pre>
  rownames(df) <- NULL
  df$g_ab <- paste0(df$g_a, "_", df$g_b)</pre>
  df$x <- runif(n = parameters$'G_a' * parameters$'n_per_g_a',</pre>
                 min = -1, max = 1
  u_a <- rnorm(n = parameters$'G_a', mean = 0,
                sd = parameters$'sigma_u_a')
  df$u_a \leftarrow u_a[df$g_a]
  u_b <- rnorm(n = length(unique(df$g_ab)), mean = 0,</pre>
                sd = parameters$'sigma_u_b')
  names(u_b) <- unique(df$g_ab)</pre>
  df$u_b <- as.numeric(u_b[df$g_ab])</pre>
  df$mu <- parameters$'beta_0' + parameters$'beta_x' * df$x +</pre>
    df$u_a + df$u_b
  attributes(df)$'type' <- type
  attributes(df)$'parameters' <- parameters</pre>
epsilon <- rnorm(n = nrow(df), mean = 0, sd = parameters$'sigma')
df$y <- df$mu + epsilon
return(df)
```

5.2 Random Intercept Model

x g u

}

```
df <- f_sim_data(seed = 0, type = "Random_Intercept")
head(df)</pre>
```

mu

У

```
1 \quad 0.3215956 \ 1 \ -1.095936 \quad 1.50226149 \quad 2.9095988
```

2 0.2582281 1 -1.095936 1.40927751 2.1118975

3 -0.8764275 1 -1.095936 -0.25568956 -0.1425014

4 -0.5880509 1 -1.095936 0.16746754 2.2155593

5 -0.6468865 1 -1.095936 0.08113349 -1.6210895

6 0.3740457 1 -1.095936 1.57922556 1.9028505

unlist(attributes(df)\$parameters)

beta_0 beta_x sigma sigma_u G n_per_g 2.126295 1.467377 1.132980 1.127243 30.000000 30.000000

 $m \leftarrow lmer(y \sim x + (1 \mid g), data = df)$ summary(m)

Linear mixed model fit by REML ['lmerMod']

Formula: $y \sim x + (1 \mid g)$

Data: df

REML criterion at convergence: 2889.6

Scaled residuals:

Min 1Q Median 3Q Max -3.10483 -0.67888 -0.01549 0.67941 2.97945

Random effects:

Groups Name Variance Std.Dev.
g (Intercept) 1.421 1.192
Residual 1.287 1.134
Number of obs: 900, groups: g, 30

Fixed effects:

Estimate Std. Error t value (Intercept) 2.00545 0.22090 9.078 x 1.51171 0.06674 22.652

Correlation of Fixed Effects:

(Intr)

x 0.000

5.2.1 ... small simulation study

```
R <- 50
ci_df <- NULL</pre>
for (r in 1:R) {
  ## Simulate data:
  df <- f_sim_data(seed = r, type = "Random_Intercept")</pre>
  ## Estimate models:
  lm_model \leftarrow lm(y \sim x, data = df)
  lmer_model \leftarrow lmer(y \sim x + (1 | g), data = df)
  ## Extract confidence intervals:
  lm_ci <- confint(lm_model, level = 0.95)</pre>
  lmer_ci <- suppressMessages(confint(lmer_model, level = 0.95))</pre>
  ## Store results:
  par_name <- "sigma"</pre>
  tmp <- data.frame(r = r,</pre>
                      par_name = par_name,
                      Value = rep(attributes(df)$parameters$sigma,
                                   times = 2),
                      Model = c("lm", "lmer"),
                      Estimate = c(summary(lm_model)$sigma,
                                    summary(lmer_model)$sigma),
                      CI_{Low} = rep(NA, 2),
                      CI_{High} = c(NA, 2)
  ci_df <- rbind(ci_df, tmp)</pre>
  par_name <- "x"
  tmp \leftarrow data.frame(r = r,
                      par_name = par_name,
                      Value = rep(attributes(df)$parameters$beta_x,
                                   times = 2),
                      Model = c("lm", "lmer"),
                      Estimate = c(coef(lm_model)[par_name],
                                    fixef(lmer_model)[par_name]),
                      CI_Low = c(lm_ci[par_name, 1],
                                  lmer_ci[par_name, 1]),
                      CI_High = c(lm_ci[par_name, 2],
                                   lmer_ci[par_name, 2]))
  ci_df <- rbind(ci_df, tmp)</pre>
  par_name <- "(Intercept)"</pre>
  tmp <- data.frame(r = r,</pre>
                      par_name = par_name,
                      Value = rep(attributes(df)$parameters$beta_0,
                                   times = 2),
```

```
Model = c("lm", "lmer"),
                    Estimate = c(coef(lm_model)[par_name],
                                  fixef(lmer_model)[par_name]),
                    CI_Low = c(lm_ci[par_name, 1],
                                lmer_ci[par_name, 1]),
                    CI_High = c(lm_ci[par_name, 2],
                                 lmer_ci[par_name, 2]))
  ci_df <- rbind(ci_df, tmp)</pre>
  cat(".")
}
ci_df$par_name <- factor(ci_df$par_name,</pre>
                          levels = c("(Intercept)", "x", "sigma"))
ggplot(ci_df, aes(x = r)) +
  geom_pointrange(aes(y = Estimate, ymin = CI_Low,
                      ymax = CI_High)) +
  geom_point(aes(y = Value), color = 2) +
  labs(y = "Parameter estimate & interval",
       x = "Simulation run") +
  facet_grid(cols = vars(Model), rows = vars(par_name),
             scales = "free") +
  theme(legend.position = "none")
```


Figure 19: Simulation study results: Red dots show true underlying values.

5.3 Random Intercept with Random Slope Model

```
f_add_random_slope <- function(df, x_lab, g_lab) {</pre>
  ## assign(paste0("sigma_u_", x_label, "_", g_label), 1)
  sigma u slope \leftarrow abs(rnorm(n = 1, mean = 1, sd = .1))
  u_slope <- rnorm(length(unique(df[, g_lab])), mean = 0,</pre>
                    sd = sigma_u_slope)
  df$u_slope <- u_slope[df[, g_lab]]</pre>
  df$y \leftarrow df$y + df[, x_lab] * df$u_slope
  attributes(df)$parameters[[paste0("sigma_u_", x_lab, "_", g_lab)]] <-
    sigma_u_slope
 return(df)
}
df <- f_sim_data(seed = 0, type = "Random_Intercept")</pre>
df <- f_add_random_slope(df = df, x_lab = "x", g_lab = "g")</pre>
head(df)
                                                y u_slope
           x g
1 0.3215956 1 -1.095936 1.50226149 2.4603313 -1.396995
2 0.2582281 1 -1.095936 1.40927751 1.7511541 -1.396995
3 -0.8764275 1 -1.095936 -0.25568956 1.0818636 -1.396995
4 -0.5880509 1 -1.095936  0.16746754  3.0370635 -1.396995
5 -0.6468865 1 -1.095936 0.08113349 -0.7173922 -1.396995
6 0.3740457 1 -1.095936 1.57922556 1.3803104 -1.396995
gr \leftarrow expand.grid('x' = c(-1, 1),
                   'g' = 1:attributes(df)$parameters$G)
dd <- ddply(df, c("g"), summarise,</pre>
            'intercept' = u[1],
            'slope' = u slope[1])
gr$y <- attributes(df)$parameters$beta_0 + dd$intercept[gr$g] +</pre>
  gr$x * (attributes(df)$parameters$beta_x + dd$slope[gr$g])
ggplot(data = df, aes(x = x, y = y)) +
  geom line(data = data.frame(x = c(-1, 1),
                               y = attributes(df)$parameters$beta_0 +
                                 c(-1, 1) *
                                 attributes(df)$parameters$beta_x)) +
  geom_point(alpha = .5) +
  geom_line(data = gr, aes(group = g), linetype = 2) +
  facet_wrap(~ g)
unlist(attributes(df)$parameters)
```

beta_0 beta_x sigma sigma_u G n_per_g 2.126295 1.467377 1.132980 1.127243 30.000000 30.0000000 sigma_u_x_g

1.066731

 $m \leftarrow lmer(y \sim x + (1 + x|g), data = df)$ summary(m)

Linear mixed model fit by REML ['lmerMod']

Formula: $y \sim x + (1 + x \mid g)$

Data: df

REML criterion at convergence: 2969.4

Scaled residuals:

Min 1Q Median 3Q Max -2.73036 -0.66985 -0.01614 0.65063 2.87938

Random effects:

Groups Name Variance Std.Dev. Corr

g (Intercept) 1.410 1.187

x 1.488 1.220 0.03

Residual 1.299 1.140 Number of obs: 900, groups: g, 30

Fixed effects:

Estimate Std. Error t value

(Intercept) 2.0000 0.2202 9.084 x 1.3435 0.2328 5.772

Correlation of Fixed Effects:

(Intr)

x 0.024

Figure 20: Scatterplot for simulated data with random intercept und randon slope: Dashed lines shows the underlying group specific conditional expectation.

5.4 Nested Model

```
df <- f_sim_data(seed = 0, type = "Nested")
head(df)</pre>
```

```
g_a g_b g_ab
                                          u_b
                                u_a
                        X
        1 1_1 -0.8764275 -1.936757 0.6458663 -0.45064437 -0.8523900
        1 1_1 -0.5880509 -1.936757 0.6458663 -0.02748727 0.1857836
2
        1 1_1 -0.6468865 -1.936757 0.6458663 -0.11382132 0.9328256
3
       1 1_1 0.3740457 -1.936757 0.6458663 1.38427075 3.8232376
4
5
        1 1_1 -0.2317926 -1.936757 0.6458663 0.49527783 -0.7620346
        1 1_1 0.5396828 -1.936757 0.6458663 1.62732283 2.7937350
## ... two alternatives:
m1 \leftarrow lmer(y \sim x + (1|g_a/g_b), data = df)
m2 \leftarrow lmer(y \sim x + (1|g_a) + (1|g_ab), data = df)
unlist(attributes(df)$parameters)
```

beta_0 beta_x sigma_u_a sigma_u_b G_a n_per_g_a G_b

```
n_per_g_b
6.000000
summary(m1)
Linear mixed model fit by REML ['lmerMod']
Formula: y \sim x + (1 \mid g_a/g_b)
  Data: df
REML criterion at convergence: 6235.4
Scaled residuals:
    Min 1Q
                Median
                            3Q
                                    Max
-3.06066 -0.65621 0.02234 0.63566 2.79567
Random effects:
Groups Name
                  Variance Std.Dev.
g_b:g_a (Intercept) 0.8489  0.9214
       (Intercept) 1.4214 1.1922
g_a
Residual
                   1.3809 1.1751
Number of obs: 1800, groups: g_b:g_a, 300; g_a, 30
Fixed effects:
          Estimate Std. Error t value
(Intercept) 2.10415 0.22578 9.319
           1.41589
                  0.05253 26.954
Correlation of Fixed Effects:
 (Intr)
x 0.001
summary(m2)
Linear mixed model fit by REML ['lmerMod']
Formula: y \sim x + (1 | g_a) + (1 | g_ab)
  Data: df
REML criterion at convergence: 6235.4
```

Max

Scaled residuals:

Min 1Q Median 3Q

```
-3.06066 -0.65621 0.02234 0.63566 2.79567
Random effects:
Groups Name
                    Variance Std.Dev.
g_ab
          (Intercept) 0.8489 0.9214
          (Intercept) 1.4214 1.1922
g_a
                      1.3809 1.1751
Residual
Number of obs: 1800, groups: g_ab, 300; g_a, 30
Fixed effects:
           Estimate Std. Error t value
(Intercept) 2.10415
                      0.22578
                                9.319
             1.41589
                        0.05253 26.954
X
Correlation of Fixed Effects:
  (Intr)
x 0.001
cowplot::plot_grid(
  ggplot(data = data.frame(x = ranef(m1)$'g_a'[, 1],
                          y = ranef(m2) (g_a'[, 1]) +
    geom_point(aes(x = x, y = y)) +
    geom_abline(intercept = 0, slope = 1) +
    labs(x = "ranef(m1)\frac{g_a'}{1}, y = "ranef(m2)\frac{g_a'}{1}, 1]"),
  ggplot(data = data.frame(x = sort(ranef(m1)$'g_b:g_a'[, 1]),
                           y = sort(ranef(m2)$'g_ab'[, 1]))) +
    geom_point(aes(x = x, y = y)) +
    geom_abline(intercept = 0, slope = 1) +
    labs(x = "sort(ranef(m1)\$'g_b:g_a'[, 1])",
```

y = "sort(ranef(m2)\$'g_ab'[, 1])"))

Figure 21: Visual check of equality of coefficient values.

5.4.1 ... add covariate 'z' as constant within 2nd level

```
f_add_covariate_constant_within_b <- function(df) {</pre>
  attributes(df)$'parameters'$'beta_z' <- rnorm(n = 1, mean = 1.5,
                                                    sd = .1)
  if (attributes(df)$type != "Nested") {
    stop("Use type 'Nested' to generate 'df'.")
  z <- runif(n = length(unique(df$g_ab)), min = -1, max = 1)</pre>
  names(z) \leftarrow unique(df\$g_ab)
  df$z <- as.numeric(z[df$g_ab])</pre>
  df$y <- df$y + df$z * attributes(df)$'parameters'$'beta_z'</pre>
  return(df)
}
df <- f_sim_data(seed = 0, type = "Nested")</pre>
df <- f_add_covariate_constant_within_b(df = df)</pre>
ggplot(data = df, aes(x = x, y = y, colour = z)) +
  geom_point() +
  facet_wrap(~ g_a) +
  theme(legend.position = 'top')
```

 $m \leftarrow lmer(y \sim x + z + (1 \mid g_a / g_b), data = df)$ summary(m)

Linear mixed model fit by REML ['lmerMod']

Formula: $y \sim x + z + (1 \mid g_a/g_b)$

Data: df

REML criterion at convergence: 6236.8

Scaled residuals:

Min 1Q Median 3Q Max -3.05900 -0.66108 0.02254 0.63115 2.78727

Random effects:

Groups Name Variance Std.Dev. g_b:g_a (Intercept) 0.848 0.9209 g_a (Intercept) 1.429 1.1955 Residual 1.381 1.1751

Number of obs: 1800, groups: g_b:g_a, 300; g_a, 30

Fixed effects:

Estimate Std. Error t value (Intercept) 2.09644 0.22647 9.257 x 1.41538 0.05253 26.943 z 1.72034 0.11487 14.976

Correlation of Fixed Effects:

(Intr) x

x 0.001

z -0.033 -0.009

Figure 22: Scatterplot of two-level grouped data with constant covariate for 2nd level.

6 Flexible Models

```
... a.k.a. GAMs...

rm(list = ls())
library("mgcv")

library("ggplot2")
library("plyr")
library("colorspace")
```

6.1 A 'simple' GAM

... to see what's going on 'under the hood' ...

We begin with simulating data by using an underlying effect function for the single covariate x which is rather non-linear:

```
n <- 100
set.seed(123)
df <- data.frame(x = runif(n, min = 0, max = pi))
df$y <- sin(df$x^2 - pi) + rnorm(n, sd = .25)
nd <- data.frame(x = seq(0, pi, length.out = 50))
nd$mu <- sin(nd$x^2 - pi)
ggplot(data = df, aes(x = x)) +
   geom_point(aes(y = y)) +
   geom_line(data = nd, aes(y = mu), linetype = "dashed")</pre>
```


A suitable model can be implemented using the function mgcv: gam, with in especially usage of the function mgcv: s():

$$m \leftarrow gam(y \sim s(x), data = df)$$

plot(m)


```
nd$pre <- predict(m, newdata = nd)
ggplot(data = df, aes(x = x)) +
  geom_point(aes(y = y)) +
  geom_line(data = nd, aes(y = mu), linetype = "dashed") +
  geom_line(data = nd, aes(y = pre))</pre>
```


What does s() do?

```
X <- predict(m, newdata = nd, type = "lpmatrix")
head(X)</pre>
```

```
(Intercept)
                 s(x).1
                            s(x).2
                                     s(x).3
                                                 s(x).4
                                                           s(x).5
1
            1 -1.110390 -0.7863538 1.327113 -1.0156741 -1.389606 -0.5755292
2
            1 -1.112745 -0.7620022 1.330739 -0.9857403 -1.394499 -0.5443745
            1 -1.114827 -0.7374878 1.332975 -0.9534962 -1.395550 -0.5091587
3
4
            1 \ -1.116216 \ -0.7124827 \ 1.331685 \ -0.9156141 \ -1.387345 \ -0.4648478
5
            1 -1.116234 -0.6862777 1.323491 -0.8674136 -1.362650 -0.4065304
            1 -1.114115 -0.6580194 1.304598 -0.8038132 -1.313750 -0.3295964
                          s(x).9
     s(x).7
                s(x).8
1 -1.841987 -0.6428615 -1.758172
2 -1.836490 -0.5718634 -1.686202
3 -1.820364 -0.5005500 -1.614233
4 -1.780468 -0.4285334 -1.542263
5 -1.704336 -0.3554311 -1.470294
6 -1.580454 -0.2808812 -1.398324
```

Xd <- reshape2::melt(X)
head(Xd)</pre>

Var1 Var2 value

```
1
     1 (Intercept)
                        1
2
     2 (Intercept)
                        1
3
     3 (Intercept)
                        1
4
     4 (Intercept)
                        1
5
     5 (Intercept)
                        1
     6 (Intercept)
                        1
Xd$x <- nd$x[Xd$Var1]
ggplot(data = Xd, aes(x = x, y = value, group = Var2, color = Var2)) +
  geom_line() +
  scale_color_discrete_qualitative(pal = "Dark2") +
  labs(color = "Basis function:")
                                                          Basis function:
                                                              (Intercept)
                                                              s(x).1
                                                              s(x).2
                                                              s(x).3
                                                              s(x).4
                                                              s(x).5
                                                              s(x).6
                                                              s(x).7
                                                              s(x).8
                                                              s(x).9
  -2 -
                                                  3
                                   2
                             Х
(b <- coef(m))
(Intercept)
                  s(x).1
                               s(x).2
                                            s(x).3
                                                         s(x).4
                                                                      s(x).5
 -0.2883327
              0.1328587
                           3.3990351
                                        2.6033203
                                                     3.3949996 -1.9450739
     s(x).6
                  s(x).7
                               s(x).8
                                            s(x).9
  2.6219341
             -0.1327275
                          -6.4627018
                                        1.3564139
nd$eta_hat <- as.numeric(b %*% t(X))</pre>
ggplot(data = df, aes(x = x)) +
  geom_line(data = nd, aes(y = pre)) +
  geom_line(data = nd, aes(y = eta_hat), color = 2, linetype = "dotted", size = 5)
```


How does mgcv quantify uncertainty and how can we interpret this uncertainty?

```
B <- rmvn(50, coef(m), vcov(m))
head(B)</pre>
```

```
(Intercept)
                    s(x).1
                            s(x).2
                                    s(x).3
                                            s(x).4
                                                     s(x).5
[1,]
     -0.2798226 0.45813882 2.791453 2.539675 2.988796 -1.225334 1.925825
[2,]
[3,] -0.2989047
                0.02970708 3.627493 2.644463 3.434373 -1.716172 2.719180
[4,] -0.2998487 -0.16155372 4.105077 2.831955 3.863112 -2.421325 3.100904
[5,] -0.3156754
               0.32549077 3.244017 2.692452 3.153326 -1.978761 2.526919
[6,]
                0.11326272 1.954769 2.364647 2.358708 -1.651279 1.594067
     -0.2895788
                  8.(x) a
         s(x).7
                           s(x).9
[1,] -0.10699650 -5.629549 1.6480470
[2,] -0.15590646 -5.349300 0.8544413
[3,] -0.32639388 -6.690499 1.3949870
[4,] -0.30574994 -7.587330 1.9507888
[5,] 0.07690747 -6.235893 1.2065182
[6,] -0.05222090 -4.137128 1.8122858
```

E <- t(X %*% t(B))
Ed <- reshape2::melt(E)
head(Ed)</pre>

```
Var1 Var2 value
1 1 1 -0.05497982
2 2 1 0.16933401
3 3 1 0.10640081
4 4 1 0.07715345
5 5 1 0.18366364
6 6 1 -0.26333221
```

```
Ed$x <- nd$x[Ed$Var2]
ggplot(data = Ed, aes(x = x, y = value, group = Var1)) +
  geom_line(alpha = .3)</pre>
```



```
B <- rmvn(1000, coef(m), vcov(m))
E <- t(X %*% t(B))
Ed <- reshape2::melt(E)
Ed$x <- nd$x[Ed$Var2]
mean(fitted(m))</pre>
```

[1] -0.2883327

```
upr = quantile(value, prob = .975))
plot(m)
lines(dd$x, dd$lwr - mean(fitted(m)), col = 2)
lines(dd$x, dd$upr - mean(fitted(m)), col = 2)
```


6.2 GAM with bivariate effect surface

Let's see how a 'spatial' effect is estimated?

```
3 -
                                                                                    level
                                                                                          (-1.0, -0.8]
                                                                                           (-0.8, -0.6]
                                                                                          (-0.6, -0.4]
   2 -
                                                                                          (-0.4, -0.2]
Ϋ́
                                                                                          (-0.2, 0.0]
                                                                                           (0.0, 0.2]
                                                                                           (0.2, 0.4]
                                                                                           (0.4, 0.6]
                                                                                           (0.6, 0.8]
                                                                                           (0.8, 1.0]
                                                                         3
                                         x1
```

```
m_s \leftarrow gam(y \sim s(x1, x2), data = df)
m_t2 \leftarrow gam(y \sim t2(x1, x2), data = df)
# plot(m, scheme = 3)
# plot(m, scheme = 3)
nd_all \leftarrow data.frame(x1 = rep(nd$x1, 3),
                      x2 = rep(nd$x2, 3),
                      value = c(nd$mu,
                                 predict(m_s, newdata = nd),
                                 predict(m_t2, newdata = nd)),
                      type = factor(rep(c("mu", "gam(y ~ s(x1, x2), ...)",
                                    "gam(y \sim t2(x1, x2), ...)"), each = nrow(nd)),
                                    levels = c("mu", "gam(y ~ s(x1, x2), ...)",
                                    "gam(y \sim t2(x1, x2), ...)")))
ggplot(data = nd_all, aes(x = x1, y = x2)) +
  geom_contour_filled(aes(z = value)) +
  facet_wrap(~ type) +
  theme(legend.position = "top") +
  labs(fill = "Value:") +
  scale_fill_discrete_divergingx(pal = "Zissou")
```


X <- predict(m_s, newdata = nd, type = "lpmatrix")
head(X)</pre>

```
(Intercept) s(x1,x2).1 s(x1,x2).2 s(x1,x2).3 s(x1,x2).4 s(x1,x2).5
                1.976689 0.03371151 0.3304568 -0.00259226
                                                              0.17111069
1
            1
2
                1.953387 0.12968114
                                      0.3370067
                                                  0.03879382
                                                              0.10776499
            1
3
            1
                1.924786 0.22810439
                                      0.3459613
                                                  0.08379769
                                                              0.03947457
4
            1
                1.890669 0.32877303
                                      0.3576584
                                                  0.13285743 -0.03302845
5
                1.850898 0.43139923
                                      0.3722188
                                                 0.18626423 -0.10880938
            1
                1.805536 0.53566289 0.3894894 0.24424418 -0.18664853
  s(x1,x2).6 s(x1,x2).7 s(x1,x2).8 s(x1,x2).9 s(x1,x2).10 s(x1,x2).11
1 - 0.5733509 \quad 0.8731026 \quad -2.546673 \quad 0.08897994 \quad -0.4737068 \quad 0.09007722
2 - 0.5875089 \quad 0.9045996 \quad -2.406345 \quad 0.20978069 \quad -0.4791941 \quad 0.15745018
3 -0.6019473 0.9322257 -2.247393 0.34624806 -0.4797606
                                                             0.24512764
                         -2.071011 0.49751798
4 -0.6168661
              0.9548019
                                                 -0.4743269
                                                             0.35294021
5 -0.6322095
              0.9713239
                         -1.879590 0.66173468
                                                 -0.4617458
                                                             0.47919667
6 -0.6478180 0.9808658 -1.677758 0.83608598 -0.4410087
                                                             0.61933769
   s(x1,x2).12 \ s(x1,x2).13 \ s(x1,x2).14 \ s(x1,x2).15 \ s(x1,x2).16 \ s(x1,x2).17
1 -0.133159173
                 0.3158998 0.57525679
                                         -0.1031087
                                                       0.5078509
                                                                     2.222795
2 -0.064956212
                 0.3701460
                             0.48745809
                                         -0.2523885
                                                       0.4790495
                                                                     2.247128
3 -0.009115991
                 0.4244009
                             0.38551631
                                          -0.4190865
                                                       0.4564703
                                                                     2.258474
4 0.033048128
                 0.4778276
                             0.26922983
                                          -0.5988628
                                                       0.4397291
                                                                     2.253921
5 0.060832282
                 0.5293748 0.13932143
                                         -0.7855388
                                                       0.4280232
                                                                     2.231165
6 0.075409006
                 0.5777002 -0.00269943
                                         -0.9703603
                                                       0.4190936
                                                                     2.189777
  s(x1,x2).18 s(x1,x2).19 s(x1,x2).20 s(x1,x2).21 s(x1,x2).22 s(x1,x2).23
```

```
1 -0.18884460 -0.6125473 1.09973055
                                       1.8396779 -0.0333665 -0.9116247
2 -0.16806566 -0.6704053 0.91084502
                                       1.6182853 -0.2572698 -0.9223023
3 -0.14436797 -0.7255835 0.69258252
                                       1.3446765 -0.5065067 -0.9603384
4 -0.11731578 -0.7754304 0.44852400
                                       1.0302451 -0.7734789 -1.0253060
5 -0.08652054 -0.8171072 0.18547182
                                       0.6908278 -1.0478943 -1.1150764
6 -0.05265184 -0.8476338 -0.08790494
                                       0.3518045 -1.3176351 -1.2227076
  s(x1,x2).24 \ s(x1,x2).25 \ s(x1,x2).26 \ s(x1,x2).27 \ s(x1,x2).28 \ s(x1,x2).29
1 -0.22749543 -0.3291015 0.24309550
                                       -1.116626 -1.743114
                                                                -1.7187
2 -0.18306547 -0.3293340 0.13345644
                                       -1.112899
                                                  -1.671289
                                                                -1.7187
3 -0.13372568 -0.3219909 -0.01411312
                                       -1.110753
                                                 -1.599464
                                                                -1.7187
4 -0.07912184 -0.3039526 -0.19647388
                                       -1.108954 -1.527639
                                                                -1.7187
5 -0.01949693 -0.2731051 -0.40588347
                                       -1.106313
                                                   -1.455814
                                                                -1.7187
6 0.04461223 -0.2291873 -0.63085090
                                       -1.101163
                                                  -1.383989
                                                                -1.7187
Xd <- reshape2::melt(X)</pre>
head(Xd)
             Var2 value
  Var1
    1 (Intercept)
2
    2 (Intercept)
    3 (Intercept)
3
                      1
4
    4 (Intercept)
                      1
5
    5 (Intercept)
                      1
     6 (Intercept)
Xd$x1 <- nd$x1[Xd$Var1]
Xd$x2 <- nd$x2[Xd$Var1]</pre>
ggplot(data = Xd, aes(x = x1, y = x2)) +
  geom_contour_filled(aes(z = value)) +
  facet_wrap(~ Var2) +
  theme(legend.position = "top") +
  labs(fill = "Value:") +
  scale_fill_discrete_divergingx(pal = "Zissou")
```



```
X <- predict(m_t2, newdata = nd, type = "lpmatrix")
Xd <- reshape2::melt(X)
Xd$x1 <- nd$x1[Xd$Var1]
Xd$x2 <- nd$x2[Xd$Var1]
ggplot(data = Xd, aes(x = x1, y = x2)) +
    geom_contour_filled(aes(z = value)) +
    facet_wrap(~ Var2) +
    theme(legend.position = "top") +
    labs(fill = "Value:") +
    scale_fill_discrete_divergingx(pal = "Zissou")</pre>
```


6.3 Meet the ocat family ...

In order to specify an orderled logistic regression in mgcv, we need to specify the family attribute as ocat:

```
rm(list = ls())
get_prob <- function(lp, theta) {</pre>
  R <- length(theta)</pre>
  prob <- matrix(0, length(lp), R + 2)</pre>
  prob[, R + 2] <- 1</pre>
  for (i in 1:R) {
    x <- theta[i] - lp
    ind \leftarrow x > 0
    prob[ind, i + 1] \leftarrow 1/(1 + exp(-x[ind]))
    ex \leftarrow exp(x[!ind])
    prob[!ind, i + 1] \leftarrow ex/(1 + ex)
  prob <- t(diff(t(prob)))</pre>
  return(prob)
}
get_y <- function(alpha, eta) {</pre>
  R <- length(alpha) - 1
  n <- length(eta)
  y \leftarrow rep(NA, n)
  u \leftarrow eta + qlogis(runif(n)) ## df$mu + log(u/(1-u))
  for (i in 1:R) {
    y[(u > alpha[i]) & (u \le alpha[i + 1])] \le i
  return(y)
}
set.seed(123)
n <- 1000
x \leftarrow runif(n, min = -2, max = 2)
df \leftarrow data.frame(x = x,
                   eta = x)
alpha <- c(-Inf, -1, 1, 3, Inf)
df$y <- get_y(alpha, df$eta)</pre>
dfxc <- cut(dfx, breaks = seq(-2, 2, by = .25), include.lowest = T)
ggplot(data = df, aes(x = xc, y = y)) +
  geom_count(aes(color = after_stat(n)), size = 10) +
  scale_color_continuous_divergingx(pal = "Zissou", mid = 25)
```


(tmp <- addmargins(xtabs(~ y + xc, data = df), mar = 1))</pre>

	XC							
У	[-2,-1.75]	(-1.75, -1.5)] (-1.5,-1	1.25] (-1	1.25,-1]	(-1,-0).75] (-0	.75,-0.5]
1	50	4	0	35	24		28	23
2	11	1:	9	22	26		28	31
3	2		3	7	5		7	12
4	1		0	2	0		2	2
Su	m 64	6	2	66	55		65	68
	xc							
У	(-0.5,-0.2	5] (-0.25,0]	(0,0.25]	(0.25,0.	.5] (0.5,	0.75]	(0.75,1]	(1,1.25]
1	2	28 16	16		16	13	7	8
2	2	25 31	33		31	34	15	29
3		11 11	8		9	17	35	22
4		3 2	3		2	3	3	10
Su	m 6	67 60	60		58	67	60	69
	xc							
у	y (1.25,1.5] (1.5,1.75] (1.75,2]							
1	7	6	6					
2	20	12	14					
3	23	28	25					
4	8	13	17					
Su	m 58	59	62					

m <- gam(y ~ x, family = ocat(R = 4), data = df)
m\$family\$getTheta(TRUE)</pre>

[1] -1.000000 1.016038 2.978357

nd <- data.frame(x = seq(-2, 2, by = .25))
pre <- NULL
pre_here <- predict(m, newdata = nd, type = "response")
head(pre_here)</pre>

[,1] [,2] [,3] [,4] 1 0.7185518 0.2318687 0.04230184 0.007277626 2 0.6683642 0.2696485 0.05278585 0.009201425 3 0.6140344 0.3087177 0.06562008 0.011627813

```
4 0.5567073 0.3474112 0.08119694 0.014684548
5 0.4978290 0.3837381 0.09990317 0.018529778
6 0.4390108 0.4155539 0.12207729 0.023358032
pre_here <- as.data.frame(pre_here)</pre>
pre_here$x <- nd$x</pre>
pre_here <- data.frame(x = rep(pre_here$x),</pre>
                        y = rep(1:4, each = nrow(pre_here)),
                        pre = c(pre_here$V1, pre_here$V2,
                                 pre_here$V3, pre_here$V4))
pre <- rbind(pre, pre_here)</pre>
ggplot(data = dfp, aes(x = x, y = p)) +
  geom_point(aes(color = y)) +
  geom\_line(data = pre, aes(x = x, y = pre, group = y, color = factor(y))) +
  scale_color_discrete_diverging() +
  ylim(c(0, 1)) + xlim(c(-2, 2))
  1.00 -
  0.75 -
Q 0.50 -
  0.25 -
  0.00 -
                                  Ö
                                                            2
         2
```

```
X <- predict(m, newdata = nd, type = "lpmatrix")
## simulate directly from Gaussian approximate posterior...
B <- rmvn(1000, coef(m), vcov(m))
head(B)</pre>
```

Χ

(Intercept) x [1,] -0.105028632 0.8930572

```
[2,] -0.046419889 0.9389411
[3,] -0.198145365 1.0089490
[4,] -0.030374057 1.0747553
[5,] -0.004272592 0.9200827
[6,] 0.122328585 1.0898455
## Alternatively use MH sampling...
\# B \leftarrow gam.mh(m, thin=2, ns=2000, rw.scale=.15)
E \leftarrow t(X %*% t(B))
dim(E)
Γ1 1000
           17
theta <- m$family$getTheta(TRUE)</pre>
Ps <- apply(X = E, MARGIN = 1, FUN = get_prob,
            theta = m$family$getTheta(TRUE))
dim(Ps)
[1]
      68 1000
Pa <- array(dim = c(nrow(nd), 4, nrow(Ps)), data = Ps)
Pa[, , 1]
            [,1]
                       [,2]
                                  [,3]
                                               [,4]
 [1,] 0.70912598 0.2390743 0.04418099 0.007618715
 [2,] 0.66102799 0.2750429 0.05442265 0.009506425
 [3,] 0.60935799 0.3119790 0.06680675 0.011856272
 [4,] 0.55511268 0.3484444 0.08166458 0.014778299
 [5,] 0.49952145 0.3827506 0.09932088 0.018407057
 [6,] 0.44394205 0.4130906 0.12006121 0.022906127
 [7,] 0.38973107 0.4377095 0.14408647 0.028472967
 [8,] 0.33811470 0.4550866 0.17145492 0.035343769
 [9,] 0.29008498 0.4641016 0.20201561 0.043797817
[10,] 0.24633870 0.4641590 0.23534177 0.054160495
[11,] 0.20726350 0.4552551 0.27067766 0.066803717
[12,] 0.17296407 0.4379780 0.30691584 0.082142052
[13,] 0.14331460 0.4134422 0.34262085 0.100622384
[14,] 0.11802234 0.3831640 0.37610903 0.122704596
[15,] 0.09668989 0.3488968 0.40558240 0.148830948
[16,] 0.07886846 0.3124477 0.42930113 0.179382695
[17,] 0.06409872 0.2755080 0.44576865 0.214624646
```


... add a 'smooth' ...

$$m \leftarrow gam(y \sim s(x), family = ocat(R = 4), data = df)$$

plot(m)


```
m$family$getTheta(TRUE)
[1] -1.000000 1.015276 2.997751
nd \leftarrow data.frame(x = seq(-2, 2, by = .25))
pre <- NULL
pre_here <- predict(m, newdata = nd, type = "response")</pre>
head(pre_here)
       [,1]
                  [,2]
                              [,3]
                                          [,4]
1 0.7528150 0.2052566 0.03593709 0.005991324
2 0.6828033 0.2588899 0.04985119 0.008455591
3 0.6057981 0.3143940 0.06800380 0.011804091
4 0.5306624 0.3638872 0.08947424 0.015976125
5 0.4655438 0.4017491 0.11206784 0.020639208
6 0.4126987 0.4278687 0.13397439 0.025458164
pre_here <- as.data.frame(pre_here)</pre>
pre_here$x <- nd$x</pre>
pre_here <- data.frame(x = rep(pre_here$x),</pre>
                        y = rep(1:4, each = nrow(pre_here)),
                        pre = c(pre_here$V1, pre_here$V2,
                                 pre_here$V3, pre_here$V4))
pre <- rbind(pre, pre_here)</pre>
ggplot(data = dfp, aes(x = x, y = p)) +
  geom_point(aes(color = y)) +
  geom\_line(data = pre, aes(x = x, y = pre, group = y, color = factor(y))) +
  scale_color_discrete_diverging() +
  ylim(c(0, 1)) + xlim(c(-2, 2))
```



```
X <- predict(m, newdata = nd, type = "lpmatrix")
## simulate directly from Gaussian approximate posterior...
#B <- rmun(1000, coef(m), ucou(m))
#head(B)
## Alternatively use MH sampling...
B <- gam.mh(m, thin = 2,ns=2000,rw.scale=.15)$bs

E <- t(X %*% t(B))
theta <- m$family$getTheta(TRUE)
Ps <- apply(X = E, MARGIN = 1, FUN = get_prob, theta = m$family$getTheta(TRUE))
dim(Ps)</pre>
```

[1] 68 1000

Pa <- array(dim = c(nrow(nd), 4, nrow(Ps)), data = Ps)
Pa[, , 1]</pre>

[,1] [,2] [,3] [,4] [1,] 0.75047723 0.2070884 0.03636801 0.006066369

[2,] 0.65301954 0.2808443 0.05647650 0.009659665

[3,] 0.55385477 0.3491910 0.08238272 0.014571499

[4,] 0.47461187 0.3968153 0.10865680 0.019916072

```
[5,] 0.41787029 0.4255307 0.13166394 0.024935069
 [6,] 0.37742610 0.4423437 0.15083999 0.029390192
 [7,] 0.34812836 0.4521444 0.16649619 0.033231056
 [8,] 0.32106312 0.4590603 0.18250871 0.037367850
 [9,] 0.28404220 0.4644860 0.20724768 0.044224139
[10,] 0.23356921 0.4621532 0.24746382 0.056813764
[11,] 0.18044007 0.4424674 0.30013219 0.076960322
[12,] 0.13832609 0.4080436 0.35101412 0.102616177
[13,] 0.11098421 0.3726589 0.38816306 0.128193799
[14,] 0.09265203 0.3411394 0.41383132 0.152377306
[15,] 0.07525918 0.3038575 0.43683783 0.184045515
[16,] 0.05628693 0.2528658 0.45550573 0.235341571
[17,] 0.03977246 0.1973141 0.45582264 0.307090775
nd_all <- NULL
for (k in 1:4) {
  tmp <- data.frame(x = nd$x,
                   y = k,
                   p_mean = apply(X = Pa, MAR = c(1, 2), FUN = mean)[, k],
                   p_lwr = apply(X = Pa, MAR = c(1, 2), FUN = quantile,
                                 prob = .025)[, k],
                   p_{upr} = apply(X = Pa, MAR = c(1, 2), FUN = quantile,
                                 prob = .975)[, k])
  nd_all <- rbind(nd_all, tmp)</pre>
ggplot(data = nd_all, aes(x = x, color = y, group = y)) +
  geom_ribbon(aes(ymin = p_lwr, ymax = p_upr, fill = y), alpha = .2, color = NA) +
  geom_line(aes(y = p_mean)) +
  ylim(c(0, 1)) + xlim(c(-2, 2))
```


6.4 Distributional regression in mgcv

?family.mgcv

6.4.1 gaulss

```
n <- 500
set.seed(123)
df <- data.frame(x = runif(n))
df$y <- rnorm(n = n, mean = x, sd = .1 * exp(x))
ggplot(data = df, aes(x = x, y = y)) +
    geom_point()</pre>
```



```
nd <- data.frame(x = seq(0, 1, by = .1))
nd$mu <- predict(m, newdata = nd, type = "link")[, 1]
nd$sigma <- exp(predict(m, newdata = nd, type = "link")[, 2]) + .01
ggplot(data = df, aes(x = x)) +
    geom_point(aes(y = y)) +
    geom_line(data = nd, aes(y = mu)) +
    geom_line(data = nd, aes(y = qnorm(p = .1, mean = mu, sd = sigma)), linetype = "dashed geom_line(data = nd, aes(y = qnorm(p = .9, mean = mu, sd = sigma)), linetype = "dashed</pre>
```


6.4.2 ziplss

```
?ziplss
set.seed(123)
n <- 1000
x <- runif(n)
eta1 <- x
eta2 <- 2*x
p <- 1 - exp(-exp(eta1)) ## cloglog link</pre>
y <- as.numeric(runif(n)<p) ## 1 for presence, 0 for absence
plot(x, y)
                   0.0
                   0.2
                             0.4
                                       0.6
                                                 8.0
                                                           1.0
                                   Χ
table(y)
у
  0
      1
191 809
ind \leftarrow y > 0
p <- ppois(q = 0, lambda = exp(eta2[ind]))</pre>
y[ind] <- qpois(p = runif(sum(ind), p, 1), lambda = exp(eta2[ind]))</pre>
table(y[ind])
```

9 10

11

3

5

170 167 149 106 62 54 39

6

7

8

21 17 14

plot(x, y)

b <- gam(list(y ~ x, ~ x), family = ziplss())
plot(b, pages = 1, all.terms = T)</pre>

References

Allaire, J. J., Teague, C., Scheidegger, C., Xie, Y., & Dervieux, C. (2024). *Quarto (Version 1.4.553)*. https://doi.org/10.5281/zenodo.5960048

Bürkner, P.-C. (2017). Brms: An R Package for Bayesian Multilevel Models Using Stan. *Journal of Statistical Software*, 80, 1–28. https://doi.org/10.18637/jss.v080.i01

- Bürkner, P.-C. (2018). Advanced Bayesian Multilevel Modeling with the R Package brms. *The R Journal*, *10*(1), 395–411.
- Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., Brubaker, M., Guo, J., Li, P., & Riddell, A. (2017). Stan: A Probabilistic Programming Language. *Journal of Statistical Software*, 76, 1–32. https://doi.org/10.18637/jss.v076.i01
- Gelman, A., & Su, Y.-S. (2024). *Arm: Data analysis using regression and multilevel/hierarchical models.* https://CRAN.R-project.org/package=arm
- R Core Team. (2024). *R: A Language and Environment for Statistical Computing (Version 4.4.1)*. R Foundation for Statistical Computing.
- Wickham, H. (2016). *ggplot2: Elegant graphics for data analysis*. Springer-Verlag New York. https://ggplot2.tidyverse.org