Chapter 5

Simulation

5.1 Simulation for BGW and BGWI processes

Consider a BGWI process \mathfrak{z} with regeneration and immigration distributions given by random variables ξ and η with generating functions $f(s) := \mathbb{E}s^{\xi}$ and $g(s) := \mathbb{E}s^{\eta}$. We work under Assumption (SL) and so the generating functions f and g are given by

$$f(s) = s + c(1 s)^{1+} \ell(1 s)$$
 and $g(s) = 1 d(1 s) \ell(1 s)$,

where c, d are positive and $\in (0,1]$; ℓ and ℓ are slowly varying at 0 and $\ell(x) \sim \ell(x)$ when $x \to 0$. For a given , we denote ℓ corresponding to ℓ by $\ell^{c,\ell}$ and similarly we denote ℓ by $\ell^{d,\ell}$.

For any $p \in [0, 1]$, let Be(1/p) denote a Bernoulli random variable with $\mathbb{P}(Be(1/p) = 1) = p$.

Claim 5.1. Consider a function ℓ_1 on [0,1] given by $\ell_1(x) = \ell(x) \left(1 + \frac{x\ell'(x)}{(1+)\ell(x)}\right)$ for $x \in [0,1]$. It holds that $\ell_1(x) \sim \ell(x)$ as $x \to 0$ and so ℓ_1 is slowly varying at 0. Then the law of $\xi^{c,\ell}$ is

$$\xi^{c,\ell} \stackrel{w}{=} Be(m+1)(m+1) \text{ given } \eta^{c(1+-),\ell_1} = m.$$

Remark 5.2. To simulate ξ it is enough to simulate $m=\eta^{c(1+-),\ell_1}$ and flip a coin with the probability $\frac{1}{m+1}$ of landing H. If the coin lands H, then $\xi \leftarrow m+1$, otherwise $\xi \leftarrow 0$.

Proof. Observe that

$$f'(1 x) = 1 x + cx^{1+} \ell(x))' = 1 + c(1+)x \ell(x) + cx^{1+} \ell'(x)$$
$$= 1 + c(1+)x \ell(x) \left(1 + \frac{x\ell'(x)}{(1+)\ell(x)}\right).$$

Put $\ell_1(x) := \ell(x) \left(1 + \frac{x\ell'(x)}{(1+)\ell(x)}\right)$, then $\frac{\ell_1(x)}{\ell(x)} \to 1$ as $x \to 0+$. Consider the following

$$f(s) = c + \int_0^s 1 c(1+\epsilon)(1-r) \ell_1(1-r) dr = c + \int_0^s \mathbb{E}r^{\eta^{c-1+\epsilon},\ell_1} dr$$
$$= c + \mathbb{E}\frac{r^{\eta^{c-1+\epsilon},\ell_1+1}}{\eta^{c(1+\epsilon),\ell_1}+1} = c + \sum_{k \ge 1} \frac{1}{k} \mathbb{P}(\eta^{c(1+\epsilon),\ell_1} = k-1)r^k$$

Thus $\mathbb{P} \ \xi^{c,\ell} = 0$ = c and $\mathbb{P}(\xi^{c,\ell} = k) = \frac{1}{k} \mathbb{P}(\eta^{c(1+),\ell_1} = k - 1)$ for $k \geq 1$. On the other hand, we derive, for $k \geq 1$

$$\begin{split} \mathbb{P}(Be \ \eta^{c(1+ \),\ell_1} + 1) \ (\eta^{c(1+ \),\ell_1} + 1) &= k) \\ &= \mathbb{P}(Be \ \eta^{c(1+ \),\ell_1} + 1) \ | \ \eta^{c(1+ \),\ell_1} + 1 = k) \mathbb{P}(\eta^{c(1+ \),\ell_1} + 1 = k) \\ &= \frac{1}{k} \mathbb{P}(\eta^{c(1+ \),\ell_1} = k \ 1). \end{split}$$

Claim 5.3. Let $S^{d,k}$ be a random variable such that for $\lambda \geq 0$

$$\mathbb{E}\exp(-\lambda S^{d,k}) = 1 \quad d\lambda \ k(\lambda).$$

Then $\eta^{d,\hbar} \stackrel{w}{=} Pois(S^{d,\hbar})$.

Proof. Indeed,

$$\mathbb{E}s^{\eta^{d,\hbar}} = \mathbb{E}s^{Pois(S^{d,\hbar})} = \mathbb{E}\exp(-S^{d,\hbar}(1-s)).$$

Corollary 5.4. Consider an -stable random variable S such that, for some d > 0 and $\lambda \geq 0$,

$$\mathbb{E}\exp(-\lambda S) = \exp(-d\lambda).$$

Then $\eta^{d,\hbar} \stackrel{w}{=} Pois(S)$ with

$$k(1 \quad s) := \frac{e^{-d(1-s)}}{d(1-s)}, \text{ for } s \in [0,1].$$

Note that with this choice of k it holds that $k(1 - s) \to 1$ when $s \to 1$, hence it is slowly varying. Moreover, by Faà di Bruno's formula

$$g(s) = e^{-d} \sum_{n=0}^{\infty} \frac{1}{n!} B_n(, (1), \dots, \dots, (n-1)) s^n,$$

for Bell's complete polynomials B_n .

Claim 5.5. The probability mass function of $\eta^{d,1}$, is $\mathbb{P} \ \eta^{d,1} = 0 = 1 \ d$ and, for $k \geq 1$,

$$\mathbb{P} \ \eta^{d,1} = n = d(1)^{n+1} \binom{n}{n} = d \frac{(1) \dots (n-1)}{n!}.$$

This implies that the generating function of $\eta^{d,1}$ admits representation

$$g(s) = (1 \quad d) + d \cdot s \left(+ (1 \quad) \cdot s \left(\frac{1}{2} + \frac{2}{2} \cdot s \left(\frac{1}{3} + \dots \right) \right) \right).$$

Remark 5.6. The following sampling algorithm for $\eta^{d,1}$ follows from the representation of the generating function. With probability 1 d set $\eta^{d,1} \leftarrow 0$. Otherwise consider a sequence of coin tosses $(X_k)_{k\geq 1}$ where, for $k\geq 1$, let $\mathbb{P}(X_k=H)=\frac{1}{k}$. Denote κ the index of the first H in this sequence. Set $\eta^{d,1}\leftarrow\kappa$. Overall

$$\eta^{d,1} \leftarrow Be(1/d) \cdot \kappa$$
.

Note that the second Borel-Cantelli lemma implies that κ is finite. At the same time $\mathbb{E}\kappa = \infty$ in accordance with Lemma 2.1.

Remark 5.7. The assumptions $\ell \equiv 1$ and $k \equiv 1$ imply the following bounds on c and d:

$$0 < d < 1$$
 and $0 < c(1 +) < 1$.

The bound on d follows from Claim 5.5. Whereas the bound on c is a consequence of Claim 5.1, as we can see $\xi^{d,1} \stackrel{w}{=} Be(M+1)(M+1)$, with $M \stackrel{w}{=} Be(1/c(1+1))\kappa$.

5.2 Simulation of CB and CBI processes

In this section, we show how to generate a random variable with distribution of $Z^z(t)$ for any $z \ge 0$ and $t \ge 0$. Recall that by (1.8), it has the law of the sum of independent random variables

$$Z^z(t) \stackrel{w}{=} Z^0(t) + \tilde{Z}^z(t)$$

with Laplace transforms given by

$$\mathbb{E}\exp(-\lambda Z^0(t)) = (1 + c\lambda t)^{-\frac{d}{c}} \text{ and } \mathbb{E}\exp(-\lambda \tilde{Z}^z(t)) = \exp\left(\frac{\lambda x_0}{(1 + c\lambda t)^{1/c}}\right).$$

De nition 5.8. For and β positive, a $Linnik(\ ,\beta)$ distribution has the Laplace transform given by $\lambda \mapsto 1/(1+\lambda)^{\beta}$, for $\lambda \geq 0$.

The following sampling algorithm is described in [Dev90].

Theorem 5.9. Linnik($,\beta$) distribution can be sampled as a product Linnik($,\beta$) $\sim (\Theta_{\beta})^{1/2} \Sigma$, where where Θ_{β} is a Gamma random variable with Laplace transform $\lambda \mapsto 1/(1+\lambda)^{\beta}$ and Σ is a positive stable random variable with Laplace transform $\lambda \mapsto e^{-\lambda}$.

We recognise that the distribution of $Z^0(t)$ is an appropriately scaled $Linnik(\cdot, \delta)$

distribution and we have

$$Z^{0}(t) \stackrel{w}{=} (ct)^{1/Linnik(,\delta).$$
 (5.1)

As for $\tilde{Z}^z(t)$, observe that it can be represented as a sum of a random number of random variables. In particular, let $k := (ct)^{1/\tau}$ and $\eta \sim Pois(z/k)$ and let τ be an independent random variable distributed as

$$\mathbb{E}e^{-\lambda\tau} = 1 \quad \left(\frac{\lambda}{1+\lambda}\right)^{1/}, \text{ for } \lambda \ge 0.$$
 (5.2)

then for a sequence of independent random variables $(\tau_i)_{i\in\mathbb{N}}$ with the common distribution $\tau_1 \sim \tau$, we have

$$\tilde{Z}^z(t) \stackrel{w}{=} k \sum_{i=1}^{\eta} \tau_i. \tag{5.3}$$

Indeed, the Laplace transform of the right hand side is given by

$$\mathbb{E} \exp\left(-\lambda k \sum_{i=1}^{\eta} \tau_i\right) = \exp\left(-\frac{z}{k} - 1 - \mathbb{E}e^{-\lambda k \tau}\right) = \exp\left(-\frac{z}{k} \left(\frac{(k\lambda)}{1 + (k\lambda)}\right)^{1/\beta}\right)$$
$$= \exp\left(\frac{\lambda z}{(1 + ct\lambda)^{1/\beta}}\right) = \mathbb{E} \exp(-\lambda \tilde{Z}^z(t)).$$

We will now be concerned with the sampling of τ .

5.2.1 Size-biasing and integrated tail transforms

De nition 5.10. Let ξ be a non-negative random variable with finite mean. We call ξ' a *size-biased transform* of ξ if $\mathbb{E}g(\xi') = \mathbb{E}\left[\xi g(\xi)\right]/\mathbb{E}\xi$ for any bounded continuous g.

De nition 5.11. Let ξ be a non-negative random variable with finite mean. We call ξ° an integrated tail transform of ξ if $\mathbb{P}(\xi^{\circ} \in dx) = \mathbb{P}(\xi > x)/\mathbb{E}\xi$.

Claim 5.12 (Properties of ξ°).

- 1. ξ° is a continuous non-negative random variable with $\mathbb{E}\xi^{\circ}=1$.
- 2. For a continuously di erentiable function θ such that $\mathbb{E}|\theta(\xi)| < \infty$

$$\mathbb{E}\theta(\xi) = \theta(0) + \mathbb{E}\xi \cdot \mathbb{E}\theta'(\xi^{\circ}).$$

3. Let ξ_1, \ldots, ξ_n be independent random variables with the common distribution $\xi_1 \sim \xi$. Then for a n-times continuously di erentiable function θ such that $\mathbb{E}|\theta(\xi_1 + \ldots + \xi_n)|\theta(\xi_1 +$ $|\xi_n|<\infty,$

$$\mathbb{E}\theta(\xi_1 + \ldots + \xi_n) = \sum_{i=0}^n \binom{n}{i} (\mathbb{E}\xi)^i \, \mathbb{E}\theta^{(i)}(\xi_1^\circ + \ldots + \xi_i^\circ).$$

4. Let $\eta \sim Pois(\lambda)$, then for an infinitely differentiable function θ

$$\mathbb{E}\left[\theta\left(\sum_{i=1}^{\eta}\xi_{i}\right)\right] = e^{\lambda}\,\mathbb{E}\left[\left(\mathbb{E}\xi\right)^{\eta}\cdot\theta^{(\eta)}\left(\sum_{i=1}^{\eta}\xi_{i}^{\circ}\right)\right].$$

Proof of 2. By the integration by parts, see Lemma 5.13, we get

$$\mathbb{E}\theta(\xi) = \theta(0) + \int_0^\infty \theta'(x) \mathbb{P}(\xi > x) dx.$$

Proof of 3. Consider the case n=2. Applying Property 2 twice we get

$$\mathbb{E}\theta(\xi_1 + \xi_2) = \mathbb{E}\theta(\xi_1) + \mathbb{E}\xi_2 \,\mathbb{E}\theta'(\xi_1 + \xi_2^\circ)$$
$$= \theta(0) + 2\mathbb{E}\xi \,\mathbb{E}\theta(\xi_1^\circ) + (\mathbb{E}\xi_2)^2 \,\mathbb{E}\theta''(\xi_1^\circ + \xi_2^\circ).$$

The general case, follows by induction.

Proof of 4. Recall that $\mathbb{P}(\eta = n) = e^{-\lambda} \lambda^n / n!$. Then by Property 3

$$\mathbb{E}\left[\theta\left(\sum_{i=1}^{\eta}\xi_{i}\right)\right] = \sum_{n=0}^{\infty} \sum_{i=0}^{n} \binom{n}{i} \left(\mathbb{E}\xi\right)^{i} \mathbb{E}\theta^{(i)} \left(\sum_{j=1}^{i}\xi_{j}^{\circ}\right) e^{-\lambda} \frac{\lambda^{n}}{n!}$$

$$= \sum_{i=0}^{\infty} \left(\mathbb{E}\xi\right)^{i} \mathbb{E}\theta^{(i)} \left(\sum_{j=1}^{i}\xi_{j}^{\circ}\right) e^{-\lambda} \frac{\lambda^{i}}{i!} \sum_{n=i}^{\infty} \frac{\lambda^{n-i}}{(n-i)!}$$

$$= e^{\lambda} \sum_{i=0}^{\infty} \left(\mathbb{E}\xi\right)^{i} \mathbb{E}\theta^{(i)} \left(\sum_{j=1}^{i}\xi_{j}^{\circ}\right) \mathbb{P}(\eta = i).$$

Lemma 5.13 (Integration by parts). Let X be a non-negative random variable. Then

$$\mathbb{E} X = \int_0^\infty \mathbb{P}(X > y) dy.$$

Moreover, for a once continuously di erentiable function g such that $\mathbb{E}|g(X)| < \infty$, it holds that

$$\mathbb{E}[g(X) \quad g(0)] = \int_0^\infty g'(x) \, \mathbb{P}(X > x) dx.$$

Proof. Note that for $x \geq 0$ it holds that $x = \int_0^x dy = \int_0^\infty 1_{x>y} dy$. Then by Fubini's theorem

$$\mathbb{E} X = \mathbb{E} \int_0^\infty 1_{\{X > y\}} dy = \int_0^\infty \mathbb{P}(X > y) dy.$$

For a once continuously differentiable function g consider an approximation g_n constructed as a linear interpolation of g at points $(k/n)_{k\in\mathbb{N}_0}$. Then for any K>0 it holds that

$$\sup_{x \le K} [|g_n(x) - g(x)| \lor |g'_n(x) - g'(x)|] \to 0, \text{ as } n \to \infty.$$

For K > 0, consider

$$\mathbb{E} g_n(X \wedge K) = \sum_k \mathbb{E} \left[g_n(X \wedge K); X \in [k/n, (k+1)/n) \right]$$
$$= g_n(0) + \int_0^K g'_n(x) \mathbb{P}(X > x) dx.$$

Letting $n \to \infty$ and then $K \to \infty$ we get the result.

Sampling of the size-biased and integrated tail transforms

Let $S(n) := \sum_{i=1}^n \xi_i$, where $(\xi_i)_{i \in \mathbb{N}}$ are independent copies of ξ . Consider a renewal process $(N(t))_{t \geq 0}$, which is defined as $N(t) := \inf\{k \geq 0 : S(k) > t\}$. Consider the undershoot U, the overshoot V, and the current lifetime W := U + V processes, given by:

$$G(t) := t$$
 $S(N(t) = 1), D(t) := S(N(t))$ t , and $L(t) := S(N(t)) = S(N(t) = 1).$

The following theorem can be found in, for example, [Iks16, Proposition 6.2.7].

Theorem 5.14. Assume that the distribution of ξ is non-lattice. As $t \to \infty$, the marginal distributions of G(t) and D(t) converge to ξ° ; and the marginal distribution of W(t) converges to ξ' . Moreover, for $U \sim Unif[0,1]$, it holds that $\xi'U \stackrel{w}{=} \xi^{\circ}$.

The next claim shows how to sample ξ , given a sampler for ξ' .

Claim 5.15. Assume that $\mathbb{E}\xi = 1$. To produce a sample of ξ , sample $y \leftarrow \xi'$ and flip a coin which lands H with probability 1/y. If the coin landed T then repeat the procedure, otherwise return y.

Proof. Note that

$$\mathbb{E}\left[g(\xi'); Be(\xi') = 1\right] = \mathbb{E}\left[\frac{1}{\xi}\,\xi\,g(\xi)\right] = \mathbb{E}g(\xi).$$

Application to τ

By the integration by parts of the Laplace transform we get

$$\frac{1}{(1+\lambda)^{1/2}} = \frac{1}{\lambda} \frac{\mathbb{E}e^{-\lambda \tau}}{\lambda} = \int_0^\infty \mathbb{P}(\tau > x)e^{-\lambda x} dx. \tag{5.4}$$

We immediately recognise the left-hand side as the Laplace transform of a random variable ζ with Linnik(~,1/~) distribution, i.e., its density f_{ζ} is such that

$$\int_0^\infty e^{-\lambda x} f_{\zeta}(x) dx = \left(\frac{1}{1+\lambda}\right)^{1/2}.$$

By the uniqueness of the Laplace transforms $f_{\zeta}(x) = \mathbb{P}(\tau > x)$. This implies that $\zeta \sim \tau^{\circ}$ and $\mathbb{E}\tau = 1$. The next claim is an immediate corollary of Property 4 and representation (5.3).

Claim 5.16. Let $k = (ct)^{1/}$ and z > 0. Then for an infinitely differentiable function θ and $\eta \sim Pois(z/k)$, we have

$$\mathbb{E}\,\theta(\tilde{Z}^z(t)) = e^{z/k}\,\mathbb{E}\left[k^{\eta}\cdot\theta^{(\eta)}\left(k\sum_{i=1}^{\eta}\zeta_i\right)\right].$$

where $(\zeta_i)_{i\in\mathbb{N}}$ are independent random variables distributed as Linnik (, 1/).

Consider (5.4) with $\lambda \leftarrow \lambda/y$ for y > 0. After the change of variables we get

$$\int_0^\infty \mathbb{P}(\tau > xy) \, y \, e^{-\lambda x} dx = \frac{1}{\left(1 + (\lambda/y)^{-1/2}\right)}.$$

Take the derivative on both sides and evaluate it at y = 1. We obtain

$$\int_0^\infty x f_{\tau}(x) e^{-\lambda x} dx = \int_0^\infty f_{\zeta}(x) e^{-\lambda x} dx \quad \frac{\lambda}{(1+\lambda_{-})^{1+1/-}} = \frac{1}{(1+\lambda_{-})^{1+1/-}}.$$

Hence the sized-biased transform of τ has the Laplace transform given as above and we recognise it to be $Linnik(\ ,1+1/\)$ distribution. This, together with (5.3) and Claim 5.15, yields the following claim.

Claim 5.17. Let $k = (ct)^{1/n}$ and z > 0. Consider a sequence $(y_i, h_i)_i$ of independent identically distributed random variables with y_1 having the Linnik $(x_i, 1+1/n)$ distribution; and $h_1 \sim Be(y_1)$. Let $H(n) = \sum_{i=1}^n h_i$ and $H^{-1}(n) = \inf\{k \geq 0 : H(k) = n\}$. Then, upon letting $\eta \sim Pois(z/k)$, we have

$$\tilde{Z}^z(t) \stackrel{w}{=} k \sum_{i=1}^{H^{-1}(\eta)} h_i y_i.$$

5.2.2 Sampling based on the Pólya property

De nition 5.18. A function $\varphi : \mathbb{C} \to \mathbb{C}$ is said to have the *Pólya's property* if $\varphi|_{\mathbb{R}}$ is real and even; φ is 1 at z = 0; it goes to 0 when $z \to \infty$; and φ is convex on $(0, \infty)$.

The following theorem can be found in, for example, [Fel71, Example XV.3.b].

Theorem 5.19. A function with the Pólya's property is a characteristic function of some random variable.

There exists a way to sample from a distribution given only by its characteristic function if it has the Pólya's property. Let us first introduce the Fejer-de la Vallee Poussin (FVP) distribution.

De nition 5.20. A random variable Y has the Fejer-de la Vallee Poussin (FVP) distribution if its characteristic function is given by

$$\mathbb{E}e^{izY} = (1 \quad |z|) \wedge 0$$
, for $z \in \mathbb{C}$.

Its density is given by

$$\mathbb{P}(Y \in dx) = \frac{1}{2\pi} \left(\frac{\sin(x/2)}{x/2} \right)^2, \text{ for } x \in \mathbb{R}.$$

The following two theorems are found in [Dev84].

Theorem 5.21. Let X have a characteristic function φ which has the Pólya's property. Then $X \sim Y/Z$, where Y and Z are independent and Y has FVP distribution; and Z has the distribution function given by

$$\mathbb{P}(Z > s) = \varphi(s)$$
 $s\varphi'(s)$, for $s > 0$, and $\mathbb{P}(Z = 0) = 0$.

Moreover, if the above expression is absolutely continuous, then Z has density given by

$$\mathbb{P}(Z \in ds) = s\varphi''(s).$$

Theorem 5.22. To produce a sample of Y, sample (U, V) uniformly in $[1, 1]^2$. If U > 0 and $|U| < V^2 \sin^2(1/V)$, then return 2V. If U < 0 and $|U| < \sin^2(V)$, then return 2V. Otherwise, repeat the procedure. The average number of iterations to produce a result is $4/\pi$.

Application to τ

Denote the Laplace transform of τ by φ_{τ} , i.e., as is given in (5.2),

$$\varphi_{\tau}(\lambda) = 1 \quad \left(\frac{|\lambda|}{1+|\lambda|}\right)^{1/}, \text{ for } \lambda \ge 0.$$

Consider the symmetrised version of τ ,

$$\tau^s := h\tau_1 \quad (1 \quad h)\tau_2,$$

where h, τ_1 and τ_2 are independent and $h \sim Be(2)$, and τ_1 has the same distribution as τ_2 and $\tau_1 \sim \tau$. Then the characteristic function of τ^s is given by

$$\mathbb{E}e^{iz\tau^s} = \frac{1}{2}\varphi_{\tau}(-iz) + \frac{1}{2}\varphi_{\tau}(iz) = 1 \quad \left(\frac{|z|}{1+|z|}\right)^{1/} =: \varphi_{\tau^s}(z), \text{ for } z \in \mathbb{C}.$$

The function φ_{τ^s} has the Pólya's property and so it can be sampled based on Theorem 5.21. Moreover, since $|\tau^s| \stackrel{w}{=} \tau$, this is also an algorithm for sampling τ . This, together with (5.3), yields the following claim.

Claim 5.23. Let $k = (ct)^{1/}$ and z > 0. Consider a sequence $(Y_i, Z_i)_{i \in \mathbb{N}}$ of independent identically distributed random variables with Y_1 having the FVP distribution; and Z_1 having the distribution function given by

$$\mathbb{P}(Z_1 \le z) = \frac{z^{+1}}{(1+z^{-1})^{1+1/2}}, \text{ for } z > 0, \text{ and } \mathbb{P}(Z=0) = 0,$$
 (5.5)

and its density is given by $\mathbb{P}(Z_1 \in dz) = \frac{(1+|z|)^2}{(1+|z|)^{2+1/2}}$, for z > 0. Then, upon letting $\eta \sim Pois(z/k)$, we have

$$\tilde{Z}^z(t) \stackrel{w}{=} k \sum_{i=1}^{\eta} |Y_i| / Z_i.$$