Plotting a Light Curve Example

K2 data of HIP 41378, AKA EPIC ID number 211311380

```
In [19]: #plot a light curve that displays a planet, using plotly
         #LHW: hiya, this is what I *think* the goal is, but I 100% may be wrong.
         #I've added a ton of stuff (edits with LHW). Again, this is
         #how *I* would have coded things, definitely not gospel!!! Hopefully
         #the python functions will at least be helpful.
         #CAN
         import matplotlib.pyplot as plt
         import numpy as np
         import pandas as pd
         import plotly
         import plotly.graph objects as go
         import plotly.express as px
         from scipy.ndimage import gaussian_filter1d
         import altair as alt
         from scipy import interpolate #LHW
         from scipy.interpolate import UnivariateSpline #LHW
         %matplotlib notebook #LHW
         UsageError: unrecognized arguments: #LHW
In [20]: #Light Curve, Data from Hubble Space Telescope, HIP 41378
         lightcurve = pd.read_csv('Data/HIP_41378 .csv')
         lightcurve = lightcurve.rename(columns={"BJD - 2454833" : "Time"})
         lightcurve
```

Out[20]:		Time	Flux
	0	2307.550487	0.998291
	1	2307.570919	0.998452
	2	2307.591351	0.998505
	3	2307.611783	0.998540
	4	2307.632215	0.998534
	•••		
	3397	2381.309196	1.001959
	3398	2381.350060	1.002019
	3399	2381.370492	1.001949
	3400	2381.390924	1.002003
	3401	2381.411356	1.001900

3402 rows × 2 columns

```
In [21]: # fig = go.Figure()
# fig.add_trace(go.Scatter(x = lightcurve['Time'], y = lightcurve['Flux'], mode
# fig
plt.figure(figsize=(15,7))

original = plt.plot(lightcurve['Time'], lightcurve['Flux'], '-b', label='Flux'
plt.title('Kepler Light Curve for HIP 41378')
plt.xlabel('Time (days)')
plt.ylabel('Flux (electrons/second)')
plt.legend()
plt.show()
```


In the above plot, we see multiple dips in the spectra that could indicate multiple planet transits. However, the main dip would be located around the 2355 mark on the x-axis. I would assume this is the primarily planet being observed.

Kepler Dataset, Object name HAT-P-7 b resolved by SANTA resolver

```
In [73]: #read in fits file
         #Object name HAT-P-7 b resolved by SANTA resolver to HAT-P-7 b ( ), Kepler Data
         import os
         import glob
         import numpy as np
         import matplotlib.pyplot as plt
         from astropy.io import fits
         from astropy.table import Table
In [74]: kep = fits.open("Data/hat-p-7.fits")
         kep.info()
         Filename: Data/hat-p-7.fits
                                           Cards
         No.
                Name
                          Ver
                                 Type
                                                   Dimensions
                                                                Format
           0 PRIMARY
                            1 PrimaryHDU
                                              58
           1 LIGHTCURVE
                            1 BinTableHDU
                                             155
                                                   476R x 20C
                                                                 [D, E, J, E, E, E, E,
         E, E, J, D, E, D, E, D, E, E, E]
           2 APERTURE
                            1 ImageHDU
                                                   (12, 10)
                                                              int32
In [75]:
         object_name = kep[0].header['OBJECT']
         object_name
         'KIC 10666592'
Out[75]:
In [76]:
         header1 = kep[1].header
         print(repr(header1[0:24]))
```

```
XTENSION= 'BINTABLE'
                                              / marks the beginning of a new HDU
           BITPIX =
                                            8 / array data type
                                            2 / number of array dimensions
          NAXIS =
          NAXIS1 =
                                          100 / length of first array dimension
                                          476 / length of second array dimension
          NAXIS2 =
           PCOUNT =
                                            0 / group parameter count (not used)
                                            1 / group count (not used)
          GCOUNT =
                                           20 / number of table fields
          TFIELDS =
          TTYPE1 = 'TIME
                                              / column title: data time stamps
          TFORM1 = 'D
                                              / column format: 64-bit floating point
          TUNIT1 = 'BJD - 2454833'
                                              / column units: barycenter corrected JD
           TDISP1 = 'D14.7 '
                                              / column display format
           TTYPE2 = 'TIMECORR'
                                              / column title: barycenter - timeslice correcti
           on
                                           / column format: 32-bit floating point
/ column units: day
           TFORM2 = 'E
          TUNIT2 = 'd
                                         / column display format
/ column title: unique cadence number
/ column format: signed 32-bit integer
/ column display format
/ column title: aperture photometry flux
/ column format: 32-bit floating point
/ column units: electrons per second
          TDISP2 = 'E13.6
          TTYPE3 = 'CADENCENO'
          TFORM3 = 'J
          TDISP3 = 'I10
          TTYPE4 = 'SAP_FLUX'
          TFORM4 = 'E
          TUNIT4 = 'e-/s
          TDISP4 = 'E14.7 '
                                             / column display format
          TTYPE5 = 'SAP_FLUX_ERR'
                                              / column title: aperture phot. flux error
In [77]: datatext = kep[1].data
           data = Table(datatext)
           data[:5]
```

Out [77]: Table length=5

TIME	TIMECORR	CADENCENO	SAP_FLUX	SAP_FLUX_ERR	SAP_BKG	SAI
float64	float32	int32	float32	float32	float32	
120.53881583872862	0.00066341873	568	1027193.4	26.107775	3764.0305	
120.55925017884147	0.00066415884	569	1027220.8	26.108118	3797.0823	
120.57968441895355	0.00066489895	570	1027189.94	26.109035	3783.3223	
120.60011885905988	0.00066563906	571	1027253.06	26.109783	3858.511	
120.62055319923093	0.00066637923	572	1027207.9	26.10963	3843.1775	

```
In [78]: fi = kep[1].header['BJDREFI']
ff = kep[1].header['BJDREFF']

times = kep[1].data['time']
sap_fluxes = kep[1].data['SAP_FLUX'] #Simple Aperture Photometry (SAP)
pdcsap_fluxes = kep[1].data['PDCSAP_FLUX'] #Pre-search Data Conditioning SAP f
```

#CAN # Convert the time array to full BJD by adding the offset back in. #this value was derived from the estimated difference between transits, however #perhaps by using a loop that detects gaps #to do this, I would have needed to already removed the slope of the light currence. #LHW: this may be difficult, it doesn't look like the transits follow an easy of the light currence.

```
#like a gaussian, it is possible your estimate is pretty good, since they line #plot. just state that in your presentation and maybe show that its not the sar #gaussian, voigt, etc

#LHW: you may want to grab the fourth transit as well in the average, up to you
```

#LHW: you may want to grab the fourth transit as well in the average, up to you #remove all the things with 4 if you don't want that transit included

```
In [80]: #extracting the times
bjd = times + fi + ff
bjd2 = bjd - 2.205
bjd3 = bjd2 - 2.205
bjd4 = bjd3 - 2.205 #LHW
```

```
In [82]: # original plot
plt.figure(figsize=(15,7))
original = plt.plot(bjd, (pdcsap_fluxes), '-b', label='PDCSAP Flux') #corrected
plt.title('Light Curve for HAT-P-7 b')
plt.xlabel('Time (days)')
```

```
plt.ylabel('Flux (electrons/second)')
plt.legend()
plt.show()
```



```
In [83]: #LHW:
    #get stack transit curves
    curve_x = [t for t in bjd if 54.2+2.4549e6 < t < 54.5+2.4549e6]
    #are these numbers hard coded, analyze how i can do this computationally
    f_y1 = interpolate.interp1d(bjd, pdcsap_fluxes)
    f_y2 = interpolate.interp1d(bjd2, pdcsap_fluxes)
    f_y3 = interpolate.interp1d(bjd3, pdcsap_fluxes)
    f_y4 = interpolate.interp1d(bjd4, pdcsap_fluxes)
    curve_y1 = f_y1(curve_x)
    curve_y2 = f_y2(curve_x)
    curve_y2 = f_y2(curve_x)
    curve_y4 = f_y4(curve_x)

all_curves = np.vstack((curve_y1, curve_y2, curve_y3, curve_y4))
    mean_curve_y = np.nanmean(all_curves, axis=0)</pre>
```

```
In [84]: plt.figure(figsize=(15,7))

#plt.plot(bjd, sap_fluxes, '-k', label='SAP Flux') #original flux
plt.plot(bjd, pdcsap_fluxes, '-b', label='PDCSAP Flux') #corrected flux
plt.plot(bjd2, pdcsap_fluxes, '-r')
plt.plot(bjd3, pdcsap_fluxes, '-g')
plt.plot(bjd4, pdcsap_fluxes, '-y') #LHW
plt.plot(curve_x, mean_curve_y, '-k', ls='--', label='average') #LHW

plt.xlim((54+2.4549e6), (54.5+2.4549e6)) #hard coded for this plot
plt.title('Light Curve, Layered')
plt.xlabel('Time (days)')
plt.ylabel('Flux (electrons/second)')
plt.legend()
plt.show()
```

/var/folders/m2/1g4yxt715m54blcw4245j4ch0000gn/T/ipykernel_96087/619321262.py:
8: UserWarning:

linestyle is redundantly defined by the 'linestyle' keyword argument and the f mt string "-k" (-> linestyle='-'). The keyword argument will take precedence.


```
In [85]: #average plot alone
plt.figure(figsize=(15,7))
plt.plot(curve_x, mean_curve_y, 'blue', ls='--', label='Average Flux') #LHW
plt.xlim(((54.2)+2.4549e6), (54.5+2.4549e6))
#plt.ylim(1.02e6, 1.04e6)
plt.title('Kepler Light Curve, Averaged')
plt.xlabel('Time (days)')
plt.ylabel('Flux (electrons/second)')
plt.legend()
plt.show()
plt.savefig('average.png')
```


<Figure size 432x288 with 0 Axes>

```
In [86]: #zoom in and fit
fig = go.Figure()
fig.add_trace(go.Scatter(x = curve_x, y = mean_curve_y, mode='lines' , ))
#fig.update_traces(marker=dict(color='black'),)
fig.update_layout(title = "Average Light Curve for HAT-P-7", xaxis_title = "Tir
fig
```

```
In [87]: #What can you derive from an average transit such as the one plotted above? You

In [88]: #secondary eclipse data
# During the secondary eclipse, thermal emission emitted from the planet does if
# spectrum of light seen from both the host star and the exoplanet (see the spectrum of light detected during the eclipse can be compared with the total light if
# eclipse to reveal the contribution from the planet's surface and atmosphere.
# Astronomers can't detect a secondary eclipse for every exoplanet;
# the smaller and cooler the planet, the harder the eclipse is to identify.
```

Data Analysis

```
In [89]: #turning arrays into a dataframe to manipulate data, original data
lightcurves = pd.DataFrame((zip(bjd, pdcsap_fluxes)))
```

Time

Flux

Out[89]:

lightcurves.columns =['Time', 'Flux'] #renaming columns
lightcurves.dropna() #removing nan values

```
0 2.454954e+06 1.034945e+06
            1 2.454954e+06 1.035051e+06
            2 2.454954e+06 1.035009e+06
            3 2.454954e+06 1.035010e+06
            4 2.454954e+06 1.034975e+06
          471 2.454963e+06 1.027846e+06
         472 2.454963e+06 1.027766e+06
         473 2.454963e+06 1.027986e+06
         474 2.454963e+06 1.028483e+06
         475 2.454963e+06 1.029748e+06
         469 rows × 2 columns
         #creating a duplicate dataframe that contains the reduced light curve
In [90]:
          reduced = pd.DataFrame((zip(bjd, pdcsap_fluxes)))
          reduced.columns =['Time', 'Flux'] #renaming columns
          reduced.dropna() #removing nan values
          reduced head()
                    Time
Out[90]:
                                 Flux
         0 2.454954e+06 1.034945e+06
          1 2.454954e+06 1.035051e+06
          2 2.454954e+06 1.035009e+06
         3 2.454954e+06 1.035010e+06
         4 2.454954e+06 1.034975e+06
In [91]: #LHW:
         #get and fit a continuum level to the data
         #transits 2.205 apart (from above...keep in mind this is estimate)
         #first dip appears at x\sim2454954.365, mask out +/-0.300
         #mask out each dip (4)
         masked_ydata = []
          for x, y in zip(bjd, pdcsap_fluxes):
              if 2454954 < x < 2454954.665:
                  masked_ydata.append(np.nan)
                  continue
              if 2454954+2.205 < x < 2454954.665+2.205:
                  masked ydata.append(np.nan)
                  continue
              if 2454954+(2.205*2) < x < 2454954.665+(2.205*2):
                  masked_ydata.append(np.nan)
                  continue
```

```
if 2454954+(2.205*3) < x < 2454954.665+(2.205*3):
        masked ydata.append(np.nan)
        continue
    if 2454954+(2.205*4) < x < 2454954.665+(2.205*4):
        masked ydata.append(np.nan)
        continue
    masked ydata.append(y)
masked ydata = np.asarray(masked ydata)
#fit curve through data to subtract off/normalize continuum level
#just trust me on this part, it's a pain
masked xdata2 = [b for b, myd in zip(bjd, masked ydata) if np.isnan(myd)==Falso
masked_ydata2 = [myd for b, myd in zip(bjd, masked_ydata) if np.isnan(myd)==Fa
spl = UnivariateSpline(masked_xdata2, masked_ydata2, s=1,k=1)
spline = spl(bjd)
continuum = np.asarray(gaussian filter1d(spline, 50))
plt.figure(figsize=(15,7))
plt.plot(bjd, pdcsap_fluxes, '-b', label='PDCSAP Flux')
plt.plot(bjd, masked_ydata, '-r', label='transits masked')
plt.plot(bjd, continuum, 'k', ls='--', label='continuum fit')
plt.title("Primary Eclipse v Secondary Eclipse")
plt.legend()#first dip appears at x\sim2454954.365, mask out +/-0.300
```

Out[91]: <matplotlib.legend.Legend at 0x7fab912a9d90>


```
In [92]: fig, (ax1, ax2) = plt.subplots(2, 1, gridspec_kw={'height_ratios': [5, 3]}, sha
fig.suptitle('Light Curve for HAT-P-7 b')
ax1.plot(bjd, pdcsap_fluxes, '-b', label='PDCSAP Flux')
ax2.plot(bjd, masked_ydata, '-r', label='transits masked')
```

Out[92]: [<matplotlib.lines.Line2D at 0x7fab85b4dee0>]


```
In [93]: plt.figure(figsize=(15,7))
#plt.plot(bjd, pdcsap_fluxes, '-b', label='PDCSAP Flux')
plt.plot(bjd, masked_ydata, '-r', label='transits masked')
plt.plot(bjd, continuum, 'k', ls='--', label='continuum fit')

plt.title("Zoom in on Secondary Eclipse")
plt.legend()
```

Out[93]: <matplotlib.legend.Legend at 0x7fab866a86d0>


```
In [94]: #LHW:
    #subtract off continuum, fit not too bad. will work for now
    pdcsap_fluxes_contsub = pdcsap_fluxes - continuum
    masked_ydata_contsub = masked_ydata - continuum
    plt.figure(figsize=(15,7))
    plt.plot(bjd, pdcsap_fluxes_contsub, '-b', label='PDCSAP Flux (continuum subtraplt.plot(bjd, masked_ydata_contsub, '-r', label='transits masked (continuum sul plt.axhline(y=0, color='k', ls='--')
    plt.legend()
```

```
plt.title("Light Curve with Continuum Substracted")
plt.xlabel("Flux")
```

Out[94]: Text(0.5, 0, 'Flux')


```
In [95]: time_diff = 2.4549e6
    pdcsap_fluxes_contsub = pdcsap_fluxes - continuum
    masked_ydata_contsub = masked_ydata - continuum
    plt.figure(figsize=(15,7))
    #plt.plot(bjd, pdcsap_fluxes_contsub, '-b', label='PDCSAP Flux (continuum subtiplt.plot(bjd, masked_ydata_contsub, '-r', label='transits masked')
    plt.axhline(y=0, color='k', ls='--')
    plt.title("Light Curve with Continuum Substracted")
    plt.xlabel("Flux")
    plt.legend()

#plt.ylim(-200, 200)
#plt.xlim(56.5+time_diff, 60.5+time_diff)
```

Out[95]: <matplotlib.legend.Legend at 0x7fab8a9bb1f0>


```
#concat plots
In [96]:
         plt.figure(figsize=(15,7))
         fig, (ax1, ax2) = plt.subplots(2, 1, gridspec_kw={'height_ratios': [5, 3]}, sha
         fig.suptitle('Light Curve')
         ax1.plot(bjd, pdcsap_fluxes_contsub, '-b', label='PDCSAP Flux')
         ax2.plot(bjd, masked_ydata_contsub, '-r', label='transits masked')
         [<matplotlib.lines.Line2D at 0x7faba04cba60>]
Out[96]:
         <Figure size 1080x504 with 0 Axes>
                                Light Curve
          -2000
          -4000
          -6000
```

```
0
-250
          54
                      56
                                  58
                                             60
                                                   +2.4549000000e6
```

```
In [102...] time_diff = 2.4549e6
         pdcsap fluxes contsub = pdcsap fluxes - continuum
         masked ydata contsub = masked ydata - continuum
         plt.figure(figsize=(15,7))
         plt.plot(bjd, pdcsap_fluxes_contsub, '-b', label='PDCSAP Flux (continuum subtra
         plt.plot(bjd, masked_ydata_contsub, '-r', label='transits masked (continuum sul
         plt.axhline(y=0, color='k', ls='--')
         plt.legend()
         plt.ylim(-300, 300)
         plt.xlim(56.5+time_diff, 61+time_diff)
         plt.title("Zoomed in Light Curve")
         plt.xlabel("Flux")
```

Text(0.5, 0, 'Flux') Out[102]:

250


```
In [52]: time_diff = 2.4549e6
    pdcsap_fluxes_contsub = pdcsap_fluxes - continuum
    masked_ydata_contsub = masked_ydata - continuum
    plt.figure(figsize=(15,7))
    plt.plot(bjd, pdcsap_fluxes_contsub, '-b', label='PDCSAP Flux (continuum subtraplt.plot(bjd, masked_ydata_contsub, '-r', label='transits masked (continuum sul plt.axhline(y=0, color='k', ls='--')
    plt.legend()

plt.ylim(-500, 500)
    plt.xlim(56.8+time_diff, 58.5+time_diff)

plt.title("Zoomed in Light Curve")
    plt.xlabel("Flux")
```

Out[52]: Text(0.5, 0, 'Flux')


```
curve_x = np.asarray([t for t in bjd if 54.2+2.4549e6 < t < 54.5+2.4549e6])
f y1 = interpolate.interp1d(bjd, pdcsap fluxes contsub)
f_y2 = interpolate.interp1d(bjd2, pdcsap_fluxes_contsub)
f_y3 = interpolate.interp1d(bjd3, pdcsap_fluxes_contsub)
f_y4 = interpolate.interp1d(bjd4, pdcsap_fluxes_contsub)
curve_y1 = f_y1(curve_x)
curve_y2 = f_y2(curve_x)
curve y3 = f y3(curve x)
curve_y4 = f_y4(curve_x)
all curves = np.vstack((curve y1, curve y2, curve y3, curve y4))
mean curve y = np.nanmean(all curves, axis=0)
#now we need to make a composite template curve with the average dip at each the
#since we will be interpolating outside of original range (bjd), need a fill ve
#points, send it to O(see graph)
oringinal range = bjd
curve_x1 = curve_x
curve x2 = curve x1 + 2.205
curve x3 = curve x1 + (2.205*2)
curve x4 = curve x1 + (2.205*3)
f_mean1 = interpolate.interp1d(curve_x1, mean_curve_y, bounds_error=False, fil
f_mean2 = interpolate.interp1d(curve_x2, mean_curve_y, bounds_error=False, fil
f_mean3 = interpolate.interp1d(curve_x3, mean_curve_y, bounds_error=False, fill
f mean4 = interpolate.interp1d(curve x4, mean curve y, bounds error=False, fil
curve_mean1 = f_mean1(bjd)
curve mean2 = f mean2(bjd)
curve_mean3 = f_mean3(bjd)
curve\_mean4 = f\_mean4(bjd)
#now add them together to make composite (this works bc everything except trans
template = np.sum((curve mean1, curve mean2, curve mean3, curve mean4), axis=0
plt.figure(figsize=(15,7))
plt.plot(bjd, pdcsap_fluxes_contsub, '-b', label='PDCSAP Flux (continuum subtraplt.plot(bjd, masked_ydata_contsub, '-r', label='transits masked (continuum sul
plt.plot(bjd, template, '-k', ls='--', label='transit template')
plt.legend()
#great, composite looks good (again, not exact because things are just shifted
#was your estimate. will work for now. in the future can be more rigorous with
#but that will take a lot more python/curve_fit)
#remember to ignore that last transit since it was not completed
/var/folders/m2/1q4yxt715m54blcw4245j4ch0000qn/T/ipykernel 96087/852644289.py:
40: UserWarning:
linestyle is redundantly defined by the 'linestyle' keyword argument and the f
mt string "-k" (-> linestyle='-'). The keyword argument will take precedence.
```

Out[51]: <matplotlib.legend.Legend at 0x7fab8a34a850>

In [367... plt.figure(figsize=(15,7))
#plt.plot(bjd, pdcsap_fluxes_contsub, '-b', label='PDCSAP Flux (continuum subtiplt.plot(bjd, masked_ydata_contsub, '-r', label='transits masked (continuum sulplt.plot(bjd, template, '-k', ls='--', label='transit template')
plt.legend()

plt.ylim(-200, 200)
plt.xlim(56.5+time_diff, 60.5+time_diff)

/var/folders/m2/1g4yxt715m54blcw4245j4ch0000gn/T/ipykernel_86263/3209319169.p
y:4: UserWarning:

linestyle is redundantly defined by the 'linestyle' keyword argument and the f mt string "-k" (-> linestyle='-'). The keyword argument will take precedence.

Out[367]: (2454956.5, 2454960.5)

In [368... #LHW: #subtract off two curves #subtract off the template from the original light curve ---> residual

```
residual = pdcsap_fluxes_contsub - template
plt.figure(figsize=(15,7))
plt.plot(bjd, residual, '-r', lw=0.75, label='residual')
plt.plot(bjd, gaussian_filter1d(residual, 1), color='k', label='smoothed')
plt.legend()
plt.ylim(-1000, 1000)

#again, ignore that last dip, from unfit transit
```

Out[368]: (-1000.0, 1000.0)


```
In [369... #subtract off the template from the original light curve --> residual
    residual = pdcsap_fluxes_contsub - template
    plt.figure(figsize=(15,7))
    plt.plot(bjd, residual, '-r', lw=0.75, label='residual')
    plt.plot(bjd, gaussian_filter1d(residual, 1), color='k', label='smoothed')
    plt.legend()
    plt.ylim(-1000, 1000)

plt.xlim(59+2.4549e6, 61+2.4549e6)
#again, ignore that last dip, from unfit transit
```

Out[369]: (2454959.0, 2454961.0)

In [271...

Plotting a Less Hot Planet to View Differences in Secondary Eclipses

Kepler 7b

```
kep7 = fits.open("Data/kplr-7.fits")
In [103...
          object_name = kep7[0].header['OBJECT']
          kep7.info()
          print(object_name)
          Filename: Data/kplr-7.fits
         No.
                 Name
                           Ver
                                             Cards
                                                     Dimensions
                                                                   Format
                                   Type
               PRIMARY
                             1 PrimaryHDU
                                                58
                                                                    [D, E, J, E, E, E, E,
                             1 BinTableHDU
                                               161
                                                     4375R x 20C
            1 LIGHTCURVE
          E, E, J, D, E, D, E, D, E, E, E, E]
                                                     (6, 6)
            2 APERTURE
                             1 ImageHDU
                                                               int32
          KIC 5780885
          datatext = kep7[1].data
In [104...
          data = Table(datatext)
          data[:5]
```

Out[104]: Table length=5

```
TIME
                      TIMECORR CADENCENO SAP_FLUX SAP_FLUX_ERR SAP_BKG SAP_
                         float32
                                       int32
           float64
                                                float32
                                                                float32
                                                                          float32
630.1750905090666
                    0.002585089
                                      25509
                                               99404.48
                                                              8.732295 1402.6284
                                                                                     0.
630.1955235005662  0.0025843806
                                       25510
                                               99406.94
                                                              8.732274 1400.8407
                                                                                     0
630.2159563918249 0.0025836718
                                       25511
                                              99421.414
                                                              8.732852 1401.8455
630.2363893826259 0.0025829626
                                       25512
                                                99425.9
                                                              8.732966 1401.2278
630.2568221734255 0.0025822534
                                       25513
                                               99439.91
                                                              8.733522 1402.0792
                                                                                     0.
```

```
In [107... #extracting the times
bjd = times + fi + ff

# original plot
plt.figure(figsize=(15,7))
original = plt.plot(bjd, (pdcsap_fluxes), '-b', label='PDCSAP Flux') #corrected
plt.title('Kepler-7 b Light Curve')
plt.xlabel('Time (days)')
plt.ylabel('Flux (electrons/second)')
#plt.xlim(480+2.455e6, 520+2.455e6)
plt.legend()
plt.show()
```



```
In [108...
          #times
          bjd2 = bjd - 4.9
          bid3 = bid2 - 4.9
          bid4 = bid3 - 4.9
          curve x = [t \text{ for } t \text{ in bjd if } 65.0+2.4554e6 < t < 66.0+2.4554e6]
          #are these numbers hard coded, analyze how i can do this computationally
          f_y1 = interpolate.interp1d(bjd, pdcsap_fluxes)
          f_y2 = interpolate.interp1d(bjd2, pdcsap_fluxes)
          f_y3 = interpolate.interp1d(bjd3, pdcsap_fluxes)
          #f y4 = interpolate.interpld(bjd4, pdcsap fluxes)
          curve_y1 = f_y1(curve_x)
          curve_y2 = f_y2(curve_x)
          curve_y3 = f_y3(curve_x)
          \#curve\ y4 = f\ y4(curve\ x)
          all curves = np.vstack((curve y1, curve y2, curve y3))#, curve y4))
          mean_curve_y = np.nanmean(all_curves, axis=0)
```

```
In [109... plt.figure(figsize=(15,7))

plt.plot(bjd, pdcsap_fluxes, '-b', label='PDCSAP Flux') #corrected flux
plt.plot(bjd2, pdcsap_fluxes, '-r')
plt.plot(bjd3, pdcsap_fluxes, '-g')
plt.plot(bjd4, pdcsap_fluxes, 'lightblue')
plt.plot(curve_x, mean_curve_y, '-k', ls='--', label='average')

plt.xlim((465+2.455e6), (466.2+2.455e6))
#plt.xlim(460+2.4550000000e6, 480+2.4550000000e6)
plt.title('Kepler-7 b Light Curve, Layered')
plt.xlabel('Time (days)')
plt.ylabel('Flux (electrons/second)')
plt.legend()
plt.show()
```

/var/folders/m2/1g4yxt715m54blcw4245j4ch0000gn/T/ipykernel_96087/1488917385.p y:7: UserWarning:

linestyle is redundantly defined by the 'linestyle' keyword argument and the f mt string "-k" (-> linestyle='-'). The keyword argument will take precedence.


```
In [110... plt.figure(figsize=(15,7))
    plt.plot(curve_x, mean_curve_y, '-k', ls='--', label='average')

    plt.xlim((465.15+2.455e6), (466+2.455e6))
    #plt.xlim(460+2.4550000000e6, 480+2.45500000000e6)
    plt.title('Kepler-7 b Light Curve Average')
    plt.xlabel('Time (days)')
    plt.ylabel('Flux (electrons/second)')
    plt.legend()
    plt.show()
```

/var/folders/m2/1g4yxt715m54blcw4245j4ch0000gn/T/ipykernel_96087/3922574468.p y:2: UserWarning:

linestyle is redundantly defined by the 'linestyle' keyword argument and the f mt string "-k" (-> linestyle='-'). The keyword argument will take precedence.


```
In [111...
         #replicate the average
In [112...
         #times
          bjd2 = bjd - 4.9
          bjd3 = bjd2 - 4.9
          bid4 = bid3 - 4.9
          curve x = [t \text{ for } t \text{ in } b]d \text{ if } 64.0+2.4554e6 < t < 72.0+2.4554e6]
          #are these numbers hard coded, analyze how i can do this computationally
          f_y1 = interpolate.interp1d(bjd, pdcsap_fluxes)
          f_y2 = interpolate.interp1d(bjd2, pdcsap_fluxes)
          f y3 = interpolate.interp1d(bjd3, pdcsap fluxes)
          #f_y4 = interpolate.interp1d(bjd4, pdcsap_fluxes)
          curve_y1 = f_y1(curve_x)
          curve y2 = f y2(curve x)
          curve_y3 = f_y3(curve_x)
          \#curve\ y4 = f\ y4(curve\ x)
          all_curves = np.vstack((curve_y1, curve_y2, curve_y3))#, curve_y4))
          mean_curve_y = np.nanmean(all_curves, axis=0)
          plt.figure(figsize=(15,7))
          plt.plot(bjd, pdcsap_fluxes, '-b', label='PDCSAP Flux') #corrected flux
          plt.plot(bjd2, pdcsap_fluxes, '-r')
          plt.plot(bjd3, pdcsap_fluxes, '-g')
          plt.plot(bjd4, pdcsap_fluxes, 'lightblue')
          plt.plot(curve_x, mean_curve_y, '-k', ls='--', label='average')
          plt.xlim((460+2.455e6), (480+2.455e6))
          #plt.xlim(460+2.45500000000e6, 480+2.4550000000e6)
          plt.title('Kepler-7 b Light Curve, Layered')
          plt.xlabel('Time (days)')
          plt.ylabel('Flux (electrons/second)')
          plt.legend()
          plt.show()
```

/var/folders/m2/1g4yxt715m54blcw4245j4ch0000gn/T/ipykernel_96087/2601852933.p
y:28: UserWarning:

linestyle is redundantly defined by the 'linestyle' keyword argument and the f mt string "-k" (-> linestyle='-'). The keyword argument will take precedence.


```
In [113... plt.figure(figsize=(15,7))
    plt.plot(curve_x, mean_curve_y, '-k', label='average')

#plt.xlim((465.15+2.455e6), (466+2.455e6))
#plt.xlim(460+2.4550000000e6, 480+2.45500000000e6)
plt.title('Kepler-7 b Light Curve Average')
plt.xlabel('Time (days)')
plt.ylabel('Flux (electrons/second)')
plt.legend()
plt.show()
```



```
In [114... fig = go.Figure()
    original = fig.add_trace(go.Scatter(x = curve_x, y = mean_curve_y, name="Original fig.update_layout(title = 'Kepler Light Curve',
```

Data Analysis

```
In [115... #creating a duplicate dataframe that contains the reduced light curve
  reduced = pd.DataFrame((zip(bjd, pdcsap_fluxes)))
  reduced.columns = ['Time', 'Flux'] #renaming columns
  reduced.dropna() #removing nan values
  reduced.head()
```

Out[115]:		Time	Flux
	0	2.455463e+06	NaN
	1	2.455463e+06	105658.898438
	2	2.455463e+06	105676.984375
	3	2.455463e+06	105677.101562
	4	2.455463e+06	105684.304688

```
#LHW:
In [116...
         #get and fit a continuum level to the data
         #transits 2.205 apart (from above...keep in mind this is estimate)
         #first dip appears at x\sim2454954.365, mask out +/-0.300
         #mask out each dip (4)
         dif = 4.9
         masked_ydata = []
         for x, y in zip(bjd, pdcsap_fluxes):
              if 2455465.2 < x < 2455465.8:
                  masked ydata.append(np.nan)
                  continue
              if 2455465.2+dif < x < 2455465.8+dif:
                  masked ydata.append(np.nan)
                  continue
              if 2455465.2+(dif*2) < x < 2455465.8+(dif*2):
                  masked ydata.append(np.nan)
                  continue
              if 2455465.2+(dif*3) < x < 2455465.8+(dif*3):
                  masked ydata.append(np.nan)
                  continue
              if 2455465.2+(dif*4) < x < 2455465.8+(dif*4):
                  masked_ydata.append(np.nan)
                  continue
              masked ydata.append(y)
         masked ydata = np.asarray(masked ydata)
         masked xdata2 = [b for b, myd in zip(bjd, masked ydata) if np.isnan(myd)==False
         masked ydata2 = [myd for b, myd in zip(bjd, masked ydata) if np.isnan(myd)==Fa
         spl = UnivariateSpline(masked_xdata2, masked_ydata2, s=1,k=1)
         spline = spl(bjd)
         continuum = np.asarray(gaussian filter1d(spline, 50))
         plt.figure(figsize=(15,7))
         plt.plot(bjd, pdcsap_fluxes, '-b', label='PDCSAP Flux')
         plt.plot(bjd, masked_ydata, '-r', label='transits masked')
         plt.plot(bjd, continuum, 'k', ls='--', label='continuum fit')
         plt.title("Primary Eclipse v Secondary Eclipse")
         plt.xlim((463.5+2.455e6), (480+2.455e6))
         plt.legend()
```

Out[116]: <matplotlib.legend.Legend at 0x7fab91fb7910>


```
In [117... plt.figure(figsize=(15,7))
    plt.xlim((463.5+2.455e6), (480+2.455e6))
    plt.title("Zoom in on Secondary Eclipse")

plt.plot(bjd, masked_ydata, '-r', label='transits masked')
    plt.plot(bjd, continuum, 'k', ls='--', label='continuum fit')
    plt.legend()
```

Out[117]: <matplotlib.legend.Legend at 0x7fab91f85dc0>


```
#LHW:
#subtract off continuum, fit not too bad. will work for now

pdcsap_fluxes_contsub = pdcsap_fluxes - continuum
masked_ydata_contsub = masked_ydata - continuum
plt.figure(figsize=(15,7))
plt.plot(bjd, pdcsap_fluxes_contsub, '-b', label='PDCSAP Flux (continuum subtraplt.plot(bjd, masked_ydata_contsub, '-r', label='transits masked (continuum sul plt.axhline(y=0, color='k', ls='--')
```

```
plt.legend()
plt.xlim((463.5+2.455e6), (480+2.455e6))
plt.title("Light Curve with Continuum Substracted")
plt.xlabel("Flux")
```

Out[118]: Text(0.5, 0, 'Flux')


```
In [119... pdcsap_fluxes_contsub = pdcsap_fluxes - continuum
    masked_ydata_contsub = masked_ydata - continuum
    plt.figure(figsize=(15,7))
    plt.plot(bjd, pdcsap_fluxes_contsub, '-b', label='PDCSAP Flux (continuum subtraplt.plot(bjd, masked_ydata_contsub, '-r', label='transits masked (continuum sulplt.axhline(y=0, color='k', ls='--')
    plt.legend()
    plt.xlim((465.5+2.455e6), (470.5+2.455e6))
    plt.xlabel("Flux")

plt.ylim(-300, 300)

plt.title("Zoomed in Light Curve")
    plt.xlabel("Flux")
```

Out[119]: Text(0.5, 0, 'Flux')


```
In [120... pdcsap_fluxes_contsub = pdcsap_fluxes - continuum
    masked_ydata_contsub = masked_ydata - continuum
    plt.figure(figsize=(15,7))
    plt.plot(bjd, pdcsap_fluxes_contsub, '-b', label='PDCSAP Flux (continuum subtraplt.plot(bjd, masked_ydata_contsub, '-r', label='transits masked (continuum sul plt.axhline(y=0, color='k', ls='--')
    plt.legend()
    plt.xlabel("Flux")

plt.xlim((465.5+2.455e6), (475.5+2.455e6))
    plt.ylim(-300, 300)

plt.title("Zoomed in Light Curve")
    plt.xlabel("Flux")
```

Out[120]: Text(0.5, 0, 'Flux')

In []: