

Neuro#: A Distribution Tailored Model Counter

Pashootan Vaezipoor † Gil Lederman II Yuhuai Wu †† Chris J. Maddison †† Roger Grosse †† Sanjit A. Seshia II Fahiem Bacchus †

Berkeley

†Dept of Computer Science, University of Toronto ^{II}Department of Electrical Engineering and Computer Sciences, UC Berkeley [‡]Vector Institute [†]{pashootan, ywu, cmaddis, rgrosse, fbacchus}@cs.toronto.edu, ^{II}{gilled, sseshia}@eecs.berkeley.edu

Abstract

We present Neuro#, an approach for learning branching heuristics to improve the performance of the exact model counter SharpSAT on instances from a given family of problems. Propositional model counting, or #SAT, is the problem of computing the number of satisfying assignments of a Boolean formula. Many problems from different application areas can be translated into model counting problems to be solved by #SAT solvers, such as SharpSAT, are often not scalable to industrial size instances. We experimentally show that Neuro# solves similarly distributed held-out instances in fewer steps and generalizes to much larger instances from the same problem family. In addition to step count improvements, Neuro# can achieve orders of magnitude wall-clock speedups over SharpSAT on larger instances in certain problem families, despite the runtime overhead of querying the learnt model.

Background

The #SAT problem for a propositional Boolean formula ϕ in *Conjunctive Normal Form* (CNF) is to compute the number of *satisfying assignments*.

Components

Let $\mathcal{L}(\phi)$ (resp. $\mathcal{C}(\phi)$) be the set of literals (resp. clauses) of ϕ . Two sets of clauses are called *disjoint* if they share no variables. A component $C \subset \mathcal{C}(\phi)$ is a subset of ϕ 's clauses that is disjoint from its complement $\mathcal{C}(\phi) - C$. A formula ϕ can be efficiently broken up into a maximal number of disjoint components C_1, \ldots, C_k . Each component can be solved separately and their counts multiplied:

$$COUNT(\phi) = \prod_{i=1}^{k} COUNT(C_i)$$

SharpSAT

SharpSAT is a modern exact #SAT solvers that is based on DPLL algorithm that's augmented with *clause learning* and *component caching*:

Algorithm 1 Component Caching DPLL

- 1: **function** #DPLLCACHE(ϕ)
- 2: **if** INCACHE(ϕ) **return** CACHELOOKUP(ϕ)
- Pick a literal $\ell \in \mathcal{L}(\phi) \triangleright$ We replace VSADS heuristic here
- 4: $\#\ell = \text{COUNTSIDE}(\phi, \ell)$
- 5: $\#\neg \ell = \text{COUNTSIDE}(\phi, \neg \ell)$
- 6: ADDTOCACHE(ϕ , # ℓ + # $\neg \ell$)
- 7: **return** #ℓ + #¬ℓ
- 8: end function
- 9: **function** COUNTSIDE(ϕ , ℓ)
- 10: $\phi_{\ell} = \text{UnitPropagate}(\phi, \ell)$
- : **if** ϕ_ℓ contains an empty clause **return** 0
- 12: **if** ϕ_ℓ contains no clauses **then**
- k = # of unset variables
- 14: return 2^k
- 5: **end if**
- 16: $K = \text{FINDCOMPONENTS}(\phi_{\ell})$
- return $\prod_{\kappa \in K} \#DPLLCACHE(\kappa)$
- 18: end function

SharpSAT's default heuristic for variable branching is VSADS. We try to learn a better heuristic.

Literal-Clause Incident Graph (LIG)

A formula ϕ or component C_i can be represented by *literal-clause* incidence graph (LIG). The LIG of formula $(x_1 \lor \neg x_4) \land (\neg x_1 \lor \neg x_2) \land (x_3 \lor x_5)$ and its components can be shown as:

Neuro#

#SAT as an MDP

We formalize the heuristic search for SharpSAT as a *Markov Decision Process* (MDP):

- S: At each branching steps t the agent observes state s_t , consisting of the LIG of the component ϕ_t .
- \mathcal{A} : The agent performs an action from $\mathcal{A}_t = \{l | l \in \mathcal{L}(\phi_t)\}$, where $\mathcal{L}(\phi)$ is the set of literals of ϕ .
- \mathcal{R} : The objective is to *reduce the number of branching decisions*, so the agent receives the reward of:

$$R(s) = \begin{cases} 1 & s \text{ is a terminal state with "instance solved",} \\ -10^{-4} & otherwise \end{cases}$$

LIG as a Graph Neural Network (GNN)

At each step t we utilize a GNN to vectorize the LIG G = (V, E) of a component ϕ_t . The initial vector representation is denoted by $h_c^{(0)}$ for each clause vertex c and $h_l^{(0)}$ for each literal vertex l in G. We run the following message passing steps iteratively:

Literal to Clause:
$$h_c^{(k+1)} = \mathcal{A}\Big(h_c^{(k)}, \sum_{l \in c} [h_l^{(k)}, h_{\bar{l}}^{(k)}]; W_C^{(k)}\Big), \quad \forall c \in C,$$
 Clause to Literal: $h_l^{(k+1)} = \mathcal{A}\Big(h_l^{(k)}, \sum_{c,l \in c} h_c^{(k)}; W_L^{(k)}\Big), \quad \forall l \in L,$

where \mathcal{A} is a nonlinear aggregation function, parameterized by $W_C^{(k)}$ and $W_L^{(k)}$ for clause and literal aggregation. After K iterations we pass each literal representation through a policy network (MLP), to obtain a score, and we choose the literal with the highest score to branch on.

Training

Problem 1: The size of action space $|A_t|$ and the episode horizon gets quite large.

Solution: Replace an *action-space* exploration algorithm RL like Policy Gradient with a *parameter-space* exploration technique like *Evolution Strategies*.

Problem 2: Directly training the model on challenging problems is computationally infeasible.

Solution: Train on small instances of a problem (fast rollouts) and rely on generalization to solve the more challenging instances from the same problem domain.

Experiments

- 1. **I.I.D Generalization:** A model trained on instances from a given distribution can generalize to unseen instances of the same distribution.
- 2. **Upward Generalization:** A model trained on small instances can generalize directly on larger instances of the same problem family.

Upwards Generalization

Dataset	# var	s # cla	uses Random	SharpS	Neuro#
sudoku(16, 105)	1k	31k	7,654	2,373	2,300 (1.03x)
n-queens(12, 20)	144	2.6k	31,728	12,372	6,272 (1.9x)
sha-1(40)	5k	25k	15k	387	83 (4.6x)
island(2,8)	1.5k	73.5k	1,335	193	46 (4.1x)
cell(9, 40, 40)	820	4k	39,000	53,349	42,325 (1.2x)
cell(35, 192, 128)	12k	49k	36,186	21,166	1,668 (12.5x)
cell(35, 256, 200)	25k	102k	41,589	26,460	2,625 (10x)
cell(35, 348, 280)	48k	195k	54,113	33,820	2,938 (11.5x)
cell(49, 192, 128)	12k	49k	35,957	24,992	1,829 (13.6x)
cell(49, 256, 200)	25k	102k	47,341	30,817	2,276 (13.5x)
cell(49, 348, 280)	48k	195k	53,779	37,345	2,671 (13.9x)
grid_wrld(10, 10)	740	2k	22,054	13,661	367 (37x)
grid_wrld(10, 12)	2k	6k	100k≤	93,093	1,320 (71x)
grid_wrld(10, 14)	2k	7k	100k≤	100k≤	2,234 (-)
grid_wrld(12, 14)	2k	8k	100k≤	100k≤	2,782 (-)
bv_expr(7, 4, 12)	187	474	35,229	5,865	2,139 (2.7x)
it_expr(2,4)	162	510	51,375	7,894	2,635 (3x)

I.I.D Generalization

Dataset	# var	s _{# clause}	Random	Sharp	SAT Neuro#
sudoku(9,25)	182	3k	338	220	195(1.1x)
n-queens(10, 20)	100	1.5k	981	466	261(1.7x)
sha-1(28)	3k	13.5k	2,911	52	24(2.1x)
island(2,5)	1k	34k	155	86	30(1.8x)
cell(9, 20, 20)	210	1k	957	370	184(2.0x)
cell(35, 128, 110)	6k	25k	867	353	198(1.8x)
cell(49, 128, 110)	6k	25k	843	338	206(1.6x)
$grid_wrld(10,5)$	329	967	220	195	66(3.0x)
$bv_expr(5,4,8)$	90	220	1,316	328	205(1.6x)
it_expr(2, 2)	82	264	772	412	266(1.5x)

Wall-Clock Improvement

Given the scale of improvements on the upward generalization benchmark, in particular cell(49) and grid_wrld, we measured the runtime of Neuro# vs. SharpSAT on those datasets:

Cactus plots comparing Neuro# to SharpSAT on cell and grid_wrld. Lower and to the right is better: for any point Fig. 1: t on the y axis, the plot shows the number of benchmark problems that are individually solvable by the solver, within t steps (top) and seconds (bottom).