EP 1 413 331 A2

EUROPEAN PATENT APPLICATION

(43) Date of publication:

(12)

(51) Int Cl.7: **A61P 9/00**, A61K 31/397 // (A61K31/397, 31:215)

28.04.2004 Bulletin 2004/18
(21) Application number: 04000161.2

(22) Date of filing: 25.01.2002

(84) Designated Contracting States:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU

MC NL PT SE TR

Designated Extension States: AL LT LV MK RO SI

(30) Priority: 26.01.2001 US 264396 P 21.09.2001 US 323839 P

(62) Document number(s) of the earlier application(s) in accordance with Art. 76 EPC: 02714773.5 / 1 353 696

(71) Applicant: SCHERING CORPORATION Kenllworth, New Jersey 07033-0530 (US)

(72) Inventors:

 Kosoglou, Teddy Jamison PA 18929-1178 (US)

- · Davis, Harry R.
- Berkeley Heights NJ 07922 (US)
- Picard, Gilles Jean Bernard 1420 Braine L'Alleud (BE)

(11)

- Cho, Wing-Kee Philip
- Princeton NJ 08540 (US)
- (74) Representative: HOFFMANN EITLE Patent- und Rechtsanwälte Arabellastrasse 4 81925 München (DE)

Remarks:

This application was filed on 07/01/2004 as a divisional application to the application mentioned under INID code 62.

- (54) Combinations of peroxisome proliferator-activated receptor (PPAR) activator(s) and sterol absorption inhibitor(s) for vascular indications
- (57) The present invention relates to compositions comprising at least one peroxisome proliferator-activated receptor activator and at least one sterol absorption inhibitor with a specific structure.

Description

10

15

CROSS-REFERENCE TO RELATED APPLICATION

5 (0001) This application claims the benefit of priority from U.S. Provisional Patent Application Serial No. 60/264,396 filled January 26, 2001 and U.S. Provisional Patent Application Serial No. 60/323,839 filled September 21, 2001, each incorporated herein by reference.

FIELD OF THE INVENTION

[0002] The present invention relates to compositions and therapeutic combinations comprising peroxisome proliferator-activated receptor (PFAP) activator(s) and certain sterol absorption inhibitor(s) for treating vascular and lipidirect conditions such as are associated with atherosclerosis, hypercholesterolemia and other vascular conditions in mamorations.

BACKGROUND OF THE INVENTION

[0003] Atheroscierotic coronary heart disease (CHD) represents the major cause for death and vascular morbidity in the western world. Risk factors for atheroscierotic coronary heart disease include hypertension, diabetes mellitus, family history, male gender, cigarette smoke and serum cholesterol. A total cholesterol level in excess of 225-250 mg/dl is associated with significant elevation of risk of CHD.

[0004] Cholesteryl esters are a major component of atherosclerotic lesions and the major storage form of cholesterol in arterial wall colls. Formation of cholesteryl esters is also a sup in the intestinal absorption of detary cholesterol. Thus, inhibition of cholesteryl ester formation and reduction of serum cholesterol can inhibit the progression of atherosclerotic lesion formation, decrease the accumulation of cholesteryl esters in the arterial wall, and block the intestinal absorption of delary cholesterol.

[0005] The regulation of whole-body cholesterol homeostasis in mammals and animals involves the regulation of detary cholesterol and modulation of cholesterol biosynthesis, bile acid biosynthesis and the catabolism of the cholesterol-bonitaning plasma lipoproteins. The liver is the major organ responsible for cholesterol biosynthesis and catabolism and, for this reason, it is a prime determinant of plasma cholesterol levels. The liver is the site of synthesis and secretion of very low density lipoproteins (VLDL) which are subsequently metabolized to low density lipoproteins (LDL) in the circulation. LDL are the predominant cholesterol-carnying lipoproteins in the plasma and an increase in their concentration is correlated with increased atherosclerosis. When intestinal cholesterol absorption is reduced, by whatever means, less cholesterol is delivered to the liver. The consequence of this action is decreased hepatic lipoprotein (VLDL) production and an increase in the hepatic clearance of plasma cholesterol levels.

The interval of the plasma and the plasma cholesterol levels.

[0006] Fibric acid derivatives ("fibrates"), such as fenofibrate, gemfibrazi and clofibrate, have been used to lower triglycerides, moderately lower LDL levels and increase HDL levels. Fibric acid derivatives are also known to be per-oxisome profiferator-activated receptor albha activators.

0007] U.S. Patents Nos. 5,767,115, 5,624,920, 5,686,990, 5,686,624 and 5,686,787, respectively, disclose hydroxy-substituted azetidinone compounds and substituted β-lactam compounds useful for lowering cholesterol and/or in inhibiting the formation of cholesterol-containing lesions in mammalian arterial walls. U.S. Patents Nos. 5,846,966 and 5,861,145, respectively, disclose hydroxy-substituted azetidinone compounds or substituted β-lactam compounds in combination with HMG CoA reductase inhibitors for preventing or treating atherosclerosis and reducing plasma cholesterol (evols.

[0008] PCT Patent Application No. WO 00/38/25 discloses cardiovascular therapeutic combinations including an ileal bile acid transport inhibitor or cholesteryl ester transport protein inhibitor in combination with a fibric acid derivative, nicotinic acid derivative, microsomal trigityceride transfer protein inhibitor, cholesterol absorption antagonist, phytosterol, stanol, antihypertensive agent or bile acid sequestrant.

[0009] U.S. Patent No. 5,698,527 discloses ergostanone derivatives substituted with disaccharides as cholesterol absorption inhibitors, employed alone or in combination with certain other cholesterol lowering agents, which are useful in the treatment of hypercholesterolemia and related disorders.

[0010] Despite recent improvements in the treatment of vascular disease, there remains a need in the art for improved compositions and treatments for hyperlipidaemia, atherosclerosis and other vascular conditions.

SUMMARY OF THE INVENTION

55

[0011] In one embodiment, the present invention provides a composition comprising; (a) at least one peroxisome

proliferator-activated receptor activator; and (b) at least one sterol absorption inhibitor represented by Formula (I):

$$Ar^{1}-X_{m}-\{C\}_{q}-Y_{n}-\{C\}_{r}-Z_{p}\}$$

$$R^{1}$$

$$R^{1}$$

$$R^{3}$$

$$Ar^{3}$$

$$Ar^{2}$$
(I)

or isomers thereof, or pharmaceutically acceptable salts or solvates of the compounds of Formula (I) or of the isomers thereof, or prodrugs of the compounds of Formula (I) or of the isomers, salts or solvates thereof, wherein in Formula (I) above:

Ar¹ and Ar² are independently selected from the group consisting of aryl and R⁴-substituted aryl; Ar³ is aryl or R⁵-substituted aryl;

X, Y and Z are independently selected from the group consisting of -CH₂-, -CH(lower alkyl)- and -C(dilower alkyl)-R and R² are independently selected from the group consisting of -OR\$, -O(CO)R\$, -O(CO)OR\$ and -O(CO)NR\$R7; R¹ and R³ are independently selected from the group consisting of hydrogen, lower alkyl and aryl; g is 0 or 1:

25 ris 0 or 1;

20

30

35

45

50

55

R⁵ is 1-5 substituents independently selected from the group consisting of -OR6, -O(CO)R⁶, -O(CO)OR⁶, -O(CH₂)_{1,4}OR⁶, -O(CO)NR⁶R⁷, -NR⁶R⁷, -NR⁶(CO)R⁷, -NR⁶(CO)OR⁸, -NR⁶(CO)NR⁷R⁶, -NR⁶SO₂R⁶, -COOR⁶, -COOR⁶, -SO₂NR⁶R⁷, S(O)_{0,2}R⁶, -O(CH₂)₁₋₁₀-COOR⁶, -O(CH₂)₁₋₁₀CONR⁶R⁷, -(lower alkylene)COOR⁶ and -CH-EOH-COOR⁶.

 R^{θ} , R^{γ} and R^{θ} are independently selected from the group consisting of hydrogen, lower alkyl, aryl and aryl-substituted lower alkyl; and

R9 is lower alkyl, aryl or aryl-substituted lower alkyl.

49 [0012] In another embodiment, there is provided a composition comprising: (a) at least one fibric acid derivative; and (b) a compound represented by Formula (II) below:

or pharmaceutically acceptable salt or solvate thereof, or prodrug of the compound of Formula (II) or of the salt or

solvate thereof.

5

10

15

20

25

30

35

40

45

50

55

[0013] In another embodiment, the present invention provides a composition comprising: (a) at least one peroxisome proliferator-activated receptor activator; and (b) at least one sterol absorption inhibitor represented by Formula (III):

$$Ar^{1}-A-Y = \begin{pmatrix} R^{1} \\ \dot{C}-Z_{p} \\ R^{2} \end{pmatrix} Ar^{3}$$

$$Ar^{2}$$
(III)

or isomers thereof, or pharmaceutically acceptable salts or solvates of the compounds of Formula (III) or of the isomers thereof, or prodrugs of the compounds of Formula (III) or of the isomers, salts or solvates thereof, wherein, in Formula (III) above:

Ar1 is R3-substituted aryl; Ar2 is R4-substituted aryl; Ar3 is R5-substituted aryl;

Y and Z are independently selected from the group consisting of -CH₂-, -CH(lower alkyl)- and -C(dilower alkyl)-; A is selected from -O-, -S-, -S(O)- or -S(O)₀-;

R1 is selected from the group consisting of OR6, -O(CO)R6, -O(CO)OR9 and -O(CO)NR6R7; R2 is selected from the group consisting of hydrogen, lower alkyl and aryl; or R1 and R2 together are =O;

q is 1, 2 or 3;

p is 0, 1, 2, 3 or 4;

R⁵ is 1-3 substituents independently selected from the group consisting of -OR⁶, -O(CO)R⁶, -O(CO)R⁶, -O(CO)R⁶, -O(CO)NR⁶R⁷, -NR⁶(CO)R⁷, -NR⁶(CO)R⁷, -NR⁶(CO)R⁷, -NR⁶(CO)R⁷, -NR⁶(CO)R⁷, -O(CH₂)₁₋₁₀ COOR⁶, -O(COOR⁶)

R³ and R⁴ are independently 1-3 substituents independently selected from the group consisting of R⁵, hydrogen, p-lower alkyl, aryl, -NO₃, -CF₂ and p-halogeno;

R⁶, R⁷ and R⁸ are independently selected from the group consisting of hydrogen, lower alkyl, aryl and aryl-substituted lower alkyl; and

R9 is lower alkyl, aryl or aryl-substituted lower alkyl.

[0014] In another embodiment, the present invention provides a composition comprising: (a) at least one peroxisome proliferator-activated receptor activator; and (b) at least one sterol absorption inhibitor represented by Formula (IV):

or isomers thereof, or pharmaceutically acceptable salts or solvates of the compounds of Formula (IV) or of the isomers thereof, or prodrugs of the compounds of Formula (IV) or of the isomers, salts or solvates thereof, wherein, in Formula (IV) above:

A is selected from the group consisting of R2-substituted heterocycloalkyl, R2-substituted heteroaryl, R2-substituted

(IV)

benzofused heterocycloalkyl, and R2-substituted benzofused heteroaryl;

Ar1 is aryl or R3-substituted aryl;

Ar2 is anyl or R4-substituted anyl;

Q is a bond or, with the 3-position ring carbon of the azetidinone, forms the spiro group

and

5

10

15

20

25

30

35

40

45

55

R1 is selected from the group consisting of:

-(CH₂)_a-, wherein q is 2-6, provided that when Q forms a spiro ring, q can also be zero or 1;

 $-(CH_2)_e^-$ -G- $(CH_2)_r^-$, wherein G is -O-, -C(O)-, phenylene, -NR⁸- or -S(O)₀₋₂-, e is 0-5 and r is 0-5, provided that the sum of e and r is 1-6:

-(C2-C6 alkenylene)-; and

-(CH₂)_e-V-(CH₂)_e-, wherein V is C₃-C₆ cycloalkylene, f is 1-5 and g is 0-5, provided that the sum of f and g is 1-6;

B5 is selected from:

 $-\overset{1}{C}H_{-}, -\overset{1}{C}(C_1-C_6 \text{ alkyl})_{-}, -\overset{1}{C}F_{-}, -\overset{1}{C}(OH)_{-}, -\overset{1}{C}(C_8H_4-R^9)_{-}, -\overset{1}{N}_{-}, \text{ or } -\overset{*}{N}O^* \ ;$

 \mathbb{R}^8 and \mathbb{R}^7 are independently selected from the group consisting of $-\mathbb{C} h_{2\gamma}^- \cdot \mathbb{C} H(C_1 - C_8 \operatorname{alky})_1 - \mathbb{C} (\operatorname{di}_1(C_1 - C_8) \operatorname{alky})_1 - \mathbb{C} H(-\mathbb{C} + \mathbb{C} + \mathbb{C}$

a and b are independently 0, 1, 2 or 3, provided both are not zero; provided that when R⁶ is -CH=CH- or -C(C₁-C₆ alkyl)=CH-, a is 1; provided that when R⁷ is -CH=CH- or -C(C₁-C₆ alkyl)=CH-, b is 1; provided that when a is 2 or 3, the R⁸s can be the same or different; and provided that when b is 2 or 3, the R⁷s can be the same or different; and when Q is a bond. R¹ also can be selected from:

where M is -O-, -S-, -S(O)- or -S(O)₂-;

X, Y and Z are independently selected from the group consisting of -CH₂-, -CH(C₁-C₆ alkyl)- and -C(di-(C₁-C₆) alkyl):

R10 and R12 are independently selected from the group consisting of -OR14, -O(CO)R14, -O(CO)OR16 and -O(CO)

R¹¹ and R¹³ are independently selected from the group consisting of hydrogen, (C₁-C₆)alkyl and aryl; or R¹⁰ and R¹¹ together are =0, or R¹² and R¹³ together are =0;

d is 1, 2 or 3; h is 0, 1, 2, 3 or 4;

s is 0 or 1; t is 0 or 1; m, n and p are independently 0-4; provided that at least one of s and t is 1, and the sum of m, n, p, s and t is 1-6; provided that when p is 0 and t is 1, the sum of m, s and n is 1-5; and provided that when p is 0 and s is 1, the sum of m, s and n is 1-5; and provided that when p is 0 and s is 1, the sum of m, t and n is 1-5.

v is 0 or 1;

i and k are independently 1-5, provided that the sum of i, k and v is 1-5;

 R^2 is 1-3 substituents on the ring carbon atoms selected from the group consisting of hydrogen, $(C_1 - C_{10})$ alkynyl, $(C_2 - C_{10})$ alkynyl, $(C_3 - C_{10})$ alkynyl, $(C_3 - C_{10})$ alkenyl, $(C_3 - C_{10})$ alkynyl, $(C_3 - C_{10})$ alkyl, $(C_3 - C_{10})$

and, where R² is a substituent on a substitutable ring nitrogen, it is hydrogen, (C₁-C₆)alkyl, aryl, (C₁-C₆)alkoxy, aryloxy, (C₁-C₆)alkylcarbonyl, aryloarbonyl, hydroxy, -(CH₆)_{1,0}CONR¹⁸R¹⁸.

wherein J is -O-, -NH-, -NR18- or -CH₂-;

5

10

15

20

25

30

35

40

45

50

55

 R^3 and R^4 are independently selected from the group consisting of 1-3 substituents independently selected from the group consisting of (G_1C_6) alkyl, $-OR^{16}$, $-O(CO)R^{16}$, $-O(CH_2)_{1-6}OR^{16}$, $-O(CH_2)_{1-6}OR^{16}$, $-O(CH_2)_{1-6}OR^{16}$, $-O(CH_2)_{1-6}OR^{16}$, $-O(CH_2)_{1-6}OR^{16}$, $-OCR^{16}$, -OCR

R8 is hydrogen, (C1-C6)alkyl, aryl (C1-C6)alkyl, -C(O)R14 or -COOR14;

R⁹ and R¹⁷ are independently 1-3 groups independently selected from the group consisting of hydrogen, (C₁-C₆) alkyl, (C₁-C₆)alkoxy, -COOH, NO₂, -NR¹⁴R¹⁵, OH and halogeno;

R14 and R15 are independently selected from the group consisting of hydrogen, (C₁-C₆)alkyl, aryl and aryl-substituted (C₁-C₆)alkyl;

R16 is (C1-C6)alkyl, aryl or R17-substituted aryl;

R18 is hydrogen or (C1-C6)alkyl; and

R19 is hydrogen, hydroxy or (C1-C6)alkoxy.

[0015] In another embodiment, the present invention provides a composition comprising: (a) at least one peroxisome proliferator-activated receptor activator; and (b) at least one sterol absorption inhibitor represented by Formula (V):

$$Ar^{1} \times_{m} \left(\bigcap_{R^{1}}^{r^{1}} Y_{n}^{S(O)_{r}} \right) Ar^{2}$$

(V)

or isomers thereof, or pharmaceutically acceptable salts or solvates of the compounds of Formula (V) or of the isomers thereof, or prodrugs of the compounds of Formula (V) or of the isomers, salts or solvates thereof, wherein, in Formula (V) above:

Ar¹ is aryl, R¹⁰-substituted aryl or heteroaryl; Ar² is aryl or R⁴-substituted aryl;

Ar3 is arvl or R5-substituted arvl:

X and Y are independently selected from the group consisting of $-CH_2$, -CH(lower alkyl)- and -C(dilower alkyl)-; R is $-OR^6$, $-O(CO)R^6$, $-O(CO)R^6$ or $-O(CO)NR^6R^7$; R¹ is hydrogen, lower alkylor anyl; or R and R¹ together are $-O(R^6)$ or $-O(R^6)$ or $-O(R^6)NR^6$; R¹ is hydrogen, lower alkylor anyl; or R and R¹ together are $-O(R^6)$ or $-O(R^$

r is 0, 1 or 2; m and n are independently 0, 1, 2, 3, 4 or 5; provided that the sum of m, n and g is 1, 2, 3, 4 or 5;

R⁴ is 1-5 substituents independently selected from the group consisting of lower alkyl, -OR⁶, -O(CO)R⁶, -O(CO)R⁶, -O(CO)R⁶, -O(CO)R⁶, -O(CO)R⁶, -O(R⁶, -O(CO)R⁶, -NR⁶(CO)R⁷, -NR⁶(CO)R⁷, -NR⁶(CO)R⁷, -NR⁶(CO)R⁶, -CONR⁶R⁷, -COR⁶, -SO₂NR⁶R⁷, S(O)₀₋₂R⁹, -O(CH₂)₁₋₁₀-COOR⁶, -O(CH₂)₁₋₁₀-CONR⁶R⁷, -(lower alkylene)COOR⁶ and -CH-CH-COOR⁶.

 R^5 is 1-5 substituents independently selected from the group consisting of -OR6, -O(CO)R6, -O(CO)OR9, -O (CH₂)₁₋₆OR6, -O(CO)R6R7, -NR6(CO)OR9, -NR6(CO)OR9, -NR6(CO)NR7R6, -NR6SO₂R9, -COOR6, -COOR6R7, -COR6, -SO₂NR6R7, S(O)₀₋₂R9, -O(CH₂)₁₋₁₀COOR6, -O(CH₂)₁₋₁₀CONR6R7, -CF₃. -CN. -NO₂, halogen, -(lower alkylene)COOR6 and -CH=-CH-COOR6,

R⁶, R⁷ and R⁹ are independently selected from the group consisting of hydrogen, lower alkyl, aryl and aryl-substituted lower alkyl:

R9 is lower alkyl, aryl or aryl-substituted lower alkyl; and

 R^{10} is 1-5 substituents independently selected from the group consisting of lower alkyl, -OR6, -O(CO)R6, -O(CO) OR8, -O(CH₂)₁₊₂OR6, -O(CO)NR6R7, -NR6R7, -NR6CO)R7, -NR6(CO)NR7, -NR6CO)NR7R8, -NR6SO₂R9, -OCOR6, -OON6R7, -COR6, -SO₂NR6R7, -SO(O₂R9, -O(CH₂)₁₋₁₀COOR6, -O(CH₂)₁₋₁₀CONR6R7, -CF₃, -CN, -NO₅ and halogen.

[0016] In another embodiment, the present invention provides a composition comprising: (a) at least one peroxisome proliferator-activated receptor activator; and (b) at least one sterol absorption inhibitor represented by Formula (VI):

or isomers thereof, or pharmaceutically acceptable salts or solvates of the compounds of Formula (VI) or of the isomers thereof, or prodrugs of the compounds of Formula (VI) or of the isomers, salts or solvates thereof, wherein in Formula (VI) above:

(VI)

R₁ is

5

10

15

20

25

30

35

40

45

50

55

$$- \overset{1}{C}H_{-}, -\overset{1}{C}(lower \, alkyl)_{-}, -\overset{1}{C}F_{-}, -\overset{1}{C}(OH)_{-}, -\overset{1}{C}(C_{6}H_{5})_{-}, -\overset{1}{C}(C_{6}H_{4}-R_{15})_{-}, \\ -\overset{1}{N}- \text{ or } -\overset{1}{N}O \; ;$$

 R_2 and R_3 are independently selected from the group consisting of: $-CH_2$, -CH(lower alkyl)-, -C(di-lower alkyl)-, -CH-(-CH-CH- and -C(lower alkyl)-EH-; or R_1 together with an adjacent R_2 , or R_1 together with an adjacent R_3 , form a -CH-CH- or a -CH- or a

u and v are independently 0, 1, 2 or 3, provided both are not zero; provided that when R_2 is -CH=CH- or -C(lower alky)=CH-, v is 1; provided that when R_3 is -CH=CH- or -C(lower alky)=CH-, u is 1; provided that when v is 2 or 3, the R_2 's can be the same or different; and provided that when u is 2 or 3, the R_3 's can be the same or different; R_3 is selected from B-(CH₂)_mC(O)-, wherein m is 0, 1, 2, 3, 4 or 5; B-(CH₂)_m, wherein q is 0, 1, 2, 3, 4, 5 or 6;

 $B_{-}(CH_{2})_{a}.Z_{-}(CH_{2})_{a}, \ \ wherein\ Z\ is -O_{--}C(O)-, phenylene, -N(R_{2})- or -S(O)_{b,2}-, e\ is 0, 1, 2, 3, 4 or 5 and r is 0, 1, 2, 3, 4 or 5 and r is 0, 1, 2, 3, 4 or 5 and r is 0, 1, 2, 3, 4 or 5 and r is 0, 1, 2, 3, 4, 5 or 6; B_{-}(C_{2}-C_{6}\ alkcanylene)-; B_{-}(C_{4}-C_{6}\ alkcanylene)-; Morroin\ Z is as defined above, and wherein I is 0, 1, 2 or 3, provided that the sum of 1 and the number of carbon atoms in the alkcanylene chain is 2, 3, 4, 5 or 6; B_{-}(CH_{2})-V_{-}($

R4 and R4 together form the group

5

10

15

20

25

35

40

45

50

55

B is selected from indamyl, indemyl, naphthyl, tetrahydronaphthyl, heteroaryl or W-substituted heteroaryl, wherein heteroaryl is selected from the group consisting of pyrrolyl, pyridinyl, pyrimidinyl, pyrazinyl, triazinyl, imidazolyl, thiazolyl, pyrazolyl, thieryl, oxazolyl and furanyl, and for nitrogen-containing heteroaryls, the N-oxides thereof, or

W is 1 to 3 substituents independently selected from the group consisting of lower alkyl, hydroxy lower alkyl, lower alkoxy, alkoxyalkoxy, alkoxyalkoxy, alkoxyalkoxy, alkoxyalkoxy, lower alkanedioyl, lower alkanedioyl, lower alkanedioyl, lower alkanedioyl, alwoxy. CF₂. OCF₂, benzyl.

 $\begin{array}{lll} R_{2}\text{-benzyl}, \ benzylosy, \ R_{7}\text{-benzylosy}, \ phenoxy, \ H_{7}\text{-benzylosy}, \ dioxolanyl, \ NO_{2}, \ \text{-N}(R_{9}|R_{9}), \ N(R_{9}|R_{9}), \ N(R_{9}|R_{9}), \ N(R_{9}|R_{9}), \ N(R_{9}|R_{9}), \ N(R_{9}|R_{9}), \ N(R_{9}|R_{9}), \ N(R_{9}|R_{9}|R_{9}), \ N(R_{9}|R_{9}|R_{9}|R_{9}), \ N(R_{9}|$

for substitution on ring carbon atoms, and the substituents on the substituted heteroaryl ring nitrogen atoms, when present, are selected from the group consisting of lower alky, lower alkoyt, $-C(O)R_{10}$, $-C(O)R_{10}$, $O(N, N(R_0)(R_0) - lower alkylene. N(R_0)(R_0)-lower alkylene. N(R_0)(R_0)-lower alkylene. N(R_0)(R_0)-lower alkylene.$

 R_7 is 1-3 groups independently selected from the group consisting of lower alkyl, lower alkoxy, -COOH, NO_2 , -N $(R_8)(R_9)$, OH, and halogeno;

R₈ and R₉ are independently selected from H or lower alkyl;

R₁₀ is selected from lower alkyl, phenyl, R₇-phenyl, benzyl or R₇-benzyl;

R₁₁ is selected from OH, lower alkyl, phenyl, benzyl, R₇-phenyl or R₇-benzyl;

R₁₂ is selected from H, OH, alkoxy, phenoxy, benzyloxy,

$$-N R_{13}$$

-N(Ra)(Ra), lower alkyl, phenyl or Ra-phenyl;

R₁₃ is selected from -O-, -CH₂-, -NH-, -N(lower alkyl)- or -NC(O)R₁₉;

R₁₅, R₁₆ and R₁₇ are independently selected from the group consisting of H and the groups defined for W; or R₁₅ is hydrogen and R16 and R17, together with adjacent carbon atoms to which they are attached, form a dioxolanyl

R₁₉ is H, lower alkyl, phenyl or phenyl lower alkyl; and

5

10

15

20

25

35

40

45

50

55

R₂₀ and R₂₁ are independently selected from the group consisting of phenyl, W-substituted phenyl, naphthyl, Wsubstituted naphthyl, indanyl, indenyl, tetrahydronaphthyl, benzodioxolyl, heteroaryl, W-substituted heteroaryl, benzofused heteroaryl. W-substituted benzofused heteroaryl and cyclopropyl, wherein heteroaryl is as defined above.

[0017] In another embodiment, the present invention provides a composition comprising: (a) at least one peroxisome proliferator-activated receptor activator; and(b) at least one sterol absorption inhibitor represented by Formula (VII):

(VII)

or isomers thereof, or pharmaceutically acceptable salts or solvates of the compounds of Formula (VII) or of the isomers 30 thereof, or prodrugs of the compounds of Formula (VII) or of the isomers, saits or solvates thereof, wherein in Formula (VII) above:

A is -CH=CH-, -C=C- or -(CH2)n- wherein p is 0, 1 or 2; B is

E is C10 to C20 alkyl or -C(O)-(C9 to C19)-alkyl, wherein the alkyl is straight or branched, saturated or containing one or more double bonds:

R is hydrogen, C₁-C₁₅ alkyl, straight or branched, saturated or containing one or more double bonds, or B-(CH₂)_{r-1} wherein r is 0, 1, 2, or 3;

R₁, R₂, and R₃ are independently selected from the group consisting of hydrogen, lower alkyl, lower alkoxy, carboxy, NO2, NH2, OH, halogeno, lower alkylamino, dilower alkylamino, -NHC(O)OR6, ReO2SNH- and -S(O)2NH2; R₄ is

wherein n is 0, 1, 2 or 3;

R₅ is lower alkyl; and

5

10

15

20

25

35

40

45

50

55

R₀ is OH, lower alkyl, phenyl, benzyl or substituted phenyl wherein the substituents are 1-3 groups independently selected from the group consisting of lower alkyl, lower alkoxy, carboxy, NO₂, NH₂, OH, halogeno, lower alkylamino and dilower alkylamino.

[0018] In another embodiment, the present invention provides a composition comprising: (a) at least one peroxisome proliferator-activated receptor activator; and (b) at least one sterol absorption inhibitor represented by Formula (VIII):

(VIII)

or isomers thereof, or pharmaceutically acceptable salts or solvates of the compounds of Formula (VIII) or of the isomers thereof, or prodrugs of the compounds of Formula (VIII) or of the isomers, salts or solvates thereof, wherein, in Formula (VIII) shove.

R26 is H or OG1:

G and G1 are independently selected from the group consisting of H,

and

provided that when R26 is H or OH, G is not H:

R, Ra and Rb are independently selected from the group consisting of H, -OH, halogeno, -NH₂, azido, (C₁-C₆) alkoxy(C₁-C₆)-alkoxy or -W-R³⁰;

W is independently selected from the group consisting of -NH-C(O)-, -O-C(O)-, -O-C(O)-N(R³¹)-, -NH-C(O)-N (R³¹)- and -O-C(S)-N(R³¹)-;

 \mathbb{R}^2 and \mathbb{R}^6 are independently selected from the group consisting of H, (C_1-C_6) alkyl, anyl and anyl (C_1-C_6) alkyl; \mathbb{R}^2 , $\mathbb{$

 R^{30} is selected from the group consisting of R^{32} -substituted T, R^{32} -substituted-T- $(G_1-G_0]$ allkyl, R^{32} -substituted- (G_2-G_0) allkyl, R^{32} -substituted- (G_3-G) -golakyl, R^{32} -go

R31 is selected from the group consisting of H and (C₁-C₄)alkyl;

T is selected from the group consisting of phenyl, furyl, thienyl, pyrrolyl, oxazolyl, isoxazolyl, thiazolyl, iosthiazolyl, benzothiazolyl, thiadiazolyl, pyrazolyl, imidazolyl and pyridyl;

 R^{32} is independently selected from 1-3 substituents independently selected from the group consisting of halogeno, (C_1-C_2) alikyl, -OH, phenoxy, $-C_3$, $-NO_2$, (C_1-C_2) alikyl, methylenedloxy, \cos , \cos , (C_1-C_2) alikylsuffanyl, $-C(C_1-C_2)$ alikyl, $-C(C_1-C_2)$ alik

Ar1 is aryl or R10-substituted aryl;

Ar2 is aryl or R11-substituted aryl:

Q is a bond or, with the 3-position ring carbon of the azetidinone, forms the spiro group

20 and

10

15

25

30

35

40

45

50

55

R1 is selected from the group consisting of

-(CH₂)_g-, wherein q is 2-6, provided that when Q forms a spiro ring, q can also be zero or 1;

-(CH₂)_r-E-(CH₂)_r, wherein E is -O-, -C(O)-, phenylene, -NR²²- or -S(O)₀₋₂-, e is 0-5 and r is 0-5, provided that the sum of e and r is 1-6:

-(C₂-C₆)alkenylene-; and

-(CH₂)_r-V-(CH₂)_g-, wherein V is C₃-C₆ cycloalkylene, f is 1-5 and g is 0-5, provided that the sum of f and g is 1-6:

R12 is

$$-\overset{1}{\text{CH-}}, -\overset{1}{\text{C}}(\text{C}_1\text{-C}_6 \text{ alkyl})\text{-, -CF-, -}\overset{1}{\text{C}}(\text{OH})\text{-, -C}(\text{C}_6\text{H}_4\text{-R}^{23})\text{-, -N-, or --}\overset{1}{\text{NO}} \ ;$$

R¹³ and R¹⁴ are independently selected from the group consisting of -CH₂, -CH(C₁-C₆ alkyl)-, -C(di-(C₁-C₆) alkyl)-, -C(di-(C₁-C₆) alkyl)- CH-; or R¹² together with an adjacent R¹³, or R¹² together with an adjacent R¹⁴, form a -CH-sCH- or a -CH-sC(2,-C₆ alkyl)- group;

a and b are independently 0, 1, 2 or 3, provided both are not zero;

provided that when R¹³ is -CH=CH- or -C(C₁-C₆ alkyl)=CH-, a is 1; provided that when R¹⁴ is -CH=CH- or -C(C₁-C₆ alkyl)=CH-, b is 1;

provided that when a is 2 or 3, the R¹³'s can be the same or different; and

provided that when b is 2 or 3, the R14's can be the same or different;

and when Q is a bond, R1 also can be:

M is -O-, -S-, -S(O)- or -S(O)2-;

X, Y and Z are independently selected from the group consisting of -CH₂-, -CH(C₁-C₆)alkyl- and -C(di-(C₁-C₆)

$$\label{eq:reconstruction} \begin{split} & \text{R}^{10} \text{ and R}^{11} \text{ are independently selected from the group consisting of 1-3 substituents independently selected from the group consisting of <math>\{\text{C}_1\text{C}_6\}_{\text{allyl}}, \text{CR}^{19}, \text{-}\text{C}(\text{CD}|\text{R}^{19}, \text{-}\text{C}(\text{OOD})\text{R}^{21}, \text{-}\text{C}(\text{CH}_2)_{1+0}\text{CD}|\text{R}^{21}, \text{-}\text{R}^{11}|\text{-}\text{C}(\text{OD})\text{R}^{22}, \text{-}\text{R}^{11}|\text{-}\text{C}(\text{OD})\text{-}\text{R}^{21}, \text{-}\text{COR}^{10}, \text{-}\text{COR}^{$$

-CH=CH-COOR19, -CF3, -CN, -NO2 and halogen;

R15 and R17 are independently selected from the group consisting of -OR19, -O(CO)R19, -O(CO)OR21 and -O (CO)NR19R20-

R16 and R18 are independently selected from the group consisting of H, (C₁-C₆)alkyl and aryl; or R15 and R16 together are =0, or R17 and R18 together are =0;

d is 1, 2 or 3;

h is 0. 1. 2. 3 or 4:

s is 0 or 1; t is 0 or 1; m. n and p are independently 0-4;

provided that at least one of s and t is 1, and the sum of m. n. p. s and t is 1-6:

10 provided that when p is 0 and t is 1, the sum of m, s and n is 1-5; and provided that when p is 0 and s is 1, the sum of m, t and n is 1-5;

v is 0 or 1:

15

20

25

35

40

50

55

j and k are independently 1-5, provided that the sum of j, k and v is 1-5;

and when Q is a bond and R1 is

$$-X_{j}^{-15}$$

 $-X_{j}^{-1}(C)_{v}^{-1}$
 $-X_{j}^{-16}$

Ar1 can also be pyridyl, isoxazolyl, furanyl, pyrrolyl, thienyl, imidazolyl, pyrazolyl, thiazolyl, pyrazinyl, pyrimidinyl or

R19 and R20 are independently selected from the group consisting of H, (C1-C6)alkyl, aryl and aryl-substituted (C1-C6)alkyl;

R21 is (C1-C6)alkyl, aryl or R24-substituted aryl;

R22 is H, (C1-C6)alkyl, aryl (C1-C6)alkyl, -C(O)R19 or -COOR19;

R²³ and R²⁴ are independently 1-3 groups independently selected from the group consisting of H, (C₁-C₆)alkyl.

(C1-C6)alkoxy, -COOH, NO2, 30 -NR19R20, -OH and halogeno; and

R25 is H. -OH or (C1-C6)alkoxy.

[0019] In another embodiment, the present invention provides a composition comprising: (a) at least one peroxisome proliferator-activated receptor activator; and (b) at least one sterol absorption inhibitor represented by Formula (IX);

or isomers thereof, or pharmaceutically acceptable salts or solvates of the compounds of Formula (IX) or of the isomers thereof, or prodrugs of the compounds of Formula (IX) or of the isomers, salts or solvates thereof, wherein, in Formula (IX) above.

R26 is selected from the group consisting of:

a) OH:

b) OCH_a:

c) fluorine and

d) chlorine.

R1 is selected from the group consisting of H,

-SO₃H; natural and unnatural amino acids.

5

10

15

20

25

35

40

45

50

55

R, Ra and Rb are independently selected from the group consisting of H, -OH, halogeno, -NH₂, azido, (C₁-C₆) alkoxy(C₁-C₆)-alkoxy and -W-R³⁰;

W is independently selected from the group consisting of -NH-C(O)-, -O-C(O)-, -O-C(O)-N(R³¹)-, -NH-C(O)-N (R³¹)- and -O-C(S)-N(R³¹)-:

R² and R⁶ are independently selected from the group consisting of H, (C₁-C₆)alkyl, aryl and aryl(C₁-C₆)alkyl; R³, R⁴, R⁵, R⁷, R^{3a} and R^{4a} are independently selected from the group consisting of H, (C₁-C₆)alkyl, aryl(C₁-C₆)

alkyl. $^{\circ}$ C(O)(C₁-C₉)alkyl and -C(O)aryl: $^{\circ}$ S0 is independently selected form the group consisting of $^{\circ}$ S-substituted T, R32-substituted-T-(C₁-C₉)alkyl, R32-substituted-(C₂-C)-Cyoloalkyl and R32-substituted-(C₃-C)-Cyoloalkyl and R32-substituted-(C₃-C)-Cyoloal

ed-(C₃-C7)cycloalkyl(C₁-C₆)alkyl;

R³¹ is independently selected from the group consisting of H and (C₁-C₄)alkyl;

T is independently selected from the group consisting of phenyl, furyl, thienyl, pyrrolyl, oxazolyl, isoxazolyl, thiazolyl, iosthiazolyl, benzothiazolyl, thiadiazolyl, pyrazolyl, imidazolyl and pyridyl;

 R^{32} is independently selected from 1-3 substituents independently selected from the group consisting of H, halogeno, (C_1-C_4) alky, -OH, phenoxy, $-CF_3$, $-NO_2$, (C_1-C_4) alky, $-C(D_1-N(C_1-C_4)$ alky), sulfinyl, $-C(C_1-C_4)$ alky, $-C(D_1-N(C_1-C_4)$ alky), $-C(D_$

Ar1 is aryl or R10-substituted aryl;

Ar2 is aryl or R11-substituted aryl;

Q is -(CH2) $_{q}$ -, wherein q is 2-6, or, with the 3-position ring carbon of the azetidinone,

forms the spiro group

R12 is

$$\begin{array}{c} \text{I} & \text{I} \\ \text{-CH-, -C(C_1-C_6 alkyl)-, -CF-, -C(OH)-, -C(C_6H_4-R^{23})-, -N-, or -+NO^-;} \end{array}$$

FP 1 413 331 Δ2

a and b are independently 0, 1, 2 or 3, provided both are not zero; provided that when R1¹³ is -CH=CH- or -C (C₁-C₆ alky)=CH-, a is 1; provided that when R1¹⁴ is -CH=CH- or -C(C₁-C₆ alky)=CH-, b is 1; provided that when R1¹⁶ is -CH=CH- or -C(C₁-C₆ alky)=CH-, b is 1; provided that when b is 2 or 3, the R1¹⁴'s can be the same or different; and provided that when b is 2 or 3, the R1¹⁴'s can be the same or different;

R¹⁰ and R¹¹ are independently selected from the group consisting of 1-3 substituents independently selected from the group consisting of (C_1C_6) algyl, $-OR^{10}$, $-O(CO)R^{10}$, $-O(CO)R^{21}$, -O

Ar¹ can also be pyridyl, isoxazolyl, furanyl, pyrrolyl, thienyl, imidazolyl, pyrazolyl, thiazolyl, pyrazinyl, pyrimidinyl or pyridazinyl;

R¹⁹ and R²⁰ are independently selected from the group consisting of H, (C₁·C₆)alkyl, aryl and aryl-substituted (C₁·C₆)alkyl;

R21 is (C1-C6)alkyl, aryl or R24-substituted aryl;

R22 is H, (C1-C6)alkyl, aryl (C1-C6)alkyl, -C(O)R19 or -COOR19;

R²³ and R²⁴ are independently 1-3 groups independently selected from the group consisting of H, (C₁-C₆)alkyl, (C₁-C₆)alkoxy, -COOH, NO₂, -NR¹⁹R²⁰, -OH and halogeno; and

R25 is H, -OH or (C₁-C₆)alkoxy.

20

35

40

[0020] Therapsutic combinations also are provided comprising; (a) a first amount of at least one peroxisome proliferator-activate receptor activator; and (b) a second amount of at least one sterol absorption inhibitor represented by Formulae (i-XI) above or isomers thereof, or pharmacoutically acceptable salts or solvates of the compounds of Formula (i-XI) or of the isomers thereof, or prodrugs of the compounds of Formula (i-XI) or of the isomers, saits or solvates entereof, wherein the first amount and the second amount together comprise a therapsutically effective amount for the treatment or prevention of a vascular condition, diabetes, obesity or lowering a concentration of a sterol in plasma of a mammal.

[0021] Pharmaceutical compositions for the treatment or prevention of a vascular condition, diabetes, obesity or lowering a concentration of a sterol in plasma of a mammal, comprising a therapeutically effective amount of the above compositions or therapeutic combinations and a pharmaceutically acceptable carrier also are provided

[0022] Methods of treating or preventing a vascular condition, diabetes, obesity or lowering a concentration of a sterol in plasma of a mammal, comprising the step of administering to a mammal in need of such treatment an effective amount of the above compositions or therapeutic combinations also are provided.

[0023] Other than in the operating examples, or where otherwise indicated, all numbers expressing quantities of ingredients, reaction conditions, and so forth used in the specification and claims are to be understood as being modified in all instances by the term "about."

DETAILED DESCRIPTION

[0024] The compositions and therapeutic combinations of the present invention comprise at least one (one or more) activators for peroxisome proliferator-activated receptors (PPAR). These activators act as agonists for the peroxisome proliferator-activated receptors. Three subtypes of PPAR have been identified, and these are designated as peroxisome proliferator-activated receptor alpha (PPARa), peroxisome proliferator-activated receptor gamma (PPARr) and peroxisome proliferator-activated receptor delta (PPARa). It should be noted that PPARa is also referred to in the literature as PPARB and as NUC1, and each of these names refers to the same receptor.

[0025] PPARα regulates the metabolism of lipids. PPARα is activated by fibrates and a number of medium and longchain fatty acids, and it is involved in stimulating β-oxidation of fatty acids. The PPARγ receptor subtypes are involved in activating the program of adipocyte differentiation and are not involved in stimulating peroxisome proliferation in the liver. PPARᾶ has been identified as being useful in increasing high density lipoprotein (HDL) levels in humans. See, e.g., WO 9728149.

[0026] PPAR α activator compounds are useful for, among other things, lowering triglycerides, moderately lowering LDL levels and increasing HDL levels. Examples of PPAR α activators useful in the compositions of the present invention include fibrates.

[0027] Non-limiting examples of suitable fibric acid derivatives ("librates") include clofibrate (such as ethyl 2-(p-chiorophenoxy)-2-methyl-propionate, for example ATROMID-S® Capsules which are commercially available from Wyeth-Ayers); gemfilorozil (such as 5-(2,5-dimethylphenoxy)-2,2-dimethylpentanoic acid, for example LOPID® tablets which are commercially available from Parks Davis); ciprofibrate (C.A.S. Registry No. 52214-84-3, see U.S. Patent No. 3,948.573 which is incomporate herein by reference): bezafibrate (C.A.S. Registry No. 41885-70. see U.S. Patent No.

EP 1 413 331 A2

No. 3,781.328 which is incorporated herein by reference); clinofibrate (C. A. S. Registry No. 3029-9-08-2, see U. S. Patent No. 3,716.583 which is incorporated herein by reference); birlifibrate (C. A. S. Registry No. 3049-7-39-8, see B. 884722 which is incorporated herein by reference); lifibrol (C. A. S. Registry No. 96609-16-4); fenofibrate (such as TRICOR® micronized fenofibrate (2/4-(4-chilorobenzoyi)) phenosyl-2-methy-reppancia exid. 1-methylethyl ester which is commercially available from backlab thoral bottot Laboratories or LIPANTTH/U® micronized fenofibrate which is commercially available from Laboratorie Founier, France) and mixtures thereof. These compounds can be used in a variety of forms, including but not limited to acid form, salt form, recentage, enantimenser, avaitations and fautomers.

[0028] Other examples of PPAR α activators useful with the practice of the present invention include suitable fluorophenyl compounds as disclosed in U.S. No. 6,028, 109 which is incorporated herein by reference; certain substituted phenylpropionic compounds as disclosed in WO 00/75103 which is incorporated herein by reference; and PPAR α activator compounds as disclosed in WO 98/43081 which is incorporated herein by reference.

[0029] Other useful PPARy activator compounds include certain acetylphenols as disclosed in U.S. Patent No. 5,859,051 which is incorporated herein by reference; cartain quinoline phenyl compounds as disclosed in WO 99/20275 which is incorporated herein by reference; anyl compounds as disclosed in WO 99/38845 which is incorporated herein by reference; certain 1,4-disubstituted phenyl compounds as disclosed in WO 00/63161; certain anyl compounds as disclosed in WO 01/05279 which is incorporated herein by reference; benzoic acid compounds as disclosed in WO 01/12167 which are incorporated herein by reference; and substituted 4-hydroxy-phenylalconic acid compounds as disclosed in WO 07/31807 which is incorporated herein by reference; and substituted 4-hydroxy-phenylalconic acid compounds as disclosed in WO 07/31807 which is incorporated herein by reference.

[030] PPAR& compounds are useful for, among other things, lowering triglyceride levels or raising HDL levels. Non-limiting examples of suitable PPAR& activators useful in the compositions of the present invention include suitable thiazole and oxazole derivates, such as C.A.S. Registry No. 317318-32-4, as disclosed in WO 01/00603 which is incorporated herein by reference); certain fluoro, chloro or thio phenoxy phenylacetic acids as disclosed in WO 97/28149 which is incorporated herein by reference; existel in on-pl-oxidizable fatty acid analogues as disclosed in UN 98/0415 (which is incorporated herein by reference; and PPAR& activator compounds disclosed in WO 99/04815 which is incorporated herein by reference;

[0031] Moreover, compounds that have multiple functionality for activating various combinations of PPARa, PPARa and PPARδ also are useful in compositions of the present invention. Non-limiting examples include certain substituted aryl compounds as disclosed in U.S. Patent No. 6,248,781; WO 00/23416; WO 00/23415; WO 00/23425; WO 00/23445; WO 00/23451; and WO 00/63153, all of which are incorporated herein by reference, which are described as being useful PPARα and/or PPARγ activator compounds. Other non-limiting examples of useful PPARα and/or PPARγ activator compounds include activator compounds as disclosed in WO 97/25042 which is incorporated herein by reference; activator compounds as disclosed in WO 00/63190 which is incorporated herein by reference; activator compounds as disclosed in WO 01/21181 which is incorporated herein by reference; biaryl-oxa(thia)zole compounds as disclosed in WO 01/16120 which is incorporated herein by reference; activator compounds as disclosed in WO 00/63196 and WO 00/63209 which are incorporated herein by reference; substituted 5-aryl-2,4-thiazolidinediones compounds as disclosed in U.S. Patent No. 6,008,237 which is incorporated herein by reference; arylthiazolidinedione and aryloxazolidinedione compounds as disclosed in WO 00/78312 and WO 00/78313G which are incorporated herein by reference; GW2331 or (2-(4-[difluorophenyl]-1heptylureido)ethyl]phenoxy)-2-methylbutyric compounds as disclosed in WO 98/05331 which is incorporated herein by reference; any compounds as disclosed in U.S. Patent No. 6.166.049 which is incorporated herein by reference; oxazole compounds as disclosed in WO 01/17994 which is incorporated herein by reference; and dithiolane compounds as disclosed in WO 01/25225 and WO 01/25226 which are incorporated herein by reference.

[0032] Other useful PPAR activator compounds include substituted benzyfithiazolidine-2,4-dione compounds as disclosed in WO 01/14349, WO 01/14350 and WO/01/04351 which are incorporated herein by reference; mercaptocarboxylic compounds as disclosed in WO 00/50592 which is incorporated herein by reference; associuranone compounds as disclosed in WO 00/53563 which is incorporated herein by reference; carboxylic compounds as disclosed in WO 99/46232 which is incorporated herein by reference; carboxylic compounds as disclosed in WO 99/46232 which is incorporated herein by reference; carboxylic compounds as disclosed in WO 99/46324 which is incorporated herein by reference; carboxylic compounds as disclosed in WO 99/46324 which is incorporated herein by reference; carboxylic compounds as disclosed in WO 99/46324 which is incorporated herein by reference; carboxylic compounds as disclosed in WO 99/46324 which is incorporated herein by reference; carboxylic compounds as disclosed in WO 99/46324 which is incorporated herein by reference; carboxylic compounds as disclosed in WO 90/4634 which is incorporated herein by reference; carboxylic compounds as disclosed in WO 99/46324 which is incorporated herein by reference; carboxylic compounds as disclosed in WO 99/4634 which is incorporated herein by reference; carboxylic compounds as disclosed in WO 99/4634 which is incorporated herein by reference; carboxylic compounds as disclosed in WO 99/4634 which is incorporated herein by reference; carboxylic compounds as disclosed in WO 99/4634 which is incorporated herein by reference; carboxylic compounds as disclosed in WO 99/4634 which is incorporated herein by reference; carboxylic compounds as disclosed in WO 99/4634 which is incorporated herein by reference; carboxylic carboxylic compounds as disclosed in WO 99/4634 which is incorporated herein by reference; carboxylic c herein by reference; benzene compounds as disclosed in WO 99/15520 which is incorporated herein by reference; oanisamide compounds as disclosed in WO 01/21578 which is incorporated herein by reference; and PPAR activator compounds as disclosed in WO 01/40192 which is incorporated herein by reference.

10033] The peroxisome proliferator-activated receptor(s) activator(s) are administered in a therapeutically effective amount to treat the specified condition, for example in a daily dose can range from about 0.1 to about 100 mg per day, preferably about 0.25 to about 50 mg/day, and more preferably about 10 mg per day, given in a single dose or 2-4 divided doses. The exact dose, however, is determined by the attending clinician and is dependent on such factors as the potency of the compound administered. The sace, weight, condition and response of the patient.

[0034] The term "therapeutically effective amount" means that amount of a therapeutic agent of the composition, such as the peroxisome proliferator-activated receptor activator(s), sterol absorption inhibitor(s) and other pharmacological or therapeutic agents described below, that will elicit a biological or medical response of a tissue, system, animal or mammal that is being sought by the administrator (such as a researcher, doctor or veterinarian) which includes alleviation of the symptoms of the condition or disease being treated and the prevention, slowing or halting of progression of one or more conditions, for example vascular conditions, such as hyperhipidaemia (for example tatherosclerosis, hypercholesterolemia or sitosterolemia), vascular inflammation, stroke, diabetes, obesity and/or to reduce the level of

sterol(s) (such as cholesterol) in the plasma. [0035] As used herein, "combination therapy" or "therapeutic combination" means the administration of two or more therapeutic agents, such as peroxisome proliferator-activated receptor activator(s) and sterol absorption inhibitor(s), to prevent or treat a condition, for example a vascular condition, such as hyperlipidaemia (for example atherosclerosis, hypercholesterolemia or sitosterolemia), vascular inflammation, stroke, diabetes, obesity and/or reduce the level of sterol(s) (such as cholesterol) in the plasma. As used herein, "vascular" comprises cardiovascular, cerebrovascular and combinations thereof. The compositions, combinations and treatments of the present invention can be administered by any suitable means which produce contact of these compounds with the site of action in the body, for example in the plasma, liver or small intestine of a mammal or human. Such administration includes coadministration of these therapeutic agents in a substantially simultaneous manner, such as in a single tablet or capsule having a fixed ratio of active ingredients or in multiple, separate capsules for each therapeutic agent. Also, such administration includes use of each type of therapeutic agent in a sequential manner. In either case, the treatment using the combination therapy will provide beneficial effects in treating the condition. A potential advantage of the combination therapy disclosed herein may be a reduction in the required amount of an individual therapeutic compound or the overall total amount of therapeutic compounds that are effective in treating the condition. By using a combination of therapeutic agents, the side effects of the individual compounds can be reduced as compared to a monotherapy, which can improve patient compliance. Also, therapeutic agents can be selected to provide a broader range of complimentary effects or complimentary modes of action.

20

25

40

45

50

55

[0036] As discussed above, the compositions, pharmaceutical compositions and therapeutic combinations of the present invention comprise one or more substituted azetidinone or substituted β-lactam storol absorption inhibitors discussed in detail below. As used herein, "sterol absorption inhibitors means a compound capable of inhibiting the absorption of one or more sterols, including but not limited to cholesterol, phytosterols (such as sitosterol, campesterol, stigmasterol and avenosterol), 5.cr-stanois (such as cholestanol, 5.cr-campestanol, 5.cr-sitostanol), and mixtures thereof, when administered in a therapeutically effective (sterol absorption inhibiting) amount to a mammal or human.

[0037] In a preferred embodiment, sterol absorption inhibitors useful in the compositions, therapeutic combinations and methods of the present invention are represented by Formula (I) below:

or isomers of the compounds of Formula (I), or pharmaceutically acceptable salts or solvates of the compounds of Formula (I) or of the isomers of the compounds of Formula (I), or prodrugs of the compounds of Formula (I) or of the

(1)

EP 1 413 331 A2

isomers, salts or solvates of the compounds of Formula (I), wherein, in Formula (I) above:

- Ar¹ and Ar² are independently selected from the group consisting of aryl and R⁴-substituted aryl; Ar³ is aryl or R⁵-substituted aryl:
- X, Y and Z are independently selected from the group consisting of -CFL₂-.-CH(lower alkyl)- and -C(dilower alkyl)-: R and R² are independently selected from the group consisting of -OR², -O(CO)GP³, -O(CO)GP³ and -O(CO)NR³R⁷; R¹ and R³ are independently selected from the group consisting of hydrogen, lower alkyl and anyl;
 - q is 0 or 1; r is 0 or 1; m, n and p are independently selected from 0, 1, 2, 3 or 4; provided that at least one of q and r is 1, and the sum of m, n, p, q and r is 1, 2, 3, 4, 5 or 6; and provided that when p is 0 and r is 1, the sum of m, a and n is 1, 2, 3, 4 or 5:
 - R⁴ is 1.5 substituents independently selected from the group consisting of lower alkyl, $-OR^6$, $-O(CO)R^6$, $-O(CO)R^$
- R⁵ is 1-5 substituents independently selected from the group consisting of -OR6, -O(CO)R⁶, -O(CO)OR⁶, -O(CH₂)₁₋₅OR⁶, -O(CO)NR⁶R⁷, -NR⁶R⁷, -NR⁶(CO)NR⁷, -NR⁶(CO)NR⁷, -NR⁶CO)NR⁷R⁸, -NR⁶SO₂R⁸, -COOR⁶, -CONR⁶R⁷, -COR⁶, -SO₂NR⁶R⁷, S(O)₀₋₂R⁸, -O(CH₂)₁₋₁₀-COOR⁶, -O(CH₂)₁₋₁₀CONR⁶R⁷, -(lower alkylene)COOR⁸ and
 - -CH=CH-COOR6:

5

10

15

20

35

- R⁶, R⁷ and R⁸ are independently selected from the group consisting of hydrogen, lower alkyl, aryl and aryl-substituted lower alkyl; and
 - R9 is lower alkyl, arvl or arvl-substituted lower alkyl.
- [0038] Preferably, R⁴ is 1-3 independently selected substituents, and R⁵ is preferably 1-3 independently selected substituents.
 - [0039] As used herein, the term "alkyl" or "lower alkyl" means straight or branched alkyl chains having from 1 to 6 carbon atoms and "alkoxy" means alkoxy groups having 1 to 6 carbon atoms. Non-limiting examples of lower alkyl groups include, for example methyl, ethyl, propyl, and bulyl groups.
 - [0040] "Alkenyl" means straight or branched carbon chains having one or more double bonds in the chain, conjugated or unconjugated. Similarly, "alkynyl" means straight or branched carbon chains having one or more triple bonds in the chain. Where an alkyl, alkenyl or alkynyl chain joins two other variables and is therefore bivalent, the terms alkylene, alkenylene and alkynylene are used.
 - [0041] "Cycloalkyl" means a saturated carbon ring of 3 to 6 carbon atoms, while "cycloalkylene" refers to a corresponding bivalent ring, wherein the points of attachment to other groups include all positional isomers.
 - [0042] "Halogeno" refers to fluorine, chlorine, bromine or iodine radicals.
 - [0043] "Aryl" means phenyl, naphthyl, indenyl, tetrahydronaphthyl or indanyl.
 - [0044] "Phenylene" means a bivalent phenyl group, including ortho, meta and para-substitution.
 - [0045] The statements wherein, for example, R, R¹, R² and R³, are said to be independently selected from a group of substituents, mean that R, R¹, R² and R³ are independently selected, but also that where an R, R¹, R² and R³ variable occurs more than once in a molecule, each occurrence is independently selected (e.g., if R is -OR³ wherein R³ is lower alkyl). Those skilled in the art will recognize that the size and nature of the substituent(s) will affect the number of substituents that can be present.
 - [0046] Compounds of the invention have at least one asymmetrical carbon atom and therefore all isomers, including enantiomers, stereoisomers, rotamers, tautomers and racemates of the compounds of Formula (I-XI) (where they exist) are contemplated as being part of this invention. The invention includes d and I isomers in both pure form and in admixture, including racemic mixtures, isomers can be prepared using conventional techniques, either by reacting optically pure or optically enriched starting materials or by separating isomers of a compound of the Formulae I-XI. isomers may also include geometric isomers, e.g., when a double bond is present.
- [0047] Those skilled in the art will appreciate that for some of the compounds of the Formulae I-XI, one isomer will show greater pharmacological activity than other isomers.
 - [0048] Compounds of the invention with an amino group can form pharmaceutically acceptable salts with organic and inorganic acids. Examples of suitable acids for salt formation are hydrochloric, sulfuric, phosphoric, acotic, citric, oxalic, mainor, sulfuric, malic, umaria, succinic, ascorbic, maleic, methanesulfonic and other mineral and carboxylic acids well known to those in the art. The salt is prepared by contacting the free base form with a sulficient amount of the desired acid to produce a salt. The free base form may be regenerated by treating the salt with a suitable diffull aqueous base solution such as dilute aqueous sodium bicarbonate. The free base form differs from its respective salt form somewhat in certain physical properties, such as solubility in polar solvents, but the salt is otherwise equivalent to its respective free base forms for purposes of the invention.

[0049] Certain compounds of the invention are acidic (e.g., those compounds which possess a carboxyl group). These compounds form pharmaceutically acceptable salts with inorganic and organic bases. Examples of such salts are the sodium, potassium, calcium, aluminum, gold and silver salts. Also included are salts formed with pharmacutically acceptable amines such as ammonia, alkyl amines, hydroxyalkylamines, N-methylglucamine and the like.

[0050] As used herein, "solvate" means a molecular or ionic complex of molecules or ions of solvent with those of solute (for example, one or more compounds of Formulae I-XI, isomers of the compounds of Formulae I-XI), on-limiting examples of useful solvents include polar, protic solvents such as water and/or alcohols (for example methanol).

[0051] As used herein, "prodrug" means compounds that are drug precursors which, following administration to a o patient, release the drug in vivo via some chemical or physiological process (e.g., a prodrug on being brought to the physiological ph or through enzyme action is converted to the desired drug form).

[0052] Preferred compounds of Formula (I) are those in which ArI is phenyl or RH-substituted phenyl, more preferably (4-R4)-substituted phenyl. Ar2 is preferably phenyl or RH-substituted phenyl, more preferably (4-R4)-substituted phenyl. Ar3 is preferably (4-R4)-substituted phenyl. When Ar1 is (4-R4)-substituted phenyl. R4 is preferably a halogen. When Ar2 and Ar3 are R4- and R5-substituted phenyl, respectively, R4 is preferably and R5 is R5 i

[0053] X, Y and Z are each preferably -CH₂-. R¹ and R³ are each preferably hydrogen. R and R² are preferably -OR⁶ wherein R⁶ is hydrogen, or a group readily metabolizable to a hydroxyl (such as -O(CO)R⁶, -O(CO)OR⁹ and -O(CO) NR⁶R⁷, defined above).

20

40

45

50

[0054] The sum of m, n, p, q and r is preferably 2, 3 or 4, more preferably 3. Preferred are compounds wherein m, n and r are each zero, q is 1 and p is 2.

[0055] Also preferred are compounds of Formula (I) in which p, q and n are each zero, r is 1 and m is 2 or 3. More preferred are compounds wherein m, n and r are each zero, q is 1, p is 2, Z is -CH₂- and R is -OR⁶, especially when R⁶ is hydrogen.

[0056] Also more preferred are compounds of Formula (I) wherein p, q and n are each zero, r is 1, m is 2, X is -CH₂-and R² is -OR⁸, especially when R⁶ is hydrogen.

[0057] Another group of preferred compounds of Formula (i) is that in which Ar¹ is phenyl or R⁴-substituted phenyl, Ar² is phenyl or R⁴-substituted phenyl and Ar³ is R⁵-substituted phenyl. Also preferred are compounds in which Ar¹ is phenyl or R⁴-substituted phenyl, Ar² is R⁵-substituted phenyl, Ar³ is R⁵-substituted phenyl, Ar³ is R⁵-substituted phenyl, and wherein m, n and r are each zero, q is 1 and p is 2, or wherein p, q and n are each zero, r is 1 and m is 2 or 3.

[0058] In a preferred embodiment, a sterol inhibitor of Formula (I) useful in the compositions, therapeutic combina-

or pharmaceutically acceptable salts or solvates of the compound of Formula (II), or prodrugs of the compound of Formula (II) or of the salts or solvates of the compound of Formula (II).

[0059] Compounds of Formula I can be prepared by a variety of methods well know to those skilled in the art, for example such as are disclosed in U.S. Patients Nos. 5,631,365, 5,767,115, 5,846,966, 6,207,822, U.S. Provisional Patent Application No. 60/279,288 filed March 28, 2001, and PCT Patent Application WO 93/02048, each of which is incorporated herein by reference, and in the Example below. For example, suitable compounds of Formula I can be

prepared by a method comprising the steps of:

5

10

15

20

25

30

35

40

45

50

55

(a) treating with a strong base a lactone of the Formula A or B:

wherein R^{i} and R^{2} are R and R^{2} , respectively, or are suitably protected hydroxy groups: Ar^{10} is Ar^{1} , a suitably protected hydroxy-substituted anyl or a suitably protected amino-substituted anyl; and the remaining variables are as defined above for Formula I, provided that in lactone of formula B, when n and r are each zero, p is 1-4; (b) reacting the product of step (a) with an imine of the formula

wherein Ar^{20} is Ar^2 , a suitably protected hydroxy-substituted aryl or a suitably protected amino-substituted aryl; and Ar^{30} is Ar^3 , a suitably protected hydroxy-substituted aryl or a suitably protected amino-substituted aryl;

- c) quenching the reaction with an acid;
- d) optionally removing the protecting groups from R¹, R²¹, Ar¹⁰, Ar²⁰ and Ar³⁰, when present; and
 e) optionally functionalizing hydroxy or amino substituents at R, R², Ar¹, Ar² and Ar³.

[0060] Using the lactones shown above, compounds of Formula IA and IB are obtained as follows:

wherein the variables are as defined above; and

wherein the variables are as defined above.

5

10

20

25

35

40

45

50

[0061] Alternative sterol absorption inhibitors useful in the compositions, therapeutic combinations and methods of the present invention are represented by Formula (III) below:

(111)

or isomers of the compounds of Formula (III), or pharmaceutically acceptable salts or solvates of the compounds of Formula (III) or of the isomers of the compounds of Formula (III), or prodrugs of the compounds of Formula (III) or of the isomers, salts or solvates of the compounds of Formula (III), wherein, in Formula (III) above:

Ar1 is R3-substituted arvI:

Ar2 is R4-substituted aryl;

Ar3 is R5-substituted arvI:

Y and Z are independently selected from the group consisting of -CH₂-, -CH(lower alkyl)- and -C(dilower alkyl)-; A is selected from -O-, -S-, -S(O)- or -S(O)₂-;

R1 is selected from the group consisting of -OR6, -O(CO)R6, -O(CO)OR9 and -O(CO)NR6R7; R2 is selected from the group consisting of hydrogen, lower alkyl and anyl; or R1 and R2 together are =O:

q is 1, 2 or 3;

p is 0, 1, 2, 3 or 4;

Ps is 1-3 substituents independently selected from the group consisting of -OR®, -O(CO)R®, -O(CO)R®, -O(CO)NR®R³, -NR®(CO)R³, -NR®(CO)R³, -NR®(CO)R³, -NR®(CO)R³, -NR®(CO)R³, -NR®(CO)R³, -NR®(CO)R³, -NR®(CO)R³, -NR®(CO)R³, -O(CH₂)+1, -CONR®R³, -COR®, -SO₂NR®R³, -SO₂NR®R³, -SO₂NR®R³, -COR®, -O(CH₂)+1, -

R³ and R⁴ are independently 1-3 substituents independently selected from the group consisting of R⁵, hydrogen, p-lower alkyl, aryl, -NO₂, -CF₂ and p-halogeno;

R⁶, R⁷ and R⁸ are independently selected from the group consisting of hydrogen, lower alkyl, aryl and aryl-substituted lower alkyl; and R⁹ is lower alkyl, aryl or aryl-substituted lower alkyl.

[0062] Preferred compounds of Formula I include those in which Λ^{A} is \mathbb{R}^{A} -substituted phenyl, sepecially (4- \mathbb{R}^{A})-substituted phenyl, \mathbb{A}^{A} is preferably \mathbb{R}^{A} -substituted phenyl, especially (4- \mathbb{R}^{A})-substituted phenyl, especially (4- \mathbb{R}^{A})-substituted phenyl, Mono-substitution of each of \mathbb{A}^{A} , \mathbb{A}^{A} and \mathbb{A}^{A} is preferred.

[0063] Y and Z are each preferably CH₂. R² is preferably hydrogen, R¹ is preferably -OR⁶ wherein R⁶ is hydrogen, or a group readily metabolizable to a hydroxyl (such as -O(CO)R⁶, -O(CO)OR⁶ and -O(CO)NR⁶R⁷, defined above). Also preferred are compounds wherein R¹ and R² together are =O.

[0064] The sum of q and p is preferably 1 or 2, more preferably 1. Preferred are compounds wherein p is zero and

q is 1. More preferred are compounds wherein p is zero, q is 1, Y is -CH₂- and R¹ is -OR⁶, especially when R⁶ is hydrogen.

[0065] Another group of preferred compounds is that in which Ar1 is R3-substituted phenyl, Ar2 is R4-substituted phenyl and Ar3 is R5-substituted phenyl.

[0066] Also preferred are compounds wherein Ar¹ is R³-substituted phenyl, Ar² is R⁴-substituted phenyl, Ar³ is R⁵-substituted phenyl, and the sum of p and q is 1 or 2, especially 1. More preferred are compounds wherein Ar¹ is R³-substituted phenyl, Ar³ is R⁴-substituted phenyl, p is zero and q is 1.

[10667] Als preferably -O-.

[0068] R³ is preferably -COOR⁶, -CONR⁶R⁷, -COR⁶, -SO₂NR⁶R⁷, S(O)₀₋₂-alkyl, S(O)₀₋₂-aryl, NO₂ or halogeno. A more preferred definition for R³ is halogeno, especially fluoro or chloro.

[0069] R⁴ is preferably hydrogen, lower alkyl, "OR⁶, "O(CO)R⁶, "O(CO)OR⁶, "O(CO)NR⁶R⁷, "NR⁶R⁷, COR⁶ or halogeno, wherein R⁶ and R⁷ are preferably independently hydrogen or lower alkyl, and R⁸ is preferably lower alkyl. A more prefered definition for R⁸ is hydrogen or halogeno, sepcially fluors or chloro.

[0070] R⁶ is preferably -OR⁶, -O(CO)R⁶, -O(CO)OR⁶, -O(CO)NR⁶R⁷, -NR⁶R⁷, -(lower alkylene)-COOR⁶ or -CH=CH-COOR⁶, wherein R⁶ and R⁷ are preferably independently hydrogen or lower alkyl, and R⁹ is preferably lower alkyl. A more preferred definition for R⁵ is -OR⁶, -(lower alkylene)-COOR⁶ or -CH=CH-COOR⁶, wherein R⁶ is preferably hydrogen or lower alkyl.

[0071] Methods for making compounds of Formula III are well known to those skilled in the art. Non-limiting examples of suitable methods are disclosed in U.S. Patent No. 5.688.990, which is incorporated herein by reference.

29 [0072] In another embodiment, sterol absorption inhibitors useful in the compositions, therapeutic combinations and methods of the present invention are represented by Formula (IV):

(IV)

35 or isomers of the compounds of Formula (IV), or pharmaceutically acceptable salts or solvates of the compounds of Formula (IV) or of the isomers of the compounds of Formula (IV), or prodrugs of the compounds of Formula (IV) or of the isomers, salts or solvates of the compounds of Formula (IV), wherein, in Formula (IV) above:

A is selected from the group consisting of R²-substituted heterocycloalkyl, R²-substituted heteroaryl, R²-substituted benzofused heteroaryl;

Ar1 is aryl or R3-substituted aryl;

Ar2 is anyl or R4-substituted anyl:

Q is a bond or, with the 3-position ring carbon of the azetidinone, forms the spiro group

and

25

30

40

45

50

55

R1 is selected from the group consisting of:

- -(CH₂)_a-, wherein q is 2-6, provided that when Q forms a spiro ring, q can also be zero or 1;
- -(CH₂)_e-G-(CH₂)_r-, wherein G is -O-, -C(O)-, phenylene, -NR⁸- or S(O)₀₋₂-, e is 0-5 and r is 0-5, provided that the sum of e and r is 1-6.
- -(C2-C6 alkenylene)-; and
- $-(CH_2)_f V (CH_2)_g -$, wherein V is $C_3 C_6$ cycloalkylene, f is 1-5 and g is 0-5, provided that the sum of f and g is 1-6;

R5 is selected from:

5

10

15

25

30

35

40

45

50

55

$$-CH_{-}$$
, $-C(C_{1}-C_{6}$ alkyl)-, $-CF_{-}$, $-C(OH)_{-}$, $-C(C_{6}H_{4}-R^{9})_{-}$, $-N_{-}$, or $-+N_{0}$;

R⁶ and R⁷ are independently selected from the group consisting of -CH_{2*}, -CH(C₁-C₆ alky))-, -C(di-(C₁-C₆) alky)), -C(di-(C₁-C₆) alky)), -C(di-(C₁-C₆) alky)), -C(Di-CH- and -C(C₁-C₆) alky) - CH- consistent R⁷, form a -CH-EOH- or a -CH-EO(C₁-C₆ alky) - group:

a and b are independently 0, 1, 2 or 3, provided both are not zero; provided that when R⁶ is -CH=CH- or -C(C₁-C₆ alkyl)=CH₁, a is 1; provided that when R⁷ is -CH=CH- or -C(C₁-C₆ alkyl)=CH₁, b is 1; provided that when a is 2 or 3, the R⁶s can be the same or different; and provided that when b is 2 or 3, the R⁷s can be the same or different; and provided that when b is 2 or 3, the R⁷s can be the same or different; and when O is a bond. R¹ also can be selected from:

where M is -O-, -S-, -S(O)- or -S(O)₂-;

X, Y and Z are independently selected from the group consisting of -CH₂-, -CH(C₁-C₆ alkyl)- and -C(di-(C₁-C₆) alkyl):

R¹⁰ and R¹² are independently selected from the group consisting of -OR¹⁴, -O(CO)R¹⁴, -O(CO)OR¹⁶ and -O(CO) NR¹⁴R¹⁵;

R¹¹ and R¹³ are independently selected from the group consisting of hydrogen, (C₁-C₆)alkyl and aryl; or R¹⁰ and R¹¹ together are =0, or R¹² and R¹³ together are =0;

d is 1, 2 or 3;

h is 0, 1, 2, 3 or 4;

s is 0 or 1; t is 0 or 1; m, n and p are independently 0-4; provided that at least one of s and t is 1, and the sum of m, n, p, s and t is 1-6; provided that when p is 0 and t is 1, the sum of m, s and n is 1-5; and provided that when p is 0 and s is 1. the sum of m. t and p is 1-6;

v is 0 or 1;

j and k are independently 1-5, provided that the sum of j, k and v is 1-5;

R² is 1-3 substituents on the ring carbon atoms selected from the group consisting of hydrogen, (C₁-C₁₀)alkyl, (C₂-C₁₀)alkenyl, (C₂-C₁₀)alkynyl, (C₃-C₆)cycloalkyl, (C₃-C₆)cycloalkenyl, R¹⁷-substituted apriloxyl, R¹⁷-substituted senzyloxy, R¹⁷-substituted apriloxyl, R¹⁷-substituted senzyloxy, R¹⁷-substituted apriloxyloxyl, R¹⁷-substituted senzyloxyl, R¹⁷-substituted senzyloxyl, R¹⁸-S(C₁)(C₁-C₆ alkylone)-, R¹⁸-S(C₁)(C₁-C₁₀)(R¹⁸-S(C₁)(C₁-C₁₀)(R¹⁸-S(C₁)(C₁-C₁₀)(R¹⁸-S(C₁)(C₁-C₁₀)(R¹⁸-S(C₁)(C₁-C₁₀)(R¹⁸-S(C₁)(C₁-C₁₀)(R¹⁸-S(C₁)(R¹⁸-S(C

-COR14, hydroxy(C₁-C₆)alkyl, (C₁-C₆)alkoxy(C₁-C₆)alkoxy, NO₂, -S(O)₀₋₂R16, -SO₂NR14R15 and -(C₁-C₆ alkylene) COOR14; when R² is a substituent on a heterocycloalkyl ring, R² is as defined, or is =O or

and, where R² is a substituent on a substitutable ring nitrogen, it is hydrogen, (C₁-C₆)alkyl, aryl, (C₁-C₆)alkoxy, aryloxy, (C₁-C₆)alkylcarbonyl, arylcarbonyl, hydroxy, -(CH₂)₁₋₆CONR¹⁸R¹⁸,

wherein J is -O-. -NH-. -NR18- or -CHo-:

5

10

15

20

35

40

45

50

55

R² and R⁴ are independently selected from the group consisting of 1-3 substituents independently selected from the group consisting of (C₁-C₂-laklyl, -OR¹-O(CO)R¹⁴, -O(CO)R¹⁶, -O(CO)R¹⁶, -O(CH₂)₁₋₁₀OR¹⁴, -O(CO)R¹⁶, -NR¹⁴(CO)R¹⁵, -NR¹⁴(CO)R¹⁵, -NR¹⁴(CO)R¹⁵, -NR¹⁴(CO)R¹⁵, -NR¹⁴(CO)R¹⁶, -NR¹⁴(CO)R¹⁶, -NR¹⁴(CO)R¹⁶, -NR¹⁴(CO)R¹⁶, -NR¹⁴(CO)R¹⁶, -O(CH₂)₁₋₁₀CONR¹⁴R¹⁵, -(C₁-C₆ alkylene)-COOR¹⁴, -C₁-CCOOR¹⁴, -CCOOR¹⁴, -CCOOR¹⁴,

R8 is hydrogen, (C1-C6)alkyl, aryl (C1-C6)alkyl, -C(O)R14 or -COOR14;

R⁹ and R¹⁷ are independently 1-3 groups independently selected from the group consisting of hydrogen, (C₁-C₆) alkyl, (C₁-C₆) alkoxy, -COOH, NO₂, -NR¹⁴R¹⁵, OH and halogeno;

R14 and R15 are independently selected from the group consisting of hydrogen, (C₁-C₆)alkyl, aryl and aryl-substituted (C₁-C₆)alkyl;

R16 is (C1-C6)alkyl, aryl or R17-substituted aryl;

R18 is hydrogen or (C1-C6)alkyl; and

R19 is hydrogen, hydroxy or (C1-Cc)alkoxy.

[0073] As used in Formula (IV) above, "A" is preferably an R²-substituted, 6-membered heterocycloalkyl ring constraint or 2 nitrogen atoms. Preferred heterocycloalkyl rings are piperidinyl, piperazinyl and morpholinyl groups. The ring "A" is preferably joined to the phenyl ring through a ring nitrogen. Preferred R² substituents are hydrogen and lower alkyl. R¹⁸ is preferably hydrogen.

[0074] Ar² is preferably phenyl or R⁴-phenyl, especially (4-R⁴)-substituted phenyl. Preferred definitions of R⁴ are lower alkoxy, especially methoxy, and halogeno, especially fluoro.

30 [0075] Ar1 is preferably phenyl or R3-substituted phenyl, especially (4-R3)-substituted phenyl.

[0076] There are several preferred definitions for the -R1-Q-Combination of variables:

- Q is a bond and R1 is lower alkylene, preferably propylene:
- Q is a spiro group as defined above, wherein preferably R⁶ and R⁷ are each ethylene and R⁵ is

Q is a bond and R1 is

wherein the variables are chosen such that R1 is -O-CH2-CH(OH)-;

Q is a bond and R1 is

$$R_{l}^{12}$$
 $-X_{m}^{-10}$
 R_{l}^{13}
 R_{l}^{10}

wherein the variables are chosen such that R1 is -CH(OH)-(CH_o)_o-; and

Q is a bond and R1 is

5

10

20

25

35

40

45

50

55

wherein the variables are chosen such that R1 is -CH(OH)-CH2-S(O)0-2-

[0077] Methods for making compounds of Formula IV are well known to those skilled in the art. Non-limiting examples of suitable methods are disclosed in U.S. Patent No. 5;656,624, which is incorporated herein by reference.

[0078] In another embodiment, sterol absorption inhibitors useful in the compositions, therapeutic combinations and methods of the present invention are represented by Formula (V):

$$Ar^{1} \times_{m} (C)_{q} \times_{R_{1}} (S(O), Ar^{2})$$

(V)

or isomers of the compounds of Formula (V), or pharmaceutically acceptable salts or solvates of the compounds of or Formula (V) or of the isomers of the compounds of Formula (V), or prodrugs of the compounds of Formula (V) or of the isomers, salts or solvates of the compounds of Formula (V), wherein, in Formula (V) above:

Ar1 is arvl. R10-substituted arvl or heteroarvl:

Ar2 is aryl or R4-substituted aryl;

Ar3 is aryl or R5-substituted aryl:

X and Y are independently selected from the group consisting of -CH₂-, -CH(lower alkyl)- and -C(dilower alkyl)-, R is -OR\$, -O(CO)R\$, -O(CO)R\$ or -O(CO)NR\$R7; R1 is hydrogen, lower alkyl or aryl; or R and R1 together are =O; als 0 or 1:

r is 0. 1 or 2:

m and n are independently 0, 1, 2, 3, 4 or 5; provided that the sum of m, n and q is 1, 2, 3, 4 or 5;
R* is 1-5 substituents independently selected from the group consisting of lower alkyl, -OR\$, -O(CO), -O

 R^5 is 1-5 substituents independently selected from the group consisting of -OR9, -O(CO)R9, -O(CO)OR9, -O(CH₂)₁₋₅OR9, -O(CO)NR9R7, -NR9R7, -NR9(CO)OR9, -NR9(CO)NR9R7, -NR9SO₂R9, -COOR9, -COOR9R7, -COR9, -SO₂NR9R7, S(O)₀₋₂R9, -O(CH₂)₁₋₁₀-COOR9, -O(CH₂)₁₋₁₀-COOR9R7, -CF₃, -CN, -NO₂, halonen

-(lower alkylene)COOR6 and -CH=CH-COOR6;

alkylene)COOR6 and -CH=CH-COOR6;

R⁶, R⁷ and R⁸ are independently selected from the group consisting of hydrogen, lower alkyl, anyl and anyl-substituted lower alkyl;

R9 is lower alkyl, aryl or aryl-substituted lower alkyl; and

R¹⁰ is 1-5 substituents independently selected from the group consisting of lower alkyl, -OR6, -O(CO)R6, -O(CO) OR9, -O(CO)R6, -O(CO)R

[0079] Within the scope of Formula V, there are included two preferred structures. In Formula VA, a is zero and the

remaining variables are as defined above, and in Formula VB, q is 1 and the remaining variables are as defined above:

$$Ar^{1} \xrightarrow{X_{m}} S(O)_{r} \xrightarrow{Ar^{2}} Ar^{1} \xrightarrow{X_{m}} \begin{bmatrix} R \\ C \\ R^{1} \end{bmatrix} Y_{n} \xrightarrow{S(O)_{r}} Ar^{2}$$

$$VA$$

$$VB$$

$$VB$$

$$VB$$

[0080] R⁴, R⁵ and R¹⁰ are each preferably 1-3 independently selected substituents as set forth above. Preferred are compounds of Formula (V) wherein Ar¹ is phenyl, R¹⁰-substituted phenyl or thienyl, especially (4-R¹0-substituted phenyl, Ar³ is preferably R⁴-substituted phenyl, Ar³ is preferably phenyl or R⁵-substituted phenyl, especially (4-R⁵)-substituted phenyl, R¹⁰ is preferably halogene, especially fluor-N when Ar³ is R⁴-substituted phenyl, R¹⁰ is preferably halogene, especially fluoro. He substituted phenyl, R⁵ is preferably halogene, especially fluoro. Especially preferably are not only a few preferably and preferably and a few preferably referred are compounds of Formula (V) wherein Ar¹ is phenyl, 4-fluorophenyl or thienyl, Ar² is 4-(alkoxy or hydroxy)phenyl, and Ar³ is phenyl or 4-fluorophenyl or 4-fl

[0081] X and Y are each preferably - CH_2 -. The sum of m, n and q is preferably 2, 3 or 4, more preferably 2. When q is 1, n is preferably 1 to 5.

[0082] Preferences for X, Y, Ar1, Ar2 and Ar3 are the same in each of Formulae (VA) and (VB).

[0083] In compounds of Formula (VA), the sum of m and n is preferably 2, 3 or 4, more preferably 2. Also preferred are compounds wherein the sum of m and n is 2, and r is 0 or 1.

[0084] In compounds of Formula (VB), the sum of m and n is preferably 1, 2 or 3, more preferably 1. Especially preferred are compounds wherein m is zero and n is 1. R1 is preferably hydrogen and R is preferably -OR® wherein R8 is hydrogen, or a croup readily metabolizable to a hydroxy (isoch as -O(CO)R8.

-O(CO)OR9 and -O(CO)NR6R7, defined above), or R and R1 together form a =O group.

[0085] Methods for making compounds of Formula V are well known to those skilled in the art. Non-limiting examples of suitable methods are disclosed in U.S. Patent No. 5,624,920, which is incorporated herein by reference.

[0086] In another embodiment, sterol absorption inhibitors useful in the compositions, therapeutic combinations and methods of the present invention are represented by Formula (VI):

$$R_{1}$$
 R_{20} R_{20} R_{21} R_{21} R_{21}

or isomers of the compounds of Formula (VI), or pharmaceutically acceptable salts or solvates of the compounds of Formula (VI) or of the isomers of the compounds of Formula (VI), or prodrugs of the compounds of Formula (VI) or of the isomers, salts or solvates of the compounds of Formula (VI), wherein:

5

10

35

40

45

55

-CH., -C(lower alkyl)-, -CF-, -C(OH)-, -C(C₆H₅)-, -C(C₆H₄-R₁₅)-, -N- or -
4
N O :

R₂ and R₃ are independently selected from the group consisting of: -CH₂-, -CH([lower alky])-, -C(di-lower alky]-, -CH=CH- and -C([lower alky]-, EH; or R₁ together with an adjacent R₂, or R₁ together with an adjacent R₃, form a -CH=CH- or a -CH=CH over alky]- group;

u and v are independently 0, 1, 2 or 3, provided both are not zero; provided that when R_2 is CH-CH- or C-(lower alkyl)-CH-, v is 1; provided that when R_3 is CH-CH- or C-(lower alkyl)-CH-, v is 1; provided that when v is 2 or 3, the R_3 's can be the same or different; and provided that when v is 2 or 3, the R_3 's can be the same or different; R_1 is selected from B- $C(H_2)_m$ -C(D)-, wherein m is 0, 1, 2, 3, 4 or 5; B- $C(H_2)_n$ -C- $C(H_2)_m$ - $C(H_2)_m$ -C(H

R₁ and R₄ together form the group

5

10

20

25

30

35

40

45

50

55

B-CH=C-

B is selected from indanyl, indenyl, naphthyl. tetrahydronaphthyl, heteroaryl or W-substituted heteroaryl, wherein heteroaryl is selected from the group consisting of pyrrolyl, pyridinlyl, pyrimildnyl, pyrazinyl, triazinyl, imidazolyl, nabrazolyl, nabrazolyl

W is 1 to 3 substituents independently selected from the group consisting of lower alkyl, hydroxy lower alkyl, lower alkoxy, alkoxy,

for substitution on ring carbon atoms,

and the substituents on the substituted heteroaryl ring nitrogen atoms, when present, are selected from the group consisting of lower alkyl, lower alkoy, \sim C(O)OR₁₀, \sim C(O)OR₁₀, O, H, N(R₈)(R₉)-lower alkylene-, N(R₈)(R₉)-lower alky

 R_7 is 1-3 groups independently selected from the group consisting of lower alkyl, lower alkoxy, -COOH, NO_2 , -N $(R_8)(R_9)$, OH, and halogeno;

Ra and Ro are independently selected from H or lower alkyl;

R₁₀ is selected from lower alkyl, phenyl, R₇-phenyl, benzyl or R₇-benzyl;

R₁₁ is selected from OH, lower alkyl, phenyl, benzyl, R₇-phenyl or R₇-benzyl;

R₁₂ is selected from H, OH, alkoxy, phenoxy, benzyloxy,

5

10

15

20

25

35

40

45

50

$$-N R_{13}$$

-N(R₈)(R₉), lower alkyl, phenyl or R₇-phenyl;

R₁₃ is selected from -O-, -CH₂-, -NH-, -N(lower alkyl)- or -NC(O)R₁₉;

 R_{15} , R_{16} and R_{17} are independently selected from the group consisting of H and the groups defined for W, or R_{15} is hydrogen and R_{16} and R_{17} , together with adjacent carbon atoms to which they are attached, form a dioxolaryl ring:

R19 is H, lower alkyl, phenyl or phenyl lower alkyl; and

R₂₀ and R₂₁ are independently selected from the group consisting of phenyl, W-substituted phenyl, naphthyl, W-substituted naphthyl, indanyl, indanyl, tetrahydronaphthyl, benzodioxolyl, heteroaryl, W-substituted heteroaryl senzodiused heteroaryl, W-substituted benzofused heteroaryl and cyclopropyl, wherein heteroaryl is as defined above.

[0087] One group of preferred compounds of Formula VI is that in which R_{21} is selected from phenyl, W-substituted phenyl, indanyl, benzofuranyl, benzo

wherein W is lower alkyl, lower alkoxy, OH, halogeno, $-N(R_8)(R_9)$, $-NHC(O)OR_{10}$, $-NHC(O)R_{10}$, NO_2 , -ON, $-N_3$, -SH, $-S(O)b_{22}(lower alkyl)$, $-COOR_{19}$, $-COOR_{19}$, $-COR_{19}$, $-COR_{1$

30 [0088] Another group of preferred compounds of Formula VI is that in which R₂₀ is phenyl or W-substituted phenyl, wherein preferred meanings of W are as defined above for preferred definitions of R₂₁.

[0089] More preferred are compounds of Formula VI wherein R_{20} is phenyl or W-substituted phenyl and R_{21} is phenyl, W-substituted phenyl, indanyl, benzodioxolyl, tetrahydronaphthyl, polydlyl, pyrazinyl, pyrimidinyl, quinolyl or cyclopropyl; W is lower alkyl, lower alkoy, OH, halogeno, $N(R_0)(R_0)$, $NHC(O)OR_{10}$, $NHC(O)OR_{10}$, $ORCON_{10}$, $ORCON_$

[0090] Also preferred are compounds of Formula VI wherein R₁ is

[0091] Another group of preferred compounds of Formula VI is in which R₂ and R₃ are each -CH₂- and the sum of u and v is 2, 3 or 4, with u=v=2 being more preferred.

[0092] R₄ is preferably B-(CH₂)_a-or B-(CH₂)_a-Z-(CH₂)_a-, wherein B, Z, q, e and r are as defined above. B is preferably

wherein R₁₆ and R₁₇ are each hydrogen and wherein R₁₅ is preferably H, OH, lower alkoxy, especially methoxy, or halogeno, especially chloro.

[0093] Preferably Z is -O-, e is 0, and r is 0.

[0094] Preferably q is 0-2.

[0095] R₂₀ is preferably phenyl or W-substituted phenyl.

[0096] Preferred W substituents for R_{20} are lower alkoxy, especially methoxy and ethoxy, OH, and -C(O) R_{12} , wherein R_{12} is preferably lower alkoxy.

[0097] Preferably R₂₁ is selected from phenyl, lower alkoxy-substituted phenyl and F-phenyl.

[0098] Especially preferred are compounds of Formula VI wherein R₁ is

or

10

15

25

30

35

40

45

50

55

-P(OH)-

R₂ and R₃ are each -CH₂-, u-v-2, R₄ is B-(CH₂)₃-, wherein B is phenyl or phenyl substituted by lower alkoxy or chloro, q is 0-2, R₂₀ is phenyl. OH-phenyl, lower alkoxy-substituted phenyl or lower alkoxycarbonyl-substituted phenyl, and R₂₀ is phenyl. Ower alkoxycustituted phenyl and R₂₀ is phenyl. Ower alkoxycustituted phenyl and R₂₀ is phenyl. Ower alkoxycustituted phenyl and R₂₀ is phenyl.

20 F-phenyl.

[0099] Methods for making compounds of Formula VI are well known to those skilled in the art. Non-limiting examples of suitable methods are disclosed in U.S. Patent No. 5,698,548, which is incorporated herein by reference.

[0100] In another embodiment, sterol inhibitors useful in the compositions, therapeutic combinations and methods of the present invention are represented by Formula (VII):

(VII)

or isomers of the compounds of Formula (VII), or pharmaceutically acceptable salts or solvates of the compounds of Formula (VII) or of the isomers of the compounds of Formula (VII), or prodrugs of the compounds of Formula (VII) or of the isomers, salts or solvates of the compounds of Formula (VII), wherein in Formula (VII) above:

A is -CH=CH-, -C=C- or -(CH₂)
$$_{p}$$
- wherein p is 0, 1 or 2; B is

E is C_{10} to C_{20} alkyl or -C(O)-(C_9 to C_{19})-alkyl, wherein the alkyl is straight or branched, saturated or containing one or more double bonds;

R is hydrogen, C₁-C₁ alkyl, straight or branched, saturated or containing one or more double bonds, or B-(CH₂),-.

wherein r is 0, 1, 2, or 3;

5

10

15

20

30

35

40

45

50

55

R₁, R₂, and R₃ are independently selected from the group consisting of hydrogen, lower alkyl, lower alkoxy, carboxy, NO₂, NH₂, OH, halogeno, lower alkylamino, dilower alkylamino, -NHC(O)OR₅, R₆O₂SNH- and -S(O)₂NH₂; R₁ is

wherein n is 0, 1, 2 or 3:

R₅ is lower alkyl; and

 $R_{\rm G}$ is OH, lower alkyl, phenyl, benzyl or substituted phenyl wherein the substituents are 1-3 groups independently selected from the group consisting of lower alkyl, lower alkoxy, carboxy, NO₂, NH₂, OH, halogeno, lower alkylamino and dilower alkylamino.

[0101] Preferred compounds of Formula (VII) are those wherein R is hydrogen, methyl, ethyl, phenyl or phenylpropyl. Another group of preferred compounds of Formula (VII) is that wherein R₄ is p-methoxyphenyl or 2.4, 5-trimethoxyphenyl. Still another group of preferred compounds of Formula (VII) is that wherein A is ethylene or a bond. Yet another group of preferred compounds of Formula (VII) is that wherein E is decyl, oleoyl or 7-Z-hexadecenyl. Preferably R₁, B₁, and B₁, are each hydrogen than the support of the property of the preferably R₂.

[0102] More preferred compounds of Formula (VII) are those wherein R is hydrogen, methyl, ethyl, phenyl or phenylpropyl; R_a is p-methoxyphenyl or 2.4,6-trimethoxyphenyl; A is ethylene or a bond; E is decyl, oleoyl or 7-Z-hexadecenyl; and R_a, R_a and R_a are each hydrogen.

[0103] A preferred compound of Formula (VII) is that wherein E is decyl, R is hydrogen, B-A is phenyl and R₄ is pmethoxychenyl.

[0104] In another embodiment, sterol inhibitors useful in the compositions and methods of the present invention are represented by Formula (VIII):

(VIII)

or isomers of the compounds of Formula (VIII), or pharmaceutically acceptable salts or solvates of the compounds of Formula (VIII) or of the isomers of the compounds of Formula (VIII), or prodrugs of the compounds of Formula (VIII) or of the isomers, salts or solvates of the compounds of Formula (VIII), wherein, in Formula (VIII) above,

R²⁶ is H or OG¹;

G and G1 are independently selected from the group consisting of H,

and

provided that when R26 is H or OH, G is not H:

R, R^a and R^b are independently selected from the group consisting of H, -OH, halogeno, -NH₂, azido, (C₁-C₆) alkoxy(C₁-C₆)-alkoxy or -W-R³⁰;

W is independently selected from the group consisting of -NH-C(O)-, -O-C(O)-, -O-C(O)-N(R³¹)-, -NH-C(O)-N(R³¹)- and -O-C(S)-N(R³¹)-:

R² and R⁶ are independently selected from the group consisting of H, (C₁-C₆)alkyl, aryl and aryl(C₁-C₆)alkyl;

R³, R⁴, R⁵, R⁷, R^{3a} and R^{4a} are independently selected from the group consisting of H, (C₁-C₆)alkyl, aryl(C₁-C₆) alkyl, -C(O)(C₁-C₆)alkyl and -C(O)aryl:

R⁵⁰ is selected from the group consisting of R⁵²-substituted T, R³²-substituted-T-(C₁-C₆)alkyl, R³²-substituted-(C₂-C₇)cycloalkyl and R⁵²-substituted-(C₃-C⁷)cycloalkyl and R⁵

R31 is selected from the group consisting of H and (C1-C4)alkyl;

T is selected from the group consisting of phenyl, furyl, thienyl, pyrrolyl, oxazolyl, isoxazolyl, thiazolyl, iosthiazolyl, benzothiazolyl, thiadiazolyl, pyrazolyl, imidazolyl and pyridyl:

 R^{32} is Independently selected from 1-3 substituents independently selected from the group consisting of halogeno, (C_1-C_2) alkyl, -OH, phenoxy, $-CF_3$. $-NO_2$, (C_1-C_2) alkyox, methylenedioxy, oxo, (C_1-C_2) alkylsulfanyl, (C_1-C_2) alkylsulfanyl, -C(O)-MH (C_1-C_2) alkyly, -C(O)-MH (C_1-C_2) alkyly), -C(O)-($-C_1-C_2$) alkyly, -C(O)-MH (C_1-C_2) alkyly), -C(O)-($-C_1-C_2$) alkoxy and pyrrolidinylcarbonyl; or R^{32} is a covalent bond and R^{31} , the nitrogen to which it is attached and R^{32} form a pyrrolidinyl, piperidinyl. Nemthylipierazinyl, indelinyl or morpholinyl group; or a (C_1-C_2) alkoxycarbonyl-substituted pyrrolidinyl, piperidinyl. Nemthylipierazinyl, indelinyl or morpholinyl group;

Ar1 is aryl or R10-substituted aryl;

Ar2 is arvl or R11-substituted arvl:

Q is a bond or, with the 3-position ring carbon of the azetidinone, forms the spiro group

and

5

10

15

20

25

35

40

45

50

55

R1 is selected from the group consisting of

-(CH₂)_a-, wherein a is 2-6, provided that when Q forms a spiro ring, a can also be zero or 1;

 $-(CH_2)_e$ -E- $(CH_2)_f$, wherein E is -O-, -C(O)-, phenylene, -NR²²- or -S(O)₀₋₂-, e is 0-5 and r is 0-5, provided that the sum of e and r is 1-6;

-(C2-C6)alkenylene-; and

-(CH₂)_r-V-(CH₂)_g-, wherein V is C₃-C₆ cycloalkylene, f is 1-5 and g is 0-5, provided that the sum of f and g

is 1-6; R¹² is

$$-\overset{1}{C}H_{-}, -\overset{1}{C}(C_{1}-C_{6} \text{ alkyl})_{-}, -\overset{1}{C}F_{-}, -\overset{1}{C}(OH)_{-}, -\overset{1}{C}(C_{6}H_{4}-R^{23})_{-}, -\overset{1}{N}_{-}, \text{ or } -\overset{\dagger}{N}O^{-};$$

R¹³ and R¹⁴ are independently selected from the group consisting of -CH₂-, -CH(C₄-C₆ alkvl)-, -C(di-(C₄-C₆) alkvl), -CH=CH- and -C(C₄-C₆ alkvl)=CH-; or R¹² together with an adia-

cent R13, or R12 together with an adjacent R14, form a -CH=CH- or a -CH=C(C1-C6 alkyl)- group;

a and b are independently 0, 1, 2 or 3, provided both are not zero: provided that when R13 is -CH=CH- or -C(C1-C6 alkyl)=CH-, a is 1;

provided that when R14 is -CH=CH- or -C(C1-C6 alkyl)=CH-, b is 1;

provided that when a is 2 or 3, the R13's can be the same or different; and

provided that when b is 2 or 3, the R14's can be the same or different;

and when Q is a bond. R1 also can be:

M is -O-, -S-, -S(O)- or -S(O)2-;

X, Y and Z are independently selected from the group consisting of -CH₂-, -CH(C₄-C₆)alkyl- and -C(di-(C₄-C₆) alkyl);

R10 and R11 are independently selected from the group consisting of 1-3 substituents independently selected from the group consisting of (C₁-C₆)alkyl, -OR¹⁹, -O(CO)R¹⁹, -O(CO)OR²¹, -O(CH₂)₁₋₅OR¹⁹, -O(CO)NR¹⁹R²⁰, 20 -NR19R20, -NR19(CO)R20, -NR19(CO)R21, -NR19(CO)NR20R25, -NR19SO-R21, -COOR19, -CONR19R20, -COR19 -SO₂NR¹⁹R²⁰, S(O)₀₋₂R²¹, -O(CH₂)₁₋₁₀-COOR¹⁹, -O(CH₂)₁₋₁₀CONR¹⁹R²⁰, -(C₁-C₆ alkylene)-COOR¹⁹, -CH=CH-COOR19, -CF2, -CN, -NO2 and halogen;

R15 and R17 are independently selected from the group consisting of -OR19, -O(CO)R19, -O(CO)OR21 and -O (CO)NR19R20;

R16 and R18 are independently selected from the group consisting of H, (C1-C6)alkyl and aryl; or R15 and R16 together are =0, or R17 and R18 together are =0;

d is 1, 2 or 3;

5

10

15

25

30

35

40

50

55

h is 0, 1, 2, 3 or 4;

s is 0 or 1; t is 0 or 1; m. n and p are independently 0-4;

provided that at least one of s and t is 1, and the sum of m, n, p, s and t is 1-6;

provided that when p is 0 and t is 1, the sum of m, s and n is 1-5; and provided that when p is 0 and s is 1, the sum of m. t and n is 1-5:

v is 0 or 1:

i and k are independently 1-5, provided that the sum of i, k and v is 1-5;

and when Q is a bond and B1 is

$$-X_{j}^{-15}$$
 $-X_{j}^{-15}$
 $-X_{k}^{-15}$
 $-X_{k}^{-15}$

Ar1 can also be pyridyl, isoxazolyl, furanyl, pyrrolyl, thienyl, imidazolyl, pyrazolyl, thiazolyl, pyrazinyl, pyrimidinyl or pyridazinyl:

R19 and R20 are independently selected from the group consisting of H. (C₄-C₆)alkyl, aryl and aryl-substituted (C1-C6)alkyl;

R21 is (C1-C6)alkyl, aryl or R24-substituted aryl;

 R^{22} is H, (C_1-C_6) alkyl, aryl (C_1-C_6) alkyl, $-C(0)R^{19}$ or $-COOR^{19}$;

R23 and R24 are independently 1-3 groups independently selected from the group consisting of H, (C₁-C₆)alkyl, (C1-C6)alkoxy, -COOH, NO2, -NR19R20, -OH and halogeno; and

 \mathbb{R}^{25} is H, -OH or (C_1-C_6) alkoxy.

Ar2 is preferably phenyl or R11-phenyl, especially (4-R11)-substituted phenyl. Preferred definitions of R11 are lower alkoxy, especially methoxy, and halogeno, especially fluoro.

Ar1 is preferably phenyl or R10-substituted phenyl, especially (4-R10)-substituted phenyl. Preferably R10 is halogeno, and more preferably fluoro.

[0105] There are several preferred definitions for the -R1-Q-Combination of variables:

Q is a bond and R1 is lower alkylene, preferably propylene; '

Q is a spiro group as defined above, wherein preferably R13 and R14 are each ethylene and R12 is

-CH- or -C(OH)-

and R1 is -(CH2)q wherein q is 0-6;

Q is a bond and R¹ is

5

10

15

25

30

35

40

45

50

wherein the variables

are chosen such that R1 is -O-CH2-CH(OH)-;

20 Q is a bond and R¹

$$R_{l}^{17}$$
 R_{l}^{15} $-X_{m} - (C)_{s} - Y_{n} - (C)_{t} - Z_{p} - R_{l}^{18}$

wherein the is variables are chosen such that R1 is -CH(OH)-(CH2)2-; and

Q is a bond and R1 is

$$R_i^{15}$$
 $-X_j^-(C)_v^-Y_k^-S(O)_{0\cdot 2}^ R_i^{16}$

wherein the variables are chosen such that R1 is -CH(OH)-CH2-S(O)0-2-.

[0106] A preferred compound of Formula (VIII) therefore, is one wherein G and G¹ are as defined above and in which the remaining variables have the following definitions:

Ar1 is phenyl or R10-substituted phenyl, wherein R10 is halogeno:

Ar² is phenyl or R¹¹-phenyl, wherein R¹¹ is 1 to 3 substituents independently selected from the group consisting of C₃-C₆ alkoxy and halogeno;

Q is a bond and R1 is lower alkylene; Q, with the 3-position ring carbon of the azetidinone, forms the group

55 wherein preferably R¹³ and R¹⁴ are each ethylene and a and b are each 1, and wherein R¹² is

-CH- or -C(OH)- :

9 Q is a bond and R¹ is -O-CH₂-CH(OH)-; Q is a bond and R¹ is -CH(OH)-(CH₂)₂-; or Q is a bond and R¹ is -CH(OH) -CH₂-S(O)_{0.2}-.

[0107] Preferred variables for G and G1 groups of the formulae

$$\bigcap_{Q_1^{R^5}} \bigcap_{Q_1^{R^4}} \bigcap_{Q_1^{R^5}} \bigcap_{Q_1^{R^5}}$$

are as follows:

10

15

20

25

30

35

40

50

55

R2, R3, R4, R5, R6 and R7 are independently selected from the group consisting of H, (C1-C8) alkyl, benzyl and acetyl.

[0108] Preferred variables for group G or G1 of the formula:

are as follows:

R³, R³ and R⁴ are selected from the group consisting of H, (C₁-C₆)alkyl, benzyl and acetyl; R, R^a and R^b are independently selected from the group consisting of H, -OH, hallogeno, -NH₂, azido, (C₁-C₆) alkoxy(C₁-C₆)alkoxy and -W-R³⁰.

wherein W is -O-C(O)- or -O-C(O)-NR31-, R31 is H and

 R^{30} is (C_1-C_6) alkyl, $-C(O)-(C_1-C_4)$ alkoxy- (C_1-C_6) alkyl, T, T- (C_1-C_6) alkyl, or T or T- (C_1-C_6) alkyl wherein T is substituted by one or two halogeno or (C_1-C_6) alkyl groups.

[0109] Preferred R³⁰ substituents are selected from the group consisting of: 2-fluorophenyl, 2.4-difluoro-phenyl, 2.6-dichlorophenyl, 2-methylphenyl, 2-thienylmethyl, 2-methoxy-carbonylethyl, thiazol-2-yl-methyl, 2-fluryl, 2-methox-vacrbonylethyl, and phenyl.

[0110] Preferred combinations of R, Ra and Rb are as follows:

- 1) R, Rª and Rª are independently -OH or -O-C(O)-NNI-R³º, especially wherein Rª is -OH and R and R² are -O-C (O)-NNI-R³º and R³º is selected from the preferred substituents identified above, or wherein R and Rª are each -OH and R³ is-O-C(O)-NNI-R³º wherein R³º is 2-fluorophenyl, 2.4-difluoro-phenyl, 2.6-dichlorophenyl;
- 2) Pit is -OH, halogene, azido or (C₇-C₆)-alkoxy(C₁-C₆)alkoxy, Pit is H, halogene, azido or (C₇-C₆)alkoxy(C₁-C₆)-alkoxy, and R is -O-(CO)-NH-R³⁰, especially compounds wherein R^{ai} is -OH, R^b is H and R³⁰ is 2-fluoropheny;
 3) R, Pit and R^b are independently -OH or -O-C(O)-R³⁰ and R³⁰ is (C₁-C₆)alkyl, T, or T substituted by one or two halogene or (C₁-C₆)alkyl groups, especially compounds wherein R is -OH and R^{ai} and R^b are -O-C(O)-R³⁰ wherein R³⁰ is 2-fluyth; and
- 4) R, Rª and Rª are independently -OH or halogeno. Three additional classes of preferred compounds are those wherein the C¹ anomeric oxy is beta, wherein the C² anomeric oxy is beta, and wherein the R group is alpha. G and G¹ are preferably selected from:

and

wherein Ac is acetyl and Ph is phenyl.

[0111] Preferably, R²⁶ is H or OH, more preferably H. The -O-G substituent is preferably in the 4-position of the phenyl ring to which it is attached.

[0112] In another embodiment, sterol inhibitors useful in the compositions and methods of the present invention are represented by Formula (IX) below:

$$Ar^{1}-CH-Q \xrightarrow{\qquad \qquad \qquad } R_{26}$$

$$O \xrightarrow{\qquad \qquad \qquad } N_{Ar^{2}} \qquad \qquad (IX)$$

or isomers of the compounds of Formula (IX), or pharmaceutically acceptable salts or solvates of the compounds of Formula (IX) or of the isomers of the compounds of Formula (IX), or prodrugs of the compounds of Formula (IX) or of the isomers, salts or solvates of the compounds of Formula (IX), wherein in Formula (IX) above:

R26 is selected from the group consisting of:

a) OH;

5

10

15

20

25

30

35

40

45

50

55

- b) OCH₃;
- c) fluorine and
- d) chlorine.

R1 is selected from the group consisting of H.

-SO₂H: natural and unnatural amino acids.

R, $\overline{\mathsf{N}^a}$ and R^b are independently selected from the group consisting of H, -OH, halogeno, -NH₂, azido, (C₁-C₆) alkoxy(C₁-C₆)-alkoxy and -W-R³⁰;

W is independently selected from the group consisting of -NH-C(O)-, -O-C(O)-, -O-C(O)-N(R³¹)-, -NH-C(O)-N(R³¹)- and -O-C(S)-N(R³¹)-;

R² and R⁶ are independently selected from the group consisting of H, (C₁-C₆)alkyl, and aryl(C₁-C₆)alkyl;

H³, R⁴, R⁵, R⁷, R^{3a} and R^{4a} are independently selected from the group consisting of H, (C₁·C₆)alkyl, aryl(C₁·C₆) alkyl, -C(O)(C₁·C₆)alkyl and -C(O)aryl;

 R^{30} is independently selected form the group consisting of R^{32} -substituted T, R^{32} -substituted-T-(C_{t} -Cg)alkyl, R^{32} -substituted-(C_{2} -Cg)alkenyl, R^{32} -substituted-(C_{3} -Cg)alkyl, R^{32} -substituted-(C_{3} -Cg)-colarly(C_{3} -Cg)alkyl;

R³¹ is independently selected from the group consisting of H and (C₁-C₄)alkyl;

T is independently selected from the group consisting of phenyl, furyl, thienyl, pyrrolyl, oxazolyl, isoxazolyl, thiazolyl, iosthiazolyl, benzothiazolyl, thiadiazolyl, pyrazolyl, imidazolyl and pyridyl;

R32 is independently selected from 1-3 substituents independently selected from the group consisting of H, hal-

ogeno, (C_1-C_4) alkyl, -OH, phenoxy, $-OF_3$, $-NO_2$, (C_1-C_4) alkoys, methylenedioxy, oxo, (C_1-C_4) alkylsulflarly, (C_1-C_4) alkylsulflarly, $-(C_1-C_4)$ alkoxy and pyrrolidinylcarbonyl, or R82 is a covalent bond and R31, the nitrogen to which it is attached and R32 form a pyrrolidinyl, piperidinyl, N-methyl-piperazinyl, indolinyl or morpholinyl group, or a (C_1-C_4) alkoxy-carbonyl-substituted pyrrolidinyl, piperidinyl, N-methyl-piperazinyl, indolinyl or morpholinyl group, or a $-(C_1-C_4)$ alkoxy-carbonyl-substituted pyrrolidinyl, piperidinyl, N-methylpiperazinyl, indolinyl or morpholinyl group, or a $-(C_1-C_4)$ alkoxy-carbonyl-substituted pyrrolidinyl, piperidinyl, N-methylpiperazinyl, indolinyl or morpholinyl group, or a $-(C_1-C_4)$ alkoxy-carbonyl-substituted pyrrolidinyl, piperidinyl, piperi

Ar2 is arvl or R11-substituted arvl:

Q is -(CH₂)_q-, wherein q is 2-6, or, with the 3-position ring carbon of the azetidinone, forms the spire group

R12 is

5

10

15

20

25

30

35

40

45

55

$$\overset{1}{\text{-CH-}}, \overset{1}{\text{-C}}(C_1\text{--}C_6 \text{ alkyl})\text{-, -CF-}, \overset{1}{\text{-C}}(OH)\text{-, -C}(C_6H_4\text{--R}^{23})\text{-, -N-, or }-\overset{1}{\text{NO}}\text{'};$$

R¹³ and R¹⁴ are independently selected from the group consisting of -CH₂, -CH(C, -C₆ alkyl)-, -C(di-(C₁-C₆) alkyl), -CH=CH- and -C(C₁-C₆ alkyl)- CH=CH- and -C(C₁-C₆ alkyl)- group; of the child and -CH=C(C, -C₆ alkyl)- group; of the child and -CH=C(C, -C₆ alkyl)- group;

a and b are independently 0, 1, 2 or 3, provided both are not zero; provided that when R13 is CH=CH+ or -C(C₁-C₂ alky)=CH+, a is 1; provided that when R14 is -CH=CH+ or -C(C₁-C₂ alky)=CH+, b is 1; provided that when a is 2 or 3, the R19s can be the same or different; R10 and R11 are independently selected from the group consisting of 1-3 substituents independently selected from the group consisting of 1-3 substituents independently selected from the group consisting of 1-3 substituents independently selected from the group consisting of (-C₁-C₂-alkyl, -O(-C)-R19s, -O(-CO)-R19s, -O(-C)-R19s, -O(-C

-NO₂ and halogen;

Ar¹ can also be pyridyl, isoxazolyl, furanyl, pyrrolyl, thienyl, imidazolyl, pyrazolyl, thiazolyl, pyrazinyl, pyrimidinyl or pyridazinyl:

 R^{19} and R^{20} are independently selected from the group consisting of H, $(C_1 - C_6)$ alkyl, aryl and aryl-substituted $(C_1 - C_6)$ alkyl;

R21 is (C1-C6)alkyl, aryl or R24-substituted aryl;

R22 is H, (C1-C6)alkyl, aryl (C1-C6)alkyl, -C(O)R19 or -COOR19;

R²³ and R²⁴ are independently 1-3 groups independently selected from the group consisting of H, (C₁-C₆)alkyl, (C₁-C₆)alkoxy, -COOH, NO₂, -NR¹⁹R²⁰, -OH and halogeno; and

R25 is H. -OH or (C1-Cc)alkoxy.

[0113] Ar² is preferably phenyl or R¹¹-phenyl, especially (4-R¹¹)-substituted phenyl. Preferred definitions of R¹¹ are lower alkoxy, especially methoxy, and halogeno, especially fluoro.

[0114] Ar1 is preferably phenyl or R10-substituted phenyl, especially (4-R10)-substituted phenyl. A preferred definition of R10 is halogene, especially fluoro.

[0115] Preferably Q is a lower alkyl or a spiro group as defined above, wherein preferably R¹³ and R¹⁴ are each ethylene and R¹² is

[0116] A preferred compound of formula IX, therefore, is one wherein R' is as defined above and in which the remaining variables have the following definitions:

Ar1 is phenyl or R10-substituted phenyl, wherein R10 is halogeno;

Ar² is phenyl or R¹¹-phenyl, wherein R¹¹ is 1 to 3 substituents independently selected from the group consisting of C₁-C₆ alkoxy and halogeno;

Q is a lower alkyl (i.e. C-1 to C-2) with Q = C-2 being preferred, or Q, with the 3-position ring carbon of the azetidinone, forms the group

wherein preferably R13 and R14 are each ethylene and a and b are each 1, and wherein R12 is

[0117] Preferred variables for R1 groups of the formula

are as follows:

5

10

15

20

25

30

35

40

45

50

55

 R^2 , R^3 , R^4 , R^5 , R^6 and R^7 are independently selected from the group consisting of H, $(C_1 - C_6)$ alkyl, benzyl and acetyl.

[0118] Preferred variables for group R' of the formula

are as follows:

 R^3 , R^{3a} , R^4 and R^{4a} are selected from the group consisting of H, (C_1-C_6) alkyl, benzyl and acetyl;

R, R^a and R^b are independently selected from the group consisting of H. -OH, halogeno, -NH₂, azido, (C₁-C₆) alkoxy(G,-C₆)alkoxy and -W-R³⁰, wherein W is -O-C(O) -or-O-C(O) -NR⁵¹, R^{51} is H and R^{50} is (C₁-C₆)alkyl, -C (O)-(C₁-C₆)alkyl, -C (C₁-C₆)alkyl, -C (C₁-C₆)alkyl, or T or T-(C₁-C₆)alkyl wherein T is substituted by one or two halogeno or (C₁-C₆)alkyl groups.

[0119] Preferred R³⁰ substituents are 2-fluorophenyl, 2.4-difluoro-phenyl, 2.6-dichlorophenyl, 2.-methylphenyl, 2-thienylmethyl, 2-methoxy-carbonylethyl, thiazol-2-yl-methyl, 2-funyl, 2-methoxycarbonylbutyl and phenyl. Preferred combinations of R, R² and R² are as follows: 1) R, R² and R² are independently -OH or -O-C(O)-NH-R²0, sepacially wherein R² is -OH and R and R² are -O-C(O)-NH-R²0 and R²0 is selected from the preferred substitutions identified above, or wherein R and R² are -OH and R²0 is C-Q(O)-NH-R²0 wherein R²0 is 2-fluorophonyl, 24-diffuor-phenyl.

2.6-dichlorophenyl; 2) Pe is -OH, helogeno, azido or (c₁-C₉)-alkoxy(C₁-C₉)-alkoxy, Pe is H, helogeno, azido or (C₁-C₉)-alkoxy(C₁-C₉)-alkoxy, Pe is H, halogeno, azido or (C₁-C₉)-alkoxy, and Ris -O-(C₁)-NH-Pe is -OH, Pe is Pe is -OH, Pe is H and R⁵⁰ is C₁-C₉-cop-alkoy, T, or T substituted by one or two halogeno or (C₁-C₉)-alkyl; groups, especially compounds wherein R is -OH and R⁹ and R⁹ are -O-C(0)-R⁵⁰ wherein R⁵⁰ is 2-furyl; and 4) R, Pe and R⁹ are independently -OH or halogeno. Three additional classes of predict are compounds are those wherein the C¹ anomeric oxy is beta, wherein the C² anomeric oxy is beta, and wherein the R group is alpha.

[0120] R1 is preferably selected from:

and

wherein Ac is acetyl and Ph is phenyl.

5

10

20

25

30

[0121] An example of a useful compound of this invention is one represented by the formula X:

 wherein R¹ is defined as above, or pharmaceutically acceptable salts or solvates of the compound of Formula (X), or prodrugs of the compound of Formula (X) or of the pharmaceutically acceptable salts or solvates of the compound of Formula (X).

[0122] A more preferred compound is one represented by formula XI:

35 or pharmaceutically acceptable salts or solvates of the compound of Formula (XI), or prodrugs of the compound of Formula (XI) or of the pharmaceutically acceptable salts or solvates of the compound of Formula (XI).

[0123] in another embodiment, compositions, pharmaceutical compositions, therapeutic combinations, kits and methods of treatment as described above are provided which comprise; (a) at least one peroxisome proliferator-activated receptor activator; and (b) at least one substituted azeitdinone compound or at least one substituted β-lactam compound, or isomers of the at least one substituted β-lactam compound, or pharmaceutically acceptable salts or solvates of the at least one substituted αzeitdinone compound or the at least one substituted β-lactam compound or of the at least one substituted azeitdinone compound or the at least one substituted azeitdinone compound or the at least one substituted β-lactam compound, or produce of the at least one substituted azeitdinone compound or the at least one substituted p-lactam compound or of the isomers, salts or solvates of the at least one substituted azeitdinone compound are described p-lactam compound, or produce the at least one substituted azeitdinone compound or the at least one substituted β-lactam compound, or produce the at least one substituted azeitdinone compound or the at least one substituted p-lactam compound, or produce the at least one substituted azeitdinone compound or the at least one substituted p-lactam compound, or produce the attention of the at least one substituted azeitdinone compound or the at least one substituted p-lactam compound, or produce the attention of the at least one substituted azeitdinone compound or the at least one substituted p-lactam compound, wherein the first amount and the second amount together in their totality (whether administered concurrently or consecutively) comprise a threspectutely effective amount for the treatment or prevention of a vascular condition, diabetes, obesity or lowering a concentration of a sterol in planema of a mammal.

[0124] Suitable substituted azeitidinone compounds or substituted β-lactam compounds can be selected from any of the compounds discussed above in Formulae I-XI. Other useful substituted azeitidinone compounds include N-suifonyl:-2-azeitidinones such as are disclosed in U.S. Patent No. 4,983,597 and othyl 4-(2-oxoazeitidin-4-y)phenoxy-alkanoates such as are disclosed in Ram et al., Indian J. Chem. Sect. B. 298, 12 (1990), p. 1134-7, which are incorporated by reference herein.

[0125] The compounds of Formulae I-XI can be prepared by known methods, including the methods discussed above and, for example, WO 93/02048 describes the preparation of compounds wherein -R¹-Q- is alkylene, alkenylene or alkylene interrupted by a hetero atom, phenylene or cycloalkylene; WO 94/17038 describes the preparation of compounds wherein O is a spirocyclic group; WO 95/08522 describes the preparation of compounds wherein -R¹-Q- is a hydroxy-substituted alkylene group. PCTNS95/03196 describes compounds wherein -R¹-Q- is a hydroxy-substituted alkylene group. PCTNS95/03196 describes compounds wherein -R¹-Q- is a hydroxy-substituted alkylene group. PCTNS95/03196 describes compounds wherein -R¹-Q- is a hydroxy-substituted alkylene group. PCTNS96/03196 describes compounds wherein -R¹-Q- is a hydroxy-substituted alkylene group. PCTNS96/03196 describes compounds wherein -R¹-Q- is a hydroxy-substituted alkylene group. PCTNS96/03196 describes the preparation of compounds wherein -R¹-Q- is a hydroxy-substituted alkylene group. PCTNS96/03196 describes the preparation of compounds wherein -R¹-Q- is a hydroxy-substituted alkylene group. PCTNS96/03196 describes the preparation of compounds wherein -R¹-Q- is a hydroxy-substituted alkylene group. PCTNS96/03196 describes the preparation of compounds wherein -R¹-Q- is a hydroxy-substituted alkylene group. PCTNS96/03196 describes compounds wherein -R¹-Q- is a hydroxy-substituted alkylene group. PCTNS96/03196 describes group gr

alkylene attached to the Λ^1 moiety through an -O- or $S(O)_{0.2}$ group; and U.S. Serial No. 08/463,619, filed June 5, 1995, describes the preparation of compounds wherein -R¹-Q- is a hydroxy-substituted alkylene group attached the azetidinone ring by a -S(O)_{0.2} group.

[0126] The daily dose of the sterol absorption inhibitor(s) can range from about 0.1 to about 1000 mg per day, preferably about 0.25 to about 50 mg/day, and more preferably about 10 mg per day, given in a single dose or 2-4 divided doses. The exact dose, however, is determined by the attending clinician and is dependent on the potency of the compound administered, the age, weight, condition and response of the patient.

[0127] For administration of pharmaceutically acceptable salts of the above compounds, the weights indicated above refer to the weight of the acid equivalent or the base equivalent of the therapeutic compound derived from the salt.

[0128] In one embodiment of the present invention, the compositions or therapeutic combinations can further comprise one or more pharmacological or therapeutic agents or drugs such as cholesterol biosynthesis inhibitors and/or loid-lowering agents discussed below.

[0129] In another embodiment, the composition or treatment can further comprise one or more cholesterol biosynthesis inhibitors coadministered with or in combination with the peroxisome proliferator-activated receptor activator(s) and sterol absorption inhibitor(s) discussed above.

[1330] Non-limiting examples of cholesterol biosynthesis inhibitors for use in the compositions, therapeutic combinations and methods of the present invention include competitive inhibitors of HMG CoA reductase, the rate-limiting step in cholesterol biosynthesis, squalene synthase inhibitors, squalene spoxidase inhibitors and mixtures thereof. Non-limiting examples of suitable HMG CoA reductase inhibitors include statins such as lowastatin (for example MEACOR® which is available from Merck & Co.), pravastatin (for example PRAVACHOL® which is available from Bristol Meyers Squibb), fluvastatin, simvastatin (for example ZCOCR® which is available from Merck & Co.), atorvastatin, cerivastatin, Cosivastatin, pravastatin (sodium 7-(4-fluorophenyl)-2,6-disopropyl-5-methoxymethylpyridin-3-yl)-3,6-dihydroxy-6-heptanoatic, posuvastatin pitavastatin (such as NK-104 Nogma Kowa of Japan); HMG CoA synthetase inhibitors, for example L-659,699 ((E.E)-11-(3Ps.(hydroxymethyl)-4'cxo-2Ps.oxetanyl-3,5,7R-trimethyk-2,4-undecadlenoic acid; squalene synthesis inhibitors, for example squalestatin 1; and squalene epoxidase inhibitors, for example, NB-598 ((E)-N-ethyl-N-(6,6-dimethyl-2-hepten-4-ynyl)-3-(3,3'-bithophen-5-yl)methoxylpenzene-methanamine hydrochioride) and other sterol biosynthesis inhibitors such as DMP-565. Preferred HMG CoA reductase inhibitor is sinvastatin, revavastatin and sirmyastatin. The most preferred HMG CoA dreductase inhibitor is sinvastatin for invastatin, pravastatin and sirmyastatin. The most preferred HMG CoA dreductase inhibitor is sinvastatin for include lovastatin, pravastatin and sirmyastatin. The most preferred HMG CoA dreductase inhibitor is sinvastatin for include lovastatin, pravastatin and sirmyastatin. The most preferred HMG CoA dreductase inhibitor is sinvastatin for include lovastatin, pravastatin and sirmyastatin. The most preferred HMG CoA dreductase inhibitor is sinvastatin.

20

40

[0131] Generally, a total daily dosage of cholesterol biosynthesis inhibitor(s) can range from about 0.1 to about 160 mg per day, and preferably about 0.2 to about 80 mg/day in single or 2-3 divided doses.

[0132] In another preferred embodiment, the composition or treatment comprises the compound of Formula (iI) in combination with one or more peroxisome proliferator-activated receptor(s) activator(s) and one or more cholesterol bloosynthesis inhibitors. In this embodiment, preferably the peroxisome proliferator-activated receptor activator(s) is a fibric acid derivative selected from genfibrozil, clofibrate and/or fenofibrate. Preferably the cholesterol blosynthesis inhibitor comprises one or more HMG CoA reductase inhibitors, such as, for example, lovastatin, pravastatin and resultance of the compound of Formula (II) in combination with simvastatin and genfibrozil or fenofibrate.

[0133] In another alternative embodiment, the compositions, therapeutic combinations or methods of the present invention can further comprise one or more bile acid sequestrants (insoluble anion exchange resins), coadministered with or in combination with the PPAR activators(s) and sterol absorption inhibitor(s) discussed above.

[0134] Bile acid sequestrants bind bile acids in the intestine, interrupting the enterohepatic circulation of bile acids and causing an increase in the faecal excretion of steroids. Use of bile acid sequestrants is desirable because of their non-systemic mode of action. Bile acid sequestrants can lower intrahepatic cholesterol and promote the synthesis of apo B/E (LDL) receptors that bind LDL from plasma to further reduce cholesterol levels in the blood.

[0135] Non-limiting examples of suitable bite acid sequestrants include cholestyramine (a styrene-divinylbenzene copolymer containing quatermary ammonium cationic groups capable of binding bite acids, such as OUESTRAN® or OUESTRAN LIGHT® cholestyramine which are available from Bristol-Myers Squibb), colestipol (a copolymer of diethylenetriamine and 1-chlore-2,3-epoxypropane, such as COLESTID® tablets which are available from Pharmacia), cole-sevelam hydrochloride (such as WelChol® Tablets (polylallyamine hydrochloride) cross-linked with epithorohydrin and alkylated with 1-bromodecane and (6-bromohexyl)-trimethylammonium bromide) which are available from San-kyo), water soluble derivatives such as 3,3-ioene, N-(cycloalkyl) alkylamines and poliglusam, insoluble quaternized polystyrenes, saponins and mixtures thereof. Other useful bite acid sequestrants are disclosed in PCT Patent Applications Nos. Wo 37/11345 and Wo 98/67/652, and U.S. Patents Nos. 3,982,895 and 5,703,188 which are incorporated herein by reference. Suitable inorganic cholesterol sequestrants include bismuth salicylate plus montromicilonite clay.

[0136] Generally, a total daily dosage of bile acid sequestrant(s) can range from about 1 to about 50 grams per day, and preferably about 2 to about 16 grams per day in single or 2-4 divided doses.

aluminum hydroxide and calcium carbonate antacids.

[0137] In an alternative embodiment, the compositions or treatments of the present invention can further comprise

one or more lieal bile acid transport ("IBAT") inhibitors (or apical sodium co-dependent bile acid transport ("ASBT") inhibitors) coadministered with or in combination with the peroxisome proliferator-activated receptor activator(s) and storol absorption inhibitor(s) discussed above. The IBAT inhibitors can inhibit bile lacid transport to reduce LDL cho-lesterol levels. Non-limiting examples of suitable IBAT inhibitors include benzothiepines such as therapeutic compounds comprising a 2.3, 4,5-tetrahydro-1-benzothiepine 1,1-dioxide structure such as are disclosed in PCT Patent Application WO 00/3872" which is incorporated herein by reference.

[0138] Generally, a total daily dosage of IBAT inhibitor(s) can range from about 0.01 to about 1000 mg/day, and preferably about 0.1 to about 50 mg/day in single or 2-4 divided doses.

[0139] In another alternative embodiment, the compositions or treatments of the present invention can further comor prise nioration cald (niacin) and/or derivatives thereof coadministered with or in combination with the peroxisome proliferator-activated receptor activator(s) and steroi absorption inhibitor(s) discussed above.

[0140] As used herein, "nicotinic acid derivetive" means a compound comprising a pyridine-3-carboxylate structure or a pyrazine-2-carboxylate structure, including acid forms, salts, esters, zwitterions and tautomers, where available. Examples of nicotinic acid derivatives include nicertirol, nicofuranose and acipimox (5-methyl pyrazine-2-carboxylic acid 4-oxide). Nicotinic acid admits derivatives inhibit hepatic production of VLDL and its metabolite LDL and increases HDL and apo A-1 levels. An example of a suitable nicotinic acid product is NIASPAN® (niacin extended-release tablets) which are available from Kos.

[0141] Generally, a total daily dosage of nicolinic acid or a derivative thereof can range from about 500 to about 10,000 mg/day, preferably about 1000 to about 8000 mg/day, and more preferably about 3000 to about 6000 mg/day in single or divided doses.

20

40

[0142] In another alternative embodiment, the compositions or treatments of the present invention can further comprise one or more Acy/CoACholesterol O-acy/transferase ("ACAT") Inhibitors, which can reduce LDL and VLDL levels, coadministered with or in combination with the peroxisome profilerator-activated receptor activate(s) and sterol absorption inhibitor(s) discussed above. ACAT is an enzyme responsible for esterifying excess intracellular cholesterol and may reduce the synthesis of VLDL, which is a product of cholesterol esterification, and overproduction of apo B-100-containing lipoproteins.

[0143] Non-limiting examples of useful ACAT inhibitors include avasimibe ([[2,4.6-tinst]-methylethyliphenyl]acety], sulfamic acid, 2,6-bis(1-methylethyliphenyl ester, formerly known as CI-1011), HL-004, locimibide (DuP-128) and CL-277082 (N/L2.4-dilluorophenyl)-Nf[4-(2,2-dimethylpropyl)phenyl]methylp-N-hephylurea). See P. Chang et al., 'Current, New and Future Treatments in Dyslipidaemia and Atherosclerosis', Drugs 2000 Jul;60(1);55-93, which is incorporated by reference herein.

[0144] Generally, a total daily dosage of ACAT inhibitor(s) can range from about 0.1 to about 1000 mg/day in single or 2-4 divided doses

[0145] In another alternative embodiment, the compositions or treatments of the present invention can further comprise one or more Cholesteryl Ester Transfer Protein ("CETP") Inhibitors coadministered with or in combination with the peroxisome proliferator-activated receptor activator(s) and sterol absorption inhibitor(s) discussed above. CETP is responsible for the exchange or transfer of cholesteryl ester carrying HDL and triglycerides in VLDL.

[0146] Non-limiting examples of suitable CETP inhibitors are disclosed in PCT Patent Application No. WO 00/38721 and U.S. Patent No. 6,147,090, which are incorporated herein by reference. Pancreatic cholesteryl ester hydrolase (pCEH) inhibitors such as WAY-121898 also can be coadministered with or in combination with the peroxisome proliferator-activated receptor(s) activator and sterol absorption inhibitor(s) discussed above.

[0147] Generally, a total daily dosage of CETP inhibitor(s) can range from about 0.01 to about 1000 mg/day, and preferably about 0.5 to about 20 mg/kg body weight/day in single or divided doses.

[0148] In another alternative embodiment, the compositions or treatments of the present invention can further comip prise probucol or derivatives thereof (such as AGI-1007 and other derivatives disclosed in U.S. Patents Nos. 6,121,319 and 6,147,250), which can reduce LDL levels, coadministered with or in combination with the peroxisome proliferatoractivated receptor activator(s) and steroi absorption inhibitor(s) discussed above.

[0149] Generally, a total daily dosage of probucol or derivatives thereof can range from about 10 to about 2000 mg/day, and preferably about 500 to about 1500 mg/day in single or 2-4 divided doses.

[0150] In another alternative embodiment, the compositions or treatments of the present invention can further comprise low-density lipoprotein (LLD) receptor activators, coadministered with or in combination with the peroxisome proliferator-activated receptor activator(s) and sterol absorption inhibitor(s) discussed above. Non-limiting examples of suitable LDL-receptor activators include HOE-402, an imidazolidinyl-pyrimidine derivative that directly stimulates LDL receptor activity. See M. Huettinger et al., "Hypolipidemic activity of HOE-402 is Mediated by Stimulation of the LDL Receptor Pathway". Arteriosater. Thromb. 1983: 13:1056-12.

[0151] Generally, a total daily dosage of LDL receptor activator(s) can range from about 1 to about 1000 mg/day in single or 2-4 divided doses.

[0152] In another alternative embodiment, the compositions or treatments of the present invention can further com-

prise fish oil, which contains Omega 3 fatty acids (3-PUFA), which can reduce VLDL and triglyceride levels, coadministered with or in combination with the peroxisome proliferator-activated receptor activator(s) and sterol absorption inhibitor(s) discussed above. Generally, a total daily dosage of fish oil or Omega 3 fatty acids can range from about 1 to about 30 grams per day in single or 2-4 divided doses.

[0153] In another alternative embodiment, the compositions or treatments of the present invention can further comprise natural water soluble fibers, such as psylitum, guar, oat and pectin, which can reduce cholesterol levels, coadministered with or in combination with the peroxisome proliferator-activated receptor activator(s) and sterol absorption inhibitor(s) discussed above. Generally, a total daily dosage of natural water soluble fibers can range from about 0.1 to about 10 rarms per day in single or 2.4 divided doses.

[0154] In another alternative embodiment, the compositions or treatments of the present invention can further comprise plant sterols, plant stanols and/or fatty acid esters of plant stanols, such as sitostanol ester used in BENECOL® margarine, which can reduce cholesterol levels, coadministered with or in combination with the peroxisome proliferatoractivated receptor activator(s) and sterol absorption inhibitor(s) discussed above. Generally, a total daily dosage of plant sterols, plant stanols and/or fatty acid esters of plant stanols can range from about 0.5 to about 20 grams per day in single or 2-4 divided doses.

[0155] In another alternative embodiment, the compositions or treatments of the present invention can further comprise antioxidants, such as probucol, tocopherol, ascorbic acid, β-carotene and selenium, or vitamins such as vitamin B_g or vitamin B₁₂: coadministered with or in combination with the peroxisome profilerator-activated receptor activator (s) and sterol absorption inhibitor(s) discussed above. Generally, a total daily dosage of antioxidants or vitamins can range from about 0.0 5 to about 10 grams per day in single or 2-4 divided dosage.

20

25

35

40

45

50

55

[0156] In another alternative embodiment, the compositions or treatments of the present invention can further comprise monocyte and macrophage inhibitors such as polyuneaturated falty acids (PUFA), thyroid homones including throxine analogues such as CGS-26214 (a thyroxine compound with a fluorinated ring), gene therapy and use of recombinant proteins such as recombinant apo E, coadministered with or in combination with the peroxisome proliferator-activated receptor activator(s) and sterol absorption inhibitor(s) discussed above. Generally, a total daily dosage of these agents can range from about 0.01 to about 1000 mg/dx) in single or 2-4 divided doses.

[0157] Also useful with the present invention are compositions or therapeutic combinations which further comprise hormone replacement agents and compositions. Useful hormone agents and compositions for hormone replacement therapy of the present invention include androgens, estrogens, progestins, their pharmaceutically acceptable saits and derivatives thereof. Combinations of these agents and compositions are also useful.

[0158] The dosage of androgen and estrogen combinations vary, desirably from about 1 mg to about 4 mg androgen and from about 1 mg to about 3 mg estrogen. Examples include, but are not limited to, androgen and estrogen combinations such as the combination of esterified estrogens (sodium estrone suifate and sodium equilin suifate) and methyltestosterone (17-hydroxy-17-methyl-, (17B)- androst-4-en-3-one) available from Solvay Pharmaceuticals, Inc., Marietta. GA. under the tradename Estratest.

[0159] Estrogens and estrogen combinations may vary in dosage from about 0.01 mg up to 8 mg, desirably from about 0.3 mg to about 3.0 mg. Examples of useful estrogens and estrogen combinations include:

(a) the blend of nine (9) synthetic estrogenic substances including sodium estrone sulfate, sodium equilin sulfate, sodium 17 α-dihydroequilin sulfate, sodium 17 α-estradiol sulfate, sodium 17 β-dihydroequilin sulfate, sodium 17 β-dihydroequilinin sulfate, sodium equilinin sulfate, sodium explainin sulfate, sodium 17 β-dihydroequilinin sulfate, sodium 18 β-dihydroequilinin sulfate, sodium explainin sulfate, sod

 (b) ethinyl estradiol (19-nor-17 α-pregna-1,3,5(10)-trien-20-yne-3,17-diol; available by Schering Plough Corporation, Kenilworth, NJ, under the tradename Estinyl;

(c) esterified estrogen combinations such as sodium estrone sulfate and sodium equilin sulfate, available from Solvay under the tradename Estratab and from Monarch Pharmaceuticals, Bristol, TN, under the tradename Menest;

(d) estropipate (piperazine estra-1,3,5(10)-trien-17-one, 3-(sulfooxy)-estrone sulfate), available from Pharmacia & Upjohn, Peapack, NJ, under the tradename Ogen and from Women First Health Care, Inc., San Diego, CA, under the tradename Ortho-Est: and

(e) conjugated estrogens (17 α -dihydroequilin, 17 α -estradiol, and 17 β -dihydroequilin); available from Wyeth-Ayerst Pharmaceuticals, Philadelphia, PA, under the tradename Premarin.

[0160] Progestins and estrogens may also be administered with a variety of dosages, generally from about 0.05 to about 2.0 mg progestin and about 0.001 mg to about 2 mg estrogen, desirably from about 0.1 mg to about 1 mg progestin and about 0.01 mg to about 0.5 mg estrogen. Examples of progestin and estrogen combinations that may vary in dosage and regimen include:

- (a) the combination of estradiol (estra-1, 3, 5 (10)-triene-3, 17 β-diol hemihydrate) and norethindrone (17 β-acetoxy-19-nor-17 α-pregn-4-en-20-yn-3-one); which is available from Pharmacia & Upjohn, Peapack, NJ, under the trade-near A-divider.
- (b) the combination of levonorgestrel (d(-)-13 β-ethyl-17 α-ethinyl-17 β-hydroxygon- 4-en-3-one) and ethinyl estradial; available from Wyeth-Ayerst under the tradename Alesse, from Watson Laboratories. Inc., Corona, CA, under the tradenames Levora and Trivora, Monarch Pharmaceuticals, under the tradename Nordette, and from Wyeth-Ayerst under the tradename Triphasii:

5

10

15

20

25

30

35

40

- (c) the combination of ethynodiol diacetate (19-nor-17 α-pregn-4-en-20-yne-3 β, 17-diol diacetate) and ethinyl estradiol, available from G.D. Searle & Co., Chicago, IL, under the tradename Demulen and from Watson under the tradename Zovia:
- (d) the combination of desogestrel (13-ethyl-11- methylene-18,19-dinor-17 α-pregn-4-en-20-yn-17-ol) and ethinyl estradiol; available from Organon under the tradenames Desogen and Mircette, and from Ortho-McNeil Pharmaceutical. Rarian. NJ. under the tradename Ortho-Ceot:
- (e) the combination of norethindrone and ethinyl estradiol; available from Parke-Davis, Morris Plains, NJ, under the tradenames Estrostep and femhrit, from Watson under the tradenames Microgestin, Necon, and Tri-Norinyl, from Ortho-McNeil under the tradenames Modicon and Ortho-Novum, and from Warner Chilcott Laboratories, Rockaway, NJ, under the tradename Ovcon:
- (f) the combination of norgestrel (\pm)-13-ethyl-17-hydroxy-18, 19-dinor-17 α -preg-4-en-20-yn-3-one) and ethinyl estradiol, available from Wyeth-Ayerst under the tradenames Ovral and Lo/Ovral, and from Watson under the tradenames Opestrel and Low-Opestrel:
- (g) the combination of norethindrone, ethinyl estradiol, and mestranol (3-methoxy-19-nor-17 α-pregna-1,3,5(10)-trien-20-vn-17-ol); available from Watson under the tradenames Brevicon and Norinyl:
- (h) the combination of 17 β -estratiol (estra-1,3.5(10)-triene-3,17 β -diol) and micronized norgestimate (17 α -17-(Acetyloxy))-13-ethyl-18,19-dinorpregn-4-en-20-yn-3-one3-oxime); available from Ortho-MoNeil under the tradename Ortho-Prefest:
- (i) the combination of norgestimate (18,19-dinor-17-pregn-4-en-20-yn-3-one, 17-(acetyloxy)-13-ethyl-,oxime, (17 (a)-(+)) and ethinyl estradiol; available from Ortho-McNeil under the tradenames Ortho Cyclen and Ortho Tri-Cyclen and
- (i) the combination of conjugated estrogens (sodium estrone sulfate and sodium equilin sulfate) and medroxyprogestrone acetate (20-dione, 17-deceyloxy)-6-methyl-, (6(a))- pregn-4-ene-3); available from Wyeth-Ayerst under the tradenames Premphase and Prempro.
- [0161] In general, a dosage of progestins may vary from about .05 mg to about 10 mg or up to about 200 mg if microsized progesteron is administered. Examples of progestins include norethindrone, available from ESI Lederle, Inc., Philadolphia, PA, under the tradename Ayopstin, from Ortho-McNeil under the tradename Micronor, and from Watson under the tradename Nor-QD; norgestrel; available from Wyeth-Ayerst under the tradename Ovrette; micronized progesterone (pregn-4-ene-3, 2-dione); available from Solvay under the tradename Prometrium; and medrox-yprogesterone cactate; available from Pharmacia & Upiohn under the tradename Provera.
- [0162] The compositions, therapeutic combinations or methods of the present invention can further comprise one or more obesity control mediciations. Lufetul obesity control mediciations include, but are not limited to, drugs that reduce energy intake or suppress appetite, drugs that increase energy expenditure and nutrient-partitioning agents. Suitable obesity control medications include, but are not limited to, noradrenergic agents (such as diethylpropion, mazindol, phenylpropanolamine, phendimetrezine, bendimetrazine, phendimetrazine and tartrate); serotonergic agents (such as sibutrarine, lenflurarine, dexfentlurarine, fluovatine, fluovatine, fluovatine) and paroximely; thermogenic agents (such as exploratine, caffeine, theophylline, and selective [83 addrenergic agents]); alphablocking agents; kainte or AMPA receptor antagonists; leptin-lipolysis stimulated receptors; phosphodiosterase enzyme inhibitors; compounds having nucleotide sequences of the mehogany gene; fibroblast growth factor-10 polypeptides; monoamine exidase inhibitors (such as befloxatione, moclobemide, brofaromine, phenoxathine, esuprone, befol, toloxatione, pirlindol, amillamine, sercforemine, bazinaprine, lazabemide, milacemide and caroxazone); compounds for increasing lipid metabolism (such as evodiamine compounds); and lipase inhibitor (such as orifista). Generally, a total dosage of the above-described obesity control medications can range from 1 to 3,000 mg/day, desirably from about 1 to 1,000 mg/day and more desirably from about 1 to 1,000 mg/day and dotations.
 - [0163] The compositions, therapeutic combinations or methods of the present invention can further comprise one or more blood modifiers which are chemically different from the substituted azeitidinone and substituted β-tactam compounds (such as compounds I-XI above) and the PPAR receptor activators discussed above, for example, they contain one or more different atoms, have a different arrangement of atoms or a different number of one or more atoms than the steroi absorption inhibitor(s) or PPAR receptor activators discussed above. Useful blood modifiers include but are to limited to anti-coaculants (argartabana, bivalindin, dallerarin sodium, desirudin, dicumarol, Ivapolate sodium, na-

famostat mesylate, phenprocoumon, tinzaparin sodium, warfarin sodium); antithrombotic (anagrelide hydrochloride, bivalirudin, cilostazol, dalteparin sodium, danaparoid sodium, dazoxiben hydrochloride, efegatran sulfate, enoxaparin sodium, fluretofen, ifetroban, ifetroban sodium, lamifiban, lotrafiban hydrochloride, napsagatran, orbofiban acetate, roxifiban acetate, sibrafiban, tinzaparin sodium, trifenagrel, abciximab, zolimomab aritox); fibrinogen receptor antagonists (roxifiban acetate, fradafiban, orbofiban, lotrafiban hydrochloride, tirofiban, xemilofiban, monoclonal antibody 7E3, sibrafiban); platelet inhibitors (cilostazol, clopidogrel bisulfate, epoprostenol, epoprostenol sodium, ticlopidine hydrochloride, aspirin, ibuprofen, naproxen, sulindae, idomethacin, mefenamate, droxicam, diclofenac, sulfinpyrazone, piroxicam, dipyridamole); platelet aggregation inhibitors (acadesine, beraprost, beraprost sodium, ciprostene calcium, itazigrel, lifarizine, lotrafiban hydrochloride, orbofiban acetate, oxagrelate, fradafiban, orbofiban, tirofiban, xemilofiban); hemorrheologic agents (pentoxifylline); lipoprotein associated coagulation inhibitors; Factor VIIa inhibitors (4H-31-benzoxazin-4-ones, 4H-3.1-benzoxazin-4-thiones, guinazolin-4-ones, guinazolin-4-thiones, benzothiazin-4-ones, imidazolyl-boronic acid-derived peptide analogues TFPI-derived peptides, naphthalene-2-sulfonic acid {1-[3-(aminoiminomethyl)-benzyl]-2-oxo-pyrrofidin-3-(S)-yl} amide trifluoroacetate, dibenzofuran-2-sulfonic acid {1-[3-(aminomethyl)-benzvl]-5-oxo-pyrrolidin-3-yl}-amide, tolulene-4-sulfonic acid {1-[3-(aminoiminomethyl)-benzyl]-2-oxo-pyrrolidin-3-yl}amide trifluoroacetate, 3,4-dihydro-1H-isoquinoline-2-sulfonic acid {1-[3-(aminoiminomethyl)-benzyl]-2-oxo-pyrrolin-3-(S)-yl}-amide trifluoroacetate); Factor Xa inhibitors (disubstituted pyrazolines, disubstituted triazolines, substituted n-[(aminoiminomethyl)phenyl] propylamides, substituted n-[(aminomethyl)phenyl] propylamides, tissue factor pathway inhibitor (TFPI), low molecular weight heparins, heparinoids, benzimidazolines, benzoxazolinones, benzopiperazinones, indanones, dibasic (amidinoaryl) propanoic acid derivatives, amidinophenyl-pyrrolidines, amidinophenyl-pyrrolines, amidinophenyl-isoxazolidines, amidinoindoles, amidinoazoles, bis-arlysulfonylaminobenzamide derivatives, peptidic Factor Xa inhibitors).

20

40

[0164] The compositions, therapeutic combinations or methods of the present invention can further comprise one or more cardiovascular agents which are chemically different from the substituted azetidinone and substituted β-lactam compounds (such as compounds I-XI above) and the PPAR receptor activators discussed above, for example, they contain one or more different atoms, have a different arrangement of atoms or a different number of one or more atoms than the sterol absorption inhibitor(s) or PPAR receptor activators discussed above. Useful cardiovascular agents include but are not limited to calcium channel blockers (clentiazem maleate, amlodipine besylate, isradipine, nimodipine, felodipine, nilvadipine, nilvadipine, nilvadipine, teludipine hydrochloride, diltiazem hydrochloride, belfosdil, verapamil hydrochloride, fostedil); adrenergic blockers (fenspiride hydrochloride, labetalol hydrochloride, proroxan, alfuzosin hydrochloride, acebutolol, acebutolol hydrochloride, alprenolol hydrochloride, atenolol, bunolol hydrochloride, carteolol hydrochloride, celiprolol hydrochloride, cetamolol hydrochloride, cicloprolol hydrochloride, dexpropranolol hydrochloride ride, diacetolol hydrochloride, dilevalol hydrochloride, esmolol hydrochloride, exappolol hydrochloride, flestolol sulfate, labetalol hydrochloride, levobetaxolol hydrochloride, levobunolol hydrochloride, metalol hydrochloride, metoprolol, metoproloi tartrate, nadoloi, pamatoloi sulfate, penbutoloi sulfate, practoloi, propranoloi hydrochloride, sotaloi hydrochloride ride, timolol, timolol maleate, tiprenolol hydrochloride, tolamolol, bisoprolol fumarate, nebivolol); adrenergic stimulants; angiotensin converting enzyme (ACE) inhibitors (benazepril hydrochloride, benazeprilat, captopril, delapril hydrochloride, fosinopril sodium, libenzapril, moexipril hydrochloride, pentopril, perindopril, quinapril hydrochloride, quinaprilat, ramipril, spirapril hydrochloride, spiraprilat, teprotide, enalapril maleate, lisinopril, zofenopril calcium, perindopril erbumine); antihypertensive agents (althiazide, benzthiazide, captopril, carvedilol, chlorothiazide sodium, clonidine hydrochloride, cyclothiazide, delapril hydrochloride, dilevalol hydrochloride, doxazosin mesylate, fosinopril sodium, guanfacine hydrochloride, methyldopa, metoprolol succinate, moexipril hydrochloride, monatepil maleate, pelanserin hydrochloride, phenoxybenzamine hydrochloride, prazosin hydrochloride, primidolol, quinapril hydrochloride, quinaprilat, ramipril, terazosin hydrochloride, candesartan, candesartan cilexetil, telmisartan, amlodipine besylate, amlodipine maleate, beyantolol hydrochloride); angiotensin II receptor antagonists (candesartan, irbesartan, losartan potassium, candesartan cilexetil, telmisartan); anti-anginal agents (amlodipine besylate, amlodipine maleate, betaxolol hydrochloride, bevantolol hydrochloride, butoprozine hydrochloride, carvedilol, cinepazet maleate, metoprolol succinate, molsidomine, monatepil maleate, primidolol, ranolazine hydrochoride, tosifen, verapamil hydrochloride); coronary vasodilators (fostedil, azaclorzine hydrochloride, chromonar hydrochloride, clonitrate, diltiazem hydrochloride, dipyridamole, droprenilamine, erythrityl tetranitrate, isosorbide dinitrate, isosorbide mononitrate, lidoflazine, mioflazine hydrochloride, mixidine, molsidomine, nicorandil, nifedipine, nisoldipine, nitroglycenne, oxprenolol hydrochloride, pentrinitrol, perhexiline maleate, prenylamine, propatyl nitrate, terodiline hydrochloride, tolamolol, verapamil); diuretics (the combination product of hydrochlorothiazide and spironolactone and the combination product of hydrochlorothiazide and triamterene).

[0163] The compositions, therapeutic combinations or methods of the present invention can further comprise one or more antidiabetic medications for reducing blood glucose levels in a human. Useful antidiabetic medications include, but are not limited to, drugs that reduce energy intake or suppress appetite, drugs that increase energy expenditure and nutrient-partitioning agents. Suitable antidiabetic medications include, but are not limited to, sulfonylurae (such as acotohoxamide chlororopamide, claimalide, claicardic, dilimited, citifacio, dilipitide, oblivatio, dilipitide, oblivatio, dilipitide, oblivation.

FP 1 413 331 Δ2

tolbulamide), meglithiole (such as repaglinide and nateglinide), biguanide (such as metformin and bulomin), alphaglucosidase inhibitor (such as acarbose, miglitol, camiglibose, and veglibose), certain peptides (such as aminitide, pramilinide, exendin, and GLP-1 agonistic peptides), and orally administrable insulin or insulin composition for intestinal delivery thereof. Generally, a total dosage of the above-described antidiabetic medications can range from 0.1 to 1,000 mor/day in sindo or 2-4 divided doses.

[0166] Mixtures of any of the pharmacological or therapeutic agents described above can be used in the compositions and therapeutic combinations of the present invention.

[0167] In another embodiment, the present invention provides a composition or therapeutic combination comprising (a) at least one AcylCoA-Cholesterol *Q*-acyltransferase inhibitor and (b) at least one substituted azeitdinone compound or at least one substituted β-lactam compound, or isomers of the at least one substituted azeitdinone compound or the at least one substituted β-lactam compound, or pharmaceutically acceptable salts or solvates of the at least one substituted azeitdinone compound or the at least one substituted β-lactam compound or or the at least one substituted β-lactam compound, or prodrugs of the at least one substituted β-lactam compound or or the size of the at least one substituted β-lactam compound or of the isomers of the at least one substituted β-lactam compound or of the size of the at least one substituted β-lactam compound or of the size of the at least one substituted β-lactam compound or of the size of the at least one substituted β-lactam compound or of the size of the at least one substituted β-lactam compound or of the at least one substituted β-lactam compound or of the at least one substituted β-lactam compound or of the at least one substituted β-lactam compound or of the at least one substituted β-lactam compound or of the at least one substituted β-lactam compound or of the at least one substituted β-lactam compound or of the at least one substituted β-lactam compound or of the at least one substituted azeitam compound or of the at least one substituted azeitam compound or of the at least one substituted azeitam compound or or of the at least one substituted azeitam compound or of the at least one substituted azeitam compound or of the at least one substituted azeitam compound or of the at least one substituted azeitam compound or or of the at least one substituted azeitam compound or or of the at least one substituted azeitam compound or of the at least one substituted azeitam compound or of the at least one substituted azeitam compound or or of the at least one substituted

[0168] In another embodiment, the present invention provides a composition or therapeutic combination comprising (a) probucol or a derivative thereof and (b) at least one substituted azeitidinone compound or at least one substituted β-lactam compound, or isomers of the at least one substituted β-lactam compound, or pharmaceutically acceptable salts or solvates of the at least one substituted β-lactam compound or the at least one substituted β-lactam compound or of the at least one substituted azeitidinone compound or the at least one substituted β-lactam compound, or prodrugs of the at least one substituted azeitidinone compound or the at least one substituted β-lactam compound or of the isomers, salts or solvates of the at least one substituted plactam compound or of the isomers, salts or solvates of the at least one substituted plactam compound or of the at least one substituted plactam compound or of the isomers, salts or solvates of the at least one substituted plactam compound or place at least one substituted plactam compound place at least one substituted plactam place at least one substituted plactam

[0169] In another embodiment, the present invention provides a composition or therapeutic combination comprising (a) at least one low-density lipoprotein receptor activator and (b) at least one substituted azeidinone compound or at least one substituted β-lactam compound, or isomers of the at least one substituted azeidinone compound or the at least one substituted β-lactam compound or of the isomers of the at least one substituted β-lactam compound or prodrugs of the at least one substituted β-lactam compound or of the isomers, salts or solvates of the at least one substituted azeidinone compound or the at least one substituted β-lactam compound or of the isomers, salts or solvates of the at least one substituted azeidinone compound or the atleast one substituted azeidinone compound or th

[0170] In another embodiment, the present invention provides a composition or therapeutic combination comprising (a) at least one Omega 3 fatty acid and (b) at least one substituted azeitdinone compound or at least one substituted β-lactam compound, or isomers of the at least one substituted azeitdinone compound or pharmaceutically acceptable salts or solvates of the at least one substituted azeitdinone compound or the at least one substituted β-lactam compound or of the at least one substituted azeitdinone compound or the at least one substituted β-lactam compound, or prodrugs of the at least one substituted azeitdinone compound or the at least one substituted plactam compound or of the isomers, salts or solvates of the at least one substituted plactam compound or of the isomers, salts or solvates of the at least one substituted plactam compound or of the at least one substituted plactam

35

[0171] In another embodiment, the present invention provides a composition or therapeutic combination comprising (a) at least one natural water soluble fiber and (b) at least one substituted azeitdinone compound or at least one substituted β-lactam compound, or isomers of the at least one substituted azeitdinone compound or the at least one substituted β-lactam compound or the at least one substituted β-lactam compound or the at least one substituted β-lactam compound or of the isomers of the at least one substituted azeitdinone compound or the at least one substituted β-lactam compound, or prodrugs of the at least one substituted azeitdinone compound or the at least one substituted β-lactam compound or of the isomers, salts or solvates of the at least one substituted β-lactam compound or the at least one substituted β-lactam compound.

[0172] In another embodiment, the present invention provides a composition or therapeutic combination comprising (a) at least one of plant sterols, plant stanols or fatly acid seters of plant stanols and (b) at least one substituted azeidinone compound or at least one substituted β-lactam compound, or isomers of the at least one substituted azeidinone compound or the at least one substituted β-lactam compound, or pharmaceutically acceptable salts or solvates of the at least one substituted azeidinone compound or the at least one substituted β-lactam compound or of the isomers of the at least one substituted azeidinone compound or the at least one substituted β-lactam compound, or prodrugs of the at least one substituted azeidinone compound or the at least one substituted β-lactam compound or of the isomers, salts or solvates of the at least one substituted azeidinone compound or the at least one substituted β-lactam compound.

[0173] In another embodiment, the present invention provides a composition or therapeutic combination comprising (a) at least one antioxidant or vitamin and (b) at least one substituted azetidinone compound or at least one substituted

 β -lactam compound, or isomers of the at least one substituted azeidinone compound or the at least one substituted β -lactam compound, or pharmaceutically acceptable salts or solvates of the at least one substituted azeidinone compound or the at least one substituted β -lactam compound or of the isomers of the at least one substituted azeidinone compound or the at least one substituted β -lactam compound, or prodrugs of the at least one substituted azeidinone compound or the at least one substituted β -lactam compound or the isomers, salts or solvates of the at least one substituted substituted β -lactam compound or the at least one substituted β -lactam compound.

[0174] Mixtures of any of the pharmacological or therapeutic agents described above can be used in the compositions and therapeutic combinations of these other embodiments of the present invention.

[0176] The compositions and therapeutic combinations of the present invention can be administered to a mammal in need of such treatment in a therapeutically effective amount to treat one or more conditions, for example vascular conditions such as atherosclerosis, hyperlipidaemia (including but not limited to hypercholesteroiemia, hyperlipidaemia (including but not limited to hypercholesteroiemia, hyperlipidaemia (including but not limited to hypercholesteroiemia, hyperlipidaemia, claemia, site of action in the body, for example in the plasma. The compositions and treatments can be administered by any suitable means which produce ontact of these compounds with the site of action in the body, for example in the plasma, liver or small intestine of a mammal or human. [1776] The daily dosage for the various compositions and therapeutic combinations described above can be administered to a patient in a single dose or in multiple subdoses, as desired. Subdoses can be administered 2 to 6 times per day, for example. Sustained release dosages can be used. Where the peroxisome proliferator-activated receptor (s) activator and sterol absorption inhibitor(s) are administered in separate dosages, the number of doses of each component given per day from yorth consessingly be the same, e.g., one component may have a greater duration of activity

and will therefore need to be administered less frequently.

[0177] The pharmaceutical treatment compositions and therapeutic combinations of the present invention can further comprise one or more pharmaceutically acceptable carriers, one or more excipients and/or one or more additives. Non-imiting examples of pharmaceutically acceptable carriers include solids and/or liquids such as eithaned, glycerol, water and the like. The amount of carrier in the treatment composition can range from about 5 to about 99 weight percent of the total weight of the treatment composition or therapeutic combination. Non-limiting examples of suitable pharmaceutically acceptable excipients and additives include non-toxic compatible filters, binders such as starch, delintegrants, buffers, preservatives, anti-oxidants, lubricants, flavorings, thickeners, coloring agents, emulsifiers and the like. The amount of excipient or additive can range from about 0.1 to about 90 weight percent of the total weight of the treatment composition or therapeutic combination. One skilled in the art would understand that the amount of carrier (s), excipients and additives of present can average from about 0.7 to about 90 weight percent of the total weight of the treatment composition or therapeutic combination. One skilled in the art would understand that the amount of carrier (s), excipients and additives of present can average the present can be additived and additived for green can average the present can be additived and additived for green can average the present can be additived as a second and additived for green can be additived and additived for green can average the present can be additived and additived for green can average the present can be additived and additived for green can average the present can be additived and additived for green can average the present can be additived and additived for green can average the present can be additived from the present can be additived and additived for green can average the present can be additived

[0178] The treatment compositions of the present invention can be administered in any conventional dosage form, preferably an oral dosage form such as a capsule, tablet, powder, cachet, suspension or solution. The formulations and pharmaceutical compositions can be prepared using conventional pharmaceutically acceptable and conventional techniques. Several examples of preparation of dosage formulations are provided below.

[0179] The following formulations exemplify some of the dosage forms of this invention. In each formulation, the term "Active Compound" designates a substituted azeidinence compound, β-leatem compound or any of the compounds of Formulae I-XI described herein above, or isomers of the at least one substituted azeidinence compound or the at least one substituted β-lactam compound or any of the compounds of Formulae I-XI, or pharmaceutically acceptable salts or solvates of the at least one substituted azeidinence compound or the at least one substituted β-lactam compound or any of the compounds of Formulae I-XI or of the isomers of the at least one substituted azeidinence compound or the at least one substituted β-lactam compound or any of the compounds of Formulae I-XI, or prodrugs of the at least one substituted azeidinence compound or the at least one substituted azeidinence compound or the at least one substituted β-lactam compound or any of the compounds of Formulae I-XI, and the term "Active Compound if designates a PPAR activator described herein above.

EXAMPLE

[0180]

55

20

35

40

Tablets

No.	Ingredient	mg/tablet
1	Active Compound I	10
2	Lactose monohydrate NF	55
3	Microcrystalline cellulose NF	20
4	Povidone (K29-32) USP	4

Tablets (continued)

No.	Ingredient	mg/tablet
5	Croscarmellose sodium NF	8
6	Sodium lauryl sulfate	2
7	Magnesium stearate NF	1
	Total	100

[0181] In the present invention, the above-described tablet can be coadministered with a tablet, capsule, etc. comprising a dosage of Active Compound II. for example a TRICOR® capsule as described above.

Method of Manufacture

different dosage intervals.

5

20

35

55

[0182] Mix Item No. 4 with purified water in suitable mixer to form binder solution. Spray the binder solution and then water over Items 1, 2, 6 and a portion of Item 5 in a fluidized bed processor to granulate the ingredients. Continue fluidization to dry the damp granules. Screen the dried granules and blend with Item No. 3 and the remainder of Item 5. Add Item No. 7 and mix. Compress the mixture to appropriate size and weight on a suitable tablet machine.

[0183] For coadministration in separate tablets or capsules, representative formulations comprising a cholesterol absorption inhibitor such as are discussed above are well known in the art and representative formulations comprising a peroxisome prolliferator-activated receptor activator such as are discussed above are well known in the art. It is contemplated that where the two active ingredients are administered as a single composition, the dosage forms disclosed above for substituted azeitdinone or β-lactam compounds may readily be modified using the knowledge of one skilled in the art.

[0184] Since the present invention relates to treating conditions as discussed above, such as reducing the plasma sterol (especially cholesterol) concentrations or levels by treatment with a combination of active ingredients wherein the active ingredients may be administered separately, the invention also relates to combining separate pharmaceutical compositions in kit form. That is, a kit is contemplated wherein two separate units are combined: a pharmaceutical composition comprising at least one peroxisome proliferator-activated receptor activator and a separate pharmaceutical composition comprising at least one steroi absorption inhibitor as described above. The kit will preferably include directions for the administration of the separate components. The kit form is particularly advantageous when the separate components must be administrated in different dosage forms (e.g., oral and parenterial) or are administered in

[0185] The treatment compositions and therapeutic combinations of the present invention can inhibit the intestinal absorption of choiesterol in mammals, as shown in the Example below, and can be useful in the treatment and/or prevention of conditions, for example vascular conditions, such as atheroscierosis, hypercholesterolemia and sitosterolemia, stroke, obesity and lowering of plasma levels of cholesterol in mammals, in particular in mammals.

[0186] In another embodiment of the present invention, the compositions and therapeutic combinations of the present invention can inhibit stariol absorption or reduce plasma concentration of at least one sterol selected from the group consisting of phytosterois (such as sitosterol, campesterol, sitigmasterol and avenosterol), 5x-stanols (such as cholestanol, 5x-stanols, cholesterol and mixtures thereof. The plasma concentration can be reduced by administering to a marmal in need of such treatment an effective amount of at least one treatment composition or therepeutic combination comprising at least one PPAR activator and at least one sterol absorption inhibitor described above. The reduction in plasma concentration of sterols can range from about 1 to about 70 percent, and preferably about 10 to about 50 percent. Methods of measuring serum total blood cholesterol and total LDL cholesterol are well known to those skilled in the art and for example include those disclosed in PCT W0 99/38498 at page 11, incorporated by reference herein. Methods of determining levels of other sterols in serum are disclosed in H. QTI get al., "Serum Sterols During Stanol Ester Feeding in a Midly Hypercholesterolemic Population", J. Lipid Res. 40: 538-600 (1999), incorporated by reference herein.

[0187] Illustrating the invention are the following examples which, however, are not to be considered as limiting the invention to their details. Unless otherwise indicated, all parts and percentages in the following examples, as well as throughout the specification, are by weight.

EXAMPLES

PREPARATION OF COMPOUND OF FORMULA (II)

[0188] Step 1): To a solution of (S)-4-phenyl-2-oxazolidinone (41 g, 0.25 mol) in CH₂Cl₂ (200 ml), was added

4-dimethylaminopyridine (2.5 g, 0.02 mol) and triethylamine (84.7 m, 0.61 mol) and the reaction mixture was cooled to 0°C. Methyl-4-(chloroformyl)butyrate (50 g, 0.3 mol) was added as a solution in CH₂Cl₂ (375 ml) dropwise over 1 h, and the reaction was allowed to warm to 22°C. After 17 h, water and H₂SO₄ (2N, 100 ml), was added the layers were separated, and the organic layer was washed sequentially with NaOH (10%), NaO (sat'd) and water. The organic layer was dried over MgSO₄ and concentrated to obtain a semicrystalline product.

[0189] Step 2): To a solution of TiCl₄ (18.2 ml, 0.165 mol) in CH₂Cl₂ (600 ml) at 0°C, was added than ium isopropoxide (16.5 ml, 0.055 mol). After 15 min, the product of Step 1 (48.0 g, 0.17 mol) was added as a solution in CH₂Cl₂ (100 ml). After 5 min, disporpophitylamine (DIPEA) (65.2 ml, 0.37 mol) was added and the reaction mixture was stirred at 0°C for 1 h, the reaction mixture was cooled to -20°C, and 4-benzyloxybenzyldine(4-fluoro)aniline (114.3 g, 0.37 mol) was added as a solid. The reaction mixture was stirred vigorously for 4 h at -20°C, then acetic acid was added as a solution in CH₂Cl₂ dropwise over 15 min, the reaction mixture was allowed to warm to 0°C, and H₂SO₄ (2N)) was added. The reaction mixture was stirred an additional 1 h, the layers were separated, washed with water, separated and the organic layer was dried. The crude product was crystalized from ethanol/water to obtain the pure intermediate. [0190] Step 3): To a solution of the product of Step 2 (8.9 g, 14.9 mmol) in toluene (100 ml) at 50°C, was added and the reaction mixture stirred at 50°C for an additional 3 h. The reaction mixture was cooled to 22°C, CH₂OH (10 ml), was added. The reaction mixture was washed with HCl (1N), NaHCO₂ (1N) and NaCl (sat'd.), and the organic layer was dried over MgSO₄.

[0191] Step 4). To a solution of the product of Step 3 (0.44 g, 2.2 mmol) in CH₂OH (3 mt), was added water (1 mt) and LiOH-H₂O (102 mg, 2.4 mmole). The reaction mixture was stirred at 22°C for 1 h and then additional LiOH-H₂O (54 mg, 1.3 mmole) was added. After a total of 2 h, HCI (1N) and EIOAc was added, the layers were separated, the organic layer was dried and concentrated in vacco. To a solution of the resultant product (0.91 g, 2.2 mmol) in CH₂OL at 22°C, was added CIOCOCO (10.29 mt, 3 mmol) and the mixture stirred or 16 h. The solvent was removed in vacco. [0192] Step 5): To an efficiently stirred suspension of 4-fluorophenylzinc chloride (4.4 mmol) prepared from 4-fluorophenylphageseium bromide (1 ht) m TH; A 4 mt, 4.4 mm, 9) and ZhC[2 (0.8 g, 4.4 mmol) at 4°C, was added tetrakis (triphenylphosphine)palladium (0.25 g, 0.21 mmol) followed by the product of Step 4 (0.94 g, 2.2 mmol) as a solution in THF (2 mt). The reaction was stirred for 1 h at 0°C and then for 0.5 h at 22°C. HCI (1N, 5 mt) was added and the mixture was extracted with ETOAc. The organic layer was concentrated to a not and purified by silica gel chromatography to obtain 1-4-fluorophenyl-4(5)-(4-hydroxyphenyl-9(fR)-(3-xxx-3-phenylpropyl)-2-azetidinone: 9 HRMS acid for C₈₀H₁₄G₂N₂N₂ = 408.1429, found 408.1419.

[0193] Step 6): To the product of Step 5 (0.95 g, 1.91 mmol) in THF (3 ml), was added (R)-tetrahydro-1-mathyl-3,3-diphenyl-1H,3H-pyrnolo-{1,2-c}[1,3-2]oxazzaborole (120 mg, 0.43 mmol) and the mixture was cooled to -20°C. After 5 min, borohydride-dimethysulfide complex (2M in THF, 0.85 ml, 1.7 mmol) was added dropwise over 0.5 h. After a total of 1.5 h. CH₃OH was added followed by HCl (1 N) and the reaction mixture was extracted with EtOAc to obtain 1-(4-fluorophemyl)-3(R)-{(3S)-(4-fluorophemyl)-3-hydroxypropyl)}-4(S)-{4-(phenylmethoxy)phenyl}-2-azetidinone (compound 6A-1) as an oil. 1H in CDCl₃ d H3 = 4.88. J = 2.31 Hz. Cl (M+H) 500.

[0194] Use of (S)-tetra-hydro-1-methyl-3,3-diphenyl-1H,3H-pyrroto-[1,2-c][1,3,2] oxazaborole gives the corresponding 3(R)-hydroxypropyl azetidinone (compound 6B-1). ¹H in CDCl₃ d H3 = 4.69, J = 2.3 Hz. Cl (M*H) 500.

[0195] To a solution of compound 6A-1 (0.4 g, 0.8 mmol) in ethanol (2 ml), was added 10% PdlC (0.03 g) and the or eaction mixture was stirred under a pressure (60 psi) of H₂ gas for 16 h. The reaction mixture was filtered and the solvent was concentrated to obtain compound 6A. Mp 164-168°C; C (MH-H) 410. [df = 28.1° c 3. CH₃OH). Elemental analysis calc'd for C₂₄H₂Ir₂NO₃; C 70.41; H 5.17; N 3.42; found C 70.25; H 5.19; N 3.54.

[0196] Similarly treat compound 6B-1 to obtain compound 6B.

Mod 130 5 133 5%C CL(MH-D 410, Elemental analysis calculator C. H. E. NO. C 70 41; H. 5 17; N. 2 43; for

Mp 129.5-132.5°C: Cl (M+H) 410. Elemental analysis calc'd for $C_{24}H_{21}F_2NO_3$: C 70.41; H 5.17; N 3.42; found C 70.30; H 5.14; N 3.52.

[0197] Step 6 (Alternative): To a solution of the product of Step 5 (0.14 g, 0.3 mmol) in ethanol (2 ml), was added 10% Pd/C (0.0.5 g) and the reaction was stirred under a pressure (60 psi) of H₂ gas for 16 h. The reaction mixture was filtered and the solvent was concentrated to afford a 1:1 mixture of compounds 6A and 6B.

In Vivo Evaluation

55

[0198] In a randomized, evaluator-blind; placebo-controlled, parallel-group study 32 healthy hypercholesterolemic humans (screening LDL-C ≥ 130 mg/dL) stabilized and maintained on a NCEP Step I Diet were randomized to one of the following four treatments:

Treatment A - placebo given orally as 1 dose per day,

Treatment B - 10 mg of Compound II given orally as 1 dose per day,

Treatment C - 200 mg of LIPANTHYL® micronized Fenofibrate (available from Labortoire Fournier of France) given

orally as 1 dose per day, or

Treatment D - 200 mg of LIPANTHYL® micronized Fenofibrate plus 10 mg of Compound II given orally as 1 dose per day every morning for 14 days.

5 Serum lipids were assessed predose (after a minimum of a 10-hour fast) on Day 1 (Baseline), Day 7 and Day 14.
Results: The mean (S.E.) Day 14 percent (%) change from Baseline in serum lipids (n=8) are shown in Table 1 below:

Table 1

Treatment	LDL-C	Total-C	HDL-C	TG
A	-10.1 (4.9)	-8.38 (4.0)	-14.1 (2.2)	19.1 (13.9)
В	-22.3 (5.7)	-19.6 (4.0)	-13.3 (4.4)	-4.57 (12.8)
С	-13.5(3.1)	-13.0(2.4)	-6.1 (3.6)	0.28(11.4)
D	-36.3 (3.5)	-27.8(1.7)	-1.97 (4.7)	-32.4 (4.5)

[0199] The coadministration of 10 mg of Compound II and 200 mg of Fenofibrate (Treatment D) was well tolerated and caused a significant (p \leq 0.03) reduction in LDL-C compared to either drug alone or placebo. In this inpatient study where the subjects' physical activity was restricted, in general HDL-C concentrations tended to decrease and triglycerides tended to increase. The group receiving Treatment C had the least decrease in HDL-C and the greatest decrease in triglyceride levels.

[0200] It will be appreciated by those skilled in the art that changes could be made to the embodiments described above without departing from the broad inventive concept thereof. It is understood, therefore, that this invention is not limited to the particular embodiments disclosed, but it is intended to cover modifications which are within the spirit and scope of the invention, as defined by the appended claims.

Claims

10

15

20

25

20

35

40

45

50

55

1. A composition comprising:

- (a) at least one peroxisome proliferator-activated receptor activator; and
- (b) at least one sterol absorption inhibitor represented by Formula (I):

(I)

or pharmaceutically acceptable salts or solvates thereof, wherein in Formula (I) above:

Ar¹ and Ar² are independently selected from the group consisting of aryl and R⁴-substituted aryl; Ar³ is aryl or R⁵-substituted aryl;

Ai- is any or in-substituted anyi,

X, Y and Z are independently selected from the group consisting of -CH₂-, -CH(lower alkyl)- and -C(dilower alkyl)-;

R and R^2 are independently selected from the group consisting of -OR6, -O(CO)R6, -O(CO)OR9 and -O (CO)NR6R7;

R1 and R3 are independently selected from the group consisting of hydrogen, lower alkyl and aryl; g is 0 or 1:

r is 0 or 1:

m, n and p are independently selected from 0, 1, 2, 3 or 4; provided that at least one of q and r is 1, and

the sum of m, n, p, q and r is 1, 2, 3, 4, 5 or 6; and provided that when p is 0 and r is 1, the sum of m, q and n is 1, 2, 3, 4 or 5:

R⁴ is 1-5 substituents independently selected from the group consisting of lower alkyl, -OR6, -O(CO)R6, -O(CO)R6, -O(CO)R9, -O(CH₂)₁₋₄OP6, -O(CO)R6R7, -NR6(CO)R7, -NR6(CO)R7, -NR6(CO)R7, -NR6(CO)R7, -NR6(CO)R7, -COR6, -O(CH₂)₁₋₁₀-COOR6, -O(C

 R^3 is 1.5 substituents independently selected from the group consisting of -OR6, -O(CO)R6, -O(R6, -O(R6, -O(R6), -O(R6)

 R^6 , R^7 and R^8 are independently selected from the group consisting of hydrogen, lower alkyl, and aryl-substituted lower alkyl, and

R9 is lower alkyl, aryl or aryl-substituted lower alkyl.

2. The composition according to claim 1, wherein the sterol absorption inhibitor is represented by Formula (II) below:

or a pharmaceutically acceptable salt or solvate thereof.

3. A therapeutic combination comprising:

5

10

20

25

30

35

40

45

50

55

- (a) a first amount of at least one peroxisome proliferator-activated receptor activator; and
- (b) a second amount of at least one sterol absorption inhibitor represented by Formula (I):

$$Ar^{1}-X_{m}-(C)_{q}-Y_{n}-(C)_{r}-Z_{p}$$
 Ar^{3}
 Ar^{2}

or pharmaceutically acceptable salts thereof, wherein:

Ar¹ and Ar² are independently selected from the group consisting of aryl and R⁴-substituted aryl; Ar³ is aryl or R⁵-substituted aryl;

X, Y and Z are independently selected from the group consisting of -CH $_2$ -, -CH(lower alkyl)- and -C(dilower alkyl)-;

(1)

R and R² are independently selected from the group consisting of -OR6, -O(CO)R6, -O(CO)OR9 and -O (CO)NR6R7;

 R^1 and R^3 are independently selected from the group consisting of hydrogen, lower alkyl and aryl; q is 0 or 1:

r is 0 or 1;

5

10

15

20

25

30

35

40

45

55

m, n and p are independently selected from 0, 1, 2, 3 or 4; provided that at least one of q and r is 1, and the sum of m, n, p, q and r is 1, 2, 3, 4, 5 or 6; and provided that when p is 0 and r is 1, the sum of m, q and n is 1, 2, 3, 4 or 5;

 R^4 is 1.5 substituents independently selected from the group consisting of lower alkyl, $-OR^6$, $-O(CO)R^6$, $-O(CO)R^6$, $-O(CO)R^6$, $-O(CO)R^6$, $-O(R^6)R^6$, -O

R⁵ is 1-5 substituents independently selected from the group consisting of -OR6, -O(CO)R⁶, -O(CO)OR⁶, -O(CO)OR⁶, -O(CO)NR⁶R⁷, -NR⁶R⁷, -NR⁶R⁷,

 $\label{eq:configuration} $$NR^6(CO)\Omega R^7R^9, NR^6SO_2R^9, -COOR^6, -CONR^6R^7, -COR^6, -SO_2NR^6R^7, S(O)_{0-2}R^9, -O(CH_3)_{1,1}COOR^6, -O(CH_3)_{1,1}$

-CH=CH-COOR6;

 R^6 , R^7 and R^9 are independently selected from the group consisting of hydrogen, lower alkyl, aryl and aryl-substituted lower alkyl; and

R9 is lower alkyl, aryl or aryl-substituted lower alkyl

wherein the first amount and the second amount together comprise a therapeutically effective amount for the treatment or prevention of a vascular condition, diabetes, obesity or lowering a concentration of a sterol in plasma of a mammal.

 The therapeutic combination according to claim 3, wherein the sterol absorption inhibitor is represented by Formula (II) below:

(II)

or a pharmaceutically acceptable salt or solvate thereof.

- A therapeutic combination according to claim 3, wherein the at least one peroxisome proliferator-activated receptor activator is administered concomitantly with the at least one sterol absorption inhibitor.
 - A therapeutic combination according to claim 3, wherein the at least one peroxisome proliferator-activated receptor activator and the at least one sterol absorption inhibitor are present in separate treatment compositions.
- 7. A composition comprising:
 - (a) at least one fibric acid derivative; and
 - (b) a compound represented by Formula (II) below:

(II)

(111)

15 or pharmaceutically acceptable salt or solvate thereof.

8. A composition comprising:

5

10

20

25

30

35

40

45

50

55

- (a) at least one peroxisome proliferator-activated receptor activator; and
- (b) at least one sterol absorption inhibitor selected from the group consisting of:
 - (1) a sterol absorption inhibitor represented by Formula (III):

$$Ar^{1}-A-Y_{\overline{q}} \overset{R^{1}}{\leftarrow} Z_{p} \overset{Ar^{3}}{\longrightarrow} Ar^{3}$$

or pharmaceutically acceptable salts or solvates thereof, wherein in Formula (III) above:

Ar1 is R3-substituted aryl;

Ar2 is R4-substituted aryl;

Ar3 is R5-substituted aryl;

Y and Z are independently selected from the group consisting of -CH₂-, -CH(lower alkyl)- and -C (dilower alkyl)-;

A is selected from -O-, -S-, -S(O)- or -S(O)2-;

R¹ is selected from the group consisting of -OR6, -O(CO)R6, -O(CO)OR9 and -O(CO)NR6R⁷; R² is selected from the group consisting of hydrogen, lower alkyl and aryl; or R¹ and R² together are

=O; q is 1, 2 or 3;

p is 0, 1, 2, 3 or 4;

 R^3 is 1.3 substituents independently selected from the group consisting of $-OR^6$, $-O(CO)R^6$, -O(CO

R³ and R⁴ are independently 1-3 substituents independently selected from the group consisting of R⁵, hydrogen, p-lower alkyl, aryl, -NO₂, -CF₃ and p-halogeno;

 R^6 , R^7 and R^9 are independently selected from the group consisting of hydrogen, lower alkyl, anyl and anyl-substituted lower alkyl; and

R9 is lower alkyl, aryl or aryl-substituted lower alkyl;

(2) a sterol absorption inhibitor represented by Formula (IV):

(IV)

- or pharmaceutically acceptable salts or solvates thereof, wherein, in Formula (IV) above:
 - A is selected from the group consisting of R²-substituted heterocycloalkyl, R²-substituted heteroaryl, R²-substituted benzofused heterocycloalkyl, and R²-substituted benzofused heteroaryl;
- Ar¹ is aryl or R³-substituted aryl; Ar² is aryl or R⁴-substituted aryl;
 - Q is a bond or, with the 3-position ring carbon of the azetidinone, forms the spiro group

$$R^{5} - (R^{6})_{a}$$
 $(R^{7})_{b} - (R^{6})_{a}$

and

R1 is selected from the group consisting of:

- -(CH₂)_q-, wherein q is 2-6, provided that when Q forms a spiro ring, q can also be zero or 1; -(CH₂)_q-G-(CH₂)_T, wherein G is -O-, -C(O)-, phenylene, -NR⁶- or -S(O)₀₋₂-, e is 0-5 and r is 0-5, provided that the sum of e and r is 1-6; -(C₂- C_2 -alkenylene)-; and
- -(CH₂)_p-V-(CH₂)_g-, wherein V is C₃-C₆ cycloalkylene, f is 1-5 and g is 0-5, provided that the sum of f and g is 1-6;

B5 is selected from:

 \mathbb{H}^3 and \mathbb{H}^7 are independently selected from the group consisting of ' $\mathbb{C}H_{2^*}$, ' $\mathbb{C}H(\mathbb{C}_1^*C_g$ alkyl)-, - $\mathbb{C}(\mathbb{H}^2,\mathbb{C}_2^*)$ - \mathbb{H}^3 - $\mathbb{C}(\mathbb{H}^3,\mathbb{C}_2^*)$ - \mathbb{H}^3 - $\mathbb{C}(\mathbb{H}^3,\mathbb{C}^*)$ - \mathbb{H}^3 - $\mathbb{C}(\mathbb{H}^3,\mathbb{C}^*)$ - \mathbb{H}^3 - $\mathbb{C}(\mathbb{H}^3,\mathbb{C}^*)$ - $\mathbb{C}(\mathbb{H}^3,\mathbb{C}^3)$ - $\mathbb{C}(\mathbb{H}^3,$

a and b are independently 0, 1, 2 or 3, provided both are not zero; provided that when R^6 is -CH=CH-or -C(C_1 - C_6 all(y)=CH-, a is 1; provided that when R^7 is -CH=CH- or -C(C_1 - C_6 all(y)=CH-, b is 1; provided that when a is 2 or 3, the R^9 s can be the same or different; and provided that when b is 2 or 3, the R^7 s can be the same or different;

and when Q is a bond, R1 also can be selected from:

55

5

10

15

20

25

30

35

40

45

50

where M is -O-, -S-, -S(O)- or -S(O)o-:

X, Y and Z are independently selected from the group consisting of -CH₂-, -CH(C₁-C₆ alkyl)- and -C (di-(C₄-C₆) alkyl):

R¹⁰ and R¹² are independently selected from the group consisting of -OR¹⁴, -O(CO)R¹⁴, -O(CO)OR¹⁶ and -O(CO)NR¹⁴R¹⁵:

 $m R^{11}$ and $m R^{13}$ are independently selected from the group consisting of hydrogen, ($m C_1$ - $m C_6$)alkyl and anyl; or $m R^{10}$ and $m R^{11}$ together are =0, or $m R^{12}$ and $m R^{13}$ together are =0;

d is 1, 2 or 3; h is 0, 1, 2, 3 or 4;

s is 0 or 1; t is 0 or 1; m, n and p are independently 0-4; provided that at least one of s and t is 1, and the sum of m, n, p, s and t is 1-5; provided that when p is 0 and t is 1, the sum of m, s and n is 1-5; and provided that when p is 0 and s is 1, the sum of m, t and n is 1-5;

v is 0 or 1;

5

10

15

20

25

30

35

40

45

50

55

i and k are independently 1-5, provided that the sum of i, k and v is 1-5;

 R^2 is 1-3 substituents on the ring carbon atoms selected from the group consisting of hydrogen, (C₁-C₁)alkly, (C₂-C₆)alkloryl, (C₂-C₆)cycloalkoryl, R17-substituted control, R17-substituted barylory, R17-substituted arylory, Nabelory, R18-substituted R18-substituted

01

and, where R^2 is a substituent on a substitutable ring nitrogen, it is hydrogen, (C_1-C_2) alikyl, anyl, (C_1+C_2) alikyo, aryloxy, (C_1+C_2) alikylcarbonyl, anylcarbonyl, hydroxy, $(C(H_2)_{1:4}C(N))$ 18818.

wherein J is -O-, -NH-, -NR18- or -CHo-;

 \mathbb{R}^3 and \mathbb{R}^4 are independently selected from the group consisting of 1-3 substituents independently selected from the group consisting of $(-C_0)_{\mathrm{ell}}(\mathbb{R}^4)$, $-O(C)(\mathbb{R}^{14}, -O(C))(\mathbb{R}^{15}, -O(C)(\mathbb{R}^{15}, -O(C))(\mathbb{R}^{15}, -O(C)(\mathbb{R}^{15}, -O(C))(\mathbb{R}^{15}, -O(C)(\mathbb{R}^{15}, -O(C)(\mathbb{R}^{15$

 R^9 and R^{17} are independently 1-3 groups independently selected from the group consisting of hydrogen, (C_1-C_6) alkyl, (C_1-C_6) alkyoxy, -COOH, NO_2 , - $NR^{14}R^{15}$, OH and halogeno;

 R^{14} and R^{15} are independently selected from the group consisting of hydrogen, $(C_1 - C_6)$ alkyl, anyl and aryl-substituted $(C_1 - C_6)$ alkyl;

R¹⁶ is (C₁-C₆)alkyl, aryl or R¹⁷-substituted aryl; R¹⁸ is hydrogen or (C₁-C₆)alkyl; and R¹⁹ is hydrogen, hydroxy or (C₁-C₆)alkoxy;

(3) a sterol absorption inhibitor represented by Formula (V):

$$Ar^{1} \times_{m} \bigcap_{R_{1}}^{R} Y_{n} \stackrel{S(O)_{r}}{\longrightarrow} N_{Ar^{3}}$$

or pharmaceutically acceptable salts or solvates thereof, wherein, in Formula (V) above:

Ar1 is arvl. R10-substituted aryl or heteroaryl;

Ar2 is arvl or R4-substituted arvl:

Ar3 is arvl or R5-substituted arvl:

X and Y are independently selected from the group consisting of -CH₂-, -CH(lower alkyl)- and -C (dilower alkyl)-:

(V)

R is -OR6, -O(CO)R6, -O(CO)OR9 or -O(CO)NR6R7; R1 is hydrogen, lower alkyl or aryl; or R and R1 together are =0;

a is 0 or 1:

5

10

15

20

25

30

35

40

45

50

55

r is 0, 1 or 2;

m and n are independently 0, 1, 2, 3, 4 or 5; provided that the sum of m, n and q is 1, 2, 3, 4 or 5;

A⁶ is 1.5 substituents independently selected from the group consisting of lower alklyl. OR6. -Q(CO) R⁸. -Q(CO) OR9. -Q(CO)OR9. -Q(CH₂)+ $_{6}$ OR9. -Q(CO)OR9. -NR⁶(CO)OR9. -NR⁶(CO)OR9. -NR⁶(CO)OR9. -Q(CO)OR9. -Q(CO)OR9.

(CH₂)₁₋₁₀CONR⁶R⁷, -(lower alkylene)COOR⁶ and -CH=CH-COOR⁶;

R is 1-5 substituents independently selected from the group consisting of -OR6, -O(CO)Ref. -O(CO) 0Ref. -O(CH₂)₁₋₆ORef. -O(CO)NR6R7, -NR6R7, -NR6RCO)R7, -NR6(CO)OR9, -NR6(CO)NR7Ref. -NR6SO₂Ref. -COOR6, -CONR6R7, -COR6, -SO₂NR6R7, -S(O)₀₋₂Ref. -O(CH₂)₁₋₁₀-COOR6, -O(CH₂)₁₋₁₀-CONR6R7, -COR6, -NR6COR6, -O(CH₂)₁₋₁₀-CONR6RF, -COR6, -O(CH₂)₁₋₁₀-CONR6RF, -COR6, -O(CH₂)₁₋₁₀-CONR6RF, -COR6, -O(CH₂)₁₋₁₀-CONR6RF, -COR6, -O(CH₂)₁₋₁₀-CONR6RF, -COR6RF, -O(CH₂)₁₋₁₀-CONR6RF, -O(CH₂)₁₋₁

aryl-substituted lower alkyl; R⁹ is lower alkyl, aryl or aryl-substituted lower alkyl; and

R¹⁰ is 1-5 substituents independently selected from the group consisting of lower alkyl. -OR⁰. -O(CO) R⁰. -O(CO)R⁰. -O(CO)R⁰. -O(CO)R⁰. -O(CO)R⁰. -O(CO)R⁰. -NR⁰(CO)R⁰. -NR⁰(CO)R⁰. -NR⁰(CO)R⁰. -NR⁰(CO)R⁰. -NR⁰(CO)R⁰. -OCOR⁰. -OCOR⁰.

(CH₂)_{4.4}CONR⁶R⁷, -CF₂, -CN, -NO₂ and halogen:

(4) a sterol absorption inhibitor represented by Formula (VI):

$$R_1$$
 R_1
 R_2
 R_2
 R_3
 R_2
 R_2
 R_3
 R_2
 R_3

or pharmaceutically acceptable salts or solvates thereof, wherein in Formula VI above:

R₁ is

5

10

15

20

25

35

40

45

50

55

$$\begin{array}{l} -1 \\ -\text{CH-, -} \dot{C} (\text{lower alkyl}) -, -\dot{C} F -, -\dot{C} (OH) -, -\dot{C} (C_6 H_5) -, -\dot{C} (C_6 H_4 - R_{15}) -, \\ -\dot{N} - \text{ or } -\dot{N} \text{ O}^* : \end{array}$$

 R_2 and R_3 are independently selected from the group consisting of: -CH₂-, -CH(lower alkyl)-, -C(dilower alkyl)-, -CH=CH- and -C(lower alkyl)=CH-; or

R₁ together with an adjacent R₂, or R₁ together with an adjacent R₃, form a -CH=CH- or a -CH=C (lower alkyl)- group:

u and v are independently 0.1, 2 or 3, provided both are not zero; provided that when R_2 is -CH=CH-or-C(lower alkyl)=CH+, v is 1; provided that when R_3 is -CH=CH- or -C(lower alkyl)=CH+, v is 1; provided that when v is 2 or 3, the R_2 's can be the same or different; and provided that when v is 2 or 3, the R_2 's can be the same or different.

R₄ is selected from B-(CH₂)_mC(O)-, wherein m is 0, 1, 2, 3, 4 or 5;

B-(CH₂)_q-, wherein q is 0, 1, 2, 3, 4, 5 or 6;

B-(CH₂)_e·Z-(CH₂)_r·, wherein Z is -O-, -C(O)-, phenylene, -N(R₈)- or -S(O)₀₋₂-, e is 0, 1, 2, 3, 4 or 5 and r is 0, 1, 2, 3, 4 or 5, provided that the sum of e and r is 0, 1, 2, 3, 4, 5 or 6:

B-(C2-C6 alkenylene)-;

B- $(C_4$ - C_6 alkadienylene)-; B- (CH_2) /z- $(C_2$ - C_6 alkenylene)-, wherein Z is as defined above, and wherein t is 0, 1, 2 or 3, provided that the sum of t and the number of carbon atoms in the alkenylene chain is 2, 3, 4, 5 or 6;

B-(CH₂)_{Γ}V-(CH₂)_g, wherein V is C₃-C₆ cycloalkylene, f is 1, 2, 3, 4 or 5 and g is 0, 1, 2, 3, 4 or 5, provided that the sum of f and g is 1, 2, 3, 4, 5 or 6;

B-(CH₂)_t-V-(C₂-C₆ alkenylene)- or

 $B-(C_2-C_6$ alkenylene)-V-(CH_2), wherein V and t are as defined above, provided that the sum of t and the number of carbon atoms in the alkenylene chain is 2, 3, 4, 5 or 6:

B-(CH₂)_a, \mathbb{Z} -(CH₂)_b-V-(CH₂)_d, wherein Z and V are as defined above and a, b and d are independently 0, 1, 2, 3, 4, 5 or 6, provided that the sum of a, b and d is 0, 1, 2, 3, 4, 5 or 6; or T-(CH₂)_s, wherein T is cycloalky of 3-6 carbon atoms and s is 0, 1, 2, 3, 4, 5 or 6; or

R₁ and R₄ together form the group

B-CH=C-;

B is selected from indarnyl, indenyl, naphthyl, tetrahydronaphthyl, heteroaryl or W-substituted heteroaryl, wherein heteroaryl is selected from the group consisting of pyrrolyl, pyridinyl, pyrimidinyl, pyrazinyl, triazinyl, imidazolyl, thiazolyl, pyrazolyl, thienyl, oxazolyl and furanyl, and for nitrogen-containing heteroaryls, the N-oxides thereof, or

for substitution on ring carbon atoms, and the substituents on the substituted heteroaryl ring nitrogen atoms, when present, are selected from the group consisting of lower alkyl, lower alkoxy. $-C(O)OR_{10}$, $-C(O)R_{10}$, OH, $N(R_g)(R_g)-lower$ alkylene-, $N(R_g)(R_g)$ -lower alkylenyloxy-, $-S(O)_2NH_2$ and 2-(trimethyl-silvi)-ethoxymethyl:

 R_7 is 1-3 groups independently selected from the group consisting of lower alkyl, lower alkoxy, -COOH, NO₂, -N(R_8)(R_9), OH, and halogeno;

Re and Re are independently selected from H or lower alkyl;

R₁₀ is selected from lower alkyl, phenyl, R₇-phenyl, benzyl or R₇-benzyl;

R₁₁ is selected from OH, lower alkyl, phenyl, benzyl, R₇-phenyl or R₇-benzyl;

R₁₂ is selected from H, OH, alkoxy, phenoxy, benzyloxy,

-N(R₈)(R₀), lower alkyl, phenyl or R₇-phenyl;

5

10

15

20

25

30

35

40

45

50

55

R₁₃ is selected from -O-, -CH₂-, -NH-, -N(lower alkyl)- or -NC(O)R₁₉;

 R_{15}^{-} , R_{16} and R_{17} are independently selected from the group consisting of H and the groups defined for W: or R_{15} is hydrogen and R_{17} , lagether with adjacent carbon atoms to which they are attached, form a disoxolaryt ring;

R₁₉ is H, lower alkyl, phenyl or phenyl lower alkyl; and

 R_{20} and R_{21} are independently selected from the group consisting of phenyl, W-substituted phenyl, naphthyl, W-substituted naphthyl, indanyl, indanyl, tetrahydronaphthyl, benzodioxolyl, heteroaryl, W-substituted heteroaryl, benzofused heteroaryl, W-substituted benzofused heteroaryl and cyclopropyl, wherein heteroaryl is as defined above;

(5) a sterol absorption inhibitor represented by Formula (VII):

(VII)

or pharmaceutically acceptable salts or solvates thereof, wherein in Formula (VII):

A is -CH=CH-, -C=C- or -(CH $_2$) $_p$ - wherein p is 0, 1 or 2; B is

 \mathbb{R}_{1}

E is C_{10} to C_{20} alkyl or -C(0)-(C_9 to C_{19})-alkyl, wherein the alkyl is straight or branched, saturated or containing one or more double bonds;

R is hydrogen, C₁-C₁₅ alkyl, straight or branched, saturated or containing one or more double bonds, or B-(CH₂), ., wherein r is 0, 1, 2, or 3:

 R_1 , R_2 , and R_3 are independently selected from the group consisting of hydrogen, lower alkyl, lower alkyl, carboxy, No₂, NH₂, OH, halogeno, lower alkylamino, dillower alkylamino, -NHC(O)OR₅, R_0 5_SNH- and -S(O)₂NH₂;

R₄ is

5

10

15

20

25

30

35

40

45

50

55

(OR₅)_r

wherein n is 0, 1, 2 or 3;

R_E is lower alkyl: and

 $R_{\rm g}^{\prime}$ is OH, lower alkyl, phenyl, benzyl or substituted phenyl wherein the substituents are 1-3 groups independently selected from the group consisting of lower alkyl, lower alkoxy, carboxy, NO₂, NH $_{\rm g}$, OH, halodeno, lower alkylamino and dilower alkylaminor.

(6) a sterol absorption inhibitor represented by Formula (VIII):

(VIII)

or pharmaceutically acceptable salts or solvates thereof , wherein, in Formula (VIII) above, R²⁶ is H or OG¹:

G and G1 are independently selected from the group consisting of

H,

5

10

15

20

25

30

and

35

40

45

50

55

provided that when R26 is H or OH, G is not H;

- R, R^a and R^b are independently selected from the group consisting of H, -OH, halogeno, -NH $_2$, azido, (C_1-C_6) alkoxy (C_1-C_6) -alkoxy or -W-R 30 ;
- W is independently selected from the group consisting of -NH-C(O)-, -O-C(O)-, -O-C(O)-N(R³¹)-,-NH-C(O)-N(R³¹)- and -O-C(S)-N(R³¹)-;
- $\rm R^2$ and $\rm R^6$ are independently selected from the group consisting of H, (C₁-C₆)alkyl, aryl and aryl (C₁-C₆)alkyl;
- H^3 , H^4 , H^5 , H^7 , H^8 and H^4 are independently selected from the group consisting of H, (C_1-C_6) alkyl, aryl (C_1-C_6) alkyl, $-C(O)(C_1-C_6)$ alkyl and -C(O) aryl;
- R30 is selected from the group consisting of R32-substituted T,
- R32-substituted-T-(C1-C6)alkyl, R32-substituted-(C2-C1)alkenyl,
- R³²-substituted-(C₁-C₆)alkyl, R³²-substituted-(C₃-C7)cycloalkyl and
- R^{32} -substituted- $(C_3$ - C_7)cycloalkyl(C_1 - C_6)alkyl; R^{31} is selected from the group consisting of H and $(C_1$ - C_4)alkyl;
- T is selected from the group consisting of phenyl, furyl, thienyl, pyrrolyl, oxazolyl, isoxazolyl, thiazolyl, iosthiazolyl, benzothiazolyl, thiadiazolyl, pyrazolyl, imidazolyl and pyridyl;
- R^{32} is independently selected from 1-3 substituents independently selected from the group consisting of halogene (C_1 - C_2) along, when C_1 - C_2 halong, whethylenedoxy, oo, $(C_1$ - C_2) alkylsulfanyl, $(C_1$ - $(C_2$) alkylsulfanyl, $(C_2$ -

Ar1 is arvi or R10-substituted arvi:

Ar2 is anyl or R11-substituted anyl;

Q is a bond or, with the 3-position ring carbon of the azetidinone, forms the spiro group

and

5

10

15

20

25

35

40

45

50

55

R¹ is selected from the group consisting of

-(CH₂)_n-, wherein q is 2-6, provided that when Q forms a spiro ring, q can also be zero or 1;

 $-(CH_2)_{q}$, E- $(CH_2)_{r}$, wherein E is -O-, -C(O)-, phenylene, -NR²²- or -S(O)₀₋₂-, e is 0-5 and r is 0-5, provided that the sum of e and r is 1-6;

 $(C_2 - C_6)$ alkenylene-; and $g \cdot (CH_2)_T \cdot V \cdot (CH_2)_g$, wherein V is $C_3 \cdot C_6$ cycloalkylene, f is 1-5 and g is 0-5, provided that the sum of f and g is 1-6; R12 is

-CH-, -C(C1-C6 alkyl)-, -CF-, -C(OH)-, -C(C6H4-R²³)-, -N-, or
$$-^{+}$$
NO :

R13 and R14 are independently selected from the group consisting of -CH2-.

-CH(C₁-C₆ alkyl)-, -C(di-(C₁-C₆) alkyl), -CH=CH- and -C(C₁-C₆ alkyl)=CH-; or R¹² together with an adjacent R¹⁴, form a

-CH=CH- or a -CH=C(C₁-C₆ alkyl)- group;

a and b are independently 0, 1, 2 or 3, provided both are not zero;

provided that when R13 is -CH=CH- or -C(C1-C6 alkyl)=CH-, a is 1;

provided that when R¹⁴ is -CH=CH- or -C(C₁-C₆ alkyl)=CH-, b is 1; provided that when a is 2 or 3, the R¹⁹s can be the same or different;

provided that when a is 2 or 3, the n ** scan be the same or dilierent,

provided that when b is 2 or 3, the R14's can be the same or different;

and when Q is a hond R1 also can be-

M is -O-, -S-, -S(O)- or -S(O)o-;

X, Y and Z are independently selected from the group consisting of -CH₂-,

-CH(C₁-C₆)alkyl- and -C(di-(C₁-C₆)alkyl);

R¹⁰ and R¹¹ are independently selected from the group consisting of 1-3 substituents independently selected from the group consisting of

(C₁-C₆)alkyl, -OR¹⁹, -O(CO)R¹⁹, -O(CO)OR²¹, -O(CH₂)₁₋₅OR¹⁹,

-O(CO)NR19R20, -NR19R20, -NR19(CO)R20, -NR19(CO)OR21,

-NR19(CO)NR20R25, -NR19SO₂R21, -COOR19, -CONR19R20, -COR19,

-SO₂NR¹⁹R²⁰, S(O)₀₋₂R²¹, -O(CH₂)₁₋₁₀-COOR¹⁹, -O(CH₂)₁₋₁₀CONR¹⁹R²⁰,

-(C₁-C₆ alkylene)-COOR¹⁹, -CH=CH-COOR¹⁹, -CF₃, -CN, -NO₂ and halogen;

R15 and R17 are independently selected from the group consisting of -OR19,

-O(CO)R19, -O(CO)OR21 and -O(CO)NR19R20;

R¹⁶ and R¹⁸ are independently selected from the group consisting of H, (C₁-C₆)alkyl and aryl; or R¹⁵ and R¹⁶ together are =0. or R¹⁷ and R¹⁸ together are =0:

d is 1, 2 or 3;

h is 0, 1, 2, 3 or 4;

s is 0 or 1; t is 0 or 1; m, n and p are independently 0-4;

provided that at least one of s and t is 1, and the sum of m, n, p, s and t is 1-6;

provided that when p is 0 and t is 1, the sum of m, s and n is 1-5; and provided that when p is 0 and s is 1, the sum of m, t and n is 1-5;

v is 0 or 1:

5

10

15

20

25

30

35

40

45

50

55

and k are independently 1-5, provided that the sum of i, k and v is 1-5;

and when Q is a bond and R1 is

$$-X_{j}^{-15}$$

 $-X_{j}^{-1}$ $(C)_{v}^{-1}$ Y_{k}^{-15} $(O)_{0-2}$ R^{16}

Ar¹ can also be pyridyl, isoxazolyl, furanyl, pyrrolyl, thienyl, imidazolyl, pyrazolyl, thiazolyl, pyrazinyl, pyrimidinyl or pyridazinyl;

R¹⁹ and R²⁰ are independently selected from the group consisting of H, (C₁-C₆)alkyl, aryl and arylsubstituted (C₁-C₆)alkyl;

R21 is (C1-C6)alkyl, anyl or R24-substituted anyl;

R22 is H, (C1-C6)alkyl, aryl (C1-C6)alkyl, -C(O)R19 or -COOR19;

 R^{23} and R^{24} are independently 1-3 groups independently selected from the group consisting of H, $(C_1-C_6)alkoy$, $(C_0-C_6)alkoy$, $(C_0-C_6)alk$

R²⁵ is H, -OH or (C₁-C₆)alkoxy; and (7) a sterol absorption inhibitor represented by Formula (IX):

$$Ar^{1} \stackrel{\bigcirc R^{1}}{\underset{\bigcirc}{\bigcap}} R_{26}$$

$$Ar^{2} \stackrel{\bigcirc}{\underset{\bigcirc}{\bigcap}} R_{26}$$

$$(|X|)$$

or pharmaceutically acceptable salts or solvates thereof, wherein, in Formula (IX) above, R²⁶ is selected from the group consisting of:

a) OH; b) OCH₃;

c) fluorine and

d) chlorine;

Н.

R1 is selected from the group consisting of

-SO3H; natural and unnatural amino acids;

5

10

15

20

25

35

40

45

50

55

R, Ra and Rb are independently selected from the group consisting of H, -OH, halogeno, -NH₂, azido, (C₁-C₆)alkoxy(C₁-C₆)-alkoxy and -W-R³⁰;

W is independently selected from the group consisting of -NH-C(O)-, -O-C(O)-, -O-C(O)-N(R³¹)-, -NH-C(O)-N(R³¹)- and -O-C(S)-N(R³¹)-:

R² and R⁶ are independently selected from the group consisting of H, (C₁-C₆)alkyl, aryl and aryl (C₁-C₆)alkyl;

R3, R4, R5, R7, R3a and R4a are independently selected from the group consisting of H, (C₁-C₆)alkyl, aryl(C₄-C₆)alkyl, -C(O)(C₄-C₆)alkyl, and -C(O)aryl:

P³⁰ is independently selected form the group consisting of R³²-substituted T, R³²-substituted-T-(C₁-C₂)alkyl, R³²-substituted-(C₂-C₂)alkenyl, R³²-substituted-(C₁-C₂)co-cloalkyl and R³²-substituted-(C₂-C)cycloalkyl (C₁-C₂)alkyl (C₂-C)alkyl (C₂-C)cycloalkyl (C₁-C)alkyl (C₂-C)alkyl (C₂

R31 is independently selected from the group consisting of H and (C1-C4)alkyl;

T is independently selected from the group consisting of phenyl, furyl, thienyl, pyrrolyl, oxazolyl, isoxazolyl, thiazolyl, iosthiazolyl, benzothiazolyl, thiadiazolyl, pyrazolyl, imidazolyl and pyridyl;

 R^{32} is independently selected from 1-3 substituents independently selected from the group consisting of H, halogeno, (C_1-C_2) alky, (C_1-C_2) alk

Ar¹ is aryl, R¹⁰-substituted aryl; pyridyl, isoxazolyl, furanyl, pyrrolyl, thienyl, imidazolyl, pyrazolyl, thiazolyl, pyrazinyl, pyrimidinyl or pyridazinyl;

Ar2 is anyl or R11-substituted anyl:

Q is -(CH₂) $_{q}$ -, wherein q is 2-6, or, with the 3-position ring carbon of the azetidinone, forms the spiro group

R12 is

$$\overset{1}{\text{-CH-}}, \overset{1}{\text{-C}}(\text{C}_1\text{-C}_6 \text{ alkyl})\text{-, }\overset{1}{\text{-CF-}}, \overset{1}{\text{-C}}(\text{OH})\text{-, }\overset{1}{\text{-C}}(\text{C}_6\text{H}_4\text{-R}^{23})\text{-, }\overset{1}{\text{N-}}, \text{ or } -\overset{1}{\overset{1}{\text{NO}}}\text{;}$$

R13 and R14 are independently selected from the group consisting of -CH2-.

-CH(C_1 - C_6 alkyl)-, -C(di-(C_1 - C_6) alkyl), -CH=CH- and -C(C_1 - C_6 alkyl)=CH-; or

 R^{12} together with an adjacent R^{13} , or R^{12} together with an adjacent R^{14} , form a -CH=CH- or a -CH=C (C_1 - C_6 alkyl)- group;

a and b are independently 0, 1, 2 or 3, provided both are not zero; provided that when R¹³ is -CH=CHor -C(C_1 - C_6 alkyl)=CH-, a is 1; provided that when R¹⁴ is -CH=CH- or -C(C_1 - C_6 alkyl)=CH-, b is 1; provided that when a is 2 or 3. the R¹³'s can be the same or different; and provided that when b is 2 or 3. the R¹³'s can be the same or different; and provided that when b is 2 or 3. the R¹³'s can be the same or different:

$$\label{eq:controller} \begin{split} & \Pi^{10} \ and \ \Pi^{11} \ are independently selected from the group consisting of 1.3 substituents independently selected from the group consisting of <math>(C_1, C_2)$$
 and (C_1, C_2) and (C_1, C_2) and (C_2, C_2) and (C_1, C_2) and (C_2, C_2) and

R¹⁹ and R²⁰ are independently selected from the group consisting of H, (C₁-C₆)alkyl, aryl and arylsubstituted (C₄-C₆)alkyl:

R21 is (C1-C6)alkyl, aryl or R24-substituted aryl;

R22 is H, (C₁-C₆)alkyl, aryl (C₁-C₆)alkyl, -C(O)R19 or -COOR19;

R²³ and R²⁴ are independently 1-3 groups independently selected from the group consisting of H, (C₁-C₆)alkyl, (C₁-C₆)alkoxy, -COOH, NO₂, -NR¹⁹R²⁰, -OH and halogeno; and

R25 is H, -OH or (C₁-C₆)alkoxy.

9. A therapeutic combination comprising:

5

10

20

25

35

40

45

50

55

- (a) at least one peroxisome proliferator-activated receptor activator; and
- (b) at least one sterol absorption inhibitor selected from the group consisting of:
 - (1) a sterol absorption inhibitor represented by Formula (III):

$$Ar^{1}-A-Y = \begin{matrix} R^{1} \\ C-Z_{p} \\ R^{2} \end{matrix}$$

(III)

or pharmaceutically acceptable salts or solvates thereof, wherein in Formula (III) above:

Ar1 is R3-substituted aryl;

Ar2 is R4-substituted aryl;

Ar3 is R5-substituted aryl:

Y and Z are independently selected from the group consisting of -CH2-, -CH(lower alkyl)- and -C (dilower alkyl)-;

A is selected from -O-, -S-, -S(O)- or -S(O)2-;

R1 is selected from the group consisting of -OR6, -O(CO)R6, -O(CO)OR9 and -O(CO)NR6R7;

 R^2 is selected from the group consisting of hydrogen, lower alkyl and aryl; or R^1 and R^2 together are =0:

q is 1, 2 or 3;

p is 0, 1, 2, 3 or 4;

 R^5 is 1.3 substituents independently selected from the group consisting of -OR6, -O(CO)P6, -O(CO) OR9, -O(CH₂)_{1.5}OR9, -O(CO)NF6R7, -NRF6(CO)R7, -NRF6(CO)NR7R6, -NRF6(CO)NR7R6, -NRF6SO₂-lower alkyl, -NRF6SO₂-aryl, -CONRF6R7, -COR6, -SO₂NRF6R7, S(O) $_{0.2}$ -alkyl, S(O) $_{0.2}$ -alyl, -(OH $_{0.1}$ -algoeno, m-halogeno, o-hower alkyl, m-lower alkyl, -(low-lower alkyl, m-lower alkyl, -(low-lower alkyl, -(low-lower alkyl, -(low-lower alkyl), -(low-lower alkyl, -(low-lower alkyl), -(low-lower alk

er alkylene)-COOR6, and -CH=CH-COOR6;

R³ and R⁴ are independently 1-3 substituents independently selected from the group consisting of R⁵, hydrogen, p-lower alkyl, aryl, -NO₂, -CF₃ and p-halogeno;

 R^6, R^7 and R^8 are independently selected from the group consisting of hydrogen, lower alkyl, aryl and aryl-substituted lower alkyl; and

R9 is lower alkyl, aryl or aryl-substituted lower alkyl;

(2) a sterol absorption inhibitor represented by Formula (IV):

$$Ar^1-R^1-Q$$
 N
 Ar^2
 N
 Ar^2
 N
 Ar^2

or pharmaceutically acceptable salts or solvates thereof, wherein, in Formula (IV) above:

A is selected from the group consisting of R²-substituted heterocycloalkyl, R²-substituted heteroaryl, R²-substituted benzofused heterocycloalkyl, and R²-substituted benzofused heteroaryl;

Ar1 is aryl or R3-substituted aryl;

Ar2 is aryl or R4-substituted aryl;

Q is a bond or, with the 3-position ring carbon of the azetidinone, forms the spiro group

$$(R^7)_b^5 - (R^6)_a$$

and

5

10

15

20

25

35

40

45

50

55

R1 is selected from the group consisting of:

- -(CH₂)_q, wherein q is 2-6, provided that when Q forms a spiro ring, q can also be zero or 1; -(CH₂)_e-G-(CH₂)_r, wherein G is -O-, -C(O)-, phenylone, -NR⁸- or -S(O)₀₋₂-, o is 0-5 and r is 0-5, provided that he sum of e and r is 1-6:
- -(C₂-C₆ alkenylene)-; and
 - $-(CH_2)_vV-(CH_2)_g$, wherein V is C_3-C_g cycloalkylene, f is 1-5 and g is 0-5, provided that the sum of f and g is 1-6;

R5 is selected from:

R6 and R7 are independently selected from the group consisting of

-CH2-, -CH(C1-C6 alkyl)-, -C(di-(C1-C6) alkyl), -CH=CH- and

-C(C₁-C₆ alkyl)=CH-; or R⁵ together with an adjacent R⁶, or R⁵ together with an adjacent R⁷, form a -CH=CH- or a -CH=C(C₁-C₆ alkyl)- group;

a and b are independently 0, 1, 2 or 3, provided both are not zero:

provided that when R[§] is -CH=CH- or -C(C₁-C₆ alkyl)=CH-, a is 1; provided that when R⁷ is -CH=CHor -C(C₁-C₆ alkyl)=CH-, b is 1; provided that when a is 2 or 3, the R⁹s can be the same or different; and provided that when b is 2 or 3, the R⁹s can be the same or different.

and when Q is a bond, R1 also can be selected from:

where M is -O-, -S-, -S(O)- or -S(O)2-;

X, Y and Z are independently selected from the group consisting of -CH₂-, -CH(C₁-C₆ alkyl)- and -C (di-(C₁-C₆) alkyl);

 R^{10} and R^{12} are independently selected from the group consisting of -OR14, -O(CO)R14, -O(CO)OR16 and -O(CO)NR14R15;

 R^{11} and R^{13} are independently selected from the group consisting of hydrogen, (C₁-C₆)alkyl and aryl; or R^{10} and R^{11} together are =0, or R^{12} and R^{13} together are =0;

d is 1, 2 or 3; h is 0, 1, 2, 3 or 4;

s is 0 or 1; t is 0 or 1; m, n and p are independently 0-4; provided that at least one of s and t is 1, and the sum of m, n, p, s and t is 1-5; provided that when p is 0 and t is 1, the sum of m, s and n is 1-5; and provided that when p is 0 and s is 1, the sum of m, t and n is 1-5; and provided that when p is 0 and s is 1, the sum of m, t and n is 1-5;

v is 0 or 1;

i and k are independently 1-5, provided that the sum of i, k and v is 1-5;

 \tilde{R}^2 is 1-3 substituents on the ring carbon atoms selected from the group consisting of hydrogen (cf.-c_p)allyl, (Cg-c_p)clostleny, (Eg-c_p)clostleny, (Eg-c_p

or

and, where R^2 is a substituent on a substitutable ring nitrogen, it is hydrogen, (C_1-C_0) alkyl, anyl, (C_1-C_0) alkova, aryloxy, (C_1-C_0) alkylearbonyl, arylearbonyl, hydroxy, $-(Ch_2)_{1:0}ONN^{18}R^{18}$.

40

45

50

55

35

5

10

15

20

25

wherein J is -O-, -NH-, -NR18- or -CH2-;

 \mathbb{R}^3 and \mathbb{R}^4 are independently selected from the group consisting of 1.3 substituents independently selected from the group consisting of (C_1C_0) alkyl, $-O(R)^4$, $-O(CO)R^{14}$, $-O(CO)R^{14}$, $-O(CO)R^{14}$, $-O(CO)R^{14}$, $-O(CO)R^{14}$, $-O(R^{14})$, and $-O(R^{14})$,

 $\rm R^9$ and $\rm R^{17}$ are independently 1-3 groups independently selected from the group consisting of hydrogen, ($\rm C_1$ - $\rm C_6$)alkyl, ($\rm C_1$ - $\rm C_6$)alkyl, ($\rm C_1$ - $\rm C_6$)alkyl, -COOH, NO₂, -NR¹⁴R¹⁵, OH and halogeno:

 R^{14} and R^{15} are independently selected from the group consisting of hydrogen, (C_1-C_6) alkyl, aryl and aryl-substituted (C_1-C_6) alkyl;

R16 is (C1-C6)alkyl, aryl or R17-substituted aryl;

R¹⁸ is hydrogen or (C₁-C₆)alkyl; and

R19 is hydrogen, hydroxy or (C1-C6)alkoxy;

(3) a sterol absorption inhibitor represented by Formula (V):

$$Ar^{1} \times_{m} \stackrel{(C)}{\underset{R^{1}}{\bigvee}} _{n} \stackrel{S(O)_{r}}{\underset{N}{\bigvee}} Ar^{2}$$

or pharmaceutically acceptable salts or solvates thereof, wherein, in Formula (V) above;

Ar1 is arvl. R10-substituted arvl or heteroarvl:

Ar2 is anyl or R4-substituted anyl;

Ar3 is anyl or R5-substituted anyl:

X and Y are independently selected from the group consisting of -CH₂-, -CH(lower alkyl)- and -C (dillower alkyl)-:

R is -OR6, -O(CO)R6, -O(CO)OR9 or -O(CO)NR8R7; R1 is hydrogen, lower alkyl or aryl; or R and R1 together are =0:

q is 0 or 1;

r is 0. 1 or 2:

5

10

15

20

25

35

40

45

50

55

m and n are independently 0, 1, 2, 3, 4 or 5; provided that the sum of m, n and q is 1, 2, 3, 4 or 5; R^4 is 1-5 substituents independently selected from the group consisting of lower alkyl, $-OR^6$, -O(CO)

 $R^{0}_{1}. \circ (CO)OR^{0}_{1}. \circ (CH)_{3}, {}_{2}OR^{0}_{1}. \circ (CO)NR^{0}R^{7}_{1}. NR^{0}R^{7}_{1}. NR^{0}(CO)R^{7}_{1}. NR^{0}(CO)OR^{0}_{1}. NR^{0}CO)R^{0}_{1}. NR^{0}COR^{0}_{1}. (CH_{2})_{1-10}. COOR^{0}_{1}. (CH_{2})_{1-10}. COOR^{0}_{1}. (CH_{2})_{1-10}. COOR^{0}_{1}. (CH_{2})_{1-10}. COOR^{0}_{1}. (CH_{2})_{1-10}. COOR^{0}_{1}. (CH_{2})_{1-10}. COOR^{0}_{1}. (CH_{2})_{1-10}. (CH_{2})_{1$

 \mathbb{R}^5 is 1-5 substituents independently selected from the group consisting of $-\mathsf{OR}^6$, $-\mathsf{O}(\mathsf{CO})\mathsf{R}^6$, $-\mathsf{OR}^6$, $-\mathsf{O}(\mathsf{CO})\mathsf{R}^6$, $-\mathsf{OR}^6$,

R⁶, R⁷ and R⁶ are independently selected from the group consisting of hydrogen, lower alkyl, aryl and aryl-substituted lower alkyl:

R9 is lower alkyl, anyl or anyl-substituted lower alkyl; and

 R^{10} is 1-5 substituents independently selected from the group consisting of lower alkyl, -OR6, -O(CO) R9, -O(CO)OR9, -O(CH₂)₁₋₄, OR6, -O(CO)NR6, -NR6(CO)NR7, -NR8(CO)OR9, -NR6(CO)NR7R6, -NR9SO_R9, -COOR9, -CONR6R7, -COR6, -SO_NR6R7, -S(O) $_{02}$ R9, -O(CH $_{2}$)₁₋₁₀-COOR6, -O(CH $_{2}$)₁₋₁

(4) a sterol absorption inhibitor represented by Formula (VI):

(VI)

(V)

or pharmaceutically acceptable salts or solvates thereof, wherein in Formula VI above:

R₁ is

$$-\dot{C}H_{-}$$
, $-\dot{C}(lower alkyl)_{-}$, $-\dot{C}F_{-}$, $-\dot{C}(OH)_{-}$, $-\dot{C}(C_6H_5)_{-}$, $-\dot{C}(C_6H_4-R_{15})_{-}$, $-\dot{N}$ or $-\dot{N}$ or :

R₂ and R₃ are independently selected from the group consisting of: -CH₂-, -CH(lower alkyl)-, -C(dilower alkyl)-, -CH=CH- and -C(lower alkyl)=CH-; or

R₁ together with an adjacent R₂, or R₁ together with an adjacent R₃, form a -CH=CH- or a -CH=C (lower alkyl)- group;

u and v are independently 0, 1, 2 or 3, provided both are not zero; provided that when R_2 is -CH-CH-or -C(lower alkyl)=CH-, v is 1; provided that when R_3 is -CH=CH- or -C(lower alkyl)=CH-, v is 1; provided that when v is 2 or 3, the R_3 's can be the same or different; and provided that when v is 2 or 3, the v is 3 or 3 or 3, the v is 3 or 3 or 3.

R4 is selected from B-(CH2)mC(O)-, wherein m is 0, 1, 2, 3, 4 or 5;

B-(CH₂)_a-, wherein q is 0, 1, 2, 3, 4, 5 or 6;

B-(CH₂)_e-Z-(CH₂)_r-, wherein Z is -O-, -C(O)-, phenylene, -N(R₈)- or -S(O)₀₋₂-, e is 0, 1, 2, 3, 4 or 5 and r is 0, 1, 2, 3, 4 or 5, provided that the sum of e and r is 0, 1, 2, 3, 4, 5 or 6:

B-(C₂-C₆ alkenylene)-;

5

10

15

20

25

30

35

40

45

50

55

B-(C₄-C₆ alkadienylene)-;

B-(CH₂)_t-Z-(C₂-C₆ alkenylene)-, wherein Z is as defined above, and wherein t is 0, 1, 2 or 3, provided that the sum of t and the number of carbon atoms in the alkenylene chain is 2, 3, 4, 5 or 6;

B-(CH₂)_TV-(CH₂)_g-, wherein V is C_3 - C_6 cycloalkylene, f is 1, 2, 3, 4 or 5 and g is 0, 1, 2, 3, 4 or 5, provided that the sum of f and g is 1, 2, 3, 4, 5 or 6:

B-(CH2)+V-(C2-C6 alkenylene)- or

 $B-(C_2\cdot C_6$ alkenylene)-V-(CH_2)₁-, wherein V and t are as defined above, provided that the sum of t and the number of carbon atoms in the alkenylene chain is 2, 3, 4, 5 or 6;

B-(CH₂)_a·Z-(CH₂)_b·V-(CH₂)_d·, wherein Z and V are as defined above and a, b and d are independently 0, 1, 2, 3, 4, 5 or 6; provided that the sum of a, b and d is 0, 1, 2, 3, 4, 5 or 6; or T-(CH₂)_b·, wherein T is cycloalkyl of 3-6 carbon atoms and s is 0, 1, 2, 3, 4, 5 or 6; or R, and R₁ together form the group

B-CH=C- ;

B is selected from indanyl, indenyl, naphthyl, tetrahydronaphthyl, heteroaryl or W-substituted heteroaryl, wherein heteroaryl is selected from the group consisting of pyrrolyl, pyridinyl, pyrimidinyl, pyrazi-nyl, triazinyl, imidazolyl, thiazolyl, pyrazolyl, thienyl, oxazolyl and furanyl, and for nitrogen-containing heteroaryls, the N-oxides thereof, or

Wis 1 o 3 substituents independently selected from the group consisting of lower alkyl, hydroxy lower alkyl, lower alkoy, alkoxyalkoxy, alkoxyalkoxy, alkoxyalkoxy, alkoxyalkoxy, alkoxyalkoxy, alkoxyalkoxy, alkoxyalkoxy, alkoxyalkoxy, alkoxyalkyl, alkylower alkyloner alkyloner alkyloner, R_1 -phenoxy, dixoxlanyl, NO_2 - $N(R_3)(R_3)$ - R_3 - R_1 - R_1 - R_2 - R_1 - R_3 - R_1

for substitution on ring carbon atoms,

5

10

15

20

25

30

35

40

45

50

55

and the substituents on the substituted heteroaryl ring nitrogen atoms, when present, are selected from the group consisting of lower alkyl, lower alkoxy, $-(C)O|OR_10$, $-(C)O|R_10$, -OH, $N(R_2)(R_3)$ -lower alkylene $-N(R_3)(R_3)$ -lower alkylen

 R_{γ} is 1-3 groups independently selected from the group consisting of lower alkyl, lower alkoxy, -COOH, NO₂, -N(R_0) (R_0), OH, and halogeno:

R₈ and R₉ are independently selected from H or lower alkyl;

R₁₀ is selected from lower alkyl, phenyl, R₇-phenyl, benzyl or R₇-benzyl;

R₁₁ is selected from OH, lower alkyl, phenyl, benzyl, R₇-phenyl or R₇-benzyl;

R₁₂ is selected from H, OH, alkoxy, phenoxy, benzyloxy,

-N(R₈)(R₉), lower alkyl, phenyl or R₇-phenyl;

R₁₃ is selected from -O-, -CH₂-, -NH-, -N(lower alkyl)- or -NC(O)R₁₉;

 R_{15} , R_{16} and R_{17} are independently selected from the group consisting of H and the groups defined for W; or R_{15} is hydrogen and R_{16} and R_{17} , together with adjacent carbon atoms to which they are attached, from a dioxolanty fing:

R₁₉ is H, lower alkyl, phenyl or phenyl lower alkyl; and

Pag and R₂₁ are independently selected from the group consisting of phenyl, W-substituted phenyl, naphthyl. W-substituted naphthyl, indanyl, indenyl, tetrahydronaphthyl, benzodioxolyl, heteroaryl, W-substituted heteroaryl, benzodioxolyl, wherein heteroaryl is as defined above:

(5) a sterol absorption inhibitor represented by Formula (VII):

(VII)

or pharmaceutically acceptable salts or solvates thereof, wherein in Formula (VII):

E is C₁₀ to C₂₀ alkyl or -C(0)-(C₉ to C₁₉)-alkyl, wherein the alkyl is straight or branched, saturated or containing one or more double bonds;

R is hydrogen, C_1 - C_{15} alkyl, straight or branched, saturated or containing one or more double bonds, or B-(CH₂), -, wherein r is 0, 1, 2, or 3;

 R_1 , R_2 , and R_3 are independently selected from the group consisting of hydrogen, lower alkyl, lower alkoxy, carboxy, NO₂, NH₂, OH, halogeno, lower alkylamino, dilower alkylamino, -NHC(O)OR₅, R_5 O₂SNH-1 and -S(O)₂NH₂;

R₄ is

5

10

15

20

25

30

35

40

45

50

55

wherein n is 0, 1, 2 or 3;

R₅ is lower alkyl; and

 $R_{\rm g}$ is OH, lower alklyl, phenyl, benzyl or substituted phenyl wherein the substituents are 1-3 groups independently selected from the group consisting of lower alklyl, lower alkoxy, carboxy, NO₂, NH₂, OH, halogeno, lower alklylamino and dilower alklylamino;

(6) a sterol absorption inhibitor represented by Formula (VIII):

(VIII)

or pharmaceutically acceptable salts or solvates thereof , wherein, in Formula (VIII) above, ${\sf R^{26}}$ is H or ${\sf OG^1}$;

G and G1 are independently selected from the group consisting of

and

Н.

provided that when R26 is H or OH, G is not H:

R, Ra and Rb are independently selected from the group consisting of H, -OH, halogeno, -NH₂, azido, (C₁-C₆)alkoxy(C₁-C₆)-alkoxy or -W-R³⁰;

W is independently selected from the group consisting of -NH-C(O)-, -O-C(O)-, -O-C(O)-N(R³¹)-,-NH-C(O)-N(R³¹)- and -O-C(S)-N(R³¹)-:

 R^2 and R^6 are independently selected from the group consisting of H, (C_1-C_6) alkyl, aryl and aryl (C_1-C_6) alkyl;

R3, R4, R5, R7, R3a and R4a are independently selected from the group consisting of H, (C₁-C₆)alkyl, aryl(C₄-C₆)alkyl, -C(O)(C₄-C₆)alkyl, and -C(O)aryl:

R30 is selected from the group consisting of R32-substituted T.

 R^{32} -substituted- (C_1-C_6) alkyl, R^{32} -substituted- (C_2-C_4) alkenyl, R^{32} -substituted- (C_1-C_6) alkyl, R^{32} -substituted- (C_3-C_7) cycloalkyl and

R³²-substituted-(C₃-C7)cycloalkyl(C₁-C₆)alkyl;

R31 is selected from the group consisting of H and (C1-C4)alkyl;

T is selected from the group consisting of phenyl, furyl, thienyl, pyrrolyl, oxazolyl, isoxazolyl, thiazolyl, losthiazolyl, benzothiazolyl, thiadiazolyl, pyrazolyl, imidazolyl and pyridyl;

 H^{32} is independently selected from 1-3 substituents independently selected from the group consisting of halogeno, (C_1-C_2) self. >0-H, pencary, $-C_2$ -Ncb, (C_1-C_2) alkay, (C_1-C_2) alky, $(C_1-C$

Ar1 is aryl or R10-substituted aryl;

Ar2 is anyl or R11-substituted anyl:

Q is a bond or, with the 3-position ring carbon of the azetidinone, forms the spiro group

and

5

10

15

20

25

35

40

45

50

55

R1 is selected from the group consisting of

-(CH₂)_q-, wherein q is 2-6, provided that when Q forms a spiro ring, q can also be zero or 1;

-(CH₂)_e-E-(CH₂)_r, wherein E is -O-, -C(O)-, phenylene, -NR²² or -S(O)₀₋₂-, e is 0-5 and r is 0-5, provided that the sum of e and r is 1-6;

-(C2-C6)alkenylene-; and

 $-(CH_2)_FV-(CH_2)_g$, wherein V is C_3-C_6 cycloalkylene, f is 1-5 and g is 0-5, provided that the sum of f and g is 1-6;

R12 is

$$-\overset{1}{C}H_{-},-\overset{1}{C}(C_{\dot{1}}-C_{\dot{6}}\text{ alkyl})_{-},-\overset{1}{C}F_{-},-\overset{1}{C}(OH)_{-},-\overset{1}{C}(C_{\dot{6}}H_{4}-R^{23})_{-},-\overset{1}{N}_{-},\text{ or }-\overset{1}{\overset{1}{\overset{N}{N}}}O^{-};$$

R13 and R14 are independently selected from the group consisting of -CH27,

-CH(C1-C6 alkyl)-, -C(di-(C1-C6) alkyl), -CH=CH- and

-C(C₁-C₆ alky))=CH-; or R¹² together with an adjacent R¹³, or R¹² together with an adjacent R¹⁴, form a -CH=CH- or a -CH=C(C₁-C₆ alky))- group;

a and b are independently 0, 1, 2 or 3, provided both are not zero;

provided that when R13 is -CH=CH- or -C(C1-C6 alkyl)=CH-, a is 1;

provided that when R14 is -CH=CH- or -C(C1-C6 alkyl)=CH-, b is 1;

provided that when a is 2 or 3, the R^{13} 's can be the same or different;

and

5

10

15

20

25

35

40

45

50

55

provided that when b is 2 or 3, the R14's can be the same or different;

and when Q is a bond, R1 also can be:

M is -O-, -S-, -S(O)- or -S(O)2-;

 X_1 Y and Z are independently selected from the group consisting of -CH₂-, -CH(C₁-C₆)alkyl- and -C (di-(C₄-C₆)alkyl):

$$\begin{split} R^{10} & \text{and R}^{11} \text{ are independently selected from the group consisting of 1-3 substituents independently selected from the group consisting of <math>(G, G_0)^{18} - O(GO)R^{12} - O(GO)R^{12}$$

R¹⁵ and R¹⁷ are independently selected from the group consisting of -OR¹⁹.

-O(CO)R19, -O(CO)OR21 and -O(CO)NR19R20;

R¹⁶ and R¹⁸ are independently selected from the group consisting of H, (C₁-C₆)alkyl and aryl; or R¹⁵ and R¹⁶ together are =0, or R¹⁷ and R¹⁸ together are =0.

d is 1, 2 or 3:

h is 0, 1, 2, 3 or 4;

s is 0 or 1; t is 0 or 1; m, n and p are independently 0-4;

provided that at least one of s and t is 1, and the sum of m, n, p, s and t is 1-6;

provided that when p is 0 and t is 1, the sum of m, s and n is 1-5; and provided that when p is 0 and s is 1, the sum of m, t and n is 1-5;

v is 0 or 1:

j and k are independently 1-5, provided that the sum of j, k and v is 1-5; and when Q is a bond and R^1 is

$$-X_{j}^{-15}$$

 $-X_{j}^{-16}$
 $-X_{j}^{-16}$

Ar[†] can also be pyridyl, isoxazolyl, furanyl, pyrrolyl, thienyl, imidazolyl, pyrazolyl, thiazolyl, pyrazinyl, pyrimidinyl or pyridazinyl:

R¹⁹ and R²⁰ are independently selected from the group consisting of H, (C₁-C₆)alkyl, aryl and aryl-substituted (C₁-C₆)alkyl;

R21 is (C1-C6)alkyl, aryl or R24-substituted aryl;

R22 is H, (C1-C6)alkyl, aryl (C1-C6)alkyl, -C(O)R19 or -COOR19;

 R^{23} and R^{24} are independently 1-3 groups independently selected from the group consisting of H, $(C_1 - C_6)$ alkyl, $(C_1 - C_6)$ alkoy, -COOH, NO₂, -NR¹⁹ R^{20} , -OH and halogeno; and

R25 is H, -OH or (C1-C6)alkoxy; and

(7) a sterol absorption inhibitor represented by Formula (IX):

$$Ar^1 - CH - Q - R_{26}$$

$$ON_{Ar^2}$$

$$(IX)$$

or pharmaceutically acceptable salts or solvates thereof, wherein, in Formula (IX) above, R26 is selected from the group consisting of:

a) OH:

Н.

5

10

15

20

25

30

35

40

45

50

55

- b) OCH₂:
- c) fluorine and
- d) chlorine:
- R1 is selected from the group consisting of

-SO₂H: natural and unnatural amino acids:

R, Ra and Rb are independently selected from the group consisting of H, -OH, halogeno, -NH2, azido, (C1-C6)alkoxy(C1-C6)-alkoxy and -W-R30;

W is independently selected from the group consisting of

-NH-C(O)-, -O-C(O)-, -O-C(O)-N(R31)-, -NH-C(O)-N(R31)- and -O-C(S)-N(R31)-:

R2 and R6 are independently selected from the group consisting of H, (C1-C6)alkyl, aryl and aryl

(C1-C6)alkyl; R3, R4, R5, R7, R3a and R4a are independently selected from the group consisting of H, (C4-C6)alkyl,

aryl(C1-C6)alkyl, -C(O)(C1-C6)alkyl and -C(O)aryl;

R30 is independently selected form the group consisting of R32-substituted T, R32-substituted-T-(C₁-C₆)alkyl, R³²-substituted-(C₂-C₄)alkenyl, R³²-substituted-(C₁-C₆)alkyl, R³²-substituted-(C₃-C7)cycloalkyl and R32-substituted-(C3-C7)cycloalkyl(C1-C6)alkyl;

R31 is independently selected from the group consisting of H and (C1-C1)alkyl;

T is independently selected from the group consisting of phenyl, furyl, thienyl, pyrrolyl, oxazolyl, isoxazolyl, thiazolyl, iosthiazolyl, benzothiazolyl, thiadiazolyl, pyrazolyl, imidazolyl and pyridyl;

R32 is independently selected from 1-3 substituents independently selected from the group consisting of H, halogeno, (C1-C4)alkyl, -OH, phenoxy, -CF3, -NO2, (C1-C4)alkoxy, methylenedioxy, oxo, (C1-C4) alkylsulfanyl, (C₁-C₄)alkylsulfinyl, (C₁-C₄)alkylsulfonyl, -N(CH₃)₂, -C(O)-NH(C₁-C₄)alkyl, -C(O)-N((C₁-C₄) alkyl)2, -C(O)-(C1-C4)alkyl, -C(O)-(C1-C4)alkoxy and pyrrolidinylcarbonyl; or R32 is a covalent bond and R³¹, the nitrogen to which it is attached and R³² form a pyrrolidinyl, piperidinyl, N-methyl-piperazinyl, indolinyl or morpholinyl group, or a (C₁-C₂)alkoxycarbonyl-substituted pyrrolidinyl, piperidinyl, N-methylpiperazinyl, indolinyl or morpholinyl group:

Ar¹ is aryl, R¹⁰-substituted aryl; pyridyl, isoxazolyl, furanyl, pyrrolyl, thienyl, imidazolyl, pyrazolyl, thiazolyl, pyrazinyl, pyrimidinyl or pyridazinyl;

Ar2 is anyl or R11-substituted anyl;

Q is -(CH $_2$) $_q$ -, wherein q is 2-6, or, with the 3-position ring carbon of the azetidinone,

forms the spiro group

R12 is

5

10

15

20

25

35

40

45

50

$$\begin{array}{c} \stackrel{1}{-}\text{CH-, -C(C_{1}\text{-}C_{6} \, alkyl)-, -CF-, -C(OH)-, -C(C_{6}H_{4}\text{-}R^{23})-, -N-, \, or \, -\stackrel{1}{\sim} \stackrel{1}{N}\text{O}^{-} \, ; } \\ \end{array}$$

R13 and R14 are independently selected from the group consisting of -CHo-.

-CH(C_1 - C_6 alkyl)-, -C(di-(C_1 - C_6) alkyl), -CH=CH- and -C(C_1 - C_6 alkyl)=CH-; or

 R^{12} together with an adjacent R^{13} , or R^{12} together with an adjacent R^{14} , form a -CH=CH- or a -CH=C (C_1 - C_6 alkyl)- group;

a and b are independently 0, 1, 2 or 3, provided both are not zero; provided that when $R^{1/3}$ is -CH=CH-or -C(C₁-C₂ alkyt)=CH-, a is 1; provided that when $R^{1/4}$ is -CH=CH- or -C(C, -C₂ alkyt)=CH-, b is 1; provided that when a is 2 or 3, the $R^{1/3}$ s can be the same or different; and provided that when b is 2 or 3, the $R^{1/4}$ s can be the same or different;

 R^{10} and R^{11} are independently selected from the group consisting of 1.3 substituents independently selected from the group consisting of $(C_1, C_2)_{ab}|_{M_1}$, OR^{10} , $O(C)O(R^{10}$, $O(C)O(R^{12}, O(C)O(R^{12})_{1-0}O(R^{10})_{$

 R^{19} and R^{20} are independently selected from the group consisting of H, (C_1-C_6) alkyl, anyl and aryl-substituted (C_1-C_6) alkyl;

R21 is (C1-C6)alkyl, anyl or R24-substituted anyl:

R22 is H, (C1-C6)alkyl, aryl (C1-C6)alkyl, -C(O)R19 or -COOR19;

R²³ and R²⁴ are independently 1-3 groups independently selected from the group consisting of H, (C₁-C_e)alkyl, (C₁-C_e)alkoxy, -COOH, NO₂, -NR¹⁹R²⁰, -OH and halogeno; and

R25 is H, -OH or (C,-Ce)alkoxy.

- 10. A composition comprising (a) at least one AcylCoA:Cholestorol O-acyltransforase Inhibitor and (b) at least one substituted azeidinone compound or substituted β-lactam compound or pharmaceutically acceptable saits or solvates of the at least one substituted β-lactam compound.
- 11. A therapeutic combination comprising (a) a first amount of at least one AcylCoA/Cholesterol O-acyltransferase Inhibitor; and (b) a second amount at least one substituted azetidinone compound or substituted β-lactam compound or pharmaceutically acceptable salts or solvates of the at least one substituted azetidinone compound or the at least one substituted β-lactam compound, wherein the first amount and the second amount together comprise a therapeutically effective amount for the treatment or prevention of a vascular condition, diabetes, obesity or lowering a concentration of a sterol in plasma of a mammal.
- 55 12. A composition comprising (a) probucol or a derivative thereof and (b) at least one substituted azetidinone compound or substituted β-lactam compound or pharmaceutically acceptable salts or solvates of the at least one substituted azetidinone compound or the at least one substituted β-lactam compound.

- A therapeutic combination comprising (a) a first amount of probusol or a derivative thereof and (b) a second amount of at least one substituted azeidinone compound or substituted B-lactam compound or pharmaceutically acceptable salts or solvates of the at least one substituted azeidinone compound or the at least one substituted β-lactam compound, wherein the first amount and the second amount together comprise a therapeutically effective amount for the treatment or prevention of a vescular condition, diabetes, obesity or lowering a concentration of a sterol in plasma of a mammal.
 - 14. A composition comprising (a) at least one low-density lipoprotein receptor activator and (b) at least one substituted azetidinone compound or substituted B-lactam compound or pharmaceutically acceptable salts or solvates of the at least one substituted azetidinone compound or the at least one substituted B-lactam compound.

10

15

25

35

40

45

50

55

- 15. A therapeutic combination comprising (a) a first amount of at least one low-density lipoprotein receptor activator and (b) a second amount of at least one substituted azeidinone compound or substituted β-lactam compound or pharmaceutically acceptable salts or solvates of the at least one substituted αzeidinone compound or the at least one substituted β-lactam compound, wherein the first amount and the second amount together comprise a therapeutically effective amount for the treatment or prevention of a vascular condition, diabetes, obesity or lowering a concentration of a steroil in plasma of a mammal.
- 16. A composition comprising (a) at least one Omega 3 fatty acid and (b) at least one substituted azetidinone compound or substituted P-lactam compound or pharmaceutically acceptable salts or solvates of the at least one substituted azetidinone compound or the at least one substituted P-lactam compound.
 - 17. A therapeutic combination comprising (a) a first amount of at least one Omega 3 fatty acid and (b) a second amount of at least one substituted architone compound or substituted β-lactam compound or pharmaceutically acceptable saits or solvates of the at least one substituted arctifinone compound or the at least one substituted β-lactam compound, wherein the first amount and the second amount together comprise a therapeutically effective amount for the treatment or prevention of a vascular condition, diabetes, obesity or lowering a concentration of a sterol in plasma of a mammal.
- 99 18. A composition comprising (a) at least one natural water soluble fiber and (b) at least one substituted azetidinone compound or substituted β-lactam compound or pharmaceutically acceptable salts or solvates of the at least one substituted azetidinone compound or the at least one substituted β-lactam compound.
 - 19. A therapeutic combination comprising (a) a first amount of at least one natural water soluble fiber and (b) a second amount of at least one substituted azeidinone compound or substituted β-lactam compound or pharmacoutically acceptable salts or solvates of the at least one substituted azeidinone compound or the at least one substituted β-lactam compound, wherein the first amount and the second amount together comprise a therapeutically effective amount for the treatment or prevention of a vascular condition, diabetes, obesity or lowering a concentration of a sterol in plasma of a mammal.
 - 20. A composition comprising (a) at least one of plant sterols, plant stanols or fatty acid esters of plant stanols and (b) at least one substituted azeitdinone compound or substituted β-lactam compound or pharmaceutically acceptable salls or solvates of the at least one substituted azeitdinone compound or the at least one substituted β-lactam compound.
 - 21. A therapeutic combination comprising (a) a first amount of at least one of plant sterols, plant stanols or fatty acid esters of plant stanols and (b) a second amount of at least one substituted azeidinone compound or substituted β-lactam compound or pharmaceutically acceptable salts or solvates of the at least one substituted azeidinone compound or the at least one substituted β-lactam compound, wherein the first amount and the second amount together comprise a therapeutically effective amount for the treatment or prevention of a vascular condition, diabetes, obesity or lowering a concentration of a sterol in plasma of a mammal.
 - 22. A composition comprising (a) at least one antioxidant or vitamin and (b) at least one substituted α zetidinone compound or substituted β-lactam compound or pharmaceutically acceptable salts or solvates of the at least one substituted azetidinone compound or the at least one substituted β-lactam compound.
 - 23. A therapeutic combination comprising (a) a first amount of at least one antioxidant or vitamin and (b) a second amount of at least one substituted azetidinone compound or substituted β-lactam compound or pharmaceutically

acceptable salts or solvates of the at least one substituted azetidinone compound or the at least one substituted β-lactam compound, wherein the first amount and the second amount together comprise a therapeutically effective amount for the treatment or prevention of a vascular condition, diabetes, obesity or lowering a concentration of a sterol in plasma of a mammal.

- 24. The composition or therapeutic combination according to any of claims 1, 3, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, or 23, wherein the fibric acid derivative is fenofibrate.
- 25. The composition or therapeutic combination according to any of claims 1, 3, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, or 23, wherein the fibric acid derivative is gernfibrozii.

5

15

20

25

30

35

40

45

50

- 26. The composition or therapeutic combination according to any of claims 1, 3, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, or 23, wherein the at least one peroxisome proliferator-activated receptor activator is administered to a mammal in an amount ranging from about 50 to about 3000 milligrams of peroxisome proliferator-activated receptor activator per day.
- 27. The composition or therapeutic combination according to any of claims 1, 3, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22 or 23, wherein the at least one sterol absorption inhibitor is administered to a mammal in an amount randing from about 0.1 to about 1000 millicrams of sterol absorption inhibitor oper day.
- 28. The composition according to claim 27, further comprising at least one HMG CoA reductase inhibitor.
- The composition according to claim 28, wherein the at least one HMG CoA reductase inhibitor is selected from
 the group consisting of lovastatin, pravastatin, fluvastatin, simvastatin, atorvastatin, rosuvastatin, cerivastatin and
 mixtures thereof.
- 30. The composition according to claim 29, wherein the at least one HMG CoA reductase inhibitor is simvastatin.
- 31. The composition according to claim 29, wherein the at least one HMG CoA reductase inhibitor is atorvastatin.
- 32. The composition according to claim 29, wherein the at least one HMG CoA reductase inhibitor is rosuvastatin.
 - 33. The composition or therapeutic combination according to any of claims 1, 3, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22 or 23, further comprising at least one lipid lowering agent selected from the group consisting of bilo acid sequestrants, nicotinic acid or derivatives thereof, CETP inhibitors, IBAT inhibitors, AcylCoA.Cholesterol O-acyltransferase Inhibitors, probucol or a derivatives thereof, low-density lipoprotein receptor activators. Omega 3 fatty acids, natural water soluble fibers, plant sterols, band stanols and fatty acid setters of plant stanols.
- 34. The composition or therapeutic combination according to any of claims 1, 3, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, or 23, further comprising at least one additive selected from the group consisting of antioxidants, vitamins, hormone replacement therapy compositions, obesity control medications, blood modifiers, cardiovascular agents different from the compound of Formula II and antidiabetic medications.
- 35. A pharmaceutical composition for the treatment or prevention of a vascular condition, diabetes, obesity or lowering a concentration of a sterol in plasma of a mammal, comprising a therapeutically effective amount of the composition or therapeutic combination accordingto any of claims 1, 3, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22 or 23.
- 36. A method of treating or preventing a vascular condition, diabetes, obesity or lowering a concentration of a sterol in plasma of a mammal. comprising the step of administering to a mammal in need of such treatment the composition or therapeutic combination according to any of claims 1, 3, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22 or 23.
- Use of a composition or therapeutic combination according to any of claims 1, 3, 7, 9, 10, 11, 12, 13, 14, 15, 16,
 17, 18, 19, 20, 21, 22 or 23 for preparation of a medicament for treating or preventing a vascular condition, diabetes, obesity or lowering a concentration of a sterol in plasma of a mammal.