НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО

Факультет программной инженерии и компьютерной техники

Информатика

Лабораторная работа № 1 "Перевод чисел между различными системами счисления"

Выполнил студент

Маликов Глеб Игоревич

Группа № Р3124

Преподаватель: Болдырева Елена Александровна

г. Санкт-Петербург

Оглавление

Вариант	3
Задание	3
Отчёт	3
Пример №1	3
Пример №2	4
Пример №3	5
Пример №4	5
Пример №5	6
Пример №6	6
Пример №7	6
Пример №8	7
Пример №9	7
Пример №10	7
Пример №11	8
Пример №12	8
Пример №13	9
Вывод	10
Список литературы	10

Вариант

Номер группы Р3124, номер в списке №12. Вариант № 36.

Задание

Перевод чисел столбца A из системы исчисления B в систему исчисления C. На таблице показаны цифры из 13 примеров.

№ Примера	A	В	С
1	83932	10	15
2	87238	13	10
3	4945C	13	7
4	46,33	10	2
5	68,76	16	2
6	10,56	8	2
7	0,011101	2	16
8	0,010001	2	10
9	8F,41	16	10
10	676	10	Факт
11	1001001	Фиб	10
12	32{3}44	9C	10
13	3088	10	Факт

Таблица 1 - Примеры варианта №36

Отчёт

Пример №1

Число 83932_{10} повторно делится на 15 пока число не достигнет 0.

1)	8393	210	-> 15		
			= 55.95		
	5595/13	5 =	373 ocm	amor 0	
	the second secon		ocmamo		
			ocmamos		
	1900715				

Рисунок 1 - Решение примера №1

Ответ: 19D07₁₅

Пример №2

Число 87238₁₃ представляется в виде формулы перевода числа из системы счисления с основанием N в десятичную систему счисления:

$$X_{(10)} = \sum_{i=-m}^{n-1} x_i \times q^i,$$

(1)

где:

 $X_{(10)}$ - искомое число в десятичной системе счисления;

 x_i - натуральные числа меньше q, то есть цифры;

n - число разрядов целой части;

т - число разрядов дробной части;

q - показатель системы счисления.

Pисунок 2 - Pешение примера №2

Ответ: 244252₁₀

Пример №3

Число $4945C_{13}$ переводится в десятичное число а потом повторно делится на 7.

Рисунок 3 – Решение примера №3

Ответ: 11006267

Пример №4

Целая часть числа $46,33_{10}$ повторно делится на 2, за тем, дробная часть умножается на 2 пока в дробной части не получится 0. Тем не менее, есть возможность оставить дробную часть числа с точностью до 5 знаков после запятой.

4) 46, 3310 -> 2	
4612 = 23 ocmamor 0	Besona nacono 10 1110
23/2=11 ocmanox 1	0,33-2=0,66 0
11/2 = 5 ocmamor 1	0,66 - 2 = 1,32 1
5/2 = 2 OL Mamor 1	0,32-2=0,64 0
2/2 = 1 ocmamox 0	0,64.2 = 1,28 1
112 = 0, ocmanok 1	0,18-2 = 0,56 0
101110,01010,	

Рисунок 4 – Решение примера №4

Ответ: 101110,01010₂

Пример №5

Число $68,76_{16}$ может быть переведено с помощью замены каждой цифры в системе N^k , на соответствующую цифру системы N, так как $16 = 2^k$. После этого, необходимо убрать незначительные нули.

Pисунок 5 − Pешение примера №5

Ответ: 1101000,01110₂

Пример №6

Перевод числа 10,568 решается аналогичным способом как пример №5

Рисунок 6 – Решение примера №6

Ответ: 1000,101112

Пример №7

Число $0,011101_2$ может быть переведено с помощью дописывания нулей и разбиения числа на части с k количеством цифр, так как $16=2^k$. Далее каждая группа цифр заменяется числом шестнадцатеричной системы.

Рисунок 7 – Решение примера №7

Ответ: 0,74₁₆

Пример №8

Число $0,010001_2$ представляется в виде формулы (1)

Рисунок 8 – Решение примера №8

Ответ: 0,265625₁₀

Пример №9

Число 8F, 41_{16} представляется в виде формулы (1), после этого число в десятеричной системе округляется с точностью до 5 знаков после запятой.

Рисунок 9 – Решение примера №9

Ответ: 143,25391₁₀

Пример №10

Для перевода числа 676_{10} в факториальную систему счисления применяется формула:

$$X = \sum_{n=1}^{n} d_n \times n!,$$

(2)

где $0 \le d_n \le n$

n – число равное k-1;

k – факториал больше числа X, но ближе всего к нему.

Значения d_n подбираются так чтобы формула была верной и записываются как цифры факториальной системы счисления.

Рисунок 10 – Решение примера №10

Ответ: $53020_{\phi akt}$

Пример №11

Число 1001001_{ϕ иб представляется в виде формулы:

$$X = \sum_{k=1}^{n} d_k \times F_k ,$$

(3)

где $d_k \in \{0,1\}$, а F_k - числа Фибоначчи, не включая первую единицу.

Рисунок 11 – Решение примера №11

Ответ: 27₁₀

Пример №12

Число 32{3}44_{9С} представляется в виде формулы:

$$X_{(10)} = \sum_{i=0}^{n} x_i \times q^i,$$

(4)

где:

 $X_{(10)}$ - искомое число в десятичной системе счисления;

і – индекс текущего разряда числа;

 x_i - цифры симметричной системы;

n - индекс последнего разряда числа;

q - показатель системы счисления.

Рисунок 12 – Решение примера №12

Ответ: 20938₁₀

Пример №13

Число 3088₁₀ представляется в виде формулы (2)

Рисунок 13 – Решение примера №13

Ответ: 413220факт

Вывод

Позиционные системы счисления могут быть переведены между собой с помощью представления чисел в виде формул, описанных ранее, либо с помощью алгоритмов как на пример перевод между числами в системе N^k , на число системы N. Неизменность данных формул и алгоритмов гарантируют что переводы между системами счисления являются точными, повторимыми и обратными.

Список литературы

Тихвинский В.И. (2017) Уравновешенная (симметричная) троичная система счисления и её использование в вычислительных устройствах в докомпьютерную и компьютерную эпоху.

Алексеев Е.Г., Богатырев С.Д. (2015) Информатика. Мультимедийный электронный учебник

Балакшин П.В., Соснин В.В., Машина Е.А. (2020) Информатика. — СПб: Университет ИТМО. — 122 с.