

#### FACULTY OF INFORMATION TECHNOLOGY

# **COURSE SYLLABUS**

# **CSC10007 – OPERATING SYSTEM**

### 1. GENERAL INFORMATION

Course name: Operating System

Course name (in Vietnamese): Hệ điều hành

Course ID: CSC10007

Knowledge block: Basic

Number of credits: 4

Credit hours for theory: 45

Credit hours for practice: 30

Credit hours for self-study: 90

Prerequisite: C/C++

Prior-course: Computer Architecture

### 2. COURSE DESCRIPTION

In the theory part, students learn basic concepts, general architecture and main components of the operating system such as process (and thread) management, memory management, file management, I/O management. In the practice part, students learn how to implement some functionalities of an OS such as process operations, IPC (socket), semaphore to synchronize multiple threads.

### 3. COURSE GOALS

| ID | Description                                                                                          | Program<br>LOs |
|----|------------------------------------------------------------------------------------------------------|----------------|
| G1 | Work on a personal and team level to present and solve a number of operating system-related problem. | 2.1.1, 2.1.8,  |



### FACULTY OF INFORMATION TECHNOLOGY

|    |                                                                                                               | 2.2, 2.3.1             |
|----|---------------------------------------------------------------------------------------------------------------|------------------------|
| G2 | Know and explain English terminology related to operating system.                                             | 2.4.3, 2.4.5           |
| G3 | Able to analyze and think systematically for practical problems.                                              | 4.1, 4.3               |
| G4 | Explain the basic concepts, terminology, and basic ethical principles related to the operating system.        | 1.3.2, 3.3.1           |
| G5 | Describe the organization and operation of the basic components of the operating system.                      | 1.3.2, 1.4             |
| G6 | Apply general operating system knowledge to implement some examples of the basic components of a specific OS. | 5.3.2, 5.3.3,<br>6.2.1 |

# 4. LEARNING OUTCOMES (LOs)

| ID   | Description                                                         | I/T/U |
|------|---------------------------------------------------------------------|-------|
| G1.1 | Establishment, organization, operation and management of the group. | U, I  |
| G1.2 | Participate in discussions on subjects.                             | U     |
| G1.3 | Technical analysis, synthesis and writing.                          | U, I  |
| G2.1 | Know and understand specialized English terminology of the subject. | I     |
| G2.2 | Read and understand English documents related to lectures.          | I     |
| G3.1 | Able to analyze and think at the system level for problems:         | T     |
|      | synchronization, file organization on disk, process coordination,   |       |
|      | memory organization.                                                |       |
| G4.1 | Explain the basic concepts of an operating system: file system,     | I, T  |
|      | process / thread, synchronization, user / system mode, system call, |       |
|      | etc.                                                                |       |
| G4.2 | Understand essential knowledge about protection and security        | I, T  |
|      | mechanism in an OS.                                                 |       |



# FACULTY OF INFORMATION TECHNOLOGY

| G4.3 | Know how to update new knowledge, self-study, self-development      | I    |
|------|---------------------------------------------------------------------|------|
|      | and adaptation.                                                     |      |
| G5.1 | Present concepts, process structures, threads, process coordination | U, T |
|      | algorithms: FCFS, Round Robin, Priority, Multi-queue,               |      |
| G5.2 | Describe synchronization mechanisms such as mutex, critical sector, | Т    |
|      | semaphore, monitor.                                                 |      |
|      | Solve some classic synchronization problems: Dining Philosophers,   |      |
|      | Consumer and Producer, Readers and Writers                          |      |
| G5.3 | Present the models of organization, allocation and management of    | T    |
|      | main memory.                                                        |      |
|      | Explain the mechanism, virtual memory operation.                    |      |
| G5.4 | Present roles, models, file system structure.                       | T    |
|      | Describe FAT and INODE structure.                                   |      |
| G5.5 | Present the organization model, how to access the input and output  | U,T  |
|      | devices.                                                            |      |
| G6.1 | Able to use basic Linux operating system as basic commands          | I, T |
| G6.2 | Able to develop some simple examples of essential OS components     | T    |
|      | such as process management (e.g. creation, communication), thread   |      |
|      | synchronization, in Linux environment. From there, better           |      |
|      | understand the communication mechanism and operate the above        |      |
|      | components.                                                         |      |

# 5. TEACHING PLAN

# 5.1. THEORY PLAN



# FACULTY OF INFORMATION TECHNOLOGY

| Wee | Торіс                            | LOs         | Teaching/Learning | Evaluation |
|-----|----------------------------------|-------------|-------------------|------------|
| k   |                                  |             |                   |            |
| 1   | Introduction to operating system | G2.1, G2.2, | Lecturing         | Final exam |
|     |                                  | G4.1        |                   |            |
|     |                                  |             |                   |            |
| 2   | Protection and security          | G2.1, G2.2, | Self-learning     | Excercise  |
|     |                                  | G4.1, G4.2, |                   |            |
|     |                                  | G5.5        |                   |            |
| 3   | File management system           | G2.1, G2.2, | Lecturing         | Final exam |
|     |                                  | G3.1, G4.1, |                   |            |
|     |                                  | G4.3, G5.1  |                   |            |
| 4   | File management system: FAT      | G1.2, G2.1, | Lecturing         | Final exam |
|     |                                  | G2.2, G4.1, | Discussion        | Exercise   |
|     |                                  | G4.2, G5.1  |                   |            |
| 5   | Process management,              | G1.2, G2.1, | Lecturing         | Final exam |
|     | CPU scheduling                   | G2.2, G3.1, | Discussion        | Exercise   |
|     |                                  | G4.1, G4.3, |                   |            |
|     |                                  | G5.2        |                   |            |
| 6   | Synchronization,                 | G1.2, G2.1, | Lecturing         | Final exam |
|     | Deadlocks                        | G2.2, G3.1, | Discussion        | Exercise   |
|     |                                  | G4.1, G4.3, |                   |            |
|     |                                  | G5.3        |                   |            |
| 7   | Memory management                | G1.2, G2.1, | Lecturing         | Final exam |
|     |                                  | G2.2, G3.1, | Discussion        |            |
|     |                                  | G4.1, G4.3, |                   |            |
|     |                                  | G5.4        |                   |            |



# FACULTY OF INFORMATION TECHNOLOGY

| Wee | Торіс          | LOs         | Teaching/Learning | Evaluation |
|-----|----------------|-------------|-------------------|------------|
| k   |                |             |                   |            |
| 8   | Virtual memory | G1.2, G2.1, | Lecturing         | Final exam |
|     |                | G2.2, G3.1, | Discussion        |            |
|     |                | G4.1, G4.3, |                   |            |
|     |                | G5.4        |                   |            |
| 9   | I/O management | G2.1, G2.2, | Self-learning     | Exercise   |
|     |                | G4.1, G5.6  |                   |            |

### 5.2. PRACTICE PLAN

| ID | Торіс                                                             | LOs         | Teaching/Learning | Evaluation  |
|----|-------------------------------------------------------------------|-------------|-------------------|-------------|
| 1  | Introduce to xv6:                                                 | G1.1, G1.2, | Practice          | Lab project |
|    | Understand the program                                            | G1.3, G3.1, |                   |             |
|    | code  Understand the design                                       | G4.1, G6.1, |                   |             |
|    | <ul><li>Implement user functions</li><li>Write a report</li></ul> | G7.1, G8.1  |                   |             |
| 2  | Basic Syscall:                                                    | G1.1, G1.2, | Practice          | Lab project |
|    | Write a test program to implement system calls on xv6             | G1.3, G3.1, |                   |             |
|    | Write a report                                                    | G4.1, G6.1, |                   |             |
|    |                                                                   | G7.1, G8.1  |                   |             |
| 3  | Paging:                                                           | G1.1, G1.2, | Practice          | Lab project |
|    | Write a test program for                                          | G1.3, G3.1, |                   |             |
|    | paging on xv6  Write a report                                     | G4.1, G6.1, |                   |             |
|    | 1                                                                 | G7.1, G8.1  |                   |             |

# 6. ASSESSMENTS

| ID | Topic     | Description      | LOs                       | Ratio (%) |
|----|-----------|------------------|---------------------------|-----------|
| 1  | Exercises | Theory exercises | G3.1, G5.1,<br>G5.2, G5.3 | 20%       |



### FACULTY OF INFORMATION TECHNOLOGY

| 2 | Laboratories | Mini projects                                         | G1.1, G1.2,<br>G1.3, G3.1,<br>G4.1, G6.1,<br>G7.1, G8.1          | 30% |
|---|--------------|-------------------------------------------------------|------------------------------------------------------------------|-----|
| 3 | Final exam   | Multiple-choice test.  1 A4 page document is allowed. | G2.1, G3.1,<br>G4.1, G5.1,<br>G5.2, G5.3,<br>G5.4, G5.5,<br>G5.6 | 50% |
| 4 | Bonus        | Bonus                                                 |                                                                  | 10% |

#### 7. RESOURCES

- Modern Operating Systems, 4th Edition, Andrew Tanenbaum.
- Operating System Concepts, 7<sup>th</sup> Edition, Abraham Silberschatz, Peter B. Galvin & Greg Gagne.
- Giáo trình Hệ điều hành, Trần Trung Dũng & Phạm Tuấn Sơn.

### 8. GENERAL REGULATIONS AND POLICIES

- All students are responsible for reading and following strictly the regulations and policies of the school and university.
- Students who are absent for more than 3 theory sessions are not allowed to take the exams.
- For any kind of cheating and plagiarism, students will be graded 0 for the course. The incident is then submitted to the school and university for further review.
- Students are encouraged to form study groups to discuss on the topics. However, individual work must be done and submitted on your own.