LECTURE 140 -ALL DIGITAL FREQUENCY SYNTHESIZER

Objective

- 1.) Demonstrate the application of an ADPLL to a frequency synthesizer suitable for 802.15.4 (Bluetooth/ZigBee)
- 2.) Illustrate the application of 0.18µm CMOS to a PLL application

What is Bluetooth/ZigBee?

- A short-range technology for integration into mobile and handheld devices that is target to replace cable connections.
- Specifications:
 - Frequency range: 2400-2483.5 MHz
 - Spectrum spreading: FHSS (Frequency hopping spectrum spreading)
 - $f_k = 2.402 + k$ MHz, k = 0, 1, ..., 78 (dwell time = 0.625ms)
 - Channel bandwidth: 1 MHz
 - Modulation: GFSK (BT = 0.5; 0.28 < h < 0.35)
 - Receiver sensitivity: -70 dBm @ 0.1% BER
 - Coverage area: Up to 10 m
 - Transmit power: 0dBm (up to 20dBm with power control)

Lower Gu	uard Band	RF Channel	Upper Gu	uard Band
2.400 GHz	2.402 GHz	030902-01	2.480 GHz	2.4835 GHz

CMOS Phase Locked Loops © P.E. Allen - 2003

Lecture 140 – All-Digital Frequency Synthesizer for Bluetooth (09/02/03)

Page 140-2

Frequency Synthesizer Specification for 802.15.4 Application

- Frequency range: 2.402 2.480 GHz
- Settling time ≤ 220 µsecs
- Phase noise:
 - \leq -89 dBc/Hz at 0.5 MHz offset
 - ≤ -121 dBc/Hz at 2 MHz offset
- Channel bandwidth: 1 MHz, error tolerance: ±20 ppm (96 kHz)

Architecture Selection

- Direct digital frequency synthesizer limited in speed by Nyquist sampling requirements
- Integer-N frequency synthesizer (channel spacing = reference frequency)
 - Small channel spacing ⇒ Large division ratio ⇒ Large in-band phase noise
 - Small channel spacing ⇒ Small loop bandwidth ⇒ Increased switching time
- Fractional-N frequency synthesizer (channel spacing << reference frequency)
 - Lower in-band noise
 - Faster locking time
 - Fractional spurs are eliminated by modulating the division ratio using a high-order delta-sigma modulator

System Level Design using Linear Models

- When the PLL is in locked state, the linear model can be used for analysis
- If the reference frequency >> loop bandwidth, then we can use the continuous model Therefore,

$$B(s) = \frac{\theta_o(s)}{\theta_i(s)} = \frac{G(s)}{1 + G(s)H(s)}$$

where

$$G(s) = \frac{K_d K_o F(s)}{s}$$
 and $H(s) = \frac{1}{N}$

CMOS Phase Locked Loops © P.E. Allen - 2003

Lecture 140 – All-Digital Frequency Synthesizer for Bluetooth (09/02/03)

Page 140-4

System Level Analysis – Continued

• Output noise power, θ_{no} :

$$\theta_{no}^{2} = N^{2} (\theta_{nr}^{2} + \theta_{n,eq}^{2}) \left(\frac{O(s)}{1 + O(s)} \right)^{2} + \theta_{nv}^{2} \left(\frac{1}{1 + O(s)} \right)^{2}$$

where

$$\theta_{n,eq}^2 = \frac{1}{K_d^2}(\theta_{np}^2 + \theta_{nl}^2) = \frac{1}{K_d^2 F(s)^2}\theta_{nf}^2 + \theta_{nd}^2 \text{ and } O(s) = \frac{K_d K_o F(s)}{Ns} = \frac{K_v F(s)}{Ns}$$

Note that,

$$\frac{O(s)}{1 + O(s)} = \frac{\frac{K_d K_o F(s)}{N}}{s + \frac{K_d K_o F(s)}{N}} \quad \text{and} \qquad \frac{1}{1 + O(s)} = \frac{s}{s + \frac{K_d K_o F(s)}{N}}$$

$$\frac{1}{1 + O(s)} = \frac{s}{s + \frac{K_d K_o F(s)}{N}}$$

• Reference noise and the VCO inherent noise are the two major sources of phase noise in a PLL. This is illustrated below as,

CMOS Phase Locked Loops

© P.E. Allen - 2003

Direct Digital Frequency Synthesizer

- Direct digital frequency synthesizer (DDFS)
 - Advantage: High frequency resolution, fast switching time
 - Disadvantage: High power consumption, limitation of the highest frequency by the Nyquist sampling theorem, discrete narrow band spurious signals
- The DDFS methods are combined with PLLs to achieve fine frequency steps with reasonable phase noise.

CMOS Phase Locked Loops © P.E. Allen - 2003

Lecture 140 – All-Digital Frequency Synthesizer for Bluetooth (09/02/03)

Page 140-6

PLL Based Frequency Synthesizer

- PLL is a negative feedback system whose output frequency is locked onto an input signal.
 - Phase detector is the error amplifier
 - Lowpass filter supresses the high frequency components of the phase detector
 - VCO
- Low cost and good spurious suppression
- Coarse frequency resolution or frequency steps and poor phase noise
- Slow switching speed for negative feedback loop
- Closed-loop transfer function:

$$\theta_{i}$$
 θ_{o}/N
 θ_{o}/N

$$B(s) = \frac{\theta_o(s)}{\theta_i(s)} = \frac{G(s)}{1 + G(s)H(s)} = \frac{\frac{K_d K_o F(s)}{s}}{1 + \frac{K_d K_o F(s)}{Ns}} = \frac{N\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

Charge Pump Frequency Synthesizer

- Charge pump phase locked loop (Type II, 3rd order PLL)
 - Advantage: Low phase noise
 - Disadvantages: Process depedent, slow locking speed, large passive external elements (*R*s and *C*s)

CMOS Phase Locked Loops © P.E. Allen - 2003

Lecture 140 – All-Digital Frequency Synthesizer for Bluetooth (09/02/03)

Page 140-8

Integer-N Frequency Synthesizer

- Integer-N frequency synthesizer:
 - $-f_o = Nf_{ref}$, N = integer number
 - Inverse relationship between step size and phase noise
 - To achieve small channel spacing, a low f_{ref} is required which means a narrow loop bandwidth resulting in increased settling time and reduced VCO noise supression
 - Low f_{ref} means a large integer N, resulting in increased in-band phase noise

Dual Loop Frequency Synthesizer

- Dual loop frequency synthesizer:
 - Mixer is incorporated into the PLL altering the relationship between the channel spacing and the reference frequency of the integer *N* synthesizer
 - 2 dual loop types: A combination of 2 PLLs by a single sideband mixer in parallel and in series
 - Adds a fixed high offset frequency and a low variable frequency

CMOS Phase Locked Loops © P.E. Allen - 2003

Lecture 140 – All-Digital Frequency Synthesizer for Bluetooth (09/02/03)

Page 140-10

Dual Loop Frequency Synthesizers - Continued

- Architectural comments:
 - Parallel configuration: A fixed frequency + varying frequency. Gives large spurs at the output
 - Series configuration: Varying frequency is added inside the loop resulting in a larger settling time and a small sideband from the mixer
 - The loop bandwidth of the high frequency loop can be large which gives more reduction of phase noise close to the carrier
 - The frequency division of the divider can be reduced with the fixed offset frequency
 - Sidebands are produced from the non-ideal SSB mixing and larger power consumption is required

Fractional-N Frequency Synthesizer

- Fractional-N frequency synthesizer:
 - Doesn't require more current, complexity or bigger area

$$-f_{ref} >> f_{step}$$

$$-f_o = f_{ref} N + \frac{K}{F}$$

 $N_{fractional}$: (Divide by N+1 every K VCO cycles out of F cycles and by N for the remaining cycles)

$$\therefore N_{fractional} = (N+1)\frac{K}{F} + N\left(1 - \frac{K}{F}\right) = N + \frac{K}{F}, \text{ where } K \ge K \ge 0$$

CMOS Phase Locked Loops © P.E. Allen - 2003

Lecture 140 – All-Digital Frequency Synthesizer for Bluetooth (09/02/03)

Page 140-12

All-Digital Frequency Synthesizer

- Apply digital filter to achieve a single-chip frequency synthesizer
 - Fully integrated frequency synthesizer
 - Easy to implement for a multi-mode application (i.e. W-CDMA/GPRS/GSM)
 - Increase design robustness
- Apply MASH delta-sigma modulator
 - Reduced spurs
 - Fast locking time
- Use a switched-current oscillator
 - Wide locking range
 - Fast locking time

All Digital Frequency Synthesizer - Continued

Block diagram:

CMOS Phase Locked Loops © P.E. Allen - 2003

Lecture 140 – All-Digital Frequency Synthesizer for Bluetooth (09/02/03)

Page 140-14

Linear Model of the ADPLL Frequency Synthesizer

$$H(z) = \frac{\omega_{feedback}}{\omega_{ref}} = \frac{KF(z)z^{-1}}{1 - z^{-1}[1 - KF(z)]}$$

where

$$K = \frac{K_{da}K_{vco}K_a}{\omega_{ref}}$$

System Level Unit Step Response and Pole-Zero Plot

System Level Locking Time Simulation (Bluetooth)

CMOS Phase Locked Loops

© P.E. Allen - 2003

Lecture 140 – All-Digital Frequency Synthesizer for Bluetooth (09/02/03)

Page 140-16

System Level Phase Noise Simulation (Bluetooth)

Fractional =
$$\frac{\text{Numerator}}{\text{Denominator}} = \frac{32}{64}$$

Fractional =
$$\frac{\text{Numerator}}{\text{Denominator}} = \frac{0}{64}$$

Block Design – Third-Order ΔΣ Modulator

- Used to eliminate the fractional spurs by modulating the division ratio
- A third-order modulator is used to meet the higher spurs specification

A first-order $\Delta\Sigma$ modulator:

Lecture 140 – All-Digital Frequency Synthesizer for Bluetooth (09/02/03)

Page 140-18

Block Design – Third-Order ΔΣ Modulator – Continued

Third-order MASH block diagram and simulation:

$$y(z) = x(z) + (1-z^{-1})^3 q_3(z) = x(z) + H_{\text{noise}}(z)q_3(z)$$

Block Design - Continued

Logic design:

- Conventional CMOS static logic
 - Wide noise margins
 - High packaging density
 - Zero static power dissipation
 - Coupling between the analog blocks and the digital blocks
 - Susceptible to power supply noise
- Current Mode Logic
 - Constant current source
 - Differential input and output

CMOS Phase Locked Loops © P.E. Allen - 2003

Lecture 140 – All-Digital Frequency Synthesizer for Bluetooth (09/02/03)

Page 140-20

Block Design - Continued

8-bit DAC:

- Symmetric 2-stage current cell matrix architecture
- A 4-bit MSB current cell matrix and a 4-bit LSB current cell matrix
- Uses thermometer code
- Monotonic conversion characteristic

$$\begin{split} I_{out} &= I_{MSB}(2^3B_7 + 2^2B_6 + 2^1B_5 + 2^0B_4) \\ &+ I_{LSB}(2^3B_3 + 2^2B_2 + 2^1B_1 + 2^0B_0) \\ I_{MSB} &= 16 \; I_{LSB} \\ V_{out} &= I_{out} \; R_{Load} \end{split}$$

Block Design - Continued

Prescaler:

- Issues high operating frequency, low power dissipation, low phase-noise
- Conventional Current Mode Logic (CML):

• Feedback CML (Transistors MF₁ and MF₂)

$$\begin{split} A(j\omega) &= \frac{A_d(j\omega)}{1 + F_b A_d(j\omega)} \\ &= \frac{A_d(0)}{1 + F_b A_d(0)} = \frac{1}{1 - j \left(\frac{\omega}{\omega_p}\right) \left(\frac{1}{1 + F_b A_d(0)}\right)} \end{split}$$

where

 F_b = the gain of the feedback transistors

The bandwidth of the feedback CML >> the bandwidth of the conventional CML.

CMOS Phase Locked Loops © P.E. Allen - 2003

Lecture 140 – All-Digital Frequency Synthesizer for Bluetooth (09/02/03)

Page 140-22

Block Design - Continued

Feedback CML D Flip-flop implementation:

Block Design - Continued

FIR Digital Filter:

(a.) Single flow graph of *n*th order

(b.) Linear phase transpose direct form.

CMOS Phase Locked Loops © P.E. Allen - 2003

Lecture 140 – All-Digital Frequency Synthesizer for Bluetooth (09/02/03)

Page 140-24

Experimental Results

(In progress)