Introdução aos Métodos Discretos

Welson de Avelar Soares Filho

Prof. Dr. Ruy Freitas

Prof. Dr. Joventino Campos

An RBF-MFS model for analysing thermal behaviour of skin tissues

• Novo método numérico para solução

Equação de Pennes

- Equação de transferência de calor em tecidos biológicos
- Proposta em 1948

$$ho c rac{\partial u(x,t)}{\partial t} =
abla . [k
abla u(x,t)] + \omega_b
ho_b c_b [u_a - u(x,t)] + Q_m + Q_r(x,t)$$

Transferência de calor no tecido biológico

Fonte: Principles and Technologies for Electromagnetic Energy Based Therapies, 2022.

Hipertermia tumoral

A presença de um tumor altera a dinâmica na superfície da pele

Fig. 6. Illustration of tissue with tumor.

$$egin{cases}
ho c rac{\partial u(x,t)}{\partial t} =
abla . [k
abla u(x,t)] + \omega_b
ho_b c_b [u_a - u(x,t)] + Q_m + Q_r(x,t) & ext{para } \Omega \ k
abla u(x,t) . ec{n} = 0 & ext{para } \mathbf{x} \in \Omega_{I,II,IV} \ u(x,t) = 37 & ext{para } \mathbf{x} \in \Omega_{III} \end{cases}$$

Definição do problema para o caso estacionário, t=0

Processo de discretização

Considerando o caso estacionário, t = 0, temos que $ho crac{\partial u(x,t)}{\partial t}=0$ e $Q_r(x,t)=0$

O que nos levará ao seguinte sistema:

$$egin{cases}
abla . [k
abla u(x,t)] + \omega_b
ho_b c_b [u_a - u(x,t)] + Q_m = 0 \quad ext{para } \Omega \ k
abla u(x,t). ec{n} = 0 \qquad \qquad ext{para } \mathbf{x} \in \Omega_{I,II,IV} \ u(x,t) = 37 \qquad \qquad ext{para } \mathbf{x} \in \Omega_{III} \end{cases}$$

Realizando o processo de discretização fica:

$$k
abla^2T-\omega_b
ho_bc_bT=-Q_m-\omega_b
ho_bc_bT_a$$

$$k(T_{i+1,j}+T_{i-1,j}+T_{i,j-1}+T_{i,j+1}-4T_{i,j})-\omega_b
ho_bc_bT_{i,j}h^2=f(x,y)h^2$$

Joga o "k" pra dentro e isola $T_{i,j}$

$$T_{i,j} = rac{fh^2 - k(T_{i+1,j} + T_{i-1,j} + T_{i,j-1} + T_{i,j+1})}{-4k - \omega_h
ho_h c_h h^2}$$

Resultados

• Simulação do tecido saudável

Artigo

Resultados

• Simulação do tecido com tumor

Artigo

MDF

Conclusão

MDF resolve o Pennes

Referências

Cao, L., Qin, Q., Zhao, N., An RBF–MFS model for analysing thermal behaviour of skin tissues, International Journal of Heat and Mass Transfer, Volume 53, Issues 7–8, 2010, Pages 1298-1307, https://doi.org/10.1016/j.ijheatmasstransfer.2009.12.036.

Haemmerich, D., Principles and Technologies for Electromagnetic Energy Based Therapies, Academic Press, 2022, ISBN 9780128205945, https://doi.org/10.1016/B978-0-12-820594-5.00012-5.