

IN THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application.

1. (Currently Amended) A light-emitting device comprising:
 - a transistor formed over a substrate;
 - a first layer provided over the transistor, the first layer having a thickness which is larger than a step caused by the transistor;
 - a first passivation film formed over and in contact with the first layer;
 - a photosensitive organic resin film having an opening, the photosensitive organic resin film being formed over and in contact with the first passivation film;
 - a light-emitting element formed over the first passivation film; and
 - a second passivation film formed over the photosensitive organic resin film and the light-emitting element,
wherein the light-emitting element comprises an anode, a cathode and a light-emitting layer between the anode and the cathode;
wherein the anode is in contact with the first passivation film and electrically connected to the transistor;
~~wherein an interface of the anode and the first passivation film is parallel to a surface of the substrate,~~
wherein the cathode is in contact with the second passivation film,
~~wherein the photosensitive organic resin film are in contact with the first passivation film;~~

wherein the photosensitive organic resin film is in contact with the light-emitting layer, and

wherein the transistor is located below the photosensitive organic resin film and simultaneously in a periphery portion of the opening, and

~~wherein the light emitting layer comprises a dopant at a concentration of 0.1 % by weight or more and 0.4 % by weight or less, and~~

~~wherein the first passivation film and the second passivation film comprise a material selected from the group consisting of DLC, boron nitride, alumina, carbon nitride, and silicon nitride.~~

2. (Currently Amended) A light-emitting device comprising:

a transistor formed over a substrate;

a first layer formed over the transistor, the first layer having a thickness which is larger than a step caused by the transistor;

a first passivation film formed over and in contact with the first layer;

a photosensitive organic resin film having an opening, the photosensitive organic resin film being formed over and in contact with the first passivation film to allow the first passivation film to be interposed between the photosensitive organic resin film and the first layer;

a light-emitting element having an anode, a cathode and a light-emitting layer between the anode and the cathode; and

a second passivation film formed over the photosensitive organic resin film and the light-emitting element,

wherein the anode is electrically connected to the transistor,

~~wherein the light emitting layer comprises copper phthalocyanine and calcium fluoride as a hole injection material and an electron injection material, respectively, wherein the light emitting layer comprises a dopant at a concentration of 0.1 % by weight or more and 0.4 % by weight or less,~~

wherein the anode and the photosensitive organic resin film are in contact with the first passivation film,

~~wherein an interface of the anode and the first passivation film is parallel to a surface of the substrate,~~

wherein the photosensitive organic resin film is in contact with the light-emitting layer,

wherein the cathode is in contact with the second passivation film,

wherein the anode, the cathode and the light-emitting layer are overlapped in the opening,

wherein the transistor is located below the photosensitive organic resin film and simultaneously in a periphery portion of the opening, and

wherein the photosensitive organic resin film and the cathode are covered with the second passivation film, and

~~wherein the first passivation film and the second passivation film comprise a material selected from the group consisting of DLC, boron nitride, alumina, carbon nitride, and silicon nitride.~~

3. (Previously Presented) A light-emitting device according to claim 2,
wherein a radius of curvature of a curve that depicts a section in the opening of
the photosensitive organic resin film is in the range from 0.2 to 2 μ m.

4. (Original) A light-emitting device according to claim 2,
wherein the photosensitive organic resin film has positive photosensitivity.

5. (Original) A light-emitting device according to claim 2,
wherein the photosensitive organic resin film has negative photosensitivity.

6. (Original) A light-emitting device according to any one of claims 1 and 2,
wherein at least one of the first passivation film and the second passivation film is
a carbon nitride film or a silicon nitride film formed by an RF sputtering process.

7. (Canceled)

8. (Previously Presented) A electronic equipment having the light-emitting device
according to claims 1 and 2,
wherein the electronic equipment is selected from the group consisting of video
cameras, digital cameras, goggle type displays, navigation systems, audio reproducing
devices, laptop computers, game machines, portable information terminals, image
reproducing device.

9. (Currently Amended) A light-emitting device according to any one of claims 1 and 2,

~~wherein the light emitting element, after turning on for 100 hr with an initial intrinsic brightness set at 320 cd/mm² and a duty ratio set at 70 %, has a diminishing amount of the intrinsic brightness of substantially 10 % or less of the initial intrinsic brightness~~

wherein the first passivation film and the second passivation film comprise a material selected from the group consisting of DLC, boron nitride, alumina, carbon nitride, and silicon nitride.

10. (Currently Amended) A light-emitting device according to any one of claims 1 and 2,

~~wherein the light emitting element, after turning on for 1000 hr with an initial intrinsic brightness set at 320 cd/mm² and a duty ratio set at 70 %, has a diminishing amount of the intrinsic brightness of substantially 20 % or less of the initial intrinsic brightness~~

wherein an interface of the anode and the first passivation film is parallel to a surface of the substrate.

11. (Currently Amended) A light-emitting device according to any one of claims 1 and 2,

wherein the transistor controls a current that is supplied to the light-emitting element,

wherein both the light-emitting element and the transistor are plurally disposed in a pixel portion of the light-emitting device, and
wherein the pixel portion is disposed on the substrate, and
~~wherein when brightness of the light-emitting element is set at 200 nt when a duty ratio is set at 70 %, a temperature of a portion that overlaps with the pixel portion of the substrate is 40 degree centigrade or less.~~

12. (Currently Amended) A light-emitting device according to any one of claims 1 and 2,

~~wherein the transistor controls a current that is supplied to the light emitting element,~~

~~wherein both the light emitting element and the transistor are plurally disposed in a pixel portion of the light emitting device,~~

~~wherein the pixel portion is disposed on the substrate, and
wherein when power consumption of the light emitting element and the transistor is set at 600 mW when a duty ratio is set at 70 %, a temperature of a portion that overlaps with the pixel portion of the substrate is 40 degree centigrade or less~~

wherein the light-emitting layer comprises a dopant at a concentration of 0.1 % by weight or more and 0.4 % by weight or less.

13-14. (Canceled)

15. (Original) A light-emitting device according to any one of claims 1 and 2, wherein the light-emitting layer comprises a quinacridone derivative.

16-22 (Canceled).

23. (Currently Amended) A light-emitting device comprising:

a transistor formed over a substrate;

a first layer provided over the transistor, the first layer having a thickness which is larger than a step caused by the transistor;

a first passivation film formed over and in contact with the first layer;

~~a second passivation film;~~

a photosensitive organic resin film having an opening, the photosensitive organic resin film being formed over and in contact with the first passivation film to allow the first passivation film to be interposed between the photosensitive organic resin film and the first layer; [[and]]

a light-emitting element formed over the first passivation film between the first passivation film and the second passivation film, and

a second passivation film formed over the light-emitting element,

wherein the light-emitting element comprises an anode, a cathode and a light-emitting layer between the anode and the cathode,

wherein the transistor is electrically connected to the anode,

wherein the anode and the photosensitive organic resin film are in contact with the first passivation film,

wherein the first passivation film is arranged to prevent the anode from being in contact with the first layer;

~~wherein an interface of the anode and the first passivation film is parallel to a surface of the substrate,~~

wherein the photosensitive organic resin film is in contact with the light-emitting layer,

wherein the cathode is in contact with the second passivation film,

wherein the anode, the cathode and the light-emitting layer are overlapped in the opening,

wherein an angle of an interface between the photosensitive organic resin film and the light-emitting layer to the anode sequentially varies,

wherein the transistor is located below the photosensitive organic resin film and simultaneously in a periphery portion of the opening, and

wherein the photosensitive organic resin film and the cathode are covered with the second passivation film, and

~~wherein the first passivation film and the second passivation film comprise a material selected from the group consisting of DLC, boron nitride, alumina, carbon nitride, and silicon nitride.~~

24-35. (Canceled)

36. (Currently Amended) A light-emitting device according to ~~any one of~~ claim 23,
wherein the light-emitting layer comprises a quinacridone derivative.

37. (Currently Amended) A light-emitting device according to ~~any one of~~ claim 23,
wherein the transistor controls a current that is supplied to the light-emitting element,
wherein both the light-emitting element and the transistor are plurally disposed in a pixel portion of the light-emitting device, and
wherein the pixel portion is disposed on the substrate.

38. (Currently Amended) A light-emitting device according to ~~any one of~~ claim 23,
wherein at least one of the first passivation film and the second passivation film is a carbon nitride film or a silicon nitride film formed by an RF sputtering process.

39. (Previously Presented) A electronic equipment having the light-emitting device according to claim 23,
wherein the electronic equipment is selected from the group consisting of video cameras, digital cameras, goggle type displays, navigation systems, audio reproducing devices, laptop computers, game machines, portable information terminals, image reproducing device.

40. (New) A light-emitting device according to claim 23,
wherein the first passivation film and the second passivation film comprise a
material selected from the group consisting of DLC, boron nitride, alumina, carbon
nitride, and silicon nitride.

41. (New) A light-emitting device according to claim 23,
wherein an interface of the anode and the first passivation film is parallel to a surface of
the substrate.