Integrated Volatility Estimation

Guilherme Salomé

September 7, 2018

1 Setup

Let X denote the stochastic process for log-prices. Let's start with the continuous case:

$$X_t = \int_0^t a_s \ ds + \int_0^t \sqrt{c_s} \ dW_s$$

As before, the first integral is the ordinary integral, the second is a stochastic integral. Throughout, c_t is the local variance of the process, which is a stochastic process itself determined by the state of the economy. At high frequencies we can ignore the drift a_t , which is essentially a tiny constant and not detectable with high frequency data.

For a small τ :

$$X_{t+\tau} = X_t + \int_t^{t+\tau} \sqrt{c_s} \ dW_s$$

$$\approx X_t + \sqrt{\int_t^{t+\tau} c_s ds} \underbrace{Z_t}_{\sim} \underbrace{\mathcal{N}(0,1)}_{s}$$

In most of what follows, we treat the c process as given independently of the W process. This assumption is only for simplicity and can be omitted in the advanced theory.

If c is constant then:

$$X_{t+\tau} \approx X_t + \sqrt{\tau c} Z_t$$

Many authors write $\sigma \equiv \sqrt{c}$, so the above becomes:

$$X_{t+\tau} \approx X_t + \tau^{1/2} \sigma Z_t$$

Next, we replace τ with Δ_n , which is the width of the sampling interval. Then, we can write:

$$X_{t+\tau} \approx X_t + \sqrt{\Delta_n c} Z_t$$

when the variance process is constant $(c_s = c)$.

2 Sampling

Given the process for log-prices, we consider discrete and equi-spaced observations at sampling intervals given by Δ_n . That is, we assume we observe X at times: $X_0, X_{\Delta_n}, X_{2\Delta_n}, \ldots, X_{nT\Delta_n}$, where $n = \lfloor 1/\Delta_n \rfloor$.

The returns of this asset are given by:

$$\Delta_i^n X \equiv X_{i\Delta_n} - X_{(i-1)\Delta_n}$$
 for $i = 1, 2, \dots, nT$

Following Ole E. Barndorff-Nielsen and Neil Shephard, 2004 (and references therein) we can define the realized variance and bipower variance via sums of $|\Delta_i^n X|^2$ and $|\Delta_i^n X| |\Delta_{i-1}^n X|$.

3 The Realized Variance and Bipower Variance

The basic measure of variance in much of our work is the realized variance. Suppose for the moment T=1 (a day). Then:

$$RV \equiv \sum_{i=1}^{n} |\Delta_i^n X|^2$$

Below, we see why in the continuous case:

$$RV \to IV$$
 where $IV \equiv \int_0^1 c_s \ ds$

The above only holds if X is continuous, in the case of jumps:

$$RV \to IV + \sum_{p} \left| \Delta_{\tau_p} X \right|^2$$

i.e., the integrated variance plus the sum of the jumps squared. (Where $(\tau_p)_{p\geq 1}$ index the jump times.) A very important jump-robust measure of integrated variance is the bipower variation

$$BV \equiv \frac{\pi}{2} \sum_{i=2}^{n} |\Delta_{i}^{n} X| \left| \Delta_{i-1}^{n} X \right|$$

It can be shown that even under the presence of jumps:

$$BV \to IV$$

Let's show the result for RV.

3.1 Law of Large Numbers (LLN) for RV in the Continuous Case

The basic and familiar law of large numbers is

$$\frac{1}{n}\sum_{i=1}^{n}Y_{i} \to \mu_{y} \text{ where } \mu_{y} \equiv \mathbb{E}[Y]$$

under reasonable independence assumptions on the Y_i . This same law of large numbers implies that $RV \to IV$ in the continuous case.

To see why, note that

$$RV = \sum_{i=1}^{n} |\Delta_i^n X|^2$$

A reasonable question is where is the 1/n term to make an average? The answer is that it is already there from the sampling scheme. Suppose $c_s = c$, a constant. Then

$$RV \approx \sum_{i=1}^{n} \left| \sqrt{\Delta_n c} Z_i \right|^2$$
$$= \Delta_n c \sum_{i=1}^{n} \left| Z_i \right|^2$$
$$= c \frac{1}{n} \sum_{i=1}^{n} \left| Z_i \right|^2$$

By the law of large numbers $\frac{1}{n}\sum_{i=1}^{n}|Z_{i}|^{2}\to\mathbb{E}[Z^{2}]=1$, so we get $RV\to c$. For the general case, the required law of large numbers is as follows. For random variables $Y_{n,i}$ that are independent across i for each n, then

$$\frac{1}{n}\sum_{i=1}^{n}Y_{n,i} \to \mu \text{ where } \mu = \lim_{n \to \infty} \frac{1}{n}\sum_{i=1}^{n} \mathbb{E}[Y_{n,i}]$$

If c_t varies over the interval [0,1], then RV can be expressed as

$$RV = \sum_{i=1}^{n} \bar{c}_{n,i} Z_{n,i}^{2}$$

where

$$\bar{c}_{n,i} = \int_{t_{i-1}}^{t_i} c_s \, ds, \qquad t_i = i\Delta_n.$$

The i^{th} increment in X is

$$\Delta_i^n X = \sqrt{\bar{c}_{n,i}} Z_{n,i}$$

Locally, c_s is approximately a constant $c_{n,i}$, on $[(i-1)\Delta_n, i\Delta_n]$, so $\bar{c}_{n,i} = \int_{t_{i-1}}^{t_i} c_s \, ds = \Delta_n c_{n,i}$

$$RV = \sum_{i=1}^{n} \Delta_n c_{n,i} Z_{n,i}^2$$

or

$$RV = \frac{1}{n} \sum_{i=1}^{n} c_{n,i} Z_{n,i}^{2}$$

Setting $Y_{n,i} = c_{n,i} Z_{n,i}^2$, then

$$\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[Y_{n,i}] = \Delta_n \sum_{i=1}^{n} c_{n,i} \to \int_{0}^{1} c_s \, ds.$$

by ordinary (calculus) integration.

3.2 The Central Limit Theorem

We only now know that $RV \to IV$, but the result is only useful only if the convergence is fast enough and we can make inferences, i.e., form confidence intervals. Across statistics the best rate we generally achieve \sqrt{n} on n observations. We will see that the RV actually achieves this rate.

The central limit theorem (CLT) problem is to determine the rate of convergence and the limiting distribution, if available. Suppose $t \in [0,1]$. The claim is that the rate is $\Delta_n^{-\frac{1}{2}}$, i.e., $n^{\frac{1}{2}}$ and the asymptotic distribution as given below.

To see this, consider

$$\Delta_n^{-\frac{1}{2}} \left(\sum_{i=1}^n |\Delta_i^n X|^2 - \int_0^1 c_s \ ds \right)$$

Remember $\bar{c}_{n,i} = \int_{t_{i-1}}^{t_i} c_s \ ds$, where $t_i = i\Delta_n$, and $\Delta_i^n X = \sqrt{\bar{c}_{n,i}} Z_{n,i}$. Thus we can write the above as

$$\Delta_n^{-\frac{1}{2}} \sum_{i=1}^n \bar{c}_{n,i} \left(Z_{n,i}^2 - 1 \right)$$

3.2.1 The Case of Constant Local Variance

Suppose for the moment that $c_s = c$, a randomly selected (by the economy) constant but we condition on the realization. Then $c_{n,i} = c$ and $\bar{c}_{n,i} = c\Delta_n$, and the previous equation becomes:

$$\Delta_n^{-\frac{1}{2}} \Delta_n \left(\sum_{i=1}^n c_{n,i} \left(Z_{n,i}^2 - 1 \right) \right)$$

or

$$c\Delta_n^{\frac{1}{2}} \sum_{i=1}^n \left(Z_{n,i}^2 - 1 \right)$$

Equivalently it is

$$\frac{c}{\sqrt{n}}\sum_{i=1}^{n} \left(Z_{n,i}^2 - 1\right).$$

By the ordinary central limit theorem we have that the above $\stackrel{d}{\to} N(0, 2c^2)$. The 2 comes from $Var[Z^2] = 2$.

3.2.2 The Case of Non-Constant Local Variance

If c_t is not a constant then things are a little more delicate:

$$\Delta_n^{-\frac{1}{2}} \sum_{i=1}^n \bar{c}_{n,i} \left(Z_{n,i}^2 - 1 \right) = \sum_{i=1}^n \Delta_n^{-\frac{1}{2}} \bar{c}_{n,i} \left(Z_{n,i}^2 - 1 \right)$$

The above will converge in distribution to a normal with asymptotic variance

$$2 \times \lim_{n \to \infty} \sum_{i=1}^{n} \left(\Delta_n^{-\frac{1}{2}} \bar{c}_{n,i} \right)^2$$

so long as the limit is positive and finite. Suppose c_t is smooth enough that it acts like a constant on $[t_{n,i-1},t_{n,i}]$: $c_s \approx c_{n,i}I[t_{n,i-1} \leq s \leq t_{n,i}]$. Then $\bar{c}_{n,i} \approx c_{n,i}\Delta_n$, and we get:

$$2 \times \lim_{n \to \infty} \sum_{i=1}^{n} \left(\Delta_n^{-\frac{1}{2}} c_{n,i} \Delta_n \right)^2$$

Finally:

$$2 \times \lim_{n \to \infty} \sum_{i=1}^{n} c_{n,i}^{2} \Delta_{n} \to 2 \times \int_{0}^{1} c_{s}^{2} ds$$

by the regular definition of the integral. To summarize, we have:

$$\Delta_n^{-\frac{1}{2}} \sum_{i=1}^n c_{n,i} \left(Z_{n,i}^2 - 1 \right) \stackrel{d}{\to} \mathcal{N} \left(0, 2 \int_0^1 c_s^2 \ ds \right)$$

Common practice is to set $\sigma_s = \sqrt{c_s}$ so the limit is written as

$$N\left(0, 2\int_0^1 \sigma_s^4 ds\right)$$

the now classic result. The result was initially developed and extended for econometrics by O. Barndorff-Nielsen and N. Shephard, 2002a; O. Barndorff-Nielsen and N. Shephard, 2002b; Ole E. Barndorff-Nielsen and Neil Shephard, 2002; Ole E. Barndorff-Nielsen and Neil Shephard, 2004; O. Barndorff-Nielsen, N. Shephard, and M. Winkel, 2006; O. Barndorff-Nielsen and N. Shephard, 2006; Ole E Barndorff-Nielsen, Neil Shephard, and Matthias Winkel, 2006; O. Barndorff-Nielsen, Graversen, et al., 2005. It can be derived using different methods based on Jacod and Protter, 1998 and presented in general form in J. Jacod, 2008, Jean Jacod and Philip Protter, 2012, and Ait-Sahalia and Jean Jacod, 2014.

References

- Ait-Sahalia, Yacine and Jean Jacod (2014). High Frequency Financial Econometrics. Princeton.
- Barndorff-Nielsen, O.E., S. Graversen, et al. (2005). "A Central Limit Theorem for Realised Power and Bipower Variations of Continuous Semimartingales". In: From Stochastic Analysis to Mathematical Finance, Festschrift for Albert Shiryaev. Ed. by Y. Kabanov and R. Lipster. Springer.
- Barndorff-Nielsen, O.E. and N. Shephard (2002a). "Econometric Analysis of Realized Volatility and its Use in Estimating Stochastic Volatility Models". In: *Journal of the Royal Statistical Society* Series B, 64, pp. 253–280.
- (2002b). "Econometric Analysis of Realized Volatility and its Use in Estimating Stochastic Volatility Models". In: *Journal of the Royal Statistical Society* Series B, 64, pp. 253–280.
- (2006). "Econometrics of Testing for Jumps in Financial Economics Using Bipower Variation". In: *Journal of Financial Econometrics* 4, pp. 1–30.
- Barndorff-Nielsen, O.E., N. Shephard, and M. Winkel (2006). "Limit Theorems for Multipower Variation in the Presence of Jumps in Financial Econometrics". In: *Stochastic Processes and Their Applications* 116, pp. 796–806.
- Barndorff-Nielsen, Ole E. and Neil Shephard (2002). "Estimating Quadratic Variation Using Realized Variance." In: *Journal of Applied Econometrics* 17.5, pp. 457–477. ISSN: 08837252. URL: http://search.ebscohost.com.proxy.lib.duke.edu/login.aspx?direct=true&db=eoh&AN=0628412&site=ehost-live&scope=site.
- (2004). "Power and Bipower Variation with Stochastic Volatility and Jumps." In: Journal of Financial Econometrics 2.1, pp. 1-37. ISSN: 14798409. URL: http://search.ebscohost.com.proxy.lib.duke.edu/login.aspx?direct=true&db=eoh&AN=0783511&site=ehost-live&scope=site.
- Barndorff-Nielsen, Ole E, Neil Shephard, and Matthias Winkel (2006). "Limit theorems for multipower variation in the presence of jumps". In: *Stochastic processes and their applications* 116.5, pp. 796–806.
- Jacod, J. (2008). "Asymptotic Properties of Power Variations and Associated Functionals of Semimartingales". In: Stochastic Processes and their Applications 118, pp. 517–559.
- Jacod, J and P Protter (1998). "Asymptotic error distributions for the Euler method for stochastic differential equations". In: *Annals of Probability* 26.1, 267–307. ISSN: 0091-1798.
- Jacod, Jean and Philip Protter (2012). Discretization of Processes. Springer-Verlag.