Specifying Mechanical Parameters of a Monopode Jumping System with Reinforcement Learning

Andrew Albright¹ and Joshua Vaughan²

Abstract—Legged systems have many advantages when compared to their wheeled counterparts. For example, they can more easily navigate extreme, uneven terrain. However, there are disadvantages as well, including difficulties seen in modeling the nonlinearities of the system. Research has shown that using flexible components is advantageous in terms of both efficiency and legged locomotive performance. Because of the difficulties encountered in modeling flexible systems, control methods such as reinforcement learning can be used to define control strategies. Furthermore, reinforcement learning can be tasked with learning mechanical parameters of a system to match a control input. It is shown in this work that by deploying reinforcement learning to solve for the optimal spring constant for a pogo-stick jumping system, designs which the agent defines are shown to be higher performing in terms of jumping height.

I. INTRODUCTION

The use of flexible components within legged locomotive systems has proved useful for both reducing power consumption and increasing performance [1], [2], [3]. However, designing controllers for these systems is difficult as the flexibility of the system generates nonlinear models. As such, employing series-elastic-actuators (SEA) instead of flexible links is an attractive and popular solution, since the models of the systems become more manageable [2], [4], [5]. Still, the use of SEAs do not represent the full capability of flexible systems. As a result, other methods that use flexible tendon-like materials meant to emulate more organic designs have been proposed [6]. These however are still not representative of fully flexibly links which have been shown to drastically increase locomotive performance measures such as running speed [7].

Control methods have been developed that work well for flexible systems like the ones mentioned [8], [9]. However, as the systems increase in dimensionality, effects such as dynamic coupling between members make such methods challenging to implement. As such, work has been done which uses neural networks and methods such as reinforcement learning (RL) to develop controllers for flexible systems [10], [11]. For example, RL has been used to create faster running control strategies for flexible-legged locomotive systems that also are robust to different design parameters [12].

In addition to the work done using RL to develop controllers for flexible systems, work has been completed which shows that this technique can be used to concurrently design the mechanical aspects of a system and a controller to match said system [13]. These techniques have even been used to define mechanical parameters and control strategies where the resulting controller and hardware were deployed in a sim-to-real process, validating the usability of the technique

[14]. Using this technique for legged-locomotion has also been studied, but thus far has been limited to the case of rigid systems [15].

As such, this paper starts the discovery of using RL for concurrent design of flexible-legged locomotive systems. A simplified flexible jumping system was used where, for the initial work, the control input was held fixed so that the RL algorithm was tasked with only learning optimized mechanical parameters. The rest of the paper is organized such that in the next section, similar work will be discussed. In Section III, the pogo-stick environment details will be defined. Next in Section IV the input used during training will be explained. Then in Section V the algorithm used along with the method of the experiments will be explained. The performance of the learned design is presented in VI.

II. RELATED WORK

A. Flexible Locomotive Systems

The use of flexible components within robotics systems has shown improvements in performance measures specifically ones which are locomotive [3]. In particular, advantages have been seen in locomotion applications where crawling and jumping are employed [1]. Previous work has shown that the use of flexible components in the legs of legged locomotion systems increase performance while decreasing power consumption [7]. Related to work on robotics systems employing flexible links, work has been done showing the uses of series-elastic-actuators for locomotive systems [5]. In much of this work, human interaction with the robotic systems is considered where rigidity is not ideal [4]. The studies of flexible systems are challenging however, as the models which represent them are often nonlinear and therefore difficult to develop control systems for. As such, there is a need for solutions which can be deployed to develop controllers for these nonlinear systems.

B. Controlling Flexile Systems Using RL

Control methods developed for flexible linked systems have been shown to be effective for position control and vibration reduction [8], [16]. Because of the challenges seen in scaling the controllers, methods utilizing reinforcement learning are of interest. This method has been used in simple planar cases, where it is compared to a PD control strategy for vibration suppression and proves to be a higher performing method [17]. Additionally, it has also been shown to be effective at defining control strategies for flexible-legged locomotion. The use of actor-critic algorithms such as Deep Deterministic Policy Gradient [18] have been used

to train running strategies for a flexible legged quadruped [12]. Much of the research is based in simulation, however, and often the controllers are not deployed in a sim-to-real fashion which leads to the question on whether or not these are practically useful techniques.

C. Concurrent Design

Defining an optimal controller for a system can be challenging due to things like mechanical and electrical design limits. This is especially true when the system is flexible and the model is nonlinear. A solution to this challenge is to concurrently design a system with the controllers so that the two are jointly optimized. This is has been researched in previous work as a strategy to develop better performing mechatronics systems [19]. More recent work has been completed which used advanced methods such as evolutionary strategies to define robot design parameters [20]. In addition to evolutionary strategies, reinforcement learning has been shown to be a viable solution for concurrent design of 2D simulated locomotive systems [13]. This is further shown to be a viable method by demonstrating more complex morphology modifications in 3D reaching and locomotive tasks [15]. However, these techniques have not been applied to flexible systems for locomotive tasks.

III. POGO-STICK MODEL

Fig. 1. Pogo-stick System

TABLE I POGO-STICK MODEL PARAMETERS

Model Parameter	Value
Mass of Leg, m_l	0.175 kg
Mass of Actuator, m_a	1.003 kg
Spring Constant, $k_{nominal}$	5760 N/m
Natural Frequency, ω_n	$\sqrt{\frac{k}{m_l + m_a}}$
Zeta, $\zeta_{nominal}$	$1e-2 \frac{N}{m/s}$
Damping Constant, c	$2 \zeta \omega_n m$
Actuator Stroke, $(x_a)_{max}$	0.008 m
Max. Actuator Velocity, $(\dot{x}_a)_{\text{max}}$	1.0 m/s
Max. Actuator Accel., $(\ddot{x}_a)_{max}$	10.0 m/s^2

The pogo-stick model show in Figure 1 has been shown to be useful as a representation of several different running and jumping gaits [21]. As such, it is used in this work to demonstrate the ability of reinforcement learning for the initial steps of concurrent design. The models parameters are summarized in Table I.

The variable m_a represents the mass of the actuator, which moves along the rod with mass m_l . A non-linear spring with constant k is used as the representation of flexibility. A damper (not shown in Figure 1), is parallel to the spring. Variables x and x_a represent the system's vertical position with respect to the ground and the actuator's position along the rod, respectively. The system is additionally constrained such that it only moves vertically, so the reinforcement agent is not required to balance the system.

The equations of motion describing the system are:

$$\ddot{x} = \alpha \left(\frac{k}{m_t} x^3 + \frac{c}{m_t} \dot{x} \right) - \frac{m_a}{m_t} \ddot{x}_a - g \tag{1}$$

where x and x_a are position and velocity of the rod respectively, the acceleration of the actuator, x_a , is the control input, and m_t is the mass of the complete system. Ground contact determines the value of α , so that the spring and damper do not supply force while the leg is airborne:

$$\alpha = \begin{cases} -1, & x \le 0\\ 0, & \text{otherwise} \end{cases}$$
 (2)

IV. JUMPING COMMAND DESIGN

Bang-bang derived jumping commands like the one shown in Figure 2 are likely to result in a maximized jump height. For this command, the actuator mass travels at maximum acceleration within its allowable range, pauses, then accelerates in the opposite direction. Commands designed to complete this motion are bang-bang in each direction, with a selectable delay between them. The resulting motion of the actuator along the rod is shown in Figure 3. Starting from an initial position, $(x_a)_0$, it moves through a motion of stroke length Δ_1 , pauses there for δ_t , then moves a distance Δ_2 during the second portion of the acceleration input.

This bang-based profile can be represented as a step command convolved with a series of impulses, as shown in

Fig. 2. Jumping Command

Fig. 3. Resulting Actuator Motion

Fig. 4. Decomposition of the Jump Command into a Step Convolved with an Impulse Sequence

Figure 4 [22]. Using this decomposition, input-shaping principles and tools can be used to design the impulse sequence [23], [24]. For the bang-bang-based jumping command, the amplitudes of the resulting impulse sequence are fixed, $A_i = [-1,2,-1,1,-2,1]$. However, the impulse times, t_i , can be varied and optimal selection of them can lead to a maximized jump height of the pogo-stick system [25]. Commands of this form will often result in a stutter jump like that in Figure 5, where the small initial jump allows the system to compress the spring farther storing more energy in the spring to be used in the final jump.

V. LEARNING SPRING CONSTANT AND DAMPING RATIO

A. Reinforcement Learning Algorithm

The algorithm used for this work was Twin Delayed Deep Deterministic Policy Gradient (TD3) [26]. This is an actor-critic algorithm wherein there exists two main neural networks and a set of twin trailing networks. The first main network is the actor, which determines the action of the agent. This network takes in the systems state, \mathcal{S} , and outputs the action, \mathcal{A} , based on the state. The critic is an estimator of the value of being in a state and is used to determine the difference between expected and estimated value used to update the actor network during training. It takes in the

Fig. 5. Example Stutter Jump

TABLE II
TD3 Training Hyperparameters

Hyperameter	Value
Learning Rate, α	0.001
Learning Starts	100 Steps
Batch Size	100 Transitions
Tau, $ au$	0.005
Gamma, γ	0.99
Training Frequency	1:Episode
Gradient Steps	
Action Noise, ϵ	None
Policy Delay	1:2 Q-Function Updates
Target Policy Noise, ϵ	0.2
Target Policy Clip, c	0.5
Seed	100 Random Seeds

systems state, \mathcal{S} , and outputs the expected future reward, \mathbb{R} , from being in that state. The twin trailing networks are used to find the temporal difference error against the critic network which is used to update the critic network.

The training hyperparameters were selected based on experimental findings and are highlighted in Table II. Many of them were standard in comparison to what is implemented through Stable Baselines and what is suggested by the authors of the algorithm [26]. The rollout setting (Learning Starts) is key however as it saves to the replay buffer a set of randomly explored design selections allowing the agent to learn quickly.

B. Training Environment Design

To allow the agent to find a mechanical design, a reinforcement learning environment conforming to the OpenAI Gym standard [27] was created for the pogo-stick model described in Section III, including a fixed controller input based on the algorithm described in the previous section. Unlike the common use case for RL which is tasking the agent with finding a control input to match a design, the agent in this work was tasked with finding mechanical parameters to match a control input.

The mechanical parameters the agent was tasked with optimizing were the spring constant and the damping ratio of the pogo-stick system. At each time step during training, the agent selected a set of design parameters from a distribution of available designs, that were used to simulate the design

using the input described in the previous section. The actions applied and transitions saved from the environment were defined as follows:

$$\mathcal{A} = \{ \{ k \in \mathbb{R} : [-0.9k, 0.9k] \}, \{ \zeta \in \mathbb{R} : [-0.9\zeta, 0.9\zeta] \} \}$$
(3)

$$S = \left\{ \sum_{t=0}^{t_f} x_t, \sum_{t=0}^{t_f} \dot{x}_t, \sum_{t=0}^{t_f} x_{at}, \sum_{t=0}^{t_f} \dot{x}_{at} \right\}$$
(4)

where k and ζ where the spring constant and damping ratio of the pogo-stick, respectively. Additionally, x_t and \dot{x}_t were the pogo-stick rod height and velocity steps, and x_{at} and \dot{x}_{at} are the pogo-stick actuator position and velocity steps, all captured during simulation.

The algorithm was utilized to find designs for two different reward cases. The reward cases used were as follows:

$$\mathbb{R}_1 = \left(\sum_{t=0}^{t_f} x_t\right)_{max} \tag{5}$$

$$\mathbb{R}_2 = \frac{1}{\frac{|\mathbb{R}_1 - x_s|}{x_s} + 1} \tag{6}$$

where x_t was the pogo-stick rod height step captured during simulation, and x_s was the specified height. The goal of the first reward was to find a design that, when simulated, would allow the pogo-stick to jump as high as possible. As for the second, the goal was to find a design that when simulated, minimizes the error between the maximum height reached and the height specified.

100 different agents were trained based in their network initialization to evaluate the algorithms ability to robustly find design parameters which satisfied the performance constraints. The height reached during simulation and design parameters selected by the algorithm where collected during training to evaluate the learning process. The results are presented in the next section.

VI. JUMPING HEIGHT REACHED

Learning data for the 100 different agents for each case was captured to represent the learning process of the agents during training. Figure 6 displays the potential height the pogo-stick can reach given the spring constant and damping ratio design parameters. In essence, Figure 6 is the function we are seeking to optimize.

The average and standard deviation of the design parameters that the agent chose during for simulation during training are displayed in Figures 7 and 8.

VII. CONCLUSION

Conclusion.

ACKNOWLEDGMENT

The authors would like to thank the Louisiana Crawfish Promotion and Research Board for their support of this work.

Fig. 6. Height Jumped Given Design Parameters

Fig. 7. Spring Constant Selected During Training

REFERENCES

- Y. Sugiyama and S. Hirai, "Crawling and jumping of deformable soft robot," 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), vol. 4, no. c, pp. 3276–3281, 2004.
- [2] G. Buondonno, J. Carpentier, G. Saurel, N. Mansard, A. De Luca, and J. P. Laumond, "Actuator design of compliant walkers via optimal control," *IEEE International Conference on Intelligent Robots and Systems*, vol. 2017-Septe, pp. 705–711, 2017.
- [3] J. Hurst, "The Role and Implementation of Compliance in Legged Locomotion," *The International Journal of Robotics Research*, vol. 25, no. 4, p. 110, 2008.
- [4] T. Zhang and H. Huang, "Design and Control of a Series Elastic Actuator with Clutch for Hip Exoskeleton for Precise Assistive Magnitude and Timing Control and Improved Mechanical Safety," *IEEE/ASME Transactions on Mechatronics*, vol. 24, no. 5, pp. 2215–2226, 2019.
- [5] G. A. Pratt and M. M. Williamson, "Series elastic actuators," *IEEE International Conference on Intelligent Robots and Systems*, vol. 1, pp. 399–406, 1995.
- [6] F. Iida, G. Gómez, and R. Pfeifer, "Exploiting body dynamics for controlling a running quadruped robot," 2005 International Conference on Advanced Robotics, ICAR '05, Proceedings, vol. 2005, pp. 229– 235, 2005.
- [7] U. Saranli, M. Buehler, and D. E. Koditschek, "RHex: A Simple and Highly Mobile Robot," *International Journal of Robotics Research*, vol. 20, no. 7, pp. 616–631, 2001.
- [8] Z.-h. Luo, "Direct Strain Feedback Control of Flexible Robot Arms: New Theoretical and Experimental Results," vol. 38, no. 11, 1993.
- [9] A. M. Modeling, "Gain Adaptive Nonlinear Feedback Control of Flexible SCARA / Cartesian Robots," no. AIM, pp. 1423–1428, 2003.

Fig. 8. Zeta Value Selected During Training

Fig. 9. Reward Received During Training

- [10] S. Bhagat, H. Banerjee, Z. T. H. Tse, and H. Ren, "Deep reinforcement learning for soft, flexible robots: Brief review with impending challenges," *Robotics*, vol. 8, no. 1, pp. 1–36, 2019.
- [11] T. G. Thuruthel, E. Falotico, F. Renda, and C. Laschi, "Model Based Reinforcement Learning for Closed Loop Dynamic Control of Soft Robotic Manipulators," *IEEE Transactions on Robotics*, vol. 35, pp. 124–134, 2019.
- [12] Z. Dwiel, M. Candadai, and M. Phielipp, "On Training Flexible Robots using Deep Reinforcement Learning," *IEEE International Conference* on *Intelligent Robots and Systems*, pp. 4666–4671, 2019.
- [13] D. Ha, "Reinforcement learning for improving agent design," Artificial Life, vol. 25, no. 4, pp. 352–365, 2019.
- [14] T. Chen, Z. He, and M. Ciocarlie, "Hardware as Policy: Mechanical and computational co-optimization using deep reinforcement learning," arXiv, no. CoRL, 2020.
- [15] C. Schaff, D. Yunis, A. Chakrabarti, and M. R. Walter, "Jointly

- learning to construct and control agents using deep reinforcement learning," *Proceedings IEEE International Conference on Robotics and Automation*, vol. 2019-May, pp. 9798–9805, 2019.
- [16] M. Ahmadi and M. Buehler, "Stable control of a simulated one-legged running robot with hip and leg compliance," *IEEE Transactions on Robotics and Automation*, vol. 13, no. 1, pp. 96–104, 1997.
- [17] W. He, H. Gao, C. Zhou, C. Yang, and Z. Li, "Reinforcement Learning Control of a Flexible Two-Link Manipulator: An Experimental Investigation," *IEEE Transactions on Systems, Man, and Cybernetics: Systems*, pp. 1–11, 2020.
- [18] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra, "Continuous control with deep reinforcement learning," 4th International Conference on Learning Representations, ICLR 2016 Conference Track Proceedings, 2016.
- [19] Q. Li, W. J. Zhang, and L. Chen, "Design for control A concurrent engineering approach for mechatronic systems design," *IEEE/ASME*

Fig. 10. Height Reached During Training

- Transactions on Mechatronics, vol. 6, no. 2, pp. 161–169, 2001.
 [20] T. Wang, Y. Zhou, S. Fidler, and J. Ba, "Neural graph evolution: Towards efficient automatic robot design," arXiv, pp. 1–17, 2019.
- [21] R. Blickhan and R. J. Full, "Similarity in multilegged locomotion: Bouncing like a monopode," *Journal of Comparative Physiology A*, vol. 173, no. 5, pp. 509–517, 1993.
- [22] K. L. Sorensen and W. E. Singhose, "Command-induced vibration analysis using input shaping principles," *Automatica*, vol. 44, no. 9, pp. 2392 – 2397, 2008, analysis tools; Analytical tools; Command shaping; Deconvolution; Dynamic Systems;Induced vibrations;Input shaping;Key systems;Performance analyses; Phase plane; Residual vibrations; Simple methods; Vector diagram; Vibration analysis; Vibratory response;. [Online]. Available: http://dx.doi.org/10.1016/j.automatica.2008.01.029
- [23] N. C. Singer and W. P. Seering, "Preshaping command inputs to reduce system vibration," *Journal of Dynamic Systems, Measurement, and*

- Control, vol. 112, pp. 76-82, March 1990.
- W. Singhose, W. Seering, and N. Singer, "Residual vibration reduction using vector diagrams to generate shaped inputs," ASME J. of Mechanical Design, vol. 116, pp. 654-659, June 1994.
- [25] J. Vaughan, "Jumping Commands For Flexible-Legged Robots," 2013.
- [26] S. Fujimoto, H. Van Hoof, and D. Meger, "Addressing Function Approximation Error in Actor-Critic Methods," 35th International Conference on Machine Learning, ICML 2018, vol. 4, pp. 2587–2601,
- [27] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba, "OpenAI Gym," pp. 1-4, 2016. [Online]. Available: http://arxiv.org/abs/1606.01540