Master of Computer Applications

CAPOL403R01: Computer Organization & Architecture

Unit III: Lecture 4
Internal Memory

Dr. D. MURALIDHARAN
School of Computing
SASTRA Deemed to be University

Semiconductor main memory

Semiconductor memory types

Memory type	Category	Erasure	Write Mechanism	Volatility
Random Access Memory (RAM)	Read-write memory	Electrically, byte- level	Electrically	Volatile
Read-only memory	Read – Only Memory	Not Possible	Mask	
Programmable ROM (PROM)			Electrically	Nonvolatile
Erasable PROM (EPROM)	Read-mostly memory	UV light, chip- level		
Electrically Erasable PROM (EEPROM)		Electrically, byte- level		
Flash memory		Electrically, block- level		

RAM

DRAM

SRAM

Chip Logic

- One of the key issues of semiconductor memory is the number of bits of data that may be read/written at a time
- The memory with size S is organized as (S/B) words of B bits each
- At one extreme the B is the word size
- At the other extreme the B is one
- For example a 16M, 16bit word memory may be organized as 1 M, 16 bit words as one extreme (16 bits are read / write at the same time) and 16M, 1 bit organization (1 bit is read / write at a time)
- ROM and RAM organizations are almost same
 - ROM won't have write logic so it is simpler

Chip logic - 16 M - 4 bit organization

Chip packaging

- The pins support the following signal lines
 - The address of the word to be accessed
 - For our example, 11 address lines (A0 to A10) are needed
 - Row address select and column address select signals
 - The data to be read out / write into
 - For our example, 4 data lines (D0 D3) are needed
 - Read and write control signals
 - The power supply to the Chip (Vcc)
 - The ground pin (Vss)
 - A Chip enable pin
 - It is used to select a chip when multiple chips are connected to the address bus

Module organization

- If RAM chip has only one bit per address (word), then we need at least a number of such chips equal to the number of bits per word
- Question: Construct 256K x 8 bit word memory using 256K, 1-bit RAM chip
- To identify one address from 256K, 18 address bits are needed
 - 9 bits for row, 9 bits for column if the memory is organized in a matrix form
- Present the address to eight 256K, 1-bit RAM chip simultaneously
 - The chips are arranged in a column
- Save the data in MBR and access the data from MBR during READ
- Move the data to MBR, and write the data on these eight chips during write operation

Module organization...

Module organization

- The organization works if the number of words are equal to the number of words per chip
- When the number of words are larger than the number of words of the chip, then the chips are arranged in a matrix format
- Example: Construct 1M X 8 bit memory using 256K X 1 bit memory
 - To get 8 bits from a single memory location, 8 chips are arranged in a column
 - To obtain 1M words, 1M/256=4 columns are needed
 - 1M word memory needs 20 bit address
 - 256K word memory requires 18 bit address
 - The remaining 2 bits are used to select one of the four columns
 - These two bits are connected to the CE pins

Module organization...

Thank you