OEIT6 - Data Analytics

Experiment 4: Linear Regression

Name: Gaurav Panchal

UID: 2019120046

```
#Importing the librariesimport pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd

#Reading the dataset
dataset = pd.read_csv("climate_change.csv")
```

8		Year	Month	MEI	C02	CH4	N20	CFC-11	CFC-12	TSI	Aerosols
	0	1983	5	2.556	345.96	1638.59	303.677	191.324	350.113	1366.1024	0.0863
	1	1983	6	2.167	345.52	1633.71	303.746	192.057	351.848	1366.1208	0.0794
	2	1983	7	1.741	344.15	1633.22	303.795	192.818	353.725	1366.2850	0.0731
	3	1983	8	1.130	342.25	1631.35	303.839	193.602	355.633	1366.4202	0.0673
	4	1983	9	0.428	340.17	1648.40	303.901	194.392	357.465	1366.2335	0.0619

dataset.columns

print(est2.summary())

dataset.head()

OLS Regression Results

Dep. Variab	le:	Te	emp R-squ	ared:		0.703				
Model:		(DLS Adj.	Adj. R-squared:						
Method:		Least Squar	res F-sta	tistic:		69.11				
Date:	Τι	ue, 05 Apr 20	922 Prob	<pre>Prob (F-statistic):</pre>						
Time:		09:43:	49 Log-L	Log-Likelihood:						
No. Observa	tions:	2	243 AIC:			-484.7				
Df Residual	s:	2	234 BIC:			-453.3				
Df Model:			8							
Covariance	Туре:	nonrobu	ıst							
========	========			========	========	=======				
	coef	std err	t	P> t	[0.025	0.975]				
const	-60.8378	23.736	-2.563	0.011	-107.600	-14.075				
MEI	0.0665	0.007	9.650	0.000	0.053	0.080				
CO2	0.0033	0.002	1.389	0.166	-0.001	0.008				
CH4	-0.0005	0.001	-0.895	0.372	-0.002	0.001				
N20	-0.0033	0.010	-0.319	0.750	-0.023	0.017				
CFC-11	-0.0032	0.002	-1.319	0.188	-0.008	0.002				
CFC-12	0.0027	0.001	2.173	0.031	0.000	0.005				
TSI	0.0449	0.018	2.532	0.012	0.010	0.080				
Aerosols	-8.2339	2.042	-4.032	0.000	-12.257	-4.211				
========	========			=========		=======				
Omnibus:	3.2	269 Durbi	n-Watson:		1.015					
Prob(Omnibu	s):	0.1	L95 Jarqu	e-Bera (JB)	•	2.996				
Skew:		0.1	L94 Prob(JB):		0.224				

Warnings:

Kurtosis:

[1] Standard Errors assume that the covariance matrix of the errors is correctly spec [2] The condition number is large, 9.94e+06. This might indicate that there are

Cond. No.

9.94e + 06

strong multicollinearity or other numerical problems.

3.381

/usr/local/lib/python3.7/dist-packages/statsmodels/tsa/tsatools.py:117: FutureWarning x = pd.concat(x[::order], 1)

and a testing set consisting of the remaining years

df_train = dataset[dataset.iloc[:,0]<=2006]
df train.head()</pre>

	Year	Month	MEI	C02	CH4	N20	CFC-11	CFC-12	TSI	Aerosols
29	1985	10	-0.140	343.08	1681.56	305.395	215.327	390.676	1365.5269	0.0101
30	1985	11	-0.050	344.40	1680.68	305.530	216.282	392.714	1365.6289	0.0097
31	1985	12	-0.293	345.82	1677.99	305.653	217.326	394.539	1365.6794	0.0122
32	1986	1	-0.307	346.54	1675.82	305.775	218.382	396.082	1365.6746	0.0146
33	1986	2	-0.191	347.13	1666.83	305.911	219.379	397.345	1365.5475	0.0158

```
df_test = dataset[dataset.iloc[:,0]>2006]
df_test.head()
```

	Year	Month	MEI	C02	CH4	N20	CFC-11	CFC-12	TSI	Aerosol
284	2007	1	0.974	382.93	1799.66	320.561	248.372	539.206	1365.7173	0.005
285	2007	2	0.510	383.81	1803.08	320.571	248.264	538.973	1365.7145	0.005
286	2007	3	0.074	384.56	1803.10	320.548	247.997	538.811	1365.7544	0.004
287	2007	4	-0.049	386.40	1802.11	320.518	247.574	538.586	1365.7228	0.004
288	2007	5	0.183	386.58	1795.65	320.445	247.224	538.130	1365.6932	0.004

linear regression model of traing set

```
#Setting the value for X and Y
x_train = df_train[['MEI', 'CO2', 'CH4', 'N20', 'CFC-11', 'CFC-12', 'TSI', 'Aerosols']]
y_train = df_train['Temp']
x2_train = sm.add_constant(x_train)
est_train = sm.OLS(y_train,x2_train)
est2_train = est_train.fit()
print(est2_train.summary())
```

OLS Regression Results

					========	 0.722		
Dep. Variab	le:			R-squared:				
Model:			_	Adj. R-squared:				
Method:		Least Squa		atistic:		68.15		
Date:	Τι	ue, 05 Apr 2		(F-statisti	c):	3.37e-54		
Time:		09:43	_	Likelihood:		229.49		
No. Observa			219 AIC:			-441.6		
Df Residual	s:		210 BIC:			-410.5		
Df Model:			8					
Covariance	Type:	nonrob	ust					
	coef	std err	t	P> t	[0.025	0.975		
const	-51.0320	24.469	-2.086	0.038	-99.268	-2.796		
MEI	0.0622	0.007	8.508	0.000	0.048	0.077		
C02	0.0050	0.002	1.995	0.047	5.82e-05	0.010		
CH4	-0.0004	0.001	-0.689	0.491	-0.001	0.001		
N20	0.0018	0.012	0.156	0.876	-0.021	0.025		
CFC-11	-0.0011	0.003	-0.406	0.685	-0.007	0.004		
CFC-12	0.0014	0.001	0.940	0.348	-0.002	0.004		
TSI	0.0360	0.019	1.931	0.055	-0.001	0.073		
Aerosols	-8.4359	2.024	-4.167	0.000	-12.427	-4.445		
======= Omnibus:	========	 6.	======= 330 Durb	in-Watson:		.994 0.99		
Prob(Omnibu	s):	0.	042 Jarq	Jarque-Bera (JB):				
Skew:		0.	363 Prob	(JB):		0.0493		
Kurtosis:		3.	366 Cond	. No.		9.82e+0		

- [1] Standard Errors assume that the covariance matrix of the errors is correctly spec
- [2] The condition number is large, 9.82e+06. This might indicate that there are strong multicollinearity or other numerical problems.

/usr/local/lib/python3.7/dist-packages/statsmodels/tsa/tsatools.py:117: FutureWarning x = pd.concat(x[::order], 1)

1.1

The value of R-squared: 0.722

LinearRegression()

→ 1.2

```
Which variables are significant in the model?
Ans.: MEI, CO2, TSI, Aerosols (p-value < 0.05)
#Setting the value for X and Y
x_test = df_test[['MEI', 'CO2', 'CH4', 'N20', 'CFC-11', 'CFC-12', 'TSI',
       'Aerosols']]
y_test = df_test['Temp']
x_train.size
     1752
y_train.size
     219
x_test.size
     192
y_test.size
     24
from sklearn.linear_model import LinearRegression
mlr = LinearRegression()
mlr.fit(x_train,y_train)
```

```
print("Intercept: ", mlr.intercept_)
print("Coefficients:")
list(zip(x_train, mlr.coef_))
     Intercept: -51.031969159858036
     Coefficients:
     [('MEI', 0.06223569777302381),
      ('CO2', 0.0049606987940408465),
      ('CH4', -0.00038810727802363575),
      ('N20', 0.0018262419311547184),
      ('CFC-11', -0.0011344993284555694),
      ('CFC-12', 0.0014013277032073551),
      ('TSI', 0.03604734063953119),
      ('Aerosols', -8.435947559286046)]
from scipy.stats import pearsonr
list1 = df train['MEI']
list2 = df_train['N20']
# Apply the pearsonr()
corr, _ = pearsonr(list1, list2)
print('Pearsons correlation: %.3f' % corr)
     Pearsons correlation: -0.062
from scipy.stats import pearsonr
list1 = df_train['CO2']
list2 = df_train['N20']
# Apply the pearsonr()
corr, _ = pearsonr(list1, list2)
print('Pearsons correlation: %.3f' % corr)
     Pearsons correlation: 0.975
from scipy.stats import pearsonr
list1 = df train['CH4']
list2 = df train['N20']
# Apply the pearsonr()
corr, _ = pearsonr(list1, list2)
print('Pearsons correlation: %.3f' % corr)
     Pearsons correlation: 0.890
from scipy.stats import pearsonr
list1 = df_train['CFC-11']
list2 = df_train['N20']
# Apply the pearsonr()
corr, _ = pearsonr(list1, list2)
print('Pearsons correlation: %.3f' % corr)
```

Pearsons correlation: 0.327

```
from scipy.stats import pearsonr
list1 = df_train['CFC-12']
list2 = df_train['N20']
# Apply the pearsonr()
corr, _ = pearsonr(list1, list2)
print('Pearsons correlation: %.3f' % corr)
     Pearsons correlation: 0.865
from scipy.stats import pearsonr
list1 = df train['TSI']
list2 = df_train['N20']
# Apply the pearsonr()
corr, _ = pearsonr(list1, list2)
print('Pearsons correlation: %.3f' % corr)
     Pearsons correlation: 0.160
from scipy.stats import pearsonr
list1 = df_train['Aerosols']
list2 = df_train['N20']
# Apply the pearsonr()
corr, _ = pearsonr(list1, list2)
print('Pearsons correlation: %.3f' % corr)
     Pearsons correlation: -0.661
```

2.1

Which of the following is the simplest correct explanation for this contradiction?

- I. Climate scientists are wrong that N2O and CFC-11 are greenhouse gases this regression analysis constitutes part of a disproof.
- II. There is not enough data, so the regression coefficients being estimated are not accurate.
- III. All of the gas concentration variables reflect human development N2O and CFC.11 are correlated with other variables in the data set.

Ans:All of the gas concentration variables reflect human development - N2O and CFC.11 are correlated with other variables in the data set.

Correlation

Which of the following independent variables is N2O highly correlated with (absolute correlation greater than 0.7)?

ans. b) CO2 c) CH4 f) CFC.12

[] L, 14 cells hidden

Conclusion

Problem 1.1 - Creating Our First Model Enter the model R2 (the "Multiple R-squared" value): 0.722

Problem 1.2 - Creating Our First Model

Which variables are significant in the model? We will consider a variable significant only if the p-value is below 0.05. (Select all that apply.)

a) MEI b) CO2 c) CH4 d) N2O e) CFC.11 f) CFC.12 g) TSI h) Aerosols

Ans.: MEI, CO2, TSI, Aerosols (p-value < 0.05)

Problem 2.1 - Understanding the Model

Which of the following is the simplest correct explanation for this contradiction?

I. Climate scientists are wrong that N2O and CFC-11 are greenhouse gases - this regression analysis constitutes part of a disproof.

II. There is not enough data, so the regression coefficients being estimated are not accurate.

III. All of the gas concentration variables reflect human development - N2O and CFC.11 are correlated with other variables in the data set.

Ans.: All of the gas concentration variables reflect human development - N2O and CFC.11 are correlated with other variables in the data set.

Compute the correlations between all the variables in the training set. Which of the following independent variables is N2O highly correlated with (absolute correlation greater than 0.7)? Select all that apply.

a) MEI b) CO2 c) CH4 d) N2O e) CFC.11 f) CFC.12 g) TSI h) Aerossol

Ans: b) CO2 c) CH4 f) CFC.12

Which of the following independent variables is CFC.11 highly correlated with? Select all that apply.

a)MEI b) CO2 c) CH4 d) N2O e) CFC.12 f) TSI g) Aerosols

ans.: CFC.12

Problem 3 - Simplifying the Model

Given that the correlations are so high, let us focus on the N2O variable and build a model with only MEI, TSI, Aerosols and N2O as independent variables. Remember to use the training set to build the model.

Enter the coefficient of N2O in this reduced model: 0.0217

(How does this compare to the coefficient in the previous model with all of the variables?)

Enter the model R2: 0.706

Inference:

Often when we get a dataset, we might find a plethora of features in the dataset. All of the features we find in the dataset might not be useful in building a machine learning model to make the necessary prediction. Using some of the features might even make the predictions worse. So, feature selection plays a huge role in building a machine learning model.

Features with high correlation are more linearly dependent and hence have almost the same effect on the dependent variable. So, when two features have high correlation, we can drop one of the two features.