UECM1304 TUTORIAL 4: RELATIONS

3 hours

Set Relations, Representations & Properties

- 1. Let $A = \{a \in \mathbb{R} | -2 \le a \le 3\}$ and $B = \{b \in \mathbb{R} | 1 \le b \le 5\}$. Sketch the given set in the Cartesian plane \mathbb{R}^2 for (i) $A \times B$; (b) $B \times A$.
- 2. Define a relation R on \mathbb{R} as follows:

xRy if and only if x, y satisfy the equation $\frac{x^2}{4} + \frac{y^2}{9} = 1$.

(a) Which of the following ordered pairs belong to R?

- (b) Find $R(\{1,7\})$ and $R(\{3,4,5\})$.
- 3. Find the domain, range, matrix representation of the relation R.
 - (a) $A = \{a, b, c, d\}, B = \{1, 2, 3\}, R = \{(a, 1), (a, 2), (b, 1), (c, 2), (d, 1)\}.$
 - (b) $A = \{1, 2, 3, 4\}, B = \{1, 4, 6, 9\}; aRb \text{ if and only if } b = a^2.$
 - (c) $A = \{1, 2, 3, 4, 8\}, B = \{1, 4, 6, 9\}; aRb \text{ if and only if } a \text{ divides } b.$
 - (d) $A = \{1, 2, 3, 4, 5\} = B$; aRb if and only if $a \le b$.
- 4. Suppose R and S are reflexive relations on a set A. Prove or disprove each of the following:
 - (a) $R \cup S$ is reflexive.
 - (b) $R \cap S$ is reflexive.
 - (c) $S \circ R := \{(a, c) : \exists b((a, b) \in R \land (b, c) \in S\}$ is reflexive.
- 5. Give an example of a relation on a set that is
 - (a) symmetric and anti-symmetric.
 - (b) neither symmetric nor anti-symmetric.

Closure of Binary Relations

6. Let $A = \{a, b, c, d, e\}$ and R and S be the relations on A described by

$$M_R = \begin{pmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 \end{pmatrix}, \quad M_S = \begin{pmatrix} 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \end{pmatrix}.$$

Use Warshall's algorithm to compute the transitive closure of the relation $R \cup S$.

7. Let R be a relation on the set $A = \{a_1, a_2, a_3, a_4, a_5\}$ with a matrix representation:

$$M_R = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{pmatrix}$$

- (a) Write down the listing tuples (or Roster notation) representation of R.
- (b) Compute $M_{cl_{trn}(R)}$ as in Warshall's algorithm and then sketch the digraph representation of $cl_{trn}(R)$.
- (c) Is R transitive? Explain your answer.

Equivalence Relations

- 16. If R and S are two relations on \mathbb{R} such that for $x, y \in \mathbb{R}$, xRy iff x < y and xSy iff x > y. Find (i) $R \cap S$ (ii) $R \cup S$ (iii) $S^{-1} := \{(y, x) : (x, y) \in S\}$.
- 17. Let $A = \{1, 2, 3, 4, 5, 6\} \times \{1, 2, 3, 4, 5, 6\}$ and define a relation R on A as follows:

$$\forall (a,b) \in A, \forall (c,d) \in A, (a,b)R(c,d) \leftrightarrow ab = cd.$$

- (a) Verify that R is an equivalence relation on A.
- (b) Determine the equivalence class [(2,3)] by listing all its elements.
- 18. Let R be the relation on $A = \{2, 4, 6, 8\}$ defined by $xRy \leftrightarrow \gcd(x, y) = 2$.
 - (a) Write R as a set of ordered pairs.
 - (b) Determine whether R is an equivalence relation.

19. Given
$$M_R = \begin{pmatrix} a & b & c & d & e \\ a & 1 & 1 & 1 & 0 & 1 \\ b & 1 & 1 & 1 & 0 & 1 \\ c & d & 1 & 1 & 1 & 0 & 1 \\ d & 0 & 0 & 0 & 1 & 0 \\ e & 1 & 1 & 1 & 0 & 1 \end{pmatrix}$$
. Compute A/R .

- 20. Let $S = \{1, 2, 3, 4\}$ and $A = S \times S$. Define the equivalence relation R on A as follows: (a, b)R(c, d) if and only if a + b = c + d. Compute A/R.
- 21. Define a binary relation R on \mathbb{R} as follows:

$$R = \{(x, y) \in \mathbb{R} \times \mathbb{R} | y = |x| \}.$$

Determine whether R is reflexive, symmetric and transitive.

22. Let R be an equivalence relation on \mathbb{Z} such that for $x, y \in \mathbb{Z}$, xRy iff 7|x-y. Which of the following equivalence classes

$$[3], [-7], [12], [0], [-2], [17]$$

are equal?

Partial Order Relations

23. Determine whether the relation R is a partial order on \mathbb{Z} .

- (a) aRb if and only if a = 3b.
- (b) aRb if and only if $a^2|b$.
- (c) aRb if and only if $a = b^k$ for some positive integers k.
- 24. Describe the ordered pairs in the relation \leq determined by the Hasse diagram on the set $A = \{1, 2, 3, 4\}$.

- 25. Consider the poset (A, |) with | the divisibility relation. Draw the Hasse diagram of the poset and determine which posets are linearly ordered.
 - (a) $A = \{1, 2, 3, 5, 6, 10, 15, 30\}$
 - (b) $A = \{3, 6, 12, 72\}$
 - (c) $A = \{1, 2, 3, 4, 5, 6, 10, 12, 15, 30, 60\}.$
- 26. Let \leq be a relation over the set $A = \{1, 2, 3, 4, 5\}$ such that

$$1 \leq 1, \ 1 \leq 2, \ 1 \leq 3, \ 1 \leq 4, \ 1 \leq 5, \ 2 \leq 2, \ 2 \leq 5, \ 3 \leq 3, \ 3 \leq 5, \ 4 \leq 4, \ 4 \leq 5, \ 5 \leq 5.$$

Show that (A, \preceq) is a poset.