Sorting Algorithms using Divide and Conquer Technique

- 1. Merge Sort
- 2. Quick Sort

Sorting

Insertion sort

– Design approach: incremental

Sorts in place: Yes

- Best case: $\Theta(n)$

- Worst case: $\Theta(n^2)$

Bubble Sort

– Design approach: incremental

Sorts in place: Yes

- Running time: $\Theta(n^2)$

Sorting

Selection sort

– Design approach: incremental

Sorts in place: Yes

- Running time: $\Theta(n^2)$

Merge Sort

Design approach: divide and conquer

Sorts in place: No

Running time: Let's see!!

Divide-and-Conquer

- Divide the problem into a number of sub-problems
 - Similar sub-problems of smaller size
- Conquer the sub-problems
 - Solve the sub-problems <u>recursively</u>
 - Sub-problem size small enough ⇒ solve the problems in straightforward manner
- Combine the solutions of the sub-problems
 - Obtain the solution for the original problem

Merge Sort Approach

To sort an array A[l..r]:

Divide

 Divide the n-element sequence to be sorted into two subsequences of n/2 elements each

Conquer

- Sort the subsequences recursively using merge sort
- When the size of the sequences is 1 there is nothing more to do

Combine

Merge the two sorted subsequences

Example – n Power of 2

Example – n Power of 2

Conquer and Merge

Example – n Not a Power of 2

Example – n Not a Power of 2

Merge Sort

Alg.: MERGE-SORT()

Initial call:

Merge Sort

```
Alg.: MERGE-SORT(A, I, r)

if I < r

# Check for base case

\mathbf{m} \leftarrow \lfloor (I+r)/2 \rfloor

# Divide

MERGE-SORT(A, I, m)

MERGE-SORT(A, m + 1, r)

MERGE(A, I, m, r)

# Combine
```

Initial call: MERGE-SORT(A, 0, n-1)

Merging

```
    I
    m
    r

    0
    1
    2
    3
    4
    5
    6
    7

    5
    2
    4
    7
    1
    3
    2
    6
```

- Input: Array A and indices I, m, r such that
 I ≤ m < r
 - Subarrays A[I..m] and A[m+1..r] are sorted
- Output: One single sorted subarray A[l..r]

Merging

Merge - Pseudocode

```
merge(a, l, m, r):
  i=1, j=m+1, k=0
  while i<=m and j<=r:
    if a[i]<=a[j]:
     b[k] = a[i]
     k += 1
     i += 1
    else:
      b[k] = a[j]
      k += 1
      j += 1
```

```
while i<=m:
   b[k] = a[i]
   k += 1
   i += 1
while j<=r:
   b[k] = a[j]
   k += 1
   j += 1
for (i=0 to k):
   a[l+i]=b[i]
```

Running Time of Merge (assume last **for** loop)

- Merging into temporary array:
 - $-\Theta(n)$
- Copying the elements from temporary to the final array:
 - n iterations, $\Rightarrow \Theta(n)$
- Total time for Merge:

MERGE-SORT Running Time

Divide:

- compute m as the average of I and r: $D(n) = \Theta(1)$

Conquer:

recursively solve 2 subproblems, each of size n/2
 ⇒ 2T (n/2)

Combine:

- MERGE on an n-element subarray takes $\Theta(n)$ time $\Rightarrow C(n) = \Theta(n)$ $\Rightarrow C(1)$ if n = 1

$$\Theta(1)$$
 if n = 1
 $T(n) = 2T(n/2) + \Theta(n)$ if n > 1

Solve the Recurrence

$$T(n) = c$$
 if $n = 1$
 $2T(n/2) + c(n)$ if $n > 1$

Use Master's Theorem:

Compare n with f(n) = cnCase 2: $T(n) = \Theta(n \lg n)$

Merge Sort - Discussion

- Advantages:
 - Guaranteed to run in Θ(n logn)
- Disadvantage
 - Requires extra space ≈N

Quicksort

Sort an array A[l...r]

Divide

- Partition the array A into 2 subarrays A[l..m] and A[m+1..r], such that each element of A[l..m] is smaller than or equal to each element in A[m+1..r]
- Need to find index m to partition the array

Quicksort

Conquer

Recursively sort A[l..m] and A[m+1..r] using Quicksort

Combine

- Trivial: the arrays are sorted in place
- No additional work is required to combine them
- The entire array is now sorted

Partitioning the Array

- Choosing PARTITION()
 - There are different ways to do this
 - Each has its own advantages/disadvantages
- Hoare partition (see prob. 7-1, page 159)
 - Select a pivot element x around which to partition
 - Grows two regions

$$x \leq A[j...r]$$

j

Example

Example

5 3 8 1 4 6 2 7

Partitioning the Array

```
def partition(A, l, h):
  pivot = A[1]
  i = 1 + 1
  j = h
  while i<j:
    while A[i] < pivot and i < h:
      i += 1
    while A[j]>pivot and j>=1:
      j -= 1
    if i<j:
      t=A[i]
      A[i]=A[j]
      A[j]=t
```

```
if A[l]>A[j]:
    t=A[l]
    A[l]=A[j]
    A[j]=t
return j
```

Recurrence

Initially: I=1, r=n

if | < r then

 $m \leftarrow PARTITION(A, I, r)$

QUICKSORT (A, I, m-1)

QUICKSORT (A, m+1, r)

Recurrence:

$$T(n) = T(m) + T(n - m) + n$$

Worst Case Partitioning

- Worst-case partitioning
 - One region has one element and the other has n 1 elements
 - Maximally unbalanced
- Recurrence: m=1

$$T(n) = T(1) + T(n - 1) + n,$$

 $T(1) = \Theta(1)$
 $T(n) = T(n - 1) + n$

$$= n + \left(\sum_{k=1}^{n} k\right) - 1 = \Theta(n) + \Theta(n^2) = \Theta(n^2)$$
 $\Theta(n^2)$

Best Case Partitioning

- Best-case partitioning
 - Partitioning produces two regions of size n/2
- Recurrence: m=n/2

$$T(n) = 2T(n/2) + \Theta(n)$$

 $T(n) = \Theta(n \log n)$ (Master theorem)

