ПАВЕЛ Е. РЯБОВ¹

¹Финансовый университет при Правительстве Российской Федерации

PERyabov@fa.ru

6 февраля 2024 г.

Список используемой литературы

- Солодовников, А. С. Математика в экономике. Теория вероятностей и математическая статистика. В 3 ч. Ч. 3 : учебник для студ. экономич. спец. вузов / А. С. Солодовников, В. А. Бабайцев, А. В. Браилов. − Москва: Финансы и статистика, 2008. − 463 с.
- Браилов А.В., Глебов В. И., Криволапов С. Я., Рябов П. Е. Теория вероятностей и математическая статистика [Электронный ресурс]: учебник-практикум/ А.В. Браилов [и др.]. − Ижевск: Издательство «ИКИ», 2016. − 414 с.
- А. В. Браилов, А. С. Солодовников Сборник задач по курсу
 "Математика в экономике". В 3 ч. Ч. 3: Теория вероятностей: учебное пособие для студ.; под ред. В. А. Бабайцева, В. Б.
 Гисина. − Москва: Финансы и статистика, 2013, 2017. − 125 с.
- Allan Gut. An Intermediate Course in Probability, Second Edition, Springer, 2009, ISBN 978-1-4419-0161-3, 302 p.

- Триволапов С. Я. Использование языка Python в теории вероятностей: Учебник / С.Я. Криволапов. − М.: Прометей, 2021. − 492 с.
- Sheldon Ross. A First Course in Probability, Global Edition 10th Edition. Pearson Education, 2019. 530 p. ISBN 9780134753119.
- Joseph K. Blitzstein and Jessica Hwang. Introduction to Probability, Second Edition. CRC Press Taylor & Francis Group, 2019. 636 p. ISBN 978-1-1383-6991-7
- Прохоров А.В., Ушаков В.Г., Ушаков Н.Г. Задачи по теории вероятностей. Основные понятия. Предельные теоремы.
 Случайные процессы. − Новое изд., перераб. − М.: МЦНМО, 2023 − 384 с. ISBN 978-5-4439-1729-0.
- Гихман И.И., Скороход А.В., Ядренко М.И. Теория вероятностей и математическая статистика. − Киев: Вища школа, 1979. − 408 с.

- Пространство элементарных событий, случайное событие.
- Классическое и статистическое определение вероятности.
- Алгебра событий.
- Аксиомы теории вероятностей.
- Свойства вероятности.
- Свойство непрерывности вероятности.
- Пример, иллюстрирующий свойство непрерывности вероятности (пример А.В. Браилова)

- Пространство элементарных событий, случайное событие.
- Классическое и статистическое определение вероятности.
- Алгебра событий.
- Аксиомы теории вероятностей.
- Свойства вероятности.
- Свойство непрерывности вероятности.
- Пример, иллюстрирующий свойство непрерывности вероятности (пример А.В. Браилова)

- Пространство элементарных событий, случайное событие.
- Классическое и статистическое определение вероятности.
- Алгебра событий.
- Аксиомы теории вероятностей
- Свойства вероятности.
- Свойство непрерывности вероятности.
- Пример, иллюстрирующий свойство непрерывности вероятности (пример А.В. Браилова)

- Пространство элементарных событий, случайное событие.
- Классическое и статистическое определение вероятности.
- Алгебра событий.
- Аксиомы теории вероятностей.
- Свойства вероятности.
- Свойство непрерывности вероятности.
- Пример, иллюстрирующий свойство непрерывности вероятности (пример А.В. Браилова)

- Пространство элементарных событий, случайное событие.
- Классическое и статистическое определение вероятности.
- Алгебра событий.
- Аксиомы теории вероятностей.
- Свойства вероятности.
- Свойство непрерывности вероятности.
- Пример, иллюстрирующий свойство непрерывности вероятности (пример А.В. Браилова)

- Пространство элементарных событий, случайное событие.
- Классическое и статистическое определение вероятности.
- Алгебра событий.
- Аксиомы теории вероятностей.
- Свойства вероятности.
- Свойство непрерывности вероятности.
- Пример, иллюстрирующий свойство непрерывности вероятности (пример А.В. Браилова)

- Пространство элементарных событий, случайное событие.
- Классическое и статистическое определение вероятности.
- Алгебра событий.
- Аксиомы теории вероятностей.
- Свойства вероятности.
- Свойство непрерывности вероятности.
- Пример, иллюстрирующий свойство непрерывности вероятности (пример А.В. Браилова)

Пространство элементарных событий, случайное событие.

Исходные понятия теории вероятностей:

- стохастический эксперимент,
- случайное событие,
- вероятность случайного события.

Определение

Стохастическими называются эксперименты, результаты которых нельзя предугадать заранее.

Пространство элементарных событий, случайное событие.

Каждому такому эксперименту (опыту) поставим в соответствие множество Ω , элементы которого ω_i изображают наиболее полную информацию о предполагаемых результатах данного эксперимента.

Определение

Множество Ω называется пространством элементарных событий, а его точки ω_i — элементарными событиями или исходами.

Обозначение: $\Omega = \{\omega_1, \omega_2, \dots, \omega_i, \dots\}$. Предполагается, что в рамках данного эксперимента (опыта) нельзя разделить элементарный исход на более мелкие составляющие.

- 1. Производится опыт: один раз бросают монету. Пространство элементарных событий имеет вид $\Omega = \{\omega_1 = \Gamma, \omega_2 = P\}$, где « Γ » появление герба, « Γ » появление решетки.
- 2. Монету бросают дважды. Пространство элементарных событий этого опыта является множество $\Omega = \{\omega_1 = \Gamma\Gamma, \omega_2 = \Gamma P, \omega_3 = P\Gamma, \omega_4 = PP\}.$
- 3. Игральную кость, на которой выбиты цифры 1,2,3,4,5,6, бросают один раз. Нас интересует число выпавших очков. Пространство элементарных исходов Ω состоит из 6 точек.
- **4.** Игральную кость бросают n раз. Тогда $\Omega = \{\omega = (i_1, i_2, \dots, i_n)\}$, где i_k число выпавших очков при k-ом бросани, которое может принимать значения **1,2 3,4,5,6**. Количество всех элементарных исходов равно $|\Omega| = 6^n$. Число $|\Omega|$ будем называть **мощностью** множества Ω .

5. Предположим, что симметричную (правильную) монету бросают до первого появления герба. Пространство элементарных событий такого эксперимента является множество

$$\Omega = \left\{ \omega_1 = \Gamma, \omega_2 = P\Gamma, \dots, \omega_n = \underbrace{P \dots P\Gamma}_{(n-1) \text{ pas}}, \dots; \omega_{\infty} \right\},$$

где ω_n означает, что герб впервые появится при n-ом бросании монеты, а ω_{∞} соответствует той возможности, что герб никогда не появится (в этом случае наш эксперимент продолжается бесконечно долго). В данном эксперименте множество Ω счётно.

Упражнение

Монету бросают n раз. Описать Ω и найти $|\Omega|$.

Определение

Случайным событием A называется любое подмножество пространства элементарных событий Ω и состоит из всех элементарных исходов $\omega \in \Omega$, которые благоприятствуют появлению события A. Обозначение $A \subseteq \Omega$.

Из определения следует, что само множество Ω , рассматриваемое как событие, обязательно происходит. Множество Ω называется **достоверным событием**. По определению подмножеством любого множества Ω считается пустое множество \varnothing , которое не содержит ни одной точки Ω . Если \varnothing сопоставить с событием, то это событие в эксперименте не происходит. Такое событие называется **невозможным событием**.

- 1. Пусть монету бросают дважды и A событие, которое состоит в том, что хотя бы один раз появится герб. Тогда
 - $\Omega=\{\omega_1=\Gamma\Gamma,\omega_2=\Gamma P,\omega_3=P\Gamma,\omega_4=PP\}$, $A=\{\omega_1=\Gamma\Gamma,\omega_2=\Gamma P,\omega_3=P\Gamma\}$. Здесь мощность множества A,
 - $A = \{\omega_1 = 11, \omega_2 = 11, \omega_3 = 11\}$. Одеев мощноств множества A т.е. количество благоприятствующих исходов, равно |A| = 3.
- 2. Предположим, что монету бросают до первого появления герба. Пусть A событие, состоящее в том, что будет сделано не более трех бросаний. Тогда $A = \{\Gamma, \Pr, \Pr\}$.

Классическое и статистическое определение вероятности.

Пусть пространство элементарных исходов Ω не более, чем счётно, т.е. $\Omega = \{\omega_1, \ldots, \omega_i, \ldots\}$. Предположим, что каждому элементарному исходу ω_i приписан некоторый «вес» p_i , называемый вероятностью элементарного события ω_i , причём веса p_i обладают свойствами:

- 1) $p_i \geqslant 0$,
- 2) $\sum_{i=1}^{\infty} p_i = 1$.

Определение

Вероятностью $\mathbb{P}(A)$ случайного события $A\subseteq \Omega$ называется сумма вероятностей элементарных событий, благоприятствующих событию A

$$\mathbb{P}(A) = \sum_{\omega_i \in A} p_i. \tag{1}$$

Введенная таким способом вероятность обладает следующими свойствами:

- 1. $0 \leqslant \mathbb{P}(A) \leqslant 1$,
- **2.** $\mathbb{P}(\Omega) = 1$,
- 3. если A и B несовместные события ($A\subset \Omega, B\subset \Omega, A\cdot B=\varnothing$), то $\mathbb{P}(A+B)=\mathbb{P}(A)+\mathbb{P}(B)$.

Действительно,
$$0\leqslant \mathbb{P}(A)=\sum_{\omega_i\in A}p_i\leqslant \sum_{i=1}^{\infty}p_i=1$$
, $\mathbb{P}(\Omega)=\sum_{\omega_i\in\Omega}p_i=\sum_{i=1}^{\infty}p_i=1$, $\mathbb{P}(A+B)=\sum_{\omega_i\in A+B}p_i=\sum_{\omega_i\in A}p_i+\sum_{\omega_i\in B}p_i=\mathbb{P}(A)+\mathbb{P}(B)$, если $A\cdot B=\varnothing$.

Для многих экспериментов пространство элементарных событий состоит из конечного числа одинаково возможных исходов $\Omega = \{\omega_1, \dots, \omega_n\}$, причём $\mathbb{P}(\omega_1) = \mathbb{P}(\omega_2) = \dots = \mathbb{P}(\omega_n) = \frac{1}{n}$. Пусть событию $A \subseteq \Omega$ благоприятствует m элементарных исходов. Тогда

$$\mathbb{P}(A) = \sum_{\omega_i \in A} p_i = \underbrace{\frac{1}{n} + \ldots \frac{1}{n}}_{m \; ext{pas}} = \frac{m}{n}.$$

Определение (классическое определение вероятности)

Рассмотрим стохастический эксперимент, который состоит из п одинаково возможных исходов ω_i , т.е. $|\Omega|=n$, $\mathbb{P}(\omega_i)=\frac{1}{n}$. Предположим, что событию A благоприятствует m из этих исходов m.е. |A|=m. Тогда

$$\mathbb{P}(A) = \frac{m}{n} = \frac{|A|}{|\Omega|}.$$
 (2)

Статистическое определение вероятности

Определение (статистическое определение вероятности)

Пусть некоторый опыт повторяется (реализуется) N раз. Для события A, связанного с данным опытом, обозначим через N(A) его **частоту** — количество реализаций, в которых "наблюдалось" (наступило) событие A. Определим **относительную частоту** $\hat{p}(A)$ события A как отношение частоты события A к N, т.е. $\hat{p}(A) \stackrel{def}{=} \frac{N(A)}{N}$. Статистическое определение вероятности утверждает, что при большом числе реализаций опыта N выполняется приближенное равенство

$$\left| \mathbb{P}(A) \approx \hat{p}(A) \right|, \tag{3}$$

$$\imath \partial e \, \hat{p}(A) \stackrel{def}{=} \frac{N(A)}{N}.$$

Формально статистическое определение вероятности очень похоже на классическое определение вероятности: и в том и другом определении вероятность равна отношению. Различие, конечно, кроется в том смысле, который придается букве "эн":

- ullet $n = |\Omega|$ число элементарных исходов;
- *N* число реализаций опыта.

При подбрасывании N раз симметричной монеты наблюдались следующие статистические закономерности (описываемые в литературе) появления герба $\hat{p}(A) = \frac{N(A)}{N}$:

Автор эксперимента	N	$\hat{p}(A) = rac{N(A)}{N}$
Бюффон (1707-1788)	4040	0,507
Де Морган (1806-1871)	4090	0,5005
Джевонс (1835-1882)	20 480	0,5068
Пирсон К. (1857-1936)	24 000	0,5005
Студент ПМ2024	100 000	???

1. Пусть симметричная игральная кость бросается дважды. Найти вероятность события A, состоящего в том, что сумма выпавших очков равна 5.

Решение. Пространство элементарных исходов $\Omega=\{\omega_{ij}=(i,j):i=\overline{1,6};j=\overline{1,6}\}$, $n=|\Omega|=6^2=36$, причём $\mathbb{P}(\omega_{ij})=\frac{1}{36}$ (все исходы равновероятны). Событие $A=\{\omega_{14}=(1,4),\omega_{23}=(2,3),\omega_{32}=(3,2),\omega_{41}=(4,1)\}$, m=|A|=4. Следовательно, $\mathbb{P}(A)=\frac{4}{36}=\frac{1}{9}$.

2. Предположим, что игральная кость не является симметричной и "вероятности" в ней распределены так, что "вероятность" каждой грани пропорциональна её номеру. Найти вероятность события A, состоящее в том, что при бросании несимметричной кости появившееся число очков кратно 3.

Pewenue. $p_i = \mathbb{P}(\omega_i) = \frac{i}{21}$. $A = \{3, 6\}$, $\mathbb{P}(A) = \frac{3}{21} + \frac{6}{21} = \frac{3}{7}$.

1. Пусть симметричная игральная кость бросается дважды. Найти вероятность события A, состоящего в том, что сумма выпавших очков равна 5.

Решение. Пространство элементарных исходов $\Omega=\{\omega_{ij}=(i,j):i=\overline{1,6};j=\overline{1,6}\}$, $n=|\Omega|=6^2=36$, причём $\mathbb{P}(\omega_{ij})=\frac{1}{36}$ (все исходы равновероятны). Событие $A=\{\omega_{14}=(1,4),\omega_{23}=(2,3),\omega_{32}=(3,2),\omega_{41}=(4,1)\}$, m=|A|=4. Следовательно, $\mathbb{P}(A)=\frac{4}{36}=\frac{1}{9}$.

2. Предположим, что игральная кость не является симметричной и "вероятности" в ней распределены так, что "вероятность" каждой грани пропорциональна её номеру. Найти вероятность события A, состоящее в том, что при бросании несимметричной кости появившееся число очков кратно 3.

Pewenue. $p_i=\mathbb{P}(\omega_i)=rac{i}{21}$. $A=\{3,6\}$, $\mathbb{P}(A)=rac{3}{21}+rac{6}{21}=rac{3}{7}$.

3. Предположим, что симметричную монету бросают до первого появления герба. Найти вероятность события A, состоящего в том, что будет произведено не более трех бросаний. Решение. Пространство элементарных событий является множество

$$\Omega = \left\{ \omega_1 = \Gamma, \omega_2 = P\Gamma, \dots, \omega_n = \underbrace{P\dots P\Gamma}_{(n-1) \text{ pas}}, \dots; \omega_{\infty} \right\},\,$$

где ω_n означает, что герб впервые появится при n-ом бросании монеты, а ω_∞ соответствует той возможности, что герб никогда не появится (в этом случае наш эксперимент продолжается бесконечно долго). Припишем веса $\mathbb{P}(\omega_n)=\frac{1}{2^n}$, а $\mathbb{P}(\omega_\infty)=0$. Тогда $\sum_{\omega\in\Omega}\mathbb{P}(\omega)=1$. Событие $A=\{\Gamma, \mathrm{P}\Gamma, \mathrm{P}\mathrm{P}\Gamma\}$. Поэтому

3. Предположим, что симметричную монету бросают до первого появления герба. Найти вероятность события A, состоящего в том, что будет произведено не более трех бросаний. Решение. Пространство элементарных событий является множество

$$\Omega = \left\{ \omega_1 = \Gamma, \omega_2 = P\Gamma, \dots, \omega_n = \underbrace{P\dots P\Gamma}_{(n-1) \text{ pas}}, \dots; \omega_{\infty} \right\},\,$$

где ω_n означает, что герб впервые появится при n-ом бросании монеты, а ω_∞ соответствует той возможности, что герб никогда не появится (в этом случае наш эксперимент продолжается бесконечно долго). Припишем веса $\mathbb{P}(\omega_n) = \frac{1}{2^n}$, а $\mathbb{P}(\omega_\infty) = \mathbf{0}$. Тогда $\sum_{\omega \in \Omega} \mathbb{P}(\omega) = \mathbf{1}$. Событие $A = \{\Gamma, \Pr, \Pr\}$. Поэтому $\mathbb{P}(A) = \frac{1}{2} + \frac{1}{4} + \frac{1}{8}$

3. Предположим, что симметричную монету бросают до первого появления герба. Найти вероятность события A, состоящего в том, что будет произведено не более трех бросаний. Решение. Пространство элементарных событий является множество

$$\Omega = \left\{ \omega_1 = \Gamma, \omega_2 = P\Gamma, \dots, \omega_n = \underbrace{P\dots P\Gamma}_{(n-1) \text{ pas}}, \dots; \omega_{\infty} \right\},$$

где ω_n означает, что герб впервые появится при n-ом бросании монеты, а ω_∞ соответствует той возможности, что герб никогда не появится (в этом случае наш эксперимент продолжается бесконечно долго). Припишем веса $\mathbb{P}(\omega_n)=\frac{1}{2^n}$, а $\mathbb{P}(\omega_\infty)=0$. Тогда $\sum_{\omega\in\Omega}\mathbb{P}(\omega)=1$. Событие $A=\{\Gamma, \mathrm{P}\Gamma, \mathrm{P}\mathrm{P}\Gamma\}$. Поэтому $\mathbb{P}(A)=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}$ Ответ: $\mathbb{P}(A)=\frac{7}{9}$

Упражнение

Предположим, что симметричную монету бросают до тех пор, пока она не выпадет дважды одной и той же стороной подряд. Построить вероятностную модель т.е. $(\Omega, \mathbb{P}(\cdot))$ и найти вероятность того, что потребуется чётное число бросаний.

Ответ:

Упражнение

Предположим, что симметричную монету бросают до тех пор, пока она не выпадет дважды одной и той же стороной подряд. Построить вероятностную модель т.е. $(\Omega, \mathbb{P}(\cdot))$ и найти вероятность того, что потребуется чётное число бросаний.

Otbet: $\frac{2}{3}$

Поскольку события являются подмножества множества Ω , то над ними можно производить операции как над множествами.

Пусть с некоторым пространством элементарных событий Ω связаны события A и B.

Определение

Eсли событие B происходит всякий раз, когда происходит событие A, тогда событие B является **следствием** события $A,A\subset B$, (событие A влечёт за собой событие B).

Очевидно, для любого $A,A\subset \varOmega$. По определению принимают $\varnothing\subset A$.

Пример

Пусть событие A состоит в том, что при бросании игральной кости выпало нечётное число, меньшее 5, а событие B — выпавшее число меньше 4. Тогда $A \subset B$.

Определение

Cуммой или объединением двух событий A и B называется событие A+B, которое состоит в наступлении хотя бы одного из данных событий.

Пример

Пусть бросают игральную кость. Событие A — выпадение числа, кратного 2, а B — выпадение числа, кратного 3. Тогда A+B — выпадение хотя бы одного из чисел 2,3,4,6.

Заметим, что для любого события A справедливы равенства $A+\varnothing=A$, $A+\varOmega=\varOmega$.

Определение

Произведением событий A и B называется событие $A \cdot B$, которое состоит в одновременном наступлении событий A и B.

Пример

B предыдущем примере $A\cdot B=\{\mathbf{6}\}$.

Отметим, что $A\cdot\varnothing=\varnothing$, $A\cdot\varOmega=A$.

Определение

Два события A и B называются **несовместными**, если их произведение $A \cdot B$ есть событие невозможное, т.е. $A \cdot B = \varnothing$.

Определение

Событие, которое состоит в том, что не происходит событие A, называется **противоположным** событию A и обозначается \overline{A} .

Ясно, что $A+\overline{A}=\varOmega$, $A\cdot\overline{A}=\varnothing$.

Пример

Покупаются три лотерейных билета. Пусть A_k обозначает событие выигрыша по k- ому билету, k=1,2,3. Тогда событие $A_1\cdot A_2+A_2\cdot A_3+A_1\cdot A_3$ означает выигрыш **не менее** по двум билетам, в то время как событие $A_1\cdot A_2\cdot \overline{A_3}+A_1\cdot \overline{A_2}\cdot A_3+\overline{A_1}\cdot A_2\cdot A_3$ — означает выигрыш **ровно** по двум и только двум билетам.

Определение

Разностью событий A и B называется событие $C = A \setminus B$, которое означает, что происходит событие A, но не происходит событие B.

Очевидно, что $A \backslash B = A \cdot \overline{B}$, $\overline{A} = \Omega \backslash A$.

Упражнение

Доказать принцип двойственности

1.
$$\overline{A_1 + A_2 + \ldots + A_n} = \overline{A_1} \cdot \overline{A_2} \cdot \ldots \cdot \overline{A_n}$$
,

2.
$$\overline{A_1 \cdot A_2 \cdot \ldots \cdot A_n} = \overline{A_1} + \overline{A_2} + \ldots + \overline{A_n}$$

Рассмотренные свойства операций над событиями носят алгебраический характер. В теории вероятностей класс \mathscr{F} всех возможных событий должен удовлетворять аксиомам событий.

Определение

Класс $\mathscr F$ всех возможных событий из Ω называется σ -алгеброй, если

- I. из того, что A является событием, $A\in \mathscr{F}$, следует, что \overline{A} также является событием, т.е. $\overline{A}\in \mathscr{F}$;
- II. из того, что A_i в конечном или счетном множестве являются событиями, $A_i \in \mathscr{F}, i=1,2,\ldots$, следует, что их сумма $A_1+A_2+\ldots$ также является событием, т.е. $A_1+A_2+\ldots\in\mathscr{F}$.

Если класс $\mathscr F$ не пуст, то из определения следует, что $\Omega\in\mathscr F$, так как $\Omega=A+\overline A$. Следовательно, $\varnothing\in\mathscr F$, поскольку $\varnothing=\overline\Omega$. Наконец, согласно принципу двойственности, если $A_i\in\mathscr F$, то и произведение $A_1\cdot A_2\cdot\ldots$ также является событием, т.е. принадлежит классу $\mathscr F$.

Примеры

- ullet $\{\varnothing, \Omega\}$ минимальная σ -алгебра;
- $m{\circ}$ $\mathscr{F}=\mathbf{2}^{\Omega}$ **максимальная** σ -алгебра.

Любая другая σ -алгебра ${\mathscr F}$ подмножеств \varOmega занимает промежуточное положение:

$$\{\varnothing,\Omega\}\subset\mathscr{F}\subset\mathbf{2}^{\Omega}.$$

Пример

В опыте с бросанием симметричной игральной кости пространство Ω состоит из шести элементарных событий, а максимальная σ -алгебра $\mathscr{F}=2^{\Omega}$ состоит из всех подмножеств Ω , т.е. из $2^6=64$ событий. И вообще, если Ω состоит из п элементарных событий, то $\mathscr{F}=2^{\Omega}$ состоит из $2^{|\Omega|}=2^n$ событий.

Аксиомы теории вероятностей

Рассмотрим некоторый стохастический эксперимент. Пусть Ω — пространство элементарных событий и \mathscr{F} — непустая совокупность всех подмножеств множества Ω , которая является σ -алгеброй. Это означает, что выполнены аксиомы событий **I** и **II**.

Предположим, что каждому случайному событию A (множеству из \mathscr{F}) поставлено в соответствие число $\mathbb{P}(A)$, которое называется $\pmb{seposmhocmbo}$ случайного события A, обладающее следующими свойствами:

- III. $\mathbb{P}(A)\geqslant 0$ для каждого $A\in\mathscr{F}$ (аксиома неотрицательности);
- IV. $\mathbb{P}(\Omega) = 1$ (аксиома нормированности);
- **V.** если события A_1, A_2, \ldots попарно несовместны т.е. $A_i \cdot A_j = \varnothing, i \neq j$, то $\mathbb{P}\left(\sum_{i=1}^\infty A_i\right) = \sum_{i=1}^\infty \mathbb{P}(A_i)$ (аксиома σ -аддитивности или счётной аддитивности).

Аксиомы теории вероятностей

Если множество Ω является конечным, то любая совокупность попарно не пересекающихся подмножеств состоит лишь из конечного числа подмножеств. Поэтому для случая конечного Ω аксиома ${\bf V}$ равносильна требованию

$${f V}'$$
. ${\Bbb P}(A+B)={\Bbb P}(A)+{\Bbb P}(B)$, если A и B несовместны.

Утверждения I-V и составляют систему аксиом теории вероятностей. В таком виде аксиоматика теории вероятностей была сформулирована A.H. Колмогоровым.

Определение

Тройка $(\Omega, \mathscr{F}, \mathbb{P}(\cdot))$, где Ω — пространство элементарных событий, \mathscr{F} — σ -алгебра, а $\mathbb{P}(\cdot)$ — вероятность на \mathscr{F} , называется вероятностным пространством.

Примеры

1. Пусть $\Omega = \{a,b\}$ — множество, состоящее из двух произвольных различных элементов. В качестве $\mathscr F$ рассмотрим множество всех подмножеств в Ω . Таким образом,

$$\mathscr{F} = \mathbf{2}^{\Omega} = \{\varnothing, \{a\}, \{b\}, \{a, b\} = \Omega\}.$$

Чтобы задать вероятность \mathbb{P} , зафиксируем некоторое число $p \in (0;1)$. После чего зададим вероятность с помощью следующих равенств

$$\mathbb{P}(\varnothing) = 0; \mathbb{P}(\{a\}) = p; \mathbb{P}(\{b\}) = 1 - p; \mathbb{P}(\{a,b\}) = 1.$$

Полученная тройка $(\Omega, \mathscr{F}, \mathbb{P}(\cdot))$ является самым простым примером вероятностного пространства, в котором имеются события с вероятностью, отличной от 0 и 1. Данное вероятностное пространство может служит моделью опыта, состоящего в подбрасывании несимметричной монеты.

Примеры вероятностных пространств

2. Пусть пространство элементарных событий Ω состоит из конечного числа одинаково возможных элементарных исходов, т.е. $\Omega = \{\omega_1, \dots, \omega_n\}$. В качестве $\mathscr F$ возьмем σ -алгебру всех подмножеств из Ω , которая состоит из 2^n событий. Положим $\mathbb P(A) = \frac{m}{n}$, где m — число элементарных событий, входящих (благоприятствующих) в A. Тогда все аксиомы теории вероятностей выполнены (проверить). Таким образом, $(\Omega, \mathscr F, \mathbb P(\cdot))$ — вероятностое пространство, которое называется классическим вероятностным пространством.

Упражнение

Является ли вероятностное пространство из предыдущего примера классическим вероятностным пространством?

Примеры вероятностных пространств

Примеры

3. Пусть $\Omega = [a, b]$ — отрезок числовой прямой. Опыт заключаются в бросании точки наугад в Ω . В качестве событий будут выступать открытые интервалы $(\alpha, \beta) \subset [a, b]$ и все множества, которые можно получить из них с помощью теоретико-множественных операций. Такие множества называются **борелевскими**. Пусть \mathscr{F} есть σ -алгебра борелевских множеств из Ω . Если все точки Ω «одинаково возможны», то для каждого события $A = (\alpha, \beta) \subseteq \Omega$ в качестве вероятности положим $\mathbb{P}(A) = rac{m(A)}{m(\Omega)}$, где m(A) = eta - lpha — длина. Легко проверить справедливость аксиом I-V. Таким образом, построено вероятностное пространство $(\Omega, \mathscr{F}, \mathbb{P}(\cdot))$, которое не является дискретным. Вероятность $\mathbb{P}(\cdot)$ называется **геометрической** вероятностью.

Используя аксиомы I-V, можно установить все теоремы, включая самые сложные, формально-логическим путем.

Теорема

Вероятность события, противоположного событию A, равна $1-\mathbb{P}(A)$:

$$\mathbb{P}(\overline{A}) = 1 - \mathbb{P}(A). \tag{4}$$

Доказательство.

Так как $A+\overline{A}=\varOmega$, $A\cdot\overline{A}=\varnothing$, то согласно аксиомам \mathbf{IV} , \mathbf{V} имеем $\mathbb{P}(A)+\mathbb{P}(\overline{A})=\mathbb{P}(\varOmega)=\mathbf{1}$. Поэтому $\mathbb{P}(\overline{A})=\mathbf{1}-\mathbb{P}(A)$.

Следствие

Вероятность невозможного события равна нулю: $\mathbb{P}(\varnothing) = \mathbf{0}$.

Доказательство.

Положим в равенстве (4), которое справедливо для любого $A\in \mathscr{F}$, $A=\varOmega$. Тогда $\mathbb{P}(\varnothing)=\mathbb{P}(\overline{\varOmega})=\mathbf{1}-\mathbb{P}(\varOmega)=\mathbf{0}$, поскольку в силу аксиомы IV имеем $\mathbb{P}(\varOmega)=\mathbf{1}$.

Замечание

Иногда ошибочно считают, что событие нулевой вероятности обязательно есть невозможное событие. Это не так. Например, пусть выбирается наугад число из отрезка [0,1]. Положим $\Omega=[0,1]$. Пусть \mathscr{F} — есть σ -алгебра борелевских множеств отрезка [0,1] и $\mathbb{P}(A)=m(A)=\beta-\alpha$, если $A=(\alpha,\beta)\subseteq [0,1]$. а $B=\mathbb{Q}$ — множество рациональных чисел отрезка [0,1]. Тогда вероятность того, что событие B произойдет, равна 0 т.е. $\mathbb{P}(B)=0$ (проверить). Однако событие B может произойти, оно не является невозможным.

Теорема

 Π усть A и B-cлучайные события, такие, что $A\subset B$. Тогда

$$\mathbb{P}(B \setminus A) = \mathbb{P}(B) - \mathbb{P}(A). \tag{5}$$

Доказательство.

Так как $A \subset B$, то $B = A + (B \setminus A)$, причём $A \cdot (B \setminus A) = \emptyset$. Поэтому по аксиоме **V** имеем $\mathbb{P}(B) = \mathbb{P}(A) + \mathbb{P}(B \setminus A)$, а отсюда следует равенство (refeq:1-5).

Следствие

Если $A\subset B$, то $\mathbb{P}(A)\leqslant \mathbb{P}(B)$.

Доказательство.

Действительно, по аксиоме III имеем $\mathbb{P}(B\setminus A)\geqslant 0$. Тогда из равенства (5) получаем $\mathbb{P}(B)\geqslant \mathbb{P}(A)$.

Следствие

Для каждого случайного события A имеет место неравенство

$$\mathbb{P}(A) \leqslant 1$$
.

Этот факт не содержится непосредственно ни в одной из аксиом III-V.

Доказательство.

В самом деле, для каждого случайного события $A, A \subset \Omega$. Поэтому $\mathbb{P}(A) \subset \mathbb{P}(\Omega) = 1$

$$\mathbb{P}(A) \leqslant \mathbb{P}(\Omega) = 1.$$

Теорема (формула сложения вероятностей)

Для любых событий A и B выполняется формула сложения вероятностей:

$$\mathbb{P}(A+B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cdot B). \tag{6}$$

Доказательство.

Рассмотрим соотношения между событиями (как между подмножествами множества Ω): $A=A\cdot\Omega=A\cdot(B+\overline{B})=A\cdot B+A\cdot\overline{B}$, $A+B=B+A\cdot\overline{B}$. Применяя к обоим равенствам аксиому $\mathbf V$, получим

$$\mathbb{P}(A) = \mathbb{P}(A \cdot B) + \mathbb{P}(A \cdot \overline{B}),$$

 $\mathbb{P}(A + B) = \mathbb{P}(B) + \mathbb{P}(A \cdot \overline{B}).$

Вычитая из последнего равенства предыдущее, приходим κ формуле (6).

Следствие (правило сложения вероятностей)

Если события A и B несовместны, то

$$\mathbb{P}(A+B) = \mathbb{P}(A) + \mathbb{P}(B). \tag{7}$$

Доказательство.

Действительно, поскольку события A и B несовместны, то $A \cdot B = \emptyset$ и $\mathbb{P}(A \cdot B) = \mathbf{0}$. Поэтому из формулы (6) следует (7).

Упражнения

1. Доказать формулу сложения для трёх событий A, B и C:

$$\mathbb{P}(A+B+C) = \mathbb{P}(A) + \mathbb{P}(B) + \mathbb{P}(C) - \mathbb{P}(A \cdot B) - \mathbb{P}(A \cdot C) - \mathbb{P}(B \cdot C) + \mathbb{P}(A \cdot B \cdot C).$$

2. Доказать формулу суммирования вероятностей (тождество Пуанкаре (аналог принципа включений—исключений в комбинаторике) для произвольного конечного числа событий:

$$\mathbb{P}(A_1 + A_2 + \dots + A_n) = \sum_{k=1}^n \mathbb{P}(A_k) - \sum_{1 \leqslant k_1 < k_2 \leqslant n} \mathbb{P}(A_{k_1} \cdot A_{k_2}) + \\ + \sum_{1 \leqslant k_1 < k_2 < k_3 \leqslant n} \mathbb{P}(A_{k_1} \cdot A_{k_2} \cdot A_{k_3}) + \dots + (-1)^{n-1} \mathbb{P}(A_1 \cdot A_2 \cdot \dots \cdot A_n).$$

3. Вывести аналог тождества Пуанкаре для вероятности пересечения событий.

Теорема

Для любого конечного или счётного числа случайных событий $\{A_n\}$ имеют место следующие неравенства:

$$\mathbb{P}(A_1 + A_2 + \ldots + A_n + \ldots) \leqslant \sum_{n=1}^{\infty} \mathbb{P}(A_n)$$
 (8)

$$\mathbb{P}(A_1 \cdot A_2 \cdot \ldots \cdot A_n \cdot \ldots) \geqslant 1 - \sum_{n=1}^{\infty} \mathbb{P}(\overline{A}_n)$$
 (9)

Доказательство.

Для доказательства (8) положим $B_1=A_1$, $B_2=\overline{A}_1\cdot A_2$,... $B_n=\overline{A}_1\cdot \overline{A}_2\cdot\ldots\cdot \overline{A}_{n-1}\cdot A_n$, Тогда события B_n попарно несовместны, $B_n\subset A_n$ и $A_1+A_2+\ldots+A_n+\ldots=B_1+B_2+\ldots+B_n+\ldots$ Поэтому

$$\mathbb{P}\left(A_1+A_2+\ldots+A_n+\ldots\right)=\mathbb{P}\left(B_1+B_2+\ldots+B_n+\ldots\right)\stackrel{ ext{acchomaV}}{=}\sum_{n=1}^{\infty}\mathbb{P}(B_n)\leqslant\sum_{n=1}^{\infty}\mathbb{P}(A_n)$$

Неравенство (9) вытекает из следующих рассуждений:

$$egin{aligned} \mathbb{P}\left(A_1\cdot A_2\cdot\ldots\cdot A_n\cdot\ldots
ight) &= 1 - \mathbb{P}\left(\overline{A_1\cdot A_2\cdot\ldots\cdot A_n\cdot\ldots}
ight) = \ &= 1 - \mathbb{P}\left(\overline{A}_1 + \overline{A}_2 + \ldots + \overline{A}_n + \ldots
ight) \geqslant 1 - \sum_{n=1}^{\infty} \mathbb{P}(\overline{A}_n), \end{aligned}$$

здесь использовано неравенство

$$\mathbb{P}\left(\overline{A}_1 + \overline{A}_2 + \ldots + \overline{A}_n + \ldots\right) \leqslant \sum_{n=1}^{\infty} \mathbb{P}(\overline{A}_n).$$

Свойство непрерывности вероятности

Определение

Последовательность событий $\{A_n, n\geqslant 1\}$ называется монотонно убывающей, если $A_1\supset A_2\supset\ldots\supset A_n\supset A_{n+1}\supset\cdots$. Последовательность событий $\{A_n, n\geqslant 1\}$ называется монотонно возрастающей, если $A_1\subset A_2\subset\ldots\subset A_n\subset A_{n+1}\subset\cdots$.

Если $\{A_n, n\geqslant 1\}$ является монотонно убывающей, то существует $npeden\ nocnedoвameльности\ \lim_{n\to\infty}A_n=\cap_{n=1}^\infty A_n$. Аналогично, для монотонно возрастающей последовательности $\{A_n, n\geqslant 1\}$ предел последовательности $\lim_{n\to\infty}A_n$ определяется равенством $\lim_{n\to\infty}A_n=\cup_{n=1}^\infty A_n$.

Пример

Для монотонно убывающей последовательности $A_n=\left(x-\frac{1}{n};x+\frac{1}{n}\right)$ имеем $\lim_{n\to\infty}A_n=\cap_{n=1}^\infty \left(x-\frac{1}{n};x+\frac{1}{n}\right)=\{x\}.$

Свойство непрерывности вероятности

Теорема (свойство непрерывности вероятности)

Если последовательность событий $\{A_n, n \geqslant 1\}$ является монотонной (убывающей или возрастающей), то

$$\lim_{n\to\infty} \mathbb{P}(A_n) = \mathbb{P}\left(\lim_{n\to\infty} A_n\right). \tag{10}$$

Свойство непрерывности вероятности

Доказательство.

Предположим, что $\{A_n, n\geqslant 1\}$ — монотонно возрастающая последовательность событий. Определим новую последовательность событий $\{B_n, n\geqslant 1\}$:

$$B_1 = A_1$$

 $B_n = A_n \cdot \left(\overline{\bigcup_{k=1}^{n-1} A_k} \right) = A_n \cdot \overline{A}_{n-1}, \quad n \geqslant 2.$

В последнем равенстве использовали то, что $\bigcup_{k=1}^{n-1} A_k = A_{n-1}$, поскольку $\{A_n, n \geqslant 1\}$ — монотонно возрастающая последовательность событий. Другими словами, событие B_n состоит из тех исходов, что и в A_n , которые не принадлежат ни одному из A_i для i < n. Тогда события B_n попарно несовместны и справедливы равенства:

$$B_1 + B_2 + \ldots + B_n + \ldots = A_1 + A_2 + \ldots + A_n + \ldots,$$

 $B_1 + B_2 + \ldots + B_n = A_1 + A_2 + \ldots + A_n, \quad n \geqslant 1.$

Доказательство.

Поэтому

$$\begin{split} \mathbb{P}\left(\lim_{n\to\infty}A_n\right) &= \mathbb{P}\left(A_1+A_2+\ldots+A_n+\ldots\right) = \mathbb{P}\left(B_1+B_2+\ldots+B_n+\ldots\right) \\ &\stackrel{\text{akchomav}}{=} \sum_{n=1}^{\infty}\mathbb{P}(B_n) = \lim_{n\to\infty}\sum_{k=1}^{n}\mathbb{P}(B_k) = \lim_{n\to\infty}\mathbb{P}(B_1+B_2+\ldots+B_n) = \\ &\lim_{n\to\infty}\mathbb{P}(A_1+A_2+\ldots+A_n) = \lim_{n\to\infty}\mathbb{P}(A_n). \end{split}$$

Пусть теперь $A_n, n \geqslant 1$ — монотонно убывающая последовательность событий. Тогда из предыдущих соотношений следует, что

$$\mathbb{P}\left(\cup_{k=1}^{\infty}\overline{A}_{k}
ight)=\lim_{n
ightarrow\infty}\mathbb{P}\left(\overline{A}_{n}
ight).$$

Доказательство.

Поскольку $\cup_{k=1}^\infty \overline{A}_k = \overline{\left(\cap_{k=1}^\infty A_k \right)}$, то из предыдущего равенства следует, что

$$\mathbb{P}\left(\overline{\left(\cap_{k=1}^{\infty}A_{k}
ight)}
ight)=\lim_{n o\infty}\mathbb{P}\left(\overline{A}_{n}
ight).$$

или

$$1-\mathbb{P}\left(\cap_{k=1}^{\infty}A_{k}
ight)=\lim_{n o\infty}\left(1-\mathbb{P}(A_{n})
ight)=1-\lim_{n o\infty}\mathbb{P}(A_{n}).$$

Следовательно,

$$\mathbb{P}\left(\lim_{n o\infty}A_n
ight)=\mathbb{P}\left(\cap_{k=1}^\infty A_k
ight)=\lim_{n o\infty}\mathbb{P}(A_n).$$

Пример, иллюстрирующий свойство непрерывности вероятности (пример А.В. Браилова)

В качестве примера, иллюстрирующего понятия σ -аддитивности и непрерывности вероятности, рассмотрим следующий опыт.

Пример

Монета подбрасывается до тех пор, пока не выпадет "герб". Пусть A – событие, состоящее в том, что это произойдет в нечетном броске. Требуется найти вероятность события A

- а) используя σ -аддитивность вероятности;
- б) используя свойство непрерывности вероятности.

Решение. Определим следующие события:

 $A_k = \{ ext{"Герб"}$ выпал в броске с нечетным номером $n \leqslant 2k{-}1\}, \, k = 1, 2, 3, \ldots$

Например, A_3 — это событие, состоящее в том, что "герб"выпал либо в первом, либо в третьем, либо в пятом бросках. Определим также события:

$$B_k = \{ ext{"Герб"выпал в броске с номером } 2k-1\}, \ k=1,2,3,\ldots.$$

Каждое из событий A_k можно представить как сумму попарно несовместных событий B_1, B_2, \ldots, B_k . Например,

$$A_3 = B_1 + B_2 + B_3.$$

Сначала найдем вероятность $\mathbb{P}(B_k)$, применяя классическое определение,

$$\mathbb{P}(B_k) = \frac{1}{2^{2k-1}} = \frac{1}{2} \cdot \frac{1}{4^{k-1}}.$$

Затем, с учетом равенства

$$A = igcup_{k=1}^\infty B_k$$

и попарной несовместности B_1, B_2, \ldots , используя σ -аддитивность вероятности, находим:

$$\mathbb{P}(A) = \mathbb{P}\left(igcup_{k=1}^{\infty} B_k
ight) = \sum_{k=1}^{\infty} \mathbb{P}(B_k) = \sum_{k=1}^{\infty} rac{1}{2} \cdot rac{1}{4^{k-1}} = rac{2}{3}.$$

Теперь тот же результат получим с помощью свойства непрерывности вероятности.

Используя равенство

$$A_k = B_1 + B_2 + \ldots + B_k,$$

и попарной несовместности B_1, B_2, \ldots, B_k , находим

$$\mathbb{P}(A_k) = \sum_{i=1}^k B_i = rac{1}{2} \cdot \left(1 + rac{1}{4} + \ldots + rac{1}{4^{k-1}}
ight) = rac{1}{2} \cdot rac{1}{1 - rac{1}{4}} \cdot \left(1 - rac{1}{4^k}
ight) = rac{2}{3} \left(1 - rac{1}{4^k}
ight).$$

Получаем $\mathbb{P}(A)$ по непрерывности:

$$\mathbb{P}(A) = \mathbb{P}\left(igcup_{k=1}^{\infty} A_k
ight) = \lim_{k o \infty} \mathbb{P}(A_k) = \lim_{k o \infty} rac{2}{3} \cdot \left(1 - rac{1}{4^k}
ight) = rac{2}{3}.$$

Univariate Distribution Relationships Chart

