MCA 24101

MCA DEGREE EXAMINATIONS

FIRST SEMESTER

DISCRETE MATHEMATICAL STRUCTURES

(w.e.f. Admitted Batch 2024 - 25)

Time: 3 Hours Max. Marks: 75M

SECTION - A

All Questions Carry Equal Marks

Note:- All parts of the questions must be answered at one place only

(4 X 15 = 60 M)

- 1. a. Prove that $\sqrt{2}$ is irrational by giving a proof using contradiction.
 - b. Obtain the PDNF and PCNF of the statement pV(7 p \rightarrow (qV(7 q \rightarrow r)))

(OR)

- 2. a. For any three sets A, B,C $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
 - b. Let $X=\{1,2,...,7\}$ and $R=\{\langle x,y\rangle/x\}$ is divisible by 3} show that R is an equivalence relation .Draw graph of R.
- 3. a. Using generating function, solve the difference equation y_{n+2} - y_{n+1} - y_{n+2} - y_{n+1} - y_{n+2} - y_{n+2} - y_{n+3} - y_{n+2} - y_{n+4} - y_{n+2} - y_{n+4} - y_{n+2} - y_{n+4} -y
 - b. Solve the recurrence relation of the Fibonacci sequence of numbers $f_{n} = f_{n-1} + f_{n-2}$; n > 2

(OR)

- 4. a. State Pigeonhole principle. In how many ways can all the letters in MATHEMATICAL is arranged.
 - b. How many integers between 1 and 1,000 inclusive have a sum of digits
 - (a) equal to 10 (b) less than 10
- 5. a. Prove that a simple graph with n vertices and k components can have at most (n-k)(n-k+1)/2 edges.
 - b. Determine which of the following graph are bipartite & which are not. If a graph is bipartite, state if is completely bipartite.

(OR)

6. a. The adjacency matrices of two pairs of graph as given below. Examine the isomorphism of G and H finding a permutation matrix.

$$A_{G} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} A_{H} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

b. How to finding a minimal spanning tree of kruskal's algorithm. Construct spanning and find its

Weight.

- 7. a. Find the sum of products expansion for the function $F(x,y,z)=(x+y)\overline{z}$
 - b. Construct circuits that produce the following outputs (i) $(x + y)\overline{z}$ (ii) $\overline{x}(y + z)$

(OR)

- 8. a. Show that distributive law x(y + z) = xy + xz is valid.
 - b. Construct the state table for the finite state machine with the state diagram shown in the

following Figure.

SECTION-B

Answer **Any 5** of the Following.

(5 X 3 = 15 M)

- 9. Construct the truth table for $p \land (\sim q \lor q)$
- 10. Write the following in symbolic form Every person is precious.
- 11. Compute $\frac{20!}{18!}$
- 12. Prove $AU(B \cap C) = (AUB) \cap (AUC)$
- 13. State and prove Hand shaking theorem
- 14. Define Hamilton circuit Hamiltonian graph give examples to each
- 15. Find the duals of x(y+0) and \overline{x} . $1+(\overline{y}+z)$
- 16. Let $A=\{1,00\}$, find A^n forn = 0,1,2 and 3.
