Universidad del Valle de Guatemala Electrónica Digital 1 Sección 20

Máquina de Estados Finitos

Sistema de Control de un Avión en base a push-bottons

Stefano Papadopolo Carné #19836 11/10/2020

Descripción General

Este circuito fue construido con el propósito de simular el sistema de control de un avión a control remoto en base a push-bottons. Está compuesto por 3 máquinas de estados finitos, junto con secciones de lógica combinacional para facilitar su interconexión.

Máquinas de Estados Finitos

Control de movimiento

Descripción

Consiste en 3 estados que van hacia un lado y 3 estados que van hacia el otro, con un estado neutro en el centro. Esta máquina fue utilizada para el control de dirección (izquierdaderecha) y el de altitud (ascender-descender). Cabe notare que el estado no utilizado regresa al estado +2 (derecha o ascender) para que no haya conflicto con el timing del circuito si llega a entrar en ese estado.

Diagrama de Transición de Estados

Figura 1-Transiciones de Estado Movimiento

Figura 2-Transiciones de Estado Altitud

Tablas de Transición de Estados

S	L	R	SF
S0	0	0	S0
S0	0	1	S4
S0	1	0	S1
S0	1	1	S0
S1	0	0	S1
S1	0	1	S0
S1	1	0	S2
S1	1	1	S1
S2	0	0	S2
S2	0	1	S1
S2	1	0	S3
S2	1	1	S2
S3	0	0	S3
S3	0	1	S2
S3	1	0	S3
S3	1	1	S3
S4	0	0	S4
S4	0	1	S5
S4	1	0	S0
S4	1	1	S4
S5	0	0	S5
S5	0	1	S6
S5	1	0	S4
S5	1	1	S5
S6	0	0	S6
S6	0	1	S6
S6	1	0	S5
S6	1	1	S6
S 7	0	0	S5
S 7	0	1	S5
S 7	1	0	S5
S 7	1	1	S5

Tabla 1-Movimiento-Transiciones de Estado

Control	Estado	Código
Centro	S0	000
Izq/Abajo 1	S1	001
Izq/Abajo 2	S2	010
Izq/Abajo 3	S3	011
Der/Arriba 1	S4	100
Der/Arriba 2	S5	101
Der/Arriba 3	S6	110
Der/Arriba		
Extra	S 7	111

Tabla 2-Movimiento-Codificación de Estados

S3	S2	S1	L	R	S3F	S2F	S1F
0	0	0	0	0	0	0	0
0	0	0	0	1	1	0	0
0	0	0	1	0	0	0	1
0	0	0	1	1	0	0	0
0	0	1	0	0	0	0	1
0	0	1	0	1	0	0	0
0	0	1	1	0	0	1	0
0	0	1	1	1	0	0	1
0	1	0	0	0	0	1	0
0	1	0	0	1	0	0	1
0	1	0	1	0	0	1	1
0	1	0	1	1	0	1	0
0	1	1	0	0	0	1	1
0	1	1	0	1	0	1	0
0	1	1	1	0	0	1	1
0	1	1	1	1	0	1	1
1	0	0	0	0	1	0	0
1	0	0	0	1	1	0	1
1	0	0	1	0	0	0	0
1	0	0	1	1	1	0	0
1	0	1	0	0	1	0	1
1	0	1	0	1	1	1	0
1	0	1	1	0	1	0	0
1	0	1	1	1	1	0	1
1	1	0	0	0	1	1	0
1	1	0	0	1	1	1	0
1	1	0	1	0	1	0	1
1	1	0	1	1	1	1	0
1	1	1	0	0	1	0	1
1	1	1	0	1	1	0	1
1	1	1	1	0	1	0	1
1	1	1	1	1	1	0	1

Tabla 3-Movimiento-Transiciones de Estados Codificado

Ecuaciones Booleanas

Minimized:

```
S3F = S2' S1' L' R + S3 R + S3 L' + S3 S1 + S3 S2;

S2F = S3 S2' S1 L' R + S3' S1 L R' + S2 S1' L R + S3 S2 S1' L' + S3' S2 R' + S3' S2 S1;

S1F = S3 S2' S1' L' R + S3' S2 S1' L' R + S3' S1' L R' + S2 L R' + S1 L' R' + S1 L R + S3 S2 S1;
```

Figura 3-Movimiento-Ecuaciones Minimizadas Logic Friday

Alarma

Descripción

La segunda máquina fue un sistema de alarma que se enciende si se mantiene en un cambio de movimiento muy radical (3er estado en cualquier dirección en la máquina de estados finitos de movimiento) por un periodo de tiempo determinado. Esta enciende y apaga unos leds para indicarle al operador que está en riesgo de perder el control de la aeronave si no la estabiliza. Una vez regresa a un estado más estable en el movimiento, se detiene la alarma.

Diagrama de Transición de Estados

Figura 4-Alarma-Transiciones de Estado

Tablas de Transición de Estados

S	- 1	SF	Υ
S0	0	S0	0
S0	1	S1	0
S1	0	S0	0
S1	1	S2	0
S2	0	S0	0
S2	1	S3	0
S3	0	S0	0
S3	1	S2	1

Tabla 5-Alarma-Transiciones de Estado

Definición	Estado	Código
Apagado	S0	00
Flanco 1	S1	01
Flanco 2	S2	10
Encendido	S3	11

Tabla 4-Alarma-Codificación de Estados

S1	S0	1	S1F	S2F	Υ
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	0
0	1	1	1	0	0
1	0	0	0	0	0
1	0	1	1	1	0
1	1	0	0	0	0
1	1	1	1	0	1

Tabla 6-Alarma-Transiciones de Estados Codificados

Ecuaciones Booleanas

Minimized: S1F = S1 I + S0 I; S0F = S0' I; Y = S1 S0 I;

Figura 5-Alarma-Ecuaciones Minimizadas Logic Friday

Control del Motor

Descripción

Similar a la máquina de estados finitos del movimiento, cuenta con varios estados para acelerar y retroceder, además de un estado neutro donde se encuentra detenido el motor. Cuenta con un estado para retroceder el cual se utilizaría en tierra y al aterrizar para detenrse, un estado para avanzar y otro para avanzar aún más rápido el cual sería utilizado en despegue.

Diagrama de Transición de Estados

Tablas de Transición de Estados

S	F	В	SF
S0	0	0	S0
S0	0	1	B1
S0	1	0	F1
S0	1	1	S0
F1	0	0	F1
F1	0	1	S0
F1	1	0	F2
F1	1	1	F1
B1	0	0	B1
B1	0	1	B1
B1	1	0	S0
B1	1	1	B1
F2	0	0	F2
F2	0	1	F1
F2	1	0	F2
F2	1	1	F2

T 1. 1	0 11-4	Transiciones	

S1	S0	F	В	S1F	SOF
0	0	0	0	0	0
0	0	0	1	1	0
0	0	1	0	0	1
0	0	1	1	0	0
0	1	0	0	0	1
0	1	0	1	0	0
0	1	1	0	1	1
0	1	1	1	0	1
1	0	0	0	1	0
1	0	0	1	1	0
1	0	1	0	0	0
1	0	1	1	1	0
1	1	0	0	1	1
1	1	0	1	0	1
1	1	1	0	1	1
1	1	1	1	1	1

Tabla 9-Motor-Transiciones de Estados-Codificados

Ecuaciones Booleanas

Minimized:

```
S1F = S1 F' B' + S1 F B + S0 F B' + S0' F' B;
S0F = S1' F B' + S1 S0 + S0 B' + S0 F;
```

Figura 6-Motor-Ecuaciones Minimizadas Logic Friday

Estado	Código
Apagado (S0)	00
Acelerar 1 (F1)	01
Acelerar 2 (F2)	11
Frenar (B1)	10

Tabla 7-Motor-Codificación

Enlaces:

Enlace vídeo

https://youtu.be/vTYlGg-JwQY

Enlace Repositorio

https://github.com/pap19836/Digital1 Stefano Papadopolo/tree/master/Proyecto