EE542 Lab 10: Exploring patterns of tumor malignancy with respect to miRNA expression quantification data using machine learning models

Ali Afzal, Spencer McDonough, Zane Pazooki

The miRNA sequence data was obtained from the Genomics Data Commons (GDC) Portal. Our selection was as follows:

Screen%20Shot%202018-10-29%20at%207.57.28%20AM.png

The .csv files for each were downloaded using the gdc client and preprocessed:

```
In [45]: import os
         import pandas as pd
         import numpy as np
         import matplotlib.pyplot as plt
         df stomach = pd.read_csv(os.getcwd() + "/stomach.csv")
         df_lung = pd.read_csv(os.getcwd() + "/lung.csv")
         df liver = pd.read csv(os.getcwd() + "/liver.csv")
         df uterus = pd.read csv(os.getcwd() + "/uterus.csv")
         frames = [df stomach, df lung, df liver, df uterus]
         df = pd.concat(frames, ignore index=True)
         df.dropna(axis=0) # drop rows with at least one NA
         df.dropna(axis=1) # drop cols with at least one NA
         df.loc[df['label'] == 1, 'label'] = 'cancerous'
         df.loc[df['label'] == 0, 'label'] = 'benign'
         df['y'] = df['Primary Site'] + ' Adenomas ' + df['label']
         #y_data = df[['Primary Site', 'label']].copy()
         y_data = df.pop('y')
         df.pop('label')
         df.pop('Primary Site')
         df.pop('file id')
         df.pop('Unnamed: 0')
         X data = df.values.astype('float64', copy=False)
         # Using numerical output is preferred but not needed in this lab.
         # Thw two methods we used are included below.
         # y data = pd.get dummies(y data, drop first=True)
         # from sklearn.preprocessing import OneHotEncoder
         # ohe = OneHotEncoder(categorical features=[0])
         # ohe.fit transform(y data).toarray()
         from sklearn.model_selection import train_test_split
         X train, X test, y train, y test = train test split(X data, y data, test
         _size=0.3, random state=0)
```

Although we could have used a single pipeline and grid search, we have broken it down for demonstration purposes.

First the optimal k is obtained for k neighbors classifier

```
In [46]: from sklearn.pipeline import make pipeline
         from sklearn.preprocessing import StandardScaler
         from sklearn.neighbors import KNeighborsClassifier
         from sklearn.model_selection import GridSearchCV
         pipe_knn = make_pipeline(StandardScaler(),
                                  KNeighborsClassifier(metric='minkowski'))
         # sorted(pipe knn.get params().keys()) used to get the parameters for gr
         id search
         gs = GridSearchCV(estimator=pipe knn,
                           param grid=[{'kneighborsclassifier n neighbors': [3,4]
         ,5,6,7], 'kneighborsclassifier p':[1,2]}],
                           scoring='accuracy',
                           cv=5)
         gs = gs.fit(X_train, y_train)
         print(gs.best_score_)
         print(gs.best params )
         0.8586707410236822
         {'kneighborsclassifier_n_neighbors': 5, 'kneighborsclassifier_p': 1}
```

We can see that 5 nearest neighbors and the p=1 norm gives the best results.

The Evaluation metrics are visualized below:

```
In [22]: pipe_knn.fit(X_train, y_train)
    y_pred = pipe_knn.predict(X_test)

from sklearn.metrics import classification_report

print('k=5 Nearest Neighbors: \n', classification_report(y_true=y_test, y_pred=y_pred))

import scikitplot as skplt
%matplotlib notebook

skplt.metrics.plot_precision_recall_curve(y_test, pipe_knn.predict_proba(X_test))
skplt.metrics.plot_roc(y_test, pipe_knn.predict_proba(X_test))
```

k=5 Nearest Neighbors:

	precision	recall	f1-score	support
liver benign	0.71	0.89	0.79	19
liver cancerous	0.84	0.77	0.81	127
lung benign	0.75	0.69	0.72	13
lung cancerous	0.82	0.72	0.77	146
stomach benign	0.80	0.92	0.86	13
stomach cancerous	0.72	0.73	0.72	127
uterus benign	0.60	0.75	0.67	4
uterus cancerous	0.64	0.75	0.69	112
avg / total	0.76	0.75	0.75	561

/home/ubuntu/anaconda3/envs/python3/lib/python3.6/site-packages/sklear n/utils/deprecation.py:77: DeprecationWarning: Function plot_precision_recall_curve is deprecated; This will be removed in v0.5.0. Please use scikitplot.metrics.plot_precision_recall instead.

warnings.warn(msg, category=DeprecationWarning)

Out[22]: <matplotlib.axes. subplots.AxesSubplot at 0x7f0db342e860>

We also obtain the cross validation score to ensure we are not overfitting.

Feature Selection via Random Forest Classifier

Out[24]: <BarContainer object of 1881 artists>

The 0.001 threshhold seems reasonable, the proteins are listed below:

```
In [57]: #for f in range(X train.shape[1]): # to get the full results
         for f in range(20):
              print("%2d) %-*s %f" % (f + 1, 30, columns[indices[f]], importances[
          indices[f]]))
          1) hsa-mir-194-2
                                              0.025219
          2) hsa-mir-194-1
                                              0.018835
          3) hsa-mir-885
                                              0.018080
          4) hsa-mir-192
                                              0.017793
          5) hsa-mir-196b
                                              0.017455
          6) hsa-mir-215
                                              0.015681
          7) hsa-mir-205
                                              0.015238
          8) hsa-mir-122
                                              0.014672
          9) hsa-mir-10b
                                              0.012187
         10) hsa-mir-200c
                                              0.011646
         11) hsa-mir-141
                                              0.011381
         12) hsa-mir-1295b
                                              0.009928
         13) hsa-mir-9-3
                                              0.008797
         14) hsa-mir-200a
                                              0.008694
         15) hsa-mir-511
                                              0.008568
         16) hsa-mir-429
                                              0.008481
         17) hsa-mir-139
                                              0.008401
         18) hsa-mir-135b
                                              0.008336
         19) hsa-mir-5589
                                              0.008287
         20) hsa-mir-3591
                                              0.008207
```

Now, using the threshhold we grid serach for the optimal number of estimators for the forest:

```
from sklearn.feature selection import SelectFromModel
In [28]:
         from sklearn.ensemble import RandomForestClassifier
         pipe knn = make pipeline(StandardScaler(),
                                  #SelectFromModel(LassoCV(), threshold=0), we tr
         ied lasso but forests gave better results
                                  SelectFromModel(RandomForestClassifier(), thres
         hold=0.001),
                                  KNeighborsClassifier(n neighbors=5, p=1, metric
         ='minkowski'))
         # sorted(pipe knn.get params().keys())
         gs = GridSearchCV(estimator=pipe knn,
                           param grid=[{'selectfrommodel estimator n estimator
         s': [10, 50, 100, 500, 1000]}],
                           scoring='accuracy',
                           cv=5)
         gs = gs.fit(X_train, y_train)
         print(gs.best_score_)
         print(gs.best params )
         0.9541634835752483
         {'selectfrommodel estimator n estimators': 50}
```

As demosntrated above, 50 estimators gives the most accurate results:

```
In [29]: pipe_knn.fit(X_train, y_train)
    y_pred = pipe_knn.predict(X_test)

print('k=5 Nearest Neighbors: \n', classification_report(y_true=y_test,
    y_pred=y_pred))

%matplotlib notebook
    skplt.metrics.plot_precision_recall_curve(y_test, pipe_knn.predict_proba
    (X_test))
    skplt.metrics.plot_roc(y_test, pipe_knn.predict_proba(X_test))
```

k=5 Nearest Neighbors:

	precision	recall	f1-score	support
liver benign	0.90	1.00	0.95	19
liver cancerous	0.99	0.95	0.97	127
lung benign	0.85	0.85	0.85	13
lung cancerous	0.94	0.97	0.96	146
stomach benign	0.85	0.85	0.85	13
stomach cancerous	0.95	0.97	0.96	127
uterus benign	1.00	1.00	1.00	4
uterus cancerous	1.00	0.96	0.98	112
avg / total	0.96	0.96	0.96	561

/home/ubuntu/anaconda3/envs/python3/lib/python3.6/site-packages/sklear n/utils/deprecation.py:77: DeprecationWarning: Function plot_precision_recall_curve is deprecated; This will be removed in v0.5.0. Please use scikitplot.metrics.plot_precision_recall instead.

warnings.warn(msg, category=DeprecationWarning)

Out[29]: <matplotlib.axes._subplots.AxesSubplot at 0x7f0da4279128>

Visualization with different dimension reduction techniques:

from sklearn.manifold import TSNE, MDS, Isomap from sklearn.decomposition import PCA import seaborn as sns pca = PCA(n_components = 2).fit_transform(X_train) tsne = TSNE(learning_rate=200).fit_transform(X_train) pca then tsne = TSNE(learning_rate=200).fit_transform(pca) mds = MDS(n components = 2).fit transform(X train) iso = Isomap(n_components = 2).fit_transform(X_train) df pca = pd.DataFrame(data = pca , columns = ['pc1', 'pc2']) df pca['Disease'] = y train sns.lmplot(x='pc1', y='pc2', data=df_pca, fit_reg=False, hue='Disease', legend=True) df_tsne = pd.DataFrame(data = tsne , columns = ['tsne1', 'tsne2']) df_tsne['Disease'] = y_train sns.lmplot(x='tsne1', y='tsne2', data=df_tsne, fit_reg=False, hue='Disea se', legend=True) df pca then tsne = pd.DataFrame(data = pca then tsne , columns = ['pca t hen_tsne1', 'pca_then_tsne2']) df_pca_then_tsne['Disease'] = y_train sns.lmplot(x='pca_then_tsne1', y='pca_then_tsne2', data=df_pca_then_tsne , fit_reg=False, hue='Disease', legend=True)

Out[29]: <seaborn.axisgrid.FacetGrid at 0x7efd110fd240>

```
In [30]: df_mds = pd.DataFrame(data = mds , columns = ['mds1', 'mds2'])
    df_mds['Disease'] = y_train
    sns.lmplot(x='mds1', y='mds2', data=df_mds, fit_reg=False, hue='Disease'
    , legend=True)

df_iso = pd.DataFrame(data = iso , columns = ['iso1', 'iso2'])
    df_iso['Disease'] = y_train
    sns.lmplot(x='iso1', y='iso2', data=df_iso, fit_reg=False, hue='Disease'
    , legend=True)
```


Out[30]: <seaborn.axisgrid.FacetGrid at 0x7efd09cad4e0>

Given the plots, dimension reduction is unlikely to imporve results. Therefore, now we grid search for the correct model as well as the number of components.

```
In [32]:
         from sklearn.decomposition import PCA, TruncatedSVD
         from sklearn.manifold import TSNE, MDS, Isomap
         from sklearn.pipeline import Pipeline
         pipe_knn = Pipeline([
             ('scale', StandardScaler()),
             ('feature selection', SelectFromModel(RandomForestClassifier(n estim
         ators=50), threshold=0.001)),
              ('reduce dim', PCA()),
              ('classifier', KNeighborsClassifier(n neighbors=5, p=1, metric='mink
         owski'))
         ])
         param_grid = [
                  'reduce_dim': [PCA(), Isomap(), TruncatedSVD()],
                  'reduce_dim__n_components': [2, 3],
             },
         1
         gs = GridSearchCV(estimator=pipe_knn,
                            param grid=param grid,
                            scoring='accuracy',
                            cv=5)
         gs = gs.fit(X_train, y_train)
         print(gs.best score )
         print(gs.best params )
```

```
In [33]: pipe knn = make pipeline(StandardScaler(),
                                   SelectFromModel(RandomForestClassifier(n estima
         tors=1000), threshold=0.001),
                                   Isomap(eigen_solver='auto', max_iter=None, n_co
         mponents=3, n_jobs=1,
                                         n_neighbors=5, neighbors_algorithm='aut
         o', path_method='auto', tol=0),
                                  KNeighborsClassifier(n neighbors=5, p=1, metric
         ='minkowski'))
         pipe_knn.fit(X_train, y_train)
         y_pred = pipe_knn.predict(X_test)
         print('k=5 Nearest Neighbors: \n', classification report(y true=y test,
         y pred=y pred))
         %matplotlib notebook
         skplt.metrics.plot precision recall curve(y test, pipe knn.predict proba
         (X_test))
         skplt.metrics.plot roc(y test, pipe knn.predict proba(X test))
```

k=5 Nearest Neighbors:

	precision	recall	f1-score	support
liver benign	0.71	0.89	0.79	19
liver cancerous	0.92	0.89	0.90	127
lung benign	0.62	0.77	0.69	13
lung cancerous	0.90	0.87	0.89	146
stomach benign	0.56	0.38	0.45	13
stomach cancerous	0.87	0.92	0.89	127
uterus benign	0.00	0.00	0.00	4
uterus cancerous	0.96	0.96	0.96	112
avg / total	0.88	0.89	0.88	561

/home/ubuntu/anaconda3/envs/python3/lib/python3.6/site-packages/sklear n/utils/deprecation.py:77: DeprecationWarning: Function plot_precision_recall_curve is deprecated; This will be removed in v0.5.0. Please use scikitplot.metrics.plot_precision_recall instead.

warnings.warn(msg, category=DeprecationWarning)

Out[33]: <matplotlib.axes._subplots.AxesSubplot at 0x7f0d9b64f390>

As shown above, dimension reduction rechniques are not improving the evaluation metrics. The reason is the extreme sparsity of the data in the dataset. We now show a cluster map of the data to confirm our conjecture and then a 3d principal components plot to test kernel pca.

In [41]: g = sns.clustermap(df, cmap="mako", robust=True) # ignoring outliers

In [42]: from mpl toolkits.mplot3d import Axes3D %matplotlib notebook my_dpi=96 # plt.figure(figsize=(480/my dpi, 480/my dpi), dpi=my dpi) pca3 = PCA(n_components = 3).fit_transform(X_train) df_pca3 = pd.DataFrame(data = pca3 , columns = ['PCA0', 'PCA1', 'PCA2']) df_pca3['y'] = y_train df_pca3['y']=pd.Categorical(df_pca3['y']) my_color=df_pca3['y'].cat.codes $df_pca3 = df_pca3.drop('y', 1)$ fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.scatter(df_pca3['PCA0'], df_pca3['PCA1'], df_pca3['PCA2'], c=my color , cmap="Set2_r", s=60) xAxisLine = ((min(df_pca3['PCA0']), max(df_pca3['PCA0'])), (0, 0), (0,0) ax.plot(xAxisLine[0], xAxisLine[1], xAxisLine[2], 'r') yAxisLine = ((0, 0), (min(df_pca3['PCA1']), max(df_pca3['PCA1'])), (0,0 ax.plot(yAxisLine[0], yAxisLine[1], yAxisLine[2], 'r') zAxisLine = ((0, 0), (0, 0), (min(df pca3['PCA2']), max(df pca3['PCA2']))1))) ax.plot(zAxisLine[0], zAxisLine[1], zAxisLine[2], 'r') ax.set xlabel("PC1") ax.set ylabel("PC2") ax.set zlabel("PC3") plt.show()

Given the structure of the data, the kernel trick will probably not be useful as well. Nevertheless, we do a grid search to find the optimal kernel hyperparameters, and to see whether it will yield better results in higher dimensions.

```
In [54]: from sklearn.decomposition import KernelPCA
         pipe_knn = make_pipeline(StandardScaler(),
                                  SelectFromModel(RandomForestClassifier(n_estima
         tors=50), threshold=0.001),
                                  KernelPCA(),
                                  KNeighborsClassifier(n_neighbors=5, p=1, metric
         ='minkowski'))
         # sorted(pipe knn.get params().keys())
         gs = GridSearchCV(estimator=pipe knn,
                           param_grid=[{'kernelpca_kernel': ['linear','poly','rb
         f', 'sigmoid', 'cosine'],
                                         'kernelpca_n_components':[2,3,4,5,6],
                                         'kernelpca_gamma':np.linspace(0.03, 0.05
         , 10)}],
                           scoring='accuracy',
                           cv=5)
         gs = gs.fit(X_train, y_train)
         print(gs.best_score_)
         print(gs.best_params_)
         0.9274255156608098
         {'kernelpca gamma': 0.032222222222222, 'kernelpca kernel': 'cosin
```

As expected, kernel pca did not improve results.

e', 'kernelpca n components': 6}

k=5 Nearest Neighbors:

	precision	recall	f1-score	support
liver benign	0.89	0.89	0.89	19
liver cancerous	0.97	0.93	0.95	127
lung benign	0.79	0.85	0.81	13
lung cancerous	0.90	0.97	0.94	146
stomach benign	0.77	0.77	0.77	13
stomach cancerous	0.96	0.94	0.95	127
uterus benign	0.67	1.00	0.80	4
uterus cancerous	0.98	0.93	0.95	112
avg / total	0.94	0.94	0.94	561

/home/ubuntu/anaconda3/envs/python3/lib/python3.6/site-packages/sklear n/utils/deprecation.py:77: DeprecationWarning: Function plot_precision_recall_curve is deprecated; This will be removed in v0.5.0. Please use scikitplot.metrics.plot_precision_recall instead.

warnings.warn(msg, category=DeprecationWarning)

Out[55]: <matplotlib.axes._subplots.AxesSubplot at 0x7f0d9a7c37b8>

Although we can get a comparably good result with the complex dimensionality reduction, the simple method of selecting features with random forests is preferred because of its simplicity.