

Principal Component Analysis and Matrix Factorizations for Learning

Chris Ding

Lawrence Berkeley National Laboratory

Supported by Office of Science, U.S. Dept. of Energy

Many unsupervised learning methods are closely related in a simple way

Part 1.A. Principal Component Analysis (PCA) and Singular Value Decomposition (SVD)

- Widely used in large number of different fields
- Most widely known as PCA (multivariate statistics)
- SVD is the theoretical basis for PCA

Brief history

- PCA
 - Draw a plane closest to data points (Pearson, 1901)
 - Retain most variance (Hotelling, 1933)
- SVD
 - Low-rank approximation (Eckart-Young, 1936)
 - Practical application/Efficient Computation (Golub-Kahan, 1965)
- Many generalizations

PCA and SVD

Data: *n* points in *p*-dim:

$$X = (x_1, x_2, \dots, x_n)$$

Covariance
$$C = XX^T = \sum_{k=1}^{p} \lambda_k u_k u_k^T$$

Gram (kernel) matrix $X^T X = \sum_{k=1}^{p} \lambda_k v_k v_k^T$

$$X^T X = \sum_{k=1}^{\infty} \lambda_k v_k v_k^T$$

Principal directions: u_{ν} (Principal axis, subspace)

Principal components: \mathcal{V}_k (projection on the subspace)

Underlying basis: SVD $X = \sum_{k=1}^{p} \sigma_k u_k v_k^T = U \Sigma V^T$

Further Developments

SVD/PCA

- Principal Curves
- Independent Component Analysis
- Sparse SVD/PCA (many approaches)
- Mixture of Probabilistic PCA
- Generalization to exponential familty, max-margin
- Connection to K-means clustering

Kernel (inner-product)

Kernel PCA

Methods of PCA Utilization

Principal components (uncorrelated random variables):

$$X = (x_1, x_2, \cdots, x_n)$$

$$u_k = u_k(1) \cdot X_1 + \dots + u_k(d) \cdot X_d$$

Dimension reduction:
$$X = \sum_{k=1}^{p} \sigma_k u_k v_k^T = U \Sigma V^T$$

Projection to low-dim subspace

$$\widetilde{X} = U^T X$$
 $U = (u_1, \dots, u_k)$

Sphereing the data Transform data to N(0,1)

$$\widetilde{X} = C^{-1/2}X = U\Sigma^{-1}U^TX$$

Applications of PCA/SVD

- Most popular in multivariate statistics
- Image processing, signal processing
- Physics: principal axis, diagonalization of 2nd tensor (mass)
- Climate: Empirical Orthogonal Functions (EOF)
- Kalman filter. $s^{(t+1)} = As^{(t)} + E$, $P^{(t+1)} = AP^{(t)}A^T$
- Reduced order analysis

Applications of PCA/SVD

- PCA/SVD is as widely as Fast Fourier Transforms
 - Both are spectral expansions
 - FFT is more on Partial Differential Equations
 - PCA/SVD is more on discrete (data) analysis
 - PCA/SVD surpass FFT as computational sciences further advance

PCA/SVD

- Select combination of variables
- Dimension reduction
 - An image has 10⁴ pixels. True dimension is 20!

PCA is a Matrix Factorization (spectral/eigen decomposition)

Principal directions: $U = (u_1, u_2, \dots, u_k)$

Principal components: $V = (v_1, v_2, \dots, v_k)$

Covariance $C = XX^T = \sum_{k=1}^{p} \lambda_k u_k u_k^T = U\Lambda U^T$

Kernel matrix $X^T X = \sum_{k=1}^{r} \lambda_k v_k v_k^T = V \Lambda V^T$

Underlying basis: SVD $X = \sum_{k=1}^{p} \sigma_k u_k v_k^T = U \Sigma V^T$

From PCA to spectral clustering using generalized eigenvectors

Consider the kernel matrix:
$$W_{ij} = \langle \phi(x_i), \phi(x_j) \rangle$$

In Kernel PCA we compute eigenvector: $Wv = \lambda v$

Generalized Eigenvector: $Wq = \lambda Dq$

$$D = diag(d_1, \dots, d_n)$$
 $d_i = \sum_j w_{ij}$

This leads to Spectral Clustering!

Scale PCA ⇒ Spectral Clustering

PCA:
$$W = \sum_{k} v_k \lambda_k v_k^T$$

Scaled PCA:
$$W = D^{\frac{1}{2}} \widetilde{W} D^{\frac{1}{2}} = D \sum_{k=1}^{\infty} q_k \lambda_k q_k^T D$$

$$\widetilde{W} = D^{-\frac{1}{2}}WD^{-\frac{1}{2}}, \quad \widetilde{w}_{ij} = w_{ij}/(d_id_j)^{1/2}$$

 $q_k = D^{-\frac{1}{2}}v_k$ scaled principal component

Scaled PCA on a Rectangle Matrix ⇒ Correspondence Analysis

Re-scaling:
$$\tilde{P} = D_r^{-\frac{1}{2}} P D_c^{-\frac{1}{2}}, \tilde{p}_{ij} = p_{ij} / (p_i p_j)^{1/2}$$

Apply SVD on \tilde{P} Subtract trivial component

$$P - rc^{T}/p.. = D_{r} \sum_{k=1}^{\infty} f_{k} \lambda_{k} g_{k}^{T} D_{c} \qquad r = (p_{1.}, \dots, p_{n.})^{T}$$

$$f_{k} = D_{r}^{-\frac{1}{2}} u_{k}, g_{k} = D_{c}^{-\frac{1}{2}} v_{k} \qquad c = (p_{1.}, \dots, p_{n.})^{T}$$

are scaled row and column principal component (standard coordinates in CA)

(Zha, et al, CIKM 2001, Ding et al, PKDD2002)

Nonnegative Matrix Factorization

Data Matrix: *n* points in *p*-dim:

$$X = (x_1, x_2, \cdots, x_n)$$

 X_i is an image, document, webpage, etc

Decomposition (low-rank approximation)

$$X \approx FG^T$$

Nonnegative Matrices

$$X_{ij} \ge 0, \ F_{ij} \ge 0, \ G_{ij} \ge 0$$

$$F = (f_1, f_2, \dots, f_k)$$
 $G = (g_1, g_2, \dots, g_k)$

Solving NMF with multiplicative updating

$$J = ||X - FG^T||^2, F \ge 0, G \ge 0$$

Fix F, solve for G; Fix G, solve for F

Lee & Seung (2000) propose

$$F_{ik} \leftarrow F_{ik} \frac{(XG)_{ik}}{(FG^TG)_{ik}} \qquad G_{jk} \leftarrow G_{jk} \frac{(X^TF)_{jk}}{(GF^TF)_{ik}}$$

Matrix Factorization Summary

Symmetric

(kernel matrix, graph)

Rectangle Matrix

(contigency table, bipartite graph)

$$W = V \Lambda V^T$$

$$X = U\Sigma V^T$$

Scaled PCA:

$$W = D^{\frac{1}{2}} \widetilde{W} D^{\frac{1}{2}} = D Q \Lambda Q^T D$$

$$W = D^{\frac{1}{2}} \tilde{W} D^{\frac{1}{2}} = D Q \Lambda Q^{T} D \qquad X = D_{r}^{\frac{1}{2}} \tilde{X} D_{c}^{\frac{1}{2}} = D_{r} F \Lambda G^{T} D_{c}$$

$$W \approx QQ^T$$

$$X \approx FG^T$$

Indicator Matrix Quadratic Clustering

Unsigned Cluster indicator Matrix $H=(h_1, \dots, h_K)$

Kernel K-means clustering:

$$\max_{H} \operatorname{Tr}(H^{T}WH), \quad s.t. H^{T}H = I, H \ge 0$$

K-means: $W = X^T X$; Kernel K-means $W = (\langle \phi(x_i), \phi(x_j) \rangle)$

Spectral clustering (normalized cut)

$$\max_{H} \operatorname{Tr}(H^{T}WH), \quad s.t. H^{T}DH = I, H \ge 0$$

Difference between the two is the orthogonality of *H*

Indicator Matrix Quadratic Clustering

Additional features:

Semi-suerpvised classification:
$$\max_{H} \text{Tr}(H^TWH + C^TH)$$

Semi-supervised clustering: (A) must-link and (B) cannot-link constraints

$$\max_{H} \operatorname{Tr}(H^{T}WH + \alpha H^{T}AH - \beta H^{T}BH)$$

Outlier Detection: $\max_{H} \text{Tr}(H^TWH)$ allowing zero rows in H

Nonnegative Lagrangian Relaxation:

$$H_{ik} \leftarrow H_{ik} \sqrt{\frac{(WH)_{ik} + C_{ik}/2}{(H\alpha)_{ik}}}, \ \alpha = H^T W H + H^T C.$$

Tutorial Outline

PCA

- Recent developments on PCA/SVD
- Equivalence to K-means clustering

Scaled PCA

- Laplacian matrix
- Spectral clustering
- Spectral ordering

Nonnegative Matrix Factorization

- Equivalence to K-means clustering
- Holistic vs. Parts-based

Indicator Matrix Quadratic Clustering

- Use Nonnegative Lagrangian Relaxtion
- Includes
 - K-means and Spectral Clustering
 - semi-supervised classification
 - Semi-supervised clustering
 - Outlier detection

Part 1.B. Recent Developments on PCA and SVD

Principal Curves
Independent Component Analysis

Kernel PCA

Mixture of PCA (probabilistic PCA)

Sparse PCA/SVD

Semi-discrete, truncation, L1 constraint, Direct sparsification

Column Partitioned Matrix Factorizations

2D-PCA/SVD

Equivalence to K-means clustering

PCA and SVD

Data Matrix:
$$X = (x_1, x_2, \dots, x_n)$$

Covariance
$$C = XX^T = \sum_{k=1}^{P} \lambda_k u_k u_k^T$$

Covariance
$$C = XX^T = \sum_{k=1}^{p} \lambda_k u_k u_k^T$$

Gram (kernel) matrix $X^TX = \sum_{k=1}^{p} \lambda_k v_k v_k^T$

Principal components: \mathcal{V}_k Principal directions: u_{ν} (projection on the subspace) (Principal axis, subspace)

Underlying basis: SVD
$$X = \sum_{k=1}^{p} \sigma_k u_k v_k^T$$

Kernel PCA

$$x_i \to \phi(x_i)$$

Kernel

$$K_{ij} = \langle \phi(x_i), \phi(x_j) \rangle$$

PCA Component

1

Feature extraction

$$\langle v, \phi(x) \rangle = \sum_{i} v_{i} \langle \phi(x_{i}), \phi(x) \rangle$$

Indefinite Kernels

Generalization to graphs with nonnegative weights

(Scholkopf, Smola, Muller, 1996)

Mixture of PCA

- Data has local structures.
 - Global PCA on all data is not useful
- Clustering PCA (Hinton et al):
 - Using clustering to cluster data into clusters
 - Perform PCA in each cluster
 - No explicit generative model
- Probabilistic PCA (Tipping & Bishop)
 - Latent variables
 - Generative model (Gaussian)
 - Mixture of Gaussians ⇒ mixture of PCA
 - Adding Markov dynamics for latent variables (Linear Gaussian Models)

Probabilistic PCA Linear Gaussian Model

Latent variables $S = (s_1, \dots, s_n)$

$$x_i = Ws_i + \mu + \varepsilon$$
, $\varepsilon \sim N(0, \sigma_{\varepsilon}^2 I)$

Gaussian prior $P(s) \sim N(s_0, \sigma_s^2 I)$

$$x \sim N(Ws_0, \sigma_{\varepsilon}^2 I + \sigma_s WW^T)$$

Linear Gaussian Model

$$s_{i+1} = As_i + \eta, \quad x_i = Ws_i + \varepsilon,$$

(Tipping & Bishop, 1995; Roweis & Ghahramani, 1999)

Sparse PCA

- Compute a factorization $X \approx UV^T$
 - -U or V is sparse or both are sparse
- Why sparse?
 - Variable selection (sparse U)
 - When n >> d
 - Storage saving
 - Other new reasons?
- L₁ and L₂ constraints

Sparse PCA: Truncation and Discretization

$$X \approx U \Sigma V^T$$

Sparsified SVD

$$U = (u_1 \cdots u_k) \qquad V = (v_1 \cdots v_k)$$

- Compute $\{u_k, v_k\}$ one at a time, truncate those entries below a threshold.
- Recursively compute all pairs using deflation.
- (Zhang, Zha, Simon, 2002)

$$X \leftarrow X - \sigma u v^T$$

- Semi-discrete decomposition
 - *U*, *V* only contains {-1, 0, 1}
 - Iterative algorithm to compute U,V using deflation
 - (Kolda & O'leary, 1999)

Sparse PCA: L₁ constraint

• LASSO (Tibshirani, 1996)

$$\min \| y - X^T \beta \|^2, \| \beta \|_1 \le t$$

• SCoTLASS (Joliffe & Uddin, 2003)

$$\max u^{T} (XX^{T})u^{T}, \quad ||u||_{1} \le t, \quad u^{T}u_{h} = 0$$

- Least Angle Regression (Efron, et al 2004)
- Sparse PCA (Zou, Hastie, Tibshirani, 2004)

$$\min_{\alpha,\beta} \sum_{i=1}^{n} ||x_i - \alpha \beta^T x_i||^2 + \lambda \sum_{j=1}^{k} ||\beta_j||^2 + \sum_{j=1}^{k} \lambda_{1,j} ||\beta_j||_1, \alpha^T \alpha = I$$

$$v_j = \beta_j / ||\beta_j||$$

Sparse PCA: Direct Sparsification

Sparse SVD with explicit sparsification

$$\min_{u,v} ||X - udv^T||_F + \operatorname{nnz}(u) + \operatorname{nnz}(v)$$

rank-one approximation

(Zhang, Zha, Simon 2003)

- Minimize a bound
- deflation
- Direct sparse PCA, on covariance matrix S

$$u = \max u^T S u = \max \operatorname{Tr}(S u u^T) = \max \operatorname{Tr}(S U)$$

s.t.
$$\operatorname{Tr}(U) = 1$$
, $\operatorname{nnz}(U) \le k^2$, $U \succeq 0$, $\operatorname{rank}(U) = 1$

(D'Aspremont, Gharoui, Jordan, Lancriet, 2004)

Sparse PCA Summary

- Many different approaches
 - Truncation, discretization
 - L1 Constraint
 - Direct sparsification
 - Other approaches
- Sparse Matrix factorization in general
 - L₁ constraint
- Many questions
 - Orthogonality
 - Unique solution, global solution

PCA: Further Generalizations

- Generalization to Exponential Family
 - (Collins, Dasgupta, Schapire, 2001)
- Maximum Margin Factorization (Srebro, Rennie, Jaakkola, 2004)
 - Collaborative filtering
 - Input Y is binary
 - Hard margin $Y_{ia}X_{ia} \ge 1, \forall ia \in S$
 - Soft margin

$$\min \|X\|_{\Sigma} + c \sum_{ia \in S} \max(0, 1 - Y_{ia} X_{ia})$$

$$X = UV^{T}, \quad \|X\| = \frac{1}{2} (\|U\|_{Fro}^{2} + \|V\|_{Fro}^{2})$$

Column Partitioned Matrix Factorizations

$$X = (x_1, \dots x_n) = (x_1 \dots x_{n_1}, x_{n_1+1} \dots x_{n_2}, \dots, x_{n_{k-1}+1} \dots x_n)$$

$$n_1 + \dots + n_k = n$$

Column Partitioned Data Matrix

(Zhang & Zha, 2001)

Partitions are generate by clustering

(Dhillon & Modha, 2001)

- Centroid matrix $U = (u_1 \cdots u_k)$

(Park, Jeon & Rosen, 2003)

- $-u_k$ is centroid
- Fix U, compute V min $||X UV^T||_F^2$ $V = X^T U (U^T U)^{-1}$

$$V = X^T U (U^T U)^{-1}$$

- Represent each partition by a SVD.

- Pick leading
$$U$$
s to form U

- Fix U compute V

$$U = (U_1, \cdots U_\ell) = (u_1^{(1)} \cdots u_{k_1}^{(1)}, \cdots, u_1^{(\ell)} \cdots u_{k_\ell}^{(\ell)})$$

- Fix *U*, compute *V*
- Several other variations

(Castelli, Thomasian & Li 2003)

(Zeimpekis & Gallopoulos, 2004)

Two-dimensional SVD

- Large number of data objects are 2-D: images, maps
- Standard method:
 - convert (re-order) each image as a 1D vector
 - collect all 1D vectors into a single (big) matrix
 - apply SVD on the big matrix
- 2D-SVD is developed for 2D objects
 - Extension of standard SVD
 - Keeping the 2D characteristics
 - Improves quality of low-dimensional approximation
 - Reduces computation, storage

Linearize a 2D object into 1D object

SVD and 2D-SVD

$$X = (x_1, x_2, \cdots, x_n)$$

Eigenvectors of XX^T and X^TX

$$X = U\Sigma V^T \qquad \Sigma = U^T X V$$

$$\Sigma = U^T X V$$

2D-SVD

$$\{A\} = \{A_1, A_2, \dots, A_n\}$$

Eigenvectors of

$$F = \sum_{i} (A_i - \overline{A})(A_i - \overline{A})^T$$
 row-row covariance

$$G = \sum_{i}^{i} (A_i - \overline{A})^T (A_i - \overline{A}) \quad \text{column-column cov}$$

$$A_i = UM_i V^T \qquad M_i = U^T A_i V$$

$$A_i = UM_iV^T$$

$$\boldsymbol{M}_i = \boldsymbol{U}^T \boldsymbol{A}_i \boldsymbol{V}$$

2D-SVD

$$\{A\} = \{A_1, A_2, \dots, A_n\}$$
 assume $\overline{A} = 0$
row-row cov: $F = \sum_i A_i A_i^T = \sum_i \lambda_k u_k u_k^T$
col-col cov: $G = \sum_i A_i^T A_i = \sum_{k=1}^n \zeta_k u_k u_k^T$
Bilinear $U = (u_1, u_2, \dots, u_k)$
subspace $V = (v_1, v_2, \dots, v_k)$ $M_i = U^T A_i V$
 $A_i = UM_i V^T, i = 1, \dots, n$

 $A \in \Re^{r \times c}, U \in \Re^{r \times k}, V \in \Re^{c \times k}, M_i \in \Re^{k \times k}$

2D-SVD Error Analysis

SVD:
$$\min ||X - U\Sigma V^T||^2 = \sum_{i=k+1}^p \sigma_i^2$$

$$A_{i} \approx LM_{i}R^{T}, A_{i} \in R^{r \times c}, L \in R^{r \times k}, R \in R^{c \times k}, M_{i} \in R^{k \times k}$$

$$\min J_{1} = \sum_{i=1}^{n} ||A_{i} - LM_{i}||^{2} = \sum_{j=k+1}^{c} \zeta_{j}$$

$$\min J_{2} = \sum_{i=1}^{n} ||A_{i} - M_{i}R^{T}||^{2} = \sum_{j=k+1}^{r} \lambda_{j}$$

$$\min J_{3} = \sum_{i=1}^{n} ||A_{i} - LM_{i}R^{T}||^{2} \cong \sum_{j=k+1}^{r} \lambda_{j} + \sum_{j=k+1}^{c} \zeta_{j}$$

$$\min J_{4} = \sum_{i=1}^{n} ||A_{i} - LM_{i}L^{T}||^{2} \cong 2 \sum_{j=k+1}^{r} \lambda_{j}$$

Temperature maps (January over 100 years)

PCA & Matrix Factorization for Learning, ICML 2005, Chris Ding

Reconstructed image

SVD (K=15), storage 160560

2DSVD (K=15), storage 93060

2D-SVD Summary

- 2DSVD is extension of standard SVD
- Provides optimal solution for 4 representations for 2D images/maps
- Substantial improvements in storage, computation, quality of reconstruction
- Capture 2D characteristics

Part 1.C. K-means Clustering ⇔ Principal Component Analysis

(Equivalence between PCA and K-means)

K-means clustering

- Also called "isodata", "vector quantization"
- Developed in 1960's (Lloyd, MacQueen, Hatigan, etc)
- Computationally Efficient (order-mN)
- Widely used in practice
 - Benchmark to evaluate other algorithms

Given *n* points in *m*-dim:
$$X = (x_1, x_2, \dots, x_n)^T$$

K-means objective
$$\min J_K = \sum_{k=1}^K \sum_{i \in C_k} ||x_i - c_k||^2$$

PCA is equivalent to K-means

Continuous optimal solution for cluster indicators in *K*-means clustering are given by principal components.

Subspace spanned by *K* cluster centroids is given by PCA subspace.

2-way K-means Clustering

Cluster membership indicator:

$$q(i) = \begin{cases} +\sqrt{n_2/n_1 n} & \text{if } i \in C_1 \\ -\sqrt{n_1/n_2 n} & \text{if } i \in C_2 \end{cases}$$

$$J_K = n\langle x^2 \rangle - J_D, \ J_D = \frac{n_1 n_2}{n} \left[2 \frac{d(C_1, C_2)}{n_1 n_2} - \frac{d(C_1, C_1)}{n_1^2} - \frac{d(C_2, C_2)}{n_2^2} \right]$$

Define distance matrix: $D = (d_{ii}), d_{ii} = |x_i - x_i|^2$

$$J_D = -q^T D q = -q^T \widetilde{D} q = 2q^T (X^T X) q = 2q^T K q \qquad \widetilde{D} = K$$

 $\min J_K \Rightarrow \max J_D$ Solution is principal eigenvector v_1 of K

Clusters C_1 , C_2 are determined by: $C_1 = \{i \mid v_1(i) < 0\}, C_2 = \{i \mid v_1(i) \ge 0\}$

A simple illustration

DNA Gene Expression File for Leukemia

Using v₁, tissue samples separated into 2 clusters, 3 errors

Do one more Kmeans, reduce to 1 error

45

PCA & Matrix Factorizations for Learning, ICML 2005 Tutorial, Chris Ding

Multi-way K-means Clustering

Unsigned Cluster membership indicators h_1 , ..., h_K :

$$\begin{bmatrix}
C_1 & C_2 & C_3 \\
1 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix} = (h_1, h_2, h_3)$$

Multi-way K-means Clustering

$$J_K = \sum_{i} x_i^2 - \sum_{k=1}^K \frac{1}{n_k} \sum_{i,j \in C_k} x_i^T x_j = \sum_{i} x_i^2 - \sum_{k=1}^K h_k^T X^T X h_k$$

(Unsigned) Cluster indicators $H=(h_1, \dots, h_K)$

$$J_K = \sum_i x_i^2 - \text{Tr}(H_k^T X^T X H_k)$$

Regularized Relaxation Redundancy: $\sum_{k=1}^{K} n_k^{1/2} h_k = e$

Transform h_1 , ..., h_K to q_1 - q_k via orthogonal matrix T

$$(q_1,...,q_k) = (h_1,\cdots,h_k)T$$
 $Q_k = H_kT$ $q_1 = e/n^{1/2}$

Multi-way K-means Clustering

$$\max \text{Tr}[Q_{k-1}^T(X^T X)Q_{k-1}] \qquad Q_{k-1} = (q_2, ..., q_k)$$

Optimal solutions of $q_2 \cdots q_k$ are given by principal components $v_2 \cdots v_k$.

 J_K is bounded below by total variance minus sum of K eigenvalues of covariance:

$$n\overline{x^2} - \sum_{k=1}^{K-1} \lambda_k < \min J_K < n\overline{x^2}$$

Consistency: 2-way and K-way approaches

Orthogonal Transform:
$$T = \begin{pmatrix} \sqrt{n_2/n} & -\sqrt{n_1/n} \\ \sqrt{n_1/n} & \sqrt{n_2/n} \end{pmatrix}$$

T transforms (h_1, h_2) to (q_1, q_2) :

$$h_1 = (1 \cdots 1, 0 \cdots 0)^T, \quad h_2 = (0 \cdots 0, 1 \cdots 1)^T$$
 $a = \sqrt{\frac{n_2}{n_1 n}}$
 $q_1 = (1 \cdots 1)^T, \quad q_2 = (a, \cdots, a, -b, \cdots, -b)^T$
 $b = \sqrt{\frac{n_1}{n_2 n}}$

Recover the original 2-way cluster indicator

Test of Lower bounds of K-means clustering

Kineans objective function values and theoretical bounds for 6 datasets.

 $\mid J_{\it opt} - J_{\it LB} \mid$

	Dataset	a: A2									
Kincana	189.31	189.06	189.40	189.40	189.91	189.93	188.62	189.52	188.90	188.19	_
P2	188.30	188.14	188.57	188.56	189.10	188.89	187.85	188.54	187.91	187.25	0.48%
L2orig	187.37	187.19	187.71	187.68	188.27	187.99	186.98	187.53	187.29	186.37	0.94%
12cml.	185.09	184.88	185.63	185.33	186.25	185.44	185.00	185.56	184.75	184.02	2.1 3%
	Datasets: B2										
Krncans	185.20	187.68	187.31	186.47	187.08	186.12	187.12	187.36	185.51	185.50	
P2	184.44	186.69	186.05	184.81	186.17	185.29	186.13	185.62	184.73	184.19	0.60%
L2orig	183.22	185.51	184.97	183.67	185.02	184.19	184.88	184.50	183.55	183.08	1.22%
L2cord.	180.04	182.97	182.36	180.71	182.46	181.17	182.38	181.77	180.42	179.90	2.74%
	Datasets: A5 Balanced										
Kincana	459.68	462.18	461.32	463.50	461.71	462.70	460.11	463.24	463.83	463.54	_
l'5	452.71	456.70	454.58	457.61	456.19	456.78	453.19	458.00	457.59	458.10	1.31%
	Datasets: A5 Unbalanced										
Kincana	575.21	575.89	576.56	578.29	576.10	579.12	579.77	574.57	576.28	573.41	_
l'5	568.63	568.90	570.10	571.88	569.51	572.26	573.18	567.98	569.32	566.79	1.16%
	Datasets: B5 Balanced										
Ктоата	464.86	464.00	466.21	463.15	463.58	464.70	464.45	465.57	466.04	463.91	_
l'5	458.77	456.87	459.38	458.19	456.28	458.23	458.37	458.38	459.77	458.84	1.36%
	Datasets: H5 Unbalanced										
Kincans	580.14	5 81.11	580.76	582.32	578.62	5 81.22	582.63	578.93	578.27	578.30	_
P5	572.44	572.97	574.60	575.28	571.45	574.04	575.18	571.76	571.16	571.13	1.25%

Lower bound is within 0.6-1.5% of the optimal value

Cluster Subspace (spanned by *K* centroids) = PCA Subspace

Given a data point x,

$$P = \sum_{k} c_k c_k^T$$
 project x into the cluster subspace

Centroid is given by
$$c_k = \sum_k h_k(i)x_i = Xh_k$$

$$P = \sum_{k} c_{k} c_{k}^{T} = X \sum_{k} h_{k} h_{k}^{T} X^{T} = X \sum_{k} v_{k} v_{k}^{T} X^{T} = \sum_{k} \lambda_{k} u_{k} u_{k}^{T}$$

$$P_{K-means} = \sum_{k} \lambda_{k} u_{k} u_{k}^{T} \quad \Leftrightarrow \quad \sum_{k} u_{k} u_{k}^{T} \equiv P_{PCA}$$

PCA automatically project into cluster subspace

PCA is unsupervised version of LDA

Effectiveness of PCA Dimension Reduction

Clustering accuracy as the PCA dimension is reduced from original 1000.

Dim	A5-B	A5-U	B5-B	B5-U
5	0.81/0.91	0.88/0.86	0.59/0.70	0.64/0.62
6	0.91/0.90	0.87/0.86	0.67/0.72	0.64/0.62
10	0.90/0.90	0.89/0.88	0.74/0.75	0.67/0.71
20	0.89	0.90	0.74	0.72
40	0.86	0.91	0.63	0.68
1000	0.75	0.77	0.56	0.57

Kernel K-means Clustering

Kernal *K*-means objective: $x_i \rightarrow \phi(x_i)$

$$\min J_K^{\phi} = \sum_{k=1}^K \sum_{i \in C_k} \|\phi(x_i) - \overline{\phi}(c_k)\|^2$$

$$= \sum_{i} |\phi(x_{i})|^{2} - \sum_{k=1}^{K} \frac{1}{n_{k}} \sum_{i,j \in C_{k}} \phi(x_{i})^{T} \phi(x_{j})$$

Kernal *K*-means
$$\max J_K^{\phi} = \sum_{k=1}^K \frac{1}{n_k} \sum_{i,j \in C_k} \left\langle \phi(x_i), \phi(x_j) \right\rangle$$

Kernel K-means clustering is equivalent to Kernal PCA

Continuous optimal solution for cluster indicators are given by Kernal PCA components

Subspace spanned by *K* cluster centroids are given by Kernal PCA principal subspace