

FUNDAÇÃO UNIVERSIDADE FEDERAL DE RONDÔNIA PRÓ-REITORIA DE PÓS-GRADUAÇÃO E PESQUISA – PROPESQ PROGRAMA INSTITUCIONAL DE BOLSAS E TRABALHO VOLUNTÁRIO DE INICIAÇÃO CIENTÍFICA – PIBIC/UNIR/CNPQ

RELATÓRIO PARCIAL E RESUMO INFORMATIVO DO PIBIC/UNIR/CNPQ CICLO 2019/2020

Título do Projeto do Grupo de Pesquisa

Título do Projeto de Pesquisa do Orientador

NÚMEROS PRIMOS: OS ÁTOMOS DA ARITMÉTICA

Orientadora: Profa. Dra. Lucia de Fatima de Medeiros Brandão Dias

Orientando: Douglas Vinícius Gonçalves Araújo

() Bolsista (X) Voluntário

Período do relatório: 5 de agosto de 2019 a 30 de janeiro de 2020

RESUMO

Este trabalho tem como objetivo de apresentar um estudo sobre os Números Primos que passa por conteúdos básicos tais como: a infinitude dos números primos; suas propriedas aritméticas; teorema fundamental da aritmética . Além da exposições teóricas temos

Palavras-chave: Lógica. Conjunto e funções. Demonstração. Divisibilidade. Números Primos.

ABSTRACT

verbo thube kkk

Keywords: Adult education. Community schools. Peasants. Popular culture

LISTA DE ILUSTRAÇÕES

LISTA DE TABELAS

SUMÁRIO

1	INT	RODU	$\tilde{\zeta}$ ÃO 7					
	1.1	CRON	OGRAMA					
2	OBJ	ETIVO	S					
	2.1	OBJET	ΓΙVO GERAL					
	2.2	OBJET	TIVO ESPECÍFICO					
3	MA	ΓÉRIA	IS E MÉTODOS					
4	RES	RESULTADOS E DISCUSSÕES						
	4.1	LÓGIO	CA MATEMÁTICA 10					
		4.1.1	Proposições Simples e Compostos					
		4.1.2	Conectivos					
			4.1.2.1 Negação					
			4.1.2.2 Conjunção					
			4.1.2.3 Disjunção					
			4.1.2.4 Disjunção Exclusiva					
			4.1.2.5 Condicional					
			4.1.2.6 Bicondicional					
	4.2	CONJ	UNTOS					
	4.3	TIPOS	DE DEMONSTRAÇÕES					
		4.3.1	Demonstrações Diretas					
		4.3.2	Demonstrações Indiretas					
	4.4	INDU	ÇÃO FINITA E BOA ORDENAÇÃO 14					
	4.5	DIVIS	IBILIDADE E CONGRUÊNCIA					
		4.5.1	Divisibilidade					
		4.5.2	O Algoritmo da Divisão					
		4.5.3	mdc, mmc e Algoritmo Euclidiano					
		4.5.4	Teorema Fundamental da Aritmética					
		4.5.5	Congruência					
			4.5.5.1 Congruência Linear					
		4.5.6	Teoremas de Euler, Fermat e Wilson					
	4.6	PSEUI	DOPRIMOS E TESTE DE PRIMALIDADE					
		4.6.1	Números de Carmichael					

	4.6.2	Teste de Primalidade	20			
	4.6.3	Distribuição dos Números Primos	20			
5	CONCLUS	ÕES	21			
REFERÊNCIAS						

1 INTRODUÇÃO

A história da humanidade está inteiramente ligada com a noção de números e suas propriedades. E a ramificação da matemática

A ciencia que tem o objetivo de estudar as propriedades, origem e relação dos numeros é a teoria os numeros, considerada por gauss como a rainha da matematica. O resultado deste trabalho é o estudo da parte elementar, onde estão apresentados provas elementares de preposições e teoremas. Neste trabalho estudamos a lógica matematica, suas preposições, conectivos e suas tabelas verdades. Em seguida foi apresentado uma noção de teoria dos conjuntos e funções e depois enunciamos os tipos de demonstrações: Demontrações diretas e Indiretas, com significativo exemplo, procurando dessa forma adquirir uma linguagem matematica formal. E no campo da introdução da teoria dos números, estudamos propriedades elementares sobre divisibilidades no conjunto dos inteiros, tendo o algoritmo da divisão e sobre a existência e a unicidade doquociente e do resto. Tambem usamos o principio da indução finita em alguns exemplos. Fornecemos alguns resultados clássicos sobre os números primos e o teorema fundamental da aritmética e sobre a unicidade da representação de um inteiro como produto de potências de primos. No teorema de Euclides foi apresentado várias provas de existencia de infinitos números primos.

A teoria dos números é a soma da matematica dita muitas vezes de matematica pura? E conforme (livro), para alguns membros dessa escola, a pesquisa das relações, propriedades entre os numeros é como um jogo de xadrez, cuja a principal recompensa é o estimulo intelectual que fornece. O objetivo deste trabalho é fazer

1.1 CRONOGRAMA

Este projeto tem a duração de 12 meses, de 01/08/2019 a 30/07/2020. O projeto esta sendo desenvolvido conforme o seguinte cronograma:

2 OBJETIVOS

Visando um estruturação mais clara deste relatório parcial, encontra-se resumido nas páginas seguintes, o plano de pesquisa proposto inicialmente.

2.1 OBJETIVO GERAL

Compreender a estrutura lógica

2.2 OBJETIVO ESPECÍFICO

- entender a sistematização da estrutura lógica matemática e suas técnicas de demonstrações;
- compreender e habituar com a linguagem matemática de conjuntos e funções;
- evidenciar e analisar as propriedades básicas dos inteiros;
- demonstrar as propriedades e teoremas.

3 MATÉRIAIS E MÉTODOS

Os materiais utilizados durante a pesquisa foram os livros que se encontram nas Referências Bibliográficas, mas principalmente o livro Introdução à Teoria dos Números de José Plinio.

4 RESULTADOS E DISCUSSÕES

4.1 LÓGICA MATEMÁTICA

Conforme (FILHO, 2002) a lógica matemática adota como regra fundamentais do pensamento os dois seguintes princípios (ou axiomas):

Axioma 4.1 *PRINCÍPIO DA NÃO CONTRADIÇÃO:* uma proposição não pode ser verdadeira e falsa ao mesmo tempo.

Axioma 4.2 *PRINCÍPIO DO TERCEIRO EXCLUÍDO:* toda proposição ou é verdadeira ou falsa, isto é, verifica-se sempre um destes casos e nunca um terceiro.

Em virtude desses dois princípios temos que a Lógica Matemática é uma lógica bivalente. Por definição, proposição significa uma oração declarativa, que tem sentido afirmativo completo.

4.1.1 Proposições Simples e Compostos

Definição: chama-se de proposição simples ou proposições atômicas aquela que não contém nenhuma outra proposição como parte integrante de si mesma. Normalmente representado por letras latina minúsculas: *p*, *q*, *r*.

Exemplo: O número 25 é quadrado perfeito.

Definição: chama-se proposição composta ou proposição molecular aquela formada pela combinação de duas ou mais proposições. Representado por letras latinas maiúsculas: *P*, *Q*, *R*.

Exemplo: O número π é irracional e maior do que 4.

Usualmente as proposições compostas que são formadas pela combinação das proposições simples p, q, r, \dots , escreve-se: $P(p,q,r,\dots)$

4.1.2 Conectivos

Definição: chama-se conectivos palavras ou expressões que se usam para formar, interligar novas proposições a partir de outras. São conectivos usuais em lógica as palavras: "e", "ou", "não", "se... então... ", "... se e somente se...".

4.1.2.1 Negação

Definição: negação de uma preposição p representada por "não p"cujo o valor lógico é verdadeiro quando p é falso e vice-verso.

$$egin{array}{c|c} p & \sim p \ \hline V & F \ \hline F & V \ \hline \end{array}$$

4.1.2.2 Conjunção

Definição: a conjunção de duas proposições p e q a proposição representada por "p e q, cujo o valor lógico é a verdade (\mathbf{V}) quando ambas proposições são verdadeiras e falsa nos demais casos.

4.1.2.3 Disjunção

Definição: a disjunção de duas proposições p e q, representadas por "p ou q", cujo o valor lógico é a verdade quando ao menos uma das proposições é verdadeira e falsa quando ambas as preposições são falsas.

$$\begin{array}{c|cccc} p & q & p & \vee & q \\ \hline V & V & & V \\ V & F & & V \\ F & V & & V \\ F & F & & F \\ \end{array}$$

4.1.2.4 Disjunção Exclusiva

Definição: disjunção exclusiva de duas proposições p e q representada por "ou p ou q"ou "ou p ou q, mas não ambas", cujo o valor lógico é a verdade somente quando p é verdadeiro ou q é verdadeiro

4.1.2.5 Condicional

Definição: Proposição condicional representado por "se p, então q, cujo o valor lógico é falsidade no caso que p é verdadeira e q é falso e verdade nos demais casos. Os valores lógicos de duas proposições, definido pela seguinte tabela-verdade:

p q	$p\rightarrowq$
V V	V
V F	F
F V	V
F F	V

Também se lê de uma das seguintes maneiras:

- (i) p é condição suficiente para q;
- (ii) q é condição necessária para p.

Neste conectivo lógico é diz que p é o **antecedente** e q o **consequente**. O símbolo "→"é chamado de símbolo de implicação.

4.1.2.6 Bicondicional

Definição: Proposição bicondicional representada por "p se e somente se q", cujo o valor lógico é a verdade quando p e q são ambas verdadeiras ou ambas falsas, e falsidade nos demais casos. O valor lógico da bicondicional de duas proposições definidas pela seguinte tabela-verdade:

$$\begin{array}{c|cccc} p & q & p \leftrightarrow q \\ \hline V & V & & V \\ V & F & F \\ F & V & F \\ \hline F & F & V \\ \end{array}$$

Simbolicamente, "⇔"também se lê de uma das seguintes maneiras:

- 1. p é condição necessária e suficiente para q;
- 2. q é condição necessária e suficiente para p.

4.2 CONJUNTOS

4.3 TIPOS DE DEMONSTRAÇÕES

Resumidamente existem dois tipos de demonstrações em matemática: as demonstrações direta e demonstrações indiretas. Grande parte dos teoremas tem a estrutura "se P, então Q, onde P e Q são afirmações falsas ou verdadeiras. Chamamos de P de hipótese ou premissa e Q de tese ou conclusão.

4.3.1 Demonstrações Diretas

O procedimento para uma demonstração direta é através de implicações lógicas encadeadas que levam P diretamente a Q. Ou seja, de uma sentença $p \rightarrow q$ funciona da seguinte forma: assuma que o antecedente p é verdade (hipótese) e deduza o consequente (tese) q.

Exemplo 1: Quaisquer dois quadrados perfeitos consecutivos diferem por um número ímpar.

Demonstração: Suponhamos que a e b sejam inteiros quadrados perfeitos consecutivos, ou seja, $a = n^2$ e $b = (n+1)^2$. Queremos mostrar que eles diferem por um número ímpar, ou seja, b-a ou a-b é um número ímpar. Como $a = n^2$ e $b = (n+1)^2$ então $b-a = (n+1)^2 - n^2 = n^2 + 2n + 1 - n^2 = 2n + 1$. Portanto, b-a é um número ímpar.

Exemplo 2: Sejam A e B conjuntos. Mostre que $A \subset B \Leftrightarrow \mathcal{C}_B \subset \mathcal{C}_A$.

Demonstração: Suponhamos que $A \subset B$. Então um elemento $x \in \mathbb{C}_B$ não pode pertencer ao conjunto B, principalmente não pertencer a A. Logo $x \in \mathbb{C}_B \Rightarrow x \in \mathbb{C}_A$, ou seja, $\mathbb{C}_B \subset \mathbb{C}_A$. Semelhantemente pela propriedade reflexiva, $\mathbb{C}(\mathbb{C}_A) = A$, temos $\mathbb{C}_B \subset \mathbb{C}_A$ então, $\mathbb{C}(\mathbb{C}_A) \subset \mathbb{C}(\mathbb{C}_B)$, obtemos $A \subset B$.

4.3.2 Demonstrações Indiretas

Existem dois tipos de demonstrações indireta que podemos usar para estabelecer uma afirmação condicional da forma $P\Rightarrow Q$: demonstração por absurdo e demonstração por contra-positiva.

Demonstração por absurdo: Na demonstração por absurdo nós assumimos que a hipótese P é verdadeira, mas nesse caso supomos que a conclusão Q é falsa. O objetivo é mostrar que a combinação da validade da hipótese P com a não validade da tese Q produz um resultado absurdo. Dessa forma segue que Q é verdadeira.

Exemplo: Mostre que $\sqrt{2} \notin \mathbb{Q}$. Isso é o mesmo que dizer: Se $x \in \mathbb{R}$, x > 0 e $x^2 = 2$, então $x \notin \mathbb{Q}$.

Demonstração: Sabemos que um número $r \in \mathbb{R}$ é dito racional se existem inteiros p, q sendo $q \neq 0$ tais que $r = \frac{p}{q}$.

4.4 INDUÇÃO FINITA E BOA ORDENAÇÃO

Uma propriedade básica dos números naturais e uma ferramenta indispensável na demonstração de muitos teoremas é: o Princípio da Indução Finita (PIF) que é divida em duas formas.

Seja P(n) uma propriedade do número natural n, por exemplo:

•
$$1+2+...+n=\frac{n(n+1)}{2}$$
;

•
$$1^2 + 2^2 + ... + n^2 = \frac{n(n+1)(2n+1)}{6}$$
;

•
$$1^3 + 2^3 + ... + n^3 = (1 + 2 + ... + n)^2$$
;

•
$$F_1 + F_2 + ... + F_n = F_{n+2} - 1$$
;

Para provar que a sentença aberta P(n) é válida para todo natural $n \ge n_0$ é necessário utilizar o *Princípio da Indução Finita* (PIF), que é um dos axiomas só o conjunto dos números naturais possuem. O PIF consiste em verificar duas etapas:

- 1. (Base de Indução): $P(n_0)$ é verdadeira;
- 2. (Passo Indutivo): Se P(n) é verdadeira para algum número natural $n \ge n_0$, então P(n+1) também é verdadeira.

Exemplo 4.1 Demonstrar que para todo inteiro positivo n,

$$1+2+...+n = \frac{n(n+1)}{2}$$

Solução: Sabemos que para P(1): $1 = \frac{1(1+1)}{2}$, onde a igualdade é verdadeira para n = 1 (base de indução). Suponhamos que seja verdadeiro para um n = k (hipótese de indução):

$$1+2+...+k = \frac{k(k+1)}{2}$$
.

Somando k+1 em ambos os lados da igualdade, obtemos

$$1+2+...+k+(k+1) = \frac{k(k+1)}{2} + (k+1)$$
$$= \frac{(k+1)(k+2)}{2},$$

neste caso a igualdade também é válida para n = k + 1. Pelo PIF, a igualdade vale para todo número natural $n \ge 1$.

Exemplo 4.2 Demonstrar que para todo inteiro positivo n,

$$1^{2} + 2^{2} + ... + k^{2} = \frac{n(n+1)(2n+1)}{6}$$

Solução: Observamos que para P(1): $1^2 = \frac{1(1+1)(2\cdot 1+1)}{6}$, donde a igualdade é válida para n=1 (base de indução). Suponhamos que seja válida para um n=k (hipótese de indução):

$$1^2 + 2^2 + \dots + k^2 = \frac{k(k+1)(2k+1)}{6}$$

Acrescentando o sucessor (k+1) em ambos lados da igualdade, obtemos

$$1^{2} + 2^{2} + \dots + k^{2} + (k+1)^{2} = \frac{(k+1)(k+2)(2k+3)}{6}$$
$$= \frac{k(k+1)(2k+1)}{6} + (k+1)^{2}$$

de modo que a igualdade também vale para n = k + 1. Pelo PIF, a igualdade vale para todo número natural $n \ge 1$.

Exemplo 4.3 Demonstrar que para todo inteiro positivo n,

$$1^3 + 2^3 + \dots + k^3 = (1 + 2 + \dots + n)^2$$

Solução: Neste caso vemos que P(1): $1^3 = (1)^2$ é válido para n = 1 (base de indução). Observamos que o termo do segundo membro da igualdade mostrado no exemplo 4.1 pode ser substituído por

$$1^3 + 2^3 + \dots + n^3 = \left\lceil \frac{n(n+1)}{2} \right\rceil^2$$
.

Suponhamos que seja verdadeiro para n = k (hipótese de indução).

$$1^3 + 2^3 + \dots + k^3 = \left\lceil \frac{k(k+1)}{2} \right\rceil^2$$
.

Acrescentando o sucessor n = k + 1 em ambos os lados da igualdade, obtemos

$$1^{3} + 2^{3} + \dots + k^{3} + (k+1)^{3} = \left[\frac{k(k+1)}{2}\right]^{2} + (k+1)^{3}$$

$$= \frac{k^{2}(k+1)^{2}}{4} + (k+1)^{3}$$

$$= \frac{k^{2}(k+1)^{2} + 4(k+1)^{3}}{4}$$

$$= \frac{(k+1)^{2}[k^{2} + 4(k+1)]}{4}$$

$$= \frac{(k+1)^{2}(k+2)^{2}}{4}$$

$$= \left(\frac{(k+1)(k+2)}{2}\right)^{2}.$$

Vemos que é válido para n = k + 1. Portanto, pelo PIF, a igualdade vale para todo número natural $n \ge 1$.

A segunda forma do PIF (às vezes chamada de princípio de indução forte), possuem as seguintes propriedades

- 1. (Base de Indução): $P(n_0)$ é verdadeira; e
- 2. (Passo Indutivo): Se P(k) é verdadeira para todo natural k tal que $n_0 \le k \le n$, então P(n+1) também é verdadeira.

O princípio da boa ordenação (PBO) dos números naturais, afirma que todo subconjunto A não vazio de \mathbb{N} tem um elemento mínimo. Ou seja,

• Se $A \subseteq \mathbb{N}$ e $A \neq \emptyset$, então existe $n_0 \in A$ tal que $n_0 \leq n$, $\forall n \in A$

Exemplo 4.4

4.5 DIVISIBILIDADE E CONGRUÊNCIA

4.5.1 Divisibilidade

Nesta secção descreveremos algumas propriedades da divisão, existência e unicidade do quociente e do resto na divisão de inteiros.

Definição: Dado dois inteiros a e b, dizemos que a divide b ou que a é divisor de b ou ainda que b é um múltiplo de a e denotado

a|b

se existir um inteiro c tal que b = ac.

Proposição: Se a, b e c são inteiros, a|b e b|c, então a|c.

Demonstração: Temos que a|b e b|c, neste caso existem inteiros k_1 e k_2 que $b=k_1a$ e $c=k_2b$. Substituindo a igualdade de b na segunda equação, teremos $c=k_1k_2a$ o que implica que a|c. Esta proposição é chamada de "Transitividade".

Proposição: Se a, b, c, m e n são inteiros,

Além das proposições que apresentamos a divisibilidade tem as seguintes propriedades:

(i) n|n

Demonstração: Se n|n, então existe um inteiro k=1 para ser válido a igualdade n=1n.

(ii) $d|n \Rightarrow ad|an$

Demonstração: Se d|n, então n é múltiplo de d, ou seja, existe um k fixo que n = kd. Multiplicando um inteiro qualquer a nos membros desta equação, temos an = akd, o que implica ad|an. Logo $d|n \Rightarrow ad|an$.

(iii) $ad|an e a \neq 0 \Rightarrow d|n$

Demonstração: Se $ad|anen \neq 0$, então an é múltiplo de ad, ou seja, an = kad e sendo $a \neq 0$ dividimos os dois membros da equação por a, assim temos que n = kd, o que implica d|n.

(iv) 1|n

Demonstração: Se 1|n, então n=1k, sendo válida apenas com inteiro fixo k=n, o que nos mostras que 1 divide qualquer inteiro.

(v) n|0

Demonstração: Seja n|0, ou seja, 0 = nk

(vi) $d|n \in n \neq 0 \Rightarrow |d| \leq |n|$

Demonstração: Seja d|n e $n \neq 0$, então n é múltiplo de d, ou seja, n = kd neste caso temos que |d| < |n| ou |d| = |n| para o caso k = 1, o que implica que $|d| \leq |n|$.

(vii) $d|n \in n|d \Rightarrow |d| = |n|$

Demonstração: Temos que d|n e n|d, então $n=k_1d$ e $d=k_2n$. Substituindo a igualdade de n na 2^a equação $d=k_1k_2d$, dividindo os membros por d, $1=k_1k_2$. Como 1 é elemento neutro no operador de multiplicação, implica que |d|=|n|.

(viii)
$$d|n \in d \neq 0 \Rightarrow (n/d)|n$$

Demonstração: Temos que d|n sendo que $d \neq 0$, então existe um k fixo que n = kd, como $d \neq 0$ podemos dividir os membros da igualdade por d, $\frac{n}{d} = k$, substituindo a igualdade de k na equação $n = kd \Rightarrow n = \frac{n}{d}d$, o que nos leva a entender que (n/d)|n.

4.5.2 O Algoritmo da Divisão

No célebre livro VII dos "Elementos" de Euclides escrito aproximadamente 300 a.c. é enunciado o teorema de Eudoxius, que será uma ferramenta essencial para demonstrar o Algoritmo da divisão.

Teorema de Eudoxius: Dado dois inteiros a e b, $b \neq 0$, então ou a é múltiplo de b ou a se encontra entre dois múltiplos consecutivos de b. Ou seja, correspondendo a cada par de inteiros a e $b \neq 0$ existe um inteiro q tal que, para b > 0,

$$qb \le a < (q+1)b$$

e para b < 0,

$$qb \le a < (q-1)b$$

Demonstração:

Podemos finalmente enunciar e provar o Algoritmo da Divisão

Teorema: Dado dois inteiros $a \in b$, b > 0, existe um único par de inteiros $q \in r$ tais que

$$a = qb + r$$
, com $0 \le r \le b$ $(r = 0 \Leftrightarrow b|a)$

Os números q e r são chamados, respectivamente, **quociente** e **resto** da divisão de a por b.

Demonstração:

4.5.3 mdc, mmc e Algoritmo Euclidiano

O máximo divisor comum de dois inteiros a e b (a ou b diferentes de 0), é denotado por (a,b), é o maior inteiro que divide a e b.

Teorema:

Demonstração:

4.5.4 Teorema Fundamental da Aritmética

4.5.5 Congruência

As bases teóricas sobre congruência ou aritmética modular teve início com os trabalhos do matemático suíço Leonhard Euler. Porém, no livro *Disquisitiones Arithmeticae* publicado em 1801, por Carl Friedrich Gauss que tinha apenas 24 anos de idade, tornou mais explícita com as anotações, simbologia e definições usados até hoje.

Definição 4.1 Sejam $a, b \in n \in \mathbb{Z}$, dizemos que $a \in b$ são congruentes módulo n se os restos de sua divisão euclidiana por n são iguais. Escreve-se $a \equiv b \pmod{n}$, quando está relação é falsa, denotamos por $a \not\equiv b \pmod{n}$ e denominamos de incongruentes.

Exemplo 4.5 $11 \equiv 3 \pmod{2}$ *pois* $2 \mid (11 - 3)$.

Proposição 4.5.1 Sejam $a, b \in \mathbb{Z}$, temos que $a \equiv b \pmod{n}$ se, e somente se, existir um $k \in \mathbb{Z}$ tal que a = b + km.

Demonstração: Se $a \equiv b \pmod{n}$, então n | (a - b) o que implica a existência de um $k \in \mathbb{Z}$ tal que a - b = kn, isto é, a = b + kn. A recíproca é trivial.

Conforme Landau (2002) todos os conceitos como "congruente", "equivalente", "igual"ou "similar"devem satisfazer três propriedades chamadas reflexiva, simétrica e transitiva. Além desses, apresentamos mais propriedades importantes sobre congruência segundo Brochero Carlos Gustavo T. de A. Moreira (2011).

Proposição 4.5.2 *Se a, b, c e n* $\in \mathbb{Z}$ *, n* ≤ 0 *, as seguintes propriedades são válidas:*

1. (Reflexiva): $a \equiv a \pmod{n}$;

- 2. (Simétrica): Se $a \equiv b \pmod{n}$, então $b \equiv a \pmod{n}$;
- 3. (*Transitiva*): Se $a \equiv b \pmod{n}$ e $b \equiv c \pmod{n}$, então $a \equiv c \pmod{n}$;
- 4. (Compatibilidade com a soma e diferença): Podemos somar e subtrair membro a mebro

$$\begin{cases} a \equiv b \pmod{n} \\ c \equiv d \pmod{n} \end{cases} \Longrightarrow \begin{cases} a+c \equiv b+d \pmod{n} \\ a+c \equiv b-d \pmod{n} \end{cases}$$

Em particular, se $a \equiv b \pmod{n}$ *, então* $ka \equiv kb \pmod{n}$ *para todo* $k \in \mathbb{Z}$.

5. (Compatibilidade com o produto): Podemos multiplicar membro a membro

$$\begin{cases} a \equiv b \pmod{n} \\ c \equiv d \pmod{n} \end{cases} \Longrightarrow \begin{cases} ac \equiv bd \pmod{n} \end{cases}$$

Em particular, se a $\equiv b \pmod{n}$, *então a*^k $\equiv b^k \pmod{n}$ *para todo k* $\in \mathbb{N}$.

6. (Cancelamento): Se mdc(c,n) = 1, então

$$ac \equiv bc \pmod{n} \iff a \equiv b \pmod{n}$$

Demonstração:

4.5.5.1 Congruência Linear

4.5.6 Teoremas de Euler, Fermat e Wilson

4.6 PSEUDOPRIMOS E TESTE DE PRIMALIDADE

O prefixo *pseudo* é usado para marcar algo que superficial, imitação, engano - ou seja, parece ser uma coisa, mas é outra coisa. Neste caso pseudoprimos não números que apresentam propriedades de números primos, mas não são primos.

4.6.1 Números de Carmichael

4.6.2 Teste de Primalidade

4.6.3 Distribuição dos Números Primos

5 CONCLUSÕES

REFERÊNCIAS

BROCHERO CARLOS GUSTAVO T. DE A. MOREIRA, N. C. S. E. T. F. Teoria dos números: um passeio com primos e outros números familiares pelo mundo inteiro. 2011.

FILHO, E. de A. Iniciação à lógica matemática. [S.1.]: NBL Editora, 2002.

LANDAU, E. **Teoria elementar dos números**. [S.l.]: Ciência Moderna, 2002.